Programmation Numérique

Polytech Lille — IS 3 — Cours 3

30 janvier 2024

Intégration numérique

Étant donnés $f: \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$, on cherche à calculer l'intégrale définie (un réel)

$$\int_{a}^{b} f(x) \, \mathrm{d}x \,. \tag{1}$$

En général, aucune primitive F de f n'est connue

- parce qu'il n'existe aucune formule finie pour F ou
- parce que f n'est connue que par une boîte noire ou par son graphe donné sous la forme d'une suite de points

En algorithmique numérique, on utilise des formules approchées appelées *formules de quadrature*

Erreurs de méthode vs erreurs d'arrondi

En algorithmique numérique, on distingue

- les erreurs d'arrondis
- des erreurs de méthode, qui sont les erreurs faites par l'algorithme employé pour mener le calcul, en supposant qu'il n'y a aucune erreur d'arrondi.

Remarques

- l'erreur d'une formule de quadrature = l'erreur de (la) méthode
- l'erreur d'une formule de quadrature = la relation entre précision du résultat et travail fourni
- l'ordre de la formule résume cette relation par un entier

Deux familles de méthodes

Les formules de Newton-Cotes (trapèzes, Simpson, ...)

 elles s'appliquent même dans le cas où f n'est connue que par son graphe, donné sous la forme d'une suite de points

Les formules de quadrature de Gauss (et autres)

- elles ne s'appliquent que si f est donné par une formule ou au moins un algorithme qui permet de l'évaluer
- elles sont plus efficaces que les méthodes de Newton-Cotes : elles ont un ordre plus élevé

Première formule de Newton-Cotes : les trapèzes

Soient deux points appartenant au graphe y = f(x)

$$\left(\begin{array}{c} x_0 \\ y_0 \end{array}\right), \quad \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right) = \left(\begin{array}{c} x_0 + h \\ y_1 \end{array}\right).$$

où $h = x_1 - x_0$ est la longueur du pas.

La formule du trapèze

$$\underbrace{\int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x}_{\text{intégrale recherchée}} \simeq \underbrace{h\left(\frac{y_0}{2} + \frac{y_1}{2}\right)}_{\text{aire du trapèze}}.$$

La formule des trapèzes composite

Soit n > 0 un nombre de pas

La formule des trapèzes composite

Soit n > 0 un nombre de pas

La formule des trapèzes composite

Soit n > 0 un nombre de pas

Notons

- h = (b a)/n la longueur d'un pas,
- $x_i = a + i h$ (abscisses équidistantes!) et
- $y_i = f(x_i)$

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$

La formule des trapèzes composite

$$\underbrace{\int_a^b f(x) \, \mathrm{d}x}_{\text{intégrale recherchée}} \simeq \underbrace{h\left(\frac{y_0}{2} + y_1 + y_2 + \dots + y_{n-1} + \frac{y_n}{2}\right)}_{\text{somme des aires des } n \text{ trapèzes}}.$$

Un autre point de vue sur les trapèzes

Soient deux points appartenant au graphe y = f(x)

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
, $\begin{pmatrix} x_0 + h \\ y_1 \end{pmatrix}$,

p le polynôme d'interpolation défini par ces points

$$p(z) = \frac{1}{h}((x_0 + h - z)y_0 + (z - x_0)y_1).$$

On a:

aire du trapèze =
$$\int_{x_0}^{x_0+h} p(z) dz = h\left(\frac{y_0}{2} + \frac{y_1}{2}\right)$$
.

ldée

$$\underbrace{\int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x} \simeq \underbrace{\int_{x_0}^{x_0+h} p(z) \, \mathrm{d}z}$$

intégrale recherchée intégrale du polynôme d'interpolation

La formule de Simpson

Soient trois points équidistants appartenant au graphe y = f(x)

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
, $\begin{pmatrix} x_0 + h \\ y_1 \end{pmatrix}$, $\begin{pmatrix} x_0 + 2h \\ y_2 \end{pmatrix}$.

