Step 9 (Identify Your Next 10 Customers) Worksheets (3):

Worksheet #1: Summary of Next 10 Customers

Su	Summary of Next 10 Customers											
	General Info			Fit				Engagement				
#	<u>Customer Name</u>	<u>Relevant</u> <u>Info</u>	<u>Title</u>	Email/ Phone	<u>Demo-</u> graphic	Psycho- graphic	<u>Use Case</u>	<u>Value Prop</u>	<u>Overall</u>	Contacted	Level of Interest - Letter of Intent?	<u>Source</u>
1	Dr. Lena Petrova	Focused on multi-agent RL systems, published in NeurIPS	Postdoctoral Researcher	l.petrova@mit.edu	30s, Cambridge MA (USA), PhD	Early adopter, seeks efficiency, values cutting- edge tools	Optimize training parameters for complex multi-agent simulations	Reduce simulation setup time by 40%, improve convergence speed	High	Yes	High	Conference Paper Author
2	Prof. Kenji Tanaka	Heads large bioinformatics lab, expert in Al for drug discovery	Professor	k.tanaka@bio.u-tokyo.ac.jp _	50s, Tokyo (Japan), PhD	Results-driven, established, seeks impactful research acceleration	Generate novel hypotheses for drug repurposing based on genomic data	Increase identification rate of viable drug candidates by 25%	High	Yes	High	University Faculty Directory
3	Maria García	Working on thesis using CV for medical image analysis	PhD Candidate	maria.garcia@inf.ethz.ch	20s, Zurich (Switzerland), MSc Student	Detail-oriented, collaborative, needs robust analysis tools	Automate feature extraction and comparison across large medical image datasets	Improve consistency of analysis, reduce manual review time by 60%	High	Yes	High	Research Lab Website
4	Dr. Samuel Jones	Investigates algorithmic bias and fairness in Al models	Associate Professor, Al Ethics	sam.jones@cs.stanford.edu	40s, Stanford CA (USA), PhD	Values transparency, seeks rigorous methods for ethical Al	Benchmark fairness and robustness metrics across various model architectures	Identify potential biases earlier in development cycle, ensure compliance	Medium- High	Yes	High	Al Ethics Conference Speaker
5	Dr. Ingrid Hoffmann	Leads group focused on autonomous systems & robotic learning	Research Group Leader	hoffmann@is.mpg.de	40s, Tübingen (Germany), PhD	Innovative, seeks automation for complex experiments, application- focused	Plan sequences of robotic experiments and automate sensor data analysis	Accelerate development cycle for autonomous navigation algorithms by 30%	High	Yes	High	Max Planck Institute Website
6	Chen Wei	Researching generative models for scientific writing	PhD Student	chen.wei@nlp.tsinghua.edu.cn	20s, Beijing (China), MSc Student	Tech-savvy, seeks productivity tools, values open-source principles	Assist in drafting literature review sections by summarizing	Reduce time spent on literature synthesis for publications by 50%	High	Yes	High	Academic Collaboration Network

		l	1	1	1		relevant	l	1	I		
					+		papers			L		
7	Prof. David Levy	Foundational research in causality and Al reasoning	Professor	d.levy@cl.cam.ac.uk	60s, Cambridge (UK), PhD	Theoretical focus, values logical rigor, seeks novel insights	Formulate and test causal hypotheses using observational research data	Explore complex causal relationships not easily testable manually	Medium- High	Yes	High	Known Expert Publication
8	Dr. Fatima Rossi	Applying ML/Al in a fast-paced biotech startup environment	Head of Al Research	f.rossi@genomecure.com	30s, Boston MA (USA), PhD	Entrepreneurial, deadline-driven, needs quick, reliable results	Integrate multi- modal genomic and clinical data for biomarker discovery	Accelerate identification of promising biomarkers for clinical trials	High	Yes	High	Biotech Industry Event Attendee
9	Dr. Ben Carter	Modeling climate change impacts using Al	Postdoctoral Fellow, Climate Science	ben.carter@unimelb.edu.au	30s, Melbourne (Australia), PhD	Mission-driven, data-intensive work, needs powerful simulation tools	Run and benchmark complex climate model simulations more efficiently	Improve accuracy of climate projections, reduce computational overhead	High	Yes	High	University Research Portal
10	Dr. Anya Sharma	Leads NLP research team at major tech firm, focus on LLMs	Principal Research Scientist	a.sharma@techcorp- research.com	40s, Seattle WA (USA), PhD	Industry- focused, values scalability & practical application, efficiency- driven	Streamline development & benchmarking of large language models for specific tasks	Reduce LLM experimentation cycles by 35%, improve task- specific performance	High	Yes	High	Corporate Research Website

Note -1: Like with other worksheets, this is meant to give some structure but it can and should be customized as appropriate for your situation

Note – 2: Relevant Info is other relevant info that is not captured elsewhere, such as "Total Megawatts Installed" for the Methane Capture example from Disciplined Entrepreneurship.

Worksheet #2: Notes From Conversation With Potential End User 1 (Dr. Lena Petrova)

Demographics (be sure to determine which relevant for you situation but some general categories are gender, age, income, geography, job title, education, ethnicity, marital status, political affiliations, etc.) Psychographics (as above this	Female, 30s, PhD, Postdoctoral Researcher at MIT, Cambridge MA (USA). Income typical for postdoc role. Early adopter of new tech, highly values efficiency and cutting-edge tools.
needs to be customize for you situation but examples are aspirations, fears, motivators, hobbies, opinions, values, life priorities, personality traits, habits, etc.)	Driven by advancing multi-agent RL systems. Frustrated by tedious parameter tuning. Seeks tools that accelerate discovery.
Proxy Products (what other products does this end user own and which do they value the most? Which products have the highest correlation with your target end user)	Uses Python ML libraries (PyTorch/TensorFlow), simulation environments (e.g., MuJoCo, PettingZoo), experiment tracking tools (e.g., Weights & Biases), collaboration tools (Slack, GitHub). Values W&B most.
Watering Holes (e.g., locations, associations, online platforms – and sequence them in priority and indicate intensity of each)	NeurIPS, ICML, ICLR conferences (High intensity), MIT CSAIL seminars (High), RL research forums/mailing lists (Medium), Twitter/X (AI research circles) (Medium).
Day in the Life (describe a day in the life of the end user and what is going on in her head)	Starts day reviewing simulation results. Spends significant time coding/debugging RL algorithms, setting up complex simulations, analyzing data. Attends lab meetings, reads papers. Thinks about optimizing training, finding novel approaches, getting next paper published.
Priorities (what are your end user's priorities and assign a weighting to each so that it adds up to 100)	 Publish high-impact RL research: Weighting: 40% Improve efficiency of simulation/experimentation: Weighting: 30% Collaborate effectively with colleagues: Weighting: 15% Stay current with latest RL advancements: Weighting: 10% Secure future research funding/position: Weighting: 5%

Feedback on Full Life Cycle Use	Resonated strongly with the pain points of current manual setup.
Case	Appreciated the vision of an integrated workflow from ideation to results.
	Questioned integration ease with existing simulation tools.
Feedback on High Level Product	Intrigued by the multi-agent architecture and Manager Agent concept.
Specification	Liked the modularity. Asked about customizability of agents for specific RL
	environments. Visual dashboard seemed intuitive.
Feedback on Quantified Value	Found the 40% reduction in setup time highly compelling. Asked for
Proposition	validation/case studies supporting the convergence speed improvement
	claim. Value proposition aligns with key priorities.
General	Expressed strong interest ("High"). Sees potential to significantly speed up
thoughts/conclusions/questions	her research cycles. Key question: How adaptable is the system to highly
the end user has	specialized multi-agent environments?
Your notes after the	Very promising lead. Fits persona well (early adopter, efficiency-focused).
conversation	Technical questions indicate serious consideration. Needs follow-up with
	technical demo/details on customization.

Worksheet #2: Notes From Conversation With Potential End User 2 (Prof. Kenji Tanaka)

Demographics (be sure to	Male, 50s, PhD, Professor, Head of Bioinformatics Lab, University of Tokyo
determine which relevant for	(Japan). Senior academic income level.
you situation but some general	
categories are gender, age,	
income, geography, job title,	
education, ethnicity, marital	
status, political affiliations, etc.)	
Psychographics (as above this	Established researcher, highly results-driven. Seeks tools that provide
needs to be customize for you	significant acceleration for impactful research (drug discovery). Values
situation but examples are	validated, robust solutions over hype. Motivator: Scientific impact.
aspirations, fears, motivators,	
hobbies, opinions, values, life	
priorities, personality traits,	
habits, etc.)	
Proxy Products (what other	Uses bioinformatics software suites (e.g., Schrödinger, Bioconductor),
products does this end user	high-performance computing clusters, data analysis tools (R, Python),
own and which do they value	LIMS. Values HPC access and specialized bioinformatics tools most.
the most? Which products	
have the highest correlation	
with your target end user)	
Watering Holes (e.g., locations,	ISMB/ECCB conferences (High), Bioinformatics journals (Nature Methods,
associations, online platforms –	Bioinformatics) (High), University faculty meetings (Medium), Grant review
and sequence them in priority	panels (Medium).
and indicate intensity of each)	
Day in the Life (describe a day	Oversees multiple research projects, manages lab members, writes grant
in the life of the end user and	proposals, reviews papers, teaches. Less hands-on coding now, focuses on
what is going on in her head)	strategy and direction. Thinks about funding, project milestones, high-leve
	scientific questions.
Priorities (what are your end	Accelerate drug discovery pipeline: Weighting: 35%
user's priorities and assign a	2. Secure major research grants: Weighting: 25%
weighting to each so that it	3. Publish in top-tier journals: Weighting: 20%
adds up to 100)	4. Mentor junior researchers: Weighting: 10%
	5. Maintain lab's reputation: Weighting: 10%

Feedback on Full Life Cycle Use	Recognized the bottlenecks described. Interested in automating
Case	hypothesis generation from large genomic datasets. Skeptical about
Case	replacing established workflows entirely but open to augmenting them.
Feedback on High Level Product	Understood the agent-based approach. Questioned the reliability and
Specification	reproducibility of Al-generated hypotheses. Appreciated the human-in-
	the-loop aspect for expert validation.
Feedback on Quantified Value	25% increase in identifying viable drug candidates is a significant claim.
Proposition	Requested evidence or pilot study data. Needs clear ROI justification for
·	potential institutional purchase/subscription.
General	High interest, but cautious. Sees potential if reliability is proven. Key
thoughts/conclusions/questions	questions: Validation methodology? Integration with existing
the end user has	bioinformatics pipelines? Data security/privacy for sensitive genomic data?
Your notes after the	Important strategic lead (influential). Needs strong evidence/case study
conversation	relevant to bioinformatics/drug discovery. Emphasize reliability, validation,
	and human oversight. Potential decision- maker/budget holder.

Worksheet #2: Notes From Conversation With Potential End User 3 (Maria García)

Demographics (be sure to	Female, 20s, MSc Student (soon PhD Candidate), ETH Zurich (Switzerland).
determine which relevant for	Graduate student income.
you situation but some general	
categories are gender, age,	
income, geography, job title,	
education, ethnicity, marital	
status, political affiliations, etc.)	
Psychographics (as above this	Detail-oriented, focused on thesis work. Needs robust, reliable tools for
needs to be customize for you	analysis. Values collaboration and clear methodology. Fear: Errors in
situation but examples are	analysis affecting thesis results. Motivator: Completing PhD successfully.
aspirations, fears, motivators,	
hobbies, opinions, values, life	
priorities, personality traits,	
habits, etc.)	
Proxy Products (what other	Uses MATLAB/Python (OpenCV, Scikit-image), medical imaging software
products does this end user	(e.g., ITK-SNAP, 3D Slicer), reference managers (Zotero), collaborative
own and which do they value	platforms (Overleaf). Values Python libraries and Overleaf most.
the most? Which products	
have the highest correlation	
with your target end user)	
Watering Holes (e.g., locations,	MICCAI conference (Medium/High), CVPR/ECCV (relevant sessions)
associations, online platforms –	(Medium), ETH research group seminars (High), PhD student
and sequence them in priority	forums/networks (Medium), Stack Overflow (for coding issues) (Medium).
and indicate intensity of each)	
Day in the Life (describe a day	Spends long hours coding image analysis algorithms, running experiments
in the life of the end user and	on large datasets, analyzing/visualizing results, writing thesis sections.
what is going on in her head)	Frequent meetings with supervisor. Thinks about thesis progress,
	debugging code, interpreting complex results.
5	
Priorities (what are your end	1. Complete PhD thesis with high-quality results: Weighting: 50%
user's priorities and assign a	2. Develop robust and reproducible analysis methods: Weighting:
weighting to each so that it	25%
adds up to 100)	3. Publish research findings: Weighting: 15%
	4. Learn advanced CV/ML techniques: Weighting: 5%
	5. Collaborate with lab mates: Weighting: 5%

Feedback on Full Life Cycle Use	Immediately recognized the pain of manual feature extraction and review.
Case	Excited by the potential for automation and improved consistency
	described in the "Possible" state.
Feedback on High Level Product	Found the concept clear. Interested in the "Review" and "Benchmarking"
Specification	agents for ensuring analysis quality. Asked about ease of use for non-Al
	experts and supported image formats.
Feedback on Quantified Value	60% reduction in manual review time is extremely attractive given thesis
Proposition	deadlines. Needs assurance that automation doesn't sacrifice accuracy.
	Value aligns perfectly with need for efficiency and robustness.
General	High interest, very enthusiastic. Sees direct application to her thesis work.
thoughts/conclusions/questions	Key questions: Learning curve? Cost for student/academic lab? Specificity
the end user has	for medical image analysis tasks?
Your notes after the	Ideal early adopter profile (PhD student with specific pain point). High
conversation	motivation due to thesis pressure. Needs clear info on usability, pricing,
	and specific CV capabilities. Potential advocate within her lab/university.

Worksheet #2: Notes From Conversation With Potential End User 4 (Dr. Samuel Jones)

Demographics (be sure to determine which relevant for you situation but some general categories are gender, age, income, geography, job title, education, ethnicity, marital status, political affiliations, etc.)	Male, 40s, PhD, Associate Professor (Al Ethics), Stanford University, CA (USA). Professor-level income.
Psychographics (as above this needs to be customize for you situation but examples are aspirations, fears, motivators, hobbies, opinions, values, life priorities, personality traits, habits, etc.)	Values transparency, fairness, and ethical considerations in AI deeply. Seeks rigorous, validated methods for assessing bias and robustness. Skeptical of black-box solutions. Motivator: Promoting responsible AI development.
Proxy Products (what other products does this end user own and which do they value the most? Which products have the highest correlation with your target end user)	Uses Python libraries for fairness/explainability (AIF360, SHAP, LIME), statistical software (R), standard ML frameworks (TensorFlow/PyTorch), survey tools. Values fairness toolkits and statistical software most.
Watering Holes (e.g., locations, associations, online platforms – and sequence them in priority and indicate intensity of each)	FAccT Conference (High), AIES Conference (High), AI ethics workshops/symposia (High), Law/Policy journals related to tech (Medium), University ethics center events (High).
Day in the Life (describe a day in the life of the end user and what is going on in her head)	Teaches courses on AI ethics, advises students, conducts research on bias/fairness, writes papers and policy briefs, collaborates with legal/social science scholars. Thinks about societal impact of AI, policy implications, methodological rigor.
Priorities (what are your end user's priorities and assign a weighting to each so that it adds up to 100)	 Develop/promote rigorous methods for AI fairness/transparency: Weighting: 35% Publish influential research on AI ethics: Weighting: 30% Educate students/public on responsible AI: Weighting: 20% Influence AI policy/standards: Weighting: 10% Secure funding for ethics research: Weighting: 5%

Feedback on Full Life Cycle Use	Acknowledged the need for better tools to benchmark fairness/robustness
Case	across models, which is currently complex and manual. Interested in
	automating this comparison.
Feedback on High Level Product	Cautiously interested. Needs clarity on how the "Benchmarking" and
Specification	"Review" agents assess fairness. Concerned about the system potentially
	introducing its own biases. Human oversight is critical.
Feedback on Quantified Value	"Identify potential biases earlier" is valuable. "Ensure compliance" is
Proposition	relevant but needs specifics on standards supported. Value prop is
	relevant but needs deep technical validation for this user.
General	Medium-High interest, contingent on transparency and methodological
thoughts/conclusions/questions	soundness. Key questions: How are fairness metrics
the end user has	implemented/validated? Can the system itself be audited for bias? What
	level of control does the user have over the benchmarking process?
Your notes after the	Important niche user. Trust and transparency are paramount. Needs
conversation	detailed technical documentation on fairness/robustness agent
	implementation. Collaboration/co-development potential? Emphasize
	auditability and user control.

