Lecture 5: 한국어 전처리 (Korean Text Preprocessing)

텍스트 전처리(Text Preprocessing)

텍스트 전처리는 풀고자 하는 문제의 용도에 맞게 텍스트를 사전에 처리하는 작업 텍스트 전처리를 제대로 하지 않으면 자연어 처리 기법들이 제대로 동작하지 않음

자연어 전처리 과정

- 목적
 - 문서/문장을 의미가 있는 최소 단위로 나누고 분석
- Tokenize
 - 대상이 되는 문서/문장을 최소 단위로 나눔
- Cleaning and Normalization
 - 최소 단위를 표준화
- POS-tagging
 - 최소 의미단위로 나누어진 대상에 대해 품사를 부착
- Chunking
 - POS-tagging의 결과를 명사구, 형용사구, 분사구 등과 같은 말모듬으로 다시 합치는 과정

자연어의 분석 단계

자연어처리의 유형

- Lexical (=Morphology) : 단어의 유의미한 성분에 관한 연구
- Syntax : 단어간 구조적 관계에 관한 연구
- Semantics : 문장/단어의 의미론적 연구 (예: 단순 키워드 뿐만 아니라 의도와 문맥까지 파악)
- Pragmatics : 언어를 사용하여 특정한 목표를 달성하기 위한 연구

원문	나는 그 과자를 먹었다.	너는 그를 사랑하니?
형태 소 분석	나(대명사) + 는(조사) + 그(대명사) + 과자(명 사) + 먹- (동사)+-었(선어말어미)+- 다(어말 어 미)+ .(문장 부호)	너(대명사) + 는(조사) + 그(대명사) + 사랑(명사) +-하(동사)+니(어말 어미) + ? (문장부호)
구문 분석	(S (NP 나/Noun) 는/Josa (NP 그/Noun 사 과/Noun) 를/Josa (VP 먹었다/Verb)./ Punctuation)	(S (NP 너/Noun) 는/Josa (NP 그/Noun) 를/ Josa (NP 사랑/Noun) (VP 하니/Verb) ?/ Punctuation)
의미 분석	술부: 먹다 행위자: 나 대상: 그 과자	술부: 사랑하다 행위자: 너 대상: 그
담화 분석	단순 서술	의문형

한국어 품사구분

한국어의 5언 9품사

• 단어를 기능 (function), 의미 (meaning), 형태 (form)의 세 가지 기준에 의해 분류함

언어형태학적(문법적) 분류

고립어, 굴절어 그리고 교착어

- 교착어 (agglutinative): 어근에 접사가 결합되어 각 단어의 기능을 나타내는 언어
- 굴절어 (inflectional): 단어 자체의 형태변화로 그 단어의 문법성을 나타내는 언어
- 고립어 (isolating): 단어의 형태변화 없이 문법적 관계는 어순에 의해 정해지는 언어

교착어

- 우랄 알타이어족의 교착어는 단어에 접사가 붙어야 그 뜻이 최종적으로 결정됨
- ex) '나'라는 어근에 접사로 '은/는/이/가' 가 붙으면 주격, '을/를' 이라는 접사가 붙으면 목적격
- 동사에서도 어근에 접사가 붙으므로 시제가 결정되는 구조
- ex) '가다'는 갔다, 갔었다 라는 어미 변화로 시제가 변화함

고립어

- 중국 티베트 등이 속한 고립어는 단어 형태는 갖고 어순에 따라 단어의 뜻 결정
- ex) 중국어로 아(我)와 거(去)가 我去라는 어순으로 만나면, '나는 가다' 라는 뜻이 되지만, 어순으로 바꾸어 去我라고 표현하면 '나를 가게 하다' 라는 뜻
- 我와 去라는 단어의 형태는 변하지 않지만, 어떤 순서를 갖는가에 따라 의미 변화
- 중국 티베트어는 단어의 형태는 고립적으로 변하지 않지만, 어순이나 문맥에 따라 단어의 뜻이 달라지게 된다고 하여, 이를 고립어라고 함

