#### California High-Speed Train Project



# Request for Proposal for Design-Build Services

RFP No.: HSR 11-16
Geotechnical Data Report
Clinton Ave to East American Ave

Appendix E
Laboratory Test Records - Sierra Testing Laboratories, Inc



# **Appendix E**

Laboratory Test Records — Sierra Testing Laboratories, Inc.

**Table E-1**Summary of Laboratory Testing Program

| Test Type                                                                                                                | ASTM Standard                                                         | No. of Tests |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|
| Moisture Test                                                                                                            | D 2216                                                                | 123          |
| Atterberg Limit                                                                                                          | D 4318                                                                | 71           |
| Organics                                                                                                                 | D 2974                                                                | 42           |
| Particle-Size Analysis                                                                                                   | D 422                                                                 | 65           |
| Soils Finer than the No. 200 Sieve                                                                                       | D 1140                                                                | 287          |
| Remolded Direct Shear                                                                                                    | D 3080                                                                | 50           |
| Soil Resistivity                                                                                                         | G 57                                                                  | 37           |
| Soil Corrosivity (pH, Chloride, Sulfate)                                                                                 | D 4327                                                                | 37           |
| Modified Proctor                                                                                                         | D 1557                                                                | 9            |
| California Bearing Ratio                                                                                                 | D 1883                                                                | 9            |
| Groundwater Chemistry (pH, Calcium, CaCO <sub>3</sub> , Specific Conductance, Total Dissolved Solids, Chloride, Sulfate) | SM 4500-H <sup>+</sup> B, EPA 200.7, SM 2320B,<br>SM 2510B, EPA 300.0 | 3            |

**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0001R         | S01           | 0.0          | 5.0             | 2.5           | 284.9                 | SM            |                                        |                                    |                                     |                                        | 31.9             |                    |
| S0001R         | S03           | 6.5          | 8.0             | 7.3           | 280.1                 | SM            |                                        |                                    |                                     |                                        | 21.2             |                    |
| S0001R         | S04           | 8.0          | 9.5             | 8.8           | 278.6                 | SP-SM         |                                        |                                    |                                     |                                        | 8.7              |                    |
| S0001R         | S06B          | 11.0         | 11.5            | 11.3          | 276.1                 | ML            |                                        |                                    |                                     |                                        | 69.4             |                    |
| S0001R         | S07           | 12.5         | 14.0            | 13.3          | 274.1                 | SM            |                                        |                                    |                                     |                                        | 40.4             |                    |
| S0001R         | S07           | 12.5         | 14.0            | 13.3          | 274.1                 | SM            |                                        |                                    |                                     |                                        | 32.4             |                    |
| S0001R         | S08           | 14.0         | 15.5            | 14.8          | 272.6                 | SM            |                                        |                                    |                                     |                                        | 35.2             |                    |
| S0001R         | S09           | 20.0         | 21.5            | 20.8          | 266.6                 | ML            |                                        | 21                                 | 18                                  | 3                                      | 63.7             | 1.4                |
| S0001R         | S10           | 25.0         | 26.5            | 25.8          | 261.6                 | CL-ML         | 13.1                                   | 18                                 | 14                                  | 4                                      | 50.7             | 2.4                |
| S0001R         | S11           | 30.0         | 30.8            | 30.4          | 257.0                 | SM            |                                        |                                    |                                     |                                        | 28.9             |                    |
| S0001R         | S13           | 40.0         | 41.2            | 40.6          | 246.8                 | SP            |                                        |                                    |                                     |                                        | 0.1              |                    |
| S0001R         | S14           | 45.0         | 46.5            | 45.8          | 241.6                 | CL            | 31.9                                   | 37                                 | 23                                  | 14                                     | 97.2             | 2.9                |
| S0001R         | S15           | 50.0         | 51.5            | 50.8          | 236.6                 | CL-ML         | 22.8                                   | 26                                 | 21                                  | 5                                      | 90.2             | 1.2                |
| S0002R         | S01           | 0.0          | 5.0             | 2.5           | 287.9                 | SM            |                                        |                                    |                                     |                                        | 23.8             |                    |
| S0002R         | S02           | 5.0          | 6.3             | 5.7           | 284.7                 | SM            | 3.9                                    |                                    |                                     |                                        | 19.5             |                    |
| S0002R         | S04           | 8.0          | 9.3             | 8.7           | 281.7                 | SM            | 10.5                                   |                                    |                                     |                                        | 42.3             |                    |
| S0002R         | S04           | 8.0          | 9.3             | 8.7           | 281.7                 | SM            |                                        |                                    |                                     |                                        | 41.3             |                    |
| S0002R         | S05A          | 9.5          | 10.3            | 9.9           | 280.5                 | SM            | 15.1                                   |                                    |                                     |                                        | 29.0             |                    |
| S0002R         | S08           | 14.0         | 15.2            | 14.6          | 275.8                 | SP            |                                        |                                    |                                     |                                        | 2.8              |                    |
| S0002R         | S09           | 20.0         | 21.3            | 20.6          | 269.8                 | SP            | 14.8                                   |                                    |                                     |                                        | 3.5              |                    |
| S0002R         | S10           | 25.0         | 26.2            | 25.6          | 264.8                 | SM            |                                        |                                    |                                     |                                        | 15.7             |                    |
| S0002R         | S11           | 30.0         | 31.3            | 30.7          | 259.7                 | SM            | 15.0                                   |                                    |                                     |                                        | 43.5             |                    |
| S0002R         | S11           | 30.0         | 31.3            | 30.7          | 259.7                 | SM            |                                        |                                    |                                     |                                        | 45.6             |                    |
| S0002R         | S12           | 35.0         | 36.4            | 35.7          | 254.7                 | ML            | 28.6                                   | 32                                 | 29                                  | 3                                      | 86.4             | 2.2                |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>w <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0002R         | S13           | 40.0         | 41.3            | 40.7          | 249.7                 | CL-ML         | 16.5                                   | 22                                 | 15                                  | 7                                      | 52.0             | 2.1                |
| S0002R         | S14           | 45.0         | 46.4            | 45.7          | 244.7                 | ML            | 29.2                                   | 24                                 | 24                                  | NP                                     | 81.7             |                    |
| S0002R         | S14           | 45.0         | 46.4            | 45.7          | 244.7                 | ML            | 27.9                                   |                                    |                                     |                                        |                  | 2.4                |
| S0002R         | S15B          | 50.8         | 51.3            | 51.1          | 239.3                 | ML            | 29.8                                   |                                    |                                     |                                        | 65.7             |                    |
| S0002R         | S17B          | 60.6         | 60.9            | 60.8          | 229.6                 | SM            | 12.5                                   |                                    |                                     |                                        | 49.3             |                    |
| S0002R         | S19           | 70.0         | 71.5            | 70.8          | 219.6                 | ML            | 31.7                                   | 31                                 | 24                                  | 7                                      | 82.4             |                    |
| S0002R         | S19           | 70.0         | 71.5            | 70.8          | 219.6                 | ML            | 30.5                                   |                                    |                                     |                                        |                  | 3.3                |
| S0002R         | S21A          | 80.0         | 80.7            | 80.4          | 210.0                 | ML            |                                        |                                    |                                     |                                        | 65.4             |                    |
| S0002R         | S21B          | 80.7         | 81.4            | 81.1          | 209.3                 |               |                                        |                                    |                                     |                                        |                  |                    |
| S0003R         | S01           | 0.0          | 5.0             | 2.5           | 285.5                 | SM            |                                        |                                    |                                     |                                        | 24.1             |                    |
| S0003R         | S03B          | 7.2          | 8.5             | 7.9           | 280.1                 | SM            |                                        |                                    |                                     |                                        | 43.1             |                    |
| S0003R         | S03B          | 7.2          | 8.5             | 7.9           | 280.1                 | SM            |                                        |                                    |                                     |                                        | 44.9             |                    |
| S0003R         | S04           | 8.0          | 9.0             | 8.5           | 279.5                 | ML            |                                        |                                    |                                     |                                        | 89.7             |                    |
| S0003R         | S05           | 9.5          | 11.0            | 10.3          | 277.7                 | CL            | 18.5                                   | 28                                 | 16                                  | 12                                     | 58.3             | 3.0                |
| S0003R         | S06           | 11.0         | 12.5            | 11.8          | 276.2                 | ML            | 24.7                                   | 32                                 | 26                                  | 6                                      | 69.4             | 1.9                |
| S0003R         | S08           | 14.0         | 15.2            | 14.6          | 273.4                 | SP-SM         |                                        |                                    |                                     |                                        | 10.2             |                    |
| S0003R         | S09           | 20.0         | 21.5            | 20.8          | 267.2                 | ML            |                                        | 24                                 | 23                                  | 1                                      | 91.2             | 1.3                |
| S0003R         | S10           | 25.0         | 26.4            | 25.7          | 262.3                 | SP-SM         |                                        |                                    |                                     |                                        | 8.7              |                    |
| S0003R         | S11           | 30.0         | 30.9            | 30.5          | 257.5                 | SP-SM         |                                        |                                    |                                     |                                        | 6.5              |                    |
| S0003R         | S12           | 35.0         | 36.5            | 35.8          | 252.2                 | CL-ML         | 23.8                                   | 28                                 | 22                                  | 6                                      | 88.3             | 2.3                |
| S0003R         | S13           | 40.0         | 41.5            | 40.8          | 247.2                 | CL-ML         | 15.5                                   | 17                                 | 13                                  | 4                                      | 53.6             | 2.3                |
| S0003R         | S15           | 50.0         | 50.8            | 50.4          | 237.6                 | SP-SM         |                                        |                                    |                                     |                                        | 11.5             |                    |
| S0003R         | S16B          | 55.4         | 56.5            | 56.0          | 232.0                 | ML            |                                        | 22                                 | 19                                  | 3                                      | 85.7             | 1.9                |
| S0003R         | S17           | 60.0         | 61.5            | 60.8          | 227.2                 | CL-ML         | 18.6                                   | 21                                 | 16                                  | 5                                      | 50.7             | 3.4                |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0003R         | S19           | 70.0         | 71.5            | 70.8          | 217.2                 | SM            |                                        |                                    |                                     |                                        | 41.7             |                    |
| S0003R         | S20           | 75.0         | 76.5            | 75.8          | 212.2                 | ML            | 29.5                                   | NP                                 | NP                                  | NP                                     | 91.6             | 1.8                |
| S0004R         | S01           | 0.0          | 5.0             | 2.5           | 281.2                 | ML            |                                        |                                    |                                     |                                        | 51.8             |                    |
| S0004R         | S03           | 6.5          | 7.9             | 7.2           | 276.5                 | ML            | 25.2                                   | 27                                 | 26                                  | 1                                      | 59.9             | 3.1                |
| S0004R         | S04           | 8.0          | 9.4             | 8.7           | 275.0                 | SM            |                                        |                                    |                                     |                                        | 24.0             |                    |
| S0004R         | S05A          | 9.5          | 10.5            | 10.0          | 273.7                 | CL            | 18.4                                   | 25                                 | 17                                  | 8                                      | 55.8             | 2.6                |
| S0004R         | S06B          | 11.6         | 12.5            | 12.1          | 271.6                 | ML            | 10.3                                   | 17                                 | 15                                  | 2                                      | 52.1             | 1.7                |
| S0004R         | S07           | 12.5         | 13.1            | 12.8          | 270.9                 | CL-ML         | 12.8                                   | 19                                 | 15                                  | 4                                      | 65.4             | 2.0                |
| S0004R         | S08           | 14.0         | 15.5            | 14.8          | 268.9                 | ML            | 16.1                                   | 19                                 | 17                                  | 2                                      | 65.5             | 1.4                |
| S0004R         | S09           | 20.0         | 21.5            | 20.8          | 262.9                 | ML            |                                        |                                    |                                     |                                        | 89.8             |                    |
| S0004R         | S10B          | 25.6         | 25.9            | 25.8          | 257.9                 | ML            | 19.2                                   |                                    |                                     |                                        | 79.0             |                    |
| S0004R         | S11           | 30.0         | 31.4            | 30.7          | 253.0                 | SM            |                                        |                                    |                                     |                                        | 28.4             |                    |
| S0004R         | S11           | 30.0         | 31.4            | 30.7          | 253.0                 | ML            |                                        |                                    |                                     |                                        | 82.8             |                    |
| S0004R         | S12           | 35.0         | 36.3            | 35.7          | 248.0                 | SM            |                                        |                                    |                                     |                                        | 32.1             |                    |
| S0004R         | S13           | 40.0         | 41.0            | 40.5          | 243.2                 | ML            |                                        |                                    |                                     |                                        | 63.4             |                    |
| S0004R         | S14           | 45.0         | 45.9            | 45.5          | 238.2                 | CL-ML         | 20.2                                   | 22                                 | 17                                  | 5                                      | 60.5             | 2.3                |
| S0004R         | S17B          | 53.9         | 54.4            | 54.2          | 229.5                 | ML            | 30.1                                   |                                    |                                     |                                        | 96.9             |                    |
| S0004R         | S18B          | 54.5         | 55.8            | 55.2          | 228.5                 | ML            | 35.7                                   | 39                                 | 29                                  | 10                                     | 82.9             |                    |
| S0004R         | S20B          | 65.2         | 66.3            | 65.8          | 217.9                 | CL-ML         | 24.6                                   | 26                                 | 19                                  | 7                                      | 67.3             | 2.1                |
| S0004R         | S21           | 70.0         | 70.9            | 70.5          | 213.2                 | ML            | 31.5                                   | 33                                 | 25                                  | 8                                      | 55.5             |                    |
| S0004R         | S21           | 70.0         | 70.9            | 70.5          | 213.2                 | ML            | 30.5                                   |                                    |                                     |                                        |                  | 2.3                |
| S0005R         | S01           | 0.0          | 5.0             | 2.5           | 282.8                 | SP-SM         |                                        |                                    |                                     |                                        |                  |                    |
| S0005R         | S02           | 5.0          | 6.5             | 5.8           | 279.5                 | SP-SM         |                                        |                                    |                                     |                                        | 13.8             |                    |
| S0005R         | S05           | 9.5          | 11.0            | 10.3          | 275.0                 | ML            | 21.1                                   | 26                                 | 22                                  | 4                                      | 59.7             | 1.9                |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0005R         | S06           | 11.0         | 12.5            | 11.8          | 273.5                 | ML            | 21.8                                   | 23                                 | 20                                  | 3                                      | 57.6             | 1.5                |
| S0005R         | S07           | 12.5         | 14.0            | 13.3          | 272.0                 | CL-ML         | 18.4                                   | 23                                 | 18                                  | 5                                      | 67.7             | 2.1                |
| S0005R         | S08           | 14.0         | 14.5            | 14.3          | 271.0                 | ML            |                                        |                                    |                                     |                                        | 54.7             |                    |
| S0005R         | S09           | 20.0         | 20.8            | 20.4          | 264.9                 | SM            |                                        |                                    |                                     |                                        | 17.5             |                    |
| S0005R         | S10           | 25.0         | 25.8            | 25.4          | 259.9                 | ML            |                                        |                                    |                                     |                                        | 91.9             |                    |
| S0005R         | S11B          | 30.6         | 31.5            | 31.1          | 254.2                 | CL-ML         | 17.0                                   | 25                                 | 18                                  | 7                                      | 74.4             | 2.7                |
| S0005R         | S12           | 35.0         | 36.2            | 35.6          | 249.7                 | SP-SM         |                                        |                                    |                                     |                                        | 7.3              |                    |
| S0005R         | S13           | 40.0         | 41.5            | 40.8          | 244.5                 | ML            | 24.3                                   | 33                                 | 27                                  | 6                                      | 59.5             | 5.1                |
| S0005R         | S14           | 45.0         | 46.5            | 45.8          | 239.5                 | ML            | 33.1                                   | 36                                 | 27                                  | 9                                      | 79.7             | 3.5                |
| S0005R         | S15           | 46.5         | 47.5            | 47.0          | 238.3                 | ML            |                                        |                                    |                                     |                                        | 56.6             |                    |
| S0005R         | S15           | 46.5         | 47.5            | 47.0          | 238.3                 | ML            |                                        |                                    |                                     |                                        | 62.3             | 0.0                |
| S0005R         | S17           | 49.5         | 51.0            | 50.3          | 235.0                 | CL-ML         | 19.8                                   | 24                                 | 20                                  | 4                                      | 64.5             | 1.8                |
| S0005R         | S18           | 55.0         | 56.3            | 55.7          | 229.6                 | SP-SM         |                                        |                                    |                                     |                                        | 9.0              |                    |
| S0005R         | S21           | 70.0         | 71.5            | 70.8          | 214.5                 | SM            |                                        |                                    |                                     |                                        | 16.0             |                    |
| S0005R         | S21           | 70.0         | 71.5            | 70.8          | 214.5                 | SM            |                                        |                                    |                                     |                                        | 38.2             |                    |
| S0005R         | S23           | 80.0         | 80.5            | 80.3          | 205.0                 | ML            |                                        |                                    |                                     |                                        | 74.9             |                    |
| S0006R         | S06           | 0.0          | 5.0             | 2.5           | 285.1                 | SP-SM         |                                        |                                    |                                     |                                        | 13.9             |                    |
| S0006R         | S04           | 8.0          | 9.3             | 8.7           | 278.9                 | SM            |                                        |                                    |                                     |                                        | 43.8             |                    |
| S0006R         | S08           | 14.0         | 15.2            | 14.6          | 273.0                 | ML            | 21.9                                   |                                    |                                     |                                        | 68.2             |                    |
| S0006R         | S09           | 20.0         | 21.3            | 20.7          | 266.9                 | ML            |                                        |                                    |                                     |                                        | 75.2             |                    |
| S0006R         | S10           | 25.0         | 26.2            | 25.6          | 262.0                 | ML            | 22.8                                   |                                    |                                     |                                        | 77.4             |                    |
| S0006R         | S11           | 30.0         | 31.4            | 30.7          | 256.9                 | SM            |                                        |                                    |                                     |                                        | 20.7             |                    |
| S0006R         | S13           | 36.5         | 38.0            | 37.3          | 250.3                 | ML            | 25.8                                   |                                    |                                     |                                        | 71.5             |                    |
| S0006R         | S14           | 38.0         | 39.4            | 38.7          | 248.9                 | SM            | 15.3                                   |                                    |                                     |                                        | 32.6             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0006R         | S14           | 38.0         | 39.4            | 38.7          | 248.9                 | SM            |                                        |                                    |                                     |                                        | 32.7             |                    |
| S0006R         | S15           | 39.5         | 40.8            | 40.2          | 247.4                 | SM            | 11.2                                   |                                    |                                     |                                        | 39.5             |                    |
| S0006R         | S16           | 45.0         | 46.1            | 45.6          | 242.0                 | SP-SM         |                                        |                                    |                                     |                                        | 10.6             |                    |
| S0006R         | S17           | 50.0         | 51.2            | 50.6          | 237.0                 | SP-SM         | 14.2                                   |                                    |                                     |                                        | 6.4              |                    |
| S0007R         | S01           | 0.0          | 5.0             | 2.5           | 282.6                 | SM            |                                        |                                    |                                     |                                        | 30.8             |                    |
| S0007R         | S04           | 5.0          | 6.3             | 5.7           | 279.4                 | SM            | 10.3                                   |                                    |                                     |                                        | 32.6             |                    |
| S0007R         | S03           | 6.5          | 8.0             | 7.3           | 277.8                 | SM            | 11.1                                   |                                    |                                     |                                        | 37.2             |                    |
| S0007R         | S06           | 9.0          | 10.3            | 9.7           | 275.4                 | SM            | 13.6                                   |                                    |                                     |                                        | 30.9             |                    |
| S0007R         | S07           | 12.5         | 14.0            | 13.3          | 271.8                 | SM            | 19.9                                   |                                    |                                     |                                        | 30.4             |                    |
| S0007R         | S08           | 14.0         | 15.3            | 14.7          | 270.4                 | SM            | 14.1                                   |                                    |                                     |                                        | 40.7             |                    |
| S0007R         | S09           | 20.0         | 21.1            | 20.6          | 264.5                 | SP-SM         |                                        |                                    |                                     |                                        | 7.4              |                    |
| S0007R         | S09           | 20.0         | 21.1            | 20.6          | 264.5                 | SM            |                                        |                                    |                                     |                                        | 30.4             |                    |
| S0007R         | S11A          | 30.0         | 30.5            | 30.3          | 254.8                 | ML            | 29.7                                   |                                    |                                     |                                        | 84.2             |                    |
| S0007R         | S11B          | 30.5         | 31.4            | 31.0          | 254.1                 | SM            | 14.1                                   |                                    |                                     |                                        | 43.9             |                    |
| S0007R         | S12           | 35.0         | 36.2            | 35.6          | 249.5                 | SM            |                                        |                                    |                                     |                                        | 30.5             |                    |
| S0007R         | S13B          | 40.8         | 41.4            | 41.1          | 244.0                 | CL            | 17.8                                   | 41                                 | 15                                  | 26                                     | 74.8             |                    |
| S0007R         | S14           | 45.0         | 46.3            | 45.7          | 239.4                 | ML            | 28.6                                   |                                    |                                     |                                        | 68.2             |                    |
| S0007R         | S15           | 50.0         | 51.3            | 50.7          | 234.4                 | SM            |                                        |                                    |                                     |                                        | 17.6             |                    |
| S0007R         | S16B          | 55.8         | 56.5            | 56.2          | 228.9                 | ML            |                                        |                                    |                                     |                                        | 59.5             |                    |
| S0007R         | S17           | 60.0         | 61.5            | 60.8          | 224.3                 | SM            | 17.5                                   |                                    |                                     |                                        | 41.0             |                    |
| S0007R         | S18           | 65.0         | 66.5            | 65.8          | 219.3                 | ML            | 17.9                                   |                                    |                                     |                                        | 50.1             |                    |
| S0007R         | S20           | 75.0         | 76.2            | 75.6          | 209.5                 | ML            | 22.4                                   |                                    |                                     |                                        | 51.5             |                    |
| S0007R         | S21           | 80.0         | 81.1            | 80.6          | 204.5                 | ML            | 29.3                                   |                                    |                                     |                                        | 77.3             |                    |
| S0010R         | S01           | 0.0          | 5.0             | 2.5           | 283.6                 | SM            |                                        |                                    |                                     |                                        | 22.3             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>I</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0010R         | S02           | 5.0          | 6.5             | 5.8           | 280.3                 | SM            | 4.8                                    |                                    |                                     |                                        | 24.4             |                    |
| S0010R         | S04           | 8.0          | 9.4             | 8.7           | 277.4                 | ML            | 15.9                                   |                                    |                                     |                                        | 57.0             |                    |
| S0010R         | S05           | 9.5          | 10.9            | 10.2          | 275.9                 | CL-ML         |                                        | 27                                 | 22                                  | 5                                      | 52.9             | 3.2                |
| S0010R         | S06           | 11.0         | 12.4            | 11.7          | 274.4                 | SM            | 16.4                                   |                                    |                                     |                                        | 41.7             |                    |
| S0010R         | S07           | 12.5         | 13.2            | 12.9          | 273.2                 | CL-ML         |                                        | 29                                 | 22                                  | 7                                      | 58.9             | 1.5                |
| S0010R         | S07           | 12.5         | 13.2            | 12.9          | 273.2                 |               |                                        |                                    |                                     |                                        | 15.2             |                    |
| S0010R         | S09           | 20.0         | 21.3            | 20.7          | 265.4                 | SM            | 16.9                                   |                                    |                                     |                                        | 36.5             |                    |
| S0010R         | S09           | 20.0         | 21.3            | 20.7          | 265.4                 | ML            |                                        |                                    |                                     |                                        | 57.1             |                    |
| S0010R         | S10           | 25.0         | 26.5            | 25.8          | 260.3                 | ML            | 30.8                                   | 35                                 | 25                                  | 10                                     | 94.6             |                    |
| S0010R         | S11           | 30.0         | 31.2            | 30.6          | 255.5                 | SM            | 20.9                                   |                                    |                                     |                                        | 23.7             |                    |
| S0010R         | S12           | 35.0         | 36.4            | 35.7          | 250.4                 | SM            | 17.4                                   |                                    |                                     |                                        | 22.7             |                    |
| S0010R         | S13           | 35.0         | 36.4            | 35.7          | 250.4                 | SM            |                                        |                                    |                                     |                                        | 15.2             |                    |
| S0010R         | S13           | 40.0         | 41.5            | 40.8          | 245.3                 | SP-SM         |                                        |                                    |                                     |                                        | 6.7              |                    |
| S0010R         | S14           | 45.0         | 46.3            | 45.7          | 240.4                 | CL            | 15.2                                   | 24                                 | 14                                  | 10                                     | 50.3             |                    |
| S0010R         | S14           | 45.0         | 46.3            | 45.7          | 240.4                 | CL            | 15.7                                   |                                    |                                     |                                        |                  | 3.1                |
| S0010R         | S15           | 50.0         | 51.3            | 50.7          | 235.4                 | CL            |                                        | 30                                 | 21                                  | 9                                      | 75.1             | 1.5                |
| S0010R         | S16           | 55.0         | 56.5            | 55.8          | 230.3                 | CL            | 31.7                                   | 41                                 | 24                                  | 17                                     | 78.3             |                    |
| S0010R         | S17           | 60.0         | 61.3            | 60.7          | 225.4                 | CL            | 23.0                                   | 25                                 | 17                                  | 8                                      | 64.5             | 1.9                |
| S0010R         | S18           | 65.0         | 66.4            | 65.7          | 220.4                 | CL            | 21.7                                   | 43                                 | 17                                  | 26                                     | 63.5             | 5.8                |
| S0010R         | S21           | 80.0         | 81.5            | 80.8          | 205.3                 | ML            | 28.4                                   | 25                                 | 23                                  | 2                                      | 58.0             | 1.8                |
| S0010R         | S22           | 85.0         | 86.4            | 85.7          | 200.4                 | ML            | 31.3                                   | 27                                 | 26                                  | 1                                      | 74.5             | 1.6                |
| S0010R         | S23           | 90.0         | 91.3            | 90.7          | 195.4                 | ML            |                                        |                                    |                                     |                                        | 66.5             |                    |
| S0010R         | S25           | 100.0        | 101.3           | 100.7         | 185.4                 | SP-SM         | 18.9                                   |                                    |                                     |                                        | 13.9             |                    |
| S0010R         | S26A          | 105.0        | 106.0           | 105.5         | 180.6                 | ML            |                                        |                                    |                                     |                                        | 77.1             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0010R         | S27           | 110.0        | 111.5           | 110.8         | 175.3                 | SM            |                                        |                                    |                                     |                                        | 31.9             |                    |
| S0010R         | S30           | 125.0        | 126.2           | 125.6         | 160.5                 | ML            | 36.9                                   | 44                                 | 32                                  | 12                                     | 70.0             |                    |
| S0010R         | S31           | 130.0        | 131.5           | 130.8         | 155.3                 | SM            |                                        |                                    |                                     |                                        | 46.3             |                    |
| S0010R         | S35           | 150.0        | 151.5           | 150.8         | 135.3                 | SM            | 36.8                                   |                                    |                                     |                                        | 30.8             |                    |
| S0012R         | S01           | 0.0          | 5.0             | 2.5           | 285.1                 | SM            |                                        |                                    |                                     |                                        | 18.2             |                    |
| S0012R         | S02           | 5.0          | 6.5             | 5.8           | 281.8                 | SM            | 6.1                                    |                                    |                                     |                                        | 20.2             |                    |
| S0012R         | S03           | 6.5          | 7.7             | 7.1           | 280.5                 | SM            | 12.0                                   |                                    |                                     |                                        | 18.3             |                    |
| S0012R         | S05           | 9.5          | 10.9            | 10.2          | 277.4                 | ML            | 24.4                                   |                                    |                                     |                                        | 73.7             |                    |
| S0012R         | S06           | 11.0         | 12.5            | 11.8          | 275.8                 | ML            | 27.3                                   |                                    |                                     |                                        | 65.7             |                    |
| S0012R         | S07           | 12.5         | 13.8            | 13.2          | 274.4                 | SM            | 15.5                                   |                                    |                                     |                                        | 21.4             |                    |
| S0012R         | S08           | 14.0         | 15.4            | 14.7          | 272.9                 | SM            | 26.1                                   |                                    |                                     |                                        | 37.0             |                    |
| S0012R         | S09A          | 20.0         | 21.0            | 20.5          | 267.1                 | ML            | 33.2                                   |                                    |                                     |                                        | 97.3             |                    |
| S0012R         | S09B          | 21           | 21.4            | 21.2          | 266.4                 | SM            |                                        |                                    |                                     |                                        | 68.4             |                    |
| S0012R         | S12           | 35.0         | 36.2            | 35.6          | 252.0                 | SP-SM         |                                        |                                    |                                     |                                        | 6.8              |                    |
| S0012R         | S13           | 40.0         | 41.4            | 40.7          | 246.9                 | SM            |                                        |                                    |                                     |                                        | 26.3             |                    |
| S0012R         | S14           | 45.0         | 46.4            | 45.7          | 241.9                 | SP-SM         | 14.8                                   |                                    |                                     |                                        | 14.0             |                    |
| S0012R         | S15           | 50.0         | 51.5            | 50.8          | 236.8                 | SM            | 18.5                                   |                                    |                                     |                                        | 48.5             |                    |
| S0012R         | S16           | 55.0         | 56.4            | 55.7          | 231.9                 | SP-SM         |                                        |                                    |                                     |                                        | 8.1              |                    |
| S0012R         | S17           | 60.0         | 61.3            | 60.7          | 226.9                 | SP-SM         |                                        |                                    |                                     |                                        | 6.4              |                    |
| S0012R         | S19           | 70.0         | 71.5            | 70.8          | 216.8                 | ML            | 16.2                                   |                                    |                                     |                                        | 50.1             |                    |
| S0012R         | S20           | 75.0         | 75.8            | 75.4          | 212.2                 | SM            | 24.6                                   |                                    |                                     |                                        | 28.8             |                    |
| S0012R         | S21           | 80.0         | 81.2            | 80.6          | 207.0                 | ML            | 29.3                                   |                                    |                                     |                                        | 74.0             |                    |
| S0012R         | S22           | 85.5         | 86.3            | 85.9          | 201.7                 | ML            |                                        |                                    |                                     |                                        | 73.8             |                    |
| S0012R         | S23           | 90.0         | 91.5            | 90.8          | 196.8                 | SM            | 30.1                                   |                                    |                                     |                                        | 16.2             |                    |



**Table E-2**Summary of Laboratory Index Test Results

|                |               |              |                 |               |                       |               | ack rest nesai                         |                                    |                                     |                                        |                  |                    |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>i</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0012R         | S24           | 95.0         | 96.3            | 95.7          | 191.9                 | ML            |                                        |                                    |                                     |                                        | 67.8             |                    |
| S0012R         | S26           | 105.0        | 106.5           | 105.8         | 181.8                 | ML            | 29.9                                   |                                    |                                     |                                        | 79.4             |                    |
| S0012R         | S27           | 110.0        | 111.5           | 110.8         | 176.8                 | ML            |                                        |                                    |                                     |                                        | 73.3             |                    |
| S0012R         | S28           | 115.0        | 116.5           | 115.8         | 171.8                 | SM            |                                        |                                    |                                     |                                        | 29.8             |                    |
| S0012R         | S30           | 125.0        | 126.5           | 125.8         | 161.8                 | SM            | 43.5                                   |                                    |                                     |                                        | 30.7             |                    |
| S0012R         | S32A          | 135.0        | 135.8           | 135.4         | 152.2                 | ML            | 27.2                                   |                                    |                                     |                                        | 56.9             |                    |
| S0012R         | S33           | 140.0        | 141.4           | 140.7         | 146.9                 | ML            | 32.8                                   | 40                                 | 30                                  | 10                                     | 86.5             |                    |
| S0012R         | S35           | 150.0        | 151.4           | 150.7         | 135.4                 | ML            | 36.0                                   |                                    |                                     |                                        | 61.8             |                    |
| S0013AR        | S01           | 0.0          | 5.0             | 2.5           | 283.6                 | SM            |                                        |                                    |                                     |                                        | 48.3             |                    |
| S0013AR        | S03           | 6.5          | 7.2             | 6.9           | 279.2                 | SM            | 10.1                                   |                                    |                                     |                                        | 30.8             |                    |
| S0013AR        | S04           | 8.0          | 8.8             | 8.4           | 277.7                 | SM            | 12.0                                   |                                    |                                     |                                        | 28.3             |                    |
| S0013AR        | S05           | 9.5          | 10.5            | 10.0          | 276.1                 | ML            | 23.8                                   |                                    |                                     |                                        | 65.8             |                    |
| S0013AR        | S06A          | 11.0         | 11.7            | 11.4          | 274.7                 | SM            | 16.3                                   |                                    |                                     |                                        | 47.1             |                    |
| S0013AR        | S06B          | 11.7         | 12.5            | 12.1          | 274.0                 | ML            |                                        |                                    |                                     |                                        | 65.4             |                    |
| S0013AR        | S07           | 12.5         | 13.5            | 13.0          | 273.1                 | ML            | 18.5                                   |                                    |                                     |                                        | 75.1             |                    |
| S0013AR        | S08           | 14.0         | 15.0            | 14.5          | 271.6                 | ML            | 16.2                                   |                                    |                                     |                                        | 73.9             |                    |
| S0013AR        | S09           | 20.0         | 21.4            | 20.7          | 265.4                 | ML            |                                        |                                    |                                     |                                        | 76.5             |                    |
| S0013AR        | S10           | 25.0         | 26.2            | 25.6          | 260.5                 | ML            | 24.5                                   |                                    |                                     |                                        | 78.6             |                    |
| S0013AR        | S11           | 30.0         | 31.5            | 30.8          | 255.3                 | ML            | 21.7                                   |                                    |                                     |                                        | 62.4             |                    |
| S0013AR        | S12           | 35.0         | 36.5            | 35.8          | 250.3                 | ML            |                                        |                                    |                                     |                                        | 67.6             |                    |
| S0013AR        | S13           | 40.0         | 41.5            | 40.8          | 245.3                 | ML            | 26.6                                   |                                    |                                     |                                        | 84.7             |                    |
| S0013AR        | S14           | 45.0         | 45.9            | 45.5          | 240.6                 | SM            | 15.0                                   |                                    |                                     |                                        | 38.0             |                    |
| S0013AR        | S16           | 55.0         | 56.2            | 55.6          | 230.5                 | ML            |                                        |                                    |                                     |                                        | 77.0             |                    |
| S0013AR        | S17           | 60.0         | 61.2            | 60.6          | 225.5                 | ML            | 24.3                                   |                                    |                                     |                                        | 71.8             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0013AR        | S19           | 70.0         | 71.5            | 70.8          | 215.3                 | SM            |                                        |                                    |                                     |                                        | 19.4             |                    |
| S0013AR        | S21           | 80.0         | 80.9            | 80.5          | 205.6                 | ML            | 23.0                                   |                                    |                                     |                                        | 60.6             |                    |
| S0013AR        | S24           | 95.0         | 95.8            | 95.4          | 190.7                 | ML            |                                        |                                    |                                     |                                        | 90.9             |                    |
| S0013AR        | S26           | 105.0        | 105.9           | 105.5         | 180.6                 | SM            | 17.4                                   |                                    |                                     |                                        | 34.4             |                    |
| S0013AR        | S27           | 110.0        | 111.3           | 110.7         | 175.4                 | ML            |                                        |                                    |                                     |                                        | 67.1             |                    |
| S0013AR        | S28           | 115.0        | 115.9           | 115.5         | 170.6                 | ML            | 26.8                                   |                                    |                                     |                                        | 54.3             |                    |
| S0013AR        | S30           | 125.0        | 126.1           | 125.6         | 160.5                 | ML            |                                        |                                    |                                     |                                        | 73.0             |                    |
| S0013AR        | S32           | 135.0        | 136.3           | 135.7         | 150.4                 | ML            |                                        |                                    |                                     |                                        | 65.0             |                    |
| S0014AR        | S01           | 0.0          | 5.0             | 2.5           | 282.9                 | ML            |                                        |                                    |                                     |                                        | 67.7             |                    |
| S0014AR        | S02           | 5.0          | 6.5             | 5.8           | 279.6                 | ML            | 17.4                                   |                                    |                                     |                                        | 53.5             |                    |
| S0014AR        | S03           | 6.5          | 7.8             | 7.2           | 278.2                 | SM            | 14.9                                   |                                    |                                     |                                        | 40.9             |                    |
| S0014AR        | S04           | 8.0          | 9.2             | 8.6           | 276.8                 | SM            | 16.0                                   |                                    |                                     |                                        | 44.4             | 1.9                |
| S0014AR        | S05           | 9.5          | 11.0            | 10.3          | 275.1                 | CL            | 21.3                                   | 27                                 | 17                                  | 10                                     | 59.1             |                    |
| S0014AR        | S06           | 11.0         | 12.2            | 11.6          | 273.8                 | SM            | 14.9                                   |                                    |                                     |                                        | 29.7             |                    |
| S0014AR        | S07           | 12.5         | 13.8            | 13.2          | 272.2                 | CL            | 21.4                                   | 65                                 | 16                                  | 49                                     | 58.9             | 3.4                |
| S0014AR        | S08           | 14.0         | 15.2            | 14.6          | 270.8                 | SM            |                                        |                                    |                                     |                                        | 21.6             |                    |
| S0014AR        | S09           | 20.0         | 21.3            | 20.7          | 264.8                 | SM            | 8.2                                    |                                    |                                     |                                        | 43.8             |                    |
| S0014AR        | S10           | 25.0         | 26.2            | 25.6          | 259.8                 | SM            |                                        |                                    |                                     |                                        | 25.3             |                    |
| S0014AR        | S11           | 30.0         | 31.2            | 30.6          | 254.8                 | SP-SM         | 12.3                                   |                                    |                                     |                                        | 6.0              |                    |
| S0014AR        | S12           | 35.0         | 36.5            | 35.8          | 249.6                 | SM            | 12.0                                   |                                    |                                     |                                        | 33.9             |                    |
| S0014AR        | S13           | 40.0         | 41.4            | 40.7          | 244.7                 | CL            | 16.9                                   | 30                                 | 11                                  | 19                                     | 60.8             |                    |
| S0014AR        | S14           | 45.0         | 46.5            | 45.8          | 239.6                 | ML            | 16.4                                   | 28                                 | 11                                  | 17                                     | 55.2             |                    |
| S0014AR        | S15           | 50.0         | 51.4            | 50.7          | 234.7                 | SM            | 19.3                                   |                                    |                                     |                                        | 42.1             |                    |
| S0014AR        | S17           | 60.0         | 61.5            | 60.8          | 224.6                 | ML            | 24.2                                   |                                    |                                     |                                        | 65.6             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>W <sub>I</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0014AR        | S18           | 65.0         | 66.5            | 65.8          | 219.6                 | SM            |                                        |                                    |                                     |                                        | 37.1             |                    |
| S0014AR        | S19           | 70.0         | 71.4            | 70.7          | 214.7                 | SM            | 14.9                                   |                                    |                                     |                                        | 49.8             |                    |
| S0014AR        | S20           | 75.0         | 76.5            | 75.8          | 209.6                 | ML            | 22.7                                   |                                    |                                     |                                        | 58.5             |                    |
| S0014R         | S01           | 0.0          | 5.0             | 2.5           | 282.1                 | ML            |                                        |                                    |                                     |                                        | 53.7             |                    |
| S0014R         | S02           | 5.0          | 6.5             | 5.8           | 278.8                 | SM            | 7.5                                    |                                    |                                     |                                        | 17.5             |                    |
| S0014R         | S03           | 6.5          | 7.8             | 7.2           | 277.4                 | SM            | 11.1                                   |                                    |                                     |                                        | 21.5             |                    |
| S0014R         | S04           | 8.0          | 9.3             | 8.7           | 275.9                 | CL-ML         | 19.9                                   | 21                                 | 16                                  | 5                                      | 53.9             |                    |
| S0014R         | S05           | 9.5          | 10.7            | 10.1          | 274.5                 | SM            | 16.5                                   |                                    |                                     |                                        | 47.2             |                    |
| S0014R         | S06           | 11.0         | 12.2            | 11.6          | 273.0                 | CL-ML         | 19.3                                   | 28                                 | 16                                  | 12                                     | 70.6             |                    |
| S0014R         | S06           | 11.0         | 12.3            | 11.7          | 272.9                 | SP-SM         | 19.3                                   |                                    |                                     |                                        | 15.0             |                    |
| S0014R         | S07           | 12.5         | 13.9            | 13.2          | 271.4                 | SP-SM         | 20.1                                   |                                    |                                     |                                        | 59.0             |                    |
| S0014R         | S08           | 14.0         | 15.2            | 14.6          | 270.0                 | ML            |                                        |                                    |                                     |                                        | 60.2             |                    |
| S0014R         | S10           | 25.0         | 26.4            | 25.7          | 258.9                 | SM            | 12.6                                   | NP                                 | NP                                  | NP                                     | 43.9             |                    |
| S0014R         | S11           | 30.0         | 31.2            | 30.6          | 254.0                 | SP            |                                        |                                    |                                     |                                        |                  |                    |
| S0014R         | S12           | 35.0         | 36.5            | 35.8          | 248.8                 | CL            |                                        | 27                                 | 15                                  | 12                                     | 60.5             |                    |
| S0014R         | S13           | 40.0         | 41.4            | 40.7          | 243.9                 | SM            | 22.7                                   |                                    |                                     |                                        | 47.9             |                    |
| S0014R         | S14           | 45.0         | 46.5            | 45.8          | 238.8                 | SM            |                                        | 28                                 | 11                                  | 17                                     | 49.4             |                    |
| S0014R         | S15           | 50.0         | 51.5            | 50.8          | 233.8                 | ML            | 33.5                                   | 33                                 | 31                                  | 2                                      | 59.5             |                    |
| S0014R         | S16           | 55.0         | 56.4            | 55.7          | 228.9                 | CL-ML         | 29.4                                   | 27                                 | 22                                  | 5                                      | 75.1             |                    |
| S0014R         | S17           | 60.0         | 61.2            | 60.6          | 224.0                 | SP-SM         |                                        |                                    |                                     |                                        | 11.1             |                    |
| S0014R         | S18B          | 65.5         | 66.7            | 66.1          | 218.5                 | SM            |                                        |                                    |                                     |                                        | 37.8             |                    |
| S0015R         | S01           | 0.0          | 5.0             | 2.5           | 284.2                 | SM            |                                        |                                    |                                     |                                        | 34.5             |                    |
| S0015R         | S02           | 5.0          | 6.5             | 5.8           | 280.9                 | SM            | 7.0                                    |                                    |                                     |                                        | 20.9             |                    |
| S0015R         | S03A*         | 6.5          | 7.0             | 6.8           | 279.9                 | SM            | 14.3                                   |                                    |                                     |                                        | 16.7             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0015R         | S04           | 8.0          | 9.5             | 8.8           | 277.9                 | SM            | 19.7                                   |                                    |                                     |                                        | 33.9             |                    |
| S0015R         | S05           | 9.5          | 11.0            | 10.3          | 276.4                 | SM            |                                        |                                    |                                     |                                        | 31.6             |                    |
| S0015R         | S06B          | 11.4         | 12.5            | 12.0          | 274.7                 | ML            | 19.9                                   |                                    |                                     |                                        | 56.9             |                    |
| S0015R         | S07B          | 12.9         | 13.8            | 13.4          | 273.3                 | CL-ML         |                                        | 24                                 | 20                                  | 4                                      | 72.5             |                    |
| S0015R         | S08           | 14.0         | 15.5            | 14.8          | 271.9                 | ML            | 21.7                                   | 23                                 | 18                                  | 5                                      | 75.7             |                    |
| S0015R         | S09A          | 20.0         | 20.3            | 20.2          | 266.5                 | SM            | 15.6                                   |                                    |                                     |                                        | 44.3             |                    |
| S0015R         | S10           | 25.0         | 26.5            | 25.8          | 260.9                 | SM            | 22.1                                   |                                    |                                     |                                        | 30.8             |                    |
| S0015R         | S11A          | 30.0         | 30.7            | 30.4          | 256.3                 | SP-SM         | 21.2                                   |                                    |                                     |                                        | 6.5              |                    |
| S0015R         | S11B          | 30.7         | 31.0            | 30.9          | 255.8                 | ML            |                                        |                                    |                                     |                                        | 85.5             |                    |
| S0015R         | S12B          | 35.6         | 36.4            | 36.0          | 250.7                 | ML            | 17.5                                   |                                    |                                     |                                        | 56.4             |                    |
| S0015R         | S13           | 40.0         | 41.2            | 40.6          | 246.1                 | SM            | 17.5                                   |                                    |                                     |                                        | 49.8             |                    |
| S0015R         | S15A          | 50.0         | 50.6            | 50.3          | 236.4                 | CL-ML         |                                        | 25                                 | 21                                  | 4                                      | 91.9             |                    |
| S0016R         | S01           | 0.0          | 5.0             | 2.5           | 286.3                 | ML            |                                        |                                    |                                     |                                        | 61.1             |                    |
| S0016R         | S02           | 5.0          | 6.0             | 5.5           | 283.3                 | ML            | 11.8                                   | 19                                 | 16                                  | 3                                      | 62.5             |                    |
| S0016R         | S03           | 10.0         | 11.3            | 10.7          | 278.1                 | SM            | 11.9                                   |                                    |                                     |                                        | 30.0             |                    |
| S0016R         | S04           | 15.0         | 16.3            | 15.7          | 273.1                 | SM            |                                        |                                    |                                     |                                        | 24.4             |                    |
| S0016R         | S05           | 20.0         | 21.3            | 20.7          | 268.1                 | SM            | 11.7                                   |                                    |                                     |                                        | 36.5             |                    |
| S0016R         | S06           | 25.0         | 26.1            | 25.6          | 263.2                 | SP-SM         |                                        |                                    |                                     |                                        | 6.1              |                    |
| S0016R         | S08           | 35.0         | 35.9            | 35.5          | 253.3                 | SP-SM         | 15.2                                   |                                    |                                     |                                        | 7.1              |                    |
| S0016R         | S09           | 40.0         | 40.9            | 40.5          | 248.3                 | SP-SM         |                                        |                                    |                                     |                                        | 14.4             |                    |
| S0016R         | S10           | 45.0         | 46.2            | 45.6          | 243.2                 | SM            |                                        |                                    |                                     |                                        | 17.9             |                    |
| S0016R         | S11A          | 50.0         | 50.8            | 50.4          | 238.4                 | SM            | 15.3                                   |                                    |                                     |                                        | 37.6             |                    |
| S0016R         | S11B          | 50.8         | 51.5            | 51.2          | 237.6                 | CL            | 23.7                                   | 30                                 | 16                                  | 14                                     | 73.3             |                    |
| S0016R         | S12           | 55.0         | 56.1            | 55.6          | 233.2                 | SM            | 13.5                                   |                                    |                                     |                                        | 33.3             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0016R         | S13           | 60.0         | 61.5            | 60.8          | 228.0                 | SM            | 14.9                                   |                                    |                                     |                                        | 42.7             |                    |
| S0016R         | S14           | 65.0         | 65.9            | 65.5          | 223.3                 | SP-SM         | 15.5                                   |                                    |                                     |                                        | 9.0              |                    |
| S0016R         | S15           | 70.0         | 71.5            | 70.8          | 218.0                 | ML            | 20.0                                   |                                    |                                     |                                        | 52.7             |                    |
| S0016R         | S16           | 75.0         | 76.2            | 75.6          | 213.2                 | ML            | 24.9                                   | 22                                 | 20                                  | 2                                      | 64.4             |                    |
| S0016R         | S17           | 80.0         | 81.5            | 80.8          | 208.0                 | SM            | 22.0                                   |                                    |                                     |                                        | 46.3             |                    |
| S0016R         | S18           | 85.0         | 86.3            | 85.7          | 203.1                 | SP-SM         |                                        |                                    |                                     |                                        | 10.3             |                    |
| S0016R         | S19           | 90.0         | 91.5            | 90.8          | 198.0                 | SM            | 15.6                                   |                                    |                                     |                                        | 43.7             |                    |
| S0016R         | S20           | 95.0         | 96.5            | 95.8          | 193.0                 | SM            | 18.7                                   |                                    |                                     |                                        | 26.9             |                    |
| S0016R         | S21B          | 100.8        | 101.2           | 101.2         | 187.6                 | SP-SM         | 19.7                                   |                                    |                                     |                                        | 12.4             |                    |
| S0016R         | S22           | 105.0        | 106.0           | 105.5         | 183.3                 | SP-SM         |                                        |                                    |                                     |                                        | 7.7              |                    |
| S0016R         | S23A          | 110.0        | 110.8           | 20.3          | 268.5                 | SP-SM         |                                        |                                    |                                     |                                        | 12.5             |                    |
| S0016R         | S23B          | 110.8        | 111.5           | 111.2         | 177.6                 | SM            | 25.9                                   |                                    |                                     |                                        | 44.7             |                    |
| S0016R         | S24           | 115.0        | 116.5           | 115.8         | 173.0                 | ML            | 20.3                                   |                                    |                                     |                                        | 55.3             |                    |
| S0016R         | S25           | 120.0        | 121.5           | 120.8         | 168.0                 | CL            | 32.7                                   | 38                                 | 23                                  | 15                                     | 88.0             |                    |
| S0016R         | S26           | 125.0        | 126.0           | 125.5         | 163.3                 | ML            | 25.3                                   |                                    |                                     |                                        | 51.6             |                    |
| S0016R         | S27           | 130.0        | 131.5           | 130.8         | 158.0                 | SM            |                                        |                                    |                                     |                                        | 40.6             |                    |
| S0016R         | S28           | 135.0        | 136.3           | 135.7         | 153.1                 | SP-SM         | 33.5                                   |                                    |                                     |                                        | 12.4             |                    |
| S0016R         | S29           | 140.0        | 141.2           | 140.6         | 148.2                 | SP-SM         | 32.7                                   |                                    |                                     |                                        | 9.7              |                    |
| S0016R         | S31           | 150.0        | 151.5           | 150.8         | 138.0                 | SM            | 30.8                                   |                                    |                                     |                                        | 20.2             |                    |
| S0017R         | S01           | 0.0          | 5.0             | 2.5           | 288.0                 | SM            |                                        |                                    |                                     |                                        | 43.3             |                    |
| S0017R         | S02           | 5.0          | 6.5             | 5.8           | 284.7                 | ML            |                                        |                                    |                                     |                                        | 64.7             |                    |
| S0017R         | S04A          | 15.0         | 15.6            | 15.3          | 275.2                 | ML            |                                        |                                    |                                     |                                        | 74.3             |                    |
| S0017R         | S05           | 20.0         | 21.2            | 20.6          | 269.9                 | CL-ML         |                                        | 21                                 | 17                                  | 4                                      | 72.1             |                    |
| S0017R         | S06           | 25.0         | 26.0            | 25.5          | 265.0                 | SP-SM         |                                        |                                    |                                     |                                        | 13.5             |                    |



**Table E-2**Summary of Laboratory Index Test Results

|                |               |              |                 |               |                       |               | dek rest nesu                          |                                    |                                     |                                        |                  |                    |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>w <sub>n</sub> | Liquid<br>Limit,<br>w <sub>l</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0017R         | S07           | 30.0         | 31.3            | 30.7          | 259.8                 | SM            |                                        |                                    |                                     |                                        | 7.7              |                    |
| S0017R         | S09           | 40.0         | 40.7            | 40.4          | 250.1                 | ML            |                                        | 22                                 | 19                                  | 3                                      | 62.4             |                    |
| S0017R         | S10           | 45.0         | 46.0            | 45.5          | 245.0                 | SM            |                                        |                                    |                                     |                                        | 31.6             |                    |
| S0017R         | S11           | 50.0         | 50.5            | 50.3          | 240.2                 | SM            |                                        |                                    |                                     |                                        | 46.2             |                    |
| S0017R         | S12           | 55.0         | 55.7            | 55.4          | 235.1                 | SM            |                                        |                                    |                                     |                                        | 22.3             |                    |
| S0017R         | S13           | 60.0         | 61.2            | 60.6          | 229.9                 | SM            |                                        |                                    |                                     |                                        | 30.2             |                    |
| S0017R         | S15           | 70.0         | 71.0            | 70.5          | 220.0                 | ML            |                                        |                                    |                                     |                                        | 61.7             |                    |
| S0017R         | S16           | 75.0         | 76.4            | 75.7          | 214.8                 | SM            |                                        |                                    |                                     |                                        | 45.1             |                    |
| S0017R         | S17A          | 80.0         | 80.3            | 80.2          | 210.3                 | CL            |                                        | 27                                 | 23                                  | 4                                      | 85.1             |                    |
| S0017R         | S17B          | 80.3         | 80.9            | 80.6          | 209.9                 | ML            |                                        |                                    |                                     |                                        | 56.0             |                    |
| S0017R         | S18A          | 85.0         | 85.5            | 85.3          | 205.2                 | SM            |                                        |                                    |                                     |                                        | 17.7             |                    |
| S0017R         | S18B          | 85.5         | 86.3            | 85.9          | 204.6                 | ML            |                                        |                                    |                                     |                                        | 51.7             |                    |
| S0017R         | S19           | 90.0         | 91.0            | 90.5          | 200.0                 | SM            |                                        |                                    |                                     |                                        | 36.2             |                    |
| S0017R         | S20           | 95.0         | 95.8            | 95.4          | 195.1                 | CL            |                                        |                                    |                                     |                                        | 59.3             |                    |
| S0017R         | S21           | 100.0        | 100.9           | 100.5         | 190.0                 | SC            |                                        |                                    |                                     |                                        | 43.1             |                    |
| S0017R         | S22           | 105.0        | 106.4           | 105.7         | 184.8                 | ML            |                                        |                                    |                                     |                                        | 58.3             |                    |
| S0017R         | S24           | 115.0        | 116.3           | 115.7         | 174.8                 | SM            |                                        |                                    |                                     |                                        | 26.4             |                    |
| S0017R         | S25           | 120.0        | 121.2           | 120.6         | 169.9                 | CL            |                                        | 27                                 | 17                                  | 10                                     | 76.4             |                    |
| S0017R         | S29A          | 140.0        | 140.5           | 140.3         | 150.2                 | ML            |                                        | 40                                 | 26                                  | 14                                     | 70.9             |                    |
| S0017R         | S30           | 145.0        | 146.0           | 145.5         | 145.0                 | ML            |                                        |                                    |                                     |                                        | 73.3             |                    |
| S0017R         | S31           | 150.0        | 151.5           | 150.8         | 139.7                 | ML            |                                        |                                    |                                     |                                        | 58.9             |                    |
| S0018R         | S01           | 0.0          | 5.0             | 2.5           | 303.3                 | SM            |                                        |                                    |                                     |                                        | 40.1             |                    |
| S0018R         | S02           | 5.0          | 6.5             | 5.8           | 300.0                 | CL-ML         | 10.1                                   |                                    |                                     |                                        | 54.8             |                    |
| S0018R         | S03           | 10.0         | 11.2            | 10.6          | 295.2                 | SM            | 14.4                                   |                                    |                                     |                                        | 43.5             |                    |



**Table E-2**Summary of Laboratory Index Test Results

|                |               |              |                 |               |                       |               | ack rest nesai                         |                                    |                                     |                                        |                  |                    |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>i</sub> | Plastic<br>Limit,<br>W <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0018R         | S04           | 15.0         | 16.3            | 15.7          | 290.1                 | SM            | 11.8                                   |                                    |                                     |                                        | 48.8             |                    |
| S0018R         | S05           | 20.0         | 21.0            | 20.5          | 285.3                 | SM            | 13.1                                   |                                    |                                     |                                        | 38.0             |                    |
| S0018R         | S06           | 25.0         | 26.2            | 25.6          | 280.2                 | CL-ML         | 24.9                                   | 22                                 | 18                                  | 4                                      | 76.9             |                    |
| S0018R         | S07           | 30.0         | 31.2            | 30.6          | 275.2                 | SM            |                                        |                                    |                                     |                                        | 25.3             |                    |
| S0018R         | S08           | 35.0         | 36.3            | 35.7          | 270.1                 | SP-SM         |                                        |                                    |                                     |                                        | 13.4             |                    |
| S0018R         | S09           | 40.0         | 41.1            | 40.6          | 265.2                 | SP-SM         | 18.1                                   |                                    |                                     |                                        | 7.1              |                    |
| S0018R         | S10           | 45.0         | 45.8            | 45.4          | 260.4                 | SP-SM         | 12.4                                   |                                    |                                     |                                        | 9.5              |                    |
| S0018R         | S11A          | 50.0         | 50.5            | 50.3          | 255.5                 | ML            |                                        |                                    |                                     |                                        | 83.1             |                    |
| S0018R         | S12           | 55.0         | 55.7            | 55.4          | 250.4                 | SP-SM         |                                        |                                    |                                     |                                        | 11.1             |                    |
| S0018R         | S13           | 60.0         | 60.8            | 60.4          | 245.4                 | SM            | 15.1                                   |                                    |                                     |                                        | 39.0             |                    |
| S0018R         | S14           | 65.0         | 65.7            | 65.4          | 240.4                 | SP-SM         | 12.4                                   |                                    |                                     |                                        | 11.1             |                    |
| S0018R         | S15           | 70.0         | 71.2            | 70.6          | 235.2                 | SM            | 12.9                                   |                                    |                                     |                                        | 22.2             |                    |
| S0018R         | S16           | 75.0         | 75.6            | 75.3          | 230.5                 | SM            | 13.5                                   |                                    |                                     |                                        | 32.9             |                    |
| S0018R         | S17           | 80.0         | 81.2            | 80.6          | 225.2                 | SP-SM         | 16.7                                   |                                    |                                     |                                        | 9.4              |                    |
| S0018R         | S18           | 85.0         | 86.4            | 85.7          | 220.1                 | ML            | 20.4                                   |                                    |                                     |                                        | 53.3             |                    |
| S0018R         | S19A          | 90.0         | 90.4            | 90.2          | 215.6                 | ML            | 30.2                                   |                                    |                                     |                                        | 84.9             |                    |
| S0018R         | S19B          | 90.4         | 91.2            | 90.8          | 215.0                 | ML            | 27.1                                   |                                    |                                     |                                        | 69.5             |                    |
| S0018R         | S20           | 95.0         | 96.0            | 95.5          | 210.3                 | SM            | 13.5                                   |                                    |                                     |                                        | 23.8             |                    |
| S0018R         | S21           | 100.0        | 100.9           | 100.5         | 205.3                 | SM            | 16.9                                   |                                    |                                     |                                        | 27.8             | 2.1                |
| S0018R         | S22           | 105.0        | 106.0           | 105.5         | 200.3                 | SM            |                                        |                                    |                                     |                                        | 37.0             |                    |
| S0018R         | S23           | 110.0        | 111.2           | 110.6         | 195.2                 | SM            | 17.0                                   |                                    |                                     |                                        | 38.1             |                    |
| S0018R         | S25           | 120.0        | 120.8           | 120.4         | 185.4                 | ML            |                                        |                                    |                                     |                                        | 57.4             |                    |
| S0018R         | S26           | 125.0        | 125.8           | 125.4         | 180.4                 | SM            |                                        |                                    |                                     |                                        | 16.6             |                    |
| S0018R         | S27           | 130.0        | 130.9           | 130.5         | 175.3                 | SM            | 21.5                                   |                                    |                                     |                                        | 23.8             |                    |



**Table E-2**Summary of Laboratory Index Test Results

| Borehole<br>ID | Sample<br>No. | Top<br>Depth | Bottom<br>Depth | Test<br>Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content,<br>W <sub>n</sub> | Liquid<br>Limit,<br>w <sub>I</sub> | Plastic<br>Limit,<br>w <sub>p</sub> | Plasticity<br>Index,<br>I <sub>p</sub> | Percent<br>Fines | Organic<br>Content |
|----------------|---------------|--------------|-----------------|---------------|-----------------------|---------------|----------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|------------------|--------------------|
|                |               | (ft)         | (ft)            | (ft)          | (ft)                  |               | (%)                                    | (%)                                | (%)                                 | (%)                                    | (%)              | (%)                |
| S0018R         | S28           | 135.0        | 136.0           | 135.5         | 170.3                 | ML            | 19.9                                   |                                    |                                     |                                        | 61.3             |                    |
| S0018R         | S29A          | 140.0        | 141.1           | 140.6         | 165.2                 | SM            |                                        |                                    |                                     |                                        | 42.1             |                    |
| S0018R         | S29B          | 141.1        | 141.4           | 141.3         | 164.5                 | ML            |                                        |                                    |                                     |                                        | 85.1             |                    |
| S0018R         | S30           | 145.0        | 146.0           | 145.5         | 160.3                 | SM            | 22.1                                   |                                    |                                     |                                        | 49.3             |                    |
| S0018R         | S31           | 150.0        | 151.0           | 150.5         | 155.3                 | SM            | 23.9                                   |                                    |                                     |                                        | 17.1             |                    |
| S0019R         | S01           | 0.0          | 5.0             | 2.5           | 290.03                | SM            |                                        |                                    |                                     |                                        | 38.3             |                    |
| S0019R         | S02A          | 5.0          | 5.8             | 5.4           | 287.13                | SM            | 4.6                                    |                                    |                                     |                                        | 39.5             |                    |
| S0019R         | S02B          | 5.8          | 6.5             | 6.2           | 286.33                | ML            |                                        | 23                                 | 21                                  | 2                                      | 64.4             |                    |
| S0019R         | S03A          | 6.5          | 7.6             | 7.1           | 285.43                | SM            | 4.5                                    |                                    |                                     |                                        | 43.3             |                    |
| S0019R         | S04B          | 9.0          | 10.0            | 9.5           | 283.03                | ML            | 17.9                                   | 23                                 | 23                                  | 3                                      | 88.1             |                    |
| S0019R         | S05           | 9.5          | 10.8            | 10.2          | 282.33                | ML            | 25.6                                   |                                    |                                     |                                        | 53.7             |                    |
| S0019R         | S07           | 12.5         | 13.8            | 13.2          | 279.33                | SP-SM         |                                        |                                    |                                     |                                        | 11.9             |                    |
| S0019R         | S08           | 14.0         | 15.2            | 14.6          | 277.93                | SP            | 24.1                                   |                                    |                                     |                                        | 2.8              |                    |
| S0019R         | S09           | 20.0         | 21.3            | 20.7          | 271.83                | SM            | 12.3                                   |                                    |                                     |                                        | 22.3             |                    |
| S0019R         | S10           | 25.5         | 26.7            | 26.1          | 266.43                | SP-SM         | 20.5                                   |                                    |                                     |                                        | 5.0              |                    |
| S0019R         | S12           | 30.0         | 31.3            | 30.7          | 261.83                | SP-SM         | 23.4                                   |                                    |                                     |                                        | 6.3              |                    |
| S0019R         | S12A          | 35.0         | 35.7            | 35.4          | 257.13                | ML            |                                        |                                    |                                     |                                        | 76.9             |                    |
| S0019R         | S12B          | 35.7         | 36.4            | 36.1          | 256.43                | SM            |                                        |                                    |                                     |                                        | 38.6             |                    |
| S0019R         | S13           | 40.0         | 40.8            | 40.4          | 252.13                | ML            | 23.2                                   |                                    |                                     |                                        | 58.5             |                    |
| S0019R         | S14           | 45.0         | 46.3            | 45.7          | 246.83                | SP-SM         | 15.7                                   | _                                  | _                                   |                                        | 9.3              |                    |



**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               | l y or Kemolded                     | Total Unit                | Normal                    | Stress at | Strain at                    | Peak S                   | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|---------------------------|---------------------------|-----------|------------------------------|--------------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,<br>γ <sub>t</sub> | Stress,<br>σ <sub>n</sub> | Failure,  | Failure,<br><sub>Efail</sub> | Friction<br>Angle,<br>&' | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)                     | (psf)                     | (psf)     | (%)                          | (degrees)                | (psf)                        |
|                |               |       |                       |               | 5.3                                 | 107.9                     | 245                       | 196       | 6.7                          |                          |                              |
| S0001R         | S04           | 8.8   | 278.6                 | SP-SM         | 5.2                                 | 107.9                     | 504                       | 373       | 12.1                         | 34                       | 30                           |
|                |               |       |                       |               | 5.2                                 | 107.9                     | 994                       | 703       | 11.2                         |                          |                              |
|                |               |       |                       |               | 2.8                                 | 115.0                     | 158                       | 120       | 3.0                          |                          |                              |
| S0002R         | S02           | 5.7   | 284.7                 | SM            | 2.8                                 | 115.0                     | 317                       | 269       | 10.4                         | 38                       | 7                            |
|                |               |       |                       |               | 2.7                                 | 115.1                     | 634                       | 495       | 8.8                          |                          |                              |
|                |               |       |                       |               | 19.0                                | 125.0                     | 216                       | 575       | 2.1                          |                          |                              |
| S0003R         | S04           | 8.5   | 279.5                 | ML            | 19.0                                | 125.0                     | 446                       | 749       | 2.3                          | 41                       | 376                          |
|                |               |       |                       |               | 19.2                                | 124.9                     | 878                       | 1,148     | 2.2                          |                          |                              |
|                |               |       |                       |               | 18.0                                | 121.9                     | 778                       | 1,030     | 2.5                          |                          |                              |
| S0003R         | S10           | 25.7  | 262.3                 | SP-SM         | 17.8                                | 121.9                     | 1,555                     | 1,738     | 2.9                          | 41                       | 364                          |
|                |               |       |                       |               | 18.3                                | 121.8                     | 3,125                     | 3,080     | 5.3                          |                          |                              |
|                |               |       |                       |               | 10.3                                | 130.9                     | 1,656                     | 1,934     | 3.3                          |                          |                              |
| S0003R         | S15           | 50.4  | 237.6                 | SP-SM         | 10.3                                | 130.9                     | 3,298                     | 3,384     | 5.1                          | 42                       | 448                          |
|                |               |       |                       |               | 10.3                                | 130.9                     | 6,595                     | 6,343     | 3.7                          |                          |                              |
|                |               |       |                       |               | 9.3                                 | 118.9                     | 259                       | 334       | 1.6                          |                          |                              |
| S0004R         | S04           | 8.7   | 275.0                 | SM            | 9.5                                 | 118.9                     | 518                       | 729       | 2.5                          | 43                       | 156                          |
|                |               |       |                       |               | 9.2                                 | 118.9                     | 1,037                     | 1,086     | 2.5                          |                          |                              |
|                |               |       |                       |               | 16.1                                | 136.2                     | 994                       | 1,312     | 3.2                          |                          |                              |
| S0004R         | S11           | 30.7  | 253.0                 | SM            | 16.1                                | 136.2                     | 1,987                     | 2,308     | 5.2                          | 42                       | 462                          |
|                |               |       |                       |               | 16.2                                | 136.2                     | 3,960                     | 3,995     | 4.8                          |                          |                              |



**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               | Í                                   | Total Unit                | Normal             | Stress at                     | Strain at                     |                          | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|---------------------------|--------------------|-------------------------------|-------------------------------|--------------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,<br>γ <sub>t</sub> | Stress, $\sigma_n$ | Failure,<br>τ <sub>fail</sub> | Failure,<br>ε <sub>fail</sub> | Friction<br>Angle,<br>ه' | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)                     | (psf)              | (psf)                         | (%)                           | (degrees)                | (psf)                        |
|                |               |       |                       |               | 14.9                                | 137.0                     | 1,339              | 2,114                         | 3.3                           |                          |                              |
| S0004R         | S13           | 40.5  | 243.2                 | ML            | 14.9                                | 137.0                     | 2,678              | 3,540                         | 3.7                           | 41                       | 1,043                        |
|                |               |       |                       |               | 15.0                                | 136.9                     | 5,357              | 5,682                         | 4.5                           |                          |                              |
|                |               |       |                       |               | 5.3                                 | 111.9                     | 158                | 206                           | 4.5                           |                          |                              |
| S0005R         | S02           | 5.8   | 279.5                 | SP-SM         | 5.0                                 | 111.9                     | 317                | 297                           | 12.8                          | 37                       | 79                           |
|                |               |       |                       |               | 5.0                                 | 111.9                     | 634                | 553                           | 16.0                          |                          |                              |
|                |               |       |                       |               | 13.1                                | 97.9                      | 418                | 320                           | 4.9                           |                          |                              |
| S0005R         | S08           | 14.3  | 271.0                 | ML            | 13.5                                | 98.0                      | 835                | 501                           | 11.1                          | 32                       | 30                           |
|                |               |       |                       |               | 13.3                                | 97.9                      | 1,685              | 1,089                         | 10.7                          | 1                        |                              |
|                |               |       |                       |               | 18.5                                | 119.0                     | 749                | 870                           | 3.3                           |                          |                              |
| S0005R         | S10           | 25.4  | 259.9                 | ML            | 18.8                                | 118.9                     | 1,498              | 1,552                         | 4.9                           | 41                       | 223                          |
|                |               |       |                       |               | 18.5                                | 119.0                     | 2,995              | 9,150                         | 7.1                           |                          |                              |
|                |               |       |                       |               | 19.3                                | 129.9                     | 1,526              | 1,630                         | 3.3                           |                          |                              |
| S0005R         | S15           | 47.0  | 238.3                 | ML            | 19.5                                | 130.0                     | 3,038              | 2,696                         | 5.8                           | 39                       | 324                          |
|                |               |       |                       |               | 19.3                                | 129.9                     | 6,077              | 5,293                         | 7.4                           |                          |                              |
|                |               |       |                       |               | 11.9                                | 137.0                     | 1,210              | 2,200                         | 4.0                           |                          |                              |
| S0006R         | S14           | 38.7  | 248.9                 | SM            | 12.1                                | 137.0                     | 2,419              | 3,696                         | 4.0                           | 37                       | 1,525                        |
|                |               |       |                       |               | 12.1                                | 137.0                     | 4,838              | 5,046                         | 10.4                          |                          |                              |
|                |               |       |                       |               | 13.2                                | 136.9                     | 173                | 347                           | 2.5                           |                          |                              |
| S0007R         | S04           | 5.7   | 279.4                 | SM            | 13.3                                | 136.9                     | 346                | 465                           | 2.9                           | 41                       | 187                          |
|                |               |       |                       |               | 13.0                                | 137.0                     | 677                | 773                           | 2.5                           |                          |                              |



**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               | Í                                   | Total Unit | Normal                    | Stress at                     | Strain at                     |                    | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|---------------------------|-------------------------------|-------------------------------|--------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress,<br>σ <sub>n</sub> | Failure,<br>τ <sub>fail</sub> | Failure,<br>ε <sub>fail</sub> | Friction<br>Angle, | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)                     | (psf)                         | (%)                           | հ'<br>(degrees)    | c. (psf)                     |
|                |               |       |                       |               | 3.9                                 | 120.9      | 173                       | 223                           | 2.9                           |                    |                              |
| S0010R         | S02           | 5.8   | 280.3                 | SM            | 4.0                                 | 121.0      | 346                       | 328                           | 11.5                          | 36                 | 88                           |
|                |               |       |                       |               | 3.6                                 | 120.9      | 677                       | 590                           | 7.4                           |                    |                              |
|                |               |       |                       |               | 17.0                                | 133.1      | 662                       | 652                           | 6.4                           |                    |                              |
| S0010R         | S09           | 20.7  | 265.4                 | SM            | 17.0                                | 133.1      | 1,325                     | 1,027                         | 6.8                           | 35                 | 156                          |
|                |               |       |                       |               | 16.8                                | 133.0      | 2,635                     | 2,010                         | 5.6                           |                    |                              |
|                |               |       |                       |               | 19.3                                | 120.1      | 1,123                     | 1,192                         | 8.0                           |                    |                              |
| S0010R         | S12           | 35.7  | 250.4                 | SM            | 19.3                                | 120.0      | 2,246                     | 2,134                         | 3.2                           | 39                 | 291                          |
|                |               |       |                       |               | 19.1                                | 120.1      | 4,478                     | 3,924                         | 8.0                           |                    |                              |
|                |               |       |                       |               | 11.1                                | 137.0      | 173                       | 395                           | 1.0                           |                    |                              |
| S0012R         | S02           | 5.8   | 281.8                 | SM            | 11.5                                | 136.9      | 346                       | 528                           | 1.2                           | 41                 | 235                          |
|                |               |       |                       |               | 11.0                                | 137.0      | 677                       | 835                           | 1.6                           |                    |                              |
|                |               |       |                       |               | 18.6                                | 131.1      | 446                       | 693                           | 6.4                           |                    |                              |
| S0012R         | S07           | 13.2  | 274.4                 | SM            | 18.6                                | 131.1      | 878                       | 1,175                         | 4.8                           | 43                 | 312                          |
|                |               |       |                       |               | 18.4                                | 131.1      | 1,757                     | 1,175                         | 4.4                           |                    |                              |
|                |               |       |                       |               | 8.2                                 | 102.9      | 158                       | 150                           | 1.6                           |                    |                              |
| S0014R         | S02           | 5.8   | 278.8                 | SM            | 8.1                                 | 102.9      | 317                       | 249                           | 4.5                           | 37                 | 24                           |
|                |               |       |                       |               | 8.0                                 | 102.9      | 634                       | 500                           | 10.5                          |                    |                              |
|                |               |       |                       |               | 13.8                                | 136.9      | 331                       | 592                           | 4.1                           |                    |                              |
| S0014R         | S11           | 11.6  | 273.0                 | CL-ML         | 13.9                                | 137.0      | 662                       | 865                           | 2.9                           | 43                 | 269                          |
|                |               |       |                       |               | 13.7                                | 136.9      | 1,325                     | 1,509                         | 3.3                           |                    |                              |



**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               | l y or Kemolded                     | Total Unit                | Normal                    | Stress at | Strain at                    | Peak S             | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|---------------------------|---------------------------|-----------|------------------------------|--------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,<br>γ <sub>t</sub> | Stress,<br>σ <sub>n</sub> | Failure,  | Failure,<br><sub>Efail</sub> | Friction<br>Angle, | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)                     | (psf)                     | (psf)     | (%)                          | (degrees)          | (psf)                        |
|                |               |       |                       |               | 16.2                                | 104.0                     | 158                       | 96        | 4.1                          |                    |                              |
| S0015R         | S02           | 5.8   | 280.9                 | SM            | 16.1                                | 103.9                     | 317                       | 261       | 2.9                          | 31                 | 27                           |
|                |               |       |                       |               | 16.4                                | 103.9                     | 634                       | 397       | 5.8                          |                    |                              |
|                |               |       |                       |               | 17.5                                | 133.8                     | 648                       | 655       | 3.3                          |                    |                              |
| S0015R         | S09A          | 20.2  | 266.5                 | SM            | 17.6                                | 133.9                     | 1,296                     | 1,279     | 4.5                          | 41                 | 121                          |
|                |               |       |                       |               | 17.6                                | 133.9                     | 2,606                     | 648       | 5.3                          |                    |                              |
|                |               |       |                       |               | 12.4                                | 119.9                     | 158                       | 279       | 1.6                          |                    |                              |
| S0016R         | S02           | 5.5   | 283.3                 | ML            | 12.4                                | 119.9                     | 317                       | 317       | 2.9                          | 37                 | 128                          |
|                |               |       |                       |               | 12.6                                | 119.9                     | 634                       | 618       | 8.2                          |                    |                              |
|                |               |       |                       |               | 16.9                                | 125.0                     | 1,224                     | 1,338     | 4.3                          |                    |                              |
| S0016R         | S08           | 35.5  | 253.3                 | SP-SM         | 16.7                                | 124.5                     | 2,462                     | 2,763     | 5.1                          | 42                 | 360                          |
|                |               |       |                       |               | 16.7                                | 124.5                     | 4,925                     | 4,732     | 4.9                          |                    |                              |
|                |               |       |                       |               | 14.4                                | 122.9                     | 2,117                     | 1,649     | 9.6                          |                    |                              |
| S0016R         | S13           | 60.8  | 228.0                 | SM            | 14.5                                | 123.0                     | 4,234                     | 2,981     | 8.8                          | 32                 | 312                          |
|                |               |       |                       |               | 14.5                                | 123.0                     | 8,482                     | 5,662     | 7.4                          |                    |                              |
|                |               |       |                       |               | 15.3                                | 137.0                     | 3,384                     | 3,027     | 4.5                          |                    |                              |
| S0016R         | S20           | 95.8  | 193.0                 | SM            | 15.1                                | 136.9                     | 6,782                     | 5,772     | 7.8                          | 39                 | 298                          |
|                |               |       |                       |               | 15.0                                | 136.9                     | 13,565                    | 11,244    | 8.2                          |                    |                              |
|                |               |       |                       |               | 13.3                                | 136.9                     | 3,946                     | 3,738     | 6.7                          |                    |                              |
| S0016R         | S23A          | 110.4 | 268.5                 | SP-SM         | 13.2                                | 136.9                     | 7,877                     | 6,862     | 7.5                          | 37                 | 845                          |
|                |               |       |                       |               | 13.1                                | 137.0                     | 15,768                    | 12,650    | 6.6                          |                    |                              |

**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               |                                     | Total Unit                | Normal                    | Stress at | Strain at                    | Peak S                   | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|---------------------------|---------------------------|-----------|------------------------------|--------------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,<br>γ <sub>t</sub> | Stress,<br>σ <sub>n</sub> | Failure,  | Failure,<br><sub>Efail</sub> | Friction<br>Angle,<br>&' | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)                     | (psf)                     | (psf)     | (%)                          | (degrees)                | (psf)                        |
|                |               |       |                       |               | 15.0                                | 136.9                     | 4,334                     | 3,378     | 4.5                          |                          |                              |
| S0016R         | S25           | 120.8 | 168.0                 | CL            | 14.8                                | 137.0                     | 8,654                     | 8,569     | 6.2                          | 40                       | 361                          |
|                |               |       |                       |               | 14.7                                | 137.0                     | 17,323                    | 14,606    | 7.4                          |                          |                              |
|                |               |       |                       |               | 31.6                                | 94.0                      | 5,400                     | 4,195     | 10.7                         |                          |                              |
| S0016R         | S31           | 150.8 | 138.0                 | SM            | 31.6                                | 94.0                      | 10,800                    | 6,915     | 8.2                          | 26                       | 1,637                        |
|                |               |       |                       |               | 31.6                                | 94.0                      | 21,600                    | 12,028    | 9.9                          |                          |                              |
|                |               |       |                       |               | 8.6                                 | 125.0                     | 173                       | 207       | 3.3                          |                          |                              |
| S0017R         | S02           | 5.8   | 284.7                 | ML            | 8.7                                 | 124.9                     | 346                       | 323       | 4.5                          | 36                       | 75                           |
|                |               |       |                       |               | 8.7                                 | 124.9                     | 677                       | 577       | 6.6                          |                          |                              |
|                |               |       |                       |               | 19.0                                | 130.9                     | 1,066                     | 1,359     | 4.2                          |                          |                              |
| S0017R         | S07           | 30.7  | 259.8                 | SM            | 18.9                                | 131.0                     | 2,117                     | 2,232     | 3.8                          | 43                       | 344                          |
|                |               |       |                       |               | 19.0                                | 130.9                     | 4,234                     | 4,248     | 5.3                          |                          |                              |
|                |               |       |                       |               | 10.8                                | 132.0                     | 1,570                     | 1,413     | 4.1                          |                          |                              |
| S0017R         | S10           | 45.5  | 245.0                 | SM            | 10.9                                | 131.9                     | 3,139                     | 2,393     | 4.5                          | 34                       | 353                          |
|                |               |       |                       |               | 10.8                                | 131.9                     | 6,278                     | 4,514     | 6.6                          |                          |                              |
|                |               |       |                       |               | 11.3                                | 121.9                     | 2,117                     | 1,786     | 6.2                          |                          |                              |
| S0017R         | S13           | 60.6  | 229.9                 | SM            | 11.5                                | 121.9                     | 4,219                     | 3,180     | 9.9                          | 37                       | 84                           |
|                |               |       |                       |               | 11.1                                | 121.9                     | 8,438                     | 1,426     | 7.8                          |                          |                              |
|                |               |       |                       |               | 11.7                                | 136.9                     | 2,995                     | 2,804     | 4.1                          |                          |                              |
| S0017R         | S18A          | 85.3  | 205.2                 | SM            | 11.7                                | 136.9                     | 6,005                     | 5,253     | 6.2                          | 39                       | 348                          |
|                |               |       |                       |               | 11.9                                | 137.0                     | 11,995                    | 10,164    | 6.2                          |                          |                              |



**Table E-3**Summary of Remolded Direct Shear Test Results

| _              |               |       |                       |               | Í                                   | Total Unit   | Normal       | Stress at         | Strain at         | Peak S             | trength                |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|--------------|--------------|-------------------|-------------------|--------------------|------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,      | Stress,      | Failure,          | Failure,          | Friction<br>Angle, | Cohesion<br>Intercept, |
|                |               |       |                       |               |                                     | $\gamma_{t}$ | $\sigma_{n}$ | τ <sub>fail</sub> | ε <sub>fail</sub> | h'                 | c'                     |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)        | (psf)        | (psf)             | (%)               | (degrees)          | (psf)                  |
|                |               |       |                       |               | 14.0                                | 136.9        | 3,571        | 2,962             | 4.1               |                    |                        |
| S0017R         | S21           | 100.5 | 190.0                 | SC            | 14.0                                | 136.9        | 7,142        | 5,905             | 7.0               | 37                 | 432                    |
|                |               |       |                       |               | 14.2                                | 136.9        | 14,285       | 10,964            | 6.2               |                    |                        |
|                |               |       |                       |               | 13.5                                | 137.0        | 4,147        | 3,322             | 7.8               |                    |                        |
| S0017R         | S24           | 115.7 | 174.8                 | SM            | 13.2                                | 136.9        | 8,280        | 7,176             | 6.7               | 38                 | 308                    |
|                |               |       |                       |               | 13.3                                | 136.9        | 16,560       | 13,193            | 8.2               |                    |                        |
|                |               |       |                       |               | 14.3                                | 136.9        | 5,227        | 4,324             | 4.9               |                    |                        |
| S0017R         | S30           | 145.5 | 145.0                 | ML            | 14.2                                | 136.9        | 10,440       | 7,291             | 7.0               | 32                 | 955                    |
|                |               |       |                       |               | 14.2                                | 136.9        | 20,880       | 14,016            | 7.0               |                    |                        |
|                |               |       |                       |               | 10.1                                | 124.9        | 173          | 202               | 2.1               |                    |                        |
| S0018R         | S02           | 5.8   | 300.0                 | CL-ML         | 10.3                                | 125.0        | 346          | 336               | 1.6               | 31                 | 109                    |
|                |               |       |                       |               | 10.1                                | 124.9        | 677          | 513               | 4.1               |                    |                        |
|                |               |       |                       |               | 11.7                                | 136.9        | 533          | 612               | 3.7               |                    |                        |
| S0018R         | S04           | 15.7  | 290.1                 | SM            | 12.1                                | 136.9        | 1,066        | 1,087             | 4.1               | 38                 | 216                    |
|                |               |       |                       |               | 11.8                                | 137.0        | 2,117        | 1,868             | 3.7               |                    |                        |
|                |               |       |                       |               | 20.2                                | 129.0        | 893          | 937               | 4.7               |                    |                        |
| S0018R         | S06           | 25.6  | 280.2                 | CL-ML         | 20.0                                | 128.9        | 1,786        | 1,614             | 5.3               | 41                 | 117                    |
|                |               |       |                       |               | 19.8                                | 128.9        | 3,557        | 3,244             | 6.2               |                    |                        |
|                |               |       |                       |               | 19.6                                | 130.0        | 1,397        | 1,590             | 3.3               |                    |                        |
| S0018R         | S09           | 40.6  | 265.2                 | SP-SM         | 19.5                                | 130.0        | 2,794        | 2,677             | 5.8               | 37                 | 533                    |
|                |               |       |                       |               | 19.8                                | 129.9        | 5,602        | 4,800             | 6.3               |                    |                        |



**Table E-3**Summary of Remolded Direct Shear Test Results

|                |               |       |                       |               | ly of Remoided                      | Total Unit | Normal                    | Stress at | Strain at                    | Peak S          | trength                |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|---------------------------|-----------|------------------------------|-----------------|------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress,<br>σ <sub>n</sub> | Failure,  | Failure,<br><sub>Efail</sub> | Friction Angle, | Cohesion<br>Intercept, |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)                     | (psf)     | (%)                          | (degrees)       | (psf)                  |
|                |               |       |                       |               | 13.0                                | 137.0      | 2,275                     | 2,527     | 2.5                          |                 |                        |
| S0018R         | S14           | 65.4  | 240.4                 | SP-SM         | 12.9                                | 136.8      | 4,536                     | 4,487     | 4.1                          | 35              | 1,080                  |
|                |               |       |                       |               | 12.6                                | 136.9      | 9,086                     | 7,384     | 7.0                          |                 |                        |
|                |               |       |                       |               | 15.4                                | 135.9      | 3,024                     | 2,795     | 4.1                          |                 |                        |
| S0018R         | S18A          | 85.7  | 220.1                 | ML            | 15.5                                | 135.9      | 6,034                     | 5,524     | 6.6                          | 41              | 223                    |
|                |               |       |                       |               | 15.6                                | 135.9      | 12,082                    | 10,666    | 6.3                          |                 |                        |
|                |               |       |                       |               | 17.1                                | 132.9      | 4,680                     | 3,832     | 6.6                          |                 |                        |
| S0018R         | S27           | 130.5 | 175.3                 | SM            | 17.0                                | 132.9      | 9,360                     | 7,425     | 7.8                          | 33              | 1,080                  |
|                |               |       |                       |               | 17.2                                | 132.9      | 18,720                    | 12,925    | 4.5                          |                 |                        |
|                |               |       |                       |               | 14.9                                | 137.0      | 5,227                     | 4,082     | 6.2                          |                 |                        |
| S0018R         | S30           | 145.5 | 160.3                 | SM            | 14.6                                | 136.8      | 10,440                    | 7,396     | 6.6                          | 32              | 837                    |
|                |               |       |                       |               | 14.8                                | 137.0      | 20,880                    | 14,016    | 5.3                          |                 |                        |
|                |               |       |                       |               | 11.0                                | 104.9      | 144                       | 111       | 2.6                          |                 |                        |
| S0019R         | S02A          | 5.4   | 287.1                 | SM            | 11.0                                | 104.9      | 302                       | 166       | 5.3                          | 24              | 40                     |
|                |               |       |                       |               | 10.9                                | 104.9      | 605                       | 311       | 7.4                          |                 |                        |
|                |               |       |                       |               | 16.8                                | 114.9      | 245                       | 282       | 2.9                          |                 |                        |
| S0019R         | S04B          | 9.5   | 283.0                 | ML            | 16.7                                | 114.9      | 504                       | 360       | 5.4                          | 36              | 58                     |
|                |               |       |                       |               | 16.9                                | 114.9      | 994                       | 812       | 3.8                          |                 |                        |
|                |               |       |                       |               | 23.4                                | 117.0      | 403                       | 406       | 3.0                          |                 |                        |
| S0019R         | S08           | 14.6  | 277.9                 | SP            | 23.7                                | 116.9      | 806                       | 770       | 4.5                          | 42              | 45                     |
|                |               |       |                       |               | 23.8                                | 117.0      | 1,598                     | 648       | 4.1                          |                 |                        |



**Table E-4**Summary of Modified Proctor Test Results

| Borehole<br>ID | Sample<br>No. | Depth   | USGS<br>Group | Elevation<br>(NAVD88) | Max. Dry<br>Unit<br>Weight | Optimum<br>Moisture<br>Content |
|----------------|---------------|---------|---------------|-----------------------|----------------------------|--------------------------------|
|                |               | (ft)    |               | (ft)                  | (pcf)                      | (%)                            |
| S0001R         | S01           | 0 - 5.0 | SM            | 284.9                 | 136.6                      | 6.4                            |
| S0003R         | S01           | 0 - 5.0 | SM            | 285.5                 | 136.7                      | 6.4                            |
| S0004R         | S01           | 0 - 5.0 | ML            | 281.2                 | 121.0                      | 12.2                           |
| S0005R         | S01           | 0 - 5.0 | SP-SM         | 282.8                 | 133.9                      | 6.0                            |
| S0013AR        | S01           | 0 - 5.0 | SM            | 283.6                 | 125.5                      | 9.8                            |
| S0015R         | S01           | 0 - 5.0 | SM            | 284.2                 | 130.3                      | 8.2                            |
| S0017R         | S01           | 0 - 5.0 | SM            | 288.0                 | 125.4                      | 7.6                            |
| S0018R         | S01           | 0 - 5.0 | SM            | 303.3                 | 127.4                      | 8.6                            |
| S0019R         | S01           | 0 - 5.0 | SM            | 290.0                 | 123.4                      | 7.8                            |

**Table E-5**Summary of California Bearing Ratio Tests

| Borehole<br>ID | Sample<br>No. | Depth<br>(ft) | USGS<br>Group | Elevation<br>(NAVD88) | California<br>Bearing<br>Ratio |
|----------------|---------------|---------------|---------------|-----------------------|--------------------------------|
| S0001R         | S01           | 0 - 5.0       | SM            | 284.9                 | 47                             |
| S0003R         | S01           | 0 - 5.0       | SM            | 285.5                 | 40                             |
| S0004R         | S01           | 0 - 5.0       | ML            | 281.2                 | 20                             |
| S0005R         | S01           | 0 - 5.0       | SP-SM         | 282.8                 | 50                             |
| S0013AR        | S01           | 0 - 5.0       | SM            | 283.6                 | 13                             |
| S0015R         | S01           | 0 - 5.0       | SM            | 284.2                 | 35                             |
| S0017R         | S01           | 0 - 5.0       | SM            | 288.0                 | 28                             |
| S0018R         | S01           | 0 - 5.0       | SM            | 303.3                 | 23                             |
| S0019R         | S01           | 0 - 5.0       | SM            | 290.0                 | 13                             |

**Table E-6**Summary of Groundwater Chemistry Test Results

| Test                                               | Test                     | Borehole ID |        |        |
|----------------------------------------------------|--------------------------|-------------|--------|--------|
| Test                                               | Reference                | S0016R      | S0017R | S0018R |
| рН                                                 | SM 4500-H <sup>+</sup> B | 7.51        | 7.24   | 7.51   |
| Calcium (mg/L)                                     | EPA 200.7                | 88          | 78     | 47     |
| Bicarbonate Alkalinity as CaCO <sub>3</sub> (mg/L) | SM 2320B                 | 280         | 260    | 220    |
| Specific Conductance (umhos/cm)                    | SM 2510B                 | 1100        | 860    | 570    |
| Total Dissolved Solids (mg/L)                      | SM 2320B                 | 740         | 580    | 380    |
| Chloride (mg/L)                                    | EPA 300.0                | 83          | 49     | 23     |
| Sulfate as SO <sub>4</sub> (mg/L)                  | EPA 300.0                | 53          | 110    | 21     |





| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0002R, S02           | 5-6.3      |                             |                             | 3.9        |
| S0002R, S05A          | 9.5-10.3   |                             |                             | 15.1       |
| S0002R, S09           | 20-21.3    | ,                           |                             | 14.8       |

Test Method: ASTM D2216, ASTM D2937

November 16, 2011

PROJECT NUMBER: 11-111

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507 CA High Speed Train, Fresno to Bakersfield

SA-HST019

#### MOISTURE AND ORGANIC CONTENT TEST RESULTS

| Sample<br><u>Identification</u> | Depth, ft. | Organic<br><u>Content, %</u> | Moisture<br><u>Content, %</u> |
|---------------------------------|------------|------------------------------|-------------------------------|
| S0002R, S12                     | 35-36.4    | 2.2                          |                               |
| S0002R, S13                     | 40-41.3    | 2.1                          | 16.5                          |
| S0002R, S14                     | 45-46.4    | 2.4                          | 27.9                          |
| S0002R, S19                     | 70-71.5    | 3.3                          | 30.5                          |

Test Method: ASTM D2974

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train, Fresno to
Bakersfield

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507 SA-HST019

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0006R, S08           | 14-15.2    |                             |                             | 21.9       |
| S0006R, S10           | 25-26.2    |                             |                             | 22.8       |
| S0006R, S13           | 36.5-38    |                             |                             | 25.8       |
| S0006R, S17           | 50-51.2    |                             |                             | 14.2       |

Test Method: ASTM D2216, ASTM D2937

| PROJECT NUMBER:                                                        | 11-111 | November 1, 2011 |                                               |  |
|------------------------------------------------------------------------|--------|------------------|-----------------------------------------------|--|
| SIERRA TESTING LAB                                                     |        |                  | CA High Speed Train, Fresno to<br>Bakersfield |  |
| 5040 Robert J. Mathews Blvd., El D<br>Phone: (916) 939-3460 FAX: (916) |        | CA 95762         | SA-HST019                                     |  |

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0007R, S04           | 5-6.3      |                             |                             | 10.3       |
| S0007R, S06           | 9-10.3     |                             |                             | 13.6       |
| S0007R S07            | 12.5-14.0  |                             |                             | 19.9       |

Test Method: ASTM D2216, ASTM D2937

| PROJECT NUMBER: 11-111 November 16, 2011                                                             |                                             |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| SIERRA TESTING LABORATORIES, INC.                                                                    | CA High Speed Train, Fresno to  Bakersfield |  |
| 5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>Phone: (916) 939-3460 FAX: (916) 939-3507 | SA-HST019                                   |  |

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0007R, S03           | 6.5-8      |                             |                             | 11.1       |
| S0007R, S08           | 14-15.3    |                             |                             | 14.1       |
| S0007R, S11A          | 30-30.5    |                             |                             | 29.7       |
| S0007R, S11B          | 30.5-31    |                             |                             | 14.1       |
| S0007R, 13B           | 40.8-41.4  |                             |                             | 17.8       |
| S0007R, S14           | 45-46.3    |                             |                             | 28.6       |
| S0007R, S17           | 60-61.5    |                             |                             | 17.5       |
| S0007R, S18           | 65-66.5    |                             |                             | 17.9       |
| S0007R, S20           | 75-76.2    |                             |                             | 22.4       |
| S0007R, S21           | 80-81.1    |                             |                             | 29.3       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to
Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0010R, S02           | 5-6.5      |                             |                             | 4.8        |
| S0010R, S04           | 8-9.4      |                             |                             | 15.9       |
| S0010R, S09           | 20-21.3    |                             |                             | 16.9       |
| S0010R, S11           | 30-31.2    |                             |                             | 20.9       |
| S0010R, S12           | 35-36.4    |                             |                             | 17.4       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train, Fresno to
Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0010R, S06           | 11-12.4    |                             |                             | 16.4       |
| S0010R, S10           | 25-26.5    |                             |                             | 30.8       |
| S0010R, S14           | 45-46.3    |                             |                             | 15.2       |
| S0010R, S16           | 55-56.5    |                             |                             | 31.7       |
| S0010R, S17           | 60-61.3    |                             |                             | 23.0       |
| S0010R, S21           | 80-81.5    |                             |                             | 28.4       |
| S0010R, S25           | 100-101.3  |                             |                             | 18.9       |
| S0010R, S30           | 125-126.2  |                             |                             | 36.9       |
| S0010R, S35           | 150-151.5  |                             |                             | 36.8       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0012R, S02           | 5-6.5      |                             |                             | 6.1        |
| S0012R, S07           | 12.5-13.8  |                             |                             | 15.5       |
| S0012R, S09A          | 20-21.0    |                             |                             | 33.2       |
| S0012R, S14           | 45-46.4    |                             |                             | 14.8       |

Test Method: ASTM D2216, ASTM D2937

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER: 11-111 | November 16, 2011

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0013AR, S03          | 6.5-7.2    |                             |                             | 10.1       |
| S0013AR, S05          | 9.5-10.5   |                             |                             | 23.8       |
| S0013AR, S07          | 12.5-13.5  |                             |                             | 18.5       |
| S0013AR, S10          | 25-26.2    |                             |                             | 24.5       |
| S0013AR, S14          | 45-45.9    |                             |                             | 15.0       |
| S0013AR, S17          | 60-61.2    |                             |                             | 24.3       |
| S0013AR, S21          | 80-80.9    |                             |                             | 23.0       |
| S0013AR, S26          | 105-105.9  |                             |                             | 17.4       |
| S0013AR, S28          | 115-115.9  |                             |                             | 26.8       |

Test Method: ASTM D2216, ASTM D2937

| PROJECT NUMBER: 11-111 November 1, 2011                                                              |                                |
|------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                      | CA High Speed Train, Fresno to |
| SIERRA TESTING LABORATORIES, INC.                                                                    | Bakersfield                    |
|                                                                                                      | SA-HST019                      |
| 5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>Phone: (916) 939-3460 FAX: (916) 939-3507 | •                              |

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0013AR, S04          | 8-8.8      |                             |                             | 12.0       |
| S0013AR, S06A         | 11-11.7    |                             |                             | 16.3       |
| S0013AR, S08          | 14-15.0    |                             |                             | 16.2       |
| S0013AR, S11          | 30-31.5    |                             |                             | 21.7       |
| S0013AR, S13          | 40-41.5    |                             |                             | 26.6       |

Test Method: ASTM D2216, ASTM D2937

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0014AR, S02          | 5-6.5      |                             |                             | 17.4       |
| S0014AR, S04          | 8-9.2      |                             |                             | 16.0       |
| S0014AR, S05          | 9.5-11.0   |                             |                             | 21.3       |
| S0014AR, S06          | 11-12.2    |                             |                             | 14.9       |
| S0014AR, S07          | 12.5-13.8  |                             |                             | 21.4       |
| S0014AR, S12          | 35-36.5    |                             |                             | 12.0       |
| S0014AR, S13          | 40-41.4    |                             |                             | 16.9       |
| S0014AR, S14          | 46.5-45.8  |                             |                             | 16.4       |
| S0014AR, S15          | 50-51.4    |                             |                             | 19.3       |
| S0014AR, S17          | 60-61.5    |                             |                             | 24.2       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

SampleWet UnitDry UnitMoistureIdentificationDepth, ft.Weight, lb/ft. $^3$ Weight, lb/ft. $^3$ Content, %S0014AR, S1970-71.414.9S0014AR, S2075-76.522.7

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0014AR, S03          | 6.5-7.8    |                             |                             | 14.9       |
| S0014AR, S09          | 20-21.3    |                             |                             | 8.2        |
| S0014AR, S11          | 30-31.2    |                             |                             | 12.3       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507 CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0014R, S02           | 5-6.5      |                             |                             | 7.5        |
| S0014R, S03           | 6.5-7.8    |                             |                             | 11.1       |
| S0014R, S11           | 11-12.3    |                             |                             | 19.3       |
| S0014R, S13           | 40-41.4    |                             |                             | 22.7       |

Test Method: ASTM D2216, ASTM D2937

November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0014R, S04           | 8-9.3      |                             |                             | 19.9       |
| S0014R, S05           | 9.5-10.7   |                             |                             | 16.5       |
| S0014R, S07           | 12.5-13.9  |                             |                             | 20.1       |
| S0014R, S10           | 25-26.4    |                             |                             | 12.6       |
| S0014R, S15           | 50-51.5    |                             |                             | 33.5       |
| S0014R, S16           | 55-56.4    |                             |                             | 29.4       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0015R, S04           | 8-9.5      |                             |                             | 19.7       |
| S0015R, S06B          | 11.4-12.5  |                             |                             | 19.9       |
| S0015R, S08           | 14-15.5    |                             |                             | 21.7       |
| S0015R, S12B          | 35.6-36.4  |                             |                             | 17.5       |
| S0015R, S13           | 40-41.2    |                             |                             | 17.5       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

SIERRA TESTING LABORATORIES, INC.
GEOTECHNICAL AND MATERIAL'S TESTING SERVICES

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0015R, S02           | 5-6.5      |                             |                             | 7.0        |
| S0015R, S08A          | 6.5-7.0    |                             |                             | 14.3       |
| S0015R, S09A          | 20-20.3    |                             |                             | 15.6       |
| S0015R, S10           | 25-26.5    |                             |                             | 22.1       |
| S0015R, S11A          | 30-30.7    |                             |                             | 21.2       |

Test Method: ASTM D2216, ASTM D2937

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER: 11-111

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Wet Unit                    | Dry Unit                    | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0018R, S03           | 10-11.2    |                             |                             | 14.4       |
| S0018R, S05           | 20-21      |                             |                             | 13.1       |
| S0018R, S10           | 45-45.8    |                             |                             | 12.4       |
| S0018R, S13           | 60-60.8    |                             |                             | 15.1       |
| S0018R, S15           | 70-71.2    |                             |                             | 12.9       |
| S0018R, S17           | 80-81.2    |                             |                             | 16.7       |
| S0018R, S19A          | 90-90.4    |                             |                             | 30.2       |
| S0018R, S19B          | 90.4-91.2  |                             |                             | 27.1       |
| S0018R, S21           | 100-100.9  |                             |                             | 16.9       |
| S0018R, S23           | 110-111.2  |                             |                             | 17.0       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample         |            | Wet Unit                    | Dry Unit                    | Moisture   |
|----------------|------------|-----------------------------|-----------------------------|------------|
| Identification | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0018R, S28    | 135-136    |                             |                             | 19.9       |
| S0018R, S31    | 150-151    |                             |                             | 23.9       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

SIFBBA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample         |            | Wet Unit        | Dry Unit        | Moisture   |
|----------------|------------|-----------------|-----------------|------------|
| Identification | Depth, ft. | Weight, lb/ft.3 | Weight, lb/ft.3 | Content, % |
| S0018R, S02    | 5-6.5      |                 |                 | 10.1       |
| S0018R, S04    | 15-16.3    |                 |                 | 11.8       |
| S0018R, S06    | 25-26.2    |                 |                 | 24.9       |
| S0018R, S09    | 40-41.1    |                 |                 | 18.1       |
| S0018R, S14    | 65-65.7    |                 |                 | 12.4       |
| S0018R, S16    | 75-75.6    |                 |                 | 13.5       |
| S0018R, S18    | 85-86.4    |                 |                 | 20.4       |
| S0018R, S20    | 95-96      |                 |                 | 13.5       |
| S0018R, S27    | 130-130.9  |                 |                 | 21.5       |
| S0018R, S30    | 145-146    |                 |                 | 22.1       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample         |            | Wet Unit                    | Dry Unit                    | Moisture   |
|----------------|------------|-----------------------------|-----------------------------|------------|
| Identification | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0019R, S05    | 9.5-10.8   |                             |                             | 25.6       |
| S0019R, S09    | 20-21.3    |                             |                             | 12.3       |
| S0019R, S13    | 40-40.8    |                             |                             | 23.2       |

Test Method: ASTM D2216, ASTM D2937

| PROJECT NUMBER: 11-111 November 1                                                                    | /                                             |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SIERRA TESTING LARGRATORIES, INC.                                                                    | CA High Speed Train, Fresno to<br>Bakersfield |
| 5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>Phone: (916) 939-3460 FAX: (916) 939-3507 | SA-HST019                                     |

| Sample                |            | Wet Unit                    | <b>Dry Unit</b>             | Moisture   |
|-----------------------|------------|-----------------------------|-----------------------------|------------|
| <b>Identification</b> | Depth, ft. | Weight, lb/ft. <sup>3</sup> | Weight, lb/ft. <sup>3</sup> | Content, % |
| S0019R, S02A          | 5-5.8      |                             |                             | 4.6        |
| S0019R, S03A          | 6.5-7.6    |                             |                             | 4.5        |
| S0019R, S04B          | 9-10.0     |                             |                             | 17.9       |
| S0019R, S08           | 14-15.2    |                             |                             | 24.1       |
| S0019R, S10           | 25.5-26.7  |                             |                             | 20.5       |
| S0019R, S12           | 30-31.3    |                             |                             | 23.4       |
| S0019R, S14           | 45-46.3    |                             |                             | 15.7       |

Test Method: ASTM D2216, ASTM D2937

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507



| Sample                |            | Organic    | Moisture   |
|-----------------------|------------|------------|------------|
| <b>Identification</b> | Depth, ft. | Content, % | Content, % |
| S0001R, S09           | 20-21.5    | 1.4        |            |
| S0001R, S10           | 25-26.5    | 2.4        | 13.1       |
| S0001R, S14           | 45-46.5    | 2.9        | 31.9       |
| S0001R, S15           | 50-51.5    | 1.2        | 22.8       |

Test Method: ASTM D2974

| PROJECT NUMBER: 11-1                                                              | <b>11</b> November 16, 2011 |                                               |  |
|-----------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|--|
| SIERRA TESTING LABORA                                                             |                             | CA High Speed Train, Fresno to<br>Bakersfield |  |
| 5040 Robert J. Mathews Blvd., El Dorado<br>Phone: (916) 939-3460 FAX: (916) 939-3 | •                           | SA-HST019                                     |  |

| Sample<br>Identification | Depth, ft. |  | Organic <u>Content, %</u> | Moisture<br>Content, % |
|--------------------------|------------|--|---------------------------|------------------------|
| S0002R, S12              | 35-36.4    |  | 2.2                       |                        |
| S0002R, S13              | 40-41.3    |  | 2.1                       | 16.5                   |
| S0002R, S14              | 45-46.4    |  | 2.4                       | 27.9                   |
| S0002R, S19              | 70-71.5    |  | 3.3                       | 30.5                   |

Test Method: ASTM D2974

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to Bakersfield

| Sample<br><u>Identification</u> | Depth, ft. | Organic<br><u>Content, %</u> | Moisture<br>Content, % |
|---------------------------------|------------|------------------------------|------------------------|
| S0003R, S05                     | 9.5-11     | 3.0                          | 18.5                   |
| S0003R, S06                     | 11-12.5    | 1.9                          | 24.7                   |
| S0003R, S09                     | 20-21.5    | 1.3                          |                        |
| S0003R, S12                     | 35-36.5    | 2.3                          | 23.8                   |
| S0003R, S13                     | 40-41.5    | 2.3                          | 15.5                   |
| S0003R, S16B                    | 55.4-56.5  | 1.9                          |                        |
| S0003R, S17                     | 60-61.5    | 3.4                          | 18.6                   |
| S0003R, S20                     | 75-76.5    | 1.8                          | 29.5                   |

Test Method: ASTM D2974

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to **Bakersfield** 

| Sample<br><u>Identification</u> | Depth, ft. | Organic<br><u>Content, %</u> | Moisture<br><u>Content, %</u> |
|---------------------------------|------------|------------------------------|-------------------------------|
| S0004R, S03                     | 6.5-7.9    | 3.1                          | 25.2                          |
| S0004R, S05A                    | 9.5-10.5   | 2.6                          |                               |
| S0004R, S06B                    | 11.6-12.5  | 1.7                          | 10.3                          |
| S0004R, S07                     | 12.5-13.1  | 2.0                          |                               |
| S0004R, S08                     | 14-15.5    | 1.4                          | 16.1                          |
| S0004R, S14                     | 45-45.9    | 2.3                          | 20.2                          |
| S0004R, S20B                    | 65.2-66.3  | 2.1                          | 24.6                          |
| S0004R, S21                     | 70-70.9    | 2.3                          | 30.5                          |

Test Method: ASTM D2974

November 16, 2011

SIERRA TESTING LABORATORIES, INC.
GEOTECHNICAL AND MATERIALS TESTING SERVICES

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to Bakersfield

| Sample<br><u>Identification</u> | Depth, ft. | Organic<br><u>Content, %</u> | Moisture<br>Content, % |
|---------------------------------|------------|------------------------------|------------------------|
| S0005R, S05                     | 9.5-11     | 1.9                          | 21.1                   |
| S0005R, S06                     | 11-12.5    | 1.5                          | 21.8                   |
| S0005R, S07                     | 12.5-14    | 2.1                          | 18.4                   |
| S0005R, S11B                    | 30.6-31.5  | 2.7                          | 17.0                   |
| S0005R, S13                     | 40-41.5    | 5.1                          | 24.3                   |
| S0005R, S14                     | 45-46.5    | 3.5                          | 33.1                   |
| S0005R, S17                     | 49.5-51    | 1.8                          | 19.8                   |

Test Method: ASTM D2974

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

PROJECT NUMBER: 11-111

CA High Speed Train, Fresno to Bakersfield

| Sample<br>Identification | Depth, ft. | Organic<br><u>Content, %</u> | Moisture<br>Content, % |
|--------------------------|------------|------------------------------|------------------------|
|                          |            |                              | Content, 70            |
| S0010R, S05              | 9.5-10.9   | 3.2                          |                        |
| S0010R, S07              | 12.5-13.2  | 1.5                          |                        |
| S0010R, S14              | 45-46.3    | 3.1                          | 15.7                   |
| S0010R, S15              | 50-51.3    | 1.5                          |                        |
| S0010R, S17              | 60-61.3    | 1.9                          |                        |
| S0010R, S18              | 65-66.4    | 5.8                          | 21.7                   |
| S0010R, S21              | 80-81.5    | 1.8                          |                        |
| S0010R, S22              | 85-86.4    | 1.6                          | 31.3                   |

Test Method: ASTM D2974

November 16, 2011

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER: 11-111

5040 Robert I Mathews Rhyd El Dorado Hills CA 95762

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507 CA High Speed Train, Fresno to Bakersfield

| Sample                |            | Organic    | Moisture   |
|-----------------------|------------|------------|------------|
| <b>Identification</b> | Depth, ft. | Content, % | Content, % |
| S0014AR, S04          | 8-9.2      | 1.9        | 16.0       |
| S0014AR, S07          | 12.5-13.8  | 3.4        | 21.0       |

Test Method: ASTM D2974

November 1, 2011

SIERRA TESTING LABORATORIES, INC.

PROJECT NUMBER: 11-111

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

CA High Speed Train, Fresno to Bakersfield

Sample <u>Identification</u>

S0018R, S21

Depth, ft.

Organic Content, %

Moisture Content, %

2.1

16.9

Test Method: ASTM D2974

PROJECT NUMBER:

11-111

November 1, 2011

CA High Speed Train, Fresno to Bakersfield

SA-HST019

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507





Tested By: pr/ac Checked By: cw



Tested By: pr Checked By: cw



| Гested By: <u>jl</u> | Checked By: cw |
|----------------------|----------------|
|----------------------|----------------|



Tested By: pr Checked By: cw



Tested By: pr/ac Checked By: cw



Tested By: pr Checked By: cw



Tested By: pr Checked By: cw





Tested By: ac/jl Checked By: cw



Tested By: ac/jl Checked By: cw























Tested By: ac/jl Checked By: cw







Tested By: ac/jl Checked By: cw







Tested By: \_pr/ac Checked By: cw











Tested By: pr/ac Checked By: cw



Tested By: pr Checked By: js



Tested By: pr/ac - Checked By: cw











Tested By: pr Checked By: js



Tested By: pr/ac Checked By: cw









Tested By: pr Checked By: js





| Tested By: Im | Checked By: cw |
|---------------|----------------|
|               | •              |



Tested By: PR Checked By: CW



Tested By: JL Checked By: CW



Tested By: JL Checked By: CW









| rested By: Im | Cnecked By: cw |  |
|---------------|----------------|--|
|               |                |  |



Tested By: AC/RH Checked By: CW













| rested By: Im | Cnecked By: cw |  |
|---------------|----------------|--|
|               |                |  |





| lested By: pr | Checked By: cw |
|---------------|----------------|
|               |                |



| lested By: pr | Checked By: cw |
|---------------|----------------|
|               |                |



Tested By: PR Checked By: CW



Tested By: PR Checked By: CW



Tested By: pr/ac Checked By: cw









| lested By: pr | Checked By: cw |
|---------------|----------------|
|               |                |





Medium

Fine

| Opening Percent Spec.* Pass |       |           |          |  |  |  |  |
|-----------------------------|-------|-----------|----------|--|--|--|--|
| Size                        | Finer | (Percent) | (X=Fail) |  |  |  |  |
| #4                          | 100.0 |           |          |  |  |  |  |
| #8                          | 99.9  |           |          |  |  |  |  |
| #10                         | 99.8  |           |          |  |  |  |  |
| #16                         | 98.8  |           |          |  |  |  |  |
| #30                         | 92.5  |           |          |  |  |  |  |
| #40                         | 87.1  |           |          |  |  |  |  |
| #50                         | 81.5  |           |          |  |  |  |  |
| #100                        | 74.8  |           |          |  |  |  |  |
| #200                        | 69.4  |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |
|                             |       |           |          |  |  |  |  |

Coarse

0.0

Fine

0.0

Coarse

0.2

| 12.7                                                           | 17.7                                                        |                                             | 69.4                                                       |         |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---------|--|--|--|
|                                                                | <u>Ma</u>                                                   | terial Descript                             | <u>ion</u>                                                 |         |  |  |  |
| PL=                                                            |                                                             | g Limits (ASTN<br>L=                        | <u>/I D 4318)</u><br>Pl=                                   |         |  |  |  |
| USCS (E                                                        | USCS (D 2487)= Classification AASHTO (M 145)=               |                                             |                                                            |         |  |  |  |
| D <sub>90</sub> = 0.<br>D <sub>50</sub> =<br>D <sub>10</sub> = | 5081 D89<br>D30<br>Cui                                      | <u>Coefficients</u><br>5= 0.3750<br>0=<br>= | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |         |  |  |  |
|                                                                |                                                             | Remarks                                     |                                                            |         |  |  |  |
| Data Ba                                                        |                                                             | 11 Poto 3                                   | Footod: 11                                                 | /1.6/11 |  |  |  |
|                                                                | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ts |                                             |                                                            |         |  |  |  |
| Chec                                                           | ked By: cw                                                  |                                             |                                                            |         |  |  |  |
|                                                                | Title: PM                                                   |                                             |                                                            |         |  |  |  |
|                                                                |                                                             |                                             |                                                            |         |  |  |  |

Silt

Clay

(no specification provided)

**Location:** S0001R, S06B **Sample Number:** S36225

0.0

**Depth:** 11-11.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



|          |        |      |        | GRAIN SIZE<br>% Sand | 1111111 | % Fine | es   |
|----------|--------|------|--------|----------------------|---------|--------|------|
| 0/ - 011 | % Gr   |      |        | Medium               | Fine    | Silt   | Clay |
| % +3"    | Coarse | Fine | Coarse | 26.1                 | 41.1    | 30.5   | 1.9  |

|                                                                                                                                           | TEST RI                                                                                                   | ESULTS     |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|----------|
| Opening                                                                                                                                   | Percent                                                                                                   | Spec.*     | Pass?    |
| Size                                                                                                                                      | Finer                                                                                                     | (Percent)  | (X=Fail) |
| #8<br>#10<br>#16<br>#30<br>#40<br>#50<br>#100<br>#200<br>0.0354 mm.<br>0.0228 mm.<br>0.0136 mm.<br>0.0097 mm.<br>0.0069 mm.<br>0.0034 mm. | 100.0<br>99.6<br>97.6<br>85.3<br>73.5<br>60.7<br>44.8<br>32.4<br>12.9<br>10.3<br>6.0<br>5.2<br>2.6<br>1.2 | (1 disent) |          |
| 0.0014 mm.                                                                                                                                |                                                                                                           |            |          |

|                                                                                  | Material Desc                                                                               | cription                                                                      |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                  | g gg verse                                                                                  | - 1045V                                                                       |
| Atter                                                                            | berg Limits (A<br>LL=                                                                       | ASTM D 4318)<br>PI=                                                           |
| USCS (D 2487)=                                                                   | Classifica<br>AAS                                                                           | ation<br>SHTO (M 145)=                                                        |
| D <sub>90</sub> = 0.7179<br>D <sub>50</sub> = 0.1997<br>D <sub>10</sub> = 0.0218 | Coefficie<br>D <sub>85</sub> = 0.5941<br>D <sub>30</sub> = 0.0686<br>C <sub>u</sub> = 13.42 | D <sub>60</sub> = 0.2933<br>D <sub>15</sub> = 0.0401<br>C <sub>c</sub> = 0.74 |
|                                                                                  | Remark                                                                                      | ks                                                                            |
|                                                                                  |                                                                                             |                                                                               |
| Date Received:                                                                   | 11/1/11                                                                                     | Date Tested: 1/24/12                                                          |
| Tested By:                                                                       |                                                                                             |                                                                               |
| Checked By:                                                                      | CW                                                                                          |                                                                               |
| Title:                                                                           | PM                                                                                          |                                                                               |

(no specification provided)

Location: S0001R, S07 Sample Number: S35489 Dep

Depth: 12.5-14.0

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



| GRAIN SIZE - IIIII. |         |      |          |        |        |      |        |    |
|---------------------|---------|------|----------|--------|--------|------|--------|----|
|                     | 0/ .011 | % Gr | % Gravel |        | % Sanc | i    | % Fine | es |
| % +3"               | Coarse  | Fine | Coarse   | Medium | Fine   | Silt | Clay   |    |
|                     | 0.0     | 0.0  | 10.5     | 5.9    | 21.5   | 26.9 | 35.2   |    |

| Test Re  | sults (ASTM D | 6913 & ASTM | D 1140)  |
|----------|---------------|-------------|----------|
| Opening  | Percent       | Spec.*      | Pass?    |
| Size     | Finer         | (Percent)   | (X=Fail) |
| 1/2 Inch | 100.0         |             |          |
| 3/8 Inch | 97.9          |             |          |
| #4       | 89.5          |             |          |
| #8       | 85.0          |             |          |
| #10      | 83.6          |             |          |
| #16      | 79.3          |             |          |
| #30      | 69.0          |             |          |
| #40      | 62.1          |             |          |
| #50      | 54.8          |             |          |
| #100     | 42.9          |             |          |
| #200     | 35.2          |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |

|                                                                           | Material Descr                                                                 | iption                                                            |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                           |                                                                                |                                                                   |
| <u>At</u><br>PL=                                                          | tterberg Limits (AS<br>LL=                                                     | TM D 4318)<br>PI=                                                 |
| USCS (D 2487                                                              | <u>Classification</u><br>)= AASH1                                              | <u>on</u><br>TO (M 145)=                                          |
| D <sub>90</sub> = 4.9961<br>D <sub>50</sub> = 0.2341<br>D <sub>10</sub> = | <u>Coefficient</u> D <sub>85</sub> = 2.3751 D <sub>30</sub> = C <sub>u</sub> = | D <sub>60</sub> = 0.3841<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                        |                                                                   |
| friable particles                                                         | S                                                                              |                                                                   |
|                                                                           |                                                                                |                                                                   |
| Date Received<br>Tested By                                                |                                                                                | e Tested: 11/1/11                                                 |
| Checked By                                                                |                                                                                |                                                                   |
| Title                                                                     | : PM                                                                           |                                                                   |
|                                                                           | i i i i i i i i i i i i i i i i i i i                                          |                                                                   |

(no specification provided)

Location: S0001R, S08 Sample Number: S35490

**Depth:** 14-15.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



Medium

0.7

Fine

2.1

| Opening    | Percent | Spec.*    | Pass?    |
|------------|---------|-----------|----------|
| Size       | Finer   | (Percent) | (X=Fail) |
| #10        | 100.0   |           |          |
| #16        | 99.9    |           |          |
| #30        | 99.6    |           |          |
| #40        | 99.3    |           |          |
| #50        | 99.0    |           |          |
| #100       | 98.3    |           |          |
| #200       | 97.2    |           |          |
| 0.0095 mm. | 48.6    |           |          |
| 0.0072 mm. | 41.7    |           |          |
| 0.0035 mm. | 27.0    |           |          |
| 0.0029 mm. | 23.2    |           |          |
| 0.0013 mm. | 11.9    |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

Coarse

0.0

Fine

0.0

Coarse

0.0

## **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 23 LL= 37 **PI=** 14 Classification USCS (D 2487)= CL **AASHTO** (M 145)= A-6(15)**Coefficients D**<sub>90</sub>= 0.0444 **D**<sub>50</sub>= 0.0100 **D**<sub>60</sub>= 0.0141 $D_{85} = 0.0351$ D<sub>30</sub>= 0.0040 C<sub>u</sub>= D<sub>15</sub>= 0.0017 C<sub>c</sub>= $D_{10}^{-}$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: js/ns/jm Checked By: js Title: PM

Silt

63.0

Clay

34.2

\* (no specification provided)

Location: S0001R, S14 Sample Number: S35502

% +3"

0.0

**Depth:** 45-46.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



17.8

38.8

|            | TEST R  | ESULTS    |          |
|------------|---------|-----------|----------|
| Opening    | Percent | Spec.*    | Pass?    |
| Size       | Finer   | (Percent) | (X=Fail) |
| 3/8 Inch   | 100.0   |           |          |
| #4         | 98.8    |           |          |
| #8         | 98.4    |           |          |
| #10        | 97.9    |           |          |
| #16        | 95.7    |           |          |
| #30        | 86.5    |           |          |
| #40        | 80.1    |           |          |
| #50        | 71.6    |           |          |
| #100       | 54.7    |           |          |
| #200       | 41.3    |           |          |
| 0.0378 mm. | 7.4     |           |          |
| 0.0240 mm. | 5.9     |           |          |
| 0.0140 mm. | 2.9     |           |          |
| 0.0100 mm. | 1.4     |           |          |
| 0.0070 mm. | 1.6     |           |          |
| 0.0034 mm. | 0.5     |           |          |
| 0.0014 mm. |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

0.0

1.2

0.9

|                                                                                  | Material Desc                                                                      | ription                                                                       |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0.440.00                                                                         | hava 1 ivalta (86                                                                  | 27M D 4040)                                                                   |
| PL=                                                                              | berg Limits (AS<br>LL=                                                             | Pl=                                                                           |
| USCS (D 2487)=                                                                   | Classificat<br>AASH                                                                | <u>ion</u><br>TO (M 145)=                                                     |
| D <sub>90</sub> = 0.7436<br>D <sub>50</sub> = 0.1041<br>D <sub>10</sub> = 0.0411 | Coefficien D <sub>85</sub> = 0.5510 D <sub>30</sub> = 0.0602 C <sub>u</sub> = 4.73 | D <sub>60</sub> = 0.1947<br>D <sub>15</sub> = 0.0461<br>C <sub>c</sub> = 0.45 |
|                                                                                  | Remarks                                                                            |                                                                               |
|                                                                                  |                                                                                    |                                                                               |
| Date Received: 1 Tested By: m                                                    |                                                                                    | te Tested: 1/24/12                                                            |
| Checked By: c                                                                    | W                                                                                  |                                                                               |
| Title: P                                                                         | M                                                                                  |                                                                               |

40.3

1.0

(no specification provided)

Location: S0002R, S04 Sample Number: S35504

0.0

**Depth:** 8-9.3

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|      | % +3"   |         | % G        | iravel    |          | % San | d    | % Fines           |  |
|------|---------|---------|------------|-----------|----------|-------|------|-------------------|--|
| % +3 |         | Coarse  | Fine       | Coarse    | Medium   | Fine  | Silt | Clay              |  |
|      | 0.0     |         | 0.0        | 0.0       | 4.1      | 68.6  | 23.8 | 3.5               |  |
|      |         |         |            |           |          |       |      |                   |  |
|      | -       | TEST RE | SULTS (AST | M D 6913) |          |       | Mate | erial Description |  |
|      | Opening | Perd    | cent S     | pec.*     | Pass?    |       |      | •                 |  |
|      | Size    | Fir     | ner (Po    | ercent)   | (X=Fail) |       |      |                   |  |
|      | #4      | 100     | 0.0        |           |          |       |      |                   |  |

|         | LOI KLOULIO | (AOIM D 0313) |          |
|---------|-------------|---------------|----------|
| Opening | Percent     | Spec.*        | Pass?    |
| Size    | Finer       | (Percent)     | (X=Fail) |
| #4      | 100.0       |               |          |
| #8      | 97.9        |               |          |
| #10     | 95.9        |               |          |
| #16     | 82.4        |               |          |
| #30     | 43.4        |               |          |
| #40     | 27.3        |               |          |
| #50     | 16.3        |               |          |
| #100    | 6.8         |               |          |
| #200    | 3.5         |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
|         |             |               |          |
| *       |             | L             |          |

| Atterberg Limits (ASTM D 4318) PL= LL= Pl=                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification                                                                                                                                                                                                                                                                                                        |
| Classification USCS (D 2487)= SP AASHTO (M 145)=                                                                                                                                                                                                                                                                      |
| Coefficients           D <sub>90</sub> = 1.4706         D <sub>85</sub> = 1.2581         D <sub>60</sub> = 0.7905           D <sub>50</sub> = 0.6725         D <sub>30</sub> = 0.4544         D <sub>15</sub> = 0.2832           D <sub>10</sub> = 0.2116         C <sub>u</sub> = 3.74         C <sub>c</sub> = 1.23 |
| Remarks                                                                                                                                                                                                                                                                                                               |
| Date Received: 11/16/11                                                                                                                                                                                                                                                                                               |
| Tested By: ky                                                                                                                                                                                                                                                                                                         |
| Checked By: cw                                                                                                                                                                                                                                                                                                        |
| Title: PM                                                                                                                                                                                                                                                                                                             |

\* (no specification provided)

Location: S0002R, S09 Sample Number: S36231

**Depth:** 20-21.2

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



Medium

65.3

Fine

15.3

| Test Re | sults (ASTM D      | 6913 & ASTM I | D 1140)  |
|---------|--------------------|---------------|----------|
| Opening | Percent            | Spec.*        | Pass?    |
| Size    | Finer              | (Percent)     | (X=Fail) |
| #4      | 100.0              |               |          |
| #8      | 97.8               |               |          |
| #10     | 96.3               |               |          |
| #16     | 81.6               |               |          |
| #30     | 45.1               |               |          |
| #40     | 31.0               |               |          |
| #50     | 22.9               |               |          |
| #100    | 17.5               |               |          |
| #200    | 15.7               |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
|         |                    |               |          |
| * .     | cification provide |               |          |

Coarse

0.0

Fine

0.0

Coarse

3.7

## **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients **D<sub>90</sub>=** 1.4795 **D<sub>50</sub>=** 0.6587 **D<sub>10</sub>= D<sub>60</sub>=** 0.7870 **D<sub>85</sub>=** 1.2795 D<sub>30</sub>= 0.4108 C<sub>u</sub>= D<sub>15</sub>= C<sub>C</sub>= Remarks Date Received: 11/1/11 **Date Tested:** 11/1/11 Tested By: ky Checked By: js Title: PM

Silt

15.7

Clay

(no specification provided)

Location: S0002R, S10 Sample Number: S35506

% +3"

0.0

**Depth:** 25-26.2

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



Medium

7.8

Fine

46.3

|            |         | ESULTS    |          |
|------------|---------|-----------|----------|
| Opening    | Percent | Spec.*    | Pass?    |
| Size       | Finer   | (Percent) | (X=Fail) |
| #4         | 100.0   |           |          |
| #8         | 99.8    |           |          |
| #10        | 99.7    |           |          |
| #16        | 99.4    |           |          |
| #30        | 96.2    |           |          |
| #40        | 91.9    |           |          |
| #50        | 84.5    |           |          |
| #100       | 65.7    |           |          |
| #200       | 45.6    |           |          |
| 0.0385 mm. | 7.3     |           |          |
| 0.0245 mm. | 5.1     |           |          |
| 0.0142 mm. | 3.6     |           |          |
| 0.0100 mm. | 2.9     |           |          |
| 0.0071 mm. | 3.0     |           |          |
| 0.0034 mm. | 2.2     |           |          |
| 0.0015 mm. |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

Coarse

0.0

0.0

Fine

0.0

Coarse

0.3

| Material Description                                                             |                                                                                      |                                                                               |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Atto                                                                             | rhora Limite (ASI                                                                    | -M D 4249)                                                                    |  |  |
| PL=                                                                              | rberg Limits (AST<br>LL=                                                             | PI=                                                                           |  |  |
| USCS (D 2487)=                                                                   | Classificatio<br>AASHT                                                               | <u>n</u><br>O (M 145)=                                                        |  |  |
| D <sub>90</sub> = 0.3830<br>D <sub>50</sub> = 0.0823<br>D <sub>10</sub> = 0.0414 | Coefficients D <sub>85</sub> = 0.3062 D <sub>30</sub> = 0.0583 C <sub>u</sub> = 2.77 | D <sub>60</sub> = 0.1146<br>D <sub>15</sub> = 0.0459<br>C <sub>c</sub> = 0.71 |  |  |
|                                                                                  | Remarks                                                                              |                                                                               |  |  |
| Date Received: 1                                                                 |                                                                                      | • <b>Tested:</b> 1/24/12                                                      |  |  |
| Checked By: o                                                                    | w                                                                                    |                                                                               |  |  |
| Title: I                                                                         | PM                                                                                   |                                                                               |  |  |

**Date Sampled:** 

**Figure** 

Silt

42.9

Clay

2.7

(no specification provided)

Location: S0002R, S11 Sample Number: S35507

**Depth:** 30-31.3

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening    | Percent | Spec.*    | Pass?    |
|------------|---------|-----------|----------|
| Size       | Finer   | (Percent) | (X=Fail) |
| #4         | 100.0   |           |          |
| #8         | 99.8    |           |          |
| #10        | 99.0    |           |          |
| #16        | 95.8    |           |          |
| #30        | 83.4    |           |          |
| #40        | 77.3    |           |          |
| #50        | 71.8    |           |          |
| #100       | 59.9    |           |          |
| #200       | 44.9    |           |          |
| 0.0382 mm. | 7.2     |           |          |
| 0.0243 mm. | 5.6     |           |          |
| 0.0141 mm. | 4.1     |           |          |
| 0.0100 mm. | 2.6     |           |          |
| 0.0071 mm. | 2.7     |           |          |
| 0.0034 mm. | 0.2     |           |          |
| 0.0014 mm. |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= 0.8291 D<sub>85</sub>= 0.6497 $D_{60} = 0.1506$ D<sub>50</sub>= 0.0849 D<sub>10</sub>= 0.0414 D<sub>15</sub>= 0.0458 C<sub>c</sub>= 0.55 $D_{30} = 0.0583$ $C_{u} = 3.64$ Remarks Date Received: 11/1/11 Date Tested: 1/24/12 Tested By: mw/jm Checked By: cw Title: PM

(no specification provided)

Location: S0003R, S03B Sample Number: S35517

**Depth:** 7.2-8.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| OTATIV OIZE TIIII. |          |      |        |        |      |         |      |
|--------------------|----------|------|--------|--------|------|---------|------|
| % +3"              | % Gravel |      | % Sand |        |      | % Fines |      |
|                    | Coarse   | Fine | Coarse | Medium | Fine | Silt    | Clay |
| 0.0                | 0.0      | 0.4  | 2.6    | 22.3   | 31.6 | 43.1    |      |

| Test Results (ASTM D 6913 & ASTM D 1140) |         |           |          |  |  |  |  |
|------------------------------------------|---------|-----------|----------|--|--|--|--|
| Opening                                  | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size                                     | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| 3/8 Inch                                 | 100.0   |           |          |  |  |  |  |
| #4                                       | 99.6    |           |          |  |  |  |  |
| #8                                       | 98.1    |           |          |  |  |  |  |
| #10                                      | 97.0    |           |          |  |  |  |  |
| #16                                      | 91.9    |           |          |  |  |  |  |
| #30                                      | 80.2    |           |          |  |  |  |  |
| #40                                      | 74.7    |           |          |  |  |  |  |
| #50                                      | 69.3    |           |          |  |  |  |  |
| #100                                     | 57.8    |           |          |  |  |  |  |
| #200                                     | 43.1    |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |

| Material Description                                                                                                       |                                         |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
|                                                                                                                            |                                         |  |  |  |  |  |  |
| Attorbore                                                                                                                  | a Limite (ASTM D 4318)                  |  |  |  |  |  |  |
|                                                                                                                            | <u>g Limits (ASTM D 4318)</u><br>L= PI= |  |  |  |  |  |  |
| USCS (D 2487)= Classification  AASHTO (M 145)=                                                                             |                                         |  |  |  |  |  |  |
| D <sub>90</sub> = 1.0409 D <sub>8</sub> 9<br>D <sub>50</sub> = 0.1025 D <sub>3</sub> 0<br>D <sub>10</sub> = C <sub>U</sub> | Coefficients<br>5= 0.7806               |  |  |  |  |  |  |
| Remarks                                                                                                                    |                                         |  |  |  |  |  |  |
|                                                                                                                            |                                         |  |  |  |  |  |  |
|                                                                                                                            |                                         |  |  |  |  |  |  |
| Date Received: 11/1/1                                                                                                      | 1 <b>Date Tested:</b> 11/1/11           |  |  |  |  |  |  |
| Tested By: ky                                                                                                              |                                         |  |  |  |  |  |  |
| Checked By: js                                                                                                             | _                                       |  |  |  |  |  |  |
| Title: PM                                                                                                                  |                                         |  |  |  |  |  |  |
|                                                                                                                            |                                         |  |  |  |  |  |  |

