19 12 01 教务处型

重庆大学《Multivariable Calculus》课

A卷 B卷

2019 — 2020 学年 第 1 学期

开课学院: 数统学院 课程号: MATH20083 考试日期: 2019 12 20

考试方式: ○开卷 ⊙闭卷 ○其他

考试时间: __120__分钟

题 号	1	11	111	四	五	六	七	八	九	+	总分
得 分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍。

-, (15pts.) Fill in the blanks with correct answers.

- 1. $(1, 1, 1,) \times (1, 1, 1,) =$ _____.
- 2. $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{|x|+|y|} = \underline{\hspace{1cm}}$
- 3. The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is ______,
- 4. $\int_C \nabla f \cdot d\vec{r} =$ _____, where C is a simple closed path and f is a smooth function with 2 variables.
- 5. $\operatorname{Curl} \vec{F} = \underline{\hspace{1cm}}$, where $\vec{F}(x,y,z)$ is a conservative vector field with continuous second order partial derivatives.

 \equiv (15pts.) Determine whether the following statements are true or false.

1.
$$\int_{-C} f(x, y) ds = -\int_{C} f(x, y) ds$$
. ()

- 2. The two mixed second order partial derivatives for z=f(x,y) must equal if they are continuous. ()
- 3. Suppose D is a 2-dimensional simple bounded plane region, then

$$\iint_{D} 1 dA = \int_{\partial D} x dy = -\int_{\partial D} y dx. \quad ()$$

- 4. If all directional derivatives of f(x,y) at (x_0,y_0) exist, then f(x,y) must be continuous at this point. ()
- 5. Given two non-zero vectors $\alpha=(a_1,\ldots,a_n), \beta=(b_1,\ldots,b_n)$, then they are orthogonal if and only if $\sum_{i=1}^n a_i b_i=0$.

Suppose
$$f(x, y) = \begin{cases} (x^2 + y^2)\cos\frac{1}{\sqrt{x^2 + y^2}} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

1) Is f(x, y) continuous at (0, 0)?

2) Find $f_x(0,0)$ and $f_y(0,0)$

3) Is f(x, y) differentiable at (0, 0)?

四、(10pts.) Assume the straight line $\begin{cases} x+y+b=0\\ x+ay-z-3=0 \end{cases}$ lies in the plane Π , and this plane is tangent to $z=x^2+y^2$ at (1,-2,5), find a and b.

五、(10pts.) Find extreme values of z=z(x,y), where z is given by the equation $x^2+y^2+z^2-2x+2y-4z-10=0$.

七、 (10pts.) Suppose $\vec{F}(x,y) = \frac{-y}{x^2 + y^2} \vec{i} + \frac{x}{x^2 + y^2} \vec{j} = P\vec{i} + Q\vec{j}$. Prove that $\int_C \vec{F} \cdot d\vec{r}$ is a constant for any simple closed smooth curve C which

encloses the origin, with counter clockwise direction.

 $f(x) = \{ (x,y) \mid x^2 + y^2 \le 4, x \ge 0, y \ge 0 \}$, f(x) is a continuous positive function everywhere, and a, b are given constants, find the double integral $\iint_D \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} dA$, show your reasons.