INFORMACIÓ I SEGURETAT 17 de juny de 2019

Nom i cognoms:	NIU:	Grup:	
•			

1. (4 punts: 1+0.5+1+0.5+1)

Sigui C un codi del que coneixem una matriu generadora

$$G = \left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array}\right)$$

- (a) Doneu una matriu de control H del codi C. **Usant la matriu de control** H, doneu els paràmetres n,k,d del codi C. Justifiqueu els resultats.
- (b) Construïu la taula estàndard del codi C.
- (c) Descodifiqueu (corregint errors i donant la informació associada al vector rebut) els vectors rebuts $v_1 = (1, 1, 1, 1, 1)$ i $v_2 = (0, 1, 0, 1, 1)$.
- (d) Doneu les equacions que han de complir x, y, z, t, u de manera que el vector v = (x, y, z, t, u) sigui del codi C.
- (e) Doneu la matriu de control del codi estès C^* de C i justifiqueu quina és la distància mínima del codi C^* .

Solució:

(a) La matriu generadora *G* és sistemàtica, o sigui que la matriu de control serà:

$$H = \left(\begin{array}{ccccc} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

És fàcil veure que el mínim nombre de columnes dependents de H és 3 (per exemple la primera, la tercera i la quarta són dependents). La longitud n és el nombre de columnes de H, n=5, i el nombre de files de H és n-k, per tant la dimensió és k=2.

Així, els paràmetres de C són: n = 5, k = 2, d = 3.

(b) El codi C és 1-corrector, o sigui que la taula estàndard tindrà com entrades tots els vectors possibles en els quals hi hagi 1 error com a màxim. Per cada entrada e_i calculem la síndrome $H(e_i)$ i obtenim:

Vector d'error	Síndrome		
00000	000		
10000	110		
01000	011		
00100	100		
00010	010		
00001	001		

(c) Per descodificar els vectors rebuts, primer de tot calcularem la síndrome,

$$H(v_1) = H(1, 1, 1, 1, 1) = (0, 1, 0); \ H(v_2) = H(0, 1, 0, 1, 1) = (0, 0, 0).$$

Mirant la taula estàndard observem que l'error corresponent a v_1 és (0,0,0,1,0) i a v_2 és (0,0,0). O sigui que després de corregir errors en els dos vectors rebuts podem assegurar que les corresponents paraules codi són (1,1,1,0,1) i (0,1,0,1,1).

Com que el codi C te la matriu generadora sistemàtica podem escriure que la informació associada a v_1 és (1,1) i a v_2 és (0,1).

(d) Les paraules codi v = (x, y, z, t, u) del codi C han de complir que H(v) = 0. O sigui:

$$x + z = 0$$
$$x + y + t = 0$$
$$y + u = 0$$

(e) La matriu de control del codi estès de C té com a matriu de control:

$$H^* = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

El mínim nombre de columnes linealment dependents a H^* és 4 (per exemple les columnes 1,2,3,5) o sigui que la distància mínima del codi estès C^* és 4.

2. (2 punts)

En el mode de xifratge CBC (autenticació) tenim que l'equació per xifrar és $C_i = E_k(M_i \oplus C_{i-1} \oplus M_{i-1})$, on $C_0 = 0$ i $M_0 = 0$.

Escriviu l'equació que ens dona el text en clar M_i en funció del text xifrat i dibuixeu el diagrama del desxifratge.

Solució:

Aïllant M_i de l'equació que ens donen: $M_i = M_{i-1} \oplus C_{i-1} \oplus D_k(C_i)$.

El diagrama del desxifratge és:

3. (1 punts)

De les següents afirmacions digueu quines són certes i quines són falses. En qualsevol cas heu de justificar la resposta.

- (a) En la criptografia de clau pública no hi ha confusió ni difusió.
- (b) SPN i Feistel són dues tècniques que s'utilitzen dintre de cada round en un xifratge de clau privada. La primera en els xifratges convencionals i la segona en els xifratges lleugers.
- (c) Les funcions unidireccionals i les hash unidireccionals són funciones que no tenen inversa.
- (d) La tècnica de la distribució de claus fent servir criptografia quàntica permet tenir una seguretat del 75%, tant a l'emissor com al receptor, que cap espia coneix la clau compartida.

Solució:

- (a) Cert. Els conceptes de confusió i difusió només apliquen a la criptografia de clau privada.
- (b) Fals. Tant SPN com Feistel són dues tècniques que tant es poden utilitzar en criptografia de clau privada convencional com de clau privada lleugera.

- (c) Fals. Les funcions *hash unidireccionals* no tenen inversa, les funcions *unidireccionals* sí que tenen inversa, encara que és "difícil" de calcular.
- (d) Fals. La seguretat de que no hi hagi espies que coneguin la clau compartida pot ser tant alta com vulguem.
- 4. (3 punts: 0.5+1+1+0.5) Definim la funció hash $h_{10}: \mathbb{Z} \longrightarrow \mathbb{Z}_{10}$ que, donat $m \in \mathbb{Z}$ retorna la suma dels dígits de m mòdul 10. Per exemple, $h_{10}(185) = 1 + 8 + 5 \mod 10 = 4$.
 - (a) Definiu què és una col·lisió d'una funció hash i doneu una col·lisió de la funció hash h_{10} .
 - (b) A i B tenen les següents claus públiques en un criptosistema RSA: $PK_A = (n_A, e_A) = (209, 29)$ i $PK_B = (n_B, e_B) = (299, 31)$. L'usuari A sap que 209 = 11 * 19 i l'usuari B sap que 299 = 13 * 23.
 - 1) A vol enviar a B els valors (c, s) on c és el missatge m = 132 xifrat i s és la signatura de $h_{10}(m)$. Quins valors envia A?
 - 2) Un espia fa un atac *person in the middle* entre *A* i *B*. Intercepta els valors (*c*, *s*) que *A* envia a *B* i els substitueix per (83, 24) fent-se passar per *A*. Pot verificar *B* que els valors (83, 24) els ha enviat l'usuari *A*?
 - 3) Si la resposta a l'apartat anterior és negativa, què hauria d'haver fet l'espia per fer-se passar per l'usuari *A*. Si la resposta és positiva, justifiqueu què ha fallat en el protocol de signatura digital amb hash?

