Tip: Welcome to the Investigate a Dataset project! You will find tips in quoted sections like this to help organize your approach to your investigation. Before submitting your project, it will be a good idea to go back through your report and remove these sections to make the presentation of your work as tidy as possible. First things first, you might want to double-click this Markdown cell and change the title so that it reflects your dataset and investigation.

Project: Investigate a Dataset (Replace this with something more specific!)

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

Tip: In this section of the report, provide a brief introduction to the dataset you've selected for analysis. At the end of this section, describe the questions that you plan on exploring over the course of the report. Try to build your report around the analysis of at least one dependent variable and three independent variables.

If you haven't yet selected and downloaded your data, make sure you do that first before coming back here. If you're not sure what questions to ask right now, then make sure you familiarize yourself with the variables and the dataset context for ideas of what to explore.

```
In [ ]:
# Use this cell to set up import statements for all of the pac
kages that you
```

```
# plan to use.

# Remember to include a 'magic word' so that your visualizatio
ns are plotted
# inline with the notebook. See this page for more:
# http://ipython.readthedocs.io/en/stable/interactive/magics
.html
```

Data Wrangling

Tip: In this section of the report, you will load in the data, check for cleanliness, and then trim and clean your dataset for analysis. Make sure that you document your steps carefully and justify your cleaning decisions.

General Properties

In [46]:

```
# Load your data and print out a few lines. Perform operations
to inspect data
# types and look for instances of missing or possibly errant
data.
import pandas as pd
df_GunData = pd.read_excel('gun-data.xlsx')
df_Census_data = pd.read_csv('u.s.-census-data.csv')
import matplotlib.pyplot as plt
```

Tip: You should *not* perform too many operations in each cell. Create cells freely to explore your data. One option that you can take with this project is to do a lot of explorations in an initial notebook. These don't have to be organized, but make sure you use enough comments to understand the purpose of each code cell. Then, after you're done with your analysis, create a duplicate notebook where you will trim the excess and organize your steps so that you have a flowing, cohesive report.

Tip: Make sure that you keep your reader informed on the steps that you are taking in your investigation. Follow every code cell, or every set of related code cells, with a markdown cell to describe to the reader what was found in the preceding cell(s). Try to make it so that the reader can then understand what they will be seeing in the following cell(s).

Data Cleaning (Replace this with more specific notes!)

In [22]:

After discussing the structure of the data and any problems
that need to be
cleaned, perform those cleaning steps in the second part o
f this section.

#previw the data
df_GunData.head()

Out[22]:

	month	state	permit	permit_recheck	handgun	long_gun	(
0	2017- 09	Alabama	16717.0	0.0	5734.0	6320.0	
1	2017- 09	Alaska	209.0	2.0	2320.0	2930.0	1
2	2017- 09	Arizona	5069.0	382.0	11063.0	7946.0	(
3	2017- 09	Arkansas	2935.0	632.0	4347.0	6063.0	-
4	2017- 09	California	57839.0	0.0	37165.0	24581.0	29

5 rows × 27 columns

In []:

In [24]:

df_GunData.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12485 entries, 0 to 12484
Data columns (total 27 columns):
                              12485 non-null object
month
                              12485 non-null object
state
                              12461 non-null float6
permit
4
                              1100 non-null float64
permit recheck
                              12465 non-null float6
handgun
                              12466 non-null float6
long gun
                              5500 non-null float64
other
                              12485 non-null int64
multiple
                              12462 non-null float6
admin
4
prepawn handgun
                              10542 non-null float6
prepawn_long_gun
                              10540 non-null float6
prepawn other
                              5115 non-null float64
                              10545 non-null float6
redemption handgun
                              10544 non-null float6
redemption long gun
                              5115 non-null float64
redemption other
                              2200 non-null float64
returned handgun
returned long gun
                              2145 non-null float64
returned other
                              1815 non-null float64
rentals handgun
                              990 non-null float64
rentals long gun
                              825 non-null float64
private_sale_handgun
                              2750 non-null float64
private sale long gun
                              2750 non-null float64
private sale other
                              2750 non-null float64
return_to_seller_handgun
                              2475 non-null float64
                              2750 non-null float64
return to seller long gun
return to seller other
                              2255 non-null float64
totals
                              12485 non-null int64
dtypes: float64(23), int64(2), object(2)
memory usage: 2.6+ MB
```

In []:

In []:

In [25]:

df_Census_data .head()

Out[25]:

	Fact	Fact Note	Alabama	Alaska	Arizona	Arkansas	Califo
0	Population estimates, July 1, 2016, (V2016)	NaN	4,863,300	741,894	6,931,071	2,988,248	39,250,
1	Population estimates base, April 1, 2010, (V2	NaN	4,780,131	710,249	6,392,301	2,916,025	37,254,
2	Population, percent change - April 1, 2010 (es	NaN	1.70%	4.50%	8.40%	2.50%	5.4
3	Population, Census, April 1, 2010	NaN	4,779,736	710,231	6,392,017	2,915,918	37,253,
4	Persons under 5 years, percent, July 1, 2016,	NaN	6.00%	7.30%	6.30%	6.40%	6.3

5 rows × 52 columns

In []:

In [26]:

df_Census_data.info()

