Zusammenfassung Modellbildung und Systemidentifikation

Grundlagen

Modellarten

- ARX TODO

MkQ für Statische Systeme

Parameterlineare Modelle

Prinzip: Kostenfunktion $\epsilon^T \cdot \epsilon$ definieren und minimieren (Variante: Gewichtete Kostenfunktion)

 $\text{mit } \epsilon = \text{Messwert} - \text{Modell}$

$$y = \phi \cdot p$$

Mit Ableitung ergibt sich Lösung:

$$p = (\phi^T \cdot \phi)^- 1 \cdot \phi \cdot y = \phi^+ \cdot y$$

Singulärwertzerlegung (SVD) kann für einfache Berechnung von ϕ^+ genutzt werden:

$$\phi = U \cdot \Sigma \cdot V^T \rightarrow \phi^+ = V \cdot \Sigma^T \cdot U^T$$

ParameterNICHTlineare Modelle

Ansatz wie bei parameterlinearen Modellen.

Problem: nichtlineare Gleichungen

Lösung: Linearisierung der Fehlergleichung

Verfahren:

- Gauß-Newton-Verfahren (gegf. mit Dämpfungsfaktor)
- Gradientenverfahren (line search)
- Levenberg-Marquardt-Algorithmus

MkQ für Dynamische Systeme

Dynamisch zeitdiskrete Systeme

Dynamische Modelle = ARX (autoregressive) Modelle

Dynamisch zeitkontinuierliche Systeme

Ausgangspunkt: DGL

Problem: Ableitungen beschaffen

Lösung:

a) Finite Differenzen (Vorwärts/Rückwärtsdifferenz) Störanfällig, Messrauschen wird verstärkt

b) Filterung von Ein- und Ausgangssignalen

Idee: Ausnutzen von Eigenschaften des Faltungsoperators

$$d/dt(x(t) * g(t)) = x(t) * d/dt(g(t))$$
 (g(t): Impulsantwort)

Zustandsvariablenfilter:

Ansatz:

$$F(s) = \frac{f_0}{f_0 + f_1 s + \dots + s^n}$$

Adaptives Zustandsvariablenfilter:

z.B. Butterworth-Filter

Wann sind physikalische Parameter vollständig identifizierbar?

- np = n + m + 1
- Jacobi-Matrix $\delta f/\delta p$ ist regulär

Rekursive MkQ

Iterationsvorschrift -> siehe Skript

Bestimmung der Startwerte

Nutzung der nicht-rekursiven MkQ

Wahl von Standardwerten

Startwertwahl von a_0 = 0 $P_0=1/\alpha I$ (I: Einheitsmatrix). Dies führt für große Alpha zu $P_k\approx\phi_k^T\phi_k$

Rekursive MkQ mit exponentiell nachlassendem Gedächtnis

Rechentechnische Umsetzung der MkQ

TODO

Identifikation nicht-linearer Systeme

Hammerstein-Modell: nicht-linear statisches System + dynamisch lineares System

Einfacher Ansatz für nicht-Linearität: $\widetilde{u}[k] = r_0 + r_1 \cdot u[k] + ... r_p \cdot u[k]^p$

Ergibt lineares Modell mit mehreren Eingängen, darstellbar in der Form $y[k] = \phi a$

2.7 Modifikationen der MkQ

2.7.1 Totale MkQ (orthogonale Regression)

Minimierung des Fehlers der Ausgangsdaten F und des Fehlers der Eingangsdaten ϵ :

$$y + \epsilon = (\Phi + F)a$$

$$=> [(\Phi y) + (F\epsilon)] \begin{pmatrix} a \\ -1 \end{pmatrix}$$

=> Minimierung von $(F\epsilon)$ im Sinne der Frobeniusnorm.

Einschub: Singulärwertzerlegung

Mann kann Matrizen unter gewissen Vorraussetzungen folgendermaßen zerlegen:

$$C = U\Sigma V^T$$

TODO

2.7.2 Methode der Hilfsvariablen

Anwendung: bei verzerrten Schätzern (ARX-Modell nicht perfekt)

Prinzip: Multiplikation der Modellfehlergleichung mit sog. Hilfsvariablen: $W^T\epsilon=W^Ty-W^T\Phi a$

W ist so wählen, dass Spalten unkorreliert mit ϵ sind.

