5. Potenzreihen

Im Folgenden sei $\emptyset \neq A \subseteq \mathbb{C}$, (f_n) eine Folge von Funktionen $f_n : A \to \mathbb{C}$ und $s_n := f_1 + f_2 + \cdots + f_n \ (n \in \mathbb{N})$

Definition

- (1) (f_n) heisst auf A **punktweise konvergent**: $\iff \forall z \in A \text{ ist } (f_n(z)) \text{ konvergent.}$ In diesem Fall heisst $f: A \to \mathbb{C}$, definiert durch $f(z) := \lim_{n \to \infty} f_n(z)$, die **Grenzfunktion** von (f_n) .
- (2) (f_n) heisst auf A gleichmaessig (glm) konvergent : $\iff \exists f : A \to \mathbb{C}$ mit:

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} : |f_n(z) - f(z)| < \epsilon \ \forall n > n_0 \forall z \in A$$

In diesem Fall sagt man : (f_n) konvergiert auf A gleichmaessig gegen f.

- (3) (f_n) heisst auf A **lokal gleichmaessig konvergent** : \iff (f_n) konvergiert auf jeder kompakten Teilmenge von A gleichmaessig. (\iff $\forall a \in A \exists \rho > 0 : (f_n)$ konvergiert auf $U_{\rho}(a) \cap A$ gleichmaessig)
- (4) $\sum_{n=1}^{\infty} f_n$ konvergiert auf A punktweise : \iff (s_n) konvergiert auf A punktweise. $\sum_{n=1}^{\infty} f_n$ konvergiert auf A gleichmaessig : \iff (s_n) konvergiert auf A gleichmaessig. $\sum_{n=1}^{\infty} f_n$ konvergiert auf A lokal gleichmaessig : \iff (s_n) konvergiert auf A lokal gleichmaessig.

Klar: gleichmaessig Konvergenz \implies lokal gleichmaessig Konvergenz \implies punktweise Konvergenz.

Wie in der Analysis zeigt man:

Satz 5.1

- (1) (f_n) konvergiert auf A gleichmaessig gegen f, alle f_n seien in $z_0 \in A$ stetig. \Longrightarrow f ist in z_0 stetig.
- (2) Cauchykriterium:

$$(f_n)$$
 konvergiert auf A gleichmaessig $\iff \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}: |f_n(z) - f_m(z)| < \epsilon \ \forall n,m \geq n_0 \ \forall z \in A$

(3) Kriterium von Weierstrass:

Sei
$$(a_n)$$
 eine Folge in $[0,\infty), \sum_{n=1}^{\infty} (a_n)$ konvergiert und $|f_n(z)| \leq a_n \ \forall n \in \mathbb{N} \ \forall z \in A$.

Dann konvergiert $\sum_{n=1}^{\infty} f_n$ auf A gleichmaessig.

Definition

Sei $(a_n)_{n=0}^{\infty}$ eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$.

Eine Reihe der Form $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ heisst eine **Potenzreihe (PR)**. Wir setzen $\rho := \limsup \sqrt[n]{|a_n|} \ (\rho = \infty \text{ falls } (\sqrt[n]{|a_n|}) \text{ unbeschraenkt) und}$

$$r := \begin{cases} 0 \text{ falls } \rho = \infty \\ \infty \text{ falls } \rho = 0 \\ \frac{1}{\rho} \text{ falls } 0 < \rho < \infty \end{cases}$$

r heisst der Konvergenzradius (KR) der Potenzreihe.

Wie in der Analysis zeigt man:

Satz 5.2

Die Summe $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ habe den Konvergenzradius r

- (1) Ist r = 0, so konvergiert die Potenzreihe nur in $z = z_0$
- (2) Ist $r = \infty$, so konvergiert die Potenzreihe in jedem $z \in \mathbb{C}$ absolut. Die Potenzreihe konvergiert auf \mathbb{C} lokal gleichmaessig.
- (3) Ist $0 < r < \infty$ so gilt:
 - (i) die Potenzreihe konvergiert in jedem $z \in U_r(z_0)$ absolut.
 - (ii) die Potenzreihe divergiert zu jedem $z \notin \overline{U_r(z_0)}$.
 - (iii) für $z \in \partial U_r(z_0)$ ist keine allgemeine Aussage möglich.
 - (iv) die Potenzreihe konvergiert auf $U_r(z_0)$ lokal gleichmaessig.

Beispiel:

- (1) $\sum_{n=0}^{\infty} z^n$ hat den Konvergenzradius r=1. Für |z|=1 ist z^n keine Nullfolge $\implies \sum_{n=0}^{\infty} z^n$ ist divergent zu jedem $z \in \mathbb{C}$ mit |z| = 1.
- (2) $\sum_{n=0}^{\infty} n^n z^n$ hat den Konvergenzradius r=0.
- (3) $\sum_{n=0}^{\infty} \frac{z^n}{n^2}$ hat den Konvergenzradius r=1. Sei $|z|=1, |\frac{z^n}{n^2}|=\frac{1}{n^2}$; Majorantenkriterium $\implies \sum_{n=0}^{\infty} \frac{z^n}{n^2}$ konvergiert.

