Tidy Datasets

Tony Fraser

Data Set 1: Rain Rain NOAAway

NOAA is one of the biggest publishers of global weather data. Most of the stuff the publish you have to FTP down, but I found this subset up on a web server. It's perfect for this project!

NOAA Data Process Flow:

- 1. Go the main url, scrape all the US state links.
- 2. For each state, scrape the cities.
- 3. For each city, download the city file.
- 4. For each file, get just the precipitation data.
- 5. Finish by seeing who had the most rain yesterday and last month.

NOAA CODE

```
packages <- c("rvest", "httr", "purrr", "tidyverse", "gt")</pre>
lapply(packages, library, character.only = TRUE)
## All the functions for scraping and parsing
get content <- function(url, type = "html") {</pre>
  response <- GET(url)</pre>
 if (http_status(response)$category != "Success") {
   stop(paste("Failed to retrieve content from", url))
 }
 if (type == "html") {
   return(content(response, as = "text"))
 } else if (type == "text") {
   return(content(response, as = "text", encoding = "UTF-8"))
   stop("Invalid type specified. Use 'html' or 'text'.")
 }
}
extract_links <- function(url, html_content, regex_filter = NULL) {</pre>
 html_parsed <- read_html(html_content)</pre>
 links <- html_parsed %>%
   html nodes("td > a") %>%
   html_attr("href") %>%
   full_links <- paste0(url, links)</pre>
 if (!is.null(regex_filter)) {
   full links <- full links[!grepl(regex filter, full links)]</pre>
 return(full links)
extract_value <- function(pattern, lines) {</pre>
   #gets numbers out of the text file lines.
   line <- lines[grep(pattern, lines)]</pre>
   if (length(line) == 0) {
```

```
return(NA)
   }
   # Extract the numeric value using regex
   value <- regmatches(line, regexpr("\\d+\\.?\\d*", line))</pre>
   if (length(value) == 0) {
     return(NA)
   } else {
     return(as.numeric(value[[1]]))
   }
}
extract_precipitation <- function(text) {</pre>
 # Finds the lines related to precipitation
 lines <- unlist(strsplit(text, "\n"))</pre>
 if (length(grep("PRECIPITATION", lines)) == 0) {
   return(data.frame(
     yesterday = NA,
     month_to_date = NA
   ))
 }
 precip_lines <- lines[grep("PRECIPITATION", lines):length(lines)]</pre>
 # Extract the values from the lines
             <- extract_value("YESTERDAY", precip_lines)</pre>
 month_to_date <- extract_value("MONTH TO DATE", precip_lines)</pre>
 data <- data.frame(</pre>
   yesterday = yesterday,
   month_to_date = month_to_date
 )
  return(data)
}
## NOAA Parsing Application
url <- "https://tgftp.nws.noaa.gov/data/climate/daily/"</pre>
state_links <- extract_links(url, get_content(url))</pre>
state_stations <- state_links %>%
 map(get_content) %>%
```

```
map2(state_links, ~extract_links(url = .y, .x, regex_filter="data/climate/daily/$")) %>%
 unlist()
all_data <- state_stations %>%
 map_df(function(link) {
   text <- get_content(link, type = "text")</pre>
   extract_precipitation(text) %>%
      mutate(station_file = link)
 }) %>%
 mutate(
   state_or_region = str_extract(station_file, "(?<=daily/)[^/]+"),</pre>
   station = str_extract(station_file, "(?<=/)[^/]+(?=.txt)")</pre>
 )%>%
 select(-station_file) %>%
 mutate(yesterday = ifelse(is.na(yesterday), 0, yesterday)) %>%
 mutate(month to date = ifelse(is.na(month to date), 0, month to date))
findings_month <- all_data %>%
 arrange(desc(month_to_date)) %>%
 slice_head(n = 10) %>%
 gt() %>%
 tab_header(
   title = "Highest Rainfall Last 30 Days"
 )
findings_yesterday <- all_data %>%
 arrange(desc(yesterday)) %>%
 slice_head(n = 10) %>%
 gt() %>%
 tab_header(
   title = "Highest Rainfall Yesterday"
  )
```

NOAA Findings: Station File Precipitation Results

Apparently Guam had the most rainfall over the month, and New Orleans had it for yesterday.!

