$\Delta TopMath$

Элементарная математика

Тригонометрия

Радько Петр

Оглавление

\mathbf{K}	ак р	аботат	гь с учебником?	2
	1	Услов	вные обозначения	2
	2	Нуме	рация	ę
1	Зна	комст	тво с тригонометрией	4
	Что	надо з	внать?	4
	1	Сторо	оны в треугольниках	4
	2	Синус	с, косинус, тангенс	7
		2.1	Синус и тангенс	7
		2.2	Связь синуса с тангенсом	8
		2.3	Косинус	Ĉ
	3	Радиа	анная мера угла	11
		3.1	Связь градусов с радианами	13
	4	Значе	ения синуса, косинуса и тангенса	16
	5	Маль	ıе углы	20
	Что	мы уз	нали	23
O	тветі	ы, реп	пения и указания	2 5
	Глал	ва 1 .		25

Как работать с учебником?

1 Условные обозначения

В	тексте	е учеб	ника	испол	іьзуется	болы	шое	КОЛИЧ	ество	раз	вных	блон	KOB.	Они
ну	жны Д	для фо	окусит	овки	внимани	ия на	опре	делен	иях, Т	георе	емах	и зад	дани	ях.

Определения выделяются блоками с синей пунктирной границей: Определение 0.1 Текст определения	
Теоремы выделяются блоками с красной пунктирной границей. Все теоремы, помимо номера, имеют и свои названия (чтобы было проще запоминать) Названия выделяются жирным текстом:	
Теорема 0.1	
Доказательство теоремы начинается с жирного текста «Доказательство» и заканчивается черным квадратом: Доказательство	>>
Текст доказательства Задания выделяются блоками зеленого цвета:	
Текст задания	

Сложные задачи помечаются звездочкой:

Задание 0.2* -

Текст сложного задания

Обязательно выполняйте задания! Материал главы во многом основан на результатах, которые вы получите в ходе решения. К каждому заданию есть указание, ответ и подробное решение. Они расположены в разделе «Ответы, решения и указания».

В конце каждой главы расположены блоки со всем ключевыми моментами, которые надо обязательно запомнить и усвоить. Они выделяются блоками с синей границей. Каждый ключевой момент отделен от другого тонкой голубой горизонтальной линией:

Название и номер главы

Текст ключевой теоремы, определения или рисунок.

Еще один ключевой момент.

Последний ключевой момент.

2 Нумерация

Расскажу о том, каким образом происходит нумерация глав, разделов, подразделов, определений, теорем и заданий.

Главы и разделы нумеруются просто цифрами. В каждой главе нумерация разделов сбрасывается и начинается с 1. Подразделы нумеруются следующим образом: номер раздела. номер подраздела.

Определения, теоремы, задания, рисунки и таблицы не связаны с разделами и подразделами. Они зависят только от главы и нумеруются так (на примере определений): номер_главы.номер_определения.

Доказательства не нумеруются.

Глава 1

Знакомство с тригонометрией

В этой главе вы узнаете поразительное свойство прямоугольных треугольников, познакомитесь с синусом, косинусом и тангенсом, а также узнаете новый способ измерения величины углов — радианную меру угла.

Что надо знать?

Вам будет легче понять материал этой главы, если вы знакомы со следующими несложными понятиями из геометрии:

- о равносторонний и равнобедренный треугольники;
- признаки подобия и равенства треугольников;
- о высота треугольника, проведенная к какой-либо его стороне;
- о квадрат и его диагонали;
- окружность, ее диаметр, радиус и хорды;
- о виды углов, сумма углов в треугольнике.

1 Стороны в треугольниках

Тригонометрия с греческого переводится как «измерение треугольников». Однако изучением и измерением геометрических фигур (в том числе и тре-

Рис. 1.1

угольников) занимается геометрия. Что такого необычного нашли в треугольниках? Зачем создали целый новый раздел в математике? Давайте найдем ответы на эти вопросы!

Может показаться, что геометрия полностью изучила треугольники. В самом деле, мы знаем 3 разных признака равенства треугольников, 3 признака подобия. Нам известна замечательная теорема Пифагора и многое другое. Таким образом, рассматривать чисто стороны и углы не имеет никакого смысла. С этим вполне справляется геометрия.

Но что если рассматривать отношения сторон? Возьмем к примеру прямоугольный треугольник ABC (смотрите рисунок 1.1). Обозначим один из острых углов (без разницы какой) за α . Рассмотрим отношение катета BC этого треугольника, который лежит напротив угла α , к гипотенузе AB. С виду ничего необычного. Но оказывается, если мы возьмем любой другой прямоугольный треугольник A'B'C', у которого острый угол тоже равен α , то у него отношение катета, лежащего напротив α , к гипотенузе, будет равно этому отношению для треугольника ABC!

$$\frac{BC}{AB} = \frac{B'C'}{A'B'}$$

Доказательство

Для начала давайте покажем, что треугольники ABC и A'B'C' подобны. Для этого воспользуемся признаком подобия треугольников, который формулируется так: «если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны».

В нашем случае у обоих треугольников $\angle C = \angle C'$, так как они оба прямые. Более того, выше я написал, что один из острых углов у обоих треугольников равен α . Значит эти треугольники подобны по двум углам, прямому и α .

У подобных треугольников сходственные стороны (то есть стороны, кото-

рые лежат напротив одного и того же угла) пропорциональны или, простым языком:

$$\frac{AB}{A'B'} = k \qquad \qquad \frac{BC}{B'C'} = k$$

Теперь выразим AB и BC из формул выше.

$$BC = kB'C'$$
$$AB = kA'B'$$

Заключительный этап. Рассмотрим отношение катета, лежащего напротив α , к гипотенузе и используем две формулы, выведенные выше:

$$\frac{BC}{AB} = \frac{kB'C'}{kA'B'} = \frac{B'C'}{A'B'}$$

Но это еще не все. На самом деле вообще отношения двух любых сторон в прямоугольных треугольниках с равным острым углом равны между собой!

Теорема о соотношениях сторон в треугольниках: Для любых прямоугольных треугольников с острым углом, равным α , отношение любых двух сторон одного треугольника равно отношению сходственных им сторон в другом треугольнике.

