

# REPORT DOCUMENTATION PAGE

Form Approved  
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

|                                                                                                 |                                    |                                     |                                                                                     |                     |                                                               |  |
|-------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|--|
| 1. REPORT DATE (DD-MM-YYYY)                                                                     |                                    |                                     | 2. REPORT TYPE                                                                      |                     | 3. DATES COVERED (From - To)                                  |  |
|                                                                                                 |                                    |                                     | Technical Papers                                                                    |                     |                                                               |  |
| 4. TITLE AND SUBTITLE                                                                           |                                    |                                     |                                                                                     |                     | 5a. CONTRACT NUMBER                                           |  |
|                |                                    |                                     |                                                                                     |                     | 5b. GRANT NUMBER                                              |  |
| 6. AUTHOR(S)                                                                                    |                                    |                                     |                                                                                     |                     | 5c. PROGRAM ELEMENT NUMBER                                    |  |
|                                                                                                 |                                    |                                     |                                                                                     |                     | 5d. PROJECT NUMBER<br><i>1011</i>                             |  |
|                                                                                                 |                                    |                                     |                                                                                     |                     | 5e. TASK NUMBER<br><i>CAGF</i>                                |  |
|                                                                                                 |                                    |                                     |                                                                                     |                     | 5f. WORK UNIT NUMBER<br><i>346161</i>                         |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                                              |                                    |                                     |                                                                                     |                     | 8. PERFORMING ORGANIZATION REPORT                             |  |
| Air Force Research Laboratory (AFMC)<br>AFRL/PRS<br>5 Pollux Drive<br>Edwards AFB CA 93524-7048 |                                    |                                     |                                                                                     |                     |                                                               |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                       |                                    |                                     |                                                                                     |                     | 10. SPONSOR/MONITOR'S ACRONYM(S)                              |  |
| Air Force Research Laboratory (AFMC)<br>AFRL/PRS<br>5 Pollux Drive<br>Edwards AFB CA 93524-7048 |                                    |                                     |                                                                                     |                     | 11. SPONSOR/MONITOR'S NUMBER(S)<br><i>Please see attached</i> |  |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT                                                       |                                    |                                     |                                                                                     |                     |                                                               |  |
| Approved for public release; distribution unlimited.                                            |                                    |                                     |                                                                                     |                     |                                                               |  |
| 13. SUPPLEMENTARY NOTES                                                                         |                                    |                                     |                                                                                     |                     |                                                               |  |
| 14. ABSTRACT                                                                                    |                                    |                                     |                                                                                     |                     |                                                               |  |
| <i>20030205 276</i>                                                                             |                                    |                                     |                                                                                     |                     |                                                               |  |
| 15. SUBJECT TERMS                                                                               |                                    |                                     |                                                                                     |                     |                                                               |  |
| 16. SECURITY CLASSIFICATION OF:                                                                 |                                    |                                     | 17. LIMITATION OF ABSTRACT                                                          | 18. NUMBER OF PAGES | 19a. NAME OF RESPONSIBLE PERSON<br><i>Leilani Richardson</i>  |  |
| a. REPORT<br><i>Unclassified</i>                                                                | b. ABSTRACT<br><i>Unclassified</i> | c. THIS PAGE<br><i>Unclassified</i> |  |                     | 19b. TELEPHONE NUMBER<br><i>(661) 275-5015</i>                |  |

1011CA 9F

MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO)

19 Apr 2001

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2001-096  
Shawn H. Phillips; Timothy S. Haddad; Rusty L. Blanski, "New Multi-Functional Materials Using Versatile Hybrid (Inorganic/Organic) POSS Nanotechnology"

**International Symposium – SAMPE**  
**(Long Beach, CA, 08 May 2001) (Deadline: 08 May 01 )**

**(Statement A)**

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.

Comments: \_\_\_\_\_

Signature \_\_\_\_\_ Date \_\_\_\_\_

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.

