

L2 MIDO 2023-2024

Algèbre Linéaire 3. Partiel du 31 octobre 2023 (durée 2h).

L'examen se compose de quatre exercices et d'un problème en deux parties. Toutes les réponses sont à faire sur la copie d'énoncés.

Le soin apporté à la rédaction, la clarté, la concision et le respect des consignes (en particulier l'écriture lisible de son NOM et PRÉNOM) font partie de l'évaluation. Il y a largement la place de répondre dans les cases, utilisez le brouillon à bon escient pour être efficaces, et n'utilisez la dernière feuille blanche qu'en cas d'extrême nécessité.

Réservé pour la correction. Initiales correcteur / correctrice :	Nº copie :
Commentaires éventuels :	

	/ U	1	U	υγ	١
Exercice 1 . Soit A la matrice	0	0	1	0	١
Exercice 1. Soft A la matric	0	0	0	1	.
\	$\sqrt{5}$	0	-18	8/	

Calculer son polynôme caractéristique, noté P, et factoriser son polynôme dérivé P'.

La matrice A est-elle diagonalisable dans $\mathbb{C}\,?$

Exercice 2 . Soit $A \in \mathcal{M}_5(\mathbb{R})$ une matrice inversible, vérifiant $Tr(A) = 6$ et $A^3 - 3A^2 + 2A = 0$.
Montrer qu'il existe un polynôme annulateur de A de degré 2 .
La matrice A est-elle diagonalisable? Quelles sont ses seules valeurs propres possibles?
La matrice A est-ene diagonalisable: Quenes sont ses seules valeurs propres possibles:
Déterminer l'ordre de multiplicité de chacune des valeurs propres, et en déduire le polynôme caracté-
ristique de A , ainsi que son polynôme minimal.

Exercice 4. Soit E l'espace vectoriel des formes bilinéaires de $\mathbb{R}^n \times \mathbb{R}^n$.
Quelle est la dimension de E ? On pourra donner un isomorphisme d'un espace de matrices dans E .
Pour $b \in E$, on note $\Psi(b)$ l'application $(x,y) \mapsto b(y,x)$. Montrer que l'application Ψ ainsi définie est un
endomorphisme de E et décrire les sous-espaces vectoriels $\ker(\Psi - \mathrm{id}_E)$ et $\ker(\Psi + \mathrm{id}_E)$.
L'endomorphisme Ψ est-il diagonalisable?

Problème :	polvnômes	annulateurs	de	deux	matrices	différentes.
I I O O I CIII C .	POLYHOU	annana	\mathbf{a}		IIICCUI ICCO	CITION CITOOD.

robieme : polynomes annulateurs de deux matrices différentes.
Soit $A_1 \in \mathcal{M}_n(\mathbb{R})$, et $A_2 \in \mathcal{M}_p(\mathbb{R})$, avec $n, p \in \mathbb{N}^*$. On suppose que l'on a Q_1 et Q_2 dans $\mathbb{R}[X]$ tels que — Q_1 est un polynôme annulateur de A_1 , — Q_2 est un polynôme annulateur de A_2 , — Q_1 et Q_2 sont premiers entre eux.
I. Étude d'un endomorphisme de $\mathcal{M}_{n,p}(\mathbb{R})$. Si $H \in \mathcal{M}_{n,p}(\mathbb{R})$, on note $\Phi(H) = A_1H - HA_2$.
Montrer que l'application Φ ainsi définie est un endomorphisme de $\mathcal{M}_{n,p}(\mathbb{R}).$
Si $H \in \ker \Phi$ et si $Q \in \mathbb{R}[X]$, montrer que $Q(A_1)H = HQ(A_2)$ (on pourra commencer avec $Q = X^k$).
On considère des polynômes R_1 et R_2 de $\mathbb{R}[X]$ tels que $Q_1R_1+Q_2R_2=1$ (de tels polynômes existent par le théorème de Bézout). En exprimant $(Q_1R_1)(A_1)+(Q_2R_2)(A_1)$, montrer que que $Q_2(A_1)$ est inversible.
Déduire des deux questions précédentes que Φ est injectif, puis montrer qu'il est bijectif.

Soit $H \in \mathcal{M}_{n,p}(\mathbb{R})$. On pose $P = \begin{pmatrix} I_n & H \\ 0 & I_p \end{pmatrix}$. Montrer que $P^{-1} = \begin{pmatrix} I_n & -H \\ 0 & I_p \end{pmatrix}$, puis calculer PMP^{-1} .

Déduire de la partie précédente (l'étude de Φ) que M est semblable à $\widetilde{M} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Si $Q \in \mathbb{R}[X]$, calculer $Q(\widetilde{M})$ en fonction de $Q(A_1)$ et $Q(A_2)$ (on pourra commencer avec $Q = X^k$). En déduire que Q_1Q_2 est un polynôme annulateur de \widetilde{M} .

Si $Q \in \mathbb{R}[X]$, calculer $Q(PMP^{-1})$ en fonction de Q(M), puis en conclure que Q_1Q_2 est un polynôme annulateur de M.