Galaxy Formation in a z=2.84 protocluster probed with HSC (and ALMA)

Satoshi KIKUTA

(NAOJ/Sokendai → University of Tsukuba, CCS)

& Yuichi Matsuda, Renyue Cen, Charles Steidel, Tomoki Saito

Galaxy-IGM Workshop 20200805

Galaxy in Different Environments

- Environmental segregation at z=0 suggests some processes preferentially work on galaxies in dense environments
- Observations of protoclusters hold the key
 - At z>2, the local relation reverses
 - Rich gas reservoir and high merger rate may be related to trigger various active populations (starburst, AGN, LAB, ...)

Alexander & Hickox 12

Cappellari+11

Lyα halos of LAEs across environment

Are LAHs larger in denser environments?

If so, and if LAHs are good proxy for the CGM gas, this has implications for the environmental effects

But no consensus yet!

 Target obs. for more PCs are required

Matsuda+12 vs Xue+17

 Huge FoV of HSC enables us to simultaneously probe various environments

Previous Studies on LAHs

Field / Sample	Redshift	Environment	$N_{ m gal}$	Notes	Reference
O2	2.07		187	4m, 36hr, 50Å	
C-O3	3.10	blank field	241	4m, 24hr, 50Å	Feldmeier et al. (2013)
K-O3	3.12		179	4m, 16hr, 57Å	
		$3.5 < \delta_{\rm LAE}$	29		
LAB	2.66	$1.4 < \delta_{LAE} < 3.5$	139	4m, 8.3hr, 42Å	
		$\delta_{\mathrm{LAE}} < 1.4$	86		Xue et al. (2017)
		$2.0 < \delta_{\mathrm{LAE}}$	44	8m, 3hr, 201Å	
PCF	3.78	$0.5 < \delta_{\rm LAE} < 2.0$	76		
		$\delta_{\mathrm{LAE}} < 0.5$	43		
SSA22, HS1549, HS1700	3.09, 2.85, 2.30	protocluster	92	10m, 17/5/22hr, 80/88/90Å	Steidel et al. (2011)
	3.1	$2.5 < \delta_{\mathrm{LAE}}$	130	8m, 5-10hr, 77Å	Matsuda et al. (2012)
SSA22, GOODS-N,		$1.5 < \delta_{\rm LAE} < 2.5$	273		
SXDS-C/N/S		$0.5 < \delta_{\rm LAE} < 1.5$	861		
		$-1\delta_{\rm LAE} < 0.5$	864		
COSMOS, GOODS-N/S,	2.2	$0.5 < \delta_{\rm LAE} < 1.5$	1047	8m, 2-3hr, 94Å	Momose et al. (2016)
SSA22, SXDS	2.2	$-1 < \delta_{\rm LAE} < 0.5$	348	om, 2-3m, 9424	Wiolilose et al. (2010)
HS1549	2.85	$2.5 < \delta_{\mathrm{LAE}}$	55	8m, 6hr, 88Å	Kikuta et al.
		$1.0 < \delta_{\rm LAE} < 2.5$	433		
		$0.3 < \delta_{LAE} < 1.0$	944		
		$-0.15 < \delta_{LAE} < 0.3$	1076		
		$-1 < \delta_{\rm LAE} < -0.15$	982		

Deep observations including dense environments are scarce

Target Field & LAE/LAB Detection

Target: the HS1549 protocluster @ z=2.84) hyperluminous QSO HS1549+1919 is at its center (e.g., Steidel+11, Mostardi+13)

Observed with **Subaru/HSC**, g(2.2hr) and NB468(6.3hr)

→ Data reduced with HSC pipeline (hscPipe 4.0.5)

Source detection & photometry with **Source Extractor (Bertin & Arnouts 96)**

- LAE selection criteria (2.815<z<2.887):
 - NB $< 26.57(5\sigma)$
 - G NB > $max\{0.5, 0.1+4\sigma(G-NB)\}$ $(\text{rest EW}_{\text{Lv}\alpha} > 12\text{Å})$
- **LAB** (Lyα blob)selection criteria:
 - criteria above(in isophotal mag) + Lyα isophotal area>16 arcsec²
 - → 3490 LAEs and 76 LABs found

16

18

NB468 [mag]

-1

NB468 [mag]

Distribution of LAEs & LABs

- Filamentary structure detected
- Overdensity at the center suggests M_{halo} of the protocluster will become $\sim 10^{15} M_{\odot}$ at z=0
- LABs are distributed along the structure & clearly prefer denser environments

KS-test p-value:0.00173

 $\delta_{gal} = n/n_{ave} - 1$, n is the number of LAEs within a 1.8' aperture at a given point

Stacking Analyses

- Use cutout Lyα images of LAEs (sky mesh size=30") with continuum sources masked
- Stack Lyα & continuum images with IRAF imcombine (median, no clipping)
- Sky noise behaves well (noise

 ~N^{-1/2})

Lyα Cont.

- "Non-LAE" sample is constructed to check total systematics (see Momose+14)
- Detect diffuse Lyα emission down to ~10⁻²⁰ erg/s/cm²/arcsec²

solid: Lyα, dashed: Cont.

Sufficiently large sky mesh size is crucial!!

