Problem 1 (50pts). Consider the following linear program:

maximize
$$3x_1 + 4x_2 + 3x_3 + 6x_4$$

subject to $2x_1 + x_2 - x_3 + x_4 \ge 12$
 $x_1 + x_2 + x_3 + x_4 = 8$
 $-x_2 + 2x_3 + x_4 \le 10$
 $x_1, x_2, x_3, x_4 \ge 0$. (1)

After transforming the problem into standard form and apply Simplex method, we obtain the final tableau as follow:

В	0		9	0	3	0	36
1	1	0	-2	0	-1	0	4
4	0	1	3	1	1	0	4
6	0	-2	-1	0	-1	1	6

- a) Derive the dual problem of the linear program (1) and calculate a dual solution based on complementarity conditions. Given that the optimal solution to the primal solution is unique, investigate whether the dual solution is unique.
- b) Do the optimal solution and the objective function value change if we
 - decrease the objective function coefficient for x_3 to 0?
 - increase the objective function coefficient for x_3 to 9?
 - decrease the objective function coefficient for x_4 to 5?
 - increase the objective function coefficient for x_1 to 7?
- e) Find the possible range for adjusting the coefficient 8 of the second constraint such that the current basis is kept optimal.

(a) Dual Problem:

minimize
$$12y_1 + 8y_2 + 10y_3$$

S.t. $2y_1 + y_2 \ge 3$
 $y_1 + y_2 - y_3 \ge 4$
 $-y_1 + y_2 + 2y_3 \ge 3$
 $y_1 + y_2 + y_3 \ge 6$
 $y_1 \le 0, y_2 \text{ free, } y_3 \le 0$

By the tableau, the optimal solution for primal problem is (4,0,0,4)

By the complementarity conditions,

$$X_1(2y_1+y_2-3)=0$$

 $X_4(y_1+y_2+y_3-6)=0$
 $Y_1(2X_1+X_2-X_3+X_4-12)=0$
 $Y_2(X_1+X_2+X_3+X_4-8)=0$
 $Y_3(-X_2+2X_3+X_4-10)=0$

$$\Rightarrow \begin{cases} 9_1 = -3 \\ 9_2 = 9 \\ 9_3 = 0 \end{cases}$$

The dual solution is (-3,9,0)

The dual solution is unique.

The new reduced cost is:

The reduced cost of basic parts is still zero.

For non-basic part:

$$\hat{Y_N}^T = C_N^T + (-3) e_3^T - C_B^T A_B^T A_N = \hat{Y_N}^T + (-3) e_3^T$$

Know from the tableau,

$$Y_N^T = [2,9,3]$$

The the optimal Solution and the objective function value don't change.

The new reduced cost is:

The reduced cost of basic parts is still zero.

For non-basic part:

$$\hat{V_N}^T = C_N^T + 9e_3^T - C_B^T A_B^T A_N = V_N^T + 9e_3^T$$

Know from the tableau,

$$Y_N^T = [2,9,3]$$

The the optimal Solution and the objective function value don't change.

The new reduced cost is:

The reduced cost of basic parts is still zero.

For non-basic part:

$$= [2,9,3] - (-1)[0,1,0] \begin{bmatrix} 0 & -2 & -1 \\ 1 & 3 & 1 \\ -2 & -1 & -1 \end{bmatrix}$$

The the optimal Solution and the objective function value don't change.

The new reduced cost is:

The reduced cost of basic parts is still zero.

For non-basic part:

$$= [2,9,3] - 4[1,0,0] \begin{bmatrix} 0 & -2 & -1 \\ 1 & 3 & 1 \\ -2 & -1 & -1 \end{bmatrix}$$

The the optimal Solution and the objective function value don't change.

(e) To keep the current basis optimal, we need to have $X_B^* + \lambda A_B^{-1} e_i \ge 0$

$$\Rightarrow [4,4,6] + \lambda \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= [4-\lambda, 4+\lambda, 6-\lambda]$$
we have
$$\begin{cases} 4-\lambda \ge 0 \\ 4+\lambda \ge 0 \\ 6-\lambda \ge 0 \end{cases}$$

The possible range for adjusting the coefficient 8 of the second constraint is [4.12]

Problem 2 (50pts). An insurance company is introducing three products: special risk insurance, mortgage insurance, and long-term care insurance. The expected profit is \$500 per unit on special risk insurance, \$250 per unit on mortgage insurance and \$600 per unit on long term care insurance. The work requirements are as follows:

Department	Wor	king hours	Working hours available	
	Special risk	Mortgage	Long-term care	
Underwriting	2	1	1	240
Administration	3	1	2	150
Claims	1	2	4	180

The management team wants to establish sales quotas for each product to maximize the total expected profit.