Comments: \_\_\_\_\_

Signature \_\_\_\_\_ Date \_\_\_\_\_

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required

Comments: \_\_\_\_\_

Signature \_\_\_\_\_ Date \_\_\_\_\_

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability

Comments: \_\_\_\_\_

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL  
Technical Advisor  
Space and Missile Propulsion Division

Date

**New Multi-Functional Materials Using  
Versatile Hybrid (Inorganic/Organic)  
POSS Nanotechnology**

Angstro™



### Acknowledgements

#### Polymer Working Group

Dr. Tim Haddad\*  
Dr. Rusty Blanski\*  
Dr. Brent Viers\*  
Capt Rene Gonzalez\*  
Brian Moore\*  
Capt Steve Svejda, Ph.D.  
Justin Leland  
Pat Ruth  
New Post-Doc: Polymer Synthesis

#### Edwards

Dr. Kevin Chaffee  
Mr. Paul Jones  
Mr. Hieu Nguyen

#### External

Prof. Frank Feher - UCI  
Prof. Andre Lee\* - MSU  
Dr. Joe Lichtenhan - HP  
Dr. Joe Schwab - HP  
Prof. Pat Mather - UConn  
Dr. Jeff Gilman\* - NIST  
Prof. Ben Hsiao - SUNY SB  
Prof. Bryan Coughlin\* - UMass  
Prof. Gar Hoflund - UF  
Dr. Barry Farmer - AFRL/MLBP  
Dr. Rich Vaia\* - AFRL/MLBP  
Dr. Seng Tan - WMR  
Prof. Mark Gordon\* - Iowa St. U  
Dr. Howard Katzman - Aerospace  
Mr. Don Geidt/Mike Blair - CSD/Thiokol

Funding: AFOSR (Dr. Charles Lee), AFRL, Hybrid Plastics

Basic R&D

Applications R&D

## *"Hot" Topics in Propulsion/Air Force Materials*

## **POSS Nanostructured Polymers**



- High Temperature Insulation for Solid Rocket Motors
- Capacitors
- High Temperature/Lightweight Jet Canopies
- Space-survivable Materials and Coatings
- Low/High Temp. Hybrid Lubricants
- Plastic Tubing and Ducting for Liquid Rocket Engines
- High Temperature/High Translation Strength Composites
- Improved Radome Materials

## *Multiple Applications/ Multi-Function*



- Improve High Performance Polymers
- Transform Commodity Polymers into High performance Polymers
- Develop Multi-Functional Materials

## POSS Feedstocks



- R = Cyclohexyl, t = 3-36 (48 months)
- R = Cyclopentyl, t = 11 days!
- No other incompletely condensed silsesquioxanes

## Existing POSS-Polymers: Structure/Property Relationships



## *Property Enhancements via POSS*

Observed in POSS-Copolymers and Blends

increased  $T_g$

reduced  
flammability

reduced  
heat evolution

lower density

disposal  
as silica

increased  $T_{dec}$

extended  
temperature range

increased  
oxygen permeability

lower thermal  
conductivity

thermoplastic  
or curable

enhanced blend  
miscibility

oxidation  
resistance

altered  
mechanicals

reduced  
viscosity

Beat  
competitors'  
patents!

### *6.2 (IHPRPT): Solid Rocket Motor Insulation*

*Case Insulation*



*POSS-Insulation Sample*

**Goal:** 50% Lower Erosion of Insulation (44 % weight reduction,  
7.4% booster payload increase) – Phase III IHPRPT

**Objective:** Development of Ceramic Forming Polymer

#### POSS-Polymer Insulation - Advantages:

- High loadings of POSS can be incorporated without embrittlement
- Si to O ratio is 1:1.5, proven to oxidize up to 1:2 ( $\text{SiO}_2$ )
- Tailorability of POSS monomers improve physical/mechanical properties
- Capabilities for Large and Small scale testing (Hybrid Plastics)

