

Drinking Water Surveillance Program

KITCHENER WELL SUPPLY

Annual Report 1988

TD 227 .K58 1990 MOE

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact Service Ontario Publications at copyright@ontario.ca

Standards Development Branch MOE

MOE Standards Development Branch LIBRARY

MOE Standards Development Branch LIBRARY

TD Kitchener well supply : annual report 1988.

227 .K58 77790

ISSN 0840-5190

73484

TD

227

.05

. 1990

K583

KITCHENER WELL SUPPLY

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1988

FEBRUARY 1990

Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

KITCHENER WELL SUPPLY 1988 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 52 plants are being monitored.

The Kitchener Well Supply source consists of many wells. Three locations were sampled on the DWSP; K70, an induced infiltration system located on the east side of Kitchener adjacent to the Grand River, K21 (Mannheim East/West), a high capacity overburden well field located at the western city limit of Kitchener, and Strange Street one of the first well fields developed in Kitchener located near the city-centre.

Samples were taken of raw and treated water from the K70 well, raw water from the K21 well and treated water from the Mannheim Reservoir, treated water from the Strange Street well and water from one house in the distribution system. The Kitchener Well Supply was sampled for approximately 160 parameters monthly. Parameters were divided into the following groups: Bacteriological, Inorganic and Physical (Laboratory Chemistry, Field Chemistry and Metals) and Organic (Chloroaromatics, Chlorophenols, Pesticides and PCB, Phenolics, Polynuclear Aromatic Hydrocarbons, Specific Pesticides and Volatiles). Chlorophenols and Specific Pesticides were analysed in June and November only.

A summary of results is shown in Table 1.

The Ontario Drinking Water Objective for Lead in drinking water (50 ug/L) was exceeded in one treated water sample from the Mannheim reservoir at a level of 68 ug/L. The District Officer was notified. All other Inorganic and Physical parameters were below any applicable health related ODWOs.

Of a total of approximately 110 Organic parameters tested for on a monthly basis, none exceeded health related guidelines.

While the parameters measured on DWSP may have indicated good water quality, the water produced cannot be considered to be satisfactory until a treatment process appropriate to the source of the supply is applied (see ODWOs revised 1983 p7).

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE BY SCAN (1988)

SCAN	SA TO THE PARTY OF	K21 R POSITIVE XP	OSITIVE	TESTS	NNHEIM RESERVOIR S POSITIVE XPOSITIVE		TESTS	SITE POSITIVE %	POSITIVE	TESTS	E ST RESERVO	OSITIVE	TESTS		SITIVE	TESTS	K70 TREA POSITIVE %	POSITIVE
BACTERIOLOGICAL	44		9	44	7	15	49	14	28	44	7	15	44	10	22	44	8	18
CHEMISTRY (FLD)	24	24	100	40	40	100	59	59	100	49	49	100	24	24	100	59	59	100
CHEMISTRY (LAB)	235	160	68	245	156	63	422	355	84	246	182	73	246	188	76	245	193	78
METALS	288	131	45	288	139	48	564	304	53	288	160	55	288	138	47	288	145	50
CHLOROAROMATICS	168	0	0	168	0	0	154	0	0	154	0	0	168	0	0	168	0	0
CHLOROPHENOLS	12	0	0	12	0	0				6	0	0	12	0	0	12	0	0
PAH	204	0	0	204	0	0		*		204	3	1	187	0	0	187	0	0
PESTICIDES & PCB	396	0	0	383	0	0	375	0	0	351	0	0	395	0	0	395	0	0
PHENOLICS	12	0	0	12	0	0			*	11	0	0	12	0	0	12	1	8
SPECIFIC PESTICIDES	44	0	0	56	0	0	0	0	0	50	0	0	51	0	0	57	0	0
VOLATILES	316	0	0	316	14	4	316	8	2	315	49	15	316	1	0	316	32	10
TOTAL	1743	319		1768	356		1939	740		1718	450		1743	361		1783	438	

THE COMO FOR LEAD(SOUG/L) WAS EXCEEDED IN ONE TREATED WATER SAMPLE NO OTHER GUIDELINES WERE EXCEEDED

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A .. INDICATES THAT NO SAMPLE WAS TAKEN

DRINKING WATER SURVEILLANCE PROGRAM

KITCHENER WELL SUPPLY 1988 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 52 plants are being monitored.

The DWSP was initiated in Kitchener in the spring of 1987. An annual report was published for 1987 (ISSN 0840-5190).

This report contains information and results for 1988.

PLANT DESCRIPTION

The Kitchener Well Supply source consists of many wells. Three locations were sampled on the DWSP; K70, an induced infiltration system located on the east side of Kitchener adjacent to the Grand River, K21 (Mannheim East/West), a high capacity overburden well field located at the western city limit of Kitchener, and Strange Street one of the first well fields developed in Kitchener located

near the city-centre.

The K21 (Mannheim East/West) has flows for day of sampling ranging from 31.9 x 1000 m^3 /day to 60 x 1000 m^3 /day; K70 (Recharge well) has flows on day of sampling ranging from 2.4 x 1000 m^3 /day to 3 x 1000 m^3 /day; the Strange Street well has flows ranging from 5.8 x 1000 m^3 /day to 13.9 x 1000 m^3 /day. These three wells are disinfected with chlorine.

The Kitchener Well Supply serves a population of approximately 144,000 people.

The sample location is shown in Figure 1. General information is presented in Table 2.

METHODS

Water samples were obtained from five DWSP approved locations;

- i) Raw K70 The water originated from the pump suction line prior to chlorination and was sampled through a copper sample line. The sample tap is located at the pump.
- ii) Treated K70 The water originated from the pump discharge following chlorination and was sampled through a copper sample line. The sample tap is located at the pump.

- iii) Raw K21 (Mannheim East/West) The water originated from the pump discharge and was sampled through a copper sample line. The sample tap is located at the pump.
- iv) Mannheim Reservoir The water originated from the highlift pump discharge and was sampled through a copper sample line. The sample tap is located near the pump in the reservoir building.
 - v) Treated Strange Street Reservoir The water originated from the highlift discharge and was sampled through a copper sample line. The tap is located at the highlift pump.

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner.

Sample day flow, chlorine dosages and field measurements such as Chlorine Residuals, pH and Temperature were recorded on the day of sampling and were entered onto the DWSP data base as submitted.

FIGURE 1

DRINKING WATER SURVEILLANCE PROGRAM SITE LOCATION MAP KITCHENER WELL SUPPLY SYSTEM

TABLE 2

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT GENERAL INFORMATION

KITCHENER WELL SUPPLY

LOCATION:

REGIONAL MUNICIPALITY OF WATERLOO

C/O MARSLAND CENTER 20 ERB STREET WEST WATERLOO, ONTARIO

N2J 4G7

SOURCE:

GROUNDWATER

DESIGN CAPACITY:

100 X 1000 M3/DAY

OPERATION:

MUNICIPALITY

SYSTEM MANAGER:

R. MACDONALD

MINISTRY REGION:

WEST CENTRAL

DISTRICT OFFICER:

D.R. IRELAND

MUNICIPALITY

POPULATION

SERVED

144,000

KITCHENER/WATERLOO

RESULTS

The K21 well was sampled for raw water and the Mannheim reservoir for treated water, the K70 recharge well was sampled for raw and treated water, the Strange Street well was sampled for treated water only at the reservoir. The Kitchener Well Supply locations were sampled for approximately 160 parameters on a monthly basis. The Specific Pesticides and Chlorophenols scans were sampled in June and November only. As a result of an unforeseen emergency the laboratory capacity was exceeded and analysis for volatiles could not be carried out when the samples were received. Since analysis for volatiles is no longer valid after four weeks of storage, volatile results for February are not available.

Table 3 contains information on the sample day retention time, flow rate and chlorine dosages.

Table 4 is a summary break-down of the number of water samples analysed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment (MOE) laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it

cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analysed in the DWSP.

Associated guidelines and detection limits are also supplied on tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

General

Water quality is judged by comparison with the Ontario Drinking Water Objectives (ODWOs) as defined in the 1984 publication (ISBN 0-7743-8985-0). The Province of Ontario has health related and aesthetic objectives for 49 parameters, these are currently under review. When an ODWO is not available guidelines/limits from other agencies are consulted. The Parameters Listing System (PALIS) recently published (ISBN 0-7729-4461-X) by the MOE catalogues and keeps current over 1750 guidelines for 650 parameters from agencies throughout the world.

Although some of the parameters measured on DWSP may be present in the raw and treated water as a result of pollution, many of the compounds detected are naturally occurring or are treatment byproducts.

Plant operational personnel address occurrences of taste and odour or biological water quality parameters. The DWSP does not assess these aspects of the water supply.

As stated under Results, traces do not indicate quantifiable results as defined by established MOE laboratory analytical reporting protocols. While they can be useful in trend analysis or confirmation of the presence of a specific contaminant that is repeatedly detected at these levels, the occasional finding of a trace level of a contaminant is not considered to be significant.

DISCUSSION OF GUIDELINES AND LIMITS THEREFORE, IS ONLY

Bacteriology

CONDUCTED ON POSITIVE RESULTS.

Positive results for the Bacteriology scan were present eight times in the treated K70 water, seven times in the treated Mannheim Reservoir water, seven times in the Strange Street Reservoir water and fourteen times in the Site 1 water. The positive parameters were Standard Plate Count, Total Coliform and/or Total Coliform Background and P/A bottle.

Coliforms were determined to be present in the July Site 1 water

as the result of a positive Presence/Absence test. Coliforms were not detected by the membrane filtration test.

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality; the routine monitoring program usually requires the taking of multiple samples in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Further, bacteriological limits were developed in acknowledgement that the presence of coliforms may be detected due to their non-uniform distribution throughout the distribution system and the fact that their enumeration is subject to considerable variation. For these reasons, the occasional finding of low numbers of coliform organisms is not unexpected. Routine bacteriological monitoring, as outlined in the ODWOs is carried out by the operating authority and results have indicated that the Kitchener well supply has experienced intermittent bacteriological contamination.

Inorganic and Physical

Laboratory and Field Chemistry

The results for the Laboratory Chemistry and Field Chemistry scans were below all applicable health related ODWOs.

There are ODWOs that are set for parameters which are related to

aesthetic quality rather than health.

Colour values exceeded the aesthetic ODWO of 5 True Colour Units (TCU) in two treated water samples from the K70 well. Colour in drinking water may be due to the presence of natural or synthetic organic substances as well as certain metallic ions.

The ODWO indicates that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters, provides an acceptable balance between corrosion and incrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption. All three sources of water sampled contained hardness values above 200 mg/L, ranging from 254 to 538 mg/L as CaCO3.

Some European Economic Community (EEC) guidelines for parameters related to hardness ie. Conductivity (400 uMHO/cm) and Calcium (100 mg/L), were also exceeded in some samples as a result of the high hardness levels. Conductivity values for the K21 (Mannheim) well ranged from 607-654 umho/cm, K70 well ranged from 576-655 umho/cm, Strange Street reservoir ranged from 921-1067 umho/cm and the Site 1 water ranged from 645-1155 umho/cm. Calcium values were high for the Strange Street reservoir water and the Site 1 water.

The Langelier Index is used extensively in estimating the corrosion

potential of water. An increasingly negative index indicates the increasing possibility of corrosion. It is considered sound engineering practice to maintain a slightly positive Langelier Index. The Langelier Index for the Kitchener wells is consistently high in the positive range.

It is desirable that the Temperature of drinking water be less than 15°C; the palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of the delivered water may increase in the distribution system due to the warming effect of the soil in late summer and fall and/or as a result of higher temperatures in the source water. The desired ODWO was exceeded twice in the treated water from K70 and once in the free flow water in the distribution system.

Metals

The Ontario Drinking Water Objective for Lead in drinking water (50 ug/L) was exceeded in one treated water sample from the Mannheim reservoir at a level of 68 ug/L. The District Officer was notified. All other results reported for the Metals scan were below any applicable health related ODWOs.

Copper levels were higher in the treated water from the K70 well as compared to the raw water indicating that small quantities of

these metals were leached from the copper sample line at the well.

Barium levels were lower in the water from the K70 well than in the water from other sources tested.

Strontium (stable) levels were higher in the K70 and the Strange Street sources than from the Mannheim source.

Higher levels of iron, manganese and zinc were found in the Strange Street reservoir as compared to the other sources.

Elevated levels of Copper, Iron, Lead and Zinc were detected in the standing samples from the distribution system as compared to the free flow samples thus, indicating that these metals were leached from the household plumbing as the water stood overnight. Although the Langelier Index indicates minimal potential for corrosion some metals will be leached in standing samples in most supplies.

The aesthetic ODWO of 50 ug/L for Manganese was exceeded in all of the Strange Street Reservoir samples and in five Site 1 water samples. Manganese, at concentrations greater than 50 ug/L, is objectionable in water supplies because it stains laundry, and may cause and undesirable taste in beverages.

Organic Parameters

Chloroaromatics

The results of the Chloroaromatics scan showed that no Chloroaromatics were detected.

Chlorophenols

The results of the Chlorophenols scan showed that no Chlorophenols were detected.

Pesticides and PCB (Polychlorinated Biphenyl)

The results of the Pesticides and PCB scan showed that no PCBs were detected and that one pesticide was detected:

Atrazine

Atrazine was detected at trace levels, six times in the K70 raw water and six times in the treated water.

Specific Pesticides

Results of the Specific Pesticides scan showed that no Specific Pesticides were detected.

Phenolics

The maximum desirable concentration of phenolic substances in drinking water is 2.0 ug/L. This limit has been set primarily to prevent the occurrence of undesirable tastes and odours,

particularly in chlorinated water. Phenolics were detected at trace levels, six times in the K21 (Mannheim) raw water and seven times in the treated, five times at the Strange Street reservoir, ten times in the K70 raw water and nine times in the treated water. Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes.

Polynuclear Aromatic Hydrocarbons (PAH)

The results of the PAH scan showed that three PAHs were detected:

Anthracene

Fluoranthene

Pyrene

Anthracene was reported at 1 ng/L in the February sample from the Strange Street reservoir, Fluoranthene was reported at 20 ng/L in the same sample. Subsequent development of detection limits by laboratory staff for PAHs indicate that these values were at the detection limit.

Pyrene was detected at 40 ng/L in the February water sample from the Strange Street Reservoir. At present no known drinking water guideline exists for this parameter. The United States Environmental Protection Agency's (EPA) Ambient Water Quality (AWQ) guideline for Fluoranthene is 42000 ng/L while the criteria for total PAH is 2.8 ng/L. AWQ guidelines are designed to ensure that the surface water, used as a drinking water source and from which

fish are consumed, does not contain substances at levels that would be hazardous to human health. Since both water and fish consumption are considered, AWQ guidelines are usually more stringent than any corresponding drinking water guideline.

Typically, concentrations of specific PAHs in groundwaters have been found to be 10-50 ng/L. Contact with coal tar based pipe and reservoir coatings may lead to increases in PAH concentrations in the water; and in such cases an increase in the level of fluoranthene is particularly marked.

Volatiles

The results of the Volatiles scan showed that eleven parameters, other than Trihalomethanes(THMs), were detected:

Benzene

Toluene

Ethylbenzene

Meta-Xylene

Ortho-Xylene

Styrene

1,1-Dichloroethane

1,1,1-Trichloroethane

Carbon Tetrachloride

Trichloroethylene

Tetrachloroethylene

treated water from the K21 (Mannheim) well, three times in the Site 1 water, once in the water from the Strange Street reservoir and once in the raw water from the K70 well.

Toluene was detected at trace levels, once in the treated water from the K21 (Mannheim) well, once in the Site 1 water, six times in the Strange Street reservoir water and once in both the raw and treated water from the K70 well. The detection of toluene at low, trace levels is a laboratory artifact derived from the analytical methodology. The purge-and-trap analytical technique depends on the purging of the volatile organics in the water sample with helium gas onto a Tenax trapping column. The volatile materials are subsequently thermally desorbed, separated and quantified. Tenax, a toluene-like polymeric material, tends to decompose sporadically upon heating into toluene and other aromatic componenets (ethylbenzene and xylene) giving instrument blanks in the order of 0.05 ug/L.

The detected trace levels of Styrene are also considered to be laboratory artifacts due to the outgassing of monomeric styrene from the polystyrene shipping containers. The sporadic background levels from this source are in the order of 0.05 ug/L.

Ethylbenzene was detected at trace levels, four times in the raw and treated water from the K21 (Mannheim) well, four times in the Site 1 water, nine times in the water from the Strange Street

reservoir and four times in the raw and treated water from the K70 well.

Meta-Xylene (M-Xylene) was detected at trace levels, nine times in the water from the Strange Street reservoir.

Ortho-Xylene (O-Xylene) was detected at trace levels, nine times in the water from the Strange Street reservoir.

The volatiles listed above are typically found on an occasional basis at other water supplies included on the DWSP usually at trace levels.

1,1 Dichloroethane was detected in the June and September water samples from Site 1 at 1.1 ug/L. At present no known drinking water guideline exists for this parameter. It was also detected at trace levels, four times in the Site 1 water and three times in the water from the Strange Street reservoir.

1,1,1-Trichloroethane was detected in all twelve samples taken from the Strange Street Reservoir. All values, ranging from .96 ug/L to 1.6 ug/L were below the United States Environmental Protection Agency's Maximum Contaminant Level for 1,1,1-Trichloroethane in drinking water of 200 ug/L. It was also detected at trace levels, once in the raw water from the K21 well and four times in the Site 1 water.

Carbon Tetrachloride was detected at trace levels, once in the Site 1 water and once in the treated water from the K70 well.

Trichloroethylene was detected at trace levels in all twelve samples taken from the Strange Street Reservoir.

Tetrachloroethylene (T-Chloroethylene) was detected at trace levels, once in the Strange Street Reservoir water.

THMs are formed from reactions between chlorine and naturally occurring organic compounds. Chloroform and other THMs (chlorodibromomethane, dichlorobromomethane and occasionally bromoform) have been found in water supplies drawn from groundwater sources.

Chloroform, Chlorodibromomethane, Dichlorobromomethane and Total THMs were detected in the treated water samples from all locations. Bromoform was detected occasionally.

All Total THM occurrences, ranging from traces to 36 ug/L, were well below the ODWO of 350 ug/L. The K70 recharge well supply produced higher levels of THMs than either of the other two supplies. This could be due to a higher level of naturally occurring organic matter reflecting the river water origin of the recharge water.

CONCLUSIONS

While the water quality produced by the three well sources may generally have been good, the water cannot be considered to be satisfactory until a treatment process appropriate to the source of the supply is applied (see ODWOs revised 1983 p7). The current MOE policy requires all groundwater supplies to receive chlorination treatment and some wells (other than the three monitored) supplying the Kitchener-Waterloo do not chlorinate.

The repeated finding of quantifiable levels of 1,1,1Trichloroethane and traces of Trichloroethylene in the Strange
Street Reservoir indicates contamination of the reservoir through
one or more of its source wells.

No health related drinking water guidelines, for organic or inorganic parameters, were exceeded during 1987 or 1988.

RECOMMENDATIONS

Two recommendations can be made:

1) The source of contamination at the Strange Street Reservoir should be investigated.

2) Effective and appropriate treatment should be provided to ensure safety and consistency in the quality of all waters.

TABLE 3

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

SAMPLE DAY CONDITIONS

TREATMENT CHEMICAL DOSAGES (MG/L)

	K21 (MANNH	EIM)		K70 RECHAR	GE WELL		STRANGE ST	RESERVOIR	
DATE	RETENTION TIME(HRS)	FLOW (1000H3)	PRE-CHLORINATION SODIUM HYPOCHLORITE	RETENTION TIME(HRS)	FLOW (1000M3)	PRE-CHLORINATION SODIUM HYPOCHLORITE	277	FLOW (1000M3)	PRE-CHLORINATION SODIUM HYPOCHLORITE
JAN 19	.5	35.6	01.01	.2	3.0	00.63		7.8	•
FEB 23	.3	42.1	01.01	.2	2.9	00.60	•,	8.6	•
MAR 22	.4	48.7	01.01	.2	2.4	00.54		13.9	
APR 19	.5	53.7	00.97	.3	2.4	00.63	•	8.6	
MAY 10	.5	60.0	01.07	.3	2.5	00.51		8.6	
JUN 21	.3	45.4	01.01	.3	2.8	00.51		10.0	
JUL 19	.5	35.5	01.14	.3	3.0	00.63		5.8	
AUG 23	.5	31.9	01.07	.2	2.8	00.57		10.0	
SEP 20	.6	35.4	01.20	.3	2.7	00.57	•0*	10.6	•
OCT 18	.3	35.4	01.14	.4	2.7	00.60	•	10.4	*
NOV 22	.4	33.3	01.07	.5	2.7	00.63	•2	13.6	
DEC 13	.3	32.6	00.97	.3	2.7	00.60	4	9.1	

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE OF RESULTS (1968)

			K70	RAW		K70 TREAT	ED :	STRANGE	ST RESERVOI	R		21 RAW	MANNHE	IM RESERVO	R		SI	TE 1
SCAN	PARAMETER	TOTAL POS	ITIVE TR	ACE	TOTAL P	OSITIVE TRA	CE 1	TOTAL PO	SITIVE TRACE	E TOTAL	POSITIVE	TRACE	TOTAL PO	SITIVE TRA	E TOT	AL POSITI	VE TI	RACE
BACTERIOLOGICAL	AEROHONAS SP			•												1	0	0
	E. COLI P/A									. ,						1	0	0
	FECAL COLIFORM MF	12	0	0		•			•	. 12		0		•	•			
	FECAL COLIFORM		•	: ÷			•									1	0	0
	STANDRD PLATE CHT MF	8	7	0	12	6	0	12	6	0 (. 0	12	5	0	12	5	0
	P/A BOTTLE				8	0	0	8	0	0.			8	0	0	8	1	0
	STAPH AUREUS					•										1	0	0
	COLIFORM					•										1	1	0
	TOTAL COLIFORM MF	12	0	0	12	0	0	12	0	12		0	12	0	0	12	0	0
	T COLIFORM BCKGRD MF	12	3	0	12	2	0	12	1 (12		0	12	2	0	12	7	0
*TOTAL SCAN BACTERIOL	OGICAL	44	10	0	44		0	44	7	0 44			44	7	0	49	14	•
*TOTAL GROUP BACTERIO		4	10	0	44		ň	4	,	44			7,7	,		40	14	,
- TOTAL GROOP BACTERIO	LOUTON	•••		Ť			٠			•		, ,	~	•	U	•••	14	٠
CHEMISTRY (FLD)	FLD CHLORINE (COMB)	•	••••••	••••	11	11	0	7	7 (2	2	0	1	1	0
	FLD CHLORINE FREE		•		12	12	0	6	6				2	2	0	2	2	0
	FLD CHLORINE (TOTAL)		•		12	12	0	12	12			e	12	12	0	8	8	0
	FLD PH	12	12	0	12	12	0	12	12	12	12	2 0	12	12	0	24	24	0
	FLD TEMPERATURE	12	12	0	12	12	0	12	12	12	12	. 0	12	12	0	24	24	0
*TOTAL SCAN CHEMISTRY	(FLD)	24	24	0	59	59	0	49	49	24	24	0	40	40	0	59	59	0
CHEMISTRY (LAB)	ALKALINITY	12	12	0	12	12	0	12	12 () 11	11	0	12	12	0	 23	23	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPPLARY TABLE OF RESULTS (1968)

		SILE																	
			K	70 RAW		K70 TRE	ATED	STRANGE	ST RESERVO	IR		K21	RAW	MANNHE	IM RESER	VOIR			ITE 1
SCAN	PARAMETER		POSITIVE	TRACE	TOTAL	POSITIVE T	RACE	TOTAL P	OSITIVE TRA	CE	TOTAL P	OSITIVE TI	RACE	TOTAL PO	SITIVE T	RACE	TOTAL	POSITIVE	TRACE
CHEMISTRY (LAS)	CALCIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	CYANIDE	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0	12	0	0
	CHLORIDE	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	COLOUR	12	12	0	12	11	1	12	7	5	11	0	7	12	0	4	24	12	11
	COMDUCTIVITY	12	12	0	12	12	0	12	12	0	11	11	0	12	12	0	23	23	0
	FLUORIDE	12	12	0	12	12	0	12	12	0	12	12	0	12	11	1	24	24	0
	NARDNESS	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	IONCAL	12	6	0	12	6	0	12	6	0	12	5	0	12	6	0	24	12	0
	LANGELIERS INDEX	12	12	0	12	12	0	12	12	0	11	11	0	12	12	0	23	23	0
	MAGNESIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	800 IUN	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	AMMONIUM TOTAL	12	8	3	12	10	1	12	7	4	11	5	5	12	5	6	23	12	9
	MITRITE	12	4	8	12	2	9	12	2	10	11	11	0	12	1	9	24	9	14
	TOTAL NITRATES	12	12	0	12	12	0	12	12	0	11	11	0	12	12	0	22	22	0
	NITROGEN TOT KJELD	12	12	0	12	12	0	12	5	7	12	0	10	12	2	10	23	18	5
	PH	12	12	0	12	12	0	12	12	0	11	11	0	12	12	0	23	23	0
	PHOSPHORUS FIL REACT	12	3	9	11	10	1	12	5	7	11	2	8	12	0	10		•	
	PHOSPHORUS TOTAL	12	0	10	12	0	9	12	0	9	12	0	3	12	0	4		•	•
	SULPHATE	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	12	12	0
	TURBIDITY	12	5	7	12	4	8	12	12	0	10	4	6	11	5	6	22	22	0
*TOTAL SCAN CHEMISTRY		246		37	245	193	29	246	182	42	235	160	39	245	156	50	422	355	39
METALS	SILVER	12		6	12	0	7	12	0	6	12	0	7	12	0	5	24	0	9

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE OF RESULTS (1988)

