Отчет по лабораторной работе №8

Модель конкуренции двух фирм

Поленикова Анна Алексеевна

Содержание

Цель работы	4
Задание	5
Теоретическая справка	7
Выполнение лабораторной работы	10
Выводы	14

Список иллюстраций

0.1	Графики для 1 случая														12
0.2	Графики для 2 случая														13

Цель работы

Цель лабораторной работы N98 - ознакомление с моделью конкуренции двух фирм.

Задание

Вариант 38

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p} 1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p} 2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$

$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$

$$c_2 = \frac{p_{cr} - \widetilde{p}_2}{\tau_2 \widetilde{p}_2}$$

Также введена нормировка $t = c_1 \Theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - (\frac{b}{c_1} + 0.00083)M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 3.9, M_0^2 = 2.9$$

 $p_{cr} = 25, N = 39, q = 1$
 $\tau_1 = 29, \tau_2 = 19$
 $\tilde{p}_1 = 6.9, \tilde{p}_2 = 15.9$

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Теоретическая справка

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - М оборотные средства предприятия
 - au длительность производственного цикла
 - р рыночная цена товара
- \widetilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
 - δ доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукнии.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\widetilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

их которого следует, что равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \widetilde{p} N q})$$

Тогда уравнение динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} \left(\frac{p}{p_{cr}} - 1\right) - M^2 \left(\frac{\delta}{\tau \widetilde{p}}\right)^2 \frac{p_{cr}}{Nq} - k$$

Оно имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\widetilde{p}}{p_{cr}}\widetilde{p}_{cr}^{\tau}), b = kNq\frac{(\tau\widetilde{p})^2}{p_{cr}\delta^2}$$

Из чего следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы. При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1 - \frac{\widetilde{p}}{p_{cr}})\widetilde{p}, \widetilde{M_{-}} = k\widetilde{p}\frac{\tau}{\delta(p_{cr} - \widetilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Выполнение лабораторной работы

Для построения графиков конкуренции двух фирм для 2 случаев был написан следующий код:

```
f0=[3.9, 2.9]
p\_cr{=}25
N = 39
q=1
tau1=29
tau2=19
p1 = 6.9
p2 = 15.9
a1=p_cr/(tau1*tau1*p1*p1*N*q)
a2{=}p\_cr/(tau2*tau2*p2*p2*N*q)
b{=}p\_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1=(p_cr-p1)/(tau1*p1)
c2=(p_cr-p2)/(tau2*p2)
t0 = 0
t=np.arange(t0, 30, 0.01)
def eq1(f, t):
  f1, f2=f
```

```
return [f1-(b/c1)*f1*f2-(a1/c1)*f1*f1, (c2/c1)*f2-(b/c1)*f1*f2-(a2/c1)*f2*f2]
def eq2(f, t):
  f1, f2=f
  return [f1-(b/c1)*f1*f2-(a1/c1)*f1*f1, (c2/c1)*f2-(b/c1+0.00083)*f1*f2-(a2/c1)*f2*f2]
f1=odeint(eq1, f0, t)
f2 = odeint(eq2, f0, t)
M1 1=f1[:,0]
M2 1=f1[:,1]
M1 2=f2[:,0]
M2 2=f2[:,1]
graph1=plt.figure(facecolor='white')
plt.plot(t, M1 1, linewidth=1, label='M1')
plt.plot(t, M2 1, linewidth=1, label='M2')
plt.xlabel("t")
plt.ylabel("Капитал")
plt.grid(True)
plt.legend()
plt.show()
graph1.savefig('graph1.png', dpi=800)
graph2=plt.figure(facecolor='white')
plt.plot(t, M1 2, linewidth=1, label='M1')
plt.plot(t, M2 2, linewidth=1, label='M2')
plt.xlabel("t")
plt.ylabel("Капитал")
```

```
plt.grid(True)
plt.legend()
plt.show()
graph2.savefig('graph2.png', dpi=800)
```

В результате выполнения программы были получены следующие результаты для $1\ \mathrm{cnyvas}$: (рис. -@fig:001)

Рис. 0.1: Графики для 1 случая

Для 2 случая были получены следующие графики: (рис. -@fig:002)

Рис. 0.2: Графики для 2 случая

Выводы

В результате проделанной лабораторной работы была изучена модель конкуренции двух фирм.