String Set Metrics

1 Introduction

In this sketch we are interested in studying metric spaces between sets of strings.

2 Preliminaries

Definition 1 (Metric Space). A metric space (M, d) is a set M along with a distance function $d: M \times M \to \mathbb{R}_{\geq 0}$ such that for any $x, y, z \in M$:

- $(1) \ d(x,y) \ge 0$
- (2) $d(x,y) = 0 \iff x = y$
- (3) d(x,y) = d(y,x)
- (4) $d(x,z) \le d(x,y) + d(y,z)$

Definition 2 (Alphabet). An alphabet Σ is a finite set of unique symbols.

Definition 3 (String). Given an alphabet Σ , a string σ is a finite sequence of symbols from Σ .

Definition 4 (Alphabet Strings). Let Σ^* denote the set of all possible strings from Σ .

Definition 5 (String Metric). A function $\delta \colon \Sigma^{\star} \times \Sigma^{\star} \to \mathbb{R}_{\geq 0}$ that satisfies metric space axioms.

3 String Set Metric Spaces

3.1 Hausdorff Metric

We first consider the following problem. Given a single string σ , and a set of string A, how might we calculate a distance from σ to A? Let δ be a string metric, then one idea is as follows:

Definition 6 (Merge Distance). The merge distance $\delta_M \colon \Sigma \times \Sigma^* \to \mathbb{R}_{\geq 0}$ is defined as:

$$\delta_{M}\left(\sigma,A\right)=\inf_{a\in A}\left\{ \delta\left(\sigma,a\right):\ a\in A\right\}$$

The idea here is that we take the string in A that most closely resembles σ with respect to the string metric δ , and consider that the distance between σ and A.

We can take this idea further. Suppose we have two sets of strings A and B. The Hausdorff distance is then defined as follows:

Definition 7 (Hausdorff Distance). The Hausdorff distance $d_H: \Sigma^* \times \Sigma^* \to \mathbb{R}_{\geq 0}$ is defined as:

$$d_H(A, B) = \max \{ \sup \{ \delta_M(a, B) : a \in A \}, \sup \{ \delta_M(b, A) : b \in B \} \}$$

The Hausdorff distance is essentially the promotion of a metric space (X, d) to another metric space $(2^X, d_H)$ where d_H is defind with respect to d. The definition is not unique to strings here.