Due at the beginning of class on 5 March 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Mal23, Chapter 2].

- (1) Recall that the free spectrum functor $F_n: Top_* \to Sp$ can be described by $F_nK \simeq \Sigma^{-n}\Sigma^{\infty}K$ for any $n \in \mathbb{Z}$.
 - (a) When $n \ge 0$, prove that F_n is left adjoint to evaluation $ev_n : Sp \to Top_*$, where ev_n is the functor that takes the n-th space of a spectrum: $ev_n X = X_n$.
 - (b) Does F_n have a right adjoint when n < 0?
- (2) Consider the homotopy pushout/pullback square of spectra:

$$\begin{array}{ccc}
X & \xrightarrow{f} & B \\
\downarrow^{f'} & & \downarrow^{g'} \\
A & \xrightarrow{g} & Y.
\end{array}$$

Prove that there is a Mayer–Vietoris-type long exact sequence of spectra:

$$\cdots \to \pi_{n+1}Y \to \pi_nX \to \pi_nA \oplus \pi_nB \to \pi_nY \to \pi_{n-1}X \to \cdots$$

- (3) A spectrum X is called n-connected if $\pi_i X = 0$ for $i \le n$, or n-connective if $\pi_i X = 0$ for i < n. Let $X \to Y \to Z$ be a cofiber/fiber sequence of spectra.
 - (a) Prove that if X and Z are n-connected, then so is Y.
 - (b) What can you say about connectivity of Z if X and Y are n-connected? What can you say about connectivity of X if Y and Z are n-connected?
- (4) Prove that the following three conditions are equivalent:
 - (a) X is a *finite spectrum*, i.e. X is stably equivalent to a cellular spectrum with finitely many stable cells.
 - (b) X is stably equivalent to a free spectrum $F_k K \simeq \Sigma^{-k} \Sigma^{\infty} K$ for a finite cell complex K.
 - (c) X is bounded below and the direct sum of the homology groups $\bigoplus_k H_k(X; \mathbb{Z})$ is finitely generated as an abelian group.

REFERENCES

[Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.