			K7	K70 RAW		K70 TRE	ATED	STRANGE	ST RESER	VOIR		K21	RAW	MANNH	EIM RESER	VOIR			ITE 1
SCAN	PARAMETER		POSITIVE			POSITIVE T									OSITIVE 1			POSITIVE	
METALS	ALUMINUM	12		0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	ARSENIC	12	0	11	12	0	8	12	6	5	12	0	9	12	0	10	24	8	14
	BARIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	BORON	12	8	4	12	8	4	12	12	0	12	5	7	12	5	7	24	19	5
	BERYLLIUM	12	0	6	12	0	8	12	0	5	12	0	7	12	0	7	24	0	13
	CADMIUM	12	0	8	12	0	7	12	0	9	12	0	2	12	0	4	24	0	9
	COBALT	12	0	12	12	0	12	12	0	12	12	0	11	12	0	10	24	0	20
	CHROMIUM	12	7	5	12	6	5	12	5	3	12	6	3	12	6.	5	24	14	9
	COPPER	12	12	0	12	12	0	12	12	0	12	10	2	12	12	0	24	23	1
	IRON	12	0	5	12	. 0	5	12	12	0	12	0	8	12	0	5	24	17	6
	MERCURY	12	4	3	12	4	3	12	4	2	12	4	2	12	4	2	12	4	2
	MANGANESE	12	12	0	12	11	1	12	12	0	12	12	0	12	12	0	24	23	0
	MOLYBOENUM	12	12	0	12	12	0	12	11	1	12	12	0	12	11	1	24	18	6
	WICKEL	12	3	6	12	4	5	12	4	3	12	2	3	12	1	5	24	11	8
	LEAD	12	4	8	12	12	0	12	5	7	12	4	8	12	12	0	24	13	10
	ANT I MONY	12	4	8	12	4	8	12	4	8	12	4	6	12	4	6	24	8	13
	SELENIUM	12	0	10	12	0	8	12	0	11	12	0	8	12	0	7	24	0	19
	STRONTIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	TITANIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	THALLIUM	12	0	9	12	0	10	12	0	11	12	0	10	12	0	7	24	0	8
	URANIUM	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
	PULCANAV	12	0	12	12	0	12	12	1	10	12	0	12	12	0	12	24	2	17
	ZINC	12	12	0	12	12	0	12	12	0	12	12	0	12	12	0	24	24	0
TOTAL SCAN NETALS		288	138	113	288	145	103	288	160	93	288	131	105	288	139	93	564	304	169
*TOTAL GROUP INORGANI	C & PHYSICAL	558	350	150	592	397	132	583	391	135	547	315	144	573	335	143	1045	718	208

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPPLARY TABLE OF RESULTS (1988)

			K70	RAW		K70 TREATED	STRANGE	ST RESERVOIR		K21 RAW	MANNHE	EIM RESERVOIR		\$	ITE 1
SCAN	PARAMETER	TOTAL	POSITIVE 1	TRACE	TOTAL	POSITIVE TRACE	TOTAL F	POSITIVE TRACE	TOTAL	POSITIVE TRACE	TOTAL PO	SITIVE TRACE	TOTAL	POSITIVE	TRACE
CHLOROAROMATICS	HEXACHLOROBUTAD I ENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	123 TRICHLOROBENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	1234 T-CHLOROSENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
140	1235 T-CHLOROBENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	124 TRICHLOROBENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	1245 T-CHLOROBENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	135 TRICHLOROBENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	HCB	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	HEXACHLOROETHANE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	OCTACHLOROSTYRENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	PENTACHLOROSENZENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	236 TRICHLOROTOLUENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	245 TRICHLOROTOLUENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
	26A TRICHLOROTOLUENE	12	0	0	12	0 0	11	0 0	12	0 0	12	0 0	11	0	0
*TOTAL SCAN CHLOROAR	OMATICS	168	0	0	168	0 0	154	0 0	168	0 0	168	0 0	154	0	0
CHLOROPHENOLS	234 TRICHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			•••••
	2345 T-CHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			
	2356 T-CHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			
	245-TRICHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			
	246-TRICHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			
	PENTACHLOROPHENOL	2	0	0	2	0 0	1	0 0	2	0 0	2	0 0			

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPPLARY TABLE OF RESULTS (1968)

			K70	RAW		K70 TREATE	D STRA	WGE S	T RESERVOI	R		K21 R	AW	MANNHEI	M RESERV	OIR			811	TE 1
BCAN	PARAMETER					POSITIVE TRAC														
*TOTAL SCAN CHLOROP		12	0	0	12		0	6		0	12	0	0	12	0	0	0		0	0
PAH	PHENANTHRENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12			••••••	•••••	••••	
COMMON CO.	ANTHRACENE	11	0	0	11	0	0 1	2	1	0	12	0	0	12	0	0				
	FLUORANTHENE	11	0	0	11	0	0 1	2	1	0	12	0	0	12	0	0				
	PYRENE	11	0	0	11	0	0 1	2	1	0	12	0	0	12	0	0				
	BENZO(A)ANTHRACENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0			•	
	CHRYSENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0			•	
	DIMETH. BENZ(A)ANTHR	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0			•	
	BENZO(E) PYRENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0	•		•	
	BENZO(J) FLUORANTHEN	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	•		•	•
	BENZO(B) FLUORANTHEN	11	0	0	11	0		12	0	0	12	0	0	12	0	0	•		•	•
	PERYLENE	11	0	0	11	0		2	0	0	12	0	0	12	0	0	•		٠	•
	BENZO(K) FLUORANTHEN	11	0	0	11	0	20 10	2	0	0	12	0	0	12	0	0	•		•	•
	BENZO(A) PYRENE	11	0	0	11	0	- C	2	0	0	12	0	0	12	0	0			•	•
	BENZO(G,N,I) PERYLEN	11	0	0	11	0		2	0	0	12	0	0	12	0	0			•	•
	DIBENZO(A, H) ANTHRAC	11	0	0	11	0		2	0	0	12	0	0	12	0	0	•		•	•
	INDENO(1,2,3-C,D) PY	11	0	0	11	0		2	0	0	12	0	0	12	0	0	•		•	•
	BENZO(B) CHRYSENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0			•	•
	ANTHANTHRENE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			•	
	CORONENE	11	0	0	11	0	0 1	2	0	0	12	0	0	12	0	0	•		•	•
*TOTAL SCAN PAN		187	0	0	187	0	0 20	4	3	0	204	0	0	204	0	0	0	(0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE OF RESULTS (1988)

			K70	RAW		K70 TREATE	D ST	RANGE	ST RESERVOIR		K21 RA	/ MA	MNHEIM RESERVOI	ŧ		ITE 1
SCAN	PARAMETER												L POSITIVE TRAC			
PESTICIDES & PCS	ALDRIN	12	0	0	12		0	11	0 0	12) 11		0
	ALPHA BHC	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	BETA BHC	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	LINDANE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	ALPHA CHLORDANE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	GAMMA CHLORDANE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	DIELDRIN	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	METHOXYCHLOR	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	ENDOSULFAN 1	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	ENDOSULFAN II	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	ENDRIN	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	ENDOSULFAN SULPHATE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	HEPTACHLOR EPOXIDE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	NEPTACHLOR	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	MIREX	12	0	0	12	0	0	11	0 0	12	0	1	2 0	0 11	0	0
	OXYCHLORDANE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	OPD0T	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	PCB	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	000	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	PPDOE	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	PPDOT	12	0	0	12	0	0	11	0 0	12	0) 1	2 0	0 11	0	0
	AMETRINE	12	0	0	12	0	0	10	0 0	12	0) 1	1 0	0 12	0	0
	ATRAZINE	11	0	6	11	0	6	10	0 0	12	0) 1	1 0	0 12	0	0
	ATRATONE	12	0	0	12	0	0	10	0 0	12	0	1	1 0	0 12	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPMARY TABLE OF RESULTS (1968)

SITE K70 RAW K70 TREATED STRANGE ST RESERVOIR K21 RAW SITE 1 MANNHEIM RESERVOIR PARAMETER SCAN TOTAL POSITIVE TRACE PESTICIDES & PCB CYANAZINE DES ETHYL ATRAZINE DES ETHYL SIMAZINE PROMETONE PROPAZINE PROMETRYNE METRIBUZIN SIMAZINE ALACHLOR METOLACHLOR *TOTAL SCAN PESTICIDES & PCB PHENOLICS PHENOLICS *TOTAL SCAN PHENOLICS SPECIFIC PESTICIDES TOXAPHENE 2,4,5-T 2.4-0 2,4-08 2.4 D PROPIONIC ACID

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPPLARY TABLE OF RESULTS (1988)

		••••																		
			K70	RAW		K70	TREATE	D ST	RANGE ST	RESERVO	IR		K21 I	AW	MANNHEIM	RESERVO	IR		\$17	TE 1
SCAN	PARAMETER	TOTAL P	OSITIVE 1	RACE	TOTAL	POSITI	VE TRAC	E TO	TAL POSIT	IVE TRA	CE TO	TAL POSIT	TIVE TRA	CE 1	TOTAL POST	IVE TRA	CE 1	TOTAL PO	SITIVE TO	LACE
SPECIFIC PESTICIDES	DICAMBA	1		0		•	0	0	1	0	0	2	0		2	0	0			
	PICHLORAN		0	0	ï		0	0		0	0	0	0	0	ō	ò	0			
	BILVEX	ĭ	0	ō	•		0	0	1	0	0	2	0	0	2	0	0	-	-	
	DIAZINON	2	0	0	-		0	0	2	0	0	ī	0	0	2	0	0			
	DICHLOROVOS	2	0	ō	-		0	0	2	0	ō	1	0	0	2	0	o			
	CHLORPYRIFOS	2	0	0	-		0	0	2	0	0	1	0	0	2	0	0	7		
	ETHION	2	0	0			0	0	2	0	0	1	0	0	2	0	0			
	AZINPHOS-METHYL	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	-	-	
	MALATHION	2	0	0	2	· !	0	0	2	0	0	1	0	0	2	0	0			
	MEVINPHOS	2	0	0	2		0	0	2	0	0	1	0	0	2	0	0		-	
	METHYL PARATHION	2	0	0	- 1		0	0	2	0	0	1	0	0	2	ò	0	7		-
	METHYLTRITHION	2	0	0	-		0	0	2	0	0	1	0	ō	2	0	0	15		-
	PARATHION	2	0	0	2	,	0	0	2	0	0	1	0	0	,	0	0			
	PHORATE	2	0	0	-	,	0	0	2	0	0	1	0	0	,	0	0		•	•
	RELDAN	2	0	0	2		0	0	,	0	0	•	0	0	,	0	'n	•	•	
	RONNEL	,	0	ō	-	,	0	n	,	0	ň	•	ň		,	•		•	•	•
	AMINOCARB	0	0	ň			n	n	•	0	n	'n	ň	ň	ò	0		:.●.	•	•
	BENONYL	,	0	0		,	n	n	,	0	n	,	ň	0	,	0	0	•	•	•
	BUX	,	0	ň	•	,	n	n	,	0	n	,	ň	ň	,	•		•	•	•
	CARBOFURAN	,	ň	ň	,	,	n	ň	,	n	ň	,	ň	n	,	•			•	•
	CICP	,	0		•		n	n	,	ň	ň	,	ň	n	,	•			•	•
	DIALLATE	,	ň	ň	,	,	0	n	,	n	n	,	0	0	,	•	0	1.5	•	•
	EPTAM	,	0		•	,	0	n	,	0	0	,	n	0	,	0		•	•	•
	IPC	,	0		•		0	0	,	0	0	,	ň	0	,	•		•	•	•
	IFC	•	J		•	•	•	•	•	•	•	•	٠	U	•	U	U	•	•	•

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUPPLARY TABLE OF RESULTS (1988)

		STIE																
			K71	D RAW		K70 T	REATED	STRANGE	ST RESERVOI	R	K21 (MAS	MANNHEI	M RESERVOIR			SITE 1	į.
SCAN	PARAMETER		POSITIVE 1	TRACE	TOTAL	POSITIVE	TRACE		POSITIVE TRACE		POSITIVE TR	CE	TOTAL POS	ITIVE TRACE	TOTAL	POSITIVE	TRACE	i
SPECIFIC PESTICIDES	PROPOSCUR	2	0	0	2		0	A SHARE A PROPERTY AND A SHARE A	0 (0 2	. 0	0	2	0 0				
	CARBARYL	2	0	0	2	0	0	2	0 (0 2	. 0	0	2	0 0				
	BUTYLATE	2	0	0	2	. 0	0	2	0 (0 2	. 0	0	2	0 0	9			ĕ
*TOTAL SCAN SPECIFIC	PESTICIDES	51	0	0	57		• •	50	0 (0 44	0	0	56	0 0	()
VOLATILES	DENZENE	11	0	, ,	11		0	11	0	1 11	0	1	11	0 1	11			5
	TOLUENE	11	0	1	11	0	1	11	1 !	5 11	0	0	11	0 1	11		1	i
	ETHYLBENZENE	11	0	4	11	0	4	11	0 9	9 11	0	4	11	0 4	11		4	
	P-XYLENE	11	0	0	11	0	0	10	0 (0 11	0	0	11	0 0	11			•
	M-XYLENE	11	0	0	11	0	0	11	0 9	9 11	0	0	11	0 0	11			1
	O-XYLENE	11	0	0	11	0	0	11	0 9	9 11	0	0	11	0 0	11			1
	STYRENE	3	0	3	3	1	2	3	0 1	1 3	0	2	3	1 2	3		3	
	1,1 DICHLOROETHYLENE	11	0	0	11	0	0	11	0 (0 11	0	0	11	0 0	11	0		,
	METHYLENE CHLORIDE	11	0	0	11	0	0	11	0 (0 11	0	0	11	0 0	11			
	T1,201CHLOROETHYLENE	11	0	0	11	0	0	11	0 (0 11	0	0	11	0 0	11	0		
	1,1 DICHLOROETHANE	11	0	0	11	0	0	11	0 3	3 11	0	0	11	0 0	11	2	4	
	CHLOROFORM	11	0	4	11	10	0	11	3 8	8 11	0	2	11	0 8	11	1	9	,
	111, TRICHLOROETHANE	11	0	0	11	0	0	11	11 (0 11	0	1	11	0 0	11	0	4	
	1,2 DICHLOROETHANE	11	0	0	11	0	0	11	0 (0 11	0	0	11	0 0	11	0		
	CARBON TETRACHLORIDE	11	0	0	11	0	1	11	0 (0 11	0	0	11	0 0	11		1	ĺ
	1,2 DICHLOROPROPANE	11	0	0	11	0	0	11	0 (0 11	0	0	11	0 0	11			,
	TRICHLOROETHYLENE	11	0	0	11	0	0	11	0 11	1 11	0	0	11	0 0	11)

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY

SUMMARY TABLE OF RESULTS (1988)

SITE

			K7	O RAW		K70 TRE	ATED	STRANGE	ST RESER	VOIR		K21	RAW	MAN	NHEIM RESER	VOIR		Į.	SITE	1
SCAN	PARAMETER	TOTAL	POSITIVE 1	TRACE	TOTAL	POSITIVE T	RACE	TOTAL P	OSITIVE T	RACE	TOTAL	POSITIVE T	RACE	TOTAL	POSITIVE T	RACE	TOTAL	POSITIVE	TRA	CE
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••	•••••	•••••	••••	•••••		•••••	•••••		••••		•••••	••••	•••
VOLATILES	DICHLOROBROMOMETHANE	11	0	2	11	8	2	11	11	0	11	0	0	11	5	6	11	2	į.	7
	112 TRICHLOROETHANE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	Ĺ	0
	CHLOROD I BROMOMETHAME	11	0	2	11	5	3	11	11	0	11	0	0	11	6	5	11	1		9
20	T-CHLOROETHYLENE	11	0	0	11	0	0	11	0	1	11	0	0	11	0	0	11	0	į.	0
	BROHOFORM	11	0	0	11	0	1	11	4	7	11	0	0	11	0	11	11	0	i	6
	1122 T-CHLOROETHANE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	Ē.	0
	CHLOROBENZENE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	E	0
	1,4 DICHLOROSENZENE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	į)	0
	1,3 DICHLOROBENZENE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	į.	0
	1,2 DICHLOROSENZENE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	0
	TRIFLUOROCHLOROTOLUE	5	0	0	5	0	0	5	0	0	5	0	0	5	0	0	5	0	A)	0
	ETHLYENE DIBROMIDE	11	0	0	11	0	0	11	0	0	11	0	0	11	0	0	11	0	1	0
	TOTL TRINALOMETHANES	11	1	1	11	8	2	11	8	3	11	0	0	11	2	9	11	2	j	7
*TOTAL SCAN VOLATILES		316	1.	18	316	32	16	315	49	67	316	0	10	316	14	47	316			58
*TOTAL GROUP ORGANIC		1141		34	1147	33	30	1091	52	72	1152	0	16	1151	1,535	54	845	100		58
			13.	7.5		==						572				•	0.0	· ··		
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	••••••	•••••	••••							•••••			
TOTAL		1743	361	184	1783	438	162	1718	450	207	1743	319	160	1768	356	197	1939	740	2	66

KEY TO TABLE 5 and 6

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 1*. MAC for Bacteriological Analyses
 Poor water quality is indicated when:
 - total coliform counts > 0 < 5
 - P/A Bottle Test is present after 48 hours
 - Aeromonas organisms are detected in more than 25% of samples in a single submission or in successive submissions from the same sampling site
 - Pseudomonas Aeruginosa, Staphylococcus Aureus and members of the Fecal Streptococcus group should not be detected in any sample
 - Standard Plate Count should not exceed 500 organisms per ml at 35 °C within 48 hours
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Maximum Desirable Concentration (MDC)
 - 4. Aesthetic or Recommended Operational Guideline
 - hardness levels between 80 and 100 mg/L as calcium carbonate are considered to provide an acceptable balance between corrosion and incrustation, water supplies with a hardness >200 mg/L are considered poor and those in excess of 500 mg/L are unacceptable.
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - Proposed MAC
 - 3. Interim MAC
 - Aesthetic Objective (AO) (for xylenes, the AO is a total)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - Tentative GV
 - Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- H USSR MAXIMUM PERMISSIBLE CONCENTRATION
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS. REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurable Amount
< T	Greater Than Detection Limit But Not Confident
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! AW	No Data: Analysis Withdrawn
! CR	No Data: Could Not Confirm By Reanalysis
!cs	No Data: Contamination Suspected
!IL	No Data: Sample Incorrectly Labelled
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!LD	No Data: Test Queued After Sample Discarded
!NA	No Data: No Authorization To Perform Reanalysis
! NP	No Data: No Procedure
! NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
! QU	No Data: Quality Control Unacceptable
! PE	No Data: Procedural Error - Sample Discarded
! PH	No Data: Sample pH Outside Valid Range
!RO	No Data: See Attached Report (no numeric results)
! SM	No Data: Sample Missing
!ss	No Data: Send Separate Sample Properly Preserved
!UI	No Data: Indeterminant Interference
! TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
22.2	

Calculated Result Only

CRO

PPS Test Performed On Preserved Sample

RMP P and M-Xylene Not Separated

RRV Rerun Verification

RVU Reported Value Unusual

SPS Several Peaks, Small, Not Priority Pollutant

UAL Unreliable: Sample Age Exceeds Normal Limit

UCR Unreliable: Could Not Confirm By Reanalysis

UCS Unreliable: Contamination Suspected

UIN Unreliable: Indeterminant Interference

XP Positive After X Number of Hours

T# (T06) Result Taken After # Hours

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	TYPE	K21 RAW	MANNHEIM RESERVOIR		ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
	BACTERIOLOG	ICAL						
AEROMONAS SP (1-PRESNT)		DET'N LIMIT	- N/A	GUIDELINE = 0 (A1)			
JUL			•	•	0			
E. COLI P/A (1	-PRESHT)		DET'N LINIT	• N/A	GUIDELINE - N/A			
J UL			•11	•:	0			
FECAL COLIFORM	MF (CT/100ML)		DET'N LINIT	• 0	GUIDELINE = 0 (A1)			5
MAL	0)	•:	¥	::•		0	
FEB	0		•0			: • :	0	
MAR	0	W	•			•	0	•
APR	0	V.	<u>(€</u>)		19		0	•
MAY	0				:€	•	0	•
JUN	0	1	≅n	•	1€	•	0	•
JUL	0	1	(●)				0	6 6 7
AUG	BOL		9	•	*	3●	BDL	
SEP		106	•		•		0 T06	•
OCT		124	•	•		•	O T24	•
MOA		106	■ 10	•	•		0 T06	
DEC	0	124					0 124	
FECAL COLIFORM	(1=PRESHT)		DET'N LIMIT	• N/A	GUIDELINE = 0 (A1)			••••••
JUL		0	•		0		•	•

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

8	SITE	×21 844	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE	KZI KAW	MARRIETH RESCRIVIN	•	TIE 1	STRANGE ST RESERVOIR	KIO KAW	KIO INEAILE
				STANDING	FREE FLOW			
STANDED PLATE CHT	MF (CT/ML)	DET'N LIMIT	- 0	GUIDELINE = 500/ML (/	11)		
JAN	0	1	0		0	3	1	2
FEB	2	!	1		3	1	0	1
MAR	0	ì	0		3	0	4	56
APR	0	ĺ	0		1	0	2	0
MAY	2	!	4		0	3	2	5
JUN	1		2		2	3	5	0
JUL	0	ĺ.	1		0	1	4	3
AUG	1		1	•	2	8	4	220
SEP			1 <->		4 <=>	5 <=>	• 1	5 <=>
OCT			3 <=>	•	2 <=>	1 🖘	•	2 <=>
WOV			3 <=>		4 <=>	4 <=>	•	1 <=>
DEC			2 <=>	•	5 <=>	6 <=>	•	1 <=>
P/A BOTTLE (1-PRES	MT)	••••••	DET'N LIMIT	- 0	GUIDELINE = 0 (A1*)			
JAN			0		0	0		0
FEB			0		0	0	•	0
MAR			0		0	0		0
APR			0		0	0	•	0
MAY			0		0	0		0
JUN			0		0	0	•	0
			0		1	0		0
AUG	•		0	•	0	0	•	0
STAPH AUREUS (1-PR	ESNT)		DET'N LIMIT	- N/A	GUIDELINE = 0 (A1)		••••••••••••	
					0		(a)	

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR	SI	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
COLIFORM (1-PRESM	,		DET'N LIMIT	• H/A	GUIDELINE = 0 (A1)		••••••	••••••
JUL	•		•	.	1			•
TOTAL COLIFORM MF	(CT/100ML)		DET'N LIMIT	• 0	GUIDELINE = 5/100ML(A1)			
JAM	0)	0		0	0	0	0
FEB	0	1	0		0	0	0	0
MAR	0)	0	•	0	0	0	0
APR	0	1	0		0	0	0	0
MAY	0)	0		0	0	0	0
JUN	BOL	ia.	0		0	0	BOL	0
JUL	0	Ŕ	0		0	0	0	0
AUG	BOL		0	•	0	0	BOL	0
SEP	BOL		0 T06		0 TO6	0 106	BOL	0 TO6
OCT	0	124	0 T24		0 T24	0 T24	0 T24	0 T24
WOV	0	106	0 T06		0 TO6	0 TO6	0 T06	0 TO6
DEC	0	124	0 T24		0 124	0 124	0 124	0 T24
T COLIFORM BCKGRD	MF (CT/100M	L)	DET'N LIMIT	- 0	GUIDELINE = N/A			
JAN	0).	0		0	0	0	0
FEO	0)	0		1	0	0	0
MAR	0	1	3		0	0	0	0
APR	0	1	0	•	2	0	3	0
MAY	0)	0	•	5	0	0	3
JUN	BOL		0		2	0	6	0
						_	_	_

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE		200		******	×30 a	V70 TATATA
	K21 RAW	MANNHEIM RESERVOIR	811	re 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
			STANDING	FREE FLOW			
AUG	BOL	0		0	3	BDL	2400 >
SEP	BOL	0 TO6	•	1 106	0 TO6	2 106	0 106
OCT	0 124	1 T24	.	2 124	0 T24	0 T24	0 T24
NOV	0 T06	0 TO6	•	21 106	0 TO6	0 TO6	0 TO6
DEC	0 124	0 124		0 124	0 124	0 124	0 124

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
,	TYPE	K21 RAW	MANNHEIM RESERVOIR	SIT	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
					FREE FLOW			
(CHEMISTRY							
FLD CHLORINE (COMB) (MG/L)	DET'N LIMIT	- N/A	GUIDELINE = N/A			
JAN			•9	•		8.●		.200
FEB		•	.100		.100	.100	•	.300
MAR		•	•		•	7€	•	.100
APR		•		•		.200	9	.200
MAY		•):	•			.100	•	.200
JUL		•1)	300			•	•	.200
AUG		•	10N		•	100	•	.300
SEP		•	.100	•	•	.100	3 .	.400
OCT		•	•	•	•	.100		.300
NOV		•	•		•	.100	•	.100
DEC		•)}	•		•	.100	*	.100
FLD CHLORINE FREE)	DET'N LIMIT	- W/A	GUIDELINE = N/A	•••••	•••••	••••••
TED CHECKINE TREE	(110)	•	JEI H EIMIT		- 17.1			
MAL			•	•		·*		.100
FEB		•	<u>9</u> 8		•	:•		.300
MAR		•	.100		.100	•	•	.700
APR		•				.100	•	.500
MAY		•				:∰	•	.400
JUN		•	.100	•	.100	.100	•	.300
JUL		•	*		•		•	.300
AUG		•	•			•	· ·	.200
SEP				•	•	.200	::●	.100
OCT						.100		.300
WOV		•			•	.100		.400

