phase-3-project (/github/kcoop610/phase-3-project/tree/main)
/ report.ipynb (/github/kcoop610/phase-3-project/tree/main/report.ipynb)

Predicting Diabetes Diagnosis

In 2015, diabetes was the seventh leading cause of death in the United States. More than 30 million Americans are living with diabetes, and 86 million are living with prediabetes, which is a serious health condition that increases a person's risk of type 2 diabetes and other chronic diseases. The prevalence of diabetes and overweight (one of the major risk factors for diabetes) continue to increase. Substantial new efforts to prevent or control diabetes have begun, including the Diabetes Prevention Trial and the National Diabetes Education Program.

Diabetes is diagnosed by Glycated Hemoglobin (A1C) levels, which indicate a person's blood sugar levels and are measured via a blood test. However, many organizations aiming to prevent diabetes and other chronic conditions such as public health agencies and insurance providers don't have access to this sensitive information.

This report seeks to predict the presence of diabetes or prediabetes using only information that could be gathered by a survey or basic body measurements.

Using this model, stakeholders invested in public health can target participants in health and wellness programs which aim to reverse prediabetes, prevent diabetes, and manage the disease.

Potential stakeholders:

- Public health agencies
- Insurance companies
- Employer benefits coordinators

Health & wellness companies

Data Source

National Health and Nutrition Examination Survey

National Health and Nutrition Examination Survey (NHANES)

The National Health and Nutrition Examination Survey (NHANES)

(https://www.cdc.gov/nchs/nhanes/about_nhanes.htm) is a program of continuous studies designed to assess the health and nutritional status of adults and children in the United States. The survey examines a nationally representative sample of about 5,000 persons located across the country each year. The survey is unique in that it combines interviews and physical examinations. The NHANES interview includes demographic, socioeconomic, dietary, and health-related questions. The examination component consists of medical, dental, and physiological measurements, as well as laboratory tests administered by highly trained medical personnel.

NHANES is a major program of the National Center for Health Statistics (NCHS). NCHS is part of the Centers for Disease Control and Prevention (CDC) and has the responsibility for producing vital and health statistics for the Nation.

Subset for Classification Model

While NHANES collects a wealth of demographic, laboratory, and medical data, this analysis and classification model uses a subset comprised of:

- **Demographics, Smoking, Physical Activity** surveys collected by trained interviewers using Computer-Assisted Personal Interview (CAPI) system in either English or Spanish, sometimes with assistance from an interpreter
- **Body Measures** measured by trained health technicians in the Mobile Examination Center (MEC)
- **Pulse** three oscillometric pulse readings were recorded by trained health technicians, then averaged together for a single representative pulse measurement
- A1C whole blood specimens were processed, stored, and shipped to the University of Missouri-Columbia, MO for analysis.

Diabetes/prediabetes diagnosis was calculated based on the A1C level using the Mayo Clinic's guidelines.

As is typical for survey data, there are some filler responses such as "don't know" and "refused" in addition to null values. Each of these were evaluated, and one of the following steps was taken:

- Filled nulls/fillers with an assumed response if the number of responses in this class is low and there was a straightforward "safe" assumption. For example, "don't know" response to question about military service was assumed to be a "no."
- Created a "no_answer" class if the lack of clear answer seemed to potentially inicate some relevant finding. For example, if a person responded "don't know" to health insurance coverage, this may be a relevant predictor of their health.
- Replaced with a null value, to be addressed using an intelligent imputer method later in the process after the data has been split into training and testing samples.

```
In [1]: import pandas as pd
pd.set_option('display.max_columns', 0)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

# styling notebook
from IPython.core.display import HTML
def css_styling():
    styles = open("./styles/custom.css", "r").read()
    return HTML(styles)
css_styling()
```

Out[1]:

In [2]:

```
demographic = pd.read_sas('./data/NHANES2017-2018_demographic.xpt')
insurance = pd.read_sas('./data/NHANES2017-2018_insurance.xpt')
measures = pd.read_sas('./data/NHANES2017-2018_body_measures.xpt')
activity = pd.read_sas('./data/NHANES2017-2018_physical_activity.xpt')
smoking = pd.read_sas('./data/NHANES2017-2018_smoking.xpt')
bp = pd.read_sas('./data/NHANES2017-2018_blood_pressure_oscillometric.;
alc = pd.read_sas('./data/NHANES2017-2018_alc.xpt')

# Datasets considered, but not used for this model
# chol_total = pd.read_sas('./data/NHANES2017-2018_total_cholesterol.xpt')
# chol_hdl = pd.read_sas('./data/NHANES2017-2018_hdl_cholesterol.xpt')
# chol_ldl = pd.read_sas('./data/NHANES2017-2018_ldl_cholesterol.xpt')
# insulin = pd.read_sas('./data/NHANES2017-2018_insulin.xpt')
```

In [3]:

data = [alc, demographic, insurance, measures, activity, smoking, bp]

```
In [4]:
```

```
for f in data:
    f.SEQN = f.SEQN.map(lambda x: int(x))
    f.set_index('SEQN', inplace=True)
    display(f.info())
    print('*****'*15)
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6401 entries, 93705 to 102956
Data columns (total 1 columns):
     Column Non-Null Count
                            Dtype
 0
    LBXGH
             6045 non-null
                             float64
dtypes: float64(1)
memory usage: 100.0 KB
```

None

2

3

RIAGENDR

RIDAGEYR

float64

<class 'pandas.core.frame.DataFrame'> Int64Index: 9254 entries, 93703 to 102956

Data columns (total 45 columns): # Column Non-Null Count Dtype _____ ____ ____ SDDSRVYR 9254 non-null float64 0 1 9254 non-null float64 RIDSTATR

9254 non-null

9254 non-null

4 RIDAGEMN 597 non-null float64 5 RIDRETH1 9254 non-null float64 6 RIDRETH3 9254 non-null float64

7 8704 non-null RIDEXMON float64 8 RIDEXAGM 3433 non-null float64 9 DMQMILIZ 6004 non-null float64

10 DMQADFC 561 non-null 11 DMDBORN4 9254 non-null 12 9251 non-null DMDCITZN

13 DMDYRSUS 1948 non-null 14 DMDEDUC3 2306 non-null 15 DMDEDUC2 5569 non-null

16 DMDMARTL 5569 non-null 17 1110 non-null RIDEXPRG 18 9254 non-null SIALANG

19 9254 non-null SIAPROXY 20 SIAINTRP 9254 non-null 21 FIALANG 8780 non-null

22 FIAPROXY 8780 non-null 23 8780 non-null FIAINTRP 24 6684 non-null MIALANG

25 MIAPROXY 6684 non-null 26 MIAINTRP 6684 non-null 27 4977 non-null AIALANGA

28 DMDHHSIZ 9254 non-null 29 9254 non-null float64 DMDFMSIZ 30 DMDHHSZA 9254 non-null

float64 31 DMDHHSZB 9254 non-null float64 32 DMDHHSZE 9254 non-null

float64 33 DMDHRGND 9254 non-null float64

```
DMDHRAGZ
               9254 non-null
                               float64
 35
    DMDHREDZ
               8764 non-null
                               float64
               9063 non-null
                               float64
 36
    DMDHRMAZ
37
              4751 non-null
                               float64
    DMDHSEDZ
38
    WTINT2YR 9254 non-null
                               float64
39
    WTMEC2YR 9254 non-null
                               float64
 40
    SDMVPSU
               9254 non-null
                               float64
    SDMVSTRA 9254 non-null
                               float64
 42
              8763 non-null
                               float64
    INDHHIN2
43
    INDFMIN2
              8780 non-null
                               float64
 44
    INDFMPIR 8023 non-null
                               float64
dtypes: float64(45)
```

memory usage: 3.2 MB

None

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9254 entries, 93703 to 102956
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	HIQ011	9254 non-null	float64
1	HIQ031A	4254 non-null	float64
2	HIQ031B	1582 non-null	float64
3	HIQ031C	58 non-null	float64
4	HIQ031D	2527 non-null	float64
5	HIQ031E	93 non-null	float64
6	HIQ031F	295 non-null	float64
7	HIQ031H	533 non-null	float64
8	HIQ031I	301 non-null	float64
9	HIQ031J	708 non-null	float64
10	HIQ031AA	1 non-null	float64
11	HIQ260	172 non-null	float64
12	HIQ105	1141 non-null	float64
13	HIQ270	8171 non-null	float64
14	HIQ210	8171 non-null	float64

dtypes: float64(15)
memory usage: 1.1 MB

None

float64

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8704 entries, 93703 to 102956
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	BMDSTATS	8704 non-null	float64
1	BMXWT	8580 non-null	float64
2	BMIWT	416 non-null	float64
3	BMXRECUM	894 non-null	float64
4	BMIRECUM	24 non-null	float64
5	BMXHEAD	194 non-null	float64
6	BMIHEAD	0 non-null	float64
7	BMXHT	8016 non-null	float64
8	BMIHT	99 non-null	float64

8005 non-null

BMXBMI

9

```
BMXLEG
              6703 non-null
                               float64
10
11
   BMILEG
              334 non-null
                               float64
12
              8177 non-null
                              float64
   BMXARML
              347 non-null
                              float64
13
   BMIARML
14
   BMXARMC
              8173 non-null
                              float64
15
   BMIARMC
              350 non-null
                              float64
              7601 non-null
                              float64
16
   BMXWAIST
17
   BMIWAIST
              437 non-null
                              float64
18
   BMXHIP
              6039 non-null
                              float64
19 BMIHIP
              270 non-null
                              float64
```

dtypes: float64(20)
memory usage: 1.4 MB

None

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5856 entries, 93705 to 102956
Data columns (total 16 columns):

Column Non-Null Count Dtype ___ _____ 0 PAQ605 5856 non-null float64 1 PAQ610 1389 non-null float64 2 PAD615 1381 non-null float64 3 PAQ620 5856 non-null float64 4 PAQ625 2439 non-null float64 5 PAD630 2426 non-null float64 6 PAQ635 5856 non-null float64 7 PAQ640 1439 non-null float64 8 PAD645 1430 non-null float64 PAQ650 5856 non-null 9 float64 10 PAQ655 1434 non-null float64 11 PAD660 1431 non-null float64 12 PAQ665 5856 non-null float64 13 PAQ670 2308 non-null float64 14 PAD675 2301 non-null float64 15 PAD680 5846 non-null float64

dtypes: float64(16)
memory usage: 777.8 KB

None

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6724 entries, 93705 to 102956

Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	SMQ020	5856 non-null	float64
1	SMD030	2359 non-null	float64
2	SMQ040	2359 non-null	float64
3	SMQ050Q	1338 non-null	float64
4	SMQ050U	1255 non-null	float64
5	SMD057	1338 non-null	float64
6	SMQ078	793 non-null	float64
7	SMD641	1063 non-null	float64
8	SMD650	1022 non-null	float64
9	SMD093	1021 non-null	float64

```
10
    SMDUPCA
               6724 non-null
                                object
11
    SMD100BR
               6724 non-null
                                object
12
                                float64
    SMD100FL
               929 non-null
                                float64
13
    SMD100MN
               929 non-null
                                float64
14
    SMD100LN
              929 non-null
15
    SMD100TR
               695 non-null
                                float64
               695 non-null
                                float64
16
    SMD100NI
17
    SMD100CO
               695 non-null
                                float64
               821 non-null
                                float64
18
    SMQ621
19
    SMD630
               42 non-null
                                float64
               14 non-null
                                float64
20
    SMQ661
21
    SMQ665A
               3 non-null
                                float64
22
               1 non-null
                                float64
    SMQ665B
23
    SMO665C
               4 non-null
                                float64
24
    SMQ665D
               2 non-null
                                float64
25
               1035 non-null
                                float64
    SMQ670
26
               528 non-null
                                float64
    SMQ848
27
    SMQ852Q
               522 non-null
                                float64
28
               519 non-null
                                float64
    SMQ852U
29
    SMO890
               5856 non-null
                                float64
               2095 non-null
30
    SMQ895
                                float64
31
               5856 non-null
                                float64
    SMQ900
32
               1150 non-null
                                float64
    SMQ905
33
    SMQ910
               5856 non-null
                                float64
34
    SMQ915
               861 non-null
                                float64
              6724 non-null
35
    SMAOUEX2
                                float64
```

dtypes: float64(34), object(2)

memory usage: 1.9+ MB

None

```
*******************
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7132 entries, 93705 to 102956
```

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	BPAOARM	7132 non-null	object
1	BPAOCSZ	6144 non-null	float64
2	BPAOMNTS	6144 non-null	float64
3	BPXOSY1	6143 non-null	float64
4	BPXODI1	6143 non-null	float64
5	BPXOSY2	6123 non-null	float64
6	BPXODI2	6123 non-null	float64
7	BPXOSY3	6094 non-null	float64
8	BPXODI3	6094 non-null	float64
9	BPXOPLS1	5262 non-null	float64
10	BPXOPLS2	5244 non-null	float64
11	BPXOPLS3	5220 non-null	float64
d+vn	es: float6	4(11), object(1)	

dtypes: float64(11), object(1)

memory usage: 724.3+ KB

None

Demographics

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.htm)</u>

The demographics file contains information about the individual respondent, their family, and their household, including age, gender, race, education level, marital status, military service status, country of birth, US citizenship, household and family composition and income.

In [5]:

demographic.describe().round(1)

Out[5]:

	SDDSRVYR	RIDSTATR	RIAGENDR	RIDAGEYR	RIDAGEMN	RIDRETH1	RIDRETH3
count	9254.0	9254.0	9254.0	9254.0	597.0	9254.0	9254.0
mean	10.0	1.9	1.5	34.3	10.4	3.2	3.5
std	0.0	0.2	0.5	25.5	7.1	1.3	1.7
min	10.0	1.0	1.0	0.0	0.0	1.0	1.0
25%	10.0	2.0	1.0	11.0	4.0	3.0	3.0
50%	10.0	2.0	2.0	31.0	10.0	3.0	3.0
75%	10.0	2.0	2.0	58.0	17.0	4.0	4.0
max	10.0	2.0	2.0	80.0	24.0	5.0	7.0

```
In [6]:
```

demographic.columns

Out[6]:

After reviewing the source documentation, only a handful of features which are easily interpretable and may be relevant to predicting diabetes/prediabetes were kept for analysis.

```
In [7]:
```

```
In [8]:
```

Out[8]:

	gender	age	race	veteran_status	country_of_birth	citizen_status	education	mai
SEQN								
93703	2.0	2.0	6.0	NaN	1.0	1.0	NaN	
93704	1.0	2.0	3.0	NaN	1.0	1.0	NaN	
93705	2.0	66.0	4.0	2.0	1.0	1.0	2.0	
93706	1.0	18.0	6.0	2.0	1.0	1.0	NaN	
93707	1.0	13.0	7.0	NaN	1.0	1.0	NaN	

In [9]:

keep demographic.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9254 entries, 93703 to 102956
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	gender	9254 non-null	float64
1	age	9254 non-null	float64
2	race	9254 non-null	float64
3	veteran_status	6004 non-null	float64
4	country_of_birth	9254 non-null	float64
5	citizen_status	9251 non-null	float64
6	education	5569 non-null	float64
7	marital_status	5569 non-null	float64
8	pregnancy_status	1110 non-null	float64
9	household_size	9254 non-null	float64
10	annual_household_income	8763 non-null	float64
11	income_poverty_ratio	8023 non-null	float64
٠.	67 . 64 (10)		

