DATA MINING & ANALYTICS (2023)

Make sure you fill in any place that says YOUR CODE HERE or YOUR ANSWER HERE, as well as your name below:

NAME = "Jeonghyun Lee"

Lab 2: Clustering

Please read the following instructions very carefully.

About the Dataset

The dataset for this lab has been created from some custom features from Lab 1. The columns are named as q1, q2....etc. A description of the features can be found at this link: https://docs.google.com/spreadsheets/d/18wwyjGku2HYfgDX9Vez64IGHz31E_PfbpmAdfb7ly6M/edit?usp=sharing

Working on the assignment / FAQs

- Always use the seed/random_state as 42 wherever applicable (This is to ensure repeatability in answers, across students and coding environments).
 - This can typically look like taking in another argument random_state = 42 when applicable.
- · The points allotted per question is listed.
- To avoid any ambiguity, each question also specifies what value the function must return. Note that these are dummy values and not the
 answers themselves.
- · If a question has multiple answers (due to differences in handling NaNs, zeros etc.), all answers will be considered.
- · Most assignments have bonus questions for extra credit, do try them out!
- You can delete the raise NotImplementedError() when you are attempting the question.
- **Submitting the assignment**: Save your work as a PDF (Print -> Save as PDF), download the .ipynb file from Colab (Download -> Download as .ipynb), and upload these two files to Gradescope. **Run all cells before submitting.**
- MAKE A COPY OF THIS FILE FOR YOURSELF TO EDIT/SAVE.
- · That's about it. Happy coding!

a8

```
import pandas as pd
import collections
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
from sklearn.preprocessing import normalize
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
matplotlib.style.use('ggplot')
#DOWNLOADING DATASET
!wget -nc http://quadro.ist.berkeley.edu:1331/yelp_reviewers.csv
#!unzip -u yelp_reviewers.zip
print('Dataset Downloaded: yelp_reviewers.csv')
df = pd.read_csv('yelp_reviewers.csv', delimiter=',')
df = df.sample(frac=0.3, random_state=42)
print(df.dropna().describe())
print('....SETUP COMPLETE....')
     File 'yelp_reviewers.csv' already there: not retrieving.
     Dataset Downloaded: yelp_reviewers.csv
    q3 q4 q5 q6 q7 \mbox{$W$} count 7177.000000 7177.000000 7177.000000 7177.000000
                                             q7 ₩
     mean
                       5.281455
             6.838651
                                  4.750871
                                             8.808973
                                                        1539160
     std
           7.597977 16.208703 13.866352
                                            19.980443
                                                        0.885421
           1.000000
                      1.000000
                                  1.000000
                                             1.000000
                                                        0.000000
     min
     25%
            3.000000
                       1.000000
                                   1.000000
                                              2.000000
                                                         1.100000
     50%
            5.000000
                       2.000000
                                   2.000000
                                               5.000000
                                                          1.610000
     75%
            9.000000
                       4.000000
                                   4.000000
                                              9.000000
                                                          2.200000
           252.000000 607.000000 474.000000 773.000000 5.530000
     max
```

a10

q11

a12 ... ₩

```
count 7177.000000 7177.000000 7177.000000 7177.000000 ...
     mean
    std
            0.000000 0.000000
                            2.900000
    0.000000
                                   1.410000
min
25%
     0.000000
            0.000000
                    0.690000 20.000000
                                   16.670000 ...
                   1.610000 25.710000 25.000000 ...
50%
     0.690000
            0.690000
75%
     1.390000
            1.390000 2.200000 33.330000 33.330000 ...
     6.410000 6.160000 6.650000 77.780000 75.000000 ...
max
```

q16u q16v q16w q16x ₩ count 7177.000000 7177.000000 7177.000000 7177.000000 3.641912 0.462843 22.503414 25.665180 0.003744 mean std min 0.000000 10.000000 9.000000 0.333333 21.000000 18.000000 25% 3.000000 0.000491 50% 4 000000 0.001967 75% 5.000000 0.666667 33.000000 33.000000 0.004666 max 5.000000 6.000000 53.000000 868.000000 0.150618

