Exercice 1. Soit $E \subset \mathbb{R}$ et définissons

$$\overline{E} := \{ a \in \mathbb{R} : \exists (u_n) \in E^{\mathbb{N}} \text{ convergeant vers } a \}$$

- (i) Montrer que $E \subset \overline{E}$
- (ii) Montrer que $\overline{(0,1)} = \overline{[0,1]} = [0,1]$
- (iii) Montrer que \overline{E} est l'ensemble des points de $\mathbb R$ qui se situent à une distance arbitrairement proche d'un point de E, c'est-à-dire

$$\overline{E} = \{ a \in \mathbb{R} : \forall \varepsilon > 0, \exists x \in E, |a - x| < \varepsilon \}$$

Exercice 2. Étudier les points de continuité des fonctions suivantes.

- (i) La fonction $f(x) = \frac{x-5}{x+3}$ de $\mathbb{R} \setminus \{-3\}$ dans \mathbb{R}
- (ii) La fonction $f(x) = x\chi_{\mathbb{Q}}(x)$ de \mathbb{R} dans \mathbb{R}
- (iii) La fonction $f(x) = \begin{cases} \frac{x^2 + 2|x|}{x} & \text{si } x \neq 0 \\ 3 & \text{si } x = 0 \end{cases}$ de $\mathbb R$ dans $\mathbb R$
- (iv) Soit $n \in \mathbb{N}^*$ impair. La fonction $f(x) = \begin{cases} \frac{x-1}{x^n-1} & \text{si } x \neq 1 \\ \frac{1}{n} & \text{si } x = 1 \end{cases}$ de \mathbb{R} dans \mathbb{R}

Exercice 3. (Théorème des suites alternées)

Soit (u_n) une suite décroissante qui converge ver 0, et posons $S_n = \sum_{k=0}^n (-1)^k u_k$.

- (i) Montrer que (S_{2n}) est décroissante et (S_{2n+1}) croissante. En déduire que (S_n) converge.
- (ii) Montrer que pour tout $m \ge n, |S_n S_m| \le u_{n+1}$ (Indication : utiliser le fait que $u_k u_{k+1} \ge 0$). En déduire que si $S = \lim S_n$, alors $|S_n S| \le u_{n+1}$.
- (iii) Montrer que la suite $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$ converge.

(Vous montrerez durant le second semestre que la limite vaut log 2.)

Exercice 4. Soit $g:[0,\infty)\to[0,\infty)$ une fonction continue en 0 telle que g(0)=0. Soient $f:E\to\mathbb{R}$ et $a\in E$. Montrer que f est continue en a si et seulement si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E, |x - a| < \delta \implies |f(x) - f(a)| \le g(\varepsilon)$$

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$

- (i) Montrer que si f est continue sur \mathbb{R} , alors |f| est continue.
- (ii) Donner un exemple de fonction f telle que |f| est continue mais f est discontinue en tout point.
- (iii) Exprimer $\max(x, y)$ et $\min(x, y)$ en utilisant la valeur absolue.
- (iv) Montrer que si f et g sont continues sur \mathbb{R} , alors $\max(f,g)$ et $\min(f,g)$ sont également continues.

Exercice 6. Soit P un polynôme à coefficients réels de degré impair. Montrer qu'il existe une racine $c \in \mathbb{R}$ telle que P(c) = 0 (*Indication*: on peut utiliser le théorème des valeurs intermédiaires). Pour tout $d \in \mathbb{N}$, donner un exemple de polynôme de degré 2d qui n'admet pas de racine sur \mathbb{R} .

Exercice 7. (Théorème du point fixe)

Soit $f:[0,1] \to [0,1]$ continue. Montrer qu'il existe $c \in [0,1]$ tel que f(c) = c.

Indication : utiliser le théorème des valeurs intermédiaires.