Math 208: Discrete Mathematics Lesson 10: Lecture Video Notes

Topics

- 16. Mathematical Induction
 - (a) mathematical induction
 - (b) principle of mathematical induction
 - (c) proofs by inductions
 - (d) examples
 - (e) second principle of mathematical induction

Readings: Chapter 16

§16. Mathematical induction

We have discussed several methods of proof so far:

- direct
- indirect
- proof by contradiction
- proof by cases

16a. Mathematical induction

Another method of proof is mathematical induction. It is used to prove theorems of the form $\forall x \, p(x)$ where the universe of discourse is a well-ordered set (usually \mathbb{N}).

Ex. Statements of the form $\forall x \, p(x)$

- Every classroom on campus has a trash can.
- The square of an odd integer is odd.
- For every positive integer n, we have

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- For every integer $n \ge 0$, the expression $11^n 6$ is divisible by 5.
- Using only 5¢ and 6¢ stamps, any postage amount 20¢ or greater can be formed.

Ways to prove a theorem of the form $\forall x p(x)$:

- Check p(c) is true for every $c \in \mathcal{U}$. This approach is feasible if \mathcal{U} is finite.
- Let $c \in \mathcal{U}$ be arbitrary and show p(c) is true. Then the theorem follows by universal generalization.
- mathematical induction (typically $\mathcal{U} = \mathbb{N}$)

Idea of mathematical induction. Suppose we have a sequence of theorems that we would like to be true. Let's say we want to prove the theorem $\forall x \, p(x)$ where the universe of discourse is \mathbb{N} . That is, we want to prove

$$p(0) \wedge p(1) \wedge p(2) \wedge p(3) \wedge \dots$$

One approach for a proof uses ideas similar to recursive definitions for sequences and sets. There are two parts for mathematical induction:

- (i) basis step: p(0) is true
- (ii) inductive step: for any $n \in \mathbb{N}$, $p(n) \to p(n+1)$.

By showing these two parts, it can be logically concluded that $\forall x \, p(x)$ where $x \in \mathbb{N}$.

Remark. Mathematical induction can be used when the domain of discourse is any well ordered set. The natural numbers \mathbb{N} is an example of a well ordered set which appears frequently.

Ex. Use mathematical induction to prove: for all $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

16b. The principle of mathematical induction

Defn. A set S is well ordered if every not empty subset has a least member.

Examples and non-examples.

- (i) N is well ordered
- (ii) any subset of a well ordered set is well ordered
- (ii) \mathbb{Z} is not well ordered

Theorem. (Principle of Mathematical Induction) Suppose we have a list of statements: $p(k), p(k+1), p(k+2), \ldots, p(n), p(n+1), \ldots$

If

- (1) p(k) is true, and
- (2) $p(n) \to p(n+1)$ for every $n \ge k$

then all the statements in the list are true.

Note. This theorem is established in the textbook using a proof by contradiction.

16c. Proofs by induction

Mathematical induction is a useful method of proof to establish theorems of the form:

$$p(k) \wedge p(k+1) \wedge p(k+2) \wedge \cdots \wedge p(n) \wedge p(n+1) \wedge \ldots$$

By the Principle of Mathematical induction, to give a proof we must show

- (1) p(k) is true, and
- (2) $p(n) \to p(n+1)$ for every $n \ge k$.

Memory aid: Think of induction as knocking over dominos.

Ex. Use induction to prove $n < 2^n$ for every $n \ge 1$.

16d. Examples

Ex. Assume $r \neq 1$. Use induction to prove that for all $n \geq 0$

$$\sum_{j=0}^{n} r^j = \frac{r^{n+1} - 1}{r - 1}.$$

 $\mathbf{Ex.}$ Use induction to show that using only 5¢ and 6¢ stamps any postage amount 20¢ or greater can be formed.

Ex. Use induction to prove that for every integer $n \ge 0$, the expression $11^n - 6$ is divisible by 5.

16e. Second principle of mathematical induction

There is a variation of mathematical induction that arises from time to time. So far, we've discussed:

Theorem. (Principle of Mathematical Induction) Suppose we have a list of statements: $p(k), p(k+1), p(k+2), \ldots, p(n), p(n+1), \ldots$

If

- (1) p(k) is true, and
- (2) $p(n) \to p(n+1)$ for every $n \ge k$

then all the statements in the list are true.

Note. The version above is sometimes called *weak induction* or simply *induction*. The following alternative is sometimes called *strong induction*.

Theorem. (Second Principle of Mathematical Induction) Suppose we have a list of statements: $p(k), p(k+1), p(k+2), \ldots, p(n), p(n+1), \ldots$

If

- (1) p(k) is true, and
- (2) $[p(k) \land p(k+1) \land \cdots \land p(n-1) \land p(n)] \rightarrow p(n+1)$ for every $n \ge k$

then all the statements in the list are true.

Ex. Using strong induction to prove the Fundamental Theorem of Arithmetic That is, prove that every positive integer $n \ge 2$ can be uniquely factored into positive prime numbers.

