SchoolRISCV

https://github.com/zhelnio/schoolRISCV

Stanislav Zhelnio, 2020

Благодарности

- David Harris & Sarah Harris
- Юрий Панчул
- Александр Романов
- IVA Technologies

Что такое schoolRISCV

- простое процессорное ядро для практического преподавания школьникам основ цифровой схемотехники
- написано на языке Verilog
- реализует подмножество архитектуры RISCV
- вырос из аналогичного проекта schoolMIPS

Микроархитектура

- аппаратная реализация архитектуры в виде схемы
- возможны разные реализации одной архитектуры:
 - однотактная
 - многотактная
 - конвейерная

Application Software	programs
Operating Systems	device drivers
Architecture	instructions registers
Micro- architecture	datapaths controllers
Logic	adders memories
Digital Circuits	AND gates NOT gates
Analog Circuits	amplifiers filters
Devices	transistors diodes
Physics	electrons

Особенности schoolRISCV

- однотактная реализация
- нет памяти данных
- словная адресация памяти команд
- 9 инструкций: add, or, srl, sltu, sub, addi, lui, beq, bne

...и этого уже достаточно, чтобы посчитать квадратный корень!

Спецификация RISC-V

The RISC-V Instruction Set Manual Volume I: Unprivileged ISA

Document Version 20191213

Editors: Andrew Waterman¹, Krste Asanović^{1,2}

¹SiFive Inc.,

²CS Division, EECS Department, University of California, Berkeley andrew@sifive.com, krste@berkeley.edu

December 13, 2019

Последовательность проектирования

- тракт данных Data Path
- устройство управления Control Unit

Архитектурное состояние

ADDI: выборка инструкции

ADDI: спецификация

Integer Register-Immediate Instructions

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and the result is simply the low XLEN bits of the result. ADDI rd, rs1, 0 is used to implement the MV rd, rs1 assembler pseudoinstruction.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled to show which instruction bit (inst[y]) produces each bit of the immediate value.

31	30	20 19	12	11	10	5	4	1	0	
		— inst[31] —			inst[3	0:25]	ins	t[24:21]	inst[20]	I-immediate

ADDI: считывание операнда из регистрового файла

31	25 24	20	19	15	14	12	11	7	6 0	_
	imm[11:0]			rs1	fur	nct3		rd	opcode	I-type

ADDI: декодирование константы из тела инструкции

ADDI: вычисление результата арифметической операции

ADDI: декодирование регистра назначения

ADDI: запись результата в регистр назначения

ADDI: вычисление адреса следующей инструкции

ADDI: I-type, adds the sign-extended 12-bit immediate to register rs1: rd = rs1 + imml

31	25 24	20	19	15	14	12	11	7	6 0	_
	imm[11:0]		r	s1	fund	t3		rd	opcode	I-type

ADDI: итоговая схема

ADDI: I-type, adds the sign-extended 12-bit immediate to register rs1: rd = rs1 + imml

31		25 24	20	19		15	14	12	11		7	6			0	
		imm[11:0]			rs1		fun	ct3		rd			o	pcode		I-type
31	30		20	19				12	11	10	•	5	4	1	0	
			inst[31]								inst[30:2	5]	inst	t[24:21]	inst[20]	I-immediate

ADD: спецификация

Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers as source operands and write the result into register rd. The funct7 and funct3 fields select the type of operation.

;	31 2	25 24 20	19 19	5 14 12	11 7	6 0
	funct7	rs2	rs1	funct3	rd	opcode
	7	5	5	3	5	7
	0000000	src2	src1	ADD/SLT/SLT	U dest	OP
	0000000	src2	src1	AND/OR/XOR	dest	OP
	0000000	src2	src1	SLL/SRL	dest	OP
	0100000	src2	src1	SUB/SRA	dest	OP

ADD performs the addition of rs1 and rs2. SUB performs the subtraction of rs2 from rs1. Overflows are ignored and the low XLEN bits of results are written to the destination rd. SLT and SLTU perform signed and unsigned compares respectively, writing 1 to rd if rs1 < rs2, 0 otherwise. Note,

