EE 332: Devices and Circuits II

Lecture 3: Single-stage Amplifiers (Part 1)

Prof. Sajjad Moazeni

smoazeni@uw.edu

Autumn 2022

Thevenin/Norton Models

- Thevenin equivalent theorem: any <u>one-port linear network</u> can be reduced to a single <u>voltage source</u> in series with a <u>resistance</u> (can have a complex impedance).
- Norton equivalent: similar to Thevenin theorem, but this time a <u>current source</u> in parallel to a single resistance.
- Notice:
 - V_{th} is the open-circuit voltage of the port
 - I_n is the short-circult current of the port
 - R_{th} is the impedance "seen" through the port by nulling the <u>independent</u> sources
 - $V_{th} = I_n \times R_{th}$

An example ...

 Derive the Thevenin & Norton models (Method: Calculate open-circuit Vo and Measure output impedance by nulling independent sources)

Input/Output Impedance

Two-port model from circuit theory

Figure C.4 Two-port *z*-parameter representation.

Ideal vs Non-ideal Amplifier

Ideal amplifier (Fig. a)

$$y(t) = \alpha_0 + \alpha_1 x(t)$$

- Large-signal characteristic is a straight line
- $-\alpha_1$ is the "gain", α_0 is the "dc bias"
- Nonlinear amplifier (Fig. b)

$$y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$

- Large signal excursions around bias point
- Varying "gain", approximated by polynomial
- Causes distortion of signal of interest

Analog Design Tradeoff

- Along with gain and speed, other parameters also important for amplifiers
- Input and output impedances decide interaction with preceding and subsequent stages
- Note that linearity will be analyzed using the large-signal models (not the small-signal!)
- Performance parameters trade with each other
 - Multi-dimensional optimization problem

Common-"X" Single-stage Amps.

Common-Source stage with Resistive load

- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = V_{DD}$
- When $V_{in} > V_{TH}$, M_1 turns on in saturation region, V_{out} falls

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

- When $V_{in} > V_{in1}$, M_1 enters triode region
- At point A, $V_{out} = V_{in1} V_{TH}$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

Common-Source stage with Resistive load

• For $V_{in} > V_{in1}$

• For
$$V_{in} > V_{in1}$$
,
$$V_{DD}$$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$

• If V_{in} is high enough to drive M_1 into deep triode region so that $V_{out} \ll 2(V_{in} - V_{TH})$,

$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_D}$$

$$= \frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})}$$

Load-line & Bias point

Visualizing the "equations" by load-lines to find the operating (bias) point

Small-signal models for CS Stage

Notice the notations for small-signal in this book! (V_{in} = small-signal source)

For NMOS For PMOS

Common-Source stage with Resistive load

• Taking derivative of I_D equation in saturation region, small-signal gain is obtained

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}}$$

$$= -R_{D}\mu_{n}C_{ox}\frac{W}{L}(V_{in} - V_{TH})$$

$$= -g_{m}R_{D}$$

Same result is obtained from small-signal equivalent circuit

$$V_{out} = -g_m V_1 R_D = -g_m V_{in} R_D$$

• g_m and A_v vary for large input signal swings according to

$$g_m = \mu_n C_{ox}(W/L)(V_{GS} - V_{TH})$$

Examples 3.1 & 3.2 from Razavi

• This causes non-linearity!!!

Common-Source stage with Resistive load

Above result is also obtained from small-signal equivalent circuit

$$V_1 = V_{in}$$

$$g_m V_1(r_O || R_D) = -V_{out}$$

$$V_{out}/V_{in} = -g_m(r_O || R_D)$$

• For large values of R_D , channel-length modulation of M_1 becomes significant, V_{out} equation becomes

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

Voltage gain is

$$A_v = -g_m \frac{r_O R_D}{r_O + R_D}$$

CS Stage Example

• What's the **voltage swing** of V_{out}? What's the optimal bias point for V_{out} to achieve max swing?

CS Stage Example

• Find V_{in} & R_D value such that: V_{out} = VDD/2 & Gain > 10

$$\mu_n C_{ox} = 50 \,\mu\text{A/V}^2$$

$$W/L = 10$$

$$V_{TH} = 0.3 \text{ V}$$

$$\lambda = 0.1V^{-1}$$

Diode-Connected MOSFET

- A MOSFET can operate as a small-signal resistor if its gate and drain are shorted, called a "diode-connected" device
- Transistor always operates in <u>saturation</u> (why?)

Impedance of the device can be found from small-signal equivalent model

$$V_1 = V_X \qquad I_X = V_X/r_O + g_m V_X$$
$$V_X/I_X = (1/g_m) ||r_O \approx 1/g_m|$$

Diode-Connected MOSFET

 Including body-effect, impedance "looking into" the source terminal of diodeconnected device is found as

$$V_1 = -V_X \qquad V_{bs} = -V_X$$
$$(g_m + g_{mb})V_X + \frac{V_X}{r_O} = I_X$$

$$\frac{V_X}{I_X} = \frac{1}{g_m + g_{mb} + r_O^{-1}}$$

$$= \frac{1}{g_m + g_{mb}} || r_O$$

$$\approx \frac{1}{g_m + g_{mb}}$$

Diode-Connected MOSFET: Example

• Find R_X if $\lambda = 0$

• Set independent sources to zero, apply V_X and find resulting I_X

$$V_{1} = -V_{X}$$

$$V_{bs} = -V_{X}$$

$$(g_{m} + g_{mb})V_{X} = I_{X}$$

$$\frac{V_{X}}{I_{X}} = \frac{1}{g_{m} + g_{mb}}$$

- Result is same compared to when drain of M_1 is at ac ground, but only when $\lambda = 0$
- Loosely said that looking into source of MOSFET, we see $1/g_m$ when $\lambda = \gamma = 0$

CS Stage with Diode-Connected Load

 Neglecting channel-length modulation, using impedance result for diode-connected device,

where,

$$A_{v} = -g_{m1} \frac{1}{g_{m2} + g_{mb2}}$$

$$= -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta}$$

$$\eta = g_{mb2}/g_{m2}$$

• Expressing g_{m1} and g_{m2} in terms of device dimensions,

$$A_v = -\sqrt{\frac{(W/L)_1}{(W/L)_2}} \frac{1}{1+\eta}$$

 This shows that gain is a weak function of bias currents and voltages, i.e., relatively linear input-output characteristic

Process Variations in CMOS

- Real-world is non-deterministic ...
- Additionally many parameters such as mobility (μ) is temperature sensitive
- We use term "PVT" dependent: Process-Voltage-Temperature sensitive
- There are all sort of process variations: wafer-to-wafer, chip-to-chip, etc.
- We normally model the variations using Gaussian models and simulate circuit performance using
 - Process corners such as: typical-typical, fast-fast, etc.
 - Monte-Carlo Simulations

"Golden" design rules to minimize the impacts of PVT variations:

- Rely on <u>ratios</u> as opposed to <u>absolute values</u>
- Make circuits <u>symmetric</u>

CS Stage with Diode-Connected Load

• From large-signal analysis,

$$\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}(V_{in}-V_{TH1})^{2} = \frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}(V_{DD}-V_{out}-V_{TH2})^{2}$$

$$\sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1}) = \sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2})$$

- For $V_{in} < V_{TH1}$, $V_{out} = V_{DD} V_{TH2}$
- When $V_{in} > V_{TH1}$, previous large-signal analysis predicts that V_{out} approximately follows a single line $V_{DD} V_{TH2}$
- As V_{in} exceeds V_{out} + V_{TH1} (to the right of point A), M_1 enters the triode region and the characteristic becomes nonlinear.

CS Stage with Diode-Connected PMOS device

- Diode-connected load can be implemented as a PMOS device, free of body-effect
- Small-signal voltage gain neglecting channel-length modulation

$$A_v = -\sqrt{\frac{\mu_n(W/L)_1}{\mu_p(W/L)_2}}$$

- Gain is a relatively weak function of device dimensions
- Since $\mu_n \approx 2\mu_p$, high gain requires "strong" input device (large W/L₁) and "weak" load device (small large W/L₂)
- Voltage-swing?

CS Stage with Current-Source Load

- Current-source load allows a high load resistance without limiting output swing
- Voltage gain ?

• Overdrive of M_2 can be reduced by increasing its width, r_{o2} can be increased by increasing its length

CS Stage with Current-Source Load

Output bias voltage is not well-defined (why?)

• Intrinsic gain of M_1 decreases with I_D (Why?)

Summary of CS Amps.

CS Stage with Active Load

- Input signal is also applied to gate of load device, making it an "active" load
- M_1 and M_2 operate in parallel and enhance the voltage gain
- From small-signal equivalent circuit,

$$-(g_{m1} + g_{m2})V_{in}(r_{O1}||r_{O2}) = V_{out}$$
$$A_v = -(g_{m1} + g_{m2})(r_{O1}||r_{O2})$$

- Same output resistance as CS stage with current-source load, but higher transconductance
- Bias current of M_1 and M_2 is a strong function of PVT (why?)

Lemma

- In a linear circuit, the voltage gain is equal to $-G_mR_{out}$
 - $-G_m$ denotes the transconductance of the circuit when output is shorted to ground
 - R_{out} represents the output resistance of the circuit when the input voltage is set to zero
- Norton equivalent of a linear circuit

Using the Lemma ...

