第二部分 集合论

主要内容

- 集合代数
- 二元关系
- ●函数(自学)

第六章 集合代数

主要内容

- 集合的基本概念 属于、包含 幂集、空集 文氏图等
- 集合的基本运算并、交、补、差等
- 集合恒等式集合运算的算律、恒等式的证明方法

6.1 集合的基本概念

1. 集合定义

集合没有精确的数学定义

理解:由离散个体构成的整体称为集合,称这些个体为集合的元素

常见的数集: N, Z, Q, R, C 等分别表示自然数、整数、有理数、实数、复数集合

2. 集合表示法

枚举法 ---- 通过列出全体元素来表示集合 谓词表示法 ---- 通过谓词概括集合元素的性质 实例:

枚举法 自然数集合 $N = \{0, 1, 2, 3, ...\}$ 谓词法 $S = \{x \mid x$ 是实数, x^2 —1=0}

元素与集合

1. 集合的元素具有的性质

无序性:元素列出的顺序无关

相异性:每个元素只计数一次

确定性:对任何元素和集合都能确

定这个元素是否为该集合

的元素

任意性:集合的元素也可以是集合

2. 元素与集合的关系 隶属关系: ∈或者∉

3. 集合的树型层次结构

集合与集合

集合与集合之间的关系: ⊆, =, ⊈, ≠, ⊂, ⊄

定义6.1
$$A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$$

定义6.2
$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

定义6.3
$$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$$

$$A \nsubseteq B \Leftrightarrow \exists x (x \in A \land x \notin B)$$

注意: ∈和 ⊆是不同层次的问题

空集、全集和幂集

1. 定义6.4 空集 Ø: 不含有任何元素的集合

实例: $\{x \mid x \in R \land x^2 + 1 = 0\}$

定理6.1 空集是任何集合的子集。

证对于任意集合A,

 $\emptyset \subseteq A \Leftrightarrow \forall x (x \in \emptyset \rightarrow x \in A) \Leftrightarrow T (恒真命题)$

推论 Ø是惟一的

2. 定义6.5 幂集: $P(A) = \{x \mid x \subseteq A\}$

实例: $P(\emptyset) = \{\emptyset\}, P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\}$

计数: 如果 |A| = n,则 $|P(A)| = 2^n$.

3. 定义6.6 全集 E: 包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集

6.2 集合的运算

初级运算

集合的基本运算有

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

交

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

相对补
$$A-B = \{x \mid x \in A \land x \notin B\}$$

定义6.8 对称差
$$A \oplus B = (A-B) \cup (B-A)$$

定义6.9 绝对补 $\sim A = E - A$

$$-A = E - A$$

文氏图

集合运算的表示

几点说明

● 并和交运算可以推广到有穷个集合上,即

$$A_1 \cup A_2 \cup \dots \cup A_n = \{ x \mid x \in A_1 \lor x \in A_2 \lor \dots \lor x \in A_n \}$$

$$A_1 \cap A_2 \cap \dots \cap A_n = \{ x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n \}$$

- $A \subseteq B \Leftrightarrow A B = \emptyset$
- $A \cap B = \emptyset \Leftrightarrow A B = A$

1. 集合的广义并与广义交

定义6.10 广义并
$$\cup A = \{x \mid \exists z (z \in A \land x \in z)\}$$

广义交 $\cap A = \{x \mid \forall z (z \in A \rightarrow x \in z)\}$

实例

$$\cup$$
{{1}, {1,2}, {1,2,3}}={1,2,3}
 \cap {{1}, {1,2}, {1,2,3}}={1}
 \cup {{ a }}={ a }, \cap {{ a }}={ a }
 \cup { a }= a , \cap { a }= a

关于广义运算的说明

- 2. 广义运算的性质
 - (1) ∪Ø = Ø, ∩Ø 无意义
 - (2) 单元集 {x} 的广义并和广义交都等于 x
 - (3) 广义运算减少集合的层次(括弧减少一层)
 - (4) 广义运算的计算: 一般情况下可以转变成初级运算

3. 引入广义运算的意义 可以表示无数个集合的并、交运算,例如

$$\bigcup \{\{x\} \mid x \in \mathbf{R}\} = \mathbf{R}$$

这里的 R 代表实数集合.

