Speech Features and Speaker Classification

CSC401/2511 - Natural Language Computing - Winter 2024

Contents

- Today we will
 - Define some common feature vectors for speech processing
 - Use them as input to a GMM-based speaker classification system
- All of this is part of A3

SPEECH FEATURES

Recall the spectrogram pipeline

Problems with spectrograms

- As input to speech systems, spectrograms are...
- Too big
 - The discrete signal is usually 16,000 samps/sec
 - 100 frames/sec x 400 samps/frame = 40,000 samps/sec!
- Too linear
 - Pitch perception is log-linear (recall Mels)
 - Lots of coefficients wasted on high frequencies
- Too entangled
 - Speaker and phoneme info is correlated

Filtering

- To reduce the size of the spectra, we filter it with filters from a filter bank
- Each filter is a signal whose spectrum $F_m \in \mathbb{R}^N$ picks out small a range (or **band**) of frequencies
- The bands of the M filters are overlapping and span the spectrum
- A **filter coefficient** is computed as the **log** of the dot product of the **magnitude** of the frame X_t and filter F_m spectra:

$$c_{t,m} = \log \sum_{n=1}^{N} |X_t|[n]|F_m|[n]$$

- If there are T frames, this gives us a real-valued feature matrix of size $T \times M$
 - M=40 is a lot smaller than 400!

The mel-scale filter bank

- The mel-scale triangular overlapping filter bank, or f-bank, is a popular choice
- The filter's vertices are arranged along the mel-scale
 - Ascending frequency = wider bands

The source-filter model

- ullet In vowels, the sound signal emitted from the glottis g is filtered by the vocal tract v
- The source-filter model of speech assumes |X[n]| = |G[n]||V[n]|
- |V| is responsible for the smooth shape (envelope)
- |G| is responsible for all the bumps (F0 harmonics)

The cepstrum

- We can get at |V| by computing the **cepstrum** \hat{x}
- The cepstrum is log|X| transformed by the inverse DFT
- Because $\log |X| = \log |G| + \log |V|$, and DFT⁻¹ is linear $\hat{x}[n] = \hat{g}[n] + \hat{v}[n]$
- $DFT^{-1} \approx DFT$, so \hat{x} is like the spectrum of $\log |X|$
- |V| is slower-moving than |G|, so $\hat{\mathbf{v}}[n]$ is higher for lower n (lower frequency of frequency)

UNIVERSITY OF TORONTO

Mel-Frequency Cepstral Coefficients

- MFCCs are the coefficients of the cepstrum of F-bank coefficients
- Altogether

- MFCCs are useful for models which can't handle speaker correlations themselves, like (diagonal) GMMs
- F-banks are better for those which can, like NNs

GAUSSIAN MIXTURES

Classifying speech sounds

 Speech sounds can cluster. This graph shows vowels, each in their own colour, according to the 1st two formants.

Classify speakers by cluster attributes

• Similarly, all of the speech produced by one **speaker** will cluster differently in the **Mel space** than speech from another speaker.

• We can ∴ decide if a given observation comes from one

speaker or another.

		Time, t			
		0	1		Т
MFCC	1				
	2				
	3				
	42				
Observation matrix					

Speaker classification

- Speaker classification: *n*. picking the most likely speaker among several speakers given only acoustics.
- Each speaker will produce speech according to different probability distributions.
 - We train a statistical model, given annotated data (mapping utterances to speakers).
 - We choose the speaker whose model gives the highest probability for an observation.

Fitting continuous distributions

 Since we are operating with continuous variables, we need to fit continuous probability functions to a discrete number of observations.

• If we assume the 1-dimensional data in **this histogram** is Normally distributed, we can fit a continuous Gaussian function simply in terms of the mean μ and variance σ^2 .

Univariate (1D) Gaussians

• Also known as **Normal** distributions, $N(\mu, \sigma)$

•
$$P(x; \mu, \sigma) = \frac{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}$$

- ullet The parameters we can modify are $oldsymbol{ heta}=\langle \mu, \sigma^2
 angle$
 - $\mu = E(x) = \int x \cdot P(x) dx$ (mean)
 - $\sigma^2 = E((x-\mu)^2) = \int (x-\mu)^2 P(x) dx$ (variance)

But we don't have samples for all x...