굴절어

- 인도유럽어족의 굴절어는 단어의 형태가 변화하면서 단어의 뜻이 결정되는 언어구조
- 대표적인 굴절어: 라틴어
- 영어의 good이라는 라틴어 단어는 bonus
 - 여기서 접사 -us는 남성, 주격 단수형 어미
 - 만약 이와 다른 속성을 표현하려면 접사를 다른 접사로 대체
 - ex) -um으로 대체하면 bonum: 남성, 직접 목적격 단수(또는 중성 직접 목적격 단수, 중성 주격 단수)
- 굴절어는 격, 성별, 시제 수, 품사 등 단어의 각 요소별로 다른 접사를 붙여 단어의 형태 변화
- 인도, 유럽어는 단어의 형태가 굴절되면서 동시에 단어의 뜻도 변하는 굴절어
- 굴절어는 각 단어가 모두 문법적인 요소를 갖고 있기 때문에 어순의 영향을 크게 받지 않음

한국어 품사 분류와 분포(distribution)

한국어 품사 분류의 일반적 기준

체언(명사) : 관형사가 그 앞에 올 수 있고 조사가 그 뒤에 올 수 있음

용언(동사/형용사): 부사가 그 앞에 올 수 있고 선어말어미가 그 뒤에 올 수 있고 어말어미가 그

뒤에 와야 함

관형사: 명사가 그 뒤에 와야 함

부사: 용언, 부사, 절이 그 뒤에 와야 함

조사 : 체언 뒤에 와야 함

어미: 용언 뒤에 와야함

감탄사(간투사): 문장 내의 다른 단어와 문법적 관계를 맺지 않고 따로 존재함

Distributed Representations

• Neural Network Language Model(Word2Vec, GloVe 등): 학습말뭉치의 단어 분포 정보를 보존하는 방식으로 벡터 생성 \rightarrow 임베딩된 단어벡터들이 분포 정보를 내포

형태소 분석 (Part of Speech Tagging)

형태소 분석이란?

- 문장을 형태소 단위로 구분하고 품사를 구별하여 태깅하고 용언의 다양한 활용으로 인한 형태소 탈락현상을 복원하는 과정
- 분석기마다 형태소 구분 방식이 다르기 때문에 데이터에 맞는 분석기를 선택해야함
- 모든 언어의 자연어 처리과정 중 가장 중요하고 기초적인 역할 수행
- 형태소 분석의 활용
 - 언어학적 측면 : 특정 언어현상의 생성과정을 설명하는 데 용이하게 쓰일 수 있음
 - 전산학적 측면 : 정보검색이나 자연어 처리 자동 처리시스템의 구문 분석의 전 단계 등의 용 도로 쓰일 수 있음

AIXIOIDIO D	대분류(5언 + 기타)	세종 품사 태그		mecab-ko-dic 품사 태그	
결결의미유구		태그	설명	태그	설명
		NNG	일반 명사	NNG	일반 명사
	체언	NNP	고유 명사	NNP	고유 명사
		NIND		NNB	의존 명사
		NNB	의존 명사	NNBC	단위를 나타내는 명사
		NR	수사	NR	수사
		NP	대명사	NP	대명사
	용언	vv	동사	vv	동사
실질형태소		VA	형용사	VA	형용사
		VX	보조 용언	VX	보조 용언
		VCP	긍정 지정사	VCP	긍정 지정사
		VCN	부정 지정사	VCN	부정 지정사
		MM	관형사	MM	관형사
	수식언	MAG	일반 부사	MAG	일반 부사
		MAJ	접속 부사	MAJ	접속 부사
	독립언	IC	감탄사	IC	감탄사
		JKS	주격 조사	JKS	주격 조사
		JKC	보격 조사	JKC	보격 조사
		JKG	관형격 조사	JKG	관형격 조사
	관계언	JKO	목적격 조사	JKO	목적격 조사
		JKB	부사격 조사	JKB	부사격 조사
		JKV	호격 조사	JKV	호격 조사
		JKQ	인용격 조사	JKQ	인용격 조사
		JX	보조사	JX	보조사
#4 LI #4 CIII A		JC	접속 조사	JC	접속 조사
형식형태소	선어말 어미	EP	선어말 어미	EP	선어말 어미
	어말 어미	EF	종결 어미	EF	종결 어미
		EC	연결 어미	EC	연결 어미
		ETN	명사형 전성 어미	ETN	명사형 전성 어미
		ETM	관형형 전성 어미	ETM	관형형 전성 어미
	접두사	XPN	체언 접두사	XPN	체언 접두사
	접미사	XSN	명사 파생 접미사	XSN	명사 파생 접미사
		xsv	동사 파생 접미사	xsv	동사 파생 접미사
		XSA	형용사 파생 접미사	XSA	형용사 파생 접미사
	어근	XR	어근	XR	어근
	부호	SF	마침표, 물음표, 느낌표	SF	마침표, 물음표, 느낌표
		SE	줄임표	SE	줄임표
		SS 따옴표,괄호표,줄표	MOT 31+ T 5 T	sso	여는 괄호 (, [
			따옴표,괄호표,술표	ssc	닫는 괄호),]
		SP	쉼표,가운뎃점,콜론,빗금	sc	구분자 , · / :
		so	붙임표(물결,숨김,빠짐)		
		sw	기타기호	SY	
	한글 이외	SL	외국어	SL	외국어
		SH	한자	SH	한자
		SN	숫자	SN	숫자

