REPRESENTAÇÃO DE SINAIS

Calcule a frequência angular (caso seja possível) e os valores médio e eficaz dos sinais da Figura 1(a) - (e). Esboce ainda, para cada um deles, a componente contínua e a componente alternada.

Figura 1

RUDIMENTOS DE ELECTRICIDADE E MAGNETISMO

2 Considere a forma de onda de corrente (i(t)) da Figura 2. 2.1 Diga qual é a o período (T), a i(t) . mA frequência (f), e a frequência angular (ω) 60 de i(t). 50 T =40 30 20 10 ō t. ms 18 v(t), mV 2.2 Qual é o valor médio de *i*(t)? $V_{med} =$ 2.3 Admitindo que i(t) é a forma de onda da 2 4 6 8 10 12 14 16 18 t, ms corrente num indutor com um coeficiente de auto-indução L = 1 mH, esboce a forma de onda da tensão (v(t))aos seus terminais. Figura 2 Considere a forma de onda de tensão (v(t)) da Figura 2. v(t), V

- 3
- 3.1 Diga qual é a o período (T), a frequência (f), e a frequência angular (ω) de v(t).

$$T =$$

$$\omega =$$

3.2 Qual é o valor médio de v(t)?

$$V_{med} =$$

3.3 Admitindo que v(t) é a forma de onda da tensão num indutor com uma indutância L = 1 mH, esboce a forma de onda da corrente (i(t)) em L (suponha que em t = 0 a corrente é 0 A).

Figura 3

4 Na Figura 4, dois enrolamentos de cobre de N_1 e N_2 espiras abraçam um anel de material ferromagnético. Admita que a resistência dos enrolamentos é desprezável e que a relutância do anel é muito menor do que do meio envolvente.

Demonstre que
$$\frac{v_1}{v_2} \approx \frac{N_1}{N_2}$$
.

Figura 4

5 Considere a experiência ilustrada pela Figura 5. Explique o que se observa quando se abre e fecha o interruptor.

Figura 5

6 Considere a experiência ilustrada pela Figura 6. Explique o que se observa quando se aproxima ou afasta o imane do enrolamento condutor.

Figura 6

7 Sabendo que a amplitude do vector indução magnética \vec{B} (Figura 7) é 0.2 T e que o condutor de comprimento l = 10 cm é percorrido por uma corrente I = 2 A, calcule a amplitude da força \vec{F} que actua sobre o condutor.

Figura 7

8 Sabendo que a amplitude do vector indução magnética \vec{B} (Figura 8) é 0.5 T e que o condutor de comprimento l=1 m se desloca a uma velocidade v=10 m/s, calcule o valor da f.e.m. ($e_{\rm ind}$) induzida aos terminais.

Figura 8

ANÁLISE DE CIRCUITOS

Corrente Contínua

9 Na figura seguinte *V* representa um voltímetro e *A* um amperímetro. Se o amperímetro indicar 0.6 mA, quanto é que deverá marcar o voltímetro?

10 Se $R_b = 3R_a$, qual a tensão entre A e B (sabendo que V representa um voltímetro)?

Figura 10

- 11 Escolha das seguintes frases aquela que lhe parece verdadeira:
- A resistência resultante da associação de várias resistências em paralelo é maior do que qualquer das resistências componentes.
- A tensão total de um sistema com várias resistências em paralelo é igual à soma das tensões em cada resistência do sistema.
- A potência total dissipada num sistema com várias resistências em paralelo é igual à soma das potências dissipadas em cada resistência do sistema.
- Quando a um sistema de resistências em paralelo se junta mais outra, a corrente total que o sistema absorve diminui.
- 12 Diga, relativamente ao circuito da Figura 11, qual das seguintes afirmações é verdadeira:

 \square Se aumentarmos o valor R_2 , aumenta o valor de I_1 .

 \square Se diminuirmos o valor de R_2 , diminui a queda de tensão em R_1 .

 \square A variação do valor de R_2 não altera a indicação do amperímetro.

 \square A variação de R_2 não altera a tensão nos terminais da lâmpada.