LAH Dependence on Various Properties

- Divide LAEs into 5 groups according to their photometric properties
- "Distance from the HLQSO" is for checking the impact of strong radiation field made by the QSO
- Note the correlations between quantities

quantity	criteria	N
1 ,	$M_{\rm UV} < -19.2$	690
	$-19.2 < M_{\rm UV} < -18.6$	696
UV magnitude	$-18.6 < M_{\rm UV} < -18.0$	773
	$-18.0 < M_{\rm UV} < -17.4$	648
	$-17.4 < M_{ m UV}$	683
	$42.25 < \log L_{ m Ly}$	647
	$42.05 < \log L_{\mathrm{Ly}\alpha} < 42.25$	833
Ly α luminosity	$41.95 < \log L_{\mathrm{Ly}\alpha} < 42.05$	610
	$41.85 < \log L_{\mathrm{Ly}\alpha} < 41.95$	645
	$\log L_{\mathrm{Ly}lpha} < 41.85$	755
	$EW_{0,Ly\alpha} < 30$ Å	686
	$30\text{Å} < \text{EW}_{0,\text{Ly}\alpha} < 55\text{Å}$	727
Ly α equivalent width	$55\text{Å} < \text{EW}_{0,\text{Ly}lpha} < 90\text{Å}$	698
63 2000	$90\text{Å} < \text{EW}_{0,\text{Ly}lpha} < 160\text{Å}$	735
	$160\mathrm{\AA} < \mathrm{EW}_{0,\mathrm{Ly}lpha}$	644
	$2.5 < \delta$	55
	$1.0 < \delta < 2.5$	433
Environment	$0.3 < \delta < 1.0$	944
	$-0.15 < \delta < 0.3$	1076
	$-1.0 < \delta < -0.15$	982
	$d_{ m Q} < 6.2~{ m pMpc}$	679
	$6.2 \text{ pMpc} < d_{\text{Q}} < 9.5 \text{ pMpc}$	739
Distance from the HLQSO	$9.5 \text{ pMpc} < d_{Q} < 12.0 \text{ pMpc}$	633
88.000	$12 \mathrm{pMpc} < d_{\mathrm{Q}} < 14.8 \mathrm{pMpc}$	778
	$14.8 \text{ pMpc} < d_{\text{Q}} < 18.0 \text{ pMpc}$	661

Results of Stacking: UV, L_{Lya}, EW

- LAHs are detected for all subsamples
- Bright/low-EW LAEs tend to have larger LAHs
 - Consistent with [CII] halo at higher-z (though mass range is different)
- Trends in Momose+16 are not clearly seen

← That is: L_{Lyα}/UV faint LAEs have larger LAHs

Results of Stacking: Distance, Environment

- LAHs are detected for all subsamples, even at underdense regions
- No clear trend is noted (except for the large LAH in the $\delta > 2.5$ subsample)

Gray shade ··· 5th and 95th percentile of the stacked Lyα SB distribution of 700(Left)/1000(Right) randomly selected LAEs

Discussion 1: exponential or power-law

- Exponential fit may not good; considering the curvature, results strongly depend on fitting range the shallower the data (and the smaller the fitting range) used, the smaller scalelengths one gets.

 Our data prefer power-law.
- Sufficient sensitivity out to large radius is the key!
- Very good match to prediction of Kakiichi & Dijkstra 18

$$\langle \mathrm{SB}_{\alpha}(r_{\perp}) \rangle / [\mathrm{erg s^{-1} cm^{-2} arcsec^{-2}}]$$

 $\approx 2.1 \times 10^{-18} \left(\frac{\langle L_{\alpha}^{\mathrm{intr}} \rangle}{3.7 \times 10^{43} \mathrm{erg s^{-1}}} \right) \left(\frac{r_{\perp}}{20 \mathrm{ pkpc}} \right)^{-2.4}$

- Our fit indicate L^{intr} =6.2e+42, while our median L_{Lya} ~1e+42 suggests $Ly\alpha$ escape fraction ~16%
- UV brightest sample have a shallower slope (~-2.2)
- The model also predicts UVB dependence, but the distance from the QSO seems not to affect LAHs
 - Is the HLQSO very young? Anisotropic? Or fluorescence is dominant over Lyα scattering?
 - The PC LAEs are very close to the QSO, but the effect of high density around the PC core would more effective

Origin of the Large LAH in PCs

- Overlapping of many galaxies or UV brightness of the PC LAEs cannot fully explain the large LAH
- When we further divide the PC sample into near/far from the QSO sample, far sample no longer has a large LAH.
- Diffuse emission around the PC core may be the cause

Gray shade ··· 5th and 95th percentile of the stacked Lyα SB distribution of 55 randomly selected LAEs

12

Origin of the Large LAH in PCs

- Previous nondetection of env. dependence could just be due to low sensitivity
- Previous studies that reported very large LAHs probes massive LBGs and/or protocluster SFGs at $z\sim2-3$, in which diffuse Ly α emission may permeate
- Steidel+11 results are based on ~10 times more massive LBGs
 - LAHs of such massive galaxies are currently not well studied because continuum selection cannot select galaxies from a narrow redshift range

Follow up of HS1700 with NB400 would be interesting

Matsuda+12: SSA22

Steidel+11: SSA22, HS1700, HS1549

Umehata+19: SSA22

NB Lyα emitter Continuum-selected ze2 1 pMpc

BLOB 1

BLOB 2

BLOB 5

BLOB 5

BLOB 5

BLOB 5

Take home message about LAH

- Sensitivity close to 1e-20 erg/s/cm²/arcsec² is necessary for safe argument (at z~3) – NB stacking with Subaru/HSC is still a powerful tool in the era of sensitive IFUs!
- Power-law is better for fitting if you have sufficient sensitivity.
- Comparison with a model suggest $f_{Ly\alpha} \sim 0.16$.
- Weak dependence on large-scale environments, but very large LAHs may emerge in PCs at cosmic noon due to diffuse Ly α emission (or because just they are massive).