Bivariate analysis

2025-03-18

M1 MIDS/MFA/LOGOS Université Paris Cité Année 2024 Course Homepage Moodle

! Objectives

In Exploratory analysis of tabular data, bivariate analysis is the second step. It consists in exploring, summarizing, visualizing pairs of columns of a dataset.

Setup

```
stopifnot(
  require(glue),
  require(magrittr),
  require(lobstr),
  require(arrow),
  require(ggforce),
  require(vcd),
  require(ggmosaic),
  require(fattr),
  require(patchwork),
  require(corrr),
  require(gapminder),
  require(slider),
  require(tidyverse)
)
```

Bivariate techniques depend on the types of columns we are facing.

For numerical/numerical samples

- Scatter plots
- Smoothed lineplots (for example linear regression)
- 2-dimensional density plots

For categorical/categorical samples: mosaicplots and variants

For numerical/categorical samples

• Boxplots per group

- Histograms per group
- Density plots per group

Dataset

Once again we rely on the Recensement dataset.

Since 1948, the US Census Bureau carries out a monthly Current Population Survey, collecting data concerning residents aged above 15 from 150000 households. This survey is one of the most important sources of information concerning the american workforce. Data reported in file Recensement.txt originate from the 2012 census.

Load the data into the session environment and call it df. Take advantage of the fact that we saved the result of our data wrangling job in a self-documented file format. Download a parquet file from the following URL:

https://stephane-v-boucheron.fr/data/Recensement.parquet

Question

Download a parquet file from the following URL: https://stephane-v-boucheron.fr/data/Recensement.parquet

- Use httr::GET() and WriteBin()
- Use download.file()
- Use fs to handle files and directories

i Question

Load the data contained in the downloaded file into the session environment and call it df

```
df |>
 glimpse()
## Rows: 599
## Columns: 11
## $ AGE
               <dbl> 58, 40, 29, 59, 51, 19, 64, 23, 47, 66, 26, 23, 54, 44, 56,~
## $ SEXE
               <fct> F, M, M, M, M, M, F, F, M, F, M, F, F, F, F, F, F, M, M, F, ~
               \langle fct \rangle NE, W, S, NE, W, NW, S, NE, NW, S, NE, NE, W, NW, S, S, NW, \sim
## $ REGION
## $ STAT MARI
               <fct> C, M, C, D, M, C, M, C, M, D, M, C, M, C, M, C, S, M, S, C,~
               <dbl> 13.25, 12.50, 14.00, 10.60, 13.00, 7.00, 19.57, 13.00, 20.1~
## $ SAL_HOR
               <fct> non, non, non, oui, non, non, non, non, oui, non, non, non, ~
## $ SYNDICAT
## $ CATEGORIE <fct> "Administration", "Building ", "Administration", "Services"~
## $ NIV_ETUDES <fct> "Bachelor", "12 years schooling, no diploma", "Associate de~
## $ NB PERS
               <fct> 2, 2, 2, 4, 8, 6, 3, 2, 3, 1, 3, 2, 6, 5, 4, 4, 3, 2, 3, 2,~
## $ NB ENF
               ## $ REV_FOYER <fct> [35000-40000), [17500-20000), [75000-1e+05), [17500-20000),~
df |>
 head()
## # A tibble: 6 x 11
##
      AGE SEXE REGION STAT_MARI SAL_HOR SYNDICAT CATEGORIE
                                                               NIV_ETUDES NB_PERS
##
     <dbl> <fct> <fct> <fct>
                                  <dbl> <fct>
                                                 <fct>
                                                               <fct>
                                                                          <fct>
```

## 1	58 F	NE	C	13.2	non	${\it "Administrat"}$	Bachelor	2
## 2	40 M	W	M	12.5	non	"Building "	12 years ~	2
## 3	29 M	S	C	14	non	${\it "Administrat"}$	Associate~	2
## 4	59 M	NE	D	10.6	oui	"Services"	12 years ~	4
## 5	51 M	W	M	13	non	"Services"	9 years s~	8
## 6	19 M	NW	C	7	non	"Services"	12 years ~	6
## # i	2 more	variable	s: NB_ENF	$\langle fct \rangle$, RE	V_FOYER	<fct></fct>		

Categorical/Categorical pairs

i Question

Project the dataframe on categorical columns

Question

- Explore the connection between CATEGORIE and SEX.
- Compute the 2-ways contingency table using table(), and count() from dplyr.

- Use tibble::as_tibble() to transform the output of table() into a dataframe/tibble.
- Use tidyr::pivot_wider() so as to obtain a wide (but messy) tibble with the same the same shape as the output of table().
- Can you spot a difference?

Question

Use mosaicplot() from base R to visualize the contingency table.

i Question

Use geom_mosaic from ggmosaic to visualize the contingency table

- Make the plot as readable as possible
- Reorder CATEGORIE according to counts

Question

• Collapse rare levels of CATEGORIE (consider that a level is rare if it has less than 40 occurrences). Use tools from forcats.