(no specification provided)

Location: S0003R, S03B Sample Number: S35517

**Depth:** 7.2-8.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|       |                | GRAIN SIZE - IIIIII. |        |        |        |         |      |      |
|-------|----------------|----------------------|--------|--------|--------|---------|------|------|
| % +3" | % Gravel       |                      | % Sand |        |        | % Fines |      |      |
|       | √o <b>+3</b> ″ | Coarse               | Fine   | Coarse | Medium | Fine    | Silt | Clay |
|       | 0.0            | 0.0                  | 0.0    | 0.2    | 0.8    | 7.8     | 91.2 |      |

| Test Results (ASTM D 6913 & ASTM D 1140) |         |           |          |  |  |  |  |
|------------------------------------------|---------|-----------|----------|--|--|--|--|
| Opening                                  | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size                                     | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| #4                                       | 100.0   |           |          |  |  |  |  |
| #8                                       | 99.9    |           |          |  |  |  |  |
| #10                                      | 99.8    |           |          |  |  |  |  |
| #16                                      | 99.6    |           |          |  |  |  |  |
| #30                                      | 99.3    |           |          |  |  |  |  |
| #40                                      | 99.0    |           |          |  |  |  |  |
| #50                                      | 98.6    |           |          |  |  |  |  |
| #100                                     | 97.8    |           |          |  |  |  |  |
| #200                                     | 91.2    |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
| * .                                      |         | <u> </u>  |          |  |  |  |  |

## **Material Description Atterberg Limits (ASTM D 4318) PL=** 23 LL= 24 Classification USCS (D 2487)= ML **AASHTO** (M 145)= A-4(0)Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>C</sub>= Remarks Date Received: 11/1/11 **Date Tested:** 11/1/11 Tested By: ky Checked By: js Title: PM

\* (no specification provided)

Location: S0003R, S09 Sample Number: S35520 De

**Depth:** 20-21.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| 0/ .0!! | % Gravel |      | % Sand |        |      | % Fines |      |
|---------|----------|------|--------|--------|------|---------|------|
| % +3"   | Coarse   | Fine | Coarse | Medium | Fine | Silt    | Clay |
| 0.0     | 0.0      | 0.0  | 0.0    | 0.2    | 17.0 | 74.9    | 7.9  |

|            | TEST R  |           |          |
|------------|---------|-----------|----------|
| Opening    | Percent | Spec.*    | Pass?    |
| Size       | Finer   | (Percent) | (X=Fail) |
| #10        | 100.0   |           |          |
| #16        | 100.0   |           |          |
| #30        | 99.9    |           |          |
| #40        | 99.8    |           |          |
| #50        | 99.7    |           |          |
| #100       | 95.0    |           |          |
| #200       | 82.8    |           |          |
| 0.0336 mm. | 23.6    |           |          |
| 0.0220 mm. | 18.6    |           |          |
| 0.0130 mm. | 14.7    |           |          |
| 0.0094 mm. | 11.7    |           |          |
| 0.0067 mm. | 9.8     |           |          |
| 0.0033 mm. | 5.2     |           |          |
| 0.0014 mm. | 1.8     |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
| 1          |         |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification AASHTO (M 145)= USCS (D 2487)= Coefficients D<sub>60</sub>= 0.0552 D<sub>15</sub>= 0.0135 C<sub>c</sub>= 3.74 D<sub>90</sub>= 0.0892 D<sub>50</sub>= 0.0492 D<sub>10</sub>= 0.0070 **D<sub>85</sub>=** 0.0782 D<sub>30</sub>= 0.0380 C<sub>u</sub>= 7.89 Remarks Date Received: 11/16/11 Date Tested: 1/24/12 Tested By: mw/sh/jm Checked By: cw Title: PM

\* (no specification provided)

Location: S0004R, S11

Sample Number: S36242

Depth: 30-31.4

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA



4.5

Fine

3.6

| TE      | EST RESULTS | (ASTM D 691 | 3)       |
|---------|-------------|-------------|----------|
| Opening | Percent     | Spec.*      | Pass?    |
| Size    | Finer       | (Percent)   | (X=Fail) |
| #4      | 100.0       |             |          |
| #8      | 100.0       |             |          |
| #10     | 100.0       |             |          |
| #16     | 99.5        |             |          |
| #30     | 97.1        |             |          |
| #40     | 95.5        |             |          |
| #50     | 94.2        |             |          |
| #100    | 92.6        |             |          |
| #200    | 91.9        |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |
|         |             |             |          |

Coarse

0.0

0.0

Fine

0.0

Coarse

0.0

|                                                             | Material                                                   | <u>Description</u>                                                               |
|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|
| <u>A</u><br>PL=                                             | LL=                                                        | its (ASTM D 4318)<br>Pl=                                                         |
| USCS (D 248                                                 |                                                            | AASHTO (M 145)=                                                                  |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | fficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> =<br>marks |
| Date Receive<br>Tested B                                    |                                                            | Date Tested: 11/16/11                                                            |
| Checked B                                                   | y: cw                                                      |                                                                                  |
| Titl                                                        | <b>e:</b> PM                                               |                                                                                  |

Silt

91.9

Clay

(no specification provided)

Location: S0005R, S10 Sample Number: S36249

**Depth:** 25-25.8

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening    | Percent | Spec.*    | Pass?    |
|------------|---------|-----------|----------|
| Size       | Finer   | (Percent) | (X=Fail) |
| #10        | 100.0   |           |          |
| #16        | 99.5    |           |          |
| #30        | 96.7    |           |          |
| #40        | 93.6    |           |          |
| #50        | 88.7    |           |          |
| #100       | 76.6    |           |          |
| #200       | 62.3    |           |          |
| 0.0363 mm. | 22.6    |           |          |
| 0.0233 mm. | 19.5    |           |          |
| 0.0139 mm. | 11.9    |           |          |
| 0.0098 mm. | 11.9    |           |          |
| 0.0070 mm. | 10.4    |           |          |
| 0.0034 mm. | 4.8     |           |          |
| 0.0015 mm. | 0.3     |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= 0.2454 D<sub>30</sub>= 0.0436 C<sub>u</sub>= 10.89 $D_{60} = 0.0716$ $D_{90} = 0.3254$ D<sub>50</sub>= 0.0603 D<sub>10</sub>= 0.0066 $D_{15} = 0.0172$ $C_{c} = 4.04$ Remarks Date Received: 11/16/11 Date Tested: 1/24/12 Tested By: mw/jm Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S15

**Sample Number:** \$36251 **Depth:** 46.5-47.5

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Т       | EST RESULTS        | (ASTM D 691 | 3)       |
|---------|--------------------|-------------|----------|
| Opening | Percent            | Spec.*      | Pass?    |
| Size    | Finer              | (Percent)   | (X=Fail) |
| #4      | 100.0              |             |          |
| #8      | 99.4               |             |          |
| #10     | 98.9               |             |          |
| #16     | 96.7               |             |          |
| #30     | 84.2               |             |          |
| #40     | 67.7               |             |          |
| #50     | 42.3               |             |          |
| #100    | 15.5               |             |          |
| #200    | 9.0                |             |          |
|         |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
| ]       |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
| 5       |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
|         |                    |             |          |
| * (     | cification provide | - 1\        |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients **D<sub>90</sub>=** 0.7380 **D<sub>50</sub>=** 0.3339 **D<sub>10</sub>=** 0.0902 **D<sub>60</sub>=** 0.3808 **D<sub>85</sub>=** 0.6156 D<sub>30</sub>= 0.2419 C<sub>u</sub>= 4.22 **D<sub>15</sub>=** 0.1459 **C<sub>c</sub>=** 1.70 Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S18 Sample Number: S36252

**Depth:** 55-56.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| % +3" |          | % (  | % Gravei  |         | % Sand   | 1      | % Fines   |                      |      |
|-------|----------|------|-----------|---------|----------|--------|-----------|----------------------|------|
|       |          |      | Coarse    | Fine    | Coarse   | Medium | Fine      | Silt                 | Clay |
|       | 0.0      |      | 0.0       | 4.7     | 0.4      | 24.7   | 32.0      | 27.0                 | 11.2 |
|       |          | 7    | EST RESUL | TS      |          |        | Mate      | erial Description    |      |
|       | Opening  | Perd | ent S     | Spec.*  | Pass?    |        |           | •                    |      |
|       | Size     | Fir  | er (P     | ercent) | (X=Fail) |        |           |                      |      |
|       | 3/8 Inch | 100  | .0        |         |          |        |           |                      |      |
|       | #4       | 95   | .3        |         |          |        | Atterberg | Limits (ASTM D 4318) |      |
|       | #0       | 0.4  | 0         |         |          | l Di   |           |                      |      |

| Opening    | 1 0100111 | Opco.     | 1 455.   |
|------------|-----------|-----------|----------|
| Size       | Finer     | (Percent) | (X=Fail) |
| 3/8 Inch   | 100.0     |           |          |
| #4         | 95.3      |           |          |
| #8         | 94.9      |           |          |
| #10        | 94.9      |           |          |
| #16        | 93.0      |           |          |
| #30        | 79.8      |           |          |
| #40        | 70.2      |           |          |
| #50        | 61.7      |           |          |
| #100       | 49.9      |           |          |
| #200       | 38.2      |           |          |
| 0.0321 mm. | 25.2      |           |          |
| 0.0209 mm. | 21.9      |           |          |
| 0.0124 mm. | 19.1      |           |          |
| 0.0090 mm. | 15.4      |           |          |
| 0.0065 mm. | 12.6      |           |          |
| 0.0032 mm. | 9.3       |           |          |
| 0.0014 mm. | 5.2       |           |          |
|            |           |           |          |
|            |           |           |          |
|            |           |           |          |
|            |           |           |          |

| PL=                                                                              | LL=                                                                                           | Pl=                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| USCS (D 2487)=                                                                   | Classification<br>AASHTC                                                                      | <u>1</u><br>0 (M 145)=                                                        |  |  |  |  |
| D <sub>90</sub> = 0.9462<br>D <sub>50</sub> = 0.1510<br>D <sub>10</sub> = 0.0038 | Coefficients D <sub>85</sub> = 0.7381 D <sub>30</sub> = 0.0461 C <sub>u</sub> = 72.98 Remarks | D <sub>60</sub> = 0.2763<br>D <sub>15</sub> = 0.0087<br>C <sub>c</sub> = 2.03 |  |  |  |  |
|                                                                                  | Date Received: 11/1/11 Date Tested: 1/24/12 Tested By: js/mw/jm                               |                                                                               |  |  |  |  |
| Checked By: c                                                                    | w                                                                                             |                                                                               |  |  |  |  |
| Title: P                                                                         | PM                                                                                            |                                                                               |  |  |  |  |

(no specification provided)

Location: S0005R, S21 Sample Number: S35544

**Depth:** 70-71.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



| GITAIN SIZE - IIIII. |          |      |        |        |      |         |      |  |  |
|----------------------|----------|------|--------|--------|------|---------|------|--|--|
| % +3"                | % Gravel |      | % Sand |        |      | % Fines |      |  |  |
|                      | Coarse   | Fine | Coarse | Medium | Fine | Silt    | Clay |  |  |
| 0.0                  | 0.0      | 0.4  | 0.2    | 11.5   | 44.1 | 43.8    |      |  |  |

| Test Re  | sults (ASTM D | 6913 & ASTM | D 1140)  |
|----------|---------------|-------------|----------|
| Opening  | Percent       | Spec.*      | Pass?    |
| Size     | Finer         | (Percent)   | (X=Fail) |
| 3/8 Inch | 100.0         |             |          |
| #4       | 99.6          |             |          |
| #8       | 99.4          |             |          |
| #10      | 99.4          |             |          |
| #16      | 98.7          |             |          |
| #30      | 93.5          |             |          |
| #40      | 87.9          |             |          |
| #50      | 80.5          |             |          |
| #100     | 64.6          |             |          |
| #200     | 43.8          |             |          |
|          |               |             |          |
|          |               | ·           |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
| ,        |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |
|          |               |             |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= 0.4771 D<sub>50</sub>= 0.0912 D<sub>10</sub>= **D**<sub>60</sub>= 0.1269 **D<sub>85</sub>=** 0.3697 D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Cu= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ac Checked By: js Title: PM

(no specification provided)

Location: S0006R, S04 Sample Number: S35546

**Depth:** 8-9.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| % +3"    |               | % Gravel |       |         | % Sand |         | % Fines        |      |
|----------|---------------|----------|-------|---------|--------|---------|----------------|------|
|          | Coa           | rse      | Fine  | Coarse  | Medium | Fine    | Silt           | Clay |
| 0.0      | 0.            | 0        | 0.0   | 0.3     | 2.8    | 19.5    | 77.4           |      |
| Test Res | sults (ASTM D | 6913 & A | STM D | 1140)   |        | Materia | al Description |      |
| Opening  | Percent       | Spec.    | *     | Pass?   |        |         |                |      |
| Size     | Finer         | (Percer  | nt) ( | Y-Fail\ |        |         |                |      |

| Test Re | Test Results (ASTM D 6913 & ASTM D 1140) |           |          |  |  |  |
|---------|------------------------------------------|-----------|----------|--|--|--|
| Opening | Percent                                  | Spec.*    | Pass?    |  |  |  |
| Size    | Finer                                    | (Percent) | (X=Fail) |  |  |  |
| #4      | 100.0                                    |           |          |  |  |  |
| #8      | 99.8                                     |           |          |  |  |  |
| #10     | 99.7                                     |           |          |  |  |  |
| #16     | 99.4                                     |           |          |  |  |  |
| #30     | 98.1                                     |           |          |  |  |  |
| #40     | 96.9                                     |           |          |  |  |  |
| #50     | 95.2                                     |           |          |  |  |  |
| #100    | 88.9                                     |           |          |  |  |  |
| #200    | 77.4                                     |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |
|         |                                          |           |          |  |  |  |

| <u>Material Description</u>                                        |                                                                             |        |                                                            |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|------------------------------------------------------------|--|--|--|
|                                                                    |                                                                             |        |                                                            |  |  |  |
| Atte                                                               | rberg Limits<br>LL=                                                         | (ASTN  | I D 4318)<br>PI=                                           |  |  |  |
| USCS (D 2487)=                                                     | <u>Classif</u><br>A                                                         |        | (M 145)=                                                   |  |  |  |
| D <sub>90</sub> = 0.1637<br>D <sub>50</sub> =<br>D <sub>10</sub> = | Coeffic<br>D <sub>85</sub> = 0.113<br>D <sub>30</sub> =<br>C <sub>u</sub> = |        | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |  |  |  |
|                                                                    | Rema                                                                        | arks   |                                                            |  |  |  |
| Date Received: 1                                                   | 1/1/11                                                                      | Date T | ested: 11/1/11                                             |  |  |  |
| Tested By: a                                                       |                                                                             |        |                                                            |  |  |  |
| Checked By: js Title: PM                                           |                                                                             |        |                                                            |  |  |  |
| <u></u>                                                            |                                                                             |        |                                                            |  |  |  |

(no specification provided)

Location: S0006R, S10 Sample Number: S35549

**Depth: 25-26.2** 

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



19.7

Fine

59.3

| Test Res | Test Results (ASTM D 6913 & ASTM D 1140) |           |          |  |  |  |  |
|----------|------------------------------------------|-----------|----------|--|--|--|--|
| Opening  | Percent                                  | Spec.*    | Pass?    |  |  |  |  |
| Size     | Finer                                    | (Percent) | (X=Fail) |  |  |  |  |
| #4       | 100.0                                    |           |          |  |  |  |  |
| #8       | 99.8                                     |           |          |  |  |  |  |
| #10      | 99.7                                     |           |          |  |  |  |  |
| #16      | 98.6                                     |           |          |  |  |  |  |
| #30      | 90.8                                     |           |          |  |  |  |  |
| #40      | 80.0                                     |           |          |  |  |  |  |
| #50      | 60.7                                     |           |          |  |  |  |  |
| #100     | 32.3                                     |           |          |  |  |  |  |
| #200     | 20.7                                     |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
| *        |                                          |           |          |  |  |  |  |

Coarse

0.0

Fine

0.0

Coarse

0.3

| Material Description                                               |                                                      |                                       |  |  |  |  |
|--------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|--|--|--|--|
|                                                                    |                                                      |                                       |  |  |  |  |
|                                                                    |                                                      |                                       |  |  |  |  |
|                                                                    |                                                      |                                       |  |  |  |  |
|                                                                    | <u>berg Limits (AS</u>                               |                                       |  |  |  |  |
| PL=                                                                | LL=                                                  | PI=                                   |  |  |  |  |
|                                                                    | Classificat                                          | ion                                   |  |  |  |  |
| USCS (D 2487)=                                                     | AASH                                                 | TO (M 145)=                           |  |  |  |  |
|                                                                    | Coefficien                                           | ts                                    |  |  |  |  |
| <b>D</b> <sub>90</sub> = 0.5777<br><b>D</b> <sub>50</sub> = 0.2435 | D <sub>85</sub> = 0.4825<br>D <sub>30</sub> = 0.1367 | D <sub>60</sub> = 0.2960              |  |  |  |  |
| <b>D</b> <sub>50</sub> = 0.2435                                    | <b>D<sub>30</sub>=</b> 0.1367                        | D <sub>15</sub> =<br>C <sub>c</sub> = |  |  |  |  |
| D <sub>10</sub> =                                                  | C <sub>u</sub> =                                     | C <sub>C</sub> =                      |  |  |  |  |
|                                                                    | Remarks                                              |                                       |  |  |  |  |
|                                                                    |                                                      |                                       |  |  |  |  |
|                                                                    |                                                      |                                       |  |  |  |  |
|                                                                    |                                                      |                                       |  |  |  |  |
| Date Received: 11                                                  | 1/1/11 <b>D</b> at                                   | te Tested: 11/1/11                    |  |  |  |  |
| Tested By: ac                                                      |                                                      |                                       |  |  |  |  |
| Checked By: js                                                     |                                                      |                                       |  |  |  |  |
| Title: PM                                                          |                                                      |                                       |  |  |  |  |
| inte. Fi                                                           | LV1                                                  |                                       |  |  |  |  |

Silt

20.7

Clay

(no specification provided)

Location: S0006R, S11 Sample Number: S35550

% +3"

0.0

Depth: 30-31.4

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



| Opening    | Percent | Spec.*    | Pass?    |
|------------|---------|-----------|----------|
| Size       | Finer   | (Percent) | (X=Fail) |
| #8         | 100.0   |           |          |
| #10        | 99.4    |           |          |
| #16        | 97.4    |           |          |
| #30        | 84.1    |           |          |
| #40        | 73.9    |           |          |
| #50        | 64.1    |           |          |
| #100       | 49.3    |           |          |
| #200       | 32.7    |           |          |
| 0.0388 mm. | 5.7     |           |          |
| 0.0247 mm. | 4.1     |           |          |
| 0.0144 mm. | 1.1     |           |          |
| 0.0102 mm. | 1.1     |           |          |
| 0.0072 mm. | 1.2     |           |          |
| 0.0035 mm. | 0.2     |           |          |
| 0.0015 mm. |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= 0.7570 D<sub>50</sub>= 0.1558 D<sub>10</sub>= 0.0452 **D<sub>85</sub>=** 0.6210 $D_{60} = 0.2544$ D<sub>15</sub>= 0.0510 C<sub>c</sub>= 0.43 D<sub>30</sub>= 0.0703 $C_{u}^{00} = 5.63$ Remarks Date Received: 11/16/11 Date Tested: 1/24/12 Tested By: mw/jm Checked By: cw Title: PM

(no specification provided)

Location: S0006R, S14

Sample Number: \$36254 Depth: 38-39.4

**TESTING LABS, INC.** 

El Dorado Hills, CA

SIERRA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



42.7

Fine

32.7

| Test Re  | Test Results (ASTM D 6913 & ASTM D 1140) |           |          |  |  |  |  |
|----------|------------------------------------------|-----------|----------|--|--|--|--|
| Opening  | Percent                                  | Spec.*    | Pass?    |  |  |  |  |
| Size     | Finer                                    | (Percent) | (X=Fail) |  |  |  |  |
| 1/2 Inch | 100.0                                    |           |          |  |  |  |  |
| 3/8 Inch | 97.8                                     |           |          |  |  |  |  |
| #4       | 92.4                                     |           |          |  |  |  |  |
| #8       | 88.0                                     |           |          |  |  |  |  |
| #10      | 86.0                                     |           |          |  |  |  |  |
| #16      | 76.4                                     |           |          |  |  |  |  |
| #30      | 55.3                                     |           |          |  |  |  |  |
| #40      | 43.3                                     |           |          |  |  |  |  |
| #50      | 31.4                                     |           |          |  |  |  |  |
| #100     | 16.9                                     |           |          |  |  |  |  |
| #200     | 10.6                                     |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |

Coarse

0.0

Fine

7.6

Coarse

6.4

|                                                                           | Material Descr                                                                 | ription                                                                  |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|                                                                           |                                                                                |                                                                          |  |  |  |  |
|                                                                           | berg Limits (AS                                                                | STM D 4318)                                                              |  |  |  |  |
| PL=                                                                       | LL=                                                                            | PI=                                                                      |  |  |  |  |
| USCS (D 2487)=                                                            | <u>Classificati</u><br>AASH                                                    | <u>on</u><br>TO (M 145)=                                                 |  |  |  |  |
| D <sub>90</sub> = 3.0137<br>D <sub>50</sub> = 0.5145<br>D <sub>10</sub> = | Coefficient D <sub>85</sub> = 1.8561 D <sub>30</sub> = 0.2867 C <sub>u</sub> = | D <sub>60</sub> = 0.6873<br>D <sub>15</sub> = 0.1270<br>C <sub>c</sub> = |  |  |  |  |
|                                                                           | Remarks                                                                        |                                                                          |  |  |  |  |
|                                                                           |                                                                                |                                                                          |  |  |  |  |
| Date Received: 1                                                          | 1/1/11 <b>Dat</b>                                                              | e Tested: 11/1/11                                                        |  |  |  |  |
| Tested By: ad                                                             | 2                                                                              |                                                                          |  |  |  |  |
| Checked By: js                                                            | Checked By: js                                                                 |                                                                          |  |  |  |  |
| Title: PM                                                                 |                                                                                |                                                                          |  |  |  |  |
|                                                                           |                                                                                |                                                                          |  |  |  |  |

Silt

10.6

Clay

(no specification provided)

Location: S0006R, S16 Sample Number: S35552

% +3"

0.0

**Depth:** 45-46.1

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| 9/ .011 | % Gr   | avel |        | % Sand |      | % Fine | es   |
|---------|--------|------|--------|--------|------|--------|------|
| % +3"   | Coarse | Fine | Coarse | Medium | Fine | Silt   | Clay |
| 0.0     | 0.0    | 8.8  | 10.8   | 45.7   | 28.3 | 6.4    |      |

| Test Re  | Test Results (ASTM D 6913 & ASTM D 1140) |           |          |  |  |  |  |
|----------|------------------------------------------|-----------|----------|--|--|--|--|
| Opening  | Percent                                  | Spec.*    | Pass?    |  |  |  |  |
| Size     | Finer                                    | (Percent) | (X=Fail) |  |  |  |  |
| 1/2 Inch | 100.0                                    |           |          |  |  |  |  |
| 3/8 Inch | 95.7                                     |           |          |  |  |  |  |
| #4       | 91.2                                     |           |          |  |  |  |  |
| #8       | 83.8                                     |           |          |  |  |  |  |
| #10      | 80.4                                     |           |          |  |  |  |  |
| #16      | 68.4                                     |           |          |  |  |  |  |
| #30      | 45.3                                     |           |          |  |  |  |  |
| #40      | 34.7                                     |           |          |  |  |  |  |
| #50      | 22.8                                     |           |          |  |  |  |  |
| #100     | 10.6                                     |           |          |  |  |  |  |
| #200     | 6.4                                      |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |
|          |                                          |           |          |  |  |  |  |

# **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>60</sub>= 0.9130 D<sub>15</sub>= 0.2143 C<sub>c</sub>= 1.07 **D**<sub>90</sub>= 3.9246 **D**<sub>50</sub>= 0.6901 **D**<sub>10</sub>= 0.1402 D<sub>85</sub>= 2.5308 D<sub>30</sub>= 0.3709 C<sub>u</sub>= 6.51 Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: js Title: PM

\* (no specification provided)

Location: S0006R, S17

Sample Number: S35553

**Depth:** 50-51.2

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| OTO III OIZE IIIIII: |          |      |        |        |         |      |      |
|----------------------|----------|------|--------|--------|---------|------|------|
| % +3"                | % Gravel |      | % Sand |        | % Fines |      |      |
| 76 <b>+3</b>         | Coarse   | Fine | Coarse | Medium | Fine    | Silt | Clay |
| 0.0                  | 0.0      | 0.0  | 1.2    | 19.6   | 48.8    | 30.4 |      |

| '       | TEST RESULTS (ASTM D 6913) |           |          |  |  |  |  |
|---------|----------------------------|-----------|----------|--|--|--|--|
| Opening | Percent                    | Spec.*    | Pass?    |  |  |  |  |
| Size    | Finer                      | (Percent) | (X=Fail) |  |  |  |  |
| #4      | 100.0                      |           |          |  |  |  |  |
| #8      | 99.0                       |           |          |  |  |  |  |
| #10     | 98.8                       |           |          |  |  |  |  |
| #16     | 96.8                       |           |          |  |  |  |  |
| #30     | 87.3                       |           |          |  |  |  |  |
| #40     | 79.2                       |           |          |  |  |  |  |
| #50     | 68.6                       |           |          |  |  |  |  |
| #100    | 48.0                       |           |          |  |  |  |  |
| #200    | 30.4                       |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |
|         |                            |           |          |  |  |  |  |

| -,,,                                                        |                          |                                       |
|-------------------------------------------------------------|--------------------------|---------------------------------------|
|                                                             |                          |                                       |
|                                                             | Material Descript        | ion                                   |
|                                                             |                          |                                       |
|                                                             |                          |                                       |
| Δttor                                                       | berg Limits (ASTN        | I D 4318)                             |
| PL=                                                         | LL=                      | Pl=                                   |
|                                                             | Classification           |                                       |
| USCS (D 2487)=                                              | AASHTO                   | (M 145)=                              |
|                                                             | Coefficients             |                                       |
| <b>D<sub>90</sub>=</b> 0.6936 <b>D<sub>50</sub>=</b> 0.1610 | D <sub>85</sub> = 0.5390 | <b>D</b> 60= 0.2268                   |
| D <sub>50</sub> = 0.1610<br>D <sub>10</sub> =               | D <sub>30</sub> =        | D <sub>15</sub> =<br>C <sub>c</sub> = |
| D <sub>10</sub> -                                           | ou-                      | о <sub>с</sub> -                      |
|                                                             | Remarks                  |                                       |
|                                                             |                          |                                       |
|                                                             |                          |                                       |
| Date Received: 11                                           | /16/11 <b>Date</b> 7     | Tested: 11/16/11                      |
|                                                             |                          | 165160. 11/10/11                      |
| Tested By: ac                                               |                          |                                       |
| Checked By: cw                                              | V                        |                                       |
| Title: PN                                                   | M                        |                                       |
|                                                             |                          |                                       |

(no specification provided)

Location: S0007R, S07 Sample Number: S36259

**Depth:** 12.5-14.0

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



19.6

Fine

48.8

|         |         | (ASTM D 691 | 3)       |
|---------|---------|-------------|----------|
| Opening | Percent | Spec.*      | Pass?    |
| Size    | Finer   | (Percent)   | (X=Fail) |
| #4      | 100.0   |             |          |
| #8      | 99.0    |             |          |
| #10     | 98.8    |             |          |
| #16     | 96.8    |             |          |
| #30     | 87.3    |             |          |
| #40     | 79.2    |             |          |
| #50     | 68.6    |             |          |
| #100    | 48.0    |             |          |
| #200    | 30.4    |             |          |
| 1       |         |             |          |
|         |         |             |          |
|         |         |             |          |
|         |         |             |          |
|         |         | -           |          |
|         |         |             |          |
|         |         |             | •        |
|         |         |             |          |
|         |         |             |          |
|         |         |             |          |
|         |         |             |          |
|         |         |             |          |

Coarse

0.0

Fine

0.0

Coarse

1.2

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients **D**<sub>90</sub>= 0.6936 **D**<sub>60</sub>= 0.2268 **D**<sub>85</sub>= 0.5390 **D**<sub>50</sub>= 0.1610 D<sub>15</sub>= C<sub>c</sub>= $D_{30}^{-}$ $D_{10}^{33}$ = Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

Silt

30.4

Clay

(no specification provided)

Location: S0007R, S07 Sample Number: S36259

% +3"

0.0

Depth: 20-21.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| % +3"<br> | С           | oarse    | Fine   | е     | Coarse | Medium               | Fine                    | !                                                                           | Silt           |        |
|-----------|-------------|----------|--------|-------|--------|----------------------|-------------------------|-----------------------------------------------------------------------------|----------------|--------|
| 0.0       |             | 0.0      | 2.7    | 7     | 4.2    | 67.5                 | 18.2                    | ,                                                                           | 7.4            |        |
| Test Res  | sults (ASTM | D 6913 8 | ASTM   | D 114 | (0)    |                      |                         | Material De                                                                 | escription     |        |
| Opening   | Percent     | Sp       | ec.*   | Pa    | ss?    |                      |                         |                                                                             |                |        |
| Size      | Finer       | (Pe      | rcent) | (X=   | Fail)  |                      |                         |                                                                             |                |        |
| 1/2 Inch  | 100.0       |          |        |       |        |                      |                         |                                                                             |                |        |
| 3/8 Inch  | 98.8        |          |        |       | 1      |                      | Atter                   | bera Limits                                                                 | (ASTM D 4318   | )      |
| #4        | 97.3        |          |        |       |        | PL=                  |                         | LL=                                                                         | PI=            | *      |
| #8        | 95.5        |          |        |       |        |                      |                         |                                                                             |                |        |
| #10       | 93.1        |          |        |       |        | 11000 (              | D 0 407\                | <u>Classifi</u>                                                             |                |        |
| #16       | 80.9        |          |        |       |        | USCS (I              | D 2487)=                | AA                                                                          | ASHTO (M 145)= |        |
| #30       | 42.1        |          |        |       |        |                      |                         | Coeffic                                                                     | ients          |        |
| #40       | 25.6        |          |        |       | j      | Don= 1.              | .6490                   |                                                                             |                | 0.8018 |
| #50       | 17.4        |          |        |       |        | D <sub>50</sub> = 0. | 6841                    | $D_{30} = 0.475$                                                            | 0 $D_{15} = 0$ | ).2519 |
| #100      | 10.6        |          |        |       |        | $D_{10} = 0.$        | .6490<br>.6841<br>.1345 | D <sub>85</sub> = 1.327<br>D <sub>30</sub> = 0.475<br>C <sub>u</sub> = 5.96 | 7              | 09     |
| #200      | 7.4         |          |        |       |        |                      |                         | Rema                                                                        | _              |        |
|           |             |          |        |       | 1      | ı                    |                         |                                                                             |                |        |

(no specification provided)

Location: S0007R, S09 Sample Number: S35556

% +3"

Depth: 20-21.1

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Date Received: 11/1/11

Tested By: jm Checked By: js

Title: PM

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 

Date Tested: 11/1/11

Clay

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA



7.0

|            | TEST R  | ESULTS    |          |  |
|------------|---------|-----------|----------|--|
| Opening    | Percent | Spec.*    | Pass?    |  |
| Size       | Finer   | (Percent) | (X=Fail) |  |
| #10        | 100.0   |           |          |  |
| #16        | 99.6    |           |          |  |
| #30        | 95.9    |           |          |  |
| #40        | 93.0    |           |          |  |
| #50        | 90.0    |           |          |  |
| #100       | 84.2    |           |          |  |
| #200       | 74.8    |           |          |  |
| 0.0253 mm. | 57.8    |           |          |  |
| 0.0165 mm. | 54.8    |           |          |  |
| 0.0098 mm. | 51.1    |           |          |  |
| 0.0072 mm. | 47.4    |           |          |  |
| 0.0051 mm. | 44.3    |           |          |  |
| 0.0027 mm. | 36.9    |           |          |  |
| 0.0012 mm. | 31.9    |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |

Coarse

0.0

Fine

0.0

Coarse

0.0

| Material Description                                                      |                                                                           |                                       |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|--|--|
|                                                                           |                                                                           |                                       |  |  |
| Atte PL= 15                                                               | rberg Limits<br>LL= 41                                                    | s (ASTM D 4318)<br>PI= 26             |  |  |
| USCS (D 2487)=                                                            |                                                                           | fication<br>AASHTO (M 145)= A-7-6(18) |  |  |
| D <sub>90</sub> = 0.2982<br>D <sub>50</sub> = 0.0089<br>D <sub>10</sub> = | Coeffi<br>D <sub>85</sub> = 0.16<br>D <sub>30</sub> =<br>C <sub>u</sub> = | icients<br>33                         |  |  |
|                                                                           | Rem                                                                       | arks                                  |  |  |
|                                                                           |                                                                           |                                       |  |  |
| Date Received:                                                            | 11/1/11                                                                   | Date Tested: 11/1/11                  |  |  |
| Tested By:                                                                | s/ac                                                                      |                                       |  |  |
| Checked By: j                                                             | S                                                                         |                                       |  |  |
| Title: 1                                                                  | PM                                                                        |                                       |  |  |
|                                                                           |                                                                           |                                       |  |  |

Silt

30.8

Clay

44.0

\* (no specification provided)

Location: S0007R, S13B Sample Number: S35560

% +3"

0.0

Depth: 40.8-41.1

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Fine

18.2

Project No: 11-111



33.3

Fine

48.4

| Opening | Percent | 6913 & ASTM<br>Spec.* | Pass?    |
|---------|---------|-----------------------|----------|
| Size    | Finer   | (Percent)             | (X=Fail) |
| #4      | 100.0   |                       |          |
| #8      | 99.7    |                       |          |
| #10     | 99.3    |                       |          |
| #16     | 96.9    |                       |          |
| #30     | 81.3    |                       |          |
| #40     | 66.0    |                       |          |
| #50     | 47.0    |                       |          |
| #100    | 25.8    |                       |          |
| #200    | 17.6    |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |
|         |         |                       |          |

Coarse

0.0

Fine

0.0

Coarse

0.7

| Material Description                                      |   |  |  |  |  |
|-----------------------------------------------------------|---|--|--|--|--|
|                                                           |   |  |  |  |  |
| Atterberg Limits (ASTM D 4318) PL= LL= PI=                |   |  |  |  |  |
| USCS (D 2487)= Classification  AASHTO (M 145)=            |   |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$     |   |  |  |  |  |
| Remarks                                                   |   |  |  |  |  |
|                                                           |   |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: jm |   |  |  |  |  |
| Checked By: js                                            | _ |  |  |  |  |
| Title: PM                                                 |   |  |  |  |  |

Silt

17.6

Clay

(no specification provided)

% +3"

0.0

Location: S0007R, S15 Depth: 50-51.3 Sample Number: S35562 **SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 



5.2

Fine

17.0

| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #4      | 100.0   |           |          |
| #8      | 99.6    |           |          |
| #10     | 99.5    |           |          |
| #16     | 98.9    |           |          |
| #30     | 96.8    |           |          |
| #40     | 94.3    |           |          |
| #50     | 91.0    |           |          |
| #100    | 84.1    |           |          |
| #200    | 77.3    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

Coarse

0.0

Fine

0.0

Coarse

0.5

|                                                                   | Material Description  |                                                                            |   |  |  |  |  |
|-------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------|---|--|--|--|--|
|                                                                   |                       |                                                                            |   |  |  |  |  |
|                                                                   | Atterberg Limit       | ts (ASTM D 4318)                                                           |   |  |  |  |  |
| PL=                                                               | LL=                   | PI=                                                                        | i |  |  |  |  |
| USCS (D 2                                                         |                       | <u>ification</u><br>AASHTO (M 145)=                                        |   |  |  |  |  |
| D <sub>90</sub> = 0.272<br>D <sub>50</sub> =<br>D <sub>10</sub> = |                       | ficients<br>542 D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |   |  |  |  |  |
|                                                                   | Rem                   | narks                                                                      |   |  |  |  |  |
|                                                                   |                       |                                                                            |   |  |  |  |  |
| Date Receiv                                                       | ved: 11/1/11          | Date Tested: 11/1/11                                                       |   |  |  |  |  |
| Tested                                                            | <b>By:</b> <u>jm</u>  |                                                                            |   |  |  |  |  |
| Checked                                                           | <b>By:</b> <u>j</u> s | . , , , , , , , , , , , , , , , , , , ,                                    |   |  |  |  |  |
| Т                                                                 | itle: PM              |                                                                            |   |  |  |  |  |
|                                                                   |                       |                                                                            |   |  |  |  |  |

Silt

77.3

Clay

\* (no specification provided)

Location: S0007R, S21 Sample Number: S35567

% +3"

0.0

er: S35567 **Depth:** 80-81.1

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening    | Percent | Spec.*    | Pass?<br>(X=Fail) |  |
|------------|---------|-----------|-------------------|--|
| Size       | Finer   | (Percent) |                   |  |
| #10        | 100.0   |           |                   |  |
| #16        | 99.8    |           |                   |  |
| #30        | 98.5    |           |                   |  |
| #40        | 95.7    |           |                   |  |
| #50        | 91.0    |           |                   |  |
| #100       | 78.2    |           |                   |  |
| #200       | 57.1    |           |                   |  |
| 0.0373 mm. | 16.4    |           |                   |  |
| 0.0239 mm. | 13.3    |           |                   |  |
| 0.0139 mm. | 10.3    |           |                   |  |
| 0.0099 mm. | 8.8     |           |                   |  |
| 0.0071 mm. | 5.8     |           |                   |  |
| 0.0034 mm. | 3.3     |           |                   |  |
| 0.0015 mm. | 1.1     |           |                   |  |
|            |         |           |                   |  |
|            |         |           |                   |  |
|            |         |           |                   |  |
|            |         |           |                   |  |
|            |         |           |                   |  |
|            |         |           |                   |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= 0.2134 D<sub>30</sub>= 0.0493 C<sub>u</sub>= 6.05 D<sub>90</sub>= 0.2817 D<sub>50</sub>= 0.0666 D<sub>10</sub>= 0.0131 $D_{60} = 0.0793$ D<sub>15</sub>= 0.0308 C<sub>c</sub>= 2.33 Remarks Date Tested: 1/24/12 Date Received: 11/16/11 Tested By: mw/jm Checked By: cw Title: PM

(no specification provided)

Location: S0010R, S09 Sample Number: S36263

**Depth:** 20-21.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



0.9

Fine

4.5

|            | TEST R  | ESULTS    |          |
|------------|---------|-----------|----------|
| Opening    | Percent | Spec.*    | Pass?    |
| Size       | Finer   | (Percent) | (X=Fail) |
| #10        | 100.0   |           |          |
| #16        | 100.0   |           |          |
| #30        | 99.5    |           |          |
| #40        | 99.1    |           |          |
| #50        | 98.3    |           |          |
| #100       | 96.4    |           |          |
| #200       | 94.6    |           |          |
| 0.0244 mm. | 77.9    |           |          |
| 0.0162 mm. | 70.9    |           |          |
| 0.0101 mm. | 60.1    |           |          |
| 0.0076 mm. | 50.8    |           |          |
| 0.0057 mm. | 40.7    |           |          |
| 0.0030 mm. | 22.1    |           |          |
| 0.0014 mm. | 7.3     |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

Coarse

0.0

Fine

0.0

Coarse

0.0

### **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 25 LL= 35 **PI=** 10 **Classification** USCS (D 2487)= ML **AASHTO (M 145)=** A-4(10)Coefficients $\begin{array}{l} \mathbf{D_{60}} = 0.0101 \\ \mathbf{D_{15}} = 0.0022 \\ \mathbf{C_c} = 1.01 \end{array}$ $\begin{array}{l} \mathbf{D_{90}} = 0.0501 \\ \mathbf{D_{50}} = 0.0074 \\ \mathbf{D_{10}} = 0.0016 \end{array}$ $D_{85} = 0.0367$ **D**<sub>30</sub>= 0.0041 **C**<sub>u</sub>= 6.27 Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: js/ac Checked By: is Title: PM

Silt

58.0

Clay

36.6

(no specification provided)

Location: S0010R, S10

% +3"

0.0

**Sample Number:** \$35571 **Depth:** 25-26.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening    | Percent | Spec.*    | Pass?    |  |
|------------|---------|-----------|----------|--|
| Size       | Finer   | (Percent) | (X=Fail) |  |
| #10        | 100.0   |           |          |  |
| #16        | 100.0   |           |          |  |
| #30        | 98.8    |           |          |  |
| #40        | 92.8    |           |          |  |
| #50        | 75.2    |           |          |  |
| #100       | 33.1    |           |          |  |
| #200       | 15.2    |           |          |  |
| 0.0389 mm. | 3.7     |           |          |  |
| 0.0248 mm. | 1.7     |           |          |  |
| 0.0144 mm. | 1.2     |           |          |  |
| 0.0102 mm. | 0.7     |           |          |  |
| 0.0072 mm. | 0.8     | -         |          |  |
| 0.0035 mm. | 0.7     |           |          |  |
| 0.0015 mm. |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |
|            |         |           |          |  |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification AASHTO (M 145)= USCS (D 2487)= Coefficients D<sub>90</sub>= 0.3945 D<sub>50</sub>= 0.2037 D<sub>10</sub>= 0.0575 D<sub>60</sub>= 0.2376 $D_{85} = 0.3553$ D<sub>30</sub>= 0.1392 C<sub>u</sub>= 4.13 D<sub>15</sub>= 0.0741 C<sub>c</sub>= 1.42 Remarks Date Received: 11/16/11 Date Tested: 1/24/12 Tested By: mw/jm Checked By: cw Title: PM

(no specification provided)

Location: S0010R, S12 Sample Number: S36265

Depth: 35-36.4

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                    | GRAIN SIZE - mm. |      |                 |        |         |      |      |  |  |
|--------------------|------------------|------|-----------------|--------|---------|------|------|--|--|
| % +3"              | % Gravel         |      | % Gravel % Sand |        | % Fines |      |      |  |  |
| <sup>7</sup> ⁄₀ +3 | Coarse           | Fine | Coarse          | Medium | Fine    | Silt | Clay |  |  |
| 0.0                | 0.0              | 0.7  | 5.8             | 56.7   | 30.1    | 6.7  |      |  |  |

| Test Re  | Test Results (ASTM D 6913 & ASTM D 1140) |           |          |  |  |  |
|----------|------------------------------------------|-----------|----------|--|--|--|
| Opening  | Percent                                  | Spec.*    | Pass?    |  |  |  |
| Size     | Finer                                    | (Percent) | (X=Fail) |  |  |  |
| 3/8 Inch | 100.0                                    |           |          |  |  |  |
| #4       | 99.3                                     |           |          |  |  |  |
| #8       | 95.5                                     |           |          |  |  |  |
| #10      | 93.5                                     |           |          |  |  |  |
| #16      | 80.7                                     |           |          |  |  |  |
| #30      | 49.7                                     |           |          |  |  |  |
| #40      | 36.8                                     |           |          |  |  |  |
| #50      | 26.3                                     |           |          |  |  |  |
| #100     | 12.9                                     |           |          |  |  |  |
| #200     | 6.7                                      |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |
|          |                                          |           |          |  |  |  |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients $\begin{array}{l} \mathbf{D_{60}} = 0.7495 \\ \mathbf{D_{15}} = 0.1746 \\ \mathbf{C_c} = 1.36 \end{array}$ **D**<sub>90</sub>= 1.6347 **D**<sub>50</sub>= 0.6047 **D**<sub>10</sub>= 0.1152 D<sub>85</sub>= 1.3427 D<sub>30</sub>= 0.3423 C<sub>u</sub>= 6.51 Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: js Title: PM

(no specification provided)

Location: S0010R, S13 Sample Number: S35572

**Depth:** 40-41.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



7.9

Fine

13.8

| <b>Material Description</b>                                                                                                 | M                               |          | SULTS     | TEST RE      |                          |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|-----------|--------------|--------------------------|
| •                                                                                                                           |                                 | Pass?    | Spec.*    | Percent      | Opening                  |
|                                                                                                                             |                                 | (X=Fail) | (Percent) | Finer        | Size                     |
|                                                                                                                             |                                 |          |           | 100.0        | #10                      |
| erberg Limits (ASTM D 4                                                                                                     | Atterbe                         |          |           | 98.5         | #16                      |
| LL= 41                                                                                                                      | PL= 24                          |          |           | 94.5         | #30                      |
|                                                                                                                             |                                 |          |           | 92.1         | #40                      |
| Classification CL AASHTO (M 14                                                                                              | USCS (D 2487)= CI               | ĺ        |           | 89.4         | #50                      |
| E CL AASHIO (WII                                                                                                            | 0303 (D 2467)= C1               | 1        |           | 83.7         | #100                     |
| <u>Coefficients</u>                                                                                                         |                                 |          |           | 78.3         | #200                     |
| D <sub>85</sub> = 0.1767 D <sub>6</sub><br>D <sub>30</sub> = 0.0055 D <sub>1</sub>                                          | D <sub>90</sub> = 0.3226        |          |           | 65.0         | 0.0276 mm.               |
| D <sub>85</sub> = 0.1767 D <sub>6</sub><br>D <sub>30</sub> = 0.0055 D <sub>1</sub><br>C <sub>u</sub> = 10.56 C <sub>0</sub> | <b>D</b> <sub>90</sub> = 0.3226 |          |           | 57.5         | 0.0182 mm.               |
| $C_{u}^{=} 10.56$ $C_{c}^{-}$                                                                                               | D <sub>10</sub> = 0.0020 C      |          |           | 50.0<br>41.6 | 0.0109 mm.<br>0.0081 mm. |
| Remarks                                                                                                                     |                                 |          |           | 32.3         | 0.0060 mm.               |
|                                                                                                                             |                                 |          |           | 16.4         | 0.0000 mm.               |
|                                                                                                                             |                                 |          |           | 6.2          | 0.0031 mm.               |
|                                                                                                                             |                                 |          |           | 0.2          | 5.001 Tillin.            |
| 11/1/11 <b>Date Teste</b>                                                                                                   | Date Received: 11/1             |          |           |              |                          |
| js/ac                                                                                                                       | Tested By: js/ac                |          |           |              |                          |
| js                                                                                                                          | Checked By: js                  |          |           |              |                          |
| PM                                                                                                                          | Title: PM                       |          |           |              |                          |

Fine

0.0

Coarse

0.0

| PL= 24                                                                           | berg Limits (AS<br>LL= 41                                                             | TM D 4318)<br>PI= 17                                                                           |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| USCS (D 2487)=                                                                   | CL CL AASHT                                                                           | on<br>O (M 145)= A-7-6(13)                                                                     |
| D <sub>90</sub> = 0.3226<br>D <sub>50</sub> = 0.0110<br>D <sub>10</sub> = 0.0020 | Coefficients D <sub>85</sub> = 0.1767 D <sub>30</sub> = 0.0055 C <sub>u</sub> = 10.56 | <b>S D</b> <sub>60</sub> = 0.0211 <b>D</b> <sub>15</sub> = 0.0029 <b>C</b> <sub>c</sub> = 0.72 |
|                                                                                  | Remarks                                                                               |                                                                                                |
|                                                                                  |                                                                                       |                                                                                                |
| Date Received: 1<br>Tested By: js                                                |                                                                                       | e Tested: 11/1/11                                                                              |
| Checked By: <u>js</u><br>Title: <u>Pl</u>                                        |                                                                                       |                                                                                                |

Silt

51.0

Clay

27.3

(no specification provided)

Location: S0010R, S16 Sample Number: S35575

% +3"

0.0

Coarse

0.0

**Depth:** 55-56.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| GRAIN SIZE - IIIII. |        |      |        |        |      |         |      |
|---------------------|--------|------|--------|--------|------|---------|------|
| 0/ 1211             | % Gr   | avel | % Sand |        |      | % Fines |      |
| % +3"               | Coarse | Fine | Coarse | Medium | Fine | Silt    | Clay |
| 0.0                 | 0.0    | 0.0  | 0.6    | 22.6   | 62.9 | 13.9    |      |

| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #4      | 100.0   |           |          |
| #8      | 99.6    |           |          |
| #10     | 99.4    |           |          |
| #16     | 97.5    |           |          |
| #30     | 85.9    |           |          |
| #40     | 76.8    |           |          |
| #50     | 64.4    |           |          |
| #100    | 38.5    |           |          |
| #200    | 13.9    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

| Material Description                                                      |                                                                               |                                                                          |  |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|                                                                           |                                                                               |                                                                          |  |  |  |  |
| Atte                                                                      | rberg Limits (A                                                               | STM D 4318)<br>PI=                                                       |  |  |  |  |
| USCS (D 2487)=                                                            | <u>Classificat</u><br>AASH                                                    | <u>:ion</u><br>ITO (M 145)=                                              |  |  |  |  |
| D <sub>90</sub> = 0.7223<br>D <sub>50</sub> = 0.2046<br>D <sub>10</sub> = | Coefficier D <sub>85</sub> = 0.5767 D <sub>30</sub> = 0.1186 C <sub>u</sub> = | D <sub>60</sub> = 0.2668<br>D <sub>15</sub> = 0.0774<br>C <sub>c</sub> = |  |  |  |  |
|                                                                           | Remarks                                                                       | ;                                                                        |  |  |  |  |
|                                                                           |                                                                               |                                                                          |  |  |  |  |
| Date Received: 1 Tested By: k                                             |                                                                               | te Tested: 11/1/11                                                       |  |  |  |  |
| Checked By: js                                                            |                                                                               |                                                                          |  |  |  |  |
| Title: P                                                                  | PM                                                                            |                                                                          |  |  |  |  |
|                                                                           |                                                                               |                                                                          |  |  |  |  |

(no specification provided)

Location: S0010R, S25 Sample Number: S35581

**Depth:** 100-101.3

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP•

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



22.3

Fine

70.5

|          | TEST RESULTS |           |          |  |  |
|----------|--------------|-----------|----------|--|--|
| Opening  | Percent      | Spec.*    | Pass?    |  |  |
| Size     | Finer        | (Percent) | (X=Fail) |  |  |
| 3/8 Inch | 100.0        |           |          |  |  |
| #4       | 99.9         |           |          |  |  |
| #8       | 99.7         |           |          |  |  |
| #10      | 99.6         |           |          |  |  |
| #16      | 99.3         |           |          |  |  |
| #30      | 93.6         |           |          |  |  |
| #40      | 77.3         |           |          |  |  |
| #50      | 44.5         |           |          |  |  |
| #100     | 11.9         |           |          |  |  |
| #200     | 6.8          |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |
|          |              |           |          |  |  |

Coarse

0.0

Fine

0.1

Coarse

0.3

| Material Description                                                                            |                                                                                    |                                                                               |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                 |                                                                                    |                                                                               |  |  |  |  |  |
| Atte                                                                                            | rberg Limits (AS                                                                   | STM D 4318)                                                                   |  |  |  |  |  |
| PL=                                                                                             | LL=                                                                                | PI=                                                                           |  |  |  |  |  |
| USCS (D 2487)=                                                                                  | <u>Classificati</u><br>AASH                                                        | on<br>TO (M 145)=                                                             |  |  |  |  |  |
| <b>D<sub>90</sub>=</b> 0.5337<br><b>D<sub>50</sub>=</b> 0.3182<br><b>D<sub>10</sub>=</b> 0.1327 | Coefficien D <sub>85</sub> = 0.4781 D <sub>30</sub> = 0.2468 C <sub>u</sub> = 2.65 | D <sub>60</sub> = 0.3520<br>D <sub>15</sub> = 0.1727<br>C <sub>c</sub> = 1.30 |  |  |  |  |  |
|                                                                                                 | Remarks                                                                            |                                                                               |  |  |  |  |  |
|                                                                                                 |                                                                                    |                                                                               |  |  |  |  |  |
| Date Received: 1                                                                                | 1/1/11 <b>Dat</b>                                                                  | te Tested: 11/1/11                                                            |  |  |  |  |  |
| Tested By: a                                                                                    | С                                                                                  |                                                                               |  |  |  |  |  |
| Checked By: c                                                                                   | Checked By: cw                                                                     |                                                                               |  |  |  |  |  |
| Title: PM                                                                                       |                                                                                    |                                                                               |  |  |  |  |  |

Silt

6.8

Clay

(no specification provided)

Location: S0012R, S12 Sample Number: S35592

% +3"

0.0

Depth: 35-36.2

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA



0.3

0.0

| TEST RESULTS |         |           |          |  |
|--------------|---------|-----------|----------|--|
| Opening      | Percent | Spec.*    | Pass?    |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |
| #4           | 100.0   |           |          |  |
| #8           | 99.9    |           |          |  |
| #10          | 99.7    |           |          |  |
| #16          | 98.5    |           |          |  |
| #30          | 86.7    |           |          |  |
| #40          | 75.9    |           |          |  |
| #50          | 65.8    |           |          |  |
| #100         | 44.6    |           |          |  |
| #200         | 26.3    |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
|              |         |           |          |  |
| *            |         |           |          |  |

0.0

| 23.8                                                              | 49.6                                                                             | 26.3                                                                                                                           |   |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|                                                                   | <u>Mate</u>                                                                      | erial Description                                                                                                              |   |  |  |  |
| PL=                                                               | Atterberg l                                                                      | <u>Limits (ASTM D 4318)</u><br>.= PI=                                                                                          |   |  |  |  |
| USCS (I                                                           | <u>C</u><br>O 2487)=                                                             | <u>Classification</u><br>AASHTO (M 145)=                                                                                       |   |  |  |  |
| D <sub>90</sub> = 0.<br>D <sub>50</sub> = 0.<br>D <sub>10</sub> = | 6798 <b>D<sub>85</sub></b> =<br>1797 <b>D<sub>30</sub></b> =<br>C <sub>u</sub> = | Coefficients         = 0.5663       D <sub>60</sub> = 0.2477         = 0.0870       D <sub>15</sub> =         C <sub>c</sub> = |   |  |  |  |
|                                                                   |                                                                                  | Remarks                                                                                                                        |   |  |  |  |
|                                                                   |                                                                                  |                                                                                                                                |   |  |  |  |
|                                                                   | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac                        |                                                                                                                                |   |  |  |  |
| Check                                                             | ed By: cw                                                                        |                                                                                                                                |   |  |  |  |
|                                                                   | Title: PM                                                                        |                                                                                                                                |   |  |  |  |
|                                                                   |                                                                                  |                                                                                                                                | _ |  |  |  |

(no specification provided)

0.0

Location: S0012R, S13 Sample Number: S35593 Depth: 40-41.4

> **SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 



62.4

Fine

28.8

|   |         | TEST R  | ESULTS    |          |
|---|---------|---------|-----------|----------|
|   | Opening | Percent | Spec.*    | Pass?    |
|   | Size    | Finer   | (Percent) | (X=Fail) |
|   | #4      | 100.0   |           |          |
| ł | #8      | 99.6    |           |          |
|   | #10     | 99.3    |           |          |
|   | #16     | 94.8    |           |          |
|   | #30     | 57.7    |           |          |
|   | #40     | 36.9    |           |          |
|   | #50     | 23.5    |           |          |
|   | #100    | 12.2    |           |          |
|   | #200    | 8.1     |           |          |
|   |         |         |           |          |
| ĺ |         |         |           |          |
| İ |         |         |           |          |
| i |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |

Coarse

0.0

Fine

0.0

Coarse

0.7

|                                                                                  | <u>Material Description</u>                                                          |                                                                               |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
|                                                                                  |                                                                                      |                                                                               |  |  |  |  |
|                                                                                  | berg Limits (AST                                                                     |                                                                               |  |  |  |  |
| PL=                                                                              | LL=                                                                                  | PI=                                                                           |  |  |  |  |
| USCS (D 2487)=                                                                   | Classificatio<br>AASHT                                                               | <u>n</u><br>O (M 145)=                                                        |  |  |  |  |
| D <sub>90</sub> = 1.0329<br>D <sub>50</sub> = 0.5329<br>D <sub>10</sub> = 0.1094 | Coefficients D <sub>85</sub> = 0.9302 D <sub>30</sub> = 0.3640 C <sub>u</sub> = 5.68 | D <sub>60</sub> = 0.6212<br>D <sub>15</sub> = 0.1962<br>C <sub>c</sub> = 1.95 |  |  |  |  |
|                                                                                  | Remarks                                                                              |                                                                               |  |  |  |  |
|                                                                                  |                                                                                      |                                                                               |  |  |  |  |
| Date Received: 1                                                                 | 1/1/11 <b>Date</b>                                                                   | Tested: 11/1/11                                                               |  |  |  |  |
| Tested By: a                                                                     | С                                                                                    |                                                                               |  |  |  |  |
| Checked By: c                                                                    | W                                                                                    |                                                                               |  |  |  |  |
| Title: P                                                                         |                                                                                      |                                                                               |  |  |  |  |
|                                                                                  |                                                                                      |                                                                               |  |  |  |  |

Silt

8.1

Clay

(no specification provided)

Location: S0012R, S16

% +3"

0.0

Sample Number: S35595 Depth: 55-56.4

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|           |        |      |        | GHAIN SIZI | L - IIIIII. |      |      |
|-----------|--------|------|--------|------------|-------------|------|------|
| % +3"     | % Gr   | avel | % Sand |            | % Fines     |      |      |
| ერ +ა<br> | Coarse | Fine | Coarse | Medium     | Fine        | Silt | Clay |
| 0.0       | 0.0    | 0.5  | 0.8    | 68.8       | 23.5        | 6.4  |      |

|          | TEST RI | ESULTS    |          |
|----------|---------|-----------|----------|
| Opening  | Percent | Spec.*    | Pass?    |
| Size     | Finer   | (Percent) | (X=Fail) |
| 3/8 Inch | 100.0   |           |          |
| #4       | 99.5    |           |          |
| #8       | 99.0    |           |          |
| #10      | 98.7    |           |          |
| #16      | 94.4    |           |          |
| #30      | 52.9    |           |          |
| #40      | 29.9    |           |          |
| #50      | 19.2    |           |          |
| #100     | 10.0    |           |          |
| #200     | 6.4     |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |

| Material Description                                                                            |                                                                                                                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                 |                                                                                                                             |  |  |  |  |
| Atterhera Lim                                                                                   | its (ASTM D 4318)                                                                                                           |  |  |  |  |
| PL= LL=                                                                                         | Pl=                                                                                                                         |  |  |  |  |
| USCS (D 2487)=                                                                                  | <u>sification</u><br>AASHTO (M 145)=                                                                                        |  |  |  |  |
| D90= 1.0518       D85= 0.5         D50= 0.5775       D30= 0.5         D10= 0.1496       Cu= 4.4 | fficients       9525     D <sub>60</sub> = 0.6589       4262     D <sub>15</sub> = 0.2345       0     C <sub>c</sub> = 1.84 |  |  |  |  |
| Remarks                                                                                         |                                                                                                                             |  |  |  |  |
|                                                                                                 |                                                                                                                             |  |  |  |  |
|                                                                                                 |                                                                                                                             |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac                                       |                                                                                                                             |  |  |  |  |
| Checked By: cw                                                                                  |                                                                                                                             |  |  |  |  |
| Title: PM                                                                                       |                                                                                                                             |  |  |  |  |

(no specification provided)

Location: S0012R, S17 Sample Number: S35596

**Depth:** 60-61.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|        |        |      |        | GI IAIN SIZE | - 1111111 |      |      |
|--------|--------|------|--------|--------------|-----------|------|------|
| 0/ 011 | % Gr   | avel | % Sand |              | % Fines   |      |      |
| % +3"  | Coarse | Fine | Coarse | Medium       | Fine      | Silt | Clay |
| 0.0    | 0.0    | 0.0  | 0.9    | 17.2         | 52.1      | 29.8 |      |

| Test Results (ASTM D 6913 & ASTM D 1140) |         |           |          |  |
|------------------------------------------|---------|-----------|----------|--|
| Opening                                  | Percent | Spec.*    | Pass?    |  |
| Size                                     | Finer   | (Percent) | (X=Fail) |  |
| #4                                       | 100.0   |           |          |  |
| #8                                       | 99.5    |           |          |  |
| #10                                      | 99.1    |           |          |  |
| #16                                      | 96.8    |           |          |  |
| #30                                      | 88.4    |           |          |  |
| #40                                      | 81.9    |           |          |  |
| #50                                      | 75.1    |           |          |  |
| #100                                     | 54.4    |           |          |  |
| #200                                     | 29.8    |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |
|                                          |         |           |          |  |

|                                                                           | Material Description                                                            |                                                                   |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                                                           |                                                                                 |                                                                   |  |  |  |  |
| Atter<br>PL=                                                              | berg Limits (AST<br>LL=                                                         | <u>ГМ D 4318)</u><br>Pl=                                          |  |  |  |  |
| USCS (D 2487)=                                                            | Classificatio<br>AASHT                                                          | o <u>n</u><br>O (M 145)=                                          |  |  |  |  |
| D <sub>90</sub> = 0.6608<br>D <sub>50</sub> = 0.1323<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 0.5002 D <sub>30</sub> = 0.0754 C <sub>u</sub> = | D <sub>60</sub> = 0.1773<br>D <sub>15</sub> =<br>C <sub>c</sub> = |  |  |  |  |
|                                                                           | Remarks                                                                         |                                                                   |  |  |  |  |
|                                                                           |                                                                                 |                                                                   |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac                 |                                                                                 |                                                                   |  |  |  |  |
| Checked By: cw                                                            |                                                                                 |                                                                   |  |  |  |  |
| Title: PM                                                                 |                                                                                 |                                                                   |  |  |  |  |

\* (no specification provided)

Location: S0012R, S28 Sample Number: S35605

**Depth:** 115-116.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



4.7

Fine

8.8

| Opening    | TEST RI | Spec.*    | Pass?    |
|------------|---------|-----------|----------|
| Size       | Finer   | (Percent) | (X=Fail) |
| #10        | 100.0   |           |          |
| #16        | 99.6    |           |          |
| #30        | 97.1    |           |          |
| #40        | 95.3    |           |          |
| #50        | 93.2    |           |          |
| #100       | 89.8    |           |          |
| #200       | 86.5    |           |          |
| 0.0300 mm. | 67.9    |           |          |
| 0.0196 mm. | 59.8    |           |          |
| 0.0121 mm. | 41.5    |           |          |
| 0.0081 mm. | 30.4    |           |          |
| 0.0065 mm. | 19.3    |           |          |
| 0.0033 mm. | 5.5     |           |          |
| 0.0014 mm. | 0.8     |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |
|            |         |           |          |

Coarse

0.0

Fine

0.0

Coarse

0.0

| Material Description                                                                                                            |   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| •                                                                                                                               |   |  |  |  |  |
| ,                                                                                                                               |   |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
| Atterberg Limits (ASTM D 4318)                                                                                                  | 1 |  |  |  |  |
| PL= 30                                                                                                                          |   |  |  |  |  |
| Classification                                                                                                                  |   |  |  |  |  |
| USCS (D 2487)= ML AASHTO (M 145)= A-4(10)                                                                                       |   |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
| Coefficients  Do 0.1/07  Do 0.070  Do 0.0100                                                                                    | ı |  |  |  |  |
| <b>D</b> <sub>90</sub> = 0.162/ <b>D</b> <sub>85</sub> = 0.06/8 <b>D</b> <sub>60</sub> = 0.0198 <b>D</b> <sub>60</sub> = 0.0150 | - |  |  |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                            |   |  |  |  |  |
| 5 <sub>10</sub> - 0.0013                                                                                                        |   |  |  |  |  |
| Remarks                                                                                                                         |   |  |  |  |  |
|                                                                                                                                 | 1 |  |  |  |  |
|                                                                                                                                 | 1 |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11                                                                                     | ٦ |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
| Tested By: js/ac                                                                                                                |   |  |  |  |  |
| Checked By: cw                                                                                                                  |   |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |
| Title: pm                                                                                                                       | ╛ |  |  |  |  |
|                                                                                                                                 |   |  |  |  |  |

Silt

76.2

Clay

10.3

(no specification provided)

Location: S0012R, S33 Sample Number: S35608

% +3"

0.0

**Depth:** 140-141.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



36.5

Fine

39.8

|          | TEST RE | SULTS     |          |
|----------|---------|-----------|----------|
| Opening  | Percent | Spec.*    | Pass?    |
| Size     | Finer   | (Percent) | (X=Fail) |
| 3/8 Inch | 100.0   |           |          |
| #4       | 99.9    |           |          |
| #8       | 97.2    |           |          |
| #10      | 95.7    |           |          |
| #16      | 87.6    |           |          |
| #30      | 70.0    | *         |          |
| #40      | 59.2    |           |          |
| #50      | 46.7    |           |          |
| #100     | 28.4    |           |          |
| #200     | 19.4    |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |

Coarse

0.0

0.0

Fine

0.1

Coarse

4.2

|                                                                                          | Material Description                                                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PL=                                                                                      | terberg Limits (ASTM D 4318)  LL= PI=  Classification                                                                          |  |  |  |  |
| USCS (D 248                                                                              | 7)= AASHTO (M 145)=<br>Coefficients                                                                                            |  |  |  |  |
| <b>D<sub>90</sub>=</b> 1.3328<br><b>D<sub>50</sub>=</b> 0.3291<br><b>D<sub>10</sub>=</b> | D <sub>85</sub> = 1.0471 D <sub>60</sub> = 0.4349 D <sub>30</sub> = 0.1629 D <sub>15</sub> = C <sub>u</sub> = C <sub>c</sub> = |  |  |  |  |
| Remarks                                                                                  |                                                                                                                                |  |  |  |  |
|                                                                                          |                                                                                                                                |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11                                              |                                                                                                                                |  |  |  |  |
| Tested By: ac                                                                            |                                                                                                                                |  |  |  |  |
| Checked By: cw                                                                           |                                                                                                                                |  |  |  |  |
| Title: PM                                                                                |                                                                                                                                |  |  |  |  |
|                                                                                          |                                                                                                                                |  |  |  |  |

Silt

19.4

Clay

Location: S0013AR, S19 Sample Number: S35620

**Depth:** 70-71.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>(</sup>no specification provided)



9.9

Fine

31.2

| opening   comment   opening                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST RE | SULTS     |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|
| #10 100.0<br>#16 99.4<br>#30 94.7<br>#40 90.1<br>#50 84.4<br>#100 72.2<br>#200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0 | Opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Percent | Spec.*    | Pass?    |
| #16 99.4<br>#30 94.7<br>#40 90.1<br>#50 84.4<br>#100 72.2<br>#200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0              | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Finer   | (Percent) | (X=Fail) |
| #30 94.7<br>#40 90.1<br>#50 84.4<br>#100 72.2<br>#200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                          | #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0   |           |          |
| #40 90.1<br>#50 84.4<br>#100 72.2<br>#200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                      | #16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.4    |           |          |
| #50                                                                                                                                                                                                  | #30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.7    |           |          |
| #100 72.2<br>#200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                              | #40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.1    |           |          |
| #200 58.9<br>0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                           | #50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.4    |           |          |
| 0.0347 mm. 31.4<br>0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                                        | #100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.2    |           |          |
| 0.0226 mm. 23.7<br>0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                                                           | #200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58.9    |           |          |
| 0.0133 mm. 17.8<br>0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                                                                              | 0.0347 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.4    |           |          |
| 0.0095 mm. 13.9<br>0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                                                                                                 | 0.0226 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.7    |           |          |
| 0.0068 mm. 10.2<br>0.0034 mm. 1.0                                                                                                                                                                    | 0.0133 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.8    |           |          |
| 0.0034 mm. 1.0                                                                                                                                                                                       | Promote and company of the promote and the pro |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
| 0.0014 mm. 0.2                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      | 0.0014 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2     |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |          |

Coarse

0.0

0.0

Fine

0.0

Coarse

0.0

| Material Description                                         |                          |  |  |  |  |  |  |
|--------------------------------------------------------------|--------------------------|--|--|--|--|--|--|
|                                                              |                          |  |  |  |  |  |  |
| Atterberg Limits (ASTM D 4318) PL= LL= PI=                   |                          |  |  |  |  |  |  |
| USCS (D 2487)=                                               | Classification<br>AASHTO |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$        |                          |  |  |  |  |  |  |
| Remarks                                                      |                          |  |  |  |  |  |  |
|                                                              |                          |  |  |  |  |  |  |
| Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ns/ac |                          |  |  |  |  |  |  |
| Checked By: cw                                               |                          |  |  |  |  |  |  |
| Title: PM                                                    |                          |  |  |  |  |  |  |
|                                                              |                          |  |  |  |  |  |  |

Silt

53.0

Clay

5.9

Location: S0014AR, S07 Sample Number: S35644

mple Number: \$35644 Depth: 12.5-13.8

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>\* (</sup>no specification provided)



31.4

46.4

21.6

**Date Sampled:** 

**Figure** 

| Test Results (ASTM D 6913 & ASTM D 1140) |                              |           | I D 1140) | Material Description                                                    |  |
|------------------------------------------|------------------------------|-----------|-----------|-------------------------------------------------------------------------|--|
| Opening                                  | Percent                      | Spec.*    | Pass?     |                                                                         |  |
| Size                                     | Finer                        | (Percent) | (X=Fail)  | ~                                                                       |  |
| 3/8 Inch<br>#4                           | 100.0<br>99.8                |           |           | Atterberg Limits (ASTM D 4318)                                          |  |
| #8<br>#10                                | 99.5<br>99.4                 |           |           | PL= LL= PI=                                                             |  |
| #16<br>#30                               | 98.4<br>84.2                 |           |           | USCS (D 2487)= Classification AASHTO (M 145)=                           |  |
| #40<br>#50<br>#100<br>#200               | 68.0<br>52.3<br>33.6<br>21.6 |           |           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                   |  |
|                                          |                              |           |           | Date Received: 11/1/11 Date Tested: 11/1/1 Tested By: ac Checked By: cw |  |
|                                          |                              |           |           | Title: pm                                                               |  |

Client: URS / HMM/ ARUP

Project No: 11-111

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

0.2

**Depth:** 14-15.2

0.4

0.0

0.0

Location: S0014AR, S08 Sample Number: S35645

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



39.9

Fine

34.3

| Test Results (ASTM D 6 Opening Percent |       | Spec.*    | Pass?    |
|----------------------------------------|-------|-----------|----------|
| Size                                   | Finer | (Percent) | (X=Fail) |
| 3/8 Inch                               | 100.0 |           |          |
| #4                                     | 99.8  |           |          |
| #8                                     | 99.6  |           |          |
| #10                                    | 99.5  |           |          |
| #16                                    | 98.0  |           |          |
| #30                                    | 75.7  |           |          |
| #40                                    | 59.6  |           |          |
| #50                                    | 46.0  |           |          |
| #100                                   | 32.2  |           |          |
| #200                                   | 25.3  |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |
|                                        |       |           |          |

Coarse

0.0

Fine

0.2

Coarse

0.3

|                                                                           | Material Descri                                                                 | ption                                                             |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                           |                                                                                 |                                                                   |
|                                                                           |                                                                                 |                                                                   |
| Atterk<br>PL=                                                             | oerg Limits (AST<br>LL=                                                         | <u>ГМ D 4318)</u><br>PI=                                          |
| USCS (D 2487)=                                                            | Classificatio<br>AASHT                                                          | on<br>O (M 145)=                                                  |
| D <sub>90</sub> = 0.8528<br>D <sub>50</sub> = 0.3368<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 0.7444 D <sub>30</sub> = 0.1240 C <sub>u</sub> = | D <sub>60</sub> = 0.4292<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                         |                                                                   |
|                                                                           |                                                                                 |                                                                   |
|                                                                           |                                                                                 |                                                                   |
| Date Received: 1                                                          |                                                                                 | e Tested: 11/1/11                                                 |
| Tested By: A                                                              | iC .                                                                            |                                                                   |
| Checked By: C                                                             | 2W                                                                              |                                                                   |
| Title: P                                                                  | M                                                                               |                                                                   |
|                                                                           |                                                                                 |                                                                   |

Silt

25.3

Clay

Location: S0014AR, S10 Sample Number: S35646

**Depth: 25-26.2** 

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>(</sup>no specification provided)



8.4

Fine

36.4

|            | TEST RESULTS |           |          |  |  |
|------------|--------------|-----------|----------|--|--|
| Opening    | Percent      | Spec.*    | Pass?    |  |  |
| Size       | Finer        | (Percent) | (X=Fail) |  |  |
| #10        | 100.0        |           |          |  |  |
| #16        | 99.2         |           |          |  |  |
| #30        | 95.4         |           |          |  |  |
| #40        | 91.6         |           |          |  |  |
| #50        | 84.8         |           |          |  |  |
| #100       | 67.4         |           |          |  |  |
| #200       | 55.2         |           |          |  |  |
| 0.0343 mm. | 36.0         |           |          |  |  |
| 0.0220 mm. | 32.0         |           |          |  |  |
| 0.0129 mm. | 28.0         |           |          |  |  |
| 0.0092 mm. | 24.0         |           |          |  |  |
| 0.0066 mm. | 22.1         |           |          |  |  |
| 0.0032 mm. | 18.8         |           |          |  |  |
| 0.0014 mm. | 10.0         |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |
|            |              |           |          |  |  |

Coarse

0.0

Fine

0.0

Coarse

0.0

#### **Material Description** Atterberg Limits (ASTM D 4318) **PI=** 17 LL= 28 PL= 11 Classification USCS (D 2487)= CL **AASHTO (M 145)=** A-6(6)Coefficients **D<sub>90</sub>=** 0.3852 **D<sub>50</sub>=** 0.0608 **D<sub>60</sub>=** 0.0970 **D<sub>85</sub>=** 0.3026 **D<sub>15</sub>=** 0.0021 **C<sub>c</sub>=** 1.86 $D_{30} = 0.0159$ **D<sub>10</sub>**= 0.0014 $C_{u} = 69.35$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ns/ac Checked By: cw Title: pm

Silt

34.1

Clay

21.1

Location: S0014AR, S14

% +3"

0.0

Sample Number: \$35649 Depth: 45-46.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>(</sup>no specification provided)



| Test Results (ASTM D 6913 & ASTM D 1140) |                                               |           | I D 1140) | Material Description                                                               |  |  |
|------------------------------------------|-----------------------------------------------|-----------|-----------|------------------------------------------------------------------------------------|--|--|
| Opening                                  | Percent                                       | Spec.*    | Pass?     |                                                                                    |  |  |
| Size                                     | Finer                                         | (Percent) | (X=Fail)  |                                                                                    |  |  |
| #16<br>#30<br>#40<br>#50<br>#100<br>#200 | 100.0<br>99.4<br>98.5<br>96.2<br>75.9<br>43.9 |           |           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |  |  |
|                                          |                                               |           |           | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM |  |  |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

1.5

54.6

43.9

**Date Sampled:** 

**Figure** 

0.0

Location: S0014R, S10 Sample Number: S35633

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

0.0

0.0

**Depth:** 25-26.4

0.0



22.6

Fine

17.9

|            | TEST RESULTS    |           |          |  |  |
|------------|-----------------|-----------|----------|--|--|
| Opening    | Opening Percent |           | Pass?    |  |  |
| Size       | Finer           | (Percent) | (X=Fail) |  |  |
| #10        | 100.0           |           |          |  |  |
| #16        | 94.4            |           |          |  |  |
| #30        | 82.4            |           |          |  |  |
| #40        | 77.4            |           |          |  |  |
| #50        | 73.2            |           |          |  |  |
| #100       | 66.8            |           |          |  |  |
| #200       | 59.5            |           |          |  |  |
| 0.0341 mm. | 32.9            |           |          |  |  |
| 0.0222 mm. | 23.7            |           |          |  |  |
| 0.0132 mm. | 13.5            |           |          |  |  |
| 0.0095 mm. | 7.3             |           |          |  |  |
| 0.0064 mm. | 1.2             |           |          |  |  |
| 0.0033 mm. | 0.4             |           |          |  |  |
| 0.0014 mm. | 0.0             |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 |           |          |  |  |
|            |                 | ×         |          |  |  |
|            |                 |           |          |  |  |

Coarse

0.0

0.0

Fine

0.0

Coarse

0.0

| Material Description                                  |
|-------------------------------------------------------|
|                                                       |
| PL= 31 Atterberg Limits (ASTM D 4318) LL= 33 PI= 2    |
| USCS (D 2487)= ML AASHTO (M 145)= A-4(1)              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| Remarks                                               |
|                                                       |
| Date Received: 11/1/11                                |
| Checked By: cw                                        |
| Title: PM                                             |

Silt

58.7

Location: S0014R, S15 Sample Number: S35636

Number: S35636 Depth: 50-51.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

Clay

0.8

<sup>\* (</sup>no specification provided)



| TE                                              | ST RESULTS                                           | (ASTM D 691 | 3)       | Material Description                                                                 |
|-------------------------------------------------|------------------------------------------------------|-------------|----------|--------------------------------------------------------------------------------------|
| Opening                                         | Percent                                              | Spec.*      | Pass?    |                                                                                      |
| Size                                            | Finer                                                | (Percent)   | (X=Fail) |                                                                                      |
| #10<br>#16<br>#30<br>#40<br>#50<br>#100<br>#200 | 100.0<br>99.9<br>87.2<br>63.8<br>36.7<br>12.2<br>6.5 |             |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                |
|                                                 |                                                      |             |          | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM |

36.2

57.3

(no specification provided)

Location: S0015R, S11A Sample Number: S36291

0.0

0.0

0.0

0.0

Depth: 30-30.7

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

6.5



| % +3"    |            | % G         | ravei   |         |        | % Sand       |               |                   | % Fines  |      |
|----------|------------|-------------|---------|---------|--------|--------------|---------------|-------------------|----------|------|
| % +3"    |            | Coarse      | Fine    | 9       | Coarse | Medium       | Fine          | Silt              |          | Clay |
| 0.0      |            | 0.0         | 1.6     | ;       | 0.5    | 29.0         | 44.5          |                   | 24.4     |      |
| Tost Po  | sculte (AS | TM D 6913 8 | ASTMI   | D 1140) |        |              | 84-4          | - i - i D i - ti  |          |      |
|          | •          |             |         |         |        |              | iviat         | erial Description | <u>1</u> |      |
| Opening  | Perce      | nt ∣ S      | pec.*   | Pas     | ss?    |              |               |                   |          |      |
| Size     | Fine       | r (Pe       | ercent) | (X=I    | Fail)  |              |               |                   |          |      |
| 3/8 Inch | 100.0      |             |         |         |        |              |               |                   |          |      |
| #4       | 98.4       |             |         |         |        |              | Atterberg     | Limits (ASTM D    | 4318)    |      |
| #8       | 98.0       |             |         |         |        | PL=          | LĬ            |                   | PI=      |      |
| #10      | 97.9       |             |         |         |        |              |               |                   |          |      |
| #16      | 97.4       |             |         |         |        |              |               | Classification    |          |      |
| #30      | 83.5       |             |         |         |        | USCS (E      | ) 2487)=      | AASHTO (M         | 145)=    |      |
| #40      | 68.9       |             |         |         |        |              |               | Coefficients      |          |      |
| #50      | 54.4       |             |         |         |        | l <b>-</b> . | 5005 <b>-</b> |                   | - 0046   | `    |

friable particles

**D<sub>90</sub>=** 0.7385

D<sub>50</sub>= 0.2651 D<sub>10</sub>=

Date Received: 11/1/11 Date Tested: 11/1/11 Tested By:  $\frac{ky}{cw}$  Checked By:  $\frac{cw}{Title: PM}$ 

Remarks

**D<sub>85</sub>=** 0.6261

D<sub>30</sub>= 0.1112 C<sub>u</sub>=

(no specification provided)

54.4

35.2

24.4

Location: S0016R, S04 Sample Number: S35665

#50

#100

#200

**Depth:** 15-16.3

**Date Sampled:** 

**D<sub>60</sub>=** 0.3460

D<sub>15</sub>= C<sub>C</sub>=

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|          | GRAIN SIZE - MM. |          |        |                 |      |            |      |  |  |
|----------|------------------|----------|--------|-----------------|------|------------|------|--|--|
| 9/ - 211 | % G              | % Gravel |        | % Gravel % Sand |      | nd % Fines |      |  |  |
| % +3"    | Coarse           | Fine     | Coarse | Medium          | Fine | Silt       | Clay |  |  |
| 0.0      | 0.0              | 0.0      | 0.0    | 45.5            | 48.4 | 6.1        |      |  |  |

| Test Results (ASTM D 6913 & ASTM D 1140) |         |           |          |  |  |  |  |
|------------------------------------------|---------|-----------|----------|--|--|--|--|
| Opening                                  | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size                                     | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| #4                                       | 100.0   |           |          |  |  |  |  |
| #8                                       | 100.0   |           |          |  |  |  |  |
| #10                                      | 100.0   |           |          |  |  |  |  |
| #16                                      | 99.5    |           |          |  |  |  |  |
| #30                                      | 76.8    |           |          |  |  |  |  |
| #40                                      | 54.5    |           |          |  |  |  |  |
| #50                                      | 32.7    |           |          |  |  |  |  |
| #100                                     | 11.0    |           |          |  |  |  |  |
| #200                                     | 6.1     |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |

# **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients **D<sub>60</sub>=** 0.4607 **D<sub>15</sub>=** 0.1858 **C<sub>c</sub>=** 1.27 **D<sub>90</sub>=** 0.7938 **D<sub>50</sub>=** 0.3975 **D<sub>10</sub>=** 0.1390 D<sub>85</sub>= 0.7039 D<sub>30</sub>= 0.2847 C<sub>u</sub>= 3.31 Remarks Date Received: 11/1/11 **Date Tested:** 11/1/11 Tested By: stu Checked By: cw Title: PM

(no specification provided)

Location: S0016R, S06 Sample Number: S35667

**Depth:** 25-26.1

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 



|          | GRAIN SIZE - MM. |                 |        |                |      |      |      |  |  |
|----------|------------------|-----------------|--------|----------------|------|------|------|--|--|
| 9/ - 211 | % G              | % Gravel % Sand |        | % Sand % Fines |      |      |      |  |  |
| % +3"    | Coarse           | Fine            | Coarse | Medium         | Fine | Silt | Clay |  |  |
| 0.0      | 0.0              | 0.0             | 0.0    | 43.4           | 42.2 | 14.4 |      |  |  |

| Test Results (ASTM D 6913 & ASTM D 1140) |       |           |          |  |  |  |  |  |
|------------------------------------------|-------|-----------|----------|--|--|--|--|--|
| Opening Percent Spec.* Pass              |       |           |          |  |  |  |  |  |
| Size                                     | Finer | (Percent) | (X=Fail) |  |  |  |  |  |
| #10                                      | 100.0 |           |          |  |  |  |  |  |
| #16                                      | 99.9  |           |          |  |  |  |  |  |
| #30                                      | 84.9  |           |          |  |  |  |  |  |
| #40                                      | 56.6  |           |          |  |  |  |  |  |
| #50                                      | 35.4  |           |          |  |  |  |  |  |
| #100                                     | 19.9  |           |          |  |  |  |  |  |
| #200                                     | 14.4  |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |
|                                          |       |           |          |  |  |  |  |  |

### **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= 0.6547 D<sub>50</sub>= 0.3888 D<sub>10</sub>= **D<sub>60</sub>=** 0.4428 **D<sub>85</sub>=** 0.6006 D<sub>15</sub>= 0.0815 C<sub>c</sub>= D<sub>30</sub>= 0.2603 C<sub>u</sub>= Remarks Date Received: 11/1/11 **Date Tested:** 11/1/11 Tested By: stu Checked By: cw Title: PM

(no specification provided)

Location: S0016R, S09 Sample Number: S35668

**Depth:** 40-40.9

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



Medium

37.8

Fine

45.8

| Test Results (ASTM D 6913 & ASTM D 1140) |         |           |          |  |  |  |  |
|------------------------------------------|---------|-----------|----------|--|--|--|--|
| Opening                                  | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size                                     | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| 3/8 Inch                                 | 100.0   |           |          |  |  |  |  |
| #4                                       | 99.3    |           |          |  |  |  |  |
| #8                                       | 95.7    |           |          |  |  |  |  |
| #10                                      | 93.9    |           |          |  |  |  |  |
| #16                                      | 86.6    |           |          |  |  |  |  |
| #30                                      | 68.3    |           |          |  |  |  |  |
| #40                                      | 56.1    |           |          |  |  |  |  |
| #50                                      | 41.9    |           |          |  |  |  |  |
| #100                                     | 20.1    |           |          |  |  |  |  |
| #200                                     | 10.3    |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |
|                                          |         |           |          |  |  |  |  |

Coarse

0.0

0.0

Fine

0.7

Coarse

5.4

|                                                                           | Material Descrip                                                                                | <u>tion</u>                                                              |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                           |                                                                                                 |                                                                          |
| Atte                                                                      | erberg Limits (ASTI<br>LL=                                                                      | M D 4318)<br>Pl=                                                         |
| USCS (D 2487)=                                                            | Classification AASHTO                                                                           | <u>1</u><br>0 (M 145)=                                                   |
| D <sub>90</sub> = 1.4530<br>D <sub>50</sub> = 0.3655<br>D <sub>10</sub> = | <u>Coefficients</u><br>D <sub>85</sub> = 1.0876<br>D <sub>30</sub> = 0.2160<br>C <sub>u</sub> = | D <sub>60</sub> = 0.4716<br>D <sub>15</sub> = 0.1125<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                                         |                                                                          |
|                                                                           |                                                                                                 |                                                                          |
| Date Received:<br>Tested By:                                              |                                                                                                 | Tested: 11/1/11                                                          |
| Checked By:                                                               | cw                                                                                              |                                                                          |
| Title:                                                                    | PM                                                                                              |                                                                          |
|                                                                           |                                                                                                 |                                                                          |

Silt

10.3

**Date Sampled:** 

Clay

\* (no specification provided)

Location: S0016R, S18
Sample Number: S35675
Depth: 85-86.3

SIERRA

**TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



| 0/ . 3 !! |           | % (        | ravel    |          | % San  | d         | % Fines              |      |
|-----------|-----------|------------|----------|----------|--------|-----------|----------------------|------|
| % +3"     |           | Coarse     | Fine     | Coarse   | Medium | Fine      | Silt                 | Clay |
| 0.0       |           | 0.0        | 0.9      | 1.5      | 16.7   | 37.2      | 43.7                 |      |
| Test R    | esults (A | STM D 6913 | & ASTM [ | D 1140)  |        | Mate      | erial Description    |      |
| Opening   | Perc      | ent        | Spec.*   | Pass?    |        |           | <u> </u>             |      |
| Size      | Fin       | ner (F     | ercent)  | (X=Fail) |        |           |                      |      |
| 3/8 Inch  | 100       | .0         |          |          |        |           |                      |      |
| #4        | 99        | .1         |          |          |        | Atterberg | Limits (ASTM D 4318) |      |

97.9 #8 #10 97.6 95.1 #16 #30 87.1 #40 80.9 #50 73.8 #100 59.8 #200 43.7

| Atte<br>PL=                                                               | rberg Limits (AS <sup>-</sup><br>LL=                                            | TM D 4318)<br>Pl=                                                      |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|
| USCS (D 2487)=                                                            | Classification AASHT                                                            | on<br>O (M 145)=                                                       |
| D <sub>90</sub> = 0.7304<br>D <sub>50</sub> = 0.0976<br>D <sub>10</sub> = | <u>Coefficients</u> D <sub>85</sub> = 0.5299 D <sub>30</sub> = C <sub>u</sub> = | S<br>D <sub>60</sub> = 0.1516<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                         |                                                                        |
|                                                                           |                                                                                 |                                                                        |
| Date Received: 1<br>Tested By: s                                          |                                                                                 | e Tested: 11/1/11                                                      |
| Checked By: c                                                             |                                                                                 |                                                                        |
| Title: P                                                                  | PM                                                                              |                                                                        |

(no specification provided)

Location: S0016R, S19 Sample Number: S35676

**Depth:** 90-91.5

**Date Sampled:** 

**Figure** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|          | Co            | arse Fir    | ie Coarse | Medium              | Fine                       |                                                                               | Silt                                                                                         |
|----------|---------------|-------------|-----------|---------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 0.0      | 0             | .0 2.       | 8 8.4     | 50.9                | 30.2                       |                                                                               | 7.7                                                                                          |
| Test Re  | sults (ASTM D | 6913 & ASTM | D 1140)   |                     |                            | Material Descri                                                               | ption                                                                                        |
| Opening  | Percent       | Spec.*      | Pass?     |                     |                            |                                                                               |                                                                                              |
| Size     | Finer         | (Percent)   | (X=Fail)  |                     |                            |                                                                               |                                                                                              |
| 3/8 Inch | 100.0         |             |           |                     |                            |                                                                               |                                                                                              |
| #4       | 97.2          |             |           |                     | Atterb                     | oerg Limits (AS                                                               | TM D 4318)                                                                                   |
| #8       | 90.3          |             |           | PL=                 |                            | LL=                                                                           | PI=                                                                                          |
| #10      | 88.8          |             |           |                     |                            |                                                                               |                                                                                              |
| #16      | 80.9          |             |           |                     | (D. 0.40 <del>T</del> )    | Classification                                                                |                                                                                              |
| #30      | 54.4          |             |           | USCS                | (D 2487)=                  | AASHI                                                                         | O (M 145)=                                                                                   |
| #40      | 37.9          |             |           |                     |                            | Coefficient                                                                   | s                                                                                            |
| #50      | 24.3          |             |           | Don= 2              | 2.2874                     |                                                                               |                                                                                              |
| #100     | 12.4          |             |           | D <sub>50</sub> = ( | ).5479                     | D <sub>30</sub> = 0.3525                                                      | D <sub>15</sub> = 0.1928                                                                     |
| #200     | 7.7           |             |           | D <sub>10</sub> = ( | 2.2874<br>).5479<br>).1099 | D <sub>85</sub> = 1.4454<br>D <sub>30</sub> = 0.3525<br>C <sub>u</sub> = 6.15 | <b>D<sub>60</sub>=</b> 0.6760<br><b>D<sub>15</sub>=</b> 0.1928<br><b>C<sub>c</sub>=</b> 1.67 |
|          |               |             |           |                     |                            | Remarks                                                                       |                                                                                              |
|          |               |             |           |                     |                            |                                                                               |                                                                                              |

(no specification provided)

**Location:** S0016R, S22 **Sample Number:** S35677 **Depth:** 105-106.0

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Date Received: 11/1/11

Tested By:  $\underline{\mathrm{stu}}$  Checked By:  $\mathrm{cw}$ 

Title: PM

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Tested:** 11/1/11

**Date Sampled:** 

Clay



| TEST RESULTS |         |           |          |  |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |  |
| #10          | 100.0   |           |          |  |  |  |  |  |
| #16          | 100.0   |           |          |  |  |  |  |  |
| #30          | 98.6    |           |          |  |  |  |  |  |
| #40          | 96.0    |           |          |  |  |  |  |  |
| #50          | 92.0    |           |          |  |  |  |  |  |
| #100         | 84.0    |           |          |  |  |  |  |  |
| #200         | 76.4    |           |          |  |  |  |  |  |
| 0.0324 mm.   | 53.3    |           |          |  |  |  |  |  |
| 0.0210 mm.   | 47.3    |           |          |  |  |  |  |  |
| 0.0125 mm.   | 39.4    |           | I.       |  |  |  |  |  |
| 0.0091 mm.   | 29.6    |           |          |  |  |  |  |  |
| 0.0066 mm.   | 21.7    |           |          |  |  |  |  |  |
| 0.0033 mm.   | 10.6    |           |          |  |  |  |  |  |
| 0.0014 mm.   | 4.2     |           |          |  |  |  |  |  |
| 1            |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |
| *            |         |           |          |  |  |  |  |  |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= 17 LL= 27 PI= 10 Classification USCS (D 2487)= CL **AASHTO (M 145)=** A-4(6) Coefficients D<sub>90</sub>= 0.2558 D<sub>50</sub>= 0.0267 D<sub>10</sub>= 0.0031 **D<sub>60</sub>=** 0.0420 **D<sub>15</sub>=** 0.0046 **C<sub>c</sub>=** 0.65 **D<sub>85</sub>=** 0.1665 **D<sub>30</sub>**= 0.0093 **C<sub>u</sub>**= 13.39 Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ns/ac Checked By: cw Title: PM

\* (no specification provided)

Location: S0017R, S25 Sample Number: S35696

Depth: 120-121.2

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #4      | 100.0   |           |          |
| #8      | 100.0   |           |          |
| #10     | 99.9    |           |          |
| #16     | 99.0    |           |          |
| #30     | 82.6    |           |          |
| #40     | 68.9    |           |          |
| #50     | 55.3    |           |          |
| #100    | 37.8    |           |          |
| #200    | 25.3    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

|                     | Material Descrip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Atte                | rberg Limits (AST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M D 4318)                     |
| PL=                 | LL=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PI=                           |
|                     | Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                             |
| USCS (D 2487)=      | The second secon | (M 145)=                      |
|                     | Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| <b>D</b> 90= 0.7493 | D <sub>85</sub> = 0.6409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D<sub>60</sub>=</b> 0.3412 |
| $D_{50} = 0.2537$   | <b>D<sub>30</sub>=</b> 0.0983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D <sub>15</sub> =             |
| D <sub>10</sub> =   | c <sub>u</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>C</sub> =              |
|                     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Date Received:      | 11/1/11 <b>Date</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tested: 11/1/11               |
| Tested By:          | ky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| Checked By:         | cw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                             |
|                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| Title:              | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

\* (no specification provided)

Location: S0018R, S07 Sample Number: S35701

701 **Depth:** 30-31.2

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
|-----------------|------------------|---------------------|-------------------|
| #4              | 100.0            | (i crocity          | (X=1 dil)         |
| #8              | 100.0            |                     |                   |
| #10             | 99.9             |                     |                   |
| #16             | 99.3             |                     |                   |
| #30             | 78.5             |                     |                   |
| #40             | 56.8             |                     |                   |
| #50             | 36.3             |                     |                   |
| #100            | 16.6             |                     |                   |
| #200            | 9.5              |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

(no specification provided)

Location: S0018R, S10 Sample Number: S35703

Depth: 45-45.8

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Percent | Spec.*                                                          | Pass?                                                 |
|---------|-----------------------------------------------------------------|-------------------------------------------------------|
| Finer   | (Percent)                                                       | (X=Fail)                                              |
| 100.0   |                                                                 |                                                       |
| 100.0   |                                                                 |                                                       |
| 99.5    |                                                                 |                                                       |
| 74.8    |                                                                 |                                                       |
| 54.1    |                                                                 |                                                       |
| 34.8    |                                                                 |                                                       |
| 16.2    |                                                                 |                                                       |
| 9.4     |                                                                 |                                                       |
|         |                                                                 |                                                       |
|         | Finer<br>100.0<br>100.0<br>99.5<br>74.8<br>54.1<br>34.8<br>16.2 | Finer (Percent)  100.0 100.0 99.5 74.8 54.1 34.8 16.2 |

| Material Description            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Atterl                          | oerg Limits (A           | STM D 4318)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PL=                             | LL=                      | PI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                 | Classificat              | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| USCS (D 2487)=                  |                          | HTO (M 145)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| ©13 #5                          | Coefficie                | nte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>D</b> <sub>90</sub> = 0.8260 | D <sub>85</sub> = 0.7339 | D <sub>60</sub> = 0.4679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| D <sub>50</sub> = 0.3972        | $D_{30} = 0.2675$        | D <sub>15</sub> = 0.1374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>D<sub>10</sub>=</b> 0.0812   | $C_{u} = 5.76$           | C <sub>c</sub> = 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Remarks                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Date Received: 1                | 1/1/11 <b>D</b> a        | ate Tested: 11/1/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Tested By: k                    | V                        | ACTION OF THE PROPERTY OF THE |  |  |
| _                               | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Checked By: c                   | W                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Title: P                        | 'M                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

(no specification provided)

Location: S0018R, S17 Sample Number: S35708

Depth: 80-81.2

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| SACRESCO. | Percent | Spec.*    | Pass?    |
|-----------|---------|-----------|----------|
| Size      | Finer   | (Percent) | (X=Fail) |
| 3/8 Inch  | 100.0   |           |          |
| #4        | 96.3    |           |          |
| #8        | 94.1    |           |          |
| #10       | 93.4    |           |          |
| #16       | 91.4    |           |          |
| #30       | 85.5    |           |          |
| #40       | 80.1    |           |          |
| #50       | 72.5    |           |          |
| #100      | 54.7    |           |          |
| #200      | 38.1    |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         |           |          |
|           |         | 1         |          |

| <b></b>                                              |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------|------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                      | Material D             | escripti  | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                      |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| A44                                                  |                        | - /ACTN   | I D 4040\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| PL= Atteri                                           | berg Limits            | S (ASTIVI | I D 4318)<br>Pl=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| PL=                                                  | LL=                    |           | PI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                      | Classif                | fication  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| USCS (D 2487)=                                       |                        | ASHTO     | (M 145)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                      | Cooffi                 | cionto    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| D 0.9415                                             |                        | cients    | D 0 1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| D <sub>90</sub> = 0.9415<br>D <sub>50</sub> = 0.1242 | D <sub>85</sub> = 0.57 | 02        | D <sub>60</sub> = 0.1840<br>D <sub>15</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| D <sub>50</sub> = 0.1242<br>D <sub>10</sub> =        | D <sub>30</sub> =      |           | C <sub>C</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -10                                                  | -                      |           | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 0.00 to 00.000 May 50                                | Rem                    | arks      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| friable particles                                    |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                        |           | Tar est in the state of the sta |  |  |
| Date Received: 1                                     | 1/1/11                 | Date T    | ested: 11/1/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                      |                        | Date i    | Colcu. 11/1/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Tested By: k                                         | У                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Checked By: c                                        | W                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Title: P                                             | M                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Titio. 1                                             | 1V1                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

Location: S0018R, S23 Sample Number: S35713

Depth: 110-111.2

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>(</sup>no specification provided)



47.1

28.0

| Opening  | Percent | Spec.*    | Pass?    |
|----------|---------|-----------|----------|
| Size     | Finer   | (Percent) | (X=Fail) |
| 3/8 Inch | 100.0   |           |          |
| #4       | 97.8    |           |          |
| #8       | 93.9    |           |          |
| #10      | 91.7    |           |          |
| #16      | 83.7    |           |          |
| #30      | 58.2    |           |          |
| #40      | 44.6    |           |          |
| #50      | 34.7    |           |          |
| #100     | 24.3    |           |          |
| #200     | 16.6    |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |
|          |         |           |          |

0.0

2.2

6.1

|                                                                           | Material Descri                                                                 | ption                                                             |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Atte                                                                      | rberg Limits (AS                                                                | ΓM D 4318)                                                        |
| PL=                                                                       | LL=                                                                             | PI=                                                               |
| USCS (D 2487):                                                            | Classificatio<br>= AASHT                                                        | o <u>n</u><br>O (M 145)=                                          |
| D <sub>90</sub> = 1.7311<br>D <sub>50</sub> = 0.4917<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 1.2498 D <sub>30</sub> = 0.2350 C <sub>u</sub> = | D <sub>60</sub> = 0.6260<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                         |                                                                   |
|                                                                           |                                                                                 |                                                                   |
| Date Received:                                                            |                                                                                 | e Tested: 11/1/11                                                 |
| Tested By:                                                                |                                                                                 |                                                                   |
| Checked By:                                                               |                                                                                 |                                                                   |
| Title:                                                                    | pm                                                                              |                                                                   |
|                                                                           |                                                                                 |                                                                   |

(no specification provided)

Location: S0018R, S26 Sample Number: S35715

0.0

Depth: 125-125.8

Date Sampled:

16.6

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening  | Percent | Spec.*    | Pass?   |
|----------|---------|-----------|---------|
| Size     | Finer   | (Percent) | (X=Fail |
| 3/8 Inch | 100.0   |           |         |
| #4       | 99.9    |           |         |
| #8       | 99.9    |           |         |
| #10      | 99.9    |           |         |
| #16      | 99.9    |           |         |
| #30      | 94.6    |           |         |
| #40      | 81.2    |           |         |
| #50      | 59.7    |           |         |
| #100     | 26.2    |           |         |
| #200     | 11.9    |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |
|          |         |           |         |

|                                         | Material De                        | scripti                    | on                       |
|-----------------------------------------|------------------------------------|----------------------------|--------------------------|
|                                         |                                    |                            |                          |
|                                         |                                    |                            |                          |
| *************************************** |                                    | / A O T B #                | D 4040)                  |
| Atter                                   | rberg Limits                       | (ASTIVI                    | D 4318)<br>PI=           |
| FL-                                     |                                    |                            | 101-                     |
| USCS (D 2487)=                          | Classific                          | the Average of the Average | (M 145)=                 |
| 0303 (5 2401)-                          |                                    |                            | (W 143)=                 |
| <b>D</b> <sub>90</sub> = 0.5168         | Coeffic<br>D <sub>85</sub> = 0.458 | _                          | D <sub>60</sub> = 0.3015 |
| D <sub>50</sub> = 0.2550                | D <sub>30</sub> = 0.167            | 1                          | D <sub>15</sub> = 0.0918 |
| D <sub>10</sub> =                       | c <sub>u</sub> =                   |                            | C <sub>C</sub> =         |
|                                         | Rema                               | rks                        |                          |
|                                         |                                    |                            |                          |
|                                         |                                    |                            |                          |
|                                         |                                    |                            |                          |
| Date Received:                          | - 71 - 71 - 7                      | Date T                     | ested: 11/1/11           |
| Tested By:                              | ky                                 |                            |                          |
| Checked By:                             | cw                                 |                            |                          |
| Title:                                  | PM                                 |                            |                          |
|                                         |                                    |                            |                          |

Location: S0019R, S07 Sample Number: S35722

Depth: 12.5-13.8

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>\* (</sup>no specification provided)



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #8      | 100.0   |           | 0.000    |
| #10     | 99.9    |           |          |
| #16     | 98.4    |           |          |
| #30     | 84.7    |           |          |
| #40     | 74.0    |           |          |
| #50     | 61.9    |           |          |
| #100    | 40.6    |           |          |
| #200    | 22.3    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

|                          | Material Des             | scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Attor                    | hera l imite (           | ASTM D 4318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3)      |
| PL=                      | LL=                      | PI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |
| \\                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| HCCC (D 0407)            | Classific                | The state of the s | 10      |
| USCS (D 2487)=           | AA                       | SHTO (M 145)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
|                          | Coeffici                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| $D_{90} = 0.7325$        | D <sub>85</sub> = 0.6061 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2837  |
| D <sub>50</sub> = 0.2074 | D <sub>30</sub> = 0.1011 | D <sub>15</sub> =<br>C <sub>c</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| D <sub>10</sub> =        | c <sub>u</sub> =         | o <sub>c</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|                          | Remar                    | ks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Date Received: 1         | 1/1/11 I                 | Date Tested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/1/11 |
| Tested By: k             | ty                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Checked By:              | ·w                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Title: I                 | 'M                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

(no specification provided)

Location: S0019R, S09 Sample Number: S35723

Depth: 20-21.3

Date Sampled:

**SIERRA** TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



Medium

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Fine

Silt

31.9

Clay

11/16/11

**Date Sampled:** 

**Figure** 

| al Description                                             | Material                               |                                        |          | ESULTS    | TEST RE |         |
|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                                        |          |           | 31.9    | #200    |
| mits (ASTM D 4318                                          |                                        |                                        |          |           |         |         |
| PI=                                                        | LL=                                    | PL=                                    |          |           |         |         |
| nssification<br>AASHTO (M 145)=                            |                                        | USCS (D 2487                           |          |           |         |         |
| <u>pefficients</u>                                         |                                        |                                        |          |           |         |         |
| D <sub>60</sub> =                                          | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =                      |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | C <sub>u</sub> =                       | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                     |                                        |          |           |         |         |
| Data Tastada                                               | - d. 11/17/11                          | Data Bassing                           |          |           |         |         |
| Date Tested:                                               | ed: 11/16/11<br>By: <u>ac</u>          | Tested E                               |          |           |         |         |
|                                                            | By: cw                                 | Checked E                              |          |           |         |         |
|                                                            | le: PM                                 | Tit                                    |          |           |         |         |

Coarse

Coarse

Location: S0001R, S01 Sample Number: S36223

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Fine

**Depth:** 0-5.0



| ial Description                                            | Material                                                   |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 21.2    | #200    |
| imits (ASTM D 4318)<br>Pl=                                 | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 24                                                  |          | -         |         |         |
| <u>oefficients</u>                                         | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | ved: 11/1/11                                               | í                                                           |          |           |         |         |
|                                                            |                                                            | Tested E                                                    |          |           |         |         |
|                                                            | <b>By:</b> <u>js</u>                                       | Checked E                                                   |          |           |         |         |
|                                                            | itle: PM                                                   | Tit                                                         |          |           |         |         |

Location: S0001R, S03 Sample Number: S35488 **SIERRA TESTING LABS, INC.** El Dorado Hills, CA

**Depth:** 6.5-8.0

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 

11/1/11

21.2



| Opening | Percent | Spec.*    | Pass?     |  |
|---------|---------|-----------|-----------|--|
| Size    | Finer   | (Percent) | (X=Fail)  |  |
| #200    | 8.7     | (Fercent) | (A=i ali) |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |
|         |         |           |           |  |

## 8.7 **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= Remarks **Date Received:** 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0001R, S04 Sample Number: S36224

**Depth:** 8-9.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Client:** URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST R  | ESULTS    | 1        |                                                             | Material                                                   | <b>Description</b>                                         |
|---------|---------|-----------|----------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                             |                                                            | •                                                          |
| Size    | Finer   | (Percent) | (X=Fail) |                                                             |                                                            |                                                            |
| #200    | 40.4    |           |          |                                                             |                                                            |                                                            |
|         |         |           |          | PL=                                                         | terberg Lim<br>LL=                                         | <u>its (ASTM D 4318)</u><br>Pl=                            |
|         |         |           |          | USCS (D 2487)                                               |                                                            | sification<br>AASHTO (M 145)=                              |
|         |         |           |          | D <sub>90</sub> =                                           | <u>Coe</u><br>D <sub>85</sub> =                            | fficients<br>D <sub>60</sub> =                             |
|         |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|         |         |           |          |                                                             | Re                                                         | marks                                                      |
|         |         |           |          |                                                             |                                                            |                                                            |
|         |         |           |          | Date Received<br>Tested By                                  |                                                            | Date Tested: 1                                             |
|         |         |           |          | Checked By                                                  | : js                                                       |                                                            |
|         |         |           |          | Title                                                       | <b>:</b> PM                                                |                                                            |

**Depth:** 12.5-14.0

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Location: S0001R, S07 Sample Number: S35489

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 

11/1/11

40.4



Medium

**Client:** URS / HMM/ ARUP **Project:** CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Fine

Silt

63.7

11/1/11

**Date Sampled:** 

**Figure** 

Clay

| l Description                                              | Material                                                   |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <u> </u>                                                   |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            | -                                                           | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 63.7    | #200    |
| nits (ASTM D 4318<br>21 PI=                                | Atterberg Lim<br>LL= 2                                     | PL= 18                                                      |          |           |         |         |
| <u>sification</u><br>AASHTO (M 145)=                       |                                                            | USCS (D 248                                                 |          |           |         |         |
| fficients                                                  | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| emarks                                                     |                                                            |                                                             |          |           |         |         |
| Date Tested:                                               | <b>d:</b> 11/1/11                                          | Date Receive                                                |          |           |         |         |
| Date Testeu.                                               |                                                            | Tested B                                                    |          |           |         |         |
|                                                            | <b>y:</b> js                                               | Checked B                                                   |          |           |         |         |
|                                                            | e: PM                                                      | Title                                                       |          |           |         |         |

% +3"

Location: S0001R, S09 Sample Number: S35500

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Coarse

Fine

**Depth:** 20-21.5

Coarse



|                                                             |          | SULTS     | TEST RE |         |
|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                             |          |           | 50.7    | #200    |
| PL= 14                                                      |          |           |         |         |
| USCS (                                                      |          |           |         |         |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
|                                                             |          |           |         |         |
| Date Re                                                     |          |           |         |         |
| Check                                                       |          |           |         |         |
|                                                             |          |           |         | *       |

|                                                             | Material D                                                                  | <u>Description</u>                                                          |
|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <b>Atter PL</b> = 14                                        | berg Limits<br>LL= 18                                                       | s (ASTM D 4318)<br>PI= 4                                                    |
| USCS (D 2487)=                                              |                                                                             | <u>fication</u><br>ASHTO (M 145)=                                           |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | <u>Coeffi</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | <u>cients</u><br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                             | Rem                                                                         | arks                                                                        |
| Date Received:<br>Tested By: <u>n</u>                       | nw                                                                          | Date Tested: 11/1/11                                                        |
| Checked By: js                                              |                                                                             |                                                                             |

(no specification provided)

Location: S0001R, S10 Sample Number: S35501

**Depth: 25-26.5** 

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



Medium

Fine

|           | TEST RE             | SULTS     |          |
|-----------|---------------------|-----------|----------|
| Opening   | Percent             | Spec.*    | Pass?    |
| Size      | Finer               | (Percent) | (X=Fail) |
| #200      | 28.9                |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
|           |                     |           |          |
| * (no sne | cification provided | )         |          |

Coarse

Fine

Coarse

## 28.9 **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= Remarks **Date Received:** 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0001R, S11A Sample Number: S36226

**Depth:** 30-30.8

**Date Sampled:** 

Clay

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 0.1     |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= Remarks **Date Received:** 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0001R, S13 Sample Number: S36227

**Depth:** 40-41.2

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



90.2

**Date Sampled:** 

**Figure** 

|         | TEST R  | ESULTS    |          | Material Description                                                                                                                                                  |
|---------|---------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                       |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                       |
| #200    | 90.2    |           |          |                                                                                                                                                                       |
|         |         | •         |          | PL= 21 Atterberg Limits (ASTM D 4318) LL= 26 PI= 5                                                                                                                    |
|         |         |           |          | USCS (D 2487)= Classification  AASHTO (M 145)=                                                                                                                        |
|         |         |           |          | Coefficients                                                                                                                                                          |
|         |         |           |          | D <sub>90</sub> = D <sub>85</sub> = D <sub>60</sub> =<br>D <sub>50</sub> = D <sub>30</sub> = D <sub>15</sub> =<br>D <sub>10</sub> = C <sub>u</sub> = C <sub>c</sub> = |
|         |         |           |          | Remarks                                                                                                                                                               |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/ Tested By: mw                                                                                                                 |
|         |         |           |          |                                                                                                                                                                       |
|         |         |           |          | Checked By: js  Title: PM                                                                                                                                             |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 50-51.5

Location: S0001R, S15

Sample Number: S35503

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



|         | TEST R           | ESULTS    |          |
|---------|------------------|-----------|----------|
| Opening | Percent          | Spec.*    | Pass?    |
| Size    | Finer            | (Percent) | (X=Fail) |
| #200    | 23.8             |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
| *       | ification provid |           |          |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= $D_{30} =$ D<sub>15</sub>= D<sub>10</sub>= C<sub>u</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: ky Title: cw

Location: S0002R, S01 Sample Number: S36228

**Depth:** 0-5.0

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 19.5    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         | •       |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

### **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks **Date Tested:** 11/16/11 Date Received: 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

**Location:** S0002R, S02 **Sample Number:** S36229

**Depth:** 5-6.3

**Date Sampled:** 

19.5

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



42.3

11/1/11

**Date Sampled:** 

**Figure** 

| aterial Description                                              | Material                                                   |                                        |          | ESULTS    | TEST RE |         |
|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------|-----------|---------|---------|
| •                                                                | _                                                          |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                                  |                                                            |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                  |                                                            |                                        |          |           | 42.3    | #200    |
| g Limits (ASTM D 4318                                            |                                                            |                                        |          |           |         |         |
| L= PI=                                                           | LL=                                                        | PL=                                    |          |           |         |         |
| Classification<br>AASHTO (M 145)=                                |                                                            | USCS (D 248                            |          |           |         |         |
| Coefficients                                                     | Coe                                                        |                                        |          |           |         |         |
| <sub>35</sub> = D <sub>60</sub> =                                | D <sub>85</sub> =                                          | D <sub>90</sub> =                      |          |           |         |         |
| B5= D <sub>60=</sub><br>B0= D <sub>15=</sub><br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                          | Re                                                         |                                        |          |           |         |         |
|                                                                  |                                                            |                                        |          |           |         |         |
| Date Tested:                                                     | <b>ed:</b> 11/1/11<br><b>By:</b> ky                        | Date Receive<br>Tested I               |          |           |         |         |
|                                                                  |                                                            | Checked I                              |          |           |         |         |
|                                                                  |                                                            |                                        |          |           |         |         |
|                                                                  | tle: PM                                                    | 10                                     |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 8-9.3

Location: S0002R, S04 Sample Number: S35504

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



| Davaant |           |          |
|---------|-----------|----------|
| Percent | Spec.*    | Pass?    |
| Finer   | (Percent) | (X=Fail) |
| 29.0    |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           |          |
|         |           | 29.0     |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ $D_{50} =$ $D_{30} =$ D<sub>15</sub>= C<sub>u</sub>= D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0002R, S05A Sample Number: S36230

**Depth:** 9.5-10.3

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| rial Description                | Material                                                   |                                                             |          | SULTS     | TEST RE |        |
|---------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                               |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                 |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                 |                                                            |                                                             |          |           | 86.4    | #200   |
| <u>imits (ASTM D 431</u>        | erberg Limi<br>LL= 32                                      | PL= 29                                                      |          |           |         |        |
| lassification<br>AASHTO (M 145) |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                    | Coef                                                       |                                                             |          |           |         |        |
|                                 | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                         | Re                                                         |                                                             |          |           |         |        |
| Date Tested                     |                                                            | Date Received: 1 Tested By: n                               |          |           |         |        |
|                                 |                                                            | Checked By: j                                               |          |           |         |        |
|                                 |                                                            |                                                             |          |           |         |        |
|                                 | PM                                                         | Title: <u>F</u>                                             |          |           |         |        |

Location: S0002R, S12
Sample Number: S35508

Depth: 35-36.4

SIERRA

**TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

86.4

**Date Sampled:** 



| al Description                                             | Material                                                   |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 52.0    | #200    |
| mits (ASTM D 4318) 22 PI= 7                                | Atterberg Lim                                              | <b>PL=</b> 15                                               |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 248                                                 |          |           |         |         |
| <u>pefficients</u>                                         |                                                            |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | <b>/ed:</b> 11/1/11                                        | Date Receiv                                                 |          |           |         |         |
|                                                            |                                                            | Tested                                                      |          |           |         |         |
|                                                            | <b>By:</b> <u>js</u>                                       | Checked                                                     |          |           |         |         |
|                                                            | itle: PM                                                   | Ti                                                          |          |           |         |         |

Location: S0002R, S13
Sample Number: S35509

Depth: 40-41.3

TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 

11/1/11

52.0



|         | TEST R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 81.7    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 24 LL= 24 PI= NP Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>50</sub>= D<sub>30</sub>= D<sub>10</sub>= C<sub>u</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: mw Checked By: js Title: PM

(no specification provided)

Location: S0002R, S14 Sample Number: S35510

0 **Depth:** 45-46.4

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| terial Description                                             | Material                               |                                        |          | ESULTS    | TEST R  |         |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|----------|-----------|---------|---------|
| • • • • • • • • • • • • • • • • • • •                          |                                        |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                                |                                        |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                |                                        |                                        |          |           | 65.7    | #200    |
| g Limits (ASTM D 43                                            |                                        |                                        |          |           |         |         |
| L= Pi                                                          | LL=                                    | PL=                                    |          |           |         |         |
| Classification<br>AASHTO (M 145                                | <u>Class</u><br>7)=                    | USCS (D 2487                           |          |           |         |         |
| Coefficients                                                   | Coe                                    |                                        |          |           |         |         |
|                                                                | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> = |          |           |         |         |
| 5= D <sub>60</sub><br>0= D <sub>15</sub><br>= C <sub>c</sub> = | <sub>D30</sub> =                       | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                        | Re                                     |                                        |          |           |         |         |
| 1 Date Tested                                                  | <b>ed:</b> 11/1/11                     |                                        |          |           |         |         |
|                                                                | <b>By:</b> <u>mw</u>                   | Tested E                               |          |           |         |         |
|                                                                | <b>By:</b> <u>j</u> s                  | Checked E                              |          |           |         |         |
|                                                                | tle: PM                                | Tit                                    |          |           |         |         |

 Location:
 S0002R, S15B

 Sample Number:
 S35511

 Depth:
 50.8-51.3

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

65.7

11/1/11

**Date Sampled:** 



| ial Description                                                           | Material I                                                 |                                                             |          | SULTS     | TEST RE |        |
|---------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
|                                                                           |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                                           |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                                           |                                                            |                                                             |          |           | 49.3    | #200   |
| imits (ASTM D 4318.<br>Pl=                                                | erberg Limit<br>LL=                                        | PL=                                                         |          |           |         |        |
| assification<br>AASHTO (M 145)=                                           |                                                            | USCS (D 2487)=                                              |          |           |         |        |
|                                                                           |                                                            | 0000 (5 2401)=                                              |          |           |         |        |
| oefficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                                                   | <del>-</del>                                               | - 10                                                        |          |           |         |        |
| Date Tested:                                                              | 11/1/11                                                    | Date Received: 1                                            |          |           |         |        |
|                                                                           | nw                                                         | Tested By: n                                                |          |           |         |        |
|                                                                           | s                                                          | Checked By: j                                               |          |           |         |        |
|                                                                           | PM                                                         | Title: I                                                    |          |           |         |        |

Location: S0002R, S17B Sample Number: S35512

Depth: 60.6-60.9

**Date Sampled:** 

49.3

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



| erial Description                          | Material I                                                 |                                                             |          | SULTS     | TEST RE |        |
|--------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                            |                                                            |                                                             |          |           | 82.4    | #200   |
| <u>Limits (ASTM D 4318</u><br>= 31 Pl=     | erberg Limit<br>LL= 31                                     | PL= 24                                                      |          |           |         |        |
| Classification<br>AASHTO (M 145)=          |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                               | Coef                                                       |                                                             |          |           |         |        |
| = D <sub>60</sub> =<br>= D <sub>15</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                    | Rer                                                        | -                                                           |          |           |         |        |
| Date Tested:                               |                                                            | Date Received: 1                                            |          |           |         |        |
|                                            | •                                                          | Checked By: j                                               |          |           |         |        |
|                                            |                                                            |                                                             |          |           |         |        |
|                                            | PM                                                         | Title: E                                                    |          |           |         |        |

Location: S0002R, S19
Sample Number: S35514

Depth: 70-71.5

TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

82.4

**Date Sampled:** 



| rial Description                                           | Material D                             |                      |                                        |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|----------------------------------------|----------------------|----------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                      |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                      |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                      |                                        |          |           | 65.4    | #200    |
| imits (ASTM D 4318 <u>.</u><br>Pl=                         | rberg Limit                            | Atte                 | PL=                                    |          |           |         |         |
|                                                            |                                        |                      |                                        |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                        | ) 2487) <del>=</del> | usc                                    |          |           |         |         |
| oefficients                                                | Coeff                                  |                      |                                        |          |           |         |         |
|                                                            | D <sub>85</sub> =<br>D <sub>30</sub> = |                      | D <sub>90</sub> :<br>D <sub>50</sub> : |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | C <sub>u</sub> =                       |                      | D <sub>50</sub>                        |          |           |         |         |
| Remarks                                                    | Ren                                    |                      |                                        |          |           |         |         |
| Date Tested:                                               | 1/1/11<br>nw                           | eceived: 1           |                                        |          |           |         |         |
|                                                            |                                        | ked By: js           |                                        |          |           |         |         |
|                                                            |                                        | Title: P             |                                        |          |           |         |         |
|                                                            | - IVI                                  | ritie: P             |                                        |          |           |         |         |

Location: S0002R, S21A Sample Number: S35515 **Depth:** 80-80.7 **SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

65.4

**Date Sampled:** 

**Figure** 

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 24.1    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

### **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0003R, S01 Sample Number: S36232

**Depth:** 0-5.0

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                            |
|---------|---------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                 |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                 |
| #200    | 89.7    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL=} & \text{LL=} & \text{Pl=} \\ & & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & & \underline{\text{AASHTO (M 145)=}} \\ & & \underline{\text{Coefficients}} \\ \text{D90=} & & D_{85=} & D_{60=} \\ \text{D50=} & & D_{30=} & D_{15=} \\ \text{D10=} & & C_{u=} & C_{c=} \\ \end{array}$ |
|         |         |           |          | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                            |

Location: S0003R, S04 Sample Number: S36233 **SIERRA TESTING LABS, INC.** El Dorado Hills, CA

**Depth:** 8-9.0

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 



Medium

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Fine

Silt

58.3

**Date Sampled:** 

**Figure** 

Clay

| rial Description                    | Material I                                                 |                                                             |          | SULTS     | TEST RE |        |
|-------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                   |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                     |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                     |                                                            |                                                             |          |           | 58.3    | #200   |
| <u>Limits (ASTM D 4318</u> : 28 PI= | rberg Limit<br>LL= 28                                      | Atte PL= 16                                                 |          |           |         |        |
| lassification<br>AASHTO (M 145)=    |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                        | Coef                                                       |                                                             |          |           |         |        |
|                                     | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                             | Rei                                                        |                                                             |          |           |         |        |
| Date Tested:                        |                                                            | Date Received: 1                                            |          |           |         |        |
|                                     | •                                                          | _                                                           |          |           |         |        |
|                                     |                                                            | Checked By: js                                              |          |           |         |        |
|                                     | PM                                                         | Title: P                                                    |          |           |         |        |

Coarse

Coarse

Location: S0003R, S05 Sample Number: S35518

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Fine

**Depth:** 9.5-11.0



| al Description                                             | Material [                                                 |                                                             |          | SULTS     | TEST RE |        |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                             |          |           | 69.4    | #200   |
| <u>nits (ASTM D 4318</u><br>32 Pl=                         | erberg Limit<br>LL= 32                                     | PL= 26                                                      |          |           |         |        |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| efficients                                                 | Coeff                                                      |                                                             |          |           |         |        |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                                    | Ren                                                        |                                                             |          |           |         |        |
| Date Tested:                                               |                                                            | Date Received: 1                                            |          |           |         |        |
|                                                            | •                                                          | Checked By: j                                               |          |           |         |        |
|                                                            |                                                            | Title: I                                                    |          |           |         |        |

Location: S0003R, S06 Sample Number: S35519 Depth: 11-12.5

TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

69.4

**Date Sampled:** 

Project No: 11-111 Figure



|         | TEST RE            | SULTS     |          |
|---------|--------------------|-----------|----------|
| Opening | Percent            | Spec.*    | Pass?    |
| Size    | Finer              | (Percent) | (X=Fail) |
| #200    | 10.2               |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
| * .     | rification provide |           |          |

# **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>C</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0003R, S08 Sample Number: S36234

**Depth:** 14-15.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*       | Pass?     |
|---------|---------|--------------|-----------|
| Size    | Finer   | (Percent)    | (X=Fail)  |
| #200    | 8.7     | (. 5. 55111) | (X-1 dil) |
| 200     | 0.7     |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |
|         |         |              |           |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>C</sub>= $D_{50} =$ $D_{10}^{-}$ Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: CW Title: PM

(no specification provided)

Location: S0003R, S10 Sample Number: S36235

**Depth: 25-26.4** 

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cription                                                                                                         |
|---------|---------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                      |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| #200    | 6.5     |           |          | Atterberg Limits (APPL= LL=  USCS (D 2487)= Classifica  USCS (D 2487)= AAS  Coefficie  D90= D85= D50= D30= D10= Cu=  Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PI=<br><u>ation</u><br>HTO (M 145)=<br><u>ents</u><br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|         |         |           |          | Date Received: 11/16/11 Date R | ate Tested: 11/16/11                                                                                             |

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 30-30.9

**Date Sampled:** 

**Figure** 

Location: S0003R, S11 Sample Number: S36236

**SIERRA** 

**TESTING LABS, INC.** 



**Date Sampled:** 

**Figure** 

| I Description                                              | Material I                                                 |                                                             |          | SULTS     | TEST RE |       |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|-------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | ening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size  |
|                                                            |                                                            |                                                             |          |           | 88.3    | #200  |
| <u>nits (ASTM D 431)</u><br>28 PI=                         | erberg Limit<br>LL= 28                                     | <b>Atte PL=</b> 22                                          |          |           |         |       |
|                                                            |                                                            | 1 L= 22                                                     |          |           |         |       |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 2487)=                                              |          |           |         |       |
| efficients                                                 | Coeff                                                      |                                                             |          |           |         |       |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |       |
| Remarks                                                    | <del>-</del>                                               | - 10-                                                       |          |           |         |       |
|                                                            |                                                            |                                                             |          |           |         |       |
| Date Tested:                                               |                                                            | Date Received: 1 Tested By: 1                               |          |           |         |       |
|                                                            | s                                                          | Checked By: j                                               |          |           |         |       |
|                                                            |                                                            | Title: I                                                    |          |           |         |       |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 35-36.5

Location: S0003R, S12 Sample Number: S35521

**SIERRA** 

**TESTING LABS, INC.** 



Medium

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Fine

Silt

53.6

11/1/11

**Date Sampled:** 

**Figure** 

Clay

| erial Description                                              | Material                                                   |                                                             |          | ESULTS    | TEST RI |         |
|----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                              |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                |                                                            |                                                             |          |           | 53.6    | #200    |
| <u>Limits (ASTM D 4318</u><br>= 17 Pl=                         | Atterberg Limit                                            | <b>PL=</b> 13                                               |          |           |         |         |
| Classification<br>AASHTO (M 145)=                              |                                                            | USCS (D 2487                                                |          |           |         |         |
| Coefficients                                                   | Coe                                                        |                                                             |          |           |         |         |
| = D <sub>60</sub> =<br>= D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                        | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                                   | <b>ed:</b> 11/1/11                                         | Date Receive                                                |          |           |         |         |
|                                                                | <b>By:</b> <u>ky</u>                                       | Tested E                                                    |          |           |         |         |
|                                                                | By: js                                                     | Checked I                                                   |          |           |         |         |
|                                                                | tle: PM                                                    | Tit                                                         |          |           |         |         |

Coarse

Coarse

Location: S0003R, S13 Sample Number: S35522

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Fine

**Depth:** 40-41.5



|         | TEST R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 11.5    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

**Location:** S0003R, S15 **Sample Number:** S36237

**Depth:** 50-50.8

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



11/1/11

**Date Sampled:** 

**Figure** 

| terial Description                                                                  | Materia                                                                  |                                                             |          | SULTS     | TEST RI |         |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                                                   |                                                                          |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                                     |                                                                          |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| Limits (ASTM D 4318) L= 22 Pl= Classification                                       | LL= 2                                                                    | PL= 19                                                      |          |           | 85.7    | #200    |
| AASHTO (M 145)=                                                                     |                                                                          | USCS (D 2487)                                               |          |           |         |         |
| Coefficients<br>5= D <sub>60</sub> =<br>0= D <sub>15</sub> =<br>0= C <sub>c</sub> = | <u>Coe</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                             | R                                                                        |                                                             |          |           |         |         |
| Date Tested:                                                                        | eived: 11/1/11<br>d By: ky                                               | Date Receive<br>Tested B                                    |          |           |         |         |
|                                                                                     | d By: js                                                                 | Checked B                                                   |          |           |         |         |
|                                                                                     | Title: PM                                                                | Titl                                                        |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 55.4-56.5

Location: S0003R, S16B Sample Number: S35523

**SIERRA** 

**TESTING LABS, INC.** 



|       | TEST RI | ESULTS    |          |                                                             | Material                                                   | <u>Description</u>                                         |
|-------|---------|-----------|----------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| ening | Percent | Spec.*    | Pass?    |                                                             |                                                            | •                                                          |
| Size  | Finer   | (Percent) | (X=Fail) |                                                             |                                                            |                                                            |
| ‡200  | 50.7    |           |          |                                                             |                                                            |                                                            |
|       |         |           |          | PL= 16                                                      | terberg Limi<br>LL= 21                                     | ts (ASTM D 4318<br>Pl=                                     |
|       |         |           |          | USCS (D 2487)=                                              |                                                            | ification<br>AASHTO (M 145)=                               |
|       |         |           |          |                                                             | Coef                                                       | ficients                                                   |
|       |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|       |         |           |          |                                                             | Re                                                         | marks                                                      |
|       |         |           |          | Date Received:<br>Tested By:                                |                                                            | Date Tested:                                               |
|       |         |           |          | Checked By:                                                 |                                                            |                                                            |
|       |         |           |          | Title:                                                      | -                                                          |                                                            |

Location: S0003R, S17
Sample Number: S35524

SIERRA
TESTING LABS, INC.