Maximum likelihood estimation

• Given data $X = \{x_1, x_2, ..., x_n\}$, MLE produces an estimate of the parameters $\hat{\theta}$ by maximizing the **likelihood**, $L(X, \theta)$:

$$\hat{\theta} = \operatorname*{argmax} L(X, \theta)$$
 where $L(X, \theta) = P(X; \theta) = \prod_{i=1}^{n} P(x_i; \theta)$.

• Since $L(X, \theta)$ provides a **surface** over all θ , in order to find the **highest likelihood**, we look at the derivative

$$\frac{\delta}{\delta\theta}L(X,\theta)=0$$

to see at which point the likelihood stops growing.

MLE with univariate Gaussians

• Estimate μ :

$$L(X, \mu) = P(X; \mu) = \prod_{i=1}^{n} P(x_i; \theta) = \prod_{i=1}^{n} \frac{\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}$$

$$\log L(X, \mu) = -\frac{\sum_{i} (x_i - \mu)^2}{2\sigma^2} - n\log(\sqrt{2\pi}\sigma)$$

$$\frac{\delta}{\delta\mu} \log L(X, \mu) = \frac{\sum_{i} (x_i - \mu)}{\sigma^2} = 0$$

$$\mu = \frac{\sum_{i} x_i}{n}$$

• Similarly, $\sigma^2 = \frac{\sum_i (x_i - \mu)^2}{n}$

Multivariate Gaussians

When data is d-dimensional, the input variable is

$$\vec{x} = \langle x[1], x[2], \dots, x[d] \rangle$$

the mean is

$$\vec{\mu} = E(\vec{x}) = \langle \mu[1], \mu[2], \dots, \mu[d] \rangle$$

the covariance matrix is

$$\Sigma[i,j] = E(x[i]x[j]) - \mu[i]\mu[j]$$

and

$$P(\vec{x}) = \frac{\exp\left(-\frac{(\vec{x} - \vec{\mu})^{\mathsf{T}} \Sigma^{-1} (\vec{x} - \vec{\mu})}{2}\right)}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}}$$

 A^{T} is the **transpose** of A A^{-1} is the **inverse** of A |A| is the **determinant** of A

Intuitions of covariance

- ullet As values in Σ become larger, the Gaussian spreads out.
- (I is the identity matrix)

Intuitions of covariance

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 Different values on the diagonal result in different variances in their respective dimensions

Non-Gaussian observations

- Speech data are generally not unimodal.
- The observations below are **bimodal**, so fitting one Gaussian would not be representative.

Mixtures of Gaussians

• Gaussian mixture models (GMMs) are a weighted linear combination of M component Gaussians, $\langle \Gamma_1, \Gamma_2, ..., \Gamma_M \rangle$:

Observation likelihoods

- Assuming MFCC dimensions are independent of one another, the covariance matrix is diagonal – i.e., 0 off the diagonal.
- Therefore, the probability of an observation vector given a Gaussian becomes

$$P(\vec{x}|\Gamma_m) = \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{d} \frac{(x[i] - \mu_m[i])^2}{\sum_{m} [i]}\right)}{(2\pi)^{\frac{d}{2}} \left(\prod_{i=1}^{d} \sum_{m} [i]\right)^{\frac{1}{2}}}$$

• Imagine that a GMM first chooses a Gaussian, then emits an observation from that Gaussian.

MLE for GMMs

• Let $\pmb{\omega_m} = P(\Gamma_m)$ and $\pmb{b_m}(\overrightarrow{x_t}) = P(\overrightarrow{x_t}|\Gamma_m)$, 'component observation likelihood' $P_{\theta}(\overrightarrow{x_t}) = \sum_{m=1}^{M} \omega_m b_m(\overrightarrow{x_t})$

where
$$\theta = \langle \omega_m, \overrightarrow{\mu_m}, \Sigma_m \rangle$$
 for $m = 1..M$

• To estimate θ , we solve $\nabla_{\theta} \log L(X, \theta) = 0$ where

$$\log L(X, \theta) = \sum_{t=1}^{T} \log P_{\theta}(\overrightarrow{x_t}) = \sum_{t=1}^{T} \log \sum_{m=1}^{M} \omega_m b_m(\overrightarrow{x_t})$$

MLE for GMMs

• What happens when we try to find a maximum for $\mu_m[n]$?

$$\frac{\delta \log L(X, \theta)}{\delta \mu_{m}[n]} = \sum_{t=1}^{T} \frac{\delta}{\delta \mu_{m}[n]} \log \sum_{m'=1}^{M} \omega_{m'} b_{m'}(\overrightarrow{x_{t}}) = 0$$

$$\sum_{t=1}^{T} \frac{1}{P_{\theta}(\overrightarrow{x_{t}})} \frac{\delta}{\delta \mu_{m}[n]} \omega_{m} b_{m}(\overrightarrow{x_{t}}) = \sum_{t=1}^{T} \frac{\omega_{m} b_{m}(\overrightarrow{x_{t}})}{P_{\theta}(\overrightarrow{x_{t}})} \left(\frac{x_{t}[n] - \mu_{m}[n]}{\Sigma_{m}[n]^{2}}\right) = 0$$

$$\mu_{m}[n] = \frac{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}(\overrightarrow{x_{t}})}{P_{\theta}(\overrightarrow{x_{t}})} x_{t}[n]}{\sum_{t=1}^{T} \frac{\omega_{m} b_{m}(\overrightarrow{x_{t}})}{P_{\theta}(\overrightarrow{x_{t}})}} = \frac{\sum_{t=1}^{T} P_{\theta}(\Gamma_{m}|\overrightarrow{x_{t}}) x_{t}[n]}{\sum_{t=1}^{T} P_{\theta}(\Gamma_{m}|\overrightarrow{x_{t}})}$$

But this involves $\mu_m[n]!$

Learning mixtures of gaussians

- If we knew which Gaussian generated each sample, then $\langle \overrightarrow{\mu_m}, \Sigma_m \rangle$ can be learned by MLE.
- The MLE of $P(\Gamma_j)$ would likewise be the count $\frac{\#\overrightarrow{x_t} \text{ from } \Gamma_j}{T}$
- But we don't know this!
- Instead, we guess at "soft" mixture assignments $P_{\theta}(\Gamma_m|\vec{x}_t)$ from another model...
- ...which we got from a previous round of maximization

Expectation-Maximization for GMMs

Overall idea:

- First, initialize a set of model parameters.
- "Expectation": Compute the expected probabilities of observation, given these parameters.
- "Maximization": Update the parameters to maximize the aforementioned probabilities.
- Repeat.

Expectation-Maximization for GMMs

• The expectation step gives us:

$$P_{\theta}(\Gamma_m | \overrightarrow{x_t}) = \frac{\omega_m b_m(\overrightarrow{x_t})}{P_{\theta}(\overrightarrow{x_t})}$$
 Proportion of overall probability contributed by m

• The maximization step gives us:

$$\widehat{\overline{\mu_m}} = \frac{\sum_t P_{\theta}(\Gamma_m | \overline{x_t}) \overline{x_t}}{\sum_t P_{\theta}(\Gamma_m | \overline{x_t})}$$

$$\widehat{\Sigma_m} = \frac{\sum_t P_{\theta}(\Gamma_m | \overline{x_t}) \overline{x_t}^2}{\sum_t P_{\theta}(\Gamma_m | \overline{x_t})} - \widehat{\overline{\mu_m}}^2$$

$$\widehat{\omega_m} = \frac{1}{T} \sum_{t=1}^T P_{\theta}(\Gamma_m | \overline{x_t})$$

Recall from slide 18, MLE wants:

$$\mu = \frac{\sum_{i} x_{i}}{n}$$

$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \mu)^{2}}{n}$$

Recipe for GMM EM

• For each speaker, we learn a GMM given all T frames of their training data.

1. Initialize: Guess $\theta = \langle \omega_m, \overrightarrow{\mu_m}, \Sigma_m \rangle$ for m = 1...M

either uniformly, randomly, or by k-means

clustering.

2. E-step: Compute $P_{\theta}(\Gamma_m | \overrightarrow{x_t})$.

3. M-step: Update parameters for $\langle \omega_m, \overrightarrow{\mu_m}, \Sigma_m \rangle$ with

 $\langle \widehat{\omega_m}, \widehat{\overline{\mu_m}}, \widehat{\Sigma_m} \rangle$ as described on slide 29.