Chapitre

Vecteurs (1) : égalités de vecteurs et parallélogrammes

12

12.1 Précisions sur les parallélogrammes

Définition 12.1 Deux droites (du plan) sans points communs seront dites strictement parallèles.

Deux droites sont parallèles si elles sont strictement parallèles **ou** confondues.

■ Exemple 12.1 L'affirmation suivante est fausse :

Si les côtés opposés d'un quadrilatère sont parallèles, alors c'est un parallélogramme.

Proposition 12.1 Si le quadrilatère ABDC a ses côtés opposés strictement parallèles, alors ABDC est un parallélogramme strict (A, B et C non alignés). 12.1).

Définition 12.2 On dira que ABDC est un parallélogramme lorsque les segments [AD] et [BC] ont le même milieu.

Un parallélogramme peut être dégénéré (figure 12.2)

A, B et C non alignés B

Figure 12.1 – $AB\mathbf{D}C$ est un parallélogramme strict

Figure 12.2 – Exemples de parallélogrammes dégénérés, avec les points A, B et C alignés.

Théorème 12.2 — admis. 1 Si ABDC et ABFE sont des parallélogrammes, alors CDFE est un parallélogramme.

illustration.

Il est difficile de prouver que *CDFE* n'est pas un quadrilatère croisé. Il faut passer par une étude de cas, et utiliser les critères d'égalité des triangles. http://gabrielbraun.free.fr/Geometry/Tarski/plg_pseudo_trans.html

12.2 Translations, vecteurs et coordonnées

Le mot « vecteur » vient du latin « vehere » qui signifie conduire, transporter. 2

Définition 12.3 — vecteur lié. Soit A et B deux points du plan. Le vecteur lié \overrightarrow{AB} est le segment orienté, du point A vers le point B^3 .

- A est l'origine du vecteur \overrightarrow{AB}
- B est l'extrémité du vecteur \overrightarrow{AB} .

Le vecteur peut être dégénéré si le même point est origine et extrémité : \overrightarrow{AA} .

Définition 12.4 — Dans un repère (O; I, J). et les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Le vecteur \overrightarrow{AB} a pour coordonnées $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

■ Exemple 12.2 Soient les points A(2; -4), B(-1; 3), C(-3; -2)Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{CA} , \overrightarrow{CB} et \overrightarrow{AA} .

Utiliser https://www.geogebra.org/classic/xgcanh84

 $\begin{tabular}{ll} {\bf Figure~12.3-Le~rep\`ere}~(O;I,J)~{\rm n'est}\\ {\rm pas~forc\'ement~orthonorm\'e}. \end{tabular}$

Définition 12.5 — translation de vecteur \overrightarrow{AB} . est la transformation du plan qui a un point X associe son image Y tel que $AB\mathbf{Y}X$ est un parallélogramme.

Définition 12.6 — translation de vecteur \overrightarrow{AA} . est une identité. Elle transforme tout point du plan en lui-même.

On dira que c'est la translation de vecteur nul $\overrightarrow{0}$.

Définition 12.7 — **Dans un repère** (O; I, J). la translation de vecteur $\overrightarrow{AB} \begin{pmatrix} a \\ b \end{pmatrix}$ transforme le point C(x; y) en le point D(x + a; y + b).

12.2.1 Exercices vecteurs et coordonnées

Dans le repère orthonormé $(O; I, \bar{J})$:

1) Donner les coordonnées des vecteurs $\overrightarrow{AA'}\left(\cdots\right)$, $\overrightarrow{BB'}\left(\cdots\right)$, $\overrightarrow{CC'}\left(\cdots\right)$, $\overrightarrow{DD'}\left(\cdots\right)$, $\overrightarrow{EE'}\left(\cdots\right)$.

- 2) a) Placer le point M' image de M par la translation AA'.
 - b) Placer l'image N' de N par la translation de vecteur $\overrightarrow{BB'}$.
 - c) Placer l'antécédent P' de P par la translation de vecteur $\overrightarrow{CC'}$.
 - d) Placer l'antécédent Q' de Q par la translation de vecteur $\overrightarrow{DD'}$.
 - e) Placer l'image R de O par la translation de vecteur $\overrightarrow{EE'}$.
- a) Placer le point S tel que \overrightarrow{ES} $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$
 - b) Placer le point T tel que \overrightarrow{AT} $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$
 - c) Placer le point U tel que \overrightarrow{BU}

- d) Placer le point V tel que $\overrightarrow{VO}\begin{pmatrix}4\\3\end{pmatrix}$.

 e) Placer le point W tel que $\overrightarrow{WD}\begin{pmatrix}4\\-2\end{pmatrix}$ f) Placer le point X tel que $\overrightarrow{XE}\begin{pmatrix}-3\\5\end{pmatrix}$.