Опять посмотрим на рисунки треугольников выше. Теорема о соотношениях сторон в треугольниках утверждает, что:

$$\frac{BC}{AB} = \frac{B'C'}{A'B'} \qquad \qquad \frac{AC}{BC} = \frac{A'C'}{B'C'}$$

$$\frac{AB}{AC} = \frac{A'B'}{A'C'} \qquad \qquad \frac{AB}{BC} = \frac{A'B'}{B'C'}$$

Доказательство этой теоремы проводится точно таким же образом, как и вышеприведенное доказательство равенства BC/AB = B'C'/A'B'. Только в этом случае нам придется доказывать эти равенства для любых двух сторон прямоугольного треугольника, что очень скучно.

Задание 1.1 -----

Покажите, что теорема выше на самом деле выполняется для любых подобных треугольников (не только прямоугольных) и является следствием пропорциональности сходственных сторон треугольников.

Ответ на с. 25

2 Синус, косинус, тангенс

В предыдущем разделе мы обнаружили новое свойство прямоугольных треугольников. Однако согласитесь, что произносить фразу «отношение катета, лежащего напротив острого угла к гипотенузе» долго и сложно. Поэтому для этого и других отношений сторон в прямоугольном треугольнике придумали специальные названия.

Рис. 1.2: $\sin(\alpha) = BC/AB$ и $tg(\alpha) = BC/AC$.

2.1 Синус и тангенс

Определение 1.1 -----

Синус острого угла α прямоугольного треугольника — отношение катета, лежащего напротив этого угла, к гипотенузе.

$$\sin(\alpha) = \frac{BC}{AB} \tag{1.1}$$

А что если мы возьмем отношение катета, лежащего напротив острого угла, к катету, прилежащему к этому углу? Ведь по теореме о соотношениях сторон в треугольниках это отношение тоже будет одинаковым для любых

прямоугольных треугольников с одинаковым острым углом. Именно! И да, у этого отношения тоже есть свое название — **тангенс**.

Определение 1.2 -----

Тангенс острого угла α прямоугольного треугольника — отношение катета, лежащего напротив α , к катету, прилежащему к α .

$$tg(\alpha) = \frac{BC}{AC} \tag{1.2}$$

Давайте теперь выведем полезную формулу.

2.2 Связь синуса с тангенсом

Как выразить $\sin(\alpha)$ через $\operatorname{tg}(\alpha)$? Очень просто! Возьмем прямоугольный треугольник, у которого один из острых углов равен α , а длина прилежащего к нему катета равна 1 (см. на рисунке).

Так как катет AC, прилежащий к углу α , равен 1, то оставшийся катет BC будет тангенсом.

$$tg(\alpha) = \frac{BC}{AC} = \frac{BC}{1} = BC$$

По теореме Пифагора мы можем найти гипотенузу этого треугольника.

$$1^{2} + BC^{2} = 1^{2} + \operatorname{tg}^{2}(\alpha) = AB^{2}$$

 $AB = \sqrt{1 + \operatorname{tg}^{2}(\alpha)}$

Теперь найдем синус этого угла. А вместо гипотенузы и катета подставляем полученные выше выражения.

$$\sin(\alpha) = \frac{BC}{AB} = \frac{\operatorname{tg}(\alpha)}{\sqrt{1 + \operatorname{tg}^2(\alpha)}}$$

Запишем окончательный вид этой формулы.

$$\sin(\alpha) = \frac{\operatorname{tg}(\alpha)}{\sqrt{1 + \operatorname{tg}^2(\alpha)}}$$
 (1.3)

Но эта формула правдива только для треугольника на рисунке выше. Кто дал нам право утверждать, что она верна и для всех остальных прямоугольных треугольников? Ну ладно, пусть мы хотим выразить синус через тангенс не для треугольника на рисунке выше, а для какого-то другого. Но у этого другого треугольника один из острых углов все равно будет равен α , а значит для него выполняется теорема о соотношениях сторон в треугольниках. А это значит, что синус, рассчитываемый по формуле (1.3) для треугольника на рисунке выше будет равен синусу в любом другом прямоугольном треугольнике с острым углом, равным α .

В этом мощь теоремы о соотношениях сторон в треугольниках. Мы можем взять удобный нам треугольник, получить красивые и простые формулы для него (такие как связь синуса и тангенса), а потом смело утверждать, что они выполняются и для других треугольников!

Задание 1.2 -----

Выразите $tg(\alpha)$ через $sin(\alpha)$.

Ответ на с. 25

2.3 Косинус

Осталось еще одно очень распространенное отношение, которое осталось без названия.

Определение 1.3 -----

Косинус острого угла α прямоугольного треугольника — отношение катета, прилежащего к углу α , к гипотенузе (см. рис. 1.2).

$$\cos(\alpha) = \frac{AC}{AB} \tag{1.4}$$

Теперь вы знакомы с синусом, косинусом и тангенсом. Выполнив следующие задания, вы узнаете еще несколько полезных формул.

Задание 1.3 -----

Докажите, что $\sin^2(\alpha) + \cos^2(\alpha) = 1$.

Ответ на с. 26

Задание 1.4 -----

Выразите $\cos(\alpha)$ через $tg(\alpha)$.

Ответ на с. 26

Задание 1.5

Докажите следующие утверждения:

- a) $\sin(90^{\circ} \alpha) = \cos(\alpha);$
- б) $\cos(90^{\circ} \alpha) = \sin(\alpha);$
- в) Докажите, что $tg(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$.

Ответ на с. 27

На самом деле мы перечислили не все отношения сторон в прямоугольном треугольнике. Их еще примерно столько же. Однако используются они

Рис. 1.4: Числа от 0 до 500 и количество их делителей (шаг – 10)

достаточно редко. Почему? Потому что все эти отношения выражаются друг через друга самым простым образом и пока нет особого смысла определять их. Мы вернемся к ним в следующей главе. А пока перенесем внимание на углы.

3 Радианная мера угла

До сих пор мы часто говорили об углах, однако еще нигде четко не было описано, в чем мы их измеряем. «Что за вопрос? – воскликнете вы. – Конечно же в градусах!». Вы правы. Можно измерять углы в градусах. Величина полного угла равна 360°. Но почему именно 360 градусов? Ведь можно было бы выбрать и другое число. И 400, и 200.

Это достаточно интересный вопрос. Деление круга на 360 частей (градусов) пошло от шумеров, так как у них была шестидесятеричная система счисления. Более того, календарь в Древнем Египте состоял из 360 дней. Есть и другие версии именно такого деления круга.

Вообще шумерам делить круг на 360 градусов было особенно выгодно, так как среди всех чисел от 0 до 500 только у трех (360, 420, 480) есть наибольшее количество делителей – 24. Наглядно это видно на рисунке 1.4.

Однако такое измерение углов неестественно и произвольно. Например во время Великой французской революции, когда пытались изменить все, включая календарь и названия игральных карт, был предложен способ делить окружность на 400 градусов. Деление на 400 градусов не лучше и не

хуже деления на 360 градусов (только делителей меньше) — оно все также произвольно и неестественно.

Хорошо было бы измерять углы одним способом и быть спокойным этот способ полностью обоснован и естественен. Оказывается, такой способ существует, и имя ему— радианная мера угла.

Я думаю, многие из вас знакомы с числом π :

$$\pi = 3.14159265358979...$$

Это число иррациональное и этот ряд чисел после запятой можно продолжать в бесконечность и не найдется никаких закономерностей их появления. Но это не главное. Число π получается при делении длины окружности на ее диаметр (или на удвоенный радиус).

$$\pi = \frac{l}{d} = \frac{l}{2r}$$

Магия этого отношения заключается в том, что оно одинаково **для лю-бых окружностей**. То есть если взять **абсолютно любую** окружность и разделить ее длину на диаметр, то мы **всегда** получим π . Чтобы доказать это утверждение, придется обратиться к пределам. Сейчас мы этого делать не будем. Однако это общеизвестный факт. И именно этот факт и позволяет нам ввести новый способ измерения величины угла.

Рис. 1.5: Радианная мера α — отношение длины дуги AB к радиусу OA (или OB).

Определение 1.4

Радианная мера угла — отношение длины дуги окружности, заключенной между сторонами угла, к радиусу этой окружности (см. рис. 1.5).

Это отношение, прямо как и в случае с прямоугольными треугольниками, остается постоянным для окружностей любого размера. Оно характеризует только величину угла.

Углы в радианной мере угла измеряются в **радианах** (а не в градусах). Например, в случае рисунка 1.5 мы могли бы сказать что угол α равен \widehat{AB}/AO радиан.

3.1 Связь градусов с радианами

Интуитивно можно представить себе угол в 1 градус, так как мы привыкли работать с градусами. Однако насколько велик угол в 1 радиан? И вообще, как, зная угол в градусах, получить его в радианах, и наоборот?

Возьмем полный угол. В градусной мере его величина равна 360° . Для определения величины этого угла в радианах, нам нужно найти длину дуги окружности, заключенной между сторонами угла и разделить ее на радиус окружности (см. определение 1.4). Однако между сторонами этого угла заключена вся окружность и длина ее дуги равна длине l самой окружности! Следовательно угол 360° соответствует l/r радиан. Вспоминаем формулу числа π :

$$\pi = \frac{l}{2r}$$

Умножаем левую и правую части на 2.

$$2\pi = \frac{l}{r}$$

В итоге, мы приходим к тому, что величина полного угла в градусной мере равна 360° , а в радианной мере равна 2π радиан. Составим теперь ключевую формулу, из которой станет ясна связь градусов с радианами.

$$360^{\circ} \stackrel{\text{по смыслу}}{=} 2\pi$$
 рад (1.5)

К чему эта надпись «по смыслу»? Дело в том, что по-настоящему **значение** выражение слева не равно **значению** выражения справа. Очевидно, что $360 \neq 6.28$. Однако **в смысле** величины угла они равны — 360° и 2π рад, действительно, обозначают один и тот же угол.

Рис. 1.6: (a) Сравнение 1 рад и 1° (б) Полный угол в радианах и градусах.

Дальше все просто. 360° в 360 раз больше одного градуса. Следовательно, для получения одного градуса нужно разделить равенство (1.5) на 360:

$$1^{\circ} \stackrel{\text{по смыслу}}{=} \frac{\pi}{180}$$
 рад (1.6)

Можно и наоборот. 2π радиан в 2π раза больше, чем один радиан. Следовательно, для получения одного радиана нужно разделить равенство (1.5) на 2π .

$$\frac{180^{\circ}}{\pi} \approx 57.3^{\circ} \stackrel{\text{по смыслу}}{=} 1 \text{ рад}$$
 (1.7)

На рисунке 1.6а вы можете сравнить величину угла в 1 радиан и в 1 градус. Стороны угла в 1 градус пришлось увеличить, иначе они бы сливались. Из равенства (1.7) видно, что угол в 1 радиан в ≈ 57.3 раза больше, чем угол в 1 градус. На рисунке 1.66 можно видеть, сколько радиан ($2\pi \approx 6.28$) и градусов (360) укладывается в полном угле. Так как угол в один градус трудно различим, углы на правой картинке сделаны по 10° .

Из равенств (1.6) и (1.7) легко получить формулы перевода n градусов в радианы и n радиан в градусы (просто умножаем соответствующие равенства

Рис. 1.7

на n).

$$n^{\circ} \stackrel{\text{по смыслу}}{=} n \frac{\pi}{180}$$
 рад (из градусов в радианы) (1.8)

$$n$$
 рад $\stackrel{\text{по смыслу}}{=} n \frac{180^{\circ}}{\pi}$ (из радианов в градусы) (1.9)

Можно запомнить эти две формулы наизусть, однако вам редко когда придется пользоваться ими в силу того, что в большинстве заданий используются углы с величинами, которые вы узнаете из следующего задания. К тому же, их очень просто вывести.

Задание 1.6

Заполните таблицу 1.1 и выучите ее наизусть.

Ответ на с. 27

Градусы	0	30	45	60	90	120	135	150	180	360
Радианы										

Таблица 1.1: Таблица перевода из градусов в радианы

Задание 1.7

Докажите, что для любого острого угла (в радианах) выполняется неравенство $\sin(\alpha) < \alpha$. Воспользуйтесь рисунком 1.7а.

Ответ на с. 28

Рис. 1.8

Задание 1.8

Докажите, что для любого острого угла (в радианах) выполняется неравенство $\alpha < \operatorname{tg}(\alpha)$. Воспользуйтесь рисунком 1.76.