dtypes: float64(12) memory usage: 939.9 KB

Questionnaire responses are coded, which makes interpretation difficult. The following cells explore each feature, decode values, and decipher response options.

```
In [10]:
            keep_demographic['gender'].value_counts(dropna=False)
Out[10]:
            2.0
                    4697
            1.0
                    4557
            Name: gender, dtype: int64
In [11]:
            keep demographic['gender'].replace({1.0: 'male', 2.0: 'female'}, inplace
In [12]:
            keep demographic['gender'].value counts(dropna=False)
Out[12]:
            female
                       4697
            male
                       4557
            Name: gender, dtype: int64
In [13]:
            keep_demographic['age'].describe().round(2)
Out[13]:
                      9254.00
            count
                        34.33
            mean
                        25.50
            std
            min
                         0.00
            25%
                        11.00
            50%
                        31.00
            75%
                        58.00
                        80.00
            max
            Name: age, dtype: float64
            Note - Individuals aged 80 and over are topcoded at 80. In NHANES 2017-2018, the weighted
            mean age for participants 80+ is 85
In [14]:
            keep_demographic['age'] = keep_demographic['age'].astype(int)
            This model focuses on adults age 18+.
In [15]:
            # remove if age less than 18
            keep demographic = keep demographic[keep_demographic['age']>=18]
In [16]:
            keep demographic['age'].describe().astype(int)
Out[16]:
            count
                      5856
            mean
                        49
            std
                        18
            min
                        18
            25%
                        33
            50%
                        51
            75%
                        65
                        80
            max
            Name: age, dtype: int64
```

```
In [17]:
            keep_demographic['race'].value_counts(dropna=False)
Out[17]:
           3.0
                   2032
           4.0
                   1343
           6.0
                    849
                    792
           1.0
           2.0
                    543
           7.0
                    297
           Name: race, dtype: int64
           keep_demographic['race'].replace({1.0: 'mexican_american',
In [18]:
                                               2.0: 'hispanic',
                                               3.0: 'white',
                                               4.0: 'black',
                                               6.0: 'asian',
                                               7.0: 'other'},
                                              inplace=True)
           keep_demographic['race'].value_counts(dropna=False)
In [19]:
Out[19]:
           white
                                2032
           black
                                1343
           asian
                                 849
           mexican american
                                 792
           hispanic
                                 543
           other
                                 297
           Name: race, dtype: int64
In [20]:
           keep_demographic['veteran_status'].value_counts(dropna=False)
Out[20]:
           2.0
                   5292
           1.0
                    561
                      2
           7.0
           9.0
                      1
           Name: veteran status, dtype: int64
           keep_demographic['veteran_status'].replace({1.0: 'yes',
In [21]:
                                                          2.0: 'no',
                                                          7.0: 'no',
                                                          9.0: 'no',},
                                                         inplace=True)
           keep_demographic['veteran_status'].value_counts(dropna=False)
In [22]:
Out[22]:
                   5295
           no
                    561
           yes
           Name: veteran_status, dtype: int64
```

```
keep_demographic['country_of_birth'].value_counts(dropna=False)
In [23]:
Out[23]:
           1.0
                    4067
           2.0
                    1786
           77.0
                       2
           99.0
                       1
           Name: country_of_birth, dtype: int64
           keep demographic['country of birth'].replace({1.0: 'usa',
In [24]:
                                                            2.0: 'other',
                                                            77.0: 'usa',
                                                            99.0: 'usa'},
                                                           inplace=True)
In [25]:
            keep_demographic['country_of_birth'].value_counts(dropna=False)
Out[25]:
           usa
                     4070
                     1786
           other
           Name: country of birth, dtype: int64
In [26]:
            keep_demographic['citizen_status'].value_counts(dropna=False)
Out[26]:
           1.0
                   5030
           2.0
                    801
           7.0
                     15
           9.0
                      7
           NaN
                      3
           Name: citizen status, dtype: int64
In [27]:
            # kept a "no answer" class since this may be meaningful
           keep_demographic['citizen_status'].replace({1.0: 'citizen',
                                                          2.0: 'non citizen',
                                                          7.0: 'no answer',
                                                          9.0: 'no answer',
                                                          np.nan: 'no answer'},
                                                         inplace=True)
            keep_demographic['education'].value_counts(dropna=False)
In [28]:
Out[28]:
           4.0
                   1778
           5.0
                   1336
           3.0
                   1325
           2.0
                    638
           1.0
                    479
           NaN
                    287
           9.0
                     11
           7.0
           Name: education, dtype: int64
```

```
In [29]:
             \# these nulls are not as easy to fill in, so I'll use an imputer at a :
             keep demographic['education'].replace({1.0: 'no diploma',
                                                           2.0: 'no diploma',
                                                           3.0: 'highschool_grad',
                                                           4.0: 'some_college',
                                                           5.0: 'college grad',
                                                           7.0: np.nan,
                                                           9.0: np.nan}, inplace=True)
In [30]:
             keep_demographic['marital_status'].value_counts(dropna=False)
Out[30]:
             1.0
                      2737
             5.0
                      1006
             3.0
                       641
                       515
             6.0
             2.0
                       462
                       287
             NaN
             4.0
                       202
             77.0
                          6
             Name: marital_status, dtype: int64
             keep_demographic['marital_status'].replace({1.0: 'married or living wit
In [31]:
                                                                 2.0: 'widowed',
                                                                 3.0: 'divorced/separated',
                                                                 4.0: 'divorced/separated',
                                                                 5.0: 'never married',
                                                                 6.0: 'married or living wit
                                                                 77.0: 'no answer'}, inplace
In [32]:
             keep demographic[keep demographic['marital status'].isna()].sort values
Out[32]:
                      gender age
                                            race veteran_status country_of_birth citizen_status ed
               SEQN
               93706
                        male
                                            asian
                                                                                       citizen
                               18
                                                            no
                                                                            usa
               98618
                        male
                                  mexican american
                                                                           other
                                                                                    non citizen
                               18
                                                            no
               98695
                        male
                                            black
                               18
                                                                                       citizen
                                                                            usa
                                                            no
               98697
                        male
                               18
                                            white
                                                                            usa
                                                                                       citizen
               98829
                        male
                               18
                                  mexican_american
                                                                                       citizen
                                                            no
                                                                            usa
                          ...
                               ...
                                                                             ...
               98866
                        male
                               19
                                            white
                                                                                       citizen
                                                            no
                                                                            usa
               95585
                        male
                               19
                                  mexican_american
                                                                                       citizen
                                                            nο
                                                                            usa
               98938
                       female
                                            white
                                                                                       citizen
                               19
                                                            no
                                                                            usa
               99013
                       female
                                  mexican american
                                                                                       citizen
                               19
                                                                            usa
                                                            nο
              102837
                       female
                               19
                                          hispanic
                                                                            usa
                                                                                       citizen
                                                            no
```

287 rows \times 12 columns

All null values in the marital status column are 18 or 19 year olds, so I will fill the nulls with "never married."

```
keep_demographic['marital_status'].fillna('never married', inplace=True
In [33]:
In [34]:
            keep_demographic['marital_status'].value_counts(dropna=False)
Out[34]:
           married or living with partner
                                               3252
           never married
                                               1293
           divorced/separated
                                                843
           widowed
                                                462
           no answer
           Name: marital status, dtype: int64
In [35]:
            keep_demographic['pregnancy_status'].value_counts(dropna=False)
Out[35]:
                   4746
           NaN
           2.0
                    966
           3.0
                     89
           1.0
                     55
           Name: pregnancy_status, dtype: int64
```

Per the data source, respondents were coded with a value 3 "could not be determined" if (1) the respondent reported did not know her pregnancy status and the urine test was negative, or (2) if the respondent was interviewed but not examined

Because the urine test was negative in first scenario, the responded is assumed to be not pregnant.

Respondents who fall into the second scenario will be removed from the sample later on when data files are merged, as it's likely that the "examination" would have also included the A1C test. Because this is a supervised learning activity, only respondents with valid A1C levels will be kept in the sample.

Null values are assumed to indicate "not pregnant".

Because pregnancy may cause fluctuations in weight and body measurements, respondents who are pregnant are dropped from the sample.

```
In [36]: keep_demographic = keep_demographic[keep_demographic['pregnancy_status']
In [37]: keep_demographic.drop(columns='pregnancy_status', inplace=True)
```

In [38]:

keep_demographic.head()

Out[38]:

	gender	age	race	veteran_status	country_of_birth	citizen_status	education	
SEQN								
93705	female	66	black	no	usa	citizen	no_diploma	di
93706	male	18	asian	no	usa	citizen	NaN	
93708	female	66	asian	no	other	citizen	no_diploma	
93709	female	75	black	no	usa	citizen	some_college	
93711	male	56	asian	no	other	citizen	college_grad	

While multiple income-related questions were surveyed, the feature most meaningful for this model is annual household income. This number would include the combined incomes of all members of a household, which may be comprised of a single family/individual, more than one family, more than one unrelated individuals, or any combination.

Income ranges were captured as the response to this question. In order to create a continuous numeric variable, these ranges were replaced with the highest number in the range for purposes of this model. For example, a household reporting annual income between 45,000 and 54,999 was recoded to 55,000. The 100k+ category was coded as 150,000.

Some respondents only reported whether their income was under 20k (197 total respondents), or above 20k (69 total respondents). Those reponding <20k were recoded as 15,000 since this is likely a larger range with more actual values falling below the maximum. Those responding >20k were recoded as 45,000.

```
keep_demographic['annual_household_income'].value_counts(dropna=False)
In [39]:
Out[39]:
            15.0
                    988
            6.0
                    574
            7.0
                    570
            14.0
                    497
            8.0
                    389
            NaN
                    345
            5.0
                    344
            4.0
                    335
            9.0
                    331
            10.0
                    277
            3.0
                    264
            12.0
                    220
            2.0
                    164
            1.0
                    164
            99.0
                    143
            77.0
                    121
            13.0
                     75
            Name: annual_household_income, dtype: int64
In [40]:
            # these nulls are not as easy to fill in, so I'll use an imputer at a
            keep_demographic['annual household income'].replace({1.0: 5000,
                                                                     2.0: 10000,
                                                                     3.0: 15000,
                                                                     4.0: 20000,
                                                                     5.0: 25000,
                                                                     6.0: 35000,
                                                                     7.0: 45000,
                                                                     8.0: 55000,
                                                                     9.0: 65000,
                                                                     10.0: 75000,
                                                                     12.0: 15000,
                                                                     13.0: 45000,
                                                                     14.0: 100000,
                                                                     15.0: 150000,
                                                                     77.0: np.nan,
                                                                     99.0: np.nan}, inp
In [41]:
            keep demographic['annual household income'].value counts(dropna=False)
Out[41]:
            150000.0
                         988
            45000.0
                         645
            NaN
                         609
                         574
            35000.0
            100000.0
                         497
            15000.0
                         484
            55000.0
                         389
            25000.0
                        344
            20000.0
                         335
            65000.0
                         331
            75000.0
                        277
            5000.0
                         164
            10000.0
                         164
            Name: annual household income, dtype: int64
```

```
keep_demographic['household_size'].value_counts(dropna=False)
In [42]:
Out[42]:
            2.0
                   1787
            3.0
                   1057
            4.0
                    918
            1.0
                    806
            5.0
                    638
            6.0
                    334
            7.0
                    261
            Name: household_size, dtype: int64
In [43]:
            keep demographic['household size'] = keep demographic['household size'
In [44]:
            keep_demographic['income_poverty_ratio'].describe().round(2)
Out[44]:
            count
                     4975.00
                        2.52
            mean
            std
                        1.61
            min
                        0.00
            25%
                        1.18
                        2.08
            50%
            75%
                        4.06
            max
                        5.00
            Name: income poverty ratio, dtype: float64
            keep demographic['income_poverty_ratio'].isna().sum()
In [45]:
Out[45]:
            826
```

Per the data source:

Income-Poverty Ratio was calculated by dividing family (or individual) income by the poverty guidelines specific to the survey year. The value was not computed if the respondent only reported income as < 20,000 or $\ge 20,000$. If family income was reported as a more detailed category, the midpoint of the range was used to compute the ratio. Values at or above 5.00 were coded as 5.00 or more because of disclosure concerns. The values were not computed if the income data was missing.

In [46]: ke

```
keep_demographic.info()
```

<class 'pandas.core.frame.DataFrame'>

```
Int64Index: 5801 entries, 93705 to 102956
Data columns (total 11 columns):
#
    Column
                               Non-Null Count
                                               Dtype
                                               ____
0
     gender
                               5801 non-null
                                               object
 1
                               5801 non-null
                                               int64
     age
 2
                               5801 non-null
                                               object
    race
 3
    veteran_status
                               5801 non-null
                                               object
 4
                               5801 non-null
                                               object
    country of birth
 5
    citizen status
                               5801 non-null
                                               object
 6
    education
                                               object
                               5501 non-null
 7
    marital_status
                               5801 non-null
                                               object
 8
     household size
                               5801 non-null
                                               int64
     annual_household_income 5192 non-null
9
                                               float64
     income poverty ratio
                               4975 non-null
                                               float64
dtypes: float64(2), int64(2), object(7)
memory usage: 543.8+ KB
```

Health Insurance

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/HIQ_J.htm)</u>

The Health Insurance questionnaire provides respondent-level interview data on insurance coverage, type of insurance coverage, coverage of prescription drugs, and uninsured status during the past 12 months.

In [47]: insurance

Out[47]:

	HIQ011	HIQ031A	HIQ031B	HIQ031C	HIQ031D	HIQ031E	HIQ031F	HIQ031H
SEQN								
93703	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN
93704	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN
93705	1.0	NaN	15.0	NaN	17.0	NaN	NaN	NaN
93706	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN
93707	1.0	NaN	NaN	NaN	17.0	NaN	NaN	NaN
102952	1.0	14.0	15.0	NaN	NaN	NaN	NaN	NaN
102953	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN
102954	1.0	NaN	NaN	NaN	17.0	NaN	NaN	NaN
102955	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN
102956	1.0	NaN	NaN	NaN	NaN	NaN	NaN	21.0

9254 rows × 15 columns

```
In [48]:
           insurance.columns
           Index(['HIQ011', 'HIQ031A', 'HIQ031B', 'HIQ031C', 'HIQ031D', 'HIQ031E'
Out[48]:
                   'HIQ031F', 'HIQ031H', 'HIQ031I', 'HIQ031J', 'HIQ031AA', 'HIQ260
                   'HIQ105', 'HIQ270', 'HIQ210'],
                 dtype='object')
           keepcols insurance = ['HIQ011', 'HIQ031A', 'HIQ031B', 'HIQ031C', 'HIQ03
In [49]:
                   'HIQ031F', 'HIQ031H', 'HIQ031I', 'HIQ031J', 'HIQ031AA', 'HIQ270'
           mapper_insurance = {'HIQ011': 'coverage_status',
                      'HIQ031A': 'covered private',
                      'HIQ031B': 'covered medicare',
                      'HIQ031C': 'covered_medigap',
                      'HIQ031D': 'covered medicaid',
                      'HIQ031E': 'covered_chip',
                      'HIQ031F': 'covered military',
                      'HIQ031H': 'covered state',
                      'HIQ031I': 'covered other gov',
                      'HIQ031J': 'covered_single_service',
                      'HIQ031AA': 'not covered',
                      'HIQ270': 'prescription coverage',
                      'HIQ210': 'uninsured_in_last_year'}
```

In [50]: keep_insurance = insurance.copy()[keepcols_insurance]
 keep_insurance.rename(mapper=mapper_insurance, axis=1, inplace=True)
 keep_insurance

Out[50]:

	coverage_status	covered_private	covered_medicare	covered_medigap	covered_m
SEQN					
93703	1.0	14.0	NaN	NaN	
93704	1.0	14.0	NaN	NaN	
93705	1.0	NaN	15.0	NaN	
93706	1.0	14.0	NaN	NaN	
93707	1.0	NaN	NaN	NaN	
102952	1.0	14.0	15.0	NaN	
102953	1.0	14.0	NaN	NaN	
102954	1.0	NaN	NaN	NaN	
102955	1.0	14.0	NaN	NaN	
102956	1.0	NaN	NaN	NaN	

9254 rows × 13 columns

```
In [51]:
           keep insurance['coverage status'].value counts(dropna=False)
Out[51]:
           1.0
                   8157
           2.0
                   1072
           9.0
                     18
           7.0
                      7
           Name: coverage status, dtype: int64
            # kept a "no answer" class as this may be meaningful
In [52]:
           keep insurance['coverage status'].replace({1.0: 'insured',
                                                2.0: 'uninsured',
                                                7.0: 'no answer',
                                                9.0: 'no answer'}, inplace=True)
In [53]:
           keep_insurance['coverage_status'].value_counts(dropna=False)
Out[53]:
           insured
                         8157
           uninsured
                         1072
                           25
           no answer
           Name: coverage status, dtype: int64
```

```
In [54]:
           keep insurance['covered private'].value counts(dropna=False)
Out[54]:
           NaN
                    5000
                    4188
           14.0
           99.0
                      63
           77.0
                       3
           Name: covered private, dtype: int64
In [55]:
           keep insurance ['covered private'].replace ({14.0: 'yes',
                                                99.0: 'no',
                                                77.0: 'no',
                                                np.nan: 'no'}, inplace=True)
In [56]:
           keep_insurance['covered_medicare'].value_counts(dropna=False)
Out[56]:
                    7672
           NaN
           15.0
                    1582
           Name: covered medicare, dtype: int64
           keep insurance['covered_medicare'].replace({15.0: 'yes', np.nan: 'no'},
In [57]:
In [58]:
           keep insurance['covered medigap'].value counts(dropna=False)
Out[58]:
           NaN
                    9196
           16.0
                      58
           Name: covered medigap, dtype: int64
           keep_insurance['covered_medigap'].replace({16.0: 'yes', np.nan: 'no'},
In [59]:
In [60]:
           keep insurance['covered medicaid'].value counts(dropna=False)
Out[60]:
                    6727
           NaN
           17.0
                    2527
           Name: covered medicaid, dtype: int64
In [61]:
           keep_insurance['covered_medicaid'].replace({17.0: 'yes', np.nan: 'no'},
In [62]:
           keep_insurance['covered_chip'].value_counts(dropna=False)
Out[62]:
           NaN
                    9161
           18.0
                      93
           Name: covered chip, dtype: int64
In [63]:
           keep_insurance['covered_chip'].replace({18.0: 'yes', np.nan: 'no'}, ing
In [64]:
           keep_insurance['covered_military'].value_counts(dropna=False)
Out[64]:
                    8959
           NaN
           19.0
                     295
           Name: covered military, dtype: int64
In [65]:
           keep_insurance['covered_military'].replace({19.0: 'yes', np.nan: 'no'},
```

```
In [66]:
                             keep_insurance['covered_state'].value_counts(dropna=False)
Out[66]:
                             NaN
                                                  8721
                             21.0
                                                     533
                             Name: covered state, dtype: int64
In [67]:
                              keep insurance['covered state'].replace({21.0: 'yes', np.nan: 'no'}, ir
In [68]:
                             keep insurance['covered other gov'].value counts(dropna=False)
Out[68]:
                             NaN
                                                  8953
                             22.0
                                                     301
                             Name: covered_other_gov, dtype: int64
In [69]:
                              keep insurance['covered other gov'].replace({22.0: 'yes', np.nan: 'no']
                             keep insurance['covered single service'].value counts(dropna=False)
In [70]:
Out[70]:
                                                  8546
                             NaN
                             23.0
                                                     708
                             Name: covered single service, dtype: int64
In [71]:
                             keep insurance['covered single service'].replace({23.0: 'yes', np.nan:
In [72]:
                             keep_insurance['not_covered'].value_counts(dropna=False)
Out[72]:
                             NaN
                                                  9253
                             40.0
                                                          1
                             Name: not covered, dtype: int64
In [73]:
                              #seems to be an anomoly, so I drop this row
                             keep insurance[keep insurance['not covered']==40.0]
                             keep insurance = keep insurance[keep insurance['not covered']!=40.0]
In [74]:
                              # dropping the column since all values are now null
                             keep_insurance.drop(columns='not_covered', inplace=True)
                             /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-page / Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-page / Users/kristincooper/opt/anaconda3/envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-envs/learn-en
                             A value is trying to be set on a copy of a slice from a DataFrame
                             See the caveats in the documentation: https://pandas.pydata.org/pandas-
                                  return super().drop(
```

```
In [75]: keep_insurance.head()
```

Out[75]:

coverage_status covered_private covered_medicare covered_medigap covered_me

SEQN					
93703	insured	yes	no	no	
93704	insured	yes	no	no	
93705	insured	no	yes	no	
93706	insured	yes	no	no	
93707	insured	no	no	no	

```
In [76]: keep_insurance['prescription_coverage'].value_counts(dropna=False)

Out[76]: 1.0 7678
NaN 1082
```

