

planetmath.org

Math for the people, by the people.

direct images of analytic sets are analytic

 ${\bf Canonical\ name} \quad {\bf Direct Images Of Analytic Sets Are Analytic}$

Date of creation 2013-03-22 18:46:33 Last modified on 2013-03-22 18:46:33

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Theorem Classification msc 28A05 For measurable spaces (X, \mathcal{F}) and (Y, \mathcal{G}) , consider a measurable function $f \colon X \to Y$. By definition, the inverse image $f^{-1}(A)$ will be in \mathcal{F} whenever A is in \mathcal{G} . However, the situation is more complicated for http://planetmath.org/DirectImagedirectimages, which in general do not preserve measurability. However, as stated by the following theorem, the class of analytic subsets of Polish spaces is closed under direct images.

Theorem. Let $f: X \to Y$ be a Borel measurable function between Polish spaces X and Y. Then, the direct image f(A) is analytic whenever A is an analytic subset of X.