PRIVATE RESEARCH PROJECT

The recursively calculation of prime numbers.

Draft/(Working) paper

Carolin Zöbelein¹

Available at https://github.com/Samdney/primescalc License: CC BY-ND 3.0 DE (see also LICENSE)

State: June 4, 2017

Keywords: Prime numbers, Primes, Recursive, Number Theory **Subjclass:** 2010 *Mathematics Subject Classification*. Primary XX.

 $^{^1}E$ -mail address: contact@carolin-zoebelein.de, PGP Fingerprint: D4A7 35E8 D47F 801F 2CF6 2BA7 927A FD3C DE47 E13B; URL: http://www.carolin-zoebelein.de

Abstract.

Roadmap

• ...

Contents

1	Intro	Introduction													
2	Odd-Divisible Numbers														
	2.1	Basic description: Odd-Numbers	6												
	2.2	Basic description: Odd-Divisible Numbers													
	2.3	Odd-Divisible Numbers: Different perspectives													
3	Odd	Odd-Not-Divisible Numbers													
	3.1	Representation: Odd-Divisible Numbers	9												
	3.2	Representation: Odd-Not-Divisible Numbers													
	3.3	Odd-Not-Divisible Numbers: Intersection	11												
4	The	The recursive calculation 1													
	4.1	Recursion step: $n^{(0)} = 0 \dots \dots \dots \dots$	15												
		4.1.1 Calculation													
		4.1.2 Results	15												
	4.2	Recursion step: $n^{(0)} = 1 \dots \dots \dots \dots$													
		4.2.1 Calculation													
		4.2.2 Results	16												
	4.3	Recursion step: $n^{(0)} = 2 \dots \dots \dots \dots$													
		4.3.1 Calculation													

1 Introduction

In the following paper, I will show that prime numbers can be calculated recursively. I will start with the suggestion of descriptions itself, over different perspectives on this problem, until the final explanation of caculating prime numbers in the most efficient way, as a result from this considerations.

Let's start with the definition of prime numbers itself.

Definition 1.0.1 (Prime numbers) Every natural number greater than one which has no positive integer divisors apart from one and itself is called Prime Number or just only Prime.

Be P the set of all prime numbers p. So we can write

$$\mathcal{P} := \{ p \in \mathbb{N}_{>1} \mid \forall n \in \mathbb{N}_{>1} \setminus \{ p \} : \ n \nmid p \}.$$

Hence, the first prime numbers are $\mathcal{P} := \{2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\}.$

2 Odd-Divisible Numbers

Contents

2.1	Basic description: Odd-Numbers	6
2.2	Basic description: Odd-Divisible Numbers	7
2.3	Odd-Divisible Numbers: Different perspectives	8

At first, for the description of prime numbers, we have to look at the set of divisible numbers. Since, apart from 2, all prime numbers are odd, we will only analyze this numbers. In the whole paper, we will ignore the prime number 2, because we will see, this makes a lot easier.

2.1 Basic description: Odd-Numbers

Be given the set of all odd natural numbers $y \in \mathbb{N}_{>1}$ through

$$y_i(x_i) := 2x_i + 1,$$
 (2.1)

with $x, i \in \mathbb{N}$. If we expand the definition set of x to \mathbb{Z} , we also know

$$y(0) = 1$$
and $y(-x) = 2(-x) + 1$

$$= -(2x - 1)$$

$$= -(2(x - 1) + 1)$$

$$= -y(x - 1).$$
(2.2)

Later, we will see that this properties can be very useful.

2.2 Basic description: Odd-Divisible Numbers

Next, we look at all odd-divisible numbers. We know, they can't have a factor which is a multiple of 2. Hence, we get an equation which describes all odd-divisible numbers by

$$y_{i,j}(x_i, x_j) = y_i(x_i) \cdot y_j(x_j)$$

$$= (2x_i + 1)(2x_j + 1)$$

$$= 2^2 x_i x_j + 2x_i + 2x_j + 1$$

$$= 2\left(\underbrace{2x_i x_j + x_i + x_j}_{=:x_{i,j}}\right) + 1$$

$$= y_{i,j}(x_{i,j}). \tag{2.4}$$

If we expand again our sets to \mathbb{Z} , we receive additional cases. At first, assume at one factor is y(0) = 1. We see directly

$$y_{0,j}(0, x_j) = y_0(0) \cdot y_j(x_j)$$

$$= 1 \cdot (2x_j + 1)$$

$$= 2x_j + 1$$

$$= y_j(x_j)$$
(2.5)
respectively $y_{i,0}(x_i, 0) = y_i(x_i)$.

