

Geometria Analítica Prof. Jahina Fagundes de Assis Hattori31/03/2025Lista de Exercícios #1

> Gabriel dos Santos Schmitz (RA: 2487438)

1 Introdução

Irei neste documento debruçar-me-ei sobre a Geometria Analítica desde a noção intuitiva de tratamento geométrico até o produto misto entre vetores. Farei isto baseando-me nos livros *Vetores e Geometria Analítica* [1] e *Geometria Analítica* [2]. Conforme a bibliografia usada no curso Geometria Analítica na UTFPR de Toledo.

2 Vetores

Existem dois tipos de grandezas: escalares e vetoriais.

As grandezas **escalares** são completamente definidas por um número real acompanhado de uma unidade adequada, como comprimento, volume e temperatura.

Já as grandezas vetoriais necessitam de três elementos para sua completa definição:

- Módulo: intensidade do vetor;
- Direção: determinada por uma reta e todas as suas paralelas (Figura 1);
- Sentido: indica para onde o vetor aponta em sua direção (Figura 2).

Fig. 1: Direção de um vetor

Fig. 2: Sentido de um vetor

2.1 Representação de Vetores

Um vetor pode ser representado por um segmento orientado, onde:

- O módulo é o comprimento do segmento;
- A direção é definida pelo ângulo do vetor;
- O sentido é indicado pela extremidade do segmento (Figura 3).

Fig. 3: Representação de um vetor

Dois vetores com mesmo comprimento, mesma direção e mesmo sentido são equivalentes (Figura 4). Isso significa que um vetor pode ser **transladado** para qualquer ponto do espaço sem alterar suas propriedades, sendo chamado de **vetor livre** (Figura 5).

Fig. 4: Vetores equivalentes

Fig. 5: Vetor livre

2.2 Casos Particulares de Vetores

ullet Vetores paralelos (u//v): possuem a mesma direção (Figura 6).

Fig. 6: Vetores paralelos

- \bullet Vetores iguais (u = v): possuem mesmo módulo, direção e sentido.
- ullet Vetor nulo (0): não possui direção nem sentido definidos e é paralelo a qualquer vetor.
- Vetores opostos (-v): mesma direção e módulo, mas sentidos contrários (Figura 7).

Fig. 7: Vetores opostos

• Vetor unitário (versor): possui módulo igual a 1 (Figura 8).

Fig. 8: Versor de um vetor

• Vetores ortogonais ($\mathbf{u} \perp \mathbf{v}$): formam um ângulo reto entre si (Figura 9).

Fig. 9: Vetores ortogonais

• Vetores coplanares: pertencem ao mesmo plano (Figuras 10 e 11).

Fig. 10: Vetores coplanares (caso 1)

Fig. 11: Vetores coplanares (caso 2)

2.3 Exemplos

1. A Figura 12 é constituída de nove quadrados congruentes (de mesmo tamanho). Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

Fig. 12:

• (a) $\overrightarrow{AB} = \overrightarrow{OF}$ Resposta:

V

• (b) $\overrightarrow{AM} = \overrightarrow{PH}$ Resposta:

V

• (c) $\overrightarrow{BC} = \overrightarrow{OP}$ Resposta:

F

• (d) $\overrightarrow{BL} = \overrightarrow{MC}$ Resposta:

-

F

• (e) $\overrightarrow{DE} = -\overrightarrow{ED}$ Resposta: • (f) $\overrightarrow{AO} = \overrightarrow{MG}$

Resposta:

V

• (g) $\overrightarrow{KN} = \overrightarrow{FI}$

Resposta:

V

• (h) $\overrightarrow{AC} \parallel \overrightarrow{HI}$

Resposta:

V

• (i) $\overrightarrow{\mathrm{JO}} \parallel \overrightarrow{\mathrm{LD}}$

Resposta:

F

• (j) $\overrightarrow{AJ} \parallel \overrightarrow{FG}$ Resposta:

V

• (k) $\overrightarrow{AB} \perp \overrightarrow{EG}$ Resposta:

V

• (1) $\overrightarrow{AM} \perp \overrightarrow{BL}$

Resposta:

V

• (m) $\overrightarrow{PE} \perp \overrightarrow{EC}$

Resposta:

F

• (n) $\overrightarrow{PN} \perp \overrightarrow{NB}$ Resposta:

