Paris-Saclay University

A2: Embedded Electronic Systems

Heterogeneous architecture for Big Data algorithms Final presentation

Presented by:

DOU Yuhan

FORCIOLI Quentin

GHAOUI Mohamed Anis

TERRACHER Audrey

2020 February 03

TEAM

- Software:
 - DOU Yuhan
 - TERRACHER Audrey
- Hardware:
 - FORCIOLI QUENTIN
- HLS and lead:
 - GHAOUI Mohamed Anis

Objective: Complete a full development cycle

Our approach and algorithms chosen

ВММ	М	P	N	blocksize	temps (us)
	40	25	30	3	73
	250	470	316	3	97875
	250	470	316	7	70285
	1000	500	200	15	172542
Pi Estimator	nb d'itérations				
	1000				77
	10000				467
	100000				4773
	1000000				44501
K-Means	K (clusters)	D (dimension) N	N (nb données)	Itération	
	3	4	150	20	9577
	20	2	3000	20	30049
	16	32	1024	20	92520
Pearson	row		col		
	10		2		62
PCA	ligne		colonne		
	10		2		72
SVD	ligne		colonne		
	13		7		6
	30		35		44
	100		200		978

Design on Vivado SDK

1/ Tools Chain: Xilinx ARM v7 GNU Toolchain

Generator: GNU make

2/ Modification of heap and stack sizes:

1 KB (default) → 250 MB

	M	P	N	blocsize	nb de cycles	temps (μs)	
Bloc-Matrix-	40	25	30	3	1694524	5088. 66066	
2100 1121112	250	470	316	3	2045606949	6142963. 81081	
Multipication	250	470	316	7	1740020211	5225285. 91892	
	1000	500	200	15	4428594020	13299081. 14114	
		nb d'it	ération		nb de cycles	temps (μs)	
		10	00		69204	207. 81982	
PiEstimator		100	674408	2025. 24925			
		100	6867433	20622. 92192			
		1000	0000		68545278	205841.67586	
	K (clusters)	D (dimension)	N (nb données)	Itération	nb de cycles	temps (μs)	
K-means	3	4	150	20	3729634	11200. 10210	
K-means	20	2	3000	20 265058761		795972. 25526	
	16	32	1024	20	860685779	2584641. 97898	
	row (nb	données)	col (din	iension)	nb de cycles	temps (μs)	
Pearson	1	0	2	2	20869	62. 66976	
r carson	5	0	4	4	244682	734. 78078	
	20	00	1	3627683	10893. 94294		
	lig	gne	colonne		nb de cycles	temps (μs)	
PCA	1	0	2	2	5680	17. 05706	
ICA	5	0	4	4	52591	157. 93093	
	20	200			2992348	8986. 03003	
	lig	gne	colo	nne	nb de cycles	temps (μs)	
SVD	1	3		7	215159	646. 12312	
SVD	3	0	3	5	6042542	18145. 77177	
	1	00	20	00	666164879	2000495. 13213	

Software optimization

Three main aspects:

1/ branches delays

2/ use of cache

3/ data dependencies

Optimization options for GNU:

- 00 : no optimization

- O1 : optimization on branches

- O2 : optimization at the registers and instruction level

- O3 : optimization at the highest level (eSIMD vectorization, "inline"...)

- Os : optimization on code size

Code size (segmentation "text")

	ordre	optimisation	text
	ijk	-O0	58716
Bloc-Matrix-	ikj	-O0	58716
	ikj	-O1	58412
Multiplication	ikj	-O2	58328
	ikj	-O3	59352
	ikj	-Os	58260
		optimisation	text
		-O0	63104
K-mea	n.c	-O1	58792
K-mea	п	-O2	58764
		-O3	59324
		-Os	58628
		optimisation	text
		-O0	59244
Pearso		-O1	58548
rearso	111	-O2	58560
		-O3	61400
		-Os	58436

Execution times

M	N	P	blocsize	cycles	temps (µs)
1000	500	200	15	4428594020	13299081. 14114
1000	500	200	15	3822785564	11479836.52853
1000	500	200	15	531048961	1594741.62462
1000	500	200	15	564442618	1695022.87688
1000	500	200	15	545292506	1637515.03303
1000	500	200	15	809730905	2431624.33934
K	D	N	Itération	cycles	temps (μs)
16	32	1024	20	860685779	2584641.97898
16	32	1024	20	123736936	371582.39039
16	32	1024	20	138956312	417286.22222
16	32	1024	20	139265209	418213.84084
16	32	1024	20	149756615	449719.56456
row (nb	données)	col (dir	nension)	cycles	temps (μs)
20	00	10		3627683	10893.94294
20	200		10		2087.23123
20	200		10	688131	2066.45946
20	200		10	617540	1854.47447
20	00	10		805517	2418.96997

