

# DTU Data Analysis and Visualization [Summer 2023]

Magnus Ahasverusen, (s190600)

Zakir H. Shahoo (s194054)

Chengjie Li (Jeff) (s231387)

Nicole Giordano (s231378)

Hannah Schweitzer (s231384)

### Group 10

Technical University of Denmark (DTU)

#### DTU Environment

Department of Environmental Engineering







- Project 1: Analysis and Forecasting of NYC Taxi Rides
  - Task 1
  - Task 2
  - Task 3
  - Task 4
  - Task 5
- Project 2: NASA Data Acquisition, Visualization, and Analysis
  - Task 1
  - Task 2
  - Task 3
  - Task 3
  - Task 3
  - Task 4
  - Task 5
  - Task 3



### Task 1: Understanding the Data

### Important Data Given

- Pickup/Dropoff Date and Time
- Pickup/Dropoff Location ID
- Passenger Count
- Trip Distance
- Fare Amount
- Tip Amount

DTU

### Task 2: Exploratory Data Analysis I





## Task 2: Exploratory Data Analysis II

### Passenger Amount





### Task 2: Exploratory Data Analysis III

#### **Other Curiosities**

- Average Tip Amount (Yellow vs Green) = \$7.23 vs \$2.00
- Amount of Rides (Yellow vs Green) = 39,656,098 vs 840,402
- Average Distance (Yellow vs Green) = 5.96 miles vs 84.45 miles

DTU

### Task 3: Spatial Analysis



DTU

## Task 4: Temporal Analysis I



DTU

### Task 4: Temporal Analysis II



DTU

### Task 4: Temporal Analysis III



DTU

## Task 4: Temporal Analysis IV





### Task 5: Time Series Forecasting I

#### Forecasting 7 Days using Prophet trained on Jan/Feb 2023 data







### Task 5: Time Series Forecasting II

### Forecasting 14 Days using Prophet trained on Jan/Feb 2023 data







### Project 2: NASA Data Acquisition, Visualization, and Analysis





## Task 1 Understanding the NASA API and Data Collection

### Data acquisition and Data analysis

- Fetched JSON data about Near Earth Objects (NEOs) using Python
- Cleaned up data by removing extra date in a "week" (8 days) of data, e.g.  $neo\_df = neo\_df.drop\_duplicates()$
- Extracted and analyzed distinct data elements for each NEO via pd.json\_normalize, e.g.  $expanded\_neo\_df = pd.json\_normalize(neo, record\_path = neo\_entry\_date)$
- Converted extracted data into pd.DataFrame



### Task 2: Data Science and Analytics Works

#### Average size, hazards correlation, statistics

#### (b) Statistical analysis + correl

```
(a) The average size
                                                             estimated diameter.meters.estimated diameter avg
                                                      count
                                                                                                 6921.000000
of the NEOs for each
                                                      mean
                                                                                                  148.540073
dav
                                                       std
                                                                                                  286.015619
                                                      min
                                                                                                    1 105459
             average size
                                                       25%
                                                                                                   25.914487
2022-01-01
               164.069506
                                                       50%
                                                                                                   55.404191
2022-01-02
               113,283811
                                                      75%
                                                                                                  149.122308
2022-01-03
                28.178929
                                                                                                 4983 593570
                                                      max
2022-01-04
                80.179344
                                                                                                       is_potentially_hazardous_asteroid
                                                      is potentially hazardous asteroid
                                                                                                                               1.000000
                                                      estimated diameter.meters.estimated diameter avg
                                                                                                                               0.273835
```



### **Data Science and Analytics Works**

#### Closest approach size-potential hazard correlation.

(a) Proportion of NEOs that are potentially hazardous.

```
total_hazardous_count 456
total_non_hazardous_count 6465
Proportion of hazardous NEOs: 6.6%
Proportion of non-hazardous NEOs: 93.4%
```

(b) NEOs with the closest approach distance for each day.

|            | neo id   | neo name    | dist         |
|------------|----------|-------------|--------------|
| 2022-01-02 | 54235525 | (2022 AP1)  | 1.805971e+05 |
| 2022-01-03 | 54235674 | (2022 AZ2)  | 1.966661e+06 |
| 2022-01-04 | 54338714 | (2023 AW)   | 1.781069e+07 |
| 2022-01-05 | 54243529 | (2022 AV13) | 1.094803e+05 |
| 2022-01-06 | 54103879 | (2021 AA)   | 2.016247e+07 |



# Task 3: Data Visualization Part A (I)





### Task 3: Data Visualization Part A (II)





## Task 3: Data Visualization Part A (III)

### Pairwise Relationships and Hazardousness in NEO Data



(a) 4 Histogram of the distribution of NEO sizes

(b) Pair plot that visualizes the relationships between different variables

DTU Templates

21.6.2023





#### Pie chart: Hazardous vs. non-hazardous NEOs

• Created a pie chart of the proportion of hazardous vs non-hazardous NEOs





### Scatter plot with hover functionality for NEO data using Plotly





#### Line chart: Hazardous asteroid proportion vs. NEO size's lower limit

Hazardous asteroid proportion vs asteroid size lower limit





### Interesting finding - Scatter plot: Absolute magnitude vs. NEO size

Absolute magnitude vs NEO size





#### Task 5

#### Findings from NASA data visualizations to make predictions or recommendations

### Classifying Hazardous and Non-Hazardous Asteroids Using Machine Learning

|               | Accuracy | Precision | Recall  | Ideal<br>Hyperparameters  |
|---------------|----------|-----------|---------|---------------------------|
| Logistic      | 0.90618  | 0.78761   | 0.58169 | Penalty = None            |
| Regression    |          |           |         |                           |
| Support       | 0.91364  | 0.76086   | 0.68627 | C = 100,                  |
| Vector        |          |           |         | Gamma = 0.1,              |
| Machine       |          |           |         | Kernel = rbf              |
| Random Forest | 0.93496  | 0.85937   | 0.71895 | Max features = None,      |
| Classifier    |          |           |         | N  estimators = 100       |
| XGBoost       | 0.94456  | 0.86861   | 0.77777 | Learning rate $= 0.05$ ,  |
|               |          |           |         | Colsample by tree $= 1$ , |
|               |          |           |         | Max depth = 6,            |
|               |          |           |         | N  estimators = $100$     |

Table 1 | Results on the Test Set

Source for scientific paper.(NJS)