Exercice 2

Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{CA} dans les cas suivants :

a) A(3; -8), B(-8; -9) et C(0; 8).

c) A(0;0), B(-4;5) et $C(3;\sqrt{2})$. d) A(0;3), B(-5;0) et C(2;-2).

b) A(-1;1), B(4;-4) et C(5;-2).

- **Exemple 12.3** Trouver les coordonnées des points M et N du repère (O; I, J) dans les cas suivants M est l'image de F(-2;3) par la translation de

G(5;3) est l'image de N par la translation de vecteur $\overrightarrow{CD} \begin{pmatrix} -3\\2 \end{pmatrix}$

Exercice 3

On considère un repère (O; I, J). Soit les points A(1; -3), B(-3; -4) et C(-7; -8).

Trouver par le calcul les coordonnées du point M(x; y) dans les cas suivants :

- a) M est l'image de O par la translation de \overrightarrow{AB} (\cdots
- b) M est l'image de A par la translation de \overrightarrow{BC} .
- c) M est l'image de I par la translation de $C\acute{A}$.
- d) J est l'image de M(x;y) par la translation de \overrightarrow{CA} .

Exercice 4 — Égalités de vecteurs, direction, sens et norme

an ection, cons et normer									
						E			
					$\overline{}$				
	F								
			<u></u>				D		
					C				
			B						
A									

En utilisant les points de la figure, indiquer

- e) un vecteur égal à $\overrightarrow{DE} = :$

12.3 Égalité de vecteurs

B est l'image de A par la translation t de vecteur \overrightarrow{XY} . On dira que

Figure 12.4 – B est l'image de A par la translation \overrightarrow{XY}

 \overrightarrow{XY} et celle de vecteur \overrightarrow{AB} (la démonstration nécessite le theorème 2).

 \overrightarrow{XY} et \overrightarrow{AB} représentent la même translation nommée vecteur \overrightarrow{u} .

On écrit $\vec{u} = \overrightarrow{AB} = \overrightarrow{XY}$.

$$\overrightarrow{u} = \overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{XY}$$

 4 « Vecteur \overrightarrow{XY} » et « la translation de vecteur \overrightarrow{XY} » signifient désormais la même chose.

Définition 12.8 — **Dans un repère** (O; I, J). deux vecteurs sont égaux $\overrightarrow{AB} = \overrightarrow{CD}$ s.s.i. leurs couples de coordonnées sont égaux.

Postulat 12.3 L'égalité de vecteurs reste vraie si on change de repère et :

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.

Définition 12.9 — caractéristiques d'un vecteur $\vec{u} \neq \vec{0}$. Soit le vecteur \vec{u} et ses représentants \overrightarrow{AB} \overrightarrow{XY} .

Le vecteur \overrightarrow{u} et tous ses représentants sont caractérisés par : une même **direction** 5 parallèle à la droite (AA')//(XY). un même **sens** selon la flèche, de A vers B, de X vers Y. une même **norme** notée $\|\overrightarrow{u}\| = AB = XY$.

Définition 12.10 — **Vecteur nul** $\vec{0}$. est la translation identité $\vec{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC} = \dots$ Sa norme vaut $||\vec{0}|| = 0.6$

⁵ On ne dit pas que deux vecteurs sont parallèles.

On ne dit pas qu'un vecteur est parallèle à une droite.

 6 Le vecteur $\overrightarrow{0}$ n'a ni direction ni sens!

12.3.1 Coordonnées du milieu d'un segment

 $\overrightarrow{AM} = \overrightarrow{MB}$ si et seulement si M est le milieu du segment [AB]

Démonstration.

$$M \text{ est le milieu de } [AB]$$

$$\iff \overrightarrow{AM} = \overrightarrow{MB}$$

$$\iff \overrightarrow{AM} \begin{pmatrix} x_M - x_A \\ y_M - y_A \end{pmatrix} = \overrightarrow{MB} \begin{pmatrix} x_B - x_M \\ y_B - y_M \end{pmatrix}$$

$$\iff \begin{cases} x_M - x_A = x_B - x_M \\ y_M - y_A = y_B - y_M \end{cases} \iff \begin{cases} 2x_M = x_A + x_B \\ 2y_M = y_A + y_B \end{cases}$$

$$\iff \begin{cases} x_M = \frac{x_A + x_B}{2} \\ y_M = \frac{y_A + y_B}{2} \end{cases}$$

Théorème 12.4 — formule pour les coordonnées du milieu d'un segment.

