Differentiable Time-Varying Linear Prediction in the Context of End-to-End Analysis-by-Synthesis

Chin-Yun Yu and György Fazekas Centre for Digital Music, Queen Mary University of London

Motivations

The popular frame-based approximation of time-varying linear prediction (LP) filter is fast for end-to-end training, but it introduces

- mismatch between training and real-time inference condition
- high resonance filters due to windowing
- incontinuous filter representations between adjacent frames due to overlap-add

Time-Varying Linear Prediction

Output Input

Time-varying coefficients

M = filter order

t = time index i = coefficient index

Problem Definition

Find an efficient and accurate way to get

Gradients w.r.t input e(t)

reuse our efficient Numba

implementation

Gradients w.r.t coefficients \tilde{a}(t)

Contributions

- An efficient gradient backpropagation algorithm for time-domain training of LP filter
- Our differentiable LP filter written in PyTorch is open source and available on PyPI
- Improving previous GOLF vocoder[1] using source-filter formulation and differentiable sample-wise LP for exact time-varying modelling

End-to-End Synthesis Experiment

Efficient Gradient Backpropagation Algorithm

pip install torchlpc

Gradients w.r.t coefficients $z_i(t) = -\tilde{a}_i(t)s(t-i)$

Form.	Model	MSS Ţ	MCD↓	PESQ ☆	FAD ↓
HpN	DDSP	2.965	3.42	2.42	32.7 ± 7.7
	NHV	2.914	3.32	2.58	31.8 ± 7.4
	GOLF-v1	3.026	3.54	2.36	39.6 ± 9.4
SF	WORLD	3.515	6.07	1.77	270.6 ± 56.1
	MLSA	3.006	3.35	2.48	40.1 ± 10.0
	∇ WORLD	2.918	3.26	2.66	22.4 ± 5.6
	GOLF-ss	3.005	3.43	2.49	38.4 ± 9.2
	GOLF-ff	3.011	3.46	2.39	34.0 ± 7.7
	GOLF-fs	3.074	3.70	2.16	44.1 ± 10.1

The first author is a research student at the UKRI CDT in AI and Music, supported jointly by UK Research and Innovation [grant number EP/S022694/1] and Queen Mary University of London.

- GOLF-ss outperforms other baselines on the test speaker p360 (male)
- The overall scores of speaker p361 are lower due to poor performance of the Dio pitch estimator on that speaker

Conclusions and Future Works

- Source-filter form helps learning more reasonable filter response
- The proposed differentiable LP not only outperform the frame-wise method, its learnt filter representation is also the smoothest, which is a desired characteristic
- Exploring forward-mode automatic differentiation, second-order gradients, more analysis on the learnt representations, etc.

Reference

[1] Yu, Chin-Yun, and György Fazekas. "SINGING VOICE SYNTHESIS USING DIFFERENTIABLE LPC AND GLOTTAL-FLOW-INSPIRED WAVETABLES." in Proceedings of ISMIR, 2023. [2] Yu, Chin-Yun, and György Fazekas. "Differentiable Time-Varying Linear Prediction in the Context of End-to-End Analysis-by-Synthesis." in Proceedings of INTERSPEECH, 2024.

centre for digital music

Audio Samples

• Dataset: VCTK 0.92

GOLF, ff: frame-wise

LP, ss: sample-wise

LP (proposed), HpN:

SF: source-filter

performs the best

• Training with

variants

sample-wise LP

among all GOLF

harmonic-plus-noise,

• v1: the original