V

• (o) $\overrightarrow{PN} \perp \overrightarrow{AM}$ Resposta:

V

• (p) $|\overrightarrow{AC}| = |\overrightarrow{FP}|$ Resposta:

V

• (q) $|\overrightarrow{\mathrm{IF}}| = |\overrightarrow{\mathrm{MF}}|$ Resposta:

V

• (r) $|\overrightarrow{AJ}| = |\overrightarrow{AC}|$

Resposta:

F

• (s) $|\overrightarrow{AO}| = 2|\overrightarrow{NP}|$

Resposta:

V

• (t) $|\overrightarrow{AM}| = |\overrightarrow{BL}|$

Resposta:

V

2. A Figura 13 representa um paralelepípedo retângulo. Decidir se é verdadeira ou falsa cada uma das afirmações:

Fig. 13:

• (e) $-\overrightarrow{AC}| = |\overrightarrow{HF}|$ • (a) $\overrightarrow{DH} = \overrightarrow{BF}$ • (i) \overrightarrow{AB} , \overrightarrow{FG} e \overrightarrow{EG} (m) AB, DC e CF são coplanares são coplanares Resposta: Resposta: Resposta: Resposta: V V V V • (b) $\overrightarrow{AB} = -\overrightarrow{HG}$ • (f) $-\overrightarrow{AG}| = |\overrightarrow{DF}|$ • (j) EG, CB e HF • (n) Resposta: Resposta: são coplanares AÉ é ortogonal ao plano \mathbf{F} V ABCResposta: Resposta: • (c) \overrightarrow{AB} ⊥ \overrightarrow{CG} • (g) BG || ED V V Resposta: Resposta: (k) AC, DB e FG V F são coplanares (o) \overrightarrow{AV} é ortogonal ao plano Resposta: • (d) $\overrightarrow{AF} \perp \overrightarrow{BC}$ • **(h)** \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{CG} BCGV são coplanares Resposta: Resposta: Resposta: • (1) \overrightarrow{AB} , \overrightarrow{BG} e \overrightarrow{CF} V V F são coplanares Resposta: **(p)** \overrightarrow{DC} é paralelo ao plano F HEFResposta: V

3 Adição de Vetores

Consideremos os vetores \overrightarrow{u} e \overrightarrow{v} , cuja soma $\overrightarrow{u}+\overrightarrow{v}$ queremos encontrar. Escolhemos um ponto A e, com origem nele, traçamos um segmento orientado AB representando \overrightarrow{u} . A partir da extremidade B, traçamos o segmento orientado BC representando \mathbf{v} . O vetor soma $\overrightarrow{u}+\overrightarrow{v}$ é então representado pelo segmento orientado de origem A e extremidade C na Figura 14.

Fig. 14:

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB}$$
 ou $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Se $\overrightarrow{u} \parallel \overrightarrow{v}$, a obtenção da soma segue o mesmo princípio, ilustrado quando os vetores têm o mesmo sentido ou sentidos opostos como mostrado na Figura 15.

Fig. 15:

Caso \overrightarrow{u} e \overrightarrow{v} não sejam paralelos, podemos utilizar o método do paralelogramo. Representamos $\overrightarrow{u} = \overrightarrow{AB}$ e $\overrightarrow{v} = \overrightarrow{AD}$ a partir da mesma origem A. Construímos o paralelogramo ABCD, e o vetor soma $\overrightarrow{u} + \overrightarrow{v}$ é a diagonal de origem A como vemos na Figura 16.

Fig. 16:

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AC} \text{ ou } \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

Para a soma de três ou mais vetores, o procedimento é análogo. Se a extremidade do último vetor coincidir com a origem do primeiro, a soma resulta no vetor nulo (Figura 17):

Fig. 17:

$$\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} + \overrightarrow{t} = \overrightarrow{0}.$$

A adição vetorial possui as seguintes propriedades:

• Comutativa: $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.

• Associativa: $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}).$

• Elemento neutro: $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$.

• Elemento oposto: $\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$.

A diferença entre vetores é definida como:

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v}).$$

No paralelogramo formado por \overrightarrow{u} e \overrightarrow{v} , a soma $\overrightarrow{u} + \overrightarrow{v}$ corresponde a uma das diagonais, enquanto a diferença $\overrightarrow{u} - \overrightarrow{v}$ é representada pela outra diagonal (Figura 18).

