

Problem R-93F (C₁₃H₂₂O₂Si₂). A partial structure of **R-93F** is given below:

(a) DBE ___. (b) Analyze important features of the IR spectrum.

- (c) Analyze each of the signals in the NMR spectrum. Report δ , J, multiplicity, and number of hydrogens (e.g., δ 1.3. dq, J = 7, 3 Hz, 2H). Give any part structure the signal identifies.
 - 6.1 _____
 - 5.9 _____
 - 3.6 _____
 - 3.2 _____
 - 2.5 _____
 - 0.1 _____
 - (d) Draw the structure of $\mbox{\bf R-93F}.$ Label the protons.

(e) The coupling constants for the signals near δ 6 are somewhat unusual. Explain, using stereochemical or conformational arguments, if appropriate.

- (f) What kind of pattern is the multiplet at 2.5?
- (g) Do a complete analysis of this multiplet. Obtain coupling constants and chemical shifts.

Problem R-93F (C₁₃H₂₂O₂Si₂). A partial structure of **R-93F** is given below:

(a) DBE $\frac{5}{2}$. (b) Analyze important features of the IR spectrum.

1740 cm⁻¹ C+O, probably unconjugated ester No OH - absence of 3500 cm⁻¹ No triple bond - probably

(c) Analyze each of the signals in the NMR spectrum. Report δ , J, multiplicity, and number of hydrogens (e.g., δ 1.3. dq, J = 7, 3 Hz, 2H). Give any part structure the signal identifies.

Y part of ABMXY

$$\delta 6.16, \, dd, \, J = 9.5, \, 2.4 \, Hz, \, 1H$$

X part of ABMXY

 $\delta 5.87, \, dd, \, J = 9.5, \, 3.5 \, Hz, \, 1H$

3.6
$$\delta$$
 3.65, s, 3H -OCH₃

$$\delta$$
 3.15, ddt, J = 14.8, 8.7, 3 Hz, M part of ABMXY
Really a dddd since the center peak of the small triplets
are clearly broadened, meaning two different J

$$\delta$$
 2.4, 2.5, 2H, AB part of **AB**MXY,
 $J_{AB} = 16.5 \text{ Hz}, J_{AM} = 7.6, J_{BM} = 15.8 \text{ Hx}$

These are the four diastereotopic Si-CH $_3$ groups 0.1

(d) Draw the structure of **R-93F**. Label the protons.

(e) The coupling constants for the signals near δ 6 are somewhat unusual. Explain, using stereochemical or conformational arguments, if appropriate.

 H_X and H_Y are almost equally coupled to H_M (3.5 and 2.4 Hz), even though one is 3J and the other 4J . This is because the conformation with H_M axial is ideal for the long-range (4J) allylic coupling, but poor for the vicinal (3J) coupling, with the dihedral angle near 90°. In fact it is possible that the assignments to H_X and H_Y given here might be reversed, with 4J larger than 3J .

(f) What kind of pattern is the multiplet at δ 2.5?

This is the AB part of an ABMXY pattern

 $c_{-} = (5+3)/2 = 496.3$, $c_{+} = (6+4)/2 = 484.6$ Hz

(g) Do a complete analysis of this multiplet. Obtain coupling constants and chemical shifts.

The intensity calculations are not too definitive here because of the complexity of the M peak due to coupling with X and Y. However, the magnitude of one of the Solution 2 J values (35.9 Hz) is simply too large for an H-H coupling, and the sign of J is also wrong - all 3J are positive, and one of the Solution 2 couplings is negative. Thus Solution 1 is correct.