Next, assume we have one factor with y(-x).

$$y_{i,j}(-x_i, x_j) = y_i(-x_i) \cdot y_j(x_j)$$

$$= (2(-x_i) + 1)(2x_j + 1)$$

$$= -2^2 x_i x_j - 2x_i + 2x_j + 1$$

$$= -(2(2x_i x_j + x_i - x_j - 1) + 1)$$

$$= -(2(2x_i x_j + x_i - 2x_j + x_j - 1) + 1)$$

$$= -(2(2(x_i - 1)x_j + (x_i - 1) + x_j) + 1)$$

$$= -y_i(x_i - 1) \cdot y_j(x_j)$$
(2.7)
respectively $y_{i,j}(x_i, -x_j) = -y_i(x_i) \cdot y_j(x_j - 1)$ (2.8)

In the case of two negative factors, we have

$$y_{i,j}(-x_i, -x_j) = y_i(-x_i) \cdot y_j(-x_j)$$

$$= (2(-x_i) + 1)(2(-x_j) + 1)$$

$$= (2x_i - 1)(2x_j - 1)$$

$$= 2^2 x_i x_j - 2x_i - 2x_j + 1$$

$$= 2(2x_i x_j - x_i - x_j) + 1$$

$$= (2x_i - 2 + 1)(2x_j - 2 + 1)$$

$$= (2(x_i - 1) + 1)(2(x_j - 1) + 1)$$

$$= (-1) y_i(x_i - 1)(-1) y_j(x_j - 1)$$

$$= (-1)^2 y_{i,j}(x_i - 1, x_j - 1). \tag{2.9}$$

2.3 Odd-Divisible Numbers: Different perspectives

Finally, we see the different possible perspectives for odd-divisible numbers.

$$y_{i,j}(x_i, x_j) = 2(2x_i x_j + x_i + x_j) + 1$$

$$= 2((2x_i + 1) x_j + x_i) + 1$$
respectively
$$= 2((2x_j + 1) x_i + x_j) + 1$$
(2.10)

We will use (2.10) respectively (2.11) in the next step, for the description of odd numbers which are not divisible by a particular other odd number.

From previous sections, we know, we get an index shift by one and a negative sign for each negative value of x_i respectively x_j .

3 Odd-Not-Divisible Numbers

Contents

3.1	Representation: Odd-Divisible Numbers	9
3.2	Representation: Odd-Not-Divisible Numbers	10
3.3	Odd-Not-Divisible Numbers: Intersection	11

After we spent time with the set of all odd-divisible numbers, now, we switch to the set of all odd numbers which are not divisible by a particular other odd number.

3.1 Representation: Odd-Divisible Numbers

Let's look again at (2.10)

$$y_{i,j}(x_i, x_j) = 2((2x_i + 1)x_j + x_i) + 1,$$

and its belonging values.

• Be $x_1 = 1$:

$$y_{1,j}(1,x_j) = 2(3x_j+1)+1, \quad x_{1,j} = 3x_j+1$$
 (3.1)

Table 3.1: The first ten values for (3.1).

$$x_j$$
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 $x_{1,j}$
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31

 $y_{1,j}$
 9
 15
 21
 27
 33
 39
 45
 51
 57
 63

• Be $x_2 = 2$:

$$y_{2,j}(2,x_j) = 2(5x_j + 2) + 1, \quad x_{2,j} = 5x_j + 2$$
 (3.2)

Table 3.2: The first ten values for (3.2).

