

Please type a plus sign (+) inside this box →

PTO/SB/05 (12/97) (modified)

Approved for use through 09/30/00 OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

UTILITY
PATENT APPLICATION
TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 286002021100 Total Pages 37

First Named Inventor or Application Identifier

Chaitan KHOSLA and Blaine PFEIFER

Express Mail Label No. EL628459393US

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

Express Mail Label No.: EL628459393US

Date of Deposit: October 13, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231.

Karen LePari

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. Fee Transmittal Form
(Submit an original, and a duplicate for fee processing)
2. Specification [Total Pages 35]
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. * Drawing(s) (35 USC 113) [Total Sheets 1]
4. * Oath or Declaration [Total Pages 1]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 CFR 1.63(d)
(for continuation/divisional with Box 17 completed)
[Note Box 5 below]
- i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b)
5. Incorporation By Reference (useable if Box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

6. * Microfiche Computer Program (Appendix)
7. * Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

8. * Assignment Papers (cover sheet & document(s))
9. * 37 CFR 3.73(b) Statement Power of Attorney
(when there is an assignee)
10. * English Translation Document (if applicable)
11. * Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
12. * Preliminary Amendment
13. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
14. * Small Entity Statement(s) Statement filed in prior application, Status still proper and desired
15. * Certified Copy of Priority Document(s) (if foreign priority is claimed)
16. *

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:

This application is related to application Serial No. 60/159,090 filed October 13, 1999; Serial No. 60/206,082 filed May 18, 2000; and Serial No. 60/232,379 filed September 14, 2000.

18. CORRESPONDENCE ADDRESS

Kate H. Murashige
Registration No. 29,959

Morrison & Foerster LLP
2000 Pennsylvania Avenue, N.W.
Washington, D.C. 20006-1888
Telephone: (858) 720-5112
Facsimile: (202) 887-0763

If a paper is untimely filed in the above-referenced application by applicant or his/her representative, the Assistant Commissioner is hereby petitioned under 37 C.F.R. § 1.136(a) for the minimum extension of time required to make said paper timely. In the event a petition for extension of time is made under the provisions of this paragraph, the Assistant Commissioner is hereby requested to charge any fee required under 37 C.F.R. § 1.17(a)-(d) to **Deposit Account No. 03-1952**. However, the Assistant Commissioner is NOT authorized to charge the cost of the issue fee to the Deposit Account.

The filing fee has been calculated as follows:

FOR	NUMBER FILED	NUMBER EXTRA	RATE	CALCULATIONS
TOTAL CLAIMS	43 - 20 =	23	x \$18.00	\$*
INDEPENDENT CLAIMS	4 - 3 =	1	x \$78.00	\$*
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$260.00	\$*
			BASIC FEE	\$690.00
			TOTAL OF ABOVE CALCULATIONS =	\$*
Reduction by 1/2 for filing by small entity (Note 37 C.F.R. §§ 1.9, 1.27, 1.28). If applicable, verified statement must be attached.				\$*
Assignment Recording Fee (if enclosed)				\$40.00
			TOTAL =	\$*

- A check in the amount of \$* is attached.
 Charge \$* to **Deposit Account No. 03-1952** referencing docket no. 286002021100.

(THIS APPLICATION IS BEING FILED WITHOUT FEE OR FORMAL DOCUMENTS.)

Applicant(s) hereby petitions for any required relief including extensions of time and authorizes the Assistant Commissioner to charge the cost of such petitions and/or other fees or to credit any overpayment to **Deposit Account No. 03-1952** referencing docket no. 286002021100. A duplicate copy of this transmittal is enclosed, for that purpose.

Dated: October 13, 2000

Respectfully submitted,

By: Kate H. Murashige
Kate H. Murashige
Registration No. 29,959

Morrison & Foerster LLP
2000 Pennsylvania Avenue, N.W.
Washington, D.C. 20006-1888
Telephone: (858) 720-5112
Facsimile: (202) 887-0763

BIOSYNTHESIS OF POLYKETIDE SYNTHASE SUBSTRATES

Cross-Reference to Related Applications

This application is related to application Serial No. 60/159,090 filed 13 October 1999; Serial No. 60/206,082 filed 18 May 2000; and Serial No. (Atty. docket 5 28600-30211.21) filed 14 September 2000, which are expressly incorporated herein by reference.

Statement of Rights to Inventions Made Under Federally Sponsored Research

This invention was made with U.S. government support from the National Institutes of Health and the National Science Foundation. The U.S. government may have certain rights in this invention.

Technical Field

The invention relates to methods to adapt prokaryotic hosts for efficient production of polyketides. In one aspect, the hosts are modified to synthesize the starter and/or extender units used by polyketide synthases in the synthesis of polyketides. Other host modifications may also be made. Thus, the invention includes methods for production of complex polyketides in such diverse organisms as *Escherichia coli*, *Bacillus*, *Myxococcus*, and *Streptomyces*.

Background Art

Complex polyketides such as 6-deoxyerythronolide B (6-dEB), the macrocyclic core of the antibiotic erythromycin, constitute an important class of natural products. They are synthesized by "modular" polyketide synthases, generally found in actinomycetes. For example, the polyketide synthase (PKS) which results in the synthesis of 6-dEB is produced in *Sacromyces erythraea*. The polyketides produced in these native hosts are generally subsequently tailored to obtain the finished antibiotic by glycosylation, oxidation, hydroxylation and other modifying reactions. Recent work from this laboratory has demonstrated that it is possible to express polyketide synthase

modules in a functional form in *Escherichia coli* (Gokhale, R.S., et al., *Science* (1999) 284:482-485). However, in order to harness these modular enzymes for polyketide biosynthesis in *E. coli*, or in other hosts that do not normally produce them it is also necessary to produce their appropriate substrates *in vivo* in a controlled manner. For example, metabolites such as acetyl-CoA, propionyl-CoA, malonyl-CoA and methylmalonyl-CoA are the most common substrates of these enzymes. *E. coli* has the capability to produce acetyl-CoA, propionyl-CoA, and malonyl-CoA; however, the latter two substrates are only present in small quantities in the cell, and their biosynthesis is tightly controlled. The ability of *E. coli* to synthesize methylmalonyl-CoA has not been documented thus far.

Similar conditions prevail in other microbial cells, especially those that do not natively produce polyketides, such as various species of *Escherichia*, *Bacillus*, *Pseudomonas*, and *Flavobacterium*. Thus, generally, the required starter and/or extender units may not be produced in adequate amounts in any particular host. Further, by appropriate selection of the acyl transferase (AT) domains of the PKS in question, substrates more complex than those just mentioned may be employed. As an example, the PKS for synthesis of FK506 comprises an acyl transferase domain that incorporates substrates such as propyl malonyl-CoA in preference to malonyl-CoA or methylmalonyl-CoA. It would be helpful to have available a method which provides this range of substrates in appropriate levels in any arbitrarily chosen host organism.

Additional problems that may need to be surmounted in effecting the production of polyketides in prokaryotic hosts, especially those which do not natively produce polyketides, include the presence of enzymes which catabolize the required starter and/or extender units, such as the enzymes encoded by the *prp* operon of *E. coli*, which are responsible for catabolism of exogenous propionate as a carbon and energy source in this organism. In order to optimize production of a polyketide which utilizes propionyl CoA as a starter unit and/or utilizes its carboxylation product, methylmalonyl CoA as an extender unit, this operon should be disabled, except for that portion (the E locus) which encodes a propionyl CoA synthetase. Any additional loci which encode catabolizing enzymes for starter or extender units are also advantageously disabled.

In addition, a particular procaryotic host, such as *E. coli*, may lack the phosphopantetheinyl transferase required for activation of the polyketide synthase. It may be required to modify the host to contain such a transferase as well.

In summary, it would be advantageous to effect the production of polyketides in microbial, especially procaryotic hosts in general, and, in particular, in hosts which do not natively produce polyketides. These hosts often have advantages over native polyketide producers such as *Streptomyces* in terms of ease of transformation, ability to grow rapidly in culture, and the like. These advantages are particularly useful in assessing the results of random mutagenesis or gene shuffling of polyketide synthases. Thus, the invention provides a multiplicity of approaches to adapt microbial hosts for the production of polyketides.