La formule de Simpson

$$\underbrace{\int_{x_0}^{x_0+2\,h} f(x)\,\mathrm{d}x}_{\text{intégrale recherchée}} \simeq \underbrace{\frac{h}{3}\left(y_0+4\,y_1+y_2\right)}_{\text{intégrale de la parabole d'interpolation}}$$

La formule de Simpson composite

Soit n > 0 un nombre pair de pas.

La formule de Simpson composite

Soit n > 0 un nombre pair de pas.

Notons

- h = (b a)/n la longueur d'un pas,
- $x_i = a + i h$ (abscisses équidistantes!) et
- $\bullet \ y_i = f(x_i)$

$$\left(\begin{array}{c}x_0\\y_0\end{array}\right),\,\left(\begin{array}{c}x_1\\y_1\end{array}\right),\,\ldots,\,\left(\begin{array}{c}x_n\\y_n\end{array}\right)$$

La formule de Simpson composite

$$\underbrace{\int_a^b f(x) \, dx} \simeq \underbrace{\frac{h}{3} \left(y_0 + 4 \, y_1 + 2 \, y_2 + 4 \, y_3 + \dots + 4 \, y_{n-1} + y_n \right)}_{\text{somme des intégrales des } \frac{n}{2} \text{ paraboles}}$$

Les formules de Newton-Cotes

- s = le nombre d'étages
 - = de points utilisés pour le polynôme d'interpolation

5	ordre	poids b_i							nom
2	2	$\frac{1}{2}$	1/2						trapèzes
3	4	$\frac{1}{6}$	4 6	$\frac{1}{6}$					Simpson
4	4	<u>1</u>	<u>3</u>	<u>3</u>	<u>1</u> 8				Newton
5	6	$\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$			Boole
6	6	19 288	75 288	50 288	$\frac{50}{288}$	$\frac{75}{288}$	$\frac{19}{288}$		
7	8	41 840	216 840	27 840	272 840	27 840	216 840	41 840	Weddle

Ordre des formules de Newton-Cotes

Def Une formule est d'ordre p si elle est exacte pour tout polynôme de degré strictement inférieur à p

Thm L'ordre d'une formule de Newton-Cotes à *s* étages est le plus petit entier pair supérieur ou égal à *s*

Thm Si une formule de quadrature est d'ordre p alors l'erreur de méthode est « en h^p »

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Premier calcul

- nombre de pas n_0 , longueur du pas $h_0 = (b-a)/n_0$
- $erreur_0 = h_0^p$

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Premier calcul

- nombre de pas n_0 , longueur du pas $h_0 = (b-a)/n_0$
- $erreur_0 = h_0^p$

Deuxième calcul

- nombre de pas $n_1 = 10 n_0$, longueur du pas $h_1 = h_0/10$
- $erreur_1 = h_1^p$

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Premier calcul

- nombre de pas n_0 , longueur du pas $h_0 = (b-a)/n_0$
- $erreur_0 = h_0^p$

Deuxième calcul

- nombre de pas $n_1 = 10 n_0$, longueur du pas $h_1 = h_0/10$
- $erreur_1 = h_1^p$

On a gagné p décimales

$$erreur_1 = h_1^p = \frac{h_0^p}{10^p} = \frac{erreur_0}{10^p}$$

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Premier calcul

- nombre de pas n_0 , longueur du pas $h_0 = (b-a)/n_0$
- $erreur_0 = h_0^p$

Deuxième calcul

- nombre de pas $n_1 = 10 n_0$, longueur du pas $h_1 = h_0/10$
- $erreur_1 = h_1^p$

On a gagné p décimales

$$erreur_1 = h_1^p = \frac{h_0^p}{10^p} = \frac{erreur_0}{10^p}$$

Thm Si une formule est d'ordre p alors l'erreur est « en h^p »

Hyp On approxime une intégrale avec une formule d'ordre p

Premier calcul

- nombre de pas n_0 , longueur du pas $h_0 = (b-a)/n_0$
- $erreur_0 = h_0^p$

Deuxième calcul

- nombre de pas $n_1 = 2 n_0$, longueur du pas $h_1 = h_0/2$
- $erreur_1 = h_1^p$

