Fundamentos de análisis y diseño de algoritmos

Árboles de búsqueda binaria

Abril de 2018

Propiedad de un árbol de búsqueda binaria Árboles y recorrido inorden Operaciones mínimo, máximo, sucesor y predecesor Inserción y eliminación

Por qué son importantes los árboles

- Operaciones básicas como insertar, borrar y buscar, toman un tiempo proporcional a la altura del árbol
- Para un árbol binario completo con n nodos, las operaciones básicas toman $\Theta(lgn)$
- Si el árbol se construye como una cadena lineal de n nodos, tomarían $\Theta(n)$

Árbol de búsqueda binaria

Es un árbol binario en el cual se cumple que, para cada nodo x, los nodos del subarbol izquierdo son menores o iguales a x y que, los nodos del subarbol derecho son mayores o iguales a x

Propiedad del árbol de búsqueda binaria

Sea x un nodo del árbol. Si y es un nodo en el subarbol izquierdo de x, entonces key $[y] \le \text{key}[x]$. Si y es un nodo en el subarbol derecho de x, entonces key $[y] \ge \text{key}[x]$

Propiedad del árbol de búsqueda binaria

Sea x un nodo del árbol. Si y es un nodo en el subarbol izquierdo de x, entonces $key[y] \le key[x]$. Si y es un nodo en el subarbol derecho de x, entonces $key[y] \ge key[x]$

Árbol de búsqueda binaria

Indique si el siguiente árbol es de búsqueda binaria

Árbol de búsqueda binaria

Indique si el siguiente árbol es de búsqueda binaria

Árbol de búsqueda binaria

Indique si el siguiente árbol es de búsqueda binaria

Los árboles de búsqueda binaria tienen otra característica, si son recorridos en *inorden*, producen una lista de las llaves ordenada ascendentemente

```
INORDER-TREE-WALK(x)

if x \neq nil

then INORDER-TREE-WALK(left[x])

print key[x]

INORDER-TREE-WALK(right[x])
```

·Recorra los árboles de búsqueda binaria previos, en inorden

•Demuestre que la complejidad del algoritmo INORDER-TREE-WALK(x) es $\Theta(n)$

Consulta de un árbol de búsqueda binaria

- · Búsqueda de una llave
- Mínimo
- · Máximo
- · Sucesor de un nodo
- · Predecesor de un nodo

Cada una de estas operaciones se puede hacer en O(h) donde h es la altura del árbol

Buscar un nodo con llave k dado un árbol con apuntador a la raiz x

```
TREE-SEARCH(x,k)
if x=nil or k=key[x]
  then return x
if k<key[x]
  then return TREE-SEARCH(left[x],k)
  else return TREE-SEARCH(right[x],k)</pre>
```

Búsqueda iterativa

```
ITERATIVE-TREE-SEARCH(x,k)

while x \neq nil and k \neq key[x]

do if k < key[x]

then x \leftarrow left[x]

else x \leftarrow right[x]
```

En un árbol de búsqueda binaria dónde se ubica el elemento mínimo?

En un árbol de búsqueda binaria dónde se ubica el elemento mínimo?

Idea: seguir los apuntadores al hijo izquierdo desde la raiz hasta que se encuentre nil

En un árbol de búsqueda binaria dónde se ubica el elemento mínimo?

TREE-MINIMUN(x)

```
while left[x] \neq nil
do x \leftarrow left[x]
return x
```


En un árbol de búsqueda binaria dónde se ubica el elemento máximo?

Idea: seguir los apuntadores al hijo derecho desde la raiz hasta que se encuentre nil

En un árbol de búsqueda binaria dónde se ubica el elemento máximo?

TREE-MAXIMUM(x)

while right[x] \neq nil do $x \leftarrow$ right[x] return x

Sucesor

Dado un nodo x donde key[x]=k, el sucesor de x es el nodo y tal que key[y] es la llave más pequeña, mayor que key[x]

Cuál es el sucesor de 7, 9, 10 y 12

Si right[x] != null min(right[x]) Sino father[x]

TREE-SUCCESSOR(x)

if right[x]≠nil
 then return TREE-MINIMUM(right[x])

Explique el código anterior para el caso de TREE-SUCCESSOR(4)

TREE-SUCCESSOR(x)

if right[x]≠nil
then return TREE-MINIMUM(right[x])

$$y \leftarrow p[x]$$
while $y \neq nil$ and $x = right[y]$
 $do x \leftarrow y$
 $y \leftarrow p[y]$
return y

y = 8

Explique el código anterior

para el caso de TREE-SUCCESSOR(7)

TREE-SUCCESSOR(x)

```
if right[x]≠nil
  then return TREE-MINIMUM(right[x])
```

$$y \leftarrow p[x]$$

while $y \neq nil$ and $x = right[y]$
 $do(x \leftarrow y)$
 $y \leftarrow p[y]$
 $\begin{cases} y = 7 \\ y = 3 \\ y = 3 \end{cases}$

$$\begin{cases} 3 = 7 \\ 1 = 3 \\ 2 = 3 \\ 3 = 2 \\ 3 = 2 \\ 3 = 2 \\ 3 = 3 \\ 3 = 2 \\ 3 = 3 \\ 3 = 2 \\ 3 = 3 \\ 3$$

Explique el código anterior

para el caso de TREE-SUCCESSOR(8)


```
TREE-INSERT(x)
 y \leftarrow nil
 x \leftarrow root[T]
 while x≠nil
    do y \leftarrow x
       if key[z] key[x]
          then x \leftarrow left[x]
         else x \leftarrow right[x]
 p[z]←y
 if y=nil
    then root[T] \leftarrow z
    else if key[z]<key[y]
       then left[y] ← z
       else right[y] ← z
```