Python 한국어 형태소 분석기

꼬꼬마 형태소 분석기: Kkma

- 서울대학교 IDS (Intelligent Data Systems) 연구실에서 자연어 처리를 위한 모듈구축과제로 개발한 형태소 분석기
- Java 언어를 기반으로. 하며, Python-Java 연동을 통해 Python에서 사용 가능함
- 동적 프로그래밍 (Dynamic Programming) 방식으로 가능한 모든 형태소 후보를 모두 찾아 가 장 적합한 형태소를 판단함 → 매우느림

코모란 형태소 분석기: Komoran

- Shineware에서 개발된 한국어 형태소 분석기로서 Java Library 형태(jar)로 제공됨
- 타 형태소 분석기와 달리 여러 어절을 하나의 품사로 분석 가능함으로써 공백이 포함된 고유명사 (영화 제목, 음식점 명 등)를 정확하게 분석

Mecab 형태소 분석기: Mecab

- 일본어용 형태소 분석기를 한국어를 사용할 수 있도록 수정
- 사용자 사전 등록기능을 제공하여 댜양한 도메인에서 생성되는 단어들을 인식할 수 있도록 도와
 줌

한나눔 형태소 분석기: Hannanum

- KAIST Semantic Web Research Center (SWRC)에서 개발한 형태소 분석기
- 자동 띄어쓰기 모듈을 제공해 형태소 분석 결과를 활용하여 한글 문장에 대한 자동 띄어쓰기 수행 가능
- 사전 기반의 맞춤법 교정 모듈로 형태소 분석 결과를 활용하여 한글 단어에 대한 맞춤법 교정 수행 가능

Khaiii (Kakao Hangul Analyzer III)

- 카카오에서 DHA2 (Daumkakao Hangul Analyzer 2)를 계승하여 개발하고 2018년 공개된 두 번째 버전의 형태 소분석기
- 속도를 매우 중요시하여 신경망 알고리즘들 중에서 Convolutional Neural Network (CNN)을 사용하여 개발됨
- 사용자 사전 등록기능을 제공하여 댜양한 도메인에서 생성되는 단어들을 인식할 수 있도록 도와
 줌

오픈 소스 한국어 분석기: Open Korean Text (Okt)

- 과거 트위터 형태소 분석기 (Twitter)
- SNS에서 발생하는 언어에서 자주 발생하는 인물명, 신조어 등을 잘 인식하는 편이며, 속도가 빠르지만 형태소 분석 품질은 상대적으로 낮음

