

Track collections

Algorithms

Clusterization

- → PixelClusterization (git, lxr)
 → SCT_Clusterization(git_lxr)
- SpacePoint Formation
- → SiTrackerSpacePointFinder (git, lxr)

StoreGate

Pixel,SCT RDO

- \rightarrow PixelRDORawData (git, lxr)
- → SCT_RDORawData (git, lxr)

- → PixelCluster (git, lxr)
- → SCT_Cluster (git, lxr)

- SpacePoints
- → SpacePoint (git, lxr)

Trk::Track (ESD)

contains inputs for fitting and fit results, mostly contained in list of $TrackStatesOnSurfaces(\rightarrow git, lxr)$ e.g.

Class hierarchy – measurements

Track Parameters

Global track parameters e.g. wrt. perigee

Track parameters in **local** coordinates e.g. detector module

$$\left(\frac{l_x, l_y, \phi, \theta, \frac{q}{p}}{\right)$$

Class hierarchy – parameters

Instances TrackParameters (git, lxr), NeutralParameters (git, lxr):

Surface	type
Charge=Charged(Neutral)	
PerigeeSurface	(Neutral)Perigee
PlaneSurface	(Neutral)AtaPlane
StraightLineSurface	(Neutral)AtaStraightLine
ConeSurface	(Neutral)AtaCone
CylinderSurface	(Neutral)AtaCylinder
DiscSurface	(Neutral)AtaDisc

xAOD::TrackParticle (AOD)

For analysis →xAOD::TrackParticle (git)

- created from Trk::Track
- can hold track parameters at multiple positions, but usually only defining parameters (d_0 , z_0 , ϕ , θ , q/p) and parameters at first measurement are kept
- contains lower triangular covariance matrix of track parameters
- track summary (number of hits, holes, pixel dE/dx etc.)
- There are some helper methods for derived quantities (p_T uncertainty, d_0 significance including beam spot uncertainty)(\rightarrow TrackParticlexAODHelpers; git), and tools for track particle selection (twiki) and systematics (twiki)

Vertex Finding

- There are many vertex fitter available in ATLAS: <u>TrkVKalVrtFitter (git, lxr), InDetV0FinderTool (git, lxr), InDetAdaptiveMultiPriVxFinderTool (git, lxr)</u>
- many accept as input xAOD::TrackParticle and xAOD::NeutralParticle (git)
- output is xAOD::Vertex (git), which
- provides 3D coordinate and covariance, links to charged and neutral particles, n.d.o.f and χ^2

Further Information

- Inner Tracking Combined Performance Group (twiki) e.g.
 - Guidelines for physics analyses (InDetTrackingPerformanceGuidelines)
- Inner Detector Software Documentation (twiki) e.g.
 - ATLAS Tracking algorithms ATL-SOFT-PUB-2007-007
 - ATLAS Tracking EDM ATL-SOFT-PUB-2007-003
- Code documentation :
 - doxygen
 - the xAOD Tracking base classes (xAODTracking)
 - helper functions for xAOD TrackParticles (TrackParticlexAODHelpers)

Future developments – Run3

- Migration to multithreaded reconstruction for Run3
- Links from track particles to primary vertices will be deprecated!
- (Iterative) migration to <u>ACTS</u>, A (modern) common (ATLAS,FCC, ?) Tracking Software
- Severe lack of experts in InnerDetector tracks reconstruction(similar for all domains)
- → if You are interested You are very welcome!