离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-12

课程回顾

同态映射、同态象、同态核、满同态、单一同态、自同态、同构映射、 自同构、2个定理

5-8 周态与周构(下)

●学习本节要熟悉如下术语(2个):

同余关系、同余类

●要求:

掌握3个定理

4、同态核

定义5-8.4 如果f为代数结构<G, \star >到 <G',*>的一个同态映射, G'中有幺元e',那么称下列集合为f的同态核($kernel\ of\ homomorphism$),记为K(f)。 $K(f)=\{x\mid x\in G\land f(x)=e'\}$

定理5-8.3 设f为群<G, $\star>$ 到群<G', *>的同态映射,那么f的同态核K是G的子群。

□ 证明思路:先证★运算在K上封闭 e'=f(e),设k₁,k₂∈K,则 $f(k_1 + k_2) = f(k_1) * f(k_2) = e' * e' = e'$ 故k₁★k₂∈K,★运算在K上封闭。 再证K中的元素有逆元 而对任意的keK, $f(k^{-1}) = [f(k)]^{-1} = e^{-1} = e^{-1}$ 故k⁻¹∈K。 结论得证。

练习 P221 (5)

 $\langle \mathbf{R}, + \rangle$ 是实数集上的加法群,设f: $\mathbf{x} \rightarrow \mathbf{e}^{2\pi i \mathbf{x}}, \mathbf{x} \in \mathbf{R}$

f是同态否?如果是,请写出同态象和同态 核。

解 任取x, y \in R, $f(x)=e^{2\pi ix}$, $f(y)=e^{2\pi iy}$, $f(x+y)=e^{2\pi i(x+y)}=e^{2\pi ix} \cdot e^{2\pi iy}=f(x) \cdot f(y)$ 所以f是<R, +>到<G, \cdot >的同态。

f的同态象是

<G, • >= <{cos2 π x+isin2 π x| x \in R }, • >,由 定理5-8.2知是一个群。

 $e^{2\pi ix} = \cos 2\pi x + i \sin 2\pi x$ 是复数,这里<G, · >是 复数集上的乘法群。

群<G,・>的幺元是1,即 $\cos 2\pi x=1$, $\sin 2\pi x=0$ 的情况,也就是 $2\pi x=2k\pi$ (k=......,-3,-2,-1,0,1,2,3,.....)的情况,即x=.....,-3,-2,-1,0,1,2,3,.....
因此的f同态核为整数集I。

5、同态与同余关系的对应

定义5-8.5 设R为代数结构 $\langle A, \star \rangle$ 的载体A 上的等价关系,如果对A中任何元素 a_1 , a_2 , b_1 , b_2 , $\langle a_1, a_2 \rangle \in \mathbb{R}$, $\langle b_1, b_2 \rangle \in \mathbb{R}$ 蕴涵 $\langle a_1 \bigstar b_1, a_2 \bigstar b_2 \rangle \in \mathbb{R}$ 则称R为A上关于二元运算★的同余关系 (congruence relations)。由这个同余关系将集 合划分成的等价类就称为同余类。

练习 P221 (8)

证明:一个集合上任意两个同余关系的交也是同余关系。

证明 设 R_1 和 R_2 是 <A,*>的任意两个同余 关系,

即对于任意的 $<a_1$, $b_1>$, $<a_2$, $b_2> \in R_1$ 有 $<a_1*a_2$, $b_1*b_2> \in R_1$ 对于任意的 $<c_1$, $d_1>$, $<c_2$, $d_2> \in R_2$ 有 $<c_1*c_2$, $d_1*d_2> \in R_2$ 。

于是,对于任意的 <a, b>, <c, d>∈R₁∩R₂, 则 $<a, b>, <c, d> \in R_1, <a, b>, <c, d>$ $\in \mathbb{R}$ 从而<a*c,b*d> \in R₁, <a*c,b*d> \in R₂, 即 $\langle a^*c, b^*d \rangle \in R_1 \cap R_2$ 。

因此,一个集合上任意两个同余关系的交也是同余关系。

例6 设 $A=\{a,b,c,d\}$,对于由表1所确定的代数系统<A, $\star>$ 以及由表2所定义的在A上的等价关系R。

表 1

*	a	b	c	d
a	a	a	d	c
b	b	a	c	d
c	С	d	a	b
d	d	d	b	a

表 2

	a b	c d	
a	V V		
b	√ √		
c		$\sqrt{\ }\sqrt{\ }$	
d		$\sqrt{}$	

<A, ★>

R

 \mathbb{P} R={<a,a>,<a,b>,<b,a>,<b,b>,<c,c>,<d,c>,<d,c>,<d,d>}

等价类[a]_R=[b]_R={a, b}, [c]_R=[d]_R={c, d} R={<a,a>,<a,b>,<b,b>,<c,c>,<c,d>,<d,c>,<d,d>} 容易验证对于任意的<a₁, b₁>, <a₂, b₂> \in R有 <a₁* a₂, b₁* b₂> \in R

如:

$$< a * a , a * a > = < a , a > \in R$$
 $< a * a , a * b > = < a , a > \in R$ $< a * b , a * a > = < a , a > \in R$ $< a * b , a * b > = < a , a > \in R$ $< a * c , a * c > = < d , d > \in R$ $< a * c , a * d > = < d , c > \in R$ $< a * d , a * c > = < c , d > \in R$ $< a * d , a * d > = < c , c > \in R$

