Transfert de chaleur : convection EXAMEN Durée 2h

Les exercices sont indépendant peuvent être traités dans l'ordre que vous souhaitez. Les 2 parties de l'exercice 2 peuvent être traités indépendamment.

Questions de cours :

- 1) On examine les couches limites dynamique et thermique pour un écoulement d'eau en convection forcée le long d'une plaque plane. Quelle sera la couche limite la plus épaisse : dynamique ou thermique ? Justifier votre réponse.
- 2) Quel le principe physique de la convection naturelle ? Comment s'établi l'écoulement ?
- 3) Quel est l'ordre de grandeur d'un coefficient d'échange de chaleur lors d'un échange par ébullition dans de l'eau ?

Exercice 1

Un radiateur peut être assimilé à une plaque verticale de 50 cm de hauteur et de 1 m de largeur. Quelle doit être sa température pour dissiper 200 W avec une ambiance à 20°C par convection naturelle dans l'air ?

Exercice 2 : Refroidissement de l'électronique

On cherche à refroidir 2 ensembles électroniques (cf. schéma ci-dessus). Chacun de ces 2 ensembles est enfermé dans un boitier. Pour chacun des 2 boitiers, les parois peuvent être considérées comme adiabatiques sauf l'une d'entre elles. Par celle-ci passe tout le flux de chaleur. On peut considérer la densité de ce flux uniforme et valant Φ =400 W/m². La hauteur des boitiers est de H=60 cm. La profondeur P=20 cm.

Pour les refroidir, on crée un écoulement d'air entre les 2 boitiers (plus précisément entre leurs parois à densité de flux constante). La vitesse de l'air est considérée en entrée égale à $V_e=5$ m/s. Sa température est uniforme et égale à $T_e=80$ °C. On supposera que les propriétés de l'air sont uniformes et seront prises à la température d'entrée de l'air T_e . On suppose que l'on se trouve dans une configuration de convection forcée (effet de la convection naturelle négligeable).

Partie 1

La distance séparant les boitiers est de e=2.5cm.

- 1) En comparant les épaisseurs de couches limites à la distance séparant les boitiers, montrer que l'on est en situation de conduite et non de plaque plane.
- 2) A l'aide d'un bilan de flux local sur le fluide, déterminer la température de mélange de l'air entre les 2 boitiers en fonction de l'abscisse X.
- 3) En supposant le régime établi, déterminer la température de la paroi des boitiers en fonction de l'abscisse $x:T_p(x)$.

Partie 2

On éloigne les 2 plaques : e=20cm. Les autres données restent inchangées.

- 4) En comparant les épaisseurs de couche limite à la distance séparant les boitiers, peut-on considérer que l'on est en situation de plaque plane ?
- 5) Déterminer la température de la paroi à flux imposé d'un boitier : $T_p(x)$.

Propriétés des fluides et corrélations :

Tem- pera- ture, T°C	Saturation pressure, PkPa	Density, ρ kg/m³		Enthalpy of vapori- zation,	Specific heat, C _p J/kg·°C		Thermal conductivity, k W/m·°C		Dynamic viscosity, μ kg/m·s		Prandtl number, Pr	
		Liquid	Vapor	h _{lo} kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00
15	1.7051	999.1	0.0128	2466	4186	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}		7.01	1.00
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00
30	4.246	996.0	0.0304	2431	4178	1875	0.615		0.798×10^{-3}		5.42	1.00
35	5.628	994.0	0.0397	2419	4178	1880	0.623		0.720×10^{-3}		4.83	1.00
40	7.384	992.1	0.0512	2407	4179	1885	0.631		0.653×10^{-3}		4.32	1.00
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077 × 10 ⁻⁵	3.25	1.00
60	19.94	983.3	0.1304	2359	4185	1916	0.654		0.467×10^{-3}		2.99	1.00
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}		2.75	1.00
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221		1.126×10^{-5}		1.00
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225				1.00
80	47.39	971.8	0.2935	2309	4197	1962	0.670		0.355×10^{-3}			1.00
85	57.83	968.1	0.3536	2296	4201	1977	0.673					1.00
90	70.14	965.3	0.4235	2283	4206	1993	0.675		0.315×10^{-3}			1.00
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}			1.00
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251	0.282×10^{-3}	1.227×10^{-5}	1.75	1.00