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ dans un repère.

Le milieu $M(x_M; y_M)$ de [AB] est le point de coordonnées :

$$x_M = \frac{x_A + x_B}{2}$$
$$y_M = \frac{y_A + y_B}{2}$$

■ Exemple 12.4 On considère les points A(1; 2), B(3; 1, 5), C(4; 0, 5) et D(2; 1). Montrer que le quadrilatère ABCD est un parallélogramme en déterminant les coordonnées des milieux des diagonales.

12.3.2 Exercices égalités vectorielles

Exercice 5 — Égalités vectorielles. À l'aide d'un schéma, préciser les énoncés vrais.

	Vrai	Faux
$1/Q$ est l'image de P par la translation \overrightarrow{AB} , alors $\overrightarrow{PQ} = \overrightarrow{AB}$		
$2/Q$ est l'image de P par la translation \overrightarrow{AB} , alors $\overrightarrow{AP} = \overrightarrow{BQ}$		
3 / Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{JO} = \overrightarrow{LI}$		
4/ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OJ} = \overrightarrow{LI}$		
5/ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OL} = \overrightarrow{JI}$		
6/ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OL} = \overrightarrow{IJ}$		
7/ Si I est le centre du parallélogramme $ECHO$ alors $\overrightarrow{EI} = \overrightarrow{IC}$		
8/ Si I est le centre du parallélogramme $ECHO$ alors $\overrightarrow{IO} = \overrightarrow{CI}$		
9/ Si Q est l'image de P par la symétrie de centre R , alors $\overrightarrow{PR} = \overrightarrow{RQ}$		
10/ Si M est le milieu de $[AB]$ alors $AM = BM$		
11/ Si $AM = BM$ alors M est nécessairement le milieu de $[AB]$		
12/ Si $\overrightarrow{AM} = \overrightarrow{MB}$ alors M est nécessairement le milieu de $[AB]$		
13/ Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $AB = CD$		
14/ Si $AB = CD$ alors $\overrightarrow{AB} = \overrightarrow{DC}$		
15/ Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $\overrightarrow{BC} = \overrightarrow{AD}$		

■ Exemple 12.5 — je fais.

Dans un repère on donne les points : I(2; -2), J(-1; -1), K(0; 1), L(-3; 2).

a) Montrer par le calcul que IJLK est un parallélogramme.

b) Trouver par le calcul le point M(x;y) tel que ILMJ est un parallélogramme.

Exercice 6 Soit les points A(-3; -1), B(5; -2), C(7; 3) et D(-1; 4) dans le repère (O; I, J). Montrer que ABCD est un parallélogramme.

Exercice 7 Soit les points A(11, -14), B(-13, 12) et C(-4, 7) dans le repère (O; I, J).

Trouver les coordonnées de M(x;y) tel que ABMC est un parallélogramme.

LG Jeanne d'Arc, 2nd
Année 2022/2023

Exercice 8 Soit les points A(12; 15), B(-11; 17) et C(-11; -13).

Calculer les coordonnées du point D(x;y) tel que ABCD soit un parallélogramme.

Exercice 9 Soit les points D(-14; 15); A(16; 11); T(15; -7).

DARK est le parallélogramme de centre T (intersection des diagonales). Retrouver par le calcul les coordonnées de R et K.

Exercice 10 — Variations. Le plan est muni d'un repère (O; I, J). Pour chacun des cas suivants, traduire la propriété donnée en une égalité de vecteurs. En déduire les équations vérifiées par les coordonnées de M(x; y), et les résoudre.

- a) A(-1;1), B=(-1;2). M(x;y) est tel que ABMO est un parallélogramme.
- b) A(-1,2), B=(3,1). M(x,y) est tel que AMBO est un parallélogramme.
- c) A(-2;1), B=(1;2). M(x;y) est tel que ABMI est un parallélogramme.
- d) A(-3, -2), B(-1, -1). M(x, y) est tel que A est le milieu du segment [MB]
- e) A(-3, -2), B(-1, -1). M(x, y) est tel que M est le milieu du segment [AB]
- f) A(2;5), B=(1;1). M(x;y) est tel que M est le milieu du segment [AB]
- g) A(1;5). M(x;y) est le symétrique de A par rapport à l'origine O.

