Exam Model: 4316

Zagazig University, Faculty of Engineering

Academic Year: 2016/2017

Specialization: Computer & Systems Eng.

Course Name: Elective Course (5) Course Name: CSE4316:Robotics

Date: 27/04/2017

Exam Time: 75 Minutes

No. of Pages: 4 No. of Questions: 3 Full Mark: [40]

Examiner: Dr. Mohammed Nour

⊳ Please answer all questions. Use 3 decimal digits approximation.

⊳ Mark your answers for all questions in the Answer Sheet provided.

⊳ In last page, some supplementary identities you may need.

Question 1. [**10** Marks]

 (2×5)

- 1. Which of the following is **false** for a **parallel** manipulator
 - a) it forms a closed-chain.
 - b) Gruebler's formula may be applied to count its DOF
 - c) its configuration space is always planar.
 - d) it is two or more series chains connect the end-effector to the base.
- 2. Degrees of Freedom of manipulator are Number of
 - a) position variables that have to be specified.
- b) configuration parameters minimally specified.

c) of its joints.

- d) dimensions of its workspace.
- 3. One of the robot anthropomorphic characteristics is its
 - a) mechanical arm
- b) degrees of freedom
- c) mobility as in rovers
- d) substitution for humans
- 4. A suitable robot configuration for high precision pick and place operations is · · ·
 - a) SCARA
- b) Articulated-arm
- c) cylindrical
- d) Cartesian

- 5. The world reference frame is
 - a) a universal fixed coordinate frame
 - b) used to specify movements of each individual joint of the robot.
 - c) specifies the movements of the robot tool-tip w.r.t hand frame.
 - d) specifies the movements of work object w.r.t station frame.

Question 2. [15 Marks]

 (3×5)

Consider the pose of the objects A, B, C and D in space, as shown next:

6. The **relative** rotation matrix that displaces object A into the new pose **B** is:

a)
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$d) \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 7. The **relative** transformation that displaces object B into the new pose C is:
 - a) Trans(-1, 3, -3)

c) Trans(-1, 2, 1)

- b) $Rot(y_B, 90^\circ) Trans(-1, 2, 1)$ d) $Rot(y_0, -90^\circ) Trans(2, -1, 1)$
- 8. The homogeneous transformation that relates frame A to frame 0 (i.e. H_A^0) is:

a)
$$\begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$b)
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 -1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}$$

$$\mathbf{d}) \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

9. The homogeneous transformation that relates frame D to frame A (i.e. H_D^A) is:

a)
$$\begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & -1 & 0 & -3 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 2 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -1 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 2 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -1 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

10. The frame transformation H_D^A can be expressed as:

a)
$$\begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{d}) \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 3. [15 Marks]

(2+3+2+4+4)

Consider the **R2P** robot manipulator mechanism shown next with $\{w\}$, $\{0\}$ and $\{h\}$ as the world, base and tool frame, respectively:

11. According to the DH conventions, we can assign frames to the joints as:

12. The DH parameters of the **spherical** wrist joints:

a)	Link	a_i	α_i	d_i	θ_i
	1	L_2	0	0	θ_1^*
	2	L_5	0	d_2^*	0
	3	0	0	d_3^*	0
c)	Link	a_i	α_i	d_i	θ_i
	1	0	0	0	θ_1^*
	2	0	0	d_2^*	90
	3	L_3	0	d_3^*	0

b)	Link	a_i	α_i	C	d_i		θ_i	
	1	0	0	(0		θ_1^*	
	2	L_5	90	c	l_2^*	0		
	3	0	0	C	l_3^*	-90		
d)	Link	a_i	α	$i \mid d$		i	θ_i	
	1	0	0		0		θ_1^*	
	2	L_5	-90		d_2^*		0	
	3	0	(0	d	*	90	

