Optimization Theory and Methods

Prof. Xiaoe Ruan

Email: wruanxe@xjtu.edu.cn

Tel:13279321898

2019, Fall

Chapter1 Optimization Foundations

Introduction to optimization methods

- 1. Optimality Conditions
- 2. Introduction to Optimization Methods and Properties
- 3. Convergence Rate of Iterative Sequence

1. Optimality Conditions

Nonlinear Programming (NP)) problem:

Denote
$$D = \{x | c_i(x) = 0, i \in E, c_i(x) \ge 0, i \in I\}$$

-constraint set or feasible domain

Def.1. Let
$$\chi^* \in D$$
. For $\forall \chi \in D$

(1) If
$$f(x) \ge f(x^*)$$
, then x^*

is a global optimizer (minimizer) of NP.

(2) If
$$f(x) > f(x^*)(x \neq x^*)$$
 then x^*

is a strictly global optimizer (minimizer) of NP.

Ex1. Influence of constraints

$$\min f(x) = -x_1^3$$

$$s.t. - x_1^2 + x_2 \ge 0$$

$$(1.1)$$

$$x_1 + x_2 \ge 0$$

$$1 - x_2 \ge 0$$

Extreme minimizer:

$$x^* = (1, 1)^T$$

 $\mathcal{X}_2 \uparrow$

If constraint(1.2)has a slight perturbation,

$$x^* = (1, 1)^T$$
 is still the extreme minimizer.

If constraint(1.1) or (1.3) is slightly perturbed,

the extreme minimizer would be changed.

Denote
$$N_{\delta}(x^*) = \{x | ||x - x^*|| < \delta\}$$

Def.2. Let $x^* \in D$ and $\delta > 0$.

(1) If
$$f(x) \ge f(x^*), \forall x \in D \cap N_{\delta}(x^*)$$
 then χ^*

is said to be a local optimizer (minimizer)of NP problem.

(2) If
$$f(x) > f(x^*), \forall x \in D \cap N_{\delta}(x^*), x \neq x^*$$
 then χ^*

is said to be a strictly local optimizer (minimizer)of NP.

Def.3. Let $f: \mathbb{R}^n \to \mathbb{R}^1$ be differentiable at $x \in \mathbb{R}^n$.

If there exist a vector $0 \neq d \in \mathbb{R}^n$ and $\overline{\alpha} > 0$

s.t.
$$f(x+\alpha d) < f(x), \forall \alpha \in (0, \overline{\alpha}),$$

then vector d is named as a descent direction of function

$$f(x)$$
 at the point x .

1.1. First-order Necessary Conditions

Th.1. Let $f: \mathbb{R}^n \to \mathbb{R}^1$ be differentiable at $\mathcal{X}_k \in \mathbb{R}^n$.

 ψd is a descent direction $\nabla f(x_k)^T d < 0$.

$$\Leftrightarrow$$

$$\nabla f(x_k)^{\mathrm{T}} d < 0$$

Proof: By means of Taylor's expansion, for $\alpha > 0$,

$$f(x_k + \alpha d) = f(x_k) + \alpha \nabla f(x_k)^{\mathrm{T}} d + o(\|\alpha d\|)$$

For
$$\varepsilon = -\left(\nabla f\left(x_{k}\right)\right)^{\mathrm{T}}d$$
, $\exists \bar{\alpha} > 0$, s.t. for $\alpha < \bar{\alpha}$ we have
$$\frac{o\left(\left\|\alpha d\right\|\right)}{\alpha} < \frac{1}{2}\varepsilon \quad \text{that is} \quad o\left(\left\|\alpha d\right\|\right) < \frac{1}{2}\alpha\varepsilon.$$

Thus
$$f\left(x_k + \alpha d\right) \le f\left(x_k\right) - \alpha \varepsilon + \frac{1}{2} \alpha \varepsilon < f\left(x_k\right).$$

From sign reservation of continuous fcn, obvious.

Corollary1.

$$-\nabla f(x)$$
 is a descent direction of $f(x)$ at x .

Def.4. (Feasible direction) Let $x^* \in D$, $0 \neq d \in R^n$,

d is called as a feasible direction at x^* w.r.t set D

if
$$\exists \overline{\alpha} > 0$$
 s.t. $x^* + \alpha d \in D, \forall \alpha \in [0, \overline{\alpha}].$

Denote $FD(x^*,D)$ as the set of all feasible directions

at x^* w.r.t set D.

