BASES DE DONNÉES avancées

Contraintes d'Intégrité dans le Modèle Relationnel : Introduction

Équipe pédagogique BD

https:

//perso.liris.cnrs.fr/marc.plantevit/doku/doku.php?id=lifbdw2_2019a Version du 9 septembre 2019

Objectifs

Structure du modèle relationnel (cours préc.)

- Permet de modéliser la réalité :
 - les ensembles attributs vont décrire les objets;
 - on peut séparer les données dans différentes relations avec des noms explicites;
- Largement insuffisant pour représenter plus finement les différents aspects des données réelles.
- L'incapacité à représenter des méta-données conduit à un certain nombre de problèmes.

Contraintes d'intégrité

- ▶ Un cadre pour ajouter une sémantique au modèle relationnel.
- Propriétés supposées être satisfaites par toutes les instances d'un schéma de bases de données.
- Ex. : le numéro de sécurité sociale comme identifiant.

Films	Titre	Metteur	Acteur
	Les oiseaux	Hitchcock	Hedren
	Les oiseaux	Hitchcock	Taylor
	Bladerunner	Scott	Hannah
	Apocalypse Now	Coppola	Brando

Programme	Ciné	Salle	Titre	Friandise
	Rex	1	Les oiseaux	café
	Rex	1	Les oiseaux	popcorn
	Rex	2	Bladerunner	café
	Rex	2	Bladerunner	popcorn
	ArtC	1	Les oiseaux	thé
	ArtC	1	Les oiseaux	popcorn
	Cinoche	1	Les oiseaux	Coca Cola
	Cinoche	1	Les oiseaux	vin
	Cinoche	2	Bladerunner	Coca Cola
	Cinoche	2	Bladerunner	vin

TABLE - Exemple BD

Introduction dépendances

- Le schéma en lui-même ne fait aucune restriction sur les données qui peuvent être stockées.
- ► Toutefois, la sémantique attendue de ce schéma peut impliquer plusieurs restrictions.

Les dépendances fonctionnelles

- ► Les valeurs de certains des attributs d'un tuple déterminent de façon unique, dit *fonctionnellement*, les valeurs des autres attributs du tuple.
- ▶ Un seul metteur en scène associé à chaque titre de film

Films : Titre
$$\rightarrow$$
 Metteur

 Dans Programme, un seul titre de film est associé à un couple cinéma-salle donné

Programme : Ciné, Salle \rightarrow Titre

Les dépendances d'inclusion

- ▶ Un autre type de dépendances, appelées dépendances d'inclusion (DI) ou contraintes référentielles.
- ► Entre 2 relations .
- ► Tout titre projeté actuellement (présent dans la relation Programme) est le titre d'un film (c'est-à-dire apparaissant dans la relation Films) :

 $Programme[Titre] \subseteq Films[Titre]$

Un mécanisme formel pour exprimer des propriétés attendues des données stockées

Si on sait que la BD satisfait un ensemble de dépendances, alors cette information peut être utilisée :

- pour améliorer la conception d'un schéma;
- pour protéger les données en se prémunissant contre certaines mise à jour erronées;
- pour améliorer les performances.

On étudiera les dépendances

- fonctionnelles,
- d'inclusion.
- multivaluées¹

^{1.} Il existe une forme générale de dépendances dite dépendance de jointure que nous n'aborderons pas dans ce cours.

Conception du schéma et anomalies de mise à jour

Les dépendances fournissent des informations sur la sémantique de l'application afin que le système puisse aider l'utilisateur à choisir, parmi tous les schémas possibles, le plus approprié.

Il existe plusieurs façons, pour un schéma, de ne pas être approprié...

Informations incomplètes

Supposons qu'il faille insérer le titre d'un nouveau film et son metteur en scène sans encore connaître les acteurs.

- Impossible avec le schéma décrit précédemment. Anomalie d'insertion.
- ▶ Phénomène analogue pour les anomalies de suppression.

Redondance

- ▶ Le fait que *Coca Cola* puisse être trouvé au *Cinoche* est enregistré plusieurs fois.
- Supposons de plus que le directeur du Cinoche décide de vendre du Pepsi Cola au lieu du Coca Cola.
- ▶ Il faut modifier plusieurs tuples sinon violation de la dépendance de jointure. Anomalie de modification possible.
- ▶ Des anomalies d'insertion et de suppression sont également causées par la redondance.

Un meilleur schéma

► Films pourrait être décomposée en deux relations M-Metteur[Titre, Metteur] et M-Acteur[Titre, Acteur] avec M-Metteur vérifiant la DF

 $Titre \rightarrow Metteur$

▶ Programme pourrait être décomposée en deux relations ST-Programme[Ciné, Salle, Titre] et S-Programme[Ciné, Friandise], avec ST-Programme vérifiant la DF

Ciné, Salle \rightarrow Titre

Intégrité des données

Dépendances de données lors des mises-à-jour

- Une proposition de m-à-j conduisant à une violation d'une dépendance σ est rejetée.
- ▶ Durant une transaction, la BD *peut* être dans un état inconsistant mais, à la fin de celle-ci, le système doit vérifier l'intégrité de la BD
 - Si les dépendances sont violées, alors la transaction entière est rejetée (rollback),
 - sinon elle est acceptée (commit).

Implémentation efficace et optimisation de requêtes

- ► La connaissance des propriétés structurelles des données stockées est utile à l'amélioration des performances d'un système pour une application particulière.
- La satisfaction des dépendances conduit à une grande variété d'alternatives pour les structures de stockage et d'accès.
- Ex. : La satisfaction d'une df ou d'une dj implique qu'une relation peut être stockée physiquement sous forme décomposée.
- Ex. ++ : La satisfaction d'une dépendance de clé peut être utilisée pour réduire l'espace d'indexation.

Exemple d'optimisation

- ans(d, a) ← Films(t, d, a'), Films(t, d', a) renvoie les couples (d, a), où un acteur a joue dans un film mis en scène par d. Une implémentation naïve de cette requête exige une jointure;
- ▶ puisque Films satisfait Titre → Metteur, cette requête peut être simplifiée en ans(d, a) ← Films(t, d, a) qui peut être évaluée sans jointure;
- en effet, lorsque $\{(t, d, a'), (t, d', a)\}$ est trouvé dans la relation *Films*, on doit avoir d = d', aussi peut-on aussi bien n'utiliser que $\{(t, d, a)\}$, ce qui conduit à la requête simplifiée.

Fin du deuxième cours.