Ответ на с. 28

4 Значения синуса, косинуса и тангенса

В предыдущих разделах я показал, что синус, косинус и тангенс какого-то острого угла в прямоугольном треугольнике всегда одни и те же. Они зависят только от угла. Если говорить более академично, то синус, косинус и тангенс — функции острого угла в прямоугольном треугольнике. Изменился угол — изменились и отношения сторон в треугольнике. Все это очень классно, но из этой информации совершенно нельзя понять, чему равны значения синуса, косинуса и тангенса.

Вот чему, например, равен $\sin(45^\circ)$? Мы знаем, что во всех прямоугольных треугольниках с острым углом, равным 45° он одинаковый, но чему **конкретно** он равен? Вопрос нетривиальный. Вы можете нарисовать прямоугольный треугольник с углом 45° с помощью транспортира. После этого вам надо будет разделить длину катета, лежащего напротив этого угла, на гипотенузу. Однако точное значение синуса так не получить. Да и вообще, это не самый правильный путь.

Однако способы точно посчитать синус, косинус и тангенс определенных углов можно. В этом нам поможет геометрия с ее свойствами геометрических фигур и замечательными теоремами.

Вычислим синус, косинус и тангенс 45°. Давайте рассмотрим квадрат. Как известно, квадрат — четырехугольник с прямыми углами и равными сторонами. Диагональ квадрата делит его углы напополам, то есть на углы по 45°. Мы будем рассматривать квадрат с длиной стороны, равной 1 (см. рисунок 1.8а). Тогда длина его гипотенузы может быть рассчитана по теореме Пифагора.

$$AB^2 = AC^2 + BC^2$$
$$AB = \sqrt{2}$$

Теперь, зная длину катетов и гипотенузы, мы можем, наконец, узнать значение $\sin(45^\circ)$:

$$\sin(45^\circ) = \frac{BC}{AB} = \frac{1}{\sqrt{2}} \tag{1.10}$$

Но длины катетов равны друг другу, а значит $\sin(45^\circ) = \cos(45^\circ)!$

$$\cos(45^\circ) = \frac{AC}{AB} = \frac{1}{\sqrt{2}} \tag{1.11}$$

Тангенс 45 градусов можно найти двумя способами. Либо напрямую, найдя отношение катета BC к катету AC, либо по формуле, доказанной в одном из заданий выше.

$$tg(45^{\circ}) = \frac{\sin(45^{\circ})}{\cos(45^{\circ})} = \frac{BC}{AC} = 1$$
 (1.12)

Итак, мы нашли значения синуса, косинуса и тангенса для угла в 45° радиан для квадрата со стороной, равной 1. Но, по теореме о соотношениях сторон в треугольниках, найденные нами значения будут такими же для любого прямоугольного треугольника с остром углом, равным 45°!

Теперь давайте попытаемся определить, чему равен синус, косинус и тангенс для углов в 30 и 60 градусов. И здесь к нам на помощь вновь приходит геометрия со своими замечательными свойствами. Рассмотрим равносторонний треугольник ABC с длиной стороны, равной 1 (см. рисунок 1.86).

Так как треугольник равносторонний, все его углы равны 60 градусам. Проведем высоту BH. В равностороннем треугольнике высота является и биссектрисой (делит угол B пополам) и медианой (делит сторону AC пополам). В итоге наш равносторонний треугольник распадается на два одинаковых прямоугольных (они равны по трем сторонам).

Найдем длину высоты BH. Ее можно найти опять же по теореме Пифа-

гора:

$$BH^{2} + AH^{2} = AB^{2}$$

$$BH^{2} = AB^{2} - AH^{2} = 1 - \frac{1}{4}$$

$$BH = \frac{\sqrt{3}}{2}$$

Так как гипотенуза AB равна единице, то мы можем сразу сказать, чему равен синус 60 градусов:

$$\sin(60^\circ) = \frac{BH}{1} = \frac{\sqrt{3}}{2} \tag{1.13}$$

Найдем теперь косинус и тангенс 60 градусов:

$$\cos(60^\circ) = \frac{AH}{1} = \frac{1}{2} \tag{1.14}$$

$$tg(60^{\circ}) = \frac{\sin(60^{\circ})}{\cos(60^{\circ})} = \sqrt{3}$$
 (1.15)

В задании 1.5 вы доказали очень важные формулы: $\sin(90^\circ - \alpha) = \cos(\alpha)$ и $\cos(90^\circ - \alpha) = \sin(\alpha)$. Мы уже вычислили $\sin(60^\circ)$ и $\cos(60^\circ)$. Значит мы уже знаем значения $\sin(30^\circ)$ и $\cos(30^\circ)$ – они меняются местами!

$$\sin(60^\circ) = \sin(90^\circ - 30^\circ) = \cos(30^\circ) = \frac{1}{2} \tag{1.16}$$

$$\cos(60^{\circ}) = \cos(90^{\circ} - 30^{\circ}) = \sin(30^{\circ}) = \frac{\sqrt{3}}{2}$$
 (1.17)

$$tg(30^{\circ}) = \frac{1}{\sqrt{3}}$$
 (1.18)

Задание 1.9 -----

Боковая сторона равнобедренного треугольника равна a, угол при основании равен α . Найдите:

- а) основание;
- б) высоту, опущенную на основание;
- в) высоту, опущенную на боковую сторону.

Ответ на с. 29

Теперь вы знаете значения синуса, косинуса и тангенса для углов в 30, 45 и 60 градусов! А что насчет других углов? А для других углов все не так просто. Красивых и коротких выражений типа 1/2 или $\sqrt{3}$ для других углов получить обычно не получается. Более-менее удобные значения можно получить для угла в 72° . Для этого необходимы формулы, которые вы только что вывели в задании 1.9.

Рассмотрим равнобедренный треугольник ABC с углом при основании, равным 72° (см. рисунок 1.9). Проведем биссектрису угла A. Она делит этот угол на два равных угла BAM и CAM — по 36° . Сразу видно, что треугольник ABM — равнобедренный. Это следует из равенства углов при его основании: углы MAB и MBA оба равны 36° (свойство равнобедренного треугольника). Значит BM = AM.

