Sudoku Solver (Optimization)

Quoting Wikipedia: "Sudoku is a logic-based, combinatorial number-placement puzzle. The objective is to fill a 9×9 grid so that each column, each row, and each of the nine 3×3 boxes (also called blocks or regions) contains the digits from 1 to 9 only one time each. The puzzle setter provides a partially completed grid." The rules for an N^2 X N^2 sudoku are as follows:

- 1. The board is consists of N² rows and N² columns.
- 2. Numbers between 1 and N²(inclusive) are to be filled in each row such that:
 - 1. All numbers in each row are distinct.
 - 2. All numbers in each column are distinct.
 - All numbers in the sub-matrix having rows from (i*N + 1) to (i + 1)*N, and columns from (j*N + 1) to (j + 1)*N both inclusive, should be distinct. 0 <= i,j <= N-1. Rows and columns

5	3			7					5	3	4	6	7	8	9	1	2
6			1	9	5				6	7	2	1	9	5	3	4	8
	9	8					6		1	9	8	3	4	2	5	6	7
8				6				3	8	5	9	7	6	1	4	2	3
4			8		3			1	4	2	6	8	5	3	7	9	1
7				2				6	7	1	3	9	2	4	8	5	6
	6					2	8		9	6	1	5	3	7	2	8	4
			4	1	9			5	2	8	7	4	1	9	6	3	5
				8			7	9	3	4	5	2	8	6	1	7	9

are 1 indexed. Each such sub-matrix is called a "box" or "region".

For this problem, you are required to solve a general N^2X N^2 sudoku puzzle. Given a partially filled sudoku board, you have to fill it in as "perfect" a manner as possible.

Input:

The first line contains N,K. The following K lines contain 3 numbers: x, y and d. $1 \le x,y,d \le N^2$. This means that a number d is present on the board at position (x,y) $2 \le N \le 30$ $0 \le K \le N^4$ At most 50% of the board will be covered at the start. All positions (x,y) in the input will be unique.

Output:

The output consists of N^2 rows having N^2 numbers each. Each number should be between 1 and N^2 (inclusive) and separated by a space. If the initial grid has a number d at position (x,y), then even the output should have the number d at position (x,y).

Scoring:

A solution is "accepted" if:

- It solves a series of sudoku puzzles that have only one possible solution (no mandatory penalty)
- For a sudoku that must incur an obvious small penalty this penalty is as low as possible. The format for penalty calculation is as follows:
 - For each row and every number K in the range 1 to N² that is missing from the row, incurs a
 penalty of 1.
 - For each column and every number K in the range 1 to N² that is missing from the column, incurs a penalty of 1.
 - Similarly, for each box and every number K in the range 1 to N² that is missing from the box, incurs a penalty of 1.

A box (as explained above) is a N X N square and the grid can be divided into N² such non-overlapping boxes.

Example 1 (No penalty):

Input:

2 41 3 12 1 4

3 4 2 4 2 3

		1	
4			
			2
	3		

Output:

3 2 1 4

4 1 2 3

1 4 3 2

2 3 4 1

Penalty:

No penalty

Example 2 (Minimum penalty):

Input:

2 12

1 1 1

1 2 2 1 3 2

1 3 2

1 4 4

2 1 4

2 2 3

2 3 3

2 4 2

4 1 3

4 2 1

4 3 2 4 4 4

1	2	2	4
4	3	3	2
3	1	2	4

Output:

1 2 2 4

4 3 3 2

2 4 1 3

3 1 2 4

Penalty:

(1+1+0+0)+(0+0+1+1)+(0+1+0+0)=5

(This penalty is mandatory)