Def.5. (Sequential feasible direction) Let $x^* \in D, d \in R^n$,

d is called a sequential feasible direction at $\ x^*$ w.r.t the set D

if there exist sequences
$$d^{(k)} \neq 0 (k = 1, 2, \cdots)$$
 and $\alpha_k > 0 (k = 1, 2, \cdots)$

s.t.
$$x^* + \alpha_k d^{(k)} \in D, k = 1, 2, \dots, \lim_{k \to \infty} d^{(k)} = d, \text{ and } \lim_{k \to \infty} \alpha_k = 0.$$

Denote $SFD(x^*, D)$ as the set of all sequential feasible

directions at x^* w.r.t the set D.

Def.6. Effective constraint index set

$$\min f(x),$$

For NP:
$$\begin{cases} s. t. & c_i(x) = 0, i \in E = \{1, 2, \dots m'\}, \\ c_i(x) \ge 0, i \in I = \{m' + 1, \dots m\}. \end{cases}$$

Index set $I^* = \{i | i \in I = \{m'+1, \dots m\}, c_i(x^*) = 0\}$ is called an active constraint index set at χ^* .

Def.7. Linearized feasible direction

Let $x^* \in D$. d is called a linearized feasible direction at x

if
$$d^{\mathsf{T}}\nabla c_i(x^*) = 0, i \in E$$
 and $d^{\mathsf{T}}\nabla c_i(x^*) \geq 0, i \in I^*$.

Denote $LFD(x^*, D)$ as the set of all sequential feasible directions at χ^* w.r.t the set D.

Ex2. Let
$$D = \{(x_1, x_2) \mid x_1^3 - x_2 \ge 0, x_2 \ge 0\}, \ x^* = \begin{bmatrix} 0, 0 \end{bmatrix}^T$$
.

Solve $SFD(x^*, D)$, $LFD(x^*, D)$.

Solution:
$$SFD(x^*, D) = \{ [a, 0]^T, a > 0 \}$$

Because
$$\nabla c_1(x^*) = [0,-1]^T$$
,

$$\nabla c_2(x^*) = \begin{bmatrix} 0,1 \end{bmatrix}^{\mathrm{T}}.$$

Therefore

$$LFD(x^*,D) = \left\{ [b,0]^T, b \neq 0 \right\}$$

 $SFD(x^*, D) \neq LFD(x^*, D),$

But
$$SFD(x^*, D) \subset LFD(x^*, D)$$

Lemma1. Let all constraints fcns $c_i(x)(i \in E \cup I)$

be continuously differentiable at $\chi^* \in D$.

Then
$$FD(x^*,D) \subset SFD(x^*,D) \subset LFD(x^*,D)$$
.

Denote
$$D^* = D(x^*) = \{d | d^T \nabla f(x^*) < 0, d \in \mathbb{R}^n \}$$

Th.2. (Optimality condition)

Let $x^* \in D$ be a local minimizer of NP and fcns f(x) and $c_i(x)(i \in E \cup I)$ be continuously differentiable at x^* . Then $SFD(x^*,D) \cap D^* = \varnothing$.

Proof:

$$\forall d \in SFD\left(x^*, D\right), \exists x^{(k)} = x^* + \alpha_k d^{(k)}, s.t.\alpha_k \to 0, d^{(k)} \to d \quad \text{and} \quad f\left(x^{(k)}\right) = f\left(x^* + \alpha_k d^{(k)}\right) = f\left(x^*\right) + \alpha_k d^{(k)T} \nabla f\left(x^*\right) + o\left(\left\|\alpha_k d^{(k)}\right\|\right) \ge f\left(x^*\right)$$

Then $d^{\mathsf{T}}\nabla f(x^*) \ge 0$. That is $d \notin D(x^*)$.

