ATK-RM04 用户手册

高性能 UART-ETH-WIFI 模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.00	2013/10/24	第一次发布

目 录

1. 特性	参数	1
2. 使用	说明	3
2. 1	模块简介	3
2.2	模块硬件资源详解	5
	2.2.1 RS232 串口(RS232_COM)	5
	2.2.2 RS232 与 TTL 串口选择端口(P1)	5
	2.2.3 WIFI IPX 天线接口(ANT)	5
	2.2.4 5V 电源接口(P3)	5
	2.2.5 HLK-RM04 WIFI 模块(U2)	5
	2.2.6 WPS/ES 按键和 GPIO 引出接口(P2)	7
	2.2.7 LAN □(LAN)	7
	2.2.8 WLAN □(WLAN)	7
	2.2.9 WPS/RST 按键和 ES/RST 按键(KEY2/KEY1)	
	2.2.10 USB 接口(USB)	8
	2.2.11 RM04 工作指示灯(POWER/WAN/WIFI)	8
	2.2.12 电源开关(K1)	8
	2.2.13 电源指示灯(PWR)	8
	2.2.14 电源输入接口(DC_IN)	8
2.3	模块使用	8
	2.3.1 快速开始向导	8
	2.3.2 功能说明	
	2.3.3 WEB 页面配置	13
	2.3.4 串口 AT 指令配置	17
	2.3.5 串口配置软件	27
	2.3.6 网络搜索软件	31
	2.3.7 恢复出厂设置	32
	2.3.8 固件升级	33
3. 结构。	尺寸	.34
4 보他		35

1. 特性参数

ATK-RM04 是 ALIENTEK 推出的一款高性能 UART-ETH-WIFI(串口-以太网-无线网)模块。ATK-RM04 模块板载 Hi-Link 公司的 HLK-RM04 模块,该模块通过 FCC,CE 认证,可直接用于产品销往欧美地区。

ATK-RM04 模块采用串口(RS232/LVTTL)与 MCU(或其他串口设备)通信,内置 TCP/IP 协议栈,能够实现用户串口、以太网、无线网(WIFI)3 个接口之间的转换。

通过 ATK-RM04 模块,传统的串口设备在不需要更改任何配置的情况下,即可通过网络(有线/WIFI)传输自己的数据,为用户的串口设备通过网络传输数据提供完整快速的解决方案,如图 1.1 所示:

图 1.1 ATK-RM04 功能结构

ATK-RM04 模块支持 RS232 串口和 LVTTL 串口,支持 DC6V~16V 宽电压工作范围,支持串口转以太网、串口转 WIFI STA、串口转 WIFI AP 等连接形式,从而快速构建串口网络数据传输方案,方便你的设备使用互联网传输数据。同时,ATK-RM04 还带有路由器功能,完全可以当成一个路由器使用(相当于:1个 WAN口,1个 LAN口的 WIFI 无线路由器)。

ATK-RM04 模块基本特性如表 1.1 所示:

项目	说明
网络标准	无线标准: IEEE 802.11n、IEEE 802.11g、IEEE 802.11b
	有线标准: IEEE 802.3、IEEE 802.3u
无线传输速率	11n: 最高可达 150Mbps
	11g: 最高可达 54Mbps
	11b: 最高可达 11Mbps
信道数	1~14
频率范围	2.4~2.4835Ghz
发射功率	12~15DBM
网络接口	2 个以太网口(WAN+LAN)
电源接口	DC005-2.1mm 直流电源座、Mini USB 座(仅供电)
通信接口1	RS232 串口/LVTTL 串口
天线	外接(IPX 接口)/板载(仅留接口,需自行焊接贴片天线)
工作温度	-20°C~+70°C
工作湿度	10%~90%RH(不凝结)
外形尺寸	76mm*56mm

表 1.1 ATK-RM04 基本特性

注 1: LVTTL 串口,通过排针连接,支持 3.3V/5V 系统。

ATK-RM04 模块的功能特性如表 1.2 所示:

功能	说明	
WIFI 工作模式	无线网卡(WIFI STA)	
	无线接入点(WIFI AP)	
	无线路由器(WIFI ROUTER)	
无线安全	MAC 地址过滤	
	无线安全功能开关	
	64/128 位 WEP 加密	
	WPA-PSK/WPA2-PSK、WPA/WPA2 安全机制	
WDS 无线桥接	支持	
网络管理	远程 Web 管理	
內項目理	配置文件导入导出	
串口以太网工作模式	串口转以太网(ETH-COM)	
	串口转无线网卡(COM-WIFI STA)	
	串口转无线接入点(COM-WIFI AP)	
串口波特率范围	1200~500000bps	
TCP 最大连接数	≥20	
UDP 最大连接数	≥20	
固件升级	Web 升级	

表 1.2 ATK-RM04 功能特性

ATK-RM04 模块的电气特性如表 1.3 所示:

项目 说明	
电源供电	DC6-16V 或者 USB 供电
IO 电平 ¹	Voh(min) 2.4V 、Vol(max) 0.4V 、Vih(min)2.0V 、Vil(max) 0.8V
功耗 ²	50~110mA@12V

表 1.3 ATK- RM04 电气特性

注1: 对于通信接口(即: TXD/RXD/WPS/ES 等接口), 可以兼容 3.3V/5V 单片机系统。

注 2: 此数据均为平均电流值,在 12V 供电的条件下测得,模块在串口以太网工作模式(ETH-COM)时,对应最小电流 50mA,模块在默认模式(WIFI ROUTER)下(WIFI 开启,WAN、LAN 都接上网线)对应最大电流 110mA。

2. 使用说明

2.1 模块简介

ATK-RM04 模块是 ALIENTEK 推出的一款高性能 UART-ETH-WIFI(串口-以太网-无线 网)模块,能为单片机网络(以太网/WIFI)数据传输提供简单快速的解决方案,另外,该模块也可以当作无线路由器使用。模块资源图如图 2.1.1 所示:

图 2.1.1 ATK-RM04 模块资源图

从图 2.1.1 可以看出,ATK-RM04 模块外观漂亮,结构紧凑,而且功能齐全、接口丰富,模块尺寸(不算天线部分)为 76mm*56mm,并带有安装孔位,非常小巧,并且利于安装,可方便应用于各种产品设计。

ALIENTEK ATK-RM04 模块板载资源如下:

- ◆ 1 个 RS232 串口 (母头)
- ◆ 1 个 RS232 与 TTL 串口选择端口
- ◆ 1 个 WIFI IPX 天线接口
- ◆ 1 个 5V 电源接口
- ◆ 1 个 HLK-RM04 WIFI 模块
- ◆ 1 个 WPS/ES 按键和 GPIO 引出接口
- ◆ 1 个 LAN □ (网口 2)
- ◆ 1 个 WLAN □ (网 □ 1)
- ◆ 1 个 WPS/RST 按键和 ES/RST 按键
- ◆ 1 个 USB 接口

