Homework 1

Mari Sanders

2024-09-13

Problem 1

- a) Qualitative, ordinal
- b) Qualitative, binary
- c) Qualitative, nominal
- d) Quantitative, continuous
- e) Quantitative, discrete

Problem 2

```
depression_score <- c(45,39,25,47,49,5,70,99,74,37,99,35,8,59)
```

 $\text{Mean: } \tfrac{45+39+25+47+49,5+70+99+74+37+99+35+8+59}{14} = 49.3571429$

 $\mbox{Median:}\ 5,\,8,\,25,\,35,\,37,\,39,\,45,\,47,\,49,\,59,\,70,\,74,\,99,\,99 \\$

The middle number is 46

Variance: $\frac{1}{14-1} \sum_{i=1}^{12} (x_i - 49.35^2) = 832.0934066$

Standard Deviation: $\sqrt{(832.0934)} = 28.8460293$

Range: The numbers range from 5 to $99\,$

b)

boxplot(depression_score)\$stats


```
## [,1]
## [1,] 5
## [2,] 35
## [3,] 46
## [4,] 70
## [5,] 99
```

This box plot is right skewed, with a median of 46, a minimum of 5, an IQR = 70 - 35 = 35 and a max of 99.

a)

```
depression_score_car <- c(67, 50, 85, 43, 64, 35, 47, 97, 58, 58, 10, 56, 50)
boxplot(depression_score, depression_score_car)$stats</pre>
```


- b) The first boxplot is right skewed, with a median of 46, a minimum of 5, an IQR = 70 35 = 35 and a max of 99. The second boxplot is fairly symmetric, with a minimum of 35, and IQR = 64 47 = 17, a median of 56, and a max of 85. There also seem to be some outliers in this second boxplot.
- c) The first group, the individuals from a bike crash seem to have lower depression score than the second group, the individuals from car crashes. This is because the median is lower in the first than the second.

Problem 3

- a) P(even number) = $\frac{6}{12} = \frac{1}{2}$
- b) P(number 10 appears) = $\frac{1}{12}$
- c) $P(A \cup B) = P(A) + P(B) P(A \cap B)$ $P(A \cap B) = \frac{1}{12}$ because when there is 1 chance where an even number appears and a 10 appears.

$$P(A \cup B) = \frac{1}{2} + \frac{1}{12} - \frac{1}{12} = \frac{1}{2}$$

d) No the events are not independent. If they were, $P(A \cap B) = 0$, but we found that it in fact equals to $\frac{1}{12}$. Since $P(A \cap B) \neq 0$, events A and B are not independent.

Problem 4

Want to find the probability that the woman has dementia given that she has a positive test. Given P(P|D) = 0.80 and $P(P|D^c) = 0.10$, and P(D) = 0.05,

$$P(P) = P(P|D) \cdot P(D) + P(P|D^c) \cdot P(D^c)$$

$$P(P) = (0.80)(0.05) + (0.1)(1 - 0.05) = 0.135$$

Now we want to find the P(D|P),

$$P(D|P) = \frac{P(D \cap P) \cdot P(D)}{P(P)} = \frac{0.80 \cdot 0.05}{0.135}$$

$$P(D|P) = 0.296$$