Carothers - Chapter 4 Open Sets and Closed Sets

Hoang K. Vo

April 29, 2022

Exercise 3. Some authors say that two metrics d and p on a set M are equivalent if they generate the same open sets. Prove this.

Proof. If d and p generate the same open set in M, then assume that $x_n \to x$ respect to d, we will prove that $x_n \to x$ respect to p. Indeed, for any $\delta > 0$, we have $B^p_{\delta}(x)$ is an open set in M, thus it is also an open set respect to d. And since x is in that open set, there exists $\epsilon > 0$ such that $B^d_{\epsilon}(x) \subset B^p_{\delta}(x)$. But because $x_n \to x$ respect to d, x_n is eventually in $B^d_{\epsilon}(x) \subset B^p_{\delta}(x)$. Therefore, $x_n \to x$ respect to p, which means d and p are equivalent.

Exercise 5. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Show that $\{x : f(x) > 0\}$ is an open subset of \mathbb{R} and that $\{x : f(x) = 0\}$ is a closed subset of \mathbb{R} .

Proof. Assume that f(x) > 0 for some x, then because f is continuous, there exists $\delta > 0$ such that for any $y \in B_{\delta}(x)$, we have f(y) > 0. Thus $B_{\delta}(x) \in \{x : f(x) > 0\}$, which implies $\{x : f(x) > 0\}$ to be an open set. Similarly, we have $\{x : f(x) < 0\}$ is also an open set, which means

$${x: f(x) = 0} = \mathbb{R} \setminus ({x: f(x) > 0} \cup {x: f(x) < 0})$$

is a close set. \Box

Exercise 7. Show that every open set in \mathbb{R} is the union of (countably many) open intervals with rational endpoints. Use this to show that the collection U of all open subsets of \mathbb{R} has the same cardinality as \mathbb{R} itself.

Proof. First, we will prove that for any open interval (a, b), $a, b \in \mathbb{R}$, there is countably many rational endpoint interval whose union is (a, b). Indeed, there exists an increasing sequence of rational numbers $b_n \to b$ and a decreasing sequence of rational numbers $a_n \to a$. Clearly, we have $\bigcup_{n=1}^{\infty} (a_n, b_n) = (a, b)$.

Therefore, by theorem 4.6, if M is an open set on \mathbb{R} , then M can be broken into countably many disjoint interval. We continue to break each interval into countably many unions of rational endpoint intervals. Thus any open set on \mathbb{R} can be written as a union of countably many rational endpoint intervals.

Notice that the cardinality of (a, b) where $a, b \in \mathbb{Q}$ is $card(\mathbb{Q} \times \mathbb{Q}) = card(\mathbb{N}) = \aleph_0$. Therefore, the collection U of all open subsets of \mathbb{R} has the cardinality equals $card(\mathcal{P}(\mathbb{N})) = card(\mathbb{R})$. Thus the two sets have the same cardinality. \square

Exercise 8. Show that every open interval (and hence every open set) in \mathbb{R} is a countable union of closed intervals and that every closed interval in \mathbb{R} is a countable intersection of open intervals.

Proof. Let (a,b) be an open interval in \mathbb{R} , there exists an increasing sequence (b_n) and a decreasing function (a_n) such that $b_n \to b$ and $a_n \to a$. And since a < b, there exists n_0 such that $a_n < b_n$ for any $n > n_0$. Therefore, without loss of generality, we can assume that $a_n < b_n$ for all n. We will claim that $\bigcup_{n \in \mathbb{N}} [a_n, b_n] = (a, b)$. Indeed, since $[a_n, b_n] \subset (a, b)$ for all n, we have $\bigcup_{n \in \mathbb{N}} [a_n, b_n] \subset (a, b)$. Now for any $x \in (a, b)$, there exists m such that $a_m < x < b_m$. Thus $x \in [a_m, b_m] \in \bigcup_{n \in \mathbb{N}} [a_n, b_n]$, which means $(a, b) \subset \bigcup_{n \in \mathbb{N}} [a_n, b_n]$. For that reason, $\bigcup_{n \in \mathbb{N}} [a_n, b_n] = (a, b)$.

