CHƯƠNG 5 MẠNG NEURAL HÔI QUY (P1)

Khoa Khoa học và Kỹ thuật thông tin Bộ môn Khoa học dữ liệu

- 1. Sequence models.
- 2. Recurrent Neural model.
- 3. Các loại RNN.
- 4. Language models.

SEQUENCE MODEL

Sequence model

- Sequence model là một tác vụ dự đoán một đối tượng nào đó sẽ xuất hiện tiếp theo trong một chuỗi các đối tượng.
 - + VD:
 - "con" → từ xuất hiện tiếp theo có thể là: "bò", "chó", ...
 - "đi" từ xuất hiện tiếp theo có thể là: "đến trường", "học", "mần".
- Trong sequence model, input của lớp hiện tại sẽ phụ thuộc vào output của lớp trước đó. Độ dài của dữ liệu input vào sẽ không cố định.

Sequence

Input Sequence

Target Sequence

Các dữ liệu dạng sequence - Text

DNA sequence analysis AGCCCCTGTGAGGAACTAG ---

AGCCCCTGTGAGGAACTAG

Machine translation

Voulez-vous chanter avec moi?

Do you want to sing with me?

Name entity recognition

Yesterday, Harry Potter met Hermione Granger.

Sentiment classification

"There is nothing to like in this movie."

Các dữ liệu dạng sequence fritti Technology media

Speech recognition

"The quick brown fox jumped over the lazy dog."

Music generation

Ø

→

Video activity recognition

Running

SEQUENCE MODEL — BANTOAN Technology NAME ENTITIES RECOGNITION

Harry Potter and Hermione Granger invented a new spell. X X<1> X<2> X<3> **X**<9> ^¹ T_v = 9: Độ dài X sẽ là 9

Một số ký hiệu mới trong Sequence model

Ký hiệu	Ý nghĩa
X <i></i>	Phần tử vị trí thứ i trong sequence
<i>X</i> (i) <t></t>	Phần tử thứ t trong sequence thứ i (sequence thứ i ở đây là điểm dữ liệu thứ i trong tập huấn luyện)
T_X	Độ dài của input sequence X
$T_X^{(i)}$	Độ dài của input sequence X ở điểm dữ liệu thứ i trong tập huấn luyện

Biểu diễn từ trong Sequence model

X Harry Potter and Hermione Granger invented a new spell.

- ▶Bước 1: Xây dựng bộ từ vựng (Vocabulary) cho toàn bộ dữ liệu.
- ▶ Bước 2: Biểu diễn mỗi X<t> dưới dạng một vector có số chiều bằng độ dài của bộ từ vựng.
 - Các dạng biểu diễn thường dùng: one-hot vector, term frequency, tf-idf, ...

Biểu diễn từ trong Sequence model

X Harry Potter and Hermione Granger invented a new spell.

Vocabulary: [Harry, Potter, and, Hermione, Granger, invented, a, new, spell] Vocab_size = 9

$$X^{<1>} = [1, 0, 0, 0, 0, 0, 0, 0, 0]$$

$$X^{<2>} = [0, 1, 0, 0, 0, 0, 0, 0, 0]$$

. . .

X<9>

Biểu diễn từ trong Sequence model

X Harry Potter and Hermione Granger invented a new spell.

Recurrent Neural Network

Mạng neural truyền thống

X Harry Potter and Hermione Granger invented a new spell.

y 1 1 0 1 1 0 0 0

- Input và output có thể khác nhau về độ dài ở các điểm dữ liệu khác nhau trong tập dữ liệu.
 - + Khác so với CNN: các ảnh trong tập dữ liệu có cùng kích thước (VD: 64x64x3).
- Không thể share feature với các vị trí khác trong sequence model.

VD:

Harry Potter and Hermione Granger invented a new spell.