Рассмотрим теперь нижний треугольник AMC. Как известно, сумма углов в треугольнике равна 180° . Два угла в этом треугольнике нам известны: 36° и 72° . Тогда находим последний угол: $\widehat{AMC} = 180^{\circ} - (72^{\circ} + 36^{\circ}) = 72^{\circ}$. Значит AC = AM.

Рис. 1.9

Из равенств сторон, указанных выше, можем составить общее равенство: AC = AM = BM.

Воспользуемся теперь формулами, которые вы вывели в задании 1.9 и выразим основание AC треугольника ABC: $AC = 2a\cos(72^\circ)$. Но мы показали выше, что AC = AM, а значит $AM = 2a\cos(72^\circ)$.

Теперь выразим основание MC равнобедренного треугольника AMC:

$$MC = 2AM\cos(72^{\circ})$$

Заменяем AM на $2a\cos(72^\circ)$ и получаем следующее выражение: $MC=4a\cos^2(72^\circ)$. Но MC+BM=BC=a. Мы уже показали, что BM=AM. Подставляем все полученные значения в равенство MC+AM=a:

$$4a\cos^{2}(72^{\circ}) + 2a\cos(72^{\circ}) = a$$
$$4\cos^{2}(72^{\circ}) + 2\cos(72^{\circ}) - 1 = 0$$

Обозначим $\cos(72^\circ)$ за t. Получаем квадратное уравнение $4t^2+2t-1=0,$ решая которое, находим два корня:

$$t_1 = \frac{\sqrt{5} - 1}{4} \qquad \qquad t_2 = -\frac{\sqrt{5} + 1}{4}$$

Получается у $\cos(72^\circ)$ два значения? Нет. Значение t_2 отрицательное, а мы знаем, что косинус, по определению есть отношение длин сторон прямоугольного треугольника. А длины сторон в любом треугольнике всегда положительные, а значит их отношение не может быть отрицательным. Отбрасываем t_2 .

 $\cos(72^{\circ}) = \frac{\sqrt{5} - 1}{4} \tag{1.19}$

Задание 1.10 ---

Чему равен $\cos(36^\circ)$?

Ответ на с. 30

5 Малые углы

На практике пользуются и градусной, и радианной мерами углов. Поговорим немного о градусной мере. Вам уже известно, что полный угол равен 360°.

В ситуациях, когда требуется указывать малые углы, используются угловые минуты и угловые секунды (по аналогии минутами и секундами для указания времени). Угловая минута — 1/60 часть градуса. Обозначается штрихом после числа — 1'. Угловая секунда — 1/60 часть угловой минуты. Обозначается двумя штрихами после числа — 1''.

K примеру, угол, равный 45 градусам, 37 угловым минутам и 9 угловым секундам надо записывать так: $45^{\circ}37'9''$.

Задание 1.11 -----

На какой угол поворачивается за одну секунду:

- а) часовая стрелка часов;
- б) минутная стрелка часов;
- в) секундная стрелка часов?

Ответ на с. 31

Интересный факт, связанный с угловой минутой – с ней связана «разрешающая способность» нашего глаза. Человек при стопроцентном зрении и хорошем освещении воспринимает две точки, которые видны под углом в одну угловую минуту, как одну.

Теперь рассмотрим очень важное приближенное равенство, которое можно использовать, когда речь идет о малых углах:

$$\sin(\alpha) \approx \alpha \approx \operatorname{tg}(\alpha)$$
, если α — малый угол в радианах (1.20)

Если вы посмотрите на рисунок 1.10, то прекрасно видно, что и синус, и сам угол (в радианах), и тангенс практически равны друг другу. И чем меньше угол α , тем меньше будет разница в их значениях.

Рис. 1.10: Синус, тангенс и угол (в рад) почти одинаковые при малых углах.

Важно заметить, что формула (1.20) верна как для треугольника на рисунке 1.10, так и для любого другого (одна из сторон не обязательно должна быть равна 1) по теореме о соотношениях сторон в треугольниках.

Задание 1.12

Запишите приближенные формулы для синуса малых углов, выраженных в градусах.

Ответ на с. 31

Мы видим, что формулы $\sin(\alpha) \approx \alpha$, $\operatorname{tg}(\alpha) \approx \alpha$ верны с хорошей точностью для малых углов. Посмотрим, что произойдет, если угол не столь мал. Для угла в 30° точное значение синуса равно 0.5, а радианная мера равна $\pi/6 \approx 0.52$. Ошибка (или, как еще говорят, погрешность), которую дает формула $\sin(\alpha) \approx \alpha$, равна примерно 0.02, что составляет 4% от значения синуса. Можно сказать, что относительная погрешность при таком вычислении (отношение погрешности к значению синуса) составляет 4%. Для углов, меньших 10°, относительная погрешность формулы $\sin(\alpha) \approx \alpha$ меньше одного процента. Чем меньше угол α , тем меньше относительная погрешность формулы $\sin(\alpha) \approx \alpha$.

Существуют и другие формулы, позволяющие вычислять синусы и тангенсы — и не только малых углов — с хорошей точностью. Например, формула $\sin(\alpha) = \alpha - \alpha^3/6$ (напоминаем, что α измеряется в радианах!) дает относительную погрешность менее 1% уже для всех углов, не превосходящих 50°. Позднее мы увидим, как оценить погрешность наших формул.

Задание 1.13 -----

Пусть α — острый угол, измеренный в радианах. Докажите неравенство $\cos(\alpha) > 1 - \alpha^2$.

Ответ на с. 32

Задание 1.14 -----

Под каким углом видно дерево высотой 10 метров с расстояния в 800 метров? Дайте ответ: а) в радианах; б) в угловых минутах.

Ответ на с. 32

Рис. 1.11: Парсек.

Задание 1.15 --

Найдите длину парсека в километрах. Парсек — распространенная в астрономии единица измерения расстояний. Он равен расстоянию, с которого радиус земной орбиты виден под углом 1'' (смотрите рисунок 1.11). Радиус земной орбиты ≈ 150 миллионов километров.

Ответ на с. 33

Глава 1. Знакомство с тригонометрией

Теорема о соотношениях сторон в треугольниках: для любых прямоугольных треугольников с острым углом, равным α , отношение любых двух сторон одного треугольника равно отношению сходственных им сторон в другом треугольнике.

