Chi-squared Hypothesis Testing

Chi-squared Tests

Goodness of Fit

Example 1

Use the Chi-squared test to investigate if the observed data is different from the predicted data

• i For a normal distribution with mean 170cm and mean 10cm

Bins	Observed	Expected
<160	3	2.4
160-170	3	5.1
170-180	7	5.1
180-	2	2.4

geom_path: Each group consists of only one observation. Do you need to adjust ## the group aesthetic?

##

```
## Chi-squared test for given probabilities
##
## data: Observed
## X-squared = 1.7892, df = 3, p-value = 0.6173
```

• ii For a flat distribution

Bins	Observed	Expected
<160	3	3.75
160 - 170	3	3.75
170-180	7	3.75
180-	2	3.75

```
##
## Chi-squared test for given probabilities
##
## data: Observed
## X-squared = 3.9333, df = 3, p-value = 0.2688
```

Test of Independence

An ice-cream company had 500 people sample one of three different ice-cream flavours and asked them to say whether they liked or disliked the ice-cream. The resulting observed data is presented in the table below

```
## Vanilla Chocolate Strawberry
## Liked 130 170 100
## Disliked 20 30 50
```

Conduct a hypothesis test to determine if these data supply evidence (alpha = 0.05) that the enjoyment of the ice-cream depends on the flavour

```
##
## Pearson's Chi-squared test
##
## data: Icecream
## X-squared = 23.958, df = 2, p-value = 6.274e-06
```

