This Week

Monday

Data and Summary Measures

Wednesday

Lab Exercise: Acme Order Analysis (Part II)

Topics

- Types of Data
- Summary Measures (or "Descriptive Statistics")
- Relaying Quantitative Information

A Problem Solving Framework

- 1. Define the Problem
- 2. Collect and Organize Data
- 3. Characterize Uncertainty and Data Relationships
 - 4. Build an Evaluation Model
 - 5. Formulate a Solution Approach
 - 6. Evaluate Potential Solutions
 - 7. Recommend a Course of Action

Numerical vs. Categorical

Discrete vs. Continuous

Cross-sectional vs. Time series

- Numerical vs. Categorical:
 - Can you meaningfully perform arithmetic with the data?
 - Examples:
 - Duration of cell phone calls (numeric)
 0.75 minutes, 1.46 minutes, 2.39 minutes, ...
 - Cellular phone service provider (categorical)
 AT&T, Verizon, T-Mobile, ...
 - Performance Rating 1=Best to 5=Worst (??)
 1, 1, 3, 4, 2, 3, 1, 4, 2, 2, 2, 3, 4, 1, ...

- Discrete vs. Continuous:
 - Do the data take on a countable number of values, or values in a continuous range?
 - Examples:
 - Number of people in family with cell phones (discrete)

Duration of cell phone calls (continuous)

- Cross-sectional vs. Time series
 - Are the data shown for a single time period or are many periods of time distinguished?

2011 CallSign Orders

Summary Measures

Measures of Central Tendency

	\mathbf{X}_1	X_2	X_3	X_4	X_5	X_6	X_7	X ₈	X 9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	Σ
Demand	10	10	10	10	11	11	11	12	13	13	14	15	17	18	20	195

• **Mean**: The *average* value = $\bar{X} = \sum_{i=1}^{n} X_i / n = 195/15 = 13$.

Notation: \overline{X} denotes a *sample mean*.

For an entire population, μ is used to denote the *population mean*.

Excel: =AVERAGE(data_range)

- Median: The *middle* value when the data are arranged in increasing order. Here, the median is the 8th value (of 15) = 12. If there were 16 values, the median would be the average of the 8th and 9th (ordered) values.
 Excel: =MEDIAN(data_range)
- Mode: The most frequently occurring value in the data.

Here, the mode = **10**. Excel: =MODE.SNGL(data_range)

Central Tendency and Shape

For symmetrical data:

For non-symmetrical data:

Excel: =SKEW(data_range)

Right or positively-skewed

"mode < median < mean"

(Usually)

Left or negatively-skewed

"mean < median < mode"

(Usually)

Measures of Dispersion

Statistics based on **deviations from the mean**:

Variance: Average squared deviation from the mean.

Population
$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{n} \qquad s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Excel: =VAR.P(data_range) or =VAR.S(data_range)

• Standard deviation: σ (population) or s (sample)

Excel: =STDEV.P(data_range) or =STDEV.S(data_range)

Mean absolute deviation (MAD):

$$\sum_{i=1}^{n} |X_i - \overline{X}|$$

Excel: =AVEDEV(data_range)

Measures of Dispersion

Other statistical measures of dispersion:

- Range = $X_{largest} X_{smallest}$ Excel: =MAX(data_range) MIN(data_range)
 - Excel: =LARGE(data_range, n) returns the nth largest number

Percentiles and Quartiles:

The *kth percentile* is a value such that *k*% of the data fall at or below the value and (100 - k)% of the measurements fall at or above the value.

Excel: =PERCENTILE.EXC(data_range, k%)

Excel: =QUARTILE.EXC(data_range, q)

- The first quartile (Q1) is the 25th percentile.
- The second quartile (or median) is the 50th percentile.
- The third quartile (Q3) is the 75th percentile.
- The interquartile range (IQR) is Q3 Q1.

