Course No.	Course Name	L-T-P-Credits	Year of Introduction
IC206	MICROCONTROLLERS	3-0-0-3	2016

Prerequisite : Nil Course Objectives

- To learn the architecture of a microcontroller
- To learn the instruction set of a microcontroller
- To be able to program a microcontroller in assembly language
- To be able to program a microcontroller in a high level language
- To be able to interface memory with a microcontroller

Syllabus

Architecture of an eight bit microcontroller- Instruction set the microcontroller- Programming the microcontroller in Assembly language and in a high level language -Interfacing memory and input/output devices to the microcontroller.

Expected Outcome

Students should be able to comprehend, design and implement a microcontroller based system complete both in hardware and software aspects for various purposes

Text Books:

- 1. Muhammed Ali Mazidi and Janice Gillispie Mazidi, The 8051 Microcontroller and Embedded Systems using Assembly and C, Pearson Education, 2e.
- 2. Manish K. Patel, The 8051 based embedded systems, McGraw Hill Education (India), 2014.

References:

- 1. Kenneth J Ayala, The 8051 Microcontroller, Cengage Learning, 3e
- 2. Ramani Kalpathi and Ganesh Raja, Microcontrollers and Applications, Sanguine Technical Publishers, 2009
- 3. Raj Kamal, Microcontrollers Architecture, programming, interfacing and system design, Pearson, 2e.

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
I	Evolution of microcontrollers-comparison with microprocessors- Classification of microcontrollers-state of the art-significance of embedded systems- Overview of Intel 8051 family of microcontrollers- Harvard and Von Neumann Architectures	3	15%		
	Architecture of Intel 8051-ALU, internal RAM and ROM, Oscillator and Reset Circuits, basic timing diagram, Stack and stack pointer-Special Function Registers of 8051- Organization of ports	3			
II	Comparison of machine language, assembly language and high level languages, Assembler directives-Intel hex format-Addressing modes of 8051	2	15%		
	Instruction set of 8051- Data transfer instructions, Arithmetic, logical, compare and rotate instructions- Bit processing instructions- Program flow control instructions	5	1570		

FIRST INTERNAL EXAM					
Ш	Assembly language programming of 8051: Examples illustrating the use of all types of instructions. Programming the ports of 8051.	5	- 15%		
	An introduction to programming 8051 in C language- Additional data types for 8051-illustrative examples of C programming for 8051	3			
IV	Timers of 8051: All modes of operations, programming the timers in assembly language and C language, timer as an event counter, frequency measurement using timers, pulse width measurement using timers.	3	15%		
	Serial Communication with 8051: Introduction to serial communication, synchronous and asynchronous communication, RS232 protocol, all modes of operations including multiprocessor mode. Serial communication programming in assembly language and C language	4			
	SECOND INTERNAL EXAM		l		
V	Interrupt system of 8051: introduction to interrupts- comparing polling scheme with interrupt system- interrupts in 8051-priority of interrupts- Interrupt handling and execution for timer, external and serial interrupts. Programming to handle all types of interrupts in assembly language and C language.	4	20%		
	Interfacing external memory to Intel 8051: Introduction to various types of memory-memory mapping and address decoding-Examples of Interfacing data memory and code memory	3			
VI	Interfacing input and output devices: Interfacing LCD to 8051-Interfacing matrix keyboard-Interfacing ADC and DAC-Interfacing sensors- Interfacing relays, stepper motors and DC motors. An introduction to I ² C protocol	7	20%		
	END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

There shall be three parts for the question paper.

Part A includes Modules 1 & 2 and shall have three questions of fifteen marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Estd.

Part B includes Modules 3 & 4 and shall have three questions of fifteen marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Part C includes Modules 5 & 6 and shall have three questions of twenty marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Note: Each part shall have questions uniformly covering both the modules in it.