Package 'genius'

October 12, 2017		
Title G-Estimation under No-Interaction with Unmeasured Selection		
Date 2017-10-12		
Version 0.3		
Author BaoLuo Sun and Eric Tchetgen Tchetgen		
Maintainer BaoLuo Sun sluosun@gmail.com>		
Description This package implements the MR GENIUS estimator.		
Depends R (>= $3.4.1$)		
License GPL-3		
Encoding UTF-8		
LazyData true		
RoxygenNote 6.0.1		
Imports gmm (>= 1.6-1)		
Suggests knitr, rmarkdown		
VignetteBuilder knitr		
R topics documented:		
genius_addY		
Index		
genius_addY		
Description Implements MR GENIUS under an additive outcome model. Usage		

genius_addY(Y, A, G, formula = A \sim G, alpha = 0.05, lower = -10,

upper = 10)

2 genius_addY

Arguments

Υ	A numeric vector of outcomes.
Α	A numeric vector of exposures (binary values should be coded in 0/1).
G	A numeric matrix of instruments; each column stores values for one instrument (a numeric vector if only a single instrument is available).
formula	An object of class "formula" describing the linear predictor of the model for $E(A G)$ (default $A\ G$, main effects of all available instruments).
alpha	Significance level for confidence interval (default value=0.05).
lower	The lower end point of the causal effect interval to be searched (default value=-10).
upper	The upper end point of the causal effect interval to be searched (default value=10).

Details

This function implements the estimators given in equations (6) and (12) of Tchetgen Tchetgen et al (2017) for single and multiple instruments, respectively. The term E(A|G) is modelled under the logit and identity links for binary and continuous exposure respectively, with a default linear predictor consisting of the main effects of all available instruments.

Value

A "genius" object containing the following items:

beta.est	The point estimate of the causal effect (on the additive scale) of the exposure on the outcome.
beta.var	The corresponding estimated variance.
ci	The corresponding Wald-type confidence interval at specified significance level.
pval	The p-value for two-sided Wald test of null causal effect (on the additive scale) of the exposure on the outcome.

References

Tchetgen Tchetgen, E., Sun, B. and Walter, S. (2017). The GENIUS Approach to Robust Mendelian Randomization Inference. arXiv e-prints.

Examples

```
# the following packages are needed to simulate data
library("msm")
library("MASS")
expit <- function(x) {
    exp(x)/(1+exp(x))
}

### example with binary exposure, all instruments invalid ###
# true causal effect, beta = 1.0
# Number of instruments, nIV = 10
# Y: vector of outcomes
# A: vector of exposures
# G: matrix of instruments, one column per instrument
nIV=10; N=5000; beta=1;</pre>
```

genius_mulY 3

```
phi=rep(-0.02,nIV); gamma=rep(-0.15,nIV); alpha=rep(-0.5,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))
G = (Gn>0)*1;
U= as.vector(phi%*%t(G))+ rtnorm(n=N,mean=0.35,lower=0.2,upper=0.5);
A = rbinom(N,1,expit(as.vector(gamma%*%t(G)))+U-0.35-as.vector(phi%*%t(G)));
Y = as.vector(alpha%*%t(G)) + beta*A + U + rnorm(N);
genius_addY(Y,A,G);
### specify a more richly parameterized linear predictor for the model
### of E[A|G] containing all main effects and pairwise interactions of
### instruments
colnames(G)=paste("g",1:10,sep="")
genius_addY(Y,A,G,A^{(g1+g2+g3+g4+g5+g6+g7+g8+g9+g10)^2);
### example with continous exposure, all instruments invalid ###
nIV=10; N=500; beta=1;
phi=rep(-0.5,nIV); gamma=rep(-2,nIV); alpha=rep(-0.5,nIV);
lambda0=1; lambda1=rep(0.5,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))
G = (Gn>0)*1;
U = as.vector(phi%*%t(G))+rnorm(N);
A = as.vector(gamma%**kt(G)) + U + rnorm(N, mean=0, sd=abs(lambda0+as.vector(lambda1%**kt(G)))); \\
Y = as.vector(alpha%*%t(G)) + beta*A + U + rnorm(N);
genius_addY(Y,A,G);
```

genius_mulY

MR GENIUS under multiplicative outcome model

Description

Implements MR GENIUS under a multiplicative outcome model.