x_j	1	2	3	4	5	6	7	8	9	10
$x_{2,j}$ $y_{2,j}$	7	12	17	23	28	33	38	43	48	53
$y_{2,j}$	15	25	35	47	57	67	77	87	97	107

• Be $x_3 = 3$:

$$y_{3,j}(3,x_j) = 2(7x_j+3)+1, \quad x_{3,j} = 7x_j+3$$
 (3.3)

Table 3.3: The first ten values for (3.3).

x_j	1	2	3	4	5	6	7	8	9	10
$x_{3,j}$	10	17	24	31	38	45	52	59	66	73
$x_{3,j}$ $y_{3,j}$	21	35	49	63	77	91	105	119	133	147

• Be $x_i = \ldots : \ldots$

Now, let us also have a look at the extension to \mathbb{Z} . At first, we do the change $x_i \to -x_i$.

$$y_{i,j}(x_i, x_j) = -(2((2(x_i - 1) + 1)x_j + (x_i - 1)) + 1)$$
(3.4)

To have attention on this case will still play an role in the next sections. Now, we do the change $x_j \to -x_j$.

$$y_{i,j}(x_i, x_j) = -(2((2x_i + 1)(x_j - 1) + x_i) + 1)$$
(3.5)

That's a simple case. We don't have to do anymore.

3.2 Representation: Odd-Not-Divisible Numbers

Now, we take again $y_{i,j}(x_i, x_j) = 2((2x_i + 1)x_j + x_i) + 1$ and rephrase it into an equation which descripes all odd numbers which are not divisible by $2x_i + 1$. That's not very hard. We can write

$$y_{i,j}(x_i, x_j) = 2((2x_i + 1)x_j + x_i - \mu(x_i)) + 1, \tag{3.6}$$

with

$$\mu(x_i) = 1, \dots, 2x_i, \quad \mu(x_i) \in \mathbb{N}. \tag{3.7}$$

Let's have a short look at the first values for $x_i = 1, 2, 3$.

• Be $x_1 = 1$:

$$y_{1,j}(1,x_j) = 2(3x_j + 1 - \mu(1)) + 1, \quad \mu(1) = 1,2, \quad x_{1,j} = 3x_j + 1$$
 (3.8)

Table 3.4: The first values for (3.8).

• Be $x_2 = 2$:

$$y_{2,j}(2,x_j) = 2(5x_j + 2 - \mu(2)) + 1, \quad \mu(2) = 1,\dots,4 \quad x_{2,j} = 5x_j + 1 \quad (3.9)$$

Table 3.5: The first values for (3.9).

• Be $x_3 = 3$:

$$y_{3,j}(3,x_j) = 2(7x_j + 1 - \mu(3)) + 1, \quad \mu(3) = 1,\dots,6 \quad x_{3,j} = 7x_j + 1 \quad (3.10)$$

Table 3.6: The first values for (3.10).

• Be $x_i = \ldots : \ldots$

Remark 3.2.1 (Value set) You can see, the valid value set start not till $x_{i,j} = x_i + 1$.

3.3 Odd-Not-Divisible Numbers: Intersection

Now we look at the intersection of two equations of the type (3.6) with (3.7). Hence, we start with

$$y_{i,j}^{(1)}\left(x_i^{(1)}, x_j^{(1)}\right) = 2\left(\left(2x_i^{(1)} + 1\right)x_j^{(1)} + x_i^{(1)} - \mu\left(x_i^{(1)}\right)\right) + 1$$

$$\mu\left(x_i^{(1)}\right) = 1, \dots, 2x_i^{(1)}$$
and
$$y_{i,j}^{(2)}\left(x_i^{(2)}, x_j^{(2)}\right) = 2\left(\left(2x_i^{(2)} + 1\right)x_j^{(2)} + x_i^{(2)} - \mu\left(x_i^{(2)}\right)\right) + 1$$

$$(3.11)$$

$$\mu\left(x_i^{(2)}\right) = 1, \dots, 2x_i^{(2)}.$$
 (3.12)

