Job No.: Clive McKenny 483-208648 Address: 266C Hot Springs Rd, Tahawai, New Zealand Date: 22/05/2024 Latitude: -37.58556 Longitude: 175.881304 Elevation: 87 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	2.7 m
Wind Region	NZ1	Terrain Category	3.0	Design Wind Speed	37.78 m/s
Wind Pressure	0.86 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.6821

For roof CP,e from 0 m To 1.28 m Cpe = -0.9435 pe = -0.69 KPa pnet = -1.29 KPa

For roof CP,e from 1.28 m To 4.6 m Cpe = -0.8783 pe = -0.64 KPa pnet = -1.24 KPa

For wall Windward Cp, i = 0.6821 side Wall Cp, i = 0.6167

For wall Windward and Leeward CP,e from 0 m To 8 m Cpe = 0.7 pe = 0.54 KPa pnet = 1.11 KPa

For side wall CP,e from 0 m To 2.55 m Cpe = pe = -0.50 KPa pnet = 0.07 KPa

Maximum Upward pressure used in roof member Design = 1.29 KPa

Maximum Downward pressure used in roof member Design = 0.72 KPa

Maximum Wall pressure used in Design = 1.11 KPa

Maximum Racking pressure used in Design = 0.93 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 3850 mm Try Purlin 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Short \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \;$

K8 Upward =0.78 S1 Downward =12.23 S1 Upward =17.77

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.56 Kn-m	Capacity	1.79 Kn-m	Passing Percentage	319.64 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.7 Kn-m	Capacity	2.38 Kn-m	Passing Percentage	140.00 %
$M_{0.9D ext{-W}nUp}$	-1.78 Kn-m	Capacity	-2.36 Kn-m	Passing Percentage	132.58 %
V _{1.35D}	0.58 Kn	Capacity	8.25 Kn	Passing Percentage	1422.41 %

Second page

$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	1.77 Kn	Capacity	11.00 Kn	Passing Percentage	621.47 %
$ m V_{0.9D ext{-}WnUp}$	-1.85 Kn	Capacity	-13.75 Kn	Passing Percentage	743.24 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.51 mm

Limit by Woolcock et al, 1999 Span/240 = 15.83 mm

Deflection under Dead and Service Wind = 12.19 mm

Limit by Woolcock et al, 1999 Span/100 = 38.00 mm

Reactions

Maximum downward = 1.77 kn Maximum upward = -1.85 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4000 mm Internal Rafter Span = 4450 mm Try Rafter 2x290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.47 S1 Upward = 7.47

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	3.34 Kn-m	Capacity	8.48 Kn-m	Passing Percentage	253.89 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	10.10 Kn-m	Capacity	11.3 Kn-m	Passing Percentage	111.88 %
$M_{0.9D\text{-W}nUp}$	-10.54 Kn-m	Capacity	-14.12 Kn-m	Passing Percentage	133.97 %
$V_{1.35D}$	3.00 Kn	Capacity	25.18 Kn	Passing Percentage	839.33 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	9.08 Kn	Capacity	33.58 Kn	Passing Percentage	369.82 %
$ m V_{0.9D-WnUp}$	-9.48 Kn	Capacity	-41.96 Kn	Passing Percentage	442.62 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 6.375 mm Limit by Woolcock et al, 1999 Span/240 = 19.17 mm Deflection under Dead and Service Wind = 10.15 mm Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 9.08 kn Maximum upward = -9.48 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 19.50 Kn > -9.48 Kn

Rafter Design External

External Rafter Load Width = 2000 mm

External Rafter Span = 4410 mm

Try Rafter 290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

K8 Upward =0.89 S1 Downward =15.23 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.64 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	230.49 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.96 Kn-m	Capacity	5.04 Kn-m	Passing Percentage	101.61 %
$M_{0.9D\text{-W}nUp}$	-5.18 Kn-m	Capacity	-6.29 Kn-m	Passing Percentage	121.43 %
V _{1.35D}	1.49 Kn	Capacity	12.59 Kn	Passing Percentage	844.97 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	4.50 Kn	Capacity	16.79 Kn	Passing Percentage	373.11 %
V0.9D-WnUp	-4.70 Kn	Capacity	-20.98 Kn	Passing Percentage	446.38 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7.08 mm

Deflection under Dead and Service Wind = 10.15 mm

Limit by Woolcock et al, 1999 Span/240= 19.17 mm Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 4.50 kn Maximum upward = -4.70 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -21.73 kn > -4.70 Kn