=> Lösung der modifizierten Normalengleichung: $a=(W^T\Phi)^-1W^Ty$

Wahl von W:

- 1. Schätzen von Parametervektor mit MkQ: $\hat{a} = \Phi^+ y$
- 2. Simulation des Models $\hat{y} = \Phi \hat{a}$
- 3. $W = \dots$ (siehe Skript)
- 4. Schätzung mittels Hilfsvariablen

Iteratives Wiederholen von 2-4 beseitigt Bias von MkQ Schätzer

3. Subspace-based State-Space System Identification (4 SID)

3.1 Grundgleichungen, Zustandsraummodelle

Zustandsraummodell:

x[k+1] = Ax[x] + Bu[k] - Folgezustand abhängig von aktuellem Zustand + Eingang

y[k] = Cx[k] + Du[k]- Ausgang abhängig von Zustand ü
 Eingang

Bekannt: N Messdatenpaare u[k], y[k]

Problem: Weder Zustandsfolge x[k] noch Zustandsdimension n bekannt

$$\begin{pmatrix} y[0] \\ y[1] \\ \dots \\ y[k-1] \end{pmatrix} = \underbrace{\begin{pmatrix} C \\ CA \\ CA^2 \\ \dots \\ CA^{k-1} \end{pmatrix}}_{Q_{B,k}} \quad x[0] + \underbrace{\begin{pmatrix} D & 0 & \dots & 0 \\ CB & D & \dots & 0 \\ \dots & \dots & D & 0 \\ CA^{k-2}B & CA^{k-3}B & CB & D \end{pmatrix}}_{H_k} \begin{pmatrix} u[0] \\ u[1] \\ \dots \\ u[k-1] \end{pmatrix}$$
Beobachtbarkeitsmatrix

Zusammenfassung in Blockmatrizen:

$$Y = \begin{pmatrix} y[0] & \dots & y[N-2k] \\ \dots & \dots & \dots \\ y[k-1] & \dots & y[N-k-1] \\ --- & --- & --- \\ y[k] & \dots & y[N-k] \\ \dots & \dots & \dots \\ y[2k-1] & \dots & y[N-1] \end{pmatrix} = \begin{pmatrix} Y_f \\ Y_p \end{pmatrix}$$

Analog für: $U = \begin{pmatrix} U_f \\ U_p \end{pmatrix}$

Subspace-Gleichungen

$$Y_p = Q_{B,k} X_p + H_K U_p$$

$$Y_f = Q_{B,k} X_f + H_K U_f$$

$$X_f = A^k x_p + Q_{S,k} U_p$$

mit $Q_{S,k} = (A^{k-1}B A^{k-2}B AB B)$ (erweiterte Steuerbarkeitsmatrix)

Durch Umformen/Einsetzten ergibt sich:

 $X_f = \dots$ (nur abhängig von Vergangenheit)

$$Y_f = Q_{B-k} L_{P,k} (U_p \ y_p)^T + H_k U_f$$

=> Für nächsten Ausgang Wissen der zukünftigen Eingabe erforderlich

3.2 Grundlagen: Projektion

3.2.1 Orthogonale Projektion

(5.58, 0.58)

Im zweidimensionalen lässt sich der Projektor pfolgendermaßen bestimmen: $p=a\cos\alpha\frac{|a|}{|b|}=a\frac{b^Tb}{bb^T}$

3.2.2 Schiefe Projektion

Allgemeine schiefe Projektion

Vorgehen:

- Senkrechte Projektion in die von B und C aufgespannte Ebene
- Schiefe Projektion der Ebene

Definition: Allgemeine schiefe Projektion entlang des Orthogonalkomplements von C auf B:

$$A/_CB := A \cdot \Pi$$

mit:

$$\Pi = \begin{pmatrix} B^T & C^T \end{pmatrix} \begin{pmatrix} BB^T & BC^T \\ CB^T & CC^T \end{pmatrix}^+ \begin{pmatrix} B \\ 0 \end{pmatrix}$$

Ablaufschema 4 SID

- Messdaten u[i], y[i] aufnehmen, in Hankelmatrizen U, Y anordnen
- Schiefen Prädiktor P berechnen
- SVD von P (Schätzung der Systemordnung (Länge Zustandsvektor); Schätzung für Beobachtbarkeitsmatrix $Q_{B,k}$)
- Berechnen von A, C
- Berechnen von B, D

