Creating Tensors and Operations

Creating Tensors

- Every tensor is an instance of the Tensor class.
- A tensor may contain numbers, strings, or Boolean values. Every element of a tensor must have the same type.
- Tensors can be created, transformed, and operated upon using functions of the tf package.
- Each element in the Tensor has the same data type, and the data type is always known. The shape might be only partially known.

Creating Tensors with Known Values

Function	Description
<pre>constant(value, dtype=None, shape = None, name = 'Const', verify_shape=False)</pre>	Returns a tensor containing the given value
zeros(shape, dtype=tf.float32, name = None)	Returns a tensor filled with zeros
ones(shape, dtype=tf.float32, name=None)	Returns a tensor filled with ones
fill(dims, value, name=None)	Returns a tensor filled with the given value
linspace(start, stop, num, name=None)	Returns a tensor containing a linear range of values
<pre>range(start, limit, delta=1, dtype=None, name='range')</pre>	Returns a tensor containing a range of values
range(limit, delta=1, dtype=None, name='range')	Returns a tensor containing a range of values

Creating Tensors with Random Variables

Function	Description
<pre>random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)</pre>	Creates a tensor with normally distributed values
<pre>truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)</pre>	Creates a tensor with normally distributed values excluding those lying outside two standard deviations
<pre>random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)</pre>	Creates a tensor with uniformly distributed values between the minimum and maximum values
random_shuffle(tensor, seed=None, name=None)	Shuffles a tensor along its first dimension
set_random_seed(seed)	Set the seed value for all random number generation in the graph

random_normal & truncated_normal

Functions for Transforming Tensors

Function	Description
cast(tensor, dtype, name=None)	Changes the tensor's data type to the given type
reshape(tensor, shape, name=None)	Returns a tensor with the same elements as the given tensor with the given shape
squeeze(tensor, axis=None, name=None, squeeze_dims=None)	Removes dimensions of size 1
reverse(tensor, axis, name=None)	Reverses given dimensions of the tensor
slice(tensor, begin, size, name=None)	Extracts a portion of a tensor
stack(tensors, axis=0, name='stack')	Combines a list of tensors into a tensor of greater rank

Operations

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural network building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

Wizard of Div

```
 a = tf.constant([2, 2], name='a') \\ b = tf.constant([[0, 1], [2, 3]], name='b') \\ with tf.Session() as sess: \\ print(sess.run(tf.div(b, a))) <math display="block"> \Rightarrow [[0 \ 0] \ [1 \ 1]] \\ print(sess.run(tf.divide(b, a))) \\ print(sess.run(tf.truediv(b, a))) \\ print(sess.run(tf.truediv(b, a))) \\ print(sess.run(tf.floordiv(b, a))) \\ print(sess.run(tf.realdiv(b, a))) \\ \Rightarrow \# Error: only works for real values \\ \end{aligned}
```