Statistics for the Sciences

Variables and Distributions

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Sample and Population
- Types of data
 - Classification of variables and data
- Descriptive statistics and inferential statistics
 - Parameter and statistics
 - Descriptive statistics
 - Inferential statistics
- Distributions of univariate data

Sample and Population

 An investigation will typically focus on a well-defined collection of subjects constituting a population of interest.

- Population: The complete collection of all subjects that are being considered.
- Sample: Subcollection of subjects selected from a population.

Data

- A data set is a collection of measurements of one variable or several variables for some individuals or subjects.
- Often, a data set is a file, in which each column (or field) corresponds to an variable(or attribute) and each row corresponds to measurements of all variables for each subject. This type of data sets is called record-based data.
 - Example: Elephant seal foraging

##		male	departwt	distance	FFAduration	durationto	durationfrom
##	1	Pop	NA	534	31	18	11
##	2	Alt	973	755	89	9	8
##	3	Pro	977	1210	77	12	18
##	4	Hal	1121	NA	NA	NA	NA
##	5	Blu	NA	1297	76	19	25
##	6	Dua	996	1487	68	18	23
##	7	Rov	1100	2073	69	29	25
##	8	Ric	1068	2181	46	21	42
##	9	Ori	1097	NA	NA	NA	NA
##	10	Jer	1199	NA	NA	NA	NA

Variables

- A variable (or attribute) is a property or characteristic that can vary from one subject to another or frome one time to another.
 - A data set is obtained by measuring variables.
- Classification of variables by the type of measurements

Categorical Variables

- Categorical variables take category or label/name values, and place an individual into one of several groups.
 - ▶ They cannot be used for computations.
- Categorical variables can be further classified using levels of measurement by looking at what is being measured.
 - ▶ Nominal, when there is no natural ordering among the categories.
 - * Common examples would be like gender, eye color.
 - Ordinal, when there is a natural order among the categories, such as, ranking scales or letter grades.
 - Differences between data values either cannot be determined or are meaningless.
 - ★ Examples: biological family and genus

Categorical Variables

• Sengi example (Kaufman et al. (2013)) from Chapter 5:

		0 1 (`	//	•		
##		family	genus	species	bodymass	brainmass	relat
##	1	${\tt Solenodontidae}$	Solenodon	paradoxus	672.0	4723	laurasiather
##	2	Tenrecidae	Tenrec	ecaudatus	852.0	2588	afrother
##	3	Tenrecidae	Setifer	setosus	237.0	1516	afrother
##	4	Tenrecidae	${\tt Hemicentetes}$	semispin	116.0	839	afrother
##	5	Tenrecidae	Echinops	telfairi	87.5	623	afrother
##	6	Tenrecidae	Oryzorictes	talpoides	44.2	580	afrother
##	7	Tenrecidae	Microgale	cowani	15.2	420	afrother
##	8	Tenrecidae	Limnogale	mergulus	92.0	1150	afrother
##	9	Tenrecidae	Microgale	dobsoni	31.9	557	afrother
##	10	Tenrecidae	Microgale	talazaci	48.2	766	afrother
##		relatio	on2				
##	1	other insective	ore				
##	2	other insective	ore				
##	3	other insective	ore				

other insectivore

other insectivore

other insectivore

other insectivore

other insectivore

Categorical Variables

• All unique family in the data:

```
## [1] "Solenodontidae" "Tenrecidae" "Chrysochloridae" "Erinac" "Macroscelididae" "Macroscelididae"
```

Frequency table

```
##
               family Freq
     Chrysochloridae
                          2
         Erinaceidae
##
   3 Macroscelididae
                          5
      Solenodontidae
                          1
## 5
           Soricidae
                        27
## 6
            Talpidae
                         5
          Tenrecidae
## 7
                         12
```

Numerical Variables

- Numerical variables take numerical values, and represent some kind of measurement.
- Numerical variables are often further classified by the number of values:
 - Discrete, when the variable takes on a finite or countably infinite number of values.
 - ★ Most often these variables indeed represent some kind of **count**.
 - ► Continuous, when the variable takes infinitely many values corresponding to the points on a real line interval
 - Units should be provided.
 - ★ Our precision in measuring these variables is often limited by our instruments.
 - ★ Common examples would be like height (inches) and weight.