- ◆ 3 个 RM04 工作指示灯
- ◆ 1个电源开关
- ◆ 1个电源指示灯(蓝色)
- ◆ 1个电源输入接口

ATK-RM04 模块采用高标准设计,特点包括:

- ▶ 板载 RS232 串口和 TTL 串口接口,方便与 PC/工控机/单片机等设备连接;
- ▶ 板载 2 个网络接口(LAN 和 WLAN),使用方便;
- ▶ 引出所有 RM04 模块的 IO 口,并对 ES/WPS 两个控制信号做了兼容性设计,方便连接 3.3V/5V 单片机系统:
- ▶ 板载高效 DCDC 降压电路,转换效率高达 90%,支持宽电压工作范围 (6~16V)。
- ▶ 板载电源防反接保护和 TVS 电源保护,保护功能完善;
- ▶ 板载 IPX 天线接口,方便选择不同天线,满足不同场合需求;
- ▶ 采用国际 A 级 PCB 料,沉金工艺加工,稳定可靠;
- ▶ 采用全新元器件加工,纯铜镀金排针,坚固耐用;
- ▶ 人性化设计,各个接口都有丝印标注,使用起来一目了然;接口位置设计安排合理,方便顺手。
- ▶ PCB 尺寸为 76mm*56mm, 并带有安装孔位, 小巧精致;

ATK-RM04 模块的背面如图 2.1.2 所示:

图 2.1.2 ATK-RM04 模块背面图

从图 2.1.2 可以看出,ATK-RM04 模块的背面非常整洁,没有一个元器件,方便在设备上安装。

模块背面还有一个二维码,大家可以通过扫描这个二维码得到我们的论坛和淘宝地址等信息,在使用上有任何问题,可以上论坛提问/旺旺直接联系我们解决。背面同时也印有论坛地址(www.openedv.com)和公司网址(www.alientek.com),方便没有二维码扫描设备的朋友使用。

2.2 模块硬件资源详解

2.2.1 RS232 串口(RS232_COM)

该接口 (RS232_COM) 为 RS232 串口,用于连接 PC、单片机或工控机等设备的 RS232 串口,实现对 RM04 的控制,ATK-RM04 模块选择 SP3232 作为电平转换芯片,实现 RM04 的 RS232 串口。

注意,确保 P1 用两个跳线帽连接 RTXD 与 RXD、RRXD 与 TXD,才能实现 RS232 串口连接到 RM04 模块。

2.2.2 RS232 与 TTL 串口选择端口(P1)

该接口(P1)用于选择 RS232 串口连接到 RM04 的通信端口,还是不连接。

RTXD 和 RRXD 是 RS232 串口经过 SP3232 转换出来的串口发送和接收引脚,用于实现将 RS232 串口转换成 TTL 串口电平,同 RM04 模块连接。

RXD 和 TXD,则是 RM04 模块的串口接收和发送引脚,ATK-RM04 模块的控制(AT 指令)和数据传输,都是通过这两根线。

模块的 RXD 和 TXD,做了兼容性处理,支持 LVTTL 电平(即 3.3V/5V)的单片机系统。当不需要通过 RS232 与外部连接的时候,我们可以拔掉 P1 的两个跳线帽,然后直接将模块的 TXD 和 RXD 与单片机系统的 RXD 和 TXD 连接,实现与单片机的连接(注意还需要共地)。

2.2.3 WIFI IPX 天线接口(ANT)

该接口(ANT)是 HLK-RM04 模块自带的一个 IPX 天线接口,用于连接外部 WIFI 天线, 从而大大提高 WIFI 通信的距离,大家可以根据自己的需要购买合适的天线与之连接即可。

2.2.4 5V 电源接口(P3)

该接口(P3)是一个5V的输入输出端口,当模块通过DC_IN/USB供电的时候,该接口可以用作5V电源的输出端口,给外部设备供电。当模块没有DC_IN/USB供电的时候,该接口也可以用来作为5V电源的输入,从而给模块供电。

2.2.5 HLK-RM04 WIFI 模块(U2)

该模块(U2)是 ATK-RM04 模块的核心部件,HLK-RM04 模块是 Hi-Link 公司生产的一个低成本嵌入式 UART-ETH-WIFI 模块,通过 CE,FCC 认证,可直接用于出口型产品里面。模块内嵌 TCP/IP 协议,可以实现串口、以太网、无线网(WIFI)3 个接口之间的数据转换传输。

HLK-RM04 模块采用 2.0 间距的排针与外部连接,总共 28 个引脚,模块尺寸为: 40mm*29mm。模块自带三个 0603 的 LED 指示灯: POWER、WAN、WIFI。分别用于指示电源,WAN 和 WIFI 的工作状态。

该模块外观如图 2.2.5.1 所示:

图 2.2.5.1 HLK-RM04 模块外观图

模块尺寸图如图 2.2.5.2 所示:

图 2.2.5.2 HLK-RM04 模块尺寸图(顶视图)

模块引脚描述如表 2.2.5.1 所示:

编号	功能	方向	说明
1	VCC	Power In	5V 电源输入
2	GND	GND	电源地
3	WLAN_LED	О	WIFI 启动指示
4	VDD	Power Out	3.3V 电源输出
5	LINK2	О	网口2 连接指示
6	USB_P	I/O^1	USB 信号+
7	USB_M	I/O	USB 信号-
8	STA/GPIO_0	I/O	状态指示/GPIO_0
9	GPIO_1	I/O	GPIO_1
10	ES/RST	I	退出透传/恢复出厂值
11	TXOP2	A	网□ 2 TX-P
12	TXON2	A	网□ 2 TX-N
13	RXIP1	A	网口 1 RX-P

14	RXIN1	A	网口 1 RX-N
15	RXIN2	A	网□ 2 RX-P
16	RXIP2	A	网□ 2 RX-P
17	TXON1	A	网口 1 TX-N
18	TXOP1	A	网口 1 TX-P
19	RTS_N/GPIO_2	I/O	串口 2 RTS
20	UART_RX	I	串□1RX
21	UART_TX	О	串口 1 TX
22	RXD/GPIO_3	I/O	串□2RX
23	LINK1	I/O	网口1 连接指示
24	CTS_N/GPIO_4	О	串口 2 CTS
25	WPS/RST	I	WPS ² 按键/恢复出厂值
26	TXD/GPIO_5	О	串□ 2 TX
27	VDD_1_8	Power Out	网口 1.8V 输出
28	VCC	Power In	5V 输入

表 2.2.5.1 HLK-RM04 模块引脚描述图

注 1: I/O 口电平为 3.3V

注 2: WPS, 即 Wi-Fi Protected Setup, Wi-Fi 保护设置,是由 Wi-Fi 联盟组织实施的认证项目,主要致力于简化无线局域网 WiFi 的安装及安全性能配置工作。

