

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters:

ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

AS3833

6 channel high-precision LED controller for 3D-LCD backlight with integrated step-up controller

1 General Description

The AS3833 is a 6 channel high precision LED controller with PWM input for driving external bipolar transistors in LCD-backlight panels, optimized for 2D and 3D operation.

The integrated step-up controller provides the necessary output voltage for the LED string supply.

The SMPS feedback control optimizes the power efficiency by adjusting the LED string supply voltage.

Build in safety features include under-voltage and thermal shutdown as well as open and short LED detection.

2 Key Features

- 6 channel LED controller
- Step-up controller optimized for 2D/3D mode
- Supply voltage range: 12V to 50V

Figure 1. AS3833

- Output current up to 250mA per channel
- Absolute current accuracy +/- 0.8%
- Channel to channel accuracy+/- 0.6%
- 1 PWM input with internal phase shift
- Open LED detection and disconnect
- Short LED protection and auto-turnoff
- Undervoltage shutdown
- Temperature shutdown
- Temperature supervision of external BJT
- BJT Beta compensation
- SMPS feedback control
- DCDC Softstart Function
- Over Voltage Protection (OVP)
- Package SOIC-28
- Package TQFP-32

Applications

LED backlighting for 3D-LCD backlight TV sets and monitors

Contents

1 General Description	1
2 Key Features	1
3 Applications	1
4 Pin Assignments (Top View)	3
4.1 Pin Descriptions	
5 Absolute Maximum Ratings	
6 Electrical Characteristics	
7 Typical Operating Characteristics	8
8 Detailed Description	
8.1 Precision current output	10
8.1.1 Phase shift	10
8.2 VDDH_HC resistor	
8.3 Safety features	
8.3.1 Undervoltage lockout	
8.3.2 Overtemperature Shutdown	
8.3.3 Short LED protection	
8.3.4 Open LED detection	
8.4 Boost controller	
8.4.1 Setting the output voltage	
8.4.2 Continuous Conduction Mode (CCM)	15
8.4.3 Duty Cycle	
8.4.4 Inductor Current	
8.4.6 Output Capacitor	
8.4.7 Current Sense Resistor	
8.4.8 Compensation Network	
9 Package Drawings and Markings	
10 Ordering Information	

4 Pin Assignments (Top View)

Figure 2. Pin Assignments (Top View)

Revision 1.8 3 - 20

4.1 Pin Descriptions

Table 1. Pin Descriptions

Pin Number AS3833 TQFP-32	Pin Number AS3833 SOIC-28	Pin Name	Pin Type	Description	
29	1	VSS	Р	Analog Ground	
30	2	B4	A_I/O	Base 4. Connect to base of external transistor.	
31	3	E4	A_I/O	Emitter 4. Connect to emitter of external transistor.	
1	4	xFAULT	DO_OD	Fault output. Active low.	
2	5	ISET	A_I/O	Current setting. Connect current setting resistor.	
3	6	UVLO	A_I/O	Undervoltage lockout input.	
4	7	COMP	A_I/O	Compensation network. Connect compensation network.	
5	8	SENSE	A_I/O	Current sense input. Provide a short, direct PCB path between this pin and the positive side of the current sense resistor.	
6	9	FB	A_I/O	Output voltage feedback input. Input for voltage divider. Connect voltage divider output as short as possible to this pin	
7	10	VDDL	A_I/O	Voltage regulator output 3.3V. Connect 2.2µF decoupling capacitor to GND	
8	11	GATE	A_I/O	Gate driver output.	
10	12	PGND	Р	Power Ground	
11	13	VDDM	Р	Voltage regulator output. Connect 2.2µF decoupling capacitor to GND	
12	14	VDDH	Р	Supply voltage. Connect 1µF decoupling capacitor to GND	
14	15	VDDH_HC	Р	Voltage regulator Input. Connect 2.2µF decoupling capacitor to GND	
15	16	VTH	A_I/O	Reference input for overtemperature detection.	
16	17	PWM1	DI_PD	PWM input 1. PWM input for channel 1	
17	18	E6	A_I/O	Emitter 6. Connect to emitter of external transistor.	
18	19	B6	A_I/O	Base 6. Connect to base of external transistor.	
19	20	B5	A_I/O	Base 5. Connect to base of external transistor.	
20	21	E5	A_I/O	Emitter 5. Connect to emitter of external transistor.	
21	22	VSS	Р	Analog Ground	
22	23	E2	A_I/O	Emitter 2. Connect to emitter of external transistor.	
23	24	B2	A_I/O	Base 2. Connect to base of external transistor.	
24	25	B1	A_I/O	Base 1. Connect to base of external transistor.	
25	26	E1	A_I/O	Emitter 1. Connect to emitter of external transistor.	
26	27	E3	A_I/O	Emitter 3. Connect to emitter of external transistor.	
27	28	B3	A_I/O	Base 3. Connect to base of external transistor.	