1. Find G_m

2. Find R_{out}

3.
$$Gain=-G_mR_{out}$$

- Degeneration resistor R_S in series with source terminal makes input device more linear
 - As V_{in} increases, so do I_D and the voltage drop across R_S
 - Part of the change in V_{in} appears across R_S rather than gate-source overdrive, making variation in I_D smoother
- Gain is now a weaker function of g_m

- Nonlinearity of circuit is due to nonlinear dependence of I_D (and consequently g_m) upon V_{in}
- Equivalent transconductance G_m of the circuit can be defied as

$$V_{in} = V_1 + I_{out} R_S$$
$$I_D = g_m V_1$$

$$G_m = \frac{g_m}{1 + g_m R_S}$$

$$A_v = -G_m R_D$$

$$= \frac{-g_m R_D}{1 + g_m R_S}$$

$$A_v = -G_m R_D$$
$$= \frac{-g_m R_D}{1 + g_m R_S}$$

- As R_S increases, G_m becomes a weaker function of g_m and hence I_D
- For $R_S\gg 1/g_m$, $G_m\approx 1/R_S$, i.e., $\Delta I_D\approx \Delta V_{in}/R_S$.
- Most of the change in V_{in} across R_S and drain current becomes a "linearized" function of input voltage

• Including body-effect and channel-length modulation, G_m is found from modified small-signal equivalent circuit

$$V_{in} = V_1 + I_{out} R_S$$
 $I_{out} = g_m V_1 - g_{mb} V_X - \frac{I_{out} R_S}{r_O}$
 $G_m = \frac{I_{out}}{V_{in}}$
 $= g_m (V_{in} - I_{out} R_S) + g_{mb} (-I_{out} R_S) - \frac{I_{out} R_S}{r_O}$
 $= \frac{g_m r_O}{R_S + [1 + (g_m + g_{mb})R_S]r_O}$

CS Stage with Source Degeneration: Large-signal Behavior

• I_D and g_m vary with V_{in} as derived in calculations in Chapter 2

- At low current levels, turn-on behavior is similar to when R_S =0 since $1/g_m\gg R_S$ and hence $G_m\approx g_m$
- As overdrive and g_m increase, effect of R_S becomes more significant

Small-signal derived previously can be written as

$$A_v = -\frac{R_D}{\frac{1}{g_m} + R_S}$$

- Denominator = Series combination of inverse transconductance + explicit resistance seen from source to ground
- Called "resistance seen in the source path"
- Magnitude of gain = Resistance seen at the drain/ Total resistance seen in the source path

• Degeneration causes increase in output resistance

• Ignoring R_D and including body effect in small-signal equivalent model,

$$V_1 = -I_X R_S$$
.
 $I_X - (g_m + g_{mb}) V_1 = I_X + (g_m + g_{mb}) R_S I_X$
 $r_O[I_X + (g_m + g_{mb}) R_S I_X] + I_X R_S = V_X$

$$R_{out} = [1 + (g_m + g_{mb})R_S]r_O + R_S$$
$$= [1 + (g_m + g_{mb})r_O]R_S + r_O$$

- r_o is boosted by a factor of $\{1 + (g_m + g_{mb})R_S\}$ and then added to R_S
- Alternatively, R_S is boosted by a factor of $\{1 + (g_m + g_{mb})r_o\}$ and then added to r_o

• Compare $R_S = 0$ with $R_S > 0$

- If $R_S = 0$, $g_m V_1 = g_{mb} V_{bs} = 0$ and $I_X = V_X/r_O$
- If $R_S > 0$, $I_X R_S > 0$ and $V_1 < 0$, obtaining negative $g_m V_1$ and $g_{mb} V_{bs}$
- Thus, current supplied by V_X is less than V_X/r_o and hence output impedance is greater than r_o

- To compute gain in the general case including body effect and channel-length modulation, consider above small-signal model
- From KVL at input,

$$V_1 = V_{in} + V_{out}R_S/R_D$$

KCL at output gives

$$I_{ro} = -\frac{V_{out}}{R_D} - (g_m V_1 + g_{mb} V_{bs})$$

$$= -\frac{V_{out}}{R_D} - \left[g_m \left(V_{in} + V_{out} \frac{R_S}{R_D} \right) + g_{mb} V_{out} \frac{R_S}{R_D} \right]$$

• Since voltage drops across r_O and R_S must add up to V_{out} ,

$$\begin{aligned} V_{out} &= I_{ro} r_O - \frac{V_{out}}{R_D} R_S \\ &= -\frac{V_{out}}{R_D} r_O - \left[g_m \left(V_{in} + V_{out} \frac{R_S}{R_D} \right) + g_{mb} V_{out} \frac{R_S}{R_D} \right] r_O - V_{out} \frac{R_S}{R_D} \end{aligned}$$

Voltage gain is therefore

$$\frac{V_{out}}{V_{in}} = \frac{-g_m r_O R_D}{R_D + R_S + r_O + (g_m + g_{mb}) R_S r_O}$$

• Calculate the gain using the lemma $(A_v = -G_m R_{out})$:

