

Curso de Física IV – F 428

Aula Exploratória 01 Ondas Eletromagnéticas

Uma visão geral sobre ondas...

Onda longitudinal

As partículas oscilam na mesma direção de propagação da onda.

Ex. Ondas sonoras

Onda transversal

As partículas oscilam na direção perpendicular à direção de propagação da onda.

Ex. Ondas eletromagnéticas

Parâmetros de uma onda

As ondas oscilam tanto no espaço quanto no tempo.

Amplitude da onda (A)

"Altura" máxima atingida pela onda.

Comprimento de onda (λ)

Distância entre dois máximos ou dois mínimos da onda

Período (T)

Intervalo de tempo para uma oscilação.

Frequência (f)

Número de oscilações por unidade de tempo.

f = 1/T

Como equacionar uma onda?

As ondas oscilam tanto no espaço quanto no tempo.

Funções do tipo **seno** ou **cosseno**, ou exponenciais complexas.

Função de **x** e **t**.

Equação de onda:

$$\frac{1}{\mathbf{v}^2} \frac{\partial^2 y}{\partial t^2} - \nabla^2 y = 0$$

Velocidade da onda

$$v = \omega/k$$

Solução

 $y(x,t) = A \cos(kx - \omega t)$

Amplitude

Frequência angular

 $\omega = 2\pi f$

Número de onda

$$K = 2\pi/\lambda$$

Usando números complexos

Fórmula de Euler:

$$e^{i\phi} = cos(\phi) + i sen(\phi)$$
 $Re(z)$
 $Im(z)$

Solução da equação de onda:

$$Y(x,t) = Ae^{i(kx - \omega t)} = A\cos(kx - \omega t) + i Asen(kx - \omega t)$$

$$y(x,t) = Re[Y(x,t)] = Re[Ae^{i(kx - \omega t)}] = Acos(kx - \omega t)$$

$$y(x,t) = A \cos(kx - \omega t)$$

Ondas eletromagnéticas

As equações de Maxwell descrevem todos os fenômenos eletromagnéticos (EM)

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\phi_B}{dt}$$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I + \epsilon_0 \mu_0 \frac{d\phi_E}{dt}$$

ondas EM são previstas pelas Eq. De Maxwell

$$\nabla^2 E = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$
$$\nabla^2 B = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$

Permissividade do vácuo: ϵ_0

Permeabilidade do vácuo: μ_0

Ondas EM se propagam no vácuo com a velocidade da luz c onde:

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \qquad (\mu_0 c)(\epsilon_0 c) = 1$$

Descrição matemática

Campo Elétrico

$$\vec{E} = E_m \sin(kx - \omega t)\hat{y}$$

Campo Magnético

Razão de

$$\vec{B} = B_m \sin(kx - \omega t)\hat{z}$$

 $\frac{E_m}{E_m} = c$

Amplitudes: B_n

Número de onda:
$$k = \frac{2\pi}{\lambda}$$

Frequência Angular:
$$\omega = \frac{2\pi}{\tau}$$

Permissividade do Vácuo: ϵ_0

Permiabilidade do Vácuo: μ_0

Energia transportada e vetor de Poynting

Ondas eletromagnéticas transportam energia com densidade de energia:

$$u_E = \frac{1}{2}\epsilon_0 E_0^2 = \frac{1}{2c^2\mu_0} E_0^2 = \frac{1}{2\mu_0} B_0^2 = u_B$$

A taxa de fluxo de energia atravessando uma unidade de área é dada pelo vetor de Poynting, definido como:

Vetor de Poynting:
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

A intensidade da radiação é obtida pelo valor médio do vetor de Poynting:

$$I = S_{m\acute{e}dio} = \frac{1}{2}c\epsilon_0 E_0^2 = \frac{1}{2c\mu_0} E_0^2$$

Fonte isotrópica

- Uma fonte pontual emite isotropicamente.
- A intensidade das ondas eletromagnéticas a uma distância r de uma fonte pontual S de potencia P_s é dada por:

$$I = \frac{\text{pot.}}{\text{área}} = \frac{P_s}{4\pi r^2}$$

Como a intensidade muda com a distância ?

Pressão de radiação

Ondas EM possuem **momento linear** e **energia**, obedecendo as respectivas Leis de Conservação). Podem assim exercer **pressão** sobre superficies.

$$\Delta p = \frac{\Delta U}{c}$$

$$p_r = \frac{I}{c}$$

$$S_{\text{reflected}}$$
 S_{incident}
 Δp

Reflexão total:

$$\Delta p = \frac{2 \Delta U}{c}$$

$$p_r = \frac{2I}{c}$$

 $F = \frac{IA}{a}$ (absorção total)

$$I = \frac{\text{potência}}{\text{área}} = \frac{\text{energia/tempo}}{\text{área}} = \frac{\Delta U/\Delta t}{A}$$

$$F = \frac{2IA}{a}$$
 (reflexão total)

$$F = \frac{\Delta p}{\Delta t} \qquad \Delta U = IA\Delta t$$

$$p_r = \frac{F}{A}$$
 Pressão de Radiação

Velas solares

Aplicação do conceito de **pressão de radiação** para possível locomoção e ajuste de rotas de satélites e outros veículos espaciais.