We do the intersection:

$$0 = \left(2x_i^{(1)} + 1\right)x_j^{(1)} - \left(2x_i^{(2)} + 1\right)x_j^{(2)} + x_i^{(1)} - x_i^{(2)} - \mu\left(x_i^{(1)}\right) + \mu\left(x_i^{(2)}\right)$$
(3.13)

$$= \left(2x_i^{(1)} + 1\right)\left(x_j^{(1)} - x_j^{(2)}\right) - 2\Delta x_i^{(1,2)}x_j^{(2)} - \Delta x_i^{(1,2)} - \mu\left(x_i^{(1)}\right) + \mu\left(x_i^{(2)}\right)$$
(3.14)

$$= \left(2x_i^{(1)} + 1\right)\left(x_j^{(1)} - x_j^{(2)}\right) - \left(2x_j^{(2)} + 1\right)\Delta x_i^{(1,2)} - \mu\left(x_i^{(1)}\right) + \mu\left(x_i^{(2)}\right)$$
(3.15)

For the second one, we used $x_i^{(2)} = x_i^{(1)} + \Delta x_i^{(1,2)}$, $x_i^{(2)} > x_i^{(1)}$ and $\Delta x_i^{(1,2)} \in \mathbb{N}$. To solve (3.13) respectively (3.14), we recognize that we have the boundary constraint, that $\left(2x_i^{(1)}+1\right)$ and $\left(2x_i^{(2)}+1\right)$ must not have any common factors.

Let's look at the case $\Delta x_i^{(1,2)} = 1$.

$$0 = \left(2x_i^{(1)} + 1\right)\left(x_j^{(1)} - x_j^{(2)}\right) - 2x_j^{(2)} - 1 - \mu\left(x_i^{(1)}\right) + \mu\left(x_i^{(2)}\right)$$
(3.16)

$$= \left(x_j^{(1)} - x_j^{(2)}\right) - \left(2x_i^{(1)} + 1\right)^{-1} \left(2x_j^{(2)} + 1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) \tag{3.17}$$

Now, let be

$$x_j^{(2)} = \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) x_i^{(1)}.$$
(3.18)

$$0 = x_j^{(1)} - \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) x_i^{(1)} - \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) \tag{3.19}$$

$$= x_j^{(1)} - \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) \left(x_i^{(1)} + 1\right). \tag{3.20}$$

It follows

$$x_j^{(1)} = \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right)\left(x_i^{(1)} + 1\right). \tag{3.21}$$

The equations (3.18) and (3.21) give us one particular solution. It's trivial to see, that we receive all solutions on \mathbb{Z} for

$$x_j^{(1)} = \left(2\left(x_i^{(1)} + 1\right) + 1\right)z^{(1,2)} + \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right)\left(x_i^{(1)} + 1\right) \tag{3.22}$$

$$x_j^{(2)} = \left(2x_i^{(1)} + 1\right)z^{(1,2)} + \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right)x_i^{(1)},\tag{3.23}$$

with $z^{(1,2)} \in \mathbb{Z}$.

Now, we switch to the general case for $\Delta x_i^{(1,2)}$. We start again with

$$0 = \left(2x_i^{(1)} + 1\right) \left(x_j^{(1)} - x_j^{(2)}\right) - 2\Delta x_i^{(1,2)} x_j^{(2)} - \Delta x_i^{(1,2)} - \mu\left(x_i^{(1)}\right) + \mu\left(x_i^{(2)}\right)$$

$$= \left(x_j^{(1)} - x_j^{(2)}\right) - \left(2x_i^{(1)} + 1\right)^{-1} \left(2\Delta x_i^{(1,2)} x_j^{(2)} + \Delta x_i^{(1,2)} + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right). \tag{3.24}$$

We can see that our Ansatz from the case $\Delta x_i^{(1,2)} = 1$ not works anymore, since we find $\Delta x_i^{(1,2)}$ only in two of our four terms in the second part of equation (3.24), and hence it is not possible to factor out it.

But we will see, that it only seems to be not possible. In fact, it is possible!

