C:\Users\admin\anaconda3\lib\site-packages\scipy__init__.py:146: UserWarn
ing: A NumPy version >=1.16.5 and <1.23.0 is required for this version of
SciPy (detected version 1.23.5</pre>

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>

In [36]: 1 titanic = pd.read_csv('Titanic.csv')
2 titanic.head()

Out[36]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4										•

Out[3]:

In [3]: 1 titanic.tail()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
1304	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8
1305	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108
1306	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7
1307	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8
1308	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22
4										•

In [37]: 1 sns.countplot(x = "Survived", data = titanic)

Out[37]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [38]: 1 sns.countplot(x = "Survived", hue = "Sex", data = titanic)
```

Out[38]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [39]: 1 sns.countplot(x = "Survived", hue = "Pclass", data = titanic)
```

Out[39]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [7]: 1 titanic['Age'].plot.hist()
```

Out[7]: <AxesSubplot:ylabel='Frequency'>


```
In [40]: 1 sns.countplot(x = "Survived", hue = "Sex", data = titanic)
```

Out[40]: <AxesSubplot:xlabel='Survived', ylabel='count'>

In [41]: 1 sns.countplot(x = 'SibSp', data = titanic)

Out[41]: <AxesSubplot:xlabel='SibSp', ylabel='count'>


```
In [10]: 1 titanic.isnull().sum()
```

Out[10]: PassengerId 0 Survived 0 **Pclass** 0 0 Name Sex 0 Age 263 SibSp 0 Parch 0 Ticket 0 Fare 1 Cabin 1014 Embarked dtype: int64

```
In [11]: 1 sns.heatmap(titanic.isnull())
```

Out[11]: <AxesSubplot:>


```
In [42]: 1 sns.boxplot(x = "Pclass", y = "Age", data = titanic)
```

Out[42]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>


```
In [43]: 1 titanic.drop('Cabin', axis = 1, inplace = True)
```

In [44]: 1 titanic.dropna(inplace = True)

```
In [15]: 1 sns.heatmap(titanic.isnull())
```

Out[15]: <AxesSubplot:>


```
In [16]: 1 titanic.isnull().sum()
```

Out[16]: PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex 0 Age 0 0 SibSp Parch 0 Ticket 0 Fare 0

dtype: int64

0

Embarked

```
In [17]:
           1 pd.get_dummies(titanic['Sex'])
Out[17]:
                female male
             0
                    0
                          1
             1
                          0
                    1
             2
                          0
           1300
           1302
           1303
           1305
                          0
           1306
                          1
          1043 rows × 2 columns
In [45]:
           1 gender = pd.get_dummies(titanic['Sex'], drop_first = True)
In [19]:
              gender.head()
Out[19]:
             male
          0
                1
           1
                0
          2
                0
          3
                0
           4
                1
              Embarked = pd.get_dummies(titanic['Embarked'], drop_first = True)
In [46]:
              Embarked.head()
Out[46]:
             Q S
             0
             0
             0 1
           4 0 1
In [47]:
             titanic = pd.concat([titanic, gender, Embarked], axis = 1)
```

1 titanic.drop(['Sex', 'Embarked', 'PassengerId', 'Name', 'Ticket'], axis

In [48]:

```
In [49]:
              titanic.drop('Pclass', axis = 1, inplace = True)
           2
           3
              titanic.head()
Out[49]:
             Survived Age SibSp Parch
                                         Fare male Q S
          0
                   0 22.0
                              1
                                    0
                                       7.2500
                                                    0
                                                      1
                                                 1
          1
                   1
                     38.0
                              1
                                    0 71.2833
                                                 0
                                                    0 0
          2
                     26.0
                              0
                                    0
                                       7.9250
                                                     1
                   1
                                                 0
                                                    0
          3
                   1
                     35.0
                                      53.1000
                                                    0
                                                     1
                   0 35.0
          4
                                       8.0500
                                                    0
In [50]:
              x = titanic.drop('Survived', axis = 1)
              y = titanic['Survived']
              from sklearn.model_selection import train_test_split
In [51]:
              x_train,x_test,y_train,y_test = train_test_split(x, y, test_size = 0.3,
In [52]:
              from sklearn.linear_model import LogisticRegression
              logmodel = LogisticRegression()
In [54]:
              logmodel.fit(x_train,y_train)
          C:\Users\admin\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.
          py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown i
          n:
              https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
          ikit-learn.org/stable/modules/preprocessing.html)
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
          ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
          c-regression)
            n iter i = check optimize result(
Out[54]: LogisticRegression()
In [55]:
              y predict = logmodel.predict(x test)
In [56]:
              from sklearn.metrics import classification report
              classification_report(y_test,y_predict)
Out[56]:
                                       recall f1-score
                         precision
                                                          support\n\n
                                                                                 0
          0.83
                    0.87
                              0.85
                                          180\n
                                                                   0.81
                                                                             0.75
                                                          1
          0.78
                     133\n\n
                                accuracy
                                                                     0.82
                                                                                313\n
                          0.82
                                     0.81
                                                          313\nweighted avg
                                                                                   0.8
          macro avg
                                               0.81
                 0.82
                           0.82
                                       313\n'
```

Out[58]: 0.8210862619808307