

Memory (Part II)

Professor Travis Peters
CSCI 460 Operating Systems
Fall 2019

Some slides & figures adapted from Stallings instructor resources.

Some slides adapted from Adam Bates's F'18 CS423 course @ UIUC https://courses.engr.illinois.edu/cs423/sp2018/schedule.html

Goals for Today

Learning Objectives

- ·Understand basics of memory management, including
 - memory partitioning and common techniques
 - paging and segmentation what they are, and their relative advantages and disadvantages
- ·Understand basics of loading and linking

Announcements

- Use Google Sheet to share info about your project:
 - https://docs.google.com/spreadsheets/d/1uMk0pcho_B2v8_7t_E3S-IpsdUfhjBKsT5XdBcfPOBI/edit?usp=sharing
- PA2 posted later this week...

Relocation of Processes into Partitions

Logical Address

 a reference to a memory location independent of the current assignment of data to memory → need translation

Relative Address

An example of a logical address.

Address = relative location to some known point (e.g., value in register)

Physical Address
 The actual location in main memory

Paging

Basic Idea

- · Partition main memory into small fixed-sized chunks of the same size
- · Assign chunks of processes (pages) into available chunks of main memory (frames)
- · Small processes need fewer pages; larger processes need more pages
- No more external fragmentation
- Minimal internal fragmentation \rightarrow only part of the last page of a process

Paging — Example: Assigning Process Pages to Free Frames

(b) Load Process A

(d) Loa

Process A

page table

oad Process	C

(e) Swap out B

(f) Load Process D

Process B page table

Process C page table

page table

Free frame list **Process D**

Paging — Logical Addressing

HW assists with logical addressing when using paging — HW must know how to access page table

n + m bit addresses where

- n = # bits for page number (leftmost bits)
- m = # bits for offset within page (rightmost bits)
 - \rightarrow PAGESIZE = 2^m

NOTE: In general, we set page/frame size to be a power of 2

→ relative address == logical address

Example:

- 16-bit addresses
- Page Size = 1K (1024 Bytes)

Q: How many bits are needed to accommodate pages/frames of size 1K?

 \rightarrow 10 bits needed for offset field \rightarrow 1K = 2^{10}

Q: How many pages are possible with 6-bits available for page numbers?

 \rightarrow 6 bits left over for page # field \rightarrow 64 pages

Paging — Example of Logical-to-Physical Address Translation

Segmentation

Basic Idea

- · Programs can be broken up into *segments* that need not be in contiguous memory; may occupy more than one segment
- · Partition main memory into unequally-sized segments
 - · Similar to dynamic partitioning... but not the same
- · Assign segments of processes into chunks of main memory allocated on demand
- No internal fragmentation
- Potential for external fragmentation

Segmentation — Logical Addressing

- · Each segment needs to provide
 - starting address of segment
 - segment length
- · Load address of segment table into register when process starts running
- n + m bit addresses where
 - n = # bits for segment number (leftmost bits)
 - m = # bits for offset within segment (rightmost bits)

Example:

- 16-bit addresses
 - n = 4 bits
 - m = 12 bits

Q: What is the maximum size of a segment?

$$\rightarrow 4K = 2^{12}$$

Q: How many segments are possible?

 \rightarrow 4 bits used for segment # \rightarrow 16 pages

Segmentation — Example of Logical-to-Physical Address Translation

