Past class tests

Information booklet for MATH1231/1241 lists the material available for examination in the current schedule of class tests. These tests are samples only and simply are a guide to style and level of difficulty. They are not a replacement for doing the tutorial problems.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2009 TEST 1 VERSION 7a

Studer	nt's Family Name	Initials	Student Number			
Tutoria	al Code	Tutor's Name	Mark			
Note:	The use of a calcular	tor is NOT permitted in this test				
QUEST	TIONS (Time allowe	ed: 20 minutes)				
1.	(2 marks)					
	Let $z = xy$, where $x = 2\cos 3t$ and $y = 4\sin 3t$. Use a chain rule to find $\frac{dz}{dt}$.					
2.	(3 marks)					
	Find a normal vector	${f n}$ and the equation of the tangent plane	to the surface			
	$z = 3x^2 - y^2 - 2$					
	at the point $(-1, 2, -3)$	3)				
3.	(2 marks)					
	Find $\int \sec^4 \theta d\theta$.					
4.	(3 marks)					
	Use a trigonometric su	abstitution to find $\int_0^2 \sqrt{4-x^2} dx$.				

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2011 TEST 1 VERSION 1a

Student's	Family Name		Initials	St	udent Number
Tutorial C	ode	Tutor's	s Name	_	Mark
Note: The	use of a calcula	tor is NOT perr	nitted in this t	est	
QUESTIO	NS (Time allowed	ed: 20 minutes)			
1. (1	mark)				
Let	$z = e^{xy^2}$. Find $\frac{\partial z}{\partial y}$.			
•	marks)				
Let	$z = \cos(x + 2y). S$	Show that z satisfies	es the differential	equation $4\frac{\partial^2 z}{\partial x^2}$ -	$-\frac{\partial^2 z}{\partial y^2} = 0.$
,	marks)			,	
Let	$z = x^2 + 3y^2$, and	$x = 2t^2, y = t^3$. Us	se a chain rule to	o find $\frac{dz}{dt}$ as a fundamental funda	nction of t .
`	marks)				
Fir	d a normal vector	n and the equation	n of the tangent	plane to the surf	ace
		z =	$= \sqrt{x^2 + 2y^2}$		
at	the point $(-1,2,3)$				
5. (2	marks)				
Use	a trigonometric s	ubstitution to find	$\int_0^2 \frac{1}{(4+x^2)^{3/2}} dx$	x.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2011 TEST 1 VERSION 1b

Studer	nt's Family Name	Initials	St	udent Number	
Tutoria	al Code	Tutor's Name		Mark	
Note:	The use of a calculat	or is NOT permitted in this	test		
QUES	TIONS (Time allowe	d: 20 minutes)			
1.	(2 marks)				
	Let $z = 2x^2 + y^2$, and	$x = t^2, y = 4t^3$. Use a chain rule	to find $\frac{dz}{dt}$ as a fur	action of t .	
2.	2. (3 marks)				
	Find a normal vector \mathbf{n} and the equation of the tangent plane to the surface				
		$z = x^2y - 2y^2 + 3x$			
	at the point $(1,1,2)$				
3.	(2 marks)				
	Use a trigonometric su	abstitution to find $\int_0^3 \frac{1}{(9+x^2)^{3/2}}$	$\frac{1}{2}dx$.		
4.	(1 mark)				
	Let $z = \ln(x^2 + y^2)$. F	ind $\frac{\partial z}{\partial x}$.			
5.	(2 marks)		-0	-0	
	Let $z = \sin(x + 2y)$. So	how that z satisfies the differentia	al equation $4\frac{\partial^2 z}{\partial x^2}$ –	$-\frac{\partial^2 z}{\partial y^2} = 0.$	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2011 TEST 1 VERSION 2a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
	tor is NOT permitted in this te	
QUESTIONS (Time allowe	d: 20 minutes)	
1. (2 marks)		
Let $z = e^{x^2y^3}$. Find $\frac{\partial z}{\partial z}$	$\frac{z}{x}$ and $\frac{\partial^2 z}{\partial y \partial x}$.	
2. (4 marks)		
of the measurements is	measured values of x and y are 9 cm s made with an error whose absolut z to estimate the maximum error z	e value is at most 0.03 cm. Use
3. (2 marks)		
Find $\int_0^{\pi/2} \sin^3 \theta \cos^2 \theta$	d heta.	
4. (2 marks)		
Given that	$\int_0^1 (1-x^2)^n dx = \frac{2n}{2n+1} \int_0^1 (1-x^2)^n dx$	$(x^2)^{n-1}dx$
for $n \ge 1$, find $\int_0^1 (1 -$	$(x^2)^4 dx$. [Note that you are NOT bei	ng asked to prove the recurrence

relation.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2008 TEST 2 VERSION 3b