q16y q16z q16aa q16ab q16ac count 7177.000000 7177.000000 7177.000000 7177.000000 74.046169 0.675212 0.552041 1.127751 3.649254 mean 50.031941 1.503059 2.042566 4.652206 0.977100 std 1.333333 0.000000 0.000000 0.000000 1.000000 min 39.666667 0.000000 0.000000 0.000000 3.200000 25% 62.900000 0.000000 0.000000 0.500000 3.777778 95.687500 1.000000 0.000000 1.307692 4.333333 50% 75% 507.200000 44.000000 106.000000 342.300000 5.000000

[8 rows x 40 columns]SETUP COMPLETE....

df.head().T

12/10/23, 5:56 PM		DMA23_Lab_2_	Clustering_Makeup.ipynb - Colaboratory
qıз	INGIN	INGIN	
q14	7	10	
q15	510.0	132.0	
q16a	0	0	
q16b	0.0	0.0	
q16c	0.0	0.0	
q16d	3.0	1.0	
q16e	0.013725	0.045455	С
q16f	0.0	0.0	
q16g	0	1	
q16h	0	1	
q16i	0	0	
q16j	0.0	0.0	
q16k	0	0	
	-	-	

Question 1 (1 point)

What is the best choice of k according to the silhouette metric for clustering q4-q6? Only consider 2 <= k <= 8. (hint: take a look at silhouette_score).

NOTE: For features with high variance, empty clusters can occur. There are several ways of dealing with empty clusters. A common approach is to drop empty clusters. The preferred approach for this lab is to treat the empty clusters as "singletons", leaving them empty with single point placeholders (so no need to drop anything for the purposes of the lab).

```
#Make sure you return the answer value in this function.
#The return value should be an integer.
def q1(df):
 # YOUR CODE HERE
 q4_q6 = df[['q4', 'q5', 'q6']]
 best_score = -1
 for i in range (2, 9):
 kmeans = KMeans(n_clusters=i, n_init = 10, random_state=42)
  cluster = kmeans.fit(q4_q6)
  score = silhouette_score(q4_q6, cluster.labels_)
  if score > best_score:
   best_score = score
   k = i
 return k
 # For KMeans use argument n_init = 10 when applicable.
 raise NotImplementedError()
print(q1(df))
     2
What is the best choice of k?
# YOUR ANSWER HERE
     2
```

Question 2 (1 point)

What is the best choice of k according to the silhouette metric for clustering q7-q10? Only consider 2 <= k <= 8.

Note: Keep in mind, there may be missing values in this part of the dataset! For these missing values, first find the subset of data specified for this question (q7-q10), then replace the missing values with 0. We do this since the missing values from q7-q10 are most commonly because of taking the log's of values of 0 from q3-q6.

```
#Make sure you return the answer value in this function.
#The return value should be an integer.
def q2(df):
 # YOUR CODE HERE
 q7_q10 = df[['q7', 'q8', 'q9', 'q10']].fillna(0)
 best_score = -1
 for i in range (2, 9):
 kmeans = KMeans(n_clusters=i, n_init = 10, random_state=42)
  cluster = kmeans.fit(q7_q10)
  score = silhouette_score(q7_q10, cluster.labels_)
  if score > best_score:
   best_score = score
   k = i
 return k
 # For KMeans use argument n_init = 10 when applicable.
 raise NotImplementedError()
print(q2(df))
     2
What is the best choice of k?
# YOUR ANSWER HERE
2
     2
```

Question 3 (1 point)

What is the best choice of k according to the silhouette metric for clustering q11-q13? Only consider 2 <= k <= 8.

