그림 분위기에 따라 음악을 생성하는 아트 플랫폼

최희주*, 서승덕*, 황정훈**, 류신혜*, 김선형*, 차오동성*, 김상욱*
*경북대학교 컴퓨터학부
**경북대학교 플랜트시스템공학

e-mail: ujst02@gmail.com, sudang17@naver.com, anthony9307@naver.com, shryu@media.knu.ac.kr, shkim@media.knu.ac.kr, dxcao@media.knu.ac.kr, kimsw@knu.ac.kr

Platform to Generate Music based on Mood of the Painting

Hee-Ju Choi*, Seung-Deok Seo*, Jung-Hun Hwnag**, Shinhye Ryu*, Seonhyeong Kim*, Dongxing Cao*, Sangwook Kim*

*School of Computer Science and Engineering,
Kyungpook National University

**School of Convergence & Fusion System Engineering,
Kyungpook National University

요 약

예술 교육에 대한 관심에 비해 공감각 융합 플랫폼이 부족하다. 이에 본 연구에선 감각교육 발전을 위해 그림의 분위기에 따라 음악을 생성하는 플랫폼을 개발하고자 한다. 공감각에 대한 많은 연구에서 그림과 음악의 연관성을 찾을 수 있고, 이 점을 이용해 공감각을 구현하는 각 요소를 대응해 음악을 생성하는 플랫폼을 제안한다. 제안한 플랫폼을 통해 공감각을 지원하는 융합의 새로운 패러다임을 제시하고, 새로운 융합 기술을 기대한다.

1. 서론

오늘날 컴퓨터로 감정으로 표현하는 것이 중요하게 되었다.[1] 특히 공감각의 표현으로 인한 융합은 창의력 개발의 기회를 제공한다. 그러나 공감각에 대한 연구나 이를 이용한 교육은 활발히 이뤄지지 않고 있다[1].

본 연구에서는 그림 분위기를 분석해 음악을 생성하는 플랫폼 개발을 제안한다. 이 플랫폼은 그림에 나타난 색을 분석하여 그림에서 나타나는 분위기를 추론하여 음악을 생성한다. 기본 아이디어는 보편적인 작곡에서 쓰이는 코드진행과 화음의 개념을 도입한다. 또한 바실리 칸딘스키[2]의 색과 악기의 매칭 보다 많은 20가지로 확장하여 오케스트라와 유사한 느낌의 음악을 생성한다. 기술과 예술 새로운 교육 콘텐츠를 통해 감각 지능 로봇 개발 등 다양한 분야에 적용 할 수 있다.

이 논문은 2절에서 관련연구를 기술하고, 3절에서는 그림 분위기에 따라 음악을 생성하는 방법을, 4절에서는 구현된 결과를 보인다.

2. 관련연구

최근에는 단순히 색을 음과 악기로 대응시키는 것뿐만 아니라 그림을 이루는 요소들을 음으로 매핑 시켜 일련의 과정을 거친 뒤, 재생 가능한 음원을 생성하는 연구 또한

이루어지고 있다.[3]

한 연구[3]에서는 그림1과 같이 분석된 이미지의 가로방향의 HSI값들 중, 최댓값을 구한다.

그림1. HSI 컬러 히스토그램을 이용한 색-음 변환

HSI값은 이미지의 각각의 픽셀이 가지고 있는 RGB값을 다음과 같은 식(1)을 이용하여 변환된 색의 색상(Hue), 채 도(Saturation), 명도(Intensity) 값을 나타낸다.

$$H = \cos^{-1} \left[\frac{\frac{1}{2} [(R - G) + (R - G)]}{\sqrt{(R - G)^2 + (R - G)(G - B)}} \right]$$

$$S = 1 - \frac{3}{(R + G + B)} [\min(R, G, B)] \qquad (1)$$

$$I = \frac{(R + G + B)}{3}$$

$$(If B > G, H = 360^{\circ} - H)$$

이와 같이 변환된 값들을 그림2와 같이 색과 음을 이루는 각각의 요소들을 대응시켜 음을 정한다.

