FIB

Màster en Enginyeria Informàtica (MEI)

Internet, Seguretat i Distribució de Continguts Multimèdia (ISDCM)

Colección de problemas Seguridad en Internet

SOLUCIONES

Curso 2024-25 Q2 Mayo 2025

> Jaime Delgado Dept. AC

Internet, Seguridad y Distribución de Contenidos Multimedia Curso 2024-25 Q2 Problemas Seguridad en Internet

ISDCM-MEI

Mayo 2025

Preguntas Test Cierto/Falso. Indicar si las siguientes afirmaciones son ciertas o falsas.

True/False Test questions. Indicate if the following sentences are true or false.

INTRODUCTION AND CRYPTOGRAPHY

1. Interception	n, Manipulation, Impersonation and Repudiation	on are typical threats to security in communications.
	☐ True	□ False
Answer: True.		
2. AES and DE	ES are symmetric key encryption mechanisms	s.
	☐ True	□ False
Answer: True.		
3. DES and AE	ES are examples of block-based ciphering me	chanisms.
	☐ True	□ False
Answer: True.		
	ata Encryption Standard) for symmetric encry	yption is obsolete (it is not used) respect to the AES
	☐ True	□ False
Answer:True.		
5. It is not pos	sible to use the AES algorithm for digital sign	nature.
	☐ True	□ False
Answer: True.		
	aphy, the "confusion" principle is the one than the ciphered text.	at provokes that a small change in the key achieves
	☐ True	□ False
Answer: True.		
	aphy, the "diffusion" principle is the one that in the ciphered text will happen (plain text vs.	achieves that with a small change in the clear text, cipher text independence).
	☐ True	□ False
Answer: True.		
8. SubBytes, 9 encryption.	ShiftRows and MixColumns are examples of	permutations of the RSA algorithm for symmetric
	☐ True	□ False
Answer: False.	It is for AES. RSA is asymmetric.	

encryption.		
	☐ True	□ False
Answer: False.	. They are for AES.	
10. Diffie-Helli	man allows sharing a secret key through the	communication channel in a secure manner.
	☐ True	□ False
Answer: True.		
by A) and α^b (sent by B), being $a \in G$ and $\alpha^a \in G$, and also be	are a secret key by interchanging the values α^a (sentence G and $\alpha^b \in G$, where G is a <i>multiplicative finite group</i> d, a and b are only known by A and B, respectively.
	☐ True	□ False
Answer:True.		
by A) and α^b (sent by B), being $a \in G$ and $\alpha^a \in G$, and also $b \in G$ to $\alpha \in G$ known by A and B. On the other hand	are a secret key by interchanging the values α^a (sent G and $\alpha^b \in G$, where G is a <i>multiplicative finite group</i> G, a and G are known by both G and G , but not by the
	☐ True	☐ False
Answer: False.	a and b are only known by A and B, respectivel	y.
13. In "asymm	netric encryption", the recipient's private key	is used to encrypt a message.
	☐ True	☐ False
Answer: False.	. The recipient's public key is used.	
14. It is not us	seful ciphering with symmetric key and sendi	ng that key through a public key mechanism.
	☐ True	□ False
Answer: False. distribution pro		and sending the symmetric key using PKI solves the key
15. An electro	nic signature is generated with the public par	rt of the asymmetric key of the signer.
	☐ True	□ False
Answer: False.	. With the secret part.	
16. In security	r, Hash algorithms are used to interchange sy	mmetric keys.
	☐ True	□ False
Answer: False. to sign.	They are used to "summarize" (without the possi	bility of recovering the original) the content of a message
17. In asymme	etric encryption, the secret part of the key ma	y be deduced from the public part of the key.
	☐ True	□ False
Answer: False.		
18. In symmet	tric encryption, the public part of the key may	be encrypted with the secret part.
	☐ True	□ False
Answer: False.	. There are no public keys in symmetric encryption	on.

9. ShiftRows, MixColumns and AddRoundKey are examples of permutations of the DES algorithm for symmetric

19. In RSA, the	e e value of the public key must be coprime v	vith the value of # (n).
	☐ True	□ False
Answer: True.		
20. In RSA, the	e secret part of the key is calculated directly	from the two values of the public part, e and n .
	☐ True	□ False
Answer: False.	Module n is not used, but numbers p and q are	used for the calculation.
21. In the EIG public key.	amal mechanism for asymmetric encryption	n, we need the secret key in order to calculate the
	☐ True	□ False
Answer: True.	The public key Kp is calculated as $Kp = \alpha^{Ks}$, be	ing Ks the secret key, and α a known number.
	amal mechanism for asymmetric encryption, key, and $lpha$ a known number.	the secret key Ks is calculated as $Ks = \alpha^{Kp}$, being
	☐ True	□ False
Answer: False.	It is just the contrary; i.e., $Kp = \alpha^{Ks}$.	
	amal mechanism for asymmetric encryption, key, and $lpha$ a known number.	the public key K_P is calculated as $K_P = \alpha^{KS}$, being
	☐ True	□ False
Answer: True.		
	amal mechanism for asymmetric encryption, andom number chosen by the sender, which	to encrypt m we should calculate $c=m*(\alpha^a)^v \mod g$, is not sent.
	☐ True	□ False
Answer: True.		
	amal asymmetric encryption mechanism, to andom number chosen by the sender, that is	encrypt m we should calculate $c=m*(\alpha^a)^v\mod g,$ also sent.
	☐ True	□ False
Answer: False.	The random number ${\rm \scriptscriptstyle V}$ is not sent.	
PUBLIC K	EY INFRASTRUCTURE	
1. Apart from other responsibilities, a Registration Authority (RA) verifies the information about the user to whom a certificate is to be given.		
	☐ True	□ False
Answer: True.		
2. In PKI, if we	compare OCSP with SCVP, we can say that	OCSP needs more complex clients.
	☐ True	□ False

Answer: True.

3. OCSP (Onli	ne Certificate Status Protocol) builds the <i>cer</i> t	tification path of a certificate in order to validate it.
	☐ True	□ False
Answer: False.	This is SCVP.	
	er-Based Certificate Validation Protocol) is be s clients not to worry about constructing the	etter that OCSP (Online Certificate Status Protocol) certification path.
	☐ True	□ False
Answer: True.		
	erver-Based Certificate Validation Protocol), t (Online Certificate Status Protocol).	he clients' software needs to implement more tasks
	☐ True	□ False
Answer: False. thus simplifying		e certification path of a certificate in order to validate it,
6. SCVP (Servivalidate it.	ver-Based Certificate Validation Protocol) bui	lds the certification path of a certificate in order to
	☐ True	□ False
Answer: True.		
7. To generate	e a trusted time stamp, a Time Stamping Auth	ority uses Hash and PKI technology.
	☐ True	□ False
Answer: True.	A hash from the data to be timestamped is calcu	lated and the time stamp is digitally signed.
	confirm that the time is correct, a <i>Time Stamp</i> e stamp is assigned.	ing Authority needs to keep a copy of the document
	☐ True	□ False
Answer: False.	It is enough with a Hash of the document.	
9. The PKI dis	tributed trust model does not use Certificatio	n Authorities.
	☐ True	□ False
Answer: True.	It is based on the information collected by the us	ers.
10. In a Plain t	rust model, the certificate of the CA is self-si	gned.
	☐ True	□ False
Answer: True.		
11. In the cas authorities of		ficate includes the signature of all the certification
	☐ True	□ False
Answer: False.	Only the signature of the CA that has issued the	e certificate.
12. In PKI, a P CAs.	lain trust model is as a Hierarchical one, but	the Plain only has the <i>root</i> CA and a unique level of
	☐ True	□ False
Answer: False.	A Plain model only has one CA, the <i>root</i> one.	

☐ True	□ False	
Answer: True.		
14. Without adding hybrid mechanisms, a user of a CA certificate coming from another CA following the plain mo		
☐ True	□ False	
Answer: True.		
15. The Bridge trust model only works with PKIs using the	hierarchical model.	
☐ True	□ False	
Answer: False. It may work to relate any kind of infrastructure.		
16. The PKI bridge certification trust model is more efficier number of needed certificates.	nt than the cross-certification one with respect to the	
☐ True	□ False	
Answer: True.		
17. The Bridge trust model implies adding a new Certificat	ion Authority.	
☐ True	□ False	
Answer: True.		
18. A X.509 certificate includes the signature of the owner	of the certificate.	
☐ True	□ False	
Answer: False. The only signature is that of the certificate issue	er.	
19. A X.509 certificate includes the public key of its owner		
☐ True	□ False	
Answer: True.		
20. A digital certificate includes the signature of the Certificate	ication Authority issuing that certificate.	
☐ True	□ False	
Answer: True.		
21. ASN.1 is a protocol to interchange X.509 certificates.		
☐ True	□ False	
Answer: False. ASN.1 is a data representation language used to formalize X.509 certificates.		
22. ASN.1 is a data representation language used to formalize XML documents.		
☐ True	□ False	
Answer: False. ASN.1 has nothing to do with XML. It is used to	represent X.509 certificates.	
23. ASN.1 is a data representation language used to formalize X.509 certificates that has been standardized by the IETF (Internet standard).		
☐ True	□ False	

Answer: False. It is an ISO standard.

24. ASN.1, sta	ndardized by ISO, is the data representation	language used to formalize X.509 certificates.
	☐ True	□ False
Answer: True.		
	Public-Key Cryptography Standards 7) spec ome of its concepts are applied in the security	cifies how to send encrypted documents and their y of the e-mail.
	□ True	□ False
Answer: True.		
26. In a PKCS#	#7 message of type enveloped data, it is po	essible to sign over a <i>hash</i> or <i>digest</i> of the message.
	☐ True	□ False
Answer: False.	There is no signature in enveloped data.	
27. In a PKCS	#7 message of type enveloped data, the sig	gnature algorithm should be RSA.
	☐ True	□ False
Answer: False.	There is no signature in enveloped data.	
28. In a PKCS#	#7 message of type signed data, it is not po	essible to sign over a <i>hash</i> or <i>digest</i> of the message.
	☐ True	□ False
Answer: False.	The norm recommends to encrypt a <i>digest</i> .	
29. In a PKCS means.	#7 message, the symmetric key is not sent, s	since it is supposed to be transfer by non-electronic
	☐ True	□ False
Answer: False.	What PKCS#7 specifies is how to send, encrypt	ted, the symmetric key.
30. There are I	PKCS#7 messages that define how to send a	public key with a symmetric key.
	☐ True	□ False
Answer: False.	PKCS#7 specifies how to send the symmetric k	ey encrypted with an asymmetric key.
31. In PKCS#7	, signedAndEnvelopedData is just adding sig	•
	☐ True	□ False
	 signedAndEnvelopedData is more complex, content key) message digest. 	it is envelopedData + Doubly encrypted (signature
32. PKCS#7 (0	Cryptographic Message Syntax) is one of the	few (less than 20) PKCS rules.
	☐ True	□ False
Answer: True.	There are only rules numbered #1 to #15, and 3	are missing.
33. PKCS#7 (C	Cryptographic Message Syntax) is one of hun	dreds of PKCS rules.
	☐ True	□ False
Answer: False.	There are only rules numbered #1 to #15, and 3	3 are missing.

APPLICATION LAYER SECURITY

1. The security	y of HTTPS may be achieved adding security	to TCP.
	☐ True	□ False
Answer: True.		
2. There is a phase.	new version of the TLS protocol (TLSv1.3) t	hat reduces the number of steps in the handshake
	☐ True	□ False
Answer: True.		
	of the TLS protocol (TLSv1.3) increases, w initial handshake in order to improve the sec	rith respect to the previous version, the number of curity level.
	☐ True	□ False
Answer: False.	It reduces the number of phases to reduce over	head.
4. In TLSv1.3,	certificates are only mandatory for the serve	r.
	☐ True	□ False
Answer: True.		
5. In TLSv1.3 mandatory.	it is mandatory that the server presents a co	ertificate, while the client's certificate is not always
	□ True	□ False
Answer: True.		
6. In TLSv1.3 algorithms.	, certificates are no longer used because tl	ne symmetric key is encrypted with Diffie-Hellman
	☐ True	□ False
Answer: False.	Certificates are used to identify parties.	
7. TLSv1.3 su	pports 5 cipher suites. TLS_AES_128_GCM_9	SHA256 is an example of suite.
	☐ True	□ False
Answer: True.		
8. TLSv1.3 su	pports 5 <i>cipher suites</i> . All of them are based	on AES.
	☐ True	□ False
Answer: False.	There is one suite based on CHACHA20 (strea	m encryption).
9. TLSv1.3 sp	ecifies a handshake protocol phase that inclu	ides authentication and "cipher suite" negotiation.
	☐ True	□ False
Answer: True.		
10. In TLSv1.3	s, the symmetric key is encrypted with Diffie-I	Hellman algorithms.
	☐ True	□ False
Answer: True.		