 ${\tt findings_month}$

Highest Rainfall Last 30 Days

yesterday	month_to_date	state_or_region	station
0.25	9.40	gu	tiyan
0.34	3.95	fm	ck_t11
0.00	3.90	fl	miami
0.00	3.44	tx	houston
0.00	3.35	fl	$west_palm_beach$
0.00	3.24	tx	corpus_christi
0.00	2.99	fl	tallahassee
0.00	2.89	ak	valdez
0.00	2.87	ga	columbus
0.00	2.85	ga	macon

findings_yesterday

Highest Rainfall Yesterday

yesterday	month_to_date	state_or_region	station
2.53	2.46	la	new_orleans
2.05	2.17	pr	san_juan
0.36	2.73	ak	st_paul_island
0.34	3.95	fm	ck_t11
0.25	9.40	gu	tiyan
0.17	1.00	ak	$king_salmon$
0.02	0.02	ak	barrow
0.00	0.00	ak	bethel
0.00	0.00	ak	kodiak
0.00	0.00	ak	kotzebue

Dataset 2: NSF, Sex, Programs and PHDs

nsf.gov is a great resource for for learning about PHD level degrees. Since I am considering one, and since most of my data scientist coworkers are female, I though I'd take a look at PHDs by program and sex.

NSF Data Process Flow:

- 1. Download the Excel
- 2. Flatten the data by extracting all hierarchy from within
- 3. Tidy by adding columns and pivoting wider with categories
- 4. Tidy by combining years into the same column
- 5. Visualize overall trends, and specific programs

NSF CODE

```
packages <- c("httr", "readxl", "dplyr", "tidyr", "gt", "ggplot2")
lapply(packages, library, character.only = TRUE)

r1 <- "https://ncses.nsf.gov/pubs/nsf24300/assets/"
r2 <- "data-tables/tables/nsf24300-tab001-005.xlsx"
url <- paste(r1, r2, sep="")
print(url)

#Load the file into a dataframe
temp_file <- tempfile(fileext = ".xlsx")</pre>
```

```
download.file(url, temp file, mode = "wb")
sex <- read excel(temp file, sheet = 1) %>%
  `colnames<-`(.[3, ]) %>%
  slice(-1:-3)
# Create the three dataframes
all_pos <- which(sex$`Field and sex` == "All doctorate recipientsa")</pre>
male_pos <- which(sex$`Field and sex` == "Male")</pre>
female_pos <- which(sex$`Field and sex` == "Female")</pre>
all_df <- sex[2:(male_pos-1), ]</pre>
male_df <- sex[male_pos+1:(female_pos-1), ]</pre>
female_df <- sex[(female_pos +1):nrow(sex), ]</pre>
all df$Sex <- "Combined"
male df$Sex <- "Male"</pre>
female_df$Sex <- "Female"</pre>
## Tidy, remove extra columns, fill, make long, etc.
cats <- c(
  "Life sciences",
  "Mathematics and computer sciences",
  "Psychology and social sciences",
  "Engineering",
  "Education",
  "Humanities and arts",
  "0ther")
long_df <- bind_rows(all_df, male_df, female_df) %>%
  mutate(DegreeType = if_else(`Field and sex` %in% cats, `Field and sex`, NA_character_)) %>%
  fill(DegreeType) %>%
  filter(!(`Field and sex` %in% c(cats, "Female", "Male", "Combined")) & !is.na(`Field and sex`)) %>%
  gather(key = "Year", value = "Count", `2012`:`2022`) %>%
  mutate(Year = as.numeric(Year)) %>%
  filter(Sex != "Combined")
## Now prepare the two charts ##############
line_graph <- long_df %>%
  group_by(Year, DegreeType, Sex) %>%
  summarise(TotalCount = sum(Count, na.rm = TRUE)) %>%
  ungroup() %>%
  ggplot(aes(x = Year, y = TotalCount,
        color = Sex,
```

```
linetype = DegreeType,
        group = interaction(DegreeType, Sex))) +
  geom_line(size = 1) +
  labs(title = "PHD Degrees awarded by Type, Year and Sex",
       x = "Year",
       y = "Total Count of Degrees",
       color = "Sex") +
 scale x continuous(breaks = 2012:2022) +
 scale_color_brewer(palette = "Set1") +
 theme(legend.position = "bottom",
        legend.key.size = unit(1.5, "cm"),
        legend.text = element_text(size = 6))
all_programs <- long_df %>%
 filter(Year == 2022) %>%
 group_by(`Field and sex`) %>%
 mutate(Total = sum(Count)) %>%
 ungroup() %>%
 ggplot(aes(x = reorder(`Field and sex`, Total), y = Count, fill = Sex)) +
 geom_bar(stat = "identity", position = "stack") +
 labs(title = "Degree Counts by Field and Sex for 2022",
      x = "Degree Field",
      y = "Total Count of Degrees",
      fill = "Sex") +
 coord flip() +
  theme_minimal()
```

