Министерство образования Республики Беларусь Учреждение образования

Белорусский государственный университет информатики и радиоэлектроники

Кафедра ИТАС

Лабораторная работа №7
«Решение задач на основе
моделей массового обслуживания»
Вариант №8

Проверила: Выполнила:

Протченко Е.В. ст.гр.820605

ОИФ

Условие:

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей составляют от 4 до 7 минут. Все заготовки обрабатываются на станке А; время обработки детали на станке примерно постоянное и составляет 5 минут.

10% деталей, выпущенных на станке А, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка А поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 20 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок С, на котором обработка занимает в среднем 6 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	А	В	С
Работа	0,2	0,3	0,8
Простой	0,1	0,1	0,1

Прочие расходы, связанные с выпуском деталей, следующие: деталь типа 1 - 4 д.е., деталь типа 2 - 10 д.е. (включая расходы на выпуск детали типа 1). Детали типа 1 продаются по цене 8 д.е., типа 2 - 45 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков B1-B2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка C (8.13, 8.4, 8.7). Поток деталей на станок C считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (с интервалом от 3 до 6 минут), а станок А заменен на новый (А1); время обработки одной детали на станке А1 4 минуты. Для нового станка А1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

Решение:

Характеристики работы станка A (G/D/1):

Интервалы времени между элементами поступления деталей распределены по равномерному закону. Таким образом, поток заготовок является потоком Пальма. Средний интервал между заявками равен 5,5 минут,

=> интенсивность $\lambda=0.182\frac{{\rm детали}}{{\rm мин}}$. Время обработки детали на станке является детерминированной величиной. => $\bar{x}=5$ мин, $\mu=0.2\frac{{\rm детали}}{{\rm мин}}$. Число каналов m=1. Нагрузка: $\rho=\frac{\lambda}{m\mu}=0.91$.

Вероятность простоя: $P_0 = 1 - \rho = 0.09$.

Средняя длина очереди. Так как интервалы поступления новых заказов распределяются по равномерному закону, то коэффициент вариации интервалов времени между заявками $\nu=\frac{7-4}{(4+7)\sqrt{3}}=0,\!157.$ Время обслуживания заготовок – детерминированная величина, поэтому коэффициент вариации времени обслуживания $\varepsilon=0.$

=>
$$\bar{q}=rac{
ho^2(v^2+arepsilon^2)}{2(1-
ho)}=0$$
,113 заготовки.

На обслуживание принимаются все поступающие заготовки, поэтому $P_{\text{отк}}=0$, $P_{\text{обсл}}=1$. Коэффициент загрузки $U=\rho(1-P_{\text{отк}})=0.91$.

Среднее число заявок на обслуживание (среднее число занятых каналов) $\bar{S}=mU=0,91.$ Среднее число заявок в СМО: $\bar{k}=\bar{q}+\bar{S}=1,023.$

Пропускная способность: $\gamma = \mu \bar{S} = 0.182$ заготовок/мин.

Среднее время пребывания в очереди (формула Литтла): $\overline{w}=rac{ar{q}}{\gamma}=0$,623 мин.

Среднее время пребывания заявки в СМО: $\bar{t} = \overline{w} + \bar{x} = 5,62$ мин.

Проанализируем полученные характеристики СМО.

Станок загружен на 91%, т.е. занят обработкой деталей 91% всего времени своей работы. В течение 9% времени СМО простаивает из-за отсутствия заказов. Т.е. устройство перегружено (U>0,85). В среднем в очереди находится 0,113 заготовок, а в очереди на обслуживание — 1,023 прибора. Устройство в среднем обрабатывает 0,182 заготовки в минуту (или 10,92 в час). Время от поступления заготовки до начала её обработки составляет в среднем 0,623 мин. Время до окончания = 5,62 мин.

Характеристики работы станков B1 и B2 (M/M/2 с ограничениями на длину очереди n=5):

Интервалы времени между элементами поступления деталей распределены по пуассоновскому закону. Интенсивность $\lambda=0.164\frac{\rm детали}{\rm мин}$, т.к. на эти станки поступает 90% деталей со станка А. $\bar{x}=20$ мин, $\mu=0.05\frac{\rm детали}{\rm мин}$. Число каналов m=2.