Понятия синуса, косинуса и тангенса острого угла α прямоугольного треугольника:

$$\sin(\alpha) = \frac{BC}{AB}$$
 $\cos(\alpha) = \frac{AC}{AB}$ $\tan(\alpha) = \frac{BC}{AC}$

Связь синуса, косинуса и тангенса друг с другом:

$$\sin(\alpha) = \frac{\operatorname{tg}(\alpha)}{\sqrt{1 + \operatorname{tg}^2(\alpha)}} \quad \cos(\alpha) = \frac{1}{\sqrt{1 + \operatorname{tg}^2(\alpha)}} \quad \operatorname{tg}(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Равенство значений при рассмотрении второго острого угла:

$$\sin(90^{\circ} - \alpha) = \cos(\alpha) \qquad \qquad \cos(90^{\circ} - \alpha) = \sin(\alpha)$$

Сумма квадратов синуса и косинуса острого угла всегда равна 1:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

Радианная мера угла: $\alpha = \widehat{AB}/AO$ радиан.

Градусы	0	30	45	60	90	120	135	150	180	360
Радианы	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	2π

Важное неравенство, связывающие синус, угол и тангенс (для любого острого угла):

$$\sin(\alpha) < \alpha < \operatorname{tg}(\alpha)$$

Приближенное равенство в случае малых углов:

$$\sin(\alpha) \approx \alpha \approx \operatorname{tg}(\alpha)$$

Ответы, решения и указания

Здесь находятся ответы, решения и указания к заданиям учебника. Решения сделаны максимально понятным и подробными. Однако, если вы что-то не понимаете — обязательно задайте вопрос на сайте!

Глава 1

c.9

1.1 Указание: Доказательство абсолютно точно такое же, как и в случае с.7 прямоугольных треугольников.

Решение: Если нам даны два подобных (не обязательно прямоугольных) треугольника ABC и A'B'C', то их сходственные стороны пропорциональны. Рассмотрим любую из сторон, например, BC и B'C'. Так как они пропорциональны, то $BC = k \times B'C'$. Теперь рассмотрим любую из двух оставшихся сторон, например, AC и A'C'. Они тоже пропорциональны: $AC = k \times A'C'$. Если мы берем отношение этих сторон, то коэффициент пропорциональности k сократится и отношения будут равны. Вот мы и доказали, что для любых подобных треугольников, отношение двух любых сторон равно отношению сходственных им сторон.

1.2 Указание: Воспользуйтесь рисунком ниже.

 $\begin{array}{c}
 & \text{B} \\
 & \text{sin}(\alpha) \\
 & \text{C}
\end{array}$

Omsem: $tg(\alpha) = \frac{\sin(\alpha)}{\sqrt{1-\sin^2(\alpha)}}$.

Решение: На рисунке выше изображен прямоугольный треугольник с гипотенузой, равной единице. Так как гипотенуза равна единице, то

сторона BC является синусом. По теореме Пифагора находим недостающую сторону: $AC = \sqrt{1-\sin^2(\alpha)}$. По определению, тангенсом α в данном треугольнике мы называем отношение BC/AC:

$$tg(\alpha) = \frac{\sin(\alpha)}{\sqrt{1 - \sin^2(\alpha)}}$$

По теореме о соотношениях сторон в треугольниках эта формула верна для всех любых прямоугольных треугольников с острым углом, равным α . Вот мы и выразили тангенс через синус.

1.3 Указание: Используйте рисунок ниже.

c.10

Решение: Обратим взор на рисунок выше. Сторона AC является косинусом по определению (так как гипотенуза равна 1). Высчитаем гипотенузу по теореме Пифагора: $\sin^2(\alpha) + \cos^2(\alpha) = 1$, что и является доказываемым утверждением.

1.4 *Указание:* Воспользуйтесь рисунком ниже.

c.10

Этот рисунок использовался для пояснения связи между синусом и тангенсом, однако ход рассуждения для поиска связи косинуса и тангенса абсолютно аналогичный.

Omsem:
$$\cos(\alpha) = \frac{1}{\sqrt{1 + \operatorname{tg}^2(\alpha)}}$$

Решение: Посмотрим на рисунок выше. Найдем гипотенузу этого треугольника по теореме Пифагора: $AB = \sqrt{1 + \operatorname{tg}^2(\alpha)}$. Отношение стороны AC, которая равна 1, к гипотенузе AB по определению является

косинусом:

$$\cos(\alpha) = \frac{1}{\sqrt{1 + tg^2(\alpha)}}$$

Формула связи косинуса с тангенсом выведена.

1.5 Указание: а) и б) Воспользуйтесь левым рисунком ниже. Угол в (90 – с.10 α) в прямоугольном треугольнике равен величине второго острого угла этого же треугольника. в) воспользуйтесь правым рисунком ниже.

Решение: а) и б) Посмотрите на левый рисунок выше. Сумма углов в треугольнике равна 180°. Один из углов у нас прямой: $180^{\circ} - 90^{\circ} = 90^{\circ}$. Эти оставшиеся 90 градусов делятся между углом α и другим углом, который равен $(90^{\circ} - \alpha)$. Получается, мы просто рассматриваем синус и косинус второго угла в том же прямоугольном треугольнике. И если синус α есть отношение BC/AB, то синус угла $(90^{\circ} - \alpha)$ есть отношение AC/AB, так как AC лежит напротив угла $(90^{\circ} - \alpha)$. Но AC также и сторона, прилежащая к углу α , а значит отношение AC/AB, вообщето говоря, является косинусом α . Вот мы и получили очень важную формулу $\sin(90^{\circ} - \alpha) = \cos(\alpha)$. Формула $\cos(90^{\circ} - \alpha) = \sin(\alpha)$ выводится точно так же.

в) Взглянем на правый рисунок выше. Сторона AC, как мы уже показали раньше, равна $\cos(\alpha)$. Тангенсом α по определению является отношение BC/AC. Однако в случае треугольника на рисунке тангенс считается так:

$$tg(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

А по теореме о соотношениях сторон в треугольниках эта формула верна и для всех остальных прямоугольных треугольников с острым углом, равным α .

