Network Notes

February 13, 2022

Contents

1	Net	work F	Protocol	1
	1.1	Overvi	ew	1
	1.2	Messag	ge Format	2
		1.2.1		3
		1.2.2	Command	3
		1.2.3	Response	3
		1.2.4	Report	3
	1.3	Slots .		3
		1.3.1	Slot State	4
		1.3.2	Throttle ID	4
		1.3.3	Protocol 1	5
		1.3.4		5
		1.3.5	Purging	7
	1.4	Messag		8
		1.4.1	Ack	9
		1.4.2	Busy	1
		1.4.3	CfgSlotDataP1	2
		1.4.4	CfgSlotDataP2	7
		1.4.5	ConsistDirF0F4	4
		1.4.6	GetBrdOpSw	б
		1.4.7	GetCfgSlotDataP1	3
		1.4.8	GetCfgSlotDataP2	0
		1.4.9	GetInterfaceData	2
		1.4.10	GetLocoSlotDataLAdrP1	3
		1.4.11	GetLocoSlotDataLAdrP2	5
		1.4.12	GetLocoSlotDataP1	7
		1.4.13	GetLocoSlotDataP2	9
		1.4.14	GetLocoSlotDataSAdrP1	1
		1.4.15	GetLocoSlotDataSAdrP2	3

iv CONTENTS

1.4.16	GetSwState	45
1.4.17	IllegalMoveP1	47
1.4.18	IllegalMoveP2	49
1.4.19	IMMPacket	51
1.4.20	InterfaceData	54
1.4.21	IPLDataLoad	58
1.4.22	IPLDevData	61
1.4.23	IPLDiscover	65
1.4.24	IPLEndLoad	69
1.4.25	IPLSetAddr	72
1.4.26	IPLSetupBL2	75
1.4.27	LinkSlotsP1	78
1.4.28	LinkSlotsP2	80
1.4.29	LocoBinStateP2	82
1.4.30	LocoDirF0F4P1	84
1.4.31	LocoDirF0F4P2	86
1.4.32	LocoF0F6P2	88
1.4.33	LocoF5F8P1	90
1.4.34	LocoF7F13P2	92
	LocoF5F11P2	94
	LocoF12F20F28P2	96
	LocoF13F19P2	98
1.4.38		100
		102
1.4.40	LocoF21F28P2	104
		106
		110
		116
		118
		120
	NoFreeSlotsP1	122
1.4.47		124
		126
1.4.49	MoveSlotsP2	128
1.4.50	PeerXfer16	130
1.4.51	ProgCV	134
	ProgSlotDataP1	138
	PwrOff	142
		143
1.4.55		145
	SensRenGenIn	146

CONTENTS

		1.4.57	SensRepTurnIn	148
		1.4.58	SensRepTurnOut	150
		1.4.59	SetBrdOpSw	152
		1.4.60	SetIdleState	154
		1.4.61	SetLocoSlotDataP1	155
		1.4.62	SetLocoSlotDataP2	159
		1.4.63	SetLocoSlotStat1	165
		1.4.64	SetSwWithAck	167
		1.4.65	SlotNotImplemented	169
		1.4.66	OPC_SV_PROG	171
		1.4.67	SwState	176
		1.4.68	SwReq	178
		1.4.69	TransRep	180
		1.4.70	UnlinkSlotsP1	182
		1.4.71	UnlinkSlotsP2	184
2		Clock		187
	2.1		nary	
	2.2	Slot #	⁴ 123 Encoding	187
3	Upo	lating	Firmware	191
	3.1		oader Protocol 1	191
	3.2	Bootle	oader Protocol 2	191
	3.3	Firmw	vare Parameters	192
	3.4	DMF	File Format	193
		3.4.1	Sync Records	193
		3.4.2	Parameter Records	193
		3.4.3	Data Records	195
		3.4.4	End of File Record	196
4		_	tion Variables	199
	4.1	Introd	$\operatorname{luction}$	199
	1.1		D IMID :	
	1.1	4.1.1	Paged Mode Programming	200
	1.1	4.1.1 4.1.2	Physical Register Programming	200 200
	1.1	4.1.1 4.1.2 4.1.3	Physical Register Programming	200 200 200
		4.1.1 4.1.2 4.1.3 4.1.4	Physical Register Programming	200 200 200 200
	4.2	4.1.1 4.1.2 4.1.3 4.1.4 Progra	Physical Register Programming	200 200 200 200 200 200
		4.1.1 4.1.2 4.1.3 4.1.4 Progra	Physical Register Programming	200 200 200 200 200 200
A	4.2 4.3	4.1.1 4.1.2 4.1.3 4.1.4 Progra List of	Physical Register Programming	200 200 200 200 200 200

vi	CONTENTS
C Command Station Option Switches	231
D Revision History	237

Chapter 1

The Network Protocol

.

1.1 Overview

Loconet is a peer-to-peer distributed network system on which all devices can monitor the data flow. The network is event driven and is not polled by a centralised controller in normal operation. The normal network state is quiet, with no data traffic unless a device has information to send.

The network data is sent in asynchronous format using 1 start bit, 8 data bits and 1 stop bit. The 8 bit data is transmitted least significant bit first. The bit times are 60.0 μ S or 16,660 baud +/- 1.5%. A computer can connect to a USB interface at higher baud rates and the device will make the necessary conversion. Bytes may be transmitted back-to-back, with a start bit immediately following the stop bit of the previous character.

All the network communications are via multi-byte messages. The command station is the device that maintains the refresh stack for DCC packet generation and generates the DCC track data. Refresh of information is typically only performed for a mobile decoder. A stationary decoder is not refreshed and individual immediate commands are sent out to the track as requested.

The command station is only privileged in respect to performing the task of maintaining the locomotive refresh stack and generating DCC packets. In this way other network transactions may occur that the command station does not need to be involved with or understand, as long as they follow the message protocol and timing requirements. i.e. other devices may have a dialog on the network without disturbing or involving the command station. Devices on the network monitor the messages, check for format and data integrity and parse good messages to decode if action is required in the context. Devices such as throttles, input sensors, computer interfaces and control panels may generate the network messages without needing prompting or polling by a central controller.

Devices frequently will be added and removed from an operating the network. The devices and protocol are tolerant of electrical and data transients. The format chosen gives a good degree of data integrity, guaranteed quick network-state synchronisation, high data throughput, good distribution of access to many competing devices and low event latency.

1.2 Message Format

The data bytes on the network are defined as 8 bit data with the most significant bit as an opcode flag bit. If the most significant bit is 1, then the 7 least significant bits are interpreted as an opcode. The opcode may only occur once in a valid message and it is the first byte of a message. The opcode does not necessarily uniquely identify a message type. Sometimes the opcode must be used in combination with other bits or bytes in the message to determine the message signature. All the remaining bytes in the message must have a most significant bit of 0, including the last checksum byte. The checksum is the 1's complement of the byte wise exclusive or of all the bytes in the message, except the checksum itself. To validate data accuracy, all the bytes in a correctly formatted message are exclusive or'ed. If this resulting byte value is 0xFF, then the message data is accepted as good. Any message that has format or framing errors, data errors or is a fragment caused by noise glitches and does not completely follow the message format will be ignored by all receivers, and a new opcode will be scanned for re-synchronisation.

The opcodes may be examined to determine message length and if subsequent response message is required. Data bits d6 and d5 encode the message length. The message length includes the opcode and the checksum bytes. When bit d3 equals 1 a follow-on message or reply is expected. For variable byte messages the byte following the opcode in the message is a 7 bit byte count.

d7	$\underline{d6}$	$\underline{\mathrm{d}5}$	$\underline{d4}$	$\underline{\mathrm{d}3}$	$\underline{\mathrm{d}2}$	$\underline{d1}$	$\underline{d0}$	
1	0	0	${ m E}$	D	\mathbf{C}	В	A	2 byte message
1	0	1	\mathbf{E}	D	\mathbf{C}	В	A	4 byte message
1	1	0	\mathbf{E}	D	\mathbf{C}	В	\mathbf{A}	6 byte message
1	1	1	${ m E}$	D	\mathbf{C}	В	A	Variable length message.

The A,B,C,D,E are bits available to encode 32 opcodes per message length.

There are four main message types: Broadcast, Command, Response, and Report.

1.3. SLOTS 3

1.2.1 Broadcast

A Broadcast is a message sent by a device to all other devices on the network.

1.2.2 Command

A Command is a message sent to a device to request it to do something. The recipient device may send a Response back to the sender. Technically a Command is a request for action. The Command may not reach the intended recipient or the recipient may ignore the request.

1.2.3 Response

A Response is a message sent in response to a Command.

1.2.4 Report

A Report is a message sent by a device in response to a change in its internal and/or external state.

1.3 Slots

The command station contains an array of read/write slots. There are two classes of slots (locomotive slot and system slot) and two protocols for manipulating the slots. Protocol 1 allows up to 120 locomotive slots and each slot contains 10 bytes of data relating to the locomotive. Digitrax calls these slots standard slots. Protocol 2 allows up to 960 locomotive slots and each slot contains 15 bytes of data relating to the locomotive. Digitrax calls these slots expanded slots. Not all command stations implement both protocols. A command station may also not implement the maximum number of locomotive slots for the protocols it supports. The user should check the Global System Track Status bits in a LocoSlotDataP1 or LocoSlotDataP2 response to determine which protocols are supported. Expanded capability throttles, i.e. those that implement protocol 2, are given the expanded slots first, leaving the standard slots available for legacy throttles. In this document message mnemonics that are suffixed "P1" belong to protocol 1 and those suffixed "P2" belong to protocol 2. Protocol 1 uses a single 7 bit number to identify a slot. Protocol 2 uses a 3 bit number to identify the page or bank of slots and a 7 bit number to identify

the slot within the page or bank. In both protocols slots numbered 0 to 119 (0x00 to 0x77) are locomotive slots and those numbered 120 to 127 (0x78 to 0x7F) are system slots. The slot number is similar to a file handle. System slots are encoded differently from the locomotive slots.

System Slot#	Description
$\overline{123 \text{ (0x7B)}}$	Fast Clock
124 (0x7C)	Programming
127 (0x7F)	Configuration

Initially all locomotive slots are empty and are said to be Free. A Free slot does not have a locomotive address loaded and no DCC commands are generated by the command station for it. To control a locomotive a throttle must request a slot from the command station and in the case of an expanded slot take ownership of it.

1.3.1 Slot State

A locomotive slot's slot state is determined by bits d5 and d4 of the Slot Status 1 byte of the applicable LocoSlotDataP1 or LocoSlotDataP2 response and whether the locomotive's address has been loaded. The slot state determines whether DCC commands are generated for it and if throttles can take control of it.

Slot State	$\underline{\mathrm{d5}}$	$\underline{d4}$	Address Loaded	<u>Decoder Refreshed</u>	Any Throttle
Free	0	0	No	No	Yes
New	0	0	Yes	No	Yes
Common	0	1	Yes	Yes	Yes
Idle	1	0	Yes	No	Yes
In-Use	1	1	Yes	Yes	No

1.3.2 Throttle ID

The Throttle ID for a physical throttle is derived from the throttle's serial number. Digitrax serial numbers are 16-bit numbers. The Throttle ID is split into two parts consisting of the least significant bits of the low and high bytes of the serial number respectively. For example a physical throttle with the serial number of 0xFFFE would have a Throttle ID of 0x7E 0x7F with 0x7E being the low byte. The low byte of the Throttle ID is required by some of the protocol 2 commands to ensure that only the throttle that has ownership of the locomotive slot is the one that updates the slot. A software throttle should choose a Throttle ID that does not clash with that of a physical throttle.

1.3. SLOTS 5

1.3.3 Protocol 1

1. The throttle requests a slot for the locomotive address by sending either a GetLocoSlotDataSAdrP1 or GetLocoSlotDataLAdrP1 Command to the command station. Which one depends on what type of address the locomotive's decoder is programmed to use.

- 2. If a slot has been previously loaded with the locomotive's address, then the command station will return a **LocoSlotDataP1** Response.
- 3. If the locomotive's address is not currently in a slot, then the command station will load the new locomotive address into a Free slot, with speed equal to zero, direction forwards, functions off and default decoder mode, and return a **LocoSlotDataP1** Response. The default decoder mode is determined by the command station's OpSw21-OpSw23 settings.
- 4. If there are no Free slots to load the new locomotive address into, the command station with return a **NoFreeSlotsP1** Response and this procedure is terminated.
- 5. The throttle must then examine the slot data bytes to work out how to process the command station response.
- 6. If the slot state is New, Common or Idle then the throttle requests a "null move" operation by sending the command station a **MoveSlotsP1** Command. The command station returns a **LocoSlotDataP1** Response.
- 7. The **SetLocoSlotDataP1** Command can be used at this time to change the decoder mode from that of the default.
- 8. The throttle will then be able to update speed, direction and function information. Whenever slot information is changed in an active slot, the slot is flagged to be updated as the next DCC packet sent to the track.

1.3.4 Protocol 2

- 1. The throttle requests a slot for the locomotive address by sending either a GetLocoSlotDataSAdrP2 or GetLocoSlotDataLAdrP2 Command to the command station. Which one depends on what type of address the locomotive's decoder is programmed to use.
- 2. If a slot has been previously loaded with the locomotive's address, then the command station will return a **LocoSlotDataP2** Response.

- 3. If the locomotive's address is not currently in a slot, then the command station will load the new locomotive address into a Free slot, with speed equal to zero, direction forwards, functions off and default decoder mode, and return a **LocoSlotDataP2** Response. The default decoder mode is determined by the command station's OpSw21-OpSw23 settings.
- 4. If there are no Free slots to load the new locomotive address into, the command station with return a **NoFreeSlotsP2** Response and this procedure is terminated.
- 5. The throttle must then examine the slot data bytes to work out how to process the command station response.
- 6. If the slot state is New, Common or Idle then the throttle requests a "null move" operation by sending the command station a **MoveSlotsP2** Command. The command station returns a **LocoSlotDataP2** Response.
- 7. If the slot state is In-Use and the slot's Throttle ID does not match that of the throttle then the throttle should ask the user if they wish to "steal?" the slot. If the answer is no then this procedure is terminated.
- 8. The throttle now takes ownership of the slot by updating the slot's Throttle ID to that of the throttle and writing the updated slot data to the command station by sending a **SetLocoSlotDataP2** Command. If the request is successful then the command station will return a **setSlotDataOKP2** Response. The **SetLocoSlotDataP2** can also be used to change the decoder mode from that of the default.
- 9. The throttle will then be able to update speed, direction and function information. Whenever slot information is changed in an active slot, the slot is flagged to be updated as the next DCC packet sent to the track. If the slot was stolen from another throttle then the other throttle will no longer be able to command the locomotive.

Example:

```
getLocoSlotDataSAdrP2
0xbe 0x00 0x17 0x56
```

locoSlotDataP2

moveSlotsP2

0xd4 0x39 0x05 0x01 0x05 0x13

locoSlotDataP2

0xe6 0x15 0x01 0x05 0x33 0x17 0x00 0x47 0x00 0x00

1.3. SLOTS 7

setLocoSlotDataP2

setSlotDataOKP2

0xb4 0x6e 0x7f 0x5a

1.3.5 Purging

If a device disconnects from the network and so does not access or reference a slot within the system purge time, the command station will force the un-accessed slot to Common status so other system devices can use the slot. The typical purge time of a command station is about 200 seconds. A good "ping" or slot update activity is about every 100 seconds, i.e. if a user makes no change to a throttle/slot within 100 seconds, the throttle/device should automatically send another speed update at the current speed to reset the purge timeout for that slot. Purging behaviour can be modified by adjusting the command station's OpSw13-OpSw15 settings.

1.4 Messages

The following information is provided for each of the messages:

Description:

Description of the message's function.

Protocol:

Which protocol the message belongs to. Only messages that relate to refresh slots belong to a protocol.

Group:

Which message size group the message belongs to.

Opcode:

The opcode mnemonic. This is the Digitrax assigned mnemonic when known.

Type:

The message type - Broadcast, Command, Response, or Report.

Encoding:

How the message is encoded byte by byte.

Response:

The response expected from a command message, if applicable.

Signature:

The bits and bytes that must be tested to determine the message's unique type.

Notes:

Any notes.

1.4.1 Ack

Description:

This message provides a response code from a Command. This is the generic form of this message type.

Group:

4-Byte Message

Opcode:

OPC_LONG_ACK

Type:

Response

Encoding:

Byte 0:

1	0	1	1	0	1	0	0	0xB4	Opcode.
_	~	_	_	~	_		~	01125 1	opecae.

Byte 1:

Opcode of the command that this message is a response to with the most significant bit set to 0.

Byte 2:

Byte 3:

0	n	n	n	n	n	n	n	<CHK $>$	Checksum

Response:

None.

Signature:

Byte 0:

$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	1 0 1 0	0 0xB4		
Notes:				
None.				

1.4.2 Busy

Description:

None.

The **Busy** broadcast message allows the command station to keep the network active whilst it is performing a task that requires a response, and entails a significant processing delay, i.e. it can ensure no new requests are started until it has responded to the last message. The **Busy** message should be simply stripped and ignored.

Group: 2-Byte Message Opcode: OPC_BUSY Type: Broadcast Encoding: Byte 0: 1 0 0 0 01 0x81Opcode. Byte 1: 0 0 0x7EChecksum. 1 Response: None Signature: Byte 0: 1 0 0 0 0 0 0 1 0x81Notes:

1.4.3 CfgSlotDataP1

Description:

This Response provides the current command station configuration slot data. It is returned by the command station in response to the **GetCfgSlotDataP1** Command.

Protocol:

1

Group:

Variable-Byte Message

Opcode:

OPC_SL_RD_DATA

Type:

Response

Encoding:

Byte 0:

1	1	1	0	0	1	1	1	0xE7	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

0	0	0	U	1	1	1	U	0x0E	Message length (14 bytes).
			•	•	•				

OST1 to OST8 encode the command station's option switch table. A bit value of 1 means that the switch is closed and a value of 0 means that a switch is thrown. OpSw 8, OpSw 16, OpSw 24, OpSw 32, OpSw 40, OpSw 48, OpSw 56 and OpSw 64 cannot be read due to bit 7 being cleared in the message format.

Byte 2:

0	1	1	1	1	1	1	1	0x7F	Configuration slot number
---	---	---	---	---	---	---	---	------	---------------------------

Byte 3:

0	d6	d5	d4	d3	d2	d1	d0	$\langle OST1 \rangle$	Option switch table byte 1.

```
        Bit
        OpSw

        d6
        OpSw 7

        d5
        OpSw 6

        d4
        OpSw 5

        d3
        OpSw 4

        d2
        OpSw 3

        d1
        OpSw 2
```

d0 OpSw 2

Byte 4:

d5 OpSw 14
 d4 OpSw 13
 d3 OpSw 12

d2 OpSw 11

d1 OpSw 10

d0 OpSw 9

Byte 5:

 $\underline{\text{Bit}}$ OpSw $\overline{\mathrm{OpSw}}$ 23 d6OpSw 22d5OpSw 21d4OpSw 20d3OpSw 19d2 ${
m OpSw}$ 18 d1d0OpSw 17

Byte 6:

$\underline{\mathrm{Bit}}$	OpSw
d6	$\overline{\mathrm{OpSw}}$ 31
d5	OpSw~30
d4	OpSw 29
d3	OpSw 28
d2	OpSw 27
14	0 0 00

$\begin{array}{cc} d1 & OpSw \ 26 \\ d0 & OpSw \ 25 \end{array}$

Byte 7:

1	Ω	16	0	Ω	49	สก	J1	d0	<trk></trk>	Clabal Creatana	Thoul Ctatura
	U	uo	U	U	u o	uz	u1	αυ	<11th/	Global System	mack status.

- d6 1 means this command station implements protocol 2 commands.
- d3 1 means the programming track is busy.
- d2 1 means this master implements protocol 1 commands, 0 means the command station is a DT200.
- d1 0 means the track is paused, broadcast an emergency stop.
- d0 1 means the DCC packets are on and global power is up.

Byte 8:

0	d6 d5 d4 d3 d2 d1 d0	$\langle OST5 \rangle$	Option switch table byte 5.
Bit	OpSw		
d6	$\overline{\mathrm{OpSw}}$ 39		
d5	OpSw 38		
d4	OpSw 37		
d3	OpSw 36		
d2	OpSw 35		
d1	OpSw 34		
d0	OpSw 33		
_			

Byte 9:

0	d6 d5 d4 d3 d2 d1 d0	$\langle OST6 \rangle$	Option switch table byte 6.
$\underline{\mathrm{Bit}}$	OpSw		
d6	$\overline{\mathrm{OpSw}}$ 47		
d5	OpSw 46		
d4	OpSw 45		
d3	OpSw 44		
d2	OpSw 43		
d1	OpSw 42		
d0	OpSw 41		

Byte 10:

0	d6 $d5$	d4	d3	d2	d1	d0	$\langle OST7 \rangle$	(Option switch table byte 7.
$\underline{\mathrm{Bit}}$	OpSw								
$\overline{d6}$	$\overline{\mathrm{OpSw}}$	55							
d5	OpSw	54							
d4	OpSw	53							
d3	OpSw	52							
d2	OpSw	51							
d1	OpSw	50							
d0	OpSw	49							
Byte	11:								

Byte 11:

0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<ost8></ost8>	Option switch table byte 8.
$\underline{\mathrm{Bit}}$	OpSw		
d6	$\overline{\mathrm{OpSw}}$ 63		
d5	OpSw 62		
d4	OpSw 61		
d3	OpSw~60		
d2	OpSw 59		
d1	OpSw 58		
d0	OpSw 57		

Byte 12:

0	d6 d5	d4 d3	d2 d1	d0	U	nknown.
d6						
d6 d5						
d4						
$\frac{d3}{d2}$						
d2						
d1						
d0						

Byte 13:

0	n	n	n	n	n	n	n	<chk></chk>	Checksum.
---	---	---	---	---	---	---	---	-------------	-----------

Response:

None.

Signature:

Byte 0:							
1 1	1	0	0	1	1	1	0xE7
Byte 1:							
0 0	0	0	1	1	1	0	0x0E
Byte 2:							
0 1	1	1	1	1	1	1	0x7F
Byte 7:							
0 ×	0	0	X	×	×	×	

 $\underline{\text{Notes:}}$

None.

1.4.4 CfgSlotDataP2

Description:

This Response provides the current command station configuration slot data. It is returned by the command station in response to the **GetCfgSlotDataP2** Command.

Protocol:

2

Group:

Variable-Byte Message

Opcode:

OPC_SL_RD_DATA_P2 (unofficial mnemonic)

Type:

Response

Encoding:

Byte 0:

	1	1	1	0	0	1	1	0	0xE6	Opcode.
--	---	---	---	---	---	---	---	---	------	---------

Byte 1:

		0	0	0	1	0	1	0	1	0x15	Message length (21 bytes
--	--	---	---	---	---	---	---	---	---	------	--------------------------

OST1 to OST14 encode the command station's option switch table. A bit value of 1 means that the switch is closed and a value of 0 means that a switch is thrown. OpSw 8, OpSw 16, OpSw 24, OpSw 32, OpSw 40, OpSw 48, OpSw 56, OpSw 64, OpSw 72, OpSw 80, OpSw 88, OpSw 96, OpSw104, and OpSw 112 cannot be read due to bit 7 being cleared in the message format.

Byte 2:

0 0 0 0 0 0 0 0	0x00	Configuration slot page number.
Byte 3:		
0 1 1 1 1 1 1 1	0x7F	Configuration slot number.
Byte 4:		
0 d6 d5 d4 d3 d2 d1 d0	<ost1></ost1>	Option switch table byte 1.

Option switch table byte 3.

```
OpSw
\underline{\mathrm{Bit}}
            \overline{\mathrm{OpSw}} 7
d6
            {\rm OpSw}~6
d5
            {\rm OpSw}~5
d4
d3
            {\rm OpSw}~4
            \overline{\mathrm{OpSw}} 3
d2
            {\rm OpSw}~2
d1
            {\rm OpSw}~1
d0
```

Byte 5:

0	d6 d5 d4 d3 d2 d1 d0	$\langle OST2 \rangle$	Option switch table byte 2.
Bit d6 d5 d4 d3 d2 d1	OpSw OpSw 15 OpSw 14 OpSw 13 OpSw 12 OpSw 11 OpSw 10		
d0	OpSw 9		

Byte 6:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0

			1	
Dit	OpSw			
$\underline{\mathrm{Bit}}$	Opsw			
	0 0 00			
d6	OpSw 23	{		
40	_			
d5	OpSw 22)		
uэ	Opsw 22	۷.		
	0 0			
d4	OpSw 21			
41	-			
49	OpSw 20)		
d3	Opsw 20	,		
	0 0 10			
d2	OpSw 19)		
a_	Opon re	,		
.11	On C 10)		
d1	OpSw 18	•		
	_			
d0	OpSw 17	7		
ao	Opswii			

<OST3>

Byte 7:

0	d6	d5	d4	d3	d2	d1	d0	$\langle OST4 \rangle$	Option switch table byte 4.
---	----	----	----	----	----	----	----	------------------------	-----------------------------

```
\frac{\text{Bit}}{\text{d6}} \quad \frac{\text{OpSw}}{\text{OpSw}} \text{ 31}
```

- d5 OpSw 30
- d3 OpSw 30 d4 OpSw 29
- d3 OpSw 28
- d2 OpSw 27
- d1 OpSw 26
- d0 OpSw 25

Byte 8:

 $\underline{\underline{\mathrm{Bit}}} \qquad \underline{\mathrm{OpSw}}$

 $d6 \quad \overline{OpSw} \ 39$

- d5 OpSw 38
- d4 OpSw 37
- d3 OpSw 36
- d2 OpSw 35
- d1 OpSw 34
- d0 OpSw 33

Byte 9:

 $\boxed{ 0 \quad \text{d6} \quad \text{d5} \quad \text{d4} \quad \text{d3} \quad \text{d2} \quad \text{d1} \quad \text{d0} }$ <0ST6> Option switch table byte 6.

Bit OpSw

- $d6 \quad \overline{OpSw} \ 47$
- d5 OpSw 46
- d4 OpSw 45
- d3 OpSw 44
- d2 OpSw 43
- d1 OpSw 42
- d0 OpSw 41

Byte 10:

0 d6 d5 d4 d3 d2 d1 d0 <OST7> Option switch table byte 7.

```
OpSw
\underline{\mathrm{Bit}}
         \overline{\mathrm{OpSw}} 55
d6
d5
         OpSw 54
         {
m OpSw}~53
d4
d3
         {\rm OpSw}~52
         OpSw 51
d2

  OpSw 50

d1
         OpSw 49
d0
```

Byte 11:

0	$d6 \mid d5 \mid d4 \mid d3 \mid d2 \mid d1 \mid d0$	<ost8></ost8>	Option switch table byte 8.
Bit d6 d5 d4	OpSw OpSw 63 OpSw 62 OpSw 61		
d3 $d2$	OpSw 60 $ OpSw 59$		
d1 d0	OpSw 58 OpSw 57		

Byte 12:

0	$d6 \mid d5 \mid d4 \mid d3 \mid d2 \mid d1 \mid d0$	$\langle OST9 \rangle$	Option switch table byte 9.
$\underline{\mathrm{Bit}}$	OpSw		
d6	$\overline{\mathrm{OpSw}}$ 71		
d5	OpSw 70		
d4	OpSw 69		
d3	OpSw 68		
d2	OpSw 67		
d1	OpSw 66		
d0	OpSw 65		

Byte 13:

0	d6 d5	d4	d3	d2	d1	d0	<ost10></ost10>	Option switch table byte 10.
---	-------	----	----	----	----	----	-----------------	------------------------------

```
        Bit
        OpSw

        d6
        OpSw 79

        d5
        OpSw 78

        d4
        OpSw 77

        d3
        OpSw 76

        d2
        OpSw 75
```

 $\begin{array}{cc} d1 & OpSw \ 74 \\ d0 & OpSw \ 73 \end{array}$

Byte 14:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | OST11> Option switch table byte 11.

```
\underline{\mathrm{Bit}}
         OpSw
         \overline{\mathrm{OpSw}} 87
d6
         OpSw~86
d5
         OpSw~85
d4
         OpSw 84
d3
         {
m OpSw} 83
d2
d1
         {
m OpSw} 82
d0
         OpSw 81
```

Byte 15:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | CST12> Option switch table byte 12.

```
\underline{\text{Bit}}
        OpSw
d6
        OpSw 95
d5
        OpSw 94
        {
m OpSw} 93
d4
        {\rm OpSw} 92
d3
        OpSw 91
d2
        OpSw 90
d1
d0
        OpSw 89
```

Byte 16:

0 d6 d5 d4 d3 d2 d1 d0 <0ST13> Option switch table byte 13.

```
OpSw
\underline{\mathrm{Bit}}
          \overline{\mathrm{OpSw}} 103
d6
d5
          OpSw 102
          {
m OpSw}~101
d4
d3
          OpSw 100
          {\rm OpSw} 99
d2
          {
m OpSw} 98
d1
          {
m OpSw} 97
d0
```

Byte 17:

0	d6 d5 d4 d3 d2 d1 d0	<ost14></ost14>	Option switch table byte 14.
$\underline{\mathrm{Bit}}$	OpSw		
d6	$\overline{\mathrm{OpSw}}$ 111		
d5	OpSw 110		
d4	OpSw 109		
d3	OpSw 108		
d2	OpSw 107		
d1	OpSw 106		
d0	OpSw 105		

Byte 18:

0	d6 d5 d	d4 d3 d2	d1 d0	Unknown.	
D.	D				
$\underline{\mathrm{Bit}}$	<u>Function</u>	<u>n</u>			
d6					
d5					
d4					
d3					
d2					
d1					
d0					
Byte	19:				

Unknown.

d6 d5 d4 d3 d2 d1 d0

Bit Function		
d6		
d5		
d4		
d3		
d2		
d1		
d0		
Byte 20:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None.		
Signature:		
Byte 0:		
1 1 1 0 0 1 1 0	0xE6	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x15	
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	
Notes:		
None.		