Th.3.(1st-order Kuhn-Tucker Necessity conditions)

Let x^* be a local minimizer of NP. f(x) and $c_i(x)(i \in E \cup I)$ are continuously differentiable at x^* . If $SFD(x^*,D) = LFD(x^*,D)$, then there exists such a vector $\lambda^* = (\lambda_1^*, \lambda_2^*, \cdots, \lambda_m^*)^{\mathrm{T}}$ that

$$\nabla f\left(x^*\right) - \sum_{i=1}^{m} \lambda_i^* \nabla c_i\left(x^*\right) = 0, i \in E \cup I, \qquad \lambda_i^* \ge 0, i \in I, \qquad \lambda_i^* c_i\left(x^*\right) = 0, i \in I.$$

Proof: $d^{\mathsf{T}}\nabla f\left(x^{*}\right) \geq 0, \forall d \in SFD\left(x^{*}, D\right) = LFD\left(x^{*}, D\right).$

Let
$$A_1 = \left[\nabla c_1(x^*), \dots, \nabla c_{m'}(x^*)\right], \quad A_2 = \left[-\nabla c_1(x^*), \dots, -\nabla c_{m'}(x^*)\right],$$

$$A_3 = \left[-\nabla c_{i_1}(x^*), \dots, -\nabla c_{i_s}(x^*)\right], \quad i_1, \dots, i_s \in I^*, \quad b = -\nabla f(x^*). \text{ Then}$$

$$\begin{cases} \left[A_1, A_2, A_3\right]^{\mathrm{T}} d \leq 0, \\ b^{\mathrm{T}} d > 0. \end{cases}$$
 no solution

From Farkas Lemma,
$$\exists y = \begin{vmatrix} \mu^{*+} \\ \mu^{*} \end{vmatrix} \ge 0$$

$$y = \begin{bmatrix} y \\ y \end{bmatrix}$$

so that

$$\left(x^{*T},\lambda^{*T}\right)$$

$$[A_1, A_2, A_3]y = b = -\nabla f(x^*).$$

Kuhn-Tucker pair

$$-\nabla f(x^*) = A_1 \mu^{*-} + A_2 \mu^{*+} + A_3 \omega^*$$

i.e.
$$\nabla f(x^*) = \sum_{i \in E} (\mu_i^{*+} - \mu_i^{*-}) \nabla c_i(x^*) + \sum_{i \in I^*} \omega_i^* \nabla c_i(x^*)$$
 K-T conditions

Let
$$\lambda_i^* = \mu_i^{*+} - \mu_i^{*-}, i \in E;$$
 $\lambda_i^* = \omega_i^*, i \in I^*;$ $\lambda_i^* = 0, i \in I \setminus I^*.$

$$\lambda_i^* = \omega_i^*, i \in I^*$$

$$\lambda_i^* = 0, i \in I \setminus I^*.$$

Complementary

relaxed conds.

Then

$$\nabla f\left(x^*\right) - \sum_{i=1}^m \lambda_i^* \nabla c_i\left(x^*\right) = 0, i \in E \cup I,$$

$$\lambda_i^* \geq 0, i \in I$$

$$\lambda_i^* \geq 0, i \in I, \quad \lambda_i^* c_i(x^*) = 0, i \in I.$$

Remarks:

- 1. If $SFD(x^*,D) = LFD(x^*,D)$ then x^* is Kuhn-Tucker pnt. But not easy to testify. Can be replaced by simple condition later.
- If $SFD(x^*,D) \neq LFD(x^*,D)$ then x^* is not definitely a K-T pnt.
- 2. Define n+m -variable fcn $L(x,\lambda)=f(x)-\sum_{i=1}^m \lambda_i c_i(x)$ Then $L(x,\lambda)$ is called Lagrangian fcn of NP.

Thus, Eq in K-T cond
$$\nabla f\left(x^*\right) - \sum_{i=1}^m \lambda_i^* \nabla c_i\left(x^*\right) = 0, i \in E \cup I,$$
 is expressed as $\nabla_x L\left(x^*, \lambda^*\right) = 0$. λ^* is Lagrangian multiplier

3. Let $f(x), x \in N(x^*)$ be continuously differentiable.

If
$$f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$$
 then $\nabla f(x^*) = 0$.

The constraint conditions are sufficient but not necessary.

Ex3. min x_1

$$s.t.x_1^3 - x_2 \ge 0$$
$$x_2 \ge 0$$

Obviously,
$$\chi^* = [0,0]^T$$
 is the minimizer.

As $\nabla f(x^*) = [1,0]^T$,

$$\nabla c_1(x^*) = [0, -1]^T, \quad \nabla c_2(x^*) = [0, 1]^T.$$

Therefore,

no matter what values $\ensuremath{\lambda_{\!\scriptscriptstyle 1}}^*, \ensuremath{\ensuremath{\lambda_{\!\scriptscriptstyle 2}}}^*$ are chosen, we have

$$\nabla f(x^*) \neq \lambda_1^* \nabla c_1(x^*) + \lambda_2^* \nabla c_2(x^*)$$

Th.4. At the local minimizer x^* if any of the following cond. holds

- (1) $c_i(x)(i \in E \cup I^*)$ are linear.
- (2) $\nabla c_i(x^*)(i \in E \cup I^*)$ are linearly independent.

