САЙТ-ВІЗИТКА

ЗАГАЛЬНА ІНФОРМАЦІЯ

Космічний проект «Іоносат – Мікро» (рисунок КА)

Замовник: Державне космічне агентство України (прапорець України)

Завдання: фундаментальні наукові дослідження в галузі фізики іоносфери, космічної

погоди, терагенних та антропогенних ефектів в космосі

Координатор проекту: Інститут космічних досліджень Національної академії наук України

та Державного космічного агентства України

Космічний апарат: «Мікросат-М»

Виробник космічного апарату: Державне підприємство «КБ «Південне» ім. М.К. Янгеля

Цільова апаратура: датчики параметрів електромагнітного поля, нейтрального газу,

плазми

Планований запуск: 2017 р.,

космодром Алькантара, ракета-носій «Циклон-4»

Орбіта: кругова, 650 км,

сонячно-синхронна 10:30-22:30 LST,

нахил 98°

ГОЛОВНА

Проект «Іоносат — Мікро» здійснюється на борту космічного апарату «Мікросат-М» в рамках реалізації Загальнодержавної цільової науково-технічної космічної програми України.

Метою проекту є вивчення динамічних процесів в іоносфері, за допомогою узгоджених космічних та наземних вимірювань, для пошуку взаємозв'язку іоносферних збурень з процесами на Сонці, в магнітосфері, атмосфері та внутрішніх оболонках Землі.

Часткові завдання проекту:

- Створення та апробація в льотних умовах комплексу наукової апаратури для реєстрації електродинамічних та газокінетичних параметрів іоносфери;
- Відпрацювання методик здійснення іоносферного моніторингу космічними та наземними засобами;
- Перевірка технічних рішень при створенні супутникової платформи;
- Створення бази даних та веб-інтерфейсу результатів проекту. Включення іоносферних спостережень до глобальних геоінформаційних систем;
- Впровадження в освітній процес. Популяризація космічних досліджень в Україні.

Принципи проекту:

- Комплексна діагностика стану іоносфери в широкому діапазоні часових і просторових масштабів;
- Верховенство моніторингових режимів вимірювань;
- Створення бази даних параметрів збуреної іоносфери в інтересах дослідження:

фундаментальної фізики іоносфери,

космічної погоди,

терагенних та антропогенних ефектів в космосі.

Комплекс наукової апаратури на борту «Мікросат-М» призначається для реєстрації:

- Глобальної структури нейтральної атмосфери (екзосфери) та іоносферної плазми;
- Просторової структури і динаміки іоносферних струмових систем і магнітного поля Землі;
- Електромагнітних хвильових структур УНЧ КНЧ ДНЧ діапазону.

КОСМІЧНИЙ АПАРАТ ТА ОРБІТА

Супутникова платформа для проведення наукових та технологічних експериментів: «Мікросат-М»

Розробник: Державне підприємство «КБ «Південне» ім. М.К. Янгеля

ОРБІТА		
близько-кругова, експлуатаційний діапазон висот	620710 км	
нахил	97,998,2°	
сонячно-синхронна, місцевий час в низхідному вузлі	1014 год.	
ОРІЄНТАЦІЯ		
тип	активна трьохвісна	
точність орієнтації в орбітальній системі координат	5° (3σ)	
кутові швидкості стабілізації КА	< 0,01 °/c (3σ)	
ПЕРЕДАЧА ДАНИХ НА ЗЕМЛЮ		
радіолінія Х-діапазону	30.72 Мбіт/с	
службова радіолінія S-діапазону	32 Кбіт/с	
MACA KA		
ВСЬОГО	до 200 кг	
в тому числі, корисного навантаження	до 75 кг	
ГАРАНТІЙНИЙ ТЕРМІН		
час функціонування КА	не менше 3-х років	
ПОХИБКИ КООРДИНАТНО-ЧАСОВОЇ ПРИВ'ЯЗКИ ВИМІРЮВАНЬ		
похибка позиціювання КА	1 км	
похибка визначення орієнтації КА (осей датчиків)	1°	
похибка шкали бортового часу	1 мсек	

Супутник «Мікросат-М» з апаратурою «Іоносат – Мікро»:

Траса орбіти над полярною шапкою (в залежності від UT):

КОМПЛЕКС НАУКОВОЇ АПАРАТУРИ

1. Магнітно-хвильовий комплекс MWC (в складі ферозондового магнітометру FGM, 3-х хвильових зондів WP, електричного зонду EP).

Вимірювальні параметри: З компоненти магнітного поля, З компоненти електричного поля, З компоненти густини електричного струму в плазмі.

РІ: С.М. Беляєв, Львівський центр Інституту космічних досліджень, м. Львів, Україна \rightarrow

2. Спектроаналізатор RFA

Вимірювальні параметри: спектри 3-х компонент електричного поля.