1.4.5 ConsistDirF0F4

Description:

This command sets the consist element's direction and function F0 to F4 states.

Protocol:

1

Group:

4-Byte Message

Opcode:

OPC_CONSIST_FUNC

Type:

Command

Encoding:

Byte 0:

1	0	1	1	0	1	1	0	0xB6	Opcode.

Byte 1:

0	n	n	n	n	n	n	n	<slot#></slot#>	Slot number in the range 0x00 to
								•	0x77.

Byte 2:

0	(О	d5	d4	d3	d2	d1	d0	$\langle \text{DIRF} \rangle$	Consist	element's	direction	and
				,						function	F0 to F4 s	states.	

- d5 Direction: 1 means forward and 0 means backwards.
- d4 F0 state: 1 means on and 0 means off.
- d3 F4 state: 1 means on and 0 means off.
- d2 F3 state: 1 means on and 0 means off.
- d1 F2 state: 1 means on and 0 means off.
- d0 F1 state: 1 means on and 0 means off.

Byte 3:

0	n	n	n	n	n	n	n	<CHK $>$	Checksum.
---	---	---	---	---	---	---	---	----------	-----------

Response:

 1.4. MESSAGES
 25

 None.
 Signature:

 Byte 0:
 0:

 1 0 1 1 0 1 1 0 0xB6

 Byte 1:

 0 n n n n n n n n less than 0x78

Byte 2:

 $0 \quad 0 \quad \times \quad \times \quad \times \quad \times \quad \times$

Notes:

None.

1.4.6 GetBrdOpSw

Description:

Get board option switch setting.

Group:

6-Byte Message

Opcode:

OPC_BRD_OPSW (unofficial mnemonic)

Type:

Command

Encoding:

Byte 0:

1	1	0	1	Ω	Ω	0	Ω	0	Oncodo
I	T	U	I	U	U	U	U	UXDU	Opcode.

Byte 1:

0	1	1	0	0	0	1	d0
---	---	---	---	---	---	---	----

The bit d0 is the most significant bit of the board id.

Byte 2:

Byte 3:

Byte 4:

0	d6	d5	d4	d3	d2	d1	d0	Byte and bit number.
---	----	----	----	----	----	----	----	----------------------

The high nibble encodes the byte number, and the low nibble the bit number. The byte number is calculated as (OpSw# - 1) >> 3 and the bit number is (OpSw# - 1) - byte number \times 8.

Byte 5:

Response:

 \mathbf{Ack} ;- *** SHOULD NOT BE A RESPONSE ***

Signature:

Byte 0:

1 1 0 1 0 0 0 0 0 0xD0

Byte 1:

 $oxed{0\ |\ 1\ |\ 1\ |\ 0\ |\ 0\ |\ 0\ |\ 1\ |\ \times}$

Notes:

*** THIS HAS NOT BEEN TESTED ***

Byte 1:

$1.4.7 \quad GetCfgSlotDataP1$

Description:	
This Command requests the configuration slot data. The command station return CfgSlotDataP1 Response.	ıs a
Protocol:	
1	
Group:	
4-Byte Message	
Opcode:	
OPC_RQ_SL_DATA	
Type:	
Command	
Encoding:	
Byte 0:	
1 0 1 1 0 1 1 0 OxBB Opcode.	
Byte 1:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 2:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 3:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Response:	
CfgSlotDataP1	
Signature:	
Byte 0:	
1 0 1 1 0 1 1 0 0xBB	

	0	1	1	1	1	1	1	1	0x7F
В	Byte	2:							

0 0 0 0 0 0 0 0 0x00

Notes:

None.

Byte 1:

$1.4.8 \quad GetCfgSlotDataP2$

<u>Description:</u>
This Command requests the configuration slot data. The command station returns a CfgSlotDataP2 Response.
Protocol:
2
Group:
4-Byte Message
Opcode:
OPC_RQ_SL_DATA
Type:
Command
Encoding:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 1:
$egin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Byte 2:
$egin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
Byte 3:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Response:
CfgSlotDataP2
Signature:
Byte 0:
1 0 1 1 0 1 1 0 0xBB

	0	1	1	1	1	1	1	1	0x7F
--	---	---	---	---	---	---	---	---	------

Byte 2:

								1
0	1	0	0	0	0	0	0	0x40

Notes:

1.4.9 GetInterfaceData

Description:			
This Command is sent by a computer attached network interface device.	to request	an InterfaceData Respo	onse from the
Group:			
2-Byte Message			
Opcode:			
OPC_BUSY			
Type:			
Command			
Applicable Hardware:			
Digitrax PR4 and DCS240.			
Encoding:			
Byte 0:			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x81	Opcode.	
Byte 1:			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7E	Checksum.	
Response:			
Interface device returns an Interface D	Oata respon	se.	
Signature:			
Notes:			
None.			

1.4.10 GetLocoSlotDataLAdrP1

Description:

Response:

This Command requests a slot for the selected locomotive address. If the locomotive address is found in the slot table then the command station returns an LocoSlotDataP1 Response with the slot information. If it is not found then the command station will put the locomotive address into a free slot and then return an LocoSlotDataP1 Response with the slot information. If there are no free slots then the command station returns a NoFreeSlotsP1 Response.

The command station will generate NMRA 14 bit or long address packets for the locomotive. The address must be in the range 128 to 9983.

Protocol: 1 Group: 4-Byte Message Opcode: OPC_LOCO_ADR Type: Command Encoding: Byte 0: 1 Opcode. 1 0xBFByte 1: 0 n <ADR2>Address high 7 bits. \mathbf{n} n n n Byte 2: 0 Address low 7 bits. n <ADR> \mathbf{n} \mathbf{n} n n n \mathbf{n} Byte 3: Checksum. 0 \mathbf{n} n n \mathbf{n} \mathbf{n} n <CHK>

${\bf LocoSlotDataP1} \ {\bf if} \ {\bf success}, \ {\bf otherwise} \ {\bf NoFreeSlotsP1}$

Signa	1
Signa	filro.
Digita	ourc.
0	

Byte 0:

1	0	1	1	1	1	1	1	0xBF

Byte 1:

	0	n	n	n	n	n	n	n	not equal to 0
--	---	---	---	---	---	---	---	---	----------------

Notes:

This command is not supported by the Digitrax DT200 command station.

GetLocoSlotDataLAdrP21.4.11

Description:

Response:

This Command requests a slot for the selected locomotive address. If the locomotive address is found in the slot table then the command station returns a LocoSlotDataP2 Response with the slot information. If it is not found then the command station will put the locomotive address into a Free slot and then return an LocoSlotDataP2 Response with the slot information. If there are no free slots then the command station returns a NoFreeSlotsP2 Response.

The command station will generate NMRA 14 bit or long address packets for the locomotive. The address must be in the range 128 to 9983.

Protocol: 2 Group: 4-Byte Message Opcode: OPC_LOCO_ADR_P2 (unofficial mnemonic) Type: Command Encoding: Byte 0: 1 Opcode. 0 0xBEByte 1: 0 n <ADR2>Address high 7 bits. \mathbf{n} n n Byte 2: 0 Address low 7 bits. n <ADR> \mathbf{n} \mathbf{n} n n n \mathbf{n} Byte 3: Checksum. 0 \mathbf{n} n n \mathbf{n} \mathbf{n} n <CHK>

${\bf LocoSlotDataP2} \ {\bf if} \ {\bf success}, \ {\bf otherwise} \ {\bf NoFreeSlotsP2}.$

Signature:

Byte 0:

		1	0	1	1	1	1	1	0	0xBE
--	--	---	---	---	---	---	---	---	---	------

Byte 1:

0	n	n	n	n	n	n	n	not equal to 0
---	---	---	---	---	---	---	---	----------------

Notes:

This Command can be disabled by the command station OpSw66.

1.4.12 GetLocoSlotDataP1

Description:

Byte 0:

Byte 1:

1 0

0

1

1

1

This Command requests the locomotive slot data for the specified slot. The command station responds with a LocoSlotDataP1 Response.

Protocol: 1 Group: 4-Byte Message Opcode: OPC_RQ_SL_DATA Type: Command Encoding: Byte 0: Opcode. 1 0 1 1 1 0 1 1 0xBBByte 1: <SLOT#>0 Slot number in the range 0x00 to n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} 0x77.Byte 2: $0 \quad 0$ 0 0x000 0 0 0 d0Byte 3: 0 n <CHK> Checksum. n \mathbf{n} n \mathbf{n} n n Response: LocoSlotDataP1 or SlotNotImplemented Signature:

0xBB

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	less than $0x78$
Byte 2:	
0 0 0 0 0 0 0 0	0x00
Notes:	
None.	

1.4.13 GetLocoSlotDataP2

Description:

This Command requests the locomotive slot data for the specified slot. The command station responds with a LocoSlotDataP2 Response.

Protocol: 2 Group: 4-Byte Message Opcode: OPC_RQ_SL_DATA Type: Command Encoding: Byte 0: $1 \quad 0$ Opcode. 1 1 1 0 1 0xBBByte 1: 0 n n <SLOT#>Slot number in the range 0x00 to \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} 0x77.Byte 2: 0 0 0 d3 $d2 \mid d1 \mid d0$ <SLOTP> Bits d2 to d0 contain the slot page number in the range 0x0 to 0x7. Byte 3: 0 n <CHK>Checksum. \mathbf{n} n \mathbf{n} \mathbf{n} n \mathbf{n} Response:

LocoSlotDataP2 or SlotNotImplemented

Signature:

Byte 0:

1	0	1	1	1	0	1	1	0xBB
---	---	---	---	---	---	---	---	------

Byte	

Byte 2:

 $\underline{\text{Notes:}}$

1.4.14 GetLocoSlotDataSAdrP1

Description:

This Command requests a slot for the selected locomotive address. If the locomotive address is found in the slot table then the command station returns a LocoSlotDataP1 Response with the slot information. If it is not found then the command station will put the locomotive address into a Free slot and then return a LocoSlotDataP1 Response with the slot information. If there are no free slots then the command station returns a NoFreeSlotsP1 Response.

The command station will generate NMRA 7 bit or short address packets for the locomotive. The address has the range 0 to 127. The analog locomotive is selected with address 0

0.		
Protocol:		
1		
Group:		
4-Byte Message		
Opcode:		
OPC_LOCO_ADR		
Type:		
Command		
Encoding:		
Byte 0:		
1 0 1 1 1 1 1 1	0xBF	Opcode.
Byte 1:		
0 0 0 0 0 0 0 0	0x00	
Byte 2:		
	<adr></adr>	Short address in the range 0 to 127.
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.

Response:

 ${\bf LocoSlotDataP1} \ {\bf if} \ {\bf success}, \ {\bf otherwise} \ {\bf NoFreeSlotsP1}$

Signa	turo.
oigna	ture.

Byte 0:

1	0	1	1	1	1	1	1	0xBF
1	U	+	1		_			UADI

Byte 1:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0x00
---	--------------

Notes:

1.4.15 GetLocoSlotDataSAdrP2

Description:

This Command requests a slot for the selected locomotive address. If the locomotive address is found in the slot table then the command station returns a **LocoSlotDataP2** Response with the slot information. If it is not found then the command station will put the locomotive address into a Free slot and then return a **LocoSlotDataP2** Response with the slot information. If there are no free slots then the command station returns a **NoFreeSlotsP2** Response.

The command station will generate NMRA 7 bit or short address packets for the locomotive. The address has the range 0 to 127. The analog locomotive is selected with address 0

Protocol: Group: 4-Byte Message Opcode: OPC_LOCO_ADR_P2 (unofficial mnemonic) Type: Command Encoding: Byte 0: 0 Opcode. 1 1 1 1 0xBEByte 1: 0 0 0 0 0 0 0 0 0x00Byte 2: 0 n \mathbf{n} \mathbf{n} n \mathbf{n} <ADR> Short address in the range 0 to \mathbf{n} \mathbf{n} 127. Byte 3: 0 <CHK> Checksum. n \mathbf{n} \mathbf{n} n n

Response:

${\bf LocoSlotDataP2} \ {\bf if} \ {\bf success}, \ {\bf otherwise} \ {\bf NoFreeSlotsP2}$

Signature:

Byte 0:

1	0	1	1	1	1	1	0	0xBE
---	---	---	---	---	---	---	---	------

Byte 1:

0	0	0	0	0	0	0	0	0x00

Notes:

This Command can be disabled by the command station's OpSw66.

1.4.16 GetSwState

Description:

This Command requests the state of a switch. The device responds with a SwState Response.

Group:

 $\hbox{4-Byte Message}$

Opcode:

OPC_SW_STATE

Type:

Command

Encoding:

Byte 0:

TI TO TI TI TI TO TO TOMBO OPCOUN		1	0	1	1	1	1	0	0	0xBC	Opcode.
-----------------------------------	--	---	---	---	---	---	---	---	---	------	---------

Byte 1:

|--|

Byte 2:

- d3 A10.
- d2 A9.
- d1 A8.
- d0 A7.

Byte 3:

0	n	n	n	n	n	n	n	<chk></chk>	Checksum.
---	---	---	---	---	---	---	---	-------------	-----------

Response:

SwState

Signature:

Byte 0:

1	0	1	1	1	1	0	0	0xBC
---	---	---	---	---	---	---	---	------

Byte	9.
\mathbf{D}_{V}	∠.

0	0	0	0	×	×	×	X
---	---	---	---	---	---	---	---

Notes:

1.4.17 IllegalMoveP1

Description:

1 0

1 0

1 0

0

0xB4

The IllegalMoveP1 Response means that the slot move request was not successful. This could be because the slot combination is invalid or that the slot in question was In-Use

Use. Protocol: 1 Group: 4-Byte Message Opcode: OPC_LONG_ACK Type: Response Encoding: Byte 0: 1 0 0xB4Opcode. 1 1 0 1 0 0 Byte 1: 0 0 0x3A1 1 1 0 1 0 Byte 2: $0 \quad 0$ 0 0 0 0 0 0 0x00Byte 3: 0 1 1 0 1 0x71Checksum. Response: None Signature: Byte 0:

Byte 1:										
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	1	1	1	0	1	0	0x3A			
Byte 2:										
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0	0	0×00			
Byte 3:										
0 1	1	1	0	0	0	1] 0x71			
Notes:										

1.4.18 IllegalMoveP2

Description:

1 0

1 0

1 0

0

0xB4

The IllegalMoveP2 Response means that the slot move request was not successful. This could be because the slot combination is invalid or that the slot in question was In-Use

Use. Protocol: 2 Group: 4-Byte Message Opcode: OPC_LONG_ACK Type: Response Encoding: Byte 0: 1 0 0xB4Opcode. 1 1 0 1 0 0 Byte 1: 0 1 0 1 0 1 0 0 0x54Byte 2: $0 \quad 0$ 0 0 0 0 0 0 0x00Byte 3: $0 \quad 0$ 1 1 0x1FChecksum. Response: None Signature: Byte 0:

Byte 1:							
0 1	0	1	0	1	0	0	0x54
Byte 2:							
0 0	0	0	0	0	0	0	0x00
Byte 3:							
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	1	1	1	1	1	0x1F
Notes:							

1.4.19 IMMPacket

Description:

This Command sends an n-byte DCC immediate packet.

Group:

Variable-Byte Message

Opcode:

OPC_IMM_PACKET

Type:

Command

Encoding:

Byte 0:

	1	1	1	0	1	1	0	1	0xED	Opcode.
--	---	---	---	---	---	---	---	---	------	---------

Byte 1:

	0	0	0	1	0	0	0	0	0x0B	Message length (11 bytes)).
--	---	---	---	---	---	---	---	---	------	---------------------------	----

Byte 2:

0	1	1	1	1	1	1	1	0x7F
---	---	---	---	---	---	---	---	------

Byte 3:

0	d6	d5	d4	0	d2	d1	d0	<REPS $>$	Number	of immediate	bytes	and
									repeat co	ount.		

- d6 N2. Number of immediate bytes.
- d5 N1. Number of immediate bytes.
- d4 No. Number of immediate bytes.
- d2 R2. Repeat count.
- d1 R1. Repeat count.
- d0 R0. Repeat count.

Byte 4:

0 1 1 1

1 1 1 1

 d4 IM5.7. High bit. d3 IM4.7. High bit. d2 IM3.7. High bit. d1 IM2.7. High bit. d0 IM1.7. High bit. 		
Byte 5:		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<im1></im1>	Data item 1 low 7 bits.
Byte 6:		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<im2></im2>	Data item 2 low 7 bits.
Byte 7:		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<im3></im3>	Data item 3 low 7 bits.
Byte 8:		
0 d6 d5 d4 d3 d2 d1 d0	<im4></im4>	Data item 4 low 7 bits.
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<im5></im5>	Data item 5 low 7 bits.
Byte 10:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
Ack.		
0x7E < lim address > Comm	ing nand OK, if com nand OK, if lim nal buffer busy o	ited master.
Signature:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xED	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x0B	
Byte 2:		

0x7F

Byte 3:

0 ×	×	×	0	×	×	×	Ì
-----	---	---	---	---	---	---	---

Byte 4:

0	0	1	×	×	×	×	×

Notes:

1.4.20 InterfaceData

Description:		
This Response is returned by an int Command.	erface device in	response to a getInterfaceData
Group:		
Variable-Byte Message		
Opcode:		
OPC_PEER_XFER		
Type:		
Response		
Applicable Hardware:		
Digitrax PR4 and DCS240.		
Encoding:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xE5	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10	Message length (16 bytes).
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x22	
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x22	
Byte 4:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x01	
Byte 5:		
	0x00	
Byte 6:		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d1></d1>	Serial Number low byte low 7 bits.
Byte 7:		
	<d2></d2>	Serial Number high byte low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	It contains a value but the meaning is unknown.
Byte 9:		
	<d4></d4>	Unknown - set to zero for PR4 and DCS240.
Byte 10:		
	<pxct2></pxct2>	Unknown - set to zero for PR4 and DCS240.
Byte 11:		
	<d5></d5>	Maybe hardware version.
Byte 12:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d6></d6>	Software version.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d7></d7>	Maybe hardware version.
Byte 14:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d8></d8>	Product Code.
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None		
Signature:		
Byte 0:		
	0xE5	
Byte 1:		

$oxed{0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Byte 2:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 3:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 4:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 5:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 10:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Notes:
PR4 #1
<pre><do> 0xe5 OPCODE <d1> 0x10 LENGTH <d2> 0x22 SRC <d3> 0x22 DSTL <d4> 0x01 DSTH <d5> 0x00 PXCT1 <- I would have expected b4 = 1 <d6> 0x08 Serial Number Low Byte <d7> 0x07 Serial Number High Byte - Actual serial number 0x0788 <d8> 0x16 <d9> 0x00 <d10> 0x00 PXCT2 <d11> 0x00 <d12> 0x00 <d12> 0x00 <d14> 0x24 Product Code for PR4 <d15> 0x36 CHSUM</d15></d14></d12></d12></d11></d10></d9></d8></d7></d6></d5></d4></d3></d2></d1></do></pre>
PR4 #2
<do> Oxe5 OPCODE OPC_PEER_XFER <d1> Ox10 LENGTH</d1></do>

```
<D2> 0x22 SRC
<D3> 0x22 DSTL
<D4> 0x01 DSTH
<D5> 0x00 PXCT1
<D6> 0x57 Serial Number Low Byte
<D7> 0x13 Serial Number High Byte - Actual serial number 0x1357
<D8> 0x16
<D9> 0x00
<D10> 0x00 PXCT2
<D11> 0x00
<D12> 0x00
<D13> 0x00
<D14> 0x24 Product Code for PR4
<D15> 0x7d CHKSUM
DCS240
<DO> 0xe5 OPCODE
<D1> 0x10 Length
<D2> 0x22 SRC
<D3> 0x22 DSTL
<D4> 0x01 DSTH
<D5> 0x00 PXCT1 <- I would have expected b4 to be 1
<D6> 0x2b Serial Number Low Byte
<D7> 0x0a Serial Number High Byte - Actual serial number 0x0aab
<D8> 0x14
<D9> 0x00
<D10> 0x00 PXCT2
<D11> 0x01 Hardware Version?
<D12> 0x03 Software Version
<D13> 0x01 Hardware Version?
<D14> 0x1c Product Code for DCS240
<D15> 0x21
```

1.4.21 IPLDataLoad

Description:

This Command loads firmware data into a device that supports IPL. D1 is the lowest addressed byte and D8 is the highest addressed byte.

Group:

Variable-Byte Message

Opcode:

OPC_PEER_XFER

Type:

Command

Encoding:

Byte 0:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xE5	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10	Message length (16 bytes).
Byte 2:		
0 1 1 1 1 1 1 1	0x7F	Broadcast id.
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.
Byte 4:		
0 1 1 1 1 1 1 1	0x7F	Broadcast id.
Byte 5:		
0 1 0 0 d3 d2 d1 d0	<pxct1></pxct1>	Download code 0x40 and high bits of D1 to D4.
d3 D4.7. High bit		
d2 D3.7. High bit		
d1 D2.7. High bit		
d0 D1.7. High bit		

Byte 6:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d1></d1>	Data Byte 1. Low 7 bits.
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d2></d2>	Data Byte 2. Low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	Data Byte 3. Low 7 bits.
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d4></d4>	Data Byte 4. Low 7 bits.
Byte 10:		
0 0 1 0 n n n n	<pxct2></pxct2>	Data type code 0x20 and high bits for D5 to D8.
 d3 D8.7. High bit d2 D7.7. High bit d1 D6.7. High bit d0 D5.7. High bit 		
Byte 11:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d5></d5>	Data Byte 5. Low 7 bits.
Byte 12:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d6></d6>	Data Byte 6. Low 7 bits.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d7></d7>	Data Byte 7. Low 7 bits.
Byte 14:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d8></d8>	Data Byte 8. Low 7 bits.
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None		
Signature:		

Byte 0:

1 1 1 0 0 1 0 1	0xE5
Byte 1:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10
Byte 2:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 3:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 4:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 5:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 10:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Notes:	
None.	

1.4.22 IPLDevData

Description:

An IPL capable device returns this Response in response to an IPLDiscover Command.

Group:

Variable-Byte Message

Opcode:

OPC_PEER_XFER

Type:

Response

Encoding:

Byte 0:

	1	1	1	0	0	1	0	1	0xE5	Opcode.
_		-								

Byte 1:

0	0 0	1	0	1	0	0	0x14	Message length (20 bytes)
---	-----	---	---	---	---	---	------	---------------------------

Byte 2:

$ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 0 \ X \ 0 \ \Gamma$
--

Byte 3:

0	0	0	1	0	0	0	0	0x10
---	---	---	---	---	---	---	---	------

Byte 4:

0	0	0	0	d3	d2	d1	d0	<pxct1></pxct1>	High bits of D1 to D4

- d3 D4.7. High bit
- d2 D3.7. High bit
- d1 D2.7. High bit
- d0 D1.7. High bit

Byte 5:

0	n	n	n	n	n	n	n	<d1></d1>	Product	${\color{red}\mathbf{Code}\ low}$	7 bit
---	---	---	---	---	---	---	---	-----------	---------	-----------------------------------	-------

Byte 6:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d2></d2>	Hardware version 2 low 7 bits.
$\begin{array}{cc} \underline{D2} & \underline{Meaning} \\ 0x00 & \underline{Slave all} \\ 0x18 & \underline{Slave RF24} \end{array}$		
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	Data item 3. Low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d4></d4>	Software Version Number low 7 bits.
d6 version number bit 3 d5 version number bit 2. d4 version number bit 1 d3 version number bit 0 d2 subversion number bit 2 d1 subversion number bit 1 d0 subversion number bit 0 e.g. 0x09 decodes as version 1.1.		
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<pxct2></pxct2>	High bits of D5 to D8.
 d3 D8.7. High bit d2 D7.7. High bit d1 D6.7. High bit d0 D5.7. High bit 		
Byte 10:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d5></d5>	Data item 5. Low 7 bits.
Byte 11:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d6></d6>	Serial number low byte low 7 bits.
Byte 12:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d7></d7>	Serial number high byte low 7 bits.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d8></d8>	Data item 8. Low 7 bits.

Byte 14:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<pxct3></pxct3>	High bits for D9 to D12.
 d3 D12.7. High bit d2 D11.7. High bit d1 D10.7. High bit d0 D9.7. High bit 		
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d9></d9>	Data item 9. Low 7 bits.
Byte 16:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d10></d10>	Data item 10. Low 7 bits.
Byte 17:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d11></d11>	Data item 11. Low 7 bits.
Byte 18:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d12></d12>	Data item 8. Low 12 bits.
Byte 19:		
$oxed{0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<chk></chk>	Checksum.

Response:

None.

Notes:

These came from DigiPLII:

 $e5\ 14\ 0f\ 10\ 00\ 24\ 00\ 00\ 00\ 02\ 00\ 08\ 07\ 00\ 00\ 00\ 00\ 00\ 00\ 38$

 $e5\ 14\ 0f\ 10\ 00\ 24\ 00\ 00\ 00\ 00\ 00\ 57\ 13\ 00\ 00\ 00\ 00\ 00\ 00\ 71$

 $e5\ 14\ 0f\ 10\ 00\ 1b\ 00\ 00\ 03\ 02\ 00\ 54\ 10\ 00\ 00\ 00\ 00\ 00\ 00\ 4f$

PR4 with serial number 0x0788 ver 0

PR4 with serial 0x1357 ver 0

DCS210 with SN 0x10D4 ver 0.3

DCS240 with SN 0x0AAB ver 0.3

1.4.23 IPLDiscover

${\bf Description:}$

This Command requests IPL capable devices to report their IPL information. The devices each respond with a IPLDevData Response.

Group:

Variable-Byte Message

Opcode:

OPC_PEER_XFER

Type:

Command

Encoding:

Byte 0:

0

Byte 6:

Byte 7:

 $0 \quad 0$

 $0 \quad 0$

0

0

0

0

0 0

0

0 0

0

0

0

0 0

0

0

0

·		
1 1 1 0 0 1 0 1	0xE5	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x14	Message length (20 bytes).
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x0F	
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x08	
Byte 4:		
0 0 0 0 0 0 0 0	0x00	
Byte 5:		

0x00

0x00

0x00

Ву	te 8:							
(0 0	0	0	0	0	0 0	0×00	
Byte 9:								
(0 0	0	0	0	0	0 0	0x00	
Byte 10:								
(0 0	0	0	0	0	0 0	0x00	
Byte 11:								
(0 0	0	0	0	0	0 1] 0x01	
Byte 12:								
(0 0	0	0	0	0	0 0	0x00	
Byte 13:								
(0 0	0	0	0	0	0 0	0x00	
Byte 14:								
(0 0	0	0	0	0	0 0	0x00	
Byte 15:								
(0 0	0	0	0	0	0 0	0x00	
Byte 16:								
(0 0	0	0	0	0	0 0	0x00	
Byte 17:								
(0 0	0	0	0	0	0 0	0x00	
Byte 18:								
(0 0	0	0	0	0	0 0	0x00	
Byte 19:								
() n	n	n	n	n	n n	CHK>	Checksum.
ъ								

Response:

${\bf IPLDevData}$

Signature:

Byte 0:						
1 1	1	0	0	1	0 1	0xE5
Byte 1:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	1	0	1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x14
Byte 2:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	1	1	1 1	0x0F
Byte 3:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	1	0	0 0	0x08
Byte 4:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x00
Byte 5:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0 0	0x00
Byte 6:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x00
Byte 7:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x00
Byte 8:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x00
Byte 9:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0x00
Byte 10:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0 0	0x00
Byte 11:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0 1	0x01
Byte 12:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0 0	0x00
Byte 13:						

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x 0 0
Byte 14:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00
Byte 15:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00
Byte 16:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00
Byte 17:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00
Byte 18:	
0 0 0 0 0 0 0 0	0x00
Notes:	
None.	