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

NAME NAME		SITE						
DEC			W MANNHEIM RESERVOIR	•	ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
FLD CHLORINE (TOTAL) (MG/L) DET'N LIMIT = N/A GUIDELINE = N/A JAM		TIPE		STANDING	FREE FLOW			
JAM	DEC	•	•			.100		.500
FEB	FLD CHLORING	E (TOTAL) (MG/L)	DET'N LIMIT	- N/A	GUIDELINE = N/A		•••••••	••••••
MAR	JAN		.100	.100	.100	.100	•	.300
APR	FEB	•	.100		.100	.100		.600
MAY	MAR		.100		.100	.100	•	.800
JUN	APR		.100		.100	.300		.700
JUN	MAY		.100		.100	.100		.600
JUL . 100 . 100 . 500 AUG . 100	1.50000000					.100		
SEP . .100 . .300 . .500 OCT . .100 . .200 . .600 NOV . .100 . .200 . .500 DEC . .100 . .200 . .600 FLD PH (DMMSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.500	JUL	•					•	
SEP . .100 . .300 . .500 OCT . .100 . .200 . .600 NOV . .100 . .200 . .500 DEC . .100 . .200 . .600 FLD PH (DMMSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.500			.100		~	.100		.500
NOV	SEP		.100			.300		.500
DEC	OCT		.100			.200		
FLD PH (DMMSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.500	WOV		.100			.200		.500
JAM 7.500 7.500 7.500 7.500 7.500 7.500 FEB 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.400 MAR 7.500 7.500 7.500 7.300 7.300 7.300 7.500 APR 7.300 7.500 7.500 7.300 7.500 7.500	DEC	•	.100			.200		.600
FEB 7.500 7.500 7.500 7.500 7.500 7.400 MAR 7.500 7.500 7.500 7.300 7.300 7.300 7.500 APR 7.300 7.500 7.300 7.300 7.500 7.500	FLD PH (DMM	SLESS)	DET'N LIMIT	- H/A	GUIDELIME = 6.5-8.5(A4	.)	••••••	•••••••
FEB 7.500 7.500 7.500 7.500 7.500 7.400 MAR 7.500 7.500 7.500 7.300 7.300 7.300 7.500 APR 7.300 7.500 7.300 7.300 7.500 7.500	JAN	7.500	7.500	7.400	7.500	7.100	7.500	7.500
MAR 7.500 7.500 7.500 7.500 7.300 7.300 7.300 7.500 APR 7.300 7.500 7.500 7.300 7.500 7.500	III SALESSES							
APR 7.300 7.500 7.500 7.300 7.300 7.500 7.500	140000000000000000000000000000000000000							
1100 1100 1100 1100 1100 1100	United States							
JUN 7.300 7.500 7.500 7.300 7.100 7.500 7.500	CONTROL OF							
JUL 7.400 7.500 7.700 7.500 7.100 7.400 7.500								
AUG 7.300 7.500 7.600 7.500 7.100 7.500 7.500	DELOYARE 1							

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1968

\$116								
		K21 RAW	MANNHEIM RESERVOIR	•	LITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
TYPE				STANDING	FREE FLOW			
SEP	7.300		7.400	7.300	7.300	7.100	7.500	7.500
ост	7.300		7.400	7.400	7.300	7.100	7.500	7.500
NOV	7.300		7.400	7.500	7.400	7.100	7.500	7.500
DEC	7.500		7.500	7.500	7.400	7.300	7.500	7.500
FLD TEMPERATURE (DEG.C	•)	••••••	DET'N LIMIT	• N/A	GUIDELINE = 15 (A1)	••••••••••		
JAM	9.000		8.000	16.000	9.000	9.000	8.000	7.000
FEB	8.000		8.000	15.000	14.000	9.000	7.000	6.000
MAR	8.000		8.000	13.000	8.000	8.000	6.000	5.000
APR	8.000		8.000	16.000	9.000	9.000	6.000	6.000
MAY	9.000		8.000	15.000	9.000	10.000	7.000	8.000
JUN	9.000		9.000	16.000	12.000	10.000	11.000	11.000
JUL	8.000		9.000	18.000	14.000	10.000	14.000	15.000
AUG	8.000		9.000	20.000	16.000	10.000	16.000	16.000
SEP	9.000		9.000	18.000	12.000	10.000	16.000	16.000
OCT	9.000		9.000	18.000	8.000	9.000	15.000	15.000
WOV	9.000		8.000	18.000	13.000	9.000	12.000	11.000
DEC	9.000		8.000	17.000	11.000	8.500	11.000	10.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
	CHEMISTRY (L	AB)	••••••	•••••	•••••		•••••	•••••••
ALKALINITY (MG/L			DET'N LIMIT	200	GUIDELINE = 30-500 (A4)			
JAM	239.100		260.200	308.700	255.300	311.500	227.000	227.000
FEB	273.300		267.100	285.200	1C8	323.500	227.200	229.500
MAR	276.600		266.800	328.200	316.000	328.000	227.800	229.100
APR	280.600		257.400	290.200	292.400	302.700	231.000	234.900
MAY	282.200		275.100	311.200	322.200	337.800	233.200	233.500
JUN	265.400		262.400	294.200	285.000	323.900	228.800	228.100
JUL	IUR		269.100	278.600	269.900	335.700	215.300	215.900
AUG	279.500		268.900	268.700	267.600	330.100	214.400	214.300
SEP	274.000		267.200	318.900	323.100	335.800	212.600	213.400
OCT	281.600		276.100	316.700	314.600	338.600	213.900	213.800
WOV	279.900		267.100	326.000	285.200	333.900	222.000	221.900
DEC	282.100		270.200	326.200	288.200	332.700	227.400	227.700
CALCIUM (MG/L)		DET'N LINIT	100	GUIDELINE = 100 (F2)			••••••••••
MAL	86.800		90.200	136.000	93.600	128.000	84.000	82.600
FEB	89.400		93.800	109.000	111.000	127.000	78.800	78.000
MAR	89.200		95.000	143.000	142.000	131.000	79.200	79.800
APR	91.800		90.000	138.000	137.000	124.000	78.600	76.200
MAY	87.800		92.400	142.000	137.000	131.000	73.600	73.800
JUN	65.800		75.800	110.000	109.000	108.000	74.400	73.800
JUL	87.200		87.000	96.800	80.600	116.000	70.600	69.200
AUG	86.800		94.800	95.000	91.200	134.000	70.400	70.200
SEP	90.200		95.000	147.000	143.000	129.000	72.400	71.800
OCT	78.400		87.600	140.000	134.000	127.000	70.400	69.000
D 38-28-4111	.maratiati		edite tutilities	5.5335.63377				

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	****	K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
WOV	86.800		89.200	145.000	106.000	134.000	75.600	74.800
DEC	83.000		84.800	133.000	99.600	120.000	77.600	77.200
CHLORIDE (MG/L)	••••••	DET'N LIMIT	200	QUIDELINE = 250 (A3)			•••••••
JAN	15.700		19.000	90.000	22.200	81.800	34.300	34.800
FEB	16.100		19.700	48.200	51.000	82.900	36.100	36.200
MAR	15.900		20.000	105.000	95.900	80.000	34.800	34.300
APR	15.900		19.600	97.300	99.100	78.100	26.600	26.400
MAY	15.800		20.400	89.200	88.500	88.800	29.600	30.000
JUN	15.100		19.100	103.000	100.000	87.600	32.200	32.100
.	16.000		18.500	28.200	18.600	89.000	34.100	34.800
AUG	15.700		18.500	18.400	18.400	89.400	35.600	35.900
SEP	16.000		19.600	96.100	97.800	89.600	38.200	38.500
OCT	15.800		19.100	93.000	86.200	86.500	35.100	35.800
WOV	16.000		18.200	96.400	43.100	90.400	32.600	33.300
DEC	16.100		19.200	108.000	45.300	89.000	29.300	31.500
COLOUR (HZU)	•••••	DET'N LIMIT	- .5	GUIDELINE = 5.0 (A3)	•	••••••••••••	••••••
JAM	BOL		BOL	1.500 <t< th=""><th>BOL</th><th>2.000 <t< th=""><th>4.000</th><th>3.500</th></t<></th></t<>	BOL	2.000 <t< th=""><th>4.000</th><th>3.500</th></t<>	4.000	3.500
FEB	.500	<₹	BOL	1.000 <t< th=""><th>2.000 <t< th=""><th>1.500 <t< th=""><th>3.000</th><th>2.500</th></t<></th></t<></th></t<>	2.000 <t< th=""><th>1.500 <t< th=""><th>3.000</th><th>2.500</th></t<></th></t<>	1.500 <t< th=""><th>3.000</th><th>2.500</th></t<>	3.000	2.500
MAR	BOL		BOL	2.500	2.500	2.000 <t< th=""><th>3.500</th><th>2.000 <7</th></t<>	3.500	2.000 <7
APR	.500	<₹	BOL	1.500 <t< th=""><th>2.000 <7</th><th>2.000 <t< th=""><th>4.000</th><th>3.000</th></t<></th></t<>	2.000 <7	2.000 <t< th=""><th>4.000</th><th>3.000</th></t<>	4.000	3.000
MAY	.500	<1	.500 <t< th=""><th>3.500</th><th>3.000</th><th>3.000</th><th>4.500</th><th>3.500</th></t<>	3.500	3.000	3.000	4.500	3.500
JUN	.500	<₹	.500 <t< th=""><th>4.500</th><th>2.500</th><th>3.000</th><th>5.500</th><th>5.500</th></t<>	4.500	2.500	3.000	5.500	5.500
JUL.	IUR		BOL	1.000 <t< th=""><th>.500 <t< th=""><th>2.500</th><th>6.500</th><th>5.000</th></t<></th></t<>	.500 <t< th=""><th>2.500</th><th>6.500</th><th>5.000</th></t<>	2.500	6.500	5.000
i e e e e e e e e e e e e e e e e e e e								

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

SI	TE							
TY	DE	K21 RAL	MANNHEIM RESERVOIR	8170	i 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATER
				STANDING	FREE FLOW			
AUG	.500	٠,	.500 <⊺	2.000 <t< td=""><td>1,000 <⊺</td><td>2.500</td><td>6.500</td><td>6.000</td></t<>	1,000 <⊺	2.500	6.500	6.000
SEP	BOL		BOL	4.500	4.000	3.000	5.500	4.500
OCT	1.000		1.000 <t< td=""><td>4.500</td><td>3.000</td><td>3.500</td><td>5.500</td><td>4.500</td></t<>	4.500	3.000	3.500	5.500	4.500
WOV	BOL		BOL	4.500	1.000 <t< td=""><td>3.000</td><td>4.000</td><td>4.000</td></t<>	3.000	4.000	4.000
DEC	.500		BOL	4.000	1.000 <t< td=""><td>1.500 <t< td=""><td>4.000</td><td>3.000</td></t<></td></t<>	1.500 <t< td=""><td>4.000</td><td>3.000</td></t<>	4.000	3.000
CONDUCTIVITY (UMHO/CI	۱)	••••••	DET'N LIMIT	• 1	QUIDELINE = 400 (F2)		•••••••	••••••
JAN	638		647	1099	669	1031	654	655
FEB	595		654	833	1C8	1020	629	638
MAR	623		637	1125	1094	994	613	619
APR	613		607	1053	1053	921	570	576
MAY	645		662	1115	1131	1059	607	608
JUN	618		638	1130	1109	1041	604	600
JUL	IUR		647	730	645	1052	584	586
AUG	641		651	650	652	1057	588	591
SEP	640		653	1151	1155	1053	596	599
OCT	633		648	1158	1105	1046	594	594
WOV	645		644	1182	816	1067	629	630
DEC	637		644	1159	818	1039	620	622
FLUORIDE (MG/L)	••••••	•••••	DET'N LIMIT	• .01	QUIDELINE = 2.400 (A1))	•••••••	••••••••••••
JAN	.080		.040 <t< td=""><td>.060</td><td>.060</td><td>.060</td><td>.120</td><td>.120</td></t<>	.060	.060	.060	.120	.120
FEB	.140		.120	.120	.120	.100	.120	.120
MAR	.100		.070	.100	.100	.070	.120	.120
APR	.110		.080	.100	.080	.080	.120	.120

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE									
			K21	RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RA	W K70 TREATED
	TYPE					STANDING	FREE FLOW			
						***************************************	TREE TEM			
MAY		.100			.080	.100	.090	.080	.120	.120
JUN		.110			.070	.100	.100	.080	.130	.130
JUL		.090			.090	.090	.080	.090	.140	.140
AUG		.100			.080	.060	.060	.080	.160	.160
SEP		.120			.080	.100	.100	.100	.160	.160
OCT		.120			.080	.100	.100	.100	.140	.160
NOV		.120			.080	.120	.100	.100	.140	.140
DEC		.080			.060	.080	.080	.060	.140	.160
•••••		• • • • • • • • • • • • • • • • • • • •				······				
HARDNES	SS (MG/L)				DET'N LIMIT	500	GUIDELINE = 80-100 (A	4)		
JAM	33	29.000			333.000	501.000	342.000	474.000	309.000	305.000
FEB	33	35.000			341.000	402.000	408.000	466.000	292.000	289.000
MAR	33	39.000			346.000	527.000	525.000	483.000	295.000	295.000
APR	34	42.000			329.000	513.000	510.000	462.000	289.000	280.000
MAY	33	34.000			339.000	526.000	513.000	482.000	277.000	277.000
JUN	2	76.000			294.000	442.000	439.000	426.000	271.000	270.000
JUL	33	32.000			325.000	357.000	307.000	445.000	258.000	254.000
AUG	33	30.000			340.000	345.000	332.000	489.000	257.000	256.000
SEP	33	39.000			344.000	538.000	526.000	475.000	264.000	262.000
OCT	3	13.000			325.000	525.000	504.000	469.000	258.000	255,000
WOV	33	31.000			328.000	533.000	386.000	484.000	282.000	281.000
DEC	33	20.000			320.000	506.000	376.000	454.000	290.000	288.000
IONCAL	(DMMSLESS)	•••••	•••••		DET'N LIMIT	- N/A	GUIDELINE - N/A	•••••	••••••	•••••
							· An additional transfer of the section of the sec			
MAL	(.000	NAF		.000 NAF	.000 N	AF .000 NAF	.000 NAF	.000 NAF	.000 MAF

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
		MANNHEIM RESERVOIR	SITE	1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		STANDING	FREE FLOW			
FEB	.000 NAF	.000 NAF	.000 MAF	.000 MAF	.000 NAF	.000 NAF	.000 NAF
MAR	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF
APR	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 MAF
MAY	.000 NAF	.000 MAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF
A.M	.000 NAF	.000 MAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF	.000 NAF
AUL.	.000 NAF	5.183	5.286	11.610	3.225	1.297	3.232
AUG	3.216	.632	.481	2.523	1.467	.582	.441
SEP	1.156	1.125	1.165	2.020	4.415	.801	.111
OCT	9.288	7.294	.445	.768	2.830	2.181	3.241
WOV	3.624	3.162	1.794	2.306	4.018	.871	.752
DEC	5.006	4.650	7.337	4.314	5.344	1.181	.438
LANGELIERS IN	DEX (DMMSLESS)	DET'N LIMIT	- N/A	GUIDELINE = N/A	•••••••••••••••••••••••••••••••••••••••	•••••••	••••••
JAN	1.084 NAF	.907 NAF	1.167 NAF	1.014 MAF	1.088 MAF	.896 NAF	.879 MAF
FEB	.978 MAF	.965 NAF	1.100 NAF	-1.809 NAF	1.062 NAF	.960 NAF	.860 NAF
MAR	1.180 MAF	1.071 MAF	1.235 NAF	1.147 NAF	1.183 NAF	.964 NAF	.900 NAF
APR	1.299 NAF	1.164 MAF	1.039 NAF	1.079 NAF	1.127 NAF	1.191 MAF	1.185 MAF
MAY	1.091 MAF	1.111 NAF	1.249 NAF	1.218 NAF	1.212 NAF	.993 NAF	1.005 MAF
JUN	1.010 NAF	1.055 MAF	1.053 NAF	1.016 NAF	1.181 MAF	1.180 MAF	1.226 NAF
AUL.	-2.555	1.106	1.163	1.124	1.237	.913	.925
AUG	1.212	1.223	1.243	1.194	1.322	.959	.938
SEP	1.080	1.121	1.263	1.266	1.173	.897	.905
OCT	1.241	1.260	1.278	1.289	1.220	1.038	1.049
WOV	.832	.894	1.065	.919	.977	.722	.677
DEC	1.076	1.067	1.279	1.096	1.119	.964	.953

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	****	K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STAND ING	FREE FLOW			
MAGNESIUM (MG/L)		DET'N LIMIT	050	GUIDELINE = 30 (F2)	•		
JAM	27.300		26.300	39.300	26.300	37.600	24.100	24.000
FEB	27.200		26.000	31.300	32.100	35.900	23.200	22.800
MAR	28.300		26.400	41.300	41.200	37.800	23.600	23.300
APR	27.500		25.200	40.800	41.200	36.700	22.500	21.800
MAY	27.900		26.200	41.500	41.600	37.800	22.600	22.400
JUN	27.200		25.300	40.600	40.700	37.800	20.600	20.900
JUL	27.700		26.200	28.000	25.600	38.100	19.900	19.800
AUG	27.500		25.100	26.100	25.500	37.400	19.800	19.700
SEP	27.600		26.000	41.800	41.200	36.900	20.200	20.100
OCT	28.600		25.700	42.500	41.300	36.900	20.000	20.000
NOV	27.700		25.700	41.300	29.700	36.300	22.600	22.800
DEC	27.500		26.200	42.300	31.000	37.400	23.500	23.200
SCD1UM (MG/L)		DET'N LIMIT	200	GUIDELINE = 200 (C3)			
JAN	8.400		8.400	45.800	9.800	37.200	20.000	20.200
FEB	8.600		8.600	23.400	25.000	38.200	20.000	20.400
MAR	9.000		8.800	50.400	49.000	36.400	21.200	21.800
APR	9.000		8.800	48.400	49.000	36.400	15.400	15.800
MAY	9.400		9.600	44.800	44.400	39.800	18.200	18.400
JUN	8.600		8.400	50.600	49.400	38.800	20.200	20.000
JUL.	9.200		8.400	15.200	8.400	39.800	23.000	23.000
AUG	8.400		8.200	8.000	8.000	39.000	23.600	24.200
SEP	8.800		8.800	48.400	47.800	41.400	25.600	25.800
OCT	8.800		8.200	49.200	44.600	40.600	24.200	25.000
WOV	8.400		7.800	51.600	21.400	43.800	22.000	22.200

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	KZ1 RAW	MAMMHEIM RESERVOIR	\$11	F 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		Number Headway	•••	• •	STRANGE OF REGERVOIR	K. C 13.	N/V /N2///
				STANDING	FREE FLOW			
•••••		••••••	•••••	••••••			•••••	••••••
DEC	8.600		8.400	49.400	22.200	40.400	20.400	20.000
		•••••						
APPONIUM TOTAL (MQ/L)		DEL M LIMIT	0.002	QUIDELINE = .05 (F2)			
MAL	.030		.008 <t< th=""><th>.008 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th></t<></th></t<>	.008 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL	BOL
FEB	.002	<1	.004 <t< th=""><th>.004 <t< th=""><th>.012</th><th>.010</th><th>.004 <t< th=""><th>.006 <t< th=""></t<></th></t<></th></t<></th></t<>	.004 <t< th=""><th>.012</th><th>.010</th><th>.004 <t< th=""><th>.006 <t< th=""></t<></th></t<></th></t<>	.012	.010	.004 <t< th=""><th>.006 <t< th=""></t<></th></t<>	.006 <t< th=""></t<>
MAR	.006	<1	.010	.034	.080	.010	.002 <1	.010
APR	.010		.008 <t< th=""><th>.018</th><th>.072</th><th>.008 <t< th=""><th>.006 <t< th=""><th>.010</th></t<></th></t<></th></t<>	.018	.072	.008 <t< th=""><th>.006 <t< th=""><th>.010</th></t<></th></t<>	.006 <t< th=""><th>.010</th></t<>	.010
MAY	.006	<1	.008 <7	.006 <t< th=""><th>.062</th><th>.016</th><th>.016</th><th>.020</th></t<>	.062	.016	.016	.020
JUN	.008	<1	.010	.010	.022	.014	.014	.014
.	IUR		BOL	.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""><th>.032</th><th>.040</th></t<></th></t<></th></t<>	.002 <t< th=""><th>.002 <t< th=""><th>.032</th><th>.040</th></t<></th></t<>	.002 <t< th=""><th>.032</th><th>.040</th></t<>	.032	.040
AUG	BOL		.004 <1	.002 <t< th=""><th>BOL</th><th>.004 <t< th=""><th>.066</th><th>.078</th></t<></th></t<>	BOL	.004 <t< th=""><th>.066</th><th>.078</th></t<>	.066	.078
SEP	.010		.010	.008 <7	•	.010	.066	.080
OCT	.002		.004	.002	.004	.006	.054	.064
NOV	.002	<1	.004 <t< th=""><th>.002 <t< th=""><th>.004 <t< th=""><th>.004 <t< th=""><th>.012</th><th>.014</th></t<></th></t<></th></t<></th></t<>	.002 <t< th=""><th>.004 <t< th=""><th>.004 <t< th=""><th>.012</th><th>.014</th></t<></th></t<></th></t<>	.004 <t< th=""><th>.004 <t< th=""><th>.012</th><th>.014</th></t<></th></t<>	.004 <t< th=""><th>.012</th><th>.014</th></t<>	.012	.014
DEC	.010		.012	.010	.012	.012	.010	.012
MITRITE (MG/L)	•••••	DET'N LIMIT	0.001	GUIDELINE = 1.000 (A1))	•	•••••••••••
JAN	.008		BOL	BOL	.001 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	.001 <t< th=""><th>.001 <t< th=""><th>BOL</th></t<></th></t<>	.001 <t< th=""><th>BOL</th></t<>	BOL
FEB	.010		BOL	.001 <t< th=""><th>.007</th><th>.002 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<></th></t<>	.007	.002 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<>	.001 <t< th=""><th>.001 <t< th=""></t<></th></t<>	.001 <t< th=""></t<>
MAR	.011		.004 <t< th=""><th>.015</th><th>.013</th><th>.005</th><th>.003 <7</th><th>.004 <t< th=""></t<></th></t<>	.015	.013	.005	.003 <7	.004 <t< th=""></t<>
APR	.010		.001 <t< th=""><th>.002 <7</th><th>.003 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.002 <7	.003 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<></th></t<>	.001 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<>	.001 <t< th=""><th>.001 <t< th=""></t<></th></t<>	.001 <t< th=""></t<>
MAY	.011		.002 <t< th=""><th>.003 <7</th><th>.013</th><th>.001 <t< th=""><th>.003 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<></th></t<>	.003 <7	.013	.001 <t< th=""><th>.003 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<>	.003 <t< th=""><th>.001 <t< th=""></t<></th></t<>	.001 <t< th=""></t<>
JUN .	.010		.001 <t< th=""><th>.002 <t< th=""><th>.005</th><th>.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.002 <t< th=""><th>.005</th><th>.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""></t<></th></t<></th></t<></th></t<>	.005	.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""></t<></th></t<></th></t<>	.002 <t< th=""><th>.002 <t< th=""></t<></th></t<>	.002 <t< th=""></t<>
	IUR		.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""><th>.001 <t< th=""><th>.003 <7</th><th>.002 <7</th></t<></th></t<></th></t<></th></t<>	.002 <t< th=""><th>.002 <t< th=""><th>.001 <t< th=""><th>.003 <7</th><th>.002 <7</th></t<></th></t<></th></t<>	.002 <t< th=""><th>.001 <t< th=""><th>.003 <7</th><th>.002 <7</th></t<></th></t<>	.001 <t< th=""><th>.003 <7</th><th>.002 <7</th></t<>	.003 <7	.002 <7
AUG	.006		.002 <t< th=""><th>.002 <t< th=""><th>.002 <ī</th><th>.002 <t< th=""><th>.007</th><th>.003 <7</th></t<></th></t<></th></t<>	.002 <t< th=""><th>.002 <ī</th><th>.002 <t< th=""><th>.007</th><th>.003 <7</th></t<></th></t<>	.002 <ī	.002 <t< th=""><th>.007</th><th>.003 <7</th></t<>	.007	.003 <7

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

,	BITE							
		K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
					TREE FLOW			
SEP	.010		.003 <t< th=""><th>.005</th><th>.004 <t< th=""><th>.002 <t< th=""><th>.003 <t< th=""><th>.004 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.005	.004 <t< th=""><th>.002 <t< th=""><th>.003 <t< th=""><th>.004 <t< th=""></t<></th></t<></th></t<></th></t<>	.002 <t< th=""><th>.003 <t< th=""><th>.004 <t< th=""></t<></th></t<></th></t<>	.003 <t< th=""><th>.004 <t< th=""></t<></th></t<>	.004 <t< th=""></t<>
OCT	.010		.002 <t< th=""><th>.004 <</th><th>T .003 <t< th=""><th>.005</th><th>.005</th><th>.009</th></t<></th></t<>	.004 <	T .003 <t< th=""><th>.005</th><th>.005</th><th>.009</th></t<>	.005	.005	.009
WOV	.013		.005	.005	.005	.004 <t< th=""><th>.007</th><th>.006</th></t<>	.007	.006
DEC	.010		.004 <t< th=""><th>.005</th><th>.004 <t< th=""><th>.004 <t< th=""><th>.005</th><th>.004 <t< th=""></t<></th></t<></th></t<></th></t<>	.005	.004 <t< th=""><th>.004 <t< th=""><th>.005</th><th>.004 <t< th=""></t<></th></t<></th></t<>	.004 <t< th=""><th>.005</th><th>.004 <t< th=""></t<></th></t<>	.005	.004 <t< th=""></t<>
TOTAL HITRATES (MG	/L)		DET'N LIMIT	020	GUIDELINE = 10.000 (A1)		
JAN	.605		3.400	.670	3.260	.380	3.390	3.440
FEB	.610		3.390	2.270	ICS	.370	2.910	2.920
MAR	.610		3.470	.375	.325	.335	2.810	2.830
APR	.630		3.370	.310	. 195	.340	2.580	2.460
MAY	.630		3.820	.180	.125	.385	2.040	2.020
JUN	.580		3.340	.240	.260	.395	.830	.825
JUL	IUR		3.530	3.000	3.520	.435	.455	.460
AUG	.570		3.360	3.370	3.390	.420	.290	.295
SEP	.595		3.240	.245		.415	.270	.290
OCT	.555		2.820	.230	.445	.375	.275	.270
WOV	.665		3.430	.245	2.420	.495	2.420	2.480
DEC	.690		3.320	.220	2.290	.440	2.740	2.740
NITROGEN TOT KJELD	(MG/L))	DET'N LIMIT	.020	GUIDELINE = N/A			
JAM	.020	<₹	.060 <t< td=""><td>.170</td><td>.060 <1</td><td>.080.</td><td>.270</td><td>.270</td></t<>	.170	.060 <1	.080.	.270	.270
FEB	.040	<1	.050 <t< td=""><td>.160</td><td>.130</td><td>.090 <t< td=""><td>.220</td><td>. 190</td></t<></td></t<>	.160	.130	.090 <t< td=""><td>.220</td><td>. 190</td></t<>	.220	. 190
MAR	.050	<1	.070 <t< td=""><td>.160</td><td>.150</td><td>.080 <t< td=""><td>.220</td><td>.220</td></t<></td></t<>	.160	.150	.080 <t< td=""><td>.220</td><td>.220</td></t<>	.220	.220
APR	.030	<1	.080 <t< td=""><td>.200</td><td>.190</td><td>.090 <t< td=""><td>.250</td><td>.220</td></t<></td></t<>	.200	.190	.090 <t< td=""><td>.250</td><td>.220</td></t<>	.250	.220
MAY	.050	<7	.070 <1	.120	.150	.100	.210	.210