4. Kalman-Filter

Ausgangspunkt: System mit Zustandsraummodell

$$x[k+1] = Ax[k] + Bu[k] + v[k]$$
$$y[k] = Cx[k] + e[k]$$

Annahmen

- Systemmatrizen A,B,C bekannt
- Eingang u[k], Ausgang y[k] bekannt
- Systemrauschen v[k] und Messrauschen e[k]: unkorrelierte, mittelwertfreie Rauschprozesse

Ziel

Schätzung $\hat{x}[k]$ des Zustandsvektors x[k]

Ansatz: Filterstruktur

$$\hat{x}[k+1] = \underbrace{A\hat{x}[k] + Bu[k]}_{\text{Prädiktionsterm a priori Schätzung"}} + \underbrace{K[k]}_{\text{Kalman-Matrix}} \underbrace{(y[k] - \hat{x}[k])}_{\text{Korrekturrem trix"}}$$

- Dieser Schätzer ist besonders gut, da erwartungstreu
- Kalman-Matrix so wählen, dass Kovarianz P[k] von Schätzfehler $\tilde{x}[k+1] = \hat{x}[k+1] x[k+1]$ minimiert wird

$$K[k] = P[k]C^{T}(Y + CP[k]C^{T})^{-1}$$

$$P[k+1] = AP[k]A^{T} + V - K[k]CP[k]$$

- V: Kovarianz des Systemrauschens
- Y: Kovarianz des Messrauschens (frei wählbar)

Ergebnis: erwartungstreuer Schätzer mit kleinster Varianz

Filteralgorithmus

- 1. Init: $\hat{x}[0]$ & P[0] (Anfangszustand aus phys. Vorwissen wählen oder 0 setzen)
- 2. Prädiktion/Zeitupdate: Schätzung des Zustands auf Basis der Messwerte bis Zeitpunkt k

$$\hat{x}^-[k+1] = A\hat{x}[k] + Bu[k]$$

- 3. Korrektur/Messupdate: Berechnung der neuen Kalman-Matrix, Korrektur der Zustandsschätzung anhand des neuen Messwertes $y[k+1] \to$ a posteriori Schätzung
- Schritte 2. und 3. iterativ für alle Messwerte wiederholen bis Schätzung des internen Zustands konvergiert

Kalman-Filter als Parameterschätzer

5. Identifikation nichtparametrischer Modelle

5.1 Frequenzgang mit period. Anregung

Variante 1: Anregung mit harmon. Eingangssignal (Sinus)

- Nach Einschwingen: Amplitude + Phase messen
- Wiederholung für versch. Frequenzen

Problem: reine Sinusschwingungen schwierig zu erzeugen

Variante 2: Anregung mit Trapez- oder Rechtecksignal

- Beginn bei hohen Frequenzen
- Bei kleineren Anregungsfrequenzen: Berücksichtigung der höheren harmonischen notwendig
- Aus vorherigen Messungen ist Übertragungsverhalten für hohe Frequenzen bekannt -> Signalanteile können subtrahiert werden; somit wird Grundschwingung isoliert

Nachteil: zeitaufwendig, da warten auf Einschwingen

Ausweg: Signale mit mehreren Frequenzanteilen

Allgemeine Nachteile:

- nur stabile Systeme
- keine passive Messungen
- nur kleine Störsignale

5.2 Korrelationsanalyse

5.2.1 Schätzung der Korrelationsfunktion

Def. Kreuzkorrelationsfolge: $R_{uy}[j] = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u[k-j]y[k]$

Def. Autokorrelationsfolge: $R_u[j] = R_{uu}[j] = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} u[k-j]u[k]$

Eigenschaften:

• $R_{uy}[j] = R_{yu}[-j]$ • $R_u[j] = R_u[-j]$

Problem: Messung nur über endlichen Zeithorizont => Schätzung

Schätzung der Autokorrelationsfolge: $\hat{R}_u[j] = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-|j|-1} u[k-|j|] u[k]$

Bemerkung: Schätzung $\hat{R}_u[j]$ ist nicht erwartungstreu: $E\{\hat{R}_u[j]\} = (1-\frac{|j|}{N})R_u[j]$

Andere Möglichkeit: $\hat{R}'_u[j] = \lim_{N \to \infty} \frac{1}{N-|j|} \sum_{k=0}^{N-|j|-1} u[k-|j|] u[k]$

Dieser Schätzer ist erwartungstreu, weist aber eine um den Faktor N/(N-|j|)größere Varianz auf -> Praktisch wird ersterer verwendet