Fig. 18:

3.1 Exemplos

3. Dados dois vetores \overrightarrow{u} e \overrightarrow{v} não paralelos, construir no mesmo gráfico os vetores \overrightarrow{u} + \overrightarrow{v} , \overrightarrow{u} - \overrightarrow{v} , \overrightarrow{v} - \overrightarrow{u} e - \overrightarrow{v} - \overrightarrow{v} , todos com origem em um mesmo ponto.

Resposta:

4. Provar que as diagonais de um paralelogramo têm o mesmo ponto médio.

Resposta:

Consideremos o paralelogramo ABCD de diagonais AC e BD e seja M o ponto médio de AC, o que equivale a dizer que

$$\overrightarrow{AM} = \overrightarrow{MC}$$
.

Provemos que M é também ponto médio de BD:

$$\begin{split} \overrightarrow{BM} &= \overrightarrow{BC} + \overrightarrow{CM} \quad \text{(definição de soma)} \\ &= \overrightarrow{AD} + \overrightarrow{MA} \quad \text{(igualdade de vetores)} \\ &= \overrightarrow{MA} + \overrightarrow{AD} \quad \text{(propriedade comutativa)} \\ &= \overrightarrow{MD} \qquad \text{(definição de soma)} \end{split}$$

Como $\overrightarrow{BM} = \overrightarrow{MD}$, conclui-se que M é ponto médio de BD.

4 Multiplicação por Escalar

Dado um vetor $\overrightarrow{v} \neq \overrightarrow{0}$ e um número real $\alpha \neq 0$, define-se o produto $\alpha \overrightarrow{v}$ como o vetor que satisfaz (Figura 19):

• Módulo: $|\alpha \overrightarrow{v}| = |\alpha||\overrightarrow{v}|$;

• Direção: $\alpha \overrightarrow{v} \parallel \overrightarrow{v}$;

• Sentido: $\alpha \overrightarrow{v}$ tem o mesmo sentido de \overrightarrow{v} se $\alpha > 0$, e sentido contrário se $\alpha < 0$.

Se $\alpha = 0$ ou $\overrightarrow{v} = \overrightarrow{0}$, então $\alpha \overrightarrow{v} = \overrightarrow{0}$.

Fig. 19: Multiplicação por escalar

Além disso:

• Todos os vetores $\alpha \overrightarrow{v}$, para $\alpha \in \mathbb{R}$, pertencem a uma mesma reta paralela a \overrightarrow{v} .

• Se $\overrightarrow{u} \parallel \overrightarrow{v}$ e $\overrightarrow{v} \neq \overrightarrow{0}$, então existe $\alpha \in \mathbb{R}$ tal que $\overrightarrow{u} = \alpha \overrightarrow{v}$.

• A cada vetor $\overrightarrow{v} \neq \overrightarrow{0}$, associamos dois vetores unitários paralelos a \overrightarrow{v} . O versor de \overrightarrow{v} é dado por:

$$\overrightarrow{v} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$$

Exemplo: $|\overrightarrow{v}| = 5$, o versor de $\overrightarrow{v} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$

4.1 Exemplos

5. Representados os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} como na Figura 20, obter graficamente o vetor \overrightarrow{w} tal que $\overrightarrow{x} = 2\overrightarrow{u}3\overrightarrow{v} + \frac{1}{2}\overrightarrow{w}$

Fig. 20:

Resposta:

6. Demonstrar que o segmento cujos extremos são os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado e igual à sua metade.

Resposta:

Seja o triângulo ABC e M e N os pontos médios dos lados CA e CB, respectivamente (Figura 21). Pela figura, tem-se

$$\begin{split} \overrightarrow{MN} &= \overrightarrow{MC} + \overrightarrow{CN} \\ &= \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB} \\ &= \frac{1}{2}\left(\overrightarrow{AC} + \overrightarrow{CB}\right) \\ &= \frac{1}{2}\overrightarrow{AB} \end{split}$$

Logo, conclui-se que $\overrightarrow{MN} \parallel \overrightarrow{AB}$ e $|\overrightarrow{MN}| = \frac{1}{2} |\overrightarrow{AB}|$.

