МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра инфокоммуникаций

Отчет по лабораторной работе № 3.14

«Морфологические преобразования»

по дисциплине «Технологии распознавания образов»

Выполнил студент группы	οI
ПИЖ-б-о-21-1	
Зиберов Александр	
« » мая 2023 г.	
Подпись студента	
Работа защищена	
« »20_г.	
Проверил Воронкин Р.А.	
	(подпись)

Цель работы:

изучение различных морфологических операций, таких как эрозия, расширение, открытие, закрытие и т. д. Приобретение навыков работы с функциями: cv2.erode(), cv2.dilate(), cv2.morphologyEx().

Выполнение работы:

Проработать примеры лабораторной работы в отдельном ноутбуке.

Задание 8.1.

Загрузить библиотеку питру, файл bin.jpg и преобразовать его с помощью операций дилатация и эрозия. Выбрать ядро, размер которого равен последней цифре в номере списка группы. Здесь ядро 5×5. Выполним сначала операцию дилатации, затем и эрозии

```
In [1]: import cv2
    import numpy as np
    import random
    from PIL import Image, ImageDraw
    from matplotlib import pyplot as plt

In [2]: img = cv2.imread('pictures/sun.png',0)
    kernel = np.ones((5,5), np.uint8)

    dilation = cv2.dilate(img,kernel,iterations = 1)
    erosion = cv2.erode(img, kernel,iterations = 1)

    plt.figure(figsize=(20,15))

    plt.subplot(131),
    plt.imshow(img,cmap = 'gray'),plt.title("Оригинал"),
    plt.axis('off')

    plt.subplot(132),
    plt.imshow(dilation,cmap = 'gray'),plt.title("Дилатация"),
    plt.subplot(133),
    plt.subplot(133),
    plt.imshow(erosion,cmap = 'gray'),plt.title("Эрозия"),
    plt.axis('off');
```


Рисунок 1 – Пример 1

Задание 8.2.

Для демонстрации удаления шума создать зашумленный файл, затем к зашумленному файлу применить операцию открытия.

```
In [3]: image = Image.open('pictures/star.jpg')
              draw = ImageDraw.Draw(image)
width = image.size[0]
height = image.size[1]
pix = image.load()
              for i in range(width):
for j in range(height):
rand = random.randint(0, 150)
                           rand = random.randint(0)

a = pix[i, j][0] + rand

b = pix[i, j][1] + rand

c = pix[i, j][2] + rand

if (a > 255):

a = 255

if (b > 255):
                           b = 255
if (c > 255):
c = 255
              draw.point((i, j), (a, b, c))
image.save("pictures/median.png", "JPEG")
              image = Image.open('pictures/star.jpg')
              median = cv2.imread("pictures/median.png", 1)
              median = cv2.cvtColor(median,cv2.COLOR_BGR2RGB)
              \label{eq:kernel} $$ $ ev2.getStructuringElement(cv2.MORPH_RECT,(10, 10)) $$ opening = cv2.morphologyEx(median, cv2.MORPH_OPEN, kernel) $$ $$ $$ $$ $$
              plt.figure(figsize=(15,15))
              plt.subplot(131),
              plt.imshow(image,cmap = 'gray'),plt.title("Оригинал"),
plt.axis('off')
              plt.subplot(132)
plt.imshow(median, cmap='gray'),plt.title("WyM")
plt.axis('off')
              plt.subplot(133)
              plt.imshow(opening, cmap='gray'),plt.title("Открытие")
plt.axis('off');
```

Оригинал Шум Открытие

Рисунок 2 – Пример 2

Задание 8.3.

Траноформировать цветное изображение в полутоновое при его загрузке, к полутоновому файлу применить операцию открытия.

```
In [4]: img = cv2.imread('pictures/star_m.jpg',0)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(30,30))
    opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
    close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

plt.figure(figsize=(10,10))

plt.subplot(121)
    plt.inshow(opening, cmap='gray')
    plt.title("Oropenue")
    plt.axis('off')

plt.subplot(122)
    plt.inshow(close, cmap='gray')
    plt.title("Закрытие")
    plt.title("Закрытие")
    plt.axis('off')

plt.show();
```


Задание 8.4.

