Esercizi di Topologia Algebrica

Gabriele Bozzola Matricola: 882709

Gennaio 2017

Esercizio 1.1.19 (iv)

Siano X e Y due spazi topologici, dico che X è omotopicamente equivalente a Y se esiste una funzione continua $f\colon X\to Y$ tale che esiste una funzione continua $g\colon Y\to X$ tale che $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, dove \sim indica la relazione di omotopia tra due applicazioni continue.

Devo mostrare che la relazione di omotopia tra due spazi topologici è una relazione di equivalenza, cioè, indicando anche questa relazione con \sim , soddisfa:

- 1. Riflessività: $X \sim X$
- 2. Simmetria: se $X \sim Y$ allora $Y \sim X$
- 3. Transitività: se $X \sim Y$ e $Y \sim Z$ allora $X \sim Z$

Ma:

- 1. Devo trovare una funzione continua $f\colon X\to X$ tale che esiste una seconda funzione continua $g\colon X\to X$ con $f\circ g\sim 1_X$ e $g\circ f\sim 1_X$. Una possibile scelta per queste funzioni è $f=g=1_X$ che è tale che $f\circ g=g\circ f=1_X\sim 1_X$ per la riflessività della relazione di omotopia tra funzioni.
- 2. Per ipotesi esiste una funzione continua $f\colon X\to Y$ tale che esiste una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$, devo trovare una funzione continua $\phi\colon Y\to X$ tale che esiste una seconda funzione continua $\gamma\colon X\to Y$ con $\phi\circ\gamma\sim 1_X$ e $\gamma\circ\phi\sim 1_Y$ Una possibile scelta per queste funzioni è $\phi=f$ e $\gamma=g$, infatti queste sono funzioni continue con il giusto dominio e codominio e sono tali che $\phi\circ\gamma=g\circ f\sim 1_X$ e $\gamma\circ\phi=f\circ g\sim 1_Y$.

Per dimostrare il terzo punto è conveniente utilizzare un lemma:

Lemma 1. La relazione di omotopia tra funzioni si comporta bene rispetto alla composizione, cioè siano X,Y,W,Z spazi topologici, $f,g\colon X\to Y$, $h\colon W\to X$ e $k\colon Y\to Z$ mappe continue, allora $f\circ h\sim g\circ h$ e $k\circ f\sim h\circ g$.

A questo punto:

3. Per ipotesi so che $X \sim Y$ e $Y \sim Z$, cioè so che:

$$\exists f_1 \colon X \to Y \text{ tale che } \exists g_1 \colon Y \to X \text{ tale che } f_1 \circ g_1 \sim 1_Y \text{ e } g_1 \circ f_1 \sim 1_X \\ \exists f_2 \colon Y \to Z \text{ tale che } \exists g_2 \colon Z \to Y \text{ tale che } f_2 \circ g_2 \sim 1_Z \text{ e } g_2 \circ f_2 \sim 1_Y$$

Devo mostrare che:

$$\exists f_3 \colon X \to Z$$
 tale che $\exists g_2 \colon Z \to X$ tale che $f_3 \circ g_3 \sim 1_Z$ e $g_3 \circ f_3 \sim 1_X$

Una possibile scelta per f_3 e g_3 è $f_3=f_2\circ f_1$ e $g_3=g_1\circ g_2$. In questo modo ho $f_3\colon X\to Z$ e $g_3\colon Z\to X$, queste mappe sono continue perché sono composizione di funzioni continue. Perché questa sia una buona scelta deve essere $f_2\circ f_1\circ g_1\circ g_2\sim 1_Z$ e $g_1\circ g_2\circ f_2\circ f_1\sim 1_X$.

Nel primo caso devo mostrare che $f_2\circ h\sim 1_Z$ con $h=f_1\circ g_1\circ g_2\sim 1_Y\circ g_2=g_2$ per il lemma 1, in quanto $f_1\circ g_1\sim 1_Y$ per ipotesi. Siccome $h\sim g_2$ e $f_2\circ g_2\sim 1_Z$ per il medesimo lemma $f_2\circ h\sim 1_Z$. La seconda relazione è analoga.

Esercizio 1.1.19 (v)

Siano X,Y spazi topologici omotopicamente equivalenti quindi esiste una funzione continua $f\colon X\to Y$, detta relazione di omotopia tale che esista una seconda funzione continua $g\colon Y\to X$ con $f\circ g\sim 1_Y$ e $g\circ f\sim 1_X$. Sia $h\colon X\to Y$ una funzione continua con $h\sim f$, devo mostrare che h è una relazione di omotopia, cioè esiste una funzione continua $k\colon Y\to X$ tale che $h\circ k\sim 1_Y$ e $k\circ h\sim 1_X$. Una possibile scelta per questa funzione k è la funzione k stessa. Questa è continua e per il lemma 1 vale che $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_Y$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_X$ e $k\circ h\sim 1_X$ in quanto per ipotesi $k\circ g\sim 1_X$ e $k\circ h\sim 1_$