Then
$$SFD(x^*,D) = LFD(x^*,D)$$

By Lemma1,

$$SFD(x^*,D) \subset LFD(x^*,D).$$

Proof: (1) $\forall d \in LFD(x^*, D)$ then $d \neq 0$

and
$$\nabla c_i (x^*)^T d = 0, i \in E, \quad \nabla c_i (x^*)^T d \ge 0, i \in I^*.$$
 Let $x^{(k)} = x^* + \alpha_k d^{(k)}$

where
$$d^{(k)} = d \rightarrow d(k \rightarrow \infty)$$
, $\forall 0 < \alpha_k \rightarrow 0(k \rightarrow \infty)$.

Then
$$c_i(x^{(k)}) = c_i(x^* + \alpha_k d) = c_i(x^*) + \alpha_k d^\mathsf{T} \nabla c_i(x^*)$$
. That is

$$c_i\left(x^{(k)}\right) = \alpha_k d^{\mathsf{T}} \nabla c_i\left(x^*\right) = 0, i \in E, \qquad c_i\left(x^{(k)}\right) = \alpha_k d^{\mathsf{T}} \nabla c_i\left(x^*\right) \ge 0, i \in I^*,$$

$$c_{i}\left(x^{(k)}\right) = c_{i}\left(x^{*}\right) + \alpha_{k}d^{T}\nabla c_{i}\left(x^{*} + \theta\alpha_{k}d\right) \ge 0, (0 < \theta < 1, \alpha_{k} << 1), i \in I \setminus I^{*}.$$

Thus
$$d \in SFD(x^*, D)$$
 Therefore $LFD(x^*, D) \subset SFD(x^*, D)$.

(2) $\nabla c_i(x^*)(i \in E \cup I^*)$ are linearly independent.

Proof: $\forall d \in LFD(x^*, D)$ Then $d \neq 0$ and $\nabla c_i(x^*)^T d = 0, i \in E$,

 $\nabla c_i(x^*)^T d \ge 0, i \in I^*.$ Denote $E \cup I^* = \{1, 2, \dots, l\}, m' \le l \le n.$

From $\nabla c_i(x^*)(i \in E \cup I^*)$ independence, $\exists b_{l+1}, \dots, b_n \in R^n$ s.t.

 $\nabla c_1(x^*), \dots, \nabla c_l(x^*), b_{l+1}, \dots, b_n$ are independent.

Then the Eq $\begin{cases} c_i\left(x\right) - d^{\mathsf{T}}\nabla c_i\left(x^*\right)\theta = 0, i = 1, 2, \cdots, l; \\ \left(x - x^*\right)^{\mathsf{T}}b_i - d^{\mathsf{T}}b_i\theta = 0, i = l + 1, \cdots, n. \end{cases}$ has a solution $\begin{bmatrix} x \\ 0 \end{bmatrix} \quad \text{w.r.t variables} \quad \left[x^{\mathsf{T}}, \theta\right]^{\mathsf{T}} \in R^{n+1}$

and Jacobian matrix is nonsingular at χ^* . Thus Eq (**) can

determine fcn $x = x(\theta), \theta \in N(0)$ at neighborhood of $\begin{bmatrix} x^* \\ 0 \end{bmatrix}$ and $x^* = x(0)$.

Differentiating both sides of Eq (**) w.r.t θ yields

$$\left\{ \nabla c_i \left(x^* \right)^{\mathsf{T}} \left(\frac{dx}{d\theta} \Big|_{\theta=0} - d \right) = 0, i = 1, 2, \dots, l; \right.$$

$$\left\{ b_i^{\mathsf{T}} \left(\frac{dx}{d\theta} \Big|_{\theta=0} - d \right) = 0, i = l+1, \dots, n. \right.$$
has a unique solution $\left. \frac{dx}{d\theta} \Big|_{\theta=0} = d.$

By mean theorem
$$x = x(\theta) = x(0) + \frac{dx}{d\theta}\Big|_{\theta = 0 + a(\theta)\theta} \theta = x^* + \theta d(\theta), \quad 0 < a(\theta) < 1.$$

