1. Import Library

```
In [51]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

2.Import Datasets

Out[52]:

	Date Time	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
0	01.01.2009 00:10:00	996.52	-8.02	265.40	-8.90	93.3	3.33	3.11	0.22	1.94	3.12	1307.75	1.03	1.75	152.3
1	01.01.2009 00:20:00	996.57	-8.41	265.01	-9.28	93.4	3.23	3.02	0.21	1.89	3.03	1309.80	0.72	1.50	136.1
2	01.01.2009 00:30:00	996.53	-8.51	264.91	-9.31	93.9	3.21	3.01	0.20	1.88	3.02	1310.24	0.19	0.63	171.6
3	01.01.2009 00:40:00	996.51	-8.31	265.12	-9.07	94.2	3.26	3.07	0.19	1.92	3.08	1309.19	0.34	0.50	198.0
4	01.01.2009 00:50:00	996.51	-8.27	265.15	-9.04	94.1	3.27	3.08	0.19	1.92	3.09	1309.00	0.32	0.63	214.3

3.Data Undestanding

```
In [53]: data=data[['Date Time','T (degC)']]
    data
```

Out[53]:

Date Time	T (degC)
01.01.2009 00:10:00	-8.02
01.01.2009 00:20:00	-8.41
01.01.2009 00:30:00	-8.51
01.01.2009 00:40:00	-8.31
01.01.2009 00:50:00	-8.27
31.12.2016 23:20:00	-4.05
31.12.2016 23:30:00	-3.35
31.12.2016 23:40:00	-3.16
31.12.2016 23:50:00	-4.23
01.01.2017 00:00:00	-4.82
	01.01.2009 00:10:00 01.01.2009 00:20:00 01.01.2009 00:30:00 01.01.2009 00:40:00 01.01.2009 00:50:00 31.12.2016 23:20:00 31.12.2016 23:40:00 31.12.2016 23:50:00

420551 rows × 2 columns

```
In [54]: data=data[5::6]
           data
Out[54]:
                           Date Time T (degC)
                5 01.01.2009 01:00:00
                                         -8.05
                11 01.01.2009 02:00:00
                                         -8.88
                17 01.01.2009 03:00:00
                                         -8.81
                23 01.01.2009 04:00:00
                                         -9.05
                29 01.01.2009 05:00:00
                                         -9.63
            420521 31.12.2016 19:10:00
                                          -0.98
           420527 31.12.2016 20:10:00
                                         -1.40
           420533 31.12.2016 21:10:00
                                         -2.75
           420539 31.12.2016 22:10:00
                                         -2.89
           420545 31.12.2016 23:10:00
                                         -3.93
In [55]: data['Date Time']=pd.to_datetime(data['Date Time'])
           data.head()
Out[55]:
                        Date Time T (degC)
             5 2009-01-01 01:00:00
                                      -8.05
            11 2009-01-01 02:00:00
                                      -8.88
           17 2009-01-01 03:00:00
                                      -8.81
           23 2009-01-01 04:00:00
                                     -9.05
           29 2009-01-01 05:00:00
                                      -9.63
In [56]: data.index=data['Date Time']
```

```
In [57]: del data['Date Time']
In [80]: data.head()
Out[80]:
```

T (degC)

Date Time	
2009-01-01 01:00:00	-8.05
2009-01-01 02:00:00	-8.88
2009-01-01 03:00:00	-8.81
2009-01-01 04:00:00	-9.05
2009-01-01 05:00:00	-9.63

3. Step 1 : Visualize your Time Series Data

```
In [59]: import matplotlib.pyplot as plt
data.plot()
plt.title('Jena Temmperature between 2009 - 2017', size = 15)
plt.show()
```



