Multi-variable limit check: Check when x = 0, y = 0, and x = y or check if limit depends on θ when converting to polar coordinates

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Hyperboloid of One Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Hyperboloid of Two Sheets: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Elliptic Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$

Elliptic Paraboloid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$

Hyperbolic Paraboloid: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$

Clairaut's Theorem: Suppose that f(x,y) is defined on an open desk D that contains the point (a,b). If the functions f_{xy} and f_{yx} are continuous on D, then $f_{xy} = f_{yx}$.

$$\nabla f(x,y) = f_x(x,y) \mathbf{i} + f_y(x,y) \mathbf{j}$$

Directional derivative of f in the direction of u is

$$D_u f(a,b) = \lim_{h \to 0} \frac{f(a + h\cos\theta, b + h\sin\theta) - f(a,b)}{h}$$

$$D_u f(x, y) = \nabla f(x, y) \cdot \mathbf{u} = f_x(x, y) \cos \theta + f_y(x, y) \sin \theta$$

$$T = L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

 $D_u f(x_0, y_0)$ is maximized when u points in the same direction as $\nabla f(x_0, y_0)$. The maximum value of $D_u f(x_0, y_0)$ is $\|\nabla f(x_0, y_0)\|$.

 $D_u f(x_0, y_0)$ is minimized when u points in the opposite direction from $\nabla f(x_0, y_0)$. The minimum value of $D_u f(x_0, y_0)$ is $-\|\nabla f(x_0, y_0)\|$.

A point is a critical point of a function of two variables if $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ or either $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

Second Derivative Test: If the first and second-order partial derivatives are continuous.

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2$$

- 1. If D > 0 and $f_{xx}(x_0, y_0) > 0$, then f has a local minimum at (x_0, y_0) .
- 2. If D>0 and $f_{xx}(x_0,y_0)<0$, then f has a local maximum at (x_0,y_0) .
- 3. If D < 0, then f has a saddle point at (x_0, y_0) .
- 4. If D=0, then the test is inconclusive.

Finding local extema in a bounded region:

- 1. Test extreme points on boundary
- 2. Test all boundary lines: Consider a line segment connecting (a,c) and (b,c). It can be parameterized by the equations x(t) = t, y(t) = c for $a \le t \le b$. Define g(t) = f(x(t), y(t)). The critical points are where g'(t) = 0.
- 3. Test whole bounded region