(4) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Wie in der Analysis: die Potenzreihe hat den Konvergenzradius $r=\infty$.

Satz 5.3 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ habe den Konvergenzradius r. Dann hat die Potenzreihe $\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$

Beweis

$$\alpha_n = na_n; \sqrt[n]{|\alpha_n|} = \sqrt[n]{n} \sqrt[n]{|a_n|}; \sqrt[n]{n} \to 1 \Rightarrow \limsup \sqrt[n]{|\alpha_n|} = \limsup \sqrt[n]{|a_n|}$$

Definition

Für $z_0 \in \mathbb{C} : U_{\infty}(z_0) := \mathbb{C}$.

 $\sum_{n=0}^{\infty}a_n(z-z_n)^n$ habe den Konvergenzradius r>0 ($r=\infty$ zugelassen). Die Funktion f :

 $U_r(z_0) \to \mathbb{C}$ sei definiert durch $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$. Dann

(1)
$$f \in H(U_r(z_0))$$
 und $f'(z) = \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1} \ \forall z \in U_r(z_0)$

(2)
$$f$$
 ist auf $U_r(z_0)$ beliebig oft komplex db und
$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (z-z_0)^{n-k} \ \forall z \in U_r(z_0) \ \forall n \in \mathbb{N}$$

(3)
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Beweis

(1) O.B.d.A $z_0 = 0$.

Für
$$w \in U_r(0) : g(w) := \sum_{n=1}^{\infty} n a_n w^{n-1}$$
. Sei $w \in U_r(0)$. Wähle $\rho > 0$, so daß $|w| < \rho < r$. $b_n := n^2 |a_n| \rho^{n-2} \ (n \ge 2); \ \sqrt[n]{|b_n|} \to \frac{\rho}{r} < 1 \Rightarrow \sum_{n=2}^{\infty} b_n \text{ konvergent}; \ c := \sum_{n=2}^{\infty} b_n.$ Sei $z \in U_\rho(0)$ und $z \ne w$. Betrachte dann
$$\frac{f(z) - f(w)}{z - w} - g(w) = \frac{1}{z - w} \sum_{n=0}^{\infty} a_n (z^n - w^n) - \sum_{n=1}^{\infty} n a_n w^{n-1} = \sum_{n=2}^{\infty} a_n (\underbrace{\frac{z^n - w^n}{z - w} - n w^{n-1}}_{z - w}).$$

Nachrechnen: $\alpha_n = (z - w) \sum_{n=1}^{n-1} kw^{k-1} z^{n-k-1}$.

Dann gilt:

$$|\alpha_n| = |z - w| |\sum_{k=1}^{n-1} k w^{k-1} z^{n-k-1}| \le |z - w| \sum_{k=1}^{n-1} k \underbrace{|w|}_{\le \rho}^{k-1} \underbrace{|z|}_{\le \rho}^{n-k-1}$$

5. Potenzreihen

$$\leq |z-w| \sum_{k=1}^{n-1} k \rho^{n-2} = |z-w| \rho^{n-2} \frac{n(n-1)}{2} \leq |z-w| \rho^{n-2} n^2$$

$$\Rightarrow |\frac{f(z)-f(w)}{z-w} - g(w)| = |\sum_{n=2}^{\infty} a_n \alpha_n| \leq \sum_{n=2}^{\infty} |a_n| |\alpha_n|$$

$$\leq (\sum_{n=2}^{\infty} |a_n| n^2 \rho^{n-2}) |z-w| = c|z-w|$$

$$\Rightarrow (z \to w) \text{ } f \text{ ist in } w \text{ komplex db und } f'(w) = g(w)$$

- (2) folgt aus (1) induktiv.
- (3) folgt aus (2) mit $z = z_0$.

Definition

Seien $r_1, r_2 \in [0, \infty) \cup \{\infty\}$. Dann

$$\min\{r_1, r_2\} = \begin{cases} \min\{r_1, r_2\} & \text{, falls } r_1, r_2 < \infty \\ r_2 & \text{, falls } r_1 = \infty \\ r_1 & \text{, falls } r_2 = \infty \end{cases}$$

Satz 5.5 $\sum_{n=0}^{\infty}a_n(z-z_0)^n \text{ und } \sum_{n=0}^{\infty}b_n(z-z_0)^n \text{ seien Potenzreihen mit den Konvergenzradien } r_1 \text{ und } \infty$ r_2 . Dann hat für $\alpha, \beta \in \mathbb{C}$ die Potenzreihe $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)(z-z_0)^n$ einen Konvergenzradius $r \ge \min\{r_1, r_2\}$

Beweis

Klar.

Beispiel

$$a_n = b_n, \alpha = 1, \beta = -1$$