8

8

S.E. (Comp) (Semester – III) Examination, November/December 2015 COMPUTER ORIENTED NUMERICAL TECHNIQUES

Duration: 3 Hours Total Marks: 100

Instruction: Assume necessary details.

MODULE-I

- 1. a) Find the fourth root of 32 using False position method. Correct answer upto 3 decimal places.
 - b) Explain the various sources of errors in Numerical Computing. 4
 - c) Solve the following system of equations using Gauss-Elimination method.

$$10x - 7y + 3z + 5u = 6$$

$$-6x + 8y - z - 4u = 5$$

$$3x + y + 4z + 11u = 2$$

$$5x - 9y - 2z + 4u = 7$$

- 2. a) Derive Newton-Raphson formula.
 - b) Use Gauss-Jordan's method to find inverse of matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}.$$

- c) Use Secant method to find positive root of $\cos x x.e^x = 0$. Correct answer upto 4 decimal places.
- d) State difference between partial and complete pivoting.

6

7

7

6

3

4

MODULE - II

3. a) The following data are taken from the steam table.

Temp. °C	140	150	160	170	180
Pressure Kg F/cm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 175^{\circ}$. Use appropriate interpolation formula.

b) Determine F(x) as a polynomial in 'x' for the following data using Newton's divided difference formula.

x:	- 4	- 1	0	2	5
F (x):	1245	33	5	9	1335

c) Derive Newtons' forward interpolation formula.

4. a) Solve the following system of equations using Jacobi's iteration method. Correct answer upto 3 decimal places.

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

b) Find y(10) using Lagrange's interpolation.

x:	5	6	9	11
у:	12	13	14	16

- What are the limitations of using direct method of solving a system of linear equations.
- d) State the appropriate choice of interpolation formula to be used in various situations. Provide appropriate examples.

MODULE - III

5. a) Evaluate the integral $I = \int_{0}^{\pi} \sin x \, dx$ by dividing the range into ten equal parts.

Using trapezoidal and Simpson's $\frac{1}{3}$ rule.

8

b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ derivatives at x = 1.6 of the following table. Use appropriate formula.

6

x:	1.0	1.1	1.2	1.3	1.4	1.5	1.6
у:	7.989	8.403	8.781	9.129	9.451	9.750	10.031

c) Solve the following integral using Simpson's $\frac{3}{8}$ rule $I = \int_{4}^{5.2} \log_e x \, dx$.

6

6. a) Evaluate the integral $I = \int_{0}^{1} \frac{dx}{1+x^2}$ using Romberg's method. Correct answer upto 3 decimal places. Take h = 0.5, 0.25, 0.125.

8

b) Using the finite difference method, Find y (0.5) satisfying the differential equation $\frac{d^2y}{dx^2} + y = x$. Subject to the boundary conditions y (0), y (1) = 2.

6

c) Write a c/c++ program to implement trapezoidal rule.

MODULE-IV

7. a) Given $\frac{dy}{dx} = 3x^2 + 1$ and y(1) = 2. Find 'y' for x = 1.5 and x = 2.0 using Euler's method.

7

5

b) Given dy/dx = (3x+1)/(y²+2x) and y(1) = 2. Evaluate y(1.1) and y (1.2) using Fourth order Runge-Kutta method. Take step size, h = 0.1.
c) Using Milne's method, find y (4.5). Given 5xy¹ + y² - 2 = 0 and y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143, y(4.4) = 1.0187.
8. a) Solve dy/dx = x² + y² and y(0) = 1 using Picard's method. Estimate y at x = 0.25, x = 0.5 correct to three approximations.
b) Solve dy/dx 2y + 3ex and y(0) = 0 using Taylor's series. Estimate y(0.2) and y(0.4).

c) What are parabolic equations? Explain with an example.