Grundlagen der Theoretischen Informatik

Ernst-Rüdiger Olderog Christopher Bischopink

Wintersemester 2019/20

Determ. endlicher Automat

Definition 1.1 Ein deterministischer endlicher Automat (Akzeptor), kurz DEA, ist eine Struktur

$$\mathcal{A} = (\Sigma, Q, \mathbf{\delta}, q_0, F)$$

mit folgenden Eigenschaften:

- 1. Σ ist eine endliche Menge, das Eingabealphabet,
- 2. *Q* ist eine endliche Menge von Zuständen,
- 3. $\delta: Q \times \Sigma \rightarrow Q$ ist die Überführungsfunktion,
- 4. $q_0 \in Q$ ist der Anfangszustand,
- 5. $F \subseteq Q$ ist die Menge der Endzustände.

DEA mit Transitionsrelation

Definition 1.1 Ein deterministischer endlicher Automat (Akzeptor), kurz DEA, ist eine Struktur

$$\mathcal{A} = (\Sigma, Q, \rightarrow, q_0, F)$$

mit folgenden Eigenschaften:

- 1. Σ ...
- 2. *Q* ...
- 3. $\rightarrow \subseteq Q \times \Sigma \times Q$

ist eine deterministische Transitionsrelation, d.h.

 $\forall q \in Q \ \forall a \in \Sigma \ \exists \ \text{genau ein} \ q' \in Q : \ (q, a, q') \in A \rightarrow A$

- 4. $q_0 \in Q$...
- 5. $F \subseteq Q$...

Akzeptanz

Definition 1.2

Sei
$$\mathcal{A}=(\Sigma,Q,
ightarrow,q_0,F)$$
 bzw. $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ ein DEA.

1. Die von A akzeptierte (oder erkannte) Sprache ist

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists \ q \in F : q_0 \stackrel{w}{\rightarrow} q \}$$

bzw.

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}.$$

Eine Sprache L heißt endlich akzeptierbar, falls es einen DEA $\mathcal A$ mit $L=L(\mathcal A)$ gibt.

2. Ein Zustand $q \in Q$ heißt in \mathcal{A} erreichbar, falls

$$\exists w \in \Sigma^* : q_0 \stackrel{w}{\rightarrow} q.$$

Syntaxdiagramme

der Programmiersprachen PASCAL und MODULA.

Beispiel: Identifikatoren

Syntaxdiagramme

Nichtdet. endlicher Automat

Definition 1.3

Ein nichtdeterministischer endl. Automat (Akzeptor), kurz NEA, ist eine Struktur

$$\mathcal{B} = (\Sigma, Q, \rightarrow, q_0, F)$$

wobei Σ, Q, q_0, F wie bei DEAs definiert sind und für \rightarrow gilt:

$$\rightarrow \subseteq Q \times \Sigma \times Q$$
.

Akzeptanz und Äquivalenz

Definition 1.4

(i) Die von einem NEA $\mathcal{B}=(\Sigma,Q,\rightarrow,q_0,F)$ akzeptierte (oder erkannte) Sprache ist

$$L(\mathcal{B}) = \{ w \in \Sigma^* \mid \exists q \in F : q_0 \xrightarrow{w} q \}.$$

(ii) Zwei NEAs \mathcal{B}_1 und \mathcal{B}_2 heißen äquivalent, falls

$$L(\mathcal{B}_1) = L(\mathcal{B}_2)$$

gilt.

60 Jahre Satz von Scott und Rabin

Dana S. Scott

Michael O. Rabin

Satz (Scott & Rabin, 1959)

Zu jedem NEA gibt es einen äquivalenten DEA.

Potenzmengen-Konstruktion