Irradiância (sol a 1 UA): ~ 1400 W/m²

Reflexão perfeita:

$$F = \frac{2I}{c} \approx 9.3 \,\mu\text{N/m}^2$$

Eficiência ~ 90%

345 m x 345 m \rightarrow ~ 1 N

Constantes físicas

Velocidade de propagação da luz no vácuo:

$$c = 299.792.458 \text{ m/s} \approx 3 \text{ x } 10^8 \text{ m/s}$$

Permissividade do vácuo:

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$$

Permeabilidade do vácuo:

$$\mu_0 = 1.257 \mathrm{x} 10^{-6} \; \mathrm{H/m} \approx 4 \pi \; \mathrm{x} \; 10^{-7} \; \mathrm{H/s}$$

Impedância do vácuo:

$$\mu_0 c = 376,730 \Omega$$

Aceleração gravitacional:

$$g = 9.81 \text{ m/s}^2$$

Pretende-se levitar uma pequena esfera, totalmente absorvente, 0,50 m acima de uma fonte luminosa pontual e isotrópica fazendo com que a força para cima exercida pela radiação seja igual ao peso da esfera. A esfera tem 2,00 mm de raio e uma massa específica de 19,0 g/cm³.

- A) Qual deve ser a potência da fonte luminosa?
- B) Mesmo que fosse possível construir uma fonte com essa potência, por que o equilíbrio da esfera seria instável?

Uma onda que se propaga na direção x possui amplitude máxima E_m , sendo $\omega = 1 \text{ rad/s}$ e $\lambda = 2\pi m$.

- A) Calcule k, f, T, v desta onda.
- B) Qual a equação desta onda? (Suponha E = 0 e dE/dx > 0 em t = 0, x = 0).
- C) Desenhe a amplitude desta onda como função de x nos instantes de tempo t = 0 e $t = \pi/2$.
- D) No instante de tempo t=0, qual a amplitude desta onda nos pontos $x=\pi$? E para $t=\pi/2$?
- E) Em t = 0, uma outra onda de mesmos parâmetros E_m , k e ω possui amplitude $E_m/2$ no ponto x = π . Qual a diferença de fase em relação à primeira onda? (Suponha que essa nova onda tem dE/dx > 0 em t = 0, x = π).

Uma fonte pontual isotrópica emite luz com um comprimento de onda de 500 nm e uma potência de 200 W. Um detector de luz é posicionado a 400 m da fonte. Qual é a máxima taxa $\partial B/\partial t$ com a qual a componente magnética da luz varia com o tempo na posição do detector?

Uma pequena espaçonave, cuja massa é 1,5 x 10³ kg (incluindo um astronauta), está perdida no espaço, longe de qualquer campo gravitacional. Se o astronauta ligar um laser de 10 kW de potência, que velocidade a nave atingirá após transcorrer um dia, por causa do momento linear associado à luz do laser?

Exercício Extra 1

Uma estação de rádio AM transmite isotropicamente com uma potência média de 4,00 kW. Uma antena de dipolo de recepção de 65,0 cm de comprimento está a 4,00 km do transmissor. Calcule a amplitude da f.e.m. induzida por esse sinal entre as extremidades da antena receptora.

Lembrando: f. e. m. =
$$\varepsilon_L = \int_0^L E_m(d) dy$$

Onde L é o comprimento da antena.

Exercício Extra 2: Como medir a velocidade da luz usando um microondas

https://www.cnet.com/news/appliance-science-experiments-mapping-your-microwave-hot-spots/

Extra: como medir a velocidade da luz usando um microondas

https://www.cnet.com/news/appliance-science-experiments-mapping-your-microwave-hot-spots/

Medindo a distância entre os centros de dois focos de derretimento vizinhos, obtemos **metade do comprimento de onda** da radiação eletromagnética usada! Agora basta saber a **frequência** e usar $c = \lambda f$

Respostas

Exercício 2)

A)
$$k = \frac{2\pi}{\lambda} = 1m^{-1}, f = \frac{\omega}{2\pi} = \frac{1}{2\pi}s^{-1}, T = \frac{2\pi}{\omega} = 2\pi s \, \text{ev} = \lambda f = 1m/s.$$

B)
$$\vec{E}(x,t) = E_m \text{sen} (x m^{-1} - t s^{-1}) \hat{y}.$$

E)
$$\phi=\pmrac{5\pi}{6}$$

Exercício 1)

$$P_{ot} \approx 4.68 \cdot 10^{11} W$$

Exercício 3)

$$\frac{\partial B}{\partial t} \bigg|_{\text{máx}} \approx 3.44 \cdot 10^6 T/s$$

Exercício 4)

$$\Delta v \approx 1.9 \cdot 10^{-3} m/s$$

Extra 1)

$$\epsilon \approx 80mV$$