El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

50.7

**Date Sampled:** 

Project No: 11-111 Figure



|            | TEST RI           | ESULTS    |          |
|------------|-------------------|-----------|----------|
| Opening    | Percent           | Spec.*    | Pass?    |
| Size       | Finer             | (Percent) | (X=Fail) |
| #200       | 41.7              |           |          |
|            |                   |           |          |
|            |                   |           |          |
|            |                   |           |          |
|            |                   |           |          |
|            |                   |           |          |
|            |                   |           |          |
| * (======= | cification provid | - d)      |          |

# **Material Description** Atterberg Limits (ASTM D 4318) LL= PI= Classification CS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{30}^{30} =$ Remarks Received: 11/16/11 **Date Tested:** 11/16/11 ested By: ac ecked By: cw Title: PM

(no specification provided)

Location: S0003R, S19 Sample Number: S36238

**Depth:** 70-71.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



11/1/11

**Date Sampled:** 

**Figure** 

| al Description                                             | Materia                                                    |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 91.6    | #200    |
| mits (ASTM D 4318<br>NP PI=                                | Atterberg Lim<br>LL= N                                     | PL= NP                                                      |          |           |         |         |
| nssification<br>AASHTO (M 145)=                            |                                                            | USCS (D 2487):                                              |          |           |         |         |
| <u>pefficients</u>                                         | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | R                                                          |                                                             |          |           |         |         |
|                                                            |                                                            |                                                             |          |           |         |         |
| Date Tested:                                               |                                                            | Date Received<br>Tested By                                  |          |           |         |         |
|                                                            | <b>By:</b> js                                              | Checked By                                                  |          |           |         |         |
|                                                            | tle: PM                                                    | Title                                                       |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 75-76.5

Location: S0003R, S20 Sample Number: S35525

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST R  | ESULTS    |          |  |
|---------|---------|-----------|----------|--|
| Opening | Percent | Spec.*    | Pass?    |  |
| Size    | Finer   | (Percent) | (X=Fail) |  |
| #200    | 51.8    |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         | ~         |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
| *       |         |           |          |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>30</sub>= $D_{50} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0004R, S01 Sample Number: S36239

**Depth:** 0-5.0

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| L | GRAIN SIZE - mm. |          |      |        |        |      |         |      |  |  |  |
|---|------------------|----------|------|--------|--------|------|---------|------|--|--|--|
| Г | 0/ - 0 !!        | % Gravel |      | % Sand |        |      | % Fines |      |  |  |  |
| ı | % <b>+</b> 3"    | Coarse   | Fine | Coarse | Medium | Fine | Silt    | Clay |  |  |  |
|   |                  |          |      |        |        |      | 59.9    |      |  |  |  |
| Г |                  |          |      |        |        |      |         |      |  |  |  |

|                                                             |                                                                              | SULTS                                                                   | TEST RI                                                                                             |                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                             | Pass?                                                                        | Spec.*                                                                  | Percent                                                                                             | Opening                                                                                        |
|                                                             | (X=Fail)                                                                     | (Percent)                                                               | Finer                                                                                               | Size                                                                                           |
| A 44                                                        |                                                                              |                                                                         | 59.9                                                                                                | #200                                                                                           |
| PL= 26                                                      |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| USCS (D 2487)=                                              |                                                                              |                                                                         |                                                                                                     |                                                                                                |
|                                                             |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |                                                                              |                                                                         |                                                                                                     |                                                                                                |
|                                                             |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| Date Received: 1                                            |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| _                                                           |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| Title: I                                                    |                                                                              |                                                                         |                                                                                                     |                                                                                                |
| d: 1                                                        | PL= 26  USCS (D 2487)  D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | (X=Fail)  PL= 26  USCS (D 2487)  D90= D50= D10=  Date Received Tested B | Spec.* (X=Fail)   Pass? (X=Fail)   PL= 26   USCS (D 2487)   Dg0= D50= D10=   Date Received Tested B | Finer (Percent) (X=Fail)  59.9  PL= 26  USCS (D 2487)  D90= D50= D10=  Date Received Tested B: |

318) **PI=** 1 45)= 60= 15= c= ed: 11/1/11

Location: S0004R, S03 Sample Number: S35526

**Depth:** 6.5-7.9

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R           | ESULTS    |          |  |
|---------|------------------|-----------|----------|--|
| Opening | Percent          | Spec.*    | Pass?    |  |
| Size    | Finer            | (Percent) | (X=Fail) |  |
| #200    | 24.0             |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         |                  |           |          |  |
|         | i                |           |          |  |
| *       | ification provid |           |          |  |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85}=$ $D_{90} =$ $D_{60} =$ $D_{50} =$ $D_{30} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= C<sub>u</sub>= Remarks **Date Tested:** 11/16/11 Date Received: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0004R, S04 Sample Number: S36240

**Depth:** 8-9.4

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



11/1/11

**Date Sampled:** 

**Figure** 

| al Description                                             | Material                                                   |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 55.8    | #200    |
| mits (ASTM D 4318<br>25 PI=                                | Atterberg Lim<br>LL= 2                                     | PL= 17                                                      |          |           |         |         |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 2487)=                                              |          |           |         |         |
| efficients                                                 | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
|                                                            |                                                            |                                                             |          |           |         |         |
| Date Tested:                                               |                                                            | Date Received:<br>Tested By:                                |          |           |         |         |
|                                                            | By: js                                                     | Checked By:                                                 |          |           |         |         |
|                                                            | le: PM                                                     | · ·                                                         |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 9.5-10.5

Location: S0004R, S05A Sample Number: S35527

**SIERRA** 

**TESTING LABS, INC.** 



**Date Sampled:** 

**Figure** 

| erial Description                      | Material                                                   |                                                             |          | SULTS     | TEST RE |        |
|----------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
|                                        |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                        |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                        |                                                            |                                                             |          |           | 52.1    | #200   |
| <u>Limits (ASTM D 4318</u><br>= 17 PI= | erberg Limi<br>LL= 17                                      | PL= 15                                                      |          |           |         |        |
| lassification<br>AASHTO (M 145)=       |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                           | Coef                                                       |                                                             |          |           |         |        |
|                                        | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>U</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                | Rei                                                        |                                                             |          |           |         |        |
| Date Tested:                           |                                                            | Date Received: 1                                            |          |           |         |        |
|                                        | •                                                          | Checked By: j                                               |          |           |         |        |
|                                        |                                                            | Title: F                                                    |          |           |         |        |
|                                        | PM                                                         | ı itie: E                                                   |          |           |         |        |

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 11.6-12.5

Location: S0004R, S06B Sample Number: S35528

**SIERRA** 

**TESTING LABS, INC.** 



Medium

Fine

Silt

65.4

**Date Sampled:** 

Clay

| rial Description                       | Material D                                                 |                                                             |          | SULTS     | TEST RE |        |
|----------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                      |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                        |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                        |                                                            |                                                             |          |           | 65.4    | #200   |
| <u>Limits (ASTM D 4318</u><br>= 19 PI= | rberg Limits<br>LL= 19                                     | PL= 15                                                      |          |           |         |        |
| lassification<br>AASHTO (M 145)=       |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                           | Coeff                                                      |                                                             |          |           |         |        |
|                                        | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                | Rem                                                        | •                                                           |          |           |         |        |
| Date Tested:                           |                                                            | Date Received: 1                                            |          |           |         |        |
|                                        | •                                                          | Checked By: j                                               |          |           |         |        |
|                                        |                                                            |                                                             |          |           |         |        |
|                                        | 'M                                                         | Title: I                                                    |          |           |         |        |

Coarse

Location: S0004R, S07 Sample Number: S35529 **SIERRA TESTING LABS, INC.** 

El Dorado Hills, CA

Coarse

Fine

**Depth:** 12.5-13.1

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 **Figure** 



11/1/11

**Date Sampled:** 

**Figure** 

| Material Description                                                                                            | Materia                                                    |                                                             |          | SULTS     | TEST RE |         |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                                                                               |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                                 |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| erg Limits (ASTM D 4318                                                                                         | Atterhera I in                                             |                                                             |          |           | 65.5    | #200    |
| LL= 19 PI=                                                                                                      |                                                            | PL= 17                                                      |          |           |         |         |
| Classification<br>AASHTO (M 145)=                                                                               |                                                            | USCS (D 2487)                                               |          |           |         |         |
| Coefficients                                                                                                    | Coe                                                        |                                                             |          |           |         |         |
| D <sub>85</sub> = D <sub>60</sub> =<br>D <sub>30</sub> = D <sub>15</sub> =<br>C <sub>u</sub> = C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                                                         | R                                                          |                                                             |          |           |         |         |
|                                                                                                                 |                                                            |                                                             |          |           |         |         |
| 1/11 Date Tested:                                                                                               |                                                            | Date Receive<br>Tested B                                    |          |           |         |         |
|                                                                                                                 | d By: js                                                   | Checked B                                                   |          |           |         |         |
| ]                                                                                                               | Title: PM                                                  | Titl                                                        |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 14-15.5

Location: S0004R, S08 Sample Number: S35530

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST R           | ESULTS    |          |
|---------|------------------|-----------|----------|
| Opening | Percent          | Spec.*    | Pass?    |
| Size    | Finer            | (Percent) | (X=Fail) |
| #200    | 89.8             |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
|         |                  |           |          |
| *       | ification provid |           |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks **Date Tested:** 11/16/11 Date Received: 11/16/11 Tested By: ky Checked By: cw Title: PM

Location: S0004R, S09 Sample Number: S36241

**Depth:** 20-21.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| laterial Description                                                                           | Materi                                                     |                                                             |          | ESULTS    | TEST RI |         |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                                                              |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                                                |                                                            |                                                             |          |           | 79.0    | #200    |
| erg Limits (ASTM D 4318)<br>LL= PI=                                                            |                                                            | PL=                                                         |          |           |         |         |
| Classification<br>AASHTO (M 145)=                                                              |                                                            | USCS (D 248                                                 |          |           |         |         |
| Coefficients                                                                                   | Co                                                         |                                                             |          |           |         |         |
| P <sub>85</sub> = D <sub>60</sub> =<br>P <sub>30</sub> = D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                                        |                                                            |                                                             |          |           |         |         |
| /11 Date Tested:                                                                               | ived: 11/1/11                                              | Date Receiv                                                 |          |           |         |         |
|                                                                                                |                                                            | Tested                                                      |          |           |         |         |
|                                                                                                | d By: is                                                   | Checked                                                     |          |           |         |         |
|                                                                                                | Fitle: PM                                                  |                                                             |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 25.6-25.9

Location: S0004R, S10B Sample Number: S35531

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

11/1/11

**Date Sampled:** 



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 28.4    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         | ,         |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{30} =$ C<sub>u</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0004R, S11 Sample Number: S36242

**Depth:** 30-31.4

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |          |  |  |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |  |  |
| #200         | 32.1    |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
| *            |         |           |          |  |  |  |  |  |  |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

Location: S0004R, S12 Sample Number: S36243

**Depth:** 35-36.3

**Date Sampled:** 

32.1

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | ESULTS           |                                | - 1                                           |
|---------|------------------|--------------------------------|-----------------------------------------------|
| Percent | Spec.*           | Pass?                          |                                               |
| Finer   | (Percent)        | (X=Fail)                       |                                               |
| 63.4    |                  |                                |                                               |
|         |                  |                                | PI                                            |
|         |                  |                                | U                                             |
|         |                  |                                | Dg<br>Dg<br>D1                                |
|         |                  |                                |                                               |
|         |                  |                                | Date                                          |
| . *     |                  |                                | C                                             |
|         | Percent<br>Finer | Percent Spec.* Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail) |

# **Material Description Atterberg Limits (ASTM D 4318)** Classification S (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ $D_{30} =$ D<sub>15</sub>= C<sub>c</sub>= C<sub>u</sub>= Remarks Received: 11/16/11 **Date Tested:** 11/16/11 ested By: ky cked By: cw Title: PM

Location: S0004R, S13

Sample Number: S36244 **Depth:** 40-41.0 **Date Sampled:** 

63.4

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| terial Description                                                 | Material Description                                       |                                                             |          | ESULTS    | TEST RI |         |
|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <del>.</del>                                                       |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                    |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                    |                                                            |                                                             |          |           | 60.5    | #200    |
| <u>g Limits (ASTM D 4318)</u><br>L= 22 PI=                         | Atterberg Lim<br>LL= 22                                    | <b>PL=</b> 17                                               |          |           |         |         |
| Classification AASHTO (M 145)=                                     |                                                            | USCS (D 248                                                 |          |           |         |         |
| Coefficients                                                       | Coe                                                        |                                                             |          |           |         |         |
| 5= D <sub>60</sub> =<br>0= D <sub>15</sub> =<br>= C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                            | Re                                                         |                                                             |          |           |         |         |
| 1 Date Tested:                                                     | /ed: 11/1/11                                               |                                                             |          |           |         |         |
|                                                                    |                                                            | Tested                                                      |          |           |         |         |
|                                                                    | <b>By:</b> <u>js</u>                                       | Checked                                                     |          |           |         |         |
|                                                                    | itle: PM                                                   | Ti                                                          |          |           |         |         |

Location: S0004R, S14
Sample Number: S35532
Depth: 45-45.9

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

60.5

11/1/11

**Date Sampled:** 

Project No: 11-111 Figure



11/1/11

**Date Sampled:** 

**Figure** 

| aterial Description                                                                     | Material                                                   |                                                             |          | ESULTS    | TEST RI |         |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                                                       |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                                         |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                                         |                                                            |                                                             |          |           | 96.9    | #200    |
| g <u>Limits (ASTM D 4318)</u><br>L=                                                     | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| Classification AASHTO (M 145)=                                                          |                                                            | USCS (D 248)                                                |          |           |         |         |
| Coefficients                                                                            | Coe                                                        |                                                             |          |           |         |         |
| B <sub>5=</sub> D <sub>60=</sub><br>B <sub>0=</sub> D <sub>15=</sub><br>C <sub>c=</sub> | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                                 | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                                                            | <b>red:</b> 11/1/11                                        | Date Receive                                                |          |           |         |         |
|                                                                                         |                                                            | Tested I                                                    |          |           |         |         |
|                                                                                         | By: js                                                     | Checked I                                                   |          |           |         |         |
|                                                                                         | itle: PM                                                   | Tit                                                         |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 53.9-54.4

**Location:** S0004R, S17B **Sample Number:** S35533

**SIERRA** 

**TESTING LABS, INC.** 



11/1/11

**Date Sampled:** 

**Figure** 

| rial Description                                           | Material                                                   |                                                             |          | ESULTS    | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <del></del>                                                |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 67.3    | #200    |
| <u>imits (ASTM D 4318)</u><br>26 PI=                       | Atterberg Lim<br>LL= 20                                    | <b>PL=</b> 19                                               |          |           |         |         |
| lassification<br>AASHTO (M 145)=                           |                                                            | USCS (D 248                                                 |          |           |         |         |
| Coefficients                                               |                                                            |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | /ed: 11/1/11                                               | Date Receiv                                                 |          |           |         |         |
|                                                            | <b>By:</b> <u>ky</u>                                       | Tested                                                      |          |           |         |         |
|                                                            | By: js                                                     | Checked                                                     |          |           |         |         |
|                                                            | itle: PM                                                   | Ti                                                          |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 65.2-66.3

Location: S0004R, S20B Sample Number: S35535

**SIERRA** 

**TESTING LABS, INC.** 



|             | TEST R                          | ESULTS    |           | Material Description                  |
|-------------|---------------------------------|-----------|-----------|---------------------------------------|
| Opening     | Percent                         | Spec.*    | Pass?     |                                       |
| Size        | Finer                           | (Percent) | (X=Fail)  |                                       |
| #200        | 55.5                            |           |           | Atterberg Limits (ASTM D 4318) PL= 25 |
|             |                                 |           |           | Tested By: ky  Checked By: js         |
|             |                                 | :         |           | Title: PM                             |
| * (no speci | ification provid                | ed)       |           |                                       |
| cation: S00 | 004R, S21<br><b>ber:</b> S35536 | Depth     | : 70-70.9 | Date Sampled:                         |

Client: URS / HMM/ ARUP

Project No: 11-111

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Figure** 

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 13.8    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= $D_{85} =$ $D_{60} =$ $D_{50} =$ $D_{30} =$ D<sub>15</sub>= D<sub>10</sub>= C<sub>u</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S02 Sample Number: S36246

**Depth:** 5-6.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



11/1/11

**Date Sampled:** 

**Figure** 

| terial Description                            | Material                                                   |                                                             |          | ESULTS    | TEST R  |         |
|-----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                             |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                               |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                               |                                                            |                                                             |          |           | 59.7    | #200    |
| g <u>Limits (ASTM D 4</u><br>L= 26            | Atterberg Lim                                              | PL= 22                                                      |          |           |         |         |
| Classification<br>AASHTO (M 14                |                                                            | USCS (D 248                                                 |          |           |         |         |
| Coefficients                                  | Coe                                                        |                                                             |          |           |         |         |
| 5= D <sub>0</sub><br>0= D<br>= C <sub>0</sub> | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                       | Re                                                         |                                                             |          |           |         |         |
| 1 Date Teste                                  | <b>/ed:</b> 11/1/11                                        | Date Receiv                                                 |          |           |         |         |
|                                               | <b>By:</b> <u>ac</u>                                       | Tested                                                      |          |           |         |         |
|                                               | By: js                                                     | Checked                                                     |          |           |         |         |
|                                               | itle: PM                                                   | Ti                                                          |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 9.5-11.0

Location: S0005R, S05 Sample Number: S35537

**SIERRA** 

**TESTING LABS, INC.** 



| rial Description                 | Material I                                                 |                                                             |          | SULTS     | TEST RE |        |
|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| <del></del>                      |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                  |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                  |                                                            |                                                             |          |           | 57.6    | #200   |
| <u>imits (ASTM D 4318</u> 23 PI= | erberg Limit<br>LL= 23                                     | PL= 20                                                      |          |           |         |        |
| lassification<br>AASHTO (M 145)= |                                                            | USCS (D 2487)=                                              |          |           |         |        |
| Coefficients                     | Coef                                                       |                                                             |          |           |         |        |
|                                  | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                          | Rer                                                        |                                                             |          |           |         |        |
| Date Tested:                     |                                                            | Date Received: 1                                            |          |           |         |        |
|                                  |                                                            | Checked By: j                                               |          |           |         |        |
|                                  |                                                            |                                                             |          |           |         |        |
|                                  | <sup>2</sup> M                                             | Title: I                                                    |          |           |         |        |

Location: S0005R, S06 Sample Number: S35538

**Depth:** 11-12.5

**Date Sampled:** 

57.6

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 Figure



| TEST RESULTS |                     |           |          |  |  |  |  |
|--------------|---------------------|-----------|----------|--|--|--|--|
| Opening      | Percent             | Spec.*    | Pass?    |  |  |  |  |
| Size         | Finer               | (Percent) | (X=Fail) |  |  |  |  |
| #200         | 67.7                |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
|              |                     |           |          |  |  |  |  |
| * (======    | saification provide | - 1)      |          |  |  |  |  |

#### **Material Description Atterberg Limits (ASTM D 4318)** LL= 23 **PL=** 18 PI= 5 Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30} =$ D<sub>15</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: js Title: PM

(no specification provided)

Location: S0005R, S07 Sample Number: S35539

**Depth:** 12.5-13.3

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 54.7    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>50</sub>= D<sub>15</sub>= C<sub>C</sub>= D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S08 Sample Number: S36247

**Depth:** 14-14.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RESULTS |           |          |  |  |  |  |  |  |  |
|---------|--------------|-----------|----------|--|--|--|--|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |  |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |  |  |  |  |
| #200    | 17.5         |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |  |
| *       |              |           |          |  |  |  |  |  |  |  |

# **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>30</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S09 Sample Number: S36248

**Depth:** 20-20.8

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |          |
|--------------|---------|-----------|----------|
| Opening      | Percent | Spec.*    | Pass?    |
| Size         | Finer   | (Percent) | (X=Fail) |
| #200         | 74.4    |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |
|              |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 18 LL= 25 **PI=** 7 Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>C</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: js Title: PM

Location: S0005R, S11B Sample Number: S35540

**Depth:** 30.6-31.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |          |  |  |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |  |  |
| #200         | 7.3     |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ $D_{90} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50}^{50} =$ D<sub>30</sub>= D<sub>10</sub>= Cu= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0005R, S12 Sample Number: S36250

**Depth:** 35-36.2

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <u>Mate</u>                                                                |          | SULTS     | TEST RE |         |
|----------------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                            | Pass?    | Spec.*    | Percent | Opening |
|                                                                            | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                            |          |           | 59.5    | #200    |
| Atterberg I                                                                |          |           |         |         |
| PL= 27 LL                                                                  |          |           |         |         |
| <u>C</u>                                                                   |          |           |         |         |
| USCS (D 2487)=                                                             | 1        |           |         |         |
| <u>C</u>                                                                   |          |           |         |         |
| D <sub>90</sub> = D <sub>85</sub> :<br>D <sub>50</sub> = D <sub>30</sub> : |          |           |         |         |
| D <sub>50</sub> = D <sub>30</sub> :<br>D <sub>10</sub> = C <sub>u</sub> =  |          |           |         |         |
|                                                                            |          |           |         |         |
|                                                                            |          |           |         |         |
|                                                                            |          |           |         |         |
|                                                                            |          |           |         |         |
| Date Received: 11/1/11                                                     |          |           |         |         |
| Tested By: ac                                                              |          |           |         |         |
| Checked By: js                                                             |          |           |         |         |
| Title: PM                                                                  |          |           |         |         |

### erial Description Limits (ASTM D 4318) **-=** 33 **PI=** 6 lassification AASHTO (M 145)= **Coefficients** $D_{60} =$ D<sub>15</sub>= C<sub>C</sub>= Remarks Date Tested: 11/1/11

Location: S0005R, S13 Sample Number: S35541

**Depth:** 40-41.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | <br>      | TEST RE |         |
|---------|-----------|---------|---------|
| Pass?   | Spec.*    | Percent | Opening |
| X=Fail) | (Percent) | Finer   | Size    |
|         |           | 79.7    | #200    |
|         |           |         |         |
|         |           |         |         |
|         |           |         |         |
|         |           |         |         |
|         |           |         |         |
|         |           |         |         |
|         |           |         |         |
|         |           |         | 1       |

#### **Material Description Atterberg Limits (ASTM D 4318)** = 27 **PI=** 9 LL= 36 Classification CS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ D<sub>30</sub>= C<sub>u</sub>= D<sub>15</sub>= C<sub>C</sub>= Remarks Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac ecked By: js Title: PM

(no specification provided)

Location: S0005R, S14 Sample Number: S35542

**Depth:** 45-46.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |       |           |          |  |  |  |  |  |  |
|--------------|-------|-----------|----------|--|--|--|--|--|--|
| Opening      | Pass? |           |          |  |  |  |  |  |  |
| Size         | Finer | (Percent) | (X=Fail) |  |  |  |  |  |  |
| #200         | 56.6  |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |
|              |       |           |          |  |  |  |  |  |  |

(no specification provided)

Location: S0005R, S15 Sample Number: S36251

**Depth:** 46.5-47.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Material Desc                                              | Mater                                                      | <b>Material Description</b>                                                                       |       | SULTS     | TEST R  |        |
|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|-----------|---------|--------|
|                                                            |                                                            | •                                                                                                 | ss?   | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                                                                   | Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                                                                   |       |           | 64.5    | #200   |
| erg Limits (A<br>LL= 24                                    |                                                            | Atterberg Limits (ASTM D 43 LL= 24 P                                                              |       |           |         |        |
|                                                            |                                                            | Classification 37)= AASHTO (M 14                                                                  |       |           |         |        |
| Coefficier                                                 | C                                                          | Coefficients                                                                                      |       |           |         |        |
| ) <sub>85</sub> =<br>) <sub>30</sub> =<br>S <sub>u</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>85</sub> = D <sub>6</sub> D <sub>30</sub> = D <sub>1</sub> C <sub>u</sub> = C <sub>c</sub> |       |           |         |        |
| Remarks                                                    |                                                            | Remarks                                                                                           |       |           |         |        |
| ./11 <b>D</b> a                                            |                                                            | red: 11/1/11 Date Teste                                                                           |       |           |         |        |
|                                                            | By: <u>ac</u>                                              | <b>By:</b> ac                                                                                     |       |           |         |        |
|                                                            | <b>By:</b> <u>j</u> s                                      | By: js                                                                                            |       |           |         |        |
|                                                            | le: PM                                                     | itle: PM                                                                                          |       |           |         |        |

Location: S0005R, S17 Sample Number: S35543

**Depth:** 49.5-51.0

**Date Sampled:** 

11/1/11

64.5

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|                                                                                                           | Fine                                                   | Medium                                                      | Coarse  | Fine    | Coarse     |      |        |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|---------|---------|------------|------|--------|
| 74.9                                                                                                      |                                                        |                                                             |         |         |            |      |        |
| Material Description                                                                                      | Ma                                                     |                                                             |         | 'S      | TEST RESUL | Т    |        |
| <del></del>                                                                                               |                                                        |                                                             | Pass?   | рес.*   | cent S     | Perc | pening |
|                                                                                                           |                                                        |                                                             | X=Fail) | ercent) | ner (P     | Fin  | Size   |
|                                                                                                           |                                                        |                                                             |         |         | 1.9        | 74   | 200    |
| Atterberg Limits (ASTM D 4318)  LL= PI=                                                                   |                                                        | PL=                                                         |         |         |            |      |        |
| Classification AASHTO (M 145)=                                                                            |                                                        | USCS (D                                                     |         |         |            |      |        |
| <u>Coefficients</u>                                                                                       |                                                        |                                                             |         |         |            |      |        |
| D <sub>85</sub> = D <sub>60</sub> = D <sub>30</sub> = D <sub>15</sub> = C <sub>u</sub> = C <sub>c</sub> = | D <sub>8</sub> :<br>D <sub>3</sub> :<br>C <sub>u</sub> | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |         |         |            |      |        |
| Remarks                                                                                                   |                                                        |                                                             |         |         |            |      |        |

(no specification provided)

Location: S0005R, S23 Sample Number: S35545

**Depth:** 80-80.5

**Date Sampled:** 

**Date Tested:** 11/1/11

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Date Received: 11/1/11

Tested By: <u>ac</u> Checked By: js

Title: PM



| <u>Mate</u>                       |                                                             |          | SULTS     | TEST RE |         |
|-----------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                   |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                   |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                   |                                                             |          |           | 13.9    | #200    |
| <u>Atterberg</u><br>PL= Ll        | PL=                                                         |          |           |         |         |
| <u>C</u><br>USCS (D 2487)=        | USC                                                         |          |           |         |         |
| D <sub>90</sub> = D <sub>85</sub> |                                                             |          |           |         |         |
| D <sub>50</sub> = D <sub>30</sub> | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
|                                   |                                                             |          |           |         |         |
|                                   |                                                             |          |           |         |         |
| te Received: 11/16/1              | Date R                                                      |          |           |         |         |
| Tested By: ky                     | Те                                                          |          |           |         |         |
| Checked By: cw                    | Che                                                         |          |           |         |         |
| Title: PM                         |                                                             |          |           |         |         |

## 

(no specification provided)

Location: S0006R, S06 Sample Number: S36253

**Depth:** 0-5.0

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TES  | TEST R  | ESULTS    |          |                                                       | Material                                             | <b>Description</b>                                                             |
|------|---------|-----------|----------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|
| rcen | Percent | Spec.*    | Pass?    |                                                       |                                                      | •                                                                              |
| iner | Finer   | (Percent) | (X=Fail) |                                                       |                                                      |                                                                                |
| 58.2 | 68.2    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | D <sub>85</sub> = D <sub>80</sub> = C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D60= D15= Cc= marks |
|      |         | ,         |          | Date Received Tested B                                | y: <u>ac</u>                                         | Date Tested: 1                                                                 |

Location: S0006R, S08 Sample Number: S35547

**Depth:** 14-15.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

11/1/11

68.2



|         | TEST R  | ESULTS    |          |                                                       | Material                                                                                             | Description                                                                     |
|---------|---------|-----------|----------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                       |                                                                                                      |                                                                                 |
| Size    | Finer   | (Percent) | (X=Fail) |                                                       |                                                                                                      |                                                                                 |
| #200    | 75.2    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | LL=<br><u>Class</u><br>=<br><u>Coe</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D60= D15= Cc= emarks |
|         |         |           |          | Date Received:<br>Tested By:<br>Checked By:           | ac                                                                                                   | Date Tested:                                                                    |
|         |         |           |          | Title:                                                | PM                                                                                                   |                                                                                 |

(no specification provided)

Location: S0006R, S09 Sample Number: S35548

**Depth:** 20-21.3

**Date Sampled:** 

75.2

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|           | TEST RE            | SULTS     |          |  |
|-----------|--------------------|-----------|----------|--|
| Opening   | Percent            | Spec.*    | Pass?    |  |
| Size      | Finer              | (Percent) | (X=Fail) |  |
| #200      | 71.5               |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
|           |                    |           |          |  |
| * (no spo | cification provide | 4)        |          |  |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= **AASHTO (M 145)=** Coefficients $D_{85} =$ $D_{60} =$ $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: jm Checked By: js Title: PM

(no specification provided)

Location: S0006R, S13 Sample Number: S35551

**Depth:** 36.5-38.0

**Date Sampled:** 

**Figure** 

71.5

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |                   |           |          |  |  |  |  |  |  |  |
|--------------|-------------------|-----------|----------|--|--|--|--|--|--|--|
| Opening      | Percent           | Spec.*    | Pass?    |  |  |  |  |  |  |  |
| Size         | Finer             | (Percent) | (X=Fail) |  |  |  |  |  |  |  |
| #200         | 32.6              |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
|              |                   |           |          |  |  |  |  |  |  |  |
| *            | ification provide |           |          |  |  |  |  |  |  |  |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0006R, S14 Sample Number: S36254

Depth: 38-39.4

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| 0/ - 011 |         | % Gravel  |            | % Sand |        | % Fines        |      |
|----------|---------|-----------|------------|--------|--------|----------------|------|
| % +3"    | Co      | arse F    | ine Coarse | Medium | Fine   | Silt           | Clay |
|          |         |           |            |        |        | 39.5           | 5    |
|          | TEST    | RESULTS   |            |        | Materi | al Description |      |
| Opening  | Percent | Spec.*    | Pass?      |        |        | •              |      |
| Size     | Finer   | (Percent) | (X=Fail)   |        |        |                |      |

|   |         | TEST RE | ESULTS    |          |
|---|---------|---------|-----------|----------|
|   | Opening | Percent | Spec.*    | Pass?    |
|   | Size    | Finer   | (Percent) | (X=Fail) |
|   | #200    | 39.5    |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
| ١ |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
| ı |         |         |           |          |
|   |         |         |           |          |
|   |         |         |           |          |
| L | *       |         |           |          |

#### **Atterberg Limits (ASTM D 4318)** PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks **Date Tested:** 11/16/11 Date Received: 11/16/11 Tested By: ky Checked By: cw Title: PM

\* (no specification provided)

Location: S0006R, S15 Sample Number: S36255

Depth: 39.5-40.8

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| al Description                                                           | <u>Material</u>                                                           |                                                             |          | ESULTS    | TEST R  |         |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                          |                                                                           |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                          |                                                                           |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                          |                                                                           |                                                             |          |           | 30.8    | #200    |
| nits (ASTM D 4318)<br>Pl=                                                | Atterberg Limi<br>LL=                                                     | PL=                                                         |          |           |         |         |
| ssification<br>AASHTO (M 145)=                                           |                                                                           | USCS (D 24                                                  |          |           |         |         |
| efficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | <u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                  | Rei                                                                       |                                                             |          |           |         |         |
| Date Tested: 1                                                           | <b>/ed:</b> 11/16/11 <b>By:</b> ac                                        | Date Receiv                                                 |          |           |         |         |
|                                                                          | <b>By:</b> <u>cw</u>                                                      | Checked                                                     |          |           |         |         |
|                                                                          | itle: PM                                                                  | Ti                                                          |          |           |         |         |

D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= Tested: 11/16/11

(no specification provided)

Location: S0007R, S01 Sample Number: S36256

**Depth:** 0-5.0 **SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 

30.8



| TEST R  | ESULTS           |                 |
|---------|------------------|-----------------|
| Percent | Spec.*           | Pass?           |
| Finer   | (Percent)        | (X=Fail)        |
| 32.6    |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         |                  |                 |
|         | Percent<br>Finer | Finer (Percent) |

#### 32.6 **Material Description Atterberg Limits (ASTM D 4318)** PL= PI= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= $D_{30} =$ Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

Location: S0007R, S04 Sample Number: S36257

**Depth:** 5-6.3

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | ESULTS    |          | Material Description                                                      |              |
|---------|---------|-----------|----------|---------------------------------------------------------------------------|--------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                           |              |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                           |              |
| #200    | 37.2    |           |          | USCS (D 2487)= Classification AASHTO (M 1 Coefficients                    | PI=          |
|         |         |           |          | Date Received: 11/1/11 Date Tested Tested By: jm Checked By: js Title: PM | <b>ed:</b> 1 |

(no specification provided)

Location: S0007R, S03 Sample Number: S35554

**Depth:** 6.5-8

**Date Sampled:** 

**SIERRA** TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

37.2



Medium

Fine

| <u>Material</u>                                                                                        |                               |          | ESULTS     | TEST RI |         |
|--------------------------------------------------------------------------------------------------------|-------------------------------|----------|------------|---------|---------|
| •                                                                                                      |                               | Pass?    | Spec.*     | Percent | Opening |
|                                                                                                        |                               | (X=Fail) | (Percent)  | Finer   | Size    |
| Atterberg Limi<br>LL=<br>Class<br>2487)=<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | PL= USCS (D 2  D90= D50= D10= |          | ( c. c. m) | 30.9    | #200    |
| ived: 11/16/11<br>d By: ac                                                                             |                               |          |            |         |         |
| d By: cw                                                                                               | Checked                       |          |            |         |         |
| Title: PM                                                                                              |                               |          |            |         |         |

Fine

Coarse

# 

Silt

30.9

Clay

(no specification provided)

Location: S0007R, S06 Sample Number: S36258

% +3"

Coarse

**Depth:** 9-10.3

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <u>Ma</u>                                                |          | SULTS     | TEST RE |         |
|----------------------------------------------------------|----------|-----------|---------|---------|
|                                                          | Pass?    | Spec.*    | Percent | Opening |
|                                                          | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg PL= L  USCS (D 2487)=  D90= D8 D50= D3 D10= Cu |          |           | 40.7    | #200    |
| Date Received: 11/1/1 Tested By: jm                      |          |           |         |         |
| Checked By: js                                           |          |           |         |         |
| Title: PM                                                |          |           |         |         |

### 

(no specification provided)

**Location:** S0007R, S08 **Sample Number:** S35555

**Depth:** 14-15.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

40.7



84.2

**Date Sampled:** 

**Figure** 

|        | TEST RE | ESULTS    |          |                                                                                                                                                                                                                                                                                                                                                     | <b>Material Des</b> | scription    |
|--------|---------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| pening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                     |                     |              |
| Size   | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                     |                     |              |
| #200   | 84.2    |           |          | $\begin{array}{c cccc} & \underline{Atterberg\ Limits\ (ASTM\ D\ 4318)} \\ PL= & LL= & Pl= \\ & \underline{Classification} \\ USCS\ (D\ 2487)= & \underline{Classification} \\ & \underline{AASHTO\ (M\ 145)=} \\ & \underline{Coefficients} \\ D90= & D85= & D60= \\ D50= & D30= & D15= \\ D10= & C_u= & C_c= \\ \hline \\ Remarks \\ \end{array}$ |                     |              |
|        |         |           |          | Tested B                                                                                                                                                                                                                                                                                                                                            | <b>y:</b> <u>ky</u> | Date Tested: |

**Client:** URS / HMM/ ARUP **Project:** CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 30-30.5

Location: S0007R, S11A Sample Number: S35557

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



|         | TEST R  | ESULTS    |          |                                                       | <u>Material</u> | <b>Description</b>                                                             |
|---------|---------|-----------|----------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                       |                 | ·                                                                              |
| Size    | Finer   | (Percent) | (X=Fail) |                                                       |                 |                                                                                |
| #200    | 43.9    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | Class           | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D60= D15= Cc= marks |
|         |         |           |          | Date Received:<br>Tested By:<br>Checked By:<br>Title: | ky<br>js        | Date Tested: 1                                                                 |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Depth: 30.5-31.4

Location: S0007R, S11B Sample Number: S35558

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

11/1/11

**Date Sampled:** 



| <u>Materia</u>                                              |          | SULTS     | TEST RE |         |
|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg Lim  LL=  Clas  CS (D 2487)=  D85=  D30=  Cu=  Re |          |           | 30.5    | #200    |
| Received: 11/1/11 Fested By: jm ecked By: js Title: PM      |          |           |         |         |

## **Description** ts (ASTM D 4318) ification AASHTO (M 145)= <u>ficients</u> D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= marks Date Tested: 11/1/11

Location: S0007R, S12

Sample Number: S35559 **Depth:** 35-36.2 **Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE            | SULTS     |          |
|---------|--------------------|-----------|----------|
| Opening | Percent            | Spec.*    | Pass?    |
| Size    | Finer              | (Percent) | (X=Fail) |
| #200    | 68.2               |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
| *       | ification provided |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ $D_{30} =$ $D_{15} =$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: jm Checked By: js Title: PM

(no specification provided)

Location: S0007R, S14 Sample Number: S35561

**Depth:** 45-46.3

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

68.2



| <u>Description</u>                                                                                                    | Material I                                                                    |                                                                                  |          | SULTS     | TEST RE |         |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                                                                                     |                                                                               |                                                                                  | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                                       |                                                                               |                                                                                  | (X=Fail) | (Percent) | Finer   | Size    |
| its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = marks | Classi<br>Coeff<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | Atter PL=  USCS (D 2487)=  D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = |          |           | 59.5    | #200    |
| Date Tested: 11/1                                                                                                     |                                                                               | Date Received: 1 Tested By: <u>jr</u>                                            |          |           |         |         |
|                                                                                                                       | js                                                                            | Checked By: js                                                                   |          |           |         |         |
|                                                                                                                       |                                                                               | Title: P                                                                         |          |           |         |         |

(no specification provided) Location: S0007R, S16B

**Depth:** 55.8-56.5 Sample Number: S35563

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

59.5



| rial Description                                           | <u>Material</u>                                            |                                                             |          | ESULTS    | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 41.0    | #200    |
| imits (ASTM D 4318) PI=                                    | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 2487                                                |          |           |         |         |
| oefficients                                                |                                                            | Dee-                                                        |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
|                                                            |                                                            |                                                             |          |           |         |         |
| Date Tested: 1                                             |                                                            | Date Received Tested By                                     |          |           |         |         |
|                                                            | <b>3y:</b> <u>js</u>                                       | Checked By                                                  |          |           |         |         |
|                                                            | le: PM                                                     | Title                                                       |          |           |         |         |

SIERRA TESTING LABS, INC. El Dorado Hills, CA

**Depth:** 60-61.5

Location: S0007R, S17 Sample Number: S35564

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 

11/1/11



| TEST RI | ESULTS           |                 |                                                             | <u>Material</u>                                            | <b>Description</b>                                                                                                 |
|---------|------------------|-----------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                                             |                                                            | -                                                                                                                  |
| Finer   | (Percent)        | (X=Fail)        |                                                             |                                                            |                                                                                                                    |
| 50.1    |                  |                 | PL=                                                         | LL=                                                        | its (ASTM D 4318) PI=                                                                                              |
|         |                  |                 | USCS (D 2487):                                              |                                                            | AASHTO (M 145)=                                                                                                    |
|         |                  |                 | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | fficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> =                                            |
|         |                  |                 |                                                             |                                                            | Date Tested: 13                                                                                                    |
|         |                  |                 | Checked By:<br>Title:                                       | 7                                                          |                                                                                                                    |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail)               | Percent   Spec.*                                           | Percent Spec.* (Percent) (X=Fail)  50.1  Atterberg Lim PL= LL=  Class USCS (D 2487)=  D90= D85= D50= D30= D10= Cu= |

Location: S0007R, S18 Sample Number: S35565

**Depth:** 65-66.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

11/1/11



| TEST RESULTS |                   |           |          |  |  |
|--------------|-------------------|-----------|----------|--|--|
| Opening      | Percent           | Spec.*    | Pass?    |  |  |
| Size         | Finer             | (Percent) | (X=Fail) |  |  |
| #200         | 51.5              |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
|              |                   |           |          |  |  |
| * (no anao   | ification provide | 4)        |          |  |  |

(no specification provided)

Location: S0007R, S20

Sample Number: S35566 **Depth:** 75-76.2 **Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

51.5



|         | TEST RESULTS |           |          |  |  |  |
|---------|--------------|-----------|----------|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |
| #200    | 22.3         |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
| *       |              |           |          |  |  |  |

22.3

**Date Sampled:** 

(no specification provided)

**Location:** S0010R, S01 **Sample Number:** S36260 **Depth:** 0-5.0

El Dorado Hills, CA

SIERRA TESTING LABS, INC. Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST RE             | SULTS     |          |
|---------|---------------------|-----------|----------|
| Opening | Percent             | Spec.*    | Pass?    |
| Size    | Finer               | (Percent) | (X=Fail) |
| #200    | 24.4                |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
|         |                     |           |          |
| *       | cification provided | <u> </u>  |          |

(no specification provided)

Location: S0010R, S02 Sample Number: S36261

**Depth:** 5-6.5

**Date Sampled:** 

24.4

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST RESULTS |           |          |  |  |  |
|---------|--------------|-----------|----------|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |
| #200    | 57.0         |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |

(no specification provided)

Location: S0010R, S04 Sample Number: S36262

**Depth:** 8-9.4

**Date Sampled:** 

57.0

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



| <b>Material Description</b>                                                                                                  |                                                                                     |          | SULTS     | TEST RE |         |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                                                                              |                                                                                     | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                                              |                                                                                     | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg Limits (ASTM D 431  LL= 27 Pl=  Classification AASHTO (M 145):  Coefficients  D85= D60= D30= D15= Cu= Cc=  Remarks | Atter PL= 22  USCS (D 2487)=  D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = |          |           | 52.9    | #200    |
| 8 <b>y:</b> <u>ky</u><br>8 <b>y:</b> <u>j</u> s                                                                              | Date Received: 1 Tested By: k Checked By: js                                        |          |           |         |         |

Location: S0010R, S05
Sample Number: S35568

Depth:

**TESTING LABS, INC. El Dorado Hills, CA** 

**Depth:** 9.5-10.9

**Date Sampled:** 

**Client:** URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

11/1/11

52.9



| ial Description                                | <u>Material</u>                                                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SULTS     | TEST RE |         |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|
| •                                              |                                                                                                            |                                | Pass?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spec.*    | Percent | Opening |
|                                                |                                                                                                            |                                | (X=Fail)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Percent) | Finer   | Size    |
| assification<br>AASHTO (M 145)=<br>oefficients | LL=<br><u>Class</u><br>2487)=<br><u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | PL= USCS (D 24  D90= D50= D10= | (Control of the Control of the Contr |           | 41.7    | #200    |
| Date Tested:                                   |                                                                                                            | Tested<br>Checked              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | ,       |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 11-12.4

Location: S0010R, S06 Sample Number: S35569

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

: 11/1/11

**Date Sampled:** 



|           | TEST RE            | SULTS     |          |
|-----------|--------------------|-----------|----------|
| Opening   | Percent            | Spec.*    | Pass?    |
| Size      | Finer              | (Percent) | (X=Fail) |
| #200      | 58.9               |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           | į        |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
|           |                    |           |          |
| * (no spe | cification provide | d)        |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 22 LL= 29 **PI=** 7 Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ $D_{50}^{-}$ $D_{30} =$ $D_{10}^{-}$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: js Title: PM

(no specification provided)

Location: S0010R, S07

Sample Number: S35570 **Depth:** 12.5-13.2 **Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

58.9



| TEST RESULTS |         |           |          |  |  |
|--------------|---------|-----------|----------|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |
| #200         | 36.5    |           | _        |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |
|              |         |           |          |  |  |

|                   | Material Descri   | <u>ption</u>                                               |          |
|-------------------|-------------------|------------------------------------------------------------|----------|
|                   |                   |                                                            |          |
|                   |                   |                                                            |          |
|                   | berg Limits (AS   |                                                            |          |
| PL=               | LL=               | PI=                                                        |          |
|                   | Classification    | o <u>n</u>                                                 |          |
| USCS (D 2487)=    | AASHT             | O (M 145)=                                                 |          |
|                   | Coefficient       | s                                                          |          |
| D <sub>90</sub> = | D <sub>85</sub> = |                                                            |          |
| D <sub>50</sub> = | D <sub>30</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |          |
| D <sub>10</sub> = | C <sub>u</sub> =  | C <sub>C</sub> =                                           |          |
|                   | Remarks           |                                                            |          |
|                   |                   |                                                            |          |
|                   |                   |                                                            |          |
|                   |                   | <b>-</b>                                                   | 11/15/11 |
| Date Received: 1  |                   | e Tested:                                                  | 11/16/11 |
| Tested By: ac     | 2                 |                                                            |          |
| Checked By: cv    | W                 |                                                            |          |
| Title: P          | M                 |                                                            |          |
|                   |                   |                                                            |          |

36.5

**Date Sampled:** 

(no specification provided)

Location: S0010R, S09
Sample Number: S36263
Depth: 20-21.3

SIERRA TESTING LABS, INC. El Dorado Hills, CA **Client:** URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST RESULTS |           |          |  |  |  |
|---------|--------------|-----------|----------|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |
| #200    | 23.7         |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |

\* (no specification provided)

Location: S0010R, S11 Sample Number: S36264

**Depth:** 30-31.2

**Date Sampled:** 

23.7

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation



|         | TEST RESULTS |           |          |  |  |  |
|---------|--------------|-----------|----------|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |
| #200    | 22.7         |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |
|         |              |           |          |  |  |  |

(no specification provided)

Location: S0010R, S12 Sample Number: S36265

**Depth:** 35-36.4

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation



| <u>Material De</u>                                                                     |        | TEST RESULTS |         |         |  |  | TEST RESULTS |  |  |
|----------------------------------------------------------------------------------------|--------|--------------|---------|---------|--|--|--------------|--|--|
|                                                                                        | ass?   | Spec.*       | Percent | Opening |  |  |              |  |  |
|                                                                                        | =Fail) | (Percent)    | Finer   | Size    |  |  |              |  |  |
|                                                                                        |        |              | 50.3    | #200    |  |  |              |  |  |
| Atterberg Limits ( LL= 24                                                              |        |              |         |         |  |  |              |  |  |
| CS (D 2487)= Classific                                                                 |        |              |         |         |  |  |              |  |  |
| <u>Coeffici</u><br>p= D <sub>85</sub> =<br>p= D <sub>30</sub> =<br>p= C <sub>u</sub> = |        |              |         |         |  |  |              |  |  |
| Remar                                                                                  |        |              |         |         |  |  |              |  |  |
| Date Received: 11/1/11 Tested By: ky Checked By: js                                    |        |              |         |         |  |  |              |  |  |
|                                                                                        |        |              |         |         |  |  |              |  |  |
| Title: PM                                                                              |        |              |         |         |  |  |              |  |  |

## 

(no specification provided)

**Location:** S0010R, S14 **Sample Number:** S35573

**le Number:** S35573 **Depth:** 45-46.3

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

50.3



| TEST RESULTS |         |           |          |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| #200         | 75.1    |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
| *            |         |           |          |  |  |  |  |

#### **Material Description Atterberg Limits (ASTM D 4318) PL=** 21 **LL=** 30 **PI=** 9 **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: is Title: PM

(no specification provided)

Location: S0010R, S15 Sample Number: S35574

**Depth:** 50-51.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <b>Material Description</b>                                                                                                                                                     | <u>Mate</u>                                                                                                      |          | SULTS     | TEST RE |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                                                                                                                                 |                                                                                                                  | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                                                                                                 |                                                                                                                  | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                                                                                                                                 |                                                                                                                  |          |           | 64.5    | #200    |
| perg <u>Limits (ASTM D 4318</u><br>LL= 25 PI=                                                                                                                                   | Atterberg I PL= 17 LL:                                                                                           |          |           |         |         |
| <u>Classification</u><br>AASHTO (M 145)=                                                                                                                                        | USCS (D 2487)=                                                                                                   |          |           |         |         |
| $\begin{array}{ccc} \textbf{Coefficients} \\ \textbf{D}_{85} = & \textbf{D}_{60} = \\ \textbf{D}_{30} = & \textbf{D}_{15} = \\ \textbf{C}_{u} = & \textbf{C}_{c} = \end{array}$ | D <sub>90</sub> = D <sub>85</sub> =<br>D <sub>50</sub> = D <sub>30</sub> =<br>D <sub>10</sub> = C <sub>u</sub> = |          |           |         |         |
| Remarks                                                                                                                                                                         |                                                                                                                  |          |           |         |         |
|                                                                                                                                                                                 | Date Received: 11/1/11 Tested By: ky                                                                             |          |           |         |         |
|                                                                                                                                                                                 | Checked By: js                                                                                                   |          |           |         |         |
| М                                                                                                                                                                               | Title: PM                                                                                                        |          |           |         |         |

Location: S0010R, S17 Sample Number: S35576

**Depth:** 60-61.3

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 

11/1/11

64.5



| TEST RESULTS      |                  |  |  |  |  |  |  |  |  |  |
|-------------------|------------------|--|--|--|--|--|--|--|--|--|
| Opening Percent S | Spec.* Pass?     |  |  |  |  |  |  |  |  |  |
| Size Finer (P     | ercent) (X=Fail) |  |  |  |  |  |  |  |  |  |
| #200 63.5         |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
|                   |                  |  |  |  |  |  |  |  |  |  |
| *                 |                  |  |  |  |  |  |  |  |  |  |

#### **Material Description Atterberg Limits (ASTM D 4318) PL=** 17 LL= 43 PI= 26 **Classification** USCS (D 2487)= **AASHTO** (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30}^{-}$ D<sub>15</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: js Title: PM

(no specification provided)

Location: S0010R, S18 Sample Number: S35577

**Depth:** 65-66.4

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

63.5



Medium

Fine

| <u>M</u> :                                                        |          | SULTS     | TEST RE |         |
|-------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                   | Pass?    | Spec.*    | Percent | Opening |
|                                                                   | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                   |          |           | 58.0    | #200    |
| PL= 23                                                            |          |           |         |         |
| USCS (D 2487)=                                                    |          |           |         |         |
| D <sub>90</sub> = D<br>D <sub>50</sub> = D<br>D <sub>10</sub> = C |          |           |         |         |
| Date Received: 11/1/<br>Tested By: ky                             |          |           |         |         |
| Checked By: js                                                    |          |           |         |         |
| Title: PM                                                         |          |           |         |         |

Fine

Coarse

# aterial Description g Limits (ASTM D 4318) LL= 25 PI = 2**Classification** AASHTO (M 145)= Coefficients D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= 85= 30= Remarks Date Tested: 11/1/11 11

Silt

58.0

Clay

(no specification provided)

Location: S0010R, S21 Sample Number: S35578 **Depth:** 80-81.5

Coarse

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



Medium

Fine

| TES1           | T RESULTS |          |
|----------------|-----------|----------|
| pening Percent | Spec.*    | Pass?    |
| Size Finer     | (Percent) | (X=Fail) |
| #200 74.5      |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |
|                |           |          |

Coarse

Fine

Coarse

### **Material Description** Atterberg Limits (ASTM D 4318) **PL=** 26 LL= 27 PI = 1**Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: js Title: PM

Silt

74.5

Clay

(no specification provided)

Location: S0010R, S22 Sample Number: S35579 **Depth:** 85-86.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <u>ial Description</u>                                     | <u>Material</u>                                            |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 66.5    | #200    |
| imits (ASTM D 4318)<br>PI=                                 | terberg Limi<br>LL=                                        | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 2487                                                |          |           |         |         |
| <u>oefficients</u><br>D <sub>60</sub> =                    | <u>Coef</u><br>D <sub>85</sub> =                           | D <sub>90</sub> =                                           |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Rei                                                        |                                                             |          |           |         |         |
| Date Tested: 1                                             |                                                            | Date Received                                               |          |           |         |         |
|                                                            |                                                            | Tested By                                                   |          |           |         |         |
|                                                            | : <u>Js</u><br>: PM                                        | Checked By<br>Title                                         |          |           |         |         |

**Location:** S0010R, S23 **Sample Number:** S35580 **Depth:** 90-91.3

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



| ial Description                                              | Material                                                                 |                                                             |          | ESULTS    | TEST RI |         |
|--------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <u> </u>                                                     | _                                                                        |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                              |                                                                          |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                              |                                                                          |                                                             |          |           | 77.1    | #200    |
| imits (ASTM D 4318<br>Pl=                                    | Atterberg Lim<br>LL=                                                     | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)=                              |                                                                          | USCS (D 248                                                 |          |           |         |         |
| Defficients Deficients Deficients Deficients Deficients Coc= | <u>Coe</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                      |                                                                          |                                                             |          |           |         |         |
| Date Tested:                                                 | red: 11/1/11<br>Bv: kv                                                   | Date Receive                                                |          |           |         |         |
|                                                              |                                                                          | Checked E                                                   |          |           |         |         |
|                                                              | tle: PM                                                                  | Tit                                                         |          |           |         |         |

Location: S0010R, S26A Sample Number: S35582

**Depth:** 105-106.0

**Date Sampled:** 

11/1/11

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST R  | ESULTS           |                 |                                               | <u>Material</u>                                                                                       | <b>Description</b>                                                              |
|---------|------------------|-----------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                               |                                                                                                       |                                                                                 |
| Finer   | (Percent)        | (X=Fail)        |                                               |                                                                                                       |                                                                                 |
| 31.9    |                  |                 | PL=                                           | LL=<br><u>Class</u><br>)=<br><u>Coe</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D60= D15= Cc= emarks |
|         |                  |                 | Tested By<br>Checked By                       | /: <u>ky</u><br>/: js                                                                                 | Date Tested: 11                                                                 |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail) | Percent   Spec.* (Percent)   (X=Fail)                                                                 | Percent   Spec.*   Pass?   (X=Fail)                                             |

Location: S0010R, S27 Sample Number: S35583

**Depth:** 110-111.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



| I Description                                                            | <u>Material</u>                                                          |                                                             | 1        | ESULTS    | TEST RE |        |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                                                        |                                                                          |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                                          |                                                                          |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                                          |                                                                          |                                                             |          |           | 70.0    | #200   |
| <u>nits (ASTM D 431</u><br>14 PI=                                        | tterberg Lim<br>LL= 4                                                    | PL= 32                                                      |          |           |         |        |
| sification<br>AASHTO (M 145)                                             |                                                                          | USCS (D 248                                                 |          |           |         |        |
| efficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | <u>Coe</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| emarks                                                                   | Re                                                                       |                                                             |          |           |         |        |
| Date Tested:                                                             |                                                                          | Date Receive<br>Tested B                                    |          |           |         |        |
|                                                                          | <b>y:</b> <u>j</u> s                                                     | Checked B                                                   |          |           |         |        |
|                                                                          | e: PM                                                                    | Titl                                                        |          |           |         |        |

Location: S0010R, S30 Sample Number: S35584

**Depth:** 125-126.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 



| ial Description                                            | Material                                                   |                                                             |          | ESULTS    | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| imite (ASTM D 121                                          | Attorborg Limi                                             |                                                             |          |           | 46.3    | #200    |
| imits (ASTM D 431<br>Pl=                                   | LL=                                                        | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)                             |                                                            | USCS (D 248                                                 |          |           |         |         |
| oefficients                                                | Coef                                                       | D                                                           |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
|                                                            |                                                            |                                                             |          |           |         |         |
| Date Tested:                                               |                                                            | Date Receive<br>Tested E                                    |          |           |         |         |
|                                                            | <b>By:</b> <u>j</u> s                                      | Checked E                                                   |          |           |         |         |
|                                                            | tle: PM                                                    | Tit                                                         |          |           |         |         |

**Location:** S0010R, S31 **Sample Number:** S35585 **Depth:** 130-131.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



| TEST RI |         |
|---------|---------|
| Percent | Opening |
| Finer   | Size    |
| 30.8    | #200    |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         | Finer   |

# **Material Description Atterberg Limits (ASTM D 4318)** Classification D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ C<sub>u</sub>= Remarks ceived: 11/1/11 Date Tested: 11/1/11 ted By: ky ed By: js Title: PM

(no specification provided)

Location: S0010R, S35 Sample Number: S35586

**Depth:** 150-151.5

**Date Sampled:** 

30.8

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Description                                                                                                                                           |
|---------|---------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    | • .                                                                                                                                                            |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                |
| #200    | 18.2    |           |          | Atterberg Limits (ASTM D 4318)  PL= LL= Pl=  Classification  USCS (D 2487)= AASHTO (M 145)=  Coefficients  D90= D85= D60= D50= D30= D15= D10= Cu= Cc=  Remarks |
|         |         |           |          | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM                                                                           |

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Date Sampled:** 

**Figure** 

Location: S0012R, S01 Sample Number: S36266

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

**Depth:** 0-5.0



|         | TEST RI | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 20.2    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{30} =$ Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S02

Sample Number: S36267

**Depth:** 5-6.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|        | TEST RI | ESULTS    |          | Material Description                                     |
|--------|---------|-----------|----------|----------------------------------------------------------|
| pening | Percent | Spec.*    | Pass?    |                                                          |
| Size   | Finer   | (Percent) | (X=Fail) |                                                          |
| #200   | 18.3    |           |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |
|        |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/1 Tested By: ac |
|        |         |           |          | Checked By: cw                                           |
|        |         |           |          | Title: PM                                                |

Location: S0012R, S03 Sample Number: S35587

**Depth:** 6.5-7.7

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE           | SULTS     |          |
|---------|-------------------|-----------|----------|
| Opening | Percent           | Spec.*    | Pass?    |
| Size    | Finer             | (Percent) | (X=Fail) |
| #200    | 73.7              |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           | ·        |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           | J        |
| *       | ification provide |           |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= D<sub>85</sub>= D<sub>30</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S05 Sample Number: S35588

**Depth:** 9.5-10.9

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |                                                       | Material                                                 | <b>Description</b>                                                                                                                 |      |
|---------|---------|-----------|----------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| Opening | Percent | Spec.*    | Pass?    |                                                       |                                                          | •                                                                                                                                  |      |
| Size    | Finer   | (Percent) | (X=Fail) |                                                       |                                                          |                                                                                                                                    |      |
| #200    | 65.7    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | Coe D <sub>85</sub> = D <sub>30</sub> = C <sub>u</sub> = | its (ASTM D 431<br>Pl=<br>sification<br>AASHTO (M 145):<br>fficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |      |
|         |         |           |          | Date Received: Tested By: 6 Checked By: 7             | ac<br>cw                                                 | Date Tested:                                                                                                                       | 11/1 |

SIERRA TESTING LABS, INC. El Dorado Hills, CA

**Depth:** 11-12.5

Location: S0012R, S06

Sample Number: S35589

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 



|         | TEST R  | ESULTS    | 1        | Material Description                                 |
|---------|---------|-----------|----------|------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                      |
| Size    | Finer   | (Percent) | (X=Fail) |                                                      |
| #200    | 21.4    |           |          |                                                      |
|         |         |           |          | Atterberg Limits (ASTM D 4318) PL= LL= PI=           |
|         |         |           |          | PL= LL= PI=                                          |
|         |         |           |          | USCS (D 2487)= Classification  AASHTO (M 145)=       |
|         |         |           |          | <u>Coefficients</u>                                  |
|         |         |           |          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|         |         |           |          | D <sub>10</sub> = C <sub>u</sub> = C <sub>c</sub> =  |
|         |         |           |          | Remarks                                              |
|         |         |           |          | Date Received: 11/16/11                              |
|         |         |           |          | Tested By: ac                                        |
|         |         |           |          | Checked By: cw                                       |
|         |         |           |          | Title: PM                                            |

Location: S0012R, S07 Sample Number: S36268

**Depth:** 12.5-13.8

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE            | SULTS     |          |
|---------|--------------------|-----------|----------|
| Opening | Percent            | Spec.*    | Pass?    |
| Size    | Finer              | (Percent) | (X=Fail) |
| #200    | 37.0               |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         | cification provide |           |          |

### **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S08 Sample Number: S35590

**Depth:** 14-15.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

37.0



|         | TEST RI | ESULTS    |          |                                                                       | Material                                                                                                  | Description                                                                                                              |
|---------|---------|-----------|----------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                       |                                                                                                           | •                                                                                                                        |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                       |                                                                                                           |                                                                                                                          |
| #200    | 97.3    |           |          | PL= USCS (D 24  D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | LL=<br><u>Class</u><br>187)=<br><u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) Pl=  sification AASHTO (M 145)=  fficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  marks |
|         |         |           |          | Tested I                                                              |                                                                                                           | Date Tested: 11/16/1                                                                                                     |

Location: S0012R, S09A Sample Number: S36269

**Depth:** 20-21.0

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | l l     |         |       |          |                                                             |                                                            |                                   |
|---------|---------|---------|-------|----------|-------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|
| % +3"   | Co      | oarse   | Fine  | Coarse   | Medium                                                      | Fine                                                       | Silt                              |
|         |         |         |       |          |                                                             |                                                            | 68.4                              |
|         | TEST I  | RESULTS | <br>S |          |                                                             | Mater                                                      | ial Description                   |
| Opening | Percent | Sp      | ec.*  | Pass?    |                                                             |                                                            | •                                 |
| Size    | Finer   | (Per    | cent) | (X=Fail) |                                                             |                                                            |                                   |
| #200    | 68.4    |         |       |          |                                                             |                                                            |                                   |
|         |         |         |       |          | PL=                                                         | <u>Atterberg L</u><br>LL=                                  | <u>imits (ASTM D 4318)</u><br>Pl= |
|         |         |         |       |          | USCS (I                                                     | <u>Cla</u><br>D 2487)=                                     | assification<br>AASHTO (M 145)=   |
|         |         |         |       |          |                                                             | С                                                          | oefficients                       |
|         |         |         |       |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = |                                   |
|         |         |         |       |          |                                                             |                                                            | Remarks                           |

Location: S0012R, S09B Sample Number: S35591

**Depth:** 20-21.4

**Date Sampled:** 

Date Tested: 11/1/11

Clay

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Date Received: 11/1/11 Tested By: ac Checked By: cw

Title: PM

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 14.0    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

#### **Material Description Atterberg Limits (ASTM D 4318)** PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= D<sub>50</sub>= D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S14 Sample Number: S36270

**Depth:** 45-46.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|        | TEST R  | ESULTS    | ļ        | Material Description                                     |
|--------|---------|-----------|----------|----------------------------------------------------------|
| pening | Percent | Spec.*    | Pass?    |                                                          |
| Size   | Finer   | (Percent) | (X=Fail) |                                                          |
| #200   | 48.5    |           |          | Atterberg Limits (ASTM D 4318)                           |
|        |         |           |          | PL= LL= PI=                                              |
|        |         |           |          | USCS (D 2487)= Classification AASHTO (M 145)=            |
|        |         |           |          | Coefficients                                             |
|        |         |           |          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |
|        |         |           |          | Remarks                                                  |
|        |         |           |          | •                                                        |
|        |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/1 Tested By: ac |
|        |         |           |          | Checked By: cw                                           |
|        |         |           |          | Title: PM                                                |

Depth: 50-51.5

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Location: S0012R, S15

Sample Number: S35594

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 

**Date Sampled:** 



| <u>M</u>            |                                                             |          | SULTS     | TEST RE |         |
|---------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                     |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                     |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| <u>Atterbe</u>      | PL=                                                         |          |           | 50.1    | #200    |
| CS (D 2487)=        | USCS (                                                      |          |           |         |         |
| = [<br>= [<br>= C   | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Received: 11/1      | Data Par                                                    |          |           |         |         |
| rested By: ac       | 1                                                           |          |           |         |         |
| ecked By: <u>cw</u> | Check                                                       |          |           |         |         |
| Title: PM           |                                                             |          |           |         |         |

# <u> laterial Description</u> erg Limits (ASTM D 4318) **Classification AASHTO** (M 145)= Coefficients $D_{60} =$ D<sub>85</sub>= 2<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks /11Date Tested: 11/1/11

(no specification provided)

Location: S0012R, S19 Sample Number: S35597

**Depth:** 70-71.5

**Date Sampled:** 

50.1

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|             | TEST RE           | SULTS     |          |
|-------------|-------------------|-----------|----------|
| Opening     | Percent           | Spec.*    | Pass?    |
| Size        | Finer             | (Percent) | (X=Fail) |
| #200        | 28.8              |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
|             |                   |           |          |
| * (no space | ification provide | d)        |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= **Coefficients** D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S20

Sample Number: S35598 Depth: 75-75.8

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                                                             |          | TEST RESULTS |         |         |  |  |  |  |
|-------------------------------------------------------------|----------|--------------|---------|---------|--|--|--|--|
|                                                             | Pass?    | Spec.*       | Percent | Opening |  |  |  |  |
|                                                             | (X=Fail) | (Percent)    | Finer   | Size    |  |  |  |  |
|                                                             |          |              | 74.0    | #200    |  |  |  |  |
| PL=                                                         |          |              |         |         |  |  |  |  |
| USCS (D 24                                                  |          |              |         |         |  |  |  |  |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |              |         |         |  |  |  |  |
|                                                             |          |              |         |         |  |  |  |  |
| Date Receive<br>Tested I                                    |          |              | ·       |         |  |  |  |  |
| Checked I                                                   |          |              |         |         |  |  |  |  |

# **Material Description** Atterberg Limits (ASTM D 4318) <u>Classification</u> 87)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks ed: 11/1/11 Date Tested: 11/1/11 **3y:** ac **3y:** cw le: PM

(no specification provided)

Location: S0012R, S21 Sample Number: S35599

**Depth:** 80-81.2

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 73.8    |           |          |
|         |         |           |          |
|         |         | -         |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

### **Material Description Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= **AASHTO** (M 145)= Coefficients $D_{85} =$ $D_{60} =$ $D_{90} =$ D<sub>50</sub>= D<sub>30</sub>= C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S22 Sample Number: S35600

**Depth:** 85.5-86.3

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|       | TEST R  | ESULTS    |          |                                                       | <b>Material Des</b>                                                                                                                  | scription                                                         |
|-------|---------|-----------|----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| ening | Percent | Spec.*    | Pass?    |                                                       |                                                                                                                                      |                                                                   |
| Size  | Finer   | (Percent) | (X=Fail) |                                                       |                                                                                                                                      |                                                                   |
| #200  | 16.2    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | tterberg Limits (<br>LL=<br>Classific<br>7)= AAS<br>Coefficie<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> =<br>Remar | eation<br>SHTO (M 14<br>ients<br>D <sub>0</sub><br>C <sub>c</sub> |
|       |         |           |          | Date Received Tested By Checked By                    | y: ac                                                                                                                                | Date Teste                                                        |

**Location:** S0012R, S23 **Sample Number:** S35601

Depth: 90-91.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

16.2



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 67.8    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= **Classification** AASHTO (M 145)= USCS (D 2487)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S24 Sample Number: S35602

**Depth:** 95-96.3

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <b>Material Description</b>                                             | <u> </u>                   |                                                             |          | ESULTS    | TEST RI |         |
|-------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                         |                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                         |                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                         |                            |                                                             |          |           | 79.4    | #200    |
| rberg Limits (ASTM D /<br>LL=                                           | Atterb                     | PL=                                                         |          |           |         |         |
| Classification<br>AASHTO (M 1                                           | (D 2487)=                  | USCS (D                                                     |          |           |         |         |
| Coefficients                                                            |                            |                                                             |          |           |         |         |
| D <sub>85</sub> = D <sub>0</sub> D <sub>30</sub> = D C <sub>u</sub> = C |                            | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                                 |                            |                                                             |          |           |         |         |
|                                                                         |                            |                                                             |          |           |         |         |
| 11/1/11 <b>Date Test</b>                                                | eceived: 11<br>sted By: ac |                                                             |          |           |         |         |
| cw                                                                      | ked By: cw                 | Checke                                                      |          |           |         |         |
| PM                                                                      | Title: PM                  |                                                             |          |           |         |         |

D 4318) PI= M 145)= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= ested: 11/1/11

(no specification provided)

Location: S0012R, S26 Sample Number: S35603

**Depth:** 105-106.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE            | SULTS     |          |
|---------|--------------------|-----------|----------|
| Opening | Percent            | Spec.*    | Pass?    |
| Size    | Finer              | (Percent) | (X=Fail) |
| #200    | 73.3               |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           | 1        |
|         |                    |           |          |
|         | cification provide |           |          |

|                                        | Material                              | Description                                                |
|----------------------------------------|---------------------------------------|------------------------------------------------------------|
|                                        | <u> </u>                              | Description                                                |
|                                        |                                       |                                                            |
|                                        |                                       |                                                            |
|                                        |                                       | its (ASTM D 4318)                                          |
| PL=                                    | LL=                                   | PI=                                                        |
|                                        | Class                                 | sification                                                 |
| USCS (D 2487)                          | )=                                    | AASHTO (M 145)=                                            |
|                                        | Coet                                  | fficients                                                  |
| D <sub>90</sub> =                      | D <sub>85</sub> =                     | D <sub>60</sub> =                                          |
| D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
| .0                                     | <del></del>                           | marks                                                      |
|                                        | 110                                   | marko                                                      |
|                                        |                                       |                                                            |
|                                        |                                       |                                                            |
| Date Received                          | : 11/1/11                             | Date Tested: 11/1/11                                       |
| Tested By                              | : <u>ac</u>                           |                                                            |
| Checked By                             | : cw                                  |                                                            |
| Title                                  | : <u>PM</u>                           |                                                            |
|                                        |                                       |                                                            |

Location: S0012R, S27 Sample Number: S35604

**Depth:** 110-111.5

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

73.3



| <u>Mat</u>                                                   |          | SULTS     | TEST RE |         |
|--------------------------------------------------------------|----------|-----------|---------|---------|
|                                                              | Pass?    | Spec.*    | Percent | Opening |
|                                                              | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg PL= Li  USCS (D 2487)=  D90= D86 D50= D30 D10= Cu  |          |           | 30.7    | #200    |
| Date Received: 11/1/1 Tested By: ac Checked By: cw Title: PM |          |           |         |         |

|                                                             | Material                                                                  | Description                                                     |         |
|-------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------|
|                                                             |                                                                           |                                                                 |         |
| Atter<br>PL=                                                | berg Limi<br>LL=                                                          | its (ASTM D 4318)<br>PI=                                        | )       |
| USCS (D 2487)=                                              | Class                                                                     | sification<br>AASHTO (M 145)=                                   |         |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | <u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | <u>D<sub>60</sub>=</u><br>D <sub>15</sub> =<br>C <sub>c</sub> = |         |
|                                                             | Re                                                                        | marks                                                           |         |
|                                                             |                                                                           |                                                                 |         |
| Date Received: 1                                            |                                                                           | Date Tested:                                                    | 11/1/11 |
| Tested By: ac                                               |                                                                           |                                                                 |         |
| Title: P                                                    |                                                                           |                                                                 |         |

Location: S0012R, S30 Sample Number: S35606

**Depth:** 125-126.5

**Date Sampled:** 

30.7

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 56.9    |           |          |
|         |         |           |          |
|         |         |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S32A Sample Number: S35607

**Depth:** 135-135.8

**Date Sampled:** 

56.9

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R            | ESULTS    |          |
|---------|-------------------|-----------|----------|
| Opening | Percent           | Spec.*    | Pass?    |
| Size    | Finer             | (Percent) | (X=Fail) |
| #200    | 61.8              |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
|         |                   |           |          |
| * _     | ification provide |           |          |

## **Material Description Atterberg Limits (ASTM D 4318)** PL= **Classification** USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: acU Checked By: cw Title: PM

(no specification provided)

Location: S0012R, S35 Sample Number: S35609

Depth: 150-151.4

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

61.8



| TEST RE | SULTS            |                 |                                               | <b>Material</b>                                                             | <u>Description</u>                                                                                                     |
|---------|------------------|-----------------|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                               |                                                                             |                                                                                                                        |
| Finer   | (Percent)        | (X=Fail)        |                                               |                                                                             |                                                                                                                        |
| 48.3    |                  |                 | PL=                                           | Class<br>B7)=  Coef<br>D <sub>85</sub> = D <sub>30</sub> = C <sub>u</sub> = | ts (ASTM D 4318) PI=  ification AASHTO (M 145)=  ficients  D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  marks |
|         |                  |                 | Tested B                                      | By: <u>ac</u>                                                               | Date Tested: 11/16/11                                                                                                  |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail) | Percent   Spec.*   Pass?                                                    | Percent   Spec.*   Pass?                                                                                               |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Depth:** 0-5.0

Location: S0013AR, S01 Sample Number: S36271

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 



|         | TEST RE | SULTS     |          | Material Description                                                                                                                                                                                                                                                                                                |
|---------|---------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                     |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                     |
| #200    | 30.8    |           |          | $\begin{array}{c cccc} & \underline{Atterberg\ Limits\ (ASTM\ D\ 4318)} \\ PL= & LL= & Pl= \\ & \underline{Classification} \\ USCS\ (D\ 2487)= & \underline{AASHTO\ (M\ 145)=} \\ & \underline{Coefficients} \\ D90= & D85= & D60= \\ D50= & D30= & D15= \\ D10= & C_u= & C_c= \\ \hline \\ Remarks \\ \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                  |

Location: S0013AR, S03 Sample Number: S35610

**Depth:** 6.5-7.2

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                             |
|---------|---------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                  |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                  |
| #200    | 28.3    |           |          | $\begin{array}{c cccc} & \underline{Atterberg\ Limits\ (ASTM\ D\ 4318)} \\ PL= & LL= & Pl= \\ \hline & \underline{Classification} \\ USCS\ (D\ 2487)= & \underline{AASHTO\ (M\ 145)=} \\ \hline & \underline{Coefficients} \\ D90= & D85= & D60= \\ D50= & D30= & D15= \\ D10= & C_u= & C_c= \\ \hline & Remarks \\ \end{array}$ |
|         |         |           |          | Date Received: 11/16/11 Date Tested: 11/16/1 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                              |

Location: S0013AR, S04 Sample Number: S36272

**Depth:** 8-8.8

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|---------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| #200    | 65.8    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL} = & \underline{\text{LL}} = & \underline{\text{Pl}} = \\ & & \underline{\text{Classification}} \\ \text{USCS (D 2487)} = & \underline{\text{AASHTO (M 145)}} = \\ & \underline{\text{Coefficients}} \\ \underline{\text{D}}_{90} = & \underline{\text{D}}_{85} = & \underline{\text{D}}_{60} = \\ \underline{\text{D}}_{50} = & \underline{\text{D}}_{30} = & \underline{\text{D}}_{15} = \\ \underline{\text{D}}_{10} = & \underline{\text{C}}_{\text{U}} = & \underline{\text{C}}_{\text{C}} = \\ & \underline{\text{Remarks}} \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Location: S0013AR, S05 Sample Number: S35611

**Depth:** 9.5-10.5

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| #200    | 47.1    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL=} & \underline{\text{LL=}} & \underline{\text{Pl=}} \\ & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \underline{\text{AASHTO (M 145)=}} \\ & \underline{\text{Coefficients}} \\ \underline{\text{D}_{90}=} & \underline{\text{D}_{85}=} & \underline{\text{D}_{60}=} \\ \underline{\text{D}_{50}=} & \underline{\text{D}_{30}=} & \underline{\text{D}_{15}=} \\ \underline{\text{D}_{10}=} & \underline{\text{C}_{u}=} & \underline{\text{C}_{c}=} \\ \\ & \underline{\text{Remarks}} \\ \end{array}$ |
|         |         |           |          | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Depth: 11-11.7

Date Sampled:

**Figure** 

Location: S0013AR, S06A Sample Number: S36273

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST RE | ESULTS    |          |                                                             | <u>Material</u>                                                                                         | <u>Description</u>                                                                                                  |
|---------|---------|-----------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                             |                                                                                                         |                                                                                                                     |
| Size    | Finer   | (Percent) | (X=Fail) |                                                             |                                                                                                         |                                                                                                                     |
| #200    | 65.4    |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | LL=<br><u>Class</u><br>7)=<br><u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | ts (ASTM D 4318) PI= sification AASHTO (M 145)= ficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = marks |
|         |         |           |          | Date Received                                               |                                                                                                         | Date Tested: 11/1/1                                                                                                 |
|         |         |           |          | Checked By                                                  | y: <u>CW</u>                                                                                            |                                                                                                                     |
|         |         | =         |          | Title                                                       | e: PM                                                                                                   |                                                                                                                     |

**Depth:** 11.7-12.5

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Location: S0013AR, S06B Sample Number: S35612

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



| TRE |         | SULTS     |          |                                 | <u>Material</u>                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------|-----------|----------|---------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t   | Opening | Spec.*    | Pass?    |                                 |                                                                                                          | 2000 et 2000 - 2000 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 20 |
|     | Size    | (Percent) | (X=Fail) |                                 |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | #200    |           |          | PL= USCS (D 248  D90= D50= D10= | LL=<br><u>Class</u><br>37)=<br><u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= ficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |         |           |          | Date Receive<br>Tested B        | By: AC                                                                                                   | Date Tested: 11/1/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |         |           |          | Checked B                       | By: <u>CW</u>                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |         |           |          | Titl                            | le: PM                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Location: S0013AR, S07 Sample Number: S35613

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Depth:** 12.5-13.5

Figure



| TEST RESULTS |         |           |          |                                                       | Material                                                                                               | <u>Description</u>                                                             |
|--------------|---------|-----------|----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Opening      | Percent | Spec.*    | Pass?    |                                                       |                                                                                                        |                                                                                |
| Size         | Finer   | (Percent) | (X=Fail) |                                                       |                                                                                                        |                                                                                |
| #200         | 73.9    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | LL=<br><u>Class</u><br>)=<br><u>Coef</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D60= D15= Cc= marks |
|              |         |           |          | Date Received: Tested By: Checked By:                 | ac<br>cw                                                                                               | Date Tested: 11                                                                |

**Depth:** 14-15.0

Location: S0013AR, S08 Sample Number: S36274 **SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 



|         | TEST RI | ESULTS    |          |                                 | <u>Material</u>                                                                     | Description                                                                                                              |
|---------|---------|-----------|----------|---------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                 |                                                                                     |                                                                                                                          |
| Size    | Finer   | (Percent) | (X=Fail) |                                 |                                                                                     |                                                                                                                          |
| #200    | 76.5    |           |          | PL= USCS (D 248  D90= D50= D10= | Class<br>37)=<br>Coed<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) Pl=  sification AASHTO (M 145)=  fficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  marks |
|         |         |           |          | Date Received                   |                                                                                     | Date Tested: 11/1/11                                                                                                     |
|         |         |           |          | Checked B                       | y: CW                                                                               |                                                                                                                          |
|         |         |           |          |                                 | <b>e:</b> PM                                                                        |                                                                                                                          |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Location: S0013AR, S09 Sample Number: S35614

Client: URS / HMM/ ARUP

**Depth:** 20-21.4

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 78.6    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= $D_{15} =$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0013AR, S10 Sample Number: S35615

mber: S35615 Depth: 25-26.2

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 62.4    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

\* (no specification provided)

Location: S0013AR, S11 Sample Number: S36275

**Depth:** 30-31.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|             | TEST RE          | SULTS     |          | Material Description                                                                                                                                         |
|-------------|------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening     | Percent          | Spec.*    | Pass?    |                                                                                                                                                              |
| Size        | Finer            | (Percent) | (X=Fail) |                                                                                                                                                              |
| #200        | 67.6             |           |          | Atterberg Limits (ASTM D 4318) PL= LL= Pl=  Classification USCS (D 2487)= AASHTO (M 145)=  Coefficients  D90= D85= D60= D50= D30= D15= D10= Cu= Cc=  Remarks |
|             |                  |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC                                                                                                    |
|             |                  |           |          | Checked By: CW                                                                                                                                               |
|             |                  |           |          | Title: PM                                                                                                                                                    |
| * (no speci | ification provid | ed)       |          |                                                                                                                                                              |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Depth:** 35-36.5

Location: S0013AR, S12 Sample Number: S35616

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Date Sampled:** 

Project No: 11-111 Figure



|         | TEST RE | SULTS     |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #200    | 84.7    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL} = & \underline{\text{LL}} = & \underline{\text{Pl}} = \\ & \underline{\text{Classification}} \\ \text{USCS (D 2487)} = & \underline{\text{Classification}} \\ & \underline{\text{AASHTO (M 145)}} = \\ & \underline{\text{Coefficients}} \\ \hline D_{90} = & D_{85} = & D_{60} = \\ D_{50} = & D_{30} = & D_{15} = \\ D_{10} = & C_{u} = & C_{c} = \\ \hline \\ & \underline{\text{Remarks}} \end{array}$ |
|         |         |           |          | Date Received: Date Tested:  Tested By: Checked By: Title:                                                                                                                                                                                                                                                                                                                                                                                                                                         |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Depth:** 40-41.5

Location: S0013AR, S13 Sample Number: S36276

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure



|         | TEST RI | ESULTS    |          | Material Description                                                               |
|---------|---------|-----------|----------|------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                    |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                    |
| #200    | 38.0    |           |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM |

**Client:** URS / HMM/ ARUP **Project:** CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 45-45.9

**Date Sampled:** 

**Figure** 

Location: S0013AR, S14 Sample Number: S35617

**SIERRA** 

**TESTING LABS, INC.** 



|           | TEST RE            | SULTS     |          |                                                                   | <u>Material</u>                           | Description                                                                                                            |        |
|-----------|--------------------|-----------|----------|-------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------|
| Opening   | Percent            | Spec.*    | Pass?    |                                                                   |                                           |                                                                                                                        |        |
| Size      | Finer              | (Percent) | (X=Fail) |                                                                   |                                           |                                                                                                                        |        |
| #200      | 77.0               |           |          | PL= USCS (E D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | Das:    Clas:   Clas:   Coe               | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = emarks |        |
|           |                    |           |          | Teste                                                             | eived: 11/1/11 ed By: <u>AC</u> ed By: CW | Date Tested: 1                                                                                                         | 1/1/11 |
|           |                    |           |          |                                                                   | Title: PM                                 |                                                                                                                        |        |
| * (no spe | ecification provid | ded)      |          | Checke                                                            | -                                         |                                                                                                                        |        |

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 55-56.2

**Date Sampled:** 

**Figure** 

Location: S0013AR, S16 Sample Number: S35618

**SIERRA** 

**TESTING LABS, INC.** 



| TEST RESULTS |         |           |          |  |  |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |  |  |
| #200         | 71.8    |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |
|              |         | 3         |          |  |  |  |  |  |  |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30} =$ $D_{15} =$ Cu= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0013AR, S17 Sample Number: S35619

**Depth:** 60-61.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |  |
|---------|---------|-----------|----------|--|
| Opening | Percent | Spec.*    | Pass?    |  |
| Size    | Finer   | (Percent) | (X=Fail) |  |
| #200    | 60.6    |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |
|         |         |           |          |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{90} =$ $D_{85} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

\* (no specification provided)

Location: S0013AR, S21 Sample Number: S35621

**Depth:** 80-80.9

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |  |  |
|---------|---------|-----------|----------|--|--|
| Opening | Percent | Spec.*    | Pass?    |  |  |
| Size    | Finer   | (Percent) | (X=Fail) |  |  |
| #200    | 90.9    |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0013AR, S24 Sample Number: S35622

Depth: 95-95.8

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                 |
|---------|---------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                      |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                      |
| #200    | 34.4    |           |          | $\begin{array}{c cccc} & \underline{Atterberg\ Limits\ (ASTM\ D\ 4318)} \\ PL= & LL= & Pl= \\ \hline & \underline{Classification} \\ USCS\ (D\ 2487)= & \underline{AASHTO\ (M\ 145)=} \\ \hline & \underline{Coefficients} \\ D90= & D85= & D60= \\ D50= & D30= & D15= \\ D10= & C_{U}= & C_{C}= \\ \hline & Remarks \\ \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Tested By: AC Checked By: CW Title: PM                                                                                                                                                                                                                                                                        |

Location: S0013AR, S26 Sample Number: S35623

**Depth:** 105-105.9

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         |                  |                 | , , , , , , , , , , , , , , , , , , , ,                     |
|---------|------------------|-----------------|-------------------------------------------------------------|
| TEST R  | ESULTS           |                 |                                                             |
| Percent | Spec.*           | Pass?           |                                                             |
| Finer   | (Percent)        | (X=Fail)        |                                                             |
| 67.1    |                  |                 |                                                             |
|         |                  |                 | PL=                                                         |
|         |                  |                 | USCS (D                                                     |
|         |                  |                 | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |
|         |                  |                 |                                                             |
|         |                  |                 | Date Rece<br>Teste                                          |
|         |                  |                 | Checke                                                      |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail)               |

# **Material Description** Atterberg Limits (ASTM D 4318) LL= PI= Classification 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= D<sub>30</sub>= Remarks eived: 11/1/11 Date Tested: 11/1/11 ed By: AC ed By: CW Title: PM

\* (no specification provided)

Location: S0013AR, S27 Sample Number: S35624

mple Number: S35624 Depth: 110-111.3

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 54.3    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30} =$ $D_{15} =$ C<sub>u</sub>= Remarks Date Tested: 11/1/11 ate Received: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0013AR, S28 Sample Number: S35625

**Depth:** 115-115.9

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RI | ESULTS           |                 |                                               | Material I                                                                            | <u>Description</u>                                                                                                                      |
|---------|------------------|-----------------|-----------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                               |                                                                                       |                                                                                                                                         |
| Finer   | (Percent)        | (X=Fail)        |                                               |                                                                                       |                                                                                                                                         |
| 73.0    |                  |                 | PL=                                           | Class<br>Class<br>Coeff<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | ts (ASTM D 4318) PI= ification AASHTO (M 145)= ficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = marks                      |
|         |                  |                 |                                               |                                                                                       | Date Tested: 11/1/11                                                                                                                    |
|         |                  |                 | Checked By                                    | y: CW                                                                                 |                                                                                                                                         |
|         |                  |                 |                                               |                                                                                       |                                                                                                                                         |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail) | Percent   Spec.*   Pass?                                                              | Percent Spec.* Pass? Finer (Percent) (X=Fail)  73.0  Atterberg Limit PL= LL=  Class: USCS (D 2487)=  Coeff D90= D85= D50= D30= D10= Cu= |

(no specification provided)

Location: S0013AR, S30 Sample Number: S35626 Depth: 125-126.1

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111 **Figure** 



# **Material Description** atterberg Limits (ASTM D 4318) Classification 87)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ $D_{30} =$ $D_{15} =$ Cu= Remarks Date Tested: 11/1/11 ed: 11/1/11 By: AC By: CW le: PM

Location: S0013AR, S32 Sample Number: S35627

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

<sup>(</sup>no specification provided)



|         | TEST RE | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| #200    | 67.7    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL=} & \underline{\text{LL=}} & \underline{\text{Pl=}} \\ & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \underline{\text{AASHTO (M 145)=}} \\ & \underline{\text{Coefficients}} \\ \underline{\text{D}_{90}=} & \underline{\text{D}_{85}=} & \underline{\text{D}_{60}=} \\ \underline{\text{D}_{50}=} & \underline{\text{D}_{30}=} & \underline{\text{D}_{15}=} \\ \underline{\text{D}_{10}=} & \underline{\text{C}_{u}=} & \underline{\text{C}_{c}=} \\ \end{array}$ |
|         |         |           |          | Date Received:         11/16/11         Date Tested:         11/16/11           Tested By:         ac           Checked By:         cw           Title:         PM                                                                                                                                                                                                                                                                                                                                                                                                         |

Location: S0014AR, S01 Sample Number: S36282

**Depth:** 0-5.0

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |                                                             | Material                                                   | Description                                                             |
|---------|---------|-----------|----------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    | ,                                                           |                                                            |                                                                         |
| Size    | Finer   | (Percent) | (X=Fail) |                                                             |                                                            |                                                                         |
| #200    | 53.5    |           |          | PL=                                                         | LL=                                                        | its (ASTM D 4318)<br>PI=<br>sification                                  |
|         |         |           |          | USCS (D                                                     |                                                            | AASHTO (M 145)=                                                         |
|         |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | fficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|         |         |           |          |                                                             | ived: 11/1/11<br>d By: ac                                  | Date Tested: 1                                                          |
|         |         |           |          | Checked                                                     | d By: cw                                                   |                                                                         |
|         |         |           |          |                                                             | Title: pm                                                  |                                                                         |

**Tested:** 11/1/11 (no specification provided) Location: S0014AR, S02 Sample Number: S35640 Date Sampled: **Depth:** 5-6.5

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Figure** 

Project No: 11-111



| <u>M</u>                                                          |          | SULTS     | TEST RE |         |
|-------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                   | Pass?    | Spec.*    | Percent | Opening |
|                                                                   | (X=Fail) | (Percent) | Finer   | Size    |
| <u>Atterbe</u><br>PL=                                             |          |           | 40.9    | #200    |
| USCS (D 2487)=                                                    |          |           |         |         |
| D <sub>90</sub> = [<br>D <sub>50</sub> = [<br>D <sub>10</sub> = ( |          |           |         |         |
| Date Received: 11/3                                               |          |           |         |         |
| Tested By: ac                                                     |          |           |         |         |
| Checked By: cw                                                    |          |           |         |         |
| Title: PM                                                         |          |           |         |         |

# laterial Description rg Limits (ASTM D 4318) LL= Classification AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>30</sub>= C<sub>u</sub>= Remarks 16/11 **Date Tested:** 11/16/11

(no specification provided)

Location: S0014AR, S03 Sample Number: S36283

**Depth:** 6.5-7.8

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RE | SULTS            |                 | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Finer   | (Percent)        | (X=Fail)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 44.4    |                  |                 | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL} = & \underline{\text{LL}} & \underline{\text{Pl}} = \\ & & \underline{\text{Classification}} \\ \text{USCS (D 2487)} = & \underline{\text{AASHTO (M 145)}} = \\ & & \underline{\text{Coefficients}} \\ \underline{\text{D}_{90}} = & \underline{\text{D}_{85}} = & \underline{\text{D}_{60}} = \\ \underline{\text{D}_{50}} = & \underline{\text{D}_{30}} = & \underline{\text{D}_{15}} = \\ \underline{\text{D}_{10}} = & \underline{\text{C}_{u}} = & \underline{\text{C}_{c}} = \\ & & \underline{\text{Remarks}} \end{array}$ |
|         |                  |                 | Date Received:         11/1/11         Date Tested:         11/1/11           Tested By:         ac           Checked By:         cw           Title:         PM                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

(no specification provided)

Location: S0014AR, S04 Sample Number: S35641

**Depth:** 8-9.2

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #200    | 59.1    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL} = & \underline{\text{LL}} & \underline{\text{Pl}} = \\ & \underline{\text{Classification}} \\ \text{USCS (D 2487)} = & \underline{\text{AASHTO (M 145)}} = \\ & \underline{\text{Coefficients}} \\ \underline{\text{D}_{90}} = & \underline{\text{D}_{85}} = & \underline{\text{D}_{60}} = \\ \underline{\text{D}_{50}} = & \underline{\text{D}_{30}} = & \underline{\text{D}_{15}} = \\ \underline{\text{D}_{10}} = & \underline{\text{C}_{u}} = & \underline{\text{C}_{c}} = \\ & \underline{\text{Remarks}} \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 9.5-11.0

Date Sampled:

**Figure** 

Location: S0014AR, S05 Sample Number: S35642

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST RI | ESULTS    |          | Material Description                                                                                                                                               |
|---------|---------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                    |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                    |
| #200    | 29.7    |           |          |                                                                                                                                                                    |
|         |         |           |          | Atterberg Limits (ASTM D 4318) PL= LL= PI=                                                                                                                         |
|         |         |           |          | USCS (D 2487)= Classification AASHTO (M 145)=                                                                                                                      |
|         |         |           |          | $\begin{array}{cccc} & & & & & & & \\ D_{90} = & & D_{85} = & & D_{60} = \\ D_{50} = & & D_{30} = & & D_{15} = \\ D_{10} = & & C_{u} = & & C_{c} = \\ \end{array}$ |
|         |         |           |          | Remarks                                                                                                                                                            |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11                                                                                                                        |
|         |         |           |          | Tested By: ac                                                                                                                                                      |
|         |         |           |          | Checked By: CW Title: PM                                                                                                                                           |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 11-12.2

**Date Sampled:** 

**Figure** 

Location: S0014AR, S06 Sample Number: S35643

SIERRA

**TESTING LABS, INC.** 



| TEST R          | ESULTS    |          |                                                       | Material | <u>Description</u>                                                                                                      |
|-----------------|-----------|----------|-------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------|
| Opening Percent | Spec.*    | Pass?    |                                                       |          |                                                                                                                         |
| Size Finer      | (Percent) | (X=Fail) |                                                       |          |                                                                                                                         |
| #200 43.8       |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | LL=      | ts (ASTM D 4318) PI=  iffication AASHTO (M 145)=  ficients  D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  marks |
|                 |           |          | Date Received<br>Tested By                            |          | Date Tested: 11/16                                                                                                      |
|                 |           |          | Checked By                                            | /: cw    |                                                                                                                         |
|                 |           |          |                                                       | e: PM    |                                                                                                                         |

Client: URS / HMM/ ARUP

Project No: 11-111

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 20-21.3

**Date Sampled:** 

**Figure** 

Location: S0014AR, S09 Sample Number: S36284

**SIERRA** 

**TESTING LABS, INC.** 



|              | TEST RE          | SULTS     |          |                                                             | Materia                                                    | Description             | <u>1</u>                                                   |
|--------------|------------------|-----------|----------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------|------------------------------------------------------------|
| Opening      | Percent          | Spec.*    | Pass?    |                                                             |                                                            |                         |                                                            |
| Size         | Finer            | (Percent) | (X=Fail) |                                                             |                                                            |                         |                                                            |
| #200         | 6.0              |           |          | PL=                                                         | Atterberg Lim                                              | nits (ASTM D            | 4318)<br>PI=                                               |
|              |                  |           |          | USCS (D                                                     |                                                            | sification<br>AASHTO (M | 145)=                                                      |
| -            |                  |           |          |                                                             | Coe                                                        | fficients               |                                                            |
|              |                  |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = |                         | ) <sub>60</sub> =<br>) <sub>15</sub> =<br>} <sub>c</sub> = |
|              |                  |           |          |                                                             |                                                            | emarks                  |                                                            |
|              |                  |           |          |                                                             |                                                            |                         |                                                            |
|              |                  |           |          |                                                             | eived: 11/16/11<br>ed By: ac                               | Date Tes                | sted: 11/16/11                                             |
|              |                  |           |          |                                                             | ed By: ew                                                  |                         |                                                            |
|              |                  |           |          | Jileoke                                                     | Title: PM                                                  |                         | r                                                          |
| * (no specif | fication provide | ed)       |          |                                                             |                                                            | *                       |                                                            |

SIERRA TESTING LABS, INC. El Dorado Hills, CA

**Depth:** 30-31.2

Location: S0014AR, S11 Sample Number: S36285

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Date Sampled:** 

Project No: 11-111 Figure



|         | TEST RI | ESULTS    |          | Material Description                                                                                                                                        |
|---------|---------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                             |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                             |
| #200    | 33.9    |           |          | Atterberg Limits (ASTM D 4318) PL= LL= Pl=  Classification USCS (D 2487)= AASHTO (M 145)=  Coefficients D90= D85= D60= D50= D30= D15= D10= Cu= Cc=  Remarks |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11 Tested By: AC Checked By: CW Title: PM                                                                               |

**Depth:** 35-36.5

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Location: S0014AR, S12 Sample Number: S35647

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Date Sampled:

Project No: 11-111 Figure



| Description                                                                                         | Material I                                                                          |                                                       |           | ESULTS    | TEST RE |         |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|-----------|---------|---------|
| •                                                                                                   |                                                                                     |                                                       | Pass?     | Spec.*    | Percent | Opening |
|                                                                                                     |                                                                                     |                                                       | (X=Fail)  | (Percent) | Finer   | Size    |
| sification AASHTO (M 145)=  fficients  D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  emarks | Classi<br>(87)= Coeff<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = |           |           | 60.8    | #200    |
| Date Tested: 11/1                                                                                   | ed: 11/1/11<br>By: <u>A</u> C                                                       | Date Receive<br>Tested B                              |           |           |         |         |
|                                                                                                     | By: CW                                                                              | Checked B                                             |           |           |         |         |
|                                                                                                     | ile: PM                                                                             |                                                       | '- s' - i |           |         |         |

Location: S0014AR, S13 Sample Number: S35648 **SIERRA TESTING LABS, INC.** El Dorado Hills, CA

**Depth:** 40-41.4

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

**Figure** 



| TEST RE | SULTS            |                 | Material Description                                                              |
|---------|------------------|-----------------|-----------------------------------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                                                                   |
| Finer   | (Percent)        | (X=Fail)        |                                                                                   |
| 42.1    |                  |                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
|         |                  |                 | Date Received: 11/1/11 Date Tested: 11/1/1 Tested By: AC Checked By: CW Title: PM |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail)                                     |

(no specification provided)

Location: S0014AR, S15 Sample Number: S35650

**Depth:** 50-51.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 65.6    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ $D_{10} =$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

\* (no specification provided)

Location: S0014AR, S17 Sample Number: S35651

**Depth:** 60-61.5

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Client:** URS / HMM/ ARUP **Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 37.1    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

|                   | <u>Material</u>                       | <u>Description</u>                    |
|-------------------|---------------------------------------|---------------------------------------|
|                   |                                       |                                       |
|                   |                                       |                                       |
|                   |                                       |                                       |
| Δ.                | tterbera Limi                         | ts (ASTM D 4318)                      |
| PL=               | LL=                                   | PI=                                   |
|                   | 01                                    | 161 41                                |
| HECE (D 246       |                                       | ification                             |
| USCS (D 248       | 07)=                                  | AASHTO (M 145)=                       |
|                   |                                       | ficients                              |
| D <sub>90</sub> = | D <sub>85</sub> =                     | D <sub>60</sub> =                     |
| D <sub>50</sub> = | D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>15</sub> =<br>C <sub>c</sub> = |
| D <sub>10</sub> = | o <sub>u</sub> -                      | oc−                                   |
|                   | Re                                    | marks                                 |
|                   |                                       |                                       |
|                   |                                       |                                       |
|                   |                                       |                                       |
| Date Receive      | <b>d:</b> 11/1/11                     | Date Tested: 11/1/11                  |
| Tested B          |                                       |                                       |
|                   |                                       |                                       |
| Checked B         | y: CW                                 |                                       |
| Titl              | e: PM                                 |                                       |
|                   |                                       |                                       |

\* (no specification provided)

Location: S0014AR, S18 Sample Number: S35652

Depth: 65-66.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 49.8    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         | _         |          |
| , ,     |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         | 11        |          |
|         |         |           |          |
|         |         |           |          |
| =       |         |           |          |
| -       |         | u         |          |
| 1       |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= Cc= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0014AR, S19 Sample Number: S35653

**Depth:** 70-71.4

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS  Opening Percent Spec.* Pass' Size Finer (Percent) (X=Fair #200 58.5 | ?  |
|-----------------------------------------------------------------------------------|----|
| Size Finer (Percent) (X=Fai                                                       | ?  |
|                                                                                   |    |
| #200 58.5                                                                         | I) |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |
|                                                                                   |    |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ $D_{90} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

\* (no specification provided)

Location: S0014AR, S20 Sample Number: S35654

**Depth:** 75-76.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 53.7    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ D<sub>10</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0014R, S01 Sample Number: S36277

**Depth:** 0-5.0

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |                   |           |          |
|--------------|-------------------|-----------|----------|
| Opening      | Percent           | Spec.*    | Pass?    |
| Size         | Finer             | (Percent) | (X=Fail) |
| #200         | 17.5              |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
|              |                   |           |          |
| *            | cification provid |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= $D_{85} =$ $D_{90} =$ $D_{50} =$ C<sub>u</sub>= $D_{10}^{33}$ Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0014R, S02 Sample Number: S36278

**Depth:** 5-6.5

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TESTRI  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 21.5    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0014R, S03 Sample Number: S36279

**Depth:** 6.5-7.8

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                |          | SULTS     | TEST RE |         |
|----------------|----------|-----------|---------|---------|
|                | Pass?    | Spec.*    | Percent | Opening |
|                | (X=Fail) | (Percent) | Finer   | Size    |
|                |          |           | 53.9    | #200    |
| PI             |          |           |         |         |
| U              |          |           |         |         |
| D <sub>Q</sub> |          |           |         |         |
|                |          |           |         |         |
| Date           |          |           |         |         |
| С              |          |           |         |         |
|                |          |           |         | -       |

## **Material Description** Atterberg Limits (ASTM D 4318) PI= Classification SCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ =00 D<sub>15</sub>= C<sub>c</sub>= =0 Remarks Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC hecked By: CW Title: PM

(no specification provided)

Location: S0014R, S04 Sample Number: S35628

**Depth:** 8-9.3

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 47.2    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

\* (no specification provided)

Location: S0014R, S05 Sample Number: S35629

**Depth:** 9.5-10.7

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|    |          | SULTS     | TEST RE |         |
|----|----------|-----------|---------|---------|
|    | Pass?    | Spec.*    | Percent | Opening |
|    | (X=Fail) | (Percent) | Finer   | Size    |
|    |          |           | 70.6    | #200    |
| F  |          |           |         |         |
| ι  |          |           |         |         |
|    |          |           |         |         |
| 1  |          |           |         |         |
|    |          |           |         |         |
|    | , - 1    |           |         |         |
| Da |          |           |         |         |
|    |          |           |         |         |
|    |          |           |         |         |

## **Material Description** Atterberg Limits (ASTM D 4318) Classification CS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks **Received:** 11/1/11 Date Tested: 11/1/11 ested By: AC ecked By: CW Title: PM

(no specification provided)

Location: S0014R, S06 Sample Number: S35630

**Depth:** 11-12.2

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS         |          |  |
|---------|---------|---------------|----------|--|
| Opening | Percent | ercent Spec.* |          |  |
| Size    | Finer   | (Percent)     | (X=Fail) |  |
| #200    | 15.0    |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
|         |         |               |          |  |
| *       |         | 1 1)          |          |  |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>C</sub>= D<sub>10</sub>= Remarks **Date Tested:** 11/16/11 Date Received: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0014R, S11 Sample Number: S36280

**Depth:** 11-12.3

**Date Sampled:** 

15.0

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI            | ESULTS    |          |
|---------|--------------------|-----------|----------|
| Opening | pening Percent Spe |           | Pass?    |
| Size    | Finer              | (Percent) | (X=Fail) |
| #200    | 59.0               |           |          |
|         |                    | - 1       |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    | -         |          |
|         |                    |           |          |
| -       |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |
|         |                    |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ $D_{10} =$ C<sub>u</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0014R, S07 Sample Number: S35631

mple Number: \$35631 Depth: 12.5-13.9

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 60.2    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

\* (no specification provided)

Location: S0014R, S08

Sample Number: \$35632 Depth: 14-15.2

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE               | SULTS     |          |
|---------|-----------------------|-----------|----------|
| Opening | pening Percent Spec.* |           | Pass?    |
| Size    | Finer                 | (Percent) | (X=Fail) |
| #200    | 60.5                  |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         | -                     |           |          |
|         | -                     | - 1       |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       | 7,        |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |
|         |                       |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>15</sub>= $D_{30} =$ C<sub>u</sub>= C<sub>C</sub>= D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0014R, S12

Sample Number: \$35634 Depth: 35-36.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <u>M</u>                                                          | =        | SULTS     | TEST RE |         |
|-------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                   | Pass?    | Spec.*    | Percent | Opening |
|                                                                   | (X=Fail) | (Percent) | Finer   | Size    |
| Atterbe PL= USCS (D 2487)=                                        |          |           | 47.9    | #200    |
| USCS (D 2487)=                                                    | - 1      |           |         |         |
| D <sub>90</sub> = [<br>D <sub>50</sub> = [<br>D <sub>10</sub> = [ |          |           |         |         |
|                                                                   |          |           |         |         |
|                                                                   |          |           |         |         |
| Date Received: 11/1 Tested By: ac                                 |          |           |         |         |
| Checked By: cw                                                    |          |           |         |         |
| Title: PM                                                         |          |           |         |         |

# laterial Description erg Limits (ASTM D 4318) LL= Classification AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>30</sub>= C<sub>u</sub>= Remarks 16/11 **Date Tested:** 11/16/11

(no specification provided)

Location: S0014R, S13 Sample Number: S36281

**Depth:** 40-41.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |                              | Material I                                                                           | <u>Description</u>                                                                                                 |
|---------|---------|-----------|----------|------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                              |                                                                                      |                                                                                                                    |
| Size    | Finer   | (Percent) | (X=Fail) |                              |                                                                                      |                                                                                                                    |
| #200    | 49.4    |           |          | PL= USCS (D 2 D90= D50= D10= | Classi<br>2487)= Coeff<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | ts (ASTM D 4318) PI= ification AASHTO (M 145)= ficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = marks |
| *       |         |           |          | Tested<br>Checked            | ved: 11/1/11   By: AC   By: CW   Fitle: PM                                           | Date Tested: 11/1/1                                                                                                |

\* (no specification provided)

Location: S0014R, S14 Sample Number: S35635

**Depth:** 45-46.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 75.1    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ $D_{30} =$ D<sub>10</sub>= C<sub>u</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0014R, S16 Sample Number: S35637

**Depth:** 55-56.4

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          |                                        | <u>Material</u>                                            | Description                                                |
|---------|---------|-----------|----------|----------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                        |                                                            |                                                            |
| Size    | Finer   | (Percent) | (X=Fail) |                                        |                                                            |                                                            |
| #200    | 11.1    |           |          |                                        |                                                            |                                                            |
|         |         |           |          |                                        |                                                            | its (ASTM D 4318)                                          |
|         |         |           |          | PL=                                    | LL=                                                        | PI=                                                        |
|         |         |           |          | USCS (D 24                             |                                                            | <u>sification</u><br>AASHTO (M 145)=                       |
|         |         |           |          |                                        | Coe                                                        | fficients                                                  |
|         |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> = |                                                            |                                                            |
|         |         |           |          | D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|         |         |           |          |                                        | Re                                                         | emarks                                                     |
|         |         |           |          |                                        |                                                            |                                                            |
|         |         |           |          | Date Receive                           | ed: 11/1/11                                                | Date Tested: 11/1/11                                       |
|         |         |           |          | Tested E                               | By: AC                                                     |                                                            |
|         |         |           |          | Checked E                              | By: CW                                                     |                                                            |
|         |         |           |          | Tit                                    | le: PM                                                     |                                                            |

Client: URS / HMM/ ARUP

Project No: 11-111

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 60-61.2

**Date Sampled:** 

**Figure** 

Location: S0014R, S17 Sample Number: S35638

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 37.8    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| -       |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         | 1)        |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>85</sub>= $D_{60} =$ C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: AC Checked By: CW Title: PM

(no specification provided)

Location: S0014R, S18B Sample Number: S35639

mple Number: \$35639 Depth: 65.5-66.7

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Mate                                                                                                 |      |   | SULTS     | TEST RE |         |
|------------------------------------------------------------------------------------------------------|------|---|-----------|---------|---------|
|                                                                                                      | 3?   | T | Spec.*    | Percent | Opening |
|                                                                                                      | ail) |   | (Percent) | Finer   | Size    |
|                                                                                                      |      |   |           | 34.5    | #200    |
| Atterberg<br>PL= L                                                                                   |      |   |           |         |         |
| USCS (D 2487)=                                                                                       |      |   |           |         |         |
| D <sub>90</sub> = D <sub>85</sub> D <sub>50</sub> = D <sub>30</sub> D <sub>10</sub> = C <sub>u</sub> |      |   |           |         |         |
|                                                                                                      |      |   |           |         |         |
| ate Received: 11/16/<br>Tested By: ac                                                                |      |   |           |         |         |
| Checked By: cw                                                                                       |      |   |           |         |         |
| Title: PM                                                                                            |      |   |           |         |         |

# 

(no specification provided)

Location: S0015R, S01 Sample Number: S36286

**Depth:** 0-5.0

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | IESI KI | ESULTS    |          |  |  |
|---------|---------|-----------|----------|--|--|
| Opening | Percent | Spec.*    | Pass?    |  |  |
| Size    | Finer   | (Percent) | (X=Fail) |  |  |
| #200    | 20.9    |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |
|         |         |           |          |  |  |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 **Date Tested:** 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0015R, S02 Sample Number: S36287

**Depth:** 5-6.5

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| l Description                                              | Material I                                                 |                                                             |          | ESULTS    | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| wite (ACTM D 4040)                                         | Attaula ava Linait                                         |                                                             |          |           | 16.7    | #200    |
| nits (ASTM D 4318)<br>PI=                                  | LL=                                                        | PL=                                                         | 1        |           |         |         |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 24                                                  |          |           |         |         |
| <u>efficients</u>                                          |                                                            |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| demarks<br>A @ 6.5-7.0                                     | <b>Rer</b><br>ttle labeled S03A                            | Sample Bott                                                 |          |           |         |         |
| Date Tested: 11/16/1                                       | <b>/ed:</b> 11/16/11<br><b>By:</b> ac                      | Date Receiv                                                 |          |           |         |         |
|                                                            |                                                            | Checked                                                     |          |           |         |         |
|                                                            | itle: PM                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                             |          |           |         |         |

**Depth:** 6.5-7.0

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Location: S0015R, S08A Sample Number: S36288

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



|         | TEST RE | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| #200    | 33.9    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL=} & \underline{\text{LL=}} & \text{Pl=} \\ & & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \underline{\text{AASHTO (M 145)=}} \\ & \underline{\text{Coefficients}} \\ \underline{\text{D}_{90}=} & \underline{\text{D}_{85}=} & \underline{\text{D}_{60}=} \\ \underline{\text{D}_{50}=} & \underline{\text{D}_{30}=} & \underline{\text{D}_{15}=} \\ \underline{\text{D}_{10}=} & \underline{\text{C}_{u}=} & \underline{\text{C}_{c}=} \\ \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Location: S0015R, S04 Sample Number: S35655

**Depth:** 8-9.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | ESULTS    |          | Material Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| #200    | 31.6    |           |          | $\begin{array}{c cccc} & \underline{\text{Atterberg Limits (ASTM D 4318)}} \\ \text{PL=} & \underline{\text{LL=}} & \underline{\text{Pl=}} \\ & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \underline{\text{AASHTO (M 145)=}} \\ & \underline{\text{Coefficients}} \\ \underline{\text{D90=}} & \underline{\text{D85=}} & \underline{\text{D60=}} \\ \underline{\text{D50=}} & \underline{\text{D30=}} & \underline{\text{D15=}} \\ \underline{\text{D10=}} & \underline{\text{C}_{\text{u}}=} & \underline{\text{C}_{\text{c}}=} \\ \end{array}$ |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Depth:** 9.5-11

Location: S0015R, S05 Sample Number: S35656

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 



|         | TEST RE | SULTS     |          | Material Description                                                               |
|---------|---------|-----------|----------|------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                    |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                    |
| #200    | 56.9    |           |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: pm |

Client: URS / HMM/ ARUP

Project No: 11-111

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 11.4-12.5

**Date Sampled:** 

**Figure** 

Location: S0015R, S06B Sample Number: S35657

**SIERRA** 

**TESTING LABS, INC.** 



| TEST RI | ESULTS           |                 |                                               |
|---------|------------------|-----------------|-----------------------------------------------|
| Percent | Spec.*           | Pass?           |                                               |
| Finer   | (Percent)        | (X=Fail)        |                                               |
| 72.5    |                  |                 |                                               |
|         |                  |                 |                                               |
|         |                  |                 |                                               |
|         |                  |                 |                                               |
|         |                  |                 |                                               |
|         |                  |                 |                                               |
|         |                  |                 |                                               |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail) |

## **Material Description** Atterberg Limits (ASTM D 4318) PI= Classification S (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Remarks Received: 11/1/11 Date Tested: 11/1/11 ested By: ac cked By: cw Title: pm

(no specification provided)

Location: S0015R, S07B Sample Number: S35658

**Depth:** 12.9-13.8

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RI          | ESULTS              |                   | Material Description                                          |
|-----------------|------------------|---------------------|-------------------|---------------------------------------------------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |                                                               |
| #200            | 75.7             |                     |                   | Atterberg Limits (ASTM D 4318)  PL=                           |
|                 |                  |                     |                   | Date Received: 11/1/11 Tested By: ac Checked By: cw Title: pm |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 14-15.5

**Date Sampled:** 

**Figure** 

Location: S0015R, S08 Sample Number: S35659

**SIERRA** 

**TESTING LABS, INC.** 



|         | TEST RE | ESULTS    |          | Material Description                                                                                                                                         |
|---------|---------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                                                                                                              |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                                                                                                              |
| #200    | 44.3    |           |          | Atterberg Limits (ASTM D 4318) PL= LL= Pl=  Classification USCS (D 2487)= AASHTO (M 145)=  Coefficients  D90= D85= D60= D50= D30= D15= D10= Cu= Cc=  Remarks |
|         |         |           |          | Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM                                                                         |

SIERRA TESTING LABS, INC. El Dorado Hills, CA

**Depth:** 20-20.3

Location: S0015R, S09A Sample Number: S36289

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



|         | TEST RI | ESULTS    |          | <u>Mate</u>                               | rial Description                         |
|---------|---------|-----------|----------|-------------------------------------------|------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                           |                                          |
| Size    | Finer   | (Percent) | (X=Fail) |                                           |                                          |
| #200    | 30.8    |           |          | PL= LL:  CI  USCS (D 2487)=  C  Dan= Das= | assification AASHTO (M 145)= oefficients |
|         |         |           |          | Date Received: 11/16/1 Tested By: ac      | Date Tested: 11/16/11                    |
|         |         |           |          | Checked By: cw                            |                                          |
|         |         |           |          | Title: PM                                 |                                          |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

**Depth:** 25-26.5

Location: S0015R, S10 Sample Number: S36290

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 



|         | TEST RESULTS                          |           |          |  |  |  |  |  |  |  |
|---------|---------------------------------------|-----------|----------|--|--|--|--|--|--|--|
|         | TEST RE                               |           |          |  |  |  |  |  |  |  |
| Opening | Percent                               | Spec.*    | Pass?    |  |  |  |  |  |  |  |
| Size    | Finer                                 | (Percent) | (X=Fail) |  |  |  |  |  |  |  |
| #200    | 85.5                                  |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         | -                                     |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
|         |                                       |           |          |  |  |  |  |  |  |  |
| * /     | · · · · · · · · · · · · · · · · · · · | - J\      |          |  |  |  |  |  |  |  |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{90} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0015R, S11B Sample Number: S35660

**mple Number:** \$35660 **Depth:** 30.7-31.0

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | SULTS     |          | Material Description                                 |
|---------|---------|-----------|----------|------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                      |
| Size    | Finer   | (Percent) | (X=Fail) |                                                      |
| #200    | 56.4    |           |          |                                                      |
|         |         |           |          | Atterberg Limits (ASTM D 4318) PL= LL= PI=           |
|         |         |           |          | USCS (D 2487)= Classification  AASHTO (M 145)=       |
|         |         |           |          | <u>Coefficients</u>                                  |
|         |         |           |          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|         |         |           |          | Remarks                                              |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11          |
|         |         |           |          | Tested By: ac                                        |
|         |         |           |          | Checked By: cw                                       |
|         |         |           |          | Title: PM                                            |

(no specification provided)

Location: S0015R, S12B Sample Number: S35661 Depth: 35.6-36.4

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RE | SULTS     |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 49.8    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
| *       |         | 1         |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ $D_{50} =$ $D_{30} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= C<sub>u</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

\* (no specification provided)

Location: S0015R, S13 Sample Number: S35662

**Depth:** 40-41.2

**Date Sampled:** 

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | Material Description                                                         |
|---------|---------|-----------|----------|------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                                              |
| Size    | Finer   | (Percent) | (X=Fail) |                                                                              |
| #200    | 91.9    |           |          |                                                                              |
|         |         |           |          | Atterberg Limits (ASTM D 4318) PL= LL= Pl=                                   |
|         |         |           |          | USCS (D 2487)= Classification  AASHTO (M 145)=                               |
|         |         |           |          | <u>Coefficients</u><br>D <sub>90</sub> = D <sub>85</sub> = D <sub>60</sub> = |
|         |         |           |          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                         |
|         |         |           |          | Remarks                                                                      |
|         |         |           |          |                                                                              |
|         |         |           |          | Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac                    |
|         |         |           |          | Checked By: cw                                                               |
|         |         |           |          | Title: PM                                                                    |

Client: URS / HMM/ ARUP

Project No: 11-111

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

**Depth:** 50-50.6

Date Sampled:

**Figure** 

Location: S0015R, S15A Sample Number: S35663

**SIERRA** 

**TESTING LABS, INC.** 



11/16/11

**Date Sampled:** 

**Figure** 

| al Description                                             | Material                               |                                        |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                                        |          |           | 61.1    | #200    |
| mits (ASTM D 4318<br>PI=                                   | Atterberg Limi                         | PL=                                    |          |           |         |         |
|                                                            |                                        |                                        |          |           |         |         |
| nssification<br>AASHTO (M 145)=                            |                                        | USCS (D 2487                           |          |           |         |         |
| <u>pefficients</u>                                         |                                        |                                        |          |           |         |         |
| D <sub>60</sub> =                                          | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =                      |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | C <sub>u</sub> =                       | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                     |                                        |          |           |         |         |
|                                                            |                                        |                                        |          |           |         |         |
| Date Tested:                                               | <b>d:</b> 11/16/11<br><b>y:</b> ac     | Date Receive<br>Tested E               |          |           |         |         |
|                                                            | sy: cw                                 | Checked E                              |          |           |         |         |
|                                                            | le: PM                                 | Tit                                    |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 0-5.0

Location: S0016R, S01 Sample Number: S36292

**SIERRA** 

**TESTING LABS, INC.** 



11/16/11

**Date Sampled:** 

**Figure** 

| I Description                                              | Material                                                   |                                                             |          | ESULTS    | TEST RI |        |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                             |          |           | 62.5    | #200   |
| nits (ASTM D 4318<br>19 PI=                                | Atterberg Limit                                            | PL= 16                                                      |          |           |         |        |
| s <u>sification</u><br>AASHTO (M 145)=                     |                                                            | USCS (D 2487)                                               |          |           |         |        |
| efficients                                                 | Coe                                                        |                                                             |          |           |         |        |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| emarks                                                     | Re                                                         |                                                             |          |           |         |        |
|                                                            |                                                            |                                                             |          |           |         |        |
| Date Tested:                                               | <b>ed:</b> 11/16/11<br><b>By:</b> ac                       | Date Receive<br>Tested B                                    |          |           |         |        |
|                                                            | By: cw                                                     | Checked B                                                   |          |           |         |        |
|                                                            | tle: PM                                                    | 1                                                           |          |           |         |        |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 5-6.0

Location: S0016R, S02 Sample Number: S36293

**SIERRA** 

**TESTING LABS, INC.** 



11/1/11

**Date Sampled:** 

**Figure** 

| <b>Material Descript</b>                                   |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                             |          |           | 30.0    | #200    |
| terberg Limits (ASTM<br>LL=                                | PL=                                                         |          |           |         |         |
| Classification<br>AASHTO                                   | USCS (D 2487)=                                              |          |           |         |         |
| Coefficients                                               |                                                             |          |           |         |         |
| D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    |                                                             |          |           |         |         |
|                                                            | Date Received:                                              |          |           |         |         |
|                                                            | Checked By                                                  |          |           |         |         |
|                                                            | Title                                                       |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 10-11.3

Location: S0016R, S03 Sample Number: S35664

**SIERRA** 

**TESTING LABS, INC.** 



| aterial Descript         |            |                      |   |          | SULTS     | TEST RE |         |
|--------------------------|------------|----------------------|---|----------|-----------|---------|---------|
| •                        |            |                      |   | Pass?    | Spec.*    | Percent | Opening |
|                          |            |                      |   | (X=Fail) | (Percent) | Finer   | Size    |
| rg Limits (ASTN          | Atterl     |                      |   |          |           | 36.5    | #200    |
| LL=                      |            | L=                   |   |          |           |         |         |
| Classification<br>AASHTO | 2487)=     | ISCS (D 248          |   |          |           |         |         |
| Coefficients             |            |                      |   |          |           |         |         |
| 85=<br>30=<br>u=         |            | 990=<br>950=<br>910= |   |          |           |         |         |
| Remarks                  |            |                      |   |          |           |         |         |
| 711 <b>Date</b>          | ceived: 11 | ate Receiv           | - |          |           |         |         |
|                          | ked By: cw |                      |   |          |           |         |         |
|                          | Title: PN  |                      |   |          |           |         |         |

SIERRA TESTING LABS, INC.

Location: S0016R, S05 Sample Number: S35666

El Dorado Hills, CA

**Depth:** 20-21.3

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

36.5

**Date Sampled:** 

Project No: 11-111 Figure



**Date Sampled:** 

**Figure** 

| ial Description                                            | Material I                                                 |                                                             |          | ESULTS    | TEST RI |       |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|-------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | ening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size  |
|                                                            |                                                            |                                                             |          |           | 7.1     | #200  |
| <u>imits (ASTM D 4318</u><br>Pl=                           | Atterberg Limit<br>LL=                                     | PL=                                                         |          |           |         |       |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 2487)=                                              |          |           |         |       |
| oefficients                                                | Coef                                                       |                                                             |          |           |         |       |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |       |
| Remarks                                                    |                                                            |                                                             |          |           |         |       |
| Date Tested:                                               |                                                            | Date Received:<br>Tested By:                                |          |           |         |       |
|                                                            |                                                            | Checked By:                                                 |          |           |         |       |
|                                                            |                                                            | 1                                                           |          |           |         |       |
|                                                            | <b>e</b> : <u>PM</u>                                       | little:                                                     |          |           |         |       |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 35-35.9

Location: S0016R, S08 Sample Number: S36294

SIERRA

**TESTING LABS, INC.** 



| al Description                                             | Material                                                   |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 17.9    | #200    |
| mits (ASTM D 4318)<br>PI=                                  | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 2487                                                |          |           |         |         |
| <u>pefficients</u>                                         | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    |                                                            |                                                             |          |           |         |         |
| Date Tested:                                               | <b>ed:</b> 11/1/11                                         | Date Receive                                                |          |           |         |         |
|                                                            | <b>Ву:</b> <u>ас</u>                                       | Tested E                                                    |          |           |         |         |
|                                                            | By: cw                                                     | Checked E                                                   |          |           |         |         |
|                                                            | tle: PM                                                    | Tit                                                         |          |           |         |         |

Location: S0016R, S10
Sample Number: S35669
Depth: 45-46.2

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

17.9

11/1/11

**Date Sampled:** 

**Figure** 

Project No: 11-111



| Il Description                                             | Material                                                   |                                                             |          | SULTS     | TEST RI |        |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| -                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                             |          |           | 37.6    | #200   |
| nits (ASTM D 4318)<br>Pl=                                  | Atterberg Limi<br>LL=                                      | PL=                                                         |          |           |         |        |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 248                                                 |          |           |         |        |
| efficients                                                 | Coef                                                       |                                                             |          |           |         |        |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |        |
| Date Tested:                                               | <b>ed:</b> 11/16/11                                        |                                                             |          |           |         |        |
|                                                            | <b>By:</b> <u>ac</u>                                       | Tested                                                      |          |           |         |        |
|                                                            | By: cw                                                     | Checked                                                     |          |           |         |        |
|                                                            | tle: PM                                                    | Ti                                                          |          |           |         |        |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 50-50.8

Location: S0016R, S11A Sample Number: S36295

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

11/16/11

**Date Sampled:** 



**Date Sampled:** 

**Figure** 

| ial Description                  | Material I                                                 |                                                             |          | ESULTS    | TEST RI |         |
|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                  |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                  |                                                            |                                                             |          |           | 73.3    | #200    |
| <u>imits (ASTM D 4318</u> 30 PI= | erberg Limit<br>LL= 30                                     | PL= 16                                                      |          |           |         |         |
| assification<br>AASHTO (M 145)=  |                                                            | USCS (D 2487)=                                              |          |           |         |         |
| oefficients                      | Coef                                                       |                                                             |          |           |         |         |
|                                  | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                          | Rer                                                        |                                                             |          |           |         |         |
| Date Tested:                     |                                                            | Date Received: 1                                            |          |           |         |         |
|                                  |                                                            | Checked By:                                                 |          |           |         |         |
|                                  |                                                            | -                                                           |          |           |         |         |
|                                  | PM                                                         | Title: I                                                    |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 50.8-51.5

Location: S0016R, S11B Sample Number: S35670

**SIERRA** 

**TESTING LABS, INC.** 



11/1/11

**Date Sampled:** 

**Figure** 

| rial Description                                           | Material                               |                                        |          | ESULTS    | TEST RE |         |
|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                                        | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                                        |          |           | 33.3    | #200    |
| imits (ASTM D 4318                                         |                                        |                                        |          |           |         |         |
| PI=                                                        | LL=                                    | PL=                                    |          |           |         |         |
| <u>assification</u><br>AASHTO (M 145)=                     |                                        | USCS (D 2487                           |          |           |         |         |
| oefficients                                                |                                        |                                        |          |           |         |         |
| D <sub>60</sub> =                                          | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =                      |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | C <sub>u</sub> =                       | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                     |                                        |          |           |         |         |
|                                                            |                                        |                                        |          |           |         |         |
| Date Tested:                                               | ed: 11/1/11<br>By: ac                  | Date Receive<br>Tested E               |          |           |         |         |
|                                                            | By: cw                                 | Checked E                              |          |           |         |         |
|                                                            | tle: PM                                | 1                                      |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 55-56.1

Location: S0016R, S12 Sample Number: S35671

**SIERRA** 

**TESTING LABS, INC.** 



42.7

11/16/11

**Date Sampled:** 

**Figure** 

| I Description                                              | Material                                                   |                                                             |          | ESULTS    | TEST R  |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <u> </u>                                                   |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 42.7    | #200    |
| nits (ASTM D 4318)<br>Pl=                                  | Atterberg Limi<br>LL=                                      | PL=                                                         |          |           |         |         |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 248                                                 |          |           |         |         |
| efficients                                                 | Coef                                                       |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| emarks                                                     | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | red: 11/16/11                                              |                                                             |          |           |         |         |
|                                                            | <b>By:</b> <u>ac</u>                                       | Tested                                                      |          |           |         |         |
|                                                            | By: cw                                                     | Checked                                                     |          |           |         |         |
|                                                            | tle: PM                                                    | Ti                                                          |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 60-61.5

Location: S0016R, S13 Sample Number: S36296

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



| l Description                                              | Material                                                   |                                                             |          | SULTS     | TEST RE |        |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                             |          |           | 9.0     | #200   |
| nits (ASTM D 4318)<br>Pl=                                  | Atterberg Limi<br>LL=                                      | PL=                                                         |          |           |         |        |
| sification<br>AASHTO (M 145)=                              |                                                            | USCS (D 2487                                                |          |           |         |        |
| efficients                                                 | Coef                                                       |                                                             |          |           |         |        |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| emarks                                                     | Re                                                         |                                                             |          |           |         |        |
| Date Tested:                                               | ed: 11/16/11                                               | Date Receive                                                |          |           |         |        |
|                                                            | <b>Зу:</b> <u>ас</u>                                       | Tested B                                                    |          |           |         |        |
|                                                            | By: cw                                                     | Checked B                                                   |          |           |         |        |
|                                                            | le: PM                                                     | Tit                                                         |          |           |         |        |

Location: S0016R, S14
Sample Number: S36297

Depth: 65-65.9

TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

9.0

11/16/11

**Date Sampled:** 

Project No: 11-111 Figure



52.7

**Date Sampled:** 

**Figure** 

| ial Description                                            | Material [                             |                           |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|----------------------------------------|---------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                           | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                           | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                           |          |           | 52.7    | #200    |
| imits (ASTM D 4318)                                        |                                        | <u>Atte</u>               |          |           |         |         |
| PI=                                                        | LL=                                    |                           |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                        | (D 2487)=                 |          |           |         |         |
| oefficients                                                | Coeff                                  |                           |          |           |         |         |
|                                                            | D <sub>85</sub> =<br>D <sub>30</sub> = |                           |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | C <sub>u</sub> =                       |                           |          |           |         |         |
| Remarks                                                    | Ren                                    |                           |          |           |         |         |
| Date Tested:                                               | 11/1/11                                | Received: 1               |          |           |         |         |
|                                                            |                                        | _                         |          |           |         |         |
|                                                            |                                        | ecked By: $\underline{c}$ |          |           |         |         |
|                                                            | PM                                     | Title: P                  |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 70-71.5

Location: S0016R, S15 Sample Number: S35672

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



64.4

**Date Sampled:** 

**Figure** 

| ial Description                 | Material                                                   |                                                             |          | ESULTS    | TEST RE |         |
|---------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                               |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                 |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                 |                                                            |                                                             |          |           | 64.4    | #200    |
| imits (ASTM D 4318<br>22 Pl=    | erberg Limi<br>LL= 22                                      | PL= 20                                                      |          |           |         |         |
| assification<br>AASHTO (M 145)= |                                                            | USCS (D 2487)=                                              |          |           |         |         |
| oefficients                     | Coef                                                       |                                                             |          |           |         |         |
|                                 | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                         | Rei                                                        |                                                             |          |           |         |         |
| Date Tested:                    |                                                            | Date Received:<br>Tested By:                                |          |           |         |         |
|                                 |                                                            | Checked By:                                                 |          |           |         |         |
|                                 |                                                            | Title:                                                      |          |           |         |         |
|                                 | PM                                                         | ı itie: j                                                   |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 75-76.2

Location: S0016R, S16 Sample Number: S35673

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



| erial Description                                              | Material                                                   |                                                             |          | ESULTS    | TEST R  |         |
|----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                |                                                            |                                                             |          |           | 46.3    | #200    |
| <u>Limits (ASTM D 4318)</u><br>= PI=                           | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| Classification<br>AASHTO (M 145)=                              |                                                            | USCS (D 2487                                                |          |           |         |         |
| Coefficients                                                   | Coe                                                        |                                                             |          |           |         |         |
| = D <sub>60</sub> =<br>= D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                        | Re                                                         |                                                             |          |           |         |         |
|                                                                |                                                            |                                                             |          |           |         |         |
| Date Tested:                                                   | /ed: 11/1/11<br>By: ac                                     | Date Receive<br>Tested B                                    |          |           |         |         |
|                                                                | By: cw                                                     | Checked E                                                   |          |           |         |         |
|                                                                | itle: PM                                                   | Tit                                                         |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 80-81.5

Location: S0016R, S17 Sample Number: S35674

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

11/1/11

**Date Sampled:** 



| I Description                                              | Material                                                   |                                                             |          | SULTS     | TEST RE |        |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                            |                                                            |                                                             |          |           | 26.9    | #200   |
| nits (ASTM D 4318)<br>Pl=                                  | Atterberg Limi<br>LL=                                      | PL=                                                         |          |           |         |        |
| sification<br>AASHTO (M 145)=                              |                                                            | USCS (D 2487                                                |          |           |         |        |
| efficients                                                 | Coef                                                       |                                                             |          |           |         |        |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| emarks                                                     | Re                                                         |                                                             |          |           |         |        |
| Date Tested:                                               | <b>/ed:</b> 11/16/11                                       | Date Receive                                                |          |           |         |        |
|                                                            | <b>By:</b> <u>ac</u>                                       | Tested E                                                    |          |           |         |        |
|                                                            | By: cw                                                     | Checked E                                                   |          |           |         |        |
|                                                            | itle: PM                                                   | Tit                                                         |          |           |         |        |

Location: S0016R, S20 Sample Number: S36298 Depth: 95-96.5

TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

26.9

11/16/11

**Date Sampled:** 

Project No: 11-111 Figure



| Material De                                                           |                                                             |          | SULTS     | TEST R  |        |
|-----------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|--------|
|                                                                       |                                                             | Pass?    | Spec.*    | Percent | pening |
|                                                                       |                                                             | (X=Fail) | (Percent) | Finer   | Size   |
|                                                                       |                                                             |          |           | 12.4    | #200   |
| Atterberg Limits<br>LL=                                               | PL=                                                         |          |           |         |        |
| Classifi<br>2487)= AA                                                 | USCS (D 24                                                  |          |           |         |        |
| Coeffic<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |        |
| Rema                                                                  |                                                             |          |           |         |        |
| eived: 11/16/11                                                       |                                                             |          |           |         |        |
| ed By: cw                                                             | Checked                                                     |          |           |         |        |
| Title: PM                                                             |                                                             |          |           |         |        |

# scription (ASTM D 4318) <u>cation</u> ASHTO (M 145)= ients D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= rks **Date Tested:** 11/16/11

Location: S0016R, S21B Sample Number: S36299

**Depth:** 100.8-101.5

**Date Sampled:** 

**Figure** 

12.4

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



12.5

11/16/11

**Date Sampled:** 

**Figure** 

| al Description                                             | Material                                                   |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                            |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 12.5    | #200    |
| nits (ASTM D 4318)<br>Pl=                                  | Atterberg Limi<br>LL=                                      | PL=                                                         |          |           |         |         |
| ssification<br>AASHTO (M 145)=                             |                                                            | USCS (D 248                                                 |          |           |         |         |
| <u>efficients</u>                                          | Coef                                                       |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | <b>ed:</b> 11/16/11                                        | Date Receiv                                                 |          |           |         |         |
|                                                            | <b>Ву:</b> <u>ас</u>                                       | Tested                                                      |          |           |         |         |
|                                                            | By: cw                                                     | Checked                                                     |          |           |         |         |
|                                                            | tle: PM                                                    | Ti                                                          |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Depth: 110-110.8

Location: S0016R, S23A Sample Number: S36300

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



| rial Description                                           | Material                                                   |                                                             |          | ESULTS    | TEST RI |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| <del></del>                                                |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                                            |                                                             |          |           | 44.7    | #200    |
| imits (ASTM D 4318).<br>Pl=                                | Atterberg Lim<br>LL=                                       | PL=                                                         |          |           |         |         |
| assification<br>AASHTO (M 145)=                            |                                                            | USCS (D 248                                                 |          |           |         |         |
| oefficients                                                | Coe                                                        |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | Re                                                         |                                                             |          |           |         |         |
| Date Tested:                                               | /ed: 11/1/11                                               | Date Receiv                                                 |          |           |         |         |
|                                                            | By: ac                                                     | Tested                                                      |          |           |         |         |
|                                                            | By: cw                                                     | Checked                                                     |          |           |         |         |
|                                                            | itle: PM                                                   | Ti                                                          |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 110.8-111.5

Location: S0016R, S23B Sample Number: S35678

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA

11/1/11

**Date Sampled:** 



55.3

**Date Sampled:** 

**Figure** 

|      | TEST R  | ESULTS    |          |                                                             | Material                                                   | <b>Description</b>                                         |
|------|---------|-----------|----------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| ning | Percent | Spec.*    | Pass?    |                                                             |                                                            |                                                            |
| ze   | Finer   | (Percent) | (X=Fail) |                                                             |                                                            |                                                            |
| 00   | 55.3    |           |          |                                                             |                                                            |                                                            |
|      |         |           |          | PL=                                                         | erberg Lim<br>LL=                                          | its (ASTM D 4318<br>Pl=                                    |
|      |         |           |          | USCS (D 2487)=                                              | Class                                                      | sification<br>AASHTO (M 145)=                              |
|      |         |           |          |                                                             | Coe                                                        | fficients                                                  |
|      |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>U</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|      |         |           |          |                                                             | -                                                          | emarks                                                     |
|      |         |           |          | Date Received:<br>Tested By:                                |                                                            | Date Tested:                                               |
|      |         |           |          | 1                                                           |                                                            |                                                            |
|      |         |           |          | Checked By:<br>Title:                                       |                                                            |                                                            |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

**Depth:** 115-116.5

Location: S0016R, S24 Sample Number: S35679

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



|                                                             | Material                                                   | <u>Description</u>                                         |
|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|                                                             |                                                            | <u> </u>                                                   |
|                                                             |                                                            |                                                            |
|                                                             |                                                            |                                                            |
| PL= 23                                                      | Atterberg Limi<br>LL= 38                                   | ts (ASTM D 4318)<br>PI= 1                                  |
| USCS (D 2487)                                               |                                                            | ification<br>AASHTO (M 145)=                               |
|                                                             | Coef                                                       | ficients                                                   |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                             |                                                            | marks                                                      |
| Date Received                                               |                                                            | Date Tested:                                               |
| Tested B                                                    |                                                            |                                                            |
| Checked By                                                  | <b>y:</b> <u>cw</u>                                        |                                                            |
| Title                                                       | e: PM                                                      |                                                            |

(--- »F------F------)

Location: S0016R, S25
Sample Number: S36301
Depth: 120-121.5

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

88.0

11/16/11

**Date Sampled:** 

Project No: 11-111 Figure



| I Description                                              | Material [                                                 |                                                             |          | SULTS     | TEST RE |         |
|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                                            |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                                            |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| nits (ASTM D 4318)                                         | erbera Limit                                               | Atte                                                        |          |           | 51.6    | #200    |
| Pl=                                                        | LL=                                                        | PL=                                                         |          |           |         |         |
| sification<br>AASHTO (M 145)=                              |                                                            | USCS (D 2487)=                                              |          |           |         |         |
| efficients                                                 | Coeff                                                      |                                                             |          |           |         |         |
| D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| emarks                                                     | Rer                                                        | .•                                                          |          |           |         |         |
| Date Tested: 11                                            |                                                            | Date Received:                                              |          |           |         |         |
|                                                            |                                                            | Checked By:                                                 |          |           |         |         |
|                                                            |                                                            | Title:                                                      |          |           |         |         |

Location: S0016R, S26 Sample Number: S35680 Depth: 125-126.0

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

51.6

**Date Sampled:** 

Project No: 11-111 Figure



| % +3"   |      | % Gravel   |           |         | % Sand |               | % Fines           |      |
|---------|------|------------|-----------|---------|--------|---------------|-------------------|------|
| % +3    |      | Coarse     | Fine      | Coarse  | Medium | Fine          | Silt              | Clay |
|         |      |            |           |         |        |               | 40.6              |      |
|         |      | EST RESULT | 9         |         |        | Mate          | wiel Description  |      |
|         |      |            |           |         |        | <u>iviate</u> | erial Description |      |
| Opening | Perc | ent S      | pec.*     | Pass?   |        |               |                   |      |
| Size    | Fin  | er (Pe     | ercent) ( | X=Fail) |        |               |                   |      |
| #200    | 40   | .6         |           |         |        |               |                   |      |

|         | TEST RE | SULTS     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Materia                     | l Description                                              |
|---------|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                             | •                                                          |
| Size    | Finer   | (Percent) | (X=Fail)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                             |                                                            |
| #200    | 40.6    | ( com,    | (control of the control of the contr | PL= USCS (D 2487)= D90= D50= D10=           | LL= Clas  Coe D85= D30= Cu= | sification AASHTO (M 145)= efficients D60= D15= Cc= emarks |
|         |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Received:<br>Tested By:<br>Checked By: | ac                          | Date Tested:                                               |
|         |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Title:                                      |                             |                                                            |

\* (no specification provided)

**Location:** S0016R, S27 **Sample Number:** S35681 **Depth:** 130-131.5

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

**Date Sampled:** 

11/1/11

SIERRA TESTING LABS, INC.

