Project 3 Final Report

Benjamin Goldstone

April 12th, 2023

Collection Method and Description

Using a ball and a bucket both of us did 20 trials with different hands and angles based on a random number from a random number generator to see if there is evidence that one way of throwing a ball is dominant. Each hand/angle combination was assigned a number from 1-4.

- 1. Left Over
- 2. Right Over
- 3. Left Under
- 4. Right Under

Variables

```
Response: Make or Miss Explanatory: Overhand/Underhand and Right Hand/Left Hand
library(readr)
DataCollectionProject3 <- read_csv("~/Projects/Project 3/DataCollectionProject3.csv")
## Rows: 40 Columns: 4
## -- Column specification -------
## Delimiter: ","
## chr (3): LeftRight, OverUnder, MakeMiss
## dbl (1): TrialNumber
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(DataCollectionProject3)
## # A tibble: 6 x 4
    TrialNumber LeftRight OverUnder MakeMiss
##
          <dbl> <chr>
                          <chr>>
                                    <chr>
## 1
              1 Right
                          Under
                                   Miss
              2 Left
                                   Miss
## 2
                          Over
## 3
              3 Right
                          Under
                                   Miss
              4 Left
## 4
                          Over
                                   Miss
## 5
              5 Left
                          Under
                                   Miss
## 6
              6 Right
                          Under
                                   Miss
```

Hypotheses

```
H0: pi_left = pi_right
```

```
Ha: pi_left < pi_right
```

Graphs

gf_bar(~OverUnder|LeftRight, fill=~MakeMiss, data=DataCollectionProject3, position=position_dodge())%>
gf_refine(scale_fill_manual(values = c("darkblue", "red")))

When throwing a ball into a basket, the right hand seems to make it into the basket more than the left hand. In addition, when using underhand we made more baskets than when we used overhand.

Proportion Test

```
tally(MakeMiss~LeftRight, data=DataCollectionProject3)
##
           {\tt LeftRight}
## MakeMiss Left Right
##
               6
                     8
       Make
##
       Miss
                    15
              11
prop.test(c(6,8),c(17,23),alternative = "less", conf.level = 0.9)
##
##
    2-sample test for equality of proportions with continuity correction
##
## data: c out of c6 out of 178 out of 23
## X-squared = 4.0711e-31, df = 1, p-value = 0.5
## alternative hypothesis: less
## 90 percent confidence interval:
    -1.0000000 0.2058358
## sample estimates:
##
      prop 1
                prop 2
## 0.3529412 0.3478261
```

Conclusion

Given a 90% confidence interval, we fail to reject the null hypothesis, due to 0 being included in the interval. With 0 being in the interval, it shows the null hypothesis to be a possibility.

We can conclude that there is a no significant difference between what hand you throw a ball with to make a shot.