그림2. 컬러이미지와 음의 대응관계

그 후 그림3과 같이 이미지를 세로방향으로 읽으면서 순 차적으로 음을 생성한다.

그림3. 컬러 이미지로부터 생성된 음원의 피치값 분석

이 연구는 단순히 색을 음으로 변환하였을 뿐, 음악적인 요소가 배제되어 있다. 그러므로 변환 후의 결과물을 음악 이라 할 수 없다. 본 연구에서는 이러한 기존 연구의 부족 한 부분을 개선하고, 분위기를 지능적으로 추론하여 음악 을 생성하도록 한다.

3. 그림의 분위기에 맞는 음악을 생성하는 방법

아트 플랫폼의 구조는 아래 그림4와 같다. 크게 이미지 분석과 음악 생성의 두 기능으로 나뉜다.

그림4. 아트플랫폼 구조

음악을 생성하는 과정에는 대중음악 작곡에 보편적으로 사용되는 방법을 적용한다. 작곡 방법은 크게 3단계로 이 루어진다. 곡 전체의 분위기인 코드를 선택하고, 피아노로 연주하는 주 멜로디를 생성한다. 만든 멜로디에 맞춰 화성 을 생성해 연주할 다른 악기를 배치한다.

이 작곡 단계를 그림 분석의 각 단계와 대응시켜, 그림으로 음악 생성을 진행한다.

● 코드 선택

이미지의 폭(Width)과 높이(Height)의 픽셀의 크기로 n 의 값을 결정한 뒤, 픽셀 각각의 RGB값으로 식(2)와 같이 그림 전체의 평균 색 $C_m\left(R_m,G_m,B_m\right)$ 을 구한다.

$$R_m = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$G_m = \frac{1}{n} \sum_{i=1}^{n} G_i \quad \text{a.(2)}$$

$$B_m \equiv \frac{1}{n} \sum_{i=1}^{n} B_i$$

$$(n = W \times H)$$

결과로 구한 평균 색과 스크리아빈의 12음계에 해당되는 색 $C_i(R_i,G_i,B_i)$ 들과의 차이를 D라 하고, 다음 식(3)을 이용하여 구한다.

$$D_{i} = \overline{C_{m} C_{i}}$$

$$= \sqrt{(R_{m} - R_{i})^{2} + (G_{m} - G_{i})^{2} + (B_{m} - B_{i})^{2}}$$
 $\stackrel{\text{A}}{\sim} (3)$

이렇게 구한 12개의 D값들 중, 그 값이 최소가 되게 하는 색의 음계를 기본음으로 한다. 이는 그림의 분위기를 나타내는 평균 색과 음정을 대응 한 것으로, 스크리아빈의 색청 오르간 연구를 따른다[4]. 이후 정해진 근음으로 시작하는 코드진행 중 가장 대중적인 다이어토닉 코드진행을 적용하여 곡 전체의 코드진행을 결정한다.

● 멜로디 생성

멜로디 생성은 MIDI Art를 이용하여 음악 블록을 그림 형태로 배열해 곡을 만든다. 먼저 그림의 외곽선을 추출하 고 가로는 시간 축, 세로는 음의 높낮이 나타내는 축으로

2019년도 한국멀티미디어학회 춘계학술발표대회 논문집 제22권 1호

설정한다. 설정한 축 위로 외곽선을 따라 음을 나열하면 멜로디가 생성된다. 이후 음의 조화를 위해 위에서 설정한 코드진행을 이용해 세부적인 배열 순서를 조정한다.

● 화성 선택과 악기 배치

이미지의 평균 색을 곡의 '조'로 설정했다면, 부분의 색은 음색으로 설정한다. 먼저 음을 연주할 악기를 선택한다. 악기들을 데이터베이스에 저장해, 그림의 한 픽셀의 색깔을 추출하고 그에 대응하는 악기를 데이터베이스에서 선택한다. 이 후 선택한 악기, 코드 진행, 멜로디를 고려해화성을 선택한다.

각 방법을 종합하면 왼쪽에서 오른쪽으로, 그림의 평균 색과 형태, 그리고 부분의 색깔과 위치를 통해 하나의 오 케스트라 느낌을 내는 음악을 생성한다.