13	Nas instalações eléctricas as lâmpadas (e outros equipamentos) são normalmente montadas em paralelo, sendo por isso sujeitas à mesma tensão de alimentação. Assim sendo, indique que afirmações lhe parecem correctas:			
	Uma lâmpada de 60 W apresenta uma resistência maior do que uma lâmpada de 40 W, uma vez que pela expressão da potência $P = RI^2$ se conclui que esta aumenta quando a resistência aumenta.			
	Uma lâmpada de 60 W apresenta mais resistência do que uma lâmpada de 40 W , pois através da expressão $P = UI$ se conclui que a potência aumenta quando a tensão aumenta, porque a tensão é tanto maior quanto maior é a resistência.			
	A resistência de uma lâmpada de 60 W é menor do que a de uma lâmpada de 40 W, pois a tensão a quambas ficam sujeitas é a mesma, e a primeira absorve mais corrente.			
	Nenhuma das frases está correcta.			
14	Determine a resistência equivalente do circuito da Figura 12. $\begin{array}{c} 20\Omega \\ 5\Omega \\ \hline \\ 000 \\ \hline \\$			
15	Calcule o valor da energia (em Wh) consumida no circuito da Figura 13 ao fim de 1800 segundos. 20 30 WW WW 30 20 Figura 13			
16	Considere o circuito da Figura 14 e determine, utilizando as leis de <i>Kirchoff</i> , o valor da corrente que o amperímetro deverá acusar.			
17	Não há condutor que não apresente alguma resistência à passagem de corrente eléctrica. Sucede que essa resistência (indique as afirmações verdadeiras): Aumenta se o comprimento do condutor diminuir. Aumenta se a secção do condutor aumentar. Diminui quando a temperatura do condutor aumenta. É muito influenciada pelo material de que é constituído o condutor.			

- 18 Quando se liga um fio de cobre entre os bornes ou terminais de uma bateria diz-se que:
- ☐ A bateria está em carga.
- ☐ A bateria está em vazio.
- ☐ A bateria está em curto-circuito.
- ☐ A bateria está em circuito aberto.
- 19 Suponha que se liga um ohmímetro da forma que a indicada na Figura 15. Qual o valor acusado pelo aparelho de medida?

Figura 15

20 Para o circuito da Figura 16, qual o valor máximo que o amperímetro pode acusar?

Figura 16

21 No circuito da Figura 17, L_1 , L_2 e L_3 representam lâmpadas de 24 V / 36 W. Calcule o valor da fonte de tensão E. Qual é a potência fornecida pela fonte?

- 22 Para o circuito da Figura 18, determine, aplicando as leis de Kirchoff:
- 22.1 O valor de V_a
- 22.2 O valor de R
- 22.3 A corrente nas resistências R e 4R
- 22.4 A potência fornecida pelas fontes

Figura 18

23 Utilize o teorema da sobreposição para determinar a corrente em cada ramo do circuito da Figura 19. Sabe-se que:

$$V_{\rm a} = 20 \text{ V}, R_{\rm a} = 15 \Omega$$

$$V_{\rm b} = 40 \text{ V}, R_{\rm b} = 10 \Omega$$

$$V_c = 30 \text{ V}, R_c = 20 \Omega$$

Figura 19

- **24** Considere o circuito da Figura 20. Aplicando o teorema de *Thevenin*, calcule a corrente no receptor (*R*_L) para os seguintes valores de resistência:
 - $0.1 \text{ k}\Omega$, $2 \text{ k}\Omega$, $3 \text{ k}\Omega$ e $6 \text{ k}\Omega$.

25 Calcule o circuito equivalente de *Thevenin* entre os pontos A e B do circuito da Figura 21 (considerando R_L como a resistência de carga).

26 Aplique o teorema de *Thevenin* para substituir todo o circuito da figura à excepção do ramo que contém a resistência *R*. A f.e.m. da bateria é de 450 V. Determine a corrente em *R* quando esta resistência varia entre 0 e 10 Ω.

Figura 22

- 27 Considere o circuito da Figura 23.
- 27.1 Utilize o Teorema da Sobreposição para determinar a potência dissipada em cada uma das resistências.
- 27.2 Mostre que a potência total dissipada é igual à potência fornecida.

- **28** Considere o circuito da Figura 24. Obtenha o valor da corrente *i* utilizando:
- 28.1 O teorema de Thevenin.
- 28.2 O teorema de Norton.
- 28.3 O teorema da sobreposição.