Specifically, choose

$$0 < \theta_k \to 0 \left(k \to \infty\right), \quad x^{(k)} = x^* + \theta_k d\left(\theta_k\right) = x^* + \theta_k d_k \quad \text{where}$$

$$d_k = d\left(\theta_k\right) = \frac{\mathrm{d}x(\theta)}{\mathrm{d}\theta} \bigg|_{\theta = a(\theta_k)\theta_k} \to \frac{\mathrm{d}x(\theta)}{\mathrm{d}\theta} \bigg|_{\theta = 0} = d. \quad \text{Substituting} \left[x^{(k)\mathrm{T}}, \theta_k\right]^\mathrm{T} \quad \text{into Eq makes}$$

$$c_{i}\left(x^{(k)}\right) = \theta_{k}d_{k}^{\mathsf{T}}\nabla c_{i}\left(x^{*}\right) = 0, i \in E, c_{i}\left(x^{(k)}\right) = \theta_{k}d_{k}^{\mathsf{T}}\nabla c_{i}\left(x^{*}\right) \geq 0, i \in I^{*},$$

$$c_{i}\left(x^{(k)}\right) = c_{i}\left(x^{*}\right) + \theta_{k}d_{k}^{\mathsf{T}}\nabla c_{i}\left(x^{*}\right) + o\left(\left\|\theta_{k}d_{k}\right\|\right) \geq 0, \left(i \in I \setminus I^{*}\right)$$

Thus
$$d \in SFD(x^*, D)$$
 Therefore $LFD(x^*, D) \subset SFD(x^*, D)$.

Th.5. At the local minimizer χ^* if any of the following cond. holds

- (1) $c_i(x)(i \in E \cup I^*)$ are linear.
- (2) $\nabla c_i(x^*)(i \in E \cup I^*)$ are linearly independent.

Then there exists such a vector $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)^T$ that

$$\nabla f\left(x^{*}\right) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right) = 0, i \in E \cup I,$$

$$\lambda_i^* \geq 0, i \in I, \quad \lambda_i^* c_i(x^*) = 0, i \in I.$$

Th.6. (1st-order sufficiency cond. of an optimizer)

 $x^* \in D$ is a strictly local minimizer if f(x) and $c_i(x) (i \in E \cup I)$

are 1st-order continuously differentiable at x^* and

$$d^{\mathsf{T}}\nabla f\left(x^{*}\right) > 0, \forall d \in SFD\left(x^{*}, D\right) \subset LFD\left(x^{*}, D\right)$$

1.2. 2nd-order Optimization Conditions

The sufficiency requires the 2-nd-order derivatives of the objective fcn and the constraints fcns.

Reminder: Let χ^* be K--T point. Then Lagrangian multiplier

satisfying
$$\nabla f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla c_i(x^*) = 0, i \in E \cup I, \quad \lambda_i^* \ge 0, i \in I,$$
 and $\lambda_i^* c_i(x^*) = 0, i \in I.$ Then $\lambda_i^* \ge 0, i \in I^*.$

$$\lambda_i^* = 0$$
 or

Thus for some index i $\lambda_i^* = 0$ or $\lambda_i^* > 0$ effective on cond.

no effect on cond.

Denote
$$I_{+}^{*} = I_{+}(x^{*}) = \{i | i \in I^{*}, \lambda_{i}^{*} > 0\}$$
 Then $A_{+}(x^{*}) = E \bigcup I_{+}(x^{*})$

is called a strongly effective constraints index set at χ^* .

or a strongly effective set.

Def.8. Sequential nullity constraints direction $G(x^*, \lambda^*) \subseteq LFD(x^*, D)$

Let (x^{*T}, λ^{*T}) be Kuhn-Tucker pair of NP.

d is a sequential nullity constraints direction at χ^* if there exist sequences

$$G(x^*, \lambda^*) \subseteq LFD(x^*, D)$$

$$S(x^*, \lambda^*) \subseteq SFD(x^*, D)$$

$$S(x^*, \lambda^*) \subseteq G(x^*, \lambda^*)$$

$$d^{(k)} \neq 0 (k=1,2,\cdots)$$
 and $\alpha_k > 0 (k=1,2,\cdots)$.