运算的优先权规定

1类运算:广义运算、幂集、~运算

运算由右向左进行

2 类运算:初级运算 ∪, ∩, -, ⊕

优先顺序由括号确定

混合运算: 1 类运算优先于 2 类运算

例1 $A = \{\{a\}, \{a,b\}\}\$,计算 $\cap \cup A \cup (\cup \cup A - \cup \cap A)$.

解:

$$\cap \cup A \cup (\cup \cup A - \cup \cap A)$$

$$= \cap \{a,b\} \cup (\cup \{a,b\} - \cup \{a\})$$

$$=(a \cap b) \cup ((a \cup b) - a)$$

$$=(a \cap b) \cup (b-a) = b$$

有穷集合元素的计数

- 1. 文氏图法
- 2. 包含排斥原理

 $1 \le i < j < k \le n$

定理6.2 设集合S上定义了n 条性质,其中具有第i 条性质的元素构成子集 A_i ,那么集合中不具有任何性质的元素数为

$$\mid \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n} \mid = \mid S \mid -\sum_{1 \leq i \leq n} \mid A_i \mid + \sum_{1 \leq i < j \leq n} \mid A_i \cap A_j \mid$$

$$-\sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \dots + (-1)^{n} |A_{1} \cap A_{2} \cap \dots \cap A_{n}|$$

推论 S中至少具有一条性质的元素数为

$$\begin{split} |A_1 \cup A_2 \cup \cdots \cup A_n| &= \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| \\ &+ \sum |A_i \cap A_j \cap A_k| - \cdots + (-1)^{m-1} |A_1 \cap A_2 \cap \cdots \cap A_n| \end{split}$$

例2 求1到1000之间(包含1和1000在内)既不能被5和6整除, 也不能被8整除的数有多少个?

解 方法一: 文氏图 定义以下集合:

$$S = \{ x \mid x \in Z \land 1 \leq x \leq 1000 \}$$

$$A = \{x \mid x \in S \land x$$
可被5整除}

$$B = \{x \mid x \in S \land x$$
可被6整除}

$$C = \{x \mid x \in S \land x$$
可被8整除}

画出文氏图,然后填入相应的数字, 解得

$$N = 1000 - (200 + 100 + 33 + 67)$$
$$= 600$$

方法二

$$|S| = 1000$$

$$|A| = \lfloor 1000/5 \rfloor = 200, \ |B| = \lfloor 1000/6 \rfloor = 166, \ |C| = \lfloor 1000/8 \rfloor = 125$$

$$|A \cap B| = \lfloor 1000/\text{lcm}(5,6) \rfloor = \lfloor 1000/33 \rfloor = 33$$

$$|A \cap C| = \lfloor 1000/\text{lcm}(5,8) \rfloor = \lfloor 1000/40 \rfloor = 25$$

$$|B \cap C| = \lfloor 1000/\text{lcm}(6,8) \rfloor = \lfloor 1000/24 \rfloor = 41$$

$$|A \cap B \cap C| = \lfloor 1000/\text{lcm}(5,6,8) \rfloor = \lfloor 1000/120 \rfloor = 8$$

$$|\overline{A} \cap \overline{B} \cap \overline{C}|$$

= 1000-(200+166+125)+(33+25+41)-8 = 600

6.3 集合恒等式

集合算律

1. 只涉及一个运算的算律:

交换律、结合律、幂等律

	U	\cap	⊕
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C$ $=A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \oplus B) \oplus C$ $=A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

集合算律

2. 涉及两个不同运算的算律:

分配律、吸收律

	○与○	○与⊕
分配	$A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) =$ $(A \cap B) \cup (A \cap C)$	$A \cap (B \oplus C)$ $= (A \cap B) \oplus (A \cap C)$
吸收	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	

集合算律

3. 涉及补运算的算律:

DM律,双重否定律

	_	~
D.M律	$A - (B \cup C) = (A - B) \cap (A - C)$	$\sim (B \cup C) = \sim B \cap \sim C$
	$A-(B\cap C)=(A-B)\cup (A-C)$	$\sim (B \cap C) = \sim B \cup \sim C$
双重否定		~~A=A