Figura 24

Corrente Alternada

- 29 Num receptor de corrente alternada desenvolve-se uma potência activa de 500 W, para uma tensão aplicada de 32 V_{AC}. O ângulo de desfasamento entre tensão e corrente no circuito é de 0º. Determine a intensidade de corrente e impedância do receptor e a potência reactiva do circuito.
- 30 Considere o circuito RC da Figura 25. Determine a intensidade da corrente eléctrica que percorre o circuito, bem como as quedas de tensão na resistência e no condensador. Calcule o valor das potências activa, reactiva e aparente do circuito. Qual é a energia fornecida ao circuito durante duas horas de funcionamento?

Figura 25

31 Considere o circuito RLC da Figura 26.

Determine a intensidade da corrente eléctrica que percorre a bobine e as quedas de tensão na resistência, bobine e condensador.

Figura 26

32 Sabendo que a corrente total do circuito da Figura 27 é de 2 A, determine o valor da tensão *V*.

Figura 27

33 Determine a corrente à saída do gerador da Figura 28.

Figura 28

- As características nominais dum receptor de corrente alternada monofásico são as seguintes: 2kW, 230V, 50Hz, $\cos(\varphi) = 0.94$ indutivo.
 - Calcule a corrente e a potência absorvida pelo receptor, quando este é alimentado por uma tensão de 145V, 50Hz.
- Quando se aplica uma tensão contínua de 30 V a uma determinada bobine, esta dissipa uma potência de 150W. Aplicando uma tensão alternada sinusoidal de 230V, 50 hz, a potência absorvida é de 3174 W.
- 35.1 Calcule a reactância da bobine.
- 35.2 Qual é, nas condições indicadas, a potência aparente fornecida à bobine.
- 36 Suponha que se comprou um equipamento de radiografia monofásico, cujas características nominais são: 1.7 kW, 190 V, 50 Hz, cos(φ) = 0.819 (indutivo). A tensão de alimentação de que dispõe é de 230V, 50Hz.
- 36.1 Faça um esquema mostrando a forma de ligar o receptor de tal forma que este fique a funcionar nas suas condições nominais. Acrescente o(s) componente(s) que entenda necessários.
- 36.2 Dimensione o(s) componente(s) acrescentados.
- 36.3 Calcule o factor de potência do conjunto.
- 37 Um motor monofásico de um sistema de ar condicionado de um hospital, tem potência nominal 0.25 CV, tensão nominal de 110V, 50Hz, tem um rendimento de 60% e um factor de potência de 0.6_{ind}. Pretende-se utilizar esse motor numa rede de 230V, 50 HZ. Para esse efeito coloca-se em série com o motor uma resistência. Dimensione essa resistência.
- 38 Um receptor que é alimentado com uma tensão monofásica de 230 V, 50 Hz, consome uma corrente de 15 A, e apresenta um factor de potência = 0.707_{ind}. Determine:
- 38.1 O valor das potências activa, reactiva e aparente.
- 38.2 Considerando-se que esse receptor funciona ininterruptamente, calcule o valor da energia eléctrica que consome durante 1 ano.
- 38.3 Dimensione um condensador que corrija o factor de potência para a unidade e indique como ligá-lo. Qual será o valor da corrente no condensador?
- 38.4 Para o conjunto receptor + condensador calcule: a corrente total; a potência aparente; a potência activa; a potência reactiva.
- **39** Um consultório de dentista é alimentado por uma tensão de 230V, 50Hz. Nele estão instalados os seguintes equipamentos:
 - Lâmpadas de iluminação de incandescência, que no seu conjunto, constituem um receptor cujas características nominais são: 7 kW, 230 V, 50 Hz
 - Uma cadeira de tratamentos accionada por um motor monofásico, em cuja placa de características estão inscritas as seguintes características nominais: 7.5CV, 230V, 50Hz, $\cos(\varphi) = 0.79_{ind}$, rendimento $\eta = 83\%$
 - Ar condicionado, cujas características nominais são: 6 kW, 230 V, 50 Hz, $\cos{(\phi)} = 0.81$ indutivo.

Sabendo que:

- a iluminação está acesa 8 horas por dia,
- a cadeira funciona 16 horas por dia,
- o ar condicionado funciona 10 horas por dia.

Calcule o consumo diário de energia do consultório.