2.0 379 9.0 110 7.0 4

Name: prescription_coverage, dtype: int64

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-paralue is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasreturn super().replace(

```
In [78]: keep_insurance['prescription_coverage'].value_counts(dropna=False)
```

Out[78]: yes 7678 no_answer 1196 no 379

Name: prescription_coverage, dtype: int64

```
In [79]: keep_insurance['uninsured_in_last_year'].value_counts(dropna=False)
```

Out[79]: 2.0 7591 NaN 1082 1.0 561 9.0 18 7.0 1

Name: uninsured_in_last_year, dtype: int64

In [81]: keep_insurance[keep_insurance['uninsured_in_last_year'].isna()]

Out[81]:

	coverage_status	covered_private	covered_medicare	covered_medigap	covered_m
SEQN					
93712	uninsured	no	no	no	_
93717	uninsured	no	no	no	
93729	no_answer	no	no	no	
93730	uninsured	no	no	no	
93743	uninsured	no	no	no	
102884	uninsured	no	no	no	
102898	uninsured	no	no	no	
102918	uninsured	no	no	no	
102921	uninsured	no	no	no	
102922	uninsured	no	no	no	

1082 rows × 12 columns

```
In [82]: # determined that respondents who indicated their "coverage status" is
# have been uninsured in the last 12 months

for ind, row in keep_insurance.iterrows():
    if keep_insurance['coverage_status'][ind] == 'uninsured':
        keep insurance['uninsured in last year'][ind] = 'yes'
```

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-parallearn trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasexec(code obj, self.user global ns, self.user ns)

In [83]:

keep_insurance[keep_insurance['uninsured_in_last_year'].isna()]

Out[83]:

	coverage_status	covered_private	covered_medicare	covered_medigap	covered_m
SEQN					
93729	no_answer	no	no	no	
93902	no_answer	no	no	no	
93981	no_answer	no	no	no	
95301	no_answer	no	no	no	
95515	no_answer	no	no	no	
95567	no_answer	no	no	no	
95659	no_answer	no	no	no	
96934	no_answer	no	no	no	
97033	no_answer	no	no	no	
97306	no_answer	no	no	no	
97486	no_answer	no	no	no	
97531	no_answer	no	no	no	
97774	no_answer	no	no	no	
98146	no_answer	no	no	no	
98618	no_answer	no	no	no	
98628	no_answer	no	no	no	
98926	no_answer	no	no	no	
98962	no_answer	no	no	no	
99065	no_answer	no	no	no	
99576	no_answer	no	no	no	
100464	no_answer	no	no	no	
100601	no_answer	no	no	no	
100950	no_answer	no	no	no	
100981	no_answer	no	no	no	
101975	no_answer	no	no	no	

In [84]: keep_insurance['uninsured_in_last_year'].fillna('no_answer', inplace=T1

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-paralle is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasreturn super().fillna(

```
In [85]:
           keep insurance['uninsured in last year'].value counts(dropna=False)
Out[85]:
           no
                        7578
                        1631
           yes
                          44
           no_answer
           Name: uninsured in last year, dtype: int64
In [86]:
           keep_insurance.info()
           <class 'pandas.core.frame.DataFrame'>
           Int64Index: 9253 entries, 93703 to 102956
           Data columns (total 12 columns):
            #
                Column
                                        Non-Null Count Dtype
                _____
                                        _____
                                                         ____
            0
                                        9253 non-null
                                                        object
                coverage_status
            1
                covered private
                                        9253 non-null
                                                        object
            2
                covered medicare
                                        9253 non-null
                                                        object
            3
                covered medigap
                                        9253 non-null
                                                        object
            4
                covered medicaid
                                                        object
                                        9253 non-null
            5
                                                         object
                covered chip
                                        9253 non-null
            6
                covered military
                                        9253 non-null
                                                        object
            7
                covered_state
                                        9253 non-null
                                                        object
            8
                covered_other_gov
                                        9253 non-null
                                                        object
            9
                covered single service 9253 non-null
                                                        object
```

Body Measures

dtypes: object(12)
memory usage: 1.2+ MB

prescription coverage

uninsured_in_last_year 9253 non-null

10

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/BMX_J.htm)</u>

9253 non-null

object

object

Body measures including height, weight, waist and hip circumference were taken for adult participants. Body Mass Index (BMI) was calculated as weight in kilograms divided by height in meters squared, and then rounded to one decimal place.

In [87]:

measures

Out[87]:

	BMDSTATS	BMXWT	BMIWT	BMXRECUM	BMIRECUM	BMXHEAD	BMIHEAD	вмх
SEQN								
93703	1.0	13.7	3.0	89.6	NaN	NaN	NaN	8
93704	1.0	13.9	NaN	95.0	NaN	NaN	NaN	9,
93705	1.0	79.5	NaN	NaN	NaN	NaN	NaN	15
93706	1.0	66.3	NaN	NaN	NaN	NaN	NaN	17
93707	1.0	45.4	NaN	NaN	NaN	NaN	NaN	15
102952	1.0	49.0	NaN	NaN	NaN	NaN	NaN	150
102953	1.0	97.4	NaN	NaN	NaN	NaN	NaN	16 [,]
102954	1.0	69.1	NaN	NaN	NaN	NaN	NaN	16
102955	1.0	111.9	NaN	NaN	NaN	NaN	NaN	150
102956	1.0	111.5	NaN	NaN	NaN	NaN	NaN	17!

8704 rows × 20 columns

Out[90]:

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm
SEQN					
93703	13.7	88.6	17.5	48.2	NaN
93704	13.9	94.2	15.7	50.0	NaN
93705	79.5	158.3	31.7	101.8	110.0
93706	66.3	175.7	21.5	79.3	94.4
93707	45.4	158.4	18.1	64.1	83.0
•••					
102952	49.0	156.5	20.0	82.2	87.3
102953	97.4	164.9	35.8	114.8	112.8
102954	69.1	162.6	26.1	86.4	102.7
102955	111.9	156.6	45.6	113.5	128.3
102956	111.5	175.8	36.1	122.0	110.0

 $8704 \text{ rows} \times 5 \text{ columns}$

```
keep_measures['weight_kg'].describe().round(1)
In [91]:
Out[91]:
                     8580.0
           count
                       65.1
           mean
           std
                       32.9
           min
                        3.2
                       43.1
           25%
           50%
                       67.8
           75%
                       85.6
                      242.6
           max
           Name: weight_kg, dtype: float64
In [92]:
           keep_measures['weight_kg'].isna().sum()
Out[92]:
           124
```

In [93]:

keep_measures[keep_measures['weight_kg'].isna()]

Out[93]:

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm
SEQN					
93777	NaN	NaN	NaN	NaN	NaN
93816	NaN	NaN	NaN	NaN	NaN
93935	NaN	NaN	NaN	NaN	NaN
93955	NaN	NaN	NaN	NaN	NaN
94310	NaN	NaN	NaN	NaN	NaN
102590	NaN	NaN	NaN	NaN	NaN
102610	NaN	96.2	NaN	NaN	NaN
102671	NaN	NaN	NaN	NaN	NaN
102684	NaN	NaN	NaN	NaN	NaN
102864	NaN	NaN	NaN	NaN	NaN

124 rows × 5 columns

Because many of the 77 rows with missing weights are also missing heights and BMIs, they are removed from the dataset

In [94]: keep_measures = keep_measures[~keep_measures['weight_kg'].isna()]
keep_measures

Out[94]:

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm
SEQN					
93703	13.7	88.6	17.5	48.2	NaN
93704	13.9	94.2	15.7	50.0	NaN
93705	79.5	158.3	31.7	101.8	110.0
93706	66.3	175.7	21.5	79.3	94.4
93707	45.4	158.4	18.1	64.1	83.0
102952	49.0	156.5	20.0	82.2	87.3
102953	97.4	164.9	35.8	114.8	112.8
102954	69.1	162.6	26.1	86.4	102.7
102955	111.9	156.6	45.6	113.5	128.3
102956	111.5	175.8	36.1	122.0	110.0

8580 rows × 5 columns

```
In [95]: keep_measures['weight_kg'].isna().sum()
```

Out[95]: 0

Out[96]: 575

In [97]: keep_measures[keep_measures['height_cm'].isna()]

Out[97]:

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm
SEQN					
93710	10.2	NaN	NaN	NaN	NaN
93720	10.6	NaN	NaN	NaN	NaN
93748	9.3	NaN	NaN	NaN	NaN
93749	8.3	NaN	NaN	NaN	NaN
93764	9.2	NaN	NaN	NaN	NaN
•••					
102897	12.6	NaN	NaN	NaN	NaN
102919	7.2	NaN	NaN	NaN	NaN
102927	9.1	NaN	NaN	NaN	NaN
102936	10.2	NaN	NaN	NaN	NaN
102942	8.9	NaN	NaN	NaN	NaN

575 rows × 5 columns

Because a these rows seem to be missing a lot of data, they are removed from the dataset.

```
In [98]:
           keep_measures = keep_measures[~keep_measures['height_cm'].isna()]
           keep measures['height cm'].isna().sum()
Out[98]:
           0
In [99]:
           keep_measures['BMI'].isna().sum()
Out[99]:
           0
In [100]:
           keep_measures['waist_circumference_cm'].isna().sum()
Out[100]:
           419
In [101]:
           keep_measures['hip_circumference_cm'].isna().sum()
Out[101]:
           1975
```

Waist and hip circumference will be filled during the imputing step to come.

Physical Activity

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/PAQ_J.htm)</u>

Adult participants were surveyed on their general physical activity levels.

In [102]: a

activity

Out[102]:

	PAQ605	PAQ610	PAD615	PAQ620	PAQ625	PAD630	PAQ635	PAQ640	PAD64!
SEQN									
93705	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal
93706	2.0	NaN	NaN	2.0	NaN	NaN	1.0	5.0	45.(
93708	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal
93709	2.0	NaN	NaN	1.0	2.0	180.0	2.0	NaN	Nal
93711	2.0	NaN	NaN	2.0	NaN	NaN	1.0	5.0	60.0
102950	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal
102952	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal
102953	1.0	3.0	240.0	1.0	3.0	240.0	2.0	NaN	Nal
102954	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal
102956	2.0	NaN	NaN	2.0	NaN	NaN	2.0	NaN	Nal

 $5856 \text{ rows} \times 16 \text{ columns}$

```
In [103]:
           activity.columns
           Index(['PAQ605', 'PAQ610', 'PAD615', 'PAQ620', 'PAQ625', 'PAD630', 'PAQ
Out[103]:
                   'PAQ640', 'PAD645', 'PAQ650', 'PAQ655', 'PAD660', 'PAQ665', 'PAQ
                   'PAD675', 'PAD680'],
                 dtype='object')
In [104]:
           keepcols activity = ['PAD615', 'PAQ610', 'PAD630', 'PAQ625', 'PAQ640',
                                 'PAQ655', 'PAD675', 'PAQ670', 'PAD680']
           mapper_activity = {'PAD615':'work_vigorous minperday',
                               'PAQ610': 'work vigorous daysperweek',
                               'PAD630': 'work moderate minperday',
                               'PAQ625': 'work moderate daysperweek',
                               'PAD645': 'transportation minperday',
                               'PAQ640': 'transportation daysperweek',
                               'PAD660': 'recreation vigorous minperday',
                               'PAQ655': 'recreation vigorous daysperweek',
                               'PAD675': 'recreation moderate minperday',
                               'PAQ670': 'recreation_moderate_daysperweek',
                               'PAD680': 'sedentary minsperday'}
```

In [105]:

keep_activity = activity.copy()[keepcols_activity].rename(mapper=mapper)
keep_activity

Out[105]:

	work_vigorous_minperday	work_vigorous_daysperweek	work_moderate_minperday
SEQN			
93705	0.0	0.0	0.0
93706	0.0	0.0	0.0
93708	0.0	0.0	0.0
93709	0.0	0.0	180.0
93711	0.0	0.0	0.0
102950	0.0	0.0	0.0
102952	0.0	0.0	0.0
102953	240.0	3.0	240.0
102954	0.0	0.0	0.0
102956	0.0	0.0	0.0

 $5856 \text{ rows} \times 11 \text{ columns}$

```
In [106]: days_cols = ['work_vigorous_daysperweek', 'work_moderate_daysperweek', 'recreation_vigorous_daysperweek', 'recreation_moderate_day mins_cols = ['work_vigorous_minperday', 'work_moderate_minperday', 'tracreation_vigorous_minperday', 'recreation_moderate_minperday', 'recreation_moderate_minperday', 'recreation_moderate_minperday', 'recreation_moderate_minperday', 'recreation_moderate_minperday', 'work_moderate_minperday', 'recreation_moderate_minperday', 'work_moderate_minperday', 'work_moderate_daysperweek', 'work_moderate_daysperweek', 'work_moderate_daysperweek', 'recreation_moderate_daysperweek', 'recreation_moderate_daysperweek', 'work_moderate_daysperweek', 'recreation_moderate_daysperweek', 'work_moderate_daysperweek', 'work_moderate_daysperweek', 'work_moderate_minperday', 'track_moderate_minperday', 'work_moderate_minperday', 'track_moderate_minperday', 'work_moderate_minperday', 'track_moderate_minperday', 'work_moderate_minperday', '
```

All the columns in units=days and all the columns in units=minutes have the same dummy values, so they are analyzed together. These are especially important to fix now in order to engineer a smaller number of features which summarize each respondent's vigorous, moderate, and sedentary activity levels.

```
In [107]:
          for col in days_cols:
             print(col)
             display(keep_activity[col].value_counts())
             print('*****'*15)
         work vigorous daysperweek
         0.0
                4467
         5.0
                 384
         3.0
                 232
         2.0
                 178
         6.0
                 160
         4.0
                 153
         7.0
                 151
         1.0
                 130
         99.0
                   1
         Name: work_vigorous_daysperweek, dtype: int64
         ********************
         work moderate daysperweek
         0.0
                3417
         5.0
                 702
         3.0
                 401
                 331
         7.0
         2.0
                 308
         4.0
                 307
         6.0
                 210
         1.0
                 174
         99.0
                   6
         Name: work moderate daysperweek, dtype: int64
         *******************
         transportation daysperweek
         0.0
                4417
         7.0
                 410
         5.0
                 332
                 230
         3.0
         2.0
                 177
         4.0
                 135
         6.0
                  87
         1.0
                  64
         99.0
                   4
         Name: transportation_daysperweek, dtype: int64
         ************************
         recreation vigorous daysperweek
                4422
         0.0
         3.0
                 385
         2.0
                 269
         4.0
                 264
         5.0
                 207
         1.0
                 163
                  73
         7.0
```

6.0

72

99.0 1 Name: recreation_vigorous_daysperweek, dtype: int64 ******************* recreation moderate daysperweek 0.0 3548 3.0 606 2.0 491 5.0 321 293 4.0 1.0 253 7.0 250 6.0 91 99.0 3 Name: recreation_moderate_daysperweek, dtype: int64

```
Jupyter Notebook Viewer
           for col in mins_cols:
In [108]:
               print(col)
               display(keep_activity[col].value_counts())
               print('*****'*15)
           work_vigorous_minperday
           0.0
                     4475
           120.0
                      234
           60.0
                      194
           240.0
                      177
           180.0
                      130
           480.0
                      107
           30.0
                      106
           300.0
                       93
           360.0
                       80
           420.0
                       41
           10.0
                       40
           600.0
                       38
                       31
           15.0
           20.0
                       31
                       23
           90.0
           540.0
                       15
           45.0
                       14
           9999.0
                        6
           150.0
                        4
           40.0
                        4
           720.0
                        4
                        2
           25.0
                        1
           80.0
           12.0
                        1
           840.0
                        1
           35.0
                        1
           780.0
                        1
           140.0
                        1
           660.0
                        1
           Name: work vigorous minperday, dtype: int64
           *******************
           work_moderate_minperday
           0.0
                     3430
           120.0
                      449
           60.0
                      362
           240.0
                      317
           180.0
                      277
           30.0
                      206
           300.0
                      150
           480.0
                      131
           360.0
                      125
           10.0
                       76
```

75

55

39 38

34

28

20.0

15.0

90.0

45.0

420.0 600.0

```
540.0
            14
9999.0
            13
40.0
            11
720.0
             6
150.0
             6
25.0
             4
             2
50.0
660.0
             1
12.0
             1
230.0
             1
70.0
             1
35.0
             1
840.0
             1
             1
140.0
210.0
             1
Name: work moderate minperday, dtype: int64
********************
transportation_minperday
0.0
          4426
30.0
           333
60.0
           270
20.0
           176
10.0
           154
15.0
           119
120.0
           118
40.0
            45
180.0
            38
45.0
            36
            30
240.0
90.0
            28
25.0
            21
300.0
             8
480.0
             8
             6
360.0
420.0
             6
50.0
             5
80.0
9999.0
             4
12.0
             3
35.0
             3
14.0
             2
540.0
             2
75.0
             1
16.0
             1
22.0
             1
660.0
             1
150.0
             1
42.0
             1
17.0
             1
209.0
             1
110.0
             1
             1
600.0
230.0
```

Name: transportation_minperday, dtype: int64

recreation_vigorous_minperday

```
0.0
           4425
60.0
            464
120.0
            240
30.0
            210
45.0
            110
90.0
            110
180.0
             90
20.0
             62
40.0
             29
240.0
             23
15.0
             18
10.0
             13
25.0
             11
35.0
             10
150.0
             10
50.0
              5
75.0
              5
              4
80.0
300.0
              4
18.0
              2
              2
480.0
360.0
              2
23.0
              1
12.0
              1
11.0
              1
209.0
              1
420.0
              1
55.0
              1
              1
9999.0
```

