Epreuve disponible sur www.emergencetechnocm.com

OFFICE DU BACCALAURÉAT DU CAMEROUN					
EXAMEN:	PROBATOIRE	SÉRIE : C et D	SESSION:	2019	
ÉPREUVE :	CHIMIE	COEF: 2	DURÉE :	2 heures	

EXERCICE 1: Chimie organique / 8 points

- 1- Écrire la formule développée de chacun des composés suivants :
 - a) 1,2-dichloro-1,1,2,2-tétrafluoroéthane;

 $0.5 \, \mathrm{pt}$

b) 2,5-diméthylhex-3-yne.

 $0.5 \, \mathrm{pt}$

- 2- Nommer les composés ci-dessous :

 - a) $CH_3 CH_2 CH C \equiv CH$; b) $CH_3 CH = C CH_2 C_2H_5$ $CH_2 CH_3$

1 pt

- 3- L'hydratation du propène C₃H₆ conduit majoritairement au propan-2-ol.
- **3-1-** Donner un catalyseur de cette réaction.

0,5 pt

3-2- Écrire, en utilisant les formules semi-développées, l'équation-bilan de la réaction.

1 pt

3-3- Dire pourquoi le propan-2-ol est obtenu majoritairement.

 $0.5 \, \mathrm{pt}$ 0,5 pt

3-4- Donner la formule semi-développée de l'alcool qu'on obtiendrait minoritairement. 3-5- Calculer la masse de propan-2-ol qu'on obtient à partir de 5,61 de propène, volume mesuré dans

1 pt

- les conditions où le volume molaire est 22,41/mol. 4- En faisant barboter du dichlore dans du benzène en présence du chlorure de fer(III) FeCl₃, il se produit
- une réaction de substitution. 4-1- Écrire l'équation-bilan de la réaction conduisant au monochlorobenzène.

1 pt

4-2- Quelle précaution doit-on prendre pour éviter la réaction d'addition?

0,5 pt

- 5- S'agissant du traitement des pétroles, définir les expressions suivantes :
 - a) Reformage catalytique;
- b) indice d'octane.

1 pt

Données: Masses molaires atomiques: $C: 12 \text{ g mol}^{-1}$; $H: 1 \text{ g mol}^{-1}$; $O: 16 \text{ g mol}^{-1}$.

EXERCICE 2 : Oxydoréduction et engrais / 8 points

- 1- Oxydoréduction / 5 points
- 1-1- Définir du point de vue nombre d'oxydation : oxydant.

 $0.5 \, \mathrm{pt}$

1-2- On donne les potentiels standards d'oxydoréduction à 25 $^{\circ}\mathrm{C}$ des couples suivants :

$${
m E}^{\circ}({
m Cr}_2{
m O}_7^{\;2-}/{
m Cr}^{\;3+})=1{,}33\,{
m V}\,\,{
m et}\,\,{
m E}^{\circ}({
m I}_2/\Gamma)=0{,}54\,{
m V}.$$

1-2-1- Quel est l'oxydant le plus fort? Quel est le réducteur le plus fort?

0,5 pt $0,75 \, \mathrm{pt}$

1-2-2- Écrire la demi-équation électronique du couple $\operatorname{Cr}_2\operatorname{O}_7^{2-}/\operatorname{Cr}^{3+}$ en milieu acide.

0,5 pt

1-2-3- Écrire la demi-équation électronique du couple I_2/I^- .

- 1-2-4- En déduire l'équation-bilan de la réaction qui a lieu entre ces deux couples. **1-2-5-** À un litre (11) d'une solution centimolaire ($C = 0.01 \text{ mol } l^{-1}$) de dichromate de potassium
- $0.5 \, \mathrm{pt}$
- $(2K^{+} + Cr_{2}O_{7}^{2-})$, acidifiée par l'acide sulfurique, on ajoute l'iodure de potassium solide (KI) en excès. 1-2-5-1- Déterminer le nombre de mole n d'iodure de potassium nécessaire pour réduire tous les ions
- dichromate $(\operatorname{Cr}_2\operatorname{O}_7^{2-})$.

 $0.5 \, \mathrm{pt}$ 0,5 pt

- 1-2-5-2- Calculer la concentration C des ions ${\rm Cr}^{3+}$ dans la solution finale.
 - N.B : On supposera qu'aucune variation de volume n'est observée pendant le mélange.
- 1-3- Pour réaliser une pile, on associe au couple ${\rm Zn}^{2+}/{\rm Zn}$ le couple ${\rm Ag}^+/{\rm Ag}.$ On donne les potentiels standard à $25\,^{\circ}\text{C}$: $\text{E}^{\circ}(\text{Ag}^{+}/\text{Ag}) = 0.80\,\text{V}$ et $\text{E}^{\circ}(\text{Zn}^{2+}/\text{Zn}) = -0.76\,\text{V}$

1-3-1- Préciser, en le justifiant, l'électrode qui constitue la borne négative de la pile.

 $0.5 \, \mathrm{pt}$

1-3-2- Calculer la force électromotrice de cette pile.

 $0,75 \, \mathrm{pt}$

2- Engrais / 3points

Pour la culture de ses tomates, un planteur du village de PENDA MBOKO a utilisé des sachets contenant chacun 800 g d'un engrais A de formule 12-10-25.

2-1- Donner la signification des nombres 12-10-25.

 $0,75 \, \mathrm{pt}$

- 2-2- Ce planteur dispose aussi des sachets contenant chacun 1 200 g d'un engrais B de formule 22-00-00. Sur les conseils du moniteur agricole, il mélange intimement le contenu d'un sachet de A avec celui d'un sachet de B.
- 2-2-1- Nommer l'élément fertilisant de l'engrais B puis donner son rôle pour la plante.

 $0,75 \, \mathrm{pt}$

2-2-2- Déterminer la formule de l'engrais obtenu par ce mélange.

1,5 pt

Epreuve disponible sur www.emergencetechnocm.com

EXERCICE 3: Type expérimental / 4 points

Pour étudier la nitration du benzène en présence du mélange sulfonitrique, on réalise au laboratoire l'expérience schématisée par la figure ci-dessous :

1- Nommer les éléments de la verrerie représentés par les lettres (a) et (b).		
2- Citer les deux substances acides qui sont présentes dans le mélange sulfonitrique.		
3- Pourquoi doit-t-on utiliser l'eau glacée au cours de cette expérience?	$_{0,5\mathrm{pt}}$	
4- Dire pourquoi il faut verser le benzène goutte à goutte.	$_{0,5\mathrm{pt}}$	
5- Écrire l'équation-bilan de la réaction aboutissant au mononitrobenzène $C_6H_5NO_2$.		
6- On a obtenu $170\mathrm{g}$ de mononitrobenzène à partir de $120\mathrm{g}$ de benzène introduit dans la solution du		
mélange sulfonitrique en excès :		
6-1- Déterminer la masse de mononitrobenzène théoriquement attendue.	$0.5\mathrm{pt}$	
6-2- En déduire le rendement de la réaction.		
Données : Masses molaires atomiques en σ mol $^{-1}$ · C · 12 · H · 1 · N · 14 · O · 16		

Données : Masses molaires atomiques en $g \text{ mol}^{-1} : C : 12$;