Computer Vision and Machine Learning

(Image enhancement)

Bhabatosh Chanda bchanda57@gmail.com

Books

- Digital Image Processing and Analysis, B. Chanda and D. Dutta Majumder, PHI.
- 2. Image Processing, Analysis and Machine Vision, Milan-Sonka et al., Cengage Learning
- 3. Computer Vision: Models, Learning and Inference, Simon Prince, Cambridge Univ. Press.
- 4. Computer Vision: Algorithms & Deplications, R. Szeleski, Springer

Types of processing

- Spatial domain processing
 - Directly operates on the pixel values in the spatial domain.
 - · Point process
 - Neighbourhood process
 - Most common is convolution operation.
- Frequency domain processing
 - First transforms the image data to frequency domain using an orthogonal transform.
 - Appropriate filtering is applied on transformed data.
 - Inverse transform is applied on filtered data to get back into spatial domain.

Point process

• A single pixel of input image is processed individually to get the value (colour) at corresponding pixel in the output image.

$$s = T(r)$$

- r is greylevel in input image, say, g(x,y)
- s is greylevel in output image, say, f(x,y)
- Simplest form of point process

$$s = a(r-b) + c$$

- a, b and c are parameters
- Example, a = -1, b = 0 and c = 255 produces negative image.

2/12/2024

2/12/2024

White balance

- We need to "guess" which pixels correspond to white objects (highest average brightness)!
- · Gray world assumption
 - The image average r_{ave} , g_{ave} , b_{ave} is gray
 - Use weights 1/r_{ave}, 1/g_{ave}, 1/b_{ave}
- Brightest pixel assumption
 - Highlights usually have the color of the light source
 - Use weights inversely proportional to the values of the brightest pixels
- Use image statistics, learning techniques

Color balance

Raw image

Color balanced image (brightest pixels)

2/12/2024

Neighbourhood process

• Each pixel of input image is processed based on its neighbouring pixels to get the corresponding pixel in the output image.

$$f(x,y) = T_{(u,v)\in N(x,y)}(g(u,v))$$

- g(x,y) is the greylevel in input image
- f(x,y) is the greylevel in output image
- N(x, y) defines the neighbourhood of the candidate pixel (x, y).
- If the mapping T is linear, this may be expressed as convolution:

$$f(x,y) = g(x,y)*h(x,y)$$

• h(x,y) is a function defined over the domain similar to the neighbourhood N.

Improvement of image quality

- Image restoration
 - Estimates the original (undegraded) image from the observed image based on the knowledge in terms of model of the degradation process.
- Image enhancement
 - Adhoc process improves the quality of the image using some heuristic designed on the basis of users' experience and application in hand.

Image enhancement

- Contrast intensification
 - increases discernibility among the regions.
- Smoothing
 - reduces the effect of noise.
- Sharpening or edge crispening
 - reduces ambiguity between regions.

Contrast intensification

- How to decide
 - Any objective indicator for appearance of image?
 - How to measure contrast?
- What to do
 - Intensify contrast between pixels? Between regions?
- How to do

2/12/2024

Workshop on Image Processing and Synthesis

Contrast intensification

Graylevel transformation:

- 1. Histogram stretching: Linear, Piece-wise linear, Non-linear like Logarithmic and Exponential
- Histogram modification:
 Histogram equalization, specification

Constraint to be satisfied: $r_i < r_j \Rightarrow s_i \le s_j$

2/12/2024

Workshop on Image Processing and Synthesis

17/129

Histogram stretching

- Increases contrast in image.
- May be implemented efficiently using Look-up table.
- Analyse the greylevel histogram h(r) $(r=0,1,2,...,L_{max})$ of input image to decide transformation Function.

2/12/2024

Histogram linear stretching

- Minimum greylevel r_{min} with non-zero frequency.
- Maximum greylevel r_{max} with non-zero frequency.

•
$$s = T(r) = a.r + b$$

• For contrast enahancement

•
$$a = \frac{L_{max}}{r_{max} - r_{min}}$$

•
$$b = r_{min}$$
 and

•
$$c = 0$$

2/12/2024

Histogram linear stretching

• Complete definition of transformation at pixel level:

$$f(x,y) = \frac{L_{max}}{r_{max} - r_{min}} [g(x,y) - r_{min}]$$

- Greylevel histogram of output image occupies full range.
- Two conditions are satisfied:

$$\sigma_s \ge \sigma_r$$
 and $\frac{dT}{dr} \ge 1$

2/12/2024

Histogram and appearance

2/12/2024 Workshop on Image Processing and Synthesis

22/129

Non-linear stretching

• Logarithmic transformation

$$s_i = \frac{L_{max}}{\log(r_{max} - r_{min} + 1)} \log(r_i - r_{min} + 1)$$

• Exponential transformation

$$s_i = \frac{L_{max}}{e - 1} \left(\exp\left(\frac{r_i - r_{min}}{r_{max} - r_{min}}\right) - 1 \right)$$

Colour histogram stretching

· Colour image comprises three channels, i.e.,

$$f(x,y) = [f_R(x,y), f_G(x,y), f_B(x,y)]$$

- Corresponding histograms are $h_R(i)$, $h_G(i)$ and $h_B(i)$
- Stretching each histogram independently would change the hue or the colour type.
 - Multiplying factor for each channel may be different.
 - Addition (or subtraction) of some constant.
- Two approaches:
 - Use brightness or value channel only.
 - Determine common parameters of all three histograms.

2/12/2024

24

Colour histogram stretching

- First approach to colour image histogram stretching:
 - Convert RGB to other colour triplets,
 - apply histogram stretching on value or brightness channel,
 - then convert back to RGB.

2/12/2024

25

Colour histogram stretching

- Second approach to colour image histogram stretching:
 - Find $r_{c,\,min}$ and $r_{c,\,max}$ (c = R,G,B) from $h_c(r)$
 - $r_{min} = \min\{r_{R, min}, r_{G, min}, r_{B, min}\}$
 - $r_{max} = \min\{r_{R, max}, r_{G, max}, r_{B, max}\}$
 - then compute linearly stretched colour channels as

$$f_c(x,y) = \frac{L_{max}}{r_{max} - r_{min}} [g_c(x,y) - r_{min}]$$

for c = R, G, B.

2/12/2024

27

Histogram equalization

- Transfer function: $s=\int_{-\infty}^{r}p_{r}\left(lpha
 ight) dlpha$
- Assuming both r and s are continuous, and $0 \le r, s \le 1$.
- In discrete domain: $s_j=L_{max}\sum_{i=0}^{j}p_{r_i}$ where $p_{r_i}=\frac{n_{r_i}}{N}$ and n_{r_i} is the frequency of occurrence of i-th levele r_i .

Thank you!

Any question?