# A Lie Group Approach to Riemannian Batch Normalization

- ICLR 2024 -

Ziheng Chen<sup>1</sup>, Yue Song <sup>1</sup>, Yunmei Liu <sup>2</sup>, Nicu Sebe <sup>1</sup>

1 Dept. of Information Engineering and Computer Science, University of Trento 2 Industrial Engineering Department, University of Louisville



#### **Trento**



- German-Italian autonomous province of north Italy
- Barycenter of Europe and Alps
- Dolomities Mountains (UNESCO World Heritage)









# **LieBN: from Euclidean to Lie Groups**





Euclidean Batch Normalization: facilitating network training by controlling mean and variance

$$\forall i \le N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

#### **Batch Normalization on manifolds:**

- LieBN on general Lie groups
- LieBN on SPD manifolds under three deformed Lie groups
- Preliminary experiments on rotation matrices

## **Preliminaries on Riemannian Geometry**





**Definition 2.1** (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation  $\odot$  such that  $m(x,y) \mapsto x \odot y$  and  $i(x) \mapsto x_{\odot}^{-1}$  are both smooth, where  $x_{\odot}^{-1}$  is the group inverse.

Lie groups:

**Definition 2.2** (Left-invariance). A Riemannian metric g over a Lie group  $\{G, \odot\}$  is left-invariant, if for any  $x, y \in G$  and  $V_1, V_2 \in T_x \mathcal{M}$ ,

$$g_y(V_1, V_2) = g_{L_x(y)}(L_{x*,y}(V_1), L_{x*,y}(V_2)), \tag{1}$$

where  $L_x(y) = x \odot y$  is the left translation by x, and  $L_{x*,y}$  is the differential map of  $L_x$  at y.

**Definition 2.3** (Pullback Metrics). Suppose  $\mathcal{M}_1, \mathcal{M}_2$  are smooth manifolds, g is a Riemannian metric on  $\mathcal{M}_2$ , and  $f: \mathcal{M}_1 \to \mathcal{M}_2$  is smooth. Then the pullback of g by f is defined point-wisely,

Pullback:

$$(f^*g)_p(V,W) = g_{f(p)}(f_{*,p}(V), f_{*,p}(W)), \tag{2}$$

where  $p \in \mathcal{M}$ ,  $f_{*,p}(\cdot)$  is the differential map of f at p, and  $V, W \in T_p \mathcal{M}$ . If  $f^*g$  is positive definite, it is a Riemannian metric on  $\mathcal{M}_1$ , called the pullback metric defined by f.

### **Preliminaries on the SPD Geometry**





Table 1: Lie group structures and the associated Riemannian operators on SPD manifolds.

