# Diodos e Fontes de Tensão Contínua

Bianca Yoshie Itiroko - 164923, Luiz Eduardo Cartolano - 183012, Seong Eun Kim - 177143 EE534 - Turma Y - Grupo 2

Setembro de 2018

#### Resumo

Esse experimento tem como objetivo estudar o funcionamento do transistor MOSFET, por meio da análise de seu comportamento nas diferentes regiões (corte, saturação e triodo) e aplicá-lo na construção de um amplificador de áudio. Através dele, calculou-se  $V_{th}$  de 1,4V e verificou-se um ganho de tensão de aproximadamente 8.

## 1 Introdução

O transistor MOSFET, é o tipo mais comum de transistores de efeito de campo em circuitos digitais ou analógicos. Ele é composto de 4 terminais, Dreno, Fonte, Porta e Substrato. São normalmente compostos de um canal de material semicondutor de tipo N (NMOS) ou de tipo P(PMOS). Geralmente o semicondutor escolhido é o silício, mas alguns fabricantes, principalmente a IBM, começaram a usar uma mistura de silício e germânio (SiGe)

O MOSFET possui uma série de aplicações práticas que pode-se observar no nosso cotidiano, eles podem ser usados como *switches*, em circuitos amplificadores de banda larga, seguidores de fonte ou ainda em osciloscópios.

Neste experimento, será estudado, com mais detalhes, as características do MOSFET, e também, o seu uso no projeto de um circuito amplificador de áudio. Busca-se entender as relações entre o comportamento das tensões  $V_{GS}$  e  $V_{DS}$ , e como elas se comportam com relação a corrente  $I_D$ .

#### 2 Procedimentos

Para a realização dos experimentos propostos, foram utilizados os seguintes componentes e ferramentas: Osciloscópio digital de dois canais, gerador de ondas/funções, fonte de tensão contínua, cabos com plugs banana e coaxial, multímetro digital, placa de contatos, transistores BSS100, um resistor de potência de  $100\Omega(5W)$ , capacitores de 680nF e resistores de  $47\Omega$ ,  $55\Omega$ ,  $68\Omega$ ,  $82\Omega$ ,  $240k\Omega$ ,  $270k\Omega$ ,  $1M\Omega$  e  $3.9M\Omega$ .

A primeira parte consiste na familiarização dos alunos com o MOSFET, para isso montou-se o circuito que pode ser observado na Figura 1. Nesta etapa buscou-se encontrar a tensão "limiar" do transistor,  $V_{TH}$ . E depois, fixando um valor para  $V_{GS}$ , fez-se medições de  $V_{DS}$ , a fim de determinar a curva  $V_{DS} \times I_{D}$ . Também nessa etapa buscou-se encontrar características básicas do transistor. Um detalhe importante ao qual deve-se atentar nesse momento é a presença do resistor de potência, e também a tensão de  $V_{CC}$  (corrente contínua), já que em valores muito altos ela pode queimar o transistor.

Na segunda etapa do laboratório, buscou-se estudar uma das aplicações práticas do transistor. Para isso, projetou-se um amplificador de áudio, como o que pode ser observado na Figura 2. Para isso, dimensionou-se um resistor de carga,  $R_D$  de  $82\Omega$ , um resistor  $R_1$  de  $3,9M\Omega$  e um  $R_2$  de  $1M\Omega$  (valores teóricos). Além dos capacitores e do transistor abordados no primeiro parágrafo. Novamente, deve-se reiterar o cuidado com a tensão contínua  $V_{CC}$  e com o posicionamento dos canais do transistor no circuito, afinal, esses pequenos detalhes são fundamentais para garantir a integridade do circuito.

### 3 Discussão

Na primeira parte do experimento, montou-se o circuito da Figura 1 buscando determinar a tensão limiar do MOSFET. Para tal, aumentou-se a tensão de  $V_{GS}$  aos poucos afim de descobrir em que tensão a corrente começaria a ser conduzida. Obteve-se um valor entre 1,3V e 1,4V, sendo que a inexatidão dessa medição pode ser atribuída ao fato de que a fonte de tensão não tinha muitas casas decimais, de forma que o valor era arredondado.