ΓESTING LABS, INC. El Dorado Hills, CA



12.4

11/1/11

**Date Sampled:** 

**Figure** 

| <b>Material Description</b>                                | Material Descript                      |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
| •                                                          |                                        |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                            |                                        |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                            |                                        |                                                             |          |           | 12.4    | #200    |
| erberg Limits (ASTM D<br>LL=                               |                                        | PL=                                                         |          |           |         |         |
| Classification<br>AASHTO (M                                |                                        | USCS (D 248)                                                |          |           |         |         |
| Coefficients                                               | Co                                     |                                                             |          |           |         |         |
| D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                                    | R                                      |                                                             |          |           |         |         |
|                                                            | ived: 11/1/11                          | Date Receive                                                |          |           |         |         |
|                                                            |                                        | Checked I                                                   |          |           |         |         |
|                                                            | и ву. <u>cw</u><br>Title: PM           | 1                                                           |          |           |         |         |

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Project No: 11-111

Fresno to Bakersfield Geotech Investigation

Depth: 135-136.3

Location: S0016R, S28 Sample Number: S35682

**SIERRA** 

**TESTING LABS, INC.** 

El Dorado Hills, CA



| erial Description                                              | Material                               |                                        |          | TEST RESULTS |         |         |  |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|----------|--------------|---------|---------|--|
| •                                                              |                                        |                                        | Pass?    | Spec.*       | Percent | Opening |  |
|                                                                |                                        |                                        | (X=Fail) | (Percent)    | Finer   | Size    |  |
|                                                                |                                        |                                        |          |              | 9.7     | #200    |  |
| Limits (ASTM D 43                                              |                                        |                                        |          |              |         |         |  |
| _= PI                                                          | LL=                                    | PL=                                    |          |              |         |         |  |
| Classification<br>AASHTO (M 145                                | <u>Class</u><br>7)=                    | USCS (D 2487                           |          |              |         |         |  |
| Coefficients                                                   | Coe                                    |                                        |          |              |         |         |  |
|                                                                | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> = |          |              |         |         |  |
| ;= D <sub>60</sub><br>;= D <sub>15</sub><br>; C <sub>c</sub> = | C <sub>u</sub> =                       | D <sub>50</sub> =<br>D <sub>10</sub> = |          |              |         |         |  |
| Remarks                                                        | Re                                     |                                        |          |              |         |         |  |
| Date Tested                                                    | ed: 11/1/11                            |                                        |          |              |         |         |  |
|                                                                | <b>Ву:</b> <u>ас</u>                   | Tested E                               |          |              |         |         |  |
|                                                                | By: cw                                 | Checked E                              |          |              |         |         |  |
|                                                                | tle: PM                                | Tit                                    |          |              |         |         |  |

Location: S0016R, S29 Sample Number: S35683 **Depth:** 140-141.2

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

9.7

11/1/11

**Date Sampled:** 

Project No: 11-111 **Figure** 



|         | - 00    | uisc   | 1 1110  | •   | Odaise | Mcalalli                   | 1 1110                      | Ont                                         |          |
|---------|---------|--------|---------|-----|--------|----------------------------|-----------------------------|---------------------------------------------|----------|
|         |         |        |         |     |        |                            |                             | 20.2                                        | 2        |
|         | TEST I  | RESULT | S       |     |        |                            | Mate                        | erial Description                           |          |
| Opening | Percent | Sı     | pec.*   | Pa  | ass?   |                            |                             | <u> </u>                                    |          |
| Size    | Finer   | (Pe    | ercent) | (X: | =Fail) |                            |                             |                                             |          |
| #200    | 20.2    |        |         |     |        | PL= USCS (E D90= D50= D10= | LĹ:<br><u>C</u><br>) 2487)= | Classification AASHTO (M 145)= Coefficients | )        |
|         |         |        |         |     |        | Date Re                    | ceived: 11/16/1             |                                             | 11/16/11 |

(no specification provided)

Location: S0016R, S31 Sample Number: S36302 Depth: 150-151.5

> SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Tested By: ac Checked By: cw

Title: PM

**Figure** 

**Date Sampled:** 



| TEST RESULTS    |                  |                     |                   |  |  |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |  |  |
| #200            | 43.3             | (Fercent)           | (A=Fall)          |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
| *               |                  |                     |                   |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S01 Sample Number: S36303

Depth: 0-5.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 64.7             |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
| *               |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= Cu= C<sub>C</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S02 Sample Number: S36304

**Depth:** 5-6.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |          |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |
| #200         | 74.3    |           |          |  |  |  |  |
|              |         |           |          |  |  |  |  |
| *            |         |           |          |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>85</sub>= $D_{60} =$ $D_{30} =$ $D_{15} =$ D<sub>10</sub>= Cu= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S04A Sample Number: S35684

Depth: 15-15.6

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |  |  |  |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|--|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |  |  |  |
| #200            | 72.1             |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |  |

|                                        | Material                               | Description                                                |
|----------------------------------------|----------------------------------------|------------------------------------------------------------|
|                                        |                                        |                                                            |
|                                        |                                        |                                                            |
| PL=                                    | Atterberg Lim<br>LL=                   | its (ASTM D 4318)<br>PI=                                   |
|                                        |                                        | sification                                                 |
| USCS (D 24                             |                                        | AASHTO (M 145)=                                            |
|                                        |                                        | fficients                                                  |
| D <sub>90</sub> =<br>D <sub>50</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
| D <sub>10</sub> =                      | c <sub>u</sub> =                       | ~                                                          |
|                                        | Re                                     | emarks                                                     |
|                                        |                                        |                                                            |
|                                        |                                        | B . T . L                                                  |
| Date Receive                           |                                        | Date Tested: 11/1/11                                       |
| Tested I                               |                                        |                                                            |
| Checked I                              | 5500 St                                |                                                            |
| Tit                                    | ile: PM                                |                                                            |

(no specification provided)

Location: S0017R, S05 Sample Number: S35685

le Number: S35685 Depth: 20-21.2

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |         |  |  |  |  |
|--------------|---------|-----------|---------|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?   |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail |  |  |  |  |
| #200         | 13.5    |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>30</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

Location: S0017R, S06 Sample Number: S36305

Depth: 25-26.0

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*      | Pass?      |  |
|---------|---------|-------------|------------|--|
| Size    | Finer   | (Percent)   | (X=Fail)   |  |
| #200    | 7.7     | (i crocity) | (7.21 all) |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |
|         |         |             |            |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= C<sub>u</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S07 Sample Number: S36306

Depth: 30-31.3

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          | 8                                                     | Material                                                                          | Description                                                                                                        |
|---------|---------|-----------|----------|-------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                       |                                                                                   | •                                                                                                                  |
| Size    | Finer   | (Percent) | (X=Fail) |                                                       |                                                                                   |                                                                                                                    |
| #200    | 62.4    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | Class<br>)=<br>Coef<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) Pl=  sification AASHTO (M 145)=  fficients  D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = |
|         |         |           |          | Date Received<br>Tested By<br>Checked By<br>Title     | : ac                                                                              | Date Tested: 11/1/11                                                                                               |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Depth: 40-40.7

Location: S0017R, S09 Sample Number: S35686

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



|         | MM1200008 2404 | ESULTS    |          |
|---------|----------------|-----------|----------|
| Opening | Percent        | Spec.*    | Pass?    |
| Size    | Finer          | (Percent) | (X=Fail) |
| #200    | 31.6           |           |          |
|         |                |           |          |
|         |                |           |          |
|         |                |           |          |
|         |                |           |          |
|         |                |           |          |
|         |                |           |          |
|         |                |           |          |

|                   | Maradal D                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | Material D                            | escription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Δtterh            | era Limits                            | (ASTM D 4318)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| PL=               | LL=                                   | PI=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                   | Classifi                              | ication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| USCS (D 2487)=    |                                       | ASHTO (M 145)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                   | Coeffic                               | cients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| D <sub>90</sub> = | D <sub>85</sub> =                     | D <sub>60</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| D <sub>50</sub> = | D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>15</sub> =<br>C <sub>c</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| D <sub>10</sub> = | o <sub>u</sub> =                      | O <sub>C</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                   | Rema                                  | arks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Date Received:    |                                       | Date Tested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Tested By:        |                                       | marked M. T. T. S. |  |
|                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Checked By:       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Title:            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

(no specification provided)

Location: S0017R, S10 Sample Number: S36307

Depth: 45-46.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| 1                                                           |          | ESULTS    | TEST RE |         |
|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| Atterbe                                                     |          |           | 46.2    | #200    |
| USCS (D 2487)=                                              |          |           |         |         |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Date Received: 11. Tested By: ky                            |          |           |         |         |
| Checked By: cw                                              |          |           |         |         |
| Title: PM                                                   |          |           |         |         |

# laterial Description erg Limits (ASTM D 4318) LL= PI= Classification AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ D<sub>30</sub>= C<sub>u</sub>= $D_{15} =$ Remarks Date Tested: 11/1/11

(no specification provided)

Location: S0017R, S11 Sample Number: S35687

Depth: 50-50.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Onening | TEST R | Spec.*    | Pass?                  |
|---------|--------|-----------|------------------------|
| Opening |        |           | 00 80 8000<br>0000 000 |
| Size    | Finer  | (Percent) | (X=Fail)               |
| #200    | 22.3   |           |                        |
|         |        |           |                        |
|         |        |           |                        |
|         |        |           |                        |
|         |        |           |                        |
|         |        |           |                        |
|         |        |           |                        |
|         |        |           |                        |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= c<sub>u</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S12 Sample Number: S36308

Depth: 55-55.7

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | IESI R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 30.2    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ $D_{50} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= Cu= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S13 Sample Number: S36309

Depth: 60-61.2

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 61.7             |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= $D_{15} =$ C<sub>C</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S15 Sample Number: S35688

Depth: 70-71.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Material Desc                          |                                        |          | ESULTS    | TEST RE |         |
|----------------------------------------|----------------------------------------|----------|-----------|---------|---------|
|                                        |                                        | Pass?    | Spec.*    | Percent | Opening |
|                                        |                                        | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg Limits (A                    |                                        |          |           | 45.1    | #200    |
| LL=                                    | PL=                                    |          |           |         |         |
| Classificat<br>2487)= AASH             | USCS (D 2                              |          |           |         |         |
| <u>Coefficier</u><br>D <sub>85</sub> = | D <sub>90</sub> =                      |          |           |         |         |
| D <sub>30</sub> =<br>C <sub>u</sub> =  | D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Remarks                                |                                        |          |           |         |         |
|                                        |                                        |          |           |         |         |
| eived: 11/1/11 Da                      | Date Receiv                            |          |           |         |         |
| ed By: ky                              | Tested                                 |          |           |         | 8       |
| ed By: cw                              | Checked                                |          |           |         |         |
| Title: PM                              | Ti                                     |          |           |         |         |

# cription ASTM D 4318) PI= tion HTO (M 145)= nts D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= ate Tested: 11/1/11

(no specification provided)

Location: S0017R, S16 Sample Number: S35689

Depth: 75-76.4

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 85.1             |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Cu= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S17A Sample Number: S35690

Depth: 80-80.3

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 56.0             |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= Cu= C<sub>C</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S17B Sample Number: S35691

Depth: 80.3-80.9

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RI           | ESULTS              |                   |
|-----------------|-------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer  | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 17.7              | (Fercent)           | (A=Fall)          |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
|                 |                   |                     |                   |
| *               | cification provid |                     |                   |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S18A Sample Number: S36310

Depth: 85-85.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RI           | ESULTS              |          |
|-----------------|-------------------|---------------------|----------|
| Opening<br>Size | Percent<br>Finer  | Spec.*<br>(Percent) | Pass?    |
| #200            | 51.7              | (Percent)           | (X=Fail) |
|                 | 2.1.              |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
|                 |                   |                     |          |
| *               | rification provid |                     |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S18B Sample Number: S35692

mple Number: S35692 Depth: 85.5-86.3

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |                                                       |
|---------|---------|-----------|----------|-------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                       |
| Size    | Finer   | (Percent) | (X=Fail) |                                                       |
| #200    | 36.2    |           |          | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = |
|         |         |           |          | Date Received:<br>Tested By:<br>Checked By:<br>Title: |

# **Material Description** erberg Limits (ASTM D 4318) LL= PI= Classification AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks 11/1/11 Date Tested: 11/1/11 ky cw PM

(no specification provided)

Location: S0017R, S19 Sample Number: S35693

Depth: 90-91.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |  |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |  |
| #200            | 59.3             | (Fercent)           | (A=Fall)          |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |
|                 |                  |                     |                   |  |  |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S20 Sample Number: S35694

Depth: 95-95.8

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |  |  |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |  |  |
| #200            | 43.1             |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
| ).<br>          |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= Cu= C<sub>C</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S21 Sample Number: S36311

ample Number: \$36311 Depth: 100-100.9

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                   | TEST RI | ESULTS    |          |
|-------------------|---------|-----------|----------|
| Opening           | Percent | Spec.*    | Pass?    |
| Size              | Finer   | (Percent) | (X=Fail) |
| #200              | 58.3    |           | 20       |
| 17070 63 (884-40) |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
|                   |         |           |          |
| *                 |         |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= C<sub>u</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S22 Sample Number: S35695

Depth: 105-106.4

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |                                                       | Material                                                          | Description                                                                                                              |
|-----------------|------------------|---------------------|-------------------|-------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |                                                       | 3                                                                 |                                                                                                                          |
| #200            | 26.4             |                     |                   | D <sub>90</sub> = D <sub>50</sub> = D <sub>10</sub> = | Class  Coef  D <sub>85</sub> = D <sub>30</sub> = C <sub>u</sub> = | ts (ASTM D 4318) PI=  iffication  AASHTO (M 145)=  ficients  D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> =  marks |
|                 |                  |                     |                   | Date Received:<br>Tested By:<br>Checked By:<br>Title: | ac<br>cw                                                          | Date Tested: 11/16/11                                                                                                    |

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Depth: 115-116.3

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



| TEST R  | ESULTS           |                 |                                                       |
|---------|------------------|-----------------|-------------------------------------------------------|
| Percent | Spec.*           | Pass?           |                                                       |
| Finer   | (Percent)        | (X=Fail)        |                                                       |
| 70.9    |                  |                 |                                                       |
|         |                  |                 | PL=                                                   |
|         |                  |                 | USC                                                   |
|         |                  |                 | D <sub>90</sub><br>D <sub>50</sub><br>D <sub>10</sub> |
|         |                  |                 | Date                                                  |
|         |                  |                 | Ch                                                    |
|         | Percent<br>Finer | Finer (Percent) | Percent Spec.* Pass? Finer (Percent) (X=Fail)         |

# **Material Description** Atterberg Limits (ASTM D 4318) PI= Classification S (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Remarks Date Tested: 11/1/11 Received: 11/1/11 ested By: ac cked By: cw Title: PM

(no specification provided)

Location: S0017R, S29A Sample Number: S35697

**mple Number:** S35697 **Depth:** 140-140.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 73.3             | ( 0.00)             | (                 |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
| *               |                  | , e                 |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= c<sub>u</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S30 Sample Number: S36313

Depth: 145-146.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RI          | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 58.9             | (Percent)           | (X=rall)          |
| *               | cification provi |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>15</sub>= $D_{30} =$ Cu= C<sub>C</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0017R, S31 Sample Number: S35698

imple Number: \$35698 Depth: 150-151.5

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                  |
|-----------------|------------------|---------------------|------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail |
| #200            | 40.1             | (i ci cent)         | (X-1 dii)        |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
|                 |                  |                     |                  |
| *               |                  |                     |                  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30} =$ D<sub>15</sub>= Cu= Cc= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S01 Sample Number: S36314

Depth: 0-5.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS    |                   |
|-----------------|------------------|-----------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*    | Pass?<br>(X=Fail) |
|                 |                  | (Percent) | (X=Fall)          |
| #200            | 54.8             |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |
|                 |                  |           |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ $D_{15} =$ Cu= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S02 Sample Number: S36315

Depth: 5-6.5

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| 2120-21         | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 43.5             | (i di daini)        | (X=1 311          |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     | l<br>I            |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ $D_{90} =$ $D_{50} =$ D<sub>15</sub>= C<sub>u</sub>= Cc= D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S03 Sample Number: S35699

Depth: 10-11.2

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                    | TEST R           | ESULTS              |                   |
|--------------------|------------------|---------------------|-------------------|
| Opening<br>Size    | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200               | 48.8             |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
| 1<br>12<br>22<br>2 |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |
|                    |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>30</sub>= $D_{15} =$ D<sub>10</sub>= c<sub>u</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S04 Sample Number: S36316 Depth: 15-16.3

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST R  | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 38.0    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           | ı        |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S05 Sample Number: S35700

Depth: 20-21.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 76.9             | (, 5, 55, 17)       | (23-1311)         |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

|                                        | Material                                | Description                           |
|----------------------------------------|-----------------------------------------|---------------------------------------|
|                                        |                                         |                                       |
|                                        |                                         |                                       |
| _                                      |                                         |                                       |
| <u>A</u><br>PL=                        | tterberg Limi<br>LL=                    | ts (ASTM D 4318)<br>PI=               |
|                                        |                                         |                                       |
| USCS (D 248                            | 25 Y | ification<br>AASHTO (M 145)=          |
|                                        | Coef                                    | ficients                              |
| D <sub>90</sub> =                      | D <sub>85</sub> =                       | D <sub>60</sub> =                     |
| D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>30</sub> =<br>C <sub>u</sub> =   | D <sub>15</sub> =<br>C <sub>C</sub> = |
|                                        | -                                       | marks                                 |
|                                        | 0.1.21                                  |                                       |
|                                        |                                         |                                       |
| Date Receive                           | <b>d:</b> 11/16/11                      | Date Tested: 11/16/11                 |
| Tested B                               |                                         | Date resteu. 11/10/11                 |
|                                        | -                                       |                                       |
| Checked B                              |                                         |                                       |
| Titl                                   | e: PM                                   |                                       |

(no specification provided)

Location: S0018R, S06 Sample Number: S36317

Depth: 25-26.2

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 13.4    |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= Cu= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S08 Sample Number: S35702

Depth: 35-36.3

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|             |         | ESULTS                                  |          |
|-------------|---------|-----------------------------------------|----------|
| Opening     | Percent | Spec.*                                  | Pass?    |
| Size        | Finer   | (Percent)                               | (X=Fail) |
| #200        | 7.1     | 100000000000000000000000000000000000000 |          |
| 300-203-203 |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |
|             |         |                                         |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) LL= PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ $D_{30} =$ D<sub>15</sub>= $D_{50} =$ D<sub>10</sub>= Cu= Remarks Date Tested: 11/16/11 Date Received: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S09 Sample Number: S36318

Depth: 40-41.1

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | Antenna papa NA, NE SKE | ESULTS    |          |
|---------|-------------------------|-----------|----------|
| Opening | Percent                 | Spec.*    | Pass?    |
| Size    | Finer                   | (Percent) | (X=Fail) |
| #200    | 83.1                    |           |          |
| *       |                         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= $D_{85} =$ $D_{60} =$ D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S11A Sample Number: S35704

Depth: 50-50.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 11.1    | , ,       |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ $D_{15} =$ Cu= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S12 Sample Number: S35705

Depth: 55-55.7

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 39.0    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S13 Sample Number: S35706

Depth: 60-60.8

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         |         | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 11.1    | ' '       | ,        |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>15</sub>= Cu= D<sub>10</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

\* (no specification provided)

Location: S0018R, S14 Sample Number: S36319

Depth: 65-65.7

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 22.2             | (1 0100.11)         | (71-7 311)        |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ $D_{15} =$ Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S15 Sample Number: S35707

Depth: 70-71.2

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Mater                                                                  |                                                             |          | SULTS     | TEST RI |         |
|------------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                        |                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                        |                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                                        |                                                             |          |           | 32.9    | #200    |
| Atterberg L<br>LL=                                                     | PL=                                                         |          |           |         |         |
| (D 2487)=                                                              | USCS (D                                                     |          |           |         |         |
| <u>C</u><br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
|                                                                        |                                                             |          |           |         |         |
| <b>ceived:</b> 11/16/11                                                | Date Rece                                                   |          |           |         |         |
| ted By: ac                                                             | Teste                                                       |          |           |         |         |
| ked By: cw                                                             | Checke                                                      |          |           |         |         |
| Title: PM                                                              |                                                             |          |           |         |         |

|                                                             | Material I                                                 | Description                                                |  |
|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--|
|                                                             |                                                            |                                                            |  |
| Atter                                                       | berg Limit                                                 | ts (ASTM D 4318)<br>PI=                                    |  |
| USCS (D 2487)=                                              |                                                            | ification<br>AASHTO (M 145)=                               |  |
|                                                             | Coeff                                                      | ficients                                                   |  |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> = |  |
|                                                             | Ren                                                        | narks                                                      |  |
|                                                             |                                                            |                                                            |  |
| Date Received:                                              |                                                            | Date Tested: 11/16/11                                      |  |
| Tested By: 2                                                | ıc                                                         |                                                            |  |
| Checked By:                                                 | ew                                                         |                                                            |  |
| Title: I                                                    | PM                                                         |                                                            |  |

(no specification provided)

Location: S0018R, S16 Sample Number: S36320

Depth: 75-75.6

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 53.3    |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= c<sub>u</sub>= Cc= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

\* (no specification provided)

Location: S0018R, S18 Sample Number: S36321

Depth: 85-86.4

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RESULTS       |                     |                   |
|-----------------|--------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer   | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 84.9               | (rescent)           | (A-1 all)         |
|                 |                    |                     |                   |
| *               | cification provide |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ $D_{50} =$ D<sub>30</sub>= $D_{15} =$ D<sub>10</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S19A Sample Number: S35709

S35709 **Depth:** 90-90.4

**Date Sampled:** 

SIERRA TESTING LABS, INC. El Dorado Hills, CA Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Material Desc                                                                                                              |                             |          | SULTS     | TEST RI |         |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-----------|---------|---------|
|                                                                                                                            |                             | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                                            |                             | (X=Fail) | (Percent) | Finer   | Size    |
| Atterberg Limits (A  LL=  Classificat  D 2487)=  Coefficier  D <sub>85</sub> = D <sub>30</sub> = C <sub>u</sub> =  Remarks | PL= USCS (D  D90= D50= D10= |          |           | 69.5    | #200    |
| ceived: 11/1/11 Dated By: ky                                                                                               |                             |          |           |         |         |
| red By: cw                                                                                                                 | Checke                      |          |           |         |         |
| Title: PM                                                                                                                  | 18                          |          |           |         |         |

# cription ASTM D 4318) ation HTO (M 145)= ents $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= ate Tested: 11/1/11

(no specification provided)

Location: S0018R, S19B Sample Number: S35710

Depth: 90.4-91.2

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |         |           |         |  |  |  |  |
|--------------|---------|-----------|---------|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?   |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail |  |  |  |  |
| #200         | 23.8    | , creamy  | (       |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |
|              |         |           |         |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ D<sub>85</sub>= $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>30</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S20 Sample Number: S36322

Depth: 95-96.0

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS |                   |           |          |  |  |  |  |
|--------------|-------------------|-----------|----------|--|--|--|--|
| Opening      | Percent           | Spec.*    | Pass?    |  |  |  |  |
| Size         | Finer             | (Percent) | (X=Fail) |  |  |  |  |
| #200         | 27.8              |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
|              |                   |           |          |  |  |  |  |
| *            | cification provid |           |          |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= $D_{50} =$ $D_{30} =$ c<sub>u</sub>= D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S21 Sample Number: S35711

Depth: 100.0-100.5

**Date Sampled:** 

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| <u>Ma</u>                                                                                          | A        | SULTS     | TEST RE |         |
|----------------------------------------------------------------------------------------------------|----------|-----------|---------|---------|
|                                                                                                    | Pass?    | Spec.*    | Percent | Opening |
|                                                                                                    | (X=Fail) | (Percent) | Finer   | Size    |
| PL= Atterberg                                                                                      |          |           | 37.0    | #200    |
| 03C3 (D 2407)=                                                                                     |          |           |         |         |
| D <sub>90</sub> = D <sub>8</sub> D <sub>50</sub> = D <sub>3</sub> D <sub>10</sub> = C <sub>1</sub> |          |           |         |         |
|                                                                                                    |          |           |         |         |
| Date Received: 11/1/                                                                               |          |           |         |         |
| Tested By: ky                                                                                      |          |           |         |         |
| Checked By: cw                                                                                     |          |           |         |         |
| Title: PM                                                                                          |          |           |         |         |

# terial Description g Limits (ASTM D 4318) LL= Classification AASHTO (M 145)= Coefficients $D_{60} =$ 85= D<sub>15</sub>= C<sub>c</sub>= 30= Remarks Date Tested: 11/1/11

(no specification provided)

Location: S0018R, S22 Sample Number: S35712

Depth: 105-106.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RESULTS |           |          |  |  |  |  |  |
|---------|--------------|-----------|----------|--|--|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |  |  |
| #200    | 57.4         |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           | A.       |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |
| *       |              |           |          |  |  |  |  |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

\* (no specification provided)

Location: S0018R, S25 Sample Number: S35714

Depth: 120-120.8

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



Depth: 130-130.9

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

Figure

Date Sampled:



| TEST            | RESULTS   |          |                                       | Material Desci                                                            |
|-----------------|-----------|----------|---------------------------------------|---------------------------------------------------------------------------|
| Opening Percent | Spec.*    | Pass?    |                                       |                                                                           |
| Size Finer      | (Percent) | (X=Fail) |                                       |                                                                           |
| #200 61.3       |           |          | PL= USCS (D 24  D90= D50= D10=        | Atterberg Limits (AS)  LL=  Classificati  BASH  Coefficien  D85= D30= Cu= |
|                 |           |          | Date Receive<br>Tested E<br>Checked E | <b>Зу:</b> <u>ky</u>                                                      |

# ription STM D 4318) PI= HTO (M 145)= D<sub>60</sub>= D<sub>15</sub>= C<sub>c</sub>= ite Tested: 11/1/11

(no specification provided)

Location: S0018R, S28 Sample Number: S35716

Depth: 135-136.0

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RESULTS     |                     |                   |  |  |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |  |  |
| #200            | 42.1             |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |
|                 |                  |                     |                   |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ $D_{50} =$ $D_{30} =$ D<sub>15</sub>= D<sub>10</sub>= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S29A Sample Number: S35717

Depth: 140-141.1

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         |         | ESULTS    |          |                                                             |
|---------|---------|-----------|----------|-------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                                                             |
| Size    | Finer   | (Percent) | (X=Fail) |                                                             |
| #200    | 85.1    |           |          |                                                             |
|         |         |           |          | PL=                                                         |
|         |         |           |          | USCS                                                        |
|         |         |           |          | D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |
|         |         |           |          |                                                             |
|         |         |           |          |                                                             |
|         |         |           |          |                                                             |
|         |         |           |          | Che                                                         |
|         |         |           |          | Date Ro                                                     |

# **Material Description** Atterberg Limits (ASTM D 4318) LL= PI= Classification (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>u</sub>= Remarks eceived: 11/1/11 Date Tested: 11/1/11 sted By: ky cked By: cw Title: PM

(no specification provided)

Location: S0018R, S29B Sample Number: S35718

ample Number: S35718 Depth: 141.1-141.4

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          |                            | Material                                                                             | Description                                                                                                            |
|---------|---------|-----------|----------|----------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Opening | Percent | Spec.*    | Pass?    |                            |                                                                                      |                                                                                                                        |
| Size    | Finer   | (Percent) | (X=Fail) |                            |                                                                                      |                                                                                                                        |
| #200    | 49.3    |           |          | PL= USCS (D D90= D50= D10= | Class<br>2487)=<br>Coe<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | its (ASTM D 4318) PI= sification AASHTO (M 145)= fficients D <sub>60</sub> = D <sub>15</sub> = C <sub>c</sub> = emarks |
|         |         |           |          | Teste                      | eived: 11/16/11 ed By: ac ed By: cw Title: PM                                        | Date Tested: 11/16/11                                                                                                  |

(no specification provided)

Location: S0018R, S30 Sample Number: S36324

Depth: 145-146.0

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|   |          | ESULTS    | TEST RI |         |
|---|----------|-----------|---------|---------|
|   | Pass?    | Spec.*    | Percent | Opening |
|   | (X=Fail) | (Percent) | Finer   | Size    |
|   |          |           | 17.1    | #200    |
|   |          |           |         |         |
|   |          |           |         |         |
|   |          |           |         |         |
|   |          |           |         |         |
|   |          |           |         |         |
|   |          |           |         |         |
| 0 |          |           |         |         |
|   |          |           |         |         |
|   |          |           |         |         |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>90</sub>= $D_{60} =$ $D_{50} =$ $D_{15} =$ D<sub>10</sub>= Cu= Remarks Date Tested: 11/1/11 te Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0018R, S31 Sample Number: S35719

Depth: 150-151.0

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                                                             |          | ESULTS    | TEST RI |         |
|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                             | (X=Fail) | (Percent) | Finer   | Size    |
|                                                             |          |           | 38.3    | #200    |
| PL=                                                         |          |           |         |         |
| USCS (D                                                     |          |           |         |         |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           |         |         |
| Date Rece                                                   |          |           |         |         |
| Checke                                                      |          |           |         |         |
|                                                             |          |           |         |         |

# **Material Description** Atterberg Limits (ASTM D 4318) Classification 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{60} =$ $D_{30} =$ D<sub>15</sub>= Cu= Remarks Date Tested: 11/16/11 ived: 11/16/11 d By: ac d By: cw Title: PM

(no specification provided)

Location: S0019R, S01 Sample Number: S36325

Depth: 0-5.0

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RESULTS |           |          |  |  |  |  |  |  |
|---------|--------------|-----------|----------|--|--|--|--|--|--|
| Opening | Percent      | Spec.*    | Pass?    |  |  |  |  |  |  |
| Size    | Finer        | (Percent) | (X=Fail) |  |  |  |  |  |  |
| #200    | 39.5         |           |          |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |
|         |              |           |          |  |  |  |  |  |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= Cu= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S02A Sample Number: S36326

Depth: 5-5.8

Date Sampled:

SIERRA TESTING LABS, INC. El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |  |
|-----------------|------------------|---------------------|-------------------|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |
| #200            | 64.4             | (i ci ccit)         | (X=i all)         |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
| 9               |                  |                     |                   |  |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= D<sub>30</sub>= C<sub>u</sub>= D<sub>90</sub>= D<sub>50</sub>= $D_{60} =$ D<sub>15</sub>= C<sub>c</sub>= D<sub>10</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S02B Sample Number: S35720

Depth: 5.8-6.5

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| TEST RESULTS    |                  |                     |                   |  |
|-----------------|------------------|---------------------|-------------------|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |
| #200            | 43.3             | (i crocity          | (X=1 dil)         |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |
|                 |                  |                     |                   |  |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>90</sub>= D<sub>50</sub>= D<sub>10</sub>= D<sub>85</sub>= $D_{60} =$ D<sub>15</sub>= Cc= Cu= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S03A Sample Number: S36327

Depth: 6.5-7.6

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



| Opening | Percent | Spec.*    | Pass?    |
|---------|---------|-----------|----------|
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 88.1    |           |          |
|         |         |           |          |
|         |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ $D_{85} =$ $D_{60} =$ D<sub>50</sub>= D<sub>30</sub>= $D_{15} =$ C<sub>c</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S04B Sample Number: S36328

Depth: 9-10.0

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 53.7             | (i ercent)          | (X=1 all)         |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
| *               |                  |                     |                   |

# **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= C<sub>u</sub>= D<sub>15</sub>= C<sub>c</sub>= Remarks Date Received: 11/1/11 Date Tested: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S05 Sample Number: S35721

Depth: 9.5-10.8

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST R           | ESULTS              |                   |
|-----------------|------------------|---------------------|-------------------|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |
| #200            | 2.8              | (Percent)           | (X=Fail)          |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |
|                 |                  |                     |                   |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>15</sub>= D<sub>10</sub>= Cc= Cu= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S08 Sample Number: S36329

Depth: 14-15.2

Date Sampled:

SIERRA
TESTING LABS, INC.
El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         |         | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 5.0     |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |
|         |         |           | 2        |
|         |         |           |          |
|         |         |           |          |
|         |         |           |          |

#### **Material Description** Atterberg Limits (ASTM D 4318) PL= LL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients D<sub>85</sub>= $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>15</sub>= C<sub>u</sub>= C<sub>C</sub>= Remarks Date Received: 11/16/11 Date Tested: 11/16/11 Tested By: ac Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S10 Sample Number: S36330

Depth: 25.5-26.7

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RESULTS |           |          |                                           | Material                                                                              | Description       |
|---------|--------------|-----------|----------|-------------------------------------------|---------------------------------------------------------------------------------------|-------------------|
| Opening | Percent      | Spec.*    | Pass?    |                                           |                                                                                       |                   |
| Size    | Finer        | (Percent) | (X=Fail) |                                           |                                                                                       |                   |
| #200    | 6.3          |           |          | PL= USCS (D 2  D90= D50= D10=  Sample lab | Class<br>2487)=<br>Coef<br>D <sub>85</sub> =<br>D <sub>30</sub> =<br>C <sub>u</sub> = | marks             |
|         |              |           |          | Tested<br>Checked                         | ved: 11/16/11  By: ac  By: cw  Title: PM                                              | Date Tested: 11/1 |

Location: S0019R, S12 Sample Number: S30-31.3

Depth: 30-31.3

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|          | ESULTS    | TEST R       |                          |
|----------|-----------|--------------|--------------------------|
| Pass?    | Spec.*    | Percent      | Opening                  |
| (X=Fail) | (Percent) | Finer        | Size                     |
|          |           | 76.9         | #200                     |
|          |           |              |                          |
|          |           |              |                          |
|          |           |              |                          |
|          |           |              |                          |
|          |           |              |                          |
|          |           |              |                          |
|          |           | Spec.* Pass? | Finer (Percent) (X=Fail) |

#### **Material Description** Atterberg Limits (ASTM D 4318) PI= L= Classification JSCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{60} =$ 90= $D_{30} =$ D<sub>50</sub>= $D_{15} =$ 710= Cu= Remarks Date Tested: 11/1/11 te Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S12A Sample Number: S35724

Depth: 35-35.7

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                 | TEST RI          | ESULTS              |                   |  |  |
|-----------------|------------------|---------------------|-------------------|--|--|
| Opening<br>Size | Percent<br>Finer | Spec.*<br>(Percent) | Pass?<br>(X=Fail) |  |  |
| #200            | 38.6             |                     |                   |  |  |
| *               |                  |                     |                   |  |  |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= PI= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{85} =$ $D_{90} =$ $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= D<sub>15</sub>= $D_{30} =$ Cu= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S12B Sample Number: S35725

Depth: 35.7-36.4

**Date Sampled:** 

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|         | TEST RI | ESULTS    |          |
|---------|---------|-----------|----------|
| Opening | Percent | Spec.*    | Pass?    |
| Size    | Finer   | (Percent) | (X=Fail) |
| #200    | 58.5    |           |          |
|         |         |           |          |
| *       |         |           |          |

## **Material Description** Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= AASHTO (M 145)= Coefficients $D_{90} =$ D<sub>85</sub>= $D_{60} =$ D<sub>50</sub>= D<sub>10</sub>= $D_{30} =$ D<sub>15</sub>= Cu= Remarks Date Tested: 11/1/11 Date Received: 11/1/11 Tested By: ky Checked By: cw Title: PM

(no specification provided)

Location: S0019R, S13 Sample Number: S35726

Depth: 40-40.8

Date Sampled:

SIERRA **TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111



|                                                             |          | SULTS     | TEST RE |         |
|-------------------------------------------------------------|----------|-----------|---------|---------|
|                                                             | Pass?    | Spec.*    | Percent | Opening |
|                                                             | (X=Fail) | (Percent) | Finer   | Size    |
| D <sub>90</sub> =<br>D <sub>50</sub> =<br>D <sub>10</sub> = |          |           | 9.3     | #200    |
| Date Received<br>Tested By<br>Checked By<br>Title           |          |           |         |         |

|                                        | Material                              | <u>Description</u>                    |
|----------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                       | *                                     |
|                                        |                                       |                                       |
|                                        |                                       |                                       |
| Atter                                  | bera Limi                             | ts (ASTM D 4318)                      |
| PL=                                    | LL=                                   | PI=                                   |
|                                        | 01                                    | idi a adi a u                         |
| USCS (D 2487)=                         |                                       | ification<br>AASHTO (M 145)=          |
| 0303 (D 2407)=                         |                                       | AASI110 (W 143)=                      |
|                                        |                                       | ficients                              |
| D <sub>90</sub> =                      | D <sub>85</sub> =                     | D <sub>60</sub> =                     |
| D <sub>50</sub> =<br>D <sub>10</sub> = | D <sub>30</sub> =<br>C <sub>u</sub> = | D <sub>15</sub> =<br>C <sub>c</sub> = |
| D10-                                   | ou−                                   | Oc-                                   |
|                                        | Rei                                   | marks                                 |
|                                        |                                       |                                       |
|                                        |                                       |                                       |
|                                        |                                       |                                       |
| Date Received:                         | 1/16/11                               | Date Tested: 11/16/11                 |
| Tested By: a                           | ic.                                   |                                       |
| 7 J=                                   |                                       |                                       |
| Checked By:                            | CW                                    |                                       |
| Title: I                               | PM                                    |                                       |
|                                        |                                       |                                       |

(no specification provided)

Location: S0019R, S14 Sample Number: S36332

Depth: 45-46.3

Date Sampled:

**SIERRA TESTING LABS, INC.** El Dorado Hills, CA

Client: URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

Project No: 11-111

TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |      | Total Unit | Normal             | Stress at | Strain at                    | Peak S                   | trength                      |  |
|----------------|---------------|-------|-----------------------|---------------|------|------------|--------------------|-----------|------------------------------|--------------------------|------------------------------|--|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group |      | Weight     | Stress, $\sigma_n$ | Failure,  | Failure,<br><sub>Efail</sub> | Friction<br>Angle,<br>6' | Cohesion<br>Intercept,<br>c' |  |
|                |               | (ft)  | (ft)                  |               | (%)  | (pcf)      | (psf)              | (psf)     | (%)                          | (degrees)                | (psf)                        |  |
|                |               |       |                       |               | 5.3  | 107.9      | 245                | 196       | 6.7                          |                          |                              |  |
| S0001R         | S04           | 8.8   | 278.6                 | SP-SM         | 5.2  | 107.9      | 504                | 373       | 12.1                         | 34                       | 30                           |  |
|                |               |       |                       |               | 5.2  | 107.9      | 994                | 703       | 11.2                         |                          |                              |  |
|                |               |       |                       |               | 2.8  | 115.0      | 158                | 120       | 3.0                          |                          |                              |  |
| S0002R         | S02           | 5.7   | 284.7                 | SM            | 2.8  | 115.0      | 317                | 269       | 10.4                         | 38                       | 7                            |  |
|                |               |       |                       |               | 2.7  | 115.1      | 634                | 495       | 8.8                          |                          |                              |  |
|                |               |       |                       |               | 19.0 | 125.0      | 216                | 575       | 2.1                          |                          |                              |  |
| S0003R         | S04           | 8.5   | 279.5                 | ML            | 19.0 | 125.0      | 446                | 749       | 2.3                          | 41                       | 376                          |  |
|                |               |       |                       |               | 19.2 | 124.9      | 878                | 1,148     | 2.2                          |                          |                              |  |
|                |               |       |                       |               | 18.0 | 121.9      | 778                | 1,030     | 2.5                          |                          |                              |  |
| S0003R         | S10           | 25.7  | 262.3                 | SP-SM         | 17.8 | 121.9      | 1,555              | 1,738     | 2.9                          | 41                       | 364                          |  |
|                |               |       |                       |               | 18.3 | 121.8      | 3,125              | 3,080     | 5.3                          | ]                        |                              |  |
|                |               |       |                       |               | 10.3 | 130.9      | 1,656              | 1,934     | 3.3                          |                          |                              |  |
| S0003R         | S15           | 50.4  | 237.6                 | SP-SM         | 10.3 | 130.9      | 3,298              | 3,384     | 5.1                          | 42                       | 448                          |  |
|                |               |       |                       |               | 10.3 | 130.9      | 6,595              | 6,343     | 3.7                          |                          |                              |  |
|                |               |       |                       |               | 9.3  | 118.9      | 259                | 334       | 1.6                          |                          |                              |  |
| S0004R         | S04           | 8.7   | 275.0                 | SM            | 9.5  | 118.9      | 518                | 729       | 2.5                          | 43                       | 156                          |  |
|                |               |       |                       |               | 9.2  | 118.9      | 1,037              | 1,086     | 2.5                          |                          |                              |  |
|                |               |       |                       |               | 16.1 | 136.2      | 994                | 1,312     | 3.2                          |                          |                              |  |
| S0004R         | S11           | 30.7  | 253.0                 | SM            | 16.1 | 136.2      | 1,987              | 2,308     | 5.2                          | 42                       | 462                          |  |
|                |               |       |                       |               | 16.2 | 136.2      | 3,960              | 3,995     | 4.8                          |                          |                              |  |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |      | Total Unit | Normal Stress at Strain at |          | Strain at                               | Peak S          | trength                      |  |  |
|----------------|---------------|-------|-----------------------|---------------|------|------------|----------------------------|----------|-----------------------------------------|-----------------|------------------------------|--|--|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group |      | Weight     | Stress, $\sigma_n$         | Failure, | Failure,<br><sub>E<sub>fail</sub></sub> | Friction Angle, | Cohesion<br>Intercept,<br>c' |  |  |
|                |               | (ft)  | (ft)                  |               | (%)  | (pcf)      | (psf)                      | (psf)    | (%)                                     | (degrees)       | (psf)                        |  |  |
|                |               |       |                       |               | 14.9 | 137.0      | 1,339                      | 2,114    | 3.3                                     |                 |                              |  |  |
| S0004R         | S13           | 40.5  | 243.2                 | ML            | 14.9 | 137.0      | 2,678                      | 3,540    | 3.7                                     | 41              | 1,043                        |  |  |
|                |               |       |                       |               | 15.0 | 136.9      | 5,357                      | 5,682    | 4.5                                     |                 |                              |  |  |
|                |               |       |                       |               | 5.3  | 111.9      | 158                        | 206      | 4.5                                     |                 |                              |  |  |
| S0005R         | S02           | 5.8   | 279.5                 | SP-SM         | 5.0  | 111.9      | 317                        | 297      | 12.8                                    | 37              | 79                           |  |  |
|                |               |       |                       |               | 5.0  | 111.9      | 634                        | 553      | 16.0                                    |                 |                              |  |  |
|                |               |       |                       |               | 13.1 | 97.9       | 418                        | 320      | 4.9                                     |                 |                              |  |  |
| S0005R         | S08           | 14.3  | 271.0                 | ML            | 13.5 | 98.0       | 835                        | 501      | 11.1                                    | 32              | 30                           |  |  |
|                |               |       |                       |               | 13.3 | 97.9       | 1,685                      | 1,089    | 10.7                                    |                 |                              |  |  |
|                |               |       |                       |               | 18.5 | 119.0      | 749                        | 870      | 3.3                                     |                 |                              |  |  |
| S0005R         | S10           | 25.4  | 259.9                 | ML            | 18.8 | 118.9      | 1,498                      | 1,552    | 4.9                                     | 41              | 223                          |  |  |
|                |               |       |                       |               | 18.5 | 119.0      | 2,995                      | 9,150    | 7.1                                     |                 |                              |  |  |
|                |               |       |                       |               | 19.3 | 129.9      | 1,526                      | 1,630    | 3.3                                     |                 |                              |  |  |
| S0005R         | S15           | 47.0  | 238.3                 | ML            | 19.5 | 130.0      | 3,038                      | 2,696    | 5.8                                     | 39              | 324                          |  |  |
|                |               |       |                       |               | 19.3 | 129.9      | 6,077                      | 5,293    | 7.4                                     |                 |                              |  |  |
|                |               |       |                       |               | 11.9 | 137.0      | 1,210                      | 2,200    | 4.0                                     |                 |                              |  |  |
| S0006R         | S14           | 38.7  | 248.9                 | SM            | 12.1 | 137.0      | 2,419                      | 3,696    | 4.0                                     | 37              | 1,525                        |  |  |
|                |               |       |                       |               | 12.1 | 137.0      | 4,838                      | 5,046    | 10.4                                    | 1               |                              |  |  |
|                |               |       |                       |               | 13.2 | 136.9      | 173                        | 347      | 2.5                                     |                 |                              |  |  |
| S0007R         | S04           | 5.7   | 279.4                 | SM            | 13.3 | 136.9      | 346                        | 465      | 2.9                                     | 41              | 187                          |  |  |
|                |               |       |                       |               | 13.0 | 137.0      | 677                        | 773      | 2.5                                     |                 |                              |  |  |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |                                     | Total Unit | Normal             | Stress at                     | Strain at                     | Peak S          | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|--------------------|-------------------------------|-------------------------------|-----------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress, $\sigma_n$ | Failure,<br>τ <sub>fail</sub> | Failure,<br>ε <sub>fail</sub> | Friction Angle, | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)              | (psf)                         | (%)                           | (degrees)       | (psf)                        |
|                |               |       |                       |               | 3.9                                 | 120.9      | 173                | 223                           | 2.9                           |                 |                              |
| S0010R         | S02           | 5.8   | 280.3                 | SM            | 4.0                                 | 121.0      | 346                | 328                           | 11.5                          | 36              | 88                           |
|                |               |       |                       |               | 3.6                                 | 120.9      | 677                | 590                           | 7.4                           |                 |                              |
|                |               |       |                       |               | 17.0                                | 133.1      | 662                | 652                           | 6.4                           |                 |                              |
| S0010R         | S09           | 20.7  | 265.4                 | SM            | 17.0                                | 133.1      | 1,325              | 1,027                         | 6.8                           | 35              | 156                          |
|                |               |       |                       |               | 16.8                                | 133.0      | 2,635              | 2,010                         | 5.6                           |                 |                              |
|                |               |       |                       |               | 19.3                                | 120.1      | 1,123              | 1,192                         | 8.0                           |                 |                              |
| S0010R         | S12           | 35.7  | 250.4                 | SM            | 19.3                                | 120.0      | 2,246              | 2,134                         | 3.2                           | 39              | 291                          |
|                |               |       |                       |               | 19.1                                | 120.1      | 4,478              | 3,924                         | 8.0                           |                 |                              |
|                |               |       |                       |               | 11.1                                | 137.0      | 173                | 395                           | 1.0                           |                 |                              |
| S0012R         | S02           | 5.8   | 281.8                 | SM            | 11.5                                | 136.9      | 346                | 528                           | 1.2                           | 41              | 235                          |
|                |               |       |                       |               | 11.0                                | 137.0      | 677                | 835                           | 1.6                           |                 |                              |
|                |               |       |                       |               | 18.6                                | 131.1      | 446                | 693                           | 6.4                           |                 |                              |
| S0012R         | S07           | 13.2  | 274.4                 | SM            | 18.6                                | 131.1      | 878                | 1,175                         | 4.8                           | 43              | 312                          |
|                |               |       |                       |               | 18.4                                | 131.1      | 1,757              | 1,175                         | 4.4                           |                 |                              |
|                |               |       |                       |               | 8.2                                 | 102.9      | 158                | 150                           | 1.6                           |                 |                              |
| S0014R         | S02           | 5.8   | 278.8                 | SM            | 8.1                                 | 102.9      | 317                | 249                           | 4.5                           | 37              | 24                           |
|                |               |       |                       |               | 8.0                                 | 102.9      | 634                | 500                           | 10.5                          |                 |                              |
|                |               |       |                       |               | 13.8                                | 136.9      | 331                | 592                           | 4.1                           |                 |                              |
| S0014R         | S11           | 11.6  | 273.0                 | CL-ML         | 13.9                                | 137.0      | 662                | 865                           | 2.9                           | 43              | 269                          |
|                |               |       |                       |               | 13.7                                | 136.9      | 1,325              | 1,509                         | 3.3                           |                 |                              |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |                                     | Total Unit                | Normal             | Stress at                     | Strain at                     | Peak S                   | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|---------------------------|--------------------|-------------------------------|-------------------------------|--------------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight,<br>γ <sub>t</sub> | Stress, $\sigma_n$ | Failure,<br>τ <sub>fail</sub> | Failure,<br>ε <sub>fail</sub> | Friction<br>Angle,<br>ø' | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)                     | (psf)              | (psf)                         | (%)                           | (degrees)                | (psf)                        |
|                |               |       |                       |               | 16.2                                | 104.0                     | 158                | 96                            | 4.1                           |                          |                              |
| S0015R         | S02           | 5.8   | 280.9                 | SM            | 16.1                                | 103.9                     | 317                | 261                           | 2.9                           | 31                       | 27                           |
|                |               |       |                       |               | 16.4                                | 103.9                     | 634                | 397                           | 5.8                           |                          |                              |
|                |               |       |                       |               | 17.5                                | 133.8                     | 648                | 655                           | 3.3                           |                          |                              |
| S0015R         | S09A          | 20.2  | 266.5                 | SM            | 17.6                                | 133.9                     | 1,296              | 1,279                         | 4.5                           | 41                       | 121                          |
|                |               |       |                       |               | 17.6                                | 133.9                     | 2,606              | 648                           | 5.3                           |                          |                              |
|                |               |       |                       |               | 12.4                                | 119.9                     | 158                | 279                           | 1.6                           |                          |                              |
| S0016R         | S02           | 5.5   | 283.3                 | ML            | 12.4                                | 119.9                     | 317                | 317                           | 2.9                           | 37                       | 128                          |
|                |               |       |                       |               | 12.6                                | 119.9                     | 634                | 618                           | 8.2                           |                          |                              |
|                |               |       |                       |               | 16.9                                | 125.0                     | 1,224              | 1,338                         | 4.3                           |                          |                              |
| S0016R         | S08           | 35.5  | 253.3                 | SP-SM         | 16.7                                | 124.5                     | 2,462              | 2,763                         | 5.1                           | 42                       | 360                          |
|                |               |       |                       |               | 16.7                                | 124.5                     | 4,925              | 4,732                         | 4.9                           |                          |                              |
|                |               |       |                       |               | 14.4                                | 122.9                     | 2,117              | 1,649                         | 9.6                           |                          |                              |
| S0016R         | S13           | 60.8  | 228.0                 | SM            | 14.5                                | 123.0                     | 4,234              | 2,981                         | 8.8                           | 32                       | 312                          |
|                |               |       |                       |               | 14.5                                | 123.0                     | 8,482              | 5,662                         | 7.4                           |                          |                              |
|                |               |       |                       |               | 15.3                                | 137.0                     | 3,384              | 3,027                         | 4.5                           |                          |                              |
| S0016R         | S20           | 95.8  | 193.0                 | SM            | 15.1                                | 136.9                     | 6,782              | 5,772                         | 7.8                           | 39                       | 298                          |
|                |               |       |                       |               | 15.0                                | 136.9                     | 13,565             | 11,244                        | 8.2                           |                          |                              |
|                |               |       |                       |               | 13.3                                | 136.9                     | 3,946              | 3,738                         | 6.7                           |                          |                              |
| S0016R         | S23A          | 110.4 | 268.5                 | SP-SM         | 13.2                                | 136.9                     | 7,877              | 6,862                         | 7.5                           | 37                       | 845                          |
|                |               |       |                       |               | 13.1                                | 137.0                     | 15,768             | 12,650                        | 6.6                           |                          |                              |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |                                     | Total Unit | Normal                    | Stress at | Strain at                     | Peak S                   | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|---------------------------|-----------|-------------------------------|--------------------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress,<br>σ <sub>n</sub> | Failure,  | Failure,<br>ε <sub>fail</sub> | Friction<br>Angle,<br>ø' | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)                     | (psf)     | (%)                           | (degrees)                | (psf)                        |
|                |               |       |                       |               | 15.0                                | 136.9      | 4,334                     | 3,378     | 4.5                           |                          |                              |
| S0016R         | S25           | 120.8 | 168.0                 | CL            | 14.8                                | 137.0      | 8,654                     | 8,569     | 6.2                           | 40                       | 361                          |
|                |               |       |                       |               | 14.7                                | 137.0      | 17,323                    | 14,606    | 7.4                           |                          |                              |
|                |               |       |                       |               | 31.6                                | 94.0       | 5,400                     | 4,195     | 10.7                          |                          |                              |
| S0016R         | S31           | 150.8 | 138.0                 | SM            | 31.6                                | 94.0       | 10,800                    | 6,915     | 8.2                           | 26                       | 1,637                        |
|                |               |       |                       |               | 31.6                                | 94.0       | 21,600                    | 12,028    | 9.9                           |                          |                              |
|                |               |       |                       |               | 8.6                                 | 125.0      | 173                       | 207       | 3.3                           |                          |                              |
| S0017R         | S02           | 5.8   | 284.7                 | ML            | 8.7                                 | 124.9      | 346                       | 323       | 4.5                           | 36                       | 75                           |
|                |               |       |                       |               | 8.7                                 | 124.9      | 677                       | 577       | 6.6                           |                          |                              |
|                |               |       |                       |               | 19.0                                | 130.9      | 1,066                     | 1,359     | 4.2                           |                          |                              |
| S0017R         | S07           | 30.7  | 259.8                 | SM            | 18.9                                | 131.0      | 2,117                     | 2,232     | 3.8                           | 43                       | 344                          |
|                |               |       |                       |               | 19.0                                | 130.9      | 4,234                     | 4,248     | 5.3                           |                          |                              |
|                |               |       |                       |               | 10.8                                | 132.0      | 1,570                     | 1,413     | 4.1                           |                          |                              |
| S0017R         | S10           | 45.5  | 245.0                 | SM            | 10.9                                | 131.9      | 3,139                     | 2,393     | 4.5                           | 34                       | 353                          |
|                |               |       |                       |               | 10.8                                | 131.9      | 6,278                     | 4,514     | 6.6                           |                          |                              |
|                |               |       |                       |               | 11.3                                | 121.9      | 2,117                     | 1,786     | 6.2                           |                          |                              |
| S0017R         | S13           | 60.6  | 229.9                 | SM            | 11.5                                | 121.9      | 4,219                     | 3,180     | 9.9                           | 37                       | 84                           |
|                |               |       |                       |               | 11.1                                | 121.9      | 8,438                     | 1,426     | 7.8                           |                          |                              |
|                |               |       |                       |               | 11.7                                | 136.9      | 2,995                     | 2,804     | 4.1                           |                          |                              |
| S0017R         | S18A          | 85.3  | 205.2                 | SM            | 11.7                                | 136.9      | 6,005                     | 5,253     | 6.2                           | 39                       | 348                          |
|                |               |       |                       |               | 11.9                                | 137.0      | 11,995                    | 10,164    | 6.2                           |                          |                              |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |                                     | Total Unit | Normal             | Stress at | Strain at                     | Peak S          | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|--------------------|-----------|-------------------------------|-----------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress, $\sigma_n$ | Failure,  | Failure,<br>ε <sub>fail</sub> | Friction Angle, | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)              | (psf)     | (%)                           | (degrees)       | (psf)                        |
|                |               |       |                       |               | 14.0                                | 136.9      | 3,571              | 2,962     | 4.1                           |                 |                              |
| S0017R         | S21           | 100.5 | 190.0                 | SC            | 14.0                                | 136.9      | 7,142              | 5,905     | 7.0                           | 37              | 432                          |
|                |               |       |                       |               | 14.2                                | 136.9      | 14,285             | 10,964    | 6.2                           |                 |                              |
|                |               |       |                       |               | 13.5                                | 137.0      | 4,147              | 3,322     | 7.8                           |                 |                              |
| S0017R         | S24           | 115.7 | 174.8                 | SM            | 13.2                                | 136.9      | 8,280              | 7,176     | 6.7                           | 38              | 308                          |
|                |               |       |                       |               | 13.3                                | 136.9      | 16,560             | 13,193    | 8.2                           |                 |                              |
|                |               |       |                       |               | 14.3                                | 136.9      | 5,227              | 4,324     | 4.9                           |                 |                              |
| S0017R         | S30           | 145.5 | 145.0                 | ML            | 14.2                                | 136.9      | 10,440             | 7,291     | 7.0                           | 32              | 955                          |
|                |               |       |                       |               | 14.2                                | 136.9      | 20,880             | 14,016    | 7.0                           |                 |                              |
|                |               |       |                       |               | 10.1                                | 124.9      | 173                | 202       | 2.1                           |                 |                              |
| S0018R         | S02           | 5.8   | 300.0                 | CL-ML         | 10.3                                | 125.0      | 346                | 336       | 1.6                           | 31              | 109                          |
|                |               |       |                       |               | 10.1                                | 124.9      | 677                | 513       | 4.1                           |                 |                              |
|                |               |       |                       |               | 11.7                                | 136.9      | 533                | 612       | 3.7                           |                 |                              |
| S0018R         | S04           | 15.7  | 290.1                 | SM            | 12.1                                | 136.9      | 1,066              | 1,087     | 4.1                           | 38              | 216                          |
|                |               |       |                       |               | 11.8                                | 137.0      | 2,117              | 1,868     | 3.7                           |                 |                              |
|                |               |       |                       |               | 20.2                                | 129.0      | 893                | 937       | 4.7                           |                 |                              |
| S0018R         | S06           | 25.6  | 280.2                 | CL-ML         | 20.0                                | 128.9      | 1,786              | 1,614     | 5.3                           | 41              | 117                          |
|                |               |       |                       |               | 19.8                                | 128.9      | 3,557              | 3,244     | 6.2                           |                 |                              |
|                |               |       |                       |               | 19.6                                | 130.0      | 1,397              | 1,590     | 3.3                           |                 |                              |
| S0018R         | S09           | 40.6  | 265.2                 | SP-SM         | 19.5                                | 130.0      | 2,794              | 2,677     | 5.8                           | 37              | 533                          |
|                |               |       |                       |               | 19.8                                | 129.9      | 5,602              | 4,800     | 6.3                           |                 |                              |





TABLE E-3
SUMMARY OF REMOLDED DIRECT SHEAR TEST RESULTS

|                |               |       |                       |               |                                     | Total Unit | Normal             | Stress at | Strain at                     | Peak S          | trength                      |
|----------------|---------------|-------|-----------------------|---------------|-------------------------------------|------------|--------------------|-----------|-------------------------------|-----------------|------------------------------|
| Borehole<br>ID | Sample<br>No. | Depth | Elevation<br>(NAVD88) | USCS<br>Group | Moisture<br>Content, w <sub>o</sub> | Weight     | Stress, $\sigma_n$ | Failure,  | Failure,<br>ε <sub>fail</sub> | Friction Angle, | Cohesion<br>Intercept,<br>c' |
|                |               | (ft)  | (ft)                  |               | (%)                                 | (pcf)      | (psf)              | (psf)     | (%)                           | (degrees)       | (psf)                        |
|                |               |       |                       |               | 13.0                                | 137.0      | 2,275              | 2,527     | 2.5                           |                 |                              |
| S0018R         | S14           | 65.4  | 240.4                 | SP-SM         | 12.9                                | 136.8      | 4,536              | 4,487     | 4.1                           | 35              | 1,080                        |
|                |               |       |                       |               | 12.6                                | 136.9      | 9,086              | 7,384     | 7.0                           |                 |                              |
|                |               |       |                       |               | 15.4                                | 135.9      | 3,024              | 2,795     | 4.1                           |                 |                              |
| S0018R         | S18A          | 85.7  | 220.1                 | ML            | 15.5                                | 135.9      | 6,034              | 5,524     | 6.6                           | 41              | 223                          |
|                |               |       |                       |               | 15.6                                | 135.9      | 12,082             | 10,666    | 6.3                           |                 |                              |
|                |               |       |                       |               | 17.1                                | 132.9      | 4,680              | 3,832     | 6.6                           |                 |                              |
| S0018R         | S27           | 130.5 | 175.3                 | SM            | 17.0                                | 132.9      | 9,360              | 7,425     | 7.8                           | 33              | 1,080                        |
|                |               |       |                       |               | 17.2                                | 132.9      | 18,720             | 12,925    | 4.5                           |                 |                              |
|                |               |       |                       |               | 14.9                                | 137.0      | 5,227              | 4,082     | 6.2                           |                 |                              |
| S0018R         | S30           | 145.5 | 160.3                 | SM            | 14.6                                | 136.8      | 10,440             | 7,396     | 6.6                           | 32              | 837                          |
|                |               |       |                       |               | 14.8                                | 137.0      | 20,880             | 14,016    | 5.3                           |                 |                              |
|                |               |       |                       |               | 11.0                                | 104.9      | 144                | 111       | 2.6                           |                 |                              |
| S0019R         | S02A          | 5.4   | 287.1                 | SM            | 11.0                                | 104.9      | 302                | 166       | 5.3                           | 24              | 40                           |
|                |               |       |                       |               | 10.9                                | 104.9      | 605                | 311       | 7.4                           |                 |                              |
|                |               |       |                       |               | 16.8                                | 114.9      | 245                | 282       | 2.9                           |                 |                              |
| S0019R         | S04B          | 9.5   | 283.0                 | ML            | 16.7                                | 114.9      | 504                | 360       | 5.4                           | 36              | 58                           |
|                |               |       |                       |               | 16.9                                | 114.9      | 994                | 812       | 3.8                           |                 |                              |
|                |               |       |                       |               | 23.4                                | 117.0      | 403                | 406       | 3.0                           |                 |                              |
| S0019R         | S08           | 14.6  | 277.9                 | SP            | 23.7                                | 116.9      | 806                | 770       | 4.5                           | 42              | 45                           |
|                |               |       |                       |               | 23.8                                | 117.0      | 1,598              | 648       | 4.1                           |                 |                              |







Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0001R, S04

Depth:

8-9.5

Sample Number:

S36224

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2328.000 |              | 2350.500 |
| Moisture content: Dry soil+tare, gms.   | 2321.400 |              | 2321.400 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 5.3      | 23.3         | 23.3     |
| Moist specimen weight, gms.             | 131.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 107.9    | 127.6        |          |
| Dry density, pcf                        | 102.5    | 103.4        |          |
| Void ratio                              | 0.6442   | 0.6296       |          |
| Saturation, %                           | 22.2     | 100.0        |          |

**Load ring constant =** 1.2322 lbs. per input unit

Normal stress = 1.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.36 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 1.900        | 2.3          | 0.2         | 0.50                   | 0.3004                       |
| 2   | 0.0150                         | 2.000        | 2.5          | 0.6         | 0.53                   | 0.3010                       |
| 3   | 0.0200                         | 2.700        | 3.3          | 0.8         | 0.72                   | 0.3010                       |
| 4   | 0.0300                         | 3.100        | 3.8          | 1.2         | 0.82                   | 0.3013                       |
| 5   | 0.0400                         | 3.600        | 4.4          | 1.6         | 0.96                   | 0.3017                       |
| 6   | 0.0500                         | 4.100        | 5.1          | 2.1         | 1.09                   | 0.3024                       |
| 7   | 0.0600                         | 4.300        | 5.3          | 2.5         | 1.14                   | 0.3026                       |
| 8   | 0.0700                         | 4.400        | 5.4          | 2.9         | 1.17                   | 0.3030                       |
| 9   | 0.0800                         | 4.500        | 5.5          | 3.3         | 1.20                   | 0.3031                       |
| 10  | 0.0900                         | 4.600        | 5.7          | 3.7         | 1.22                   | 0.3030                       |
| 11  | 0.1000                         | 4.800        | 5.9          | 4.1         | 1.28                   | 0.3032                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 4.700        | 5.8          | 4.5         | 1.25                   | 0.3034                       |
| 13  | 0.1200                         | 4.900        | 6.0          | 4.9         | 1.30                   | 0.3033                       |
| 14  | 0.1300                         | 4.800        | 5.9          | 5.3         | 1.28                   | 0.3036                       |
| 15  | 0.1400                         | 5.000        | 6.2          | 5.8         | 1.33                   | 0.3040                       |
| 16  | 0.1550                         | 5.000        | 6.2          | 6.4         | 1.33                   | 0.3040                       |
| 17  | 0.1630                         | 5.100        | 6.3          | 6.7         | 1.36                   | 0.3042                       |
| 18  | 0.1700                         | 5.000        | 6.2          | 7.0         | 1.33                   | 0.3041                       |
| 19  | 0.1800                         | 4.800        | 5.9          | 7.4         | 1.28                   | 0.3040                       |
| 20  | 0.1900                         | 4.900        | 6.0          | 7.8         | 1.30                   | 0.3041                       |
| 21  | 0.2000                         | 4.000        | 4.9          | 8.2         | 1.06                   | 0.3050                       |
| 22  | 0.2100                         | 3.600        | 4.4          | 8.6         | 0.96                   | 0.3051                       |
| 23  | 0.2200                         | 3.400        | 4.2          | 9.1         | 0.90                   | 0.3053                       |

| Specimen Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Consolidated | Final    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| Moisture content: Moist soil+tare, gms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 2343.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 2366.250 |
| Moisture content: Dry soil+tare, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2337.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 2337.300 |
| Moisture content: Tare, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2212.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 2212.400 |
| Moisture, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.2         | 23.2     |
| Moist specimen weight, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |          |
| Diameter, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.43         |          |
| Area, in. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.64         |          |
| Height, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99         |          |
| Net decrease in height, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01         |          |
| Wet density, pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127.7        |          |
| Dry density, pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.6        |          |
| Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6263       |          |
| Saturation, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.9         |          |
| The same and the s | the state of the s |              |          |

Load ring constant = 1.000 lbs. per input unit

Normal stress = 3.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.59 psi at reading no. 30

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 2.900        | 2.9          | 0.2         | 0.63                   | 0.2991                       |
| 2   | 0.0100                         | 4.000        | 4.0          | 0.4         | 0.86                   | 0.2990                       |
| 3   | 0.0200                         | 4.800        | 4.8          | 0.8         | 1.03                   | 0.2989                       |
| 4   | 0.0300                         | 5.100        | 5.1          | 1.2         | 1.10                   | 0.2986                       |
| 5   | 0.0400                         | 6.000        | 6.0          | 1.6         | 1.29                   | 0.2984                       |
| 6   | 0.0500                         | 5.900        | 5.9          | 2.1         | 1.27                   | 0.2981                       |
| 7   | 0.0600                         | 6.000        | 6.0          | 2.5         | 1.29                   | 0.2980                       |
| 8   | 0.0700                         | 6.700        | 6.7          | 2.9         | 1.44                   | 0.2979                       |
| 9   | 0.0800                         | 7.800        | 7.8          | 3.3         | 1.68                   | 0.2949                       |
| 10  | 0.0930                         | 9.500        | 9.5          | 3.8         | 2.05                   | 0.2941                       |
| 11  | 0.1000                         | 9.400        | 9.4          | 4.1         | 2.03                   | 0.2925                       |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs.   | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|----------------|-------------|------------------------|------------------------------|
| 12  | 0.1150                         | 10.000       | 10.0           | 4.7         | 2.16                   | 0.2921                       |
| 13  | 0.1200                         | 10.300       | 10.3           | 4.9         | 2.22                   | 0.2920                       |
| 14  | 0.1200                         | 10.800       | 10.3           | 5.4         | 2.33                   | 0.2920                       |
| 15  | 0.1320                         | 10.100       | 10.3           | 5.8         | 2.18                   | 0.2920                       |
| 16  | 0.1500                         | 10.100       | 10.1           | 6.2         | 2.13                   | 0.2920                       |
| 17  | 0.1620                         | 10.200       | 10.8           | 6.7         | 2.33                   | 0.2921                       |
| 18  | 0.1020                         | 10.700       | 10.2           | 7.0         |                        |                              |
| 19  | 0.1710                         | 10.700       | 10.7           |             | 2.31                   | 0.2921                       |
|     |                                |              | E2/80/10/80/10 | 7.7         | 2.29                   | 0.2920                       |
| 20  | 0.1930                         | 10.500       | 10.5           | 7.9         | 2.26                   | 0.2920                       |
| 21  | 0.2000                         | 10.700       | 10.7           | 8.2         | 2.31                   | 0.2912                       |
| 22  | 0.2170                         | 11.000       | 11.0           | 8.9         | 2.37                   | 0.2909                       |
| 23  | 0.2200                         | 11.000       | 11.0           | 9.1         | 2.37                   | 0.2909                       |
| 24  | 0.2330                         | 10.800       | 10.8           | 9.6         | 2.33                   | 0.2910                       |
| 25  | 0.2400                         | 11.000       | 11.0           | 9.9         | 2.37                   | 0.2910                       |
| 26  | 0.2500                         | 11.000       | 11.0           | 10.3        | 2.37                   | 0.2910                       |
| 27  | 0.2600                         | 11.000       | 11.0           | 10.7        | 2.37                   | 0.2910                       |
| 28  | 0.2700                         | 11.000       | 11.0           | 11.1        | 2.37                   | 0.2910                       |
| 29  | 0.2820                         | 11.600       | 11.6           | 11.6        | 2.50                   | 0.2900                       |
| 30  | 0.2930                         | 12.000       | 12.0           | 12.1        | 2.59                   | 0.2901                       |
| 31  | 0.3000                         | 12.000       | 12.0           | 12.3        | 2.59                   | 0.2901                       |
| 32  | 0.3120                         | 11.800       | 11.8           | 12.8        | 2.54                   | 0.2902                       |
| 33  | 0.3220                         | 12.000       | 12.0           | 13.3        | 2.59                   | 0.2902                       |
| 34  | 0.3320                         | 12.000       | 12.0           | 13.7        | 2.59                   | 0.2902                       |
| 35  | 0.3400                         | 11.900       | 11.9           | 14.0        | 2.57                   | 0.2901                       |
| 36  | 0.3500                         | 11.900       | 11.9           | 14.4        | 2.57                   | 0.2901                       |
| 37  | 0.3600                         | 11.600       | 11.6           | 14.8        | 2.50                   | 0.2900                       |
|     |                                |              |                |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2336.300 |              | 2359.250 |  |
| Moisture content: Dry soil+tare, gms.   | 2329.400 |              | 2329.400 |  |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |  |
| Moisture, %                             | 5.2      | 22.5         | 22.5     |  |
| Moist specimen weight, gms.             | 131.4    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in.²                              | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.98         |          |  |
| Net decrease in height, in.             |          | 0.02         |          |  |
| Wet density, pcf                        | 107.9    | 128.5        |          |  |
| Dry density, pcf                        | 102.6    | 104.9        |          |  |
| Void ratio                              | 0.6427   | 0.6071       |          |  |
| Saturation, %                           | 21.8     | 100.0        |          |  |

Normal stress = 6.9 psi

Strain rate, in./min. = 0.03

Fail. Stress = 4.88 psi at reading no. 28

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>%                  | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|------------------------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0                          | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.000        | 4.5          | 0.2                          | 0.97                   | 0.2995                       |
| 2   | 0.0100                         | 7.200        | 6.5          | 0.4                          | 1.40                   | 0.2990                       |
| 3   | 0.0200                         | 11.000       | 9.9          | 0.8                          | 2.13                   | 0.2980                       |
| 4   | 0.0300                         | 14.800       | 13.3         | 1.2                          | 2.87                   | 0.2976                       |
| 5   | 0.0480                         | 19.500       | 17.5         | 2.0                          | 3.78                   | 0.2969                       |
| 6   | 0.0500                         | 20.000       | 18.0         | 2.1                          | 3.88                   | 0.2969                       |
| 7   | 0.0600                         | 20.000       | 18.0         | 2.5                          | 3.88                   | 0.2967                       |
| 8   | 0.0710                         | 20.400       | 18.3         | 2.9                          | 3.95                   | 0.2967                       |
| 9   | 0.0800                         | 19.900       | 17.9         | 3.3                          | 3.86                   | 0.2967                       |
| 10  | 0.0920                         | 20.100       | 18.1         | 3.8                          | 3.90                   | 0.2968                       |
| 11  | 0.1040                         | 20.900       | 18.8         | 4.3                          | 4.05                   | 0.2969                       |
| 12  | 0.1100                         | 21.100       | 19.0         | 4.5                          | 4.09                   | 0.2969                       |
| 13  | 0.1200                         | 21.400       | 19.2         | 4.9                          | 4.15                   | 0.2969                       |
| 14  | 0.1300                         | 21.800       | 19.6         | 5.3                          | 4.22                   | 0.2970                       |
| 15  | 0.1400                         | 22.400       | 20.1         | 5.8                          | 4.34                   | 0.2970                       |
| 16  | 0.1520                         | 23.000       | 20.7         | 6.3                          | 4.46                   | 0.2970                       |
| 17  | 0.1600                         | 23.800       | 21.4         | 6.6                          | 4.61                   | 0.2970                       |
| 18  | 0.1700                         | 23.100       | 20.8         | 7.0                          | 4.48                   | 0.2970                       |
| 19  | 0.1800                         | 24.000       | 21.6         | 7.4                          | 4.65                   | 0.2969                       |
| 20  | 0.1900                         | 24.200       | 21.8         | 7.8                          | 4.69                   | 0.2968                       |
| 21  | 0.2000                         | 24.600       | 22.1         | 8.2                          | 4.77                   | 0.2968                       |
| 22  | 0.2110                         | 25.100       | 22.6         | 8.7                          | 4.86                   | 0.2968                       |
| 23  | 0.2200                         | 25.000       | 22.5         | 9.1                          | 4.85                   | 0.2969                       |
| 24  | 0.2320                         | 25.000       | 22.5         | 9.5                          | 4.85                   | 0.2969                       |
| 25  | 0.2400                         | 25.000       | 22.5         | 9.9                          | 4.85                   | 0.2969                       |
| 26  | 0.2520                         | 25.000       | 22.5         | 10.4                         | 4.85                   | 0.2969                       |
| 27  | 0.2600                         | 25.100       | 22.6         | 10.7                         | 4.86                   | 0.2969                       |
|     |                                |              | and the same | t of the section of the last | _ Sierr                | a Testing Labs, Inc          |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 28  | 0.2730                         | 25.200       | 22.6         | 11.2        | 4.88                   | 0.2969                       |  |
| 29  | 0.2800                         | 24.600       | 22.1         | 11.5        | 4.77                   | 0.2968                       |  |
| 30  | 0.2940                         | 24.600       | 22.1         | 12.1        | 4.77                   | 0.2968                       |  |
| 31  | 0.3000                         | 24.500       | 22.0         | 12.3        | 4.75                   | 0.2968                       |  |
| 32  | 0.3110                         | 25.000       | 22.5         | 12.8        | 4.85                   | 0.2968                       |  |
| 33  | 0.3200                         | 24.000       | 21.6         | 13.2        | 4.65                   | 0.2966                       |  |
| 34  | 0.3310                         | 24.100       | 21.7         | 13.6        | 4.67                   | 0.2963                       |  |
| 35  | 0.3400                         | 24.100       | 21.7         | 14.0        | 4.67                   | 0.2963                       |  |
| 36  | 0.3500                         | 24.600       | 22.1         | 14.4        | 4.77                   | 0.2963                       |  |
| 37  | 0.3600                         | 25.000       | 22.5         | 14.8        | 4.85                   | 0.2962                       |  |



Tested By: mw Checked By: mpw

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0002R, S02

Depth:

5-6.3

Sample Number:

S36229

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Initial  | Consolidated                                                                                         | Final                                                                                                         |                                                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3434.100 |                                                                                                      | 3454.750                                                                                                      |                                                                                                                                                                                                                                                                                                                   |
| 3430.000 |                                                                                                      | 3430.000                                                                                                      |                                                                                                                                                                                                                                                                                                                   |
| 3285.800 |                                                                                                      | 3285.800                                                                                                      |                                                                                                                                                                                                                                                                                                                   |
| 2.8      | 17.2                                                                                                 | 17.2                                                                                                          |                                                                                                                                                                                                                                                                                                                   |
| 148.3    |                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 2.50     | 2.50                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 4.91     | 4.91                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 1.00     | 0.97                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
|          | 0.03                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 115.1    | 135.0                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 111.9    | 115.2                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 0.5062   | 0.4634                                                                                               |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
| 15.2     | 100.0                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                   |
|          | 3434.100<br>3430.000<br>3285.800<br>2.8<br>148.3<br>2.50<br>4.91<br>1.00<br>115.1<br>111.9<br>0.5062 | 3434.100 3430.000 3285.800 2.8 17.2 148.3 2.50 2.50 4.91 1.00 0.97 0.03 115.1 135.0 111.9 115.2 0.5062 0.4634 | 3434.100       3454.750         3430.000       3430.000         3285.800       3285.800         2.8       17.2       17.2         148.3       2.50       2.50         4.91       4.91       1.00       0.97         0.03       115.1       135.0       111.9       115.2         0.5062       0.4634       0.4634 |

**Load ring constant =** 2.0432 lbs. per input unit

Normal stress = 1.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 0.83 psi at reading no. 8

|     | Horizontal<br>Def. Dial | Load  | Load | Strain | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|-------|------|--------|-----------------|-----------------------|
| No. | in.                     | Dial  | lbs. | %      | psi             | in.                   |
| 0   | 0.0000                  | 0.000 | 0.0  | 0.0    | 0.00            | 0.0000                |
| 1   | 0.0080                  | 0.900 | 1.8  | 0.3    | 0.37            | -0.0100               |
| 2   | 0.0100                  | 1.100 | 2.2  | 0.4    | 0.46            | -0.0200               |
| 3   | 0.0220                  | 1.300 | 2.7  | 0.9    | 0.54            | -0.0300               |
| 4   | 0.0300                  | 1.200 | 2.5  | 1.2    | 0.50            | -0.0500               |
| 5   | 0.0400                  | 1.600 | 3.3  | 1.6    | 0.67            | -0.1200               |
| 6   | 0.0500                  | 1.700 | 3.5  | 2.0    | 0.71            | -0.1400               |
| 7   | 0.0600                  | 1.800 | 3.7  | 2.4    | 0.75            | -0.2100               |
| 8   | 0.0740                  | 2.000 | 4.1  | 3.0    | 0.83            | -0.2000               |
| 9   | 0.0820                  | 1.800 | 3.7  | 3.3    | 0.75            | -0.2100               |
| 10  | 0.0900                  | 1.900 | 3.9  | 3.6    | 0.79            | -0.2300               |
| 11  | 0.1000                  | 1.700 | 3.5  | 4.0    | 0.71            | -0.2400               |
|     |                         |       |      |        |                 |                       |

|     | Horizontal<br>Def. Dial | Load  | Load |     | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|-------|------|-----|-----------------|-----------------------|
| No. | in.                     | Dial  | lbs. | %   | psi             | in.                   |
| 12  | 0.1100                  | 1.600 | 3.3  | 4.4 | 0.67            | -0.2500               |

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 3434.100 |              | 3447.380 |
| Moisture content: Dry soil+tare, gms.   | 3430.000   |              | 3430.000 |
| Moisture content: Tare, gms.            | 3285.800   |              | 3285.800 |
| Moisture, %                             | 2.8        | 12.1         | 12.1     |
| Moist specimen weight, gms.             | 148.3      |              |          |
| Diameter, in.                           | 2.50       | 2.50         |          |
| Area, in. <sup>2</sup>                  | 4.91       | 4.91         |          |
| Height, in.                             | 1.00       | 0.88         |          |
| Net decrease in height, in.             |            | 0.12         |          |
| Wet density, pcf                        | 115.1      | 142.5        |          |
| Dry density, pcf                        | 111.9      | 127.2        |          |
| Void ratio                              | 0.5062     | 0.3254       |          |
| Saturation, %                           | 15.2       | 100.0        |          |

Normal stress = 2.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.87 psi at reading no. 27

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 1.900        | 1.9          | 0.2         | 0.39                   | -0.0200                      |
| 2   | 0.0100                         | 2.000        | 2.0          | 0.4         | 0.41                   | -0.0300                      |
| 3   | 0.0200                         | 3.000        | 3.0          | 0.8         | 0.61                   | -0.0300                      |
| 4   | 0.0300                         | 3.500        | 3.5          | 1.2         | 0.71                   | -0.0300                      |
| 5   | 0.0400                         | 4.800        | 4.8          | 1.6         | 0.98                   | -0.0400                      |
| 6   | 0.0550                         | 5.700        | 5.7          | 2.2         | 1.16                   | -0.0400                      |
| 7   | 0.0600                         | 5.900        | 5.9          | 2.4         | 1.20                   | -0.0400                      |
| 8   | 0.0700                         | 6.000        | 6.0          | 2.8         | 1.22                   | -0.0500                      |
| 9   | 0.0800                         | 7.000        | 7.0          | 3.2         | 1.43                   | -0.0700                      |
| 10  | 0.0900                         | 7.500        | 7.5          | 3.6         | 1.53                   | -0.0900                      |
| 11  | 0.1000                         | 7.100        | 7.1          | 4.0         | 1.45                   | -0.0900                      |
| 12  | 0.1100                         | 7.800        | 7.8          | 4.4         | 1.59                   | -0.1000                      |
| 13  | 0.1200                         | 8.000        | 8.0          | 4.8         | 1.63                   | -0.1100                      |
| 14  | 0.1300                         | 8.000        | 8.0          | 5.2         | 1.63                   | -0.1300                      |
| 15  | 0.1450                         | 8.800        | 8.8          | 5.8         | 1.79                   | -0.1400                      |
| 16  | 0.1500                         | 8.400        | 8.4          | 6.0         | 1.71                   | -0.1500                      |
| 17  | 0.1600                         | 8.900        | 8.9          | 6.4         | 1.81                   | -0.1500                      |
| 18  | 0.1700                         | 8.200        | 8.2          | 6.8         | 1.67                   | -0.1600                      |
| 19  | 0.1800                         | 8.800        | 8.8          | 7.2         | 1.79                   | -0.1500                      |
| 20  | 0.1900                         | 8.500        | 8.5          | 7.6         | 1.73                   | -0.1600                      |
| 21  | 0.2000                         | 8.900        | 8.9          | 8.0         | 1.81                   | -0.1600                      |
| 22  | 0.2100                         | 9.000        | 9.0          | 8.4         | 1.83                   | -0.1700                      |
| 23  | 0.2200                         | 9.100        | 9.1          | 8.8         | 1.85                   | -0.1700                      |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 24  | 0.2330                         | 9.100        | 9.1          | 9.3         | 1.85                   | -0.1700                      |
| 25  | 0.2410                         | 8.900        | 8.9          | 9.6         | 1.81                   | -0.2000                      |
| 26  | 0.2500                         | 9.000        | 9.0          | 10.0        | 1.83                   | -0.2200                      |
| 27  | 0.2600                         | 9.200        | 9.2          | 10.4        | 1.87                   | -0.2200                      |
| 28  | 0.2700                         | 9.000        | 9.0          | 10.8        | 1.83                   | -0.2400                      |
| 29  | 0.2800                         | 9.000        | 9.0          | 11.2        | 1.83                   | -0.2600                      |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3434.100 |              | 3450.400 |
| Moisture content: Dry soil+tare, gms.   | 3430.200 |              | 3430.200 |
| Moisture content: Tare, gms.            | 3285.800 |              | 3285.800 |
| Moisture, %                             | 2.7      | 14.0         | 14.0     |
| Moist specimen weight, gms.             | 148.3    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in.²                              | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 0.92         |          |
| Net decrease in height, in.             |          | 0.08         |          |
| Wet density, pcf                        | 115.1    | 139.5        |          |
| Dry density, pcf                        | 112.1    | 122.3        |          |
| Void ratio                              | 0.5041   | 0.3777       |          |
| Saturation, %                           | 14.5     | 100.0        |          |

Load ring constant = 1.2322 lbs. per input unit

Normal stress = 4.4 psi

Strain rate, in./min. = 0.03

Fail. Stress = 3.44 psi at reading no. 23

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 0.800        | 1.0          | 0.2         | 0.20                   | -0.2300                      |
| 2   | 0.0100                         | 1.100        | 1.4          | 0.4         | 0.28                   | -0.2900                      |
| 3   | 0.0200                         | 4.800        | 5.9          | 0.8         | 1.20                   | -0.3000                      |
| 4   | 0.0300                         | 6.100        | 7.5          | 1.2         | 1.53                   | -0.3500                      |
| 5   | 0.0400                         | 7.700        | 9.5          | 1.6         | 1.93                   | -0.3900                      |
| 6   | 0.0500                         | 8.200        | 10.1         | 2.0         | 2.06                   | -0.3600                      |
| 7   | 0.0600                         | 8.400        | 10.4         | 2.4         | 2.11                   | -0.3300                      |
| 8   | 0.0700                         | 8.400        | 10.4         | 2.8         | 2.11                   | -0.3200                      |
| 9   | 0.0800                         | 8.800        | 10.8         | 3.2         | 2.21                   | -0.3500                      |
| 10  | 0.0900                         | 8.900        | 11.0         | 3.6         | 2.23                   | -0.3500                      |
| 11  | 0.1000                         | 9.100        | 11.2         | 4.0         | 2.28                   | -0.4000                      |
| 12  | 0.1100                         | 9.900        | 12.2         | 4.4         | 2.49                   | -0.3800                      |
| 13  | 0.1200                         | 10.100       | 12.4         | 4.8         | 2.54                   | -0.3900                      |
| 14  | 0.1330                         | 10.100       | 12.4         | 5.3         | 2.54                   | -0.4000                      |
| 15  | 0.1430                         | 11.000       | 13.6         | 5.7         | 2.76                   | -0.4200                      |
| 16  | 0.1500                         | 11.400       | 14.0         | 6.0         | 2.86                   | -0.4200                      |
| 17  | 0.1600                         | 12.200       | 15.0         | 6.4         | 3.06                   | -0.4000                      |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 18  | 0.1700                         | 12.800       | 15.8         | 6.8         | 3.21                   | -0.4000                      |
| 19  | 0.1800                         | 13.200       | 16.3         | 7.2         | 3.31                   | -0.4200                      |
| 20  | 0.1900                         | 13.500       | 16.6         | 7.6         | 3.39                   | -0.4400                      |
| 21  | 0.2000                         | 13.300       | 16.4         | 8.0         | 3.34                   | -0.4200                      |
| 22  | 0.2100                         | 13.500       | 16.6         | 8.4         | 3.39                   | -0.4300                      |
| 23  | 0.2200                         | 13.700       | 16.9         | 8.8         | 3.44                   | -0.4300                      |
| 24  | 0.2300                         | 13.500       | 16.6         | 9.2         | 3.39                   | -0.4300                      |
| 25  | 0.2400                         | 13.200       | 16.3         | 9.6         | 3.31                   | -0.4400                      |
| 26  | 0.2500                         | 13.300       | 16.4         | 10.0        | 3.34                   | -0.4400                      |
| 27  | 0.2600                         | 13.100       | 16.1         | 10.4        | 3.29                   | -0.4400                      |



Tested By: js Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0003R, S04

Depth:

8-9.0

Sample Number:

S36233

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2348.300 |              | 2352.950 |
| Moisture content: Dry soil+tare, gms.   | 2324.000 |              | 2324.000 |
| Moisture content: Tare, gms.            | 2196.200 |              | 2196.200 |
| Moisture, %                             | 19.0     | 22.7         | 22.7     |
| Moist specimen weight, gms.             | 152.1    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 124.9    | 128.3        |          |
| Dry density, pcf                        | 105.0    | 104.6        |          |
| Void ratio                              | 0.6056   | 0.6119       |          |
| Saturation, %                           | 84.8     | 100.0        |          |

**Load ring constant =** .8988 lbs. per input unit

Normal stress = 1.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 3.99 psi at reading no. 6

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 8.000        | 7.2          | 0.2         | 1.55                   | 0.3003                       |
| 2   | 0.0100                         | 12.000       | 10.8         | 0.4         | 2.33                   | 0.3019                       |
| 3   | 0.0200                         | 16.100       | 14.5         | 0.8         | 3.12                   | 0.3041                       |
| 4   | 0.0300                         | 18.900       | 17.0         | 1.2         | 3.66                   | 0.3065                       |
| 5   | 0.0400                         | 19.700       | 17.7         | 1.6         | 3.82                   | 0.3100                       |
| 6   | 0.0500                         | 20.600       | 18.5         | 2.1         | 3.99                   | 0.3140                       |
| 7   | 0.0600                         | 20.400       | 18.3         | 2.5         | 3.95                   | 0.3180                       |
| 8   | 0.0750                         | 18.900       | 17.0         | 3.1         | 3.66                   | 0.3235                       |
| 9   | 0.0800                         | 18.000       | 16.2         | 3.3         | 3.49                   | 0.3250                       |
| 10  | 0.0940                         | 17.000       | 15.3         | 3.9         | 3.29                   | 0.3289                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2365.000 |              | 2368.600 |
| Moisture content: Dry soil+tare, gms.   | 2340.700 |              | 2340.700 |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |
| Moisture, %                             | 19.0     | 21.8         | 21.8     |
| Moist specimen weight, gms.             | 152.1    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 124.9    | 129.2        |          |
| Dry density, pcf                        | 105.0    | 106.0        |          |
| Void ratio                              | 0.6056   | 0.5900       |          |
| Saturation, %                           | 84.8     | 99.9         |          |

Strain rate, in./min. = 0.03

Fail. Stress = 5.20 psi at reading no. 6

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.200        | 7.2          | 0.2         | 1.55                   | 0.2999                       |
| 2   | 0.0100                         | 11.000       | 11.0         | 0.4         | 2.37                   | 0.3000                       |
| 3   | 0.0200                         | 18.000       | 18.0         | 0.8         | 3.88                   | 0.3011                       |
| 4   | 0.0300                         | 21.800       | 21.8         | 1.2         | 4.70                   | 0.3030                       |
| 5   | 0.0400                         | 23.800       | 23.8         | 1.6         | 5.13                   | 0.3047                       |
| 6   | 0.0570                         | 24.100       | 24.1         | 2.3         | 5.20                   | 0.3081                       |
| 7   | 0.0610                         | 23.700       | 23.7         | 2.5         | 5.11                   | 0.3092                       |
| 8   | 0.0700                         | 23.100       | 23.1         | 2.9         | 4.98                   | 0.3108                       |
| 9   | 0.0870                         | 23.000       | 23.0         | 3.6         | 4.96                   | 0.3136                       |
| 10  | 0.0900                         | 23.000       | 23.0         | 3.7         | 4.96                   | 0.3139                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2348.300 |              | 2351.550 |  |
| Moisture content: Dry soil+tare, gms.   | 2323.800 |              | 2323.800 |  |
| Moisture content: Tare, gms.            | 2196.200 |              | 2196.200 |  |
| Moisture, %                             | 19.2     | 21.7         | 21.7     |  |
| Moist specimen weight, gms.             | 152.1    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in.²                              | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.99         |          |  |
| Net decrease in height, in.             |          | 0.01         |          |  |
| Wet density, pcf                        | 124.9    | 129.2        |          |  |
| Dry density, pcf                        | 104.8    | 106.1        |          |  |
| Void ratio                              | 0.6081   | 0.5880       |          |  |
| Saturation, %                           | 85.3     | 99.9         |          |  |

**Load ring constant =** .8988 lbs. per input unit

Normal stress = 6.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 7.97 psi at reading no. 6

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 6.100        | 5.5          | 0.2         | 1.18                   | 0.2996                       |
| 2   | 0.0100                         | 15.100       | 13.6         | 0.4         | 2.93                   | 0.2991                       |
| 3   | 0.0200                         | 26.100       | 23.5         | 0.8         | 5.06                   | 0.2996                       |
| 4   | 0.0300                         | 34.100       | 30.6         | 1.2         | 6.61                   | 0.3009                       |
| 5   | 0.0450                         | 39.500       | 35.5         | 1.9         | 7.66                   | 0.3036                       |
| 6   | 0.0530                         | 41.100       | 36.9         | 2.2         | 7.97                   | 0.3052                       |
| 7   | 0.0620                         | 41.000       | 36.9         | 2.6         | 7.95                   | 0.3074                       |
| 8   | 0.0700                         | 40.500       | 36.4         | 2.9         | 7.85                   | 0.3090                       |
| 9   | 0.0800                         | 39.900       | 35.9         | 3.3         | 7.73                   | 0.3108                       |
| 10  | 0.0900                         | 38.800       | 34.9         | 3.7         | 7.52                   | 0.3122                       |
| 11  | 0.1060                         | 37.200       | 33.4         | 4.4         | 7.21                   | 0.3139                       |
| 12  | 0.1100                         | 37.200       | 33.4         | 4.5         | 7.21                   | 0.3140                       |



Tested By: mw Checked By: mpw Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0003R, S10

Depth:

25-26.4

Sample Number:

S36235

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture content: Moist soil+tare, gms. | 2360.900 |              | 2365.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Moisture content: Dry soil+tare, gms.   | 2338.300 |              | 2338.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Moisture content: Tare, gms.            | 2212.500 |              | 2212.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Moisture, %                             | 18.0     | 22.0         | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Moist specimen weight, gms.             | 148.4    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Diameter, in.                           | 2.43     | 2.43         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Height, in.                             | 1.00     | 0.98         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Net decrease in height, in.             |          | 0.02         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wet density, pcf                        | 121.9    | 129.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dry density, pcf                        | 103.3    | 105.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Void ratio                              | 0.6311   | 0.5936       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Saturation, %                           | 76.9     | 100.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |          |              | THE RESERVE OF A STATE OF THE PROPERTY OF THE |

**Load ring constant =** 1.2322 lbs. per input unit

Normal stress = 5.4 psiStrain rate, in./min. = 0.03

Fail. Stress = 7.15 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0080                         | 10.000       | 12.3         | 0.3         | 2.66                   | 0.2999                       |
| 2   | 0.0100                         | 11.000       | 13.6         | 0.4         | 2.92                   | 0.2999                       |
| 3   | 0.0200                         | 15.100       | 18.6         | 0.8         | 4.01                   | 0.3004                       |
| 4   | 0.0300                         | 19.600       | 24.2         | 1.2         | 5.21                   | 0.3018                       |
| 5   | 0.0450                         | 23.000       | 28.3         | 1.9         | 6.11                   | 0.3040                       |
| 6   | 0.0500                         | 23.600       | 29.1         | 2.1         | 6.27                   | 0.3046                       |
| 7   | 0.0600                         | 26.900       | 33.1         | 2.5         | 7.15                   | 0.3065                       |
| 8   | 0.0700                         | 26.400       | 32.5         | 2.9         | 7.01                   | 0.3083                       |
| 9   | 0.0850                         | 26.100       | 32.2         | 3.5         | 6.93                   | 0.3110                       |
| 10  | 0.0920                         | 24.900       | 30.7         | 3.8         | 6.62                   | 0.3122                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2345.200 |              | 2350.350 |  |
| Moisture content: Dry soil+tare, gms.   | 2322.800 |              | 2322.800 |  |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |  |
| Moisture, %                             | 17.8     | 21.9         | 21.9     |  |
| Moist specimen weight, gms.             | 148.4    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.98         |          |  |
| Net decrease in height, in.             |          | 0.02         |          |  |
| Wet density, pcf                        | 121.9    | 129.1        |          |  |
| Dry density, pcf                        | 103.5    | 105.9        |          |  |
| Void ratio                              | 0.6285   | 0.5911       |          |  |
| Saturation, %                           | 76.4     | 99.9         |          |  |

Normal stress = 10.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 12.07 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 26.300       | 26.3         | 0.2         | 5.67                   | 0.2983                       |
| 2   | 0.0130                         | 33.100       | 33.1         | 0.5         | 7.14                   | 0.2981                       |
| 3   | 0.0200                         | 39.200       | 39.2         | 0.8         | 8.45                   | 0.2988                       |
| 4   | 0.0350                         | 46.000       | 46.0         | 1.4         | 9.92                   | 0.2997                       |
| 5   | 0.0400                         | 48.100       | 48.1         | 1.6         | 10.37                  | 0.3000                       |
| 6   | 0.0510                         | 51.300       | 51.3         | 2.1         | 11.06                  | 0.3018                       |
| 7   | 0.0600                         | 53.900       | 53.9         | 2.5         | 11.62                  | 0.3029                       |
| 8   | 0.0700                         | 56.000       | 56.0         | 2.9         | 12.07                  | 0.3041                       |
| 9   | 0.0800                         | 55.000       | 55.0         | 3.3         | 11.86                  | 0.3058                       |
| 10  | 0.0900                         | 54.300       | 54.3         | 3.7         | 11.71                  | 0.3070                       |
| 11  | 0.1000                         | 53.800       | 53.8         | 4.1         | 11.60                  | 0.3081                       |
| 12  | 0.1100                         | 52.000       | 52.0         | 4.5         | 11.21                  | 0.3098                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2360.900 |              | 2364.750 |  |
| Moisture content: Dry soil+tare, gms.   | 2337.900 |              | 2337.900 |  |
| Moisture content: Tare, gms.            | 2212.500 |              | 2212.500 |  |
| Moisture, %                             | 18.3     | 21.4         | 21.4     |  |
| Moist specimen weight, gms.             | 148.4    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in.²                              | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.96         |          |  |
| Net decrease in height, in.             |          | 0.04         |          |  |
| Wet density, pcf                        | 121.9    | 129.7        |          |  |
| Dry density, pcf                        | 103.0    | 106.8        |          |  |
| Void ratio                              | 0.6363   | 0.5781       |          |  |
| Saturation, %                           | 77.8     | 100.0        |          |  |

Normal stress = 21.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 21.39 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 10.300       | 10.3         | 0.2         | 2.22                   | 0.2994                       |
| 2   | 0.0100                         | 31.100       | 31.1         | 0.4         | 6.71                   | 0.2986                       |
| 3   | 0.0220                         | 48.100       | 48.1         | 0.9         | 10.37                  | 0.2972                       |
| 4   | 0.0300                         | 56.700       | 56.7         | 1.2         | 12.23                  | 0.2970                       |
| 5   | 0.0400                         | 67.400       | 67.4         | 1.6         | 14.53                  | 0.2974                       |
| 6   | 0.0540                         | 77.800       | 77.8         | 2.2         | 16.78                  | 0.2978                       |
| 7   | 0.0600                         | 82.600       | 82.6         | 2.5         | 17.81                  | 0.2981                       |
| 8   | 0.0720                         | 89.200       | 89.2         | 3.0         | 19.23                  | 0.2991                       |
| 9   | 0.0800                         | 94.600       | 94.6         | 3.3         | 20.40                  | 0.3001                       |
| 10  | 0.0900                         | 96.000       | 96.0         | 3.7         | 20.70                  | 0.3012                       |
| 11  | 0.1050                         | 97.500       | 97.5         | 4.3         | 21.02                  | 0.3030                       |
| 12  | 0.1100                         | 97.700       | 97.7         | 4.5         | 21.07                  | 0.3039                       |
| 13  | 0.1200                         | 98.000       | 98.0         | 4.9         | 21.13                  | 0.3047                       |
| 14  | 0.1300                         | 99.200       | 99.2         | 5.3         | 21.39                  | 0.3051                       |
| 15  | 0.1440                         | 96.900       | 96.9         | 5.9         | 20.89                  | 0.3061                       |
| 16  | 0.1500                         | 95.100       | 95.1         | 6.2         | 20.51                  | 0.3069                       |
| 17  | 0.1600                         | 93.600       | 93.6         | 6.6         | 20.18                  | 0.3074                       |
| 18  | 0.1700                         | 91.000       | 91.0         | 7.0         | 19.62                  | 0.3077                       |



Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0003R, S15

Depth:

50-50.8

Sample Number:

S36237

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         |          | uds stuenfled |          |
|-----------------------------------------|----------|---------------|----------|
| Specimen Parameter                      | Initial  | Consolidated  | Final    |
| Moisture content: Moist soil+tare, gms. | 2356.600 |               | 2362.850 |
| Moisture content: Dry soil+tare, gms.   | 2341.700 |               | 2341.700 |
| Moisture content: Tare, gms.            | 2197.200 |               | 2197.200 |
| Moisture, %                             | 10.3     | 14.6          | 14.6     |
| Moist specimen weight, gms.             | 159.4    |               |          |
| Diameter, in.                           | 2.43     | 2.43          |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64          |          |
| Height, in.                             | 1.00     | 0.98          |          |
| Net decrease in height, in.             |          | 0.02          |          |
| Wet density, pcf                        | 130.9    | 138.5         |          |
| Dry density, pcf                        | 118.7    | 120.8         |          |
| Void ratio                              | 0.4200   | 0.3953        |          |
| Saturation, %                           | 66.3     | 100.0         |          |

Normal stress = 11.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 13.43 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |          |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|----------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |          |
| 1   | 0.0070                         | 16.100       | 16.1         | 0.3         | 3.47                   | 0.2993                       |          |
| 2   | 0.0100                         | 21.000       | 21.0         | 0.4         | 4.53                   | 0.2991                       |          |
| 3   | 0.0200                         | 35.600       | 35.6         | 0.8         | 7.68                   | 0.2992                       |          |
| 4   | 0.0300                         | 44.500       | 44.5         | 1.2         | 9.60                   | 0.3001                       |          |
| 5   | 0.0400                         | 50.000       | 50.0         | 1.6         | 10.78                  | 0.3010                       |          |
| 6   | 0.0500                         | 55.000       | 55.0         | 2.1         | 11.86                  | 0.3025                       |          |
| 7   | 0.0600                         | 58.700       | 58.7         | 2.5         | 12.66                  | 0.3038                       |          |
| 8   | 0.0700                         | 62.000       | 62.0         | 2.9         | 13.37                  | 0.3054                       |          |
| 9   | 0.0800                         | 62.300       | 62.3         | 3.3         | 13.43                  | 0.3070                       |          |
| 10  | 0.0900                         | 61.900       | 61.9         | 3.7         | 13.35                  | 0.3081                       |          |
| 11  | 0.1050                         | 61.200       | 61.2         | 4.3         | 13.20                  | 0.3105                       |          |
| 12  | 0.1100                         | 61.100       | 61.1         | 4.5         | 13.17                  | 0.3115                       |          |
|     |                                |              |              |             | _ Sier                 | ra Testing L                 | abs, Ind |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 61.000       | 61.0         | 4.9         | 13.15                  | 0.3120                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2372.300 |              | 2378.050 |
| Moisture content: Dry soil+tare, gms.   | 2357.400 |              | 2357.400 |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |
| Moisture, %                             | 10.3     | 14.3         | 14.3     |
| Moist specimen weight, gms.             | 159.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 130.9    | 139.0        |          |
| Dry density, pcf                        | 118.7    | 121.6        |          |
| Void ratio                              | 0.4200   | 0.3860       |          |
| Saturation, %                           | 66.3     | 100.0        |          |

Normal stress = 22.9 psi Strain rate, in./min. = 0.03

Fail. Stress = 23.50 psi at reading no. 13

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                                            | Load<br>lbs.                                                                                                                                                                                                                                  | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                                                   | 0.0                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0050                         | 10.500                                                                                                                  | 10.5                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0100                         | 17.700                                                                                                                  | 17.7                                                                                                                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0200                         | 31.300                                                                                                                  | 31.3                                                                                                                                                                                                                                          | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0300                         | 41.100                                                                                                                  | 41.1                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0420                         | 60.100                                                                                                                  | 60.1                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0500                         | 71.200                                                                                                                  | 71.2                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0600                         | 83.000                                                                                                                  | 83.0                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0720                         | 94.200                                                                                                                  | 94.2                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0800                         | 99.100                                                                                                                  | 99.1                                                                                                                                                                                                                                          | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0900                         | 104.300                                                                                                                 | 104.3                                                                                                                                                                                                                                         | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1000                         | 106.200                                                                                                                 | 106.2                                                                                                                                                                                                                                         | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1100                         | 107.900                                                                                                                 | 107.9                                                                                                                                                                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1250                         | 109.000                                                                                                                 | 109.0                                                                                                                                                                                                                                         | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1300                         | 108.800                                                                                                                 | 108.8                                                                                                                                                                                                                                         | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1400                         | 106.700                                                                                                                 | 106.7                                                                                                                                                                                                                                         | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1500                         | 104.800                                                                                                                 | 104.8                                                                                                                                                                                                                                         | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | Def. Dial in.  0.0000 0.0050 0.0100 0.0200 0.0300 0.0420 0.0500 0.0600 0.0720 0.0800 0.1000 0.1100 0.1250 0.1300 0.1400 | in. Dial 0.0000 0.000 0.0050 10.500 0.0100 17.700 0.0200 31.300 0.0300 41.100 0.0420 60.100 0.0500 71.200 0.0600 83.000 0.0720 94.200 0.0800 99.100 0.0900 104.300 0.1000 106.200 0.1100 107.900 0.1250 109.000 0.1300 108.800 0.1400 106.700 | Def. Dial in.         Load Dial Dial         Load Ibs.           0.0000         0.000         0.0           0.0050         10.500         10.5           0.0100         17.700         17.7           0.0200         31.300         31.3           0.0300         41.100         41.1           0.0420         60.100         60.1           0.0500         71.200         71.2           0.0600         83.000         83.0           0.0720         94.200         94.2           0.0800         99.100         99.1           0.0900         104.300         104.3           0.1000         106.200         106.2           0.1100         107.900         107.9           0.1250         109.000         109.0           0.1300         108.800         108.8           0.1400         106.700         106.7 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         10.500         10.5         0.2           0.0100         17.700         17.7         0.4           0.0200         31.300         31.3         0.8           0.0300         41.100         41.1         1.2           0.0420         60.100         60.1         1.7           0.0500         71.200         71.2         2.1           0.0600         83.000         83.0         2.5           0.0720         94.200         94.2         3.0           0.0800         99.100         99.1         3.3           0.0900         104.300         104.3         3.7           0.1000         106.200         106.2         4.1           0.1100         107.900         107.9         4.5           0.1250         109.000         109.0         5.1           0.1300         108.800         108.8         5.3           0.1400         106.700         106.7         5.8 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain % psi         Stress psi           0.0000         0.000         0.0         0.0         0.00           0.0050         10.500         10.5         0.2         2.26           0.0100         17.700         17.7         0.4         3.82           0.0200         31.300         31.3         0.8         6.75           0.0300         41.100         41.1         1.2         8.86           0.0420         60.100         60.1         1.7         12.96           0.0500         71.200         71.2         2.1         15.35           0.0600         83.000         83.0         2.5         17.90           0.0720         94.200         94.2         3.0         20.31           0.0800         99.100         99.1         3.3         21.37           0.0900         104.300         104.3         3.7         22.49           0.1000         106.200         106.2         4.1         22.90           0.1100         107.900         107.9         4.5         23.27           0.1250         109.000         109.0         5.1         23.50 |

|                                         | Parametera |              |          |  |
|-----------------------------------------|------------|--------------|----------|--|
| Specimen Parameter                      | Initial    | Consolidated | Final    |  |
| Moisture content: Moist soil+tare, gms. | 2356.600   |              | 2361.750 |  |
| Moisture content: Dry soil+tare, gms.   | 2341.700   |              | 2341.700 |  |
| Moisture content: Tare, gms.            | 2197.200   |              | 2197.200 |  |
| Moisture, %                             | 10.3       | 13.9         | 13.9     |  |
| Moist specimen weight, gms.             | 159.4      |              |          |  |
| Diameter, in.                           | 2.43       | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |  |
| Height, in.                             | 1.00       | 0.97         |          |  |
| Net decrease in height, in.             |            | 0.03         |          |  |
| Wet density, pcf                        | 130.9      | 139.7        |          |  |
| Dry density, pcf                        | 118.7      | 122.6        |          |  |
| Void ratio                              | 0.4200     | 0.3745       |          |  |
| Saturation, %                           | 66.3       | 100.0        |          |  |

Normal stress = 45.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 44.05 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 25.500       | 25.5         | 0.2         | 5.50                   | 0.2992                       |
| 2   | 0.0100                         | 40.200       | 40.2         | 0.4         | 8.67                   | 0.2989                       |
| 3   | 0.0200                         | 68.100       | 68.1         | 0.8         | 14.68                  | 0.2975                       |
| 4   | 0.0300                         | 98.000       | 98.0         | 1.2         | 21.13                  | 0.2970                       |
| 5   | 0.0400                         | 146.500      | 146.5        | 1.6         | 31.59                  | 0.2969                       |
| 6   | 0.0500                         | 179.500      | 179.5        | 2.1         | 38.70                  | 0.2978                       |
| 7   | 0.0600                         | 189.400      | 189.4        | 2.5         | 40.84                  | 0.2989                       |
| 8   | 0.0740                         | 200.500      | 200.5        | 3.0         | 43.23                  | 0.3007                       |
| 9   | 0.0800                         | 204.100      | 204.1        | 3.3         | 44.01                  | 0.3019                       |
| 10  | 0.0900                         | 204.300      | 204.3        | 3.7         | 44.05                  | 0.3032                       |
| 11  | 0.1000                         | 203.200      | 203.2        | 4.1         | 43.81                  | 0.3041                       |
| 12  | 0.1100                         | 202.000      | 202.0        | 4.5         | 43.56                  | 0.3053                       |
| 13  | 0.1200                         | 196.700      | 196.7        | 4.9         | 42.41                  | 0.3067                       |
|     |                                |              |              |             |                        |                              |



Tested By: mw Checked By: mpw

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0004R, S04

Depth:

8-9.4

Sample Number:

S36240

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         |          | a firangaman na J |          |  |
|-----------------------------------------|----------|-------------------|----------|--|
| Specimen Parameter                      | Initial  | Consolidated      | Final    |  |
| Moisture content: Moist soil+tare, gms. | 2357.700 |                   | 2372.150 |  |
| Moisture content: Dry soil+tare, gms.   | 2345.400 |                   | 2345.400 |  |
| Moisture content: Tare, gms.            | 2212.900 |                   | 2212.900 |  |
| Moisture, %                             | 9.3      | 20.2              | 20.2     |  |
| Moist specimen weight, gms.             | 144.8    |                   |          |  |
| Diameter, in.                           | 2.43     | 2.43              |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64              |          |  |
| Height, in.                             | 1.00     | 1.00              |          |  |
| Net decrease in height, in.             |          | 0.00              |          |  |
| Wet density, pcf                        | 118.9    | 131.1             |          |  |
| Dry density, pcf                        | 108.8    | 109.0             |          |  |
| Void ratio                              | 0.5486   | 0.5457            |          |  |
| Saturation, %                           | 45.7     | 99.9              |          |  |

Load ring constant = 1.122 lbs. per input unit

Normal stress = 1.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.32 psi at reading no. 5

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.200        | 4.7          | 0.2         | 1.02                   | 0.2999                       |
| 2   | 0.0100                         | 6.000        | 6.7          | 0.4         | 1.45                   | 0.3000                       |
| 3   | 0.0200                         | 6.800        | 7.6          | 0.8         | 1.65                   | 0.3020                       |
| 4   | 0.0300                         | 8.000        | 9.0          | 1.2         | 1.94                   | 0.3039                       |
| 5   | 0.0400                         | 9.600        | 10.8         | 1.6         | 2.32                   | 0.3068                       |
| 6   | 0.0540                         | 8.600        | 9.6          | 2.2         | 2.08                   | 0.3090                       |
| 7   | 0.0650                         | 8.000        | 9.0          | 2.7         | 1.94                   | 0.3100                       |
| 8   | 0.0700                         | 8.000        | 9.0          | 2.9         | 1.94                   | 0.3101                       |
| 9   | 0.0800                         | 8.100        | 9.1          | 3.3         | 1.96                   | 0.3107                       |
| 10  | 0.0920                         | 8.300        | 9.3          | 3.8         | 2.01                   | 0.3115                       |
| 11  | 0.1000                         | 8.600        | 9.6          | 4.1         | 2.08                   | 0.3120                       |
|     |                                |              |              |             |                        |                              |

|     | Horizontal<br>Def. Dial | Load  | Load | Strain |      | Vertical<br>Def. Dial |
|-----|-------------------------|-------|------|--------|------|-----------------------|
| No. | in.                     | Dial  | lbs. | %      | psi  | in.                   |
| 12  | 0.1100                  | 8.200 | 9.2  | 4.5    | 1.98 | 0.3127                |

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2341.000 |              | 2354.950 |
| Moisture content: Dry soil+tare, gms.   | 2328.400   |              | 2328.400 |
| Moisture content: Tare, gms.            | 2196.200   |              | 2196.200 |
| Moisture, %                             | 9.5        | 20.1         | 20.1     |
| Moist specimen weight, gms.             | 144.8      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in.²                              | 4.64       | 4.64         |          |
| leight, in.                             | 1.00       | 0.99         |          |
| Net decrease in height, in.             |            | 0.01         |          |
| Wet density, pcf                        | 118.9      | 131.2        |          |
| Dry density, pcf                        | 108.6      | 109.2        |          |
| Void ratio                              | 0.5522     | 0.5430       |          |
| Saturation, %                           | 46.6       | 99.9         |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 3.6 psi

Strain rate, in./min. = 0.03

Fail. Stress = 5.06 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.200        | 6.5          | 0.2         | 1.40                   | 0.2998                       |
| 2   | 0.0100                         | 10.700       | 9.6          | 0.4         | 2.07                   | 0.2996                       |
| 3   | 0.0200                         | 14.200       | 12.8         | 0.8         | 2.75                   | 0.2999                       |
| 4   | 0.0300                         | 20.100       | 18.1         | 1.2         | 3.90                   | 0.3011                       |
| 5   | 0.0400                         | 23.400       | 21.0         | 1.6         | 4.53                   | 0.3034                       |
| 6   | 0.0500                         | 25.300       | 22.7         | 2.1         | 4.90                   | 0.3053                       |
| 7   | 0.0600                         | 26.100       | 23.5         | 2.5         | 5.06                   | 0.3072                       |
| 8   | 0.0740                         | 23.900       | 21.5         | 3.0         | 4.63                   | 0.3107                       |
| 9   | 0.0800                         | 23.000       | 20.7         | 3.3         | 4.46                   | 0.3120                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2357.700 |              | 2371.350 |  |
| Moisture content: Dry soil+tare, gms.   | 2345.500 |              | 2345.500 |  |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |  |
| Moisture, %                             | 9.2      | 19.5         | 19.5     |  |
| Moist specimen weight, gms.             | 144.8    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.99         |          |  |
| Net decrease in height, in.             |          | 0.01         |          |  |
| Wet density, pcf                        | 118.9    | 131.9        |          |  |
| Dry density, pcf                        | 108.9    | 110.4        |          |  |
| Void ratio                              | 0.5475   | 0.5270       |          |  |
| Saturation, %                           | 45.4     | 99.9         |          |  |

Normal stress = 7.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 7.54 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 12.000       | 10.8         | 0.2         | 2.33                   | 0.2992                       |
| 2   | 0.0100                         | 16.400       | 14.7         | 0.4         | 3.18                   | 0.2991                       |
| 3   | 0.0200                         | 20.000       | 18.0         | 0.8         | 3.88                   | 0.2992                       |
| 4   | 0.0300                         | 24.100       | 21.7         | 1.2         | 4.67                   | 0.2998                       |
| 5   | 0.0400                         | 35.000       | 31.5         | 1.6         | 6.78                   | 0.3016                       |
| 6   | 0.0500                         | 37.600       | 33.8         | 2.1         | 7.29                   | 0.3033                       |
| 7   | 0.0600                         | 38.900       | 35.0         | 2.5         | 7.54                   | 0.3056                       |
| 8   | 0.0700                         | 38.800       | 34.9         | 2.9         | 7.52                   | 0.3071                       |
| 9   | 0.0820                         | 37.300       | 33.5         | 3.4         | 7.23                   | 0.3089                       |
| 10  | 0.0900                         | 36.300       | 32.6         | 3.7         | 7.04                   | 0.3099                       |
| 11  | 0.1000                         | 35.000       | 31.5         | 4.1         | 6.78                   | 0.3109                       |
|     |                                |              |              |             |                        |                              |

| •      |         |      |     |
|--------|---------|------|-----|
| Sierra | Testing | lahe | Inc |



Tested By: mw Checked By: MPW

## 12/20/2011

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0004R, S11

Depth:

30-31.4

Sample Number:

S36242

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         | Remain   |              |          |
|-----------------------------------------|----------|--------------|----------|
| Specimen Parameter                      | Initial  | Consolidated | Final    |
| Moisture content: Moist soil+tare, gms. | 3709.200 |              | 3711.400 |
| Moisture content: Dry soil+tare, gms.   | 3684.900 |              | 3684.900 |
| Moisture content: Tare, gms.            | 3533.800 |              | 3533.800 |
| Moisture, %                             | 16.1     | 17.5         | 17.5     |
| Moist specimen weight, gms.             | 175.4    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 1.02         |          |
| Net decrease in height, in.             |          | -0.03        |          |
| Wet density, pcf                        | 136.1    | 134.5        |          |
| Dry density, pcf                        | 117.3    | 114.4        |          |
| Void ratio                              | 0.4374   | 0.4733       |          |
| Saturation, %                           | 99.3     | 100.0        |          |

**Load ring constant =** 1.2422 lbs. per input unit

Normal stress = 6.9 psi

Strain rate, in./min. = 0.03

Fail. Stress = 9.11 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 10.000       | 12.4         | 0.2         | 2.53                   | 0.0000                       |
| 2   | 0.0100                         | 13.000       | 16.1         | 0.4         | 3.29                   | 0.0000                       |
| 3   | 0.0200                         | 18.700       | 23.2         | 0.8         | 4.73                   | 0.0000                       |
| 4   | 0.0300                         | 24.100       | 29.9         | 1.2         | 6.10                   | 0.0020                       |
| 5   | 0.0450                         | 29.200       | 36.3         | 1.8         | 7.39                   | 0.0030                       |
| 6   | 0.0530                         | 31.600       | 39.3         | 2.1         | 8.00                   | 0.0040                       |
| 7   | 0.0600                         | 33.000       | 41.0         | 2.4         | 8.35                   | 0.0050                       |
| 8   | 0.0700                         | 34.700       | 43.1         | 2.8         | 8.78                   | 0.0070                       |
| 9   | 0.0800                         | 36.000       | 44.7         | 3.2         | 9.11                   | 0.0115                       |
| 10  | 0.0900                         | 36.000       | 44.7         | 3.6         | 9.11                   | 0.0130                       |
| 11  | 0.1000                         | 35.000       | 43.5         | 4.0         | 8.86                   | 0.0150                       |

# Teat Rectings for Speatmen No.

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 33.600       | 41.7         | 4.4         | 8.50                   | 0.0160                       |
| 13  | 0.1250                         | 29.900       | 37.1         | 5.0         | 7.57                   | 0.0180                       |

| Specimen Parameter                      | Initial  | Consolidated Final |
|-----------------------------------------|----------|--------------------|
| Moisture content: Moist soil+tare, gms. | 3470.800 | 3473.950           |
| Moisture content: Dry soil+tare, gms.   | 3446.500 | 3446.500           |
| Moisture content: Tare, gms.            | 3295.400 | 3295.400           |
| Moisture, %                             | 16.1     | 18.2               |
| Moist specimen weight, gms.             | 175.4    |                    |
| Diameter, in.                           | 2.50     | 2.50               |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91               |
| Height, in.                             | 1.00     | 1.04               |
| Net decrease in height, in.             |          | -0.04              |
| Wet density, pcf                        | 136.1    | 133.6              |
| Dry density, pcf                        | 117.3    | 113.1              |
| Void ratio                              | 0.4374   | 0.4906             |
| Saturation, %                           | 99.3     | 100.0              |

Normal stress = 13.8 psi

Strain rate, in./min. = 0.03

Fail. Stress = 16.03 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 31.500       | 31.5         | 0.2         | 6.42                   | -0.0020                      |
| 2   | 0.0100                         | 39.800       | 39.8         | 0.4         | 8.11                   | -0.0030                      |
| 3   | 0.0200                         | 49.800       | 49.8         | 0.8         | 10.15                  | -0.0030                      |
| 4   | 0.0300                         | 55.300       | 55.3         | 1.2         | 11.27                  | -0.0020                      |
| 5   | 0.0400                         | 59.500       | 59.5         | 1.6         | 12.12                  | -0.0010                      |
| 6   | 0.0520                         | 63.900       | 63.9         | 2.1         | 13.02                  | 0.0000                       |
| 7   | 0.0600                         | 66.100       | 66.1         | 2.4         | 13.47                  | 0.0000                       |
| 8   | 0.0700                         | 68.200       | 68.2         | 2.8         | 13.89                  | 0.0010                       |
| 9   | 0.0800                         | 69.800       | 69.8         | 3.2         | 14.22                  | 0.0020                       |
| 10  | 0.0950                         | 71.300       | 71.3         | 3.8         | 14.53                  | 0.0030                       |
| 11  | 0.1000                         | 71.700       | 71.7         | 4.0         | 14.61                  | 0.0040                       |
| 12  | 0.1100                         | 72.600       | 72.6         | 4.4         | 14.79                  | 0.0040                       |
| 13  | 0.1200                         | 75.700       | 75.7         | 4.8         | 15.42                  | 0.0050                       |
| 14  | 0.1300                         | 78.700       | 78.7         | 5.2         | 16.03                  | 0.0050                       |
| 15  | 0.1400                         | 77.200       | 77.2         | 5.6         | 15.73                  | 0.0050                       |
| 16  | 0.1500                         | 75.300       | 75.3         | 6.0         | 15.34                  | 0.0050                       |
| 17  | 0.1600                         | 74.100       | 74.1         | 6.4         | 15.10                  | 0.0050                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3470.800 |              | 3474.850 |
| Moisture content: Dry soil+tare, gms.   | 3446.400 |              | 3446.400 |
| Moisture content: Tare, gms.            | 3295.400 |              | 3295.400 |
| Moisture, %                             | 16.2     | 18.8         | 18.8     |
| Moist specimen weight, gms.             | 175.4    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 1.05         |          |
| Net decrease in height, in.             |          | -0.05        |          |
| Wet density, pcf                        | 136.1    | 132.8        |          |
| Dry density, pcf                        | 117.2    | 111.7        |          |
| Void ratio                              | 0.4383   | 0.5088       |          |
| Saturation, %                           | 99.5     | 100.0        |          |

**Load ring constant =** .8053 lbs. per input unit

Normal stress = 27.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 27.74 psi at reading no. 13

|     | Horizontal |         |       |        | Shear  | Vertical  |
|-----|------------|---------|-------|--------|--------|-----------|
|     | Def. Dial  | Load    | Load  | Strain | Stress | Def. Dial |
| No. | in.        | Dial    | lbs.  | %      | psi    | in.       |
| 0   | 0.0000     | 0.000   | 0.0   | 0.0    | 0.00   | 0.0000    |
| 1   | 0.0050     | 28.800  | 23.2  | 0.2    | 4.72   | -0.0100   |
| 2   | 0.0100     | 69.000  | 55.6  | 0.4    | 11.32  | -0.0100   |
| 3   | 0.0200     | 98.900  | 79.6  | 0.8    | 16.22  | -0.0200   |
| 4   | 0.0300     | 115.000 | 92.6  | 1.2    | 18.87  | -0.0300   |
| 5   | 0.0400     | 126.500 | 101.9 | 1.6    | 20.75  | -0.0300   |
| 6   | 0.0500     | 135.000 | 108.7 | 2.0    | 22.15  | -0.0200   |
| 7   | 0.0600     | 142.600 | 114.8 | 2.4    | 23.39  | -0.0200   |
| 8   | 0.0700     | 147.500 | 118.8 | 2.8    | 24.20  | -0.0100   |
| 9   | 0.0800     | 154.200 | 124.2 | 3.2    | 25.30  | -0.0100   |
| 10  | 0.0900     | 158.000 | 127.2 | 3.6    | 25.92  | 0.0000    |
| 11  | 0.1000     | 161.900 | 130.4 | 4.0    | 26.56  | 0.0000    |
| 12  | 0.1100     | 168.100 | 135.4 | 4.4    | 27.58  | 0.0100    |
| 13  | 0.1200     | 169.100 | 136.2 | 4.8    | 27.74  | 0.0200    |
| 14  | 0.1300     | 166.700 | 134.2 | 5.2    | 27.35  | 0.0300    |
| 15  | 0.1400     | 167.100 | 134.6 | 5.6    | 27.41  | 0.0300    |
| 16  | 0.1500     | 164.500 | 132.5 | 6.0    | 26.99  | 0.0400    |



Tested By: is Checked By: MPW

#### **DIRECT SHEAR TEST**

12/20/2011

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0004R, S13

Depth:

40-41.0

Sample Number:

S36244

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                     | Initial  | Consolidated | Final    |
|----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms | 2378.900 |              | 2378.050 |
| Moisture content: Dry soil+tare, gms.  | 2357.300 |              | 2357.300 |
| Moisture content: Tare, gms.           | 2212.200 |              | 2212.200 |
| Moisture, %                            | 14.9     | 14.3         | 14.3     |
| Moist specimen weight, gms.            | 166.7    |              |          |
| Diameter, in.                          | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64     | 4.64         |          |
| Height, in.                            | 1.00     | 0.98         |          |
| Net decrease in height, in.            |          | 0.02         |          |
| Wet density, pcf                       | 136.9    | 139.0        |          |
| Dry density, pcf                       | 119.2    | 121.6        |          |
| Void ratio                             | 0.4142   | 0.3862       |          |
| Saturation, %                          | 97.0     | 100.0        |          |

Load ring constant = 1.2822 lbs. per input unit

Normal stress = 9.3 psiStrain rate, in./min. = 0.03

Fail. Stress = 14.68 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.500        | 5.8          | 0.2         | 1.24                   | 0.2999                       |
| 2   | 0.0100                         | 22.000       | 28.2         | 0.4         | 6.08                   | 0.2998                       |
| 3   | 0.0200                         | 31.800       | 40.8         | 0.8         | 8.79                   | 0.3003                       |
| 4   | 0.0320                         | 41.100       | 52.7         | 1.3         | 11.36                  | 0.3024                       |
| 5   | 0.0400                         | 44.800       | 57.4         | 1.6         | 12.39                  | 0.3042                       |
| 6   | 0.0500                         | 48.500       | 62.2         | 2.1         | 13.41                  | 0.3055                       |
| 7   | 0.0600                         | 51.800       | 66.4         | 2.5         | 14.32                  | 0.3076                       |
| 8   | 0.0700                         | 53.000       | 68.0         | 2.9         | 14.65                  | 0.3095                       |
| 9   | 0.0800                         | 53.100       | 68.1         | 3.3         | 14.68                  | 0.3110                       |
| 10  | 0.0900                         | 50.200       | 64.4         | 3.7         | 13.88                  | 0.3117                       |
| 11  | 0.1000                         | 48.900       | 62.7         | 4.1         | 13.52                  | 0.3128                       |
|     |                                |              |              |             | 22.00                  | 9000                         |

|     | Horizontal       |              |              |             | Shear         | Vertical         |
|-----|------------------|--------------|--------------|-------------|---------------|------------------|
| No. | Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Stress<br>psi | Def. Dial<br>in. |
| 12  | 0.1100           | 46.800       | 60.0         | 4.5         | 12.94         | 0.3132           |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.100 |              | 2362.150 |
| Moisture content: Dry soil+tare, gms.   | 2341.500 |              | 2341.500 |
| Moisture content: Tare, gms.            | 2196.400 |              | 2196.400 |
| Moisture, %                             | 14.9     | 14.2         | 14.2     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 136.9    | 139.1        |          |
| Dry density, pcf                        | 119.2    | 121.7        |          |
| /oid ratio                              | 0.4142   | 0.3845       |          |
| Saturation, %                           | 97.0     | 99.9         |          |

Normal stress = 18.6 psi Strain rate, in./min. = 0.03

Fail. Stress = 24.58 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 18.100       | 18.1         | 0.2         | 3.90                   | 0.2992                       |
| 2   | 0.0100                         | 29.800       | 29.8         | 0.4         | 6.43                   | 0.2989                       |
| 3   | 0.0200                         | 50.300       | 50.3         | 0.8         | 10.85                  | 0.2983                       |
| 4   | 0.0300                         | 68.200       | 68.2         | 1.2         | 14.71                  | 0.2990                       |
| 5   | 0.0400                         | 83.800       | 83.8         | 1.6         | 18.07                  | 0.3001                       |
| 6   | 0.0500                         | 94.400       | 94.4         | 2.1         | 20.35                  | 0.3019                       |
| 7   | 0.0610                         | 104.000      | 104.0        | 2.5         | 22.42                  | 0.3040                       |
| 8   | 0.0700                         | 108.100      | 108.1        | 2.9         | 23.31                  | 0.3057                       |
| 9   | 0.0800                         | 112.200      | 112.2        | 3.3         | 24.19                  | 0.3078                       |
| 10  | 0.0900                         | 114.000      | 114.0        | 3.7         | 24.58                  | 0.3099                       |
| 11  | 0.1000                         | 109.400      | 109.4        | 4.1         | 23.59                  | 0.3119                       |
| 12  | 0.1100                         | 106.400      | 106.4        | 4.5         | 22.94                  | 0.3136                       |
| 13  | 0.1200                         | 100.000      | 100.0        | 4.9         | 21.56                  | 0.3150                       |
| 13  | 0.1200                         | 100.000      | 100.0        | 4.9         | 21.56                  | 0.3150                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2378.900 |              | 2376.750 |
| Moisture content: Dry soil+tare, gms.   | 2357.100 |              | 2357.100 |
| Moisture content: Tare, gms.            | 2212.200 |              | 2212.200 |
| Moisture, %                             | 15.0     | 13.6         | 13.6     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 136.9    | 140.1        |          |
| Dry density, pcf                        | 119.0    | 123.4        |          |
| Void ratio                              | 0.4161   | 0.3663       |          |
| Saturation, %                           | 97.6     | 100.0        |          |

Strain rate, in./min. = 0.03

Fail. Stress = 39.46 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 20.500       | 20.5         | 0.2         | 4.42                   | 0.2996                       |
| 2   | 0.0100                         | 46.000       | 46.0         | 0.4         | 9.92                   | 0.2991                       |
| 3   | 0.0200                         | 79.600       | 79.6         | 0.8         | 17.16                  | 0.2989                       |
| 4   | 0.0300                         | 100.000      | 100.0        | 1.2         | 21.56                  | 0.2989                       |
| 5   | 0.0400                         | 117.000      | 117.0        | 1.6         | 25.23                  | 0.2991                       |
| 6   | 0.0500                         | 128.700      | 128.7        | 2.1         | 27.75                  | 0.3000                       |
| 7   | 0.0600                         | 142.300      | 142.3        | 2.5         | 30.68                  | 0.3013                       |
| 8   | 0.0700                         | 153.000      | 153.0        | 2.9         | 32.99                  | 0.3027                       |
| 9   | 0.0800                         | 164.000      | 164.0        | 3.3         | 35.36                  | 0.3040                       |
| 10  | 0.0900                         | 173.500      | 173.5        | 3.7         | 37.41                  | 0.3055                       |
| 11  | 0.1000                         | 179.500      | 179.5        | 4.1         | 38.70                  | 0.3070                       |
| 12  | 0.1100                         | 183.000      | 183.0        | 4.5         | 39.46                  | 0.3087                       |
| 13  | 0.1200                         | 182.400      | 182.4        | 4.9         | 39.33                  | 0.3099                       |
| 14  | 0.1300                         | 176.800      | 176.8        | 5.3         | 38.12                  | 0.3110                       |
| 15  | 0.1400                         | 171.100      | 171.1        | 5.8         | 36.89                  | 0.3115                       |



Tested By: mw Checked By: MPW

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0005R, S02

Depth:

5-6.5

Sample Number:

S36246

Description: Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

|                                         |          | for Specimen Tool |          |
|-----------------------------------------|----------|-------------------|----------|
| Specimen Parameter                      | Initial  | Consolidated      | Final    |
| Moisture content: Moist soil+tare, gms. | 2349.200 |                   | 2370.200 |
| Moisture content: Dry soil+tare, gms.   | 2342.300 |                   | 2342.300 |
| Moisture content: Tare, gms.            | 2212.900 |                   | 2212.900 |
| Moisture, %                             | 5.3      | 21.6              | 21.6     |
| Moist specimen weight, gms.             | 136.3    |                   |          |
| Diameter, in.                           | 2.43     | 2.43              |          |
| Area, in.²                              | 4.64     | 4.64              |          |
| Height, in.                             | 1.00     | 1.00              |          |
| Net decrease in height, in.             |          | 0.00              |          |
| Wet density, pcf                        | 112.0    | 129.4             |          |
| Dry density, pcf                        | 106.3    | 106.5             |          |
| Void ratio                              | 0.5857   | 0.5829            |          |
| Saturation, %                           | 24.6     | 99.9              |          |

**Load ring constant =** 2.1462 lbs. per input unit

Normal stress = 1.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 1.43 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 2.200        | 4.7          | 0.2         | 1.02                   | 0.2997                       |
| 2   | 0.0100                         | 2.600        | 5.6          | 0.4         | 1.20                   | 0.2995                       |
| 3   | 0.0200                         | 2.500        | 5.4          | 0.8         | 1.16                   | 0.2995                       |
| 4   | 0.0300                         | 2.700        | 5.8          | 1.2         | 1.25                   | 0.2996                       |
| 5   | 0.0400                         | 2.900        | 6.2          | 1.6         | 1.34                   | 0.2998                       |
| 6   | 0.0500                         | 2.500        | 5.4          | 2.1         | 1.16                   | 0.2999                       |
| 7   | 0.0600                         | 2.600        | 5.6          | 2.5         | 1.20                   | 0.3000                       |
| 8   | 0.0700                         | 2.500        | 5.4          | 2.9         | 1.16                   | 0.3000                       |
| 9   | 0.0800                         | 2.800        | 6.0          | 3.3         | 1.30                   | 0.3001                       |
| 10  | 0.0900                         | 3.000        | 6.4          | 3.7         | 1.39                   | 0.3001                       |
| 11  | 0.1000                         | 3.000        | 6.4          | 4.1         | 1.39                   | 0.3000                       |
|     |                                |              |              |             | 0.0                    | 100                          |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 12  | 0.1100                         | 3.100        | 6.7          | 4.5         | 1.43                   | 0.3001                       |  |
| 13  | 0.1200                         | 3.000        | 6.4          | 4.9         | 1.39                   | 0.3001                       |  |
| 14  | 0.1300                         | 3.100        | 6.7          | 5.3         | 1.43                   | 0.3001                       |  |
| 15  | 0.1400                         | 3.000        | 6.4          | 5.8         | 1.39                   | 0.3001                       |  |
| 16  | 0.1500                         | 3.000        | 6.4          | 6.2         | 1.39                   | 0.3001                       |  |
| 17  | 0.1600                         | 3.000        | 6.4          | 6.6         | 1.39                   | 0.3001                       |  |
| 18  | 0.1700                         | 3.100        | 6.7          | 7.0         | 1.43                   | 0.3001                       |  |
| 19  | 0.1800                         | 3.000        | 6.4          | 7.4         | 1.39                   | 0.3001                       |  |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2332.700 |              | 2353.750 |
| Moisture content: Dry soil+tare, gms.  | 2326.200   |              | 2326.200 |
| Moisture content: Tare, gms.           | 2196.400   |              | 2196.400 |
| Moisture, %                            | 5.0        | 21.2         | 21.2     |
| Moist specimen weight, gms.            | 136.3      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.99         |          |
| Net decrease in height, in.            |            | 0.01         |          |
| Wet density, pcf                       | 112.0      | 129.9        |          |
| Dry density, pcf                       | 106.6      | 107.2        |          |
| Void ratio                             | 0.5809     | 0.5730       |          |
| Saturation, %                          | 23.3       | 100.0        |          |

Sierra Testing Labs, Inc.