Трансформировать цветное изображение в полутоновое при его загрузке. Скопировать полутоновое изображение. К первому изображению применить операцию расширения, ко второму зрозию. Затем вычесть из расширенного изображения изображение после зрозии. Результат похож на контур объекта.

```
In [5]: img = cv2.imread("pictures/fox_2.jpg",0)
img = cv2.cvtColor(img, cv2.COLOR_BGRZRGE)
img1 = img.copy()

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))

dilation = cv2.dilate(img, kernel, iterations = 1)
erosion = cv2.erode(img1, kernel, iterations = 1)

result = dilation - erosion

plt.figure(figsize=(15,10))

plt.subplot(221)
plt.imshow(img1, cmap='gray')
plt.title("Operanean")
plt.svbplot(222)
plt.imshow(result, cmap='gray')
plt.title("Pacumpense")
plt.title("Pacumpense")
plt.title("Pacumpense")
plt.swbow()
```


Рисунок 3 – Пример 3

Задание 8.5.

Применить операцию цилиндр к изображению, размер ядра равен 40 + №, № – номер по списку группы. (№7, 40 + 7 = 47)

```
In [6]: img = cv2.imread('pictures/cross.jpg')
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

result = cv2.morphologyEx(img, cv2.HORPH_TOPHAT, (47,47))

plt.figure(figsize=(15,10))
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.title("Operanean")
plt.subplot(122)
plt.imshow(result, cmap="gray")
plt.title("Lyxnow,p")
plt.title("Lyxnow,p")
plt.axis('off')

plt.show();
```


Задание 8.6.

Применить операцию черная шляпа к изображению, размер ядра равен 40 + №, № – номер по списку группы. (№7, 40 + 7 = 47)

```
In [7]: result = cv2.morphologyEx(ing, cv2.MORPH_BLACKHAT, (47,47))
plt.figure(figsize=(15,10))
plt.subplot(121)
plt.inshow(ing, cmaps"gray")
plt.stitle("Operanean")
plt.sxis("off")

plt.subplot(122)
plt.inshow(result, cmap="gray")
plt.title("Wepwas Busna")
plt.axis("off")

plt.show();
```


Рисунок 4 – Пример 4

Задание 8.7. Изготовить ядро, его размер выбрать из ряда 3/3, 3/5, 5/3, 5/5, 5/7, 3/7, 7/3, 7/5, 5/7, 7/7, номер варианта должен быть равен номеру по списку группы. Обработать изображение с помощью выбранного ядра и ядра размером 9/9. Сравнить результаты обработки изображения этими ядрами. Вариант 7 = 7/3

```
In [8]: img = cv2.imread('pictures/nah.jpg',0)
    ing = cv2.cvtColor(img, cv2.CoLOR_BGRZRGB)

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 3))
    result = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

kernell = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 9))
    result1 = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

plt.figure(figsize-(15,10))
    plt.subplot(121), plt.imshow(result), plt.title('7xS')
    plt.subplot(121), plt.imshow(result), plt.title('9x9')
    plt.subplot(122), plt.imshow(result), plt.title('9x9')
    plt.subvis('off')
    plt.show();
```


