Math 223

Assignment 4: Applications of Modular Arithmetic to Codes and Cryptography

Quinn Neumiiller

October 15, 2013

Question 1. Check-digit codes. Check whether or not the following codewords are valid for the code given.

$$=21 + 8 + 0 + 1 + 9 + 3 + 3 + 9 + 24 + 3 + 3 + 7 \mod 10$$

=91 mod 10
=1 mod 10

Not Valid.

Question 1b. the ISBN-10 number 0-87150-334-X.

$$=0+72+56+7+30+0+12+9+8+10 \mod 11$$

=204 mod 11
=6 mod 11

Not Valid.

Question 1c. the ISBN-10 number 0-13-319831-0.

u	CDUIGII	10.	OIIC		1 10	110	.111001	0 1	0 01	.000	, i o.
	i	0	1	3	3	1	9	8	3	1	0
	a	10	9	8	7	6	5	4	3	2	1
	(i*a)	0	9	24	21	6	45	32	9	2	0

$$=0+9+24+21+6+45+32+9+2+0 \mod 11$$

=148 mod 11
=5 mod 11

Not Valid.

Valid.

Question 1e. the Bank ID number
$$145-79429-1$$
.

i | 1 | 4 | 5 | 7 | 9 | 4 | 2 | 9 | 1
a | 7 | 3 | 9 | 7 | 3 | 9 | 7 | 3 | 9
i(i*a) | 7 | 12 | 45 | 49 | 27 | 36 | 14 | 27 | 9

$$= 7 + 12 + 45 + 49 + 27 + 36 + 14 + 27 + 9 \mod 10$$

$$= 226 \mod 10$$

$$= 6 \mod 10$$

Not valid, $5 \neq 6$

Question 2. Error correction? You, the bookseller, have entered the following ISBN-13 number for the book you are trying to ring through the till: 978-0-321-75277-2 Although the codeword appears to be valid in the ISBN-13 system, it does not correspond to a book in your store's inventory. Assuming the ISBN is incorrect only because of a switch of 2 adjacent digits, what is its correct ISBN-13? (For fun: look up the actual title, author, and publisher of this book online.)

$$7-9=-2$$

$$8-7=1$$

$$0-8=-8$$

$$3-0=3$$

$$2-3=-1$$

$$1-2=-1$$

$$7-1=6$$

$$5-7=-2$$

$$2-5=-3$$

$$2-7=-5$$

Try switching 2 and 7.

i	9	7	8	0	3	2	1	7	5	7	2	7	2
i a													
(i*a)	9	21	8	0	3	6	1	21	5	21	2	21	2
()	"										_		

$$=9+21+8+0+3+6+1+21+5+21+2+21+2 \mod 10$$

=120 mod 10
=0 mod 10

ISBN-13: 978-0-321-75727-2

Title: Statistics: Informed Decisions Using Data with CD 4th

Author: Michael Sullivan III Publisher: Addison Wesley

Question 3. Passport numbers. The identication code used for international passports is: [(6 or 9-digit passport number)-(check digit)]- (3 letter country code)-[(6-digit birth date)-(check digit)]- (an M or F)-[(6-digit expiry date)-(check digit)]>>>>(overall check digit) Each check digit is calculated using the check vector pattern (7; 3; 1; 7; 3; 1; ...) mod 10. The overall check digit is calculated with all of the preceding digits in the passport ID, including check digits, excluding letters.

Question 3a. Verify the validity of the passport number 044455533-1-USA-460920-5-M-040913-1>>>>>>>>>>>

For my purposeses, I'm going to drop all the letters, and seperate the sections. [[044455533-1]-[460920-5]-[040913-1]>>>>>>>]

Checking passport number.

i	0	4	4	4	5	5	5	3	3	1
a	7	3	1	7	3	1	7	3	1	7
(i*a)	0	12	4	28	15	5	35	9	3	7

$$=0+12+4+28+15+5+35+9+3+7 \mod 10$$

=118 mod 10
=8 mod 10

Passport number is invalid, hence the passport is invalid.