Explique el código para el caso de TREE-INSERT(z), donde key[z]=5

```
TREE-INSERT(x)
 y \leftarrow nil
 x \leftarrow root[T]
 while x≠nil
    do y \leftarrow x
       if key[z] key[x]
          then x \leftarrow left[x]
         else x \leftarrow right[x]
 p[z]←y
 if y=nil
    then root[T] \leftarrow z
    else if key[z]<key[y]
       then left[y] ← z
       else right[y] ← z
```


Explique el código para el caso de TREE-INSERT(z), donde key[z]=9

```
TREE-INSERT(x)
 y \leftarrow nil
 x \leftarrow root[T]
 while x≠nil
    do y \leftarrow x
       if key[z] key[x]
          then x \leftarrow left[x]
          else x \leftarrow right[x]
 p[z]←y
 if y=nil
    then root[T] \leftarrow z
    else if key[z]<a href="key[y]">key[y]</a>
        then left[y] ← z
        else right[y] ← z
```


Explique el código para el caso de TREE-INSERT(z), donde key[z]=11

```
TREE-INSERT(x)
 y \leftarrow nil
 x \leftarrow root[T]
 while x≠nil
    do y \leftarrow x
        if key[z]<br/>key[x]
          then x \leftarrow left[x]
          else x \leftarrow right[x]
 p[z]←y
 if y=nil
    then root[T] \leftarrow z
    else if key[z]<a href="key[y]">key[y]</a>
        then left[y] ← z
        else right[y] ← z
```


La complejidad es de O(h)


```
TREE-DELETE(x)
 if left[z]=nil or right[z]=nil
    then y \leftarrow z
    else y \leftarrow TREE-SUCCESSOR(z)
if left[y]≠nil
    then x \leftarrow left[y]
    else x \leftarrow right[y]
if x≠nil
    then p[x] \leftarrow p[y]
if p[y]=nil
    then root[T] \leftarrow x
    else if y=left[p[y]]
        then left[p[y]] \leftarrow x
        else right[p[y]] \leftarrow x
if y≠z
    then key[z] \leftarrow key[y]
return y
```


Caso 1:

Borrar z y z no tiene hijos.

TREE-DELETE(T,z), donde key[z]=5

Qué se debe hacer?

Caso 1:

Borrar z y z no tiene hijos.

TREE-DELETE(T,z), donde key[z]=5

El padre de z debe ahora apuntar a nil

 $p[z] \leftarrow nil$

Caso 2:

Borrar z y z tiene un solo hijo TREE-DELETE(T,z), donde key[z]=10

Qué se debe hacer?

Caso 2:

Borrar z y z tiene un solo hijo TREE-DELETE(T,z), donde key[z]=10

Se separa z del árbol

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Qué se debe hacer?

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Qué se debe hacer?

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Qué se debe hacer?

Cuál de los nodos restantes
debería ocupar el lugar
del nodo a borrar

3
1
3
1
8

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Se <u>separa(elimina)</u> su sucesor y del árbol y se reemplaza su contenido con el de z

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Se <u>separa(elimina)</u> su sucesor y del árbol y se reemplaza su contenido con el de z

Borrar z y z tiene dos hijos TREE-DELETE(T,z), donde key[z]=12

Se <u>separa(elimina)</u> su sucesor y del árbol y se reemplaza su contenido con el de z


```
TREE-DELETE(x)
 if left[z]=nil or right[z]=nil
   then y \leftarrow z
   else y \leftarrow TREE-SUCCESSOR(z)
if left[y]≠nil
   then x \leftarrow left[y]
   else x \leftarrow right[y]
if x≠nil
   then p[x] \leftarrow p[y]
if p[y]=nil
   then root[T] \leftarrow x
   else if y=left[p[y]]
        then left[p[y]] \leftarrow x
        else right[p[y]] \leftarrow x
if y≠z
   then key[z] \leftarrow key[y]
return y
```


Siga el algoritmo TREE-DELETE(T,z) donde z es el nodo tal que key[z]=11

```
TREE-DELETE(x)
 if left[z]=nil or right[z]=nil
   then y \leftarrow z
   else y \leftarrow TREE-SUCCESSOR(z)
if left[y]≠nil
   then x \leftarrow left[y]
   else x \leftarrow right[y]
if x≠nil
   then p[x] \leftarrow p[y]
if p[y]=nil
   then root[T] \leftarrow x
   else if y=left[p[y]]
        then left[p[y]] \leftarrow x
        else right[p[y]] \leftarrow x
if y≠z
   then key[z] \leftarrow key[y]
return y
```


Siga el algoritmo TREE-DELETE(T,z) donde z es el nodo tal que key[z]=6

```
TREE-DELETE(x)
 if left[z]=nil or right[z]=nil
   then y \leftarrow z
   else y \leftarrow TREE-SUCCESSOR(z)
if left[y]≠nil
   then x \leftarrow left[y]
   else x \leftarrow right[y]
if x≠nil
   then p[x] \leftarrow p[y]
if p[y]=nil
   then root[T] \leftarrow x
   else if y=left[p[y]]
        then left[p[y]] \leftarrow x
        else right[p[y]] \leftarrow x
if y≠z
   then key[z] \leftarrow key[y]
return y
```


Siga el algoritmo TREE-DELETE(T,z) donde z es el nodo tal que key[z]=10

Referencias

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press. Chapter 12

Gracias

Próximo tema:

Estructuras de datos: Arboles rojinegros