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR	•	BITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
			•••••	STANDING	FREE FLOW			
JUN	.040	<₹	.080 <t< th=""><th>.160</th><th>.140</th><th>.100</th><th>.230</th><th>.250</th></t<>	.160	.140	.100	.230	.250
JUL	BOL		.130	.160	.100	.120	.280	.270
AUG	.040	<1	.070 <t< th=""><th>.120</th><th>.080 <t< th=""><th>.120</th><th>.370</th><th>.370</th></t<></th></t<>	.120	.080 <t< th=""><th>.120</th><th>.370</th><th>.370</th></t<>	.120	.370	.370
SEP	.090	<1	.110	.140	•	. 130	.340	.330
OCT	.030	<₹	.060 <t< th=""><th>.190</th><th>.070 <t< th=""><th>.070 <t< th=""><th>.220</th><th>.230</th></t<></th></t<></th></t<>	.190	.070 <t< th=""><th>.070 <t< th=""><th>.220</th><th>.230</th></t<></th></t<>	.070 <t< th=""><th>.220</th><th>.230</th></t<>	.220	.230
WOV	.060	<1	.060 <t< th=""><th>.100</th><th>.080 <t< th=""><th>.090 <t< th=""><th>.290</th><th>.290</th></t<></th></t<></th></t<>	.100	.080 <t< th=""><th>.090 <t< th=""><th>.290</th><th>.290</th></t<></th></t<>	.090 <t< th=""><th>.290</th><th>.290</th></t<>	.290	.290
DEC	BOL		.070 <t< th=""><th>.110</th><th>.060 <7</th><th>.070 <⊺</th><th>.290</th><th>.280</th></t<>	.110	.060 <7	.070 <⊺	.290	.280
PH (DMHSLESS)			DET'N LIMIT	- M/A	GUIDELINE = 6.5-8.5(A4))		
JAN	8.240		8.010	8.040	8.110	7.960	8.090	8.080
FEB	8.060		8.040	8.090	ICS	7.940	8.180	8.080
MAR	8.260		8.140	8.060	7.990	8.040	8.180	8.110
APR	8.360		8.270	7.930	7.970	8.040	8.400	8.400
MAY	8.170		8.180	8.100	8.070	8.060	8.230	8.240
JUN	8.240		8.230	8.040	8.020	8.130	8.420	8.470
JUL	IUR		8.210	8.210	8.260	8.140	8.200	8.220
AUG	8.300		8.290	8.310	8.280	8.170	8.250	8.230
SEP	8.160		8.190	8.090	8.100	8.030	8.180	8.190
OCT	8.370		8.350	8.130	8.160	8.080	8.330	8.350
WOV	7.920		7.990	7.890	7.920	7.820	7.970	7.930
DEC	8.180		8.180	8.140	8.120	8.010	8.190	8.180
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••		••••••
PHOSPHORUS FIL R	EACT (MG/L	,	DET'N LIMIT	.0005	GUIDELINE - N/A			
JAN	.002		.001 <t< th=""><th>•</th><th>*</th><th>.002 <7</th><th>.002 <t< th=""><th>.002</th></t<></th></t<>	•	*	.002 <7	.002 <t< th=""><th>.002</th></t<>	.002
FEB	.000	<1	BOL	•	•	.001 <t< th=""><th>.001 <t< th=""><th>.001 <t< th=""></t<></th></t<></th></t<>	.001 <t< th=""><th>.001 <t< th=""></t<></th></t<>	.001 <t< th=""></t<>

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	ITE							
		K21 RAW	MANNHEIM RESERVOIR	SITE	1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
1	TYPE							
				STANDING	FREE FLOW			
•••••	••••••	••••••	•••••••	••••••	••••••			••••••
MAR.	.001	< T	.001 <t< th=""><th></th><th>4.</th><th>.001 <t< th=""><th>.001 <t< th=""><th>.003</th></t<></th></t<></th></t<>		4.	.001 <t< th=""><th>.001 <t< th=""><th>.003</th></t<></th></t<>	.001 <t< th=""><th>.003</th></t<>	.003
APR	.002		.001 <t< th=""><th></th><th>•</th><th>.001 <t< th=""><th>.002 <t< th=""><th>.002</th></t<></th></t<></th></t<>		•	.001 <t< th=""><th>.002 <t< th=""><th>.002</th></t<></th></t<>	.002 <t< th=""><th>.002</th></t<>	.002
MAY	.001		.001 <t< th=""><th></th><th></th><th>.002</th><th>.002 <t< th=""><th>.003</th></t<></th></t<>			.002	.002 <t< th=""><th>.003</th></t<>	.003
JUN	.001		.001 <t< th=""><th></th><th></th><th>.002</th><th>.002</th><th>.003</th></t<>			.002	.002	.003
JUL	IUR	(CCW)	T> 000.			.001 <t< th=""><th>.001 <t< th=""><th>ICR</th></t<></th></t<>	.001 <t< th=""><th>ICR</th></t<>	ICR
AUG	.001		.001 <t< th=""><th></th><th></th><th>.001 <t< th=""><th>.001 <t< th=""><th>.003</th></t<></th></t<></th></t<>			.001 <t< th=""><th>.001 <t< th=""><th>.003</th></t<></th></t<>	.001 <t< th=""><th>.003</th></t<>	.003
SEP	.002		.002 <t< th=""><th>-</th><th></th><th>.003</th><th>.003</th><th>.004</th></t<>	-		.003	.003	.004
OCT	.001		,001 <t< th=""><th></th><th></th><th>.001</th><th>.002</th><th>.003</th></t<>			.001	.002	.003
WOV	.001		.001 <t< th=""><th></th><th></th><th>.002</th><th>.001 <t< th=""><th>.003</th></t<></th></t<>			.002	.001 <t< th=""><th>.003</th></t<>	.003
DEC	BOL		BOL	•		.000 <t< th=""><th>.000 <t< th=""><th>.002</th></t<></th></t<>	.000 <t< th=""><th>.002</th></t<>	.002
PHOSPHORUS TOTAL (M	(G/L)		DET'N LIMIT -	.002	GUIDELINE = .40 (F2)	· ·		
JAN	BOL		BOL	•		.002 <t< th=""><th>.002 <7</th><th>BOL</th></t<>	.002 <7	BOL
FEB	.004	<₹	.002 <t< th=""><th></th><th>•</th><th>.003 <t< th=""><th>.003 <t< th=""><th>.003 <7</th></t<></th></t<></th></t<>		•	.003 <t< th=""><th>.003 <t< th=""><th>.003 <7</th></t<></th></t<>	.003 <t< th=""><th>.003 <7</th></t<>	.003 <7
MAR	BOL		BOL	•	•	BOL	BOL	BOL
APR	BOL		BOL			.002 <t< th=""><th>.002 <t< th=""><th>.003 <t< th=""></t<></th></t<></th></t<>	.002 <t< th=""><th>.003 <t< th=""></t<></th></t<>	.003 <t< th=""></t<>
MAY	BOL		BOL	> €1	•	.002 <t< th=""><th>.002 <t< th=""><th>.002 <t< th=""></t<></th></t<></th></t<>	.002 <t< th=""><th>.002 <t< th=""></t<></th></t<>	.002 <t< th=""></t<>
AM	.005	<7	.003 <t< th=""><th></th><th></th><th>.002 <t< th=""><th>.002 <t< th=""><th>.003 <t< th=""></t<></th></t<></th></t<></th></t<>			.002 <t< th=""><th>.002 <t< th=""><th>.003 <t< th=""></t<></th></t<></th></t<>	.002 <t< th=""><th>.003 <t< th=""></t<></th></t<>	.003 <t< th=""></t<>
JUL	.003	<t< th=""><th>.002 <t< th=""><th>•</th><th></th><th>BDL</th><th>.004 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	.002 <t< th=""><th>•</th><th></th><th>BDL</th><th>.004 <t< th=""><th>BOL</th></t<></th></t<>	•		BDL	.004 <t< th=""><th>BOL</th></t<>	BOL
AUG	BOL		BOL			.004 <t< th=""><th>.006 <t< th=""><th>.009 <t< th=""></t<></th></t<></th></t<>	.006 <t< th=""><th>.009 <t< th=""></t<></th></t<>	.009 <t< th=""></t<>
SEP	BOL		BOL	•		.004 <t< th=""><th>.003 <t< th=""><th>.003 <t< th=""></t<></th></t<></th></t<>	.003 <t< th=""><th>.003 <t< th=""></t<></th></t<>	.003 <t< th=""></t<>
OCT	BOL		.003 <t< th=""><th></th><th>•</th><th>.003 <t< th=""><th>.004 <t< th=""><th>.005 <t< th=""></t<></th></t<></th></t<></th></t<>		•	.003 <t< th=""><th>.004 <t< th=""><th>.005 <t< th=""></t<></th></t<></th></t<>	.004 <t< th=""><th>.005 <t< th=""></t<></th></t<>	.005 <t< th=""></t<>
NOV	BOL		BOL	•		.002 <t< th=""><th>BOL</th><th>.002 <7</th></t<>	BOL	.002 <7
DEC	BOL		BOL			BOL	.002 <t< th=""><th>.003 <7</th></t<>	.003 <7
					•		•••••	

SULPHATE () DET'N LIMIT = .200 GUIDELINE = 500. (A3)

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		•••••	STANDING	FREE FLOW			
au.	58.220		51.180	78.260	51.740	83.940	45.390	45.730
AUG	53.450		50.970	51.430	51.080	119.100	43.160	42.840
SEP	53.000		50.800	186.000	175.000	120.300	47.900	48.000
OCT	55.300		52.000	178.200	161.700	106.700	51.140	51.760
WOV	54.580		49.340	163.300	85.300	90.000	53.700	51.560
DEC	46.920		42.670	172.200	79.350	106.200	50.350	49.260
TURBIDITY (FTU)	••••••	DET'N LIMIT	02	QUIDELINE = 1.00 (A1)	••••••	••••••	
JAN	.080	<1	.080 <t< td=""><td>.270</td><td>.110</td><td>.140</td><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<>	.270	.110	.140	.050 <t< td=""><td>.050 <t< td=""></t<></td></t<>	.050 <t< td=""></t<>
FEB	.210		.210	.480	.240	.810	.210	.200
MAR	.100	<1	.070 <t< th=""><th>1.220</th><th>.270</th><th>.260</th><th>.050 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<>	1.220	.270	.260	.050 <t< th=""><th>.100 <t< th=""></t<></th></t<>	.100 <t< th=""></t<>
APR	.090	<1	.200	.310	.230	.260	.060 <t< th=""><th>.050 <t< th=""></t<></th></t<>	.050 <t< th=""></t<>
MAY	.080	<1	.060 <t< th=""><th>.370</th><th>.270</th><th>. 150</th><th>.060 <t< th=""><th>.050 <t< th=""></t<></th></t<></th></t<>	.370	.270	. 150	.060 <t< th=""><th>.050 <t< th=""></t<></th></t<>	.050 <t< th=""></t<>
JUN	.090	<₹	.110	.610	. 190	.540	.040 <t< th=""><th>.030 <t< th=""></t<></th></t<>	.030 <t< th=""></t<>
JUL	IUR		.870	.490	.380	.520	.370	.250
AUG	.500		.320	.700	.240	.350	.430	.410
SEP	150		I SD	I SD	ISD	.670	.980	.950
OCT	.460		.080 <t< th=""><th>2.600</th><th>.590</th><th>.430</th><th>.110 <t< th=""><th>.060 <t< th=""></t<></th></t<></th></t<>	2.600	.590	.430	.110 <t< th=""><th>.060 <t< th=""></t<></th></t<>	.060 <t< th=""></t<>
NOV	.330		.110 <t< th=""><th>.470</th><th>.500</th><th>.460</th><th>.120 <t< th=""><th>.110 <t< th=""></t<></th></t<></th></t<>	.470	.500	.460	.120 <t< th=""><th>.110 <t< th=""></t<></th></t<>	.110 <t< th=""></t<>
DEC	.210	<₹	.170 <t< th=""><th>.470</th><th>.360</th><th>.790</th><th>.270</th><th>.200 <t< th=""></t<></th></t<>	.470	.360	.790	.270	.200 <t< th=""></t<>

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
	TYPE K21 RA	M MANNHEIM RESERVOIR	SITE 1	l .	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
			STANDING	FREE FLOW			
••••	METALS						
SILVER (UG/L)	DET'N LINIT .	.020 QU	IIDELINE = 50. (A1)			
JAN	BOL	BOL	.020 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	BOL	BOL	BOL	BOL
FEB	.030 <7	.040 <t< td=""><td>.030 <t< td=""><td>.030 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.030 <t< td=""><td>.030 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<></td></t<>	.030 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<>	BOL	.020 <t< td=""><td>.040 <t< td=""></t<></td></t<>	.040 <t< td=""></t<>
MAR	.030 <7	.020 <t< th=""><th>.040 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.040 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.030 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""></t<></th></t<></th></t<></th></t<>	.020 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""></t<></th></t<></th></t<>	.020 <t< th=""><th>.020 <t< th=""></t<></th></t<>	.020 <t< th=""></t<>
APR	BOL	BOL	.040 <t< th=""><th>BOL</th><th>.030 <t< th=""><th>.040 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	BOL	.030 <t< th=""><th>.040 <t< th=""><th>BOL</th></t<></th></t<>	.040 <t< th=""><th>BOL</th></t<>	BOL
MAY	.030 <7	.030 <7	BOL	BOL	BOL	BOL	.080 <t< th=""></t<>
JUN	BOL	.050 <t< th=""><th>BOL</th><th>BOL</th><th>.090 <7</th><th>.070 <t< th=""><th>.060 <t< th=""></t<></th></t<></th></t<>	BOL	BOL	.090 <7	.070 <t< th=""><th>.060 <t< th=""></t<></th></t<>	.060 <t< th=""></t<>
JUL	BOL	BOL	BOL	BOL	.100 <t< th=""><th>.080 <t< th=""><th>.060 <t< th=""></t<></th></t<></th></t<>	.080 <t< th=""><th>.060 <t< th=""></t<></th></t<>	.060 <t< th=""></t<>
AUG	BOL	BOL	BOL	BOL	BOL	BOL	BOL
SEP	.070 <7	.060 <t< th=""><th>.040 <t< th=""><th>.030 <t< th=""><th>BOL</th><th>.030 <t< th=""><th>.110 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.040 <t< th=""><th>.030 <t< th=""><th>BOL</th><th>.030 <t< th=""><th>.110 <t< th=""></t<></th></t<></th></t<></th></t<>	.030 <t< th=""><th>BOL</th><th>.030 <t< th=""><th>.110 <t< th=""></t<></th></t<></th></t<>	BOL	.030 <t< th=""><th>.110 <t< th=""></t<></th></t<>	.110 <t< th=""></t<>
OCT	.030 <7	BOL	BOL	BOL	.040 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
WOV	.040 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL	BOL	BOL	BOL
DEC	.030 <7	BOL	.030 <7	BOL	.040 <t< th=""><th>BOL</th><th>.030 <t< th=""></t<></th></t<>	BOL	.030 <t< th=""></t<>
ALUMINUM (UG/L)	DET'N LIMIT .	.050 GL	JIDELINE = 100.(A4)			
JAN	5.600	4.700	8.000	4.600	5.600	3.000	3.100
FEB	10.000	6.100	7.000	6.600	7.700	4.200	4.100
MAR	1.300	1.200	2.300	1.200	1.300	1.100	1.100
APR	3.100	2.900	3.900	3.500	3.200	2.000	1.900
MAY	2.800	2.600	3.200	3.100	3.000	2.100	1.800
JUN	11.000	8.600	13.000	10.000	9.100	5.600	5.200
JU .	1.100	.800	1.300	.680	.980	.960	.980
AUG	4.700	15.000	6.000	4.400	4.200	3.300	3.400
SEP	6.600	6.100	8.700	6.900	6.200	4.700	4.200
OCT	1.700	1.600	4.900	1.600	1.900	1.800	1.800

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR	81	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
		••••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •		
WOV	4.20	00	4.300	5.700	4.100	4.200	2.700	3.100
DEC	5.4	00	4.300	5.400	4.500	6.300	3.100	8.000
ARSENIC (UG/L)	••••••	DET'N LIMIT	- 0.050	GUIDELINE = 50.0 (A1)		••••••	•••••
JAN	.20	00 <t< td=""><td>.300 <t< td=""><td>1.400</td><td>.600 <t< td=""><td>1.400</td><td>.400 <t< td=""><td>.330 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>1.400</td><td>.600 <t< td=""><td>1.400</td><td>.400 <t< td=""><td>.330 <t< td=""></t<></td></t<></td></t<></td></t<>	1.400	.600 <t< td=""><td>1.400</td><td>.400 <t< td=""><td>.330 <t< td=""></t<></td></t<></td></t<>	1.400	.400 <t< td=""><td>.330 <t< td=""></t<></td></t<>	.330 <t< td=""></t<>
FEB	.10	SO <t< th=""><th>.210 <t< th=""><th>.660 <7</th><th>.590 <7</th><th>1.400</th><th>.310 <t< th=""><th>.370 <f< th=""></f<></th></t<></th></t<></th></t<>	.210 <t< th=""><th>.660 <7</th><th>.590 <7</th><th>1.400</th><th>.310 <t< th=""><th>.370 <f< th=""></f<></th></t<></th></t<>	.660 <7	.590 <7	1.400	.310 <t< th=""><th>.370 <f< th=""></f<></th></t<>	.370 <f< th=""></f<>
MAR	.14	60 < ₹	.470 <t< th=""><th>1.800</th><th>1.500</th><th>1.300</th><th>.060 <7</th><th>. BOL</th></t<>	1.800	1.500	1.300	.060 <7	. BOL
APR)L	BOL	.330 <1	.140 <t< th=""><th>.220 <t< th=""><th>.130 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	.220 <t< th=""><th>.130 <t< th=""><th>BOL</th></t<></th></t<>	.130 <t< th=""><th>BOL</th></t<>	BOL
MAY		DL	.130 <t< th=""><th>.920 <t< th=""><th>.710 <7</th><th>.690 <t< th=""><th>.090 <t< th=""><th>.220 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.920 <t< th=""><th>.710 <7</th><th>.690 <t< th=""><th>.090 <t< th=""><th>.220 <t< th=""></t<></th></t<></th></t<></th></t<>	.710 <7	.690 <t< th=""><th>.090 <t< th=""><th>.220 <t< th=""></t<></th></t<></th></t<>	.090 <t< th=""><th>.220 <t< th=""></t<></th></t<>	.220 <t< th=""></t<>
JUN	.13	50 <t< th=""><th>.180 <t< th=""><th>.470 <t< th=""><th>.210 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<></th></t<></th></t<></th></t<>	.180 <t< th=""><th>.470 <t< th=""><th>.210 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<></th></t<></th></t<>	.470 <t< th=""><th>.210 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<></th></t<>	.210 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL
JUL		DL	BOL	BOL	BOL	.770 <t< th=""><th>.060 <t< th=""><th>BOL</th></t<></th></t<>	.060 <t< th=""><th>BOL</th></t<>	BOL
AUG		00 <t< th=""><th>.470 <t< th=""><th>.430 <t< th=""><th>.520 <7</th><th>1.300</th><th>.480 <t< th=""><th>.560 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.470 <t< th=""><th>.430 <t< th=""><th>.520 <7</th><th>1.300</th><th>.480 <t< th=""><th>.560 <t< th=""></t<></th></t<></th></t<></th></t<>	.430 <t< th=""><th>.520 <7</th><th>1.300</th><th>.480 <t< th=""><th>.560 <t< th=""></t<></th></t<></th></t<>	.520 <7	1.300	.480 <t< th=""><th>.560 <t< th=""></t<></th></t<>	.560 <t< th=""></t<>
SEP	.4	10 <t< th=""><th>.770 <1</th><th>3.300</th><th>2.500</th><th>2.900</th><th>1.000 <t< th=""><th>.730 <t< th=""></t<></th></t<></th></t<>	.770 <1	3.300	2.500	2.900	1.000 <t< th=""><th>.730 <t< th=""></t<></th></t<>	.730 <t< th=""></t<>
OCT	.21	90 <t< th=""><th>.410 <t< th=""><th>1.800</th><th>1.400</th><th>1.200</th><th>.430 <t< th=""><th>.490 <t< th=""></t<></th></t<></th></t<></th></t<>	.410 <t< th=""><th>1.800</th><th>1.400</th><th>1.200</th><th>.430 <t< th=""><th>.490 <t< th=""></t<></th></t<></th></t<>	1.800	1.400	1.200	.430 <t< th=""><th>.490 <t< th=""></t<></th></t<>	.490 <t< th=""></t<>
WOV	.2:	50 <t< th=""><th>.290 <t< th=""><th>1.400</th><th>.690 <t< th=""><th>1.000 <t< th=""><th>.300 <t< th=""><th>.450 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.290 <t< th=""><th>1.400</th><th>.690 <t< th=""><th>1.000 <t< th=""><th>.300 <t< th=""><th>.450 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	1.400	.690 <t< th=""><th>1.000 <t< th=""><th>.300 <t< th=""><th>.450 <t< th=""></t<></th></t<></th></t<></th></t<>	1.000 <t< th=""><th>.300 <t< th=""><th>.450 <t< th=""></t<></th></t<></th></t<>	.300 <t< th=""><th>.450 <t< th=""></t<></th></t<>	.450 <t< th=""></t<>
DEC	.34	60 <t< th=""><th>.290 <t< th=""><th>1.000 <7</th><th>.390 ∢⊺</th><th>.990 <t< th=""><th>.110 <₹</th><th>.270 <t< th=""></t<></th></t<></th></t<></th></t<>	.290 <t< th=""><th>1.000 <7</th><th>.390 ∢⊺</th><th>.990 <t< th=""><th>.110 <₹</th><th>.270 <t< th=""></t<></th></t<></th></t<>	1.000 <7	.390 ∢⊺	.990 <t< th=""><th>.110 <₹</th><th>.270 <t< th=""></t<></th></t<>	.110 <₹	.270 <t< th=""></t<>
BARIUM (UG/L)		DET'N LIMIT	- 0.020	GUIDELINE = 1000. (A1)			
JAN	90.3	60	95.000	89.000	82.000	100.000	22.000	23.000
FEB	93.0	00	94.000	80.000	84.000	110.000	23.000	22.000
MAR	94.00	00	96.000	92.000	94.000	110.000	22.000	23.000
APR	100.0	00	100.000	110.000	100.000	140.000	25.000	25.000
MAY	110.0	00	110.000	110.000	94.000	120.000	24.000	26.000
JUN	120.0	00	120.000	130.000	120.000	150.000	31.000	31.000
	96.0	00	99.000	72.000	84.000	130.000	26.000	27.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR		ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	IIPE			STANDING	FREE FLOW			
	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
AUG	110.000		110.000	84.000	99.000	120.000	27.000	26.000
647	100.000		100.000	120.000	100.000	120.000	26.000	29.000
OCT	110.000		110.000	110.000	100.000	130.000	28.000	27.000
MOV	110.000		110.000	110.000	88.000	130.000	28.000	28.000
DEC	110.000		110.000	120.000	93.000	140.000	27.000	28.000
BORON (UG/L)	•••••	DET'N LIMIT	- 0.200	GUIDELINE = 5000. (A1)		•	
MAL	14.000	<₹	11.000 <t< th=""><th>23.000</th><th>11.000 <t< th=""><th>23.000</th><th>16.000 <7</th><th>16.000 <t< th=""></t<></th></t<></th></t<>	23.000	11.000 <t< th=""><th>23.000</th><th>16.000 <7</th><th>16.000 <t< th=""></t<></th></t<>	23.000	16.000 <7	16.000 <t< th=""></t<>
FEB	13.000	<1	10.000 <t< th=""><th>17.000 <t< th=""><th>16.000 <t< th=""><th>23.000</th><th>17.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	17.000 <t< th=""><th>16.000 <t< th=""><th>23.000</th><th>17.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<></th></t<></th></t<>	16.000 <t< th=""><th>23.000</th><th>17.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<></th></t<>	23.000	17.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<>	16.000 <t< th=""></t<>
MAR	13.000	<₹	11.000 <t< th=""><th>27.000</th><th>25.000</th><th>24.000</th><th>18.000 <t< th=""><th>17.000 <t< th=""></t<></th></t<></th></t<>	27.000	25.000	24.000	18.000 <t< th=""><th>17.000 <t< th=""></t<></th></t<>	17.000 <t< th=""></t<>
APR	13.000	<₹	11.000 <t< th=""><th>28.000</th><th>29.000</th><th>23.000</th><th>19.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<></th></t<>	28.000	29.000	23.000	19.000 <t< th=""><th>16.000 <t< th=""></t<></th></t<>	16.000 <t< th=""></t<>
MAY	18.000	<₹	20.000 <t< th=""><th>22.000</th><th>32.000</th><th>23.000</th><th>22.000</th><th>27.000</th></t<>	22.000	32.000	23.000	22.000	27.000
JUN	43.000		15.000 <t< th=""><th>90.000</th><th>79.000</th><th>36.000</th><th>81.000</th><th>27.000</th></t<>	90.000	79.000	36.000	81.000	27.000
JUL	13.000	<₹	9.800 <t< th=""><th>17.000 <t< th=""><th>10.000 <7</th><th>24.000</th><th>25.000</th><th>25.000</th></t<></th></t<>	17.000 <t< th=""><th>10.000 <7</th><th>24.000</th><th>25.000</th><th>25.000</th></t<>	10.000 <7	24.000	25.000	25.000
AUG	15.000	<₹	91.000	98.000	96.000	44.000	50.000	93.000
SEP	110.000		70.000	160.000	76.000	60.000	110.000	42.000
OCT	39.000		33.000	57.000	55.000	62.000	50.000	46.000
MOA	100.000		160.000	180.000	97.000	160.000	130.000	140.000
DEC	120.000		51.000	100.000	130.000	160.000	52.000	100.000
BERYLLIUM (UG/L)		DET'N LIMIT	- 0.010	QUIDELINE = .20 (H)			
JAN	BOL		BOL	BOL	BOL	BOL	BOL	BOL
FEB	.010	<1	.010 <t< th=""><th>.020 <1</th><th>.010 <7</th><th>.010 <t< th=""><th>BOL</th><th>.010 <t< th=""></t<></th></t<></th></t<>	.020 <1	.010 <7	.010 <t< th=""><th>BOL</th><th>.010 <t< th=""></t<></th></t<>	BOL	.010 <t< th=""></t<>
MAR	.010	<1	BOL	.010 <t< th=""><th>BOL</th><th>.010 <t< th=""><th>.010 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	BOL	.010 <t< th=""><th>.010 <t< th=""><th>BOL</th></t<></th></t<>	.010 <t< th=""><th>BOL</th></t<>	BOL
APR	BOL		BOL	BOL	BOL	BOL	BOL	.030 <t< th=""></t<>

TABLE 5

DRINKING MATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	224 BALL				******	×70 au	MAN TREATER
	TYPE	K21 KAM	MAMNHEIM RESERVOIR	SITE	1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
MAY	.020	<₹	.030 <1	BOL	BOL	BOL	BOL	.040 <t< td=""></t<>
JUN	BOL		BOL	BOL	BOL	BOL	DOL	BOL
.WL	SOL		BOL	BOL	BOL	BOL	DOL	BOL
AUG	BOL		.040 <t< td=""><td>.050 <t< td=""><td>.110 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.060 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.110 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.060 <t< td=""></t<></td></t<></td></t<></td></t<>	.110 <t< td=""><td>BOL</td><td>.020 <t< td=""><td>.060 <t< td=""></t<></td></t<></td></t<>	BOL	.020 <t< td=""><td>.060 <t< td=""></t<></td></t<>	.060 <t< td=""></t<>
SEP	.090		.110 <t< td=""><td>.160 <t< td=""><td>.060 <t< td=""><td>BOL</td><td>.100 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.160 <t< td=""><td>.060 <t< td=""><td>BOL</td><td>.100 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<></td></t<>	.060 <t< td=""><td>BOL</td><td>.100 <t< td=""><td>.040 <t< td=""></t<></td></t<></td></t<>	BOL	.100 <t< td=""><td>.040 <t< td=""></t<></td></t<>	.040 <t< td=""></t<>
OCT	.090		.130 <7	.090 <t< td=""><td>.130 <t< td=""><td>.080 <t< td=""><td>.050 <t< td=""><td>.080 <7</td></t<></td></t<></td></t<></td></t<>	.130 <t< td=""><td>.080 <t< td=""><td>.050 <t< td=""><td>.080 <7</td></t<></td></t<></td></t<>	.080 <t< td=""><td>.050 <t< td=""><td>.080 <7</td></t<></td></t<>	.050 <t< td=""><td>.080 <7</td></t<>	.080 <7
NOV	.320		.450 <t< td=""><td>.420 <t< td=""><td>.260 <t< td=""><td>.400 <t< td=""><td>.260 <t< td=""><td>.340 <7</td></t<></td></t<></td></t<></td></t<></td></t<>	.420 <t< td=""><td>.260 <t< td=""><td>.400 <t< td=""><td>.260 <t< td=""><td>.340 <7</td></t<></td></t<></td></t<></td></t<>	.260 <t< td=""><td>.400 <t< td=""><td>.260 <t< td=""><td>.340 <7</td></t<></td></t<></td></t<>	.400 <t< td=""><td>.260 <t< td=""><td>.340 <7</td></t<></td></t<>	.260 <t< td=""><td>.340 <7</td></t<>	.340 <7
DEC	.240	<1	.100 <t< td=""><td>.150 <t< td=""><td>.150 <7</td><td>.170 <t< td=""><td>.150 <7</td><td>.060 <7</td></t<></td></t<></td></t<>	.150 <t< td=""><td>.150 <7</td><td>.170 <t< td=""><td>.150 <7</td><td>.060 <7</td></t<></td></t<>	.150 <7	.170 <t< td=""><td>.150 <7</td><td>.060 <7</td></t<>	.150 <7	.060 <7
CADHIUM (UG/L)				QUIDELINE = 5.000 (A1)			
JAN	BOL		BOL	.160 <7	BOL	BOL	BOL	BOL
FEB	BOL		.050 <t< td=""><td>.150 <t< td=""><td>BOL</td><td>.060 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>	.150 <t< td=""><td>BOL</td><td>.060 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	BOL	.060 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
MAR	.060	<1	.050 <t< td=""><td>.200 <t< td=""><td>BOL</td><td>.100 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>BOL</td><td>.100 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	.100 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<>	.050 <t< td=""><td>.050 <t< td=""></t<></td></t<>	.050 <t< td=""></t<>
APR	BOL		BOL	.120 <t< td=""><td>BOL</td><td>.080 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	BOL	.080 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
MAY	BOL		BOL	.100 <t< td=""><td>BOL</td><td>.060 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	BOL	.060 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUN .	BOL		.080 <t< td=""><td>BOL</td><td>BOL</td><td>.100 <t< td=""><td>.100 <t< td=""><td>.080 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	BOL	.100 <t< td=""><td>.100 <t< td=""><td>.080 <t< td=""></t<></td></t<></td></t<>	.100 <t< td=""><td>.080 <t< td=""></t<></td></t<>	.080 <t< td=""></t<>
JUL.	BOL		BOL	BOL	BOL	.060 <t< td=""><td>.070 <t< td=""><td>.080 <t< td=""></t<></td></t<></td></t<>	.070 <t< td=""><td>.080 <t< td=""></t<></td></t<>	.080 <t< td=""></t<>
AUG	BOL		BOL	.110 <t< td=""><td>BOL</td><td>BOL</td><td>.060 <t< td=""><td>BOL</td></t<></td></t<>	BOL	BOL	.060 <t< td=""><td>BOL</td></t<>	BOL
SEP	BOL		BOL	.120 <t< td=""><td>BOL</td><td>BOL</td><td>.070 <1</td><td>.090 <t< td=""></t<></td></t<>	BOL	BOL	.070 <1	.090 <t< td=""></t<>
OCT	BOL		BOL	.060 <t< td=""><td>BOL</td><td>.070 <t< td=""><td>.100 <t< td=""><td>.080 <7</td></t<></td></t<></td></t<>	BOL	.070 <t< td=""><td>.100 <t< td=""><td>.080 <7</td></t<></td></t<>	.100 <t< td=""><td>.080 <7</td></t<>	.080 <7
WOV	.090	<7	.080 <t< td=""><td>.080 <t< td=""><td>BOL</td><td>.060 <t< td=""><td>.070 <t< td=""><td>.110 <7</td></t<></td></t<></td></t<></td></t<>	.080 <t< td=""><td>BOL</td><td>.060 <t< td=""><td>.070 <t< td=""><td>.110 <7</td></t<></td></t<></td></t<>	BOL	.060 <t< td=""><td>.070 <t< td=""><td>.110 <7</td></t<></td></t<>	.070 <t< td=""><td>.110 <7</td></t<>	.110 <7
DEC	BOL		BOL	BOL	BOL	.100 <t< td=""><td>.080 <t< td=""><td>.060 <t< td=""></t<></td></t<></td></t<>	.080 <t< td=""><td>.060 <t< td=""></t<></td></t<>	.060 <t< td=""></t<>
COBALT (UG/L)	••••••	DET'N LINIT :	• 0.020	GUIDELINE = 1000 (H)	••••••	•••••••	***************************************
JAM	.250	∢1	.310 <7	.440 <t< td=""><td>.240 <t< td=""><td>.690 <t< td=""><td>.300 <t< td=""><td>.290 ∢⊺</td></t<></td></t<></td></t<></td></t<>	.240 <t< td=""><td>.690 <t< td=""><td>.300 <t< td=""><td>.290 ∢⊺</td></t<></td></t<></td></t<>	.690 <t< td=""><td>.300 <t< td=""><td>.290 ∢⊺</td></t<></td></t<>	.300 <t< td=""><td>.290 ∢⊺</td></t<>	.290 ∢⊺

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST R	ESERVOIR	K70 RAW K70 TREATED
	TYPE							
				STANDING	FREE FLOW			
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
FEB	BOL		BOL	BOL	BOL	.270	<t .070<="" th=""><th><t .030="" <t<="" th=""></t></th></t>	<t .030="" <t<="" th=""></t>
MAR	.210	<1	.240 <t< th=""><th>.590 <t< th=""><th>.480</th><th><t .690="" th="" ·<=""><th><7 .470</th><th><t .380="" <t<="" th=""></t></th></t></th></t<></th></t<>	.590 <t< th=""><th>.480</th><th><t .690="" th="" ·<=""><th><7 .470</th><th><t .380="" <t<="" th=""></t></th></t></th></t<>	.480	<t .690="" th="" ·<=""><th><7 .470</th><th><t .380="" <t<="" th=""></t></th></t>	<7 .470	<t .380="" <t<="" th=""></t>
APR	.130	<1	.160 <t< th=""><th>.170 <7</th><th>.310</th><th><t .560="" th="" ·<=""><th><t .140<="" th=""><th><⊺ .190 <⊺</th></t></th></t></th></t<>	.170 <7	.310	<t .560="" th="" ·<=""><th><t .140<="" th=""><th><⊺ .190 <⊺</th></t></th></t>	<t .140<="" th=""><th><⊺ .190 <⊺</th></t>	<⊺ .190 <⊺
MAY	.030	<1	BOL	BOL	.090	<t .360="" th="" ·<=""><th><t .040<="" th=""><th><t .110="" <t<="" th=""></t></th></t></th></t>	<t .040<="" th=""><th><t .110="" <t<="" th=""></t></th></t>	<t .110="" <t<="" th=""></t>
JUN	.140	<1	.080 <t< th=""><th>.140 <t< th=""><th>.170</th><th><t .360="" th="" ·<=""><th>cT .170</th><th><t .110="" <t<="" th=""></t></th></t></th></t<></th></t<>	.140 <t< th=""><th>.170</th><th><t .360="" th="" ·<=""><th>cT .170</th><th><t .110="" <t<="" th=""></t></th></t></th></t<>	.170	<t .360="" th="" ·<=""><th>cT .170</th><th><t .110="" <t<="" th=""></t></th></t>	cT .170	<t .110="" <t<="" th=""></t>
JUL.	.120	<1	.100 <t< th=""><th>BOL</th><th>.120</th><th><t .300="" th="" ·<=""><th><t .090<="" th=""><th><t .130="" <t<="" th=""></t></th></t></th></t></th></t<>	BOL	.120	<t .300="" th="" ·<=""><th><t .090<="" th=""><th><t .130="" <t<="" th=""></t></th></t></th></t>	<t .090<="" th=""><th><t .130="" <t<="" th=""></t></th></t>	<t .130="" <t<="" th=""></t>
AUG	.190	<1	.240 <t< th=""><th>.180 <t< th=""><th>.200</th><th><t .620="" th="" ·<=""><th><t .240<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t></th></t<></th></t<>	.180 <t< th=""><th>.200</th><th><t .620="" th="" ·<=""><th><t .240<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t></th></t<>	.200	<t .620="" th="" ·<=""><th><t .240<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t>	<t .240<="" th=""><th><t .270="" <t<="" th=""></t></th></t>	<t .270="" <t<="" th=""></t>
SEP	.360	<1	.270 <1	.430 <7	.540	<t .790="" th="" ·<=""><th><t .420<="" th=""><th><t .380="" <t<="" th=""></t></th></t></th></t>	<t .420<="" th=""><th><t .380="" <t<="" th=""></t></th></t>	<t .380="" <t<="" th=""></t>
OCT	.120	<1	.170 <t< th=""><th>.340 <7</th><th>.270</th><th><t .670<="" th=""><th><t .210<="" th=""><th><t .280="" <t<="" th=""></t></th></t></th></t></th></t<>	.340 <7	.270	<t .670<="" th=""><th><t .210<="" th=""><th><t .280="" <t<="" th=""></t></th></t></th></t>	<t .210<="" th=""><th><t .280="" <t<="" th=""></t></th></t>	<t .280="" <t<="" th=""></t>
WOV	.190	<1	.180 <t< th=""><th>.240 <7</th><th>.260</th><th><t .700="" th="" ·<=""><th><t .250<="" th=""><th><t .340="" <t<="" th=""></t></th></t></th></t></th></t<>	.240 <7	.260	<t .700="" th="" ·<=""><th><t .250<="" th=""><th><t .340="" <t<="" th=""></t></th></t></th></t>	<t .250<="" th=""><th><t .340="" <t<="" th=""></t></th></t>	<t .340="" <t<="" th=""></t>
DEC	.210	<t< th=""><th>.160 <t< th=""><th>.240 <t< th=""><th>.180</th><th><t .660="" th="" ·<=""><th><t .300<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t></th></t<></th></t<></th></t<>	.160 <t< th=""><th>.240 <t< th=""><th>.180</th><th><t .660="" th="" ·<=""><th><t .300<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t></th></t<></th></t<>	.240 <t< th=""><th>.180</th><th><t .660="" th="" ·<=""><th><t .300<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t></th></t<>	.180	<t .660="" th="" ·<=""><th><t .300<="" th=""><th><t .270="" <t<="" th=""></t></th></t></th></t>	<t .300<="" th=""><th><t .270="" <t<="" th=""></t></th></t>	<t .270="" <t<="" th=""></t>
CHRONIUM (UG/L		•••••	SETIN LIMIT	• 0.100	GUIDELINE = 50.	·····		•••••
CHROMIUM (DE/E)		DEL'A LIMIT	- 0.100	WOIDELINE - 50.	(A1)		
JAN	.150	<t< th=""><th>.100 <t< th=""><th>.100 <7</th><th>.140</th><th><t 80l<="" th=""><th>.130</th><th><t .160="" <t<="" th=""></t></th></t></th></t<></th></t<>	.100 <t< th=""><th>.100 <7</th><th>.140</th><th><t 80l<="" th=""><th>.130</th><th><t .160="" <t<="" th=""></t></th></t></th></t<>	.100 <7	.140	<t 80l<="" th=""><th>.130</th><th><t .160="" <t<="" th=""></t></th></t>	.130	<t .160="" <t<="" th=""></t>
FEB	.200	<₹	.150 <t< th=""><th>.160 <t< th=""><th>BOL</th><th>BOL</th><th>.210</th><th><t .190="" <t<="" th=""></t></th></t<></th></t<>	.160 <t< th=""><th>BOL</th><th>BOL</th><th>.210</th><th><t .190="" <t<="" th=""></t></th></t<>	BOL	BOL	.210	<t .190="" <t<="" th=""></t>
MAR	.130	<1	.190 <t< th=""><th>.220 <1</th><th>.200</th><th><t .160="" th="" ·<=""><th><t .300<="" th=""><th><t .310="" <t<="" th=""></t></th></t></th></t></th></t<>	.220 <1	.200	<t .160="" th="" ·<=""><th><t .300<="" th=""><th><t .310="" <t<="" th=""></t></th></t></th></t>	<t .300<="" th=""><th><t .310="" <t<="" th=""></t></th></t>	<t .310="" <t<="" th=""></t>
APR	BOL		.320 <7	.140 <t< th=""><th>.860</th><th><t 80l<="" th=""><th>.560</th><th><t .140="" <t<="" th=""></t></th></t></th></t<>	.860	<t 80l<="" th=""><th>.560</th><th><t .140="" <t<="" th=""></t></th></t>	.560	<t .140="" <t<="" th=""></t>
MAY	1.800		3.000	.360 <t< th=""><th>2.200</th><th>.900</th><th><t 1.900<="" th=""><th>2.500</th></t></th></t<>	2.200	.900	<t 1.900<="" th=""><th>2.500</th></t>	2.500
JUN	3.300		.420 <t< th=""><th>6.600</th><th>5.600</th><th>1.000</th><th>¢T 6.200</th><th>.610 <t< th=""></t<></th></t<>	6.600	5.600	1.000	¢T 6.200	.610 <t< th=""></t<>
JUL.	BOL		BOL	1.300	.330	<t bol<="" th=""><th>.120</th><th><7 80L</th></t>	.120	<7 80 L
AUG	BOL		19.000	8.600	8.600	2,200	2.400	6.600
SEP	11.000		6.800	13.000	5.500	3.900	9.200	1.800
OCT	14.000		12.000	14.000	15.000	16.000	10.000	9.700
WOV	9.600		16.000	17.000	9.100	14.000	11.000	12.000
DEC	11.000		3.900	6.400	11.000	13.000	3.000	7.900
1								

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
	18.500,5.0.200	M MANNHEIM RESERVOIR	SIT	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		STANDING	FREE FLOW			
							••••••
COPPER (UG/L)	DET'N LIMIT	100	GUIDELINE = 1000 (A3)			
JAM	1.050	2.700	67.000	3.100	1.900	2.800	57.000
FEB	1.100	3.000	68.000	7.200	2.100	2.500	63.000
MAR	1.100	2.100	52.000	6.600	2.700	2.400	120.000
APR	1.300	2.500	76.000	11.000	3.700	2.900	110.000
MAY	1.700	3.500	62.000	7.800	3.700	2.900	85.000
JUN	1.300	2.400	81.000	10.000	4.000	5.200	12.000
JUL.	1.000 <t< th=""><th>2.900</th><th>.630 <t< th=""><th>5.900</th><th>3.000</th><th>4.600</th><th>91.000</th></t<></th></t<>	2.900	.630 <t< th=""><th>5.900</th><th>3.000</th><th>4.600</th><th>91.000</th></t<>	5.900	3.000	4.600	91.000
AUG	1.100	3.800	50.000	9.000	3.700	4.800	98.000
SEP	1.300	2.400	100.000	16.000	4.000	5.200	120.000
OCT	2.400	3.100	87.000	8.700	2.800	4.400	130.000
NOV	1.000 <t< th=""><th>2.400</th><th>220.000</th><th>7.000</th><th>3.500</th><th>3.700</th><th>120.000</th></t<>	2.400	220.000	7.000	3.500	3.700	120.000
DEC	2.200	2.500	170.000	12.000	2.800	3.800	140.000
IRON (UG/L)	DET'N LINIT :	4.000	GUIDELINE = 300. (A3)		•••••••••••	····
JAN	8.490 <t< th=""><th>BOL</th><th>120.000</th><th>4.000 <t< th=""><th>110.000</th><th>BOL</th><th>BOL</th></t<></th></t<>	BOL	120.000	4.000 <t< th=""><th>110.000</th><th>BOL</th><th>BOL</th></t<>	110.000	BOL	BOL
FEB	12.000 <t< th=""><th>7.600 <7</th><th>61.000</th><th>73.000</th><th>130.000</th><th>BOL</th><th>BOL</th></t<>	7.600 <7	61.000	73.000	130.000	BOL	BOL
MAR	10.000 <t< th=""><th>7.400 <t< th=""><th>590.000</th><th>110.000</th><th>110.000</th><th>4.100 <t< th=""><th>4.400 <t< th=""></t<></th></t<></th></t<></th></t<>	7.400 <t< th=""><th>590.000</th><th>110.000</th><th>110.000</th><th>4.100 <t< th=""><th>4.400 <t< th=""></t<></th></t<></th></t<>	590.000	110.000	110.000	4.100 <t< th=""><th>4.400 <t< th=""></t<></th></t<>	4.400 <t< th=""></t<>
APR	8.800 <t< th=""><th>7.500 <7</th><th>190.000</th><th>110.000</th><th>110.000</th><th>4.600 <t< th=""><th>8.200 <t< th=""></t<></th></t<></th></t<>	7.500 <7	190.000	110.000	110.000	4.600 <t< th=""><th>8.200 <t< th=""></t<></th></t<>	8.200 <t< th=""></t<>
MAY	8.200 <t< th=""><th>8.200 <t< th=""><th>220.000</th><th>180.000</th><th>130.000</th><th>6.500 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	8.200 <t< th=""><th>220.000</th><th>180.000</th><th>130.000</th><th>6.500 <t< th=""><th>BOL</th></t<></th></t<>	220.000	180.000	130.000	6.500 <t< th=""><th>BOL</th></t<>	BOL
JUN	7.200 <t< th=""><th>BOL</th><th>280.000</th><th>83.000</th><th>130.000</th><th>6.400 <t< th=""><th>8.600 <t< th=""></t<></th></t<></th></t<>	BOL	280.000	83.000	130.000	6.400 <t< th=""><th>8.600 <t< th=""></t<></th></t<>	8.600 <t< th=""></t<>
JUL	BOL	BOL	BOL	8.100 <t< th=""><th>110.000</th><th>BOL</th><th>BOL</th></t<>	110.000	BOL	BOL
AUG	8.200 <t< th=""><th>BOL</th><th>12.000 <t< th=""><th>6.400 <t< th=""><th>110.000</th><th>BOL</th><th>DOL</th></t<></th></t<></th></t<>	BOL	12.000 <t< th=""><th>6.400 <t< th=""><th>110.000</th><th>BOL</th><th>DOL</th></t<></th></t<>	6.400 <t< th=""><th>110.000</th><th>BOL</th><th>DOL</th></t<>	110.000	BOL	DOL
SEP	BOL	BOL	270.000	110.000	120.000	BOL	5.100 <t< th=""></t<>
OCT	BOL	BOL	210.000	81.000	100.000	BOL	BOL
MOV	BOL	BOL	270.000	50.000 <t< th=""><th>100.000</th><th>BOL</th><th>BOL</th></t<>	100.000	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	r21 aau	MANNHEIM RESERVOIR		SITE 1		K70 RAW	K70 TREATED
	TYPE	RZ1 KAW	MANAGETH RESERVOIR		IIIE 1	STRANGE ST RESERVOIR	K/U RAW	KTO TREATED
				STANDING	FREE FLOW			
••••••	•••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••
DEC	5.800	∢1	8.500 <t< th=""><th>270.000</th><th>34.000 <t< th=""><th>120.000</th><th>7.800 <7</th><th>20.000 <7</th></t<></th></t<>	270.000	34.000 <t< th=""><th>120.000</th><th>7.800 <7</th><th>20.000 <7</th></t<>	120.000	7.800 <7	20.000 <7
MERCURY (UG/L)		DET'N LINIT	- 0.010	GUIDELINE = 1.000 (A1)		
9								
TAN	.060		.050	•	.050	.060	. 160	.060
FEB	.080		.080	•	.070	.080	.080	.110
MAR	.020		.020	•	.020	.020	.020	.020
APR	.050		.040	•	.020	.020	.020	.040
MAY	80 L		BOL	•	BOL	BOL	BOL	BOL
JUN	BOL		BOL	•	BOL	BOL	BOL	BOL
AUL.	.020	T	BOL	•	BOL	BOL	BO L	BOL
AUG	BOL		80 L	•	90L	.030 <t< th=""><th>.020 <7</th><th>.020 <7</th></t<>	.020 <7	.020 <7
SEP	.030		.020 <t .030 <t< th=""><th>•</th><th>.020 <t< th=""><th>80L</th><th>.020 <7</th><th>.020 <7</th></t<></th></t<></t 	•	.020 <t< th=""><th>80L</th><th>.020 <7</th><th>.020 <7</th></t<>	80L	.020 <7	.020 <7
OCT MOV	.030 80 L		80L	•	.030 <t< th=""><th>.030 <t< th=""><th>.030 <1</th><th>.030 <7</th></t<></th></t<>	.030 <t< th=""><th>.030 <1</th><th>.030 <7</th></t<>	.030 <1	.030 <7
DEC	BOL		BOL	•	BOL	BOL	BOL BOL	BOL BOL
DEC			BUL	•	W L	EUL		B UL
MANGANESE (UG/L	•		DET'N LIMIT	050	QUIDELINE = 50.0 (A3)			
JAN	10.430		4.900	19.000	3.800	84.000	.570	.550
FEB	10.000		5.700	14.000	42.000	91.000	.590	.530
MAR	10.000		5.400	180.000	86.000	90.000	.640	.560
APR	11.000		5.700	50.000	240.000	110.000	.560	.480 <t< th=""></t<>
MAY	11.000		5.300	85.000	260.000	100.000	.540	.520
JUN	11.000		6.000	39.000	85.000	100.000	.590	.540
JUL	10.000		4.400	BOL	2.400	95.000	2.500	2.400
AUG	10.000		7.500	26.000	2.100	99.000	26.000	26.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR	\$1	ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
•••••		••••••	•••••	•••••	••••••	••••••		
SEP	11.000		5.000	28.000	60.000	100.000	58.000	57.000
OCT	11.000		7.200	30.000	35.000	100.000	76.000	75.000
WOV	11.000		4.200	56.000	19.000	97.000	56.000	56.000
DEC	11.000		5.500	56.000	32.000	100.000	34.000	34.000
MOLYBDENUM (UG/L)		DET'N LIMIT	- 0.020	GUIDELINE = 500 (H)			
JAN	.590		.470 <t< td=""><td>.460 <7</td><td>.460 <t< td=""><td>.480 <t< td=""><td>.620</td><td>.540</td></t<></td></t<></td></t<>	.460 <7	.460 <t< td=""><td>.480 <t< td=""><td>.620</td><td>.540</td></t<></td></t<>	.480 <t< td=""><td>.620</td><td>.540</td></t<>	.620	.540
FEB	.670		.510	.560	.590	.570	.610	.630
MAR	.650		.550	.520	.530	.540	.640	.620
APR	.700		.540	.490 <t< td=""><td>.570</td><td>.600</td><td>.580</td><td>.580</td></t<>	.570	.600	.580	.580
MAY	.760		.600	.630	.640	.540	.550	.590
JUN	.750		.640	.560	.700	.630	.640	.660
ALL.	.620		.510	.630	.580	.510	.840	.930
AUG	.760		.800	.940	.700	.570	1.300	1.400
SEP	.720		.510	.580	.500 <t< th=""><th>.530</th><th>1.500</th><th>1.500</th></t<>	.530	1.500	1.500
OCT	.720		.550	.500 <t< td=""><td>.500 <t< td=""><td>.620</td><td>1.500</td><td>1.600</td></t<></td></t<>	.500 <t< td=""><td>.620</td><td>1.500</td><td>1.600</td></t<>	.620	1.500	1.600
WOV	.670		.660	.550	.570	.530	1.100	1.100
DEC	.780		.570	.590	.610	.560	.970	1.100
MICKEL (UG/L)	••••••	DET'N LIMIT	- 0.100	GUIDELINE = 50. (F3)			••••••
JAN	2.160		2.000	6.700	2.300	3.700	2.400	2.400
FEB	BOL		BOL	1.200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	BOL	BOL	BOL	BOL
MAR	1.700		1.300 <t< td=""><td>3.200</td><td>1.600</td><td>1.500</td><td>2.400</td><td>2.200</td></t<>	3.200	1.600	1.500	2.400	2.200
APR	1.400	<1	1.400 <t< th=""><th>4.400</th><th>1.300 <t< th=""><th>2.200</th><th>2.100</th><th>1.500</th></t<></th></t<>	4.400	1.300 <t< th=""><th>2.200</th><th>2.100</th><th>1.500</th></t<>	2.200	2.100	1.500
MAY	BOL		BO L	1.200 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1968

	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR	\$116	: 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATE
				STANDING	FREE FLOW			
JUN	801	(BOL	1.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td></t<>	BOL	BOL	BOL	BOL
JUL.	901		BOL	.360 <t< td=""><td>BOL</td><td>BOL</td><td>.310 <t< td=""><td>.300 <t< td=""></t<></td></t<></td></t<>	BOL	BOL	.310 <t< td=""><td>.300 <t< td=""></t<></td></t<>	.300 <t< td=""></t<>
AUG	801	<u>u</u>	1.100 <t< td=""><td>3.000</td><td>.110 <t< td=""><td>1.400 <t< td=""><td>1.300 <t< td=""><td>1.200 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	3.000	.110 <t< td=""><td>1.400 <t< td=""><td>1.300 <t< td=""><td>1.200 <t< td=""></t<></td></t<></td></t<></td></t<>	1.400 <t< td=""><td>1.300 <t< td=""><td>1.200 <t< td=""></t<></td></t<></td></t<>	1.300 <t< td=""><td>1.200 <t< td=""></t<></td></t<>	1.200 <t< td=""></t<>
SEP	.510) <t< td=""><td>.380 <t< td=""><td>4.600</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>1.100 <t< td=""><td>.690 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.380 <t< td=""><td>4.600</td><td>1.900 <t< td=""><td>1.500 <t< td=""><td>1.100 <t< td=""><td>.690 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	4.600	1.900 <t< td=""><td>1.500 <t< td=""><td>1.100 <t< td=""><td>.690 <t< td=""></t<></td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1.100 <t< td=""><td>.690 <t< td=""></t<></td></t<></td></t<>	1.100 <t< td=""><td>.690 <t< td=""></t<></td></t<>	.690 <t< td=""></t<>
OCT	1.100) <t< td=""><td>.970 <t< td=""><td>5.200</td><td>2.700</td><td>6.100</td><td>1.600 <t< td=""><td>3.000</td></t<></td></t<></td></t<>	.970 <t< td=""><td>5.200</td><td>2.700</td><td>6.100</td><td>1.600 <t< td=""><td>3.000</td></t<></td></t<>	5.200	2.700	6.100	1.600 <t< td=""><td>3.000</td></t<>	3.000
NOV	801	Ĺ	BOL	8.900	BOL	1.000 <t< td=""><td>.480 <t< td=""><td>.240 <t< td=""></t<></td></t<></td></t<>	.480 <t< td=""><td>.240 <t< td=""></t<></td></t<>	.240 <t< td=""></t<>
DEC	801		BOL	7.200	.410 <t< td=""><td>BOL</td><td>.530 <t< td=""><td>.920 <t< td=""></t<></td></t<></td></t<>	BO L	.530 <t< td=""><td>.920 <t< td=""></t<></td></t<>	.920 <t< td=""></t<>
.EAD (UG/L)	•••••		DET'N LIMIT	- 0.050	QUIDELINE = 50. (A1)		•	· .
JAM	.230)	.420	.960	.040 <7	.110 <₹	.120 <t< td=""><td>.490</td></t<>	.490
FEB	. 190) <t< td=""><td>.330</td><td>.530</td><td>.050 <t< td=""><td>.150 <t< td=""><td>.100 <t< td=""><td>.460</td></t<></td></t<></td></t<></td></t<>	.330	.530	.050 <t< td=""><td>.150 <t< td=""><td>.100 <t< td=""><td>.460</td></t<></td></t<></td></t<>	.150 <t< td=""><td>.100 <t< td=""><td>.460</td></t<></td></t<>	.100 <t< td=""><td>.460</td></t<>	.460
MAR	. 100) <t< td=""><td>.250</td><td>.870</td><td>.110 <t< td=""><td>.140 <t< td=""><td>.100 <t< td=""><td>.530</td></t<></td></t<></td></t<></td></t<>	.250	.870	.110 <t< td=""><td>.140 <t< td=""><td>.100 <t< td=""><td>.530</td></t<></td></t<></td></t<>	.140 <t< td=""><td>.100 <t< td=""><td>.530</td></t<></td></t<>	.100 <t< td=""><td>.530</td></t<>	.530
APR	.090) <t< td=""><td>.230</td><td>.920</td><td>.100 <t< td=""><td>.270</td><td>.080 <t< td=""><td>.560</td></t<></td></t<></td></t<>	.230	.920	.100 <t< td=""><td>.270</td><td>.080 <t< td=""><td>.560</td></t<></td></t<>	.270	.080 <t< td=""><td>.560</td></t<>	.560
MAY	.240)	.290	.620	.070 <t< td=""><td>.250</td><td>.110 <t< td=""><td>1.000</td></t<></td></t<>	.250	.110 <t< td=""><td>1.000</td></t<>	1.000
JUN	.270)	.300	1.500	.140 <t< td=""><td>.190 <t< td=""><td>.250</td><td>1.000</td></t<></td></t<>	.190 <t< td=""><td>.250</td><td>1.000</td></t<>	.250	1.000
	.080) <1	.290	BOL	.030 <t< td=""><td>.220</td><td>.230</td><td>.790</td></t<>	.220	.230	.790
AUG	.080) <t< td=""><td>68.000</td><td>.710</td><td>.100 <t< td=""><td>.180 <t< td=""><td>.190 <t< td=""><td>1.100</td></t<></td></t<></td></t<></td></t<>	68.000	.710	.100 <t< td=""><td>.180 <t< td=""><td>.190 <t< td=""><td>1.100</td></t<></td></t<></td></t<>	.180 <t< td=""><td>.190 <t< td=""><td>1.100</td></t<></td></t<>	.190 <t< td=""><td>1.100</td></t<>	1.100
SEP	. 150) < T	.240	.750	.130 <t< td=""><td>.160 <t< td=""><td>.200 <t< td=""><td>1.200</td></t<></td></t<></td></t<>	.160 <t< td=""><td>.200 <t< td=""><td>1.200</td></t<></td></t<>	.200 <t< td=""><td>1.200</td></t<>	1.200
ОСТ	.060) < T	.230	.770	.070 <t< td=""><td>.190 <t< td=""><td>.250</td><td>.620</td></t<></td></t<>	.190 <t< td=""><td>.250</td><td>.620</td></t<>	.250	.620
WOV	.100) ∢ T	.320	38.000	.910	.270	.160 <t< td=""><td>1.000</td></t<>	1.000
DEC	.270)	.240	24.000	1.200	.480	.230	1.300
NTIMONY (UG/L)	••••••	DET'N LIMIT	- .050	GUIDELINE = 146. (D4)		••••••	••••••
JAN	.020) <ī	.040 <t< td=""><td>.040 <t< td=""><td>.030 <7</td><td>.040 <t< td=""><td>.070 <t< td=""><td>.020 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.040 <t< td=""><td>.030 <7</td><td>.040 <t< td=""><td>.070 <t< td=""><td>.020 <t< td=""></t<></td></t<></td></t<></td></t<>	.030 <7	.040 <t< td=""><td>.070 <t< td=""><td>.020 <t< td=""></t<></td></t<></td></t<>	.070 <t< td=""><td>.020 <t< td=""></t<></td></t<>	.020 <t< td=""></t<>
FEB	.050) <t< td=""><td>.040 <t< td=""><td>.060 <t< td=""><td>.040 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>.070 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.040 <t< td=""><td>.060 <t< td=""><td>.040 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>.070 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.060 <t< td=""><td>.040 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>.070 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.040 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>.070 <t< td=""></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.050 <t< td=""><td>.070 <t< td=""></t<></td></t<></td></t<>	.050 <t< td=""><td>.070 <t< td=""></t<></td></t<>	.070 <t< td=""></t<>

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE														
	TYPE		K21 RAW	MANNHEIM F	RESERVOIR		811	TE 1		STRANGE ST	RESERVOIR		K70 RAW	K/U	TREATED
						STANDING		FREE FLOW							
MAR	.0	40 4	T	.020	<t< th=""><th>.090</th><th><1</th><th>.040</th><th><1</th><th>.060</th><th><1</th><th>.060</th><th><t< th=""><th>.070 <</th><th>T</th></t<></th></t<>	.090	<1	.040	<1	.060	<1	.060	<t< th=""><th>.070 <</th><th>T</th></t<>	.070 <	T
APR	.0	40	T	BOL		.050	<1	BOL		.050	<1	.040	<t< th=""><th>.040 <</th><th>T</th></t<>	.040 <	T
MAY	.0	160	T	.050	<t< th=""><th>.050</th><th><t< th=""><th>.040</th><th><1</th><th>.030</th><th><₹</th><th>.040</th><th><₹</th><th>.070 <</th><th>T</th></t<></th></t<>	.050	<t< th=""><th>.040</th><th><1</th><th>.030</th><th><₹</th><th>.040</th><th><₹</th><th>.070 <</th><th>T</th></t<>	.040	<1	.030	<₹	.040	<₹	.070 <	T
JUN		D L		.030	<₹	.050	<t< th=""><th>BOL</th><th></th><th>.030</th><th><1</th><th>.100</th><th><₹</th><th>.030 <</th><th>T.</th></t<>	BOL		.030	<1	.100	<₹	.030 <	T.
ALL.		DL		BOL		.070	<1	.060	<t< th=""><th>.080</th><th><1</th><th>.100</th><th><₹</th><th>.120 <</th><th>T</th></t<>	.080	<1	.100	<₹	.120 <	T
AUG	.3	J20		4.300		.390		.350		.340		.330		.340	
SEP	.3	170		.300		.440		.380		.340		.360		.500	
OCT	.0	60	T	.060	<₹	.030	<1	80L		.060	<₹	.090	<1	.070 <	T
WOV	.3	40		.440		.540		.380		.380		.380		.390	
DEC	.3	170		.270		.590		.310		.270		.310		.270	
SELENIUM (UG/L)	••••	•••••	DET	'N LIMIT	- 0.200		QUIDELINE = 10.	(A1	1)		••••••	•••••	••••••	*******
JAM	.4	60	T	.680	<₹	.780	<t< b=""></t<>	.420	<t< th=""><th>.340</th><th><1</th><th>.510</th><th><₹</th><th>BOL</th><th></th></t<>	.340	<1	.510	<₹	BOL	
FEB	.9	× 000	T	.860	<₹	.750	< T	1.100	<₹	.920	<1	.390	<1	.670 <	T
MAR	1.2	200 4	T	.920	<t< th=""><th>1.800</th><th><t< b=""></t<></th><th>1.800</th><th><T</th><th>2.200</th><th><1</th><th>1.100</th><th><1</th><th>1.600 <</th><th>T</th></t<>	1.800	<t< b=""></t<>	1.800	< T	2.200	<1	1.100	<1	1.600 <	T
APR	.6	10	T	BOL		.950	<1	.720	<₹	2.700	<1	.830	<1	1.300 <	T
MAY		DL		BOL		.290	< T	1.100	<1	.810	<1	BOL		1.500 <	T
JUN		40 4	T	BOL		.650	<1	1.100	<₹	2.300	<1	1.600	<₹	1.100 <	T
JUL	.6	50	T	BOL		BOL		BOL		BOL		.330	8	BOL	
AUG	1.7	200	T	.700	<1	BOL		.330	<₹	.450	<1	.250	<₹	BOL	
SEP		DL		.500	<₹	.600	<1	1.000	< T	1.000	<1	.450	<₹	.910 <	T
OCT		IO L		BOL		BOL		BOL		1.100	<1	BOL		BOL	
WOV	.4	20	T.	1.900	<1	1.300	<1	1.900	<₹	2.900	<1	1.400	<1	1.500 <	T
DEC	1	OL		.550	<₹	.500	<1	.210	< T	2.200	<₹	1.500	<₹	.910 <	T
										 -					

STRONTIUM (UG/L) DET'N LIMIT = .050

GUIDELINE = 2000.(N)

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RA	W K70 TREATED
				STANDING	FREE FLOW			
JAM	234.000		190.000	940.000	290.000	560.000	500.000	510.000
FEB	240.000		190.000	690.000	620.000	590.000	540.000	560.000
MAR	240.000		190.000	1000.000	1000.000	550.000	560.000	560.000
APR	260.000		200.000	1200.000	1200.000	670.000	580.000	560.000
MAY	280.000		220.000	1400.000	1400.000	690.000	560.000	580.000
JUN	270.000		200.000	1300.000	1300.000	700.000	580.000	590.000
JU L	220.000		170.000	570.000	210.000	580.000	450.000	450.000
AUG	230.000		190.000	290.000	190.000	550.000	410.000	430.000
SEP	260.000		200.000	1300.000	1400.000	650.000	500.000	500.000
OCT	250.000		190.000	1400.000	1200.000	620.000	480.000	490.000
WOV	250.000		200.000	1400.000	650.000	630.000	520.000	520.000
DEC	260.000		200.000	1400.000	710.000	660.000	570.000	570.000
TITANIUM (UG/L)		DET'N LIMIT	050	GUIDELINE - N/A	9		
JAN	19.000		17.000	23.000	18.000	22.000	13.000	14.000
FEB	17.000		16.000	19.000	19.000	22.000	13.000	13.000
MAR	29.000		27.000	37.000	35.000	34.000	17.000	17.000
APR	18.000		17.000	23.000	22.000	19.000	10.000	11.000
MAY	13.000		13.000	17.000	18.000	16.000	9.100	9.500
JUN	20.000		20.000	27.000	25.000	24.000	13.000	13.000
JUL	22.000		17.000	20.000	17.000	22.000	12.000	11.000
AUG	18.000		19.000	19.000	18.000	21.000	11.000	12.000
SEP	21.000		21.000	30.000	28.000	24.000	14.000	13.000
OCT	10.000		9.000	12.000	12.000	13.000	6.400	6.200
WOV	24.000		23.000	33.000	24.000	27.000	16.000	14.000
DEC	16.000		15.000	21.000	17.000	20.000	11.000	12.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE								
	••••	K	21 RAW	MANNHEIM RESERVOIR		SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE				STANDING	FREE FLOW			
THALLIUM (UG/L)	•••••	••••••			GUIDELINE = 13.			••••••
JAM		020 <t< th=""><th>60)</th><th>.020 <7</th><th>.040</th><th><t .010="" th="" ·<=""><th><t .030="" <t<="" th=""><th>.020 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t></th></t></th></t<>	60)	.020 <7	.040	<t .010="" th="" ·<=""><th><t .030="" <t<="" th=""><th>.020 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t></th></t>	<t .030="" <t<="" th=""><th>.020 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t>	.020 <t< th=""><th>.010 <t< th=""></t<></th></t<>	.010 <t< th=""></t<>
FEB		020 <1		.010 <t< th=""><th>BOL</th><th>BOL</th><th>.020 <t< th=""><th>.010 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t<></th></t<>	BOL	BOL	.020 <t< th=""><th>.010 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t<>	.010 <t< th=""><th>.010 <t< th=""></t<></th></t<>	.010 <t< th=""></t<>
MAR		010 <t< th=""><th>•</th><th>.010 <t< th=""><th>.010</th><th><t .010="" th="" ·<=""><th>T> 020. T></th><th>.010 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t></th></t<></th></t<>	•	.010 <t< th=""><th>.010</th><th><t .010="" th="" ·<=""><th>T> 020. T></th><th>.010 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t></th></t<>	.010	<t .010="" th="" ·<=""><th>T> 020. T></th><th>.010 <t< th=""><th>.010 <t< th=""></t<></th></t<></th></t>	T> 020. T>	.010 <t< th=""><th>.010 <t< th=""></t<></th></t<>	.010 <t< th=""></t<>
APR		020 <1	•00	BOL	BOL	90L	.040 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""></t<></th></t<></th></t<>	.030 <t< th=""><th>.020 <t< th=""></t<></th></t<>	.020 <t< th=""></t<>
MAY		030 <1	*)	BOL	BOL	BOL	.020 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUN	1	BOL		.030 <t< th=""><th>BOL</th><th>BOL</th><th>.040 <t< th=""><th>BOL</th><th>.050 <t< th=""></t<></th></t<></th></t<>	BOL	BOL	.040 <t< th=""><th>BOL</th><th>.050 <t< th=""></t<></th></t<>	BOL	.050 <t< th=""></t<>
JU .		020 <t< th=""><th>12</th><th>BOL</th><th>BOL</th><th>BOL</th><th>.030 <7</th><th>.020 <7</th><th>.020 <t< th=""></t<></th></t<>	12	BOL	BOL	BOL	.030 <7	.020 <7	.020 <t< th=""></t<>
AUG		030 <t< th=""><th>7</th><th>.050 <t< th=""><th>.030</th><th><t bol<="" th=""><th>.030 <t< th=""><th>.050 <t< th=""><th>.030 <t< th=""></t<></th></t<></th></t<></th></t></th></t<></th></t<>	7	.050 <t< th=""><th>.030</th><th><t bol<="" th=""><th>.030 <t< th=""><th>.050 <t< th=""><th>.030 <t< th=""></t<></th></t<></th></t<></th></t></th></t<>	.030	<t bol<="" th=""><th>.030 <t< th=""><th>.050 <t< th=""><th>.030 <t< th=""></t<></th></t<></th></t<></th></t>	.030 <t< th=""><th>.050 <t< th=""><th>.030 <t< th=""></t<></th></t<></th></t<>	.050 <t< th=""><th>.030 <t< th=""></t<></th></t<>	.030 <t< th=""></t<>
SEP	.0	030 <t< th=""><th>2.</th><th>.030 <t< th=""><th>80L</th><th>.030</th><th><t .040="" <t<="" th=""><th>.040 <t< th=""><th>.040 <t< th=""></t<></th></t<></th></t></th></t<></th></t<>	2.	.030 <t< th=""><th>80L</th><th>.030</th><th><t .040="" <t<="" th=""><th>.040 <t< th=""><th>.040 <t< th=""></t<></th></t<></th></t></th></t<>	80 L	.030	<t .040="" <t<="" th=""><th>.040 <t< th=""><th>.040 <t< th=""></t<></th></t<></th></t>	.040 <t< th=""><th>.040 <t< th=""></t<></th></t<>	.040 <t< th=""></t<>
OCT	.0	020 <t< th=""><th>000</th><th>BOL</th><th>BOL</th><th>.020</th><th>T> 030 <t< th=""><th>.030 <7</th><th>.020 <t< th=""></t<></th></t<></th></t<>	000	BOL	BOL	.020	T> 030 <t< th=""><th>.030 <7</th><th>.020 <t< th=""></t<></th></t<>	.030 <7	.020 <t< th=""></t<>
WOV		BOL		BOL	BOL	BOL	BOL	BOL	BOL
DEC		020 <1		.030 <1	.040	<t bol<="" th=""><th>.030 <7</th><th>.040 <t< th=""><th>.040 <t< th=""></t<></th></t<></th></t>	.030 <7	.040 <t< th=""><th>.040 <t< th=""></t<></th></t<>	.040 <t< th=""></t<>
URANIUM (UG/L)			DET'N LIMIT	020	GUIDELINE = 20.	(A2)		
JAM		810		.940	1.100	.570	1.400	.740	.740
FEB		920		.990	1.200	1.100	1.600	.750	.710
MAR		790		.940	1.200	1.200	1.300	.540	.600
APR		860		.930	1.400	1.400	1.400	.710	.650
MAY		930		.940	1.400	1.300	1.500	.610	.710
JUN	1.3	200		1.200	1.900	1.900	2.000	.810	.820
JUL.		950		1.000	1.100	.990	1.700	.640	.610
AUG		990		1.000	1.000	1.100	1.400	.530	.490
SEP		930		.940	1.300	1.300	1.400	.460	.660
OCT		960		.970	1.400	1.300	1.600	.550	.500
WOV		970		.940	1.500	1.100	1.500	.630	.650

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	K21 RAW	MANNHEIM RESERVOIR	\$11	rs 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE	NET NAME	POMMETA RESERVOIR	•		SIRMUE SI RESERVOIR	KIV KAN	KIV IREAILS
				STANDING	FREE FLOW			
DEC	.870	ı	.940	1.400	1.100	1.600	.630	.710
VANADIUM (UG/L)	•••••	DET'N LIMIT	.050	QUIDELINE = 100 (H)		•••••	
JAN	.240	₹	.150 <t< th=""><th>.230 <7</th><th>.080 <t< th=""><th>.300 <t< th=""><th>.160 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.230 <7	.080 <t< th=""><th>.300 <t< th=""><th>.160 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<></th></t<>	.300 <t< th=""><th>.160 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<>	.160 <t< th=""><th>.210 <t< th=""></t<></th></t<>	.210 <t< th=""></t<>
FEO	.170	<t< th=""><th>.080 <t< th=""><th>BOL</th><th>BOL</th><th>.040 <t< th=""><th>.080 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.080 <t< th=""><th>BOL</th><th>BOL</th><th>.040 <t< th=""><th>.080 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<>	BOL	BOL	.040 <t< th=""><th>.080 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<>	.080 <t< th=""><th>.100 <t< th=""></t<></th></t<>	.100 <t< th=""></t<>
MAR	.230	<t< th=""><th>.110 <t< th=""><th>.170 <7</th><th>.060 <t< th=""><th>.110 <t< th=""><th>.110 <t< th=""><th>.080 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.110 <t< th=""><th>.170 <7</th><th>.060 <t< th=""><th>.110 <t< th=""><th>.110 <t< th=""><th>.080 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.170 <7	.060 <t< th=""><th>.110 <t< th=""><th>.110 <t< th=""><th>.080 <t< th=""></t<></th></t<></th></t<></th></t<>	.110 <t< th=""><th>.110 <t< th=""><th>.080 <t< th=""></t<></th></t<></th></t<>	.110 <t< th=""><th>.080 <t< th=""></t<></th></t<>	.080 <t< th=""></t<>
APR	.200	<₹	.160 <t< th=""><th>.020 <t< th=""><th>.030 <t< th=""><th>.080 <t< th=""><th>.150 <t< th=""><th>.160 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.020 <t< th=""><th>.030 <t< th=""><th>.080 <t< th=""><th>.150 <t< th=""><th>.160 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.030 <t< th=""><th>.080 <t< th=""><th>.150 <t< th=""><th>.160 <t< th=""></t<></th></t<></th></t<></th></t<>	.080 <t< th=""><th>.150 <t< th=""><th>.160 <t< th=""></t<></th></t<></th></t<>	.150 <t< th=""><th>.160 <t< th=""></t<></th></t<>	.160 <t< th=""></t<>
MAY	. 190	<t< th=""><th>.130 <t< th=""><th>BOL</th><th>.010 <t< th=""><th>.040 <t< th=""><th>.120 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.130 <t< th=""><th>BOL</th><th>.010 <t< th=""><th>.040 <t< th=""><th>.120 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	BOL	.010 <t< th=""><th>.040 <t< th=""><th>.120 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<>	.040 <t< th=""><th>.120 <t< th=""><th>.100 <t< th=""></t<></th></t<></th></t<>	.120 <t< th=""><th>.100 <t< th=""></t<></th></t<>	.100 <t< th=""></t<>
JUN	.220	<1	.130 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>.140 <t< th=""><th>.070 <t< th=""></t<></th></t<></th></t<>	BOL	BOL	BOL	.140 <t< th=""><th>.070 <t< th=""></t<></th></t<>	.070 <t< th=""></t<>
	.280	<t< th=""><th>.180 <t< th=""><th>.130 <t< th=""><th>.150 <t< th=""><th>.410 <t< th=""><th>.290 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.180 <t< th=""><th>.130 <t< th=""><th>.150 <t< th=""><th>.410 <t< th=""><th>.290 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.130 <t< th=""><th>.150 <t< th=""><th>.410 <t< th=""><th>.290 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.150 <t< th=""><th>.410 <t< th=""><th>.290 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<>	.410 <t< th=""><th>.290 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<>	.290 <t< th=""><th>.290 <t< th=""></t<></th></t<>	.290 <t< th=""></t<>
AUG	.270	<1	.220 <t< th=""><th>.120 <t< th=""><th>.150 <t< th=""><th>.260 <t< th=""><th>.270 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.120 <t< th=""><th>.150 <t< th=""><th>.260 <t< th=""><th>.270 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.150 <t< th=""><th>.260 <t< th=""><th>.270 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<></th></t<>	.260 <t< th=""><th>.270 <t< th=""><th>.290 <t< th=""></t<></th></t<></th></t<>	.270 <t< th=""><th>.290 <t< th=""></t<></th></t<>	.290 <t< th=""></t<>
SEP	.310	<t< th=""><th>.220 <t< th=""><th>.290 <t< th=""><th>.210 <t< th=""><th>.320 <7</th><th>.290 <t< th=""><th>.240 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.220 <t< th=""><th>.290 <t< th=""><th>.210 <t< th=""><th>.320 <7</th><th>.290 <t< th=""><th>.240 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.290 <t< th=""><th>.210 <t< th=""><th>.320 <7</th><th>.290 <t< th=""><th>.240 <t< th=""></t<></th></t<></th></t<></th></t<>	.210 <t< th=""><th>.320 <7</th><th>.290 <t< th=""><th>.240 <t< th=""></t<></th></t<></th></t<>	.320 <7	.290 <t< th=""><th>.240 <t< th=""></t<></th></t<>	.240 <t< th=""></t<>
OCT	.360	<₹	.290 <t< th=""><th>.590</th><th>.650</th><th>.730</th><th>.420 <t< th=""><th>.420 <t< th=""></t<></th></t<></th></t<>	.590	.650	.730	.420 <t< th=""><th>.420 <t< th=""></t<></th></t<>	.420 <t< th=""></t<>
WOV	.290	<1	.240 <t< th=""><th>.220 <t< th=""><th>.140 <t< th=""><th>.220 <t< th=""><th>.230 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.220 <t< th=""><th>.140 <t< th=""><th>.220 <t< th=""><th>.230 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.140 <t< th=""><th>.220 <t< th=""><th>.230 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<></th></t<>	.220 <t< th=""><th>.230 <t< th=""><th>.210 <t< th=""></t<></th></t<></th></t<>	.230 <t< th=""><th>.210 <t< th=""></t<></th></t<>	.210 <t< th=""></t<>
DEC	.280	<1	.200 <t< th=""><th>.330 <t< th=""><th>.220 <t< th=""><th>.330 <1</th><th>.230 <7</th><th>.270 <1</th></t<></th></t<></th></t<>	.330 <t< th=""><th>.220 <t< th=""><th>.330 <1</th><th>.230 <7</th><th>.270 <1</th></t<></th></t<>	.220 <t< th=""><th>.330 <1</th><th>.230 <7</th><th>.270 <1</th></t<>	.330 <1	.230 <7	.270 <1
ZINC (UG/L)	••••••	••••••	DET'N LIHIT	001	GUIDELINE = 5000. (A3)		•	•••••••••
JAN	5.670	ı	4.800	23.000	3.100	14.000	4.200	3.800
FEB	4.900)	4.600	18.000	3.200	12.000	3.200	2.800
MAR	5.900	Ì	5.200	21.000	6.700	21.000	3.900	4.100
APR	6.800	i.	6.100	24.000	8.300	24.000	3.900	3.500
MAY	6.900	1	5.900	22.000	7.100	23.000	4.000	3.200
JUN	6.900	1	5.400	24.000	7.400	21.000	6.500	4.800
.	6.500	1	6.200	2.100	3.300	18.000	5.800	5.000
AUG	6.100	1	7.800	15.000	4.200	24.000	6.000	4.800