1.4.24 IPLEndLoad

Description:				
This Command ends a device firmware	e update.			
Group:				
Variable-Byte Message				
Opcode:				
OPC_PEER_XFER				
Type:				
Command				
Encoding:				
Byte 0:				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0xE5	Opcode.		
Byte 1:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10	Message length (16 bytes).		
Byte 2:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.		
Byte 3:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.		
Byte 4:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.		
Byte 5:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x40	Download code.		
Byte 6:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00			
Byte 7:				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00			

Byte 8:		
0 0 0 0 0 0 0 0	0x00	
Byte 9:		
0 0 0 0 0 0 0 0	0x00	
Byte 10:		
0 1 0 0 n n n n	0x40	End load type code.
Byte 11:		
0 0 0 0 0 0 0 0	0x00	
Byte 12:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00	
Byte 13:		
0 0 0 0 0 0 0 0	0x00	
Byte 14:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00	
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None		
Signature:		
Byte 0:		
1 1 1 0 0 1 0 1	0xE5	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10	
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	
Byte 3:		
0 1 1 1 1 1 1 1	0x7F	

Byte 4:							
$0 \mid 1$	1	1	1	1	1	1	0x7F
Byte 5:							
$0 \mid 1$	0	0	0	0	0	0	0x40
Byte 6:							
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0	0	0x00
Byte 7:							
0 0	0	0	0	0	0	0	0x00
Byte 8:							
0 0	0	0	0	0	0	0	0x00
Byte 9:							
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0	0	0x00
Byte 10	:						
0 1	0	0	n	n	n	n	0x40
Byte 11:							
0 0	0	0	0	0	0	0	0x00
Byte 12	:						
0 0	0	0	0	0	0	0	0x00
Byte 13	:						
0 0	0	0	0	0	0	0	0x00
Byte 14	:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	0	0	0	0x00
Notes:							

None.

$1.4.25 \quad IPLSetAddr$

Description:		
This Command sets the memory addata.	dress of where	to load the next block of firmware
Group:		
Variable-Byte Message		
Opcode:		
OPC_PEER_XFER		
Type:		
Command		
Encoding:		
Byte 0:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0xE5	OPC_PEER_XFER opcode.
Byte 1:		
$oxed{0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0x10	Message length (16 bytes).
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.
Byte 4:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.
Byte 5:		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<pxct1></pxct1>	Download code 0x40 and high bits of D1 to D4.

- d3D4.7. High bit
- D3.7. High bit d2
- D2.7. High bit d1
- D1.7. High bit d0

Byte 6:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d1></d1>	Address High Byte. Low 7 bits.
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d2></d2>	Address Mid Byte. Low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	Address Low Byte. Low 7 bits.
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d4></d4>	Reserved always 0x00. Low 7 bits.
Byte 10:		
0 0 0 1 n n n n	<pxct2></pxct2>	Address type code 0x10 and high bits for D5 to D8.
 d3 D8.7. High bit d2 D7.7. High bit d1 D6.7. High bit d0 D5.7. High bit 		
Byte 11:		
$oxed{0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<d5></d5>	Reserved always 0x00. Low 7 bits.
Byte 12:		
0 0 0 0 0 0 0 0	<d6></d6>	Reserved always 0x00. Low 7 bits.
Byte 13:		
	<d7></d7>	Reserved always 0x00. Low 7 bits.
Byte 14:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d8></d8>	Reserved always 0x00. Low 7 bits.
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None		
Ttolio		

Byte 0:

	0xE 5
Byte 1:	
	0x10
Byte 2:	3123
	0x7F
Byte 3:	
	0x7F
Byte 4:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 5:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 9:	
0 0 0 0 0 0 0 0	0x00
Byte 10:	
Byte 11:	
	0x 0 0
Byte 12:	
	0x00
Byte 13:	
	0x00
Byte 14:	
	0x00
Notes:	
None.	

1.4.26 IPLSetupBL2

Description:

This Command initiates a firmware update for a device that supports the IPL Bootloader 2 protocol.

Group:

Variable-Byte Message

Opcode:

OPC_PEER_XFER

Type:

Command

Encoding:

Byte 0:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xE5	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10	Message length (16 bytes).
Byte 2:		
0 1 1 1 1 1 1 1	0x7F	Broadcast id.
Byte 3:		
0 1 1 1 1 1 1 1	0x7F	Broadcast id.
Byte 4:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F	Broadcast id.
Byte 5:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<pxct1></pxct1>	Download code 0x40 and high bits

of D1 to D4.

- d3 D4.7. High bit
- d2 D3.7. High bit
- d1 D2.7. High bit
- d0 D1.7. High bit

Byte 6:	.D1	
0 n n n n n n n	<d1></d1>	Manufacturer code. Low 7 bits.
$\begin{array}{cc} \underline{\text{Code}} & \underline{\text{Manufacturer}} \\ 0\text{x}00 & \underline{\text{Digitrax}} \end{array}$		
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d2></d2>	Product code. Low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	Hardware version. Low 7 bits.
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d4></d4>	Software version. Low 7 bits.
Byte 10:		
0 0 0 0 n n n n	<pxct2></pxct2>	Setup download type code 0x00 and high bits for D5 to D8.
 d3 D8.7. High bit d2 D7.7. High bit d1 D6.7. High bit d0 D5.7. High bit Byte 11:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d5></d5>	Options. Low 7 bits.
Byte 12:		
0 0 0 0 0 0 0 0	<d6></d6>	Reserved always 0x00. Low 7 bits.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d7></d7>	Number of blocks to erase 7. Low 7 bits.
This is calculated as $INT(0.5 + (Last))$	Address - First	Address) / Erase Blk Size).
Byte 14:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d8></d8>	Reserved always 0x00. Low 7 bits.
Byte 15:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.

Response:	
None	
Signature:	
Byte 0:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xE5
Byte 1:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x10
Byte 2:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 3:	
0 1 1 1 1 1 1 1	0x7F
Byte 4:	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7F
Byte 5:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 10:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 12:	
0 0 0 0 0 0 0 0	0x 0 0
Byte 14:	
0 0 0 0 0 0 0 0	0x 0 0
Notes:	
None.	

LinkSlotsP1 1.4.27

Description:

This Command requests the command station to link slot SL1 to slot SL2. If the Command was successful then a LocoSlotDataP1 Response will be returned. An invalid link will return a InvalidLinkP1 Response.

Protocol: 1 Group: 4-Byte Message Opcode: OPC_LINK_SLOTS Type: Command Encoding: Byte 0: 1 0 Opcode. 0 1 1 1 0 1 0xB9Byte 1: 0 <SL1> Slot number in the range 0x01 to n n n \mathbf{n} \mathbf{n} \mathbf{n} n 0x77.Byte 2: 0 $\langle SL2 \rangle$ Slot number in the range 0x01 to n n n n \mathbf{n} n n 0x77.Byte 3: 0 <CHK> Checksum. n \mathbf{n} n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} Response:

LocoSlotDataP1 if successful, InvalidLinkP1 otherwise.

Signature:

Byte 0:

1 0 1 1 1 0 0 1	0xB9
Byte 1:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	in the range $0x01$ to $0x77$.
Byte 2:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	in the range $0x01$ to $0x77$.
Notes:	
None.	

1.4.28 LinkSlotsP2

${\bf Description:}$

This Command requests the command station to link slot SL1 to slot SL2. If the Command was successful then a **LocoSlotDataP2** Response will be returned. An invalid link will return a **InvalidLinkP2** Response.

Protocol:		
2		
Group:		
6-Byte Message		
Opcode:		
OPC_D4_GROUP (unofficial mnemon	ic)	
Type:		
Command		
Encoding:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xD4	Opcode.
Byte 1:		
0 0 1 1 1 d2 d1 d0	<sl1p></sl1p>	Bits d2 to d0 contain the SL1 slot page number in the range 0x0 to 0x7.
Byte 2:		
	<sl1#></sl1#>	Slot number SL1 in the range $0x00$ to $0x77$.
Byte 3:		
0 1 0 0 0 d2 d1 d0	<sl2p></sl2p>	Bits d2 to d0 contain the SL2 slot page number in the range 0x0 to 0x7.
Byte 4:		
	<sl2#></sl2#>	Slot number SL2 in the range $0x00$ to $0x77$.

Byte 5:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk> Checksum.</chk>
Response:	
${\bf LocoSlotDataP2} \ {\rm or} \ {\bf InvalidSlotP2}.$	
Signature:	
Byte 0:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xD4
Byte 1:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Byte 2:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	less than 0x78

Byte 3:

Byte 4:

Notes:

None.

Binary state address bits 0 to 6.

Binary state address bits 7 to 13.

LocoBinStateP2 1.4.29

Description:

Byte 3:

0 n

Byte 4:

0

n

 \mathbf{n} \mathbf{n}

n n \mathbf{n}

 \mathbf{n}

n

n

 \mathbf{n}

n

 \mathbf{n}

 \mathbf{n}

This Command sets the locomotive's binary states with addresses in the range 1 to 32767. The address of 0 is a broadcast command and will set or reset all binary states.

Protocol: 2? Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: Opcode. 1 1 0 1 0 1 0 0 0xD4Byte 1: 0 0 0 d4 $d3 \mid d2 \mid$ d1d0<SLOTP> Bits d2 to d0 contain the slot page number in the range 0x0 to 0x7. The bit d4 contains the function state where 1 means on and 0 means off. The bit d3 contains the high bit of the binary state address (bit 14). Byte 2: 0 <SLOT#> Slot number. n \mathbf{n} n \mathbf{n} \mathbf{n} \mathbf{n} n

<BSA0>

<BSA1>

Byte 5:

Response:

None.

Signature:

Byte 0:

1 1 0 1 0 1 0 0 0xD4

Byte 1:

Notes:

*** THIS HAS NOT BEEN TESTED ***

1.4.30 LocoDirF0F4P1

Description:

This Command requests the command station to set the locomotive's direction and function F0 to F4 states.

Protocol:

1

Group:

4-Byte Message

Opcode:

OPC_LOCO_DIRF

Type:

Command

Encoding:

Byte 0:

		1	0	1	0	0	0	0	1	0xA1	Opcode
--	--	---	---	---	---	---	---	---	---	------	--------

Byte 1:

0	n	n	n	n	n	n	n	<SLOT $#>$	Slot number in the range 0x00 to
									0x77.

Byte 2:

)	0	d5	d4	d3	d2	d1	d0	<dirf></dirf>	Locomotive's	${\rm direction}$	and	state
									of functions F	0 to F4.		

- d5 Direction: 1 means forward and 0 means backwards.
- d4 F0 state: 1 means on and 0 means off.
- d3 F4 state: 1 means on and 0 means off.
- d2 F3 state: 1 means on and 0 means off.
- d1 F2 state: 1 means on and 0 means off.
- d0 F1 state: 1 means on and 0 means off.

Byte 3:

0	n n	n n	n	n	n	<CHK $>$	Checksum.
---	-------	-----	---	---	---	----------	-----------

Response: None. ${\bf Signature:}$ Byte 0: 1 0 0 0xA11 0 0 Byte 1: 0_ n less than 0x78n \mathbf{n} \mathbf{n} \mathbf{n} n \mathbf{n} Byte 2: $0 \quad 0$ X × × × × X

85

1.4. MESSAGES

Notes: None.

Direction and function states.

1.4.31 LocoDirF0F4P2

Description:

 $0 \quad 0$

d5 d4 d3 d2 d1 d0

This Command requests the command station to set the locomotive's direction and function F0 to F4 states.

F0 to F4 states. $\underline{Protocol:}$ 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 0 0 0xD4Opcode. 1 1 1 0 1 0 Byte 1: 0 0 0 d2 $d1 \mid d0 \mid$ $\langle SLOTP \rangle$ Bits d2 to d0 contain the slot page 0 1 number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number. n n n \mathbf{n} \mathbf{n} n n Byte 3: Subcode. 0 0 0 0 0 0 0x061 1 Byte 4:

	d5	D	irect	ion:	1 m	eans	s for	ward	and 0 means 1	backwards.
	d4	\mathbf{F}	0 sta	ate:	$1~\mathrm{m}\epsilon$	eans	on a	nd 0	means off.	
	d3	\mathbf{F}	$4~{ m sta}$	ate:	$1~\mathrm{m}\epsilon$	eans	on a	nd 0	means off.	
	d2								means off.	
	d1	F	2 sta	ate:	1 me	eans	on a	nd 0	means off.	
	d0								means off.	
			1 500		1 1110	James	on c		iliouilis oii.	
Е	Syte	5:								
	0	n	n	n	n	n	n	n	<chk></chk>	Checksum.
F	Respo	onse:		•		•				
N	lone.									
\underline{S}	igna	ture	<u>.</u>							
E	$_{ m Syte}$	0:								
	1	1	0	1	0	1	0	0	0xD4	
Е	$_{ m Syte}$	1:								
	0	0	1	0	0	×	×	×		
E	$_{ m Syte}$	3:								
	0	0	0	0	0	1	1	0	0206	

X

Notes:

 $0 \mid 0$

 \times

Byte 4:

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

1.4.32 LocoF0F6P2

Description: This Command requests the command station to set the locomotive's function F0 to F6 states. Protocol:

2

Group:

6-Byte Message

Opcode:

OPC_D5_GROUP (Unofficial mnemonic)

Type:

Command

Encoding:

Byte 0:

1	1	0	1	0	1	0	1	0xD5	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

Byte 2:

Byte 3:

0	n	n	n	n	n	n	n	Low byte of the Throttle II	D
---	---	---	---	---	---	---	---	-----------------------------	---

Byte 4:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | Function states.

d6	F	6 sta	ate:	$1~\mathrm{m}\epsilon$	eans	on a	and 0) m	eans off.				
d5	F	$5 ext{ sta}$	ate:	1 me	ans	on a	and 0) m	eans off.				
d4	F	0 sta	ate:	1 me	eans	on a	and 0) m	eans off.				
d3	F	$^{\prime}4~\mathrm{sta}$	ate:	1 me	eans	on a	and 0) m	eans off.				
d2									eans off.				
d1									eans off.				
d0	F	`1 sta	ate:	1 me	eans	on a	and 0) m	eans off.				
Byte	5:												
0	n	n	n	n	n	n	n		<chk></chk>		Checksum.		
Resp	onse	<u>:</u>											
None													
Signa	ture	<u>:</u>											
Byte	0:												
1	1	0	1	0	1	0	1		0xD5				
Byte	1:												
0	0	0	1	0	X	X	×						
Byte	2:												
0	n	n	n	n	n	n	n		less than 0x	78			
Notes	<u>s:</u>												
None													

1.4.33 LocoF5F8P1

Description:

This Command requests the command station to set the locomotive's function F5 to F8 states.

Protocol:

1

Group:

4-Byte Message

Opcode:

OPC_LOCO_SND

Type:

Command

Encoding:

Byte 0:

1	0	1	0	0	0	1	0	0xA2	Opcode.
_		_	_	~	_	_	_		o P

Byte 1:

0	n	n	n	n	n	n	n	<SLOT $#$ $>$	Slot number in the range 0x00 to
									0x77.

Byte 2:

0	0	0	0	d3	d2	d1	d0	$\langle SND \rangle$	Locomotive's	function	F5	to	F8
									states				

- d3 F8 state: 1 means on and 0 means off.
- d2 F7 state: 1 means on and 0 means off.
- d1 F6 state: 1 means on and 0 means off.
- d0 F5 state: 1 means on and 0 means off.

Byte 3:

0 II II II II II II CHICKSO

Response:

None.

a.	1
Sign	ature:
V151	acarc.

Byte 0:

1	0	1	0	0	0	1	0	0xA2
---	---	---	---	---	---	---	---	------

Byte 1:

0	n	n	n	n	n	n	n	less than 0x78

Byte 2:

0	0	0	0	X	X	X	X
---	---	---	---	---	---	---	---

Notes:

None.

Function states.

1.4.34 LocoF7F13P2

Description:

d6

0

d5 d4

d3 d2 d1 d0

This Command requests the command station to set the locomotive's function F7 to F13 states.

states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D5_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: Opcode. 1 1 0 1 0 1 0 1 0xD5Byte 1: 0 d1 0 0 1 1 d2d0<SLOTP> Bits d2 to d0 contain the slot page number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number in the range 0x00 to \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n 0x77.Byte 3: 0 n \mathbf{n} \mathbf{n} Low byte of the Throttle ID. \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} Byte 4:

d6 F13 state: 1 means on and 0 means off.									
d5 F12 state: 1 means on and 0 means off.									
d4 F11 state: 1 means on and 0 means off.									
d3 F10 state: 1 means on and 0 means off.									
d2 F9 state: 1 means on and 0 means off.									
d1 F8 state: 1 means on and 0 means off.									
d0 F7 state: 1 means on and 0 means off.									
Byte 5:									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Checksum.								
Response:									
None.									
Signature:									
Byte 0:									
1 1 0 1 0 1 0 1 0xD5									
Byte 1:									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Byte 2:									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x78								
Notes:									
None.									

Function states.

1.4.35 LocoF5F11P2

Description:

Byte 4:

0

d6

d5 d4 d3 d2 d1 d0

This Command requests the command station to set the locomotive's function F5 to F11 states.

states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 0 0 0xD4Opcode. 1 1 1 0 1 0 Byte 1: 0 0 0 $d2 \mid d1 \mid d0 \mid$ $\langle SLOTP \rangle$ Bits d2 to d0 contain the slot page 0 1 number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number. n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n n Byte 3: Subcode. 0 0 0 0 0 0x071 1 1

	d6	\mathbf{F}	11 s	tate:	$1 \mathrm{m}$	eans	s on	and	0 means off.	
	d5	F10 state: 1 means on and 0 means off.								
	d4	F9 state: 1 means on and 0 means off. F8 state: 1 means on and 0 means off.								
	d3									
	d2	\mathbf{F}	$7~{ m sta}$	ate:	1 me	eans	on a	nd 0	means off.	
	d1	\mathbf{F}	$6~{ m sta}$	ate:	$1 \text{ m}\epsilon$	eans	on a	nd 0	means off.	
	d0	\mathbf{F}	$5~{ m sta}$	ate:	1 me	eans	on a	nd 0	means off.	
В	yte	5:								
	0	n	n	n	n	n	n	n	<CHK $>$	Checksum.
R	espo	onse:								
N	one.									
\underline{S}	igna	ture	<u>:</u>							
В	yte	0:								
	1	1	0	1	0	1	0	0	0xD4	
В	yte	1:								
	0	0	1	0	0	×	×	×		
В	yte	3:								
	0	0	0	0	0	1	1	1	0x07	

$\underline{\text{Notes:}}$

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

1.4.36 LocoF12F20F28P2

Description:

This Command requests the command station to set the locomotive's function F12, F20, and F28 states.

and F28 states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 1 Opcode. 1 0 1 1 0 0 0xD4Byte 1: 0 <SLOTP> Bits d2 to d0 contain the slot page 0 0 0 d2d1d0number in the range 0x0 to 0x7. Byte 2: <SLOT#>0 Slot number. n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n Byte 3: 0 0 Subcode. 0 0 0 1 0 1 0x05Byte 4: 0 0 0 0 0 d2 | d1 | d0 |Function states. d2F28 state: 1 means on and 0 means off.

Byte 5:

d1

d0

F20 state: 1 means on and 0 means off.

F12 state: 1 means on and 0 means off.

0	n	n	n	n	n	n	n	<CHK $>$	Checksum.
Respo	onse:	-							
None	•								
Signa	ture	<u>:</u>							
Byte	0:								
1	1	0	1	0	1	0	0	0xD4	
Byte	1:								
0	0	1	0	0	×	×	×		
Byte	3:								
0	0	0	0	0	1	0	1	0x05	
Byte	4:								
0	0	0	0	0	X	X	×		

Notes:

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

 $0 \mid 0$

Byte 4:

0

d6

0

0

1

 $0 \mid 0$

d5 d4 d3 d2 d1 d0

0

0x08

1.4.37 LocoF13F19P2

Description: This Command requests the command station to set the locomotive's function F13 to F19 states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 0 0 0xD4Opcode. 1 0 1 0 Byte 1: 0 0 0 d2 $d1 \mid d0 \mid$ $\langle SLOTP \rangle$ Bits d2 to d0 contain the slot page 0 1 number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number. \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n Byte 3:

Subcode.

Function states.

```
d6
        F19 state: 1 means on and 0 means off.
 d5
        F18 state: 1 means on and 0 means off.
 d4
        F17 state: 1 means on and 0 means off.
 d3
        F16 state: 1 means on and 0 means off.
 d2
        F15 state: 1 means on and 0 means off.
 d1
        F14 state: 1 means on and 0 means off.
 d0
        F13 state: 1 means on and 0 means off.
Byte 5:
 0
                                         <CHK>
                                                          Checksum.
      \mathbf{n}
           n
               n
                    \mathbf{n}
                        \mathbf{n}
                             n
                                 n
Response:
None.
Signature:
Byte 0:
  1
       1
           0
                1
                    0
                         1
                             0
                                 0
                                         0xD4
Byte 1:
           1
                0
                             \times
                                 X
Byte 3:
```

0 | Notes:

0

0

 $0 \mid 1$

0

0

0

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

0x08

Low byte of the Throttle ID.

Function states.

0

Byte 4:

0

n

d6

 \mathbf{n}

 \mathbf{n}

d5 d4

 \mathbf{n}

n | n

d3 d2 d1 d0

 \mathbf{n}

1.4.38 LocoF14F20P2

Description: This Command requests the command station to set the locomotive's function F14 to F20 states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D5_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: Opcode. 1 1 0 1 0 1 0 1 0xD5Byte 1: 0 d1 0 1 0 0 d2d0<SLOTP> Bits d2 to d0 contain the slot page number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number in the range 0x00 to \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n 0x77.Byte 3:

d6 F20 state: 1 means on and 0 means off.
d5 F19 state: 1 means on and 0 means off.
d4 F18 state: 1 means on and 0 means off.
d3 F17 state: 1 means on and 0 means off.
d2 F16 state: 1 means on and 0 means off.
d1 F15 state: 1 means on and 0 means off.
d0 F14 state: 1 means on and 0 means off.
Byte 5:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Response:
None.
Signature:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 1:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 2:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Notes:
None.

Function states.

Byte 4:

0

d6

d5 d4 d3 d2 d1 d0

1.4.39 LocoF21F27P2

Description: This Command requests the command station to set the locomotive's function F21 to F27 states. Protocol: 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 0 0 0xD4Opcode. 1 0 1 0 Byte 1: 0 0 0 d2 $d1 \mid d0 \mid$ $\langle SLOTP \rangle$ Bits d2 to d0 contain the slot page 0 1 number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number. \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n Byte 3: Subcode. 0 0 0 0 0 0 0x091 1

d6	F27 s	state:	1 m	eans	s on	and	0	means off.		
d5	F26 s	state:	1 m	eans	s on	and	0	means off.		
d4	F25 s	state:	1 m	eans	s on	and	0	means off.		
d3	F24 s	state:	1 m	eans	s on	and	0	means off.		
d2	F23 s	state:	1 m	eans	s on	and	0	means off.		
d1	F22 s	state:	1 m	eans	s on	and	0	means off.		
d0	F21 s	state:	1 m	eans	s on	and	0	means off.		
Byte 5:										
0 I	n	n	n	n	n	n		<CHK $>$	Checksum.	
Respon	se:									
None.										
Signatu	re:									
Byte 0:										
1 1	0	1	0	1	0	0		0xD4		
Byte 1:										
0 (1	0	0	×	X	×				
Byte 3:										
0 (0	0	1	0	0	1		0x09		

Notes:

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

1.4.40 LocoF21F28P2

Description:

This Command requests the command station to set the locomotive's function F21 to F28 states.

Protocol:

9

Group:

6-Byte Message

Opcode:

OPC_D5_GROUP (unofficial mnemonic)

Type:

Command

Encoding:

Byte 0:

1	1	0	1	0	1	0	1	0xD5	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

number in the range 0x0 to 0x7. d4 and d3 encode the F28 state where 0b10 means on and 0b01

means off.

Byte 2:

Byte 3:

	0	n	n	n	n	n	n	n	Low byte of Throttle ID.
--	---	---	---	---	---	---	---	---	--------------------------

Byte 4:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | Function states.

d6 F27 state: 1 means on and 0 means off.
d5 F26 state: 1 means on and 0 means off.
d4 F25 state: 1 means on and 0 means off.
d3 F24 state: 1 means on and 0 means off.
d2 F23 state: 1 means on and 0 means off.
d1 F22 state: 1 means on and 0 means off.
d0 F21 state: 1 means on and 0 means off.
Byte 5:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Response:
None.
Signature:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 1:
Byte 2:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Notes:
None.

1.4.41 LocoSlotDataP1

Description:		
This response provides the data for a s	specific locomot	ive slot.
Protocol:		
1		
Group:		
Variable-Byte Message		
Opcode:		
OPC_SL_RD_DATA		
Type:		
Response		
Encoding:		
Byte 0:		
1 1 1 0 0 1 1 1	0xE7	Opcode.
Byte 1:		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0x0E	Message length (14 bytes).
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<slot#></slot#>	Slot number in the range 0x00 to 0x77. Slot 0x00 is the dispatch special slot.
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<stat1></stat1>	Slot status 1.
$\underline{d7}$ $\underline{d6}$		
0 0 Free, no consist	_	
0 1 Consist sub-mer		
1 0 Consist top-men	прег.	

Consist Mid-Consist member.

1

1

Note: d7 is set to 0 in the message by the command station and so may not correctly reflect the actual setting in the slot table.

	d5	$\underline{d4}$	
	0	0	Free slot, no valid data. Not refreshed.
	0	1	Common. Locomotive address in this slot. Refreshed.
	1	0	Idle. Locomotive address in this slot. Not refreshed.
	1	1	In Use. Locomotive address in this slot. Refreshed.
		<u>d3</u>	
		0	No slot consist linked into this slot.
		1	Slot consist linked into this slot.
$\underline{d2}$	<u>d1</u>	$\underline{d0}$	
$\frac{d2}{0}$	$\frac{d1}{0}$	$\frac{d0}{0}$	28 step decoder. 3-byte packet regular mode
			28 step decoder. 3-byte packet regular mode 28 step decoder. Generate trinary packets for this mobile address
0	0	0	
0	0	0 1	28 step decoder. Generate trinary packets for this mobile address
0 0 0	0 0 1	0 1 0	28 step decoder. Generate trinary packets for this mobile address 14 step decoder.
0 0 0 0	0 0 1 1	0 1 0 1	28 step decoder. Generate trinary packets for this mobile address 14 step decoder. 128 step decoder.
0 0 0 0 1	0 0 1 1 0	0 1 0 1 0	28 step decoder. Generate trinary packets for this mobile address14 step decoder.128 step decoder.28 step decoder. Allow advanced consisting

Byte 4:

0	n	n	n	n	n	n	n	<adr></adr>
0	11	11	11	11	11	11	11	\nD10>

If <ADR2> is 0 then this contains the NMRA short address. If <ADR2> is greater than 0 then this contains the low 7 bits of the NMRA long address.

Byte 5:

0	n	n	n	n	n	n	n	<spd></spd>
---	---	---	---	---	---	---	---	-------------

Speed in the range 0x00 to 0x7F. 0x00 means inertial stop and 0x01 means emergency stop. Other values mean increasing speed.

Byte 6:

0	0	d5	d4	d3	d2	d1	d0	<dirf></dirf>	Locomotive	${\rm direction}$	and	state
									of functions	F0 to F4.		

- d5 Direction: 1 means forward and 0 means backwards.
- d4 F0 state: 1 means on and 0 means off.
- d3 F4 state: 1 means on and 0 means off.
- d2 F3 state: 1 means on and 0 means off.
- d1 F2 state: 1 means on and 0 means off.
- d0 F1 state: 1 means on and 0 means off.

Byte 7:

0	d6 (0	0	d3	d2	d1	d0	<TRK $>$	Global System	Track Status.
---	-------	---	---	----	----	----	----	----------	---------------	---------------

- d6 1 means this command station implements protocol 2 commands.
- d3 1 means the programming track is busy.
- d2 1 means this master implements protocol 1 commands, 0 means the command station is a DT200.
- d1 0 means the track is paused, broadcast an emergency stop.
- d0 1 means the DCC packets are on and global power is up.

Byte 8:

$\begin{bmatrix} 0 & 0 & 0 & 0 & d3 & d2 & 0 & d0 \end{bmatrix}$ <s< th=""><th>S2> Slot status 2.</th></s<>	S2> Slot status 2.
--	--------------------

- d3 1 means expansion in ID1/2, 0 means encoded alias.
- d2 1 means expansion ID1/2 is not ID usage.
- d0 1 means this slot has suppressed advanced consist.

Byte 9:

0	n	n	n	n	n	n	n	<ADR2 $>$	If $\langle ADR2 \rangle$ is greater than 0 then
									this contains the high 7 bits of the
									NMRA long address.

Byte 10:

- d2 F7 state: 1 means on and 0 means off.
- dz 17 state. I means on and o means on.
- d1 F6 state: 1 means on and 0 means off.
- d0 F5 state: 1 means on and 0 means off.

Byte 11:

0	n	n	n	n	n	n	n	<id1></id1>	7-bit ls ID code written by throt-
									tle when $STAT2.4 = 1$.

Byte 12:

1.4. MESSAGES 109 7-bit ms ID code written by throt-0 n \mathbf{n} n \mathbf{n} n n n <ID2> tle when STAT2.4 = 1. Byte 13: 0 n n n <CHK> Checksum. n \mathbf{n} n n Response: None. Signature: Byte 0: 1 1 0 0 1 1 1 0xE71 Byte 1: $0 \quad 0$ 0 0 1 1 0 0x0EByte 2: 0 n less than 0x78. \mathbf{n} n \mathbf{n} n \mathbf{n} n Byte 6: 0 0 × \times \times \times \times \times Byte 7: 0 × 0 0 × × X Byte 8: 0 0 × \times X

Byte 10:

0

 \times

 \times

×

 $0 \quad 0$

Notes:
None.

