PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS Temporada Académica de Verano 2020

Profesor: Luis Zegarra (lzegarra@uc.cl) Ayudante: Odette Ríos (ovrios@uc.cl)

Calculo II - MAT1620

Ayudantia 10

Ejercicio 1

Calcular las siguientes integrales:

- a) $\int \int_R \frac{y^2}{x^2+y^2} dA$, donde R es la región entre las circunferencias $x^2+y^2=a^2$ y $x^2+y^2=b^2$
- b) $\iint_R \arctan(y/x) dA$, donde $R = \{(x,y) | 1 \le x^2 + y^2 \le 4, 0 \le y \le x\}$
- c) $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$
- d) $\int \int_D e^{-x^2-y^2} dA$, donde D es la región acotada por la semicirfunferencia $x=\sqrt{4-y^2}$ y el eje y.

Ejercicio 2

Evalúe la integral $\int_E \int (x^3 + xy^2) dV$, donde E es el sólido en el primer octante $(x, y, z \ge 0)$ que se encuentra bajo el paraboloide $z = 1 - x^2 - y^2$.

Ejercicio 3

Calcule el volumen del sólido bajo el plano x - 2y + z = 1 y arriba de la región acotada por x + y = 1 y $x^2 + y = 1$.

Ejercicio 4

Encuentre la masa y el centro de masa de la lámina que ocupa la región D es la región triangular con vértices encerrada por las rectas x=0, y=x y 2x+y=6 y densidad $\rho(x,y)=x^2$.

Ejercicio 5

Determine la constante $c \in \mathbb{R}$ de modo que $\int \int_D c(xy)dA = 1$, donde D es el trapezoide de vértices P1(0,0), P2(0,1), P3(1,1) y P4(2,0).

Cálculo II - MAT1620 Ayudantia 10

Ejercicio 6

Una lámina ocupa la parte del disco $x^2+y^2\leq 1$ en el primer cuadrante. Encuentre su centro de masa si la densidad en cualquier punto es proporcional a su distancia desde el eje x.