Note: Keep in mind, there may be missing values in this part of the dataset! For these missing values, first find the subset of data specified for this question (q11-q13), then drop rows that have missing values.

```
#Make sure you return the answer value in this function.
#The return value should be an integer.
def q3(df):
 # YOUR CODE HERE
 q11_q13 = df[['q11', 'q12', 'q13']].dropna()
 best_score = -1
 for i in range (2, 9):
 kmeans = KMeans(n_clusters=i, n_init = 10, random_state=42)
  cluster = kmeans.fit(q11_q13)
  score = silhouette_score(q11_q13, cluster.labels_)
  if score > best_score:
   best_score = score
   k = i
 return k
 # For KMeans use argument n_init = 10 when applicable.
 raise NotImplementedError()
print(q3(df))
     8
What is the best choice of k?
# YOUR ANSWER HERE
     8
```

Question 4 (1 point)

Take the best clustering (i.e., best value of K) from Question 3 and using the same subset of data from q11-q13, list the number of data points in each cluster. Return your answer in dictionary form (i.e. ans = {0: 100, 1: 200, ...}).

from typing import Counter

#Make sure you return the answer value in this function.
#The return value should be an dictionary. Eg: {0:1000,1:500,2:1460}.
def q4(df):

YOUR CODE HERE q11_q13 = df[['q11', 'q12', 'q13']].dropna()

kmeans = KMeans(n_clusters = 8, n_init = 10, random_state=42) cluster = kmeans.fit(q11_q13)

cluster_dict = dict(Counter(sorted(cluster.labels_)))

return cluster_dict

For KMeans use argument n_init = 10 when applicable. raise NotImplementedError()

#This is an graded cell, do not edit print(q4(df))

{0: 9831, 1: 2140, 2: 1632, 3: 1228, 4: 3037, 5: 3216, 6: 5724, 7: 3301}

→ Question 5 (1 point)

Consider the best clustering from Question 3. Were there clusters that represented very funny but useless reviewers (check column definitions for columns corresponding to funny, useless, etc.)? If so, print the center of that cluster.

#Make sure you return the answer value in this function. #The return value should be a list. Eg: [10, 30, 54]. def q5(df):

YOUR CODE HERE
drop_df = df[["q11","q12","q13"]].dropna()
km = KMeans(n_clusters=8, random_state=42)
km.fit(drop_df)
centers=km.cluster_centers_
return centers[np.argmax(centers[:,1])]
For KMeans use argument n_init = 10 when applicable.
raise NotImplementedError()

#This is a graded cell, do not edit print(np.round_(q5(df), decimals=1, out=None))

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(
[1.1 98.3 0.6]

Question 6 (1 point)

Consider the best clustering from Question 3. What was the centroid of the cluster that represented relatively uniform strength in all voting categories?

```
#Make sure you return the answer value in this function.
#The return value should be a centroid in list form. Eg: [10, 10.5, 13].
def q6(df):
 # YOUR CODE HERE
q11_q13 = df[['q11', 'q12', 'q13']].dropna()
 kmeans = KMeans(n_clusters=8, n_init=10, random_state=42)
kmeans.fit(q11_q13)
center = kmeans.cluster_centers_
output = None
best_score = float('inf')
 for i in center:
 cool = i[0]
  funnv = i[1]
  useful = i[2]
  cluster_dist = max( abs(cool-funny), abs(funny - useful), abs(cool - useful))
  if cluster_dist < best_score:
  best_score = cluster_dist
   output = i
 return output.tolist()
# For KMeans use argument n_init = 10 when applicable.
 raise NotImplementedError()
#This is a graded cell, do not edit
print(q6(df))
     [31.45574099965031, 30.37879937084976, 38.16278049632923]
```

Question 7 (1 point)

Cluster the dataset using k = 7 and using features q7-q15 (refer to the column descriptions if needed). What is the silhouette metric for this clustering? For a more in-depth understanding of cluster analysis with silhouette, look <u>here</u>.

As before, fill NaN values in q7-q10 with 0, but drop rows that have NaN values from q11-q15.

#The return value should be a float.

def q7(df):

YOUR CODE HERE

new_df = df[['q7','q8','q9','q10','q11','q12','q13','q14','q15']].dropna()

km = KMeans(n_clusters=5, random_state=42)

km.fit(new_df)

return silhouette_score(new_df, km.labels_)

For KMeans use argument n_init = 10 when applicable.

raise NotImplementedError()

#Make sure you return the answer value in this function.

