

China 2018

Handle Edge Cloud Network with KubeBus

Yulin Sun, yulin.sun@huawei.com

Seattle Cloud Lab, Huawei R&D USA, Bellevue WA

Agenda

- Edge sample user scenarios
- Edge network characteristics
- Related work for edge
- KubeBus target user scenario
- KubeBus architecture
- Summary

User Sample Scenarios

China 2018 -

Edge network characteristics

- Edge Nodes running at private network
 - Connect to Cloud behind NAT gateway
 - Mightn't have direct connection between Edges
- Edge Nodes connect to Cloud with Internet
 - Low bandwidth
 - High latency

Related Work

-- Edge/Cloud collaboration KubeCon

China 2018

Some of services are moved from Cloud to Edge

- Sample Scenarios
 - IOT
 - Edge: Data local filter/aggregation
 - Cloud: Global aggregation
 - Al
- Cloud: Model training, face recognition
- Edge: Face detect

Can the Cloud services running at Edge without change?

Communication	Protocol
Device → Cloud	MQTT
Device → Edge	MQTT
Edge → Cloud	MQTT or Http?

KubeBus target user scenario

- Edge Node Management
 - Small numbers Edge nodes needs to be managed from Cloud, such as HiLens,
 - Services running in Edge nodes needs Service Publishing to Internet
 - Services running at Edge nodes needs little orchestration
 - Edge nodes count per tenants is so small so needs **multi-tenant** management/data plane to save cost
- Edge/Cloud Cluster Management
 - There is cloud cluster, **edge cluster**, i.e. multiple nodes running in private network
 - Edge nodes, Edge cluster and cloud cluster needs acting as a **single** cluster

KubeBus Architecture

--Edge Node Management

- KubeBus Protocol Stack
 - L2/L3/L4 over TCP
 - KubeBus Client/Server Proxy to proxy Http packets
 - Multiplex https connections over TCP connection, i.e. "L7 tunnel"
- Multitenant service publishing
 - Global namespace URL definition

Http(s)://{hostname}/{Tenant Name}/{Edge Node Name}/{Http WebService Name}/...

- Host Name
 - Edge Node Http client access: Localhost
 - · Internet access Http client access: EIP
- Sample scenario
 - Edge remote login: Shellinabox
 - Edge file remote access: Http File Server
 - Edge video streaming: Http video server

KubeBus Architecture

- L3 tunnel
 - over KubeBus L3/L2
 - Build edge nodes subnet
- Virtual Cluster Network
 - Edge nodes subnet: 192.168.6.0/24
 - VM subnet: 192.168.23.0/24
 - Container subnets: 10.244.0.0/16, 10.243.0.0/16, 10.242.0.0/16

Summary

- Edge network characters (Vs data center network)
 - Topology: Edge nodes running behind NAT
 - Performance: Connect to Cloud through Internet
 - Low throughput
 - High latency
- Edge Scenario:
 - Some services moved from Cloud to Edge
 - Can cloud services be deployed to and run at Edge without change
- KubeBus
 - Link Edge node/Edge cluster/Cloud cluster as single cluster with VPN
 - Support multitenant management/data plane for tenants with few edge nodes