- 1. Formulate this problem as a linear optimization problem. Specify the decision variables, objective function, and constraints.
- 2. After solving the problem, the final simplex tableau (for the standard form) is given as below (the variables are in the natural order as in the description of the problem):

В	0	50	0	0	140	80	35400
4	0	0.5	0	1	-0.7	0.1	153
1	1	0	0	0	0.4	-0.2	24
3	0	0.5	1	0	-0.1	0.3	39

Show the dual variables corresponding to the services of the three departments. Using complementarity conditions to explain why mortgage insurance is not sold.

- 3. Find the range of working hours available for underwriting to keep the current basis optimal.
- Find the range of the expected profit on long-term care insurance such that the current basis remains optimal.

(1) Denote Sale quotas of Special risk, mortgage and long-term care that are sold as X1, X2, X3

The profit generated is: $500 \times 1 + 250 \times 2 + 600 \times 3$ (objective function)

Formulation:

maximize
$$500 \times 1 + 250 \times 2 + 600 \times 3$$

Subject to $2 \times 1 + \times 2 + \times 3 \le 240$
 $3 \times 1 + \times 2 + 2 \times 3 \le 150$

$$X_1 + 2X_2 + 4X_3 \le 180$$

 $X_1, X_2, X_3 \ge 0$

(2) The standard form of primal problem:

minimize
$$-500 \times 1 - 250 \times 2 - 600 \times 3$$

Subject to $2 \times 1 + \times 2 + \times 3 + \times 4 = 240$
 $3 \times 1 + \times 2 + 2 \times 3 + \times 5 = 150$
 $\times 1 + 2 \times 2 + 4 \times 3 + \times 6 = 180$
 $\times 1, \times 2, \times 3 \ge 0$

The dual variables y1, y2, y3 are the fair prices of underwriting, administration and claims 3 departments.

The dual problem is:

minimize
$$24041 + 15042 + 18043$$

Subject to $241 + 342 + 43 \ge 500$
 $41 + 42 + 243 \ge 250$
 $41 + 242 + 443 \ge 600$
 $41,42,43 \ge 0$

By the tableau, $(X_1, X_2, X_3) = (24, 0, 39)$

By complementarity conditions,

$$X_1(24_1+34_2+4_3-500)=0$$
 $X_2(4_1+4_2+24_3-250)=0$
 $X_3(4_1+24_2+44_3-600)=0$
 $Y_1(2X_1+X_2+X_3+X_4-240)=0$
 $Y_2(3X_1+X_2+2X_3+X_5-150)=0$
 $Y_3(X_1+2X_2+4X_3+X_6-180)=0$
 $Y_2=0$

We get:
$$\begin{cases} 41 = 200 \\ 42 = 0 \\ 43 = 100 \end{cases}$$

In optimal situation, 41+42+243-250>0 if X2+0, this means the resource is redundant in the optimal situation.

The shadow price is zero.

So Xz must be zero, that's why mortgage is not sold.

(3) Current basis: {1,3,4}

To keep the current basis optimal, we need to have $X_B^* + \lambda A_B^{-1} e_i \ge 0$

$$\begin{bmatrix} 24 \\ 39 \\ 153 \end{bmatrix} + \lambda \begin{bmatrix} 0 & 0.4 & -0.2 \\ 0 & -0.1 & 0.3 \\ 1 & -0.7 & 0.1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 24 \\ 39 \\ 155+\lambda \end{bmatrix}$$

The range of working hour available for underwriting is $[87, +\infty)$

(4)
$$C = [500, 250, 600, 0, 0, 0]^{T}$$

$$Y_{N} = [50, 140, 80]^{T}$$

$$A_{B}^{-1}A_{N} = \begin{bmatrix} 0 & 0.4 & -0.2 \\ 0.5 & -0.1 & 0.1 \\ 0.5 & -0.7 & 0.2 \end{bmatrix}$$

Change profit from 600 to $600+\lambda$ (- $600-\lambda$ in the standard form)

$$Y_{N}^{T} - \lambda A_{B}^{-1} A_{N} e_{3}^{T}$$
= $[50, |40, 80]^{T} - \lambda \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.4 & -0.1 & -0.7 \\ -0.2 & 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$
= $[50, |40, 80]^{T} + \lambda [0.5, -0.7, 0.1]^{T}$

$$\begin{cases} 50+0.5 \ \ \ \ \ \ \ \ \ \ \ \ \end{cases} \qquad \Rightarrow \qquad \lambda \in \begin{bmatrix} -l00,200 \end{bmatrix}$$

$$\begin{cases} 80+0.1 \ \ \ \ \ \ \ \ \ \ \ \ \end{cases} \qquad \Rightarrow \qquad \lambda \in \begin{bmatrix} -l00,200 \end{bmatrix}$$

The range of expected profit on long-term care insurance is [150,450]