A fim de obter dados para uma análise da entrada e da saída do MOSFET utilizou-se o gerador de funções (utilizando a função dente-de-serra) e o osciloscópio. Fixou-se uma tensão de alimentação em 12V, um offset de 3V e variou-se a tensão de  $V_{GS}$ . Assim, obteve-se o Gráfico 6, onde pode-se observar o comportamento do transistor à medida que o  $V_{GS}$  varia: quando temos tensões menores do que  $V_{TH}$ , não há condução de corrente e portanto pudemos concluir que o mesmo estaria na região de corte (Figura 4). Logo após  $V_{TH}$ , é perceptível que a curva de saída tem comportamento próximo ao de uma parábola (Figura 3), esse comportamento, se dá, muito provavelmente, pela ocorrência de um "estrangulamento"no canal do dreno, reduzindo a corrente que passa por lá, e desse modo, a tensão de saída se modifica em relação a de entrada, e pode-se concluir que estamos na região de saturação. Por fim, quando  $V_{GS}$  ultrapassa algo em torno de 2,5V, o sinal de saída volta a ser constante em relação à entrada (Figura 5), e neste caso, ele encontra-se na região de triodo. Um gráfico com as três regiões indicadas pode ser encontrado na Figura 7.

Visando construir a relação corrente x tensão para o transistor, fixou-se valores constantes de  $V_{GS}$ , inicialmente 2V, depois 1V e por fim 4V. E, alterou-se, gradativamente, a tensão de alimentação  $V_{CC}$ , ao mesmo tempo que medíamos a tensão de  $V_{DS}$ , construindo as tabelas observadas (Tabelas 1, 2 e 3).

A partir dos dados obtidos nas Tabelas 1, 2 e 3, foi possível montar o gráfico para o MOSFET nas regiões de corte ( $V_{GS}=1V$ , Figura 8), saturação (( $V_{GS}=2V$ , Figura 9) e triodo ( $V_{GS}=4V$ , Figura 10). Da literatura, [3], pode-se chegar para o transistor em saturação, na Equação 1, que permite calcular o valor da constante k, para o qual chegamos em 0,034  $A/V^2$ . A partir do valor de K, é possível calcular o parâmetro da modulação de tamanho de canal ( $\Lambda$ ), usando a Equação 2, para o qual obtemos um valor 0,028 1/V. A partir do parâmetro da modulação de tamanho de canal pode-se também encontrar a tensão de Early ( $V_A$ ) do nosso transistor, mais detalhes podem ser observados em 1, para o qual obtemos 35V.

A fim de comparar os dados encontrados experimentalmente para a corrente no dreno  $I_D$ , buscou-se obter os valores teóricos para a corrente. Para isso, usou-se [3], de onde encontrou-se as equações para a corrente no dreno para o MOSFET nas regiões de saturação e triodo, Equações 3 e 4. A partir delas, e usando os parâmetros anteriormente encontrados, plotou-se os gráficos do MOSFET em saturação, triodo e corte, que podem ser observados nas Figuras 11, 13 e 12. Comparando os gráficos obtidos com valores teóricos e experimentais, é possível perceber uma pequena diferença. Para a região de corte, por exemplo, os valores experimentais não foram exatamente iguais a zero, o que pode ser causado por falhas na medição de  $V_{DS}$ . Para a região de triodo, é possível observar que o gráfico experimental começa a se curvar um pouco antes, novamente, uma boa justificativa, seria a baixa precisão das medições feitas com o multímetro. A maior diferença, entretanto, está na região de saturação, o gráfico teórico se mostrou muito mais linear do que o experimental, uma provável razão é o range de valores para a corrente, que se mostrou muito mais variado nas medições feitas.

Após as análises, pode-se concluir que a região de atuação do *MOSFET* que melhor funciona como amplificador é a de saturação, uma vez que para as regiões de corte e de triodo tem-se praticamente um comportamento constante, logo não fariam efeito no amplificador.

Para a segunda parte do experimento (circuito da Figura 2), usou-se o valor de k calculado anteriormente e, usando a Equação 5, obteve-se o ganho do MOSFET  $(g_m)$ . A partir dele, pode-se calcular o valor esperado de  $R_1$  e  $R_D$  (Equações 7 e 6), que foram de 245,  $1\Omega$  e  $5M\Omega$ , respectivamente. Dessa forma, usou-se no circuito valores próximos a eles, com  $R_D$  de  $82\Omega$  e  $R_1$  de  $3,9\Omega$ .

