Untermannigfaltigkeiten des \mathbb{R}^n

Def Eine Teilmenge $M \subset \mathbb{R}^n$ heißt k-dimensionale C^1 -Untermannigfaltigkeit des \mathbb{R}^n , falls es zu jedem $a \in M$ eine offene Umgebung $U \subset \mathbb{R}^n$ sowie n-k C^1 -Funktionen $f_1, ..., f_{n-k} \colon U \to \mathbb{R}$ gibt, sodass gilt:

i)
$$M \cap U = \{x \in U : f_1(x) = \dots = f_{n-k}(x) = 0\}$$

ii) Rang
$$\frac{\partial (f_1,\dots,f_{n-k})}{\partial (x_1,\dots,x_n)}(a) = n-k$$

Def Sei $T \subset \mathbb{R}^k$ offen. Eine stetig differenzierbare Abbildung $\varphi \colon T \to \mathbb{R}^n$ heißt *Immersion*, wenn Rang $D\varphi(t) = k$ fur alle $t \in T$.

Def Seien X,Y metrische Räume. Die Abbildung $f\colon X\to Y$ heißt $Hom\"{o}omorphismus,$ falls:

- 1) f ist stetig
- 2) f ist bijektiv
- 3) f^{-1} ist stetig

Satz 4.1 Für eine Teilmenge $M \subset \mathbb{R}^n$ sind folgende Aussagen äquivalent:

- i) M ist eine k-dimensionale C^1 -Untermannigfaltigkeit des \mathbb{R}^n .
- ii) M ist lokal als Graph einer Funktion von k Variablen darstellbar, d.h.: Für jedes $a=(a_1,...,a_n)\in M$ gibt es nach evtl. Umnummerierung der Koordinaten offene Umgebungen $U'\subset \mathbb{R}^k$ von $a':=(a_1,...,a_k)$ und $U''\subset \mathbb{R}^{n-k}$ von $a'':=(a_{k+1},...,a_n)$ sowie eine C^1 -Abbildung $g\colon U'\to U''$, sodass

$$M \cap (U' \times U'') = \{(x', x'') \in U' \times U'' \colon x'' = g(x')\},\$$

wobei $x' = (x_1, ..., x_k)$ und $x'' = (x_{k+1}, ... x_n)$ gesetzt ist.

- iii) M kann durch lokale Karten überdeckt werden, d.h.: Zu jedem Punkt $a \in M$ gibt es eine offene Umgebung $U \subset \mathbb{R}^n$ sowie eine offene Teilmenge $T \subset \mathbb{R}^k$ und eine Immersion $\varphi \colon T \to \mathbb{R}^n$, sodass φ die Menge T homöomorph auf $\varphi(T) = M \cap U$ abbildet.
- iv) Zu jedem Punkt $a \in M$ gibt es eine offene Umgebung $U \subset \mathbb{R}^n$ sowie eine offene Teilmenge $V \subset \mathbb{R}^n$ und einen Diffeomorphismus $\Phi \colon U \to V$, so dass $\Phi(M \cap U) = \mathbb{R}^k_0 \cap V$, wobei $\mathbb{R}^k_0 := \{x = (x_1, ..., x_n) \in \mathbb{R}^n \colon x_{k+1} = ... = x_n = 0\}.$

Def Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit, $a \in M$. Ein Vektor $v \in \mathbb{R}^n$ heißt Tangentialvektor an M in a, wenn es eine stetig differenzierbare Kurve $\gamma \colon (-\varepsilon, \varepsilon) \to M$, $\varepsilon > 0$, gibt mit $\gamma(0) = a$ und $\gamma'(0) = v$. Die Gesamtheit aller Tangentialvektoren an M in a wird Tangentialraum genannt und werde mit T_aM bezeichnet.

Satz 4.2 Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit des \mathbb{R}^n und $a \in M$. Dann gilt:

- a) T_aM ist ein k-dimensionaler Untervektorraum des \mathbb{R}^n .
- b) Wenn $\varphi\colon V\to M$ eine Karte von M in der Umgebung von a mit $V\subset\mathbb{R}^k$ offen, $\varphi(c)=a,c\in V$ ist, dann bilden die Vektoren

$$\frac{\partial \varphi}{\partial t_1}(c), ..., \frac{\partial \varphi}{\partial t_k}(c)$$

eine Basis von T_aM .

c) Sei $U \subset \mathbb{R}^n$ eine offene Umgebung von a und die Funktionen $f_1, ..., f_{n-k} \in C^1(U, \mathbb{R})$ wie in der Definition einer Mannigfaltigkeit gewählt, d.h. $M \cap U = \{x \in U : f_1(x) = ... = f_{n-k}(x) = 0\}$ und $\operatorname{Rang} \frac{\partial (f_1, ..., f_{n-k})}{\partial (x_1, ..., x_n)}(a) = n - k$. Dann ist

$$T_aM = \{v \in \mathbb{R}^n : \langle \operatorname{grad} f_j(a), v \rangle = 0, j = 1, ..., n - k\} = \operatorname{Ker} Df_{|a}.$$

Def Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit, $a \in M$. Ein Vektor $v \in \mathbb{R}^n$ heißt Normalenvektor an M in a, wenn v auf T_aM senkrecht steht, d.h. $\langle v, w \rangle = 0$ für alle $w \in T_aM$. Die Gesamtheit aller Normalenvektoren an M in a wird Normalenraum genannt und mit N_aM bezeichnet.

Satz 4.3 Unter den Voraussetzungen des Satzes 4.2 gilt:

- a) $N_a M$ ist ein (n-k)-dimensionaler Untervektorraum des \mathbb{R}^n .
- b) $N_a M = \{ v \in \mathbb{R}^n : \langle \frac{\partial \varphi}{\partial t_i}(c), v \rangle = 0, i = 1, ..., k \} = (T_a M)^{\perp}.$
- c) Die Vektoren $\operatorname{grad} f_1(a), ..., \operatorname{grad} f_{n-k}(a)$ bilden eine Basis von N_aM .