#This is a graded cell, do not edit print(q7(df))

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(0.5481158706623568

Question 8 (1 point)

Cluster the dataset using k = 7 and using features q7-q15 (refer to the column descriptions if needed).

What is the average q3 value in each of the clusters? Replace/fill NaN values for q7-q15 as you have done for previous guestions.

```
#Make sure you return the answer value in this function.
#The return value should be an Array. Eg: [10, 30, 54].
def q8(df):
 # YOUR CODE HERE
 q7_q15 = df[['q7', 'q8', 'q9', 'q10', 'q11', 'q12', 'q12', 'q13', 'q14', 'q15']].dropna()
 kmeans = KMeans(n_clusters = 7, n_init=10, random_state=42)
 cluster = kmeans.fit(q7_q15)
 q7_q15['label'] = cluster.labels_
 q7_q15['q3 value'] = np.exp(q7_q15['q7'])
 mean = q7_q15.groupby('label')['q3 value'].mean().to_numpy()
 return mean
 # For KMeans use argument n_init = 10 when applicable.
 raise NotImplementedError()
#This is a graded cell, do not edit
print(np.round_(q8(df), decimals=1, out=None))
     [7.2 4.1 7.1 7.4 5.6 6.3 1.6]
```

Question 9 (2 points)

We will now cluster the dataset using all features in the dataset.

We can drop features with high incidents of -inf / NoN / blank values. We will also perform some form of normalization on these features so as not to over bias the clustering towards the larger magnitude features.

Let's go ahead and get started.

→ Data Cleansing and Normalization

Check how many null values there are in each column.

YOUR CODE HERE df.isna().sum()

⊟	user_id	0 k
_	q3	0
	q <u>4</u>	0
	q5	0
	q6 q7	0
	q7 q8	35280
	q9	36743
	q10	24338
	q11	21383
	q12	21383 21383
	q13 q14	0
	q15	Ö
	q16a	0
	q16b	0
	q16c	0
	q16d q16e	0
	q16f	o
	q16g	0
	q16h	0
	q16i	0
	q16j q16k	0
	q16l	0
	q16m	0
	q16n	0
	q160	0
	q16p q16q	0
	q16q q16r	o
	q16s	0
	q16t	0
	q16u	0
	q16v q16w	0
	q16w q16x	o
	q16y	0
	q16z	0
	q16aa	0
	q16ab	14469

q16ac 0 dtype: int64

It looks like q8 - q13 and q16ab have a lot of null values. Let's see what the impact is of removing the two columns with the most null values.

Drop the two columns with the most NaN values, and then remove all rows with NaN values remaining.

YOUR CODE HERE

null_count = df.isnull().sum()

drop_column = null_count.nlargest(2).index

remove_two_column = df.drop(columns=drop_column).dropna()

remove_two_column

	user_id	q3	q4	q5	q6	q7	q10	q11	q12	q13	 q16t	q16u	q16v	q16w	q1
47453	Gd_IGX3BmRYbPD84ovLEoA	8	2	1	8	2.08	2.08	18.18	9.09	72.73	 no	0.375000	8	39	0.0017
53000	lhx1EQHDTloXM35Cc08r2Q	2	1	1	2	0.69	0.69	25.00	25.00	50.00	 no	1.000000	22	6	0.0000
64580	N22hkNXzJdz_v_KocOy6vA	1	0	0	1	0.00	0.00	0.00	0.00	100.00	 no	1.000000	37	5	0.0004
84662	UZ2TflixHLqkCL9G6ykCNw	5	0	0	4	1.61	1.39	0.00	0.00	100.00	 no	1.400000	14	18	0.0015
50079	HcL7R7ingTW8nenpD3X2cg	8	8	5	13	2.08	2.56	30.77	19.23	50.00	 no	0.500000	3	30	0.0098
•••											 				
3090	09cpNEc8L-jr9R8-e7cJuA	6	1	2	2	1.79	0.69	20.00	40.00	40.00	 no	1.166667	10	16	0.0012
69511	OrtDTPj1J2injmWcHyTyWw	3	1	2	8	1.10	2.08	9.09	18.18	72.73	 no	0.666667	25	13	0.0030
77193	RjjsMfDoxbwMVPi-DLvftQ	19	2	2	7	2.94	1.95	18.18	18.18	63.64	 yes	0.315789	12	62	0.0188
88687	W21PBCWu59Bo5LRv9- sYNg	8	0	1	5	2.08	1.61	0.00	16.67	83.33	 no	0.250000	34	31	0.0000
107905	cD9d9XFoC_bETPzjpnRj9g	9	14	11	15	2.20	2.71	35.00	27.50	37.50	 no	0.55556	28	35	0.0045
	47														