Dictionary based Part of Speech Tagger

품사 판별은 텍스트 데이터 분석을 위한 전처리 과정 중 하나

한편 IMF가 추정한 우리나라의 GDP갭률은 금년에도 소폭의 마이너스(-)를 지속하고 있는데, 잠재성장률 추정의 불확실성을 감안하더라도 최근의 고용상황, 제조업가동률, 물가상승률 등에 비추어 볼 때 동 추정치가 어느 정도 타당성이 있어 보인다고 언급하면서 관련부서의 견해를 물었음.

```
from konlpy.tag import Kkma
kkma = Kkma()
kkma.pos(text)
```

```
[('한편', 'NNG'), ('IMF', 'OL'), ('가', 'JKS'), ('추정', 'NNG'), ('하', 'XSV'), ('ㄴ', 'ETD'), ('우리나라', 'NNG'), ('의', 'JKG'), ('GDP', 'OL'), ('갭', 'NNG'), ('률', 'XSN'), ('은', 'JX'), ('금년', 'NNG'), ('에', 'JKM'), ('도', 'JX'), ('소폭', 'NNG'), ('의', 'JKG'), ('마이너스', 'NNG'), ('(', 'SS'), ('-', 'SW'), (')', 'SS'), ('를', 'JKO'), ('지속', 'NNG'), ('하', 'XSV'), ('고', 'ECE'), ('있', 'VXV'), ('는데', 'ECD'), (',', 'SP'), ('잠재', 'NNG'), ('성장률', 'NNG'), ('추정', 'NNG'), ('의', 'JKG'), ('청*물', 'NNG'), ('하', 'XSV'), ('더라도', 'ECD'), ('최근', 'NNG'), ('의', 'JKG'), ('고용', 'NNG'), ('상송률', 'NNG'), (',', 'SP'), ('제조업', 'NNG'), ('가동률', 'NNG'), (',', 'SP'), ('물가', 'NNG'), ('상송률', 'NNG'), ('등', 'NNB'), ('에', 'JKM'), ('비추', 'VV'), ('어', 'ECD'), ('보', 'VV'), ('리', 'ETD'), ('때', 'NNG'), ('동', 'NNG'), ('추', 'NNG'), ('정치', 'NNG'), ('가', 'JKS'), ('어느', 'MDT'), ('정도', 'NNG'), ('타당성', 'NNG'), ('이', 'JKS'), ('있', 'VV'), ('어', 'ECD'), ('보이', 'VV'), ('니다고', 'ECE'), ('언급', 'NNG'), ('하', 'XSV'), ('면서', 'ECE'), ('관련', 'NNG'), ('하', 'XSV'), ('면서', 'ECE'), ('관련', 'NNG'), ('하', 'XSV'), ('면서', 'ECE'), ('관련', 'NNG'), ('하', 'XSV'), ('면서', 'ECE'), ('연급', 'NNG'), ('라', 'NNG'), ('라', 'SF')]
```

품사 판별 과 형태소 분석

- 품사 판별을 위하여 형태소 분석 이용 가능
- 형태소 분석은 단어의 구성 요소들을 분해하여 인식하는 과정
- 품사 사전이 잘 구축된다면, 사전기반으로도 품사판별 가능
- 품사 판별이 목적이라면 형태소분석 과정이 필수 아님
- 사전 기반으로 작동하는 형태소/품사 분석은 사전 구성이 핵심
- 좋은 품질을 위하여 사용자 사전을 추가하여 사용

통계 기반 단어/품사 추정

문장: 아이오아이는이번공연에서좋은것모습을보였습니다이뻐이뻐

단어 추출을 통한 **토크나이징** 단어열: [아이오아이, 는, 이번, 공연, 에서, 좋은, 것, 모습, 을, 보였습니다, 이뻐, 이뻐]

품사 추정을 통한

품사 사전 업데이트

명사 사전 += [아이오아이, ...]

동사 사전 += [잘했어용, ...]