```
RangeIndex: 85 entries, 0 to 84
Data columns (total 52 columns):
                   80 non-null object
Fact
Fact Note
                   28 non-null object
Alabama
                   65 non-null object
Alaska
                   65 non-null object
Arizona
                   65 non-null object
Arkansas
                   65 non-null object
California
                   65 non-null object
                   65 non-null object
Colorado
Connecticut
                   65 non-null object
Delaware
                   65 non-null object
                   65 non-null object
Florida
Georgia
                   65 non-null object
Hawaii
                   65 non-null object
                   65 non-null object
Idaho
Illinois
                   65 non-null object
Indiana
                   65 non-null object
                   65 non-null object
Iowa
                   65 non-null object
Kansas
                   65 non-null object
Kentucky
Louisiana
                   65 non-null object
                   65 non-null object
Maine
                   65 non-null object
Maryland
Massachusetts
                   65 non-null object
Michigan
                   65 non-null object
                   65 non-null object
Minnesota
Mississippi
                   65 non-null object
Missouri
                   65 non-null object
                   65 non-null object
Montana
Nebraska
                   65 non-null object
Nevada
                   65 non-null object
New Hampshire
                   65 non-null object
New Jersey
                   65 non-null object
New Mexico
                   65 non-null object
New York
                   65 non-null object
North Carolina
                   65 non-null object
North Dakota
                   65 non-null object
                   65 non-null object
Ohio
Oklahoma
                   65 non-null object
Oregon
                   65 non-null object
Pennsylvania
                   65 non-null object
Rhode Island
                   65 non-null object
South Carolina
                   65 non-null object
South Dakota
                   65 non-null object
                   65 non-null object
Tennessee
                   65 non-null object
Texas
```

<class 'pandas.core.frame.DataFrame'>

```
Utah 65 non-null object
Vermont 65 non-null object
Virginia 65 non-null object
Washington 65 non-null object
West Virginia 65 non-null object
Wisconsin 65 non-null object
Wyoming 65 non-null object
dtypes: object (52)
```

dtypes: object(52)
memory usage: 34.6+ KB

In []:

In [28]:

#The gun table is sorted by the date. I want to see the data u
sing the state, so a groupby function is used as follows:
All I need is the permits, hand gun and long gun
groupedBySatate = df_GunData.groupby('state')['permit','handgu
n','long_gun'].sum()

In []:

In [29]:

#preview the groupby
groupedBySatate

Out[29]:

	permit	handgun	long_gun
state			
Alabama	1047441.0	2222037.0	2626029.0
Alaska	13352.0	434602.0	572174.0
Arizona	710509.0	1781468.0	1480762.0
Arkansas	507951.0	965584.0	1663256.0
California	6530543.0	5910880.0	5936770.0
Colorado	426970.0	2528422.0	2726033.0
Connecticut	1595270.0	879260.0	638096.0

Delaware	22720.0	208109.0	242235.0
District of Columbia	330.0	4570.0	605.0
Florida	1088802.0	5909952.0	3829090.0
Georgia	1786708.0	2127777.0	2288386.0
Guam	0.0	7642.0	6035.0
Hawaii	197321.0	3.0	35.0
Idaho	369220.0	471836.0	881447.0
Illinois	9498639.0	2434983.0	2289041.0
Indiana	2965760.0	2181274.0	2336722.0
lowa	1467974.0	18512.0	773606.0
Kansas	155471.0	931302.0	1289902.0
Kentucky	24926779.0	1753246.0	2239863.0
Louisiana	84376.0	1798366.0	2291899.0
Maine	17260.0	439753.0	716039.0
Mariana Islands	0.0	249.0	182.0
Maryland	345839.0	601656.0	1039895.0
Massachusetts	1365225.0	661861.0	430886.0
Michigan	3313076.0	940859.0	2860539.0
Minnesota	2453637.0	1204844.0	2406917.0
Mississippi	99945.0	1186232.0	1717659.0
Missouri	459241.0	2418598.0	3071938.0
Montana	145138.0	466855.0	959192.0
Nebraska	557192.0	12831.0	542230.0
Nevada	212922.0	761226.0	628341.0
New Hampshire	409328.0	571333.0	587647.0
New Jersey	0.0	575930.0	547655.0
New Mexico	93241.0	794444.0	899343.0
New York	804474.0	988487.0	2719577.0
North Carolina	3872974.0	151110.0	2962831.0
North Dakota	104526.0	209815.0	580539.0
Ohio	372281.0	3791457.0	3646325.0

Oklahoma	9.0	1762896.0	2023098.0
Oregon	36899.0	1646143.0	2019502.0
Pennsylvania	1496008.0	2166025.0	9383642.0
Puerto Rico	0.0	156911.0	31533.0
Rhode Island	0.0	138554.0	121830.0
South Carolina	935319.0	1363203.0	1336777.0
South Dakota	36637.0	315801.0	770281.0
Tennessee	1130468.0	3117004.0	2866345.0
Texas	2857582.0	6493832.0	7651396.0
Utah	2753458.0	567263.0	930350.0
Vermont	0.0	186008.0	285064.0
Virgin Islands	11485.0	3112.0	431.0
Virginia	25688.0	2885493.0	2861010.0
Washington	1668159.0	2025498.0	2050150.0
West Virginia	99018.0	1000020.0	1510211.0
Wisconsin	768091.0	1597173.0	2660589.0
Wyoming	78980.0	280782.0	438096.0

In []:

In []:

In [30]:

