МОДУЛЬНА КОНТРОЛЬНА РОБОТА №1 3 ДИСКРЕТНОЇ МАТЕМАТИКИ

By Arseniy Todonov

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ антирефлексивним. Показати, що наведене бінарне відношення дійсно ϵ транзитивним і не ϵ антирефлексивним. Множина людей, маса х дорівнює масі у
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

A	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина В необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Г) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина

- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 2

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

A	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою

- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \emptyset\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним Множина школярів, х однокласник у

Практика

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β) $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не є ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- Е) не є ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 4

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A∨B⊶A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке ϵ симетричним і не ϵ антирефлексивним Множина людей, х знайомий особисто у
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

Практика

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не є ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \longleftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним

Множина людей, х розумніше у

- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $u_i o \forall b \in B$: $|b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const, M \ge 0$, $ugo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| > M$
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē⊶A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}$, $B = \{-4,5,0,-3,6,8\}$. Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}

B) {8}

 $\Gamma) \varnothing$

Д) {-4,5,0}

- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 6

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- \mathbf{B}) $\exists M = const, uo \forall b \in B: M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const, upo \forall b \in B: M > b$
- \square) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

А) В першому

- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин є доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним Множина людей, х предок у

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle, \langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā-B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним Множина мешканців будинку, х сусід по кімнаті у
- 4. Яка логічна операція в формулі $A \& B \to \overline{A} \leftrightarrow \overline{A \lor B}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \notin A$
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

Практика

1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B) = A \cap (A \cap B) =$

=(ANA)U (ANB)=ANB

- A) $A \cup B$
- Б) А\В
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A = \{a,b,c\}$, $A = \{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {c}
- B) $\{a, b, d, f, h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 8

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- **Б**) $\{b\}$ ⊆ $\{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \longleftrightarrow A}$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним Множина людей, х нащадок у
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$

- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- $\Gamma) \,\, \exists M = const, \quad u_io \quad \forall b \in B: \quad M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 9

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) Х має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин

4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B} \wedge \overline{A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- A) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a,b >, < a,a >, < c,c > \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : (A | C) | (B | C)
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- $\Gamma) \ A \cup \left(\overline{B} \cap \overline{C}\right)$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

- В яких рядках таблиці зроблено помилку?
- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \circ b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

A	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою