Ana Gabriela Argüello Cedeño

Punto 1.

```
void algoritmol(int n) {
  int i, j = 1; 2
  for(i = n * n; i > 0; i = i / 2) {      piso[log<sub>2</sub> n<sup>2</sup> + 2]
      int suma = i + j;      piso[log<sub>2</sub> n<sup>2</sup> + 1]
      printf("Suma %d\n", suma);      piso[log<sub>2</sub> n<sup>2</sup> + 1]
      ++j;      piso[log<sub>2</sub> n<sup>2</sup> + 1]
  }
}
```

Al ejecutar el algoritmo con n = 8 el resultado es:

Suma 65
Suma 34
Suma 19
Suma 12
Suma 9
Suma 8
Suma 8

I

Esto ya que los valores actuales de lo que es i y j se suman y producen el resultado dado en el print. Para más claridad se muestra los valores de i y j y su sumatoria:

i	j	Suma	
64	1	65	
32	2	34	
16	3	19	
8	4	12	
4	5	9	
2	6	8	
1	7	8	
0	8		

La última fila no se imprime y no se suma puesto que no se cumple la condición de que i sea mayor a 0 (el resultado verdadero es 0.5 pero en C se manejan enteros entonces queda el 0).

```
Este algoritmo se ejecuta (1+(\log_2 n^2+2)+(\log_2 n^2+1)+(\log_2 n^2+1)+(\log_2 n^2+1)+(\log_2 n^2+1), 4\log_2 n^2+6, por tal motivo la complejidad del algoritmo es O(\log_2 n^2)
```

```
int algoritmo2 (int n) {
    int res = 1, i, j; 3

    for(i = 1; i <= 2 * n; i += 4) \frac{piso\left[\frac{(2*n)+6}{4}\right]}{4}

    for(j = 1; j * j <= n; j++) \frac{(techo(\sqrt{n+1}))*(piso\left[\frac{(2*n)+6}{4}\right]-1)}{(techo(\sqrt{n+1})-1)*(piso\left[\frac{(2*n)+6}{4}\right]-1)}

    return res; 1
```

El resultado que retorna al remplazar n por en numero 8 es: $17\,$

Este algoritmo se ejecuta $(3+\left(\frac{(2*n)+6}{4}\right)+\left(\left(\sqrt{n+1}\right)\right)*\left(\left[\frac{(2*n)+6}{4}\right]-1\right)+\left(\sqrt{n+1}\right)-1)*\left(\left[\frac{(2*n)+6}{4}\right]-1\right)+1)$ $n\sqrt{n+1}+\sqrt{n+1}$ +5, por tal motivo la complejidad del algoritmo es $O\left(\sqrt{n+1}\right)$

El resultado anterior se da por lo siguiente:

i	j	res	
1	1	3	
	2	5	
	3		
5	1	7	
	2	9	
	3		
9	1	11	
	2	13	
	3		
13	1	15	
	2	<mark>17</mark>	
	3		
17			

En la ultima fila no se ejecuta el j ni el res por el motivo de que el numero que entro a i, no cumple la condición de que i $\le 2^n$

Este algoritmo se ejecuta (3 + n+1 +n + $\left(\frac{n^2+3n+2}{2}\right)-1$) + $\frac{n(n+1)}{2}$) , n^2+4n+4 n veces, por tal motivo su complejidad es de $O(n^2)$

Esta operación lo que calcula es si una lista esta en orden ascendente o descendente y retorna los valores del contador que serían los números que no se encuentran en el orden de menor a mayor.

```
int algoritmo4(int* valores, int n)(
   int suma = 0, contador = 0;
   int i, j, h, flag;

for(i = 0; i < n; i++){
    j = i + 1;
   flag = 0;
   while(j < n && flag == 0){
    if(valores[i] < valores[j]){
      for(h = j; h < n; h++){
            suma += valores[i];
      }
   }
   else{
        contador++;
      flag = 1;
   }
   ++j;
   }
} return contador;</pre>
```

Para este algoritmo nos encontramos con el mejor y peor caso:

- 1. En el mejor caso, los valores están en orden descendente, lo que significa que la línea del for de h, y la línea de lo suma, no se ejecutaran nunca
- 2. En el peor caso, los valores estarán en orden ascendente lo que ocasionará que la línea del for en h y la de la suma se ejecute,

causando que el algoritmo se ejecute una gran cantidad de veces

Para el mejor caso:

```
int algoritmo4(int* valores, int n) {
    int suma = 0, contador = 0;
    int i, j, h, flag;

    for(i = 0; i < n; i++) { n+1
        j = i + 1; n
        flag = 0; n
        while(j < n && flag == 0) (2n) - 1
        if(valores[i] < valores[j]) n - 1
            for(h = j; h < n; h++) {0
                 suma += valores[i]; 0
            }
        }
        else(n-1)
            contador++; n-1
            flag = 1; n-1
        }
        ++j;
        }
        return contador; 1</pre>
```

Este algoritmo ejecutara (n+1+n+n+(2n)-1+n-1+n-1+n-1+n-1), 9n - 3 veces. La complejidad de este algoritmo es O(n)

Para el peor caso:

```
int algoritmo4(int* valores, int n) {
    int suma = 0, contador = 0;
    int i, j, h, flag;

for(i = 0; i < n; i++) n+1
    j = i + 1 n
    flag = 0; n
    while(j < n && flag == 0) {
        if(valores[i] < valores[j]) {
            for(h = j; h < n; h++) {
                 suma += valores[i];
        }
        else{ 0
            contador++; 0
            flag = 1; 0
        }
        ++j; \sum_{j=i+1}^{n} (n-j)-1
        }
        return contador; 1
}</pre>
```