| Metric                   | $(\alpha, \beta)$ -LEM                                                            | $(\alpha, \beta)$ -AIM                                                                                   | LCM                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $g_P(V,W)$               | $\langle \mathrm{mlog}_{*,P}(V), \mathrm{mlog}_{*,P}(W) \rangle^{(\alpha,\beta)}$ | $\langle P^{-1}V,WP^{-1}\rangle^{(\alpha,\beta)}$                                                        | $\sum_{i>j} V_{ij} W_{ij} + \sum_{j=1}^{n} V_{jj} W_{jj} L_{jj}^{-2}$                                                                               |
| d(P,Q)                   | $\ \operatorname{mlog}(P) - \operatorname{mlog}(Q)\ ^{(\alpha,\beta)}$            | $\left\ \operatorname{mlog}\left(Q^{-\frac{1}{2}}PQ^{-\frac{1}{2}}\right)\right\ ^{(\alpha,\beta)}$      | $\ \psi_{\mathrm{LC}} \circ \mathrm{Chol}(P) - \psi_{\mathrm{LC}} \circ \mathrm{Chol}(Q)\ _{\mathrm{F}}$                                            |
| $Q \odot P$              | $\operatorname{mexp}(\operatorname{mlog}(P) + \operatorname{mlog}(Q))$            | $KPK^{\top}$                                                                                             | $\operatorname{Chol}^{-1}(\lfloor L+K\rfloor+\mathbb{KL})$                                                                                          |
| $FM({P_i})$              | $\operatorname{mexp}\left(\frac{1}{n}\sum_{i}\operatorname{mlog}P_{i}\right)$     | Karcher Flow                                                                                             | $\psi_{\mathrm{LC}}^{-1}\left(\frac{1}{n}\sum_{i}\psi_{\mathrm{LC}}(P_{i})\right)$                                                                  |
| $\operatorname{Log}_P Q$ | $(\mathrm{mlog}_{*,P})^{-1} \left[\mathrm{mlog}(Q) - \mathrm{mlog}(P)\right]$     | $P^{\frac{1}{2}} \operatorname{mlog} \left( P^{\frac{-1}{2}} Q P^{\frac{-1}{2}} \right) P^{\frac{1}{2}}$ | $(\operatorname{Chol}^{-1})_{*,L} \left[ \lfloor K \rfloor - \lfloor L \rfloor + \mathbb{L} \operatorname{Dlog}(\mathbb{L}^{-1}\mathbb{K}) \right]$ |
| Invariance               | Bi-invariance                                                                     | Left-invariance                                                                                          | Bi-invariance                                                                                                                                       |

Yann Thanwerdas and Xavier Pennec. O (n)-invariant Riemannian metrics on SPD matrices. Linear Algebra and its Applications. 2023. Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIAM Journal on Matrix Analysis and Applications. 2019.

#### **Riemannian BN Revisitied**





Table 2: Summary of some representative RBN methods.

| Methods                        | Involved<br>Statistics | Controllable<br>Mean | Controllable<br>Variance | Application Scenarios                      |
|--------------------------------|------------------------|----------------------|--------------------------|--------------------------------------------|
| SPDBN (Brooks et al., 2019b)   | Mean                   | ✓                    | N/A                      | SPD manifolds under AIM                    |
| SPDBN (Kobler et al., 2022b)   | Mean+Variance          | ✓                    | ✓                        | SPD manifolds under AIM                    |
| Chakraborty (2020, Algs. 1-2)  | Mean+Variance          | ×                    | ×                        | Riemannian homogeneous space               |
| Chakraborty (2020, Algs. 3-4)  | Mean+Variance          | ✓                    | ✓                        | A certain Lie group structure and distance |
| RBN (Lou et al., 2020, Alg. 2) | Mean+Variance          | X                    | X                        | Geodesically complete manifolds            |
| Ours                           | Mean+Variance          | ✓                    | ✓                        | General Lie groups                         |

All of the previous RBN methods fail to control statistics in a general manner.

Daniel Brooks, et al. Riemannian batch normalization for SPD neural networks. Neurips. 2019.

Reinmar J Kobler, et al. Controlling the Fréchet variance improves batch normalization on the symmetric positive definite manifold. ICASSP. 2022. Rudrasis Chakraborty. Extending normalizations on Riemannian manifolds. ArXiv. 2020.

Aaron Lou, et al. Differentiating through the Fréchet mean. ICML. 2020

# **LieBN: from Euclidean to Lie Groups**





**Euclidean BN:** 

$$\forall i \le N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$



Gaussian on manifolds: 
$$p(X \mid M, \sigma^2) = k(\sigma) \exp\left(-\frac{d(X, M)^2}{2\sigma^2}\right)$$
,

**Our LieBN:** 

Centering to the neutral element  $E: \forall i \leq N, \bar{P}_i \leftarrow L_{M_{\odot}^{-1}}(P_i),$ 

Scaling the dispersion: 
$$\forall i \leq N, \hat{P}_i \leftarrow \operatorname{Exp}_E\left[\frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i)\right],$$