11. In TLSv1.3, "cipher suite" ne	gotiation is part of the handshake protocol.	
☐ True	☐ False	
Answer: True.		
12. At least two of the 5 cipher s	uites in TLSv1.3 support stream encryption (not only block encryption).	
☐ True	□ False	
Answer: False. There is one suite	based on CHACHA20, but no other stream encryptions.	
13. TLSv1.3 specifies a handsha is left out of the protocol.	ake protocol phase that includes authentication, but "cipher suite" negotiation	
☐ True	□ False	
Answer: False. "Cipher suite" nego	otiation is part of the handshake protocol.	
14. QUIC ("A UDP-Based Multip Therefore, we need to add a sec	elexed and Secure Transport") does not provide its own security mechanism. urity mechanism over it.	
☐ True	☐ False	
Answer: False. Security mechanism	ms similar to TLSv1.3 are provided in QUIC.	
15. In order to have a secure protocol, we do not need to add a TLSv1.3 layer to a QUIC ("A UDP-Based Multiplexed and Secure Transport") implementation.		
☐ True	□ False	
Answer: True. The equivalent secu	ırity is already provided in QUIC.	
16. QUIC standardizes how to co	ombine it with any application protocol.	
☐ True	□ False	
Answer: False. For the moment, it	only standardizes how to combine with HTTP, which is HTTP/3.	
17. One of the objectives in the design of QUIC has been to reduce the latency in the connection establishment phase.		
☐ True	□ False	
Answer: True.		
18. A limitation of QUIC ("A UDP on top (for example, by adding T	-Based Multiplexed and Secure Transport") is that the security has to be added [LSv1.3].	
☐ True	□ False	
Answer: False. TLSv1.3 is included	d in QUIC.	
19. TLSv1.3 functionalities are included in QUIC ("A UDP-Based Multiplexed and Secure Transport").		
☐ True	□ False	
Answer: True.		
20. HTTP/3 is "HTTP over QUIC". Therefore, TCP is not used.		
☐ True	□ False	
Answer: True.		

21. HTTP/3 is '	"HTTP over QUIC". The problem is that the n	ew features from HTTP/2 are lost.
	☐ True	□ False
Answer: False.	HTTP/2 features are included.	
22. S/MIME is	MIME sent over PKCS#7 (enveloped data ty	pe).
	☐ True	□ False
Answer: True.		
XML SECU	JRITY	
1. XML Encryp	otion is a W3C Recommendation, but XML Sig	gnature it is not.
	☐ True	□ False
	XML Signature is also a W3C Recommendation	1.
2. XML Encryp	otion always provides non-repudiation.	
A	☐ True	□ False
Answer: False.	We need something more, as a trusted third pa	rty.
3. The encrypt encryption pro		always included in the document resulting from the
	□ True	□ False
Answer: False.	It could be external and referred to with the eler	ment xenc:CipherReference.
	ted content obtained with XML Encryption ng included in the document resulting from t	may be referenced from the XML document itself, he encryption process.
	□ True	□ False
Answer: True.		
	data are included in <i>XML Encryption</i> , they ar of encrypted octets.	e inside the element <i>CipherValue</i> , coding in base64
	□ True	□ False
Answer: True.		
6. A <i>detached</i> signature in XML <i>Signature</i> means that the signature element may be, optionally, kept out of the signed XML document.		
	☐ True	□ False
Answer: False.	It is always outside the document.	
7. A detached signature in XML Signature means that the signature element is outside the signed XML document.		
-	☐ True	□ False

Answer: True.

XML element.	nature, in the case of a detached signature, t	the signature element is at the root of the signed
	☐ True	□ False
Answer: False.	It is outside the document.	
9. In XML Sign signed.	nature, in the detached case, the signature	element is not in the same XML document that it is
	☐ True	□ False
Answer: True.		
10. In a detach		ferenced from the Reference element, which is part
	□ True	□ False
Answer: True.		
	gnature, the signature algorithm that genera on of the SignedInfo element of the Signat	tes the SignatureValue element is applied to the ure element.
	☐ True	□ False
Answer: True.		
-	gnature, both in the e <i>nveloped</i> and in the <i>en</i> v XML document.	veloping cases, the signature element is included
	☐ True	□ False
Answer: True.		
13. In XML Si enveloping.	gnature, if an element signature is part of	another element, this means that the signature is
	☐ True	□ False
Answer: False.	It is enveloped.	
-	gnature, the signature algorithm that generate of the XML document.	es the SignatureValue element is directly applied
	□ True	□ False
	It is applied on the canonicalization of the elengature method, the URI and the Digest itself.	nent SignedInfo, which includes the canonicalization
	element (its canonicalization), which include	tes the SignatureValue element is applied to the smore elements than just the Digest of the XML
	☐ True	□ False

Answer: True. It is applied on the canonicalization of the element SignedInfo, which includes the canonicalization method, the signature method, the URI and the Digest itself.

16. In XML Signature, the signature algorithm that generates the SignatureValue element is applied to the canonicalization of the SignedInfo element, which includes the canonicalization method, the signature method, the URI and the Digest.		
	☐ True	□ False
Answer: True.		
17. In XML Sig	gnature, the <i>Digest</i> element is the data on wh	ich the signature algorithm is applied.
	☐ True	□ False
	. The signature algorithm is applied over the <i>Sign</i> nods, the URI and the <i>Digest</i> .	edInfo element, which includes the canonicalization and
18. In XML Sig	gnature, the <i>Digest</i> of the document to sign is	s included in the element SignedInfo.
	☐ True	□ False
Answer: True.		
	gnature, the <i>Digest</i> of the document to sign inveloped or enveloping.	s included in the element <i>SignedInfo</i> only when the
	☐ True	□ False
SPECIFIC	SECURITY PROTOCOLS	
1. It is not pos	ssible to express a SAML token in XML.	
	☐ True	□ False
Answer: False	. A SAML token (assertion) is expressed and inte	erchanged in XML.
2. SAML Asse	ertions" are data structures represented in XN	ſL.
	☐ True	□ False
Answer: True.		
3. In SAML, users identify themselves in front of a Service Provider that, afterwards, communicates with an Identity Provider in the name of the user.		
	☐ True	□ False
Answer: False the Service Pro		Provider independently of when they communicate with
4. In SAML, th	ne user is identified in front of an <i>Identity Pro</i>	vider.
	☐ True	□ False
Answer: True.		

5. In SAML, th	e user must initially connect to an Identity Pr	ovider before accessing the Service Provider.
	☐ True	☐ False
Answer: False.	The user may start either with the IdP or the SP).
	e Identity Provider and the Service Provider cess to a resource in the Service Provider.	always communicate directly between them when a
	☐ True	□ False
Answer: False.	In some cases, IdP and SP communication is the	nrough the user.
	when a user wants to Access to a resource in der communicate through the user.	n a Service Provider, the Identity Provider and the
	☐ True	□ False
Answer: True.		
	mplementing SAML will need to transfer info this purpose, it will use the POST method wh	rmation between an Identity provider and a Service en using HTTP.
	☐ True	□ False
Answer: True.		
9. The OAuth	2.0 protocol is fully compatible with its previo	ous version (OAuth 1.0 protocol).
	☐ True	□ False
Answer: False.		
10. The OAuth data in its bod		a response could include JSON information or XML
	☐ True	□ False
Answer: True.		
11. OAuth is a	n authorization protocol.	
	☐ True	□ False
Answer: True.		
12. In OAuth 2	2.0, the "Authorization code" is one type of "A	Authorization grant".
	□ True	□ False
Answer: True.		
13. In OAuth 2	2.0, the "redirect_uri" is part of the "Access to	oken request".
	☐ True	□ False
Answer: True.		
14. With the O	Auth 2.0 protocol, the password of the user	r is never shared with the application.
	☐ True	□ False
Answer: True.		

15. THE OAUTH	2.0 protocol protects user's password by e	encrypting it when shared.
	□ True	□ False
Answer: False.	The password is never shared.	
	2.0 protocol shares the password of the us a secure way so no one else may have acce	ers with the application that acts on their name, but ss to the password.
	□ True	□ False
Answer: False.	The password is not shared.	
	2.0 protocol does not normally share the p . When needed, this is done in encrypted mo	password of the users with the application that acts de.
	☐ True	□ False
Answer: False.	The password is never shared.	
18. Resource	Owner, Resource Server and Client Applicati	on are examples of the roles defined by OAuth 2.0.
	☐ True	□ False
Answer: True.		
	e features of the OAuth 2.0 protocol are the	at allows users to approve an application to act on pplication.
	☐ True	□ False
Answer: True.		
20. In OAuth 2	.0, the "scope" is part of the "Authorization เ	response".
	☐ True	□ False
Answer: False.	It is part of the "Authorization request".	
21. A <i>token en</i> client authenti		uthorization grant for an access token, typically with
	☐ True	□ False
Answer: True.		
22. The body o	of an access token response in OAuth 2.0 m	nay include a JSON string.
	☐ True	□ False
Answer: True.		
23. OpenID Co	onnect is a simple layer to handle identity on	top of OAuth 2.0.
	☐ True	□ False
Answer: True.		
24. OpenID Coprovides author		useful to use in combination with OAuth 2.0, which
	☐ True	□ False
Answer: False.	It is the other way around.	

25. JSON Web T	Tokens (JWT) are intended as a simplificati	on of XML.
Γ	⊐ True	□ False
Answer: False. T	hey are simplifying SAML.	
26. A JWT struc	cture is a sequence of ASCII characters.	
	⊐ True	□ False
Answer: True. It i	is encoded with BaseUrl.	
	eb Tokens (JWT), information such as the " s are part of the Payload.	Signing/decrypting algorithm" is inside the Header,
Γ	⊐ True	□ False
Answer: True.		
28. The JWT str	ructure is Base64Url encoded.	
Г	⊐ True	□ False
Answer: True.		
29. The Encrypalgorithms.	pted JWT standard recommends conter	nt encryption algorithms, but no key encryption
Γ	⊐ True	□ False
Answer: False. It	t recommends both.	
30. In the Encry	pted JWT there is no protected header.	
Γ	⊐True	□ False
Answer: False.		
31. As for XML, W3C.	JSON has its own "JSON Web Signature"	and "JSON Web Encryption", also standardized by
Γ	⊐ True	□ False
Answer: False. It	t is standardized by IETF.	
32. A JWT struc	cture contains a Header, the Payload and a	Signature. All three are mandatory.
Γ	⊐ True	□ False
Answer: False. T	he Signature is optional.	
	rypted data (ciphertext) and an Authenticati	er, an Encrypted key (symmetric), an Initialization on tag. The vector and the tag are optional, while the
[□ True	□ False
Answer: True.		

PRIVACY & ACCESS CONTROL

1. Privacy co Technologies		rmation (PII) are examples of Privacy Enhancing		
	☐ True	□ False		
Answer: True.				
2. Privacy Enh	nancing Technologies (PETs) help controlling	g access to Privacy Identifiable Information (PII).		
	☐ True	□ False		
Answer: True.				
3. Personally privacy of the		an be freely distributed, since it does not affect the		
	☐ True	□ False		
Answer: False.	. Just the contrary: it is the information that shoul	d be protected.		
	of a person may be considered <i>Personally la</i> considered PII.	lentifiable Information (PII), while their identity card		
	☐ True	□ False		
Answer: False.	. Both are PII since they identify the user.			
5. Health data	are not considered Personally Identifiable In	formation (PII), so they should not be protected.		
	☐ True	□ False		
Answer: False.	. They are sensitive PII.			
6. Anonymiza	tion and pseudonymization tools are example	es of PETs (Privacy Enhancing Technologies).		
	☐ True	□ False		
Answer: True.				
7. Anonymiza	tion is an example of PET (Privacy Enhancing	g Technology), while pseudonymization is not.		
	☐ True	□ False		
Answer: False.	. Pseudonymization is also a PET.			
	Policy Decision Point) needs information from nation Point) in order to take an access decisi	n the PAP (<i>Policy Administration Point</i>) and the PIP on.		
	☐ True	□ False		
Answer: True.				
9. The PEP (<i>Policy Enforcement Point</i>) is the one that controls the access to the resources, while the PDP (<i>Policy Decision Point</i>) is the one who takes the decision based on the policies and other information.				
	☐ True	□ False		
Answer: True.				