품사 사전을 이용한

품사 판별

품사열: [(아이오아이, 명사), (는, 조사), (이번, 명사), (공연, 명사), (에서, 조사), (좋은, 형용사), (것, 명사), (모습, 명사), (을, 조사),

(보였습니다, 동사), (이뻐, 형용사), (이뻐, 형용사)]

후처리

품사 판별

- 1. 후보 생성
- 사전을 이용하여 문장에서 가능한 품사열 후보 생성
- 가능성이 적은 후보들을 제거
- 2. 후보 평가
- 후보들 중에서 가장 적절한 품사열을 선택
- 3. 후처리
- 사전에 포함되지 않는 단어들 처리 및 그 외의 후처리를 수행

Max Score Tokenizer

알고 있는 단어부터 품사 판별

- 긴 문장이 주어지면 사람은 아는 단어부터 눈에 보임
- 확신이 있는 단어부터 품사를 판별

```
from soynlp.tokenizer import MaxScoreTokenizer

scores = {'파스': 0.3, '파스타': 0.7, '좋아요': 0.2, '좋아':0.5}
tokenizer = MaxScoreTokenizer(scores=scores)

print(tokenizer.tokenize('난파스타가좋아요'))
# ['난', '파스타', '가', '좋아', '요']

print(tokenizer.tokenize('난파스타가 좋아요', flatten=False))
# [[('난', 0, 1, 0.0, 1), ('파스타', 1, 4, 0.7, 3), ('가', 4, 5, 0.0, 1)],
# [('좋아', 0, 2, 0.5, 2), ('요', 2, 3, 0.0, 1)]]
```

한국어 용언의 활용 (Conjugation)

	English	Korean
1 st /2 nd /3 rd person of the subject	Yes	No
Singularity/plurality of the subject	Yes	No
Tense	Yes	Yes
Formality & politeness	No	Yes
Speech act	No	Yes
Passive	Yes	Yes
Causative	No	Yes
Modifying nouns	Yes	Yes
Indirect quotation	No	Yes

활용과 원형 복원

Lemmatization vs Conjugation

- lemmatization: 주어진 용언에서 어간과 어미의 원형을 찾는 작업 lemmatize('한다') → '하 + ㄴ다'
- conjugation: 어간과 어미의 원형이 주어졌을 때 적절한 모양으로 용언을 변형시키는 작업 conjugate('하', 'ㄴ다') \rightarrow '한다'

Lemmatization

규칙 기반 원형 복원 (lemmatization)

규칙 기반으로 형태소 후보를 만든 뒤, 형태소 사전을 검색

Lemmatization

음절 단위의 사전 기반 원형 복원

단어의 모든 부분에 대하여 형태소 후보를 생성한 뒤, 사전을 확인

Out of vocabulary

말뭉치 기반으로 학습된 한국어 토크나이저 문제점

- 미등록단어 문제 발생 가능
- 분석의 주요 단어가 제대로 인식되지 않으면 키워드 추출이나 토픽 모델링의 품질 저하

```
from konlpy.tag import Kkma, Twitter kkma = Kkma() kkma.pos('너무너무는 아이오아이의 노래에요')
```

너무/MAG, 너무너무/MAG, 는/JX, 아이오/NNG, 아이/NNG, 의/JKG, 노래/NNG, 에/JKM, 요/JX

```
twitter = Twitter()
twitter.pos('너무너무는 아이오아이의 노래에요')
```

너무/Noun, 너무/Noun, 너무/Noun, 는/Josa, 아이오/Noun, 아이/Noun, 의/Josa, 노래/Noun, 에 요/Josa

한국어의 특성 1

- 의미를 지니는 단어는 어절의 왼쪽에 등장
- 명사, 동사, 형용사, 부사, 감탄사 : 의미를 지니는 단어
- 조사, 어미 : 문법 기능의 단어와 형태소

ex)

- 발표/명사 + 를/조사
- 하/동사어근 + 면서/어미

한국어의 특성 2

- 어절의 다양성은 문법 기능을 하는 단어에 의하여 발생
- 문법 기능을 하는 단어를 어절에서 분리하면 분리된 단어의 종류는 적음
- 새롭게 만들어지는 단어는 주로 의미를 지니는 부분

ex)

- [명사 + 조사]: 발표+를, 발표+에서, 발표+도, ...
- [동사/형용사 +어미]: **하**+면서, **하**+고, **하**+니까

한국어의 특성 3

한국어 어절의 형태는 L + [R]

