LINUX BOOTING PROCESS

The boot process is made up of a series of actions that a computer has to go through ranging from powering on to the complete loading of the operating system (OS) for optimal functionality.

- BIOS (Basic Input/Output System) or UEFI (Unified Extensible Firmware Interface
- POST (Power-on-self-test)
- Boot loader
- GRUB (Grand Unified boot loader)
- Kernel
- Init
- System Daemons

Here is a brief explanation as to how this works;

Stages	Description.
BIOS or UEFI	Right after clicking the power button on your computer, a
(Basic input/output	program called a "BIOS or UEFI" boots up, these are
system)	basically pieces of software that gets all the main part of the
	computer i.e. keyboard, monitor, mouse, hard drives and so
	on, ready for action. The key difference between BIOS and
	UEFI is their approach to disk storage and accuracy.
• POST	This test makes sure all the hardware(s) are up and running
(Power-on-self-test)	before fully turning everything on. If there is any hardware
	malfunction. It detects and populates an "error message" on
	the screen notifying the user of underlying risk(s)
Boot Loader	If everything looks good after the POST, the boot loader
	runs certain checks on the hard-drives first, or USD or Disk
	drive, if doesn't find anything on the hard-drive. In a BIOS
	system, the boot loader can be located in the hard-drive
	called the "Maser boot record" (MBR) but for the UEFI,

	there is a separate partition for this called the "efi. Boot
	loader file". The key function of a boot loader is:
	 Locate the operating system kernel on the disk
	 Load the kernel into the computer's memory
	 Start running the kernel code.
• GRUB	This is found inside the boot loader, alternative to this is the
(Grand unified boot loader)	LILO which is now phased-out. The GRUB can handle
	multiple operating systems expressing them with graphical
	and/or text-based menus and has a bunch of variety
	options. After the GRUB loads itself up, it inserts the Linux
	kernel into memory
Kernel	The kernel is the core of the operating system, managing
	hardware resources, providing and controlling interactions
	between hardware and software. It initializes the system
	hardware, mounts the root file system, and begins the user-
	space initialization process. It does this by decompressing
	itself into the memory and checks the hardware, then load
	device drivers and loads kernel modules.
Initialization (Init)	The initialization process (init) is a fundamental part of the
	booting process in Unix-like operating systems. Its primary
	responsibility is to initialize the system and bring it to a
	functional state. Linux systems, including those based on
	Red Hat Enterprise Linux (RHEL), have transitioned to using
	systemd, which serves as a replacement for init, introducing
	a more flexible and efficient approach to managing system
	initialization.
System Daemons	This is also known as background processes or services, play
	a vital role in the booting process and ongoing operations.
	These daemons are specialized programs that run in the
	background, providing essential services to the system and
	users. They perform specific tasks, such as managing
	hardware, handling system events, or providing network
	services.