Norwegian University of Science and Technology

TTK4135 – Optimization and Control

Spring 2021

Lecturer: Lars Imsland

Teaching Assistant: Joakim R. Andersen

6 Student Assistants

Learning Objectives

- Optimization important concepts and theory
- Formulating an engineering problem into a mathematical optimization problem (modeling for optimization)
- Solving an optimization problem numerically
 - choosing the right algorithm for your problem,
 - use of (the right) optimization software,
 - some implementation of algorithms

for a few important classes of optimization problems

Applications in control engineering – model predictive control

Numerical optimization is an incredibly versatile tool across most engineering domains

Course Information: General

- Description:
 - All course information is provided through Blackboard
 - Course description: http://www.itk.ntnu.no/emner/ttk4135
- Assignments and assessment (More information on Blackboard):
 - Exercises: 7 of 10 assignments must be approved
 - No extra assignments will be given, deadlines are absolute
 - Pay attention and make sure your delivered assignments are approved
 - Do not copy (kok)!
 - Helicopter lab: must be approved
 - Evaluation weighted 26% towards grade
 - In addition to deliver (group) reports, you have to give feedback on other groups' reports (new)
 - Matlab assessments (new)
 - 6 Matlab assessments, each counts 4% towards grade (pass/no pass)
 - Final exam (digital home exam)
 - Evaluation weighted 50% towards grade

Course Information: Course Material

- Lectures: Online on Blackboard
 - Will not cover the full curriculum in lectures
 - Will focus on difficult parts and build intuition
 - Will be recorded, and PDF made available afterwards
 - Online lecturing is new for lecturer
 - Constructive feedback welcome!
 - Ask questions in chat or use "raise hand"
 - If he is not recording, remind him!

Course Material:

- Numerical Optimization, J. Nocedal and S. J Wright, 2nd ed., Springer (ISBN-10: 0-387-30303-0 or ISBN-13: 987-0387-30303-1). Download <u>here</u> from campus or through VPN.
- Errata on Blackboard
- Note on Merging Optimization and Control,
 B. Foss and T. A. Heirung (Blackboard)
- Note on Matrix Calculus, T. A. Heirung (Blackboard)

Course Information: Practical

- Grading
 - Final exam: 50%
 - Lab report (helicopter): 26% (group work)
 - Matlab assessments: 24% (6 individual tasks)
- Timetable

Lectures: Tuesday 08:15 - 10:00 on Blackboard

Friday 08:15 - 10:00 on Blackboard

Assignment Sessions: Monday 16:15 - 17:00 on Blackboard

- Exam: May 28, 09:00 13:00 (?)
- Reference group!
- Video lectures from 2014: https://mediasite.ntnu.no/Mediasite/Catalog/catalogs/ttk4135-v14

Expected Background

- Linear algebra and real analysis
 - Quick recap next time (Also: Note on Blackboard + Exercise 0)
- Some numerical analysis (Newton's method)
- Basic control theory:
 - TTK4105 Control engineering
 - Advantage: TTK4115 Linear system theory

Tentative Lecture schedule

	TTK4135 Plan for Spring 2021					
Week no.				Exercise out (Mon 15:00)	Help session Monday 16:15-17:00 Online	Exercise in (Wed 23:59)
	Lecture 1 Introduction on optimization - N&W	Lecture 2 Optimality conditions - N&W Ch. 12.1-				
2	Ch.1	12.2		0: Matrix Calculus, 1: KKT		
	Lecture 3 Optimality conditons and linear	Lecture 4 Linear Programming - N&W Ch.13.1-				
3		13.5		2: LP	0, 1, 2	
	Lecture 5 Linear Programming - N&W Ch.13.1-	Lecture 6 Quadratic programming - N&W				
4		Ch.15.3-15.5, 16.1-2,4-5		3: LPQP	2, 3	0, 1
	Lecture 7 Quadratic Programming - N&W	Lecture 8 Open loop dynamic optimization - MPC				·
5	Ch.15.3-15.5, 16.1-2,4-5	note Ch.3-3.2	Helicopter Lab week	4: QP	3, 4	2
	Lecture 9 Model predictive control - MPC note	Lecture 10 Model predictive control - MPC note				
6	Ch.3.3-4.2.1	Ch.4.2.2-4.3.1	Helicopter Lab week	5: OLMPC	4, 5	3
	Lecture 11 Linear quadratic control - MPC note	Lecture 12 Linear quadratic control - MPC note				
7		repetition and 4.6	Helicopter Lab week	6: MPCLQR	5	4
	Lecture 13 Unconstrained optimization - N&W					
8	Ch.2.1-2.2	No lecture	Helicopter Lab week		5, 6	

Updated schedule will be available on Blackboard

Norwegian University of Science and Technology

TTK4135 – Lecture 1 Optimization: What and Why?

