www.th-owl.de

Prof. Dr. Uwe Meier

Lecture - DSS

Discrete Signals and Systems

Appendix B: Transform Tables

DSS-Appendix-B 30.10.2021 Page 1

B Transform Tables

Overview

Continuous-Time FOURIER Transform (CTFT)

Discrete-Time FOURIER Transform (DTFT)

Discrete and Fast FOURIER Transform (DFT, FFT)

LAPLACE Transform (LT)

z-Transform

Overview

Continuous-Time FOURIER Transform (CTFT)

$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{j2\pi ft} df \qquad \circ - \bullet \qquad X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt$$
$$x(t) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} X(j\omega) \cdot e^{j\omega t} d\omega \qquad \circ - \bullet \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Discrete-Time FOURIER Transform (DTFT)

$$x[n] = \frac{1}{2\pi} \cdot \int_{2\pi} X(e^{j\Omega}) \cdot e^{jn\Omega} d\Omega \qquad \circ - \bullet \qquad X(e^{j\Omega}) = \sum_{n = -\infty}^{+\infty} x[n] \cdot e^{-jn\Omega}$$

Discrete and fast FOURIER Transform (DFT, FFT)

$$x[n] = \frac{1}{N} \cdot \sum_{k=0}^{N-1} X[k] \cdot e^{j2\pi kn/N} \qquad \circ - \bullet \qquad X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi kn/N}$$
$$0 \le n \le N - 1 \qquad 0 \le k \le N - 1$$

LAPLACE Transform (LT) - unilateral

$$x(t) = \frac{1}{2\pi j} \cdot \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \cdot e^{st} ds \qquad \circ - \bullet \qquad X(s) = \int_{0_{-}}^{\infty} x(t) \cdot e^{-st} dt \; ; \; s = \sigma + j\omega$$

z-Transform - bilateral

$$x[n] = \frac{1}{2\pi \mathbf{j}} \cdot \oint_{\mathcal{C}} X(z) \cdot z^{n-1} \, \mathrm{d}z \qquad \circ - \bullet \qquad X(z) = \sum_{n = -\infty}^{\infty} x[n] \cdot z^{-n} \; ; \; z = r \cdot \mathrm{e}^{\mathrm{j}\Omega}$$

www.th-owl.de

Prof. Dr. Uwe Meier

Lecture - DSS Discrete Signals and Systems

Appendix B: Transform Tables

DSS-Appendix-B 30.10.2021 Page 2

Continuous-Time FOURIER Transform (CTFT)

