به نام خدا

Part I

در این قسمت باید از سه مدل svm استفاده کردیم که در هر یک به جواب های نسبتا خوبی رسیدیم. Linear, Poly

در ابتدا داده های رندوم تولید کردیم و به صورت رندوم به آن ها تگ باینری دادیم (به صورت رندوم به بعضی یک و بعضی دیگر صفر) و با نسبت 33 درصد آن ها را به داده های آموزشی و آزمایشی تقسیم کردیم.

```
inputs, targets = make_blobs(n_samples = 1000, centers = [(0,0), (5,5)], n_features = 2, cluster_std = 1)
X_train, X_test, y_train, y_test = train_test_split(inputs, targets, test_size=0.33, random_state=60)

plt.scatter(X_train[:,0], X_train[:,1])
plt.title('Linearly separable data')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
```

سپس آن ها را نمایش می دهیم.

حال از سه مدل svm یکی را برای فیت رو داده ها انتخاب می کنیم و آن ها با داده ها آموزش میدهیم.

```
from sklearn import svm

clf = svm.SVC(kernel='linear')
clf = svm.SVC(kernel='rbf')
clf = svm.SVC(kernel='poly')

clf = clf.fit(X_train, y_train)
```

سپس مدل را روی داده های آزمایشی پیش بینی می کنیم و ماتریس نتیجه را رسم می کنیم.

حال بردارهای پشتیبان و نحوه ی جداشدگی خطی داده ها را نمایش می دهیم.

```
support_vectors = clf.support_vectors_
plt.scatter(X_train[:,0], X_train[:,1])
plt.scatter(support_vectors[:,0], support_vectors[:,1], color='red')
plt.title('Linearly separable data with support vectors')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
```



```
from mlxtend.plotting import plot_decision_regions

plot_decision_regions(X_test, y_test, clf=clf, legend=2)
plt.show()
```


Part II

برای این قسمت باید از svm برای categorical classification بهره بگیریم. دیتاست مربوط به قسمت پنجم شبکه عصبی را استخراج و با عملیات زیر به داده های آموزشی و آزمایشی مطلوب تبدیل می کنیم.

```
local_zip = '/content/USPS_images.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/content/trainntest')
train dir = '/content/trainntest/train'
validation_dir = '/content/trainntest/test'
y_train = []
y_test = []
for path in os.listdir(train dir):
    if os.path.isfile(os.path.join(train_dir, path)):
        y_train.append(int(path[0]))
for path in os.listdir(validation_dir):
  if os.path.isfile(os.path.join(validation_dir, path)):
      y_test.append(int(path[0]))
x train = []
for path in os.listdir(train_dir):
  if os.path.isfile(os.path.join(train_dir,path)):
    x_train.append(cv2.cvtColor(cv2.imread(f"{train_dir}/{path}"), cv2.COLOR_RGB2GRAY))
x test = []
for path in os.listdir(validation_dir):
  if os.path.isfile(os.path.join(validation_dir,path)):
    x_test.append(cv2.cvtColor(cv2.imread(f"{validation_dir}/{path}"), cv2.COLOR_RGB2GRAY))
x_train = np.array(x_train)
x test = np.array(x test)
y_train = np.array(y_train)
y_test = np.array(y_test)
x_train_final = x_train.reshape(-1,16*16) / 255
x test final = x test.reshape(-1 ,16*16) / 255
```

تابع pick با گرفتن یک عدد کسری به عنوان پارامتر تقسیم، داده ها را به آموزش و آزمایش تقسیم می کند.

```
train, trlab, test, tslab = x_train_final, y_train, x_test_final, y_test

train.shape

(7291, 256)

def pick(train, trlab, test, tslab, percentage):
    train = train[:int(len(train)*percentage)]
    test = test[:int(len(test)*percentage)]
    trlab = trlab[:int(len(trlab)*percentage)]
    tslab = tslab[:int(len(tslab)*percentage)]
    return train, trlab, test, tslab

train, trlab, test, tslab = pick(train, trlab, test, tslab, 0.05)
```