集合算律

4. 涉及全集和空集的算律:

补元律、零律、同一律、否定律

	Ø	$oldsymbol{E}$
补元律 (矛盾律和排中律)	$A \cap \sim A = \emptyset$	$A \cup \sim A = E$
零律	$A \cap \emptyset = \emptyset$	$A \cup E = E$
同一律	$A \cup \emptyset = A$	$A \cap E = A$
否定律	$\sim \varnothing = E$	~E = Ø

離散數學

集合证明题

证明方法: 命题演算法、等式置换法

命题演算证明法的书写规范(以下的X和Y代表集合公式)

(1)证 $X\subseteq Y$

任取 x, $x \in X \Rightarrow ... \Rightarrow x \in Y$

(2) i EX = Y

方法1: 分别证明 $X \subseteq Y$ 和 $Y \subseteq X$

方法2: 任取 x, $x \in X \Leftrightarrow ... \Leftrightarrow x \in Y$

注意: 在使用方法 2 的格式时,必须保证每步推理都是充分必要的

集合等式的证明

方法一: 命题演算法

证 任取x,

$$x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in A \cap B$$

$$\Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$$

因此得 $A \cup (A \cap B) = A$.

例4 证明 $A-B = A \cap \sim B$ 证 任取x,

$$x \in A - B \Leftrightarrow x \in A \land x \notin B$$

$$\Leftrightarrow x \in A \land x \in \neg B \Leftrightarrow x \in A \cap \neg B$$

因此得
$$A-B = A \cap \sim B$$

等式置换法

方法二: 等式置换法

例5 假设交换律、分配律、同一律、零律已经成立,证明吸收律.

证 $A \cup (A \cap B)$

 $= (A \cap E) \cup (A \cap B) \qquad (同一律)$

 $=A\cap (E\cup B)$ (分配律)

 $=A\cap (B\cup E)$ (交換律)

 $=A \cap E$ (零律)

=A (同一律)

包含等价条件的证明

例6 证明 $A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$

1

2

(3)

(4)

证明思路:

- 确定问题中含有的命题: 本题含有命题①,②,③,④
- 确定命题间的关系(哪些命题是已知条件、哪些命题是要证明的结论):本题中每个命题都可以作为已知条件,每个命题都是要证明的结论
- 确定证明顺序: ①⇒②, ②⇒③, ③⇒④, ④⇒①
- 按照顺序依次完成每个证明(证明集合相等或者包含)

证明

证明 $A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$

1

2

3

4

证 ①⇒②

显然 $B \subseteq A \cup B$,下面证明 $A \cup B \subseteq B$.

任取x,

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Leftrightarrow x \in B$

因此有 $A \cup B \subseteq B$. 综合上述②得证.

 $2\Rightarrow3$

 $A=A\cap (A\cup B)\Rightarrow A=A\cap B$ (由②知 $A\cup B=B$,将 $A\cup B$ 用B代入)

证明(续)

证明 $A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$

1

2

(3)

4

$$3\Rightarrow4$$

假设 $A-B\neq\emptyset$,即 $\exists x\in A-B$,那么知道 $\exists x\in A \perp \exists x\notin B$. 而 $x\notin B\Rightarrow x\notin A\cap B$

从而与 $A \cap B = A$ 矛盾.

 $4\Rightarrow1$

假设 $A\subseteq B$ 不成立,那么

 $\exists x (x \in A \land x \notin B) \Rightarrow x \in A - B \Rightarrow A - B \neq \emptyset$

与条件④矛盾.

主要内容

- 集合的两种表示法
- 集合与元素之间的隶属关系、集合之间的包含关系的区别与联系
- 特殊集合: 空集、全集、幂集
- 文氏图及有穷集合的计数
- 集合的∪, ∩, -, ~, ⊕等运算以及广义∪, ∩运算
- 集合运算的算律及其应用

基本要求

- 熟练掌握集合的两种表示法
- 能够判别元素是否属于给定的集合
- 能够判别两个集合之间是否存在包含、相等、真包含等关系
- 熟练掌握集合的基本运算(普通运算和广义运算)
- 掌握证明集合等式或者包含关系的基本方法

