Data on advertising expenditures and revenue (in thousands of dollars) for the Four Seasons Restaurant follow.

Advertising Expenditures	Revenue	
1	19	
2	32	
4	44	
6	40	
10	52	
14	53	
20	54	

- a. Let *x* equal advertising expenditures and *y* equal revenue. Use the method of least squares to develop a straight line approximation of the relationship between the two variables.
- b. Test whether revenue and advertising expenditures are related at a .05 level of significance.
- c. Prepare a residual plot of $y-\hat{y}$ versus \hat{y} . Use the result from part (a) to obtain the values of \hat{y} .
- d. What conclusions can you draw from residual analysis? Should this model be used, or should we look for a better one?

Solution

Using Excel's Descriptive Statistics Regression Tool, the Excel output is shown below:

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.830868141				
R Square	0.690341868				
Adjusted R Square	0.628410242				
Standard Error	7.87753068				
Observations	7				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	691.7225519	691.7226	11.14684	0.020582051
Residual	5	310.2774481	62.05549		
Total	6	1002			

	Coefficients	Standard Error	t Stat	p-Value
Intercept	29.39910979	4.807253405	6.115573	0.001695
X Variable 1	1.547477745	0.463498729	3.338688	0.020582

a. Let x = advertising expenditures and y = revenue

$$\hat{y} = 29.4 + 1.55x$$

b. SST = 1002 SSE = 310.28 SSR = 691.72

MSR = SSR/1 = 691.72

MSE = SSE/(n-2) = 310.28/5 = 62.06

F = MSR/MSE = 691.72/62.06 = 11.15

Using F table (1 degree of freedom numerator and 5 denominator), p-value is between .01 and .025

Using Excel, the *p*-value = F.DIST.RT(11.15,1,5) = .0206

Because p-value $\leq \alpha = .05$, we conclude that the two variables are related.

Additionally, from the Excel output for both the *F* test with *F* stat = 11.15 and the *t* test on β_1 (coefficient of *x*) with a *t* stat = 3.34, there is evidence of a significant relationship: *p*-value = 0.0206 < α = .05.

c.

d. The residual plot leads us to question the assumption of a linear relationship between *x* and *y*. Even though the relationship is significant at the .05 level of significance, it would be extremely dangerous to extrapolate beyond the range of the data.