IIT Jodhpur

Biological Vision and Applications Module 07-04: Knowledge representation for visual cognition

Hiranmay Ghosh

Dual Process Theory

Two processing paradigms

- Knowledge-driven approach (top-down)
 - Motivated by AI research
 - Examples: Logic systems, frame systems, ...
 - Symbolic Systems

Eplicit / Deduriter Knowledge

| The control of the

- Data-driven approach (bottom-up)
 - Motivated by neuro-sciences / ML research
 - Examples: Learnt classifiers, Neural networks
 - Emergent Systems

Symbolic approach is traditionally known as the "cognitive approach"

Comparison of symbolic and emergent system approaches

Symbolic Systems	Emergent Systems	
Formal representation: sharable	Informal representation: private	
- Human understandable / creatable	- Not human understandable	
Structured: can cominatorially generalize	Monolithic: cannot generalize	
Inflexible: cannot discover new concepts	Flexible: can find new patterns in data	
Deliberative reasoning: formal methods,	Intuitive Understand: informal methods, fast	
slow		
Brittle: less tolerant to noisy data	Robust: more tolerant to noisy data	
Explainable	Not explainable	
Model-based	Model-less	

See table 6.1 in textbook

How does the human mind work?

Dual process theory

- Symbolic approach: formal, knowledge driven, explainable, accurate, slow
 - More suitable for cognitive tasks
 - ▶ I need to go to the institute how do I go?
- Emergent system approach: informal, data-driven, not explainable, inaccurate, fast
 - More suitable for perceptual processing
 - Is is an apple or a banana?
- Dual process theory: Human mind uses both the approaches
 - Parallel model: fast and slow thinking occur simultaneously
 - ... and may conflict
 - Default-Interventionist model: fast thinking generates intuitive responses
 - Subsequent slow thinking process may or may not deliberate on them

Framework of visual knowledge presentation

- Ontology =
 - A set of concepts C
 - A set of relations R
 - A set of axioms, e.g. transitivity, reflexivity, etc.
 - Two partial orders ≻_C and ≻_R define concept and relation hierarchies

Example of visual property specifications in a frame-based system

Multiple modes of specification in a unified framework

More of structural description

Point events and their relations

 $\frac{\text{Temporal:}}{\mathbf{R} \text{ before }} \mathbf{B}$

 $\frac{\text{Spatial:}}{\mathbf{R} \text{ north / above } \mathbf{B}}$ $\mathbf{R} \text{ west / left } \mathbf{B}$

Inverse relations: \mathbf{R} before $\mathbf{B} \equiv$ \mathbf{B} after \mathbf{R}

 $\mathbf{R} \ north \ \mathbf{B} \equiv \mathbf{B} \ south \ \mathbf{R}$

- The relations are normative
 - based on convention ... lacks semantics
- Events are seldom point events
 - finite spatial and temporal extension

Temporal relations between finite events

Allen's temporal relations

- An event A spans a finite interval of time
 - Start and end points: s_A , e_A
 - Finite and positive duration: $s_A < e_A$
- Two point events x and y can be has three possible unambiguous relations
 - \triangleright x < y, x = y and x > y
- Temporal relation between two interval events A and B can be represented as
 - ▶ Comparison 4-tuple of $(s_A, e_A) \times (s_B, e_B)$
 - ► Are there 3⁴ possible values ?

Allen's temporal relations

13 feasible distinct relations

- 1. $e_B < s_A$: B before A
- 2. $e_B = s_A$: B meets A
- 3. $s_B < s_A, e_B < e_A$: B overlaps A
- 4. $s_B = s_A, e_B > e_A$: B starts A
- 5. $s_B > s_A, e_B < e_A$: B during A
- 6. $s_B > s_A, e_B = e_A$: B finishes A
- 7. $s_B = s_A, e_B = e_A$: B equals A

Allen's temporal relations

Example

Binary encoding

B before A:	10000	B after A:	00001
B meets A:		B met by A:	00011
B overlaps A:	11100	B overlapped by A:	00111
B starts A:	01100	B started by A:	01111
B during A:	00100	B contains A:	11111
B finishes A:	00110	B finished by A:	11110
B equals A:	01110		

- There can be small error in determining the exact boundaries of an event
 - ▶ "B meets A" may be confused with "B before A" or "B overlaps A"
- Hamming distance between the binary strings signify closeness of the relations

Papadias. Approximate Spatio-temporal Retrieval

Allen's relations

Extension to spatial dimensions

- Can be applied to spatial dimensions as well
 - before" → "left-of" / "below"
- Express spatio-temporal relations as a tuple of allen relations
 - $\blacktriangleright (A b_x B, A o_y B)$

Ambiguity: Allen's relations extended to multi-dimensional space

- In both the cases, (A d_X B, A d_V B)
 - Left: A does not intersect B
 - ► Right: *A* intersects *B*

Containment relations (multi-dimensional)

To resolve ambiguity

- In multi-dimensional space
 - Spatio-temporal relations unambiguously defines with
 - 1. The Allen's relations on projections on each axis
 - 2. The containment relations (in multiple dimension)

Quiz 07-04

End of Module 07-04