Name: recreation_vigorous_minperday, dtype: int64

recreation_moderate_minperday

```
0.0
           3555
60.0
            641
30.0
            557
            260
120.0
20.0
            194
45.0
            123
15.0
            102
90.0
             80
180.0
             77
10.0
             73
40.0
             59
240.0
             54
300.0
             16
25.0
             16
35.0
              8
              7
50.0
360.0
              6
80.0
              4
75.0
              4
480.0
              4
              3
12.0
22.0
              2
```

```
      420.0
      2

      150.0
      2

      540.0
      1

      55.0
      1

      16.0
      1

      28.0
      1

      100.0
      1

      210.0
      1

      9999.0
      1
```

Name: recreation_moderate_minperday, dtype: int64

```
In [109]:
```

```
for col in days_cols:
    keep_activity[col].replace({77.0: 0, 99.0:0}, inplace=True)
for col in mins_cols:
    keep_activity[col].replace({7777.0: 0, 9999.0: 0}, inplace=True)
```

```
for col in days_cols:
In [110]:
                print(col)
                display(keep_activity[col].value_counts())
                print('____'*20)
            work vigorous daysperweek
            0.0
                   4468
            5.0
                    384
            3.0
                    232
            2.0
                    178
            6.0
                    160
            4.0
                    153
            7.0
                    151
            1.0
                    130
            Name: work_vigorous_daysperweek, dtype: int64
           work moderate daysperweek
            0.0
                   3423
            5.0
                    702
            3.0
                    401
            7.0
                    331
            2.0
                    308
            4.0
                    307
            6.0
                    210
            1.0
                    174
            Name: work moderate daysperweek, dtype: int64
            transportation daysperweek
            0.0
                   4421
            7.0
                    410
            5.0
                    332
            3.0
                    230
            2.0
                    177
            4.0
                    135
            6.0
                     87
            1.0
                     64
            Name: transportation daysperweek, dtype: int64
            recreation vigorous daysperweek
            0.0
                   4423
            3.0
                    385
            2.0
                    269
            4.0
                    264
            5.0
                    207
            1.0
                    163
            7.0
                     73
            6.0
            Name: recreation vigorous daysperweek, dtype: int64
```

recreation moderate daysperweek

```
0.0
        3551
         606
3.0
2.0
         491
5.0
         321
4.0
         293
1.0
         253
7.0
         250
6.0
          91
```

Name: recreation_moderate_daysperweek, dtype: int64

```
In [111]: for col in mins_cols:
    print(col)
    display(keep_activity[col].value_counts())
    print('____'*20)

work_vigorous_minperday
```

```
0.0
          4481
120.0
           234
60.0
           194
240.0
           177
180.0
           130
480.0
           107
30.0
           106
300.0
            93
360.0
            80
420.0
            41
10.0
            40
600.0
            38
20.0
            31
15.0
            31
            23
90.0
540.0
            15
45.0
            14
              4
150.0
40.0
              4
              4
720.0
              2
25.0
              1
80.0
              1
12.0
840.0
              1
35.0
             1
780.0
             1
              1
140.0
660.0
              1
```

Name: work vigorous minperday, dtype: int64

work_moderate_minperday

```
0.0
          3443
120.0
           449
60.0
           362
240.0
           317
180.0
           277
           206
30.0
300.0
           150
480.0
           131
360.0
           125
10.0
            76
20.0
            75
15.0
            55
90.0
            39
420.0
            38
600.0
            34
            28
45.0
540.0
            14
```

```
40.0
             11
150.0
              6
720.0
              6
              4
25.0
              2
50.0
660.0
              1
              1
12.0
230.0
              1
              1
70.0
              1
35.0
840.0
              1
140.0
              1
210.0
              1
```

Name: work_moderate_minperday, dtype: int64

```
transportation_minperday
0.0
          4430
30.0
           333
60.0
           270
20.0
           176
10.0
           154
15.0
           119
120.0
           118
40.0
            45
180.0
            38
45.0
            36
240.0
            30
90.0
            28
25.0
            21
300.0
             8
480.0
             8
360.0
             6
             6
420.0
             5
50.0
80.0
             4
35.0
             3
12.0
             3
540.0
             2
             2
14.0
75.0
             1
16.0
             1
22.0
             1
660.0
             1
150.0
             1
42.0
             1
17.0
             1
             1
209.0
110.0
             1
600.0
             1
230.0
Name: transportation_minperday, dtype: int64
```

recreation_vigorous_minperday

0.0 4426

```
464
60.0
120.0
           240
30.0
           210
45.0
           110
90.0
           110
180.0
            90
20.0
            62
40.0
            29
            23
240.0
15.0
            18
10.0
            13
25.0
            11
150.0
            10
35.0
            10
             5
50.0
75.0
             5
80.0
              4
300.0
              4
              2
18.0
              2
480.0
              2
360.0
209.0
              1
12.0
             1
420.0
             1
23.0
             1
55.0
              1
              1
11.0
```

Name: recreation_vigorous_minperday, dtype: int64

recreation_moderate_minperday

```
0.0
          3556
60.0
           641
30.0
           557
120.0
           260
20.0
           194
45.0
           123
15.0
           102
90.0
            80
180.0
            77
10.0
            73
            59
40.0
240.0
            54
300.0
            16
25.0
            16
35.0
             8
              7
50.0
360.0
              6
              4
80.0
              4
75.0
480.0
              4
12.0
              3
420.0
             2
             2
150.0
             2
22.0
540.0
              1
55.0
              1
```

```
16.0 1
28.0 1
100.0 1
210.0 1
```

Name: recreation_moderate_minperday, dtype: int64

Three features were engineered to summarize activity levels by multiplying days per week times minutes per day of each activity type, then adding work and recreation activity together.

In [112]:

Out[112]:

	work_vigorous_minperday	work_vigorous_daysperweek	work_moderate_minperday
SEQN			
93705	0.0	0.0	0.0
93706	0.0	0.0	0.0
93708	0.0	0.0	0.0
93709	0.0	0.0	180.0
93711	0.0	0.0	0.0
			•••
102950	0.0	0.0	0.0
102952	0.0	0.0	0.0
102953	240.0	3.0	240.0
102954	0.0	0.0	0.0
102956	0.0	0.0	0.0

5856 rows × 13 columns

Out[113]:

	sedentary_minsperday	vigorous_activity_minsperweek	moderate_activity_minsperw
SEQN			
93705	300.0	0.0	1.
93706	240.0	0.0	2
93708	120.0	0.0	1.
93709	600.0	0.0	3
93711	420.0	16.0	3
102950	60.0	0.0	
102952	120.0	0.0	3
102953	360.0	720.0	7.
102954	600.0	0.0	1
102956	720.0	0.0	

 $5856 \text{ rows} \times 3 \text{ columns}$

In [114]:

keep_activity2.describe().round(2)

Out[114]:

	sedentary_minsperday	vigorous_activity_minsperweek	moderate_activity_minsperwee
count	5856.00	5856.00	5856.0
mean	388.89	222.20	491.
std	771.32	603.94	777.(
min	0.00	0.00	0.0
25%	180.00	0.00	0.0
50%	300.00	0.00	150.0
75%	480.00	25.00	600.0
max	9999.00	5056.00	5880.0

Blood Pressure

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/BPXO_J.htm)</u>

Pulse is captured in the blood pressure data file. Because this model seeks to predict diabetes based only on easily-accessible questionnaire data or body measurements, pulse is the only measurement used from this file. For the purposes of this analysis, an average of three oscillometric measurements was calculated.

In [115]:

bp

Out[115]:

	BPAOARM	BPAOCSZ	BPAOMNTS	BPXOSY1	BPXODI1	BPXOSY2	BPXODI2	врхо
SEQN								
93705	b'R'	4.0	-20.0	164.0	66.0	165.0	66.0	1
93706	b'R'	3.0	138.0	126.0	74.0	128.0	68.0	1
93707	b'R'	2.0	12.0	136.0	71.0	133.0	72.0	1
93708	b'R'	3.0	22.0	146.0	82.0	142.0	76.0	1
93709	b'R'	4.0	58.0	120.0	83.0	124.0	81.0	1
102952	b'R'	3.0	97.0	154.0	92.0	144.0	84.0	1
102953	b'R'	4.0	-57.0	135.0	91.0	133.0	86.0	1
102954	b''	3.0	-101.0	123.0	75.0	119.0	71.0	1
102955	b'R'	5.0	-88.0	92.0	64.0	97.0	64.0	
102956	b'R'	4.0	30.0	143.0	100.0	146.0	101.0	1

7132 rows × 12 columns

```
In [116]: bp.columns
```

Out[116]: Index(['BPAOARM', 'BPAOCSZ', 'BPAOMNTS', 'BPXOSY1', 'BPXODI1', 'BPXOSY2', 'BPXODI2', 'BPXODI3', 'BPXOPLS1', 'BPXOPLS2', 'BPXOPL dtype='object')

```
In [117]: keepcols_bp = ['BPXOPLS1', 'BPXOPLS2', 'BPXOPLS3']
mapper_bp = {'BPXOPLS1': 'pulse_1', 'BPXOPLS2': 'pulse_2', 'BPXOPLS3':
```

In [118]: pulse = bp[keepcols_bp]
 pulse.rename(mapper=mapper_bp, axis=1, inplace=True)
 pulse

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-paralle is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasreturn super().rename(

Out[118]:

	pulse_1	pulse_2	pulse_3
SEQN			
93705	52.0	51.0	49.0
93706	76.0	83.0	73.0
93707	100.0	89.0	91.0
93708	67.0	65.0	71.0
93709	64.0	62.0	61.0
•••			
102952	88.0	84.0	74.0
102953	76.0	79.0	78.0
102954	NaN	NaN	NaN
102955	71.0	71.0	76.0
102956	72.0	74.0	75.0

7132 rows \times 3 columns

```
<ipython-input-119-5c63e71f4110>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-pulse['avg_pulse'] = ((pulse['pulse_1'] + pulse['pulse_2'] + pulse[']

Out[119]:

	avg_pulse
SEQN	
93705	50.7
93706	77.3
93707	93.3
93708	67.7
93709	62.3
102952	82.0
102953	77.7
102954	NaN
102955	72.7
102956	73.7

7132 rows \times 1 columns

Nicotine Usage

<u>View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/SMQ_J.htm#Component_Description)</u>

The Smoking - Cigarette Use dataset provides a history of cigarette use, age at initiation, past 30-day use, cigarette brand, sub-brand and other related details. Questions on ever use of cigars, smokeless tobacco, and electronic nicotine delivery systems (including e-cigarettes) were added to NHANES in 2015-16.

Based on the source data available and domain knowledge, four nicotine usage features were defined as:

• **Lifetime cigarette smoker** - respondent has smoked at least 100 cigarettes in their lifetime

- Current cigarette smoker respondent currently smokes every day or some days
- **E-cigarette smoker** respondent has smoked an ecigarette at least once in the last 30 days
- **Smokeless tobacco user** respondent has used smokeless tobacco at least once in the last 30 days

Because there are no obvious assumptions with which to fill null values, they will be addressed at the imputing step.

smoking.head() In [120]: Out[120]: SMO020 SMD030 SMO040 SMO0500 SMO050U SMD057 SMO078 SMD641 SM **SEQN** 93705 1.0 16.0 3.0 30.0 4.0 5.0 NaN NaN 93706 2.0 NaN NaN NaN NaN NaN NaN NaN 93707 NaN NaN NaN NaN NaN NaN NaN NaN 93708 2.0 NaN NaN NaN NaN NaN NaN NaN 93709 30.0 1.0 15.0 1.0 NaN NaN NaN 1.0 In [121]: keepcols_smoking = ['SMQ020', 'SMQ040', 'SMQ905', 'SMQ915'] mapper smoking = {'SMQ020': 'lifetime cigarette smoker', 'SMQ040': 'current_cigarette_smoker',

'SMQ905': 'ecig_smoker',

'SMQ915': 'smokeless tobacco user'}

Out[122]:

	lifetime_cigarette_smoker	current_cigarette_smoker	ecig_smoker	smokeless_toba
SEQN				
93705	1.0	3.0	NaN	_
93706	2.0	NaN	NaN	
93707	NaN	NaN	NaN	
93708	2.0	NaN	NaN	
93709	1.0	1.0	0.0	
102952	2.0	NaN	NaN	
102953	1.0	3.0	0.0	
102954	2.0	NaN	NaN	
102955	NaN	NaN	NaN	
102956	1.0	1.0	NaN	

 $6724 \text{ rows} \times 4 \text{ columns}$

```
In [123]:
           keep smoking['lifetime cigarette smoker'].value counts(dropna=False)
Out[123]:
           2.0
                   3497
           1.0
                   2359
                    868
           NaN
           Name: lifetime cigarette smoker, dtype: int64
In [124]:
           keep smoking['lifetime cigarette smoker'].replace({1.0: 'yes', 2.0: 'nc
In [125]:
           keep smoking['current cigarette smoker'].value counts(dropna=False)
Out[125]:
           NaN
                   4365
           3.0
                   1338
           1.0
                    805
           2.0
                    216
           Name: current cigarette smoker, dtype: int64
In [126]:
           keep smoking['current cigarette smoker'].replace({1.0: 'yes',
                                                         2.0: 'yes',
                                                         3.0: 'no'}, inplace=True)
In [127]:
           keep_smoking['current_cigarette_smoker'].value_counts(dropna=False)
Out[127]:
           NaN
                   4365
                   1338
           no
           yes
                   1021
           Name: current cigarette smoker, dtype: int64
```

```
In [128]:
            keep_smoking['ecig_smoker'].value_counts(dropna=False)
Out[128]:
                             5574
            NaN
            5.397605e-79
                              844
            1.000000e+00
                              102
            3.000000e+01
                               55
            2.000000e+00
                               43
            3.000000e+00
                               21
                               20
            5.000000e+00
            1.500000e+01
                               19
            1.000000e+01
                               11
            4.000000e+00
                               10
                                7
            2.000000e+01
            2.100000e+01
                                3
                                3
            7.000000e+00
                                3
            9.000000e+00
                                2
            1.200000e+01
            6.000000e+00
                                2
                                2
            2.500000e+01
            2.800000e+01
                                1
                                1
            1.400000e+01
            9.900000e+01
                                1
            Name: ecig_smoker, dtype: int64
In [129]:
            for ind, row in keep_smoking.iterrows():
                if keep_smoking['ecig_smoker'][ind] > 0:
                    keep smoking['ecig smoker'][ind] = 'yes'
```

<ipython-input-129-0391f3294e35>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandaskeep_smoking['ecig_smoker'][ind] = 'yes' /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pandas-A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasiloc._setitem_with_indexer(indexer, value)

```
In [130]:
            keep smoking['smokeless_tobacco_user'].value_counts(dropna=False)
Out[130]:
            NaN
                             5863
            5.397605e-79
                              720
            3.000000e+01
                               71
                               22
            1.000000e+00
            2.000000e+00
                               17
            4.000000e+00
                                6
            5.000000e+00
                                4
                                4
            3.000000e+00
            2.000000e+01
                                4
                                4
            1.000000e+01
            1.500000e+01
                                3
                                2
            7.000000e+00
            2.500000e+01
                                1
            1.200000e+01
                                1
            9.000000e+00
                                1
            2.800000e+01
                                1
            Name: smokeless tobacco user, dtype: int64
            for ind, row in keep_smoking.iterrows():
In [131]:
                if keep smoking['smokeless tobacco user'][ind] > 0:
```

```
keep_smoking['smokeless_tobacco_user'][ind] = 'yes'
```

<ipython-input-131-d865f51e87fd>:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas keep smoking['smokeless tobacco user'][ind] = 'yes'

A₁C

View source for additional description and details (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/GHB J.htm)

Per the Mayo Clinic (https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosistreatment/drc-

20371451#:~:text=A%20fasting%20blood%20sugar%20level,separate%20tests%2C%20you%2 the Glycated Hemoglobin (A1C) test indicates a person's average blood sugar level for the past two to three months. It measures the percentage of blood sugar attached to hemoglobin, the oxygen-carrying protein in red blood cells. The higher your blood sugar levels, the more hemoglobin you'll have with sugar attached.

- A1C level of 6.5% or higher on two separate tests indicates that you have diabetes
- A1C between 5.7 and 6.4 % indicates prediabetes
- A1C below 5.7 is considered normal

NHANES examined participants age 12+ provided a blood sample for analysis.

In [132]: alc

Out[132]:

LBXGH

SEQN	
93705	6.2
93706	5.2
93707	5.6
93708	6.2
93709	6.3
102952	7.4
102953	5.9
102954	5.2
102955	5.5
102956	5.4

 $6401 \text{ rows} \times 1 \text{ columns}$

Because this is our target in a supervised learning task, all nulls were removed.