Dans les exercices suivants, le repère (O; I, J) est orthonormé.

Exercice 11 Soit les points B(-10, -5), E(-16, 3), A(-48, -21) et U(-42, -29)

- a) Montrer que BEAU est un parallélgoramme.
- b) Calculer les longueurs des côtés adjacents BE et EA.
- c) Calculer les longueurs des diagonales BA et EU.
- d) Que pouvez vous dire du quadrilatère BEAU?

Exercice 12 Soit les points C(-7,9), A(6,5,2), F(-4,13) et E(-17,5,20)

- a) Montrer que CAFE est un parallélgoramme.
- b) Calculer les longueurs des diagonales CF et AE.
- c) Calculer les longueurs des côtés adjacents CA et AF.
- d) Que pouvez vous dire du quadrilatère CAFE?

Exercice 13 Soit le parallélogramme ARMY tel que A(-6,7); R(-11,9); Y(-7,13).

- a) Calculer la longueur de la diagonale RY
- b) Calculer les coordonnées de M, et en déduire la longueur de la diagone AM.

Dans les 2 derniers exercices, utiliser directement la formule des coordonnées du milieu d'un segment sans passez par des égalités vectorielles.

Exercice 14 Soit F(10, -8), U(13, 0), N(24, 9) et F(21, 1).

Montrer que FUNK est un parallélogramme en démontrant que les diagonales ont même milieu.

Exercice 15 Soit P(2;3), Q(5;4) et R(4;5).

- a) Calculer les coordonnées du milieu de [PQ].
- b) Montrer que R appartient au cercle de diamètre [PQ].

$$\overrightarrow{AA'} \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \ \overrightarrow{BB'} \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \ \overrightarrow{CC'} \begin{pmatrix} 7 \\ -3 \end{pmatrix}, \ \overrightarrow{DD'} \begin{pmatrix} -2 \\ 4 \end{pmatrix}, \ \overrightarrow{EE'} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$

a)
$$\overrightarrow{AB} \begin{pmatrix} -11 \\ -1 \end{pmatrix}$$
; $\overrightarrow{BC} \begin{pmatrix} 8 \\ 17 \end{pmatrix}$; $\overrightarrow{CA} \begin{pmatrix} 3 \\ -16 \end{pmatrix}$;

b)
$$\overrightarrow{AB} \begin{pmatrix} 5 \\ -5 \end{pmatrix}$$
; $\overrightarrow{BC} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\overrightarrow{CA} \begin{pmatrix} -6 \\ 3 \end{pmatrix}$;

c)
$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$
; $\overrightarrow{BC} \begin{pmatrix} 7 \\ \sqrt{2} - 5 \end{pmatrix}$; $\overrightarrow{CA} \begin{pmatrix} -3 \\ -\sqrt{2} \end{pmatrix}$;

d)
$$\overrightarrow{AB} \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$
; $\overrightarrow{BC} \begin{pmatrix} 7 \\ -2 \end{pmatrix}$; $\overrightarrow{CA} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$;

solution de l'exercice 3.

a)
$$\overrightarrow{AB} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$$
 et $M(-4; -1)$.

b)
$$\overrightarrow{BC} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 et $M(-3, -7)$.

c)
$$\overrightarrow{CA} \begin{pmatrix} 8 \\ 5 \end{pmatrix}$$
; $I(1;0)$ et $M(9;5)$.

d)
$$\overrightarrow{CA} \begin{pmatrix} 8 \\ 5 \end{pmatrix}$$
; $J(0;1)$ et $M(-8;-4)$

solution de l'exercice 5.

