AMENDMENTS TO THE CLAIMS:

The following is a complete listing of the claims.

1.-41. (canceled)

- 42. (original) A nucleic acid sequence encoding a threonine deaminase protein effective to catalyze the conversion of threonine to α-ketobutyrate, wherein:
 - a. the encoded leucine residue at amino acid position 447 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine;
 - b. the encoded leucine residue at amino acid position 481 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; or
 - c. the leucine residue at amino acid positions 447 and 481 are independently replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine.
- 43. (original) A recombinant vector comprising a nucleic acid sequence encoding a threonine deaminase protein effective to catalyze the conversion of threonine to α -ketobutyrate, wherein:
 - a. the encoded leucine residue at amino acid position 447 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine;
 - b. the encoded leucine residue at amino acid position 481 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; or
 - c. the leucine residue at amino acid positions 447 and 481 are independently replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine.
- 44. (original) A recombinant host cell comprising a nucleic acid sequence encoding a threonine deaminase protein effective to catalyze the conversion of threonine to α -ketobutyrate, wherein:
 - a. the encoded leucine residue at amino acid position 447 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine;
 - b. the encoded leucine residue at amino acid position 481 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; or

- c. the leucine residue at amino acid positions 447 and 481 are independently replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine.
- 45. (original) A method of preparing recombinant host cells useful to convert threonine to α-ketobutyrate, the method comprising:
 - a. selecting a host cell;
 - b. transforming the selected host cell with a recombinant vector, wherein the recombinant vector comprises a nucleic acid sequence encoding a threonine deaminase protein effective to catalyze the conversion of threonine to α -ketobutyrate, wherein:
 - the encoded leucine residue at amino acid position 447 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; the encoded leucine residue at amino acid position 481 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; or the leucine residue at amino acid positions 447 and 481 are independently replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; and
 - c. obtaining recombinant host cells.
- 46. (original) A plant, the genome of which comprises a nucleic acid sequence encoding a threonine deaminase protein effective to catalyze the conversion of threonine to α-ketobutyrate, wherein:
 - a. the encoded leucine residue at amino acid position 447 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine;
 - b. the encoded leucine residue at amino acid position 481 is replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine; or
 - c. the leucine residue at amino acid positions 447 and 481 are independently replaced with alanine, isoleucine, valine, proline, phenylalanine, tryptophan, or methionine.