```
#I want to transpose the table census, so it matches the gun t
able." Sorted by state"
#where the states will be the rows instead of columns,
#saved it into new variable
df_Census_data_Transposed = df_Census_data.T
```

```
In [ ]:
In [31]:
#Previw
```

Out[31]:

Fact Note

df Census data Transposed

0 1 2 3

Persoi Population Population Population, Population, under estimates, estimates percent Census, year **Fact** base, April change -July 1, April 1, percer April 1, 2016, 1, 2010, 2010 July (V2016) (V2... 2010 (es... 2016,

Alabama	4,863,300	4,780,131	1.70%	4,779,736	6.00
Alaska	741,894	710,249	4.50%	710,231	7.30
Arizona	6,931,071	6,392,301	8.40%	6,392,017	6.30
Arkansas	2,988,248	2,916,025	2.50%	2,915,918	6.40
California	39,250,017	37,254,522	5.40%	37,253,956	6.30
Colorado	5,540,545	5,029,324	10.20%	5,029,196	6.10
Connecticut	3,576,452	3,574,114	0.10%	3,574,097	5.20
Delaware	952,065	897,936	6.00%	897,934	5.80
Florida	20,612,439	18,804,592	9.60%	18,801,310	5.50
Georgia	10,310,371	9,688,680	6.40%	9,687,653	6.40
Hawaii	1,428,557	1,360,301	5.00%	1,360,301	6.40
Idaho	1,683,140	1,567,650	7.40%	1,567,582	6.80

NaN

NaN

NaN

NaN

Nε

Illinois	12,801,539	12,831,574	-0.20%	12,830,632	6.00
Indiana	6,633,053	6,484,136	2.30%	6,483,802	6.40
lowa	3,134,693	3,046,869	2.90%	3,046,355	6.40
Kansas	2,907,289	2,853,129	1.90%	2,853,118	6.70
Kentucky	4,436,974	4,339,344	2.20%	4,339,367	6.20
Louisiana	4,681,666	4,533,479	3.30%	4,533,372	6.60
Maine	1,331,479	1,328,364	0.20%	1,328,361	4.90
Maryland	6,016,447	5,773,786	4.20%	5,773,552	6.10
Massachusetts	6,811,779	6,547,813	4.00%	6,547,629	5.30
Michigan	9,928,300	9,884,129	0.40%	9,883,640	5.80
Minnesota	5,519,952	5,303,924	4.10%	5,303,925	6.40
Mississippi	2,988,726	2,968,103	0.70%	2,967,297	6.30
Missouri	6,093,000	5,988,928	1.70%	5,988,927	6.10
Montana	1,042,520	989,414	5.40%	989,415	6.00
Nebraska	1,907,116	1,826,334	4.40%	1,826,341	7.00
Nevada	2,940,058	2,700,691	8.90%	2,700,551	6.30
New Hampshire	1,334,795	1,316,461	1.40%	1,316,470	4.80
New Jersey	8,944,469	8,791,953	1.70%	8,791,894	5.80
New Mexico	2081015	2059198	0.011	2059179	0.06
New York	19745289	19378110	0.019	19378102	0.0
North Carolina	10146788	9535688	0.064	9535483	0.0
North Dakota	757952	672591	0.127	672591	0.07
Ohio	11614373	11536727	0.007	11536504	0.0
Oklahoma	3923561	3751615	0.046	3751351	0.06
Oregon	4093465	3831072	0.068	3831074	0.0
Pennsylvania	12784227	12702857	0.006	12702379	0.0
Rhode Island	1056426	1052940	0.003	1052567	0.0
South Carolina	4961119	4625410	0.073	4625364	0.0
South Dakota	865454	814195	0.063	814180	0.07
Tennessee	6651194	6346298	0.048	6346105	0.06

