Voltage Regulators

LM79MXX Series 3-Terminal Negative Regulators

General Description

The LM79MXX series of 3-terminal regulators is available with fixed output voltages of -5V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79MXX series is packaged in the TO-202 power package and TO-5 metal can and is capable of supplying 0.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current

drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output current
- 4% preset output voltage

Typical Applications

·	(—15)	(+15)		
Load Regulation at 0.5A	40 mV	2 mV		
Output Ripple, CIN = 3000µF, IL = 0.5A	100µ∨rms	100µ∨rms		
Temperature Stability	50 mV	50 mV		
Output Noise 10 Hz \leq f \leq 10 kHz	150µVrms	150µVrms		

- *Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs
- **Necessary only if raw supply filter capacitors are more than 3" from regulators

Fixed Regulator

- *Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.
- A Required for stability. For value given, capacitor must be solid tantalum. 25μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of $100\mu F$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

Variable Output + c3* - 25,F - 7ANTALUM INPUT O 3 LM79MXXCP 2 0 0UTPUT

*Improves transient response and ripple rejection. Do not increase beyond 50µF.

$$V_{OUT} = V_{SET} \left(\frac{R1 + R2}{R2} \right)$$

Select R2 as follows:

LM79M05CP	300Ω
LM79M12CP	750Ω
LM79M15CP	1k

Absolute Maximum Ratings

Input Voltage $(V_0 = 5V)$ 25V $(V_0 = 12V \text{ and } 15V)$ -35V Input/Output Differential $(V_0 = 5V \text{ to } 8V)$ 25V (V_O = 12V and 15V) Power Dissipation 30V Internally Limited Operating Junction Temperature Range 0°C to +125°C Storage Temperature Range -65°C to +150°C 230°C Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics Conditions unless otherwise noted: $I_{OUT} = 350$ mA, $C_{IN} = 2.2 \mu F$, $C_{OUT} = 1 \mu F$, $0 \, ^{\circ}C \le Ti \le +125 \, ^{\circ}C$

PART	NUMBER	1	LM79M050	•	LM7	9M12C		LN	179M15	C	
OUTPUT VOLTAGE		-5V		– 12V		- 15V					
INPU	T VOLTAGE (unless other	rwise specified)	" - 10V"		: _	19V			- 23V		UNITS
	PARAMETER	CONDITIONS	MIN TYP	MAX	MIN T	TYP N	ΙÁΧ	MIN	TYP	MAX	
Vo	Output Voltage	Tj = 25°C	-4.8 -5.0	-5.2	-11.5 -	12.0 -	12.5	-14.4	-15.0	- 15.6	V
		5 mA ≤ I _{OUT} ≤ 350 mA	-4.75 (-25 ≤ V _{IN} ≤	- 5.'25 - 7)	-11.4 (-27 ≤ V		12.6 4.5)		V _{IN} ≤	- 15.75 17.5)	V
△V _O	Line Regulation	Tj = 25 °C, (Note 2)	8 `(-25 ≤ V _{IN} ≤ 2 . (-18 ≤ V _{IN} ≤	30	(-30 ≤ V	'IN ≤ -1 3	30	(- ≤	3	50	mV V mV V
∆V ₀ .	Load Regulation	Tj = 25 °C, (Note 2) 5 mA ≤ I _{OUT} ≤ 0.5A	30	100		30 2	240		30	240	mV
IQ	Quiescent Current	Tj = 25 °C	, 1	2		1.5	3		1.5	3	mA
ΔIQ	Quiescent Current Change	With Line With Load,	(-25 ≤ V _{IN} ≤	0.4 -8)	(-30 € V		0.4 (4.5)	(-30	< V _{IN} <	0.4 -27)	mA V
		5 mA ≤ I _{OUT} ≤ 350 mA		0.4			0.4			0.4	mA
V _n	, Output Noise Voltage	$TA = 25 ^{\circ}C$, 10 Hz $\leq f \leq$ 100 Hz	750		4	400			400		μV
-	Ripple Rejection	f = 120 Hz	54 66 (-18 ≤ V _{IN} ≤	-8)	54 (-25 ≤ ¹	70 V _{IN} ≤ -	15)	54 (-30 ≤	70 V _{IN} ≤	- 17.5)	dB V
	Dropout Voltage	Tj = 25 °C, I _{OUT} = 0.5A	1.1			1.1			1.1		٧
IOMA	x Peak Output Current	Tj = 25 °C	800		. 8	800			800	,	Α
	Average Temperature Coefficient of Output Voltage	I _{OUT} = 5 mA, 0°C ≤ Tj ≤ 100°C	0.4		-	-0.8			- 1.0		mV/°C

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient (θ_{JA}) is 70 °C/W (no heat sink) and 12 °C/W (infinite heat sink).

Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Connection Diagrams

Metal Can Package TO-39 (H) Order Number:

LM79M05CH LM79M12CH LM79M15CH See NS Package H03A

Power Package TO-202 (P)

Order Number:

LM79M05CP LM79M12CP LM79M15CP

See NS Package P03A

For Tab Bend TO-202 Order Number:

LM79M05CP TB

LM79M12CP TB LM79M12CP TB LM79M15CP TB

See NS Package P03E