19582 rows × 41 columns

By removing two features, we have effectively doubled the number of rows remaining than if we just removed all rows with a NaN value. That's pretty good.

Now, let's preprocess categorical variables into dummy variables. (hint: look at pd.get_dummies).

YOUR CODE HERE

remove_two_column['q16t_yes'] = pd.get_dummies(remove_two_column, columns = ['q16t'], drop_first = True)['q16t_yes'] remove_two_column['q16s_freshman'] = pd.get_dummies(remove_two_column, columns = ['q16s'], drop_first = True)['q16s_freshman'] remove_two_column = remove_two_column.drop(columns=['q16t', 'q16s', 'user_id']) remove_two_column

	q3	q4	q5	q6	q7	q10	q11	q12	q13	q14	 q16v	q16w	q16x	q16y	q16z	q16aa	q16ab	
47453	8	2	1	8	2.08	2.08	18.18	9.09	72.73	10	 8	39	0.001755	91.072917	4	0	1.000000	
53000	2	1	1	2	0.69	0.69	25.00	25.00	50.00	10	 22	6	0.000000	46.500000	0	3	0.000000	;
64580	1	0	0	1	0.00	0.00	0.00	0.00	100.00	5	 37	5	0.000498	197.000000	0	0	0.000000	ļ
84662	5	0	0	4	1.61	1.39	0.00	0.00	100.00	6	 14	18	0.001578	167.000000	1	0	1.250000	;
50079	8	8	5	13	2.08	2.56	30.77	19.23	50.00	9	 3	30	0.009861	91.552083	1	13	4.000000	
•••											 							
3090	6	1	2	2	1.79	0.69	20.00	40.00	40.00	9	 10	16	0.001286	362.916667	0	0	2.500000	
69511	3	1	2	8	1.10	2.08	9.09	18.18	72.73	9	 25	13	0.003016	60.111111	1	0	1.333333	
77193	19	2	2	7	2.94	1.95	18.18	18.18	63.64	11	 12	62	0.018841	41.166667	0	3	0.500000	
88687	8	0	1	5	2.08	1.61	0.00	16.67	83.33	8	 34	31	0.000000	36.041667	0	0	0.347826	
107905	9	14	11	15	2.20	2.71	35.00	27.50	37.50	8	 28	35	0.004566	62.851852	2	0	0.000000	

19582 rows × 40 columns

Now, normalize the remaining values.

YOUR CODE HERE
normalize_df = remove_two_column.copy()
for column in normalize_df.columns:
 if column == 'q16t_yes' or column == 'q16s_freshman':
 continue
 normalize_df[column] = normalize_df[column] / normalize_df[column].abs().max()
normalize_df

	q3	q4	q5	q6	q7	q10	qll	q12	q13	q14	 q16v	
47453	0.031746	0.003295	0.002110	0.010349	0.376130	0.312782	0.194793	0.102261	0.7273	0.909091	 0.150943	0
53000	0.007937	0.001647	0.002110	0.002587	0.124774	0.103759	0.267867	0.281246	0.5000	0.909091	 0.415094	0
64580	0.003968	0.000000	0.000000	0.001294	0.000000	0.000000	0.000000	0.000000	1.0000	0.454545	 0.698113	0.
84662	0.019841	0.000000	0.000000	0.005175	0.291139	0.209023	0.000000	0.000000	1.0000	0.545455	 0.264151	Ο.
50079	0.031746	0.013180	0.010549	0.016818	0.376130	0.384962	0.329690	0.216335	0.5000	0.818182	 0.056604	0.

