

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

По лабораторной работе № 2

«Исследование ВФХ полупроводниковых диодов» Дисциплина: Основы электроники

Студент	ИУ7-35Б	А. В. Толмачев
	(Группа)	(И.О. Фамилия)
Преподаватель	Оглоблин Дмитрий Игоревич	(н.о. Фамилия)
1 , ,		

Цель лабораторной работы:

Для заданного варианта типа диода провести экспериментальное исследование поведения диода как управляемой электрической ёмкости и по результатам исследовании получить параметры барьерной ёмкости диода.

Эксперимент по исследованию ВФХ полупроводниковых диодов на модели лабораторного стенда в программе МісгоСар

1. Параметры диода, используемого в работе

Модель диода: KD521B

Параметры диода: (Is=515f N=1.0 Rs=4.21 Cjo=3.25p Tt=3.12e-9 M=0.26 Vj=0.68

Fc=0.5 Bv=75 IBv=1e-11 Eg=1.11 Xti=3)

2. Получение резонансных характеристик Для получения была построена следующая цепь

3. Анализ по переменному току (АС)

Настройка шага:

Stepping	×		
✓ 1:VVAR.d	dc 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13:		
Step What	VVAR		
From	0		
То	30		
Step Value	5		
Step It —	C No Method C Linear C Log C List Parameter Type C Component C Model C Symbolic		
Change Step all vi			

4. В результате были построены следующие резонансные кривые:

5. Определение резонансной частоты по графикам

Расчет параметров диода в Mathcad

1. Переносим снятые данные в MathCad

$$Fmax := \begin{pmatrix} 497772 \\ 501139 \\ 501839 \\ 502206 \\ 502456 \\ 502639 \\ 502773 \end{pmatrix} Vvar := \begin{pmatrix} 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -25 \\ -30 \end{pmatrix}$$

2. Построим график зависимости резонансной частоты от напряжения

3. Определим барьерную емкость диода и построим график зависимости емкости от напряжения

4. Определим параметры диода, решив систему уравнений с помощью minerr

Given
$$2.334 \times 10^{-12} = \text{CJO} \cdot \left(1 - \frac{0}{\text{VJO}}\right)^{-\text{M}}$$

$$9.635 \times 10^{-13} = \text{CJO} \cdot \left(1 - \frac{-5}{\text{VJO}}\right)^{-\text{M}}$$

$$6.82 \times 10^{-13} = \text{CJO} \cdot \left(1 - \frac{-10}{\text{VJO}}\right)^{-\text{M}}$$

$$5.349 \times 10^{-13} = \text{CJO} \cdot \left(1 - \frac{-15}{\text{VJO}}\right)^{-\text{M}}$$

$$Minerr(\text{CJO}, \text{VJO}, \text{M}) = \begin{pmatrix} 2.334 \times 10^{-12} \\ 1.661 \\ 0.636 \end{pmatrix}$$

5. Сравним с библиотечными значениями:

 $Cj0 = 3.25*10^{-12}$, в результате вычислений же было получено $Cj0 = 2.334*10^{-12}$ — ошибка составила 28%.

Vj0 = 0.68, в результате вычислений же было получено Vj0 = 1.661 -ошибка составила 144%.

M=0.26, в результате вычислений же было получено M=0.636- ошибка составила 143%.