**Load ring constant =** 1.3644 lbs. per input unit

Normal stress = 2.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 2.06 psi at reading no. 32

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 3.300        | 4.5          | 0.2         | 0.97                   | 0.2997                       |
| 2   | 0.0100                         | 3.600        | 4.9          | 0.4         | 1.06                   | 0.2993                       |
| 3   | 0.0200                         | 3.900        | 5.3          | 0.8         | 1.15                   | 0.2990                       |
| 4   | 0.0350                         | 4.600        | 6.3          | 1.4         | 1.35                   | 0.2988                       |
| 5   | 0.0420                         | 5.000        | 6.8          | 1.7         | 1.47                   | 0.2987                       |
| 6   | 0.0550                         | 5.100        | 7.0          | 2.3         | 1.50                   | 0.2982                       |
| 7   | 0.0600                         | 5.000        | 6.8          | 2.5         | 1.47                   | 0.2981                       |
| 8   | 0.0700                         | 5.300        | 7.2          | 2.9         | 1.56                   | 0.2981                       |
| 9   | 0.0850                         | 5.000        | 6.8          | 3.5         | 1.47                   | 0.2980                       |
| 10  | 0.0920                         | 5.700        | 7.8          | 3.8         | 1.68                   | 0.2980                       |
| 11  | 0.1000                         | 5.900        | 8.0          | 4.1         | 1.74                   | 0.2980                       |
| 12  | 0.1100                         | 6.000        | 8.2          | 4.5         | 1.77                   | 0.2980                       |
| 13  | 0.1200                         | 5.900        | 8.0          | 4.9         | 1.74                   | 0.2980                       |
| 14  | 0.1300                         | 6.000        | 8.2          | 5.3         | 1.77                   | 0.2980                       |
| 15  | 0.1400                         | 6.000        | 8.2          | 5.8         | 1.77                   | 0.2980                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 16  | 0.1500                         | 6.100        | 8.3          | 6.2         | 1.79                   | 0.2980                       |
| 17  | 0.1600                         | 6.000        | 8.2          | 6.6         | 1.77                   | 0.2979                       |
| 18  | 0.1700                         | 6.100        | 8.3          | 7.0         | 1.79                   | 0.2979                       |
| 19  | 0.1800                         | 6.000        | 8.2          | 7.4         | 1.77                   | 0.2979                       |
| 20  | 0.1900                         | 6.100        | 8.3          | 7.8         | 1.79                   | 0.2979                       |
| 21  | 0.2000                         | 6.200        | 8.5          | 8.2         | 1.82                   | 0.2978                       |
| 22  | 0.2100                         | 6.100        | 8.3          | 8.6         | 1.79                   | 0.2977                       |
| 23  | 0.2200                         | 6.200        | 8.5          | 9.1         | 1.82                   | 0.2977                       |
| 24  | 0.2300                         | 6.100        | 8.3          | 9.5         | 1.79                   | 0.2976                       |
| 25  | 0.2400                         | 6.000        | 8.2          | 9.9         | 1.77                   | 0.2975                       |
| 26  | 0.2500                         | 6.300        | 8.6          | 10.3        | 1.85                   | 0.2972                       |
| 27  | 0.2600                         | 6.200        | 8.5          | 10.7        | 1.82                   | 0.2971                       |
| 28  | 0.2700                         | 6.500        | 8.9          | 11.1        | 1.91                   | 0.2970                       |
| 29  | 0.2800                         | 6.800        | 9.3          | 11.5        | 2.00                   | 0.2970                       |
| 30  | 0.2900                         | 6.700        | 9.1          | 11.9        | 1.97                   | 0.2970                       |
| 31  | 0.3000                         | 6.800        | 9.3          | 12.3        | 2.00                   | 0.2970                       |
| 32  | 0.3100                         | 7.000        | 9.6          | 12.8        | 2.06                   | 0.2970                       |
| 33  | 0.3200                         | 6.500        | 8.9          | 13.2        | 1.91                   | 0.2970                       |
| 34  | 0.3300                         | 6.300        | 8.6          | 13.6        | 1.85                   | 0.2969                       |
| 35  | 0.3400                         | 6.200        | 8.5          | 14.0        | 1.82                   | 0.2969                       |
|     |                                |              |              |             |                        |                              |

|                                         |          | no captaninan nasa |          |
|-----------------------------------------|----------|--------------------|----------|
| Specimen Parameter                      | Initial  | Consolidated       | Final    |
| Moisture content: Moist soil+tare, gms. | 2332.700 |                    | 2353.350 |
| Moisture content: Dry soil+tare, gms.   | 2326.200 |                    | 2326.200 |
| Moisture content: Tare, gms.            | 2196.400 |                    | 2196.400 |
| Moisture, %                             | 5.0      | 20.9               | 20.9     |
| Moist specimen weight, gms.             | 136.3    |                    |          |
| Diameter, in.                           | 2.43     | 2.43               |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64               |          |
| Height, in.                             | 1.00     | 0.99               |          |
| Net decrease in height, in.             |          | 0.01               |          |
| Wet density, pcf                        | 112.0    | 130.3              |          |
| Dry density, pcf                        | 106.6    | 107.7              |          |
| Void ratio                              | 0.5809   | 0.5647             |          |
| Saturation, %                           | 23.3     | 100.0              |          |

**Load ring constant =** 1.00 lbs. per input unit

Normal stress = 4.4 psi

Strain rate, in./min. = 0.03

Fail. Stress = 3.84 psi at reading no. 40

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.300        | 4.3          | 0.2         | 0.93                   | 0.3000                       |
| 2   | 0.0100                         | 7.600        | 7.6          | 0.4         | 1.64                   | 0.2997                       |
| 3   | 0.0200                         | 10.100       | 10.1         | 0.8         | 2.18                   | 0.2992                       |
| 4   | 0.0350                         | 11.100       | 11.1         | 1.4         | 2.39                   | 0.2991                       |
| 5   | 0.0440                         | 11.400       | 11.4         | 1.8         | 2.46                   | 0.2990                       |
| 6   | 0.0500                         | 12.200       | 12.2         | 2.1         | 2.63                   | 0.2983                       |
| 7   | 0.0600                         | 12.600       | 12.6         | 2.5         | 2.72                   | 0.2982                       |
| 8   | 0.0700                         | 12.800       | 12.8         | 2.9         | 2.76                   | 0.2981                       |
| 9   | 0.0830                         | 13.000       | 13.0         | 3.4         | 2.80                   | 0.2980                       |
| 10  | 0.0930                         | 13.800       | 13.8         | 3.8         | 2.98                   | 0.2979                       |
| 11  | 0.1000                         | 14.000       | 14.0         | 4.1         | 3.02                   | 0.2976                       |
| 12  | 0.1100                         | 14.100       | 14.1         | 4.5         | 3.04                   | 0.2975                       |
| 13  | 0.1200                         | 14.000       | 14.0         | 4.9         | 3.02                   | 0.2973                       |
| 14  | 0.1300                         | 13.900       | 13.9         | 5.3         | 3.00                   | 0.2971                       |
| 15  | 0.1430                         | 14.300       | 14.3         | 5.9         | 3.08                   | 0.2972                       |
| 16  | 0.1500                         | 14.500       | 14.5         | 6.2         | 3.13                   | 0.2972                       |
| 17  | 0.1600                         | 14.600       | 14.6         | 6.6         | 3.15                   | 0.2973                       |
| 18  | 0.1700                         | 14.900       | 14.9         | 7.0         | 3.21                   | 0.2975                       |
| 19  | 0.1800                         | 15.100       | 15.1         | 7.4         | 3.26                   | 0.2975                       |
| 20  | 0.1900                         | 15.300       | 15.3         | 7.8         | 3.30                   | 0.2976                       |
| 21  | 0.2000                         | 15.500       | 15.5         | 8.2         | 3.34                   | 0.2978                       |
| 22  | 0.2100                         | 15.400       | 15.4         | 8.6         | 3.32                   | 0.2978                       |
| 23  | 0.2200                         | 15.700       | 15.7         | 9.1         | 3.39                   | 0.2979                       |
| 24  | 0.2330                         | 15.900       | 15.9         | 9.6         | 3.43                   | 0.2980                       |
| 25  | 0.2400                         | 16.000       | 16.0         | 9.9         | 3.45                   | 0.2980                       |
| 26  | 0.2500                         | 16.100       | 16.1         | 10.3        | 3.47                   | 0.2980                       |
| 27  | 0.2600                         | 16.000       | 16.0         | 10.7        | 3.45                   | 0.2980                       |
|     |                                |              |              |             | 0:                     | - T                          |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 28  | 0.2700                         | 16.100       | 16.1         | 11.1        | 3.47                   | 0.2980                       |
| 29  | 0.2800                         | 16.300       | 16.3         | 11.5        | 3.51                   | 0.2980                       |
| 30  | 0.2950                         | 16.400       | 16.4         | 12.1        | 3.54                   | 0.2980                       |
| 31  | 0.3030                         | 16.700       | 16.7         | 12.5        | 3.60                   | 0.2980                       |
| 32  | 0.3150                         | 16.800       | 16.8         | 13.0        | 3.62                   | 0.2980                       |
| 33  | 0.3250                         | 17.000       | 17.0         | 13.4        | 3.67                   | 0.2980                       |
| 34  | 0.3320                         | 17.100       | 17.1         | 13.7        | 3.69                   | 0.2980                       |
| 35  | 0.3400                         | 17.000       | 17.0         | 14.0        | 3.67                   | 0.2980                       |
| 36  | 0.3500                         | 17.200       | 17.2         | 14.4        | 3.71                   | 0.2980                       |
| 37  | 0.3600                         | 17.500       | 17.5         | 14.8        | 3.77                   | 0.2980                       |
| 38  | 0.3700                         | 17.700       | 17.7         | 15.2        | 3.82                   | 0.2980                       |
| 39  | 0.3800                         | 17.600       | 17.6         | 15.6        | 3.79                   | 0.2980                       |
| 40  | 0.3900                         | 17.800       | 17.8         | 16.0        | 3.84                   | 0.2980                       |
| 41  | 0.4000                         | 17.700       | 17.7         | 16.5        | 3.82                   | 0.2980                       |
| 42  | 0.4100                         | 17.400       | 17.4         | 16.9        | 3.75                   | 0.2980                       |
| 43  | 0.4200                         | 17.100       | 17.1         | 17.3        | 3.69                   | 0.2981                       |



Tested By: mw/js Checked By: MPW

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0005R, S08

Depth:

14-14.5

Sample Number:

S36247

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2331.700 |              | 2353.600 |
| Moisture content: Dry soil+tare, gms.   | 2317.900   |              | 2317.900 |
| Moisture content: Tare, gms.            | 2212.500   |              | 2212.500 |
| Moisture, %                             | 13.1       | 33.9         | 33.9     |
| Moist specimen weight, gms.             | 119.2      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |
| Height, in.                             | 1.00       | 0.98         |          |
| Net decrease in height, in.             |            | 0.02         |          |
| Wet density, pcf                        | 97.9       | 117.8        |          |
| Dry density, pcf                        | 86.6       | 88.0         |          |
| Void ratio                              | 0.9468     | 0.9153       |          |
| Saturation, %                           | 37.3       | 99.9         |          |

Load ring constant = .8435 lbs. per input unit

Normal stress = 2.9 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.22 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.000        | 4.2          | 0.2         | 0.91                   | 0.2990                       |
| 2   | 0.0100                         | 5.600        | 4.7          | 0.4         | 1.02                   | 0.2989                       |
| 3   | 0.0200                         | 6.900        | 5.8          | 0.8         | 1.25                   | 0.2991                       |
| 4   | 0.0300                         | 7.900        | 6.7          | 1.2         | 1.44                   | 0.2995                       |
| 5   | 0.0400                         | 8.600        | 7.3          | 1.6         | 1.56                   | 0.2998                       |
| 6   | 0.0500                         | 8.900        | 7.5          | 2.1         | 1.62                   | 0.3000                       |
| 7   | 0.0600                         | 9.400        | 7.9          | 2.5         | 1.71                   | 0.3006                       |
| 8   | 0.0700                         | 10.600       | 8.9          | 2.9         | 1.93                   | 0.3014                       |
| 9   | 0.0800                         | 11.100       | 9.4          | 3.3         | 2.02                   | 0.3018                       |
| 10  | 0.0900                         | 11.800       | 10.0         | 3.7         | 2.15                   | 0.3025                       |
| 11  | 0.1000                         | 12.000       | 10.1         | 4.1         | 2.18                   | 0.3031                       |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 12  | 0.1100                         | 12.100       | 10.2         | 4.5         | 2.20                   | 0.3034                       |  |
| 13  | 0.1200                         | 12.200       | 10.3         | 4.9         | 2.22                   | 0.3040                       |  |
| 14  | 0.1300                         | 11.800       | 10.0         | 5.3         | 2.15                   | 0.3042                       |  |
| 15  | 0.1400                         | 11.600       | 9.8          | 5.8         | 2.11                   | 0.3042                       |  |
| 16  | 0.1500                         | 11.000       | 9.3          | 6.2         | 2.00                   | 0.3043                       |  |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2315.700 |              | 2327.350 |
| Moisture content: Dry soil+tare, gms.   | 2301.500 |              | 2301.500 |
| Moisture content: Tare, gms.            | 2196.500 |              | 2196.500 |
| Moisture, %                             | 13.5     | 24.6         | 24.6     |
| Moist specimen weight, gms.             | 119.2    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.85         |          |
| Net decrease in height, in.             |          | 0.15         |          |
| Wet density, pcf                        | 97.9     | 126.2        |          |
| Dry density, pcf                        | 86.3     | 101.2        |          |
| Void ratio                              | 0.9542   | 0.6650       |          |
| Saturation, %                           | 38.3     | 100.0        |          |

**Load ring constant =** 3.232 lbs. per input unit

Normal stress = 5.8 psi

Strain rate, in./min. = 0.03

Fail. Stress = 3.48 psi at reading no. 27

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 1.700        | 5.5          | 0.2         | 1.18                   | 0.3000                       |
| 2   | 0.0100                         | 2.400        | 7.8          | 0.4         | 1.67                   | 0.3000                       |
| 3   | 0.0220                         | 2.900        | 9.4          | 0.9         | 2.02                   | 0.3000                       |
| 4   | 0.0300                         | 3.000        | 9.7          | 1.2         | 2.09                   | 0.3000                       |
| 5   | 0.0400                         | 3.600        | 11.6         | 1.6         | 2.51                   | 0.3000                       |
| 6   | 0.0500                         | 4.000        | 12.9         | 2.1         | 2.79                   | 0.3000                       |
| 7   | 0.0600                         | 4.000        | 12.9         | 2.5         | 2.79                   | 0.3000                       |
| 8   | 0.0700                         | 4.000        | 12.9         | 2.9         | 2.79                   | 0.3001                       |
| 9   | 0.0800                         | 4.000        | 12.9         | 3.3         | 2.79                   | 0.3001                       |
| 10  | 0.0960                         | 4.000        | 12.9         | 4.0         | 2.79                   | 0.3002                       |
| 11  | 0.1000                         | 4.100        | 13.3         | 4.1         | 2.86                   | 0.3001                       |
| 12  | 0.1100                         | 4.100        | 13.3         | 4.5         | 2.86                   | 0.3001                       |
| 13  | 0.1200                         | 4.200        | 13.6         | 4.9         | 2.93                   | 0.3001                       |
| 14  | 0.1300                         | 4.300        | 13.9         | 5.3         | 3.00                   | 0.3001                       |
| 15  | 0.1500                         | 4.100        | 13.3         | 6.2         | 2.86                   | 0.3002                       |
| 16  | 0.1600                         | 4.400        | 14.2         | 6.6         | 3.07                   | 0.3001                       |
| 17  | 0.1700                         | 4.300        | 13.9         | 7.0         | 3.00                   | 0.3001                       |
| 18  | 0.1800                         | 4.200        | 13.6         | 7.4         | 2.93                   | 0.3001                       |
|     |                                |              |              |             | -                      | 1000                         |

| l'est Pen | Args(ter |  |
|-----------|----------|--|
| Shear     | Vertical |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 19  | 0.1900                         | 4.300        | 13.9         | 7.8         | 3.00                   | 0.3001                       |  |
| 20  | 0.2000                         | 4.500        | 14.5         | 8.2         | 3.14                   | 0.3001                       |  |
| 21  | 0.2100                         | 4.500        | 14.5         | 8.6         | 3.14                   | 0.3002                       |  |
| 22  | 0.2200                         | 4.900        | 15.8         | 9.1         | 3.41                   | 0.3002                       |  |
| 23  | 0.2300                         | 4.800        | 15.5         | 9.5         | 3.35                   | 0.3002                       |  |
| 24  | 0.2400                         | 4.900        | 15.8         | 9.9         | 3.41                   | 0.3002                       |  |
| 25  | 0.2500                         | 4.900        | 15.8         | 10.3        | 3.41                   | 0.3002                       |  |
| 26  | 0.2600                         | 4.900        | 15.8         | 10.7        | 3.41                   | 0.3001                       |  |
| 27  | 0.2700                         | 5.000        | 16.2         | 11.1        | 3.48                   | 0.3002                       |  |
| 28  | 0.2800                         | 5.000        | 16.2         | 11.5        | 3.48                   | 0.3002                       |  |
| 29  | 0.2900                         | 5.000        | 16.2         | 11.9        | 3.48                   | 0.3002                       |  |
| 30  | 0.3000                         | 4.900        | 15.8         | 12.3        | 3.41                   | 0.3003                       |  |
| 31  | 0.3100                         | 4.900        | 15.8         | 12.8        | 3.41                   | 0.3003                       |  |
| 32  | 0.3200                         | 4.800        | 15.5         | 13.2        | 3.35                   | 0.3004                       |  |
| 33  | 0.3300                         | 4.700        | 15.2         | 13.6        | 3.28                   | 0.3005                       |  |
| 34  | 0.3400                         | 4.700        | 15.2         | 14.0        | 3.28                   | 0.3005                       |  |
| 35  | 0.3500                         | 4.700        | 15.2         | 14.4        | 3.28                   | 0.3005                       |  |
| 36  | 0.3600                         | 4.600        | 14.9         | 14.8        | 3.21                   | 0.3005                       |  |

| Specimen Parameter                     | Initial    | Consolidated | Final    |  |
|----------------------------------------|------------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms | . 2331.700 |              | 2341.300 |  |
| Moisture content: Dry soil+tare, gms.  | 2317.700   |              | 2317.700 |  |
| Moisture content: Tare, gms.           | 2212.500   |              | 2212.500 |  |
| Moisture, %                            | 13.3       | 22.4         | 22.4     |  |
| Moist specimen weight, gms.            | 119.2      |              |          |  |
| Diameter, in.                          | 2.43       | 2.43         |          |  |
| Area, in.²                             | 4.64       | 4.64         |          |  |
| Height, in.                            | 1.00       | 0.82         |          |  |
| Net decrease in height, in.            |            | 0.18         |          |  |
| Wet density, pcf                       | 97.9       | 128.5        |          |  |
| Dry density, pcf                       | 86.4       | 105.0        |          |  |
| Void ratio                             | 0.9505     | 0.6055       |          |  |
| Saturation, %                          | 37.8       | 100.0        |          |  |

Normal stress = 11.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 7.56 psi at reading no. 27

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.200        | 12.7         | 0.2         | 2.74                   | 0.2994                       |
| 2   | 0.0100                         | 6.000        | 18.1         | 0.4         | 3.91                   | 0.2989                       |
| 3   | 0.0200                         | 7.000        | 21.2         | 0.8         | 4.56                   | 0.2980                       |
| 4   | 0.0300                         | 8.000        | 24.2         | 1.2         | 5.21                   | 0.2973                       |
| 5   | 0.0400                         | 8.800        | 26.6         | 1.6         | 5.73                   | 0.2970                       |
| 6   | 0.0500                         | 9.100        | 27.5         | 2.1         | 5.93                   | 0.2968                       |
| 7   | 0.0600                         | 9.400        | 28.4         | 2.5         | 6.13                   | 0.2966                       |
| 8   | 0.0700                         | 9.700        | 29.3         | 2.9         | 6.32                   | 0.2964                       |
| 9   | 0.0820                         | 10.000       | 30.2         | 3.4         | 6.52                   | 0.2963                       |
| 10  | 0.0900                         | 10.200       | 30.8         | 3.7         | 6.65                   | 0.2962                       |
| 11  | 0.1000                         | 10.300       | 31.1         | 4.1         | 6.71                   | 0.2962                       |
| 12  | 0.1100                         | 10.500       | 31.7         | 4.5         | 6.84                   | 0.2962                       |
| 13  | 0.1200                         | 10.600       | 32.0         | 4.9         | 6.91                   | 0.2961                       |
| 14  | 0.1300                         | 10.800       | 32.6         | 5.3         | 7.04                   | 0.2961                       |
| 15  | 0.1420                         | 11.000       | 33.2         | 5.8         | 7.17                   | 0.2962                       |
| 16  | 0.1500                         | 11.000       | 33.2         | 6.2         | 7.17                   | 0.2961                       |
| 17  | 0.1610                         | 11.000       | 33.2         | 6.6         | 7.17                   | 0.2961                       |
| 18  | 0.1750                         | 11.100       | 33.5         | 7.2         | 7.23                   | 0.2962                       |
| 19  | 0.1800                         | 11.400       | 34.5         | 7.4         | 7.43                   | 0.2963                       |
| 20  | 0.1900                         | 11.400       | 34.5         | 7.8         | 7.43                   | 0.2962                       |
| 21  | 0.2000                         | 11.000       | 33.2         | 8.2         | 7.17                   | 0.2962                       |
| 22  | 0.2100                         | 11.500       | 34.8         | 8.6         | 7.49                   | 0.2961                       |
| 23  | 0.2200                         | 11.100       | 33.5         | 9.1         | 7.23                   | 0.2961                       |
| 24  | 0.2300                         | 11.000       | 33.2         | 9.5         | 7.17                   | 0.2961                       |
| 25  | 0.2400                         | 11.000       | 33.2         | 9.9         | 7.17                   | 0.2961                       |
| 26  | 0.2500                         | 11.300       | 34.1         | 10.3        | 7.36                   | 0.2961                       |
| 27  | 0.2600                         | 11.600       | 35.1         | 10.7        | 7.56                   | 0.2960                       |
|     |                                |              |              |             |                        |                              |

\_\_\_\_ Sierra Testing Labs, Inc. \_\_\_\_\_

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 28  | 0.2700                         | 11.500       | 34.8         | 11.1        | 7.49                   | 0.2960                       |
| 29  | 0.2800                         | 11.500       | 34.8         | 11.5        | 7.49                   | 0.2960                       |
| 30  | 0.2900                         | 11.300       | 34.1         | 11.9        | 7.36                   | 0.2960                       |

\_\_\_\_\_ Sierra Testing Labs, Inc. \_\_\_\_



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

12/9/2011

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0005R, S10

Depth:

25-25.8

Sample Number:

S36249

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         | Paramiaka | Mor Spaelmer Riler I |          |
|-----------------------------------------|-----------|----------------------|----------|
| Specimen Parameter                      | Initial   | Consolidated         | Final    |
| Moisture content: Moist soil+tare, gms. | 2357.200  |                      | 2363.900 |
| Moisture content: Dry soil+tare, gms.   | 2334.600  |                      | 2334.600 |
| Moisture content: Tare, gms.            | 2212.400  |                      | 2212.400 |
| Moisture, %                             | 18.5      | 24.0                 | 24.0     |
| Moist specimen weight, gms.             | 144.8     |                      |          |
| Diameter, in.                           | 2.43      | 2.43                 |          |
| Area, in. <sup>2</sup>                  | 4.64      | 4.64                 |          |
| Height, in.                             | 1.00      | 0.98                 |          |
| Net decrease in height, in.             |           | 0.02                 |          |
| Wet density, pcf                        | 118.9     | 126.9                |          |
| Dry density, pcf                        | 100.4     | 102.3                |          |
| Void ratio                              | 0.6792    | 0.6473               |          |
| Saturation, %                           | 73.5      | 100.0                |          |

Normal stress = 5.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 6.04 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |  |
| 1   | 0.0050                         | 10.300       | 10.3         | 0.2         | 2.22                   | 0.2980                       |  |
| 2   | 0.0110                         | 13.200       | 13.2         | 0.5         | 2.85                   | 0.2975                       |  |
| 3   | 0.0200                         | 15.600       | 15.6         | 0.8         | 3.36                   | 0.2970                       |  |
| 4   | 0.0320                         | 17.700       | 17.7         | 1.3         | 3.82                   | 0.2960                       |  |
| 5   | 0.0410                         | 21.700       | 21.7         | 1.7         | 4.68                   | 0.2969                       |  |
| 6   | 0.0500                         | 25.200       | 25.2         | 2.1         | 5.43                   | 0.2981                       |  |
| 7   | 0.0600                         | 26.000       | 26.0         | 2.5         | 5.61                   | 0.3000                       |  |
| 8   | 0.0770                         | 27.800       | 27.8         | 3.2         | 5.99                   | 0.3025                       |  |
| 9   | 0.0800                         | 28.000       | 28.0         | 3.3         | 6.04                   | 0.3031                       |  |
| 10  | 0.0920                         | 28.000       | 28.0         | 3.8         | 6.04                   | 0.3050                       |  |
| 11  | 0.1000                         | 27.100       | 27.1         | 4.1         | 5.84                   | 0.3069                       |  |
| 12  | 0.1100                         | 26.000       | 26.0         | 4.5         | 5.61                   | 0.3081                       |  |
|     |                                |              |              |             |                        |                              |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 24.900       | 24.9         | 4.9         | 5.37                   | 0.3090                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2341.500 |              | 2348.150 |
| Moisture content: Dry soil+tare, gms.   | 2318.600 |              | 2318.600 |
| Moisture content: Tare, gms.            | 2196.700 |              | 2196.700 |
| Moisture, %                             | 18.8     | 24.2         | 24.2     |
| Moist specimen weight, gms.             | 144.8    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 118.9    | 126.5        |          |
| Dry density, pcf                        | 100.1    | 101.9        |          |
| /oid ratio                              | 0.6833   | 0.6549       |          |
| Saturation, %                           | 74.2     | 99.9         |          |

Normal stress = 10.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 10.78 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 10.000       | 10.0         | 0.2         | 2.16                   | 0.3000                       |
| 2   | 0.0100                         | 16.200       | 16.2         | 0.4         | 3.49                   | 0.2998                       |
| 3   | 0.0200                         | 22.100       | 22.1         | 0.8         | 4.77                   | 0.2994                       |
| 4   | 0.0300                         | 30.000       | 30.0         | 1.2         | 6.47                   | 0.2992                       |
| 5   | 0.0400                         | 35.900       | 35.9         | 1.6         | 7.74                   | 0.2998                       |
| 6   | 0.0500                         | 39.200       | 39.2         | 2.1         | 8.45                   | 0.3001                       |
| 7   | 0.0600                         | 42.100       | 42.1         | 2.5         | 9.08                   | 0.3008                       |
| 8   | 0.0720                         | 45.100       | 45.1         | 3.0         | 9.72                   | 0.3020                       |
| 9   | 0.0830                         | 47.000       | 47.0         | 3.4         | 10.13                  | 0.3030                       |
| 10  | 0.0900                         | 47.800       | 47.8         | 3.7         | 10.31                  | 0.3037                       |
| 11  | 0.1000                         | 48.000       | 48.0         | 4.1         | 10.35                  | 0.3042                       |
| 12  | 0.1100                         | 49.900       | 49.9         | 4.5         | 10.76                  | 0.3051                       |
| 13  | 0.1200                         | 50.000       | 50.0         | 4.9         | 10.78                  | 0.3060                       |
| 14  | 0.1320                         | 49.000       | 49.0         | 5.4         | 10.57                  | 0.3070                       |
| 15  | 0.1400                         | 46.200       | 46.2         | 5.8         | 9.96                   | 0.3078                       |
| 16  | 0.1500                         | 46.000       | 46.0         | 6.2         | 9.92                   | 0.3080                       |
| 17  | 0.1600                         | 46.000       | 46.0         | 6.6         | 9.92                   | 0.3084                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2357.200 |              | 2362.900 |
| Moisture content: Dry soil+tare, gms.   | 2334.600 |              | 2334.600 |
| Moisture content: Tare, gms.            | 2212.400 |              | 2212.400 |
| Moisture, %                             | 18.5     | 23.2         | 23.2     |
| Moist specimen weight, gms.             | 144.8    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 118.9    | 127.7        |          |
| Dry density, pcf                        | 100.4    | 103.7        |          |
| Void ratio                              | 0.6792   | 0.6261       |          |
| Saturation, %                           | 73.5     | 99.9         |          |

Normal stress = 20.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 19.75 psi at reading no. 18

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.800        | 7.8          | 0.2         | 1.68                   | 0.2991                       |
| 2   | 0.0100                         | 16.900       | 16.9         | 0.4         | 3.64                   | 0.2986                       |
| 3   | 0.0200                         | 22.800       | 22.8         | 0.8         | 4.92                   | 0.2979                       |
| 4   | 0.0300                         | 29.000       | 29.0         | 1.2         | 6.25                   | 0.2970                       |
| 5   | 0.0400                         | 33.100       | 33.1         | 1.6         | 7.14                   | 0.2969                       |
| 6   | 0.0500                         | 49.000       | 49.0         | 2.1         | 10.57                  | 0.2968                       |
| 7   | 0.0600                         | 55.900       | 55.9         | 2.5         | 12.05                  | 0.2969                       |
| 8   | 0.0700                         | 64.800       | 64.8         | 2.9         | 13.97                  | 0.2971                       |
| 9   | 0.0800                         | 70.700       | 70.7         | 3.3         | 15.24                  | 0.2975                       |
| 10  | 0.0920                         | 76.100       | 76.1         | 3.8         | 16.41                  | 0.2979                       |
| 11  | 0.1000                         | 79.800       | 79.8         | 4.1         | 17.21                  | 0.2982                       |
| 12  | 0.1110                         | 84.800       | 84.8         | 4.6         | 18.28                  | 0.2991                       |
| 13  | 0.1230                         | 88.000       | 88.0         | 5.1         | 18.97                  | 0.3001                       |
| 14  | 0.1300                         | 88.400       | 88.4         | 5.3         | 19.06                  | 0.3008                       |
| 15  | 0.1400                         | 90.400       | 90.4         | 5.8         | 19.49                  | 0.3014                       |
| 16  | 0.1500                         | 90.900       | 90.9         | 6.2         | 19.60                  | 0.3019                       |
| 17  | 0.1620                         | 90.800       | 90.8         | 6.7         | 19.58                  | 0.3026                       |
| 18  | 0.1730                         | 91.600       | 91.6         | 7.1         | 19.75                  | 0.3033                       |
| 19  | 0.1800                         | 90.000       | 90.0         | 7.4         | 19.41                  | 0.3038                       |
| 20  | 0.1900                         | 87.200       | 87.2         | 7.8         | 18.80                  | 0.3040                       |
| 21  | 0.2000                         | 86.100       | 86.1         | 8.2         | 18.57                  | 0.3043                       |



Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0005R, S15

Depth:

46.5-47.5

Sample Number:

S36251

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

|                                         | Portification | roversalment/net. |          |
|-----------------------------------------|---------------|-------------------|----------|
| Specimen Parameter                      | Initial       | Consolidated      | Final    |
| Moisture content: Moist soil+tare, gms. | 2354.600      |                   | 2352.800 |
| Moisture content: Dry soil+tare, gms.   | 2329.000      |                   | 2329.000 |
| Moisture content: Tare, gms.            | 2196.400      |                   | 2196.400 |
| Moisture, %                             | 19.3          | 17.9              | 17.9     |
| Moist specimen weight, gms.             | 158.2         |                   |          |
| Diameter, in.                           | 2.43          | 2.43              |          |
| Area, in.²                              | 4.64          | 4.64              |          |
| Height, in.                             | 1.00          | 0.96              |          |
| Net decrease in height, in.             |               | 0.04              |          |
| Wet density, pcf                        | 130.0         | 133.9             |          |
| Dry density, pcf                        | 108.9         | 113.5             |          |
| Void ratio                              | 0.5475        | 0.4853            |          |
| Saturation, %                           | 95.2          | 99.9              |          |

Sierra Testing Labs, Inc. \_

Normal stress = 10.6 psi Strain rate, in./min. = 0.03

Fail. Stress = 11.32 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.000        | 7.0          | 0.2         | 1.51                   | 0.2998                       |
| 2   | 0.0100                         | 8.900        | 8.9          | 0.4         | 1.92                   | 0.2996                       |
| 3   | 0.0200                         | 19.900       | 19.9         | 0.8         | 4.29                   | 0.2990                       |
| 4   | 0.0300                         | 29.300       | 29.3         | 1.2         | 6.32                   | 0.2990                       |
| 5   | 0.0400                         | 37.000       | 37.0         | 1.6         | 7.98                   | 0.2998                       |
| 6   | 0.0500                         | 43.500       | 43.5         | 2.1         | 9.38                   | 0.3008                       |
| 7   | 0.0600                         | 46.600       | 46.6         | 2.5         | 10.05                  | 0.3020                       |
| 8   | 0.0750                         | 51.080       | 51.1         | 3.1         | 11.01                  | 0.3045                       |
| 9   | 0.0800                         | 52.500       | 52.5         | 3.3         | 11.32                  | 0.3052                       |
| 10  | 0.0900                         | 52.000       | 52.0         | 3.7         | 11.21                  | 0.3070                       |
| 11  | 0.1000                         | 51.100       | 51.1         | 4.1         | 11.02                  | 0.3081                       |
| 12  | 0.1100                         | 51.000       | 51.0         | 4.5         | 11.00                  | 0.3098                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2371.100 |              | 2368.800 |  |
| Moisture content: Dry soil+tare, gms.   | 2345.300 |              | 2345.300 |  |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |  |
| Moisture, %                             | 19.5     | 17.7         | 17.7     |  |
| Moist specimen weight, gms.             | 158.2    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.95         |          |  |
| Net decrease in height, in.             |          | 0.05         |          |  |
| Wet density, pcf                        | 130.0    | 134.1        |          |  |
| Dry density, pcf                        | 108.8    | 113.9        |          |  |
| Void ratio                              | 0.5498   | 0.4799       |          |  |
| Saturation, %                           | 95.7     | 99.9         |          |  |
|                                         |          |              |          |  |
| Normal stress = 21.1 psi                |          |              |          |  |
| Strain rate in Imin - 0.03              |          |              |          |  |

Strain rate, in./min. = 0.03

Fail. Stress = 18.72 psi at reading no. 15

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 9.800        | 9.8          | 0.2         | 2.11                   | 0.2999                       |
| 2   | 0.0100                         | 21.500       | 21.5         | 0.4         | 4.64                   | 0.2992                       |
| 3   | 0.0200                         | 40.100       | 40.1         | 0.8         | 8.65                   | 0.2980                       |
| 4   | 0.0320                         | 54.200       | 54.2         | 1.3         | 11.69                  | 0.2974                       |
| 5   | 0.0400                         | 62.900       | 62.9         | 1.6         | 13.56                  | 0.2971                       |
| 6   | 0.0500                         | 67.900       | 67.9         | 2.1         | 14.64                  | 0.2973                       |
| 7   | 0.0600                         | 72.140       | 72.1         | 2.5         | 15.56                  | 0.2977                       |
| 8   | 0.0700                         | 76.600       | 76.6         | 2.9         | 16.52                  | 0.2980                       |
| 9   | 0.0800                         | 77.900       | 77.9         | 3.3         | 16.80                  | 0.2981                       |
| 10  | 0.0900                         | 81.500       | 81.5         | 3.7         | 17.57                  | 0.2983                       |
| 11  | 0.1000                         | 82.100       | 82.1         | 4.1         | 17.70                  | 0.2987                       |
| 12  | 0.1130                         | 84.000       | 84.0         | 4.7         | 18.11                  | 0.2990                       |
| 13  | 0.1200                         | 84.800       | 84.8         | 4.9         | 18.28                  | 0.2991                       |
| 14  | 0.1300                         | 86.100       | 86.1         | 5.3         | 18.57                  | 0.2991                       |
| 15  | 0.1400                         | 86.800       | 86.8         | 5.8         | 18.72                  | 0.2992                       |
| 16  | 0.1500                         | 86.200       | 86.2         | 6.2         | 18.59                  | 0.2994                       |
| 17  | 0.1600                         | 84.900       | 84.9         | 6.6         | 18.31                  | 0.2996                       |
| 18  | 0.1700                         | 84.100       | 84.1         | 7.0         | 18.13                  | 0.2997                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2354.600 |              | 2352.800 |  |
| Moisture content: Dry soil+tare, gms.   | 2329.000 |              | 2329.000 |  |
| Moisture content: Tare, gms.            | 2196.400 |              | 2196.400 |  |
| Moisture, %                             | 19.3     | 17.9         | 17.9     |  |
| Moist specimen weight, gms.             | 158.2    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in.²                              | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.96         |          |  |
| Net decrease in height, in.             |          | 0.04         |          |  |
| Wet density, pcf                        | 130.0    | 133.9        |          |  |
| Dry density, pcf                        | 108.9    | 113.5        |          |  |
| Void ratio                              | 0.5475   | 0.4853       |          |  |
| Saturation, %                           | 95.2     | 99.9         |          |  |

Normal stress = 42.2 psi Strain rate, in./min. = 5.00

Fail. Stress = 36.76 psi at reading no. 19

| No. | Horizontal<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dia<br>in. |
|-----|--------------------------------|-------------------|--------------|-------------|------------------------|-----------------------------|
| 0   | 0.0000                         | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                      |
| 1   | 0.0050                         | 15.000            | 15.0         | 0.2         | 3.23                   | 0.2993                      |
| 2   | 0.0140                         | 33.000            | 33.0         | 0.6         | 7.12                   | 0.2985                      |
| 3   | 0.0200                         | 52.500            | 52.5         | 0.8         | 11.32                  | 0.2978                      |
| 4   | 0.0300                         | 77.600            | 77.6         | 1.2         | 16.73                  | 0.2962                      |
| 5   | 0.0400                         | 101.700           | 101.7        | 1.6         | 21.93                  | 0.2959                      |
| 6   | 0.0500                         | 121.800           | 121.8        | 2.1         | 26.26                  | 0.2957                      |
| 7   | 0.0600                         | 131.700           | 131.7        | 2.5         | 28.40                  | 0.2955                      |
| 8   | 0.0750                         | 139.100           | 139.1        | 3.1         | 29.99                  | 0.2953                      |
| 9   | 0.0800                         | 143.100           | 143.1        | 3.3         | 30.86                  | 0.2956                      |
| 10  | 0.0900                         | 150.900           | 150.9        | 3.7         | 32.54                  | 0.2959                      |
| 11  | 0.1000                         | 154.400           | 154.4        | 4.1         | 33.29                  | 0.2960                      |
| 12  | 0.1120                         | 158.000           | 158.0        | 4.6         | 34.07                  | 0.2961                      |
| 13  | 0.1200                         | 161.200           | 161.2        | 4.9         | 34.76                  | 0.2963                      |
| 14  | 0.1300                         | 163.000           | 163.0        | 5.3         | 35.15                  | 0.2966                      |
| 15  | 0.1400                         | 166.400           | 166.4        | 5.8         | 35.88                  | 0.2968                      |
| 16  | 0.1500                         | 167.700           | 167.7        | 6.2         | 36.16                  | 0.2969                      |
| 17  | 0.1600                         | 168.000           | 168.0        | 6.6         | 36.22                  | 0.2969                      |
| 18  | 0.1700                         | 168.200           | 168.2        | 7.0         | 36.27                  | 0.2970                      |
| 19  | 0.1800                         | 170.500           | 170.5        | 7.4         | 36.76                  | 0.2970                      |
| 20  | 0.1900                         | 162.500           | 162.5        | 7.8         | 35.04                  | 0.2970                      |
| 21  | 0.2040                         | 161.200           | 161.2        | 8.4         | 34.76                  | 0.2970                      |
| 22  | 0.2100                         | 159.040           | 159.0        | 8.6         | 34.29                  | 0.2970                      |
|     |                                |                   |              |             |                        |                             |

| Ciarra | Testing | laha  | 1.00 |
|--------|---------|-------|------|
| Sierra | resilno | Lans. | ınc. |



Tested By: mw/js Checked By: MPW

## 12/20/2011

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0006R, S14

Depth:

38-39.4

Sample Number:

S36254

Description:

Remarks: Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3710.200 |              | 3713.200 |
| Moisture content: Dry soil+tare, gms.   | 3691.500 |              | 3691.500 |
| Moisture content: Tare, gms.            | 3533.800 |              | 3533.800 |
| Noisture, %                             | 11.9     | 13.8         | 13.8     |
| loist specimen weight, gms.             | 176.4    |              |          |
| liameter, in.                           | 2.50     | 2.50         |          |
| rea, in.²                               | 4.91     | 4.91         |          |
| leight, in.                             | 1.00     | 1.00         |          |
| let decrease in height, in.             |          | 0.00         |          |
| Vet density, pcf                        | 136.9    | 139.8        |          |
| Pry density, pcf                        | 122.4    | 122.9        |          |
| oid ratio                               | 0.3772   | 0.3716       |          |
| Saturation, %                           | 84.9     | 100.0        |          |

Normal stress = 8.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 15.28 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 30.400       | 30.4         | 0.2         | 6.19                   | -0.0025                      |
| 2   | 0.0100                         | 34.100       | 34.1         | 0.4         | 6.95                   | -0.0030                      |
| 3   | 0.0200                         | 44.700       | 44.7         | 0.8         | 9.11                   | -0.0040                      |
| 4   | 0.0300                         | 53.200       | 53.2         | 1.2         | 10.84                  | -0.0040                      |
| 5   | 0.0400                         | 61.500       | 61.5         | 1.6         | 12.53                  | -0.0035                      |
| 6   | 0.0500                         | 65.900       | 65.9         | 2.0         | 13.43                  | -0.0035                      |
| 7   | 0.0620                         | 70.600       | 70.6         | 2.5         | 14.38                  | -0.0035                      |
| 8   | 0.0700                         | 71.400       | 71.4         | 2.8         | 14.55                  | -0.0030                      |
| 9   | 0.0800                         | 72.600       | 72.6         | 3.2         | 14.79                  | -0.0020                      |
| 10  | 0.0900                         | 73.800       | 73.8         | 3.6         | 15.03                  | -0.0010                      |
| 11  | 0.1000                         | 75.000       | 75.0         | 4.0         | 15.28                  | 0.0000                       |
| 12  | 0.1100                         | 72.200       | 72.2         | 4.4         | 14.71                  | 0.0010                       |
|     |                                |              |              |             |                        |                              |

# Test Ceadings for Spesimen No.

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 71.800       | 71.8         | 4.8         | 14.63                  | 0.0010                       |
| 14  | 0.1300                         | 71.900       | 71.9         | 5.2         | 14.65                  | 0.0015                       |
| 15  | 0.1400                         | 70.800       | 70.8         | 5.6         | 14.42                  | 0.0020                       |

| Specimen Parameter                      | Initial  | Consolidated Final |
|-----------------------------------------|----------|--------------------|
| Moisture content: Moist soil+tare, gms. | 3710.200 | 3713.000           |
| Moisture content: Dry soil+tare, gms.   | 3691.200 | 3691.200           |
| Moisture content: Tare, gms.            | 3533.800 | 3533.800           |
| Moisture, %                             | 12.1     | 13.9               |
| Moist specimen weight, gms.             | 176.4    |                    |
| Diameter, in.                           | 2.50     | 2.50               |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91               |
| Height, in.                             | 1.00     | 1.00               |
| Net decrease in height, in.             |          | 0.00               |
| Wet density, pcf                        | 136.9    | 139.6              |
| Dry density, pcf                        | 122.2    | 122.7              |
| Void ratio                              | 0.3798   | 0.3742             |
| Saturation, %                           | 85.8     | 99.9               |

Test Readings for Spegmen No. 2

Normal stress = 16.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 25.67 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 29.000       | 29.0         | 0.2         | 5.91                   | -0.0010                      |
| 2   | 0.0100                         | 44.500       | 44.5         | 0.4         | 9.07                   | -0.0015                      |
| 3   | 0.0200                         | 65.000       | 65.0         | 0.8         | 13.24                  | -0.0020                      |
| 4   | 0.0300                         | 78.000       | 78.0         | 1.2         | 15.89                  | -0.0020                      |
| 5   | 0.0400                         | 90.400       | 90.4         | 1.6         | 18.42                  | -0.0020                      |
| 6   | 0.0500                         | 100.000      | 100.0        | 2.0         | 20.37                  | -0.0015                      |
| 7   | 0.0600                         | 109.100      | 109.1        | 2.4         | 22.23                  | -0.0010                      |
| 8   | 0.0700                         | 115.600      | 115.6        | 2.8         | 23.55                  | 0.0005                       |
| 9   | 0.0800                         | 120.000      | 120.0        | 3.2         | 24.45                  | 0.0005                       |
| 10  | 0.0900                         | 124.500      | 124.5        | 3.6         | 25.36                  | 0.0010                       |
| 11  | 0.1000                         | 126.000      | 126.0        | 4.0         | 25.67                  | 0.0020                       |
| 12  | 0.1100                         | 126.000      | 126.0        | 4.4         | 25.67                  | 0.0030                       |
| 13  | 0.1200                         | 125.000      | 125.0        | 4.8         | 25.46                  | 0.0040                       |
| 14  | 0.1300                         | 124.000      | 124.0        | 5.2         | 25.26                  | 0.0050                       |
| 15  | 0.1400                         | 122.300      | 122.3        | 5.6         | 24.91                  | 0.0055                       |
| 16  | 0.1500                         | 121.000      | 121.0        | 6.0         | 24.65                  | 0.0060                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3450.700 |              | 3453.500 |
| Moisture content: Dry soil+tare, gms.   | 3431.700 |              | 3431.700 |
| Moisture content: Tare, gms.            | 3274.300 |              | 3274.300 |
| Moisture, %                             | 12.1     | 13.9         | 13.9     |
| Moist specimen weight, gms.             | 176.4    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in.²                              | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 136.9    | 139.7        |          |
| Dry density, pcf                        | 122.2    | 122.7        |          |
| Void ratio                              | 0.3798   | 0.3741       |          |
| Saturation, %                           | 85.8     | 100.0        |          |

Strain rate, in./min. = 0.03

Fail. Stress = 35.04 psi at reading no. 27

| No. | Horizonta<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|-------------------------------|-------------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                        | 0.000             | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                        | 131.000           | 131.0        | 0.2         | 26.69                  | 0.0005                       |
| 2   | 0.0100                        | 136.500           | 136.5        | 0.4         | 27.81                  | 0.0005                       |
| 3   | 0.0200                        | 144.600           | 144.6        | 0.8         | 29.46                  | 0.0000                       |
| 4   | 0.0300                        | 152.200           | 152.2        | 1.2         | 31.01                  | 0.0000                       |
| 5   | 0.0410                        | 157.900           | 157.9        | 1.6         | 32.17                  | 0.0005                       |
| 6   | 0.0500                        | 162.400           | 162.4        | 2.0         | 33.08                  | 0.0015                       |
| 7   | 0.0600                        | 163.100           | 163.1        | 2.4         | 33.23                  | 0.0020                       |
| 8   | 0.0700                        | 163.400           | 163.4        | 2.8         | 33.29                  | 0.0030                       |
| 9   | 0.0800                        | 164.000           | 164.0        | 3.2         | 33.41                  | 0.0040                       |
| 10  | 0.0900                        | 164.900           | 164.9        | 3.6         | 33.59                  | 0.0050                       |
| 11  | 0.1000                        | 166.000           | 166.0        | 4.0         | 33.82                  | 0.0060                       |
| 12  | 0.1100                        | 168.100           | 168.1        | 4.4         | 34.25                  | 0.0070                       |
| 13  | 0.1200                        | 169.700           | 169.7        | 4.8         | 34.57                  | 0.0075                       |
| 14  | 0.1300                        | 169.500           | 169.5        | 5.2         | 34.53                  | 0.0080                       |
| 15  | 0.1400                        | 169.900           | 169.9        | 5.6         | 34.61                  | 0.0080                       |
| 16  | 0.1500                        | 170.500           | 170.5        | 6.0         | 34.73                  | 0.0085                       |
| 17  | 0.1600                        | 170.900           | 170.9        | 6.4         | 34.82                  | 0.0090                       |
| 18  | 0.1700                        | 171.000           | 171.0        | 6.8         | 34.84                  | 0.0090                       |
| 19  | 0.1800                        | 171.100           | 171.1        | 7.2         | 34.86                  | 0.0095                       |
| 20  | 0.1900                        | 171.200           | 171.2        | 7.6         | 34.88                  | 0.0085                       |
| 21  | 0.2000                        | 171.500           | 171.5        | 8.0         | 34.94                  | 0.0085                       |
| 22  | 0.2100                        | 171.400           | 171.4        | 8.4         | 34.92                  | 0.0080                       |
| 23  | 0.2200                        | 171.500           | 171.5        | 8.8         | 34.94                  | 0.0080                       |
| 24  | 0.2300                        | 171.700           | 171.7        | 9.2         | 34.98                  | 0.0080                       |
| 25  | 0.2400                        | 171.800           | 171.8        | 9.6         | 35.00                  | 0.0080                       |
| 26  | 0.2500                        | 171.900           | 171.9        | 10.0        | 35.02                  | 0.0075                       |
| 27  | 0.2600                        | 172.000           | 172.0        | 10.4        | 35.04                  | 0.0065                       |
| 28  | 0.2700                        | 171.900           | 171.9        | 10.8        | 35.02                  | 0.0065                       |
|     |                               |                   |              |             |                        |                              |

| Jesi Jes | ां हिंदी हैं। | Sugin | enike |  |
|----------|---------------|-------|-------|--|
|          |               |       |       |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 29  | 0.2800                         | 171.900      | 171.9        | 11.2        | 35.02                  | 0.0065                       |
| 30  | 0.2900                         | 172.000      | 172.0        | 11.6        | 35.04                  | 0.0065                       |
| 31  | 0.3000                         | 172.000      | 172.0        | 12.0        | 35.04                  | 0.0055                       |
| 32  | 0.3100                         | 172.000      | 172.0        | 12.4        | 35.04                  | 0.0055                       |
| 33  | 0.3200                         | 172.000      | 172.0        | 12.8        | 35.04                  | 0.0050                       |
| 34  | 0.3300                         | 172.000      | 172.0        | 13.2        | 35.04                  | 0.0050                       |
| 35  | 0.3400                         | 172.000      | 172.0        | 13.6        | 35.04                  | 0.0055                       |
| 36  | 0.3500                         | 172.000      | 172.0        | 14.0        | 35.04                  | 0.0055                       |
| 37  | 0.3600                         | 172.000      | 172.0        | 14.4        | 35.04                  | 0.0050                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

12/20/2011

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0007R, S04

Depth:

5-6.3

Sample Number:

S36257

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                        | Palametek |              |          |
|----------------------------------------|-----------|--------------|----------|
| Specimen Parameter                     | Initial   | Consolidated | Final    |
| Moisture content: Moist soil+tare, gms | 2378.900  |              | 2380.600 |
| Moisture content: Dry soil+tare, gms.  | 2359.400  |              | 2359.400 |
| Moisture content: Tare, gms.           | 2212.200  |              | 2212.200 |
| Moisture, %                            | 13.2      | 14.4         | 14.4     |
| Moist specimen weight, gms.            | 166.7     |              |          |
| Diameter, in.                          | 2.43      | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64      | 4.64         |          |
| Height, in.                            | 1.00      | 1.00         |          |
| Net decrease in height, in.            |           | 0.00         |          |
| Wet density, pcf                       | 136.9     | 138.9        |          |
| Dry density, pcf                       | 120.9     | 121.4        |          |
| Void ratio                             | 0.3940    | 0.3887       |          |
| Saturation, %                          | 90.8      | 100.0        |          |

**Load ring constant =** 1.2422 lbs. per input unit

Normal stress = 1.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.41 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.400        | 6.7          | 0.2         | 1.45                   | 0.3004                       |
| 2   | 0.0100                         | 6.100        | 7.6          | 0.4         | 1.63                   | 0.3016                       |
| 3   | 0.0250                         | 7.700        | 9.6          | 1.0         | 2.06                   | 0.3032                       |
| 4   | 0.0300                         | 8.300        | 10.3         | 1.2         | 2.22                   | 0.3049                       |
| 5   | 0.0420                         | 8.800        | 10.9         | 1.7         | 2.36                   | 0.3070                       |
| 6   | 0.0500                         | 8.900        | 11.1         | 2.1         | 2.38                   | 0.3088                       |
| 7   | 0.0600                         | 9.000        | 11.2         | 2.5         | 2.41                   | 0.3104                       |
| 8   | 0.0730                         | 8.000        | 9.9          | 3.0         | 2.14                   | 0.3130                       |
| 9   | 0.0840                         | 7.400        | 9.2          | 3.5         | 1.98                   | 0.3141                       |
| 10  | 0.0900                         | 7.000        | 8.7          | 3.7         | 1.87                   | 0.3145                       |
| 11  | 0.1000                         | 6.600        | 8.2          | 4.1         | 1.77                   | 0.3151                       |

| Moisture content: Tare, gms.       2196.300       2196.300         Moisture, %       13.3       14.2       14.2         Moist specimen weight, gms.       166.7       166.7         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834           | Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Tare, gms.       2196.300       2196.300         Moisture, %       13.3       14.2       14.2         Moist specimen weight, gms.       166.7       2.43       2.43         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834 | Moisture content: Moist soil+tare, gms. | 2363.000 |              | 2364.270 |  |
| Moisture, %       13.3       14.2       14.2         Moist specimen weight, gms.       166.7         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                          | Moisture content: Dry soil+tare, gms.   | 2343.400 |              | 2343.400 |  |
| Moist specimen weight, gms.       166.7         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                                                                               | Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |  |
| Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                                                                                                                               | Moisture, %                             | 13.3     | 14.2         | 14.2     |  |
| Area, in.²       4.64       4.64         Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                                                                                                                                                                           | Moist specimen weight, gms.             | 166.7    |              |          |  |
| Height, in.       1.00       0.99         Net decrease in height, in.       0.01         Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                                                                                                                                                                                                                    | Diameter, in.                           | 2.43     | 2.43         |          |  |
| Net decrease in height, in.         0.01           Wet density, pcf         136.9         139.1           Dry density, pcf         120.8         121.8           Void ratio         0.3949         0.3834                                                                                                                                                                                                                                                                                                          | Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Wet density, pcf       136.9       139.1         Dry density, pcf       120.8       121.8         Void ratio       0.3949       0.3834                                                                                                                                                                                                                                                                                                                                                                             | Height, in.                             | 1.00     | 0.99         |          |  |
| Dry density, pcf         120.8         121.8           Void ratio         0.3949         0.3834                                                                                                                                                                                                                                                                                                                                                                                                                    | Net decrease in height, in.             |          | 0.01         |          |  |
| <b>Void ratio</b> 0.3949 0.3834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wet density, pcf                        | 136.9    | 139.1        |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dry density, pcf                        | 120.8    | 121.8        |          |  |
| <b>Saturation, %</b> 91.1 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Void ratio                              | 0.3949   | 0.3834       |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Saturation, %                           | 91.1     | 99.9         |          |  |

Normal stress = 2.4 psi

Strain rate, in./min. = 0.03

Fail. Stress = 3.23 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.300        | 4.4          | 0.2         | 0.94                   | 0.3000                       |
| 2   | 0.0140                         | 8.000        | 6.6          | 0.6         | 1.42                   | 0.3003                       |
| 3   | 0.0200                         | 11.900       | 9.8          | 0.8         | 2.11                   | 0.3011                       |
| 4   | 0.0300                         | 13.800       | 11.4         | 1.2         | 2.45                   | 0.3027                       |
| 5   | 0.0400                         | 16.100       | 13.3         | 1.6         | 2.86                   | 0.3049                       |
| 6   | 0.0500                         | 16.700       | 13.8         | 2.1         | 2.97                   | 0.3071                       |
| 7   | 0.0630                         | 17.500       | 14.4         | 2.6         | 3.11                   | 0.3100                       |
| 8   | 0.0700                         | 18.200       | 15.0         | 2.9         | 3.23                   | 0.3134                       |
| 9   | 0.0800                         | 17.800       | 14.7         | 3.3         | 3.16                   | 0.3137                       |
| 10  | 0.0900                         | 16.000       | 13.2         | 3.7         | 2.84                   | 0.3140                       |
| 11  | 0.1020                         | 13.700       | 11.3         | 4.2         | 2.43                   | 0.3151                       |
| 12  | 0.1150                         | 12.000       | 9.9          | 4.7         | 2.13                   | 0.3154                       |
| 13  | 0.1200                         | 12.100       | 10.0         | 4.9         | 2.15                   | 0.3156                       |
| 14  | 0.1300                         | 11.700       | 9.6          | 5.3         | 2.08                   | 0.3157                       |
| 15  | 0.1400                         | 11.400       | 9.4          | 5.8         | 2.03                   | 0.3159                       |
| 16  | 0.1500                         | 11.200       | 9.2          | 6.2         | 1.99                   | 0.3160                       |
| 17  | 0.1650                         | 11.000       | 9.1          | 6.8         | 1.95                   | 0.3161                       |
|     |                                |              |              |             |                        |                              |

| 0'     |         | T TOTAL | *   |
|--------|---------|---------|-----|
| Sierra | Testing | labs    | Inc |

| Specimen Parameter                      | Initial  | Consolidated | Final    | and the second s |
|-----------------------------------------|----------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture content: Moist soil+tare, gms. | 2364.200 |              | 2365.850 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moisture content: Dry soil+tare, gms.   | 2345.000 |              | 2345.000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moisture content: Tare, gms.            | 2197.500 |              | 2197.500 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moisture, %                             | 13.0     | 14.1         | 14.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moist specimen weight, gms.             | 166.7    |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diameter, in.                           | 2.43     | 2.43         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area, in.²                              | 4.64     | 4.64         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| leight, in.                             | 1.00     | 0.99         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| let decrease in height, in.             |          | 0.01         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wet density, pcf                        | 136.9    | 139.3        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dry density, pcf                        | 121.2    | 122.0        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /oid ratio                              | 0.3912   | 0.3816       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Saturation, %                           | 89.9     | 100.0        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Strain rate, in./min. = 0.03

Fail. Stress = 5.37 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 6.100        | 5.0          | 0.2         | 1.08                   | 0.2994                       |
| 2   | 0.0100                         | 9.000        | 7.4          | 0.4         | 1.60                   | 0.2990                       |
| 3   | 0.0200                         | 19.000       | 15.7         | 0.8         | 3.38                   | 0.2989                       |
| 4   | 0.0300                         | 26.100       | 21.5         | 1.2         | 4.64                   | 0.3001                       |
| 5   | 0.0420                         | 29.000       | 23.9         | 1.7         | 5.15                   | 0.3030                       |
| 6   | 0.0500                         | 29.900       | 24.6         | 2.1         | 5.31                   | 0.3047                       |
| 7   | 0.0600                         | 30.200       | 24.9         | 2.5         | 5.37                   | 0.3071                       |
| 8   | 0.0700                         | 29.000       | 23.9         | 2.9         | 5.15                   | 0.3090                       |
| 9   | 0.0800                         | 28.300       | 23.3         | 3.3         | 5.03                   | 0.3108                       |
| 10  | 0.0900                         | 27.000       | 22.3         | 3.7         | 4.80                   | 0.3120                       |
| 11  | 0.1000                         | 25.800       | 21.3         | 4.1         | 4.59                   | 0.3131                       |
| 12  | 0.1100                         | 24.100       | 19.9         | 4.5         | 4.28                   | 0.3140                       |



Tested By: mw/js Checked By: MPW

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0007R, S07

Depth:

12.5-14.0

Sample Number:

S36259

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         |          | for spastment logi |          |  |
|-----------------------------------------|----------|--------------------|----------|--|
| Specimen Parameter                      | Initial  | Consolidated       | Final    |  |
| Moisture content: Moist soil+tare, gms. | 3697.300 |                    | 3702.900 |  |
| Moisture content: Dry soil+tare, gms.   | 3671.400 |                    | 3671.400 |  |
| Moisture content: Tare, gms.            | 3533.800 |                    | 3533.800 |  |
| Moisture, %                             | 18.8     | 22.9               | 22.9     |  |
| Moist specimen weight, gms.             | 163.5    |                    |          |  |
| Diameter, in.                           | 2.50     | 2.50               |          |  |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91               |          |  |
| Height, in.                             | 1.00     | 1.03               |          |  |
| Net decrease in height, in.             |          | -0.03              |          |  |
| Wet density, pcf                        | 126.9    | 128.0              |          |  |
| Dry density, pcf                        | 106.8    | 104.1              |          |  |
| Void ratio                              | 0.5784   | 0.6186             |          |  |
| Saturation, %                           | 87.9     | 99.9               |          |  |

Load ring constant = .6888 lbs. per input unit

Normal stress = 4.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 7.02 psi at reading no. 8

| M-  | Horizontal<br>Def. Dial | Load   | Load | Strain | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|--------|------|--------|-----------------|-----------------------|
| No. | in.                     | Dial   | lbs. | %      | psi             | in.                   |
| O   | 0.0000                  | 0.000  | 0.0  | 0.0    | 0.00            | 0.3000                |
| 1   | 0.0050                  | 27.900 | 19.2 | 0.2    | 3.91            | 0.2985                |
| 2   | 0.0100                  | 32.100 | 22.1 | 0.4    | 4.50            | 0.2985                |
| 3   | 0.0240                  | 40.300 | 27.8 | 1.0    | 5.65            | 0.2995                |
| 4   | 0.0300                  | 44.000 | 30.3 | 1.2    | 6.17            | 0.3000                |
| 5   | 0.0400                  | 46.400 | 32.0 | 1.6    | 6.51            | 0.3010                |
| 6   | 0.0500                  | 48.100 | 33.1 | 2.0    | 6.75            | 0.3020                |
| 7   | 0.0600                  | 49.600 | 34.2 | 2.4    | 6.96            | 0.3045                |
| 8   | 0.0700                  | 50.000 | 34.4 | 2.8    | 7.02            | 0.3055                |
| 9   | 0.0800                  | 48.900 | 33.7 | 3.2    | 6.86            | 0.3070                |
| 10  | 0.0900                  | 46.500 | 32.0 | 3.6    | 6.52            | 0.3080                |
| 11  | 0.1000                  | 44.200 | 30.4 | 4.0    | 6.20            | 0.3090                |
|     |                         |        |      |        |                 |                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| MANUAL SCALE AND                        |          | Consolidated |          |  |
| Moisture content: Moist soil+tare, gms. | 3698.100 |              | 3705.900 |  |
| Moisture content: Dry soil+tare, gms.   | 3672.300 |              | 3672.300 |  |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |  |
| Moisture, %                             | 18.7     | 24.4         | 24.4     |  |
| Moist specimen weight, gms.             | 163.5    |              |          |  |
| Diameter, in.                           | 2.50     | 2.50         |          |  |
| Area, in.²                              | 4.91     | 4.91         |          |  |
| Height, in.                             | 1.00     | 1.05         |          |  |
| Net decrease in height, in.             |          | -0.05        |          |  |
| Wet density, pcf                        | 126.9    | 126.4        |          |  |
| Dry density, pcf                        | 106.9    | 101.6        |          |  |
| Void ratio                              | 0.5773   | 0.6593       |          |  |
| Saturation, %                           | 87.6     | 99.9         |          |  |

**Load ring constant =** .5434 lbs. per input unit

Normal stress = 9.0 psi

Strain rate, in./min. = 0.03

Fail. Stress = 8.99 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 28.300       | 15.4         | 0.2         | 3.13                   | 0.2990                       |
| 2   | 0.0100                         | 38.600       | 21.0         | 0.4         | 4.27                   | 0.2986                       |
| 3   | 0.0240                         | 53.400       | 29.0         | 1.0         | 5.91                   | 0.2970                       |
| 4   | 0.0300                         | 59.600       | 32.4         | 1.2         | 6.60                   | 0.2970                       |
| 5   | 0.0400                         | 65.100       | 35.4         | 1.6         | 7.21                   | 0.2965                       |
| 6   | 0.0500                         | 71.400       | 38.8         | 2.0         | 7.90                   | 0.2980                       |
| 7   | 0.0600                         | 74.600       | 40.5         | 2.4         | 8.26                   | 0.2990                       |
| 8   | 0.0700                         | 76.400       | 41.5         | 2.8         | 8.46                   | 0.3000                       |
| 9   | 0.0800                         | 79.400       | 43.1         | 3.2         | 8.79                   | 0.3010                       |
| 10  | 0.0900                         | 81.000       | 44.0         | 3.6         | 8.97                   | 0.3005                       |
| 11  | 0.1000                         | 81.200       | 44.1         | 4.0         | 8.99                   | 0.3010                       |
| 12  | 0.1100                         | 80.500       | 43.7         | 4.4         | 8.91                   | 0.3015                       |
| 13  | 0.1200                         | 80.300       | 43.6         | 4.8         | 8.89                   | 0.3020                       |
| 14  | 0.1300                         | 80.000       | 43.5         | 5.2         | 8.86                   | 0.3030                       |
| 15  | 0.1400                         | 79.800       | 43.4         | 5.6         | 8.83                   | 0.3030                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3698.100 |              | 3699.250 |
| Moisture content: Dry soil+tare, gms.   | 3672.300 |              | 3672.300 |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |
| Moisture, %                             | 18.7     | 19.6         | 19.6     |
| Moist specimen weight, gms.             | 163.5    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in.²                              | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 126.9    | 131.9        |          |
| Dry density, pcf                        | 106.9    | 110.3        |          |
| Void ratio                              | 0.5773   | 0.5284       |          |
| Saturation, %                           | 87.6     | 100.0        |          |

**Load ring constant =** 1.2322 lbs. per input unit

Normal stress = 18.1 psi Strain rate, in./min. = 0.03

Fail. Stress = 16.52 psi at reading no. 20

| No | Horizontal<br>Def. Dial<br>o. in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|----|-----------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| (  | 0.0000                            | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
|    | 0.0050                            | 36.300       | 44.7         | 0.2         | 9.11                   | 0.2990                       |
| 2  | 2 0.0110                          | 45.000       | 55.4         | 0.4         | 11.30                  | 0.2985                       |
|    | 0.0200                            | 47.100       | 58.0         | 0.8         | 11.82                  | 0.2985                       |
| 4  | 4 0.0300                          | 51.300       | 63.2         | 1.2         | 12.88                  | 0.2995                       |
| 4  | 5 0.0400                          | 55.600       | 68.5         | 1.6         | 13.96                  | 0.3000                       |
| (  | 6 0.0500                          | 57.000       | 70.2         | 2.0         | 14.31                  | 0.3010                       |
| 7  | 7 0.0600                          | 60.900       | 75.0         | 2.4         | 15.29                  | 0.3025                       |
| 8  | 0.0700                            | 64.000       | 78.9         | 2.8         | 16.07                  | 0.3040                       |
| Ò  | 0.0800                            | 64.800       | 79.8         | 3.2         | 16.27                  | 0.3060                       |
| 10 | 0.0900                            | 65.100       | 80.2         | 3.6         | 16.34                  | 0.3075                       |
| 11 | 0.1000                            | 65.400       | 80.6         | 4.0         | 16.42                  | 0.3090                       |
| 12 | 0.1100                            | 65.500       | 80.7         | 4.4         | 16.44                  | 0.3100                       |
| 13 | 0.1200                            | 65.500       | 80.7         | 4.8         | 16.44                  | 0.3110                       |
| 14 | 0.1300                            | 65.500       | 80.7         | 5.2         | 16.44                  | 0.3120                       |
| 15 | 0.1400                            | 65.400       | 80.6         | 5.6         | 16.42                  | 0.3125                       |
| 16 | 0.1500                            | 65.600       | 80.8         | 6.0         | 16.47                  | 0.3125                       |
| 17 | 0.1600                            | 65.500       | 80.7         | 6.4         | 16.44                  | 0.3125                       |
| 18 | 0.1700                            | 65.700       | 81.0         | 6.8         | 16.49                  | 0.3126                       |
| 19 | 0.1800                            | 65.700       | 81.0         | 7.2         | 16.49                  | 0.3127                       |
| 20 | 0.1900                            | 65.800       | 81.1         | 7.6         | 16.52                  | 0.3125                       |
| 21 | 0.2000                            | 65.800       | 81.1         | 8.0         | 16.52                  | 0.3125                       |
| 22 | 0.2100                            | 65.800       | 81.1         | 8.4         | 16.52                  | 0.3125                       |
| 23 | 0.2200                            | 65.800       | 81.1         | 8.8         | 16.52                  | 0.3124                       |
| 24 | 0.2300                            | 65.700       | 81.0         | 9.2         | 16.49                  | 0.3124                       |
| 25 | 0.2400                            | 65.800       | 81.1         | 9.6         | 16.52                  | 0.3125                       |
| 26 | 0.2500                            | 65.800       | 81.1         | 10.0        | 16.52                  | 0.3125                       |
| 27 | 0.2600                            | 65.800       | 81.1         | 10.4        | 16.52                  | 0.3126                       |
|    |                                   |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 28  | 0.2700                         | 65.800       | 81.1         | 10.8        | 16.52                  | 0.3126                       |
| 29  | 0.2800                         | 65.800       | 81.1         | 11.2        | 16.52                  | 0.3127                       |
| 30  | 0.2900                         | 65.800       | 81.1         | 11.6        | 16.52                  | 0.3127                       |
| 31  | 0.3000                         | 65.800       | 81.1         | 12.0        | 16.52                  | 0.3127                       |
| 32  | 0.3100                         | 65.800       | 81.1         | 12.4        | 16.52                  | 0.3127                       |
| 33  | 0.3200                         | 65.800       | 81.1         | 12.8        | 16.52                  | 0.3127                       |
| 34  | 0.3300                         | 65.800       | 81.1         | 13.2        | 16.52                  | 0.3126                       |
| 35  | 0.3400                         | 65.800       | 81.1         | 13.6        | 16.52                  | 0.3124                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0010R, S02

Depth:

5-6.5

Sample Number:

S36261

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2360.000 |              | 2377.600 |
| Moisture content: Dry soil+tare, gms.   | 2354.500 |              | 2354.500 |
| Moisture content: Tare, gms.            | 2212.800 |              | 2212.800 |
| Moisture, %                             | 3.9      | 16.3         | 16.3     |
| Moist specimen weight, gms.             | 147.2    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 120.9    | 136.1        |          |
| Dry density, pcf                        | 116.4    | 117.0        |          |
| Void ratio                              | 0.4481   | 0.4401       |          |
| Saturation, %                           | 23.4     | 100.0        |          |

Normal stress = 1.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 1.55 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 3.900        | 3.9          | 0.2         | 0.84                   | 0.3001                       |
| 2   | 0.0100                         | 4.400        | 4.4          | 0.4         | 0.95                   | 0.3002                       |
| 3   | 0.0200                         | 5.600        | 5.6          | 0.8         | 1.21                   | 0.3011                       |
| 4   | 0.0300                         | 6.000        | 6.0          | 1.2         | 1.29                   | 0.3029                       |
| 5   | 0.0430                         | 7.000        | 7.0          | 1.8         | 1.51                   | 0.3035                       |
| 6   | 0.0550                         | 7.000        | 7.0          | 2.3         | 1.51                   | 0.3060                       |
| 7   | 0.0600                         | 7.000        | 7.0          | 2.5         | 1.51                   | 0.3068                       |
| 8   | 0.0700                         | 7.200        | 7.2          | 2.9         | 1.55                   | 0.3078                       |
| 9   | 0.0800                         | 7.000        | 7.0          | 3.3         | 1.51                   | 0.3093                       |
| 10  | 0.0900                         | 6.900        | 6.9          | 3.7         | 1.49                   | 0.3100                       |
| 11  | 0.1000                         | 6.200        | 6.2          | 4.1         | 1.34                   | 0.3111                       |
| 12  | 0.1100                         | 6.100        | 6.1          | 4.5         | 1.32                   | 0.3114                       |
|     |                                |              |              |             | 1222                   |                              |

|     | Horizontal    |              |              |             | Shear  | Vertical      |
|-----|---------------|--------------|--------------|-------------|--------|---------------|
| No. | Def. Dial in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Stress | Def. Dial in. |
| 13  | 0.1200        | 6.100        | 6.1          | 4.9         | 1.32   | 0.3120        |

| Specimen Parameter                      | Initial  | Consolidated F | Final |
|-----------------------------------------|----------|----------------|-------|
| Moisture content: Moist soil+tare, gms. | 2360.000 | 2377           | .150  |
| Moisture content: Dry soil+tare, gms.   | 2354.400 | 2354           | .400  |
| Moisture content: Tare, gms.            | 2212.800 | 2212           | .800  |
| Moisture, %                             | 4.0      | 16.1           | 16.1  |
| Moist specimen weight, gms.             | 147.2    |                |       |
| Diameter, in.                           | 2.43     | 2.43           |       |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64           |       |
| Height, in.                             | 1.00     | 0.99           |       |
| Net decrease in height, in.             |          | 0.01           |       |
| Wet density, pcf                        | 120.9    | 136.4          |       |
| Dry density, pcf                        | 116.3    | 117.5          |       |
| Void ratio                              | 0.4491   | 0.4343         |       |
| Saturation, %                           | 23.8     | 99.9           |       |

**Load ring constant =** 1.2422 lbs. per input unit

Normal stress = 2.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.28 psi at reading no. 29

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 3.000        | 3.7          | 0.2         | 0.80                   | 0.2998                       |
| 2   | 0.0100                         | 3.300        | 4.1          | 0.4         | 0.88                   | 0.2994                       |
| 3   | 0.0200                         | 3.900        | 4.8          | 0.8         | 1.04                   | 0.2983                       |
| 4   | 0.0300                         | 4.200        | 5.2          | 1.2         | 1.12                   | 0.2978                       |
| 5   | 0.0400                         | 4.800        | 6.0          | 1.6         | 1.29                   | 0.2963                       |
| 6   | 0.0500                         | 5.000        | 6.2          | 2.1         | 1.34                   | 0.2959                       |
| 7   | 0.0600                         | 5.100        | 6.3          | 2.5         | 1.37                   | 0.2950                       |
| 8   | 0.0740                         | 5.100        | 6.3          | 3.0         | 1.37                   | 0.2947                       |
| 9   | 0.0860                         | 5.200        | 6.5          | 3.5         | 1.39                   | 0.2934                       |
| 10  | 0.0900                         | 5.300        | 6.6          | 3.7         | 1.42                   | 0.2932                       |
| 11  | 0.1000                         | 5.700        | 7.1          | 4.1         | 1.53                   | 0.2930                       |
| 12  | 0.1100                         | 5.900        | 7.3          | 4.5         | 1.58                   | 0.2928                       |
| 13  | 0.1200                         | 6.100        | 7.6          | 4.9         | 1.63                   | 0.2922                       |
| 14  | 0.1330                         | 6.100        | 7.6          | 5.5         | 1.63                   | 0.2920                       |
| 15  | 0.1400                         | 6.500        | 8.1          | 5.8         | 1.74                   | 0.2920                       |
| 16  | 0.1500                         | 7.000        | 8.7          | 6.2         | 1.87                   | 0.2919                       |
| 17  | 0.1600                         | 7.000        | 8.7          | 6.6         | 1.87                   | 0.2919                       |
| 18  | 0.1700                         | 7.100        | 8.8          | 7.0         | 1.90                   | 0.2918                       |
| 19  | 0.1800                         | 7.200        | 8.9          | 7.4         | 1.93                   | 0.2917                       |
| 20  | 0.1950                         | 7.400        | 9.2          | 8.0         | 1.98                   | 0.2916                       |
| 21  | 0.2000                         | 7.500        | 9.3          | 8.2         | 2.01                   | 0.2916                       |
| 22  | 0.2140                         | 7.700        | 9.6          | 8.8         | 2.06                   | 0.2917                       |
|     |                                |              |              |             | ٥.                     |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 23  | 0.2200                         | 7.700        | 9.6          | 9.1         | 2.06                   | 0.2917                       |
| 24  | 0.2300                         | 7.800        | 9.7          | 9.5         | 2.09                   | 0.2916                       |
| 25  | 0.2400                         | 7.900        | 9.8          | 9.9         | 2.12                   | 0.2915                       |
| 26  | 0.2500                         | 7.900        | 9.8          | 10.3        | 2.12                   | 0.2914                       |
| 27  | 0.2600                         | 8.000        | 9.9          | 10.7        | 2.14                   | 0.2912                       |
| 28  | 0.2700                         | 8.300        | 10.3         | 11.1        | 2.22                   | 0.2912                       |
| 29  | 0.2800                         | 8.500        | 10.6         | 11.5        | 2.28                   | 0.2911                       |
| 30  | 0.2900                         | 8.200        | 10.2         | 11.9        | 2.20                   | 0.2911                       |
| 31  | 0.3000                         | 8.000        | 9.9          | 12.3        | 2.14                   | 0.2911                       |

9.9 12.8

9.3 13.2

| Specimen Parameter                     | Initial    | Consolidated Final |
|----------------------------------------|------------|--------------------|
| Moisture content: Moist soil+tare, gms | . 2360.000 | 2377.350           |
| Moisture content: Dry soil+tare, gms.  | 2354.900   | 2354.900           |
| Moisture content: Tare, gms.           | 2212.800   | 2212.800           |
| Moisture, %                            | 3.6        | 15.8               |
| Moist specimen weight, gms.            | 147.2      |                    |
| Diameter, in.                          | 2.43       | 2.43               |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64               |
| Height, in.                            | 1.00       | 0.99               |
| Net decrease in height, in.            |            | 0.01               |
| Wet density, pcf                       | 120.9      | 136.8              |
| Dry density, pcf                       | 116.7      | 118.1              |
| Void ratio                             | 0.4440     | 0.4271             |
| Saturation, %                          | 21.8       | 99.9               |

2.14 0.2911

2.01 0.2911

Test Readings for Specimen No. 3

Normal stress = 4.7 psi Strain rate, in./min. = 0.03

32

33

0.3100

0.3200

8.000

7.500

Fail. Stress = 4.10 psi at reading no. 19

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.300        | 5.3          | 0.2         | 1.14                   | 0.2997                       |
| 2   | 0.0100                         | 10.000       | 10.0         | 0.4         | 2.16                   | 0.2990                       |
| 3   | 0.0200                         | 12.700       | 12.7         | 0.8         | 2.74                   | 0.2987                       |
| 4   | 0.0300                         | 13.600       | 13.6         | 1.2         | 2.93                   | 0.2986                       |
| 5   | 0.0400                         | 14.000       | 14.0         | 1.6         | 3.02                   | 0.2985                       |
| 6   | 0.0540                         | 14.200       | 14.2         | 2.2         | 3.06                   | 0.2982                       |
| 7   | 0.0600                         | 15.000       | 15.0         | 2.5         | 3.23                   | 0.2980                       |
| 8   | 0.0720                         | 15.500       | 15.5         | 3.0         | 3.34                   | 0.2980                       |
| 9   | 0.0850                         | 15.900       | 15.9         | 3.5         | 3.43                   | 0.2977                       |
| 10  | 0.0940                         | 16.000       | 16.0         | 3.9         | 3.45                   | 0.2973                       |
| 11  | 0.1020                         | 16.600       | 16.6         | 4.2         | 3.58                   | 0.2971                       |
| 12  | 0.1140                         | 16.800       | 16.8         | 4.7         | 3.62                   | 0.2971                       |
| 13  | 0.1250                         | 17.000       | 17.0         | 5.1         | 3.67                   | 0.2970                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 14  | 0.1320                         | 17.100       | 17.1         | 5.4         | 3.69                   | 0.2970                       |
| 15  | 0.1400                         | 17.400       | 17.4         | 5.8         | 3.75                   | 0.2970                       |
| 16  | 0.1520                         | 17.900       | 17.9         | 6.3         | 3.86                   | 0.2971                       |
| 17  | 0.1600                         | 18.200       | 18.2         | 6.6         | 3.92                   | 0.2971                       |
| 18  | 0.1720                         | 18.700       | 18.7         | 7.1         | 4.03                   | 0.2971                       |
| 19  | 0.1800                         | 19.000       | 19.0         | 7.4         | 4.10                   | 0.2971                       |
| 20  | 0.1900                         | 19.000       | 19.0         | 7.8         | 4.10                   | 0.2972                       |
| 21  | 0.2000                         | 18.700       | 18.7         | 8.2         | 4.03                   | 0.2972                       |
| 22  | 0.2100                         | 18.900       | 18.9         | 8.6         | 4.08                   | 0.2973                       |
| 23  | 0.2200                         | 18.800       | 18.8         | 9.1         | 4.05                   | 0.2974                       |
| 24  | 0.2300                         | 18.900       | 18.9         | 9.5         | 4.08                   | 0.2974                       |
| 25  | 0.2400                         | 18.800       | 18.8         | 9.9         | 4.05                   | 0.2975                       |
| 26  | 0.2500                         | 18.700       | 18.7         | 10.3        | 4.03                   | 0.2975                       |

\_ Sierra Testing Labs, Inc. \_\_\_\_\_



Tested By: mw Checked By: mpw Date:

Client:

Project:

URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0010R, S09

Depth:

20-21.3

Sample Number:

S36263

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3705.300 |              | 3701.000 |
| Moisture content: Dry soil+tare, gms.   | 3680.400 |              | 3680.400 |
| Moisture content: Tare, gms.            | 3533.800 |              | 3533.800 |
| Moisture, %                             | 17.0     | 14.1         | 14.1     |
| Moist specimen weight, gms.             | 171.5    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in.²                              | 4.91     | 4.91         |          |
| leight, in.                             | 1.00     | 0.93         |          |
| Net decrease in height, in.             |          | 0.07         |          |
| Wet density, pcf                        | 133.1    | 139.4        |          |
| Dry density, pcf                        | 113.8    | 122.2        |          |
| /oid ratio                              | 0.4815   | 0.3793       |          |
| Saturation, %                           | 95.2     | 100.0        |          |

Load ring constant = .1213 lbs. per input unit

Normal stress = 4.6 psiStrain rate, in./min. = 0.03

Fail. Stress = 4.53 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 3.40         | 0.4          | 0.2         | 0.08                   | 0.0005                       |
| 2   | 0.0100                         | 23.70        | 2.9          | 0.4         | 0.59                   | 0.0005                       |
| 3   | 0.0200                         | 56.40        | 6.8          | 0.8         | 1.39                   | 0.0015                       |
| 4   | 0.0320                         | 87.50        | 10.6         | 1.3         | 2.16                   | 0.0025                       |
| 5   | 0.0400                         | 106.80       | 13.0         | 1.6         | 2.64                   | 0.0040                       |
| 6   | 0.0500                         | 124.10       | 15.1         | 2.0         | 3.07                   | 0.0045                       |
| 7   | 0.0600                         | 136.20       | 16.5         | 2.4         | 3.37                   | 0.0055                       |
| 8   | 0.0700                         | 145.00       | 17.6         | 2.8         | 3.58                   | 0.0070                       |
| 9   | 0.0820                         | 158.00       | 19.2         | 3.3         | 3.90                   | 0.0070                       |
| 10  | 0.0900                         | 164.60       | 20.0         | 3.6         | 4.07                   | 0.0070                       |
| 11  | 0.1000                         | 170.00       | 20.6         | 4.0         | 4.20                   | 0.0070                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 173.40       | 21.0         | 4.4         | 4.28                   | 0.0065                       |
| 13  | 0.1200                         | 177.50       | 21.5         | 4.8         | 4.39                   | 0.0070                       |
| 14  | 0.1300                         | 178.90       | 21.7         | 5.2         | 4.42                   | 0.0065                       |
| 15  | 0.1400                         | 180.20       | 21.9         | 5.6         | 4.45                   | 0.0065                       |
| 16  | 0.1500                         | 181.50       | 22.0         | 6.0         | 4.49                   | 0.0060                       |
| 17  | 0.1600                         | 183.30       | 22.2         | 6.4         | 4.53                   | 0.0060                       |
| 18  | 0.1700                         | 183.10       | 22.2         | 6.8         | 4.52                   | 0.0055                       |
| 19  | 0.1800                         | 183.00       | 22.2         | 7.2         | 4.52                   | 0.0050                       |
| 20  | 0.1900                         | 181.60       | 22.0         | 7.6         | 4.49                   | 0.0050                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 3717.100 |              | 3712.750 |
| Moisture content: Dry soil+tare, gms.  | 3692.200   |              | 3692.200 |
| Moisture content: Tare, gms.           | 3545.600   |              | 3545.600 |
| Moisture, %                            | 17.0       | 14.0         | 14.0     |
| Moist specimen weight, gms.            | 171.5      |              |          |
| Diameter, in.                          | 2.50       | 2.50         |          |
| Area, in. <sup>2</sup>                 | 4.91       | 4.91         |          |
| Height, in.                            | 1.00       | 0.93         |          |
| Net decrease in height, in.            |            | 0.07         |          |
| Wet density, pcf                       | 133.1      | 139.4        |          |
| Dry density, pcf                       | 113.8      | 122.3        |          |
| Void ratio                             | 0.4815     | 0.3785       |          |
| Saturation, %                          | 95.2       | 100.0        |          |

Load ring constant = .1819 lbs. per input unit

Normal stress = 9.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 7.13 psi at reading no. 18

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| NO. | 111.                           | Diai         | ius.         | /0          | hai                    | .111.                        |
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 44.00        | 8.0          | 0.2         | 1.63                   | 0.0015                       |
| 2   | 0.0100                         | 63.00        | 11.5         | 0.4         | 2.33                   | 0.0020                       |
| 3   | 0.0200                         | 90.90        | 16.5         | 0.8         | 3.37                   | 0.0035                       |
| 4   | 0.0300                         | 112.10       | 20.4         | 1.2         | 4.15                   | 0.0050                       |
| 5   | 0.0400                         | 128.00       | 23.3         | 1.6         | 4.74                   | 0.0060                       |
| 6   | 0.0500                         | 141.00       | 25.6         | 2.0         | 5.22                   | 0.0060                       |
| 7   | 0.0600                         | 150.00       | 27.3         | 2.4         | 5.56                   | 0.0065                       |
| 8   | 0.0720                         | 162.30       | 29.5         | 2.9         | 6.01                   | 0.0070                       |
| 9   | 0.0800                         | 168.20       | 30.6         | 3.2         | 6.23                   | 0.0070                       |
| 10  | 0.0900                         | 173.20       | 31.5         | 3.6         | 6.42                   | 0.0075                       |
| 11  | 0.1000                         | 177.60       | 32.3         | 4.0         | 6.58                   | 0.0075                       |
| 12  | 0.1100                         | 181.80       | 33.1         | 4.4         | 6.74                   | 0.0075                       |
| 13  | 0.1200                         | 182.40       | 33.2         | 4.8         | 6.76                   | 0.0075                       |
| 14  | 0.1300                         | 183.00       | 33.3         | 5.2         | 6.78                   | 0.0075                       |
|     |                                |              |              |             | 0.                     |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 15  | 0.1400                         | 187.00       | 34.0         | 5.6         | 6.93                   | 0.0075                       |
| 16  | 0.1500                         | 189.40       | 34.5         | 6.0         | 7.02                   | 0.0070                       |
| 17  | 0.1600                         | 191.30       | 34.8         | 6.4         | 7.09                   | 0.0070                       |
| 18  | 0.1700                         | 192.50       | 35.0         | 6.8         | 7.13                   | 0.0065                       |
| 19  | 0.1800                         | 192.10       | 34.9         | 7.2         | 7.12                   | 0.0060                       |
| 20  | 0.1900                         | 189.50       | 34.5         | 7.6         | 7.02                   | 0.0060                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 3706.100 |              | 3701.800 |
| Moisture content: Dry soil+tare, gms.  | 3681.400   |              | 3681.400 |
| /loisture content: Tare, gms.          | 3534.600   |              | 3534.600 |
| Noisture, %                            | 16.8       | 13.9         | 13.9     |
| loist specimen weight, gms.            | 171.5      |              |          |
| Diameter, in.                          | 2.50       | 2.50         |          |
| Area, in.²                             | 4.91       | 4.91         |          |
| leight, in.                            | 1.00       | 0.93         |          |
| let decrease in height, in.            |            | 0.07         |          |
| Vet density, pcf                       | 133.1      | 139.6        |          |
| Dry density, pcf                       | 113.9      | 122.6        |          |
| oid ratio                              | 0.4795     | 0.3752       |          |
| Saturation, %                          | 94.7       | 100.0        |          |

Load ring constant = .5000 lbs. per input unit

Normal stress = 18.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 13.96 psi at reading no. 15

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 35.10        | 17.6         | 0.2         | 3.58                   | 0.0015                       |
| 2   | 0.0100                         | 56.70        | 28.4         | 0.4         | 5.78                   | 0.0030                       |
| 3   | 0.0200                         | 75.90        | 38.0         | 0.8         | 7.73                   | 0.0055                       |
| 4   | 0.0300                         | 89.60        | 44.8         | 1.2         | 9.13                   | 0.0070                       |
| 5   | 0.0400                         | 100.40       | 50.2         | 1.6         | 10.23                  | 0.0075                       |
| 6   | 0.0500                         | 110.30       | 55.1         | 2.0         | 11.24                  | 0.0080                       |
| 7   | 0.0600                         | 117.90       | 59.0         | 2.4         | 12.01                  | 0.0070                       |
| 8   | 0.0720                         | 124.90       | 62.5         | 2.9         | 12.72                  | 0.0065                       |
| 9   | 0.0800                         | 128.30       | 64.2         | 3.2         | 13.07                  | 0.0065                       |
| 10  | 0.0900                         | 131.70       | 65.8         | 3.6         | 13.41                  | 0.0065                       |
| 11  | 0.1000                         | 133.40       | 66.7         | 4.0         | 13.59                  | 0.0065                       |
| 12  | 0.1100                         | 134.80       | 67.4         | 4.4         | 13.73                  | 0.0065                       |
| 13  | 0.1200                         | 135.90       | 68.0         | 4.8         | 13.84                  | 0.0065                       |
| 14  | 0.1300                         | 137.00       | 68.5         | 5.2         | 13.95                  | 0.0065                       |
| 15  | 0.1400                         | 137.10       | 68.5         | 5.6         | 13.96                  | 0.0060                       |
| 16  | 0.1500                         | 136.40       | 68.2         | 6.0         | 13.89                  | 0.0060                       |
| 17  | 0.1600                         | 134.80       | 67.4         | 6.4         | 13.73                  | 0.0065                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 18  | 0.1700                         | 133.90       | 67.0         | 6.8         | 13.64                  | 0.0065                       |
| 19  | 0.1800                         | 133.50       | 66.8         | 7.2         | 13.60                  | 0.0060                       |

\_\_\_\_\_ Sierra Testing Labs, Inc. \_\_\_\_\_



Tested By: mw Checked By: mpw

Date:

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.: 11-111

Location: S0010R, S12

**Depth:** 35-36.4 **Sample Number:** \$36265

Description: Remarks:

Type of Sample: Remold

Specific Gravity=2.70 LL= PL= Pl=

|                                         | Rajemataje | ind Appelment No. 1 |          |
|-----------------------------------------|------------|---------------------|----------|
| Specimen Parameter                      | Initial    | Consolidated        | Final    |
| Moisture content: Moist soil+tare, gms. | 3688.900   |                     | 3693.050 |
| Moisture content: Dry soil+tare, gms.   | 3663.900   |                     | 3663.900 |
| Moisture content: Tare, gms.            | 3534.200   |                     | 3534.200 |
| Moisture, %                             | 19.3       | 22.5                | 22.5     |
| Moist specimen weight, gms.             | 154.7      |                     |          |
| Diameter, in.                           | 2.50       | 2.50                |          |
| Area, in. <sup>2</sup>                  | 4.91       | 4.91                |          |
| Height, in.                             | 1.00       | 0.96                |          |
| Net decrease in height, in.             |            | 0.04                |          |
| Wet density, pcf                        | 120.1      | 128.5               |          |
| Dry density, pcf                        | 100.7      | 104.9               |          |
| Void ratio                              | 0.6745     | 0.6067              |          |
| Saturation, %                           | 77.2       | 100.0               |          |

Load ring constant = .2531 lbs. per input unit

Normal stress = 7.8 psiStrain rate, in./min. = 0.03

Fail. Stress = 8.28 psi at reading no. 21

|     | Horizontal<br>Def. Dial | Load   | Load | Strain | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|--------|------|--------|-----------------|-----------------------|
| No. | in.                     | Dial   | lbs. | %      | psi             | in.                   |
| O   | 0.0000                  | 0.00   | 0.0  | 0.0    | 0.00            | 0.0000                |
| 1   | 0.0050                  | 41.60  | 10.5 | 0.2    | 2.14            | 0.0035                |
| 2   | 0.0100                  | 63.60  | 16.1 | 0.4    | 3.28            | 0.0045                |
| 3   | 0.0200                  | 86.40  | 21.9 | 0.8    | 4.45            | 0.0060                |
| 4   | 0.0300                  | 109.60 | 27.7 | 1.2    | 5.65            | 0.0075                |
| 5   | 0.0430                  | 120.20 | 30.4 | 1.7    | 6.20            | 0.0090                |
| 6   | 0.0500                  | 127.20 | 32.2 | 2.0    | 6.56            | 0.0095                |
| 7   | 0.0600                  | 129.00 | 32.6 | 2.4    | 6.65            | 0.0100                |
| 8   | 0.0740                  | 145.40 | 36.8 | 3.0    | 7.50            | 0.0105                |
| 9   | 0.0800                  | 147.80 | 37.4 | 3.2    | 7.62            | 0.0105                |
| 10  | 0.0900                  | 149.60 | 37.9 | 3.6    | 7.71            | 0.0105                |
| 11  | 0.1000                  | 151.40 | 38.3 | 4.0    | 7.81            | 0.0105                |
|     |                         |        |      |        | 22020           | 525 524               |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 152.30       | 38.5         | 4.4         | 7.85                   | 0.0105                       |
| 13  | 0.1200                         | 153.00       | 38.7         | 4.8         | 7.89                   | 0.0105                       |
| 14  | 0.1320                         | 155.60       | 39.4         | 5.3         | 8.02                   | 0.0095                       |
| 15  | 0.1400                         | 157.10       | 39.8         | 5.6         | 8.10                   | 0.0095                       |
| 16  | 0.1500                         | 158.50       | 40.1         | 6.0         | 8.17                   | 0.0090                       |
| 17  | 0.1600                         | 158.80       | 40.2         | 6.4         | 8.19                   | 0.0085                       |
| 18  | 0.1700                         | 159.70       | 40.4         | 6.8         | 8.23                   | 0.0085                       |
| 19  | 0.1800                         | 160.00       | 40.5         | 7.2         | 8.25                   | 0.0085                       |
| 20  | 0.1900                         | 160.30       | 40.6         | 7.6         | 8.27                   | 0.0080                       |
| 21  | 0.2000                         | 160.50       | 40.6         | 8.0         | 8.28                   | 0.0075                       |
| 22  | 0.2100                         | 160.10       | 40.5         | 8.4         | 8.25                   | 0.0065                       |
| 23  | 0.2200                         | 159.60       | 40.4         | 8.8         | 8.23                   | 0.0060                       |
| 24  | 0.2300                         | 157.70       | 39.9         | 9.2         | 8.13                   | 0.0055                       |
| 25  | 0.2400                         | 155.80       | 39.4         | 9.6         | 8.03                   | 0.0055                       |

| Specimen Parameter                      | Initial  | Consolidated Final |  |
|-----------------------------------------|----------|--------------------|--|
| Moisture content: Moist soil+tare, gms. | 3692.300 | 3696.600           |  |
| Moisture content: Dry soil+tare, gms.   | 3666.800 | 3666.800           |  |
| Moisture content: Tare, gms.            | 3534.600 | 3534.600           |  |
| Moisture, %                             | 19.3     | 22.5 22.5          |  |
| Moist specimen weight, gms.             | 154.7    |                    |  |
| Diameter, in.                           | 2.50     | 2.50               |  |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91               |  |
| Height, in.                             | 1.00     | 0.96               |  |
| Net decrease in height, in.             |          | 0.04               |  |
| Wet density, pcf                        | 120.1    | 128.4              |  |
| Dry density, pcf                        | 100.6    | 104.8              |  |
| Void ratio                              | 0.6747   | 0.6086             |  |
| Saturation, %                           | 77.2     | 100.0              |  |
|                                         |          |                    |  |

**Load ring constant =** .3348 lbs. per input unit

Normal stress = 15.6 psiStrain rate, in./min. = 0.03

Fail. Stress = 14.82 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 104.00       | 34.8         | 0.2         | 7.09                   | 0.0030                       |
| 2   | 0.0100                         | 125.90       | 42.2         | 0.4         | 8.59                   | 0.0040                       |
| 3   | 0.0200                         | 154.00       | 51.6         | 0.8         | 10.50                  | 0.0050                       |
| 4   | 0.0300                         | 167.30       | 56.0         | 1.2         | 11.41                  | 0.0050                       |
| 5   | 0.0400                         | 188.60       | 63.1         | 1.6         | 12.86                  | 0.0050                       |
| 6   | 0.0500                         | 203.00       | 68.0         | 2.0         | 13.85                  | 0.0050                       |
| 7   | 0.0600                         | 207.30       | 69.4         | 2.4         | 14.14                  | 0.0050                       |
| 8   | 0.0700                         | 213.00       | 71.3         | 2.8         | 14.53                  | 0.0045                       |
| 9   | 0.0800                         | 217.30       | 72.8         | 3.2         | 14.82                  | 0.0040                       |
|     |                                |              |              |             |                        |                              |

| No | Horizontal<br>Def. Dial<br>. in. | Load<br>Dial | Load<br>Ibs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|----|----------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 10 | 0.0900                           | 217.10       | 72.7         | 3.6         | 14.81                  | 0.0035                       |
| 11 | 0.1000                           | 215.30       | 72.1         | 4.0         | 14.68                  | 0.0035                       |
| 12 | 0.1100                           | 213.60       | 71.5         | 4.4         | 14.57                  | 0.0025                       |
| 13 | 0.1200                           | 211.70       | 70.9         | 4.8         | 14.44                  | 0.0025                       |
| 14 | 0.1300                           | 210.00       | 70.3         | 5.2         | 14.32                  | 0.0025                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3692.300 |              | 3696.200 |
| Moisture content: Dry soil+tare, gms.   | 3667.000 |              | 3667.000 |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |
| Moisture, %                             | 19.1     | 22.1         | 22.1     |
| Moist specimen weight, gms.             | 154.7    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91         |          |
| Height, in.                             | 1.00     | 0.95         |          |
| Net decrease in height, in.             |          | 0.05         |          |
| Wet density, pcf                        | 120.1    | 129.0        |          |
| Dry density, pcf                        | 100.8    | 105.7        |          |
| Void ratio                              | 0.6722   | 0.5953       |          |
| Saturation, %                           | 76.8     | 100.0        |          |

Sierra Testing Labs, Inc.

**Load ring constant =** .6435 lbs. per input unit

Normal stress = 31.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 27.25 psi at reading no. 21

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.0000                       |  |
| 1   | 0.0070                         | 34.000       | 21.9         | 0.3         | 4.46                   | 0.0015                       |  |
| 2   | 0.0100                         | 43.100       | 27.7         | 0.4         | 5.65                   | 0.0015                       |  |
| 3   | 0.0200                         | 75.200       | 48.4         | 0.8         | 9.86                   | 0.0025                       |  |
| 4   | 0.0300                         | 98.200       | 63.2         | 1.2         | 12.87                  | 0.0035                       |  |
| 5   | 0.0400                         | 117.600      | 75.7         | 1.6         | 15.42                  | 0.0045                       |  |
| 6   | 0.0550                         | 139.000      | 89.4         | 2.2         | 18.22                  | 0.0050                       |  |
| 7   | 0.0600                         | 144.900      | 93.2         | 2.4         | 19.00                  | 0.0055                       |  |
| 8   | 0.0700                         | 155.700      | 100.2        | 2.8         | 20.41                  | 0.0055                       |  |
| 9   | 0.0800                         | 162.500      | 104.6        | 3.2         | 21.30                  | 0.0060                       |  |
| 10  | 0.0900                         | 171.300      | 110.2        | 3.6         | 22.46                  | 0.0055                       |  |
| 11  | 0.1000                         | 181.000      | 116.5        | 4.0         | 23.73                  | 0.0050                       |  |
| 12  | 0.1100                         | 188.600      | 121.4        | 4.4         | 24.72                  | 0.0050                       |  |
| 13  | 0.1200                         | 194.500      | 125.2        | 4.8         | 25.50                  | 0.0050                       |  |
| 14  | 0.1320                         | 198.700      | 127.9        | 5.3         | 26.05                  | 0.0040                       |  |
| 15  | 0.1400                         | 201.700      | 129.8        | 5.6         | 26.44                  | 0.0040                       |  |
| 16  | 0.1500                         | 204.000      | 131.3        | 6.0         | 26.74                  | 0.0035                       |  |
| 17  | 0.1600                         | 205.000      | 131.9        | 6.4         | 26.87                  | 0.0030                       |  |
| 18  | 0.1700                         | 206.900      | 133.1        | 6.8         | 27.12                  | 0.0025                       |  |
|     |                                |              |              |             |                        |                              |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 19  | 0.1800                         | 207.100      | 133.3        | 7.2         | 27.15                  | 0.0020                       |
| 20  | 0.1900                         | 207.800      | 133.7        | 7.6         | 27.24                  | 0.0015                       |
| 21  | 0.2000                         | 207.900      | 133.8        | 8.0         | 27.25                  | 0.0010                       |
| 22  | 0.2100                         | 207.800      | 133.7        | 8.4         | 27.24                  | 0.0005                       |
| 23  | 0.2250                         | 205.000      | 131.9        | 9.0         | 26.87                  | 0.0005                       |
| 24  | 0.2300                         | 204.600      | 131.7        | 9.2         | 26.82                  | 0.0005                       |
| 25  | 0.2400                         | 204.000      | 131.3        | 9.6         | 26.74                  | 0.0010                       |



Tested By: mw Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0012R, S02

Depth:

5-6.5

Sample Number:

S36267

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.000 |              | 2366.700 |
| Moisture content: Dry soil+tare, gms.   | 2346.400 |              | 2346.400 |
| Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |
| Moisture, %                             | 11.1     | 13.5         | 13.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 136.9    | 140.1        |          |
| Ory density, pcf                        | 123.3    | 123.4        |          |
| /oid ratio                              | 0.3671   | 0.3657       |          |
| Saturation, %                           | 81.3     | 99.9         |          |

Normal stress = 1.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.74 psi at reading no. 3

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 11.000       | 11.0         | 0.2         | 2.37                   | 0.3022                       |
| 2   | 0.0100                         | 12.600       | 12.6         | 0.4         | 2.72                   | 0.3040                       |
| 3   | 0.0250                         | 12.700       | 12.7         | 1.0         | 2.74                   | 0.3085                       |
| 4   | 0.0300                         | 12.000       | 12.0         | 1.2         | 2.59                   | 0.3093                       |
| 5   | 0.0400                         | 11.100       | 11.1         | 1.6         | 2.39                   | 0.3122                       |
| 6   | 0.0500                         | 10.700       | 10.7         | 2.1         | 2.31                   | 0.3129                       |
| 7   | 0.0600                         | 10.100       | 10.1         | 2.5         | 2.18                   | 0.3139                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.000 |              | 2366.000 |
| Moisture content: Dry soil+tare, gms.   | 2345.800 |              | 2345.800 |
| Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |
| Moisture, %                             | 11.5     | 13.5         | 13.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 136.9    | 140.2        |          |
| Dry density, pcf                        | 122.8    | 123.5        |          |
| Void ratio                              | 0.3725   | 0.3647       |          |
| Saturation, %                           | 83.4     | 100.0        |          |

Normal stress = 2.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 3.67 psi at reading no. 4

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 10.800       | 10.8         | 0.2         | 2.33                   | 0.3002                       |
| 2   | 0.0100                         | 13.500       | 13.5         | 0.4         | 2.91                   | 0.3016                       |
| 3   | 0.0200                         | 16.100       | 16.1         | 0.8         | 3.47                   | 0.3032                       |
| 4   | 0.0300                         | 17.000       | 17.0         | 1.2         | 3.67                   | 0.3061                       |
| 5   | 0.0430                         | 16.500       | 16.5         | 1.8         | 3.56                   | 0.3098                       |
| 6   | 0.0550                         | 14.400       | 14.4         | 2.3         | 3.10                   | 0.3112                       |
| 7   | 0.0650                         | 13.100       | 13.1         | 2.7         | 2.82                   | 0.3121                       |
| 8   | 0.0700                         | 13.000       | 13.0         | 2.9         | 2.80                   | 0.3125                       |
| 9   | 0.0800                         | 12.400       | 12.4         | 3.3         | 2.67                   | 0.3131                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.600 |              | 2367.100 |
| Moisture content: Dry soil+tare, gms.   | 2347.100 |              | 2347.100 |
| Moisture content: Tare, gms.            | 2196.900 |              | 2196.900 |
| Moisture, %                             | 11.0     | 13.3         | 13.3     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 136.9    | 140.4        |          |
| Dry density, pcf                        | 123.4    | 123.9        |          |
| Void ratio                              | 0.3661   | 0.3600       |          |
| Saturation, %                           | 81.0     | 99.9         |          |

Load ring constant = .8127 lbs. per input unit

Normal stress = 4.7 psi

Strain rate, in./min. = 0.03

Fail. Stress = 5.80 psi at reading no. 5

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.400        | 6.0          | 0.2         | 1.30                   | 0.3001                       |
| 2   | 0.0100                         | 13.600       | 11.1         | 0.4         | 2.38                   | 0.3002                       |
| 3   | 0.0200                         | 21.800       | 17.7         | 0.8         | 3.82                   | 0.3017                       |
| 4   | 0.0300                         | 30.000       | 24.4         | 1.2         | 5.26                   | 0.3030                       |
| 5   | 0.0400                         | 33.100       | 26.9         | 1.6         | 5.80                   | 0.3061                       |
| 6   | 0.0500                         | 31.900       | 25.9         | 2.1         | 5.59                   | 0.3098                       |
| 7   | 0.0650                         | 29.500       | 24.0         | 2.7         | 5.17                   | 0.3121                       |
| 8   | 0.0720                         | 28.600       | 23.2         | 3.0         | 5.01                   | 0.3132                       |
| 9   | 0.0800                         | 27.500       | 22.3         | 3.3         | 4.82                   | 0.3144                       |
| 10  | 0.0950                         | 26.000       | 21.1         | 3.9         | 4.56                   | 0.3158                       |
| 11  | 0.1000                         | 25.300       | 20.6         | 4.1         | 4.43                   | 0.3159                       |

|        | Section 1 Contract |      | 144 |
|--------|--------------------|------|-----|
| Sierra | Testing            | lahs | Inc |



Tested By: MW Checked By: MPW

1/16/2012

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0012R, S07

Depth:

12.5-13.8

Sample Number:

S36268

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 3703.500 |              | 3699.800 |
| Moisture content: Dry soil+tare, gms.   | 3677.000 |              | 3677.000 |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |
| Moisture, %                             | 18.6     | 16.0         | 16.0     |
| Moist specimen weight, gms.             | 168.9    |              |          |
| Diameter, in.                           | 2.50     | 2.50         |          |
| Area, in.²                              | 4.91     | 4.91         |          |
| leight, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 131.1    | 136.5        |          |
| Dry density, pcf                        | 110.5    | 117.6        |          |
| Void ratio                              | 0.5252   | 0.4329       |          |
| Saturation, %                           | 95.7     | 99.9         |          |

**Load ring constant =** .1323 lbs. per input unit

Normal stress = 3.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 4.81 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 21.20        | 2.8          | 0.2         | 0.57                   | 0.0005                       |
| 2   | 0.0100                         | 46.10        | 6.1          | 0.4         | 1.24                   | 0.0005                       |
| 3   | 0.0200                         | 63.40        | 8.4          | 0.8         | 1.71                   | 0.0010                       |
| 4   | 0.0300                         | 82.50        | 10.9         | 1.2         | 2.22                   | 0.0025                       |
| 5   | 0.0400                         | 104.00       | 13.8         | 1.6         | 2.80                   | 0.0035                       |
| 6   | 0.0500                         | 121.60       | 16.1         | 2.0         | 3.28                   | 0.0035                       |
| 7   | 0.0600                         | 134.50       | 17.8         | 2.4         | 3.63                   | 0.0040                       |
| 8   | 0.0700                         | 146.20       | 19.3         | 2.8         | 3.94                   | 0.0040                       |
| 9   | 0.0800                         | 155.00       | 20.5         | 3.2         | 4.18                   | 0.0045                       |
| 10  | 0.0900                         | 160.50       | 21.2         | 3.6         | 4.33                   | 0.0045                       |
| 11  | 0.1000                         | 166.00       | 22.0         | 4.0         | 4.47                   | 0.0040                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 171.50       | 22.7         | 4.4         | 4.62                   | 0.0040                       |
| 13  | 0.1200                         | 174.00       | 23.0         | 4.8         | 4.69                   | 0.0035                       |
| 14  | 0.1300                         | 176.90       | 23.4         | 5.2         | 4.77                   | 0.0030                       |
| 15  | 0.1400                         | 178.00       | 23.5         | 5.6         | 4.80                   | 0.0025                       |
| 16  | 0.1500                         | 178.00       | 23.5         | 6.0         | 4.80                   | 0.0020                       |
| 17  | 0.1600                         | 178.50       | 23.6         | 6.4         | 4.81                   | 0.0015                       |
| 18  | 0.1700                         | 177.40       | 23.5         | 6.8         | 4.78                   | 0.0015                       |
| 19  | 0.1800                         | 177.00       | 23.4         | 7.2         | 4.77                   | 0.0005                       |
| 20  | 0.1900                         | 177.50       | 23.5         | 7.6         | 4.78                   | 0.0005                       |
| 21  | 0.2000                         | 176.10       | 23.3         | 8.0         | 4.75                   | 0.0005                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 3703.500 |              | 3700.350 |  |
| Moisture content: Dry soil+tare, gms.   | 3677.000 |              | 3677.000 |  |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |  |
| Moisture, %                             | 18.6     | 16.4         | 16.4     |  |
| Moist specimen weight, gms.             | 168.9    |              |          |  |
| Diameter, in.                           | 2.50     | 2.50         |          |  |
| Area, in. <sup>2</sup>                  | 4.91     | 4.91         |          |  |
| Height, in.                             | 1.00     | 0.95         |          |  |
| Net decrease in height, in.             |          | 0.05         |          |  |
| Wet density, pcf                        | 131.1    | 136.0        |          |  |
| Dry density, pcf                        | 110.5    | 116.8        |          |  |
| Void ratio                              | 0.5252   | 0.4428       |          |  |
| Saturation, %                           | 95.7     | 100.0        |          |  |

Load ring constant = .1943 lbs. per input unit

Normal stress = 6.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 8.16 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                       |
| 1   | 0.0050                         | 47.50        | 9.2          | 0.2         | 1.88                   | 0.0005                       |
| 2   | 0.0100                         | 71.20        | 13.8         | 0.4         | 2.82                   | 0.0005                       |
| 3   | 0.0200                         | 107.10       | 20.8         | 0.8         | 4.24                   | 0.0005                       |
| 4   | 0.0330                         | 135.10       | 26.2         | 1.3         | 5.35                   | 0.0020                       |
| 5   | 0.0400                         | 149.00       | 29.0         | 1.6         | 5.90                   | 0.0020                       |
| 6   | 0.0500                         | 164.10       | 31.9         | 2.0         | 6.50                   | 0.0025                       |
| 7   | 0.0650                         | 181.00       | 35.2         | 2.6         | 7.16                   | 0.0015                       |
| 8   | 0.0700                         | 189.20       | 36.8         | 2.8         | 7.49                   | 0.0010                       |
| 9   | 0.0800                         | 194.00       | 37.7         | 3.2         | 7.68                   | 0.0005                       |
| 10  | 0.0900                         | 198.70       | 38.6         | 3.6         | 7.87                   | 0.0000                       |
| 11  | 0.1000                         | 201.70       | 39.2         | 4.0         | 7.98                   | -0.0005                      |
| 12  | 0.1100                         | 205.20       | 39.9         | 4.4         | 8.12                   | -0.0010                      |
| 13  | 0.1200                         | 206.10       | 40.0         | 4.8         | 8.16                   | -0.0015                      |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 14  | 0.1300                         | 206.00       | 40.0         | 5.2         | 8.15                   | -0.0025                      |
| 15  | 0.1400                         | 205.60       | 39.9         | 5.6         | 8.14                   | -0.0030                      |
| 16  | 0.1560                         | 204.00       | 39.6         | 6.2         | 8.07                   | -0.0035                      |
| 17  | 0.1600                         | 203.80       | 39.6         | 6.4         | 8.07                   | -0.0040                      |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 3703.500 |              | 3709.050 |  |
| Moisture content: Dry soil+tare, gms.   | 3677.200 |              | 3677.200 |  |
| Moisture content: Tare, gms.            | 3534.600 |              | 3534.600 |  |
| Moisture, %                             | 18.4     | 22.3         | 22.3     |  |
| Moist specimen weight, gms.             | 168.9    |              |          |  |
| Diameter, in.                           | 2.50     | 2.50         |          |  |
| Area, in.²                              | 4.91     | 4.91         |          |  |
| Height, in.                             | 1.00     | 1.05         |          |  |
| Net decrease in height, in.             |          | -0.05        |          |  |
| Wet density, pcf                        | 131.1    | 128.6        |          |  |
| Dry density, pcf                        | 110.7    | 105.1        |          |  |
| Void ratio                              | 0.5231   | 0.6030       |          |  |
| Saturation, %                           | 95.2     | 100.0        |          |  |

Load ring constant = .2828 lbs. per input unit

Normal stress = 12.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 13.35 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dia<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|-----------------------------|
| 0   | 0.0000                         | 0.00         | 0.0          | 0.0         | 0.00                   | 0.0000                      |
| 1   | 0.0050                         | 82.60        | 23.4         | 0.2         | 4.76                   | 0.0005                      |
| 2   | 0.0100                         | 121.00       | 34.2         | 0.4         | 6.97                   | 0.0005                      |
| 3   | 0.0200                         | 147.00       | 41.6         | 0.8         | 8.47                   | 0.0005                      |
| 4   | 0.0300                         | 172.00       | 48.6         | 1.2         | 9.91                   | 0.0005                      |
| 5   | 0.0400                         | 191.90       | 54.3         | 1.6         | 11.06                  | 0.0000                      |
| 6   | 0.0500                         | 200.70       | 56.8         | 2.0         | 11.56                  | 0.0000                      |
| 7   | 0.0600                         | 212.00       | 60.0         | 2.4         | 12.21                  | 0.0005                      |
| 8   | 0.0720                         | 222.00       | 62.8         | 2.9         | 12.79                  | 0.0010                      |
| 9   | 0.0800                         | 226.80       | 64.1         | 3.2         | 13.07                  | 0.0025                      |
| 10  | 0.0900                         | 229.00       | 64.8         | 3.6         | 13.19                  | 0.0035                      |
| 11  | 0.1040                         | 231.50       | 65.5         | 4.2         | 13.34                  | 0.0045                      |
| 12  | 0.1100                         | 231.70       | 65.5         | 4.4         | 13.35                  | 0.0050                      |
| 13  | 0.1230                         | 231.00       | 65.3         | 4.9         | 13.31                  | 0.0055                      |
| 14  | 0.1350                         | 228.40       | 64.6         | 5.4         | 13.16                  | 0.0065                      |
| 15  | 0.1450                         | 228.00       | 64.5         | 5.8         | 13.14                  | 0.0075                      |
| 16  | 0.1500                         | 226.00       | 63.9         | 6.0         | 13.02                  | 0.0085                      |
|     |                                |              |              |             |                        |                             |



Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0014R, S02

Depth:

5-6.5

Sample Number:

S36278

Description:

Remarks:

Remold

Type of Sample: 3
Specific Gravity=2.70

LL=

PL=

PI=

|                                         | Hemens   |              |          |
|-----------------------------------------|----------|--------------|----------|
| Specimen Parameter                      | Initial  | Consolidated | Final    |
| Moisture content: Moist soil+tare, gms. | 2338.200 |              | 2361.350 |
| Moisture content: Dry soil+tare, gms.   | 2328.700 |              | 2328.700 |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |
| Moisture, %                             | 8.2      | 28.2         | 28.2     |
| Moist specimen weight, gms.             | 125.3    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 102.9    | 122.6        |          |
| Dry density, pcf                        | 95.1     | 95.7         |          |
| Void ratio                              | 0.7720   | 0.7619       |          |
| Saturation, %                           | 28.7     | 99.9         |          |

Load ring constant = 1.2322 lbs. per input unit

Normal stress = 1.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 1.04 psi at reading no. 5

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0080                         | 3.000        | 3.7          | 0.3         | 0.80                   | 0.2991                       |
| 2   | 0.0100                         | 2.900        | 3.6          | 0.4         | 0.77                   | 0.2998                       |
| 3   | 0.0200                         | 2.900        | 3.6          | 0.8         | 0.77                   | 0.2999                       |
| 4   | 0.0320                         | 3.200        | 3.9          | 1.3         | 0.85                   | 0.2991                       |
| 5   | 0.0400                         | 3.900        | 4.8          | 1.6         | 1.04                   | 0.2972                       |
| 6   | 0.0500                         | 3.800        | 4.7          | 2.1         | 1.01                   | 0.2970                       |
| 7   | 0.0600                         | 2.600        | 3.2          | 2.5         | 0.69                   | 0.2970                       |
| 8   | 0.0700                         | 2.800        | 3.5          | 2.9         | 0.74                   | 0.2969                       |
| 9   | 0.0800                         | 2.900        | 3.6          | 3.3         | 0.77                   | 0.2964                       |
| 10  | 0.0900                         | 3.000        | 3.7          | 3.7         | 0.80                   | 0.2961                       |
| 11  | 0.1000                         | 2.800        | 3.5          | 4.1         | 0.74                   | 0.2961                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2322.500 |              | 2345.800 |
| Moisture content: Dry soil+tare, gms.   | 2313.100 |              | 2313.100 |
| Moisture content: Tare, gms.            | 2197.200 |              | 2197.200 |
| Moisture, %                             | 8.1      | 28.2         | 28.2     |
| Moist specimen weight, gms.             | 125.3    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 102.9    | 122.6        |          |
| Dry density, pcf                        | 95.2     | 95.6         |          |
| /oid ratio                              | 0.7705   | 0.7627       |          |
| Saturation, %                           | 28.4     | 99.9         |          |

**Load ring constant =** 1.4343 lbs. per input unit

Normal stress = 2.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 1.73 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.300        | 6.2          | 0.2         | 1.33                   | 0.2998                       |
| 2   | 0.0100                         | 4.600        | 6.6          | 0.4         | 1.42                   | 0.2998                       |
| 3   | 0.0250                         | 4.300        | 6.2          | 1.0         | 1.33                   | 0.2996                       |
| 4   | 0.0300                         | 4.700        | 6.7          | 1.2         | 1.45                   | 0.2995                       |
| 5   | 0.0400                         | 4.400        | 6.3          | 1.6         | 1.36                   | 0.2996                       |
| 6   | 0.0500                         | 4.200        | 6.0          | 2.1         | 1.30                   | 0.2991                       |
| 7   | 0.0600                         | 4.500        | 6.5          | 2.5         | 1.39                   | 0.2990                       |
| 8   | 0.0700                         | 4.600        | 6.6          | 2.9         | 1.42                   | 0.2990                       |
| 9   | 0.0800                         | 4.800        | 6.9          | 3.3         | 1.48                   | 0.2988                       |
| 10  | 0.0900                         | 4.300        | 6.2          | 3.7         | 1.33                   | 0.2985                       |
| 11  | 0.1000                         | 4.500        | 6.5          | 4.1         | 1.39                   | 0.2983                       |
| 12  | 0.1100                         | 5.600        | 8.0          | 4.5         | 1.73                   | 0.2980                       |
| 13  | 0.1200                         | 5.100        | 7.3          | 4.9         | 1.58                   | 0.2979                       |
| 14  | 0.1300                         | 5.000        | 7.2          | 5.3         | 1.55                   | 0.2976                       |
| 15  | 0.1400                         | 4.500        | 6.5          | 5.8         | 1.39                   | 0.2975                       |
| 16  | 0.1500                         | 4.900        | 7.0          | 6.2         | 1.52                   | 0.2972                       |
| 17  | 0.1600                         | 5.000        | 7.2          | 6.6         | 1.55                   | 0.2971                       |
| 18  | 0.1700                         | 5.500        | 7.9          | 7.0         | 1.70                   | 0.2970                       |
| 19  | 0.1800                         | 4.900        | 7.0          | 7.4         | 1.52                   | 0.2970                       |
| 20  | 0.1900                         | 5.300        | 7.6          | 7.8         | 1.64                   | 0.2970                       |
| 21  | 0.2000                         | 4.600        | 6.6          | 8.2         | 1.42                   | 0.2969                       |
| 22  | 0.2100                         | 5.000        | 7.2          | 8.6         | 1.55                   | 0.2967                       |
| 23  | 0.2200                         | 5.000        | 7.2          | 9.1         | 1.55                   | 0.2966                       |

|        |         | 20 20 | 120 |
|--------|---------|-------|-----|
| Sierra | Testing | lahs  | Inc |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2338.200 |              | 2360.700 |
| Moisture content: Dry soil+tare, gms.   | 2328.900 |              | 2328.900 |
| Moisture content: Tare, gms.            | 2212.900 |              | 2212.900 |
| Moisture, %                             | 8.0      | 27.4         | 27.4     |
| Moist specimen weight, gms.             | 125.3    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 102.9    | 123.4        |          |
| Dry density, pcf                        | 95.3     | 96.8         |          |
| Void ratio                              | 0.7689   | 0.7406       |          |
| Saturation, %                           | 28.2     | 99.9         |          |

Normal stress = 4.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 3.47 psi at reading no. 26

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.700        | 4.7          | 0.2         | 1.01                   | 0.2981                       |
| 2   | 0.0100                         | 8.000        | 8.0          | 0.4         | 1.72                   | 0.2950                       |
| 3   | 0.0200                         | 9.200        | 9.2          | 0.8         | 1.98                   | 0.2940                       |
| 4   | 0.0350                         | 10.000       | 10.0         | 1.4         | 2.16                   | 0.2930                       |
| 5   | 0.0400                         | 10.100       | 10.1         | 1.6         | 2.18                   | 0.2927                       |
| 6   | 0.0500                         | 10.600       | 10.6         | 2.1         | 2.29                   | 0.2921                       |
| 7   | 0.0600                         | 11.100       | 11.1         | 2.5         | 2.39                   | 0.2912                       |
| 8   | 0.0740                         | 11.700       | 11.7         | 3.0         | 2.52                   | 0.2904                       |
| 9   | 0.0800                         | 12.100       | 12.1         | 3.3         | 2.61                   | 0.2902                       |
| 10  | 0.0900                         | 12.900       | 12.9         | 3.7         | 2.78                   | 0.2900                       |
| 11  | 0.1000                         | 13.100       | 13.1         | 4.1         | 2.82                   | 0.2900                       |
| 12  | 0.1120                         | 13.000       | 13.0         | 4.6         | 2.80                   | 0.2900                       |
| 13  | 0.1200                         | 12.600       | 12.6         | 4.9         | 2.72                   | 0.2896                       |
| 14  | 0.1300                         | 13.600       | 13.6         | 5.3         | 2.93                   | 0.2892                       |
| 15  | 0.1400                         | 14.300       | 14.3         | 5.8         | 3.08                   | 0.2890                       |
| 16  | 0.1500                         | 14.500       | 14.5         | 6.2         | 3.13                   | 0.2890                       |
| 17  | 0.1630                         | 14.500       | 14.5         | 6.7         | 3.13                   | 0.2894                       |
| 18  | 0.1740                         | 14.600       | 14.6         | 7.2         | 3.15                   | 0.2899                       |
| 19  | 0.1830                         | 14.800       | 14.8         | 7.5         | 3.19                   | 0.2899                       |
| 20  | 0.1940                         | 15.000       | 15.0         | 8.0         | 3.23                   | 0.2899                       |
| 21  | 0.2000                         | 14.800       | 14.8         | 8.2         | 3.19                   | 0.2899                       |
| 22  | 0.2100                         | 15.000       | 15.0         | 8.6         | 3.23                   | 0.2887                       |
| 23  | 0.2200                         | 15.200       | 15.2         | 9.1         | 3.28                   | 0.2881                       |
| 24  | 0.2340                         | 15.000       | 15.0         | 9.6         | 3.23                   | 0.2882                       |
| 25  | 0.2400                         | 15.500       | 15.5         | 9.9         | 3.34                   | 0.2884                       |
| 26  | 0.2550                         | 16.100       | 16.1         | 10.5        | 3.47                   | 0.2883                       |
| 27  | 0.2600                         | 16.000       | 16.0         | 10.7        | 3.45                   | 0.2883                       |
| 28  | 0.2700                         | 16.000       | 16.0         | 11.1        | 3.45                   | 0.2883                       |
|     |                                |              |              |             | _ Sierr                | a Testing Labs, Inc          |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 29  | 0.2800                         | 15.500       | 15.5         | 11.5        | 3.34                   | 0.2834                       |
| 30  | 0.2900                         | 15.200       | 15.2         | 11.9        | 3.28                   | 0.2835                       |
| 31  | 0.3000                         | 15.100       | 15.1         | 12.3        | 3.26                   | 0.2835                       |
| 32  | 0.3100                         | 15.100       | 15.1         | 12.8        | 3.26                   | 0.2835                       |
| 33  | 0.3200                         | 15.000       | 15.0         | 13.2        | 3.23                   | 0.2836                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

1/16/2012

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0014R, S11

Depth:

11-12.3

Sample Number:

S36280

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         |          | in appenion had |          |  |
|-----------------------------------------|----------|-----------------|----------|--|
| Specimen Parameter                      | Initial  | Consolidated    | Final    |  |
| Moisture content: Moist soil+tare, gms. | 2363.100 |                 | 2364.550 |  |
| Moisture content: Dry soil+tare, gms.   | 2342.900 |                 | 2342.900 |  |
| Moisture content: Tare, gms.            | 2196.400 |                 | 2196.400 |  |
| Moisture, %                             | 13.8     | 14.8            | 14.8     |  |
| Moist specimen weight, gms.             | 166.7    |                 |          |  |
| Diameter, in.                           | 2.43     | 2.43            |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64            |          |  |
| Height, in.                             | 1.00     | 1.00            |          |  |
| Net decrease in height, in.             |          | 0.00            |          |  |
| Wet density, pcf                        | 136.9    | 138.3           |          |  |
| Dry density, pcf                        | 120.3    | 120.5           |          |  |
| Void ratio                              | 0.4007   | 0.3988          |          |  |
| Saturation, %                           | 92.9     | 100.0           |          |  |

**Load ring constant =** 1.8676 lbs. per input unit

Normal stress = 2.3 psi

Strain rate, in./min. = 0.03

Fail. Stress = 4.11 psi at reading no. 11

|     | Horizontal       |              |              | o           | Shear         | Vertical         |
|-----|------------------|--------------|--------------|-------------|---------------|------------------|
| No. | Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Stress<br>psi | Def. Dial<br>in. |
| 0   | 0.0000           | 0.000        | 0.0          | 0.0         | 0.00          | 0.3000           |
| 1   | 0.0050           | 4.700        | 8.8          | 0.2         | 1.89          | 0.3005           |
| 2   | 0.0100           | 5.600        | 10.5         | 0.4         | 2.26          | 0.3010           |
| 3   | 0.0200           | 6.700        | 12.5         | 0.8         | 2.70          | 0.3019           |
| 4   | 0.0300           | 7.900        | 14.8         | 1.2         | 3.18          | 0.3032           |
| 5   | 0.0420           | 9.000        | 16.8         | 1.7         | 3.62          | 0.3060           |
| 6   | 0.0500           | 9.400        | 17.6         | 2.1         | 3.79          | 0.3079           |
| 7   | 0.0630           | 10.000       | 18.7         | 2.6         | 4.03          | 0.3101           |
| 8   | 0.0750           | 10.000       | 18.7         | 3.1         | 4.03          | 0.3122           |
| 9   | 0.0850           | 10.100       | 18.9         | 3.5         | 4.07          | 0.3138           |
| 10  | 0.0900           | 10.100       | 18.9         | 3.7         | 4.07          | 0.3144           |
| 11  | 0.1000           | 10.200       | 19.0         | 4.1         | 4.11          | 0.3160           |
|     |                  |              |              |             |               |                  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1150                         | 9.700        | 18.1         | 4.7         | 3.91                   | 0.3179                       |
| 13  | 0.1200                         | 9.100        | 17.0         | 4.9         | 3.66                   | 0.3180                       |
| 14  | 0.1300                         | 9.300        | 17.4         | 5.3         | 3.75                   | 0.3189                       |
| 15  | 0.1400                         | 9.200        | 17.2         | 5.8         | 3.70                   | 0.3200                       |
| 16  | 0.1500                         | 8.000        | 14.9         | 6.2         | 3.22                   | 0.3208                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.100 |              | 2363.850 |
| Moisture content: Dry soil+tare, gms.   | 2342.800 |              | 2342.800 |
| Moisture content: Tare, gms.            | 2196.400 |              | 2196.400 |
| Moisture, %                             | 13.9     | 14.4         | 14.4     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 136.9    | 138.8        |          |
| Dry density, pcf                        | 120.3    | 121.4        |          |
| Void ratio                              | 0.4016   | 0.3887       |          |
| Saturation, %                           | 93.2     | 99.9         |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 4.6 psi

Strain rate, in./min. = 0.03

Fail. Stress = 6.01 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.100        | 6.4          | 0.2         | 1.38                   | 0.3000                       |
| 2   | 0.0100                         | 12.600       | 11.3         | 0.4         | 2.44                   | 0.3001                       |
| 3   | 0.0240                         | 19.600       | 17.6         | 1.0         | 3.80                   | 0.3002                       |
| 4   | 0.0300                         | 22.700       | 20.4         | 1.2         | 4.40                   | 0.3011                       |
| 5   | 0.0400                         | 25.600       | 23.0         | 1.6         | 4.96                   | 0.3029                       |
| 6   | 0.0500                         | 28.000       | 25.2         | 2.1         | 5.43                   | 0.3041                       |
| 7   | 0.0620                         | 30.600       | 27.5         | 2.6         | 5.93                   | 0.3070                       |
| 8   | 0.0700                         | 31.000       | 27.9         | 2.9         | 6.01                   | 0.3083                       |
| 9   | 0.0800                         | 30.600       | 27.5         | 3.3         | 5.93                   | 0.3112                       |
| 10  | 0.0900                         | 30.100       | 27.1         | 3.7         | 5.83                   | 0.3134                       |
| 11  | 0.1000                         | 29.700       | 26.7         | 4.1         | 5.76                   | 0.3148                       |
| 12  | 0.1100                         | 28.800       | 25.9         | 4.5         | 5.58                   | 0.3160                       |
|     |                                |              |              |             |                        |                              |

|                                         |          | CorStantmen No. 3 |          |
|-----------------------------------------|----------|-------------------|----------|
| Specimen Parameter                      | Initial  | Consolidated      | Final    |
| Moisture content: Moist soil+tare, gms. | 2379.300 |                   | 2380.150 |
| Moisture content: Dry soil+tare, gms.   | 2359.200 |                   | 2359.200 |
| Moisture content: Tare, gms.            | 2212.600 |                   | 2212.600 |
| Moisture, %                             | 13.7     | 14.3              | 14.3     |
| Moist specimen weight, gms.             | 166.7    |                   |          |
| Diameter, in.                           | 2.43     | 2.43              |          |
| Area, in.²                              | 4.64     | 4.64              |          |
| Height, in.                             | 1.00     | 0.99              |          |
| Net decrease in height, in.             |          | 0.01              |          |
| Wet density, pcf                        | 136.9    | 139.0             |          |
| Dry density, pcf                        | 120.4    | 121.6             |          |
| Void ratio                              | 0.3997   | 0.3864            |          |
| Saturation, %                           | 92.6     | 99.9              |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 9.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 10.48 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 12.000       | 10.8         | 0.2         | 2.33                   | 0.2990                       |
| 2   | 0.0120                         | 22.100       | 19.9         | 0.5         | 4.28                   | 0.2985                       |
| 3   | 0.0200                         | 29.600       | 26.6         | 0.8         | 5.74                   | 0.2984                       |
| 4   | 0.0320                         | 40.000       | 36.0         | 1.3         | 7.75                   | 0.2997                       |
| 5   | 0.0410                         | 44.800       | 40.3         | 1.7         | 8.68                   | 0.3008                       |
| 6   | 0.0540                         | 50.800       | 45.7         | 2.2         | 9.85                   | 0.3040                       |
| 7   | 0.0600                         | 51.800       | 46.6         | 2.5         | 10.04                  | 0.3058                       |
| 8   | 0.0710                         | 53.600       | 48.2         | 2.9         | 10.39                  | 0.3067                       |
| 9   | 0.0800                         | 54.100       | 48.6         | 3.3         | 10.48                  | 0.3098                       |
| 10  | 0.0900                         | 53.000       | 47.6         | 3.7         | 10.27                  | 0.3114                       |
| 11  | 0.1050                         | 50.000       | 44.9         | 4.3         | 9.69                   | 0.3132                       |
| 12  | 0.1100                         | 48.900       | 44.0         | 4.5         | 9.48                   | 0.3140                       |

| 0:     | man        |       |      |
|--------|------------|-------|------|
| Sierra | Testing    | ahe   | Inc  |
| OICHA  | I CSIIII U | Laus. | 1116 |



## 1/5/2012

## **DIRECT SHEAR TEST**

Date:

Client: URS / HMM/ ARUP Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0015R, S02

Depth:

5-6.5

Sample Number:

PI=

S36287

Description:

Remarks: Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2322.900 |              | 2340.900 |
| Moisture content: Dry soil+tare, gms.   | 2305.300 |              | 2305.300 |
| Moisture content: Tare, gms.            | 2196.400 |              | 2196.400 |
| Moisture, %                             | 16.2     | 32.7         | 32.7     |
| Moist specimen weight, gms.             | 126.5    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 103.9    | 118.7        |          |
| Dry density, pcf                        | 89.5     | 89.5         |          |
| Void ratio                              | 0.8843   | 0.8839       |          |
| Saturation, %                           | 49.3     | 99.9         |          |

Normal stress = 1.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 0.67 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 0.700        | 0.7          | 0.2         | 0.15                   | 0.2995                       |
| 2   | 0.0100                         | 1.200        | 1.2          | 0.4         | 0.26                   | 0.2994                       |
| 3   | 0.0200                         | 2.000        | 2.0          | 0.8         | 0.43                   | 0.3006                       |
| 4   | 0.0300                         | 2.100        | 2.1          | 1.2         | 0.45                   | 0.3020                       |
| 5   | 0.0420                         | 2.600        | 2.6          | 1.7         | 0.56                   | 0.3032                       |
| 6   | 0.0500                         | 1.900        | 1.9          | 2.1         | 0.41                   | 0.3043                       |
| 7   | 0.0600                         | 1.700        | 1.7          | 2.5         | 0.37                   | 0.3049                       |
| 8   | 0.0750                         | 2.000        | 2.0          | 3.1         | 0.43                   | 0.3051                       |
| 9   | 0.0840                         | 2.900        | 2.9          | 3.5         | 0.63                   | 0.3051                       |
| 10  | 0.0900                         | 3.000        | 3.0          | 3.7         | 0.65                   | 0.3052                       |
| 11  | 0.1000                         | 3.100        | 3.1          | 4.1         | 0.67                   | 0.3052                       |
| 12  | 0.1100                         | 2.500        | 2.5          | 4.5         | 0.54                   | 0.3053                       |
|     |                                |              |              |             |                        |                              |

# residendings for Speather No. 1

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 2.500        | 2.5          | 4.9         | 0.54                   | 0.3057                       |
| 14  | 0.1300                         | 2.400        | 2.4          | 5.3         | 0.52                   | 0.3058                       |

|                                         |          | risitor Spaalmen No. 2 |          |
|-----------------------------------------|----------|------------------------|----------|
| Specimen Parameter                      | Initial  | Consolidated           | Final    |
| Moisture content: Moist soil+tare, gms. | 2338.700 |                        | 2356.700 |
| Moisture content: Dry soil+tare, gms.   | 2321.200 |                        | 2321.200 |
| Moisture content: Tare, gms.            | 2212.200 |                        | 2212.200 |
| Moisture, %                             | 16.1     | 32.6                   | 32.6     |
| Moist specimen weight, gms.             | 126.5    |                        |          |
| Diameter, in.                           | 2.43     | 2.43                   |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64                   |          |
| Height, in.                             | 1.00     | 1.00                   |          |
| Net decrease in height, in.             |          | 0.00                   |          |
| Wet density, pcf                        | 103.9    | 118.9                  |          |
| Dry density, pcf                        | 89.5     | 89.7                   |          |
| Void ratio                              | 0.8825   | 0.8793                 |          |
| Saturation, %                           | 49.1     | 100.0                  |          |

Test Resulton to Speciment No.