- 40 Uma rede eléctrica de 230V/50Hz, alimenta diversos receptores cujas características nominais são:
 - Motor de corrente alternada monofásico: 10 CV, 220V, 50Hz, $\cos(\varphi) = 0.76_{ind}$, $\eta=85\%$
 - Iluminação: 30 lâmpadas de 115 V, 100 W cada uma.
- 40.1 Faça um esquema eléctrico mostrando a forma como os receptores devem ser ligados de modo a que todos fiquem a funcionar nas condições nominais.
- 40.2 Calcule a corrente total nas linhas de alimentação
- 40.3 Calcule o custo da energia eléctrica gasta pela instalação durante 8 horas à plena carga. O fornecedor de energia eléctrica, vende a energia ao preço seguinte (conforme o factor de potência da instalação):

$0.5 < \cos(\varphi) < 0.8$	13 cêntimos por kWh		
$0.8 \le \cos(\varphi) < 1.0$	10 cêntimos por kWh		

- 41 Considere o circuito da Figura 29.
- 41.1 Calcule a potência activa e potência reactiva fornecidas pela fonte de tensão. Compare a potência activa com a potência dissipada na resistência.
- 41.2 Apresente o diagrama de fasores do circuito ($\overline{V} \in \overline{I}$).

Figura 29

42 Repita a questão 41 para o circuito da Figura 30. Que pode concluir quanto à função do condensador no circuito?

No circuito da Figura 31, R representa a resistência de uma estufa de 2 kW; M representa um motor monofásico de corrente alternada de 5 kW (potência de saída), com um rendimento $\eta = 80\%$ e um $\cos(\phi) = 0.8$ (factor de potência indutivo). Calcule a corrente no cabo (\bar{I}) que, a partir da rede de energia eléctrica, alimenta o conjunto motor + estufa.

Figura 31

DÍODOS

44 Calcule, para os circuitos seguintes, o potencial nos pontos indicados (considere a queda de tensão de condução directa nos díodos igual a 0,7 V).

Figura 32

- 45 Escolha a afirmação verdadeira.
- A colocação do díodo impede que a lâmpada acenda, porque o potencial em C é negativo.
- ☐ Se inverter a polaridade do díodo a lâmpada acende.
- O díodo conduz porque está polarizado directamente e a lâmpada acende.
- Se o potencial em C for forçado a 0 V nunca existe corrente no circuito.

Figura 33

- **46** No circuito da Figura 34, L_1 , L_2 e L_3 são lâmpadas de 12V. Qual (ou quais) da(s) lâmpada(s) acende quando o comutador está na posição 1, 2, e 3?
 - 1 _____
 - 2 _____
 - 3 _____

Figura 34

- 47 Considere o circuito da Figura 35.
- 47.1 Determine a tensão aos terminais de R_L do circuito da para as situações em que o interruptor (I) se aberto e fechado (tenha a atenção a queda de tensão no díodo em condução).

l aberto:

I fechado:

Figura 35

47.2 Calcule a corrente na resistência de 2 Ω quando o interruptor está fechado_

- 48 Considere o circuito da Figura 36.
- 48.1 Esboce as formas de onda da tensão e da corrente na carga (resistência *R*).
- 48.2 Esboce as formas de onda da tensão e da corrente no díodo.
- 48.3 Qual é o pico de tensão inversa no díodo?
- 48.4 Calcule os valores máximos da tensão e da corrente na carga.

- 49 Suponha que se coloca um condensador em paralelo com a carga conforme mostra a figura abaixo.
- 49.1 Qual é o valor máximo da tensão no condensador?
- 49.2 Qual o valor médio da tensão de saída em vazio?
- 49.3 Qual é o valor máximo da tensão inversa no díodo em vazio?
- 49.4 Qual o valor eficaz da tensão de saída em vazio.

Figura 37

- 50 Nas alíneas seguintes tenha em atenção a forma de onda aplicada à entrada dos circuitos para indicar qual a forma de onda correspondente à saída (considere o díodo ideal).
- 50.1 (Ver Figura 38.)

Figura 38

50.2 (Ver Figura 39.)

Figura 39

51 Considere o circuito da Figura 40 e, tendo em atenção o sinal aplicado à sua entrada, esboce a forma de onda observada na saída (considere o díodo ideal).