This sheet must be filled in and stapled to the front of your answers

				7	r		
Student's Fa	mily Name		Initials		St	Student Number	
Tutorial Cod	le	Tı	itor's Name			Mark	
Note: The u	se of a calcula	tor is NOT	permitted in	this test			
QUESTION	S (Time allowe	d: 20 minutes	s)				
1. (2 m	arks)						
Solve	the differential e	equation					
		$y\sqrt{2x^2}$	$\overline{+3} dy + x\sqrt{4}$	$\overline{-y^2}dx = 0$			
given	that $y = 1$ when	x = 0.					
2. (2 m	arks)						
Find	the general solut) ,				
		$\frac{d^2}{dt}$	$\frac{dy}{dt^2} + 8\frac{dy}{dt} + 16y$	y=0.			
3. (3 m	,						
Find	$\int \frac{x}{x^2 + 2x + 10} a$	dx. [You are g	iven that $\int \frac{a}{u^2}$	$\frac{du}{+a^2} = \frac{1}{a} \operatorname{ta}$	$an^{-1}\frac{u}{a} + C$	for $a \neq 0$]	
4. (3 m	arks)						
Solve			$2\frac{dy}{dx} - y = e^{x}$	x			

given that y = 0 at x = 0.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2009 TEST 2 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark

Note: The use of a calculator is NOT permitted in this test

QUESTIONS (Time allowed: 20 minutes)

- 1. (3 marks) x + 4
- Find $\int \frac{x+4}{(2x+1)(x-3)} dx.$
- 2. (3 marks)
 Show that the differential equation

$$(2x + 3y)dx + (3x + 4y)dy = 0$$

is exact, and find the general solution.

- 3. (4 marks)
 - (i) Find the general solution of the equation

$$\frac{d^2y}{dt^2} - 7\frac{dy}{dt} + 12y = 0$$

- (ii) Find the solution to the equation in part (i) that satisfies y = 3 and $\frac{dy}{dt} = 10$ at t = 0.
- (iii) If the 0 on the right hand side of the equation in part (i) were changed to e^{3t} , what form of particular solution would you seek? (Do not evaluate the unknown coefficients.)

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2013 TEST 2 VERSION 1a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculate	or is NOT permitted in this test	
OHESTIONS (Time allowed	· 20 minutes	

- 1. (3 marks) Find $\int \frac{x-3}{(2x-1)(x+2)} dx.$
- 2. (3 marks)

Show that the differential equation

$$(y - y\sin xy) dx + (x - x\sin xy)dy = 0$$

is exact and find the general solution.

- 3. (4 marks)
 - (i) Find the general solution of the equation

$$\frac{d^2y}{dt^2} - \frac{dy}{dt} - 12y = 0.$$

- (ii) Find the solution to the equation in part (i) that satisfies y=3 and $\frac{dy}{dt}=2$ at t=0.
- If the 0 on the right hand side of the equation in part (i) were changed to e^{-3t} , what form of particular solution would you seek? (Do not evaluate the unknown coefficients.)

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2013 TEST 2 VERSION 1b

Student's Famil	y Name	I	nitials	St	udent Number
Tutorial Code	_	Tutor's Na	me	_	Mark
Note: The use	of a calculat	or is NOT permitte	ed in this t	est	
QUESTIONS	(Time allowed	d: 20 minutes)			
1. (3 marks	*)				
Show that	at the different	ial equation			
		$(x+1)ye^xdx + (x+1)ye^xdx + (x+1$	$xe^x + y^2e^y$)d	dy = 0	
is exact a	and find the ge	eneral solution.			
2. (4 marks	;)				
(i) Find	d the general s	solution of the equation	n		
		$rac{d^2y}{dt^2}+rac{d^2y}{dt^2}$	$\frac{dy}{dt} - 6y = 0$		
(ii) Fine $t =$	d the solution 0.	to the equation in p	art (i) that	satisfies $y = 1$ a	$\operatorname{nd} \frac{dy}{dt} = -4 \operatorname{at}$
wha		ight hand side of the ticular solution would		* *	
3. (3 marks Find \int	$\frac{2x+6}{(3x+1)(x-1)}$	$-\frac{dx}{dx}$.			

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1231/MATH1241 CALCULUS S2 2013 TEST 2 VERSION 2a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	tor is NOT permitted in this tes	\mathbf{t}

QUESTIONS (Time allowed: 20 minutes)

1.
$$(3 \text{ marks})$$

Find $\int \frac{1}{x^2 + 4x + 8} dx$. [You are given that $\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$ for $a \neq 0$]

2. (3 marks) Show that the differential equation

$$2e^{2y} dx + (4x - y - 1)e^{2y} dy = 0$$

is exact and find the general solution.

- 3. (4 marks)
 - (i) Find the general solution of the equation

$$\frac{d^2y}{dt^2} + 4y = 0.$$

- (ii) Find the solution to the equation in part (i) that satisfies y=2 and $\frac{dy}{dt}=6$ at t=0.
- (iii) If the 0 on the right hand side of the equation in part (i) were changed to $\cos 2t$, what form of particular solution would you seek? (Do not evaluate the unknown coefficients.)