## POSS for Flame Retardant Materials

### Traditional Polymer



### POSS Polymer



## *Comparisons of POSS in EPDM*



At 25 wt% loadings relative to a proprietary base-line material

|                    |           |           |           |
|--------------------|-----------|-----------|-----------|
| <b>Hardness:</b>   | 12%↑      | no change | no change |
| <b>Tensile:</b>    | 17%↓      | 17%↓      | ---       |
| <b>Elongation:</b> | no change | no change | no change |
| <b>Viscosity:</b>  | 42%↓      | 39%↓      | 36%↓      |
| <b>Density:</b>    | 9%↑       | 3% ↓      | 3% ↓      |

## Comparisons of POSS in EPDM



At 50 wt% loadings relative to a proprietary base-line material

|                    |           |           |           |
|--------------------|-----------|-----------|-----------|
| <b>Hardness:</b>   | 15%↑      | no change | 17%↑      |
| <b>Tensile:</b>    | 5%↓       | 27%↓      | 1%↓       |
| <b>Elongation:</b> | no change | no change | no change |
| <b>Viscosity:</b>  | 35%↓      | 21%↓      | 36%↓      |
| <b>Density:</b>    | 15%↑      | 3%↓       | 12%↑      |

## In-House SRM Insulation Testing

### Objective: Low Cost/Low Volume Materials Screening for SRM Insulation

#### Capabilities

- Edwards (FIREX Pi-K Motor). volume rate (100 kg/min) 5 g)
- Total Cyclic Test Capabilities: synthesis, part fabrication, ability to analyze insulation properties
- Rapid turn-around time (achieve 50 samples per day)



Firing  
Video  
clip







## POSS Blends - Miscibility

50 wt % Phenethyl<sub>8</sub>T<sub>8</sub> in 2 million mol. wt. Polystyrene



- Catalytic hydrogenation of Styryl<sub>8</sub>T<sub>8</sub>
- Demonstrated Complete Miscibility!!
- No POSS crystallites by SEM or X-ray!!



Scale-up, incorporation and testing polymer systems

## i-PP/Me<sub>8</sub>T<sub>8</sub> Processing Studies

Neat Polypropylene and Blended with POSS nano-filters



## *i*-PP/Me<sub>8</sub>T<sub>8</sub> Processing Studies

### iso-Polypropylene w/ Me8T8



Prof. Andre Lee - Michigan State University

|                                                                | Dow data                   | Neat <i>i</i> -PP<br>(processed) | <i>i</i> -PP blended 2<br>wt% Methyl <sub>8</sub> T <sub>8</sub> | <i>i</i> -PP blended 5<br>wt% Methyl <sub>8</sub> T <sub>8</sub> | <i>i</i> -PP blended<br>10 wt%<br>Methyl <sub>8</sub> T <sub>8</sub> |
|----------------------------------------------------------------|----------------------------|----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| Tensile Strength @ Yield; ASTM D638                            | 5000 psi<br>(34.5 MPa)     | 4800 psi<br>(33.0 MPa)           | 5000 psi<br>(34.5 MPa)                                           | 5100 psi<br>(35.1 MPa)                                           | 5200 psi<br>(35.8 MPa)                                               |
| Flexural Modulus<br>(0.05 in/min,<br>1% secant);<br>ASTM D790A | 240,000 psi<br>(1.655 GPa) | 235,000 psi<br>(1.620 GPa)       | 251,000 psi<br>(1.730 GPa)                                       | 255,000 psi<br>(1.757 GPa)                                       | 262,000 psi<br>(1.80 GPa)                                            |
| HDT @ 66 psi,<br>as injected;<br>ASTM D648                     | 210 °F<br>(99 °C)          | 210 °F<br>(99 °C)                | 221 °F<br>(105 °C)                                               | 239 °F<br>(115 °C)                                               | 255 °F<br>(124 °C)                                                   |
| Impact Izod<br>@25C<br>ASTM D256A                              | 0.5 ft-lb/in               | 0.55 ft-lb/in                    | 0.55 ft-lb/in                                                    | 0.62 ft-lb/in                                                    | 0.75 ft-lb/in                                                        |

- The above data (other than Dow's data) is an average of at least 10 samples for each test with acceptable S.D. of 5% or better.

i-PP/Me<sub>8</sub>T<sub>8</sub> Processing Studies



*i-PP/Me8T8*  
Brabender Twin-Screw Extruder



### *Shaw Industries i-PP/Me8T8 Fiber*



Nanodispersion of Me8T8 around defect/dirt?