1.6 Указание: Воспользуйтесь формулой 1.8:

c.15

 $n^{\circ} \stackrel{\text{по смыслу}}{=} n \frac{\pi}{180}$ рад (из градусов в радианы)

Pewerue: Заполненная таблица приведена в конце главы, в блоке ключевых моментов:

Градусы	0	30	45	60	90	120	135	150	180	360
Радианы	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	2π

1.7 **Указание:** Воспользуйтесь рисунком ниже. Длина хорды BC всегда с.15 меньше длины дуги \widehat{BC} окружности, которую она стягивает.

Решение: Рассмотрим рисунок выше. Отрезок, выделенный пунктиром BC, является хордой дуги \widehat{BC} . Из геометрии нам известно, что длина ходры всегда меньше длины дуги окружности, которую она стягивает. Но этот же отрезок, выделенный пунктиром, является гипотенузой треугольника TBC, где катет BT — синус α .

Катет BT треугольника всегда меньше гипотенузы BC. Почему? Потому из геометрии известно, что напротив большего угла лежит большая сторона. А самый большой угол в прямоугольном треугольнике — прямой угол. А напротив прямого угла всегда лежит гипотенуза. Следовательно — гипотенуза всегда больше своих катетов.

Получается, что $\sin(\alpha)$ меньше гипотенузы (пунктирного отрезка), а пунктирный отрезок, как хорда, меньше длины дуги. Получается, что и синус меньше длины дуги. А длина дуги окружности с единичным радиусом равна радианной мере угла, то есть α . Вот мы и доказали, что $\sin(\alpha) < \alpha$ для окружности единичного радиуса.

1.8 Указание: Сравните площадь сектора ABT круга с треугольником с.16 ABC на рисунке ниже. Площадь сектора круга равна половине произведения радиуса круга на длину дуги.

Решение: Взглянем на рисунок ниже. Обратите внимание, что правый катет BC прямоугольного треугольника ABC проходит под прямым углом к радиусу AB. А прямая, которая проходит под прямым углом к радиусу, называется касательной. Это значит, что BC коснется гипотенузы AC за радиусом окружности в точке C (радиус окружности AT).

Получается, что сектор ABT круга вложен в прямоугольный треугольник ABC.

Площадь сектора круга равна половине произведения длины дуги на радиус: $S_{ABT}=\frac{\alpha}{2}$ (так как радиус равен 1).

Площадь прямоугольного треугольника: $S_{ABC} = \frac{\operatorname{tg}(\alpha)}{2}$ (по той же причине).

Так как площадь сектора круга вложена в площадь треугольника, то она, естественно, меньше: $S_{ABT} < S_{ABC}$. Следовательно:

$$\frac{1}{2}\alpha < \frac{1}{2}\operatorname{tg}(\alpha)$$

Домножим обе части неравенства на 2 и получим доказываемое неравенство: $\alpha < \operatorname{tg}(\alpha)$ для любых острых углов.

1.9 Указание: Воспользуйтесь рисунками ниже. Проведите высоту и пос.18 лучите два прямоугольных треугольника. Тогда можно будет использовать определения синуса, косинуса и тангенса.

Ответ: Рассмотрим рисунки выше. а) Основание $AC = 2a\cos(\alpha)$ - левый рисунок; б) Высота к основанию $BH = a\sin(\alpha)$ - левый рисунок; в) Высота к боковой стороне $TC = 2a\sin(\alpha)\cos(\alpha)$ - правый рисунок.

Решение: Посмотрите на левый рисунок выше. На нем изображен равнобедренный треугольник со стороной, равной a. Проведем высоту из вершины B к основанию AC. В равнобедренном треугольнике высота, проведенная к основанию делит его на пополам. Значит AH = HC.

- а) Найдем длину стороны AH. Косинусом в треугольнике ABH, по определению является отношение AH к a: $\cos(\alpha) = AH/a$. Следовательно (домножаем на a): $AH = a\cos(\alpha)$. Мы уже показали, что AC = 2AH, значит: $AC = 2a\cos(\alpha)$.
- б) Отношение высоты BH, опущенной на основание AC, к гипотенузе a по определению является синусом угла α : $\sin(\alpha) = BH/a$. Домножаем на a: $BH = a\sin(\alpha)$.
- в) Теперь смотрим на правый рисунок выше. Отношение катета TC, лежащего напротив угла α к гипотенузе AC по определению будет синусом этого угла: $\sin(\alpha) = TC/AC$. Но в пункте а) мы уже показали, чему равно основание AC через боковую сторону a: $AC = 2a\cos(\alpha)$. В итоге получаем $\sin(\alpha) = TC/2a\cos(\alpha)$. Домножаем обе стороны равенства на $2a\cos(\alpha)$: $TC = 2a\sin(\alpha)\cos(\alpha)$. Вот мы и выразили длину высоты к боковой стороне.
- **1.10 Указание:** Обратитесь к рисунку ниже и найдите, чему равна сторона c.20 AB.

Omeem: $\cos(36^{\circ}) = \frac{\sqrt{5} + 1}{4}$.

Решение: Смотрим на рисунок выше. Найдем, чему равна сторона AB. Из формул, выведенных в задании 1.9 мы можем записать следующее: $AB = 2BM\cos(36^\circ)$. Однако BM = AM = AC (смотрите вывод косинуса 72° в разделе 4). К тому же $AC = 2a\cos(72^\circ)$. Нам уже известно, что $\cos(72^\circ) = \frac{\sqrt{5}-1}{4}$. Значит $AC = a\frac{\sqrt{5}-1}{2}$. Подставляем AC вместо BM в формуле стороны AB: $AB = a(\sqrt{5}-1)\cos(36^\circ)$. Но из условия дано, что AB = a. Значит получаем следующее: $a = a(\sqrt{5}-1)\cos(36^\circ)$. Сокращаем на a и делим обе части на $\sqrt{5}-1$: $\cos(36^\circ) = \frac{1}{\sqrt{5}-1}$. Умножаем числитель и знаменатель дроби справа на $\sqrt{5}+1$, знаменатель бу-

дет разностью квадратов (то есть равен 4), а в числителе будет $\sqrt{5}+1$. Итого, имеем: $\cos(36^\circ)=\frac{\sqrt{5}+1}{4}$.

1.11 Указание: Рассмотрите, сколько секунд занимает совершение полного с.20 угла у часовой, минутной и секундной стрелок. Затем перейдите к 1 секунде для каждой из стрелок.