```
Utah
                3,051,217
                           2,763,888
                                        10.40%
                                                 2,763,885
                                                            8.30
                  624,594
      Vermont
                             625,741
                                        -0.20%
                                                   625,741
                                                            4.90
       Virginia
                8,411,808
                           8,001,041
                                         5.10%
                                                 8,001,024
                                                            6.10
   Washington
                7,288,000
                           6,724,545
                                         8.40%
                                                 6,724,540
                                                            6.20
  West Virginia
                1,831,102
                           1,853,011
                                        -1.20%
                                                 1,852,994
                                                            5.50
     Wisconsin
                5,778,708
                           5,687,289
                                         1.60%
                                                 5,686,986
                                                            5.80
     Wyoming
                  585,501
                             563,767
                                         3.90%
                                                   563,626
                                                            6.50
52 rows × 85 columns
In [ ]:
In [32]:
# Drop the first row that is labeled Fact
df Census data Transposed = df Census data Transposed.drop("Fa
ct" , axis=0)
In [ ]:
In [33]:
#Preview
df Census data Transposed
Out[33]:
                       0
                                  1
                                          2
                                                     3
                                                             4
```

Texas 27,862,596

25,146,100

10.80%

25,145,561

7.20

Alabama 4,863,300 4,780,131 1.70% 4,779,736 6.00% 6

NaN

NaN

NaN

NaN

Fact Note

NaN

Alaska	741,894	710,249	4.50%	710,231	7.30%	7
Arizona	6,931,071	6,392,301	8.40%	6,392,017	6.30%	7
Arkansas	2,988,248	2,916,025	2.50%	2,915,918	6.40%	6
California	39,250,017	37,254,522	5.40%	37,253,956	6.30%	6
Colorado	5,540,545	5,029,324	10.20%	5,029,196	6.10%	6
Connecticut	3,576,452	3,574,114	0.10%	3,574,097	5.20%	5
Delaware	952,065	897,936	6.00%	897,934	5.80%	6
Florida	20,612,439	18,804,592	9.60%	18,801,310	5.50%	5
Georgia	10,310,371	9,688,680	6.40%	9,687,653	6.40%	7
Hawaii	1,428,557	1,360,301	5.00%	1,360,301	6.40%	6
Idaho	1,683,140	1,567,650	7.40%	1,567,582	6.80%	7
Illinois	12,801,539	12,831,574	-0.20%	12,830,632	6.00%	6
Indiana	6,633,053	6,484,136	2.30%	6,483,802	6.40%	6
lowa	3,134,693	3,046,869	2.90%	3,046,355	6.40%	6
Kansas	2,907,289	2,853,129	1.90%	2,853,118	6.70%	7
Kentucky	4,436,974	4,339,344	2.20%	4,339,367	6.20%	6
Louisiana	4,681,666	4,533,479	3.30%	4,533,372	6.60%	6
Maine	1,331,479	1,328,364	0.20%	1,328,361	4.90%	5
Maryland	6,016,447	5,773,786	4.20%	5,773,552	6.10%	6
Massachusetts	6,811,779	6,547,813	4.00%	6,547,629	5.30%	5
Michigan	9,928,300	9,884,129	0.40%	9,883,640	5.80%	6
Minnesota	5,519,952	5,303,924	4.10%	5,303,925	6.40%	6
Mississippi	2,988,726	2,968,103	0.70%	2,967,297	6.30%	7
Missouri	6,093,000	5,988,928	1.70%	5,988,927	6.10%	6
Montana	1,042,520	989,414	5.40%	989,415	6.00%	6
Nebraska	1,907,116	1,826,334	4.40%	1,826,341	7.00%	7
Nevada	2,940,058	2,700,691	8.90%	2,700,551	6.30%	6
New Hampshire	1,334,795	1,316,461	1.40%	1,316,470	4.80%	5
New Jersey	8,944,469	8,791,953	1.70%	8,791,894	5.80%	6
New Mexico	2081015	2059198	0.011	2059179	0.062	

New York	19745289	19378110	0.019	19378102	0.059	
North Carolina	10146788	9535688	0.064	9535483	0.06	
North Dakota	757952	672591	0.127	672591	0.073	
Ohio	11614373	11536727	0.007	11536504	0.06	
Oklahoma	3923561	3751615	0.046	3751351	0.068	
Oregon	4093465	3831072	0.068	3831074	0.058	
Pennsylvania	12784227	12702857	0.006	12702379	0.056	
Rhode Island	1056426	1052940	0.003	1052567	0.052	
South Carolina	4961119	4625410	0.073	4625364	0.059	
South Dakota	865454	814195	0.063	814180	0.071	
Tennessee	6651194	6346298	0.048	6346105	0.061	
Texas	27,862,596	25,146,100	10.80%	25,145,561	7.20%	7
Utah	3,051,217	2,763,888	10.40%	2,763,885	8.30%	9
Vermont	624,594	625,741	-0.20%	625,741	4.90%	5
Virginia	8,411,808	8,001,041	5.10%	8,001,024	6.10%	6
Washington	7,288,000	6,724,545	8.40%	6,724,540	6.20%	6
West Virginia	1,831,102	1,853,011	-1.20%	1,852,994	5.50%	5
Wisconsin	5,778,708	5,687,289	1.60%	5,686,986	5.80%	6
Wyoming	585,501	563,767	3.90%	563,626	6.50%	7

51 rows × 85 columns