A_I/O...Analog pin, P...Power pin, DO...digital output, DO_OD...digital output open drain, DI...digital input, DI_PU...digital input with pullup resistor, DI_PD...digital input with pull down resistor

Revision 1.8 4 - 20

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 6 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
Electrical Parameters				
VDDH to VSS, VDDH_HC to VSS	-0.3	55	V	
VDDM to VSS, GATE to VSS	-0.3	25	V	
xFAULT to VSS	-0.3	7	V	
VDDL to VSS	-0.3	5	V	
Analog Pin Voltage to VSS ¹	-0.3	5	V	
Digital Pin Voltage to VSS ²	-0.3	5	V	
Input Current (latch-up immunity)	-100	100	mA	Norm: JEDEC 78
Electrostatic Discharge		•		
Electrostatic Discharge HBM		+/- 1500	V	Norm: MIL 883 E method 3015
Electrostatic Discharge MM		+/- 200	V	Norm: JESD22-A115C
Continuos Power Dissipation (TA = +70°C)				
Continuos Power Dissipation		1.5	W	PT ³ for SOIC-28 Package
Continuos Power Dissipation Derating Factor		13	mW/°C	PDERATE ⁴
Temperature Ranges and Storage Conditions				
Junction to ambient thermal resistance		76	°C/W	SOIC-28 Package. For more information about thermal metrics, see application note AN01 Thermal Characteristics.
Junction Temperature (T _{Jmax})		+150	ºC	
Storage Temperature Range	-55	+150	ōС	
Package Body Temperature		+260	ōC.	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/ JEDEC J-STD-020"Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is matte tin (100% Sn).
Humidity non-condensing	5	85	%	
Moisture Sensitive Level		1		Represents a max. floor life time of unlimited

- 1. Pins Vth, UVLO, Comp, Sense, FB, Iset, Ex, Bx
- 2. Pins PWMx
- 3. Depending on actual PCB layout and PCB used.
- 4. PDERATE derating factor changes the total continuous power dissipation (PT) if the ambient temperature is not 25°C. Therefore for e.g. TA=85°C calculate PT at 85°C = PT PDERATE x (85°C 25°C)

6 Electrical Characteristics

VDDH = 24V, all voltages referenced to Vss, Typical values are at $TA = +25^{\circ}C$ (unless otherwise specified). All limits are guaranteed. The parameters with min. and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Table 3. Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
General						
TA	Operating Temperature Range	apply proper cooling to stay below maximum allowed TJ.	-20		+85	°C
TJ	Operating Junction Temperature		-20		+115	°C
Power supply	y					
VDDH	Supply Voltage		+12		+50	V
VDDM	Driver supply voltage regulator output			+9		V
VDDL	3V voltage regulator output			+3.3		V
IDD	Operating Current Consumption	UVLO=2V, PWM1=0, Rset=6kΩ, Vth=0.47V	4.6	5.0	5.6	mA
IDDQ	Quiescent Current Consumption	UVLO=0V, PWM1=0, Rset=6kΩ, Vth=0.47V	2.25	2.50	2.75	mA
Current sink	parameters	A.				
I _{LED_100}	Trimmed current accuracy	ILED=100mA, Tj = 25°C excluding error of Rset	-0.8		+0.8	%
I _{LED_ALL}	current accuracy	ILED= 50^{1} to 250mA, BJT β >50 Tj = -20 to +115°C	-1.5		+1.5	%
I _{CH_100}	Channel to channel accuracy	ILED=100mA, Tj = 25°C	-0.6		+0.6	%
V _{IsetX}	Reference Voltage at pins Iset		+1.18	+1.20	+1.22	V
Ratio	Ratio = ILED/Iset			500		
I _{BX}	Base output current limit		5.5		7.5	mA
Short detecti	on comparator			1		
ACC _{short}	Over-Temperature protection accuracy	Accuracy of V _{be} comparison with V _{TH} level	-10		+10	mV
Power supply	y regulation					ļ
B _{th}	BJT beta threshold		45	48	52	
Boost contro	ller oscillator			l		
f _{osc}	Oscillator frequency		220	250	280	kHz
Boost contro	ller PWM					
D _{MAX}	Maximum duty cycle		85	87	89	%
Boost contro	ller error amplifier					
V _{FB}	Reference Voltage at pin FB	В		+1.25	+1.27	V
Av	Voltage gain			80		dB
BW	Bandwidth	AV = 0dB		2		MHz
I _{FB_in}	Voltage sense input current	pins FB		0.1	0.2	μA
I _{comp_out}	Compensation output current	pins COMP, Vcomp = 1V		10		μA
•	Iller over current protection	F 5 - 2		••		F-''
V _{SENSE}	Current sense threshold	pin SENSE	+600	+800	+1000	mV
- OLINOL	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	p 02.102	. 500	. 300	500	•

