Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER (CMOS)

PART NUMBER: NJU7074

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

Spice Model


```
*$
*PART NUMBER: NJU7074
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2005
.SUBCKT nju7074 IN-1 IN+1 IN-2 IN+2 VDD VSS OUT1 OUT2
+ IN-3 IN+3 IN-4 IN+4 OUT3 OUT4
X U1 IN-1 IN+1 VDD VSS OUT1 nju7074 s
X U2 IN-2 IN+2 VDD VSS OUT2 nju7074 s
X_U3 IN-3 IN+3 VDD VSS OUT3 nju7074_s
X U4 IN-4 IN+4 VDD VSS OUT4 nju7074 s
.ENDS nju7074
*$
.SUBCKT nju7074 s IN- IN+ VDD VSS OUT
           2 IN-3 VDD MbreakPD3
M1
M2
           2 IN+ 4 VDD MbreakPD2
           VDD 1 2 VDD MbreakPD
М3
M4
           VDD 1 5 VDD MbreakPD
           VDD 1 6 VDD MbreakPD
M5
M6
           VDD 1 1 VDD MbreakPD
M7
           5 5 VSS VSS MbreakND W=3.2m
                                           L=6u
M8
           5 4 VSS VSS MbreakND3
M9
           3 3 IN1 VSS MbreakND1
M10
           4 3 IN2 VSS MbreakND1
M11
           1 6 11 11 MbreakND
                                W=9m
                                         L=6u
           6 6 VSS VSS MbreakND3
M12
M13
           7 5 VSS VSS MbreakND1
M14
           VDD 7 7 VDD MbreakPD
           VDD 7 OUT VDD MbreakPD1
M15
M16
           OUT 4 VSS VSS MbreakND2
C1
          OUT 14.6p
C2
           OUT 3 120p
```

```
R1
          11 VSS 1.522k
R2
          IN1 VSS 2.0k
          IN2 VSS 3.115k
R3
         0 IN- 0.505p
11
12
         0 IN+ 1.5p
X U1
          VSS 3 DbreakZ
X U2
          VSS 4 DbreakZ
.model MbreakND NMOS (LEVEL=3 VTO=0.9 RS=10.000E-3 RD=10.000E-3
+ RDS=1.0000E6 TOX=2.0000E-6 CGSO=4.000E-12 CGDO=1.000E-12
+ CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND1 NMOS (LEVEL=3 L=6u W=0.5 VTO=1 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=1.00E-12
+ CGDO=5.000E-11 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND2 NMOS (LEVEL=3 L=6u W=0.483m VTO=0.9 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=4.000E-12
+ CGDO=1.00E-12 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND3 NMOS (LEVEL=3 L=6u W=3.2m VTO=0.9 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=1.000E-12
+ CGDO=1.000E-12 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakPD PMOS (LEVEL=3 L=6u W=0.023 VTO=-1 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=4.000E-12
+ CGDO=1.000E-12 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD1 PMOS (LEVEL=3 L=6u W=0.0085 VTO=-0.9
+ RS=10.000E-3 RD=10.000E-3 RDS=1.00E6 TOX=2.0000E-6
+ CGSO=4.000E-12 CGDO=1.000E-12 CBD=1.000E-12 RG=5
+ RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD2 PMOS (LEVEL=3 L=6u W=0.05 VTO=-1.4 RS=10.000E-3
+ RD=10.00E-3 RDS=1.2500E6 TOX=2.0000E-6 CGSO=4.000E-12
+ CGDO=1.000E-12 CBD=1.00E-12 RG=5 RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD3 PMOS (LEVEL=3 L=6u W=0.0719 VTO=-1.4
+ RS=10.000E-3 RD=10.00E-3 RDS=1.E6 TOX=2.0000E-6 CGSO=4.000E-12
+ CGDO=1.000E-12 CBD=1.00E-12 RG=5 RB=1.0000E-3 KP=1E-6)
.ENDS nju7074 s
*$
```

.SUBCKT DbreakZ AK

D1 A K DF

DZ A2 A DR

VZ K A2 1

.MODEL DF D

.MODEL DR D

.ENDS DbreakZ

*\$

MOSFET MODEL

Pspice model	Model description
parameter	•
LEVEL	
L	Channel Length
W	Channel Width
KP	Transconductance
RS	Source Ohmic Resistance
RD	Ohmic Drain Resistance
VTO	Zero-bias Threshold Voltage
RDS	Drain-Source Shunt Resistance
TOX	Gate Oxide Thickness
CGSO	Zero-bias Gate-Source Capacitance
CGDO	Zero-bias Gate-Drain Capacitance
CBD	Zero-bias Bulk-Drain Junction Capacitance
MJ	Bulk Junction Grading Coefficient
PB	Bulk Junction Potential
FC	Bulk Junction Forward-bias Capacitance Coefficient
RG	Gate Ohmic Resistance
IS	Bulk Junction Saturation Current
N	Bulk Junction Emission Coefficient
RB	Bulk Series Resistance
PHI	Surface Inversion Potential
GAMMA	Body-effect Parameter
DELTA	Width effect on Threshold Voltage
ETA	Static Feedback on Threshold Voltage
THETA	Modility Modulation
KAPPA	Saturation Field Factor
VMAX	Maximum Drift Velocity of Carriers
XJ	Metallurgical Junction Depth
UO	Surface Mobility

Output Voltage Swing

Simulation result

Evaluation Circuit

$$VIN+ = (VDD/2) + 0.05,$$
 $VIN- = (VDD/2) - 0.05$

Comparison Table

	Measurement	Simulation	%Error
V _{OM} (V)	9.98	9.979	-0.01

Input Current

Simulation result

Evaluation Circuit

	Measurement	Simulation	% Error
I _b (pA)	1	1.002	0.2
I _{os} (pA)	1	0.995	-0.5

All Rights Reserved Copyright (c) Bee Technologies Inc. 2005

Input Offset Voltage

Simulation result

Evaluation Circuit

	Measurement	Simulation	%Error
V _{OS} (mV)	2	1.973	-1.35

Open loop Voltage Gain

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
Av (dB)	95	95.682	0.717

Unity Gain Frequency

Simulation result

Evaluation Circuit

Comparison Table

A _V =40dB,C _L =10pF	Measurement	Simulation	%Error
Ft(MHz)	1	0.974	-2.6

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR= AV / ACM

	Measurement	Simulation	%Error
CMRR (dB)	75	74.845	-0.206

Slew Rate

Simulation result

Evaluation Circuit

	Measurement	Simulation	% Error
SR (V/us)	1.1	1.11	0.909