Disclosure of the Invention

The invention has achieved, for the first time, the production of a complete polyketide product, 6-dEB, in the ubiquitously useful host organism, *E. coli*. The methods used to achieve this result are adaptable to microbial hosts in general, especially procaryotics. They can be used to adapt microbial hosts which do not natively produce polyketides to such production and to enhance the production of polyketides in hosts that normally produce them. Depending on the host chosen, the modifications required may include incorporation into the organism of expression systems for the polyketide synthase genes themselves; disabling of endogenous genes which encode catabolic enzymes for the starter and/or extender units; incorporation of expression systems for enzymes required for post translational modification of the synthases, such as phosphopantetheinyl transferase; and incorporation of enzymes which enhance the levels of starter and/or extender units. The particular combination of modifications required to adapt the host will vary with the nature of the polyketide desired and with the nature of the host itself.

Thus, in one aspect, the invention is directed to microbial host cells which are genetically modified for enhanced synthesis of at least one polyketide wherein said modification comprises incorporation of at least one expression system for producing a protein that catalyzes the production of starter and/or extender units and/or disabling at least one endogenous pathway for catabolism of starter and/or extender units.

Additional modifications may also be made, such as incorporating at least one expression system for a polyketide synthase protein and, if necessary, incorporating at least one expression system for a phosphopantetheinyl transferase.

In other aspects, the invention is directed to methods of preparing polyketides, including complete polyketides, in the modified cells of the invention. A preferred embodiment is a method to synthesize 6-dEB or other complete polyketides in *E. coli*.

In still another aspect, the invention is directed to a method to assess the results of gene shuffling or random mutagenesis of polyketide synthase genes by taking advantage of the high transformation efficiency of *E. coli*.

10 Modes of Carrying Out the Invention

In the illustrative example below, *E. coli* is modified to effect the production of 6-dEB, the polyketide precursor of erythromycin. The three proteins required for this synthesis, DEBS1, DEBS2 and DEBS3 are known and the genes encoding them have been cloned and sequenced. However, a multiplicity of additional PKS genes have been cloned and sequenced as well, including those encoding enzymes which produce the polyketide precursors of avermectin, oleandomycin, epothilone, megalomycin, picromycin, FK506, FK520, rapamycin, tylosin, spinosad, and many others. In addition, methods to modify native PKS genes so as to alter the nature of the polyketide produced have been described. Production of hybrid modular PKS proteins and synthesis systems is described and claimed in U.S. patent 5,962,290. Methods to modify PKS enzymes so as to permit efficient incorporation of diketides is described in U.S. patent 6,080,555. Methods to modify PKS enzymes by mixing and matching individual domains or groups of domains is described in U.S. Serial No. 09/073,538. Methods to alter the specificity of modules of modular PKS's to incorporate particular starter or extender units are described in U.S. Serial No. 09/346,860, now allowed. Improved methods to prepare diketides for incorporation into polyketides is described in U.S. Serial No. 09/492,733. Methods to mediate the synthesis of the polyketide chain between modules are described in U.S. Serial No. 09/500,747. The contents of the foregoing patents and patent applications are incorporated herein by reference.

Thus, a selected host may be modified to include any one of many possible polyketide synthases by incorporating therein appropriate expression systems for the proteins included in such synthases. Either complete synthases or partial synthases may be supplied depending on the product desired. If the host produces polyketide synthase natively, and a different polyketide from that ordinarily produced is desired, it may be desirable to delete the genes encoding the native PKS. Methods for such deletion are described in U.S. patent 5,830,750, which is incorporated herein by reference.

For hosts which do not natively produce polyketides, the enzymes that tailor polyketide synthases may be lacking or deficient, so that in addition to supplying the expression systems for the polyketide synthases themselves, it may be necessary to supply an expression system for these enzymes. One enzyme which is essential for the activity of PKS is a phosphopantetheinyl transferase. The genes encoding these transferases have been cloned and are available. These are described in U.S. patent application 08/728,742, which is now published, for example, in Canadian application 2,232,230. The contents of these documents are incorporated herein by reference.

Depending on the host selected, such hosts may natively include genes which produce proteins that catabolize desired starter and/or extender units. One example includes the *prp* operon wherein the proteins encoded by subunits A-D catabolize exogenous propionate. The enzyme encoded by *prp E* is desirable however as it is a propionyl CoA synthetase. The portions of the operon encoding catabolizing enzymes are advantageously disabled in modifying *E. coli*. Similar operons in other hosts may be disabled as needed.

In general, in all cases, enzymes that enhance the production of starter and/or extender units, and any enzymes required for activation of these production enzymes need to be incorporated in the cells by modifying them to contain expression systems for these proteins.

In one embodiment of this aspect, advantage is taken of the *matABC* operon, which was recently cloned from *Rhizobium trifoli* (An, J.H., et al., *Eur. J. Biochem.* (1988) 15:395-402). There are three proteins encoded by this operon.

MatA encodes a malonyl-CoA decarboxylase, which normally catalyzes the reaction: malonyl-CoA → acetyl-CoA +CO₂.

MatB encodes a malonyl-CoA synthetase which catalyzes the reaction: malonic acid +CoASH → malonyl-CoA (in an ATP dependent reaction).

5 MatC encodes a malonate transporter which is believed to be responsible for transport of malonic acid across the cell membrane.

These enzymes are demonstrated herein to be somewhat promiscuous with respect to substrate in their ability to catalyze the reactions shown. Thus, in addition to malonyl-CoA and malonic acids (for MatA and MatB respectively) as substrates, these enzymes can also utilize methylmalonyl-CoA and methylmalonic acid; ethylmalonyl-CoA and ethylmalonic acid; propylmalonyl-CoA and propylmalonic acid and the like. Thus, these enzymes can be used to provide a variety of starter and extender units for synthesis of desired polyketides.

In another embodiment of this aspect, homologs of *matB* and *matC* derived from *S. coelicolor* (GenBank accession No. AL163003) can be used.

Also useful in supplying substrates for extender units is the gene encoding propionyl CoA carboxylase. This carboxylase enzyme is a dimer encoded by the *pccB* and *accA2* genes which have been characterized from *Streptomyces coelicolor* A3 by Rodriguez, E., et al., *Microbiology* (1999) 145:3109-3119. A biotin ligase is needed for activation of these proteins. The typical substrate for this enzyme is propionyl-CoA which is then converted to methylmalonyl-CoA; a reaction which is summarized as propionyl-CoA+CO₂→methylmalonyl-CoA (an ATP dependent reaction).

Other acyl-CoA substrates may also be converted to the corresponding malonyl-CoA products.

25 In addition to providing modified host cells that are efficient in producing polyketides, the polyketide synthases, their activation enzymes, and enzymes which provide starter and/or extender units can be used in *in vitro* systems to produce the desired polyketides. For example, the enzymes malonyl-CoA decarboxylase and/or malonyl-CoA synthetase such as those encoded by the *matABC* operon and/or propionyl-CoA carboxylase such as that encoded by the *pccB* and *accA2* genes can be used in *in vitro* cultures to convert precursors to suitable extender and starter units for a

5

desired PKS to effect synthesis of a polyketide in a cell-free or in *in vitro* cell culture system. Purified MatB is particularly advantageously used for the preparative cell free production of polyketides, since CoA thioesters are the most expensive components in such cell-free synthesis systems. Alternatively, as set forth above, these genes are used (in any suitable combination) in a general strategy for production by cells in culture of these substrates. MatB and MatC can be used to effect production of any alpha-carboxylated CoA thioester where the corresponding free acid can be recognized as a substrate by MatB. The MatA protein may also be used to supplement *in vitro* or *in vivo* levels of starter units such as acetyl-CoA and propionyl-CoA. The genes encoding propionyl-CoA carboxylase can also be used to provide the enzyme to synthesize suitable extender units *in vivo*.

10

Thus, the invention includes a method to enhance the production of a polyketide, including a complete polyketide in a microbial host, which method comprises providing said host with an expression system for an enzyme which enhances the production of starter and/or extender units used in constructing the polyketide. A "complete" polyketide is a polyketide which forms the basis for an antibiotic, such as the polyketides which are precursors to erythromycin, megalomycin, and the like. The enzymes include those encoded by the *matABC* operon and their homologs in other organisms as well as the *pccB* and *accA2* genes encoding propionyl carboxylase and their homologs in other organisms. In another aspect, the invention is directed to a method of enhancing production of polyketides in cell-free systems by providing one or more of these enzymes to the cell-free system.

15

20

The invention is also directed to cells modified to produce the enzymes and to methods of producing polyketides using these cells, as well as to methods of producing polyketides using cell-free systems.

