Zusammenfassung zur Vorlesung Gruppentheorie in der Physik I

Yanick Sebastian Kind yanick.kind@udo.edu

03.03.2023

Inhaltsverzeichnis

1	Erg	inzen	3					
2	Abstrakte Gruppentheorie							
	2.1	Definition: Gruppe	3					
		2.1.1 endliche Gruppe	3					
	2.2	Multiplikationstabelle	3					
		2.2.1 Rearrangement Theorem	4					
	2.3	Zyklische Gruppe	4					
	2.4		4					
		2.4.1 Satz: Disjunkheit oder Gleichheit	4					
		2.4.2 Satz: Index einer Untergruppe	4					
	2.5	Konjugierte Elemente und Klassen	4					
		2.5.1 Konjugationsklasse	5					
	2.6	Normalteiler und Faktorgruppen	5					
		2.6.1 Definition: Normalteiler	5					
		2.6.2 Einschub: Komplexe	5					
		2.6.3 Satz: Nebenklasse einer invarianten Untergruppe	5					
			5					
3	Dar	stellungstheorie	5					
	3.1		6					
	3.2		6					
	3.3		6					
	3.4		6					
	3.5		6					
			7					
	3.6	9	7					
	3.7		7					
	3.8		7					

List of Theorems

1 Ergänzen

- Iso/Homomorphismus
- Permutationsgruppe
- triviale Darstellung als Isomorphismus

2 Abstrakte Gruppentheorie

2.1 Definition: Gruppe

Eine Menge $\mathcal{G} = \{A_2, A_3, ...\}$ bildet eine Gruppe, wenn mit einer Gruppenverknüpfung * folgende vier Eigenschaften erfüllt sind:

- 1. **Abgeschlossenheit**: Mit $A_i, A_j \in \mathcal{G}$ folgt $A_i * A_j = A_k \in \mathcal{G}$, d.h. die Verknüpfung zweier Elemente ergibt wieder ein Element der Gruppe.
- 2. Assoziativität: Es gilt mit $A_i, A_j, A_k \in \mathcal{G}$, dass $(A_i * A_j) * A_k = A_i * (A_i * A_k)$.
- 3. Neutrale Element: Es exestiert ein eindeutiges Element $E \in \mathcal{G}$ mit $E*A_i = A_i*E = A_i$.
- 4. Inverse Element: Zu jedem Element $A_i \in \mathcal{G}$ exestiert ein eindeutiges inverses Element A_i^{-1} , so dass $A_i^{-1} * A_i = A_i * A_i^{-1} = E$ gilt.

2.1.1 endliche Gruppe

Eine Gruppe mit einer endlichen Anzahl an Elementen heißt endliche Gruppe. Eine Gruppe $\mathcal{G} = \{E, A_2, \dots, A_h\}$ ist eine endliche Gruppe der Ordnung h. Man schreibt auch $|\mathcal{G}| = h$.

2.2 Multiplikationstabelle

Die Multiplikationstabelle gibt einfach an, welche Verknüpfungen welches Gruppenelement ergeben. Bsp. Symmetrische Gruppe S_3 :

	e	a	a^2	b	c	d
e	e	a	$ \begin{array}{c} a^2 \\ e \\ a \\ c \\ d \\ b \end{array} $	b	c	d
a	a	a^2	e	c	d	b
a^2	a^2	e	a	d	b	c
b	b	d	c	e	a^2	a
c	c	b	d	a	e	a^2
d	d	c	b	a^2	a	e

¹Im Folgenden wird das Symbol der Verknüpfung und die Angabe, dass ein Element einer Gruppe ist, weggelassen, sofern es eindeutig ist.

2.2.1 Rearrangement Theorem

Sallop gesagt: In jeder Zeile und Spalte einer Multiplikationstabelle kann ein Gruppenelemnt nur einmal auftreten.

Mathematisch: In der Sequenz $EA_k, A_2A_k, \cdots, A_hA_k$ kommt jedes Element A_i nur einmal vor.

2.3 Zyklische Gruppe

Bei einer zyklischen Gruppe kann jedes Element durch mehrfacher Multiplikation eines Elements reproduziert werden, so dass sich jede zyklische Gruppe \mathcal{G} als

$$\mathcal{G} = \{X, X^2, \dots, X^n = E\}$$

schreiben lässt, wobei die Ordnung die Periode der zyklischen Gruppe ist (Bsp.: Translationsgruppe eines Kirstalls)

2.4 Untergruppen und Nebenklassen

Sei $\mathcal{S} = \{E, S_2, \dots, S_g\}$ eine Untergruppe der Ordnung g der Gruppe \mathcal{G} der Ordnung h, dann ist

$$\mathcal{S}X = \{EX, S_2X, \dots, S_qX\}$$

eine rechte Nebenklasse von S (linke Nebenklasse analog). Wäre $X \in S$, dann wäre XS wieder S selbst und damit enthält eine Nebenklasse kein einziges Element der Untergruppe.

