考虑下面文法 G_1 : $S o a | \wedge | (T)$ T o T, S | S

- 消去 G_1 的左递归。然后,对每个非终结符,写出不带回溯的递归子程序
- 经改写后的文法是否是LL(1)的? 给出它的预测分析表

消除左递归

```
S 
ightarrow a | \wedge | (T)
T 
ightarrow ST'
T' 
ightarrow , ST' | arepsilon
```

不带回溯的递归子程序

P(S)

```
IF ch = "a" THEN
    read(ch);
ELSE IF ch = "A" THEN
    read(ch);
ELSE IF ch = "(" THEN
    BEGIN
        read(ch);
    P(T);
    IF ch = ")" THEN
        read(ch);
    ELSE ERROR
    END
ELSE ERROR;
```

P(T)

```
BEGIN
    P(S);
    P(T');
END;
```

P(T')

```
IF ch = "," THEN
    BEGIN
    read(ch);
    P(S);
    P(T');
    END
ELSE IF ch = ")" THEN
    RETURN;
ELSE ERROR;
```

求出FIRST与FOLLOW

```
FIRST(S) = \{a, \land, (\} \}

FIRST(T) = \{a, \land, (\} \}

FIRST(T') = \{,, \varepsilon\}

FOLLOW(S) = \{\#\} + FIRST(T') - \{\varepsilon\} + FOLLOW(T) + FOLLOW(T') = \{\#,,, \}\}

FOLLOW(T) = \{\}

FOLLOW(T') = FOLLOW(T) = \{\}
```

检查是否满足LL(1)

- 已经消除左递归
- 检查FIRST
 - \circ 对于 $S \rightarrow a | \wedge | (T)$
 - $FIRST(a) = \{a\}, FIRST(\land) = \{\land\}, FIRST((T)) = \{(\}$
 - 因此上述两两不相交
 - 。 对于 $T' o, ST' | \varepsilon$ 所右部同样两两不相交
- 检查FOLLOW
 - 。 对于 $\varepsilon \in FIRST(T')$ 因此检查 $FIRST(T') \cap FOLLOW(T') = \emptyset$

因此满足LL(1)文法

预测分析表

根据每个非终结符的首符集填入相应产生式 注意T'可以推出 ε ,因此需要看到T'的后继符集填入 $T' \to \varepsilon$

	a	\wedge	()	,	#
S	S o a	$S ightarrow \wedge$	S o (T)			
T	T o ST'	T o ST'	T o ST'			
T'				T' oarepsilon	T' ightarrow , ST'	