Przetwarzanie Obrazów: Sprawozdanie

Damian Ubowski Maciej Tarach

Warszawa, 2019

Spis treści

1	Wst	sep	7
	1.1	Format obrazu	7
		1.1.1 Struktura formatu	7
		1.1.2 Przykładowa struktura IFF	8
		1.1.3 Instrukcja obsługi programu	8
2	Ope	eracje ujednolicania obrazów	9
	2.1	Ujednolicenie obrazów szarych geometryczne	9
	2.2	Ujednolicenie obrazów szarych rozdzielczościowe	12
	2.3	Ujednolicenie obrazów RGB geometryczne	15
	2.4	Ujednolicenie obrazów RGB rozdzielczościowe	15
3	Ope	eracje sumowania arytmetycznego obrazów szarych	17
	3.1	Sumowanie (określonej) stałej z obrazem	18
	3.2	Sumowanie dwóch obrazów	18
	3.3	Mnożenie obrazu przez zadaną liczbę	18
	3.4	Mnożenie obrazu przez inny obraz	18
	3.5	Mieszanie obrazów z określonym współczynnikiem	18
	3.6	Potęgowanie obrazu (z zadaną potęgą)	18
	3.7	Dzielenie obrazu przez (zadaną) liczbę	18
	3.8	Dzielenie obrazu przez przez inny obraz	18
	3.9	Pierwiastkowanie obrazu	18
	3.10	Logarytmowanie obrazu	18
4	Ope	eracje sumowania arytmetycznego obrazów barwowych	19
	4.1	Sumowanie (określonej) stałej z obrazem	20
	4.2	Sumowanie dwóch obrazów	20
	4.3	Mnożenie obrazu przez zadaną liczbę	20
	4.4	Mnożenie obrazu przez inny obraz	20
	4.5	Mieszanie obrazów z określonym współczynnikiem	20
	4.6	Potegowanie obrazu (z zadana potega)	20

4 SPIS TREŚCI

	4.7	Dzielenie obrazu przez (zadaną) liczbę	20		
	4.8	Dzielenie obrazu przez przez inny obraz	20		
	4.9		20		
	4.10	Logarytmowanie obrazu	20		
5	Ope	racje geometryczne na obrazie	21		
	5.1	Przemieszczenie obrazu o zadany wektor	21		
	5.2	Jednorodne skalowanie obrazu	21		
	5.3	Niejednorodne skalowanie obrazu	21		
	5.4	Obracanie obrazu o dowolny kąt	21		
	5.5	Symetrie względem osi układu	21		
	5.6		21		
	5.7		21		
	5.8		21		
6	Operacje na histogramie obrazu szarego 23				
	6.1	Obliczanie histogramu	23		
	6.2	Przemieszczanie histogramu	23		
	6.3		23		
	6.4		23		
	6.5	Progowanie globalne	23		
7	Ope	racje na histogramie obrazu barwowego	25		
	7.1	Obliczanie histogramu	25		
	7.2	Przemieszczanie histogramu	25		
	7.3	Rozciąganie histogramu	25		
	7.4	Progowanie 1-progowe lokalne	25		
	7.5	Progowanie wielo-progowe lokalne	25		
	7.6	Progowanie 1-progowe globalne	25		
	7.7	Progowanie wielo-progowe globalne	25		
8	Operacje morfologiczne na obrazach binarnych				
	8.1	Okrawanie (erozja)	27		
	8.2	Nakładanie (dylatacja)	27		
	8.3	Otwarcie	27		
	8.4	Zamknięcie	27		
9	Ope	racje morfologiczne na obrazach szarych	29		
	9.1^{-}	Okrawanie (erozja)	29		
	9.2		29		
	9.3		29		

SPIS TREŚCI	5

	9.4	Zamknięcie	29
10	Filt	rowanie liniowe i nieliniowe	31
	10.1	Filtr dolnoprzepustowy uśredniający	31
	10.2	Filtr dolnoprzepustowy Gaussowski	31
	10.3	Operator Roberts'a	31
	10.4	Operator Prewitt'a	31
	10.5	Operator Sobel'a	31
	10.6	Filtr kompasowy	31
	10.7	Gradient wektora kierunkowego	31
	10.8	Filtr medianowy	31
	10.9	Filtr maksymalny	31
	10.10	OFiltr minimalny	31
	10.1	1Filtr płaskorzeźbowy	31

