Karisimlar ve Idare Edilmeyen Kumeleme (Unsupervised Clustering)

Gaussian (normal) dagilimi tek tepesi olan (unimodal) bir dagilimdir. Bu demektir ki eger birden fazla tepe noktasi olan bir veriyi modellemek istiyorsak, degisik yaklasimlar kullanmamiz gerekecektir.

Birden fazla Gaussian'i "karistirmak (mixing)" bu tur bir yaklasim olabilir. Karistirmak, karisim icindeki her Gaussian'dan gelen sonuclari toplamaktir, yani kelimenin tam anlamiyla her veri noktasini teker teker karisimdaki tum dagilimlara gecip sonuclari toplamaktir. Eger cok boyutlu normal dagilimlari topluyorsak, formul:

$$p(x) = \sum_{z} \pi_z N(x|\mu_z, \Sigma_z)$$

 π_z karistirma oranlaridir (mixing proportions). Iki Gaussian oldugunu dusunelim, π_1, π_2 oranlari 0.2, 0.8 olabilir mesela (toplam her zaman 1 olmalidir). Ornek olarak alttaki grafige bakalim.

Bu grafik kadinlar ve erkeklerin boy ve kilolarini iceren bir veri setinden geliyor, veri setinde erkekler ve kadinlara ait olan olcumler onceden isaretlenmis / etiketlenmis (labeled), biz de bu isaretleri kullanarak kadinlari kirmizi erkekleri mavi ile grafikledik. Bu isaretler / etiketler verilmis olsun ya da olmasin, kavramsal olarak dusunursek eger bu veriye bir dagilim uydurmak (fit) istersek bir karisim kullanilmasi gerekli, cunku iki tepe noktasiyle daha rahat temsil edilecegini dusundugumuz bir durum var ortada.

Bu karisim icindeki Gaussian'lari tahmini bir sekilde ustteki gibi cizebilirdik (bu Gaussian'lar aslinda ileride yapacagimiz bir hesaptan bir geliyor, ona birazdan geliyoruz, ama ciplak gozle de bu sekli cizilebilirdik). Modeli kontrol edelim, elimizde bir karisim var, nihai olasilik degeri p(x)'i nasil kullaniriz? Belli bir noktanin olasiligini hesaplamak icin bu noktayi her iki Gaussian'a teker teker geceriz (ornekte iki tane), ve gelen olasilik sonuclarini karisim oranlari ile carparak toplariz.

Agirliklar sayesinde iki sey elde ediyoruz 1) karisim entegre edilince hala 1 degeri cikiyor zaten bir dagilimin uymasi gereken sartlardan biri bu 2) kesisim olan bolgelerde her iki Gaussian buyuk bir deger verebilir, o zaman agirliklar devreye girer, ve nihai olasilik, agirliklara gore carpilip toplanan bir sonuc olacak.

Kesisme olmayan bolgeler zaten pek onemli degil, o noktalarin olasilik degeri zaten agirlikla tek bir Gaussian'dan geliyor olacak, cunku diger Gaussian o bolge icin sifira yakin bir deger verir, ve bu sifira yakin deger toplamda zaten bir fark yaratmayacak.

Kesisme olan bolgelerde bir Gaussian'in agirliginin digerinden fazla olmasinin da ozel bir anlami var, demek ki o bolgede agirligi fazla olan Gaussian daha fazla noktaya sahip (verisel olarak), ki o zaman o bolgedeki bir noktanin olasiligi sorulunca, agirligi fazla olan Gaussian daha yuksek bir olasilik degeri geri dondurmeli.

Etiketler Bilinmiyorsa

Simdi veriyi modellemenin otesinde, biraz daha analitik, daha makine ogrenimi ile alakali ihtiyaclara gelelim. Eger etiketler bize onceden verilmemis olsaydi, hangi veri noktalarinin kadinlara, hangilerinin erkeklere ait oldugunu bilmeseydik o zaman ne yapardik? Bu veriyi grafiklesek, etiketleri renkleyemezdik tabii ki, soyle bir resim cizebilirdik ancak,

Fakat yine de sekil olarak iki kumeyi gorebiliyoruz. Acaba oyle bir makine ogrenimi algoritmasi olsa da, biz bir karisim oldugunu tahmin ettiktek sonra o karisimi veriye uydururken, etiket degerlerini de tahmin etse, bu guzel olmaz miydi? Bu tam bir veri madenciligi denemesi olurdu.

Simdi etiketler ile karisimlarin arasindaki baglantiyi gorelim. Her nokta icin bilinen / bilinmeyen etiket kavramindan, matematiksel olarak direk karisimlara gecis yapabilmemiz lazim.

Diyelim ki her nokta icin 0/1 degerini tasiyabilecek "gizli" bir z rasgele degiskeni var, o zaman p(x)'i su sekilde acabiliriz

$$p(x) = \sum_z p(x,z)$$

Bu mantikli degil mi? Ortak dagilim p(x,z) icinden p(x)'i cekip cikarmak, p(x,z) icin bir bilesen (marginal) hesabi yapmak demektir,, o zaman ortak dagilimin icindeki tum z degerlerini toplamak gerekir. Devam edelim, Bayes Teorisi'ni kullanarak

$$= \sum_{z} p(x, z) = \sum_{z} p(z)p(x|z)$$

elde ederiz. Burada p(z), yani z'nin 0/1 degerine "sahip olup olmadiginin olasiligi" bizi π_z 'ye goturur, yani

$$\sum_{z} p(z)p(x|z) = \sum_{z} \pi_z N_z(x|\mu_z, \sigma_z)$$

Unutmayalim, z bir rasgele degisken, ve sahip oldugu olasiliga gore, her veri noktasi icin, 0 ya da 1 uretiyor. p(z) dedigimiz zaman z tek basina, baska hicbir parametre ona gecilmiyor, o zaman zaten tanim itibariyle "ta en bastan belirli" bir olasiliktan baska bir seye sahip olamaz, bu da karisim orani π_z 'den baskasi degildir.