THE LINEAR REGRESSION PROCESS

FROM GENERATION TO INTERPRETATION

PRESENTED BY

Frank Briody frankbriody@gmail.com Prospect High School Mt. Prospect, IL

2022 MMC Conference of Workshops

Contents

L	tandard Deviation: The Non-Resistant Measure of Spread
2	Setting Least Squares Line of Best Fit
	.1 From Summary Statistics
	.2 From Output
	.3 Interpretation
	2.3.1 Slope
	2.3.2 Y-Intercept
	.4 Predicted Values and Residuals
	5 The Coefficient of Determination r^2
	ummary & Examples
	.1 Getting r
	2. Five R Properties

Put quote	here.	There	is on	ly one	large	com	puter
program I	have 1	used in	whic	h ther	e are	to a	decent
approximat	tion 0	bugs:	Don	Knuth	's Te	X	

- Jaap Weel

The Story

A statistics teacher gives a quiz to a class. The scores were 2, 4, 6, 8, and 15 with one student being absent.

1 Standard Deviation: The Non-Resistant Measure of Spread

How much variability, on average, is there around the mean?

Score	Deviation	Squared Deviation	
x			
2			_
4			
6			
8			
15			

The Story

A statistics teacher gives a quiz to a class. The scores were 2, 4, 6, 8, and 15 with one student absent.

2 Getting Least Squares Line of Best Fit

2.1 From Summary Statistics

Formulas (given): $\hat{y} = a + bx$ $b = r \frac{s_y}{s_m}$ $a = \bar{y} - b\bar{x}$

Descriptive Statistics: x, y

Variable N N* Mean SE Mean StDev MinimumQ1 Median QЗ Maximum 5 0 3.000 0.707 1.581 1.000 1.500 3.000 4.500 5.000 у 5 0 7.00 2.24 5.00 2.00 3.00 6.00 11.50 15.00

Correlations: x, y

Pearson correlation of x and y = 0.949

P-Value = 0.014

2.2 From Output

Regression Analysis: y versus x The regression equation is y = -2.00 + 3.00 x

Predictor Coef SE Coef T

Constant -2.000 1.915 -1.04 0.373 x 3.0000 0.5774 5.20 0.014

S = 1.82574 R-Sq = 90.0% R-Sq(adj) = 86.7%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 90.000
 90.000
 27.00
 0.014

 Residual Error
 3
 10.000
 3.333

 Total
 4
 100.000

2.3 Interpretation

2.3.1 Slope

Slope represents the **predicted** change in response associated with each unit increase in the explanatory variable, **on average**.

2.3.2 Y-Intercept

Y-intercept is the predicted value when the explanatory (x) is 0. [Often the y-intercept is useless.]

2.4 Predicted Values and Residuals

$$\hat{y} = -2 + 3x$$

Hours	Score	Predicted	Residual
x	y	\hat{y}	$y - \hat{y}$
1	2		
2	4		
3	6		
4	8		
5	15		

- Predicted \hat{y} : substitute explanatory (x) values into regression equation.
- Residual $y \hat{y}$ (also called regression error); actual minus predicted.

2.5 The Coefficient of Determination r^2

Regression Analysis: y versus x

The regression equation is y = -2.00 + 3.00 x

Predictor Coef SE Coef T P
Constant -2.000 1.915 -1.04 0.373
x 3.0000 0.5774 5.20 0.014

S = 1.82574 R-Sq = 90.0% R-Sq(adj) = 86.7%

Analysis of Variance

Source DF MSSS F Regression 1 90.000 90.000 27.00 0.014 Residual Error 3 10.000 3.333 100.000 4 Total

Hours	Score	Predicted	Error	$(Error)^2$	Residual	$(Residual)^2$
x	y	\hat{y}	$y - \bar{y}$	$(y-\bar{y})^2$	$y - \hat{y}$	$(y - \hat{y})^2$
1	2					
2	4					
3	6					
4	8					
5	15					

3 Summary & Examples

3.1 Getting r

- $\quad \bullet \ \ r = \frac{\Sigma z_x \cdot z_y}{n-1}$
- Never calculate by hand; use calculator or computer output.
- Know formula properties.

3.2 Five R Properties

 \bullet Examples