Enseignant · e · s : Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 9 – Formules de Green

Exercice 1 (Le cas d'un hyperplan). Soit $H \subset \mathbb{R}^d$ un hyperplan (affine) muni de sa mesure superficielle σ . On choisit un repère orthonormé (affine) afin d'avoir $H = \{x \in \mathbb{R}^d \mid x_d = 0\}$. On considère l'ouvert $V = \{x \in \mathbb{R}^d \mid x_d > 0\}$, calculer "à la main" $\partial_j \mathbf{1}_V$ pour tout $j \in \{1, \ldots, d\}$.

Exercice 2 (IPP : la formule de Gauss-Green). Soient $V \subset \mathbb{R}^d$ ouvert à bord lisse et $\nu : \partial V \to \mathbb{S}^{d-1}$ la normale unitaire sortante de V. On note σ la mesure superficielle de ∂V . Soient $\varphi, \psi \in \mathcal{D}(\mathbb{R}^d)$, montrer que pour tout $j \in [1, d]$,

$$\int_{V} \psi \partial_{j} \varphi \, \mathrm{d}x = \int_{\partial V} \psi \varphi \nu_{j} \, \mathrm{d} \, \sigma - \int_{V} \varphi \partial_{j} \psi \, \mathrm{d}x.$$

Notation. Soit $V \subset \mathbb{R}^d$ un ouvert, on note $u \in \mathcal{C}^{\infty}(\overline{V})$ si u est la restriction d'une fonction $\widetilde{u} \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, ou de façon équivalente \mathcal{C}^{∞} sur un voisinage de \overline{V} . Si V est borné, on peut en fait supposer $\widetilde{u} \in \mathcal{D}(\mathbb{R}^d)$.

Exercice 3 (Formules de Green pour Δ). 1. Soient $V \subset \mathbb{R}^d$ un ouvert borné non vide à bord lisse et σ la mesure superficielle de ∂V . On note $\nu : \partial V \to \mathbb{S}^{d-1}$ la normale unitaire sortante de V. Prouver les formules suivantes, appelées respectivement première et seconde formule de Green : pour tout $u, v \in \mathcal{C}^{\infty}(\overline{V})$,

$$\int_{V} u \, \Delta v \, \mathrm{d}x = \int_{\partial V} u \, \nabla v \cdot \nu \, \mathrm{d}\sigma - \int_{V} \nabla u \cdot \nabla v \, \mathrm{d}x,\tag{1}$$

$$\int_{V} (u \, \Delta v - v \, \Delta u) \, \mathrm{d}x = \int_{\partial V} (u \, \nabla v - v \, \nabla u) \cdot \nu \, \mathrm{d}\sigma. \tag{2}$$

2. Soit $v \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, montrer que $\Delta v = 0$ si et seulement si pour tout $V \subset \mathbb{R}^d$ ouvert borné non vide à bord lisse :

$$\int_{\partial V} \nabla v \cdot \nu \, \mathrm{d}\sigma = 0.$$

- 3. Soient $V \subset \mathbb{R}^d$ ouvert connexe borné non vide à bord lisse et $v \in \mathcal{C}^{\infty}(\overline{V})$ une fonction harmonique dans V telle que $v_{|\partial V} = 0$. Montrer que v = 0.
- 4. (facultatif) Même question, mais sans supposer que V est connexe.

Notation. Pour tout r > 0, on note $B_r = \{x \in \mathbb{R}^d \mid ||x|| < r\}$ et $S_r = \{x \in \mathbb{R}^d \mid ||x|| = r\}$, où $||\cdot||$ est la norme euclidienne. On note σ_r la mesure superficielle de la sphère S_r . Enfin, on notera $N: x \mapsto \frac{x}{||x||}$ de $\mathbb{R}^d \setminus \{0\}$ dans S_1 le champ de vecteurs unitaires radial issu de 0.

À toute fin utile, on rappelle les formules suivantes qui ont été établies dans les feuilles précédentes :

- pour tout r > 0, $\sigma_r(S_r) = r^{d-1}\sigma_1(S_1)$,
- $\sigma_1(S_1) = d \cdot \operatorname{Vol}(B_1)$.

Exercice 4 (Formules de la moyenne). Soit $u \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, on définit $g: [0, +\infty[\to \mathbb{C} \text{ par } :$

$$g: r \longmapsto \frac{1}{r^{d-1}} \int_{S_r} u(x) \, d\sigma_r(x).$$

1. Montrer que g est de classe \mathcal{C}^1 et que $g': r \mapsto \frac{1}{r^{d-1}} \int_{S_r} \nabla u(x) \cdot N(x) \, \mathrm{d}\sigma_r(x)$.