Um detalhe importante para o circuito amplificador, é o o desejo por trabalhar no ponto de máxima excursão do circuito, ou seja, aproveitar a maior parte do tempo possível na região de saturação. Para isso, é preciso montar um gráfico como o da Figura 14, e calcular o ponto desejado como sendo a metade do caminho entre o ponto em que a curva de carga se encontra com a parábola, e o ponto no qual ela cruza o eixo X.

Aplicando-se uma onda senoidal de  $100mV_{pp}$  e uma frequência de 1kHz, obteve-se no osciloscópio o gráfico da Figura 15 e, com base nele, pode-se então concluir que o ganho do amplificador foi de 8 a 9,

aproximadamente.

Elevando-se gradativamente o valor da amplitude de entrada, quando chegou-se a  $900mV_{pp}$  pode-se notar o sinal de saída apresentou distorções, as quais iam aumentando conforme a amplitude aumentava, como pode-se observar na Figura 16.

Ao conectar-se a carga de baixa impedância, no caso um alto falante, o amplificador tem seu ponto de operação alterado devido a quantidade de corrente puxada pelo novo elemento. Agora despolarizado, o ganho de tensão diminui, como pode ser observado na Figura 17.

Para obter melhores valores de resistências, poderia-se ter calculado o valor real de  $R_D$  no experimento da Figura 1 e do  $R_2$  da Figura 2. Dessa forma, possivelmente obteria-se valores diferentes de  $I_D$  e calcularia-se um valor diferente para k (Equação 1), o que, portanto, mudaria os valores das resistências (Equações 6 e 7).

#### 4 Conclusão

Neste experimento, buscou-se estudar o funcionamento do transistor MOSFET e analisar seu comportamento de acordo com a tensão limiar para seu funcionamento  $V_{th}$ . Assim, conclui-se que o experimento foi bem sucedido, uma vez que o comportamento do MOSFET foi condizente com o valor de  $V_{th}$  calculado de 1, 4V. Pelos gráficos citados no decorrer deste relatório foi possível classificar as regiões de atuação do transistor (corte, saturação e triodo). Tendo isso, verificou-se o funcionamento do circuito como um amplificador e obteve-se o ganho: pelo gráfico gerado, foi possível observar que houve amplificação do sinal em fatores de 8 a 9, que foi de acordo com o esperado. Utilizando o mesmo circuito numa aplicação prática de um alto falante, pode-se checar o comportamento para o caso de despolarização, em que o ganho de tensão diminui, como foi apontado anteriormente.

#### Referências

- [1] Tensão de early. Disponível em: https://en.wikipedia.org/wiki/Early effect, Acesso em: 20-09-2018.
- [2] MASIERO Bruno. Roteiro experimento 3. Disponível em: https://bit.ly/2vQIiWx, Acesso em: 10-08-2018.
- [3] Adel S. Sedra and Kenneth C. Smith. *Microelectronic Circuits*. Oxford University Press, fifth edition, 2004.

# Anexos



Figura 1: Circuito para caracterização do transistor MOSFET.



Figura 2: Circuito amplificador com transistor NMOS.

$$k = \frac{I_{D,On}}{(V_{GS,On} - V_{TH})^2} \tag{1}$$

Equation 1: Parâmetro K do MOSFET



Figura 3: Comportamento do MOSFET na região de saturação.



Figura 4: Comportamento do MOSFET na região de corte.



Figura 5: Comportamento do MOSFET na região de triodo.

$$\lambda = \frac{I_{D,Sat}}{V_{DS}K(V_{GS} - V_{TH})^2} - \frac{1}{V_{DS}}$$
 (2)

Equation 2: Modulação de tamanho de canal do MOSFET



Figura 6: Comportamento do MOSFET sob valores variados de  $V_{GS}$ .



Figura 7: Comportamento do MOSFET sob valores variados de  $V_{GS}$ , com as regiões indicadas.



Figura 8: Gráfico obtido experimentalmente de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para oMOSFETna região de corte.



Figura 9: Gráfico obtido experimentalmente de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para o MOSFET na região de saturação.



Figura 10: Gráfico obtido experimentalmente de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para o MOSFET na região de triodo.

$$I_{D,Sat} = K(V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$
(3)

Equation 3: Corrente do MOSFET na região de saturação

$$I_{D,Tri} = K(2(V_{GS} - V_{TH})V_{DS} - (V_{DS})^2)$$
(4)

Equation 4: Corrente do MOSFET na região de triodo

$$g_m = 2 * k * (V_{GS} - V_{TH}) (5)$$

Equation 5: Ganho de tensão do MOSFET.



