Mathématiques pour le traitement du signal

Gwendal Le Bouffant

ENSSAT

Notion de système

- Un <u>système</u> T est un ensemble de composants qui utilisent des signaux $x_1, \ldots x_N$ dits <u>signaux d'entrée</u> pour élaborer des <u>signaux de sortie</u> y_1, \ldots, y_M qui peuvent être utilisés par d'autres <u>systèmes</u>.
- **Hypothèse fondamentale :** La <u>cause précède l'effet</u>, autrement dit les signaux de sortie ne peuvent exister avant les signaux d'entrée qui les génèrent.

Notion de système

• Un <u>système linéaire</u> est un système dont le comportement répond au théorème de superposition :

Théorème 1

Si
$$y_1 = T(x_1)$$
 et $y_2(x_2) = T(x_2)$, $\alpha, \beta \in \mathbb{R}$ ou \mathbb{C} ,
Alors $T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2) = \alpha y_1 + \beta y_2$.

 Invariance dans le temps (invariance par translation) : le système réagit de la même manière quel que soit l'instant où l'on génère le signal d'entrée :

Si
$$y(t) = T(x(t))$$
 alors $y(t - a) = T(x(t - a))$.

 Lorsque ce deux propriétés sont vérifiées, on parle dans ce cas de Système linérairement invariant (SLI).

Notion de système

Les systèmes de convolution sont les SLI dont les comportement est décrit par une fonction h(t) et dont la relation entrée-sortie s'obtient par une intégrale de convolution :

$$y(t) = \int_{\mathbb{R}} h(t - u)x(u)du = h \star x(t)$$

u est la variable d'intégration, t le paramètre.

Théorème 2 (Convergence dominée)

Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions telles que :

- $f_n(x) \longrightarrow f(x)$ pour presque tout x.
- $\exists g \in \mathbb{L}^1(\mathbb{R})$ telle que $|f_n(x)| \leq g(x)$ pour presque tout x.

Alors f_n et $f \in \mathbb{L}^1(\mathbb{R})$ et $\lim_{+\infty} \int_{\mathbb{R}} f_n = \int_{\mathbb{R}} \lim_{+\infty} f_n$.

Le but est de pouvoir intervertir intégrale et limite.

Théorème 3 (Continuité)

Soit $J\subset\mathbb{R}$ un intervalle et f(t,x) une fonction définie sur $J\times\mathbb{R}$ telle que :

- $t \longmapsto f(t,x)$ est continue presque partout.
- $\exists g \in \mathbb{L}^1(\mathbb{R})$ telle que $\forall t \in J | f(t,x) | \leq g(x)$ pour presque tout x.

Alors $F(t) = \int_{\mathbb{R}} f(t, x) dx$ est <u>définie et continue</u> sur J.

Théorème 4 (Dérivabilité)

Soit $J\subset\mathbb{R}$ un intervalle et f(t,x) une fonction définie sur $J\times\mathbb{R}$ telle que :

- $x \mapsto f(t,x)$ est intégrable sur \mathbb{R} .
- $t \longmapsto f(t,x)$ est \mathcal{C}^1 sur J.
- $\exists g \in \mathbb{L}^1(\mathbb{R})$ telle que $\forall t \in J \mid \frac{\partial f(t,x)}{\partial t} \mid \leq g(x)$ pour presque tout x.

Alors $F(t) = \int_{\mathbb{R}} f(t,x) dx$ est <u>définie</u> et <u>de classe</u> \mathcal{C}^1 sur J et de plus

$$\forall t \in J, \ F'(t) = \int_{\mathbb{R}} \frac{\partial f(t, x)}{\partial t} dx.$$

Théorème 5 (Fubini-Tonelli)

Si $f:(x,y)\mapsto f(x,y)$ est une fonction de $\mathbb{L}^1(\mathbb{R})$, alors :

- $x \mapsto \int_{\mathbb{R}} f(x,y) dy$ est intégrable sur \mathbb{R} .
- $y \mapsto \int_{\mathbb{R}} f(x,y) dx$ est intégrable sur \mathbb{R} .
- $\int_{\mathbb{R}\times\mathbb{R}} f(x,y) dx dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dx \right) dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dy \right) dx$

Produit de convolution

Definition 1

Si $\int_{\mathbb{R}} f(x)g(t-x)dx$ existe, on l'appelle <u>produit de convolution</u> de f et g et on pose $g(t) = f * g(t) = \int_{\mathbb{R}} f(x)g(t-x)dx$.

• Le produit de convolution est <u>commutatif</u> : Si f * g existe, alors g * f aussi et on a :

$$f * g(t) = g * f(t)$$

• Le produit de convolution est <u>distributif</u> : Si u*v et u*w existent, on a pour tous α , β :

$$u * (\alpha v + \beta w) = \alpha(u * v) + \beta(u * w).$$

• Le produit est invariant par <u>translation</u>: (invariance temporelle) Si on pose $\tau_a f(t) = f(t-a)$ et si f*g existe, alors $(\tau_a f)*g$ aussi et :

$$\tau_a f * g = \tau_a (f * g)$$

Produit de convolution

Exercice

- Soit $f(t) = e^t$ et $g(t) = \mathbb{1}_{[-1;1]}(t)$, calculer f * g.
- ullet Si f et g ont même parité alors $f \ast g$ est pair, sinon $f \ast g$ est impair.
- Que vaut $\tau_a f * \tau_b g$?
- Soit 0 < a < b, calculer f * g avec $f(t) = \mathbb{1}_{[-1;1]}(t/2a)$ et $g(t) = \mathbb{1}_{[-1;1]}(t/2b)$.
- Si f et $g \in \mathbb{L}^2(\mathbb{R})$ alors f * g existe et est bornée.
- Si f et g sont à support compact : $f(t) = \mathbb{1}_{[a_1;b_1]}(t)f(t)$ et $g(t) = \mathbb{1}_{[a_2;b_2]}(t)\overline{g(t)}$. alors f*g existe sur $[a_1+a_2;b_1+b_2]$.

Fonction d'Heaviside

- Une fonction est <u>causale</u> si elle est nulle sur $]-\infty;0]$.
- On note $\mathcal{H}(t)=\mathbbm{1}_{[0;+\infty]}(t)$ la fonction d'Heaviside. Alors f est causale si $f=f.\mathcal{H}.$

Exemple

- ullet Si f et g sont causales et continues par morceaux, alors $f \ast g$ est causal.
- Calculer f*g si $f(t)=t.\mathcal{H}(t)$ et $g(t)=e^t\mathcal{H}(t).$
- Soit a et b positifs, calculer le produit de convolution de $f(t)=e^{-at}\mathcal{H}(t)$ et $g(t)=e^{-bt}\mathcal{H}(t)$. Distinguer les cas $b\neq a$ et b=a.

Signaux stables

On dit qu'un système est stable si le signal de sortie y est borné quand le signal d'entré x est borné.

C'est le concept entrée bornée-sortie bornée : BIBO.

Exercices

- Si $f \in \mathbb{L}^1(\mathbb{R})$ et g est bornée alors f * g est bornée.
- Soit a>0 et $f=\mathbb{1}_{[-a,a]}$. Calculer f*f.
- Soit $g(x) = \frac{1}{1+x^2}$. On considère le système dont la réponse impulsionnelle est g.
 - Est-il stable?
 - Calculer la réponse indicielle de ce système.
- Calculer le produit de convolution de la gaussienne $f(t)=\frac{1}{\sqrt{2\pi}}e^{\frac{t^2}{2}}$ par elle-même.
 - On pourra utiliser le résultat : $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$.