Tempera- ture, TK	Density, ρ kg/m³	Specific heat, $C_p \mathbf{J/kg} \cdot {}^{\circ}\mathbf{C}$	Thermal conductivity, k W/m·°C	Thermal diffusivity, α m²/s	Dynamic viscosity, μ kg/m·s	Kinematic viscosity, v m²/s	Prandti number, Pr
		2000	Air				11 9 11
200	1.766	1003	0.0181	1.02×10^{-5}	1.34 × 10 ⁻⁵	0.76×10^{-5}	0.740
250	1.413	1003	0.0223	1.57×10^{-5}	1.61×10^{-5}	1.14×10^{-5}	0.724
280	1.271	1004	0.0246	1.95×10^{-5}	1.75×10^{-5}	1.40×10^{-5}	0.717
290	1.224	1005	0.0253	2.08×10^{-5}	1.80×10^{-5}	1.48×10^{-5}	- 0.714
298	1.186	1005	0.0259	2.18×10^{-5}	1.84×10^{-5}	1.55×10^{-5}	0.712
300	1.177	1005	0.0261	2.21×10^{-5}	1.85×10^{-5}	1.57×10^{-5}	0.712
310	1.143	1006	0.0268	2.35×10^{-5}	1.90×10^{-5}	1.67×10^{-5}	0.711
320	1.110	1006	0.0275	2.49×10^{-5}	1.94×10^{-5}	1.77×10^{-5}	0.710
330	1.076	1007	0.0283	2.64×10^{-5}	1.99×10^{-5}	1.86×10^{-5}	0.708
340	1.043	1007	0.0290	2.78×10^{-5}	2.03×10^{-5}	1.96×10^{-5}	0.707
350	1.009	1008	0.0297	2.92×10^{-5}	2.08×10^{-5}	2.06×10^{-5}	0.706
400	0.883	1013	0.0331	3.70×10^{-5}	2.29×10^{-5}	2.60×10^{-5}	0.703
450	0.785	1020	0.0363	4.54×10^{-5}	2.49×10^{-5}	3.18×10^{-5}	0.700
500	0.706	1029	0.0395	5.44×10^{-5}	2.68×10^{-5}	3.80×10^{-5}	0.699
550	0.642	1039	0.0426	6.39×10^{-5}	2.86×10^{-5}	4.45×10^{-5}	0.698
600	0.589	1051	0.0456	7.37×10^{-5}	3.03×10^{-5}	5.15×10^{-5}	0.698
700	0.504	1075	0.0513	9.46×10^{-5}	3.35×10^{-5}	6.64×10^{-5}	0.702
800	0.441	1099	0.0569	11.7×10^{-5}	3.64×10^{-5}	8.25×10^{-5}	0.704
900	0.392	1120	0.0625	14.2×10^{-5}	3.92×10^{-5}	9.99×10^{-5}	0.705
1000	0.353	1141	0.0672	16.7×10^{-5}	4.18×10^{-5}	11.8×10^{-5}	0.709
1200	0.294	1175	0.0759	22.2 × 10 ⁻⁵	4.65×10^{-5}	15.8×10^{-5}	0.720
1400	0.252	1201	0.0835	27.6×10^{-5}	5.09×10^{-5}	20.2×10^{-5}	0.732
1600	0.221	1240	0.0904	33.0×10^{-5}	5.49×10^{-5}	24.9×10^{-5}	0.753
1800	0.196	1276	0.0970	38.3×10^{-5}	5.87×10^{-5}	29.9×10^{-5}	0.772
2000	0.177	1327	0.1032	44.1 × 10 ⁻⁵	6.23×10^{-5}	35.3×10^{-5}	0.801

Corrélations sur plaque plane à température uniforme:

- Régime laminaire (Re_x critique $\cong 10^6$): Nu_x = 0,332 Re_x^{0.5} Pr^{1/3} - Régime turbulent : Nu_x = 0,029 Re_x^{0.8} Pr^{1/3}

Corrélations sur plaque plane à flux uniforme:

- Régime laminaire (Re $_x$ critique $\cong 10^6$): Nu $_x$ = 0,453 Re $_x$ $^{0.5}$ Pr $^{1/3}$ - Régime turbulent : Nu $_x$ = 0,0308 Re $_x$ $^{0.8}$ Pr $^{1/3}$

Corrélations en conduite entre 2 plaques parallèles à température uniforme en régime établi:

- Régime laminaire (Re critique \approx 2000) : Nu = 7.54

- Régime turbulent : Nu = 0,023 Re $^{0.8}$ Prⁿ

n=0.4 pour un chauffage du fluide n=0.3 pour un refroidissement

Corrélations en conduite entre 2 plaques parallèles à flux uniforme en régime établi:

- Régime laminaire : Nu = 8.235

- Régime turbulent : Nu = 0,023 Re $^{0.8}$ Prⁿ

n=0.4 pour un chauffage du fluide n=0.3 pour un refroidissement

Corrélations en convection naturelle sur une plaque plane verticale à température uniforme :

Couche limite laminaire (Rayleigh critique $\approx 10^9$) A = 0.59 n = 0.25Couche limite laminaire puis turbulente A = 0.1 n = 1/3

Epaisseur de la couche limite sur une plaque plane soumise à un écoulement en convection forcée :

$$\delta = 4.92 \sqrt{\frac{\mu}{\rho} \frac{L}{U_{\infty}}}$$

Epaisseur de la couche limite sur une plaque plane verticale en convection naturelle :

$$\delta = 6.L \left(\frac{4}{Gr}\right)^{1/4}$$