EXHIBIT A

×502

Nanocrystalline Silicon Ink

Fabio Zurcher, Brent Ridley, Joerg Rockenberger

Project Weekly Report

Big Picture Objective

- Formulate Ink of Hydrogen-Capped Silicon-Nanocrystals (nc-Si:H)

Key Results

- Amines, Esters, Amides, Polyethers + Anionic Surfactants Good; All Solvents Can Yield "Stable, Milky" Dispersions of nc-Si:H
- Tested 16 Surfactants in Xylene With High-Power Ultrasound: 3 Show Almost Clear, Yellow "Solutions" Of nc-Si:H After 0.5 Micron Filtration.

NC-SI:H - DEVELOPMENT PLAN

STEP	PURPOSE	EXPERIMENTS	OS Done	
Solvent Screen	 determine compatibility of nc- Si:H w/ various solvents 	1. Ultrasonicate nc-Si:H powder in solvent; check oxidation w/ FTIR		
Surfactant Screen	 Determine miscibility of surfactants w/ solvents 	1. 1% surfactant solution; optical inspection		
Dispersion Screen	 determine suitability of solvents surfactants to disperse nc-Si:H 	 Ultrasonicate 1% surfactant solvent solution w/ 0.1% nc-Si:H; Optical inspection + filtration 		
Ink Formulation	1. Formulate 5 wt% Si-NC:H ink	 Refine formulation recipe varying agitation parameters, surfactant conc. etc. 		

Project Is On Track:

- **Dispersion Screen Is Finished**
- Evaluated 650+ Formulations so far...

nc-Si Project

Risks Map

enss)	Mitigation Plan	Risk
Agglomerate Size Bigger than 20 nm	 Higher Ultrasound Power (smaller tip) 	I
	 Longer Ultrasonication Times 	
	 Increased Surfactant Concentration 	
	 Apply Ultrasonication + Surfactant During Etch 	
	 Separate Larger Agglomerates By Centrifugation + Filtration 	
	 Use Multidentate Surfactants 	
	• Let's do photovoltaics	
Very Low Mass Loading (< 0.1 %)	 Drop-Casting Instead Of Spin-Coating 	I
	 Increased Surfactant Concentration 	
	 Higher Ultrasound Power (smaller tip) 	
	 Longer Ultrasonication Times 	
	 Apply Ultrasonication + Surfactant During Etch 	
	 Use Multidentate Surfactants 	
Colloidal Stability	Increased Surfactant Concentration	
	 Use Multidentate Surfactants 	
Impurity Levels	 Keep Surfactant Concentration As Low As Possible 	I
	Choose Small-Molecule Surfactants	i i
	 Oxygen-Free Surfactants 	
Film Density	 Keep Surfactant Concentration As Low As Possible 	I
	 Choose Small-Molecule Surfactants 	
KOVÍO CONFIDENTIAL	nc-Si Project	5.

3rd Screen: Dispersion Of nc-Si:H

Goals:

· Identify Surfactants + Solvents Which Can Disperse nc-Si:H During Ultrasonication

Main Conclusions:

- Solvent: everything works ⇒ concentrate on xylene
- Surfactant: amines, PEO, esters, amides + anionic work

Goals:

Identify Surfactant Suitable For Dispersion of <0.5 Micron nc-Si:H Agglomerates In Xylen

Main Conclusions:

- 3 Formulations give yellow, mostly transparent solutions after 0.5 micron filtration
- 2 are anionic surfactants!!!! How does that work???
- Si-Mass loading estimated to be ~0.01% ♥ Surfactant-Si mass ratio: 500

Summary

Results

- All Solvents Can Yield Milky Dispersions of nc-Si:H
- Amines, Polyethers, Esters, Anionic Surfactants "Work"

Milestone Weekly Schedule - nc-Si

Crit	Milestone	Who	Start	SO	်	Døne ?	Comments
nc-Si	FTIR + TEM of Supernatants	BR/F Z	08/19	08/21			verfiy identity of supernatants
nc-Si	Sonnication of Surfactants + Solvents as Control	FZ	08/20	08/21			verfiy identity of supernatants
nc-Si	search for multidentate + polymeric amines	FZ/B R	08/18	08/25			
nc-Si	DOE on sonication: power, time, surfactant concentration	FZ/B R	08/19	08/25			
nc-Si	Screen surfactants in pyrdine	BR	08/20	08/23			