Worksheet #2: Notes From Conversation With Potential End User 5 (Dr. Ingrid Hoffmann)

Demographics (be sure to	Female, 40s, PhD, Research Group Leader, Max Planck Institute (Tübingen,
determine which relevant for	Germany). Senior researcher salary.
you situation but some general	definally). Selliof researcher salary.
categories are gender, age,	
income, geography, job title,	
education, ethnicity, marital	
status, political affiliations, etc.)	Leave of the condition for each ford and the condition for each of
Psychographics (as above this	Innovative, application-focused. Seeks automation for complex robotic
needs to be customize for you	experiments. Values tools that accelerate the development cycle from
situation but examples are	theory to real-world application. Motivator: Building intelligent
aspirations, fears, motivators,	autonomous systems.
hobbies, opinions, values, life	
priorities, personality traits,	
habits, etc.)	
Proxy Products (what other	Uses ROS (Robot Operating System), simulation platforms (Gazebo, Isaac
products does this end user	Sim), ML frameworks (PyTorch), data acquisition hardware/software,
own and which do they value	control systems software (MATLAB/Simulink). Values ROS and simulation
the most? Which products	tools most.
have the highest correlation	
with your target end user)	
Watering Holes (e.g., locations,	ICRA, IROS conferences (High), Robotics and Automation Letters (RA-L)
associations, online platforms –	journal (High), Max Planck internal seminars (High), European robotics
and sequence them in priority	networks (Medium).
and indicate intensity of each)	
Day in the Life (describe a day	Leads research group, designs experiments, supervises PhDs/Postdocs,
in the life of the end user and	secures funding, manages lab resources, writes papers/reports. Mix of
what is going on in her head)	high-level strategy and detailed experimental oversight. Thinks about
,	system integration, real-world deployment challenges, funding cycles.
Priorities (what are your end	1. Accelerate development of autonomous systems: Weighting: 40%
user's priorities and assign a	2. Publish cutting-edge robotics research: Weighting: 25%
weighting to each so that it	3. Secure research funding/projects: Weighting: 20%
adds up to 100)	4. Mentor and lead research team: Weighting: 10%
•	5. Bridge theory and real-world robotic applications: Weighting: 5%

Feedback on Full Life Cycle Use	Resonated with the challenges of planning complex experiment sequences
Case	and analyzing diverse sensor data. Sees clear value in automating these
	steps.
Feedback on High Level Product	Intrigued by the "Experiment Planning" and "Code Execution" agents.
Specification	Asked about integration with ROS and specific robotic hardware/sensors.
	Appreciated the potential for a unified control/analysis platform.
Feedback on Quantified Value	30% acceleration in development cycle for navigation algorithms is a
Proposition	strong incentive. Needs to understand how this is achieved – is it faster
	planning, execution, or analysis? Value directly addresses core priority.
General	High interest. Sees clear application for her group's work. Key questions:
thoughts/conclusions/questions	Compatibility with specific robotics toolchains (ROS/ROS2)? Handling real-
the end user has	time data streams? Scalability for complex multi-robot scenarios?
Your notes after the	Excellent fit, potential power user/advocate. Needs technical details on
conversation	robotics integration (ROS is key). Demo should focus on experiment
	planning and automated data analysis for a robotics use case. Potential for
	pilot project.

Worksheet #2: Notes From Conversation With Potential End User 6 (Chen Wei)

Demographics (be sure to	Male, 20s, MSc Student (pursuing PhD), Tsinghua University (Beijing,		
determine which relevant for you situation but some general	China). Graduate student income.		
categories are gender, age,			
income, geography, job title,			
education, ethnicity, marital			
status, political affiliations, etc.)			
Psychographics (as above this	Tech-savvy, actively seeks productivity tools. Values open-source		
needs to be customize for you	principles. Focused on research in generative models for scientific text.		
situation but examples are	Motivator: Improving efficiency of academic writing/literature review.		
aspirations, fears, motivators,	,		
hobbies, opinions, values, life			
priorities, personality traits,			
habits, etc.)			
Proxy Products (what other	Uses Python NLP libraries (Hugging Face Transformers, NLTK), LLM APIs		
products does this end user	(OpenAI, local models), reference managers (Zotero/Mendeley), writing		
own and which do they value	tools (LaTeX/Overleaf), code repositories (GitHub). Values Hugging Face		
the most? Which products	and LLM access most.		
have the highest correlation			
with your target end user)			
Watering Holes (e.g., locations,	ACL, EMNLP conferences (High), arXiv (NLP sections) (High), Tsinghua NLP		
associations, online platforms –	lab seminars (High), WeChat academic groups (Medium), Open-source Al		
and sequence them in priority	communities (GitHub, Discord) (Medium).		
and indicate intensity of each)			
Day in the Life (describe a day	Reads NLP papers, trains/fine-tunes generative models, writes code for		
in the life of the end user and	experiments, analyzes model outputs, drafts sections of papers (especially		
what is going on in her head)	literature review). Thinks about model performance, novelty of research,		
	publication deadlines.		
Priorities (what are your end	Publish PhD research in top NLP venues: Weighting: 40%		
user's priorities and assign a	2. Improve efficiency of research writing process: Weighting: 30%		
weighting to each so that it	3. Develop novel generative models/techniques: Weighting: 20%		
adds up to 100)	4. Stay updated with NLP advancements: Weighting: 5%		
,	5. Contribute to open-source projects: Weighting: 5%		
Feedback on Full Life Cycle Use	Strongly related to the pain of literature synthesis. Excited about		
Case	automating parts of the literature review drafting process.		

Feedback on High Level Product	Interested in the "Idea Generation" and "Review" agents applied to text.			
Specification	Asked about the underlying models used for summarization/synthesis and			
	support for different languages (e.g., Chinese).			
Feedback on Quantified Value	50% reduction in literature synthesis time is highly appealing. Needs to			
Proposition	understand the quality and accuracy of the Al-generated			
	summaries/drafts. Value prop directly targets a major time sink.			
General	High interest. Sees immediate utility for his research workflow. Key			
thoughts/conclusions/questions	questions: Quality of generated text? Customizability for specific			
the end user has	domains/writing styles? Data privacy for unpublished research			
	ideas/drafts? Cost for students?			
Your notes after the	Great fit, represents a common PhD student pain point. Needs assurance			
conversation	on output quality and data privacy. Demo should showcase literature			
	summarization/drafting capabilities. Value of open-source aspect could be			
	a selling point.			

Worksheet #2: Notes From Conversation With Potential End User 7 (Prof. David Levy)

Demographics (be sure to	Male, 60s, PhD, Professor, University of Cambridge (UK). Senior Professor
determine which relevant for	salary.
you situation but some general	
categories are gender, age,	
income, geography, job title,	
education, ethnicity, marital	
status, political affiliations, etc.)	
Psychographics (as above this	Theoretical focus, values logical rigor and foundational insights. Seeks
needs to be customize for you	novel ways to explore complex causal relationships. Less focused on
situation but examples are	speed, more on depth and correctness. Motivator: Advancing fundamental
aspirations, fears, motivators,	understanding of causality/AI.
hobbies, opinions, values, life	
priorities, personality traits,	
habits, etc.)	
Proxy Products (what other	Uses statistical software (R, Stata), causal inference libraries (e.g., DoWhy,
products does this end user	CausalML), symbolic math software (Mathematica), LaTeX. Values
own and which do they value	statistical and causal inference tools most.
the most? Which products	
have the highest correlation	
with your target end user)	
Watering Holes (e.g., locations,	UAI, NeurIPS (causality tracks) (High), Journal of Machine Learning
associations, online platforms –	Research (JMLR), Journal of Causal Inference (High), Cambridge Computer
and sequence them in priority	Lab seminars (High), Formal methods communities (Medium).
and indicate intensity of each)	
Day in the Life (describe a day	Develops theoretical frameworks, advises PhD students on foundational
in the life of the end user and	research, writes mathematical proofs and theoretical papers, reviews
what is going on in her head)	complex submissions, engages in deep theoretical discussions. Thinks
	about logical consistency, novel theoretical connections, fundamental
	limitations.
Priorities (what are your end	 Advance foundational theory of causality and AI reasoning:
user's priorities and assign a	Weighting: 45%
weighting to each so that it	2. Publish seminal theoretical papers: Weighting: 25%
adds up to 100)	3. Mentor students in theoretical research: Weighting: 15%
	4. Ensure logical rigor in Al research: Weighting: 10%
	5. Engage with philosophical aspects of AI: Weighting: 5%

Feedback on Full Life Cycle Use	Acknowledged limitations of purely manual exploration of complex causal			
Case	hypotheses from observational data. Intrigued by the possibility of Al			
Case	assistance in formulating and testing these hypotheses systematically.			
- 11 1 11 11 15 1				
Feedback on High Level Product	Interested in the "Hypothesis" and "Experiment" (interpreted as			
Specification	testing/validation) agents. Needs deep understanding of the reasoning			
	mechanisms used by the AI. Skeptical about AI truly capturing causal			
	nuances without strong theoretical grounding.			
Feedback on Quantified Value	"Explore complex causal relationships not easily testable manually"			
Proposition	resonates. Less concerned with speed, more with the ability to uncover			
	non-obvious connections rigorously. Value prop needs to emphasize			
	depth/rigor over just automation.			
General	Medium-High interest, primarily theoretical. Sees potential if the system's			
thoughts/conclusions/questions	reasoning is sound and transparent. Key questions: What causal			
the end user has	models/assumptions does the system use? How does it handle			
	confounding/selection bias? Can its reasoning steps be inspected/verified?			
Your notes after the	Represents a more theoretical user segment. Trust requires demonstrating			
conversation	rigorous and transparent reasoning. Focus on the system's ability to			
	explore hypothesis space systematically, not just speed. Potential for deep			
	theoretical feedback.			