Spring 2021
Lecturer: Lars Imsland

Purpose of Lecture

- Brief Timeline & Motivation
- Formulation of optimization problems, classes of optimization problems
- Definition of important terms
 - Convexity and non-convexity
 - Global vs. local solution
 - Constrained vs. unconstrained problems
 - Feasible set

Reference: Chapter 1 Nocedal & Wright

Brief Timeline

~1600 BC	Ancient Geometry: Babylonian method for solving $x^2 + bx = c$
~300 BC	Ancient Geometry: Euclid's minimal distance between point and line
~200s	Iterative approaches: Han Dynasty methods for solving $\sum_{i=0}^3 a_i x^i = 0$
~900s	Modern algebra and arithmetics: Muhammad Al-Khwarizmi ("Algorismi") gives various root solving methods
1600s	Basis of Calculus of Variations: Newton's Body of minimal resistance, Bernoulli's Brachistochrone problem
1700s	Calculus of Variations and combinatorial optimization: Maupertius' Principle of Least Action, Samuel König's optimal honeycomb
1800s	First "Optimization algorithms": Hamilton-Jacobi Equation, Extreme Value Theorem, Rolle's Theorem, Cauchy's Gradient Descent
1900-1957	Rigorous theory and applications: Minkowski's Convex Sets, Hancock's Theory of Minima and Maxima, Kantorevich's Linear Optimization Problems, Dantzig's Simplex method, Neumann and Morgenstern's Dynamic Programming, Karush-Kuhn-Tucker's Optimality Conditions, Bellman's Optimality principle, Pontryagin's Maximum Principle
1950+	Optimization is applied to economics, agriculture, space travel, social media, robots, manufacturing, art and everything in between

Modern Applications: Motion Control

LBR IIWA avoiding collision with static LBR 4+ while performing assembly

Source: Y. Pane, M. H. Arbo, E. Aertbeliën, W. Decré, "A System Architecture for CAD-Based Robotic Assembly with Sensor-Based Skills", T-ASE 2019

Control Applications: Model Predictive Control for all domains

Lots of other applications

What is optimization?

unconstrained of.

min f(x)

XERN f(x)

What characterizes an optimum?

Necessary conditions for optimality of xx:

1. order: \$1(x) = 0

2. oran: f"() > 0

Minimization or Maximization?

Convention this course: Minimization!

Optimization – A recurring friend

Finding max and min of a function (Calc 1)

- The Lagrange Method (Calc 2)
- Algorithms course (Shortest path, dynamic programming, max flow, travelling salesman, etc)
- Statistics (Least-squares, data fitting)

- Machine Learning (Gradient descent)
- (And many applications in control...)

Example optimization problem: Least Squares

Science and Technology

Example: Machine Learning

- Learn, and make predictions, from data
- Linear regression is the most basic ML algorithm, solved using optimization
 - "Least squares", Ch. 10, N&W
- In a similar fashion: ML, neural networks, deep learning etc. are "trained" using "gradient descent" algorithms
 - Topic of Ch. 2-10, N&W

Constrained optimization problems

MUC ONS A. OAT.

min fly

Constrained opt.

win f(x) $x \in \mathbb{R}^n$ s = t. $C_1(x) = 0$, $i \in \mathcal{I}$ $C_1(x) \ge 0$, $i \in \mathcal{I}$

Feasible set

sible set:
$$\Omega = \left\{ \times \in \mathbb{R}^{N} \mid C_{i}(x) = 0 \mid i \in \mathcal{E} \text{ and } (i|x) \geqslant 0, i \in \mathcal{I} \right\}$$

General Optimization Problem

 $c_i(x) = 0, \quad i \in \mathcal{E},$ subject to $\min_{x \in \mathbb{R}^n} f(x)$ $c_i(x) \ge 0, \quad i \in \mathcal{I}.$

Example:

$$\min (x_1 - 2)^2 + (x_2 - 1)^2$$

subject to
$$x_1^2 - x_2 \le 0, \quad \leftarrow \subset_1$$
$$x_1 + x_2 \le 2. \quad \leftarrow \subset_2$$

What if we add equality-constraint $x_1 = 0$?

Linear Programming

Quadratic Programming

min
$$=\frac{1}{2}x^{T}G_{1}x+d_{1}x$$
 $s+a_{1}^{T}x=b_{1}$, $i\in\mathbb{Z}$
 $a_{1}^{T}x=b_{1}$, $i\in\mathbb{Z}$

LP Example: Farming

- A farmer wants to grow apples (A) and bananas (B)
- He has a field of size 100 000 m²
- Growing 1 tonne of A requires an area of 4 000 m², growing 1 tonne of B requires an area of 3 000 m²

- A requires 60 kg fertilizer per tonne grown, B requires 80 kg fertilizer per tonne grown
- The profit for A is 7000 per tonne (including fertilizer cost), the profit for B is 6000 per tonne (including fertilizer cost)
- The farmer can legally use up to 2000 kg of fertilizer
- The farmer wants to maximize his profits

Formulating a LP optimization problem

X: # formes A X, # formes B Objective 7000. x, + 6000. 1/2 Constraints 4000 x, +3000 x, = 3000 x, = 80 x, = 2000 min - 7660 x, - 6000 x2 m'n cTx st. Ax < b, x ≥0 $A = \begin{bmatrix} -7800, -6000 \\ 4000 & 3600 \\ 60 & 80 \end{bmatrix}, b = \begin{bmatrix} 000000 \\ 2000 \end{bmatrix}$ Norwegian University of Science and Technology

Farming Example: Geometric Interpretation and Solution