1.4.42 LocoSlotDataP2

T .			
Desc	rin	t10	n·
Desc	JIID	יטנטי	ш.

This response provides data for a specific locomotive slot.

Protocol:

2

Group:

Variable-Byte Message

Opcode:

OPC_SL_RD_DATA_P2 (unofficial mnemonic)

Type:

Response

Encoding:

Byte 0:

1	1	1	0	0	1	1	0	0xE6	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

0	0	0	1	0	1	0	1	0x15	Message length (21 bytes).
---	---	---	---	---	---	---	---	------	----------------------------

Byte 2:

0	0	0	0	0	d2	d1	d0	$\langle SLOTP\# \rangle$	Slot page number in the range $0x0$
									to $0x7$.

Byte 3:

0	n	n	n	n	n	n	n	<SLOT $#>$	Slot number in the range 0x00 to
									0x77.

Byte 4:

1

1

0	d6 d5	d4	$d3 \mid d2 \mid d1 \mid d0$	$\langle STAT1 \rangle$	Slot status 1.
	d7	d6			
	0	0	Free, no consis	st linking.	
	0	1	Consist sub-m	ember.	
	1	0	Consist top-m	ember.	

Consist Mid-Consist member.

Note: d7 is set to 0 in the message by the command station and so may not correctly reflect the actual setting in the slot table.

$\underline{\mathrm{d}5}$	$\underline{\mathrm{d}4}$	
0	0	Free slot, no valid data. Not refreshed.
0	1	Common. Locomotive address in this slot. Refreshed.
1	0	Idle. Locomotive address in this slot. Not refreshed.
1	1	In Use. Locomotive address in this slot. Refreshed.

d3
0 No slot consist linked into this slot.
1 Slot consist linked into this slot.

$\underline{d2}$	$\underline{d1}$	$\underline{d0}$	
0	0	0	28 step decoder. 3-byte packet regular mode
0	0	1	28 step decoder. Generate trinary packets for this mobile address
0	1	0	14 step decoder.
0	1	1	128 step decoder.
1	0	0	28 step decoder. Allow advanced consisting
1	0	1	reserved
1	1	0	reserved
1	1	1	128 step decoder. Allow advanced consisting

Byte 5:

_										
	0	n	n	n	n	n	n	n	<ADR $>$	Low ad

Byte 6:

0	n	n	n	n	n	n	n	<adr2></adr2>	High address.
		l		1					0

Byte 7:

0	d6	d5	d4	d3	d2	d1	d0	<TRK $>$	Global system track status.
---	----	----	----	----	----	----	----	----------	-----------------------------

- d6 1 means this command station implements protocol 2 messages. This can be turned off on the DCS240 by setting the OpSw 44 to be closed.
- d5 Reserved. Set to 0.
- d4 Reserved. Set to 0.
- d3 1 means the programming track is busy.
- d2 1 means this command station implements protocol 1 messages. 0 means the command station is a DT200.
- d1 0 means the track is paused, broadcast an emergency stop.
- d0 1 means the DCC packets are on in the command station and track power is on.

Byte 8:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | $\langle SPD \rangle$

Speed in the range 0x00 to 0x7F. 0x00 means inertial stop and 0x01 means emergency stop. Other values mean increasing speed.

Byte 9:

 0
 d6
 d5
 d4
 d3
 d2
 d1
 d0
 Functions.

 d6
 F28 state: 1 means on and 0 means off
 d5
 F20 state: 1 means on and 0 means off
 d4
 F12 state: 1 means on and 0 means off
 d3
 d2
 d1
 d1
 d2
 d1
 d3
 d2
 d1
 d3
 d2
 d3
 d3
 d2
 d3
 d4
 d3
 d4
 d3

Byte 10:

d0

 $\begin{bmatrix} 0 & | d6 & | d5 & | d4 & | d3 & | d2 & | d1 & | d0 \end{bmatrix}$ Direction and Functions.

d6

- d5 Direction: 1 means forwards and 0 means backwards
- d4 F0 state: 1 means on and 0 means off
- d3 F4 state: 1 means on and 0 means off
- d2 F3 state: 1 means on and 0 means off
- d1 F2 state: 1 means on and 0 means off
- d0 F1 state: 1 means on and 0 means off

Byte 11:

0 d6	$oxed{d5}$ $oxed{d4}$ $oxed{d3}$ $oxed{d2}$ $oxed{d1}$ $oxed{d0}$	Functions.
d6 F	11 state: 1 means on and 0 means off	
	10 state: 1 means on and 0 means off	
	9 state: 1 means on and 0 means off	
	8 state: 1 means on and 0 means off	
d2 F	7 state: 1 means on and 0 means off	
d1 F	6 state: 1 means on and 0 means off	
d0 F	5 state: 1 means on and 0 means off	
Byte 12:		
0 d6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Functions.
d6 F	19 state: 1 means on and 0 means off	
d5 F	18 state: 1 means on and 0 means off	
d4 F	17 state: 1 means on and 0 means off	
	16 state: 1 means on and 0 means off	
	15 state: 1 means on and 0 means off	
	14 state: 1 means on and 0 means off	
d0 F	13 state: 1 means on and 0 means off	
Byte 13:		
0 d6	d5 d4 d3 d2 d1 d0	Functions.
d6 F	27 state: 1 means on and 0 means off	
d5 F	26 state: 1 means on and 0 means off	
d4 F	25 state: 1 means on and 0 means off	
d3 F	24 state: 1 means on and 0 means off	
	23 state: 1 means on and 0 means off	
	22 state: 1 means on and 0 means off	
d0 F	21 state: 1 means on and 0 means off	
Byte 14:		
0 d6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Unknown.
d6		
d5		
d5 $d4$		
d4 $d3$		
$\begin{array}{c} d4 \\ d3 \\ d2 \end{array}$		
$\begin{array}{c} \mathrm{d}4\\ \mathrm{d}3\\ \mathrm{d}2\\ \mathrm{d}1 \end{array}$		
d4 $d3$ $d2$		

Byte	15:
\mathbf{D}	10.

1 1	1	0	0	1	1 0	0xE6
Byte 1:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	1	0	1	0 1	0x15
Byte 2:						
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0	0	0	×	XX	
Byte 7:						
0 ×	0	0	×	×	XX	

Notes:

1.4.43 LocoSpdP1

Description:

1 0

0

1

0

0 0

0

0xA0

This command sets the locomotive's speed in the range 0 to 127. 0 means inertial stop and 1 means emergency stop. Other values mean increasing speed.

1 means emergency stop. Other values mean increasing speed. Protocol: 1 Group: 4-Byte Message Opcode: OPC_LOCO_SPD Type: Command Encoding: Byte 0: 1 Opcode. 0 1 0 0 0 0 0 0xA0Byte 1: 0 n n <SLOT#>Slot number in the range 0x00 to \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n 0x77.Byte 2: 0 $\langle SPD \rangle$ Locomotive speed in the range 0 n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n to 127. Byte 3: 0 n \mathbf{n} <CHK>Checksum. n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} Response: None. Signature: Byte 0:

Byte 1:

0	n	n	n	n	n	n	n	less than	0x78
---	---	---	---	---	---	---	---	-----------	------

Notes:

1.4.44 LocoSpdP2

Description:

Byte 5:

0

n

n n

 \mathbf{n}

 $n \mid n$

 \mathbf{n}

This function sets the locomotive's speed in the range 0 to 127. 0 means inertial stop and 1 means emergency stop. Other values mean increasing speed.

Protocol: 2 Group: 6-Byte Message Opcode: OPC_D4_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 1 Opcode. 1 0 1 0 1 0 0 0xD4Byte 1: 0 0 0 d2d1 d0<SLOTP> Bits d2 to d0 contain the slot page 0 1 number in the range 0x0 to 0x7. Byte 2: 0 <SLOT#>Slot number in the range 0x00 to n \mathbf{n} \mathbf{n} n \mathbf{n} \mathbf{n} \mathbf{n} 0x77.Byte 3: 0 0 0 0 0 1 0 0 0x04Subcode. Byte 4: 0 $\langle SPD \rangle$ Locomotive speed in the range n n n n \mathbf{n} n \mathbf{n} 0x00 to 0x7F.

<CHK>

Checksum.

Response:									
None.									
Signature:									
Byte 0:									
1 1	0	1	0	1	0	0	0xD4		
Byte 1:									
$\begin{bmatrix} 0 & 0 \end{bmatrix}$	1	0	0	×	×	×			
Byte 3:									

1

0

0

Notes:

0

0

0

0 0

This command was identified in the output from the iTrain commercial model railway control application. It has not been made to work outside of the original context. It is included in this manual as the "missing link" information that enables it to function may be found in the future. Until that time use the D5 Group commands for protocol 2 control.

0x04

Locomotive speed in the range

0x00 to 0x7F.

1.4.45 LocoSpdDirP2

Description:

n

n

n

n

 \mathbf{n}

n

 \mathbf{n}

 $\langle SPD \rangle$

This function sets the locomotive's speed in the range 0 to 127 and direction. 0 means inertial stop and 1 means emergency stop. Other values mean increasing speed.

Protocol: 2 Group: 6-Byte Message Opcode: OPC_D5_GROUP (unofficial mnemonic) Type: Command Encoding: Byte 0: 1 0 0 0xD5Opcode. 1 1 0 1 1 Byte 1: 0 0 0 0 d3d2d1d0<SLOTP> Bits d2 to d0 contain the slot page number in the range 0x0 to 0x7. Bit d3 contains the direction where 1 means forwards and 0 means backwards. Byte 2: 0 <SLOT#>Slot number in the range 0x00 to \mathbf{n} n \mathbf{n} n n \mathbf{n} n 0x77.Byte 3: 0 n n n \mathbf{n} \mathbf{n} \mathbf{n} n Low byte of the Throttle ID. Byte 4:

T .	_
Byte	h. •
DVUC	٠,,

١	0	n	n	n	n	n	n	n	<chk></chk>	Checksu
	U	11	11	11	11	11	11	11	<0111X/	Checksu

Response:

None.

Signature:

Byte 0:

1	1	0	1	0	1	0	1	0xD5
_	_	~	_	~	_	~	_	01120

Byte 1:

Byte 2:

0	n	n	n	n	n	n	n	less than 0x78

Notes:

1.4.46 NoFreeSlotsP1

Description:								
The NoFreeSlotsP1 response means that there are no Free slots available.								
Protocol:								
1								
Group:								
4-Byte Message								
Opcode:								
OPC_LONG_ACK								
Type:								
Response								
Encoding:								
Byte 0:								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xB4	Opcode.						
Byte 1:								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3F							
Byte 2:								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x00							
Byte 3:								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x74	Check sum.						
Response:								
None								
Byte 0:								
	0xB4							
Byte 1:								
$oxed{0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0x3F							

Byte 2:

Byte 3:

0 1 1 1 0 1 0 0 0x74

Notes:

1.4.47 NoFreeSlotsP2

Description:		
The NoFreeSlotsP2 response means	that there are	no Free slots available.
Protocol:		
2		
Group:		
4-Byte Message		
Opcode:		
OPC_LONG_ACK		
Type:		
Response		
Encoding:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xB4	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3E	
Byte 2:		
0 0 0 0 0 0 0 0	0x00	
Byte 3:		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0x75	Check sum.
Response:		
None		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xB4	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3E	

Byte 2:

Byte 3:

0 1 1 1 0 1 0 1 0x75

Notes:

1.4.48 MoveSlotsP1

T .	•	. •
L)es	crin	tion:
100	CLIP	UIOII.

Move slots.

$\underline{\operatorname{SRC}}$	$\overline{\mathrm{DEST}}$	Action
0	×	Dispatch get. Return LocoSlotDataP1 of dispatch slot.
SRC	0	Dispatch put. Mark slot as dispatch.
SRC	SRC	Null move. SRC is set to in use.
SRC	DEST	Move slot data from SRC to DEST if not in use. Clear SRC.

<u>Protocol:</u>

1

Group:

4-Byte Message

Opcode:

OPC_MOVE_SLOTS

1 0 1 1 1 0 1 0

Type:

Command

Encoding:

Byte 0:

Byte 1:		
	<src></src>	Source slot number in the range $0x00$ to $0x77$.
Byte 2:		
	<dest></dest>	Destination slot number in the range $0x00$ to $0x77$.
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.

0xBA

Opcode.

Response:

LocoSlotDataP1 if successful, otherwise IllegalMoveP1

Signature
Byte 0:

1 0 1 1 1 0 1 0 0xBA

Byte 1:

Byte 2:

Notes:

MoveSlotsP2 1.4.49

T)			
Desc	rip	t10	n:

Move slots.

$\underline{\operatorname{SRC}}$	$\overline{\mathrm{DEST}}$	Action
0	×	Dispatch get. Return LocoSlotDataP2 of dispatch slot.
SRC	0	Dispatch put. Mark slot as dispatch.
SRC	SRC	Null move. SRC is set to in use.
SRC	DEST	Move slot data from SRC to DEST if not in use. Clear SRC.

Protocol:

2

Group:

6-Byte Message

Opcode:

OPC_D4_GROUP (unofficial mnemonic)

Type:

Command

Encoding:

Byte 0:

	0xD4	Opcode.
Byte 1:		
0 0 1 1 1 d2 d1 d0	<srcp></srcp>	Bits d2 to d0 contain the source slot page number in the range $0x0$ to $0x7$.
Byte 2:		

<SRC>

0 n Byte 3:

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

n

d2 d1 d00 0 0 <DESTP>Bits d2 to d0 contain the destina-0 0

tion slot page number in the range

0x0 to 0x7.

Source slot number.

Byte 4:

1.4. MESSAGES 129 <DEST> 0 Destination slot number. n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n Byte 5: 0 n Checksum. <CHK>n n \mathbf{n} \mathbf{n} \mathbf{n} n Response: ${\bf LocoSlotDataP2} \ {\bf if} \ {\bf successful}, \ {\bf otherwise} \ {\bf IllegalMoveP2}.$

Signature:

Byte 0:

1 1 0 1 0 1 0 0 0xD4

Byte 1:

 $0 \quad 0$ 1 1 1 \times X ×

Byte 3:

0 0 0 0 0 \times × \times

Notes:

1.4.50 PeerXfer16

Description:

This command sends the 8 bytes of data from one device to another peer to peer. This message takes many forms and so what is presented here is a generic description. The specific forms are included elsewhere as detailed messages in their own right.

$\underline{\operatorname{SRC}}$	$\overline{\mathrm{DSTL}}$	$\overline{\mathrm{DSTH}}$	Comments
0x00			Source is command station.
Don't Care	0x00	0x00	Broadcast Message.
0x70 to $0x7E$			Reserved.
0x7F	0x00	0x00	Broadcast throttle message transfer.
0x7F	ID1	ID2	Throttle message transfer. ID1 and ID2 en-
			code ID.

Protocol:

1

Group:

Variable-Byte Message

Opcode:

OPC_PEER_XFER

Type:

Message

Encoding:

Byte 0:

	0xE5	Opcode.
Byte 1:		
0 0 0 1 0 0 0 0	0x10	Message length (16 bytes).
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<src></src>	Source id in the range $0x00$ to $0x7F$.

Byte 3:

] <dstl></dstl>	Destination id low in the range $0x00$ to $0x7F$.
Byte 4:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$] <dsth></dsth>	Destination id high in the range $0x00$ to $0x7F$.
Byte 5:		
0 d6 d5 d4 d3 d2 d1 d0] <pxct1></pxct1>	Address type code and high bits of D1 to D4.
d6 XC2. Address type code.		
d5 XC1. Address type code.		
d4 XC0. Address type code.		
d3 D4.7. High bit		
d2 D3.7. High bit		
d1 D2.7. High bit		
d0 D1.7. High bit		
$\underline{\text{XC2}}$ $\underline{\text{XC1}}$ $\underline{\text{XC0}}$	Meaning	
0 0	7 bit peer to peer	addresses.
0 0 1	reserved.	
0 1 0	reserved.	
0 1 1	reserved.	
1 0 0	IPL download.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	reserved.	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	reserved.	
	reserved.	
Byte 6:		
0 n n n n n n	<d1></d1>	Data item 1. Low 7 bits.
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$] <d2></d2>	Data item 2. Low 7 bits.
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d3></d3>	Data item 3. Low 7 bits.
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<d4></d4>	Data item 4. Low 7 bits.
Byte 10:		

0	n	n	n	n	n	n	n] <pxct2></pxct2>	Data type code and high bits for D5 to D8.
d6 d5 d4 d3 d2 d1 d0	X X D D	C4. C3. 08.7. 07.7. 06.7.	Data Data High High High	a typa typa typa typa typa typa typa typ	pe co	de.			
$\frac{\text{XC5}}{2}$			<u>KC4</u>		<u>XC</u>	<u>23</u>		Meaning	IDI I I I
0 0 0 0 1		0 1 1 0)		0 1 0 1 0			ANSI text string. setup subcode. IPL download addr IPL download send IPL download verif IPL download end code.	ress subcode. I data subcode. Ty data subcode.
1		C			1			reserved.	
1 1		1 1			0 1			reserved.	
Option	ns fl	lags							
priva p	te riv riv	sta ate ate ate	star star	tic tic tic	fina fina fina	ali ali ali	nt (nt l nt l	CHECK_SOFTWARE_VE DO_NOT_CHECK_HARI REQUIRE_HARDWARE_	E_VERSION = 0x00; ERSION_LESS = 0x04; OWARE_VERSION = 0x00; _VERSION_EXACT_MATCH = 0x01; OWARE_VERSIONS = 0x03;
Byte	11:								
0	n	n	n	n	n	n	n] <d5></d5>	Data item 5. Low 7 bits.
Byte 3	n	n	n	n	n	n	n] <d6></d6>	Data item 6. Low 7 bits.
0	n	n	n	n	n	n	n] <d7></d7>	Data item 7. Low 7 bits.
Byte	14:								
0	n	n	n	n	n	n	n] <d8></d8>	Data item 8. Low 7 bits.

Byte	15:
\mathbf{D} , \mathbf{y} \mathbf{u}	10.

$oxed{0}$ $oxed{n}$

Response:

None

Signature:

Byte 0:

	1	1	1	0	0	1	0	1	0xE5
--	---	---	---	---	---	---	---	---	------

Byte 1:

0	0	0	1	0	0	0	0	0x10

Notes:

$1.4.51 \quad ProgCV$

Description:

The **ProgCV** command is used to read and write a locomotive's mobile decoder configuration variables.

Group:

Variable-Byte Message

Opcode:

OPC_WR_SL_DATA

Type:

Command

Encoding:

Byte 0:

1	1	1	0	1	1	1	1	0xEF	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

0	0	0	0	1	1	1	0	0x0E	Message length.
---	---	---	---	---	---	---	---	------	-----------------

Byte 2:

0 1 1 1 1 0 0 0 0x7C Programming slot number.

Byte 3:

0	d6 d	d5 d4	d3	d2	d1	d0	<PCMD $>$	Programming command
---	--------	-------	----	----	----	----	-----------	---------------------

- d6 0 means read and 1 means write
- d5 1 means byte mode and 0 means bit mode
- d4 TY1
- d3 TY0
- d2 0 means service mode on programming track, 1 means operations mode on mainline.
- d1 1 unknown
- d0 1 unknown

$\underline{\mathrm{d}5}$	$\underline{d4}$	$\underline{\mathrm{d}3}$	$\underline{d2}$	$\underline{d1}$	$\underline{d0}$	Programming Mode
1	0	0	0	×	×	Paged mode byte read/write on ser-
						vice track
1	0	1	0	×	×	Direct mode byte read/write on ser-
						vice track
0	0	1	0	×	×	Direct mode bit read/write on ser-
						vice track
\times	1	0	0	×	×	Physical register byte read/write on
						service track
\times	1	1	0	×	×	Service track reserved function
1	0	0	1	×	×	Ops mode byte program on mainline
						no feedback
1	0	1	1	\times	×	Ops mode byte program on mainline
						with feedback
0	0	0	1	×	\times	Ops mode bit program on mainline
						no feedback
0	0	1	1	×	×	Ops mode bit program on mainline
						with feedback

Byte 4:

0	0	0	0	0	0	0	0	0x00
---	---	---	---	---	---	---	---	------

Byte 5:

0	n	n	n	n	n	n	n	< HOPSA > In operations mode programming
								this contains the 7 high address
								bits of the locomotive to program.

0x00 if service mode.

Byte 6:

	n	n	n	n	n	n	n	/I ODG 1 \
U	l II	11	n	11	n	n	n	<lopsa></lopsa>

In operations mode programming this contains the 7 low address bits of the locomotive to program. 0x00 if service mode.

Byte 7:

	0	0	0	0	0	0	0	0	0x00
--	---	---	---	---	---	---	---	---	------

Byte 8:

0	0	d5	d4	0	0	d1	d0	<cvh></cvh>

Configuration Variable number high 3 bits and most significant bit of data byte.

d5 CV9 d4 CV8		
d1 DATA7 d0 CV7		
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<cvh></cvh>	Configuration Variable number low 7 bits. CV1 is $0x0000$, CV2 is $0x0001$ etc.
Byte 10:		
0 n n n n n n n	<data></data>	Data value low 7 bits.
Byte 11:		
	<snh></snh>	Throttle ID low 7 bits of low byte.
Byte 12:	CNIL	
0 n n n n n n n	<snl></snl>	Throttle ID low 7 bits of high byte.
Byte 13: 0 1 1 1 1 1 0	0x 7 E	Checksum.
Response:	OX/E	Checksum.
Ack and if command is accepted a Pr	rogSlotData m	essage
Signature:		
Byte 0:		
1 1 1 0 1 1 1 1	0xEF	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x0E	
Byte 2:		
0 1 1 1 1 1 0 0	0x7C	
Byte 4:		
	0x00	
Byte 7:		
	0x00	

Byte 8:

_	 						
0	0	×	×	0	0	×	×

Notes:

1.4.52 ProgSlotDataP1

Description:

This response provides data for the programming slot.

Group:

Variable-Byte Message

Opcode:

OPC_SL_RD_DATA

Type:

Response

Encoding:

Byte 0:

1	1	1	0	0	1	1	1	0xE7	Opcode.

Byte 1:

0	0	0	0	1	1	1	0	0x0E	Message length.
---	---	---	---	---	---	---	---	------	-----------------

Byte 2:

$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ 0x7C	Programming slot number.
--	--------------------------

Byte 3:

0	d6	d5	d4	d3	d2	d1	d0	<pcmd></pcmd>	Last programming command.
---	----	----	----	----	----	----	----	---------------	---------------------------

- d6 0 means read and 1 means write
- d5 1 means byte mode and 0 means bit mode
- d4 TY1
- d3 TY0
- d2 0 means service mode on programming track, 1 means operations mode on mainline.
- d1 1 unknown
- d0 1 unknown

$\underline{d5}$	$\underline{d4}$	$\underline{d3}$	$\underline{d2}$	$\underline{d1}$	$\underline{d0}$	Programming Mode
1	0	0	0	×	×	Paged mode byte read/write on ser-
						vice track
1	0	0	1	\times	×	Direct mode byte read/write on ser-
						vice track
0	0	0	1	\times	\times	Direct mode bit read/write on ser-
						vice track
×	0	1	0	\times	×	Physical register byte read/write on
						service track
\times	0	1	1	\times	×	Service track reserved function
1	0	0	1	\times	\times	Ops mode byte program no feedback
1	0	1	1	\times	\times	Ops mode byte program with feed-
						back
0	0	0	1	\times	×	Ops mode bit program no feedback
0	0	1	1	×	×	Ops mode bit program with feed-
						back

Byte 4:

0	0	0	0	d3	d2	d1	d0	<pstat></pstat>

- d3 1 means user aborted the previous command
- d2 1 means failed to detect read compare acknowledge from decoder
- d1 1 means no write acknowledge response from decoder
- d0 1 means service mode programming track is empty no decoder detected

Byte 5:

0	n	n	n	n	n	n	n	<HOPSA $>$	In operations mode programming
			•		•	•			this contains the 7 high address
						bits of the locomotive to program.			
									0x00 if service mode.

Byte 6:

0	n	n	n	n	n	n	n	<LOPSA $>$	In operations mode programming
									this contains the 7 low address
						bits of the locomotive to program.			
									0x00 if service mode.

Byte 7:

0	d6 0	0	d3	d2	d1	d0	<TRK $>$	Global system track status.
---	------	---	----	----	----	----	----------	-----------------------------

- d6 1 means this command station implements version 2 slot commands. This can be turned off on the DCS240 by setting the OpSw 44 to be closed.
- d3 1 means the programming track is busy.
- d2 1 means this master implements the Network version 1.1 capability, 0 means the master is a DT200.
- d1 0 means the track is paused, broadcast an emergency stop.
- d0 1 means the DCC packets are on in the master, global power up.

Byte 8:

Byte 8:		
0 0 d5 d4 0 0 d1 d0	<cvh></cvh>	Configuration Variable number high 3 bits and most significant bit of data byte.
d5 CV9		
d4 CV8		
d1 DATA7		
d0 CV7		
Byte 9:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<cvh></cvh>	Configuration Variable number low 7 bits. CV1 is 0x0000, CV2 is 0x0001 etc.
Byte 10:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<data></data>	Data value low 7 bits.
Byte 11:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\langle \text{SNH} \rangle$	Throttle ID low 7 bits of low byte.
Byte 12:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\langle SNL \rangle$	Throttle ID low 7 bits of high byte.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7E	Checksum.

Response:

None.

Signature:

I I I O O I I I O O

Byte 1:

0	0	0	0	1	1	1	0	0x0E

Byte 2:

0	1	1	1	1	1	0	0	0x7C

Byte 4:

0	0	0	0	×	×	×	×
U	U	0	U	_ ^ _		_ ^ _	_ ^

Byte 7:

0	×	0	0	×	×	×	×

Byte 8:

0	0	×	×	0	0	×	X
---	---	---	---	---	---	---	---

Notes:

1.4.53 PwrOff

Description:
This command turns the track power off.
Group:
2-Byte Message
Opcode:
OPC_GPOFF
Type:
Command
Encoding:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 1:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Response:
None.
Signature:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Notes:
None.

1.4.54 PwrOn

Description:

This command turns the track power on.

Group:

2-Byte Message

Opcode:

OPC_GPON

Type:

Command

Encoding:

Byte 0:

1	0	0	0	0	0	1	1	0x83	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

_									
	0	1	1	1	1	1	0	0	0x7C

Response:

After power on the command station sends an **getCfgSlotDataP1** message. It also sends a sequence of OPC_SW_REQ messages with the following values of SW1 and SW2:

$\underline{\mathrm{SW1}}$	SW2	Purpose
0x78	0x27	
0x79	0x27	
0x7A	0x27	
0x7B	0x27	
0x78	0x07	Interrogate all PM4 inputs?
0x79	0x07	Interrogate all BDL16 input reports?
0x7A	0x07	Interrogate all SE8 input reports?
0x7B	0x07	Interrogate all DS64 input reports.

Signature:

Byte 0:

1	0	0	0	0	0	1	1	0x83
---	---	---	---	---	---	---	---	------

Notes:

1.4.55 Reset

Description:

This broadcast message is sent by a command station when its "Loco Reset" button has been pressed. Software should reload any locally cached slot data from the command station.

Group:

2-Byte Message

Opcode:

OPC_LOCO_RESET

Type:

Broadcast

Encoding:

Byte 0:

1	0	0	0	1	0	1	0	0x8A	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

+0 $+1$ $+1$ $+1$ $+0$ $+1$ $+0$ $+1$ $+0$ $+1$,			_	-	_	
U I I I U I U I U X	1 ()		1 1		(()		(()	
	1 0	I	I	L T	l U		1 0	I

Response:

None.

Signature:

Byte 0:

1	0	0	0	1	0	1	0	0x8A

Notes:

$1.4.56 \quad Sens Rep Gen In$

Description:

General sensor input report.

Group:

4-Byte Message

Opcode:

OPC_INPUT_REP

Type:

Message

Encoding:

Byte 0:

1	0	1	1	0	0	1	0	0xB2	Oncode
			_					UAD2	Opcode

Byte 1:

```
0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | <IN1> Sensor address A7 to A1.
```

- d6 A7.
- d5 A6.
- d4 A5.
- d3 A4.
- d2 A3.
- d1 A2.
- d0 A1.

Byte 2:

0	1	d5	d4	d3	d2	d1	d0	<IN $2>$	Sensor address A11 to A8, A0 and
									sensor input state.

- d5 A0.
- d4 Input state: 1 means sensor input >= 6V, and 0 means sensor input = 0V.
- d3 A11.
- d2 A10.
- d1 A9.
- d0 A8.

Byte 3:

0 n n n n n n r

Response:

None.

Signature:

Byte 0:

1	0	1	1	0	0	1	0	0xB2

Byte 2:

Notes:

1.4.57 SensRepTurnIn

Description:

Turnout sensor input report.