Single Shear Capacity under short term loads = -9.75 Kn > -4.70 Kn

Intermediate Design Sides

Intermediate Spacing = 2300 mm

Intermediate Span = 2400 mm

Try Intermediate 2x140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =10.36 S1 Upward =0.54

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.92 Kn-m Capacity 3.3 Kn-m Passing Percentage 358.70 % V0.9D-WnUp 1.53 Kn Capacity 20.26 Kn Passing Percentage 1324.18 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.92 mm

Limit by Woolcock et al, 1999 Span/100 = 24.00 mm

Reactions

Maximum = 1.53 kn

Girt Design Front and Back

Girt's Spacing = 650 mm

Girt's Span = 4000 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.88 S1 Downward =10.36 S1 Upward =15.45

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.44 Kn-m Capacity 1.45 Kn-m Passing Percentage 100.69 % $V_{0.9D-WnUp}$ 1.44 Kn Capacity 10.13 Kn Passing Percentage 703.47 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 34.88 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Sag during installation = 19.16 mm

Reactions

Maximum = 1.44 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2300 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.83 S1 Downward =10.36 S1 Upward =16.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.95 Kn-m	Capacity	1.37 Kn-m	Passing Percentage	144.21 %
V _{0.9D-WnUp}	1.66 Kn	Capacity	10.13 Kn	Passing Percentage	610.24 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.63 mm

Limit by Woolcock et al. 1999 Span/100 = 23.00 mm

Sag during installation = 2.09 mm

Reactions

Maximum = 1.66 kn

Middle Pole Design

Geometry

200 UNI H5	Dry Use	Height	2400 mm
Area	31400 mm2	As	23550 mm2
Ix	78500000 mm4	Zx	785000 mm3
Iy	78500000 mm4	Zx	785000 mm3

Lateral Restraint 1300 mm c/c

Loads

Total Area over Pole = 9.2 m^2

Dead	2.30 Kn	Live	2.30 Kn
Wind Down	6.62 Kn	Snow	0.00 Kn

Moment wind 5.07 Kn-m

Phi 0.8 K8 1.00 K1 snow 0.8 K1 Dead 0.6

K1wind

Material

Shaving Steaming Normal Dry Use

6/9

fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	452.16 Kn	PhiMnx Wind	21.56 Kn-m	PhiVnx Wind	55.77 Kn
PhiNcx Dead	271.30 Kn	PhiMnx Dead	12.93 Kn-m	PhiVnx Dead	33.46 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.26 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.08 < 1 OK$

Deflection at top under service lateral loads = 6.69 mm < 24.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/	Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
---	-------	----------	----------------	--------	----------	---------

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter

L = 1500 mm Pile embedment length

f1 = 2025 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	5.07 Kn-m	
Shear Wind =	2.50 Kn	

Pile Properties

Safety Factory 0.55

Hu = 8.53 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.82 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.47 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 UNI H5	Dry Use	Height	2500 mm
Area	31400 mm2	As	23550 mm2
Ix	78500000 mm4	Zx	785000 mm3

Iy 78500000 mm4	Zx	785000 mm3
-----------------	----	------------

Lateral Restraint mm c/c

Loads

Total Area over Pole = 9.2 m^2

Dead	2.30 Kn	Live	2.30 Kn
Wind Down	6.62 Kn	Snow	0.00 Kn

Moment Wind 2.54 Kn-m

Phi 0.98 0.8 K8 K1 snow 0.8 K1 Dead 0.6

K1wind 1

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	441.17 Kn	PhiMnx Wind	21.03 Kn-m	PhiVnx Wind	55.77 Kn
PhiNcx Dead	264.70 Kn	PhiMnx Dead	12.62 Kn-m	PhiVnx Dead	33.46 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.15 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.04 < 1 OK$

Deflection at top under service lateral loads = 3.75 mm < 26.93 mm

 $D_S =$ 0.6 mm Pile Diameter

L =1500 mm Pile embedment length

f1 = 2025 mm Distance at which the shear force is applied f2 =0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 9.2 m^2

Moment Wind = 2.54 Kn-m Shear Wind = 1.25 Kn

Pile Properties

Safety Factory 0.55

Hu= 8.53 Kn Ultimate Lateral Strength of the Pile, Short pile

10.82 Kn-m Mu =Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.23 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 2025 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 2.54 Kn-m Shear Wind = 1.25 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.53 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.82 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.23 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 22.31 Kn

Uplift on one Pile = 9.80 Kn

Uplift is ok