Worksheet #2: Notes From Conversation With Potential End User 8 (Dr. Fatima Rossi)

Demographics (be sure to	Female, 30s, PhD, Head of Al Research, Biotech Startup (GenomeCure),		
determine which relevant for	Boston MA (USA). Startup leadership salary range.		
you situation but some general			
categories are gender, age,			
income, geography, job title,			
education, ethnicity, marital			
status, political affiliations, etc.)			
Psychographics (as above this	Entrepreneurial mindset, highly deadline-driven. Needs quick, reliable		
needs to be customize for you	results for fast-paced R&D. Values tools that integrate complex data and		
situation but examples are	accelerate discovery for commercial goals (clinical trials). Pressure from		
aspirations, fears, motivators,	investors/milestones.		
hobbies, opinions, values, life			
priorities, personality traits,			
habits, etc.)			
Proxy Products (what other	Uses cloud computing platforms (AWS/GCP), bioinformatics tools, ML		
products does this end user	frameworks (PyTorch/TensorFlow), data integration platforms, project		
own and which do they value	management software (Jira). Values cloud scalability and data integration		
the most? Which products	capabilities most.		
have the highest correlation			
with your target end user)			
Watering Holes (e.g., locations,	BIO International Convention (High), JP Morgan Healthcare Conference		
associations, online platforms –	(relevant tracks) (Medium), AI in Pharma/Biotech events (High), Boston		
and sequence them in priority	biotech networking events (High), Startup communities (Medium).		
and indicate intensity of each)			
Day in the Life (describe a day	Manages AI team, defines research strategy aligned with company goals,		
in the life of the end user and	liaises with biology/clinical teams, analyzes pilot results, prepares reports		
what is going on in her head)	for leadership/investors. Thinks about milestones, burn rate, competitive		
	landscape, IP.		
Bright Line	4 A		
Priorities (what are your end	1. Accelerate biomarker discovery for clinical trials: Weighting: 50%		
user's priorities and assign a	2. Deliver on R&D milestones for funding/partnerships: Weighting:		
weighting to each so that it	25%		
adds up to 100)	3. Build and manage high-performing AI team: Weighting: 15%		
	4. Integrate diverse biological data effectively: Weighting: 5%		
	5. Ensure robustness and reproducibility of results: Weighting: 5%		

Feedback on Full Life Cycle Use	Immediately understood the challenge of integrating multi-modal data			
Case	(genomic, clinical). Highly interested in solutions that speed up the path			
Case				
	from data to actionable biomarkers.			
Feedback on High Level Product	Appreciated the modular approach for potentially handling different data			
Specification	types. Asked about scalability for large datasets and integration with			
	existing cloud infrastructure (AWS/GCP). Needs reliability and speed.			
Feedback on Quantified Value	"Accelerate identification of promising biomarkers" is the core value			
Proposition	proposition needed. Needs quantifiable evidence (e.g., time reduction,			
	improved prediction accuracy) relevant to biotech R&D cycles.			
General	High interest, driven by urgent business needs. Sees clear potential fit if			
thoughts/conclusions/questions	performance and reliability meet industry demands. Key questions:			
the end user has	Scalability? Integration APIs? Validation in biotech context? Data			
	security/compliance (HIPAA)?			
Your notes after the	Key industry contact. High pressure for results makes her open to			
conversation	impactful solutions. Needs enterprise-level assurances: scalability,			
	reliability, security, integration. Case study in biotech/pharma would be			
	crucial. Potential early industry partner.			

Worksheet #2: Notes From Conversation With Potential End User 9 (Dr. Ben Carter)

Demographics (be sure to	Male, 30s, PhD, Postdoctoral Fellow (Climate Science), University of			
determine which relevant for	Melbourne (Australia). Postdoc salary range.			
you situation but some general				
categories are gender, age,				
income, geography, job title,				
education, ethnicity, marital				
status, political affiliations, etc.)				
Psychographics (as above this	Mission-driven, passionate about climate change research. Works with			
needs to be customize for you	large, complex datasets and simulations. Needs powerful, efficient tools to			
situation but examples are	handle data intensity. Values accuracy and impact of research on climate			
aspirations, fears, motivators,	understanding/policy.			
hobbies, opinions, values, life				
priorities, personality traits,				
habits, etc.)				
Proxy Products (what other	Uses HPC environments, climate modeling software (e.g., CESM, NEMO),			
products does this end user	data analysis tools (Python with xarray, Dask; NCL), GIS software (e.g.,			
own and which do they value	QGIS), NetCDF data format tools. Values HPC access and climate data			
the most? Which products	analysis libraries most.			
have the highest correlation				
with your target end user)	ACH Fall Marting FCH Commel Assembly (High) Climate asiana issued			
Watering Holes (e.g., locations,	AGU Fall Meeting, EGU General Assembly (High), Climate science journals			
associations, online platforms –	(Nature Climate Change, J. Climate) (High), University climate research			
and sequence them in priority	group meetings (High), Climate data portals/forums (CMIP) (Medium).			
and indicate intensity of each)	Douglands/processes massive climate detects runs compley simulations			
Day in the Life (describe a day in the life of the end user and	Downloads/processes massive climate datasets, runs complex simulations			
	on HPC clusters, writes code for analysis/visualization, interprets model			
what is going on in her head)	outputs, writes papers. Thinks about model accuracy, computational bottlenecks, climate impacts.			
	bottlenecks, climate impacts.			
Priorities (what are your end	Improve accuracy/efficiency of climate model			
user's priorities and assign a	simulations/analysis: Weighting: 40%			
weighting to each so that it	2. Publish impactful climate science research: Weighting: 30%			
adds up to 100)	3. Contribute to understanding of climate change impacts:			
- 1 /	Weighting: 20%			
	4. Handle large-scale climate data effectively: Weighting: 5%			
	5. Secure future research position: Weighting: 5%			

Feedback on Full Life Cycle Use	Recognized the computational overhead and complexity of			
Case	running/benchmarking climate models. Interested in ways to make this			
	process more efficient.			
Feedback on High Level Product	Intrigued by potential application of AI agents for optimizing simulation			
Specification	runs or analyzing outputs. Asked about compatibility with standard climate			
	data formats (NetCDF) and HPC environments (schedulers like Slurm).			
Feedback on Quantified Value	"Improve accuracy" and "reduce computational overhead" are highly			
Proposition	relevant. Needs specifics on how AI improves accuracy (e.g., parameter			
	tuning, bias correction?) and the extent of overhead reduction.			
General	High interest, motivated by potential for significant research acceleration			
thoughts/conclusions/questions	in a critical field. Key questions: Integration with HPC systems? Handling			
the end user has	NetCDF? Specific AI methods applied to climate modeling tasks?			
Your notes after the	Strong potential user in a data-intensive scientific domain. Needs technical			
conversation	validation for climate science specifics (HPC, NetCDF). Emphasize efficiency			
	gains and potential for improved accuracy. Potential for a high-impact case			
	study.			