Group:

4-Byte Message

Opcode:

OPC_SW_REP

Type:

Message

Encoding:

Byte 0:

1	0	1	1	0	0	0	1	0xB1	Opcode.

Byte 1:

```
0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | <SN1> Sensor address A7 to A1.
```

- d6 A7.
- d5 A6.
- d4 A5.
- d3 A4.
- d2 A3.
- d1 A2.
- d0 A1.

Byte 2:

- d5 A0.
- d4 Input sensor state, 1 means sensor >= 6V, 0 means sensor = 0V.
- d3 A11.
- d2 A10.
- d1 A9.
- d0 A8.

\mathbf{D}	0
Byte	
\mathbf{D}_{V}	v.

0	n	n	n	n	n	n	n	<chk></chk>	Checksum.
---	---	---	---	---	---	---	---	-------------	-----------

Response:

None.

Signature:

Byte 0:

1	0	1	1	0	0	0	1	0xB1

Byte 2:

Notes:

d0

A7.

1.4.58 SensRepTurnOut

Descrip	otion:		
Turnou	it sensor output report.		
Group:			
4-Byte	Message		
Opcode	e:		
	- W_REP		
Type:			
Messag	ee		
Encodi			
Byte 0:			
	$egin{array}{c c c c c c c c c c c c c c c c c c c $	0xB1	Opcode.
		OXDI	Opcode.
Byte 1:	:		
0	$d6 \mid d5 \mid d4 \mid d3 \mid d2 \mid d1 \mid d0$	<sn1></sn1>	Sensor address A6 to A0.
d6	A6.		
d5	A5.		
d4	A4.		
d3	A3.		
d2	A2.		
d1	A1.		
d0	A0.		
Byte 2	:		
0	$0 \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	<sn2></sn2>	Sensor address A10 to A7 and sensor state.
d5	0 means closed output line is of	ff and 1 means th	ne closed
as	output line is on.		ic closed
d4	0 means thrown output line	is off and 1 me	eans the
	thrown output line is on.		
d3	A10.		
d2	A9.		
d1	A8.		

\mathbf{D}	0
Byte	
\mathbf{D}_{V}	v.

0	n	n	n	n	n	n	n	<CHK $>$	Checksum
---	---	---	---	---	---	---	---	----------	----------

Response:

None.

Signature:

Byte 0:

1	0	1	1	0	0	0	1	0xB1
---	---	---	---	---	---	---	---	------

Byte 2:

Notes:

0

d6

 $d5 \mid d4 \mid$

d3

d2

 $d1 \mid d0 \mid$

1.4.59 SetBrdOpSw

Description: Set board OpSw. Group: 6-Byte Message Opcode: OPC_BRD_OPSW (Unofficial mnemonic) Type: Broadcast Encoding: Byte 0: 0xD0Opcode. 1 1 0 1 0 0 0 0 Byte 1: 0 d0The bit d0 is the most significant 0 0 bit of the board id. Byte 2: <BIDL>Least significant 7 bits of the 0 \mathbf{n} \mathbf{n} \mathbf{n} n \mathbf{n} \mathbf{n} \mathbf{n} board id. Byte 3: <BTYPE> Board type code. 0 n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} Type Code <u>Board</u> PM40x70.BDL16 0x71.SE8C 0x72.DS640x73.Byte 4:

The high nibble encodes the byte number, and the low nibble the bit number. The byte number is calculated as (OpSw# - 1) >> 3 and the bit number is (OpSw# - 1) - byte number \times 8.

Byte and bit number.

Byte 5:

0	n	n	n	n	n	n	n	<CHK $>$	Checksum
---	---	---	---	---	---	---	---	----------	----------

Response:

 \mathbf{Ack}

Signature:

Byte 0:

-1	-1	_	-1	_	0	_	_	0.00
		()		()	()	()	()	(0x1)()
		0	_	0	0	0		OADO

Byte 1:

_								
	0	1	1	1	0	0	1	×

Notes:

1.4.60 SetIdleState

Description:					
This command sets the network to 'emergency stop.	"idle" state.	The command	station	broadcasts	a
Group:					
2-Byte Message					
Opcode:					
OPC_IDLE					
Type:					
Command					
Encoding:					
Byte 0:					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x85	Opcode.			
Byte 1:					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x7A	Checksum.			
Response:					
None					
Signature:					
Byte 0:					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x85				
Notes:					
None.					

1.4.61 SetLocoSlotDataP1

T	•	. •
1000	min	tion.
エノせいし		tion:
	r	

This command sets the locomotive slot data for the specified slot.

Protocol:

1

Group:

Variable-Byte Message

Opcode:

 $OPC_WR_SL_DATA$

Type:

Command

Encoding:

Byte 0:

1	1	1	0	1	1	1	1	0xEF	Opcode.

Byte 1:

Byte 2:

0	n	n	n	n	n	n	n	$\langle SLOT\# \rangle$	Slot number in the range $0x00$ to
								,	0x77. Slot $0x00$ is the dispatch
									special slot.

Byte 3:

1

	d7	d6	d5	d4	d3	d2	d1	d0	<stat1></stat1>	Slot status 1.		
		ď	7	d6								
		0	_	0]	Free,	no	cons	ist linking.			
		0		1	(Consist sub-member.						
1 0 Consist top-member.												

Consist Mid-Consist member.

Note: d7 is set to 0 in the message by the command station and so may not correctly reflect the actual setting in the slot table.

		$\frac{d4}{0}$ 1 0 1	Free slot, no valid data. Not refreshed. Common. Locomotive address in this slot. Refreshed. Idle. Locomotive address in this slot. Not refreshed. In Use. Locomotive address in this slot. Refreshed.
		$\underline{d3}$	
		0	No slot consist linked into this slot.
		1	Slot consist linked into this slot.
$\underline{d2}$	J1	10	
<u>uz</u>	$\underline{d1}$	$\underline{d0}$	
$\frac{dz}{0}$	$\frac{\alpha_1}{0}$	$\frac{d0}{0}$	28 step decoder. 3-byte packet regular mode
			28 step decoder. 3-byte packet regular mode 28 step decoder. Generate trinary packets for this mobile address
0	0	0	
0	0	0 1	28 step decoder. Generate trinary packets for this mobile address
0 0 0	0 0 1	0 1 0	28 step decoder. Generate trinary packets for this mobile address 14 step decoder.
0 0 0	0 0 1 1	0 1 0 1	28 step decoder. Generate trinary packets for this mobile address 14 step decoder. 128 step decoder.
0 0 0 0 1	0 0 1 1 0	0 1 0 1 0	28 step decoder. Generate trinary packets for this mobile address14 step decoder.128 step decoder.28 step decoder. Allow advanced consisting

Byte 4:

0	n	n	n	n	n	n	n	<ADR $>$	If	<ADR2 $>$	is 0	then

tains the NMRA short address. If <ADR2> is greater than 0 then this contains the low 7 bits of the

this con-

NMRA long address.

Byte 5:

0 <SPD> \mathbf{n} \mathbf{n} n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}

Speed in the range 0x00 to 0x7F. 0x00 means inertial stop and 0x01 means emergency stop. Other values mean increasing speed.

Byte 6:

0	0	d5	d4	d3	d2	d1	d0	$\langle \text{DIRF} \rangle$	Locomotive	direction	and	state
									of functions	F0 to F4.		

- d5Direction: 1 means forward and 0 means backwards.
- d4F0 state: 1 means on and 0 means off.
- d3F4 state: 1 means on and 0 means off.
- d2F3 state: 1 means on and 0 means off.
- d1F2 state: 1 means on and 0 means off.
- d0F1 state: 1 means on and 0 means off.

Byte 7:

0	46	0	n	43	d2	d1	d0	<trk></trk>	Global System Track Status.
U	ao	U	U	լ ա	uz	uı	uu	<1nn>	Global System Track Status.

- d61 means this command station implements protocol 2 commands.
- d31 means the programming track is busy.
- d21 means this master implements protocol 1 commands, 0 means the command station is a DT200.
- d10 means the track is paused, broadcast an emergency stop.
- d01 means the DCC packets are on and global power is up.

Byte 8:

0	0	0	0	d3	d2	0	d0	$\langle SS2 \rangle$	Slot status 2.

- d31 means expansion in ID1/2, 0 means encoded alias.
- d21 means expansion ID1/2 is not ID usage.
- d01 means this slot has suppressed advanced consist.

Byte 9:

0	n	n	n	n	n	n	n	<ADR2 $>$	If $\langle ADR2 \rangle$ is greater than 0 then
									this contains the high 7 bits of the
									NMRA long address.

Byte 10:

0	0	0	0	d3	d2	d1	d0	$\langle SND \rangle$	Function F5 to F8 states.
d3	F	8 sta	ate:	1 me	ans	means off.			

- d2F7 state: 1 means on and 0 means off.
- F6 state: 1 means on and 0 means off. d1
- d0F5 state: 1 means on and 0 means off.

Byte 11:

0	n	n	n	n	n	n	n	<id1></id1>	7-bit ls ID code written by throt-
									tle when $STAT2.4 = 1$.

Byte 12:

	<id2></id2>	7-bit ms ID code written by throt- tle when $STAT2.4 = 1$.
Byte 13:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
Ack		
Signature:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xEF	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x0E	
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	less than 0x	78
Byte 6:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Byte 7:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Byte 8:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Byte 10:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Notes:		
None.		

1.4.62 SetLocoSlotDataP2

${\bf Description:}$

This command sets the locomotive slot data for the specified slot number.

Protocol:

2

Group:

Variable-Byte Message

Opcode:

OPC_WR_SL_DATA_P2 (Unofficial mnemonic)

Type:

Command

Encoding:

Byte 0:

		1	1	1	0	1	1	1	0	0xEE	Opcode.
--	--	---	---	---	---	---	---	---	---	------	---------

Byte 1:

0 0 0 1 0 1 0 1	Message length (21 bytes).
-----------------	----------------------------

Byte 2:

0	0	0	0	0	d2	d1	d0	<SLOTP# $>$	Slot page number in the range $0x0$
			•						to $0x7$.

Byte 3:

0	n	n	n	n	n	n	n	<slot#></slot#>	Slot number in the range 0x00 to
								,	0x77.

Byte 4:

0	d6 d5		d4	d3	d2	d1	d0	<stat1></stat1>	Slot status 1.
	d7		d6						
	$\frac{\mathbf{a}}{0}$	<u>-</u>	0	I					
	0		1	(Free, no consist linking. Consist sub-member.				

0 Consist top-member.
 1 Consist Mid-Consist member.

Note: d7 is set to 0 in the message by the command station and so may not correctly reflect the actual setting in the slot table.

$\underline{d5}$	$\underline{d4}$	
0	0	Free slot, no valid data. Not refreshed.
0	1	Common. Locomotive address in this slot. Refreshed.
1	0	Idle. Locomotive address in this slot. Not refreshed.
1	1	In Use. Locomotive address in this slot. Refreshed.
	d3	
	0	No slot consist linked into this slot.
	1	Slot consist linked into this slot.

$\underline{\mathrm{d}2}$	$\underline{d1}$	$\underline{d0}$	
0	0	0	28 step decoder. 3-byte packet regular mode
0	0	1	28 step decoder. Generate trinary packets for this mobile address
0	1	0	14 step decoder.
0	1	1	128 step decoder.
1	0	0	28 step decoder. Allow advanced consisting
1	0	1	reserved
1	1	0	reserved
1	1	1	128 step decoder. Allow advanced consisting

Byte 5:

Byte 6:

								1	
0	n	n	n	n	n	n	n	<adr2></adr2>	High address.

Byte 7:

0	d6	d5	d4	d3	d2	d1	d0	<trk></trk>	Global system track status.
---	----	----	----	----	----	----	----	-------------	-----------------------------

- d6 1 means this command station implements protocol 2 messages. This can be turned off on the DCS240 by setting the OpSw 44 to be closed.
- d5 Reserved. Set to 0.
- d4 Reserved. Set to 0.
- d3 1 means the programming track is busy.
- d2 1 means this command station implements protocol 1 messages. 0 means the command station is a DT200.
- d1 0 means the track is paused, broadcast an emergency stop.
- d0 1 means the DCC packets are on in the command station and track power is on.

Byte 8:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0 | $\langle SPD \rangle$

Speed in the range 0x00 to 0x7F. 0x00 means inertial stop and 0x01 means emergency stop. Other values mean increasing speed.

Byte 9:

 0
 d6
 d5
 d4
 d3
 d2
 d1
 d0

 d6
 F28 state: 1 means on and 0

Functions.

- d6 F28 state: 1 means on and 0 means off d5 F20 state: 1 means on and 0 means off d4 F12 state: 1 means on and 0 means off d3
- d2
- d1 d0

Byte 10:

0 | d6 | d5 | d4 | d3 | d2 | d1 | d0

Direction and Functions.

d6

- d5 Direction: 1 means forwards and 0 means backwards
- d4 F0 state: 1 means on and 0 means off
- d3 F4 state: 1 means on and 0 means off
- d2 F3 state: 1 means on and 0 means off
- d1 F2 state: 1 means on and 0 means off
- d0 F1 state: 1 means on and 0 means off

Byte 11:

0	d6 d5 d4 d3 d2 d1 d0	Functions.
d6	F11 state: 1 means on and 0 means off	
d5	F10 state: 1 means on and 0 means off	
d4	F9 state: 1 means on and 0 means off	
d3	F8 state: 1 means on and 0 means off	
d2	F7 state: 1 means on and 0 means off	
d1	F6 state: 1 means on and 0 means off	
d0	F5 state: 1 means on and 0 means off	
Byte	12:	
0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Functions.
d6	F19 state: 1 means on and 0 means off	
d5	F18 state: 1 means on and 0 means off	
d4	F17 state: 1 means on and 0 means off	
d3	F16 state: 1 means on and 0 means off	
d2	F15 state: 1 means on and 0 means off	
d1	F14 state: 1 means on and 0 means off	
d0	F13 state: 1 means on and 0 means off	
Byte	13:	
0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Functions.
d6	F27 state: 1 means on and 0 means off	
d5	F26 state: 1 means on and 0 means off	
$\frac{d5}{d4}$	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off	
d5 $ d4 $ $ d3$	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off	
d5 d4 d3 d2	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off	
d5 d4 d3 d2 d1	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off	
d5 d4 d3 d2	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off	
d5 d4 d3 d2 d1	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	
$\begin{array}{c} d5 \\ d4 \\ d3 \\ d2 \\ d1 \\ d0 \\ \end{array}$ Byte	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	Unknown.
d5 d4 d3 d2 d1 d0 Byte 0	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	$\operatorname{Unknown}.$
$\begin{array}{c} d5 \\ d4 \\ d3 \\ d2 \\ d1 \\ d0 \\ \\ Byte \\ \hline 0 \\ d6 \\ d5 \\ \end{array}$	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	${ m Unknown}.$
d5 d4 d3 d2 d1 d0 Byte 0 d6 d5 d4	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	Unknown.
d5 d4 d3 d2 d1 d0 Byte 0 d6 d5 d4 d3	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	Unknown.
d5 d4 d3 d2 d1 d0 Byte 0 d6 d5 d4 d3 d2	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	Unknown.
d5 d4 d3 d2 d1 d0 Byte 0 d6 d5 d4 d3	F26 state: 1 means on and 0 means off F25 state: 1 means on and 0 means off F24 state: 1 means on and 0 means off F23 state: 1 means on and 0 means off F22 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off F21 state: 1 means on and 0 means off	Unknown.

Byte 15:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Unknown.
d6 d5 d4 d3 d2 d1 d0	
Byte 16:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Consist slot page number.
d6 d5 d4 d3 d2 Consist slot page b2 d1 Consist slot page b1 d0 Consist slot page b0	
Byte 17:	
	Consist slot number in the range $0x00$ to $0x77$.
Byte 18:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Throttle id low bits.
Byte 19:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Throttle id high bits.

Byte 20:

0	n n	n	n	n	n	n	<CHK $>$	Checksum.
---	-----	---	---	---	---	---	----------	-----------

Response:

\mathbf{Ack}

$$\begin{array}{ccc} \underline{<\mathrm{LOPC}>} & \underline{<\mathrm{ACK1}>} & \underline{\mathrm{Meaning}} \\ 0x6\mathrm{E} & 0x7\mathrm{F} & \overline{\mathrm{Command~OK}}. \end{array}$$

Signature:
Byte 0:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Byte 1:
$egin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
*** THERE SHOULD BE MORE ONCE ALL THE BYTES ARE DETERMINED ***
Notes:

1.4.63 SetLocoSlotStat1

I loco.	rint	10n.
Desc	เมษ	ion.
	Τ	

This command sets the locomotive slot status 1 values for the specified slot number.

Protocol:

1

Group:

4-Byte Message

Opcode:

OPC_SLOT_STAT1

Type:

Command

Encoding:

Byte 0:

		1	0	1	1	0	1	0	1	0xB5	Opcod
--	--	---	---	---	---	---	---	---	---	------	-------

Byte 1:

Byte 2:

Byte 3:

0	n	n	n	n	n	n	n	<chk></chk>	Checksum.
		**						(01111)	Chechbann.

Response:

None.

Signature:

Byte 0:

1	0	1	1	0	1	0	1	0xB5
---	---	---	---	---	---	---	---	------

Byte 1:

1.4.64 SetSwWithAck

Description:

This command sets a specified switch to a specified state. The switch responds with an \mathbf{Ack} .

Group:

4-Byte Message

Opcode:

 OPC_SW_ACK

Type:

Command

Encoding:

Byte 0:

$\begin{array}{ c c c c c } 1 & 0 & 1 \end{array}$	$1 \mid 1$	1	0	1	0xBD	Opcode.
--	------------	---	---	---	------	---------

Byte 1:

0	d6 d5	d4	d3	d2	d1	d0	<sw1></sw1>	Switch address A6 to

- d6 A6.
- d5 A5.
- d4 A4.
- d3 A3.
- d2 A2.
- d1 A1.
- d0 A0.

Byte 2:

- d5 Direction. 1 means closed/green, and 0 means thrown/red.
- d4 Output. 1 means on, and 0 means off.
- d3 A10.
- d2 A9.
- d1 A8.
- d0 A7.

Byte 3:

>

Response:

\mathbf{Ack}

<LOPC> <ACK1> Meaning

0x3D 0x00 \overline{FIFO} is full, command rejected.

0x3D 0x7F Command accepted.

Signature:

Byte 0:

1	0	1	1	1	1	0	1	0xBD
_ T	0	I	I	I	1	0	I	

Byte 2:

0	0	×	×	×	×	×	×

Notes:

${\bf 1.4.65 \quad Slot Not Implemented}$

Description:		
The SlotNotImplemented response the command station.	means that the	slot requested is not supported by
Group:		
4-Byte Message		
Opcode:		
OPC_LONG_ACK		
Type:		
Response		
Encoding:		
Byte 0:		
1 0 1 1 0 1 0 0	0xB4	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3B	
Byte 2:		
	0x00	
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x70	Checksum.
Response:		
None		
Signature:		
Byte 0:		
	0xB4	
Byte 1:		
	0x3B	

Byte 2:

170

0	0	0	0	0	0	0	0	0x00
---	---	---	---	---	---	---	---	------

Byte 3:

	0x70
--	------

Notes:

1.4.66 OPC_SV_PROG

Operation: Program system variables.

Group: Variable-Byte Message

Direction: device \rightarrow device

Encoding:

Byte 0:

1	1	1	0	0	1	0	1	0xE5	Opcode.
---	---	---	---	---	---	---	---	------	---------

Byte 1:

0	0	0	1	0	1	0	0	0x14	Message length (20 bytes).
---	---	---	---	---	---	---	---	------	----------------------------

Byte 2:

Byte 3:

Byte 4:

Byte 5:

0	n	n	n	n	n	n	n	<HOST $>$	Device host identifier.
---	---	---	---	---	---	---	---	-----------	-------------------------

This should be 0x00 for discover devices broadcast.

d0

subversion number bit 0

$\underline{\text{Host Id}}$	<u>Device</u>	
0x01	LNRP	
0x04	UT4	
0x0C	WTL12	
0x14	DB210 Opto	
0x15	DB210	
0x16	DB220	
0x1A	DCS210+	
0x1B	DCS210	
0x1C	DCS240	
0x23	PR3	
0x24	PR4	
0x2A	DT402	
0x32	DT500	
0x33	DCS51	
0x34	DCS52	
0x3E	DT602	
0x51	BXPA1	
0x58	BXP88	
0x5C	UR92	
0x63	LNWI	
Byte 6:		
0 n	n n n n n n	Hardware version.
Host Id	<u>Device</u>	
0x00	Slave all	
0x18	Slave RF24	
Byte 7:		
0 n	n n n n n n	Reserved.
Byte 8:		
0 d6	d5 d4 d3 d2 d1 d0	Software Version Number.
0 40	us al us uz al us	Software Version Trainiser.
d6 ve	ersion number bit 3	
d5 ve	ersion number bit 2.	
	ersion number bit 1	
	ersion number bit 0	
	bversion number bit 2	
d1 su	bversion number bit 1	

e.g. 0x09 decodes as version 1.1.

This is set to 0x00 for discover devices broadcast message.

Byte 9:

0	d6 d5 d4 d3 d2 d1 d0	<pxct1></pxct1>	Address type code and high bits of
			D1 to D4.
10	37.00 A 11		

- d6 XC2. Address type code.
- d5 XC1. Address type code.
- d4 XC0. Address type code.
- d3 D4.7. High bit
- d2 D3.7. High bit
- d1 D2.7. High bit
- d0 D1.7. High bit

$\underline{\text{XC2}}$	$\underline{\text{XC1}}$	$\underline{\text{XC0}}$	Meaning
0	0	0	7 bit peer to peer addresses.
0	0	1	reserved.
0	1	0	reserved.
0	1	1	reserved.
1	0	0	reserved.
1	0	1	reserved.
1	1	0	reserved.
1	1	1	reserved.

Byte 10:

								∠D1>	D 4 '4 1 T 71'4
U	l n	l n	n	l n	n	l n	n	<d1></d1>	Data item 1. Low 7 bit

Byte 11:

0	n	n	n	n	n	n	n	$\langle D2 \rangle$	Data item 2. Low 7 bits.

This should be 0x01 for a discover devices broadcast message.

Byte 12:

0	n	n	n	n	n	n	n	<d3></d3>	Data item 3. Low 7 bi	ts
---	---	---	---	---	---	---	---	-----------	-----------------------	----

Byte 13:

Byte 14:

0	n	n	n	n	n	n	n	<pxct2></pxct2>	Data type code and high bits for
									D5 to D8.

- d6 XC5. Data type code.
- d5 XC4. Data type code.
- d4 XC3. Data type code.
- d3 D8.7. High bit
- d2 D7.7. High bit
- d1 D6.7. High bit
- d0 D5.7. High bit

$\underline{\text{XC5}}$	$\underline{\text{XC4}}$	$\underline{XC3}$	Meaning
0	0	0	ANSI text string.
0	0	1	reserved.
0	1	0	reserved.
0	1	1	reserved.
1	0	0	reserved.
1	0	1	reserved.
1	1	0	reserved.
1	1	1	reserved.

Byte 15:

•	7 ł	7 b	7 bi
ĺ		1	1
ĺ		1	1
j	i	i	Ĺ
j	j	j	j
))	i	j
Э	C)	ij
ł)	oj
]	ł	b	bi
	ł	b	bi
	ł	b	bi
7	ł	b	bi
7	' ł	b'	' bi
	7 ł	7 b	7 bi
۲	7 ł	7 b	7 bi
-	7 ł	7 b	7 bi
	71	7 b	7 bi
r '	7 l	7 b	⁷ 7 bi
7 7	7 1	77 b	7 bi
v 7	v 7 l	v 7 b	v 7 bi
v '	v7	v 7 b	v 7 bi
w '	w 7 ł	w 7 b	w 7 bi
w '	w 7 ł	w 7 b	w 7 bi
w	w 7 ł	w 7 b	w 7 bi
w	w 7 l	w 7 b	w 7 bi
w	w 7 l	w 7 b	w 7 bi
ow '	ow 7 l	ow 7 b	ow 7 bi
ow '	ow $7 \mathrm{l}$	ow 7 b	ow 7 bi
ow '	ow 7 l	ow 7 b	ow 7 bi
ow '	ow 7 l	ow 7 b	ow 7 bi
ow '	Low 7 h	Low 7 b	Low 7 bi
Low '	Low 7 l	Low 7 b	Low 7 bi
Low 7	Low 7 h	Low 7 b	Low 7 bi
Low	Low 7 h	Low 7 b	Low 7 bi
Low	Low 7 h	Low 7 b	Low 7 bi
Low	Low 7 h	Low 7 b	Low 7 bi
Low	Low 7 h	Low 7 b	Low 7 bi
. Low	. Low 7 h	. Low 7 b	. Low 7 bi
Low '	. Low 7 h	. Low 7 b	Low 7 bi
5. Low 7	5. Low 7 h	5. Low 7 b	5. Low 7 bi
5. Low 7	5. Low 7 h	5. Low 7 b	5. Low 7 bi
5. Low 7	5. Low 7 h	5. Low 7 b	5. Low 7 bi
5. Low 7	5. Low 7 h	5. Low 7 b	5. Low 7 bi
1 5. Low 7	15. Low 7 h	1 5. Low 7 b	1 5. Low 7 bi
n 5. Low 7	a 5. Low 7 h	a 5. Low 7 b	a 5. Low 7 bi
n 5. Low 7	n 5. Low 7 h	n 5. Low 7 b	n 5. Low 7 bi
m 5. Low 7	m 5. Low 7 h	m 5. Low 7 b	m 5. Low 7 bi
m 5. Low 7	m 5. Low 7 h	m 5. Low 7 b	m 5. Low 7 bi
em 5. Low 7	em 5. Low 7 h	em 5. Low 7 b	em 5. Low 7 bi
em 5. Low 7	em 5. Low 7 h	em 5. Low 7 b	em 5. Low 7 bi
em 5. Low	em 5. Low 7 h	em 5. Low 7 b	em 5. Low 7 bi
tem 5. Low 7	tem 5. Low 7 h	tem 5. Low 7 b	tem 5. Low 7 bi
tem 5. Low	item 5. Low 7 h	item 5. Low 7 b	item 5. Low 7 bi
item 5. Low	item 5. Low 7 h	item 5. Low 7 b	item 5. Low 7 bi
item 5. Low 7	item 5. Low 7 h	item 5. Low 7 b	item 5. Low 7 bi
item 5. Low 7	item 5. Low 7 h	item 5. Low 7 b	item 5. Low 7 bi
item 5. Low	ı item 5. Low 7 k	ı item 5. Low 7 b	ı item 5. Low 7 bi
a item 5. Low 7	a item 5. Low 7 h	a item 5. Low 7 b	a item 5. Low 7 bi
a item 5. Low 7	a item 5. Low 7 h	a item 5. Low 7 b	a item 5. Low 7 bi
ta item 5. Low 7	ta item 5. Low 7 h	a item 5. Low 7 b	a item 5. Low 7 bi
ta item 5. Low 7	ta item 5. Low 7 h	ta item 5. Low 7 b	ta item 5. Low 7 bi
ta item 5. Low 7	ta item 5. Low 7 h	ta item 5. Low 7 b	ta item 5. Low 7 bi
ata item 5. Low 7	ata item 5. Low 7 h	ata item 5. Low 7 b	ata item 5. Low 7 bi
ata item 5. Low 7	ata item 5. Low 7 h	ata item 5. Low 7 b	ata item 5. Low 7 bi
ata item 5. Low 7	ata item 5. Low 7 h	ata item 5. Low 7 b	ata item 5. Low 7 bi
ata item 5. Low 7	ata item 5. Low 7 h	ata item 5. Low 7 b	ata item 5. Low 7 bi
Oata item 5. Low 7	Oata item 5. Low 7 h	Oata item 5. Low 7 b	Oata item 5. Low 7 bi
Oata item 5. Low 7	Oata item 5. Low 7 h	Oata item 5. Low 7 b	Oata item 5. Low 7 bi
Oata item 5. Low 7	Oata item 5. Low 7 h	Oata item 5. Low 7 b	Oata item 5. Low 7 bi
Oata item 5. Low 7	Oata item 5. Low 7 h	Oata item 5. Low 7 b	Oata item 5. Low 7 bi
Oata item 5. Low 7	Oata item 5. Low 7 h	Oata item 5. Low 7 b	Oata item 5. Low 7 bi
Data item 5. Low '	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low 7	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi
Data item 5. Low	Data item 5. Low 7 h	Data item 5. Low 7 b	Data item 5. Low 7 bi

Byte 16:

0	n	n	n	n	n	n	n	<d6></d6>	Data item 6. Low 7 bits
---	---	---	---	---	---	---	---	-----------	-------------------------

Byte 17:

Byte 18:

0	n n n n	1 <d8></d8>	Data item 8. Low 7 bi
---	---------	-------------	-----------------------

Byte 19:

								1	
0	n	n	n	n	n	n	n	<chk></chk>	Checksum.

Description:

This command sends the data from one device to another peer to peer.

$\underline{\operatorname{SRC}}$	$\overline{\mathrm{DSTL}}$	$\overline{\mathrm{DSTH}}$	Comments
0x0F	0x08	0x00	Discover devices broadcast message.
0x0F	0x10	0x00	Discover device response.