Now, for any closed interval [a, b], let a_n, b_n be increasing and decreasing sequences respectively, such that $a_n \to a$ and $b_n \to b$. We claim that $\bigcap_{n \in \mathbb{N}} (a_n, b_n) = [a, b]$. Well, it's kinda obvious, the proof is similar to the previous case.

Before doing exercise 10, we first prove a little lemma.

Lemma 1. For any $x, z \in H^{\infty}$, if $d(x, z) < 2^{-N}t$, then $|x_k - z_k| < t$ for all $k = 1, \dots, N$.

Proof. notice that for any $z \in H^{\infty}$, we have

$$d(x,z) = \sum_{n=1}^{\infty} 2^{-n} |x_n - z_n| = \sum_{n=1}^{N} 2^{-n} |x_n - z_n| + \sum_{n=N+1}^{\infty} 2^{-n} |x_n - z_n|.$$

Because $|x_n - z_n| \ge 0$, we have

$$\sum_{n=1}^{N} 2^{-n} |x_n - z_n| \le \sum_{n=1}^{N} 2^{-n} |x_n - z_n| + \sum_{n=N+1}^{\infty} 2^{-n} |x_n - z_n| = d(x, z) \le 2^{-N} t.$$

Therefore, $2^{-k}|x_k - y_k| < 2^{-N}t$ for any $k = 1, \dots, N$. That is $|x_k - y_k| < 2^{k-N}t$. But $k \leq N$, hence $2^{k-N} \leq 1$, which implies $|x_k - y_k| < t$ for all $k = 1, \dots, N$.

Exercise 10. Given $y = (y_n) \in H^{\infty}, N \in \mathbb{N}$, and $\epsilon > 0$, show that $\{x = (x_n) \in H^{\infty} : |x_k - y_k| < \epsilon, k = 1, \dots, N\}$ is open in H^{∞} .

Proof. For any $x \in H^{\infty}$, we will prove that there exists δ such that $B_{\delta}(x) \in S = \{x = (x_n) \in H^{\infty} : |x_k - y_k| < \epsilon, k = 1, \dots, N\}$, so we can conclude that S is open. Indeed, by the assumption, we have $x \in S$, therefore $|x_k - y_k| < \epsilon$ for $k = 1, \dots, N$, which implies $M = \max\{|x_i - y_i| : i = 1, \dots, N\} < \epsilon$. Using the density of real number, there exists t > 0 such that $M + t < \epsilon$. Now let $\delta = 2^{-N}t$, then for any $z \in H^{\infty} \cap B_{\delta}(x)$, we have $d(x, z) < 2^{-N}t$. By Lemma 1, we conclude that $|x_k - z_k| \le t$ for all $k = 1, \dots, N$. Notice that for such k, using the triangular inequality, we have

$$|z_k - y_k| < |z_k - x_k| + |x_k - y_k| < t + M < \epsilon.$$

Thus, $z \in S$, which implies $B_{\delta}(x) \in S$. That is S indeed open.

Exercise 11. Let $e^{(k)} = (0, \dots, 0, 1, 0, \dots)$, where the kth entry is 1 and the rest are 0s. Show that $\{e^{(k)} : k \ge 1\}$ is closed as a subset of ℓ_1 .

Proof. One thing to notice is that for any $m, n \in \mathbb{N}$, we have

$$||e^{(m)} - e^{(n)}||_1 = \sum_{i=1}^{\infty} |e_i^{(m)} - e^{(n)}| = 2$$

whenever $m \neq n$. Back to the problem, assume that there exists $(x_n) \to a$ for some $x_n \in \{e^{(k)} : k \geq 1\}$. It is sufficient to prove that $a \in \{e^{(k)} : k \geq 1\}$. Indeed, by the definition of convergence, there exists $N \in \mathbb{N}$ such that $x_n \in B_{\frac{1}{2}}(a)$ for all $n \geq N$. But then, for any m, n > N, we have

$$||x_m - x_n||_1 \le ||x_m - a||_1 + ||a - x_n||_1 \le \frac{1}{2} + \frac{1}{2} = 1,$$

which implies $e^{(m)} = e^{(n)}$. Therefore, $e^{(n)}$ is a constant when $n \ge N$. That is $a = e^{(N)} \in \{e^{(k)} : k \ge 1\}$.

Exercise 12. Let F be the set of all $x \in \ell_{\infty}$ such that $x_n = 0$ for all but finitely many n. Is F closed? open? neither? Explain.

