

## Cluster Analysis

## Contents

| Goals and Requirements          | 3  |
|---------------------------------|----|
| Clustering Experiment           | 4  |
| Dataset for Callcenter Data     | 4  |
| Dataset for K-means Clustering  | 5  |
| Train Clustering Model Dataset  | 6  |
| Select Columns in Dataset       | 9  |
| Dataset for Split data          | 11 |
| SCORE AND EVALUATE MODEL        | 15 |
| Assign data to Clusters Dataset | 18 |
| Select columns in Dataset       | 19 |
| Evaluate Model Dataset          | 21 |

# Goals and Requirements

## Estimated time to complete lab is 30-35 minutes

#### Goals

- 1. Implement and design a Classification model for Call Center Data.
- 2. Approach of using K-Means

## Requirements:

1. Access to an Azure Machine Learning Studio

## Cluster Analysis

## **Clustering Experiment**

## **Dataset for Callcenter Data**

For cluster analysis experiment, Download the csv from course material and upload

In workspace

The objective is to identify the strategy to improve the performance by clusters of employees.



## Dataset for K-means Clustering

Visualize the dataset



Insert K-means clustering in canvas and check parameters



#### Input the parameters as shown



## Train Clustering Model Dataset

Add train clustering model in canvas and connect with call center data.csv



#### Launch column selector and select both the columns and click ok



#### Connect k means clustering with train clustering and run the module



#### Visualize the module



Result with two-dimension component, which seems not to be a good output

#### Let us implement the result in another method



### Select Columns in Dataset

Insert select columns in dataset and connect with output node of train cluster model



#### Now select all the columns from launch column selector and click ok



#### Run and visualize for result



View the result and observe the same

Now we assigned to different clusters in result. However, the objective is to identify

The strategy to improve the performance by clusters of employees



## Dataset for Split data

Insert split data and change parameter as shown

And add 3 more split data with Assignments 2 to 4 in Relational expression parameter



After inserting four split data in canvas, its ready to run and visualize the module one by one



Visualize split data 1 and view the performance of the 1st group



#### Similarly view the other split results



## Clusters formed



#### SCORE AND EVALUATE MODEL

Previous experiment for identifying the strategy of cluster analysis in performance of employees



#### Save as call center new data



Delete split data and select columns in dataset and keep the required datasets



#### Add split data and connect the nodes from Call center dataset





#### Now run the train clustering module



### Assign data to Clusters Dataset

For cluster analysis model, apply Assign data to clusters instead of score model



Connect the nodes from split data node and train clustering model



#### Run and visualize the result



## Select columns in Dataset

Now introduce select columns in dataset in picture



#### Launch column selector and select columns required



#### Run select column in dataset and get ready for evaluation



#### **Evaluate Model Dataset**

Now add the evaluate model and connect from assign data to clusters and run the module



#### Result obtained



#### Thus experimented score and evaluate model