```
In [135]: alc.dropna(inplace=True)
```

One approach is to create binary classes for normal vs elevated A1C levels. The multi-variate approach would require the model to predict one of three classes: normal, prediabetic, or diabetic.

For the initial model, we'll work with binary classes, though a multiclass model may also be of interest in the future.

Special care is taken when encoding the diagnosis values to help the model's interpretability - 0=normal, 1=diabetic/prediabetic

```
In [136]:
            def diagnose_multiclass(a1c_value):
                diagnosis = None
                if alc_value >= 6.5:
                    diagnosis = 'Diabetic'
                if (a1c_value >= 5.7) & (a1c_value < 6.5):</pre>
                    diagnosis = 'Prediabetic'
                if a1c_value < 5.7:</pre>
                    diagnosis = 'Normal'
                return diagnosis
            def diagnose_binary(alc_value):
                Returns binary values; 0 indicates normal, 1 indicates diabetic/pre
                diagnosis = None
                if (a1c_value >= 5.7):
                    diagnosis = 1
                if a1c_value < 5.7:</pre>
                    diagnosis = 0
                return diagnosis
```

Out[137]:

glycohemoglobin diagnosis

6.2	1
5.2	0
5.6	0
6.2	1
6.3	1
- 4	
7.4	1
7.4 5.9	1
7	_
5.9	1
	5.2 5.6 6.2 6.3

6045 rows × 2 columns

Merging and Preprocessing Data

Once all data files are loaded and initial processing complete, some additional steps are needed before the sample can be modeled.

The preprocessing workflow:

- Merge data files into one dataframe, ensuring all samples in the final set have valid/unimputed A1C / diagnosis values. Body measures were determined to be the second-most critical data to the model since prior research shows that weight/BMI is a key risk factor for diabetes. Appropriate steps are taken at the merging step to ensure the final combined dataset has as many natural/unimputed body measures as possible without too much data leakage.
- 2. **Encode categorical features** with number values (0=False, 1=True) so model algorithms can interpret the data.
- 3. Split the dataset into **training and testing samples.** Models will be fit to the training sample, then validated against the testing sample.
 - It is important that this step occurs before any processing that uses the sample data as a whole to define other values (ex. some feature engineering, null value imputation, normalization, etc.), since the testing data should imitate real-world new/novel data as closely as possible to evaluate how good the model actually is.
- 4. **Fill remaining null values** using a model that guesses the missing value based on the rest of the dataset.
- 50/50 balance the number of diabetic and nondiabetic respondents represented in the training data, so the model doesn't accidentally perform well just based on the laws of probability.
- 6. **Standard-scale** the continuous data in order to compare feature importances.

Merge

In [139]: # Concatenated all but two most important dfs - alc (target) and measure
concat = pd.concat([keep_demographic, keep_insurance, keep_activity2, property join='outer', axis=1)
concat

Out[139]:

	gender	age	race	veteran_status	country_of_birth	citizen_status	
SEQN							
93703	NaN	NaN	NaN	NaN	NaN	NaN	
93704	NaN	NaN	NaN	NaN	NaN	NaN	
93705	female	66.0	black	no	usa	citizen	
93706	male	18.0	asian	no	usa	citizen	
93707	NaN	NaN	NaN	NaN	NaN	NaN	
					•••	•••	
102952	female	70.0	asian	no	other	citizen	hig
102953	male	42.0	mexican_american	no	other	non_citizen	hig
102954	female	41.0	black	no	usa	citizen	
102955	NaN	NaN	NaN	NaN	NaN	NaN	
102956	male	38.0	white	no	usa	citizen	

9254 rows × 31 columns

In [140]: # inner merge on 2 most important dfs in order to only keep IDs where l
 inner_merge = pd.merge(alc, keep_measures, how='inner', on='SEQN')
 display(inner_merge.head())
 inner_merge.index.value_counts().sum()

	glycohemoglobin	diagnosis	weight_kg	height_cm	BMI	waist_circumference_cm
SEQN						
93705	6.2	1	79.5	158.3	31.7	101.8
93706	5.2	0	66.3	175.7	21.5	79.3
93707	5.6	0	45.4	158.4	18.1	64.1
93708	6.2	1	53.5	150.2	23.7	88.2
93709	6.3	1	88.8	151.1	38.9	113.0

Out[140]: 5951

In [141]: # left merge the concatenated df onto the merged alc and body measures
 mega_df = pd.merge(inner_merge, concat, how='left', on='SEQN')

drop the lab results
 mega_df.drop(columns='glycohemoglobin', inplace=True)

```
In [142]:
```

```
display(mega_df.head())
display(mega_df.info())
```

	diagnosis	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_
SEQN						
93705	1	79.5	158.3	31.7	101.8	1
93706	0	66.3	175.7	21.5	79.3	
93707	0	45.4	158.4	18.1	64.1	1
93708	1	53.5	150.2	23.7	88.2	(
93709	1	88.8	151.1	38.9	113.0	1:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5951 entries, 93705 to 102956

Data columns (total 37 columns):

#	Column	Non-Null Count	Dtype
0	diagnosis	5951 non-null	int64
1	weight_kg	5951 non-null	float64
2	height_cm	5951 non-null	float64
3	BMI	5951 non-null	float64
4	waist_circumference_cm	5738 non-null	float64
5	hip_circumference_cm	5751 non-null	float64
6	gender	5128 non-null	object
7	age	5128 non-null	float64
8	race	5128 non-null	object
9	veteran_status	5128 non-null	object
10	country_of_birth	5128 non-null	object
11	citizen_status	5128 non-null	object
12	education	4884 non-null	object
13	marital_status	5128 non-null	object
14	household_size	5128 non-null	float64
15	annual_household_income	4655 non-null	float64
16	<pre>income_poverty_ratio</pre>	4466 non-null	float64
17	coverage_status	5950 non-null	object
18	covered_private	5950 non-null	object
19	covered_medicare	5950 non-null	object
20	covered_medigap	5950 non-null	object
21	covered_medicaid	5950 non-null	object
22	covered_chip	5950 non-null	object
23	covered_military	5950 non-null	object
24	covered_state	5950 non-null	object
25	covered_other_gov	5950 non-null	object
26	covered_single_service	5950 non-null	object
27	<pre>prescription_coverage</pre>	5950 non-null	object
28	uninsured_in_last_year	5950 non-null	object
29	sedentary_minsperday	5175 non-null	float64
30	vigorous_activity_minsperweek		float64
31	<pre>moderate_activity_minsperweek</pre>	5175 non-null	float64
32	avg_pulse	4500 non-null	float64
33	lifetime_cigarette_smoker	5175 non-null	object
34	current_cigarette_smoker	2100 non-null	object

35 ecig_smoker 1027 non-null object 36 smokeless_tobacco_user 762 non-null object

dtypes: float64(13), int64(1), object(23)

memory usage: 1.7+ MB

None

One-Hot Encode

In [143]: mega_df_encoded = pd.get_dummies(mega_df, drop_first=True, dtype='float
 mega_df_encoded.head()

Out[143]:

SEQN					
93705	1	79.5	158.3 31.7	101.8	1
93706	0	66.3	175.7 21.5	79.3	1
93707	0	45.4	158.4 18.1	64.1	1
93708	1	53.5	150.2 23.7	88.2	į.

151.1 38.9

diagnosis weight_kg height_cm BMI waist_circumference_cm hip_circumference_

113.0

Train-Test Split

1

88.8

93709

```
In [144]: from sklearn.model_selection import train_test_split
```

1.

	weight_kg	neight_cm	RMI	waist_circumference_cm	hip_circumference_cm	age
SEQN						
102783	64.8	156.8	26.4	96.8	93.5	52.0
99996	84.6	164.2	31.4	105.0	113.5	51.0
99721	74.8	174.0	24.7	87.5	105.8	20.0
97169	87.9	163.1	33.0	111.8	119.2	67.0
94465	106.2	185.4	30.9	104.7	109.4	31.0

1	
1	
0	
1	
0	
	1 0 1

Name: diagnosis, dtype: int64

Impute Remaining Null Values

Scikit-learn's experimental IterativeImputer class models each feature with null values as a function of other features to intelligently fill missing values. This is an experimental class, but performed better than the KNNImputer. This class may change; please review the documentation https://scikit-null.com/here. (https://scikit-null.com/here.co

learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html)

```
In [147]: from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer
```

In [148]:	<pre>X_train.isna().sum()</pre>		
Out[148]:	weight kg	0	
	height cm	0	
	BMI	0	
	waist_circumference_cm	180	
	hip_circumference_cm	170	
	age	660	
	household_size	660	
	annual_household_income	1039	
	<pre>income_poverty_ratio</pre>	1185	
	sedentary_minsperday	622	
	vigorous_activity_minsperweek	622	
	moderate_activity_minsperweek	622	
	avg_pulse	1153	
	gender_male	0	
	race_black	0	
	race_hispanic	0	
	race_mexican_american	0	
	race_other	0	
	race_white	0	
	veteran_status_yes	0	
	country_of_birth_usa	0	
	citizen_status_no_answer	0	
	citizen_status_non_citizen	0	
	education_highschool_grad	0	
	education_no_diploma	0	
	education_some_college	0	
	marital_status_married or living with partner		
	marital_status_never married	0	
	marital_status_no_answer	0	
	marital_status_widowed	0 0	
	<pre>coverage_status_no_answer coverage_status_uninsured</pre>	0	
	covered private yes	0	
	covered_medicare_yes	0	
	covered_medigap_yes	0	
	covered medicaid yes	0	
	covered chip yes	0	
	covered military yes	0	
	covered state yes	0	
	covered_other_gov_yes	0	
	covered_single_service_yes	0	
	prescription_coverage_no_answer	0	
	prescription_coverage_yes	0	
	uninsured_in_last_year_no_answer	0	
	uninsured_in_last_year_yes	0	
	lifetime_cigarette_smoker_yes	0	
	current_cigarette_smoker_yes	0	
	dtype: int64		

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm	age
SEQN						
102783	64.8	156.8	26.4	96.8	93.5	52.0
99996	84.6	164.2	31.4	105.0	113.5	51.0
99721	74.8	174.0	24.7	87.5	105.8	20.0
97169	87.9	163.1	33.0	111.8	119.2	67.0
94465	106.2	185.4	30.9	104.7	109.4	31.0
SEQN 102783 99996 99721	1 1 0					

Name: diagnosis, dtype: int64

1

0

97169

94465

In [150]: X_train_imputed.isna().sum() Out[150]: weight kg 0 0 height cm BMI 0 waist circumference cm 0 hip circumference cm 0 age 0 household_size 0 annual_household_income 0 income_poverty_ratio sedentary minsperday 0 vigorous activity minsperweek 0 0 moderate activity minsperweek avg_pulse 0 gender male 0 race_black race hispanic 0 0 race mexican american 0 race_other race_white 0 veteran_status_yes 0 country of birth usa citizen status no answer citizen status non citizen 0 0 education highschool grad education no diploma 0 education some college 0 marital status married or living with partner marital status never married 0 0 marital status no answer 0 marital status widowed coverage status no answer 0 coverage status uninsured 0 covered private yes covered medicare yes 0 0 covered medigap yes covered medicaid yes 0 covered chip yes 0 covered_military_yes 0 covered state yes covered other gov yes 0 covered single service yes 0 prescription coverage no answer 0 prescription coverage yes 0 uninsured_in_last_year_no_answer 0 uninsured in last year yes 0 0 lifetime cigarette smoker yes current cigarette smoker yes 0

dtype: int64

In [151]:

X_test_imputed.head()

Out[151]:

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm	age
SEQN						
98959	72.4	164.6	26.7	100.2	97.8	75.0
102761	71.6	165.3	26.2	80.4	97.4	25.0
100216	52.8	158.0	21.2	74.0	89.1	42.0
99151	69.2	162.2	26.3	83.1	104.3	22.0
99679	90.1	172.9	30.1	102.5	101.8	61.0

```
In [152]:
            X_test_imputed.isna().sum()
Out[152]:
           weight kg
                                                               0
            height cm
                                                                0
            BMI
                                                                0
            waist circumference cm
                                                                0
            hip circumference cm
                                                                0
            age
                                                                0
            household_size
                                                                0
            annual_household_income
                                                                0
            income_poverty_ratio
            sedentary minsperday
            vigorous activity minsperweek
                                                                0
            moderate activity minsperweek
                                                                U
                                                                0
            avg_pulse
            gender male
                                                                0
            race_black
            race_hispanic
            race mexican american
                                                                0
           race_other
                                                                0
                                                                0
            race_white
            veteran_status_yes
                                                                0
            country of birth usa
            citizen status no answer
            citizen status non citizen
                                                                0
            education highschool grad
                                                                0
            education no diploma
                                                                0
            education some college
            marital status married or living with partner
            marital status never married
            marital status no answer
                                                                0
            marital status widowed
                                                                0
            coverage status no answer
                                                                0
            coverage status uninsured
                                                                0
            covered private yes
            covered medicare yes
                                                                0
            covered medigap yes
                                                                0
            covered_medicaid_yes
                                                                0
            covered chip yes
                                                                0
            covered_military_yes
                                                                0
            covered state yes
            covered other gov yes
            covered single service yes
                                                                0
                                                                0
            prescription coverage no answer
            prescription coverage yes
                                                               0
            uninsured_in_last_year_no_answer
                                                                0
            uninsured in last year yes
                                                               0
            lifetime cigarette smoker yes
                                                                0
            current_cigarette_smoker_yes
            dtype: int64
```

Class Balance

```
Jupyter Notebook Viewer
            # checking for class imbalance in the target feature
In [153]:
           print(y train.value counts())
           print('*****'*15)
           print(y_train.value_counts(normalize=True).round(3))
           0
                 2888
                 1872
           Name: diagnosis, dtype: int64
            ************************
                 0.607
           1
                 0.393
           Name: diagnosis, dtype: float64
In [154]:
            from imblearn.over sampling import SMOTE
In [155]:
            smote = SMOTE(n jobs=3)
            X_train_bal, y_train_bal = smote.fit_sample(X_train_imputed, y_train)
In [156]:
            display(X train bal.head())
            display(y train bal.head())
               weight_kg height_cm BMI waist_circumference_cm hip_circumference_cm age hous
            0
                    64.8
                             156.8 26.4
                                                       96.8
                                                                         93.5 52.0
            1
                    84.6
                             164.2 31.4
                                                      105.0
                                                                         113.5 51.0
            2
                    74.8
                             174.0 24.7
                                                       87.5
                                                                         105.8 20.0
            3
                             163.1 33.0
                                                                         119.2 67.0
                    87.9
                                                      111.8
            4
                   106.2
                             185.4 30.9
                                                      104.7
                                                                         109.4 31.0
           0
                 1
           1
                 1
```

Name: diagnosis, dtype: int64

```
In [157]:
           print(y train bal.value counts())
           print('*****'*15)
           print(y train bal.value counts(normalize=True).round(3))
```

```
1
      2888
```

Name: diagnosis, dtype: int64

0.5 0.5

Name: diagnosis, dtype: float64

² 0

³ 1

²⁸⁸⁸

```
In [158]: # reset variables to simplify model process on unscaled data
X_train = X_train_bal.copy()
y_train = pd.DataFrame(y_train_bal.copy())
X_test = X_test_imputed.copy()
# y_test hasn't changed
```

```
In [159]: display(X_train.head())
display(y_train.head())
```

	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_cm	age	hous
0	64.8	156.8	26.4	96.8	93.5	52.0	
1	84.6	164.2	31.4	105.0	113.5	51.0	
2	74.8	174.0	24.7	87.5	105.8	20.0	
3	87.9	163.1	33.0	111.8	119.2	67.0	
4	106.2	185.4	30.9	104.7	109.4	31.0	

	diagnosis
0	1
1	1
2	0
3	1
4	0

```
In [160]: display(X_test.head())
    display(y_test.head())
```

	weight_kg	height_cm	вмі	waist_circumference_cm	hip_circumference_cm	age			
SEQN									
98959	72.4	164.6	26.7	100.2	97.8	75.0			
102761	71.6	165.3	26.2	80.4	97.4	25.0			
100216	52.8	158.0	21.2	74.0	89.1	42.0			
99151	69.2	162.2	26.3	83.1	104.3	22.0			
99679	90.1	172.9	30.1	102.5	101.8	61.0			
SEQN									
98959	1								
102761	0								
100216	0								
99151	0								
99679	0								
Name: diagnosis, dtype: int64									

Normalize Data

```
In [161]: from sklearn.preprocessing import StandardScaler
In [162]: scaler = StandardScaler()
    # fit transform on train data
    X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=X_
    # just transform on test data
    X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.columns=X_test.col
```

Classification Models

There are many modeling algorithms available, each with their strengths and weaknesses. Each model will be fit to the training sample, then validated on the testing sample. Key metrics will be captured along the way in a summary dataframe to compare and contrast performance. A custom function has been written to quickly evaluate each model.

Recall is the primary metric for evaluating this particular model as this represents, *out of all* the true diabetic/prediabetic people, how often did the model predict correctly.

- The downside of missing an at-risk person is that maybe they won't get the preventative care or health information they need, and they end up developing diabetes or progressing from prediabetic to diabetic.
- For stakeholders, this means their program did not reach the population it would most help, which translates into both public health and monetary loss in the long term (i.e., more claims to insurance companies, increased hospital utilization, etc.)
- For the individual, this relates to missed opportunity to participate in a program that may have built health literacy and provided them the support they needed to reverse prediabetes or manage diabets. This can translate to lower quality of life, greater personal health expenses, and even loss of life.

Accuracy is a more general metric of the model's holistic performance, representing the *percentage of predictions the model gets correct.* While this metric will be looked at, it will not be the deciding evaluation metric.

Precision is a metric to pay less attention to, as this represents *how often the model guessed* someone is diabetic/prediabetic and the person truly is diabetic/prediabetic.

- The downside of getting a diabetic prediction wrong is that someone not at risk for diabetes/prediabetes may be targeted for a program.
- For the stakeholder, this just means they might spend attitional resources targeting someone who doesn't truly NEED their programs. Total monetary impact could be calculated by multiplying the per-person spend on advertising/outreach by the number of "false negatives" the model predicts.
- For the person, there is no downside to having access to health and wellness programs!

F1 Score is a metric that combines precision and recall, also called *the harmonic mean of precision and recall.*

In [163]: from sklearn.metrics import classification_report, plot_confusion_matrifrom sklearn.metrics import accuracy_score, roc_curve, auc, f1_score, 1

```
In [165]:
           def check_fit(model, X_train, y_train, X_test, y_test):
               Fits model to training data, then looks for overfitting by comparia
               accuracy and F1 score of the training sample to the same metrics or
               Inputs:
               model (unfit)
               X train - pandas dataframe comprised of training predictors
               y train - pandas dataframe comprised of training target
               X test - pandas dataframe comprised of testing predictors
               y test - pandas dataframe comprised of testing target
               Returns:
               Dataframe with columns for evaluation metrics, rows for the training
               model.fit(X_train, y_train)
               stats = pd.DataFrame(index=['Training', 'Testing'], columns=['Accul
               y train pred = model.predict(X train)
               stats['Accuracy']['Training'] = accuracy_score(y_train, y_train_pre-
               stats['F1 Score']['Training'] = f1 score(y train, y train pred)
               y test pred = model.predict(X test)
               stats['Accuracy']['Testing'] = accuracy_score(y_test, y_test_pred)
               stats['F1 Score']['Testing'] = f1_score(y_test, y_test_pred)
               return stats
           def plot_roc(fpr_test, tpr_test):
               Plots the receiver operating curve for a binary classification mode
               Inputs:
               fpr test - false positive rate associated with a model
               tpr test - true positive rate associated with a model
               Returns:
               matplotlib plot showing a model's receiver operating curve (ROC) co
               test auc = auc(fpr test, tpr test)
               print('AUC: {}'.format(test_auc))
               plt.figure(figsize=(6,4))
               plt.plot(fpr test, tpr test, color='darkorange', label='ROC curve')
               plt.plot([0,1], [0,1], color='navy', linestyle='--')
               plt.xlabel('False Positive Rate')
               plt.ylabel('True Positive Rate')
               plt.title('Receiver Operating Characteristic (ROC) Curve')
               plt.legend(loc='lower right')
               plt.show()
           def evaluate_classifier(model, X_train, y_train, X_test, y_test,
                                    cmap='Blues', model stats=None, track=True, lak
               Overall evaluation of a model's performance using multiple metrics
               Can be used as part of an iterative modeling process to capture men
               and compare easily.
               model - unfit model object with any parameters already passed
```

