

Instytut Instytut telekomunikacji

Praca dyplomowa magisterska

na kierunku Telekomunikacja w specjalności Teleinformatyka i Zarządzanie w Telekomunikacji

Sworzenie platformy do modelowania i uruchamiania zamkniętych pętli sterowania w Kubernetes

Andrzej Gawor

Numer albumu 300528

promotor dr inż. Dariusz Bursztynowski

Sworzenie platformy do modelowania i uruchamiania zamkniętych pętli sterowania w Kubernetes

Streszczenie. Projekt opisany w niniejszej pracy skupia się na zaproponowaniu oraz zaimplementowaniu reużywalnej architektury (zwanej dalej "Platformą"), która pozwala na modelowanie oraz uruchamianie zamkniętych pętli sterowania w Kubernetes. Genezą projektu jest praca jednego z komitetów ETSI o nazwie "ENI - Experiential Networked Intelligence", która skupia się na ułatwieniu pracy operatora sieci telekomunikacyjnych wykorzystując mechanizmy sztucznej inteligencji w zamkniętych pętlach sterowania. ENI w jednym ze swoich dokumentów dokonuje przeglądu zamkniętych pętli sterowania znanych ludzkości z innych dziedzin.

Naturalnym następnym krokiem jest zapropowanie platformy, na której operator mógłby takowe pętle projektować oraz uruchamiać. W tym celu zdefiniowanio zestaw wymagań oraz założeń dla takiego systemu. Jako środowisko uruchomieniowe wybrano Kubernetes z racji, że jest to system dobrze znany w społeczności oraz sam natywnie używa zamkniętych pętli sterowania. Następnie przeprowadzono obszerną analizę jak za pomocą mechanizmów rozszerzania Kubernetes takich jak "Custom Resources" oraz "Operator" pattern można stworzyć framework umożliwiający modelowanie zamkniętych pętli sterowania. Praca opisuje powstałą platformę, jej architekturę, semantykę składni w definiowanych obiektach, zasady działania, integracje z zewnętrznymi systemami oraz instrukcję jej użytkowania. Omówiona została również implemtacja platformy, technologie za nią stojące oraz decyzje podjęte podczas jej powstawania. Finalnie przedstawiono również test działania platformy w praktyce wykorzystując do tego emulator systemu 5G jakim jest Open5GS w połączeniu z UERANSIM. Pracę podsumuję lista wniosków oraz potencjalnych dróg rozwoju platformy.

Słowa kluczowe: Zamknięte pętle sterowania, Kubernetes, Zarządzanie sieciami telekomunikacyjnymi, Automatyzacja, Go, Open5GS, Mikroserwisy

Creation of a platform for designing and running closed control loops in Kubernetes

Abstract. The project described in this thesis focuses on proposing and implementing a reusable architecture (hereafter referred to as "the Platform") that enables the modeling and execution of closed control loops in Kubernetes. The genesis of the project lies in the work of one of the ETSI committees called "ENI - Experiential Networked Intelligence," which aims to simplify the work of telecommunications network operators by leveraging artificial intelligence mechanisms in closed control loops based on metadata-driven and context-aware policies. In one of its documents, ENI reviews closed control loops known to humanity from other fields. A natural next step is to propose a platform on which operators could design and execute such loops.

To achieve this, a set of requirements and assumptions for such a system was defined. Kubernetes was chosen as the runtime environment due to its widespread adoption in the community and its inherent use of closed control loops. An extensive analysis was conducted on how Kubernetes extension mechanisms, such as "Custom Resources" and the "Operator" pattern, could be used to create a framework enabling the modeling of closed control loops.

This thesis describes the developed platform, its architecture, the semantics of syntax in the defined objects, operational principles, integrations with external systems, and a user guide. It also discusses the platform's implementation, the technologies behind it, and the decisions made during its development. Finally, the thesis presents a practical test of the platform's functionality using the Open5GS 5G system emulator in combination with UERANSIM. The work concludes with a list of findings and potential extensions or improvements to the platform.

Keywords: Closed Control Loops, Kubernetes, Managing Telco-Networks, Automation, Go, Open5GS, Microservices

Spis treści

. Wstęp	7
1.1. Przedmowa	7
1.2. Cele pracy	7
Bibliografia	9
Vykaz symboli i skrótów	10
Spis rysunków	10
Spis tabel	10
Spis załączników	10

1. Wstęp

1.1. Przedmowa

Wraz z rozwojem telekomunikacji stopień jej skomplikowania jak i mnogość podłączonych urządzeń stale rośnie. Sieci 5G zwiastują obsługę miliardów urządzeń, co sprawia, że tradycjne podejście do zarządzania sieciami staje się niewystarczające. W pewnym momencie manualnie operowanie sieciami (ang. *humna-driven networks*) stanie się wręcz niemożliwe. Dlatego obserwujemy obecnie zwrot w stronę wirtualizacji oraz automatyzacji sieci. Jednocześnie dynamiczny rozwój sztucznej inteligencji otwiera nowe możliwość. Te dwa czynniki stanowią wspólnie świetny fundament do tego, aby branża sieci telekomunikacyjnych postawiła sobie za cel budowę "inteligentnych"sieci - takich, które są w pełni autonomiczne, samowystarczalne oraz niewymagają nadzoru ludzkiego.

W tym celu ETSI (European Telecommunications Standards Institute) powołało komitet o nazwie ENI - Experiential Networked Intelligence, który ma na celu wypracowanie specyfikacji dla Kognitywnych Systemów Zarządzania Siecią (Cognitive Network Management system). Kognitywny system oznacza taki, który jest w stanie uczyć się i podejmować decyzje bazujące na zebranej wiedzy w sposób przypominający ludzki umysł. ENI opiera swoją architekturę na zamkniętych pętlach sterowania.

Pętlą sterowania, ENI nazywa mechanizm, który monitoruje wydajność systemu lub procesu podddawanego kontroli w celu osiągnięcia pożądanego zachowania. Innymi słowy, pętla sterowania reguluje działanie zarządzanego obiektu. Pętle sterowania można podzielić na zamknięte lub otwarte w zależności od tego czy działanie sterujące zależy od sprzężenia zwrotnego z kontrolowanego systemu lub obiektu. Jeśli tak, pętle nazywamy zamknieta, jeśli nie - otwarta.

W przypadku architektury ENI, zamknięta pętla sterowania służy jako model organizacji pracy (ang. textitworkflow) elementów odpowiedzialnych za sztuczną inteligencję. W dokumencie [1] ENI dokonało przeglądu obiecujących architektur zamkniętych pętli sterowania znanych ludzkości. Naturalnym następnym krokiem jest zaproponowanie platformy, na której można takowe pętle zamodelować oraz uruchomić.

1.2. Cele pracy

Bibliografia

[1] ETSI GR ENI 017 - "Experiental Networked Intelligence (ENI); Overview of Prominent Closed Control Loops Architectures", 2024.

Wykaz symboli i skrótów

5GC – 5G Core Network **5GS** – 5G System

Spis rysunków

Spis tabel

Spis załączników