Ch. 12.1 Boolean Functions

Q1, 5(a)

1. Find the values of these expressions.

$$\mathbf{a)} \ 1 \cdot \underline{\boldsymbol{\theta}} = 1 \cdot 1 = 1$$

b)
$$1 + \underline{1} = 1 + 0 = 1$$

$$\mathbf{c})\ \underline{\boldsymbol{\theta}} \cdot 0 = 1 \cdot 0 = 0$$

$$\mathbf{d})\ \underline{(1+\theta)} = \underline{1} = 0$$

5. Use a table to express the values of each of these Boolean functions.

a)
$$\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z}) = \underline{x} \mathbf{y}$$

X	У	Z	<u>x</u>	<u>x</u> y
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	0

0 0 1

Ch. 12.2 Representing Boolean Functions

 $1. \quad \text{Find a Boolean product of the Boolean variables x , y , and z, or their complements, that has the value 1 if and only if \\$

a)
$$x = y = 0$$
, $z = 1$.

- a) We want \underline{x} , \underline{y} , and z all to have the value 1; therefore, we take the product \underline{x} \underline{y} z.
 - 3. Find the sum-of-products expansions of these Boolean functions.

a)
$$F(x,y,z)=x+y+z$$

$$\mathbf{x}\mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y}\underline{z} + \mathbf{x}\underline{y}\mathbf{z} + \underline{x}\mathbf{y}\mathbf{z} + \mathbf{x}\underline{y}\underline{z} + \underline{x}\mathbf{y}\underline{z} + \underline{x}\mathbf{y}\mathbf{z}$$

5. Find the sum-of-products expansion of the Boolean function F(w,x,y,z) that has the value 1 if and only if an odd number of w, x, y, and z have the value 1.

$$C(4, 1) + C(4, 3) = 8 \text{ terms.}$$

$$\mathbf{w}\mathbf{x}\mathbf{y}\underline{z} + \mathbf{w}\mathbf{x}\underline{y} \ \mathbf{z} + \ \mathbf{w}\underline{x}\mathbf{y}\mathbf{z} + \underline{w}\mathbf{x}\mathbf{y}\mathbf{z} + \mathbf{w}\underline{x}\ \underline{y}\ \underline{z} + \underline{w}\mathbf{x}\ \underline{y}\ \underline{z} + \mathbf{w}\underline{x}\ \underline{y}\ \underline{z} + \mathbf{w}\underline{x}\ \underline{y}\ \underline{z} + \underline{w}\ \underline{x}\ \underline{y}\ \underline{z}$$