Definition

$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{j2\pi ft} df \qquad \circ - \bullet \qquad X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt$$
$$x(t) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} X(j\omega) \cdot e^{j\omega t} d\omega \qquad \circ - \bullet \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Time domain $x(t)$	Transform X(f)	Transform X(jω)
1	$\delta(f)$	$2\pi \cdot \delta(\omega)$
$\delta(t)$	1	1
$\operatorname{rect}\!\left(rac{t}{T} ight)$	$T \cdot \frac{\sin(\pi f T)}{\pi f T}$	$T \cdot \frac{\sin(\omega T/2)}{\omega T/2}$
$= \begin{cases} 1 & \text{if } t < T/2 \\ 0 & \text{if } t > T/2 \end{cases}$	$= T \cdot \operatorname{si}(\pi f T) = T \cdot \operatorname{sinc}(f T)$	$= T \cdot \operatorname{si}\left(\frac{\omega T}{2}\right) = T \cdot \operatorname{sinc}\left(\frac{\omega T}{2\pi}\right)$
$B \cdot \operatorname{si}(\pi B t) = B \cdot \operatorname{sinc}(B t)$	$rect\left(\frac{f}{B}\right)$	$\operatorname{rect}\left(\frac{\omega}{2\pi B}\right)$
$u(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{cases}$	$\frac{1}{\mathrm{j}2\pi f} + \frac{1}{2} \cdot \delta(f)$	$\frac{1}{j\omega} + \pi \cdot \delta(\omega)$
$\operatorname{sgn}(t) = \begin{cases} 1 & \text{if } t > 0 \\ -1 & \text{if } t < 0 \end{cases}$	$\frac{1}{\mathrm{j}\pi f}$	$\frac{2}{\mathrm{j}\omega}$
$e^{j2\pi f_0 t} = e^{j\omega_0 t}$	$\delta(f-f_0)$	$2\pi \cdot \delta(\omega - \omega_0)$
$\cos\left(2\pi f_0 t\right) = \cos\left(\omega_0 t\right)$	$\frac{1}{2} \cdot \left[\delta(f + f_0) + \delta(f - f_0) \right]$	$\pi \cdot \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$
$\sin\left(2\pi f_0 t\right) = \sin\left(\omega_0 t\right)$	$\frac{\mathbf{j}}{2} \cdot \left[\delta(f + f_0) - \delta(f - f_0) \right]$	$j\pi \cdot \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right]$
$u(t) \cdot e^{-a \cdot t}$; $a > 0$	$\frac{1}{a+\mathrm{j}2\pi\cdot f}$	$\frac{1}{a+\mathrm{j}\omega}$
$e^{-a\cdot t }$; $a>0$	$\frac{2a}{a^2 + \left(2\pi \cdot f\right)^2}$	$\frac{2a}{a^2 + \omega^2}$
e^{-at^2} ; $a > 0$	$\sqrt{\frac{\pi}{a}} \mathrm{e}^{-(\pi f)^2/a}$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/(4a)}$
$\sum_{n=-\infty}^{\infty} \mathcal{S}(t-nT)$	$\frac{1}{T} \cdot \sum_{k=-\infty}^{\infty} \delta(f - k \frac{1}{T})$	$\frac{2\pi}{T} \cdot \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{T})$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 3

Theorem	Time domain	Transform
Symmetry for	$x(t) = x_{\rm ev}(t) + x_{\rm od}(t)$	$X(f) = X_{Re}(f) + j \cdot X_{Im}(f)$
real time-domain	$x_{\rm ev}(t)$	$X_{\rm Re}(f)$; $X_{\rm Re}(f)$: even
signals	$x_{\rm od}(t)$	$j \cdot X_{Im}(f)$; $X_{Im}(f)$: odd
		$X(f) = X^*(-f)$
		$X_{\text{Re}}(f) = X_{\text{Re}}(-f); \ X_{\text{Im}}(f) = -X_{\text{Im}}(-f)$
		$ X(f) = X(-f) $; $\arg\{X(f)\} = -\arg\{X(-f)\}$
Time reversal	x(-t)	X(-f)
Conjugation	$x^*(t)$	$X^*(-f)$
Duality	X(t)	x(-f)
Linearity	$a \cdot x(t) + b \cdot y(t)$	$a \cdot X(f) + b \cdot Y(f)$
Scaling	x(at)	$\frac{1}{ a } \cdot X \left(\frac{f}{a} \right)$
Time shifting	$x(t-t_0)$	$e^{-j2\pi\cdot f\cdot t_0}\cdot X(f)$
Frequency shifting	$e^{j2\pi\cdot f_0\cdot t}\cdot x(t)$	$X(f-f_0)$
Differentiation in time domain	$x^{(n)}(t)$	$(j2\pi \cdot f)^n \cdot X(f)$
Differentiation in frequency domain	$\left(-\mathrm{j}2\pi\cdot t\right)^n\cdot x(t)$	$X^{(n)}(f)$
Time integration	$\int_{-\infty}^t x(\tau) \cdot \mathrm{d}\tau$	$\frac{X(f)}{\mathrm{j}2\pi\cdot f} + \frac{1}{2}\cdot X(0)\cdot \delta(f) \; ; \; \frac{X(\mathrm{j}\omega)}{\mathrm{j}\omega} + \pi\cdot X(0)\cdot \delta(\omega)$
Time convolution	x(t) * y(t)	$X(f) \cdot Y(f) \; ; \; X(j\omega) \cdot Y(j\omega)$
Time multiplication	$x(t) \cdot y(t)$	$X(f) * Y(f) ; \frac{1}{2\pi} (X(j\omega) * Y(j\omega))$
Positive time function	ons	$x(t) \ge 0 \implies X(f) \le X(0)$
Final value of spectr	rum	$\int_{-\infty}^{\infty} x(t) \cdot dt < \infty \implies \lim_{f \to \pm \infty} X(f) = 0$
PARSEVAL's theorem	1	$\int_{-\infty}^{\infty} x(t) \cdot y^*(t) \cdot dt = \int_{-\infty}^{\infty} X(f) \cdot Y^*(f) \cdot df$
		$\int_{-\infty}^{\infty} x(t) ^2 \cdot dt = \int_{-\infty}^{\infty} X(f) ^2 \cdot df$