ADD: выборка операнда rs1

ADD: R-type, performs the addition of rs1 and rs2: rd = rs1 + rs2

31	25	24	20	19	15	14	12	11	7	6		0	
	funct7	r	s2	rs1		fund	t3		rd		opcode		R-type

ADD: выборка операнда rs2

ADD: R-type, performs the addition of rs1 and rs2: rd = rs1 + rs2

31	2	25	24	20	19	15	14	12	11	7	6	0	_
	funct7			rs2		rs1	fun	ct3		rd		opcode	R-type

ADD: передача второго операнда в АЛУ

31	2	25	24 20	19	9 15	14 12	2 '	11 7	6 0	_
	funct7		rs2		rs1	funct3		rd	opcode	R-type

ADD: итоговая схема

ADD: R-type, performs the addition of rs1 and rs2: rd = rs1 + rs2

31	25	24	20	19	15	14	12	11	7	7 6	6	0	
funct7			rs2		rs1	fun	ct3		rd		opcode		R-type

LUI: спецификация

	31 12	11 7	6 0
	imm[31:12]	$^{\mathrm{rd}}$	opcode
_	20	5	7
	U-immediate[31:12]	dest	LUI
	U-immediate[31:12]	dest	AUIPC

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest 12 bits with zeros.

. . .

inst[31]	inst[30:20]	inst[19:12]	— 0 —	U-immediate
----------	-------------	-------------	-------	-------------

LUI: декодирование и передача константы

BEQ: спецификация

Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to give the target address. The conditional branch range is $\pm 4 \,\text{KiB}$.

31	30 2	25 24 20	19 15	14 12	11 8	7	6	0
imm[12]	imm[10:5]	rs2	rs1	funct3	imm[4:1]	imm[11]	opcode	
1	6	5	5	3	4	1	7	
offset	[12 10:5]	src2	src1	BEQ/BNE	offset[1]	1 4:1]	BRANCH	
offset	[12 10:5]	src2	src1	BLT[U]	offset[1]	1[4:1]	BRANCH	
offset	[12 10:5]	src2	src1	BGE[U]	offset[1]	1[4:1]	BRANCH	

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs1 and rs2 are equal or unequal respectively. BLT and BLTU take the branch if rs1 is less than rs2, using signed and unsigned comparison respectively. BGE and BGEU take the branch if rs1 is greater than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU, respectively.

BEQ: вычисление адреса условного перехода

BEQ: выбор адреса

BEQ: определение необходимости перехода

BEQ: итоговая схема

BNE: BEQ наоборот

BNE: новая цепь управления

Устройство управления

Декодирование типа инструкции

Итоговая схема процессора

Состав процессора

- Тракт данных
 - Счетчик команд РС
 - ∘ Память инструкций *Instruction Memory*
 - Декодер инструкций Instruction Decoder
 - Регистровый файл Register File
 - Арифметико-логическое устройство *ALU*
 - ∘ Сумматоры адреса *pcPlus4* и *pcBranch*
 - ∘ Мультиплексоры *pcSrc*, *wdSrc* и *aluSrc*
- Устройство управления

Реализация: РС, сумматоры и мультиплексор адреса

```
// sm_register.v
module sm_register
    input
                         clk,
    input
                        rst,
    input [ 31 : 0 ] d,
    output reg [ 31 : 0 ] q
);
    always @ (posedge clk or negedge rst)
        if(~rst) q <= 32'b0;</pre>
        else q <= d;
endmodule
```

```
// sr_cpu.v
    wire [31:0] pc;
    wire [31:0] pcBranch = pc + immB;
    wire [31:0] pcPlus4 = pc + 4;
    wire [31:0] pcNext = pcSrc ? pcBranch : pcPlus4;
    sm_register r_pc(clk ,rst_n, pcNext, pc);
```

Реализация: память инструкций

```
// sm rom.v
module sm_rom
#(
    parameter SIZE = 64
    input [31:0] a,
    output [31:0] rd
);
    reg [31:0] rom [SIZE - 1:0];
    assign rd = rom [a];
    initial begin
        $readmemh ("program.hex", rom);
    end
endmodule
```

```
// sm_top.v
sm_rom reset_rom(imAddr, imData);
```