所以R是A上的同余关系。

同余关系R将A划分为同余类{a,b}和{c,d}。12

例7 设 $A=\{a,b,c,d\}$,对于由表1所确定的代数系统<A, $\star>$ 以及由表2所定义的在A上的等价关系R。

表1

*	a	b	c	d
a	a	a	d	c
b	b	a	d	a
c	c	b	a	b
d	С	d	b	a

表 2

	a b	c	d
a	V V		
b	$\sqrt{}$		
c			$\sqrt{}$
d			$\sqrt{}$

R

由于对<a,b>,<c,d>∈ R有
<a ★ c,b ★ d>=<d,a> ∉ R

因此由表2所定义的在A上的等价关系R
不是一个同余关系。

由上述两例可知:在A上定义的等价 关系R不一定是A上的同余关系,这是因 为同余关系必须与定义在A上的二元运算 密切相关。 定理5-8.4 设R为代数结构<A, \star >的载体 A上的同余关系, $B=\{A_1, A_2, ..., A_r\}$ 是由R诱导的A上的一个划分,那么,必定存在新的代数结构<B, \star >,它是<A, \star >的同态象。

口 证明思路: 在B上定义二元运算*为: 对于任意的 A_i , $A_j \in B$,任取 $a_1 \in A_i$, $a_2 \in A_j$, 如果 $a_1 \bigstar a_2 \in A_k$,则 $A_i * A_j = A_k$ 。由于R是A上的同余关系,所以,以上定义的 $A_i * A_j = A_k$ 是唯一的。

见222页(9)题证明定理5-8.4中在B上所定义的二元运算*是唯一确定的。

作映射 $f(a)=A_i$ $a \in A_i$ 显然,f是从A到B的满映射。

对于任意的 $x,y \in A$, x,y必属于B中的某两个同余类,不妨设 $x \in A_i, y \in A_j$, $1 \le i,j \le r$, 同时, $x \bigstar y$ 必属于B中某个同余类,不防设 $x \bigstar y$ $\in A_k$,于是就有

$$f(x \star y) = A_k = A_i * A_j = f(x) * f(y)$$

因此f是由<A, $\star>$ 到<B, *>的满同态,即<B, *>是<A, $\star>$ 的同态象。 \square

定理5-8.4举例

例6 设 $A=\{a,b,c,d\}$,对于由下表所确定的代数系统<A, $\bigstar>$

*	a	b	c	d
a	a	a	d	С
b	b	a	c	d
c	c	d	a	b
d	d	d	b	a

定义在A上的等价关系R为: {<a,a>,<a,b>,<b,b>,<c,c>,<c,d>,<d,c>,<d,d>} 己知R是A上的同余关系。

B={ {a, b}, {c, d} }是A的一个划分。B上的二元运算*如下表:

*	{a, b}	{c, d}
{a, b}	{a, b}	{c, d}
{c, d}	{c, d}	{a, b}

A到B的映射f为:

$$f(a)=\{a, b\}, f(c)=\{c, d\}$$

$$f(b)=\{a, b\}, f(d)=\{c, d\}$$

定理5-8.5 设f是由<A, $\star>$ 到<B, *>的一个同态映射,如果在A上定义二元关系R为<a,b> \in R,当且仅当

$$f(a)=f(b)$$

那么,R是A上的一个同余关系。

即象相同的元素属于一个 介 同余类。

□证明思路:

因为f(a)=f(a),所以 $<a,a>\in R$ 。若 $<a,b>\in R$, 则f(a)=f(b)即f(b)=f(a),所以 $<b,a>\in R$ 。若 $<a,b>\in R$, $<b,c>\in R$ 则f(a)=f(b)=f(c),所以 $<a,c>\in R$ 。

最后,又因为若<a,b> \in R, <c,d> \in R,则有 f(a \bigstar c)=f(a) *f(c)=f(b) *f(d) = f(b \bigstar d) 所以,<a \bigstar c,b \bigstar d> \in R。

因此,R是A上的同余关系。

形象的说,一个代数系统的同态象可以 看作是当抽去该系统中某些元素的次要特性 的情况下,对该系统的一种粗糙描述。如果 我们把属于同一个同余类的元素看作是没有 区别的,那么原系统的性态可以用同余类之 间的相互关系来描述。

现在用一个例子来说明:

例题8 所确定的两个代数系统<A,★>和<B,*>

见下表:

<B, *>

*	а	β	γ	δ	ε	ζ
a	а	β	a	a	y	δ
β	β	a	γ	$\boldsymbol{\beta}$	γ	${\cal E}$
γ	a	γ	a	$\boldsymbol{\beta}$	γ	${\cal E}$
δ	a	$\boldsymbol{\beta}$	$\boldsymbol{\beta}$	δ	$\boldsymbol{\mathcal{E}}$	ζ
arepsilon	Y	γ	γ	${\cal E}$	$\boldsymbol{\mathcal{E}}$	ζ
ζ	δ	\mathcal{E}	ε	ζ	ζ	ζ

*	1	0	-1
1	1	1	0
0	1	0	-1
-1	0	-1	-1

映射
$$f(\alpha)=1$$
 $f(\beta)=1$ $f(\gamma)=1$ $f(\delta)=0$ $f(\xi)=0$

明显的是由代数系统 $\langle A, \star \rangle$ 到 $\langle B, * \rangle$ 的一个同态映射。假如把代数系统 $\langle A, \star \rangle$ 看作是对六个带电粒子 α , β , γ , δ , ε , ζ 相互作用的详尽描述。如果 α , β , γ 是带 正电荷的粒子, δ , ε 是中性粒子, ζ 是带 负电荷的粒子,那么我们就可用1,0,-1 分别表示这三类粒子,这就是映射f所具有 的特性。若记 $B=\{1,0,-1\}$, 那么代数系统 <B,*>描述了这三类粒子的相互作用,它正 好是代数系统<A,★> 的粗糙描述。

The End