Proof. First, notice that $0 \in F$, but for any $\epsilon > 0$, we have $t = (\epsilon, \epsilon, \cdots)$ where $||t - 0||_{\infty} = \epsilon$, that is $t \in B_{\epsilon}(0)$. However, clearly $t \notin F$. So F is not open.

Second, let $x^{(i)} = (1 - \frac{1}{i}, \frac{1}{2} - \frac{1}{i}, \cdots, \frac{1}{i} - \frac{1}{i}, 0, 0, \cdots)$ and $a = (1, \frac{1}{2}, \cdots)$. For any $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then, for n > N, we have

$$||a - x^{(n)}||_{\infty} = \left\| \left(\frac{1}{n}, \dots, \frac{1}{n}, \frac{1}{n+1}, \frac{1}{n+2}, \dots \right) \right\|_{\infty} = \frac{1}{n} < \frac{1}{N} < \epsilon.$$

Thus $x^{(i)} \to a$. But by the definition of $x^{(i)}$ and a, we have $x^{(i)} \in F$ but $a \notin F$. Therefore F is not closed.

So F is neither closed or open.

Exercise 13. Show that c_0 is a closed subset of ℓ_{∞}

Proof. We will prove that $\ell_{\infty} \setminus c_0$ is an open set. For any $x \in \ell_{\infty} \setminus c_0$, we get $x \notin c_0$. Remind that $x \in c_0$ means for any $\delta > 0$, there exists N > 0 such that for all n > N, we have $|x_n| < \delta$. Therefore, $x \notin c_0$ means exists $\delta > 0$ such that for any N > 0, there exists n > N so that $|x_n| > \delta$.

We will claim that $B_{\delta/2}(x) \cap c_0 = \emptyset$, thus $B_{\delta/2}(x) \in \ell_{\infty} \setminus c_0$, which leads to $\ell_{\infty} \setminus c_0$ be an open set.

Indeed, if $y \in B_{\delta/2}(x) \cap c_0$, then because $y \in c_0$, there exists N' such that $|y_n| < \frac{\delta}{2}$ for any n > N'. And because $y \in B_{\delta/2}(x)$, we get $\max\{|y_n - x_n| : n \in \mathbb{N}\} < \frac{\delta}{2}$. Thus,

$$|x_n| \le |y_n - x_n| + |y_n| < \frac{\delta}{2} + \frac{\delta}{2} = \delta,$$

for any n > N', which contradicts to the fact that there exists n > N' such that $|x_n| > \delta$. So there is no such y.

Exercise 14. Show that the set $A = \{x \in \ell_2 : |x_n| \le 1/n, \ n = 1, 2, \dots\}$ is a closed set in ℓ_2 but that $B = \{x \in \ell_2 : |x_n| < 1/n, \ n = 1, 2, \dots\}$ is not an open set.

Proof. Assume that $x^{(k)} \in A$ and $||x^{(k)}||_2 \to ||x||_2$. By exercise 3.33, $||\cdot||_1$ and $||\cdot||_2$ on \mathbb{R}^{∞} are equivalent, thus $||x^{(k)}||_1 \to ||x||_1$, which implies $|x_n^{(k)}| \to |x_n|$ for any $n \in \mathbb{N}$. Since $x^{(k)} \in A$, we have $|x_n^{(k)}| \le \frac{1}{n}$ for all k, hence $|x_n| \le \frac{1}{n}$ too. Thus $x \in A$, which implies A is a closed set.

Notice that $0 \in B$. For any $\epsilon > 0$, there exists $0 < \delta < \epsilon$ and $n \in \mathbb{N}$ such that $\frac{1}{n} < \delta$. Let $a = (0, \dots, \delta, 0, \dots)$, that is $a_n = \delta$ and 0 everywhere else. Since $||a||_2 = \delta < \epsilon$, we have $a \in B_{\epsilon}(0)$. However, because $a_n = \delta > \frac{1}{n}$, we have $a_n \notin B$. Thus for any $\epsilon > 0$, we have $B_{\epsilon}(0) \not\subset B$. That is, B is not an open set.

Exercise 15. The set $A = \{y \in M : d(x,y) \leq r\}$ is sometimes called the closed