Omsem: a) 0.5'; б) $1/10^{\circ}$; в) 6° .

Решение: а) Полный угол в 360° часовая стрелка описывает за $3600 \times 12 = 43200$ секунд (так как в часе 3600 секунд, а на циферблате полный круг составляют 12 часов): 360° за 43200 сек. Тогда для того, чтобы узнать, на сколько градусов сдвинется часовая стрелка за одну секунду, надо обе части равенства разделить на 43200:

$$\frac{1}{120}^{\circ}$$
 за 1 сек

Получается, что за одну секунду часовая стрелка проходит 1/120 градуса или 0.5 угловых минут.

б) Полный угол в 360° минутная стрелка описывает за 3600 секунд: 360° за 3600 сек. Тогда для того, чтобы узнать, на сколько градусов сдвинется минутная стрелка за одну секунду, надо обе части равенства разделить на 3600:

$$\frac{1}{10}^{\circ}$$
 за 1 сек

Получается, что за одну секунду минутная стрелка проходит 1/10 градуса.

в) Полный угол в 360° секундная стрелка описывает за 60 секунд: 360° за 60 сек. Тогда для того, чтобы узнать, на сколько градусов сдвинется секундная стрелка за одну секунду, надо обе чати равенства разделить на 60:

$$6^{\circ}$$
 за 1 сек

Получается, что за одну секунду секундная стрелка проходит 6 градусов.

- **1.12** Указание: Преобразуйте градусы в радианы.
- c.21 $Omsem: \sin(\alpha^{\circ}) \approx \alpha \frac{\pi}{180}$ рад для малых α° .

Решение: Воспользуемся формулой 1.8 для перевода градусов в радианы:

$$n^{\circ}\stackrel{\text{по смыслу}}{=} n \frac{\pi}{180}$$
 рад (из градусов в радианы)

Получаем $\sin(\alpha^\circ) = \sin\left(\alpha\frac{\pi}{180}\right)$. Значение $\pi/180$ меньше единицы (так как числитель меньше знаменателя). Значит и без того малый угол (в градусах) α° , будучи умножен на число, меньшее единицы $(\pi/180)$, станет еще меньше. Значит правомерно приближенное равенство:

$$\sin(lpha^\circ) = \sin\left(lpha rac{\pi}{180} \; \mathrm{pag}\right) pprox lpha rac{\pi}{180} \; \mathrm{pag}$$

1.13 Указание: Воспользуйтесь выведенным в задании 1.3 равенством:

c.22

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

Используйте также неравенство $\sin(\alpha) < \alpha$ и факт, что $\sqrt{t} > t$, если 0 < t < 1.

Решение: Из формулы $\sin^2(\alpha) + \cos^2(\alpha) = 1$ найдем косинус: $\cos(\alpha) = \sqrt{1 - \sin^2(\alpha)}$. Теперь мы должны доказать, что $\sqrt{1 - \sin^2(\alpha)} > 1 - \alpha^2$. Рассмотрим неравенство $\sin(\alpha) < \alpha$. Знак неравенства не поменяется при возведении обеих частей в квадрат: $\sin^2(\alpha) < \alpha^2$. Домножим обе части на -1: $-\sin^2(\alpha) > -\alpha^2$. Прибавим к обеим частям неравенства единицу:

$$1 - \sin^2(\alpha) > 1 - \alpha^2$$

Но $\sqrt{1-\sin^2(\alpha)}>1-\sin^2(\alpha)$, так как $0<1-\sin^2(\alpha)<1$ (потому что $\sin(\alpha)$ не может быть больше 1). Если предположить, что синус может быть больше 1, то нарушится выведенное равенство $\sin^2(\alpha)+\cos^2(\alpha)=1$, так как придется брать отрицательный $\cos^2(\alpha)$, чего не может быть, ведь квадрат любого числа всегда число положительное. Таким образом, мы доказали, что $\cos(\alpha)>1-\alpha^2$.

1.14 Указание: Воспользуйтесь рисунком ниже, а также формулой прис.22 ближенного равенства синуса, величины угла и тангенса.

 $\textit{Omeem:} \approx 0.012$ радиана или $\approx 43'$.

Решение: Из рисунка выше сразу видно, что мы можем найти тангенс искомого угла α :

$$tg(\alpha) = \frac{10}{800} = \frac{1}{80} = 0.0125$$

Так как расстояние у нас до дерева у нас очень большое (800 метров), то очевидно, что его видно под очень маленьким углом. А для очень маленьких углов справедливо приближенное равенство $\operatorname{tg}(\alpha) \approx \alpha$. Получается, что дерево видно приблизительно под углом в 0.0125 радиан. Переводя в градусы по формуле 1.8 имеем приблизительно 0.71625 градусов. Умножая на 60 мы можем получить этот угол в угловых минутах: $\approx 43'$.

1.15 Указание: Эта задача очень похожа на предыдущую задачу, только с.22 теперь нам надо найти не угол (он уже дан), а прилежащий к этому углу катет (расстояние в 1 парсек). Опять же углы здесь маленькие и можно использовать приближенное равенство синуса, величины угла и тангенса.

 $Omsem: \approx 30\,940\,000\,000$ километров.

Решение: Задача очень похожа на предыдущую задачу с деревом, только найти надо не угол, а катет. Посмотрим на рисунок выше. Радиус орбиты (правый катет) нам дан (150 миллионов километров). Угол нам дан (1 угловая секунда). Надо найти нижний катет (это и есть длина парсека). Отношение правого катета к нижнему по определению равно синусу угла, равного 1":

$$\frac{150\,000\,000}{x} = \operatorname{tg}(1'')$$

Так как угол в одну угловую секунду очень маленький, то мы можем применить приближенное равенство:

$$tg(1'') \approx 1'' \frac{\pi}{180} = \frac{1}{3600}^{\circ} \times \frac{\pi}{180}$$

Получаем следующее приближенное равенство:

$$\frac{150\,000\,000}{x} \approx \frac{\pi}{3600 \times 180}$$

И этого равенства выражаем x:

$$x \approx \frac{150\,000\,000 \times 3600 \times 180}{\pi} \approx 30\,940\,000\,000$$

Это и есть длина парсека в километрах.