10. In access of Point).	control systems, the PEP (Policy Enforcement	Point) does not always need a PDP (Policy Decision		
	☐ True	□ False		
Answer: False.	Both are modules that work together.			
	uest access to the PEP (<i>Policy Enforcement F</i> access is the PDP (<i>Policy Decision Point</i>).	Point), but the module that works with the policies to		
	☐ True	□ False		
Answer: True.				
12. The Discre	etionary Access Control is based on the use o	of security labels (levels and categories).		
	☐ True	□ False		
Answer: False.	This is the Mandatory Access Control. The DAC	C is based on access control lists.		
13. The Manda	atory Access Control is based on the use of s	security labels (levels and categories).		
	☐ True	□ False		
Answer: True.				
14. Security la	bels are used in MAC (Mandatory Access Con	ntrol), but not in DAC (Discretionary Access Control).		
	☐ True	□ False		
Answer: True.				
15. RBAC me information of		is its name indicates, is based in "records" with		
	☐ True	□ False		
Answer: False.	The "R" refers to "Role".			
16. ABAC is a	n Access Control mechanism based on attrib	outes.		
	☐ True	□ False		
Answer: True.				
17. XACML (e)	Xtensible Access Control Markup Language)	is a W3C standard.		
	☐ True	□ False		
Answer: False.	It is from OASIS.			
18. XACML de	fines elements such as Rule, Policy and Poli	cySet.		
	☐ True	□ False		
Answer: True.				
19. XACML is	19. XACML is useful for the RBAC model, but not for the ABAC one.			
	☐ True	□ False		
Answer: False.				

20. XACML is	a XML-based language used to represent lice	enses.			
	☐ True	□ False			
Answer: False	. It is for representing rules, as privacy policies, f	or example.			
21. XACML is	a language to define privacy policies using r	ules.			
	☐ True	□ False			
Answer: True.					
22. XACML is	a standard that allows expressing rules for a	rccess control. □ False			
Answer: True.					
23. With XACI	ML we are able to specify the rules that contr	ol the access to a specific resource.			
	☐ True	□ False			
Answer: True.					
24. XACML is	software that allows to control access to the	data.			
	☐ True	□ False			
Answer: False	. It is not software, but a XML specification.				
25. In XACML	, the Rule Combining Algorithm allows to dec	cide how to combine encryption mechanisms.			
	☐ True	□ False			
Answer: False	. It allows to express how to combine several rule	es in a Policy.			
	26. XACML includes the element <i>Rule Combining Algorithm</i> inside a <i>Policy</i> , since there may be several different rules inside a policy.				
	☐ True	□ False			
Answer: True.					
27. XACML is an extension of XML to add security to the communication.					
	☐ True	□ False			
Answer: False	. XACML defines rules, as for example privacy ru	ules.			

E-HEALTH XACML

1. The following	ng line of a XACML Rui	le:
	<rule effect="Permit" ruleid="urr</th><th>:oasis:names:tc:xacml:3.0:RuleSAM"></rule>	
states, with th	e attribute Effect, tha	at access will not be allowed if the Rule validates.
	☐ True	□ False
Answer: False.	Access will be allowed.	
2. The following	ng line of a XACML Poi	licy:
	<rule effect="Permit" ruleid="urr</td><td>:oasis:names:tc:xacml:3.0:RuleSAM"></rule>	
Indicates with be allowed.	the value of the attrib	oute Effect that even if what the rule specifies is not fulfilled, access wil
	☐ True	□ False
Answer: False.	Access is not allowed it	what the rule specifies is not fulfilled.
3. The following	ng line of an XML docu	ment:
	<rule effect="Permit" ruleid="urr</td><td>:oasis:names:tc:xacml:3.0:RuleSAM"></rule>	
is not a valid	start of a XACML Rule	, because the attribute Effect should be in a different XML element.
	☐ True	□ False
Answer: False.	It is valid.	
4. Given the fo	ollowing fragment of a	XACML Rule:
<rule ru<="" td=""><td>leId="urn:oasis:na</td><td>ames:tc:xacml:3.0:RuleSAM" Effect="Deny"></td></rule>	leId="urn:oasis:na	ames:tc:xacml:3.0:RuleSAM" Effect="Deny">
< <	AttributeValue Dat Modify /AttributeValue> AttributeDesignato Category="urn:oas AttributeId="urn:	pasis:names:tc:xacml:1.0:function:string-equal"> caType="http://www.w3.org/2001/XMLSchema#string"> pr MustBePresent="false" sis:names:tc:xacml:3.0:attribute-category:action" coasis:names:tc:xacml:1.0:action:action-id" //www.w3.org/2001/XMLSchema#string"/>
if we request t	the action "Modify", it	will be authorized.
	☐ True	□ False
Answer: False.	The Effect is Deny, so i	t will not be authorized.
-	_	KACML Rule, the Match element specifies that the XACML Request should faction" in order to apply the indicated "Effect".
	☐ True	□ False
Answer: True.		

6. Given the following fragment of a XACML Rule:

<pre><rule effect="Permit" ruleid="urn:oasis:names:to:</pre></th><th>:xacml:3.0:RuleSAM"></rule></pre>	
<pre><attributevalue <="" attributevalue="" datatyp="" print=""> <attributedesignator category="urn:oasis:r AttributeId=" mu="" pre="" urn:oasis<=""></attributedesignator></attributevalue></pre>	s:names:tc:xacml:1.0:function:string-equal"> ce="http://www.w3.org/2001/XMLSchema#string"> custBePresent="false" names:tc:xacml:3.0:attribute-category:action" is:names:tc:xacml:1.0:action:action-id" .w3.org/2001/XMLSchema#string"/>
if we request the action Print, it will be au	thorized.
☐ True	□ False
Answer: True.	
7. The following line of a XACML Rule:	
<rule effect="Permit" ruleid="urn:oas</td><td>sis:names:tc:xacml:3.0:RuleSAM"></rule>	
states, with the attribute Effect, that acc	cess will not be allowed if the Rule validates.
☐ True	□ False
Answer: False. It states that access will be a	illowed.
specific chromosome, the correspondin	or a "Researcher" to get a file containing genomic information on a game XACML rule could have 3 Match elements, one for the resource ne action (get) and another for the user (Researcher, as a Role).
☐ True	☐ False
Answer: True.	

DRM

1. The only rig	ghts that could have exclusivity or could be r	emunerated are the economic rights.		
	☐ True	□ False		
Answer: True.				
2. The exclusi	vity of the moral rights could be negotiated.			
	☐ True	□ False		
Answer: False.	. Moral rights could not be transferred, so "exclus	sivity" does not apply.		
3. A difference (or licenses).	e between XACML and MPEG-21 REL is that	only in the second case it is possible to use grants		
	☐ True	□ False		
Answer: True.				
4. A Digital Ri	ghts Management (DRM) system allows to co	ontrol the moral rights over a work ("creation").		
	☐ True	□ False		
Answer: False.	. Moral rights are inalienable. A DRM system cor	ntrols exploitation rights.		
5. The econom	nic rights of a work include, between others: r	eproduction, distribution and public communication.		
	☐ True	□ False		
Answer: True.				
6. The moral r	rights of a work are irrevocable ("unrenounce	•		
	☐ True	□ False		
Answer: True.				
7. It is allowed	d to sell the economic rights of a work.	□ False		
Answer: True.				
8. It is allowed	to sell the economic rights of a work, but no	_		
	☐ True	□ False		
Answer: True.				
9. The econon	nic rights could have exclusivity or could be			
	☐ True	□ False		
Answer: True.				
10. There are a few parts of the MPEG-21 standard that deal with the representation of licenses for rights management.				
	☐ True	□ False		
Answer: True.				

with XACML.	or grant, in a Rights Expression Language (RE	.E/ identifies a resource to which rights are assigned
	☐ True	□ False
Answer: False	XACML is independent from a REL.	
• ,	e allowed on it (and under which conditions	language is intended to identify a resource, which), but it does not identify for whom the license is,
	☐ True	□ False
Answer: False	Apart from the resource and the operations, it a	lso specifies for whom the license is.
•	or License, in general) in a rights expression e allowed on it (and under which conditions),	language is intended to identify a resource, which and for whom the license is.
	☐ True	□ False
Answer: True.		
• ,	or License, in general) in a rights expression e allowed on it (and under which conditions),	language is intended to identify a resource, which but never identifies for whom the license is.
	☐ True	□ False
Answer: False	It also specifies for whom the license is.	
• ,		language is intended to identify a resource, which owever, conditions for the operations are expressed
	☐ True	□ False
Answer: False	It also specifies the conditions.	
•	in the context of the Rights Expression La e allowed on it (and under which conditions),	nguage of MPEG-21) identifies a resource, which and for whom the grant is.
	☐ True	□ False
Answer: True.		
	E (Encrypted Media Extensions) specifies a c Rights Management) agent software.	communication channel between web browsers and
	☐ True	□ False
Answer: True.		
18. The main browsers.	purpose of W3C's EME (Encrypted Media Ex	tensions) is to define how to manage keys in web
	☐ True	□ False

19. The W3C's EME (Encrypted Media Extensions) limits the encryption algorithms to use. It just allows a few of them (less than 10) from a list in the standard. However, the list could be extended.						
☐ True	□ False					
Answer: False. EME provides a me	chanism to use any encryption algorithm (implemented outside the browser).					

EXERCISE 1

Using RSA, B sends to A the result c=11 of encrypting a message m, together with the result s=18 of signing the same message with a hash function H(m)=m/2.

The public and private keys of A and B are: $(e_A, n_A) = (11, 35), d_A = 11; (e_B, n_B) = (3, 22), d_B = 7$

<u>Note</u>: Examples of RSA operations: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Reasoned and briefly answer the following questions:

1) Calculate (with the information that the recipient could have) the original message m.

B has encrypted m with the public key from A, and A must decrypt with his/her private key: $m = c^{dA} \mod n_A$; $m = 11^{11} \mod 35 = 16$.

2) Verify (with the information that the recipient could have) if the signature is correct.

B has signed H(m) with his/her private key. To verify the signature, A needs to decrypt s with the public key from B, and check if the result coincides with H(m), i.e. if H (m) = $s^{eB} \mod n_B$.

 $s^{eB} \mod n_B = 18^3 \mod 22 = 2.$

H(m) = m/2, H(16) = 8.

Therefore, the signature is not correct!

PROBLEMA 2

Un usuario A quiere firmar con RSA un mensaje m de sólo un octeto: **00001110**, que envía a otro usuario B. Los datos disponibles son:

Claves públicas de los usuarios A y B: $(e_A, n_A) = (3, 22)$ $(e_B, n_B) = (11, 35)$

Nota: En la firma RSA, $s = m^d \mod n$; $m = s^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular la firma que generará A.

Para calcular s necesitamos m, d y n. m será el octeto 00001110 = 14 en decimal. En este caso concreto en el que A firma con su clave secreta, necesitamos d_A y n_A . n_A vale 22, pero nos falta d_A , que es su clave secreta. La podríamos calcular si tuviésemos $\Phi(n) = (p-1)^*(q-1)$, siendo p y q los factores de n. Como n $(n=p^*q, siendo ambos primos)$ es muy pequeño, podemos deducir que n=22=2*11 y, por tanto $\Phi(n) = 1*10=10$.

Por tanto, $d_A = e_A^{-1} \mod \Phi_A(n) = 3^{-1} \mod 10$. Y calculamos el inverso con la "magic box":

 b	 	d	<u> </u>	k	
 0		10		_	
1	1	3	1	3	
-3	1	1	- 1		

por lo que el inverso es igual a 10 - 3 = 7, y $d_A = 7 \mod 10 = 7$.

Ahora simplemente queda aplicar la fórmula s = md mod n

Con los valores que tenemos:

 $s = 14^7 \mod 22 = 105413504 \mod 22 = 20$

EXERCISE 3

A and B use RSA to exchange encrypted messages.

Their public keys are: $(e_A, n_A) = (11, 35)$ $(e_B, n_B) = (3, 22)$

C manages to find out, for both A and B, the values "p" and "q" with which "n" has been obtained (because the selected prime number is too small, so C has managed to factorize "n").

C intercepts an encrypted message that A sends to B. Specifically, c = 14.

Reasoned and briefly answer the following question:

What is the original message m that has been sent and which C is able to decrypt? Detail all the calculations that C must do to obtain m.

Note: In RSA, $c = m^e \mod n$, $m = c^d \mod n$, $d = e^{-1} \mod \Phi(n)$.

The message c intercepted by C had been calculated as:

$$_{\text{C}}$$
 = 20³ mod 22 = 8000 mod 22 = 14

The values p and q of A and B are:

$$n = p * q$$
; in A: $n = 35 = 5 * 7$; in B: $n = 22 = 2 * 11$

And $\Phi(n)$:

$$\Phi$$
 (n) =(p-1)*(q-1); in A: Φ _A (n) = 4*6= 24; in B: Φ _B (n) = 1*10= 10

Taking into account that A sends to B, we calculate m in this way:

m = 14^{dB} mod 22, so we need to calculate d_B .