5.2.2 Schätzung der Gewichtsfolge

Für lineare zeitdiskrete Systeme sind Ein- und Ausgangssignal mittels Faltungssumme verknüpft:

$$y[k] = g * u = \sum_{l=0}^{\infty} g[k-l]u[l] = \sum_{l=0}^{\infty} g[l]u[k-l]$$

Für Kreuzkorrelationsfolge $R_{uy}[j]$ gilt:

$$R_{uy}[j] = \dots$$
 (siehe Skript) = $g * R_u = \sum_{l=0}^{\infty} g[l]R_u[j-l]$

Annahme: $R_{uy}[j]$ und $R_u[j]$ bekannt für j mit $-P \leq j \leq M$

=> Gleichungssystem aufstellen (siehe Skript)

Lösung mittels MkQ liefert:

$$\hat{g} = \hat{R}_u^+ \hat{R}_{uy}$$

Falls Eingangssignal weißes Rauschen mit Autokorrelationsfunktion

Dann folgt:

$$\hat{R}_{uy} = \hat{\sigma}^2 g[i]$$

=> Schätzung für Gewichtsfolge: $\hat{g}[i]=\frac{1}{\hat{\sigma}^2}\hat{R}_{uy}$

Parameterschätzung für Differenzengleichungen

6. Statistische Parameteridentifikation

6.1 Maximum-Likelihood-Methode

6.1.1 Grundgedanke

bisher: keine Annahme für Verteilungsfunktion der betrachteten Fehlersignale

jetzt: stochastische (meist normalverteilte) Fehlersignale mit bekannter Verteilung

Sei X eine Zufallsvariable mit Wahrscheinlichkeitsdichte p(x, a) abhängig von Parameter a. Wahrscheinlichkeit für Auftreten der Stichprobe $x_1, ..., x_N$:

$$L(a) = P(x_1, a) \cdot P(x_2, a) \cdot \dots \cdot P(x_N, a)$$

Diese Funktion wird als Likelihood-Funktion bezeichnet.

Maximum-Likelihood-Schätzung: $\hat{a} = \operatorname{argmax} L$

 ${\bf Einfacher} \ {\bf zu} \ {\bf analysieren:} \ {\bf Log-Likelihood-Funktion}$

$$\ln(L(a)) = \ln(P(x_1, a)) + \ln(P(x_2, a)) + \dots + \ln(P(x_N, a))$$

Ableitung liefert notwendige Bedingung für Maximum:

$$\frac{\partial(L)}{\partial a} = \sum_{i=1}^{N} \frac{\partial \ln p(x_i, a)}{\partial a} \stackrel{!}{=} 0$$

6.1.2 Maximum-Likelihood-Schätzer für statische Systeme

- statischer Prozess mit Eingang u, Ausgang y
- Likelihood-Funktion als bedingte Wahrscheinlichkeit p(y|u,a)

TODO

Zusammenfassende Fragen

- Ansatz Herleitung der MkQ; Was wird Minimiert?
- Gegeben: Messdaten Eingang + Ausgang
 - Welches Vorgehen?
 - Welcher Ansatz setzt was vorraus?
 - -linear \leftrightarrow nicht-linear unterscheiden
 - parameterlinear \leftrightarrow nicht-parameterlinear unterscheiden
- statisch \leftrightarrow dynamische Systeme
- Umrechnung kontinuierliche \leftrightarrow diskrete Systeme
 - Warum notwendig?
 - Wie zurück rechnen?
- 4SID nur knapp
 - Zustandsraum
 - Vorteile (Mehrgrößen und Dimension)
 - Nachteil (Verzerrter Schätzer wie MkQ; Zusammenhang physikalische Systeme, schlechte Abbildung)
- Kalmann-Filter (Struktur, nicht unbedingt Details)
- Rekursive MkQ
 - keine Herleitung
 - Was bringt diese Methode?
 - Matrix-Inversion gespart
 - Rechenaufwand gering
 - online implementierbar
 - Wieviele/ welche Daten müssen gespeichert werden? Vergleich mit MkO
- Nicht-lineare Systeme (Hammerstein-Modell)
- Frequenzgang-Messung (aufwendig, zeitintensiv, nicht-parametrisches Modell nicht besonders nütztlich)
- Erzeugung Pseudo-Rausch-Binär-Signal

Weniger relevant

- Matrixzerlegung
- Projektion
- Methode der Hilfsvariablen; totale MkQ (jeweils nur Grundkonzept wissen)