Algoritmos, Azar y Autómatas Resolución Ejercicios 9 a 13 (Aleatoriedad)

Manuel Panichelli

December 8, 2021

Resultados previos

Def. 1 (Programa elegante). Un programa es elegante si es el más corto que computa una secuencia. Es decir, $p \in \{0,1\}^*$ es un programa elegante si existe $s \in \{0,1\}^*$, U(p) = s y para todo otro programa $p \in \{0,1\}^*$, si U(p') = s entonces $|p| \le |p'|$.

Llamamos s^* al programa elegante que computa s, $U(s^*) = s$ y $K(s) = |s^*|$.

Def. 2 (Abiertos básicos). B_s es el conjunto de palabras infinitas que comienzan por s.

$$B_s = \{ s\alpha \mid \alpha \in \{0,1\}^* \}$$

Prop. 1 (Medida de un abierto). $\mu(B_s) = 2^{-|s|}$

Def. 3 (Test de Martin-Löf). Una sucesión $(V_i)_{i>0}$ es un test de Martin-Löf si

- $V_i = \bigcup_{s \in S_i} B_s \text{ con } S_1 \subseteq 0, 1^* \text{ computable}$
- $\mu(V_i) \leq 2^{-i}$ (se va achicando)

Si existe un test tal que $x \in \bigcap_{i>1} V_i$, entonces x no es aleatorio.

 $\operatorname{TODO}:$ programa elegante, complejidad de kormogolov, definiciones de martin lof y etc.

Ejercicio 9

Demostrar que los números Martin-Löf aleatorios son normales.

Ejercicio 10

Dar un algoritmo que permite computar Ω con un oráculo para el problema de la detención.

Recuerdo la definición de Ω , la suma de las potencias de 2 de las longitudes de todos los programas que terminan. Si U es una máquina de Turing universal,

$$\Omega = \sum_{U(p)\downarrow} 2^{-|p|}$$

Para computar Ω voy a dar una función que computa los primeros n dígitos, $\Omega[1...n]$, y luego voy incrementando n e imprimiendo los resultados.

Sea g una enumeración de todos los programas que terminan (se podría obtener computablemente mediante un método como dovetailing), defino una aproximación de Ω hasta el m-ésimo programa,

$$\alpha_m = \sum_{j=1}^m 2^{-|g(j)|}$$

Lo que me gustaría saber es para qué m α_m tiene los primeros n dígitos definitivos, es decir $\Omega[1...n] = \alpha_m[1...n]$. Para ello, debo verificar que

$$\alpha_m[1\dots n] \stackrel{?}{=} \alpha'_m[1\dots n] \ \forall m' > m$$

Es decir, no importa que sigamos considerando más programas, los primeros n dígitos no van a cambiar. Como no es algo finito, no lo podemos computar con un algoritmo, pero acá es donde nos salva el oráculo de Halt. La siguiente función logra lo buscado

```
\begin{aligned} & \textbf{function} \ \ Q(m, \, n) \\ & m' \leftarrow m+1 \\ & \textbf{while} \ \text{true} \ \textbf{do} \\ & \textbf{if} \ \ \alpha_m[1 \dots n] \neq \alpha_m'[1 \dots n] \ \textbf{then} \\ & \textbf{break} \\ & m' \leftarrow m'+1 \end{aligned}
```

- Si OraculoHalt(Q(m, n)) = true (es decir, Q termina) es porque existía m tal que cambiaban los primeros n dígitos, y por lo tanto no eran definitivos.
- Si OraculoHalt(Q(m, n)) = false (es decir, Q no termina), entonces no existe m tal que cambien los primeros n dígitos, y por lo tanto son definitivos.

El algoritmo final es el siguiente, donde la función sin argumentos Print Ω imprime Ω segmento inicial por segmento inicial.

```
function Print \Omega
for n = 1, 2 \dots do
print \Omega(n)
```

```
\begin{aligned} & \textbf{function} \ \Omega(\mathbf{n}) \\ & \textbf{for} \ m=1,2\dots \ \textbf{do} \\ & \textbf{if} \ \neg \ \text{OraculoHalt}(\mathbf{Q}(\mathbf{m},\ \mathbf{n})) \ \textbf{then} \\ & \textbf{return} \ \alpha_m[1\dots n] \\ & \textbf{function} \ \mathbf{Q}(\mathbf{m},\ \mathbf{n}) \\ & m' \leftarrow m+1 \\ & \textbf{while} \ \text{true} \ \textbf{do} \\ & \textbf{if} \ \alpha_m[1\dots n] \neq \alpha_m'[1\dots n] \ \textbf{then} \\ & \textbf{break} \\ & m' \leftarrow m'+1 \end{aligned}
```

Ejercicio 11

Salteado porque no era necesario resolverlo.