2.2.6 WPS/ES 按键和 GPIO 引出接口(P2)

该接口 (P2) 将 RM04 模块的所有 IO 口,包括 WLED/ES/WPS 等信号全部通过排针引出,方便大家使用。

其中 ES 和 WPS 信号做了兼容性处理,支持 3.3V/5V 单片机系统,方便和不同电压的 MCU 连接使用。

2.2.7 LAN □(LAN)

该接口(LAN)是 ATK-RM04模块的局域网接口(网口2),可以用来连接电脑、打印机等设备。该接口只在模块工作在路由器模式下有效。

路由器模式下,模块会为连接该接口的电脑自动分配 IP 地址(一般为:192.168.16.100), 然后我们可以登录 192.168.16.254,修改模块工作模式(注意:修改为非路由器模式后,该 接口将不能再连接电脑!除非强制模块恢复默认设置)。

2.2.8 WLAN □(WLAN)

该接口(WLAN)是 ATK-RM04 模块的广域网接口(网口 1)。在路由器模式下,该接口用于连接外网输入/ADSL 猫的输出,实现外网接入。在串口以太网模式下,该接口用于连接局域网(电脑/路由器),实现与电脑的数据传输。

2.2.9 WPS/RST 按键和 ES/RST 按键(KEY2/KEY1)

WPS/RST 即 KEY2 按键,在路由器模式下,该按键作为路由器的 WPS 按键,短按(100ms <T < 6S)该按键,可以启动路由器 WPS 功能,让接入设备快速建立无线连接(无需输入 SSID 和密码)。在其他模式下,该按键仅用作恢复默认设置(RST),长按该按键(T>6S),即可让模块恢复默认设置。

ES/RST 即 KEY1 按键,在路由器模式下,该按键仅用作恢复默认设置,操作方法同 KEY2 按键。在其他模式下,短按该按键(100ms<T<6S)可以让模块退出透传模式,进入 AT

指令模式。

注意: 在任何模式下,长按 KEY1/KEY2,均可让模块恢复默认设置,不过一般要第二次或第三次长按才会成功。

2.2.10 USB 接口(USB)

该接口是 RM04 模块的 USB 引出接口,可以实现 USB 功能以及供电等,不过目前固件版本(V1.78), USB 功能还不支持,所以该接口主要用于模块的供电。如果没有外部电源适配器,可以利用该接口给模块供电。

2.2.11 RM04 工作指示灯(POWER/WAN/WIFI)

RM04 模块总共有 3 个指示灯: POWER、WAN、WIFI。分别用于电源、WAN 口和 WIFI 的状态指示。POWER 指示灯为红色,用于指示模块供电情况,只要给模块供电,该指示灯就会亮起。WAN 指示灯为绿色,用于指示 WLAN 口数据传输,当有数据传输的时候,该指示灯会闪烁。WIFI 指示灯为绿色,用于指示 WIFI 数据传输,WIFI 有数据传输的时候,该指示灯也会闪烁。

通过这三个灯的状况, 我们就可以了解到模块的工作状态等信息。

2.2.12 电源开关(K1)

这是 ATK-RM04 模块的总开关,实现对模块的上电和断电控制。不过需要注意的是: 当通过 P3 口给模块供电的时候,该开关不起作用!

2.2.13 电源指示灯(PWR)

该指示灯(PWR),是一颗 0805 封装的蓝色 LED,用于指示模块的上电状态,当模块通电的时候该灯亮,否则灭。该指示灯必须亮起,模块才能正常工作!

2.2.14 电源输入接口(DC IN)

该接口(DC_IN)采用 DC005-2.1 座作为模块的直流电源输入接口,支持 DC6~16V 的 宽电压输入范围,模块采用的是 MPS 公司的 DCDC 降压 IC: MP2359,可以提供非常高的 电源转换效率,以及宽电压输入范围。并且 ATK-RM04 模块采用了电源防反接保护和 TVS 电源保护双重保护措施,有效提高模块的可靠性。

2.3 模块使用

2.3.1 快速开始向导

2.3.1.1 恢复出厂设置

为了确保所有配置过程正确,我们先让模块恢复出厂设置。如果模块是全新模块(还未使用过的)则可跳过此步。

恢复出厂模式的办法: 首先给模块上电,等待约 35 秒,启动完成后,长按(>6S)WPS/RST 或 ES/RST 按键,可以看到 WAN 和 WIFI 两个指示灯同时亮起,大概 1 秒后,同时灭掉,表明模块恢复出厂模式成功,此时就可以松开按键了。

然后等待模块重启,重启后,模块的所有参数便会恢复到出厂设置(默认为路由器模式)。 注意:恢复出厂模式长按按键,一般要先按1~2次,才可以成功,所以前两次可以按短一点时间(比如2~3S),之后,长按便可以成功设置为出厂模式。

2.3.1.2 配置串口转网络参数

有两种方法,可以对 ATK-RM04 模块的串口转网络参数进行配置: 1、通过串口。2、通过网口。

串口方式:模块在默认模式下,短按 ES/RST 按钮,退出透传模式,然后,我们可以利用: HLK-RM04_CONFIG(串口配置工具).exe,这个软件,对模块进行配置(波特率: 115200,数据位: 8位,停止位: 1位,无校验位)。也可以自己利用串口调试助手,或者单片机通过AT 指令对模块进行配置。

串口方式对模块的配置,详见三个使用手册(在:模块资料\4,模块使用说明)。

网口方式:模块在默认模式下,与电脑连接,可以通过以太网(LAN 口)或者 WIFI 的方式(SSID:ATK-RM04, SN:12345678)连接上模块,然后在浏览器输入: 192.168.16.254,进入 Web 配置页面,默认的用户名和密码是: admin/admin。

也可以通过 ATK-RM04 模块的另一个以太网(WLAN 口)接口连接路由器,然后电脑端连接路由器,在电脑上利用: HLK-RM04_Discover(网络搜索工具).exe,这个软件搜索找到路由器分配给 RM04 模块的 IP 地址,然后在浏览器输入这个 IP 地址,同样可以进入Web 配置页面。

网口方式对模块的配置详见 2.3.3 节。

2.3.2 功能说明

ATK-RM04 模块功能可以分为 4 大模式:默认模式(路由器模式)、串口转以太网、串口转 WIFI STA 以及串口转 WIFI AP。

2.3.2.1 默认模式(路由器模式)

默认模式(路由器模式)模型如图 2.3.2.1.1 所示:

图 2.3.2.1.1 默认模式模型

该模式下,WIFI 使能,工作在 AP 模式下,ETH1、ETH2 功能使能,ETH1 作为 WAN,ETH2 作为 LAN。此时,模块其实就是一个标准的无线路由器,只是只有一个 LAN 口。通过适当的设置,COM1 的数据与网络数据相互转换。

WIFI安全方面支持目前所有的加密方式。

此模式下, WIFI 设备能连接到模块, 成为 WIFI 局域网下的设备。

WAN 端默认动态 IP 地址方式。LAN、WIFI 为同一局域网,默认开启 DHCP 服务器。路由器模式的详细使用,请参考 ATK-RM04 路由器使用手册.pdf。

2.3.2.2 串口转以太网模式 (ETH-COM)

串口转以太网模式(ETH-COM)模型如图 2.3.2.2.1 所示:

图 2.3.2.2.1 串口转以太网模型

该模式下,ETH1(WLAN)使能,WIFI、ETH2(LAN)功能关闭。通过适当的设置,COM1的数据与ETH1(WLAN)的网路数据相互转换。

以太网可以配置为动态 IP 地址(DHCP),也可以配置为静态 IP 地址(STATIC)。

2.3.2.3 串口转 WIFI STA 模式 (COM-WIFI STA)

串口转 WIFI STA 模式 (COM-WIFI STA) 模型如图 2.3.2.3.1 所示:

图 2.3.2.3.1 串口转 WIFI STA 模型

该模式下,WIFI 使能,工作在 CLIENT 模式下,ETH1 (WLAN)、ETH2 (LAN) 功能 关闭。通过适当的设置,COM1 的数据与 WIFI 的网路数据相互转换。

WIFI STA 可以配置为动态 IP 地址(DHCP),也可以配置为静态 IP 地址(STATIC)。 WIFI 安全方面支持目前所有的加密方式。

此模式下,模块能连接到无线路由器等设备上,成为 WIFI 局域网下的设备。

2.3.2.4 串口转 WIFI AP 模式 (COM-WIFI AP)

串口转 WIFI AP 模式 (COM-WIFI AP) 模型如图 2.3.2.4.1 所示:

图 2.3.2.4.1 串口转 WIFI AP 模型

该模式下,WIFI 使能,工作在 AP 模式下,ETH1、ETH2 功能关闭。通过适当的设置,COM1 的数据与 WIFI 的网路数据相互转换。

WIFI 安全方面支持目前所有的加密方式。

此模式下, WIFI 设备能连接到模块, 成为 WIFI 局域网下的设备。

2.3.2.5 串口工作状态转换

ATK-RM04 模块将串口的工作状态定义为 2 种模式: 1、透传模式; 2、AT 指令模式。 这两种模式可以相互转换,如图 2.3.2.5.1 所示:

图 2.3.2.5.1 串口工作状态转换图

正常上电后,模块会检查当前的网络串口配置是否正常,如果配置正常,则模块自动进入透传模式,否则模块进入 AT 指令模式。

透传模式进入 AT 指令模式有以下 2 种方法:

1、ES/RST 引脚。

在任意状态下,保持 ES/RST 脚(KEY1 按键)低电平的时间大于 Tes 且小于 Trst 1 ,将立即进入 AT 指令模式,如图 2.3.2.5.2 所示:

图 2.3.2.5.2 ES/RST 退出透传模式

注 1: Tes, 退出透传模式时间,为 100ms; Trst,模块恢复默认参数时间,为 6000ms。

2、特定的串口数据

串口退出透传功能开启后,可以通过发送特定的串口数据让模块退出透传。串口退出透 传过程如图 2.3.2.5.3 所示:

图 2.3.2.5.3 串口退出透传模式

其中:

Tpt: 串口组帧时间, 默认为 10ms。

间隔时间大于组帧时间连续发送 3 个 "+", 然后等待约 500ms (400ms< >600ms), 间隔时间大于组帧时间连续发送 3 个 0x1B。模块即可退出透传模式。

从 AT 指令模式进入透传模式则非常简单,只需要发送: at+out_trans=0, 这条 AT 指令,即可进入透传模式。

2.3.2.6 串口-网络数据转换

ATK-RM04模块的串口-网络数据转换分为4种模式: TCP Server、TCP Clinet、UDP Server、UDP Client。

TCP Server

图 2.3.2.6.1 TCP Server

该模式下,模块监听指定的端口,等待 TCP Client 连接,连接上后,所有 TCP 数据直接发送到串口端,串口端的数据发送到所有的 TCP Clien 端。

注意:模块可以同时被多个 Client 连接 (数量无限制),但是对于 Client 发过来的数据,目前还不支持区分数据来自哪个 Client,所以,需要客户自己做协议,加以区分数据来源。下同。

TCP Client

图 2.3.2.6.2 TCP Client

该模式下,模块连接指定的 IP 地址及端口。所有从 TCP Server 端发送来的数据直接发送到串口端,串口端的数据发送到 TCP Server 端。异常的网络断开会导致模块主动重连。 TCP 主动重连功能使能(at+tcp_auto=1)情况下,TCP Server 主动断开连接,模块会立即主动重连,否则模块不会重连(但是如果有数据发送,则会重新连接)。

UDP Server

该模式下,模块打开本地的指定端口,一旦收到发往该端口的数据,模块会将数据发到 串口,并记录远端的 ip、端口。模块只会记录最后一次连接上的远端信息。串口收的数据会 直接发送到已记录的远端 ip、端口。

UDP Client

图 2.3.2.6.4 UDP Client

该模式下,模块直接将串口数据发送到指定的 ip 地址及端口。从服务端返回的数据将会发给串口端。

2.3.2.7 参数配置方式

ATK-RM04 模块提供 2 种方式用于对参数进行配置:

- 1.WEB 页面配置;
- 2.串口 AT 指令配置;

访问 WEB 配置页面需要确认模块的 IP 地址,以及 WEB 认证的用户名密码。

通过串口 AT 指令配置参数需要先让模块进入 AT 指令模式。

串口配置工具 HLK-RM04_CONFIG 即通过 AT 指令方式配置模块,通过对各个参数的配置组合,提供简单方便的配置过程。

2.3.3 WEB 页面配置

这里我们先让模块恢复出厂设置(方法见 2.3.1.1 节),然后通过一根网线连接 ATK-RM04 模块的 WLAN 口和路由器的一个 LAN 口,之后用 HLK-RM04_Discover(网络搜索工具).exe 这个软件,搜索到路由器分配给模块的 IP 地址,如图 2.3.3.1 所示:

图 2.3.3.1 利用软件查找路由器分配给模块的 IP 地址

从图 2.3.3.1 可以看到,路由器分配给模块的 IP 地址为: 192.168.1.108(注意:不同路由器,该地址可能不同),所以,我们只需要在浏览器输入 192.168.1.108,就可以登录到 WEB 配置页面了。

如图 2.3.3.2 所示:

图 2.3.3.2 ATK-RM04 WEB 配置页面

图 2.3.3.2 所示页面分为 3 个区域:

- 1 网络配置区
- 2 串口配置区
- 3 配置提交区

2.3.3.1 网络配置区

该区域主要用于设置模块的网络模式(工作模式),以及相关配置。ATK-RM04 模块总共有 4 种网络模式可供选择:

- 1、默认模式
- 2、串口-以太网模式
- 3、串口-无线 (WIFI STA) 模式
- 4、 串口-无线 (WIFI AP) 模式

选择不同的工作模式,该区域将显示不同的内容。

2.3.3.1.1 默认模式

默认模式就是路由器模式,如图 2.3.3.1.1.1 所示:

2.3.3.1.1.1 默认模式

该模式下,模块可被当成路由器使用,通过适当的配置,可以支持串口与网络的数据传输,默认为 TCP Server 模式,端口为 8080。

从上图可以看到,默认模式,路由器 WIFI 的 SSID 名字为: ATK-RM04,密码为: 12345678, WIFI 设备可以连接到模块。

2.3.3.1.2 串口-以太网模式

该模式,配置界面如图 2.3.3.1.2.1 和图 2.3.3.1.2.2 所示:

图 2.3.3.1.2.1 串口-以太网模式动态 IP

图 2.3.3.1.2.2 串口-以太网模式静态 IP

模块支持两种 IP 地址类型: 动态 IP 和静态 IP。动态 IP 模式下,模块通过 WLAN 口从路由器动态获取 IP 地址。静态 IP 模式下,我们需要手动设置模块的 IP 地址等信息。推荐采用动态 IP。

2.3.3.1.3 串口-无线 (WIFI STA) 模式

该模式,配置界面如图 2.3.3.1.3.1 和图 2.3.3.1.3.2 所示:

网络模式:	串口-无线(WIFI STA) ✓
无线网络名称:	ATK-RM04 扫描
认证加密类型:	WPA2 AES
密码:	12345678
IP地址类型:	→ →

图 2.3.3.1.3.1 串口-无线 (WIFI STA) 模式动态 IP

网络模式:	串口-无线(WIFI STA) ₩
无线网络名称:	ATK-RM04 扫描
认证加密类型:	WPA2 AES
密码:	12345678
IP地址类型:	静态 💌
IP地址:	192. 168. 11. 254
子网掩码:	255. 255. 255. 0
默认网关:	192. 168. 11. 1
首选DNS服务器地址:	192. 168. 11. 1
备用DNS服务器地址:	8. 8. 8. 8

图 2.3.3.1.3.2 串口-无线 (WIFI STA) 模式静态 IP

同样,模块支持两种 IP 地址类型。不过这里多了无线网络名称、认证加密类型、密码等项目的设置。

无线网络名称:默认为 ATK-RM04,这里其实是我们模块要去连接的 WIFI 网络的名字,点击右侧的扫描按键,可以让模块扫描周围的 WIFI 网络,然后我们可以选择一个 WIFI 网络进行连接。相应的无线网络名称就会变为这个无线网络的名字。

认证加密类型:即要连接的WIFI网络的加密方式。

认证加密类型:即要连接的 WIFI 网络的密码。

2.3.3.1.4 串口-无线 (WIFI AP) 模式

该模式,配置界面如图 2.3.3.1.4.1 所示:

网络模式:	串口-无线(WIFI AP) ►
无线网络名称:	ATK-RM04
认证加密类型:	WPA2 AES
密码:	12345678
IP地址:	192. 168. 11. 254
子网掩码:	255. 255. 255. 0

图 2.3.3.1.4.1 串口-无线 (WIFI AP) 模块设置

该模式下,模块的 WIFI 将作为 WIFI AP 使用,外部的 WIFI 设备可以连接到模块,这里同样有无线网络名称、认证加密类型、密码等项目的设置,只不过这里是设置模块本身的名称、加密方式和密码。

接下来的 IP 地址和子网掩码则是设置模块的 IP 地址及掩码,外部连接到模块的设备,进行 TCP/UDP 数据传输的时候,必须指定 IP 地址为这个 IP 地址。

2.3.3.2 串口配置区

该区域主要用于设置模块的串口参数,如图 2.3.3.2.1 所示:

	当前配置	更新配置
串口配置:	115200,8,n,1	115200, 8, n, 1
串口组帧长度:	64	64
串口组帧周期:	10 毫秒	256, 0-无限长)
网络协议模式:	server	服务器 (Server) 💌
本地/远端 服务器域名/IP:	192.168.11.245	192, 168, 11, 245
本地/远端 端口:	8080	8080
网络协议选择:	tcp	TCP 💌
TCP网络超时:	0秒	0 秒 (< 256, 0-无限长)

图 2.3.3.2.1 串口配置区

串口配置:用于配置模块串口的波特率等信息。格式为:波特率,数据位,校验位,停止位。默认为:115200,8,n,1。

串口组帧长度:因为模块的 TCP/UDP 连接数据传输不同于串口,需要组帧发送,这里 64 即是设置从串口发过来的数据,每 64 个组成一帧,通过 TCP/UDP 发送。当数据不够 64 字节的时候,将根据组帧周期发送。

串口组帧周期:是指从串口收到的数据,每隔这么多时间,就组成一帧,通过 TCP/UDP 发送。当这个时间内的数据大于串口组帧长度的时候,就按组帧长度组帧发送。

网络协议模式: 即模块协议模式。可以是: 服务器(Server)、客户端 Client 或无(None)。

本地/远端 服务器域名 L/P: 本地/远端 域名或者 IP 地址,不同的网络模式下指定的参数不一样。Client 下指定远端 IP 地址, Server 下指定本地 IP 地址。

本地/远端端口:本地或远端端口号。不同的网络模式下指定的参数不一样。Client下指定远端端口号,Server下指定本地端口号。

网络协议选择: 网络协议类型。可以是: TCP/UDP。

TCP 网络超时: 网络超时时间。Server 网络模式下, 当在超时时间内没有任何数据传输, 该连接将被断开。0 指定永不断开。

2.3.3.3 配置提交区

这个区域就2个按钮:确定和取消。

点击确定,将当前页面的配置提交。如果网络部分参数有更改,提交过程可能需要约 25 秒。如果只修改串口功能配置,提交过程会很快完成。

点击取消,将重载页面,已修改的配置将会丢失。

2.3.4 串口 AT 指令配置

2.3.4.1 进入 AT 指令模式

有两种方式可以进入 AT 指令模式: 1、ES/RST 按键; 2、串口发送特殊序列。 具体方法详见 2.3.2.5 节。

2.3.4.2 AT 指令

在 AT 模式下,可以通过串口的 AT 指令对系统参数做配置。指令格式如下: at+[command]=[value]\r

根据不同命令,模块将返回不同的返回值。其中\r 为换行符,用十六进制表示,就是 0X0D。

例如: "at+remoteip=192.168.1.102\r",设置远端 ip 地址为 192.168.1.102。

例如: "at+remoteip=?\r ", 查询远端 ip 地址。

指令列表如表 2.3.4.2.1 所示:

列及如衣 2. 3. 4. 2. 1 別小 netmode	网络模式
wifi conf	WiFi 配置
Channel	WiFi channel
dhepe	DHCP 客户端配置
net_ip	网络 IP 地址
net_dns	网络 DNS 地址
dhcpd	DHCP 服务器配置
dhcpd_ip	DHCP 服务器 IP 地址
dhcpd_dns	DHCP 服务器 DNS 地址
dhcpd_time	DHCP 服务器分配时间
net_commit	提交网络配置
out_trans	退出透传
remoteip	远端服务器域名或者 IP 地址
remoteport	本地或远端端口号
remotepro	网络协议类型
timeout	网络超时时间
mode	串口网络模式
uart	串口配置
uartpacklen	串口组帧长度
uartpacktimeout	串口组帧时间
escap	串口退出透传
tcp_auto	TCP 自动重连
save	提交串口转换配置并重启服务
reconn	重启串口服务
default	恢复出厂设置
reboot	重启模块
ver	模块版本
CLport	TCP/UDP CLIENT 本地端口
RTS	串口输出指示(485)
XON_XOFF	XON/XOFF 流控使能
net_wanip	wan ip 地址
tcp_client_check	TCP CLIENT 远端状态侦测
tcp_client_check S2N_Stat	TCP CLIENT 远端状态侦测 串口功能状态

wifi_Scan	WiFi 扫描
suspend	系统挂起
default	恢复出厂设置
reboot	重启模块

表 2.3.4.2.1 ATK-RM04 模块 AT 指令表

2.3.4.2.1 netmode

功能:

网络模式设置。

格式:

 $at+netmode=\langle netmode \rangle \ r$

参数:

见表 2.3.4.2.1.1:

值	含义
0	默认模式
1	串口转以太网
2	串口转 WiFi client
3	串口转 WiFi AP

表 2.3.4.2.1.1 网络模式配置指令参数值及其含义

2.3.4.2.2 wifi_conf

功能:

无线参数设置。

格式:

at+wifi_conf=\ssid\, \langle encrypt type\, \langle password\ \r

参数:

ssid: 网络SSID

encrypt type: 加密方式, 见表 2.3.4.2.2.1:

<u>ре сурс. жншуз.</u>	P(),)U12, U. U. I. U. I. I.
值	含 义
none	开放式网络
wep_open	wep 加密,open 认证方式
wep	wep 加密,加密认证
wpa_tkip	wpa tkip
wpa_aes	wpa aes
wpa2_tkip	wpa2 tkip
wpa2_aes	wpa2 aes
wpawpa2_tkip	wpa/wpa2 tkip
wpawpa2_aes	wpa/wpa2 aes
auto	自动选择

表 2.4.2.2.1 支持的加密方式

password: 密码。

2.3.4.2.3 Channel

功能:

WiFi 无线信道选择。

格式:

at+Channel=<Channel>\r

参数:

Channel:0-14. (0-自动选择)

2.3.4.2.4 dhcpc

功能:

DHCP 客户端使能。通过该位使能,模块可以从路由器(通过 WLAN 或者 WIFI 连接)动态获取 IP 地址。

格式:

at+dhcpc=\dhcpc>\r

参数:

DHCP 客户端使能参数见表 2.3.4.2.4.1:

值	含义
0	静态 ip 地址
1	动态 ip 地址

表 2.3.4.2.4.1 DHCP 客户端参数及含义

2.3.4.2.5 net_ip

功能:

网络 IP 设置。DHCP 客户端功能开启时此参数无效。

格式:

at+net ip=<ip>, <mask>, <gateway>\r

参数:

ip: ip地址 mask: 子网掩码 gateway: 网关

2.3.4.2.6 net_dns

功能:

网络 DNS 设置。DHCP 客户端功能开启时此参数无效。

格式:

 $at+net_dns=\langle dns1\rangle, \langle dns2\rangle \$

参数:

dns1: 主要 DNS 地址 dns2: 次要 DNS 地址

2.3.4.2.7 dhcpd

功能:

DHCP 服务器使能。网络模式为非 AP 模式下此参数无效。

格式:

 $at+dhcpd=\langle dhpcd \rangle \ r$

参数:

dhpcd: 0, 关闭; 1, 开启。

2.3.4.2.8 dhcpd_ip

功能:

DHCP 服务器 ip 设置。

格式:

at+dhcpd ip=\langleip start\rangle, \langleip end\rangle, \langlemask\rangle, \langlegateway\r

参数:

ip start: ip 起始地址 ip end: ip 截止地址 mask: 子网掩码 gateway: 网关

2.3.4.2.9 dhcpd_dns

功能:

DHCP 服务器 dns 设置。

格式:

at+dhcpd dns=<dns1>, <dns2>\r

参数:

dns1: 主要 dns 地址 dns2: 次要 dns 地址

2.3.4.2.10 dhcpd_time

功能:

DHCP 服务器 time 设置。

格式:

 $at+dhcpd_time=\langle time \rangle \backslash r$

参数:

time: 分配给设备的 DHCP 有效时间。

2.3.4.2.11 net_commit

功能:

提交网络设置。所有与网络配置相关的参数在设置后需通过此参数提交保存生效。**命令** 执行时间需要约 30s。

格式:

at+net_commit=<net_commit>\r

参数:

net_commit: 0, 无效; 1, 提交。

2.3.4.2.12 out_trans

功能:

退出透传模式。退出透传模式的功能实际无法在串口端使用,但是进入透传,这功能还是比较常用。

格式:

at+out trans=\out trans>\r

参数:

退出透传模式参数见表 2.3.4.2.12.1:

值	含义
0	进入透传模式
1	退出透传模式

表 2. 3. 4. 2. 12. 1 退出透传模式参数及含义

2.3.4.2.13 remoteip

功能:

远端 ip 或域名设置。

格式:

at+remoteip=<remoteip>\r

参数:

远端服务器域名或者 ip 地址。

2.3.4.2.14 remoteport

功能:

远端端口设置。

格式:

at+remoteport=<remoteport>\r

参数:

remoteport: 远端端口。

2.3.4.2.15 remotepro

功能:

协议类型设置。

格式:

at+remotepro=<remotepro>\r

参数:

协议类型设置参数见表 2.3.4.2.15.1:

值	含义
none	无
tcp	TCP 协议
udp	UDP 协议

表 2. 3. 4. 2. 15. 1 协议类型设置参数及含义

2.3.4.2.16 timeout

功能:

网络超时时间。

格式:

 $at+timeout=\langle timeout \rangle \backslash r$

参数:

网络超时时间。Server 网络模式下,当在超时时间内没有任何数据传输,该连接将被断开。0 指定永不断开。

2.3.4.2.17 mode

功能:

转换模式设置。

格式:

at+mode=\mode>\r

参数:

转换模式设置参数见表 2.3.4.2.17.1:

值	含义
none	无
client	客户端
server	服务端

表 2.3.4.2.17.1 转换模式设置参数及含义

2.3.4.2.18 uart

功能:

串口配置设置。

格式:

at+uart=\baud\, \data\, \parity\, \stop\\r

参数:

baud: 波特率(范围: $1200^{\sim}500000$ bps, 默认为 115200),特别注意,个别波特率,可能存在偏差无法使用,测试不可用的波特率: 460800 bps。

data:数据位 parity:校验位 stop:停止位长度

2.3.4.2.19 uartpacklen

功能:

串口组帧长度设置。即设置模块收到多少个字节后,打包发送到网络。默认为 64 字节,即从串口每收到 64 字节就会打包成一帧,通过网络发送出去。

格式:

at+uartpacklen =<uartpacklen>\r

参数:

uartpacklen: 串口组帧长度(单位:字节)。

2.3.4.2.20 uartpacktimeout

功能:

串口组帧时间设置。即设置模块每隔多久,将收到的串口字节数据打包发送到网络。默认为 10ms 打包一次,即如果收到的字节数不够 uartpacklen 字节,那么每隔 10ms,就会将收到的字节打包成一帧,通过网络发送出去。

格式:

at+uartpacktimeout=<uartpacktimeout>\r

参数:

uartpacktimeout: 串口组帧时间(单位: ms)。

2.3.4.2.21 escap

功能:

串口退出透传使能。

格式:

at+escap=\escape\\r

参数:

Escape: 0, 关闭。1, 使能。

2.3.4.2.22 tcp_auto

功能:

TCP 自动重连。本功能开启状态下,不论任何原因导致的连接断开,模块将不断尝试重新建立连接。

格式:

 $at+tcp_auto=\langle tcp_auto \rangle r$

参数:

tcp auto:0, 关闭。1, 使能。

2.3.4.2.23 save

功能:

提交串口转换配置并重启服务。注意,接收该指令后,模块将进入透传模式。

格式:

at+save=\save\\r

参数:

save: 0, 无效; 1, 提交。

2.3.4.2.24 reconn

功能:

重启串口转换服务。注意,接收该指令后,模块将进入透传模式。

格式:

at+reconn =<reconn >\r

参数:

重启串口服务参数见表 2.3.4.2.24.1:

值	含义
0	无效
1	重启串口转换服务

表 2. 3. 4. 2. 24. 1 重启串口服务参数及含义

2.3.4.2.25 ver

功能:

固件版本查询。

格式:

 $at+ver = ?\r$

参数:

无。

2.3.4.2.26 Clport

功能:

TCP/UDP CLIENT 本地端口。

格式:

at+ CLport=< CLport>\r

参数:

Clport: 本地端口号。

2.3.4.2.27 RTS

功能:

串口输出指示。485 方案中通常需要单独引脚指示 485 收发器的接收或发送状态。本功能使能后,GPIO 1 引脚作为输出脚指示串口的输出状态。

格式:

 $at+RTS=\langle RTS \rangle \backslash r$

参数:

RTS:0, 关闭。1, 开启。

2.3.4.2.28 XON_XOFF

功能:

XON/XOFF 流控使能。

格式:

at+XON_XOFF=<XON_XOFF>\r

参数:

XON_XOFF:0, 关闭。1, 开启。

2.3.4.2.29 net_wanip

功能:

查询 wan ip 地址。通过该指令,可以获取模块从路由器/交换机等自动获取到的 IP 地址。

格式:

at+net wanip= $?\r$

参数:

无

2.3.4.2.30 tcp_client_check

功能:

TCP CLIENT 远端状态侦测。

格式:

at+tcp client check =<tcp client check>\r

参数:

tcp_client_check:0, 关闭。1, 开启。

2.3.4.2.31 S2N_Stat

功能:

串口转网络功能状态。通过该指令,可以查询模块当前 TCP/UDP 连接状态,如果连接成功,返回 1,如果连接断开,返回 0.

格式:

at+S2N Stat=?\r

参数:

无

2.3.4.2.32 Get_MAC

功能:

获取 MAC 地址。

格式:

 $at+Get_MAC=?\r$

参数:

无

2.3.4.2.33 wif_ConState

功能:

WiFi STA 连接状态。仅在模块设置为串口-WIFI STA 模式的时候有效,可用于检测模块是否连接上WIFI 路由器,如果连接上,返回: Connected,否则返回: error。

格式:

at+wifi_ConState=?\r

参数:

无

2.3.4.2.34 wif_Scan

功能:

WiFi 扫描。可以扫描所有当前可用的 WIFI 网络,并返回各个 WIFI 网络的:通道、SSID、BSSID、加密方式和信号强度等信息。

格式:

at+wifi Scan=?\r

参数:

无

2.3.4.2.35 suspend

功能:

系统挂起。

格式:

at+suspend = \suspend \r

参数:

系统挂起参数见表 2.3.4.2.35.1:

值	含义
0	唤醒
1	挂起

表 2. 3. 4. 2. 35. 1 系统挂起参数及含义

2.3.4.2.36 default

功能:

恢复出厂设置。该指令执行后,需要重启模块,才会将各参数设置为出厂设置。

格式:

 $at + default \backslash r$

参数:

无

2.3.4.2.37 reboot

功能:

重启模块。

格式:

at+reboot\r

参数:

无

2.3.5 串口配置软件

这里,我们利用 Hi-Link 公司提供的 HLK-RM04_CONFIG(串口配置工具). exe 这个软件,通过串口对模块进行配置。该软件启动界面如图 2.3.5.1 所示:

图 2.3.5.1 串口配置软件界面

界面说明:

- 1, 串行端口选择
- 2, 搜索模块按钮
- 3, 工作模式选择
- 4, 无线参数配置
- 5, 网络协议选择
- 6, 串口配置参数
- 7, 网络 ip 地址配置
- 8, 提交配置按钮

- 9, 查询配置按钮
- 10, WIFI 扫描按钮
- 11, 进入透传模式按钮
- 12, 恢复出厂设置按钮
- 13, 用户参数保存区
- 14, AT 指令执行返回信息区
- 15, 待发送的 AT 指令区

2.3.5.1 搜索模块

通过"配置串口选择"选择 ATK-RM04 模块所连接的电脑端串口号(**注意别选错串口了**), 点击"搜索模块"按钮(保证模块上电,并且是在 AT 指令模式下),软件将用指定的串口搜 寻 RM04 模块,已经连接上并在 AT 指令模式下的模块会被搜索到。搜索到的模块信息将会在 AT 指令执行返回信息区显示。如图 2.3.5.1.1 所示:

命令执行与回复 >:at (:Found Device at COM14(115200)!

图 2.3.5.1.1 串口配置软件搜索到模块

此时电脑与模块已经能建立正常的 AT 指令通信。所有 AT 命令交互的过程都需要在正常的 AT 指令通信基础上进行。如果搜索不到模块,检查模块的 P1 端口: RTXD 与 RXD, RRXD 与 TXD, 是否连接在一起? 这里必须用两个跳线帽连接在一起才可以通过模块的 RS232 接口与其他设备通信。

2.3.5.2 设置各选项参数

通过配置项 3、4、5、6、7 配置为需要的功能。配置修改过程中,在待发送的 AT 指令 区会立即生成相应的 AT 指令。生成的 AT 指令并没有立即传给模块,而是需要点击提交配置 按钮,才会发送给模块。如图 2.3.5.2.1 所示:

图 2.3.5.2.1 串口配置软件生成指令

图 2.3.5.2.1 的配置将 ATK-RM04 模块设置为无线网卡模式,即串口-WIFI STA 模式,模块将连接到路由器的 WIFI 网络(SSID:ALIENTEK,加密方式: WPA2_AES, SN:15902020353,这些参数可以根据你自己的 WIFI 网络进行设置),模块网络协议为 TCP Client,远端 IP 地址为: 192.168.1.102 (即路由器分配给你电脑的 IP 地址),连接端口号为: 8080。