Surface Derivatization of Silicon Nanocrystals

Fabio Zurcher, Brent Ridley

Pros & Cons of the AIBN Reaction

Pros	Cons
Short reaction time (30min)	Product shows reoxidation
Reliable reaction	Yield is not exceptionally high
No obvious source of metal or halogen contamination	AIBN byproducts are difficult to remove
Reliable and relatively simple isolation/purification step	Product is not extremely soluble in aromatics
Product is a well defined, dry powder	
Product is very soluble in hydrocarbons and ethers	

Step	Description
Derivatization	nano-Si stock (etch product suspended in xylene) + dodecene + AIBN + solvent (xylene). [dodecene] = 1M; [Si] = 0.25M; [AIBN] = 0.1M T = 120°C t = 30min
Filtration	Reaction product is filtered hot through a 0.2µm PTFE filter
Precipitation	Product is precipitated with cold MeOH and centrifuged to remove the SN
Wash	The precipitated product is washed with AcN to remove residual AIBN byproducts and then centrifuged
Dry	The remaining solid is dried overnight under Ar or N ₂ flow

EXHIBIT C

× 50 × 9

Silicon Film Formation From Nanocrystals

Joerg Rockenberger, Fabio Zurcher, Brent Ridley

Surface-Modified Si Nanoparticles

		AIBN	AIEtCI2
Synthesis:	Si-NC production [mg/batch]	30	06
	Synthesis + Isolation Time [h]	3	72
	Temperature [C]	120	40
Ink Formulation:	Oxygen – Level [%]	0.5	0.1 – 0.2
	TGA – Mass Loss [%]	20	TBD
	Solubility – Xylene [%]	TBD	2%
	Solubility – Butylether [%]	> 5%	< 1%
Film Characterization:	Oxygen – Level [%]	15/11	21
	Carbon - Level [%]	15 / 18	17
	Hydrogen – Level [%]	18	TBD
	SEM – Thickness [nm]	150 – 250	0 - 100
	SEM - Morphology	TBD	very rough – waffle
	XRD – Grain Size [nm]	TBD	TBD
	Tencor - Thickness [nm]	150 -250	85
	Tencor – Roughness [nm]	< 2	9

Biggest Difference: Related to Solubility + Resulting Film Morphology!

Surface-Modified Si Nanoparticles

AIBN Reaction

100 C softcure, 900 C hardcure 5% in Butylether, 300 rpm

Lewis Acid Reaction

2% in Xylene, 300 rpm 100 C softcure, 500 C hardcure

Polysilane ink formulation

Goa

- Find solvents that are compatible with cyclosilane.
- Reproducibly provide a polysilane ink formulation with a shelf life of > 1day.

Silane Compatibility With Solvents

		The Day		-74	
Alkanes	alkanes	Alcohols/Keton es/Enes	Aromatics	Emers	Filloro
Decane	Cyclohexane	α–Terpineol	Benzene	Social States	Fluorinert FC 70
Tetradecane	Cycloheptane	DHT	Toluene	Butylether	Perfluoro(1- methyl)decaline
	Cyclooctane	1-Methoxy-2- propanol	O-xylene	Anisol	Fluorinert FC 70 + Perfluorooctans ulfonylfluoride
	Cyclodecane (tbd)	α-Pinene	Mesitylene		
	Methyl- cyclohexane	2-Butanone	t-Butyl-toluene		
	t-Butyl- cylcohexane	2-Heptanone	Cyclohexyl- benzene	san 2 c aldes	ays
		Cyclopentanone	Tetraline	Limited stability white ppt.	pility
	trans-decaline	Ethylpyruvate		white ppt.,	white ppt., then dissolution
	Bis-cyclohexyl	Butylether		two phases	6

Polysilane ink formulation

Sources that may have an impact on ink stability.	Parameters for experimental matrix
Light or temperature induced polymerization	Temperature: ∼0C, 45C Light/dark: dark at 0C, clear/amber glass vials at 45C
Solvent purity (water and other impurities)	Distill and dry Cyclooctane, cis-decaline
OH (leaching from glass wall) induced polymerization	Teflon vials and silanized glass vials
Contamination from tips, cap lining	Use current pipettor tips, cap lining
Nature of silane mixture, SiH ₃ groups as radical initiators)	Silane batch: fixed, 21-1A, needed: 30 x 30 uL = 900 uL;
Mass loading	Concentration: fixed, 20 vol%, Amount: fixed, 150 uL
Nature of solvent	Solvent: Cyclohexane, Cyclooctane, (Cycloheptane), Ether, toluene, (cyclodecane), decaline

