The Dancing Screen

Independent Study Mary Karroqe

Overview

- Project Description
- Original Approach
- Final Approach
- Data + Pre-Processing

- RNN
- Results
- Future Work

Project Description

The Problem

- My computer doesn't dance
- I wanted to have fun with my senior design project
- Not saving the world here

"Monster Dancing Sticker" via $\frac{\text{Giphy}}{\text{Constant}}$

The Project

Can I teach my computer to generate dance videos?

Applications

- Quarantine Dance Parties
- Looking cool in front of the children in your life
- Joy

"DISCO FEVER" Fortnite Dance

Applications

- Observing how the model breaks down dance moves
- Potential for dance instructors?
- Kids toys?

Problems with this Approach

- The decision to start with genre recognition was arbitrarily chosen
- My genre recognition predictions from last semester were only slightly more accurate than random

- Convoluted pipeline; many aspects would be hard-coded
- Limiting the output would result in boring output
- Learning Unity + connecting to CNN output

Final Approach

Final Approach

Final Approach

Data + Pre-Processing

Input Data Options

Green Screen Silhouettes, YouTube playlist

"Shadow Dancers", YouTube video

Tik Tok videos filtered by hashtags of dance challenges

Data

- 51:52 Compilation Video
- 146 different dances
- Extracting 1 frame every 2 seconds
- 93,360 total images

Autoencoder

What are Autoencoders?

- Data compression algorithm
- Learned automatically from examples, usually with neural networks
- Data-specific
- Lossy
- Useful for dimensionality reduction

From Keras Blog

Encoder

- Used to compress original images (1,032 x 950) into (128) vectors, losing as little information as possible
- Create dense representation to be fed into RNN

Decoder

- Used to expand original (128) vectors into (1,032 x 950) images, reconstructing as much information as possible
- "Translate" RNN's output

Version 1: Simple

- Single fully-connected layer
- As both encoder and decoder
- Image converted to greyscale
 - Single color channel

(703, 950, 1032)

(50, 950, 1032)

(703, 980400) (50, 980400)


```
Epoch 138/150
Epoch 139/150
Epoch 140/150
Epoch 141/150
Epoch 142/150
Epoch 143/150
Epoch 144/150
Epoch 145/150
Epoch 146/150
Epoch 147/150
Epoch 148/150
Epoch 149/150
Epoch 150/150
<keras.callbacks.callbacks.History at 0x7f74b7daec50>
```

Mod 1:

- Realized my compression factor was off (~3%)
- Fixed it to be 24.5%
- ResourceExhaustedError:

- It was able to handle encoding_dim = 512
- 19.14% compression
- Compiled, but while training:

```
ResourceExhaustedError: 00M when
[[node gradients_4/loss_9]
Hint: If you want to see a list of
[0p:__inference_keras_scratch_grader]
Function call stack:
keras_scratch_graph
```

Mod 2:

- Resize images before feeding converting into np arrays
- 5% of original
- (703, 47, 51)

```
Previously:
(703, 950, 1032)
(703, 980400)
(50, 980400)
```


250 epochs

Mod 3:

- Time spent training clearly *not* the issue
- Changing the optimizer from rms_prop to adadelta
- 50 epochs

Mod 2 and Mod 3 Comparison

- Mod 2 more noisy
- Mod 3 has lightness in center where character should be

Version 2: Sparsity Constraint

- In V1, reps constrained only by size of hidden layer
- Learns approx of PCA
- Adding sparsity constraint

Layer (type)	Output	Shape	Param #
input_6 (InputLayer)	(None,	2397)	0
dense_13 (Dense)	(None,	64)	153472
dense_14 (Dense)	(None,	2397)	155805
Total params: 309,277 Trainable params: 309,277 Non-trainable params: 0			

50 epochs

100 epochs

Version 3: Deep Encoder

Hypothesis: more layers == more learning?

Layer (type)	Output	Shape	Param # 0	
input_1 (InputLayer)	(None,	2397)		
dense_1 (Dense)	(None,	512)	1227776	
dense_2 (Dense)	(None,	128)	65664 8256 2080 2112	
dense_3 (Dense)	(None,	64)		
dense_4 (Dense)	(None,	32)		
dense_5 (Dense)	(None,	64)		
dense_6 (Dense)	(None,	128)	8320	
dense_7 (Dense)	(None,	512)	66048	
dense_8 (Dense)	(None,	2397)	1229661	

100 epochs

Version 4: Convolutional

Convolutional neural
 networks are pretty much
 standard when it comes to
 training on images, so it's
 application here makes
 sense

Layer (type)	Output	Shap	pe		Param #
input_10 (InputLayer)	(None,	47,	51,	1)	0
conv2d_7 (Conv2D)	(None,	47,	51,	16)	160
conv2d_8 (Conv2D)	(None,	47,	51,	8)	1160
conv2d_9 (Conv2D)	(None,	47,	51,	8)	584
max_pooling2d_1 (MaxPooling2	(None,	24,	26,	8)	0
conv2d_10 (Conv2D)	(None,	24,	26,	8)	584
conv2d_11 (Conv2D)	(None,	24,	26,	8)	584
conv2d_12 (Conv2D)	(None,	22,	24,	16)	1168
conv2d_13 (Conv2D)	(None,	22,	24,	1)	145
Total params: 4,385 Trainable params: 4,385 Non-trainable params: 0		Andreise.			

Autoencoder Results

- Not a massive difference between different versions
- Wondering if there's

RNN

Why RNN?

- Feedforward networks have no memory
- To process a sequence, the network has to see it all as once
 - Turning sequence into single data point
- A dance is a sequence
 - o Of moves, of frames
- A recurrent neural network processes sequences by iterating through the sequence elements and maintaining a state containing information relative to what it has seen so far

RNN

- Modifying Andrej Karpathy's RNN
 - Shakespeare creator
 - One-hot encoded characters
 - Input: 95-D vector representing 95 possible chars
 - How can I do this with images? —> binary images (two colors)
 - How can I pass in a

RNN

- Compressing them normally is not good enough
 - Ex: regular JPEG compression algorithm is general
- We can use an autoencoder

Future Work

Final Approach

Our Baseline:

Future Work

- Incorporating audio files into input
- Preprocessing work has been completed

Thank you!

The Dancing Screen

Independent Study Mary Karroqe