Hai vị trí trên trong các câu khác có khả năng là các tên riêng

Recurrent Neural network

University of Information Technology

Truyền qua từng layer

– Lớp thứ 1:

- + Input: sequence x<1> + đầu vào lớp 0 a<0>: vector of zero.
- + Output: giá trị dự đoán y<1>.

Recurrent Neural network

University of Information Technology

Truyền qua từng layer

– Lớp thứ 1:

- + Input: sequence x<1> + đầu vào lớp 0 a<0>: vector of zero.
- + Output. giá trị dự đoán y<1>.
- Lớp thứ 2:
 - + *Input*: sequence **x**<2> + giá trị deactivation của lớp 1 **a**<1>.
 - + Output. giá trị dự đoán y<2>.

Recurrent Neural network

University of Information Technology

Truyền qua từng layer

– Lớp thứ 1:

- + Input: sequence x<1> + đầu vào lớp 0 a<0>: vector of zero.
- + Output: giá trị dự đoán y<1>.
- Lớp thứ 2:
 - + Input: sequence x<2> + giá trị
 deactivation của lớp 1 a<1>.
 - + Output: giá trị dự đoán y<2>.
- Lớp thứ 3:
 - + *Input*: sequence **x**<3> + giá trị deactivation của lớp 2 **a**<2>.
 - + Output: giá trị dự đoán y<3>.

Tham số trong mô hình RNN

Mạng RNN quét dữ liệu sequence từ trái sang phải. Có 3 loại tham số chính:

- Govening parameter. W_{ax}.
- Deactivation parameter (horizontal connection): W_{aa}.
- Output prediction: W_{ay}.

Truyền tham số trong mô hình RNN

Khi dự đoán giá trị y<3>, mô hình RNN nhận các input gồm: X<3>, X<1>, X<2>.

Ví dụ: bài toán nhận dạng tên người

— Câu 1:

He said, "Teddy Roosevelt was a great President."

- → Teddy là tên người (Teddy Roosevelt Tổng thống thứ 26 của Hoa Kỳ
- Câu 2:

He said, "Teddy bears are on sale!"

→ Teddy lúc này không phải là tên người.

Forward Propagation

Tống quát:

$$a^{} = g(W_{aa}^*a^{} + W_{ax}^*x^{} + b_a)$$

 $y^{} = g(W_{ya}^*a^{} + b_y)$

- Lớp 0:

$$a^{<0>} = \vec{0}$$
- Lớp 1:

$$a^{<1>} = g_1(W_{aa}^*a^{<0>} + W_{ax}^*X^{<1>} + b_a)$$

$$y^{<1>} = g_2(W_{ya}^*a^{<1>} + b_y)$$
- Lớp 2:

$$a^{<2>} = g_1(W_{aa}^*a^{<1>} + W_{ax}^*X^{<2>} + b_a)$$

$$y^{<2>} = g_2(W_{ya}^*a^{<2>} + b_y)$$

[E] info@uit.edu.vn

Forward Propagation

$$a^{} = g(W_{aa}^*a^{} + W_{ax}^*x^{} + b_a)$$

$$(100, 100) \quad (100, 10000)$$

$$[W_{aa}^*; W_{ax}] = W_a$$

$$a^{} = g(W_a^*[a^{$$

Tham số: W_a, b_a

$$y^{} = g(W_y^*a^{} + b_y)$$

Tham số: W_y, b_y

Backward propagation cho RNN

Hàm chi phí:
$$L(\hat{y}^{}, y^{}) = -y^{} * log(\hat{y}^{}) + (1 - y^{}) * log(1 - \hat{y}^{})$$

= $\sum_{t=1}^{Tx} L^{}(\hat{y}^{}, y^{})$

Backward propagation cho RNN

Forward: đi từ trái sang phải (t tăng dần).

Backward: đi từ phải sang trái (t giảm dần).