提示:如果想通过单片机编程控制模块实现各模式切换,可以参考本软件的设置,参照这些设置发送对应的指令,即可实现一样的功能。另外,有些设置,如果没有改动,就不必发送指令,所以单片机编程的时候,可以对未作修改的 at 指令进行剔除,从而减少代码量。

2.3.5.3 提交配置

点击提交配置按钮,软件会立即将待发送的 AT 指令区的指令发送给模块。命令的执行结果会显示在 AT 指令执行返回信息区。经过 2.3.5.2 接的配置,点击提交配置按钮以后,AT 指令执行返回信息区显示如图 2.3.5.3.1 所示:

图 2.3.5.3.1 提交配置后的执行结果

注意:提交配置后,模块将进入透传模式,如果想再次进入AT指令模式,请短按ATK-RM04模块上的ES/KEY按键。

2.3.5.4 用户数据保存

用户参数保存区提供保存参数的功能。通过此功能可以保存最多 4 组参数,分别为 user0、user1、user2、user3。点击旁边的 "S" 按钮,会弹出确认框,如图 2.3.5.4.1 所示:

图 2.3.5.4.1 串口配置软件保存弹出框

点击"是"按钮后,待发送的 AT 指令区的指令会保存为 user0 参数组。之后任何状态下点击"user0",都会立即调出 user0 参数组,并覆盖至待发送的 AT 指令区。

保存的用户参数在软件目录下以文本文件保存,文件名分别为 user0、user1、user2、user3。

2.3.5.5 查询配置

点击查询配置按钮,软件会立即向模块发送一系列 AT 指令查询模块当前的配置,AT 指令执行的结果立即在 AT 指令执行返回信息区显示,各个配置项也会随着返回信息相应变化。

2.3.5.6 WIFI 扫描

点击 WIFI 扫描按钮,软件会立即向模块发送 WIFI 扫描的 AT 指令,然后等待一段时间, 在命令执行与回复区,就能看到扫描到的 WIFI 网络,如图 2.3.5.6.1 所示:

图 2.3.5.6.1 模块扫描到的 WIFI 网络

2.3.5.7 进入透传模式

假设模块已经在 AT 指令下,可以通过点击透传模式按钮立即进入透传模式。

2.3.5.8 恢复出厂设置

点击恢复出厂按钮后,软件会弹出确认框,如图 2.3.5.8.1 所示:

图 2.3.5.8.1 恢复出厂设置弹出框

点击"是"按钮后,软件会立即发送 AT 指令,约 30s 后模块即进入到出厂设置的状态。

2.3.6 网络搜索软件

利用 Hi-Link 公司提供的 HLK-RM04_Discover(网络搜索工具). exe 这个软件,就可以在网络上查找连接到当前网络的 ATK-RM04 模块。比如,我们通过 ATK-RM04 模块的 WLAN(WLAN 开启,使能 DHCP) 连接路由器,和电脑共用一个路由器,运行该软件,点击 Discover 按钮,即可查找到模块,如图 2.3.6.1 所示:

图 2.3.6.1 软件搜索到的模块 IP 地址等信息

从图 2.3.6.1 可看出,路由器分配给模块的 IP 地址为: 192.168.1.108,模块的 MAC 地址为: 44:33:4C:B6:DD:E3,模块版本为: V1.78(Aug 3 2013)。

此时,我们在浏览器的地址栏输入: 192.168.1.108,即可进入模块的 WEB 配置页面。

2.3.7 恢复出厂设置

模块支持以下3种方式恢复出厂设置:

1, 通过 WEB 页面。

登录 WEB 设置界面→系统管理→设置管理→装入默认值,点击,即可恢复出厂设置。

2, 通过串口 AT 指令。

发送: at+default\r 和 at+reboot\r 两个指令即可恢复出厂设置。

3, 通过保持 ES/RST 脚或 WPS/RST 脚(即按 KEY1/KEY2 按键) 低电平的时间大于 6 秒, 如图 2.3.7.1 所示:

图 2.3.7.1 拉低 ES/RST 或 WPS/RST 恢复出厂设置

注意:恢复出厂模式长按按键(KEY1/KEY2),一般要先按 1~2 次,才可以成功,所以

前两次可以按短一点时间(比如 2~3S),之后,长按便可以成功设置为出厂模式。恢复出厂设置成功的标志:可以看到 WAN 和 WIFI 两个指示灯同时亮起,大概 1 秒后,同时灭掉,表明模块恢复出厂模式成功,此时就可以松开按键了。

出厂默认设置参数值见表 2.3.7.1.1:

netmode	0
wifi_conf	ATK-RM04, wpa2_aes, 12345678
Channel	1
dhcpc	1
net_ip	192. 168. 11. 254, 255. 255. 255. 0, 192. 168. 11. 1
net_dns	192. 168. 11. 1, 8. 8. 8. 8
dhcpd	1
dhcpd_ip	192. 168. 16. 100, 192. 168. 16. 200, 255. 255. 255. 0, 192. 168. 16. 254
dhcpd_dns	192. 168. 16. 254, 8. 8. 8. 8
dhcpd_time	86400
remoteip	192. 168. 11. 245
remoteport	8080
remotepro	tcp
timeout	0
mode	server
uart	115200, 8, n, 1
uartpacklen	64
uartpacktimeout	10
escap	1
tcp_auto	1
IP address	192. 168. 16. 254
Wifi password	12345678
Web username/password	admin/admin

表 2.3.7.1.1 模块出厂设置参数表

2.3.8 固件升级

ATK-RM04 模块支持通过 WEB 进行固件升级,具体操作方法如下:

- 1, 恢复出厂设置,方法见 2.3.7 节。
- 2, 将电脑连接到模块,登录 WEB 页面。这里有 2 种方法: 1, 电脑的网口直接连接模块的 LAN 口, 电脑直接访问模块; 2, 模块连接路由器, 电脑也连接路由器, 电脑通过路由器访问模块。如果采用方法 1 连接, 我们在浏览器输入: 192.168.16.254,即可登录到模块 WEB 页面。如果采用方法 2 连接,需要先通过 HLK-RM04_Discover(网络搜索工具).exe 获得模块的 IP 地址, 然后在浏览器输入这个 IP 地址即可。WEB 页面用户名/密码: admin/admin。
- 3, 登录到 WEB 页面→系统管理→固件更新,如图 2.3.8.1 所示:

图 2.3.8.1 固件升级

图 2.3.8.1, 我们是采用的方法 2, 登录的 WEB 页面, 然后点击浏览, 选择相应固件(.img 文件), 点击确定开始升级。等待约 1 分钟, 模块自动重启, 完成固件升级。特别提醒: 升级过程中不能断电, 否则可能引起模块损坏。

3. 结构尺寸

ATK-RM04 模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-RM04 模块尺寸图

4. 其他

1、购买地址:

官方店铺 1: http://eboard.taobao.com

官方店铺 2: http://shop62103354.taobao.com

2、资料下载

ATK-RM04 模块资料下载地址: http://www.openedv.com/posts/list/23184.htm

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

传真: 020-36773971 电话: 020-38271790

