

SANTÉ PUBLIQUE FRANCE

Nom du projet : Préparez des données pour

un organisme de santé publique

Présenté par : Nathan FARDIN

Le besoin

Traiter les données et mettre en évidence la faisabilité d'une solution permettant de faciliter la complétion de la base de données par les utilisateurs

Plan

I. Introduction

auction

II. Traitement des

données

III. Analyse

IV. Conclusion

RGPD

Finalité

• Les informations sur des individus ne peuvent être enregistrées que dans un but spécifique, légal et légitime.

Durée de conservation limitée

lune durée précise doit être fixée en fonction du type de données et de l'objectif du fichier.

Proportionnalité et pertinence

• Les données enregistrées doivent être strictement nécessaires et pertinentes par rapport à l'objectif du fichier.

Sécurité et confidentialité

• Le responsable du fichier doit assurer la sécurité des informations détenues, en limitant l'accès .

Droits des personnes

 Les individus ont des droits sur leurs données, incluant le droit d'accès, de rectification, et parfois le droit à l'effacement

Les données à disposition

Un ensemble de données concernant des informations sur des produits alimentaires :

- Des informations générales tel que le nom
- Des tags (catégorie du produit, localisation etc)
- Les ingrédients et additifs
- Les informations nutritionnels

La qualité des données

Nombres de lignes : 320 772 Nombres de colonnes : 162

Enormément de valeurs sont manquantes dans le dataframe principal

76,22%

Des valeurs dupliquées existent, notamment dans la colonne concernant les noms_{5/29} des produits

Selection des données

Des colonnes completes à plus de 50% Une réelle pertinence pour notre objectif

Identification des produits

- url
- creator
- created_t
- product_name

Valeurs nutritionnelles

- energy_100g
- fat_100g
- saturated-fat_100g
- sugars_100g
- fiber_100g
- proteins_100g
- salt_100g

Score nutritionel

- nutrition-score-fr_100g
- nutrition_grade_fr

Nouveau dataframe

Une fois toutes ces sélections effectuées, un nouveau dataframe est obtenu :

Nombre de lignes : 221 348

Nombre de colonnes : 18

Pourcentage du dataframe vide : 13.53%

Nettoyage des données

Utilisation de la méthode IQR pour détecter les outliers. Remplacement par "NaN"

Remplacement par "NaN" des valeurs supérieurs à 100 ou inférieur à 0 pour les colonnes ou cela est justifiée

Remplacement par "NaN" quand la valeur de gras saturés est supérieur a la valeur de gras pour un aliment

Nettoyage des données

Exemple:

Imputation Moyenne

- Ne tiens pas compte des différences de composition selon le type d'aliments
- Sensible aux valeurs aberrantes

- Méthode simple à réaliser
- Préserve la moyenne globale de la variable

Imputation Médiane

- Ne tiens pas compte des spécificités des aliments
- Peut induire des biais si la distribution entre données manquantes et données complètes est différente

- Méthode simple à réaliser
- Méthode moins sensible aux outliers

Imputation KNN

- Performance dépendant grandement du nombre de voisin définis
- Execution longue selon la quantité de données

- Utilise la proximité de certains aliments pour calculer les valeurs
- Produit donc des imputations plus précises

Dataframe final

Analyse des données Scatter plot

corrélation positive avec un score de pearson égal à : 0.66

Analyse des données Scatter plot

corrélation positive avec un score de pearson égal à : 0.35

Analyse des données Scatter plot

corrélation positive avec un score de pearson égal à : 0.54

Corrélation avec nutrition score

Scree Plot composantes principales

ACP: cercle de corrélation

Projection des individus par grade

Anova

eta²

Influence des variables étudiées sur le nutrigrade

energy: 20.54%

Fat: 17.79%

saturated-fat: 33.20%

sugars: 11.29%

fiber : 5.76%

proteins: 2.57%

salt: 5.48%

Les variables liées à la composante négative N du nutrigrade contribuent à 88,3 % au nutrigrade

Anova

H0 et H1

H0 : Les moyennes des différentes variables ne changent pas selon le nutrigrade

H1: Les moyennes des différentes variables changent selon le nutrigrade

Les valeurs moyennes diffèrent selon le Nutri-Grade (H1 acceptée) avec une p value proche de 0.

Conclusion

Faciliter la complétion de la base de données par les utilisateurs en se concentrant sur les valeurs impactant négativement le nutrigrade et en utilisant le KNN pour suggérer les valeurs qui viendraient à manquer.

Déterminer le nutrigrade en se basant sur les nutriscore et en appliquant le système de correspondance score/grade pour l'auto-complétion.

Pour aller plus loin

- Des variables plus complètes concernant les fruits, légumes et légumineuses
- Plus de données disponibles concernant les catégories de produits, permettant de calculer précisement le nutriscore