Question 3b. Determine check digits to complete the following (fake) Canadian passport number: 203241-?-CAN-840712-?-F-090215-?>>>>>>?

Finding passport number.

$$=14 + 0 + 3 + 14 + 12 + 1 \mod 10$$

=44 mod 10
=4 mod 10

$$=4+7(x) \mod 10$$

 $11=4+7(1) \mod 10$
 $18=4+7(2) \mod 10$
 $25=4+7(3) \mod 10$
 $32=4+7(4) \mod 10$
 $39=4+7(5) \mod 10$
 $46=4+7(6) \mod 10$
 $53=4+7(7) \mod 10$
 $60=4+7(8) \mod 10$

Check digit for the passport number is 8.

Checking birth date

 $=2 \mod 10$

$$=2 + 7(x) \mod 10$$

 $9 = 2 + 7(1) \mod 10$
 $16 = 2 + 7(2) \mod 10$
 $23 = 2 + 7(3) \mod 10$
 $30 = 2 + 7(4) \mod 10$

$$=56 + 12 + 0 + 49 + 3 + 2 + 7(4) \mod 10$$

 $=56 + 12 + 0 + 49 + 3 + 2 + 28 \mod 10$
 $=150 \mod 10$
 $=0 \mod 10$

Check digit for the birth date is 4.

Checking Expiry date 090215

	_	-	•			
i	0	9	0	2	1	5
a	7	3	1	7	3	1
(i*a)	0	27	0	14	3	5

$$=0 + 27 + 0 + 14 + 3 + 5 \mod 10$$

=49 mod 10
=9 mod 10

$$=9 + 7(x) \mod 10$$

 $16 = 9 + 7(1) \mod 10$
 $23 = 9 + 7(2) \mod 10$
 $30 = 9 + 7(3) \mod 10$

$$=0 + 27 + 0 + 14 + 3 + 5 + 7(3) \mod 10$$

 $=0 + 27 + 0 + 14 + 3 + 5 + 21 \mod 10$
 $=70 \mod 10$
 $=0 \mod 10$

Check digit for expiry date is 3.

Checking the full passport, aka: 203241884071240902153?

i	2	0	3	2	4	1	8	8	4	0	7	1	2	4	0	9	0	2	1	5	3
a	7	3	1	7	3	1	7	3	1	7	3	1	7	3	1	7	3	1	7	3	1
(i*a)	14	0	3	14	12	1	56	24	4	0	21	1	14	12	0	63	0	2	7	15	3

$$=14+3+14+12+1+56+24+4+21+1+14+12+63+2+7+15+3 \mod 10$$

 $=266 \mod 10$

 $=6 \mod 10$

$$=6 + 7(x) \mod 10$$

 $3 = 6 + 7(1) \mod 10$
 $0 = 6 + 7(2) \mod 10$

Final checkdigit on the passport is 2.

Question 4. Hacking RSA cryptosystems.

Question 4a. Suppose an RSA cryptosystem has public key (n, e) = (6282, 197). Find the associated private key $(\phi(n), d)$

$$\phi(n) = \phi(3141) * \phi(2)$$

$$= \phi(3141) * \phi(2)$$

$$= \phi(349) * \phi(3^2) * \phi(2)$$

$$= \phi(349) * \phi(3^2) * \phi(2)$$

$$= 349^{1-1}(349 - 1) * 3^{2-1}(3 - 1)$$

$$= 1(349 - 1) * 3(3 - 1)$$

$$= 348 * 3(2)$$

$$= 348 * 6$$

$$= 2088$$

private key = (2088, d)

$$(d)(e) = 1 \mod 2088 = 197d = 1 \mod 2088$$

$$2088 = 197(10) + 118$$
$$197 = 118(1) + 79$$
$$118 = 79(1) + 39$$
$$79 = 39(2) + 1$$

$$1 = 79 - 39(2)$$

$$1 = 79 - (118 - 79)(2)$$

$$1 = -118(2) + 79(3)$$

$$1 = -118(2) + (197 - 118)(3)$$

$$1 = 197(3) - 118(5)$$

$$1 = 197(3) - (2088 - 197(10))(5)$$

$$1 = 197(3) - 2088(5) + 197(50)$$

$$1 = -2088(5) + 197(53)$$

$$1 + 2088(5) = 197(53)$$

private key = (2088, 53)