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	\$17E K21 6	TAU MANNHEIM RESERVOIR	•••	· 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED		
	TYPE	CAN PANNETH RESERVOIR	SITE 1		SIRANGE SI RESERVUIR	K/O KAN	K/O INEXTED	RIV INCHICO	
			STAND ING	FREE FLOW					
••••••	••••••								
SEP	8.000	7.100	34.000	8.700	24.000	7.500	6.100		
OCT	6.300	5.800	25.000	4.700	20.000	5.500	4.500		
WOV	6.300	6.500	60.000	4.700	23.000	5.600	4.700		
DEC	9.300	6.900	46.000	4.900	20.000	4.400	5.000		

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE				the e			
	TYPE	K21 RAW	MANNHEIM RESERVOIR	\$1	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
	PAH							8
ANTHRACENE (NG/L)		DET'N LIMIT	- 1.000	QUIDELINE = 2.8 (D4T)			
JAM	BOL		BOL			BOL	BOL	BOL
FEB	BOL		BOL		•	1.000	ILA	BOL
MAR	BOL		BOL		•	BOL	BOL	BOL
APR	BOL		BOL		•	BOL	BOL	BOL
MAY	BOL		BOL			BOL	BOL	BOL
JUN	BOL		BOL			BOL	BOL	BOL
JUL	BOL		BOL		•	BOL	BOL	BOL
AUG	BOL		BOL		:: 	BOL	BOL	BOL
SEP	BOL		BOL		Ī	BOL	BOL	BOL
OCT	BOL		BOL			BOL	BOL	BOL
NOV	BOL		BOL		•	BOL	BOL	ILA
DEC	BOL		BOL			BOL	BOL	BOL
FLUORANTHENE (NG/	L)		DET'N LIMIT	20.000	GUIDELINE = 42000 (D4)			
JAN	BOL		BOL	. •1		BOL	BOL	BOL
FEB	BOL		BOL			20.000	ILA	BOL
MAR	BOL		BOL		•	BOL	BOL	BOL
APR	BOL		BOL	*	₩	BDL	BOL	BOL
MAY	BOL		BOL	(.)	•	BOL	BOL	BOL
J.M	BOL		BOL	•	I∰n	BOL	BOL	BOL
JUL	BOL		BOL	•	*1	BOL	BOL	BOL
AUG	BOL		SOL	•	₩̃ĸ	BOL	BOL	BOL
SEP	BOL		BOL		y (1	BOL	BOL	BOL
OCT	BOL		BOL	(•	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR	\$11	TE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
	•••••	••••••	••••••	•••••			•	
NOV	BOL		BOL	•		BOL	BOL	ILA
DEC	BOL		BOL	•		BOL	BOL	BOL
PYRENE (NG/L)	••••••	DET'N LIMIT	• 20.000	GUIDELINE = 2.8 (D4T)	••••••••••		••••••
	•							
JAN	BOL		BOL	•	•.	BOL	BOL	BOL
FEB	BOL		BOL	•:	•:	40.000	ILA	BOL
MAR	BOL		BOL		•	BOL	BOL	BOL
APR	BOL		BOL		<u>*</u> !	BD L	BOL	BOL
MAY	BOL		BOL		•	BOL	BOL	BOL
JUN	BOL		BOL	•	•	BDL	BOL	BOL
M.	BOL		BOL	•	•	BDL	BOL	BOL
AUG	BOL		BOL	• 1		BOL	BOL	BOL
SEP	BOL		BOL	•	. □	BDL	BOL	BOL
OCT	BOL		BOL	•	•	BOL	BOL	BOL
WOV	BOL		BOL	•	•	BOL	BOL	ILA
DEC	BOL		BOL	•	•	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	K21 RAW	MANNHEIM RESERVOIR	811	re 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
	PESTICIDES &	PCB		•••••				•••••••
ATRAZINE (NG/L)		DET'N LIMIT	• 50.00	GUIDELINE = 60000 (83)			
JAN	BOL		BOL	•	BOL	BOL	210.000 <t< th=""><th>150.000 <t< th=""></t<></th></t<>	150.000 <t< th=""></t<>
FEB	BOL		BOL	•	BOL	BOL	BOL	BOL
MAR	BOL		BOL	•	BOL	BOL	BOL	BOL
APR	BOL		BOL	₩.	BOL	ILA	BOL	BOL
MAY	BOL		BOL	:•1:	BOL	BOL	IRO	IRO
JUN	BOL		BOL		BOL	BOL	240.000 <t< th=""><th>280.000 <t< th=""></t<></th></t<>	280.000 <t< th=""></t<>
JUL.	BOL		BOL		BOL	BOL	200.000 <t< th=""><th>190.000 <t< th=""></t<></th></t<>	190.000 <t< th=""></t<>
AUG	BOL		BOL		BOL	BOL	BOL	BOL
SEP	BOL		BOL	•	BOL	BOL	300.000 <t< th=""><th>200.000 <t< th=""></t<></th></t<>	200.000 <t< th=""></t<>
OCT	BOL		BOL	900	BOL	IRE	230.000 <t< th=""><th>230.000 <t< th=""></t<></th></t<>	230.000 <t< th=""></t<>
WOV	BOL		BOL	•	BOL	BOL	310.000 <t< th=""><th>230.000 <t< th=""></t<></th></t<>	230.000 <t< th=""></t<>
DEC	BOL		IRE	•	BOL	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	K21 RAW	MANNHEIM RESER	VOIR	SITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE			STANDING	FREE FLOW			
				•••••				
	PHENOLICS							
PHENOLICS (UG/L	•		DET'N L	INIT = 0.2	GUIDELINE = 2.00 (A3)			
			400 -			400	400 -	
JAN	.600		.600 <t< th=""><th>•</th><th></th><th>.600 <t< th=""><th>.600 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	•		.600 <t< th=""><th>.600 <t< th=""><th>BOL</th></t<></th></t<>	.600 <t< th=""><th>BOL</th></t<>	BOL
FEB	.600	<1	.600 <t< th=""><th></th><th></th><th>.600 <t< th=""><th>.600 <t< th=""><th>.600 <t< th=""></t<></th></t<></th></t<></th></t<>			.600 <t< th=""><th>.600 <t< th=""><th>.600 <t< th=""></t<></th></t<></th></t<>	.600 <t< th=""><th>.600 <t< th=""></t<></th></t<>	.600 <t< th=""></t<>
MAR	80L		BOL			BOL	BOL	BOL
APR	.600	<1	.600 <t< th=""><th></th><th>•</th><th>.200 <t< th=""><th>.400 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<></th></t<>		•	.200 <t< th=""><th>.400 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<>	.400 <t< th=""><th>.200 <t< th=""></t<></th></t<>	.200 <t< th=""></t<>
MAY	.200	<t< th=""><th>.200 <t< th=""><th>•</th><th>•</th><th>.200 <t< th=""><th>.200 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.200 <t< th=""><th>•</th><th>•</th><th>.200 <t< th=""><th>.200 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<></th></t<>	•	•	.200 <t< th=""><th>.200 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<>	.200 <t< th=""><th>.200 <t< th=""></t<></th></t<>	.200 <t< th=""></t<>
JUN	BOL.		BOL	•	•	BOL	.800 <t< th=""><th>1.000 <t< th=""></t<></th></t<>	1.000 <t< th=""></t<>
AU.	BOL		BOL			BOL	.400 <t< th=""><th>.600 <t< th=""></t<></th></t<>	.600 <t< th=""></t<>
AUG	.600	<1	.200 <t< th=""><th></th><th>•</th><th>BOL</th><th>.200 <t< th=""><th>.600 <t< th=""></t<></th></t<></th></t<>		•	BOL	.200 <t< th=""><th>.600 <t< th=""></t<></th></t<>	.600 <t< th=""></t<>
SEP	BOL		BOL		•)	BOL	BOL	BOL
OCT	BOL		BOL			BOL	.400 <t< th=""><th>.600 <t< th=""></t<></th></t<>	.600 <t< th=""></t<>
WOV	BOL		.200 <t< th=""><th></th><th>•</th><th>INR</th><th>.200 <t< th=""><th>.200 <t< th=""></t<></th></t<></th></t<>		•	INR	.200 <t< th=""><th>.200 <t< th=""></t<></th></t<>	.200 <t< th=""></t<>
DEC	.600	<t< th=""><th>.600 <t< th=""><th></th><th></th><th>.200 <t< th=""><th>.600 <t< th=""><th>1.000</th></t<></th></t<></th></t<></th></t<>	.600 <t< th=""><th></th><th></th><th>.200 <t< th=""><th>.600 <t< th=""><th>1.000</th></t<></th></t<></th></t<>			.200 <t< th=""><th>.600 <t< th=""><th>1.000</th></t<></th></t<>	.600 <t< th=""><th>1.000</th></t<>	1.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE	V21 BAU	MANNHEIM RESERVOIR		re 1			v a
	TYPE	REI RAW	PROMINEIN RESERVOIR	• 1	IE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
	VOLATILES							
BENZENE (UG/L)		DET'N LIMIT	050	GUIDELINE = 5.0 (81)			
JAM	BOL		BOL		BOL	BOL	BOL	BOL
MAR	BOL		BOL		.150 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	.050 <t< th=""><th>.050 <t< th=""><th>BOL</th></t<></th></t<>	.050 <t< th=""><th>BOL</th></t<>	BOL
APR	BOL		BOL	•	.100 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL
MAY	BOL		BOL	*	BOL	BOL	BOL	BOL
JUN	BOL		BOL	∰a	BOL	BOL	BOL	BOL
JUL	.050	<₹	.050 <t< th=""><th>•:</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th></t<>	•:	BOL	BOL	BOL	BOL
AUG	BOL		BOL	•	BOL	BOL	BOL	BOL
SEP	BOL		BOL	•	BOL	BOL	BOL	BOL
OCT	BOL		BOL	*	BOL	BOL	BOL	BOL
NOV	BOL		BOL	•	BOL	BOL	BOL	BOL
DEC	BOL		BOL	•	.050 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th></t<>	BOL	BOL	BOL
TOLUENE (UG/L	,		DET'N LIMIT	.050	QUIDELINE = 24.0 (84)		•	
MAL	BOL		BOL		BOL	BOL	BOL	BOL
MAR	BDL		BOL	•	BOL	BOL	BOL	BOL
APR	BOL		BOL		BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
MAY	BOL		BOL		BOL	.150 UCS	BOL	BOL
JUN	BOL		BOL		BOL	.200 <7	.050 <t< th=""><th>.050 <t< th=""></t<></th></t<>	.050 <t< th=""></t<>
JUL	BOL		.100 <t< th=""><th>•</th><th>.050 <t< th=""><th>.150 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<></th></t<>	•	.050 <t< th=""><th>.150 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	.150 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
AUG	BOL		BOL	•	BOL	.150 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
SEP	BOL		BOL		BOL	.050 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
OCT	BOL		BOL		BOL	BOL	BOL	BOL
NOV	BOL		BOL		BOL	SOL	BOL	BOL
DEC	BOL		BOL		BOL	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
		MANNHEIM RESERVOIR	SITE	1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE	STA	MD I NG	FREE FLOW			
ETHYLBENZENE (UG/	L)	DET'N LIMIT0	50 (WIDELINE = 2.4 (84)			
JAM	BOL	BOL		BOL	BOL	BOL	BOL
MAR	BOL	BOL		BOL	BOL	BOL	BOL
APR	BOL	BOL		.050 <t< th=""><th>.200 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	.200 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
MAY	BOL	BOL		BOL	.150 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUN	.050 <t< th=""><th>.100 <t< th=""><th></th><th>BOL</th><th>.200 <t< th=""><th>.150 <t< th=""><th>.300 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.100 <t< th=""><th></th><th>BOL</th><th>.200 <t< th=""><th>.150 <t< th=""><th>.300 <t< th=""></t<></th></t<></th></t<></th></t<>		BOL	.200 <t< th=""><th>.150 <t< th=""><th>.300 <t< th=""></t<></th></t<></th></t<>	.150 <t< th=""><th>.300 <t< th=""></t<></th></t<>	.300 <t< th=""></t<>
al.	.100 <t< th=""><th>.100 <t< th=""><th></th><th>.050 <t< th=""><th>.150 <t< th=""><th>.200 <7</th><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.100 <t< th=""><th></th><th>.050 <t< th=""><th>.150 <t< th=""><th>.200 <7</th><th>.100 <t< th=""></t<></th></t<></th></t<></th></t<>		.050 <t< th=""><th>.150 <t< th=""><th>.200 <7</th><th>.100 <t< th=""></t<></th></t<></th></t<>	.150 <t< th=""><th>.200 <7</th><th>.100 <t< th=""></t<></th></t<>	.200 <7	.100 <t< th=""></t<>
AUG	BOL	BOL		.050 <t< th=""><th>.100 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	.100 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
SEP	.100 <t< th=""><th>.050 <7</th><th></th><th>BOL</th><th>.150 <t< th=""><th>.100 <7</th><th>.050 <t< th=""></t<></th></t<></th></t<>	.050 <7		BOL	.150 <t< th=""><th>.100 <7</th><th>.050 <t< th=""></t<></th></t<>	.100 <7	.050 <t< th=""></t<>
OCT	.050 <t< th=""><th>.100 <t< th=""><th></th><th>BOL</th><th>.150 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	.100 <t< th=""><th></th><th>BOL</th><th>.150 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""></t<></th></t<></th></t<></th></t<>		BOL	.150 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""></t<></th></t<></th></t<>	.050 <t< th=""><th>.050 <t< th=""></t<></th></t<>	.050 <t< th=""></t<>
WOV	BOL	BOL		BOL	.100 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
DEC	BOL	BOL	•	.050 <7	.100 <7	BOL	BOL
M-XYLENE (UG/L)	DET'N LIMIT = .1	00 (WIDELINE = 300 (84)			••••••
JAN	BOL	BOL		BOL	BOL	BOL	BOL
MAR	BOL	BOL	•	BOL	BOL	80L	BOL
APR	BOL	80 L	•	BOL	.700 <t< th=""><th>80L</th><th>BOL</th></t<>	80 L	BOL
MAY	BOL	BOL	:	BOL	.500 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUN	BOL	BO L		BOL	.300 <t< th=""><th>BOL</th><th>80L</th></t<>	BOL	80 L
AL	BOL	NO L		BOL	.200 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
AUG	BOL	BOL		BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
SEP	BOL	BOL	•	BOL	.200 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
OCT	BOL	BO L		BOL	.100 <t< th=""><th>90L</th><th>BOL</th></t<>	90L	BOL
WOV	BOL	BOL		BOL	.200 <t< th=""><th>BOL</th><th>80L</th></t<>	BOL	80 L
DEC	BOL	BOL		BOL	.100 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
	K21 RAW	MANNHEIM RESERVOIR	SITE 1		STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
		STAN	DING FA				
O-XYLEME (UG/L	,	DET'N LIMIT = .05			•••••••••••••••••••••••••••••••••••••••		
JAN	BOL	BOL		BOL	BOL	BOL	BOL
MAR	BOL	BOL		BOL	BOL	BOL	BOL
APR	BOL	BOL		BOL	.300 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
MAY	BOL	BOL		BOL	.150 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUN -	BOL	BOL	•	BOL	.150 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUL	BOL	BOL		BOL	.100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
AUG	BOL	BOL		BOL	.100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
SEP	BOL	BOL	•	BOL	.100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
OCT	BOL	BOL	•	BOL	.050 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
NOV	BOL	BOL		BOL	.100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
DEC	BOL	BOL	•	BOL	.050 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
STYRENE (UG/L)	DET'N LIMIT = .05	O GUIDE	LINE = 46.5 (D2)	,	•••••••	lk.
OCT	.400 <t< td=""><td>.750 UCS</td><td></td><td>.250 <t< td=""><td>BOL</td><td>.400 <t< td=""><td>.500 UCS</td></t<></td></t<></td></t<>	.750 UCS		.250 <t< td=""><td>BOL</td><td>.400 <t< td=""><td>.500 UCS</td></t<></td></t<>	BOL	.400 <t< td=""><td>.500 UCS</td></t<>	.500 UCS
WOV	BOL	.200 <t< td=""><td></td><td>.250 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<>		.250 <t< td=""><td>BOL</td><td>.200 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<>	BOL	.200 <t< td=""><td>.150 <t< td=""></t<></td></t<>	.150 <t< td=""></t<>
DEC	.100 <t< td=""><td>.200 <t< td=""><td>•</td><td>.350 <t< td=""><td>.200 <t< td=""><td>.200 <t< td=""><td>.100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>•</td><td>.350 <t< td=""><td>.200 <t< td=""><td>.200 <t< td=""><td>.100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	•	.350 <t< td=""><td>.200 <t< td=""><td>.200 <t< td=""><td>.100 <t< td=""></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.200 <t< td=""><td>.100 <t< td=""></t<></td></t<></td></t<>	.200 <t< td=""><td>.100 <t< td=""></t<></td></t<>	.100 <t< td=""></t<>
1,1 DICHLOROETHY	/LEME (UG/L)	DET'N LIMIT = .10	O GUIDE	LINE = 7.0 (D1)		,	•••••••••
JAN	BOL	BOL		BOL	BOL	SOL	BOL
MAR	BOL	.000 SPS		BOL	BOL	BOL	BOL
APR	BOL	BOL	•	BOL	BOL	BOL	BOL
MAY	BOL	BOL		BOL	BOL	BOL	BOL
JUN	BOL	BOL		BOL	BOL	BOL	BOL
ALL.	BOL	BOL		BOL	BOL	BOL	BOL

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

:	SITE							
	TYPE	K21 RAW	MANNHEIM RESERVOIR	\$	ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	IIPE			STANDING	FREE FLOW			
				•••••				
AUG	BOL		BOL	•	BOL	BOL	BOL	BOL
SEP	80 L		BOL	•	BOL	BOL	BOL	BOL
OCT	BOL		BOL	•	BOL	BOL	BOL	BOL
WOV	BOL		BOL	•	DOL	BOL	BOL	BOL
DEC	BO L		BOL		BO L	BOL	BOL	BOL
1,1 DICHLOROETHANE	(UG/L)		DET'N LIMIT	.100	GUIDELINE - N/A		••••••	•••••••
JAN	BOL		BOL		. BOL	BOL	BOL	BOL
MAR	BOL		BOL		.900 <t< th=""><th>BDL</th><th>BOL</th><th>BOL</th></t<>	BDL	BOL	BOL
APR	BOL		BOL		BOL	BOL	BOL	BOL
MAY	BOL		SOL		BOL	BOL	BOL	BOL
JUN	BOL		BOL		1.100	BOL	BOL	BOL
JUL	BOL		BOL		BOL	BOL	BOL	BOL
AUG	BOL		BOL	•	BOL	.100 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
SEP	BOL		BOL		1.100	BOL	BOL	BOL
OCT	BOL		BOL		.700 <7	BOL	BOL	BOL
NOV	BOL		BOL	•	.200 <t< th=""><th>.200 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	.200 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
DEC	BOL		BOL	•	.400 <t< th=""><th>.100 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	.100 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
CHLOROFORM (UG/L)	•••••	DET'N LIMIT	.100	GUIDELINE = 350 (A1+)		•••••••••••	••••••••••••
JAM	BOL		.300 <t< th=""><th></th><th>.200 <t< th=""><th>.500 <t< th=""><th>BOL</th><th>6.900</th></t<></th></t<></th></t<>		.200 <t< th=""><th>.500 <t< th=""><th>BOL</th><th>6.900</th></t<></th></t<>	.500 <t< th=""><th>BOL</th><th>6.900</th></t<>	BOL	6.900
MAR	BOL		.400 <t< th=""><th></th><th>.400 <t< th=""><th>.500 <t< th=""><th>.100 <t< th=""><th>21.500</th></t<></th></t<></th></t<></th></t<>		.400 <t< th=""><th>.500 <t< th=""><th>.100 <t< th=""><th>21.500</th></t<></th></t<></th></t<>	.500 <t< th=""><th>.100 <t< th=""><th>21.500</th></t<></th></t<>	.100 <t< th=""><th>21.500</th></t<>	21.500
APR	BOL		BOL		.400 <t< th=""><th>1.200</th><th>BOL</th><th>12.100</th></t<>	1.200	BOL	12.100
MAY	BOL		.200 <t< th=""><th>•</th><th>.300 <t< th=""><th>* .400 <t< th=""><th>BOL</th><th>8.400</th></t<></th></t<></th></t<>	•	.300 <t< th=""><th>* .400 <t< th=""><th>BOL</th><th>8.400</th></t<></th></t<>	* .400 <t< th=""><th>BOL</th><th>8.400</th></t<>	BOL	8.400
JUN	BOL		BOL	•	BOL	.500 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE							
		K21 RAW	MANNHEIM RESERVOIR	\$1	TE 1	STRANGE ST RESERVOI	IR K70 RAW	K70 TREATED
	TYPE							
				STANDING	FREE FLOW			95
			•••••			•••••		•••••
JUL	BOL		.300 <7		.200 <	τ .700 ∢τ	.300 <7	4.700
V255000	5000		.300 <t< td=""><td>•</td><td></td><td></td><td></td><td></td></t<>	•				
AUG					1.100	.500 <t< td=""><td>.400 <t< td=""><td>4.200</td></t<></td></t<>	.400 <t< td=""><td>4.200</td></t<>	4.200
SEP	52.7		.100 <t< td=""><td>*</td><td>.100 <</td><td></td><td>BOL</td><td>3.300</td></t<>	*	.100 <		BOL	3.300
OCT	1.5.500.5		.200 <t< td=""><td></td><td>.300 <</td><td></td><td>.100 <t< td=""><td>3.500</td></t<></td></t<>		.300 <		.100 <t< td=""><td>3.500</td></t<>	3.500
MOV	BOL		BOL	•	.200 <	T 1.000	BOL	8.400
DEC			.100 <t< td=""><td>•</td><td>.300 <</td><td></td><td>BOL</td><td>11.900</td></t<>	•	.300 <		BOL	11.900
111, 1	RICHLORGETHANE (UG/L		DET'N LINIT :		GUIDELINE - 200			
JAN	.100	<t< td=""><td>BOL</td><td>•</td><td>.100 <</td><td>T 1.000</td><td>BOL</td><td>BOL</td></t<>	BOL	•	.100 <	T 1.000	BOL	BOL
MAR	BOL		BOL	•	BOL	1.040	BOL	BOL
APR	BOL		BOL	•	.080 <	T 1.000	BOL	BOL
MAY	90 L		BOL		BOL	1.300	BOL	BOL
JUN	BOL		BOL	•	BOL	1.200	BOL	BOL
JUL	BOL		BOL		BOL	1.600	BOL	BOL
AUG			BOL		80 L	1.240	BOL	BO L
SEP			BOL	•0	.060 <		BOL	BOL
OCT	8.44		BOL	•	.100 <		BOL	BOL
				•			70.0	
NOV	BOL		BOL	•	BOL	1,600	BOL	BOL
DEC	BOL		BOL	•	BDL	1.140	BOL	BOL
CARBON	TETRACHLORIDE (UG/L)	DET'N LINIT	.200	QUIDELINE - 5.0	(D1)		
MAL	National Contraction of the Cont		BOL	•	BOL	BOL	BOL	BOL
MAR	BOL		BOL	•	BOL	BOL	BOL	BOL
APR	90L		BOL	•	BOL	BOL	BOL	BOL
			201		801	201	801	