PHD Findings 1

Mostly, I expected much closer to a 50/50 split between men and women. That is definitely not the case.

line_graph

9

PHD Findings 2

I took one year and drilled into which programs specifically offered PHD's. I figured business would be at the top of the list, but it is not.

all_programs

Data Set 3: Go to California yes, but not to the CA HHS

California HHS publishes a bunch of aggregated data about their hospitals. Of course they also publish raw data, but in the spirit of tidy data sets, let's work with this aggregated one. We'll do a plot to see if every office continues to grow year over year or not.

HHS Data Process Flow

- 1. Download the excel file from the web.
- 2. Load the summary tab into a dataframe
- 3. Tidy
- 4. Show the adjusted table
- 5. Plot/review year over year growth

CA HHS Code

```
packages <- c("httr", "readxl", "gt", "tidyverse", "dplyr")
lapply(packages, library, character.only = TRUE)

# URL of the Excel file
u1 <- "https://data.chhs.ca.gov/dataset/31ea2cfd-bc1c-4bde-9626-f41b97cc1b93/"
u2 <- "resource/a05be197-1cea-4685-9dfd-0afc7712f81f/download/ed_ut2013_2017_20181030.xlsx"
url <- paste(u1, u2, sep="")

#download and read in the excel file.
temp_file <- tempfile(fileext = ".xlsx")
download.file(url, temp_file, mode = "wb")</pre>
```

```
df <- read excel(temp file, sheet = 1)</pre>
colnames(df) <- c("Service",</pre>
                  "2013-24Hour", "2013-OnCall",
                  "2014-24Hour", "2014-0nCall",
                  "2015-24Hour", "2015-OnCall",
                  "2016-24Hour", "2016-OnCall",
                  "2017-24Hour", "2017-OnCall")
unlink(temp_file)
#get just the bit we are looking for.
start_row <- which(df$Service == "ED Services Available")</pre>
end_row <- which(df$Service == "ED Patient Treatment Stations")</pre>
reshaped_df <- df[start_row:(end_row-1),] %>%
  slice(-(1:2)) %>%
  # now we tidy
  pivot_longer(
   cols = -Service,
    names_to = "temp",
   values_to = "count"
  separate(temp, into = c("Year", "ServiceType"), sep = "-") %>%
  select(Service, Year, ServiceType, count) %>%
  filter(!is.na(count)) %>%
  mutate(
   Year = as.numeric(Year),
    count = as.numeric(count)
  )
## build the outputs
myplot <- reshaped_df %>%
  ggplot(aes(x = Year, y = count, color = Service, linetype = ServiceType, group = interaction(Service, Service)
  geom_line(size = 1) +
  labs(
   title = "Service Counts over Years",
   x = "Year",
    y = "Count",
    color = "Service",
   linetype = "Service Type"
  scale_linetype_manual(values = c("24Hour" = "solid", "OnCall" = "dashed")) +
```

```
theme_minimal() +
theme(legend.position = "bottom")

table <- reshaped_df %>%
    slice_head(n = 12) %>%
    gt() %>%
    tab_header(
        title = "After: California HHS Emergency Services Overview"
)
```

CA HHS Findings

It looks flat. There are not a lot of ups and downs in terms of emergency service.

table

After: California HHS Emergency Services Overview

Service	Year	ServiceType	count
Anesthesiologist	2013	24Hour	151
Anesthesiologist	2013	OnCall	187
Anesthesiologist	2014	24Hour	153
Anesthesiologist	2014	0nCall	186
Anesthesiologist	2015	24Hour	157
Anesthesiologist	2015	OnCall	182
Anesthesiologist	2016	24Hour	143
Anesthesiologist	2016	OnCall	192
Anesthesiologist	2017	24Hour	147
Anesthesiologist	2017	OnCall	184
Laboratory Services	2013	24Hour	328
Laboratory Services	2013	OnCall	25

myplot