### ***POSS-iPP Summary***

Prof. Ben Hsiao: SWAXS Studies

- 1) Some evidence of molecular dispersion of POSS in iPP - probably due to the favorable entropy of mixing between R (-CH<sub>3</sub>) and the iPP chains
- 2) Half time of crystallization decreases by two orders of magnitude by flow ( $10^2$  vs.  $10^4$  s). The addition of POSS further reduced the crystallization time - an indication of POSS being true molecular orientation enhancing agents (real nanocomposites)
- 3) In typical polymer processing, only the chains longer than M\* can be oriented; chains shorter than M\* remain unoriented due to fast relaxation. The addition of POSS appears to reduce the value of M\* - more studies are needed!

*Goal: Develop Multi-Functional, Space-Survivable Materials*



Satellites & Space Systems

| Bond                                   | Dissociation Energy (eV) | $\lambda$ (nm) | Material      |
|----------------------------------------|--------------------------|----------------|---------------|
| -C <sub>6</sub> H <sub>4</sub> -C(=O)- | 3.9                      | 320            | Kapton®       |
| C-N                                    | 3.2                      | 390            | Kapton®       |
| CF <sub>3</sub> -CF <sub>3</sub>       | 4.3                      | 290            | FEP Teflon®   |
| CF <sub>2</sub> -F                     | 5.5                      | 230            | FEP Teflon®   |
| Si-O                                   | 8.3                      | 150            | Nanocomposite |
| Zr-O                                   | 8.1                      | 150            | Nanocomposite |
| Al-O                                   | 5.3                      | 230            | Nanocomposite |

**Objectives**

- Increase Space Resistance (AO, particle & VUV radiation, thermal cycling) of Polymeric Materials by 10x
- Self-Passivating/Self-Rigidizing/Self-Healing based on nanocomposite incorporation

**AO undercutting of LDEF Aluminized-Kapton Multilayer Insulation**



Groh, K.K., Banks, B.A., J. Spacecraft and Rockets, Vol. 31, No. 4, 656-664 (1994)

## POSS-polyurethane Properties



### POSS-polymer improvements

Up to 300 °C increase in the melt transition temperature (rheological studies show the transition from an oil to a true thermoplastic elastomer)

Up to a 100 °C increase in  $T_{dec}$  (29 wt% POSS, still TPE)

Up to 10X increase in moduli (>400% elongation with no destruction of hard segments))

17% POSS incorporation ----> 3X increase in Hardness (Shore A)

### *POSS Polyurethane*



| Sample Treatment | O    | C    | Si   | Sn  | Na  | N   |
|------------------|------|------|------|-----|-----|-----|
| As entered       | 18.2 | 70.1 | 11.3 | 0.4 | -   | -   |
| 2.0-hr           | 17.5 | 70.2 | 11.2 | 0.7 | 0.4 | -   |
| 24.0-hr          | 23.7 | 58.2 | 13.2 | 0.9 | 1.4 | 2.6 |
| 63.0-hr          | 35.3 | 37.3 | 20.4 | 1.3 | 3.0 | 2.7 |
| 3.3-hr air       | 31.6 | 48.5 | 14.6 | 1.0 | 2.7 | 1.6 |

XPS Survey Spectra from a 60 wt% POSS-PU (a) after insertion into the vacuum system, (b) after a 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

## *Summary*

- Successfully demonstrated multi-functionality of POSS utilizing both mechanical and physical properties
- We are looking into multiple applications for inorganic particles both as blends and copolymers
- Hybrid Plastics has been extremely successful in reducing the cost and increasing the production of POSS monomers
- Only with continued development of POSS monomers can we hope to control/predict property enhancements