Banco de Dados II

(Capítulos 8, 10 e 11 – Ramakrishnan Capítulo 12 – Silberschatz Capítulo 14 – Garcia-Molina, Ullman, Widom) Berkeley → http://www-inst.eecs.berkeley.edu/~cs186/

Introdução

Dados sem organização

5
Paulo, 44, 2000
Pedro, 35, 20000
Carlos, 44, 2000
José, 40, 2500
João, 35, 3000
Ilmério, 40, 3500
Rodrigo, 40, 3500
Maria, 30, 4000
Sara, 35, 4000
Sabrina, 31, 5000

Heap Files

Introdução

Dados Organizados (nome)

Carlos, 44, 2000
Ilmério, 40, 3500
João, 35, 3000
José, 40, 2500
Maria, 30, 4000
Paulo, 44, 2000
Pedro, 35, 2000
Rodrigo, 40, 3500
Sabrina, 31, 5000
Sara, 35, 4000

Heap Files - Exemplo

Estrutura auxiliar projetada para agilizar operações de busca, inserção e supressão

Alteração nos dados pode levar à alteração no índice

Espaço extra de armazenamento

 O que armazenar em cada entrada do arquivo de índice

Alternativa 1 -> Entrada = Registro inteiro

Alternativa 2 -> Entrada = chave, rid

Alternativa 3 -> Entrada = chave, conjunto de rids

Essa escolha é ortogonal ao índice;

Classificação dos índices

- Clustered: se a ordem dos registros são os mesmos da ordem do índice de dados de entrada.
- Unclustered: os registros são armazenadas sem um ordenamento

Um arquivo pode ser clusterizado por somente uma chave

Clustered vs. Unclustered Index

Atividade

1 - Criação de dados

```
create table table_teste as select generate_series(1,10000000) AS id1, floor(random() * 10000000 + 1)::int as id2;
```

SET enable_bitmapscan TO off;

- 2- visualização dos dados
 - select *,ctid from table_teste;
- 3 Criação de um índice sobre desc create index Iteste on table_teste(id2);
- 4- Reestruturação dos registros
 - cluster table_teste using Iteste;
- 5 select *,ctid from table_teste;

Descreva qual ação que o código promoveu na tabela table_teste. O que acontece com o ordenamento em caso de um novo insert na tabela?

Clustered vs. Unclustered

Clustered Pros

- Eficiente em buscas entre faixas (> <)
- Pode ser executado algum tipo de compressão
- Possível benefício na localidade dos dados

Clustered Contras

- Caro para manter
- Espaço extra de armazenamento

- Primário
 - A chave do índice é composta pela chave primária da tabela
 - A maioria dos SGB cria índices primários automaticamente
 - Não permitem duplicatas
- Secundário
 - Outras colunas da tabela participam
 - Permitem duplicatas

- O que precisa saber:
 - Característica dos dados
 - Como dada é usado:
 - Tipos de consultas
 - Frequência de consultas

- Colunas "boas" para indexação:
 - PK e FK
 - consultas por range
 - consultas em ordem

- Colunas "ruins" para indexação:
 - consultas esparsas
 - colunas com poucos valores únicos
 - colunas com texto

member_no	last_name	first_name	Alta Seletividade
1	Randall	Joshua	Número de linhas atende ao critério 1000 1006
2	Flood	Kathie	Total de linhas = $\frac{10000}{10000} = 10\%$
		SELECT * FROM member WHERE member_no > 8999	
10000	Anderson	Bill	

*Rose-Hulman Institute of Technology Curt Clifton

 Os índices de múltiplos níveis podem formar uma árvore

 Atualização nos dados, implica na atualização em todos os níveis

- Os SGBs implementam índices multiníveis através de árvores B+
- Atualização dos níveis mais eficientes
- Cada nível elimina vários acessos
- O grau (ou ordem) da árvore indica o número de acessos

-Insert/delete com custo de I/O: log F (N)

Onde N= número de folhas e F= ordem ou grau da árvore

- -Mínimo de 50% de ocupação (exceto nó root).
- -Suporte de seleção por igualdade e por range.
- -Busca sempre no nó folha
- -Exemplo:

Ordem 5:

Número mínimo de chaves = (M-1)/2

Número máximo de chaves = 4

Ordem 5

Inserte valor 8*

Deletar a entrada 19*

Use o simulador (http://www.cs.usfca.edu/~galles/visualization/BPlusTree.html)

1- Inserir em um B+ de ordem 5 os seguintes valores: 10, 15, 20,25,30,35,40,45,50

2 -Remover os seguintes valores: 35 30 25 20

Atividade

- 1) Inserir em um B+ com ordem 4 as seguintes entradas :2, 6, 17, 20, 24, 25, 27, 29, 30, 31, 32, 5, 21, 1, 40, 45, 50, 70
- 2) Remover os itens 25, 6, 5 e 20.
- 3) Qual a altura mínima e máxima de uma árvore de ordem 100 com 1 milhões de chaves.

- Let's check it out:
 - Animação (<u>here</u>)
 - Or type http://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

- Utilizando o arquivo de índice denso (ou arquivo ordenado)
- Aloca-se uma página vazia para a raiz
- Insere nesta página um ponteiro para a primeira página do arquivo contendo as entradas.

Páginas restantes a alocar

Páginas restantes a alocar

Páginas restantes a alocar

Árvore construída!

Atividade

1) Faça a leitura usando bulking load com a ordem 4 dos seguintes valores: 1 ,2 ,5 ,10 ,15 , 20, 40,60, 80 ,100 ,120 ,140,

- Conclusões
 - Os dados são mais acessados que atualizados
 - Necessário existir uma estrutura auxiliar para melhorar o desempenho das consultas
 - Para dados relacionais árvores B+ são os índices mais utilizados
 - O Otimizador de consultas utiliza índices sempre que possível