Biasing towards parameter  $B \in \mathcal{M}$ :  $\forall i \leq N, \tilde{P}_i \leftarrow L_B(\hat{P}_i)$ ,

## **Properties**





$$p(X \mid M, \sigma^2) = k(\sigma) \exp\left(-\frac{d(X, M)^2}{2\sigma^2}\right),$$

Centering to the neutral element E:  $\forall i \leq N, \bar{P}_i \leftarrow L_{M_{\odot}^{-1}}(P_i),$ 

Scaling the dispersion: 
$$\forall i \leq N, \hat{P}_i \leftarrow \operatorname{Exp}_E\left[\frac{s}{\sqrt{v^2 + \epsilon}}\operatorname{Log}_E(\bar{P}_i)\right],$$

Biasing towards parameter  $B \in \mathcal{M}$ :  $\forall i \leq N, \tilde{P}_i \leftarrow L_B(\hat{P}_i)$ ,

#### Our centering and biasing can control mean, while scaling can control variance:

- 1. (MLE of M) Given  $\{P_{i...N} \in \mathcal{M}\}\ i.i.d.$  sampled from  $\mathcal{N}(M, v^2)$ , the maximum likelihood estimator (MLE) of M is the sample Fréchet mean.
- 2. (Homogeneity) Given  $X \sim \mathcal{N}(M, v^2)$  and  $B \in \mathcal{M}$ ,  $L_B(X) \sim \mathcal{N}(L_B(M), v^2)$

**Proposition 4.2** (Sample).  $\square$  Given N samples  $\{P_{i...N} \in \mathcal{M}\}$ , denoting  $\phi_s(P_i) = \operatorname{Exp}_E[s \operatorname{Log}_E(P_i)]$ , we have the following properties for the sample statistics:

Homogeneity of the sample mean: 
$$FM\{L_B(P_i)\} = L_B(FM\{P_i\}), \forall B \in \mathcal{M},$$
 (16)

Controllable dispersion from E: 
$$\sum_{i=1}^{N} w_i d^2(\phi_s(P_i), E) = s^2 \sum_{i=1}^{N} w_i d^2(P_i, E), \quad (17)$$

where  $\{w_{1...N}\}$  are weights satisfying a convexity constraint, i.e.,  $\forall i, w_i > 0$  and  $\sum_i w_i = 1$ .

Under metrics (LEM and LCM on SPD manifolds), LieBN can further control the latent Gaussian (App. C):  $\mathcal{N}(M, \sigma^2) \to \mathcal{N}(E, \sigma^2) \to \mathcal{N}(E, s^2) \to \mathcal{N}(B, s^2)$ ,

# **Algorithm**





```
Algorithm 1: Lie Group Batch Normalization (LieBN) Algorithm
```

```
: A batch of activations \{P_{1...N} \in \mathcal{M}\}, a small positive constant \epsilon, and
Input
                   momentum \gamma \in [0, 1]
                   running mean M_r = E, running variance v_r^2 = 1,
                   biasing parameter B \in \mathcal{M}, scaling parameter s \in \mathbb{R}/\{0\},
                 : Normalized activations \{\tilde{P}_{1...N}\}
Output
if training then
     Compute batch mean M_b and variance v_b^2 of \{P_{1...N}\};
     Update running statistics M_r \leftarrow \text{WFM}(\{1-\gamma,\gamma\},\{M_r,M_b\}), v_r^2 \leftarrow (1-\gamma)v_r^2 + \gamma v_b^2;
end
if training then M \leftarrow M_b, v^2 \leftarrow v_b^2;
else M \leftarrow M_r, v^2 \leftarrow v_r^2;
for i \leftarrow 1 to N do
     Centering to the neutral element E: \bar{P}_i \leftarrow L_{M_{-}^{-1}}(P_i)
     Scaling the dispersion: \hat{P}_i \leftarrow \operatorname{Exp}_E \left[ \frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i) \right]
     Biasing towards parameter B: \tilde{P}_i \leftarrow L_B(\hat{P}_i)
end
```

Our LieBN is a natural generalization of the Euclidean BN:

**Proposition D.1.** The LieBN algorithm presented in Alg.  $\overline{I}$  is equivalent to the standard Euclidean BN when  $\mathcal{M} = \mathbb{R}^n$ , both during the training and testing phases.