Discrete-Time FOURIER Transform (DTFT)

Definition

$$x[n] = \frac{1}{2\pi} \cdot \int_{2\pi} X(e^{j\Omega}) \cdot e^{jn\Omega} d\Omega \qquad \circ - \bullet \qquad X(e^{j\Omega}) = \sum_{n = -\infty}^{+\infty} x[n] \cdot e^{-jn\Omega}$$

Time domain $x[n]$	Transform $X(e^{j\Omega})$
$\delta[n]$	1
1 for $-\infty < n < \infty$	$\sum_{k=-\infty}^{\infty} 2\pi \cdot \delta(\varOmega + 2\pi \cdot k)$
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k = -\infty}^{\infty} \pi \cdot \delta(\Omega + 2\pi \cdot k)$
$\mathrm{e}^{\mathrm{j}n\Omega_0}$	$\sum_{k=-\infty}^{\infty} 2\pi \cdot \delta(\Omega - \Omega_0 + 2\pi \cdot k)$
$\alpha^n \cdot u[n]$ with $ \alpha < 1$	$\frac{1}{1 - \alpha \cdot e^{-j\Omega}}$
$(n+1)\cdot\alpha^n\cdot u[n]$ with $ \alpha <1$	$\frac{1}{\left(1-\alpha\cdot\mathrm{e}^{-\mathrm{j}\varOmega}\right)^{2}}$
$\operatorname{rect}_{N}[n] = \begin{cases} 1, & n \le N_{1} \\ 0, & n > N_{1} \end{cases}$; $N = 2N_{1} + 1$	$\frac{\sin((0.5+N_1)\cdot\Omega)}{\sin(\Omega/2)}; \Omega \neq k\cdot 2\pi; k \in \mathbb{Z}$
	$1 + 2 \cdot N_1 \; ; \; \Omega = k \cdot 2\pi \; ; \; k \in \mathbb{Z}$
$\frac{\Omega_{\rm c}}{\pi} \cdot \frac{\sin(n \cdot \Omega_{\rm c})}{n \cdot \Omega_{\rm c}} \text{for} -\infty < n < \infty$	$\begin{cases} 1 \ , \ 0 \le \left \Omega \right \le \Omega_{\rm c} \\ 0 \ , \ \Omega_{\rm c} < \left \Omega \right \le \pi \end{cases}$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 5