Нагрузка:
$$\rho = \frac{\lambda}{m\mu} = 1,64$$
.

$$P_0 = \left[\sum_{i=0}^{m} \frac{(m\rho)^i}{i!} + \frac{(m\rho)^{m+1}}{m \cdot m!} \cdot \frac{1-\rho^n}{1-\rho} \right]^{-1} P_0 = 0,007.$$

Вероятность простоя:

Средняя длина очереди. Так как интервалы поступления новых заказов распределяются по пуассоновскому закону, то коэффициент вариации интервалов времени между заявками $\nu=1$. Время обслуживания заготовок изменяется по экспоненциальному закону, поэтому коэффициент вариации времени обслуживания $\varepsilon=1$.

$$P_{\text{отк}} = \frac{(m\rho)^{m+n}}{m^n \cdot m!} P_0.$$
 $P_{\text{отк}} = 0,4467, P_{\text{обсл}} = 0,5533.$

Коэффициент загрузки $U = \rho (1 - P_{\text{отк}}) = 0$,9.

Среднее число заявок на обслуживание (среднее число занятых каналов) $\bar{S}=mU=1,8.$ Среднее число заявок в СМО: $\bar{k}=\bar{q}+\bar{S}=5,886.$

Пропускная способность: $\gamma = \mu \bar{S} = 0.09$ заготовок/мин.

Среднее время пребывания в очереди (формула Литтла): $\overline{w}=rac{ar{q}}{\gamma}=45$,4 мин.

Среднее время пребывания заявки в СМО: $\bar{t} = \bar{w} + \bar{x} = 65,4$ мин.

Проанализируем полученные характеристики СМО.

Станок загружен на 90%, т.е. устройство перегружено. Около 45% деталей идут на станок С. В среднем в очереди находится 1,8 заготовок, а в очереди на обслуживание — 5,886 прибора. Устройство в среднем обрабатывает 0,09 заготовки в минуту. Время от поступления заготовки до начала её обработки составляет в среднем 45,4 мин. Время до окончания = 65,4 мин.

Характеристики работы станка С (М/М/1 без ограничений на очередь):

Интервалы времени между элементами поступления деталей распределены по пуассоновскому закону. Интенсивность $\lambda = P_{\text{отк}} * \lambda_{\text{B}} = 0.07 \frac{\text{детали}}{\text{мин}}.$

$$ar{x}=6$$
 мин, $\mu=0$,17 $rac{ ext{детали}}{ ext{мин}}$. Число каналов m=1.

Нагрузка:
$$\rho = \frac{\lambda}{m\mu} = 0.41$$
.

Вероятность простоя: $P_0 = 1 - \rho = 0.59$.

Средняя длина очереди. Так как интервалы поступления новых заказов распределяются по пуассоновскому закону, то коэффициент вариации интервалов времени между заявками $\nu=1$. Время обслуживания заготовок изменяется по экспоненциальному закону, поэтому коэффициент вариации времени обслуживания $\varepsilon=1$.

$$=> \overline{q} = \frac{\rho^2(v^2 + \varepsilon^2)}{2(1-\rho)}$$
 $\overline{q} = 0,285$ заготовок.

Станок принимает на обслуживание все детали => $P_{
m oth}=0$, $P_{
m ofcn}=1$.

Коэффициент загрузки $U = \rho = 0.41$.

Среднее число заявок на обслуживание (среднее число занятых каналов) $\bar{S}=mU=0.41.$

Среднее число заявок в СМО: $ar{k}=ar{q}+ar{S}=0$,7.

Пропускная способность: $\gamma=\mu\bar{S}=0.07$ заготовок/мин.

Среднее время пребывания в очереди (формула Литтла): $\overline{w} = \frac{\overline{q}}{\nu} = 4,07$ мин.

Среднее время пребывания заявки в СМО: $\bar{t} = \bar{w} + \bar{x} = 10,\!07$ мин.

Проанализируем полученные характеристики СМО.

Станок загружен на 41%, т.е. он простаивает значительную часть времени. В среднем в очереди находится 0,41 заготовок, а в очереди на обслуживание — 0,7 прибора. Устройство в среднем обрабатывает 0,07 заготовки в минуту. Время от поступления заготовки до начала её обработки составляет в среднем 4,07 мин. Время до окончания = 10,07 мин.