Revision 1.8 6 - 20

Table 3. Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Boost control	ler driver					
R _{driver}	Driver resistance sink and source	pin GATE	4	6	8	Ω
V _{driver}	GATE maximum output voltage	IGATE = 0mA		VDDM		V
t _{RISE_driver}	GATE voltage rise time	VGATE = 0 to 3V, CLOAD = 3nF	15	25	50	ns
tFALL_driver	GATE voltage fall time	VGATE = 3 to 0V, CLOAD = 3nF	15	25	50	ns
Boost control	ler under voltage lockout		1			
V_{UVLO}	Under voltage lockout threshold		+1.28	+1.35	+1.42	٧
IUVLO_Hyst	Under voltage lockout hysteresis current			20		μА
Digital pins			•			
V _{IH}	Logic high input threshold		+1.8			V
V _{IL}	Logic low input threshold			K	+0.8	V
V _{OL}	Logic low output level	PIN xFAULT open drain. I = -2mA			+0.3	V
R_{PU}	Input resistance Pull-up inputs			300		kΩ
R_{PD}	Input resistance Pull-down inputs			300		kΩ
Thermal prote	ection			ı		I
T _{OFF}	Thermal shutdown threshold			140		°C
T _{hyst}	Thermal shutdown hysteresis	9		30		°C

^{1.} Is is not recommended to set ILED < 50mA in order to minimize influences of offset voltages.

Revision 1.8 7 - 20

7 Typical Operating Characteristics

VOUT Boost = 60V; IOUT = 1A, TAMB = $+25^{\circ}C$ (unless otherwise specified).

Figure 3. Boost - Efficiency vs. Output Current; VIN = 13V

Figure 5. Vout vs. Iout ,Vin = 13V

Revision 1.8 8 - 20

Figure 6. Vout vs. Iout, Vin = 24V

Figure 7. Boost - Efficiency vs. Input Voltage, IOUT = 1A

Figure 8. Vout vs. Temp ,VIN = 24V, IOUT = 0.2A

Revision 1.8 9 - 20

8 Detailed Description

8.1 Precision current output

Figure 9. Current output stage

The LED-current is derived from either Rset using the following equation

$$I_{LED} = RATIO \times I_{set} = RATIO \times \frac{V_{set}}{R_{set}} = 500 \times \frac{1.2V}{R_{SET}}$$
 (EQ 1)

 I_{set} is protected against a short to ground. In the case of a ground short the current I_{set} is limited to 660uA and the LED-current to 330mA. I_{set} has a lower limit of 6uA with a 1uA hysteresis. This sets the lower limit of the LED-current to 3mA with R_{set} =200k Ω . If R_{set} is large than 200k Ω , the LED-current is set to 0mA.

8.1.1 Phase shift

The outputs are controlled by the PWM-input and a built in phase shift generator. All outputs are phase shifted by 1/6 of the PWM-period. In order to calculate the phase shift timing, two PWM-periods are needed. This means that after changing the PWM-frequency, the phase shift is updated after the second period. The PWM-frequency must be in the range from 60Hz to 1kHz.