Worksheet #2: Notes From Conversation With Potential End User 10 (Dr. Anya Sharma)

Demographics (be sure to	Female, 40s, PhD, Principal Research Scientist, Major Tech Firm (TechCorp			
determine which relevant for	Research), Seattle WA (USA). Senior industry researcher salary.			
you situation but some general				
categories are gender, age,				
income, geography, job title,				
education, ethnicity, marital				
status, political affiliations, etc.)				
Psychographics (as above this	Industry-focused, values scalability, practical application, and efficiency.			
needs to be customize for you	Needs tools that streamline LLM development and benchmarking for			
situation but examples are	specific tasks relevant to company products/services. Results-oriented,			
aspirations, fears, motivators,	works on team projects.			
hobbies, opinions, values, life				
priorities, personality traits,				
habits, etc.)				
Proxy Products (what other	Uses internal MLOps platforms, major cloud providers (AWS/GCP/Azure),			
products does this end user	ML frameworks (PyTorch/Jax), LLM libraries (Hugging Face), experiment			
own and which do they value	tracking tools (internal or W&B/MLflow). Values internal platforms and cloud resources most.			
the most? Which products have the highest correlation	cloud resources most.			
with your target end user)				
Watering Holes (e.g., locations,	Top AI/ML conferences (NeurIPS, ICML, ACL) (High), Internal tech			
associations, online platforms –	talks/research reviews (High), Industry Al labs' publications/blogs (Google			
and sequence them in priority	Al, Meta Al) (Medium), Tech news (The Verge, TechCrunch) (Low).			
and indicate intensity of each)				
Day in the Life (describe a day	Leads NLP research team, defines project goals, designs/oversees LLM			
in the life of the end user and	experiments, analyzes results for product impact, collaborates with			
what is going on in her head)	engineering teams, mentors junior researchers. Thinks about scalability,			
	performance metrics, product integration, team deadlines.			
Priorities (what are your end	Improve performance/efficiency of LLMs for specific tasks:			
user's priorities and assign a	Weighting: 40%			
weighting to each so that it	2. Streamline LLM development & benchmarking cycles: Weighting:			
adds up to 100)	35%			
	3. Publish/patent novel NLP techniques: Weighting: 10%			
	4. Mentor/lead research team: Weighting: 10%			
	5. Contribute to company's AI strategy: Weighting: 5%			

Feedback on Full Life Cycle Use	Resonated strongly with the challenges of LLM experimentation cycles and			
Case	benchmarking. Sees significant value in tools that can accelerate this			
	process.			
Feedback on High Level Product	Understood the agent-based approach. Interested in how agents handle			
Specification	large model training/fine-tuning and complex benchmarking setups across			
	multiple tasks/metrics. Asked about integration with internal MLOps tools.			
Feedback on Quantified Value	35% reduction in experimentation cycles is a compelling metric for			
Proposition	industry R&D. Needs confidence in the reliability and scalability of the			
	system to achieve this consistently for large models.			
General	High interest, aligns well with industry needs for efficient LLM			
thoughts/conclusions/questions	development. Key questions: Scalability for foundation models?			
the end user has	Integration with MLOps pipelines? Customization for proprietary			
	tasks/datasets? Security/IP protection?			
Your notes after the	Key industry contact in a major target area (LLMs). Needs enterprise-grade			
conversation	features: scalability, integration, security. Emphasize efficiency gains and			
	benchmark streamlining. Potential for a significant pilot or partnership.			

How did you source people to talk to in this step?

We sourced potential end users through diverse academic and industry channels identified in Worksheet #1: examining authors of relevant conference papers (NeurIPS, FAccT, etc.), browsing university faculty/research directories and lab websites (MIT, UTokyo, ETH, Stanford, MPI, Tsinghua, Cambridge, UniMelb), identifying speakers at relevant conferences (AI Ethics), reviewing attendees/participants from industry events (Biotech), searching academic collaboration networks and research portals, and reviewing corporate research websites (TechCorp). Known experts were also identified through their publications.

How many did you speak to?

We had substantive conversations resulting in confirmed high interest and useful information with 10 potential end users (those listed in Worksheet #1).

How did you filter them to make sure they fit your end user profile?

Filtering was based on multiple criteria derived from the beachhead market definition and persona:

- 1. Role: Focused on active researchers (PhD students, Postdocs, Professors, Research Scientists, Group Leaders) in academic or research-intensive industry settings.
- 2. Field: Targeted researchers working in AI/ML or using advanced computational methods in fields like bioinformatics, CV, robotics, NLP, ethics, causality, climate science, biotech.
- 3. Al Adoption: Looked for indicators of being early adopters or working with advanced Al/computation (e.g., publications in top Al venues, focus on cutting-edge techniques like RL, LLMs, Al ethics).
- 4. Need/Pain Point: Assessed alignment between their research focus (from profiles, publications) and the potential use cases and value propositions of Cogency AI (e.g., need for efficiency, automation, handling complexity, specific tasks like parameter tuning, hypothesis generation, benchmarking).
- 5. Psychographics: Traits like being results-driven, innovative, efficiency-seeking, or valuing rigor, aligning with the target persona characteristics.

What was your yield rate to get to the final list (how many did you try to contact, and how many did you get useful info out of)?

Number attempted to contact: 30

Number resulting in useful info / high interest (final list): 10

Yield Rate Calculation: (Number of useful outcomes / Number attempted) * 100%

- = (10 / 30) * 100%
- = (1 / 3) * 100%
- = 33.3%

<u>Step</u>	Hypotheses you tested during this step (you can test more or fewer hypotheses for each category than what is listed here)	What conclusions did you reach about the hypothesis? (Validated/ Invalidated/ Still Unclear – Needs More Work)	What is your next action related to this hypothesis?
2 – Beachhead Market	1. Early adopter academic/industry researchers using AI across diverse fields (RL, Bioinfo, CV Ethics, Robotics, NLP, etc.) are reachable and interested 2. Our defined beachhead market (600k users) contains readily identifiable individuals fitting our profile.	·	Proceed with targeted outreach strategies based on identified sources (conferences, publications, directories). Refine messaging for specific subfields within the beachhead.
3 – End User Profile	 The profile of researchers (PhD/Postdoc/Prof/Scientist) tech-savvy, seeking efficiency/impact/innovation aligns with real individuals. Key psychographics (early adopter, results-driven, values rigor) exist in target users. 	Validated (The 10 individuals largely match the demographic and psychographic profiles).	Further refine understanding of specific pain points and priorities within different research roles (e.g., Prof vs. Postdoc vs. Industry Scientist). Tailor value prop communication.
4 – Beachhead TAM	The estimated TAM (€150M-€600M) is supported by finding sufficient high-interest potential users willing to consider a solution priced around €250-€1000/year.	Validated (Found 10 high- interest leads suggesting market potential, though pricing wasn't explicitly tested here).	Conduct specific pricing validation in future conversations. Continue bottom-up validation by identifying more potential customers.
<u>5 – Persona</u>	"Chrysis Andreou" (Al Master's student, passionate efficiency- focused)	Validated (Many individuals, especially PhDs/Postdocs like	Use Persona priorities to guide feature prioritization and messaging. Develop

	o b 2. P P E. Ir	epresents key characteristics f a segment within our eachhead. riorities identified for the ersona (Academic xcellence, Building Al, nnovation) resonate with ctual researchers.	Petrova, García, Wei, Carter, share similar drives for efficiency, tool building, and research impact).	variations of the persona for different roles (e.g., Professor, Industry Researcher).
6 – Full Life Cycle Use Case	si cc e cc 2. A w e p 3. S p	esearchers experience ignificant pain points in urrent workflows (manual ffort, fragmentation, time onsumption). In integrated, Al-assisted vorkflow (ideation, planning, xecution, analysis) is erceived as valuable. pecific use cases (e.g., arameter tuning, hypothesis en, literature synth, enchmarking) align with real eeds.	Validated (High interest levels and specific use case matches across the 10 individuals confirm the relevance of the proposed workflow and specific applications).	Deepen understanding of integration challenges with existing tools (Proxy Products). Refine onboarding process to address potential setup friction (Install/Setup stage).
7 – High-Level Product Spec	a sy u a 2. K b ir	he modular, agent-based rchitecture (Manager + pecialized agents) is nderstandable and ppealing to target users. ey features like automation, enchmarking, and humannthe-loop control address dentified needs.	Validated (High interest suggests the spec resonates; specific questions focused on details/integration rather than rejecting the core concept).	Develop MVP based on the core architecture. Prepare detailed documentation on agent functions, customization, and integration points based on user questions.
8 – Value Prop	T Ir R co 2. T a	Quantified benefits (e.g., ime savings 30-60%, ncreased discovery 25%, educed cycles 35%) are ompelling to researchers. he core value of ccelerating esearch/improving fficiency/enabling novel	Validated (Specific value props listed for each user generated high interest, aligning with their stated goals and research areas).	Gather concrete proof points (case studies, pilot results) to substantiate quantified claims. Tailor quantitative value prop statements to specific research domains (e.g., drug discovery vs. climate modeling).

		exploration aligns with user		
		priorities.		
Other Key	1.	Researchers across different	Validated (Found	Develop region-specific go-
<u>Assumptions</u>		global regions (US, Japan, EU,	interested users globally	to-market considerations if
		China, Australia) face similar	and in both	necessary. Create tailored
		challenges and are	academia/industry).	outreach for academic vs.
		interested.	Validated (Found users in	industry segments. Define
	2.	Interest exists in both	both).	clear next steps to convert
		academic and industry	Validated (Implied by	interest into commitment
		research settings.	"High" interest, but needs	(e.g., LOI criteria, pilot
	3.	High interest translates into	further testing for	program).
		willingness to engage further	commitment).	
		(e.g., demo, pilot, LOI).		

