5	(a)	State Kirchhoff's first law.

(b) The circuit shown in Fig. 5.1 contains a battery of electromotive force (e.m.f.) E and negligible internal resistance connected to four resistors R_1 , R_2 , R_3 and R_4 , each of resistance R.

Fig. 5.1

The current in $\rm R_3$ is 0.30A and the potential difference (p.d.) across $\rm R_4$ is 2.4 V.

(i) Show that R is equal to 4.0Ω .

[2]

(ii) Determine the e.m.f. E of the battery.

E = V [2]

(c)	The battery in (b) is replaced with another battery of the same e.m.f. E but with an internal resistance that is not negligible.
	State and explain the change, if any, in the total power produced by the battery.
	[2]
(d)	The resistors in the circuit of Fig. 5.1 are made from nichrome wire of uniform radius $240\mu m.$ The length of this wire needed to make each resistor is 0.67 m.
	Calculate the resistivity of nichrome.
	resistivity = Ω m [3]
	[Total: 11]