In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from scipy.stats import chi2_contingency
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder,StandardScaler,MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
%matplotlib inline
sns.set_theme(color_codes=True,style='darkgrid',palette='deep',font='sans-serif')
```

In [2]:

```
df=pd.read_csv(r"D:\Training Data.csv")
```

In [3]:

df.head()

Out[3]:

	ld	Income	Age	Experience	Married/Single	House_Ownership	Car_Ownership	Pr
0	1	1303834	23	3	single	rented	no	Mechanical_
1	2	7574516	40	10	single	rented	no	Software_[
2	3	3991815	66	4	married	rented	no	Techni
3	4	6256451	41	2	single	rented	yes	Software_[
4	5	5768871	47	11	single	rented	no	Civ
4								>

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 252000 entries, 0 to 251999

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Id	252000 non-null	int64
1	Income	252000 non-null	int64
2	Age	252000 non-null	int64
3	Experience	252000 non-null	int64
4	Married/Single	252000 non-null	object
5	House_Ownership	252000 non-null	object
6	Car_Ownership	252000 non-null	object
7	Profession	252000 non-null	object
8	CITY	252000 non-null	object
9	STATE	252000 non-null	object
10	CURRENT_JOB_YRS	252000 non-null	int64
11	CURRENT_HOUSE_YRS	252000 non-null	int64
12	Risk_Flag	252000 non-null	int64

dtypes: int64(7), object(6)
memory usage: 25.0+ MB

In [5]:

df.describe()

Out[5]:

	ld	Income	Age	Experience	CURRENT_JOB_YRS	CURR
count	252000.000000	2.520000e+05	252000.000000	252000.000000	252000.000000	
mean	126000.500000	4.997117e+06	49.954071	10.084437	6.333877	
std	72746.278255	2.878311e+06	17.063855	6.002590	3.647053	
min	1.000000	1.031000e+04	21.000000	0.000000	0.000000	
25%	63000.750000	2.503015e+06	35.000000	5.000000	3.000000	
50%	126000.500000	5.000694e+06	50.000000	10.000000	6.000000	
75%	189000.250000	7.477502e+06	65.000000	15.000000	9.000000	
max	252000.000000	9.999938e+06	79.000000	20.000000	14.000000	
4						•

In [6]:

```
df.isnull().sum()
```

Out[6]:

Ιd 0 Income 0 Age 0 0 Experience Married/Single 0 House_Ownership 0 Car_Ownership 0 Profession 0 CITY 0 STATE CURRENT_JOB_YRS 0 CURRENT_HOUSE_YRS 0 Risk_Flag 0 dtype: int64

In [7]:

```
sns.distplot(a=df['Age']);
```

C:\Conda dist\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin g: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [8]:

```
sns.countplot(x='House_Ownership',hue='Risk_Flag',data=df);
```


In [9]:

sns.countplot(x='Car_Ownership',hue='Risk_Flag',data=df);

In [10]:

sns.countplot(x='Married/Single',hue='Risk_Flag',data=df);

In [11]:

```
sns.distplot(a=df['Income']);
```

C:\Conda dist\lib\site-packages\seaborn\distributions.py:2619: FutureWarnin g: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [12]:

```
sns.heatmap(df.corr(),annot=True,cmap='coolwarm');
```

C:\Users\SMFL-20531\AppData\Local\Temp\ipykernel_13692\1448551465.py:1: Futu
reWarning: The default value of numeric_only in DataFrame.corr is deprecate
d. In a future version, it will default to False. Select only valid columns
or specify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(),annot=True,cmap='coolwarm');

In [13]:

sns.boxplot(y='Age',data=df);

In [14]:

```
sns.boxplot(y="Income",data=df);
```


In [15]:

```
r=df.groupby('Risk_Flag')['Risk_Flag'].count()
plt.pie(r,explode=[0.05,0.1],labels=['Non-Defaulter','Defaulter'],radius=1.5,autopct='%1.1f
```


In [16]:

```
print(len(df.Profession.unique()))
print(len(df.STATE.unique()))
print(len(df.CITY.unique()))
```

51 29 317

Summary on Data Visualization

Class 0 represents 88.00% of the dataset, while class 1 only 12.00%. The classes are heavily skewed we need to solve this issue

There are no outliers in datasets. But we need to scale Age and Income

THERE are no outstern in adeasees, but we need to heate the and income

Strong correlation between Experience and CURRENT_JOB_YRS May drop one column during feature selection process or use Principal Component Analysis (PCA)

Married/Single House_Ownership Car_Ownership can be binarised or one-hot encoded

We can find the relationship between target variable and categorical variable using Chi-square test

Feature Engineering

Helping function for hypothesis testing

```
In [17]:
```

```
def chi_square_test(data):
    stat,p,dof,expected=chi2_contingency(data)
    alpha=0.05
    print('p value is ' + str(p))
    if p <= alpha:
        print("Dependent (reject HO)")
    else:
        print("independent (HO holds True)")</pre>
```

In [18]:

```
car_ownership_riskflag=pd.crosstab(df['Car_Ownership'],df['Risk_Flag'])
car_ownership_riskflag
```

Out[18]:

```
Risk_Flag 0 1
Car_Ownership
no 153439 22561
yes 67565 8435
```

In [19]:

```
chi_square_test(car_ownership_riskflag)
```

```
p value is 1.7350853850183746e-33
Dependent (reject HO)
```

```
In [20]:
```

```
mariterialstatus_riskflag=pd.crosstab(df['Married/Single'],df['Risk_Flag'])
mariterialstatus_riskflag
```

Out[20]:

```
      Risk_Flag
      0
      1

      Married/Single
      23092
      2636

      single
      197912
      28360
```

In [21]:

```
chi_square_test(mariterialstatus_riskflag)
```

```
p value is 3.773053705715196e-26
Dependent (reject HO)
```

In [22]:

houseownership_riskflag=pd.crosstab(df['House_Ownership'],df['Risk_Flag'])
houseownership_riskflag

Out[22]:

Risk_Flag	0	1
House_Ownership		
norent_noown	6469	715
owned	11758	1160
rented	202777	29121

In [23]:

```
chi_square_test(houseownership_riskflag)
```

```
p value is 1.8381930028370595e-40
Dependent (reject HO)
```

Performing Principal Component Analysis on CURRENT_JOB_YRS and Experience

In [24]:

```
features=['CURRENT_JOB_YRS','Experience']
df_for_pca=df[features]
scaled_df_for_pca=(df_for_pca - df_for_pca.mean(axis=0))/df_for_pca.std()
scaled_df_for_pca
```

Out[24]:

	CURRENT_JOB_YRS	Experience
0	-0.914129	-1.180230
1	0.731035	-0.014067
2	-0.639935	-1.013635
3	-1.188323	-1.346825
4	-0.914129	0.152528
251995	-0.091547	0.485718
251996	-0.091547	-0.014067
251997	0.182647	-0.513851
251998	-1.736711	-1.680014
251999	0.182647	1.152097

252000 rows × 2 columns

In [25]:

```
pca=PCA()
df_pca=pca.fit_transform(scaled_df_for_pca)
component_names=[f"PC{i+1}" for i in range (df_pca.shape[1])]
df_pca=pd.DataFrame(df_pca,columns=component_names)
df_pca.head()
```

Out[25]:

	PC1	PC2
0	-1.480935	-0.188162
1	0.506973	-0.526866
2	-1.169251	-0.264246
3	-1.792620	-0.112078
4	-0.538533	0.754240

In [26]:

```
df1=pd.concat([df,df_pca],axis=1)
df1
```

Out[26]:

Profession	CITY	STATE	CURRENT_JOB_YRS	CURRENT_HOUSE_YRS F	
nanical_engineer	Rewa	Madhya_Pradesh	3	13	
ware_Developer	Parbhani	Maharashtra	9	13	
Technical_writer	Alappuzha	Kerala	4	10	
ware_Developer	Bhubaneswar	Odisha	2	12	
Civil_servant	Tiruchirappalli[10]	Tamil_Nadu	3	14	
Surgeon	Kolkata	West_Bengal	6	11	
Army_officer	Rewa	Madhya_Pradesh	6	11	
Design_Engineer	Kalyan-Dombivli	Maharashtra	7	12	
raphic_Designer	Pondicherry	Puducherry	0	10	
Statistician	Avadi	Tamil_Nadu	7	11	

←

Label encoding for categorical variables

In [37]:

```
features=['Married/Single','Car_Ownership','Profession','CITY','STATE']
lable_encoder=LabelEncoder()

for col in features:
    df1[col]=lable_encoder.fit_transform(df1[col])
```

In [38]:

```
df2=pd.get_dummies(df1,columns=['House_Ownership'])
df2.drop(['Id'],axis=1,inplace=True)
```

In [40]:

```
X=df2.drop(['Risk_Flag'],axis=1)
Y=df2['Risk_Flag']
```

In [41]:

```
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=0)
```

In [45]:

```
sm=SMOTE(random_state=500)
X_res,Y_res=sm.fit_resample(x_train,y_train)
```

In []:

#Now the data is ready for implementation of Machine Learning model!! #Since the target variable is either 0 or 1, So we will use ml models which is suitable for

In [46]:

```
#Logistic Regression
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(max_iter=500000)
lr.fit(X_res,Y_res)
y_pred=lr.predict(x_test)
accuracy=lr.score(x_test,y_test)
accuracy
```

Out[46]:

0.8774867724867725

In [49]:

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.88	1.00	0.93	66338
1	0.00	0.00	0.00	9262
accuracy			0.88	75600
macro avg	0.44	0.50	0.47	75600
weighted avg	0.77	0.88	0.82	75600

C:\Conda dist\lib\site-packages\sklearn\metrics_classification.py:1318: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Conda dist\lib\site-packages\sklearn\metrics_classification.py:1318: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Conda dist\lib\site-packages\sklearn\metrics_classification.py:1318: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In [55]:

```
#KNN
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier(n_neighbors=5,metric='minkowski',p=2)
model.fit(X_res,Y_res)
y_pred=model.predict(x_test)
accuracy=model.score(x_test,y_test)
accuracy
```

Out[55]:

0.859537037037037

In [53]:

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.94	0.90	0.92	66338
1	0.44	0.57	0.50	9262
accuracy			0.86	75600
macro avg	0.69	0.73	0.71	75600
weighted avg	0.88	0.86	0.87	75600

In [56]:

```
#Random forest classification
from sklearn.ensemble import RandomForestClassifier
model=RandomForestClassifier(criterion='gini',bootstrap=True,random_state=420)
model.fit(X_res,Y_res)
y_pred=model.predict(x_test)
accuracy=model.score(x_test,y_test)
accuracy
```

Out[56]:

0.8830026455026455

In [59]:

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
Ø	0.97	0.89	0.93	66338
1	0.51	0.81	0.63	9262
accuracy	3.52	0.02	0.88	75600
macro avg	0.74	0.85	0.78	75600
weighted avg	0.91	0.88	0.89	75600

In [61]:

```
#DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier(criterion='entropy',random_state=420)
model.fit(X_res,Y_res)
y_pred=model.predict(x_test)
accuracy=model.score(x_test,y_test)
accuracy
```

Out[61]:

0.8658201058201058

In [62]:

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.98	0.87	0.92	66338
1	0.47	0.85	0.61	9262
accuracy			0.87	75600
macro avg	0.73	0.86	0.76	75600
weighted avg	0.92	0.87	0.88	75600

In [64]:

```
#XGBoost
```

from xgboost import XGBClassifier
model=XGBClassifier(learning_rate=0.1,n_estimators=1000,use_label_encoder=False,random_stat
model.fit(X_res,Y_res)
y_pred=model.predict(x_test)
accuracy=model.score(x_test,y_test)
accuracy

```
C:\Conda dist\lib\site-packages\xgboost\sklearn.py:1421: UserWarning: `use_l
abel_encoder` is deprecated in 1.7.0.
  warnings.warn("`use_label_encoder` is deprecated in 1.7.0.")
```

Out[64]:

0.8908862433862433

In [65]:

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.97 0.54	0.91 0.78	0.94 0.64	66338
1	0.54	0.78	0.64	9262
accuracy			0.89	75600
macro avg	0.75	0.84	0.79	75600
weighted avg	0.91	0.89	0.90	75600

Conclusion

XGBoost is the best suitable model for our dataset with accuracy 89%, Alternatively Random Forest and Extra Tree Classifier can also consider, since they gives accuracy of 88%.