Zadanie 1. Rozważmy zdarzenia losowe A_1 , A_2 oraz C takie, że:

$$Pr(C|A_1) = \frac{1}{3}, \quad Pr(C|A_2) = \frac{1}{2},$$

$$\Pr(A_1) = \Pr(A_2) = \frac{1}{2},$$

zdarzenia $A_{\mathbf{l}}$ i $A_{\mathbf{l}}$ są niezależne oraz $A_{\mathbf{l}} \cap A_{\mathbf{l}} \cap C = \varnothing$.

Z powyższych danych wynika, że:

(A)
$$\Pr(C|A_1 \cup A_2) = \frac{2}{3}$$

- (B) zdarzenia A_1 , A_2 i C są niezależne
- (C) $\Pr(C|A_1 \cup A_2) = \frac{5}{9}$
- (D) dane zawierają sprzeczność, taka sytuacja jest niemożliwa
- (E) $\Pr(C|A_1 \cup A_2) = \frac{5}{12}$

Zadanie 2. Jeśli dla zmiennej losowej o rozkładzie Poissona mamy

$$Pr(N \le 1) = \frac{8}{9} \cdot Pr(N = 2)$$
, to:

$$(A) \qquad E(N) = \frac{17}{9}$$

(B)
$$E(N) = 3$$

(C)
$$VAR(N) = 2$$

(D)
$$E(N^2) = 3$$

(D)
$$E(N^2) = 3$$

(E) $E(N) = \frac{8}{9}$

Zadanie 3. Załóżmy, że zmienne losowe $X_1, X_2, \ldots, X_{735}$ oraz $Y_1, Y_2, \ldots, Y_{880}$ są niezależne, o rozkładach:

$$Pr(X_i = 0) = \frac{3}{7}, \quad Pr(X_i = 1) = \frac{4}{7},$$

$$Pr(Y_i = 0) = Pr(Y_i = 1) = \frac{1}{2}$$
.

Prawdopodobieństwo tego, że:

$$\sum_{i=1}^{735} X_i < \sum_{i=1}^{880} Y_i ,$$

policzone w przybliżeniu przy pomocy aproksymacji rozkładem normalnym, wynosi:

- A) 0.01
- (B) 0.99
- (C) 0.16
- (D) 0.50
- (E) 0.84

Zadanie 4. Zmienne losowe X_1 , X_2 i X_3 mają łączny rozkład normalny, gdzie $E(X_i)=0$, $VAR(X_i)=1$ dla i=1,2,3. Jeśli $COV(X_1,X_2)=COV(X_2,X_3)=COV(X_1+X_2,X_2+X_3)=0$, to:

(A) wynika stąd, że
$$Pr(X_1 = -X_3) = 0$$

(B) wynika stąd, że
$$Pr(X_1 = X_3) = 1$$

(C) wynika stąd, że
$$Pr(X_1 > -X_3) = \frac{1}{2}$$

(D) wynika stąd, że
$$Pr(X_1 = -X_3) = 1$$

(E) nie musi stąd wynikać żadne ze stwierdzeń (A)-(D)

Zadanie 5. Zmienne losowe X i Y są niezależne.

X ma rozkład o gęstości:

$$f(x) = \begin{cases} 2 \cdot x & dla \quad 0 \le x \le 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Y ma rozkład o gęstości:

$$g(y) = \begin{cases} e^{-y} & dla & 0 \le y \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Jeśli
$$S = X + Y$$
 to $E\left(S \middle| X \le \frac{1}{2}\right)$ wynosi:

- (A) 2
- (B) $\frac{3}{2}$
- (C) $\frac{4}{3}$
- (D) $\frac{1}{3}$
- (E) $\frac{13}{12}$

Zadanie 6. x_1, x_2, \ldots, x_{10} jest próbą losową z rozkładu $N(\mu, \sigma^2)$, gdzie μ i σ^2 są nieznanymi parametrami. Niech [L, U] będzie przedziałem ufności dla parametru μ takim, że

 $\Pr_{\mu,\sigma}(L>\mu) = \Pr_{\mu,\sigma}(U<\mu) = 0.025$ dla każdych μ i σ^2 .

Niech $(-\infty, W]$ będzie jednostronnym przedziałem ufności dla parametru μ takim, że $\Pr_{\mu,\sigma}(W < \mu) = 0.01$ dla każdych μ i σ^2 .

