Fast simulation and prototyping with AFF3CT université

université (nzía-

ADRIEN CASSAGNE, OLIVIER HARTMANN, MATHIEU LÉONARDON, THIBAUD TONNELLIER, GUILLAUME DELBERGUE, CAMILLE LEROUX, ROMAIN TAJAN, BERTRAND LE GAL, CHRISTOPHE JEGO, OLIVIER AUMAGE AND DENIS BARTHOU

FIGURE 1 – Simplified digital communication chain.

- dedicated to the simulation of digital communication chain,
- reproduces state-of-the-art simulation results,
- can be used as an external library,
- portable: Windows, MacOSX and Linux; x86 and ARM CPUs,
- written in C++ : parallel, optimized source code (SIMD, multi-threaded, multi-nodes),
- open-source (MIT license): http://aff3ct.github.io.

FAST SIMULATION OF CHANNEL CODING

Channel code	Standard	Réf.	Decoder	Fixed point	Throughput (Mb/s)
LDPC	5G, WiMAX, WiFi, DVB-S2, 10GE, etc.	[1, 2]	Sum-Product Min-Sum Gallager	No Yes Yes	5 50 10
Polar	5G	[3, 4, 5]	SC SC-List SCAN	Yes Yes No	1000 500 10
Turbo	LTE (3G, 4G), DVB-RCS, CCSDS, etc.	[6, 7]	Turbo BCJR	Yes	100
ВСН	CD, DVD, SSD, DVB-S2, etc.	_	Algebraic	No	100
Convol.	NASA	_	BCJR-MAP BCJR-Linear BCJR-Max	No No Yes	10 50 1000

TABLE 1 – Non-exhaustive list of supported channel codes / decoders in AFF3CT. Throughputs are given on an indicative basis for 1 physical x86 CPU core (Intel Core i5-5300U @ 2.30GHz).

PLOTTING RESULTS WITH PYBER

FIGURE 2 – PyBER is an integrated visualization tool to plot BER/FER in AFF3CT.

ALSO IN AFF3CT

- Modulations: CPM, PSK, QAM, PAM, OOK, SCMA[8],
- Channels: AWGN and Rayleigh,
- SystemC/TLM compatible interfaces for hardware in the loop,
- Multi-node support for execution on supercomputers,
- Generation tools for polar codes.

CONCLUSION

AFF3CT is a fast and flexible software tool for the simulation and prototyping of digital communication systems. It is open-source, portable and easily integrates in your environement.

AKNOWLEDGEMENT

This work was supported by a grant overseen by the French National Research Agency (ANR), ANR-15-CE25-0006-01.

REFERENCES

- [1] B. Le Gal and C. Jego. High-throughput multi-core LDPC decoders based on x86 processor. *IEEE TPDS*, 27(5):1373–1386, 2016.
- [2] B. Le Gal and C. Jego. High-throughput LDPC decoder on low-power embedded processors. *IEEE Comm. Letters*, 19(11):1861–1864, 2015.
- [3] B. Le Gal, C. Leroux, and C. Jego. Multi-Gb/s software decoding of polar codes. *IEEE Transactions on Signal Processing*, 63(2):349–359, 2015.
- [4] A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou. An efficient, portable and generic library for successive cancellation decoding of polar codes. In *Proc. of the Springer LCPC Work.*, 2015.
- [5] A. Cassagne, O. Aumage, C. Leroux, D. Barthou, and B. Le Gal. Energy consumption analysis of software polar decoders on low power processors. In *IEEE EU-SIPCO*, 2016.
- [6] T. Tonnellier, C. Leroux, B. Le Gal, B. Gadat, C. Jego, and N. Van Wambeke. Lowering the error floor of turbo codes with crc verification. *IEEE Wireless Communications Letters*, 5(4):404–407, Aug 2016.
- [7] A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and D. Barthou. Beyond Gbps turbo decoder on multi-core CPUs. In *IEEE ISTC*, 2016.
- [8] A. Ghaffari, M. Léonardon, Y. Savaria, C. Jego, and C. Leroux. Improving performance of SCMA MPA decoders using estimation of conditional probabilities. In *IEEE NEWCAS*, 2017.