Lecture #8

CS 170 Spring 2021

Chap 5 Greedy Algorithms General algorithmic approach—at every step, choose what to do based on local information, without considering next steps Sometimes works well: optimal minimum spanning trees, Huffman encoding Horn formulas (used in Prolog) Sometimes just approximation set cover (no poly time exactalg) Sometimes not so good: chess...

Example: Student's Problem You have n HW assignments a, az, ..., an with deadlines (all integers) di, dz, ..., dn tach assignment takes ! hour In what order should you do assignments to maximize the number turned in on time? Example: 92 94 95 96 95 96 greedy: prok assignment with next deadline optimal: in first 2 hos, can de 2 assignments then do all rest => 4 mox

Strategy: repeat: pick unexpired a: with closest deadline Claim: oftimal strategy: proof by contradiction: assume $S = optimal strategy \neq G = greedy strategy$ $= (ag, ag_2, -ag_t) = (ag, ag_2, --ag_t)$ Modify S to become G ift'=t-1,
Let K ba task where SandG differ then Goodd

Si=q:, sz=qz, -... Sx-,=gx-, Sx = gz

Change S to S' with Sx = gx, S'still optimal Caseli agr doesn't appear in & => replace agr by agr, or Since age hasn't expired xet, since ohosen by G-Case 2: age does appear in S, sax age = age 12K => swap ase and ask; OK to do ase earlier, still not expired since G (greedily) chose age as carliest to expire olge = olse = olse => can do ask at same time as ase tinally Gant be shorter than S, because & could do 3

Set Cover Given: V= {1,2,...,n} = [n] Collection of subsets Si, Sz, ... SmcV such that U.Si=V Find: Fewest Si that cover V: $J = [m], U S_i = V,$ IJl as small as possible

J= Stown, -. town n3

Si= Sall towns in

distance = 30 miles

from town i 3

Goal: boild as

few schools as

needed so everyone

1 =30 miles from nearest school

Ex

 $V = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $3 \cdot (2) \cdot (2$

Greedy Strategy: At each step, pick Si that covers the most uncovered points

 $V=S_1 \cup S_3 = S_3 \cup S_2$ |J|=2, |J|=| not possible optimal

4

Greedy Set Cover ... V=[n]

J=\$\phi\$... collection of Si, i\in [m]

while \$S_{J} \neq V\$... \$S_{J} = U Si

Pick i\in J with largest | Si\S_{J}|

... covers most new points

J=Jo\xi\xi\xi\xi

How well can we solve Set Cover? Exact answer in time O(polynomial(n,m))?

n=#points, m=#sets win \$1M (Millenium Prize) P=NP Thm: If K= exact answer (fewest #sets) Greody finds & K-Inn sets Fact: anything better eg \(\) Faet from calculus

Thm: n = # points, m = # sets, k = fewest # sets GreedyAlg. find & k. In n sets in a set cover good: n= # uncovered points after tsteps, no=n Show n_t decreases guickly. $n_t \leq Cn_{t-1}$ where C<1 $\Rightarrow n_t \leq C^t n_o = C^t \cdot n$ chooset =# sets chosen by Greedy alg big enough $n_t \leq c^t \cdot n \leq l \Rightarrow n_t = 0 \Rightarrow done$ In (ct.n) < In(1)=0 => t-Inc+lnn<0=> t> Inn since C= (-1 = e-VK Claim: n& = ht-1- 1/K = (1-1/2) NE-1= C. nt-1 proof: after stept-1, ne, unrovered pts 12 elik => ne-, pts revered by k sets => some unchasen set covers at least her pts (い(と) マド = L (nCL) LK => greedy choice covers > nt-1 pts The hoose tzk. Innz [n/2] done

Fact: Greedy Alg can attain
$$\Omega(k \cdot | nn)$$
 $n = 2(2^e - 1) \sim 2^{ext}$
 $h = 30$:

 $e = 4$
 $s_6 s_5$
 $s_7 s_8$
 $s_8 s_8$
 $s_8 s_8$
 $s_8 s_9$
 $s_8 s_$

Optimal:
$$k=2$$

Greedy: pick e subset = log_2n-1
= $\theta(k.(nn))$

Introduction to Minimum Spanning Trees (MSTs) Given an undirected graph G=(V,E) with edge weights w(e)>0 find a subset TEE such that O (V,T) connected (2) som of weights of $T = \leq w(e)$ minimized $e \in T$ fact: Thas no cycles, i.e a tree What would be a greedy algorithm? add cheapest edge to Tas long as no cycle

Next time: Algorithms for MSTs Kruskal's Alg. and Prim's Alg. Cost: O(IEL·log [VI] or O(1E1 log* 1V1) $|\log^* |V| \le 5$ as |eng| $|V| \le (\# particles in universe)^{246}$ $|v| \le (very |ikelx)^{2}$ $|v| \le 2^{65536} = 2^{2^2}$