25

The invention also includes a method to enhance polyketide production in a microbial system by supplementing the medium with a substrate for an endogenous enzyme which converts this substrate to a starter or extender unit.

30

The invention also includes a method to produce polyketides in microbial hosts containing modifications to assist polyketide production, such as disarming of the

endogenous genes which encode proteins for catabolism of required substrates, by supplying these cells with synthetic precursors, such as diketide precursors.

The polyketide produced may be one normally produced by the PKS and may exist in nature; in this case the presence of the gene encoding the starter/extender production-enhancing enzyme *in vivo* or of the enzyme itself in cell free systems may simply enhance the level of production. In addition, the PKS may be a modified PKS designed to produce a novel polyketide, whose production may be enhanced in similar fashion. Because of the ability of the enzymes described herein to accept a wide range of substrates, extender units and starter units can be provided based on a wide range of readily available reagents. As stated above, diketide starting materials may also be supplied.

The invention thus also includes the various other modifications of microbial hosts described above to permit or enhance their production of polyketides and to methods of producing polyketides using such hosts.

The ability to modify hosts such as *E. coli* and other prokaryotes such as *Bacillus* to permit production of polyketides in such hosts has numerous advantages, many of which reside in the inherent nature of *E. coli*. One important advantage resides in the ease with which *E. coli* can be transformed as compared to other microorganisms which natively produce polyketides. One important application of this transformation ease is in assessing the results of gene shuffling of polyketide synthases. Thus, an additional aspect of the invention is directed to a method to assess the results of polyketide synthase gene shuffling which method comprises transfecting a culture of the *E. coli* modified according to the invention with a mixture of shuffled polyketide synthases and culturing individual colonies. Those colonies which produce polyketides contain successfully shuffled genes.

In addition to modifying microbial hosts, especially prokaryotic hosts, to produce polyketides, these hosts may further be modified to produce the enzymes which "tailor" the polyketides and effect their conversion to antibiotics. Such tailoring reactions include glycosylation, oxidation, hydroxylation and the like.

To effect production of the polyketides in a microbial host, it is preferable to permit substantial growth of the culture prior to inducing the enzymes which effect the

synthesis of the polyketides. Thus, in hosts which do not natively produce polyketides, the required expression systems for the PKS genes are placed under control of an inducible promoter, such as the T7 promoter which is induced by IPTG. There is a plethora of suitable promoters which are inducible in a variety of such microbial hosts.

5 Other advantageous features of the modified host, such as the ability to synthesize starters or extenders, may also be under inducible control. Finally, precursors to the starting materials for polyketide synthase may be withheld until synthesis is desired. Thus, for example, if the starting materials are derived from propionate, propionate can be supplied at any desired point during the culturing of the cells. If a diketide or triketide starting material is used, this too can be withheld until the appropriate time. Prior to addition of the precursor, a minimal medium may be used and alternate carbon sources employed to supply energy and materials for growth.

10

As described above, the invention provides methods for both *in vitro* and *in vivo* synthesis of any arbitrarily chosen polyketide where the *in vivo* synthesis may be conducted in any microbial, especially procaryotic host. The procaryotic host is typically of the genus *Bacillus*, *Pseudomonas*, *Flavobacterium*, or more typically *Escherichia*, in particular *E. coli*. Whether *in vitro* or *in vivo* synthesis is employed, it may be necessary to supply one or more of a suitable polyketide synthase (which may be native or modified), one or more enzymes to produce starter and/or extender units, typically including converting the free acid to the CoA derivative, and, if the foregoing enzymes are produced in a host, tailoring enzymes to activate them. In addition, for *in vivo* synthesis, it may be necessary to disarm catabolic enzymes which would otherwise destroy the appropriate starting materials.

15

With respect to production of starting materials, the genes of the *matABC* operon and the genes encoding propionyl carboxylase can be employed to produce their encoded proteins for use in cell free polyketide synthesis and also to modify recombinant hosts for production of polyketides in cell culture. These genes and their corresponding encoded products are useful to provide optimum levels of substrates for polyketide synthase in any host in which such synthesis is to be effected. The host may be one which natively produces a polyketide and its corresponding antibiotic or may be a recombinantly modified host which either does not natively produce any polyketide or which has been

20

25

30

5

modified to produce a polyketide which it normally does not make. Thus, microorganism hosts which are useable for the synthesis of polyketides include various strains of *Streptomyces*, in particular *S. coelicolor* and *S. lividans*, various strains of *Myxococcus*, industrially favorable hosts such as *E. coli*, *Bacillus*, *Pseudomonas* or *Flavobacterium*, and other microorganisms such as yeast. These genes and their corresponding proteins are useful in adjusting substrate levels for polyketide synthesis generally.

Substrate Specificity and Polyketide Design

These genes and their products are particularly useful because of the ability of the enzymes to utilize a range of starting materials. Thus, in general, propionyl carboxylase converts a thioester of the formula $R_2\text{-CH-CO-SCoA}$, where each R is H or an optionally substituted alkyl or other optionally substituted hydrocarbyl group to the corresponding malonic acid thioester of the formula $R_2\text{C(COOH)COSCoA}$. Other thioesters besides the natural co-enzyme A thioester may also be used such as the N-acyl cysteamine thioesters. Similarly, the product of the *matB* gene can convert malonic acid derivatives of the formula $R_2\text{C(COOH)}_2$ to the corresponding acyl thioester, where each R is independently H or optionally substituted hydrocarbyl. A preferred starting material is that wherein R is alkyl (1-4C), preferably $\text{RCH}(\text{COOH})_2$. For *in vivo* systems, it may be advantageous to include the *matC* gene to ensure membrane transport of the starting malonic acid related material. The *matA* gene encodes a protein which converts malonyl-CoA substrates of the formula $R_2\text{C(COOH)COSCoA}$ to the corresponding acyl-CoA of the formula $R_2\text{CHCOSCoA}$, where R is defined as above, for use as a starter unit.

Typically, the hydrocarbyl groups referred to above are alkyl groups of 1-8C, preferably 1-6C, and more preferably 1-4C. The alkyl groups may be straight chain or branch chain, but are preferably straight chain. The hydrocarbyl groups may also include unsaturation and may further contain substituents such as halo, hydroxyl, methoxyl or amino or methyl or dimethyl amino. Thus, the hydrocarbyl groups may be of the formula $\text{CH}_3\text{CHCHCH}_2$; CH_2CHCH_2 ; $\text{CH}_3\text{OCH}_2\text{CH}_2\text{CH}_2$; CH_3CCCH_2 ; $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$; and the like.

The substituted alkyl groups are also 1-8C in the backbone chain, preferably 1-6C and more preferably 1-4C. The alkenyl and alkynyl hydrocarbyl groups contain 2-8C,

preferably 2-6C, and more preferably 2-4C and may also be branched or straight chain, preferably straight chain.

Further variability can be obtained by supplying as a starting material a suitable diketide. The diketide generally of the formulas such as those set forth in U.S. Serial No. 09/311,756 filed 14 May 1999 and incorporated herein by reference. A variety of substituents can then be introduced. Thus, the diketide will be of the general formula R'CH₂CHOHCR₂COSNAC wherein R is defined as above, and R' can be alkyl, 1-8C, aryl, aryl alkyl, and the like. SNAC represents a thioester of N-acetyl cysteamine, but alternative thioesters could also be used.

For either *in vivo* or *in vitro* production of the polyketides, acyl transferase domains with desired specificities can be incorporated into the relevant PKS. Methods for assuring appropriate specificity of the AT domains is described in detail in U.S. Patent Application 09/346,860 filed 2 July 1999, the contents of which are incorporated herein by reference, to describe how such domains of desired specificity can be created and employed. Also relevant to the use of these enzymes *in vitro* or the genes *in vivo* are methods to mediate polyketide synthase module effectiveness by assuring appropriate transfer of the growing polyketide chain from one module to the next. Such methods are described in detail in U.S. Serial No. 09/500,747 filed 9 February 2000, the contents of which are incorporated herein by reference for this description.

