Assignment 3

William Jagels

October 20, 2016

1. Heap Operations

1.1. deleteMin()

1.2. insert(5)

2. Binary Tree

2.1. Essential complete binary tree

 $[10\ 11\ 7\ 15\ 9\ 3\ 12\ 10\ 22\ 8]$

2.2. Min heap

2.3. Max Heap

Sorted: $[22\ 15\ 12\ 11\ 10\ 9\ 8\ 7\ 3]$

3. LCS

X= CACMYCCA Y= YMCMAMYYCMA

4. Floyd's Algorithm

6 iterations.

D^0 ,	P^0									
0	2	-	1	8		-	2	-	4	5
6	0	3	2	-	Ì	1	-	3	4	-
-	-	0	4	-	Ì	-	-	-	4	-
-	-	2	0	3	ĺ	-	-	3	-	5
3	-	-	-	0		1	-	-	-	-
D^1 ,	D^1, P^1									
0	2	-	1	8		_	2	-	4	5
6	0	3	2	14		1	-	3	4	1
_	1	0	4	-		_	-	-	4	_
-	-	2	0	3		-	-	3	-	5
3	5	-	4	0		1	1	-	1	-
D^2	P^2				_		•	·	•	•
0	2	5	1	8		-	2	2	4	5
6	0	3	2	14		1	-	3	4	1
-	-	0	4	-		-	-	-	4	-
-	-	2	0	3		-	-	3	-	5
3	5	_	4	0		1	1	_	1	_
$\overline{D^3}$,	P^3				-					

0	2	5	1	8		-	2	2	4	5
6	0	3	2	14		1	-	3	4	1
-	-	0	4	-		-	-	-	4	-
-	-	2	0	3		-	-	3	-	5
3	5	-	4	0		1	1	-	1	-
$\overline{D^4}$	D^4, P^4									
0	2	3	1	4		1	2	4	4	4
6	0	3	2	5		1	-	3	4	5
-	-	0	4	7		-	-	-	4	4
-	ı	2	0	3		-	-	3	-	5
3	5	-	4	0		1	1	-	1	-
D^5	P^5									
0	2	3	1	4		-	2	4	4	4
6	0	3	2	5		1	-	3	4	5
-	-	0	4	7		-	-	-	4	4
6	-	2	0	3		5	-	3	-	5
3	5	-	4	0		1	1	-	1	-

5. Merge Heap

The proposed algorithm is incorrect, sift down must be called on every node before n/2, where n is the size of the entire heap. Since $n_2 \ge n_1$, the algorithm will only be correct when $n_1 == n_2$.

```
for (i = 1; i <= n2, i++):
    bt1[n1 + i] = bt2[i]
    last = n1 + n2
for (i = last / 2; i > 0, i--):
    siftDown(bt1, i)
```

This algorithm will run in $\Theta(n_2) + \Theta(n_1 + n_2)$

6. Binomial Coefficient

 $\binom{8}{6} = 28$

	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

Compute $\binom{8}{8-6}$ instead

	0	1	2
0	1		
1	1	1	
2	1	2	1
3	1	3	3
4	1	4	6
5	1	5	10
6	1	6	15
7	1	7	21
8	1	8	28

7. Sum of Subsets

7.1. Recurrence

$$A_{i,s} = A_{i,s-1} || A_{i-p[s],s-1}$$

7.2. Pseudo Code

```
for i in B:
    for j in B[i]:
    if p[i] >= y:
        B[i][j] = B[i-1][j]
    else:
        B[i][j] = B[i-1][j-p[i]]
```

7.3. Example

	0	1	2	3	4	5	6
1	$\uparrow T$	Τ	F	F	F	F	F
2	$\uparrow T$	$\uparrow T$	Т	Т	F	F	F
4	$\uparrow T$	$\uparrow T$	$\uparrow T$	$\uparrow T$	Т	Т	Τ