LAB – 7
CMOS Gates

מגישים:

אביתר כהן – 205913858 יונתן קופפר – 316061860

מבוא: במעבדה זו נבנה decoder ונבצע LE מבוא: במעבדה זו נבנה האופטימיזציה של

 $\mathcal{C}_L = 60\mathcal{C}_0$ ולכן העומס שלנו הוא: G=8 ואצלנו פרטות פרטות אצלנו בסעיף זה התבקשנו לתכנן לתכנן DECODER 4-16 הכולל

באופן הבא: AND ממעבדה 6 ובנינו באמצעותם שערי NAND2 השתמשנו בשערי

כעת השתמשנו עם השער AND שבנינו לעיל כדי לבנות AND באופן הבא:

2. התבקשנו להראות כי ה DECODER שבנינו לעיל פועל בצורה תקינה. נגדיר את F=1 , בקובץ הווקטור נגדיר את הערכים הבאים:

להלן התוצאות שקיבלנו:

נוכל לראות כי התוצאות תואמות את ציפיותינו, שכן עבור ערכי כניסה שונים מתקבל במוצא מתח גבוהה ביציאה המתאימה. וכן ערכי ה OUTPUT NUMBER אכן תואמים את הערכים במוצא כפי שרצינו.

> 3. בסעיף זה התבקשנו למדוד tpd, ההספק הסטטי וdynamic energy עבור מעבר בודד. בחרנו לבצע את המעבר (בערכים הקסה-דצימלים) מ-F ל-E.

Test	Output	Nominal
introDigitalCircLab:TB_lab7_DECODER:1	/OUT<14,15,1,0>	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	/IN<3:0>	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	/INB<3:0>	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	TPHL	1.062n
introDigitalCircLab:TB_lab7_DECODER:1	TPLH	519.9p
ntroDigitalCircLab:TB_lab7_DECODER:1	TPD	790.8p
introDigitalCircLab:TB_lab7_DECODER:1	I_VDD	<u>~</u>
ntroDigitalCircLab:TB_lab7_DECODER:1	STAT_P	3.06n
introDigitalCircLab:TB_lab7_DECODER:1	/I3/V_DD	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	/V_DD	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	/I3/DGND	<u>~</u>
introDigitalCircLab:TB_lab7_DECODER:1	/DGND	<u>Ľ</u>
ntroDigitalCircLab:TB_lab7_DECODER:1	dynamic_p	420.1a

המשוואות הן:
$$tpd = \frac{tp_{lh} + tp_{hl}}{2}$$
 $static\ power = i_{static} \cdot V_{DD}$ $dynamic\ power = i_{switch} \cdot V_{DD}$

כאשר את i_{switch} מדדנו בתור הזרם מהספק פחות הזרם נאשר את שיוצא לאדמה במהלך switch.

4. כעת התבקשנו לבצע אופטימיזציה ל SIZING של המעגל.לצורך כך הרצנו אופטימיזציה על ערכי F שונים, ולאחר מכן נבחר את התוצאה בעלת ה TPD הכי נמוך. להלן התוצאות:

Point	Test	Output	Nominal	~	Spec	Weight	Pass/Fail
Filter	Filter	TPD	× Filter	₹ F	llter	Filter	Filter
122	introDigitalCircL	tpd	369.2p		minimize 200p		fail
179	introDigitalCircL	tpd	369.3p		minimize 200p		fail
123	introDigitalCircL	tpd	369.6p		minimize 200p		fail
183	introDigitalCircL	tpd	369.6p		minimize 200p		fail
126	introDigitalCircL	tpd	369.9p		minimize 200p		fail
127	introDigitalCircL	tpd	369.9p		minimize 200p		fail
175	introDigitalCircL	tpd	370.2p		minimize 200p		fail
118	introDigitalCircL	tpd	370.6p		minimize 200p		fail
187	introDigitalCircL	tpd	370.8p		minimize 200p		fail
66	introDigitalCircL	tpd	371.1p		minimize 200p		fail
119	introDigitalCircL	tpd	371.3p		minimize 200p		fail
131	introDigitalCircL	tpd	371.4p		minimize 200p		fail
130	introDigitalCircL	tpd	371.5p		minimize 200p		fail

נסתכל על התוצאה הראשונה שקיבלנו (ריצה 122)

Parameters: M	D<0:15>.F1=4, MID	<0:15>.F2=8, I<0:7>.	F2=2	
122	introDigitalCircL	/OUT<15:0>	<u>L</u>	
122	introDigitalCircL	/IN<3:0>		
122	introDigitalCircL	/INB<3:0>	<u>_</u>	
122	introDigitalCircL	TPLH	440.7p	
122	introDigitalCircL	TPHL	297.8p	
122	introDigitalCircL	tpd	369.2p	minimize 200p

נסתכל על הפרמטרים של הריצה:

הסבר:

נשים לב כי בהתאם לציפיותינו פרמטר F גדל פי F גדל פי בהתאם לציפיותינו פרמטר E מינימלי

נראה כי השdecoder עובד כמצופה:

גם פה העברנו את הסיגנלים לדיגיטליים בשביל לראות את הערכים שנקבל במוצא:

(כנראה הזנו משהו לא נכון במעבר לדיגיטלי שגרם לכך שנקבל את הערכים בחזקה של 2 אך ניתן לראות שהמוצא עובד כמצופה)

5. כעת נתבקשנו על אותו מעבר למדוד את אותם ערכים מסעיף 3 לאחר האופטימיזציה. להלן התוצאות:

Name	Туре	Details	Value
	signal	/OUT<15:0>	L
	signal	/IN<3:0>	L
	signal	/INB<3:0>	L
TPLH	expr	(cross(VT("/OUT<14>") (0.5 * 1.8) 1 "falling" nil nil) - cross(VT("/IN<0>") (0.5 * 1.8) 1 "rising" nil nil))	
TPHL	expr	(cross(VT("/OUT<14>") (0.5 * 1.8) 1 "rising" nil nil) - cross(VT("/IN<0>") (0.5 * 1.8) 1 "falling" nil nil))	
tpd	expr	((TPLH + TPHL) / 2)	369.2p
	signal (I)	/I3/V_DD	L
	signal (I)	/I3/DGND	L
static_p	expr	(value(IT("/I3/V_DD") 1e-09) * 1.8)	7.747n
dynamic_E	expr	(integ((IT("/I3/V_DD") * 1.8) 1.9e-09 4.1e-09) + integ((IT("/I3/DGND") * 1.8) 1.9e-09 4.1e-09))	419.1a

ניתן לראות כי קיבלנו delay טוב בצורה משמעותית מהערך הראשוני שקיבלנו לפני Logic Effort. אבל שילמנו על כך בהספק הסטטי. בעוד שהזמן שלנו התקצר ביותר מחצי, ההספק הסטטי גדל ביותר מפי 2. זוהי תוצאה הגיונית בהתחשב בכך אפשרנו ליותר זרם לעבור בזמן קצר יותר, דבר שיגדיל את ההספק שלנו.