The nucleotide sequences encoding a multiplicity of PKS permits their use in recombinant procedures for producing a desired PKS and for production of the proteins useful in postmacrolide conversions, as well as modified forms thereof. For example, the nucleotide sequences for genes related to the production of erythromycin is disclosed in U.S. 6,004,787 and U.S. 5,998,194; for avermectin in U.S. 5,252,474; for FK506 in U.S. 5,622,866; for rifamycin in WO98/7868; for spiramycin in U.S. 5,098,837. These are merely examples. Portions of, or all of, the desired coding sequences can be synthesized using standard solid phase synthesis methods such as those described by Jaye *et al.*, *J Biol Chem* (1984) 259:6331 and which are available commercially from, for example, Applied Biosystems, Inc.

A portion of the PKS which encodes a particular activity can be isolated and manipulated, for example, by using it to replace the corresponding region in a different

modular PKS. In addition, individual modules of the PKS may be ligated into suitable expression systems and used to produce the portion of the protein encoded by the open reading frame and the protein may then be isolated and purified, or which may be employed *in situ* to effect polyketide synthesis. Depending on the host for the recombinant production of the module or an entire open reading frame, or combination of open reading frames, suitable control sequences such as promoters, termination sequences, enhancers, and the like are ligated to the nucleotide sequence encoding the desired protein. Suitable control sequences for a variety of hosts are well known in the art.

The availability of these nucleotide sequences expands the possibility for the production of novel polyketides and their corresponding antibiotics using host cells modified to contain suitable expression systems for the appropriate enzymes. By manipulating the various activity-encoding regions of a donor PKS by replacing them into a scaffold of a different PKS or by forming hybrids instead of or in addition to such replacements or other mutagenizing alterations, a wide variety of polyketides and corresponding antibiotics may be obtained. These techniques are described, for example, in U.S. Serial No. 09/073,538 filed 6 May 1998 and incorporated herein by reference.

A polyketide synthase may be obtained that produces a novel polyketide by, for example, using the scaffolding encoded by all or the portion employed of a natural synthase gene. The synthase will contain at least one module that is functional, preferably two or three modules, and more preferably four or more modules and contains mutations, deletions, or replacements of one or more of the activities of these functional modules so that the nature of the resulting polyketide is altered. This description applies both at the protein and genetic levels. Particularly preferred embodiments include those wherein a KS, AT, KR, DH or ER has been deleted or replaced by a version of the activity from a different PKS or from another location within the same PKS. Also preferred are derivatives where at least one noncondensation cycle enzymatic activity (KR, DH or ER) has been deleted or wherein any of these activities has been mutated so as to change the ultimate polyketide synthesized.

Thus, in order to obtain nucleotide sequences encoding a variety of derivatives of the naturally occurring PKS, and a variety of polyketides, a desired number of constructs

can be obtained by "mixing and matching" enzymatic activity-encoding portions, and mutations can be introduced into the native host PKS gene cluster or portions thereof.

Mutations can be made to the native sequences using conventional techniques. The substrates for mutation can be an entire cluster of genes or only one or two of them; the substrate for mutation may also be portions of one or more of these genes. Techniques for mutation include preparing synthetic oligonucleotides including the mutations and inserting the mutated sequence into the gene encoding a PKS subunit using restriction endonuclease digestion (See, e.g., Kunkel, T.A. *Proc Natl Acad Sci USA* (1985) 82:448; Geisselsoder *et al. BioTechniques* (1987) 5:786.) or by a variety of other art-known methods.

Random mutagenesis of selected portions of the nucleotide sequences encoding enzymatic activities can also be accomplished by several different techniques known in the art, e.g., by inserting an oligonucleotide linker randomly into a plasmid, by irradiation with X-rays or ultraviolet light, by incorporating incorrect nucleotides during *in vitro* DNA synthesis, by error-prone PCR mutagenesis, by preparing synthetic mutants or by damaging plasmid DNA *in vitro* with chemicals.

In addition to providing mutated forms of regions encoding enzymatic activity, regions encoding corresponding activities from different PKS synthases or from different locations in the same PKS synthase can be recovered, for example, using PCR techniques with appropriate primers. By "corresponding" activity encoding regions is meant those regions encoding the same general type of activity -- e.g., a ketoreductase activity in one location of a gene cluster would "correspond" to a ketoreductase-encoding activity in another location in the gene cluster or in a different gene cluster; similarly, a complete reductase cycle could be considered corresponding -- e.g., KR/DH/ER would correspond to KR alone.

If replacement of a particular target region in a host polyketide synthase is to be made, this replacement can be conducted *in vitro* using suitable restriction enzymes or can be effected *in vivo* using recombinant techniques involving homologous sequences framing the replacement gene in a donor plasmid and a receptor region in a recipient plasmid. Such systems, advantageously involving plasmids of differing temperature sensitivities are described, for example, in PCT application WO 96/40968.

Finally, polyketide synthase genes, like DNA sequences in general, in addition to the methods for systematic alteration and random mutagenesis outlined above, can be modified by the technique of "gene shuffling" as described in U.S. patent 5,834,458, assigned to Maxygen, and U.S. patents 5,830,721, 5,811,238 and 5,605,793, assigned to Affymax. In this technique, DNA sequences encoding bPKS are cut with restriction enzymes, amplified, and then re-ligated. This results in a mixture of rearranged genes which can be assessed for their ability to produce polyketides. The ability to produce polyketides in easily transformed hosts, such as *E. coli*, makes this a practical approach.

There are five degrees of freedom for constructing a polyketide synthase in terms of the polyketide that will be produced. First, the polyketide chain length will be determined by the number of modules in the PKS. Second, the nature of the carbon skeleton of the PKS will be determined by the specificities of the acyl transferases which determine the nature of the extender units at each position -- e.g., malonyl, methyl malonyl, or ethyl malonyl, etc. Third, the loading domain specificity will also have an effect on the resulting carbon skeleton of the polyketide. Thus, the loading domain may use a different starter unit, such as acetyl, propionyl, butyryl and the like. Fourth, the oxidation state at various positions of the polyketide will be determined by the dehydratase and reductase portions of the modules. This will determine the presence and location of ketone, alcohol, double bonds or single bonds in the polyketide. Finally, the stereochemistry of the resulting polyketide is a function of three aspects of the synthase. The first aspect is related to the AT/KS specificity associated with substituted malonyls as extender units, which affects stereochemistry only when the reductive cycle is missing or when it contains only a ketoreductase since the dehydratase would abolish chirality. Second, the specificity of the ketoreductase will determine the chirality of any β -OH. Finally, the enoyl reductase specificity for substituted malonyls as extender units will influence the result when there is a complete KR/DH/ER available.

One useful approach is to modify the KS activity in module 1 which results in the ability to incorporate alternative starter units as well as module 1 extended units. This approach was illustrated in PCT application US/96/11317, incorporated herein by reference, wherein the KS-I activity was inactivated through mutation. Polyketide synthesis is then initiated by feeding chemically synthesized analogs of module 1 diketide

products. The methods of the invention can then be used to provide enhanced amount of extender units.

Modular PKSs have relaxed specificity for their starter units (Kao *et al. Science* (1994), *supra*). Modular PKSs also exhibit considerable variety with regard to the choice of extender units in each condensation cycle. The degree of β -ketoreduction following a condensation reaction has also been shown to be altered by genetic manipulation (Donadio *et al. Science* (1991), *supra*; Donadio, S. *et al. Proc Natl Acad Sci USA* (1993) 90:7119-7123). Likewise, the size of the polyketide product can be varied by designing mutants with the appropriate number of modules (Kao, C. M. *et al. J Am Chem Soc* (1994) 116:11612-11613). Lastly, these enzymes are particularly well-known for generating an impressive range of asymmetric centers in their products in a highly controlled manner. The polyketides and antibiotics produced by the methods of the present invention are typically single stereoisomeric forms. Although the compounds of the invention can occur as mixtures of stereoisomers, it is more practical to generate individual stereoisomers using the PKS systems.

The polyketide products of the PKS may be further modified, typically by hydroxylation, oxidation and/or glycosylation, in order to exhibit antibiotic activity.

Methods for glycosylating the polyketides are generally known in the art; the glycosylation may be effected intracellularly by providing the appropriate glycosylation enzymes or may be effected *in vitro* using chemical synthetic means as described in U.S. Serial No. 09/073,538 incorporated herein by reference.

