重积分

三重积分

主讲 武忠祥 教授

一、三重积分的概念

$$\iiint_{\Omega} f(x,y,z) dv = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k},\eta_{k},\xi_{k}) \Delta v_{k}$$

二、三重积分的计算

1. 利用直角坐标计算三重积分

$$\Omega = \{(x, y, z) | z_1(x, y) \le z \le z_2(x, y), (x, y) \in D_{xy} \}$$

$$\iiint_{\Omega} f(x,y,z) dV = \iint_{D_{xy}} \left[\int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz \right] d\sigma$$

例1 计算
$$I = \iint_{\Omega} xyzdv$$
,其中 Ω 由坐标面 $x = 0, y = 0, z = 0$ 和平面 $x + y + z = 1$ 所围成.

$$[\frac{1}{720}]$$

例2 计算 $I = \iint_{\Omega} z dv$,其中 Ω 是由 $z = \sqrt{2 - x^2 - y^2}$ 和

 $z = x^2 + y^2$ 所围成的区域.

例3 计算
$$I = \iiint_{\Omega} z^2 dv$$
, $\Omega = \left\{ (x, y, z) \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$. $\left[\frac{4}{15} \pi abc^3 \right]$

$$\iiint_{\Omega} f(x,y,z) dV = \int_{a}^{b} \left[\iint_{D_{z}} f(x,y,z) d\sigma \right] dz$$

2. 利用柱坐标计算三重积分 ∭

$$\iiint\limits_{\Omega} f(x,y,z)dv$$

$$0 \le \rho < +\infty$$

$$0 \le \theta \le 2\pi$$

$$-\infty < 7 < +\infty$$

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \\ z = z \end{cases}$$

$$dv = \rho \, \mathbf{d} \, \rho \, \mathbf{d} \, \theta \, \mathbf{d} \, \mathbf{z}$$

$$\iiint\limits_{\Omega} f(x,y,z)dv$$

$$= \iiint_{\Omega} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\rho d\varphi dz$$

例4 计算
$$I = \iiint\limits_{(V)} \sqrt{x^2 + y^2} \, dV$$
 ,其中 (V) 由锥面 $z = \sqrt{x^2 + y^2}$

圆柱面 $x^2 + y^2 = 2x$ 及平面 z = 0 所围成.

例5 计算
$$I = \iiint_{(V)} z \, dV$$
,其中 (V) 由曲面 $z = \sqrt{4 - x^2 - y^2}$ 与 $x^2 + y^2 = 3z$ 所围成. $\left[\frac{13\pi}{4}\right]$

3. 利用球坐标计算三重积分

$$\iiint\limits_{\Omega} f(x,y,z)dv$$

$$0 \le r < +\infty$$

$$0 \le \varphi \le \pi$$

$$0 \le \theta \le 2\pi$$

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \end{cases}$$

$$dv = r^2 \sin \varphi \, dr \, d\varphi \, d\theta$$

$$\iiint\limits_{\Omega} f(x,y,z)dv$$

$$= \iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi \, dr \, d\varphi \, d\theta.$$

例6 设 (V) 为球面 $z = \sqrt{2 - x^2 - y^2}$ 和锥面 $z = \sqrt{x^2 + y^2}$ 所围成的空间区域,求 (V) 的体积.

例7 计算
$$I = \iiint_{(V)} \sqrt{x^2 + y^2 + z^2} dv$$
 ,其中 (V) 由曲面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 所围成.

内容小结

三重积分计算计算

1) 直角坐标:

i) 先一后二;
$$\iiint_{\Omega} f(x,y,z) dv = \iint_{D_{xy}} d\sigma \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz$$

ii) 先二后一;
$$\iiint_{\Omega} f(x,y,z) dv = \int_{c_1}^{c_2} dz \iint_{D_z} f(x,y,z) dx dy$$

2) 柱坐标:

$$\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\rho d\theta dz$$

3) 球坐标:

$$\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi dr d\varphi d\theta$$

作业

```
P166 1(2),(3),(4); 4; 5;
```