Numerical Variables

Example: consider variable bodymass in the data set kaufman

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.90 11.47 40.80 154.09 93.20 852.00
```

Numerical Variables

• Example: consider variable bodymass in the data set kaufman

Univariate and Multivariate data

- A univariate data set consists of observations on a single variable.
 - ► For example, the following sample of lifetimes (hours) of brand D batteries put to a certain use is a numerical univariate data set: 5.6.5.1.6.2.6.0.5.8.6.5.5.8.5.5
- We have bivariate data when observations are made on each of two variables.
- Multivariate data arises when observations are made on more than one variable (so bivariate is a special case of multivariate).

Parameter and Statistic

- Parameter is a numerical summary describing some variable of a population.
 - For example, population mean μ , population proportion p
- Statistic is a numerical summary describing some variable of a sample
 - A statistic is an estimator of some parameter in a population.
 - For example, sample mean \bar{x} , sample proportion \hat{p}

Descriptive statistics

- When desired information is available for all subjects in the population, we have what is called a census.
 - Census is costly and time-consuming. For example, the United States Bureau of the Census is conducting the U.S. Census every ten years.
- DESCRIPTIVE STATISTICS: Procedures used to summarize and describe a set of measurements.
 - Only Descriptive statistics is needed to analyze census data
 - ▶ Inferential statistics is needed for sample data

Inferential statistics

- INFERENTIAL STATISTICS: Procedures used to draw conclusions or inferences about the population (parameter or distribution) from information contained in a **random sample** selected from the population.
 - When we cannot enumerate the whole population, we use both Descriptive Statistics and Inferential Statistics.
 - ▶ **Probability theory** is necessary for us to make statistical inferences.

Distribution of a variable

• What does the word distribution mean?

Distribution of a variable

- Distribution is the description of data values and frequencies of a (uni-variate)data set.
 - Location: where are the values for numerical data or what are the categories for categorical data
 - ▶ How often: frequency or relative frequency of data values or categories.

Distribution of a catetorical variable

• For a categorical variable, we use frequency table or relative frequency table

##		family	Freq	Relative_Frequency
##	1	${\tt Chrysochloridae}$	2	0.0357
##	2	Erinaceidae	4	0.0714
##	3	${\tt Macroscelididae}$	5	0.0893
##	4	Solenodontidae	1	0.0179
##	5	Soricidae	27	0.4821
##	6	Talpidae	5	0.0893
##	7	Tenrecidae	12	0.2143

Distribution of a catetorical variable

• Data visualization of a categorical variable using bar chart or pie chart

Distribution of a catetorical variable

• Data visualization of a categorical variable using bar chart or pie chart

Distribution of a continuous variable

• Frequency and relative frequency table is constructed in a way similar to the analysis of categorical variable. For example,

##		bodymass_intervals	Freq	Relative_Frequency
##	1	[1.9,144]	44	0.7857
##	2	(144,285]	2	0.0357
##	3	(285,427]	0	0.0000
##	4	(427,569]	3	0.0536
##	5	(569,710]	3	0.0536
##	6	(710,852]	4	0.0714

Distribution of a continuous variable

• Then it results in a graph called histogram

Characterizing a Distribution - Center

- Mean Denote the numerical variable by x
- $\bar{x} = \sum_{i=1}^n x_i/n$
- Location *parameter*: for example $\mu = E(X)$

```
## [1] "Mean of body mass = 154.086"
```

Median

```
## [1] "Median of body mass = 40.8"
```

- Mode is the most frequently occurring value in a data set.
 - It is defined as a hump in a histogram

```
## [1] "Mode of body mass is 10.2"
```

• Range: max-min

```
## [1] "Range of body mass is 852 - 1.9 = 850.1"
```

- Percentiles give the value below which a given percentage of the data values
 occur.
 - ▶ The 50th percentile is the median.
 - ▶ There are various algorithms calculating percentiles
- The three quartiles

```
## 25% 50% 75%
## 11.475 40.800 93.200
```

- IQR (Inter-Quartile Range) = $Q_3 Q_1$
- Box-plot components
 - ▶ Q_1 , Q_2 (median) and Q_3
 - Outliers (determined by lower-fence and upper-fence)

• Sample variance

$$s^2 = \sum_{i=1}^n (x_i - \bar{x})^2 / (n-1)$$

Sample standard deviation

$$ightharpoonup s = \sqrt{s^2}$$

[1] "Variance of body mass = 64231.318"

```
## [1] "S.t.d. of body mass = 253.439"
```

- The **standard error** is the estimate of the standard deviation of a statistic when the statistics is considered as a random variable.
- For normally distributed data, the standard error (SE) of the sample mean \bar{x} is $SE(\bar{x}) = \frac{s}{\sqrt{n}}$.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.