머신비전 AI 데이터셋

| 스마트팩토리 동아리 C조 |

목차

1. 분석 배경

2. 분석 목표

3. 제조 데이터 소개

4. 분석 모델 소개

5. 결과 분석

윈드실드 사이드몰딩 (Windshield Side Molding)

- 주요기능: 전면유리의 양끝단을 마감 하는 외장 몰딩으로 주행시 발생하는 소음 및 오염 등을 방지
- 전면 유리 수리(교체)시 탈착 부분

[그림 1] 윈드실드 사이드 몰딩

• 가스 사출 성형

: 사출 단계 종료 시점에 용융 스트림으로 불활성 가스를 압력에 의해 주입하는 사출 성형

• 리브(Rib)

: 전체 벽 두께를 유지하며 성형물을 강화하기 위해 설치된 지지대. 사출 과정 중 변형을 막기 위해 적절하게 설계한다.

머신비전 적용 전 세부 공정도

머신비전 적용 후 세부 공정도

재료 손실, 시간 손실 최소화

2. 분석 목표

제품의 표면 온도, 파괴검사를 수행해 획득한 제품 내 빈공간과 표면 사이의 두께 활용해서 머신 학습

사출 후 제품의 표면 온도 데이터를 이용한 양품.불량품 판정

3.1 수집 방법 및 형태

수집 장비: IR카메라(열화상 카메라) 수집 기간(주기): 사이클 타임 약 60초

원본 데이터

1. 열화상 이미지의 온도 로우 데이터 - Right: 423개, Left: 414개

256×320 해상도 -> Colum당 81,920개 데이터 포함

2. 수기로 기록한 두께 정보

				-	
W/No	LH	RH	W/Np	LH	RH
9001	1		0037	890	1.22
0002			0038	0.94	1.11
0003			0039	0.84	1,10
0004			0040	000	1.0P
0005	L	J	0041	0.93	1.18
0006	0.86	1.01	0042	0,82	10
0007	0.11	1.08	0043	0 Ps	1.18
0008	0.14	1.02	0044	080	1.00
0009	0 13	1.05	0045	0.84	1,15

16		17	20	13		10	11
17	T	17	18	17		13	15
19	Ī	21	14	15		17	19
17	T	22	18	12		21	20
-		•		-		•	•
-			-				
•					• .		
•		•	•		•		-
•	_	•			٠.,	•	
17		19	21	23		16	19
22		18	20	15		18	17

3.2 데이터 전처리 과정

1차 전처리 과정

온도 로우 데이터 (좌측 사이드 몰딩), 온도 로우 데이터 (우측 사이드 몰딩) -> 각각 모으기

수기로 작성된 두께 정보 -> 디지털 화 및 누락된 데이터 제거

x: left_data.csv							
이미지데이터1	d1(1x1)	d1(2x1)	d1(3x1)		d1(256x320)		
이미지데이터2	d2(1x1)	d2(2x1)	d2(3x1)		d2(256x320)		
이미지데이터414	d414(1x1)	d414(2x1)	d414(3x1)		d414(256x320)		

 y: left_label.json

 라벨1
 데이터1의 단면두께

 라벨2
 데이터2의 단면두께

 ...
 ...

 라벨414
 데이터414의 단면두께

온도 로우 데이터 (좌측 사이드 몰딩)

두께 정보 (좌측 사이드 몰딩)

3.2 데이터 전처리 과정

2차 전처리 과정

온도 데이터: 관심 영역의 온도 데이터만 보기 위해 데이터 사이즈 축소 : 1 x 81,920 -> 1 x 80

라벨 파일 : 디지털화된 두께 정보와 기준값을 통해 이(불량품) 1(양품)의 라벨 데이터를 포함

x: left_data.csv							
열 데이터1	d1(1x1)	d1(1x2)	d1(1x3)		d1(1x80)		
열 데이터2	d2(1x1)	d2(1x2)	d2(1x3)		d2(1x80)		
열 데이터414	d414(1x1)	d414(1x2)	d414(1x3)		d414(1x80)		

y: left_label.json					
라벨1	데이터1의 양품 / 불량품 정보				
라벨2	데이터2의 양품 / 불량품 정보				
라벨414	데이터414의 양품 / 불량품 정보				

온도 로우 데이터 (좌측 사이드 몰딩)

두께 정보 (좌측 사이드 몰딩)

열화상 이미지의 온도 데이터 시각화

mask 변수의 시각화

skeleton 변수의 시각화

열화상 이미지와 skeleton 이미지 곱셈 -> 원하는 영역의 데이터만 존재하는 합성 이미지 생성

```
array([
       15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
                         32,
                             33,
                                 34, 35,
                                          36, 37, 38, 39,
       41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
           55, 56, 57, 58,
                             59, 60, 61, 62,
                                              63,
       67, 68, 69, 70, 71,
                            72,
                                 73, 74, 75, 76, 77, 78,
       80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
       93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
      106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
      119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
      132], dtype=int64)
```

이미지 내 제품 위치 추출 결과

[코드 22] 이미지 내 제품 위치 추출 결과

추출 데이터 가져오기 결과 시각화

4. 분석 모델 소개

• 서포트 벡터 머신(Support Vector Machine)

분류를 위한 기준선을 정의하는 지도 학습모델

1. 마진(Margin)

결정 경계와 가장 가까운 데이터 사이의 거리

최적의 결정 경계

마진 최대화

1.1 Hard margin and soft margin

classifier = SVC(C = 0.01)

2. Kernel

- : 비선형 문제 해결 가능한 기법
- 다항식 커널(polynomial Kernel) 2차원 🛶 3차원

Polynomial:
$$K(x_i, x_j) = (\gamma x_i^T x_j + c)^d$$

• 가우시안 커널(Gaussian Radial Basis Function)2차원->∞차원

Gaussian Radial Basis Function (RBF): $K(x_i,x_j) = \exp(-\gamma \|x_i - x_j\|^2)$

underfitting

overfitting

5. 결과 분석

	linear	polynomial	RBF		
오분류 제품 개수	6.37	6.56	5.21		
오분류율(%)	5.31	5.37	4.56		
[표 3] 선형 및 비선형 커널 테스트 결과					

- SVM 모델에서 RBF 커널을 사용했을 때 가장 좋은 결과를 보임
- 카메라 촬영 시 떨림 방지, 위치 변경, 주변 온도에 대해 고려한다면 더 좋은 결과를 낼 수 있음
- 제품 온도 분포에 따른 품질 예측을 할 때 효과적일 것임