PRIMERA PRÁCTICA DIRIGIDA DE CÁLCULO DIFERENCIAL

- 1. Construir las tablas de verdad de las siguientes proposiciones
 - (a) $[p \land (p \lor q)] \leftrightarrow p$.
 - (b) $[p \land (q \lor r)] \leftrightarrow [(p \land q) \lor (p \land r)].$
- 2. Sean $A = \{1, 2, ..., 20\}$ y $B = \{x \in A/x < 5 \leftrightarrow x \geq 7\}$. Indicar el valor de verdad de las proposiciones siguientes
 - (a) $\exists X \subset A, \exists Y \subset B \text{ tal que } X \cap Y = \emptyset.$
 - (b) $\forall x \in A, \exists y \in B/x y = 10.$
- 3. Considere $A = \{1, 2, 3, 4, 5\}$. Hallar por extensión los siguientes conjuntos
 - (a) $A_1 = \{x \in A : \exists y \in A \text{ tal que } x^2 + y \ge 2\}.$
 - (b) $A_2 = \{x \in A : \forall y \in A \text{ tal que } x^2 + y \ge 5\}.$
- 4. Negar la proposición siguiente: existe $x \in \mathbb{R}$ tal que $x \ge 3 \to x < 7$.
- 5. Considerando $P = \{1, 2, 3, 4, 5, 6, 7\}$ halle el valor de verdad de las siguientes proposiciones
 - (a) Existe $x \in P$ tal que $(2x+1) \in P$.
 - (b) $\forall x \in P, \exists y \in P \text{ tal que } x + y = 7.$
- 6. Sean p y q dos proposiciones. Se define el conectivo siguiente $p*q = \sim p \lor \sim q$. Expresar sólo en términos del conectivo *, cada una de las siguientes proposiciones
 - (a) $p \to q$.
 - (b) $p \leftrightarrow q$.
- 7. Simplifique la expresión siguiente $\sim [\sim (p \land q) \rightarrow \sim q] \lor p$.
- 8. Sean $p \ y \ q$ dos proposiciones lógicas. Si $p \land q \equiv p \ y \ p \lor \sim q$ es una proposición tautológica. Pruebe que $p \equiv q$.

- 9. Usando las reglas de inferencia
 - (a) Demostrar la siguiente conclusión $r \rightarrow \sim q$ a partir de las premisas:

$$\begin{array}{ccc} \sim (r & \wedge & s) \\ q & \rightarrow & s \end{array}$$

(b) Demostrar

$$\begin{array}{ccc} p & \vee & \sim s \\ \sim r & \rightarrow & s \\ \vdots \sim p & \rightarrow & r \end{array}$$

(c) Demostrar

$$\begin{array}{cccc}
\sim A & \rightarrow & B \\
C & \rightarrow & B \\
c & \lor & \sim A \\
\sim B & \lor & D
\end{array}$$

10. Demostrar que se cumple $\sim N$ con las premisas

$$egin{array}{lll} s &
ightarrow &
ightarrow R \ R & & & & & Q \
ho &
ho$$

- 11. Sean n un número entero. Demostrar que si $n^2 + 5$ es impar, entonces n es par.
- 12. Sean A, B subconjuntos de U. Demostrar que
 - (a) C(C(A) = A).
 - (b) $A \subset B$ si y solo si $C(B) \subset C(A)$.
 - (c) A = B si y solo si C(B) = C(A). Donde C representa el complemento de un conjunto.
- 13. Demostrar: Sea A un conjunto $A \subset A^c \leftrightarrow A = \emptyset$
- 14. Seab A, B dos subconjuntos de U. Demostrar que:

- (a) $A \subset B$ si y solo si $A \cup B = B$.
- (b) $A \subset B$ si y solo si $A \cap B = B$.
- (c) $A \cap B = A$ y $A \cup B = A$ si y solo si A = B.
- 15. Demostrar de forma directa, que si n y m son enteros pares, entonces $\frac{n^2+m^2}{2}$ es par. ¿Se cumple también el recíproco?
- 16. Determine los siguientes conjuntos
 - (a) $P = \{x \in \mathbb{R} : x^2 + 4 = 0 \leftrightarrow (x+2)^2 = 0\}.$
 - (b) $N = \{x \in \mathbb{R} : x > 0 \leftrightarrow x = 0\}.$
- 17. Siendo p: José es estudioso y q: Juan es estudioso, escribir en forma simbólica:
 - (a) No es cierto que Juan o José sean estudiosos.
 - (b) José y Juan, no son estudiosos.
 - (c) José no es estudioso y Juan es estudioso.
- 18. Sean A, B y C conjuntos. Demuestre que

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

- 19. Demostrar de dos formas la proposición siguiente: Si n^2 es par, entonces n es par.
- 20. Sean A, B y C conjuntos. Demuestre que: Si $A \times C = B \times C$ y $C \neq \emptyset$, entonces A = B.
- 21. Considere $A \subset B$. Demostrar Si $B = \emptyset$, entonces $A = \emptyset$.
- 22. Demostrar en forma indirecta, si 5n + 8 es impar, entonces n es impar.
- 23. Sean A, B dos subconjuntos de un conjunto universal U. Demostrar que

$$P(A) \cup P(B) \subset P(A \cup B)$$

¿Es cierto que $P(A) \cap P(B) = P(A \cap B)$?

24. Demostrar: Sabiendo que 3n-1 es un entero par, entonces n es un entero impar.

- 25. Demostrar: Sabiendo que n^2 es un entero impar, entonces n es impar.
- 26. Dados $A, B \subset E$. Pruebe que $A \subset B \Leftrightarrow A \cap B^c = \emptyset$.
- 27. Demuestra poniendo un contraejemplo que las siguientes afirmaciones no son verdaderas:
 - (a) Todo entero mayor que 17 es el cuadrado de un número entero.
 - (b) Todo entero mayor que 6 es múltiplo de 2 y de 3.
 - (c) $100n + 1 > n^2$ para todo entero n.
- 28. En los siguientes ejercicios demuestre que la proposición es falsa:
 - (a) Si n es un número natural, entonces $2n^2 4n + 31$ es primo.
 - (b) Si n es un número natural, entonces $n^2 + 17n + 17$ es primo.
 - (c) Si $n^2 n$ es par, entonces n es par.
 - (d) Si n es un número entero, entonces $4|(n^2-3)$.
- 29. Demostrar que si n^2 es múltiplo de 7, entonces n es múltiplo de 7.
- 30. Sean $A ext{ y } B ext{ dos conjuntos.}$ Demostrar que $A \cup B \neq \emptyset$, entonces $A \neq \emptyset$ o $B \neq \emptyset$.
- 31. Probar que para todo $n \in \mathbb{N}$ se cumple $n^3 n$ siempre es múltiplo de tres.
- 32. Considere los conjuntos A, B en el universo U. Demuestre
 - (a) $(A \cup B)' = A' \cap B'$.
 - (b) $(A \cap B)' = A' \cup B'$.
- 33. Demostrar que $A \cup \emptyset = A$, donde A es un conjunto.
- 34. Demostrar que es condición necesaria y suficiente para que un conjunto A esté incluido en un conjunto B, es que la intersección de A y B sea igual al conjunto A.