Category-Specific CNN for Visual-aware CTR Prediction at JD.com

KDD '20, August 23-27, 2020,

主讲人: 颜丙齐

problem

➤ the strict requirements for efficient end-to-end training and low-latency online serving.

➤ the off-the-shelf CNNs and late fusion architectures are suboptimal.

➤off-the-shelf CNNs were designed for classification thus never take categories as input features.

CTR Prediction System

Cross Network

The cross net is used to process non-visual feature

$$z_{l+1} = z_0 z_l^T w_l + b_l + z_l$$

$$z_0 = x_{nv}$$

$$X_{nv} = \mathbb{R}^{380}$$

Why is 380?

$$x_{emb} = Ex_{hot}$$

where $E \in \mathbb{R}^{d_e \times v}$ is the embedding dictionary for this specific feature and d_e is the embedding size. We then concatenate the x_{emb} 's of all features to build x_{nv} .

Setting $d_e = 4$, the total dimension is $95 \times 4 = 380$.

Deep Network

In layer 1, we transform the non-visual feature to 1024 dimension and concatenate it with the visual feature,

$$h_1 = [x_v, ReLU - MLP(x_{nv})] \in \mathbb{R}^{150+1024}$$

Two deep layers follows,

$$h_{l+1} = ReLU - MLP(h_l), l \in \{1,2\}, h_2 \in \mathbb{R}^{512}, h_3 \in \mathbb{R}^{256}$$

Finally, we combine the outputs for the predicted CTR,

$$\hat{y} = \sigma(ReLU - MLP[h_3, z_3])$$

Category-Specific CNN(CSCNN)

$$F' = M_c(F, A_c^k) \odot F \qquad F'' = M_s(F', A_s^k) \odot F'$$

Category-specific Channel-wise Attention

$$M_c(F, A_c^k) = \sigma(MLP[AvgP(F), A_c^k] + MLP[MaxP(F), A_c^k]),$$

Category-specific Spatial Attention

$$M_s(F', A_s^k) = \sigma(Conv_{7\times7}(MaxP(F'), AvgP(F'), A_s^k))$$

Online model system

Datasets

• The ablation study is conducted on 3 wildly used benchmark datasets about products on Amazon.com introduced in [16].

New: Amazon 2018 dataset

We've put together a new version of our Amazon data, including more reviews and additional metadata

New: Advice to Prospective Students

If you are considering internships, PhD applications, or project work, please read this advice first before contacting me about joining my lab

New: Advice to Students Requesting Reference Letters

New: Repository of Recommender Systems Datasets

A collection of datasets for recommender systems research is now available on our lab's dataset webpage

Datasets

Dataset	#Users	#Items	# Interact	#Category
Fashion	64,583	234,892	513,367	49
Women	97,678	347,591	827,678	87
Men	34,244	110,636	254,870	62

Evaluation Metrics

 AUC measures the probability that a randomly sampled positive item has higher preference than a sampled negative one,

$$AUC = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{D}_u|} \sum_{(i,j) \in \mathcal{D}_u} \mathbb{I}(\hat{y}_{u,i} > \hat{y}_{u,j})$$

$$\mathcal{D}_{\mathbf{u}} = \{(i,j) | (u,i) \in \mathcal{T}_{u} \text{ and } (u,j) \notin (\mathcal{P}_{u} \cup \mathcal{V}_{u} \cup \mathcal{T}_{u})\}$$

• In JD.com, every 1‰increase in off-line AUC brings 6 million dollars lift in the overall advertising income.

Experimental

	No Image With Image		Image	With Image + Category					
Datasets		BPR-MF	VBPR	DVBPR	DVBPR-C	Sherlock	DeepStyle	DVBPR-SCA	Ours
Fashion	All	0.6147	0.7557	0.8011	0.8022	0.7640	0.7530	0.8032	0.8156
	Cold	0.5334	0.7476	0.7712	0.7703	0.7427	0.7465	0.7694	0.7882
Women	All	0.6506	0.7238	0.7624	0.7645	0.7265	0.7232	0.7772	0.7931
	Cold	0.5198	0.7086	0.7078	0.7099	0.6945	0.7120	0.7273	0.7523
Men	All Cold	0.6321 0.5331	0.7079 0.6880	0.7491 0.6985	0.7549 0.7018	0.7239 0.6910	0.7279 0.7210	0.7547 0.7048	0.7749 0.7315
	Colu	0.5551	0.0000	0.0703	0.7010	0.0710	0.7210	0.7040	0.7313

When testing, we report performance on two sets of items: All items, and Cold items with fewer than 5 actions in the training set.

Experimental

Ç>	Orig	ginal	+CSCNN		
	All	Cold	All	Cold	
No Attention	0.7491	0.6985	_	_	
SE	0.7500	0.6989	0.7673	0.7153	
CBAM-Channel	0.7506	0.7002	0.7683	0.7184	
CBAM-All	0.7556	0.7075	0.7749	0.7315	

Experimental

ß		CNN-F	Inception
No Attention	All Cold	0.7491 0.6985	0.7747 0.7259
CBAM	All Cold	0.7556 0.7075	0.7794 0.7267
CSCNN	All Cold	0.7749 0.7315	0.7852 0.7386

What is new

- ➤ We proposed Category-specific CNN, specially designed for visual-aware CTR prediction in e-commerce.
- ➤Our early-fusion architecture enables category-specific feature recalibration and emphasizes features that are both important and category related, which contributes to significant performance gain in CTR prediction tasks.
- ➤ With the help of a highly efficient infrastructure, CSCNN has now been deployed in the search advertising system of JD.com, serving the main traffic of hundreds of millions of active users.

Thank you