练习1

- 1. 判断下列命题是否为真
- (1) $\emptyset \subseteq \emptyset$
- **(2)** ∅**∈**∅
- $(3) \varnothing \subseteq \{\varnothing\}$
- $(4) \varnothing \in \{\varnothing\}$
- (5) $\{a,b\}\subseteq \{a,b,c,\{a,b,c\}\}$
- (6) $\{a,b\} \in \{a,b,c,\{a,b\}\}$
- (7) $\{a,b\} \subseteq \{a,b,\{\{a,b\}\}\}$
- (8) $\{a,b\} \in \{a,b,\{\{a,b\}\}\}\$

解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.

- (1) 判断元素a与集合A的隶属关系是否成立基本方法:
 - 把 a 作为整体检查它在 A 中是否出现.
 - 注意这里的 a 可能是集合表达式.
- (2) 判断A⊆B的四种方法
- 若A,B是谓词法定义的,且A,B中元素性质分别为P和Q,那么"若P则Q"意味A $\subseteq B$,"P当且仅当Q"意味A $\equiv B$.
- 通过集合运算判断 $A \subseteq B$,即 $A \cup B = B$, $A \cap B = A$, $A B = \emptyset$ 三个等式中有一个为真.
- 通过文氏图判断集合的包含(注意这里是判断,而不是证明)

练习2

2. 设
$$S_1 = \{1, 2, \ldots, 8, 9\}$$
,

$$S_2 = \{2, 4, 6, 8\}$$

$$S_3 = \{1, 3, 5, 7, 9\}$$

$$S_4 = \{3, 4, 5\}$$

$$S_5 = \{3, 5\}$$

确定在以下条件下X是否与 S_1 , ..., S_5 中某个集合相等? 如果是,又与哪个集合相等?

- (1) 若 *X*∩S₅=Ø
- (2) 若 $X \subseteq S_4$ 但 $X \cap S_2 = \emptyset$
- (3) 若 *X*⊆*S*₁且 *X* ⊈*S*₃
- (4) 若 *X-S*₃=Ø
- (5) 若 $X \subseteq S_3$ 且 $X \nsubseteq S_1$

解

- (1) 和 S_5 不交的子集不含有3和5,因此 $X=S_2$.
- (2) S_4 的子集只能是 S_4 和 S_5 . 由于与 S_2 不交,不能含有偶数,因此 $X=S_5$.
- (3) S_1 , S_2 , S_3 , S_4 和 S_5 都是 S_1 的子集,不包含在 S_3 的子集含有偶数,因此 $X=S_1$, S_2 或 S_4 .
- (4) $X-S_3$ =Ø意味着 $X \\note S_3$ 的子集,因此 $X=S_3$ 或 S_5 .
- (5) 由于 S_3 是 S_1 的子集,因此这样的X不存在.

练习3

3. 判断以下命题的真假,并说明理由.

(1)
$$A-B=A \Leftrightarrow B=\emptyset$$

(2)
$$A-(B\cup C) = (A-B)\cap (A-C)$$

$$(3) A \oplus A = A$$

(4) 如果
$$A \cap B = B$$
,则 $A = E$.

(5)
$$A = \{x\} \cup x$$
,则 $x \in A$ 且 $x \subseteq A$.

解题思路

- 先将等式化简或恒等变形.
- 查找集合运算的相关的算律,如果与算律相符,结果为真.
- 注意以下两个重要的充要条件

$$A - B = A \Leftrightarrow A \cap B = \emptyset$$

$$A-B=\emptyset \Leftrightarrow A\subseteq B \Leftrightarrow A\cup B=B \Leftrightarrow A\cap B=A$$
 如果与条件相符,则命题为真.

- 如果不符合算律,也不符合上述条件,可以用文氏图表示 集合,看看命题是否成立.如果成立,再给出证明.
- 试着举出反例,证明命题为假.

解

- (1) $B=\emptyset$ 是A-B=A的充分条件,但不是必要条件. 当B不空但是与A不交时也有A-B=A.
- (2) 这是DM律,命题为真.
- (3) 不符合算律,反例如下:

 $A=\{1\}$, $A \oplus A=\emptyset$,但是 $A \neq \emptyset$.

