

planetmath.org

Math for the people, by the people.

predictable stopping time

Canonical name PredictableStoppingTime

Date of creation 2013-03-22 18:37:19 Last modified on 2013-03-22 18:37:19

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282)
Entry type Definition
Classification msc 60G40
Classification msc 60G05
Synonym predictable time
Synonym previsible time

Synonym previsible stopping time

Related topic StoppingTime Related topic PredictableProcess A predictable, or previsible stopping time is a random time which is possible to predict just before the event. Letting $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ be a http://planetmath.org/FiltrationOfS on a measurable space (Ω, \mathcal{F}) , then, a stopping time τ is predictable if there exists an increasing sequence of stopping times τ_n satisfying the following.

- $\tau_n < \tau$ whenever $\tau > 0$.
- $\tau_n \to \tau$ as $n \to \infty$.

The sequence τ_n is said to announce or foretell τ .

For example, if X is a continuous adapted process with $X_0 = 0$, such as Brownian motion, then the first time τ at which it hits a given level $K \neq 0$ is a predictable stopping time. In this case, if τ_n is the first time at which X hits the level K(1-1/n), then the sequence τ_n announces τ .

On the other hand, if X is a Poisson process then the first time τ at which it is nonzero is not predictable. To show this, suppose that $\tau_n < \tau$ are stopping times. The fact that $X_t - \lambda t$ is a martingale means that Doob's optional sampling theorem can be applied, giving $\mathbb{E}[X_{\tau_n} - \lambda \tau_n] = 0$. Then, $X_t = 0$ for $t < \tau$ gives $\mathbb{E}[\tau_n] = 0$. So, $\tau_n = 0$ with probability one, and the sequence τ_n cannot announce τ .

In discrete time, where the filtration (\mathcal{F}_t) has time t running over the index set \mathbb{Z}_+ , then a stopping time is said to be predictable if $\{\tau \leq t\}$ is \mathcal{F}_{t-1} -measurable for every time $t = 1, 2, \ldots$

This can be generalized to an arbitrary index set \mathbb{T} , where a stopping time $\tau \colon \Omega \to \mathbb{T} \cup \{\infty\}$ is predictable if there exists an increasing sequence of stopping times $\tau_n \leq \tau$ such that $\tau_n < \tau$ whenever τ is not equal to a minimal element of \mathbb{T} , and $\bigcap_n (\tau_n, \tau)$ contains no elements of \mathbb{T} .