Fig. 21:

5 Ângulo de Dois Vetores

O ângulo entre dois vetores não nulos \overrightarrow{u} e \overrightarrow{v} é o ângulo θ formado pelas semirretas OA e OB com a mesma origem O (Figura 22), onde $\overrightarrow{u} = \overrightarrow{OA}$, $\overrightarrow{v} = \overrightarrow{OB}$ e $0 \le \theta \le \pi$ (em radianos) ou $0^{\circ} \le \theta \le 180^{\circ}$.

Fig. 22:

Se $\overrightarrow{u}\parallel\overrightarrow{v}$ e possuem o mesmo sentido, então $\theta=0$, como ocorre com \overrightarrow{u} e $2\overrightarrow{u}$ (Figura 23).

Fig. 23:

Se $\overrightarrow{u} \parallel \overrightarrow{v}$ mas possuem sentidos contrários, então $\theta = \pi$, como no caso de \overrightarrow{u} e $-3\overrightarrow{u}$ (Figura 24).

Fig. 24:

6 Problemas

7. A Figura 25 apresenta o losango EFGH inscrito no retângulo ABCD, sendo O o ponto de interseção das diagonais desse losango. Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

Fig. 25:

• (a) $\overrightarrow{EO} = \overrightarrow{OG}$ Resposta:

V

• (b) $\overrightarrow{AF} = \overrightarrow{CH}$

Resposta:

• (c) $\overrightarrow{\mathrm{DO}} = \overrightarrow{\mathrm{HG}}$

Resposta:

V

• (d) |C - O| = |O - B|

Resposta:

V

• (e) |H - O| = |H - D| Resposta:

F

• (f) H – E = O – C

Resposta:

F

• (g) $|\overrightarrow{AC}| = |\overrightarrow{BD}|$

Resposta:

V

• (h) $|\overrightarrow{OA}| = \frac{1}{2}|\overrightarrow{DB}|$

Resposta:

V

• (i) $\overrightarrow{AF} \parallel \overrightarrow{CD}$

Resposta:

V

• (j) $\overrightarrow{GF} \parallel \overrightarrow{HG}$

Resposta:

F

• (k) $\overrightarrow{AO} \parallel \overrightarrow{OC}$ Resposta:

V

• (1) $\overrightarrow{AB} \perp \overrightarrow{OH}$

Resposta:

V

• (m) EO ⊥ CB

Resposta:

V

• (n) $\overrightarrow{AO} \perp \overrightarrow{HF}$

Resposta:

F

• (o) $\overrightarrow{OB} = -\overrightarrow{FE}$

Resposta:

V

- 8. Decidir se é verdadeira ou falsa cada uma das afirmações:
 - (a) Se $\vec{u} = \vec{v}$, então $|\vec{u}| = |\vec{v}|$.

Resposta:

V

• **(b)** Se $|\vec{u}| = |\vec{v}|$, então $\vec{u} = \vec{v}$.

Resposta:

F

• (c) Se $\vec{u} \parallel \vec{v}$, então $\vec{u} = \vec{v}$.

Resposta:

F

• (d) Se $\vec{u} = \vec{v}$, então $\vec{u} \parallel \vec{v}$.

Resposta:

V

• (e) Se $\vec{w} = \vec{u} + \vec{v}$, então $|\vec{w}| = |\vec{u}| + |\vec{v}|$.

Resposta:

F

• (f) $|\vec{w}| = |\vec{u}| + |\vec{v}|$, então \vec{u} , \vec{v} e \vec{w} são paralelos.

Resposta:

V

• (g) Se $\overrightarrow{AB} = \overrightarrow{DC}$, então ABCD (nessa ordem) é paralelogramo.

Resposta:

V

• **(h)** $|5\vec{v}| = |-5\vec{v}| = 5|\vec{v}|$.

Resposta:

V

• (i) Os vetores $3\vec{v}$ e $-4\vec{v}$ são paralelos e de mesmo sentido.

Resposta:

 \mathbf{F}

• (j) Se $\vec{u} \parallel \vec{v}$, $|\vec{u}| = 2$ e $|\vec{v}| = 4$, então $\vec{v} = 2\vec{u}$ ou $\vec{v} = -2\vec{u}$.

Resposta:

V

• (k) Se $|\vec{v}| = 3$, o versor de $-10\vec{v}$ é $-\frac{\vec{v}}{3}$.