Question 4b. Let (n, e) = (9991, 11) be the public key for an RSA cryptosystem that encrypts letters using the standard ASCII system. Decipher the transmitted message: 5752 7155

$$\phi(n) = \phi(9991)$$

$$= \phi(97)\phi(103)$$

$$= 96 * 102$$

$$= 9792$$

$$(d)(e) = 1 \text{ mod } 9792 = 11d = 1 \text{ mod } 9792$$

$$9792 = 11(890) + 2$$
$$11 = 2(5) + 1$$

$$1 = 11 - 2(5)$$

$$1 = 11 - (9792 - 11(890))(5)$$

$$1 = 11 - 9792(5) + 11(5)(890)$$

$$1 = -9792(5) + 11(4451)$$

$$1 + 9792(5) = 11(4451)$$

private key = (9792, 4451)

$$5752^{4451} \mod 9991 = 2440$$

 $7155^{4451} \mod 9991 = 4228$

$$24\ 40\ 42\ 28$$
 $\uparrow (* \mid$

Question 5. Digital signatures. Bob's RSA cryptosystem uses public key (9379, 1837). Alice's uses public key (8453, 7).

$$(n_A, e_A) = (8453, 7)$$

 $(n_B, e_B) = (9379, 1837)$

Question 5a. Verify that Bob's private key is (9184, 5) and Alice's private key is (8268, 7087).

Bob's private key

$$\phi(n) = \phi(9379) = \phi(83)\phi(113) = 82 * 112 = 9184$$

$$(d)(e) = 1 \mod 9184 = 1837d = 1 \mod 9184$$

$$9184 = 1837(4) + 1836$$
$$1837 = 1836 + 1$$

$$1 = 1837 - 1836$$

$$1 = 1837 - (9184 - 1837(4))$$

$$1 = 1837 - 9184 + 1837(4)$$

$$1 = 1837(5) - 9184$$

$$1 \mod 9184 = 1837(5)$$

private key (9184,5) Alice's private key

$$\phi(n) = \phi(8453)$$

$$= \phi(107)\phi(79)$$

$$= 106 * 78$$

$$= 106 * 78$$

$$= 8268$$

$$(d)(e) = 1 \mod 8268$$

= $7d \mod 8268$
= $7(7087) \mod 8268$
= $49609 \mod 8268$
= $49609 \mod 8268$
= $1 \mod 8268$

Question 5b. Alice wants to send the signed message *ALGEBRA* to Bob. She will encrypt in 2-letter (4-digit) blocks using standard ASCII. What message should she transmit? Provide the calculations Bob will use to verify the signed message he receives without knowledge of Alice's private key.

$$m^d \mod n = c_a$$

 $6576^{7087} \mod 8453 = 6188$
 $7169^{7087} \mod 8453 = 1070$
 $6682^{7087} \mod 8453 = 4486$
 $0065^{7087} \mod 8453 = 1144$

$$c_a^{e_b} \mod n_b = c_{ab}$$
 $6188^{1837} \mod 9379 = 9114$
 $1070^{1837} \mod 9379 = 57$
 $4486^{1837} \mod 9379 = 476$
 $1144^{1837} \mod 9379 = 1889$

Alice would send 9114 57 476 1889 Bob decrypting

$$c^{d_b} \mod n_b = c_b$$

 $9114^5 \mod 9379 = 6188$
 $57^5 \mod 9379 = 1070$
 $476^5 \mod 9379 = 4486$
 $1889^5 \mod 9379 = 1144$

$$c^{e_a} \mod n_a = m$$
 $6188^7 \mod 8453 = 6576$
 $1070^7 \mod 8453 = 7169$
 $4486^7 \mod 8453 = 6682$
 $1144^7 \mod 8453 = 0065$

6576716966820065 = ALGEBRAy