Ejercicio 12

12.1

Demostrar que el número $(1 - \Omega)$ es aleatorio

Lema 1. Con los bits de x puedo obtener los de $\bar{x}=1-x$ realizando un xor con todos 1s, $x \oplus 1s = \bar{x}$.

Dem. Sea $g:\mathbb{N}\to \Sigma^*$ una enumeración de los programas que se detienen, $\alpha_m=\sum_{j=1}^m 2^{-|g(j)|}$ una aproximación de Ω de m pasos. Defino el programa p,

$$p = b_1 b_2 \dots b_c \bar{\Omega}[1 \dots i]^*$$

donde $\bar{\Omega}[1...i]^*$ es una subrutina que es el programa elegante (el más corto) que computa $\bar{\Omega}[1...i]$ y $b_1b_2...b_c$ realiza los siguientes pasos,

- 0. Computamos $\bar{\Omega}[1 \dots i]$ con $\bar{\Omega}[1 \dots i]^*$
- 1. Computamos $\Omega[1 \dots i]$ en base a $\bar{\Omega}[1 \dots i]$ mediante un \oplus con todos 1s.
- 2. m = 1. Mientras $(\alpha_m \leq \Omega[1 \dots i]), m = m + 1$.
- 3. Sea $O=\{U(g(j))\mid 1\leq j\leq m\}$ los outputs de los programas que se detienen que aportan a la aproximación de Ω
- 4. Sea s la cadena más chica lexicográficamente tal que $s \notin O$.
- 5. Return s.

Veamos que $|s^*| > i$, la longitud del programa elegante que computa s (su complejidad) es más chica que i. Para demostrarlo supongamos lo contrario, que $|s^*| \le i$

$$\begin{split} \Omega &> 2^{-|s^*|} + \alpha_m & (\Omega \text{ tiene infinitos aportes}) \\ &> 2^{-|s^*|} + \Omega[1 \dots i] & (\text{porque } \alpha_m > \Omega[1 \dots i]) \\ &\geq 2^{-i} + \Omega[1 \dots i] & (\text{sup. } |s^*| \leq i) \\ &\geq \Omega & (\Omega[1 \dots i] \text{ contiene exactamente los primeros } i \text{ bits de } \Omega) \end{split}$$

Y llegamos a $\Omega > \Omega$ que es un absurdo. Por lo tanto, $|s^*| > i$.

Por otro lado, como pes un programa (no muy bueno) que computa s, se que

$$K(s) \le c + |\bar{\Omega}[1 \dots i]^*| \tag{1}$$

donde $c = |b_1 \dots b_c|$. Juntando,

$$i < |s^*|$$

$$= K(s)$$

$$\leq c + |\bar{\Omega}[1 \dots i]^*| \qquad \text{por (3)}$$

$$= c + K(\bar{\Omega}[1 \dots i])$$

 $\iff K(\bar{\Omega}[1\dots i])>i-c,$ que es la definición de aleatoriedad de Chaitin.

12.2

Para todo conjunto X infinito y c.e pero no computable, $\alpha = \sum_{x \in X} 2^{-x}$ no es aleatorio.

Def. 4 (c.e). X es c.e (computablemente enumerable) si $\exists f : \mathbb{N} \to \mathbb{N}$ tal que Im(f) = X. Es decir, f enumera los elementos de X en algún orden que no se puede elegir.

Ejemplo 1. $X = \{2, 5\}$. Puedo tomar f(1) = 5, f(2) = 2 o f'(1) = 2, f'(2) = 5.

Ejemplo 2. $X = \{n \mid n \text{ es impar}\} = \{1, 3, 5, 7, \dots\}$

Puedo enumerarlos en cualquier orden,

$$f(1) = 7, f(2) = 17, f(3) = 37...,$$

y la función característica es

$$X = 101010...$$

Def. 5 (Función característica). Puedo codificar un conjunto con una sucesión de bits correspondientes a su función característica.

$$X = b_1 b_2 b_3 b_4 b_5 \dots$$

con

$$b_i = \begin{cases} 1 & \text{si } i \in X \\ 0 & \text{sino.} \end{cases}$$

Por ejemplo

$$X = \{1, 4, 10\} = \underset{1}{1} \underset{2}{0} \underset{3}{0} \underset{4}{1} \underset{5}{0} \underset{6}{0} \underset{7}{0} \underset{8}{0} \underset{9}{0} \underset{10}{1}$$

Obs. La expansión en base 2 de α es la codificación en bits de X. Por ejemplo, con $X = \{1, 4, 10\}$,

$$\alpha = 2^{-1} + 2^{-4} + 2^{-10} = 0.5634765625 = (0.1001000001)_2.$$

Dem. Para ver que α no es aleatorio voy a dar un test de Martin-Löf $(V_i)_{i>0}$ tal que $\alpha\in\bigcap_{i>0}V_i.$