Figura 11: Gráfico teórico de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para o MOSFET na região de saturação.



Figura 12: Gráfico teórico de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para oMOSFET na região de corte.

$$R_d = \frac{A_v}{g_m} \tag{6}$$

Equation 6: Cálculo de  $\mathbf{R}_d$ 

$$V_{GS} = V_{CC} * \frac{R_2}{R_1 + R_2} \tag{7}$$

Equation 7: Divisor de tensão no  $\mathbf{V}_{GS}$  para o cálculo de  $\mathbf{R}_1.$ 



Figura 13: Gráfico teórico de  $\mathbf{V}_{DS}\mathbf{x}\mathbf{I}_{D}$  para oMOSFET na região de triodo.



Figura 14: Gráfico de  $I_D \ge V_D S$ , com a curva de carga e a parábola que delimita o limiar entre saturação e triodo traçadas.



Figura 15: Comportamento do circuito amplificador classe A.



Figura 16: Início de distorção da curva se saída do circuito amplificador classe A.



Figura 17: Comportamento do circuito amplificador classe A quando conectado a uma caixa de som.

| $V_{CC}(V)$ | $V_{DS}(V)$ | $V_R(V)$ | $I_D(A)$ |
|-------------|-------------|----------|----------|
| 1           | 0.11        | 0.89     | 0.009    |
| 2           | 0.31        | 1.69     | 0.017    |
| 3           | 0.99        | 2.00     | 0.020    |
| 4           | 1.93        | 2.07     | 0.021    |
| 5           | 2.07        | 2.93     | 0.029    |
| 6           | 3.74        | 2.26     | 0.023    |
| 7           | 4.66        | 2.34     | 0.023    |
| 8           | 5.63        | 2.37     | 0.024    |
| 9           | 6.59        | 2.41     | 0.024    |
| 10          | 7.49        | 2.51     | 0.025    |
| 11          | 8.44        | 2.56     | 0.026    |
| 12          | 9.35        | 2.65     | 0.026    |
| 12.6        | 9.90        | 2.70     | 0.027    |

Tabela 1: Valores de  $\mathbf{V}_{DS}$ e  $\mathbf{I}_{D}$ para  $\mathbf{V}_{GS}$  de 2V

| $V_{CC}(V)$ | $V_{DS}(V)$ | $V_R(V)$ | $I_D(A)$ |
|-------------|-------------|----------|----------|
| 1           | 1.03        | -0.03    | -0.0003  |
| 2           | 2.04        | -0.04    | -0.0004  |
| 3           | 3.04        | -0.04    | -0.0004  |
| 4           | 4.09        | -0.09    | -0.0009  |
| 5           | 5.04        | -0.04    | -0.0004  |
| 6           | 6.10        | -0.10    | -0.0010  |
| 7           | 7.07        | -0.07    | -0.0007  |
| 8           | 8.10        | -0.10    | -0.0010  |
| 9           | 9.10        | -0.10    | -0.0010  |
| 10          | 10.08       | -0.08    | -0.0008  |

Tabela 2: Valores de  $\mathbf{V}_{DS}$ e  $\mathbf{I}_{D}$ para  $\mathbf{V}_{GS}$  de 1V

| $V_{CC}(V)$ | $V_{DS}(V)$ | $V_R(V)$ | $I_D(A)$ |
|-------------|-------------|----------|----------|
| 1           | 0.04        | 0.96     | 0.010    |
| 2           | 0.08        | 1.92     | 0.019    |
| 3           | 0.12        | 2.88     | 0.029    |
| 4           | 0.16        | 3.84     | 0.038    |
| 5           | 0.20        | 4.80     | 0.048    |
| 6           | 0.24        | 5.76     | 0.058    |
| 7           | 0.28        | 6.72     | 0.067    |
| 8           | 0.33        | 7.67     | 0.077    |
| 9           | 0.37        | 8.63     | 0.086    |
| 10          | 0.42        | 9.58     | 0.096    |
| 12          | 0.51        | 11.49    | 0.115    |
| 14          | 0.61        | 13.39    | 0.134    |
| 16          | 0.72        | 15.28    | 0.153    |
| 18          | 0.87        | 17.13    | 0.171    |

Tabela 3: Valores de  $\mathbf{V}_{DS}$ e  $\mathbf{I}_{D}$ para  $\mathbf{V}_{GS}$  de 4V