Sabendo que a tensão à entrada do circuito da Figura 41 (v_{entrada}) é uma sinusóide com 6 V de amplitude de pico, esboce a forma de onda à saída do circuito ($v_{\text{saída}}$).

Figura 41

53 Sabendo que a tensão à entrada do circuito da Figura 42 ($v_{entrada}$) é uma sinusóide com 5 V de amplitude de pico, esboce a forma de onda (em regime permanente) à saída do circuito ($v_{saída}$).

Figura 42

Díodo de Zener

54 No circuito da Figura 43, o díodo de *Zener* de 6 V em paralelo com uma lâmpada de 6 V / 60 mA (L), está ligado através duma resistência de protecção a uma fonte de tensão ajustável. Descreva o comportamento da lâmpada à medida que se aumenta a tensão da fonte entre 3 V e 9 V.

Figura 43

55 Calcule, para o circuito da Figura 44, o potencial nos pontos indicados (considere a queda de tensão de condução directa nos díodos igual a 0,7 V):

+10V ο 220Ω ¥ — V — V — V 5.1 V — (b)

Figura 44

56 Calcule o potencial no ponto A do circuito da Figura 45 para as situações em que o interruptor se encontra nas posições I e II (considere como aproximação que a queda de tensão nos díodos quando directamente polarizados é 0.7 V).

12V

Figura 45

57 Calcule, para o circuito da Figura 46, o potencial nos pontos *A* e *B* (considere a queda de tensão de condução directa nos díodos igual a 0,7 V):

Potencial	l₁ e l₂ abertos	I ₁ fechado I ₂ aberto	I ₁ aberto I ₂ fechado
Α	V	v	v
В	V	V	V

Figura 46

58 Considere o circuito da figura ao lado. Determine o potencial no ponto *A* quando o comutador se encontra nas posições 1, 2, 3, 4 (admita que os díodos são ideais).

1 _	 	
2 _	 	
3 _	 	
4		

Figura 47

Saída

Considere o circuito da figura 48 e tendo em atenção a forma de onda aplicada à sua entrada indique qual a forma de onda correspondente à saída (considere o díodo ideal).

Figura 48

60 Considere o circuito da figura 48:

- 60.1~ Esboce as formas de onda da tensão e da corrente na resistência (V_R) e no díodo de Zener.
- 60.2 Calcule o valor máximo da corrente nas alternâncias positiva e negativa.
- 60.3 Calcule a potência máxima dissipada no díodo de Zener nas alternâncias positiva e negativa.

TRANSÍSTORES

- 61 Relativamente aos circuitos das figuras seguintes, calcule os valores que estão por determinar (indicados com "?" e diga em que região se encontra a funcionar cada transístor. (Nota: é possível que alguns dos transístores estejam defeituosos.)
- 61.1 (ver Figura 49)

61.2 (ver Figura 50)

Figura 50

61.3 (ver Figura 51)

Figura 51

- 62 Considere o circuito da Figura 52.
- 62.1 Calcule V_0 quanto $V_i = +12$ V. Qual é nestas condições o modo de funcionamento do transístor?
- 62.2 Para $V_i = +12V$, qual é o maior valor possível para R_1 de tal modo que o funcione na saturação?
- 62.3 Se V_i = 1V e R_1 = 15 kΩ, qual o valor de V_0 ? Qual é, neste caso, a zona de funcionamento do transístor?

Figura 52

No circuito da Figura 53 (a) o ganho do transístor (de silício) é $\beta = 100$ e o relé utilizado é de 6V/5mA. O componente designado por D_f é um fotodíodo, tratando-se de um sensor de luz cuja característica se apresenta na Figura 53 (b).

63.1 Explique detalhadamente o funcionamento do circuito e indique pelo menos uma aplicação prática do mesmo.

63.2 Qual a iluminação mínima (intensidade de luz - lux) necessária para o relé actuar?

FET'S

- 64 Para o *n*-MOSFET da Figura 54 $V_t = 1$ V e $k'_n W/L = 0.5 \text{ mA/V}^2$.
- 64.1 Determine o ponto de funcionamento ($V_{\rm DS}$ e $I_{\rm D}$) e diga em que região funciona o transístor para: (a) $V_{\rm GS}$ = 0.5V; (b) $V_{\rm GS}$ = 3V, (c) $V_{\rm GS}$ = 4V.

