| 1  | CLA | LAIMS |                                                                                     |  |
|----|-----|-------|-------------------------------------------------------------------------------------|--|
| 2  | 1.  | A mo  | olten metal reactor including:                                                      |  |
| 3  |     | (a)   | a treatment chamber having a treatment chamber inlet;                               |  |
| 4  |     | (b)   | a molten reactant metal flow inducing arrangement for inducing a flow of molten     |  |
| 5  |     |       | reactant metal into the treatment chamber through the treatment chamber inlet;      |  |
| 6  |     | (c)   | a feed chamber having a feed chamber outlet located adjacent to the treatment       |  |
| 7  |     |       | chamber inlet;                                                                      |  |
| 8  |     | (d)   | an output chamber connected to an outlet of the treatment chamber to receive        |  |
| 9  |     |       | molten reactant metal and reaction products from the treatment chamber; and         |  |
| 10 |     | (e)   | a supply chamber connected to the output chamber and to the treatment chamber.      |  |
| 11 |     |       |                                                                                     |  |
| 12 | 2.  | The r | molten metal reactor of Claim 1 wherein the feed chamber outlet and the treatment   |  |
| 13 |     | cham  | ber inlet comprise a common opening.                                                |  |
| 14 |     |       |                                                                                     |  |
| 15 | 3.  | The r | nolten metal reactor of Claim 2 further including a vortex inducing arrangement for |  |
| 16 |     | induc | cing a swirling flow in the feed chamber outlet.                                    |  |
| 17 |     |       |                                                                                     |  |
| 18 | 4.  | The r | nolten metal reactor of Claim 2 wherein the feed chamber comprises a bowl shaped    |  |
| 19 |     | cham  | ber and the feed chamber outlet is located in substantially the center of the bowl  |  |
| 20 |     | shape | e at a bottom of the feed chamber.                                                  |  |

5. 1 The molten metal reactor of Claim 2 further including an impeller mounted in the feed 2 chamber and adapted to be rotated about a substantially vertical axis. 3 6. 4 The molten metal reactor of Claim 2 including an off-center molten reactant metal inlet to 5 the feed chamber through which molten reactant metal is introduced into the feed chamber to induce a swirling flow in the feed chamber. 6 7 8 7. The molten metal reactor of Claim 1 wherein at least a portion of the treatment chamber 9 is in a heat transfer relationship with the supply chamber. 10 11 8. The molten metal reactor of Claim 1 further including a gravity trap within the treatment 12 chamber. 13 14 9. A feed structure for introducing a feed material into a treatment chamber of a molten 15 metal reactor, the feed arrangement including: 16 a feed chamber having a feed chamber outlet located adjacent to an inlet to the (a) 17 treatment chamber; 18 (b) a feed material inlet to the feed chamber, the feed material inlet being 19 substantially aligned with the feed chamber outlet; and 20 a molten reactant metal flow inducing arrangement for inducing a flow of molten (c) 21 reactant metal into the treatment chamber through the treatment chamber inlet and

| 1  |     | through the length of the treatment chamber to a treatment chamber outlet, the          |
|----|-----|-----------------------------------------------------------------------------------------|
| 2  |     | flow of molten reactant metal being at a rate sufficient to carry feed material and     |
| 3  |     | reaction products into the treatment chamber.                                           |
| 4  |     |                                                                                         |
| 5  | 10. | The feed structure of Claim 9 wherein the feed chamber outlet and the treatment chamber |
| 6  |     | inlet comprise a common opening.                                                        |
| 7  |     |                                                                                         |
| 8  | 11. | The feed structure of Claim 10 wherein the feed material inlet is located in a central  |
| 9  |     | portion of the feed chamber.                                                            |
| 10 |     |                                                                                         |
| 11 | 12. | The feed structure of Claim 11 further including a containment conduit extending from   |
| 12 |     | the feed material inlet to a level below the level of molten reactant metal in the feed |
| 13 |     | chamber in an area below the feed material inlet.                                       |
| 14 |     |                                                                                         |
| 15 | 13. | The feed structure of Claim 10 further including vortex inducing arrangement for        |
| 16 |     | inducing a swirling flow in the feed chamber, the flow having an axis substantially     |
| 17 |     | aligned with an axis of the feed chamber outlet.                                        |
| 18 |     |                                                                                         |
| 19 | 14. | The feed structure of Claim 10 wherein the feed chamber comprises a bowl shaped         |
| 20 |     | chamber and the feed chamber outlet is located in substantially the center of the bowl  |
| 21 |     | shape at a bottom of the feed chamber.                                                  |

1 15. The feed structure of Claim 10 further including an impeller mounted in the feed chamber
2 and adapted to be rotated about a substantially vertical axis.

3

4

5

6

16. The feed structure of Claim 10 including an off-center molten reactant metal inlet to the feed chamber through which molten reactant metal is introduced into the feed chamber to induce a swirling flow in the feed chamber.

7