Solvent Selection and Controlled Polymerization

Solvent/Silane Compatibility

	Thin Film	Alkanes/Aromatics	°C) UV Film OK		(0, ((0, ((0, (Exotics	(O) (C) thers/Alcohols						(C) - Film oxidation	r°C) Fine exidation	
	TIR	O-iS oN	(2° 001) O-IS oN		(0° 001) O-iS oN		No Si-O (150 °C)	No Si-O (150 °C)	No SEO (150 °C)	(၁, 051) O-ISION	(O. @0L) O-IS ON		Oxidation	Oxidation	Oxidation		No SI-O ((1501°C)	(O. 051) O-IS ON	Oxidation
L	Solubility	OK	OK	OK	OK	OK	OK	Cloudy→OK	Jok Jok	ÖK	OK⇒Solids	OK→Solids	Cloudy	Cloudy	, OK	Ok⇒Solids) JOK	УO	T. OK
	Cutoff (nm)								#154.0° 1										
	(m//wm)				29.5				1 A 7 A	4.77.4								32	
	.√ (cP)	1.0	3.0	2-3	8.0	2.1	3.1	2.1	2.4	8.8	2.3	14	4	9-7	46	46	7.5	37	2
	(၁ _၈)	151	193	161	144	202	240	252			921	203	± 424 ∗	182	802	. 208	717	217	
The state of the s	Solvent	Cyclooctane	cís-Decalin	Decalin (mixture)	o-Xylene	Tetralin	Methylnaphthalene	Tetradecane	94 Gyclometnicone	D5 Cyclomethicone	Cipeole	EG-dibutylether	8-Octanol*	2-Ethylhexanol	Dihydroterpineol* 🐣	Dinydroterpineol (IFF)	Terpinen-4-ol*	Terpineol*	Pine Oil 60

*Similar results after drying solvent over molecular sieves

Silane Polymerization

	The state of the s					
Sample	Loading	Solvent	Exposure	Observation	Observation	FTIR
	(VOI%)		(min)	(solution)	(cast)	
UV			Λ			
4-60-0	none	c-C ₈ H ₁₆	5min	Clear	N/A	N/A
4-60-1	5%	c-C ₈ H ₁₆	5min	Cloudy (from walls)	Good wetting/film	No change(s)
4-60-2	5%	o-xylene	5min	Clear (even walls)	Good wetting/film	No change(s)
4-60-3	2%	c-C ₈ H ₁₆	20min	Clear	Good wetting/film	No change(s)
4-62-1	25%	c-C ₃ H ₁₆	20min	Clear	Good wetting/film	No change(s)
4-62-2	25%	c-C ₈ H ₁₆	60min	Milk	N/A	Broad, Baseline
4-63-1	25%	o-xylene	40min	Cloudy	Good wetting/film	Broadening
4-68-1	100%	none	20min	Clear, viscous		Broadening
4-68-2	100%	auou	60min	Pale amber, viscous		
Molecular Sieve			Sieves			
4-58-1	2%	c-C ₈ H ₁₆	none	Clear	Poor wetting/film	N/A
4-60-2N	2%	o-xylene	none	Clear	Poor wetting/film	N/A
4-58-18	2%	c-C ₈ H ₁₆	4days	Clear	Poor wetting/film	No change(s)

White films form routinely form on walls above liquid level (from vapor)

Viscous Silane(s) Solubility

1												
-68-2		Turbid*	Precipitate*			Precipitate*						
-68-1		OK	ò		Turbid	Gloppy						
2-10-4		OK*	OK*									
1-26	À	OK*	Turbid*		Turbid	Gloppy					*	
26		*XO	Gloppy*									
Solvent	Alkanes	c-C ₈ H ₁₆	cis-Decalin	Aromatics	o-xylene	Methylnaphthalene						

* 10% solutions – all others 20%

Silane Ink Formulation

Big Picture Objective:

- Formulate silane ink suitable for inkjet printing (viscosity, surface tension, etc.)
 - Appropriate solvent selection
- Controlled silane polymerization
- Investigate alternatives to inkjet technology (microspot...)