Applying the formula with our values:

$$d_B = e_B^{-1} \mod \Phi_B(n) = 3^{-1} \mod 10$$

And we calculate the inverse with the "magic box":

b		d		k
0	1	10 3		
-3				

So the inverse is equal to 10 - 3 = 7, and $d_B = 7 \mod 10 = 7$.

Then we now have all values to calculate m:

$$m = 14^7 \mod 22 = 105413504 \mod 22 = 20$$

PROBLEMA 4

Recibimos un mensaje encriptado c y su firma s. En concreto, nos llega c=16 y s=14. Usamos RSA.

Las claves pública y privada de nuestro interlocutor son: (e, n) = (11, 35) d = 11

Nuestras claves pública y privada son: (e, n) = (3, 22) d = 7

Nota: Ejemplo de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular el mensaje m original y verificar si la firma es correcta. La función de Hash es H(m)=m.

El originador de m lo ha encriptado con nuestra clave pública y deberemos desencriptar con nuestra clave privada:

```
m = c^d \mod n; m = 16^7 \mod 22 = 14.
```

El originador ha firmado H(m) con su clave privada. Para verificar la firma, hemos de desencriptar s con su clave pública y ver si el resultado coincide con H(m)=m:

```
m = s^e \mod n; m = 14^{11} \mod 35 = 14.
```

EXERCISE 5

In a RSA environment, we want to impersonate user A by signing a message m=14 as if we were user A.

The public key of A is: (e, n) = (11, 35)

Our public and private keys are: (e, n) = (3, 22) d = 7

<u>Note</u>: Examples of RSA operations: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calculate the private key of user A and the result of the signature.

```
We calculate the private key d of user A:
```

```
n=p*q; 35=5*7. \Phi(n)=(p-1)*(q-1)=4*6=24.

d = e^{-1} \mod \Phi(n) = 11^{-1} \mod 24. With magic box:
```

 $s = m^d \mod n$; $m = 14^{11} \mod 35 = 14$.

PROBLEMA 6

Usando RSA, A envía a B el resultado c=5 de encriptar un mensaje m, y el resultado s=4 de firmar el mismo mensaje con una función de Hash H(m)=m/3.

```
Las claves pública y privada de A y B son: (e_A, n_A) = (11, 35), d_A = 11; (e_B, n_B) = (3, 22), d_B = 7
```

Nota: Ejemplo de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Calcular (con los datos que pueda tener el receptor) el mensaje m original.

A ha encriptado m con la clave pública de B, y B debe desencriptar con su clave privada:

```
m = c^{dB} \mod n_B; m = 5^7 \mod 22 = 3.
```

2) Verificar (con los datos que pueda tener el receptor) si la firma es correcta.

A ha firmado H(m) con su clave privada. Para verificar la firma, B ha de desencriptar s con la clave pública de A, y ver si el resultado coincide con H(m):

EXERCISE 7

We encrypt using ElGamal with a generator α =3 \in Z_{31} . The secret key of the sender is 14 and the one for the recipient is 10. To encrypt, v=2 is chosen.

Note: ElGamal expressions: Encrypt: $c = m^*(\alpha^a)^v \in G$

Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

Reasoned and briefly answer the following question:

If the encrypted message c=27 is received, calculate the original message m.

$$\alpha^{v}$$
 = 3² mod 31 = 9.
m= 27 * (9¹⁰)-1 mod 31 = 27 * 5-1 mod 31, ya que 9¹⁰ mod 31 = 5
We calculate 5-1 mod 31 with "magic box":

Therefore, the result of the magic box is 31-6=25

 $m = 27 * 25 \mod 31 = 24$

EXERCISE 8

We encrypt using ElGamal with a generator α =3 \in Z_{31} . Our secret key is 10. As a result of the encryption we send the values $\bf c$ and 9.

Note: ElGamal calculations:

Encrypt: $c = m^*(\alpha^a)^v \in G$

Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

Calculate the encrypted message c that we would send if our clear text message were m=24.

```
\alpha^{v} = 9. Therefore, since 3<sup>v</sup> mod 31 = 9, this means that v=2.
c= 24*(9<sup>10</sup>) mod 31 = 24 * 5 mod 31 = 27
```

PROBLEMA 9

Suponer que encriptamos usando ElGamal con un generador α =3 \in Z_{31} . La clave secreta de un usuario A es a=17 y la de un usuario B es b=10. B recibe de A: (α^v, c) = (13, 5).

Nota: Fórmulas ElGamal: Encriptar: $c = m^*(\alpha^a)^v \in G$

Desencriptar: $m = c^*(\alpha^{va})^{-1} \in G$

Calcular el valor del mensaje m que A ha enviado.

m=
$$5*(13^{10})^{-1}$$
 mod $31 = 5*5^{-1}$ mod $31 = 5*25$ mod $31 = 1$
ya que 13^{10} mod $31 = 5$, y 5^{-1} mod $31 = 31-6 = 25$ con magic box.

EXERCISE 10

We encrypt using ElGamal with a generator α =2 \in Z_{31} . The sender's secret key is a = 14 and that of the receiver is a = 9. To encrypt we choose v = 3.

Note: ElGamal calculations: Encrypt: $c = m^*(\alpha^a)^v \in G$ Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

If the encrypted message c = 3 is received,

Reasoned and briefly answer the following questions:

1) What other value will we receive in addition to c?

```
\alpha^{v} = 2^{3} \mod 31 = 8.
```

2) What is the public key of the receiver that has been used to send the encrypted message?

```
\alpha^{a} = 2^{9} \mod 31 = 16.
```

3) Calculate the original message m.

```
m = 3 * (8^9)^{-1} \mod 31 = 3 * 4^{-1} \mod 31, since 8^9 \mod 31 = 4
```

We calculate 4-1 mod 31 with "magic box":

Therefore, the result of the magic box is 8 $m = 3*8 \mod 31 = 24$

PROBLEMA 11

Tenemos una infraestructura PKI, que llamamos PKIa, que sigue un modelo de confianza plano (su CA se llama CAa), y otra llamada PKIb que sigue un modelo jerárquico. En concreto, PKIb tiene una CAroot de la que dependen dos CAs (CA1a y CA1b). A su vez, de CA1a cuelgan CA2a y CA2b.

Suponer un certificado C con el siguiente contenido:

DATA:

SIGNATURE:

```
Certificate Signature Algorithm: md5WithRSAEncryption Certificate Signature: S
```

En este certificado C no tenemos los valores I (issuer), S (subject), n (módulo de la clave pública), e (exponente de la clave pública) y s (firma).

Suponer que CA2b emite un certificado C1 para un usuario U1, y que CA1b emite C2 para U2.

Suponer las siguientes claves públicas y secretas:

```
U1: n=35 (5*7) e=11 d=11 U2: n=299 (13*23) e=13 d=61 CA1b: n=319 (11*29) e=3 d=257 CA2b: n=22 (2*11) e=3 d=\frac{2}{2}?
```

Nota: En RSA, $c = m^e \mod n$, $m = c^d \mod n$, $d = e^{-1} \mod \Phi(n)$.

Contestar razonada y brevemente a las siguientes preguntas:

1) ¿Qué dos campos contiene el elemento Validity del certificado?

"Not before" y "Not after".

2) Calcular d para CA2b.

```
d = e^{-1} \mod \Phi(n); \Phi(n) = (p-1)*(q-1) = (2-1)*(11-1)=10; Con Magic Box: b \mid d \mid k ---|---|-- 0 \mid 10 \mid - 1 \mid 3 \mid 3 -3 | 1 | b_i = b_{i-2} - (k_{i-1} * b_{i-1})
```

Por tanto, d = 10 - 3 = 7.

Suponer que el certificado C es el certificado C1:

3) ¿Cuáles serían los valores I y S? ¿De quién sería la firma s?

I sería CA2b, que es quien emite ("issue") C1. S sería U1, para quien es el certificado ("subject"). La firma s sería de CA2b (firma la CA que emite).

4) ¿Cuáles serían los valores **n** y **e**?

Serían los correspondientes a la clave pública de U1, el dueño del certificado; es decir, n=35 y e=11.

5) ¿Cómo calcularíamos s? ¿Cuánto valdría la clave necesaria?

Es la firma de CA2b sobre el certificado C1. Sería algo como $s = C1^d \mod n$, siendo n y d la clave privada de CA2b (n=22 y d=7; calculada antes).

Suponer ahora que U1 quiere enviar un mensaje m=2 a U2:

6) ¿Cuánto valdrá el mensaje encriptado **c** enviado?

```
c = m^e \mod n, siendo n y e la clave pública de U2 (n=299 y e=13).
```

```
Por tanto, c = 2^{13} \mod 299 = 119.
```

7) ¿Cuánto valdrá la firma del mensaje **m** (sin aplicar ninguna función de Hash)?

```
s = m^d \mod n, siendo n y d (clave secreta) los correspondientes a U1 (n=35 y d=11).

Por tanto, s = 2^{11} \mod 35 = 18.
```

8) Teniendo en cuenta la estructura de las CAs, indicar qué certificados serán verificados y por quién.

U1 tiene que verificar el certificado C2 de U2, porque U1 usa la clave pública de U2. Para ello verifica la firma del issuer, es decir de CA1b. Como no reconoce esa firma, mira quien ha firmado el certificado de CA1b. Al ver que es CAroot, lo acepta, pues el certificado de U1 viene de CAroot también (C1 está firmado por CA2b, el certificado de CA2b está firmado por CA1a, y el de esta última por CAroot).

PROBLEMA 12

Ens volem connectar a una tenda online per comprar una sèrie de productes fent servir el protocol HTTPS. Imaginar que la CA 'ThawteSGC CA2' ha signat el certificat de la tenda online. Un cop el nostre carret és ple de productes, comencem el procés de pagament. Llavors la tenda ens re-adreça a la plana web d'un banc online, que no coneixem, fent servir de nou el protocol HTTPS, però en aquest cas la CA encarregada de signar el certificat del banc és 'Visa CA2'.

Considerant la següent estructura de PKI instal·lada al nostre navegador web:

descriure les operacions de verificació de firma que s'han de dur a terme per autenticar tots dos servidors. Suposar que tots els certificats a recuperar tenen una data d'expiració correcta.

Verificación del servidor 1 (tienda), que tiene un certificado firmado por SGC CA2:

- Verifica que la firma de SGC CA2 es correcta con la clave pública que hay en su certificado emitido por SGC CA1.
- Verifica que la firma de SGC CA1 es correcta con la clave pública que hay en su certificado emitido por Verisign.
- Acepta el certificado de la tienda ya que tiene a Verisign en su lista de Trusted CAs.

Verificación del servidor 2 (banco), que tiene un certificado firmado por Visa CA2:

- Verifica que la firma de Visa CA2 es correcta con la clave pública que hay en su certificado emitido por Visa.
- Acepta el certificado del banco ya que tiene a Visa en su lista de Trusted CAs.

PROBLEMA 13

Tenemos una infraestructura PKI, que llamamos PKIa, que sigue un modelo de confianza plano (su CA se llama CAa), y otra llamada PKIb que sigue un modelo jerárquico. En concreto, PKIb tiene una CAroot de la que dependen 2 CAs (CA1a y CA1b). A su vez, de CA1a cuelgan CA2a y CA2b.

Un usuario U1 envía a U2 un certificado emitido por CAa. U2 tiene un certificado emitido por CA2a. A su vez, U2 envía su certificado a U3, que trabaja con CA1b.

SE PIDE:

1) ¿Qué operaciones (detallar qué firmas se calculan o verifican y con qué claves) hará U2 para decidir si confía en el certificado que le envía U1? ¿Qué decisión tomará?

U2 recibe un certificado de U1 emitido y firmado por CAa. U2 confía en CA2a, quien le ha emitido su certificado y, por tanto, también confía en CA1a y CAroot (en la PKIb).

U2 verificará la firma del certificado que recibe de U1, es decir la de CAa de PKIa. Como su modelo de confianza es plano, CAa se firma su propio certificado y como U2 no confía en CAa, decidirá no aceptar el certificado.

2) Lo mismo para U3.

U3 recibe un certificado de U2 emitido y firmado por CA2a. U3 confía en CA1b, quien le ha emitido su certificado y, por tanto, también confía en CAroot (en la PKIb).

U3 verificará la firma del certificado que recibe de U2, es decir la de CA2a. Como el certificado de CA2a está firmado por CA1a, verifica entonces su firma, viendo que la certifica CAroot, en quien U3 confía, pues está en su árbol. Por tanto, sí aceptará el certificado.

