Determinant

Determinant (34 bodů)

Deadline: 17. března 2025

1. (10 bodů) Spočítejte determinanty:

• a) (1 bod)
$$\det(-4)$$

Determinant skaláru je daný skalár: det(-4) = -4

• b) (1 bod)
$$\det(-I_n)$$

 $-I_n$ je horní trojúhelníková matice, takže její determinant je roven násobku prvků na hlavní diagonále. Tedy v našem případě $\det(-I_n)=(-1)^n$

• c) (2 body)

$$\begin{vmatrix} 2 & 4 & 1 \\ 3 & 2 & 1 \\ 2 & 3 & 2 \end{vmatrix} = 8 + 9 + 8 - 4 - 6 - 24 = -9$$

d) (2 body)

$$\begin{vmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{vmatrix} = abc$$

e) (4 body)

$$\begin{vmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 1 & 0 \\ 0 & 1 & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{vmatrix}$$

Na vedlejsi diagonále jsou jedničky a zbytek 0. Jediná možná permutace, které vráti jiné číslo než nulu, je permutace kdy vybíráme prvky z antidiagonály. Parita permutace a tedy i její znaménko (buď 1 nebo -1) záleží na velikosti dané matice. Pro sudý počet prvků na diagonále máme sudý počet inverzí permutace a znaménko je +. Tedy determinant této matice $A^{n\times n}$ je ± 1 v závislosti na n.

2. (8 bodů)

Buď $A \in \mathbb{R}^{m \times m}$ a $B \in \mathbb{R}^{n \times n}$. Dokažte, že

$$\detegin{pmatrix} A & 0 \ 0 & B \end{pmatrix} = \det(A)\det(B).$$

Matici na levé straně budu označovat $AB_0 \in \mathbb{R}^{m+n \times m+n}$.

Při výpočtu determinantu AB_0 bude příspěvek permutace vždy nulový, pokud v prvních m řádcích vybereme alespoň jeden prvek na indexu i, kde i>m. To znamená, že pro permutaci, kde prvky $p_1,\ldots,p_m\in A$, můžeme zvolit všechny permutace "matice B". Takže fixní permutaci matice A násobíme všemi permutacemi matice B. Což se rovná $p_1\cdot p_2\cdot\ldots p_m*\det(B)$. To stejné můžeme udělat pro fixní permutaci matice B. Tedy vlastně výsledek je součet násobků všech permutací matice A se všemi permutacemi matice B. (každou permutaci A násobíme všemi permutacemi B a naopak). Výsledky těchto permutací se rovnají $\det(A)$ resp. $\det(B)$. Tedy výsledek je

$$\detegin{pmatrix} A & 0 \ 0 & B \end{pmatrix} = \det(A)\det(B).$$

3. (16 bodů)

Říkáme, že celočíselná matice $M \in \mathbb{Z}^{m \times n}$ je **totálně unimodulární** (dále již jen TU), pokud je každý její minor (tzn. determinant čtvercové podmatice) roven -1, 0, či 1.

Buď $A \in \mathbb{Z}^{n \times n}$ regulární. Dokažte, že je-li A TU, pak nutně i A^{-1} je TU.

(Zkuste si vedle celočíselnosti dokázat pro začátek alespoň to, že hodnoty determinantů podmatic o rozměrech 1×1 a $n \times n$ jsou správné. Obecné podmatice jsou potom těžší.)

(Při dokazování, že minor je roven -1,0,1, tu nemusíte příliš řešit znaménko, ať neskončíte zavalení zbytečnými detaily. Klidně v průběhu pište \pm něco, stejně musíte dokázat primárně to, že to něco je ve výsledku 0 nebo 1.)

Determinant A^{-1} musí být z množiny celých čísel, protože násobení, sčítání a odčítaní nad celými čísly vždy vrací celé číslo. A jelikož $A \in \mathbb{Z}^{n \times n}$ implikuje $A^{-1} \in \mathbb{Z}^{n \times n}$. To znamená: $\forall a_{i,j} \in A: a_{i,j} \in \{\pm 1, 0\}$.

Pokud je A TU, znamená to, že každá její podmatice je také TU. Tedy každá podmatice má minory rovné 1,0,-1. To znamená, že i nejmenší čtercové podmatic0e jsou rovny 1,0,-1. Tyto podmatice mají velikost 1×1 , tedy jednotlivé prvky. Tyto prvky z A jsou také v A^{-1} , takže je-li A TU, pak nutně i jednotlivé prvky (matice 1×1) A^{-1} jsou TU.

Dle tvrzení z přednášky platí

$$A \in \mathbb{T}^{n imes n} \implies \det(A) = \det(A^t)$$

Tedy pokud je A TU pak $det(A) \in \{\pm 1, 0\} \implies det(A^t) \in \{\pm 1, 0\}.$

Bohužel nemám tušení, jak dokázat tvrzení pro obecné matice. Tipnul bych si, že se využije Cramerovo pravidlo s nějakým trikem. Bohužel to v tom nevidím.