Theorem	Time domain	Transform
Symmetry for	$x[n] = x_{\text{ev}}[n] + x_{\text{od}}[n]$	$X(e^{j\Omega}) = X_{Re}(e^{j\Omega}) + j \cdot X_{Im}(e^{j\Omega})$
real	$x_{\rm ev}[n]$	$X_{\mathrm{Re}}(\mathrm{e}^{\mathrm{j}\varOmega})$
sequences	$x_{\text{od}}[n]$	$\mathbf{j} \cdot X_{\mathrm{Im}}(\mathbf{e}^{\mathbf{j}\Omega})$
		$X(e^{j\Omega}) = X^*(e^{-j\Omega})$
		$X_{\text{Re}}(e^{j\Omega}) = X_{\text{Re}}(e^{-j\Omega}); \ X_{\text{Im}}(e^{j\Omega}) = -X_{\text{Im}}(e^{-j\Omega})$
		$\left X(e^{j\Omega}) \right = \left X(e^{-j\Omega}) \right ; \arg \left\{ X(e^{j\Omega}) \right\} = -\arg \left\{ X(e^{-j\Omega}) \right\}$
Symmetry for	$x[n] = x_{Re}[n] + j \cdot x_{Im}[n]$	$X(e^{j\Omega}) = X_{cs}(e^{j\Omega}) + X_{ca}(e^{j\Omega})$
complex	$x_{\text{Re}}[n]$	$X_{cs}(e^{j\Omega}) = \frac{1}{2} \{ X(e^{j\Omega}) + X^*(e^{-j\Omega}) \}$
sequences	$j \cdot x_{Im}[n]$	$X_{ca}(e^{j\Omega}) = \frac{1}{2} \{ X(e^{j\Omega}) - X^*(e^{-j\Omega}) \}$
cs: conjugate symmetric	$x_{\rm cs}[n]$	$X(e^{j\Omega}) = X_{Re}(e^{j\Omega})$
ca: conjugate antisymmetric	$x_{\rm ca}[n]$	$X(e^{j\Omega}) = j \cdot X_{Im}(e^{j\Omega})$
Time reversal	x[-n]	$X(e^{-j\Omega})$
Conjugation	$x^*[n]$	$X^*(e^{-j\Omega})$
Conjugation and time reversal	$x^*[-n]$	$X^*(e^{j\Omega})$
Linearity	$a \cdot x[n] + b \cdot y[n]$	$a \cdot X(e^{j\Omega}) + b \cdot Y(e^{j\Omega})$
Time shifting	$x[n-n_0]$	$e^{-jn_0\Omega} \cdot X(e^{j\Omega})$
Frequency shifting	$e^{jn\Omega_0} \cdot x[n]$	$X(e^{j(\varOmega-\varOmega_0)})$
Differentiation	$n \cdot x[n]$	$j \cdot \frac{d}{d\Omega} X(e^{j\Omega})$
Convolution	x[n] * y[n]	$X(e^{j\Omega}) \cdot Y(e^{j\Omega})$
Multiplication	$x[n] \cdot y[n]$	$X(e^{j\Omega}) * Y(e^{j\Omega}) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} X(e^{j\theta}) \cdot Y(e^{j(\Omega-\theta)}) \cdot d\theta$
Summation		$X(e^{j0}) = \sum_{n = -\infty}^{+\infty} x[n]$
PARSEVAL's theore		$\sum_{n=-\infty}^{\infty} x[n] \cdot y^*[n] = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} X(e^{j\Omega}) \cdot Y^*(e^{j\Omega}) \cdot d\Omega$

www.th-owl.de

Lecture - DSS **Discrete Signals and Systems** Appendix B: Transform Tables

DSS-Appendix-B 30.10.2021 Page 6

Prof. Dr. Uwe Meier

Discrete and Fast FOURIER Transform (DFT, FFT)

Definition

$$x[n] = \frac{1}{N} \cdot \sum_{k=0}^{N-1} X[k] \cdot e^{j2\pi kn/N} \qquad \circ - \bullet \qquad X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi kn/N}$$

$$0 \le n \le N - 1 \qquad 0 \le k \le N - 1$$

Example transform pairs

Time domain $x[n]$	Transform $X[k]$
$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & 1 \le n \le N - 1 \end{cases}$	$1, \ 0 \le k \le N - 1$
$1, \ 0 \le n \le N-1$	$N \cdot \delta[k] = \begin{cases} N, & k = 0 \\ 0, & 1 \le k \le N - 1 \end{cases}$
$\delta[n-m] = \begin{cases} 1, & n=m \text{ for } 0 \le m \le N-1\\ 0, & \text{otherwise} \end{cases}$	$e^{-j2\pi km/N} = W_N^{km}$ with $W_N = e^{-j2\pi/N}$
$e^{j2\pi \cdot nl/N}$, $0 \le n \le N-1$, $0 < l \le N-1$	$\begin{cases} N , & k = l \\ 0 , \text{ otherwise} \end{cases}$
$\cos(2\pi \cdot nl/N)$, $0 \le n \le N-1$, $0 < l \le N-1$	$\begin{cases} N/2, & k = l \\ N/2, & k = N - l \\ 0, & \text{otherwise} \end{cases}$
$\sin(2\pi \cdot nl/N), 0 \le n \le N-1, 0 < l \le N-1$	$\begin{cases} -j \cdot N/2, & k = l \\ j \cdot N/2, & k = N - l \\ 0, & \text{otherwise} \end{cases}$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 7