The antibiotic modular polyketides may contain any of a number of different sugars, although D-desosamine, or a close analog thereof, is most common. For example, erythromycin, picromycin, narbomycin and methymycin contain desosamine. Erythromycin also contains L-cladinose (3-O-methyl mycarose). Tylosin contains mycaminose (4-hydroxy desosamine), mycarose and 6-deoxy-D-allose. 2-acetyl-1-bromodesosamine has been used as a donor to glycosylate polyketides by Masamune *et al. J Am Chem Soc* (1975) 97:3512, 3513. Other, apparently more stable, donors include glycosyl fluorides, thioglycosides, and trichloroacetimides; Woodward, R.B. *et al. J Am Chem Soc* (1981) 103:3215; Martin, S.F. *et al. Am Chem Soc* (1997) 119:3193; Toshima, K. *et al. J Am Chem Soc* (1995) 117:3717; Matsumoto, T. *et al. Tetrahedron Lett* (1988)

29:3575. Glycosylation can also be effected using the macrolides as starting materials and using mutants of *S. erythraea* that are unable to synthesize the macrolides to make the conversion.

In general, the approaches to effecting glycosylation mirror those described above with respect to hydroxylation. The purified enzymes, isolated from native sources or recombinantly produced may be used *in vitro*. Alternatively, glycosylation may be effected intracellularly using endogenous or recombinantly produced intracellular glycosylases. In addition, synthetic chemical methods may be employed.

If the hosts ordinarily produce polyketides, it may be desirable to modify them so as to prevent the production of endogenous polyketides by these hosts. Such hosts have been described, for example, in U.S. Patent No. 5,672,491, incorporated herein by reference, which describes *S. coelicolor* CH999 used in the examples below. In such hosts, it may not be necessary to provide enzymatic activity for posttranslational modification of the enzymes that make up the recombinantly produced polyketide synthase; these hosts generally contain suitable enzymes, designated holo-ACP synthases, for providing a pantetheinyl residue needed for functionality of the synthase. However, in hosts such as yeasts, plants, or mammalian cells which ordinarily do not produce polyketides, it may be necessary to provide, also typically by recombinant means, suitable holo-ACP synthases to convert the recombinantly produced PKS to functionality. Provision of such enzymes is described, for example, in PCT application WO 98/27203, incorporated herein by reference.

Again, depending on the host, and on the nature of the product desired, it may be necessary to provide "tailoring enzymes" or genes encoding them, wherein these tailoring enzymes modify the macrolides produced by oxidation, hydroxylation, glycosylation, and the like.

The encoding nucleotide sequences are operably linked to promoters, enhancers, and/or termination sequences which operate to effect expression of the encoding nucleotide sequence in host cells compatible with these sequences; host cells modified to contain these sequences either as extrachromosomal elements or vectors or integrated into the chromosome, and methods to produce PKS and post-PKS enzymes as well as polyketides and antibiotics using these modified host cells.

5

The vectors used to perform the various operations to replace the enzymatic activity in the host PKS genes or to support mutations in these regions of the host PKS genes may be chosen to contain control sequences operably linked to the resulting coding sequences in a manner that expression of the coding sequences may be effected in an appropriate host. However, simple cloning vectors may be used as well.

Particularly useful control sequences are those which themselves, or using suitable regulatory systems, activate expression during transition from growth to stationary phase in the vegetative mycelium. The system contained in the illustrative plasmid pRM5, i.e., the *actI/actIII* promoter pair and the *actII-ORF4*, an activator gene, is particularly preferred. Particularly preferred hosts are those which lack their own means for producing polyketides so that a cleaner result is obtained. Illustrative host cells of this type include the modified *S. coelicolor* CH999 culture described in PCT application WO 96/40968 and similar strains of *S. lividans*.

10

Methods for introducing the recombinant vectors of the present invention into suitable hosts are known to those of skill in the art and typically include the use of CaCl_2 or other agents, such as divalent cations, lipofection, DMSO, protoplast transformation and electroporation.

15

As disclosed in Serial No. 08/989,332 filed 11 December 1997, incorporated herein by reference, a wide variety of hosts can be used, even though some hosts natively do not contain the appropriate post-translational mechanisms to activate the acyl carrier proteins of the synthases. These hosts can be modified with the appropriate recombinant enzymes to effect these modifications.

20

Starting Material Enhancement and Variation

25 production of starter and/or extender units can be used to enhance the production of polyketides by providing a considerable variety of these starter and extender units at higher levels than would ordinarily be produced. Because the proteins catalyze reactions using a variety of substrates, they are versatile tools in enhancing the availability of starter and extender units for a wide variety of PKS, whether modified or unmodified. As
30 stated above, particularly useful are the products of the *matABC* operon (or analogous

operons in other species) and the propionic carboxylase encoded by the *pccB* and *accA2* genes (or their analogs in other species). These enzymes and their encoding sequences are useful in view of Applicants' discovery that the *matABC* operon and the propionic carboxylase-encoding genes provide enzymes which not only carry out the required reactions on a variety of substances, but also do so with the production of products with the stereochemistry required for use in polyketide synthesis.

The ability of the genes described herein to provide appropriate starter and extender units was established as described below.

Example 1

Production of Malonyl CoA and 2S-Methylmalonyl CoA Using the CoA Synthetase

E. coli strain L8 has a temperature-sensitive mutation in the acetyl-CoA carboxylase gene such that malonyl-CoA cannot be produced from acetyl-CoA at 37°C. However, the gene product is able to effect this conversion at 30°C. See Harder, M.E., et al., *Proc. Natl. Acad. Sci.* (1972) 69:3105-3109. Since acetyl-CoA carboxylase conversion of acetyl-CoA into malonyl-CoA is the only known route for malonyl-CoA production in *E. coli*, and since malonyl-CoA is essential for fatty acid biosynthesis, this mutant strain of *E. coli* can grow at 30°C, but not at 37°C. A transformant of L8 carrying the *matABC* operon is produced by transforming with the plasmid pMATOP2 which contains the *matA*, *matB* and *matC* genes under control of their native promoter and is described in An, J.H., et al., *Eur. J. Biochem.* (1998) 257:395-402. This transformant is still unable to grow at 37°C in the absence of malonic acid; however, addition of 1-5 mM malonic acid to the medium permits it to grow at this temperature. (In the absence of the plasmid, malonic acid is unable to support growth at 37°C.) The concentration of the extracellular malonic acid is important, however, as increasing the concentration to 40 mM results in an absence of growth, possibly due to a metabolic imbalance caused by overproduction of malonyl CoA in comparison to the amount of coenzyme A available. Lethality was also induced in XL1-Blue (a wild-type strain of *E. coli*) in the presence of the plasmid carrying the *matABC* operon and high concentrations of methylmalonic acid.

5

Nevertheless, the results set forth above demonstrate that the protein encoded by *matB* produces malonyl-CoA *in vivo* under physiological conditions as long as free malonic acid is available; and transported into the cells by the protein encoded by *matC*. Thus, the *matBC* genes can be used to supplement malonyl-CoA availability in an *E. coli* cell in which complex polyketides are to be produced by feeding malonic acid.

10

In addition to converting malonic acid into malonyl-CoA, MatB has also been shown to convert methylmalonic acid into methylmalonyl-CoA. However the stereochemistry of the resulting product has not been reported. This is important, because modular polyketide synthases are known to only accept one isomer of methylmalonyl-CoA, namely 2S-methylmalonyl-CoA (Marsden, A.F., *et al.*, *Science* (1994) 263:378-380). To investigate whether MatB can make the correct isomer of methylmalonyl-CoA, construct encoding a glutathione-S-transferase fusion (GST-MatB) was used to produce this protein. See An, J.H., *et al.*, *Biochem. J.* (1999) 344:159-166. The GST-MatB protein was purified according to standard protocols as described and mixed with (module 6+TE) of the erythromycin polyketide synthase, also expressed in *E. coli* as described by Gokhale, R.S., *et al.*, *Science* (1999) 284:482-485.

15

In earlier studies, Applicants have established the activity of (module 6+TE) by demonstrating its ability to catalyze the following reaction *in vitro*.

20

N-acetylcysteamine thioester of (2S, 3R)-2-methyl-3-hydroxy-pentanoic acid + 2 (RS)-methylmalonyl-CoA + NADPH → (2R,3S,4S,5R)- 2,4-dimethyl-3,5-dihydroxy-n-heptanoic acid δ-lactone +NADP⁺.