- (4) 命题不为真. $A \cap B = B$ 的充分必要条件是 $B \subseteq A$,不是A = E.
- (5) 命题为真,因为x 既是A 的元素,也是A 的子集

练习4

- 4. 证明 $A \cup B = A \cup C \land A \cap B = A \cap C \Rightarrow B = C$ 解题思路
- 分析命题:含有3个命题:

$$A \cup B = A \cup C$$
, $A \cap B = A \cap C$, $B = C$

1

2

3

• 证明要求:

前提:命题①和②

结论:命题③

• 证明方法: 恒等式代入

反证法

利用已知等式通过运算得到新的等式

方法一: 恒等变形法

$$B = B \cap (B \cup A) = B \cap (A \cup B)$$

$$= B \cap (A \cup C) = (B \cap A) \cup (B \cap C)$$

$$= (A \cap C) \cup (B \cap C) = (A \cup B) \cap C$$

 $= (A \cup C) \cap C = C$

方法二: 反证法.

假设 $B \neq C$,则存在 x ($x \in B$ 且 $x \notin C$), 或存在 x ($x \in C$ 且 $x \notin B$). 不妨设为前者.

 $\exists x$ 属于A,则x属于 $A \cap B$ 但 x 不属于 $A \cap C$,与已知矛盾; $\exists x$ 不属于A,则x属于 $A \cup B$ 但 x 不属于 $A \cup C$,也与已知矛盾.

解答

方法三: 利用已知等式通过运算得到新的等式.

由已知等式①和②可以得到

$$(A \cup B) - (A \cap B) = (A \cup C) - (A \cap C)$$

即

$$A \oplus B = A \oplus C$$

从而有

$$A \oplus (A \oplus B) = A \oplus (A \oplus C)$$

根据结合律得

$$(A \oplus A) \oplus B = (A \oplus A) \oplus C$$

由于 $A \oplus A = \emptyset$, 化简上式得B = C.

练习5

5. 设 A, B 为集合, 试确定下列各式成立的充分必要条件:

- (1) A-B=B
- (2) A-B=B-A
- (3) $A \cap B = A \cup B$
- (4) $A \oplus B = A$

解题思路:

求解集合等式成立的充分必要条件可能用到集合的算律、不同集合之间的包含关系、以及文氏图等. 具体求解过程说明如下:

- (1) 化简给定的集合等式
- (2) 求解方法如下:
 - 利用已知的算律或者充分必要条件进行判断
 - 先求必要条件,然后验证充分性
 - 利用文氏图的直观性找出相关的条件,再利用集合论的证明方法加以验证

解答

解: (1) $A-B=B \Leftrightarrow A=B=\emptyset$. 求解过程如下:

由A-B=B得

$$(A \cap \sim B) \cap B = B \cap B$$

化简得 $B=\emptyset$. 再将这个结果代入原来的等式得 $A=\emptyset$. 从而得到必要条件 $A=B=\emptyset$.

再验证充分性. 如果 $A=B=\emptyset$ 成立,则 $A-B=\emptyset=B$ 也成立.

(2) $A-B=B-A \Leftrightarrow A=B$. 求解过程如下:

充分性是显然的,下面验证必要性. 由A-B=B-A得

$$(A-B)\cup A=(B-A)\cup A$$

从而有 $A=A\cup B$,即 $B\subseteq A$. 同理可证 $A\subseteq B$.

解答

(3) $A \cap B = A \cup B \Leftrightarrow A = B$. 求解过程如下:

充分性是显然的,下面验证必要性. $由 A \cap B = A \cup B$ 得 $A \cup (A \cap B) = A \cup (A \cup B)$

化简得 $A = A \cup B$,从而有 $B \subseteq A$. 类似可以证明 $A \subseteq B$.

(4) $A \oplus B = A \Leftrightarrow B = \emptyset$. 求解过程如下:

充分性是显然的,下面验证必要性. 由 $A \oplus B = A$ 得

$$A \oplus (A \oplus B) = A \oplus A$$

根据结合律有

$$(A \oplus A) \oplus B = A \oplus A$$

即 $\emptyset \oplus B = \emptyset$,就是 $B = \emptyset$.