Таким образом, характеристики станков на участке:

Характеристики	А	B1-B2	С
ρ	0,91	1,64	0,41
P ₀	0,09	0,007	0,59
$ar{q}$, деталей	0,113	4,086	0,285
Ротк	0	0,4467	0
Робсл	1	0,5533	1
U	0,91	0,9	0,41
$ar{S}$, деталей	0,91	1,8	0,41
\overline{k} , деталей	1,023	5,886	0,7
γ , деталей/мин	0,182	0,09	0,07
\overline{w} , мин	0,62	45,4	4,07
$ar{t}$, мин	5,62	65,4	10,07

Найдём прибыль от работы участка за 8 часов

Выручка от обслуживания заявок в СМО в течение 8 часов $V=\gamma CT=V_A*0.1+V_B+V_C=480*(0.182*8*0.1+(0.09+0.07)*45)=3525.89$ ден.ед. (здесь 480 – продолжительность рабочей смены в минутах; 0.1 - процент деталей типа 1, идущих на продажу).

Затраты на изготовление деталей
$$Z_{\rm обсл}=\gamma\mathcal{C}_{\rm обсл}T=480*(0.182*4*0.1+(0.09+0.07)*10)=802,94$$
 ден. ед.

Затраты, связанные с эксплуатацией СМО в течение 8 часов $Z_{\rm эксп} = (\bar{S}C_{\rm pa6} + (m-\bar{S})C_{\rm np})T = 480*(0.91*0.2+(1-0.91)*0.1+1.8*0.3+(2-1.8)*0.1+0.41*0.8+(1-0.41)*0.1)=546.24$ ден. ед.

Прибыль = 3525,89 - 802,94 - 546,24 = 2176,71 ден. ед.

Вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди)

Вероятность пребывания в СМО не более 2 заявок

$$P(j \le 1) = \sum_{j=0}^{1} P_j = P_0 + P_1$$

$$P_j = \frac{(m\rho)^j}{j!} P_0, \qquad j = 1$$

$$P(j \le 1) = 0.007 + 2 * 1.64 * 0.007 = 0.03$$

⇒ В 3% случаях.

Определить, являются ли изменения целесообразными:

Условие:

Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (с интервалом от 3 до 6 минут), а станок А заменен на новый (А1); время обработки одной детали на станке А1 - 4 минуты. Для нового станка А1 затраты на одну минуту работы и простоя - 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

Решение:

Новые характеристики станков:

Характеристики	A1	B1-B2	С
ρ	0,889	1,98	0,592
P ₀	0,111	0,00198	0,408
$ar{q}$, деталей	0,132	4,06	0,859
Ротк	0	0,5033	0
Робсл	1	0,4967	1
U	0,889	0,992	0,592
$ar{S}$, деталей	0,889	1,98	0,592
\overline{k} , деталей	1,02	6,04	1,451
γ , деталей/мин	0,222	0,099	0,1006
\overline{w} , мин	0,59	41,01	8,54
$ar{t}$, мин	4,59	61,01	14,54

Найдём прибыль от работы участка за 8 часов

Выручка от обслуживания заявок в СМО в течение 8 часов $V = \gamma CT = V_A * 0.1 + V_B + V_C = 480 * (0.222 * 8 * 0.1 + (0.099 + 0.1006) * 45) = 4396,608 ден.ед. (здесь 480 – продолжительность рабочей смены в минутах; 0.1 - процент деталей типа 1, идущих на продажу).$

Затраты на изготовление деталей $Z_{\rm o6cn}=\gamma C_{\rm o6cn}T=480*(0,222*4*0,1+(0,099+0,1006)*10)=1000,704$ ден. ед. Затраты, связанные с эксплуатацией СМО в течение 8 часов $Z_{\rm эксп}=\left(\bar{S}C_{\rm pa6}+(m-\bar{S})C_{\rm пp}\right)T=480*(0,889*0,4+(1-0,889)*0,2+1,98*0,3+(2-1,98)*0,1+0,592*0,8+(1-0,592)*0,1)=714,34$ ден. ед. Прибыль = 4396,608-1000,704-714,34=2681,564 ден. ед.

Таким образом, замена станка A на новый и A1 и уменьшение интервала времени между моментами поступления заготовок приведет к росту прибыли предприятия с 2176,71 до 2681,564 ден.ед., т.е. на 504,854 ден.ед. в смену (8 часов). Рост прибыли достигнут за счет увеличения пропускной способности станка A (в A1) и более интенсивного использования станков В1-В2 и С. При этом загрузка нового станка A1 меньше, чем старого A.

Отрицательным результатом является увеличение количества отказов на станках В1-В2 (что, впрочем, лишь означает отправление детали на станок С) и увеличение времени ожидания в очереди деталей у станков В1-В2 и С.

=> Данные изменения следует признать выгодными.