```
In [ ]:
```

```
In [82]: hourlydata=data
```

```
In [84]: | x,y=jena_temp_to_x_y(hourlydata)
 In [85]: x.shape,y.shape
 Out[85]: ((70086, 5, 1), (70086, 1))
          5. Model Building
          Training Data
In [102]: x_train=x[:60000]
          y_train=y[:60000]
          x_train.shape,y_train.shape
Out[102]: ((60000, 5, 1), (60000, 1))
          Test Data
 In [90]: x_test=x[65000:70000]
          y_test=y[65000:70000]
          x_test.shape,y_test.shape
Out[90]: ((5000, 5, 1), (5000, 1))
          3.Val data
 In [91]: x_val=x[60000:65000]
          y_val=y[60000:65000]
          x_val.shape,y_val.shape
 Out[91]: ((5000, 5, 1), (5000, 1))
```

6. Model Training

```
In [95]: from keras.models import Sequential
from keras.layers import Flatten,Dense,InputLayer,LSTM

In [98]: model=Sequential()
model.add(InputLayer(input_shape=(5,1)))
model.add(LSTM(units=64))
model.add(Dense(units=8,activation="relu"))
model.add(Dense(units=1,activation="linear"))
model.summary()
```

Model: "sequential_2"

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 64)	16896
dense_2 (Dense)	(None, 8)	520
dense_3 (Dense)	(None, 1)	9

Total params: 17,425 Trainable params: 17,425 Non-trainable params: 0

```
In [99]: model.compile(optimizer='adam',loss="mse")
```

```
In [100]: |model.fit(x,y,batch size=32,epochs=10,validation data=(x val,y val))
  Epoch 1/10
  Epoch 2/10
  Epoch 3/10
  Epoch 4/10
  Epoch 5/10
  Epoch 6/10
  Epoch 7/10
  Epoch 8/10
  Epoch 9/10
  Epoch 10/10
  Out[100]: <keras.callbacks.History at 0x273a5cb7fa0>
  1. For Train
In [104]: y train pred=model.predict(x train)
```

```
In [108]: train_output=pd.DataFrame({"actualo/p":y_train.flatten(),"predicto/p":y_train_pred.flatten()})
train_output
```

Out[108]:

	actualo/p	predicto/p
0	-9.67	-10.099517
1	-9.17	-9.894124
2	-8.10	-8.958533
3	-7.66	-7.395808
4	-7.04	-7.337616
59995	6.07	6.369117
59996	9.88	7.160706
59997	13.53	12.408278
59998	15.43	15.623963
59999	15.54	16.945244

60000 rows × 2 columns

```
In [110]: plt.plot(train_output['actualo/p'][50:100])
    plt.plot(train_output['predicto/p'][50:100])
```

Out[110]: [<matplotlib.lines.Line2D at 0x274420de6d0>]

2. For Validation

. . . ,

[16.921562], [15.879438],

[14.983412]], dtype=float32)

```
In [117]: val_output=pd.DataFrame({"actual_val":y_val.flatten(),"prediction_val":y_val_pred.flatten()})
val_output
```

Out[117]:

	actual_val	prediction_val
0	14.02	16.048946
1	13.67	13.458795
2	12.27	12.980708
3	11.19	11.349584
4	10.85	10.372636
4995	18.27	17.512848
4996	17.85	17.296803
4997	16.65	16.921562
4998	15.85	15.879438
4999	15.09	14.983412

5000 rows × 2 columns

```
In [118]: plt.plot(val_output['prediction_val'][50:100])
    plt.plot(val_output['actual_val'][50:100])
```

Out[118]: [<matplotlib.lines.Line2D at 0x27450141f70>]

3. For Test Data

[4.5498824], [4.6064568],

[4.8349695]], dtype=float32)

```
In [120]: | test_output=pd.DataFrame({"actual":y_test.flatten(),"prediction":y_test_pred.flatten()})
          test_output.head()
Out[120]:
              actual prediction
           0 13.99 14.312548
           1 13.46 13.188397
           2 12.93 12.898082
           3 12.43 12.497968
           4 12.17 12.105231
In [121]: plt.plot(test_output['prediction'][50:100])
          plt.plot(test_output['actual'][50:100])
Out[121]: [<matplotlib.lines.Line2D at 0x274685df1f0>]
            22
            20
```


That's the power of LSTMs and GRUs.