

yathartha.regmi@ttu.edu

(Sign out)

Home My Assignments
Grades Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Currents and Circuits (Homework)

™ INSTRUCTOR **Keith West**Texas Tech University

POINTS -/3 -/1 -/1 -/1 -/1 -/2 -/2 -/1 -/6 -/17 -/3

TOTAL SCORE

-/39 0.0%

Due Date

THU, AUG 4, 2022

11:58 PM CDT

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. [-/3 Points] DETAILS SERPSE10 26.1.OP.003.MI.

MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER

The electron beam emerging from a certain high-energy electron accelerator has a circular cross section of radius 1.65 mm.

(a) The beam	current is	s 8.05 µA	. Find th	ne current	density	in the	e beam	assuming	it is	uniform
throughout.										

A/m²

(b) The speed of the electrons is so close to the speed of light that their speed can be taken as 300 Mm/s with negligible error. Find the electron density in the beam.

m⁻³

(c) Over what time interval does Avogadro's number of electrons emerge from the accelerator?

Need Help? Read It Master It

4. [-/1 Points] DETAILS SERPSE10 26.3.P.015.

MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER

A current density of 4.50×10^{-13} A/m² exists in the atmosphere at a location where the electric field is 176 V/m. Calculate the electrical conductivity of the Earth's atmosphere in this region.

 $(\Omega \cdot \mathsf{m})^{-1}$

Need Help? Read It

5. [-/1 Points] DETAILS SERPSE10 26.4.P.017.

MY NOTES

ASK YOUR TEACHER

PRACTICE ANOTHER

What is the fractional change in the resistance of an iron filament when its temperature changes from 24.6°C to 52.6°C?

Need Help? Read It

6. [-/1 Points] DETAILS SERPSE10 26.4.OP.012.

MY NOTES

ASK YOUR TEACHER

PRACTICE ANOTHER

A silver wire has a resistance of 5.50 Ω at 11.0°C. Determine its resistance (in Ω) at 411°C. The temperature coefficient of resistivity for silver wire is 3.80 \times 10⁻³ (°C)⁻¹. (Assume that the temperature coefficient of resistivity was measured using the reference temperature 20°C.)

Ω

Need Help? Read It

7. [-/2 Points] DETAILS SERPSE10 26.6.OP.018.									
MY NOTES	ASK YOUR TEACHER PRACTICE ANOTHER								
A coffee maker is rated at 0.75 kW when connected to a 120 V source.									
(a) What current (in A) does the coffee maker carry? A									
(b) What is its resistance (in Ω)?									
Need Help?	Read It								
8. [-/2 Points]	DETAILS SERPSE10 27.1.OP.001.MI.								
8. [-/2 Points] MY NOTES	DETAILS SERPSE10 27.1.OP.001.MI. ASK YOUR TEACHER PRACTICE ANOTHER								
MY NOTES A battery has ar									
MY NOTES A battery has ar of power to an e	ASK YOUR TEACHER PRACTICE ANOTHER n emf of 15.0 V. The terminal voltage of the battery is 9.8 V when it is delivering 22.0 W								
A battery has ar of power to an e	ASK YOUR TEACHER PRACTICE ANOTHER In emf of 15.0 V. The terminal voltage of the battery is 9.8 V when it is delivering 22.0 W external load resistor <i>R</i> . It is the value of <i>R</i> ?								

Consider the combination of resistors shown in the figure. What is the equivalent resistance between points a and b? (Enter your answer as a multiple of R.)

Consider the combination of resistors shown in the figure below.

(a) Calculate the equivalent resistance (in Ω) between points a and b.

(b) If a voltage of 44.0 V is applied between points a and b, find the current (in A) in each resistor.

12 Ω	A
6.0 Ω	A
5.0 Ω	A
4.0 Ω	A
8.0 Ω	A

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Using Kirchhoff's rules, find the following. (\mathcal{E}_1 = 70.7 V, \mathcal{E}_2 = 60.5 V, and \mathcal{E}_3 = 79.5 V.)

- (a) the current in each resistor shown in the figure above $% \left(x\right) =\left(x\right) +\left(x\right)$
- (b) the potential difference between points c and f

Need Help? Read It

Consider a series RC circuit as in the figure below for which $R=8.00~\mathrm{M}\Omega$, $C=1.00~\mu\mathrm{F}$, and $E=27.0~\mathrm{V}$.

(a) Find the time constant of the circuit.

S

- (b) What is the maximum charge on the capacitor after the switch is thrown closed? μC
- (c) Find the current in the resistor 10.0 s after the switch is closed.

μΑ

Need Help? Read It Watch It

Submit Assignment Progress

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved **TERMS OF USE PRIVACY**