

Doc. Dr. Ing. Pavel Kovář

Obsah

- Digitalizace signálu
- DUC, DDC
- AGC
- Squalch
- Selektivní volba
- AFC

- RF sampling digitalizace RF signálu
 - přijímač s přímým zesílením
- IF sampling digitalizace IF signálu
 - superheterodyn s jedním nebo více směšováním
- BB sampling digitalizace komplexní obálky (IQ)
 - Přijímač s přímou konverzí do základního pásma
 - Superheterodyn + IQ demodulátor
 - Přijímač s přímým zesílením + IQ demodulátor

Kvadraturní modulátor a demodulátor

1.5GHz to 2.4GHz Direct Conversion Transmitter Application with LO Feedthrough and Image Calibration Loop

Teoretický limit SNR způsobený jitterem hodin

$$SNR(dBFS) = -20log(2\pi f_i \sigma)$$

 f_i kmitočet σ směrodatná odchylka jitteru [s]

Zhoršení SNR vlivem jitteru

$$SNR_{Degradation} = 10log(10^{-SNRadc/10} + 10^{-SNR})$$

SNRadc – odstup signálu od šumu ADC

Degradace SNR jako funkce kmitočtu

Vztah mezi fázovým šumem a jitterem

$$\sigma = \frac{1}{2\pi f_0} \left| \int_f 2C_{SSB}(f)df \right|$$

 $C_{SSB}(f)$ fázový šum oscilátoru f_0 Vzorkovací kmitočet

Porovnání efekt fázového šumu na různých kmitočtech

Porovnání fázového šumu VCO a VCXO

Číslicové mezifrekvenční stupně

DUC digital Up convertor

DDS digital Down converter

Komplexní obálka se generuje na podstatně nižším kmitočtu než je vzorkovací kmitočet f_v DAC DUC provádí interpolaci signálu na f_v a modulaci na nosný nebo mezifrekvenční kmitočet.

DDC provádí decimaci signálu. Vzorkovací kmitočet komplexní obálky je podstatně nižší než f_v .

Interpolační filtry

 Velká změna vzorkovacího kmitočtu lze dělat pomoci COMB filtrů

 CIC Cascaded integrator COMB – kaskádně řazení COMB filtry

DDC

 Vhodná volba vzorkovacího kmitočtu může zjednodušit číslicová kvadraturní demodulátor

$$f_{NCO} = \frac{N}{4} f_{v}$$

$$N = 1 \qquad \cos\left(2\pi \frac{1}{4}n\right) = 1, 0, -1, 0, \dots$$

$$\sin\left(2\pi \frac{1}{4}n\right) = 0, 1, 0, -1, \dots$$

...

V modulátoru, resp. demodulátoru se v tomto případě nísobí pouze 0, +1, -1, což zásadním způsobem zjednoduči hardware

Pomocné obvody přijímačů

- AGC Automatic gain control automatické vyrovnání citlivosti přijímače
 - Pomocí zpětné vazby udržuje zesílení přijímače tak, aby na výstupu byla optimální úroveň signálu pro demodulaci nebo analogově digitální převod

- Zisk přijímače se reguluje
 - Řízeným atenuátorem
 - VGA –variable gain amplifier zesilovačem s řízeným ziskem
 - DVGA digitálně řízený VGA

Pomocné obvody přijímačů

- Squelch šumová brána
 - Slouží k blokování NF obvodů přijímače když není přítomný signál, aby reproduktor nešuměl
 - Úrovňový squelch
 - Otevírá NF obvody když úroveň signálu na výstupu přijímače překročí prahovou hodnotu
 - Šumový squelch
 - Otevírá NF obvodu když dojde k redukci šumu v nadakustickém pásmu
 - Tónově kódovaný squelch
 - Otevírá NF obvody když je detekován tón případně kombinace tónů pod akustickým pásmem

Úrovňový squelch

Zisk přijímače závisí na teplotě, kmitočtu atd. To způsobuje problémy s funkcí úrovňového squelche.

Šumivý squelch

Squelch je citlivý na redukci šumu v nadakustickém pásmu. Velice spolehlivý squlech, který nezávisí na zisku přijímače.

Šumivý squelch

Pro otevírání NF obvodů slouží speciální tóny vysílané vysílačem, které leží pod akustickým pásmem. V případě kombinace tónů lze použít jako selektivní volbu.

Selektivní volba

- Umožňuje výběrové volání uživatele v případě, že se používá sdílený kmitočet
- Pod tónová volba
- DTMF

AFC

- Automatic frequency control
 - Dolaďování kmitočtu přijímače pomocí zpětné vazby
 - Používá se u analogově laděných FM přijímačů

AFC u transceiverů pro loT

- Požadavek na nízkou spotřebu a cenu vede k používání levných málo stabilních krystalů
- Pro demodulaci jsou použity nekoherentní detektory, které vyžadují co nejužší MF zesilovač pro dosažení vysoké citlivosti
- Řeší se AFC. Pro příjem preambule se použije velká šířka pásma. Dorovná se chyba kmitočtu. Pro demodulaci datové zprávy se přepne na menší šířku pásma

Integrované transceivery

Si446x jeden a doporučených transceiverů pro Sigfos

- Kmitočtový rozsah
- Vysílaný výkon
- Přenosová rychlost
- Modulace
- Citlivost
- Spotřeba

142-1050 MHz

až 20 dBm

100 Bd-1 MBd

FSK, GFSK, 4FSK, OOK

až -129 dBm

10 mA RX

85 mA TX 20 dBm

40 nA stendby

- Podpora kmitočtového skákání (FH SS)
- Sub optimální demodulátor
- Packer handler, CRC, Scrambling, FEC NE

Citlivost, chyba kmitočtu, šířka pásma

- Modem používá sub optimální demodulátor, ne přizpůsobený filtr
- Citlivost modemu je závislá na šumové šířce pásma přijímače
- Šířka pásma přijímače musí být nastavena tak, aby jí mez většího zkreslení prošel modulovaná signál zatížený
 - 1. Chybou kmitočtového normálu vysílače
 - 2. Chybou kmitočtového normálu přijímače
 - 3. Dopplerovým posunem kmitočtů způsobeným vzájemným pohybem přijímače a vysílače

Příklad

Šířka pásma GFSK modulace je $v_B+2\Delta f$ Pro GFSK 1,2 kBd a kmitočtový zdvih Δf =600 Hz je šířka pásma modulovaného signálu 2,4 kHz

IoT: krystal 10 ppm kmitočtu 869 MHz způsobí chybu +/-8,7 kHz, musí být šumová šířka pásma přijímače 2.8,7 + 2,4 = 19,8 kHz

CubeSat: 1 ppm TCXO, Dopplerův kmitočet na 437 MHz pro LEO dráhu +/- 8 kHz, šumová šířka pásma přijímače musí být 2.0,4 + 2.8 + 2,4 = 19,2 kHz

V obou případech je šumová šířka pásma přijímače podstatně větší, něž by byla bez chyby kmitočtu, což podstatným způsobem snižuje citlivost přijímače!

Citlivost, chyba kmitočtu, šířka pásma

Řešení

Při synchronizaci se pomocí FLL kompenzuje kmitočtová chyba, pak se přepne na nižší šířku pásma

Nevýhoda: Je třeba prodloužit preambuli paketu

