Interrogation

25 octobre 2016 durée : 2 heures

Documents autorisés : Une feuille A₄ recto-verso écrite à la main.

Exercice 1 (Transformations affines)

On note $h_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport λ dans l'espace affine \mathcal{E} . Soit Ω_1 et Ω_2 deux points de \mathcal{E} et λ_1 et λ_2 deux nombres réels tels que $\lambda_1\lambda_2=1$.

- a) Montrer que la composée $T = h_{\Omega_1,\lambda_1} \circ h_{\Omega_2,\lambda_2}$ est une translation.
- b) Exprimer le vecteur de translation \vec{v} de T en fonction des $\Omega_1, \Omega_2, \lambda_1$ et λ_2 .
- c) Illustrer la composée T sur un dessin.

Exercice 2 (Sous-espaces affines)

a) (Question de cours) Démontrer le résultat suivant vu en cours :

Soient \mathcal{E} et \mathcal{F} deux espaces affines, \mathcal{H} un sous-espace affine de \mathcal{E} et $\phi \in \text{Aff}(\mathcal{E}, \mathcal{F})$ une application affine. Alors l'image $\phi(\mathcal{H})$ de \mathcal{H} par ϕ est un sous-espace affine de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{\mathcal{H}})$, l'image de la direction $\overrightarrow{\mathcal{H}}$ de \mathcal{H} par la partie linéaire $\overrightarrow{\phi}$ de ϕ .

- b) Montrer que l'ensemble U₃ des polynômes unitaires de degré 3 (c.-à-d. dont le terme de plus haut degré est X^3) est un sous-espace affine de l'espace vectoriel $\mathbb{R}_3[X]$ des polynômes de degré au plus 3.
- c) Donner un repère cartésien, puis un repère affine de \mathbb{U}_3 .
- d) On considère l'application $\delta: \mathbb{R}_3[X] \to \mathbb{R}_2[X], P \mapsto P'$ qui associe à un polynôme $P \in \mathbb{R}_3[X]$ sa dérivé $\delta(P) = P' \in \mathbb{R}_2[X]$.

Montrer que l'image $\delta(\mathbb{U}_3)$ de \mathbb{U}_3 par δ est un sous-espace affine et déterminer sa direction.

e) Donner un repère cartésien, puis un repère affine de $\delta(\mathbb{U}_3)$.

Exercice 3 (Géométrie dans la plan complexe)

On se place dans le plan complexe \mathbb{C} . On considère deux points A et B d'affixes respectives 2i et 1-i.

a) Donner l'équation de la droite qui passe par A et B sous la forme

$$\overline{\beta}z + \beta \overline{z} + \gamma = 0,$$

où β et γ sont des constantes à déterminer.

- b) Donner, sous la même forme que dans la question précédente, l'équation de la droite orthogonale à AB qui passe par le milieu du segment AB.
- c) Donner l'équation du cercle de diamètre AB sous la forme

$$z\overline{z} - a\overline{z} - \overline{a}z + c = 0,$$

où a et c sont des constantes à déterminer.

Pour la suite de l'exercice on considère un point C du cercle de diamètre AB. On note z l'affixe de C.

- d) Écrire l'affixe de C sous la forme $z = o + \rho e^{i\theta}$ où o et ρ sont deux constantes à déterminer et θ est un paramètre réel.
- e) Soit M le milieu du segment AC. Déterminer l'affixe de M en fonction de θ . Puis, montrer que M décrit un cercle \mathcal{S} , dont on précisera le centre et le rayon, quand C décrit le cercle de rayon AB.
- f) On considère le rectangle positivement orienté ACPQ (voir le dessin). Soit R son centre. Déterminer l'affixe de R en fonction de θ . Puis, montrer que R décrit un cercle, dont on précisera le centre T et le rayon, quand C décrit le cercle de rayon AB.
- g) Montrer que le centre T du cercle décrit par R se trouve sur le cercle S décrit par M.

