UNIVERSIDAD ICESI INGENIERÍA DE SISTEMAS ARQUITECTURA DE SOFTWARE

Tarea Grupal Final

Cálculo de π con el Método de Simulación de Montecarlo

Conociendo las fórmulas para el cálculo del área del cuadrado y el círculo, y usando un generador de datos aleatorios uniforme, es posible calcular el valor de pi (π) .

Imagínense un cuadrado de lado 2 unidades de medida y un círculo inscrito, que tendría entonces un radio de 1 unidad de medida:

El área de ese cuadrado es entonces de 2x2 = 4, y el del círculo de $\pi^*1^2 = \pi$.

Consideremos un sistema orto-normal, cuyo origen coincide con el centro del círculo. Tenemos entonces la ecuación del <u>círculo</u>: $x^2 + y^2 \le 1$. Todo punto de coordenadas (x_p, y_p) del cuadrante superior derecho (delineado en rojo) que se encuentre dentro del círculo tendrá como propiedad $x_p^2 + y_p^2 \le 1$.

Si solo tenemos en cuenta ese cuadrante (para simplificar el procedimiento y la programación), y obtenemos aleatoriamente puntos **dentro de ese cuadrante** siguiendo una distribución uniforme, todos los puntos estarán dentro del área de ese cuadrante del cuadrado de lado igual a 1, pero no todos estarán dentro del área del cuarto del círculo respectivo. Pero al ser el cuadrado y el círculo simétricos, y al tener el mismo baricentro, las proporciones del área del círculo y del área del cuadrado se conservan en el cuadrante.

De manera general, entonces se observa la siguiente proporción:

$$\pi * l^2 \rightarrow (2 * l)^2$$
, y despejando π , obtenemos: puntos en el círculo \rightarrow puntos totales

$$\pi = 4 * \frac{l^2 * puntos en el círculo}{l^2 * puntos totales}$$
; esta misma proporción se mantiene si tomamos en cuenta

únicamente el cuarto del cuadrado rojo en la figura y su respectivo cuarto del círculo.

El objetivo de este trabajo es diseñar un sistema de software que calcule π a partir de tirajes aleatorios uniformes tal y como lo acabamos de describir. Este método se conoce como simulación de Montecarlo, y es una forma de simulación estática.

Indicaciones (tarea para grupos de 4)

1. Diseñe e implemente un sistema de software para calcular π de manera secuencial (arquitectura monolítica). Con esta versión deberá encontrar el número de puntos a partir del cual es necesario usar la versión distribuida.

- 2. El sistema debe contar con una interfaz de usuario para especificar: número de puntos aleatorios a usar, seed del generador aleatorio a utilizar, y epsilon (límite para distinguir números distintos; si es 1, NO se deben contar los números aleatorios iguales). El sistema deberá realizar el conteo secuencial de los puntos (garantizando que efectivamente se usó el número de puntos especificado) y valor calculado de π , mostrando en la misma interfaz el valor resultante, el número de puntos efectivamente usados, y el tiempo en milisegundos, segundos y minutos que tomó en total el cálculo.
- 3. En la versión distribuida, el sistema tendrá la misma interfaz de usuario. El número de agentes de procesamiento distribuido podrá variar dinámicamente en tiempo de ejecución, y cada agente deberá inicializar su generador de números aleatorios.
- 4. El cálculo de π debe ser repetible en distintas ejecuciones.
- 5. El tiempo de cálculo de π debe ser estadísticamente significativo.
- 6. Deberá utilizar una implementación de un generador pseudo aleatorio uniforme, que le permita inicializar una semilla (*seed*), de tal forma que pueda reproducir los resultados encontrados anteriormente si así lo requiriese. Pueden utilizar la clase java.util.Random con su método nextDouble para tal efecto.

Versión monolítica

Esta versión debe correr en un solo nodo de procesamiento cálculo (versión simplificada).

Deberá configurar un primer folder denominado:

CalculoPi-V1-ApellidosIntegrantes, con:

- Archivo Word con la explicación de la solución, incluyendo el diagrama de deployment.
- Archivo readme.txt con el nombre de los integrantes, instrucciones de compilación, instrucciones de ejecución de los componentes.
- Código fuente de la solución realizada.

Versión distribuida

La versión distribuida del cálculo de π debe ser escalable usando tantos agentes de procesamiento como sea especificado, los cuales podrán variar dinámicamente. El valor de epsilon se especifica en enteros negativos, y se interpreta como 10^epsilon. Si este valor es igual a 1, no se debe calcular el número de puntos iguales.

Para propósitos prácticos, su solución debe distribuirse en 4 nodos de procesamiento.

Deberá configurar un segundo folder, en el mismo directorio en el que creó el folder de la versión monolítica, denominado:

CalculoPi-V2-ApellidosIntegrantes, con

- Documentos
 - Archivo Word con la explicación de la solución, incluyendo un diagrama de deployment (exportado como imagen), especificando la estructura de procesamiento (SISD, SIMD, MISD, MIMD) y los patrones de diseño utilizados.
 - O Archivo .vpp del diseño arquiectónico completo (suponiendo 4 agentes de procesamiento)

- O Archivo readme.txt con el nombre de los integrantes, instrucciones de compilación, instrucciones de ejecución de los componentes.
- TipoNodoProcesamiento1
 - O src
- resources (archivos de ICE, archivo readme con instrucciones para ejecutar)
- java (código fuente de clases e interfaces Java del folder respectivo)
- o build : con los .jar generados
- ..
- TipoNodoProcesamientoN
 - 0 src
- resources (archivos de ICE, archivo readme con instrucciones para ejecutar)
- java (código fuente de clases e interfaces Java del folder respectivo)
- o build : con los .jar generados

Para ambas versiones:

- Script de test con 5 entradas para 5 cálculos independientes, considerando 10^N puntos a generar, con N={ 12, 14, 16, 18, 20} y seed 1.1 para todos. El conjunto de valores para N debe ser ajustado para que incluya el caso en que el tiempo de cálculo sea 1 minuto (este valor de 1 minuto debe ser un parámetro de entrada para la versión monolítica) y este caso debe ser cuarto para esta versión. Para la versión distribuida, este caso debe ser el primero.
- Archivo de salida correspondiente con los resultados experimentales del cálculo de las 5 entradas, cada uno ejecutado al menos 10 veces y tabulados con los respectivos tiempos de respuesta, y sus promedios, y por el número de nodos de procesamiento.
- Archivo en Excel con los resultados de las mediciones anteriores:
 - O En la hoja "monolitico": tabla de N vs. Tiempo; y gráfica respectiva.
 - O En la hoja "distribuido": tabla de N vs. Tiempo-Número de agentes de procesamiento; y gráfica respectiva.

Criterios a tener en cuenta:

- Número de decimales correctos calculados
- Tiempo total de cálculo
- Dinamicidad de agentes de procesamiento (añadir, quitar, tumbar en tiempo real)

El directorio padre de ambos folders creados anteriormente debe denominarse CalculoPi-ApellidosIntegrantes. Este directorio debe comprimirse en un .zip, y subirse al link de la tarea en Moodle.

No se recibirán trabajos por otro medio diferente a Moodle, sin excepción.

