Summary Report: Tokenization Fundamentals & GPT Architecture

Part 1: Tokenization Fundamentals

1. Subword Tokenization

- Breaks words into smaller units (subwords) to handle rare or unknown words.
- Balances vocabulary size and out-of-vocabulary tokens.

2. Byte Pair Encoding (BPE)

- Used in: GPT-2, GPT-3
- Merges the most frequent character pairs into subwords.
- Advantage: Efficient and handles rare words.
- Limitation: Merges are static after training.

3. WordPiece

- Used in: BERT
- Maximizes likelihood of subword sequences.
- Example: "unhappiness" -> [un, ##happy, ##ness]

4. SentencePiece

- Used in: T5, mBART
- Does not require pre-tokenized input; works on raw text.
- Supports BPE and Unigram LM.

Part 2: GPT Fundamentals

1. GPT Architecture

- Input Embedding: Converts token IDs into vectors.
- Positional Encoding: Adds order information to tokens.
- Transformer Decoder Blocks: Includes masked attention, feedforward layers, and LayerNorm.
- Output Head: Maps to vocabulary logits.
- 2. Self-Attention with Causal Masking
- Ensures each token attends only to previous tokens (no future leak).
- 3. Training Objective
- Causal Language Modeling: Predict the next token.
- Loss Function: Cross-entropy.
- 4. Text Generation
- Iteratively predicts and appends the next token.
- Sampling strategies: greedy, top-k, top-p (nucleus).

Comparison Table

Technique	Used In	Strength	Token Example	
	- -			
BPE	GPT-2	Merges frequer	nt subword pairs un, ##happy, ##nes	ss
WordPiece	BERT	Probabilistic	subword modeling to, ##ken, ##izer	1
SentencePiece T5, mBART Language-independent tokenization no whitespace needed				

Why Tokenization Matters

- Affects how models interpret language.
- Impacts training speed, model generalization, and performance.