Correction Examen (session 1 2022-2023)

Exercice 1.

a) Si |z| < 1, alors pour tout $n \in \mathbb{N}$, on a $|z|^{n!} \leq |z|^n$, donc

$$f(|z|) \le \sum_{n=0}^{\infty} |z|^n = \frac{1}{1 - |z|}$$

qui est fini, la série définissant f(z) est donc convergente. De même, si |z| > 1, on a $|z|^{n!} \ge |z|^n$ pour tout $n \in \mathbb{N}$, donc

$$f(|z|) \geqslant \sum_{n=0}^{\infty} |z|^n = +\infty$$

la série définissant f(z) est donc non convergente. Le rayon de convergence de la série définissant f est donc égal à 1.

b.1) Soit $U \subset D$ un ouvert contenant z. La fonction g se restreint en une fonction holomorphe sur U. Soit $(r_n)_{n\in\mathbb{N}}$ une suite convergeant vers 1 avec $r_n < 1$ pour tout $n \in \mathbb{N}$. Pour n assez grand, on a $r_n e^{i\varphi} \in U$ car U est un voisinage de z (définition d'une suite convergente). Pour n assez grand, on a donc $f(r_n e^{i\varphi}) = g(r_n e^{i\varphi})$. Cette dernière suite converge vers g(z) par continuité de g. Ceci étant vrai quelle que soit la suite $(r_n)_{n\in\mathbb{N}}$, on obtient

$$\lim_{\substack{r \to 1 \\ r < 1}} f(re^{i\varphi}) = g(z)$$

la limite est en particulier bien définie.

b.2) On sait que l'application

$$s: \mathbb{R} \longrightarrow \partial B_1(0)\{z \in \mathbb{C} \mid |z| = 1\}$$

 $x \longmapsto e^{2i\pi x}$

est continue. L'ensemble E est l'image de \mathbb{Q} par s. Si F est un fermé contenant E, $s^{-1}(F)$ est un fermé de \mathbb{R} contenant \mathbb{Q} : on a $F = \mathbb{R}$ et $F = \{z \in \mathbb{C} \mid |z| = 1\} = \partial B_1(0)$, d'où le résultat.

On montre ensuite que $D \cap \partial B_1(0)$ est non vide. Par hypothèse, il existe $x \in D \cap B_1(0)$, et $y \in D \setminus B_1(0)$. Comme D est un ouvert de $\mathbb{C} \simeq \mathbb{R}^2$, sa connexité entraı̂ne sa connexité par arc : il existe un chemin $\gamma : [0,1] \to D$ tel que $\gamma(0) = x$ et $\gamma(1) = y$. Comme $t \mapsto |\gamma(t)|$ est une fonction continue telle que $|\gamma(0)| = |x| < 1$ et $|\gamma(1)| = |y| > 1$. Par le théorème des valeurs intermédiaires, il existe un certain $t_0 \in [0,1]$ tel que $|\gamma(t_0)| = 1$. L'élément $\gamma(t_0)$ est donc un élément de $D \cap \partial B_1(0)$ par définition.

Comme D est un ouvert, $D \cap \partial B_1(0)$ est un ouvert de $\partial B_1(0)$ (topologie induite). Comme l'ensemble E est dense, il existe un élément $re^{2i\pi\frac{\ell}{k}} \in E \cap D \cap \partial B_1(0)$ comme annoncé. On conclut alors que la limite étudiée existe en utilisant la question précédente.

Enfin, pour $r \in]0,1[$, on a

$$\left| \sum_{\nu=0}^{k-1} (re^{2i\pi\varphi})^{\nu!} \right| \leqslant \sum_{\nu=0}^{k-1} \left| re^{2i\pi\varphi} \right|^{\nu!} = \sum_{\nu=0}^{k-1} 1^{\nu!} = k$$

b.4) Pour $\nu \ge k$, l'entier k divise $\nu!$, donc $\varphi \nu!$ est un entier et

$$(e^{2i\pi\varphi})^{\nu!} = e^{2i\pi(\varphi\nu!)} = 1$$

On a donc, pour $r \in]0,1[$ et m > k,

$$\sum_{\nu=k}^{\infty} (re^{2i\pi\varphi})^{\nu!} = \sum_{\nu=k}^{m} (re^{2i\pi\varphi})^{\nu!} + \sum_{\nu=m+1}^{\infty} (re^{2i\pi\varphi})^{\nu!}$$

$$= \sum_{\nu=k}^{m} r^{\nu!} + \sum_{\nu=m+1}^{\infty} r^{\nu!}$$

$$\geq \sum_{\nu=k}^{m} r^{k!}$$

$$= (m-k+1)r^{k!}$$

En passant à la liminf quand $r \to 1$, r < 1, on obtient bien le résultat voulu. Ce dernier résultat étant vrai quelle que soit la valeur de m > k, on obtient en passant à la limite $m \to +\infty$ que

$$\liminf_{\substack{r \to 1 \\ r < 1}} \left(\sum_{\nu=k}^{\infty} \left(re^{2i\pi\varphi} \right)^{\nu!} \right) = +\infty$$