25

The methylmalonic thioester product obtained using methylmalonic acid as the substrate for GST-MatB provides the correct stereochemistry to serve as the source of the extender unit in this reaction. More specifically, to generate the substrate for the above polyketide synthesis *in situ*, the following reaction mixture (containing 6+TE and GST-MatB) was prepared in a reaction buffer of 100 mM Na Phosphate (pH7) buffer, 1 mM EDTA, 2.5 mM DTT and 20% glycerol:

30

40 mM methylmalonic acid (pH 6)

16.6 mM MgCl₂

5 mM ATP

5 mM CoASH

13.3 mM NADPH

1 mM N-acetylcysteamine thioester of (2S, 3R)-2-methyl-3-hydroxypentanoic acid (prepared in radioactive form).

5 After 4 hrs, the reaction was quenched and extracted with ethyl acetate (extracted twice with three times the reaction volume). The samples were dried *in vacuo* and subjected to thin layer chromatography analysis.

10 A positive control was performed under identical conditions to those described earlier - *i.e.*, conditions wherein (RS)-methylmalonyl-CoA was substituted for the combination of methylmalonic acid, MgCl₂, ATP, CoA SH, and GST-MatB. A negative control included all of the components listed above except for the GST-MatB fusion protein. The results demonstrated that the two-enzyme system described above is able to produce the expected product in quantities comparable to the positive control reaction. This confirms that MatB synthesizes the correct isomer of methylmalonyl-CoA.

15 Thus, MatB/MatC is useful to synthesize both malonyl-CoA and 2S-methylmalonyl-CoA *in vivo* for polyketide biosynthesis. This is the first instance of engineering *E. coli* with the ability to produce 2S-methylmalonyl-CoA *in vivo* under physiological conditions. Moreover, co-expression of *matA* *in vivo* should allow conversion of methylmalonyl-CoA into propionyl-CoA, thereby supplementing available sources of this starter unit.

Example 2

Ability of Propionyl CoA Carboxylase to Generate 2S-Methylmalonyl CoA

20 To utilize the propionyl carboxylase gene from *S. coelicolor* described above, an *E. coli* expression host (BL-21 (DE3)) was prepared using the method developed by Hamilton, C.M., *et al.*, *J. Bacteriol.* (1989) 171:4617-4622. The new strain (BAP1) contains a phosphopantethiene-transferase gene (the *sfp* gene) from *Bacillus subtilis* integrated into the *prp* operon of *E. coli*. The T7 promoter drives *sfp* expression. In the recombination procedure, the *prpE* gene was also placed under control of the T7 promoter, but the rest of the operon was removed. This genetic alteration would ideally

provide three features: 1) the expression of the *sfp* protein needed for post-translational modification of the DEBS and potentially other polyketide synthases (PKSs); 2) the expression of the *prpE* protein, a putative propionyl-CoA synthetase theoretically capable of ligating CoASH to propionate; and 3) a cellular environment that is no longer able to metabolize propionyl-CoA as a carbon/energy source.

5

First, it was verified that the BAP1 strain, by virtue of its production of the product of the *sfp* gene was able to effect phosphopantetheinylation of a PKS produced in these cells. BAP1 was transfected with a plasmid comprising an expression system for module 6+TE and the activity of the module produced was compared to the activity of the module produced recombinantly in BL-21 (DE3) cells where the *sfp* gene was plasmid borne. These levels were comparable. In contrast, when expressed alone in BL-21 (DE3), module 6+TE showed no activity. Additionally, BAP1 was confirmed for its inability to grow on propionate as a sole carbon source (a property exhibited by *E. coli* strains such as BL21 (DE3)). BAP1 is a preferred host for the heterologous expression of polyketide synthases in conjunction with enzymes such as MatBC and propionyl-CoA carboxylase.

10

15

20

25

30

The propionyl-CoA carboxylase enzyme was expressed in *E. coli* under the T7 promoter. The product enzyme was able to supply substrate for module 6+TE *in vitro*. This was demonstrated using the coupling of the methylmalonyl-CoA thioester product of the propionyl CoA carboxylase enzyme to the N-acetyl cysteamine thioester of (2S,2R)2-methyl-3-hydroxypentanoic acid. The *pccB* and *accA2* genes described above which encode the components of the propionyl-CoA carboxylase, were expressed and the products individually purified according to standard procedures. Initially, the *pccB* and *accA2* subunits were allowed to complex on ice in 150 mM phosphate (pH7) and 300 µg BSA. After 1 hour, the following substrates were added to a volume of 100 µl and incubated for an additional 30 minutes at 30°C:

1 mM propionyl-CoA

50 mM sodium bicarbonate

3 mM ATP

5 mM MgCl₂

Module 6+TE was then added with the following final set of reagents to give 200 µl total and allowed to react for an additional hour at 30°C:

10 % glycerol
1.25 mM DTT
5 0.5 mM EDTA
4 mM NADPH
2 mM N-acetylcysteamine thioester of (2S, 3R)-2-methyl-3-hydroxypentanoic acid (prepared in radioactive form).

10 The reaction was quenched and extracted as described above, and showed formation of expected product. A positive control included racemic malonyl-CoA. When either ATP or sodium bicarbonate was removed from the reaction, no product was formed. The propionyl-CoA carboxylase thus produces a substrate suitable for polyketide synthase activity. This is particularly useful for polyketide production, especially in conjunction with the new expression host mentioned above, BAP1.

15 The DEBS protein DEBS1+TE is produced by pRSG32. DEBS1 shows the weakest expression of the three DEBS proteins and, until recently, the enzyme showed no *in vitro* activity. However, by growing *E. coli* containing pRSG32 in M9 minimal medium, and inducing protein expression at 22°C, DEBS1+TE activity is now reproducibly observed.

20 Plasmids pRSG32 (DEBS1+TE) and p132 (a plasmid containing the α and β components of propionyl-CoA carboxylase) were cotransfected into BAP1. Cultures of 10 ml M9 minimal media were grown to mid-log phase levels and concentrated to 1 ml for induction with IPTG and the addition of 0.267 mM ¹⁴C-propionate. The samples 25 were then incubated at 22°C for 12-15 hours. The culture supernatant was then extracted with ethyl acetate for analytical TLC. A product ran with the expected positive control and this same product was undetectable when using either wild type BL-21 (DE3) or removing p132. thus, the carboxylase forms the correct stereoisomer.

30 In addition, 100 ml cultures of M9 minimal media containing BAP1 transformed with pRSG32, p132, and pCY214 (a biotin ligase included to aid biotin's attachment to

the α subunit of the propionyl-CoA carboxylase) were grown to mid-log phase for induction with IPTG and the addition of 100 mg/L ^{13}C -propionate. Upon extraction of the culture supernatant and concentration of the sample, ^{13}C -NMR confirmed the location of the expected enriched product peaks. A subsequent negative control using BL-21 (DE3) failed to yield the same spectrum. In addition to demonstrating the ability of *E. coli* to make complex polyketides *in vivo*, these results also suggest that the prpE protein programmed to express in BAP1 is active.

Example 3

Enhanced Production of 6-dEB in *S. coelicolor*

The presence of the *matB* and *matC* genes was also able to enhance the recombinant production of 6-dEB in *S. coelicolor* which had been recombinantly modified to produce this polyketide by insertion of the DEBS gene complex on the vector pCK7. The *matB* and *matC* genes were expressed in a recombinant strain of *Streptomyces coelicolor* that produces 50 mg/L 6-deoxyerythronolide B by virtue of plasmid borne DEBS genes. The *matB* and *matC* genes were inserted immediately downstream of DEBS genes on pCK7. In more detail, the source of the *matBC* genes is pFL482, a derivative of PCR-Blunt (Invitrogen) containing a 5 kb *Bgl*III/*Hind*III fragment from pMATOP2 which carries the *matBC* genes. The *Nsi*I fragment of pFL482 containing the *matBC* genes was cloned into the unique *Nsi*I site of pCK7 in the same direction as the DEBS genes to yield pFL494. Upon transformation of plasmid pFL494 into *S. coelicolor* CH999, macrolide titer increases of 100-300% were obtained in the presence of exogenous methylmalonate (0.1-1 g/L).