Solució:

(a) Una col·lisió d'una funció hash és una situació que es dóna quan dos missatges diferents tenen la mateixa imatge després d'aplicar la funció hash. Per exemple, els valors 185 i 220 són una col·lisió ja que $h_{10}(185) = h_{10}(220) = 4$.

(b)

1) Primer A xifra el missatge m = 132 per enviar a B. Tenim que

$$c = m^{e_B} \mod n_B = 132^{31} \mod 299 = 76.$$

Per signar $h_{10}(132) = 6$, A fa servir la clau privada que és $d_A = e_A^{-1} \mod \phi(n_A)$. Tenim que $\phi(n_A) = 10 * 18 = 180$ i, per tant, $d_A = 29^{-1} \mod 180 = 149$. La signatura és

$$s = (h_{10}(m))^{d_A} \mod n_A = 6^{149} \mod 209 = 24.$$

A envia (76, 24).

2) Per verificar la signatura, B necessita la seva clau privada que és $d_B = e_B^{-1} \mod \phi(n_B) = 31^{-1} \mod 264 = 247$. El missatge m que ha xifrat A és

$$m = 83^{247} \mod 299 = 268.$$

B, per verificar la signatura, calcula

$$s^{e_A} \mod n_A = 24^{29} \mod 209 = 6$$

i comprova que efectivament $h_{10}(268) = 6$. Per tant, la signatura és vàlida.

3) El protocol ha fallat perquè és fàcil trobar col·lisions amb el hash h_{10} .

$29^{-1} \mod 180 = 149$	$29^{-1} \mod 209 = 173$	$29^{-1} \mod 264 = 173$	$29^{-1} \mod 299 = 165$
$31^{-1} \mod 180 = 151$	$31^{-1} \mod 209 = 27$	$31^{-1} \mod 264 = 247$	$31^{-1} \mod 299 = 164$
$132^{29} \mod 180 = 72$	$132^{29} \mod 209 = 132$	$132^{29} \mod 264 = 0$	132 ²⁹ mod 299 = 227
$132^{31} \mod 180 = 108$	$132^{31} \mod 209 = 132$	$132^{31} \mod 264 = 0$	$132^{31} \mod 299 = 76$
$132^{149} \bmod 180 = 72$	$132^{149} \mod 209 = 132$	$132^{149} \mod 264 = 0$	$132^{149} \mod 299 = 149$
$132^{164} \mod 180 = 36$	$132^{164} \mod 209 = 77$	$132^{164} \bmod 264 = 0$	$132^{164} \mod 299 = 165$
$132^{173} \mod 180 = 72$	$132^{173} \mod 209 = 132$	$132^{173} \bmod 264 = 0$	$132^{173} \mod 299 = 97$
$132^{247} \mod 180 = 108$	$132^{247} \mod 209 = 132$	$132^{247} \bmod 264 = 0$	$132^{247} \mod 299 = 297$
$24^{29} \mod 180 = 144$	$24^{29} \mod 209 = 6$	$24^{29} \mod 264 = 72$	$24^{29} \mod 299 = 254$
$24^{31} \mod 180 = 144$	$24^{31} \mod 209 = 112$	$24^{31} \mod 264 = 24$	$24^{31} \mod 299 = 93$
$24^{149} \mod 180 = 144$	$24^{149} \mod 209 = 28$	$24^{149} \mod 264 = 72$	$24^{149} \mod 299 = 254$
$24^{164} \bmod 180 = 36$	$24^{164} \bmod 209 = 82$	$24^{164} \mod 264 = 192$	$24^{164} \mod 299 = 139$
$24^{173} \bmod 180 = 144$	$24^{173} \mod 209 = 63$	$24^{173} \mod 264 = 96$	$24^{173} \mod 299 = 254$
$24^{247} \mod 180 = 144$	$24^{247} \mod 209 = 150$	$24^{247} \mod 264 = 216$	$24^{247} \bmod 299 = 93$
$83^{29} \mod 180 = 23$	$83^{29} \mod 209 = 68$	$83^{29} \mod 264 = 35$	$83^{29} \mod 299 = 226$
$83^{31} \mod 180 = 47$	$83^{31} \mod 209 = 83$	$83^{31} \mod 264 = 83$	$83^{31} \mod 299 = 21$
$83^{149} \mod 180 = 23$	$83^{149} \mod 209 = 68$	$83^{149} \mod 264 = 35$	$83^{149} \mod 299 = 135$
$83^{164} \mod 180 = 121$	$83^{164} \mod 209 = 163$	$83^{164} \mod 264 = 97$	$83^{164} \mod 299 = 248$
$83^{173} \mod 180 = 23$	$83^{173} \mod 209 = 106$	$83^{173} \mod 264 = 227$	$83^{173} \mod 299 = 148$
$83^{247} \mod 180 = 47$	$83^{247} \mod 209 = 140$	$83^{247} \mod 264 = 107$	$83^{247} \mod 299 = 268$