

Trigonometric Ratios and Identities

Lecture - 4

 $\eta \in Z$

Graphs of trigonometric ratios:

$$(\pi l/2, l)$$

$$3\pi l/2$$

$$\pi l/2$$

$$2\pi l s \pi l/2 3\pi l$$

$$(3\pi l/2 - 1)$$

$$Sin 0 = -1$$

$$0 \in \{(4n-1), \pi l/2, next\}$$

 \Rightarrow $0 \in \{n\pi,$

Sin0 = 0

Y = Cosx

$$y \in [-1, 1]$$

$$x \in \mathbb{R}$$

Periodic with period 2π

थार

(b)
$$-1 \le \sin \theta \le 1$$

(c)
$$-1 \le \cos\theta \le 1$$

(d)
$$\sin 0 = 0$$
; $\sin \pi = 0$; $\sin 2\pi = 0$
 $\sin (n\pi) = 0$, $n \in I$

i.e. sine of integral multiple of
$$\pi = 0$$

Also
$$\tan{(n\pi)}=0$$
 and $\sin{\frac{\pi}{2}}=\sin{\frac{5\pi}{2}}=\sin{\left(2n\pi+\frac{\pi}{2}\right)}=1$ and $\sin{\frac{3\pi}{2}}=\sin{\frac{7\pi}{2}}=\sin{\left(2n\pi-\frac{\pi}{2}\right)}=-1$

(e)
$$\cos \frac{\pi}{2} = 0$$
; $\cos \frac{3\pi}{2} = 0$; $\cos \frac{5\pi}{2} = 0$
 $\cos (2n - 1)\frac{\pi}{2} = 0$, $n \in I$

i.e. cosine of odd integral multiple of $\frac{\pi}{2}$ is zero.

Also cot
$$(2n-1)\frac{\pi}{2} = 0 : n \in I$$

- (f) $\cos 0 = 1$; $\cos 2\pi = 1$; $\cos 4\pi = 1$
 - $\cos 2m\pi = 1, m \in I$
 - i.e. \cos of even multiple of $\pi = 1$
- (g) $\cos \pi = -1$; $\cos 3\pi = -1$; $\cos 5\pi = -1$ $\cos (2m - 1)\pi = \cos \text{ of odd multiple of } \pi = -1$
- (h) $\sin(2n\pi + \theta) = \sin\theta, \ n \in I$ $\cos(2n\pi + \theta) = \cos\theta, \ n \in I$ $\tan(n\pi + \theta) = \tan\theta, \ n \in I$

E(21) Prove that :
$$\frac{\tan(90^{\circ} - \theta)\sec(180^{\circ} - \theta)\sin(-\theta)}{\sin(180^{\circ} + \theta)\cot(360^{\circ} + \theta)\csc(90^{\circ} - \theta)} = -1$$

E(22) If
$$\sec \theta = \sqrt{2}$$
, $\frac{3\pi}{2} < \theta < 2\pi$. Find $\frac{1 + \tan \theta + \csc \theta}{1 + \cot \theta - \csc \theta}$ **Ans.** (-1)

E(23) Prove that
$$\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2$$

E(24) In a
$$\triangle ABC$$
 prove that $\tan \frac{(A+B)}{2} = \cot \frac{C}{2}$

E(25) In a quadrilateral ABCD. Prove that
$$sin(A + B) + sin(C + D) = 0$$

E(26) Express $sin(-65^\circ)$ into trignometric ratio of positive angle less than 45°

i i i