In more detail, cultures of *S. coelicolor* CH999 with or without plasmid pCK7 or pFL494 were grown in flasks using R6 medium (sucrose, 103 g/L; K_2SO_4 , 0.25 g/L; $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$, 10.12 g/L; sodium propionate, 0.96 g/L; casamino acids (Difco), 0.1 g/L; trace elements solution, 2 mL/L; yeast extract (Fisher), 5 g/L; pH 7) supplemented with bis-tris propane buffer (28.2 g/L). Trace elements solution contained ZnCl_2 , 40 mg/L; $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$, 200 mg/L; $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$, 10 mg/L; $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$, 10 mg/L;

Na₂B₄O₇ · 1OH₂O, 10 mg/L; (NH₄)₆Mo₇O₂₄ · 4H₂O. All media were supplemented with 50 mg/L thiostrepton (Calbiochem) to select for plasmid-containing cells, and with 5 mL/L Antifoam B (JT Baker) for control of foam. Thiostrepton was dissolved in DMSO prior to addition to cultures, giving a final DMSO concentration of approximately 1 mL/L of medium.

5 Seed cultures for the fermentation were prepared by inoculation of 50 mL medium, followed by growth for two days at 240 rpm and 30°C in 250 mL baffled flasks (Bellco). These seed cultures were then used to inoculate 50 mL medium in the presence or absence of 1 g/L methylmalonate in 250-mL baffled flasks at 5% of final volume. All flask cultures were run in duplicate and sampled daily. The entire experiment was 10 repeated once to ensure batch-to-batch reproducibility of the results.

10 Quantitation of 6-dEB and 8,8a-deoxyoleandolide was carried out using a Hewlett-Packard 1090 HPLC equipped with an Alltec 500 evaporative light scattering detector. HPLC samples were first centrifuged 5 min at 12,000xg to remove insolubles. The supernatant (20 µL) was applied onto a 4.6 x 10 mm column (Inertsil, C18 ODS3, 5 µm), washed with water (1 ml/min for 2 min), and finally eluted onto the main column (4.6 x 50 mm, same stationary phase and flow rate) with a 6-min gradient starting with 100% water and ending with 100% acetonitrile. 100% acetonitrile was then maintained 15 for one min. Under these conditions, 6-dEB eluted at 6.2 minutes and 8.8a-deoxyoleandolide at 5.8 min. Standards were prepared from 6-dEB purified from fermentation broth. Quantitation error was estimated to be ±10%.

20 Standards were prepared from 6-dEB purified from fermentation broth. Quantitation error was estimated to be ±10%.

25 As described above, *S. coelicolor* CH999 either containing pCK7 or containing pFL494 were compared for their productivity of 6-dEB and 8,8a-deoxyoleandolide.

The results show the following:

- 30 1. Cell density was substantially the same for both strains.
2. The production of both 6-dEB and 8,8a-deoxyoleandolide is dramatically enhanced in CH999/pFL494 as compared to CH999/pCK7, whether measured in terms of mg/liters/hour or in mg/liter as a final titer after six days. (8,8a-deoxyoleandolide is the same as 6-dEB except that it contains methyl instead of ethyl as position 12, since acetyl CoA rather than propionyl CoA is used as a starter unit.) More specifically, after six days

CH999/pFL494 plus methylmalonic acid produced 180 mg/l 6-dEB and about 90 mg/l of 8,8a-deoxyoleandolide. If methylmalonic acid was not added to the medium, 6-dEB was produced at a level of 130 mg/l while 8,8a-deoxyoleandolide was produced at about 40 mg/l. For CH999 modified to contain pCK7, in the presence of methylmalonic acid in the medium, only 60 mg/l 6-dEB were formed along with about 20 mg/l of 8,8a-deoxyoleandolide. Without methylmalonic acid, these cells produced slightly less of each of these macrolides.

3. CH999/pFL494 completely consumed methylmalonate supplied at 1 g/L by day 6.

4. Consumption of 1 g/L methylmalonate results in a cumulative increase in macrolide of 200 m/L, representing a 35% conversion efficiency of methylmalonate into products.

5. CH999/pFL494 shows improved production of both macrolides even in the absence of exogenous methylmalonate (see 2 above).

6. Even CH999/pCK7 showed a 20% improvement in 6-dEB production when exogenous methylmalonate was added (see 2 above).

In addition to enhancing the productivity of known polyketides in natural and heterologous hosts, MatB is also used to produce novel polyketides. In contrast to other enzymes that produce the alpha-carboxylated CoA thioester building blocks for polyketide biosynthesis, such as methylmalonyl-CoA mutase (which has a high degree of specificity for succinyl-CoA) and acetyl/propionyl-CoA carboxylase (which prefers acetyl-CoA and/or propionyl-CoA), MatB is active with respect to a wide range of substrates. In addition to malonate and methylmalonate, MatB is able to activate substrates such as ethylmalonate, dimethylmalonate, isopropylmalonate, propylmalonate, allylmalonate, cyclopropylmalonate, and cyclobutylmalonate into their corresponding CoA thioesters.

Incorporation of these substrates into polyketide synthases requires a suitable acyltransferase (AT) which may be engineered into the appropriate module of a polyketide synthase, so that it can accept the unnatural substrate. Though none of these dicarboxylic acids yield detectable quantities of novel compounds when fed to CH999/pFL494, certain PKS enzymes naturally possess AT domains with orthogonal

substrate specificity. For example, the FK506 PKS contains an acyltransferase domain that ordinarily incorporates bulky substrates such as propylmalonyl-CoA in preference to substrates such as malonyl-CoA or methylmalonyl-CoA, and can thus accept MatB-generated unnatural building blocks without any PKS engineering.

Using a protein engineering strategy described by Lau, J., *et al.*, *Biochemistry* (1999) 38:1643-1651, the AT domain of module 6 of DEBS in pFL494 was modified to include the specificity determining segment from the niddamycin AT4 domain which incorporates ethylmalonyl-CoA. See: Kakavas, S.J., *et al.*, *J. Bacteriol* (1997) 179:7515-7522. The resulting plasmid pFL508 was transformed into CH999. Upon feeding this strain with ethylmalonate, mass spectroscopy was able to detect a product corresponding to 2-ethyl-6dEB in levels comparable to that of 6dEB. The new compound was undetectable in the absence of ethylmalonate or in a control strain lacking the *matBC* genes.

Example 4

Production of 6-dEB in *E. coli*

We have demonstrated the ability of *E. coli* to produce complex, complete, polyketides, when programmed with the ability to express a functional PKS, a pantetheinyltransferase, and one or more pathways for producing starter and extender units. *E. coli* strain BL-21(DE) obtained from Novagen was modified genetically by inserting the phosphopantetheinyl transferase gene (the *sfp* gene) from *Bacillus subtilis* into the chromosome under the control of the phage T7 promoter by deleting the *prpA-D* portion of the *prp* operon, thus also placing the *prpE* locus, which encodes a propionyl CoA synthetase, under control of the T7 promoter. This genetically modified strain was then modified to include expression systems for the three genes encoding the DEBS1, DEBS2, and DEBS3 proteins, also under control of the T7 promoter as well as genes encoding propionyl CoA carboxylase and a gene encoding biotin ligase which is necessary for activation of the propionyl CoA carboxylase enzyme. The resulting *E. coli* contains a complete synthase for 6-dEB, a phosphopantetheinyl transferase necessary for the activation of this PKS, the propionyl CoA carboxylase enzymes that supply

methylmalonyl CoA from propionyl CoA, and an inducible means to produce the endogenous propionyl CoA synthase capable of converting exogenous propionate to propionyl CoA. In addition, the endogenous system for catabolism of propionate was disarmed.

5 Thus, the *E. coli* are provided enzymes for synthesis of both starter and extender units under control of an inducible promoter, the endogenous mechanism for destruction of the propionate precursor of the starter and extender units has been disarmed; and expression systems (also under inducible promoters) have been provided for the necessary PKS proteins along with an expression system for the enzyme for activation of 10 the PKS proteins.

In more detail, the genetically modified BL-21(DE3) strain was prepared according to the procedure described in Hamilton, *et al.*, *J. Bacteriol* (1989) 171:4617-4622. A derivative of pMAK705 described in this publication, was prepared. In the derived vector, a T7 promoter coupled to the *sfp* gene was flanked by a 1,000 base pair sequence identical to that upstream of the A locus of the *prp* operon and a 1,000 base pair sequence identical to the sequence downstream of the E locus of this operon. The *sfp* gene was obtained from pUC8-sfp, a plasmid described by Nakano, *et al.*, *Mol. Gen. Genet.* (1992) 232:313-321. The resulting integrated sequence deletes the *prp* loci A-D and inserts the T7 promoter controlling the *sfp* gene in their place and further results in placing the *prpE* locus under the control of the T7 promoter. The T7 promoter is inducible by IPTG.

