1

Chap 1: Modèles et problèmes statistiques du cours.

Notations: données n nombres 21, 22, ..., 21

- · Réalisations d'un n-échartillon: n variable aléatoires indépendantes du même loi X1, X2, ..., X1.
- · La loi commune appartient à une famille de lois paranie trèles par un paranie tre inconnue. O E (A)

1.1. Modèles paramétriques

a Bernoulli:

- sondage sur un vote à deux issues.
- qualité dans des pièces manufacturées (avec ou sans défaut).
- Étude d'inondation (un fleure va-t-il déborder?).
- un patient est-il malade ou pas?
- un enfant qui rait 36.

 $n \in \mathbb{N}^*$, $\alpha_1, ..., \alpha_n$. observations $\in \{0, 13\}$.

X₁..., X₁ n-Echantellon B(0) 0 ∈]0;1[.

Xi	O	1	11 Total
probabition	1-0	Θ	1

$$P_{\Theta}(x_1=1)=\Theta$$

$$P_{o}(X_1=0)=\Lambda-\Theta$$

$$\mathcal{E}_{\Theta}(X_1) = \Theta \left(= 0 \times P_{\Theta}(X_1 = 0) + \Lambda \times P_{\Theta}(X_1 = 1) \right)$$

$$V_{\Theta}(X_1) = \Theta \times (\Lambda - \Theta).$$

(K) - william of a

$$V_{\Theta}(X_1) = E_{\Theta}((X_1 - E_{\Theta}(X_1)^2) = E_{\Theta}(X_1^2) - (E_{\Theta}(X_1^2) = \Theta - \Theta^2 = \Theta(1 - \Theta).$$

b) Paisson.

$$X_1+-X_n \sim \mathcal{B}(n,\theta)$$
 $\{(n,\theta), (n,\theta), (n,\theta$

$$P_{\Theta}(x_1+...+x_n=k)=...$$

$$Y \sim \mathcal{P}(\lambda), P_{\lambda}(y=k) = e^{-\lambda} \times \frac{\lambda^{k}}{k!}$$

$$\left(1 - \frac{\lambda}{n}\right)^{n} \rightarrow e^{-\lambda}$$

$$E_{\theta}(X_1 + \dots + X_n) = n \times \theta = \lambda$$

$$V_{\theta}(X_1 + \dots + X_n) = n \times \theta (1 - \theta)$$

$$= \lambda \times (1 - \frac{\lambda}{n}) \xrightarrow{n_1 + n_2} \lambda$$

done
$$E_{\lambda}(Y) = \lambda$$
.
 $V_{\lambda}(Y) = \lambda$.

$$m \in \mathbb{N}^*$$
, $Y_1, ..., Y_m : m$ -Echantillon $\mathcal{P}(\lambda)$ de $\lambda \in \mathbb{R}^*$.
 $y_1, ..., y_m : observations vivant dans \mathbb{N} .
 $P_{\lambda}(\mathbf{X}_1 = k) = e^{-\lambda} \times \frac{\lambda^k}{k!}$, $E_{\lambda}(y_1) = \lambda$.
 $V_{\lambda}(y_1) = \lambda$.$

c) Loi exponentielle.

Paramètre: 2>0: loi continue à densité. Valeurs possible, [0; +00 [
ou]0; +00 [. Afr(2)

Densité: soit
$$x \geq 0$$
.
 $f_{\lambda}(x) = \lambda x e^{-\lambda x}$

$$\chi_{1}, -, \chi_{n}$$
 1 échantillon $\mathcal{E}(\lambda)$. $\xi_{\lambda}(\chi_{n}) = \int_{0}^{+\infty} \chi_{\lambda}(\lambda) d\lambda = \frac{1}{\lambda} \left(\text{Par l'intég par partie} \right)$

$$V_{\lambda}(\chi_{1}) = \frac{1}{\lambda^{2}}$$

d) Le modèle gaussien.

Densite:

$$\pi \in \mathbb{R}$$
, $\theta = (m, \sigma^2)$: $\theta (x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-m)^2\right)$.

$$\begin{cases}
\xi_{\theta}(x) = M \\
V_{\theta}(x) = \sigma^{2}
\end{cases}$$

$$V_{\theta}(x) = \sigma^2$$

Propriétés:

- Noit
$$\times \sim \mathcal{N}(M_1\sigma^2)$$
. Alors $Y = \frac{X-M}{\sigma} \sim \mathcal{N}(0;1)$.