```
X_train - pandas dataframe comprised of training predictors
y train - pandas dataframe comprised of training target
X test - pandas dataframe comprised of testing predictors
y test - pandas dataframe comprised of testing target
cmap='Blues' - color scheme for resulting confusion matrix *must be
        recognized by matplotlib https://matplotlib.org/stable/tutoria
model stats=None - dataframe in which to capture summary metrics.
       create a new dataframe.
track=True - boolean, whether to write and return the summary data:
       summary metrics will be appended to the dataframe passed in mov
        If False, summary metrics will not be captured or returned.
label='' = optional additional label to include in model stats sum
       differentiate this model from others in your iterative process
Returns:
Model fit to training data and evaluation metrics including accurac
confusion matrix, receiver operating curve.
If track=True, model stats dataframe is returned.
model.fit(X_train, y_train)
print('CHECK FOR OVERFITTING - seek for test data to perform almost
display(check fit(model, X train, y train, X test, y test))
print('*****'*15)
y_test_pred = model.predict(X_test)
test acc = accuracy score(y test, y test pred)
y train pred = model.predict(X train)
train_acc = accuracy_score(y_train, y_train_pred)
print('\nCHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to make the seek the seek to make the seek the seek to make the seek the see
print(classification_report(y_test, y_test_pred))
plot confusion matrix(model, X test, y test, normalize='all', cmap=
print('*****'*15)
print('\nCHECK Test ROC CURVE - seek to maximize area under the cui
y score train = model.predict proba(X train)
fpr train, tpr train, thresholds train = roc curve(y train, y score
train_auc = auc(fpr_train, tpr_train)
y score test = model.predict proba(X test)
fpr_test, tpr_test, thresholds_test = roc_curve(y_test, y_score_test)
test auc = auc(fpr test, tpr test)
plot_roc(fpr_test, tpr_test)
tn, fp, fn, tp = confusion matrix(y test, y test pred).ravel()
fnr = fn/(fn+tp)
if model stats is None:
       model stats = pd.DataFrame(columns=['Model', 'Label', 'Train Re
                                                                               'False Negatives',
                                                                               'Train AUC', 'Test AUC',
                                                                               'Train Accuracy', 'Test Acc
stats dict = {}
```

```
stats dict['Model'] = str(model)
stats_dict['Label'] = label
    stats_dict['Train AUC'] = train_auc.round(4)
except:
    stats_dict['Train AUC'] = 'could not compute'
try:
    stats_dict['Test AUC'] = test_auc.round(4)
except:
    stats dict['Test AUC'] = 'could not compute'
try:
    stats_dict['Train Accuracy'] = train_acc.round(4)
except:
    stats_dict['Train Accuracy'] = 'could not compute'
    stats_dict['Test Accuracy'] = test_acc.round(4)
except:
    stats_dict['Test Accuracy'] = 'could not compute'
try:
    stats dict['Train Recall'] = recall score(y train, y train pred
    stats_dict['Train Recall'] = 'could not compute'
try:
    stats_dict['Test Recall'] = recall_score(y test, y test_pred).;
except:
    stats dict['Test Recall'] = 'could not compute'
    stats dict['False Negatives'] = fn
except:
    stats dict['False Negatives'] = 'could not compute'
if track:
    model stats = model stats.append(pd.Series(stats dict), ignore
    return model stats
```

Dummy Model - for comparison only

The dummy model uses simple rules (most_frequent, stratified, etc.) to make predictions. This is used as a baseline only to compare more intelligent models against.

```
In [166]: from sklearn.dummy import DummyClassifier
In [167]: dummy_clf = DummyClassifier(strategy='stratified')
```

Scaled data

In [168]: evaluate_classifier(dummy_clf, X_train_scaled, y_train, X_test_scaled,

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.500173	0.50164
Testing	0.497901	0.430476

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support	
0	0.62	0.53	0.57	719	
1	0.41	0.51	0.46	472	
accuracy			0.52	1191	
macro avg	0.52	0.52	0.51	1191	
weighted avg	0.54	0.52	0.52	1191	

AUC: 0.48667375828009707

Unscaled data

In [169]: evaluate_classifier(dummy_clf, X_train, y_train, X_test, y_test, track=

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.514889	0.514553
Testing	0.502939	0.460838

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.59	0.50	0.54	719
1	0.38	0.47	0.42	472
accuracy			0.48	1191
macro avg	0.48	0.48	0.48	1191
weighted avg	0.50	0.48	0.49	1191

AUC: 0.47866033332547564

As expected, the dummy models using the stratification strategy both performed no better than random chance.

Logistic Regression

The logistic regression model guesses the probability that an element belongs to the normal class or the diabetic class based on the relationships learned between the target and predictors in the training sample.

```
In [170]: from sklearn.linear_model import LogisticRegressionCV
In [171]: log_clf = LogisticRegressionCV(random_state=rs, cv=3)
```

Scaled data

In [172]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

	Accuracy	F1 Score
Training	0.76108	0.767833
Testing	0.74895	0.703667

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.82	0.75	0.78	719
1	0.66	0.75	0.70	472
accuracy			0.75	1191
macro avg	0.74	0.75	0.74	1191
weighted avg	0.76	0.75	0.75	1191

AUC: 0.8276973668701822

Out[172]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Test Accuracy	Nega
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	0.749	

Unscaled data

```
In [173]:
```

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- CHECK FOR OVERFITTING seek for test data to perform almost as well as
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

	Accuracy	F1 Score
Training	0.746537	0.753867
Testing	0.735516	0.692683

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.82	0.72	0.77	719
1	0.64	0.75	0.69	472
accuracy			0.74	1191
macro avg	0.73	0.74	0.73	1191
weighted avg	0.75	0.74	0.74	1191

AUC: 0.8055827302515264

Out[173]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Test Accuracy	Neg
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	0.7490	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	0.7355	

In [174]:

```
log_clf_coefs = pd.DataFrame(log_clf.coef_[0], index=X_train.columns).1
print('Positively related coefficients:')
display(log_clf_coefs[log_clf_coefs[0]>=0.01].sort_values(0, ascending=print('***'*15))
print('\nNegatively related coefficients:')
display(log_clf_coefs[log_clf_coefs[0]<=-.01])</pre>
```

Positively related coefficients:

	U
age	0.063
weight_kg	0.033
waist_circumference_cm	0.030
avg_pulse	0.010

Negatively related coefficients:

	0
height_cm	-0.033
hip circumference cm	-0.040

The scaled dataset performed decently well with 76% training accuracy, 74.9% testing accuracy, and 0.82 AUC which is quite an improvement on the dummy model's 0.53.

72.6% of diabetic/prediabetic individuals were correctly predicted by the logistic regression model.

K-Nearest Neighbors

The K-Nearest Neighbors modeling technique predicts the class of an observation by evaluating data points mathematically close to the one in question. "k" number of neighbors are found, then the average of their classes determines the model's vote for the element in question.

In [175]:

from sklearn.neighbors import KNeighborsClassifier

In [176]:

using defaults of 5 nearest neighbors, uniform weights, and euclidear knn_clf = KNeighborsClassifier()

Scaled data

In [177]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

<ipython-input-165-0759a685b866>:77: DataConversionWarning: A column-ve model.fit(X_train, y_train)

<ipython-input-165-0759a685b866>:16: DataConversionWarning: A column-ve model.fit(X_train, y_train)

	Accuracy	F1 Score
Training	0.822368	0.828943
Testing	0.672544	0.608434

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.75	0.69	0.72	719
1	0.58	0.64	0.61	472
accuracy			0.67	1191
macro avg	0.66	0.67	0.66	1191
weighted avg	0.68	0.67	0.67	1191

AUC: 0.7312283420947172

Out[177]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Test Accuracy	Neg
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	0.7490	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	0.7355	
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	0.7312	0.8224	0.6725	

Unscaled data

In [178]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

- <ipython-input-165-0759a685b866>:77: DataConversionWarning: A column-ve model.fit(X_train, y_train)
- <ipython-input-165-0759a685b866>:16: DataConversionWarning: A column-ve model.fit(X_train, y_train)

	Accuracy	F1 Score
Training	0.773546	0.787524
Testing	0.582704	0.517944

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.68	0.59	0.63	719
1	0.48	0.57	0.52	472
accuracy			0.58	1191
macro avg	0.58	0.58	0.58	1191
weighted avg	0.60	0.58	0.59	1191

AUC: 0.6215332618278683

Out[178]:

In [179]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Test Accuracy	Neg
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	0.7490	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	0.7355	
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	0.7312	0.8224	0.6725	
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0.6215	0.7735	0.5827	

```
Out[179]: array([1, 0, 0, ..., 0, 0, 0])
In [180]: # look for best n_neighbors param

best_k = 0
best_score = 0.0
for k in range(1, 25):
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train_scaled, np.asarray(y_train).reshape(len(y_train), preds = knn.predict(X_test_scaled)
    recall = recall_score(y_test, preds)
    if recall > best_score:
        best_k = k
        best_score = recall
```

np.asarray(y_test)

```
In [181]: print(f'Best K: {best_k}')
print(f'Recall Score: {best_score}')
```

Best K: 21

Recall Score: 0.739406779661017

In [182]: knn_clf2 = KNeighborsClassifier(n_neighbors=23)

In [183]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

<ipython-input-165-0759a685b866>:77: DataConversionWarning: A column-ve model.fit(X_train, y_train)

<ipython-input-165-0759a685b866>:16: DataConversionWarning: A column-ve model.fit(X_train, y_train)

	Accuracy	F1 Score
Training	0.757791	0.773515
Testing	0.696054	0.658491

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.80	0.67	0.73	719
1	0.59	0.74	0.66	472
accuracy			0.70	1191
macro avg	0.69	0.70	0.69	1191
weighted avg	0.72	0.70	0.70	1191

AUC: 0.7695805143678838

Out[183]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Accur
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	0.7
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	0.7
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	0.7312	0.8224	0.6
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0.6215	0.7735	0.5
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	0.7696	0.7578	0.6

Decision Tree

The decision tree classification method selects the feature that best splits the sample space in two, creates two (or more) branches based on this feature, then continues branching and splitting until the dataset has been cleanly partitioned (or until max_depth or min_samples_split parameters, if set).

Using ensemble methods, a "random forest" of decision trees can be created which uses the laws of probability and central limit theorem to reach a consensus prediction based on the combination of multiple models trained on different sample splits.

Decision trees do not require scaled data, so these models are only run using the unscaled samples.

Single Tree Classifier

In [184]: from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

In [185]: # first use default params of gini impurity, no max depth, 2 min sample
 # 1 min samples leaf, no max features, and no max leaf nodes
dt_clf = DecisionTreeClassifier(random_state=rs)

In [186]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	1	1
Testing	0.65995	0.581179

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.73	0.70	0.71	719
1	0.57	0.60	0.58	472
accuracy			0.66	1191
macro avg	0.65	0.65	0.65	1191
weighted avg	0.66	0.66	0.66	1191

AUC: 0.6488516890219466

Out[186]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	A
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	0.7312	0.8224	
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0.6215	0.7735	
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	0.7696	0.7578	
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000	0.6489	1.0000	

The decision tree was quite overfit, as decision trees with no max features or max depth parameters tend to be.

A grid search can help find the best combination of parameters to use.

```
dt_clf.get_params()
In [187]:
Out[187]:
           {'ccp_alpha': 0.0,
             'class_weight': None,
             'criterion': 'gini',
             'max depth': None,
             'max features': None,
             'max_leaf_nodes': None,
             'min_impurity_decrease': 0.0,
             'min_impurity_split': None,
             'min_samples_leaf': 1,
             'min_samples_split': 2,
             'min_weight_fraction_leaf': 0.0,
             'presort': 'deprecated',
             'random_state': 610,
             'splitter': 'best'}
In [188]:
           dt_clf.get_depth()
Out[188]:
           dt_clf.get_n_leaves()
In [189]:
Out[189]:
           875
```

In [190]:

pd.DataFrame(dt_clf.feature_importances_, index=X_train.columns).sort_v

Out[190]:

	index	0
0	age	0.260515
1	waist_circumference_cm	0.098869
2	avg_pulse	0.060168
3	hip_circumference_cm	0.054435
4	weight_kg	0.050502
5	height_cm	0.046357
6	ВМІ	0.044330
7	income_poverty_ratio	0.042859
8	moderate_activity_minsperweek	0.036375
9	race_white	0.033420
10	sedentary_minsperday	0.030992
11	vigorous_activity_minsperweek	0.028127
12	household_size	0.026048
13	annual_household_income	0.021833
14	covered_medicare_yes	0.020437
15	race_black	0.018065
16	gender_male	0.015350
17	country_of_birth_usa	0.013352
18	citizen_status_non_citizen	0.010983
19	lifetime_cigarette_smoker_yes	0.008160
20	education_no_diploma	0.008020
21	covered_private_yes	0.007143
22	education_some_college	0.006409
23	covered_medicaid_yes	0.006075
24	marital_status_married or living with partner	0.006008
25	current_cigarette_smoker_yes	0.005481
26	education_highschool_grad	0.004723
27	marital_status_never married	0.004042
28	covered_single_service_yes	0.003782
29	prescription_coverage_no_answer	0.003774
30	veteran_status_yes	0.003459
31	covered_other_gov_yes	0.002670
32	covered_state_yes	0.002667
33	race_mexican_american	0.001857

In [191]:

In [192]:

In [193]:

```
index
                                                 0
34
                  uninsured_in_last_year_yes
                                          0.001690
35
                        covered_military_yes
                                          0.001629
36
                       covered_medigap_yes
                                          0.001583
37
                             race_hispanic 0.001516
38
                     marital_status_widowed
                                          0.001508
39
            uninsured_in_last_year_no_answer
                                          0.001267
40
                          covered_chip_yes
                                          0.000854
41
                                race_other
                                          0.000646
42
                                          0.000626
                  coverage_status_no_answer
43
                   prescription_coverage_yes
                                          0.000549
                   marital_status_no_answer
                                          0.000540
45
                  coverage_status_uninsured
                                          0.000305
46
                    citizen_status_no_answer
                                          0.000000
from sklearn.model_selection import GridSearchCV, cross_val_score
dt_param_grid = {'criterion': ['entropy', 'gini'],
                    'max depth': [None, 5, 10, 15, 20],
                    'min samples_leaf': [1, 2, 3, 4],
```

'max features': [None, 5, 10, 15, 20]}

dt grid search = GridSearchCV(dt clf, dt param grid, cv=3, return train

In [194]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.776835	0.780894
Testing	0.737196	0.679632

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.80	0.76	0.78	719
1	0.66	0.70	0.68	472
accuracy			0.74	1191
macro avg	0.73	0.73	0.73	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.784237170269442

In [195]:

model_stats

Out[195]:

	Model	Label	Train Recall	Test Recall	Train AUC	Test AUC	Train Accuracy	Ac
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0.8277	0.7611	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0.8056	0.7465	
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	0.7312	0.8224	
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0.6215	0.7735	
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	0.7696	0.7578	
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000	0.6489	1.0000	
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464	0.7842	0.7768	

```
In [196]: dt_grid_search.best_params_
```

Out[196]:

```
{'criterion': 'gini',
  'max depth': 5,
```

^{&#}x27;max_features': None,

^{&#}x27;min_samples_leaf': 4}

Bagged Trees

In [198]: from sklearn.ensemble import BaggingClassifier

In [199]: rf_clf = BaggingClassifier(base_estimator=dt_clf2, n_estimators=25, rar

In [200]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as ${\sf vec}$

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

	Accuracy	F1 Score
Training	0.784626	0.794516
Testing	0.735516	0.689655

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recall

	precision	recall	f1-score	support
0	0.81	0.73	0.77	719
1	0.64	0.74	0.69	472
accuracy			0.74	1191
macro avg	0.73	0.74	0.73	1191
weighted avg	0.75	0.74	0.74	1191

AUC: 0.8077323141840127

Out[200]:

	Model	Label	Train Recall	Test Recall	Train AUC	
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	C
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	C
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000	0
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464	С
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676	0

Random Forest