6 SPIS TREŚCI

Wstęp

1.1 Format obrazu

Wybranym przez nas formatem obrazów cyfrowych jest DjVu, który jest oparty na zaawansowanej metodzie segmentacji obrazu. Tworzenie pliku DjVu polega na rozdzieleniu dowolnie skomplikowanego obrazu na odrębne warstwy, a następnie poddaniu warst odrębnym optymalizacjom i kompresjom. Format ten stosuje ładowanie progresywne, kodowanie arytmetyczne, oraz kompresję stratną dzięki czemu przy minimalnej ilości przestrzeni dyskowej można delektować się obrazami i dokumentami w wysokiej jakości.

1.1.1 Struktura formatu

Pliki DjVu rozpoczynają się od swojej "Magic number" potwierdzającej rodzaj pliku i mającej wartość 0x41~0x54~0x26~0x54. Następnie czerpiąc inspirację ze struktury IFF (Interchange File Format) plik dzieli się na kawałki (ang. chunks) zawierające interesujące nas cenne dane. Takie jak szerokość lub wysokość obrazu, dpi, informacje o kolorach, rozmieszczeniu pikseli, etc. Każdy kawałek składając się z ID typu, długości zawartości i samej zawartości tworzy zwarty format. Identyfikator typu określa rolę w jakiej przyjdzie służyć kawałkowi. Do dyspozycji ma ich całkiem sporo, ale uwzględniając najbardziej przydatne w naszym kontekście to ograniczymy liczbę do:

- * BGjp warstwa tylna przechowywana przy użyciu kodowania JPEG.
- * BFjp warstwa przednia w formacie JPEG.
- * INFO opisuje wysokość, szerokość, rozdzielczość, wersję kodera, oraz flagi wskazujące na obrót obrazu.

1.1.2 Przykładowa struktura IFF

```
FORM:DJVU [14260]
INFO [10]
Sjbz [13133]
FG44 [181]
BG44 [935]
```

Powyższa struktura przedstawia dokument składający się z jednej strony, na co wskazuje FORM:DJVU, wraz z grafiką. Ten znacznik informuje, że mamy do czynienia z kontenerem o długości 14260 bajtów, który może zawierać inne kawałki dokumentu. Zgodnie z konwencją, po identyfikatorze typu i informacji o długości znajduje się zawartość kawałka. W tym wypadku jak i w każdym innym po FORM:DJVU powinno znaleźć się INFO z podstawowymi informacjami. Jeśli konwencji i wymagań specyfikacyjnych stało się zadość wtedy czas nastał na jakieś wizualne atrakcje takie jak Sjbz, czyli masce wyboru pomiędzy kolorami z warstwy przedniej (FG44) i tylnej (BG44).

1.1.3 Instrukcja obsługi programu

W celu uruchomienia kodu źródłowego będzie niezbędny:

```
    * DjVuLibre (≥ 3.5.21)
    * Python (≥ 2.6 lub 3.X)
    * Cython (≥ 0.19, lub ≥ 0.20 dla Python 3)
    * pkg-config (POSIX)
```

Operacje ujednolicania obrazów

Ujednolicanie obrazów oznacza sprowadzenie ich do wspólnego gruntu pod względem określonego parametru. W tym wypadku będziemy ujednolicać obrazy pod względem geometrycznym (ilości kolumn i wierszy pikseli) i następnie rozdzielczościowym (wypełnienia pikselami). Sekwencyjność tych operacji jak i one same nie są w stanie spowodować spadku jakości obrazu.

2.1 Ujednolicenie obrazów szarych geometryczne

Algorytm

Opis

Algorytm geometrycznego ujednolicenia obrazów ma za zadanie sprowadzić oba obrazy do tej samej liczby pikseli w każdym wierszu i każdej kolumnie.

