PreCalculus-Graph Power Functions (Learning Targets GP)

APMA Faculty University of Virginia

July 26, 2024

Basic Monomial Functions

Basic Monomial Functions		
Degree 1 (linear)	Degree 2 (quadratic)	Degree 3 (cubic)
1 - f(x) = x $-1 - 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Degree 4	Degree 5	Degree 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Quadratic Functions

A quadratic function $f(x) = ax^2 + bx + c$ can be expressed in the standard form

$$f(x) = a(x - h)^2 + k$$

by completing the square, and the discriminant is

$$D=b^2-4ac.$$

- $1. \quad a > 0$, opens upward
- 2. a < 0, open downward
- 3. D > 0, two x intercepts
- 4. D < 0, no x intercept
- 5. D = 0, one x intercept
- 6. vertex (h, k)
- 7. symmetric axis: $x = h = -\frac{b}{2z}$
- $8. \quad k = f(-\frac{b}{2a})$

$$f(x) = a(x - h)^2 + k, a > 0$$
 $f(x) = a(x - h)^2 + k, a < 0$

Way 1 to graph $f(x) = ax^2 + bx + c$

- S1 check a to determine whether it opens upward or downward
- S2 find the symmetric axis: $x = -\frac{b}{2a}$
- S3 compute the vertex $(h, k) = (-\frac{b}{2a}, f(-\frac{b}{2a}))$
- S4 find all x intercepts and y intercepts
- S5 sketch the parabola

Example: Graph $f(x) = 2x^2 - 12x + 13$

Way 2 to graph $f(x) = ax^2 + bx + c$

- S1 find the standard form $f(x) = a(x h)^2 + k$
- S2 graph $f(x) = x^2$ first
- S3 Apply transformations:

$$x^2 \xrightarrow[horizontally]{shift} (x-h)^2 \xrightarrow[vertically]{stretch(shrink)} a(x-h)^2 \xrightarrow[vertically]{shift} a(x-h)^2 + k$$

Redo Example: Graph $f(x) = 2x^2 - 12x + 13$

Polynomial Functions

Define a polynomial function of degree n:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_n \neq 0$ and n is nonnegative integer.

- **coefficients:** a_0, a_1, \dots, a_n
- constant coefficient or constant term: a₀
- leading coefficient: an
- leading term: a_nxⁿ, which is also called dominant term

End Behavior Of Polynomials

End Behavior Of Polynomials:

The end behavior of polynomials $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is determined by the degree n and the sign of the leading coefficient a_n , as indicated in the following graphs

Guidelines for Graphing Polynomial Functions

Guidelines for Graphing Polynomial Functions:

The graph of a polynomial function is a smooth curve; that is, it has no corners or sharp points.

- **Zeros.** Factor the polynomial to find all its real zeros: these are the *x*-intercepts of the graph.
- ▶ **Test Points.** Make a table of values for the polynomial. Include test points to determine whether the graph of the polynomial lies above or below the *x*-axis on the intervals determined by the zeros. Include the *y*-intercept in the table.
- **End Behavior.** Determine the end behavior of the polynomial.
- ▶ **Graph.** Plot the intercepts and other points you found in the table. Sketch a smooth curve that passes through these points and exhibits the required end behavior.

Example

Example: Graph
$$p(x) = -2x^4 - x^3 + 3x^2$$
 $p(x)$

