試験問題		試験日	曜日	時限	担当者
科目名	数学 II	2007年7月	金	3	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと(単純な計算問題は答えだけでもいいが)。解答の順番は(0番以外)自由。解答用紙の裏面も使用してよい。2008年3月を過ぎたら、答案を予告なく処分することがある。

- **0. これは冒頭に書くこと。**レポートの提出状況を書け。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- 1. m, ω, f_0 を実定数とする。一次元運動のニュートン方程式

$$m \frac{d^2}{dt^2} x(t) = \begin{cases} f_0 \cos(\omega t), & 0 \le t \le \pi/(2\omega) \\ 0, & t \ge \pi/(2\omega) \end{cases}$$

- の一般解を求めよ。ただし、任意定数としてx(0)と $v(0) := \dot{x}(0)$ を使え。
- **2.** ω , α , γ を実定数とする。常微分方程式

$$\frac{d}{dt}x(t) = -\gamma x(t) + \alpha \cos(\omega t) \tag{1}$$

- の一般解を以下の手順にしたがって求めよ。
 - (a) 対応する斉次の常微分方程式 $\dot{x}(t) = -\gamma x(t)$ の一般解を求めよ。
 - (b) 微分方程式 (1) の特解で $x_{ps}(t) = A\cos(\omega t) + B\sin(\omega t)$ と書けるものを求めよ (A, B は求めるべき定数)。
 - (c) (a) と (b) での解を足したものが (1) の解になっていることを確かめよ。
- **3.** 以下の常微分方程式の一般解を求めよ。解は、初期値 x(0) を使って表すこと。以下で α , ω は正の定数。また (a) では x(t) > 0 とせよ。

$$\frac{dx(t)}{dt} = \alpha \left\{ x(t) \right\}^{-2}$$

$$\frac{dx(t)}{dt} = \alpha \cos(\omega t) \left\{ 1 + \left\{ x(t) \right\}^2 \right\}$$

4. α, β, ω を定数とし、常微分方程式

$$\frac{dx(t)}{dt} = \alpha \cos(\omega t) x(t) + \beta \exp\left[\frac{\alpha}{\omega} \sin(\omega t)\right]$$

を次の手順(定数変化法)で解け。

- (a) 解を $x(t)=C(t)\exp[\frac{\alpha}{\omega}\sin(\omega t)]$ という形に書き、C(t) が満たす微分方程式を求めよ。
- (b) C(t) についての微分方程式の一般解を求め、もとの微分方程式の一般解を求めよ。
- **5.** $a = (a_x, a_y, a_z), b = (b_x, b_y, b_z)$ を三次元空間のベクトルとする。
 - (a) 内積 $\mathbf{a} \cdot \mathbf{b}$ と外積 $\mathbf{a} \times \mathbf{b}$ をそれぞれ成分で表せ。
 - (b) 上の成分表示を用いて、スカラー三重積についての等式 $(a \times b) \cdot c = (c \times a) \cdot b$ を証明せよ。
- 6. 計算せよ。

(a)
$$(x \ y \ z) \begin{pmatrix} y+z \\ z+x \\ x+y \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & -4 & 3 \\ -1 & 2 & -3 \\ -1 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 3 & 2 \\ 1 & 1 & 1 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ (d) $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} x & y & z \end{pmatrix}$

7. $A = (a_{i,j})_{i,j=1,\dots,d}$ を任意の複素 $d \times d$ 行列とする。 $Tr[A^{\dagger}A]$ を成分 $a_{i,j}$ を使って表し、この量が 0 以上であることを示せ。