МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ №1

по дисциплине «Системы реального времени»

Работу выполнил студент группы 45/2		Т. Э. Айрапетов		
Направление подготовки:			обеспечение	И
администрирование информа	ционных сі	<u>ICTEM</u>		
Отчет			прин	ЯЛ
доц. каф. ИТ			А. Н. Полетайк	ин

Задание.

- 1. Представить целые числа I1 и I2 (табл. 1.4) в формате DB, DW, DD.
- 2. Составить и откомпилировать программу, определив число I1 в форматах DB, DW, DD, а число I2 в форматах DW, DD.
- 3. Задать такие операции пересылки данных:
 - а. загрузить регистр R1 числом I2 из сегмента данных;
 - b. с использованием заданного варианта косвенной адресации записать содержимое R1 в сегмент данных со смещением на I1 байт относительно метки I2 (число I1 предварительно загрузить в соответствующий базовый или индексный регистр, при наличии других операндов в формуле адресации определить их произвольно).
- 4. Проверить результаты расчетов и пересылок в дампе памяти.
- 5. Сделать расчет времени выполнения программы (методика расчета представлена в прил. А).

Выполнение.

Число 149 в формате DB, DW, DD

Операция	Формат DB	Формат DW		
1) Модуль в	10010101	10010101		
двоичной форме				
2) Дописываем 0	10010101	00000000 10010101		
3) В 16-ричном виде	95	00 95		
4) В дампе памяти	95	95 00		
Формат DD				
1) Модуль в	10010101			
двоичной форме				
2) Дописываем 0	0000000 00000000 00000000 10010101			
3) В 16-ричном виде	00 00 00 95			
4) В дампе памяти	95 00 00 00			

Число -74 в формате DB, DW, DD

Операция	Формат DB	Формат DW	
1) Модуль в	1001010	1001010	
двоичной форме			
2) Дописываем 0	01001010	00000000 01001010	
3) Инвертируем и	10110110	11111111 10110110	
добавляем 1			
4) В 16-ричном виде	В6	FF B6	
5) В дампе памяти	В6	B6 FF	
Формат DD			
1) Модуль в	1001010		
двоичной форме			
2) Дописываем 0	00000000 00000000 00000000 01001010		
3) Инвертируем и	11111111 11111111 11111111 10110110		
добавляем 1			
4) В 16-ричном виде	FF FF FF B6		
5) В дампе памяти	B6 FF FF FF		

```
include \masm32\include\io.asm
.data
     i1_db db 149
     i1_dw dw 149
     i1_dd dd 149
     i2_dw dw -74
     i2_dd dd -74
.code
 LStart:
     ;Put your code here.
     xor eax, eax
     xor ebx, ebx
     xor ecx, ecx
     mov cx, i2_dw
mov bx, i1_dw
     mov [ebx] + offset i1_dw, ecx
 LExit:
     newline
     inkey "Press any key to exit."
     exit
 end LStart
```

Рисунок 1 - Код программы для косвенной пересылки данных

Рисунок 2 - Результат работы программы в OllyDbg

На рисунке 2 показана программа в режиме отладки, когда все операции выполнены. В нижней левой части отладчика отображается дамп памяти, где можно увидеть значение R1, переданное в память со смещением на I1 байт относительно метки переменной i1 dw.

Подсчет времени выполнения программы:

Команда	Цена	Суммарно
XOR регистр, регистр	3	9
MOV регистр, память	12+6	36
MOV память, регистр	13+9	22

Итог: 67 / 3.1 = 22