# Choosing a processing device

## **Aim**

Control the actuators based on the inputs from either the driver control input device, or the sensors.

# **Objectives**

## **Functions Objectives**

- 1. Allow control during the driver control period.
- 2. Take control during the Autonomous period.
- 3. Control the actuators.
- 4. Take readings from the chosen sensors.

## Non functional objectives

- 5. Comply with the rules.
- 6. Be complex enough to achieve marks in the VEX U category
- 7. Be achievable, can it be build and programmed easily.

# **Concepts**

- A. Raspberry PI. use a Raspberry pi 4 with Raspbian and python, with its own drive motors and drive input control.
- B. Raspberry pi to feed into the V5 brain
- C. V5 brain. use the V5 brain with VEX motors and driver input device.

# A. Raspberry Pi 4 - with bespoke actuators and driver input device.

| Pros                                                        | Conns                                    |
|-------------------------------------------------------------|------------------------------------------|
|                                                             | Does not comply with the rules           |
| Easy to program in python                                   | Not compatible with the VEX Battery      |
| Opens the door to the use of non VEX sensors and actuators. | Not compatible with the VEX Motors       |
|                                                             | Not compatible with the VEX driver input |

| Pros                                                 | Conns                                                                       |
|------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                      | Open loop Autonomous mode is harder to achieve than using the VEX V5 allone |
| Development can progress outside of university weeks |                                                                             |

#### Compatibility with the Objectives

- 1. In its currents state, a mechanism would need to be made to allow the driver to control the robot, this is about 2 or 3 hours work.
- 2. Python is easy enough to program, however depending on the autonomous mechanism (open loop, closed loop) this will take a lot of time, 10+ hours.
- 3. It is easy enough to output to actuators, however for high load actuators such as drive motors, additional circuitry would needed, this is about 3 to 4 hours work.
- 4. reading from sensors is possible.
- 5. It does not comply with the rules <VUR12> Sensors and Additional Electronics MUST be connected to the V5 Robot Brain...
- 6. This is a very complex route and will comply with this objective.
- 7. This is not very achievable, many hours will have to be used to develop the driver input, the drive actuator circuit.

#### **Summary**

This is not compliant with the rules.

This will take too much time to develop.

## B. Raspberry Pi 4 - Feeding into the V5 brain.

| Pros                                                        | Conns                                   |
|-------------------------------------------------------------|-----------------------------------------|
| Complies with the rules                                     | It is unknown how to talk to the V5 VEX |
| Easy to program in python                                   |                                         |
| Opens the door to the use of non VEX sensors and actuators. |                                         |
| The VEX driver input mode can be used                       |                                         |
| THE vex drive motors can be used                            |                                         |
| Some code can be tested outside of university weeks         |                                         |

#### Compatibility with the Objectives

- 1. The VEX controller can be used during driver input mode
- 2. Python is easy enough to program, however depending on the autonomous mechanism (open loop, closed loop) this will take a lot of time, 10+ hours.
- 3. The VEX Motors can be used
- 4. reading from sensors is possible.
- 5. It complies with the rules
- 6. This is a complex route and will comply with this objective.
- 7. There is still an unknown as to how the RPI talks with the V5 brain. Assuming the communication is possible it is achievable.

#### **Summary**

This concept is a good choice, however before deciding on this, a proof of concept investigation should take place as to whether it is possible to control the V5 brain with a RPI 4.

#### C. Use the V5 Brain and VEX sensors and actuators.

| Pros                                  | Conns                                                         |
|---------------------------------------|---------------------------------------------------------------|
| Complies with the rules               | It is not very complex and a full marks might not be awarded. |
| Easy to use the block programmer      | Limited to VEX sensors                                        |
|                                       | code cannot be tested outside of university weeks             |
| The VEX driver input mode can be used |                                                               |
| THE vex drive motors can be used      |                                                               |

#### Compatibility with the Objectives

- 1. The VEX controller can be used during driver input mode
- 2. Easy to program.
- 3. The VEX Motors can be used
- 4. Limited to the VEX sensors
- 5. It complies with the rules
- 6. This is not very complex and might not award full marks
- 7. If we are limited to current sensors, it might not be possible to complete this project.

## **Summary**

This is a good Plan B if concept B does not work.

## **Unanswered questions**

 Are we limited to the VEX sensors we have, or can we purchase additional VEX sensors?

https://www.vexforum.com/t/v5-brain-to-raspberry-pi-communication/124407

