- 1. Sprawdzić, które z podanych warunków są równoważne zbieżności ciągu $\{a_n\}$ do liczby
 - $\overset{\bullet}{\mathbf{a}}$ $\forall n \in \mathbb{N} \quad \exists N \in \mathbb{N} \quad \forall m \in \mathbb{N} \quad \{m > N \Rightarrow |a_m a| < \frac{1}{n}\}$
 - $\dot{\mathbf{b}}) \ \exists N \in \mathbb{N} \quad \forall \varepsilon > 0 \quad \forall n \in \mathbb{N} \qquad \{n > N \Rightarrow |a_n a| < \varepsilon\}$
- 2. Obliczyć granice ciągów.¹

a)
$$\sqrt[n]{2^n + 3^n + 5^n}$$
 b) $\sqrt[n]{3^n - 2^n}$

c)
$$\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}$$
 $\left(1 + \frac{1}{n^2}\right)^n$

$$\frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \dots + \frac{2n}{\sqrt{n^4+2n}}$$
 $g)$

3. Zbadać zbieżność ciągów:

- **4.** Ciąg $\{a_n\}$ jest ograniczony a ciąg $\{b_n\}$ jest rozbieżny do $+\infty$. Pokazać, że ciąg $\{a_n +$ b_n jest rozbieżny do $+\infty$. Jeśli dodatkowo ciąg $\{a_n\}$ ma wyrazy dodatnie, to czy ciąg $\{a_nb_n\}$ musi być rozbieżny do $+\infty$?
- 5. Sprawdzić, które z podanych warunków są równoważne warunkowi Cauchy'ego dla ciągu $\{a_n\}$.
 - $(a) \forall k \in \mathbb{N} \quad \exists N \in \mathbb{N} \quad \forall n, m \in \mathbb{N} \quad \{n > m > N \Rightarrow |a_m a_n| < \frac{1}{h}\}$

 - $\begin{array}{ll} \mathbf{\dot{b}}) \ \forall \varepsilon > 0 \quad \exists N > 0 \quad \forall n, m \in \mathbb{N} \\ \mathbf{\dot{c}}) \ \forall k \in \mathbb{N} \quad \exists N \in \mathbb{N} \quad \forall m, n \in \mathbb{N} \\ \end{array} \quad \begin{array}{ll} \{n > N, m > N^2 \Rightarrow |a_n a_m| < \varepsilon\} \\ \{m > N, n \leq N \Rightarrow |a_m a_n| < \frac{1}{2^k}\} \end{array}$

¹Wskazówka: Twierdzenie o dwóch/trzech ciągach.

 $^{^2}$ Wskazówka: Zauważ, że ciąg jest malejący od pewnego miejsca i ma wyrazy mniejsze od $c(3/4)^n$.

³Wskazówka: Zauważ, że ciąg z podpunktu b) ma granicę dodatnią oraz iloczyn ciągów z podpunktów b) i c) jest mniejszy niż 1. W celu udowodnienia dodatniości granicy można wykazać nierówność $1-2^{-n} \geq \xi_n/\xi_{n-1}$ gdzie $\xi_n = 1 + 2/(n-1)$

6. Sprawdzić, czy podane ciągi spełniają warunek Cauchy'ego:

a)
$$\frac{\operatorname{arctg} 1}{3} + \frac{\operatorname{arctg} 2}{3^2} + \dots + \frac{\operatorname{arctg} n}{3^n}$$

$$\frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$$
b)
$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$x_1 = 0, \ x_{n+1} = \frac{3}{x_n + 2}.$$

- **7**. Wiadomo, że ciąg b_n jest zbieżny. Czy ciąg $c_n = n(b_n b_{n-1})$ może być rozbieżny do $+\infty$?
- **8.** Pokazać, że jeśli ciąg x_n jest zbieżny, to także ciąg średnich arytmetycznych $\xi_n = (x_1 + x_2 + \ldots + x_n)/n$ jest zbieżny i posiada tę samą granicę.
- **9.** Ciąg x_n jest określony następująco : $0 < x_1 < 1$, $x_n = x_{n-1}/2$ dla parzystych n, oraz $x_n = (1 + x_{n-1})/2$ dla nieparzystych n. Jakie punkty skupienia ma ten ciąg?⁵
- **10.** Czy ciąg $\sin n$ jest zbieżny?

⁴ Wskazówka: Pokazać, że $|x_{n+1} - x_{m+1}| \le (3/4)|x_n - x_m|$.

⁵ Wskazówka: Obliczyć x_{2n} oraz x_{2n+1} .