Kroki

- 1. Porównaj szerokości i wysokości obu obrazów i wybierz największe.
- 2. Jeśli pierwszy lub drugi obraz mają szerokość lub wysokość mniejszą od największej dostępnej to:
 - (a) Utwórz czarne tło
 - (b) Przenieś z wyśrodkowaniem piksle na czarne tło
- 3. Jeśli żaden z warunków jest niespełniony to nie rób nic

Rysunek 2.2: Po uruchomieniem algorytmu (od lewej): obraz 1 (2133x2133, 300dpi), obraz 2 (2133x2133, 300dpi)

Kod źródłowy algorytmu

```
def geometricGray(self):
  print('geometric gray unification start')
 width, height = self.firstDecoder.width, self.firstDecoder.
                               height
 if width < self.maxWidth or height < self.maxHeight:</pre>
    # Create black background
    firstResult = numpy.zeros((self.maxHeight, self.maxWidth)
                                , numpy.uint8)
    # Copy smaller image to bigger
    startWidthIndex = int(round((self.maxWidth - width) / 2))
    startHeightIndex = int(round((self.maxHeight - height) /
    pixelsBuffer = self.firstDecoder.getPixels()
    for h in range (0, height):
    for w in range (0, width):
    firstResult[h + startHeightIndex, w + startWidthIndex] =
                               pixelsBuffer[h, w]
    img = Image.fromarray(firstResult, mode='L')
    img.save('Resources/ggUnification_1.png')
    print('first image done')
  width, height = self.secondDecoder.width, self.
                               secondDecoder.height
  if width < self.maxWidth or height < self.maxHeight:</pre>
    # Create black background
    secondResult = numpy.zeros((self.maxHeight, self.maxWidth
                               ), numpy.uint8)
    # Copy smaller image to bigger
    startWidthIndex = int(round((self.maxWidth - width) / 2))
    startHeightIndex = int(round((self.maxHeight - height) /
                               2))
    pixelsBuffer = self.secondDecoder.getPixels()
    for h in range (0, height):
    for w in range (0, width):
    secondResult[h + startHeightIndex, w + startWidthIndex] =
                                pixelsBuffer[h, w]
    img = Image.fromarray(secondResult, mode='L')
    img.save('Resources/ggUnification_2.png')
    print('second image done')
  print('geometric gray unification done')
```

2.2 Ujednolicenie obrazów szarych rozdzielczościowe

Algorytm

Opis

Po użyciu ujednolicenia geometrycznego można użyć ujednolicenia rozdzielczościowego, które przeskaluje obraz z mniejszej postaci do większej dzięki czemu nie zostanie nam czarna ramka wokół obrazu. Wynikiem będzie większy obraz niż początkowo bez czarnego obwodu wokół. Mniejszy obraz można przeskalować do większych wymiarów przenosząc wszystkie piksele z uwzględnieniem luk pomiędzy nimi i następnie użycia interpolacji do zamazania tych luk. Interpolacja działa na zasadzie pobierania wartości z okolicznych pikseli i wyciągania z nich średniej, która posłuży jako baza koloru dla nowego piksela.

Kroki

- 1. Ustalenie nowych wymiarów obrazu
- 2. Obliczenie odległości pomiędzy pikselami (scaleFactoryH, scaleFactoryW)
- 3. Naniesienie pikseli z mniejszego obrazu na większy z uwzględnieniem luk
- 4. Interpolacja

Kod źródłowy algorytmu

$2.2.\ UJEDNOLICENIE\ OBRAZOW\ SZARYCH\ ROZDZIELCZOŚCIOWE 13$

Rysunek 2.3: Skutki braku interpolacji

Rysunek 2.4: Przed uruchomieniem algorytmu (od lewej): obraz 1 (2133x2133, 300dpi), obraz 2 (2133x2133, 300dpi)

Rysunek 2.5: Po uruchomieniem algorytmu (od lewej): obraz 1 (2133x2133, 300dpi), obraz 2 (2133x2133, 300dpi)


```
scaleFactoryW = float(self.maxWidth) / width
  scaleFactoryH = float(self.maxHeight) / height
 if width < self.maxWidth or height < self.maxHeight:</pre>
   pixelsBuffer = decoder.getPixels()
   result = numpy.zeros((self.maxHeight, self.maxWidth),
                               numpy.uint8)
    # Fill values
    for h in range(height):
      for w in range(width):
        if w\%2 == 0:
          result[int(scaleFactoryH * h), int(round(
                                scaleFactoryW * w)) + 1] =
                               pixelsBuffer[h, w]
        if w\%2 == 1:
          result[int(round(scaleFactoryH * h)) + 1, int(
                               scaleFactoryW * w)] =
                               pixelsBuffer[h, w]
    # Interpolate
    self._interpolate(result)
    img = Image.fromarray(result, mode='L')
    img.save(outputPath)
def _interpolate(self, result):
 for h in range(self.maxHeight):
    for w in range(self.maxWidth):
```