Ceci est en contradiction avec le fait que la limite $\lim_{r\to 1,r<1} f(re^{2i\pi\varphi})$ existe et soit finie. On en déduit qu'il n'existe pas de domaine D tel qu'annoncé.

c) Par définition, on a

$$\sum_{\nu=0}^{\infty} \left(\frac{1}{1-a} \right)^{\nu+1} (z-a)^{\nu} = \frac{1}{1-a} \sum_{\nu=0}^{\infty} \left(\frac{1}{1-a} \right)^{\nu} (z-a)^{\nu} = \frac{1}{1-a} \sum_{\nu=0}^{\infty} \left(\frac{z-a}{1-a} \right)^{\nu}$$

La dernière série obtenue étant géométrique, la première série considérée converge si et seulement si

$$\left|\frac{z-a}{1-a}\right| < 1 \Leftrightarrow |z-a| < |1-a| \Leftrightarrow z \in B_{|1-a|}(a).$$

Autrement dit la série considérée a |1-a| pour rayon de convergence (autour du point a).

Si $z \in B_1(a)$, on peut utiliser la formule des sommes d'une série géométrique. On obtient :

$$\sum_{\nu=0}^{\infty} \left(\frac{1}{1-a} \right)^{\nu+1} (z-a)^{\nu} = \frac{1}{1-a} \sum_{\nu=0}^{\infty} \left(\frac{z-a}{1-a} \right)^{\nu}$$

$$= \frac{1}{1-a} \frac{1}{1-\frac{z-a}{1-a}} \qquad \qquad = \frac{1}{1-a-(z-a)} = \frac{1}{1-z}$$

On remarque que cette dernière expression ne dépend pas du point a. La série entière considérée est en fait le développement en série entière de la fonction $z\mapsto \frac{1}{1-z}$ autour du point a. En particulier, pour a=0, on trouve la série $\sum_{\nu=0}^{\infty}z^{\nu}$.

En considérant a = -1, on trouve la série

$$\sum_{\nu=0}^{\infty} \frac{(z+1)^{\nu}}{2^{\nu+1}}$$

qui converge sur le domaine $D = B_2(-1)$. Ce domaine contient strictement $B_1(0)$, et on a le résultat voulu : pour $z \in B_1(0)$, on a

$$\sum_{\nu=0}^{\infty} \frac{(z+1)^{\nu}}{2^{\nu+1}} = \frac{1}{1-z} = \sum_{\nu=0}^{\infty} z^{\nu}$$

Exercice 2.

a) Pour tout $t \in [0,1]$, on a $\gamma(t) \in U$, donc il existe une boule ouverte $U_t \subset U$ qui contient $\gamma(t)$. Quitte à diviser le rayon de U_t par 2, on peut supposer que $\overline{U_t} \subset U$. La réunion $\bigcup_{t \in [0,1]} U_t$ est un recouvrement ouvert

de $|\gamma|$. Comme $|\gamma|$ est compact (image du compact [0,1] par l'application continue γ), il existe une famille finie $t_1, \ldots, t_n \subset [0,1]$ telle que $V := U_{t_1} \cup \cdots \cup U_{t_n} \supset |\gamma|$.

Comme la famille t_1, \ldots, t_n est finie, $\bigcup_{i \in [\![1,n]\!]} \overline{U_{t_i}}$ est un fermé borné inclus dans U et qui contient V. L'adhérence \overline{V} de V est donc un compact contenant $|\gamma|$ et inclus dans U.

La fonction méromorphe f s'écrit comme un quotient $f = \frac{f_1}{f_2}$, où f_1, f_2 sont des fonctions holomorphes sur U. Les pôles et singularités enlevables de f sont les zéros de f_2 . Comme f_2 est non nulle sur V (elle ne s'annule pas sur $|\gamma| \subset V$), ses zéros forment un ensemble de points isolés. Comme \overline{V} est compact, les zéros de f_2 se trouvant dans \overline{V} forment un ensemble de points isolés dans un ensemble compact : un tel ensemble est toujours fini. Soient b_1, \ldots, b_m les zéros de f_2 sur \overline{V} , la fonction $f = \frac{f_1}{f_2}$ est holomorphe sur $V \setminus \{b_1, \ldots, b_m\}$ comme quotient de deux fonctions holomorphes dont le dénominateur ne s'annule pas.

On montre de même que f_1 (donc f) admet un nombre fini de zéros sur V.

b) Si a est un zéro d'ordre k de f, la fonction f s'écrit $(z-a)^k f_1$ où f_1 est une fonction méromorphe ne s'annulant pas en a. Si k=1, alors

On obtient en dérivant

$$\forall z \in V \setminus \{b_1, \dots, b_m\}, \ f'(z) = k(z-a)^{k-1} f_1(z) + (z-a)^k f_1'(z)$$

On a alors, au voisinage de a (où $f_1(z)$ ne s'annule pas)

$$g(z)\frac{f'(z)}{f(z)} = g(z)\frac{kf_1(z) + (z-a)f_1'(z)}{(z-a)f_1(z)} = \frac{kg(z)}{z-a} + g(z)\frac{f_1'(z)}{f_1(z)}$$

Cette dernière fonction admet une singularité enlevable en a si g(a) = 0, et un pôle d'ordre 1 dans les autres cas.