Theorem	Time domain	Transform
Symmetry for	$x[n] = x_{\rm ce}[n] + x_{\rm co}[n]$	$X[k] = X_{Re}[k] + j \cdot X_{Im}[k]$
real	$x_{ce}[n]$	$X_{Re}[k]$; X_{Re} is circular even
sequences	$x_{co}[n]$	$j \cdot X_{Im}[k]$; X_{Im} is circular odd
ce: circular even		$X[k] = X^* \left[\left\langle -k \right\rangle_N \right]$
co: circular odd		$X_{\text{Re}}[k] = X_{\text{Re}}[\langle -k \rangle_N]; \ X_{\text{Im}}[k] = -X_{\text{Im}}[\langle -k \rangle_N]$
		$\left X[k]\right = \left X\left[\left\langle -k\right\rangle_{N}\right]; \ \arg\{X[k]\} = -\arg\{X\left[\left\langle -k\right\rangle_{N}\right]\}$
Symmetry for	$x[n] = x_{\text{Re}}[n] + j \cdot x_{\text{Im}}[n]$	$X[k] = X_{Re}[k] + j \cdot X_{Im}[k]$
complex	$x_{Re}[n]$	$X_{\rm ccs}[k] = \frac{1}{2} \left\{ X[k] + X^* \left[\left\langle -k \right\rangle_N \right] \right\}$
sequences	$\mathbf{j} \cdot \mathbf{x}_{\mathrm{Im}}[n]$	$X_{\text{cca}}[k] = \frac{1}{2} \left\{ X[k] - X^* \left[\left\langle -k \right\rangle_N \right] \right\}$
ccs: circular conjugate symmetric	$x_{\rm ccs}[n]$	$X[k] = X_{Re}[k]$
cca: circular conjugate antisymmetric	$x_{\rm cca}[n]$	$X[k] = \mathbf{j} \cdot X_{\mathrm{Im}}[k]$
Duality	X[n]	$N \cdot x \Big igl(-k igr)_N \Big $
Conjugation	$x^*[n]$	$X^*ig[igl(-kigr)_Nigr]$
Conjugation and time reversal	$x^*\left[\left\langle -n\right\rangle_N\right]$	$X^*[k]$
Linearity	$a \cdot x[n] + b \cdot y[n]$	$a \cdot X[k] + b \cdot Y[k]$
Circular time shifting	$x[\langle n-n_0\rangle_N]$	$W_N^{kn_0} \cdot X[k] \; ; \; W_N = e^{-j2\pi/N}$
Circular frequency shifting	$W_N^{-nk_0} \cdot x[n]$	$X \left[\left\langle k - k_0 \right\rangle_N \right]$
Circular convolution	$\sum_{m=0}^{N-1} x[m] \cdot y[\langle n-m \rangle_N]$	$X[k] \cdot Y[k]$
Multiplication	$x[n] \cdot y[n]$	$\frac{1}{N} \cdot \sum_{m=0}^{N-1} X[m] \cdot Y[\langle k - m \rangle_N]$
PARSEVAL's theorem		$\frac{1}{N} \cdot \sum_{m=0}^{N-1} X[m] \cdot Y[\langle k - m \rangle_N]$ $\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \cdot \sum_{n=0}^{N-1} X[k] ^2$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 8

LAPLACE Transform (LT) - unilateral

Definition

$$x(t) = \frac{1}{2\pi \,\mathrm{j}} \cdot \int_{\sigma - \mathrm{j}\infty}^{\sigma + \mathrm{j}\infty} X(s) \cdot \mathrm{e}^{st} \,\mathrm{d}s \qquad \circ - \bullet \qquad X(s) = \int_{0_{-}}^{\infty} x(t) \cdot \mathrm{e}^{-st} \,\mathrm{d}t \; ; \; s = \sigma + \mathrm{j}\omega$$