Figure 10. Phase shift

Revision 1.8 10 - 20

8.2 VDDH_HC resistor

Figure 11. VDDH_HC resistor

Pin VDDH_HC is connected to an internal 3.3V voltage regulator. In order to keep the power dissipation of this regulator low, it is recommended to connect pin VDDH_HC to the power supply Vin with a resistor. The resistor should guarantee sufficient voltage drop so that the remaining voltage at pin VDDH_HC is approximately 5V. The power dissipation of the R_{VDDH HC} hat to be considered.

$$R_{VDDH_HC} = \frac{V_{in} - 5V}{75mA} \tag{EQ 2}$$

$$P_{R_{VDDH \text{ HC}}} = (75mA)^2 \times R_{VDDH \text{_}HC}$$
 (EQ 3)

Typical values for R_{VVDH2} are:

$$\begin{split} \text{VIN} = 13\text{V:} & \quad R_{VDDH_HC} = 100\Omega \: / \: 1\text{W} \\ \text{VIN} = 24\text{V:} & \quad R_{VDDH_HC} = 250\Omega \: / \: 2\text{W} \end{split}$$

8.3 Safety features

8.3.1 Undervoltage lockout

In order to avoid startup of the Boost controller at low supply voltage an undervoltage lockout function is implemented. The boost controller only turns on when the voltage at pin UVLO exceeds V_{UVLO} . Once the boost controller is turned on a current source I_{UVLO_Hyst} is activated which increases the UVLO voltage and so shifts the turn off voltage level.

Figure 12. Undervoltage lockout

Datasheet - Detailed Description

Following equations can be derived for adjusting the threshold voltages:

$$V_{\rm DDH_UVH} \ = \ V_{UVLO} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO2}}\right) \tag{EQ 4}$$

$$V_{\mathrm{DDH_UVL}} = V_{UVLO} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO2}}\right) - I_{UVLO} \times R_{UVLO1} \tag{EQ 5}$$

8.3.2 Overtemperature Shutdown

If the device temperature reaches T_{OFF} the boost controller and all current outputs are turned off. After the temperature has decreased by T_{hyst} all blocks are turned on again.

8.3.3 Short LED protection

Figure 13. Short Led protection

A built in short protection comparator is monitoring the junction temperature T_J of the external bipolar transistors by measuring the base-emitter voltage V_{BE} .

$$V_{BE} = 1.2 \text{V} - 0.002 \times T_J$$
 Tj....junction temperature in K (EQ 6)

When the measured V_{BE} gets lower than the voltage applied at pin Vth an overtemperature an hence an short LED condition is detected. Subsequently the fault output is activated (xFAULT = 0) and the corresponding output is deactivated.

Revision 1.8 12 - 20

8.3.4 Open LED detection

Figure 14. Open Led detection

A broken LED-string is detected during PWM=1. If a LED-string is broken the power supply feedback will increment the IDAC to increase the power supply output voltage. After the IDAC has reached its maximum value, a debounce counter is started. In order to run the debounce counter, the corresponding PWM-signal has to be high for more than 150us. After the debounce counter has counted up for 32ms, the fault output is activated (xFAULT = 0) and the corresponding output is disconnected from the power supply feedback loop.

8.4 Boost controller

Figure 15. Boost controller

Revision 1.8 13 - 20

8.4.1 Setting the output voltage

Figure 16. Vout setting

According to the requirements of the LED strings, the output voltage Vout is adjusted by the internal power supply feedback

$$V_{OUTmin} = V_{fb} \left(1 + \frac{R_{fb1}}{R_{fb2}} \right) \qquad V_{OUTmax} = V_{fb} \left(1 + \frac{R_{fb1}}{R_{fb2}} \right) + 255 \mu A \cdot R_{fb1}$$

between:

Once Vout_min and Vout_max is known the external resistors can be caluclated:

$$R_{fb1} = \frac{(V_{OUTmax} - V_{OUTmin})}{255\mu A}$$

$$R_{fb2} = \frac{V_{fb}R_{fb1}}{(V_{OUTmin} - V_{fb})}$$
(EQ 7)

Note: The overall resistance should be in the range of $100k\Omega$ to $200k\Omega$ to avoid any noise issues. Keep FB-line as short as possible.

8.4.2 Continuous Conduction Mode (CCM)

For normal operation the converter should stay in continuous conduction mode, to ensure that the inductor value must be bigger than LCRIT.

$$L_{CRIT} = \frac{\left(1 - \frac{V_{IN}}{V_{OUT} + V_D}\right) \times V^2_{IN} \times R}{2 \times f_{SW} \times \left(V_{OUT} + V_D\right)^2}$$
 (EQ 9)

Where:

VIN ... Input voltage at VDDH

Vour ... Output voltage

VD ... Diode forward voltage at D1

fsw ... Switching frequency

R ... Load resistor, should be calculated with minimum current load R = VOUT / IOUT_min

IOUT_min ... Minimum output current (e.g. for LED driver only one LED string is on)

8.4.3 Duty Cycle

Within CCM, the well known relation between input and output voltage is deriped in the following equation:

$$\frac{V_{OUT} + V_D}{V_{IN}} = \frac{1}{1 - D} \tag{EQ 10}$$

this means for the duty cycle:

$$D = 1 - \frac{V_{IN}}{V_{OUT} + V_D} \tag{EQ 11}$$

8.4.4 Inductor Current

The inductor current varies during a switching cycle. This variation can be expressed by the mean value of the inductor current and the delta rise/fall current within each cycle (see Figure 17).