Response:

OPC_PEER_XFER_20 for discover devices.

1.4. MESSAGES 175

Notes:

The discover response decoded peer transfer message encodes as follows:

```
D1 IPL Version Number
```

- D2 Serial Number low byte
- D3 Serial Number high byte

D4

- D5 Serial Number 2 low byte
- D6 Serial Number 2 high byte

D7

D8

The IPL version number is encoded as follows:

- d6 version number bit 3
- d5 version number bit 2.
- d4 version number bit 1
- d3 version number bit 0
- d2 subversion number bit 2
- d1 subversion number bit 1
- d0 subversion number bit 0

e.g. 0x09 decodes as version 1.1.

These came from DigiPLII:

message Length = 20 e5 14 0f 10 00 24 00 00 00 02 00 08 07 00 00 00 00 00 00 38

 $message\ Length = 20\ e5\ 14\ 0f\ 10\ 00\ 24\ 00\ 00\ 00\ 00\ 00\ 57\ 13\ 00\ 00\ 00\ 00\ 00\ 71$

 $message \ Length = 20 \ e5 \ 14 \ 0f \ 10 \ 00 \ 1b \ 00 \ 00 \ 03 \ 02 \ 00 \ 54 \ 10 \ 00 \ 00 \ 00 \ 00 \ 00 \ 4f$

It reports PR4 with serial number 0x0788 ver 0 PR4 with serial 0x1357 ver 0 DCS240 with SN 0x0AAB ver 0.3 DCS210 with SN 0x10D4 ver 0.3

1.4.67 SwState

<u>Description:</u>		
This Response is returned in response	to a GetSwSta	te Command
Group:		
4-Byte Message		
Opcode:		
OPC_LONG_ACK		
Type:		
Response		
Encoding:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xB4	Opcode.
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3C	
Byte 2:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Bit Meaning d5 Switch state: 1 means closed/gr d4 Output state: 1 means on and 6		s thrown/red
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None.		
Signature:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xB4	
Byte 1:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0x3C	

1.4. MESSAGES	177
Notes:	
None.	

1.4.68 SwReq

Description:

Command a turnout controller to a specified state. *** CHECK THIS ***

Group:

4-Byte Message

Opcode:

OPC_SW_REQ

Type:

Command

Encoding:

Byte 0:

1	0	1	1	0	0	0	0	0xB0	Opcode.

Byte 1:

0	d6 d5 d4 d3	d2 d1 d0	$\langle SW1 \rangle$ S	Switch address A6 to A
---	-------------	----------	-------------------------	------------------------

- d6 A6.
- d5 A5.
- d4 A4.
- d3 A3.
- d2 A2.
- d1 A1.
- d0 A0.

Byte 2:

- d5 Direction. 1 means closed/green, and 0 means thrown/red.
- d4 Output. 1 means on, and 0 means off.
- d3 A10.
- d2 A9.
- d1 A8.
- d0 A7.

1.4. MESSAGES 179

Byte 3:

Response:

 \mathbf{Ack} if command failed, otherwise no response.

$$\begin{array}{ccc} \underline{<\mathrm{LOPC}>} & \underline{<\mathrm{ACK1}>} & \underline{\mathrm{Meaning}} \\ 0\mathrm{x}30 & 0\mathrm{x}00 & \overline{\mathrm{Command failed}}. \end{array}$$

Signature:

Byte 0:

								1
1	0	1	1	0	0	0	0	0xB0

Byte 2:

0	0	×	×	×	×	×	×

Notes:

The on power on the command station sends a sequence of OPC_SW_REQ messages with the following values of SW1 and SW2:

$\underline{\mathrm{SW1}}$	$\underline{\mathrm{SW2}}$	Purpose
0x78	0x27	
0x79	0x27	
0x7A	0x27	
0x7B	0x27	
0x78	0x07	Interrogate all PM4 inputs?
0x79	0x07	Interrogate all BDL16 input reports?
0x7A	0x07	Interrogate all SE8 input reports?
0x7B	0x07	Interrogate all DS64 input reports.

Signature:

1.4.69 TransRep

Description:		
Transponder input report.		
Group:		
6-Byte Message		
Opcode:		
OPC_TRANS_REP		
Type:		
Broadcast		
Encoding:		
Byte 0:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0xD0	Opcode.
Byte 1:		
		A value of 0x20 means the positive detection of a transponder, 0x00 means no longer detected.
Byte 2:		G
0 0 0 0 n n n n	<zone#></zone#>	Zone indicator $(0x0 = A, 0x2 = B, 0x4 = C, 0x6 = D).$
Byte 3:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<adr></adr>	Locomotive address low bits.
Byte 4:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<adr2></adr2>	Locomotive address high bits.
Byte 5:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<chk></chk>	Checksum.
Response:		
None.		

1.4. MESSAGES 181

Byte 0:

1	1	0	1	0	0	0	0	0xD0.
---	---	---	---	---	---	---	---	-------

*** THERE SHOULD BE MORE ***

Notes:

None.

1.4.70 UnlinkSlotsP1

1.4. MESSAGES 183

0	n	n	n	n	n	n	n	less than 0x78
Byte	2:							
0	n	n	n	n	n	n	n	less than 0x78
Note	s:	'			I.			,

None.

1.4.71 UnlinkSlotsP2

${\bf Description:}$

This command unlinks slot SL1 from a consist. The command station sets SL_CONUP/DN flags appropriately. If the command was successful then a $\mathbf{LocoSlotDataP2}$ response will be returned. An invalid link will return a \mathbf{Ack} with a response code of 0x00.

Protocol:		
2		
Group:		
6-Byte Message		
Opcode:		
OPC_D4_GROUP (unofficial mnemoni	ic)	
Type:		
Command		
Encoding:		
Byte 0:		
1 1 0 1 0 1 0 0	0xD4	Opcode.
Byte 1:		
0 0 1 1 1 d2 d1 d0	<sl1p></sl1p>	Bits d2 to d0 contain the SL1 slot page number in the range $0x0$ to $0x7$.
Byte 2:		
	<sl1#></sl1#>	Slot number SL1 in the range $0x00$ to $0x77$.
Byte 3:		
0 1 0 1 0 d2 d1 d0	<sl1p></sl1p>	Bits d2 to d0 contain the SL1 slot page number in the range 0x0 to 0x7. This is the same value as byte 1.
Byte 4:		

1.4. MESSAGES 185 Slot number SL1 in the range 0x000 \mathbf{n} \mathbf{n} n \mathbf{n} n n n <SL1#>to 0x77. This is the same value as byte 2. Byte 5: 0 n <CHK> Checksum. n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n Response: LocoSlotDataP2 or Ack. Signature: Byte 0: 1 1 0 0xD41 0 0 Byte 1: 0 0 \times Byte 2: 0 n less than 0x78 \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n n Byte 3: 0 1 0 1 0 \times × Byte 4: 0 n less than 0x78 \mathbf{n} n n n n n

Notes:

None.

Chapter 2

Fast Clock

2.1 Summary

The command station provides a system fast clock and parameters are stored in slot #123 (0x7B). Use OPC_WR_SL_DATA to write new clock information, The current slot information can be read using OPC_RQ_SL_DATA. This will return an OPC_SL_RD_DATA message containing the fast clock information. This message is called the "sync". Other throttles will update to this sync. Note that all attached display devices keep a current clock calculation based on this sync read value, i.e. devices must not continuously poll the clock slot to generate time, but use this merely to restore sync and follow current rate etc. The clock slot is typically "pinged" or read every 70 to 100 seconds, by a single user, so all attached devices can synchronise any phase drifts. Upon seeing a sync read, all devices should reset their local sub-minute phase counter and invalidate the sync update ping generator.

2.2 Slot #123 Encoding

Byte 0:

()	1	1	1	1	0	1	1

Byte 1:

The implementation and meaning of FRACL and FRACH depend upon the specific clock generator. These values should not be used externally. These values are reset when a valid sync message is seen.

That said, the following timing was derived for the DCS240.

Get:

 $\begin{aligned} \max & \text{Tick} = 0 \text{xBFF} \\ & \text{ticks} = \max & \text{Tick} \cdot (0 \text{x3FFF} \cdot ((<& \text{FRACL}> \& 0 \text{x7F}) - ((<& \text{FRACH}> \& 0 \text{x7F}) << 7))) \\ & \text{seconds} = 60.0 * & \text{ticks} / (\max & \text{Tick} + 1) \\ & \text{Set:} \\ & \text{temp} = & \text{ticks} \cdot \max & \text{Tick} + 0 \text{x3FFF} \end{aligned}$

 $\langle FRACL \rangle = temp \& 0x7F$

$$\langle FRACH \rangle = (temp >> 7) \& 0x7F$$

Byte 4:

Get:

temp =
$$((255 - \langle MINS \rangle) \& 0x7F) \mod 60$$

minutes = $(60 - \text{temp}) \mod 60$

Set:

$$<$$
MINS $> = (255 - (60 - minutes)) & 0x7F$

Byte 5:

189

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<trk></trk>	Global system track status.
d6 Reserved. Set to 0.		
d5 Reserved. Set to 0.		
d4 Reserved. Set to 0.		
d3 1 means the programming tra	ck is busy.	
d2 1 means this master implement		
1.1 capability, 0 means the ma		
d1 0 means the track is paused,	broadcast an en	nergency
stop.		
d0 1 means the DCC packets are	on in the maste	r, global
power up.		
Byte 6:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<hrs></hrs>	Fast clock hours. This is encoded.
Get:		
temp = $((256 - \langle HRS \rangle) \& 0x7F)$ mo	d 24	
$hours = (24 - temp) \mod 24$		
Set:		
$\langle HRS \rangle = (256 - (24 - hours)) \& 0x71$	F	
Byte 7:		
	<days></days>	Fast alask days Number of 24
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	<days></days>	Fast clock days. Number of 24 hour clock rolls.
		HOUR CIOCK TOHS.
Byte 8:		
$\begin{bmatrix} 0 & d6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	<cntrl></cntrl>	The bit d6 indicates valid clock in-
		formation. 1 means good and 0
		means ignore.
Byte 9:		
Dyte 9.		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	<id1></id1>	Device ID low bits.
Byte 10:		
$\begin{bmatrix} 0 & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} \end{bmatrix}$	<id2></id2>	Device ID high bits.
·	\	=

ID1 and ID2 indicate the device that last set the clock. 0x00, 0x00 means that not set has happened. 0x7F, 0x7X are reserved for computer use.

Chapter 3

Updating Firmware

3.1 Bootloader Protocol 1

3.2 Bootloader Protocol 2

- 1. The IPL Setup message is sent twice to initiate the download.
- 2. Each block is sent,
- 3. The IPL End Operation message is sent.

A block consists of an IPL Address message following by 1 or more IPL Data messages.

3.3 Firmware Parameters

<u>PC</u>	<u>Device</u>	$\overline{\mathrm{DT}}$	$\underline{\mathrm{BV}}$	\underline{HV}	\underline{SV}	<u>CK</u>	$\underline{\mathrm{DL}}$	<u>OP</u>	<u>PB</u>	$\underline{\mathrm{EB}}$	$\underline{\mathrm{ED}}$	$\underline{\mathrm{DC}}$
0x01	LNRP	09OCT15	1	0	3	64	8	1	64	64	8	0x50
0x04	UT4											
0x06	UT6	05APR21	2	0	1	64	11	2	512	4096	40	0x2E
0x0C	WTL12											
0x14	DB210O	06MAR20	2	1	2	64	7	2	512	4096	25	0x08
0x15	DB210	06MAR20	2	1	2	64	7	2	512	4096	25	0x08
0x16	DB220	06MAR20	2	1	2	64	7	2	512	4096	25	0x08
0x1A	DCS210+											
0x1B	DCS210	06MAR20	2	1	3	64	5	2	256	2048	40	0x2C
0x1C	DCS240	06MAR20	2	1	3	64	5	2	256	2048	40	0x2C
0x23	PR3	12FEB 14	1	0	8	64	5	1	-	1024	-	0x14
0x24	PR4	05JAN 18	0	0	0	64	5	2	256	2048	60	0x1C
0x2A	DT402	10OCT16	1	0	17	64	15	1	64	64	15	0x73
0x2A	DT402	05 AUG16	1	0	17	64	15	1	64	64	15	0x4B
0x32	DT500	10OCT16	1	0	1	64	15	1	64	64	15	0x0E
0x33	DCS51	06OCT14	1	0	5	64	12	1	-	-	-	0x0E
0x34	DCS52	17JUN21	2	0	1	64	11	2	512	4096	40	0x2C
0x3E	DT602	15JUL 21	2	0	1	64	11	2	512	4096	40	0x30
0x51	BXPA1	18JUN21	2	0	1	64	6	2	512	4096	41	0x0A
0x58	BXP88	21OCT17	2	0	2	64	50	2	256	2048	100	0x18
0x5C	UR92	07DEC15	0	1	8	64	16	1	64	64	16	0x24
0x5D	UR93	30 AUG 21	2	0	0	64	5	2	512	4096	25	0x0A
0x63	LNWI	11MAR21	2	1	2	64	5	2	512	4096	25	0x12

$\underline{\text{DCS52}}$	$\underline{\text{DCS51}}$	$\underline{\mathrm{DT500}}$	$\overline{\mathrm{DT402}}$	$\underline{\text{LNRP}}$	$\underline{\mathrm{EBS}}$
0x00	-	0x1B	0x65	0x20	32
0x00	0x0E	0x0E	0x73	0x50	64
0x00	-	0x47	0x3A	0x28	128
0x2B	-	0x05	0x7C	0x1B	192
0x40	-	0x64	0x5D	0x14	256
0x30	-	0x19	0x18	0x05	1024
0x58	-	0x0D	0x0C	0x03	2048
0x2C	-	0x07	0x06	0x02	4096
0x16	-	0x04	0x03	0x01	8192
0x0B	-	0x02	0x02	-	16384
0x06	-	0x01	0x01	-	32768
0x03	-	-	-	-	65536

3.4 DMF File Format

The manufacturer's DMF file format is a modified form of the Intel Hexadecimal Object File Format. Character encoding is ASCII. The file consists of multiple "records" each terminated by an ASCII linefeed character (0x0A). There are four types of record and they appear in the file in the following order:

- 1. Sync records
- 2. Parameter records
- 3. Data records
- 4. End of File record

3.4.1 Sync Records

Sync records are used to identify the file as a DMF file. There are six sync records each consisting of a single ASCII # character (0x23).

Example:

#

#

#

#

#

3.4.2 Parameter Records

PARAM MARK	PARAMETER NAME	NAME TERMINATOR	VALUE
! (0x21) < SPC > (0x20)	ASCII text	: (0x3A) < SPC > (0x20)	decimal value
2 bytes	variable bytes	2 byte	variable bytes

PARAMETER RECORD FORMAT

Parameter records start with a two byte PARAM MARK. This consists of the ASCII code for the exclamation mark (0x21) followed by the ASCII code for the space character (0x20). The PARAMETER NAME is next. The PARAMETER NAME is ASCII encoded text identifying the parameter. The PARAMETER NAME may include spaces. It is terminated by the NAME TERMINATOR which consists of the ASCII code for a colon

(0x3A) followed by the ASCII code for a space character (0x20). The last field is the VALUE field. This is a decimal numeric value encoded as ASCII text.

The following parameters have been identified and they are presented in the following order (it is not known if the order is significant):

- 1. Bootloader Version
- 2. Manufacturer Code
- 3. Product Code
- 4. Hardware Version
- 5. Software Version
- 6. Chunk Size
- 7. Delay
- 8. Options
- 9. First Address
- 10. Last Address
- 11. Prog Blk Size
- 12. Erase Blk Size
- 13. Erase Dly

Example:

- ! Bootloader Version: 2
- ! Manufacturer Code: 0
- ! Product Code: 88
- ! Hardware Version: 0
- ! Software Version: 2
- ! Chunk Size: 64
- ! Delay: 50
- ! Options: 2
- ! First Address: 24576 ! Last Address: 73728
- ! Prog Blk Size: 256
- ! Erase Blk Size: 2048
- ! Erase Dly: 100

3.4.3 Data Records

RECORD MARK	RECLEN	LOAD OFFSET	RECTYP	DATA	CHKSUM
(:)					
1 byte	2 bytes	6 bytes	2 bytes	n bytes	2 bytes

DATA RECORD FORMAT

The data record provides a set of hexadecimal digits that represent the ASCII code for data bytes that make up a portion of a memory image.

Each data record begins with a RECORD MARK field containing the ASCII code for the colon (:) character (0x3A).

Each record has a RECLEN field which specifies the number of bytes of data which follows the RECTYP field of the record. Note that one data byte is represented by two ASCII characters. The maximum value of the RECLEN field is hexadecimal "FF" or 255. Although the maximum is 255, the manufacturer seems to prefer 64.

Each record has a LOAD OFFSET field which specifies the 24-bit starting load offset of the data bytes.

The RECTYP field for data records is "00".

Each record has a variable length DATA field, it consists of zero or more bytes encoded as pairs of hexadecimal digits.

Each record ends with a CHKSUM field that contains the ASCII hexadecimal representation of the two's complement of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, from and including the RECLEN field to and including the last byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, form the RECLEN field up to and including the CHKSUM field, is zero.

The contents of the individual fields within the record are:

RECORD MARK This field contains 0x3A, the encoding of the ASCII colon

(:) character.

RECLEN The field contains two ASCII hexadecimal digits that specify

the number of data bytes in the record. The maximum value

is "FF" or 0x4646 (255 decimal).

LOAD OFFSET This field contains six ASCII hexadecimal digits representing

the address at which the first byte of the data is to be placed.

Most significant digit is presented first.

RECTYP This field contains 0x3030, the hexadecimal encoding of the

ASCII characters "00", which specifies the record type to be

a data record.

DATA This field contains pairs of ASCII hexadecimal digits, one

pair for each data byte.

CHKSUM This field contains the check sum on the RECLEN, LOAD

OFFSET, RECTYP, and DATA fields.

Example:

:400060000057AAC3880FAAC388559AC38855AAC388553AC38855AAC38855AAC3884AO 0C38855AAC38855AAC3882DFCC38861B8C3882DFCC38861B8C3886D

3.4.4 End of File Record

RECORD MARK	RECLEN	LOAD OFFSET	RECTYP	CHKSUM
(:)	"00"	"000000"	"01"	"FF"
1 byte	2 bytes	6 bytes	2 bytes	2 bytes

END OF FILE RECORD FORMAT

The End of File Record specifies the end of the file.

The contents of the individual fields within the record are:

RECORD MARK This field contains 0x3A, the encoding of the ASCII colon

(:) character.

RECLEN The field contains 0x3030, the hexadecimal encoding of the

ASCII characters "00". Since this record does not contain

any DATA bytes, the length is zero.

LOAD OFFSET This field contains 303030303030H, the hexadecimal encod-

ing of the ASCII characters "000000", since this field is not

used for this record.

RECTYP This field contains 0x3031, the hexadecimal encoding of the

ASCII characters "01", which specifies the record type to be

an End of File Record.

CHKSUM This field contains the check sum on the RECLEN, LOAD

OFFSET, and RECTYP fields. Since all the fields are static, the check sum can also be calculated statically, and the value is 4646H, the hexadecimal encoding of the ASCII characters

"FF".

Example:

:000000001FF

Chapter 4

Programming Configuration Variables (CVs)

4.1 Introduction

The decoders installed in your locomotives provide you with the ability to create a more realistic operating experience through the configuration variables (CVs for short). The network protocol supports configuration of up to 1024 CVs.

It is a good idea to run your decoders with the default CV values that come pre-programmed in your decoders until you get used to the performance characteristic and how they work on your layout. Once you are comfortable with running the trains, then you can begin customizing locomotive characteristics.

Each CV (configuration variable) controls a specific characteristic of the decoder, which in turn controls how the locomotive performs. See your decoder manual for a list of the most commonly used CVs and their meanings. Each decoder comes pre-programmed from the factory with the default settings outlined in your decoder manual. You can change your decoder's performance characteristics by changing the CV values entered in the CVs you want to change. Each of these CVs can be set up when your command station is in the programming mode. The CVs are remembered in the decoder until it is reprogrammed to with a different CV value. Please refer to your mobile decoder manual for a complete listing of the CVs supported by each decoder.

Programming decoder CVs is usually done on an isolated programming track.

There are four programming modes:

- Paged mode
- Physical register mode
- Direct mode
- Operations mode

4.1.1 Paged Mode Programming

4.1.2 Physical Register Programming

Physical Register Mode can only read CV01-CV08. You should not rely on values in the display for CVs above 08 when reading back in physical register mode.

4.1.3 Direct Mode Programming

This is the preferred programming mode.

4.1.4 Operations Mode Programming

Operations mode programming lets you program CVs in locomotives equipped with Extended Packet Format decoders while they are on the mainline. A typical use for Ops mode programming would be to change the acceleration rate (CV03) or the deceleration rate (CV04) of your locomotives to simulate the weight and braking capability of the train to compensate for changing the number of cars or power units on a train.

Operations Mode read back can only be used with decoders that are capable of operations mode read back when there is a device attached to the network that supports operations mode read back. Digitrax transponding decoders and the DCS210 or DCS240 command stations would allow operations mode read back.

4.2 Programming Mobile Decoder Addresses

Be sure that only the loco you want to program is on the programming track. If you are using operations mode programming, the loco you want to program can be anywhere on the layout but it must have a decoder that is capable of operations mode programming installed.

There are two addressing methods - short and long. The short addresses can take a value between 0 and 127, and long addresses a value between 128 and 9983. The bit 5 of mobile decoder's configuration register (CV29) determines what addressing method is used. If bit 5 is set to 1 then long addresses are used, and when bit 5 is 0 then short addresses are used. Short addresses are stored in CV1, and long addresses in CV17 and CV18. The address values stored in CV17 and CV18 are not the high and low bytes of the address value. The CV17 and CV18 values must be calculated from the address value as follows:

```
TEMP = address + 49152
CV18 = TEMP \& 0xFF
CV17 = TEMP >> 8
Example:
address = 4007
TEMP = 49152 + 4007 = 53159 = 0xCFA7
CV18 = 0xA7 = 167
CV17 = 0xCF = 207
read cv
Read CV
unknown
   65830.9ms
<DO> 0xef 0b11101111 <- OPC_PROG</pre>
<D1> 0x0e 0b00001110 <- Message Length</pre>
<D2> 0x7c 0b01111100 <- Special programming slot number
<D3> 0x2b 0b00101011 <- PCMD
d7 0
d6 0 - read
d5 1 - byte mode
d4 0 - TV1
d2 0 - service mode on programming track
d1 1 - unknown
d0 1 - unknown
```

Direct mode byte read on service track

d0 0 - reserved

```
<D4> 0x00 0b00000000 - 0x00
<D5> 0x00 0b00000000 - HOPSA - Ops mode programming - 7 high address bits of Loco to pro
<D6> 0x0e 0b00001110 - LOPSA - Ops Mode programming - 7 low address bits of loco to prog
<D7> 0x00 0b00000000 - TRK - normal track status for command station - this doesn't look
<D8> 0x00 0b00000000 - CVH
<D9> 0x00 0b00000000 - CVL
<D10> 0x0f 0b00001111 - DATA
<D11> 0x6d 0b01101101 - Throttle serial number
<D12> 0x52 0b01010010 - Throttle serial number
<D13> 0x77 0b01110111
response
    1722.5ms
<DO> 0xe7 0b11100111 <- Opcode
<D1> 0x0e 0b00001110 <- length
<D2> 0x7c 0b011111100 <- Programming slot</pre>
<D3> 0x2b 0b00101011 <- PCMD
<D4> 0x00 0b00000000 <- PSTAT - success
<D5> 0x00 0b00000000 <- HOPSA
<D6> 0x02 0b00000010 <- LOPSA should be 0
<D7> 0x47 0b01000111 <- TRK
<D8> 0x02 0b00000010 <- CVH : 0, 0, CV9, CV8, 0, 0, D7, CV7</pre>
<D9> 0x04 0b00000100 <- CVL - CV5</pre>
<D10> 0x16 0b00010110 <- low 7 bits of value</pre>
<D11> 0x6d 0b01101101 <- SN
<D12> 0x52 0b01010010 <- SN
<D13> 0x2b 0b00101011 <- CHK
value displayed is 150 10010110
PCMD
 d7 = 0
 d6 	 1 = write, 0 = read
 d5 1 = \text{byte operation}, 0 = \text{bit operation (if possible)}
 d4 	ext{TV1}
 d3 TV0
 d2 1 = Ops mode on mainlines, 0 = service mode on programming track
 d1 0 - reserved
```

Byte Mode	Ops Mode	$\underline{\mathrm{TV1}}$	$\underline{\text{TV0}}$	Meaning
1	0	0	0	Paged mode byte read/write on service track
1	0	0	1	Direct mode byte read/write on service track
0	0	0	1	Direct mode bit read/write on service track
×	0	1	0	Physical register byte read/write on service track
×	0	1	1	Service track reserved function
1	1	0	0	Ops mode byte program no feedback
1	1	0	1	Ops mode byte program with feedback
0	1	0	0	Ops mode bit program no feedback
0	1	0	1	Ops mode bit program with feedback

ack

<D0> 0xb4 0b10110100

<D1> 0x6f 0b01101111

<D2> 0x01 0b00000001

<D3> 0x25 0b00100101

unknown

1731.6ms <DO> 0xe7 0b11100111

<D1> 0x0e 0b00001110

<D2> 0x7c 0b01111100

<D3> 0x2b 0b00101011

<D4> 0x00 0b00000000

<D5> 0x00 0b00000000

<D6> 0x02 0b00000010

<D7> 0x47 0b01000111

<D8> 0x00 0b00000000

<D9> 0x00 0b00000000

<D10> 0x0f 0b00001111

<D11> 0x6d 0b01101101

<D12> 0x52 0b01010010

<D13> 0x34 0b00110100

ack

10.6ms <DO> 0xb4 0b10110100

<D1> 0x3b 0b00111011

<D2> 0x00 0b00000000

<D3> 0x70 0b01110000

Read CV 2

unknown

```
6772.5ms <DO> 0xef 0b11101111
<D1> 0x0e 0b00001110
<D2> 0x7c 0b01111100
<D3> 0x2b 0b00101011
<D4> 0x00 0b00000000
<D5> 0x00 0b00000000
<D6> 0x0e 0b00001110
<D7> 0x00 0b00000000
<D8> 0x00 0b00000000
<D9> 0x01 0b00000001
<D10> 0x0f 0b00001111
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x76 0b01110110
ack
      15.5ms <DO> 0xb4 0b10110100
<D1> 0x6f 0b01101111
<D2> 0x01 0b00000001
<D3> 0x25 0b00100101
unknown
    1720.8ms <DO> 0xe7 0b11100111
<D1> 0x0e 0b00001110
<D2> 0x7c 0b01111100
<D3> 0x2b 0b00101011
<D4> 0x00 0b00000000
<D5> 0x00 0b00000000
<D6> 0x02 0b00000010
<D7> 0x47 0b01000111
<D8> 0x00 0b00000000
<D9> 0x01 0b0000001
<D10> 0x07 0b00000111
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x3d 0b00111101
----- CV2
unknown
   11836.0ms <DO> 0xef 0b11101111
<D1> 0x0e 0b00001110
```

```
<D2> 0x7c 0b01111100
<D3> 0x2b 0b00101011
<D4> 0x00 0b00000000
<D5> 0x00 0b00000000
<D6> 0x0e 0b00001110
<D7> 0x00 0b00000000
<D8> 0x00 0b00000000
<D9> 0x01 0b00000001
<D10> 0x07 0b00000111
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x7e 0b01111110
ack
       6.1ms <DO> 0xb4 0b10110100
<D1> 0x6f 0b01101111
<D2> 0x01 0b00000001
<D3> 0x25 0b00100101
unknown
    1730.2ms <DO> 0xe7 0b11100111
<D1> 0x0e 0b00001110
<D2> 0x7c 0b01111100
<D3> 0x2b 0b00101011
<D4> 0x00 0b00000000
<D5> 0x00 0b00000000
<D6> 0x02 0b00000010
<D7> 0x47 0b01000111
<D8> 0x00 0b00000000
<D9> 0x01 0b00000001
<D10> 0x07 0b00000111
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x3d 0b00111101
<- failure nothing on prog track
<D0> 0xe7 0b11100111 <- opcode
<D1> 0x0e 0b00001110 <- length
<D2> 0x7c 0b01111100 <- prog slot
<D3> 0x2b 0b00101011 <- PCMD
```

```
<D4> 0x01 0b00000001 <- PSTAT
<D5> 0x00 0b00000000
<D6> 0x01 0b00000001
<D7> 0x47 0b01000111
<D8> 0x02 0b00000010
<D9> 0x04 0b00000100
<D10> 0x16 0b00010110
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x29 0b00101001
PSTAT
d7 0 - reserved
d6 0 - reserved
d5 0 - reserved
d4 0 - reserved
d3 1 = user aborted command
d2 1 = failed to detect read compare ack from decoder
d1 1 = no write ack from decoder
d0 - 1 = service mode programming track empty - no decoder detected
----> write 150 to CV5
unknown
    7846.9ms
<DO> 0xef 0b11101111
<D1> 0x0e 0b00001110
<D2> 0x7c 0b01111100
<D3> 0x6b 0b01101011
<D4> 0x00 0b00000000
<D5> 0x00 0b00000000
<D6> 0x0e 0b00001110
<D7> 0x00 0b00000000
<D8> 0x02 0b00000010
<D9> 0x04 0b00000100
<D10> 0x16 0b00010110
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
```

<D13> 0x28 0b00101000

ack

4.6ms

<D0> 0xb4 0b10110100

<D1> 0x6f 0b01101111

<D2> 0x01 0b0000001

<D3> 0x25 0b00100101

unknown

894.9ms

<D0> 0xe7 0b11100111

<D1> 0x0e 0b00001110

<D2> 0x7c 0b01111100

<D3> 0x6b 0b01101011

<D4> 0x00 0b00000000

<D5> 0x00 0b00000000

<D6> 0x02 0b00000010

<D7> 0x47 0b01000111

<D8> 0x02 0b00000010

<D9> 0x04 0b00000100

<D10> 0x16 0b00010110

<D11> 0x6d 0b01101101

<D12> 0x52 0b01010010

<D13> 0x6b 0b01101011

---> write 150 to CV5 nothing on prog track

unknown

11349.0ms <DO> 0xef 0b11101111

<D1> 0x0e 0b00001110

<D2> 0x7c 0b01111100

<D3> 0x6b 0b01101011

<D4> 0x00 0b00000000

<D5> 0x00 0b00000000

<D6> 0x0e 0b00001110

<D7> 0x00 0b00000000

<D8> 0x02 0b00000010

<D9> 0x04 0b00000100

<D10> 0x16 0b00010110

<D11> 0x6d 0b01101101

```
<D12> 0x52 0b01010010
<D13> 0x28 0b00101000
ack
       6.0ms <DO> 0xb4 0b10110100
<D1> 0x6f 0b01101111
<D2> 0x01 0b0000001
<D3> 0x25 0b00100101
unknown
     723.9ms <DO> 0xe7 0b11100111
<D1> 0x0e 0b00001110
<D2> 0x7c 0b01111100
<D3> 0x6b 0b01101011
<D4> 0x01 0b0000001
<D5> 0x00 0b00000000
<D6> 0x02 0b00000010
<D7> 0x47 0b01000111
<D8> 0x02 0b00000010
<D9> 0x04 0b00000100
<D10> 0x16 0b00010110
<D11> 0x6d 0b01101101
<D12> 0x52 0b01010010
<D13> 0x6a 0b01101010
```

4.3 List of Common CVs

The NMRA Standard "Configuration Variables For Digital Command Control" provides descriptions for Digital Decoder Configuration Variables (CVs). CVs allow the decoder to be customized for each locomotive, or other mobile or stationary devices. Unless otherwise specified, configuration Variables shall be stored in non-volatile memory and must not change when power is removed from the decoder over long extended periods of time. CVs defined by the NMRA are marked below as Mandatory, Recommended or Optional. CVs identified as Mandatory must be implemented in order to conform to the Standard, while those marked as Recommended are strongly encouraged but not mandatory, and those marked Optional are at the manufacturer's discretion. CVs marked as Read-Only indicates a CV whose value should be set by the manufacturer and which the user cannot modify.