```
In [201]: from sklearn.ensemble import RandomForestClassifier
```

In [203]:

<ipython-input-165-0759a685b866>:77: DataConversionWarning: A column-ve model.fit(X_train, y_train)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as <ipython-input-165-0759a685b866>:16: DataConversionWarning: A column-ve model.fit(X_train, y_train)

	Accuracy	F1 Score
Training	0.782548	0.794098
Testing	0.738875	0.696585

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.82	0.73	0.77	719
1	0.65	0.76	0.70	472
accuracy			0.74	1191
macro avg	0.73	0.74	0.73	1191
weighted avg	0.75	0.74	0.74	1191

AUC: 0.8053514179297989

This is the best model so far, with only a 9.3% false negative rate and .76 recall score on testing data. It doesn't seem too overfit since the testing data is doing comparable to the training data.

Boosting Ensemble Methods

Boosting ensemble methods are similar to random forests in that they leverage many individual models to come to one overall prediction. Where random forests are comprised on many decision trees which are individually viable models, boosting methods train many decision trees with a max_depth=1, meaning they are optimized on only one split. Each subsequent model focuses on optimizing what the last model got wrong by weighting incorrectly classified instances higher.

AdaBoost

In [204]: from sklearn.ensemble import AdaBoostClassifier

In [205]: # using default params of n_estimators=50 and learning_rate=1
ab_clf = AdaBoostClassifier(random_state=rs)

In [206]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

	Accuracy	F1 Score
Training	0.784453	0.788157
Testing	0.738035	0.672269

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.79	0.78	0.78	719
1	0.67	0.68	0.67	472
accuracy			0.74	1191
macro avg	0.73	0.73	0.73	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.8089198156573396

Out[206]:

	Model	Label	Train Recall	Test Recall	Train AUC	
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	0
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	0
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	С
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	0
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	C
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000	0
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464	C
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676	0
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690	0
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744	0

GradientBoosting

In [207]: from sklearn.ensemble import GradientBoostingClassifier

In [208]: # using default params of learning_rate=1.0, n_estimators=100, criteric
gb_clf = GradientBoostingClassifier(random_state=rs)

In [209]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

	Accuracy	F1 Score
Training	0.820291	0.823169
Testing	0.740554	0.67846

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.79	0.77	0.78	719
1	0.67	0.69	0.68	472
accuracy			0.74	1191
macro avg	0.73	0.73	0.73	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.8148897362155536

Out[209]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6		unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097

XGBoost - unscaled

In [210]: from xgboost import XGBClassifier

In [211]: xgb_clf = XGBClassifier(random_state=rs)

In [212]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.991863	0.991887
Testing	0.736356	0.667373

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.78	0.78	0.78	719
1	0.67	0.67	0.67	472
accuracy			0.74	1191
macro avg	0.72	0.72	0.72	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.8055355837910468

Out[212]:

	Model	Label	Train Recall	Test Recall	Train AUC	
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254	
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044	
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064	
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619	
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405	
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000	
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464	
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676	
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690	
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744	
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097	
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997	

XGBoost model is quite overfit, and both AdaBoost and GradientBoosting classifiers are good but not as good as the tuned random forest in recall score.

Support Vector Machine

Support vector machines maximize the decision boundary between points to balance underfitting and overfitting. The slack parameter determines the balance between prioritizing accuracy or maximum margin.

In [213]: from sklearn.svm import SVC

In [214]: svc_clf = SVC(probability=True, random_state=rs)

In [215]:

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

	Accuracy	F1 Score
Training	0.838643	0.844355
Testing	0.741394	0.693227

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0 1	0.81 0.65	0.74 0.74	0.78 0.69	719 472
accuracy macro avg weighted avg	0.73 0.75	0.74 0.74	0.74 0.73 0.74	1191 1191 1191

AUC: 0.8146171707409066

Out[215]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145

Feature Re-Selection

The first dataset had a lot of features, many of which the best-performing model - tuned random forest - didn't use since the max_features parameter is set to 20.

The next iterations will limit the feature set and rerun models to see if performance improves without as much noise in the predictor set.

Preprocessing

In [216]:

find what features the best model was using
dt_clf2_features = pd.DataFrame(dt_clf2.fit(X_train, y_train).feature_i
dt_clf2_features[dt_clf2_features[0]>0]

Out[216]:

	0
weight_kg	0.016537
вмі	0.015308
waist_circumference_cm	0.317853
hip_circumference_cm	0.006131
age	0.155861
moderate_activity_minsperweek	0.035357
race_black	0.121119
race_white	0.011548
country_of_birth_usa	0.047186
citizen_status_non_citizen	0.001877
marital_status_married or living with partner	0.034141
covered_medicare_yes	0.237082

In [217]:

mega_df.head()

Out[217]:

	diagnosis	weight_kg	height_cm	BMI	waist_circumference_cm	hip_circumference_
SEQN						
93705	1	79.5	158.3	31.7	101.8	1
93706	0	66.3	175.7	21.5	79.3	!
93707	0	45.4	158.4	18.1	64.1	+
93708	1	53.5	150.2	23.7	88.2	-
93709	1	88.8	151.1	38.9	113.0	1.

```
In [218]:
            mega_df.columns
            Index(['diagnosis', 'weight_kg', 'height_cm', 'BMI', 'waist_circumfere)
Out[218]:
                    'hip_circumference_cm', 'gender', 'age', 'race', 'veteran_status
                    'country_of_birth', 'citizen_status', 'education', 'marital_states'
                    'household_size', 'annual_household_income', 'income_poverty_rat'coverage_status', 'covered_private', 'covered_medicare',
                    'covered_medigap', 'covered_medicaid', 'covered_chip',
                    'covered_military', 'covered_state', 'covered_other_gov',
                    'covered_single_service', 'prescription_coverage',
                    'uninsured_in_last_year', 'sedentary_minsperday',
                    'vigorous activity minsperweek', 'moderate activity minsperweek
                    'avg_pulse', 'lifetime_cigarette_smoker', 'current_cigarette_smoker'
                    'ecig_smoker', 'smokeless_tobacco_user'],
                   dtype='object')
In [219]:
            # choose the unencoded columns that map to the features used in the be:
            # not including height and weight, as BMI is a combination of the two
            keepcols = ['diagnosis', 'BMI', 'gender', 'age', 'race',
                          'waist_circumference_cm', 'country_of_birth', 'citizen_stat
                          'education', 'marital_status', 'coverage_status', 'avg_puls
            len(keepcols)
Out[219]:
            12
In [220]:
            mega df2 = mega df[keepcols]
            y2 = mega df2['diagnosis']
            X2 = mega df2.drop(columns='diagnosis')
In [221]:
            # encode categorical columns
            X2 = pd.get dummies(X2, drop first=True, dtype='float')
            X2.head()
Out[221]:
                   BMI age waist_circumference_cm avg_pulse gender_male race_black race_hisp
             SEQN
             93705 31.7 66.0
                                             101.8
                                                       50.7
                                                                    0.0
                                                                               1.0
             93706 21.5 18.0
                                              79.3
                                                       77.3
                                                                    1.0
                                                                               0.0
             93707 18.1 NaN
                                              64.1
                                                       93.3
                                                                    0.0
                                                                              0.0
             93708 23.7 66.0
                                              88.2
                                                        67.7
                                                                    0.0
                                                                              0.0
             93709 38.9 75.0
                                                                    0.0
                                             113.0
                                                       62.3
                                                                              1.0
In [222]:
            # Train test split
```

X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_si

In [224]:

Out[224]:

In [225]:

In [226]:

Out[226]:

	BMI	age	waist_circumference_cm	avg_pulse	gender_male	race_black	race_his
SEQN							
102783	26.4	52.0	96.8	81.300000	0.0	0.0	
99996	31.4	51.0	105.0	62.700000	0.0	1.0	
99721	24.7	20.0	87.5	80.000000	0.0	1.0	
97169	33.0	67.0	111.8	71.476713	0.0	1.0	
94465	30.9	31.0	104.7	74.907934	1.0	0.0	
	вмі	age	waist_circumference_cm	avg_pulse	gender_male	race_black	race_his
SEQN							
98959	26.7	75.0	100.2	61.3	1.0	0.0	
102761	26.2	25.0	80.4	45.7	1.0	1.0	
100216	21.2	42.0	74.0	77.0	0.0	0.0	
99151	26.3	22.0	83.1	71.7	0.0	0.0	
99679	30.1	61.0	102.5	56.7	1.0	0.0	
# balan y2_trai			es counts(normalize= Tru	e)			
0.	6067: 3932 iagno	77	dtype: float64				
# balan X2_trai			es 2_train_bal = smote.	fit_sampl	.e(X2_train_	_imputed,	y2_trai

Name: diagnosis, dtype: float64

```
In [227]: # reset variables
X2_train = X2_train_bal.copy()
X2_test = X2_test_imputed.copy()
y2_train = y2_train_bal.copy()
```

```
In [228]: # fit transform on train data
X2_train_scaled = pd.DataFrame(scaler.fit_transform(X2_train), columns=
# just transform on test data
X2_test_scaled = pd.DataFrame(scaler.transform(X2_test), columns=X2_test
```

Modeling

Logistic Regression

In [229]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.746537	0.75287
Testing	0.743073	0.701754

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0 1	0.82 0.65	0.73 0.76	0.77 0.70	719 472
accuracy macro avg weighted avg	0.74 0.76	0.75 0.74	0.74 0.74 0.75	1191 1191 1191

AUC: 0.8177170505174324

Out[229]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124

```
In [230]:
```

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logisticn_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:

```
https://scikit-learn.org/stable/modules/linear_model.html#logistic-
n_iter_i = _check_optimize_result(
```

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logisticn iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown
https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as show

- https://scikit-learn.org/stable/modules/preprocessing.html
 Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic
 - n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown
 https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html
- Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n iter i = check optimize result(
- /Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pastor: TOTAL NO. of ITERATIONS REACHED LIMIT.
- Increase the number of iterations (max_iter) or scale the data as shown https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic n_iter_i = _check_optimize_result(

	Accuracy	F1 Score
Training	0.74446	0.749831
Testing	0.744752	0.700787

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.82	0.74	0.78	719
1	0.65	0.75	0.70	472
accuracy			0.74	1191
macro avg	0.74	0.75	0.74	1191
weighted avg	0.75	0.74	0.75	1191

AUC: 0.8214033143961716

Out[230]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136

K-Nearest Neighbors

In [231]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.823061	0.825478
Testing	0.70361	0.637205

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.77	0.73	0.75	719
1	0.62	0.66	0.64	472
accuracy			0.70	1191
macro avg	0.69	0.70	0.69	1191
weighted avg	0.71	0.70	0.70	1191

AUC: 0.7530144268169067

Out[231]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

Boosting Ensemble Methods

In [232]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.774758	0.779304
Testing	0.735516	0.671533

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.79	0.77	0.78	719
1	0.66	0.68	0.67	472
accuracy			0.74	1191
macro avg	0.72	0.73	0.73	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.8120211687607553

Out[232]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

Model

Label

Train Test Recall Recall

Test Train ecall AUC

In [233]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.810942	0.813206
Testing	0.746432	0.686071

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0 1	0.80 0.67	0.78 0.70	0.79 0.69	719 472
accuracy macro avg weighted avg	0.74 0.75	0.74 0.75	0.75 0.74 0.75	1191 1191 1191

AUC: 0.8187852125126707

Out[233]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

	Model	Label	Train Recall	Test Recall	Train AUC
16	AdaBoostClassifier(random_state=610)	limited feature set; unscaled	0.7954	0.6822	0.8636
17	GradientBoostingClassifier(random_state=610)	limited feature set, unscaled	0.8231	0.6992	0.8959

In [234]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.956891	0.956808
Testing	0.743913	0.67027

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.78	0.80	0.79	719
1	0.68	0.66	0.67	472
accuracy			0.74	1191
macro avg	0.73	0.73	0.73	1191
weighted avg	0.74	0.74	0.74	1191

AUC: 0.8048681667098843

Out[234]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

	Model	Label	Train Recall	Test Recall	Train AUC
16	AdaBoostClassifier(random_state=610)	limited feature set; unscaled	0.7954	0.6822	0.8636
17	GradientBoostingClassifier(random_state=610)	limited feature set, unscaled	0.8231	0.6992	0.8959
18	XGBClassifier(base_score=0.5, booster='gbtree'	limited feature set, unscaled	0.9550	0.6568	0.9927

Support Vector Machine

In [235]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.80367	0.813241
Testing	0.728799	0.686712

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.81	0.71	0.76	719
1	0.63	0.75	0.69	472
accuracy			0.73	1191
macro avg	0.72	0.73	0.72	1191
weighted avg	0.74	0.73	0.73	1191

AUC: 0.8092321609580161

Out[235]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

	Model	Label	Train Recall	Test Recall	Train AUC
16	AdaBoostClassifier(random_state=610)	limited feature set; unscaled	0.7954	0.6822	0.8636
17	GradientBoostingClassifier(random_state=610)	limited feature set, unscaled	0.8231	0.6992	0.8959
18	XGBClassifier(base_score=0.5, booster='gbtree'	limited feature set, unscaled	0.9550	0.6568	0.9927
19	SVC(probability=True, random_state=610)	limited feature set SVC scaled	0.8549	0.7500	0.8838

In [236]:

svc_clf2 = SVC(kernel='linear', random_state=rs, probability=True)

In [237]:

CHECK FOR OVERFITTING - seek for test data to perform almost as well as

	Accuracy	F1 Score
Training	0.746191	0.753696
Testing	0.746432	0.706226

CHECK ACCURACY, PRECISION, RECALL, & F1 SCORE - seek to maximize recal:

	precision	recall	f1-score	support
0	0.83	0.73	0.78	719
1	0.65	0.77	0.71	472
accuracy			0.75	1191
macro avg weighted avg	0.74 0.76	0.75 0.75	0.74 0.75	1191 1191

AUC: 0.8189458051436789

Out[237]:

	Model	Label	Train Recall	Test Recall	Train AUC
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.7902	0.7521	0.8254
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.7763	0.7521	0.8044
2	KNeighborsClassifier()	defaul params, scaled data	0.8608	0.6419	0.9064
3	KNeighborsClassifier()	default params, unscaled data	0.8393	0.5657	0.8619
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.8272	0.7394	0.8405
5	DecisionTreeClassifier(random_state=610)	default params, unscaled	1.0000	0.5953	1.0000
6	GridSearchCV(cv=3, estimator=DecisionTreeClass	unscaled	0.7954	0.7034	0.8464
7	BaggingClassifier(base_estimator=DecisionTreeC	25 bagged trees with base estimator=gridsearch	0.8328	0.7415	0.8676
8	RandomForestClassifier(criterion='entropy', ma	RF with gridsearch best params, 50 trees	0.8386	0.7564	0.8690
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.8019	0.6780	0.8744
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.8366	0.6907	0.9097
11	XGBClassifier(base_score=0.5, booster='gbtree'	default params, unscaled	0.9948	0.6674	0.9997
12	SVC(probability=True, random_state=610)	scaled	0.8753	0.7373	0.9145
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.7722	0.7627	0.8124
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7659	0.7542	0.8136
15	KNeighborsClassifier()	limited feature set; scaled	0.8369	0.6568	0.9081

	Model	Label	Train Recall	Test Recall	Train AUC
16	AdaBoostClassifier(random_state=610)	limited feature set; unscaled	0.7954	0.6822	0.8636
17	GradientBoostingClassifier(random_state=610)	limited feature set, unscaled	0.8231	0.6992	0.8959
18	XGBClassifier(base_score=0.5, booster='gbtree'	limited feature set, unscaled	0.9550	0.6568	0.9927
19	SVC(probability=True, random_state=610)	limited feature set SVC scaled	0.8549	0.7500	0.8838
20	SVC(kernel='linear', probability=True, random	linear SVC limited feature set scaled	0.7767	0.7691	0.8122

Evaluation & Interpretation

As previously mentioned, the most important evaluation metric for this report is Test Recall, or how many true positive diagnoses the model predicted in new data it hadn't seen before. As such, the next cells sort and style the iteratively populated <code>model_stats</code> dataframe to see which model performed the best.

In [238]:

model_stats['False Negatives Normalized'] = model_stats['False Negative
model_stats.sort_values('Test Recall', ascending=False, inplace=True)

In [239]:

sort the model_stats df that has been collecting model results iterat
highlight the highest values of all columns except false negatives, t
model_stats.style.highlight_max(subset=['Test Recall', 'Test AUC', 'Test

Out[239]:

	Model	Label	R
20	SVC(kernel='linear', probability=True, random_state=610)	linear SVC limited feature set scaled	0.77
13	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; scaled	0.77
8	RandomForestClassifier(criterion='entropy', max_depth=5, max_features=20, min_samples_leaf=4, n_estimators=50, random_state=610)	RF with gridsearch best params, 50 trees	0.83
14	LogisticRegressionCV(cv=3, random_state=610)	limited feature set; unscaled	0.7€
1	LogisticRegressionCV(cv=3, random_state=610)	default params, unscaled data	0.77
0	LogisticRegressionCV(cv=3, random_state=610)	default params, scaled data	0.79
19	SVC(probability=True, random_state=610)	limited feature set SVC scaled	28.0
7	BaggingClassifier(base_estimator=DecisionTreeClassifier(criterion='entropy', max_depth=5, max_features=20, min_samples_leaf=4, random_state=610), n_estimators=25, random_state=610)	25 bagged trees with base estimator=gridsearch best params	28.0
4	KNeighborsClassifier(n_neighbors=23)	k=23, scaled data	0.82
12	SVC(probability=True, random_state=610)	scaled	0.87
6	GridSearchCV(cv=3, estimator=DecisionTreeClassifier(random_state=610), param_grid={'criterion': ['entropy', 'gini'], 'max_depth': [None, 5, 10, 15, 20], 'max_features': [None, 5, 10, 15, 20], 'min_samples_leaf': [1, 2, 3, 4]}, return_train_score=True)	unscaled	0.79
17	GradientBoostingClassifier(random_state=610)	limited feature set, unscaled	0.82
10	GradientBoostingClassifier(random_state=610)	default params, unscaled data	0.83
16	AdaBoostClassifier(random_state=610)	limited feature set; unscaled	0.79
9	AdaBoostClassifier(random_state=610)	default params, unscaled	0.80
11	XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints=", learning_rate=0.300000012, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=610, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)	default params, unscaled	0.99
15	KNeighborsClassifier()	limited feature set; scaled	0.83

R	Label	Model	
0.95	limited feature set, unscaled	XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints=", learning_rate=0.300000012, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=610, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)	18
0.86	defaul params, scaled data	KNeighborsClassifier()	2
1.00	default params, unscaled	DecisionTreeClassifier(random_state=610)	5
0.83	default params, unscaled data	KNeighborsClassifier()	3

Overall, the best models are consistently performing better than random chance and simple stratification models.

Test Recall

The maximum test recall of all models is consistently around .75-.8, meaning 75-80% of true diabetic/prediabetic diagnoses are correctly predicted by the model. The best performing models resulted in between 8.5-9.5% false negatives, or diabetics who were incorrectly predicted to be healthy.

Test Accuracy

The highest accuracy scores are consistently between .71 and .76, indicating that the model predicts the correct diagnosis about 71-76% of the time.

Interpreting the Support Vector Machine

The linear Support Vector Machine generates coefficients for each feature which, together with a calculated intercept, draw a decision boundary that predicts the target class. These coefficients can be used to understand how the model is using each feature to come to a prediction.

Madal