La complejidad de este algoritmo en el peor caso es de $\mathcal{O}(n^2)$

```
void algoritmo5(int n) {
  int i = 0;
  while(i <= n) {
    printf("%d\n", i);
    i += n / 5;
  }
}</pre>
```

Para este algoritmo se hacen algunas restricciones entre estas están:

- 1. Cuando n < 5 el algoritmo será infinito
- 2. Cuando 5<= n >10, el algoritmo se ejecutará (1+(n+1)+n+n) 3n + 2 , Por ese motivo, su complejidad será O(n)

```
void algoritmo5(int n) {
  int i = 0; 1
  while(i <= n) { n+1
    printf("%d\n", i); n
    i += n / 5; n
  }
}</pre>
```

3. Cuando 10<= n <= ∞ , el algoritmo se ejecutará (1+7+6+6) 20 veces , y en este caso su complejidad será O(1)

```
void algoritmo5(int n) {
  int i = 0; 1
  while(i <= n) { 7
    printf("%d\n", i); 6
    i += n / 5; 6
  }
}</pre>
```

```
#1

def fibo (n):
    listaAns = [] 1
    suma = 0 1
    for i in range(0,n+1): n+1
        if i == 0: 1
            listaAns.append(0) 1
        elif i == 1: 1
            listaAns.append(1) 1
        else: n-2
            suma = listaAns[len(listaAns)-1] + listaAns[len(listaAns)-2] n-1
            listaAns.append(suma) n-1
        ans = suma 1
    return ans 1
#print(fibo(6))
```

Según lo anterior logro concluir que la complejidad del algoritmo es $\mathcal{O}(n)$.

números	Replit	Bash
5	30s	85s
10	33s	88s
15	37s	93s
20	37s	95s
25	39s	97s
30	36s	94s
35	31s	95s
40	34s	94s
45	32s	95s
50	35s	95s
60	33s	95s
100	38s	94s

El valor más alto para el cual obtuve su tiempo de ejecución es cuando n = 25, los tiempos obtenidos no fueron lo que imagine ,por el motivo de que la idea que tenia era que serían datos ascendentes en donde el menor tiempo seria cuando n = 5, y el mayor, cuando n = 100, pero me lleve la sorpresa, cuando me dio el numero mas alto en n = 25. De estos tiempo se puede decir que no poseen un patrón exacto, pero se puede llegare a la conclusión de que los números se mantienen en el rango desde 85 hasta 97.

```
#2
def fibo2 (n):
    listaAns = [] 1
    suma = 0 1
    for i in range(0,n+1): n+1
        if i == 0: 1
            listaAns.append(0) 1
        elif i == 1: 1
            listaAns.append(1) 1
        else: n-2
            suma = listaAns[1]+ listaAns[0] n-1
            listaAns[0]= listaAns[1] n-1
            listaAns[1] = suma n-1

return suma 1
#print(fibo2(6))
```

El número total de ejecuciones es: 5n+3

Según lo anterior este algoritmo sería una función lineal, por lo tato su complejidad es $\mathcal{O}(n)$.

número	replit	Bash	
5	32s	95s	
10	33s	95s	
15	31s	94s	
20	23s	79s	
25	31s	95s	
30	32s	93s	
35	31s	96s	
40	31s	93s	
45	31s	95s	
50	29s	95s	
100	33s	95s	
200	37s	91s	
500	34s	94s	

1000	34s	97s
5000	31s	94s
10000	29s	95s

Números	Tiempo-Solución propia		Tiempo-Solución profes	
	Replit	Bash	Replit	Bash
100	1.623s	1.595	0.35s	0.131s
1000	2.868s	3.337s	0.37s	0.139s
5000	4.688s	3.353s	0.49s	0.158s
10000	5.067s	4.829s	0.63s	0.168s
20000	10.492s	4.897s	0.293s	0.181s
100000	2m42.445s	34.594s	2.505s	0.445s
200000	9m41.928	1m56.852s	6.254s	0.929s

 a) Los tiempos de ejecución poseen una gran diferencia, en donde el tiempo de ejecución de la solución propia tiene un valor más grande a comparación de la solución de los profes; lo anterior seguramente se deba a que la solución propia hace más trabajo del necesario, a diferencia de la solución otorgada por los profes.

b)

Solución propia:

```
def sonPrimos(N):
    ans = True
    flag = True
    i = 2
    while i < N and flag:
        if (N%i) == 0:
        ans = False
        flag = False
        i += 1
    return ans</pre>
```

Para este algoritmo está el mejor y el peor caso:

El mejor => Que n < i, en este caso el algoritmo se ejecutará (1+1+1+1+1) 5 veces. En tal caso su complejidad será de O(1)

El peor => Que n sea primo y se ejecute (1+1+1+(n)+(n-1)+1) 2n+3 veces. En tal caso su complejidad será de O(n)

Solución profes:

```
def esPrimo(n):
   if n < 2: ans = False
   else:
    i, ans = 2, True
   while i * i <= n and ans:
      if n % i == 0: ans = False
      i += 1
   return ans</pre>
```

Para este algoritmo se saca lo que es el mejor y el peor caso:

Mejor caso => Que n<2, en este caso, solo se ejecutaría(1+1+1) 3 veces y su complejidad seria O(1)

Peor caso = > Que n sea primo y se ejecute $(1+2+(\lfloor \sqrt{n} \rfloor)+(\lfloor \sqrt{n} \rfloor-1)+(\lfloor \sqrt{n} \rfloor-1)+1)$, $2\sqrt{n}+2$ veces. En tal caso su complejidad será de $O(\sqrt{n})$