Question

Same as above with vcd::mosaic

Testing association

Chi-square independence/association test

https://statsfonda.github.io/site/content/ch4_2.html#test-dindépendance

Question

- Compute the chi-square association statistic between CATEGORIE and SEXE.
- Display the output of chisq.test() as a table, using broom::tidy()

Categorical/Numerical pairs

Grouped boxplots

Question

Plot boxplots of AGE according to NIV_ETUDES

Question

Draw density plots of AGE, facet by NIV_ETUDES and SEXE

i Question

Collapse rare levels of NIV_ETUDES and replay.

Numerical/Numerical pairs

Scatterplots

Question

Make a scatterplot of SAL_HORwith respect to AGE

Correlations

- Linear correlation coefficient (Pearson)
- Linear rank correlation coefficient (Spearman ρ , Kendall τ)
- ξ rank correlation coefficient (Chatterjee)

Linear correlation coefficient

i Question

Compute the Pearson, Spearman and Kendall correlation coefficients between AGE and SAL_HOR using function cor() from base R

Rank based methods

Spearman's rho () and Kendall's tau () are both non-parametric correlation coefficients used to measure the strength and direction of a monotonic relationship between two variables.

Spearman's rho () Based on rank differences. Defined as the Pearson correlation coefficient between the ranked variables.

$$\rho=1-\frac{6\sum d_i^2}{n(n^2-1)}$$

where d_i is the difference between the ranks of each pair, and n is the number of observations.

Kendall's tau () Based on concordant and discordant pairs. Measures the proportion of pairs that have the same order in both variables compared to the total number of pairs.

$$\tau = \frac{(C-D)}{\frac{1}{2}n(n-1)}$$

where C is the number of concordant pairs, and D is the number of discordant pairs.

When to Use Which?

Factor	Spearman's rho ()	Kendall's tau ()
Large differences in ranks	More sensitive	Less sensitive
Small sample sizes	Less reliable	More reliable
Outlier resistance	Moderate	High
Computational efficiency	Faster	Slower (due to pairwise comparisons)
Interpretation	Similar to Pearson's correlation	More intuitive (proportion of concordance)

Chatterjee's correlation coefficient (Chatterjee's ξ)

The three most popular classical measures of statistical association are Pearson's correlation coefficient, Spearman's , and Kendall's . These coefficients are very powerful for detecting linear or monotone associations, and they have well-developed asymptotic theories for calculating P-values. However, the big problem is that they are not effective for detecting associations that are not monotonic, even in the complete absence of noise.

Let (X,Y) be a pair of random variables, where Y is not a constant. Let $(X_1,Y_1),\ldots,(X_n,Y_n)$ be i.i.d. pairs with the same law as (X,Y), where $n\geq 2$. The new coefficient has a simpler formula if the X_i 's and the Y_i 's have no ties. This simpler formula is presented first, and then the general case is given. Suppose that the X_i 's and the Y_i 's have no ties. Rearrange the data as $(X_{(1)},Y_{(1)}),\ldots,(X_{(n)},Y_{(n)})$ such that $X_{(1)}\leq \cdots \leq X_{(n)}$. Since the X_i 's have no ties, there is a unique way of doing this. Let ri be the rank of $Y_{(i)}$, that is, the number of j such that $Y_{(j)}\leq Y_{(i)}$. The new correlation coefficient is defined as

$$\xi_n(X,Y) := 1 - 3 \sum_{i=1}^{n-1} \frac{|r_{i+1} - r_i|}{n^2 - 1}$$

In the presence of ties, ξ_n is defined as follows. If there are ties among the X_i 's, then choose an increasing rearrangement as above by breaking ties uniformly at random. Let r_i be as before, and additionally define l_i to be the number of j such that $Y_{(j)} \geq Y_{(i)}$. Then define

$$\xi_n(X,Y) := 1 - 3n \sum_{i=1}^{n-1} \frac{|r_{i+1} - r_i|}{2 \sum_{i=1}^n l_i (n - l_i)}$$

When there are no ties among the Y_i 's, l_1, \ldots, l_n is just a permutation of $1, \ldots, n$, and so the denominator in the above expression is just $n(n^2-1)/3$, which reduces this definition to the earlier expression.

From Sourav Chatterjee: A new correlation coefficient

• Question

Write a dplyr pipeline from computing the ξ correlation coefficient between Y=lifeExp and X=gdpPercap in the gapminder dataset, per year and continent.

Using package corrr

https://corrr.tidymodels.org

i Question

Use corre::correlate() and companion functions to display correlation coefficients in a friendly way.

pairs from base R

Just as function skim from package skimr allows us to automate univariate analysis, function pairs from base R allows us to automate bivariate analysis.

i Question

- Apply function pairs to the Recensement dataset
- How does pairs handle pairs of categorical columns?
- How does pairs handle pairs of numerical columns?
- How does pairs handle categorical/numerical columns?
- Suggestions for improvements?

ggpairs() from GGally

Documentation

Question

- Apply function GGally::ggpairs() to the Recensement dataset
- How does ggpairs handle pairs of categorical columns?
- How does ggpairs handle pairs of numerical columns?
- How does ggpairs handle categorical/numerical columns?
- How does ggpairs handle diagonal diagrams?
- How can you modify layout, labels, ticks?
- Suggestions for improvements?

Useful links

- rmarkdown
- dplyr
- ggplot2
- R Graphic Cookbook. Winston Chang. O' Reilly.
- A blog on ggplot object
- skimr
- vcd
- ggmosaic
- ggforce
- arrow
- httr