Université Saclay-Paris-Sud

Feuille de TD 1

M303

Exercice 1. 1. Soient X et Y deux ensembles et f une application de X dans Y. Si A et B sont deux sous-ensembles de X (respectivement de Y), quel est le lien entre $f(A \cup B)$ et $f(A) \cup f(B)$, $f(A \cap B)$ et $f(A) \cap f(B)$, $f^{-1}(f(A))$ et A (respectivement $f^{-1}(A \cup B)$ et $f^{-1}(A) \cup f^{-1}(B)$, $f^{-1}(A \cap B)$ et $f^{-1}(A) \cap f^{-1}(B)$, $f(f^{-1}(A))$ et A).

Pour toute inclusion fausse, donner un exemple et éventuellement une propriété supplémentaire de f qui la rend juste.

2. Pour chacun des sous-ensembles \mathcal{R}_i de $\mathbb{R} \times \mathbb{R}$, déterminer les propriétés de la relation sur \mathbb{R} dont \mathcal{R}_i est le graphe.

 $\mathcal{R}_1 = \{(s,s) \text{ pour } s \in \mathbb{R}\}, \ \mathcal{R}_2 \text{ est l'ensemble vide, } \mathcal{R}_3 = \{(0,y) \text{ pour } y \in \mathbb{R}\}, \ \mathcal{R}_4 = \{(x,y) \text{ vérifiant } xy + 1 = 0\}, \ \mathcal{R}_5 = \{(x,y) \text{ vérifiant } x^2y - xy^2 - x + y = 0\}$

Lesquels sont des relations d'équivalence? Décrire alors les classes d'équivalence.

- 3. Montrer que la relation \mathcal{R} définie sur l'ensemble des entiers relatifs par $n\mathcal{R}m$ si et seulement si nm > 0 est symétrique, transitive mais non réflexive.
- 4. Soit \mathcal{R} une relation binaire sur un ensemble E, symétrique et transitive. Que penser du raisonnement suivant?

"
$$x\mathcal{R}y \Rightarrow y\mathcal{R}x \text{ car } \mathcal{R} \text{ est symétrique},$$

or $(x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x\mathcal{R}x \text{ car } \mathcal{R} \text{ est transitive},$
donc \mathcal{R} est réflexive."

Exercice 2. On définit la relation $\sim \text{sur } \mathbb{Z} \text{ par } x \sim y \iff x^2 \equiv y^2 \text{mod } 5.$

- 1. Déterminer l'ensemble quotient.
- 2. Peut-on définir une addition quotient ? une multiplication quotient ?
- Exercice 3. 1. Montrer qu'une relation d'équivalence sur un ensemble X définit une partition de X et que réciproquement, toute partition de X définit une relation d'équivalence sur X.
 - 2. Soit B_n le nombre de relations d'équivalence sur un ensemble fini à n éléments. Calculer B_1 , B_2 , B_3 , B_4 . Montrer que les entiers B_n vérifient la relation de récurrence suivante

$$B_n = \sum_{k=1}^n \binom{n-1}{k-1} B_{n-k}$$

et calculer B_5 .

- **Exercice 4.** 1. Peut-on paver un échiquier (de 64 cases, $64 = 2^n$ avec n = 6), dont une est interdite, avec des trimonos ? (Un trimono est une pièce formée de trois cases en forme de L.)
 - 2. Déterminer le nombre de régions délimitées par n droites du plan en position générale. (En position générale signifie ici que deux quelconques des droites ne sont pas parallèles et que trois quelconques ne sont pas concourantes.)

Exercice 5. Pour $n \in \mathbb{N}^*$ et tout n-uplet (a_1, \ldots, a_n) d'éléments de A, on définit le produit des $(a_i)_{1 \leq i \leq n}$ qu'on note $a_1 \times \ldots \times a_n$ par récurrence : Si n = 1, le produit de l'élément a est a lui-même et pour tout n + 1-uplet (a_1, \ldots, a_{n+1}) ,

$$(a_1 \times \ldots \times a_{n+1}) := (a_1 \times \ldots \times a_n) \times a_{n+1}$$
.

