Tabla de derivadas e integrales

=::::::::::::::::::::::::::::::::::::::			
FUNCIÓN	FUNCIÓN DERIVADA	FUNCIÓN	FUNCIÓN DERIVADA
Y = k	Y' = 0	Y = x	Y' = 1
$Y = u \pm v \pm w$	$Y' = u' \pm v' \pm w'$	Y = u-v	$Y' = u \cdot v' + u' \cdot v$
$Y = \frac{u}{v}$	$Y' = \frac{v \cdot u' - v' \cdot u}{v^2}$	Y = Log _k u	$Y' = \frac{u'}{u} \cdot Log_k e \qquad (*$
Y = u ⁿ	Y' = u'⋅n⋅u ^{n−1}	$Y = L_n u$	Y' = <u>u'</u> u
Y = k ^u	$Y' = u' \cdot k^u \cdot L_n k $ (*)	Y = e ^u	Y' = u'-e ^u
TRIGONOMÉTRICAS		TRIGONOMÉTRICAS	
Y = sen u	Y' = u'⋅cos u	Y = cosec u	Y' = -u'-cosec u-cotg u
Y = cos u	Y' = -u'-sen u	Y = sec u	Y' = u'-sec u-tg u
Y = tg u	$Y' = u' \cdot (1 + tg^2 u) = (**)$	Y= cotg u	Y' = −u'·cosec² u
Y = arsen u	$Y' = \frac{u'}{\sqrt{1 - u^2}}$	Y = arcosec u	$Y' = \frac{-u'}{ u \cdot \sqrt{u^2 - 1}}$
Y = arcos u	$Y' = \frac{-u'}{\sqrt{1 - u^2}}$	Y = arsec u	$Y' = \frac{u'}{ u \cdot \sqrt{u^2 - 1}}$
Y = artg u	$Y' = \frac{u'}{1 + u^2}$	Y = arcotg u	$Y' = \frac{-u'}{1 + u^2}$
Y = u ^v	$Y' = v' \cdot u^v \cdot L_n u + v \cdot u^{v-1} \cdot u'$		

$$Y = f(x) \Rightarrow L_n Y = L_n f(x) \Rightarrow (Y'/Y) = (L_n f(x))' \Rightarrow Y' = Y \cdot (L_n f(x))'$$

(*)
$$L_n k = 1/(Log_k e)$$
 ; (**) = u'/(cos² u) = u'-sec² u ;

u,v,w son funciones de x ; u' es la derivada de u respecto de x, u'=du/dx ; k es una cte. L_n es Log base e $\ \ ; \ \ n$ y b son números racionales $\ \ ; \ \ |u|$ es valor absoluto de u.

Tabla de derivadas e integrales

TABLA DE INTEGRALES				
FUNCIÓN	FUNCIÓN INTEGRAL	FUNCIÓN	FUNCIÓN INTEGRAL	
∫k du = k ∫du	k · u	∫k u(x) dx	k ∫u(x) dx	
$\int (\mathbf{u} \pm \mathbf{v} \pm \mathbf{w}) \mathbf{du}$	$\int u dx \pm \int v dx \pm \int w dx$	∫u ⁿ du	n+1	
∫u dv	u · v − ∫v · du (por partes)	∫f (kx) dx	1/k · ∫f(u) du	
∫ du u	L _n u	∫e ^u du	en	
∫k ^u du	$\frac{k^{u}}{L_{n} k} ; k > 0 ; k \neq 1$	∫√ <mark>u du</mark>	$\frac{u^{3/2}}{3/2} = \frac{2 \cdot u^{3/2}}{3}$	
∫sen u du	-cos u	∫cos u du	sen u du	
∫tg u du	$L_n \sec u = -L_n \cos u$	∫cotg u du	L _n sen u	
∫sec² u du	tg u	∫cosec² u du	-cotg u	
∫sec u · tg u du	sec u	∫cosec u ⋅ cotg u du	-cosec u	
∫sec u du	L_n (sec u+tg u)= L_n tg (u/2)	∫cosec u du	L _n tg (u/2)	
∫sen² u du	(½) u – (¼) sen (2u)	∫cos² u du	(½) u + (¼) sen (2u)	
∫tg² u du	−u + tg u	∫sec² u du	tg u	
$\int \frac{\operatorname{sen} u}{\cos^2 u} \cdot du$	sec u	$\int \frac{\cos u}{\sin^2 u} \cdot du$	-cosec u	
$\int \frac{du}{\sqrt{1-u^2}}$	arsen u = −arcos u	$\int \frac{du}{1+u^2}$	artg u = -arcotg u	
$\int \frac{du}{u^2 + k^2}$	1/k ⋅ artg u	$\int \frac{du}{u^2 - k^2}$	$\frac{1}{2k} \cdot L_n \frac{u-k}{u+k}$	
$\int \frac{du}{k^2 - u^2}$	$\frac{1}{2k}L_{n}\frac{k+u}{k-u}$	$\int \frac{du}{\sqrt{k^2 + u^2}}$	$L_{n}\left(u+\sqrt{k^{2}+u^{2}}\right)$	
$\int \frac{du}{\sqrt{k^2 - u^2}}$	arsen $\frac{u}{k}$	$\int \frac{du}{u\sqrt{u^2-k^2}}$	$-\frac{1}{k}$ arcosec $\frac{u}{k}$	
(*) En todas las inte	grales hay que sumar la cte de inte	gración; $k \in R$; $n \in Q$; u ,	, v, w funciones de x.	