13. the homogeneous transformation matrix A_2 is found as:

a)
$$\begin{bmatrix} c_2 & -s_2 & 0 & 0 \\ s_2 & c_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 & 0 & L_5 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 0 & -1 & 0 & L_2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} c_2 & -s_2 & 0 & 0 \\ s_2 & c_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 & 0 & L_5 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & -1 & 0 & L_2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & L_3 \\ 0 & 1 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

14. The robot tool–tip coordinates can be expressed in the base frame using T_h^0 that is calculated as:

a)
$$\begin{bmatrix} 0 & -c_1 & -s_1 & -s_1 d_3 + c_1 L_3 \\ 0 & s_1 & c_1 & c_1 d_3 + s_1 L_3 \\ -1 & 0 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & c_1 & s_1 & -s_1 d_3 + c_1 \\ 0 & -s_1 & -c_1 & c_1 d_3 + s_1 \\ 1 & 0 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & s_1 & c_1 & c_1 d_3 + s_1 + L_1 \\ 0 & -c_1 & -s_1 & s_1 d_3 + c_1 + L_2 \\ -1 & 0 & 0 & d_2 + L_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & -c_1 & -s_1 & -s_1 d_3 + c_1 L_5 \\ 0 & s_1 & c_1 & c_1 d_3 + s_1 L_5 \\ -1 & 0 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & c_1 & s_1 & -s_1d_3 + c_1 \\ 0 & -s_1 & -c_1 & c_1d_3 + s_1 \\ 1 & 0 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
d)
$$\begin{bmatrix} 0 & -c_1 & -s_1 & -s_1d_3 + c_1L_5 \\ 0 & s_1 & c_1 & c_1d_3 + s_1L_5 \\ -1 & 0 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

15. At the configuration $\mathbf{q} = [0^{\circ}, L_4, L_6]^T$, the hand **pose** at this configuration is calculated as:

a)
$$\begin{bmatrix} 0 & 1 & 0 & L_1 \\ 0 & 0 & -1 & L_6 \\ -1 & 0 & 0 & L_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 & 0 & L_3 + L_4 \\ 0 & 0 & 1 & L_2 + L_5 \\ 1 & 0 & 0 & L_1 + L_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & -1 & 0 & L_3 \\ 0 & 0 & 1 & L_2 \\ -1 & 0 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & -1 & 0 & L_5 + L_1 \\ 0 & 0 & 1 & L_6 + L_2 \\ -1 & 0 & 0 & L_4 + L_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Supplementary Material

Note: you may need some or none of these identities:

if $a\cos(\theta) - b\sin(\theta) = 0$, then $\theta = \operatorname{atan2}(a, b) + \operatorname{atan2}(-a, -b)$

$$R_Z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_Y = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}, \quad R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$A_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\alpha_i\cos\theta_i & -\sin\alpha_i\cos\theta_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$\cos(a\pm b) = \cos(a)\cos(b)\mp\sin(a)\sin(b) & \sin(\theta) = -\sin(-\theta) = -\cos(\theta+90^\circ) = \cos(\theta-90^\circ)$$

$$\sin(a\pm b) = \sin(a)\cos(b)\pm\cos(a)\sin(b) & \cos(\theta) = \cos(-\theta) = \sin(\theta+90^\circ) = -\sin(\theta-90^\circ)$$

$$\cos^2(\theta) + \sin^2(\theta) = 1$$
 if
$$\cos(\theta) = b, \text{ then } \theta = \tan2\left(\pm\sqrt{1-b^2}, b\right)$$
 For a triangle: $A^2 = B^2 + C^2 - 2BC\cos(a)$,
$$\frac{\sin(a)}{A} = \frac{\sin(b)}{B} = \frac{\sin(c)}{C}$$
 if
$$a\cos(\theta) + b\sin(\theta) = c, \text{ then } \theta = \tan2\left(b, a\right) + \tan2\left(\pm\sqrt{a^2 + b^2 - c^2}, c\right)$$