Time domain x(t)	Transform X(s)	ROC
$\delta(t)$	1	All values of s
u(t)	$\frac{1}{s}$	Re $\{s\} > 0$
$t \cdot u(t)$	$\frac{1}{s^2}$	
$\frac{1}{n!} \cdot t^n \cdot u(t)$	$\frac{1}{s^{n+1}}$	
$e^{-at} \cdot u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\left\{ s\right\} \geq -a$
$\frac{1}{n!} \cdot t^n \cdot e^{-at} \cdot u(t)$	$\frac{1}{(s+a)^{n+1}}$	
$\sin(\omega_0 t) \cdot u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	Re $\{s\} > 0$
$\cos(\omega_0 t) \cdot u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re $\{s\} > 0$
$e^{-at} \cdot \sin(\omega_0 t) \cdot u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	Re $\{s\} > -a$
$e^{-at} \cdot \cos(\omega_0 t) \cdot u(t)$	$\frac{s+a}{\left(s+a\right)^2+\omega_0^2}$	Re $\{s\} > -a$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 9

Theorem	Time domain	Transform	ROC
	x(t)	X(s)	R_{x}
	y(t)	Y(s)	R_y
Conjugation	$x^*(t)$	$X^*(s^*)$	R_{x}
Linearity	$a \cdot x(t) + b \cdot y(t)$	$a \cdot X(s) + b \cdot X(s)$	$R_x \cap R_y$
Time shifting	$x(t-t_0); t_0 > 0$	$e^{-st_0} \cdot X(s)$	R_{x}
Frequency shifting	$e^{s_0t} \cdot x(t)$	$X(s-s_0)$	$R_x + \text{Re } \{s_0\}$
Time scaling	$x(a \cdot t); a > 0$	$\frac{1}{a} \cdot X \left(\frac{s}{a} \right)$	$\frac{R_x}{a}$
Frequency scaling	$\frac{1}{a} \cdot x \left(\frac{t}{a} \right)$	$X(a\cdot s)$; $a>0$	
Differentiation in time domain	$\frac{\mathrm{d}^n}{\mathrm{d}t^n}x(t)$	$s^{n} \cdot X(s) - \sum_{i=1}^{n} s^{n-i} x^{(i-1)} (0-0)$	$R_x \in \text{ROC}$
Integration in time domain	$\int_0^t x(\tau) \mathrm{d}\tau$	$\frac{1}{s} \cdot X(s)$	$(R_x \cap \operatorname{Re}\{s\} > 0) \in \operatorname{ROC}$
Differentiation in frequency domain	$(-t)^n \cdot x(t)$	$\frac{\mathrm{d}^n}{\mathrm{d}s^n}X(s)$	
Integration in frequency domain	$\frac{1}{t} \cdot x(t)$	$\int_s^\infty X(u)\mathrm{d}u$	
Convolution	x(t) * y(t)	$X(s)\cdot Y(s)$	$(R_x \cap R_y) \in ROC$
Multiplication	$x(t) \cdot y(t)$	X(s)*Y(s)	$(R_x \cap R_y) \in ROC$
Scalar product		$\int_{-\infty}^{\infty} x(t) \cdot y^{*}(t) \cdot dt = \int_{-\infty}^{\infty} X(s) \cdot Y^{*}(s) \cdot ds$	
Initial-value theorem	1	$\lim_{t \to 0_+} x(t) = \lim_{s \to \infty} s \cdot X(s)$	
Final-value theorem <i>Note:</i> Only single pole at $s = 0$ allowed for $X(s)$. No poles in the right half plane.		$\lim_{t \to \infty} x(t) = \lim_{s \to 0}$	$s \cdot X(s)$

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 10

z-Transform - bilateral

Definition

$$x[n] = \frac{1}{2\pi j} \cdot \oint_{\mathcal{C}} X(z) \cdot z^{n-1} dz \qquad \circ - \bullet \qquad X(z) = \sum_{n = -\infty}^{\infty} x[n] \cdot z^{-n} \; ; \; z = r \cdot e^{j\Omega}$$