Let's look at $\mu(x_i)$ for our considerations. We know our belonging equation

$$x_{i,j} = (2x_i + 1) x_j + x_i - \mu(x_i), \quad \mu(x_i) = 1, \dots, 2x_i, \quad \mu(x_i) \in \mathbb{N}.$$

Now, we will assume, we have $\mu(x_i) \to \Delta x_i^{(1,2)} \mu(x_i)$ instead. With this transition, we get two questions, which are important to be answered.

1. For which values of $\Delta x_i^{(1,2)}$ we receive divisible solutions for $y_{i,j}(x_{i,j})$ and hence, which values for $\Delta x_i^{(1,2)}$ are prohibited?

We have the following two equations

$$x_{i,j'} = (2x_i + 1) x_{j'} + x_i \tag{3.25}$$

$$x_{i,j} = (2x_i + 1) x_j + x_i - \Delta x_i^{(1,2)} \mu(x_i).$$
 (3.26)

 $x_{i,j}$ gives us all divisible numbers and $x_{i,j}$ all not-divisible numbers for one particular multiplication table given by x_i . We make the intersection and receive

$$0 = (2x_i + 1)(x_j - x_{j'}) - \Delta x_i^{(1,2)} \mu(x_i).$$
 (3.27)

Later, in our recursive calculation steps, we will see, that $(2x_i + 1)$ is always a prime. Since also $\mu(x_i) = 1, \dots, 2x_i$, it follows from this two conditions and the uniqueness of prime factorization, that (3.27) is only be fulfilled for $\Delta x_i^{(1,2)} = n(2x_i + 1), n \in \mathbb{Z}$.

Thankfully, this case can never happen during our recursive prime number calculation! If we would choose $\Delta x_i^{(1,2)} = n(2x_i + 1)$, we would land on our divisible numbers for this multiplication table, and that is exactly NOT, what we want. Hence, we don't have this case.

2. Is the result of the transition $\mu\left(x_{i}\right) \to \Delta x_{i}^{\left(1,2\right)}\mu\left(x_{i}\right)$ still surjective?

We take

$$x_{i,j} = (2x_i + 1) x_j + x_i - \mu(x_i)$$
(3.28)

$$x_{i,j'} = (2x_i + 1) x_{j'} + x_i - \Delta x_i^{(1,2)} \mu(x_i).$$
 (3.29)

 $x_{i,j}$ is the equation before and $x_{i,j}$ after the transition. For the intersection, we receive

$$0 = (2x_i + 1)(x_j - x_{j'}) - \mu(x_i)\left(1 - \Delta x_i^{(1,2)}\right)$$
(3.30)

$$\Leftrightarrow \mu(x_i) = (2x_i + 1)(x_j - x_{j'}) \left(1 - \Delta x_i^{(1,2)}\right)^{-1}.$$
 (3.31)

We know $(2x_i + 1)$ is prime, hence $(x_j - x_j)$ has to be divisible. x_j and $\Delta x_i^{(1,2)}$ are fixed. Because x_j is variable we have a valid solution for every combination of x_j and $\Delta x_i^{(1,2)}$.

After getting our answers to this two questions, let's go back to our original problem.

The results of our questions show that it isn't a problem, to apply the transition $\mu(x_i) \to \Delta x_i^{(1,2)} \mu(x_i)$ on our equation (3.24)

$$0 = \left(x_j^{(1)} - x_j^{(2)}\right) - \left(2x_i^{(1)} + 1\right)^{-1} \Delta x_i^{(1,2)} \left(2x_j^{(2)} + 1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right). \tag{3.32}$$

Because we know that $\Delta x_i^{(1,2)} \neq 2x_i^{(1)} + 1$, we can do this without concerns. If we compare (3.32) with (3.17) from our $\Delta x_i^{(1,2)} = 1$ case, we see that our new equation differs from the old one, only by the factor $\Delta x_i^{(1,2)}$ in front of the second term.