On suppose désormais que la fonction u est harmonique.

2. Montrer que g constante dans ce cas, et établir la première formule de la moyenne :

$$\forall r > 0, \qquad u(0) = \frac{1}{\sigma_r(S_r)} \int_{S_r} u(x) \, d\sigma_r(x). \tag{3}$$

3. En déduire la seconde formule de la moyenne :

$$\forall R > 0, \qquad u(0) = \frac{1}{\text{Vol}(B_R)} \int_{B_R} u(x) \, \mathrm{d}x. \tag{4}$$

Exercice 5 (Solution fondamentale de Δ). On sait qu'en dimension $d \geqslant 3$, est une solution fondamentale de Δ est $E_d: x \mapsto -\frac{C_d}{\|x\|^{d-2}}$, où $C_d = \frac{\Gamma\left(\frac{d}{2}\right)}{2(d-2)\pi^{\frac{d}{2}}}$. La preuve du cours utilise les distributions homogènes, on propose de redémontrer ce résultat par un calcul "direct".

- 1. Vérifier que E_d définit un élément de $\mathcal{D}'(\mathbb{R}^d)$.
- 2. Pour tout $x \in \mathbb{R}^d \setminus \{0\}$, calculer $\nabla E_d(x)$ et $\Delta E_d(x)$, au sens de la dérivation usuelle.
- 3. Vérifier que $\int_{S_{\varepsilon}} E_d d\sigma_{\varepsilon} \xrightarrow{\varepsilon \to 0} 0$. En déduire que si $g : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ est continue et bornée alors $gE_d \sigma_{\varepsilon}$ définit une distribution qui converge vers 0 dans $\mathcal{D}'(\mathbb{R}^d)$.
- 4. En appliquant la formule des sauts, montrer que $\Delta E_d = \lim_{\varepsilon \to 0} \nabla E_d \cdot N \ \sigma_{\varepsilon} \ dans \ \mathcal{D}'(\mathbb{R}^d)$.
- 5. Redémontrer que $\Delta E_d = \lim_{\varepsilon \to 0} \nabla E_d \cdot N \, \sigma_{\varepsilon}$ dans $\mathcal{D}'(\mathbb{R}^d)$, en utilisant cette fois une formule de Green pour le laplacien.
- 6. Calculer ΔE_d dans $\mathcal{D}'(\mathbb{R}^d)$.
- 7. (facultatif) Pour d=2, on pose $E_2: x \mapsto \frac{1}{2\pi} \ln ||x||$. Calculer ΔE_2 dans $\mathcal{D}'(\mathbb{R}^2)$ par la même méthode que ci-dessus.

Exercice 6 (Formule de Cauchy–Pompeiu). On identifie canoniquement \mathbb{R}^2 à \mathbb{C} via l'application $x=(x_1,x_2)\mapsto z=x_1+ix_2$. On rappelle que $\frac{\partial}{\partial\overline{z}}=\frac{1}{2}(\partial_1+i\partial_2)$.

- 1. Soit $f: z \mapsto \frac{1}{z}$ de \mathbb{C}^* dans \mathbb{C} . Vérifier que f définit une distribution sur $\mathbb{C} \simeq \mathbb{R}^2$, et montrer que $f\mathbf{1}_{\mathbb{R}^2 \setminus B_{\varepsilon}} \xrightarrow[\varepsilon \to 0]{} f$ dans $\mathcal{D}'(\mathbb{R}^2)$.
- 2. Montrer que $\frac{\partial}{\partial \overline{z}}f = \pi \delta_0$.
- 3. Soit R > 0, calculer $\frac{\partial}{\partial \overline{z}}(f\mathbf{1}_{B_R})$. En déduire que pour tout $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^2)$

$$\varphi(0) = \frac{1}{2i\pi} \int_{S_R} \frac{\varphi(z)}{z} dz - \int_{B_R} \frac{1}{\pi z} \frac{\partial \varphi}{\partial \overline{z}}(z) d\lambda(z).$$
 (5)

4. Soit $V \subset \mathbb{C}$ un ouvert et $\varphi : V \to \mathbb{C}$ holomorphe. Pour tout R > 0 tel que $a + \overline{B_R} \subset V$, montrer que

$$\varphi(a) = \frac{1}{2i\pi} \int_{a+S_R} \frac{\varphi(z)}{z-a} \, \mathrm{d}z \tag{6}$$