DE3 With Proof Chain Rule Answers P3

1	(i)	State or imply $\frac{dV}{dt} = 1000 \frac{dh}{dt}$	B1	
		State or imply $\frac{dV}{dt} = 30 - k\sqrt{h}$ or $\frac{dh}{dt} = 0.03 - m\sqrt{h}$	B1	
		Show that $k = 10$ or $m = 0.01$ and justify the given equation [Allow the first B1 for the statement that $0.03 = 30/1000$.]	B1	3
	(ii)	Separate variables and attempt integration of $\frac{x-3}{x}$ with respect to x	M1*	
		Obtain x –3 ln x, or equivalent Obtain 0.005t, or equivalent	A1 A1	
		Use $x=3$, $t=0$ in the evaluation of a constant or as limits in an answer involving $\ln x$ and kt Obtain answer in any correct form e.g. $t=200(x-3-3\ln x+3\ln 3)$ [To qualify for the first M mark, an attempt to solve the earlier differential equation in h and t must involve correct separation of variables, the use of a substitution such as $\sqrt{h}=u$, and an attempt to integrate the resulting function of u .]	M1(dep A1	*) 5
	(iii)	Substitute $x = 1$ and calculate t Obtain answer $t = 259$ correctly	M1 A1	2
			9709/0	3/O/N/04
2	(i)	State or obtain $\frac{dV}{dt} = 4h^2 \frac{dh}{dt}$, or $\frac{dV}{dh} = 4h^2$, or equivalent	B1	
		State or imply $\frac{dV}{dt} = 20 - kh^2$	B1	
		Use the given values to evaluate k Show that $k = 0.2$, or equivalent, and obtain the given equation [The M1 is dependent on at least one B mark having been earned.]	M1 A1	[4]
	(ii)	Fully justify the given identity	B1	[1]
	(iii)	Separate variables correctly and attempt integration of both sides Obtain terms $-20h$ and t , or equivalent	M1 A1	
		Obtain terms $d_{n}(10+b) + hl_{n}(10-b)$ where $d_{n}(10+h)$	3.61	
		Obtain terms $a\ln(10+h) + b\ln(10-h)$, where $ab \neq 0$, or $k\ln\left(\frac{10+h}{10-h}\right)$	M1	
		Obtain terms $a \ln(10 + h) + b \ln(10 - h)$, where $ab \neq 0$, or $k \ln \left(\frac{10 - h}{10 - h}\right)$ Obtain correct terms, i.e. with $a = 100$ and $b = -100$, or $k = 2000/20$, or equivalent Evaluate a constant and obtain a correct expression for t in terms of h	A1 A1	[5]

3

State or imply
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$$

B1

Use
$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
, or equivalent

M1 A1

[4]

Obtain the given equation

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a correct method.]

[Allow B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

 $\frac{k}{3\pi}$ has been justified.]

(ii) Separate variables and integrate at least one side

M1

Obtain terms $\frac{2}{5}h^{\frac{5}{2}}$ and -At, or equivalent

A1

Use t = 0, h = H in a solution containing terms of the form $ah^{\frac{5}{2}}$ and bt + c

M1

Use t = 60, h = 0 in a solution containing terms of the form $ah^{\frac{5}{2}}$ and bt + c

M1

Obtain a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$

A1

(ii) Obtain final answer $t = 60 \left(1 - \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent

A1 [6]

(iii) Substitute $h = \frac{1}{2}H$ and obtain answer t = 49.4

B1 [1]

© UCLES 2013

9709/31/O/N/13