Для передачи сложных уплотненных цифровых сигналов в сетях связи используется плезиохронная цифровая иерархия (ПЦИ). В технологии ПЦИ в качестве входного используется сигнал основного цифрового канала (ОЦК), а на выходе формируется поток данных со скоростями $n \times 64$ кбит/с. К группе ОЦК, несущих полезную нагрузку, добавляются служебные группы бит, необходимые для осуществления процедур синхронизации и фазирования, сигнализации, контроля ошибок (CRC), в результате чего группа приобретает форму цикла. В начале 80-х годов было разработано 3 таких системы (в Европе, Северной Америке и Японии). Несмотря на одинаковые принципы, в системах использовались различные коэффициенты мультиплексирования на разных уровнях иерархий.

Уровень цифровой иерархии	Обозначения		
	Американский стандарт (Т <i>x</i>)	Японский стандарт (DS <i>x</i>) J <i>x</i>	Европейский стандарт (Е <i>х</i>)
1, первичный	T1	DS1, J1	E1
2, вторичный	T2	DS2, J2	E2
3, третичный	Т3	DS3, J3	E3
4, четвертичный	T4	DS4, J4	E4

Уровень цифровой иерархии	Скорости передачи, соответствующие различным системам цифровой иерархии, кбит/с			
	Американский стандарт (Т <i>x</i>)	Японский стандарт (DS <i>x</i>) J <i>x</i>	Европейский стандарт (Е <i>х</i>)	
1, первичный	1544	1544	2048	
2, вторичный	6312	6312	8448 (4x2048 + 256)	
3, третичный	44736	32064	34368 (4x8448 + 576)	
4, четвертичный	274176	97728	139264 (4x34368 + 1792)	

Эффективность работы систем связи во многом предопределяется качеством линий связи, их свойствами и параметрами и зависимостью этих величин от

частоты и воздействия различных факторов, включая мешающие влияния сторонних электромагнитных полей.

Различают два основных типа линий связи:

- линии в атмосфере (радиолинии);
- направляющие линии передачи (линии связи).

Последний тип линий связи и является предметом изучения даннойдисциплины. Его особенностью является распространение сигналов от одного абонента к другому по специально созданным цепям и трактам.

К достоинствам направляющих линий связи можно отнести то, что они обеспечивают:

- требуемое качество передачи сигналов;
- высокую скорость передачи;
- большую защищенность от влияния сторонних полей;
- заданную степень электромагнитной совместимости;
- относительную простоту оконечных устройств.

Недостатки направляющих линий связи определяются высокой стоимостью капитальных и эксплуатационных расходов, а также относительно длительными сроками установления связи. Линии связи не противопоставляются радиолиниям, а дополняют их в ЕСЭ. Примером этого является то, что во всех сетях мобильной связи используются проводные линии связи, с помощью которых осуществляется передача сигналов между различными частями сетей.

Кабельные и воздушные линии относятся к проводным линиям, у которых направляющие системы образуются системами «проводник диэлектрик», а волоконно-оптические представляют собой диэлектрические волноводы, направляющая система которых состоит из диэлектриков с различными показателями преломления. Проводные линии связи работают в килогерцевом и мегагерцевом диапазонах частот. Кабельные линии обеспечивают надежную и помехозащищенную многоканальную связь на требуемые расстояния. При организации связи используются коаксиальные и симметричные кабели. Волоконно-оптические линии связи представляют собой системы для передачи световых сигналов микроволнового диапазона волн (λ =0,8... 1,6 мкм) по оптическим кабелям и являются наиболее зрения дальнейшего перспективными с точки развития ЕСЭ Достоинствами ВОЛС являются

- низкие потери;
- большая пропускная способность;
- малые масса и габаритные размеры;
- экономия цветных металлов;
- высокая степень защищенности от внешних и взаимных помех.

Кроме вышеперечисленных систем передачи существуют также волноводы; ленточные кабели, полосковые линии; радиочастотные кабели.

