1

Oscillator

Mohammed Sadiq*

1. For the circuit in Fig. 1, break the loop at node X and find the loop gain (working backward for simplicity to find V_X in terms of V_O). For $R = 10 \text{ k}\Omega$, find C and R_f to obtain sinusoidal oscillations at 10 kHz.

2. **Solution:** We first calculate the relation between I_4 and V_X in fig 2 by using the relation between the currents and the fact that the inverting terminal of the Op-Amp is virtually grounded as follows:

Here, V_4 has zero voltage. Applying KVL between V_3 and V_4 , we get

$$V_3 = I_4 R \tag{2.1}$$

Applying KCL and KVL between V_2 and V_3 ,

and substituting eq.2.1 gives

$$I_3 = I_4 + V_3 sC \implies I_3 = I_4 (1 + sRC)$$
 (2.2)

$$V_2 = V_3 + I_3 R \implies V_2 = I_4 R(2 + sRC)$$
 (2.3)

Using eq.2.2 and eq.2.3 in KCL at node V_2

$$I_2 = I_3 + V_2 s C (2.4)$$

$$I_2 = I_4((1 + sRC) + sRC(2 + sRC))$$
 (2.5)

$$\implies$$
 = $I_2 = I_4(1 + 3sRC + (sRC)^2)$ (2.6)

Applying KVL between nodes V_1 and V_2 , and substituting eq.2.3 and eq.2.6 gives

$$V_1 = V_2 + I_2 R \tag{2.7}$$

$$\implies V_1 = I_4 R(3 + 4sRC + (sRC)^2)$$
 (2.8)

Substituting eq.2.6 and eq.2.8 in KCL at node V_1 gives

$$I_1 = I_2 + V_1 sC$$
(2.9)
$$\implies I_1 = I_4 (1 + 6sRC + 5(sRC)^2 + (sRC)^3)$$
(2.10)

KVL between V_X and V_1 , and using eq.2.8 and eq.2.10 gives

$$V_X = V_1 + I_1 R$$
(2.11)
$$\implies V_X = I_4 R (4 + 10 sRC + 6 (sRC)^2 + (sRC)^3)$$
(2.12)

Substituting $s = i\omega$ in the eq.2.12:

$$V_X = I_4 R((4 - 6(\omega RC)^2) + j(10\omega RC - (\omega RC)^3))$$
(2.13)

The relation between I_4 and V_O is:

$$V_O = -I_4 R_f (2.14)$$

So, the transfer function GH from eq.2.13 is

$$GH = \frac{V_O}{V_X} = -\frac{R_f}{R((4 - 6(\omega RC)^2) + j(10\omega RC - (\omega RC)^3))}$$
(2.15)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

To make the system oscillate at a frequency f_0 ,

$$|GH| = 1 \tag{2.16}$$

$$\angle GH = 0^{\circ} \tag{2.17}$$

$$\implies (\omega RC)^2 = 10 \qquad (2.18)$$

$$\implies C = \frac{\sqrt{10}}{2\pi f_0 R} = 5.03nF \tag{2.19}$$

Putting GH = 1 in eq.2.15 gives:

$$-\frac{R_f}{R(4-6(10))} = 1 \implies R_f = 56R = 560k\Omega$$
 (2.20)

Therefore, the values of C and R_f for the desired oscillator are 5.03nF and 560k Ω .

Parameter	Value
С	5.03nF
R_f	560kΩ

TABLE 2: Final Values

3. Verification:

The value of R_f is kept slightly above the calculated value for the system to start oscillating