UNIVERSIDAD NACIONAL DE SAN AGUSTÍN Facultad de Producción y Servicios Ciencia de la Computación Física Computacional Kevin Salazar Torres 20162013

9na Práctica Método de Montecarlo

Implementación

a)

Hacer un programa para obtener el área aproximada de la siguiente integral $\int_0^1 e^{-x^2}$ considerando un cuadrado contenga esta función con vértices [0, 0], [1, 0], [1, 1], [0, 1].

Resultados

La imagen muestra los puntos bajo la función a integrar de color morado. De verde los que están fuera.

Se obtiene como área aproximada: 0.74649

b)

Hacer un programa para obtener el área aproximada de la región acotada por

y = x;

y = -x;

x = 1

Resultados

La imagen muestra los puntos acotados por las funciones dadas de color morado. De verde los que están fuera.

Se obtiene como área aproximada: 0.50234

c)

Hacer un programa para obtener el área aproximada de la región acotada por

 $y = x^2$

 $y = -x^2$

x = 1

x = -1

Resultados

La imagen muestra los puntos acotados por las funciones dadas de color morado. De verde los que están fuera.

Se obtiene como área aproximada: 0.33561

d)

Hacer un programa para obtener el volumen aproximado que hay entre la superficie y el plano z = 0 de la función $f(x, y) = x^2 + y^2$ (paraboloide de revolución), siendo los límites de x y y de 0 a 1.

Resultados

La imagen muestra los puntos acotados por las funciones dadas de color morado. De verde los que están fuera.

Se obtiene como volumen aproximado: 0.33384