so that $x^{(k)} = x^* + \alpha_k d^{(k)} \in D, k = 1, 2, \cdots$ satisfying

$$c_i(x^{(k)}) = 0, i \in E \cup I_+^*$$
 and $c_i(x^{(k)}) \ge 0, i \in I \setminus I_+^*$

together with
$$\lim_{k\to\infty}d^{(k)}=d$$
 and $\lim_{k\to\infty}\alpha_k=0.$

Denote $S(x^*, \lambda^*)$ as a set of all SNCDs at x^* and

$$G(x^*, \lambda^*) = \{d \mid d \neq 0, d^{\mathsf{T}} \nabla c_i(x^*) = 0 (i \in E \cup I_+^*), d^{\mathsf{T}} \nabla c_i(x^*) \geq 0 (i \in I^* \setminus I_+^*) \}$$

as a set of all linearized nullity constraints directions at $\ x^*$

Th.7. (2nd-order Kuhn-Tucker Necessity Conditions)

Let x^* be a local minimizer of NP. f(x) and $c_i(x)(i \in E \cup I)$

are 2^{nd} -order continuously differentiable at χ^* .

If
$$SFD(x^*, D) = LFD(x^*, D)$$
, then there exists such a vector

$$\lambda^* = \left(\lambda_1^*, \lambda_2^*, \cdots, \lambda_m^*\right)^{\mathrm{T}}$$
 that

$$\nabla f\left(x^{*}\right) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right) = 0, i \in E \cup I,$$

$$\lambda_i^* \ge 0, i \in I,$$
 $\lambda_i^* c_i(x^*) = 0, i \in I.$

$$d^{\mathsf{T}}\nabla_{xx}^{2}L(x^{*},\lambda^{*})d\geq 0, \forall d\in S(x^{*},\lambda^{*}).$$

where
$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)$$

$$\nabla_{xx}^{2}L(x^{*},\lambda^{*}) = \nabla^{2}f(x^{*}) - \sum_{i=1}^{m}\lambda_{i}^{*}\nabla^{2}c_{i}(x^{*})$$

Lemma2:

At a local optimizer x^* if any of the following holds

(1)
$$c_i(x)(i \in E \cup I^*)$$
 are linear.

(2) $\nabla c_i(x^*)(i \in E \cup I^*)$ are linearly independent.

Then
$$G(x^*, \lambda^*) = S(x^*, \lambda^*)$$
.

Th.8. (2nd-order Necessity Conditions)

Let x^* be a local minimizer of NP. f(x) and $c_i(x)(i \in E \cup I)$

are 2^{nd} -order continuously differentiable at x^* .

- (1) $c_i(x)(i \in E \cup I^*)$ are linear. Or
- (2) $\nabla c_i(x^*)(i \in E \cup I^*)$ are linearly independent.

Then there exists a vector $\lambda^* = (\lambda_1^*, \lambda_2^*, \cdots, \lambda_m^*)^{\mathrm{T}}$ such that

$$\nabla f\left(x^{*}\right) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right) = 0, i \in E \cup I,$$

$$\lambda_i^* \geq 0, i \in I, \qquad \lambda_i^* c_i(x^*) = 0, i \in I.$$

$$d^{\mathsf{T}}\nabla_{xx}^{2}L(x^{*},\lambda^{*})d\geq 0, \forall d\in S(x^{*},\lambda^{*}).$$

where

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)$$

$$\nabla_{xx}^{2}L(x^{*},\lambda^{*}) = \nabla^{2}f(x^{*}) - \sum_{i=1}^{m}\lambda_{i}^{*}\nabla^{2}c_{i}(x^{*})$$

Th.9. (2nd-order Sufficiency Conditions)

Let (x^{*T}, λ^{*T}) be Kuhn-Tucker pair of NP.

If
$$f(x)$$
 and $c_i(x)(i \in E \cup I)$

are 2^{nd} -order continuously differentiable at χ^*

and
$$d^{\mathsf{T}} \nabla^2_{xx} L(x^*, \lambda^*) d > 0, \forall d \in G(x^*, \lambda^*).$$

Then χ^* is a strictly local optimizer.

Corollary2.(2nd-order unconstraint sufficiency cond.)

If f(x) is 2nd-order continuously differentiable in nbhd $N(x^*)$ along with $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ positive definite.

Then x^* is a strictly local optimizer of $\min_{x \in R^{n}} f(x)$.

1.3. Convex Programming (CP)

For Nonlinear Programming (NP)):

$$\min f(x), \text{s. t.} \begin{cases} c_i(x) = 0, i \in E = \{1, 2, \dots, m'\}, \\ c_i(x) \ge 0, i \in I = \{m' + 1, \dots, m\}. \end{cases}$$

$$D = \{x | c_i(x) = 0, i \in E, c_i(x) \ge 0, i \in I\}$$

If f(x) and D are convex, then NP is called CP.

