# 18 MIPS Extensions, FP

Thursday, October 15, 2015 10:01

# LOAD/STORE

- Lw/sw
  - Load word, store word
  - A 32 bit quantity
- Lh/sh
  - Load half word, store half word
  - A 16 bit quantity
- Lb/sb
  - Load byte, store byte
  - A 8 bit quantity
- What happens for lh/sh and lb/sb into a 32-bit register?





10,

## Sign Extension



Big Indian, Little Indian -> figure it out for SPIPM

Put 4 bytes, see which 4 it loads

Apparently the same as the system, thus its little indian.

Lw \$t0, 24(\$t7) Addi \$t0, \$t1, -10

#### Zero extension

- Always fill with zeros, regardless of sign of the number
- OR, AND do zero extension

Lbu

Load byte unsigned, is the lb instruction but only does zero extension

Nothing really unsigned about this.

Addu

- Add unsigned
- · Confusing, not actually what you think it is

Addiu

- Immediate constant, sign extends the constants
- If you overflow in the addition, no error

Addi - exception on overflow Addu, addiu - not soing unsigned arithmetic, but no exception on overflow

### **Floating Point Numbers**

Not on homework



### Floating point

#### **Formats**

- 24 + 7 = 32 bits there is another bit but nvm
- 53 + 10 but theres a bit missing somewhere
- Intel
  - 84 bits internally

# **Normalization**

1.2345

Leading digit is not stored



# **Representation error**

No exact floating point representation for X

### **Rounding error**

Additional error introduced by arithmetic

Anything you do in FP, is prob wrong

$$1.10 \times 2^3$$
  $\tau_{11} \times 2^{-1}$ 
 $11000 \times 2^{-1} + 1.11 \times 2^{-1}$ 

Catorstrophic cancellation