Relational Algebra (Part II)

R & G, Chapter 4

Last Lecture

Relational Algebra: 5 Basic Operations

- <u>Selection</u> (σ) Selects a subset of <u>rows</u> from relation (horizontal).
- <u>Projection</u> (π) Retains only wanted <u>columns</u> from relation (vertical).
- <u>Cross-product</u> (x) Allows us to combine two relations.
- Set-difference () Tuples in r1, but not in r2.
- <u>Union</u> (∪) Tuples in r1 and/or in r2.

Today's Lecture

- Compound operations
 - Intersection (∩)
 - Join (►
 - Division (/)

Intersection

- Intersection notation: R ∩ S
- It returns the tuples in both R and S.
- It takes two input relations, which must be union-compatible.
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

Intersection

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

S1

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

Sid	Sname	Rating	Age
31	Lubber	8	55.5
58	Rusty	10	35.5

S2

Join ⋈

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "<u>natural join</u>" (often just called "join"). R ⋈ S conceptually is:
 - Step 1: Compute R × S
 - Step 2: Select rows in R × S where attributes appearing in both relations have <u>equal</u> values
 - Step 3: Keep all unique attributes and one copy of the common ones.
- Note: Usually done much more efficiently than this.

Natural Join Example

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5

R1

S1

$$R1 \bowtie S1 =$$

Sid	Sname	Rating	Age	Bid	day
22	Dustin	7	45.0	101	10/10/96
58	Rusty	10	35.0	103	11/12/96

Other Types of Joins

Condition Join (or "theta-join"):

$$R\bowtie_{c} S = \sigma_{c}(R \times S)$$

S1.sid	Sname	Rating	Age	R1.sid	Bid	day
22	Dustin	7	45.0	58	103	11/12/96
31	Lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$

- Result schema is the same as that of crossproduct.
- May have fewer tuples than cross-product.

Equi-Join

- A special case of condition join where condition contains only equalities
- Result schema: same as cross-product
- What's the difference between equi-join and naturaljoin?

Α	В	C
a1	b1	c1
a1	b2	c2

R

$$R \bowtie S = ?$$

$$\mathbb{R} \bowtie_{\mathbb{R}, A=S, A} S = ?$$

Division

- Notation: A/B or A÷B
 - Useful for expressing "for all" queries like: Find sids of sailors who have reserved <u>all</u> boats.
 - E.g., let A have 2 fields, x and y; B have only field y:

A/B contains all tuples (x) such that for <u>every</u> y tuple in B, there is an $\langle x,y \rangle$ tuple in A.

Division

- Attributes of B <u>must be a subset</u> of attributes of A.
 - Given A <x1...xn>, B<x1...xk>
 - <x1...xk> must be a SUBSET of <x1...xn>
 - The schema of A/B contains <x1...xn> <x1...xk>
 - E.g., A (SID, PID, grade), B (PID)
 - The schema of A/B is (SID, grade)
- Question:
 - Consider A (SID, Name, Age), B(SID, Address)
 - Is A/B allowed?

Examples of Division A/B

Sno	pno
S1	P1
S1	P2
S1	P3
S1	P4
S2	P1
S2	P2
S3	P2
S4	P2
S4	P4

Pno
P2
<i>B</i> 1

B3

A/B3

Rename (p (rho))

- Rename is NOT a compound operation
- Allows us to name results of relational-algebra expressions.
- Notation: ρ *(X, E)*
 - Returns the expression E under the name X
- Rename the results of an expression, e.g., $\rho(\textit{OldSailor}, \sigma_{age} > 60^{(Sailor)})$
- Use the renamed X as a new relation

$$\rho(\textit{OldSailor}, \ \sigma_{age} > 60^{(Sailor)}$$

$$\pi_{SID}(\textit{OldSailor})$$

Relational Algebra In-Class Exercise (I)

Summary of Relational Algebra Operations

Given the schema

- Patients(pnum, pname, age)
- Doctors(dnum, dname, rank)
- Visits(pnum, dnum, dates, diagnosis)
- Restate the expression $\sigma_{age<30 \cup age>50}^{(Patients)}$ using set operations (i.e., union, set-difference, intersection)
- The way of thinking:
 - find the set A of patients with age >50;
 - find the set B of patients with age <30;
 - take A union B.
- Answer (take notes)

Set operations (II)

- Given the schema
 - Patients(pnum, pname, age)
 - Doctors(dnum, dname, rank)
 - Visits(pnum, dnum, dates, diagnosis)
- Restate the expression

 $\sigma_{rank \neq 'surgeon' \cap rank \neq 'oculist'}(Doctors)$ using set operations

- Solution 1
 - find the set A of non-surgeons;
 - find the set B of non-oculists;
 - Take A intersects B.
- Answer (take notes)

Set operations (II)

- Given the schema
 - Patients(pnum, pname, age)
 - Doctors(dnum, dname, rank)
 - Visits(pnum, dnum, dates, diagnosis)
- Restate the expression

 $\sigma_{rank \neq 'surgeon' \cap rank \neq 'oculist'}(doctors)$ using set operations

- Solution 2
 - find the set A of oculists;
 - find the set B of surgeon;
 - find the set C of all doctors;
 - take C (A union B).
- Answer (take notes)

Cross-product, Natural-Join and Conditional Join

A	В	С		
1	2	3		
6	7	8		
9	7	8		
Relation U				

В	C	D		
2	3	4		
2	3	5		
7	8	10		
Relation V				

Questions:

- 1. How many tuples and attribute are in $U \times V$?
- 2. What are the results of $U \bowtie V$ and $U \bowtie_{A < D} V$?

Example

A	В	С	D	A	U.B	U.C	V.B	V.C	D
1	2	3	4	1	2	3	2	3	4
1	2	3	5	1	2	3	2	3	5
6	7	8	10	1	2	3	7	8	10
9	7	8	10	6	7	8	7	8	10
Result U ⋈ V				9	7	8	7	8	10

Result of U > A<D V