- 2.3 Ujednolicenie obrazów RGB geometryczne
- 2.4 Ujednolicenie obrazów RGB rozdzielczościowe

Operacje sumowania arytmetycznego obrazów szarych

- 3.1 Sumowanie (określonej) stałej z obrazem
- 3.2 Sumowanie dwóch obrazów
- 3.3 Mnożenie obrazu przez zadaną liczbę
- 3.4 Mnożenie obrazu przez inny obraz
- 3.5 Mieszanie obrazów z określonym współczynnikiem
- 3.6 Potęgowanie obrazu (z zadaną potęgą)
- 3.7 Dzielenie obrazu przez (zadaną) liczbę
- 3.8 Dzielenie obrazu przez przez inny obraz
- 3.9 Pierwiastkowanie obrazu
- 3.10 Logarytmowanie obrazu

Operacje sumowania arytmetycznego obrazów barwowych

- 4.1 Sumowanie (określonej) stałej z obrazem
- 4.2 Sumowanie dwóch obrazów
- 4.3 Mnożenie obrazu przez zadaną liczbę
- 4.4 Mnożenie obrazu przez inny obraz
- 4.5 Mieszanie obrazów z określonym współczynnikiem
- 4.6 Potęgowanie obrazu (z zadaną potęgą)
- 4.7 Dzielenie obrazu przez (zadaną) liczbę
- 4.8 Dzielenie obrazu przez przez inny obraz
- 4.9 Pierwiastkowanie obrazu
- 4.10 Logarytmowanie obrazu

5.8

Operacje geometryczne na obrazie

5.1	Przemieszczenie obrazu o zadany wektor
5.2	Jednorodne skalowanie obrazu
5.3	Niejednorodne skalowanie obrazu
5.4	Obracanie obrazu o dowolny kąt
5.5	Symetrie względem osi układu
5.6	Symetrie względem zadanej prostej
5.7	Wycinanie fragmentów obrazu

Kopiowanie fragmentów obrazów

Operacje na histogramie obrazu szarego

- 6.1 Obliczanie histogramu
- 6.2 Przemieszczanie histogramu
- 6.3 Rozciąganie histogramu
- 6.4 Progowanie lokalne
- 6.5 Progowanie globalne

24 ROZDZIAŁ 6. OPERACJE NA HISTOGRAMIE OBRAZU SZAREGO

Operacje na histogramie obrazu barwowego

- 7.1 Obliczanie histogramu
- 7.2 Przemieszczanie histogramu
- 7.3 Rozciąganie histogramu
- 7.4 Progowanie 1-progowe lokalne
- 7.5 Progowanie wielo-progowe lokalne
- 7.6 Progowanie 1-progowe globalne
- 7.7 Progowanie wielo-progowe globalne

26ROZDZIAŁ~7.~OPERACJE~NA~HISTOGRAMIE~OBRAZU~BARWOWEGO

Operacje morfologiczne na obrazach binarnych

- 8.1 Okrawanie (erozja)
- 8.2 Nakładanie (dylatacja)
- 8.3 Otwarcie
- 8.4 Zamknięcie

 $28ROZDZIAŁ\,8.\ OPERACJE\,MORFOLOGICZNE\,NA\,OBRAZACH\,BINARNYCH$

Operacje morfologiczne na obrazach szarych

- 9.1 Okrawanie (erozja)
- 9.2 Nakładanie (dylatacja)
- 9.3 Otwarcie
- 9.4 Zamknięcie

30ROZDZIAŁ~9.~OPERACJE~MORFOLOGICZNE~NA~OBRAZACH~SZARYCH

Filtrowanie liniowe i nieliniowe

10.1	Filtr dolnoprzepustowy uśredniający
10.2	Filtr dolnoprzepustowy Gaussowski
10.3	Operator Roberts'a
10.4	Operator Prewitt'a
10.5	Operator Sobel'a
10.6	Filtr kompasowy
10.7	Gradient wektora kierunkowego
10.8	Filtr medianowy
10.9	Filtr maksymalny
10.10	Filtr minimalny
10.11	Filtr płaskorzeźbowy