Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2011.
df

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TO
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	Nai
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.:
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	Nal
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	Nal
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	Nal
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	Nal
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	Nal
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	Nal
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	Nal
209928 rows × 14 columns													
4													•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16460 entries, 1 to 209910
Data columns (total 14 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
                             ----
0
    date
             16460 non-null object
 1
    BEN
             16460 non-null float64
 2
    CO
             16460 non-null float64
 3
    EBE
             16460 non-null float64
 4
    NMHC
             16460 non-null float64
 5
             16460 non-null float64
    NO
 6
    NO_2
             16460 non-null float64
 7
    0 3
             16460 non-null float64
 8
    PM10
             16460 non-null float64
 9
    PM25
             16460 non-null float64
 10
    SO_2
             16460 non-null float64
 11
    TCH
             16460 non-null float64
 12
    TOL
             16460 non-null float64
    station 16460 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.9+ MB
```

In [6]:

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

Out[6]:

	BEN	TOL	тсн
1	2.5	8.7	1.54
6	0.7	1.7	1.36
25	1.8	7.4	1.71
30	1.0	2.9	1.40
49	1.3	6.2	1.75
209862	0.4	0.7	1.26
209881	0.9	4.9	1.34
209886	0.6	0.9	1.26
209905	0.6	3.8	1.32
209910	0.7	0.9	1.25

16460 rows × 3 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [8]:

data.plot.line()

Out[8]:

<AxesSubplot:>

Bar chart

In [9]:

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

In [13]:

data.plot.box()

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='BEN' )
```

Out[14]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [15]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

Out[15]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [16]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16460 entries, 1 to 209910
Data columns (total 14 columns):

	COTAMILIS	(٠,٠
#	Column	Non-Null Count	Dtype
0	date	16460 non-null	object
1	BEN	16460 non-null	float64
2	CO	16460 non-null	float64
3	EBE	16460 non-null	float64
4	NMHC	16460 non-null	float64
5	NO	16460 non-null	float64
6	NO_2	16460 non-null	float64
7	0_3	16460 non-null	float64
8	PM10	16460 non-null	float64
9	PM25	16460 non-null	float64
10	S0_2	16460 non-null	float64
11	TCH	16460 non-null	float64
12	TOL	16460 non-null	float64
13	station	16460 non-null	int64
dtype	es: float	64(12), int64(1)	<pre>, object(1)</pre>

memory usage: 1.9+ MB

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	СО	EBE	NMHC	NO	NO_2
count	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000
mean	0.900680	0.277758	1.471871	0.167043	23.671810	44.583961
std	0.768892	0.206143	1.051004	0.075068	44.362859	31.569185
min	0.100000	0.100000	0.200000	0.010000	1.000000	1.000000
25%	0.500000	0.200000	0.800000	0.120000	2.000000	19.000000
50%	0.700000	0.200000	1.200000	0.160000	7.000000	40.000000
75%	1.100000	0.300000	1.700000	0.200000	25.000000	63.000000
max	9.500000	3.200000	12.800000	0.840000	615.000000	289.000000
4						•

In [18]:

```
df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x1bb2a70d7f0>

In [20]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>

In [21]:

sns.heatmap(df1.corr())

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

```
In [25]:
```

```
lr.intercept_
```

Out[25]:

28079015.223056305

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

Co-efficient BEN 3.805170 CO 37.603729 **EBE** -1.858668 **NMHC** -93.094409 NO -0.036306 NO_2 -0.089968 O_3 -0.015230 **PM10** 0.014540 **PM25** -0.035677 SO_2 -0.474032 **TCH** 11.074567 **TOL** -0.415248

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x1bb36eccac0>

ACCURACY

```
In [28]:
```

```
lr.score(x_test,y_test)
```

Out[28]:

0.6176242622614179

In [29]:

```
lr.score(x_train,y_train)
```

Out[29]:

0.6312376538837546

Ridge and Lasso

In [30]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [31]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[31]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.580321441574621
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.5979243288685172
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.24603868232736525
```

Accuracy(Lasso)

```
In [36]:
la.score(x_train,y_train)
Out[36]:
0.23241032291592945
```

Accuracy(Elastic Net)

```
In [37]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
```

ElasticNet()

```
In [38]:
en.coef
Out[38]:
array([ 0.30437437, 0.
                               , -0.
                                                         , 0.05117634,
       -0.13281545, -0.04260736, 0.02915675, 0.09360197, -0.1808079,
                 , -1.00493552])
In [39]:
en.intercept_
Out[39]:
28079025.017157324
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.3502416888161278
```

Evaluation Metrics

```
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

5.604138864118284 41.58278557254639 6.448471568716605

Logistic Regression

```
In [43]:
```

target_vector=df['station']

```
In [45]:
feature_matrix.shape
Out[45]:
(16460, 10)
In [46]:
target_vector.shape
Out[46]:
(16460,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [52]:
logr.classes_
Out[52]:
array([28079008, 28079024], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.9237545565006076
```

```
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
0.99999999999966
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[1.00000000e+00, 3.47334507e-15]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
RandomForestClassifier()
In [58]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [59]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [60]:
grid_search.best_score_
Out[60]:
0.9395938205172714
```

In [61]:

```
rfc_best=grid_search.best_estimator_
```

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
[596, 108]\nclass = a'),
    Text(4374.72, 181.199999999982, 'gini = 0.092\nsamples = 741\nvalue =
[1118, 57]\nclass = a')]
```

Conclusion

Accuracy

Linear Regression:0.6312376538837546

Ridge Regression:0.5979243288685172

Lasso Regression:0.23241032291592945

ElasticNet Regression:0.3502416888161278

Logistic Regression:0.99999999999966

Random Forest: 0.9395938205172714

Logistic Regression is suitable for this dataset