Frequency Histogram

Demand Value	10	11	12	13	14	15	16	17	18	19	20
Frequency	4	3	1	2	1	1	0	1	1	0	1

Excel: =FREQUENCY(data_range, bin_range)

(an array function)

Relationships Between Variables

 Scatterplots are good visual tools for identifying data elements that may be related to one another:

 $\mathbf{X} = (X_1, X_2, ..., X_{15})$ are Advertising dollars spent at 15 stores last quarter.

 $\mathbf{Y} = (Y_1, Y_2, ..., Y_{15})$ are Sales dollars received at the same 15 stores last quarter.

Average advertising: \overline{X} = \$1.4M

Average sales: Y = \$25.9M

 Covariance and correlation measure the <u>strength of</u> the linear relationship between two variables.

Covariance

The *covariance* statistic is typically defined as follows:

$$\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

Excel: =COVARIANCE.S(X_data, Y_data) ***

*** Note: COVARIANCE.P has "n" in the denominator, NOT (n-1).

- Covariance can be difficult to interpret because it <u>depends on</u> the scale of the data.
- Correlation is more commonly used in practice than covariance for descriptive purposes.

Correlation

The *correlation* statistic (usually denoted r or ρ) is a *standardized measure* that is *unitless*:

$$\mathbf{corr}(\mathbf{X}, \mathbf{Y}) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1) s_{\mathbf{X}} s_{\mathbf{Y}}} = \frac{\mathbf{cov}(\mathbf{X}, \mathbf{Y})}{s_{\mathbf{X}} s_{\mathbf{Y}}}$$

Excel: =CORREL(X_data, Y_data)

- The maximum possible correlation is +1 (perfect positive correlation).
- The *minimum possible correlation is -1* (perfect *negative* correlation).
- A correlation of zero implies that there is no discernable linear relationship between the data elements.

Some Examples of Correlation

- If the plotted points resemble a cloud with no discernable linear pattern or slope, then the correlation will be near zero.
- The magnitude of the "slope" is a scale factor and does not affect the magnitude of the correlation (compare A and C above).

More Examples of Correlation

Relaying Quantitative Information

What <u>NOT</u> to do: Examples

Helpful Questions

Product	Total Sales Revenue Attributed to Product
Alpha	\$1,102,168.00.
Bravo	\$829,910.50
Charlie	\$564,732.00
Delta	\$370,010.00
Echo	\$753,511.50
Foxtrot	\$318,112.00
Golf	\$1,227,910.00
Hotel	\$1,293,000.00
India	\$528,700.00
Juliet	\$568,050.00

Sum of Gross Marging vs. Product

Gross Margin	Customer					
Order Month	1	2	3	4	5	Total
January	94942.25	56905.5	27500	31500.75	48127.5	258976
February	88914	52924.25	28261.25	24216	53082	247397.5
March	94813.5	56113.25	30745	21915	58044.5	261631.25
April	88286.75	51576.75	31970.75	20549.5	67925.5	260309.25
May	88216.25	49700	35518	19922.75	59259.5	252616.5
June	97503.75	42527.5	38598.75	22323.25	54095	255048.25
July	107279	45966.5	43966.5	21439.75	56522	275173.75
August	107758.5	49879.5	45518.5	22267.5	77413.5	302837.5
September	105078.25	53203.5	57223	21641	101850.5	338996.25
October	106989.25	51458.5	67128.5	25266	95590.5	346432.75
November	103484.75	56836.5	72609.5	26640.5	98160.5	357731.75
December	104633.25	54316.25	90556.5	29250.75	100333	379089.75
Total	1187899.5	621408	569596.25	286932.75	870404	\$3536240.5

India Before

India After

Question EVERY piece of EVERY slide

- What point(s) are you trying to make?
- How is the information best displayed (e.g., in a table, graph, bulleted text, or some combination)?
- Are the titles, axes, and data series clearly labeled and properly formatted (including units)?
- Is every element necessary?
- Is the ordering of the elements appropriate?
- Is the value of the information worth the space you are using?
- Is there a way to efficiently relay more information while maintaining clarity?