Реализация: декодер инструкций (начало)

```
// sr cpu.v
module sr decode
   input [31:0] instr,
   output [ 6:0] cmdOp,
   output [4:0] rd,
   output [ 2:0] cmdF3,
   output [ 4:0] rs1,
   output [ 4:0] rs2,
   output [6:0] cmdF7,
   output reg [31:0] immI,
   output reg [31:0] immB,
   output reg [31:0] immU
);
   assign cmdOp = instr[ 6: 0];
   assign rd = instr[11: 7];
   assign cmdF3 = instr[14:12];
   assign rs1 = instr[19:15];
   assign rs2 = instr[24:20];
   assign cmdF7 = instr[31:25];
```

Реализация: декодер инструкций (продолжение)

```
// I-immediate
   always @ (*) begin
        immI[10: 0] = instr[30:20];
        immI[31:11] = { 21 {instr[31]} };
    end
   // B-immediate
    always @ (*) begin
        immB[ 0] = 1'b0;
        immB[ 4: 1] = instr[11:8];
        immB[10: 5] = instr[30:25];
        immB[31:11] = { 21 {instr[31]} };
    end
   // U-immediate
   always @ (*) begin
        immU[11: 0] = 12'b0;
        immU[31:12] = instr[31:12];
    end
endmodule
```

Реализация: регистровый файл

```
// sr cpu.v
module sm register file
   input clk,
   input [ 4:0] a0,
   input [ 4:0] a1,
   input [ 4:0] a2,
   input [ 4:0] a3,
   output [31:0] rd0,
   output [31:0] rd1,
   output [31:0] rd2,
    input [31:0] wd3,
    input we3
    reg [31:0] rf [31:0];
    assign rd0 = (a0 != 0) ? rf [a0] : 32'b0;
    assign rd1 = (a1 != 0) ? rf [a1] : 32'b0;
    assign rd2 = (a2 != 0) ? rf [a2] : 32'b0;
    always @ (posedge clk)
       if(we3) rf [a3] <= wd3;</pre>
endmodule
```

Реализация: операции ALU

Реализация: ALU

```
// sr_cpu.v
module sr_alu
   input [31:0] srcA,
   input [31:0] srcB,
   input [ 2:0] oper,
   output zero,
   output reg [31:0] result
);
   always @ (*) begin
       case (oper)
           default : result = srcA + srcB;
           `ALU_ADD : result = srcA + srcB;
           `ALU OR : result = srcA | srcB;
           `ALU_SRL : result = srcA >> srcB [4:0];
           `ALU SLTU : result = (srcA < srcB) ? 1 : 0;
           `ALU SUB : result = srcA - srcB;
       endcase
   end
   assign zero = (result == 0);
endmodule
```

Реализация: мультиплексоры данных

```
// sr_cpu.v
wire [31:0] srcB = aluSrc ? immI : rd2;
```

```
// sr_cpu.v
assign wd3 = wdSrc ? immU : aluResult;
```


Код операции: спецификация

130 Volume I: RISC-V Unprivileged ISA V20191213

31	27	26	25	24	2) 1	9	15	14	12	11	7	6	0	
	funct7				rs2		rs1		fun	ct3		$^{\mathrm{rd}}$	opc	ode	R-type
	ir	nm[11:()]			rs1		fun	ct3		$^{\mathrm{rd}}$	opc	ode	I-type
j	mm[11:	5]			rs2		rs1		fun	ct3	imı	n[4:0]	opc	ode	S-type
in	m[12 10):5]			rs2		rs1		fun	ct3	imm	[4:1 11]	opc	ode	B-type
				im	m[31:12							$_{\mathrm{rd}}$	opc	ode	U-type
			imn	n[20	10:1 11	19:12	2]					$^{\mathrm{rd}}$	opc	ode	J-type

RV32I Base Instruction Set

	imm[31:12]			rd	0110111	LUI
	imm[31:12]			$^{\mathrm{rd}}$	0010111	AUIPC
im	m[20 10:1 11 19	9:12]		$^{\mathrm{rd}}$	1101111	JAL
imm[11:	0]	rs1	000	$^{\mathrm{rd}}$	1100111	JALR
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:	0]	rs1	000	$^{\mathrm{rd}}$	0000011	LB
imm[11:	0]	rs1	001	$^{\mathrm{rd}}$	0000011	LH
imm[11:	0]	rs1	010	$^{\mathrm{rd}}$	0000011	LW
imm[11:	0]	rs1	100	$^{\mathrm{rd}}$	0000011	LBU
imm[11:	0]	rs1	101	$^{\mathrm{rd}}$	0000011	LHU
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW
imm[11:	0]	rs1	000	$_{ m rd}$	0010011	ADDI

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????							
									_	

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000					

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000							

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000					

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????							