209

Many CVs are implementation specific and no uniform specification is required. Others must be implemented in a uniform fashion in order to achieve compatibility. A CV marked as Uniform Spec indicates a CV which requires implementation by manufacturers according to a common specification. CVs marked as Dynamic are used for Unsolicited Decoder Initiated Transmission.

$\underline{\mathrm{CV}}$	Name	Description	Range	Default
1	Primary Address	NMRA: Mandatory, Uniform Spec.	1 - 127	3
		Bits 0-6 contain an address with a value between 1 and 127. Bit seven must have a value of 0. If the value of CV1 is 0 then the decoder will go out of NMRA digital mode and convert to the alternate power source as defined by CV12. This setting will not affect the Digital Decoder's ability to respond to service mode packets. The default value for this CV is 3, if the decoder is not installed in a locomotive or other unit when shipped from the manufacturer.		
		ESU:		
		For Multiprotocol decoders: Range 1-255 for Motorola.		
2	Vstart	NMRA: Required	0 - 255	
		Vstart is used to define the voltage drive level used as the start voltage on the motor. The voltage drive levels shall correspond linearly to the voltage applied to the motor at speed step one, as a fraction of available rectified supply voltage. When the voltage drive level is equal to zero, there shall be zero voltage applied to the motor. When it is at maximum, 255, the full available rectified voltage shall be applied.		
3	Acceleration Rate	NMRA: Required	0 - 255	
		Determines the decoder's acceleration rate. The formula for the acceleration rate shall be equal to (the contents of CV3 \times 0.896) / (number of speed steps in use). For example, if the contents of CV3 equals 2, then the acceleration is 0.064 sec/step for a decoder currently using 28 speed steps. If the content of this parameter equals 0 then there is no programmed momentum during acceleration.		
		ESU:		
		This value multiplied by 0.25 is the time from stop to maximum speed. For LokSound 5 DCC the unit is 0.896 seconds		
4	Deceleration	NMRA: Required	0 - 255	
	Rate	Determines a decoders braking rate, in the same fashion as CV3. $$		
		ESU:		
		This value multiplied by 0.25 is the time from maximum speed to stop. For LokSound 5 DCC: The unit is 0.896 seconds.		
5	Vhigh	NMRA: Optional	0 - 255	
		Vhigh is used to specify the motor voltage drive levels at the maximum speed step. This value shall be specified as a fraction of available rectified supply voltage. When the contents of CV5 equals 255, the full available rectified voltage shall be applied. Values of 0 or 1 shall indicate that Vhigh is not used in the calculation of the speed table.		

CV	Name	Description	Range	<u>Default</u>
6	VMid	NMRA: Optional		
		Vmid specifies the voltage drive level at the middle speed step. Vmid is used to generate a performance curve in the decoder that translate speed step values into motor voltage drive levels and is specified as a fraction of available rectified supply voltage. Values of 0 or 1 shall indicate that Vmid is not used in the calculation of the speed table.		
		ESU:		
		Medium speed of the engine. Use only if 3-point speed table is enabled. For LokSound 5 DCC only.		
7	Manufacturer Version Number	NMRA: Mandatory, Read-Only		
	version inumber	This is reserved for the manufacturer to store information regarding the version of the decoder.		
		ESU: Internal software version of decoder	-	-
8	Manufacturer ID	NMRA: Mandatory, Read-Only, Uniform Spec.		
		${\rm CV8}$ shall contain the NMRA assigned id number of the manufacturer of this decoder.		
		ESU: Writing value 8 in this CV triggers a reset to factory default values $$	151	-
9	Total PWM Period	NMRA: Optional		
	nod	The value of CV9 sets the nominal PWM period at the decoder output and therefore the frequency is proportional to the reciprocal of the value. The recommend formula for PWM period should be: PWM period (uS) = $(131 + \text{MANTISSA} \times 4) \times 2 \text{ EXP}$, Where MANTISSA is in bits 0-4 bits of CV9 (low order) and EXP is bits 5-7 for CV9. If the value programmed into CV9 falls outside a decoder's capability, it is suggested (but not required) that the decoder "adjust" the value to the appropriate highest or lowest setting supported by the decoder.		
		ESU: Motor PWM frequency as a multiple of 1000 Hz.	10 - 50	40
10	EMF Feedback Cutout	NMRA: Optional Contains a value between 1 and 128 that indicates the speed step above which the back EMF motor control cuts off. When 14 or 28 speed steps are used the LSB's of the value are truncated appropriately.		
11	Packet time-out	NMRA: Required		
	Value	Contains the maximum time period that the decoder will maintain its speed without receiving a valid packet.		
12	Power Source	NMRA: Optional, Uniform Spec.		
	Conversion	Contains the identity of the alternate power source to which the decoder will be converted should CV1 contain zero. This is also the primary alternative power source selected should the decoder perform power source conversion. The currently assigned Power Source Conversion codes areas follows:		
		0b00000001 Analog Power Conversion 0b00000010 Radio 0b00000100 Zero-1 0b00001000 TRIX 0b00010000 CTC 16 / Railcommand 0b00100000 FMZ (Fleischmann)		

$\underline{\text{CV}}$	Name	<u>Description</u>	Range	Default			
13	Alternate Mode	NMRA: Optional, Uniform Spec.					
	Function Status	Indicates the status of each function (F1 through F8) when the unit is operating in alternate power mode, which cannot control the functions. If a function can be controlled, then the corresponding bit is ignored. A value of 0 indicates the function is off, while a value of 1 indicates the function is on. Bit 0 corresponds to F1, while Bit 7 corresponds to F8.					
		ESU: Status of functions F1 to F8 in analogue mode	0-255	1			
14	Alternate Mode	NMRA: Optional, Uniform Spec.					
	Function 2 Status	Indicates the status of each function (F9 through F12, & FL) when the unit is operating in alternate power mode, which cannot control the functions. If a function can be controlled, then the corresponding bit is ignored. A value of 0 indicates the function is off, while a value of 1 indicates the function is on. FL in the forward direction is controlled by bit 0, FL in the reverse direction is controlled by bit 1. Bit 2 corresponds to F9, while Bit 5 corresponds to F12.					
		ESU: Status of function F0, F9 to F12 in analogue mode	0-63	1			
15 & 16	Decoder Lock	NMRA: Optional, Uniform Spec.					
		The Decoder Lock is used to change CVs in only one of several decoders with the same short address (CV1) or long address (CV17 and CV18) that are installed in the same locomotive. Assign a number to CV16 in each decoder (i.e. 1 to motor decoder, 2 to sound decoder, 3 or higher to other decoders) before the decoders are installed in the locomotive. To change a value in another CV of one of the installed decoders, first write the number 1 (motor), 2 (sound), or 3 or higher (other) into CV15, then send the new value to the CV to be changed. The decoders will compare CV15 to CV16 and, if the values are equal, the CV to be changed will be changed. If the values in CV15 and CV16 are different, the update will be ignored.					
17 & 18	Extended Address	NMRA: Optional, Uniform Spec.					
	uress	The Extended Address is the locomotives address when the decoder is set up for extended addressing (indicated by a value of 1 in bit 5 of CV29). CV17 contains the most significant bits of the two byte address and must have a value between 0b11000000 and 0b11100111, inclusive, in order for this two byte address to be valid. CV18 contains the least significant bits of the address and may contain any value.					
19	Consist Address	NMRA: Optional, Uniform Spec.					
		Contains a seven bit address in bit positions 0-6. Bit 7 indicates the relative direction of this unit within a consist, with a value of 0 indicating normal direction, and a value of 1 indicating a direction opposite the unit's normal direction. If the seven bit address in bits 0-6 is 0b00000000 the unit is not in a consist.					
		ESU: Additional address for consist operation. Value 0 or 128 means: consist address is disabled. $1-127$ consist address active, normal direction. $129-255$ consist address active reverse direction.	0-255	0			

$\underline{\text{CV}}$	Name	Description	Range	<u>Default</u>
21	Consist Address Active for F1-F8	NMRA: Optional, Uniform Spec.		
	Active for F1-F5	Defines for functions F1-F8 whether the function is controlled by the consist address. For each Bit a value of 1 indicates that the function will respond to instructions addressed to the consist address. A value of 0 indicates that the function will only respond to instructions addressed to the locomotive address. F1 is indicated by bit 0. F8 by bit 7.		
		ESU: Status of functions F1 to F8 in Consist mode. Meaning of the bits as in CV13	0-255	0
22	Consist Address Active for FL and	NMRA: Optional, Uniform Spec.		
F9-F12		Defines for function FL whether the function is controlled by the consist address. For each Bit a value of 1 indicates that the function will respond to instructions addressed to the consist address. A value of 0 indicates that the function will only respond to instructions addressed to the locomotive address. FL in the forward direction is indicated by bit 0, FL in the reverse direction is controlled by bit 1. Bit 2 corresponds to F9, while Bit 5 corresponds to F12.		
		ESU: Status of functions FL, F9 to F12 in Consist mode. Meaning of the bits as in CV14.	0-63	0
23	Acceleration Adjustment	NMRA: Optional, Uniform Spec.		
	,	This Configuration Variable contains additional acceleration rate information that is to be added to or subtracted from the base value contained in CV3 using the formula (the contents of CV23 \times .896) / (number of speed steps in use). This is a 7 bit value (bits 0-6) with bit 7 being reserved for a sign bit (0-add, 1-subtract). In case of overflow the maximum acceleration rate shall be used. In case of underflow no acceleration shall be used. The expected use is for changing momentum to simulate differing train lengths/loads, most often when operating in a consist.		
		ESU: Factor for adjusting Acceleration CV3. Values from 0 to 127 are added to CV3. If the values are to be subtracted, additionally set bit 7 (value 128). The unit is 0.896 seconds.	0 - 127	0
24	Deceleration Ad-	NMRA: Optional, Uniform Spec.		
	justment	This Configuration Variable contains additional braking rate information that is to be added to or subtracted from the base value contained in CV4 using the formula (the contents of CV24 \times .896) / (number of speed steps in use). This is a 7 bit value (bits 0-6) with bit 7 being reserved for a sign bit (0-add,1-subtract). In case of overflow the maximum deceleration rate shall be used. In case of underflow no deceleration shall be used. The expected use is for changing momentum to simulate differing train lengths/loads, most often when operating in a consist.		
		ESU: Factor for adjusting the deceleration CV4. Values from 0 to 127 are added to CV3. If the values are to be subtracted, additionally set bit 7 (value 128). The unit is 0.896 seconds.	0 - 127	0

$\underline{\mathrm{CV}}$	Name	Descrip	otion	Range	$\underline{\mathrm{Default}}$
25	Speed Table/Mid Range Cab Speed Step	NMRA	a: Optional, Uniform Spec.		
		factory that the defines where In 14-s by two default speed 1 or 1 sh	e between 2 and 127 shall be used to indicate 1 of 126 preset speed tables. A value of 0b00000010 indicates be curve shall be linear. A value between 128 and 154 the 28-speed step position (1-26) which will define the mid range decoder speed value will be applied. Speed mode the decoder will utilize this value divided of the value in this variable is outside the range, the smid cab speed of 14 (for 28 speed mode or 7 for 14 mode) shall be used as the mid speed value. Values of 0 all indicate that this CV is not used in the calculation speed table.		
27	Decoder Automatic Stopping Configuration	NMRA	a: Optional, Uniform Spec.		
Connigui	comgaration		to configure which actions will cause the decoder to atically stop.		
		$\underline{\mathrm{Bit}}$	<u>Function</u>		
		d7	Reserved		
		d6	Reserved		
		d5	Enable/Disable Auto Stop in the presence forward polarity DC. $0 = Disabled 1 = Enabled$		
		d4	Enable/Disable Auto Stop in the presence of reverse polarity DC. $0 = Disabled 1 = Enabled$		
		d3	Reserved		
		d2	Enable/Disable Auto Stop in the presence of an Signal Controlled Influence cutout signal. $0 = Disabled$ $1 = Enabled$		
		d1	Enable/Disable Auto Stop in the presence of an asymmetrical DCC signal which is more positive on the left rail. $0 = \text{Disabled } 1 = \text{Enabled}$		
		d0	Enable/Disable Auto Stop in the presence of an asymmetrical DCC signal which is more positive on the right rail. $0 = \text{Disabled } 1 = \text{Enabled}$		

 $\underline{\mathrm{CV}}$ Description **Default** Name Range ESU: Allowed (enabled) Brake modes Bit Function Loco brakes with constant brake distance if Speed=0 $\,$ d7d6Selectrix brake diode, rakes if polarity is like driving direction d5Selectrix brake diode, brakes if polarity is against driving direction d4Brake on DC, if polarity like driving direction d3Brake on DC, if polarity against driving direction d2ZIMO® HLU brakes active d1ABC braking, voltage higher on the left hand side d0ABC braking, voltage higher on the right hand side Bi-Directional NMRA: Optional, Uniform Spec. 28 Communication ${\bf Configuration}$ Used to configure decoder's Bi-Directional communication characteristics when CV29-Bit 3 is set $\underline{\text{Bit}}$ <u>Function</u> d7Reserved d6Reserved d5Reserved d4Reserved d3Reserved d2Enable/Disable Initiated Broadcast Transmission using Signal Controlled Influence Signal. 0 = Disabled 1 = EnabledEnable/Disable Initiated Broadcast Transmission using Asymmetrical DCC Signal. 0 = Disabled 1 =Enabled d0Enable/Disable Unsolicited Decoder Initiated Transmission. 0 = Disabled 1 = EnabledESU: RailCom® Configuration 131 $\underline{\mathrm{Bit}}$ <u>Function</u> d7Enable/Disable RailCom® Plus automatic loco recognition. 0 = Disabled 1 = Enabledd1Enable/Disable Data transmission on Channel. 0 =Disabled 1 = Enabledd0Enable/Disable Channel 1 Address broadcast. 0 =Disabled 1 = Enabled

CV	Name		Descrip	otion_	Range	<u>Default</u>
29	Configurat		NMRA	: Mandatory, Uniform Spec.		
	Supported	l	$\underline{\mathrm{Bit}}$	Function		
			d7	Accessory Decoder: $0 = \text{Multifunction Decoder}, 1 = \text{Accessory Decoder}$ (see CV541 for a description of assignments for bits 0-6)		
			d6	Reserved		
			d5	0= one byte addressing, $1=$ two byte addressing (also known as extended addressing),		
			d4	Speed Table: $0 =$ speed table set by CV2, CV5, and CV6, $1 =$ Speed Table set by CV66 to CV95		
			d3	Bi-Directional Communications: $0 = \text{Bi-Directional}$ Communications disabled, $1 = \text{Bi-Directional}$ Communications enabled.		
			d2	Power Source Conversion: $0 = \text{NMRA}$ Digital Only, $1 = \text{Power}$ Source Conversion Enabled, See CV12 for more information.		
			d1	FL location: $0=$ bit 4 in Speed and Direction instructions control FL, $1=$ bit 4 in function group one instruction controls FL.		
			d0	Locomotive Direction: $0 = \text{normal}$, $1 = \text{reversed}$. This bit controls the locomotive's forward and backward direction in digital mode only. Directional sensitive functions, such as headlights (FL and FR), will also be reversed so that they line up with the locomotive's new forward direction.		
				This register contains important information, some of are only relevant for DCC operation.		
			$\underline{\mathrm{Bit}}$	Function		
			d5	0 = Short addresses (CV 1) in DCC mode 1 = Long addresses (CV 17 + 18) in DCC mode		
			d4	0 = Speed curve through CV 2, 5, 6 (LokSound 5 DCC ONLY). 1 = Speed curve through CV 67 - 94 (Multiprotocol)		
			d3	$0 = \text{Disable RailCom}$ \mathbb{R} $1 = \text{Enable RailCom}$	12	
			d2	0 = Disable analog operation $1 = $ Enable analog operation		
			d1	0 = 14 speed steps DCC 1 = 28 or 128 speed steps DCC		
			d0	0 = Normal direction of travel 1 = Reversed direction of travel		
30	Error In	nforma-	NMRA	a: Optional, Uniform Spec.		
			Config specifie	case where the decoder has an error condition this uration Variable shall contain the error condition as ed by the manufacturer. A value of 0 indicates that no as occurred.		

error has occurred.

$\underline{\mathrm{CV}}$	Name	Descri	otion	$\underline{\text{Range}}$	$\underline{\mathrm{Default}}$
31	Index High Byte	NMRA	a: Optional, Uniform Spec.		
		when to contain may had clusive by the tains to contain	dexed Address is the address of the indexed CV page the decoder is set up for indexed CV operation. CV31 as the most significant bits of the two byte address and ave any value between 0b00010000 and 0b11111111 in. Values of 0b00000000 thru 0b00001111 are reserved NMRA for future use. (4096 indexed pages) CV32 conhe least significant bits of the index address and may any value. This gives a total of 61,440 indexed pages, ith 256 bytes of CV data available to manufacturers.		
32	Index Low Byte	NMRA	a: Optional, Uniform Spec.		
		See CV	731		
33-46	Output Locations 1-14 for Functions $FL(f)$, $FL(r)$, and $F1-F12$	Contai trol wl custon mands cated i A valu contro trol m multip 42 con default put 2,	ns a matrix indication of which function inputs connich Digital Decoder outputs. This allows the user to nize which outputs are controlled by which input comnic. The outputs that Function FL(f) controls are indin CV33, FL (r) in CV34, F1 in CV35, to F12 in CV46. e of 1 in each bit location indicates that the function is that output. This allows a single function to connictiple outputs, or the same output to be controlled by the functions. CVs 33-37 control outputs 1-8. CVs 38-trol outputs 4-11 CVs 43-46 control outputs 7-14. The is is that FL (f) controls output 1, FL (r) controls output F1 controls output 3 to F12 controls output 14. The numbered output is in the LSB of the CV.		
47-64	Manufacturer Unique				
47	Protocol selection	ESU: Y	Which protocols are active.	0 - 255	13
		$\underline{\mathrm{Bit}}$	<u>Function</u>		
		d3	Enable/Disable Selectrix® protocol (Not for LokSound 5 DCC). $0 = Disabled 1 = Enabled$		
		d2	Enable/Disable Motorola® protocol (Not for LokSound 5 DCC). $0 = Disabled 1 = Enabled$		
		d1	Enable/Disable M4 protocol (Not for LokSound 5 DCC). $0 = Disabled 1 = Enabled$		
		d0	Enable/Disable DCC protocol. $0 = Disabled 1 = Enabled$		

$\underline{\mathrm{CV}}$	Name	Description	Range	Default
49	Extended Configuration #1	ESU:	0-255	19
	uration #1	Bit Function		
		d7 Märklin® Consecutive addresses, "High"-Bit.		
		d6 Reserved		
		d5 Enable/Disable LGB® function button mode. $0 =$ Disabled $1 =$ Enabled		
		d4 Enable/Disable Automatic DCC speed step detection. $0 = Disabled 1 = Enabled$		
		d3 Märklin® Consecutive addresses, "low"-Bit		
		d2 Reserved		
		d1 Reserved		
		d0 Enable/Disable Load control (Back-EMF). 0 = Disabled 1 = Enabled		
50	Analogue mode	Selection of allowed analogue modes	0 - 3	3
		Bit Function		
		d 2 Enable/Disable QSI Quantum Engineer DC Support. 0 = Disabled 1 = Enabled		
		d 1 Enable/Disable DC Analogue mode. 0 = Disabled 1 Enabled		
		d 0 Enable/Disable AC Analogue Mode. 0 = Disabled 1		
51	K Slow Cutoff	Inernal Speedstep, until K Slow is active	0 - 255	10
52	BEMF Param. K Slow "K" -	Portion of the PI-Controller valid for lower speed steps	0 - 255	10
53	Control Reference voltage	Defines the Back EMF voltage, which the motor should generate at maximum speed. The higher the efficiency of the motor, the higher this value may be set. If the engine does not reach maximum speed, reduce this parameter	0 - 255	130
54	Load control Parameter K	K–component of the internal PI-controller. Defines the effect of load control. The higher the value, the stronger the effect of Back EMF control.	0 - 255	50
55	Load control Parameter I	I–component of the internal PI-controller. Defines the momentum (inertia) of the motor. The higher the momentum of the motor (large flywheel or bigger motor), the lower this value has to be set.	0 - 255	100
56	BEMF Influence at VMin	$0\mbox{-}100\%.$ Defines the "Strengh" of the BEMF at minimum speed step	1 - 255	255
57	Steam chuff synchronisation #1	Defines the steam chuff synchronisation.	1 - 255	30
58	Steam chuff syn- chronisation #2	Defines the steam chuff synchronisation.	1 - 255	20
63	Sound volume "Master"	Master volume for all sounds.	0 - 192	128
64	Brake sound threshold "Brake On"	If the actual loco speed step is smaller than or equals the value indicated here, the brake sound is triggered.	0 - 255	60

$\underline{\text{CV}}$	Name	Description	Range	<u>Default</u>
65	Brake sound threshold "Brake Off"	If the actual loco speed step is smaller than the one indicated here (up to 255), the brake sound will be switched off again. Compare chapter 13.4.	0 - 255	7
66	Forward Trimm	Divided by 128 is the factor used to multiply the motor voltage when driving forward. The value 0 deactivates the trim.	0 - 255	128
67-94	Speed table	Defines motor voltage for speed steps. The values "in between" will be interpolated.	0 - 255	-
95	Reverse Trimm	Divided by 128 is the factor used to multiply the motor voltage when driving backwards. Value 0 deactivates the trim.	0 - 255	128
101	Shunting Mode Trimm	Divided by 128, this gives the factor by which the motor voltage is multiplied when the shunting gear is active. See section 10.1.2.	0 - 128	64
102	Brake Mode Exit Delay	Time as a multiple of 16 milliseconds that must pass before a detected braking distance is left again. See section 10.4.6.	0 - 255	12
103	Load adjustment "Optional Load"	Divided by 128, this gives the factor that changes CV3, CV4 and the sound when "Optional Load" is active. See section 10.7 .	0 - 255	0
104	Load adjustment "Primary Load"	Divided by 128, this gives the factor that changes CV3, CV4 and the sound when "Primary Load" is active. See section 10.7.	0 - 255	255
105	User CV $\#1$	Free CV. Here you are able to save what ever you want.	0 - 255	0
106	User CV $\#2$	Free CV. Here you are able to save what ever you want.	0 - 255	0
111	Gearbox back- lash	Time as a multiple of $16~\mathrm{mS}$, for which the motor runs at minimum speed after reversing the direction to prevent gear box jerking.	0 - 255	0
112	Frequency for Flashing light effects	Flashing frequency for Strobe lighting effects. Multiple of 0.065536 seconds. See section 12.5.4.	0 - 255	20
113	Power Fail By- pass	The time that the decoder bridges via the PowerPack after an interruption of voltage. Unit: A multiple of 0.032768 sec. See section $6.12.2$.	0 - 255	32
116	Slow speed BEMF Sampling period	Frequency of BEMF measurement in 0.1 milliseconds at speed step 1 $$	50 - 200	50
117	Full speed BEMF Sampling period	Frequency of BEMF measurement in 0.1 milliseconds at speed step 255	50 - 200	150
118	Slow speed BEMF	Measurement gap length VMin Length of the BEMF measuring gap in 0.1 milliseconds at speed step 1 $$	10 - 20	150
119	Full speed BEMF	Measurement gap length Vmax Length of the BEMF measuring gap in 0.1 milliseconds at speed step 255	10 - 20	15
123	ABC Mode "Slow drive"	Speed which is valid in the slow driving section during ABC braking.	0	-

$\underline{\mathrm{CV}}$	Name	Descri	ption_	Range	<u>Default</u>
124	Extended Config-	Additi	onal important settings for decoders		21
	uration #2	$\underline{\mathrm{Bit}}$	<u>Function</u>		
		d7	Reserved		
		d6	Enable/Disable Automatic parking Brake. $0 = Disabled$ 1 = Enabled		
		d5	Enable/Disable Motor is switched off for a few seconds when blocked to avoid burnout. $0 = Disabled 1$ = Enabled		
		d4	0 = Enable Output AUX9 (LokSound 5 H0 only). 1 = Enable Wheel Sensor input (LokSound 5 H0 only)		
		d3	Enable/Disable SUSI protocol. $0 = Disabled 1 = Enabled$		
		d2	Enable/Disable prime mover startup delay. $0 = Disabled$ $1 = Enabled$		
		d0	Enable/Disable Decoder lock with CV 15 / 16. 0 = Disabled 1 = Enabled		
125	Start voltage	Analog	g DC See section 10.8.	0 - 255	90
126	Maximum speed	Analog	g DC See section 10.8.	0 - 255	130
127	Start voltage	Analog	g AC See section 10.8.	0 - 255	90
128	Maximum speed	Analog	g AC See section 10.8.	0 - 255	130
129	Analog Functions		erese" Offset voltage for functions in analogue mode. er 10.8.	0 - 255	15
130	Analog Motor		erese" Offset voltage for motor functions in analogue Chapter 10.8.	0 - 255	5
132	Grade Crossing Hold Time	Grade	Crossing holding time. See chapter 12.5.3.	0 - 255	80
133	Sound Fader	Volum	e when sound fader is active. See chapter 13.5.	0 - 255	128
134	ABC-Mode "Sensibility"	Thresh	hold, from which asymmentry on ABC shall be recog-	4 - 32	10
138	Smoke Unit Trim Fan		d by 128, this gives the factor by which the fan speed chronized smoke units can be adjusted.	0 - 255	128
139	Smoke Unit Trim Temperature		d by 128, this gives the factor by which the temperature chronized smoke units can be adjusted.	0 - 255	128
140	Smoke TimeOut	Time	until automatic shutdown of the smoke unit.	0 - 255	255
141	Smoke Chuff Min		um duration of a steam chuff of an external smoke unit 1 seconds resolution.	0 - 255	10
142	Smoke Chuff max		num duration of a steam chuff of an external smoke unit 11 seconds resolution.	0 - 255	125
143	Smoke Chuff Length		d by 128, this gives the factor by which the duration of am chuffs can be adjusted relative to the trigger pulses.	0 - 255	100
144	Smoke Pre Heat Temperature		ating temperature in degrees Celsius for secondary generators (cylinder smoke unit)	0 - 255	150