- Neit
$$X \sim \mathcal{N}(m, \sigma^2)$$
. Soit $Y = \frac{\gamma_L - m}{\sigma}$. Noit $t \in \mathbb{R}$,

$$P(Y \leqslant b) = P(X \leqslant b)$$

$$=\int_{-\infty}^{n+1} \frac{1}{\sqrt{2m^2\sigma}} \exp\left(-\frac{1}{2\sigma^2}(\chi-m)^2\right) d\chi.$$

Persons
$$y = \frac{n-m}{\sigma}$$
. $dy = \frac{da}{\sigma}$

$$P(Y \leq t) = \int_{\sqrt{2\pi}}^{t} \exp\left(-\frac{y^2}{2}\right) dy = P(N(0,1) + t).$$

Soit $X \sim \mathcal{N}(m, \sigma^2)$ alors $Y = \frac{X - m}{\sigma} \sim \mathcal{N}(0, 1)$. (of vice - versa) -

Proposition: soit Y~ M(0,1).

$$E(|Y|) < +\infty$$
 $E(Y) = 0$

$$E(\lambda)=0$$

$$E(|Y|) = \frac{\Delta}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |Y| e^{-\frac{y^2}{2}} dy = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} y^2 e^{-\frac{y^2}{2}} dy = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac$$

Exercice =
$$E(y^n) = 3$$

$$E(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} ye^{-\frac{y^2}{2}} dy = 0.$$

$$V(Y) = E((Y-E(Y))^2) = E(Y^2) = 1.$$

Fermule de répartition de
$$Y$$
.
 $\phi(t) = P(Y \le t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{t^2}{2}} dy$.

Exercice: mq
$$E(y^4) = 3$$
.

$$E(y^4) = \frac{\lambda}{\sqrt{2\pi i}} \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy = \frac{\lambda}{\sqrt{2\pi i}} \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy$$

Integration $u^1 = ye$ $u = -e$

par parties: $v = y^3$ $v' = 3y^2$.

$$\frac{\lambda}{\sqrt{2\pi i}} \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy = \frac{\lambda}{\sqrt{2\pi i}} \left(-\left[y^3 e^{-3\lambda} \right]_{-\infty}^{+\infty} + 3 \int_{-\infty}^{+\infty} y^2 e^{-3\lambda} dy \right)$$

$$= \frac{\lambda}{\sqrt{2\pi i}} \left(3 \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy \right) \cdot \left((e : E(y^2)) \right)$$

$$= \frac{\lambda}{\sqrt{2\pi i}} \left(3 \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy \right) \cdot \left((e : E(y^2)) \right)$$

$$= \frac{\lambda}{\sqrt{2\pi i}} \left(3 \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy \right) \cdot \left((e : E(y^2)) \right)$$

$$= \frac{\lambda}{\sqrt{2\pi i}} \left(3 \int_{-\infty}^{+\infty} \frac{\partial^2 \lambda}{\partial y^2} dy \right) \cdot \left((e : E(y^2)) \right)$$

 $u = y \quad v' = ye \quad x'y = \frac{1}{2}$ $u' = 1 \quad v' = -e$

$$\overline{\phi}(H=1-\overline{\phi}(-F))$$

$$p(a \leqslant y \leqslant b) = P(a \leqslant y \leqslant b) = \overline{\phi}(b) - \overline{\phi}(a)$$

1-2. Décision statistique, coût, risque.

X, , x, n-échartillon fo, x, , , x, los n observations

Te me pose une question qui me concerne 0 sestimation par intervalle de 0.

distille

Je veux y répondre à partir de ce que j'observe et que je connais -

d: décision d(21,-,22)

Fonction de coût qui ne quantitée chaque erreur.

Ex: Estimation

 $L(d(x_1,-,x_1),\theta) \geq 0$ $L(d(x_1,-,x_1),\theta) = |d(x_1,-,x_1)-\theta|.$

 $L_{2}(d(x_{1},-,x_{n}),\theta) = (d(x_{1},-,x_{n})-\theta)^{2}$

 $\left\{ E_{\theta} \left(L(d(X_{i}, -, X_{i}), \theta) \right) = R(d, \theta) =$

Ex: Bernoulli Blo).

n, -, n, n, -on pul-

 $\frac{\chi_1+\ldots+\chi_n}{n}=\overline{\chi}_n=d(z_1,-,\chi_n).$

 $R(\overline{\chi_n}, \theta) = E_{\theta} [(\overline{\chi_n} - \theta)^2].$