

MM54HC175/MM74HC175 Quad D-Type Flip-Flop With Clear

General Description

This high speed D-TYPE FLIP-FLOP with complementary outputs utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.

Information at the D inputs of the MM54HC175/MM74HC175 is transferred to the Q and \overline{Q} outputs on the positive going edge of the clock pulse. Both true and complement outputs from each flip flop are externally available. All four flip flops are controlled by a common clock and a common CLEAR. Clearing is accomplished by a negative pulse at the CLEAR input. All four Q outputs are cleared to a logical "0" and all four \overline{Q} outputs to a logical "1."

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 15 ns
- Wide operating supply voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent supply current: 80 µA maximum (74HC)
- High output drive current: 4 mA minimum (74HC)

Connection Diagram

Dual-In-Line Package

TL/F/5319-1

Order Number MM54HC175 or MM74HC175

Truth Table (Each Flip-Flop)

I	Outputs			
Clear	Clock	D	Q	Q
L	Х	Х	L	Н
Н	↑	Н	Н	L
Н	↑	L	L	Н
Н	L	Х	Q_0	\overline{Q}_0

H= high level (steady state)

L = low level (steady state)

X = irrelevant

↑ = transition from low to high level

Q₀ = the level of Q before the indicated steady-state input conditions were established

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{\rm CC} + 1.5 V_{\rm CC}$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC} + 0.5 V_{\rm CC}$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Dawer Dissination (D.)	

Power Dissipation (P_D) (Note 3)

S.O. Package only Lead Temperature (T_L)

(Soldering 10 seconds)

260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V _{IN} ,V _{OUT})	0	V_{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	7
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8	80	160	μΑ

600 mW

500 mW

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		60	35	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q or \overline{Q}		15	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset to Q or $\overline{\mathbf{Q}}$		13	21	ns
t _{REC}	Minimum Removal Time, Clear to Clock			20	ns
ts	Minimum Setup Time, Data to Clock			20	ns
t _H	Minimum Hold Time, Data from Clock			0	ns
t _W	Minimum Pulse Width, Clock or Clear		10	16	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ V \ \text{to 6.0V}, \ C_L = 50 \ \text{pF}, \ t_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Typ Guaranteed Limits				
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V	12 60 70	6 30 35	5 24 28	4 20 24	MHz MHz MHz	
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q or Q		2.0V 4.5V 6.0V	80 15 13	150 30 26	190 38 32	225 45 38	ns ns ns	
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset to Q or Q		2.0V 4.5V 6.0V	64 14 12	125 25 21	158 32 27	186 37 32	ns ns ns	
t _{REM}	Minimum Removal Time Clear to Clock		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns	
t _S	Minimum Setup Time Data to Clock		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns	
t _H	Minimum Hold Time Data from Clock		2.0V 4.5V 6.0V		0 0 0	0 0 0	0 0 0	ns ns ns	
t _W	Minimum Pulse Width Clear or Clock		2.0V 4.5V 6.0V	30 9 8	80 16 14	100 20 17	120 24 20	ns ns ns	
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns	
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 9 8	75 15 13	95 19 16	110 22 19	ns ns ns	
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		150				pF	
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF	

 $\textbf{Note 5: } C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC}.$

Logic Diagram

TL/F/5319-2

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

Europe din Road Fax: (+49) 0-180-530 85 86

Fax: (+49) 0-180-530 sb ob ob Email: onjwege etwer/2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408