حال به LinearSVC ، مدل svm را روی داده های آموزشی ، آموزش می دهیم و ضرایب ابرصفحه را به دست می آوریم. و در آخر با استفاده از تابع accuracy_score ، دقت مدل را به دست می آوریم.

```
svm = LinearSVC(dual=False, verbose=1)
   svm.fit(train, trlab)
[LibLinear]
              LinearSVC
LinearSVC(dual=False, verbose=1)
   svm.coef_
   svm.intercept_
array([-0.71078573, -0.23419634, -0.16636508, -0.76613492, -0.01311585,
       -0.62888266, -0.28157165, -0.01484649, -0.55359038, -0.76468539])
   pred = svm.predict(test)
   accuracy_score(tslab, pred) # Accuracy
0.79
```

و در نهایت کانفیوژن ماتریس را رسم می کنیم. که برای مثال ضعف مدل svm در تمایز بین دو و هفت را می توان مشاهده کرد.

```
cm = confusion_matrix(tslab, pred)
matplot.subplots(figsize=(10, 6))
sb.heatmap(cm, annot = True, fmt = 'g')
matplot.xlabel("Predicted")
matplot.ylabel("Actual")
matplot.title("Confusion Matrix")
matplot.show()
```


حال ضرایب ابر صفحه را در حالتی که 2= امی باشد، (از اختلاف توان دو می گیرد.) برای ضرایب تم مختلف به دست می آوریم و ذخیره می کنیم و نمودار آن را بر روی داده های آموزشی و آزمایشی رسم میکنیم.

```
acc = []
       acc_tr = []
       coefficient = []
       svm = LinearSVC(dual=False, C=c)
           svm.fit(train, trlab)
           coef = svm.coef
           p_tr = svm.predict(train)
           a_tr = accuracy_score(trlab, p_tr)
           pred = svm.predict(test)
           a = accuracy score(tslab, pred)
           coefficient.append(coef)
           acc tr.append(a tr)
           acc.append(a)
           print(f"done for {c}")
[140]
    done for 0.0001
    done for 0.001
    done for 0.01
    done for 0.1
    done for 1
    done for 10
    done for 100
    done for 1000
    done for 10000
```


که بهترین نتیجه برای حالتی به دست آمد که c برابر یک باشد. در اینجا ضرایب ابر صفحه برای هر کلاس (c تا e) برای c ترسیم می کنیم.

```
matplot.subplots(2,5, figsize=(24,10))
for i in range(10):
    l1 = matplot.subplot(2, 5, i + 1)
    l1.imshow(svm_coef[i].reshape(16, 16), cmap=matplot.cm.RdBu)
    l1.set_xticks(())
    l1.set_yticks(())
    l1.set_xlabel('Class %i' % i)
matplot.suptitle('Class Coefficients')
matplot.show()
```


حال ضرایب ابر صفحه را در حالتی که 1=1 می باشد، (از اختلاف قدر مطلق می گیرد.) برای ضرایب c مختلف به دست می آوریم و ذخیره می کنیم و نمودار آن را بر روی داده های آموزشی و آزمایشی رسم میکنیم.

و برای c های مختلف ضرایب را به دست می آوریم و ذخیره می کنیم و درنهایت نمودار آن هارا روی داده های آموزشی و آزمایشی رسم می کنیم که باز هم بهترین نتیجه وقتی c برابر یک باشد ، میدهد.

حال kernel rbf را برای مدل svm انتخاب میکنیم و این بار داده های رندوم از داده های آموزشی و آزمایشی را برای آموزش و آزمایش انتخاب می کنیم و آن ها را نمایش می دهیم و چون آموزش بسیار زمان بر خواهد بود درصد بالایی از داده ها را انتخاب نمی کنیم.

```
SVM RBF Kernel
generate a random sample of the data and check how the distribution is compared to the original
    seq = np.random.randint(0,len(train),int(0.6*(len(train))))
    train samp = train[seq]
    trlab samp = trlab[seq]
    train samp.shape
    trlab samp.shape
 (218,)
    seq = np.random.randint(0,len(test),int(0.6*(len(test))))
    test_samp = test[seq]
    tslab samp = tslab[seq]
    test samp.shape
    tslab samp.shape
 (60,)
    fig, ax = matplot.subplots(1,2, figsize=(10,4))
    ax[0].hist(trlab_samp)
    ax[1].hist(trlab)
    fig.show
    matplot.show()
```


حال svm را با c های مختلف مدل می کنیم.