3) Si es U1 quien se comunica con U3, éste no le aceptará el certificado. Sin embargo, U3 confía en U1. ¿Qué puede hacer U3 para que su software acepte el certificado de U1?

Como la solución que se pide sólo puede ser sobre el software de U3 (no a nivel de reconocimiento entre PKla y PKlb), hemos de usar el modelo "hierarchical trust list" e incluir el certificado de U1 en la lista de certificados de confianza de U3.

PROBLEMA 14

Supónganse las estructuras jerárquicas de Autoridades de Certificación de la figura. La "List of trusted CA" la tienen todos los usuarios mencionados posteriormente.

El usuario A tiene un certificado emitido por Thawte SGC CA2, el usuario B uno de VisaCA1 y el usuario C uno de otra CA ("otherCA") que tiene estructura plana y no está en "List of trusted CA".

Contestar razonada y brevemente a las siguientes preguntas:

- ¿Qué información contiene el certificado del usuario A?
 Básicamente: Emisor (Tawte SGC CA2), Validez, Propietario (A), Clave pública de A, Firma del emisor.
- 2) El usuario B quiere validar la clave pública de A. ¿Qué certificados y firmas tendrá que verificar? ¿Qué decisión tomará?

Primero verificará la firma de Tawte SGC CA2, quien ha firmado el certificado de A. Para ello tendrá que acceder al certificado de Tawte SGC CA2, donde verá que le firma Tawte SGC CA1 y repetirá el mismo proceso. Finalmente

irá al certificado de Verisign. Una vez verificado que la firma es correcta, pasará a validarlo positivamente, pues Verisign está en la lista de Trusted CAs de B.

3) ¿Por qué B no aceptará el certificado de C? Enumerar 3 maneras diferentes de conseguir que B pueda aceptar el certificado de C.

Porque el certificado de C lo firma otherCA, que se autofirma, y no está en la lista de CAs de confianza de B.

Hay 3 opciones para poder aceptar:

- Añadir otherCA a la lista de Trusted CAs de B.
- Añadir una CA Bridge entre Visa CA1 y otherCA.
- Hacer una cross-certification entre Visa CA1 y otherCA.

PROBLEMA 15

Tenemos una infraestructura PKI con un modelo de lista de confianza de un usuario U1. Suponer que tenemos dos estructuras jerárquicas en la lista, tal como indica la siguiente figura.

Suponer además un certificado C con el siguiente contenido (incompleto):

DATA:

SIGNATURE:

```
Certificate Signature Algorithm: md5WithRSAEncryption Certificate Signature: {\bf S}
```

Suponer que "Visa CA2" emite un certificado C1 para un usuario U1, y que "Thawte SGC CA3" emite C2 para U2.

Suponer las siguientes claves públicas y secretas:

U1:	n= 35	e= 11	d= 11
U2:	n= 299	e= 13	d= 61
Visa CA2:	n= 319	e= 3	d= 257
Thawte SGC CA3:	n= 22	e= 3	d= 7

Contestar razonada y brevemente a las siguientes preguntas:

Suponer que el certificado C es el certificado C1:

1) ¿Cuáles serían los valores I y S? ¿De quién sería la firma s?

I sería Visa CA2, que es quien emite ("issue") C1. Su sería U1, para quien es el certificado ("subject").

La firma s sería de Visa CA2 (firma la CA que emite).

2) ¿Cuáles serían los valores n y e?

Serían los correspondientes a la clave pública de U1, el dueño del certificado; es decir, n=35 y e=11.

Suponer ahora que U1 quiere enviar un mensaje **m** a U2:

3) ¿Quién generaría la firma del mensaje **m**?

U1, que es quien envía el mensaje.

4) ¿Quién generaría la clave pública de U2 con la que U1 encripta el mensaje m?

La CA que ha emitido el certificado de U2, es decir Thawte SGC CA3.

- 5) Teniendo en cuenta la "List of Trusted CA" del principio:
 - a. Indicar qué certificados y firmas serán verificados y por quién.
 - b. ¿Qué decisión tomará U1? Es decir, ¿enviará o no el mensaje **m** a U2?

U1 tiene que verificar el certificado C2 de U2, porque U1 usa la clave pública de U2. Para ello verifica la firma del issuer, es decir de Thawte SGC CA3. Como no reconoce esa firma, mira quién ha firmado su certificado. Ve que es Thawte SGC CA1, a quien tampoco reconoce. Entonces verifica el certificado de quien ha firmado el de Thawte SGC CA1, que es Verisign. Entonces lo acepta, pues está en su lista de confianza.

PROBLEMA 16

Tenemos un sistema S que permite enviar mensajes XML como éste:

Queremos que el usuario A del sistema S envíe dichos mensajes XML con el *valor (contenido) del elemento* Alphanumeric encriptado. El destinatario de los mensajes es el usuario B.

Contestar razonada y brevemente a las siguientes preguntas:

Parte I

1) Si usamos XML Encryption, dar la estructura del fichero XML que recibirá el destinatario del mensaje.

2) ¿Cuáles serían los caracteres concretos que se habrían encriptado con el ejemplo anterior?

El valor alfanumérico del password: "1234ab".

Parte II

Suponer que la encriptación se realiza usando ElGamal con un generador α =3 \in Z₃₁. La clave secreta de A es a=10 y la de B es b=17. B recibe de A: (α ^v, c) = (13, 5).

<u>Nota</u>: Fórmulas ElGamal: Encriptar: $c = m^*(\alpha^a)^v \in G$ Desencriptar: $m = c^*(\alpha^{va})^{-1} \in G$

3) Calcular el mensaje (irreal para el caso concreto de XML Encryption) que A ha enviado.

```
m= 5*(13^{17})^{-1} mod 31 = 5*17^{-1} mod 31 = 5*11 mod 31 = 24
ya que 13^{17} mod 31 = 17, y 17^{-1} mod 31 = 11 con magic box.
```

```
b | d | k

---|---|---

0 | 31 | -

1 | 17 | 1

-1 | 14 | 1

2 | 3 | 4

-9 | 2 | 1

11 | 1 | b<sub>i</sub> = b<sub>i-2</sub> - (k<sub>i-1</sub> * b<sub>i-1</sub>)
```

Parte III

Suponer que A quiere firmar con XML Signature el nuevo fichero XML resultante de la XML encryption.

Nota: La estructura de la firma XML es:

4) ¿Qué información es la que se firma y por tanto se incluirá dentro del elemento SignedInfo?

<SignedInfo>

Parte IV

Imaginemos el caso, también irreal, de que la información a firmar sólo contiene el octeto **00001110**, y supongamos que se realiza una firma RSA con los siguientes datos:

```
Claves públicas de los usuarios A y B: (e_A, n_A) = (3, 22) (e_B, n_B) = (11, 35)
Nota: En la firma RSA, s = m^d \mod n; m = s^e \mod n; d = e^{-1} \mod \Phi(n).
```

5) Calcular la firma RSA que generará A.

Para calcular s necesitamos m, d y n. m será el octeto 00001110 = 14 en decimal. En este caso concreto en el que A firma con su clave secreta, necesitamos d_A y n_A . n_A vale 22, pero nos falta d_A , que es su clave secreta. La podríamos calcular si tuviésemos $\Phi(n) = (p-1)^*(q-1)$, siendo p y q los factores de n. Como n $(n=p^*q, siendo ambos primos)$ es muy pequeño, podemos deducir que n=22=2*11 y, por tanto $\Phi(n) = 1*10=10$.

Por tanto, $d_A = e_A^{-1} \mod \Phi_A(n) = 3^{-1} \mod 10$. Y calculamos el inverso con la "magic box":

 b 	_l 	d 	 	k
0	1	10	ı	_
1	1	3	1	3
-3	1	1	1	

por lo que el inverso es igual a 10 - 3 = 7, y $d_A = 7 \mod 10 = 7$.

Ahora simplemente queda aplicar la fórmula s = md mod n

```
Con los valores que tenemos:

s = 14^7 \mod 22 = 105413504 \mod 22 = 20
```

6) ¿En qué elemento de la XML Signature se transmitirá el valor calculado en el apartado anterior?

```
SignatureValue
```

PROBLEMA 17

Tenemos un sistema S que permite enviar mensajes XML como éste:

Queremos que un usuario del sistema S envíe dichos mensajes XML con el elemento Alphanumeric encriptado.

Contestar razonada y brevemente a las siguientes preguntas:

1) Si usamos XML Encryption, dar la estructura del fichero XML que recibirá el destinatario del mensaje.

2) ¿Cuáles serían los caracteres concretos que se habrían encriptado con el ejemplo anterior?

El elemento alfanumérico del password: "<Alphanumeric>1234ab</Alphanumeric>".

PROBLEMA 18

Suponer que se quiere firmar un mensaje m con XML Signature.

Nota: La estructura de la firma XML es:

¿Qué información es la que se firma (es decir, qué campos contiene) y por tanto se incluirá dentro del elemento SignedInfo de Signature?

```
<SignedInfo>
```

EXERCISE 19

Given the following XML document resulting from encryption with XML Encryption:

```
<?xml version='1.0'?>
<PasswordInfo xmlns='http://example.org/password'>
      <Name>John Smith</Name>
      <Password>
           <Alphanumeric>
                  <EncryptedData
                  Type='http://www.w3.org/2001/04/xmlenc#Content'
                  xmlns='http://www.w3.org/2001/04/xmlenc#'>
                        <CipherData>
                              <CipherValue>xxxxxx</CipherValue>
                        </CipherData>
                  </EncryptedData>
            </Alphanumeric>
            <Reminder>My dog</Reminder>
      </Password>
</PasswordInfo>
```

¿Which element or value has been encrypted? Reason the answer indicating the taken assumptions. Provide an example of a possible version of this XML document before encryption.

Since the Type attribute of the EncryptedData element is Content, we know that the value of the Alphanumeric element has been encrypted.

PROBLEMA 20

Suponer que se quiere firmar con XML Signature un documento XML en el que se ha encriptado con XML Encryption uno de sus elementos.

La estructura de dicha firma XML es:

- ¿De qué tipo de firma (Detached, Enveloped o Enveloping) se trata? ¿Cómo lo podemos saber?
 Detached o Enveloped. No tenemos el elemento Object.
- 2) ¿Dónde estaría dentro de la Signature el documento XML encriptado que estamos firmando?

La URI del elemento Reference de SignedInfo apuntaría al documento a firmar.

<SignedInfo>

EXERCISE 21

We have a hospital system HS that allows sending XML documents like this one:

Hospital H wants to send the health record of patient P to her using system HS. In order to ensure confidentiality, the value *(content)* of the Status element is encrypted inside the XML document.

Reasoned and briefly answer the following questions:

Part I

1) If we use XML Encryption, provide the structure of the XML document that patient P will receive. Include at least the "type" attribute and the "CipherValue" element of the "EncryptedData" element.

Part II

Assume that we encrypt using ElGamal with a generator α =2 \in Z_{31} . The secret key of the sender is 14 and the one for the recipient is 9. The received information is: (α^v , c) = (8, 3).

```
<u>Note</u>: ElGamal expressions: Encrypt: c = m^*(\alpha^a)^v \in G Decrypt: m = c^*(\alpha^{va})^{-1} \in G
```

2) Calculate the message sent.

```
m= 3*(8^9)^{-1} \mod 31 = 3*4^{-1} \mod 31 = 3*8 \mod 31 = 24
given that 8^9 \mod 31 = 4, and 4^{-1} \mod 31 = 8 with magic box.
```

3) Justify why the message sent calculated is not realistic for the case introduced in Part I.

We are encrypting several characters. In particular, those corresponding to the content of the *status* element. For the example given in the introduction it would contain more than 80 characters.

Part III

Still in the system HS environment, imagine that we want to sign the *HealthRecord* XML document, which in a particular case is a set of characters that correspond to the decimal number 200. Let's assume that we apply a RSA signature with the following data:

```
Public keys of H and P: (e_H, n_H) = (13, 299) (e_P, n_P) = (3, 319)

Note 1: In RSA signature, s = m^d \mod n; m = s^e \mod n; d = e^{-1} \mod \Phi(n).

Note 2: 299 = 13*23; 319=11*29
```

4) Calculate the RSA signature generated when signing the *HealthRecord* XML document.