- Um *n*-MOSFET de intensificação com $V_t = 2V$ conduz uma corrente $I_D = 1$ mA quanto $V_{GS} = V_{DS} = 3$ V.
- 65.1 Admitindo que na zona de saturação I_D não depende de V_{DS} , calcule o valor da corrente de dreno para V_{GS} = 4 V e V_{DS} = 5 V.
- 65.2 Calcule o valor da resistência de dreno r_{DS} , para V_{GS} = 4 V e pequenos valores de V_{DS} .
- 66 Para um transístor PMOS do tipo intensificação $k'_n \frac{W}{L} = 100 \mu A/V^2$ e $V_t = -2$ V. A sua *gate* encontra-se ligada à terra e a fonte ligada a +5V.
- 66.1 Qual é o valor máximo da tensão que pode ser aplicada ao dreno de tal modo que o transístor funcione na zona de saturação?
- 66.2 Admitindo que na zona de saturação $I_{\rm D}$ não depende de $V_{\rm DS}$, calcule o valor da corrente de dreno para $V_{\rm DS} = -5$ V.
- 67 Para o n-MOSFET da Figura 55 $V_{\rm t} = 2{\rm V}$ e $K_n'W/L = 0.8~{\rm mA/V}^2$.

 Dimensione os componentes do circuito de tal modo que $I_{\rm D} = 0.4~{\rm mA}$ e $V_{\rm D} = +1~{\rm V}$.

Figura 55

- **68** Para o *n*-MOSFET da Figura 56, $V_t = 1 \text{V e } K'_n W/L = 1 \text{mA/V}^2$.
- 68.1 Dimensione R_D de tal modo que e $V_D = +0.1 \text{ V}$.
- 68.2 Qual é o valor da resistência r_{DS} nestas condições?

Figura 56

- Para um transístor NMOS do tipo depleção, $k'_n \frac{W}{L} = 4 \text{ mA/V}^2$ e $V_t = -2 \text{ V}$. Calcule o menor valor de V_{DS} para que o transístor funcione na região de saturação quando $V_{GS} = +1 \text{ V}$. Qual é o valor correspondente de I_D ?
- 70 Para o *n*-MOSFET de depleção da Figura 57, $V_t = -1 \text{V e } k'_n W/L = 1 \text{ mA/V}^2$.
- 70.1 Dimensione R_S de tal modo que e $V_S = +9.9 \text{ V}$.
- 70.2 Qual é o valor da resistência r_{DS} nestas condições?

Figura 57

- 71 Um JFET canal-n é caracterizado por uma tensão $V_P = -4$ V e $I_{DSS} = 10$ mA.
- 71.1 Para $V_{GS} = -2$ V qual é o menor valor de V_{DS} de tal modo que o transistor funcione no modo "pinch-off"?
- 71.2 Para $V_{GS} = -2$ V e $V_{DS} = 3$ V qual é o valor de I_D ?
- 71.3 Para $V_{DS} = 3 \text{ V}$ diga qual é a variação de I_D correspondente a uma variação de V_{GS} entre -2 V e -1.6 V.
- 71.4 Calcule o valor de r_{DS} para pequenos valores de V_{DS} , para $V_{GS} = 0$ V e $V_{GS} = -3$ V.
- 72 Para o JFET canal-n da Figura 58, I_{DSS} = 10 mA e V_P = -4 V. Determine o seu ponto de funcionamento $(V_{GS}, I_D \text{ e } V_{DS})$.

Figura 58

Tirístor/Triac

73 No circuito da Figura 59 a tensão de entrada é da forma $v_i(t) = V_m \operatorname{sen}(\omega t)$.

Figura 59

- 73.1 Obtenha as formas de onda da tensão de saída (v_L), da tirístor (v_F) e da corrente no receptor (i_L) para $\alpha = 45^{\circ}$.
- 73.2 Obtenha a expressão do valor médio da tensão de saída em função do ângulo de disparo α.
- 73.3 Calcule o valor médio da tensão de saída e da corrente no receptor para $\alpha = 45^{\circ}$. Admita que $V_{m} = \sqrt{2} \cdot 230 \, V$ e que $R_{L} = 10 \, \Omega$.
- 74 No circuito da Figura 60 a tensão de entrada é da forma $v_i(t) = V_m \operatorname{sen}(\omega t)$.