PI: H. Rothkaehl, Центр космічних досліджень, м. Варшава, Польща

 \rightarrow

3. Аналізатор густини частинок в складі блока датчиків нейтрального компоненту плазми DN і блока датчиків електронного компоненту плазми DE

Вимірювальні параметри: концентрації і температури нейтральних і заряджених частинок.

РІ: В. Шувалов, Інститут технічної механіки, м. Дніпропетровськ, Україна

 \rightarrow

4. Іонний дрейфометр IDM

Вимірювальні параметри: концентрація, температура та швидкість дрейфу іонної компоненти плазми, поперечна компонента DC електричного поля.

РІ: Л. Банков, Інститут космічних досліджень і технологій, м. Софія, Болгарія

 \rightarrow

5. Система збору наукової інформації.

РІ: А. Лукенюк, Львівський центр Інституту космічних досліджень, м. Львів, Україна

 \rightarrow

Комплекс наукової апаратури в цілому: маса до 20 кг, енергоспоживання до 51 Вт, інформативність до 6 Гбайт за добу

ДАНІ СПОСТЕРЕЖЕНЬ

Перейти до архіву даних \rightarrow

Дані вимірювань зберігаються на веб-ресурсі Центру оброблення наукової інформації проекту PROMIS. Учасники проекту мають доступ до всіх рівнів даних. Через півроку після моменту спостереження у вільному доступі розміщуються дані 2-го рівня обробки (тарировані та прив'язані до місця і часу дані, забезпечені потрібною для наукового аналізу супроводжувальною інформацією).

В публікаціях, основаних на результатах проекту «Іоносат – Мікро», треба вказувати посилання на авторські права:

«Дані вимірювань надані колективом проекту «Іоносат – Мікро», який реалізується в рамках космічної програми України (http://promis.ikd.kiev.ua/)» або

«Данные измерений предоставлены коллективом проекта «Ионосат – Микро», реализуемого в рамках космической программы Украины (http://promis.ikd.kiev.ua/)» або

«The measurement data are provided by the team of Ionosat – Micro Mission that is realized in the frame of the Space Programme of Ukraine (http://promis.ikd.kiev.ua/)».

Структура даних

Магнітно-хвильовий комплекс MWC:

- 3 компоненти DC магнітного поля (0–1 Гц в системі відліку KA),
- 3 компоненти AC магнітного поля (в діапазоні 1 Гц Fmax),
- 3 компоненти електричного поля (в діапазоні 1 Гц Fmax),
- 3 компоненти густини електричного струму (в діапазоні 1 Гц Fmax).

Параметр максимальної частоти Fmax становить:

- в режимі «ВЧ спостережень» Fmax = 18,5 кГц,
- в режимі «швидкого моніторингу» Fmax = 11,9 кГц,
- в режимі «повільного моніторингу» Fmax = 375 Гц.

Спектроаналізатор RFA:

спектри 3-х компонент електричного поля в діапазоні 20 к Γ ц – 15 М Γ ц (з частотою з'йому даних 10 Γ ц).

Блок датчиків нейтрального компоненту плазми DN:

концентрація і температура нейтрального газу (з частотою з'йому даних 10 Гц).

Блок датчиків електронного компонента плазми DE:

концентрація і температура теплової електронної компоненти плазми (з частотою з'йому даних $10~\Gamma$ ц).

Іонний дрейфометр IDM:

концентрація, температура та швидкість дрейфу іонної компоненти плазми, поперечна компонента DC електричного поля (з частотою з'йому даних 10 Гц).

На діаграмі представлено перекриття АЧХ датчиків MWC і RFA:

КОНСОРЦІУМ

Організація – учасник	Участь в проекті	
Україна (прапорець)		
Інститут космічних досліджень,	Наукове керівництво проектом, управління ходом	
м. Київ	космічних вимірювань, оброблення, зберігання та	
	розповсюдження даних	
ДП «КБ «Південне»,	Створення KA «Мікросат-М», інтеграція корисного	
м. Дніпропетровськ	навантаження, планування роботи КА, формування	
	супроводжувальної інформації о параметрах КА	
Львівський центр Інституту	Координація робіт по створенню бортового	
космічних досліджень,	комплексу наукової апаратури, виготовлення	
м. Львів	магнітно-хвильового комплексу MWC, блоку	
	електроніки для датчиків DN і DE, системи збору	
	наукової інформації, проведення космічних	
	вимірювань, оброблення даних	
Інститут технічної механіки,	Виготовлення датчиків DN і DE, проведення	
м. Дніпропетровськ	космічних вимірювань, оброблення даних	
Національний центр управління та	Управління польотом, прийом наукової та	
випробування космічних засобів,	телеметричної інформації з борта КА	
м. Дунаєвці Хмельницької обл.		
Польща (прапорець)		
Центр космічних досліджень,	Виготовлення приладу RFA, проведення космічних	
м. Варшава	вимірювань, оброблення даних	
Болгарія (прапорець)		
Інститут космічних досліджень та	Виготовлення приладу IDM, проведення космічних	
технологій,	вимірювань, оброблення даних	
м. Софія		