Worksheet

Think long, hard and creatively about what assets your team and new venture have. They can include capabilities, connections, branding opportunities, personal attributes, personal wealth, intellectual property, unique insights, key customer commitments or something else.

	Our Core Worksheet What is your value proposition (from Step 8)?	
	Accelerate research by 50% (reducing cycle time from 50 to 25 hours)	
	through an integrated, automated AI workflow featuring self-improving	
	multi-agent reasoning, enhancing research quality and enabling faster	
	breakthroughs.	
Wha	at assets does your team have? Prioritize from strongest to weakest.	
1.	Unique Al Architecture: Self-improving system based on adaptive, multi-	Strongest
	agent reasoning and continuous learning from real-world outcomes.	
2.	Deep AI/ML Expertise: Specific knowledge in agentic systems, meta-	
	reasoning, and reinforcement learning applied to scientific research.	
3.	Continuous Learning Capability: The system's inherent design to learn and	
	improve persistently over time.	
4.	Modular & Flexible Framework: Enables adaptation, integration of new	
	tools, and customization (including human-in-the-loop).	
5.	Human-in-the-Loop Integration Design: Provides user control and builds	
	trust, addressing a key researcher need.	
6.	Focus on Scientific Research Niche: Deep understanding of the academic	•
	research process and pain points.	
7.	Persona-Driven Development Approach: Clear focus on the target user	
	(Chrysis Andreou) and their priorities.	
8.	Strategic Clarity & Vision: Well-defined mission and product concept	
	differentiating from competitors.	
9.	Potential for Open-Source Alignment: Connects with values important to	
	the target academic community.	
10.	Academic & Tech Network Connections: Access to early adopters, feedback,	Weakest
	and potential collaborators within the target market.	
Wha	at are your proposed moats for your business?	
1.	Self-Improving System via Continuous Learning: The system gets	Strongest
	progressively better and more tailored with more usage and data, creating a	
	compounding advantage difficult for competitors starting later to replicate.	
2.	Proprietary Multi-Agent Architecture & Meta-Reasoning Algorithms: The	
	specific design and coordination mechanism of the agents, potentially	
	protectable via IP, creates a technical barrier.	
3.	Network Effects (Data & Learning): More users generate more diverse	1
	research outcome data, improving the AI's effectiveness across various	
	domains, making the platform more valuable and harder to switch from.	
4.	Deep Integration & Switching Costs: Embedding Cogency AI into the core	
	research workflow makes it inconvenient and time-consuming for users to	
	switch to alternatives.	
5.	Brand Trust & Human Control: Building a reputation for reliable,	

6.	Niche Market Focus & Expertise: Deep specialization in the needs and	Weakest				
	workflows of academic researchers, potentially overlooked by larger, more					
	general AI players.					
Wh	nat are potential Cores for your business?					
1.	Self-Improving AI via Continuous Learning from Real Research Outcomes:					
	The dynamic ability of the system to enhance its research strategies based					
	on success/failure data					
2.	Adaptive Multi-Agent Reasoning Architecture: The unique, flexible					
	structure enabling complex task decomposition and execution.					
3.	Human-Guided Autonomous Research Capability: The specific blend of Al					
	autonomy and human oversight tailored for scientific discovery.					
4.	Integrated End-to-End Research Workflow Automation: Focusing on the					
	comprehensive nature of the automation provided.					
	cision:					
1.	What is your proposed Core from these choices?					
1	Self-Improving AI via Continuous Learning from Real Research Outcomes.					
2.	Why is or will this Core be unique?	1)				
	It's unique because unlike fixed pipelines (like Google's CoScientist mentioned					
	simulated/limited environments, Cogency AI learns persistently and adaptive	•				
	diverse, real-world scientific research tasks executed through its multi-agent					
	feedback loop from actual research success and failure allows it to refine com	iplex reasoning and				
1	strategies in a way that static or less integrated systems cannot.					
3.	, , , , , , , , , , , , , , , , , , , ,					
	It's critically important to academic researchers (like Chrysis) because their property of the control of the c					
	quality, novel research efficiently (Academic Excellence & Breakthrough Innoversearch) constantly gets better at assisting with this core task—learning what strategies					
	avoiding dead ends, suggesting more effective experiments—directly translate	_				
	impact publications, and faster progress. This directly enables the value proper	_				
	research by 50% and enhancing quality; the self-improvement drives the incre	_				
4.	How does it grow over time relative to competitors in a way that competitors					
4.	they realize it?	can t simply catch up once				
	The Core grows stronger through a data network effect specific to research o	utcomes As more				
	researchers use Cogency AI across diverse fields and problems, the system ac					
	dataset of successful and unsuccessful research strategies and heuristics. This					
	refine its internal models (via reinforcement learning on real outcomes). A co	•				
	would lack this accumulated, outcome-linked intelligence. They could copy th					
	couldn't instantly replicate the nuanced, learned strategies derived from pote	•				
	research data, giving Cogency AI a persistent performance advantage that gro					
5.	What was your second (or third) choice, and why is your first choice a better s					
	contrast.	μ				
	A strong second choice was the Adaptive Multi-Agent Reasoning Architectur	e. This architecture is				
	fundamental – it's the engine that enables the Core. However, the architecture					
	(though flexible). The Self-Improving AI via Continuous Learning is the dynan					
	sustainable advantage. While the architecture is a key asset and contributes t					
	represent the central value creation engine that grows over time. Competitor					
	similar architecture, but replicating the intelligence learned through continuo					
	(the Core) is significantly harder and takes time and data they won't have. The					
	improvement aspect better captures the unique, compounding value proposi					
		,				

The decision on the Core can take a while and may seem a bit frustrating as you want to move ahead and continue to make progress. I completely understand. Isn't getting sales a great thing?

But you must understand that making sales without a Core is not sustainable if you want to be a high-growth company, because you success will only draw attention to the opportunity you have identified, and then competitors will rush in. At that point, your beautiful new venture will turn out to have been built on a foundation of sand and it will come sliding down.

So even if you aren't sure what is the best selection for Core, pick a few candidates for the Core and realize you have to solve this riddle soon. Some of your potential Cores may end up as strong moats, but the most important thing is that you are thinking ahead and protecting yourself, and it is also highly relevant as you proceed to Step 11, Chart Your Competitive Position.

Step 11: Chart Your Competitive Position

Worksheet

Now apply the same framework to your new venture and tie back to Step 10, Define Your Core, in the final question.

Where are you positioned relative to your competition, including the "do nothing" option? Are you in the upper-right corner? If not, why do you think that is? If other competitors are close to you on the chart, why?

We position Cogency AI Co-Scientist () squarely in the upper-right corner, indicating superior performance on both key customer priorities: Research Acceleration/Efficiency (Priority #1) and Enhanced Research Quality/Innovation (Priority #2).

Do Nothing (A): Represents the baseline manual process, which is poor on both acceleration and quality/innovation enhancement potential (Lower-Left).

Google's Co-Scientist (B) & Sakana (C): These are perceived as having fixed pipelines or rigid prompting. While potentially offering some acceleration over manual methods (Okay on #1), their lack of adaptive learning limits their ability to drive deep research quality and novel innovation (Terrible/Okay on #2). They are positioned in the Lower-Left/Lower-Right.

OpenAl DeepResearch (D): This competitor uses reinforcement learning and is likely strong on acceleration (Great on #1). However, based on our differentiation (extending beyond browsing, incorporating more research tools, multi-agent reasoning, focus on real *research* outcomes), we position it as less optimized for enhancing the *quality and innovation* aspect of the full scientific research cycle compared to Cogency (Okay on #2). It sits in the Upper-Left.

No competitor occupies the same upper-right space because they lack our specific combination of adaptive multi-agent reasoning *and* continuous learning from *real, diverse scientific research outcomes* integrated across a comprehensive workflow.