Normal stress = 2.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.81 psi at reading no. 8

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                                            | Load<br>lbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0050                         | 3.200                                                                                                                   | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0100                         | 4.000                                                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0200                         | 5.300                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0300                         | 5.900                                                                                                                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0400                         | 6.200                                                                                                                   | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0500                         | 7.100                                                                                                                   | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0600                         | 8.200                                                                                                                   | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0700                         | 8.400                                                                                                                   | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0820                         | 7.700                                                                                                                   | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0900                         | 7.800                                                                                                                   | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1000                         | 8.200                                                                                                                   | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1120                         | 8.000                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1200                         | 8.000                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1300                         | 8.000                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1430                         | 8.000                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1500                         | 7.900                                                                                                                   | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Def. Dial in.  0.0000 0.0050 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0820 0.0900 0.1120 0.1200 0.1300 0.1430 | Def. Dial in.         Load Dial           0.0000         0.000           0.0050         3.200           0.0100         4.000           0.0200         5.300           0.0300         5.900           0.0400         6.200           0.0500         7.100           0.0600         8.200           0.0700         8.400           0.0920         7.700           0.1000         8.200           0.1120         8.000           0.1300         8.000           0.1430         8.000 | Def. Dial in.         Load Dial Dial         Load Ibs.           0.0000         0.000         0.0           0.0050         3.200         3.2           0.0100         4.000         4.0           0.0200         5.300         5.3           0.0300         5.900         5.9           0.0400         6.200         6.2           0.0500         7.100         7.1           0.0600         8.200         8.2           0.0700         8.400         8.4           0.0820         7.700         7.7           0.0900         7.800         7.8           0.1000         8.200         8.2           0.1120         8.000         8.0           0.1300         8.000         8.0           0.1430         8.000         8.0 | Def. Dial in.         Load Dial Dial lbs.         Load lbs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         3.200         3.2         0.2           0.0100         4.000         4.0         0.4           0.0200         5.300         5.3         0.8           0.0300         5.900         5.9         1.2           0.0400         6.200         6.2         1.6           0.0500         7.100         7.1         2.1           0.0600         8.200         8.2         2.5           0.0700         8.400         8.4         2.9           0.0820         7.700         7.7         3.4           0.0900         7.800         7.8         3.7           0.1000         8.200         8.2         4.1           0.1120         8.000         8.0         4.6           0.1200         8.000         8.0         5.3           0.1430         8.000         8.0         5.9 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain % psi         Stress psi           0.0000         0.000         0.0         0.0         0.00           0.0050         3.200         3.2         0.2         0.69           0.0100         4.000         4.0         0.4         0.86           0.0200         5.300         5.3         0.8         1.14           0.0300         5.900         5.9         1.2         1.27           0.0400         6.200         6.2         1.6         1.34           0.0500         7.100         7.1         2.1         1.53           0.0600         8.200         8.2         2.5         1.77           0.0700         8.400         8.4         2.9         1.81           0.0820         7.700         7.7         3.4         1.66           0.0900         7.800         7.8         3.7         1.68           0.1000         8.200         8.2         4.1         1.77           0.1120         8.000         8.0         4.6         1.72           0.1300         8.000         8.0         4.9         1.72           0.1430         8.000 |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2323.300 |              | 2340.900 |  |
| Moisture content: Dry soil+tare, gms.   | 2305.500 |              | 2305.500 |  |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |  |
| Moisture, %                             | 16.4     | 32.6         | 32.6     |  |
| Moist specimen weight, gms.             | 126.5    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in.²                              | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 1.00         |          |  |
| Net decrease in height, in.             |          | 0.00         |          |  |
| Wet density, pcf                        | 103.9    | 118.8        |          |  |
| Dry density, pcf                        | 89.3     | 89.6         |          |  |
| Void ratio                              | 0.8877   | 0.8804       |          |  |
| Saturation, %                           | 49.8     | 99.9         |          |  |

Normal stress = 4.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.76 psi at reading no. 15

|     |                                | 1            | J            |             |                        |                              |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.700        | 7.7          | 0.2         | 1.66                   | 0.2999                       |
| 2   | 0.0100                         | 8.000        | 8.0          | 0.4         | 1.72                   | 0.2999                       |
| 3   | 0.0200                         | 9.100        | 9.1          | 0.8         | 1.96                   | 0.2998                       |
| 4   | 0.0330                         | 10.200       | 10.2         | 1.4         | 2.20                   | 0.2995                       |
| 5   | 0.0450                         | 10.200       | 10.2         | 1.9         | 2.20                   | 0.2993                       |
| 6   | 0.0500                         | 10.500       | 10.5         | 2.1         | 2.26                   | 0.2991                       |
| 7   | 0.0650                         | 9.900        | 9.9          | 2.7         | 2.13                   | 0.2990                       |
| 8   | 0.0700                         | 10.700       | 10.7         | 2.9         | 2.31                   | 0.2989                       |
| 9   | 0.0800                         | 11.500       | 11.5         | 3.3         | 2.48                   | 0.2982                       |
| 10  | 0.0930                         | 11.800       | 11.8         | 3.8         | 2.54                   | 0.2982                       |
| 11  | 0.1030                         | 11.700       | 11.7         | 4.2         | 2.52                   | 0.2981                       |
| 12  | 0.1150                         | 12.000       | 12.0         | 4.7         | 2.59                   | 0.2980                       |
| 13  | 0.1220                         | 11.900       | 11.9         | 5.0         | 2.57                   | 0.2981                       |
| 14  | 0.1330                         | 12.600       | 12.6         | 5.5         | 2.72                   | 0.2981                       |
| 15  | 0.1400                         | 12.800       | 12.8         | 5.8         | 2.76                   | 0.2980                       |
| 16  | 0.1500                         | 12.100       | 12.1         | 6.2         | 2.61                   | 0.2980                       |
| 17  | 0.1600                         | 12.300       | 12.3         | 6.6         | 2.65                   | 0.2980                       |
| 18  | 0.1700                         | 12.000       | 12.0         | 7.0         | 2.59                   | 0.2980                       |
| 19  | 0.1800                         | 11.900       | 11.9         | 7.4         | 2.57                   | 0.2979                       |
| 20  | 0.1900                         | 12.100       | 12.1         | 7.8         | 2.61                   | 0.2979                       |
| 21  | 0.2000                         | 12.000       | 12.0         | 8.2         | 2.59                   | 0.2979                       |

| 0:     | Tooking | a. I alaa | Lane |
|--------|---------|-----------|------|
| Sierra | Testing | o Laps    | inc  |



## **DIRECT SHEAR TEST**

1/5/2012

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0015R, S09A

Depth:

20-20.3

Sample Number:

S36289

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. |          | Consolidated | 2358.550 |
| Moisture content: Dry soil+tare, gms.   | 2335.400 |              | 2335.400 |
| Moisture content: Tare, gms.            | 2196.700 |              | 2196.700 |
| Moisture, %                             | 17.5     | 16.7         | 16.7     |
| Moist specimen weight, gms.             | 163.0    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 133.9    | 135.5        |          |
| Dry density, pcf                        | 113.9    | 116.1        |          |
| Void ratio                              | 0.4794   | 0.4513       |          |
| Saturation, %                           | 98.7     | 99.9         |          |

Normal stress = 4.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 4.55 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.000        | 5.0          | 0.2         | 1.08                   | 0.2994                       |
| 2   | 0.0100                         | 7.000        | 7.0          | 0.4         | 1.51                   | 0.2992                       |
| 3   | 0.0200                         | 10.100       | 10.1         | 0.8         | 2.18                   | 0.2993                       |
| 4   | 0.0300                         | 13.700       | 13.7         | 1.2         | 2.95                   | 0.2998                       |
| 5   | 0.0400                         | 16.000       | 16.0         | 1.6         | 3.45                   | 0.3003                       |
| 6   | 0.0500                         | 18.000       | 18.0         | 2.1         | 3.88                   | 0.3018                       |
| 7   | 0.0600                         | 19.200       | 19.2         | 2.5         | 4.14                   | 0.3021                       |
| 8   | 0.0700                         | 20.600       | 20.6         | 2.9         | 4.44                   | 0.3038                       |
| 9   | 0.0800                         | 21.100       | 21.1         | 3.3         | 4.55                   | 0.3046                       |
| 10  | 0.0900                         | 20.200       | 20.2         | 3.7         | 4.36                   | 0.3061                       |
| 11  | 0.1000                         | 19.600       | 19.6         | 4.1         | 4.23                   | 0.3070                       |
| 12  | 0.1100                         | 18.500       | 18.5         | 4.5         | 3.99                   | 0.3075                       |

| Specimen Parameter                     | Initial  | Consolidated | Final    | 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( |
|----------------------------------------|----------|--------------|----------|-----------------------------------------|
| Moisture content: Moist soil+tare, gms | 2375.600 |              | 2373.400 |                                         |
| Moisture content: Dry soil+tare, gms.  | 2351.200 |              | 2351.200 |                                         |
| Moisture content: Tare, gms.           | 2212.600 |              | 2212.600 |                                         |
| Moisture, %                            | 17.6     | 16.0         | 16.0     |                                         |
| Moist specimen weight, gms.            | 163.0    |              |          |                                         |
| Diameter, in.                          | 2.43     | 2.43         |          |                                         |
| Area, in.²                             | 4.64     | 4.64         |          |                                         |
| Height, in.                            | 1.00     | 0.97         |          |                                         |
| Net decrease in height, in.            |          | 0.03         |          |                                         |
| Wet density, pcf                       | 133.9    | 136.5        |          |                                         |
| Dry density, pcf                       | 113.9    | 117.6        |          |                                         |
| Void ratio                             | 0.4805   | 0.4331       |          |                                         |
| Saturation, %                          | 98.9     | 99.9         |          |                                         |

Strain rate, in./min. = 0.03

Fail. Stress = 8.88 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.600        | 7.6          | 0.2         | 1.64                   | 0.2998                       |
| 2   | 0.0100                         | 10.800       | 10.8         | 0.4         | 2.33                   | 0.2991                       |
| 3   | 0.0200                         | 13.600       | 13.6         | 0.8         | 2.93                   | 0.2984                       |
| 4   | 0.0300                         | 20.100       | 20.1         | 1.2         | 4.33                   | 0.2975                       |
| 5   | 0.0400                         | 25.500       | 25.5         | 1.6         | 5.50                   | 0.2970                       |
| 6   | 0.0500                         | 30.000       | 30.0         | 2.1         | 6.47                   | 0.2971                       |
| 7   | 0.0600                         | 33.300       | 33.3         | 2.5         | 7.18                   | 0.2972                       |
| 8   | 0.0700                         | 34.900       | 34.9         | 2.9         | 7.53                   | 0.2977                       |
| 9   | 0.0800                         | 37.100       | 37.1         | 3.3         | 8.00                   | 0.2981                       |
| 10  | 0.0910                         | 38.500       | 38.5         | 3.7         | 8.30                   | 0.2988                       |
| 11  | 0.1000                         | 40.000       | 40.0         | 4.1         | 8.62                   | 0.2991                       |
| 12  | 0.1100                         | 41.200       | 41.2         | 4.5         | 8.88                   | 0.2999                       |
| 13  | 0.1220                         | 41.100       | 41.1         | 5.0         | 8.86                   | 0.3003                       |
| 14  | 0.1300                         | 41.100       | 41.1         | 5.3         | 8.86                   | 0.3008                       |
| 15  | 0.1400                         | 40.700       | 40.7         | 5.8         | 8.78                   | 0.3011                       |
| 16  | 0.1500                         | 40.000       | 40.0         | 6.2         | 8.62                   | 0.3015                       |
| 17  | 0.1600                         | 38.100       | 38.1         | 6.6         | 8.22                   | 0.3018                       |

\_\_ Sierra Testing Labs, Inc. \_\_\_\_\_

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2359.800 |              | 2357.700 |
| Moisture content: Dry soil+tare, gms.   | 2335.400 |              | 2335.400 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 17.6     | 16.1         | 16.1     |
| Moist specimen weight, gms.             | 163.0    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 133.9    | 136.4        |          |
| Dry density, pcf                        | 113.9    | 117.5        |          |
| Void ratio                              | 0.4805   | 0.4343       |          |
| Saturation, %                           | 98.9     | 100.0        |          |

Normal stress = 18.1 psi Strain rate, in./min. = 0.03

Fail. Stress = 16.39 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 15.600       | 15.6         | 0.2         | 3.36                   | 0.2988                       |
| 2   | 0.0120                         | 24.500       | 24.5         | 0.5         | 5.28                   | 0.2979                       |
| 3   | 0.0200                         | 30.200       | 30.2         | 0.8         | 6.51                   | 0.2970                       |
| 4   | 0.0300                         | 40.000       | 40.0         | 1.2         | 8.62                   | 0.2961                       |
| 5   | 0.0400                         | 47.100       | 47.1         | 1.6         | 10.16                  | 0.2960                       |
| 6   | 0.0520                         | 55.000       | 55.0         | 2.1         | 11.86                  | 0.2960                       |
| 7   | 0.0600                         | 59.200       | 59.2         | 2.5         | 12.76                  | 0.2960                       |
| 8   | 0.0700                         | 65.000       | 65.0         | 2.9         | 14.02                  | 0.2961                       |
| 9   | 0.0830                         | 70.100       | 70.1         | 3.4         | 15.12                  | 0.2968                       |
| 10  | 0.0950                         | 73.000       | 73.0         | 3.9         | 15.74                  | 0.2972                       |
| 11  | 0.1000                         | 73.500       | 73.5         | 4.1         | 15.85                  | 0.2977                       |
| 12  | 0.1100                         | 75.700       | 75.7         | 4.5         | 16.32                  | 0.2981                       |
| 13  | 0.1220                         | 75.800       | 75.8         | 5.0         | 16.34                  | 0.2989                       |
| 14  | 0.1300                         | 76.000       | 76.0         | 5.3         | 16.39                  | 0.2991                       |
| 15  | 0.1400                         | 71.000       | 71.0         | 5.8         | 15.31                  | 0.2992                       |
| 16  | 0.1500                         | 69.200       | 69.2         | 6.2         | 14.92                  | 0.2994                       |
| 17  | 0.1600                         | 68.400       | 68.4         | 6.6         | 14.75                  | 0.2995                       |



Tested By: mw Checked By: mpw Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S02

Depth:

5-6.0

Sample Number:

S36293

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

|                                         | PARTICIPATE DESCRIPTION |              |          |
|-----------------------------------------|-------------------------|--------------|----------|
| Specimen Parameter                      | Initial                 | Consolidated | Final    |
| Moisture content: Moist soil+tare, gms. | 2358.600                |              | 2370.000 |
| Moisture content: Dry soil+tare, gms.   | 2342.500                |              | 2342.500 |
| Moisture content: Tare, gms.            | 2212.600                |              | 2212.600 |
| Moisture, %                             | 12.4                    | 21.2         | 21.2     |
| Moist specimen weight, gms.             | 146.0                   |              |          |
| Diameter, in.                           | 2.43                    | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64                    | 4.64         |          |
| Height, in.                             | 1.00                    | 1.00         |          |
| Net decrease in height, in.             |                         | 0.00         |          |
| Wet density, pcf                        | 119.9                   | 129.9        |          |
| Dry density, pcf                        | 106.7                   | 107.2        |          |
| Void ratio                              | 0.5796                  | 0.5719       |          |
| Saturation, %                           | 57.7                    | 99.9         |          |

Normal stress = 1.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 1.94 psi at reading no. 5

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 6.200        | 6.2          | 0.2         | 1.34                   | 0.3011                       |
| 2   | 0.0100                         | 7.400        | 7.4          | 0.4         | 1.60                   | 0.3034                       |
| 3   | 0.0250                         | 8.600        | 8.6          | 1.0         | 1.85                   | 0.3050                       |
| 4   | 0.0300                         | 8.700        | 8.7          | 1.2         | 1.88                   | 0.3053                       |
| 5   | 0.0400                         | 9.000        | 9.0          | 1.6         | 1.94                   | 0.3068                       |
| 6   | 0.0500                         | 9.000        | 9.0          | 2.1         | 1.94                   | 0.3070                       |
| 7   | 0.0600                         | 8.900        | 8.9          | 2.5         | 1.92                   | 0.3105                       |
| 8   | 0.0750                         | 8.300        | 8.3          | 3.1         | 1.79                   | 0.3123                       |
| 9   | 0.0800                         | 8.100        | 8.1          | 3.3         | 1.75                   | 0.3128                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2342.600 |              | 2353.600 |
| Moisture content: Dry soil+tare, gms.   | 2326.500 |              | 2326.500 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 12.4     | 20.9         | 20.9     |
| Moist specimen weight, gms.             | 146.0    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 119.9    | 130.3        |          |
| Dry density, pcf                        | 106.7    | 107.8        |          |
| Void ratio                              | 0.5796   | 0.5635       |          |
| Saturation, %                           | 57.7     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 2.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.20 psi at reading no. 8

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                       | Load<br>lbs.                                                                                                                                                                                                                                                                                                                                                                                                           | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0050                         | 4.600                                                                                              | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0150                         | 7.500                                                                                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0200                         | 8.000                                                                                              | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0300                         | 8.700                                                                                              | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0400                         | 9.800                                                                                              | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0500                         | 9.900                                                                                              | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0650                         | 10.100                                                                                             | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0700                         | 10.200                                                                                             | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0800                         | 10.200                                                                                             | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0900                         | 9.900                                                                                              | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.1030                         | 9.700                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.1100                         | 9.200                                                                                              | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                | Def. Dial in.  0.0000 0.0050 0.0150 0.0200 0.0300 0.0400 0.0500 0.0650 0.0700 0.0800 0.0900 0.1030 | Def. Dial in.         Load Dial           0.0000         0.000           0.0050         4.600           0.0150         7.500           0.0200         8.000           0.0300         8.700           0.0400         9.800           0.0500         9.900           0.0650         10.100           0.0700         10.200           0.0800         10.200           0.0900         9.900           0.1030         9.700 | Def. Dial in.         Load Dial Dial         Load Ibs.           0.0000         0.000         0.0           0.0050         4.600         4.6           0.0150         7.500         7.5           0.0200         8.000         8.0           0.0300         8.700         8.7           0.0400         9.800         9.8           0.0500         9.900         9.9           0.0650         10.100         10.1           0.0700         10.200         10.2           0.0800         10.200         10.2           0.0900         9.900         9.9           0.1030         9.700         9.7 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         4.600         4.6         0.2           0.0150         7.500         7.5         0.6           0.0200         8.000         8.0         0.8           0.0300         8.700         8.7         1.2           0.0400         9.800         9.8         1.6           0.0500         9.900         9.9         2.1           0.0650         10.100         10.1         2.7           0.0700         10.200         10.2         2.9           0.0800         10.200         10.2         3.3           0.0900         9.900         9.9         3.7           0.1030         9.700         9.7         4.2 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain % psi         Stress psi           0.0000         0.000         0.0         0.0         0.00           0.0050         4.600         4.6         0.2         0.99           0.0150         7.500         7.5         0.6         1.62           0.0200         8.000         8.0         0.8         1.72           0.0300         8.700         8.7         1.2         1.88           0.0400         9.800         9.8         1.6         2.11           0.0500         9.900         9.9         2.1         2.13           0.0650         10.100         10.1         2.7         2.18           0.0700         10.200         10.2         2.9         2.20           0.0800         10.200         10.2         3.3         2.20           0.0900         9.900         9.9         3.7         2.13           0.1030         9.700         9.7         4.2         2.09 |

| Specimen Parameter                     | Initial     | Consolidated | Final    |
|----------------------------------------|-------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | s. 2358.800 |              | 2369.850 |
| Moisture content: Dry soil+tare, gms.  | 2342.500    |              | 2342.500 |
| Moisture content: Tare, gms.           | 2212.800    |              | 2212.800 |
| Moisture, %                            | 12.6        | 21.1         | 21.1     |
| Moist specimen weight, gms.            | 146.0       |              |          |
| Diameter, in.                          | 2.43        | 2.43         |          |
| Area, in.²                             | 4.64        | 4.64         |          |
| Height, in.                            | 1.00        | 0.99         |          |
| Net decrease in height, in.            |             | 0.01         |          |
| Wet density, pcf                       | 119.9       | 130.1        |          |
| Dry density, pcf                       | 106.5       | 107.4        |          |
| Void ratio                             | 0.5821      | 0.5693       |          |
| Saturation, %                          | 58.3        | 100.0        |          |

Normal stress = 4.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 4.29 psi at reading no. 21

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.400        | 4.4          | 0.2         | 0.95                   | 0.2994                       |
| 2   | 0.0100                         | 6.900        | 6.9          | 0.4         | 1.49                   | 0.2985                       |
| 3   | 0.0200                         | 10.700       | 10.7         | 0.8         | 2.31                   | 0.2981                       |
| 4   | 0.0300                         | 13.100       | 13.1         | 1.2         | 2.82                   | 0.2981                       |
| 5   | 0.0400                         | 14.800       | 14.8         | 1.6         | 3.19                   | 0.2984                       |
| 6   | 0.0500                         | 15.000       | 15.0         | 2.1         | 3.23                   | 0.2990                       |
| 7   | 0.0600                         | 15.600       | 15.6         | 2.5         | 3.36                   | 0.2992                       |
| 8   | 0.0700                         | 16.300       | 16.3         | 2.9         | 3.51                   | 0.2996                       |
| 9   | 0.0800                         | 17.000       | 17.0         | 3.3         | 3.67                   | 0.3002                       |
| 10  | 0.0900                         | 17.400       | 17.4         | 3.7         | 3.75                   | 0.3004                       |
| 11  | 0.1000                         | 17.800       | 17.8         | 4.1         | 3.84                   | 0.3007                       |
| 12  | 0.1100                         | 18.200       | 18.2         | 4.5         | 3.92                   | 0.3009                       |
| 13  | 0.1200                         | 18.700       | 18.7         | 4.9         | 4.03                   | 0.3010                       |
| 14  | 0.1300                         | 18.900       | 18.9         | 5.3         | 4.08                   | 0.3010                       |
| 15  | 0.1400                         | 19.000       | 19.0         | 5.8         | 4.10                   | 0.3011                       |
| 16  | 0.1500                         | 19.100       | 19.1         | 6.2         | 4.12                   | 0.3012                       |
| 17  | 0.1600                         | 19.100       | 19.1         | 6.6         | 4.12                   | 0.3012                       |
| 18  | 0.1700                         | 19.000       | 19.0         | 7.0         | 4.10                   | 0.3012                       |
| 19  | 0.1800                         | 19.100       | 19.1         | 7.4         | 4.12                   | 0.3012                       |
| 20  | 0.1900                         | 19.000       | 19.0         | 7.8         | 4.10                   | 0.3012                       |
| 21  | 0.2000                         | 19.900       | 19.9         | 8.2         | 4.29                   | 0.3014                       |
| 22  | 0.2100                         | 19.600       | 19.6         | 8.6         | 4.23                   | 0.3014                       |
| 23  | 0.2250                         | 18.800       | 18.8         | 9.3         | 4.05                   | 0.3015                       |
| 24  | 0.2300                         | 19.000       | 19.0         | 9.5         | 4.10                   | 0.3016                       |
| 25  | 0.2400                         | 19.100       | 19.1         | 9.9         | 4.12                   | 0.3015                       |
| 26  | 0.2500                         | 18.900       | 18.9         | 10.3        | 4.08                   | 0.3016                       |

| Sierra | Test | lina | Labs | . Inc. |
|--------|------|------|------|--------|
|        |      |      |      |        |



Tested By: mw Checked By: mpw Date:

Client:

URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S08

Depth:

35-35.9

Sample Number:

S36294

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2367.980 |              | 2371.150 |
| Moisture content: Dry soil+tare, gms.   | 2345.500 |              | 2345.500 |
| Moisture content: Tare, gms.            | 2212.200 |              | 2212.200 |
| Moisture, %                             | 16.9     | 19.2         | 19.2     |
| Moist specimen weight, gms.             | 155.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 127.9    | 132.2        |          |
| Dry density, pcf                        | 109.4    | 110.9        |          |
| Void ratio                              | 0.5401   | 0.5198       |          |
| Saturation, %                           | 84.3     | 99.9         |          |

Normal stress = 8.5 psi

Strain rate, in./min. = 0.03

Fail. Stress = 9.29 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.100        | 7.1          | 0.2         | 1.53                   | 0.2999                       |
| 2   | 0.0100                         | 10.200       | 10.2         | 0.4         | 2.20                   | 0.2998                       |
| 3   | 0.0240                         | 17.800       | 17.8         | 1.0         | 3.84                   | 0.2990                       |
| 4   | 0.0300                         | 20.600       | 20.6         | 1.2         | 4.44                   | 0.2991                       |
| 5   | 0.0400                         | 23.800       | 23.8         | 1.6         | 5.13                   | 0.2993                       |
| 6   | 0.0500                         | 28.800       | 28.8         | 2.1         | 6.21                   | 0.3000                       |
| 7   | 0.0660                         | 34.900       | 34.9         | 2.7         | 7.53                   | 0.3014                       |
| 8   | 0.0700                         | 37.900       | 37.9         | 2.9         | 8.17                   | 0.3024                       |
| 9   | 0.0860                         | 41.100       | 41.1         | 3.5         | 8.86                   | 0.3040                       |
| 10  | 0.0900                         | 42.000       | 42.0         | 3.7         | 9.06                   | 0.3042                       |
| 11  | 0.1050                         | 43.100       | 43.1         | 4.3         | 9.29                   | 0.3062                       |
| 12  | 0.1120                         | 43.000       | 43.0         | 4.6         | 9.27                   | 0.3070                       |
|     |                                |              |              |             |                        | _                            |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 42.200       | 42.2         | 4.9         | 9.10                   | 0.3080                       |
| 14  | 0.1300                         | 41.400       | 41.4         | 5.3         | 8.93                   | 0.3097                       |
| 15  | 0.1400                         | 39.800       | 39.8         | 5.8         | 8.58                   | 0.3102                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2352.500 |              | 2355.000 |
| Moisture content: Dry soil+tare, gms.   | 2330.200 |              | 2330.200 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 16.7     | 18.6         | 18.6     |
| Moist specimen weight, gms.             | 155.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| łeight, in.                             | 1.00     | 0.98         |          |
| let decrease in height, in.             |          | 0.02         |          |
| Vet density, pcf                        | 127.9    | 133.0        |          |
| Dry density, pcf                        | 109.6    | 112.2        |          |
| /oid ratio                              | 0.5382   | 0.5027       |          |
| Saturation, %                           | 83.9     | 99.9         |          |

Normal stress = 17.1 psi Strain rate, in./min. = 0.03

Fail. Stress = 19.19 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0060                         | 14.600       | 14.6         | 0.2         | 3.15                   | 0.2997                       |
| 2   | 0.0100                         | 18.900       | 18.9         | 0.4         | 4.08                   | 0.2995                       |
| 3   | 0.0200                         | 22.700       | 22.7         | 0.8         | 4.89                   | 0.2989                       |
| 4   | 0.0310                         | 33.500       | 33.5         | 1.3         | 7.22                   | 0.2988                       |
| 5   | 0.0420                         | 45.600       | 45.6         | 1.7         | 9.83                   | 0.2981                       |
| 6   | 0.0500                         | 53.000       | 53.0         | 2.1         | 11.43                  | 0.2981                       |
| 7   | 0.0600                         | 62.100       | 62.1         | 2.5         | 13.39                  | 0.2988                       |
| 8   | 0.0720                         | 70.900       | 70.9         | 3.0         | 15.29                  | 0.2999                       |
| 9   | 0.0820                         | 76.800       | 76.8         | 3.4         | 16.56                  | 0.3010                       |
| 10  | 0.0900                         | 80.800       | 80.8         | 3.7         | 17.42                  | 0.3019                       |
| 11  | 0.1000                         | 85.000       | 85.0         | 4.1         | 18.33                  | 0.3031                       |
| 12  | 0.1100                         | 88.200       | 88.2         | 4.5         | 19.02                  | 0.3050                       |
| 13  | 0.1250                         | 89.000       | 89.0         | 5.1         | 19.19                  | 0.3069                       |
| 14  | 0.1350                         | 88.000       | 88.0         | 5.6         | 18.97                  | 0.3082                       |
| 15  | 0.1420                         | 87.000       | 87.0         | 5.8         | 18.76                  | 0.3091                       |
| 16  | 0.1500                         | 85.200       | 85.2         | 6.2         | 18.37                  | 0.3100                       |
| 17  | 0.1600                         | 82.900       | 82.9         | 6.6         | 17.88                  | 0.3113                       |
|     |                                |              |              |             |                        |                              |

| Control of the Contro | 7,305007.5727.5 | 2012012511161112112 |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------|
| Specimen Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial         | Consolidated        | Final    |
| Moisture content: Moist soil+tare, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2352.500        |                     | 2355.200 |
| Moisture content: Dry soil+tare, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2330.200        |                     | 2330.200 |
| Moisture content: Tare, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2196.780        |                     | 2196.800 |
| Moisture, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.7            | 18.7                | 18.7     |
| Moist specimen weight, gms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155.7           |                     |          |
| Diameter, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.43            | 2.43                |          |
| Area, in. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.64            | 4.64                |          |
| Height, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00            | 0.98                |          |
| Net decrease in height, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 0.02                |          |
| Wet density, pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.9           | 132.9               |          |
| Dry density, pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.6           | 111.9               |          |
| Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5382          | 0.5059              |          |
| Saturation, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.9            | 100.0               |          |

Normal stress = 34.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 32.86 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 19.200       | 19.2         | 0.2         | 4.14                   | 0.2997                       |
| 2   | 0.0100                         | 34.900       | 34.9         | 0.4         | 7.53                   | 0.2991                       |
| 3   | 0.0200                         | 58.500       | 58.5         | 0.8         | 12.61                  | 0.2983                       |
| 4   | 0.0300                         | 81.300       | 81.3         | 1.2         | 17.53                  | 0.2980                       |
| 5   | 0.0400                         | 98.400       | 98.4         | 1.6         | 21.22                  | 0.2981                       |
| 6   | 0.0500                         | 112.200      | 112.2        | 2.1         | 24.19                  | 0.2989                       |
| 7   | 0.0600                         | 124.600      | 124.6        | 2.5         | 26.87                  | 0.2995                       |
| 8   | 0.0700                         | 134.700      | 134.7        | 2.9         | 29.04                  | 0.3005                       |
| 9   | 0.0800                         | 140.800      | 140.8        | 3.3         | 30.36                  | 0.3016                       |
| 10  | 0.0900                         | 148.700      | 148.7        | 3.7         | 32.06                  | 0.3029                       |
| 11  | 0.1000                         | 149.000      | 149.0        | 4.1         | 32.13                  | 0.3040                       |
| 12  | 0.1100                         | 150.000      | 150.0        | 4.5         | 32.34                  | 0.3041                       |
| 13  | 0.1200                         | 152.400      | 152.4        | 4.9         | 32.86                  | 0.3065                       |
| 14  | 0.1300                         | 151.900      | 151.9        | 5.3         | 32.75                  | 0.3077                       |
| 15  | 0.1400                         | 148.600      | 148.6        | 5.8         | 32.04                  | 0.3088                       |
| 16  | 0.1500                         | 144.000      | 144.0        | 6.2         | 31.05                  | 0.3093                       |

| <b>~</b> * | CONTRACT CO. | - 8  |       |    |
|------------|--------------|------|-------|----|
| Sierra     | Tes:         | tina | lahs  | In |
| Siella     | 162          | ullu | Laus. |    |



Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S13

Depth:

60-61.5

Sample Number:

S36296

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2346.500 |              | 2352.600 |
| Moisture content: Dry soil+tare, gms.   | 2327.600 |              | 2327.600 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 14.4     | 19.1         | 19.1     |
| Moist specimen weight, gms.             | 149.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 123.0    | 132.4        |          |
| Dry density, pcf                        | 107.4    | 111.2        |          |
| Void ratio                              | 0.5688   | 0.5159       |          |
| Saturation, %                           | 68.6     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 14.7 psiStrain rate, in./min. = 0.03

Fail. Stress = 11.45 psi at reading no. 24

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0060                         | 15.800       | 15.8         | 0.2         | 3.41                   | 0.2988                       |
| 2   | 0.0100                         | 19.800       | 19.8         | 0.4         | 4.27                   | 0.2983                       |
| 3   | 0.0200                         | 26.300       | 26.3         | 0.8         | 5.67                   | 0.2974                       |
| 4   | 0.0300                         | 32.000       | 32.0         | 1.2         | 6.90                   | 0.2968                       |
| 5   | 0.0440                         | 39.400       | 39.4         | 1.8         | 8.50                   | 0.2963                       |
| 6   | 0.0550                         | 42.700       | 42.7         | 2.3         | 9.21                   | 0.2962                       |
| 7   | 0.0600                         | 45.200       | 45.2         | 2.5         | 9.75                   | 0.2961                       |
| 8   | 0.0700                         | 46.200       | 46.2         | 2.9         | 9.96                   | 0.2961                       |
| 9   | 0.0800                         | 48.800       | 48.8         | 3.3         | 10.52                  | 0.2962                       |
| 10  | 0.0900                         | 49.800       | 49.8         | 3.7         | 10.74                  | 0.2962                       |
| 11  | 0.1000                         | 50.200       | 50.2         | 4.1         | 10.82                  | 0.2962                       |
| 12  | 0.1100                         | 49.000       | 49.0         | 4.5         | 10.57                  | 0.2963                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 49.200       | 49.2         | 4.9         | 10.61                  | 0.2963                       |
| 14  | 0.1300                         | 50.100       | 50.1         | 5.3         | 10.80                  | 0.2964                       |
| 15  | 0.1400                         | 50.700       | 50.7         | 5.8         | 10.93                  | 0.2964                       |
| 16  | 0.1520                         | 50.500       | 50.5         | 6.3         | 10.89                  | 0.2965                       |
| 17  | 0.1600                         | 51.500       | 51.5         | 6.6         | 11.10                  | 0.2965                       |
| 18  | 0.1730                         | 52.000       | 52.0         | 7.1         | 11.21                  | 0.2966                       |
| 19  | 0.1800                         | 52.400       | 52.4         | 7.4         | 11.30                  | 0.2964                       |
| 20  | 0.1900                         | 51.800       | 51.8         | 7.8         | 11.17                  | 0.2963                       |
| 21  | 0.2020                         | 52.500       | 52.5         | 8.3         | 11.32                  | 0.2962                       |
| 22  | 0.2100                         | 52.400       | 52.4         | 8.6         | 11.30                  | 0.2961                       |
| 23  | 0.2220                         | 52.000       | 52.0         | 9.1         | 11.21                  | 0.2960                       |
| 24  | 0.2330                         | 53.100       | 53.1         | 9.6         | 11.45                  | 0.2960                       |
| 25  | 0.2400                         | 53.100       | 53.1         | 9.9         | 11.45                  | 0.2960                       |
| 26  | 0.2500                         | 52.000       | 52.0         | 10.3        | 11.21                  | 0.2959                       |
| 27  | 0.2600                         | 51.900       | 51.9         | 10.7        | 11.19                  | 0.2959                       |
| 28  | 0.2700                         | 52.000       | 52.0         | 11.1        | 11.21                  | 0.2956                       |
| 29  | 0.2830                         | 52.600       | 52.6         | 11.6        | 11.34                  | 0.2953                       |
| 30  | 0.2900                         | 51.800       | 51.8         | 11.9        | 11.17                  | 0.2952                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2361.700 |              | 2365.350 |
| Moisture content: Dry soil+tare, gms.   | 2342.700 |              | 2342.700 |
| Moisture content: Tare, gms.            | 2212.000 |              | 2212.000 |
| Moisture, %                             | 14.5     | 17.3         | 17.3     |
| Moist specimen weight, gms.             | 149.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.07         |          |
| Wet density, pcf                        | 123.0    | 134.7        |          |
| Dry density, pcf                        | 107.4    | 114.8        |          |
| Void ratio                              | 0.5700   | 0.4679       |          |
| Saturation, %                           | 68.9     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 29.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 20.70 psi at reading no. 22

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0060                         | 16.800       | 16.8         | 0.2         | 3.62                   | 0.2984                       |
| 2   | 0.0100                         | 21.000       | 21.0         | 0.4         | 4.53                   | 0.2979                       |
| 3   | 0.0200                         | 35.000       | 35.0         | 0.8         | 7.55                   | 0.2954                       |
| 4   | 0.0300                         | 45.200       | 45.2         | 1.2         | 9.75                   | 0.2934                       |
| 5   | 0.0400                         | 52.700       | 52.7         | 1.6         | 11.36                  | 0.2925                       |
| 6   | 0.0500                         | 58.800       | 58.8         | 2.1         | 12.68                  | 0.2913                       |
| 7   | 0.0600                         | 62.400       | 62.4         | 2.5         | 13.45                  | 0.2906                       |
| 8   | 0.0700                         | 68.000       | 68.0         | 2.9         | 14.66                  | 0.2898                       |
| 9   | 0.0810                         | 71.900       | 71.9         | 3.3         | 15.50                  | 0.2889                       |
| 10  | 0.0900                         | 76.200       | 76.2         | 3.7         | 16.43                  | 0.2883                       |
| 11  | 0.1000                         | 79.800       | 79.8         | 4.1         | 17.21                  | 0.2880                       |
| 12  | 0.1100                         | 82.900       | 82.9         | 4.5         | 17.88                  | 0.2875                       |
| 13  | 0.1200                         | 86.100       | 86.1         | 4.9         | 18.57                  | 0.2871                       |
| 14  | 0.1300                         | 87.400       | 87.4         | 5.3         | 18.85                  | 0.2870                       |
| 15  | 0.1400                         | 88.500       | 88.5         | 5.8         | 19.08                  | 0.2869                       |
| 16  | 0.1500                         | 90.600       | 90.6         | 6.2         | 19.54                  | 0.2868                       |
| 17  | 0.1600                         | 92.900       | 92.9         | 6.6         | 20.03                  | 0.2866                       |
| 18  | 0.1700                         | 94.200       | 94.2         | 7.0         | 20.31                  | 0.2865                       |
| 19  | 0.1800                         | 94.100       | 94.1         | 7.4         | 20.29                  | 0.2868                       |
| 20  | 0.1950                         | 94.600       | 94.6         | 8.0         | 20.40                  | 0.2865                       |
| 21  | 0.2050                         | 94.900       | 94.9         | 8.4         | 20.46                  | 0.2864                       |
| 22  | 0.2130                         | 96.000       | 96.0         | 8.8         | 20.70                  | 0.2865                       |
| 23  | 0.2200                         | 95.100       | 95.1         | 9.1         | 20.51                  | 0.2864                       |
| 24  | 0.2300                         | 94.000       | 94.0         | 9.5         | 20.27                  | 0.2864                       |
| 25  | 0.2400                         | 93.300       | 93.3         | 9.9         | 20.12                  | 0.2863                       |

| Sierra Te | etina | ahe | no |
|-----------|-------|-----|----|

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2362.300 |              | 2363.480 |
| Moisture content: Dry soil+tare, gms.   | 2343.300 |              | 2343.300 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 14.5     | 15.4         | 15.4     |
| Moist specimen weight, gms.             | 149.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.90         |          |
| Net decrease in height, in.             |          | 0.10         |          |
| Wet density, pcf                        | 123.0    | 137.3        |          |
| Dry density, pcf                        | 107.4    | 118.9        |          |
| Void ratio                              | 0.5700   | 0.4171       |          |
| Saturation, %                           | 68.9     | 100.0        |          |
|                                         |          |              |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 58.9 psiStrain rate, in./min. = 0.03

Fail. Stress = 39.32 psi at reading no. 19

| No. | Horizonta<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|-------------------------------|-------------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                        | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                        | 19.800            | 17.8         | 0.2         | 3.84                   | 0.2992                       |
| 2   | 0.0100                        | 39.900            | 35.9         | 0.4         | 7.73                   | 0.2988                       |
| 3   | 0.0200                        | 82.500            | 74.2         | 0.8         | 15.99                  | 0.2969                       |
| 4   | 0.0300                        | 104.000           | 93.5         | 1.2         | 20.16                  | 0.2958                       |
| 5   | 0.0400                        | 121.600           | 109.3        | 1.6         | 23.57                  | 0.2951                       |
| 6   | 0.0500                        | 134.700           | 121.1        | 2.1         | 26.11                  | 0.2942                       |
| 7   | 0.0650                        | 146.400           | 131.6        | 2.7         | 28.37                  | 0.2928                       |
| 8   | 0.0700                        | 150.100           | 134.9        | 2.9         | 29.09                  | 0.2924                       |
| 9   | 0.0800                        | 159.000           | 142.9        | 3.3         | 30.81                  | 0.2918                       |
| 10  | 0.0900                        | 164.600           | 147.9        | 3.7         | 31.90                  | 0.2912                       |
| 11  | 0.1000                        | 173.100           | 155.6        | 4.1         | 33.55                  | 0.2908                       |
| 12  | 0.1100                        | 177.900           | 159.9        | 4.5         | 34.48                  | 0.2901                       |
| 13  | 0.1200                        | 182.000           | 163.6        | 4.9         | 35.27                  | 0.2900                       |
| 14  | 0.1300                        | 185.800           | 167.0        | 5.3         | 36.01                  | 0.2899                       |
| 15  | 0.1400                        | 191.000           | 171.7        | 5.8         | 37.02                  | 0.2895                       |
| 16  | 0.1520                        | 197.100           | 177.2        | 6.3         | 38.20                  | 0.2891                       |
| 17  | 0.1600                        | 200.100           | 179.8        | 6.6         | 38.78                  | 0.2890                       |
| 18  | 0.1720                        | 200.700           | 180.4        | 7.1         | 38.90                  | 0.2889                       |
| 19  | 0.1800                        | 202.900           | 182.4        | 7.4         | 39.32                  | 0.2888                       |
| 20  | 0.1950                        | 202.900           | 182.4        | 8.0         | 39.32                  | 0.2885                       |
| 21  | 0.2000                        | 201.300           | 180.9        | 8.2         | 39.01                  | 0.2883                       |
| 22  | 0.2100                        | 201.100           | 180.7        | 8.6         | 38.97                  | 0.2881                       |
| 23  | 0.2200                        | 197.000           | 177.1        | 9.1         | 38.18                  | 0.2881                       |



Tested By: mw Checked By: mpw

## 1/5/2012

# **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S20

Depth:

95-96.5

Sample Number:

S36298

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PI=

|                                        |            | (oddesament) om |          |
|----------------------------------------|------------|-----------------|----------|
| Specimen Parameter                     | Initial    | Consolidated    | Final    |
| Moisture content: Moist soil+tare, gms | . 2379.300 |                 | 2376.050 |
| Moisture content: Dry soil+tare, gms.  | 2357.200   |                 | 2357.200 |
| Moisture content: Tare, gms.           | 2212.600   |                 | 2212.600 |
| Moisture, %                            | 15.3       | 13.0            | 13.0     |
| Moist specimen weight, gms.            | 166.7      |                 |          |
| Diameter, in.                          | 2.43       | 2.43            |          |
| Area, in.²                             | 4.64       | 4.64            |          |
| Height, in.                            | 1.00       | 0.95            |          |
| Net decrease in height, in.            |            | 0.05            |          |
| Wet density, pcf                       | 136.9      | 140.9           |          |
| Dry density, pcf                       | 118.8      | 124.7           |          |
| Void ratio                             | 0.4191     | 0.3519          |          |
| Saturation, %                          | 98.5       | 100.0           |          |

PL=

Normal stress = 23.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 21.02 psi at reading no. 12

| 0<br>1 |        |        | lbs. | %   | Stress<br>psi | Def. Dial in. |
|--------|--------|--------|------|-----|---------------|---------------|
| 18     | 0.0000 | 0.000  | 0.0  | 0.0 | 0.00          | 0.3000        |
|        | 0.0050 | 14.500 | 14.5 | 0.2 | 3.13          | 0.2991        |
| 2      | 0.0100 | 29.400 | 29.4 | 0.4 | 6.34          | 0.2982        |
| 3      | 0.0200 | 52.000 | 52.0 | 0.8 | 11.21         | 0.2971        |
| 4      | 0.0300 | 62.800 | 62.8 | 1.2 | 13.54         | 0.2968        |
| 5      | 0.0400 | 72.500 | 72.5 | 1.6 | 15.63         | 0.2968        |
| 6      | 0.0500 | 78.600 | 78.6 | 2.1 | 16.95         | 0.2968        |
| 7      | 0.0600 | 84.600 | 84.6 | 2.5 | 18.24         | 0.2970        |
| 8      | 0.0700 | 88.900 | 88.9 | 2.9 | 19.17         | 0.2975        |
| 9      | 0.0800 | 93.000 | 93.0 | 3.3 | 20.05         | 0.2980        |
| 10     | 0.0900 | 95.200 | 95.2 | 3.7 | 20.53         | 0.2987        |
| 11     | 0.1000 | 96.800 | 96.8 | 4.1 | 20.87         | 0.2991        |
| 12     | 0.1100 | 97.500 | 97.5 | 4.5 | 21.02         | 0.2998        |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 97.000       | 97.0         | 4.9         | 20.92                  | 0.3002                       |
| 14  | 0.1300                         | 97.200       | 97.2         | 5.3         | 20.96                  | 0.3010                       |
| 15  | 0.1400                         | 96.400       | 96.4         | 5.8         | 20.79                  | 0.3013                       |

| Specimen Parameter                      | Initial  | Consolidated | Final  |
|-----------------------------------------|----------|--------------|--------|
| Moisture content: Moist soil+tare, gms. | 2363.000 | 23           | 58.940 |
| Moisture content: Dry soil+tare, gms.   | 2341.100 | 23           | 41.100 |
| Moisture content: Tare, gms.            | 2196.300 | 21           | 96.300 |
| Moisture, %                             | 15.1     | 12.3         | 12.3   |
| Moist specimen weight, gms.             | 166.7    |              |        |
| Diameter, in.                           | 2.43     | 2.43         |        |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |        |
| Height, in.                             | 1.00     | 0.94         |        |
| Net decrease in height, in.             |          | 0.06         |        |
| Wet density, pcf                        | 136.9    | 142.1        |        |
| Dry density, pcf                        | 118.9    | 126.5        |        |
| Void ratio                              | 0.4171   | 0.3325       |        |
| Saturation, %                           | 97.9     | 100.0        |        |

95.2 6.2 20.53 0.3018

Normal stress = 47.1 psiStrain rate, in./min. = 0.03

0.1500

95.200

Fail. Stress = 40.08 psi at reading no. 20

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 22.500       | 22.5         | 0.2         | 4.85                   | 0.2991                       |
| 2   | 0.0100                         | 38.900       | 38.9         | 0.4         | 8.39                   | 0.2984                       |
| 3   | 0.0230                         | 69.500       | 69.5         | 0.9         | 14.99                  | 0.2961                       |
| 4   | 0.0300                         | 83.200       | 83.2         | 1.2         | 17.94                  | 0.2950                       |
| 5   | 0.0400                         | 102.000      | 102.0        | 1.6         | 21.99                  | 0.2940                       |
| 6   | 0.0530                         | 121.700      | 121.7        | 2.2         | 26.24                  | 0.2930                       |
| 7   | 0.0600                         | 129.500      | 129.5        | 2.5         | 27.92                  | 0.2929                       |
| 8   | 0.0700                         | 140.100      | 140.1        | 2.9         | 30.21                  | 0.2922                       |
| 9   | 0.0800                         | 150.000      | 150.0        | 3.3         | 32.34                  | 0.2921                       |
| 10  | 0.0900                         | 159.800      | 159.8        | 3.7         | 34.46                  | 0.2920                       |
| 11  | 0.1000                         | 166.400      | 166.4        | 4.1         | 35.88                  | 0.2920                       |
| 12  | 0.1100                         | 171.500      | 171.5        | 4.5         | 36.98                  | 0.2919                       |
| 13  | 0.1200                         | 173.900      | 173.9        | 4.9         | 37.50                  | 0.2919                       |
| 14  | 0.1300                         | 175.300      | 175.3        | 5.3         | 37.80                  | 0.2920                       |
| 15  | 0.1400                         | 178.000      | 178.0        | 5.8         | 38.38                  | 0.2920                       |
| 16  | 0.1500                         | 182.400      | 182.4        | 6.2         | 39.33                  | 0.2920                       |
| 17  | 0.1650                         | 185.000      | 185.0        | 6.8         | 39.89                  | 0.2920                       |
| 18  | 0.1700                         | 185.000      | 185.0        | 7.0         | 39.89                  | 0.2920                       |
| 19  | 0.1800                         | 185.100      | 185.1        | 7.4         | 39.91                  | 0.2920                       |
| 20  | 0.1900                         | 185.900      | 185.9        | 7.8         | 40.08                  | 0.2920                       |
|     |                                |              |              |             | Table 4                |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 21  | 0.2000                         | 183.100      | 183.1        | 8.2         | 39.48                  | 0.2921                       |  |
| 22  | 0.2100                         | 181.900      | 181.9        | 8.6         | 39.22                  | 0.2922                       |  |
| 23  | 0.2200                         | 181.200      | 181.2        | 9.1         | 39.07                  | 0.2922                       |  |
| 24  | 0.2300                         | 180.400      | 180.4        | 9.5         | 38.90                  | 0.2922                       |  |
| 25  | 0.2400                         | 179.700      | 179.7        | 9.9         | 38.75                  | 0.2922                       |  |
| 26  | 0.2550                         | 179.000      | 179.0        | 10.5        | 38.60                  | 0.2922                       |  |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2359.100 |
| Moisture content: Dry soil+tare, gms.   | 2341.500 |              | 2341.500 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 15.0     | 12.1         | 12.1     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 142.3        |          |
| Dry density, pcf                        | 119.0    | 126.9        |          |
| Void ratio                              | 0.4161   | 0.3283       |          |
| Saturation, %                           | 97.6     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 94.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 78.08 psi at reading no. 21

| Horizontal               |                  |              |              |             | Shear         | Vertical         |  |  |  |
|--------------------------|------------------|--------------|--------------|-------------|---------------|------------------|--|--|--|
| No.                      | Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Stress<br>psi | Def. Dial<br>in. |  |  |  |
| 0                        | 0.0000           | 0.000        | 0.0          | 0.0         | 0.00          | 0.3000           |  |  |  |
| 1                        | 0.0050           | 4.700        | 4.7          | 0.2         | 1.01          | 0.2994           |  |  |  |
| 2                        | 0.0100           | 8.000        | 8.0          | 0.4         | 1.72          | 0.2992           |  |  |  |
| 3                        | 0.0200           | 20.000       | 20.0         | 0.8         | 4.31          | 0.2991           |  |  |  |
| 4                        | 0.0300           | 69.800       | 69.8         | 1.2         | 15.05         | 0.2981           |  |  |  |
| 5                        | 0.0400           | 105.200      | 105.2        | 1.6         | 22.68         | 0.2961           |  |  |  |
| 6                        | 0.0500           | 145.000      | 145.0        | 2.1         | 31.27         | 0.2948           |  |  |  |
| 7                        | 0.0600           | 182.100      | 182.1        | 2.5         | 39.27         | 0.2935           |  |  |  |
| 8                        | 0.0700           | 219.200      | 219.2        | 2.9         | 47.26         | 0.2929           |  |  |  |
| 9                        | 0.0800           | 243.900      | 243.9        | 3.3         | 52.59         | 0.2920           |  |  |  |
| 10                       | 0.0900           | 262.800      | 262.8        | 3.7         | 56.67         | 0.2915           |  |  |  |
| 11                       | 0.1000           | 282.500      | 282.5        | 4.1         | 60.91         | 0.2911           |  |  |  |
| 12                       | 0.1100           | 293.800      | 293.8        | 4.5         | 63.35         | 0.2911           |  |  |  |
| 13                       | 0.1200           | 304.500      | 304.5        | 4.9         | 65.66         | 0.2907           |  |  |  |
| 14                       | 0.1300           | 314.000      | 314.0        | 5.3         | 67.71         | 0.2902           |  |  |  |
| 15                       | 0.1400           | 323.800      | 323.8        | 5.8         | 69.82         | 0.2903           |  |  |  |
| 16                       | 0.1500           | 336.000      | 336.0        | 6.2         | 72.45         | 0.2900           |  |  |  |
| 17                       | 0.1600           | 345.100      | 345.1        | 6.6         | 74.41         | 0.2900           |  |  |  |
| 18                       | 0.1700           | 352.400      | 352.4        | 7.0         | 75.99         | 0.2899           |  |  |  |
| Sierra Testing Labs, Inc |                  |              |              |             |               |                  |  |  |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 19  | 0.1800                         | 357.000      | 357.0        | 7.4         | 76.98                  | 0.2899                       |
| 20  | 0.1900                         | 360.000      | 360.0        | 7.8         | 77.62                  | 0.2899                       |
| 21  | 0.2000                         | 362.100      | 362.1        | 8.2         | 78.08                  | 0.2900                       |

\_ Sierra Testing Labs, Inc. \_\_\_\_\_



Tested By: mw Checked By: mpw

#### **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S23A

Depth:

110-110.8

Sample Number:

S36300

Description:

Remarks:

Type of Sample: Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2379.300 |              | 2378.040 |
| Moisture content: Dry soil+tare, gms.  | 2359.700   |              | 2359.700 |
| Moisture content: Tare, gms.           | 2212.600   |              | 2212.600 |
| Moisture, %                            | 13.3       | 12.5         | 12.5     |
| Moist specimen weight, gms.            | 166.7      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.96         |          |
| Net decrease in height, in.            |            | 0.04         |          |
| Wet density, pcf                       | 136.9      | 141.8        |          |
| Dry density, pcf                       | 120.8      | 126.1        |          |
| Void ratio                             | 0.3949     | 0.3366       |          |
| Saturation, %                          | 91.1       | 100.0        |          |
|                                        |            |              |          |

Normal stress = 27.4 psiStrain rate, in./min. = 0.03

Fail. Stress = 25.96 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 20.800       | 20.8         | 0.2         | 4.48                   | 0.2987                       |
| 2   | 0.0100                         | 39.000       | 39.0         | 0.4         | 8.41                   | 0.2971                       |
| 3   | 0.0260                         | 53.200       | 53.2         | 1.1         | 11.47                  | 0.2950                       |
| 4   | 0.0300                         | 59.500       | 59.5         | 1.2         | 12.83                  | 0.2950                       |
| 5   | 0.0400                         | 73.700       | 73.7         | 1.6         | 15.89                  | 0.2949                       |
| 6   | 0.0520                         | 88.100       | 88.1         | 2.1         | 19.00                  | 0.2952                       |
| 7   | 0.0600                         | 93.200       | 93.2         | 2.5         | 20.10                  | 0.2958                       |
| 8   | 0.0700                         | 97.000       | 97.0         | 2.9         | 20.92                  | 0.2962                       |
| 9   | 0.0800                         | 101.100      | 101.1        | 3.3         | 21.80                  | 0.2970                       |
| 10  | 0.0900                         | 106.400      | 106.4        | 3.7         | 22.94                  | 0.2975                       |
| 11  | 0.1040                         | 111.000      | 111.0        | 4.3         | 23.93                  | 0.2984                       |
| 12  | 0.1130                         | 113.100      | 113.1        | 4.7         | 24.39                  | 0.2992                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>Ibs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 114.500      | 114.5        | 4.9         | 24.69                  | 0.3000                       |
| 14  | 0.1300                         | 115.600      | 115.6        | 5.3         | 24.93                  | 0.3008                       |
| 15  | 0.1400                         | 117.600      | 117.6        | 5.8         | 25.36                  | 0.3015                       |
| 16  | 0.1500                         | 118.500      | 118.5        | 6.2         | 25.55                  | 0.3021                       |
| 17  | 0.1640                         | 120.400      | 120.4        | 6.7         | 25.96                  | 0.3031                       |
| 18  | 0.1750                         | 120.100      | 120.1        | 7.2         | 25.90                  | 0.3038                       |
| 19  | 0.1800                         | 118.600      | 118.6        | 7.4         | 25.57                  | 0.3041                       |
| 20  | 0.1900                         | 118.200      | 118.2        | 7.8         | 25.49                  | 0.3046                       |
| 21  | 0.2000                         | 116.900      | 116.9        | 8.2         | 25.21                  | 0.3050                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.400 |              | 2376.900 |
| Moisture content: Dry soil+tare, gms.   | 2359.900 |              | 2359.900 |
| Moisture content: Tare, gms.            | 2212.700 |              | 2212.700 |
| Moisture, %                             | 13.2     | 11.5         | 11.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 143.3        |          |
| Dry density, pcf                        | 120.9    | 128.5        |          |
| Void ratio                              | 0.3940   | 0.3117       |          |
| Saturation, %                           | 90.8     | 100.0        |          |

Normal stress = 54.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 47.65 psi at reading no. 19

| No  | Horizontal<br>Def. Dial<br>o. in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|-----------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| (   | 0.0000                            | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 3   | 0.0050                            | 26.000       | 26.0         | 0.2         | 5.61                   | 0.2991                       |
| 2   | 0.0100                            | 42.800       | 42.8         | 0.4         | 9.23                   | 0.2986                       |
| 1   | 0.0200                            | 74.500       | 74.5         | 0.8         | 16.06                  | 0.2974                       |
| 2   | 0.0320                            | 118.900      | 118.9        | 1.3         | 25.64                  | 0.2964                       |
| 4   | 0.0400                            | 130.800      | 130.8        | 1.6         | 28.20                  | 0.2960                       |
| (   | 0.0500                            | 144.800      | 144.8        | 2.1         | 31.22                  | 0.2959                       |
|     | 7 0.0600                          | 159.800      | 159.8        | 2.5         | 34.46                  | 0.2960                       |
| 8   | 0.0730                            | 173.400      | 173.4        | 3.0         | 37.39                  | 0.2960                       |
| Ç   | 0.0800                            | 179.800      | 179.8        | 3.3         | 38.77                  | 0.2962                       |
| 1(  | 0.0920                            | 185.300      | 185.3        | 3.8         | 39.96                  | 0.2960                       |
| 1 1 | 0.1040                            | 193.100      | 193.1        | 4.3         | 41.64                  | 0.2970                       |
| 12  | 0.1100                            | 195.100      | 195.1        | 4.5         | 42.07                  | 0.2970                       |
| 13  | 0.1250                            | 200.100      | 200.1        | 5.1         | 43.15                  | 0.2976                       |
| 14  | 0.1350                            | 205.200      | 205.2        | 5.6         | 44.25                  | 0.2980                       |
| 15  | 0.1420                            | 207.900      | 207.9        | 5.8         | 44.83                  | 0.2981                       |
|     |                                   |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 16  | 0.1540                         | 213.000      | 213.0        | 6.3         | 45.93                  | 0.2986                       |
| 17  | 0.1600                         | 215.600      | 215.6        | 6.6         | 46.49                  | 0.2988                       |
| 18  | 0.1700                         | 217.100      | 217.1        | 7.0         | 46.81                  | 0.2991                       |
| 19  | 0.1820                         | 221.000      | 221.0        | 7.5         | 47.65                  | 0.2998                       |
| 20  | 0.1900                         | 219.800      | 219.8        | 7.8         | 47.39                  | 0.2999                       |
| 21  | 0.2000                         | 219.400      | 219.4        | 8.2         | 47.31                  | 0.3001                       |
| 22  | 0.2130                         | 218.200      | 218.2        | 8.8         | 47.05                  | 0.3006                       |
| 23  | 0.2200                         | 219.100      | 219.1        | 9.1         | 47.24                  | 0.3007                       |
| 24  | 0.2300                         | 218.100      | 218.1        | 9.5         | 47.03                  | 0.3009                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2362.200 |
| Moisture content: Dry soil+tare, gms.   | 2344.000 |              | 2344.000 |
| Moisture content: Tare, gms.            | 2196,600 |              | 2196.600 |
| Moisture, %                             | 13.1     | 12.3         | 12.3     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 136.9    | 142.0        |          |
| Dry density, pcf                        | 121.1    | 126.4        |          |
| Void ratio                              | 0.3921   | 0.3335       |          |
| Saturation, %                           | 90.2     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 109.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 87.85 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 36.000       | 36.0         | 0.2         | 7.76                   | 0.2996                       |
| 2   | 0.0100                         | 59.000       | 59.0         | 0.4         | 12.72                  | 0.2993                       |
| 3   | 0.0200                         | 119.000      | 119.0        | 0.8         | 25.66                  | 0.2987                       |
| 4   | 0.0300                         | 197.500      | 197.5        | 1.2         | 42.59                  | 0.2980                       |
| 5   | 0.0400                         | 243.400      | 243.4        | 1.6         | 52.48                  | 0.2972                       |
| 6   | 0.0500                         | 275.000      | 275.0        | 2.1         | 59.30                  | 0.2970                       |
| 7   | 0.0600                         | 301.100      | 301.1        | 2.5         | 64.92                  | 0.2969                       |
| 8   | 0.0700                         | 320.000      | 320.0        | 2.9         | 69.00                  | 0.2969                       |
| 9   | 0.0800                         | 334.800      | 334.8        | 3.3         | 72.19                  | 0.2969                       |
| 10  | 0.0900                         | 349.300      | 349.3        | 3.7         | 75.32                  | 0.2969                       |
| 11  | 0.1000                         | 362.200      | 362.2        | 4.1         | 78.10                  | 0.2969                       |
| 12  | 0.1100                         | 375.500      | 375.5        | 4.5         | 80.97                  | 0.2969                       |
| 13  | 0.1200                         | 385.900      | 385.9        | 4.9         | 83.21                  | 0.2969                       |
| 14  | 0.1330                         | 399.000      | 399.0        | 5.5         | 86.03                  | 0.2969                       |
| 15  | 0.1400                         | 405.000      | 405.0        | 5.8         | 87.33                  | 0.2969                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 16  | 0.1500                         | 407.200      | 407.2        | 6.2         | 87.80                  | 0.2969                       |
| 17  | 0.1600                         | 407.400      | 407.4        | 6.6         | 87.85                  | 0.2968                       |
| 18  | 0.1700                         | 405.800      | 405.8        | 7.0         | 87.50                  | 0.2968                       |
| 10  | 0.1900                         | 105 100      | 105.1        | 7.4         | 97 41                  | 0.2069                       |



Tested By: mw

Checked By: mpw

#### **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S25

Depth:

120-121.5

Sample Number:

S36301

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated           | Final    |
|-----------------------------------------|----------|------------------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |                        | 2375.250 |
| Moisture content: Dry soil+tare, gms.   | 2357.500 |                        | 2357.500 |
| Moisture content: Tare, gms.            | 2212.600 |                        | 2212.600 |
| Moisture, %                             | 15.0     | 12.2                   | 12.2     |
| Moist specimen weight, gms.             | 166.7    |                        |          |
| Diameter, in.                           | 2.43     | 2.43                   |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64                   |          |
| Height, in.                             | 1.00     | 0.94                   |          |
| Net decrease in height, in.             |          | 0.06                   |          |
| Wet density, pcf                        | 136.9    | 142.2                  |          |
| Dry density, pcf                        | 119.0    | 126.7                  |          |
| Void ratio                              | 0.4161   | 0.3309                 |          |
| Saturation, %                           | 97.6     | 100.0                  |          |
|                                         |          | os di Speriman (15. fi |          |

Normal stress = 30.1 psi Strain rate, in./min. = 0.03

Fail. Stress = 23.46 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 24.100       | 24.1         | 0.2         | 5.20                   | 0.2978                       |
| 2   | 0.0100                         | 38.300       | 38.3         | 0.4         | 8.26                   | 0.2968                       |
| 3   | 0.0200                         | 56.700       | 56.7         | 0.8         | 12.23                  | 0.2950                       |
| 4   | 0.0300                         | 74.000       | 74.0         | 1.2         | 15.96                  | 0.2943                       |
| 5   | 0.0400                         | 82.900       | 82.9         | 1.6         | 17.88                  | 0.2942                       |
| 6   | 0.0500                         | 90.800       | 90.8         | 2.1         | 19.58                  | 0.2942                       |
| 7   | 0.0600                         | 95.600       | 95.6         | 2.5         | 20.61                  | 0.2941                       |
| 8   | 0.0730                         | 102.000      | 102.0        | 3.0         | 21.99                  | 0.2942                       |
| 9   | 0.0850                         | 106.700      | 106.7        | 3.5         | 23.01                  | 0.2943                       |
| 10  | 0.0900                         | 107.400      | 107.4        | 3.7         | 23.16                  | 0.2944                       |
| 11  | 0.1000                         | 108.000      | 108.0        | 4.1         | 23.29                  | 0.2945                       |
| 12  | 0.1100                         | 108.800      | 108.8        | 4.5         | 23.46                  | 0.2944                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 108.000      | 108.0        | 4.9         | 23.29                  | 0.2947                       |
| 14  | 0.1300                         | 107.200      | 107.2        | 5.3         | 23.11                  | 0.2947                       |
| 15  | 0.1450                         | 104.800      | 104.8        | 6.0         | 22.60                  | 0.2945                       |
| 16  | 0.1500                         | 103.000      | 103.0        | 6.2         | 22.21                  | 0.2944                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2359.450 |
| Moisture content: Dry soil+tare, gms.   | 2341.800 |              | 2341.800 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 14.8     | 12.2         | 12.2     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 142.3        |          |
| Dry density, pcf                        | 119.3    | 126.9        |          |
| Void ratio                              | 0.4132   | 0.3284       |          |
| Saturation, %                           | 96.8     | 99.9         |          |

Normal stress = 60.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 59.51 psi at reading no. 16

| No. | Horizonta<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dia<br>in. |
|-----|-------------------------------|-------------------|--------------|-------------|------------------------|-----------------------------|
| 0   | 0.0000                        | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                      |
| 1   | 0.0050                        | 21.400            | 21.4         | 0.2         | 4.61                   | 0.2996                      |
| 2   | 0.0100                        | 30.200            | 30.2         | 0.4         | 6.51                   | 0.2992                      |
| 3   | 0.0200                        | 61.100            | 61.1         | 0.8         | 13.17                  | 0.2982                      |
| 4   | 0.0300                        | 103.200           | 103.2        | 1.2         | 22.25                  | 0.2974                      |
| 5   | 0.0430                        | 148.800           | 148.8        | 1.8         | 32.08                  | 0.2968                      |
| 6   | 0.0550                        | 173.000           | 173.0        | 2.3         | 37.30                  | 0.2961                      |
| 7   | 0.0660                        | 197.000           | 197.0        | 2.7         | 42.48                  | 0.2960                      |
| 8   | 0.0750                        | 217.000           | 217.0        | 3.1         | 46.79                  | 0.2960                      |
| 9   | 0.0800                        | 227.100           | 227.1        | 3.3         | 48.97                  | 0.2960                      |
| 10  | 0.0950                        | 247.800           | 247.8        | 3.9         | 53.43                  | 0.2961                      |
| 11  | 0.1050                        | 256.300           | 256.3        | 4.3         | 55.26                  | 0.2963                      |
| 12  | 0.1100                        | 262.600           | 262.6        | 4.5         | 56.62                  | 0.2967                      |
| 13  | 0.1200                        | 268.500           | 268.5        | 4.9         | 57.90                  | 0.2970                      |
| 14  | 0.1300                        | 274.400           | 274.4        | 5.3         | 59.17                  | 0.2970                      |
| 15  | 0.1400                        | 275.700           | 275.7        | 5.8         | 59.45                  | 0.2971                      |
| 16  | 0.1500                        | 276.000           | 276.0        | 6.2         | 59.51                  | 0.2970                      |
| 17  | 0.1650                        | 268.100           | 268.1        | 6.8         | 57.81                  | 0.2970                      |
| 18  | 0.1700                        | 268.400           | 268.4        | 7.0         | 57.87                  | 0.2970                      |
| 19  | 0.1800                        | 268.000           | 268.0        | 7.4         | 57.79                  | 0.2970                      |
|     |                               |                   |              |             |                        |                             |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2359.400 |
| Moisture content: Dry soil+tare, gms.   | 2341.900 |              | 2341.900 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 14.7     | 12.0         | 12.0     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 142.5        |          |
| Dry density, pcf                        | 119.4    | 127.2        |          |
| Void ratio                              | 0.4122   | 0.3252       |          |
| Saturation, %                           | 96.5     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 120.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 101.43 psi at reading no. 19

| No. | Horizonta<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dia<br>in. |
|-----|-------------------------------|-------------------|--------------|-------------|------------------------|-----------------------------|
| O   | 0.0000                        | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                      |
| 1   | 0.0050                        | 27.400            | 27.4         | 0.2         | 5.91                   | 0.2994                      |
| 2   | 0.0100                        | 33.800            | 33.8         | 0.4         | 7.29                   | 0.2990                      |
| 3   | 0.0200                        | 71.500            | 71.5         | 0.8         | 15.42                  | 0.2987                      |
| 4   | 0.0300                        | 113.600           | 113.6        | 1.2         | 24.49                  | 0.2984                      |
| 5   | 0.0400                        | 156.700           | 156.7        | 1.6         | 33.79                  | 0.2974                      |
| 6   | 0.0500                        | 190.200           | 190.2        | 2.1         | 41.01                  | 0.2970                      |
| 7   | 0.0600                        | 226.400           | 226.4        | 2.5         | 48.82                  | 0.2964                      |
| 8   | 0.0700                        | 251.700           | 251.7        | 2.9         | 54.27                  | 0.2958                      |
| 9   | 0.0800                        | 263.800           | 263.8        | 3.3         | 56.88                  | 0.2951                      |
| 10  | 0.0900                        | 302.400           | 302.4        | 3.7         | 65.20                  | 0.2946                      |
| 11  | 0.1000                        | 324.600           | 324.6        | 4.1         | 69.99                  | 0.2942                      |
| 12  | 0.1100                        | 341.200           | 341.2        | 4.5         | 73.57                  | 0.2944                      |
| 13  | 0.1200                        | 363.700           | 363.7        | 4.9         | 78.42                  | 0.2948                      |
| 14  | 0.1300                        | 388.400           | 388.4        | 5.3         | 83.75                  | 0.2952                      |
| 15  | 0.1400                        | 421.600           | 421.6        | 5.8         | 90.91                  | 0.2955                      |
| 16  | 0.1500                        | 442.200           | 442.2        | 6.2         | 95.35                  | 0.2957                      |
| 17  | 0.1600                        | 451.600           | 451.6        | 6.6         | 97.38                  | 0.2964                      |
| 18  | 0.1700                        | 462.700           | 462.7        | 7.0         | 99.77                  | 0.2967                      |
| 19  | 0.1800                        | 470.400           | 470.4        | 7.4         | 101.43                 | 0.2972                      |
| 20  | 0.1900                        | 470.400           | 470.4        | 7.8         | 101.43                 | 0.2974                      |
| 21  | 0.2000                        | 470.400           | 470.4        | 8.2         | 101.43                 | 0.2977                      |
| 22  | 0.2100                        | 461.300           | 461.3        | 8.6         | 99.47                  | 0.2980                      |



Tested By: mw Checked By: mpw

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0016R, S31

Depth:

150-151.5

Sample Number:

S36302

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2311.200 |              | 2317.800 |
| Moisture content: Dry soil+tare, gms.   | 2283.700   |              | 2283.700 |
| Moisture content: Tare, gms.            | 2196.800   |              | 2196.800 |
| Moisture, %                             | 31.6       | 39.2         | 39.2     |
| Moist specimen weight, gms.             | 114.4      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |
| Height, in.                             | 1.00       | 0.87         |          |
| Net decrease in height, in.             |            | 0.13         |          |
| Wet density, pcf                        | 94.0       | 114.0        |          |
| Dry density, pcf                        | 71.4       | 81.8         |          |
| Void ratio                              | 1.3613     | 1.0595       |          |
| Saturation, %                           | 62.8       | 100.0        |          |
|                                         |            |              |          |

Normal stress = 37.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 29.13 psi at reading no. 27

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 18.900       | 18.9         | 0.2         | 4.08                   | 0.2967                       |
| 2   | 0.0100                         | 29.000       | 29.0         | 0.4         | 6.25                   | 0.2945                       |
| 3   | 0.0200                         | 42.400       | 42.4         | 0.8         | 9.14                   | 0.2915                       |
| 4   | 0.0300                         | 49.700       | 49.7         | 1.2         | 10.72                  | 0.2910                       |
| 5   | 0.0400                         | 57.500       | 57.5         | 1.6         | 12.40                  | 0.2865                       |
| 6   | 0.0540                         | 69.000       | 69.0         | 2.2         | 14.88                  | 0.2840                       |
| 7   | 0.0600                         | 73.900       | 73.9         | 2.5         | 15.93                  | 0.2832                       |
| 8   | 0.0700                         | 80.600       | 80.6         | 2.9         | 17.38                  | 0.2818                       |
| 9   | 0.0820                         | 87.200       | 87.2         | 3.4         | 18.80                  | 0.2801                       |
| 10  | 0.0900                         | 90.600       | 90.6         | 3.7         | 19.54                  | 0.2790                       |
| 11  | 0.1000                         | 95.200       | 95.2         | 4.1         | 20.53                  | 0.2779                       |
| 12  | 0.1100                         | 100.600      | 100.6        | 4.5         | 21.69                  | 0.2770                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 104.400      | 104.4        | 4.9         | 22.51                  | 0.2760                       |
| 14  | 0.1320                         | 107.800      | 107.8        | 5.4         | 23.24                  | 0.2750                       |
| 15  | 0.1400                         | 111.300      | 111.3        | 5.8         | 24.00                  | 0.2743                       |
| 16  | 0.1500                         | 113.500      | 113.5        | 6.2         | 24.47                  | 0.2732                       |
| 17  | 0.1600                         | 116.100      | 116.1        | 6.6         | 25.03                  | 0.2728                       |
| 18  | 0.1700                         | 119.000      | 119.0        | 7.0         | 25.66                  | 0.2721                       |
| 19  | 0.1830                         | 121.500      | 121.5        | 7.5         | 26.20                  | 0.2711                       |
| 20  | 0.1900                         | 123.300      | 123.3        | 7.8         | 26.59                  | 0.2709                       |
| 21  | 0.2000                         | 124.000      | 124.0        | 8.2         | 26.74                  | 0.2702                       |
| 22  | 0.2100                         | 127.200      | 127.2        | 8.6         | 27.43                  | 0.2697                       |
| 23  | 0.2200                         | 128.100      | 128.1        | 9.1         | 27.62                  | 0.2689                       |
| 24  | 0.2350                         | 132.800      | 132.8        | 9.7         | 28.63                  | 0.2680                       |
| 25  | 0.2400                         | 133.600      | 133.6        | 9.9         | 28.81                  | 0.2676                       |
| 26  | 0.2500                         | 134.900      | 134.9        | 10.3        | 29.09                  | 0.2671                       |
| 27  | 0.2600                         | 135.100      | 135.1        | 10.7        | 29.13                  | 0.2668                       |
| 28  | 0.2700                         | 134.600      | 134.6        | 11.1        | 29.02                  | 0.2664                       |
| 29  | 0.2800                         | 134.300      | 134.3        | 11.5        | 28.96                  | 0.2661                       |
| 30  | 0.2900                         | 134.000      | 134.0        | 11.9        | 28.89                  | 0.2658                       |

\_\_\_\_ Sierra Testing Labs, Inc. \_\_\_\_\_

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. |          |              | 2335.900 |
| Moisture content: Dry soil+tare, gms.   | 2299.600 |              | 2299.600 |
| Moisture content: Tare, gms.            | 2212.700 |              | 2212.700 |
| Moisture, %                             | 31.6     | 41.8         | 41.8     |
| Moist specimen weight, gms.             | 114.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.90         |          |
| Net decrease in height, in.             |          | 0.10         |          |
| Wet density, pcf                        | 94.0     | 112.2        |          |
| Dry density, pcf                        | 71.4     | 79.2         |          |
| Void ratio                              | 1.3613   | 1.1292       |          |
| Saturation, %                           | 62.8     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 75.0 psi Strain rate, in./min. = 0.03

Fail. Stress = 48.02 psi at reading no. 21

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                                                                                                           | Load<br>lbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0050                         | 32.100                                                                                                                                                                                 | 32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0150                         | 81.200                                                                                                                                                                                 | 81.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0200                         | 99.000                                                                                                                                                                                 | 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0350                         | 137.500                                                                                                                                                                                | 137.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0430                         | 151.500                                                                                                                                                                                | 151.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0500                         | 162.000                                                                                                                                                                                | 162.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0600                         | 171.400                                                                                                                                                                                | 171.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0700                         | 180.000                                                                                                                                                                                | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0800                         | 184.900                                                                                                                                                                                | 184.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0900                         | 191.000                                                                                                                                                                                | 191.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1020                         | 199.000                                                                                                                                                                                | 199.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1100                         | 201.400                                                                                                                                                                                | 201.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1200                         | 206.000                                                                                                                                                                                | 206.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1300                         | 209.100                                                                                                                                                                                | 209.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1400                         | 211.900                                                                                                                                                                                | 211.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1500                         | 213.600                                                                                                                                                                                | 213.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1600                         | 217.000                                                                                                                                                                                | 217.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1730                         | 220.500                                                                                                                                                                                | 220.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1830                         | 219.400                                                                                                                                                                                | 219.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1900                         | 220.600                                                                                                                                                                                | 220.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.2000                         | 222.700                                                                                                                                                                                | 222.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.2100                         | 219.800                                                                                                                                                                                | 219.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.2200                         | 219.100                                                                                                                                                                                | 219.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.2300                         | 218.600                                                                                                                                                                                | 218.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | Def. Dial in.  0.0000 0.0050 0.0150 0.0200 0.0350 0.0430 0.0500 0.0600 0.0700 0.0800 0.0900 0.1020 0.1100 0.1200 0.1300 0.1400 0.1500 0.1600 0.1730 0.1830 0.1900 0.2000 0.2100 0.2200 | Def. Dial in.         Load Dial           0.0000         0.000           0.0050         32.100           0.0150         81.200           0.0200         99.000           0.0350         137.500           0.0430         151.500           0.0500         162.000           0.0600         171.400           0.0700         180.000           0.0800         184.900           0.0900         191.000           0.1020         199.000           0.1100         201.400           0.1200         206.000           0.1300         209.100           0.1400         211.900           0.1500         213.600           0.1600         217.000           0.1730         220.500           0.1830         219.400           0.2000         222.700           0.2100         219.800           0.2200         219.100 | Def. Dial in.         Load Dial Dial Load Ibs.         Load Ibs.           0.0000         0.000         0.0           0.0050         32.100         32.1           0.0150         81.200         81.2           0.0200         99.000         99.0           0.0350         137.500         137.5           0.0430         151.500         151.5           0.0500         162.000         162.0           0.0600         171.400         171.4           0.0700         180.000         184.9           0.0900         191.000         191.0           0.1020         199.000         199.0           0.1100         201.400         201.4           0.1200         206.000         206.0           0.1300         209.100         209.1           0.1400         211.90         211.9           0.1500         213.600         213.6           0.1600         217.000         217.0           0.1730         220.500         220.5           0.1830         219.400         219.4           0.1900         220.600         220.5           0.1830         219.400         219.4           0.19 | Def. Dial in.         Load Dial Dial lbs.         Load lbs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         32.100         32.1         0.2           0.0150         81.200         81.2         0.6           0.0200         99.000         99.0         0.8           0.0350         137.500         137.5         1.4           0.0430         151.500         151.5         1.8           0.0500         162.000         162.0         2.1           0.0600         171.400         171.4         2.5           0.0700         180.000         180.0         2.9           0.0800         184.900         184.9         3.3           0.0900         191.000         191.0         3.7           0.1020         199.000         199.0         4.2           0.1100         201.400         201.4         4.5           0.1200         206.000         206.0         4.9           0.1300         209.100         209.1         5.3           0.1400         211.90         211.9         5.8           0.1500         213.600         213.6         6.2 | Def. Dial in.         Load Dial         Load Ibs.         Strain %         Stress psi           0.0000         0.0000         0.0         0.0         0.00           0.0050         32.100         32.1         0.2         6.92           0.0150         81.200         81.2         0.6         17.51           0.0200         99.000         99.0         0.8         21.35           0.0350         137.500         137.5         1.4         29.65           0.0430         151.500         151.5         1.8         32.67           0.0500         162.000         162.0         2.1         34.93           0.0500         162.000         162.0         2.1         34.93           0.0500         180.000         180.0         2.9         38.81           0.0600         171.400         171.4         2.5         36.96           0.0700         180.000         180.0         2.9         38.81           0.0800         184.900         184.9         3.3         39.87           0.0900         191.000         191.0         3.7         41.18           0.1200         201.400         201.4         4.5         43.43 <tr< th=""></tr<> |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2311.200 |              | 2309.650 |
| Moisture content: Dry soil+tare, gms.   | 2283.700 |              | 2283.700 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 31.6     | 29.9         | 29.9     |
| Moist specimen weight, gms.             | 114.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.77         |          |
| Net decrease in height, in.             |          | 0.23         |          |
| Wet density, pcf                        | 94.0     | 121.2        |          |
| Dry density, pcf                        | 71.4     | 93.3         |          |
| /oid ratio                              | 1.3613   | 0.8066       |          |
| Saturation, %                           | 62.8     | 100.0        |          |

Normal stress = 150 psi Strain rate, in./min. = 0.03

Fail. Stress = 83.53 psi at reading no. 25

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 56.600       | 56.6         | 0.2         | 12.20                  | 0.2980                       |
| 2   | 0.0100                         | 103.000      | 103.0        | 0.4         | 22.21                  | 0.2971                       |
| 3   | 0.0200                         | 186.200      | 186.2        | 0.8         | 40.15                  | 0.2957                       |
| 4   | 0.0300                         | 252.000      | 252.0        | 1.2         | 54.34                  | 0.2948                       |
| 5   | 0.0400                         | 287.900      | 287.9        | 1.6         | 62.08                  | 0.2930                       |
| 6   | 0.0500                         | 276.100      | 276.1        | 2.1         | 59.53                  | 0.2912                       |
| 7   | 0.0600                         | 281.200      | 281.2        | 2.5         | 60.63                  | 0.2899                       |
| 8   | 0.0700                         | 294.100      | 294.1        | 2.9         | 63.42                  | 0.2885                       |
| 9   | 0.0800                         | 304.500      | 304.5        | 3.3         | 65.66                  | 0.2874                       |
| 10  | 0.0900                         | 314.600      | 314.6        | 3.7         | 67.84                  | 0.2873                       |
| 11  | 0.1000                         | 323.700      | 323.7        | 4.1         | 69.80                  | 0.2871                       |
| 12  | 0.1100                         | 330.400      | 330.4        | 4.5         | 71.24                  | 0.2869                       |
| 13  | 0.1200                         | 341.600      | 341.6        | 4.9         | 73.66                  | 0.2867                       |
| 14  | 0.1300                         | 350.100      | 350.1        | 5.3         | 75.49                  | 0.2865                       |
| 15  | 0.1400                         | 359.800      | 359.8        | 5.8         | 77.58                  | 0.2859                       |
| 16  | 0.1500                         | 364.500      | 364.5        | 6.2         | 78.60                  | 0.2854                       |
| 17  | 0.1600                         | 369.700      | 369.7        | 6.6         | 79.72                  | 0.2850                       |
| 18  | 0.1700                         | 371.600      | 371.6        | 7.0         | 80.13                  | 0.2847                       |
| 19  | 0.1800                         | 375.600      | 375.6        | 7.4         | 80.99                  | 0.2846                       |
| 20  | 0.1900                         | 379.700      | 379.7        | 7.8         | 81.87                  | 0.2843                       |
| 21  | 0.2000                         | 381.400      | 381.4        | 8.2         | 82.24                  | 0.2841                       |
| 22  | 0.2100                         | 385.000      | 385.0        | 8.6         | 83.02                  | 0.2838                       |
| 23  | 0.2200                         | 386.400      | 386.4        | 9.1         | 83.32                  | 0.2832                       |
| 24  | 0.2300                         | 387.000      | 387.0        | 9.5         | 83.45                  | 0.2830                       |
| 25  | 0.2400                         | 387.400      | 387.4        | 9.9         | 83.53                  | 0.2826                       |
| 26  | 0.2500                         | 387.100      | 387.1        | 10.3        | 83.47                  | 0.2822                       |
| 27  | 0.2600                         | 387.000      | 387.0        | 10.7        | 83.45                  | 0.2819                       |
| 28  | 0.2700                         | 386.700      | 386.7        | 11.1        | 83.38                  | 0.2819                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 29  | 0.2800                         | 386.800      | 386.8        | 11.5        | 83.40                  | 0.2818                       |  |
| 30  | 0.2900                         | 386 500      | 386.5        | 11.0        | 83 34                  | 0.2818                       |  |



Tested By: mw

Checked By: mpw

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S02

Depth:

5-6.5

Sample Number:

S36304

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                    | Initial     | Consolidated | Final    |
|---------------------------------------|-------------|--------------|----------|
| Moisture content: Moist soil+tare, gm | s. 2364.700 |              | 2376.700 |
| Moisture content: Dry soil+tare, gms. | 2352.700    |              | 2352.700 |
| Moisture content: Tare, gms.          | 2212.600    |              | 2212.600 |
| Moisture, %                           | 8.6         | 17.1         | 17.1     |
| Moist specimen weight, gms.           | 152.1       |              |          |
| Diameter, in.                         | 2.43        | 2.43         |          |
| Area, in. <sup>2</sup>                | 4.64        | 4.64         |          |
| Height, in.                           | 1.00        | 1.00         |          |
| Net decrease in height, in.           |             | 0.00         |          |
| Wet density, pcf                      | 124.9       | 135.0        |          |
| Dry density, pcf                      | 115.1       | 115.2        |          |
| Void ratio                            | 0.4646      | 0.4627       |          |
| Saturation, %                         | 49.8        | 100.0        |          |
|                                       |             |              |          |

Normal stress = 1.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.44 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.300        | 4.3          | 0.2         | 0.93                   | 0.2995                       |
| 2   | 0.0100                         | 4.800        | 4.8          | 0.4         | 1.03                   | 0.2993                       |
| 3   | 0.0200                         | 5.200        | 5.2          | 0.8         | 1.12                   | 0.2992                       |
| 4   | 0.0300                         | 5.400        | 5.4          | 1.2         | 1.16                   | 0.2992                       |
| 5   | 0.0400                         | 5.700        | 5.7          | 1.6         | 1.23                   | 0.2992                       |
| 6   | 0.0500                         | 5.900        | 5.9          | 2.1         | 1.27                   | 0.2991                       |
| 7   | 0.0600                         | 6.300        | 6.3          | 2.5         | 1.36                   | 0.2991                       |
| 8   | 0.0700                         | 6.600        | 6.6          | 2.9         | 1.42                   | 0.2991                       |
| 9   | 0.0800                         | 6.700        | 6.7          | 3.3         | 1.44                   | 0.2990                       |
| 10  | 0.0900                         | 6.700        | 6.7          | 3.7         | 1.44                   | 0.2990                       |
| 11  | 0.1000                         | 6.300        | 6.3          | 4.1         | 1.36                   | 0.2991                       |
| 12  | 0.1100                         | 6.200        | 6.2          | 4.5         | 1.34                   | 0.2991                       |

|     | Horizontal |       |      |          | Shear  | Vertical  |
|-----|------------|-------|------|----------|--------|-----------|
| NI- | Def. Dial  | Load  | Load | Strain % | Stress | Def. Dial |
| No. | in.        | Dial  | lbs. | 70       | psi    | in.       |
| 13  | 0.1200     | 6.000 | 6.0  | 4.9      | 1.29   | 0.2991    |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2348.900 |              | 2360.750 |
| Moisture content: Dry soil+tare, gms.   | 2336.700 |              | 2336.700 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 8.7      | 17.2         | 17.2     |
| Moist specimen weight, gms.             | 152.1    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 124.9    | 134.9        |          |
| Dry density, pcf                        | 114.9    | 115.1        |          |
| Void ratio                              | 0.4667   | 0.4639       |          |
| Saturation, %                           | 50.4     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 2.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.24 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.100        | 5.1          | 0.2         | 1.10                   | 0.2993                       |
| 2   | 0.0100                         | 5.600        | 5.6          | 0.4         | 1.21                   | 0.2991                       |
| 3   | 0.0200                         | 5.900        | 5.9          | 0.8         | 1.27                   | 0.2987                       |
| 4   | 0.0300                         | 6.300        | 6.3          | 1.2         | 1.36                   | 0.2987                       |
| 5   | 0.0400                         | 6.700        | 6.7          | 1.6         | 1.44                   | 0.2986                       |
| 6   | 0.0500                         | 7.200        | 7.2          | 2.1         | 1.55                   | 0.2986                       |
| 7   | 0.0600                         | 7.700        | 7.7          | 2.5         | 1.66                   | 0.2986                       |
| 8   | 0.0700                         | 8.400        | 8.4          | 2.9         | 1.81                   | 0.2987                       |
| 9   | 0.0800                         | 8.800        | 8.8          | 3.3         | 1.90                   | 0.2987                       |
| 10  | 0.0900                         | 9.400        | 9.4          | 3.7         | 2.03                   | 0.2986                       |
| 11  | 0.1000                         | 9.900        | 9.9          | 4.1         | 2.13                   | 0.2987                       |
| 12  | 0.1100                         | 10.400       | 10.4         | 4.5         | 2.24                   | 0.2988                       |
| 13  | 0.1200                         | 10.300       | 10.3         | 4.9         | 2.22                   | 0.2988                       |
| 14  | 0.1300                         | 10.300       | 10.3         | 5.3         | 2.22                   | 0.2989                       |
| 15  | 0.1400                         | 10.200       | 10.2         | 5.8         | 2.20                   | 0.2990                       |
| 16  | 0.1500                         | 10.000       | 10.0         | 6.2         | 2.16                   | 0.2990                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2364.700 |              | 2376.500 |
| Moisture content: Dry soil+tare, gms.   | 2352.500 |              | 2352.500 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 8.7      | 17.2         | 17.2     |
| Moist specimen weight, gms.             | 152.1    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 1.00         |          |
| Net decrease in height, in.             |          | 0.00         |          |
| Wet density, pcf                        | 124.9    | 134.9        |          |
| Dry density, pcf                        | 114.9    | 115.2        |          |
| Void ratio                              | 0.4667   | 0.4636       |          |
| Saturation, %                           | 50.4     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 4.7 psiStrain rate, in./min. = 0.03

Fail. Stress = 4.01 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.200        | 7.2          | 0.2         | 1.55                   | 0.2994                       |
| 2   | 0.0100                         | 7.700        | 7.7          | 0.4         | 1.66                   | 0.2991                       |
| 3   | 0.0200                         | 8.300        | 8.3          | 0.8         | 1.79                   | 0.2988                       |
| 4   | 0.0300                         | 8.900        | 8.9          | 1.2         | 1.92                   | 0.2984                       |
| 5   | 0.0400                         | 9.400        | 9.4          | 1.6         | 2.03                   | 0.2983                       |
| 6   | 0.0500                         | 9.800        | 9.8          | 2.1         | 2.11                   | 0.2983                       |
| 7   | 0.0600                         | 10.300       | 10.3         | 2.5         | 2.22                   | 0.2982                       |
| 8   | 0.0700                         | 10.700       | 10.7         | 2.9         | 2.31                   | 0.2982                       |
| 9   | 0.0800                         | 11.600       | 11.6         | 3.3         | 2.50                   | 0.2980                       |
| 10  | 0.0900                         | 12.100       | 12.1         | 3.7         | 2.61                   | 0.2980                       |
| 11  | 0.1000                         | 13.000       | 13.0         | 4.1         | 2.80                   | 0.2980                       |
| 12  | 0.1100                         | 13.600       | 13.6         | 4.5         | 2.93                   | 0.2980                       |
| 13  | 0.1200                         | 14.700       | 14.7         | 4.9         | 3.17                   | 0.2980                       |
| 14  | 0.1300                         | 15.600       | 15.6         | 5.3         | 3.36                   | 0.2981                       |
| 15  | 0.1400                         | 17.700       | 17.7         | 5.8         | 3.82                   | 0.2981                       |
| 16  | 0.1500                         | 18.100       | 18.1         | 6.2         | 3.90                   | 0.2982                       |
| 17  | 0.1600                         | 18.600       | 18.6         | 6.6         | 4.01                   | 0.2982                       |
| 18  | 0.1700                         | 18.500       | 18.5         | 7.0         | 3.99                   | 0.2982                       |
| 19  | 0.1800                         | 18.100       | 18.1         | 7.4         | 3.90                   | 0.2983                       |
| 20  | 0.1900                         | 17.700       | 17.7         | 7.8         | 3.82                   | 0.2984                       |



Tested By: mw Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S07

Depth:

30-31.3

Sample Number:

S36306

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2371.400 |              | 2371.250 |
| Moisture content: Dry soil+tare, gms.  | 2345.900   |              | 2345.900 |
| Moisture content: Tare, gms.           | 2212.000   |              | 2212.000 |
| Moisture, %                            | 19.0       | 18.9         | 18.9     |
| Moist specimen weight, gms.            | 159.4      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.99         |          |
| Net decrease in height, in.            |            | 0.01         |          |
| Wet density, pcf                       | 130.9      | 132.6        |          |
| Dry density, pcf                       | 110.0      | 111.5        |          |
| Void ratio                             | 0.5325     | 0.5116       |          |
| Saturation, %                          | 96.6       | 99.9         |          |
|                                        |            |              |          |

Load ring constant = 1.2122 lbs. per input unit

Normal stress = 7.4 psi

Strain rate, in./min. = 0.03

Fail. Stress = 9.44 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 6.900        | 8.4          | 0.2         | 1.80                   | 0.2994                       |
| 2   | 0.0100                         | 10.700       | 13.0         | 0.4         | 2.80                   | 0.2991                       |
| 3   | 0.0200                         | 16.100       | 19.5         | 0.8         | 4.21                   | 0.2988                       |
| 4   | 0.0300                         | 20.000       | 24.2         | 1.2         | 5.23                   | 0.2985                       |
| 5   | 0.0400                         | 24.300       | 29.5         | 1.6         | 6.35                   | 0.2990                       |
| 6   | 0.0500                         | 26.900       | 32.6         | 2.1         | 7.03                   | 0.2998                       |
| 7   | 0.0600                         | 30.000       | 36.4         | 2.5         | 7.84                   | 0.3011                       |
| 8   | 0.0700                         | 31.800       | 38.5         | 2.9         | 8.31                   | 0.3028                       |
| 9   | 0.0800                         | 33.200       | 40.2         | 3.3         | 8.68                   | 0.3044                       |
| 10  | 0.0950                         | 35.900       | 43.5         | 3.9         | 9.38                   | 0.3063                       |
| 11  | 0.1020                         | 36.100       | 43.8         | 4.2         | 9.44                   | 0.3074                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1100                         | 34.900       | 42.3         | 4.5         | 9.12                   | 0.3089                       |
| 13  | 0.1220                         | 35.300       | 42.8         | 5.0         | 9.23                   | 0.3107                       |
| 14  | 0.1330                         | 35.000       | 42.4         | 5.5         | 9.15                   | 0.3120                       |
| 15  | 0.1400                         | 34.000       | 41.2         | 5.8         | 8.89                   | 0.3130                       |
| 16  | 0.1500                         | 33.200       | 40.2         | 6.2         | 8.68                   | 0.3137                       |

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2355.700 |              | 2355.500 |
| Moisture content: Dry soil+tare, gms.   | 2330.400   |              | 2330.400 |
| Moisture content: Tare, gms.            | 2196.300   |              | 2196.300 |
| Moisture, %                             | 18.9       | 18.7         | 18.7     |
| Moist specimen weight, gms.             | 159.4      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |
| Height, in.                             | 1.00       | 0.98         |          |
| Net decrease in height, in.             |            | 0.02         |          |
| Wet density, pcf                        | 130.9      | 132.9        |          |
| Dry density, pcf                        | 110.2      | 111.9        |          |
| Void ratio                              | 0.5302     | 0.5060       |          |
| Saturation, %                           | 96.1       | 99.9         |          |

Normal stress = 14.7 psiStrain rate, in./min. = 0.03

Fail. Stress = 15.50 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 8.300        | 8.3          | 0.2         | 1.79                   | 0.2999                       |
| 2   | 0.0100                         | 16.400       | 16.4         | 0.4         | 3.54                   | 0.2991                       |
| 3   | 0.0200                         | 30.100       | 30.1         | 0.8         | 6.49                   | 0.2985                       |
| 4   | 0.0300                         | 43.100       | 43.1         | 1.2         | 9.29                   | 0.2982                       |
| 5   | 0.0400                         | 50.500       | 50.5         | 1.6         | 10.89                  | 0.2990                       |
| 6   | 0.0500                         | 56.400       | 56.4         | 2.1         | 12.16                  | 0.3005                       |
| 7   | 0.0600                         | 63.600       | 63.6         | 2.5         | 13.71                  | 0.3010                       |
| 8   | 0.0700                         | 67.800       | 67.8         | 2.9         | 14.62                  | 0.3028                       |
| 9   | 0.0820                         | 71.200       | 71.2         | 3.4         | 15.35                  | 0.3047                       |
| 10  | 0.0930                         | 71.900       | 71.9         | 3.8         | 15.50                  | 0.3062                       |
| 11  | 0.1040                         | 71.900       | 71.9         | 4.3         | 15.50                  | 0.3081                       |
| 12  | 0.1100                         | 71.200       | 71.2         | 4.5         | 15.35                  | 0.3091                       |
| 13  | 0.1200                         | 68.300       | 68.3         | 4.9         | 14.73                  | 0.3109                       |
| 14  | 0.1300                         | 65.400       | 65.4         | 5.3         | 14.10                  | 0.3117                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2356.100 |              | 2355.500 |
| Moisture content: Dry soil+tare, gms.   | 2330.600 |              | 2330.600 |
| Moisture content: Tare, gms.            | 2196.700 |              | 2196.700 |
| Moisture, %                             | 19.0     | 18.6         | 18.6     |
| Moist specimen weight, gms.             | 159.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 130.9    | 133.0        |          |
| Dry density, pcf                        | 110.0    | 112.2        |          |
| Void ratio                              | 0.5325   | 0.5026       |          |
| Saturation, %                           | 96.6     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 29.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 29.50 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 17.100       | 17.1         | 0.2         | 3.69                   | 0.2992                       |
| 2   | 0.0100                         | 25.800       | 25.8         | 0.4         | 5.56                   | 0.2989                       |
| 3   | 0.0200                         | 48.000       | 48.0         | 0.8         | 10.35                  | 0.2980                       |
| 4   | 0.0300                         | 65.600       | 65.6         | 1.2         | 14.14                  | 0.2981                       |
| 5   | 0.0400                         | 88.100       | 88.1         | 1.6         | 19.00                  | 0.2985                       |
| 6   | 0.0500                         | 102.400      | 102.4        | 2.1         | 22.08                  | 0.2987                       |
| 7   | 0.0650                         | 112.800      | 112.8        | 2.7         | 24.32                  | 0.2990                       |
| 8   | 0.0700                         | 116.600      | 116.6        | 2.9         | 25.14                  | 0.2991                       |
| 9   | 0.0800                         | 123.500      | 123.5        | 3.3         | 26.63                  | 0.3001                       |
| 10  | 0.0900                         | 130.000      | 130.0        | 3.7         | 28.03                  | 0.3010                       |
| 11  | 0.1000                         | 132.100      | 132.1        | 4.1         | 28.48                  | 0.3019                       |
| 12  | 0.1120                         | 135.900      | 135.9        | 4.6         | 29.30                  | 0.3030                       |
| 13  | 0.1200                         | 136.400      | 136.4        | 4.9         | 29.41                  | 0.3034                       |
| 14  | 0.1300                         | 136.800      | 136.8        | 5.3         | 29.50                  | 0.3040                       |
| 15  | 0.1400                         | 133.900      | 133.9        | 5.8         | 28.87                  | 0.3052                       |
| 16  | 0.1500                         | 130.100      | 130.1        | 6.2         | 28.05                  | 0.3060                       |
| 17  | 0.1600                         | 126.200      | 126.2        | 6.6         | 27.21                  | 0.3062                       |
| 18  | 0.1700                         | 123.700      | 123.7        | 7.0         | 26.67                  | 0.3065                       |
| 19  | 0.1800                         | 120.100      | 120.1        | 7.4         | 25.90                  | 0.3070                       |



# 1/5/2012

## **DIRECT SHEAR TEST**

Date:

Client: Project:

URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S10

Depth:

45-46.0

Sample Number:

S36307

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2357.100 |              | 2361.500 |
| Moisture content: Dry soil+tare, gms.   | 2341.500 |              | 2341.500 |
| Moisture content: Tare, gms.            | 2196.500 |              | 2196.500 |
| Moisture, %                             | 10.8     | 13.8         | 13.8     |
| Moist specimen weight, gms.             | 160.6    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 131.9    | 139.7        |          |
| Dry density, pcf                        | 119.1    | 122.8        |          |
| /oid ratio                              | 0.4151   | 0.3727       |          |
| Saturation, %                           | 70.0     | 99.9         |          |

Normal stress = 10.9 psi Strain rate, in./min. = 0.03

Fail. Stress = 9.81 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 15.900       | 15.9         | 0.2         | 3.43                   | 0.2992                       |
| 2   | 0.0100                         | 25.000       | 25.0         | 0.4         | 5.39                   | 0.2990                       |
| 3   | 0.0200                         | 36.300       | 36.3         | 0.8         | 7.83                   | 0.2998                       |
| 4   | 0.0330                         | 41.200       | 41.2         | 1.4         | 8.88                   | 0.3010                       |
| 5   | 0.0400                         | 42.300       | 42.3         | 1.6         | 9.12                   | 0.3016                       |
| 6   | 0.0500                         | 44.600       | 44.6         | 2.1         | 9.62                   | 0.3025                       |
| 7   | 0.0600                         | 44.900       | 44.9         | 2.5         | 9.68                   | 0.3038                       |
| 8   | 0.0700                         | 45.200       | 45.2         | 2.9         | 9.75                   | 0.3040                       |
| 9   | 0.0850                         | 45.000       | 45.0         | 3.5         | 9.70                   | 0.3044                       |
| 10  | 0.0900                         | 45.200       | 45.2         | 3.7         | 9.75                   | 0.3046                       |
| 11  | 0.1000                         | 45.500       | 45.5         | 4.1         | 9.81                   | 0.3050                       |
| 12  | 0.1100                         | 44.900       | 44.9         | 4.5         | 9.68                   | 0.3050                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>Ibs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 45.000       | 45.0         | 4.9         | 9.70                   | 0.3051                       |
| 14  | 0.1300                         | 44.900       | 44.9         | 5.3         | 9.68                   | 0.3051                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2373.200 |              | 2377.950 |
| Moisture content: Dry soil+tare, gms.   | 2357.400 |              | 2357.400 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 10.9     | 14.2         | 14.2     |
| Moist specimen weight, gms.             | 160.6    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 131.9    | 139.2        |          |
| Dry density, pcf                        | 118.9    | 121.9        |          |
| Void ratio                              | 0.4171   | 0.3831       |          |
| Saturation, %                           | 70.6     | 100.0        |          |

Normal stress = 21.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 16.62 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 14.600       | 14.6         | 0.2         | 3.15                   | 0.2995                       |
| 2   | 0.0120                         | 28.800       | 28.8         | 0.5         | 6.21                   | 0.2992                       |
| 3   | 0.0200                         | 40.800       | 40.8         | 0.8         | 8.80                   | 0.2990                       |
| 4   | 0.0300                         | 54.900       | 54.9         | 1.2         | 11.84                  | 0.2991                       |
| 5   | 0.0400                         | 62.000       | 62.0         | 1.6         | 13.37                  | 0.2998                       |
| 6   | 0.0500                         | 66.100       | 66.1         | 2.1         | 14.25                  | 0.3001                       |
| 7   | 0.0600                         | 69.500       | 69.5         | 2.5         | 14.99                  | 0.3010                       |
| 8   | 0.0700                         | 72.500       | 72.5         | 2.9         | 15.63                  | 0.3017                       |
| 9   | 0.0800                         | 73.600       | 73.6         | 3.3         | 15.87                  | 0.3022                       |
| 10  | 0.0930                         | 75.300       | 75.3         | 3.8         | 16.24                  | 0.3031                       |
| 11  | 0.1000                         | 76.100       | 76.1         | 4.1         | 16.41                  | 0.3038                       |
| 12  | 0.1100                         | 77.100       | 77.1         | 4.5         | 16.62                  | 0.3040                       |
| 13  | 0.1200                         | 76.700       | 76.7         | 4.9         | 16.54                  | 0.3041                       |
| 14  | 0.1300                         | 77.000       | 77.0         | 5.3         | 16.60                  | 0.3042                       |
| 15  | 0.1400                         | 75.800       | 75.8         | 5.8         | 16.34                  | 0.3042                       |
| 16  | 0.1500                         | 75.200       | 75.2         | 6.2         | 16.21                  | 0.3042                       |
| 17  | 0.1600                         | 74.800       | 74.8         | 6.6         | 16.13                  | 0.3042                       |
|     |                                |              |              |             |                        |                              |

| Initial<br>2373.200<br>2357.500<br>2212.600<br>10.8 | Consolidated                                     | Final<br>2377.550<br>2357.500<br>2212.600                                                  |                                                                |
|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2357.500<br>2212.600                                | 13.8                                             | 2357.500<br>2212.600                                                                       |                                                                |
| 2212.600                                            | 13.8                                             | 2212.600                                                                                   |                                                                |
|                                                     | 13.8                                             |                                                                                            |                                                                |
| 10.8                                                | 13.8                                             | 12.0                                                                                       |                                                                |
|                                                     | 10.0                                             | 13.8                                                                                       |                                                                |
| 160.6                                               |                                                  |                                                                                            |                                                                |
| 2.43                                                | 2.43                                             |                                                                                            |                                                                |
| 4.64                                                | 4.64                                             |                                                                                            |                                                                |
| 1.00                                                | 0.97                                             |                                                                                            |                                                                |
|                                                     | 0.03                                             |                                                                                            |                                                                |
| 131.9                                               | 139.7                                            |                                                                                            |                                                                |
| 119.0                                               | 122.7                                            |                                                                                            |                                                                |
| 0.4161                                              | 0.3739                                           |                                                                                            |                                                                |
| 70.3                                                | 99.9                                             |                                                                                            |                                                                |
|                                                     | 2.43<br>4.64<br>1.00<br>131.9<br>119.0<br>0.4161 | 2.43 2.43<br>4.64 4.64<br>1.00 0.97<br>0.03<br>131.9 139.7<br>119.0 122.7<br>0.4161 0.3739 | 2.43 4.64 1.00 0.97 0.03 131.9 139.7 119.0 122.7 0.4161 0.3739 |

Normal stress = 43.6 psi Strain rate, in./min. = 0.03

Fail. Stress = 31.35 psi at reading no. 17

|     | Horizontal<br>Def. Dial | Load    | Load  | Strain | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|---------|-------|--------|-----------------|-----------------------|
| No. | in.                     | Dial    | lbs.  | %      | psi             | in.                   |
| 0   | 0.0000                  | 0.000   | 0.0   | 0.0    | 0.00            | 0.3000                |
| 1   | 0.0050                  | 36.100  | 36.1  | 0.2    | 7.78            | 0.3000                |
| 2   | 0.0100                  | 64.000  | 64.0  | 0.4    | 13.80           | 0.2992                |
| 3   | 0.0200                  | 106.000 | 106.0 | 0.8    | 22.86           | 0.2987                |
| 4   | 0.0300                  | 117.000 | 117.0 | 1.2    | 25.23           | 0.2984                |
| 5   | 0.0400                  | 127.800 | 127.8 | 1.6    | 27.56           | 0.2981                |
| 6   | 0.0500                  | 131.600 | 131.6 | 2.1    | 28.38           | 0.2981                |
| 7   | 0.0600                  | 133.700 | 133.7 | 2.5    | 28.83           | 0.2980                |
| 8   | 0.0700                  | 135.800 | 135.8 | 2.9    | 29.28           | 0.2980                |
| 9   | 0.0820                  | 139.200 | 139.2 | 3.4    | 30.01           | 0.2980                |
| 10  | 0.0900                  | 141.100 | 141.1 | 3.7    | 30.42           | 0.2979                |
| 11  | 0.1000                  | 144.100 | 144.1 | 4.1    | 31.07           | 0.2979                |
| 12  | 0.1100                  | 144.700 | 144.7 | 4.5    | 31.20           | 0.2978                |
| 13  | 0.1220                  | 142.800 | 142.8 | 5.0    | 30.79           | 0.2978                |
| 14  | 0.1300                  | 143.200 | 143.2 | 5.3    | 30.88           | 0.2978                |
| 15  | 0.1400                  | 142.800 | 142.8 | 5.8    | 30.79           | 0.2976                |
| 16  | 0.1500                  | 143.200 | 143.2 | 6.2    | 30.88           | 0.2972                |
| 17  | 0.1600                  | 145.400 | 145.4 | 6.6    | 31.35           | 0.2970                |
| 18  | 0.1700                  | 144.100 | 144.1 | 7.0    | 31.07           | 0.2969                |
| 19  | 0.1800                  | 143.200 | 143.2 | 7.4    | 30.88           | 0.2968                |
| 20  | 0.1900                  | 143.500 | 143.5 | 7.8    | 30.94           | 0.2968                |



Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S13

Depth:

60-61.2

Sample Number:

S36309

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PI=

| Specimen Parameter                     | Initial     | Consolidated | Final    |
|----------------------------------------|-------------|--------------|----------|
| Moisture content: Moist soil+tare, gm⊧ | s. 2361.000 |              | 2370.850 |
| Moisture content: Dry soil+tare, gms.  | 2345.900    |              | 2345.900 |
| Moisture content: Tare, gms.           | 2212.600    |              | 2212.600 |
| Moisture, %                            | 11.3        | 18.7         | 18.7     |
| Moist specimen weight, gms.            | 148.4       |              |          |
| Diameter, in.                          | 2.43        | 2.43         |          |
| Area, in.²                             | 4.64        | 4.64         |          |
| Height, in.                            | 1.00        | 0.98         |          |
| Net decrease in height, in.            |             | 0.02         |          |
| Wet density, pcf                       | 121.9       | 132.9        |          |
| Ory density, pcf                       | 109.5       | 112.0        |          |
| /oid ratio                             | 0.5393      | 0.5055       |          |
| Saturation, %                          | 56.7        | 100.0        |          |

PL=

Normal stress = 14.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 12.40 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 11.000       | 11.0         | 0.2         | 2.37                   | 0.2991                       |
| 2   | 0.0100                         | 17.100       | 17.1         | 0.4         | 3.69                   | 0.2983                       |
| 3   | 0.0200                         | 26.000       | 26.0         | 0.8         | 5.61                   | 0.2970                       |
| 4   | 0.0300                         | 33.400       | 33.4         | 1.2         | 7.20                   | 0.2962                       |
| 5   | 0.0400                         | 38.900       | 38.9         | 1.6         | 8.39                   | 0.2960                       |
| 6   | 0.0500                         | 44.000       | 44.0         | 2.1         | 9.49                   | 0.2959                       |
| 7   | 0.0600                         | 47.800       | 47.8         | 2.5         | 10.31                  | 0.2958                       |
| 8   | 0.0700                         | 50.200       | 50.2         | 2.9         | 10.82                  | 0.2959                       |
| 9   | 0.0800                         | 53.300       | 53.3         | 3.3         | 11.49                  | 0.2960                       |
| 10  | 0.0900                         | 55.000       | 55.0         | 3.7         | 11.86                  | 0.2960                       |
| 11  | 0.1000                         | 55.900       | 55.9         | 4.1         | 12.05                  | 0.2962                       |
| 12  | 0.1100                         | 56.000       | 56.0         | 4.5         | 12.07                  | 0.2966                       |
|     |                                |              |              |             | 0:                     | T                            |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1220                         | 55.000       | 55.0         | 5.0         | 11.86                  | 0.2960                       |
| 14  | 0.1310                         | 56.700       | 56.7         | 5.4         | 12.23                  | 0.2961                       |
| 15  | 0.1400                         | 57.000       | 57.0         | 5.8         | 12.29                  | 0.2963                       |
| 16  | 0.1500                         | 57.500       | 57.5         | 6.2         | 12.40                  | 0.2966                       |
| 17  | 0.1610                         | 57.000       | 57.0         | 6.6         | 12.29                  | 0.2969                       |
| 18  | 0.1700                         | 56.100       | 56.1         | 7.0         | 12.10                  | 0.2969                       |
| 19  | 0.1830                         | 57.000       | 57.0         | 7.5         | 12.29                  | 0.2970                       |
| 20  | 0.1920                         | 57.000       | 57.0         | 7.9         | 12.29                  | 0.2970                       |
| 21  | 0.2010                         | 57.000       | 57.0         | 8.3         | 12.29                  | 0.2970                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2361.000 |              | 2369.650 |
| Moisture content: Dry soil+tare, gms.  | 2345.700   |              | 2345.700 |
| Moisture content: Tare, gms.           | 2212.600   |              | 2212.600 |
| Moisture, %                            | 11.5       | 18.0         | 18.0     |
| Moist specimen weight, gms.            | 148.4      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in.²                             | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.96         |          |
| Net decrease in height, in.            |            | 0.04         |          |
| Wet density, pcf                       | 121.9      | 133.9        |          |
| Dry density, pcf                       | 109.3      | 113.5        |          |
| Void ratio                             | 0.5417     | 0.4857       |          |
| Saturation, %                          | 57.3       | 100.0        |          |

Normal stress = 29.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 22.08 psi at reading no. 25

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 13.600       | 13.6         | 0.2         | 2.93                   | 0.2994                       |
| 2   | 0.0100                         | 26.000       | 26.0         | 0.4         | 5.61                   | 0.2982                       |
| 3   | 0.0200                         | 36.800       | 36.8         | 0.8         | 7.93                   | 0.2962                       |
| 4   | 0.0350                         | 47.100       | 47.1         | 1.4         | 10.16                  | 0.2941                       |
| 5   | 0.0400                         | 52.200       | 52.2         | 1.6         | 11.26                  | 0.2931                       |
| 6   | 0.0500                         | 57.400       | 57.4         | 2.1         | 12.38                  | 0.2918                       |
| 7   | 0.0600                         | 62.100       | 62.1         | 2.5         | 13.39                  | 0.2909                       |
| 8   | 0.0700                         | 66.900       | 66.9         | 2.9         | 14.43                  | 0.2898                       |
| 9   | 0.0800                         | 73.100       | 73.1         | 3.3         | 15.76                  | 0.2888                       |
| 10  | 0.0900                         | 75.200       | 75.2         | 3.7         | 16.21                  | 0.2880                       |
| 11  | 0.1000                         | 77.100       | 77.1         | 4.1         | 16.62                  | 0.2876                       |
| 12  | 0.1100                         | 81.400       | 81.4         | 4.5         | 17.55                  | 0.2868                       |
| 13  | 0.1240                         | 86.300       | 86.3         | 5.1         | 18.61                  | 0.2862                       |
| 14  | 0.1320                         | 90.000       | 90.0         | 5.4         | 19.41                  | 0.2855                       |
| 15  | 0.1430                         | 91.500       | 91.5         | 5.9         | 19.73                  | 0.2850                       |
|     |                                |              |              |             | 8 8                    | 2                            |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 16  | 0.1550                         | 94.500       | 94.5         | 6.4         | 20.38                  | 0.2841                       |
| 17  | 0.1600                         | 95.800       | 95.8         | 6.6         | 20.66                  | 0.2840                       |
| 18  | 0.1700                         | 96.200       | 96.2         | 7.0         | 20.74                  | 0.2838                       |
| 19  | 0.1800                         | 98.000       | 98.0         | 7.4         | 21.13                  | 0.2831                       |
| 20  | 0.1900                         | 100.300      | 100.3        | 7.8         | 21.63                  | 0.2829                       |
| 21  | 0.2000                         | 101.400      | 101.4        | 8.2         | 21.86                  | 0.2827                       |
| 22  | 0.2130                         | 101.600      | 101.6        | 8.8         | 21.91                  | 0.2825                       |
| 23  | 0.2200                         | 101.000      | 101.0        | 9.1         | 21.78                  | 0.2821                       |
| 24  | 0.2350                         | 102.100      | 102.1        | 9.7         | 22.02                  | 0.2820                       |
| 25  | 0.2400                         | 102.400      | 102.4        | 9.9         | 22.08                  | 0.2817                       |
| 26  | 0.2500                         | 99.800       | 99.8         | 10.3        | 21.52                  | 0.2814                       |
| 27  | 0.2600                         | 98.000       | 98.0         | 10.7        | 21.13                  | 0.2812                       |
| 28  | 0.2700                         | 98.400       | 98.4         | 11.1        | 21.22                  | 0.2810                       |
| 29  | 0.2800                         | 99.000       | 99.0         | 11.5        | 21.35                  | 0.2809                       |
| 30  | 0.2900                         | 98.900       | 98.9         | 11.9        | 21.33                  | 0.2802                       |

|                                         |          | Bell audiese Brol |          |  |
|-----------------------------------------|----------|-------------------|----------|--|
| Specimen Parameter                      | Initial  | Consolidated      | Final    |  |
| Moisture content: Moist soil+tare, gms. | 2361.000 |                   | 2368.900 |  |
| Moisture content: Dry soil+tare, gms.   | 2346.200 |                   | 2346.200 |  |
| Moisture content: Tare, gms.            | 2212.600 |                   | 2212.600 |  |
| Moisture, %                             | 11.1     | 17.0              | 17.0     |  |
| Moist specimen weight, gms.             | 148.4    |                   |          |  |
| Diameter, in.                           | 2.43     | 2.43              |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64              |          |  |
| Height, in.                             | 1.00     | 0.95              |          |  |
| Net decrease in height, in.             |          | 0.05              |          |  |
| Wet density, pcf                        | 121.9    | 135.1             |          |  |
| Dry density, pcf                        | 109.7    | 115.5             |          |  |
| Void ratio                              | 0.5359   | 0.4591            |          |  |
| Saturation, %                           | 55.8     | 99.9              |          |  |

Normal stress = 58.6 psi Strain rate, in./min. = 0.03

Fail. Stress = 45.65 psi at reading no. 20

| No. | Horizonta<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|-------------------------------|-------------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                        | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                        | 16.100            | 16.1         | 0.2         | 3.47                   | 0.2995                       |
| 2   | 0.0100                        | 32.000            | 32.0         | 0.4         | 6.90                   | 0.2990                       |
| 3   | 0.0200                        | 71.200            | 71.2         | 0.8         | 15.35                  | 0.2968                       |
| 4   | 0.0300                        | 89.200            | 89.2         | 1.2         | 19.23                  | 0.2952                       |
| 5   | 0.0400                        | 105.600           | 105.6        | 1.6         | 22.77                  | 0.2941                       |
| 6   | 0.0500                        | 121.400           | 121.4        | 2.1         | 26.18                  | 0.2927                       |
| 7   | 0.0610                        | 135.100           | 135.1        | 2.5         | 29.13                  | 0.2909                       |
| 8   | 0.0700                        | 147.700           | 147.7        | 2.9         | 31.85                  | 0.2894                       |
| 9   | 0.0800                        | 154.400           | 154.4        | 3.3         | 33.29                  | 0.2883                       |
| 10  | 0.0920                        | 160.000           | 160.0        | 3.8         | 34.50                  | 0.2875                       |
| 11  | 0.1060                        | 168.900           | 168.9        | 4.4         | 36.42                  | 0.2860                       |
| 12  | 0.1100                        | 174.600           | 174.6        | 4.5         | 37.65                  | 0.2852                       |
| 13  | 0.1200                        | 180.400           | 180.4        | 4.9         | 38.90                  | 0.2844                       |
| 14  | 0.1300                        | 185.000           | 185.0        | 5.3         | 39.89                  | 0.2839                       |
| 15  | 0.1440                        | 192.800           | 192.8        | 5.9         | 41.57                  | 0.2830                       |
| 16  | 0.1500                        | 198.400           | 198.4        | 6.2         | 42.78                  | 0.2821                       |
| 17  | 0.1600                        | 202.600           | 202.6        | 6.6         | 43.69                  | 0.2814                       |
| 18  | 0.1700                        | 204.800           | 204.8        | 7.0         | 44.16                  | 0.2813                       |
| 19  | 0.1800                        | 209.300           | 209.3        | 7.4         | 45.13                  | 0.2812                       |
| 20  | 0.1900                        | 211.700           | 211.7        | 7.8         | 45.65                  | 0.2807                       |
| 21  | 0.2000                        | 211.600           | 211.6        | 8.2         | 45.63                  | 0.2803                       |
| 22  | 0.2150                        | 211.500           | 211.5        | 8.8         | 45.60                  | 0.2795                       |
| 23  | 0.2200                        | 209.400           | 209.4        | 9.1         | 45.15                  | 0.2791                       |

| -      | -   |        |      |     |
|--------|-----|--------|------|-----|
| Sierra | TAG | naits  | lahe | ln/ |
| OICIIA | 1 6 | SLILIC |      |     |



Tested By: mw Checked By: mpw

# **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S18A

Depth:

85-85.5

Sample Number:

