Lab 1

Carmen Canedo

May 23, 2020

About

For this lab, I used the GPS tracking app on my iPhone, myTracker, to trace myself walking a straight path outside of my house in Nashville, TN. I tried to maintain a steady pace as I walked up and down the street.

Below you will find an analysis of my path that was created using R statistical software. My code is available below, but my step by step process can be found on my GitHub page.

Necessary Packages

In order to run the code below, the following packages must be installed and loaded on your computer.

```
library(mdsr)
library(XML)
library(OpenStreetMap)
library(lubridate)
library(ggmap)
library(raster)
library(sp)
```

Getting the data ready

Before conducting an analysis on my data, I found that it was necessary to narrow down the number of columns and rename some columns for clarity.

Loading in data from .csv

Saving .csv file into a dataframe that can be easily manipulated.

```
walking <- read.csv("lab-1.csv", header = TRUE)</pre>
```

Cleaning data

Getting rid of unnecessary columns

```
walking <- walking %>%
dplyr::select(-type, -desc, -name)
```

Making column names simpler

```
walking <- walking %>%
  rename(altitude = altitude..ft.) %>%
  rename(speed = speed..mph.) %>%
  rename(distance_mi = distance..mi.) %>%
  rename(distance_int_ft = distance_interval..ft.)
```

Summary stats calculations

Summary statistics provide us with key information on the center and spread of our data; below, I calculate the minimum, first quartile, median, third quartile, max, mean, and standard deviation.

```
sum_latitude <- favstats( ~ latitude, data = walking)
sum_longitude <- favstats( ~ longitude, data = walking)
sum_altitude <- favstats( ~ altitude, data = walking)
sum_speed <- favstats( ~ speed, data = walking)
sum_distance_mi <- favstats( ~ distance_mi, data = walking)
sum_dist_int_ft <- favstats( ~ distance_int_ft, data = walking)</pre>
```

Results

```
sum_latitude
                   Q1 median
                                    QЗ
                                            max
                                                    mean
                                                                        n missing
   36.18001 36.18029 36.1806 36.18091 36.18117 36.1806 0.0003514294 221
sum_longitude
##
                          median
                                        QЗ
                                                 max
                                                          mean
   -86.74297 -86.74294 -86.7429 -86.74286 -86.74278 -86.7429 4.645446e-05 221
##
##
   missing
##
          0
sum_altitude
             Q1 median
                          QЗ
                               max
                                       mean
                                                        n missing
## 500.8 505.8 511.2 512.4 516.1 509.3181 4.041696 221
```

```
sum\_speed
           Q1 median
                        Q3~\text{max}
##
    min
                                    mean
                                                    n missing
                 2.7 3.325 10 2.839545 1.226507 220
sum_distance_mi
           Q1 median
    min
                        Q3 max
                                        mean
      0 0.047
               0.09 0.137 0.181 0.09093213 0.05260591 221
sum_dist_int_ft
          Q1 median
                      QЗ
##
                           max
                                   mean
                                              sd
                                                   n missing
##
               4.01 5.29 14.58 4.32362 1.937173 221
```

Analysis

- Question 1:
 - The standard deviation is larger for latitude.
- Question 2:
 - This tells us that the latitude moves farther from the mean latitude.

Creating Latitude v. Longitude Scatter Plot

```
lat_v_long <- walking %>%
  ggplot(aes(x = longitude, y = latitude)) +
  geom_point(alpha = 0.8, aes(color = speed), size = 3) +
  scale_color_gradient(low = "blue", high = "red") +
  theme_minimal() +
  labs(title = "Longitude versus Latitude",
        subtitle = "Carmen Canedo",
        caption = "STAT 202, Summer 2020",
        x = "Longitude",
        y = "Latitude",
        color = "Speed (mph)")
```

Longitude versus Latitude

Adding Line of Best Fit

In order to approximate the location of the sidewalk, we are going to add a line of best fit.

```
lat_v_long <- lat_v_long +
  geom_smooth(method = "lm")
lat_v_long</pre>
```

```
## 'geom_smooth()' using formula 'y ~ x'
```

Longitude versus Latitude

Simple Linear Regression Results

```
# Calculating model
model <- lm(latitude ~ longitude, data = walking)

# Finding correlation coefficient
coef(model)

## (Intercept) longitude
## 651.652871 7.095362</pre>
```

Formula for line of best fit: latitude = 651.653 + 7.0954(longitude)

Analysis

- Is the line of best fit a good tool to estimate the path traveled? Why or why not?
- How does the correlation help you answer part b?

Mapping the route

The exercises I referenced to create my own map can be found by clicking here.

Getting the data

In order to ensure that all the values work when mapped, this equation places the vectors correctly.

```
# Function to shift vectors
shift_vec <- function(vector, shift) {
  if (length(vec) <= abs(shift)) {
    rep(NA, length(vec))
} else {
    if (shift >= 0) {
        c(rep(NA, shift), vec[1:(length(vec) - shift)])
} else {
        c(vec[(abs(shift) + 1):length(vec)])
    }
}
```

Reading in GPX file

Next we read in the .GPX file itself instead of using the .csv file from above.

Putting values into dataframe

This allows us to have all of the GPX file in one place, ready to be placed onto a map.

```
geodf <- data.frame(lat = lats, lon = lons, time = times)</pre>
```

Querying map background

I am using my Google API to access the static map used below. It is centered on the street where I walked, and I zoomed in so that my path will be visible.

Finished product

Finally, we can put all the data together and plot the points onto the map using the ggmap package.

Walking Path Plotted using myTracks Carmen Canedo

STAT 202, Summer 2020

Conclusion

This lab allowed me to apply statistical skills in a real life setting. + Et ecetera