- 74.1 Obtenha a expressão do valor médio da potência de saída (em R_L) em função do ângulo de disparo α (admita que a queda de tensão no triac em condução é 0 V).
- 74.2 Obtenha a expressão do valor médio da potência dissipada no triac em função do ângulo de disparo α . Admita que a queda de tensão no triac em condução é $v_F = 1$ V (constante).
- 74.3 Calcule, para $\alpha = 30^{\circ}$, o valor médio da potência no receptor ($R_{\rm L}$) e a dissipada no triac. Admita que $V_m = \sqrt{2} \cdot 230 \, V$ e que $R_{\rm L} = 10 \, \Omega$.
- 74.4 Calcule, nas condições de 74.3, o rendimento do circuito.
- 74.5 Suponha que a potência de saída era controlada recorrendo a um reóstato ligado em série com o receptor (o reóstato substitui o triac na Figura 60). Qual deveria ser o valor da resistência do reóstato (*R*_V) para que a potência entregue ao receptor tivesse o mesmo valor calculado em 74.3? E qual seria a potência dissipada no reóstato? Qual seria neste caso o rendimento do conjunto?

Famílias lógicas

74.6 Estude com atenção a seguinte tabela, que apresenta resultados do teste de algumas características eléctricas de uma porta lógica NAND da família *LS TTL* ("Low Power Shotcky TTL") e diga quais são, para esta família, os valores da margem de ruído (e para ambos os níveis lógicos) e do "fan-out".

	Parâmetro	Condições do teste	Min.	Tip.	Máx.	Unid.
$V_{ m IH}$	(tensão de entrada no nível 'alto')	$V_{\rm CC} = 4.75 \mathrm{V}$	2			V
$V_{ m IL}$	(tensão de entrada no nível 'baixo')	$V_{\rm CC} = 5.25 \text{V}$			0.8	V
V_{OH}	(tensão de saída no nível ´alto´)	$V_{\rm CC} = 4.75 \text{V}, I_{\rm OH} = -400 \mu \text{A}$	2.7	3.4		V
$V_{ m OL}$	(tensão de saída no nível 'baixo')	$V_{\rm CC} = 5.25 \text{V}, I_{\rm OL} = 8 \text{mA}$		0.35	0.5	V
$I_{ m IH}$	(corrente de entrada no nível 'alto')	$V_{\rm CC} = 5.25 \mathrm{V}, V_{\rm IH} = 2.7 \mathrm{V}$			20	μΑ
$I_{ m IL}$	(corrente de entrada no nível 'baixo')	$V_{\rm CC} = 5.25 \mathrm{V}, V_{\rm IL} = 0.4 \mathrm{V}$			-0.4	mA
I_{OH}	(corrente de saída no nível 'alto')	$V_{\rm CC} = 5.25 \text{V}$			-400	μΑ
I_{OL}	(corrente de saída no nível ´abaixo´)	$V_{\rm CC} = 5.25 \text{V}$			8	mA

75 Na entrada (v_{ent}) da gate NAND TTL da Figura 61 são aplicados os sinais representados abaixo. Esboce a forma de onda do sinal de saída para caso ((a) e (b)).

Figura 61

FONTES DE ALIMENTAÇÃO

- 76 A forma de onda à saída do bloco de filtragem duma fonte de alimentação é a da Figura 62 (para a corrente nominal).
- 76.1 De que tipo é o rectificador utilizado na fonte de alimentação?
- 76.2 Qual é o valor eficaz da tensão no secundário do transformador (desprezando a queda de tensão nos díodos do rectificador)?

- 76.3 Qual é o factor de "ripple" da fonte de alimentação?
- 77 Uma fonte de alimentação possui as seguintes características: Tensão de saída (em vazio) = +5.1V; Corrente nominal = 3A; Regulação = 2%; Factor de "*ripple*" = 0.5%.
- 77.1 Qual é o valor da tensão nominal da fonte (a tensão disponível quando a fonte fornece a uma carga uma corrente de 3A)?
- 77.2 Esboce a curva de regulação da fonte.
- 77.3 Qual é a sua resistência interna?
- 77.4 Qual é o "ripple" pico-a-pico para a corrente nominal (3A)?