S36310

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2380.750 |
| Moisture content: Dry soil+tare, gms.   | 2361.900 |              | 2361.900 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 11.7     | 12.6         | 12.6     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 136.9    | 141.5        |          |
| Dry density, pcf                        | 122.6    | 125.7        |          |
| Void ratio                              | 0.3744   | 0.3414       |          |
| Saturation, %                           | 84.1     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 20.8 psiStrain rate, in./min. = 0.03

Fail. Stress = 19.47 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 14.600       | 14.6         | 0.2         | 3.15                   | 0.2997                       |
| 2   | 0.0100                         | 20.400       | 20.4         | 0.4         | 4.40                   | 0.2992                       |
| 3   | 0.0200                         | 35.600       | 35.6         | 0.8         | 7.68                   | 0.2985                       |
| 4   | 0.0300                         | 58.900       | 58.9         | 1.2         | 12.70                  | 0.2978                       |
| 5   | 0.0400                         | 67.600       | 67.6         | 1.6         | 14.58                  | 0.2974                       |
| 6   | 0.0500                         | 78.600       | 78.6         | 2.1         | 16.95                  | 0.2975                       |
| 7   | 0.0600                         | 84.700       | 84.7         | 2.5         | 18.26                  | 0.2979                       |
| 8   | 0.0700                         | 86.300       | 86.3         | 2.9         | 18.61                  | 0.2984                       |
| 9   | 0.0800                         | 88.600       | 88.6         | 3.3         | 19.10                  | 0.2987                       |
| 10  | 0.0900                         | 90.200       | 90.2         | 3.7         | 19.45                  | 0.2990                       |
| 11  | 0.1000                         | 90.300       | 90.3         | 4.1         | 19.47                  | 0.2992                       |
| 12  | 0.1100                         | 90.300       | 90.3         | 4.5         | 19.47                  | 0.2994                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 90.000       | 90.0         | 4.9         | 19.41                  | 0.2995                       |
| 14  | 0.1300                         | 90.200       | 90.2         | 5.3         | 19.45                  | 0.2995                       |
| 15  | 0.1400                         | 89.700       | 89.7         | 5.8         | 19.34                  | 0.2996                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2363.600 |
| Moisture content: Dry soil+tare, gms.   | 2345.800 |              | 2345.800 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 11.7     | 11.9         | 11.9     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 136.9    | 142.7        |          |
| Dry density, pcf                        | 122.6    | 127.5        |          |
| Void ratio                              | 0.3753   | 0.3225       |          |
| Saturation, %                           | 84.4     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 41.7 psiStrain rate, in./min. = 0.03

Fail. Stress = 36.48 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 27.100       | 27.1         | 0.2         | 5.84                   | 0.2998                       |
| 2   | 0.0100                         | 50.800       | 50.8         | 0.4         | 10.95                  | 0.2991                       |
| 3   | 0.0200                         | 71.100       | 71.1         | 0.8         | 15.33                  | 0.2989                       |
| 4   | 0.0300                         | 96.000       | 96.0         | 1.2         | 20.70                  | 0.2986                       |
| 5   | 0.0400                         | 113.600      | 113.6        | 1.6         | 24.49                  | 0.2985                       |
| 6   | 0.0550                         | 129.800      | 129.8        | 2.3         | 27.99                  | 0.2992                       |
| 7   | 0.0600                         | 134.000      | 134.0        | 2.5         | 28.89                  | 0.2997                       |
| 8   | 0.0700                         | 140.000      | 140.0        | 2.9         | 30.19                  | 0.3001                       |
| 9   | 0.0800                         | 146.000      | 146.0        | 3.3         | 31.48                  | 0.3009                       |
| 10  | 0.0900                         | 151.800      | 151.8        | 3.7         | 32.73                  | 0.3016                       |
| 11  | 0.1000                         | 156.000      | 156.0        | 4.1         | 33.64                  | 0.3021                       |
| 12  | 0.1100                         | 159.000      | 159.0        | 4.5         | 34.28                  | 0.3030                       |
| 13  | 0.1200                         | 163.100      | 163.1        | 4.9         | 35.17                  | 0.3033                       |
| 14  | 0.1300                         | 166.800      | 166.8        | 5.3         | 35.97                  | 0.3040                       |
| 15  | 0.1400                         | 168.900      | 168.9        | 5.8         | 36.42                  | 0.3042                       |
| 16  | 0.1500                         | 169.200      | 169.2        | 6.2         | 36.48                  | 0.3043                       |
| 17  | 0.1600                         | 169.100      | 169.1        | 6.6         | 36.46                  | 0.3045                       |
| 18  | 0.1700                         | 168.700      | 168.7        | 7.0         | 36.38                  | 0.3045                       |
| 19  | 0.1800                         | 168.400      | 168.4        | 7.4         | 36.31                  | 0.3046                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2380.340 |
| Moisture content: Dry soil+tare, gms.   | 2361.600 |              | 2361.600 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 11.9     | 12.6         | 12.6     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 136.9    | 141.7        |          |
| Dry density, pcf                        | 122.4    | 125.8        |          |
| Void ratio                              | 0.3771   | 0.3394       |          |
| Saturation, %                           | 85.0     | 100.0        |          |
|                                         |          |              |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 83.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 70.58 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 48.600       | 43.7         | 0.2         | 9.42                   | 0.2994                       |
| 2   | 0.0100                         | 78.400       | 70.5         | 0.4         | 15.19                  | 0.2988                       |
| 3   | 0.0200                         | 132.600      | 119.2        | 0.8         | 25.70                  | 0.2978                       |
| 4   | 0.0300                         | 186.400      | 167.5        | 1.2         | 36.12                  | 0.2970                       |
| 5   | 0.0400                         | 226.100      | 203.2        | 1.6         | 43.82                  | 0.2968                       |
| 6   | 0.0500                         | 268.400      | 241.2        | 2.1         | 52.02                  | 0.2966                       |
| 7   | 0.0600                         | 284.300      | 255.5        | 2.5         | 55.10                  | 0.2960                       |
| 8   | 0.0700                         | 316.200      | 284.2        | 2.9         | 61.28                  | 0.2962                       |
| 9   | 0.0800                         | 321.200      | 288.7        | 3.3         | 62.25                  | 0.2965                       |
| 10  | 0.0900                         | 330.700      | 297.2        | 3.7         | 64.09                  | 0.2966                       |
| 11  | 0.1000                         | 340.700      | 306.2        | 4.1         | 66.03                  | 0.2968                       |
| 12  | 0.1100                         | 345.600      | 310.6        | 4.5         | 66.98                  | 0.2971                       |
| 13  | 0.1200                         | 356.700      | 320.6        | 4.9         | 69.13                  | 0.2971                       |
| 14  | 0.1300                         | 360.000      | 323.6        | 5.3         | 69.77                  | 0.2972                       |
| 15  | 0.1400                         | 361.600      | 325.0        | 5.8         | 70.08                  | 0.2972                       |
| 16  | 0.1500                         | 364.200      | 327.3        | 6.2         | 70.58                  | 0.2974                       |
| 17  | 0.1600                         | 362.800      | 326.1        | 6.6         | 70.31                  | 0.2975                       |
|     |                                |              |              |             |                        |                              |



Tested By: mw Checked By: mpw

## 2/6/2012

#### **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S21

Depth:

100-100.9

Sample Number:

S36311

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                     | Initial         | Consolidated | Final    |
|----------------------------------------|-----------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | <b>2379.300</b> |              | 2379.060 |
| Moisture content: Dry soil+tare, gms.  | 2358.800        |              | 2358.800 |
| Moisture content: Tare, gms.           | 2212.600        |              | 2212.600 |
| Moisture, %                            | 14.0            | 13.9         | 13.9     |
| Moist specimen weight, gms.            | 166.7           |              |          |
| Diameter, in.                          | 2.43            | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64            | 4.64         |          |
| Height, in.                            | 1.00            | 0.98         |          |
| Net decrease in height, in.            |                 | 0.02         |          |
| Wet density, pcf                       | 136.9           | 139.6        |          |
| Dry density, pcf                       | 120.1           | 122.6        |          |
| Void ratio                             | 0.4035          | 0.3746       |          |
| Saturation, %                          | 93.8            | 99.9         |          |
|                                        |                 |              |          |

Normal stress = 24.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 20.57 psi at reading no. 11

Horizontal Shear Vertical Strain Def. Dial Load Load Stress Def. Dial No. Dial lbs. in. % psi in. 0.0000 0.000 0.0 0.0 0.00 0.3000 0 1 14.500 14.5 0.2 0.0050 3.13 0.2997 2 22.300 22.3 0.0100 0.4 4.81 0.2991 3 0.0200 37.600 37.6 0.8 8.11 0.2985 4 0.0300 60.400 60.4 1.2 13.02 0.2977 5 0.0400 70.200 70.2 1.6 15.14 0.2972 6 81.2 0.0500 81.200 2.1 17.51 0.2974 7 0.0600 87.200 87.2 2.5 18.80 0.2978 8 0.070090.400 90.4 2.9 19.49 0.2980 9 94.300 94.3 3.3 0.0800 20.33 0.2985 10 0.0900 95.300 95.3 3.7 20.55 0.2987 11 0.1000 95.400 95.4 4.1 20.57 0.2990 12 0.1100 94.700 94.7 4.5 20.42 0.2992

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 94.500       | 94.5         | 4.9         | 20.38                  | 0.2993                       |
| 14  | 0.1300                         | 94.600       | 94.6         | 5.3         | 20.40                  | 0.2995                       |
| 15  | 0.1400                         | 93.900       | 93.9         | 5.8         | 20.25                  | 0.2997                       |

| Specimen Parameter                   | Initial            | Consolidated | Final    |
|--------------------------------------|--------------------|--------------|----------|
| Moisture content: Moist soil+tare, g | ms. 2363.300       |              | 2361.600 |
| Moisture content: Dry soil+tare, gm  | <b>s.</b> 2342.800 |              | 2342.800 |
| Moisture content: Tare, gms.         | 2196.600           |              | 2196.600 |
| Moisture, %                          | 14.0               | 12.9         | 12.9     |
| Moist specimen weight, gms.          | 166.7              |              |          |
| Diameter, in.                        | 2.43               | 2.43         |          |
| Area, in. <sup>2</sup>               | 4.64               | 4.64         |          |
| Height, in.                          | 1.00               | 0.96         |          |
| Net decrease in height, in.          |                    | 0.04         |          |
| Wet density, pcf                     | 136.9              | 141.2        |          |
| Dry density, pcf                     | 120.1              | 125.1        |          |
| Void ratio                           | 0.4035             | 0.3475       |          |
| Saturation, %                        | 93.8               | 99.9         |          |
|                                      |                    |              |          |
|                                      |                    |              |          |

Normal stress = 49.6 psiStrain rate, in./min. = 0.03

Fail. Stress = 41.01 psi at reading no. 18

| No.        | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|------------|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0          | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1          | 0.0050                         | 30.200       | 30.2         | 0.2         | 6.51                   | 0.2997                       |
| 2          | 0.0100                         | 60.800       | 60.8         | 0.4         | 13.11                  | 0.2993                       |
| 3          | 0.0200                         | 81.400       | 81.4         | 0.8         | 17.55                  | 0.2991                       |
| 4          | 0.0300                         | 107.600      | 107.6        | 1.2         | 23.20                  | 0.2988                       |
| 5          | 0.0400                         | 114.000      | 114.0        | 1.6         | 24.58                  | 0.2988                       |
| 6          | 0.0500                         | 130.200      | 130.2        | 2.1         | 28.07                  | 0.2994                       |
| 7          | 0.0600                         | 138.700      | 138.7        | 2.5         | 29.91                  | 0.2996                       |
| 8          | 0.0700                         | 144.200      | 144.2        | 2.9         | 31.09                  | 0.2998                       |
| 9          | 0.0800                         | 150.700      | 150.7        | 3.3         | 32.49                  | 0.3006                       |
| 10         | 0.0900                         | 157.200      | 157.2        | 3.7         | 33.90                  | 0.3013                       |
| 11         | 0.1000                         | 161.300      | 161.3        | 4.1         | 34.78                  | 0.3018                       |
| 12         | 0.1100                         | 164.200      | 164.2        | 4.5         | 35.41                  | 0.3024                       |
| 13         | 0.1200                         | 168.500      | 168.5        | 4.9         | 36.33                  | 0.3026                       |
| 14         | 0.1300                         | 174.400      | 174.4        | 5.3         | 37.60                  | 0.3032                       |
| 15         | 0.1400                         | 179.600      | 179.6        | 5.8         | 38.73                  | 0.3033                       |
| 16         | 0.1500                         | 183.600      | 183.6        | 6.2         | 39.59                  | 0.3034                       |
| 17         | 0.1600                         | 188.900      | 188.9        | 6.6         | 40.73                  | 0.3036                       |
| 18         | 0.1700                         | 190.200      | 190.2        | 7.0         | 41.01                  | 0.3037                       |
| 19         | 0.1800                         | 188.700      | 188.7        | 7.4         | 40.69                  | 0.3037                       |
| 20         | 0.1900                         | 187.900      | 187.9        | 7.8         | 40.52                  | 0.3038                       |
| 21         | 0.2000                         | 186.400      | 186.4        | 8.2         | 40.19                  | 0.3038                       |
| SA THEOREM |                                |              | eneguese/s   | auc sauces  | Sierı                  | ra Testing Labs, Inc         |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2378.140 |
| Moisture content: Dry soil+tare, gms.   | 2358.600 |              | 2358.600 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 14.2     | 13.4         | 13.4     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 136.9    | 140.4        |          |
| Dry density, pcf                        | 119.9    | 123.8        |          |
| Void ratio                              | 0.4054   | 0.3613       |          |
| Saturation, %                           | 94.4     | 100.0        |          |
|                                         |          |              |          |

**Load ring constant =** .9132 lbs. per input unit

Normal stress = 99.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 76.14 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 54.000       | 49.3         | 0.2         | 10.63                  | 0.2995                       |
| 2   | 0.0100                         | 84.500       | 77.2         | 0.4         | 16.64                  | 0.2990                       |
| 3   | 0.0200                         | 151.500      | 138.3        | 0.8         | 29.83                  | 0.2980                       |
| 4   | 0.0330                         | 218.500      | 199.5        | 1.4         | 43.02                  | 0.2971                       |
| 5   | 0.0400                         | 247.000      | 225.6        | 1.6         | 48.64                  | 0.2970                       |
| 6   | 0.0500                         | 281.000      | 256.6        | 2.1         | 55.33                  | 0.2968                       |
| 7   | 0.0600                         | 289.200      | 264.1        | 2.5         | 56.95                  | 0.2965                       |
| 8   | 0.0700                         | 326.800      | 298.4        | 2.9         | 64.35                  | 0.2966                       |
| 9   | 0.0800                         | 340.000      | 310.5        | 3.3         | 66.95                  | 0.2967                       |
| 10  | 0.0900                         | 354.000      | 323.3        | 3.7         | 69.71                  | 0.2969                       |
| 11  | 0.1000                         | 366.000      | 334.2        | 4.1         | 72.07                  | 0.2970                       |
| 12  | 0.1100                         | 370.200      | 338.1        | 4.5         | 72.90                  | 0.2971                       |
| 13  | 0.1200                         | 373.000      | 340.6        | 4.9         | 73.45                  | 0.2971                       |
| 14  | 0.1300                         | 377.400      | 344.6        | 5.3         | 74.31                  | 0.2972                       |
| 15  | 0.1400                         | 381.200      | 348.1        | 5.8         | 75.06                  | 0.2973                       |
| 16  | 0.1500                         | 386.700      | 353.1        | 6.2         | 76.14                  | 0.2977                       |
| 17  | 0.1640                         | 385.900      | 352.4        | 6.7         | 75.99                  | 0.2979                       |
|     |                                |              |              |             |                        |                              |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S24

Depth:

115-116.3

Sample Number:

S36312

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2361.900 |
| Moisture content: Dry soil+tare, gms.   | 2343.500 |              | 2343.500 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 13.5     | 12.5         | 12.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 136.9    | 141.7        |          |
| Dry density, pcf                        | 120.7    | 126.0        |          |
| Void ratio                              | 0.3968   | 0.3382       |          |
| Saturation, %                           | 91.7     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 28.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 23.07 psi at reading no. 20

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 8.800        | 8.8          | 0.2         | 1.90                   | 0.2994                       |
| 2   | 0.0100                         | 19.200       | 19.2         | 0.4         | 4.14                   | 0.2989                       |
| 3   | 0.0200                         | 47.900       | 47.9         | 0.8         | 10.33                  | 0.2971                       |
| 4   | 0.0300                         | 61.800       | 61.8         | 1.2         | 13.33                  | 0.2960                       |
| 5   | 0.0440                         | 74.000       | 74.0         | 1.8         | 15.96                  | 0.2952                       |
| 6   | 0.0500                         | 78.100       | 78.1         | 2.1         | 16.84                  | 0.2951                       |
| 7   | 0.0600                         | 83.600       | 83.6         | 2.5         | 18.03                  | 0.2950                       |
| 8   | 0.0700                         | 87.900       | 87.9         | 2.9         | 18.95                  | 0.2949                       |
| 9   | 0.0800                         | 90.900       | 90.9         | 3.3         | 19.60                  | 0.2949                       |
| 10  | 0.0900                         | 93.500       | 93.5         | 3.7         | 20.16                  | 0.2949                       |
| 11  | 0.1000                         | 95.800       | 95.8         | 4.1         | 20.66                  | 0.2948                       |
| 12  | 0.1100                         | 97.300       | 97.3         | 4.5         | 20.98                  | 0.2949                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 99.500       | 99.5         | 4.9         | 21.45                  | 0.2947                       |
| 14  | 0.1300                         | 102.200      | 102.2        | 5.3         | 22.04                  | 0.2949                       |
| 15  | 0.1400                         | 103.100      | 103.1        | 5.8         | 22.23                  | 0.2949                       |
| 16  | 0.1500                         | 103.700      | 103.7        | 6.2         | 22.36                  | 0.2950                       |
| 17  | 0.1600                         | 104.200      | 104.2        | 6.6         | 22.47                  | 0.2950                       |
| 18  | 0.1700                         | 105.100      | 105.1        | 7.0         | 22.66                  | 0.2951                       |
| 19  | 0.1800                         | 106.800      | 106.8        | 7.4         | 23.03                  | 0.2952                       |
| 20  | 0.1900                         | 107.000      | 107.0        | 7.8         | 23.07                  | 0.2953                       |
| 21  | 0.2000                         | 106.200      | 106.2        | 8.2         | 22.90                  | 0.2955                       |
| 22  | 0.2100                         | 105.800      | 105.8        | 8.6         | 22.81                  | 0.2957                       |
| 23  | 0.2200                         | 105.400      | 105.4        | 9.1         | 22.73                  | 0.2959                       |
| 24  | 0.2300                         | 105.000      | 105.0        | 9.5         | 22.64                  | 0.2961                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2379.300 |              | 2377.300 |
| Moisture content: Dry soil+tare, gms.  | 2359.800   |              | 2359.800 |
| Moisture content: Tare, gms.           | 2212.600   |              | 2212.600 |
| Moisture, %                            | 13.2       | 11.9         | 11.9     |
| Moist specimen weight, gms.            | 166.7      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.95         |          |
| Net decrease in height, in.            |            | 0.05         |          |
| Wet density, pcf                       | 136.9      | 142.8        |          |
| Dry density, pcf                       | 120.9      | 127.6        |          |
| Void ratio                             | 0.3940     | 0.3209       |          |
| Saturation, %                          | 90.8       | 100.0        |          |
|                                        |            |              |          |

Normal stress = 57.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 49.83 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| O   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 24.800       | 24.8         | 0.2         | 5.35                   | 0.2990                       |
| 2   | 0.0130                         | 51.300       | 51.3         | 0.5         | 11.06                  | 0.2973                       |
| 3   | 0.0200                         | 76.300       | 76.3         | 0.8         | 16.45                  | 0.2960                       |
| 4   | 0.0300                         | 100.800      | 100.8        | 1.2         | 21.73                  | 0.2949                       |
| 5   | 0.0400                         | 126.400      | 126.4        | 1.6         | 27.25                  | 0.2940                       |
| 6   | 0.0500                         | 146.800      | 146.8        | 2.1         | 31.65                  | 0.2938                       |
| 7   | 0.0630                         | 165.000      | 165.0        | 2.6         | 35.58                  | 0.2934                       |
| 8   | 0.0740                         | 180.000      | 180.0        | 3.0         | 38.81                  | 0.2936                       |
| 9   | 0.0800                         | 190.000      | 190.0        | 3.3         | 40.97                  | 0.2936                       |
| 10  | 0.0900                         | 200.500      | 200.5        | 3.7         | 43.23                  | 0.2938                       |
| 11  | 0.1000                         | 207.000      | 207.0        | 4.1         | 44.63                  | 0.2940                       |
| 12  | 0.1100                         | 215.100      | 215.1        | 4.5         | 46.38                  | 0.2943                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1230                         | 221.400      | 221.4        | 5.1         | 47.74                  | 0.2947                       |
| 14  | 0.1300                         | 224.000      | 224.0        | 5.3         | 48.30                  | 0.2949                       |
| 15  | 0.1400                         | 227.900      | 227.9        | 5.8         | 49.14                  | 0.2952                       |
| 16  | 0.1500                         | 230.800      | 230.8        | 6.2         | 49.77                  | 0.2956                       |
| 17  | 0.1640                         | 231.100      | 231.1        | 6.7         | 49.83                  | 0.2960                       |
| 18  | 0.1700                         | 226.200      | 226.2        | 7.0         | 48.77                  | 0.2961                       |
| 19  | 0.1800                         | 227.400      | 227.4        | 7.4         | 49.03                  | 0.2962                       |
| 20  | 0.1900                         | 228.900      | 228.9        | 7.8         | 49.36                  | 0.2962                       |
| 21  | 0.2000                         | 226.400      | 226.4        | 8.2         | 48.82                  | 0.2963                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2360.350 |
| Moisture content: Dry soil+tare, gms.   | 2343.700 |              | 2343.700 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 13.3     | 11.3         | 11.3     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 143.7        |          |
| Dry density, pcf                        | 120.8    | 129.1        |          |
| Void ratio                              | 0.3949   | 0.3057       |          |
| Saturation, %                           | 91.1     | 100.0        |          |

**Load ring constant =** 1.1322 lbs. per input unit

Normal stress = 115 psi Strain rate, in./min. = 0.03

Fail. Stress = 91.62 psi at reading no. 21

|     | Horizontal |         |       |        | Shear  | Vertical  |             |
|-----|------------|---------|-------|--------|--------|-----------|-------------|
|     | Def. Dial  | Load    | Load  | Strain | Stress | Def. Dial |             |
| No. | in.        | Dial    | lbs.  | %      | psi    | in.       |             |
| 0   | 0.0000     | 0.000   | 0.0   | 0.0    | 0.00   | 0.3000    |             |
| 1   | 0.0050     | 52.900  | 59.9  | 0.2    | 12.91  | 0.2979    |             |
| 2   | 0.0100     | 71.100  | 80.5  | 0.4    | 17.36  | 0.2972    |             |
| 3   | 0.0200     | 128.800 | 145.8 | 0.8    | 31.44  | 0.2959    |             |
| 4   | 0.0300     | 178.600 | 202.2 | 1.2    | 43.60  | 0.2951    |             |
| 5   | 0.0400     | 206.400 | 233.7 | 1.6    | 50.39  | 0.2939    |             |
| 6   | 0.0500     | 236.100 | 267.3 | 2.1    | 57.64  | 0.2929    |             |
| 7   | 0.0600     | 257.000 | 291.0 | 2.5    | 62.74  | 0.2921    |             |
| 8   | 0.0700     | 275.000 | 311.4 | 2.9    | 67.14  | 0.2912    |             |
| 9   | 0.0800     | 291.000 | 329.5 | 3.3    | 71.04  | 0.2909    |             |
| 10  | 0.0900     | 307.500 | 348.2 | 3.7    | 75.07  | 0.2906    |             |
| 11  | 0.1000     | 314.600 | 356.2 | 4.1    | 76.80  | 0.2903    |             |
| 12  | 0.1100     | 326.000 | 369.1 | 4.5    | 79.59  | 0.2900    |             |
| 13  | 0.1200     | 333.400 | 377.5 | 4.9    | 81.39  | 0.2896    |             |
| 14  | 0.1300     | 339.900 | 384.8 | 5.3    | 82.98  | 0.2894    |             |
|     |            |         |       |        | Sier   | ra Testin | g Labs, Inc |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 15  | 0.1450                         | 356.000      | 403.1        | 6.0         | 86.91                  | 0.2891                       |
| 16  | 0.1500                         | 360.700      | 408.4        | 6.2         | 88.06                  | 0.2891                       |
| 17  | 0.1600                         | 363.100      | 411.1        | 6.6         | 88.64                  | 0.2890                       |
| 18  | 0.1700                         | 366.600      | 415.1        | 7.0         | 89.50                  | 0.2889                       |
| 19  | 0.1800                         | 369.800      | 418.7        | 7.4         | 90.28                  | 0.2889                       |
| 20  | 0.1900                         | 373.100      | 422.4        | 7.8         | 91.08                  | 0.2889                       |
| 21  | 0.2000                         | 375.300      | 424.9        | 8.2         | 91.62                  | 0.2889                       |
| 22  | 0.2100                         | 374.200      | 423.7        | 8.6         | 91.35                  | 0.2889                       |
| 23  | 0.2200                         | 373.500      | 422.9        | 9.1         | 91.18                  | 0.2889                       |
| 24  | 0.2300                         | 370.900      | 419.9        | 9.5         | 90.55                  | 0.2889                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0017R, S30

Depth:

145-146.0

Sample Number:

S36313

Description:

Remarks:

Type of Sample: Remold

Specific Gravity=2.70 LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2377.440 |
| Moisture content: Dry soil+tare, gms.   | 2358.400 |              | 2358.400 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 14.3     | 13.1         | 13.1     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 136.9    | 140.9        |          |
| Dry density, pcf                        | 119.8    | 124.6        |          |
| Void ratio                              | 0.4074   | 0.3525       |          |
| Saturation, %                           | 95.0     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 36.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 30.01 psi at reading no. 13

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 18.600       | 18.6         | 0.2         | 4.01                   | 0.2994                       |
| 2   | 0.0100                         | 26.800       | 26.8         | 0.4         | 5.78                   | 0.2990                       |
| 3   | 0.0200                         | 49.500       | 49.5         | 0.8         | 10.67                  | 0.2981                       |
| 4   | 0.0300                         | 77.100       | 77.1         | 1.2         | 16.62                  | 0.2979                       |
| 5   | 0.0400                         | 96.500       | 96.5         | 1.6         | 20.81                  | 0.2980                       |
| 6   | 0.0500                         | 112.800      | 112.8        | 2.1         | 24.32                  | 0.2981                       |
| 7   | 0.0600                         | 124.600      | 124.6        | 2.5         | 26.87                  | 0.2988                       |
| 8   | 0.0700                         | 133.700      | 133.7        | 2.9         | 28.83                  | 0.2992                       |
| 9   | 0.0800                         | 136.400      | 136.4        | 3.3         | 29.41                  | 0.2996                       |
| 10  | 0.0900                         | 138.000      | 138.0        | 3.7         | 29.76                  | 0.3002                       |
| 11  | 0.1000                         | 138.100      | 138.1        | 4.1         | 29.78                  | 0.3010                       |
| 12  | 0.1100                         | 138.000      | 138.0        | 4.5         | 29.76                  | 0.3012                       |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>Ibs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 139.200      | 139.2        | 4.9         | 30.01                  | 0.3014                       |
| 14  | 0.1300                         | 138.200      | 138.2        | 5.3         | 29.80                  | 0.3015                       |
| 15  | 0.1400                         | 137.800      | 137.8        | 5.8         | 29.71                  | 0.3015                       |

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2363.300 |              | 2361.140 |
| Moisture content: Dry soil+tare, gms.   | 2342.600   |              | 2342.600 |
| Moisture content: Tare, gms.            | 2196.600   |              | 2196.600 |
| Moisture, %                             | 14.2       | 12.7         | 12.7     |
| Moist specimen weight, gms.             | 166.7      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |
| Height, in.                             | 1.00       | 0.96         |          |
| Net decrease in height, in.             |            | 0.04         |          |
| Wet density, pcf                        | 136.9      | 141.5        |          |
| Dry density, pcf                        | 119.9      | 125.5        |          |
| Void ratio                              | 0.4054     | 0.3428       |          |
| Saturation, %                           | 94.4       | 100.0        |          |
|                                         |            |              |          |

Normal stress = 72.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 50.63 psi at reading no. 18

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 37.200       | 37.2         | 0.2         | 8.02                   | 0.2997                       |
| 2   | 0.0100                         | 70.600       | 70.6         | 0.4         | 15.22                  | 0.2994                       |
| 3   | 0.0200                         | 91.700       | 91.7         | 0.8         | 19.77                  | 0.2992                       |
| 4   | 0.0300                         | 117.600      | 117.6        | 1.2         | 25.36                  | 0.2989                       |
| 5   | 0.0400                         | 124.700      | 124.7        | 1.6         | 26.89                  | 0.2987                       |
| 6   | 0.0500                         | 144.800      | 144.8        | 2.1         | 31.22                  | 0.2994                       |
| 7   | 0.0600                         | 156.200      | 156.2        | 2.5         | 33.68                  | 0.2995                       |
| 8   | 0.0700                         | 172.700      | 172.7        | 2.9         | 37.24                  | 0.2998                       |
| 9   | 0.0800                         | 182.200      | 182.2        | 3.3         | 39.29                  | 0.3006                       |
| 10  | 0.0900                         | 196.500      | 196.5        | 3.7         | 42.37                  | 0.3012                       |
| 11  | 0.1000                         | 206.400      | 206.4        | 4.1         | 44.50                  | 0.3017                       |
| 12  | 0.1100                         | 214.600      | 214.6        | 4.5         | 46.27                  | 0.3030                       |
| 13  | 0.1200                         | 222.600      | 222.6        | 4.9         | 48.00                  | 0.3032                       |
| 14  | 0.1300                         | 227.700      | 227.7        | 5.3         | 49.10                  | 0.3039                       |
| 15  | 0.1400                         | 230.700      | 230.7        | 5.8         | 49.74                  | 0.3041                       |
| 16  | 0.1500                         | 233.700      | 233.7        | 6.2         | 50.39                  | 0.3043                       |
| 17  | 0.1600                         | 234.100      | 234.1        | 6.6         | 50.48                  | 0.3045                       |
| 18  | 0.1700                         | 234.800      | 234.8        | 7.0         | 50.63                  | 0.3045                       |
| 19  | 0.1800                         | 233.600      | 233.6        | 7.4         | 50.37                  | 0.3046                       |
| 20  | 0.1900                         | 231.700      | 231.7        | 7.8         | 49.96                  | 0.3047                       |
| 21  | 0.2000                         | 230.700      | 230.7        | 8.2         | 49.74                  | 0.3047                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2376.780 |
| Moisture content: Dry soil+tare, gms.   | 2358.600 |              | 2358.600 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 14.2     | 12.5         | 12.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.95         |          |
| Net decrease in height, in.             |          | 0.05         |          |
| Wet density, pcf                        | 136.9    | 141.8        |          |
| Dry density, pcf                        | 119.9    | 126.1        |          |
| Void ratio                              | 0.4054   | 0.3363       |          |
| Saturation, %                           | 94.4     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 145 psi Strain rate, in./min. = 0.03

Fail. Stress = 97.33 psi at reading no. 18

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 72.200       | 72.2         | 0.2         | 15.57                  | 0.2991                       |
| 2   | 0.0100                         | 103.600      | 103.6        | 0.4         | 22.34                  | 0.2986                       |
| 3   | 0.0200                         | 178.600      | 178.6        | 0.8         | 38.51                  | 0.2976                       |
| 4   | 0.0300                         | 224.200      | 224.2        | 1.2         | 48.34                  | 0.2968                       |
| 5   | 0.0400                         | 263.100      | 263.1        | 1.6         | 56.73                  | 0.2964                       |
| 6   | 0.0500                         | 304.200      | 304.2        | 2.1         | 65.59                  | 0.2961                       |
| 7   | 0.0600                         | 325.600      | 325.6        | 2.5         | 70.21                  | 0.2958                       |
| 8   | 0.0700                         | 353.400      | 353.4        | 2.9         | 76.20                  | 0.2954                       |
| 9   | 0.0800                         | 374.500      | 374.5        | 3.3         | 80.75                  | 0.2951                       |
| 10  | 0.0900                         | 394.500      | 394.5        | 3.7         | 85.06                  | 0.2949                       |
| 11  | 0.1000                         | 411.600      | 411.6        | 4.1         | 88.75                  | 0.2948                       |
| 12  | 0.1100                         | 419.800      | 419.8        | 4.5         | 90.52                  | 0.2948                       |
| 13  | 0.1200                         | 422.700      | 422.7        | 4.9         | 91.14                  | 0.2950                       |
| 14  | 0.1300                         | 429.700      | 429.7        | 5.3         | 92.65                  | 0.2952                       |
| 15  | 0.1400                         | 441.600      | 441.6        | 5.8         | 95.22                  | 0.2955                       |
| 16  | 0.1500                         | 450.600      | 450.6        | 6.2         | 97.16                  | 0.2957                       |
| 17  | 0.1600                         | 451.200      | 451.2        | 6.6         | 97.29                  | 0.2958                       |
| 18  | 0.1700                         | 451.400      | 451.4        | 7.0         | 97.33                  | 0.2958                       |
| 19  | 0.1800                         | 450.600      | 450.6        | 7.4         | 97.16                  | 0.2959                       |
| 20  | 0.1900                         | 450.400      | 450.4        | 7.8         | 97.12                  | 0.2960                       |
| 21  | 0.2000                         | 448.600      | 448.6        | 8.2         | 96.73                  | 0.2960                       |
|     |                                |              |              |             |                        |                              |



Tested By: mw Checked By: mpw

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S02

Depth:

5-6.5

Sample Number:

S36315

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

|   | Specimen Parameter                      | Initial  | Consolidated | Final    |
|---|-----------------------------------------|----------|--------------|----------|
| ľ | Moisture content: Moist soil+tare, gms. | 2348.700 |              | 2359.200 |
| ľ | Moisture content: Dry soil+tare, gms.   | 2334.700 |              | 2334.700 |
| ľ | loisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| ľ | loisture, %                             | 10.1     | 17.7         | 17.7     |
| P | floist specimen weight, gms.            | 152.1    |              |          |
|   | Diameter, in.                           | 2.43     | 2.43         |          |
| F | Area, in.²                              | 4.64     | 4.64         |          |
| ŀ | leight, in.                             | 1.00     | 1.00         |          |
| N | let decrease in height, in.             |          | 0.00         |          |
| V | Vet density, pcf                        | 124.9    | 134.1        |          |
|   | ry density, pcf                         | 113.4    | 113.9        |          |
| V | oid ratio                               | 0.4858   | 0.4795       |          |
| S | aturation, %                            | 56.3     | 99.9         |          |
|   |                                         |          |              |          |

Normal stress = 1.2 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.40 psi at reading no. 6

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 2.900        | 2.9          | 0.2         | 0.63                   | 0.3002                       |
| 2   | 0.0100                         | 3.400        | 3.4          | 0.4         | 0.73                   | 0.3007                       |
| 3   | 0.0200                         | 5.000        | 5.0          | 0.8         | 1.08                   | 0.3015                       |
| 4   | 0.0300                         | 5.200        | 5.2          | 1.2         | 1.12                   | 0.3029                       |
| 5   | 0.0400                         | 5.900        | 5.9          | 1.6         | 1.27                   | 0.3038                       |
| 6   | 0.0520                         | 6.500        | 6.5          | 2.1         | 1.40                   | 0.3050                       |
| 7   | 0.0620                         | 6.300        | 6.3          | 2.6         | 1.36                   | 0.3062                       |
| 8   | 0.0700                         | 6.100        | 6.1          | 2.9         | 1.32                   | 0.3071                       |
| 9   | 0.0800                         | 5.900        | 5.9          | 3.3         | 1.27                   | 0.3080                       |
| 10  | 0.0930                         | 5.200        | 5.2          | 3.8         | 1.12                   | 0.3088                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2364.400 |              | 2374.500 |
| Moisture content: Dry soil+tare, gms.   | 2350.200 |              | 2350.200 |
| Moisture content: Tare, gms.            | 2212.300 |              | 2212.300 |
| Moisture, %                             | 10.3     | 17.6         | 17.6     |
| Moist specimen weight, gms.             | 152.1    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 124.9    | 134.3        |          |
| Dry density, pcf                        | 113.3    | 114.2        |          |
| Void ratio                              | 0.4880   | 0.4761       |          |
| Saturation, %                           | 57.0     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 2.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 2.33 psi at reading no. 5

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.100        | 5.1          | 0.2         | 1.10                   | 0.3001                       |
| 2   | 0.0100                         | 8.300        | 8.3          | 0.4         | 1.79                   | 0.3002                       |
| 3   | 0.0200                         | 9.400        | 9.4          | 0.8         | 2.03                   | 0.3018                       |
| 4   | 0.0360                         | 10.600       | 10.6         | 1.5         | 2.29                   | 0.3030                       |
| 5   | 0.0400                         | 10.800       | 10.8         | 1.6         | 2.33                   | 0.3037                       |
| 6   | 0.0500                         | 10.300       | 10.3         | 2.1         | 2.22                   | 0.3043                       |
| 7   | 0.0600                         | 10.500       | 10.5         | 2.5         | 2.26                   | 0.3046                       |
| 8   | 0.0700                         | 10.400       | 10.4         | 2.9         | 2.24                   | 0.3048                       |
| 9   | 0.0800                         | 10.200       | 10.2         | 3.3         | 2.20                   | 0.3055                       |
| 10  | 0.0900                         | 10.500       | 10.5         | 3.7         | 2.26                   | 0.3060                       |
| 11  | 0.1000                         | 10.400       | 10.4         | 4.1         | 2.24                   | 0.3066                       |
| 12  | 0.1100                         | 10.600       | 10.6         | 4.5         | 2.29                   | 0.3073                       |
| 13  | 0.1200                         | 10.100       | 10.1         | 4.9         | 2.18                   | 0.3075                       |

| Specimen Parameter                      | Initial    | Consolidated | Final    |
|-----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | . 2364.700 |              | 2374.730 |
| Moisture content: Dry soil+tare, gms.   | 2350.700   |              | 2350.700 |
| Moisture content: Tare, gms.            | 2212.600   |              | 2212.600 |
| Moisture, %                             | 10.1       | 17.4         | 17.4     |
| Moist specimen weight, gms.             | 152.1      |              |          |
| Diameter, in.                           | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64       | 4.64         |          |
| Height, in.                             | 1.00       | 0.99         |          |
| Net decrease in height, in.             |            | 0.01         |          |
| Wet density, pcf                        | 124.9      | 134.6        |          |
| Dry density, pcf                        | 113.4      | 114.7        |          |
| Void ratio                              | 0.4858     | 0.4699       |          |
| Saturation, %                           | 56.3       | 100.0        |          |
|                                         |            |              |          |

Normal stress = 4.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 3.56 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 3.400        | 3.4          | 0.2         | 0.73                   | 0.2988                       |
| 2   | 0.0100                         | 6.100        | 6.1          | 0.4         | 1.32                   | 0.2979                       |
| 3   | 0.0250                         | 10.000       | 10.0         | 1.0         | 2.16                   | 0.2970                       |
| 4   | 0.0300                         | 11.500       | 11.5         | 1.2         | 2.48                   | 0.2970                       |
| 5   | 0.0450                         | 15.500       | 15.5         | 1.9         | 3.34                   | 0.2979                       |
| 6   | 0.0550                         | 16.000       | 16.0         | 2.3         | 3.45                   | 0.2988                       |
| 7   | 0.0600                         | 15.800       | 15.8         | 2.5         | 3.41                   | 0.2990                       |
| 8   | 0.0730                         | 15.900       | 15.9         | 3.0         | 3.43                   | 0.2998                       |
| 9   | 0.0800                         | 15.900       | 15.9         | 3.3         | 3.43                   | 0.3000                       |
| 10  | 0.0950                         | 16.000       | 16.0         | 3.9         | 3.45                   | 0.3004                       |
| 11  | 0.1000                         | 16.500       | 16.5         | 4.1         | 3.56                   | 0.3008                       |
| 12  | 0.1140                         | 16.000       | 16.0         | 4.7         | 3.45                   | 0.3010                       |
| 13  | 0.1230                         | 16.400       | 16.4         | 5.1         | 3.54                   | 0.3011                       |
| 14  | 0.1350                         | 16.000       | 16.0         | 5.6         | 3.45                   | 0.3012                       |
| 15  | 0.1400                         | 15.900       | 15.9         | 5.8         | 3.43                   | 0.3012                       |
| 16  | 0.1500                         | 15.800       | 15.8         | 6.2         | 3.41                   | 0.3014                       |
| 17  | 0.1630                         | 15.800       | 15.8         | 6.7         | 3.41                   | 0.3015                       |
| 18  | 0.1700                         | 15.090       | 15.1         | 7.0         | 3.25                   | 0.3014                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

1/16/2012

Date:

Client:

URS / HMM/ ARUP

Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S04

Depth:

15-16.3

Sample Number:

S36316

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.100 |              | 2381.400 |
| Moisture content: Dry soil+tare, gms.   | 2361.700 |              | 2361.700 |
| Moisture content: Tare, gms.            | 2212.400 |              | 2212.400 |
| Moisture, %                             | 11.7     | 13.2         | 13.2     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 136.9    | 140.6        |          |
| Dry density, pcf                        | 122.6    | 124.2        |          |
| Void ratio                              | 0.3744   | 0.3568       |          |
| Saturation, %                           | 84.1     | 99.9         |          |

**Load ring constant =** 1.2322 lbs. per input unit

Normal stress = 3.7 psi

Strain rate, in./min. = 0.03

Fail. Stress = 4.25 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 5.500        | 6.8          | 0.2         | 1.46                   | 0.2995                       |
| 2   | 0.0100                         | 7.000        | 8.6          | 0.4         | 1.86                   | 0.2992                       |
| 3   | 0.0240                         | 9.020        | 11.1         | 1.0         | 2.40                   | 0.2994                       |
| 4   | 0.0350                         | 11.000       | 13.6         | 1.4         | 2.92                   | 0.3002                       |
| 5   | 0.0450                         | 12.600       | 15.5         | 1.9         | 3.35                   | 0.3016                       |
| 6   | 0.0510                         | 13.000       | 16.0         | 2.1         | 3.45                   | 0.3023                       |
| 7   | 0.0600                         | 13.800       | 17.0         | 2.5         | 3.67                   | 0.3028                       |
| 8   | 0.0700                         | 14.700       | 18.1         | 2.9         | 3.91                   | 0.3039                       |
| 9   | 0.0800                         | 15.100       | 18.6         | 3.3         | 4.01                   | 0.3046                       |
| 10  | 0.0900                         | 16.000       | 19.7         | 3.7         | 4.25                   | 0.3050                       |
| 11  | 0.1000                         | 15.900       | 19.6         | 4.1         | 4.22                   | 0.3058                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 12  | 0.1140                         | 14.500       | 17.9         | 4.7         | 3.85                   | 0.3061                       |
| 13  | 0.1250                         | 13.000       | 16.0         | 5.1         | 3.45                   | 0.3060                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2379.100 |              | 2380.100 |
| Moisture content: Dry soil+tare, gms.  | 2361.100   |              | 2361.100 |
| Moisture content: Tare, gms.           | 2212.400   |              | 2212.400 |
| Moisture, %                            | 12.1       | 12.8         | 12.8     |
| Moist specimen weight, gms.            | 166.7      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in.²                             | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.97         |          |
| Net decrease in height, in.            |            | 0.03         |          |
| Wet density, pcf                       | 136.9      | 141.3        |          |
| Dry density, pcf                       | 122.1      | 125.3        |          |
| Void ratio                             | 0.3799     | 0.3454       |          |
| Saturation, %                          | 86.0       | 99.9         |          |

Normal stress = 7.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 7.55 psi at reading no. 11

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                                            | Load<br>lbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0050                         | 9.600                                                                                                                   | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0120                         | 15.000                                                                                                                  | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0200                         | 19.100                                                                                                                  | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0350                         | 25.500                                                                                                                  | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0400                         | 26.900                                                                                                                  | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0500                         | 29.200                                                                                                                  | 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0600                         | 31.900                                                                                                                  | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0720                         | 33.100                                                                                                                  | 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0820                         | 34.000                                                                                                                  | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0900                         | 34.800                                                                                                                  | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1000                         | 35.000                                                                                                                  | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1100                         | 34.800                                                                                                                  | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1200                         | 33.000                                                                                                                  | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1300                         | 31.200                                                                                                                  | 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1400                         | 29.400                                                                                                                  | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | Def. Dial in.  0.0000 0.0050 0.0120 0.0200 0.0350 0.0400 0.0500 0.0600 0.0720 0.0820 0.0900 0.1000 0.1100 0.1200 0.1300 | Def. Dial in.         Load Dial           0.0000         0.000           0.0050         9.600           0.0120         15.000           0.0200         19.100           0.0350         25.500           0.0400         26.900           0.0500         29.200           0.0600         31.900           0.0720         33.100           0.0820         34.000           0.1000         35.000           0.1100         34.800           0.1200         33.000           0.1300         31.200 | Def. Dial in.         Load Dial Dial         Load Ibs.           0.0000         0.000         0.0           0.0050         9.600         9.6           0.0120         15.000         15.0           0.0200         19.100         19.1           0.0350         25.500         25.5           0.0400         26.900         26.9           0.0500         29.200         29.2           0.0600         31.900         31.9           0.0720         33.100         33.1           0.0820         34.800         34.8           0.1000         35.000         35.0           0.1100         34.800         34.8           0.1200         33.000         33.0           0.1300         31.200         31.2 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         9.600         9.6         0.2           0.0120         15.000         15.0         0.5           0.0200         19.100         19.1         0.8           0.0350         25.500         25.5         1.4           0.0400         26.900         26.9         1.6           0.0500         29.200         29.2         2.1           0.0600         31.900         31.9         2.5           0.0720         33.100         33.1         3.0           0.0820         34.000         34.8         3.7           0.1000         35.000         35.0         4.1           0.1100         34.800         34.8         4.5           0.1200         33.000         33.0         4.9           0.1300         31.200         31.2         5.3 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain % psi         Stress psi           0.0000         0.000         0.0         0.0         0.00           0.0050         9.600         9.6         0.2         2.07           0.0120         15.000         15.0         0.5         3.23           0.0200         19.100         19.1         0.8         4.12           0.0350         25.500         25.5         1.4         5.50           0.0400         26.900         26.9         1.6         5.80           0.0500         29.200         29.2         2.1         6.30           0.0600         31.900         31.9         2.5         6.88           0.0720         33.100         33.1         3.0         7.14           0.0820         34.800         34.8         3.7         7.50           0.1000         35.000         35.0         4.1         7.55           0.1100         34.800         34.8         4.5         7.50           0.1200         33.000         33.0         4.9         7.12           0.1300         31.200         31.2         5.3         6.73 |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2379.200 |              | 2380.400 |  |
| Moisture content: Dry soil+tare, gms.   | 2361.600 |              | 2361.600 |  |
| Moisture content: Tare, gms.            | 2212.500 |              | 2212.500 |  |
| Moisture, %                             | 11.8     | 12.6         | 12.6     |  |
| Moist specimen weight, gms.             | 166.7    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.97         |          |  |
| Net decrease in height, in.             |          | 0.03         |          |  |
| Wet density, pcf                        | 136.9    | 141.6        |          |  |
| Dry density, pcf                        | 122.5    | 125.7        |          |  |
| Void ratio                              | 0.3762   | 0.3404       |          |  |
| Saturation, %                           | 84.7     | 100.0        |          |  |

Load ring constant = .8988 lbs. per input unit

Normal stress = 14.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 12.97 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 15.100       | 13.6         | 0.2         | 2.93                   | 0.2992                       |
| 2   | 0.0100                         | 26.000       | 23.4         | 0.4         | 5.04                   | 0.2989                       |
| 3   | 0.0200                         | 43.200       | 38.8         | 0.8         | 8.37                   | 0.2990                       |
| 4   | 0.0320                         | 53.000       | 47.6         | 1.3         | 10.27                  | 0.2993                       |
| 5   | 0.0400                         | 56.100       | 50.4         | 1.6         | 10.87                  | 0.3000                       |
| 6   | 0.0500                         | 59.000       | 53.0         | 2.1         | 11.43                  | 0.3008                       |
| 7   | 0.0620                         | 62.400       | 56.1         | 2.6         | 12.09                  | 0.3017                       |
| 8   | 0.0700                         | 64.000       | 57.5         | 2.9         | 12.40                  | 0.3020                       |
| 9   | 0.0830                         | 65.800       | 59.1         | 3.4         | 12.75                  | 0.3028                       |
| 10  | 0.0900                         | 66.900       | 60.1         | 3.7         | 12.97                  | 0.3031                       |
| 11  | 0.1030                         | 66.000       | 59.3         | 4.2         | 12.79                  | 0.3039                       |
| 12  | 0.1100                         | 66.000       | 59.3         | 4.5         | 12.79                  | 0.3040                       |
| 13  | 0.1200                         | 65.200       | 58.6         | 4.9         | 12.64                  | 0.3040                       |
| 14  | 0.1300                         | 64.800       | 58.2         | 5.3         | 12.56                  | 0.3041                       |
|     |                                |              |              |             |                        |                              |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

1/16/2012

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S06

Depth:

25-26.2

Sample Number:

S36317

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2353.300 |              | 2351.950 |
| Moisture content: Dry soil+tare, gms.   | 2326.900 |              | 2326.900 |
| Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |
| Moisture, %                             | 20.2     | 19.2         | 19.2     |
| Moist specimen weight, gms.             | 157.0    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 129.0    | 132.3        |          |
| Ory density, pcf                        | 107.3    | 111.0        |          |
| Void ratio                              | 0.5712   | 0.5179       |          |
| Saturation, %                           | 95.6     | 100.0        |          |

Normal stress = 6.2 psi

Strain rate, in./min. = 0.03

Fail. Stress = 6.51 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.300        | 4.3          | 0.2         | 0.93                   | 0.2994                       |
| 2   | 0.0100                         | 8.700        | 8.7          | 0.4         | 1.88                   | 0.2986                       |
| 3   | 0.0200                         | 15.800       | 15.8         | 0.8         | 3.41                   | 0.2970                       |
| 4   | 0.0300                         | 19.100       | 19.1         | 1.2         | 4.12                   | 0.2969                       |
| 5   | 0.0400                         | 20.800       | 20.8         | 1.6         | 4.48                   | 0.2970                       |
| 6   | 0.0530                         | 24.200       | 24.2         | 2.2         | 5.22                   | 0.2973                       |
| 7   | 0.0600                         | 25.900       | 25.9         | 2.5         | 5.58                   | 0.2977                       |
| 8   | 0.0700                         | 28.100       | 28.1         | 2.9         | 6.06                   | 0.2986                       |
| 9   | 0.0850                         | 28.800       | 28.8         | 3.5         | 6.21                   | 0.2990                       |
| 10  | 0.0900                         | 29.100       | 29.1         | 3.7         | 6.27                   | 0.2997                       |
| 11  | 0.1030                         | 30.100       | 30.1         | 4.2         | 6.49                   | 0.3003                       |
| 12  | 0.1130                         | 30.200       | 30.2         | 4.7         | 6.51                   | 0.3009                       |
|     |                                |              |              |             | 2.                     |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1230                         | 30.100       | 30.1         | 5.1         | 6.49                   | 0.3012                       |
| 14  | 0.1320                         | 29.500       | 29.5         | 5.4         | 6.36                   | 0.3016                       |
| 15  | 0.1400                         | 28.800       | 28.8         | 5.8         | 6.21                   | 0.3018                       |
| 16  | 0.1500                         | 28.200       | 28.2         | 6.2         | 6.08                   | 0.3021                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |  |
|-----------------------------------------|----------|--------------|----------|--|
| Moisture content: Moist soil+tare, gms. | 2369.100 |              | 2368.000 |  |
| Moisture content: Dry soil+tare, gms.   | 2342.900 |              | 2342.900 |  |
| Moisture content: Tare, gms.            | 2212.100 |              | 2212.100 |  |
| Moisture, %                             | 20.0     | 19.2         | 19.2     |  |
| Moist specimen weight, gms.             | 157.0    |              |          |  |
| Diameter, in.                           | 2.43     | 2.43         |          |  |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |  |
| Height, in.                             | 1.00     | 0.97         |          |  |
| Net decrease in height, in.             |          | 0.03         |          |  |
| Wet density, pcf                        | 129.0    | 132.3        |          |  |
| Dry density, pcf                        | 107.4    | 111.0        |          |  |
| Void ratio                              | 0.5688   | 0.5189       |          |  |
| Saturation, %                           | 95.1     | 99.9         |          |  |

Normal stress = 12.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 11.21 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 9.000        | 9.0          | 0.2         | 1.94                   | 0.2993                       |
| 2   | 0.0100                         | 14.000       | 14.0         | 0.4         | 3.02                   | 0.2989                       |
| 3   | 0.0200                         | 22.800       | 22.8         | 0.8         | 4.92                   | 0.2980                       |
| 4   | 0.0300                         | 27.600       | 27.6         | 1.2         | 5.95                   | 0.2978                       |
| 5   | 0.0400                         | 35.400       | 35.4         | 1.6         | 7.63                   | 0.2981                       |
| 6   | 0.0500                         | 40.200       | 40.2         | 2.1         | 8.67                   | 0.2984                       |
| 7   | 0.0600                         | 42.000       | 42.0         | 2.5         | 9.06                   | 0.2990                       |
| 8   | 0.0700                         | 44.600       | 44.6         | 2.9         | 9.62                   | 0.2998                       |
| 9   | 0.0800                         | 47.000       | 47.0         | 3.3         | 10.13                  | 0.3004                       |
| 10  | 0.0900                         | 49.100       | 49.1         | 3.7         | 10.59                  | 0.3011                       |
| 11  | 0.1000                         | 49.600       | 49.6         | 4.1         | 10.69                  | 0.3016                       |
| 12  | 0.1100                         | 50.900       | 50.9         | 4.5         | 10.98                  | 0.3020                       |
| 13  | 0.1200                         | 51.500       | 51.5         | 4.9         | 11.10                  | 0.3026                       |
| 14  | 0.1300                         | 52.000       | 52.0         | 5.3         | 11.21                  | 0.3028                       |
| 15  | 0.1400                         | 50.800       | 50.8         | 5.8         | 10.95                  | 0.3031                       |
| 16  | 0.1500                         | 50.600       | 50.6         | 6.2         | 10.91                  | 0.3033                       |
| 17  | 0.1600                         | 50.400       | 50.4         | 6.6         | 10.87                  | 0.3036                       |
|     |                                |              |              |             |                        |                              |

|                                         | Paneinis (5) | Late Designation |          |
|-----------------------------------------|--------------|------------------|----------|
| Specimen Parameter                      | Initial      | Consolidated     | Final    |
| Moisture content: Moist soil+tare, gms. | 2369.600     |                  | 2367.250 |
| Moisture content: Dry soil+tare, gms.   | 2343.600     |                  | 2343.600 |
| Moisture content: Tare, gms.            | 2212.600     |                  | 2212.600 |
| Moisture, %                             | 19.8         | 18.1             | 18.1     |
| Moist specimen weight, gms.             | 157.0        |                  |          |
| Diameter, in.                           | 2.43         | 2.43             |          |
| Area, in.²                              | 4.64         | 4.64             |          |
| Height, in.                             | 1.00         | 0.95             |          |
| Net decrease in height, in.             |              | 0.05             |          |
| Wet density, pcf                        | 129.0        | 133.7            |          |
| Dry density, pcf                        | 107.6        | 113.3            |          |
| Void ratio                              | 0.5664       | 0.4881           |          |
| Saturation, %                           | 94.6         | 99.9             |          |

Normal stress = 24.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 22.53 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 21.200       | 21.2         | 0.2         | 4.57                   | 0.2992                       |
| 2   | 0.0130                         | 40.000       | 40.0         | 0.5         | 8.62                   | 0.2971                       |
| 3   | 0.0200                         | 55.600       | 55.6         | 0.8         | 11.99                  | 0.2967                       |
| 4   | 0.0300                         | 63.200       | 63.2         | 1.2         | 13.63                  | 0.2961                       |
| 5   | 0.0400                         | 72.400       | 72.4         | 1.6         | 15.61                  | 0.2957                       |
| 6   | 0.0500                         | 80.000       | 80.0         | 2.1         | 17.25                  | 0.2958                       |
| 7   | 0.0630                         | 86.000       | 86.0         | 2.6         | 18.54                  | 0.2962                       |
| 8   | 0.0700                         | 90.300       | 90.3         | 2.9         | 19.47                  | 0.2968                       |
| 9   | 0.0800                         | 95.100       | 95.1         | 3.3         | 20.51                  | 0.2975                       |
| 10  | 0.0920                         | 99.700       | 99.7         | 3.8         | 21.50                  | 0.2983                       |
| 11  | 0.1000                         | 101.700      | 101.7        | 4.1         | 21.93                  | 0.2990                       |
| 12  | 0.1100                         | 104.000      | 104.0        | 4.5         | 22.42                  | 0.2998                       |
| 13  | 0.1200                         | 103.400      | 103.4        | 4.9         | 22.30                  | 0.3001                       |
| 14  | 0.1300                         | 103.000      | 103.0        | 5.3         | 22.21                  | 0.3006                       |
| 15  | 0.1400                         | 103.800      | 103.8        | 5.8         | 22.38                  | 0.3008                       |
| 16  | 0.1500                         | 104.500      | 104.5        | 6.2         | 22.53                  | 0.3009                       |
| 17  | 0.1600                         | 102.700      | 102.7        | 6.6         | 22.14                  | 0.3010                       |
| 18  | 0.1700                         | 102.100      | 102.1        | 7.0         | 22.02                  | 0.3010                       |
| 19  | 0.1800                         | 101.500      | 101.5        | 7.4         | 21.89                  | 0.3010                       |
| 20  | 0.1900                         | 100.900      | 100.9        | 7.8         | 21.76                  | 0.3010                       |
| 21  | 0.2000                         | 100.500      | 100.5        | 8.2         | 21.67                  | 0.3010                       |
|     |                                |              |              |             |                        |                              |



Tested By: cw Checked By: CPW

#### **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S09

Depth:

40-41.1

Sample Number:

S36318

Description:

Remarks:

Remold

Type of Sample: Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                     | Initial  | Consolidated | Final    |
|----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms | 2355.000 |              | 2354.850 |
| Moisture content: Dry soil+tare, gms.  | 2329.100 |              | 2329.100 |
| Moisture content: Tare, gms.           | 2196.800 |              | 2196.800 |
| Moisture, %                            | 19.6     | 19.5         | 19.5     |
| Moist specimen weight, gms.            | 158.2    |              |          |
| Diameter, in.                          | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64     | 4.64         |          |
| Height, in.                            | 1.00     | 0.98         |          |
| Net decrease in height, in.            |          | 0.02         |          |
| Wet density, pcf                       | 130.0    | 132.0        |          |
| Dry density, pcf                       | 108.7    | 110.5        |          |
| Void ratio                             | 0.5510   | 0.5259       |          |
| Saturation, %                          | 95.9     | 99.9         |          |
|                                        |          |              |          |

Normal stress = 9.7 psiStrain rate, in./min. = 0.03

Fail. Stress = 11.04 psi at reading no. 9

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 12.700       | 12.7         | 0.2         | 2.74                   | 0.2990                       |
| 2   | 0.0100                         | 17.800       | 17.8         | 0.4         | 3.84                   | 0.2983                       |
| 3   | 0.0210                         | 27.000       | 27.0         | 0.9         | 5.82                   | 0.2983                       |
| 4   | 0.0300                         | 31.700       | 31.7         | 1.2         | 6.84                   | 0.2989                       |
| 5   | 0.0400                         | 36.800       | 36.8         | 1.6         | 7.93                   | 0.3000                       |
| 6   | 0.0500                         | 39.900       | 39.9         | 2.1         | 8.60                   | 0.3014                       |
| 7   | 0.0600                         | 43.500       | 43.5         | 2.5         | 9.38                   | 0.3023                       |
| 8   | 0.0700                         | 47.000       | 47.0         | 2.9         | 10.13                  | 0.3039                       |
| 9   | 0.0800                         | 51.200       | 51.2         | 3.3         | 11.04                  | 0.3052                       |
| 10  | 0.0900                         | 49.000       | 49.0         | 3.7         | 10.57                  | 0.3067                       |
| 11  | 0.1000                         | 48.200       | 48.2         | 4.1         | 10.39                  | 0.3083                       |
| 12  | 0.1100                         | 47.100       | 47.1         | 4.5         | 10.16                  | 0.3097                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2370.200 |              | 2369.050 |
| Moisture content: Dry soil+tare, gms.   | 2344.400 |              | 2344.400 |
| loisture content: Tare, gms.            | 2212.000 |              | 2212.000 |
| /loisture, %                            | 19.5     | 18.6         | 18.6     |
| loist specimen weight, gms.             | 158.2    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.97         |          |
| let decrease in height, in.             |          | 0.03         |          |
| Vet density, pcf                        | 130.0    | 133.0        |          |
| Dry density, pcf                        | 108.8    | 112.1        |          |
| oid ratio                               | 0.5498   | 0.5033       |          |
| Saturation, %                           | 95.7     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 19.4 psi Strain rate, in./min. = 0.03

Fail. Stress = 18.59 psi at reading no. 15

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 13.900       | 13.9         | 0.2         | 3.00                   | 0.2994                       |
| 2   | 0.0100                         | 17.000       | 17.0         | 0.4         | 3.67                   | 0.2988                       |
| 3   | 0.0200                         | 32.100       | 32.1         | 0.8         | 6.92                   | 0.2977                       |
| 4   | 0.0300                         | 41.800       | 41.8         | 1.2         | 9.01                   | 0.2970                       |
| 5   | 0.0400                         | 51.100       | 51.1         | 1.6         | 11.02                  | 0.2968                       |
| 6   | 0.0500                         | 57.500       | 57.5         | 2.1         | 12.40                  | 0.2971                       |
| 7   | 0.0600                         | 65.000       | 65.0         | 2.5         | 14.02                  | 0.2979                       |
| 8   | 0.0780                         | 73.900       | 73.9         | 3.2         | 15.93                  | 0.2998                       |
| 9   | 0.0800                         | 75.500       | 75.5         | 3.3         | 16.28                  | 0.2999                       |
| 10  | 0.0900                         | 79.100       | 79.1         | 3.7         | 17.06                  | 0.3010                       |
| 11  | 0.1000                         | 82.100       | 82.1         | 4.1         | 17.70                  | 0.3022                       |
| 12  | 0.1100                         | 85.000       | 85.0         | 4.5         | 18.33                  | 0.3032                       |
| 13  | 0.1200                         | 85.900       | 85.9         | 4.9         | 18.52                  | 0.3044                       |
| 14  | 0.1300                         | 86.000       | 86.0         | 5.3         | 18.54                  | 0.3070                       |
| 15  | 0.1400                         | 86.200       | 86.2         | 5.8         | 18.59                  | 0.3082                       |
| 16  | 0.1500                         | 85.400       | 85.4         | 6.2         | 18.41                  | 0.3088                       |
| 17  | 0.1600                         | 84.300       | 84.3         | 6.6         | 18.18                  | 0.3096                       |
| 18  | 0.1750                         | 82.800       | 82.8         | 7.2         | 17.85                  | 0.3103                       |
| 19  | 0.1800                         | 82.100       | 82.1         | 7.4         | 17.70                  | 0.3109                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2354.700 |              | 2353.600 |
| Moisture content: Dry soil+tare, gms.   | 2328.500 |              | 2328.500 |
| Moisture content: Tare, gms.            | 2196.500 |              | 2196.500 |
| Moisture, %                             | 19.8     | 19.0         | 19.0     |
| Moist specimen weight, gms.             | 158.2    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 130.0    | 132.5        |          |
| Dry density, pcf                        | 108.4    | 111.3        |          |
| Void ratio                              | 0.5545   | 0.5138       |          |
| Saturation, %                           | 96.6     | 99.9         |          |
|                                         |          |              |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 38.9 psi Strain rate, in./min. = 0.03

Fail. Stress = 33.33 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|-------------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 25.800            | 23.2         | 0.2         | 5.00                   | 0.2991                       |
| 2   | 0.0100                         | 38.600            | 34.7         | 0.4         | 7.48                   | 0.2982                       |
| 3   | 0.0210                         | 55.000            | 49.4         | 0.9         | 10.66                  | 0.2970                       |
| 4   | 0.0300                         | 69.400            | 62.4         | 1.2         | 13.45                  | 0.2960                       |
| 5   | 0.0400                         | 93.100            | 83.7         | 1.6         | 18.04                  | 0.2950                       |
| 6   | 0.0500                         | 111.800           | 100.5        | 2.1         | 21.67                  | 0.2941                       |
| 7   | 0.0630                         | 128.000           | 115.0        | 2.6         | 24.81                  | 0.2950                       |
| 8   | 0.0750                         | 140.000           | 125.8        | 3.1         | 27.13                  | 0.2956                       |
| 9   | 0.0800                         | 142.900           | 128.4        | 3.3         | 27.69                  | 0.2959                       |
| 10  | 0.0900                         | 150.000           | 134.8        | 3.7         | 29.07                  | 0.2963                       |
| 11  | 0.1000                         | 158.200           | 142.2        | 4.1         | 30.66                  | 0.2979                       |
| 12  | 0.1100                         | 162.600           | 146.1        | 4.5         | 31.51                  | 0.2982                       |
| 13  | 0.1200                         | 165.900           | 149.1        | 4.9         | 32.15                  | 0.2986                       |
| 14  | 0.1300                         | 167.500           | 150.5        | 5.3         | 32.46                  | 0.2991                       |
| 15  | 0.1400                         | 169.800           | 152.6        | 5.8         | 32.91                  | 0.2997                       |
| 16  | 0.1520                         | 172.000           | 154.6        | 6.3         | 33.33                  | 0.3006                       |
| 17  | 0.1600                         | 170.700           | 153.4        | 6.6         | 33.08                  | 0.3012                       |
| 18  | 0.1710                         | 170.600           | 153.3        | 7.0         | 33.06                  | 0.3019                       |
| 19  | 0.1800                         | 167.500           | 150.5        | 7.4         | 32.46                  | 0.3022                       |



Tested By: mw Checked By: mpw

## **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S14

Depth:

65-65.7

Sample Number:

S36319

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2380.000 |
| Moisture content: Dry soil+tare, gms.   | 2360.100 |              | 2360.100 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 13.0     | 13.5         | 13.5     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 136.9    | 140.2        |          |
| Dry density, pcf                        | 121.2    | 123.5        |          |
| Void ratio                              | 0.3912   | 0.3647       |          |
| Saturation, %                           | 89.9     | 99.9         |          |

Normal stress = 15.8 psi Strain rate, in./min. = 0.03

Fail. Stress = 17.55 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 20.600       | 20.6         | 0.2         | 4.44                   | 0.2993                       |
| 2   | 0.0100                         | 41.200       | 41.2         | 0.4         | 8.88                   | 0.2992                       |
| 3   | 0.0200                         | 56.200       | 56.2         | 0.8         | 12.12                  | 0.3000                       |
| 4   | 0.0300                         | 65.800       | 65.8         | 1.2         | 14.19                  | 0.3018                       |
| 5   | 0.0420                         | 77.000       | 77.0         | 1.7         | 16.60                  | 0.3036                       |
| 6   | 0.0500                         | 81.000       | 81.0         | 2.1         | 17.47                  | 0.3051                       |
| 7   | 0.0600                         | 81.400       | 81.4         | 2.5         | 17.55                  | 0.3055                       |
| 8   | 0.0750                         | 76.300       | 76.3         | 3.1         | 16.45                  | 0.3088                       |
| 9   | 0.0800                         | 73.600       | 73.6         | 3.3         | 15.87                  | 0.3092                       |
| 10  | 0.0900                         | 70.400       | 70.4         | 3.7         | 15.18                  | 0.3097                       |
| 11  | 0.1000                         | 66.700       | 66.7         | 4.1         | 14.38                  | 0.3104                       |
| 12  | 0.1100                         | 64.800       | 64.8         | 4.5         | 13.97                  | 0.3108                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.300 |              | 2364.200 |
| Moisture content: Dry soil+tare, gms.   | 2344.200 |              | 2344.400 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.600 |
| Moisture, %                             | 12.9     | 13.4         | 13.4     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.98         |          |
| Net decrease in height, in.             |          | 0.02         |          |
| Wet density, pcf                        | 136.9    | 140.3        |          |
| Dry density, pcf                        | 121.2    | 123.7        |          |
| /oid ratio                              | 0.3902   | 0.3621       |          |
| Saturation, %                           | 89.5     | 99.9         |          |

Normal stress = 31.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 31.16 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0070                         | 23.400       | 23.4         | 0.3         | 5.05                   | 0.2992                       |
| 2   | 0.0100                         | 36.200       | 36.2         | 0.4         | 7.81                   | 0.2990                       |
| 3   | 0.0200                         | 59.800       | 59.8         | 0.8         | 12.89                  | 0.2981                       |
| 4   | 0.0330                         | 87.500       | 87.5         | 1.4         | 18.87                  | 0.2981                       |
| 5   | 0.0400                         | 100.600      | 100.6        | 1.6         | 21.69                  | 0.2983                       |
| 6   | 0.0500                         | 114.000      | 114.0        | 2.1         | 24.58                  | 0.2990                       |
| 7   | 0.0600                         | 124.100      | 124.1        | 2.5         | 26.76                  | 0.3000                       |
| 8   | 0.0700                         | 130.700      | 130.7        | 2.9         | 28.18                  | 0.3014                       |
| 9   | 0.0800                         | 136.400      | 136.4        | 3.3         | 29.41                  | 0.3021                       |
| 10  | 0.0940                         | 142.900      | 142.9        | 3.9         | 30.81                  | 0.3040                       |
| 11  | 0.1000                         | 144.500      | 144.5        | 4.1         | 31.16                  | 0.3048                       |
| 12  | 0.1100                         | 144.500      | 144.5        | 4.5         | 31.16                  | 0.3058                       |
| 13  | 0.1200                         | 143.800      | 143.8        | 4.9         | 31.01                  | 0.3068                       |
| 14  | 0.1300                         | 143.300      | 143.3        | 5.3         | 30.90                  | 0.3079                       |
| 15  | 0.1400                         | 142.100      | 142.1        | 5.8         | 30.64                  | 0.3084                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2379.300 |              | 2379.350 |
| Moisture content: Dry soil+tare, gms.   | 2360.600 |              | 2360.600 |
| Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Moisture, %                             | 12.6     | 12.7         | 12.7     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 136.9    | 141.5        |          |
| Dry density, pcf                        | 121.6    | 125.6        |          |
| Void ratio                              | 0.3865   | 0.3419       |          |
| Saturation, %                           | 88.3     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 63.1 psi Strain rate, in./min. = 0.03

Fail. Stress = 51.28 psi at reading no. 18

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 22.500       | 22.5         | 0.2         | 4.85                   | 0.2996                       |
| 2   | 0.0100                         | 43.400       | 43.4         | 0.4         | 9.36                   | 0.2988                       |
| 3   | 0.0200                         | 82.400       | 82.4         | 0.8         | 17.77                  | 0.2980                       |
| 4   | 0.0300                         | 118.700      | 118.7        | 1.2         | 25.59                  | 0.2978                       |
| 5   | 0.0400                         | 150.100      | 150.1        | 1.6         | 32.37                  | 0.2976                       |
| 6   | 0.0500                         | 180.500      | 180.5        | 2.1         | 38.92                  | 0.2979                       |
| 7   | 0.0600                         | 205.000      | 205.0        | 2.5         | 44.20                  | 0.2981                       |
| 8   | 0.0700                         | 218.200      | 218.2        | 2.9         | 47.05                  | 0.2991                       |
| 9   | 0.0800                         | 224.500      | 224.5        | 3.3         | 48.41                  | 0.2999                       |
| 10  | 0.0900                         | 230.000      | 230.0        | 3.7         | 49.59                  | 0.3008                       |
| 11  | 0.1000                         | 233.000      | 233.0        | 4.1         | 50.24                  | 0.3012                       |
| 12  | 0.1100                         | 234.100      | 234.1        | 4.5         | 50.48                  | 0.3023                       |
| 13  | 0.1200                         | 236.000      | 236.0        | 4.9         | 50.89                  | 0.3031                       |
| 14  | 0.1360                         | 233.000      | 233.0        | 5.6         | 50.24                  | 0.3041                       |
| 15  | 0.1400                         | 234.900      | 234.9        | 5.8         | 50.65                  | 0.3045                       |
| 16  | 0.1500                         | 236.400      | 236.4        | 6.2         | 50.97                  | 0.3050                       |
| 17  | 0.1600                         | 235.800      | 235.8        | 6.6         | 50.84                  | 0.3056                       |
| 18  | 0.1700                         | 237.800      | 237.8        | 7.0         | 51.28                  | 0.3059                       |
| 19  | 0.1800                         | 232.900      | 232.9        | 7.4         | 50.22                  | 0.3060                       |
| 20  | 0.1900                         | 232.300      | 232.3        | 7.8         | 50.09                  | 0.3061                       |



Tested By: mw Checked By: mpw

# **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S18

Depth:

85-86.4

Sample Number:

S36321

Description:

Remarks:

Type of Sample: Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2362.100 |              | 2359.800 |
| Moisture content: Dry soil+tare, gms.   | 2340.000 |              | 2340.000 |
| Moisture content: Tare, gms.            | 2196.600 |              | 2196.800 |
| Moisture, %                             | 15.4     | 13.8         | 13.8     |
| Moist specimen weight, gms.             | 165.5    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.96         |          |
| Net decrease in height, in.             |          | 0.04         |          |
| Wet density, pcf                        | 135.9    | 139.7        |          |
| Dry density, pcf                        | 117.8    | 122.7        |          |
| Void ratio                              | 0.4309   | 0.3734       |          |
| Saturation, %                           | 96.6     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 21.0 psi Strain rate, in./min. = 0.03

Fail. Stress = 19.41 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 13.200       | 13.2         | 0.2         | 2.85                   | 0.2991                       |
| 2   | 0.0100                         | 26.800       | 26.8         | 0.4         | 5.78                   | 0.2981                       |
| 3   | 0.0200                         | 39.100       | 39.1         | 0.8         | 8.43                   | 0.2971                       |
| 4   | 0.0300                         | 50.000       | 50.0         | 1.2         | 10.78                  | 0.2962                       |
| 5   | 0.0400                         | 60.000       | 60.0         | 1.6         | 12.94                  | 0.2960                       |
| 6   | 0.0530                         | 71.900       | 71.9         | 2.2         | 15.50                  | 0.2959                       |
| 7   | 0.0600                         | 76.600       | 76.6         | 2.5         | 16.52                  | 0.2960                       |
| 8   | 0.0700                         | 80.200       | 80.2         | 2.9         | 17.29                  | 0.2963                       |
| 9   | 0.0800                         | 82.900       | 82.9         | 3.3         | 17.88                  | 0.2969                       |
| 10  | 0.0900                         | 86.400       | 86.4         | 3.7         | 18.63                  | 0.2970                       |
| 11  | 0.1000                         | 90.000       | 90.0         | 4.1         | 19.41                  | 0.2976                       |
| 12  | 0.1100                         | 88.400       | 88.4         | 4.5         | 19.06                  | 0.2981                       |
|     |                                |              |              |             |                        |                              |

|      | Horizontal | Shear  | Vertical |        |        |           |
|------|------------|--------|----------|--------|--------|-----------|
| K.C. | Def. Dial  | Load   | Load     | Strain | Stress | Def. Dial |
| No.  | in.        | Dial   | lbs.     | %      | psi    | in.       |
| 13   | 0.1200     | 85.900 | 85.9     | 4.9    | 18.52  | 0.2982    |

| Specimen Parameter                     | Initial  | Consolidated | Final    |
|----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms | 2352.000 |              | 2349.230 |
| Moisture content: Dry soil+tare, gms.  | 2331.100 |              | 2331.100 |
| Moisture content: Tare, gms.           | 2196.500 |              | 2196.500 |
| Moisture, %                            | 15.5     | 13.5         | 13.5     |
| Moist specimen weight, gms.            | 165.5    |              |          |
| Diameter, in.                          | 2.43     | 2.43         |          |
| Area, in.²                             | 4.64     | 4.64         |          |
| Height, in.                            | 1.00     | 0.95         |          |
| Net decrease in height, in.            |          | 0.05         |          |
| Wet density, pcf                       | 135.9    | 140.2        |          |
| Dry density, pcf                       | 117.7    | 123.6        |          |
| Void ratio                             | 0.4324   | 0.3638       |          |
| Saturation, %                          | 97.0     | 100.0        |          |
|                                        |          |              |          |

Normal stress = 41.9 psiStrain rate, in./min. = 0.03

Fail. Stress = 38.36 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 16.300       | 16.3         | 0.2         | 3.51                   | 0.2997                       |
| 2   | 0.0100                         | 27.200       | 27.2         | 0.4         | 5.86                   | 0.2990                       |
| 3   | 0.0200                         | 58.900       | 58.9         | 0.8         | 12.70                  | 0.2975                       |
| 4   | 0.0300                         | 85.600       | 85.6         | 1.2         | 18.46                  | 0.2966                       |
| 5   | 0.0400                         | 101.800      | 101.8        | 1.6         | 21.95                  | 0.2960                       |
| 6   | 0.0520                         | 121.000      | 121.0        | 2.1         | 26.09                  | 0.2956                       |
| 7   | 0.0620                         | 131.100      | 131.1        | 2.6         | 28.27                  | 0.2953                       |
| 8   | 0.0730                         | 140.100      | 140.1        | 3.0         | 30.21                  | 0.2953                       |
| 9   | 0.0800                         | 145.100      | 145.1        | 3.3         | 31.29                  | 0.2957                       |
| 10  | 0.0900                         | 149.200      | 149.2        | 3.7         | 32.17                  | 0.2958                       |
| 11  | 0.1000                         | 155.100      | 155.1        | 4.1         | 33.44                  | 0.2959                       |
| 12  | 0.1100                         | 162.100      | 162.1        | 4.5         | 34.95                  | 0.2960                       |
| 13  | 0.1240                         | 167.000      | 167.0        | 5.1         | 36.01                  | 0.2962                       |
| 14  | 0.1300                         | 172.400      | 172.4        | 5.3         | 37.17                  | 0.2963                       |
| 15  | 0.1400                         | 174.200      | 174.2        | 5.8         | 37.56                  | 0.2965                       |
| 16  | 0.1500                         | 177.400      | 177.4        | 6.2         | 38.25                  | 0.2968                       |
| 17  | 0.1600                         | 177.900      | 177.9        | 6.6         | 38.36                  | 0.2969                       |
| 18  | 0.1700                         | 175.600      | 175.6        | 7.0         | 37.86                  | 0.2970                       |
| 19  | 0.1800                         | 170.400      | 170.4        | 7.4         | 36.74                  | 0.2970                       |
| 20  | 0.1900                         | 166.300      | 166.3        | 7.8         | 35.86                  | 0.2970                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2378.100 |              | 2372.970 |
| Moisture content: Dry soil+tare, gms.   | 2355.800 |              | 2355.800 |
| Noisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Noisture, %                             | 15.6     | 12.0         | 12.0     |
| loist specimen weight, gms.             | 165.5    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.92         |          |
| let decrease in height, in.             |          | 0.08         |          |
| Vet density, pcf                        | 135.9    | 142.6        |          |
| Ory density, pcf                        | 117.6    | 127.3        |          |
| oid ratio                               | 0.4329   | 0.3240       |          |
| Saturation, %                           | 97.1     | 99.9         |          |

Normal stress = 83.9 psi Strain rate, in./min. = 0.03

Fail. Stress = 74.07 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 30.000       | 30.0         | 0.2         | 6.47                   | 0.2992                       |
| 2   | 0.0100                         | 61.000       | 61.0         | 0.4         | 13.15                  | 0.2989                       |
| 3   | 0.0200                         | 108.100      | 108.1        | 0.8         | 23.31                  | 0.2977                       |
| 4   | 0.0300                         | 148.200      | 148.2        | 1.2         | 31.96                  | 0.2966                       |
| 5   | 0.0400                         | 181.500      | 181.5        | 1.6         | 39.14                  | 0.2959                       |
| 6   | 0.0500                         | 207.100      | 207.1        | 2.1         | 44.66                  | 0.2951                       |
| 7   | 0.0600                         | 230.800      | 230.8        | 2.5         | 49.77                  | 0.2948                       |
| 8   | 0.0700                         | 249.100      | 249.1        | 2.9         | 53.71                  | 0.2944                       |
| 9   | 0.0800                         | 265.600      | 265.6        | 3.3         | 57.27                  | 0.2941                       |
| 10  | 0.0900                         | 281.100      | 281.1        | 3.7         | 60.61                  | 0.2941                       |
| 11  | 0.1000                         | 294.100      | 294.1        | 4.1         | 63.42                  | 0.2941                       |
| 12  | 0.1110                         | 306.000      | 306.0        | 4.6         | 65.98                  | 0.2941                       |
| 13  | 0.1200                         | 315.000      | 315.0        | 4.9         | 67.92                  | 0.2942                       |
| 14  | 0.1330                         | 326.000      | 326.0        | 5.5         | 70.29                  | 0.2943                       |
| 15  | 0.1400                         | 334.800      | 334.8        | 5.8         | 72.19                  | 0.2945                       |
| 16  | 0.1530                         | 343.500      | 343.5        | 6.3         | 74.07                  | 0.2949                       |
| 17  | 0.1600                         | 342.100      | 342.1        | 6.6         | 73.77                  | 0.2950                       |
| 18  | 0.1700                         | 337.500      | 337.5        | 7.0         | 72.77                  | 0.2950                       |
| 19  | 0.1800                         | 337.100      | 337.1        | 7.4         | 72.69                  | 0.2950                       |
| 20  | 0.1920                         | 334.500      | 334.5        | 7.9         | 72.13                  | 0.2950                       |



Tested By: mw Checked By: mpw

#### **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S27

Depth:

130-130.9

Sample Number:

S36323

Description:

Remarks:

Remold

Specific Gravity=2.70

Type of Sample:

LL=

PL=

PI=

| Specimen Parameter                     | Initial            | Consolidated | Final    |
|----------------------------------------|--------------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | <b>s.</b> 2374.400 |              | 2371.950 |
| Moisture content: Dry soil+tare, gms.  | 2350.800           |              | 2350.800 |
| Moisture content: Tare, gms.           | 2212.600           |              | 2212.600 |
| Moisture, %                            | 17.1               | 15.3         | 15.3     |
| Moist specimen weight, gms.            | 161.8              |              |          |
| Diameter, in.                          | 2.43               | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64               | 4.64         |          |
| Height, in.                            | 1.00               | 0.95         |          |
| Net decrease in height, in.            |                    | 0.05         |          |
| Wet density, pcf                       | 132.9              | 137.5        |          |
| Dry density, pcf                       | 113.5              | 119.2        |          |
| Void ratio                             | 0.4848             | 0.4135       |          |
| Saturation, %                          | 95.1               | 99.9         |          |
|                                        |                    |              |          |

Normal stress = 32.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 26.61 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 20.100       | 20.1         | 0.2         | 4.33                   | 0.2994                       |
| 2   | 0.0140                         | 42.900       | 42.9         | 0.6         | 9.25                   | 0.2980                       |
| 3   | 0.0220                         | 57.400       | 57.4         | 0.9         | 12.38                  | 0.2975                       |
| 4   | 0.0350                         | 74.100       | 74.1         | 1.4         | 15.98                  | 0.2970                       |
| 5   | 0.0400                         | 80.000       | 80.0         | 1.6         | 17.25                  | 0.2969                       |
| 6   | 0.0500                         | 90.000       | 90.0         | 2.1         | 19.41                  | 0.2968                       |
| 7   | 0.0600                         | 96.800       | 96.8         | 2.5         | 20.87                  | 0.2969                       |
| 8   | 0.0730                         | 106.800      | 106.8        | 3.0         | 23.03                  | 0.2970                       |
| 9   | 0.0800                         | 108.200      | 108.2        | 3.3         | 23.33                  | 0.2971                       |
| 10  | 0.0900                         | 110.100      | 110.1        | 3.7         | 23.74                  | 0.2976                       |
| 11  | 0.1000                         | 111.900      | 111.9        | 4.1         | 24.13                  | 0.2979                       |
| 12  | 0.1100                         | 117.000      | 117.0        | 4.5         | 25.23                  | 0.2982                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1200                         | 118.400      | 118.4        | 4.9         | 25.53                  | 0.2989                       |
| 14  | 0.1300                         | 120.000      | 120.0        | 5.3         | 25.87                  | 0.2990                       |
| 15  | 0.1400                         | 119.800      | 119.8        | 5.8         | 25.83                  | 0.2992                       |
| 16  | 0.1500                         | 121.200      | 121.2        | 6.2         | 26.13                  | 0.2993                       |
| 17  | 0.1600                         | 123.400      | 123.4        | 6.6         | 26.61                  | 0.2996                       |
| 18  | 0.1700                         | 118.700      | 118.7        | 7.0         | 25.59                  | 0.2998                       |
| 19  | 0.1800                         | 117.700      | 117.7        | 7.4         | 25.38                  | 0.2999                       |
| 20  | 0.1900                         | 117.100      | 117.1        | 7.8         | 25.25                  | 0.3000                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2357.100 |              | 2353.800 |
| Moisture content: Dry soil+tare, gms.   | 2333.700 |              | 2333.700 |
| Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |
| Moisture, %                             | 17.0     | 14.6         | 14.6     |
| Moist specimen weight, gms.             | 161.8    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 132.9    | 138.5        |          |
| Dry density, pcf                        | 113.6    | 120.8        |          |
| Void ratio                              | 0.4842   | 0.3951       |          |
| Saturation, %                           | 95.0     | 100.0        |          |
|                                         |          |              |          |

Normal stress = 65 psi Strain rate, in./min. = 0.03

Fail. Stress = 51.56 psi at reading no. 20

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |  |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|--|--|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |  |  |  |
| 1   | 0.0050                         | 25.000       | 25.0         | 0.2         | 5.39                   | 0.2990                       |  |  |  |
| 2   | 0.0100                         | 41.900       | 41.9         | 0.4         | 9.03                   | 0.2982                       |  |  |  |
| 3   | 0.0200                         | 78.200       | 78.2         | 0.8         | 16.86                  | 0.2970                       |  |  |  |
| 4   | 0.0300                         | 112.000      | 112.0        | 1.2         | 24.15                  | 0.2960                       |  |  |  |
| 5   | 0.0400                         | 131.800      | 131.8        | 1.6         | 28.42                  | 0.2950                       |  |  |  |
| 6   | 0.0500                         | 147.700      | 147.7        | 2.1         | 31.85                  | 0.2946                       |  |  |  |
| 7   | 0.0600                         | 162.000      | 162.0        | 2.5         | 34.93                  | 0.2940                       |  |  |  |
| 8   | 0.0700                         | 181.600      | 181.6        | 2.9         | 39.16                  | 0.2937                       |  |  |  |
| 9   | 0.0800                         | 190.400      | 190.4        | 3.3         | 41.05                  | 0.2934                       |  |  |  |
| 10  | 0.0900                         | 195.600      | 195.6        | 3.7         | 42.18                  | 0.2932                       |  |  |  |
| 11  | 0.1000                         | 205.000      | 205.0        | 4.1         | 44.20                  | 0.2930                       |  |  |  |
| 12  | 0.1130                         | 212.600      | 212.6        | 4.7         | 45.84                  | 0.2930                       |  |  |  |
| 13  | 0.1240                         | 219.600      | 219.6        | 5.1         | 47.35                  | 0.2931                       |  |  |  |
| 14  | 0.1300                         | 222.300      | 222.3        | 5.3         | 47.93                  | 0.2931                       |  |  |  |
| 15  | 0.1400                         | 226.400      | 226.4        | 5.8         | 48.82                  | 0.2931                       |  |  |  |
| 16  | 0.1500                         | 230.100      | 230.1        | 6.2         | 49.62                  | 0.2931                       |  |  |  |
|     | Sierra Testing Labs, Inc       |              |              |             |                        |                              |  |  |  |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 17  | 0.1600                         | 232.800      | 232.8        | 6.6         | 50.20                  | 0.2932                       |
| 18  | 0.1700                         | 234.000      | 234.0        | 7.0         | 50.46                  | 0.2932                       |
| 19  | 0.1800                         | 237.000      | 237.0        | 7.4         | 51.10                  | 0.2934                       |
| 20  | 0.1900                         | 239.100      | 239.1        | 7.8         | 51.56                  | 0.2933                       |
| 21  | 0.2000                         | 238.000      | 238.0        | 8.2         | 51.32                  | 0.2933                       |
| 22  | 0.2100                         | 237.100      | 237.1        | 8.6         | 51.12                  | 0.2933                       |
| 23  | 0.2200                         | 236.200      | 236.2        | 9.1         | 50.93                  | 0.2932                       |

| Moisture content: Tare, gms.       2212.600       2212.600         Moisture, %       17.2       14.0       14.0         Moist specimen weight, gms.       161.8       161.8         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                 |                                         |          |              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|--------------|----------|
| Moisture content: Dry soil+tare, gms.       2350.600       2350.600         Moisture content: Tare, gms.       2212.600       2212.600         Moisture, %       17.2       14.0       14.0         Moist specimen weight, gms.       161.8         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788 | Specimen Parameter                      | Initial  | Consolidated | Final    |
| Moisture content: Tare, gms.       2212.600       2212.600         Moisture, %       17.2       14.0       14.0         Moist specimen weight, gms.       161.8       161.8         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                 | Moisture content: Moist soil+tare, gms. | 2374.400 |              | 2369.950 |
| Moisture, %       17.2       14.0       14.0         Moist specimen weight, gms.       161.8         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                | Moisture content: Dry soil+tare, gms.   | 2350.600 |              | 2350.600 |
| Moist specimen weight, gms.       161.8         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                                                                     | Moisture content: Tare, gms.            | 2212.600 |              | 2212.600 |
| Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                                                                                                                     | Moisture, %                             | 17.2     | 14.0         | 14.0     |
| Area, in.²       4.64       4.64         Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                                                                                                                                                                 | Moist specimen weight, gms.             | 161.8    |              |          |
| Height, in.       1.00       0.93         Net decrease in height, in.       0.07         Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                                                                                                                                                                                                          | Diameter, in.                           | 2.43     | 2.43         |          |
| Net decrease in height, in.         0.07           Wet density, pcf         132.9         139.4           Dry density, pcf         113.4         122.2           Void ratio         0.4869         0.3788                                                                                                                                                                                                                                                                                                                                                                | Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Wet density, pcf       132.9       139.4         Dry density, pcf       113.4       122.2         Void ratio       0.4869       0.3788                                                                                                                                                                                                                                                                                                                                                                                                                                   | Height, in.                             | 1.00     | 0.93         |          |
| Dry density, pcf         113.4         122.2           Void ratio         0.4869         0.3788                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net decrease in height, in.             |          | 0.07         |          |
| <b>Void ratio</b> 0.4869 0.3788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wet density, pcf                        | 132.9    | 139.4        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry density, pcf                        | 113.4    | 122.2        |          |
| <b>Saturation, %</b> 95.6 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Void ratio                              | 0.4869   | 0.3788       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Saturation, %                           | 95.6     | 99.9         |          |

Normal stress = 130 psi Strain rate, in./min. = 0.03

Fail. Stress = 89.76 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0070                         | 71.500       | 71.5         | 0.3         | 15.42                  | 0.2980                       |
| 2   | 0.0100                         | 89.100       | 89.1         | 0.4         | 19.21                  | 0.2972                       |
| 3   | 0.0200                         | 142.900      | 142.9        | 0.8         | 30.81                  | 0.2958                       |
| 4   | 0.0300                         | 202.100      | 202.1        | 1.2         | 43.58                  | 0.2943                       |
| 5   | 0.0400                         | 257.500      | 257.5        | 1.6         | 55.52                  | 0.2933                       |
| 6   | 0.0500                         | 298.000      | 298.0        | 2.1         | 64.26                  | 0.2921                       |
| 7   | 0.0600                         | 324.600      | 324.6        | 2.5         | 69.99                  | 0.2916                       |
| 8   | 0.0700                         | 344.400      | 344.4        | 2.9         | 74.26                  | 0.2910                       |
| 9   | 0.0800                         | 367.800      | 367.8        | 3.3         | 79.31                  | 0.2903                       |
| 10  | 0.0900                         | 384.800      | 384.8        | 3.7         | 82.97                  | 0.2901                       |
| 11  | 0.1000                         | 399.400      | 399.4        | 4.1         | 86.12                  | 0.2899                       |
| 12  | 0.1100                         | 416.300      | 416.3        | 4.5         | 89.76                  | 0.2892                       |
| 13  | 0.1200                         | 412.400      | 412.4        | 4.9         | 88.92                  | 0.2890                       |
|     |                                |              |              |             |                        |                              |



#### **DIRECT SHEAR TEST**

Date:

Client: Project: URS / HMM/ ARUP

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0018R, S30

Depth:

145-146.0

Sample Number:

S36324

Description:

Remarks:

Type of Sample: Remold Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.000 |              | 2359.150 |
| Moisture content: Dry soil+tare, gms.   | 2341.400 |              | 2341.400 |
| Moisture content: Tare, gms.            | 2196.300 |              | 2196.300 |
| Moisture, %                             | 14.9     | 12.2         | 12.2     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.94         |          |
| Net decrease in height, in.             |          | 0.06         |          |
| Wet density, pcf                        | 136.9    | 142.2        |          |
| Dry density, pcf                        | 119.2    | 126.7        |          |
| Void ratio                              | 0.4142   | 0.3307       |          |
| Saturation, %                           | 97.0     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 36.3 psi Strain rate, in./min. = 0.03

Fail. Stress = 28.35 psi at reading no. 16

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 17.400       | 17.4         | 0.2         | 3.75                   | 0.2987                       |
| 2   | 0.0100                         | 22.500       | 22.5         | 0.4         | 4.85                   | 0.2980                       |
| 3   | 0.0200                         | 51.000       | 51.0         | 0.8         | 11.00                  | 0.2969                       |
| 4   | 0.0300                         | 66.100       | 66.1         | 1.2         | 14.25                  | 0.2957                       |
| 5   | 0.0400                         | 80.700       | 80.7         | 1.6         | 17.40                  | 0.2949                       |
| 6   | 0.0500                         | 92.600       | 92.6         | 2.1         | 19.97                  | 0.2944                       |
| 7   | 0.0640                         | 103.400      | 103.4        | 2.6         | 22.30                  | 0.2933                       |
| 8   | 0.0700                         | 107.400      | 107.4        | 2.9         | 23.16                  | 0.2931                       |
| 9   | 0.0800                         | 113.000      | 113.0        | 3.3         | 24.37                  | 0.2930                       |
| 10  | 0.0900                         | 119.700      | 119.7        | 3.7         | 25.81                  | 0.2928                       |
| 11  | 0.1000                         | 122.400      | 122.4        | 4.1         | 26.39                  | 0.2926                       |
| 12  | 0.1100                         | 124.000      | 124.0        | 4.5         | 26.74                  | 0.2924                       |
|     |                                |              |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 13  | 0.1240                         | 128.100      | 128.1        | 5.1         | 27.62                  | 0.2922                       |
| 14  | 0.1330                         | 129.200      | 129.2        | 5.5         | 27.86                  | 0.2921                       |
| 15  | 0.1400                         | 130.900      | 130.9        | 5.8         | 28.23                  | 0.2920                       |
| 16  | 0.1500                         | 131.500      | 131.5        | 6.2         | 28.35                  | 0.2920                       |
| 17  | 0.1650                         | 129.000      | 129.0        | 6.8         | 27.82                  | 0.2920                       |
| 18  | 0.1700                         | 130.100      | 130.1        | 7.0         | 28.05                  | 0.2920                       |
| 19  | 0.1800                         | 128.800      | 128.8        | 7.4         | 27.77                  | 0.2920                       |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2379.300 |              | 2374.740 |
| Moisture content: Dry soil+tare, gms.  | 2358.000   |              | 2358.000 |
| Moisture content: Tare, gms.           | 2212.600   |              | 2212.600 |
| Moisture, %                            | 14.6       | 11.5         | 11.5     |
| Moist specimen weight, gms.            | 166.7      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in. <sup>2</sup>                 | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.93         |          |
| Net decrease in height, in.            |            | 0.07         |          |
| Wet density, pcf                       | 136.9      | 143.4        |          |
| Dry density, pcf                       | 119.4      | 128.6        |          |
| Void ratio                             | 0.4112     | 0.3108       |          |
| Saturation, %                          | 96.2       | 100.0        |          |
|                                        |            |              |          |

Normal stress = 72.5 psi Strain rate, in./min. = 0.03

Fail. Stress = 51.36 psi at reading no. 17

| No. | Horizontal<br>Def. Dial<br>in. | l<br>Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|-------------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000             | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 32.200            | 32.2         | 0.2         | 6.94                   | 0.2993                       |
| 2   | 0.0100                         | 50.400            | 50.4         | 0.4         | 10.87                  | 0.2980                       |
| 3   | 0.0200                         | 94.800            | 94.8         | 0.8         | 20.44                  | 0.2971                       |
| 4   | 0.0300                         | 127.200           | 127.2        | 1.2         | 27.43                  | 0.2969                       |
| 5   | 0.0400                         | 172.900           | 172.9        | 1.6         | 37.28                  | 0.2962                       |
| 6   | 0.0500                         | 181.100           | 181.1        | 2.1         | 39.05                  | 0.2959                       |
| 7   | 0.0640                         | 198.800           | 198.8        | 2.6         | 42.87                  | 0.2954                       |
| 8   | 0.0700                         | 204.500           | 204.5        | 2.9         | 44.10                  | 0.2952                       |
| 9   | 0.0830                         | 214.000           | 214.0        | 3.4         | 46.14                  | 0.2951                       |
| 10  | 0.0900                         | 219.000           | 219.0        | 3.7         | 47.22                  | 0.2951                       |
| 11  | 0.1040                         | 229.000           | 229.0        | 4.3         | 49.38                  | 0.2950                       |
| 12  | 0.1130                         | 233.500           | 233.5        | 4.7         | 50.35                  | 0.2949                       |
| 13  | 0.1200                         | 237.200           | 237.2        | 4.9         | 51.15                  | 0.2949                       |
| 14  | 0.1320                         | 236.200           | 236.2        | 5.4         | 50.93                  | 0.2949                       |
| 15  | 0.1400                         | 236.400           | 236.4        | 5.8         | 50.97                  | 0.2949                       |
| 16  | 0.1500                         | 236.800           | 236.8        | 6.2         | 51.06                  | 0.2949                       |
| 17  | 0.1600                         | 238.200           | 238.2        | 6.6         | 51.36                  | 0.2949                       |
|     |                                |                   |              |             |                        |                              |

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 18  | 0.1700                         | 231.200      | 231.2        | 7.0         | 49.85                  | 0.2949                       |
| 19  | 0.1800                         | 228.100      | 228.1        | 7.4         | 49.18                  | 0.2949                       |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2363.500 |              | 2357.350 |
| Moisture content: Dry soil+tare, gms.   | 2342.000 |              | 2342.000 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 14.8     | 10.6         | 10.6     |
| Moist specimen weight, gms.             | 166.7    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.91         |          |
| Net decrease in height, in.             |          | 0.09         |          |
| Wet density, pcf                        | 136.9    | 144.9        |          |
| Dry density, pcf                        | 119.3    | 131.1        |          |
| Void ratio                              | 0.4132   | 0.2859       |          |
| Saturation, %                           | 96.8     | 99.9         |          |
|                                         |          |              |          |

Normal stress = 145 psi Strain rate, in./min. = 0.03

Fail. Stress = 97.33 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 44.200       | 44.2         | 0.2         | 9.53                   | 0.2992                       |
| 2   | 0.0100                         | 82.500       | 82.5         | 0.4         | 17.79                  | 0.2984                       |
| 3   | 0.0200                         | 138.100      | 138.1        | 0.8         | 29.78                  | 0.2964                       |
| 4   | 0.0300                         | 194.000      | 194.0        | 1.2         | 41.83                  | 0.2949                       |
| 5   | 0.0400                         | 253.000      | 253.0        | 1.6         | 54.55                  | 0.2930                       |
| 6   | 0.0500                         | 290.000      | 290.0        | 2.1         | 62.53                  | 0.2921                       |
| 7   | 0.0600                         | 327.400      | 327.4        | 2.5         | 70.60                  | 0.2906                       |
| 8   | 0.0700                         | 361.100      | 361.1        | 2.9         | 77.86                  | 0.2902                       |
| 9   | 0.0800                         | 384.400      | 384.4        | 3.3         | 82.89                  | 0.2899                       |
| 10  | 0.0900                         | 405.000      | 405.0        | 3.7         | 87.33                  | 0.2891                       |
| 11  | 0.1000                         | 419.000      | 419.0        | 4.1         | 90.35                  | 0.2888                       |
| 12  | 0.1100                         | 431.600      | 431.6        | 4.5         | 93.06                  | 0.2874                       |
| 13  | 0.1200                         | 440.600      | 440.6        | 4.9         | 95.00                  | 0.2871                       |
| 14  | 0.1300                         | 451.400      | 451.4        | 5.3         | 97.33                  | 0.2868                       |
| 15  | 0.1400                         | 450.800      | 450.8        | 5.8         | 97.20                  | 0.2864                       |



Tested By: mw

**Figure** 

Checked By: mpw

DIRECT SHEAR TEST REPORT SIERRA TESTING LABS, INC.

El Dorado Hills, CA

#### **DIRECT SHEAR TEST**

Date:

Client:

URS / HMM/ ARUP

Project:

CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0019R, S02A

Depth:

5-5.8

Sample Number:

S36326

Description:

Remarks:

Type of Sample:

Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                      | Initial  | Consolidated Fina |
|-----------------------------------------|----------|-------------------|
| Moisture content: Moist soil+tare, gms. | 2340.400 | 2361.00           |
| Moisture content: Dry soil+tare, gms.   | 2327.700 | 2327.70           |
| Moisture content: Tare, gms.            | 2212.600 | 2212.60           |
| Moisture, %                             | 11.0     | 28.9 28.          |
| Moist specimen weight, gms.             | 127.8    |                   |
| Diameter, in.                           | 2.43     | 2.43              |
| Area, in.²                              | 4.64     | 4.64              |
| Height, in.                             | 1.00     | 1.00              |
| Net decrease in height, in.             |          | 0.00              |
| Wet density, pcf                        | 105.0    | 122.0             |
| Dry density, pcf                        | 94.5     | 94.6              |
| Void ratio                              | 0.7828   | 0.7810            |
| Saturation, %                           | 38.1     | 100.0             |

Load ring constant = .6342 lbs. per input unit

Normal stress = 1.0 psiStrain rate, in./min. = 0.03

Fail. Stress = 0.77 psi at reading no. 7

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |  |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|--|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |  |
| 1   | 0.0050                         | 4.000        | 2.5          | 0.2         | 0.55                   | 0.2995                       |  |
| 2   | 0.0100                         | 4.400        | 2.8          | 0.4         | 0.60                   | 0.2997                       |  |
| 3   | 0.0200                         | 5.000        | 3.2          | 0.8         | 0.68                   | 0.3000                       |  |
| 4   | 0.0300                         | 5.000        | 3.2          | 1.2         | 0.68                   | 0.3011                       |  |
| 5   | 0.0430                         | 5.300        | 3.4          | 1.8         | 0.72                   | 0.3016                       |  |
| 6   | 0.0500                         | 5.400        | 3.4          | 2.1         | 0.74                   | 0.3018                       |  |
| 7   | 0.0630                         | 5.600        | 3.6          | 2.6         | 0.77                   | 0.3021                       |  |
| 8   | 0.0730                         | 4.900        | 3.1          | 3.0         | 0.67                   | 0.3020                       |  |
| 9   | 0.0800                         | 5.100        | 3.2          | 3.3         | 0.70                   | 0.3020                       |  |
| 10  | 0.0900                         | 4.800        | 3.0          | 3.7         | 0.66                   | 0.3019                       |  |
| 11  | 0.1000                         | 5.000        | 3.2          | 4.1         | 0.68                   | 0.3018                       |  |
|     |                                |              |              |             | 202                    | 1000                         |  |

|     | Horizontal<br>Def. Dial | Load  | Load Load | Strain | Shear<br>Stress | Vertical<br>Def. Dial |
|-----|-------------------------|-------|-----------|--------|-----------------|-----------------------|
| No. | in.                     | Dial  | lbs.      | %      | psi             | in.                   |
| 12  | 0.1100                  | 5.200 | 3.3       | 4.5    | 0.71            | 0.3017                |

| Specimen Parameter                     | Initial    | Consolidated | Final    |
|----------------------------------------|------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | . 2324.600 |              | 2344.750 |
| Moisture content: Dry soil+tare, gms.  | 2311.900   |              | 2311.900 |
| Moisture content: Tare, gms.           | 2196.800   |              | 2196.800 |
| Moisture, %                            | 11.0       | 28.5         | 28.5     |
| Moist specimen weight, gms.            | 127.8      |              |          |
| Diameter, in.                          | 2.43       | 2.43         |          |
| Area, in.²                             | 4.64       | 4.64         |          |
| Height, in.                            | 1.00       | 0.99         |          |
| Net decrease in height, in.            |            | 0.01         |          |
| Wet density, pcf                       | 105.0      | 122.3        |          |
| Dry density, pcf                       | 94.5       | 95.2         |          |
| Void ratio                             | 0.7828     | 0.7713       |          |
| Saturation, %                          | 38.1       | 99.9         |          |

Load ring constant = .8323 lbs. per input unit

Normal stress = 2.1 psi

Strain rate, in./min. = 0.03

Fail. Stress = 1.15 psi at reading no. 14

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.500        | 3.7          | 0.2         | 0.81                   | 0.2991                       |
| 2   | 0.0100                         | 5.000        | 4.2          | 0.4         | 0.90                   | 0.2990                       |
| 3   | 0.0200                         | 4.900        | 4.1          | 0.8         | 0.88                   | 0.2988                       |
| 4   | 0.0300                         | 4.900        | 4.1          | 1.2         | 0.88                   | 0.2984                       |
| 5   | 0.0400                         | 5.000        | 4.2          | 1.6         | 0.90                   | 0.2980                       |
| 6   | 0.0500                         | 5.100        | 4.2          | 2.1         | 0.92                   | 0.2976                       |
| 7   | 0.0630                         | 5.300        | 4.4          | 2.6         | 0.95                   | 0.2972                       |
| 8   | 0.0760                         | 5.700        | 4.7          | 3.1         | 1.02                   | 0.2970                       |
| 9   | 0.0820                         | 6.000        | 5.0          | 3.4         | 1.08                   | 0.2969                       |
| 10  | 0.0900                         | 5.600        | 4.7          | 3.7         | 1.00                   | 0.2968                       |
| 11  | 0.1000                         | 6.000        | 5.0          | 4.1         | 1.08                   | 0.2963                       |
| 12  | 0.1100                         | 6.000        | 5.0          | 4.5         | 1.08                   | 0.2962                       |
| 13  | 0.1200                         | 6.000        | 5.0          | 4.9         | 1.08                   | 0.2962                       |
| 14  | 0.1300                         | 6.400        | 5.3          | 5.3         | 1.15                   | 0.2962                       |
| 15  | 0.1400                         | 6.100        | 5.1          | 5.8         | 1.09                   | 0.2961                       |
| 16  | 0.1500                         | 6.200        | 5.2          | 6.2         | 1.11                   | 0.2960                       |
| 17  | 0.1600                         | 6.100        | 5.1          | 6.6         | 1.09                   | 0.2960                       |
| 18  | 0.1700                         | 5.900        | 4.9          | 7.0         | 1.06                   | 0.2960                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2324.600 |              | 2344.650 |
| Moisture content: Dry soil+tare, gms.   | 2312.000 |              | 2312.000 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 10.9     | 28.3         | 28.3     |
| Moist specimen weight, gms.             | 127.8    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| leight, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 105.0    | 122.5        |          |
| Dry density, pcf                        | 94.6     | 95.5         |          |
| Void ratio                              | 0.7812   | 0.7654       |          |
| Saturation, %                           | 37.8     | 100.0        |          |

Normal stress = 4.2 psiStrain rate, in./min. = 0.03Fail. Stress = 2.16 psi at reading no. 19

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 6.500        | 6.5          | 0.2         | 1.40                   | 0.2993                       |
| 2   | 0.0100                         | 7.100        | 7.1          | 0.4         | 1.53                   | 0.2992                       |
| 3   | 0.0200                         | 7.000        | 7.0          | 0.8         | 1.51                   | 0.2990                       |
| 4   | 0.0300                         | 7.500        | 7.5          | 1.2         | 1.62                   | 0.2985                       |
| 5   | 0.0400                         | 7.800        | 7.8          | 1.6         | 1.68                   | 0.2981                       |
| 6   | 0.0500                         | 8.000        | 8.0          | 2.1         | 1.72                   | 0.2980                       |
| 7   | 0.0600                         | 8.100        | 8.1          | 2.5         | 1.75                   | 0.2974                       |
| 8   | 0.0700                         | 8.400        | 8.4          | 2.9         | 1.81                   | 0.2971                       |
| 9   | 0.0800                         | 8.500        | 8.5          | 3.3         | 1.83                   | 0.2971                       |
| 10  | 0.0950                         | 8.700        | 8.7          | 3.9         | 1.88                   | 0.2970                       |
| 11  | 0.1000                         | 8.600        | 8.6          | 4.1         | 1.85                   | 0.2969                       |
| 12  | 0.1130                         | 8.800        | 8.8          | 4.7         | 1.90                   | 0.2969                       |
| 13  | 0.1200                         | 8.900        | 8.9          | 4.9         | 1.92                   | 0.2967                       |
| 14  | 0.1300                         | 9.000        | 9.0          | 5.3         | 1.94                   | 0.2965                       |
| 15  | 0.1400                         | 8.900        | 8.9          | 5.8         | 1.92                   | 0.2962                       |
| 16  | 0.1500                         | 9.100        | 9.1          | 6.2         | 1.96                   | 0.2963                       |
| 17  | 0.1600                         | 9.000        | 9.0          | 6.6         | 1.94                   | 0.2961                       |
| 18  | 0.1740                         | 9.900        | 9.9          | 7.2         | 2.13                   | 0.2962                       |
| 19  | 0.1800                         | 10.000       | 10.0         | 7.4         | 2.16                   | 0.2962                       |
| 20  | 0.1900                         | 9.700        | 9.7          | 7.8         | 2.09                   | 0.2960                       |
| 21  | 0.2000                         | 9.300        | 9.3          | 8.2         | 2.01                   | 0.2959                       |
| 22  | 0.2100                         | 9.300        | 9.3          | 8.6         | 2.01                   | 0.2957                       |
| 23  | 0.2200                         | 9.100        | 9.1          | 9.1         | 1.96                   | 0.2956                       |
| 24  | 0.2300                         | 9.200        | 9.2          | 9.5         | 1.98                   | 0.2954                       |
| 25  | 0.2400                         | 9.000        | 9.0          | 9.9         | 1.94                   | 0.2952                       |



Tested By: mw Checked By: mpw

Date:

Client: URS / HMM/ ARUP
Project: CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.: 11-111

Location: S0019R, S04B

**Depth:** 9-10.0 **Sample Number:** \$36328

Description: Remarks:

Type of Sample: Remold

Specific Gravity=2.70 LL= PL= Pl=

|                                         |          | ใจกริงจะสากลักเกิดว่า |          |
|-----------------------------------------|----------|-----------------------|----------|
| Specimen Parameter                      | Initial  | Consolidated          | Final    |
| Moisture content: Moist soil+tare, gms. | 2336.200 |                       | 2347.250 |
| Moisture content: Dry soil+tare, gms.   | 2316.100 |                       | 2316.100 |
| Moisture content: Tare, gms.            | 2196.300 |                       | 2196.300 |
| Moisture, %                             | 16.8     | 26.0                  | 26.0     |
| Moist specimen weight, gms.             | 139.9    |                       |          |
| Diameter, in.                           | 2.43     | 2.43                  |          |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64                  |          |
| Height, in.                             | 1.00     | 0.99                  |          |
| Net decrease in height, in.             |          | 0.01                  |          |
| Wet density, pcf                        | 114.9    | 124.7                 |          |
| Dry density, pcf                        | 98.4     | 99.0                  |          |
| Void ratio                              | 0.7128   | 0.7031                |          |
| Saturation, %                           | 63.6     | 99.9                  |          |

Normal stress = 1.7 psi Strain rate, in./min. = 0.03

Fail. Stress = 1.96 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.500        | 4.5          | 0.2         | 0.97                   | 0.2999                       |
| 2   | 0.0100                         | 5.400        | 5.4          | 0.4         | 1.16                   | 0.2999                       |
| 3   | 0.0200                         | 6.600        | 6.6          | 0.8         | 1.42                   | 0.3006                       |
| 4   | 0.0300                         | 7.500        | 7.5          | 1.2         | 1.62                   | 0.3012                       |
| 5   | 0.0400                         | 8.100        | 8.1          | 1.6         | 1.75                   | 0.3023                       |
| 6   | 0.0500                         | 8.600        | 8.6          | 2.1         | 1.85                   | 0.3040                       |
| 7   | 0.0600                         | 9.000        | 9.0          | 2.5         | 1.94                   | 0.3050                       |
| 8   | 0.0700                         | 9.100        | 9.1          | 2.9         | 1.96                   | 0.3061                       |
| 9   | 0.0800                         | 8.500        | 8.5          | 3.3         | 1.83                   | 0.3072                       |
| 10  | 0.0900                         | 8.000        | 8.0          | 3.7         | 1.72                   | 0.3080                       |
| 11  | 0.1000                         | 7.600        | 7.6          | 4.1         | 1.64                   | 0.3083                       |
| 12  | 0.1100                         | 7.100        | 7.1          | 4.5         | 1.53                   | 0.3088                       |
|     |                                |              |              |             |                        |                              |

| Moisture content: Moist soil+tare, gms.       2336.200       2346.100         Moisture content: Dry soil+tare, gms.       2316.200       2316.200         Moisture content: Tare, gms.       2196.300       2196.300         Moist specimen weight, gms.       16.7       24.9       24.9         Moist specimen weight, gms.       139.9       24.9         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.98         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736 | Specimen Parameter                    | Initial  | Consolidated | Final    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------------|----------|
| Moisture content: Tare, gms.       2196.300       2196.300         Moisture, %       16.7       24.9       24.9         Moist specimen weight, gms.       139.9       24.3       2.43         Diameter, in.       2.43       2.43       4.64       4.64         Height, in.       1.00       0.98         Net decrease in height, in.       0.02       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                        | •                                     | 2336.200 |              | 2346.100 |
| Moisture, %       16.7       24.9       24.9         Moist specimen weight, gms.       139.9         Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.98         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                         | Moisture content: Dry soil+tare, gms. | 2316.200 |              | 2316.200 |
| Moist specimen weight, gms.       139.9         Diameter, in.       2.43         Area, in.²       4.64         Height, in.       1.00         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                                                                                                               | Moisture content: Tare, gms.          | 2196.300 |              | 2196.300 |
| Diameter, in.       2.43       2.43         Area, in.²       4.64       4.64         Height, in.       1.00       0.98         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                                                                                                                              | Moisture, %                           | 16.7     | 24.9         | 24.9     |
| Area, in.²       4.64       4.64         Height, in.       1.00       0.98         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                                                                                                                                                                          | Moist specimen weight, gms.           | 139.9    |              |          |
| Height, in.       1.00       0.98         Net decrease in height, in.       0.02         Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diameter, in.                         | 2.43     | 2.43         |          |
| Net decrease in height, in.         0.02           Wet density, pcf         114.9         125.8           Dry density, pcf         98.5         100.7           Void ratio         0.7114         0.6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area, in. <sup>2</sup>                | 4.64     | 4.64         |          |
| Wet density, pcf       114.9       125.8         Dry density, pcf       98.5       100.7         Void ratio       0.7114       0.6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Height, in.                           | 1.00     | 0.98         |          |
| Dry density, pcf         98.5         100.7           Void ratio         0.7114         0.6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Net decrease in height, in.           |          | 0.02         |          |
| <b>Void ratio</b> 0.7114 0.6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wet density, pcf                      | 114.9    | 125.8        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry density, pcf                      | 98.5     | 100.7        |          |
| Saturation, % 63.3 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Void ratio                            | 0.7114   | 0.6736       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Saturation, %                         | 63.3     | 100.0        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Normal stress = 3.5 psi               |          |              |          |

Strain rate, in./min. = 0.03

Fail. Stress = 2.50 psi at reading no. 14

| Horizontal<br>Def. Dial<br>in. | Load<br>Dial                                                                                                                          | Load<br>lbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strain<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shear<br>Stress<br>psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vertical<br>Def. Dial<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000                         | 0.000                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0050                         | 6.500                                                                                                                                 | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0130                         | 6.800                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0230                         | 8.600                                                                                                                                 | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0300                         | 9.000                                                                                                                                 | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0430                         | 10.200                                                                                                                                | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0530                         | 11.000                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0620                         | 11.100                                                                                                                                | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0700                         | 11.200                                                                                                                                | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0800                         | 11.000                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0900                         | 11.000                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1000                         | 10.900                                                                                                                                | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1100                         | 10.900                                                                                                                                | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1200                         | 11.300                                                                                                                                | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1320                         | 11.600                                                                                                                                | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1400                         | 11.300                                                                                                                                | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1500                         | 11.100                                                                                                                                | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1600                         | 11.200                                                                                                                                | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1700                         | 11.000                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | Def. Dial in.  0.0000 0.0050 0.0130 0.0230 0.0300 0.0430 0.0530 0.0620 0.0700 0.0800 0.1000 0.1100 0.1200 0.1320 0.1400 0.1500 0.1600 | Def. Dial in.         Load Dial           0.0000         0.000           0.0050         6.500           0.0130         6.800           0.0230         8.600           0.0300         9.000           0.0430         10.200           0.0530         11.000           0.0700         11.200           0.0800         11.000           0.1000         10.900           0.1100         10.900           0.1200         11.300           0.1320         11.600           0.1400         11.300           0.1500         11.100           0.1600         11.200 | Def. Dial in.         Load Dial         Load Ibs.           0.0000         0.000         0.0           0.0050         6.500         6.5           0.0130         6.800         6.8           0.0230         8.600         8.6           0.0300         9.000         9.0           0.0430         10.200         10.2           0.0530         11.000         11.0           0.0620         11.100         11.1           0.0700         11.200         11.2           0.0800         11.000         11.0           0.1000         10.900         10.9           0.1100         10.900         10.9           0.1200         11.300         11.3           0.1320         11.600         11.6           0.1400         11.300         11.3           0.1500         11.100         11.1           0.1600         11.200         11.2 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain %           0.0000         0.000         0.0         0.0           0.0050         6.500         6.5         0.2           0.0130         6.800         6.8         0.5           0.0230         8.600         8.6         0.9           0.0300         9.000         9.0         1.2           0.0430         10.200         10.2         1.8           0.0530         11.000         11.0         2.2           0.0620         11.100         11.1         2.6           0.0700         11.200         11.2         2.9           0.0800         11.000         11.0         3.3           0.0900         11.000         11.0         3.7           0.1000         10.900         10.9         4.1           0.1100         10.900         10.9         4.5           0.1200         11.300         11.3         4.9           0.1320         11.600         11.6         5.4           0.1400         11.300         11.3         5.8           0.1500         11.100         11.1         6.2           0.1600         11.2 | Def. Dial in.         Load Dial Dial         Load Ibs.         Strain % psi         Stress psi           0.0000         0.0000         0.0         0.0         0.00           0.0050         6.500         6.5         0.2         1.40           0.0130         6.800         6.8         0.5         1.47           0.0230         8.600         8.6         0.9         1.85           0.0300         9.000         9.0         1.2         1.94           0.0430         10.200         10.2         1.8         2.20           0.0530         11.000         11.0         2.2         2.37           0.0620         11.100         11.1         2.6         2.39           0.0700         11.200         11.2         2.9         2.41           0.0800         11.000         11.0         3.3         2.37           0.1000         10.900         10.9         4.1         2.35           0.1100         10.900         10.9         4.5         2.35           0.1200         11.300         11.3         4.9         2.44           0.1320         11.600         11.6         5.4         2.50           0.1400 |

\_\_\_\_ Sierra Testing Labs, Inc. \_\_\_

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2336.700 |              | 2347.300 |
| Moisture content: Dry soil+tare, gms.   | 2316.500 |              | 2316.500 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 16.9     | 25.7         | 25.7     |
| Moist specimen weight, gms.             | 139.9    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.99         |          |
| Net decrease in height, in.             |          | 0.01         |          |
| Wet density, pcf                        | 114.9    | 125.0        |          |
| Dry density, pcf                        | 98.3     | 99.4         |          |
| Void ratio                              | 0.7142   | 0.6952       |          |
| Saturation, %                           | 63.8     | 99.9         |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 6.9 psi

Strain rate, in./min. = 0.03

Fail. Stress = 5.64 psi at reading no. 10

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 8.000        | 7.2          | 0.2         | 1.55                   | 0.2992                       |
| 2   | 0.0100                         | 10.800       | 9.7          | 0.4         | 2.09                   | 0.2990                       |
| 3   | 0.0200                         | 18.000       | 16.2         | 0.8         | 3.49                   | 0.2981                       |
| 4   | 0.0300                         | 23.000       | 20.7         | 1.2         | 4.46                   | 0.2988                       |
| 5   | 0.0400                         | 25.100       | 22.6         | 1.6         | 4.86                   | 0.2991                       |
| 6   | 0.0500                         | 27.100       | 24.4         | 2.1         | 5.25                   | 0.3002                       |
| 7   | 0.0600                         | 28.000       | 25.2         | 2.5         | 5.43                   | 0.3016                       |
| 8   | 0.0700                         | 28.600       | 25.7         | 2.9         | 5.54                   | 0.3021                       |
| 9   | 0.0800                         | 28.800       | 25.9         | 3.3         | 5.58                   | 0.3032                       |
| 10  | 0.0930                         | 29.100       | 26.2         | 3.8         | 5.64                   | 0.3038                       |
| 11  | 0.1000                         | 29.100       | 26.2         | 4.1         | 5.64                   | 0.3040                       |
| 12  | 0.1100                         | 29.000       | 26.1         | 4.5         | 5.62                   | 0.3041                       |
| 13  | 0.1200                         | 28.000       | 25.2         | 4.9         | 5.43                   | 0.3041                       |
| 14  | 0.1300                         | 28.400       | 25.5         | 5.3         | 5.50                   | 0.3043                       |
| 15  | 0.1400                         | 28.100       | 25.3         | 5.8         | 5.45                   | 0.3042                       |



Tested By: mw Checked By: mpw

Date:

Client:

URS / HMM/ ARUP

**Project:** CA High Speed Train

Fresno to Bakersfield Geotech Investigation

#SA-HST019

Project No.:

11-111

Location:

S0019R, S08

Depth:

14-15.2

Sample Number:

S36329

Description:

Remarks:

Type of Sample: Remold

Specific Gravity=2.70

LL=

PL=

PI=

| Specimen Parameter                     | Initial           | Consolidated | Final    |
|----------------------------------------|-------------------|--------------|----------|
| Moisture content: Moist soil+tare, gms | <b>.</b> 2339.200 |              | 2345.150 |
| Moisture content: Dry soil+tare, gms.  | 2312.200          |              | 2312.200 |
| Moisture content: Tare, gms.           | 2196.800          |              | 2196.800 |
| Moisture, %                            | 23.4              | 28.6         | 28.6     |
| Moist specimen weight, gms.            | 142.4             |              |          |
| Diameter, in.                          | 2.43              | 2.43         |          |
| Area, in.²                             | 4.64              | 4.64         |          |
| Height, in.                            | 1.00              | 1.00         |          |
| Net decrease in height, in.            |                   | 0.00         |          |
| Wet density, pcf                       | 117.0             | 122.3        |          |
| Dry density, pcf                       | 94.8              | 95.2         |          |
| Void ratio                             | 0.7781            | 0.7710       |          |
| Saturation, %                          | 81.2              | 100.0        |          |

Load ring constant = 1.2322 lbs. per input unit

Normal stress = 2.8 psiStrain rate, in./min. = 0.03

Fail. Stress = 2.82 psi at reading no. 8

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 3.800        | 4.7          | 0.2         | 1.01                   | 0.3002                       |
| 2   | 0.0100                         | 5.500        | 6.8          | 0.4         | 1.46                   | 0.3006                       |
| 3   | 0.0230                         | 7.000        | 8.6          | 0.9         | 1.86                   | 0.3013                       |
| 4   | 0.0330                         | 8.800        | 10.8         | 1.4         | 2.34                   | 0.3025                       |
| 5   | 0.0400                         | 9.000        | 11.1         | 1.6         | 2.39                   | 0.3036                       |
| 6   | 0.0500                         | 9.600        | 11.8         | 2.1         | 2.55                   | 0.3051                       |
| 7   | 0.0600                         | 10.400       | 12.8         | 2.5         | 2.76                   | 0.3063                       |
| 8   | 0.0730                         | 10.600       | 13.1         | 3.0         | 2.82                   | 0.3082                       |
| 9   | 0.0820                         | 10.500       | 12.9         | 3.4         | 2.79                   | 0.3095                       |
| 10  | 0.0900                         | 10.500       | 12.9         | 3.7         | 2.79                   | 0.3101                       |
| 11  | 0.1000                         | 10.100       | 12.4         | 4.1         | 2.68                   | 0.3112                       |
|     |                                |              |              |             |                        |                              |

|     | Horizontal       |              |              | o           | Shear         | Vertical         |
|-----|------------------|--------------|--------------|-------------|---------------|------------------|
| No. | Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Stress<br>psi | Def. Dial<br>in. |
| 12  | 0.1100           | 10.000       | 12.3         | 4.5         | 2.66          | 0.3121           |

| Specimen Parameter                      | Initial  | Consolidated Final | L |
|-----------------------------------------|----------|--------------------|---|
| Moisture content: Moist soil+tare, gms. | 2355.000 | 2360.500           | ) |
| Moisture content: Dry soil+tare, gms.   | 2327.700 | 2327.700           |   |
| Moisture content: Tare, gms.            | 2212.600 | 2212.600           | ĺ |
| Moisture, %                             | 23.7     | 28.5 28.5          |   |
| Moist specimen weight, gms.             | 142.4    |                    |   |
| Diameter, in.                           | 2.43     | 2.43               |   |
| Area, in. <sup>2</sup>                  | 4.64     | 4.64               |   |
| Height, in.                             | 1.00     | 0.99               |   |
| Net decrease in height, in.             |          | 0.01               |   |
| Wet density, pcf                        | 117.0    | 122.3              |   |
| Dry density, pcf                        | 94.5     | 95.2               |   |
| Void ratio                              | 0.7828   | 0.7703             |   |
| Saturation, %                           | 81.8     | 99.9               |   |

Normal stress = 5.6 psi Strain rate, in./min. = 0.03

Fail. Stress = 5.35 psi at reading no. 12

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 4.300        | 4.3          | 0.2         | 0.93                   | 0.2998                       |
| 2   | 0.0100                         | 8.600        | 8.6          | 0.4         | 1.85                   | 0.2996                       |
| 3   | 0.0200                         | 11.800       | 11.8         | 0.8         | 2.54                   | 0.2995                       |
| 4   | 0.0300                         | 13.900       | 13.9         | 1.2         | 3.00                   | 0.2997                       |
| 5   | 0.0420                         | 16.200       | 16.2         | 1.7         | 3.49                   | 0.3000                       |
| 6   | 0.0500                         | 17.600       | 17.6         | 2.1         | 3.79                   | 0.3009                       |
| 7   | 0.0600                         | 18.500       | 18.5         | 2.5         | 3.99                   | 0.3015                       |
| 8   | 0.0700                         | 19.000       | 19.0         | 2.9         | 4.10                   | 0.3021                       |
| 9   | 0.0800                         | 21.400       | 21.4         | 3.3         | 4.61                   | 0.3031                       |
| 10  | 0.0900                         | 23.000       | 23.0         | 3.7         | 4.96                   | 0.3042                       |
| 11  | 0.1000                         | 24.000       | 24.0         | 4.1         | 5.17                   | 0.3051                       |
| 12  | 0.1100                         | 24.800       | 24.8         | 4.5         | 5.35                   | 0.3064                       |
| 13  | 0.1200                         | 24.800       | 24.8         | 4.9         | 5.35                   | 0.3075                       |
| 14  | 0.1300                         | 23.800       | 23.8         | 5.3         | 5.13                   | 0.3083                       |
| 15  | 0.1400                         | 24.100       | 24.1         | 5.8         | 5.20                   | 0.3092                       |
| 16  | 0.1500                         | 24.200       | 24.2         | 6.2         | 5.22                   | 0.3100                       |
|     |                                |              |              |             |                        |                              |

| Specimen Parameter                      | Initial  | Consolidated | Final    |
|-----------------------------------------|----------|--------------|----------|
| Moisture content: Moist soil+tare, gms. | 2339.200 |              | 2343.150 |
| Moisture content: Dry soil+tare, gms.   | 2311.800 |              | 2311.800 |
| Moisture content: Tare, gms.            | 2196.800 |              | 2196.800 |
| Moisture, %                             | 23.8     | 27.3         | 27.3     |
| Moist specimen weight, gms.             | 142.4    |              |          |
| Diameter, in.                           | 2.43     | 2.43         |          |
| Area, in.²                              | 4.64     | 4.64         |          |
| Height, in.                             | 1.00     | 0.97         |          |
| Net decrease in height, in.             |          | 0.03         |          |
| Wet density, pcf                        | 117.0    | 123.5        |          |
| Dry density, pcf                        | 94.5     | 97.1         |          |
| Void ratio                              | 0.7843   | 0.7367       |          |
| Saturation, %                           | 82.0     | 99.9         |          |

Load ring constant = .8988 lbs. per input unit

Normal stress = 11.1 psiStrain rate, in./min. = 0.03

Fail. Stress = 10.27 psi at reading no. 11

| No. | Horizontal<br>Def. Dial<br>in. | Load<br>Dial | Load<br>lbs. | Strain<br>% | Shear<br>Stress<br>psi | Vertical<br>Def. Dial<br>in. |
|-----|--------------------------------|--------------|--------------|-------------|------------------------|------------------------------|
| 0   | 0.0000                         | 0.000        | 0.0          | 0.0         | 0.00                   | 0.3000                       |
| 1   | 0.0050                         | 7.800        | 7.0          | 0.2         | 1.51                   | 0.2994                       |
| 2   | 0.0100                         | 14.000       | 12.6         | 0.4         | 2.71                   | 0.2987                       |
| 3   | 0.0200                         | 20.000       | 18.0         | 0.8         | 3.88                   | 0.2974                       |
| 4   | 0.0300                         | 29.100       | 26.2         | 1.2         | 5.64                   | 0.2969                       |
| 5   | 0.0400                         | 34.900       | 31.4         | 1.6         | 6.76                   | 0.2967                       |
| 6   | 0.0500                         | 40.800       | 36.7         | 2.1         | 7.91                   | 0.2970                       |
| 7   | 0.0600                         | 45.700       | 41.1         | 2.5         | 8.86                   | 0.2978                       |
| 8   | 0.0700                         | 48.900       | 44.0         | 2.9         | 9.48                   | 0.2989                       |
| 9   | 0.0800                         | 51.100       | 45.9         | 3.3         | 9.90                   | 0.2999                       |
| 10  | 0.0900                         | 52.800       | 47.5         | 3.7         | 10.23                  | 0.3011                       |
| 11  | 0.1000                         | 53.000       | 47.6         | 4.1         | 10.27                  | 0.3025                       |
| 12  | 0.1100                         | 52.300       | 47.0         | 4.5         | 10.14                  | 0.3032                       |
| 13  | 0.1200                         | 50.700       | 45.6         | 4.9         | 9.83                   | 0.3043                       |
| 14  | 0.1330                         | 49.900       | 44.9         | 5.5         | 9.67                   | 0.3050                       |