Керівництво проектом:

Науковий керівник — Георгій В'ячеславович Лізунов georgii.lizunov@gmail.com Технічний керівник — Адольф Антонович Лукенюк luk@isr.lviv.ua Керівник робіт по створенню космічного апарату — Олександр Леонідович Макаров info@yuzhnoye.com

Відповідальні за напрямки:

Відповідальні за напрямки:		
Наукова координація		
Георгій В'ячеславович Лізунов	Загальне керівництво	
georgii.lizunov@gmail.com		
Олексій Сергійович Парновський	Група управління ходом космічного	
parnowski@gmail.com	експерименту	
Олена Володимирівна П'янкова	Центр оброблення, зберігання та	
el.piankova@gmail.com	розповсюдження наукової інформації PROMIS	
Тетяна Владиславівна Скороход	Інформаційний супровід, медіа-дані	
tayna_83@ukr.net		
Комплекс наукової апаратури		
Адольф Антонович Лукенюк	Загальне керівництво	
luk@isr.lviv.ua	Система збирання наукової інформації	
Сергій Михайлович Беляєв	Магнітно-хвильовий комплекс MWC	
<u>belyayev@isr.lviv.ua</u>		
Hanna Rothkaehl	Спектроаналізатор RFA	
hrot@cbk.waw.pl		
Валентин Олексійович Шувалов	Аналізатор густини частинок DN – DE	
shuv@vash.dp.ua		
Людмил Банков	Іонний дрейфометр IDM	
ludmil.bankov@gmail.com		
Космічний апарат		
Олександр Леонідович Макаров	Загальне керівництво	
info@yuzhnoye.com		
Олександр Геннадійович Меланченко	Створення та експлуатація КА «Мікросат-М»	
info@yuzhnoye.com	Формування супроводжувальної інформації	
Управління польотом та прийом даних		
Євген Дмитрович Ярмольчук	Підсистема формування координаційного	
info@yuzhnoye.com	плану роботи КА	
нцувк3	Центр управління польотом	
	Прийом наукової та телеметричної інформації	
Підсупутникове зондування іоносфери		
Леонід Феоктистович Чорногор	Загальне керівництво	
leonid.f.chernogor@univer.kharkov.ua	Радіофізична обсерваторія Харківського	
	національного університету імені В.Н. Каразіна	
Освітня програма		

ДЖЕРЕЛА

Про історію проекту: Лізунов Г.В. Українські супутникові проекти іоносферних спостережень: від «Попередження» до «Іоносату» // Світогляд. -2014. -№ 6 (50). - С. 18-24

Обґрунтування проекту: Korepanov V., Lizunov G., Fedorov O., Yampolsky Yu., Ivchenko V. Ionosat – ionospheric satellite cluster // Adv. Space Res. – 2008. – V. 42. – Р. 1515–1522 →

Огляд проекту в цілому: Лизунов Г.В., Лукенюк А.А., Макаров А.Л., Фёдоров О.П. Космический проект «Ионосат — Микро»: цели и методы // Космический проект «Ионосат-Микро»: монография / Под общ. ред. С.А. Засухи, О.П. Фёдорова. — К.: Академпериодика, 2013. — С. 11-25.

 \rightarrow

Космічний апарат: Макаров А.Л., Шовкопляс Ю.А., Москалев С.И., Галабурда Д.А. Космический аппарат «Микросат» // Космический проект «Ионосат-Микро»: монография / Под общ. ред. С.А. Засухи, О.П. Фёдорова. – К.: Академпериодика, 2013. – С. 109–117.

 \rightarrow

Магнітно-хвильовий комплекс MWC: Корепанов В.Е., Беляев С.М. Электромагнитные волновые измерения в проекте «Ионосат – Микро» // Космический проект «Ионосат – Микро»: монография / Под общ. ред. С.А. Засухи, О.П. Фёдорова. – К.: Академпериодика, 2013. – С. 81–95.

 \rightarrow

Аналізатор густини частинок DN – DE: Кулагин С.Н., Письменный Н.И., Токмак Н.А., Цокур А.Г. Аппаратура для диагностики нейтрального и заряженных компонентов ионосферной плазмы в проекте «Ионосат – Микро» // Космический проект «Ионосат – Микро»: монография / Под общ. ред. С.А. Засухи, О.П. Фёдорова. – К.: Академпериодика, 2013. – С. 96–100.

 \rightarrow

Спектроаналізатор RFA: Роткель X., Моравски М., Кшевски М., Лизунов Г.В. Диагностика спектра плазменных волн с использованием радиочастотного анализатора RFA // Космический проект «Ионосат – Микро»: монография / Под общ. ред. С.А. Засухи, О.П. Фёдорова. – К.: Академпериодика, 2013. – С. 96–100.

 \rightarrow