Now, let be again

$$x_j^{(2)} = \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) x_i^{(1)}.$$
(3.33)

After analog calculation of our prior case, we receive

$$x_j^{(1)} = \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right) \left(x_i^{(1)} + \Delta x_i^{(1,2)}\right). \tag{3.34}$$

For all solutions on \mathbb{Z} we have

$$x_{j}^{(1)} = \left(2\left(x_{i}^{(1)} + \Delta x_{i}^{(1,2)}\right) + 1\right)z^{(1,2)} + \left(1 + \mu\left(x_{i}^{(1)}\right) - \mu\left(x_{i}^{(2)}\right)\right)\left(x_{i}^{(1)} + \Delta x_{i}^{(1,2)}\right)$$

$$(3.35)$$

$$x_j^{(2)} = \left(2x_i^{(1)} + 1\right)z^{(1,2)} + \left(1 + \mu\left(x_i^{(1)}\right) - \mu\left(x_i^{(2)}\right)\right)x_i^{(1)},\tag{3.36}$$

with $z^{(1,2)} \in \mathbb{Z}$.

But have attention, that this is the solution for

$$x_{i,j}^{(1)}\left(x_i^{(1)}, x_j^{(1)}\right) = \left(2x_i^{(1)} + 1\right)x_j^{(1)} + x_i^{(1)} - \Delta x_i^{(1,2)}\mu\left(x_i^{(1)}\right) \tag{3.37}$$

$$x_{i,j}^{(2)}\left(x_i^{(2)}, x_j^{(2)}\right) = \left(2x_i^{(2)} + 1\right)x_j^{(2)} + x_i^{(2)} - \Delta x_i^{(1,2)}\mu\left(x_i^{(2)}\right) \tag{3.38}$$

now! $\mu\left(x_{i}^{(1)}\right)$ and $\mu\left(x_{i}^{(2)}\right)$ are the same like before!

4 The recursive calculation

Contents

4.1	Rec	ursion step:	$n^{(0)}$	=0	١.										15
	4.1.1	Calculation													15
	4.1.2	Results													15
4.2	Rec	ursion step:	$n^{(0)}$	= 1											16
	4.2.1	Calculation													16
	4.2.2	Results													16
4.3	Rec	$n^{(0)}$	= 2	٠.										17	
	4.3.1	Calculation													17

In this section, now, we do the final recursive calculation. To understand the deep structure we will do this by discussing the first steps by manually calculation. We will see, it exists different ways how you can look at each situation/problem in each step, hence this will mainly a discussion of this different ways.

4.1 Recursion step: $n^{(0)} = 0$

4.1.1 Calculation

Let's start with our step zero. It's called zero, since we start with the simplest first possible prime generation. Since we know 3 is the smallest odd number at all, we know 3 has to be a prime. Hence we have our first prime.

4.1.2 Results

- Known prime $x_{i,j}$: 1
- Known prime $y_{i,j}$: 3
- Known prime number range for $x_{i,j}$: [1, 1]
- Known prime number range for $y_{i,j}$: [1, 3]

That's of course not much and trivial, but hey, it's a beginning!

4.2 Recursion step: $n^{(0)} = 1$

4.2.1 Calculation

Now, we can start with our first step. From $n^{(0)} = 0$, we know 3(1).

Notation Note: From now on I will write y(x) for shortness. For example, 3(1) means $3 = 2 \cdot 1 + 1$. If I only write 1, I mean x = 1.

So, let's look again at the values for $x_{1,j}$ from

$$y_{1,j}(1,x_j) = 2(3x_j+1)+1, \quad x_{1,j} = 3x_j+1.$$
 (4.1)

Table 4.1: The first values for $x_{1,j}$ are marked in bold. Italic values are within the not describable range.

What we can see from our table 4.1 are the next two sure primes, the numbers 5(2) and 7(3). All larger numbers could theoretically still have a divider, hence we only know this two additional numbers surely, at the moment.

We can describe this two numbers with (3.6) and (3.7) by

$$x(1,1) = 3 \cdot 1 + 1 - \mu(1), \tag{4.2}$$

with

$$\mu(1) = 1, 2. \tag{4.3}$$

and a maximum value for $x_j = 1$.