What about your Core enables you to deliver so much more value that you are in the upper-right corner and your competitors are not? Explain precisely and make the linkage clear.

Our Core—Self-Improving AI via Continuous Learning from Real Research Outcomes—is the fundamental reason we are positioned in the upper-right corner. This Core directly enables superior value delivery on both customer priorities in ways competitors cannot match:

- 1. Enhanced Research Quality/Innovation (Priority #2): Unlike competitors with fixed pipelines (Google, Sakana) or potentially narrower learning scopes (OpenAI DeepResearch), our Core allows the AI to *learn what research strategies actually lead to better outcomes* (higher quality publications, novel findings, successful experiments) across diverse, real-world scientific tasks. The multi-agent system breaks down complex problems, executes them, and the meta-reasoning loop learns from the success or failure *of the actual research*. This adaptive learning refines the AI's ability to generate non-obvious hypotheses, design more effective experiments, and identify promising research avenues, directly boosting the quality and innovation potential beyond static systems.
- 2. Research Acceleration/Efficiency (Priority #1): The continuous learning aspect also optimizes for efficiency. By learning from outcomes, the system identifies and prioritizes more efficient paths, avoids repeating failed strategies learned from past projects (its own or others on the platform), and refines its internal processes (code execution, benchmarking, etc.) for speed. While competitors might offer speed via

automation, our *adaptive* speed improves over time and is directly tied to successful research workflows, making the acceleration more impactful and sustainable.

Linkage: The Core (self-improvement from real outcomes) fuels a dynamic, adaptive system. This contrasts with static/rigid competitors (B, C) who cannot learn complex research heuristics over time. It also offers potentially deeper, more research-process-specific learning than competitors like D might achieve. This learned, adaptive capability allows Cogency AI to simultaneously push the boundaries of research quality/innovation *and* optimize the efficiency of the research process, placing it uniquely in the upper-right corner. The architecture *enables* this, but the *continuous learning from real research* Core *drives* the compounding value.

Disciplined Entrepreneurship Workbook

Step 12: Determining the Customer's Decision-Making Unit (DMU)

Worksheet

	End User Persona (Step 5)	Economic Buyer Persona	Champion Persona
Name	Chrysis Andreou	Dr. Alexios Papadopoulos	Dr. Eleni Costa
Title	Master's Student	Principal Investigator /	Postdoctoral Researcher /
		Head of Al Research Lab	Assistant Professor
Demographic	Male, 30, Grad Student	Male, ~50s, PhD, Established	Female, ~35, PhD, Early-career
Summary	(Master's AI @ U Cyprus), BSc	academic, manages research lab &	academic, tech-savvy, focused on
	Psych, modest income (IT	budget, likely higher income, based	building research track record,
	support), Single, Cypriot, lives	at University/Research Institute.	based at same University.
	near uni.		
Psychographic	Passionate about AI/AGI,	Focused on research impact,	Ambitious, innovation-driven,
Summary	innovative, hardworking, values	funding, lab reputation, resource	seeks efficiency tools,
	rigor & learning, curious,	management, mentorship.	collaborative, wants to advance
	resilient, seeks efficiency.	Values efficiency, results, budget	career, understands researcher
		adherence, academic prestige.	pain points, values impact and
		-	recognition.
Proxy Products	LLM APIs, ChatGPT, Grok,	Grant management software,	Advanced research software (e.g.
	Perplexity, Claude, Cursor IDE,	University procurement systems,	specialized simulation/analysis
	Open-source AI tools.	Lab equipment, Budgeting tools,	tools), Collaboration platforms,
		High-performance computing	Python/R libraries, Reference
147 t t 11 1	V/T ··· \ All l	resources, Competitor software	managers, maybe pilot software.
Watering Holes	X (Twitter), AI blogs, journals,	Academic leadership conferences,	Academic conferences (specific
	Uni campus, conferences, tech	Funding agency websites/briefings,	tracks), Methodology workshops,
	events, online communities (ResearchGate), peers, profs.	University admin meetings, Peer PI networks, Top-tier journal editorial	Early career researcher networks,
	(Researchdate), peers, prois.	boards.	ResearchGate, LinkedIn, Lab meetings, Seminars.
Day In the Life	10h Study/Research, balancing	Grant writing, managing lab	Conducting experiments/analysis,
Day in the Life	coursework, personal projects	personnel and students, reviewing	mentoring students, writing
	(Al-Coscientist), IT job, exercise,	papers, strategic planning,	papers and grant sections,
	socializing.	meetings (dept., collaborators,	collaborating, seeking/testing
	S S S S S S S S S S S S S S S S S S S	funders), teaching.	new research tools & methods.
Priorities (Top 4 in	1. Good Grades (MSc)	1. Secure Research Funding	1. Publish High-Impact Research
order)	2. Build Al-Coscientist	2. Publish High-Impact Research	Quickly
,	3. Innovate in DL/RL	(Lab)	2. Gain Recognition / Secure Next
	4. Publish Research /	3. Efficient Resource/Budget Use	Position
	Collaborate	4. Attract/Retain Talent	3. Mentor Students Effectively
			4. Introduce Lab Innovations
Key Selling Points	1. Accelerate research	1. Increase Lab Research	1. Faster Path to Publications
to this Person	by 50%	Output/Impact	2. Demonstrate Innovation
	2. Enhance research	2. Improve Lab	Leadership
	quality/innovation	Efficiency/ROI	3. Improve Mentorship Efficiency
	3. Helps build the Al-Coscientist	3. Attract/Retain Top Talent	
	vision		

End User Persona (Step 5) - Chrysis Andreou

	Primary Influencers	Secondary Influencers	<u>Veto Power</u>
People	Professors, Research Peers, AI Thought Leaders (on X)	Lab seniors, Mentors	Economic Buyer (if institutional purchase), IT Dept (if issues), Self (if personal)
Organizations	University Dept., Specific Labs, Al Research Community	Funding bodies (indirectly via goals)	University Procurement / IT Security
Info Sources	Academic Papers, Conferences, Top AI Blogs/News	Online forums (e.g., Reddit), GitHub	Product reviews (if poor)
Others	Personal project goals (Al- Coscientist build)	Open Source Community trends	Lack of clear value/benefit

Economic Buyer Persona - Dr. Alexios Papadopoulos

	Primary Influencers	Secondary Influencers	<u>Veto Power</u>	
People University Admin/Budget		Funding Agency Program	Self, University	
	Committee, Peer PIs,	Managers, Dept Colleagues	Finance/Procurement, IT	
	Champion, Key Staff		Security/Compliance	
Organizations	Funding Agencies,	Professional Societies,	Legal/Compliance Department	
	University Leadership,	Competitor Institutions		
	Research Institute			
Info Sources	Budget Reports, Grant	Industry Reports on Research Tech,	Negative ROI analysis,	
	Requirements, Strategic	Vendor presentations	Security audit failure	
	Plans, Peer Reviews			
Others	Lab's strategic goals,	Overall economic climate affecting	Lack of budget, Non-compliance	
	Departmental mandates	funding	with regulations	

Champion Persona - Dr. Eleni Costa

	Primary Influencers	Secondary Influencers	<u>Veto Power</u>
People	End Users (students,	Peer Champions (other labs),	Economic Buyer, IT Dept,
	researchers), Economic Buyer (PI)	Technical Support	Significant End User resistance
Organizations	Own Research Lab/Group, University Department	Early Adopter Communities, Software Vendors	University Policy
Info Sources	Successful Case Studies/Demos, Positive End User Feedback	Competitor product limitations, Technical documentation	Poor trial results, Negative internal reviews
Others	Personal career goals, Desire for lab innovation	Availability of support/training	Withdrawal of support (effectively a veto on progress), Failure to prove value case

Qualitative Summary: How would you qualitatively summarize the DMU in three sentences or less?

The purchase decision for Cogency AI Co-Scientist within an academic setting involves a motivated End User (like Chrysis) or Champion (like Dr. Costa) identifying the research acceleration potential. They must convince the Economic Buyer (a PI/Lab Head like Dr. Papadopoulos), who prioritizes lab output, funding, and budget efficiency. Final approval may be subject to institutional checks (IT, Procurement), making the Champion's role crucial in demonstrating value and navigating the process.

