Cosmos OpenSSD+ Tutorial

Cosmos OpenSSD User Guide

Revision history

Date	Version	Revision
2016-09-01	1.0	First draft

Table of Contents

Chap	oter 1: Introduction	1
1.1.	Overview	1
	1.1.1. Materials	1
Chap	oter 2: Get Started	2
2.1.	Required Tools	2
	2.1.1. Xilinx Vivado Design Suite	2
2.2.	Required Files	2
	2.2.1. Xilinx Hardware Description File	2
	2.2.2. Firmware (flash translation layer) source	2
Chap	oter 3: Deploying Steps	3
3.1.	Download required files and create a workspace directory	3
3.2.	Launch Xilinx Software Development Kit and designate the workspace	3
3.3.	Go to File->Application Project	4
3.4.	Press "New" to register the hardware description file (HDF)	5
3.5.	Name the hardware project and specify a path of the HDF	5
3.6.	Name the application project and finish this template wizard	6
3.7.	Locate "src" directory and copy greedy FTL source files to it	7
3.8.	Get back to SDK and refresh the project explorer	8
3.9.	Go to "properties" menu	8
3.10.	Go to C/C++ Build->Settings and specify include paths	9
3.11.	If everything goes well, the build process should finish successfully	10
3.12.	If then, press "Build All" to make both debug and release executables	11
3.13.	Launch a UART console program and open the port (baud rate: 115200))12
3.14.	Press "Program FPGA" button or go to Xilinx Tools->Program FPGA	12
3.15.	Press "Program"	13
3 16	Launch the firmware	14

Cosmos OpenSSD User Guide

3.17.	Watch the UART console	15
2.10		1 -
3.18.	Turn on the host computer	15

Chapter 1: Introduction

1.1. Overview

This document illustrates how to download a prebuilt bitstream to Cosmos OpenSSD and program the Greedy FTL provided as an example FTL.

1.1.1. Materials

The latest technical documents and materials are available at Cosmos OpenSSD wiki http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

Chapter 2: Get Started

2.1. Required Tools

2.1.1. Xilinx Vivado Design Suite

This document is based on Xilinx Vivado Design Suite: System Edition 2014.4. Especially, Xilinx Software Development Kit (SDK) 2014.4 is required to follow this tutorial.

2.2. Required Files

2.2.1. Xilinx Hardware Description File

Hardware description file (.hdf) is a compressed file which contains a bitstream file (.bit) and multiple source codes for initializing Zynq processing system (PS). A board support package is generated by importing the hardware description file to Xilinx Vivado SDK. The hardware description file is also available at Cosmos OpenSSD wiki.

2.2.2. Firmware (flash translation layer) source

The latest Cosmos OpenSSD firmware contains a flash translation layer and a host interface logic to be operated as a solid-state drive. The FTL has a software-level NAND flash scheduler and supports greedy garbage collection mechanism. In addition, it is responsible for managing the NVMe controller.

Chapter 3: Deploying Steps

- 3.1. Download required files and create a workspace directory
- 3.2. Launch Xilinx Software Development Kit and designate the workspace

3.3. Go to File->Application Project

3.4. Press "New" to register the hardware description file (HDF)

3.5. Name the hardware project and specify a path of the HDF

3.6. Name the application project and finish this template wizard

3.7. Locate "src" directory and copy greedy FTL source files to it

3.8. Get back to SDK and refresh the project explorer

3.9. Go to "properties" menu

3.10. Go to C/C++ Build->Settings and specify include paths

3.11. If everything goes well, the build process should finish successfully

3.12. If then, press "Build All" to make both debug and release executables

- 3.13. Launch a UART console program and open the port (baud rate: 115200)
- 3.14. Press "Program FPGA" button or go to Xilinx Tools->Program FPGA

3.15. Press "Program"

3.16. Launch the firmware

3.17. Watch the UART console

```
COM3-PuTTY

[!] MMU has been enabled.

Hello COSMOS OpenSSD !!!
!!! Wait until FTL reset complete !!!
[ NAND device reset complete. ]
Press 'X' to erase the bad block table.
```

```
_ D X
PuTTY
DS_SUB_REEXE Request 100 Fail - ch 1 way 6 rowAddr 2FF300 / status 1FFC3
          bad block is detected: Ch 0 Way 1 Block 8179
          bad block is detected: Ch 1 Way 6 Block 8179
DS_SUB_REEXE Request 100 Fail - ch 0 way 1 rowAddr 2FF900 / status 1C3C3
bad block is detected: Ch 0 Way 1 Block 8185
bad block is detected: Ch 7 Way 5 Block 8186
DS_SUB_REEXE Request 100 Fail - ch 0 way 1 rowAddr 2FFB00 / status 1C3C3
DS_SUB_REEXE Request 100 Fail - ch 4 way 0 rowAddr 2FFB00 / status 1C3C3
          bad block is detected: Ch 4 Way 0 Block 8187
          bad block is detected: Ch 0 Way 1 Block 8187
          bad block is detected: Ch 7 Way 5 Block 8187
          bad block is detected: Ch 7 Way 5 Block 8188
DS_SUB_REEXE Request 100 Fail - ch 1 way 1 rowAddr 2FFD00 / status 1FFC3
bad block is detected: Ch 1 Way 1 Block 8189
bad block is detected: Ch 7 Way 5 Block 8189
  bad block table is saved. ]
  block erasure start. ]
 entire block erasure completed. ]
  storage capacity 1045258 MB ]
 [ map table reset complete. ]
FTL reset complete!!!
Turn on the host PC
```

3.18. Turn on the host computer