```
In [ ]:
```

```
In [34]:
```

```
# Drop the first row that is labeled Fact Note
df_Census_data_Transposed = df_Census_data_Transposed.drop("Fact Note" , axis=0)
```

```
In [ ]:
```

In [35]:

#Preview
df_Census_data_Transposed

Out[35]:

	0	1	2	3	4	
Alabama	4,863,300	4,780,131	1.70%	4,779,736	6.00%	6
Alaska	741,894	710,249	4.50%	710,231	7.30%	7
Arizona	6,931,071	6,392,301	8.40%	6,392,017	6.30%	7
Arkansas	2,988,248	2,916,025	2.50%	2,915,918	6.40%	6
California	39,250,017	37,254,522	5.40%	37,253,956	6.30%	6
Colorado	5,540,545	5,029,324	10.20%	5,029,196	6.10%	6
Connecticut	3,576,452	3,574,114	0.10%	3,574,097	5.20%	5
Delaware	952,065	897,936	6.00%	897,934	5.80%	6
Florida	20,612,439	18,804,592	9.60%	18,801,310	5.50%	5
Georgia	10,310,371	9,688,680	6.40%	9,687,653	6.40%	7
Hawaii	1,428,557	1,360,301	5.00%	1,360,301	6.40%	6
ldaho	1,683,140	1,567,650	7.40%	1,567,582	6.80%	7
Illinois	12,801,539	12,831,574	-0.20%	12,830,632	6.00%	6
Indiana	6,633,053	6,484,136	2.30%	6,483,802	6.40%	6
lowa	3,134,693	3,046,869	2.90%	3,046,355	6.40%	6
Kansas	2,907,289	2,853,129	1.90%	2,853,118	6.70%	7
Kentucky	4,436,974	4,339,344	2.20%	4,339,367	6.20%	6
Louisiana	4,681,666	4,533,479	3.30%	4,533,372	6.60%	6
Maine	1,331,479	1,328,364	0.20%	1,328,361	4.90%	5
Maryland	6,016,447	5,773,786	4.20%	5,773,552	6.10%	6
Massachusetts	6,811,779	6,547,813	4.00%	6,547,629	5.30%	5
Michigan	9,928,300	9,884,129	0.40%	9,883,640	5.80%	6
Minnesota	5,519,952	5,303,924	4.10%	5,303,925	6.40%	6
Mississippi	2,988,726	2,968,103	0.70%	2,967,297	6.30%	7
Missouri	6,093,000	5,988,928	1.70%	5,988,927	6.10%	6

Montana	1,042,520	989,414	5.40%	989,415	6.00%	6
Nebraska	1,907,116	1,826,334	4.40%	1,826,341	7.00%	7
Nevada	2,940,058	2,700,691	8.90%	2,700,551	6.30%	6
New Hampshire	1,334,795	1,316,461	1.40%	1,316,470	4.80%	5
New Jersey	8,944,469	8,791,953	1.70%	8,791,894	5.80%	6
New Mexico	2081015	2059198	0.011	2059179	0.062	
New York	19745289	19378110	0.019	19378102	0.059	
North Carolina	10146788	9535688	0.064	9535483	0.06	
North Dakota	757952	672591	0.127	672591	0.073	
Ohio	11614373	11536727	0.007	11536504	0.06	
Oklahoma	3923561	3751615	0.046	3751351	0.068	
Oregon	4093465	3831072	0.068	3831074	0.058	
Pennsylvania	12784227	12702857	0.006	12702379	0.056	
Rhode Island	1056426	1052940	0.003	1052567	0.052	
South Carolina	4961119	4625410	0.073	4625364	0.059	
South Dakota	865454	814195	0.063	814180	0.071	
Tennessee	6651194	6346298	0.048	6346105	0.061	
Texas	27,862,596	25,146,100	10.80%	25,145,561	7.20%	7
Utah	3,051,217	2,763,888	10.40%	2,763,885	8.30%	9
Vermont	624,594	625,741	-0.20%	625,741	4.90%	5
Virginia	8,411,808	8,001,041	5.10%	8,001,024	6.10%	6
Washington	7,288,000	6,724,545	8.40%	6,724,540	6.20%	6
West Virginia	1,831,102	1,853,011	-1.20%	1,852,994	5.50%	5
Wisconsin	5,778,708	5,687,289	1.60%	5,686,986	5.80%	6
Wyoming	585,501	563,767	3.90%	563,626	6.50%	7

50 rows × 85 columns

In []:

In [36]:

```
#Rename the column from name 0 to name population
df_Census_data_Transposed.rename({0: "Population"}, axis= 'col
umns', inplace = True)
```

In []:

In [37]:

```
#Preview
df_Census_data_Transposed
```

Out[37]:

	Population	1	2	3	4	
Alabama	4,863,300	4,780,131	1.70%	4,779,736	6.00%	6
Alaska	741,894	710,249	4.50%	710,231	7.30%	7
Arizona	6,931,071	6,392,301	8.40%	6,392,017	6.30%	7
Arkansas	2,988,248	2,916,025	2.50%	2,915,918	6.40%	6
California	39,250,017	37,254,522	5.40%	37,253,956	6.30%	6
Colorado	5,540,545	5,029,324	10.20%	5,029,196	6.10%	6
Connecticut	3,576,452	3,574,114	0.10%	3,574,097	5.20%	5
Delaware	952,065	897,936	6.00%	897,934	5.80%	6
Florida	20,612,439	18,804,592	9.60%	18,801,310	5.50%	ξ
Georgia	10,310,371	9,688,680	6.40%	9,687,653	6.40%	7
Hawaii	1,428,557	1,360,301	5.00%	1,360,301	6.40%	6
ldaho	1,683,140	1,567,650	7.40%	1,567,582	6.80%	7
Illinois	12,801,539	12,831,574	-0.20%	12,830,632	6.00%	6
Indiana	6,633,053	6,484,136	2.30%	6,483,802	6.40%	6
lowa	3,134,693	3,046,869	2.90%	3,046,355	6.40%	6
Kansas	2,907,289	2,853,129	1.90%	2,853,118	6.70%	7
Kentucky	4,436,974	4,339,344	2.20%	4,339,367	6.20%	6
Louisiana	4,681,666	4,533,479	3.30%	4,533,372	6.60%	6

Maine	1,331,479	1,328,364	0.20%	1,328,361	4.90%	Ę
Maryland	6,016,447	5,773,786	4.20%	5,773,552	6.10%	6
Massachusetts	6,811,779	6,547,813	4.00%	6,547,629	5.30%	5
Michigan	9,928,300	9,884,129	0.40%	9,883,640	5.80%	6
Minnesota	5,519,952	5,303,924	4.10%	5,303,925	6.40%	6
Mississippi	2,988,726	2,968,103	0.70%	2,967,297	6.30%	7
Missouri	6,093,000	5,988,928	1.70%	5,988,927	6.10%	6
Montana	1,042,520	989,414	5.40%	989,415	6.00%	6
Nebraska	1,907,116	1,826,334	4.40%	1,826,341	7.00%	7
Nevada	2,940,058	2,700,691	8.90%	2,700,551	6.30%	6
New Hampshire	1,334,795	1,316,461	1.40%	1,316,470	4.80%	5
New Jersey	8,944,469	8,791,953	1.70%	8,791,894	5.80%	6
New Mexico	2081015	2059198	0.011	2059179	0.062	
New York	19745289	19378110	0.019	19378102	0.059	
North Carolina	10146788	9535688	0.064	9535483	0.06	
North Dakota	757952	672591	0.127	672591	0.073	
Ohio	11614373	11536727	0.007	11536504	0.06	
Oklahoma	3923561	3751615	0.046	3751351	0.068	
Oregon	4093465	3831072	0.068	3831074	0.058	
Pennsylvania	12784227	12702857	0.006	12702379	0.056	
Rhode Island	1056426	1052940	0.003	1052567	0.052	
South Carolina	4961119	4625410	0.073	4625364	0.059	
South Dakota	865454	814195	0.063	814180	0.071	
Tennessee	6651194	6346298	0.048	6346105	0.061	
Texas	27,862,596	25,146,100	10.80%	25,145,561	7.20%	7
Utah	3,051,217	2,763,888	10.40%	2,763,885	8.30%	ξ
Vermont	624,594	625,741	-0.20%	625,741	4.90%	5
Virginia	8,411,808	8,001,041	5.10%	8,001,024	6.10%	6
Washington	7,288,000	6,724,545	8.40%	6,724,540	6.20%	6
West Virginia	1,831,102	1,853,011	-1.20%	1,852,994	5.50%	5

```
Wisconsin 5,778,708 5,687,289 1.60% 5,686,986 5.80% €
Wyoming 585,501 563,767 3.90% 563,626 6.50% 7
```

50 rows × 85 columns

```
In [ ]:
```

In [38]:

```
#Dropping the unneeded coulumns
df_Census_data_Transposed = df_Census_data_Transposed.drop(ran
ge (1,85) , axis=1)
```

```
In [ ]:
```

In [39]:

```
#Preview
df_Census_data_Transposed
```

Out[39]:

	Population
Alabama	4,863,300
Alaska	741,894
Arizona	6,931,071
Arkansas	2,988,248
California	39,250,017
Colorado	5,540,545
Connecticut	3,576,452
Delaware	952,065
Florida	20,612,439
Georgia	10,310,371
Hawaii	1,428,557
Idaho	1,683,140

Illinois	12,801,539
Indiana	6,633,053
lowa	3,134,693
Kansas	2,907,289
Kentucky	4,436,974
Louisiana	4,681,666
Maine	1,331,479
Maryland	6,016,447
Massachusetts	6,811,779
Michigan	9,928,300
Minnesota	5,519,952
Mississippi	2,988,726
Missouri	6,093,000
Montana	1,042,520
Nebraska	1,907,116
Nevada	2,940,058
New Hampshire	1,334,795
New Jersey	8,944,469
New Mexico	2081015
New York	19745289
North Carolina	10146788
North Dakota	757952
Ohio	11614373
Oklahoma	3923561
Oregon	4093465
Pennsylvania	12784227
Rhode Island	1056426
South Carolina	4961119
South Dakota	865454
Tennessee	6651194
Texas	27,862,596

 Utah
 3,051,217

 Vermont
 624,594

 Virginia
 8,411,808

 Washington
 7,288,000

 West Virginia
 1,831,102

 Wisconsin
 5,778,708

 Wyoming
 585,501

Exploratory Data Analysis

Tip: Now that you've trimmed and cleaned your data, you're ready to move on to exploration. Compute statistics and create visualizations with the goal of addressing the research questions that you posed in the Introduction section. It is recommended that you be systematic with your approach. Look at one variable at a time, and then follow it up by looking at relationships between variables.

Research Question 1

What is the number of gun permit per capita?

To do that I will divide the number of gun permit by pupulation.

```
# Use this, and more code cells, to explore your data. Don't f
orget to add
# Markdown cells to document your observations and findings.
```

```
In [40]:
```

In []:

```
# Firat I will merge the needed data into onte table
all_data = pd.merge(df_Census_data_Transposed, groupedBySatate
, right_index= True, left_index= True)
```

In [41]:

```
all data.head()
```

Out[41]:

	Population	permit	handgun	long_gun
Alabama	4,863,300	1047441.0	2222037.0	2626029.0
Alaska	741,894	13352.0	434602.0	572174.0
Arizona	6,931,071	710509.0	1781468.0	1480762.0
Arkansas	2,988,248	507951.0	965584.0	1663256.0
California	39,250,017	6530543.0	5910880.0	5936770.0

In []:

```
#population is str type, and has comma seperated,
#needs to remove commas then convert the Population column dat
a type from string to float.
#to get the division to work
#Reference:
#https://stackoverflow.com/questions/39125665/cannot-convert-s
tring-to-float-in-pandas-valueerror
```

In [42]:

```
#Converting data type and removing commas
all_data['Population'] = all_data['Population'].apply(lambda x
: float(x.split()[0].replace(',', '')))
```

In [43]:

```
#Preview
all_data.dtypes
```

Out[43]:

Population float64 permit float64 handgun float64 long_gun float64 dtype: object

In [44]: all_data.info() <class 'pandas.core.frame.DataFrame'> Index: 50 entries, Alabama to Wyoming Data columns (total 4 columns): Population 50 non-null float64 permit 50 non-null float64

50 non-null float64 50 non-null float64

dtypes: float64(4) memory usage: 2.0+ KB

In [55]:

handgun

long gun

```
#Question number 1: What is the permit per capita ?
all_data['permit_per_capita'] = all_data['Population']/all_dat
a['permit']
```

In [49]:

```
# I need to add colu,n that has all the states so I can plot i
t against my data

states = ['Alabama','Alaska', 'Arizona','Arkansas', 'Californi
a', 'Colorado', 'Connecticut', 'Delaware', 'Florida', 'Georgia
', 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas'
, 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts
', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri', 'Montan
a', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey', 'New
Mexico', 'New York','North Carolina', 'North Dakota', 'Ohio',
'Oklahoma', 'Oregon','Pennsylvania','Rhode Island','South Caro
lina','South Dakota','Tennessee','Texas','Utah','Vermont','Vir
ginia','Washington','West Virginia','Wisconsin','Wyoming']
```

In [50]:

```
#Make sure I had all 50 states in the list
print(len(states))
```

In [51]:

```
#Addig the states list as a new column
#Reference
#https://www.geeksforgeeks.org/adding-new-column-to-existing-d
ataframe-in-pandas/
all_data['states']=states
```

In [52]:

```
#preview
all_data.head(30)
```

Out[52]:

	Population	permit	handgun	long_gun	
Alabama	4863300.0	1047441.0	2222037.0	2626029.0	1
Alaska	741894.0	13352.0	434602.0	572174.0	
Arizona	6931071.0	710509.0	1781468.0	1480762.0	
Arkansas	2988248.0	507951.0	965584.0	1663256.0	1
California	39250017.0	6530543.0	5910880.0	5936770.0	(
Colorado	5540545.0	426970.0	2528422.0	2726033.0	(
Connecticut	3576452.0	1595270.0	879260.0	638096.0	Cor
Delaware	952065.0	22720.0	208109.0	242235.0	[
Florida	20612439.0	1088802.0	5909952.0	3829090.0	
Georgia	10310371.0	1786708.0	2127777.0	2288386.0	
Hawaii	1428557.0	197321.0	3.0	35.0	
Idaho	1683140.0	369220.0	471836.0	881447.0	
Illinois	12801539.0	9498639.0	2434983.0	2289041.0	
Indiana	6633053.0	2965760.0	2181274.0	2336722.0	
lowa	3134693.0	1467974.0	18512.0	773606.0	
Kansas	2907289.0	155471.0	931302.0	1289902.0	
Kentucky	4436974.0	24926779.0	1753246.0	2239863.0	ŀ
Louisiana	4681666.0	84376.0	1798366.0	2291899.0	L
Maine	1331479.0	17260.0	439753.0	716039.0	

Maryland	6016447.0	345839.0	601656.0	1039895.0	ľ
Massachusetts	6811779.0	1365225.0	661861.0	430886.0	Massa
Michigan	9928300.0	3313076.0	940859.0	2860539.0	1
Minnesota	5519952.0	2453637.0	1204844.0	2406917.0	М
Mississippi	2988726.0	99945.0	1186232.0	1717659.0	Mi
Missouri	6093000.0	459241.0	2418598.0	3071938.0	
Montana	1042520.0	145138.0	466855.0	959192.0	
Nebraska	1907116.0	557192.0	12831.0	542230.0	N
Nevada	2940058.0	212922.0	761226.0	628341.0	
New Hampshire	1334795.0	409328.0	571333.0	587647.0	Нε
New Jersey	8944469.0	0.0	575930.0	547655.0	Ne

In [69]:

```
# I want to analyze the permit per capit amoung 4 states only,
they are { Pennsylvania , Texas , California, Florida}
# I have used iloc to select the rows I wanted.
#Reference : https://www.shanelynn.ie/using-pandas-dataframe-c
reating-editing-viewing-data-in-python/
```

four_states = all_data.iloc[0:4, :]

In [70]:

```
#Plotting data, to show the difference between the value of pe
rmit per capita for each of the four states.

plt.title('Permit per Capita')
plt.xlabel('states')
plt.ylabel('permit_per_capita')
plt.plot(four_states['states'] , four_states['permit_per_capit
a'])
plt.legend()
plt.show()
```


In []:

#Findings :
california has the heighst permit per capita amoung the 4 se
lected states.

In []:

```
#Question numbe 2

#What are the top 5 states with hand gun and long gun

#Reference

#https://stackoverflow.com/questions/43859416/finding-top-10-i
n-a-dataframe-in-pandas
```

In [58]:

```
all_data.sort_values('handgun',ascending=False,inplace=True)
top_five_handgun_states = all_data['states'].head(5)
top_five_handgun_values = all_data['handgun'].head(5)
```

In [59]:

```
#Preview
top_five_handgun_states
top_five_handgun_values
```

Out[59]:

Texas 6493832.0 California 5910880.0 Florida 5909952.0 Ohio 3791457.0 Tennessee 3117004.0

Name: handgun, dtype: float64

In [71]:

```
#Plotting using pie chart
#Refernce : https://matplotlib.org/examples/pie and polar char
ts/pie demo features.html
# Pie chart, where the slices will be ordered and plotted coun
ter-clockwise:
labels = 'Pennsylvania', 'Texas', 'California', 'Florida', 'O
hio'
sizes = [2166025.0, 6493832.0, 5910880.0, 5909952.0,3791457.0]
explode = (0, 0.2, 0, 0,0) # only "explode" the 2nd slice (i.
e. 'Texas')
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode = explode, labels=labels, autopct='%1.1
f%%',
        shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is dr
awn as a circle.
```

plt.show()

In []:

In [65]:

```
all_data.sort_values('long_gun',ascending=False,inplace=True)
top_five_long_gun_states = all_data['states'].head(5)
top_five_long_gun_values = all_data['long_gun'].head(5)
```

In [72]:

```
#Preview
top_five_long_gun_states
top_five_long_gun_values
```

Out[72]:

Pennsylvania 9383642.0
Texas 7651396.0
California 5936770.0
Florida 3829090.0
Ohio 3646325.0
Name: long gun, dtype: float64

In [74]:

```
#Plotting using pie chart
#Refernce : https://matplotlib.org/examples/pie and polar char
ts/pie demo features.html
# Pie chart, where the slices will be ordered and plotted coun
ter-clockwise:
labels = 'Pennsylvania', 'Texas', 'California', 'Florida', 'O
hio'
sizes = [9383642.0, 7651396.0, 5936770.0, 3829090.0,3646325.0]
explode = (0.2, 0, 0, 0,0) # only "explode" the 2nd slice (i.
e. 'Texas')
fig1, ax1 = plt.subplots()
ax1.pie(sizes,explode = explode, labels=labels, autopct='%1.1
f%%',
        shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is dr
awn as a circle.
plt.show()
```


In []:

```
#Findings:
```

the state that owned the most hand guns is Texas #while Pennsylvania is the state that is top 1 in owning long gun.

#That might predict that people there are haunting a lot.