#### **LieBN on the SPD Manifold**





#### We further consider three deformed invariant metrics on the SPD manifold.

Table 3: Key operators in calculating LieBN on SPD manifolds.

|                                                                     | Metric                                                                    | $(\theta, \alpha, \beta)$ -AIM                                                                            | $(\alpha, \beta)$ -LEM                                              | $\theta$ -LCM                                                   |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Pullback Map                                                        |                                                                           | $ $ $P_{\theta}$                                                                                          | mlog                                                                | $P_{\theta} \circ \psi_{LC}$                                    |  |
| Codomain                                                            |                                                                           | $\left\{ \mathcal{S}_{++}^n, \odot^{\text{AI}}, \frac{1}{\theta^2} g^{(\alpha,\beta)\text{-AI}} \right\}$ | $\{\mathcal{S}^n, \langle \cdot, \cdot \rangle^{(\alpha, \beta)}\}$ | $\{\mathcal{L}^n, \frac{1}{\theta^2}\langle\cdot,\cdot angle\}$ |  |
|                                                                     | $L_Q(P)$                                                                  | $ KPK^{\top} $                                                                                            | P+Q                                                                 | P+Q                                                             |  |
| Rieman-<br>nian and<br>Lie group<br>operators<br>in the<br>codomain | $L_{Q_{\odot}^{-1}}(P)$                                                   | $K^{-1}PK^{-\top}$                                                                                        | P-Q                                                                 | P-Q                                                             |  |
|                                                                     | $= {-} \operatorname{Exp}_{E} \left[ s \operatorname{Log}_{E}(P) \right]$ | $P^s$                                                                                                     | sP                                                                  | sP                                                              |  |
|                                                                     | FM                                                                        | Karcher Flow                                                                                              | Arithmetic average                                                  | Arithmetic average                                              |  |
|                                                                     | $\overline{\text{WFM}(\{\gamma, 1-\gamma\}, \{P_1, P_2\})}$               | $P_2^{\frac{1}{2}} \left( P_2^{-\frac{1}{2}} P_1 P_2^{-\frac{1}{2}} \right)^{\gamma} P_2^{\frac{1}{2}}$   | Arithmetic weighted average                                         | Arithmetic weighted average                                     |  |

$$\langle V, W \rangle_P = \tilde{g}(\text{mlog}_{*,P}(V), \text{mlog}_{*,P}(W)), \forall P \in \mathcal{S}_{++}^n, \forall V, W \in T_P \mathcal{S}_{++}^n, \tag{18}$$

Properties:

where  $\tilde{g}(V_1,V_2)=\frac{1}{2}\langle V_1,V_2\rangle-\frac{1}{4}\langle \mathbb{D}(V_1),\mathbb{D}(V_2)\rangle$ ,  $\mathbb{D}(V_i)$  is a diagonal matrix consisting of the diagonal elements of  $V_i$ , and  $\mathrm{mlog}_{*,P}$  is the differential map at P.

**Proposition 5.2** (Invariance).  $(\theta, \alpha, \beta)$ -AIM is left-invariant w.r.t.  $\odot^{\theta-AI}$ , while  $\theta$ -LCM is bi-invariant w.r.t.  $\odot^{\theta-LC}$ .

#### **LieBN on SPDNet and TSMNet**





(a) Radar dataset.