To calculate s we need m, d and n. m is 200. The hospital H is who signs. Therefore, its private key is used, so we need d_H and n_H . n_H is 299, but we need d_H , i.e., the secret key. We could calculate it with $\Phi(n) = (p-1)^*(q-1)$, but we need the p and q factors of n. Since n $(n=p^*q$, being p and q primes) is, in this case, very small, we have n=299=13*23. So, $\Phi(n)=12*22=264$. Then, $d_H=e_H^{-1} \mod \Phi(n_H)=13^{-1} \mod 264$. We calculate the inverse with the "magic box":

EXERCISE 22

We have a hospital system HS that allows sending XML documents like this one:

Hospital H1 has sent one of the records of patient P to her. In turn, patient P, not satisfied with the treatment in Hospital H1, wants to send her health record to Hospital H2 in order to get a second opinion. She also uses system HS. In order to ensure confidentiality, the value *(content)* of the HealthRecord element is encrypted using XML Encryption.

Reasoned and briefly answer the following questions:

Part I

1) Provide the structure of the XML document that patient P sends. Include at least the "type" attribute and the "CipherValue" element of the "EncryptedData" element.

Part II

We encrypt using ElGamal with a generator α =2 \in Z_{31} . The secret key of Patient P is 14, the one for Hospital H1 is 11, and the one for Hospital H2 is 9. The received information is: (α^{v} , c) = (8, 3).

<u>Note</u>: ElGamal expressions: Encrypt: $c = m^*(\alpha^a)^v \in G$ Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

2) Calculate the message ("health record") sent.

$$m = 3*(8^9)^{-1} \mod 31 = 3 * 4^{-1} \mod 31 = 3 * 8 \mod 31 = 24$$

given that $8^9 \mod 31 = 4$, and $4^{-1} \mod 31 = 8$ with magic box.

Part III

Still in the system HS environment, imagine that we want to sign the *HealthRecord* XML document with XML Signature. We want to generate the signature in the *enveloped* mode. We are going to use RSA as signature algorithm.

3) If the specific encrypted XML document that we are going to sign is the one obtained in Part I of this exercise, **indicate** where is the XML Signature going to be included?

Since we are in the enveloped mode, the *Signature* element should be inside the original XML document. For example, it could be a new element inside the *HealthRecord* one, added after the *EncryptedData* element.

4) **Describe** the exact data on which the RSA algorithm is going to be applied: Is the XML document of the example? Is a hash/digest of that document? Something different (if so, please specify)?

The RSA algorithm is applied over a canonicalization of the *SignedInfo* element, which includes the *CanonicalizationMethod*, the *SignatureMethod* and the *Reference* (an URI and the Digest of the XML document).

5) Let's assume that the information to be signed is a message m=14. Calculate the obtained signature s using RSA, with the following data:

```
Public keys of hospitals and patient: (e_{H1}, n_{H1}) = (11,35) (e_{H2}, n_{H2}) = (13,299) (e_P, n_P) = (3,22)
Note: In RSA signature, s = m^d \mod n; m = s^e \mod n; d = e^{-1} \mod \Phi(n).
```

To calculate s we need m, d and n. m is 14. The patient P is who signs. Therefore, its private key is used, so we need d_P and n_P . n_P is 22, but we need d_P , i.e., the secret key. We could calculate it with $\Phi(n) = (p-1)^*(q-1)$, but we need the p and q factors of n. Since n $(n=p^*q$, being p and q primes) is, in this case, very small, we have $n=22=2^*11$. So, $\Phi(n)=1^*10=10$.

Then, $d_P = e_P^{-1} \mod \Phi(n_P) = 3^{-1} \mod 10$. We calculate the inverse with the "magic box":

The result is $d_P = 10-3=7$.

Finally, to calculate the signature, $s = m^d \mod n$

With the values we already have:

 $s = 14^7 \mod 22 = 105413504 \mod 22 = 20$

Part IV

We have a PKI with users U1 and U2 having a trust list model. Let's assume that we have two hierarchical structures in the list, as indicated in the following figure.

"Visa CA2" issues a certificate C1 for U1, while "Thawte SGC CA3" issues C2 for U2. U2 wants to send an encrypted message to U1.

6) Who needs to accept a certificate from another one?

U2 needs the certificate C1 from U1 since it needs to encrypt the message with the public key of U1.

7) With the trusted CAs list of the previous figure, will U2 decide to send the message? Why?

Yes, because the CAs that issued both certificates have their roots in the trusted list.

EXERCISE 23

We are sending XML documents, such as the one in the following example, with confidential information:

We want to encrypt part of this information to be sent through the network. We decide to just encrypt the Balance element.

Reasoned and briefly answer the following questions:

Part I

1) If we use XML Encryption, provide the resulting XML document. Assume the unknown values, but at least include the "Type" attribute.

Part II

We want to sign the previously encrypted document with XML Signature.

Note: The XML signature structure is:

2) In which of the elements of the XML signature structure is the encrypted document included? In which of the elements of the XML signature structure is the digest (result of applying a Hash function) of the encrypted document included? In case the selected element has, in turn, an internal structure, then indicate the specific **sub-element**.

```
The sub-elements of the SignedInfo element are:
<SignedInfo>
<CanonicalizationMethod Algorithm="..."/>
<SignatureMethod Algorithm="..."/>
<Reference URI="...">
<Transforms>
<Transform Algorithm="..."/>
</Transforms>
<DigestMethod Algorithm="..."/>
<DigestValue>.../DigestValue>
</Reference>
</SignedInfo>
```

The encrypted document is in the Object element in the case of Enveloping signature. In any other case, it is out of the Signature element.

The digest is in the DigestValue sub-element of the SignedInfo element.

Part III

Let's assume that the encrypted XML document is sent by user A to user B. Let's also assume that it can be represented as a message \mathbf{m} and that the result of the encryption of \mathbf{m} is \mathbf{c} =18. Let's finally assume that we use RSA.

```
The public keys of A and B are: (e_A, n_A) = (3, 22) (e_B, n_B) = (11, 35)
```

Note: Examples of RSA operations, $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

3) B has lost his private key, but he is able to calculate it. How could he do it?

We need to calculate d_B , the secret key. For this, we need $\Phi(n) = (p-1)^*(q-1)$, being p and q the factors for n. Since n (n=p*q, both prime) is very small, we can deduct that n=35=5*7 and, therefore $\Phi(n) = 4*6=24$.

Then, $d_B = e_B^{-1} \mod \Phi(n_B) = 11^{-1} \mod 24$. We calculate the modular multiplicative inverse (MMI) with the "magic box":

4) Calculate the value of the original message m.

```
We need to evaluate m = c^{d_B} \mod n_B
So: m = 18^{11} \mod 35 = 64268410079232 \mod 35 = 2
```

Part IV

Let's assume that we have the following PKI, and another PKI following a Plain trust model.

- 5) Describe the steps that (the software of) a user whose certificate has been issued by Visa CA2 will follow to validate a certificate issued by Thawte SGC CA1.
 - Check the correctness of the certificate's signature with the certificate of Thawte SGC CA1.
 - If correctly signed, since we do not know Thawte SGC CA1, look for the certificate of the signer of Thawte SGC CA1, i.e. Verisign.
 - Check the correctness of the certificate's signature with the certificate of Verisign, which is self-signed.
 - Since we trust on Verisign because it is in our List of trusted CAs, then we can accept the original certificate.
- 6) Describe the steps that (the software of) a user whose certificate has been issued by Visa CA2 will follow to validate a certificate issued by the Plain trust model CA.
 - Check the correctness of the certificate's signature with the certificate of the CA, which is self-signed.
 - Even if correctly signed, since we do not know that CA and it is not possible to follow a certificates chain (CA is self-signed), we should not accept the original certificate.

EXERCISE 24

We are sending XML documents, such as the one in the following example, with confidential information:

We want to encrypt part of this information to be sent through the network. We decide to just encrypt the Available element.

Reasoned and briefly answer the following questions:

1) If we use XML Encryption, provide the resulting XML document. Assume the unknown values, but at least include the "Type" attribute.

Let's assume that the encrypted XML document is sent by user A to user B. Let's also assume that it can be represented as a message m whose value is equal to 2. Let's finally assume that we use RSA.

The public keys of A and B are:

$$(e_A, n_A) = (11, 35)$$

 $(e_B, n_B) = (3, 22)$

Note: Examples of RSA operations, $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

2) B has lost his private key, but he hires us to calculate it. How could we do it?

We need to calculate d_B , the secret key. For this, we need $\Phi(n) = (p-1)^*(q-1)$, being p and q the factors for n. Since n (n=p*q, both prime) is very small, we can deduct that n=22=2*11 and therefore $\Phi(n) = 1*10=10$.

Then, $d_B = e_B^{-1} \mod \Phi$ (n_B) = 3⁻¹ mod 10. We calculate the modular multiplicative inverse (MMI) with the "magic box":

So the MMI is equal to 10-3=7, and $d_B = 7 \mod 10 = 7$.

3) Calculate the value of the encrypted message c that A will send to B.

```
We need to evaluate c = m_B^e \mod n_B
So: c = 2^3 \mod 22 = 8 \mod 22 = 8
```

Let's assume that we have the following PKI, and another PKI following a Plain trust model.

- 4) Describe the steps that (the software of) a user whose certificate has been issued by Visa CA2 will follow to validate a certificate issued by the Plain trust model CA.
 - Check the correctness of the certificate's signature with the certificate of the CA, which is self-signed.
 - Even if correctly signed, since we do not know that CA and it is not possible to follow a certificates chain (CA is self-signed), we should not accept the original certificate.

Problema 25

Tenemos varias infraestructuras PKI independientes. Se representan en la siguiente figura.

Suponer que tenemos un certificado C con el siguiente contenido (incompleto):

DATA:

Version: 3 (0x2)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: I

Validity: Not before: ..., Not after: ...

Subject: Su

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key:
 Modulus: **n** Exponent: **e**

SIGNATURE:

Certificate Signature Algorithm: md5WithRSAEncryption Certificate Signature: ${\bf s}$

Suponer que CA1 emite un certificado C1 para un usuario U1, y que CA7 emite C2 para U2.

Suponer las siguientes claves públicas:

U1: n= 15 e= 3 U2: n= 14 e= 5

Contestar razonada y brevemente las siguientes preguntas:

Parte I

Si el valor I de un certificado C es igual a CA2,

1) ¿A cuál de los 2 certificados C1 o C2 corresponde?

A ninguno, porque C1 ha sido emitido por CA1 y C2 por CA7.

Si C es igual a C2,

2) ¿Cuáles serían los valores de Su, n y e?

Su = U2, y n y e serían los correspondientes a su clave pública: n = 14 y e = 5.

Suponer ahora que U2 quiere enviar un mensaje **m** a U1:

3) ¿Qué información (I, Su, n, e) contendrá el certificado que U1 presenta a U2? ¿Quién lo habrá firmado?

I = CA1, Su = U1, n = 15, e = 3: La firma será de CA1.

4) ¿Cómo puede U2 conseguir que su software acepte el certificado de U1?

Necesitará añadir CA1 (la CA que firma el certificado de U1) a su lista de Trusted CAs.

Parte II

Supongamos que el mensaje que U2 envía a U1 es m=8. Supongamos también que tanto U1 como U2 han perdido sus claves secretas. Finalmente, supongamos asimismo que encriptamos con RSA.

Nota: Ejemplos de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

1) Calcular el mensaje encriptado c que U2 envía a U1.

We need to calculate $c = me_{U1} \mod n_{U1}$

So: $C = 8^3 \mod 15 = 2$

2) Cuando U1 recibe el mensaje encriptado c, quiere desencriptarlo para calcular el mensaje original m. ¿Cuáles son los cálculos que tendrá que hacer y sus resultados?

We need to evaluate $m = cd_{U1} \mod n_{U1}$

We need to calculate first d_{U1} , the secret key. For this, we need $\Phi(n) = (p-1)^*(q-1)$, being p and q the factors for n. Since n (n=p*q, both prime) is very small, we can easily deduct that n=15=3*5 and, therefore $\Phi(n) = 2*4=8$.