• Supongo que f(1) = 3, sabemos que $X = b_1 \ b_2 \ 1 \ b_3 \ b_4 \ b_5 \dots$, y defino V_1 tal que los primeros 3 dígitos de la expansión de α aparezcan.

$$V_1 = \{B_{b_1b_21} \mid b_1, b_2 \in \{0, 1\}\},\$$

con B_s las palabras infinitas que comienzan por s. Y su medida es correcta,

$$\mu(V_1) = 2^2 \times \mu(B_{111}) = 2^2 \times 2^{-3} = 1/2 \le 2^{-1}$$

 \bullet Supongo que f(2)=10, sabemos que $X=b_1\ b_2\ 1\ b_3\ \dots b_9\ 1\ b_{11}\ \dots$ Defino

$$V_2 = \{B_{b_1...b_{10}} \mid b_3 = b_{10} = 1 \text{ y los demás } b_j \in \{0, 1\}\},\$$

Su medida también es correcta,

$$\mu(V_2) = 2^{10-2} \times \mu(B_{s \text{ con } |s|=10}) = 2^{10-2} \times 2^{-10} = 2^{-2} \le 2^{-2}$$

En general, si f(i) = x

$$V_i = \{B_{b_1...b_x} \mid b_{f(k)} = 1 \text{ con } k \le i \text{ y el resto } b_j \in \{0, 1\}\},\$$

luego

$$\mu(V_i) = 2^{x-i} \times \mu(B_{s \text{ con } |s|=x})$$

$$= 2^{x-i} \times 2^{-x}$$

$$= 2^{\cancel{x}-i-\cancel{x}}$$

$$= 2^{-i} < 2^{-i}$$

y se que $\alpha \in \bigcap_{i \geq 1} V_i$ pues cada V_i va refinando segmentos iniciales más grandes de α . Por lo tanto, como existe un test de Martin-Löf que contiene a α , α no es aleatorio.

12.3

El número Ω_0 que resulta de anteponer mil 0s delante de Ω es aleatorio.

Lema 2. Como $\Omega_0 = 0^{1000}\Omega$, entonces

A partir de $\Omega_0[1\ldots j]$ puedo calcular $\Omega[1\ldots i]$ trivialmente.

Dem. Sea $g:\mathbb{N}\to \Sigma^*$ una enumeración de los programas que se detienen, $\alpha_m=\sum_{j=1}^m 2^{-|g(j)|}$ una aproximación de Ω de m pasos. Defino el programa p,

$$p = b_1 b_2 \dots b_c \Omega_0 [1 \dots j]^*$$

donde $\Omega_0[1\dots j]^*$ es una subrutina que es el programa elegante (el más corto) que computa $\Omega_0[1\dots j]$ y $b_1b_2\dots b_c$ realiza los siguientes pasos,

- 0. Computamos $\Omega_0[1\ldots j]$ con $\Omega_0[1\ldots j]^*$
- 1. Computamos $\Omega[1 \dots i]$ en base a $\Omega_0[1 \dots j]$ (Lema 2).
- 2. m = 1. Mientras $(\alpha_m \leq \Omega[1 \dots i]), m = m + 1$.
- 3. Sea $O=\{U(g(j))\mid 1\leq j\leq m\}$ los outputs de los programas que se detienen que aportan a la aproximación de Ω
- 4. Sea s la cadena más chica lexicográficamente tal que $s \notin O$.
- 5. Return s.

Veamos que $|s^*|>i$, la longitud del programa elegante que computa s (su complejidad) es más chica que i. Para demostrarlo supongamos lo contrario, que $|s^*|\leq i$

$$\begin{split} \Omega &> 2^{-|s^*|} + \alpha_m & \qquad (\Omega \text{ tiene infinitos aportes}) \\ &> 2^{-|s^*|} + \Omega[1 \dots i] & \qquad (\text{porque } \alpha_m > \Omega[1 \dots i]) \\ &\geq 2^{-i} + \Omega[1 \dots i] & \qquad (\text{sup. } |s^*| \leq i) \\ &\geq \Omega & \qquad (\Omega[1 \dots i] \text{ contiene exactamente los primeros } i \text{ bits de } \Omega) \end{split}$$

Y llegamos a $\Omega > \Omega$ que es un absurdo. Por lo tanto, $|s^*| > i$.