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????			1	1			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????							

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100					

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1
BNE	1100011	001	???????							

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1
BNE	1100011	001	???????	0	100	0	0			

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1
BNE	1100011	001	???????	0	100	0	0	~aluZero	1	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1
BNE	1100011	001	???????	0	100	0	0	~aluZero	1	0

Instruction	cmdOp	cmdF3	cmdF7	aluSrc	aluControl	wdSrc	regWrite	pcSrc	branch	condZero
ADDI	0010011	000	???????	1	000	0	1	0	0	0
ADD	0110011	000	0000000	0	000	0	1	0	0	0
LUI	0110111	???	???????	0	000	1	1	0	0	0
BEQ	1100011	000	???????	0	100	0	0	aluZero	1	1
BNE	1100011	001	???????	0	100	0	0	~aluZero	1	0

Реализация: коды инструкций

```
// sr_cpu.vh
// instruction opcode
`define RVOP_ADDI 7'b0010011
`define RVOP_BEQ 7'b1100011
// instruction funct3
`define RVF3_ADDI 3'b000
`define RVF3_BEQ 3'b000
`define RVF3_BNE 3'b001
`define RVF3_ADD 3'b000
`define RVF3_ANY 3'b???
// instruction funct7
`define RVF7_ADD 7'b0000000
`define RVF7_ANY 7'b??????
```

Реализация: устройство управления (начало)

```
// sr cpu.v
module sr control
   input [ 6:0] cmdOp,
   input [ 2:0] cmdF3,
   input [ 6:0] cmdF7,
   input
                 aluZero,
   output
                pcSrc,
   output reg
regWrite,
   output reg aluSrc,
   output reg wdSrc,
   output reg [2:0] aluControl
);
   reg branch;
   reg condZero;
   assign pcSrc = branch & (aluZero == condZero);
```

Реализация: устройство управления (продолжение)

```
// sr cpu.v
    always @ (*) begin
       branch
                   = 1'b0;
       condZero = 1'b0;
       regWrite
                 = 1'b0;
       aluSrc
                 = 1'b0;
       wdSrc
                   = 1'b0;
       aluControl = `ALU ADD;
       casez( {cmdF7, cmdF3, cmdOp} )
           { `RVF7 ADD, `RVF3 ADD, `RVOP ADD } : begin regWrite = 1'b1; aluControl = `ALU ADD;
           { `RVF7 OR, `RVF3 OR, `RVOP OR } : begin regWrite = 1'b1; aluControl = `ALU OR;
                                                                                                end
           { `RVF7_SRL, `RVF3_SRL, `RVOP_SRL } : begin regWrite = 1'b1; aluControl = `ALU_SRL;
           { `RVF7 SLTU, `RVF3 SLTU, `RVOP SLTU } : begin regWrite = 1'b1; aluControl = `ALU SLTU; end
           { `RVF7 SUB, `RVF3 SUB, `RVOP SUB } : begin regWrite = 1'b1; aluControl = `ALU SUB; end
           { `RVF7 ANY, `RVF3 ADDI, `RVOP ADDI } : begin regWrite = 1'b1; aluSrc = 1'b1; aluControl = `ALU ADD; end
           { `RVF7 ANY, `RVF3 ANY, `RVOP LUI } : begin regWrite = 1'b1; wdSrc = 1'b1; end
           { `RVF7 ANY, `RVF3 BEO, `RVOP BEO } : begin branch = 1'b1; condZero = 1'b1; aluControl = `ALU SUB; end
           { `RVF7 ANY, `RVF3 BNE, `RVOP BNE } : begin branch = 1'b1; aluControl = `ALU SUB; end
       endcase
    end
```

Структура проекта и подключение периферии

Программирование системы

Что дальше?

- Цифровая схемотехника и архитектура компьютера
 David Harris & Sarah Harris
 ДМК Пресс
- Цифровой синтез: практический курс Александр Романов & Юрий Панчул ДМК Пресс
- Syntacore SCR1
 https://github.com/syntacore/scr1

Ваши вопросы?