2.4.1 Satz: Disjunkheit oder Gleichheit

Zwei (linke oder rechte) Nebenklassen XS, YS einer Untergruppe S sind entweder disjunkt oder gleich.

2.4.2 Satz: Index einer Untergruppe

Die Ordnung einer Untergruppe S von G, wobei |S| = g und G = h gilt, muss ein ganzzahliger Teiler von h sein, so dass

$$\frac{h}{a} = l \in \mathbb{Z}$$

gilt. Dabei wird l der Index der Untergruppe S in G genannt.

2.5 Konjugierte Elemente und Klassen

Zwei Elemente A, B sind zueinander konjugiert, wenn

$$B = XAX^{-1}$$

gilt. Damit folgt, dass wenn C und B zu A konjugiert sind, dass auch B und C zueinander konjugiert sind.

2.5.1 Konjugationsklasse

Alle Elemente einer Gruppe \mathcal{G} die zue
inander konjugiert sind bilden eine Konjugationsklasse

$$\mathcal{G}A = \{BAB^{-1}|B \in \mathcal{G}\},\$$

wobei A ein beliebiges Element der Konjugationsklasse ist.

2.6 Normalteiler und Faktorgruppen

2.6.1 Definition: Normalteiler

Eine Untergruppe S einer Gruppe G, die nur aus kompletten Klassen besteht, heißt **Normalteiler** oder **invariante Untergruppe**. Mit einer komplette Klasse meint man, dass, wenn A in S liegt, alle Elemente XAX^{-1} in S liegen, selbst wenn $X \in G$ nicht in S liegt. Solche eine Untergruppe heißt invariant, da es unter Konjugation mit einem beliebigen Element von G invariant ist.

2.6.2 Einschub: Komplexe

Ein Komplex

$$\mathcal{K} = \{K_1, \dots, K_n\}$$

ist eine Menge von Gruppenelementen unter Vernachlässigung der Reihenfolge. Eine Multiplikation mit einen beliebigen Element X ist durch $\mathcal{K}X = \{K_1X, \dots, K_nX\}$ gegeben. Die Multiplikation zweier Komplexe $\mathcal{K} = \{K_1, \dots, K_n\}$ und $\mathcal{K}' = \{K_1', \dots, K_m'\}$ ist durch $\mathcal{K}\mathcal{K}' = \{K_1K_1', K_2K_1', \dots, K_1K_2', K_1K_3', \dots, K_nK_m'\}$ gegeben. Doppelte Elemente werden, wie es bei einer Menge üblich ist, nicht mitgezählt.

2.6.3 Satz: Nebenklasse einer invarianten Untergruppe

Aus der Definition 2.6.1 folgt

$$XSX^{-1} = S \iff XS = SX$$

womit die rechte gleich der linken Nebenklasse einer invarianten Untergruppe ist.

2.6.4 Definition: Faktorgruppe

Eine invariante Untergruppe S einer Gruppe G bildet mit all ihren l-1 Nebenklassen eine Faktorgruppe

$$G/S = \{S, SX_1, SX_2, \dots, SX_{l-1}\},\$$

Moodle Diese Veranstaltung verfügt über einen Moodle wobei die invariante Untergruppe S das Einselement bildet. Die Ordnung der Faktorgruppe entspricht |G|/|S|.

3 Darstellungstheorie

Wir haben uns ausschließlich mit Matritzendarstellungen beschäftigt.

3.1 Definition: Darstellung

Bei einer Darstellung Γ wird jedem Gruppenelement eine quadratische Matrix zugeordnet:

$$\Gamma(A): V \to V$$

mit dem Vektorraum V als Darstellungsraum mit Dim(V) = d als Dimension der Darstellung. Eine lineare Darstellung $\Gamma(A)$ von \mathcal{G} ist ein Homomorphismus der Gruppe GL(V)

$$\Gamma(A)\Gamma(B) = \Gamma(AB), \quad A, B \in \mathcal{G}.$$

Das Einselement wird durch die Einheitsmatrix dargestellt.

