Considera i piani di equazioni π : x - y + z = 0 e π' : x + y + 2z = 0.

- a. Verifica che sono incidenti e determina l'equazione parametrica della retta *r* intersezione.
- **b.** Determina la retta s parallela a r e passante per il punto P(1; -1; 2).

c. Determina le equazioni del piano α , passante per il punto P e per la retta r, e del piano β , passante per il punto P e perpendicolare a r. (x = 3t) (x = 1 + 3t)

r.
$$\begin{cases} x = 3t \\ y = t \end{cases}$$
; b) s:
$$\begin{cases} x = 1 + 3t \\ y = -1 + t$$
; c) α : $2y + z = 0$; β : $3x + y - 2z + 2 = 0$
$$z = 2 - 2t$$

a)
$$\begin{cases} x-y+z=0 \end{cases}$$
 Si rede sultito che $O(0,0,0)$ e solutione del sistemo, quindi i 2 piani $\begin{cases} x+y+z=0 \end{cases}$ sono incidenti $\begin{cases} x-t+z=0 \end{cases}$ $\begin{cases} x=t-z \end{cases}$ $\begin{cases} x=t+zt \end{cases}$ $\begin{cases} x=3t \end{cases}$ $\begin{cases} y=t \end{cases}$

$$(x + t + 2z = 0)$$
 $(t - z + t + 2z = 0)$ $(z = 1 + 3t)$ $(x = 1 + 3t)$ $(x = 1 + t)$ $(x = 1 + t)$

C) Prioner four
$$P(1,-1,2)$$
 e four $r: \{y=t=>\\ z=-2t\}$ $t=0$ $Q(0,0,0)$

Ho 3 peuti P,O,Q che detocuirono il piano:

$$a \times + b + c + d = 0$$

 $\mathcal{L}: 2y+z=0$

β: piono famente fee
$$P(4,-1,2)$$
 e \bot a $Z: \begin{cases} x=3t \\ y=t \\ 2=-2t \end{cases}$

I vettare normale $Z: X = (3,1,-2)$, cice il rettare directione di $Z: X = (3,1,-2)$, cice il rettare directione

- 72 Dati i punti O(0; 0; 0), A(0; 6; 0), $B(0; 3; 3\sqrt{3})$, $C(2\sqrt{6}; 3; \sqrt{3})$:
 - a. verifica che sono i vertici di un tetraedro regolare;
 - **b.** scrivi le equazioni della retta a cui appartiene lo spigolo *AC* sotto forma di intersezione di due piani;
 - **c.** determina l'equazione della superficie sferica circoscritta.

[c)
$$x^2 + y^2 + z^2 - \sqrt{6}x - 6y - 2\sqrt{3}z = 0$$
]

$$\overline{OA} = 6$$
 $\overline{OB} = \sqrt{3^2 + (303)^2} = \sqrt{36} = 6$ $\overline{AB} = \sqrt{3^2 + (303)^2} = 6$

$$\overline{OC} = \sqrt{(2\sqrt{6})^2 + 3^2 + (\sqrt{3})^2} = \sqrt{36} = 6 \qquad \overline{AC} = \sqrt{(2\sqrt{6})^2 + (-3)^2 + (\sqrt{3})^2} = 6$$

BC =
$$\sqrt{(2\sqrt{6})^2 + o^2 + (2\sqrt{3})^2} = \sqrt{24 + 12} = 6$$

nettore directione
$$\overrightarrow{AC} = (2\overline{16}, -3, \overline{13})$$

$$\begin{cases} x - 20z = 0 \\ y + 03z - 6 = 0 \end{cases}$$

c)
$$O(0,0,0)$$
 $A(0,6,0)$ $B(0,3,303)$ $C(206,3,03)$
 $x^{2}+y^{2}+2^{2}+ax+by+cz+d=0$
 $O \Rightarrow (d=0)$
 $A \Rightarrow 36+6b=0 \Rightarrow b=-6$
 $B \Rightarrow 36+27+3b+303c=0$
 $36-18+303c=0$
 $24+3+3+206a-18-6=0$
 $24+3+3+206a-18-6=0$
 $256a=-12$
 $26a=-6$
 $a=-\frac{6}{503}=\frac{13}{503}=253$
 $256a=-12$
 $56a=-6$
 $56a=$