Software – Microblaze Implementation

Blocks design

Software – Microblaze Implementation

Design on Vivado SDK

1/ Changes in libraries and functions used for timing:

xtime_I.h for ARM Implementation

xtmrctr.h for Microblaze Implementation

2/ Several bugs launching FPGA programming..


```
pri mb test.sdk - Debug - bmm/src/BMM_main.c.c - Xilinx SDK
File Edit Source Refactor Navigate Search Project Run Xilinx Window Help
▼ ウ ▼ ウ ♥ ♥ (▼ ▼ ) ▼ ♥ (▼ ♥ ) ■ M 株(図) (▼ 乗 性 ) A の A M ■ M ● | M | Ø | Ø | ♥ 性 |
                                                                              🖹 🕏 🔻

† Debug Project Explorer 

□

y 🐸 hmm
  > 🗱 Binaries
  > 🔊 Includes
  > 🗁 Debug
  > 🇁 src
  🎒 bmm bsp
  Ø design mb wrapper hw platform 0
            a.cproject .project .sdkproject Makefile system.mss BMM main.c.
 system.hdf
   #include "xtmrctr.h"
   #include "xintc.h"
   #include "xparameters.h"
   int main()
        XTmrCtr* gpTmrCtr;
        XTmrCtr tmrctr:
        u32 Start Time:
        u32 End Time;
        u32 cTmrCtr:
        gpTmrCtr = &tmrctr;
        init_platform();
        int status = XST FAILURE;
        u32 options = 0:
        // Tulkiniin aka Einak .....ka
```

High – Level Synthesis

- 1) Reanalyse the algorithms
- 2) Directive usage to infer RTL blocks
- 3) Implement Axi/Axilite interfaces
- 4) Manage and reshape memory
- 5) Automated material optimisations

High – Level Synthesis

Control sequence conversion:

```
While (condition){

do_stuff();
}
```

- AXI/lite Interface directives :
- Top-Level function : BUS CONTROL
- Inputs
- Outputs
- Addresses managed by the CPU


```
multiply_block_32_1

+ s_axi_CONTROL_BUS
ap_clk
ap_rst_n

m_axi_INPUT_r +
m_axi_OUTPUT_r +
interrupt

Multiply_block_32 (Pre-Production)
```

High – Level Synthesis

High – Level Synthesis: scheduler

- Analyse dependencies
- Minimise Initialisation interval
- Respect timing and FPGA resources limits
- If necessary: reshape the arrays

104

CP required

High – Level Synthesis: Synthesis

- Not always necessary/possible to pipeline all the loops
- HLS must respect time constraints
- Optimisation can be very time/resource costly

Architecture exploration

Interfacing Zynq to HLS IP

- Using ACP port => Cache coherency
- Having different clock domain

HP Slave AXI Interface

ACP Slave AXI Interface

S AXI ACP interface

PS-PL Cross Trigger interface

Tie off AxUSER

DMA Controller

Clock Configuration

DDR Configuration

Interrupts

SMC Timing Calculation

multiply block 32 1

Timings-guided clock improvement

- Using Timing report to increase HLS clock frequency
- Using more performanceoriented placement and synthesis strategies

synth_1 (active)	constrs_1	synth_design Complete!								0	0	0.0	0	0	
✓ impl_1 (active)	constrs_1	phys_opt_design (Post-Route) Complete!	0.007	0.000	0.018	0.000	0.000	2.018	0						
✓ impl_2	constrs_1	route_design Complete, Failed Timing!	-0.143	-0.733	0.013	0.000	0.000	2.014	0	8706	12816	13.5	0	10	
✓ impl_3	constrs_1	route_design Complete, Failed Timing!	-0.083	-0.240	0.052	0.000	0.000	2.022	0	8705	12816	13.5	0	10	
✓ impl_4	constrs_1	route_design Complete, Failed Timing!	-0.106	-0.164	0.051	0.000	0.000	2.014	0	8705	12816	13.5	0	10	
✓ ✓ synth_2	constrs_1	synth_design Complete!								0	0	0.0	0	0	
✓ impl_5	constrs_1	route_design Complete, Failed Timing!	-0.106	-0.164	0.051	0.000	0.000	2.014	0	8705	12816	13.5	0	10	

Performances

- First time @ 100MHZ
- Test on MUL64:
 - AXI@180MHZ
 - HLS@131MHZ
 - Acceleration: 320%

IP	HW time (µs)	SW time (µs)	Improved clock	Improve HW times (µs)	Best acceleration
mul64	10280	26132	130MHZ	7042	271%
mul32	2412	3282	125 MHZ	1810	81%
pearson	32	5	115 MHZ	21	-74%
kmeans	1297	1527	120MHZ	1082	41%

Future improvements

- Using interruption instead of polling
- A microblaze handles every task involving IP
- Multi-microblazes multi-IPs.

Conclusion

- 6 Algorithms implemented and tested
- 3 IP conceived and implemented
- Multi-clock periods for a heterogeneous functionning
- Development method is satisfying with room for improuvement
- Set up the usage of automated development tools
- Develop multi-microblazes multi-lps
- Maximise board usages
 - Completed a full development cycle: objective achieved

Conclusion

Thank you for you attention