D is convex if $c_i(x)(i \in E)$ linear and $c_i(x)(i \in I)$ concave.

 $c_2(x, y, z) = 2 - (x^2 + y^2 + z^2) \ge 0.$

The course addresses CP on Convex Domain.

Ex4. (NP):
$$\begin{cases} \min f(x, y, z) = 2x^2 + 3y^2 + 4z^2, \\ \text{s. t.} \quad c_1(x, y, z) = x + y - z + \frac{2}{3} = 0, \end{cases}$$

Th.10. A local minimizer of CP is a global minimizer.

Proof: Let χ^* be a local minimizer but not a global one.

Then there exists a neighborhood $N_{\delta}\left(x^{*}\right) = \left\{x \middle| \left\|x - x^{*}\right\| < \delta\right\}$ and a point $\overline{x} \neq x^{*}, \overline{x} \in D$ but $\overline{x} \notin N_{\delta}\left(x^{*}\right)$

such that
$$f(x^*) \le f(x), \forall x \in N_{\delta}(x^*)$$
 but $f(\overline{x}) < f(x^*)$.

Then
$$\|\tilde{x} - x^*\| = \alpha \|\overline{x} - x^*\| < \delta$$
. Thus $\tilde{x} \in N_{\delta}(x^*)$.

From convexity

$$f(\tilde{x}) = f(\alpha \bar{x} + (1 - \alpha)x^*) \le \alpha f(\bar{x}) + (1 - \alpha)f(x^*) \le f(x^*).$$

Th.11. Let f(x) and $c_i(x)(i \in E \cup I)$ of CP

be continuously differentiable and χ^* be K-T point.

Then χ^* must be a global minimizer.

Proof: Let (x^{*T}, λ^{*T}) be Kuhn-Tucker pair. **Then**

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\mathrm{T}}(x - x^*), \quad c_i(x) = c_i(x^*) + \nabla c_i(x^*)^{\mathrm{T}}(x - x^*)(i \in E)$$

$$-c_i(x) \ge -c_i(x^*) - \nabla c_i(x^*)^{\mathrm{T}}(x-x^*)(i \in I)$$

Thus
$$f(x) \ge f(x) - \sum_{i=1}^{m} \lambda_{i}^{*} c_{i}(x)$$

 $\ge f(x^{*}) + \nabla f(x^{*})^{T} (x - x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} (c_{i}(x^{*}) + \nabla c_{i}(x^{*})(x - x^{*}))$
 $= f(x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} c_{i}(x^{*}) + \left[\nabla f(x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}(x^{*}) \right]^{T} (x - x^{*})$
 $= f(x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} c_{i}(x^{*}) = f(x^{*})$

Corollary3.

If f(x) of CP is strictly convex, the minimizer is unique.

Slater condition: There exists $\overline{x} \in \mathbb{R}^n$ such that

$$c_i(\overline{x}) = 0, i \in E;$$
 and $c_i(\overline{x}) > 0, i \in I.$

Th.12. Let
$$f(x)$$
 and $c_i(x)(i \in E \cup I)$ of CP

is continuously differentiable and satisfy Slater condition.

Then

A feasible point χ^* is a minimizer

iff χ^* is a Kuhn-Tucker point.

min
$$f(x) = f(x_1, x_2) = \frac{1}{2}(x_1 - 1)^2 + \frac{1}{2}x_2^2$$

NP:

s.t.
$$c(x) = -x_1 + bx_2^2 \ge 0$$
 where **b** is const.

How to choose constant **b** so that $x^* = [0,0]^T$ is a local minimizer.

Solution:

$$D = \{(x_1, x_2)^{\mathrm{T}} \mid c(x) = -x_1 + bx_2^2 \ge 0\}$$

$$c(x^*) = 0, \quad \nabla f(x^*) = [-1, 0]^T, \quad \nabla c(x^*) = [-1, 0]^T.$$

$$L(x,\lambda) = \frac{1}{2}(x_1 - 1)^2 + \frac{1}{2}x_2^2 - \lambda(-x_1 + bx_2^2)$$

K-T conds:

$$\nabla_{x} L(x^{*}, \lambda) = [-1, 0]^{T} - \lambda [-1, 0]^{T} = 0$$

$$c(x^*) = 0$$

$$\lambda \geq 0$$

Solving yields $\lambda^* = 1 > 0$. Thus $\chi^* = [0,0]^T$ is a K-T point.