Backward propagation through time

Backward propagation through time

Tổng quát:
$$\frac{dL}{dW} = \sum_{t=1}^{T} \frac{dL^{(t)}}{dW} \bigg|_{((t))}$$

Các loại RNN

Many-to-many

- Đầu vào: 1 sequence (input sequence.
- Đầu ra: 1 sequence với độ dài bằng độ dài đầu vào.

Many-to-one

- Đầu vào: 1 sequence.
- Đầu ra: một giá trị dự đoán \hat{y}

Ứng dụng: bài toán classification:

- + Đầu vào (X): 1 chuỗi text.
- + Đầu ra (y): nhãn (giá trị) dự đoán.

One-to-many

One to many

- Đầu vào: 1 giá trị (có thể là 1 null input).
- Đầu ra: 1 sequence.

VD: Bài toán sinh ra 1 đoạn nhạc:

- + Đầu vào (X): thể loại nhạc.
- + Đầu ra (y): Một sequence gồm các nốt nhạc.

Many-to-many

Many to many

- Đầu vào: 1 sequence.
- Đầu ra: 1 sequence khác với đầu vào.

VD: bài toán dịch máy

- + Đầu vào (X): một câu tiếng Anh.
- + Đầu ra (y): một câu tiếng Pháp.

Language models

Dinh nghĩa Language model

- Language model (tạm dịch: mô hình ngôn ngữ) là một phân phối xác suất (probability distribution) giữa các chuỗi ký tự (bao gồm từ - words) trong một đoạn văn bản.
- Định nghĩa của D. Jurafsky: Models that assign probabilities to sequences of words are called language models or LMs.

- Sentence 1: The apple and pair salad.
- Sentence 2: The apple and pear salad.

P (The apple and pair salad) = 3.2×10^{-3} .

P (The apple and pear salad) = 5.7×10^{-3} .

P(next_sentence) = ? – xác suất xuất hiện câu tiếp theo là bao nhiêu ?

Language model

Token in language model

Sentences

Vocabulary:

Cats average 15 hours of sleep a day The

Egyptian

bread

İS

UNK>: token đặc biệt, được dùng khi token đó không có trong bộ từ vựng (Vocabulary)

Huấn luyện RNN model chỗ tariguage model

 Mục tiêu huấn luyện: dự đoán xác suất xuất hiện từ tiếp theo trong một câu dựa vào từ trước đó.

VD: (y<1>, y<2>, y<3>) là một câu dự đoán (gồm 3 token).

Tính xác suất: cho từng token trên theo language model.

P(y<1>): xác suất xuất hiện token y<1>.

 $P(y^{<2>}|y^{<1>})$: xác suất xuất hiện token $y^{<2>}$ khi biết $y^{<1>}$.

P(y<3>| y<2>, y<1>): xác suất xuất hiện y<3> khi biết y<1> và y<2>.

Đánh giá độ chính xác: dựa vào hàm Cost function của mạng RNN.

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN, KHU PHÓ 6, PHƯỜNG LINH TRUNG, QUẬN THỦ ĐỨC, TP. HÒ CHÍ MINH
[T] 028 3725 2002 101 | [F] 028 3725 2148 | [W] www.uit.edu.vn | [E] info@uit.edu.vn

- 1. Sequence models: định nghĩa, loại dữ liệu, và ứng dụng.
- 2. Kiến trúc RNN: định nghĩa, ký hiệu.
- 3. Truyền xuôi và truyền ngược trên RNN.
- 4. Language model: định nghĩa, bài toán language model sử dụng RNN để giải quyết.

TÀI LIỆU THAM KHẢO

- 1. Khoá học Neural Network and Deep learning, deeplearning.ai.
- Ian Goodfellow, Yoshua Bengio, Aaron Courvile, *Deep learning*,
 MIT Press, 2016.
- 3. Andrew Ng., *Machine Learning Yearning*. Link: https://www.deeplearning.ai/machine-learning-yearning/
- 4. Vũ Hữu Tiệp, *Machine Learning cơ bản*, NXB Khoa học và Kỹ thuật, 2018.