La mantisse du résultat a gagné p bits exacts

$$erreur_1 = h_1^p = \frac{h_0^p}{2^p} = \frac{erreur_0}{2^p}$$

Les formules de quadrature de Gauss

Thm Parce que les abscisses sont équidistantes, l'ordre p d'une formule de Newton-Cotes à s étages est le plus petit entier pair supérieur ou égal à s

Gauss (1800) : si on choisit bien l'emplacement des abscisses (plus équidistantes) on peut obtenir des formules d'ordre $p=2\,s$

Exemple de formule de quadrature de Gauss

$$\int_a^b f(x) \, \mathrm{d}x \ \simeq \ (b-a) \, \sum_{i=0}^2 d_i \, f(a+c_i \, (b-a)) \quad \mathsf{avec}$$

$$\begin{array}{rcl} (d_0,d_1,d_2) & = & \left(\frac{5}{18},\,\frac{8}{18},\,\frac{5}{18}\right)\,, \\ (c_0,c_1,c_2) & = & \left(\frac{1}{2}-\frac{\sqrt{15}}{10},\,\frac{1}{2},\,\frac{1}{2}+\frac{\sqrt{15}}{10}\right) \end{array}$$

contrôle l'emplacement des s = 3 abscisses

Utilisation d'une formule de quadrature de Gauss

On divise l'intervalle [a,b] en sous-intervalles de longueur ℓ et on applique la formule de quadrature de Gauss sur chaque sous-intervalle

Algorithme à pas adaptatif

- utiliser simultanément deux formules de quadrature F_1 et F_2 d'ordres différents $p_1 > p_2$, comparer les résultats obtenus et, connaissant leur ordre, déduire une estimation de l'erreur
- si, sur un sous-intervalle, l'erreur est supérieure à un $\varepsilon>0$ fixé par l'utilisateur, diviser la longueur ℓ par deux, sur ce sous-intervalle (pas adaptatif)
- pour limiter le nombre d'évaluations de f, on peut s'arranger pour que les abscisses utilisées pour F_2 soient un sous-ensemble de celles utilisées pour F_1 (on dit que F_2 est une formule emboîtée)
- on rencontre des quadratures de Gauss-Kronrod à s=30 étages (Kronrod (1960) a perfectionné le système des formules emboîtées)

Thm Supposons $x = \varphi(t)$ avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. Alors

$$\int_a^b f(x) dx = \int_\alpha^\beta f'(\varphi(t)) \varphi'(t) dt$$

Thm Supposons $x = \varphi(t)$ avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. Alors

$$\int_a^b f(x) dx = \int_\alpha^\beta f'(\varphi(t)) \varphi'(t) dt$$

L'intégrale de Gauss

$$\int_0^\infty e^{-x^2} \, \mathrm{d}x \ = \ \frac{\sqrt{\pi}}{2} \cdot$$

Thm Supposons $x = \varphi(t)$ avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. Alors

$$\int_a^b f(x) dx = \int_\alpha^\beta f'(\varphi(t)) \varphi'(t) dt$$

L'intégrale de Gauss

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

$$t = \frac{1}{z} = \frac{1}{x+1}$$

$$z = \frac{1}{4} = x+1$$

 $\Rightarrow x = z - 1 = \frac{1}{t} - 1$

Thm Supposons $x = \varphi(t)$ avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. Alors

$$\int_a^b f(x) dx = \int_\alpha^\beta f'(\varphi(t)) \varphi'(t) dt$$

L'intégrale de Gauss

$$\int_0^\infty e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

En particulier, pour $arphi(t)=rac{1-t}{t}\,,\;arphi'(t)=-rac{1}{t^2}\,,\;lpha=0\,,\;eta=1$ on a

$$\int_0^\infty e^{-x^2} dx = \int_0^1 e^{-\left(\frac{1-t}{t}\right)^2} \frac{1}{t^2} dt$$

qui peut s'approximer avec la quadrature de Gauss à s=3 étages parce qu'aucune abscisse n'atteint les bords de l'intervalle d'intégration.