Pitfalls of applying Machine Learning to Scientific Software

and tips on how to avoid them

Davide Del Vento & Alessandro Fanfarillo

NCAR

Disclaimer

A funny speaker is needed

Disclaimer

- A funny speaker is needed
- Instead you've got me

Disclaimer - cont

- No new scientific results
- Not derogatory of the techniques
- Not criticism of researchers

What this talk is about

- Survey / Summary of useful tips, especially for newcomers
- Mostly, but not exclusively, Deep Learning

Motivation of this presentation

- Recent remarkable ML results have piqued the interest of the scientists
- ML is a fast moving field
- Some of the results rely on details less known by the scientific community

Motivations for applying ML

- machine learning

- deep learning
- numerical methods
- PDE solver

Better motivation, Analysis of goals

- If non-ML solution exists, what is unsatisfactory?
 - Accuracy of scientific results
 - Speed
 - Memory footprint, possibility to run on GPU
 - Accuracy/speed trade-off
- If non-ML solution does not exist, why?
 - "I can tell it, only when I see it" problems
 - Nobody tried, but seems possible
- What is the goal of applying ML to the project
 - Learning/teaching ML
 - Solving new scientific questions
 - Quicker or more agile implementation that a traditional one

What ML is not

- ML is not a system able to understand semantic
- ML is not a system able to model causation
- ML is not a system with "insight" or "intelligence"
 - K-means example

K-means "insight"

K-means "insight"

What ML is

- An algorithm like many others
 - Everything that can be made with ML, can be made without it
 - However with different effort

- ... for which the practitioner needs to have insight (a theory)
 - Meaningful and most revealing features

- Something similar to curve fit
 - At least ignoring online, unsupervised and reinforcement learning

How ML compares to a Curve Fit

- Both use know data to predict unknown data
- Curve fit usually on a domain with few continuous variables
- ML usually on a feature space of very discrete variables
- For both need to make choices
 - Type of curve/architecture
 - Number of degrees of freedom
 - Occam's razor vs ???

Feature Engineering

Consider a classification problem modeling something like the triple point

Feature Engineering - cont

- Classification performance of a small, shallow network
- Fed raw features
- 2 hidden layers
- 5 units

Feature Engineering - cont

- Classification performance of a somewhat large network
- Fed raw features
- 3 hidden layers
- 8 units
- Skittish

Feature Engineering - cont

- Compare with super-simple network
- Engineered feature
- 1 hidden layer
- 2 units
- Stable, easy to train

Feature Crossing

A **feature cross** is a synthetic feature that encodes nonlinearity in the feature space by combining two or more input features together.

$$x_3 = x_1 * x_2$$

A linear algorithm can learn a weight for x_3 just as it would for x_1 and x_2 .

Thanks to x_3 , a simple linear model can use nonlinear information.

Feature Engineering

- It was very common for old, small data, projects
- Slightly out of fashion now in big data era
- But it's extremely important for many scientific applications
- feature scaling
- outliers removal
- features encoding
- feature crossing
- feature selection

Keep your model small and focused

- For one single task, one model might be too complicated
- Complicated models are big and need more data to be accurate
- Smaller/simpler model are easier to train and more portable
- Combine several, smaller models to accomplish a complicated task

To guide these choices one has to know well.....

Variance & Overfitting

- Allowing the model to vary too much
- Not keeping it smooth enough
- Capturing too much information
 - o which usually means random noise in the data

Variance & Overfitting

- Allowing the model to vary too much
- Not keeping it smooth enough
- Capturing too much information
 - o which usually means random noise in the data

Bias & Underfitting

- Selecting a model too restrictive for the phenomenon
- Keeping the model too smooth (not enough ups-and-downs)
- Potentially not capturing enough information

Bias & Underfitting

- Selecting a model too restrictive for the phenomenon
- Keeping the model too smooth (not enough ups-and-downs)
- Potentially not capturing enough information

Bias-Variance trade-off

Bias-Variance trade-off

- Could be a balancing act
- Not easy to achieve for highly dimensional data
- Hard to get satisfactory results in ML

Bias-Variance trade-off

- Could be a balancing act
- Not easy to achieve for highly dimensional data
- Hard to get satisfactory results in ML
- The good news is that for ML it can be defied!