Figure 17. Inductor Current

Mean inductor current:

$$\overline{I_L} = \frac{I_{OUT}}{1 - D} \tag{EQ 12}$$

Delta inductor current:

$$\Delta I_L = \frac{D \times V_{IN}}{f_S \times L} \tag{EQ 13}$$

Revision 1.8 15 - 20

Datasheet - Detailed Description

Peak current:

$$I_{pk} = \overline{I_L} + \frac{\Delta I_L}{2} = \frac{I_{OUT}}{1 - D} + \frac{D \times V_{IN}}{2 \times f_S \times L} \tag{EQ 14}$$

RMS inductor current:

$$I_{RMS} = \sqrt{\overline{I_L}^2 + \left(\frac{1}{12} \times \Delta I_L\right)^2}$$
 (EQ 15)

This peak current is flowing through MN1 during phase 1 and through D1 during phase 2 of each cycle. Therefore this peak current is important for a proper diode, MOSFET and inductor selection.

Note: The saturation current of the inductor should be about 20 to 30% larger than the peak current

8.4.5 Input Capacitor

The input capacitor has to supply the delta inductor current and it should be selected according to:

$$C_{IN} > \frac{\Delta I_L}{4 \times \Delta V_{IN} \times f_{SW}} \tag{EQ 16}$$

$$ESR < \frac{\Delta V_{IN}}{2 \times \Delta I_{I}} \tag{EQ 17}$$

8.4.6 Output Capacitor

The output capacitor must be chosen according to the max allowable output ripple at high load

$$C_{OUT} > \frac{I_{OUT - max} \times D}{\Delta V_{OUT} \times f_{SW}}$$
 (EQ 18)

$$ESR < \frac{\Delta V_{OUT}}{\left(\frac{I_{OUT}}{1 - D} + \frac{V_{IN} \times D}{2 \times L \times f_{cur}}\right)}$$
 (EQ 19)

8.4.7 Current Sense Resistor

$$R_{S-max} = \frac{V_{SENSE}}{\overline{I_L} + 0,5 \times \Delta I_L}$$
 (EQ 20)

$$P_{RS} = I^2_{L-rms} \times R_S \times D \tag{EQ 21}$$

Note: Low inductance, specific designed current sensing resistors should be used, e.g. Stackpole Electronics CSR/CSRN series of sensing resistors with less than 0.2nH (typ.).

8.4.8 Compensation Network

A typical choice for values of the compensation network is C10 = 100pF, C11 = 10nF, $R11 = 100K\Omega$. Use these values as initial choice and evaluate the transient response of the system to verify the behavior at output load change.

Revision 1.8 16 - 20

9 Package Drawings and Markings

Figure 18. TQFP-32 Marking

Table 4. Packaging Code

YY	WW	G	ZZ
last two digits of the current year	manufacturing week	plant identifier	free choice / traceability code

Figure 19. SOIC-28 Marking

Table 5. Packaging Code

YY	ww	R	ZZ
last two digits of the current year	manufacturing week	plant identifier	free choice / traceability code

Revision 1.8 17 - 20

Figure 20. TQFP-32 Package

DRAWING NO. BPX

1 OF 1

: 2010.12.17

2010.12.17

Revision 1.8 18 - 20

SCALE NOT IN SCALE

Figure 21. SOIC-28 Package

Revision 1.8 19 - 20

10 Ordering Information

The devices are available as the standard products shown in Table 6.

Table 6. Ordering Information

Ordering Code	Marking	Description	Delivery Form	Package
AS3833-ZTQT	AS3833		Tape & Reel	TQFP-32
AS3833-ZSOT	AS3833		Tape & Reel	SOIC-28

Note: All products are RoHS compliant and austriamicrosystems green.

Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect

Technical Support is available at http://www.austriamicrosystems.com/Technical-Support

For further information and requests, please contact us mailto: sales@austriamicrosystems.com or find your local distributor at http://www.austriamicrosystems.com/distributor