Рисунок 5 – Пример 5

Индивидуальное задание

```
Индивидуальное задание
                  1. Увеличить толщину текста на изображении морфологическими преобразованиями
                 2. Улучшить видимость капчи, убрав шум морфологическими преобразованиями
In [241]: import cv2 import numpy as np from matplotlib import pyplot as plt
               def imgshow(image, conversion=cv2.COLOR_BGR2RGB):
    image = cv2.cvtColor(image, conversion)
    plt.imshow(image)
    plt.axis("off")
    plt.xticks([])
                     plt.yticks([])
plt.show()
               Задание 1.
              Операция эрозия позволяет увеличить темные области изображения, что подойдет для изменения толщины текста.
Для этого сначала создадим ядро (kernel), а после применим функцию cv2.erode() к изображению.
In [242]: img = cv2.imread('1_b.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
               kernel = np.ones((5,5), np.uint8)
               erosion = cv2.erode(img, kernel,iterations = 3)
              plt.figure(figsize=(20,15))
               plt.subplot(131),
              plt.imshow(img,cmap = 'gray'),plt.title("Оригинал"),
plt.axis('off')
               plt.subplot(132),
plt.imshow(erosion,cmap = 'gray'),plt.title("Эрозия"),
               plt.axis('off');
                                                  Оригинал
                                                                                                                                                        Эрозия
```


Рисунок 6 – Индивидуальное задание (1)

```
In [243]: img2 = cv2.imread('1_something.jpg')
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
erosion2 = cv2.erode(img2, kernel,iterations = 1)
plt.figure(figsize=(20,15))
plt.subplot(131),
plt.inshow(img2,cmap = 'gray').plt.title("Opwrwman"),
plt.axis('off');

plt.subplot(132),
plt.inshow(erosion2,cmap = 'gray'),plt.title("Sposwa"),
plt.axis('off');
```

Оригинал Эрозия

Что-то написано очень тонко

Что-то написано очень тонко

Задание 2.

Метод открытие (комбинация операций эрозии и расширения) может помочь в удалении шума. Применим его к капче функцией си2 morphology€x() с параметром си2 MORPH_CLOSE.

```
In [244]: img = cv2.inread('captchs.jpg')
    ing = cv2.cvttolor(img, cv2.COLOR_BGR2RGB)

    kernel = np.ones((5,5),np.uint8)

    close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

    plt.figure(figsize=(5,5))

    plt.subplot(121)
    plt.imshow(img)
    plt.title("Operanan")
    plt.axis('off')

    plt.subplot(122)
    plt.inshow(close)
    plt.title("Baxperme")
    plt.axis('off')

    plt.sxis('off')

    plt.show();
```

Оригинал

Закрытие

V4XBG

Увеличим видимость, изменив гамму изображения

```
In [245]:

def make_darker(ing, gamma):
    gamma_table=[np.power(x/255.0,gamma)*255.0 for x in range(256)]
    gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)
    return cv2.LUT(ing,gamma_table)

close = make_darker(close, 2)

plt.figure(figsize=(3,3))
    plt.imshow(close)
    plt.axis('off')
    plt.show();
```


Рисунок 7 – Индивидуальное задание (2)

Вывод: В результате выполнения работы были изучены морфологических преобразований.

1. Что делает операция дилатации?

Увеличивает размер объекта на изображении

2. Что делает операция эрозии?

Уменьшает размер объекта на изображении.

3. Что делает операция градиента?

Разницу между дилатацией и эрозией, используется для выделения границ объектов

4. Что делает операция ТОР_НАТ?

Разница между исходным изображением и открытием, используется для выделения мелких объектов на фоне

5. Что делает операция BLACK_HAT?

Разница между закрытием и исходным изображением, так же используется для выделения мелких объектов на фоне

6. Что делает операция открытия?

Сочетание эрозии и дилатации, используется для удаления мелких объектов и зашумления.

7. Что делает операция закрытия?

Сочетание дилатации и эрозии, используется для заполнения небольших полостей в объектах и зашумления

8. Какого рода шумы лучше всего устраняют операции открытия/закрытия?

Соль/Перец.

9. Что делает функция cv2.getStructuringElement()?

Создаёт ядро(матрицу), заданной размерности, с учётом указанной формы.

10. Что такое Морфологические преобразования?

Операций, основанные на форме изображения. Обычно подобные преобразования выполняются над двоичными изображениями. Ему нужны два входа, один — это исходное изображение, второй называется структурным элементом или ядром, которое определяет характер операции.