• 복합형태소는 하나의 R 로 생각하면 어절 구조가 단순해짐

ex)

- 수업하는데 = 수업/명사+ 하/동사파생접미사 + 는데/어미
- 수업하는데 = 수업/L+ 하는데/R

단어 추출은 어절에서 의미를 지니는 부분인 L을 인식하는 것이며, 토크나이징은 어절을 L + [R]로 나누는 것

Unsupervised Word Extraction: Cohesion (Character n-gram)

맥락이 충분히 주어지지 않으면 다음에 등장할 글자의 확률 낮음

• 한글자 ('아')는 매우 모호한 문맥

- > 아니 17.15 %
- > 아이 14.86 %
- > 아시 8.06 %
- > 아닌 4.74 %
- > 아파 4.43 %
- > 아직 3.85 %

•••

맥락이 충분히 주어지지 않으면 다음에 등장할 글자의 확률 낮음

- > 아이폰 16.60 %
- > 아이들 13.37 %
- > 아이디 9.66 %
- > 아이돌 6.77 %
- > 아이뉴 6.77 %
- > 아이오 6.53 %

•••

Subword 다음에 등장할 글자가 쉽게 예상된다면 (확률이 높다면) 아직 단어가 끝나지 않았다는 의미

- > 아이오아 87.95 %
- > 아이오닉 7.49 %
- > 아이오와 3.26 %
- > 아이오빈 0.65 %
- > 아이오페 0.33 %
- > 아이오케 0.33 %

Subword 다음에 등장할 글자가 쉽게 예상된다면 (확률이 높다면) 아직 단어가 끝나지 않았다는 의미

아이오아이 문맥이 확실하면 다음글자의 등장 확률이 높습니다 > 아이오아이 100.00 %

Cohesion Score

```
cohesion(c_{1:n}) = \int_{i=1}^{n-1} P(c_{1:i+1}|c_{1:i})
               P(c_{1:2}|c_1) = \frac{\#c_{1:2}}{\#c_1}
                                                        학습은 오로직
                                                         string count
cohesion('아이오아이') = { p(아 → 아이) *
                         p(아이 → 아이오) *
                         p(아이오 → 아이오아) *
                         p(아이오아 → 아이오아이)
                        } 1/(5-1)
```

하루치 뉴스로부터 학습한 결과

subword	frequency	P(AB A)	Cohesion score
아이	4,910	0.15	0.15
아이오	307	0.06	0.10
아이오아	270	0.88	0.20
아이오아이	270	1.00	0.30
아이오아이는	40	0.15	0.26

L-Tokenizer

어절의 왼쪽에서부터 단어의 점수가 가장 큰 subword를 기준으로 어절 구분

```
def ltokenize(w):
  n = len(w)
  if n <= 2: return (w, '')</pre>
  tokens = []
  for e in range(2, n+1):
    tokens.append(w[:e], w[e:], cohesion(w[:e]))
  tokens = sorted(tokens, key=lambda x:-x[2])
  return tokens[0][:2]
sent = '뉴스의 기사를 이용했던 예시입니다'
for word in sent.split():
  print( ltokenize(word) )
```

('뉴스', '의') ('기사', '를') ('이용', '했던') ('예시', '입니다')

Unsupervised Word Extraction: Branching Entropy

단어의 경계 부분에서는 다음 글자의 불확실성 증가

• 연속된 글자의 각 부분에서 다음 글자의 불확실성을 entropy 로 정의

Entropy 는 확률 분포의 불확실성을 정의하는 방법

Prob: {a: 0.99, b: 0.005, c: 0.005} 에서 임의의 한 개를 선택했을 때 대부분 a가 확실

$$Entropy = -0.99 * log(0.99) + 0.005 * log(0.005) + 0.005 * log(0.005) = 0.063$$

Prob: {a: 0.3, b: 0.4, c: 0.3} 에서 임의의 한 개를 선택하면 어떤 글자가 등장할지 예상하기 어려움. 불확실성 큼.

