

Sistemas distribuídos aplicados à compressão e recuperação de imagens

Davi Siqueira Correa Galati - 21905069 Eric Vinício Rocha França - 21902089 Pedro Rafael Faria Ferreira - 21907590

Transformação discreta

DTC

DEFINIÇÃO DE ELEMENTOS

DTC-Inversa

DEFINIÇÃO DE ELEMENTOS

$$F[u,v] = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f[m,n] X_{m,n}(u,v)$$

u,v = posições discretas (0, 1, 2, ..., N-1); f[m,n] = NxN pixels da imagem (0, 1, 2, ..., N-1);

$$X_{m,n}(u,v) = \cos\left[\frac{(2m+1)u\pi}{2N}\right] \cos\left[\frac{(2n+1)v\pi}{2N}\right];$$

F[u,v] = resultado da DTC.

$$\hat{f}[m,n] = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} c[u]c[v]X_{m,n}(u,v)$$

m,n = índices resultantes dos *pixels* da imagem; $\hat{f}[m,n]$ = resultado da DTC inversa.

Sistemas Multiprocessados

- multiprocessadores de memória compartilhada (supercomputadores)
- Multicomputadores que são constituídos por pares CPU-memó e não compartilham um espaço de memória (Clusters)
- Sistemas distribuídos constituídos de várias estações de trabal completa com CPU, memória e disco rígido local, monitor, tecla e mouse.

Processos

Materiais e Métodos

ESTRUTURA DE ARQUIVOS

IMAGEM MONOCROMÁTICA

CÓDIGO DE BLOCO

BLOCOS DE LINHA

DTC E DEFINIÇÃO DE ELEMENTOS

DEGRADAÇÃO DA QUALIDADE

$$DTC\{\mathbf{A}\} = \frac{\mathbf{CAC}^{T}}{N^{2}}$$
$$c[u][n] = \cos\left[\frac{(2n+1)u\pi}{2N}\right]$$

Fluxograma do algoritmo paralelo de compressão de imagens

Descompactação de Imagem

Exemplo

Tempo de compressão para imagens de diferentes resoluções.

Quanto menor a resolução, mais rápido o processamento

Quanto maior a quantidade de nós, mais rápido o processamento

Fonte: Sistemas distribuídos aplicados à compressão recuperação de imagens, 2008.

Tempos de execução para comprimir séries de imagens com 92.928 blocos

Tempo de execução é linear

Algoritmo mais eficiente em imagens com maior número de blocos

Fonte: Sistemas distribuídos aplicados à compressão recuperação de imagens, 2008.

Tempo de execução para expandir a série de imagens comprimidas anteriormente

Não é vantajoso quanto a técnica de compressão

Pela simplicidade do cálculo da transformada discreta de cosseno inversa, a velocidade de processamento é mais rápida que a comunicação entre os processos.

Fonte: Sistemas distribuídos aplicados à compressão recuperação de imagens, 2008.

THE TEAM

REFERÊNCIA

FILHO, Antônio; SILVA, Luis. ANÁLISE DA COMPRESSÃO JPEG NA GENERALIZAÇÃO DE MODELOS DIGITAIS. Seção de Engenharia Cartográfica, Rio de Janeiro, 2013.

Compressão de imagens. Diário a Bordo de Oficina de Multimédia_B. Disponível em: https://ryukamitimasa.wordpress.com/2012/11/16/compressao-de-imagens/. Acesso em: 17 Aug. 2021.