3.2 Definition: Äquivalente Darstellung

Eine andere Darstellung lässt sich durch eine Ähnlichkeitstransformation gewinnen

$$\Gamma'(A) = S^{-1}\Gamma(A)S \implies \Gamma'(A)\Gamma'(B) = \Gamma'(AB).$$

Die Darstellungen Γ und Γ' sind äquivalent.

3.3 (Ir)reduzibilität

Die direkte Summe von zwei Darstellungen

$$\Gamma(A) = \begin{pmatrix} \Gamma^1(A) & 0 \\ 0 & \Gamma^2(A) \end{pmatrix}, \quad \Gamma(A) = \Gamma^1(A) \bigoplus \Gamma^2(A)$$

ist eine weiter Form von Redundanz. Lässt sich eine Darstellung durch eine globale Ähnlichkeitstransformation auf eine Blockdiagonale bringen, ist sie reduzibel, sonst irreduzibel.

3.4 Satz: unitäre Darstellungen

Jede Darstellung lässt sich mit Hilfe einer Ähnlichkeitstransformation auf eine unitäre Darstellung abgebildet werden. Vorgehen: Konstruiere hermitische Matrix $\mathbf{H} = \sum_{i}^{h} \Gamma(A_{i})\Gamma(A_{i}^{\dagger})$. Dann diese diagonalisieren mit unitärer Trafo $(d) = \mathbf{U}^{-1}\mathbf{H}\mathbf{U}$. Somit ist die Darstellung

$$\Gamma^{''}(A_j) = \mathbf{d}^{-\frac{1}{2}}\mathbf{U}^{-1}\Gamma(A_j)\mathbf{U}\mathbf{d}^{\frac{1}{2}}$$

unitär.

3.5 Schur'sches Lemma

Jede Matrix, welche mit allen Matrizen einer irreduziblen Darstellung kommutiert, muss ein Vielfaches von der Einheitsmatrix (sog. konstante Matrix) sein. Wenn somit eine nicht-konstante Matrix mit mindestens einer Matrix einer Darstellung kommutiert, ist diese Darstellung reduzibel.

3.5.1 Alternative Formulierung

Gegeben seien zwei Darstellungen mit $\text{Dim}(\Gamma^1(A_i)) = d_1$ und $\text{Dim}(\Gamma^1(A_i)) = d_1$. Wenn dann mit einer beliebigen Matrix **M**

$$\mathbf{M}\Gamma^1(A_1) = \Gamma^2(A_i)\mathbf{M}$$

gilt, dann muss (i) bei $d_1 \neq d_2$ $\mathbf{M} = \mathbf{0}$ oder (ii) bei $d_1 = d_2$ entweder $\mathbf{M} = \mathbf{0}$ oder $|\mathbf{M}| \neq 0$ gelten. Aus letzterem folgt $\Gamma^1(A_i) = \mathbf{M}\Gamma^2(A_i)\mathbf{M}^{-1}$, womit die Darstellungen äquivalent sind.

3.6 Orthogonalitätstheorem

Bei Betrachtung nicht-äquivalenter, unitärer, irreduziblen Darstellungen gilt

$$\sum_{R} \Gamma^{i}(R)_{\mu\nu} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{d_{i}} \delta_{ij} \delta_{\nu\alpha} \delta_{\nu\beta}.$$

Geometrische Interpretation: die Gruppelemente $R=E,A_2,\ldots,A_h$ spannen einen h-dimensionalen "Gruppenelement-Vektorraumäuf. Jeder Vektor in diesem Raum haben drei Indizes, i,μ,ν . Diese Vektoren sind orthogonal zueinander.

3.7 Satz von Burnside

Aus der geometrischen Interpretation des Orthogonalitätstheorems 3.6 folgt mit d_i als Dimension der i-ten irreduziblen Darstellung der Gruppe \mathcal{G} direkt

$$\sum_{i} d_i^2 = |\mathcal{G}|,$$

da zu jeder Darstellung Γ^i d_i^2 verschiedene Vektoren gibt. Das heißt in Summe exestieren in diesem Vektorraum $\sum_i d_i^2$ verschiedene Vektoren. Da in einem h-dimensionalen Vektorraum nur maximal h zueinander orthogonale Vektoren exestieren können, folgt $\sum_i d_i^2 \leq h = |\mathcal{G}|$. Die eindeutige Gleichheit wird z.B. im Tinkham bewiesen.

3.8 Definition: Charakter

Der Charakter $\chi^i(R)$ einer Darstellung $\Gamma^i(R)$ ist durch

$$\chi^i(R) = \text{Tr}(\Gamma^i(R)) = \sum_i^{d_i} \Gamma^i(R)_{jj}$$

gegeben.