Cálculo Numérico - IME/UERJ

Lista de Exercícios 4 - Interpolação polinomial e Método dos Mínimos Quadrados

1. Sabendo-se que $\sqrt{1,03} = 1,0149$ e $\sqrt{1,04} = 1,0198$, calcule $\sqrt{1,035}$ usando polinômio de interpolação linear de Lagrange.

2. Dada a tabela:

x	0	0,1	0,2	0,3	0,4	0,5
e^{3x}	1	1,3499	1,8221	2,4596	3,3201	4,4817

Calcule f(0,25), onde $f(x)=xe^{3x}$, usando polinômio de interpolação quadrática de Lagrange.

3. Seja uma tabela dada por:

x	0,20	0,34	0,40	0,52	0,60	0,72
f(x)	0,16	0,22	0,27	0,29	0,32	0,37

Agora, são solicitados os seguintes itens:

- (a) Calcule uma aproximação de f(0,47) usando um polinômio interpolador de Lagrange de ordem 2.
- (b) Usando apenas os 4 últimos pontos da tabela, estime o valor de f(0,8) com o ajuste pela reta dos mínimos quadrados.

4. Seja uma tabela dada por:

x	0,8	0,9	1,0	1,1	1,3	1,5
f(x)	0,6967	0,6216	0,5403	0,4536	0,2675	0,0707

- (a) Calcule f(1,05) usando polinômio de interpolação cúbica de Lagrange.
- (b) Usando apenas os 4 últimos pontos da tabela, estime o valor de f(1,6) com o ajuste pela reta dos mínimos quadrados.
- 5. A equação $f(x) = x 9^{-x}$ tem uma raiz no intervalo [0,1]. Usando interpolação inversa, determine uma aproximação para esta raiz usando polinômio interpolador de Lagrange sobre os pontos $x_0 = 0$, $x_1 = 0, 5$, $x_2 = 1$.
- 6. Estime o valor de f(9,5) pela reta dos mínimos quadrados usando os dados da seguinte tabela:

x	5,3	6,4	7,1	8,5	9,1
f(x)	8,1	15,2	24,5	48,6	54,0