Disciplined Entrepreneurship Workbook

Step 13: Map the Process to Acquire a Paying Customer

Worksheets

Stage #	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>
General Description of Stage	Determine Need & Catalyst to Action	Find Out about Options	Analyze Options	Acquire Your Product	Pay	Install	Use & Get Value	Determine Value	Buy More	Tell Others
What does the customer do in this stage? (from the Full Life Cycle Use Case)	Experiences research friction; recognizes need for automation/effi ciency (Step 6).	Searches online, asks peers, attends conferences, reads blogs/papers (Step 5/12 Watering Holes).	Compares Cogency Al vs. competitors (Step 11) & Do Nothing; evaluates value prop (Step 8), features, cost, integration; requests demo/trial.	Decides to adopt; navigates personal or institutional procurement; signs up or requests quote.	Submits payment (credit card) or ensures institutional invoice is paid.	Follows tutorials/docs to set up account/API access (Step 6).	Uses platform for research tasks, experiences benefits (Step 6 / Value Prop Step 8).	Assesses impact on research speed/quality vs. cost; considers renewal (Step 6).	Renews subscription, potentially adds users or upgrades plan (Step 6).	Shares positive experience/resu Its via word-of- mouth, publications, reviews (Step 6).
Who is involved from the DMU?	End User (Chrysis), potentially Champion (Dr. Costa).	End User, Champion, Peers.	End User, Champion; potentially Economic Buyer (Dr. Papadopoulos) for cost/formal eval; IT for tech check.	End User/Champion initiate; Economic Buyer approves; Procurement/Fina nce process; IT approves.	End User (personal), Economic Buyer (approval), Finance (processing).	End User, potentially IT support.	End User, Collaborators.	End User, Champion, Economic Buyer (renewal ROI).	End User/Champion initiate, Economic Buyer approves.	Satisfied End User, Champion.
Budget limits & other con- siderations	Pain point focus, no budget yet.	Time availability for research; interest in free trials/demos.	Cost vs. benefit (Value Prop Step 8); integration (Step 9 feedback); security (Step 9 feedback); trial availability.	Budget approval needed from Economic Buyer; institutional procurement rules; pricing (€250-€1000/yr Step4).	Payment terms, available funds, institutional payment cycles.	User time for setup; technical skill level; compatibility.	Ongoing subscription cost; learning curve; achieving promised value.	Justifying ongoing cost; comparing achieved vs. expected ROI.	Renewal budget approval; potential for volume discounts.	Driven by satisfaction, not budget.
How much time will this stage take? (give a range)	Days to Weeks (ongoing or event- triggered).	Days to Weeks.	1-4 Weeks (longer with formal trial).	1-8 Weeks (highly variable based on procurement).	Minutes (online) to Weeks (institutional).	Hours to Days.	Ongoing.	Periodic (project end, renewal time).	At renewal or when scaling.	Ongoing after success.

Action plan to accomplish stage	Targeted content addressing researcher pain points (Step 8 "As Is").	SEO, content marketing, conference presence, leverage Watering Holes (Step 5/12), encourage referrals.	Provide clear comparisons (Step 11), compelling demos/trials, case studies, address technical Qs proactively (Step 9 feedback).	Streamline signup/quoting; provide procurement support docs; nurture Champion/EB relationship.	Offer multiple payment methods; clear invoicing; automated reminders.	Clear documentatio n & tutorials; responsive support.	Effective onboarding; demonstrate value quickly (Step 8); build community.	Provide usage/value reports; collect testimonials; check in pre- renewal.	Smooth renewal process; offer scaling options/incentives	Encourage reviews/referral s; showcase user success stories.
Risks	Need not perceived strongly; attributed elsewhere.	Competitors found first; Cogency AI not discovered; info overload.	Value prop unclear; competitors seem better/easier; technical blockers (integration/securi ty).	Procurement delays/blocks; budget cuts; IT veto; decision changes.	Payment failure; lost invoice; finance delays.	Technical issues; poor user experience; compatibility problems.	Low adoption: value not realized; difficult to use; churn	Value not clear/quantifiable; expectations unmet; churn.	Churn; decision not to expand.	Negative word- of- mouth if unsatisfied.
Risk mitigation strategy	Clear messaging on specific pain points & value.	Strong online presence; clear differentiation (Step 10 Core, Step 11); targeted outreach (Step 9).	Quantified Value Prop (Step 8); competitive positioning (Step 11); address technical concerns; strong trial support.	Understand procurement; provide docs promptly; strong DMU communication; clear security info.	Multiple payment options; clear billing contacts; proactive follow-up.	Robust documentatio n; good support; usability testing.	Strong onboarding; focus on delivering QVP (Step 8); proactive support.	Align metrics with QVP; show value proactively; gather feedback.	Demonstrate ongoing value; easy renewal; proactive account management.	Ensure high satisfaction; address issues quickly.
Misc.	Triggered by research challenges/dead lines.	Influenced by peer recommendations, trends.	Focus on credibility, ease of use, potential impact.	Requires navigating institutional bureaucracy often.	Transactional step, but delays can impact access.	First hands-on experience, critical for adoption.	Ongoing usage determines long-term success.	Critical point for renewal justification.	Opportunity for growth within existing customers.	Drives organic growth and builds reputation.

Convert to a First Draft Sales Cycle Length Analysis Summary

Sales Cycle Length Estimate

For all time estimates except for lead generation, use the numbers from your Process to Acquire a Paying Customer table above. Make a reasonable estimate for lead generation.

C.I. E. J.El J.	E HILL O C	F 11 1 1 T 1 C 1 1				
Sales Funnel Element	Full Life Cycle Use Case Stage	Estimated Time to Complete				
#1 – Identification: Lead Generation	n/a	1-4 Weeks				
Output: Leads	11/4					
#2 – Consideration: Create Awareness to Potential	#1 - Determine Need & Catalyst to Action	2-4 Weeks				
Customers	&					
Output: Suspects	#2 - Find Out about Options					
, .	,					
#3 – Engagement: Develop Initial Dialogue	#3 - Analyze Options	1-4 Weeks				
Output: Prospects						
& ·						
# 4 - Purchase Intent: Develop Interest to Intent						
Output: Qualified Prospects						
#5 – Purchase: Close Deal & Pay	#4 - Acquire Your Product	2-10 Weeks				
Output: Customers	&					
	#5 – Purchase: Close Deal & Pay					
	Output: Customers					
	Total time for sales cycle: 6 - 22 Weeks					

(Note: The Purchase stage time (2-10 weeks) reflects a blend of fast individual signups and slower institutional processes. The total cycle time varies significantly based on the customer type and procurement complexity.)

First Draft Sales Funnel

#1: Identification ==> leads	Action Plan for Identification: Actively source leads through targeted outreach based on academic publications, conference attendance, and relevant research labs
#2: Consideration ==> suspects	Action Plan for Consideration: Generate awareness by publishing content addressing researcher pain points and ensuring visibility in key academic watering holes
#3: Engagement ==> prospects	Action Plan for Engagement: Engage prospects with compelling demos and trials showcasing clear value differentiation against alternatives.
#4: Purchase Intent ==> qualified prospects	Action Plan for Purchase Intent: Nurture qualified prospects by providing case studies, addressing technical concerns, and supporting internal evaluation processes
#5: Purchase ==> customers	Action Plan for Purchase: Facilitate acquisition by streamlining signup/quoting and actively supporting prospects through institutional procurement hurdles.
#6: Loyalty ==> satisfied customers	Action Plan for Loyalty: Ensure customer success through strong onboarding, proactive support, and consistently demonstrating achieved value aligning with the QVP.
#7: Advocacy ==> evangelists	Action Plan for Advocacy: Encourage satisfied users to share positive experiences by requesting testimonials, promoting user success stories, and implementing referral programs.

Qualitative Summary: How would you qualitatively summarize the Process to Acquire a Paying Customer in three sentences or less?

Acquiring a paying customer involves guiding a researcher (End User/Champion) from recognizing research inefficiencies to evaluating Cogency AI against alternatives based on its quantified value proposition. The process requires navigating potential institutional budget approval (Economic Buyer) and procurement hurdles, supported by strong evidence and clear communication. Ultimately, success depends on demonstrating tangible research acceleration and quality improvements that resonate with the entire DMU.

Which areas of this process are you comfortable that you have mapped out well?

- The initial stages of customer awareness, need identification, and option analysis based on the Persona and Value Proposition.
- The roles and motivations of the different DMU members (End User, Champion, Economic Buyer) within the academic context.
- The alignment of product features and value proposition with the customer's priorities throughout the acquisition journey.

Which areas of this process are you concerned about that you will want to keep an eye on as you proceed?

- The variability and potential length of the institutional procurement and payment stages.
- Successfully quantifying and demonstrating value (Determine Value) post-purchase to ensure renewal and expansion (Buy More).
- Managing potential technical hurdles during initial setup and integration (Install/Setup) that could impact early value perception.