Then, $d_{U1} = e_{U1}^{-1} \mod \Phi(n_{U1}) = 3^{-1} \mod 8$. We calculate the modular multiplicative inverse (MMI) with the "magic box":

b	d k	
0	8 -	
1	3 2	
-2	2 1	
3	1	$b_i = b_{i-2} - (k_{i-1} * b_{i-1})$

So the MMI is equal to 3, and therefore $d_{U1} = 3 \mod 8 = 3$.

```
So: m = 2^3 \mod 15 = 8
```

3) Si U2 quisiera firmar el mensaje encriptado, ¿cuál sería la firma obtenida s? Detallar las operaciones a realizar.

```
Since we will be signing the encrypted c message with U2's secret key, we need to calculate s = c^d_{U2} \mod n_{U2}
Similarly with what we did before, we need to calculate the secret key d_{U2}. We need \Phi(n) = (p-1)^*(q-1). We can deduct that n=14=2^*7 and, therefore \Phi(n) = 1^*6=6. Then, d_{U2} = e_{U2}^{-1} \mod \Phi(n_{U2}) = 5^{-1} \mod 6. We calculate the modular multiplicative inverse (MMI) with the "magic box":
```

Parte III

Suponer ahora que encriptamos usando ElGamal con un generador α =3 \in Z₃₁. La clave secreta del usuario U2 es CSu2=17 y la de un usuario U1 es CSu1=10. U1 recibe de U2: (α ^v, c) = (13, 5).

```
Nota: Fórmulas ElGamal: Encriptar: c = m^* (\alpha^a)^v \in G Desencriptar: m = c^* (\alpha^{va})^{-1} \in G
```

Calcular el valor del mensaje m que U2 ha enviado.

```
m = 5*(13^{10})^{-1} \mod 31 = 5*5^{-1} \mod 31 = 5*25 \mod 31 = 1
ya que 13^{10} \mod 31 = 5, y 5^{-1} \mod 31 = 31-6 = 25 con magic box. [Note: 13^{10} is a big number]
```

Problema 26

Suponer el siguiente documento XML (simplificado) que incluye XML Encryption.

Contestar razonada y brevemente las siguientes preguntas:

1) ¿Qué diferencia hay entre los dos elementos EncryptedData?

El primer EncryptedData es de un valor (Content), mientras que el segundo es de un elemento entero.

2) Una vez desencriptado, ¿qué elementos (y subelementos) tiene el *root element* UserProfile del documento XML? Dar un ejemplo de un posible resultado de desencriptar el documento XML.

User Profile tiene 3 elementos: Name, Nickname y un tercero que no conocemos porque está encriptado.

Podemos dar cualquier valor al contenido del elemento Name y cualquier nombre al tercer elemento (y su valor). Por ejemplo:

Exercise 27

From the following privacy policy in XACML, build a new Policy to regulate that the video urn:bbc:mdocum:Planets.mp4 is only played by users in the United Kingdom.

It is only necessary to indicate the changes with respect to the given Policy.

```
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
        xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
        xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17
                                                     http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd"
         PolicyId="urn:isdcm:policyid:1"
         RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"
        Version="1.0">
<Description> Policy for playing video A 
<Target/>
<Rule RuleId="urn:oasis:names:tc:xacml:3.0:ejemplo:RuleVideoA" Effect="Permit">
 <Description> Any user may play the video urn:mvideo:videoA.mp4 before the end of the year </Description>
 <Target>
   <AnyOf>
     <AllOf>
      <!-- Which resource -->
      <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">
        <a href="http://www.w3.org/2001/XMLSchema#string">urn:mvideo:videoA.mp4 </a href="http://www.w3.org/2001/XMLSchema#string">urn:mvideo:videoA.mp4 </a>
          <a href="AttributeDesignator"><a href="AttributeDesignator">AttributeDesignator</a> MustBePresent="false"
                                  Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
                                   AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
                                   DataType="http://www.w3.org/2001/XMLSchema#string"/>
      </Match>
```

```
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
             <a href="http://www.w3.org/2001/XMLSchema#string"> play </a href="http://www.w3.org/2001/XMLSchema#string"> play </a href="http://www.w3.org/2001/XMLSchema#string"> play </a>
                                                            MustBePresent="false"
                 <AttributeDesignator
                                                             Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
                                                             AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
                                                             DataType="http://www.w3.org/2001/XMLSchema#string"/>
           </Match>
        </AllOf>
     </AnyOf>
   </Target>
   <Condition>
     <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal">
        <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-one-and-only">
           <a href="AttributeDesignator"><a href="AttributeDesignator">AttributeDesignator</a> MustBePresent="false"
                                                   Category="urn:oasis:names:tc:xacml:3.0:date"
                                                   AttributeId="accessDate"
                                                   DataType="http://www.w3.org/2001/XMLSchema#date"/>
        </Apply>
        <a href="http://www.w3.org/2001/XMLSchema#date"><a href="http://www.w3.org/2001/XMLSchema#date">http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date">http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date">http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date">http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date">http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSchema#date</a><a href="http://www.w3.org/2001/XMLSche
     </Apply>
   </Condition>
</Rule>
</Policy>
Changes in yellow:
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
              xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
              xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17
                                                                        http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd"
              PolicyId="urn:isdcm:policyid:2"
              RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"
              Version="1.0">
<Description> Another restriction 
<Target/>
<Rule RuleId="urn:oasis:names:tc:xacml:3.0:ejemplo:RuleUk" Effect="Permit">
   <Description> Only the users from United Kingdom are allowed to play the video urn:bbc:mdocum:Planets.mp4
   </Description>
   <Target>
      <AnyOf> <AllOf>
            <!-- Which resource -->
            <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">
                 <AttributeValue
                             DataType="http://www.w3.org/2001/XMLSchema#string"> urn:bbc:mdocum:Planets.mp4
                  </AttributeValue>
                 <a href="AttributeDesignator MustBePresent="false">AttributeDesignator MustBePresent="false"</a>
                                                          Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
                                                          AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
                                                          DataType="http://www.w3.org/2001/XMLSchema#string"/>
              </Match>
              <!-- Which action -->
              <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
                 <a href="http://www.w3.org/2001/XMLSchema#string">AttributeValue</a> eAttributeValue>
                 <a href="AttributeDesignator"><a href="AttributeDesignator">AttributeDesignator</a> MustBePresent="false"
                                                             Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
                                                             AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
                                                             DataType="http://www.w3.org/2001/XMLSchema#string"/>
```

<!-- Which action -->

```
</Match>
    </AllOf> </AnyOf>
 </Target>
 <Condition>
   <Apply FunctionId="urn:oasis:names:tc:xacml:1.0: function:string-equal">
    <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
      <a href="AttributeDesignator MustBePresent="false"
                          Category="urn:oasis:names:tc:xacml:3.0:country"
                          AttributeId="country"
                          DataType="http://www.w3.org/2001/XMLSchema#string"/>
    </Apply>
    <a href="http://www.w3.org/2001/XMLSchema#string"> UK </a></attributeValue>
   </Apply>
 </Condition>
</Rule>
</Policy>
```

Problema 28

Tenemos varias infraestructuras PKI independientes. Se representan en la siguiente figura.

Suponer que tenemos un certificado C con el siguiente contenido:

```
DATA:

Version: 3 (0x2)

Serial Number: 7829 (0x1e95)

Signature Algorithm: md5WithRSAEncryption

Issuer: CA7

Validity: Not before: ..., Not after: ...

Subject: U2

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key:

Modulus: 14

Exponent: 5

SIGNATURE:

Certificate Signature Algorithm: md5WithRSAEncryption

Certificate Signature: s
```

Suponer los usuarios U1, U2 y U3, cada uno de ellos con un certificado emitido por una de las 8 CAs de la figura (CA1 a CA8).

Contestar razonada y brevemente las siguientes preguntas:

Parte I

Suponer que las encriptaciones en este apartado son RSA.

Nota: Ejemplos de operaciones RSA: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

Teniendo en cuenta el certificado C anterior,

1) ¿Quién lo ha emitido y para qué usuario?

CA7 para U2.

Suponer que U1 (cuyo certificado ha emitido CA8) quiere enviar un mensaje m₁=8 a U2:

2) Calcular el mensaje encriptado c que U1 envía a U2.

```
We need to calculate c = m_1 e_{U2} \mod n_{U2}
So: c = 8^5 \mod 14 = 8
```

Suponer ahora que U2 quiere enviar, encriptándolo, un mensaje **m**₂=2 a U3:

3) Con la información de que se dispone, describir el certificado que será necesario para poder encriptar m₂. Indicar sólo los campos que seguro que cambian de valor respecto al certificado C anterior. ¿Quién lo habrá firmado?

```
DATA:
```

```
Version: 3 (0x2)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption

Issuer: CAx (la que haya emitido el certificado de U3)
Validity: Not before: ..., Not after: ...
Subject: U3
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key:
Modulus: x
Exponent: y

SIGNATURE:
Certificate Signature Algorithm: md5WithRSAEncryption
Certificate Signature: s
```

La firma será de CAx.

4) Dada la estructura de CAs de la que disponemos (CA1 a CA8 de la figura), ¿qué ha de ocurrir para que U2 pueda enviar con total seguridad el mensaje m₂ a U3?

U2 tiene que aceptar el certificado de U3. Por tanto, ha de aceptar a la CA que haya emitido su certificado. Dada la estructura jerárquica donde está CA7 (la CA que ha emitido el certificado de U2), los emisores del certificado de U2 sólo pueden ser CA6, CA7 o CA8). Una alternativa sería que el software de U2 incluyese en su lista de *Trusted CAs* la CA que firma el certificado de U3.

5) Desde el punto de vista de la estructura de CAs, justificar por qué sí se podía enviar m₁.

El certificado de U1 está emitido por CA8, mientras que el de U2 está emitido por CA7. CA7 y CA8 reconocen a CA6 (su root), por lo que U1 aceptará sin problemas el certificado de U2.

Parte II

Suponer ahora que para el envío del mensaje m_1 =8 de U1 a U2 encriptamos usando ElGamal con un generador α =2 \in Z₁₁. U1 elije un valor aleatorio ν =4. La clave secreta del usuario U2 es Ks=7.

```
<u>Nota</u>: Fórmulas ElGamal: Encriptar: c = m^* (\alpha^a)^v \in G Desencriptar: m = c^* (\alpha^{va})^{-1} \in G
```

1) Calcular los valores que U1 enviará a U2.

```
En ElGamal se envía c y \alpha^v. \alpha^v = 2^4 \bmod 11 = \mathbf{5}. c = m_1 * (\alpha^{Ks})^v \bmod 11 = 8 * (2^7)^4 \bmod 11 = 8 * (7)^4 \bmod 11 = 8 * 3 \bmod 11 = \mathbf{2}
```

2) Verificar que el resultado anterior es correcto calculando \mathbf{m}_1 a partir de los valores que U2 ha recibido.

$$m_1 = c*(\alpha^{v \text{ Ks}})^{-1} \mod 11 = 2*(5^7)^{-1} \mod 11 = 2*3^{-1} \mod 11 = 2*4 \mod 11 = 8$$
 ya que $5^7 \mod 11 = 3$, y $3^{-1} \mod 11 = 4$ con magic box.

Exercise 29

We have a XACML privacy policy at the end of the Exercise.

Reasoned and briefly answer the following questions about that policy:

1) What is the purpose of the attribute-value pair Effect="Permit"? What are the other possible values for the attribute Effect?

Effect="Permit" indicates that the specified action is only executed when the rule is fulfilled.

The attribute Effect may also have the value Deny.

2) In the AttributeValue of the first element Match, what is the URN identifying? What would change in the policy if we would modify its value?

It identifies the resource that may be played.

If we change the URN, the resource whose playing we are authorizing will change.

3) The description of the rule says "Any user may play urn:mvideo:videoA.mp4 before end of the year" In which specific elements of the policy is the concept "before end of the year" specified?

In the element Condition.

In particular, with

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal">

we indicate the limit condition ("less or equal"), and in

< 2019-12-31 http://www.w3.org/2001/XMLSchema#date > 2019-12-31 http://www.w3.org/2001/XMLSchema#date <a href="http://www.w3.org/2001/XMLSchema#date <a href="http://ww

we include the specific limit date.

The rest of elements define the used types.

4) What should we modify if we would like that the limit date for playing is end of July 2020?

< 2019-12-31 /AttributeValue >

should be:

AttributeValue DataType=http://www.w3.org/2001/XMLSchema#date 2020-07-31

Privacy Policy in XACML

```
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
       xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
       xsi:schemaLocation="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17
                          http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd"
       PolicyId="urn:isdcm:policyid:1"
       RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-
applicable"
       Version="1.0">
<Description> Policy play video A </Description>
<Rule RuleId="urn:oasis:names:tc:xacml:3.0:ejemplo:RuleVideoA" Effect="Permit">
   <Description> Any user may play urn:mvideo:videoA.mp4 before end of the year /Description>
   <Target>
      <AnyOf>
         < A 1 1 O f >
            <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">
               <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
                    urn:mvideo:videoA.mp4
               </AttributeValue>
               <AttributeDesignator MustBePresent="false"</pre>
                              Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
                              AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
                              DataType="http://www.w3.org/2001/XMLSchema#string"/>
            <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
               <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
                    Play
               </AttributeValue>
               <AttributeDesignator
                                            MustBePresent="false"
                             Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
                             AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
                             DataType="http://www.w3.org/2001/XMLSchema#string"/>
            </Match>
         </Allof>
      </AnyOf>
   </Target>
   <Condition>
      <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal">
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-one-and-only">
            <AttributeDesignator
                                    MustBePresent="false"
                            Category="urn:oasis:names:tc:xacml:3.0:date"
                            AttributeId="accessDate"
                            DataType="http://www.w3.org/2001/XMLSchema#date"/>
         </Apply>
         <AttributeValue DataType=http://www.w3.org/2001/XMLSchema#date>
             2019-12-31
        </AttributeValue>
      </Apply>
   </Condition>
</Rule>
</Policy>
```

Exercise 30

We interchange XML documents with confidential information using XML Encryption. We receive the following document (the EncryptedData part has been simplified):

Reasoned and briefly answer the following questions:

Part I

1) If the original values of the elements Name and Amount were "John Smith" and "1000", respectively, provide the XML document before encryption.

