

Balanceo de Carga

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema del balanceo de carga

Tenemos:

- Un Set de m maquinas M₁, M₂, M_m
- Un Set de n tareas
- Cada tarea j requiere T_i de tiempo de procesamiento.

Objetivo: Asignar las tareas a las maquinas de tal forma que la carga quede balanceada

(el tiempo asignado a cada maquina sea lo más parejo posible)

Cómo medir el balanceo?

Si llamamos A(i) al conjunto de tareas asignadas a la maquina i Podemos calcular la carga de la maquina i como:

$$T_{i} = \sum_{j \in A(i)} t_{j}$$

Podemos medir el balanceo por diferentes indicadores.

Usaremos:

Makespan: max (Ti) para todas las maquinas

Asignación de trabajos

El método para seleccionar la asignación y la naturaleza de los trabajos determinará la programación final de las tareas

Es un problema NP-HARD

Un primer método greedy

Para cada tarea i, asignarla a la maquina j con menor carga en el momento.

```
Comenzar sin trabajos asignados  \label{eq:definir} \begin{split} \text{Definir } T_i &= 0 \text{ y A(i)} = \emptyset \text{ para todos las maquinas } M_i \\ \text{Desde } j &= 1 \text{ a n} \\ \text{Sea } M_i \text{ la maquina con menor } T_k \text{ (k=1 a m)} \\ \text{Asignar Tarea } j \text{ a maquina } M_i \\ \text{Establecer A(i)} &\leftarrow \text{A(i)} \cup \{j\} \\ \text{Establecer } T_i \leftarrow T_i + t_j \end{split}
```


Análisis del algoritmo

Para determinar cuanto se aleja la solución obtenida de la optima (T*), debemos compararlas.

Pero ... no tenemos la solución optima

Sin embargo, podemos acotarla:

$$T^* \geqslant \frac{1}{m} \sum_{j} t_j$$

$$T^* > max_j t_j$$

El optimo es mayor o igual al tiempo promedio total

El optimo es mayor o igual al tiempo del trabajo mas largo

Análisis del algoritmo (cont.)

A.1 El algoritmo asigna los trabajos a las máquinas con un makespan T ≤ 2T*.

El ultimo trabajo es asignado a máquina M_i con mínima carga

Antes de la asignación tendrá T_i – t_i de carga.

Sabemos que:
$$\sum_{k} T_{k} \ge m (T_{i} - t_{j})$$

La carga en todas las maquinas

$$(T_i - t_j) \le \frac{1}{m} \sum_k T_k \le T^*$$

$$t_j \le T^*$$

$$T_i = (T_i - t_j) + t_j$$

$$T_i \leq 2T^*$$

Acotamos:

$$T^* \geqslant \frac{1}{m} \sum_{j} t_{j}$$

$$T^* \geqslant \max_{i} t_{i}$$

Podemos mejorar nuestro algoritmo?

Cuando ocurre el peor caso?

El algoritmo intenta mantener siempre el mayor balance posible.

Si la ultima tarea coincide con aquella de longitud mas grande quedará peor

balanceado

Ej: Las j-1 tareas de t_x=a y t_i>>a

Algoritmo de aproximación mejorado

Procesar primero las tareas mas extensas

Ordenar las tareas.

Análisis del algoritmo mejorado

Si hay m o menos tareas

La solución es optima.

(A.2) Si hay más de m tareas, entonces T^{*} ≥ 2t_{m+1}

Tomemos las primeros m+1 tareas ordenadas por tiempo descendiente.

Hay m máquinas, por lo tanto solo 1 recibe 2 tareas

En el peor de los casos las primeras m+1 tareas tienen la misma duración.

Por lo tanto en el makespan el menos 2t_{m+1}

Análisis del algoritmo mejorado (cont.)

(A.3) El algoritmo asigna los trabajos a las máquinas con un makespan T ≤ 3/2T*.

Sea la maquina M_i que tiene al menos 2 trabajos.

Sea T_j el ultimo trabajo asignado a M_i (j ≥ m +1)

$$t_j \le t_{m+1} \le \frac{1}{2} T^*$$
 (Utilizando A.2)

$$T_i - t_j \le T^*$$

Por lo tanto: $T_i \le 3/2 T^*$

Presentación realizada en Julio de 2020