```
In [241]: def relationship(x):
    y=None
    if x>0:
        y='positive'
    elif x<0:
        y='negative'
    else:
        y='no relationship'
    return y</pre>
```

In [242]: svc_coefs['relationship'] = svc_coefs['coefficient'].map(lambda x: relationship')

Out[242]:

	coefficient	relationship
вмі	0.305900	positive
age	0.990892	positive
waist_circumference_cm	0.149740	positive
avg_pulse	0.139696	positive
gender_male	0.188301	positive
race_black	0.231212	positive
race_hispanic	-0.031562	negative
race_mexican_american	0.004261	positive
race_other	0.017383	positive
race_white	-0.138459	negative
country_of_birth_usa	-0.079173	negative
citizen_status_no_answer	-0.004494	negative
citizen_status_non_citizen	0.116101	positive
education_highschool_grad	0.098058	positive
education_no_diploma	0.144461	positive
education_some_college	0.149711	positive
marital_status_married or living with partner	0.304178	positive
marital_status_never married	0.207266	positive
marital_status_no_answer	-0.019246	negative
marital_status_widowed	0.087126	positive
coverage_status_no_answer	0.025564	positive
coverage_status_uninsured	-0.051003	negative

In [243]: svc_coefs_abs = svc_coefs.iloc[svc_coefs.coefficient.abs().argsort()]

```
In [244]:
           # Plot coefficients used in the best-performing model (SVC) in order or
           # Shoutout to Shane Lynn for introducing me to Patches
           # Source: https://www.shanelynn.ie/bar-plots-in-python-using-pandas-da:
           colors = {'positive':'cornflowerblue', 'negative':'rebeccapurple'}
           from matplotlib.patches import Patch
           plt.style.use('seaborn')
           plt.figure(figsize=(6,9), facecolor='white')
           plt.barh(y=svc_coefs_abs.index, width=svc_coefs_abs.coefficient,
                   color=svc_coefs_abs['relationship'].replace(colors))
           plt.axvline(x=0, color='black')
           plt.xlabel('Coefficient', fontfamily='tahoma', fontsize=12)
           plt.xticks(fontsize=11, fontfamily='tahoma')
           plt.ylabel('Feature', fontfamily='tahoma', fontsize=12)
           plt.yticks(fontsize=11, fontfamily='tahoma')
           plt.title('Support Vector Machine Model Coefficients (sorted by absolut
                     fontdict = {'family': 'tahoma', 'size':16})
           plt.legend(
               [Patch(facecolor=colors['positive']),
                Patch(facecolor=colors['negative'])],
               ['positive', 'negative'],
               loc='lower right', frameon=True, facecolor='white', title='Relation
               prop={'family': 'tahoma', 'size': 11})
           plt.savefig('./images/svm_coefs.jpg', bbox_inches='tight', pad_inches=1
           plt.show();
```


Features with positive coefficients have a positive relationship with diagnosis. For example, higher age values have a higher probability of diabetes/prediabetes, and lower age values have a lower probability of diabetes/prediabetes.

Features with negative coefficients have a negative relationship with the diagosis. For example, when a person's race is not white (race_white value is 0), there is a higher probability of diabetes/prediabetes, and when race_white value is 1, there is a lower probability of diabetes/prediabetes.

It is important to note that these are simply observations, not to imply causation. There are many factors beyond those evaluated here that together influence a person's health and circumstances.

Interpretting the Logistic Regression

Similarly, the logistic regression model is best interpreted using coefficients.

```
In [245]:
```

/Users/kristincooper/opt/anaconda3/envs/learn-env/lib/python3.8/site-pareturn f(**kwargs)

In [246]: lr_coefs['relationship'] = lr_coefs['coefficient'].map(lambda x: relationship')

Out[246]:

weight_kg-0.003969negativeheight_cm-0.031489negativeBMI0.423391positivewaist_circumference_cm0.502465positivehip_circumference_cm-0.279188negativeage1.069344positivehousehold_size0.009377positiveannual_household_income0.014223positiveincome_poverty_ratio0.050109positivesedentary_minsperday-0.023882negativevigorous_activity_minsperweek0.003185positivemoderate_activity_minsperweek0.003185positiveavg_pulse0.147236positivegender_male0.140738positiverace_hlack0.277205positiverace_hlack0.277205positiverace_mexican_american-0.031829negativerace_mexican_american-0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativeeducation_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_no_answer-0.018574negativemarital_status_no_answer-0.018574negativemarital_status_mo_answer-0.018574negativecoverage_status_uninsured-0.018917negative </th <th></th> <th>coefficient</th> <th>relationship</th>		coefficient	relationship
BMI0.423391positivewaist_circumference_cm0.502465positivehip_circumference_cm-0.279188negativeage1.069344positivehousehold_size0.009377positiveannual_household_income0.014223positiveincome_poverty_ratio0.050109positivesedentary_minsperday-0.023882negativevigorous_activity_minsperweek-0.024660negativeavg_pulse0.147236positivemoderate_activity_minsperweek-0.024660negativeavg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other-0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativecoverage_status_no_answer-0.0115808positivecoverage_status_uninsured-0.0115808negative	weight_kg	-0.003969	negative
waist_circumference_cm0.502465positivehip_circumference_cm-0.279188negativeage1.069344positivehousehold_size0.009377positiveannual_household_income0.014223positiveincome_poverty_ratio0.050109positivesedentary_minsperday-0.023882negativevigorous_activity_minsperweek-0.024660negativemoderate_activity_minsperweek-0.024660negativeawg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_white-0.183077negativerace_white-0.183077negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_no_answer-0.018978negativeeducation_highschool_grad0.120277positiveeducation_some_college0.158730positivemarital_status_mever married0.10474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_uninsured-0.0115808negative	height_cm	-0.031489	negative
hip_circumference_cm	ВМІ	0.423391	positive
age1.069344positivehousehold_size0.009377positiveannual_household_income0.014223positiveincome_poverty_ratio0.050109positivesedentary_minsperday-0.023882negativevigorous_activity_minsperweek-0.024660negativemoderate_activity_minsperweek-0.024660negativeavg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_no_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_some_college0.158730positivemarital_status_mever married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.0115808negative	waist_circumference_cm	0.502465	positive
household_size 0.009377 positive annual_household_income 0.014223 positive income_poverty_ratio 0.050109 positive sedentary_minsperday -0.023882 negative vigorous_activity_minsperweek 0.003185 positive moderate_activity_minsperweek -0.024660 negative avg_pulse 0.147236 positive gender_male 0.140738 positive race_black 0.277205 positive race_hispanic -0.057839 negative race_hispanic -0.057839 negative race_other 0.016785 positive race_white -0.183077 negative race_white -0.183077 negative race_white -0.183077 negative country_of_birth_usa -0.208223 negative country_of_birth_usa -0.208223 negative citizen_status_no_answer -0.018978 negative citizen_status_non_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_some_college 0.158730 positive marital_status_nome_acollege 0.158730 positive marital_status_nower -0.018574 negative marital_status_no_answer -0.018574 negative marital_status_no_answer -0.018574 negative coverage_status_no_answer -0.001104 positive coverage_status_no_answer 0.001104 positive	hip_circumference_cm	-0.279188	negative
annual_household_income 0.014223 positive income_poverty_ratio 0.050109 positive sedentary_minsperday -0.023882 negative vigorous_activity_minsperweek 0.003185 positive moderate_activity_minsperweek -0.024660 negative avg_pulse 0.147236 positive gender_male 0.140738 positive race_black 0.277205 positive race_hispanic -0.057839 negative race_hispanic -0.057839 negative race_white -0.183077 negative race_white -0.183077 negative race_white -0.183077 negative country_of_birth_usa -0.208223 negative citizen_status_no_answer -0.018978 negative citizen_status_no_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_some_college 0.158730 positive marital_status_no_answer -0.018574 negative marital_status_no_answer -0.018574 negative marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_uninsured -0.115808 negative	age	1.069344	positive
income_poverty_ratio	household_size	0.009377	positive
sedentary_minsperday -0.023882 negative vigorous_activity_minsperweek	annual_household_income	0.014223	positive
vigorous_activity_minsperweek0.003185positivemoderate_activity_minsperweek-0.024660negativeavg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other0.016785positiverace_white-0.183077negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_merried0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	income_poverty_ratio	0.050109	positive
moderate_activity_minsperweek-0.024660negativeavg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_some_college0.158730positivemarital_status_meren0.101474positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	sedentary_minsperday	-0.023882	negative
avg_pulse0.147236positivegender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_some_college0.158730positivemarital_status_merried0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	vigorous_activity_minsperweek	0.003185	positive
gender_male0.140738positiverace_black0.277205positiverace_hispanic-0.057839negativerace_mexican_american-0.031829negativerace_other0.016785positiverace_white-0.183077negativeveteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_some_college0.158730positivemarital_status_mercel or living with partner0.197218positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	moderate_activity_minsperweek	-0.024660	negative
race_black	avg_pulse	0.147236	positive
race_hispanic -0.057839 negative race_mexican_american -0.031829 negative race_other 0.016785 positive race_white -0.183077 negative veteran_status_yes -0.086975 negative country_of_birth_usa -0.208223 negative citizen_status_no_answer -0.018978 negative citizen_status_non_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_some_college 0.158730 positive education_some_college 0.158730 positive marital_status_mever married 0.101474 positive marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_uninsured -0.115808 negative	gender_male	0.140738	positive
race_mexican_american -0.031829 negative race_other 0.016785 positive race_white -0.183077 negative veteran_status_yes -0.086975 negative country_of_birth_usa -0.208223 negative citizen_status_no_answer -0.018978 negative citizen_status_non_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_no_diploma 0.190555 positive education_some_college 0.158730 positive marital_status_married or living with partner 0.197218 positive marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	race_black	0.277205	positive
race_other	race_hispanic	-0.057839	negative
race_white -0.183077 negative veteran_status_yes -0.086975 negative country_of_birth_usa -0.208223 negative citizen_status_no_answer -0.018978 negative citizen_status_non_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_no_diploma 0.190555 positive education_some_college 0.158730 positive marital_status_married or living with partner 0.197218 positive marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	race_mexican_american	-0.031829	negative
veteran_status_yes-0.086975negativecountry_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_married or living with partner0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	race_other	0.016785	positive
country_of_birth_usa-0.208223negativecitizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_married or living with partner0.197218positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	race_white	-0.183077	negative
citizen_status_no_answer-0.018978negativecitizen_status_non_citizen0.056412positiveeducation_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_married or living with partner0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	veteran_status_yes	-0.086975	negative
citizen_status_non_citizen 0.056412 positive education_highschool_grad 0.120277 positive education_no_diploma 0.190555 positive education_some_college 0.158730 positive marital_status_married or living with partner 0.197218 positive marital_status_never married 0.101474 positive marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	country_of_birth_usa	-0.208223	negative
education_highschool_grad0.120277positiveeducation_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_married or living with partner0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativecoverage_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	citizen_status_no_answer	-0.018978	negative
education_no_diploma0.190555positiveeducation_some_college0.158730positivemarital_status_married or living with partner0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	citizen_status_non_citizen	0.056412	positive
education_some_college 0.158730 positive marital_status_married or living with partner 0.197218 positive marital_status_never married 0.101474 positive marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	education_highschool_grad	0.120277	positive
marital_status_married or living with partner0.197218positivemarital_status_never married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	education_no_diploma	0.190555	positive
marital_status_never married0.101474positivemarital_status_no_answer-0.018574negativemarital_status_widowed0.048336positivecoverage_status_no_answer0.001104positivecoverage_status_uninsured-0.115808negative	education_some_college	0.158730	positive
marital_status_no_answer -0.018574 negative marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	marital_status_married or living with partner	0.197218	positive
marital_status_widowed 0.048336 positive coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	marital_status_never married	0.101474	positive
coverage_status_no_answer 0.001104 positive coverage_status_uninsured -0.115808 negative	marital_status_no_answer	-0.018574	negative
coverage_status_uninsured -0.115808 negative	marital_status_widowed	0.048336	positive
	coverage_status_no_answer	0.001104	positive
covered_private_yes -0.018917 negative	coverage_status_uninsured	-0.115808	negative
	covered_private_yes	-0.018917	negative

	coefficient	relationship
covered_medicare_yes	0.017615	positive
covered_medigap_yes	-0.006686	negative
covered_medicaid_yes	-0.041275	negative
covered_chip_yes	0.008534	positive
covered_military_yes	0.026312	positive
covered_state_yes	0.041381	positive
covered_other_gov_yes	0.018733	positive
covered_single_service_yes	-0.051231	negative
prescription_coverage_no_answer	0.075814	positive
prescription_coverage_yes	-0.005378	negative
uninsured_in_last_year_no_answer	0.006595	positive
uninsured_in_last_year_yes	-0.014603	negative
lifetime_cigarette_smoker_yes	0.022808	positive
current_cigarette_smoker_yes	0.042493	positive

In [247]: lr_coefs_abs = lr_coefs.iloc[lr_coefs.coefficient.abs().argsort()]

In [248]: # Plot coefficients used in the logistic regression cv in order of absolute # Shoutout to Shane Lynn for introducing me to Patches # Source: https://www.shanelynn.ie/bar-plots-in-python-using-pandas-dat colors = {'positive':'cornflowerblue', 'negative':'rebeccapurple'} from matplotlib.patches import Patch plt.style.use('seaborn') plt.figure(figsize=(6,14), facecolor='white') plt.barh(y=lr_coefs_abs.index, width=lr_coefs_abs.coefficient, color=lr_coefs_abs['relationship'].replace(colors)) plt.axvline(x=0, color='black') plt.xlabel('Coefficient', fontfamily='tahoma', fontsize=12) plt.xticks(fontsize=11, fontfamily='tahoma') plt.ylabel('Feature', fontfamily='tahoma', fontsize=12) plt.yticks(fontsize=11, fontfamily='tahoma') plt.title('Logistic Regression Model Coefficients (sorted by absolute v fontdict = {'family': 'tahoma', 'size':16}) plt.legend([Patch(facecolor=colors['positive']), Patch(facecolor=colors['negative'])], ['positive', 'negative'], loc='lower right', frameon=True, facecolor='white', title='Relation prop={'family': 'tahoma', 'size': 11}) plt.savefig('./images/lr_coefs.jpg', pad_inches=3) plt.show();

Caveats / Future Enhancements

Caveats:

• Coefficients represent observed relationships of a relatively small sample and should not be considered causal. There are countless factors that influence a person's health such as family history, living environment, and many more.

- This model is not intended to predict diabetes in children under 18 or pregnant women
- This model was trained on a sample comprised only of individuals in the USA. Some data, notably insurance coverage status, is quite specific to this sample.

Future Enhancements:

- Create a multivariate classifier to differentiate between prediabetes and diabetes.
- Incorporate time-series using data from prior year NHANES.

Appendix

Data reviewed but not used

Lab - Cholesterol

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/TCHOL J.htm (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/TCHOL J.htm)

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/TRIGLY_J.htm (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/TRIGLY_J.htm)

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/HDL J.htm (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/HDL J.htm)

A complete cholesterol test — also called a lipid panel or lipid profile — is a blood test that can measure the amount of cholesterol and triglycerides in your blood. The blood lipids measurements in NHANES include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoproteins cholesterol (LDL-C), and triglycerides.

- Total cholesterol sum of your blood's cholesterol content
 - Less than 200 mg/dL desirable
 - 200-239 mg/dL borderline
 - Greater than 240 mg/dL high
- **High-density lipoprotein (HDL) cholesterol** the "good" cholesterol because it helps carry away LDL cholesterol, thus keeping arteries open and your blood flowing more freely.
 - Greater than 60 mg/dL best
 - 40-59 mg/dL good
 - Less than 50 (women) or 40 (men) poor
- Low-density lipoprotein (LDL) cholesterol "bad" cholesterol; too much of it in your blood causes the buildup of fatty deposits (plaques) in your arteries (atherosclerosis), which reduces blood flow. These plaques sometimes rupture and can lead to a heart attack or stroke.
 - Less than 100 mg/dL optimal
 - 100-129 mg/dL high for those with coronary artery disease
 - 130-159 mg/dL borderline
 - Greater than 160 mg/dL high

- Greater than 190 mg/dL very high
- **Triglycerides** a type of fat in the blood created from calories your body doesn't need. High triglyceride levels are associated with several factors, including being overweight, eating too many sweets or drinking too much alcohol, smoking, being sedentary, or having diabetes with elevated blood sugar levels.
 - Less than 150 mg/dL desirable
 - 150-199 mg/dL borderline
 - 200-499 mg/dL high
 - Greater than 500 mg/dL very high

https://www.mayoclinic.org/tests-procedures/cholesterol-test/about/pac-20384601 (https://www.mayoclinic.org/tests-procedures/cholesterol-test/about/pac-20384601)

```
In [249]:
           # chol total = chol total.drop(columns='LBDTCSI').rename(mapper={'LBXTC
           # chol total
           # chol hdl = chol hdl.drop(columns='LBDHDDSI').rename(mapper={'LBDHDD'.
In [250]:
           # chol hdl
In [251]:
           # chol ldl
In [252]:
           # chol ldl.describe().round(1)
In [253]:
           # chol ldl.columns
           # keepcols chol ldl = ['LBXTR', 'LBDLDL']
In [254]:
           # mapper chol ldl = {'LBXTR': 'triglyceride', 'LBDLDL': 'cholesterol lo
           # keep chol ldl = chol ldl[keepcols chol ldl].rename(mapper=mapper cho.
In [255]:
           # keep chol ldl
           # chol1 = pd.merge(keep chol ldl, chol hdl, how='outer', on='SEQN')
In [256]:
           # chol1
In [257]:
           # cholesterol = pd.merge(chol1, chol total, how='outer', on='SEQN')
           # cholesterol
```

Lab - Insulin