$\underline{\mathrm{CV}}$	Name	Description	Range	$\underline{\mathrm{Default}}$
149	ABC Shuttle Train Holdtimet	Time in seconds, which has to be passed for ABC shuttle train operation, before the direction of travel is changed. See section 10.4.4.3.	0 - 255	255
150	HLU Speedlimit 1	HLU Speed limit 1. Internal speedstep.	0 - 255	42
151	HLU Speedlimit 2	(U) HLU Speed limit 2 (U). Internal speedstep.	0 - 255	85
152	HLU Speedlimit 3	HLU Speed limit 3. Internal speedstep.	0 - 255	127
153	HLU Speedlimit 4	(L) HLU Speed limit 4 (L). Internal speedstep.	0 - 255	170
154	HLU Speedlimit 5	HLU Speed limit 5. Internal speedstep.	0 - 255	212
155 -170	Sound CV 1 - Sound CV 16	16 CVs for selecting sounds that can be assigned within sound projects. Please note the documentation for the sound project.	0 - 255	0
179	Brake Function 1	Deceleration Value of which 33% of CV 4 will be deducted if the Brake Function 1 is active. See section 10.6.	0 - 255	80
180	Brake Function 2	Deceleration Value of which 33% of CV 4 will be deducted if the Brake Function 2 is active. See section 10.6.	0 - 255	40
181	Brake Function 3	Deceleration Value of which 33% of CV 4 will be deducted if the Brake Function 3 is active. See section 10.6.	0 - 255	40
182	Brake Function 1 max.	Speed Highest speed step that can be reached when Brake function 1 is active.	0 - 126	0
183	Brake Function 2 max.	Speed Highest speed step that can be reached when Brake function 1 is active.	0 - 126	126
184	Brake Function 3 max.	Speed Highest speed step that can be reached when Brake function 1 is active.	0 - 126	126
246	Automatic decoupling Driving speed	Speed of the loco while decoupling; the higher the value, the faster the loco. Value 0 switches the automatic coupler off. Automatic decoupling is only active if the function output is adjusted to "pulse" or "coupler".	0 - 255	0
247	Decoupling - Removing time	This value multiplied with 0.016 defines the time the loco needs for moving away from the train (automatic decoupling).	0 - 255	0
248	Decoupling - Pushing time	This value multiplied with 0.016 defines the time the loco needs for pushing against the train (automatic decoupling).	0 - 255	0
249	Minimum steam chuff distance	Minimum distance of two steam chuffs, independant from sensor data. Compage chapter 13.3 .	0 - 255	0
250	Secondary steam chuff trigger	Defines the distance between two consecutive steam chuffs for the secondary steam chuff generator. The value indicates the promilles the steam chuff distances of the secondary steam chuff generator ought to be shorter then those of the primary steam chuff generator. It is needed for steam locos with two independent boogies, such as "Big Boy" or "Mallet".	0 – 255	0

$\underline{\text{CV}}$	Name	<u>Description</u>	Range	$\underline{\mathrm{Default}}$
253	Constant brake mode	Determines the constant brake mode. Only active, if CV254 > 0 Function CV $253 = 0$: Decoder stops linearly CV $253 > 0$: Decoder stops constantly linear	0 – 255	0
254	Constant braking distance forward	A value > 0 determines the way of brake distance it adheres to, independent from speed.	0 - 255	0
255	Constant braking distance	Constant braking distances during reverse driving. Only active, if value > 0, otherwise the value of CV 254 is used. Useful for reversible trains.	0 - 255	0

Appendix A

Reference Tables

	MSD	0	1	2	3	4	5	6	7
LSD		000	001	010	011	100	101	110	111
0	0000	NUL	DLE	SPC	0	@	Р	6	р
1	0000	SOH	DC1	!	1	A	Q	a	q
2	0010	STX	DC2	"	2	В	R	b	r
3	0011	ETX	DC3	#	3	С	S	С	\mathbf{s}
4	0100	EOT	DC4	\$	4	D	Τ	d	t
5	0101	ENG	NAK	%	5	E	U	е	u
6	0110	ACK	SYN	&	6	F	V	f	v
7	0111	BEL	ETB	,	7	G	W	g	W
8	1000	BS	CAN	(8	Н	X	h	X
9	1001	HT	EM)	9	I	Y	i	У
A	1010	LF	SUB	*	:	J	Z	j	\mathbf{z}
В	1011	VT	ESC	+	;	K	[k	{
С	1100	FF	FS	,	<	L	\	1	
D	1101	CR	GS	-	=	M]	m	}
E	1110	SO	RS	•	>	N	<	n	~
F	1111	SI	US	/	?	О	_	О	DEL

TABLE A-1. ASCII Character Set (7-Bit Code)

Appendix B

Digitrax Loconet Products

		Approx.	Product	IPL Bootloader
Product	Description	$\overline{\text{Date}}$	$\underline{\text{Code}}$	<u>Version</u>
CT4	Quad Throttle	1993		
DB100	5 Amp DCC Booster with Auto	1993		
	Reversing			
DB100+	5 Amp DCC Booster with Auto	1993		
	Reversing			
DB100a	5 Amp DCC Booster with Auto	1994		
	Reversing			
DB99	4.5 Amp DCC Booster	1994		
DT200	Command Station & Throttle	1994		
BT2	Buddy Throttle	1995		
UP1	Universal Panel, RJ12, 5 Pin	1995		
	Din & 1/4" Stereo Plug			
UP2	Universal Panel	1995		
UP3	Universal Panel	1995		
UT1	Utility Throttle	1995		
DCS100	5 Amp DCC Command Station	1996		
	& Booster			
DT100	Advanced Throttle	1996		
MS100	LocoNet PC Computer Inter-	1996		
	face - RS232			
PR1	Computer Decoder Program-	1996		
	mer - Serial			
DB200+	8 Amp DCC Booster	1998		
DT100R	Advanced Radio Equipped	1998		
	Throttle			
UT2	Utility Throttle	1998		
DB150	5 Amp DCC Command Sta-	1999		
	tion/Booster with intelligent			
	Auto Reverse			
BDL16	LocoNet Occupancy Detector,	2000		
	16 Detection Sections			

		Approx.	Product	IPL Bootloader
Product	Description	$\overline{\text{Date}}$	$\overline{\text{Code}}$	Version
DCS200	8 Amp DCC Command Station	2000		
	& Booster			
DT300	Advanced LocoNet Throttle	2000		
DT300R	Radio Equipped Advanced Lo-	2000		
	coNet Throttle			
PM4	Power Manager	2000		
BDL162	LocoNet Occupancy Detector,	2002		
	16 Detection Sections			
PM42	Quad Power Manager	2002		
SE8C	Signal Decoder	2003		
BDL168	LocoNet Occupancy Detector,	2004		
	16 Detection Sections			
DB200-	OPTO 8 Amp DCC Opto	2006		
OPTO	Booster			
DCS50	All-in-one Command Station /	2006		
	Booster / Throttle			
DT400	Super Walkaround / IR Throt-	2006		
	tle			
DT400R	Super Radio Throttle	2006		
PR2	SoundFX Serial Port Decoder	2006		
	Programmer			
UP5	LocoNet Universal Interconnect	2006		
	Panel			
UR90	Infrared Receiver Front Panel	2006		
UR91	Simplex Radio Equipped / IR	2006		
	Receiver Panel			
UR92	Infrared Receiver Panel	2006	0x5C	0
UR93	Duplex Radio Transceiver / IR	2006	0x5D	2
IIDAAD	Receiver Panel	2004		
UR93E	Duplex Radio Transceiver / IR	2006		
TITE 4	Receiver Panel	2006	0.04	
UT4	Utility Throttle with 4 Digit	2006	0x04	
	Addressing and Infrared Capa-			
LITTAD	bility	2006		
UT4R	Simplex Radio Equipped Util-	2006		
	ity Throttle with 4 Digit Ad-			
DCF4	dressing	2006		
DS54	Quad Stationary Decoder with	2006		
	Programmable LocoNet Inputs			
DC64	& Outputs	2006		
DS64 LNRP	Quad Stationary Decoder	2006	0x01	1
	Loconet Repeater Module SoundFX USB Decoder Pro-	2007		1 1
PR3		2008	0x23	1
DT402	grammer Super Throttle with Infrared	2009	0x2A	1
D1402	Capability	400 <i>9</i>	UA4A	1
	Supubility			

		Approx.	Product	IPL Bootloader
Product	Description	$\frac{\overline{\text{Date}}}{}$	Code	Version
DT402D	Duplex Radio Equipped Super	2009		
	Throttle			
DT402R	Simplex Radio Equipped Super	2009		
IITAD	Throttle	2000		
UT4D	Duplex Radio Equipped Utility Throttle with 4 Digit Address-	2009		
	ing			
DCS51	All-in-one Command Station /	2010	0x33	1
	Booster / Throttle			
DT402DCE	DCE Duplex Radio Equipped	2011		
	Super Throttle for Europe			
UR92CE	Duplex Radio Transceiver / IR	2011		
TITE OF OF	Receiver Panel for Europe	2011		
UT4DCE	Duplex Radio Equipped Utility	2011		
	Throttle with 4 Digit Address-			
UP6Z	ing for Europe LocoNet Universal Interconnect	2012		
01 02	Panel and 3 Amp Z Scale Volt-	2012		
	age Reducer			
LNRPXTRA	LocoNet Repeter Module	2013		
PR3XTRA	SoundFX USB Decoder Pro-	2013		
	grammer			
DCS210	5/8 Amp DCC Command Sta-	2016	0x1B	2
D.CC0.40	tion & Booster	2016	0.10	0
DCS240	5/8 Amp DCC Command Sta-	2016	0x1C	2
DT500	tion & Booster Advanced Super Throttle with	2016	0x32	1
D1000	Infrared Capability	2010	0.02	1
DT500D	Advanced Duplex Radio	2016		
	Equipped Super Throttle			
DT500DCE	Advanced Duplex Radio	2016		
	Equipped Super Throttle CE			
	(for Europe)			
BXP88	LocoNet Occupancy Detec-	2017	0x58	2
	tor, 8 Detection Sections			
	with Transponding & Power Management			
DB210	3/5/8 Amp Auto Reverseing	2017	0x15	2
22 2 10	DCC Booster	2011	01110	_
DB210-	3/5/8 Amp Auto Reverseing	2017	0x14	2
OPTO	DCC Booster that is Opto-			
	Isolated for layouts with com-			
DDGGG	mon rail wiring	201-	0.10	
DB220	Dual 3/5/8 Amp AutoReverse-	2017	0x16	2
LNWI	ing DCC Booster LocoNet WiFi Interface	2017	0x63	2
TAN AA T	Locoinet will illiteliace	201 <i>1</i>	GOXO	<i>∠</i>

		Approx.	$\underline{\text{Product}}$	IPL Bootloader
Product	Description	Date	$\underline{\text{Code}}$	<u>Version</u>
PR4	SoundFX USB Decoder Pro-	2017	0x24	0
	grammer			
BXPA1	LocoNet DCC Auto-Reverser	2018	0x51	2
	with Detection, Transponding			
	and Power Management			
DCS52	All-in-one Command Station /	2019	0x34	2
	Booster / Throttle			
DCS210+	DCC Command Station &	2020	0x1A	
	Booster			
DT602	DT602 Advanced Super Throt-	2020	0x3E	2
	tle			
DT602D	Advanced Duplex Super Throt-	2020		
	tle			
DT602DE	Advanced Duplex Super Throt-	2020		
	tle CE (For Europe)			
UT6	Utility Throttle	2020	0x06	2
UT6D	Duplex Radio Utility Throttle	2020		
UT6DE	Duplex Radio Utility Throttle	2020		
	CE (For Europe)			
DS74	Quad Switch Stationary De-	2021		
	coder			
DS78V	Eight Servo LocoNet Station-	2021		
	ary & Accessory decoder for			
	turnout control			

Appendix C

Command Station Option Switches

Command			
Station	Switch #	Default	Effect on system operation
DCS210/DCS240/	OpSw 01	t	do not change.
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 02	t	t = command station mode
DCS210+/			c = booster only mode.
DCS100/DCS200			
DCS210/DCS240/	OpSw 03	t	t = command station's booster normal
DCS210+/			c = command station's booster is auto re-
			versing
DCS100/DCS200			
DCS210/DCS240/	OpSw 04	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 05	t	do not change
DCS210+			
DCS100/DCS200/	OpSw 05	t	t = command station master mode off
			c = command station master mode off (rec-
			ommended)
DCS210/DCS240/	OpSw 06	t	t = check for decoder before programming
DCS210+			c = program without checking for device
DCS100/DCS200	OpSw 06	t	do not change
DCS210/DCS240/	OpSw 07	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 08	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 09	c	do not change
DCS210+/			
DCS100/DCS200			

Command			
Station	Switch #	Default	Effect on system operation
DCS210/DCS240/	OpSw 10	C	do not change
DCS210/DCS240/ DCS210+/	Opsw 10		do not change
DCS210+/ DCS100/DCS200			
	O C 11	1	J
DCS210/DCS240/	OpSw 11	t	do not change
DCS210+/			
DCS100/DCS200	0.0.10		
DCS210/DCS240/	OpSw 12	t	do not change
DCS210+/			
DCS100/DCS200	0 0 10		
DCS210/DCS240/	OpSw 13	t	t = loco address purge time 200 seconds
DCS210+/			c = loco address purge time 600 seconds
DCS100/DCS200			
DCS210/DCS240/	OpSw 14	t	t = loco address purging enabled
DCS210+/			c = loco address purging disabled
DCS100/DCS200			
DCS210/DCS240/	OpSw 15	t	t = purging will not change loco speed
DCS210+/			c = purging will force a loco to 0 speed
DCS100/DCS200			
DCS210/DCS240/	OpSw 16	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 17	t	t = automatic advanced decode (FX) con-
	_		sists are enabled
DCS210+/			c = automatic advanced decode (FX) con-
,			sists are disabled
DCS100/DCS200			
DCS210/DCS240/	OpSw 18	t	t = normal command station booster short
			circuit shutdown time
DCS210+/			c = extended command station booster
			short circuit shutdown time
DCS100/DCS200			
DCS210/DCS240/	OpSw 19	t	do not change
DCS100/DCS200	1 1		
DCS210+	OpSw 19		t = Ops mode feedback module not in-
	1 1 1 1 2		stalled
		c	c = Ops mode feedback module installed
DCS210/DCS240/	OpSw 20	t	t = enable address 0x00 or analog stretch-
	5 P 2 20		ing for conventional locos
DCS210+/			c = disable address 0x00 or analog
			stretching for conventional locos
DCS100/DCS200			
DCS210/DCS240/	OpSw 21	c	SW21
DCS210/DCS240/ DCS210+/	OPOW 21		~ 21
DCS100/DCS200			
DCS100/DCS200 DCS210/DCS240/	OpSw 22	c	 SW22
DCS210/DCS240/ DCS210+/	Opow 22		D ** 22
DCS210+/ DCS100/DCS200			
DC3100/DC3200			

Command			
Station	Switch #	Default	Effect on system operation
DCS210/DCS240/	OpSw 23	t	SW23
DCS210+/	_		
DCS100/DCS200			
DCS210/DCS240/	OpSw 24	t	do not change
DCS210+/	1		
DCS100/DCS200			
DCS210/DCS240/	OpSw 25	t	t = enable route echo over Loconet
DCS210+	_		c = disable route echo over Loconet
DCS100/DCS200/	OpSw 25	t	t = enable aliasing
	_		c = disable aliasing
DCS210/DCS240/	OpSw 26	c	t = disable routes
DCS210+/	_		c = enable routes
DCS100/DCS200			
DCS210/DCS240/	OpSw 27	t	t = enable normal switch commands, a.k.a.
			the "Bushby bit"
DCS210+/			c = disable normal switch commands, a.k.a.
			the "Bushby bit" (allows attached com-
			puter to handle switch control logic)
DCS100/DCS200			
DCS210/DCS240/	OpSw 28	t	t = enable interrogate commands at power
			on
DCS210+/			c = disable interrogate commands at power
			on
DCS100/DCS200			
DCS210/DCS240/	OpSw 29	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw~30	t	do not change
DCS210+/			
DCS100/DCS200			
DCS210/DCS240/	OpSw 31	t	t = normal route/switch output rate when
D GGOTO /			not trinary
DCS210+/			c = fast route/switch output rate when not
DGG100/DGG000			trinary
DCS100/DCS200	0 0 00		
DCS210/DCS240/	OpSw 32	t	do not change
DCS210+/			
DCS100/DCS200	0.0.00		
DCS210/DCS240/	OpSw 33	c	t = track power off at power on
DCS210+/			c = allow track power to restore to prior
DCC100/DCC000			state at power on
DCS100/DCS200	On C 24	+	t — disallow the slate person to t
DCS210/DCS240/	OpSw 34	t	t = disallow track to power up to run state,
DCC210+/			if set to run prior to power up
DCS210+/			c = allow track to power up to run state, if
DC9100/DC9900			set to run prior to power up
DCS100/DCS200			

Command			
Station	Switch #	Default	Effect on system operation
DCS210/DCS240/	OpSw 35	t	t = enables loco reset button
DCS210+			c = disable loco reset button
DCS100/DCS200/	OpSw 35	t	do not change
DCS210/DCS240/	OpSw 36	t	c = clears all mobile decoder info and consists
DCS210+/			S1505
DCS100/DCS200			
DCS210/DCS240/	OpSw 37	t	c = clears all routes
DCS210+/	1 1		
DCS100/DCS200			
DCS210/DCS210+	OpSw 38	t	t = loco reset button activates OpSw 39
/	1		c = loco reset activates slot zero
DCS240	OpSw 38	t	do not change
DCS100/DCS200	OpSw 38	t	c = clear loco roster
DCS210/DCS240/	OpSw 39	t	c = clear all internal memory states, includ-
	_		ing OpSw 36 and 37
DCS100/DCS200			
DCS210+	OpSw 39	t	do not change
DCS210/DCS240/	OpSw 40	t	c = reset to factory defaults
DCS210+	_		
DCS100/DCS200	OpSw 40	t	do not change
DCS210/DCS240/	OpSw 41	t	t = diagnostic click disabled
DCS100/DCS200			c = diagnostic click when valid the Network
			commands incoming and routes being out-
			put
DCS210/DCS240/	OpSw 42	t	t = enable 2 short beeps when loco address
			purged
DCS100/DCS200			c = disable 2 short beeps when loco address
			purged
DCS210/DCS240/	OpSw 43	t	t = enable the Network update of command
			station's track status
DCS100/DCS200			c = disable the Network update of com-
			mand station's track status
DCS210	OpSw 44	t	do not change
DCS240	OpSw 44	t	t = maximum slots to 400
	OpSw 44		c = maximum slots to 120
DCS100/DCS200	OpSw 44	t	t = maximum slots to 22
	OpSw 44		c = maximum slots to 120
DCS210/DCS240/	OpSw 45	t	t = enable reply for switch state request
DCS100/DCS200			c = disable reply for switch state request
DCS210/DCS240/	OpSw 46	t	do not change
DCS100/DCS200			

Command			
Station	Switch #	Default	Effect on system operation
DCS210/DCS240/	OpSw 47	t	t = normal program track setting
DCS100/DCS200			c = program track is brake generator when
			not programming. Braking is DCC set to
			speed 0 (not emergency stop) for address 0,
			light on, broadcast to all addresses.
DCS210+	OpSw 49	t	t = disallow Idle state
			c = allow Idle state
DCS210+	OpSw 54	t	t = set speed to zero at power up
			c = recall last speed at power up
DCS210+/	OpSw 66	t	t = use advanced commands
DCS240			c = do not use advanced commands
DCS210+/	OpSw 70	t	t = enable command station probes
DCS240			c = disable command station probes
DCS210+	OpSw 71	t	t = enable command station disable
			c = disable command station disable, just
			defer
DCS210+	OpSw 75	t	t = enable programming track precharge
			c = disable programming track precharge
DCS210+	OpSw 77	t	t = do not lockout legacy commands
			c = after D5 commands lockout legacy
			commands
DCS210+	OpSw 78	t	t = do not send Ack on B0 switch command
			c = send Ack on B0 switch command

DCS240 Settings for SW21-SW23

$\underline{SW21}$	<u>SW22</u>	<u>SW23</u>	Global system default type for new locos
\mathbf{t}	\mathbf{t}	\mathbf{t}	28 step mode
\mathbf{t}	\mathbf{t}	\mathbf{c}	28 step FX mode
t	\mathbf{c}	\mathbf{t}	14 step mode
\mathbf{t}	\mathbf{c}	\mathbf{c}	reserved
\mathbf{c}	\mathbf{t}	\mathbf{t}	Motorola Trinary
\mathbf{c}	\mathbf{t}	\mathbf{c}	reserved
\mathbf{c}	\mathbf{c}	\mathbf{t}	128 step mode
\mathbf{c}	\mathbf{c}	\mathbf{c}	128 step FX mode

Appendix D

Revision History

Release Date	Changes					
13 Feb 2022	Appendix B renamed Appendix D.					
	Appendix B - Digitrax Loconet Products added.					
	Appendix C - Command Station Option Switches added.					
	GetCfgSlotDataP2 and CfgSlotDataP2 added.					
	CfgSlotDataP1 updated for additional option switches and Product Code removed.					
	ThrottleID removed from protocol 1 description.					
	SwState renamed getSwState.					
	SwState added.					
	Additional definitions added to the Glossary.					
30 Jan 2022	Appendix B - Revision History added.					
	Index added.					
	Glossary added.					
	GetLocoSlotDataP1 and P2 updated for SlotNotImplemented response					
	The following messages were updated for the Throttle ID field:					
	LocoF0F6P2					
	LocoF7F13P2					
	LocoF14F20P2					
	LocoF21F28P2					
	LocoSpdDirP2					
	LocoSlotDataP2 function mapping corrected					
	NoFreeSlotsP1 and NoFreeSlotsP2 added and references to them added.					
	IllegalMoveP1 and IllegalMoveP2 added and references to them added.					
	SlotNotImplemented added.					
23 Jan 2022	Baseline.					

Glossary

address is the numeric identification code by which a decoder recognises commands directed specifically to it. 4, 5, 33, 35, 41, 43

Broadcast means a message sent by a device to all devices on the network. 8, 11

Command means a message sent to a device to request it to do something. 4, 5, 6, 8, 9, 12, 17, 28, 30, 32, 33, 35, 36, 37, 39, 41, 43, 44, 45, 51, 54, 58, 61, 65, 69, 72, 75, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 176

command station is the electronic device that generates DCC commands based upon inputs it receives and transmits them to decoders. 1

Common is a locomotive slot state that indicates that the slot is not currently in-use by a throttle but it is still being refreshed by the command station. A slot with a state of Common can be selected by any throttle on the network. 7

DCC stands for Digital Command Control. 1, 51

expanded slots means the command station slots that are accessed and manipulated by protocol 2 messages. 3

Free is a locomotive slot state that indicates that the slot does not have an address loaded in it. 4, 35, 41, 43

Global System Track Status means the byte 7 of a LocoSlotDataP1 or LocoSlotDataP2 response. 3, 14, 108, 157

In-Use is a locomotive slot state that indicates that the slot has been made active by a throttle and can no longer be selected by another throttle. 47, 49

locomotive slot is a memory location in the command station which holds information about a locomotive's decoder and current state. 3

- **Loconet** is the peer-to-peer local area network system architecture used by Digitrax to carry DCC and other commands across Digitrax command control systems. 1
- **message** means a sequence of two or more bytes sent over the network that conform to the network message format. The first byte of the message is an opcode and the last is a checksum. 2
- **mobile decoder** means an electronic device installed in a locomotive that receives a signal from the command station through the track, decodes it and tells the locomotive what to do. 1
- NMRA is the National Model Railroad Association, founded in 1935. One of its purposes is to define and manage model railroad standards related to interchange of equipment in North America. 33, 35, 41, 43
- **opcode** means the first byte of a network message. The opcode indicates the purpose and length of the message. 2
- **peer-to-peer** is a network communication scheme where messages between devices are not managed or controlled by a central controller or server. 1
- physical throttle means an electronic input device, often hand-held, that is used to tell the command station what commands to send to the decoders. 4
- **polled** is the process of interrogating a device to see if it has information or commands to send to the system. 1
- **polling** is the process by which devices are interrogated sequentially, one after the other, to see if they have information or commands to send to the system. 1
- **Product Code** means the Digitrax assigned identifier code of a device's type. 55, 61
- **Report** means a message sent by a device in response to a change in its internal and/or external state. 8
- **Response** means a message sent in response to a Command message. 5, 6, 8, 9, 12, 17, 28, 30, 32, 33, 35, 37, 39, 41, 43, 45, 47, 49, 54, 61, 65, 78, 80, 176
- **signature** is the combination of bits and bytes within a message that uniquely identify the message type. 2

Glossary 241

Slot Status 1 means byte 3 of a LocoSlotDataP1 response or byte 4 of a LocoSlotDataP2 response. 4

- slot state means the current state of a locomotive slot. A locomotive slot can be in one the following states: Free, New, In-Use, Common or Idle. 4
- software throttle means a software application that is used to tell the command station what commands to send to the decoders. 4
- **standard slots** means the command station slots that are accessed and manipulated by protocol 1 messages. 3
- stationary decoder means an electronic device for a turnout or other accessory that receives a signal from the command station through the track, decodes it and tells the turnout or accessory what to do. 1
- **system slot** is a memory location in the command station which holds system information. 3
- throttle means a physical throttle or a software throttle. 4
- **Throttle ID** means a pair of 7-bit numbers that identify (hopefully uniquely) the throttle to the command station. 4, 6, 88, 92, 100, 104, 120

Index

Ack, 9	GetLocoSlotDataP2, 39 GetLocoSlotDataSAdrP1, 41
Bootloader 2, 75	GetLocoSlotDataSAdrP2, 43
Broadcast Message, 3	GetSwState, 45
Busy, 11	Global System Track Status, 14, 108, 157
CfgSlotDataP1, 12	Hardware Version, 61
CfgSlotDataP2, 17	,
Checksum, 2	IllegalMoveP1, 47
Command Message, 3	IllegalMoveP2, 49
Command Station, 1	IMMPacket, 51
Configuration Variables, 134, 138, 199	Interface Data, 54
Consist, 24	Interrogate, 65
ConsistDirF0F4, 24	IPL Bootloader, 226
Consisting, 78, 80, 182, 184	IPLDataLoad, 58
CVs, see Configuration Variables	IPLDevData, 61
,	IPLDiscover, 65
DCC, 51	IPLEndLoad, 69
decoder mode, 5	IPLSetAddr, 72
Digitrax Products, 226	IPLSetupBL2, 75
Direction, 84, 86, 120	
	LinkSlotsP1, 78
Fast Clock, 4	LinkSlotsP2, 80
Firmware Update, 75	Loco Reset, 145
Functions, 84, 86, 88, 90, 92, 94, 96, 98, 100,	LocoBinStateP2, 82
102, 104	LocoDirF0F4P1, 84
	LocoDirF0F4P2, 86
GetBrdOpSw, 26	LocoF0F6P2, 88
GetCfgSlotDataP1, 28	LocoF12F20F28P2, 96
GetCfgSlotDataP2, 30	LocoF13F19P2, 98
GetInterfaceData, 32	LocoF14F20P2, 100
GetLocoSlotDataLAdrP1, 33	LocoF21F27P2, 102
GetLocoSlotDataLAdrP2, 35	LocoF21F28P2, 104
GetLocoSlotDataP1, 37	LocoF5F11P2, 94

INDEX 243

LocoF5F8P1, 90 LocoF7F13P2, 92 LocoSlotDataP1, 106 LocoSlotDataP2, 110 LocoSpdDirP2, 120 LocoSpdP1, 116 LocoSpdP2, 118	SetIdleState, 154 SetLocoSlotDataP1, 155 SetLocoSlotDataP2, 159 SetLocoSlotStat1, 165 SetSwWithAck, 167 Signature, 2 Slot, 35, 37, 39, 43, 106, 110, 126, 128, 155, 159 Slot State, 4 SlotNotImplemented, 169 slots, 3 Software Version, 62 Speed, 116, 118, 120 SwReq, 178 SwState, 176
Message Format, 2 Message Length, 2 MoveSlotsP1, 126 MoveSlotsP2, 128 NoFreeSlotsP1, 122 NoFreeSlotsP2, 124 Null Move, 126, 128	
Opcode, 2 PeerXfer16, 130 Power, 142, 143 Product Code, 61, 226 ProgCV, 134 Programming, 134, 138 Direct Mode, 200 Operations Mode, 200 Paged Mode, 200 Physical Register Mode, 200 ProgSlotDataP1, 138 Protocol 1, 3 Protocol 2, 3 Purging, 7 PwrOff, 142 PwrOn, 143	Throttle ID, 4 Track Power, 142, 143 TransRep, 180 UnlinkSlotsP1, 182 UnlinkSlotsP2, 184
Report Message, 3 Reset, 145 Response Message, 3	
SensRepGenIn, 146 SensRepTurnIn, 148 SensRepTurnOut, 150 SetBrdOpSw, 152	