XPSI: XFEL-based Protein Structure Identifier

Paula Olaya, Mike Wyatt, Silvina Caino-Lores Florence Tama (RIKEN), Osamu Miyashita (RIKEN), Piotr Luszczek (ICL@UTK), and Michela Taufer(GCL@UTK)

Problem Overview

The importance of protein structure

- Protein structure determines function
- Different proteins have different structures
- One protein may exhibit several structures (conformations)
- Identifying and differentiating between protein structures is critical for:
 - Determine cause of diseases
 - Design of drugs

Determining structure from diffraction patterns

X-ray Free Electron Laser
 (XFEL) beams create
 diffraction patterns that may
 reveal protein structure

Goal and Dataset

Design, implement, and validate a framework for identifying protein structural properties (i.e., orientation and conformation) from different diffraction patterns

Datasets

Protein: Eukaryotic Elongation Factor 2 (eEF2)

- **39, 692 data samples** of different orientations per conformation
- Two conformations: 1n0u and 1n0vc
- Two beam intensities:
 High and Low

XFEL-based Protein Structure Identifier Workflow

- XPSI predicts structural properties such as orientation and conformations
- We measure the prediction accuracy and performance of XPSI

Test Cases

Test	Prediction	Data size
1	Orientation [φ,Θ]	39,692
2	Orientation + Conformation [φ,Θ, conf]	79,384

Autoencoder training time

Test	Prediction	Data size	Autoencoder training Time [mins]
1	Orientation [φ,Θ]	39,692	45
2	Orientation + Conformation [φ,Θ, conf]	79,384	90

ML training and validation time

Test	Prediction	Data size	Autoencoder training Time [mins]	kNN training time [s]	kNN validation time [s]
1	Orientation [φ,Θ]	39,692	45	0.07	0.10
2	Orientation + Conformation [φ,Θ, conf]	79,384	90	0.34	0.66

Autoencoder and ML time

Test	Prediction	Data size	Autoencoder training Time [mins]	kNN training time [s]	kNN validation time [s]
1	Orientation [φ,Θ]	39,692	45	0.07	0.10
2	Orientation + Conformation [φ,Θ, conf]	79,384	90	0.34	0.66

- Training time proportional to processed images
- Scientists need a ~day to predict orientation using statistical models
- Our method predicts orientation + conformation in less than 2 hours

Validation Error: Orientation (Test 1)

Conformation: 1n0u **Prediction = [\Theta, \Phi]**

Error Degree: The distance in degrees between two points on a sphere

An error degree
 within 2.2° is
 negligible and does
 not affect the
 scientific
 interpretation of the
 protein structure

Validation Error: Orientation + Conformation (Test 2)

Conformation: [1n0u, 1n0vc] **Prediction** = $[\Theta, \phi, conf.]$

Conformation Accuracy:

The proportion [%] of correct predictions among the total number of cases examined

 100% of accuracy when identifying between the two conformations

Conclusions and Next steps

XPSI is a promising approach towards the identification of protein structures with respect to its computational requirements. Our framework predicts orientation with an error degree within 2.2° and it identifies the conformation from two different datasets (i.e., 1n0u and 1n0vc) with an accuracy of 100% for the eEF2 protein

- Evaluate the generality of our framework for a broader range of datasets:
 - Intermediate conformations for the same protein (1n0u, 1n0vc, mov20, and mov53)
 - Multiple proteins with different conformations (EF2 and ribosome)
- Apply our framework to a real-world application such as, 3D reconstruction