Normalização de dados na computação

Modelagem de Dados

Eduardo Furlan Miranda

2025-10-03

Adaptado de: WERLICH, C. Modelagem de Dados. Londrina: EDE SA, 2018. ISBN 978-85-522-1154-9.

Redundância

- Uma vez criado o Diagrama Entidade-Relacionamento (DER) já podemos implementálo em um Sistema Gerenciador de Banco de Dados?
- O correto é revisar, procurar imperfeições e melhorar, prevendo possíveis problemas
- Em um banco de dados o maior problema é a redundância, pois ela pode causar danos enormes e pode acontecer disso ser notado somente quando o banco de dados já estiver sendo usado pela empresa
- Os danos que a redundância pode causar e que geram mais problemas é a repetição da mesma informação em várias tabelas, ocasionando, além de duplicidade, possíveis erros em relatórios

Redundância

CLIENTE		
PK	<u>idCliente</u>	
	Nome Endereco CidadeResid	

FORNECEDOR		
PK	codFornecedor	
	RazaoSocial CNPJ Cidade	

FUNCIONÁRIO		
PK	<u>matriculaFunc</u>	
	Nome CPF CidadeNasc	

• Joinville pode ser cadastrada como: "Joinville", "Joinvile" ou ainda "Jlle"

Evitar redundância

Redundância controlada

Ex.: quando há interesse em manter um histórico

Tabela: funcionário					
Matricula	Nome	Valor_Hora	CodDepartamento	NomeDepartamento	
13467-4	Marco Antonio Liz	R\$ 18,22	DP - 450	Expedição	
34562-5	Anna Pietro	R\$ 18,22	DP - 450	Expedição	
76321-0	Carlos Werner	R\$ 13,50	DP - 450	Expedição	
58309-3	Sandro Lopez	R\$ 28,70	DA - 780	Contabilidade	

REDUNDÂNCIA

Normalização

 Técnica para avaliar e corrigir estruturas e tabelas para reduzir as redundâncias de dados

- Alguns objetivos
 - Eliminar campos que n\u00e3o dizem respeito \u00e0 tabela
 - Diminuição de dados repetitivos
 - Aumento da performance
 - Armazenamento dos dados de forma lógica
 - Facilidade na criação de consultas
 - Concatenação de índices (chaves)
 - Facilidade na manutenção

Normalização

- Conjunto de procedimentos que permitem encontrar erros em um projeto de banco de dados
- Encontran inconsistências que podem ser informações duplicadas e dependências funcionais mal resolvidas ou mal elaboradas
- Converte em tabelas de graus e cardinalidades menores até que quase não haja redundâncias e nem dependências funcionais
- O objetivo principal não é eliminar totalmente as inconsistências, mas controlá-las

Ex.: tabela não normalizada

idProd Produto Preço TipoProduto				CodForn	Fornecedor
1415	Sabão	R\$ 4,71	Limpeza	708	Tem Tudo
7841	Álcool	R\$ 5,80	Limpezas	708	Tem de Tudo
8543	Arroz	R\$ 7,84	Grão	516	Compra Boa
9124	Trigo	R\$ 5,45	Grãos	516	Compra B.

Verificar se determinado campo realmente pertence à tabela

Ex.: tabela normalizada

Tabela: produto				
idProd	Produto	Preço	idTipoProduto	CodFornecedor
1415	Sabão	R\$ 4,71	23	708
7841	Álcool	R\$ 5,80	23	708
8543	Arroz	R\$ 7,84	18	516
9124	Trigo	R\$ 5,45	18	516

Tabela: TipoProduto			
idTipoProduto TipoProduto			
23	Limpeza		
18	Grãos		

Tabela: fornecedor			
codFornecedor Fornecedor			
708	Tem Tudo		
516	Compra Boa		

DER Produto - TipoProduto - Fornecedor

(DER da tabela anterior)

Formas Normais

- São regras de normalização de banco de dados relacionais
 - Objetivo reduzir a redundância de dados e melhorar a sua integridade
- Formas normais mais populares
 - A primeira forma normal ou 1FN
 - A segunda forma normal ou 2FN
 - A terceira forma normal ou 3FN
 - Forma Normal de Boyce-Codd (FNBC)
 - A quarta forma normal ou 4FN

Dependência funcional

- Usando a teoria de conjuntos, pode-se afirmar:
 - Y é dependente funcional de X , ou
 - X determina Y , ou
 - Y depende de X , logo
 - Podemos representar a dependência funcional como X→Y
- A dependência X→Y ocorrerá se a cada valor de X estiver associado um e somente um valor de Y

Ex. usando dependência funcional

Tabela

- Os três primeiros campos sublinhados (MatriculaAluno, CodigoCurso e CodigoDisciplina) representam a chave primária da tabela (no caso, uma chave composta ou concatenada)
- O conjunto dos três campos formam um índice único (formando a chave primária)

(continua)

(continuação)

- Campo MatriculaAluno: possui como dependência funcional os campos NomeAluno e DataMatricula
- Campo CodigoCurso: possui como dependência funcional o campo NomeCurso
- Campo CodigoDisciplina: possui como dependência funcional o campo NomeDisciplina
- Campos MatriculaAluno, CodigoCurso, CodigoDisciplina: determinam o valor da NotaProva

Dependência funcional - classificação

- Transitiva ou indireta
- Total
- Parcial

Dependência funcional transitiva (ou indireta)

		Tabela: aluno	
<u>Matrícula</u>	Nome	Escola de Origem	Endereço da Escola Origem
1407	Lucca Lews	E.B. Amigos dos Estudos	R. das Montanhas, 450.
5789	Karyn Cruz	E.B. Estudar é Preciso	R. Ventos Fortes, 715.
1587	Jane Flores	E.B. Futuro Melhor	R. Pardal Solitário, 957.

- Redundância: o nome e o endereço da escola repetidos para cada aluno proveniente da mesma instituição
- Dependência: Matrícula→Escola de Origem→Endereço da Escola
- Os campos removidos serão substituídos por uma chave estrangeira que fará referência à uma nova tabela "Escola"

Dependência funcional transitiva (ou indireta)

- É quando um determinado campo da tabela, além de depender da chave primária da tabela, depende também de outro campo (ou campos), que são integrantes da mesma tabela
- Ela ocorre quando Y depende de X, e Z depende de Y
 - logo, Z também depende de X
- Representação: X → Y → Z

Dependência Funcional Total (DFT)

chaves concatenadas

Esta tabela está correta, apenas demonstra a dependência

Tabela: fiscalização				
<u>Cidade</u>	<u>Bairro</u>	Fiscal Responsável		
Blumenau	Garcia	Werner Klaus		
São Paulo	Ibirapuera	Antônio Luiz		
São Paulo	Bom Retiro	Cristina Laís		

- A dependência funcional total pode ser representada como: Cidade, Bairro → Fiscal Responsável
 - Um atributo que n\u00e3o faz parte da chave prim\u00e1ria depende diretamente de todos os outros atributos que formam a chave
 - Ex.: se tirar o campo "Bairro", afeta o "Fiscal Responsável"

Dependência Funcional Total (DFT)

- Quando um atributo (que não faz parte da chave primária) depende diretamente de todos os outros atributos que compõem a chave primária
- Sempre ocorre quando a tabela possui chaves concatenadas (mais de uma chave primária)
- Em tabelas com chaves primárias simples (não concatenadas), a Dependência Funcional Total é o tipo de dependência padrão esperado, e não há necessidade de corrigir a tabela

Dependência Funcional Parcial (DFP)

chaves concatenadas

A tabela precisa ser corrigida

Tabela: medição da temperatura					
<u>UF</u> <u>Cidade</u> <u>Região</u> Temperatura					
SC	Urubici	Sul	10º		
SP	São Carlos	Sudeste	28º		
RN	Natal	Nordeste	35º		

- Possui três chaves primárias: UF, Cidade e Região
- O campo Temperatura possui uma dependência de apenas parte das chaves primárias visto que se o campo Região fosse removido não o afetaria

Dependência Funcional Parcial (DFP)

- Quando um campo ou atributo que não faz parte da chave primária tem dependência funcional de apenas alguns dos atributos que fazem parte da chave primária
- Relevante quando a tabela possui chaves concatenadas
- A DFP só existe quando a chave é concatenada
- DFP é uma anomalia e a tabela precisa ser corrigida