#### **TABLE E-4 SUMMARY OF MODIFIED PROCTOR TESTS Optimum** Borehole Sample USGS **Elevation** Max. Dry Depth **Moisture** Group (NAVD88) Unit Weight ID No. Content (ft) (ft) (pcf) (%) S0001R S01 0 - 5.0 SM 284.9 136.6 6.4 S0003R S01 0 - 5.0 SM 285.5 136.7 6.4 S0004R S01 0 - 5.0 281.2 121.0 ML 12.2 S0005R S01 0 - 5.0 SP-SM 282.8 133.9 6.0 S0013AR S01 0 - 5.0 SM 283.6 125.5 9.8 S0015R S01 0 - 5.0 284.2 130.3 8.2 SM S0017R S01 0 - 5.0SM 288.0 125.4 7.6 S0018R S01 0 - 5.0 SM 303.3 127.4 8.6 S0019R S01 0 - 5.0 SM 290.0 123.4 7.8





Curve No. S36223



| Preparation Me  | Preparation Method |                                          |        |  |  |  |
|-----------------|--------------------|------------------------------------------|--------|--|--|--|
| Rammer: Wt.     | 10 lb              | Drop                                     | 18 in. |  |  |  |
| Тур             | е                  |                                          |        |  |  |  |
| Layers: No.     |                    |                                          |        |  |  |  |
| Mold Size       | 0.0                | )3333 cu. ft                             |        |  |  |  |
| Test Performed  | on Materia         | 1                                        |        |  |  |  |
| Passing         | 3/8 in.            | Sieve                                    |        |  |  |  |
|                 |                    |                                          |        |  |  |  |
| %>3/8 in        |                    | % <no.200< td=""><td>31.9</td></no.200<> | 31.9   |  |  |  |
| Atterberg (D 43 | 318): LL _         | PI PI                                    |        |  |  |  |
| NM (D 2216)     | 5.1                | Sp.G. (D 854)                            |        |  |  |  |
| USCS (D 2       | 487)               |                                          |        |  |  |  |
| AASHTO (M       |                    |                                          |        |  |  |  |
| Date: Sample    |                    |                                          |        |  |  |  |
|                 |                    | 11/16/11                                 |        |  |  |  |
| Tested          | i                  | 11/16/11                                 |        |  |  |  |
| Tested By       |                    | gp                                       |        |  |  |  |

COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5 | 6 |
|-----------|--------|--------|--------|--------|---|---|
| WM + WS   | 4206.0 | 4216.0 | 4125.0 | 4014.0 |   |   |
| WM        | 2030.0 | 2030.0 | 2030.0 | 2030.0 |   |   |
| WW + T #1 | 474.0  | 474.9  | 465.7  | 457.5  |   |   |
| WD + T #1 | 451.0  | 444.2  | 428.9  | 443.2  |   |   |
| TARE #1   | 51.4   | 52.0   | 50.7   | 42.7   |   |   |
| WW + T #2 |        |        |        |        |   |   |
| WD + T #2 |        |        |        |        |   |   |
| TARE #2   |        |        |        |        |   |   |
| MOIST.    | 5.8    | 7.8    | 9.7    | 3.6    |   |   |
| DRY DENS. | 136.1  | 134.1  | 126.3  | 126.7  |   |   |

| OIL Y        | E IESI NESU | L10    |
|--------------|-------------|--------|
| Opening Size | % Passing   | Specs. |
| #200         | 31.9        |        |
|              |             |        |
|              |             | ·      |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |
|              |             |        |

| TEST RESULTS                    |                     | Material Description |               |
|---------------------------------|---------------------|----------------------|---------------|
| Maximum dry density = 136.6 pcf |                     |                      |               |
| Optimum moisture = 6.4 %        |                     |                      | Remarks:      |
| Project No. 11-111              | Client: URS/H       |                      |               |
| Project: CA High Spee           | ed Train            |                      |               |
| Fresno to Bakersfield Ge        | otech Investigation |                      |               |
| o <b>Loc.:</b> S0001R, S01      | <b>Depth:</b> 0-5.0 | Sample No.: S36223   | Checked by:cw |
| S                               | IERRA TESTING       | LABS, INC.           | Title: PM     |
| El Dorado Hills, CA             |                     | Figure               |               |

Curve No. S36232



| Preparation Metho | Preparation Method |                                              |      |  |  |  |
|-------------------|--------------------|----------------------------------------------|------|--|--|--|
| Rammer: Wt.       |                    |                                              |      |  |  |  |
| Type              |                    |                                              |      |  |  |  |
| Layers: No.       |                    |                                              |      |  |  |  |
| Mold Size         | 0.0                | )3333 cu. ft.                                |      |  |  |  |
| Test Performed on | n Materia!         | 1                                            |      |  |  |  |
| Passing3          | /8 in.             | Sieve                                        |      |  |  |  |
|                   |                    |                                              |      |  |  |  |
| %>3/8 in.         |                    | % <no.200 _<="" td=""><td>24.1</td></no.200> | 24.1 |  |  |  |
| Atterberg (D 4318 | ): LL              | PI                                           |      |  |  |  |
| NM (D 2216)       | Sp.G. (D 854)      |                                              |      |  |  |  |
| USCS (D 2487      | 7)                 |                                              |      |  |  |  |
|                   | AASHTO (M 145)     |                                              |      |  |  |  |
| Date: Sampled     |                    |                                              |      |  |  |  |
|                   |                    | 11/16/11                                     |      |  |  |  |
| Tested            |                    | 11/16/11                                     |      |  |  |  |
| Tested By         |                    | dp                                           |      |  |  |  |

#### COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5 | 6 |
|-----------|--------|--------|--------|--------|---|---|
| WM + WS   | 4102.1 | 4197.0 | 4193.0 | 4106.3 |   |   |
| WM        | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |   |
| WW + T #1 | 389.1  | 312.2  | 328.9  | 307.7  |   |   |
| WD + T #1 | 373.8  | 296.7  | 308.8  | 281.4  |   |   |
| TARE #1   | 51.2   | 52.2   | 40.4   | 50.9   |   |   |
| WW + T #2 |        |        |        |        |   |   |
| WD + T #2 |        |        |        |        |   |   |
| TARE #2   |        |        |        |        |   |   |
| MOIST.    | 4.7    | 6.3    | 7.5    | 11.4   |   |   |
| DRY DENS. | 132.7  | 136.7  | 135.0  | 125.1  |   |   |

| SILVE ILSI NESOLIS |           |        |  |  |  |
|--------------------|-----------|--------|--|--|--|
| Opening Size       | % Passing | Specs. |  |  |  |
| #200               | 24.1      |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |
|                    |           |        |  |  |  |

|                                                          | TEST RESULTS                                  | Material Description |
|----------------------------------------------------------|-----------------------------------------------|----------------------|
| Maximum dry densit                                       | y = 136.7  pcf                                |                      |
| Optimum moisture =                                       | 6.4 %                                         | Remarks:             |
| Project No. 11-111                                       |                                               |                      |
| <b>Project:</b> CA High Spee<br>Fresno to Bakersfield Ge |                                               |                      |
| ○ <b>Loc.:</b> S0003R, S01                               | <b>Depth:</b> 0-5.0 <b>Sample No.:</b> S36232 | Checked by:cw        |
| S                                                        | IERRA TESTING LABS, INC.                      | Title: PM            |
| El Dorado Hills. CA                                      |                                               | Figure               |

Curve No. S36239



| Preparation Method |            |                                              |        |  |  |
|--------------------|------------|----------------------------------------------|--------|--|--|
| Rammer: Wt.        | 10 lb      | Drop                                         | 18 in. |  |  |
| Тур                | e          | ~~~                                          |        |  |  |
| Layers: No.        |            |                                              |        |  |  |
| Mold Size          | 0.0        | )3333 cu. ft                                 | ·      |  |  |
| Test Performed     | on Materia | 1                                            |        |  |  |
| Passing            | 3/8 in.    | Sieve                                        |        |  |  |
|                    |            |                                              |        |  |  |
| %>3/8 in.          |            | % <no.200 _<="" td=""><td>51.8</td></no.200> | 51.8   |  |  |
| Atterberg (D 43    | 18): LL _  | PI                                           |        |  |  |
| NM (D 2216)        |            | Sp.G. (D 854)                                |        |  |  |
| USCS (D 24         | 187)       |                                              |        |  |  |
| AASHTO (M 145)     |            |                                              |        |  |  |
| Date: Sampled      |            |                                              |        |  |  |
|                    |            | 11/16/11                                     |        |  |  |
|                    |            | 11/16/11                                     |        |  |  |
| Tested By          |            | dp                                           |        |  |  |

COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5      | 6 |
|-----------|--------|--------|--------|--------|--------|---|
| WM + WS   | 4002.5 | 3942.9 | 4054.0 | 4001.7 | 3925.6 |   |
| WM        | 2000.0 | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |
| WW + T #1 | 316.5  | 290.4  | 275.3  | 349.6  | 304.4  |   |
| WD + T #1 | 281.5  | 254.6  | 250.9  | 320.8  | 285.0  |   |
| TARE #1   | 52.9   | 52.6   | 53.0   | 51.9   | 51.0   |   |
| WW + T #2 |        |        |        |        |        |   |
| WD + T #2 |        |        |        |        |        |   |
| TARE #2   |        |        |        |        |        |   |
| MOIST.    | 15.3   | 17.7   | 12.3   | 10.7   | 8.3    | · |
| DRY DENS. | 114.9  | 109.2  | 120.9  | 119.6  | 117.6  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 51.8      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

| TEST RESULTS                                                             |                         | Material Description |
|--------------------------------------------------------------------------|-------------------------|----------------------|
| Maximum dry density                                                      | y = 121.0  pcf          |                      |
| Optimum moisture =                                                       | 12.2 %                  | Remarks:             |
| Project No. 11-111                                                       | Client: URS / HMM/ ARUP |                      |
| <b>Project:</b> CA High Speed Fresno to Bakersfield Geo                  |                         |                      |
| ○ <b>Loc.:</b> S0004R, S01 <b>Depth:</b> 0-5.0 <b>Sample No.:</b> S36239 |                         | Checked by:cw        |
| SI                                                                       | ERRA TESTING LABS, INC. | Title: PM            |
| El Dorado Hills, CA                                                      |                         | Figure               |

Curve No. S36245



| Preparation Method |                           |                                          |        |  |  |  |
|--------------------|---------------------------|------------------------------------------|--------|--|--|--|
| Rammer: Wt         | 10 lb.                    | Drop                                     | 18 in. |  |  |  |
| Туре               |                           |                                          |        |  |  |  |
| Layers: No.        | five                      | Blows per _                              | 25     |  |  |  |
| Mold Size          |                           |                                          |        |  |  |  |
| Test Performed or  |                           |                                          |        |  |  |  |
| Passing            |                           |                                          |        |  |  |  |
|                    |                           |                                          |        |  |  |  |
| %>3/8 in.          |                           | % <no.200 _<="" td=""><td></td></no.200> |        |  |  |  |
| Atterberg (D 4318  | 8): LL                    | PI                                       |        |  |  |  |
| NM (D 2216)        | NM (D 2216) Sp.G. (D 854) |                                          |        |  |  |  |
|                    |                           |                                          |        |  |  |  |
| AASHTO (M 14       |                           |                                          |        |  |  |  |
| Date: Sampled_     |                           |                                          |        |  |  |  |
|                    |                           | 11/16/11                                 |        |  |  |  |
|                    |                           | 11/16/11                                 |        |  |  |  |
| Tested By          |                           | dp                                       |        |  |  |  |

COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5      | 6 |
|-----------|--------|--------|--------|--------|--------|---|
| WM + WS   | 4053.2 | 4155.3 | 4133.6 | 4076.3 | 3969.4 |   |
| WM        | 2000.0 | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |
| WW + T #1 | 327.1  | 395.5  | 391.7  | 330.0  | 312.2  |   |
| WD + T #1 | 316.1  | 373.6  | 363.3  | 301.9  | 303.8  |   |
| TARE #1   | 51.4   | 51.6   | 49.3   | 40.8   | 51.9   |   |
| WW + T #2 |        |        |        |        |        |   |
| WD + T #2 |        |        |        |        |        |   |
| TARE #2   |        |        |        |        |        |   |
| MOIST.    | 4.2    | 6.8    | 9.0    | 10.8   | 3.3    |   |
| DRY DENS. | 130.4  | 133.5  | 129.4  | 124.0  | 126.1  |   |

| Opening Size | % Passing    | Specs. |
|--------------|--------------|--------|
| Operang Gize | 70 T 4331119 | Оросо. |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |
|              |              |        |

|                            | TEST RESULTS                                  | Material Description |
|----------------------------|-----------------------------------------------|----------------------|
| Maximum dry density        | y = 133.9  pcf                                |                      |
| Optimum moisture =         | 6.0 %                                         | Remarks:             |
| Project No. 11-111         | Client: URS / HMM/ ARUP                       |                      |
| Project: CA High Speed     | d Train                                       |                      |
| Fresno to Bakersfield Geo  | otech Investigation                           |                      |
| o <b>Loc.:</b> S0005R, S01 | <b>Depth:</b> 0-5.0 <b>Sample No.:</b> S36245 | Checked by:cw        |
| SI                         | ERRA TESTING LABS, INC.                       | Title: PM            |
|                            | El Dorado Hills, CA                           | Figure               |

Curve No. S36271



| Preparation Method                               |        |                                          |      |  |  |  |  |
|--------------------------------------------------|--------|------------------------------------------|------|--|--|--|--|
| Rammer: Wt.                                      |        |                                          |      |  |  |  |  |
| Type                                             |        |                                          |      |  |  |  |  |
| Layers: No.                                      |        |                                          |      |  |  |  |  |
| Mold Size                                        | 0.0    | 3333 cu. ft                              |      |  |  |  |  |
| Test Performed on Material Passing 3/8 in. Sieve |        |                                          |      |  |  |  |  |
| %>3/8 in                                         |        | % <no.200< td=""><td>48.3</td></no.200<> | 48.3 |  |  |  |  |
| Atterberg (D 431                                 | 8): LL | PI                                       |      |  |  |  |  |
| NM (D 2216) _                                    |        | Sp.G. (D 854)                            |      |  |  |  |  |
| USCS (D 24                                       | 87)    |                                          |      |  |  |  |  |
| AASHTO (M 1                                      |        |                                          |      |  |  |  |  |
| Date: Sampled                                    |        |                                          |      |  |  |  |  |
|                                                  |        | 11/16/11                                 |      |  |  |  |  |
| Tested                                           |        | 11/16/11                                 |      |  |  |  |  |
| Tested By                                        |        | dp                                       |      |  |  |  |  |

COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 710 THE TOOL OF MICHIGA B MICANICA |        |        |        |        |   |
|-----------|------------------------------------|--------|--------|--------|--------|---|
|           | 1                                  | 2      | 3      | 4      | 5      | 6 |
| WM + WS   | 3966.8                             | 4042.3 | 4089.1 | 4022.1 | 3862.4 |   |
| WM        | 2000.0                             | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |
| WW + T #1 | 357.7                              | 325.7  | 370.8  | 430.5  | 395.4  |   |
| WD + T #1 | 339.2                              | 304.3  | 339.6  | 388.1  | 380.7  |   |
| TARE #1   | 51.7                               | 52.0   | 41.2   | 51.9   | 51.1   |   |
| WW + T #2 |                                    |        |        |        |        |   |
| WD + T #2 |                                    |        |        |        |        |   |
| TARE #2   |                                    |        |        |        |        |   |
| MOIST.    | 6.4                                | 8.5    | 10.5   | 12.6   | 4.5    |   |
| DRY DENS. | 122.2                              | 124.5  | 125.1  | 118.8  | 117.9  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 48.3      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

|                                                           | TEST RESUL          | Material Description |               |  |  |  |  |
|-----------------------------------------------------------|---------------------|----------------------|---------------|--|--|--|--|
| Maximum dry density                                       | = 125.5 pcf         |                      |               |  |  |  |  |
| Optimum moisture = 9                                      | .8 %                | Remarks:             |               |  |  |  |  |
| Project No. 11-111 Client: URS / HMM/ ARUP                |                     |                      |               |  |  |  |  |
| <b>Project:</b> CA High Speed Tresno to Bakersfield Geote |                     |                      |               |  |  |  |  |
| o <b>Loc.:</b> S0013AR, S01                               | <b>Depth:</b> 0-5.0 | Sample No.: S36271   | Checked by:cw |  |  |  |  |
| SIERRA TESTING LABS, INC.                                 |                     |                      | Title: PM     |  |  |  |  |
| El Dorado Hills, CA                                       |                     |                      | Figure        |  |  |  |  |

Curve No. S36286



| Preparation Method         |                               |  |  |  |  |
|----------------------------|-------------------------------|--|--|--|--|
| Rammer: Wt. 10 lb.         | Drop18 in                     |  |  |  |  |
| Туре                       |                               |  |  |  |  |
| Layers: Nofive             | Blows per25                   |  |  |  |  |
| Mold Size0.0               | 3333 cu. ft.                  |  |  |  |  |
| Test Performed on Material |                               |  |  |  |  |
| Passing 3/8 in.            | Sieve                         |  |  |  |  |
|                            |                               |  |  |  |  |
| %>3/8 in.                  | % <no.200 <u="">34.5</no.200> |  |  |  |  |
| Atterberg (D 4318): LL     | PI                            |  |  |  |  |
| NM (D 2216)                | Sp.G. (D 854)                 |  |  |  |  |
| USCS (D 2487)              |                               |  |  |  |  |
| AASHTO (M 145)             |                               |  |  |  |  |
| Date: Sampled              |                               |  |  |  |  |
|                            | 11/16/11                      |  |  |  |  |
|                            | 11/16/11                      |  |  |  |  |
| Tested By                  | dp                            |  |  |  |  |

#### COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5      | 6 |
|-----------|--------|--------|--------|--------|--------|---|
| WM + WS   | 4008.3 | 4135.8 | 4105.4 | 4038.6 | 3942.3 |   |
| WM        | 2000.0 | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |
| WW + T #1 | 375.1  | 285.6  | 330.0  | 315.4  | 357.7  |   |
| WD + T #1 | 358.7  | 267.3  | 304.5  | 287.6  | 346.8  |   |
| TARE #1   | 51.6   | 51.0   | 56.5   | 51.9   | 52.8   |   |
| WW + T #2 |        |        |        |        |        |   |
| WD + T #2 |        |        |        |        |        |   |
| TARE #2   |        |        |        |        |        |   |
| MOIST.    | 5.3    | 8.5    | 10.3   | 11.8   | 3.7    |   |
| DRY DENS. | 126.1  | 130.3  | 126.3  | 120.6  | 123.9  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 34.5      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

|                                                         | TEST RESI           | Material Description |               |
|---------------------------------------------------------|---------------------|----------------------|---------------|
| Maximum dry density                                     | y = 130.3  pcf      |                      |               |
| Optimum moisture = 8.2 %                                |                     |                      | Remarks:      |
| Project No. 11-111 Client: URS / HMM/ ARUP              |                     |                      |               |
| <b>Project:</b> CA High Speed Fresno to Bakersfield Geo |                     |                      |               |
| o <b>Loc.:</b> S0015R, S01                              | <b>Depth:</b> 0-5.0 | Sample No.: S36286   | Checked by:cw |
| SIERRA TESTING LABS, INC.                               |                     | Title: PM            |               |
| FI Dorado Hills CA                                      |                     |                      | Figure        |

Curve No. S36303



| Preparation Me  | thod       |                                              |      |
|-----------------|------------|----------------------------------------------|------|
| Rammer: Wt.     |            |                                              |      |
| Туре            |            |                                              |      |
| Layers: No      |            |                                              |      |
| Mold Size       | 0.0        | 3333 cu. ft                                  |      |
| Test Performed  | on Materia | 1                                            |      |
| Passing         | 3/8 in.    | Sieve                                        |      |
|                 |            |                                              |      |
| %>3/8 in        |            | % <no.200 _<="" td=""><td>43.3</td></no.200> | 43.3 |
| Atterberg (D 43 | 18): LL    | PI PI                                        |      |
| NM (D 2216)     |            | Sp.G. (D 854                                 | )    |
| USCS (D 24      | 187)       |                                              |      |
| AASHTO (M 1     |            |                                              |      |
| Date: Sampled   |            |                                              |      |
|                 |            | 11/16/11                                     |      |
|                 |            | 11/16/11                                     |      |
| Tested By       |            | dp                                           |      |

#### COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | THE THE TOOL OF MICHINGS DIMEGNICS |        |        |        |        |   |
|-----------|------------------------------------|--------|--------|--------|--------|---|
|           | 1                                  | - 2    | 3      | 4      | 5      | 6 |
| WM + WS   | 3976.1                             | 4046.3 | 4023.6 | 3966.3 | 3831.6 |   |
| WM        | 2000.0                             | 2000.0 | 2000.0 | 2000.0 | 2000.0 |   |
| WW + T #1 | 316.4                              | 252.2  | 339.1  | 358.5  | 336.4  |   |
| WD + T #1 | 301.4                              | 236.6  | 310.6  | 323.6  | 324.5  |   |
| TARE #1   | 51.8                               | 40.8   | 52.4   | 51.5   | 52.2   |   |
| WW + T #2 |                                    |        |        |        |        |   |
| WD + T #2 |                                    |        |        |        |        |   |
| TARE #2   |                                    |        |        |        |        |   |
| MOIST.    | 6.0                                | 8.0    | 11.0   | 12.8   | 4.4    |   |
| DRY DENS. | 123.3                              | 125.4  | 120.5  | 115.3  | 116.1  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 43.3      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

|                             | Material Description                          |               |
|-----------------------------|-----------------------------------------------|---------------|
| Maximum dry density =       |                                               |               |
| Optimum moisture = 7.       | Remarks:                                      |               |
| Project No. 11-111          | Themarks.                                     |               |
| Project: CA High Speed 7    |                                               |               |
| Fresno to Bakersfield Geote | ech Investigation                             |               |
| o <b>Loc.:</b> S0017R, S01  | <b>Depth:</b> 0-5.0 <b>Sample No.:</b> S36303 | Checked by:cw |
| SIE                         | Title: PM                                     |               |
|                             | Figure                                        |               |

Curve No. S36314



| Preparation Method        |                                     |  |  |
|---------------------------|-------------------------------------|--|--|
| Rammer: Wt. 10 lb         | o. Drop 18 in.                      |  |  |
| Туре                      |                                     |  |  |
| Layers: Nofive            | Blows per25                         |  |  |
| Mold Size 0.              | 03333 cu. ft.                       |  |  |
| Test Performed on Materia | al                                  |  |  |
| Passing3/8 in.            | Sieve                               |  |  |
|                           |                                     |  |  |
| %>3/8 in.                 | % <no.20040.1< td=""></no.20040.1<> |  |  |
| Atterberg (D 4318): LL _  | PI                                  |  |  |
| NM (D 2216)               | Sp.G. (D 854)                       |  |  |
| USCS (D 2487)             |                                     |  |  |
| AASHTO (M 145)            |                                     |  |  |
| Date: Sampled             |                                     |  |  |
| Received                  |                                     |  |  |
| Tested                    | 11/16/11                            |  |  |
| Tested By                 | sm                                  |  |  |

COMPACTION TESTING DATA ASTM D 1557-07 Method B Modified

|           | 1      | 2      | 3      | 4      | 5      | 6 |
|-----------|--------|--------|--------|--------|--------|---|
| WM + WS   | 4060.0 | 4105.0 | 4050.0 | 3990.0 | 3905.0 |   |
| WM        | 2007.0 | 2007.0 | 2007.0 | 2007.0 | 2007.0 |   |
| WW + T #1 | 382.2  | 372.5  | 352.7  | 409.8  | 365.4  |   |
| WD + T #1 | 359.9  | 343.5  | 320.5  | 391.9  | 356.7  |   |
| TARE #1   | 51.3   | 42.5   | 40.8   | 50.6   | 52.1   |   |
| WW + T #2 |        |        |        |        |        |   |
| WD + T #2 |        |        |        |        |        |   |
| TARE #2   |        |        |        |        |        |   |
| MOIST.    | 7.2    | 9.6    | 11.5   | 5.2    | 2.9    |   |
| DRY DENS. | 126.6  | 126.6  | 121.2  | 124.6  | 122.1  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 40.1      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

| TEST RESULTS                    |                     |                    | Material Description |
|---------------------------------|---------------------|--------------------|----------------------|
| Maximum dry density = 127.4 pcf |                     |                    |                      |
| Optimum moisture =              | 8.6 %               | Remarks:           |                      |
| Project No. 11-111              | Client: URS/H       |                    |                      |
| Project: CA High Speed Train    |                     |                    |                      |
| Fresno to Bakersfield Ge        | otech Investigation |                    |                      |
| o <b>Loc.:</b> S0018R, S01      | <b>Depth:</b> 0-5.0 | Sample No.: S36314 | Checked by:cw        |
| SIERRA TESTING LABS, INC.       |                     |                    | Title: PM            |
| El Dorado Hills, CA             |                     |                    | Figure               |

Curve No. S36325



| Preparation Met  | hod        |                                          |        |
|------------------|------------|------------------------------------------|--------|
| Rammer: Wt.      | 10 lb.     | Drop                                     | 18 in. |
| Type             |            |                                          |        |
| Layers: No.      |            |                                          |        |
| Mold Size        | 0.0        | 3333 cu. ft                              | •      |
| Test Performed   | on Materia | l                                        |        |
| Passing          | 3/8 in.    | Sieve                                    |        |
|                  |            |                                          |        |
| %>3/8 in         |            | % <no.200< td=""><td>38.3</td></no.200<> | 38.3   |
| Atterberg (D 431 | 8): LL _   | PI                                       |        |
| NM (D 2216) _    |            | Sp.G. (D 854)                            |        |
| USCS (D 24       | 87)        |                                          |        |
| AASHTO (M 1      |            |                                          |        |
| Date: Sampled    |            |                                          |        |
| Received         |            | 11/16/11                                 |        |
| Tested           |            | 11/16/11                                 |        |
| Tested By        |            |                                          |        |

## COMPACTION TESTING DATA

| _         |        | ASII   | M D 1997-07 I | Method b Mo | ameu   |   |
|-----------|--------|--------|---------------|-------------|--------|---|
|           | 1      | 2      | 3             | 4           | 5      | 6 |
| WM + WS   | 3830.0 | 3933.0 | 3984.0        | 4014.0      | 3975.0 |   |
| WM        | 1991.0 | 1991.0 | 1991.0        | 1991.0      | 1991.0 |   |
| WW + T #1 | 356.3  | 429.4  | 443.4         | 451.9       | 367.6  |   |
| WD + T #1 | 348.1  | 410.7  | 415.2         | 415.2       | 331.9  |   |
| TARE #1   | 6.5    | 6.5    | 6.5           | 6.5         | 6.5    |   |
| WW + T #2 |        |        |               |             |        |   |
| WD + T #2 |        |        |               |             |        |   |
| TARE #2   |        |        |               |             |        |   |
| MOIST.    | 2.4    | 4.6    | 6.9           | 9.0         | 11.0   |   |
| DRY DENS. | 118.8  | 122.8  | 123.3         | 122.8       | 118.3  |   |

| Opening Size | % Passing | Specs. |
|--------------|-----------|--------|
| #200         | 38.3      |        |
|              |           |        |
|              |           |        |
|              |           |        |
|              |           |        |

| TEST RESULTS                                        | Material Description |
|-----------------------------------------------------|----------------------|
| Maximum dry density = 123.4 pcf                     |                      |
| Optimum moisture = 7.8 %                            | Remarks:             |
| Project No. 11-111 Client: URS / HMM/ ARUP          |                      |
| Project: CA High Speed Train                        |                      |
| Fresno to Bakersfield Geotech Investigation         |                      |
| ○ Loc.: S0019R, S01 Depth: 0-5.0 Sample No.: S36325 | Checked by:cw        |
| SIERRA TESTING LABS, INC.                           | Title: PM            |
| El Dorado Hills, CA                                 | Figure               |

#### **TABLE E-5 SUMMARY OF CALIFORNIA BEARING RATIO TESTS** Borehole Sample USGS **Elevation** California Depth Group (NAVD88) Bearing Ratio ID No. (ft) (ft) S0001R S01 0 - 5.0 SM 284.9 47 S0003R S01 0 - 5.0 SM 285.5 40 S0004R S01 0 - 5.0 ML281.2 20 S0005R S01 0 - 5.0 SP-SM 282.8 50 0 - 5.0 S0013AR S01 SM283.6 13 S0015R S01 0 - 5.0 SM 284.2 35 0 - 5.0 S0017R S01 SM 288.0 28 S0018R S01 0 - 5.0 SM 303.3 23 S0019R S01 0 - 5.0 SM 290.0 13



## **CALIFORNIA BEARING RATIO**



|             |                       |     |            | _  |
|-------------|-----------------------|-----|------------|----|
| CBR At 0.1" | <b>Penetration At</b> | 95% | Compaction | 47 |

Test Method:

**ASTM D1883** 

SAMPLE IDENTIFICATION: S0001R, S01 SAMPLE DESCRIPTION: N/A

REMARKS:

Lab Number: S36223

PROJECT NUMBER:

11-111

November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME:         | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|-----------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :          | S0001R, S01                                | DEPTH :          | 0-5.0    |
| LABORATORY NO. :      | S36223                                     | DATE :           | 11/16/11 |
| TECHNICIAN :          |                                            |                  |          |
| MATERIAL DESCRIPTION: | N/A                                        | GROUP SYMBOL :   |          |

| Number of Blows      |           | 10    |        |        | 25    |        |        | 56    |                 | Moist. Adjustment        | Calcs. |
|----------------------|-----------|-------|--------|--------|-------|--------|--------|-------|-----------------|--------------------------|--------|
|                      | Before    | Afte  | r Test | Before | Afte  | r Test | Before | After | r Test          | Initial Moist. Con       | itent  |
|                      | Test      | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор   | Bottom          |                          |        |
| Wt. Of Mold and Soil | 8569      | 8776  |        | 8917   | 90    | )17    | 9191   | 92    | 22              | Tare Identification      |        |
| Mold Wt.             | 4180 4180 |       | 4198   | 4.     | 198   | 4209   | 42     | 09    | Wet soil + tare |                          |        |
| Mold ID.             | A         |       | В      |        |       | С      |        |       | Dry soil + tare |                          |        |
| MOISTURE DATA        |           |       |        |        |       |        |        |       |                 | Tare                     |        |
| Tare Identification  |           |       |        |        | k-,   |        |        |       |                 | Moisture content %       |        |
| Wet Soil & Tare, g   | 369.5     | 338.6 | 313.5  | 347.0  | 365.3 | 389.4  | 313.3  | 367.9 | 374.8           |                          |        |
| Dry Soil & Tare, g   | 348.5     | 307.3 | 283.2  | 327.0  | 339.6 | 359.4  | 295.6  | 346.8 | 350.5           | Moist. Adjustme          | ent    |
| Tare Wt., g          | 6.5       | 8.2   | 8.2    | 6.5    | 8.2   | 8.2    | 6.5    | 8.2   | 8.2             | Desired Moist. Content   |        |
| Moisture, %          | 6.1       | 10.5  | 11.0   | 6.2    | 7.8   | 8.5    | 6.1    | 6.2   | 7.1             | Wet Wt. Of Soil As Is, g |        |
|                      |           | Avg.  | 10.7   |        | Avg.  | 8.1    |        | Avg.  | 6.7             | Wt.Of Water To Add. g    |        |
| Wet Unit Wt., pcf    | 129.0     | 13    | 4.8    | 138.7  | 14    | 1.3    | 146.4  | 14'   | 7.0             |                          |        |
| Dry Unit Wt., pcf    | 121.5     | 12    | 1.7    | 130.5  | 13    | 0.2    | 138.0  | 13'   | 7.3             |                          |        |

|          |              |         | SATU     | JRATION D    | OATA    |          |              |         |
|----------|--------------|---------|----------|--------------|---------|----------|--------------|---------|
| Mold ID: | А            |         | Mold ID: | В            |         | Mold ID: | С            |         |
| Sui      | rcharge Wt.: | 10      | Sur      | rcharge Wt.: | 10      | Su       | rcharge Wt.: | 10      |
|          |              | Dial    |          |              | Dial    |          |              | Dial    |
| Date     | Time         | Reading | Date     | Time         | Reading | Date     | Time         | Reading |
| 1/11/00  | 12:40 PM     | 0.2813  | 11/19/11 | 12:40 PM     | 0.3250  | 11/19/11 | 12:40 PM     | 0.2658  |
|          |              |         |          |              |         |          |              |         |
| 11/23/11 | 3:20 PM      | 0.2859  | 11/23/11 | 3:20 PM      | 0.3308  | 11/23/11 | 3:20 PM      | 0.2702  |
|          | % Swell      | 0.1     |          | % Swell      | 0.1     |          | % Swell      | 0.1     |

|                        |                           |                |                        | I                         | PENETRAT                  | TON DATA      |                        |                           |                           |                  |                        |  |  |
|------------------------|---------------------------|----------------|------------------------|---------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|------------------------|--|--|
|                        | Piston I                  | Diameter, in.: | 1.956                  |                           | Piston Area: 3            |               |                        |                           |                           |                  |                        |  |  |
| oadring Factor:        | 1                         | Mold ID:       | A                      | Loadring Factor:          | 1                         | Mold ID:      | В                      | Loadring Factor:          | 1                         | Mold ID:         | С                      |  |  |
| Penetration Depth, in. | Load Dial<br>Reading      | Load, psi      | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi        | Corrected<br>Load, psi |  |  |
| 0.025                  | 149.1                     | 49.7           |                        | 0.025                     | 458.1                     | 152.7         |                        | 0.025                     | 584.9                     | 195              |                        |  |  |
| 0.050                  | 203.5                     | 67.8           |                        | 0.050                     | 845.3                     | 281.8         |                        | 0.050                     | 1454.9                    | 485              |                        |  |  |
| 0.075                  | 241.4                     | 80.5           |                        | 0.075                     | 1190.5                    | 396.8         |                        | 0.075                     | 2468.3                    | 822.8            |                        |  |  |
| 0.100                  | 271.0                     | 90.3           | 90                     | 0.100                     | 1536.5                    | 512.2         | 512                    | 0.100                     | 3438.8                    | 1146.3           | 1240                   |  |  |
| 0.125                  | 297.4                     | 99.1           |                        | 0.125                     | 1843.0                    | 614.3         |                        | 0.125                     | 4336.8                    | 1445.6           |                        |  |  |
| 0.150                  | 322.1                     | 107.4          |                        | 0.150                     | 2120.6                    | 706.9         |                        | 0.150                     | 5201.0                    | 1733.7           |                        |  |  |
| 0.175                  | 345.2                     | 115.1          |                        | 0.175                     | 2367.8                    | 789.3         |                        | 0.175                     | 6008.4                    | 2002.8           |                        |  |  |
| 0.200                  | 366.6                     | 122.2          | 122                    | 0.200                     | 2592.7                    | 864.2         | 864                    | 0.200                     | 6765.5                    | 2255.2           | 2330                   |  |  |
| 0.300                  | 442.4                     | 147.5          |                        | 0.300                     | 3353.9                    | 1118          |                        | 0.300                     | 9413.3                    | 3137.8           |                        |  |  |
| 0.400                  | 511.6                     | 170.5          |                        | 0.400                     | 3763.4                    | 1254.5        |                        | 0.400                     |                           |                  |                        |  |  |
| 0.500                  | 572.6                     | 190.9          |                        | 0.500                     | 4110.4                    | 1370.1        |                        | 0.500                     |                           |                  |                        |  |  |
| Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio  |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |  |  |
| 1000                   | 0.100                     | 9              |                        | 1000                      | 0.100                     | 51            |                        | 1000                      | 0.100                     | 124              |                        |  |  |
| 1500                   | 0.200                     | 8              |                        | 1500                      | 0.200                     | 58            |                        | 1500                      | 0.200                     | 155              |                        |  |  |
| 7550                   | 70 70 70                  |                |                        |                           |                           |               |                        |                           |                           |                  |                        |  |  |

## **CALIFORNIA BEARING RATIO**



| CDD A4 | 0 1!! | Donatuation | A 4 | 0501 | Commandian | 40 | _ |
|--------|-------|-------------|-----|------|------------|----|---|
| CDK At | U.I   | Penetration | AL  | 93%  | Compaction | 40 |   |

November 16, 2011

Test Method:

11-111

ASTM D1883

SAMPLE IDENTIFICATION: S0003R, S01 SAMPLE DESCRIPTION: N/A

PROJECT NUMBER:

REMARKS:

LAB NUMBER: S36232

SIERRA TESTING LABORATORIES, INC.

CA High Speed Train, Fresno to Bakersfield

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :        | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|-----------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :          | S0003R, S01                                | DEPTH :          | 0-5.0    |
| LABORATORY NO.:       | S36232                                     | DATE :           | 11/16/11 |
| TECHNICIAN:           |                                            |                  |          |
| MATERIAL DESCRIPTION: | N/A                                        | GROUP SYMBOL ·   |          |

| Number of Blows      |           | 10    |        |        | 25    |        |        | 56     |        | Moist, Adjustment Ca     | ilcs. |
|----------------------|-----------|-------|--------|--------|-------|--------|--------|--------|--------|--------------------------|-------|
|                      | Before    | Afte  | r Test | Before | Afte  | r Test | Before | After  | Test   | Initial Moist. Conten    | nt    |
|                      | Test      | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор    | Bottom |                          |       |
| Wt. Of Mold and Soil | 8878      | 89    | 996    | 9194   | 92    | 225    | 9286   | 9296.1 |        | Tare Identification      |       |
| Mold Wt.             | 4223 4223 |       | 223    | 4227   | 42    | 227    | 4229   | 42     | 29     | Wet soil + tare          |       |
| Mold ID.             |           |       |        |        |       |        |        |        |        | Dry soil + tare          |       |
| MOISTURE DATA        |           |       |        |        |       |        |        |        |        | Tare                     |       |
| Tare Identification  |           |       |        |        |       |        |        |        |        | Moisture content %       |       |
| Wet Soil & Tare, g   | 226.0     | 311.6 | 360.8  | 247.4  | 323.1 | 306.1  | 201.5  | 355.0  | 437.2  |                          |       |
| Dry Soil & Tare, g   | 213.3     | 286.8 | 328.8  | 232.8  | 301.7 | 284.3  | 190.1  | 333.2  | 409.0  | Moist. Adjustment        |       |
| Tare Wt., g          | 6.5       | 6.5   | 6.4    | 6.5    | 6.6   | 6.6    | 6.5    | 6.4    | 6.4    | Desired Moist. Content   |       |
| Moisture, %          | 6.1       | 8.8   | 9.9    | 6.5    | 7.3   | 7.9    | 6.2    | 6.7    | 7.0    | Wet Wt. Of Soil As Is, g |       |
|                      |           | Avg.  | 9.4    |        | Avg.  | 7.6    |        | Avg.   | 6.8    | Wt.Of Water To Add. g    |       |
| Wet Unit Wt., pcf    | 136.8     | 13    | 9.9    | 146.0  | 14    | 6.5    | 148.6  | 148    | 3.4    |                          |       |
| Dry Unit Wt., pcf    | 128.9     | 12    | 7.9    | 137.1  | 13    | 5.8    | 139.9  | 138    | 3.7    |                          |       |

|          |                   |         | SATU     | JRATION D    | ATA     |          |              |         |
|----------|-------------------|---------|----------|--------------|---------|----------|--------------|---------|
| Mold ID: | 0.0               |         | Mold ID: | 0.0          |         | Mold ID: | 0            |         |
| Su       | Surcharge Wt.: 10 |         |          | rcharge Wt.: | 10      | Su       | rcharge Wt.: | 10      |
| D-+-     | Tr.               | Dial    | D        | Tr.          | Dial    | Б.       |              | Dial    |
| Date     | Time              | Reading | Date     | Time         | Reading | Date     | Time         | Reading |
| 11/22/11 | 1:45 PM           | 0.4824  | 11/22/11 | 1:45 PM      | 0.4930  | 11/22/11 | 1:45 PM      | 0.2442  |
|          |                   |         |          |              |         |          |              |         |
| 11/26/11 | 3:30 PM           | 0.4848  | 11/26/11 | 3:30 PM      | 0.4950  | 11/26/11 | 3:30 PM      | 0.2420  |
|          | % Swell           | 0.1     |          | % Swell      | 0.0     |          | % Swell      | 0.0     |

|                        |                           |                |                        | I                         | PENETRAT                  | TION DATA     |                        |                           |                           |                  |                        |
|------------------------|---------------------------|----------------|------------------------|---------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|------------------------|
|                        | Piston I                  | Diameter, in.: | 1.956                  |                           |                           |               | Piston Area            | : 3                       |                           |                  |                        |
| oadring Factor:        | 1                         | Mold ID:       | 0.0                    | Loadring Factor:          | 1                         | 1 Mold ID: 0  |                        | Loadring Factor:          | 1                         | Mold ID:         | 0                      |
| Penetration Depth, in. | Load Dial<br>Reading      | Load. psi      | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load. psi        | Corrected<br>Load, psi |
| 0.025                  | 288.4                     | 96.1           |                        | 0.025                     | 403.7                     | 134.6         |                        | 0.025                     | 403.7                     | 134.6            |                        |
| 0.050                  | 584.9                     | 195            |                        | 0.050                     | 850.2                     | 283.4         |                        | 0.050                     | 1161.7                    | 387.2            |                        |
| 0.075                  | 851.0                     | 283.7          |                        | 0.075                     | 1317.4                    | 439.1         |                        | 0.075                     | 2141.2                    | 713.7            |                        |
| 0.100                  | 1065.3                    | 355.1          | 355                    | 0.100                     | 1885.0                    | 628.3         | 628                    | 0.100                     | 3129.0                    | 1043             | 1170                   |
| 0.125                  | 1256.4                    | 418.8          |                        | 0.125                     | 2494.6                    | 831.5         |                        | 0.125                     | 4036.9                    | 1345.6           |                        |
| 0.150                  | 1421.3                    | 473.8          |                        | 0.150                     | 3139.5                    | 1046.5        |                        | 0.150                     | 4845.9                    | 1615.3           |                        |
| 0.175                  | 1569.5                    | 523.2          |                        | 0.175                     | 3795.5                    | 1265.2        |                        | 0.175                     | 5579.2                    | 1859.7           |                        |
| 0.200                  | 1701.3                    | 567.1          | 567                    | 0.200                     | 4461.2                    | 1487.1        | 1487                   | 0.200                     | 6230.8                    | 2076.9           | 2170                   |
| 0.300                  | 2167.6                    | 722.5          |                        | 0.300                     | 6982.2                    | 2327.4        |                        | 0.300                     | 8418.2                    | 2806.1           |                        |
| 0.400                  | 2519.6                    | 839.9          |                        | 0.400                     | 9040.2                    | 3013.4        |                        | 0.400                     | 9399.4                    | 3133.1           |                        |
| 0.500                  | 2838.2                    | 946.1          |                        | 0.500                     | 10997.9                   | 3666          |                        | 0.500                     | 9859.9                    | 3286.6           |                        |
| Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio  |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |
| 1000                   | 0.100                     | 36             |                        | 1000                      | 0.100                     | 63            |                        | 1000                      | 0.100                     | 117              |                        |
| 1500                   | 0.200                     | 38             |                        | 1500                      | 0.200                     | 99            |                        | 1500                      | 0.200                     | 145              |                        |

## **CALIFORNIA BEARING RATIO**



| CF | 3R At 0.1 | " Penetration A | t 95% | Compaction | 20 |  |
|----|-----------|-----------------|-------|------------|----|--|

Test Method:

**ASTM D1883** 

SAMPLE IDENTIFICATION: S0004R, S01 SAMPLE DESCRIPTION: N/A

PROJECT NUMBER:

REMARKS:

LAB NUMBER: S36239

November 16, 2011

CA High Speed Train, Fresno to Bakersfield

11-111

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NUMBER : |                       |
|------------------|-----------------------|
|                  |                       |
|                  |                       |
| DATE.            | 11/10/11              |
| CDOUR SYAMBOL    |                       |
|                  | DATE : GROUP SYMBOL : |

| Number of Blows      |        | 10    |        |                   | 25    |         |       | 56     |                    | Moist. Adjustment        | Colos |
|----------------------|--------|-------|--------|-------------------|-------|---------|-------|--------|--------------------|--------------------------|-------|
|                      | Before | Afte  | r Test | Before After Test |       | Before  | Afte  | r Test | Initial Moist. Con |                          |       |
|                      | Test   | Тор   | Bottom | Test              | Тор   | Bottom  | Test  | Тор    | Bottom             | mitiai wioist. Com       | tent  |
| Wt. Of Mold and Soil | 8878   | 89    | 996    | 9194              | 9:    | 225     | 9286  | 929    |                    | Tare Identification      |       |
| Mold Wt.             | 4223   | 42    | 223    | 4227              | 42    | 227     | 4229  | 4229   |                    |                          |       |
| Mold ID.             |        |       |        |                   |       | 2002-78 | 1.2.2 | 1227   |                    | Wet soil + tare          |       |
| MOISTURE DATA        |        |       |        |                   |       |         |       |        |                    | Dry soil + tare          |       |
| Tare Identification  |        |       |        |                   |       |         |       |        |                    | Tare                     |       |
| Wet Soil & Tare, g   | 226.0  | 311.6 | 360.8  | 247.4             | 323.1 | 306.1   | 201.5 | 255.0  | 127.0              | Moisture content %       |       |
| Dry Soil & Tare, g   | 213.3  | 286.8 | 328.8  | 232.8             | 301.7 | 284.3   | 190.1 | 355.0  | 437.2              | and the second           |       |
| Tare Wt., g          | 6.5    | 6.5   | 6.4    | 6.5               | 6.6   |         |       | 333.2  | 409.0              | Moist. Adjustmer         | nt    |
| Moisture, %          | 6.1    | 8.8   | 9.9    | 6.5               |       | 6.6     | 6.5   | 6.4    | 6.4                | Desired Moist. Content   |       |
| moisture, 70         | 0.1    |       |        | 0.5               | 7.3   | 7.9     | 6.2   | 6.7    | 7.0                | Wet Wt. Of Soil As Is, g |       |
|                      |        | Avg.  | 9.4    |                   | Avg.  | 7.6     |       | Avg.   | 6.8                | Wt.Of Water To Add, g    |       |
| Wet Unit Wt., pcf    | 136.8  | 13    | 9.9    | 146.0             | 14    | 6.5     | 148.6 | 148.4  |                    |                          |       |
| Dry Unit Wt., pcf    | 128.9  | 12'   | 7.9    | 137.1             | 13    | 5.8     | 139.9 | 138    |                    |                          |       |

|          |              |         | SATU     | JRATION D    | ATA     |          |              |         |
|----------|--------------|---------|----------|--------------|---------|----------|--------------|---------|
| Mold ID: | 0.0          |         | Mold ID: | 0.0          |         | Mold ID: | 0            |         |
| Su       | rcharge Wt.: | 10      | Su       | rcharge Wt.: | 10      |          | rcharge Wt.: | 10      |
| D        | TO:          | Dial    | 1924     | M460.77      | Dial    |          | g            | Dial    |
| Date     | Time         | Reading | Date     | Time         | Reading | Date     | Time         | Reading |
| 11/22/11 | 1:45 PM      | 0.4824  | 11/22/11 | 1:45 PM      | 0.4930  | 11/22/11 | 1:45 PM      | 0.2442  |
|          |              |         |          |              |         |          |              |         |
| 11/26/11 | 3:30 PM      | 0.4848  | 11/26/11 | 3:30 PM      | 0.4950  | 11/26/11 | 3:30 PM      | 0.2420  |
|          | % Swell      | 0.1     |          | % Swell      | 0.0     |          | % Swell      | 0.0     |

|                                |                                         |                |                        |                        | PENETRA                   | TION DATA     |                        |                           |                           |                  |                      |
|--------------------------------|-----------------------------------------|----------------|------------------------|------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|----------------------|
|                                | Piston I                                | Diameter, in.: | 1.956                  |                        |                           |               | Piston Area:           | 3                         |                           |                  |                      |
| .oadring Factor:               | 1                                       | Mold ID:       | 0.0                    | Loadring Factor;       | 1                         | Mold ID: 0.0  |                        | Loadring Factor:          | 1                         | Mold ID:         | 0                    |
| Penetration<br>Depth, in.      | Load Dial<br>Reading                    | Load, psi      | Corrected<br>Load, psi | Penetration Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi        | Correcte<br>Load, ps |
| 0.025                          | 288.4                                   | 96.1           |                        | 0.025                  | 403.7                     | 134.6         |                        | 0.025                     | 403.7                     | 134.6            | coud, pa             |
| 0.050                          | 584.9                                   | 195            |                        | 0.050                  | 850.2                     | 283.4         |                        | 0.050                     | 1161.7                    | 387.2            |                      |
| 0.075                          | 851.0                                   | 283.7          |                        | 0.075                  | 1317.4                    | 439.1         |                        | 0.075                     | 2141.2                    | 713.7            |                      |
| 0.100                          | 1065.3                                  | 355.1          | 355                    | 0.100                  | 1885.0                    | 628.3         | 628                    | 0.100                     | 3129.0                    | 1043             | 1170                 |
| 0.125                          | 1256.4                                  | 418.8          |                        | 0.125                  | 2494.6                    | 831.5         | 020                    | 0.125                     | 4036.9                    | 1345.6           | 1170                 |
| 0.150                          | 1421.3                                  | 473.8          |                        | 0.150                  | 3139.5                    | 1046.5        |                        | 0.150                     | 4845.9                    | 1615.3           |                      |
| 0.175                          | 1569.5                                  | 523.2          |                        | 0.175                  | 3795.5                    | 1265.2        |                        | 0.175                     | 5579.2                    | 1859.7           |                      |
| 0.200                          | 1701.3                                  | 567.1          | 567                    | 0.200                  | 4461.2                    | 1487.1        | 1487                   | 0.200                     | 6230.8                    | 2076.9           | 2170                 |
| 0.300                          | 2167.6                                  | 722.5          |                        | 0.300                  | 6982.2                    | 2327.4        |                        | 0.300                     | 8418.2                    | 2806.1           | 2170                 |
| 0.400                          | 2519.6                                  | 839.9          |                        | 0.400                  | 9040.2                    | 3013.4        |                        | 0.400                     | 9399.4                    | 3133.1           |                      |
| 0.500                          | 2838.2                                  | 946.1          |                        | 0.500                  | 10997.9                   | 3666          |                        | 0.500                     | 9859.9                    | 3286.6           |                      |
| Standard<br>Sress. psi<br>1000 | Penetration Depth, in.                  | Bearing Ratio  |                        | Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                      |
| 1500                           | 200000000000000000000000000000000000000 | 36             | - 1                    | 1000                   | 0.100                     | 63            |                        | 1000                      | 0.100                     | 117              |                      |
| 1300                           | 0.200                                   | 38             |                        | 1500                   | 0.200                     | 99            | l                      | 1500                      | 0.200                     | 145              |                      |

# CALIFORNIA BEARING RATIO



| ODD | A . O 411 | D                     | 0.50 | ~          |    |
|-----|-----------|-----------------------|------|------------|----|
| CRK | At U.I''  | <b>Penetration At</b> | 95%  | Compaction | 50 |

Test Method:

11-111

ASTM D1883

November 16, 2011

SAMPLE IDENTIFICATION: S0005R, S01 SAMPLE DESCRIPTION: N/A REMARKS:

PROJECT NUMBER:

LAB NUMBER: S36245

SIERRA TESTING LABORATORIES, INC.

CA High Speed Train, Fresno to Bakersfield

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :        | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|-----------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :          | S0005R, S01                                | DEPTH :          | 0-5.0    |
| LABORATORY NO.:       | S36245                                     | DATE :           | 11/16/11 |
| TECHNICIAN:           |                                            |                  |          |
| MATERIAL DESCRIPTION: | N/A                                        | GROUP SYMBOL :   |          |

| Number of Blows      |        | 10         |        |        | 25    |            |       | 56    |        | Moist. Adjustment Calcs  |
|----------------------|--------|------------|--------|--------|-------|------------|-------|-------|--------|--------------------------|
|                      | Before | After Test |        | Before | Afte  | After Test |       | After | Test   | Initial Moist. Content   |
|                      | Test   | Тор        | Bottom | Test   | Тор   | Bottom     | Test  | Тор   | Bottom |                          |
| Wt. Of Mold and Soil | 8696   | 88         | 371    | 8917   | 90    | 060        | 9121  | 92    | 02     | Tare Identification      |
| Mold Wt.             | 4224   | 42         | 224    | 4227   | 42    | 227        | 4229  | 4229  |        | Wet soil + tare          |
| Mold ID.             |        | 1          |        |        | 3     |            |       | 4     |        | Dry soil + tare          |
| MOISTURE DATA        |        |            |        |        |       |            |       |       |        | Tare                     |
| Tare Identification  |        |            |        |        |       |            |       |       |        | Moisture content %       |
| Wet Soil & Tare, g   | 294.3  | 381.3      | 344.1  | 284.1  | 402.8 | 410.0      | 279.0 | 383.5 | 396.7  |                          |
| Dry Soil & Tare, g   | 277.6  | 348.9      | 315.2  | 268.7  | 373.2 | 378.9      | 264.1 | 360.5 | 371.2  | Moist. Adjustment        |
| Tare Wt., g          | 6.5    | 41.3       | 52.0   | 6.4    | 51.5  | 51.6       | 6.8   | 53.0  | 50.1   | Desired Moist. Content   |
| Moisture, %          | 6.2    | 10.5       | 11.0   | 5.9    | 9.2   | 9.5        | 5.8   | 7.5   | 7.9    | Wet Wt. Of Soil As Is, g |
|                      |        | Avg.       | 10.8   |        | Avg.  | 9.4        |       | Avg.  | 7.7    | Wt.Of Water To Add, g    |
| Wet Unit Wt., pcf    | 131.4  | 13         | 6.3    | 137.8  | 14    | 1.7        | 143.8 | 145   | 5.8    | •                        |
| Dry Unit Wt., pcf    | 123.8  | 12         | 3.1    | 130.2  | 12    | 9.4        | 135.9 | 135   | 5.1    |                          |

|          |             |                 | SATU     | JRATION D    | ATA             |          |              |                 |
|----------|-------------|-----------------|----------|--------------|-----------------|----------|--------------|-----------------|
| Mold ID: | 1.0         |                 | Mold ID: | 3.0          |                 | Mold ID: | 4            |                 |
| Sui      | charge Wt.: | 10              | Sui      | rcharge Wt.: | 10              | Su       | rcharge Wt.: | 10              |
| Date     | Time        | Dial<br>Reading | Date     | Time         | Dial<br>Reading | Date     | Time         | Dial<br>Reading |
| 11/27/11 | 3:15 PM     | 0.4903          | 11/27/11 | 3:15 PM      | 0.2277          | 11/27/11 | 3:15 PM      | 0.4931          |
| 12/1/11  | 5:15 PM     | 0.4966          | 12/1/11  | 5:15 PM      | 0.2330          | 12/1/11  | 5:15 PM      | 0.4969          |
|          | % Swell     | 0.1             |          | % Swell      | 0.1             |          | % Swell      | 0.1             |

|                        |                           |                |                        | I                         | PENETRAT                  | TION DATA     |                        |                           |                           |                  |                        |
|------------------------|---------------------------|----------------|------------------------|---------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|------------------------|
|                        | Piston I                  | Diameter, in.: | 1.956                  |                           |                           |               | Piston Area:           | : 3                       |                           |                  |                        |
| oadring Factor:        | 1                         | Mold ID:       | 1.0                    | Loadring Factor:          | 1                         | Mold ID:      | 3.0                    | Loadring Factor:          | 1                         | Mold ID:         | 4                      |
| Penetration Depth, in. | Load Dial<br>Reading      | Load, psi      | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi        | Corrected<br>Load, psi |
| 0.025                  | 178.8                     | 59.6           |                        | 0.025                     | 790.9                     | 263.6         |                        | 0.025                     | 1105.6                    | 368.5            |                        |
| 0.050                  | 282.6                     | 94.2           |                        | 0.050                     | 1445.9                    | 482           |                        | 0.050                     | 2445.2                    | 815.1            |                        |
| 0.075                  | 417.7                     | 139.2          |                        | 0.075                     | 2062.9                    | 687.6         |                        | 0.075                     | 3772.5                    | 1257.5           |                        |
| 0.100                  | 567.6                     | 189.2          | 189                    | 0.100                     | 2570.4                    | 856.8         | 857                    | 0.100                     | 5001.6                    | 1667.2           | 1800                   |
| 0.125                  | 692.0                     | 230.7          |                        | 0.125                     | 2968.4                    | 989.5         |                        | 0.125                     | 6051.6                    | 2017.2           |                        |
| 0.150                  | 796.7                     | 265.6          |                        | 0.150                     | 3272.4                    | 1090.8        |                        | 0.150                     | 6941.8                    | 2313.9           |                        |
| 0.175                  | 887.3                     | 295.8          |                        | 0.175                     | 3507.2                    | 1169.1        |                        | 0.175                     | 7721.2                    | 2573.7           |                        |
| 0.200                  | 967.2                     | 322.4          | 322                    | 0.200                     | 3648.9                    | 1216.3        | 1216                   | 0.200                     | 8417.4                    | 2805.8           | 2890                   |
| 0.300                  | 1248.1                    | 416            |                        | 0.300                     | 3849.1                    | 1283          |                        | 0.300                     | 10720.9                   | 3573.6           |                        |
| 0.400                  | 1481.3                    | 493.8          |                        | 0.400                     | 4308.0                    | 1436          |                        | 0.400                     |                           |                  |                        |
| 0.500                  | 1671.6                    | 557.2          |                        | 0.500                     | 4852.5                    | 1617.5        |                        | 0.500                     |                           |                  |                        |
| Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio  |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |
| 1000                   | 0.100                     | 19             |                        | 1000                      | 0.100                     | 86            |                        | 1000                      | 0.100                     | 180              |                        |
| 1500                   | 0.200                     | 21             |                        | 1500                      | 0.200                     | 81            |                        | 1500                      | 0.200                     | 193              |                        |

# CALIFORNIA BEARING RATIO



| CBR At 0.1" Penetration At | 95%   | Compaction | 13 |
|----------------------------|-------|------------|----|
| CBR 11t OIL I CHECK GROWTH | 10 10 | Compaction | 13 |

Test Method:

ASTM D1883

SAMPLE IDENTIFICATION: S0013AR, S01

SAMPLE DESCRIPTION: N/A

LAB NUMBER: S36271

REMARKS:

PROJECT NUMBER: 11-11

November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME:         | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|-----------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :          | S0013AR, S01                               | DEPTH :          | 0-5.0    |
| LABORATORY NO. :      | S36271                                     | DATE :           | 11/16/11 |
| TECHNICIAN:           |                                            |                  |          |
| MATERIAL DESCRIPTION: |                                            | GROUP SYMBOL :   |          |

| Number of Blows      |        | 10    |        |        | 25    |        |        | 56    |        | Moist. Adjustment Calcs  |
|----------------------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------------------------|
|                      | Before | Afte  | r Test | Before | Afte  | r Test | Before | After | Test   | Initial Moist. Content   |
|                      | Test   | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор   | Bottom |                          |
| Wt. Of Mold and Soil | 8667   | 88    | 367    | 8903   | 89    | 939    | 8986   | 90    | 05     | Tare Identification      |
| Mold Wt.             | 4226   | 42    | 226    | 4180   | 41    | 180    | 4208   | 4208  |        | Wet soil + tare          |
| Mold ID.             |        |       |        |        |       |        |        |       |        | Dry soil + tare          |
| MOISTURE DATA        |        |       |        |        |       |        |        |       |        | Tare                     |
| Tare Identification  |        |       |        |        |       |        |        |       |        | Moisture content %       |
| Wet Soil & Tare, g   | 315.0  | 360.2 | 344.3  | 360.2  | 348.3 | 347.7  | 351.6  | 347.7 | 334.5  | •                        |
| Dry Soil & Tare, g   | 291.7  | 333.7 | 311.0  | 333.7  | 318.9 | 315.1  | 324.8  | 317.4 | 304.8  | Moist. Adjustment        |
| Tare Wt., g          | 52.2   | 51.6  | 51.8   | 51.6   | 51.7  | 40.4   | 51.9   | 40.9  | 51.3   | Desired Moist, Content   |
| Moisture, %          | 9.7    | 9.4   | 12.8   | 9.4    | 11.0  | 11.9   | 9.8    | 11.0  | 11.7   | Wet Wt. Of Soil As Is, g |
|                      |        | Avg.  | 11.1   |        | Avg.  | 11.4   |        | Avg.  | 11.3   | Wt.Of Water To Add, g    |
| Wet Unit Wt., pcf    | 130.5  | 13    | 6.1    | 138.8  | 13    | 9.3    | 140.4  | 140.7 |        |                          |
| Dry Unit Wt., pcf    | 118.9  | 12    | 2.5    | 126.9  | 12    | 4.6    | 127.9  | 125.9 |        |                          |

|          |              |         | SATU     | JRATION I    | DATA    |          |                  |         |  |  |
|----------|--------------|---------|----------|--------------|---------|----------|------------------|---------|--|--|
| Mold ID: | 0.0          |         | Mold ID: | 0.0          |         | Mold ID: | 0                |         |  |  |
| Sui      | rcharge Wt.: | 10      | Su       | rcharge Wt.: | 10      | Su       | ircharge Wt.: 10 |         |  |  |
|          |              | Dial    |          |              | Dial    |          |                  | Dial    |  |  |
| Date     | Time         | Reading | Date     | Time         | Reading | Date     | Time             | Reading |  |  |
| 12/10/11 | 2:30 PM      | 0.2770  | 12/10/11 | 2:30 PM      | 0.3058  | 12/10/11 | 2:30 PM          | 0.2735  |  |  |
|          |              |         |          |              |         |          |                  |         |  |  |
|          |              |         |          |              |         |          |                  |         |  |  |
| 12/14/11 | 4:55 PM      | 0.2821  | 12/14/11 | 4:55 PM      | 0.3037  | 12/14/11 | 4:55 PM          | 0.2787  |  |  |
|          | % Swell      | 0.1     |          | % Swell      | 0.0     |          | % Swell          | 0.1     |  |  |

|                        |                           |                |                        | I                      | PENETRAT                  | TON DATA      |                        |                        |                           |                  |                        |
|------------------------|---------------------------|----------------|------------------------|------------------------|---------------------------|---------------|------------------------|------------------------|---------------------------|------------------|------------------------|
|                        | Piston I                  | Diameter, in.: | 1.956                  |                        |                           |               | Piston Area:           | 3                      |                           |                  |                        |
| oadring Factor:        | . 1                       | Mold ID:       | 0.0                    | Loadring Factor:       | 1                         | Mold ID:      | 0.0                    | Loadring Factor:       | 1                         | Mold ID:         | 0                      |
| Penetration Depth, in. | Load Dial<br>Reading      | Load, psi      | Corrected<br>Load, psi | Penetration Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load. psi | Penetration Depth. in. | Load Dial<br>Reading      | Load, psi        | Corrected<br>Load, psi |
| 0.025                  | 45.3                      | 15.1           |                        | 0.025                  | 163.9                     | 54.6          |                        | 0.025                  | 56.8                      | 18.9             |                        |
| 0.050                  | 83.2                      | 27.7           |                        | 0.050                  | 318.0                     | 106           |                        | 0.050                  | 129.3                     | 43.1             |                        |
| 0.075                  | 132.6                     | 44.2           |                        | 0.075                  | 472.1                     | 157.4         |                        | 0.075                  | 242.2                     | 80.7             |                        |
| 0.100                  | 192.8                     | 64.3           | 130                    | 0.100                  | 620.4                     | 206.8         | 207                    | 0.100                  | 397.9                     | 132.6            | 320                    |
| 0.125                  | 266.1                     | 88.7           |                        | 0.125                  | 761.2                     | 253.7         |                        | 0.125                  | 589.9                     | 196.6            |                        |
| 0.150                  | 353.4                     | 117.8          |                        | 0.150                  | 897.2                     | 299.1         |                        | 0.150                  | 804.1                     | 268              |                        |
| 0.175                  | 445.7                     | 148.6          |                        | 0.175                  | 1023.2                    | 341.1         |                        | 0.175                  | 1032.3                    | 344.1            |                        |
| 0.200                  | 542.1                     | 180.7          | 260                    | 0.200                  | 1143.5                    | 381.2         | 381                    | 0.200                  | 1268.7                    | 422.9            | 615                    |
| 0.300                  | 921.1                     | 307            |                        | 0.300                  | 1566.2                    | 522.1         |                        | 0.300                  | 2214.5                    | 738.2            |                        |
| 0.400                  | 1314.1                    | 438            |                        | 0.400                  | 1895.7                    | 631.9         |                        | 0.400                  | 3090.3                    | 1030.1           |                        |
| 0.500                  | 1730.1                    | 576.7          |                        | 0.500                  | 2183.2                    | 727.7         |                        | 0.500                  | 3890.3                    | 1296.8           |                        |
| Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio  |                        | Standard<br>Sress, psi | Penetration<br>Depth, in. | Bearing Ratio | 2                      | Standard<br>Sress, psi | Penetration<br>Depth. in. | Bearing<br>Ratio |                        |
| 1000                   | 0.100                     | 13             |                        | 1000                   | 0.100                     | 21            |                        | 1000                   | 0.100                     | 32               |                        |
| 1500                   | 0.200                     | 17             |                        | 1500                   | 0.200                     | 25            |                        | 1500                   | 0.200                     | 41               |                        |
|                        |                           |                |                        |                        |                           |               |                        |                        |                           |                  |                        |

## **CALIFORNIA BEARING RATIO**



|             |                       |     |            | Charles to the company of the |
|-------------|-----------------------|-----|------------|-------------------------------|
| CBR At 0.1" | <b>Penetration At</b> | 95% | Compaction | 35                            |

Test Method:

**ASTM D1883** 

SAMPLE IDENTIFICATION: S0015R, S01 SAMPLE DESCRIPTION: N/A

REMARKS:

LAB NUMBER: S36286

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SIERRA TESTING LABORATORIES, INC.
5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :        | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|-----------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :          | S0015R, S01                                | DEPTH:           | 0-5.0    |
| LABORATORY NO. :      | S36286                                     | DATE :           | 11/16/11 |
| TECHNICIAN:           |                                            |                  |          |
| MATERIAL DESCRIPTION: | N/A                                        | GROUP SYMBOL :   |          |

| Number of Blows      |        | 10    |        |        | 25    |        |        | 56    |        | Moist. Adjustment        | Calcs. |
|----------------------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------------------------|--------|
|                      | Before | Afte  | r Test | Before | Afte  | r Test | Before | After | r Test | Initial Moist. Cor       | ntent  |
|                      | Test   | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор   | Bottom |                          |        |
| Wt. Of Mold and Soil | 8730   | 89    | 932    | 8969   | 9(    | )59    | 9181   | 9213  |        | Tare Identification      |        |
| Mold Wt.             | 4228   | 42    | 228    | 4223   | 42    | 223    | 4227   | 42    | 27     | Wet soil + tare          |        |
| Mold ID.             |        |       |        |        |       |        |        |       |        | Dry soil + tare          |        |
| MOISTURE DATA        |        |       |        |        |       |        |        |       |        | Tare                     |        |
| Tare Identification  |        |       |        |        |       |        |        |       |        | Moisture content %       |        |
| Wet Soil & Tare, g   | 255.6  | 374.4 | 383.6  | 345.3  | 364.0 | 363.2  | 367.0  | 334.8 | 363.7  |                          |        |
| Dry Soil & Tare, g   | 240.6  | 343.3 | 350.4  | 323.1  | 335.7 | 334.8  | 343.4  | 311.1 | 337.2  | Moist. Adjustmo          | ent    |
| Tare Wt., g          | 51.6   | 52.2  | 52.1   | 52.4   | 50.9  | 51.8   | 52.1   | 40.4  | 42.7   | Desired Moist. Content   |        |
| Moisture, %          | 7.9    | 10.7  | 11.1   | 8.2    | 9.9   | 10.0   | 8.1    | 8.8   | 9.0    | Wet Wt. Of Soil As Is, g |        |
|                      |        | Avg.  | 10.9   |        | Avg.  | 10.0   |        | Avg.  | 8.9    | Wt.Of Water To Add, g    |        |
| Wet Unit Wt., pcf    | 132.3  | 13    | 8.0    | 139.5  | 14    | 1.8    | 145.6  | 140   | 6.3    |                          |        |
| Dry Unit Wt., pcf    | 122.6  | 12    | 4.4    | 128.9  | 12    | 8.9    | 134.7  | 134   | 4.2    |                          |        |

|          |              |         | SATU     | JRATION D   | ATA     |          |                   |         |  |  |
|----------|--------------|---------|----------|-------------|---------|----------|-------------------|---------|--|--|
| Mold ID: | 0.0          |         | Mold ID: | 0.0         |         | Mold ID: | 0                 |         |  |  |
| Sur      | rcharge Wt.: | 10      | Sui      | charge Wt.: | 10      | Su       | Surcharge Wt.: 10 |         |  |  |
|          |              | Dial    |          |             | Dial    |          |                   | Dial    |  |  |
| Date     | Time         | Reading | Date     | Time        | Reading | Date     | Time              | Reading |  |  |
| 12/10/11 | 2:30 PM      | 0.4769  | 12/10/11 | 2:30 PM     | 0.2379  | 12/10/11 | 2:30 PM           | 0.4977  |  |  |
|          |              |         |          |             |         |          |                   |         |  |  |
| 12/14/11 | 4:55 PM      | 0.4840  | 12/14/11 | 4:55 PM     | 0.2430  | 12/14/11 | 4:55 PM           | 0.5047  |  |  |
|          | % Swell      | 0.2     |          | % Swell     | 0.1     |          | % Swell           | 0.2     |  |  |

|                     |                  |                           |                           |                        | ION DATA      | ENETRAT                   | P                         |                        |               |                           |                           |
|---------------------|------------------|---------------------------|---------------------------|------------------------|---------------|---------------------------|---------------------------|------------------------|---------------|---------------------------|---------------------------|
|                     |                  |                           | 3                         | Piston Area:           |               |                           |                           | 1.956                  | iameter, in.: | Piston D                  |                           |
| 0                   | Mold ID:         | 1                         | Loadring Factor:          | Mold ID: 0.0           |               | 1                         | Loadring Factor:          | 0.0                    | Mold ID:      | 1                         | oadring Factor:           |
| Correcte<br>Load, p | Load, psi        | Load Dial<br>Reading      | Penetration<br>Depth, in. | Corrected<br>Load, psi | Load. psi     | Load Dial<br>Reading      | Penetration<br>Depth, in. | Corrected<br>Load, psi | Load, psi     | Load Dial<br>Reading      | Penetration<br>Depth, in. |
|                     | 109.8            | 329.5                     | 0.025                     |                        | 179.9         | 539.6                     | 0.025                     |                        | 120           | 360.0                     | 0.025                     |
|                     | 270              | 809.9                     | 0.050                     |                        | 316.4         | 949.1                     | 0.050                     |                        | 200.5         | 601.4                     | 0.050                     |
|                     | 446.3            | 1338.8                    | 0.075                     |                        | 429           | 1286.9                    | 0.075                     |                        | 260.3         | 781.0                     | 0.075                     |
| 720                 | 632.2            | 1896.5                    | 0.100                     | 531                    | 531.4         | 1594.2                    | 0.100                     | 309                    | 308.7         | 926.0                     | 0.100                     |
|                     | 815.3            | 2446.0                    | 0.125                     |                        | 623.4         | 1870.2                    | 0.125                     |                        | 346           | 1038.1                    | 0.125                     |
|                     | 994.7            | 2984.0                    | 0.150                     |                        | 706.9         | 2120.6                    | 0.150                     |                        | 377.1         | 1131.2                    | 0.150                     |
|                     | 1163.3           | 3489.9                    | 0.175                     |                        | 781           | 2343.1                    | 0.175                     |                        | 404.5         | 1213.5                    | 0.175                     |
| 1380                | 1317.4           | 3952.1                    | 0.200                     | 847                    | 846.7         | 2540.0                    | 0.200                     | 427                    | 426.5         | 1279.5                    | 0.200                     |
|                     | 1864.9           | 5594.8                    | 0.300                     |                        | 1052.3        | 3157.0                    | 0.300                     | and the second second  | 494.3         | 1482.9                    | 0.300                     |
|                     | 2362.8           | 7088.5                    | 0.400                     |                        | 1177.8        | 3533.5                    | 0.400                     |                        | 550.3         | 1651.0                    | 0.400                     |
|                     | 2793.4           | 8380.3                    | 0.500                     |                        | 1293.5        | 3880.4                    | 0.500                     |                        | 602           | 1805.9                    | 0.500                     |
|                     | Bearing<br>Ratio | Penetration<br>Depth, in. | Standard<br>Sress, psi    |                        | Bearing Ratio | Penetration<br>Depth. in. | Standard<br>Sress, psi    |                        | Bearing Ratio | Penetration<br>Depth. in. | Standard<br>Sress, psi    |
|                     | 72               | 0.100                     | 1000                      |                        | 53            | 0.100                     | 1000                      |                        | 31            | 0.100                     | 1000                      |
|                     | 92               | 0.200                     | 1500                      |                        | 56            | 0.200                     | 1500                      |                        | 28            | 0.200                     | 1500                      |

## **CALIFORNIA BEARING RATIO**



|             |                |      |            | And the second second |
|-------------|----------------|------|------------|-----------------------|
| CDD ALA 111 | Penetration At | DEOT | C 4 ·      | 20                    |
|             | Peneiralian At | 4300 | Compaction | 78                    |

Test Method:

11-111

ASTM D1883

November 16, 2011

SAMPLE IDENTIFICATION: S0017R, S01 SAMPLE DESCRIPTION: N/A REMARKS:

PROJECT NUMBER:

LAB NUMBER: S36303

SIERRA TESTING LABORATORIES, INC.

CA High Speed Train, Fresno to Bakersfield

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :         | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|------------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :           | S0017R, S01                                | DEPTH :          | 0-5.0    |
| LABORATORY NO. :       | S36303                                     | DATE :           | 11/16/11 |
| TECHNICIAN:            |                                            |                  |          |
| MATERIAL DESCRIPTION : | N/A                                        | GROUP SYMBOL :   |          |

| Number of Blows      |        | 10    |        |        | 25    |        |        | 56    |        | Moist. Adjustment        | Calcs. |
|----------------------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------------------------|--------|
|                      | Before | Afte  | r Test | Before | Afte  | r Test | Before | After | Test   | Initial Moist. Con       | tent   |
|                      | Test   | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор   | Bottom |                          |        |
| Wt. Of Mold and Soil | 8562   | 87    | 770    | 8833   | 88    | 369    | 8942   | 89    | 66     | Tare Identification      |        |
| Mold Wt.             | 4222   | 42    | 222    | 4198   | 41    | 98     | 4228   | 42    | 28     | Wet soil + tare          |        |
| Mold ID.             |        |       |        |        |       |        |        |       |        | Dry soil + tare          |        |
| MOISTURE DATA        |        |       |        |        |       |        |        |       |        | Tare                     |        |
| Tare Identification  |        |       |        |        |       |        |        |       |        | Moisture content %       |        |
| Wet Soil & Tare, g   | 357.8  | 347.2 | 386.9  | 301.9  | 352.6 | 342.1  | 300.0  | 358.8 | 360.3  | ,                        |        |
| Dry Soil & Tare, g   | 337.2  | 312.4 | 349.5  | 284.0  | 324.6 | 313.9  | 282.6  | 331.0 | 332.3  | Moist. Adjustme          | nt     |
| Tare Wt., g          | 51.4   | 49.8  | 54.9   | 51.6   | 50.7  | 51.3   | 41.2   | 41.8  | 52.0   | Desired Moist. Content   |        |
| Moisture, %          | 7.2    | 13.3  | 12.7   | 7.7    | 10.2  | 10.7   | 7.2    | 9.6   | 10.0   | Wet Wt. Of Soil As Is, g |        |
|                      |        | Avg.  | 13.0   |        | Avg.  | 10.5   |        | Avg.  | 9.8    | Wt.Of Water To Add, g    |        |
| Wet Unit Wt., pcf    | 127.6  | 13    | 3.5    | 136.2  | 13    | 6.9    | 138.5  | 138   | 3.8    |                          |        |
| Dry Unit Wt., pcf    | 119.0  | 11    | 8.2    | 126.5  | 12    | 3.6    | 129.2  | 126   | 5.2    |                          |        |

|          |              |         | SATU     | RATION D                        | ATA     |          |         |         |
|----------|--------------|---------|----------|---------------------------------|---------|----------|---------|---------|
| Mold ID: | 0.0          |         | Mold ID: | 0.0                             |         | Mold ID: | 0       |         |
| Sui      | rcharge Wt.: | 10      | Sui      | urcharge Wt.: 10 Surcharge Wt.: |         |          |         | 10      |
|          |              | Dial    |          |                                 | Dial    |          |         | Dial    |
| Date     | Time         | Reading | Date     | Time                            | Reading | Date     | Time    | Reading |
| 12/10/11 | 2:30 PM      | 0.2248  | 12/10/11 | 2:30 PM                         | 0.5052  | 12/10/11 | 2:30 PM | 0.3550  |
|          |              |         |          |                                 |         |          |         |         |
| 12/14/11 | 4:55 PM      | 0.2348  | 12/14/11 | 4:55 PM                         | 0.5058  | 12/14/11 | 4:55 PM | 0.3560  |
|          | % Swell      | 0.2     |          | % Swell                         | 0.0     |          | % Swell | 0.0     |

|                           |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                         | PENETRAT                  | TON DATA      |                        |                           |                           |                  |                        |
|---------------------------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|------------------------|
|                           | Piston I                  | Diameter, in.: | 1.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | I             | Piston Area:           | 3                         |                           |                  |                        |
| oadring Factor:           | 1                         | Mold ID:       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Loadring Factor:          | 1                         | Mold ID:      | 0.0                    | Loadring Factor:          | 1                         | Mold ID:         | 0                      |
| Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi      | Corrected<br>Load, psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi        | Corrected<br>Load, psi |
| 0.025                     | 309.8                     | 103.3          | on the state of th | 0.025                     | 192.0                     | 64            |                        | 0.025                     | 79.1                      | 26.4             |                        |
| 0.050                     | 519.9                     | 173.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050                     | 497.6                     | 165.9         |                        | 0.050                     | 188.7                     | 62.9             |                        |
| 0.075                     | 687.9                     | 229.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.075                     | 935.9                     | 312           |                        | 0.075                     | 392.2                     | 130.7            |                        |
| 0.100                     | 824.7                     | 274.9          | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.100                     | 1426.1                    | 475.4         | 475                    | 0.100                     | 675.6                     | 225.2            | 590                    |
| 0.125                     | 935.1                     | 311.7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125                     | 1950.9                    | 650.3         |                        | 0.125                     | 1034.8                    | 344.9            |                        |
| 0.150                     | 1019.9                    | 340            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.150                     | 2473.2                    | 824.4         |                        | 0.150                     | 1449.2                    | 483.1            |                        |
| 0.175                     | 1099.9                    | 366.6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.175                     | 2964.2                    | 988.1         |                        | 0.175                     | 1914.6                    | 638.2            |                        |
| 0.200                     | 1171.5                    | 390.5          | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.200                     | 3400.1                    | 1133.4        | 1133                   | 0.200                     | 2387.5                    | 795.8            | 1200                   |
| 0.300                     | 1473.1                    | 491            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.300                     | 4852.5                    | 1617.5        |                        | 0.300                     | 4126.7                    | 1375.6           |                        |
| 0.400                     | 1646.9                    | 549            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.400                     | 5767.8                    | 1922.6        |                        | 0.400                     | 5671.4                    | 1890.5           |                        |
| 0.500                     | 1854.5                    | 618.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.500                     | 6097.4                    | 2032.5        |                        | 0.500                     | 6960.0                    | 2320             |                        |
| Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |
| 1000                      | 0.100                     | 28             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                      | 0.100                     | 48            |                        | 1000                      | 0.100                     | 59               |                        |
| 1500                      | 0.200                     | 26             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1500                      | 0.200                     | 76            |                        | 1500                      | 0.200                     | 80               |                        |

# **CALIFORNIA BEARING RATIO**



| - |       |         |                       |     |            |    |
|---|-------|---------|-----------------------|-----|------------|----|
|   | CBR A | At 0.1" | <b>Penetration At</b> | 95% | Compaction | 23 |

Test Method:

ASTM D1883

SAMPLE IDENTIFICATION: S0018R, S01 SAMPLE DESCRIPTION: N/A REMARKS:

PROJECT NUMBER: 11-111

November 16, 2011

CA High Speed Train, Fresno to Bakersfield

LAB NUMBER: S36314

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd. El Dorado Hills, CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :         | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER : | 11-111   |
|------------------------|--------------------------------------------|------------------|----------|
| SAMPLE ID. :           | S0018R, S01                                | DEPTH :          | 0-5.0    |
| LABORATORY NO. :       | S36314                                     | DATE:            | 11/16/11 |
| TECHNICIAN:            |                                            |                  |          |
| MATERIAL DESCRIPTION : | N/A                                        | GROUP SYMBOL :   |          |

| Number of Blows      |        | 10    |        |        | 25      |        |        | 56    |        | Moist. Adjustment        | Calcs. |
|----------------------|--------|-------|--------|--------|---------|--------|--------|-------|--------|--------------------------|--------|
|                      | Before | Afte  | r Test | Before | Afte    | r Test | Before | After | Test   | Initial Moist. Con       | tent   |
|                      | Test   | Тор   | Bottom | Test   | Тор     | Bottom | Test   | Тор   | Bottom |                          |        |
| Wt. Of Mold and Soil | 8637   | 87    | 112    | 8837   | 37 8887 |        | 8933   | 89    | 56     | Tare Identification      |        |
| Mold Wt.             | 4209   | 42    | 209    | 4263   | 42      | 263    | 4180   | 41    | 80     | Wet soil + tare          |        |
| Mold ID.             |        |       |        |        |         |        |        |       |        | Dry soil + tare          |        |
| MOISTURE DATA        |        |       |        |        |         |        |        |       |        | Tare                     |        |
| Tare Identification  |        |       |        |        |         |        |        |       |        | Moisture content %       |        |
| Wet Soil & Tare, g   | 334.7  | 382.7 | 357.4  | 372.4  | 407.3   | 477.5  | 317.5  | 344.2 | 390.0  |                          |        |
| Dry Soil & Tare, g   | 312.2  | 348.4 | 323.3  | 347.3  | 373.8   | 435.2  | 296.6  | 317.9 | 358.9  | Moist. Adjustme          | nt     |
| Tare Wt., g          | 51.3   | 51.4  | 42.0   | 52.7   | 46.8    | 45.3   | 51.0   | 52.3  | 51.5   | Desired Moist. Content   |        |
| Moisture, %          | 8.6    | 11.5  | 12.1   | 8.5    | 10.2    | 10.8   | 8.5    | 9.9   | 10.1   | Wet Wt. Of Soil As Is, g |        |
|                      |        | Avg.  | 11.8   |        | Avg.    | 10.5   |        | Avg.  | 10.0   | Wt.Of Water To Add, g    |        |
| Wet Unit Wt., pcf    | 130.1  | 13    | 2.0    | 134.4  | 13      | 5.6    | 139.7  | 140   | 0.0    |                          |        |
| Dry Unit Wt., pcf    | 119.8  | 11    | 8.1    | 123.9  | 12      | 2.4    | 128.7  | 127   | 7.1    |                          |        |

|          |              |         | SATU     | JRATION D   | ATA     |          |              |         |
|----------|--------------|---------|----------|-------------|---------|----------|--------------|---------|
| Mold ID: | 0.0          |         | Mold ID: | 0.0         |         | Mold ID: | 0            |         |
| Sui      | rcharge Wt.: | 10      | Sui      | charge Wt.: | 10      | Su       | rcharge Wt.: | 10      |
|          |              | Dial    |          |             | Dial    |          |              | Dial    |
| Date     | Time         | Reading | Date     | Time        | Reading | Date     | Time         | Reading |
| 12/12/11 | 5:00 PM      | 0.4857  | 12/12/11 | 5:00 PM     | 0.3349  | 12/12/11 | 5:00 PM      | 0.2781  |
|          |              |         |          |             |         |          |              |         |
| 12/16/11 | 4:55 PM      | 0.4895  | 12/16/11 | 4:55 PM     | 0.3414  | 12/16/11 | 4:55 PM      | 0.2797  |
|          | % Swell      | 0.1     |          | % Swell     | 0.1     |          | % Swell      | 0.0     |

|                           |                           |                |                        | F                         | PENETRAT                  | TON DATA      |                        |                           |                           |                  |                        |
|---------------------------|---------------------------|----------------|------------------------|---------------------------|---------------------------|---------------|------------------------|---------------------------|---------------------------|------------------|------------------------|
|                           | Piston D                  | Diameter, in.: | 1.956                  | <i></i>                   |                           | I             | Piston Area:           | 3                         |                           |                  |                        |
| oadring Factor:           | 1                         | Mold ID:       | 0.0                    | Loadring Factor:          | 1                         | Mold ID:      | 0.0                    | Loadring Factor:          | 1                         | Mold ID:         | 0                      |
| Penetration<br>Depth. in. | Load Dial<br>Reading      | Load, psi      | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration<br>Depth. in. | Load Dial<br>Reading      | Load, psi        | Corrected<br>Load, psi |
| 0.025                     | 159.8                     | 53.3           |                        | 0.025                     | 169.3                     | 56.4          |                        | 0.025                     | 77.4                      | 25.8             |                        |
| 0.050                     | 295.8                     | 98.6           |                        | 0.050                     | 421.8                     | 140.6         |                        | 0.050                     | 190.3                     | 63.4             |                        |
| 0.075                     | 427.6                     | 142.5          |                        | 0.075                     | 732.4                     | 244.1         |                        | 0.075                     | 376.5                     | 125.5            |                        |
| 0.100                     | 547.0                     | 182.3          | 182                    | 0.100                     | 1062.8                    | 354.3         | 354                    | 0.100                     | 635.2                     | 211.7            | 510                    |
| 0.125                     | 643.4                     | 214.5          |                        | 0.125                     | 1408.0                    | 469.3         |                        | 0.125                     | 951.6                     | 317.2            |                        |
| 0.150                     | 725.8                     | 241.9          |                        | 0.150                     | 1754.0                    | 584.7         |                        | 0.150                     | 1313.2                    | 437.7            |                        |
| 0.175                     | 803.3                     | 267.8          |                        | 0.175                     | 2081.1                    | 693.7         |                        | 0.175                     | 1706.2                    | 568.7            |                        |
| 0.200                     | 878.2                     | 292.7          | 293                    | 0.200                     | 2385.9                    | 795.3         | 795                    | 0.200                     | 2117.2                    | 705.7            | 1020                   |
| 0.300                     | 1140.2                    | 380.1          |                        | 0.300                     | 3494.8                    | 1164.9        |                        | 0.300                     | 3682.7                    | 1227.6           |                        |
| 0.400                     | 1487.9                    | 496            |                        | 0.400                     | 4464.5                    | 1488.2        |                        | 0.400                     | 5083.2                    | 1694.4           |                        |
| 0.500                     | 1679.8                    | 559.9          |                        | 0.500                     | 5323.8                    | 1774.6        |                        | 0.500                     | 6361.8                    | 2120.6           |                        |
| Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio  |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress. psi    | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |
| 1000                      | 0.100                     | 18             |                        | 1000                      | 0.100                     | 35            |                        | 1000                      | 0.100                     | 51               |                        |
| 1500                      | 0.200                     | 20             |                        | 1500                      | 0.200                     | 53            |                        | 1500                      | 0.200                     | 68               |                        |

## CALIFORNIA BEARING RATIO



| <b>CBR At 0.1'</b> | ' Penetration At | 95% | Compaction | 13 |  |
|--------------------|------------------|-----|------------|----|--|

Test Method:

**ASTM D1883** 

SAMPLE IDENTIFICATION: S0019R, S01 SAMPLE DESCRIPTION: N/A REMARKS:

Lab Number: S36325 Group Symbol: N/A

PROJECT NUMBER: 11-111

November 16, 2011

CA High Speed Train, Fresno to Bakersfield

SIFRRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd. El Dorado Hills. CA 95762

# CALIFORNIA BEARING RATIO WORKSHEET



| PROJECT NAME :        | CA High Speed Train, Fresno to Bakersfield | PROJECT NUMBER: | 11-111   |
|-----------------------|--------------------------------------------|-----------------|----------|
| SAMPLE ID. :          | S0019R, S01                                | DEPTH :         | 0-5.0    |
| LABORATORY NO.:       | S36325                                     | DATE :          | 11/16/11 |
| TECHNICIAN:           |                                            |                 |          |
| MATERIAL DESCRIPTION: | N/A                                        | GROUP SYMBOL :  | N/A      |

| Number of Blows      |        | 10    |        |        | 25    |        |        | 56          |        | Moist. Adjustment Ca     | lcs. |
|----------------------|--------|-------|--------|--------|-------|--------|--------|-------------|--------|--------------------------|------|
|                      | Before | Afte  | r Test | Before | Afte  | r Test | Before | After       | Test   | Initial Moist. Conten    | it   |
|                      | Test   | Тор   | Bottom | Test   | Тор   | Bottom | Test   | Тор         | Bottom |                          |      |
| Wt. Of Mold and Soil | 8383   | 86    | 65.1   | 8631   | 85    | 596    | 8783   | 86          | 98     | Tare Identification      |      |
| Mold Wt.             | 4179   | 41    | 79     | 4182   | 41    | 182    | 4177   | 41          | 77     | Wet soil + tare          |      |
| Mold ID.             |        |       |        |        |       |        |        |             |        | Dry soil + tare          |      |
| MOISTURE DATA        |        |       |        |        |       |        |        |             |        | Tare                     |      |
| Tare Identification  |        |       |        |        |       |        |        |             |        | Moisture content %       |      |
| Wet Soil & Tare, g   | 323.4  | 262.3 | 353.9  | 295.1  | 417.2 | 412.1  | 301.1  | 379.3       | 314.8  | •                        |      |
| Dry Soil & Tare, g   | 304.1  | 237.8 | 319.0  | 278.0  | 376.7 | 368.5  | 283.7  | 346.6       | 286.1  | Moist. Adjustment        |      |
| Гаге Wt., g          | 51.8   | 41.1  | 52.1   | 51.8   | 46.6  | 45.0   | 52.0   | 46.2        | 46.9   | Desired Moist, Content   |      |
| Moisture, %          | 7.6    | 12.5  | 13.1   | 7.6    | 12.3  | 13.5   | 7.5    | 10.9        | 12.0   | Wet Wt. Of Soil As Is, g |      |
|                      |        | Avg.  | 12.8   |        | Avg.  | 12.9   |        | Avg.        | 11.4   | Wt.Of Water To Add. g    |      |
| Wet Unit Wt., pcf    | 123.6  | 13    | 1.5    | 130.8  | 12    | 9.5    | 135.4  | 135.4 132.5 |        |                          |      |
| Dry Unit Wt., pcf    | 114.8  | 11    | 6.6    | 121.6  | 11    | 4.1    | 125.9  | 118.3       |        |                          |      |

|          |              |                 | SATU     | JRATION D    | ATA             |          |              |                 |
|----------|--------------|-----------------|----------|--------------|-----------------|----------|--------------|-----------------|
| Mold ID: | 0.0          |                 | Mold ID: | 0.0          |                 | Mold ID: | 0            |                 |
| Su       | rcharge Wt.: | 10              | Su       | rcharge Wt.: | 10              | Su       | rcharge Wt.: | 10              |
| Date     | Time         | Dial<br>Reading | Date     | Time         | Dial<br>Reading | Date     | Time         | Dial<br>Reading |
| 1/5/12   | 4:00 PM      | 0.4940          | 1/5/12   | 4:00 PM      | 0.3360          | 1/5/12   | 4:00 PM      | 0.3568          |
| 1/9/12   | 4:00 PM      | 0.4968          | 1/9/12   | 4:00 PM      | 0.3420          | 1/9/12   | 4:00 PM      | 0.3581          |
|          | % Swell      | 0.1             |          | % Swell      | 0.1             |          | % Swell      | 0.0             |

|                        |                           |                |                        | I                         | PENETRAT                  | TION DATA     |                        |                        |                           |                  |                        |
|------------------------|---------------------------|----------------|------------------------|---------------------------|---------------------------|---------------|------------------------|------------------------|---------------------------|------------------|------------------------|
|                        | Piston I                  | Diameter, in.: | 1.956                  |                           |                           | J             | Piston Area:           | 3                      |                           |                  |                        |
| oadring Factor:        | 1                         | Mold ID:       | 0.0                    | Loadring Factor:          | 1                         | Mold ID:      | 0.0                    | Loadring Factor;       | 1                         | Mold ID:         | 0                      |
| Penetration Depth. in. | Load Dial<br>Reading      | Load. psi      | Corrected<br>Load, psi | Penetration<br>Depth, in. | Load Dial<br>Reading      | Load, psi     | Corrected<br>Load, psi | Penetration Depth, in. | Load Dial<br>Reading      | Load. psi        | Corrected<br>Load, psi |
| 0.025                  | 101.3                     | 33.8           |                        | 0.025                     | 130.2                     | 43.4          |                        | 0.025                  | 197.7                     | 65.9             |                        |
| 0.050                  | 162.3                     | 54.1           |                        | 0.050                     | 267.8                     | 89.3          |                        | 0.050                  | 359.2                     | 119.7            |                        |
| 0.075                  | 218.3                     | 72.8           |                        | 0.075                     | 426.8                     | 142.3         |                        | 0.075                  | 514.1                     | 171.4            |                        |
| 0.100                  | 280.9                     | 93.6           | 80                     | 0.100                     | 591.5                     | 197.2         | 215                    | 0.100                  | 711.0                     | 237              | 237                    |
| 0.125                  | 347.7                     | 115.9          |                        | 0.125                     | 751.4                     | 250.5         |                        | 0.125                  | 933.4                     | 311.1            |                        |
| 0.150                  | 407.8                     | 135.9          |                        | 0.150                     | 906.2                     | 302.1         |                        | 0.150                  | 1154.2                    | 384.7            |                        |
| 0.175                  | 464.7                     | 154.9          |                        | 0.175                     | 1054.5                    | 351.5         |                        | 0.175                  | 1376.7                    | 458.9            |                        |
| 0.200                  | 515.7                     | 171.9          | 165                    | 0.200                     | 1192.9                    | 397.6         | 415                    | 0.200                  | 1582.6                    | 527.5            | 528                    |
| 0.300                  | 704.4                     | 234.8          |                        | 0.300                     | 1596.6                    | 532.2         |                        | 0.300                  | 2323.3                    | 774.4            |                        |
| 0.400                  | 866.7                     | 288.9          |                        | 0.400                     | 1777.1                    | 592.4         |                        | 0.400                  | 2875.3                    | 958.4            |                        |
| 0.500                  | 1005.9                    | 335.3          |                        | 0.500                     | 1943.5                    | 647.8         |                        | 0.500                  | 3059.8                    | 1019.9           |                        |
| Standard<br>Sress, psi | Penetration<br>Depth. in. | Bearing Ratio  |                        | Standard<br>Sress, psi    | Penetration<br>Depth, in. | Bearing Ratio |                        | Standard<br>Sress. psi | Penetration<br>Depth, in. | Bearing<br>Ratio |                        |
| 1000                   | 0.100                     | 8              |                        | 1000                      | 0.100                     | 22            |                        | 1000                   | 0.100                     | 24               |                        |
| 1500                   | 0.200                     | 11             |                        | 1500                      | 0.200                     | 28            |                        | 1500                   | 0.200                     | 35               |                        |

# TABLE E-6 SUMMARY OF CORROSION TEST RESULTS

| Borehole<br>ID | Sample<br>No. | Depth       | Elevation<br>(NAVD88) | USCS<br>Group | рН   | Minimum<br>Resistivity | Chloride | Sulfate |
|----------------|---------------|-------------|-----------------------|---------------|------|------------------------|----------|---------|
|                |               | (ft)        | (ft)                  |               |      | (ohms-cm)              | (ppm)    | (ppm)   |
| S0001R         | S01           | 0 - 5.0     | 284.9                 | SM            | 7.04 | 6,160                  | 6.8      | 34.9    |
| S0001R         | S06B          | 11.0 - 11.5 | 276.1                 | ML            | 7.29 | 5,090                  | 10.1     | 9.2     |
| S0002R         | S01           | 0 - 5.0     | 287.9                 | SM            | 7.38 | 10,720                 | 7.9      | 4.2     |
| S0002R         | S05A          | 9.5 - 10.3  | 280.5                 | SM            | 7.85 | 2,490                  | 8.6      | 6.0     |
| S0003R         | S01           | 0 - 5       | 285.5                 | SM            | 7.88 | 1,130                  | 14.4     | 273.1   |
| S0003R         | S08           | 14 - 15.2   | 273.4                 | SP-SM         | 8.20 | 2,250                  | 56.4     | 102.0   |
| S0003R         | S11           | 30 - 30.9   | 257.5                 | SP-SM         | 7.87 | 6,160                  | 7.2      | 25.2    |
| S0004R         | S01           | 0 - 5.0     | 281.2                 | ML            | 7.80 | 2,950                  | 8.1      | 7.7     |
| S0004R         | S09           | 20 - 21.5   | 262.9                 | ML            | 7.44 | 8,310                  | 15.5     | 1.8     |
| S0004R         | S12           | 35 - 36.3   | 248.0                 | SM            | 7.16 | 2,630                  | 8.5      | 7.7     |
| S0005R         | S01           | 0 - 5.0     | 282.8                 | SP-SM         | 7.66 | 17,420                 | 9.6      | 0.8     |
| S0005R         | S09           | 20.0 - 20.8 | 264.9                 | SM            | 7.69 | 20,900                 | 7.6      | 2.5     |
| S0005R         | S12           | 35.0 - 36.2 | 249.7                 | SP-SM         | 7.66 | 17,420                 | 9.6      | 0.8     |
| S0006R         | S01           | 0 - 5.0     | 285.1                 | SP-SM         | 7.33 | 14,470                 | 6.8      | 8.6     |
| S0006R         | S15           | 39.5 - 40.8 | 247.4                 | SM            | 7.28 | 3,220                  | 9.8      | 18.7    |
| S0007R         | S01           | 0 - 5.0     | 282.6                 | SM            | 7.21 | 6,160                  | 7.8      | 16.7    |
| S0007R         | S06           | 9.0 - 10.3  | 275.4                 | SM            | 8.07 | 3,750                  | 16.0     | 21.7    |
| S0010R         | S01           | 0 - 5.0     | 283.6                 | SM            | 7.29 | 9,920                  | 6.3      | 12.2    |
| S0010R         | S04           | 8.0 - 9.4   | 277.4                 | ML            | 7.25 | 1,610                  | 14.8     | 30.2    |
| S0010R         | S11           | 30.0 - 31.2 | 255.5                 | SM            | 7.98 | 6,700                  | 14.4     | 21.8    |
| S0012R         | S01           | 0 - 5.0     | 285.1                 | SM            | 7.68 | 8,310                  | 6.9      | 3.4     |
| S0013AR        | S01           | 0 - 5.0     | 283.6                 | SM            | 6.93 | 3,750                  | 11.5     | 15.8    |





TABLE E-6
SUMMARY OF CORROSION TEST RESULTS

| Borehole<br>ID | Sample<br>No. | Depth       | Elevation<br>(NAVD88) | USCS<br>Group  | рН         | Minimum<br>Resistivity | Chloride   | Sulfate    |
|----------------|---------------|-------------|-----------------------|----------------|------------|------------------------|------------|------------|
|                |               | (ft)        | (ft)                  |                |            | (ohms-cm)              | (ppm)      | (ppm)      |
| S0014AR        | S01           | 0 - 5.0     | 282.9                 | ML             | 7.67       | 1,800                  | 15.9       | 20.8       |
| S0014R         | S01           | 0 - 5.0     | 282.1                 | ML             | 7.47       | 5,360                  | 6.2        | 5.4        |
| S0014R         | S03           | 6.5 - 7.8   | 277.4                 | SM             | 7.78       | 7,240                  | 10.1       | 22.9       |
| S0015R         | S03A          | 6.5 - 7.0   | 279.9                 | SM             | 7.86       | 1,610                  | 9.7        | 29.6       |
| S0015R         | S10           | 25.0 - 26.5 | 260.9                 | SM             | 7.75       | 2,010                  | 124.0      | 64.2       |
| S0016R         | S01           | 0 - 5.0     | 286.3                 | ML             | 7.56       | 5,090                  | 12.2       | 22.1       |
| S0016R         | S14           | 65.0 - 65.9 | 223.3                 | SP-SM          | 8.18       | 9,110                  | 7.7        | 16.2       |
| S0017R         | S01           | 0 - 5.0     | 288.0                 | SM             | 8.35       | 4,820                  | 7.1        | 25.4       |
| S0017R         | S06           | 25.0 - 26.0 | 265.0                 | SM             | 8.07       | 11,260                 | 8.0        | 15.9       |
| S0017R         | S12           | 55.0 - 55.7 | 235.1                 | SM             | 7.88       | 9,380                  | 6.8        | 3.3        |
| S0018R         | S01           | 0 - 5.0     | 303.3                 | SM             | 7.93       | 7,770                  | 10.5       | 16.0       |
| S0018R         | S16           | 75.0 - 75.6 | 230.5                 | SM             | 7.94       | 10,450                 | 9.6        | 12.6       |
| S0018R         | S20           | 95.0 - 96.0 | 210.3                 | SM             | 7.87       | 8,040                  | 9.6        | 5.6        |
| S0019R         | S01           | 0 - 5.0     | 290.0                 | SM             | 7.31       | 3,220                  | 33.8       | 87.9       |
| S0019R         | S03A          | 6.5 - 7.6   | 285.4                 | SM             | 7.56       | 4,290                  | 19.8       | 76.3       |
|                |               |             |                       | Test Standard: | ASTM D4327 | ASTM G57               | ASTM D4327 | ASTM D4327 |





|                                 |            |         | Minimum                    |                        |                       |  |
|---------------------------------|------------|---------|----------------------------|------------------------|-----------------------|--|
| Sample<br><u>Identification</u> | Depth, ft. | Soil pH | Resistivity ohm-cm (x1000) | Chloride<br><u>ppm</u> | Sulfate<br><u>ppm</u> |  |
| S001R, S01                      | 0-5.0      | 7.04    | 6.16                       | 6.8                    | 34.9                  |  |
| S001R, S06B                     | 11-11.5    | 7.29    | 5.09                       | 10.1                   | 9.2                   |  |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

|                                 | Minimum Resistivity |         |                            |                        |                       |  |  |
|---------------------------------|---------------------|---------|----------------------------|------------------------|-----------------------|--|--|
| Sample<br><u>Identification</u> | Depth, ft.          | Soil pH | Resistivity (ohm-cm x1000) | Chloride<br><u>ppm</u> | Sulfate<br><u>ppm</u> |  |  |
| S0002R, S01                     | 0-5.0               | 7.38    | 10.72                      | 7.9                    | 4.2                   |  |  |
| S0002R, S05A                    | 9.5-10.3            | 7.85    | 2.49                       | 8.6                    | 6.0                   |  |  |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

|                       |            |         | Minimum Resistivity |            |            |
|-----------------------|------------|---------|---------------------|------------|------------|
| Sample                |            |         | Resistivity         | Chloride   | Sulfate    |
| <b>Identification</b> | Depth, ft. | Soil pH | (ohm-cm x1000)      | <u>ppm</u> | <u>ppm</u> |
| S0003R, S01           | 0-5.0      | 7.88    | 1.13                | 14.4       | 273.1      |
| S0003R, S08           | 14-15.2    | 8.20    | 2.25                | 56.4       | 102.0      |
| S0003R, S11           | 30-30.9    | 7.87    | 6.16                | 7.2        | 25.2       |

Test Method: ASTM G57, D4972, D4327

**PROJECT NUMBER:** 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

| Sample<br><u>Identification</u> | Depth, ft. | Soil pH | Minimum<br>Resistivity<br><u>ohm-cm (x1000)</u> | Chloride<br>ppm | Sulfate<br>ppm |
|---------------------------------|------------|---------|-------------------------------------------------|-----------------|----------------|
| S0004R, S01                     | 0-5.0      | 7.80    | 2.95                                            | 8.1             | 7.7            |
| S0004R, S09                     | 20-21.5    | 7.44    | 8.31                                            | 15.5            | 1.8            |
| S0004R, S12                     | 35-36.3    | 7.16    | 2.63                                            | 8.5             | 7.7            |

Test Method: ASTM G57, D4972, D4327

**PROJECT NUMBER:** 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762 Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample                |            |                | Minimum        |            |            |  |
|-----------------------|------------|----------------|----------------|------------|------------|--|
|                       |            |                | Resistivity    | Chloride   | Sulfate    |  |
| <b>Identification</b> | Depth, ft. | <u>Soil pH</u> | ohm-cm (x1000) | <u>ppm</u> | <u>ppm</u> |  |
| S0005R, S01           | 0-5.0      | 7.52           | 5.90           | 10.5       | 17.7       |  |
| S0005R, S09           | 20-20.8    | 7.69           | 20.90          | 7.6        | 2.5        |  |
| S0005R, S12           | 35-36.2    | 7.66           | 17.42          | 9.6        | 0.8        |  |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

| Sample                |            |                | Minimum        |            |            |  |
|-----------------------|------------|----------------|----------------|------------|------------|--|
|                       |            |                | Resistivity    | Chloride   | Sulfate    |  |
| <b>Identification</b> | Depth, ft. | <u>Soil pH</u> | ohm-cm (x1000) | <u>ppm</u> | <u>ppm</u> |  |
| S0006R, S06           | 0-5.0      | 7.33           | 14.47          | 6.8        | 8.6        |  |
| S0006R, S15           | 39.5-40.8  | 7.28           | 3.22           | 9.8        | 18.7       |  |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

|                       |            |         | Minimum               |            | Sulfate    |
|-----------------------|------------|---------|-----------------------|------------|------------|
| Sample                |            |         | Resistivity           | Chloride   |            |
| <b>Identification</b> | Depth, ft. | Soil pH | <u>ohm-cm (x1000)</u> | <u>ppm</u> | <u>ppm</u> |
| S0007R, S01           | 0-5.0      | 7.21    | 6.16                  | 7.8        | 16.7       |
| S0007R, S06           | 9-10.3     | 8.07    | 3.75                  | 16.0       | 21.7       |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011

SIERRA TESTING LABORATORIES, INC.

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

|                       |            |                | Minimum               |            |            |
|-----------------------|------------|----------------|-----------------------|------------|------------|
| Sample                |            |                | Resistivity           | Chloride   | Sulfate    |
| <u>Identification</u> | Depth, ft. | <u>Soil pH</u> | <u>ohm-cm (x1000)</u> | <u>ppm</u> | <u>ppm</u> |
| S0010R, S01           | 0-5.0      | 7.29           | 9.92                  | 6.3        | 12.2       |
| S0010R, S04           | 8-9.4      | 7.25           | 1.61                  | 14.8       | 30.2       |
| S0010R, S11           | 30-31.2    | 7.98           | 6.70                  | 14.4       | 21.8       |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER:11-111November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

| Sample <u>Identification</u> |            |         | Minimum        |            |            |
|------------------------------|------------|---------|----------------|------------|------------|
|                              |            |         | Resistivity    | Chloride   | Sulfate    |
|                              | Depth, ft. | Soil pH | ohm-cm (x1000) | <u>ppm</u> | <u>ppm</u> |
| S0012R, S01                  | 0-5.0      | 7.68    | 8.31           | 6.9        | 3.4        |

Test Method: ASTM G57, D4972, D4327

**PROJECT NUMBER:** 11-111 November 16, 2011



5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0013AR, S01             | 0-5.0      | 6.93    | 3.75                                     | 11.5             | 15.8           |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train,
Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0014AR, S01             | 0-5.0      | 7.67    | 1.80                                     | 15.9             | 20.8           |

Test Method: ASTM G57, D4972, D4327

PROJECT NUMBER: 11-111 November 16, 2011

CA High Speed Train,
Fresno to Bakersfield

SA-HST019

5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762
Phone: (916) 939-3460 FAX: (916) 939-3507

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0014R, S01              | 0-5.0      | 7.47    | 5.36                                     | 6.2              | 5.4            |
| S0014R, S03              | 6.5-7.8    | 7.78    | 7.24                                     | 10.1             | 22.9           |

| PROJECT NUMBER: 11-111 November 16, 2011                                                             |                                               |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SIERRA TESTING LABORATORIES, INC.                                                                    | CA High Speed Train,<br>Fresno to Bakersfield |
| 5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>Phone: (916) 939-3460 FAX: (916) 939-3507 | SA-HST019                                     |

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0015R, S08A             | 6.5-7.0    | 7.86    | 1.61                                     | 9.7              | 29.6           |
| S0015R, S10              | 25-26.5    | 7.75    | 2.01                                     | 124.0            | 64.2           |

| PROJECT NUMBER: 11-111 November 16, 2011                                                             |                                               |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SIERRA TESTING LABORATORIES, INC.                                                                    | CA High Speed Train,<br>Fresno to Bakersfield |
| 5040 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>Phone: (916) 939-3460 FAX: (916) 939-3507 | SA-HST019                                     |

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0017R, S01              | 0-5.0      | 8.35    | 4.82                                     | 7.1              | 25.4           |
| S0017R, S06              | 25-26.0    | 8.07    | 11.26                                    | 8.0              | 15.9           |
| S0017R, S12              | 55-55.7    | 7.88    | 9.38                                     | 6.8              | 3.3            |

| PROJECT NUMBER: 11-111 November 16, 2011                                                          |                                               |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------|
| IFRBA TESTING LABORATORIES, INC.                                                                  | CA High Speed Train,<br>Fresno to Bakersfield |
| TOT CHANGAL AND HALL MAIS IT STIME ST HARELS                                                      | SA-HST019                                     |
| 40 Robert J. Mathews Blvd., El Dorado Hills, CA 95762<br>none: (916) 939-3460 FAX: (916) 939-3507 |                                               |

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0018R, S01              | 0-5.0      | 7.93    | 7.77                                     | 10.5             | 16.0           |
| S0018R, S16              | 75-75.6    | 7.94    | 10.45                                    | 9.6              | 12.6           |
| S0018R, S20              | 95-96.0    | 7.87    | 8.04                                     | 9.6              | 5.6            |

| PROJECT NUMBER:                                                              | 11-111       | November 16, 2011 |                                               |
|------------------------------------------------------------------------------|--------------|-------------------|-----------------------------------------------|
| IERRA TESTING LABOR                                                          |              |                   | CA High Speed Train,<br>Fresno to Bakersfield |
| 040 Robert J. Mathews Blvd., El Dorad<br>none: (916) 939-3460 FAX: (916) 939 | do Hills, CA |                   | SA-HST019                                     |

| Sample<br>Identification | Depth, ft. | Soil pH | Minimum<br>Resistivity<br>ohm-cm (x1000) | Chloride.<br>ppm | Sulfate<br>ppm |
|--------------------------|------------|---------|------------------------------------------|------------------|----------------|
| S0019R, S01              | 0-5.0      | 7.31    | 3.22                                     | 33.8             | 87.9           |
| S0019R, S03A             | 6.5-7.6    | 7.56    | 4.29                                     | 19.8             | 76.3           |

| PROJECT NUMBER:                                                          | 11-111  | November 16, 2011 |                                               |
|--------------------------------------------------------------------------|---------|-------------------|-----------------------------------------------|
| EIFBRA TESTING LABOR                                                     | RATORIE | ES, INC.          | CA High Speed Train,<br>Fresno to Bakersfield |
| 40 Robert J. Mathews Blvd., El Dora<br>one: (916) 939-3460 FAX: (916) 93 |         | 95762             | SA-HST019                                     |

#### **TABLE E-7** SUMMARY OF GROUNDWATER CHEMISTRY TEST RESULTS **Borehole ID** Test **Test** Reference S0016R S0017R S0018R Нq 7.51 7.24 7.51 SM 4500-H<sup>+</sup>B 47 Calcium (mg/L) EPA 200.7 88 78 Bicarbonate Alkalinity SM 2320B 280 260 220 as CaCO<sub>3</sub> (mg/L) Specific Conductance SM 2510B 1100 860 570 (umhos/cm) **Total Dissolved Solids** SM 2320B 740 580 380 (mg/L) Chloride (mg/L) 83 49 23 EPA 300.0

53

110

21



Sulfate as SO<sub>4</sub> (mg/L)

EPA 300.0





e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

ELAP Certificate Numbers 1551 and 2728

20 January 2012

Sierra Testing Laboratories, Inc.

Attn: Chad Walker

5040 Robert J. Mathew Parkway

El Dorado Hills, CA 95762

RE: CA High Speed Train: Fresno-Bakersfield

Work Order: 12A0515

Enclosed are the results of analyses for samples received by the laboratory on 01/12/12 22:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin For David S. Pingatore

Jeanette Popli

Project Manager



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 1 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Project No: 131577

Report Date: 01/20/12 13:05

Project ID: CA High Speed Train: Fresno-Bakersfield

Attn: Chad Walker

Order Number

12A0515

Receipt Date/Time Client Code 01/12/2012 22:20

Client PO/Reference

CV SIERRA 11-111

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| S0017R    | 12A0515-01    | Water  | 01/12/12 14:40 | 01/12/12 22:20 |
| S0018R    | 12A0515-02    | Water  | 01/12/12 15:04 | 01/12/12 22:20 |
| S0016R    | 12A0515-03    | Water  | 01/12/12 15:40 | 01/12/12 22:20 |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 2 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

Order Number Receipt Date/Time Client Code Client PO/Reference 01/12/2012 22:20 12A0515 CV SIERRA 11-111

#### Alpha Analytical Laboratories, Inc.

|                                        |                    | Aipiia  | i Anaiyucai L      | abol atolics,  | IIIC.    |                   |        |      |
|----------------------------------------|--------------------|---------|--------------------|----------------|----------|-------------------|--------|------|
|                                        | METHOD             | BATCH   | PREPARED           | ANALYZED       | DILUTION | RESULT            | PQL    | NOTE |
| 60017R (12A0515-01)                    |                    |         | Sample Type: Water |                | Sample   | d: 01/12/12 14:40 |        |      |
| Field Analyses                         |                    |         |                    |                |          |                   |        |      |
| pН                                     | SM4500-H+ B        | AA21648 | 01/12/12 14:40     | 01/12/12 14:40 | 1        | 7.24 pH Units     | 1.00   |      |
| Metals by EPA 200 Series Methods       |                    |         |                    |                |          |                   |        |      |
| Calcium                                | EPA 200.7          | AA21317 | 01/16/12 08:50     | 01/17/12 11:39 | 1        | 78 mg/l           | 1.0    |      |
| Conventional Chemistry Parameters by A | APHA/EPA Methods   |         |                    |                |          |                   |        |      |
| Bicarbonate Alkalinity as CaCO3        | SM2320B            | AA21329 | 01/13/12 14:17     | 01/13/12 17:00 | 1        | 260 mg/l          | 5.0    |      |
| Specific Conductance (EC)              | SM2510B            | "       | "                  | "              | "        | 860 umhos/cm      | 20     |      |
| <b>Total Dissolved Solids</b>          | SM2540C            | AA21626 | 01/16/12 10:00     | 01/20/12 08:45 | "        | 580 mg/l          | 10     |      |
| Carbonate Alkalinity as CaCO3          | SM2320B            | AA21329 | 01/13/12 14:17     | 01/13/12 17:00 | "        | ND "              | 5.0    |      |
| Hydroxide Alkalinity as CaCO3          | "                  | "       | "                  | "              | "        | ND "              | 5.0    |      |
| Total Alkalinity as CaCO3              | "                  | "       | "                  | "              | "        | 260 "             | 5.0    |      |
| Miscellaneous Physical/Conventional Ch | emistry Parameters |         |                    |                |          |                   |        |      |
| Langelier Index @ Source Temp          | LSI                | AA21317 | 01/16/12 08:50     | 01/20/12 09:06 | 1        | -0.09 .           | -10.00 |      |
| Anions by EPA Method 300.0             |                    |         |                    |                |          |                   |        |      |
| Chloride                               | EPA 300.0          | AA21323 | 01/13/12 11:25     | 01/13/12 13:04 | 10       | 49 mg/l           | 5.0    |      |
| Sulfate as SO4                         | "                  | "       | "                  | "              | "        | 110 "             | 5.0    |      |
| 50018R (12A0515-02)                    |                    |         | Sample Type: V     | Water          | Sample   | d: 01/12/12 15:04 |        |      |
| Field Analyses                         |                    |         |                    |                |          |                   |        |      |
| рН                                     | SM4500-H+ B        | AA21648 | 01/12/12 15:04     | 01/12/12 15:04 | 1        | 7.51 pH Units     | 1.00   |      |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 3 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762 Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID:

CA High Speed Train: Fresno-Bakersfield

Order Number

12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Client PO/Reference

11-111

#### Alpha Analytical Laboratories, Inc.

|                                         | METHOD             | BATCH   | PREPARED           | ANALYZED       | DILUTION                | RESULT                  | PQL    | NOTE |
|-----------------------------------------|--------------------|---------|--------------------|----------------|-------------------------|-------------------------|--------|------|
| S0018R (12A0515-02)                     |                    |         | Sample Type: Water |                | Sample                  | Sampled: 01/12/12 15:04 |        |      |
| Metals by EPA 200 Series Methods        |                    |         |                    |                |                         |                         |        |      |
| Calcium                                 | EPA 200.7          | AA21317 | 01/16/12 08:50     | 01/17/12 12:59 | 1                       | 47 mg/l                 | 1.0    |      |
| Conventional Chemistry Parameters by A  | APHA/EPA Methods   |         |                    |                |                         |                         |        |      |
| Bicarbonate Alkalinity as CaCO3         | SM2320B            | AA21329 | 01/13/12 14:17     | 01/13/12 17:00 | 1                       | 220 mg/l                | 5.0    |      |
| Specific Conductance (EC)               | SM2510B            | "       | "                  | "              | "                       | 570 umhos/cm            | 20     |      |
| <b>Total Dissolved Solids</b>           | SM2540C            | AA21626 | 01/16/12 10:00     | 01/20/12 08:45 | "                       | 380 mg/l                | 10     |      |
| Carbonate Alkalinity as CaCO3           | SM2320B            | AA21329 | 01/13/12 14:17     | 01/13/12 17:00 | "                       | ND "                    | 5.0    |      |
| Hydroxide Alkalinity as CaCO3           | "                  | "       | "                  | "              | "                       | ND "                    | 5.0    |      |
| Total Alkalinity as CaCO3               | "                  | "       | "                  | "              | "                       | 220 "                   | 5.0    |      |
| Miscellaneous Physical/Conventional Cho | emistry Parameters |         |                    |                |                         |                         |        |      |
| Langelier Index @ Source Temp           | LSI                | AA21317 | 01/16/12 08:50     | 01/20/12 09:06 | 1                       | -0.11 .                 | -10.00 |      |
| Anions by EPA Method 300.0              |                    |         |                    |                |                         |                         |        |      |
| Chloride                                | EPA 300.0          | AA21323 | 01/13/12 11:25     | 01/13/12 13:34 | 5                       | 23 mg/l                 | 2.5    |      |
| Sulfate as SO4                          | "                  | "       | "                  | 01/13/12 13:50 | 1                       | 21 "                    | 0.50   |      |
| 0016R (12A0515-03)                      |                    |         | Sample Type: V     | Water          | Sampled: 01/12/12 15:40 |                         |        |      |
| Field Analyses                          |                    |         |                    |                |                         |                         |        |      |
| pH                                      | SM4500-H+ B        | AA21648 | 01/12/12 15:40     | 01/12/12 15:40 | 1                       | 7.51 pH Units           | 1.00   |      |
| Metals by EPA 200 Series Methods        |                    |         |                    |                |                         |                         |        |      |
| Calcium                                 | EPA 200.7          | AA21317 | 01/16/12 08:50     | 01/17/12 11:43 | 1                       | 88 mg/l                 | 1.0    |      |
|                                         |                    |         |                    |                |                         | 9                       |        |      |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 4 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

Order Number

12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Client PO/Reference

11-111

#### Alpha Analytical Laboratories, Inc.

|                                          | METHOD            | ВАТСН   | PREPARED       | ANALYZED       | DILUTION | RESULT             | PQL    | NOTE |
|------------------------------------------|-------------------|---------|----------------|----------------|----------|--------------------|--------|------|
| S0016R (12A0515-03)                      |                   |         | Sample Type: V | Water          | Sample   | ed: 01/12/12 15:40 |        |      |
| Conventional Chemistry Parameters by AF  | PHA/EPA Methods   |         |                |                |          |                    |        |      |
| Bicarbonate Alkalinity as CaCO3          | SM2320B           | AA21329 | 01/13/12 14:17 | 01/13/12 17:00 | 1        | 280 mg/l           | 5.0    |      |
| Specific Conductance (EC)                | SM2510B           | "       | "              | "              | "        | 1100 umhos/cm      | 20     |      |
| <b>Total Dissolved Solids</b>            | SM2540C           | AA21626 | 01/16/12 10:00 | 01/20/12 08:45 | "        | 740 mg/l           | 10     |      |
| Carbonate Alkalinity as CaCO3            | SM2320B           | AA21329 | 01/13/12 14:17 | 01/13/12 17:00 | "        | ND "               | 5.0    |      |
| Hydroxide Alkalinity as CaCO3            | "                 | "       | "              | "              | "        | ND "               | 5.0    |      |
| Total Alkalinity as CaCO3                | "                 | "       | "              | "              | "        | 280 "              | 5.0    |      |
| Miscellaneous Physical/Conventional Chem | nistry Parameters |         |                |                |          |                    |        |      |
| Langelier Index @ Source Temp            | LSI               | AA21317 | 01/16/12 08:50 | 01/20/12 09:06 | 1        | 0.28.              | -10.00 |      |
| Anions by EPA Method 300.0               |                   |         |                |                |          |                    |        |      |
| Chloride                                 | EPA 300.0         | AA21323 | 01/13/12 11:25 | 01/13/12 14:05 | 20       | 83 mg/l            | 10     |      |
| Sulfate as SO4                           | "                 | "       | "              | "              | "        | 53 "               | 10     |      |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 5 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

Order Number

12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Client PO/Reference

11-111

## Field Analyses - Quality Control

| Analyte(s)                     | Result | PQL Uni       | Spike<br>ts Level | Source<br>Result | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|--------------------------------|--------|---------------|-------------------|------------------|----------|----------------|------|--------------|------|
| Batch AA21648 - Field Analysis |        |               |                   |                  |          |                |      |              |      |
| Duplicate (AA21648-DUP1)       | Sourc  | e: 12A0406-02 | Prepared &        | & Analyzed       | 01/09/12 |                |      |              |      |
| pH                             | 6.63   | 1.00 pH Un    | its               | 6.63             |          |                | 0.00 | 20           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 6 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Project No:

Report Date: 01/20/12 13:05 131577

Attn: Chad Walker

Project ID: CA High Speed Train: Fresno-Bakersfield

Order Number 12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Client PO/Reference

11-111

## Metals by EPA 200 Series Methods - Quality Control

| Analyte(s)                      | Result             | PQL                                   | Units | Spike<br>Level                        | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|---------------------------------|--------------------|---------------------------------------|-------|---------------------------------------|------------------|-------------|----------------|------|--------------|------|
| Batch AA21317 - Metals Digest   |                    |                                       |       |                                       |                  |             |                |      |              |      |
| Blank (AA21317-BLK1)            |                    |                                       |       | Prepared: (                           | 01/13/12 A       | nalyzed: 01 | 1/16/12        |      |              |      |
| Calcium                         | ND                 | 1.0                                   | mg/l  |                                       |                  |             |                |      |              |      |
| LCS (AA21317-BS1)               |                    |                                       |       | Prepared: 01/13/12 Analyzed: 01/16/12 |                  |             |                |      |              |      |
| Calcium                         | 7.12               | 1.0                                   | mg/l  | 8.00                                  |                  | 88.9        | 85-115         |      |              |      |
| Duplicate (AA21317-DUP1)        | Sourc              | e: 12A049                             | 4-01  | Prepared: (                           | 01/13/12 A       |             |                |      |              |      |
| Calcium                         | 23.1               | 1.0                                   | mg/l  |                                       | 22.1             |             |                | 4.45 | 20           |      |
| Matrix Spike (AA21317-MS1)      | Sourc              | e: 12A049                             | 4-01  | Prepared: (                           | 01/13/12 A       |             |                |      |              |      |
| Calcium                         | 29.7               | 1.0                                   | mg/l  | 8.00                                  | 22.1             | 95.7        | 70-130         |      |              |      |
| Matrix Spike (AA21317-MS2)      | Source: 12A0515-02 |                                       |       | Prepared: (                           | 01/16/12 A       |             |                |      |              |      |
| Calcium                         | 55.5               | 1.0                                   | mg/l  | 8.00                                  | 47.2             | 104         | 70-130         |      |              |      |
| Matrix Spike Dup (AA21317-MSD1) | Sourc              | Prepared: 01/13/12 Analyzed: 01/16/12 |       |                                       |                  |             |                |      |              |      |
| Calcium                         | 29.3               | 1.0                                   | mg/l  | 8.00                                  | 22.1             | 90.7        | 70-130         | 1.35 | 20           |      |

 ${\it The results in this report apply to the samples analyzed in accordance with the chain}$ of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 7 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Order Number

12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

Client PO/Reference

11-111

## Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte(s)                          | Result | PQL        | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|-------------------------------------|--------|------------|----------|----------------|------------------|-------------|----------------|-------|--------------|------|
| Batch AA21329 - General Preparation |        |            |          |                |                  |             |                |       |              |      |
| Duplicate (AA21329-DUP1)            | Sour   | ce: 12A053 | 6-01     | Prepared &     | Analyzed:        | 01/13/12    |                |       |              |      |
| Specific Conductance (EC)           | 825    | 20         | umhos/cm |                | 820              |             |                | 0.608 | 10           |      |
| Bicarbonate Alkalinity as CaCO3     | 490    | 5.0        | mg/l     |                | 500              |             |                | 2.02  | 20           |      |
| Carbonate Alkalinity as CaCO3       | ND     | 5.0        | "        |                | ND               |             |                |       | 20           |      |
| Hydroxide Alkalinity as CaCO3       | ND     | 5.0        | "        |                | ND               |             |                |       | 20           |      |
| Total Alkalinity as CaCO3           | 490    | 5.0        | "        |                | 500              |             |                | 2.02  | 20           |      |
| Batch AA21626 - General Preparation |        |            |          |                |                  |             |                |       |              |      |
| Blank (AA21626-BLK1)                |        |            |          | Prepared: (    | 01/16/12 A       | nalyzed: 01 | /20/12         |       |              |      |
| Total Dissolved Solids              | ND     | 10         | mg/l     |                |                  |             |                |       |              |      |
| Duplicate (AA21626-DUP1)            | Sour   | ce: 12A051 | 5-02     | Prepared: (    | 01/16/12 A       | nalyzed: 01 | /20/12         |       |              |      |
| Total Dissolved Solids              | 368    | 10         | mg/l     |                | 380              |             |                | 3.21  | 30           |      |
| Duplicate (AA21626-DUP2)            | Sour   | ce: 12A053 | 7-01     | Prepared: (    | 01/16/12 A       | nalyzed: 01 | /20/12         |       |              |      |
| Total Dissolved Solids              | 4800   | 10         | mg/l     |                | 4830             |             |                | 0.498 | 30           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 8 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

Order Number

12A0515

Receipt Date/Time 01/12/2012 22:20

Client Code CV SIERRA Client PO/Reference

11-111

## Anions by EPA Method 300.0 - Quality Control

| Analyte(s)                          | Result             | PQL       | Units | Spike<br>Level                | Source<br>Result | %REC     | %REC<br>Limits | RPD    | RPD<br>Limit | Flag |
|-------------------------------------|--------------------|-----------|-------|-------------------------------|------------------|----------|----------------|--------|--------------|------|
| Batch AA21323 - General Preparation |                    |           |       |                               |                  |          |                |        |              |      |
| Blank (AA21323-BLK1)                |                    |           |       | Prepared &                    | Analyzed:        | 01/13/12 |                |        |              |      |
| Sulfate as SO4                      | ND                 | 0.50      | mg/l  |                               |                  |          |                |        |              |      |
| Chloride                            | ND                 | 0.50      | "     |                               |                  |          |                |        |              |      |
| LCS (AA21323-BS1)                   |                    |           |       | Prepared &                    | x Analyzed:      | 01/13/12 |                |        |              |      |
| Chloride                            | 10.9               | 0.50      | mg/l  | 11.1                          |                  | 98.4     | 90-110         |        |              |      |
| Sulfate as SO4                      | 21.6               | 0.50      | "     | 22.2                          |                  | 97.4     | 90-110         |        |              |      |
| <b>Duplicate (AA21323-DUP1)</b>     | Sourc              | e: 12A051 | 8-03  | Prepared &                    | Analyzed:        | 01/13/12 |                |        |              |      |
| Chloride                            | 13.3               | 0.50      | mg/l  |                               | 13.3             |          |                | 0.136  | 20           |      |
| Sulfate as SO4                      | 28.9               | 0.50      | "     |                               | 28.7             |          |                | 0.437  | 20           |      |
| Matrix Spike (AA21323-MS1)          | Source             | e: 12A051 | 8-03  | Prepared &                    | Analyzed:        | 01/13/12 |                |        |              |      |
| Chloride                            | 23.4               | 2.5       | mg/l  | 11.1                          | 13.3             | 91.5     | 80-120         |        |              |      |
| Sulfate as SO4                      | 49.2               | 2.5       | "     | 22.2                          | 28.7             | 91.9     | 80-120         |        |              |      |
| Matrix Spike (AA21323-MS2)          | Source             | e: 12A051 | 5-02  | Prepared & Analyzed: 01/13/12 |                  |          |                |        |              |      |
| Chloride                            | 34.2               | 2.5       | mg/l  | 11.1                          | 22.8             | 102      | 80-120         |        |              |      |
| Sulfate as SO4                      | 42.2               | 2.5       | "     | 22.2                          | 20.5             | 97.4     | 80-120         |        |              |      |
| Matrix Spike Dup (AA21323-MSD1)     | Source: 12A0518-03 |           |       | Prepared & Analyzed: 01/13/12 |                  |          |                |        |              |      |
| Sulfate as SO4                      | 49.2               | 2.5       | mg/l  | 22.2                          | 28.7             | 92.1     | 80-120         | 0.0904 | 20           |      |
| Chloride                            | 24.4               | 2.5       | "     | 11.1                          | 13.3             | 99.9     | 80-120         | 3.91   | 20           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director



e-mail: clientservices@alpha-labs.com

Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267 Service Center: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

## CHEMICAL EXAMINATION REPORT

Page 9 of 9

Sierra Testing Laboratories, Inc. 5040 Robert J. Mathew Parkway El Dorado Hills, CA 95762

Attn: Chad Walker

Report Date: 01/20/12 13:05 Project No: 131577

Project ID: CA High Speed Train: Fresno-Bakersfield

 Order Number
 Receipt Date/Time
 Client Code
 Client PO/Reference

 12A0515
 01/12/2012 22:20
 CV SIERRA
 11-111

### **Notes and Definitions**

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
PQL Practical Quantitation Limit

Laboratory & Corporate:

208 Mason Street, Uklah, CA 95482

707-468-0401 • Fax: 707-468-5267

6398 Dougharty Road, Suite 35, Dublin, CA 94568

925-828-6226 • Fax: 925-828-6309

Service Center & Micro Lab:

2-mail: clientservices@alpha-labs.com

Chain of Custody Record

Reports and Invoices will be delivered by e-mail in .pdf format.

Lab No.

ړ 20.1 Signature below authorizes work under terms stated on reverse side Lab Approval Required For Rush TATs Field ph 7.51 48 hours Rush: 5 days Other: TAT **Analyses Requested** 14:00 05151 2120 2/22 21-21-アルフロ Date Total Number of Containers Other Project Info for Report:
Project Name:
Call for nik High-Speed Train Water 131577 ienio PO/Reference: Project No: **EONH** Other MB Pulmer 19dmA 122W Роју Invoice to (if different): Company: Received by: AOV Im0# 112 309 M 14412 3440pm E-mail Address: ו/וכו/ו Date Kranigh (a arro-dom 50017R 1 Sto Missing Sto Sample Identification 415-963-3853 Brandon 50016R Relinquished by Report to: