Алгоритмы и модели вычислений.

Задание 11: DFT

Сергей Володин, 272 гр.

задано 2014.04.17

Теория

(сюда будут ссылки)

- 1. Многочлен $P_n(x) = a_0 + a_1 x + ... + a_{n-1} x^{n-1} \longleftrightarrow (a_0, ..., a_n) = P_n$ (порядок коэффициентов как на семинаре, а не как в задании). Считаем $\exists l \in \mathbb{N} \cup \{0\} \colon n = 2^l$.
- 2. $\omega_n^k \stackrel{\text{def}}{=} e^{\frac{2\pi k}{n}i}$
- 3. $\varphi(P) \stackrel{\text{\tiny def}}{=} (P_n(\omega_n^0),...,P_n(\omega_n^{n-1}))$ дискретное преобразование Фурье
- $A. P_n^0 \stackrel{\text{def}}{=} (a_0, a_2, a_4, \ldots), P_n^1 \stackrel{\text{def}}{=} (a_1, a_3, a_5, \ldots) \Rightarrow$ свойство: $P_n(x) = P_n^0(x^2) + x \cdot P_n^1(x^2)$. Следствия :

(a)
$$P_n(\omega_n^j) = P_n^0(\omega_{n/2}^j) + \omega_n^j P_n^1(\omega_{n/2}^j), \ 0 \le j < \frac{n}{2}$$

(b)
$$P_n(\omega_n^{\frac{n}{2}+j}) = P_n^0(\omega_{n/2}^j) - \omega_n^j P_n^1(\omega_{n/2}^j), \ 0 \leqslant j < \frac{n}{2}$$

- 5. $n=1 \Rightarrow \varphi(P_n)=\varphi((a_0))=(a_0)$
- 6. Обозначаем $\varphi(A) = \alpha$, элементы кортежей как $(a_0, ..., a_{n-1})[i] = a_i$.

7. Тогда
$$4\Rightarrow \begin{cases} \alpha[j] &=\alpha^0[j]+\omega_n^j\alpha^1[j]\\ \alpha[n/2+j] &=\alpha^0[j]-\omega_n^j\alpha^1[j] \end{cases}$$

8. Пусть $A, B \in \mathbb{R}^{2n}$ — многочлены степени n-1 (остальные коэффициенты — нули). Пусть $C \in \mathbb{R}^{2n}$ — их произведение. Тогда $\varphi(C) = \varphi(A) \times \varphi(B)$, где \times — покомпонентное умножение кортежей. Действительно, $\varphi(A)[i] = A(\omega_{2n}^i)$, $\varphi(B)[i] = B(\omega_{2n}^i)$, откуда $\varphi(C)[i] = C(\omega_{2n}^i) = A(\omega_{2n}^i) \cdot B(\omega_{2n}^i) = \varphi(A)[i] \cdot \varphi(B)[i]$

9.

(каноническое) Задача 46

1. A = (1, 3, 0, 2, 0, 0, 0, 0). Дерево вызовов:

- (a) Для $A^{000}, A^{001}, ..., A^{111}$ результат преобразования $\alpha^{ijk} = A^{ijk}$ (см. 5)
- (b) $\omega \stackrel{\text{def}}{=} e^{\frac{2\pi}{8}i} = \frac{1+i}{\sqrt{2}}$

(c)
$$\alpha^{00} = (\alpha^{000}[0] + \omega_2^0 \cdot \alpha^{001}[0], \alpha^{000}[0] - \omega_2^0 \alpha^{001}[0]) = |\omega_2^0 = 1 = \omega^0| = (1, 1)$$

(d)
$$\alpha^{01} = (\alpha^{010}[0] + \omega_2^0 \cdot \alpha^{011}[0], \alpha^{010}[0] - \omega_2^0 \alpha^{011}[0]) = |\omega_2^0 = 1| = (0, 0)$$

(e)
$$\alpha^{10} = (\alpha^{100}[0] + \omega_2^0 \cdot \alpha^{101}[0], \alpha^{100}[0] - \omega_2^0 \alpha^{101}[0]) = |\omega_2^0 = 1| = (3, 3)$$

(f)
$$\alpha^{11} = (\alpha^{110}[0] + \omega_2^0 \cdot \alpha^{111}[0], \alpha^{110}[0] - \omega_2^0 \alpha^{111}[0]) = |\omega_2^0 = 1| = (2, 2)$$

(g)
$$\alpha^0[0] = \alpha^{00}[0] + \underbrace{\omega_4^0}_{1} \alpha^{01}[0] = 1$$

(h)
$$\alpha^0[1] = \alpha^{00}[1] + \underbrace{\omega_4^1}_{-i} \alpha^{01}[1] = 1$$

(i)
$$\alpha^0[2+0] = \alpha^{00}[0] - \underbrace{\omega_4^0}_{-1} \alpha^{01}[0] = 1$$

(j)
$$\alpha^0[2+1] = \alpha^{00}[1] - \underbrace{\omega_4^1}_{-i} \alpha^{01}[1] = 1$$

(k)
$$\alpha^{1}[0] = \alpha^{10}[0] + \underbrace{\omega_{4}^{0}}_{=1} \alpha^{11}[0] = 5$$

(l)
$$\alpha^1[1] = \alpha^{10}[1] + \underbrace{\omega_4^1}_{=i} \alpha^{11}[1] = 3 + 2i = 3 + 2\omega^2$$

(m)
$$\alpha^1[2+0] = \alpha^{10}[0] - \underbrace{\omega_4^0}_{-1} \alpha^{11}[0] = 1$$

(n)
$$\alpha^1[2+1] = \alpha^{10}[1] - \underbrace{\omega_4^1}_{=i} \alpha^{11}[1] = 3 - 2i = 3 - 2\omega^2$$

(о) Получаем
$$\alpha^0=(1,1,1,1),$$
 $\alpha^1=(5,3+2i,1,3-2i)=(5,3+2\omega^2,1,3-2\omega^2)$

(p)
$$\alpha[0] = \alpha^0[0] + \underbrace{\omega_8^0}_{0} \alpha^1[0] = 6$$

(q)
$$\alpha[1] = \alpha^0[1] + \underbrace{\omega_8^1}_{=\frac{1+i}{\sqrt{2}}} \alpha^1[1] = 1 + \frac{1+i}{\sqrt{2}}(3+2i) = 1 + \frac{1}{\sqrt{2}} + \frac{5}{\sqrt{2}}i = 1 + \omega \cdot (3+2\omega^2) = 2\omega^3 + 3\omega + 1$$

(r)
$$\alpha[2] = \alpha^0[2] + \underbrace{\omega_8^2}_{-i} \alpha^1[2] = 1 + i = 1 + \omega^2$$

(s)
$$\alpha[3] = \alpha^0[3] + \underbrace{\omega_8^3}_{=\frac{-1+i}{\sqrt{2}}} \alpha^1[3] = 1 + \frac{-1+i}{\sqrt{2}}(3-2i) = 1 - \frac{1}{\sqrt{2}} + \frac{5}{\sqrt{2}}i = 1 + \omega^3 \cdot (3-2\omega^2) = -2\omega^5 + 3\omega^3 + 1$$

(t)
$$\alpha[4+0] = \alpha^0[0] - \underbrace{\omega_8^0}_{=1} \alpha^1[0] = -4$$

(u)
$$\alpha[4+1] = \alpha^0[1] - \underbrace{\omega_8^1}_{=\frac{1+i}{\sqrt{2}}} \alpha^1[1] = 1 - \frac{1+i}{\sqrt{2}}(3+2i) = 1 - \frac{1}{\sqrt{2}} - \frac{5}{\sqrt{2}}i = 1 - \omega \cdot (3+2\omega^2) = -2\omega^3 - 3\omega + 1$$

(v)
$$\alpha[4+2] = \alpha^0[2] - \underbrace{\omega_8^2}_{-i} \alpha^1[2] = 1 - i = 1 - \omega^2$$

(w)
$$\alpha[4+3] = \alpha^0[3] - \underbrace{\omega_8^3}_{=\frac{-1+i}{2}} \alpha^1[3] = 1 - \frac{-1+i}{\sqrt{2}}(3-2i) = 1 + \frac{1}{\sqrt{2}} - \frac{5}{\sqrt{2}}i = 1 - \omega^3 \cdot (3-2\omega^2) = 2\omega^5 - 3\omega^3 + 1$$

(x) Получаем
$$\alpha=(6,1+\frac{1}{\sqrt{2}}+\frac{5}{\sqrt{2}}i,1+i,1-\frac{1}{\sqrt{2}}+\frac{5}{\sqrt{2}}i,-4,1-\frac{1}{\sqrt{2}}-\frac{5}{\sqrt{2}}i,1-i,1+\frac{1}{\sqrt{2}}-\frac{5}{\sqrt{2}}i)$$

(у) Как многочлен от
$$\omega$$
: $\alpha = (6, 2\omega^3 + 3\omega + 1, 1 + \omega^2, -2\omega^5 + 3\omega^3 + 1, -4, -2\omega^3 - 3\omega + 1, 1 - \omega^2, 2\omega^5 - 3\omega^3 + 1)$

2. B = (1, 0, 1, 3, 0, 0, 0, 0). Дерево вызовов:

(a) Для
$$B^{000}, B^{001}, ..., B^{111}$$
 результат преобразования $\beta^{ijk} = B^{ijk}$ (см. 5)

(b)
$$\beta^{00} = (\beta^{000}[0] + \omega_2^0 \cdot \beta^{001}[0], \beta^{000}[0] - \omega_2^0 \beta^{001}[0]) = |\omega_2^0 = 1 = \omega^0| = (1, 1)$$

(c)
$$\beta^{01} = (\beta^{010}[0] + \omega_2^0 \cdot \beta^{011}[0], \beta^{010}[0] - \omega_2^0 \beta^{011}[0]) = |\omega_2^0 = 1| = (1, 1)$$

(d)
$$\beta^{10} = (\beta^{100}[0] + \omega_2^0 \cdot \beta^{101}[0], \beta^{100}[0] - \omega_2^0 \beta^{101}[0]) = |\omega_2^0 = 1| = (0, 0)$$

(e)
$$\beta^{11} = (\beta^{110}[0] + \omega_2^0 \cdot \beta^{111}[0], \beta^{110}[0] - \omega_2^0 \beta^{111}[0]) = |\omega_2^0 = 1| = (3,3)$$

(f)
$$\beta^0[0] = \beta^{00}[0] + \omega_4^0 \beta^{01}[0] = 2$$

(g)
$$\beta^0[1] = \beta^{00}[1] + \underbrace{\omega_4^1}_{-i} \beta^{01}[1] = 1 + i = 1 + \omega^2$$

(h)
$$\beta^0[2+0] = \beta^{00}[0] - \underbrace{\omega_4^0}_{1} \beta^{01}[0] = 0$$

(i)
$$\beta^0[2+1] = \beta^{00}[1] - \underbrace{\omega_4^1}_{=i} \beta^{01}[1] = 1 - i = 1 - \omega^2$$

(j)
$$\beta^1[0] = \beta^{10}[0] + \underbrace{\omega_4^0}_{=1} \beta^{11}[0] = 3$$

(k)
$$\beta^1[1] = \beta^{10}[1] + \underbrace{\omega_4^1}_{=i} \beta^{11}[1] = 3i = 3\omega^2$$

(l)
$$\beta^1[2+0] = \beta^{10}[0] - \underbrace{\omega_4^0}_{=1} \beta^{11}[0] = -3$$

(m)
$$\beta^1[2+1] = \beta^{10}[1] - \underbrace{\omega_4^1}_{=i} \beta^{11}[1] = -3i = -3\omega^2$$

(n) Получаем
$$\beta^0=(2,1+i,0,1-i)=(2,1+\omega^2,0,1-\omega^2),$$
 $\beta^1=(3,3i,-3,-3i)=(3,3\omega^2,-3,-3\omega^2)$ (o) $\beta[0]=\beta^0[0]+\underbrace{\omega_8^0}{\beta^1[0]}\beta^1[0]=5$

(o)
$$\beta[0] = \beta^0[0] + \omega_8^0 \beta^1[0] = 5$$

(p)
$$\beta[1] = \beta^0[1] + \underbrace{\omega_8^1}_{=\frac{1+i}{\sqrt{2}}} \beta^1[1] = 1 + i + 3i\frac{1+i}{\sqrt{2}} = 1 - \frac{3}{\sqrt{2}} + (1 + \frac{3}{\sqrt{2}})i = 1 + \omega^2 + \omega \cdot 3\omega^2 = 3\omega^3 + \omega^2 + 1$$

(q)
$$\beta[2] = \beta^0[2] + \underbrace{\omega_8^2}_{-i} \beta^1[2] = -3i = -3\omega^2$$

(r)
$$\beta[3] = \beta^0[3] + \underbrace{\omega_8^3}_{=\frac{-1+i}{\sqrt{2}}} \beta^1[3] = 1 - i - 3i\frac{-1+i}{\sqrt{2}} = 1 + \frac{3}{\sqrt{2}} - (1 - \frac{3}{\sqrt{2}})i = 1 - \omega^2 - \omega^3 \cdot 3\omega^2 = -3\omega^5 - \omega^2 + 1$$

$$= \frac{-\frac{1}{\sqrt{2}}}{\sqrt{2}}$$
(s) $\beta[4] = \beta^0[0] - \underbrace{\omega_8^0}_{=1} \beta^1[0] = -1$

(t)
$$\beta[5] = \beta^0[1] - \underbrace{\omega_8^1}_{=\frac{1+i}{\sqrt{2}}} \beta^1[1] = 1 + i - 3i\frac{1+i}{\sqrt{2}} = 1 + \frac{3}{\sqrt{2}} + (1 - \frac{3}{\sqrt{2}})i = 1 + \omega^2 - \omega \cdot 3\omega^2 = -3\omega^3 + \omega^2 + 1$$

(u)
$$\beta[6] = \beta^0[2] - \underbrace{\omega_8^2}_{:} \beta^1[2] = 3i = 3\omega^2$$

(v)
$$\beta[7] = \beta^0[3] - \underbrace{\omega_8^3}_{=\frac{-1+i}{6}} \beta^1[3] = 1 - i + 3i \frac{-1+i}{\sqrt{2}} = 1 - \frac{3}{\sqrt{2}} - (1 + \frac{3}{\sqrt{2}})i = 1 - \omega^2 + \omega^3 \cdot 3\omega^2 = 3\omega^5 - \omega^2 + 1$$

(w) Получаем
$$\beta=(5,1-\frac{3}{\sqrt{2}}+(1+\frac{3}{\sqrt{2}})i,-3i,1+\frac{3}{\sqrt{2}}-(1-\frac{3}{\sqrt{2}})i,-1,1+\frac{3}{\sqrt{2}}+(1-\frac{3}{\sqrt{2}})i,3i,1-\frac{3}{\sqrt{2}}-(1+\frac{3}{\sqrt{2}})i)$$
 (x) Как многочлен от ω : $\beta=(5,3\omega^3+\omega^2+1,-3\omega^2,-3\omega^5-\omega^2+1,-1,-3\omega^3+\omega^2+1,3\omega^2,3\omega^5-\omega^2+1)$

(x) Как многочлен от
$$\omega$$
: $\beta = (5, 3\omega^3 + \omega^2 + 1, -3\omega^2, -3\omega^5 - \omega^2 + 1, -1, -3\omega^3 + \omega^2 + 1, 3\omega^2, 3\omega^5 - \omega^2 + 1)$

3. Получаем

$$\alpha = (6, 2\omega^3 + 3\omega + 1, 1 + \omega^2, -2\omega^5 + 3\omega^3 + 1, -4, -2\omega^3 - 3\omega + 1, 1 - \omega^2, 2\omega^5 - 3\omega^3 + 1),$$

$$\beta = (5, 3\omega^3 + \omega^2 + 1, -3\omega^2, -3\omega^5 - \omega^2 + 1, -1, -3\omega^3 + \omega^2 + 1, 3\omega^2, 3\omega^5 - \omega^2 + 1),$$

и по 8 получаем, что $\varphi(C) \equiv \gamma = \alpha \times \beta = (30,6\omega^6 + 2\omega^5 + 9\omega^4 + 8\omega^3 + \omega^2 + 3\omega + 1, -3\omega^4 - 3\omega^2, 6\omega^{10} - 9\omega^8 + 2\omega^7 - 8\omega^5 + 2\omega^6 + 2$ $3\omega^3 - \omega^2 + 1, 4, 6\omega^6 - 2\omega^5 + 9\omega^4 - 8\omega^3 + \omega^2 - 3\omega + 1, -3\omega^4 + 3\omega^2, 6\omega^{10} - 9\omega^8 - 2\omega^7 + 8\omega^5 - 3\omega^3 - \omega^2 + 1)$. Ho $\omega^8 = 1$, поэтому

$$\gamma = \begin{vmatrix} 30 \\ 6\omega^6 + 2\omega^5 + 9\omega^4 + 8\omega^3 + \omega^2 + 3\omega + 1 \\ -3\omega^4 - 3\omega^2 \\ 2\omega^7 - 8\omega^5 + 3\omega^3 + 5\omega^2 - 8 \\ 4 \\ 6\omega^6 - 2\omega^5 + 9\omega^4 - 8\omega^3 + \omega^2 - 3\omega + 1 \\ -3\omega^4 + 3\omega^2 \\ -2\omega^7 + 8\omega^5 - 3\omega^3 + 5\omega^2 - 8 \end{vmatrix}$$

4. Выполним БПФ для $\gamma = (\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7)$ (за $\gamma_0, ..., \gamma_7$ обозначены коэффициенты выше) Дерево вызовов:

$$\gamma = (\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7)$$

$$\gamma^0 = (\gamma_0, \gamma_2, \gamma_4, \gamma_6)$$

$$\gamma^{10} = (\gamma_1, \gamma_3, \gamma_5, \gamma_7)$$

$$\gamma^{10} = (\gamma_1, \gamma_5)$$

$$\gamma^{11} = (\gamma_3, \gamma_7)$$

$$\gamma^{000} = (\gamma_0) \quad \gamma^{001} = (\gamma_4) \quad \gamma^{010} = (\gamma_2) \quad \gamma^{011} = (\gamma_6) \quad \gamma^{100} = (\gamma_1) \quad \gamma^{101} = (\gamma_5) \quad \gamma^{110} = (\gamma_3) \quad \gamma^{111} = (\gamma_7)$$

```
(a) \Gamma \stackrel{\text{def}}{=} \varphi(\gamma)
  (b) Для \gamma^{000}, \gamma^{001}, ..., \gamma^{111} результат преобразования \Gamma^{ijk} = \gamma^{ijk} (см. 5)
     (c) \Gamma^{00} = (\Gamma^{000}[0] + \omega_2^0 \cdot \Gamma^{001}[0], \Gamma^{000}[0] - \omega_2^0 \Gamma^{001}[0]) = (\gamma_0 + \gamma_4, \gamma_0 - \gamma_4) = (34, 26)
    \text{(d)} \ \ \Gamma^{01} = (\Gamma^{010}[0] + \omega_2^0 \cdot \Gamma^{011}[0], \Gamma^{010}[0] - \omega_2^0 \Gamma^{011}[0]) = (\gamma_2 + \gamma_6, \gamma_2 - \gamma_6) = (-6\omega^4, -6\omega^2)
     (e) \Gamma^{10} = (\Gamma^{100}[0] + \omega_2^0 \cdot \Gamma^{101}[0], \Gamma^{100}[0] - \omega_2^0 \Gamma^{101}[0]) = (\gamma_1 + \gamma_5, \gamma_1 - \gamma_5) = (12\omega^6 + 18\omega^4 + 2\omega^2 + 2, 4\omega^5 + 16\omega^3 + 6\omega)
     \text{(f)} \ \ \Gamma^{11} = (\Gamma^{110}[0] + \omega_2^0 \cdot \Gamma^{111}[0], \Gamma^{110}[0] - \omega_2^0 \Gamma^{111}[0]) = (\gamma_3 + \gamma_7, \gamma_3 - \gamma_7) = (10\omega^2 - 16, 4\omega^7 - 16\omega^5 + 6\omega^3)
    (g) \Gamma^0[0] = \Gamma^{00}[0] + \omega_4^0 \Gamma^{01}[0] = 34 - 6\omega^4
    (h) \Gamma^0[1] = \Gamma^{00}[1] + \underbrace{\omega_4^1}_{=i} \Gamma^{01}[1] = 26 - 6\omega^4 \ (i = \omega^2)
        (i) \Gamma^0[2+0] = \Gamma^{00}[0] - \underbrace{\omega_4^0}_{=1} \Gamma^{01}[0] = 34 + 6\omega^4
        (j) \Gamma^0[2+1] = \Gamma^{00}[1] - \underbrace{\omega_4^1}_{=i} \Gamma^{01}[1] = 26 + 6\omega^4
    (k) \Gamma^1[0] = \Gamma^{10}[0] + \underbrace{\omega_4^0}_{=1} \Gamma^{11}[0] = 12\omega^6 + 18\omega^4 + 12\omega^2 - 14
        (l) \Gamma^1[1] = \Gamma^{10}[1] + \underbrace{\omega_4^1}_{-i} \Gamma^{11}[1] = 4\omega^9 - 16\omega^7 + 10\omega^5 + 16\omega^3 + 6\omega = |\omega^8 = 1| = -16\omega^7 + 10\omega^5 + 16\omega^3 + 10\omega^5 + 16\omega^5 + 10\omega^5 + 
(m) \Gamma^{1}[2+0] = \Gamma^{10}[0] - \underbrace{\omega_{4}^{0}}_{-1} \Gamma^{11}[0] = 12\omega^{6} + 18\omega^{4} - 8\omega^{2} + 18
  \text{(n)} \ \ \Gamma^1[2+1] = \Gamma^{10}[1] - \underbrace{\omega_4^1}_{=i} \Gamma^{11}[1] = -4\omega^9 + 16\omega^7 - 2\omega^5 + 16\omega^3 + 6\omega = |\omega^8=1| = 16\omega^7 - 2\omega^5 + 16\omega^3 + 2\omega^6 + 16\omega^6 + 16\omega^
    (o) \Gamma[0] = \Gamma^0[0] + \omega_8^0 \Gamma^1[0] = 12\omega^6 + 12\omega^4 + 12\omega^2 + 20 = 8
  (p) \Gamma[1] = \Gamma^0[1] + \underbrace{\omega_8^1}_{0} \Gamma^1[1] = -16\omega^8 + 10\omega^6 + 10\omega^4 + 10\omega^2 + 26 = |\omega^8 = 1| = 10\omega^6 + 10\omega^4 + 10\omega^2 + 10 = 0
    (q) \Gamma[2] = \Gamma^0[2] + \underbrace{\omega_8^2}_{-\omega_8^2} \Gamma^1[2] = 12\omega^8 + 18\omega^6 - 2\omega^4 + 18\omega^2 + 34 = |\omega^8| = 1| = 18\omega^6 - 2\omega^4 + 18\omega^2 + 46 = 48
     (r) \Gamma[3] = \Gamma^0[3] + \underbrace{\omega_8^3}_{-\omega_3} \Gamma^1[3] = 16\omega^{10} - 2\omega^8 + 16\omega^6 + 8\omega^4 + 26 = |\omega^8 = 1| = 16\omega^6 + 8\omega^4 + 16\omega^2 + 24 = 16\omega^6 + 8\omega^4 + 16\omega^2 + 24 = 16\omega^6 + 8\omega^4 + 16\omega^4 
     (s) \Gamma[4] = \Gamma^0[0] - \underbrace{\omega_8^0}_{-1} \Gamma^1[0] = -12\omega^6 - 24\omega^4 - 12\omega^2 + 48 = 72
```

(t) $\Gamma[5] = \Gamma^0[1] - \underbrace{\omega_8^1}_{-1} \Gamma^1[1] = 16\omega^8 - 10\omega^6 - 22\omega^4 - 10\omega^2 + 26 = -10\omega^6 - 22\omega^4 - 10\omega^2 + 42 = 64$

(u)
$$\Gamma[6] = \Gamma^0[2] - \underbrace{\omega_8^2}_{2} \Gamma^1[2] = -12\omega^8 - 18\omega^6 + 14\omega^4 - 18\omega^2 + 34 = -18\omega^6 + 14\omega^4 - 18\omega^2 + 22 = 8$$

(v)
$$\Gamma[7] = \Gamma^0[3] - \underbrace{\omega_8^3}_{-\omega^3} \Gamma^1[3] = -16\omega^{10} + 2\omega^8 - 16\omega^6 + 4\omega^4 + 26 = -16\omega^6 + 4\omega^4 - 16\omega^2 + 28 = 24$$

(w) Получаем $\Gamma = (8, 0, 48, 16, 72, 64, 8, 24)$

(x)
$$C = AB = \varphi^{-1}(\varphi(AB)) = \varphi^{-1}(\gamma) \stackrel{9}{=} \frac{1}{8}\varphi(\gamma) = \frac{\Gamma}{8} = (1, 0, 6, 2, 9, 8, 1, 3)$$

(каноническое) Задача 47