Algorithmenentwurf HA 10

Lukas Brandt: 7011823, Clemens Damke: 7011488, Lukas Giesel: 7011495 30. Juni 2016

Aufgabe 21

a. Algorithmus

```
in_G(v) := \{(v_1, v_2) \in E \mid v_2 = v\} \text{ mit } G = (V, E)
out_G(v) := \{(v_1, v_2) \in E \mid v_1 = v\} \text{ mit } G = (V, E), \qquad w_G(v) := \frac{|in_G(v)|}{|out_G(v)|}
ind(V, E) := (V, \{e \in E \cap V^2\})
```

Algorithm 1 Maximaler azyklischer Teilgraph Approximation

```
1: function DAG(G)
```

2:
$$(V, E) \leftarrow G$$

3: if |V| = 0 then return \emptyset

```
4: s \leftarrow null
```

5: for $v \in V$ do

6: if $s = null \lor w_G(v) < w_G(s)$ then $s \leftarrow v$

7: **return** $out_G(s) \cup DAG(ind(V \setminus \{s\}, E))$

b. Korrektheit und Laufzeit

Die Funktionen in_G , out_G und w_G lassen sich alle in $\mathcal{O}(|V|)$ berechnen, da jeder Knoten höchstens |V|-1 Nachbarn haben kann.

Die Zeilen 1 – 4 sind in $\mathcal{O}(1)$ ausführbar.

Die Zeilen 5 – 6 benötigen $\mathcal{O}(|V|^2)$, da 2|V|-mal w_G aufgerufen wird.

Zeile 7 benötigt $\mathcal{O}(|V| + |V|^3) = \mathcal{O}(|V|^3)$, da es genau |V| - 1 rekursive Aufrufe von dag gibt, die wegen den Zeilen 5 - 6 jeweils $\mathcal{O}(|V|^2)$ benötigen.

Insgesamt hat dag also eine Zeitkomplexität von $\mathcal{O}(|V|^3)$.

dag(G) berechnet die Kantenmenge eines DAGs von G.

Denn $\forall i \in \{1, ..., n\} : \forall (s_i, s_j) \in dag(G) : i < j$, wobei s_1 das im ersten / direkten Aufruf von dag und s_n das im letzten rekursiven Aufruf selektierte s ist. Es gibt also eine topologische Sortierung von (V, dag(G)).

c. Approximationsfaktor

$$\frac{\sum_{v \in V} |in_G(v)|}{\sum_{v \in V} |out_G(v)|} = 1$$

$$\Rightarrow \exists v \in V : w_G(v) \leq 1$$
Seien s_1, \ldots, s_n definiert, wie in Aufgabenteil b.
Seien G_1, \ldots, G_n die nach dag übergebenen Graphen, mit $G_1 = G$ und $G_n = (\{s_n\}, \emptyset)$.
$$\Rightarrow \forall i \in \{1, \ldots, n\} : w_{G_i}(s_i) \leq 1 \land in_{G_i}(s_i) = in_G(s_i) \backslash (\cup_{j \in \{1, \ldots, i-1\}} out_{G_j}(s_j))$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} : |out_{G_i}(s_i)| \geq |in_{G_i}(s_i)|$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} \land |out_{G_i}(s_i)| \geq |in_G(s_i)| : \min. \text{ die Hälfte der Kanten von } s_i \text{ in } deg(G).$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} \land |out_{G_i}(s_i)| < |in_G(s_i)| : in_G(s_i) \backslash in_{G_i}(s_i) \text{ sind bereits in } deg(G).$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} \land |out_{G_i}(s_i)| < |in_G(s_i)| : |out_{G_i}(s_i) \cup in_G(s_i) \backslash in_{G_i}(s_i)| \geq |in_G(s_i)|$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} \land |out_{G_i}(s_i)| < |in_G(s_i)| : \min. \text{ die Hälfte der Kanten von } s_i \text{ in } deg(G).$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} : \min. \text{ die Hälfte der Kanten von } s_i \text{ in } deg(G).$$

$$\Rightarrow \forall i \in \{1, \ldots, n\} : \min. \text{ die Hälfte der Kanten von } G \text{ in } deg(G).$$

$$\Rightarrow \exists i \in \{1, \ldots, n\} : \exists$$