Electromagnetismo e Óptica

MEBiom + LMAC
Prof. Gonçalo Figueira

AULA 9 - Corrente eléctrica estacionária I

Corrente eléctrica estacionária

- Corrente eléctrica e densidade de corrente eléctrica
- Lei de Ohm
- Equação da conservação da carga eléctrica
- Lei de Joule
- Circuitos eléctricos e Leis de Kirchoff

Popovic & Popovic Cap. 10

Serway Cap. 28

TPC: https://youtu.be/m4jzgqZu-4s

Corrente eléctrica estacionária

= significa o **movimento constante e invariável** de um grande número de cargas de pequenas dimensões – por exemplo, o movimento de electrões num condutor, ou iões num líquido.

É causada pela acção de um campo eléctrico dentro do condutor.

Time: 0 seconds

Num condutor onde há cargas em movimento o campo eléctrico **não é nulo**

Cargas em movimento dentro de condutores

Sem campo eléctrico

As cargas movem-se aleatoriamente, colidindo com os iões. Deslocamento efectivo é nulo.

Com campo eléctrico

As cargas, em média, são aceleradas na direcção oposta ao campo.

Cargas em movimento dentro de condutores

- Dentro de sólidos e líquidos, onde as colisões são frequentes, a velocidade média tem a direcção de \vec{E}
- Com cada colisão, as cargas perdem energia cinética, que é transformada em agitação térmica: a energia do campo eléctrico é transformada em calor (Lei de Joule)
- Uma corrente estacionária é gerada por um campo eléctrico estacionário, idêntico ao gerado por uma distribuição electrostática de cargas
- O número de cargas é muito elevado (~10²⁸ m⁻³)

Intensidade e densidade de corrente eléctrica

Considere-se uma secção A de um condutor através do qual flui uma quantidade de carga ΔQ num tempo Δt :

$$I = \frac{\Delta Q}{\Delta t}$$
 [C/s = A] Intensidade de corrente

$$\Delta Q = n \times A \Delta x \times q = n \times A v_d \Delta t \times q$$

(n = cargas / unidades de volume). Define-se:

$$\vec{J} \equiv \frac{I}{A} = \frac{\Delta Q}{A\Delta t} = \frac{nq\vec{v}_d}{mq\vec{v}_d}$$
 [A/m²] Densidade de corrente

Intensidade e densidade de corrente eléctrica

Pode-se também escrever

$$\vec{J} = \rho \vec{v}_d$$

 ρ = Densidade de carga [C/m³]

No geral, a superfície A pode ter um ângulo relativamente à velocidade v_d , pelo que se usa o conceito de **fluxo**

$$I = \int_{S} \vec{J} \cdot \vec{n} \, dS$$

A intensidade da corrente que atravessa uma superfície é o fluxo da densidade de corrente através de uma superfície.

Condutividade e resistividade: Lei de Ohm local

Georg Simon Ohm verificou experimentalmente que a densidade de corrente eléctrica que percorre um condutor é **linearmente** proporcional ao campo eléctrico \vec{E} aplicado:

$$\vec{J} = \sigma_c \vec{E}$$

 $\sigma_c =$ Condutividade [siemens/metro]

Pode ser escrito de forma recíproca:

$$\vec{E} = \rho_c \vec{J}$$

 $\rho_c = \text{Resistividade}$ [ohm·metro]

Ambas as relações exprimem a Lei de Ohm local

Condutividade de alguns materiais

Tabela de Condutividades Eléctricas	
Material	Condutividade (10 ⁶ S/m)
Prata	62,5
Cobre puro	61,7
Ouro	43,5
Alumínio	34,2
Latão	14,9
Níquel	10,41
Ferro puro	10,2
Platina	9,09
Mercúrio	1,0044
Grafite	0,07
Água do mar	4·10 ⁻⁶
Solo	10 ⁻¹⁰ – 10 ⁻⁸
Isolador	~10 ⁻¹⁸

Trabalho realizado pelo campo eléctrico num condutor com corrente

n cargas q (por unid. volume)

força em cada carga: $\vec{F}_e = q\vec{E}$

O trabalho realizado por \vec{F}_e em dl é: $dW_e = \vec{F}_e \cdot \vec{dl} = (q\vec{E}) \cdot (\vec{v}_d dt)$

Lei de Joule local

O trabalho realizado sobre todas as cargas no volume dv é

$$dW_{\text{total}} = dW_e \ ndv = (q\vec{E}) \cdot (\vec{v}_d dt) ndv = (nq\vec{v}_d \cdot \vec{E}) dvdt$$

Como
$$nq\vec{v}_d = \vec{J}$$
: $dW_{\text{total}} = (\vec{J} \cdot \vec{E})dvdt$

Temos
$$\frac{dW_{total}}{dt} = dP$$
 (potência)

$$e \frac{dP}{dv} = p_J$$
 potência (dissipada) por unidade de volume

$$p_J = \vec{J} \cdot \vec{E} = \frac{J^2}{\sigma_c} = \sigma_c E^2 \qquad [\text{W/m}^3]$$

Lei de Joule local

Because of friction, a steady push is needed to move the book at steady speed.

Because of collisions with atoms, a steady push is needed to move the sea of electrons at steady speed.

O campo eléctrico necessita de realizar trabalho para mover as cargas

Conservação da carga eléctrica

A carga eléctrica não desaparece!

O fluxo de carga através de uma superfície fechada deve ser igual à variação da carga no seu interior:

$$\oint_{S} \vec{J} \cdot \vec{n} \, dS = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{v} \rho dv$$

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

 $abla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$ Conservação da carga eléctrica carga eléctrica

Se o fluxo é positivo, a carga no interior diminui (e vice-versa)

No caso estacionário, a corrente que atravessa uma secção dum condutor **é constante**: $\oint_{S} \vec{J} \cdot \vec{n} \ dS = 0$, $\nabla \cdot \vec{J} = 0$

Circuitos eléctricos: símbolos

Para representar componentes eléctricos usam-se diferentes símbolos:

Circuitos eléctricos: convenções

$$(\Delta V = V_b - V_a)$$

Baterias

Resistências

Condensadores

Leis de Kirchhoff

Lei dos nós: $\sum_i I_i = 0$

Lei das malhas: $\sum_i V_i = 0$

Lei dos nós

É consequência da lei da **conservação da carga**: a corrente que entra numa superfície fechada é igual à que sai

A soma das correntes que entram em qualquer nó é igual à soma das correntes que saem.

Contando como positivas as correntes que entram e negativas as que saem:

$$\sum_{i} I_i = 0$$

Nos dois nós: a corrente que entra deve ser igual à corrente que sai

Lei das malhas

É consequência da lei da **conservação da energia**: deslocando uma carga ao longo de uma malha, esta regressa ao início com a mesma energia

A soma das d.d.p. em todos os elementos de uma malha fechada do circuito é igual a zero

Nas três malhas: a soma das d.d.p. deve ser nula

Exemplo: Leis de Kirchoff

Lei dos nós

A intensidade da corrente que passa na lâmpada 1 é igual à que passa na lâmpada 2

$$I_1 = I_2$$

Lei das malhas

A d.d.p. aos terminais da bateria é simétrica da soma das d.d.p. das lâmpadas (no sentido horário):

$$\Delta V_1 + \Delta V_2 = -\Delta V_{bat}$$

Sumário

- 1. A corrente pode ser descrita pela intensidade de corrente I ou pela densidade de corrente \vec{J}
- 2. Lei de Ohm local: $\vec{J} = \sigma_c \vec{E}$ ou $\vec{E} = \rho_c \vec{J}$
- 3. Lei de Joule local: potência dissipada por unid. volume $p_I = \sigma E^2$
- 4. A carga eléctrica é uma quantidade que se conserva: $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$
- 5. As propriedades da corrente permitem derivar as **Leis de Kirchoff**:
 - Lei dos nós: da conservação de carga
 - Lei das malhas: da conservação de energia