Running SVC for multiple cost factor(s) C and Gamma

```
coefficient = []
n_{supp} = []
sup_vec = []
i = 0
df = pd.DataFrame(columns = ['c', 'gamma', 'train acc', 'test acc'])
for c in [0.01, 0.1, 1, 10, 100]:
    for g in [0.01, 0.1, 1, 10, 100]:
        svm = SVC(kernel='rbf', C=c, gamma=g)
        model = svm.fit(train samp, trlab samp)
        globals()['model%s' % i] = model
        d coef = svm.dual coef
        support = svm.n support
        sv = svm.support
        p tr = svm.predict(train samp)
        a_tr = accuracy_score(trlab_samp, p_tr)
        pred = svm.predict(test_samp)
        a = accuracy_score(tslab_samp, pred)
        coefficient.append(d coef)
        n_supp.append(support)
        sup_vec.append(sv)
        df.loc[i] = [c,g,a_tr,a]
        i=i+1
```

df

	С	gamma	train_acc	test_acc
0	0.01	0.01	0.215596	0.266667
1	0.01	0.10	0.215596	0.266667
2	0.01	1.00	0.215596	0.266667
3	0.01	10.00	0.215596	0.266667
4	0.01	100.00	0.215596	0.266667
5	0.10	0.01	0.339450	0.333333
6	0.10	0.10	0.330275	0.316667
7	0.10	1.00	0.215596	0.266667
8	0.10	10.00	0.215596	0.266667
9	0.10	100.00	0.215596	0.266667
10	1.00	0.01	0.981651	0.683333
11	1.00	0.10	1.000000	0.516667
12	1.00	1.00	1.000000	0.283333
13	1.00	10.00	1.000000	0.266667
14	1.00	100.00	1.000000	0.266667
15	10.00	0.01	1.000000	0.783333
16	10.00	0.10	1.000000	0.550000
17	10.00	1.00	1.000000	0.300000
18	10.00	10.00	1.000000	0.266667
19	10.00	100.00	1.000000	0.266667
20	100.00	0.01	1.000000	0.783333
21	100.00	0.10	1.000000	0.550000
22	100.00	1.00	1.000000	0.300000

و همین فرایند را برای poly kernel انجام می دهیم و نمودارهای مربوطه را رسم میکنیم.

```
coefficient = []
 n supp = []
 sup vec = []
 i = 0
 df = pd.DataFrame(columns = ['c','degree','train_acc','test_acc'])
 for c in [0.01, 0.1, 1, 10, 100]:
     for d in [2,3,4,5,6]:
         svm = SVC(kernel='poly', C=c, degree=d)
         model = svm.fit(train_samp, trlab_samp)
         globals()['model%s' % i] = model
         d coef = svm.dual coef
         support = svm.n support
         sv = svm.support
         p tr = svm.predict(train samp)
         a tr = accuracy score(trlab samp, p tr)
         pred = svm.predict(test samp)
         a = accuracy score(tslab samp, pred)
         coefficient.append(d coef)
         n_supp.append(support)
         sup vec.append(sv)
         df.loc[i] = [c,d,a_tr,a]
         i=i+1
 df
       c degree train_acc test_acc
0
    0.01
              2.0 0.192661 0.250000
     0.01
              3.0 0.211009 0.250000
    0.01
              4.0 0.307339 0.283333
```

	c	degree	train_acc	test_acc
0	0.01	2.0	0.192661	0.250000
1	0.01	3.0	0.211009	0.250000
2	0.01	4.0	0.307339	0.283333
3	0.01	5.0	0.344037	0.250000
4	0.01	6.0	0.376147	0.266667
5	0.10	2.0	0.752294	0.533333
6	0.10	3.0	0.770642	0.516667
7	0.10	4.0	0.766055	0.516667
8	0.10	5.0	0.729358	0.400000
9	0.10	6.0	0.729358	0.400000
10	1.00	2.0	0.990826	0.816667
11	1.00	3.0	0.967890	0.766667
12	1.00	4.0	0.954128	0.683333
13	1.00	5.0	0.926606	0.583333
14	1.00	6.0	0.926606	0.533333
15	10.00	2.0	1.000000	0.833333
16	10.00	3.0	1.000000	0.816667
17	10.00	4.0	1.000000	0.733333
18	10.00	5.0	1.000000	0.733333
19	10.00	6.0	0.995413	0.683333
20	100.00	2.0	1.000000	0.833333
21	100.00	3.0	1.000000	0.816667
22	100.00	4.0	1.000000	0.733333
23	100.00	5.0	1.000000	0.733333
24	100.00	6.0	1.000000	0.700000

Part 3

در این قسمت به دلیل عدم توانایی و ضعف svm در تشخیص و تمایز بین بعضی اعداد و حروف (همانطور که در بخش قبلی نشان داده شد که در تمایز بین دو و هفت ضعیف عمل می کرد) ، این اعداد و حروف را به صورت دوتایی به مدل svm می دهیم تا روی آن ها آموزش ببیند و بتواند عملکر د بهتری داشته باشد.

ابتدا تصاویر را به صورت آرایه و در نهایت داده های مطلوب جهت آموزش و تست مدل آماده می کنیم. داده ها را با برچسب گذاری صفر و یک به دو نوع داده ی مجزا تقسیم می کنیم تا با svm آن ها را جدا کنیم.

```
train dir1 = 'E:\\6\AI\\PJ4\\P3\\2
train dir2 = 'E:\\6\\AI\\PJ4\\P3\\7'
x trainNtest1 = []
x trainNtest2 = []
for path in os.listdir(train dir1):
  if os.path.isfile(os.path.join(train dir1,path)):
    x trainNtest1.append(cv2.cvtColor(cv2.imread(f"{train dir1}/{path}"), cv2.COLOR RGB2GRAY))
for path in os.listdir(train dir2):
  if os.path.isfile(os.path.join(train_dir2,path)):
    x trainNtest2.append(cv2.cvtColor(cv2.imread(f"{train dir2}/{path}"), cv2.COLOR RGB2GRAY))
y trainNtest1 = [0]*len(x trainNtest1)
y_trainNtest2 = [1]*len(x_trainNtest2)
x trainNtest1 = np.array(x trainNtest1)
x trainNtest2 = np.array(x trainNtest2)
y trainNtest1 = np.array(y trainNtest1)
y trainNtest2 = np.array(y trainNtest2)
X = np.concatenate((x_trainNtest1,x_trainNtest2))
Y = np.concatenate((y_trainNtest1,y_trainNtest2))
print(X.shape)
X = X.reshape(-1, 16*16) / 255
X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.33, random_state=42)
```

داده ها را نمایش می دهیم.

```
plt.scatter(X_train[:,0], X_train[:,1])
plt.title('Linearly separable data')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
```


یک مدل kernel برای svm انتخاب می کنیم(در اینجا rbf) و با آن مدل را روی داده ها آموزش می دهیم و در نهایت آن را روی داده های آزمایشی مدل می کنیم و ماتریس حاصل از نتایج بدست آمده و نتایج واقعی مربوط به svm را نمایش می دهیم.

که همانطور که به دست می آید، نتایج خوبی به دست آمد.

حال بردارهای پشتیبان، SVM را نمایش می دهیم.

```
support_vectors = clf.support_vectors_

plt.scatter(X_train[:,0], X_train[:,1])
plt.scatter(support_vectors[:,0], support_vectors[:,1], color='red')
plt.title('Linearly separable data with support vectors')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
```


در نهایت decision boundary را نمایش می دهیم که چون داده ها دو بعدی هستند قبل از نمایش باید یک بعدی شوند، پس از PCA استفاده می کنیم.

```
from sklearn.decomposition import PCA
from mlxtend.plotting import plot_decision_regions

pca = PCA(n_components = 2)
X_train2 = pca.fit_transform(X_train)
clf.fit(X_train2, y_train)
plot_decision_regions(X_train2, y_train, clf=clf, legend=2)
plt.show()
```


علی شیخ عطار دکتر عبدی هوش مصنوعی دانشکده ی کامپیوتر علم و صنعت 1402