Part II

Let's suppose that the encrypted XML document is sent from user A to user B. Let's also suppose that the document is represented as a message m with value m=8. Let's finally assume that we use RSA.

```
The public keys of A and B are: (e_A, n_A) = (5, 14) (e_B, n_B) = (3, 15)
Note: Examples of RSA operations: x = y^d \mod n; y = x^e \mod n; d = e^{-1} \mod \Phi(n).
```

2) Calculate the encrypted message c that A sends to B.

```
We need to calculate c = me_B \mod n_B
So: c = 8^3 \mod 15 = 2
```

3) When B receives the encrypted message c, she wants to decrypt it to calculate the original message m. Provide the needed operations and results in order to obtain it.

```
We need to evaluate m = cd_B \mod n_B
```

We need to calculate d_B , the secret key. For this, we need $\Phi(n) = (p-1)^*(q-1)$, being p and q the factors for n. Since n (n=p*q, both prime) is very small, we can easily deduct that n=15=3*5 and, therefore $\Phi(n) = 2*4=8$.

Then, $d_B = e_B^{-1} \mod \Phi$ (n_B) = 3⁻¹ mod 8. We calculate the modular multiplicative inverse (MMI) with the "magic box":

So the MMI is equal to 3, and therefore $d_B = 3 \mod 8 = 3$.

So:
$$m = 2^3 \mod 15 = 8$$

Part III

We have some CAs organized as in the following figures; i.e., we have both Plain and Hierarchical structures.

We also have the following certificates:

C1: issued by CA1; C2: issued by CA5; C3: issued by CA7; C4: issued by CA8.

4) Which signature (or signatures) would include C1 and C4?

C1 will include the signature of its issuing CA, i.e. CA1. C4 will include the signature of its issuing CA, i.e. CA8.

5) Which signature (or signatures) would include the certificates of CA1, CA4 and CA6?

CA1's certificate will include its own signature (self-signed certificate).

CA4's certificate will include the signature of its parent CA, i.e. CA3.

CA6's certificate will include its own signature (self-signed certificate).

- 6) Why (the software of) the user identified by certificate C4 will accept certificate C3? What are the steps followed?
 - Check the correctness of C3's signature.
 - If correctly signed, since we do not know the certificate's issuer (CA7), look for the certificate of its signer: CA6.
 - Check the correctness of the signature of CA6's certificate.
 - CA6's certificate is self-signed, but it is the issuer of CA8's certificate, being CA8 the issuer of C4, so the software will accept certificate C3.

Exercise 31

We send documents with confidential information from A to B.

Reasoned and briefly answer the following questions:

Part I

Let's suppose that the document is represented as a message m. Let's also assume that we use RSA.

The public keys of A and B are:

$$(e_A, n_A) = (3, 15)$$

$$(e_B, n_B) = (5, 14)$$

Note: Examples of RSA operations: $x = y^d \mod n$; $y = x^e \mod n$; $d = e^{-1} \mod \Phi(n)$.

1) When B receives the encrypted message c=8, he wants to decrypt it to calculate the original message m. Provide the needed operations and results in order to obtain it.

We need to evaluate $m = cd_B \mod n_B$

We need to calculate d_B , the secret key. For this, we need $\Phi(n) = (p-1)^*(q-1)$, being p and q the factors for n. Since n (n=p*q, both prime) is very small, we can easily deduct that n=14=2*7 and, therefore $\Phi(n) = 1*6=6$.

Then, $d_B = e_B^{-1} \mod \Phi$ (n_B) = 5⁻¹ mod 6. We calculate the modular multiplicative inverse (MMI) with the "magic box":

So the MMI is equal to 6-1=5, and therefore $d_B = 5 \mod 6 = 5$. So: $m = 8^5 \mod 14 = 8$

2) If A would like to sign the encrypted message, which would be its result s? Detail the needed operations.

Since we will be signing the encrypted \circ message with A's secret key,

we need to calculate $s = c^{d}_{A} \mod n_{A}$

Similarly with what we did before, we need to calculate d_A , the secret key. We need $\Phi(n) = (p-1)^*(q-1)$. We can deduct that $n=15=3^*5$ and, therefore $\Phi(n) = 2^*4=8$.

Then, $d_A = e_A^{-1} \mod \Phi$ $(n_A) = 3^{-1} \mod 8$. We calculate the modular multiplicative inverse (MMI) with the "magic box":

b	dΙ	k							
0	8	-							
1	3	2							
-2	2	1							
3	1		$b_{\mathtt{i}}$	=	b_{i-2}	_	(k_{i-1})	*	b_{i-1})

So the MMI is equal to 3, and therefore $d_A = 3 \mod 8 = 3$. So: $s = 8^3 \mod 15 = 2$

Part II

We have some CAs organized as in the following figures; i.e., we have both Plain and Hierarchical structures.

We also have the following certificates:

C1: issued by CA1; C2: issued by CA5; C3: issued by CA7.

3) Which signature (or signatures) would include C1 and C2?

```
C1 will include the signature of its issuing CA, i.e. CA1. C2 will include the signature of its issuing CA, i.e. CA5.
```

4) Which signature (or signatures) would include the certificates of CA7?

CA7's certificate will include the signature of its parent CA, i.e. CA6.

- 5) Describe the steps that (the software of) the user identified by certificate C2 will follow to validate certificate C3, just received.
 - Check the correctness of the certificate's signature.
 - If correctly signed, since we do not know the certificate's issuer (CA7), look for the certificate of its signer: CA6.
 - Check the correctness of the certificate's signature.
 - Since CA6's certificate is self-signed and we do not know CA6 (so we do not trust on it), we should reject certificate C3.
- 6) The software of a user whose certificate has been issued by CA1 will not accept a certificate issued by CA8. Without adding new CAs, what could we do to have the software accepting that certificate?

We could add CA8 to the list of Trusted CAs. Cross-certification or bridges is not controlled by the user, but by the CA.

Exercise 32

These are 2 fragments of XACML v3.0 rules.

Fragment 1

```
<AttributeDesignator
            MustBePresent="false"
            Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
            AttributeId="urn:oasis:names:tc:xacml:2.0:resource:target-namespace"
            DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
      </Match>
     </Allof>
    </AnyOf>
   </Target>
Fragment 2
   <Rule RuleId="urn:oasis:names:tc:xacml:3.0:RuleSAM" Effect="Permit">
        <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
          <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
           Modify
          </AttributeValue>
          <AttributeDesignator MustBePresent="false"</pre>
            Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
            AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
            DataType="http://www.w3.org/2001/XMLSchema#string"/>
        </Match>
   </Rule>
```

Reasoned and briefly answer the following questions:

- 1) **a)** What is the type of the XACML attribute being used in fragment 1? **b)** Which operation(s) should be performed with that attribute? **c)** What is the value of that attribute?
- a) The attribute is of type any URI.
- b) It should compare (any URI-equal) with an attribute of category resource of type any URI.
- c) The value of the attribute is urn:hospital:lab result.
- 2) Fragment 2 defines a rule. **a)** What is its "effect"? Where is it defined? **b)** The rule contains an element of type Match, what is the XML type of the attribute it specifies? **c)** What is the XACML operation to be performed associated to that "Match"? Where is it defined? **d)** Which action is being authorized with this rule?
- a) The rule defines the effect Permit in the attribute Effect.
- b) Type string, to be compared with an attribute of category action.
- c) The operation is a comparison (string-equal), defined in the attribute MatchId of the element Match.
- d) The authorized action is Modify.

Exercise 33

These are 2 fragments of XACML v3.0 rules.

Fragment 1

```
<Rule RuleId="urn:oasis:names:tc:xacml:3.0:RuleSAM" Effect="Deny">
```

```
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
          <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
          </AttributeValue>
          <AttributeDesignator MustBePresent="false"</pre>
            Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
            AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
            DataType="http://www.w3.org/2001/XMLSchema#string"/>
        </Match>
   </Rule>
Fragment 2
<Rule RuleId="urn:oasis:names:tc:xacml:3.0:RuleSAM" Effect="Permit">
        <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
          <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
            Print
          </AttributeValue>
          <AttributeDesignator MustBePresent="false"</pre>
            Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
            AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
            DataType="http://www.w3.org/2001/XMLSchema#string"/>
        </Match>
</Rule>
```

Reasoned and briefly answer the following questions:

- 1) Fragment 1 defines a rule. a) What is its "effect"? b) The rule contains an element of type Match, what is the XML type of the attribute it specifies? c) Which action is being authorized with this rule?
- e) The rule defines the effect Deny in the attribute Effect.
- f) Type string, to be compared with an attribute of category action.
- g) The operation is a comparison (string-equal), defined in the attribute MatchId of the element Match. The non-authorized action is Modify.
- 2) Fragment 2 defines a rule. a) What is its "effect"? b) Which action is being authorized with this rule?
- a) The rule defines the effect Permit in the attribute Effect.
- b) The operation is a comparison (string-equal), defined in the attribute MatchId of the element Match. The authorized action is Print.

Exercise 34

A is sending to B an encrypted message c=27. We encrypt using ElGamal with a generator α =3 \in Z₃₁. B's secret key is 10. A uses v=2.

<u>Note</u>: ElGamal calculations: Encrypt: $c = m^*(\alpha^a)^v \in G$ Decrypt: $m = c^*(\alpha^{va})^{-1} \in G$

Reasoned and briefly answer the following questions:

1) Should A send something more than c=27? If so, what else?

In ElGamal, c is accompanied with $\alpha^{\text{\tiny v}}.$

In this case, $\alpha^{v} = 3^{v} \mod 31 = 9$

2) Calculate the original message before encryption.

For decryption we need to calculate $m = c^*(\alpha^{va})^{-1} \in G$

$$m = 27 * (9^{10})^{-1} \mod 31) = 27 * (3.486.784.401 \mod 31)^{-1} \mod 31) = 27 * (5^{-1} \mod 31)$$

For 5⁻¹ mod 31 we calculate the modular multiplicative inverse (MMI) with the "magic box":

So the MMI is equal to 31-6=25.

Then: $m = 27 * (5^{-1} \mod 31) = (27 * 25) \mod 31 = 24$

Exercise 35

Given the following hierarchical structure of Certification Authorities:

CA4 issues certificate C1 for UserA and CA5 issues certificate C2 for UserB.

Reasoned and briefly answer the following questions:

If UserA sends protected content to UserB, **a)** how many certificates (and which ones) needs to validate UserA? **b)** how many certificates (and which ones) needs to validate UserB? **c)** What could be a reason for UserA to reject UserB's certificate?

- a) UserA needs first to validate C2 (UserB's certificate issued by CA5). Then, it has to validate CA5's and CA3's certificates, and this is enough because both users trust in CA3.
- b) UserB does not need to validate any certificate, since it is receiving (not sending) information, so it is not using others' public keys.
- c) Since UserA and UserB have certificates from the same CAs hierarchy, trust should not be a problem. Therefore, the reason should be, for example, a revoked, expired or corrupted certificate.

Exercise 36

Given the following hierarchical structure of Certification Authorities:

CA4 issues certificate C1 for UserA and CA5 issues certificate C2 for UserB. On the other hand, C3 is the certificate of UserC, which is issued by CA6 that is a CA following the plain model.

If UserA sends encrypted content to UserC,

reasoned and briefly answer the following questions:

- a) which certificates need to be validated and by whom? b) What could be a reason for UserA to reject UserC's certificate? c) Repeat question "a)" if UserA sends encrypted content to UserB.
 - a) C3 (UserC's certificate issued by CA6). Since CA6's certificate is self-signed and unknown to UserA, it will be rejected by UserA.
 - b) It is rejected because both users are in independent trust hierarchies.
 - c) C2 (issued by CA5), i.e. the certificate of UserB, since it is the recipient of the message that needs to be encrypted with its public key. Then, it has to validate CA5's and CA3's certificates, and this is enough because both users trust in CA3.