Resposta:

V

- 9. Com base na Figura 25, determinar os vetores a seguir, expressando-os com origem no ponto A:
 - (a) $\overrightarrow{OC} + \overrightarrow{CH}$ Resposta:

 $\overrightarrow{\mathrm{AE}}$

• (b) $\overrightarrow{EH} + \overrightarrow{FG}$

Resposta: \overrightarrow{AC}

- (c) $2\overrightarrow{AE} + 2\overrightarrow{AF}$ Resposta: $2\overrightarrow{AO}$
- (d) $\overrightarrow{EH} + \overrightarrow{EF}$ Resposta: \overrightarrow{AB}

- (e) $\overrightarrow{BO} + \overrightarrow{BG}$ Resposta: \overrightarrow{AO}
- (f) $2\overrightarrow{OE} + 2\overrightarrow{OC}$ Resposta: $2\overrightarrow{AE}$
- (g) $\frac{1}{2}\overrightarrow{BC} + \overrightarrow{BC}$ Resposta: $\overrightarrow{AD} + \overrightarrow{AE}$

- (h) $\overrightarrow{FE} + \overrightarrow{FG}$ Resposta: \overrightarrow{AD}
- (i) $\overrightarrow{OG} \overrightarrow{HO}$ Resposta: \overrightarrow{AO}
- (j) $\overrightarrow{AF} + \overrightarrow{FO} + \overrightarrow{AO}$ Resposta: \overrightarrow{AC}
- 10. O paralelogramo \overrightarrow{ABCD} (Figura 26) é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N os pontos médios dos lados \overrightarrow{DC} e \overrightarrow{AB} , respectivamente. Determinar:

Fig. 26:

• (a) $\overrightarrow{AD} + \overrightarrow{AB}$

Resposta: \rightarrow

 \overrightarrow{AC}

• (b) $\overrightarrow{BA} + \overrightarrow{DA}$

Resposta:

 $\overrightarrow{\mathrm{CA}}$

• (c) $\overrightarrow{AC} - \overrightarrow{BC}$

Resposta: $\xrightarrow{\longrightarrow}$

 \overrightarrow{AB}

• (d) $\overrightarrow{AN} + \overrightarrow{BC}$

Resposta: \overrightarrow{AM}

• (e) $\overrightarrow{MD} + \overrightarrow{MB}$

Resposta: \longrightarrow

 $\overrightarrow{\mathrm{DN}}$

• (f) $\overrightarrow{BM} - \frac{1}{2}\overrightarrow{DC}$

Resposta: $\overrightarrow{\mathrm{DB}}$

11. Apresentar, graficamente, um representante do vetor $\vec{u}-\vec{v}$ nos casos:

Fig. 27:

Resposta:

Fig. 28:

12. Determinar o vetor \vec{x} nas figuras:

Fig. 29:

(a) Resposta:

$$\vec{u} - \vec{v}$$

(b) Resposta:

$$-(\vec{u} + \vec{v})$$

(c) Resposta:

$$\vec{v} - \vec{u}$$

(d) Resposta:

$$\vec{u} + \vec{v}$$

13. Dados três pontos A, B e C não colineares, como na Figura 30, representar o vetor \vec{x} nos casos:

Fig. 30:

• (a)
$$\vec{x} = \overrightarrow{BA} + 2\overrightarrow{BC}$$

• (c)
$$\vec{x} = 3\overrightarrow{AB} - 2\overrightarrow{BC}$$

• (b)
$$\vec{x} = 2\overrightarrow{\text{CA}} + 2\overrightarrow{\text{BA}}$$

• (d)
$$\vec{x} = \frac{1}{2} \overrightarrow{AB} - 2 \overrightarrow{CB}$$

Fig. 31:

References

- [1] Paulo Winterle. Vetores e Geometria Analítica. 2nd ed. São Paulo: Makron, 2014. ISBN: 9788543002392. URL: https://books.google.com.br/books?id=UPIyHQAACAAJ.
- [2] Alfredo Steimbruch and Paulo Winterle. *Geometria Analítica*. 2nd ed. São Paulo: Pearson Universidades, 1987. ISBN: 9780074504093. URL: https://books.google.com.br/books?id=tOLfGwAACAAJ.