

CS023 – Algoritmia y Complejidad

Instrucciones: Resuelva los siguientes ejercicios de forma clara y ordenada, dejando constancia de todo su procedimiento.

1. Escriba un programa de computadora que determine la secuencia de *n* trabajos que proporcione el máximo beneficio. Las entradas de su programa son las listas de trabajos, plazos y ganancias (posiblemente en cualquier orden). Las salidas de su programa son la secuencia de trabajos junto con sus plazos y la ganancia obtenida.

Pruebe su programa con la información de la tabla:

Trabajos	T1	T2	T3	T4	T5	T6
Plazos	5	3	3	2	4	2
Ganancias	200	180	190	300	120	100

Responda las siguientes preguntas:

- a. ¿Se completan todos los trabajos en el cronograma óptimo?
- b. ¿Cuál es la ganancia máxima obtenida?
- c. ¿Cuál es la complejidad de su algoritmo?
- 2. Escriba un programa de computadora que determine el patrón óptimo de combinación de un conjunto de *n* listas, cada una de (posiblemente) diferente longitud. Las entradas de su programa son los identificadores de las listas y sus respectivas cantidades de datos. Las salidas son la secuencia de combinación junto con la cantidad de operaciones realizadas.

Pruebe su programa con la información de la tabla:

Lista	a	b	С	d	е	f
Datos	40	10	20	15	25	30

- o **Fecha de entrega**: miércoles 28 de octubre.
- o Subir el código de ambas funciones en PDF a MiU.
- o Recuerde poner su nombre en el archivo.