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
	1000	1 RAW MANNHEIM RESERVO	IR SITE	E 1 .	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		*******	****			
			STANDING	FREE FLOW			
JUN	BOL	BOL		BOL	BOL	BOL	BOL
JUL.	BOL	BOL		BOL	BOL	BOL	BOL
AUG	BOL	BOL	•	.200 <t< th=""><th>BOL</th><th>BOL</th><th>.200 <t< th=""></t<></th></t<>	BOL	BOL	.200 <t< th=""></t<>
SEP	BOL	BOL		BOL	BOL	BOL	BOL
OCT	BOL	BOL		BOL	BOL	BOL	BOL
WOV	BOL	BOL	1.	BOL	SOL	BOL	BOL
DEC	BOL	BOL	V.	BOL	DOL	BOL	BOL
TRICHLORGETHYLEM	E (UG/L)	DET'N LIM	T = 100	GUIDELINE = 5.0 (D1)	•••••	•••••	••••••
TRICHLORGETHILEM	. (04/1	DEI 'H LIH		WIDELINE - 3.0 (DI)			
JAN	BOL	BOL	•	BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
MAR	BOL	BOL		BOL	.200 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
APR	BOL	BOL	•	BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
MAY	BOL	BOL		BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUN	BOL	BOL		BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUL	BOL	SOL	•	BOL	.200 <7	BOL	BOL
AUG	BOL	BOL		BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
SEP	BOL	BOL	0.	BOL	.300 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
OCT	BOL	BOL		BOL	.300 <7	BOL	BOL
WOV	BOL	BOL	ı.	BOL	.400 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
DEC	BOL	BOL		BOL	.400 <7	BOL	BOL
A I CHI COCADOMONE TI	NAME (UG/L)	DET'N LIN	T = 050	QUIDELINE = 350 (A1+)	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
P. CHECKOOKO COM	, (OE/C	DEI 'N EIN	- 1070	- 330 (NIT)			
JAN	BOL	.550	1.	.550	1.100	BOL	3.200
MAR	BOL	.700		.350 <t< th=""><th>1.050</th><th>.100 <t< th=""><th>10.800</th></t<></th></t<>	1.050	.100 <t< th=""><th>10.800</th></t<>	10.800
APR	BOL	.650	19	.300 <7	2.750	BOL	6.500

and the same of th

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						2042200 (10040004)	
	TYPE	K21 RAW	MAMMHEIM RESERVOIR	\$1	ITE 1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
				STANDING	FREE FLOW			
MAY	BOL		.400 <t< td=""><td></td><td>.250 <1</td><td>1.000</td><td>BOL</td><td>5.200</td></t<>		.250 <1	1.000	BOL	5.200
JUN	90L		.400 <t< td=""><td>57e 52e</td><td>BOL</td><td>1,100</td><td>BOL</td><td>BOL</td></t<>	57e 52e	BOL	1,100	BOL	BOL
JUL	80 L		.600	:- :::::::::::::::::::::::::::::::::::	.550	1.050	.250 <t< td=""><td>.800</td></t<>	.800
AUG	BOL	71	.400 <t< td=""><td></td><td>.400 <t< td=""><td>1.150</td><td>BOL</td><td>.400 <t< td=""></t<></td></t<></td></t<>		.400 <t< td=""><td>1.150</td><td>BOL</td><td>.400 <t< td=""></t<></td></t<>	1.150	BOL	.400 <t< td=""></t<>
SEP	BOL		.400 <t< td=""><td></td><td>BOL</td><td>4.500</td><td>BOL</td><td>.400 <t< td=""></t<></td></t<>		BOL	4.500	BOL	.400 <t< td=""></t<>
OCT	BOL		.500		.350 <t< td=""><td>2.300</td><td>BOL</td><td>.650</td></t<>	2.300	BOL	.650
NOV	90 L		.600 <t< td=""><td></td><td>.450 <t< td=""><td>2.450</td><td>BOL</td><td>3.550</td></t<></td></t<>		.450 <t< td=""><td>2.450</td><td>BOL</td><td>3.550</td></t<>	2.450	BOL	3.550
DEC	BOL		.500 <t< td=""><td></td><td>.400 <t< td=""><td>1.000</td><td>BOL</td><td>5.500</td></t<></td></t<>		.400 <t< td=""><td>1.000</td><td>BOL</td><td>5.500</td></t<>	1.000	BOL	5.500
MAL	BOL		.900 <7		.900 <t< th=""><th>1.700</th><th>BOL</th><th>.900 <t< th=""></t<></th></t<>	1.700	BOL	.900 <t< th=""></t<>
	57.5		un newten				1.0000000000000000000000000000000000000	100 A C C C C C C C C C C C C C C C C C C
MAR	BOL		1.600	•	.400 <t< td=""><td>1.300</td><td>.100 <t< td=""><td>3.500</td></t<></td></t<>	1.300	.100 <t< td=""><td>3.500</td></t<>	3.500
APR	BOL		1.200	•	.200 <7	5.000	BOL	2.200
MAY	BOL		.700 <7	•	.200 <t< td=""><td>1.400</td><td>BOL</td><td>1.800</td></t<>	1.400	BOL	1.800
JUN	901	3	.700 <t< td=""><td>•</td><td>80L</td><td>1.500</td><td>90L</td><td>BOL</td></t<>	•	80L	1.500	90L	BOL
JUL	BOL		.900 <t< td=""><td>•</td><td>1.000</td><td>1.500</td><td>.100 <t< td=""><td>.100 <t< td=""></t<></td></t<></td></t<>	•	1.000	1.500	.100 <t< td=""><td>.100 <t< td=""></t<></td></t<>	.100 <t< td=""></t<>
AUG	BOL		.600 <7	•	.500 <t< td=""><td>2.200</td><td>BOL</td><td>BOL</td></t<>	2.200	BOL	BO L
SEP	901		1.100	•	.100 <t .600 <t< td=""><td>8.300</td><td>BOL</td><td>BOL</td></t<></t 	8.300	BOL	BOL
OCT	90L		1.200 1.400	:•	.900 <7	5.100 5.100	BOL	.100 <t 1.000</t
WOV	BOL	3		ו	.700 <1	1.700	1272	
DEC	BOL		1.100	·	.700 <1	1.700	BOL	1.300
T-CHLOROETHY	/LENE (UG/L)		DET'N LIMIT	050	QUIDELINE = 10.0 (C2)	·		
JAM	BOL		BOL		BOL	BOL	BOL	BOL
MAR	BOL		BOL		BOL	BOL	BOL	BOL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE						
		RAW MANNHEIM RESERVOIR	SITE	1	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
	TYPE		TANDING	FREE FLOW			
APR	BOL	BOL	•	BOL	BOL	BOL	BOL
MAY	BOL	BOL	•	BOL	.100 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUN	BOL	BOL	•	BOL	BOL	BOL	BOL
JUL	BOL	BOL		BOL	BOL	BOL	BOL
AUG	BOL	BOL		BOL	BOL	BOL	BOL
SEP	BOL	BOL	9.■	BOL	BOL	BOL	BOL
OCT	BOL	BOL		BOL	BOL	BOL	BOL
WOV	BOL	BOL	•	BOL	BDL	BOL	BOL
DEC	BOL	BOL	•	BOL	BOL	BOL	BOL
BROHOFORM (UG/L)	DET'N LIMIT =	.200	QUIDELINE = 350 (A1+)			••••••
JAN	BOL	.600 <t< td=""><td></td><td>.600 <t< td=""><td>1.000 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>		.600 <t< td=""><td>1.000 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	1.000 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
MAR	BOL	.800 <t< td=""><td></td><td>BOL</td><td>1.000 <t< td=""><td>BOL</td><td>.200 <t< td=""></t<></td></t<></td></t<>		BOL	1.000 <t< td=""><td>BOL</td><td>.200 <t< td=""></t<></td></t<>	BOL	.200 <t< td=""></t<>
APR	BDL	.600 <t< td=""><td>7:●</td><td>BOL</td><td>2.000 <t< td=""><td>BOL</td><td>BOT .</td></t<></td></t<>	7:●	BOL	2.000 <t< td=""><td>BOL</td><td>BOT .</td></t<>	BOL	BOT .
MAY	BOL	.600 <t< td=""><td>•</td><td>BOL</td><td>1.200 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	•	BOL	1.200 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUN	BOL	.400 <t< td=""><td>•</td><td>BOL</td><td>1.400 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	•	BOL	1.400 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
JUL.	BOL	.600 <t< td=""><td></td><td>.600 <t< td=""><td>1.200 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>		.600 <t< td=""><td>1.200 <t< td=""><td>BOL</td><td>BOL</td></t<></td></t<>	1.200 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
AUG	BOL	.600 <t< td=""><td>(€</td><td>.600 <t< td=""><td>2.400</td><td>BOL</td><td>BOL</td></t<></td></t<>	(€	.600 <t< td=""><td>2.400</td><td>BOL</td><td>BOL</td></t<>	2.400	BOL	BOL
SEP	BOL	.600 <t< td=""><td></td><td>BOL</td><td>4.000</td><td>BOL</td><td>BOL</td></t<>		BOL	4.000	BOL	BOL
OCT	BOL	.800 <t< td=""><td>•</td><td>.400 <t< td=""><td>2.800</td><td>BOL</td><td>BOL</td></t<></td></t<>	•	.400 <t< td=""><td>2.800</td><td>BOL</td><td>BOL</td></t<>	2.800	BOL	BOL
MON	BOL	1.200 <t< td=""><td>•</td><td>.800 <t< td=""><td>3.600</td><td>BOL</td><td>BOL</td></t<></td></t<>	•	.800 <t< td=""><td>3.600</td><td>BOL</td><td>BOL</td></t<>	3.600	BOL	BOL
DEC	BOL	.800 <7		.600 <t< td=""><td>2.000 <7</td><td>BOL</td><td>BOL</td></t<>	2.000 <7	BOL	BOL
TOTL TRINALOMET	NAMES (UG/L)	DET'N LIMIT =	.500	QUIDELINE = 350 (A1)			••••••••••••
MAL	BOL	2.350	•	2.250	4.300	BOL	11.000

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM KITCHENER WELL SUPPLY 1988

	SITE				_			
	TYPE	K21 RAW	MANNHEIN RESERVOIR	SITE	1 FREE FLOW	STRANGE ST RESERVOIR	K70 RAW	K70 TREATED
MAR	BOL		3.500		1.150	3.850	.300	36.000
APR	80L		2.450 <t< th=""><th>•</th><th>.900 <t< th=""><th>10.950</th><th>BOL</th><th>20.800</th></t<></th></t<>	•	.900 <t< th=""><th>10.950</th><th>BOL</th><th>20.800</th></t<>	10.950	BOL	20.800
MAY	80L		1,900 <t< th=""><th></th><th>.750 <1</th><th>4.000 <t< th=""><th>BOL</th><th>15.400</th></t<></th></t<>		.750 <1	4.000 <t< th=""><th>BOL</th><th>15.400</th></t<>	BOL	15.400
	80L		1.600 <t< th=""><th>•</th><th>BOL</th><th>4.500 <t< th=""><th>BOL</th><th>BOL</th></t<></th></t<>	•	BOL	4.500 <t< th=""><th>BOL</th><th>BOL</th></t<>	BOL	BOL
JUN				•			TATELON CONT.	
JUL.	BOL		2.400 <t< th=""><th>•</th><th>2.350 <t< th=""><th>4.450 <t< th=""><th>.650 <t< th=""><th>5.600</th></t<></th></t<></th></t<></th></t<>	•	2.350 <t< th=""><th>4.450 <t< th=""><th>.650 <t< th=""><th>5.600</th></t<></th></t<></th></t<>	4.450 <t< th=""><th>.650 <t< th=""><th>5.600</th></t<></th></t<>	.650 <t< th=""><th>5.600</th></t<>	5.600
AUG	BOL		1.900 <t< th=""><th></th><th>2.600 <t< th=""><th>6.250</th><th>BOL</th><th>4.600</th></t<></th></t<>		2.600 <t< th=""><th>6.250</th><th>BOL</th><th>4.600</th></t<>	6.250	BOL	4.600
SEP	BOL		2.200 <t< th=""><th></th><th>BOL</th><th>18.600</th><th>BOL</th><th>3.700 <t< th=""></t<></th></t<>		BOL	18.600	BOL	3.700 <t< th=""></t<>
OCT	BOL		2.700 <t< th=""><th></th><th>1.650 <t< th=""><th>11.100</th><th>BOL .</th><th>4.150 <t< th=""></t<></th></t<></th></t<>		1.650 <t< th=""><th>11.100</th><th>BOL .</th><th>4.150 <t< th=""></t<></th></t<>	11.100	BOL .	4.150 <t< th=""></t<>
WOV	BOL		3.200 <t< th=""><th></th><th>2.350 <t< th=""><th>12.150</th><th>BOL</th><th>12.950</th></t<></th></t<>		2.350 <t< th=""><th>12.150</th><th>BOL</th><th>12.950</th></t<>	12.150	BOL	12.950
DEC	BOL		2.500 <t< th=""><th></th><th>2.000 <t< th=""><th>5.200</th><th>BOL</th><th>18.700</th></t<></th></t<>		2.000 <t< th=""><th>5.200</th><th>BOL</th><th>18.700</th></t<>	5.200	BOL	18.700

Table 6

	DETECTION		
SCAN/PARAMETER	UNIT	LIMIT GUIDELI	
BACTERIOLOGICAL			
STANDARD PLATE COUNT MEMBRANE	CT/ML	0	500/ML(A1)
FILTRATION			
P/A BOTTLE		0	0 (A1+)
TOTAL COLIFORN MEMBRANE FILTRATION	CT/100ML	0	5/100mL(A1)
TOTAL COLIFORM BACKGROUND MP	CT/100ML	0	N/A
CHLOROAROMATICS			
HEXACHLOROBUTADIENE	NG/L	1.000	450. (D4)
1,2,3-TRICHLOROBENZENE	NG/L	5.000	10000 (I)
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.000	10000 (I)
1,2,3,5-TETRACHLOROBENZENE	NG/L		10000 (I)
1,2,4-TRICHLOROBENZENE	NG/L		10000 (1)
1,2,4,5-TETRACHLOROBENZENE	NG/L		38000 (D4)
1,3,5-TRICHLOROBENZENE	NG/L	ATTO TANTOSTOPIA	10000 (D4)
HEXACHLOROBENZENE HEXACHLOROETHANE	NG/L NG/L	1.0	10. (C1)
OCTACHLOROSTYRENE	NG/L	1.000	1900. (D4) N/A
PENTACHLOROBENZENE	NG/L		74000 (D4)
2,3,6-TRICHLOROTOLUENE	NG/L	5.000	Activities and the second
2,4,5-TRICHLOROTOLUENE	NG/L	5.000	
2,6,A-TRICHLOROTOLUENE	NG/L	5.000	manufacture of the second
CHLOROPHENOLS			
2,3,4-TRICHLOROPHENOL	NG/L	50.	N/A
2,3,4,5-TETRACHLOROPHENOL	NG/L	50.	N/A
2,3,5,6-TETRACHLOROPHENOL	NG/L	50.	N/A
2,4,5-TRICHLOROPHENOL	NG/L	50. 20	500000 (D4)
2,4,6-TRICHLOROPHENOL	NG/L	50.	5000. (B1)
PENTACHLOROPHENOL	NG/L	50.	50000. (B1)
CHEMISTRY (FLD)			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	N/A	N/A
FIELD FREE CHLORINE RESIDUAL	MG/L	N/A	N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L	N/A	N/A
FIELD PH	DMSNLESS	N/A	6.5-8.5(A4)
FIELD TEMPERATURE	°c	N/A	<15 °C(A1)
FIELD TURBIDITY	FTU	N/A	1.0 (A1)
CHEMISTRY (LAB)			
ALKALINITY	MG/L	.200	
CALCIUM	MG/L	.100	
CYANIDE	MG/L	.001	.20(A1)
CHLORIDE	MG/L	.200	
COLOUR	TCU	.5	5.0 (A3)
CONDUCTIVITY	UMBO/CH	1.	400. (F2)
FLUORIDE HARDNESS	MG/L	.01	2.4 (A1)
HAGNESIUM	NG/L NG/L	.50	80-100(A4) 30. (F2)
new Mag I VR	/L	.03	JU. (F2)

	DETECTION			
SCAN/PARAMETER	UNIT	LIMIT	GUIDE	LINE
NITRITE	MG/L	.001	1.0	(A1)
TOTAL NITRATES	MG/L	.02		(A1)
NITROGEN TOTAL KJELDAHL	MG/L	.02	N/A	
PH	DMSNLESS	N/A	6.5-8.	5 (A4)
PHOSPHORUS FIL REACT	MG/L	.000	5 N/A	
PHOSPHORUS TOTAL	MG/L	.002	. 4	0(F2)
TOTAL SOLIDS	MG/L	1.	500.	(A3)
TURBIDITY	PTU	.02	1.0	(A1)
METALS				
ALUMINUN	UG/L	.050	100.	(A4)
ANTIMONY	UG/L	.050	146.	(D4)
ARSENIC	UG/L	.050	50.	(A1)
BARIUM	UG/L	.020	1000.	(A1)
BORON	UG/L		5000.	(A1)
BERYLLIUM	UG/L	.010		O (H)
CADMIUM	UG/L	.050		(A1)
COBALT	UG/L	7.000.007.000	1000.	(H)
CHROMIUM	UG/L	.100		(A1)
COPPER	UG/L		1000.	(A3)
IRON	UG/L	5.0	300.	(A3)
MERCURY MANGANESE	UG/L	.01	50.	(A1)
MOLYBDENUM	UG/L UG/L		500.	(A3) (H)
NICKEL	UG/L	.100		(F3)
LEAD	UG/L	.020		(A1)
SELENIUM	UG/L	.200		(A1)
SILVER	UG/L	.020		(A1)
STRONTIUM	UG/L		2000.	(H)
THALLIUM	UG/L	.010		(D4)
TITANIUM	UG/L	.100	N/A	
URANIUM	UG/L	.020	20.	(A2)
VANADIUN	UG/L	.020	100.	(H)
ZINC	UG/L	.020	5000.	(A3)
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	.2	2.0	(A3)
PESTICIDES & PCB				
ALDRIN	NG/L	1.0	700.	(A1)
AMETRINE	NG/L	50. 3	00000.	(D3)
ATRAZINE	NG/L	50.	60000.	(B3)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0		150
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0		
GAMMA HEXACHLOROCYCLOHEXANE (LINDANE)	A CONTRACTOR OF THE PARTY OF TH		4000.	
ALPHA CHLORDANE	NG/L		7000.	
GANNA CHLORDANE	NG/L	2.0		
BLADEX	NG/L		10000.	
DIELDRIM	NG/L	2.0	700.	
METHOXYCHLOR	NG/L		00000.	
ENDOSULFAM 1 (THIODAN I)	NG/L		74000.	7
ENDOSULFAM 2 (THIODAN II)	NG/L		74000.	
ENDRIN	NG/L	4.0	200.	(A 1)
ENDOSULFAM SULPHATE (THIODAN SULPHATE	NG/L NG/L	4.0 1.0	N/A 3000.	/211
HEPTACHLOR EPOXIDE	MO/L	1.0	3000.	(A1)

	DETECTION				
SCAN/PARAMETER	UNIT	LIMIT	GUIDE	GUIDELINE	
HEPTACHLOR	NG/L	1.0	3000.	(A1)	
METOLACHLOR	NG/L	500.	50000.	(B3)	
MIREX	NG/L	5.0	N/A		
OXYCHLORDANE	NG/L	2.0	N/A		
O,P-DDT	NG/L	5.0	30000.	(A1)	
PCB	NG/L	20.0	3000.	(A2)	
O,P-DDD	NG/L	5.0	N/A		
PPDDE	NG/L	1.0		(A1)	
PPDDT	NG/L	5.0	30000.	(A1)	
ATRATONE	NG/L	50.	N/A	(52)	
ALACHLOR PROMETONE	NG/L NG/L	500. 50.	35000. 52500.	(D2) (D3)	
PROPAZINE	NG/L	50.	16000.	(D2)	
PROMETRYNE	NG/L	50.	1000.	(B3)	
SENCOR (METRIBUZIN)	NG/L	100.	80000.	(B2)	
SIMAZINE	NG/L	50.	10000.	(B3)	
POLYAROMATIC HYDROCARBONS					
PHENANTHRENE	NG/L	10.0	N/A		
ANTHRACENE	NG/L	1.0	N/A		
FLUORANTHENE	NG/L	20.0	42000.	(D4)	
PYRENE	NG/L	20.0	N/A		
BENZO(A) ANTHRACENE	NG/L	20.0	N/A		
CHRYSENE	NG/L	50.0	N/A		
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A		
BENZO(E) PYRENE	NG/L NG/L	50.0 10.0	n/A n/A		
BENZO (B) FLUORANTHENE PERYLENE	NG/L	10.0	N/A		
BENZO (K) FLUORANTHENE	NG/L	1.0	N/A		
BENZO(A) PYRENE	NG/L	5.0	10.	(B1)	
BENZO(G, H, I) PERYLENE	NG/L	20.0	N/A		
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A		
INDENO(1,2,3-C,D)PYRENE	NG/L	20.0	N/A		
BENZO (B) CHRYSENE	NG/L	2.0	N/A		
CORONENE	NG/L	10.0	N/A		
SPECIFIC PESTICIDES					
TOXAPHENE	NG/L	N/A	5000.	(A1)	
2,4,5-TRICHLOROBUTYRIC ACID	NG/L	50.	280000.	(B1)	
(2,4,5-T)					
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000.	(A1)	
2,4-DICHLORORPHENOXYBUTYRIC ACID	NG/L	200.	18000.	(B3)	
2,4-D PROPIONIC ACID	NG/L	100.	N/A		
DICAMBA	NG/L	100.	87000.	(B3)	
PICHLORAN	NG/L		450000.	(D3)	
SILVEX (2,4,5-TP) DIAZINON	NG/L NG/L	50. 20.	10000. 14000.	(A1) (A1)	
DICHLOROVOS	NG/L	20.	N/A	(AI)	
DURSBAN	NG/L	20.	N/A		
ETHION	NG/L	20.	35000.	(G)	
GUTHION	NG/L	N/A	N/A	,-,	
MALATHION	NG/L	20.	160000.	(G)	
MEVINPHOS	NG/L	20.	N/A		
METHYL PARATHION	NG/L	50.	7000.	(B3)	
METHYLTRITHION	NG/L	20.	N/A		
PARATHION	NG/L	20.	35000.	(B1)	

DETECTION SCAN/PARAMETER UNIT LIMIT GUIDELINE PHORATE (THIMET) NG/L 20. 35. (D2) RELDAN NG/L 20. N/A RONNEL NG/L 20. N/A ANINOCARB NG/L H/A N/A BENONYL NG/L N/A N/A BUX (METALKAMATE) NG/L 2000. N/A CARBOFURAN NG/L 2000. 18000. (D3) 2000. 350000. CICP (CHLORPROPHAM) NG/L (G) DIALLATE 2000. 30000. (H) NG/L EPTAM NG/L 2000. N/A 2000. IPC NG/L N/A PROPOXUR (BAYGON) 2000. 90000. NG/L (G) SEVIN (CARBARYL) NG/L 200. 70000. (A1) SUTAN (BUTYLATE) NG/L 2000. 245000. (D3)

VOLATILES

BENZENE	UG/L	.050 5.0 (B1)
TOLUENE	UG/L	.050 24.0 (84)
ETHYLBENZENE	UG/L	.050 2.4 (B4)
PARA-XYLENE	UG/L	.100 300. (1	84)
META-XYLENE	UG/L	.100 300. (1	84)
ORTHO-XYLENE	UG/L	.050 300. (1	B4)
1,1-DICHLOROETHYLENE	UG/L	.100 7.0 (1	01)
ETHLYENE DIBROMIDE	UG/L	.05 50.	(G)
METHYLENE CHLORIDE	UG/L	.500 1750. (1	03)
TRANS-1, 2-DICHLOROETHYLENE	UG/L	.100 350. (1	03)
1,1-DICHLOROETHANE	UG/L	.100 N/A	
CHLOROFORM	UG/L	.100 350. (A	1+)
1,1,1-TRICHLOROETHANE	UG/L	.020 200. (1	01)
1,2-DICHLOROETHANE	UG/L	.050 5.0 (1	01)
CARBON TETRACHLORIDE	UG/L	.200 5.0 (1	01)
1,2-DICHLOROPROPANE	UG/L	.050 10.0	(G)
TRICHLOROETHYLENE	UG/L	.100 5.0 (1	01)
DICHLOROBROMOMETHANE	UG/L	.050 350. (A	1+)
1,1,2-TRICHLOROETHANE	UG/L	.050 .60(1	04)
CHLOROD I BROMOMETHANE	UG/L	.100 350. (A	1+)
TETRACHLOROETHYLENE	UG/L	.050 10.0 (C2)
BROHOFORM	UG/L	.200 350. (A	1+)
1,1,2,2-TETRACHLOROETHANE	UG/L	.050 0.17(04)
CHLOROBENZENE	UG/L	.100 1510. (03)
1,4-DICHLOROBENZENE	UG/L	.100 5.0 (1	B1)
1,3-DICHLOROBENZENE	UG/L	.100 130.	(G)
1,2-DICHLOROBENZENE	DG/L	.050 200. (1	B1)
TRIFLUOROCHLOROTOLUENE	UG/L	.100 N/A	
TOTAL TRIHALOMETHANES	UG/L	.500 350. (A1)
STYRENE	UG/L	.05 46.5 (1	02)

TD 227 Kitchener well supply : annual report 1988.

.K58

1990

77790