4.2.2 Results

Only from step $n^{(0)} = 1$:

- Known prime $x_{i,j}$: 2, 3
- Known primes $y_{i,j}$: 5, 7
- Known prime number range for $x_{i,j}$: [2, 4]
- Known prime number range for $y_{i,j}$: [5, 9]

From all steps until now:

- Known prime $x_{i,j}$: 1, 2, 3
- Known primes $y_{i,j}$: 3, 5, 7
- Known prime number range for $x_{i,j}$: [1,4]
- Known prime number range for $y_{i,j}$: [1, 9]

4.3 Recursion step: $n^{(0)} = 2$

4.3.1 Calculation

Now, from our steps above we have

$$x\left(1, x_{j}^{(1)}\right) = 3 \cdot x_{j}^{(1)} + 1 - \Delta x_{i}^{(a,b)} \mu\left(1\right)$$
 (4.4)

$$x\left(2, x_{j}^{(2)}\right) = 5 \cdot x_{j}^{(2)} + 2 - \Delta x_{i}^{(a,b)} \mu\left(2\right) \tag{4.5}$$

$$x\left(3, x_{j}^{(3)}\right) = 7 \cdot x_{j}^{(3)} + 3 - \Delta x_{i}^{(a,b)} \mu(3),$$
 (4.6)

with $\mu(1) = 1, 2, \ \mu(2) = 1, 2, 3, 4, \ \mu(3) = 1, 2, 3, 4, 5, 6$ and $a, b \in \{1, 2, 3\}, \ a \neq b$. Let's have a look at the values (including $\mu = 0$).

Table 4.2: The first values for $x_{i,j}$ are marked in bold. Italic values are within the not describable range.

$\overline{x_{1,j}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$x_{2,j}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$x_{3,j}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

Now, at this point we have different possible ways, how we can calculate more primes from this. We will discuss this different ways step by step.

At first, we make an intersection between (4.4) and (4.5), $\Delta x_i^{(1,2)} = 1$,

$$0 = 3 \cdot x_{j}^{(1)} - 5 \cdot x_{j}^{(2)} + 1 - 2 - \mu (1) + \mu (2)$$

= $3 \cdot x_{j}^{(1)} - 5 \cdot x_{j}^{(2)} - 1 - \mu (1) + \mu (2)$. (4.7)

From the main section prior to this, we know our solutions with (3.22) and (3.23).

$$x_i^{(1)} = 5z^{(1,2)} + (1 + \mu(1) - \mu(2)) 2 \tag{4.8}$$

$$x_j^{(2)} = 3z^{(1,2)} + (1 + \mu(1) - \mu(2)) 1,$$
 (4.9)

 $z^{(1,2)} \in \mathbb{Z}$.

Now, let's have a look at the intersection between (4.4) and (4.6), $\Delta x_i^{(1,3)} = 2$,

$$0 = 3 \cdot x_{j}^{(1)} - 7 \cdot x_{j}^{(2)} + 1 - 3 - 2\mu (1) + 2\mu (3)$$

= $3 \cdot x_{j}^{(1)} - 7 \cdot x_{j}^{(2)} - 2 - 2\mu (1) + 2\mu (3)$. (4.10)

Our solutions with (3.35) and (3.36) are

$$x_{i}^{(1)} = 7z^{(1,2)} + (1 + \mu(1) - \mu(3)) 3 \tag{4.11}$$

$$x_j^{(2)} = 3z^{(1,2)} + (1 + \mu(1) - \mu(3)) 1,$$
 (4.12)

 $z^{(1,2)} \in \mathbb{Z}$.

List of Figures

List of Tables

3.1	The first ten values for (3.1)	9
3.2	The first ten values for (3.2)	9
3.3	The first ten values for (3.3)	10
3.4	The first values for (3.8)	10
3.5	The first values for (3.9)	11
3.6	The first values for (3.10)	11
4.1	The first values for $x_{1,j}$ are marked in bold. Italic values are within the not describable range	16
4.9		10
4.2	The first values for $x_{i,j}$ are marked in bold. Italic values are within the	-1 - -
	not describable range	17

Listings

Bibliography

Changelog