1.1. Классификация направляющих систем

Направляющей системой, ИЛИ линией передачи, электродинамике называется система тел, обеспечивающих перенос энергии определённом направлении. В качестве электромагнитного ПОЛЯ В элементов таких

систем, направляющих поток энергии в нужном направлении, обычно выступают какие-либо металлические или диэлектрические поверхности.

Волна, распространяющаяся в направляющей системе, называется направляемой волной. Структура электромагнитного поля направляемых волн отличается от структуры поля волн, распространяющихся в свободном (безграничном) пространстве. Поле направляемой волны должно

удовлетворять не только уравнениям Максвелла, но и граничным условиям, задаваемым структурой линии передачи.

Регулярными называют направляющие системы, у которых поперечное сечение и другие параметры в продольном направлении неизменны или изменяются по периодическому закону. В первом случае систему

называют однородной, во втором- периодической.

В направляющих системах открытого типа поле, строго говоря, распределено во всём пространстве, однако большая часть его энергии локализуется вблизи направляющих элементов системы. В направляющих системах закрытого типа поле существует в области, отделённой от остального пространства металлической оболочкой.

На рис. 1.1 изображены поперечные сечения некоторых практически направляющих систем: двухпроводной линии(а); полых металлических волноводов прямоугольного(б) круглого(в) сечений; коаксиальной(г) полосковой(д) линий передачи; И круглого диэлектрического волновода(е).

На низких частотах (1 Гц...100 кГц) широко используются открытые двухпроводные линии передачи. На более высоких частотах возрастают потери за счёт излучения энергии в окружающее пространство. Для уменьшения потерь переходят к закрытым линиям передачи, вводя металлические экраны. В диапазоне от100 кГц до3 ГГц, как правило, используются коаксиальные линии передачи, а на частотах свыше ГГцполые металлические волноводы с различной формой сечения, которые перекрывают сантиметровый и частично миллиметровый диапазоны длин волн. С уменьшением длины волны уменьшаются размеры волновода и повыша-ются требования к качеству поверхности стенок, что создаёт трудности при их изготовлении. Поэтому в миллиметровом диапазоне (на частотах свыше10...15 ГГц) волноводы вытесняются диэлектрическими прозрачных материалов, волноводами ИЗ В которых полностью отсутствуют металлические поверхности.

Рис. 1.1

1.2. Классификация направляемых волн

Направляемая волна в любой точке пространства характеризуется двумя векторами поля E и H или шестью их проекциями на координатные оси. Продольную координату, отсчитываемую в направлении распространения волны, будем обозначать буквой z. Для переноса энергии в направлении Oz вектор Пойнтинга $\mathbf{\Pi} = [\mathbf{E}, \mathbf{H}]$ должен иметь продольную составляющую Π_z . Для этого поле волны обязано содержать хотя бы одну пару поперечных составляющих E_\perp , H_\perp . Направляемые волны классифицируются в зависимости от наличия или отсутствия в них продольных составляющих E_z и H_z векторов электрического и магнитного полей. Здесь возможны четыре случая:

- 1. Т-волны (волны типа T, поперечные волны), у которых оба вектораE и H перпендикулярны оси Oz и не имеют продольных составляющих: E_z =0, H_z = 0. Аббревиатура T происходит от английского Transverse Electromagnetic. Примером T-волны является плоская электромагнитная волна в неограниченном пространстве. C помощью T-волн переносится энергия в двухпроводных, коаксиальных и полосковых линиях передачи.
- 2. Н-волны, или волны типа H, имеющие продольную составляющую вектора напряженности магнитного поля E $_z$ =0, H $_z$ \neq e. Такие волны существуют в пустотелых металлических волноводах.
- 3. Е-волны (Transverse Magnetic), или волны типа E, у которых E $_z \neq 0$, H $_z = 0$. Волны полых металлических волноводов могут быть только волнами типа E или H.
- 4. Смешанные (гибридные) волны, обладающие обеими продольными составляющими $E_z \neq 0$, $H_z \neq 0$. Такие волны существуют в диэлектрических волноводах прямоугольного и круглого сечения, в волоконно-оптических линиях связи) ВОЛС).