Graph Theory (continued)

Complete Graphs' edges between every vertex pair

$$\Rightarrow \frac{n(n-1)}{2}$$
 edges in K_n

Trees: Four equivalent definitions.

2. Connected
$$W$$
 $|E| = |V| - |$

3. Connected, and removal of any edge disconnects G

4. No cycles, and adding any edge creates a cycle

Leaves: vertices with degree 1.

Hypercubes,

$$n=2$$

edges exist between nodes that differ at exactly I position in bitstring

$$\Rightarrow$$
 n·2ⁿ⁻¹ edges

1 True or False

(a) Any pair of vertices in a tree are connected by exactly one path.

True

(b) A simple graph obtained by adding an edge between two vertices of a tree creates a cycle.

True

(c) Adding an edge in a connected graph creates exactly one new cycle.

False

Inducting on graph components (vertices or edges)

- Rough Breakdowni

Base Case i Small (e.g. size 1 or 2) graph

Inductive Hypothesis! Assume works for all graphs up to size k

Industive Step: Want to show for all graphs of size ktl

- 1) Consider any graph G of size KH.
- 2) Remove a (vertex/edge) from G.
 - 3) Remaining subgraph is size $k \Rightarrow Apply I.H.III$
 - 4) Add back removed component
 show that adding back doesn't invalidate

Edge Colorings

An edge coloring of a graph is an assignment of colors to edges in a graph where any two edges incident to the same vertex have different colors. An example is shown on the left.

(a) Show that the 4 vertex complete graph above can be 3 edge colored. (Use the numbers 1,2,3 for colors. A figure is shown on the right.)

(b) Prove that any graph with maximum degree $d \ge 1$ can be edge colored with 2d - 1 colors.

Base Case: P(1)

IH! Assume P(k)
IS! Want to Show

P(KH)

61=6- {U, v} 6' satisfied by TH
66' can be colored wl
2d-1 colors

CS 70, Spring 2021, DIS 2B

v des in 6 \le d

U des in 6 ≤ d ?

v der in 6 2 d-1 = U der in 6 2 0-1 addut pock U 's edges use d-1 colors u's edges use d-1 copies GU, UZ doesnit d-1+d-1= 2d-2 off-limits require her color (c) Show that a tree can be edge colored with d colors where d is the maximum degree of any f(n) = any graph with n vertices W d man des. Can be colored Using a colorsi" Base Case; $\rho(\rho)$ IHI Assume P(K) Want to show P(kH) All trees have ≥ 2 leaves 6- V 6' sortisties IH 6' can be d' C-lored where d'Ed 6' can be & colored U's des int Ed aldry back u CS 70, Spring 2021, DIS 2B allows &u, v} to be colored

4 Hypercubes

The vertex set of the *n*-dimensional hypercube G = (V, E) is given by $V = \{0, 1\}^n$ (recall that $\{0, 1\}^n$ denotes the set of all *n*-bit strings). There is an edge between two vertices x and y if and only if x and y differ in exactly one bit position. These problems will help you understand hypercubes.

(b) Show that for any $n \ge 1$, the *n*-dimensional hypercube is bipartite.

Coloring Trees

Prove that all trees with at least 2 vertices are *bipartite*: the vertices can be partitioned into two groups so that every edge goes between the two groups.

[*Hint*: Use induction on the number of vertices.]

P(n) = 'Any tree with n vertices,
$$n \ge 2$$
, is bipartite."

bipartite'. L R LUR=V

no edge goes between any two vertices in the same set of (Lor P),

Base Case: P(2)

u ~ V

L= \(\frac{4}{3} \), R = \(\frac{2}{3} \frac{3}{3} \)

LH: Assume P(K) for $(k \ge 2)$

TS, Want to Show P(kt)

CS 70. Spring 2021, DIS 2B

L= \(\ldots \ldots \rdots \rd