3090	0.023810	0.001647	0.004219	0.002587	0.323689	0.103759	0.214293	0.449994	0.4000	0.818182	 0.188679	0
69511	0.011905	0.001647	0.004219	0.010349	0.198915	0.312782	0.097396	0.204522	0.7273	0.818182	 0.471698	0
77193	0.075397	0.003295	0.004219	0.009056	0.531646	0.293233	0.194793	0.204522	0.6364	1.000000	 0.226415	0
88687	0.031746	0.000000	0.002110	0.006468	0.376130	0.242105	0.000000	0.187535	0.8333	0.727273	 0.641509	0
107905	0.035714	0.023064	0.023207	0.019405	0.397830	0.407519	0.375013	0.309371	0.3750	0.727273	 0.528302	0.

19582 rows × 40 columns

Using the the "sum of squared errors" metric along with the elbow method (make a graph and visually examine for the elbow), what is the best k to use for this dataset? (Hint: look at the inertia_ attribute for k-means in sklearn).

The return value should be a graph to visualize the elbow method and the value of k determined from that graph.

YOUR CODE HERE
ssd = []
for i in range(1,11):
 km = KMeans(n_clusters = i,n_init=10, random_state=42)
 km.fit_predict(normalize_df)
 ssd.append(km.inertia_)

plt.plot(range(1,11),ssd) plt.xlabel('# of Clusters') plt.title("Elbow Method")

For KMeans use argument n_init = 10 when applicable.

Text(0.5, 1.0, 'Elbow Method')

Answer: The Best K value is 3

Question 10 (1 points)

For this question, please come up with your own question about this dataset and using a clustering technique as part of your method of answering it. Describe the question you propose and how clustering can answer that question. Feel free to use additional cells if needed.

Question: What is the optimal number of clusters (k) to identify distinct groups based on a combination of high review ratings and a high ratio of helpful votes among all votes?

```
# YOUR CODE HERE
def find_optimal_k(df):
 best k = 2
  best_score = -1
  for i in range(2, 11):
    km = KMeans(n_clusters=i, random_state=42)
    labels = km.fit_predict(df)
    score = silhouette_score(df, labels)
    if score > best_score:
      best_score = score
      best k = i
  return best_k
# Assuming 'df' is the DataFrame with the relevant columns
df = df[['q11','q12','q13','q16x']].dropna()
optimal_k = find_optimal_k(df)
print(f"The optimal number of clusters is: {optimal_k}")
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

The optimal number of clusters is: 10

Written Answer

Answer: Using the KMeans clustering algorithm, we can analyze a dataset with columns q11, q12, q13, and q16x, which represent the ratio/percentages of different types of votes. By calculating the silhouette score for a range of cluster numbers (k) from 2 to 10, we can identify the best k value that maximizes cluster definition. This approach helps in discovering distinct groupings within the data based on the vote ratios, with the optimal k being the one with the highest silhouette score, indicating the clearest separation between clusters.

Bonus question (2 Points) - Reviewer overlap:

Now, let's take a look back at what we were doing last week, and use that in junction with what we've learned from above today.

For this bonus question, please:

- · Download last week's dataset
- · Aggregate cool, funny, and useful votes for each business id
- You may transform the aggregations (take %, log, or leave it as it is)
- Cluster this dataframe (you can choose k). Do you find any meaningful/interesting clusters?
- · Assign the cluster label to each business id
- Merge this with users to show what clusters the reviewers have reviewed.

You should be returning a dataframe with the following structure in the end:

Rows: user IDs as indices.

Columns: boolean columns describing if the user ID has a review for each of the labels determined from the K-Means clustering, a boolean column describing if the user ID has a review for all of the given labels, and a column composing of lists of cluster IDs that the given user ID has written reviews for.

YOUR CODE HERE