Oba przedziały zbudowane są w standardowy sposób w oparciu o średnią i wariancję z próbki \bar{x} i s^2 . Jeżeli L=-0.262 i U=4.262 to wartość W wynosi:

- (A) 4.262
- (B) 4.821
- (C) 5.169
- (D) 3.833
- (E) nie można podać wartości W na podstawie tych danych

Zadanie 7. Niech X_1, X_2, \ldots, X_n , gdzie n > 1, będzie próbą losową z rozkładu

wykładniczego o gęstości:

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-x/\mu} & dla \quad 0 \le x \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Rozważamy dwa estymatory nieznanego parametru $\mu > 0$:

$$\hat{\mu}_1 = \overline{X} = \frac{1}{n} \cdot \sum_{i=1}^n X_i$$

$$\hat{\mu}_2 = n \cdot \min \{ X_1, X_2, \dots, X_n \}.$$

- (A) Estymator $\hat{\mu}_1$ jest nieobciążony, zaś $\hat{\mu}_2$ jest obciążony.
- (B) Estymator $\hat{\mu}_1$ jest obciążony, zaś $\hat{\mu}_2$ jest nieobciążony.
- (C) Oba estymatory są nieobciążone i mają równe wariancje.
- (D) Oba estymatory są nieobciążone; dla pewnych wartości μ estymator $\hat{\mu}_1$ ma większą wariancję niż $\hat{\mu}_2$.
- (E) Oba estymatory są nieobciążone; $\hat{\mu}_1$ ma zawsze mniejszą wariancję niż $\hat{\mu}_2$.

Zadanie 8. x_1, x_2, \ldots, x_n jest próbą losową z rozkładu o dystrybuancie:

$$F_{\alpha}(x) = \frac{1}{\left(1 + e^{-x}\right)^{\alpha}}, \qquad \left(-\infty < x < \infty, \quad \alpha > 0\right).$$

Estymator największej wiarygodności nieznanego parametru α ma postać:

(A)
$$\hat{\alpha} = \sqrt[n]{\prod_{i=1}^{n} (1 + \exp(-x_i))^{-1}}$$

(B)
$$\hat{\alpha} = \exp(-\bar{x}), \text{ gdzie } \bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

(C)
$$\hat{\alpha} = \ln \left[\frac{1}{n} \cdot \sum_{i=1}^{n} (1 + \exp(-x_i))^{-1} \right]$$

(D)
$$\hat{\alpha} = \frac{1}{n} \cdot \sum_{i=1}^{n} \ln(1 + \exp(-x_i))$$

(E)
$$\hat{\alpha} = n \cdot \left[\sum_{i=1}^{n} \ln(1 + \exp(-x_i)) \right]^{-1}$$

Zadanie 9. Zmienna losowa X ma gęstość prawdopodobieństwa f(x). Na podstawie pojedynczej obserwacji X przeprowadzamy test hipotezy:

$$H_0: f(x) = \begin{cases} 1 & dla & 0 \le x \le 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

przeciwko alternatywie:

$$H_1: f(x) = \begin{cases} 5 \cdot x^4 & dla \quad 0 \le x \le 1 \\ 0 & w \text{ przeciwnym przypadku} \end{cases}$$

Najmocniejszy test na poziomie istotności α ma moc:

(A)
$$1 - (1 - \alpha)^5$$

(B)
$$(1-\alpha)^5$$

(C)
$$\alpha^{5}$$

(D)
$$5\alpha^4$$

(E)
$$1-5\alpha^4$$

Zadanie 10. Wykonano 120 razy rzut dwiema kośćmi do gry: czarną i białą.

- 45 razy na białej kości wypadło więcej oczek, niż na czarnej;
- 50 razy na białej kości wypadło mniej oczek, niż na czarnej;
- 25 razy na obu kościach wypadła ta sama liczba oczek.

Rozważmy hipotezę H_0 : "obie kości są rzetelne i wynik rzutu kością białą jest niezależny od wyniku rzutu kością czarną".

Czy otrzymane wyniki dają podstawę, żeby odrzucić hipotezę H_0 ? Przeprowadzono test χ^2 w oparciu o przytoczone dane.

- (A) Na poziomie istotności $\alpha = 0.01$ test prowadzi do odrzucenia H_0 .
- (B) Na poziomie istotności $\alpha=0.05$ test prowadzi do odrzucenia H_0 , natomiast dla $\alpha=0.05$ test nie prowadzi do odrzucenia H_0 .
- (C) Na poziomie istotności $\alpha=0.1$ test prowadzi do odrzucenia H_0 , natomiast dla $\alpha=0.01$ test nie prowadzi do odrzucenia H_0 .
- (D) Na poziomie istotności $\alpha = 0.1$ test nie prowadzi do odrzucenia H_0 .
- (E) Na poziomie istotności $\alpha = 0.005$ test prowadzi do odrzucenia H_0 .

Egzamin dla Aktuariuszy z 18 stycznia 1997 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	В	
3	Е	
4	D	
5	С	
6	В	
7	Е	
8	Е	
9	A	
10	D	
		_

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.