$$Entropy = -0.3 * log(0.3) + 0.4 * log(0.4) + 0.3 * log(0.3) = 1.089$$

불확실성 으로 단어의 경계 를 표현: 불확실성은 Entropy 를 이용하여 수치화

불확실성 으로 단어의 경계 를 표현: 불확실성은 Entropy 를 이용하여 수치화

불확실성 으로 단어의 경계 를 표현: 불확실성은 Entropy 를 이용하여 수치화

불확실성 으로 단어의 경계 를 표현: 불확실성은 Entropy 를 이용하여 수치화

아이오아 ? 오로직 한 가지 경우만 가능하면 불확실성 (entropy)는 0 입니다 > 아이오아이 100.00 %

단어의 경계를 넘으면 다음 글자에 대한 불확실성 다시 증가

아이오아이 ?

- > 아이오아이의 31.97 %
- > 아이오아이는 27.21 %
- > 아이오아이와 13.61 %
- > 아이오아이가 12.24 %
- > 아이오아이에 9.52 %
- > 아이오아이까 1.36 %

•••

H = 1.72

- 아이 가 다양한 단어의 subword 여서 Branching Entropy가 큼
- Cohesion, Branching Entropy 활용 토크나이저
 Branching Entropy가 다음 글자에서 떨어지는 부분들 중에서 Cohesion이 가장 큰 부분 선택

subword	frequency	Cohesion score	Branching Entropy
아이	4,910	0.15	3.11
아이오	307	0.10	0.49
아이오아	270	0.20	0
아이오아이	270	0.30	1.72
아이오아이는	40	0.26	0

Accessor Variety는 경계에 등장하는 글자의 종류수로 단어 점수를 표현

• AV 와 BE는 중국어/일본어의 word segmentation에서 자주 이용

단어 추출

통계 기반 단어 추출 방법은 exterior / interior score 로 분류

- Cohesion 은 단어 내 글자의 연관성을 단어 점수로 이용 (interior)
- Branching Entropy 는 단어 좌/우의 다른 글자를 이용하여 단어 점수를 정의 (exterior)
- 두 방법은 더 서로 다른 종류의 정보를 이용

단어 추출은 문서 집합의 도메인이 homogeneous 할 때 잘 작동

- 통계 기반 방법은 패턴이 잘 드러날 때 유리
- 아프리카 내전과 관련된 문서집합이었다면 '카메룬'의 cohesion은 '카메라' 보다 높았을 것 (tip) 가능한 분석할 문서의 종류를 나눠놓은 뒤 단어 추출을 수행

Packages

```
from soynlp import DoublespaceLineCorpus from soynlp.word import WordExtractor

corpus = DoublespaceLineCorpus(fname, iter_sent=True) word_extractor = WordExtractor(corpus, min_count=10) words = word_extractor.extract() words['드라마']
```

```
Scores(cohesion_forward=0.6093651029086764,
cohesion_backward=0.5282705437953743,
left_branching_entropy=3.6583115265560924,
right_branching_entropy=3.675624807575614,
left_accessor_variety=128,
right_accessor_variety=136,
leftside_frequency=2375,
rightside_frequency=1284)
```

Packages

https://github.com/lovit/soynlp 에 단어추출/명사추출/토크나이저를 구현

```
from soynlp.tokenizer import LTokenizer

scores = {word:score.cohesion_forward for word, score in word_score.items()}

l_tokenizer = LTokenizer(scores=scores)

l_tokenizer.tokenize("안전성에 문제있는 스마트폰을 휴대하고 탑승할 경우에 압수한다", flatten=False)
```

```
[('안전', '성에'),
('문제', '있는'),
('스마트폰', '을'),
('휴대', '하고'),
('탑승', '할'),
('당수', '해'),
('강수', '한다')]
```

Packages

```
from soynlp.tokenizer import MaxScoreTokenizer
maxscore_tokenizer = MaxScoreTokenizer(scores=scores)
maxscore_tokenizer.tokenize("안전성에문제있는스마트폰을휴대하고탑승할경우에압수한다")
```

```
['안전',
'성에',
'문제',
'스마트폰',
'탑승',
'압수',
```