- 1. Soit n un entier ≥ 1 , et $(a_i)_{i\in I}$ une famille à n éléments de A, ces éléments commutent l'un à l'autre. Montrer que, quelle que soit la numérotation i_1, \ldots, i_n qu'on mette sur I (i.e. quelle que soit la bijection $n\mapsto i_n$ de $\{1,\ldots,n\}$ sur I,) le produit $a_{i_1}\times\ldots\times a_{i_n}$ est toujours le même ; on le note $\prod_{i\in I}a_i$ [on pourra procéder par récurrence sur n et comparer deux tels produits, tout d'abord dans le cas où un élément b de A se trouve en dernière position, puis dans le cas où un élément b de A se trouve en k-ieme position dans le premier produit, et en (k+1)-ieme position dans le second, $1\leq k< n$.]
- 2. Soit $I = \bigcup_{k \in K} J_k$ une partition de I (en sous-ensembles deux à deux disjoints non vides.) Montrer qu'on a :

$$\prod_{i \in I} a_i = \prod_{k \in K} (\prod_{j \in J_k} a_j) .$$

Pour m entier ≥ 1 , on a

$$(\prod_{i \in I} a_i)^m = \prod_{i \in I} a_i^m .$$

- 3. Supposons que A ait en outre un élément neutre 1; on pose alors $\prod_{i \in I} a_i = 1$ si I est vide ; étendre les règles précédentes aux cas où I, ou l'un des J_k est vide.
- 4. Supposons que A soit un groupe abélien noté additivement ; on écrit alors $\sum_{i \in I} a_i$; traduire dans ces notations les résultats précédents.
- **Exercice 6.** 1. Pour $a \in A$ et n entier ≥ 1 , on note a^n le produit $a_1 \times \ldots \times a_n$ où $a_1 = a_2 = \ldots = a_n = a$. Montrer qu'on a $a^m a^n = a^{m+n}$ et $(a^m)^n = a^{mn}$ pour m, n entiers ≥ 1 .
 - 2. Supposons que A possède un élément neutre, c'est-à-dire un élément e tel que ea = ae = a pour tout $a \in A$. Montrer qu'un tel élément est unique ; on le note souvent 1 et on pose $a^0 = 1$ pour tout $a \in A$.
- **Exercice 7.** 1. Soient a, b, c des éléments de A tels que ba = ac = 1; montrer qu'alors b = c. En déduire que si a possède un inverse, cet inverse est unique; on le note a^{-1} .
 - 2. Prouver que si des éléments a_1, \ldots, a_n de A ont chacun un inverse, alors a_1, \ldots, a_n est inversible aussi et calculer son inverse.
 - 3. Prouver que l'ensemble des éléments inversibles de A est un groupe pour la loi $(a,b) \mapsto ab$.
 - 4. Si a est un élément inversible de A, on pose $a^{-n} = (a^{-1})^n$ pour n entier ≥ 1 . Étendre les règles de la fin de l'exercice précédent à tous les entiers m et n de \mathbb{Z} .

Exercice 8. Si A est un anneau, on note A^{\times} le groupe des éléments inversibles de A.

- 1. Calculer \mathbb{Z}^{\times} , et $K[X]^{\times}$ quand K est un corps.
- 2. Si $\phi: A \longrightarrow B$ est un homomorphisme d'anneaux, montrer que $\phi(A^{\times}) \subset B^{\times}$; si ϕ est surjectif, s'ensuit-il que $\phi(A^{\times}) = B^{\times}$?

Exercice 9. Soit X un ensemble. On munit l'ensemble A^X des applications de X dans A de la loi $(f, f') \mapsto ff'$ où ff'(x) = f(x)f'(x) pour tout $x \in X$.

- 1. Montrer que la loi définie ci-dessus est la seule pour laquelle, pour tout $x \in X$, $f \mapsto f(x)$ est un morphisme.
- 2. Montrer que cette loi sur A^X est associative et que A^X est un groupe pour cette loi si A est un groupe, un groupe abélien si A est un groupe abélien.
- 3. Si A est un groupe, et X un autre groupe, montrer que l'ensemble Hom(X,A) des homomorphismes de groupes de X dans A est un sous-groupe de A^X pourvu que A soit abélien.

Exercice 10. Soient A un anneau et X un ensemble. On munit $\mathcal{F}(X,A)$ des deux lois $(f,g)\mapsto f+g$ et $(f,g)\mapsto fg$.

- 1. Montrer que $\mathcal{F}(X,A)$ est un anneau, qui est commutatif si A l'est.
- 2. Si A est un corps, s'ensuit-il que $\mathcal{F}(X,A)$ est un corps ?