Time domain $x[n]$	Transform X(z)	ROC
$\delta[n]$	1	All values of z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n \cdot u[n]$	$\frac{1}{1-\alpha \cdot z^{-1}}$	$ z > \alpha $
$n \cdot \alpha^n \cdot u[n]$	$\frac{\alpha \cdot z^{-1}}{\left(1 - \alpha \cdot z^{-1}\right)^2}$	$ z > \alpha $
$(n+1)\cdot\alpha^n\cdot u[n]$	$\frac{1}{\left(1-\alpha\cdot z^{-1}\right)^2}$	$ z > \alpha $
$\cos(\Omega_0 \cdot n) \cdot u[n]$	$\frac{1 - (\cos \Omega_0) \cdot z^{-1}}{1 - (2 \cdot \cos \Omega_0) \cdot z^{-1} + z^{-2}}$	z > 1
$\sin(\Omega_0 \cdot n) \cdot u[n]$	$\frac{\left(\sin\Omega_0\right)\cdot z^{-1}}{1-\left(2\cdot\cos\Omega_0\right)\cdot z^{-1}+z^{-2}}$	z > 1
$r^n \cdot \cos(\Omega_0 \cdot n) \cdot u[n]$	$\frac{1 - (r \cdot \cos \Omega_0) \cdot z^{-1}}{1 - (2r \cdot \cos \Omega_0) \cdot z^{-1} + r^2 \cdot z^{-2}}$	z > r
$r^n \cdot \sin(\Omega_0 \cdot n) \cdot u[n]$	$\frac{\left(r \cdot \sin \Omega_0\right) \cdot z^{-1}}{1 - \left(2r \cdot \cos \Omega_0\right) \cdot z^{-1} + r^2 \cdot z^{-2}}$	z > r

www.th-owl.de	Lecture - DSS	DSS-Appendix-B
Doct Do Hay Males	Discrete Signals and Systems	30.10.2021
Prof. Dr. Uwe Meier	Appendix B: Transform Tables	Page 11

Theorem	Time domain	Transform	ROC
	x[n]	X(z)	R_{x}
	y[n]	Y(z)	R_{y}
Conjugation	$x^*[n]$	$X^*(z^*)$	R_{x}
Time reversal	x[-n]	X(1/z)	$1/R_x$
Linearity	$a \cdot x[n] + b \cdot y[n]$	$a \cdot X(z) + b \cdot X(z)$	$R_x \cap R_y$
Time shifting	$x[n-n_0]$	$z^{-n_0}\cdot X(z)$	R_x , except possibly the point $z = 0$ or $z = \infty$
Multiplication by an exponential sequence	$\alpha^n \cdot x[n]$	$X(z/\alpha)$	$ \alpha \cdot R_x$
Differentiation	$n \cdot x[n]$	$-z\cdot\frac{\mathrm{d}X(z)}{\mathrm{d}z}$	R_x , except possibly the point $z = 0$ or $z = \infty$
Convolution	x[n] * y[n]	$X(z)\cdot Y(z)$	$(R_x \cap R_y) \in ROC$
Multiplication	$x[n] \cdot y^*[n]$	$\frac{1}{2\pi \mathbf{j}} \cdot \oint_{\mathcal{C}} X(v) \cdot Y^*(z^* / v^*) \cdot v^{-1} \mathrm{d} v$	$(R_x \cap R_y) \in ROC$
Summation	$\sum_{n=-\infty}^{\infty} x[n] = X(1)$		
Initial-value theorem	theorem $x[0] = \lim_{z \to \infty} X(z) \text{ if } x[n] = 0 \text{ for } n < 0$		
Final-value theorem	eorem $\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1) \cdot X(z) < \infty$		
PARSEVAL's theorem		$\sum_{n=-\infty}^{\infty} x[n] \cdot y^*[n] = \frac{1}{2\pi \mathbf{j}} \cdot \oint_{\mathcal{C}} X(v) \cdot Y^*\left(\frac{1}{v^*}\right) \cdot v^{-1} \mathrm{d}v$	