Usage

```
genius_mulY(Y, A, G, formula = A ~ G, alpha = 0.05, lower = -10,
   upper = 10)
```

Arguments

Υ	A numeric vector of outcomes.
Α	A numeric vector of exposures (binary values should be coded in 0/1).
G	A numeric matrix of instruments; each column stores values for one instrument (a numeric vector if only a single instrument is available).
formula	An object of class "formula" describing the linear predictor of the model for $E(A G)$ (default AG , main effects of all available instruments).

4 genius_mulY

alpha Significance level for confidence interval (default value=0.05).

lower The lower end point of the causal effect interval to be searched (default value=

10).

upper The upper end point of the causal effect interval to be searched (default value=10).

Details

This function implements MR GENIUS as the solution to the empirical version of equation (14) in Tchetgen Tchetgen et al (2017). The term E(A|G) is modelled under the logit and identity links for binary and continuous exposure respectively, with a default linear predictor consisting of the main effects of all available instruments.

Value

A "genius" object containing the following items:

beta.est The point estimate of the causal effect (on the multiplicative scale) of the expo-

sure on the outcome.

beta.var The corresponding estimated variance.

ci The corresponding Wald-type confidence interval at specified significance level.

pval The p-value for two-sided Wald test of null causal effect (on the multiplicative

scale) of the exposure on the outcome.

References

Tchetgen Tchetgen, E., Sun, B. and Walter, S. (2017). The GENIUS Approach to Robust Mendelian Randomization Inference. arXiv e-prints.

Examples

```
#the following packages are needed to simulate data
library("msm")
library("MASS")
### examples under multiplicative outcome model, all instruments invalid ###
# true causal effect, beta = 1.5
# Number of instruments, nIV = 10
# Y: vector of outcomes
# A: vector of exposures
# G: matrix of instruments, one column per instrument
### binary exposure
nIV=10; N=2000; beta=1.5;
phi=rep(-0.02,nIV); gamma=rep(-0.15,nIV); alpha=rep(-0.5,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))
G = (Gn>0)*1;
U= as.vector(phi%*%t(G))+ rtnorm(n=N,mean=0.35,lower=0.2,upper=0.5);
A = rbinom(N,1,expit(as.vector(gamma%*x(G)))+U-0.35-as.vector(phi%*x(G)));
Y = \exp(beta*A)*(as.vector(alpha%*%t(G)) + U) + rnorm(N);
genius_mulY(Y,A,G);
### specify a more richly parameterized linear predictor for the model of E[A|G]
### containing all main effects and pairwise interactions of instruments
```

genius_mulY 5

```
colnames(G)=paste("g",1:10,sep="")
genius_mulY(Y,A,G,A~(g1+g2+g3+g4+g5+g6+g7+g8+g9+g10)^2);
### continuous exposure
nIV=10; N=2000; beta=1.5;
phi=rep(0.5,nIV); gamma=rep(0.5,nIV); alpha=rep(0.2,nIV);
lambda0=1; lambda1=rep(0.2,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))
G = (Gn>0)*1;
U = as.vector(phi%*%t(G))+rnorm(N);
A = as.vector(gamma%*%t(G)) +U + rnorm(N,mean=0,sd=abs(lambda0+as.vector(lambda1%*%t(G))));
Y = exp(beta*A)*(as.vector(alpha%*%t(G)) + U) + rnorm(N);
```

Index

genius_addY, 1
genius_mulY, 3