The resulting genetically altered host, designated BAP 1, was than transfected with three plasmids each selectable for a different antibiotic resistance. These plasmids are as follows:

pBP130 is derived from pET21 (carb^R) obtained from Novagen and modified to contain the DEBS2 and DEBS3 genes under control of the T7 promoter.

25 pBP144 is a modified form of pET28 (kan^R) also available from Novagen containing the pcc and DEBS1 genes, also under control of the T7 promoter.

pCY214 (cm^R) contains the *E. coli* bira (biotin ligase) gene under the ara promoter and is described in Chapman-Smith, *et al.*, *Biochem. J.* (1994) 302:881-887. This plasmid was obtained as a gift from Dr. Hugo Gramajo. The PCC protein and *pcc* gene are described in Rodriguez, *et al.*, *Microbiol.* (1999) 145:3109-3119.

For the production of 6-dEB, BAP1 cells transformed with pBP130, pBP144, and pCY214 were grown in M9 minimal media with the appropriate antibiotics. The culture

5

was grown to mid-log phase, followed by induction with IPTG and arabinose and the concomitant addition of 250 mg/L ^{13}C -1-propionate. Induced cultures were grown for 12-24 hrs at 22°C. (Both the minimal medium and lower temperatures were found to be beneficial for DEBS gene expression. This protocol permitted growth-related production of 6-dEB, since glucose provided the carbon and energy source for general metabolism, while propionate was converted into 6-dEB.)

10

After 12-24 h the culture supernatant was extracted with ethyl acetate. The organic phase was dried *in vacuo*, and re-dissolved in CDCl_3 for ^{13}C -NMR analysis. The accompanying spectrum showed that 6-dEB was the major ^{13}C -labeled product. Other major ^{13}C -labeled compound(s) with peaks in the range of 120-140 ppm are not derived from propionate incorporation, as confirmed by a separate experiment in which ^{13}C -3-propionate was used in lieu of ^{13}C -1-propionate. From the intensities of peaks corresponding to 6-dEB, it is estimated that at least 75% of the exogenous propionate was converted into 6-dEB. This was consistent with the disappearance of the propionate signal from the ^{13}C NMR spectrum of the culture medium at the end of the fermentation. Negative control strains, which lacked either pBP130 or pBP144, failed to yield detectable quantities of 6-dEB.

15

20

The foregoing experiments were performed at low cell densities (OD_{600} in the range of 0.5-2.5); a major advantage of synthesizing recombinant products in *E. coli* is that this bacterium can be grown to extremely high cell densities (OD_{600} of 100-200) without significant loss in its specific catalytic activity.

25

The use of the *matB* and C genes or any of their homologs from other organisms in a non-native expression system is useful as a general strategy for the *in vivo* production of any alpha-carboxylated CoA thioester in any microbial host. The *in vivo* production of such CoA thioesters could be intended to enhance natural polyketide productivity or to produce novel polyketides. The *matA* gene is also useful to supplement *in vivo* levels of substrates such as acetyl-CoA and propionyl-CoA. Purified MatB is also used for the preparative *in vitro* production of polyketides, since CoA thioesters are the most expensive components in such cell-free synthesis systems.

Example 5

Incorporation of Diketides

The BAP1 *E. coli* host organism described in Example 4 was transfected with p132 which contains an expression system for the PCCA and B subunits and with pRSG36 which contains an expression system for module 6+TE of DEBS3. The transfected cultures were grown on minimal selection media for both plasmids and then fed ¹⁴C labeled diketide. When induced and provided with propionate, ¹⁴C labeled triketide was obtained.

RECORDED IN U.S. PATENT AND TRADEMARK OFFICE

Claims

1. Procaryotic host cells which are genetically modified for enhanced synthesis of at least one polyketide, wherein said modification comprises incorporation of at least one expression system for producing a protein that catalyzes the production of 5 starter and/or extender units and/or disabling at least one endogenous pathway for catabolism of starter and/or extender units.

2. The cells of claim 1 which are of the genus *Escherichia*, *Streptomyces*, *Bacillus*, *Pseudomonas*, or *Flavobacterium*.

3. The cells of claim 2 which are *E. coli*.

4. The cells of claim 1 which produce a complete polyketide.

5. The cells of claim 3 which produce a complete polyketide.

6. The cells of claim 4 wherein the polyketide is 6-dEB.

7. The cells of claim 1 which do not produce polyketide in the absence of 15 genetic modification, and wherein said genetic modification further comprises incorporation of at least one expression system for a polyketide synthase protein.

8. The cells of claim 7 wherein said genetic modification comprises incorporation of at least one expression system for a phosphopantetheinyl transferase.

9. The cells of claim 4 wherein said at least one polyketide synthase protein is derived from erythromycin, oleandomycin, megalomycin, picromycin, FK506, FK520, 20 rapamycin, spinosad, avermectin, tylosin or epothilone.

10. A method to produce a polyketide which method comprises culturing the cells of claim 1 under conditions wherein said polyketide is produced.

11. A method to assess the results of a procedure effecting modification of polyketide synthase genes, resulting in a mixture of said modified genes which method comprises

transfecting a culture of *E. coli* of claim 3 with said mixture of modified genes,
5 culturing individual colonies of said transformed *E. coli*, and
assessing each colony for polyketide production

12. The method of claim 11 wherein said *E. coli* have been modified to contain a functional phosphopantetheinyl transferase, a functional propionyl CoA carboxylase and have further been modified to delete the *prpA-D* operon.

10 13. A method to enhance the production of a polyketide in a microbial host which method comprises providing said host with an expression system for a first enzyme that catalyzes the production of starter and/or extender units used in constructing the polyketide.

15 14. The method of claim 13 wherein said first enzyme is propionyl CoA carboxylase.

15. The method of claim 14 wherein said propionyl CoA carboxylase is encoded by the *pccB* and *accA2* genes from *S. coelicolor*.

16. The method of claim 13 wherein said first enzyme is malonyl CoA decarboxylase.

20 17. The method of claim 16 wherein the malonyl CoA decarboxylase is encoded by the *matA* gene from *R. trifoli*.

18. The method of claim 13 wherein said first enzyme is malonyl CoA synthetase.

19. The method of claim 18 wherein the malonyl CoA synthetase is encoded by the *matB* gene of *R. trifoli*.

20. The method of claim 48 which further includes providing the substrate for malonyl CoA synthetase and an expression system for a second enzyme that effects entry of said substrate into the cell.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
948

30. A method to produce a polyketide which method comprises culturing the cells of claim 24 under conditions wherein said polyketide is produced.

31. The method of claim 30 wherein precursor for starter and/or extender is added to the medium.

5 32. The method of claim 31 wherein said at least one precursor is a diketide.

33. A reaction mixture for the production of a polyketide which reaction mixture comprises, in addition to enzymes catalyzing the production of said polyketide, at least one enzyme which catalyzes the conversion of a substrate to an extender or starter unit for said polyketide.

10 34. The reaction mixture of claim 33 wherein said first enzyme is propionyl CoA carboxylase.

35. The reaction mixture of claim 34 wherein said propionyl CoA carboxylase is encoded by the *pccB* and *accA2* genes from *S. coelicolor*.

15 36. The reaction mixture of claim 33 wherein said first enzyme is malonyl CoA decarboxylase.

37. The reaction mixture of claim 36 wherein the malonyl CoA decarboxylase is encoded by the *matA* gene from *R. trifoli*.

38. The reaction mixture of claim 36 which further includes providing the substrate for malonyl CoA synthetase and a substrate therefor.

20 39. The reaction mixture of claim 37 wherein said substrate is of the formula R₂C(COOH)₂ wherein each R is H or is an optionally substituted hydrocarbyl group of 1-8C.

40. A method for producing a polyketide which comprises adding a substrate to the reaction mixture of claim 33.

41. The method of claim 40 wherein the substrate is a diketide.

42. Modified *E. coli* cells that produce a complete polyketide.

5 43. The cells of claim 42 wherein the polyketide is 6-dEB.

Abstract of the Disclosure

5

The use of enzymes which catalyze the production of starter and extender units for polyketides is described. These enzymes may be used to enhance the yield of polyketides that are natively produced or polyketides that are rationally designed. By using these techniques, the synthesis of a complete polyketide has been achieved in *E. coli*. This achievement permits a host organism with desirable characteristics to be used in the production of such polyketides and to assess the results of gene shuffling.