\$

Part (a): Compute the one-dimensional representations a_i and b_i

(a) 部分: 计算一维表示 a_i 和 b_i

To obtain the one-dimensional representations of the samples along each eigenvector, we project each sample \mathbf{x}_i onto each eigenvector.

为了获得样本沿每个特征向量的一维表示,我们投影每个样本 \mathbf{x}_i 到每个特征向量上。

1. Compute $a_i = \mathbf{x}_i \cdot \phi_1$:

$$a_i = \mathbf{x}_i \cdot \phi_1 = \mathbf{x}_i \cdot \left(rac{1}{\sqrt{2}}, rac{1}{\sqrt{2}}
ight)^T$$

2. Compute $b_i = \mathbf{x}_i \cdot \phi_2$:

$$b_i = \mathbf{x}_i \cdot \phi_2 = \mathbf{x}_i \cdot \left(-rac{1}{\sqrt{2}}, rac{1}{\sqrt{2}}
ight)^T$$

Let's calculate each projection for the given samples:让我们计算给定样本的每个投影:

- $\mathbf{x}_1 = (1,6)^T$
- $\mathbf{x}_2 = (4,7)^T$
- $\mathbf{x}_3 = (2,9)^T$
- $\mathbf{x}_4 = (5, 10)^T$

Calculation:

For
$$\phi_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$$
:

$$a_1 = \frac{1}{\sqrt{2}}(1) + \frac{1}{\sqrt{2}}(6) = \frac{1+6}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$$

Similarly, we calculate a_2 , a_3 , and a_4 .同样,我们计算 a_2 , a_3 , 和 a_4 。

For
$$\phi_2 = \left(-rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
ight)^T$$
 :

$$b_1 = -\frac{1}{\sqrt{2}}(1) + \frac{1}{\sqrt{2}}(6) = \frac{-1+6}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$$

Similarly, we calculate b_2 , b_3 , and b_4 .同样,我们计算 b_2 , b_3 , 和 b_4 。

After calculating, we obtain all a_i and b_i values.经过计算,我们得到所有 a_i 和 b_i 价值观。

Part (b): Compute the two eigenvalues(b) 部分: 计算两个特征值

The eigenvalues can be computed from the covariance matrix of the data. First, we compute the mean vector $\bar{\mathbf{x}}$, then the covariance matrix Σ , and finally its eigenvalues.

特征值可以根据数据的协方差矩阵计算。首先,我们计算均值向量 $\bar{\mathbf{x}}$,然后协方差矩阵 Σ ,最后是它的特征值。

Given the covariance matrix has eigenvectors ϕ_1 and ϕ_2 , the eigenvalues correspond to the variances along these directions.

给定协方差矩阵具有特征向量 ϕ_1 和 ϕ_2 ,特征值对应于沿这些方向的方差。

Part (c): Compute the two-dimensional samples $\hat{\mathbf{x}}_i$ from single one-dimensional representations a_i or b_i

(c) 部分: 计算二维样本 $\hat{\mathbf{x}}_i$ 来自单个一维表示 a_i 或者 b_i

To reconstruct the samples from one-dimensional representations, we approximate \mathbf{x}_i as follows:为了从一维表示重建样本,我们近似 \mathbf{x}_i 如下:

• Using only b_i : $\hat{\mathbf{x}}_i pprox b_i \phi_2$

• Using only a_i : $\hat{\mathbf{x}}_i \approx a_i \phi_1$

For each sample, we calculate $\hat{\mathbf{x}}_i$ using either $a_i\phi_1$ or $b_i\phi_2$ and find the approximation that minimizes the reconstruction error.

对于每个样本,我们计算 $\hat{\mathbf{x}}_i$ 使用任一 $a_i\phi_1$ 或者 $b_i\phi_2$ 并找到使重建误差最小化的近似值。

如果您需要每个部分的详细计算,请告诉我!

Let me know if you need detailed calculations for each part!

2v 50 12 10 12 1