Key Results:

- The viscous tertiary alcohol terpinen-4-ol is retained in UV-spun silane films and leads to oxygen and carbon loaded silane films after curing at 400 °C
- After drying over sieves, alcohol and ether solvents still cause problems with solubility and/or oxidation so far, no solvents containing oxygen have worked except for the cyclomethicones
- , but polymerization (and precipitation) occurs in both cyclooctane and xylene UV polymerization reactions initiated – control of viscosity is underway solvents

<u>XOX</u>

Solvent Compatibility Tables

Silane Ink Formulation

Activated Alumina Purification for Solvent Screen -

Purpose

Purify inkjet solvent candidates and test solubility, stability, and printability

Method

- Single-pass column purification of solvent 9g activated alumina (500 °C under vacuum 6h), collecting 4mL fractions in amber vials after discarding first mL
 - SOP polysilane 20% solution using

Solvents

- Alkanes: Tetradecane, dicyclohexyl, decane, pinane, t-butylcyclohexane, isopropylcyclohexane, trimethylcyclohexane
- Aromatic: Methylnaphthalene, tetralin, cyclohexylbenzene
 - Ethers: Diethylene glycol diethyl ether, dibutyl ether
 - Halogenated: Chlorooctane, cyclohexyl chloride
 - Silane: Tetraethylsilane

Analysis Proposal

Suggested testing, in order of execution: miscibility and solubility at 50% and 20%, stability at 20%, viscosity, contact angle, printability, NMR, GC-MS

Results

- All 15 solvents were poor solvents for polysilane!
- Most were turbid solutions or two phase mixtures
- Some solvents formed two clear phases tetradecane, decane
- What makes cis-decalin and cyclooctane (and cyclodecane) so good?

က

Solvent/Silane Compatibility - 2004

	Solvent	(ටු.) d q	்(புo) ப	ý (m)Ň(m)	Solubility (5-10 vol%)	FTIR	Thin Film
	Cyclooctane	151	2.2		YO	O-iS oN	TFTS
	Nonane	151	9.0	25	OK→Precip		
	Decane	174	0.8	23	OK→Precip		
Al	Decalin (mixture)	191	2.2	32	ð		
kane	cis-Decalin	193	3.0	32	Š	No Si-O (100 °C)	TFTS
s	Cyclodecane	201	4.3		OK	No Si-O (150 °C)	
	Dicyclohexyl	207	3.3		OK*		
	Dodecane	216	1.2	25	OK→Precip		
	Tetradecane	252	1.9		Cloudy→OK *	No Si-O (150 °C)	
Α	o-Xylene	144	0.8	30	OK*	No Si-O (100 °C)	
roma	1,2 Dichlorobenzene	180	1.3	37	Cloudy→OK *	No Si-O (150 °C)	
atics	Tetralin	207	2.1	33	OK*	No Si-O (100 °C)	
	Methylnaphthalene	240	3.1	40	OK*	No Si-O (150 °C)	UV Film Patchy Streaks
	2,6-Lutidine	144		32			
Married Co., or other party of	Quinoline			43	, yo d	SI-O (150 °C)	
teroa	Anisofe	* 154		35	Cloudy (10%)	(3, 051), O-IS ON	
tom	Phenylethek	* 256		39	Cloudy (10%)	No SI-O (150 °C)	
i c	D4 Cyclomethicone	2	2.4	17	OK	No SI-O (150 °C)	
*	D5 Cyclomethicane		3.8	1,0	, YO.	No Si-O (150 °C)	UV Film Patchy Streaks
*	* Limited solubility above 5% or with polymeric silanes	th polymeri	c silanes		ed viscosity values	are from literature, no	Italicized viscosity values are from literature, not in-house measurements

7

Solvent/Silane Compatibility (Problematic) - 2004

-Datin Pilim	⊎V FIIN Paidby Streaks			Film exidation Film exidation
FTIR	No SI-O (156°C) No SI-O (150°C) No SI-O (100°C)	Oxidation Oxidation	Oxidation	No. SI-O (150 °C) No. SI-O (150 °C) Oxidation
Solubility (5 vol%)	OK POK OK⇒Selids	-ÖK⇒Solids ©loudy Cloudy	©K OK⇒Solids	ð ð ð
ր (cP) (mN/m)	17.4			32**
л (сР)	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 7 44	46	12 37 5
a ©	176	203 174 182	208	212
Solvent	D4. Cyclomethicone D5 Cyclomethicone Cineole*	EG-dibutylefther 3-Octanol* 2-Effylhexanol	Dihydroterpineol	Terginen-4-olf Terpine@* Pine Oil 60
	Exotics	Ether	s/Alcohols	

*Similar results after drying solvent over molecular sieves