Por otro lado, como p es un programa (no muy bueno) que computa s, se que

$$K(s) \le c + |\Omega_0[1\dots j]^*| \tag{2}$$

donde $c = |b_1 \dots b_c|$. Juntando,

$$i < |s^*|$$

$$= K(s)$$

$$\leq c + |\Omega_0[1 \dots j]^*| \qquad \text{por } (2)$$

$$= c + K(\Omega_0[1 \dots j])$$

$$\iff K(\Omega_0[1 \dots j]) > i - c = j - 1000 - c$$

y tomando c' = 1000 - c, llegamos a

$$K(\Omega_0[1\ldots j]) > j - c',$$

que es la definición de aleatoriedad de Chaitin.

12.4

Demostrar que $\alpha = \sum_{palabra\ s} 2^{-K(s)}$ es computablemente aproximable desde abajo y aleatorio.

Prop (α es aproximable desde abajo). Primero, observo que α es la probabilidad de que un programa sea elegante. Defino el conjunto

$$S(t) = \left\{ \begin{aligned} &\text{programas que terminan en menos de } t \\ &\text{pasos y son candidatos a ser elegantes} \end{aligned} \right\}.$$

Si un programa p está en S(t) y no está en S(t+1), es porque hay otro programa p' tal que |p|<|p'| (que tarda más pasos en terminar, pero es más corto). Con esto puedo definir

$$\alpha_t = \sum_{s \in S(t)} 2^{-|s|}.$$

Como en cada paso t los programas se hacen más cortos, $\alpha_t < \alpha_{t+1} < \alpha$ (pues son potencias negativas). Por lo tanto, alpha se puede aproximar computacionalmente de forma estrictamente creciente desde abajo.

Dem. (12.4) Sea α_t una aproximación por abajo estrictamente creciente de t pasos de α . Defino el programa p,

$$p = b_1 b_2 \dots b_c \alpha [1 \dots i]^*,$$

donde $\alpha[1...i]^*$ es una subrutina que contiene el programa elegante (el más corto) que computa $\alpha[1...i]$ y $b_1b_2...b_c$ realiza los siguientes pasos,

- 1. Computa $\alpha[1...i]$ en base a $\alpha[1...i]^*$
- 2. t = 1. Mientras $(\alpha_t \leq \alpha[1 \dots i]), t = t + 1$.
- 3. Sea $O = \{U(s) \mid s \in S(t)\}$ los outputs de los programas candidatos a elegantes que aportan a la aproximación de α
- 4. Sea s la cadena más chica lexicográficamente tal que $s \notin O$.
- 5. Return s.

Veamos que $|s^*| > i$, la longitud del programa elegante que computa s (su complejidad) es más chica que i. Para demostrarlo supongamos lo contrario, que $|s^*| \le i$

$$\begin{split} \alpha &> 2^{-|s^*|} + \alpha_t & (\alpha \text{ tiene infinitos aportes}) \\ &> 2^{-|s^*|} + \alpha[1 \dots i] & (\text{porque } \alpha_t > \alpha[1 \dots i]) \\ &\geq 2^{-i} + \alpha[1 \dots i] & (\text{sup. } |s^*| \leq i) \\ &\geq \alpha & (\alpha[1 \dots i] \text{ contiene exactamente los primeros } i \text{ bits de } \alpha) \end{split}$$

Y llegamos a $\alpha > \alpha$ que es un absurdo. Por lo tanto, $|s^*| > i$.

Por otro lado, como p es un programa (no muy bueno) que computa s, se que

$$K(s) \le c + |\alpha[1\dots i]^*| \tag{3}$$

donde $c = |b_1 \dots b_c|$. Juntando,

$$i < |s^*|$$

$$= K(s)$$

$$\leq c + |\alpha[1 \dots i]^*| \qquad \text{por (3)}$$

$$= c + K(\alpha[1 \dots i])$$

 $\iff K(\alpha[1\dots i])>i-c,$ que es la definición de aleatoriedad de Chaitin. \therefore α es aleatorio.

Ejercicio 13

Dar un test de Martin Löf que contenga a los números decimales cuya expansión decimal no contiene el 7.

Dem.

Lema 3 (Contrarecíproco del ej. 9).

$$\underbrace{\begin{pmatrix} x \text{ es Martin-L\"of} \\ \text{aleatorio} \Rightarrow x \text{ es normal.} \end{pmatrix}}_{\text{Ejercicio 9}} \Longrightarrow \begin{pmatrix} x \text{ no es} \\ x \text{ no es normal.} \Rightarrow \text{Martin-L\"of} \\ \text{aleatorio} \end{pmatrix}$$

Sea x un número cuya expansión decimal no contiene el 7. Como la frecuencia de todos los dígitos no es la misma, no es normal. Por lo tanto, por el Lema 3 tampoco es Martin-Löf aleatorio y por definición existirá un test en el que esté contenido.

Perdón Vero por resolverlo de esta manera, pero ya me estaba extendiendo mucho con el plazo de entrega!