Exercice 1 - (Rayon?)

Soit $\sum a_n x^n$ une série entière de rayon R. Que vaut le rayon de $\sum a_n^2 x^n$.

Exercice 2 - (Developpable en série entière?)

Soit $f(x) = \sum_{n} \sin(a^n x)$, avec -1 < a < 1.

- 1. Montrer que f est définie sur \mathbb{R}
- 2. Montrer que f est C^{∞} et que pour tout $k \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}, |f^{(k)}(x)| \leq \frac{1}{1-|a|}$
- 3. Montrer que f est developpable en série entière.

Exercice 3 – (Intégrale)

Soit $f(x) = \int_{-\infty}^{x} \frac{dt}{1 + t + t^2}$. Developper f en série entière.

Exercice 4 - (ED)

Soit
$$p \in \mathbb{N}$$
 et $f(x) = \sum_{n>0} \binom{n+p}{p} x^n$.

- 1. Déterminer le rayon de convergence de la série entière définissant cette fonction.
- 2. Calculer f.

Exercice 5 – (Determination du terme général d'une suite)

On pose
$$a_0 = 1$$
 et $a_{n+1} = \sum_{k=0}^{n} \binom{n}{k} a_{n-k} a_k$

Calculer les a_n en utilisant la série entière de terme général $\frac{a_n}{n!}x^n$

Exercice 6 - (Série entière)

Soit $(a_n)_{n\in\mathbb{N}}$ la suite telle que $a_n=\int_0^{\pi/4} \tan^n(t) dt$.

- 1. Trouver la limite de (a_n) .
- 2. Trouver une relation simple entre a_n et a_{n+2} .
- 3. Donner la nature de la série $\sum \frac{a_n}{n^{\alpha}} x^n$ selon les valeurs de x et α (rayon + bord).
- 4. Trouver une expression de $f(x) = \sum a_n x^n$

Questions de cours

- Soit $f(x) = \sum_{n\geq 0} a_n x^n$ de rayon R. Montrer que $\forall r < R$, $\int_0^{2\pi} e^{-int} f(re^{it}) dt = 2\pi a_n r^n$ et donner le DSE de $\sin(u)$ (sans démo)
- Donner le DSE de $\ln(1+u)$ (sans démo) et montrer que $\sup\{r \in \mathbb{R}^+ | (a_n r^n)_{n \in \mathbb{N}} \text{ soit bornée}\}$ = $\sup\{r \in \mathbb{R}^+ | (a_n r^n)_{n \in \mathbb{N}} \text{ tende vers } 0\}$
- Donner le DSE de $(1+u)^{\alpha}$ (sans démo) et montrer que $\sup\{r\in\mathbb{R}^+|(a_nr^n)_{n\in\mathbb{N}} \text{ soit bornée}\}$ $=\sup\{r\in\mathbb{R}^+|\sum a_nr^n \text{ converge}\}$