Hessian matrix of Lagrangian fcn at x^* is $W^* = \begin{bmatrix} 1 & 0 \\ 0 & 1-2b \end{bmatrix}$

Kinds of feasible directions sets are

$$S(x^*, \lambda^*) = G(x^*, \lambda^*) = \{d = [0, a]^T, a \neq 0\}$$

Note
$$SFD(x^*, D) = \{d \mid [-1, 0]^T d \ge 0, d \ne 0\} = \{[a_1, a_2]^T, a_1 < 0\}$$

Therefore

$$\begin{bmatrix} 0, a \end{bmatrix} W^* \begin{bmatrix} 0 \\ a \end{bmatrix} = \begin{bmatrix} 0, a \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 - 2b \end{bmatrix} \begin{bmatrix} 0 \\ a \end{bmatrix} = a^2 (1 - 2b)$$

Thus

If b > 0.5 x^* is not a local minimizer from 2nd-order necessity.

If b < 0.5 x^* is a local minimizer from 2nd-order sufficiency.

If
$$b = 0.5$$

As
$$f(x) = (1 + \frac{1}{2}x_1^2) - x_1 + \frac{1}{2}x_2^2$$

s.t.
$$c(x) = -x_1 + \frac{1}{2}x_2^2 \ge 0$$

i.e.
$$f(x) \ge (1 + \frac{1}{2}x_1^2)$$

Then

 χ^* is a local minimizer.

$b-x^*$ relationship as figured.

c(x)=0 (b=1/4)

c(x)=0(b=1)

2. Brief Introduction to Optimization Methods and Properties

For Nonlinear Programming (NP):

$$\begin{cases} \min \ f(x), \\ \text{s. t.} \quad c_i(x) = 0, i \in E = \{1, 2, \cdots m'\}, \\ c_i(x) \geq 0, i \in I = \{m'+1, \cdots m\}. \end{cases}$$

Usual method is to solve a Kuhn-Tucker point of following Eqs. by iterative algorithm

$$\nabla f\left(x^{*}\right) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right) = 0, i \in E \cup I,$$

$$\lambda_{i}^{*} \geq 0, i \in I, \qquad \lambda_{i}^{*} c_{i}\left(x^{*}\right) = 0, i \in I.$$

3. Convergence Rate of Iterative Sequence

Let
$$\{x^{(k)}\}, e(x^{(k)}) = ||x^{(k)} - x^*|| \to 0 (k \to \infty)$$

$$Q_p = \limsup_{k \to \infty} \frac{e\left(x^{(k+1)}\right)}{e\left(x^{(k)}\right)^p}, \quad p \in [1, +\infty)$$

$$Q - \text{factor}$$

is called Quotient convergence factor of sequence $\{x^{(k)}\}$.

If
$$Q_1 = 0$$
, $\left\{x^{(k)}\right\}$ is said to **Q** super-linearly converges to x^*

If
$$0 < Q_1 < 1, \{x^{(k)}\}$$
 is said to **Q** linearly converges to x^*

If
$$Q_1 = 1$$
, $\left\{ x^{(k)} \right\}$ is said to **Q** sub-linearly converges to x^*

Analogously
$$Q_2 = 0, 0 < Q_2 < 1, Q_2 = 1$$

are respectively Q super-square, square and sub-square convergent.

$$R_{p} = \begin{cases} lim \, sup \, e\left(x^{(k)}\right)^{\frac{1}{k}}, \, p = 1, \\ k \to \infty \end{cases}$$

$$lim \, sup \, e\left(x^{(k)}\right)^{\frac{1}{p^{k}}}, \, p > 1.$$

R- factor

is called Root convergence factor of sequence $\{x^{(k)}\}$.

If
$$R_1 = 0$$
, $\{x^{(k)}\}$ is said to R superlinearly converges to x^*

If
$$0 < R_1 < 1$$
, $\{x^{(k)}\}$ is said to R linearly converges to x^*

If
$$R_1 = 1$$
, $\left\{ x^{(k)} \right\}$ is said to R sublinearly converges to x^*

Analogously If
$$R_2 = 0, 0 < R_2 < 1, R_2 = 1$$
, sequence $\{x^{(k)}\}$

are respectively R super-quadratically, quadratically and sub-quadratic ally convergent.