- c) Si g(a) = 0, la fonction $g\frac{f'}{f}$ admet une singularité enlevable en 0, le résidus de $g\frac{f'}{f}$ en cette singularité est donc 0 = kg(a). Autrement, comme a est un pôle simple, le résidus de $g\frac{f'}{f}$ en a est donné par la valeur de $(z a)g\frac{f'}{f}$ en a. D'après la question précédente, cette valeur est kg(a).
- d) Comme dans la question précédente, si b est un pôle d'ordre k de f, alors au f(z) s'écrit $f_2(z)(z-b)^{-k}$, où $f_2(z)$ est une fonction holomorphe sur $(V \setminus \{b_1, \ldots, b_m\}) \cup \{b\}$ qui ne s'annule pas en b. On a alors, au voisinage de b

$$g(z)\frac{f'(z)}{f(z)} = g(z)\left(\frac{f'_2(z)}{f_2(z)} - \frac{k}{z-b}\right)$$

cette fonction a une singularité enlevable en b si g(b) = 0, et un pôle simple en b sinon. On calcule le résidus de $g\frac{f'}{f}$ en b comme dans la question c) pour obtenir le résultat voulu.

- e) C'est une application immédiate du théorème des résidus et des deux questions précédentes (U est simplement connexe).
- f) La fonction $\gamma:[0,1] \to U$ est de classe \mathcal{C}^1 par morceaux. Comme f est holomorphe au voisinage de $|\gamma|$ (car $|\gamma|$ ne contient aucun pôle de f, et ces derniers sont isolés), elle est de classe \mathcal{C}^1 , la composée $f \circ \gamma$ est donc aussi de classe \mathcal{C}^1 par morceaux. De plus, comme $|\gamma|$ ne contient aucun zéro de f, $f \circ \gamma$ ne s'annule pas sur [0,1]. Ensuite, par définition de l'indice et de l'intégrale curviligne, on a

$$\operatorname{ind}_{f \circ \gamma}(0) = \frac{1}{2i\pi} \int_{f \circ \gamma} \frac{1}{z} dz = \frac{1}{2i\pi} \int_0^1 \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) dt = \frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

On obtient le résultat en appliquant la formule de la question précédente pour la fonction g = 1.

g) Si γ est le bord d'un disque (parcourus une fois), les indices des points intérieurs de γ sont tous égaux à 1, on obtient alors

$$\inf_{f \circ \partial B_r(z_0)}(0) = \frac{1}{2i\pi} \int_{\partial B_r(z_0)} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^m \sigma_{a_k}(f) - \sum_{j=1}^n \nu_{b_j}(f)$$

où $\{a_1,\ldots,a_m\}$ sont les zéros de f dans $B_r(z_0)$, et $\{b_1,\ldots,b_n\}$ sont les pôles de f sur $B_r(z_0)$. Considérons la fonction f, définie par

$$f(z) = (z-1)^n + \frac{1}{(z+1)^n} = \frac{(z-1)^n (z+1)^n + 1}{(z+1)^n} = \frac{(z^2-1)^n + 1}{(z+1)^n}$$

On étudie d'abord les zéros et les pôles de f. On pose $f_1(z) := (z^2 - 1)^n + 1$ et $f_2(z) = (z + 1)^n$. Comme la f_1 ne s'annule pas en -1, la fonction f admet un unique pôle, d'ordre n, en -1.

Ensuite, la fonction f s'annule en z si et seulement si le polynôme f_1 s'annule en z. On montre que f_1 admet 2n racines distinctes dans \mathbb{C} . On calcule $f_1'(z) = 2nz(z^2-1)^{n-1}$. Ce dernier polynôme admet trois racines (sans multiplicité) : 0, 1 et -1. On constate immédiatement qu'aucune de ces trois valeurs n'est une racine de $f_1(z)$. Autrement dit, $f_1(z)$ n'a aucune racine commune avec sa dérivée $f_1'(z)$. Les racines de f_1 sont donc simples, il y en a 2n car $f_1 \in \mathbb{C}[z]$ est de degré 2n.

On montre maintenant que les racines de $f_1(z)$ (autrement dit, les zéros de f) se trouvent toutes dans $B_3(0)$. Soit $z \in \mathbb{C}$, on a

$$f_1(z) = 0 \Leftrightarrow (z^2 - 1)^n = -1 \Rightarrow |z^2 - 1| = |z - 1||z + 1| = 1$$

Soit z une racine de f_1 :

- Si $|z-1| \le 1$, alors $z \in B_1(1) \subset B_2(0) \subset B_3(0)$.
- Si |z-1| > 1, alors |z+1||z-1| = 1 entraı̂ne |z+1| = |z-(-1)| < 1, donc $z \in B_1(-1) \subset B_3(0)$.

D'après la question précédente, on obtient alors

$$\forall n \in \mathbb{N}, \frac{1}{2i\pi} \int_{\partial B_3(0)} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{2n} 1 - \sum_{v=1}^{1} n = 2n - n = n$$