Splitting the dataset into train/test sets

- Traditionally and still too commonly a labelled dataset is split in:
 - training set (usually 70%-80% of the available data)
 - test set (the rest)
- With the purpose of assessing the performance and iterate

Splitting the dataset into train/test sets

- Traditionally and still too commonly a labelled dataset is split in:
 - training set (usually 70%-80% of the available data)
 - test set (the rest)
- With the purpose of assessing the performance and iterate

Splitting the dataset into train/test sets

- Traditionally and still too commonly a labelled dataset is split in:
 - training set (usually 70%-80% of the available data)
 - test set (the rest)
- With the purpose of assessing the performance and iterate

- High risk of tuning the model to the test set (overfit)
- Little guidance on what to change

Alternative (better) splitting strategy

- dev set (thousands of instances, if possible)
- test set (thousands of instances, if possible)
- training set (the rest, still large)

Alternative (better) splitting strategy

- dev set (thousands of instances, if possible)
- test set (thousands of instances, if possible)
- training set (the rest, still large)

- training set and dev set are used to cycle
- test set is used very seldom, only to exit
- And here is the guidance on what to change!

Alternative (better) splitting strategy - cont

- dev and test sets <u>MUST</u> come from the same distribution
- *train* set should too, but it is ok if it does not

Run the model (train using the training set)

- Run the model (train using the training set)
- Assess the performance (e.g. % of mislabels) on the training set
- If the performance are poor, it's high bias, i.e. underfit
 - Try bigger network (i.e. more layers and/or more hidden units)
 - Increase the number of training iterations
 - Use a more advanced optimization algorithm (e.g. Adam)
 - As a last resort, use a different architecture
- Train again and assess again until the performance on the training set are satisfactory

Once the performance on the training set are good...

- Once the performance on the training set are good...
- Assess the performance (e.g. % of mislabels) on the dev set
- If the performance are poor, it's high <u>variance, i.e. overfit</u>
 - Find more labeled data
 - Use a regularization technique such as L₂ or dropout
 - Avoid using Early Stopping
 - As a last resort, try using a different architecture
- Train again and assess again until the performance on the training set are satisfactory

What is "high" for variance and bias?

- Percentage of mislabeled examples, but how many?
- Compare train and dev errors
 - If dev error is higher than train error and unacceptable, then is overfitting
 - If train error is higher than dev error, probably a spurious correlation.
 - If the errors are same and unacceptable (e.g. 10% or more),
 - the model might be underfit
 - or what is needed is absent from the data
 - o If same and acceptable, move to step 3

- Once the performance on the dev set are good...
- Assess the performance (e.g. % of mislabels) on the test set
- If the performance are good → Done!

- Once the performance on the dev set are good...
- Assess the performance (e.g. % of mislabels) on the test set
- If the performance are good → Done!
- If the performance are poor, the model has been fit to the dev set (or is not modeling correctly)
 - o Restart from scratch with a larger dev set
 - Restart from scratch with a different cost function
- Try not to use the dev set too many times,
 to avoid fitting to the dev set

Possible other issues

- The performance on the **train** set might never be satisfactory
 - what is needed is absent from the data

- The performance on the **test** set might never be satisfactory
 - dev and test sets do not come from the same distribution

Not enough labeled data is available

- Find more data!
- Do you have known equations?
- Start from a pre-trained model
- Do not use a too large neural network
- Clean your data, study feature engineering
- Data augmentation
- Do not use a neural network (use SVM, maybe semisupervised techniques)

Not enough labeled data is available

Trying over and over until it works

ML is iterative, so you will try over and over

However, you may experience spurious correlations

- Make sure you do not fit to the test set
- Make sure you do not "overfit the hyperparameters"

Questions?