FUNGSI CANNONICAL

Pokok Bahasan :

- 1. Komplemen, Duality, Lateral dan Term
- 2. Maxterm dan Minterm
- 3. Bentuk SOP dan POS

Tujuan Instruksional Khusus:

- 1.Mahasiswa dapat menjelaskan tentang komplemen, maxterm dan minterm serta bentuk SOP dan POS
- 2.Mahasiswa dapat mengimplementasikan ke dalam bentuk rangkaian.
- 3.Mahasiswa dapat menuliskan persamaan dan membuat diagram logika dalam bentuk SOP dan POS.

FUNGSI BOOLEAN

PERSAMAAN (EKSPRESI) ALJABAR YANG DIBENTUK DARI VARIABEL

- VARIABEL BINER, OPERATOR BINER (**OR** DAN **AND**), OPERATOR UNARY (**NOT**), DAN TANDA SAMA DENGAN (=).

Contoh:

F = AB'C F: fungsi Boolean

F: bernilai 1 jika A, B dan C=1,

dan F=0 pada A, B'dan C yang

lain.

DUALITY:

METODE YANG BISA DILAKUKAN PADA PERSAMAAN BOOLEAN, DENGAN MENGGANTI NILAI ATAU OPERATOR:

'0' MENJADI '1' ATAU '1' MENJADI '0' 'AND' MENJADI 'OR' ATAU 'OR' MENJADI 'AND'

CONTOH:

$$X \cdot 1 = X$$
 duality-nya $X + 0 = X$

$$X \cdot (Y + Z)$$
 duality-nya $X + (Y \cdot Z)$

LATERAL & TERM

Lateral = menyatakan input – input sebuah gerbang logikaTerm = menyatakan operasi yang dilakukan dalam sebuah gerbang

$$F = ABC' + A'DE$$

Persamaan Boolean di atas mempunyai 5 input (ada 5 lateral :

A, B, C,D dan E)

Contoh:

Ada 5 Term (AND untuk ABC', AND untuk A'DE, NOT untuk C, NOT untuk A dan OR untuk F), berarti ada 5 gerbang yang diperlukan.

KOMPLEMEN

Komplemen dari sebuah fungsi didasarkan pada aturan De Morgan dan prinsip Duality, dimana Fungsi NAND mempunyai nilai yang sama dengan fungsi OR dari komplemen variabel - variabelnya, dan Fungsi NOR mempunyai nilai yang sama dengan fungsi AND dari komplemen variabel – variabelnya.

contoh:

$$F = (A+B+C)$$

maka

$$F' = (A+B+C)' = A' \cdot B' \cdot C'$$

$$(A + B + C + D + + Z)' = A' \cdot B' \cdot C' \cdot D' \cdot ... \cdot Z'$$

 $(A \cdot B \cdot C \cdot D \cdot ... Z)' = A' + B' + C' + D' \cdot ... + Z'$

MINTERM DAN MAXTERM

n variabel yang membentuk operasi AND menghasilkan suatu bentuk persamaan yang disebut *MINTERM* atau standart product

contoh: Minterm (dgn 3 variabel)

XYZ

A'BC

n variabel yang membentuk operasi OR menghasilkan suatu bentuk persamaan yang disebut *MAXTERM* atau standart sum

contoh: Maxterm (dgn 3 variabel)

$$X + Y + Z'$$

$$A' + B' + C'$$

MINTERM adalah komplemen dari MAXTERM dan sebaliknya

Bentuk SOP (Sum of Product) dari Tabel diatas adalah:

SUM of PRODUCT (SOP) atau disebut juga SUM OF MINTERM

Bentuk POS (Product of Sum) dari Tabel diatas adalah:

$$Y_{(A,B,C)} = (A+B'+C) \cdot (A+B'+C') \cdot (A'+B+C) \cdot (A'+B'+C)$$
atau
$$Y_{(A,B,C)} = \pi (2, 3, 4, 6) \xrightarrow{A} \xrightarrow{B'} \xrightarrow{C'} \xrightarrow{A'} \xrightarrow{B'} \xrightarrow{C}$$
Rangkaian
Bentuk POS
$$X' \xrightarrow{B'} \xrightarrow{C}$$

$$X' \xrightarrow{B'} \xrightarrow{C}$$

Buat Tabel Kebenaran dari fungsi di bawah ini dan ekspresikan setiap fungsi menjadi SOP dan POS :

$$F = (xy + z).(y + xz)$$

Jawab:

X	У	Z	(xy	+	z)	F	(у	+	xz)
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1	1	0
0	1	1	0	1	1	1	1	1	0
1	0	0	0	0	0	0	0	0	0
1	0	1	0	1	1	1	0	1	1
1	1	0	1	1	0	1	1	1	0
1	1	1	1	1	1	1	1	1	1

Ekspresikan persamaan dibawah ini menjadi *Sum of Product* (SOP) dan *Product of Sum* (POS)

$$F(A, B, C, D) = B'D + A'D + BD$$

Jawab:

Persamaan diatas bernilai '1' untuk nilai BD = 01, AD = 01, BD = 11.

Berdasarkan Tabel Kebenaran 4 variabel (A, B, C, D) maka output '1' berlaku untuk minterm-minterm:

A'B'C'D, A'B'CD, A'BC'D, A'BCD, AB'C'D, AB'CD, ABC'D, ABCD

SOP : F (A, B, C, D) =
$$\Sigma$$
(1, 3, 5, 7, 9, 11, 13, 15)
= A'B'C'D + A'B'CD + A'BC'D + A'BCD + AB'C'D + AB'CD + ABC'D + ABCD

POS: F (A, B, C, D) =
$$\pi$$
(0, 2, 4, 6, 8, 10, 12, 14)
= (A+B+C+D)(A+B+C'+D)(A+B'+C+D)(A+B'+C+D')
(A'+B+C+D)(A'+B+C'+D)(A'+B'+C'+D)

DISAIN RANGKAIAN LOGIKA KOMBINASIONAL

LANGKAH - LANGKAH DI DALAM PROSES DISAIN:

2.	Tulis	minterm	-minterm	pada c	output	yang	bernilai	'1	,
				1	1 .	_			

u	х	У	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f = u'xy + ux'y + uxy' + uxy$$

$$f = u'xy + ux'y + uxy' + uxy$$

= $u'xy + uxy + ux'y + uxy + uxy' + uxy$
= $xy(u' + u) + uy(x' + x) + ux(y' + y)$
= $xy + uy + ux$

Latihan Soal I:

Buat ekspresi logika dibawah kedalam bentuk SOP dan bentuk POS, serta gambar rangkaian logikanya:

(a)
$$F_{(a, b, c, d)} = AC' + C'D + B'D'$$

(b)
$$F_{(x,y,z)}^{(x,y,z)} = X (Y' + Z') + Y + Y'Z$$

(a)
$$F_{(a, b, c, d)} = AC' + C'D + B'D'$$

(b) $F_{(x, y, z)} = X (Y' + Z') + Y + Y'Z$
(c) $F_{(a, b, c, d)} = B'C' + AC'D + B'D$

Latihan Soal II:

Buat Tabel Kebenaran dari fungsi di bawah ini dan ekspresikan setiap fungsi menjadi SOP dan POS, serta rangkaian logikanya: