CLASE 3 Unidad 1

ARQUITECTURA Y SISTEMAS OPERATIVOS

Profesor: Pablo Andres Gonzales Camargo

CLASIFICACION DE CIRCUITOS LOGICOS

El valor de las salidas, dependen únicamente del valor de las entradas

CIRCUITOS COMBINACIONALES

El valor de las salidas depende del valor de las entradas y de valores "pasados" de las salidas, por lo que se dice que tienen "memoria".

FUNCIONES LÓGICAS

Con la combinación de varias operaciones AND, OR, NOT se pueden construir distintos circuitos lógicos que realizan distintas operaciones muy útiles y que se emplean en la construcción de sistemas digitales completos.

- Multiplexor MUX
- Demultiplexor DEMUX
- Codificador CODEC
- Sumador/Restador
- Registros REGs
- Contadores

COMBINACIONALES

SECUENCIALES

MULTIPLEXOR

Un Multiplexor "MUX" pasa la información procedente de varias líneas de entrada I_0 ... I_n a una única línea de salida Z según una entrada especial de Selección Sel.

$$\mathbf{Z} = \operatorname{Sel'} \mathbf{I}_0 + \operatorname{Sel} \mathbf{I}_1$$

- a. Construir la tabla de verdad
- b. Construir el circuito equivalente

MULTIPLEXOR

Circuito Lógico

Tabla de verdad

	Salid		
Sel	10	I1	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

MULTIPLEXOR (varias entradas)

- ¿Cómo se construye por ejemplo un MULTIPLEXOR (MUX) de 4 entradas de 1
 bit? u otro de más entradas como 8,16, 32, etc
- Las tablas de verdad tendrían miles de filas por analizar!! (2⁴=16 filas; 2⁸=256)

SUMADOR

Este circuito realiza (simula) la SUMA ARITMÉTICA (de cantidades) entre 2 números de entrada A y B junto con un acarreo de entrada C_{in} en BINARIO y devuelve un resultado S y un acarreo de salida C_{out}

FUNCIONES NO REDUCIDAS

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}$$

$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

FUNCIONES REDUCIDAS

$$S = (A \oplus B) \oplus C_{in}$$

$$C_{out} = (A \oplus B)C_{in} + AB$$

- a. Construir la tabla de verdad
- b. Construir el circuito equivalente

SUMADOR

Circuito Lógico

Tabla de verdad

Entradas			Salidas	
Α	В	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

COMPARADOR DE 1 BIT

- Es un circuito que compara 2 entradas de 1 bit cada una.
- Verifica si son iguales, si uno es mayor que el otro o si es menor.
- Para cada uno de estos casos tiene 3 salidas que se activan sólo una a la vez.

$$\mathbf{Z}_{e} = AB + A'B'$$

 $\mathbf{Z}_{g} = AB'$
 $\mathbf{Z}_{l} = A'B$

*(**e**=equals, **g**=A greater than B, **l**= A lesser than B)

- a. Construir la tabla de verdad
- b. Construir el circuito equivalente

COMPARADOR DE 1 BIT

Tabla de verdad

Entradas		Salidas			
A	В	Ze	Zg	ZI	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

UNA ALU MUY SIMPLE DE 1 BIT

- Combinando los circuitos combinacionales vistos, se construyó una pequeña ALU de 1 bit que realiza las siguientes operaciones: AND, OR, XOR y SUMA/RESTA.
- Tiene un total de 6 entradas y 2 salidas (todas de 1 bit)
- La operación se elije con los bits Oper que forman un selector.
- En la imagen se seleccionó hacer una SUMA (+/- debe ser '0')

