

CO₂ and Cost Impacts of a Microgrid with Electric Vehicle Charging Infrastructure: a Case Study in Southern California

Luis Fernando Enriquez-Contreras, Matthew Barth, Sadrul Ula

College of Engineering, Center for Environmental Research & Technology University of California, Riverside

Purpose and Contributions

- This research holds significant implications for the advancement of intelligent transportation systems, as it aims to address the economic needs of EV charging infrastructure owners and determine the optimal configuration that benefits both EV owners and the environment by minimizing greenhouse gas emissions
- This paper delves into the impacts of transportation-microgrids equipped with Level 2 and Level 3 charging on the behavior of microgrids, associated electricity costs, and CO₂ emissions within the context of southern California
- The simulations are conducted using OpenModelica, a dynamic modeling and simulation environment
- This study distinguishes itself from previous research in many ways, including employing a higher time resolution for calculating CO_2 emissions that is measured every 15 minutes

Abstract

- This paper presents a case study at the University of California, Riverside (UCR) that evaluates the effectiveness of different transportation-based microgrid configurations in reducing both carbon dioxide (CO₂) emissions and electricity costs
- Electric costs were also compared to determine the financial savings potential for the consumer
- The results demonstrate that a peak-shaving transportation-microgrid strategy can effectively reduce CO₂ emissions in the range of 24% to 38% and costs from \$27,000 to \$29,000 per year
- Careful consideration should be given to battery sizing, as peak-shaving has diminishing returns

BESS Capacity Comparison

Figure 1: Cost and CO_2 Emissions for Different Battery Capacities. A BESS capacity of 250 -500 kWh is ideal for the lowering costs and CO_2 emissions without with less diminishing returns in savings.

Microgrid Architecture

Figure 2: Microgrid Architecture of our Case Study Example BESS: Battery Energy Storage System

Simulated Scenarios of the UCR Microgrid using Different Layouts

			_
٦	Га	b	le

Scenario			
	l	_	

- Standard Building with no EV Chargers
- Standard Building with Level 2 and Level 3 Charging
- Microgrid Building with 100 kW Solar, 500 kWh BESS, No EV Charging
- Microgrid Building with 100 kW Solar, 100 kWh BESS, Level 2, and Level 3 Charging
- Microgrid Building with 100 kW Solar, 250 kWh BESS, Level 2, and Level 3 Charging
- Microgrid Building with 100 kW Solar, 500 kWh BESS, Level 2, and Level 3 Charging
- Microgrid Building with 100 kW Solar, 1 MWh BESS, Level 2, and Level 3 Charging
- Microgrid Building with 100 kW Solar, 1 MWh BESS, Level 2, and Level 3 Charging

Microgrid Utility Electricity Prices and Associated CO₂ Emissions Output under Different Scenarios

Table 2

Scenario Demand	d Charges (\$)	Energy Charges (\$)	Total Cost (\$)	CO ₂ Emissions (_m Tons)
1	7695	22736	30431	34
${f 2}$	17343	32289	$\boldsymbol{49632}$	47
3	3904	0	3904	18
4	$\boldsymbol{14341}$	8209	$\boldsymbol{22550}$	26
5	13193	8937	22130	23
6	$\boldsymbol{12909}$	9239	22148	${\bf 22}$
7	10835	9418	$\boldsymbol{20253}$	${\bf 22}$
8	$\boldsymbol{9811}$	9577	$\boldsymbol{19388}$	21

Figure 3: Microgrid CO_2 Emissions Outputs Averages During Times of Day. Adding a microgrid significantly reduces CO_2 Emissions compared to the non-microgrid scenarios 1 and 2.

Conclusions and Future Work

- Transportation-microgrids offer significant economic and environmental benefits
- Estimated annual savings of \$8,000-\$10,000 compared to conventional systems
- Annual savings of \$27,000-\$29,000 compared to buildings with EV chargers but no microgrid
- 24% 38% reduction in CO_2 emissions compared to conventional buildings
- 45% 55% reduction in CO_2 emissions compared to buildings with EV chargers and no microgrid
- Increased battery capacity does not guarantee improved performance
- Increased capacity improves performance but not proportionally to the cost
- Large capacity needed for challenging situations may not be cost-effective
- 15 kW demand price floor discourages zero net load
 Discourages zero net load in peak shaving setups, increasing
 CO₂ emissions
- Future Work
 - Optimizing electric costs and CO₂ emissions through throttling charging, maximizing solar energy use, and minimizing grid draw during peak CO₂ emissions times
 - Assessing the impact of California's new net energy metering policy

Acknowledgements

I would like to give a special thanks to the CE-CERT staff, the Dwight David Eisenhower Transportation Fellowship Program, and my family who have supported me throughout my research and without them this contribution would not be possible.

Contact Information

- Researcher: Luis Fernando Enriquez-Contreras
- Web: https://www.cert.ucr.edu/transportationsystems-vehicle-infrastructure-interaction
- Email: lenri001@ucr.edu
- Phone: +1 (909) 763 1899