B.N.M. Institute of Technology

An Autonomous Institution under VTU, Approved by AICTE

Department of Information Science and Engineering

ntormation Science	and Engineering	•
SEMESTER – IV		

	SEMESTER – IV DESIGN AND ANALYSIS OF ALGORITHMS Credit: 4					
	rse Code	· -	CIA Marks	50		
Teac	ching Hours/Week (L: T: P: J)		SEA Marks	50		
Tota	l Number of Lecture Hours	50 I	Exam Hours	03		
	Final List	of Programs for CIA and	<u>SEE</u>			
Mod	lule-1: Introduction to Design a	nd Analysis of Algorithms				
Prac	ctical:					
1.	Implement the concept of Lin	ear Search		CO1) Analyze		
2.	There are 5 books in the shelf, find the number of ways to select 3 books from 5					
	books on the shelf using the N	NCR with recursion.		ı		
3.	Find the next three terms of th	e sequence 15, 23, 38, 61, Fibona	cci series of the	ı		
	given number using recursion			ı		
Mod	lule-2: Brute Force, Divide and	conquer				
Prac	etical:					
4.	Implement the selection sort a	lgorithm (Brute Force Technique).		(CO2)		
5.	Write a program to search a ke	ey in a given set of elements using B	inary search	(CO2) Apply		
	method and find the time requ	ired to find the key.		Appry		
6.	6. Sort a given set of elements using Quick Sort method and determine the time					
	required sort the elements. Plo	t a graph of number of elements vers	sus time taken.	ı		
	Specify the time efficiency cla	ss of this algorithm		1		
Modu	ıle-3: Greedy Method					
Prac	etical:					
7.	Implement Prim's algorithm a	nd Find Minimum Cost Spanning Tr	ee of a given	(30.0)		
	connected undirected graph.			(CO3)		
8.	Implement Kruskal's algorith	m and Find Minimum Cost Spanning	g Tree of a given	Apply		
	connected undirected graph.			İ		
9.	Implement Dijkstra's algorith	m find shortest paths to other vertices	s from a given	1		
			· ·			

vertex in a weighted connected graph.

Module-4: Dynamic Programming				
Practi	ical:			
10. 11. 12.	Implement all-pairs shortest paths problem using Floyd's algorithm. Implementation of Bellman Ford Algorithm using a directed graph. Implementation of Travelling Salesperson Problem using dynamic programming.	(CO4) Apply		
Mod	ule-5: Backtracking			
Prac	tical:			
13.	Implementation of N Queen Problem using Backtracking technique.	(CO5)		
14.	Implementation of SUM-SUBSET Problem	Analyze		
15.	Implementation of Knapsack problem using Branch and Bound method			