Radar:

| Method       | SPDNet     | SPDNetBN   | AIM-(1)           | LEM-(1)     | LCM-(1)    | LCM-(-0.5) |
|--------------|------------|------------|-------------------|-------------|------------|------------|
| Fit Time (s) | 0.98       | 1.56       | 1.62              | 1.28        | 1.11       | 1.43       |
| Mean±STD     | 93.25±1.10 | 94.85±0.99 | <b>95.47±0.90</b> | 94.89±1.04  | 93.52±1.07 | 94.80±0.71 |
| Max          | 94.4       | 96.13      | 96.27             | <b>96.8</b> | 95.2       | 95.73      |

(b) HDM05 and FPHA datasets.

Skeleton data:

| M     | ethod                           | SPDNet                      | SPDNetBN                    | AIM-(1)                     | LEM-(1)                     | LCM-(1)                     | AIM-(1.5)                                 | LCM-(0.5)                                 |
|-------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|
| HDM05 | Fit Time (s)<br>Mean±STD<br>Max | 0.57<br>59.13±0.67<br>60.34 | 0.97<br>66.72±0.52<br>67.66 | 1.14<br>67.79±0.65<br>68.75 | 0.87<br>65.05±0.63<br>66.05 | 0.66<br>66.68±0.71<br>68.52 | 1.46<br>68.16±0.68<br>69.25               | 1.01<br><b>70.84±0.92</b><br><b>72.27</b> |
| FPHA  | Fit Time (s) Mean±STD Max       | 0.32<br>85.59±0.72<br>86    | 0.62<br>89.33±0.49<br>90.17 | 0.80<br>89.70±0.51<br>90.5  | 0.55<br>86.56±0.79<br>87.83 | 0.39<br>77.64±1.00<br>79    | 1.03<br><b>90.39±0.66</b><br><b>92.17</b> | 0.65<br>86.33±0.43<br>87                  |

(a) Inter-session classification

EEG:

| Method    | Fit Time (s) | Mean±STD    |
|-----------|--------------|-------------|
| SPDDSMBN  | 0.16         | 54.12±9.87  |
| AIM-(1)   | 0.16         | 55.10±7.61  |
| LEM-(1)   | 0.13         | 54.95±10.09 |
| LCM-(1)   | 0.10         | 51.54±6.88  |
| LCM-(0.5) | 0.15         | 53.11±5.65  |

(b) Inter-subject classification

| Method     | Fit Time (s) | Mean±STD   |
|------------|--------------|------------|
| SPDDSMBN   | 7.74         | 50.10±8.08 |
| AIM-(1)    | 6.94         | 50.04±8.01 |
| LEM-(1)    | 4.71         | 50.95±6.40 |
| LCM-(1)    | 3.59         | 51.86±4.53 |
| AIM-(-0.5) | 8.71         | 53.97±8.78 |

#### **Preliminaries Results on Rotation**





Table 8: The associated Riemannian operators on Rotation matrices.

Ingredients:

| Operators  | $d^2(R,S)$                                                               | $\operatorname{Log}_I R$ | $\operatorname{Exp}_I(A)$ | $\gamma_{(R,S)}(t)$                                       | FM                    |
|------------|--------------------------------------------------------------------------|--------------------------|---------------------------|-----------------------------------------------------------|-----------------------|
| Expression | $\left\ \operatorname{mlog}\left(R^{T}S\right)\right\ _{\mathrm{F}}^{2}$ | mlog(R)                  | mexp(A)                   | $R \operatorname{mexp}(t \operatorname{mlog}(R^{\top}S))$ | Manton (2004, Alg. 1) |

Table 9: Results of LieNet with or without LieBN on the G3D dataset.

Application to LieNet:

|                       | G3D                      |                |  |  |
|-----------------------|--------------------------|----------------|--|--|
| Methods               | Mean±STD                 | Max            |  |  |
| LieNet<br>LieNetLieBN | 87.91±0.90<br>88.88±1.62 | 89.73<br>90.67 |  |  |



# Thanks you Q & A



Code



Paper



Homepage