그림5. 아트 플랫폼 음악 생성 과정

본 연구의 아트플랫폼에서는 이미지에서 음악을 생성하는 기능 외에도 사용자가 그리는 그림과 실시간 동영상에서도 음악을 생성한다.

사용자가 그리는 그림은, 배경을 선택 후 그 위에 펜을 이용해 그림을 그린 다음 효과를 추가하여 완성한다. 이그림을 음악으로 변환하여 재생한다. 동영상은 일정한 시간 마다 이미지 추출하여, 그 이미지에 대한 음악을 재생한다. 음악이 끝날 때 쯤 이미지를 새로 추출하여 계속 음악을 재생한다.

4. 아트 플랫폼의 동작

이 플랫폼은 그림6과 같이 크게 시작 페이지(Start Page), 메인(Main), 서비스(Service1, Service2, Service3) 으로 동작한다.

기능은 입력하는 내용에 따라 세 유형으로 나뉘고, 메인에서 선택 한다.

● 서비스1

사용자가 인터페이스에서 사진 이미지를 선택한다. 이 후 선택한 이미지를 음악으로 변환하여 재생한다.

● 서비스2

사용자가 그릴 그림의 배경을 선택하고, 선택한 배경 위에 펜으로 그림을 그리고 효과를 추가한다. 완성된 그림을 음악으로 변화하여 재생한다.

● 서비스3

사용자가 동영상을 선택한다. 그 후 선택한 동영상을 음악으로 변환하여 재생한다.

그림6. 아트 플랫폼의 동작

음악 재생이 끝나면 생성한 음악을 사용자의 컴퓨터에 저장 할 수 있으며. 서비스를 다시 실행할 수 있다.

그림7 (a)는 개발한 플랫폼을 활용해 음악을 생성하는 결과이며, 그림7 (b)는 전시 장면이다. 사용자가 이미지를 입력한다. 이 이미지의 평균 색을 판단하고 코드 진행을 설정한다. 이 후 필터를 이용해 외곽선을 추출한다. 가로를 시간, 세로를 음의 높이로 하는 좌표평면 위 외곽선의

2019년도 한국멀티미디어학회 춘계학술발표대회 논문집 제22권 1호

좌표를 구한다. 이를 종합해 메인 멜로디를 생성한다. 추후 멜로디에 맞는 악기 설정을 진행할 예정이다.

그림7.(a) 아트 플랫폼 결과

그림7.(b) 아트 플랫폼 전시 장면

5. 결론

본 논문에서는 공감각의 특징을 활용할 수 있는 아트 플랫폼을 제안하고 개발했다. 이를 위해 이미지에서 표현되는 점의 위치와 색을 좌표와 RGB값으로 나타낸다. 그리고 이것들을 소리의 높낮이, 음색 등으로 대응시켜 상호변환시키는 알고리즘으로 구현하였다. 또한 기존 색-음변환 연구에서 확장하여 코드나 화성 등의 음악적 요소를추가하였으며, 다양한 매체로부터의 변환을 가능하게 했다. 이 연구는 기존과 달리 음이 아닌 음악이 출력되기 때문에 감각과 지능개발에 도움을 줄 수 있다. 향후 시각과청각 외에도 다양한 공감각을 활용한 아트플랫폼 개발을진행할 예정이다.

사사

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2015-0-00912)

참고문헌

- [1] 유하양, "공감각적 음악(Synesthetic Music)의 음악 교육적 활용 가능성 모색," 서울대학교 대학원 음악교육전 공 교육학석사학위논문, 2015.
- [2] W. Kandinsky, 예술에서의 정신적인 것에 대하여, 권영필(역), 열화당, 2000.
- [3] 김성일, 정진승, "컬러이미지-소리 변환 시스템에 관한 기초 연구," 한국지능시스템학회 논문지, 제20권, 2호, 2010.
- [4] 고수진, "음(Pitch)과 음정(Interval)에 따른 색청 (Color-Hearing)연구," 한국 디지털 미디어 학회, 2003.