LG Jeanne d'Arc, 2nd Année 2022/2023

	Vrai	Faux
$1/Q$ est l'image de P par la translation \overrightarrow{AB} , alors $\overrightarrow{PQ} = \overrightarrow{AB}$	\boxtimes	
$2/Q$ est l'image de P par la translation \overrightarrow{AB} , alors $\overrightarrow{AP} = \overrightarrow{BQ}$		
3 / Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{JO} = \overrightarrow{LI}$		
$4/$ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OJ} = \overrightarrow{LI}$	\boxtimes	
5/ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OL} = \overrightarrow{JI}$	\boxtimes	
6/ Le quadrilatère $JOLI$ est un parallélogramme revient à dire $\overrightarrow{OL} = \overrightarrow{IJ}$		\boxtimes
7/ Si I est le centre du parallélogramme $ECHO$ alors $\overrightarrow{EI} = \overrightarrow{IC}$		
8/ Si I est le centre du parallélogramme $ECHO$ alors $\overrightarrow{IO} = \overrightarrow{CI}$		
9/ Si Q est l'image de P par la symétrie de centre R , alors $\overrightarrow{PR} = \overrightarrow{RQ}$	\boxtimes	
10/ Si M est le milieu de $[AB]$ alors $AM = BM$		\boxtimes
11/ Si $AM = BM$ alors M est nécessairement le milieu de $[AB]$		
12/ Si $\overrightarrow{AM} = \overrightarrow{MB}$ alors M est nécessairement le milieu de $[AB]$		\boxtimes
13/ Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $AB = CD$	\boxtimes	
14/ Si $AB = CD$ alors $\overrightarrow{AB} = \overrightarrow{DC}$		\boxtimes
15/ Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $\overrightarrow{BC} = \overrightarrow{AD}$		

solution de l'exercice 6.
$$\overrightarrow{AB} \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \overrightarrow{DC} \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
.

solution de l'exercice 7.
$$\overrightarrow{AB}\begin{pmatrix} -24\\ 26 \end{pmatrix} = \overrightarrow{DC}\begin{pmatrix} x+4\\ y-7 \end{pmatrix}$$
. $M(-28;33)$.

solution de l'exercice 8.
$$\overrightarrow{AB} \begin{pmatrix} -23 \\ 2 \end{pmatrix} = \overrightarrow{DC} \begin{pmatrix} -11 - x \\ -13 - y \end{pmatrix}$$
. $M(12; -15)$.

solution de l'exercice 9.
$$\overrightarrow{DT}\begin{pmatrix} 29\\ -22 \end{pmatrix} = \overrightarrow{TR}\begin{pmatrix} x-15\\ y+7 \end{pmatrix}$$
. $R(44;-29)$.

$$\overrightarrow{AT} \begin{pmatrix} -1 \\ -18 \end{pmatrix} = \overrightarrow{TK} \begin{pmatrix} x - 15 \\ y + 7 \end{pmatrix}. K(14; -25).$$

solution de l'exercice 10. a) $\overrightarrow{OM} \begin{pmatrix} x \\ y \end{pmatrix} = \overrightarrow{TR} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. M(0;1).

b)
$$\overrightarrow{OA} \begin{pmatrix} -1\\2 \end{pmatrix} = \overrightarrow{BM} \begin{pmatrix} x-3\\y-1 \end{pmatrix}$$
. $M(2;3)$.

c)
$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \overrightarrow{IM} \begin{pmatrix} x-1 \\ y-0 \end{pmatrix}$$
. $M(4;1)$.

d)
$$\overrightarrow{BA} \begin{pmatrix} -2 \\ -1 \end{pmatrix} = \overrightarrow{AM} \begin{pmatrix} x+3 \\ y+2 \end{pmatrix}$$
. $M(-5;-3)$.

e)
$$\overrightarrow{AM} \begin{pmatrix} x+3 \\ y+2 \end{pmatrix} = \overrightarrow{MB} \begin{pmatrix} -1-x \\ -1-y \end{pmatrix}$$
. $M(-2; -\frac{3}{2})$.
f) $\overrightarrow{AM} \begin{pmatrix} x-2 \\ y-5 \end{pmatrix} = \overrightarrow{MB} \begin{pmatrix} 1-x \\ 1-y \end{pmatrix}$. $M(\frac{3}{2}; 3)$.

f)
$$\overrightarrow{AM} \begin{pmatrix} x-2 \\ y-5 \end{pmatrix} = \overrightarrow{MB} \begin{pmatrix} 1-x \\ 1-y \end{pmatrix}$$
. $M(\frac{3}{2};3)$.

g)
$$\overrightarrow{AO} \begin{pmatrix} -1 \\ -5 \end{pmatrix} = \overrightarrow{OM} \begin{pmatrix} x \\ y \end{pmatrix}$$
. $M(-1; -5)$.

solution de l'exercice 11.

a)
$$\overrightarrow{BE} \begin{pmatrix} -6\\8 \end{pmatrix} = \overrightarrow{UA} \begin{pmatrix} -6\\8 \end{pmatrix}$$

- b) BE = 10 et EA = 40.
- c) $BA = 10\sqrt{17}$ et $EU = 10\sqrt{17}$.
- d) BEAU est un rectangle qui n'est pas carré.

solution de l'exercice 12.
a)
$$\overrightarrow{CA} \begin{pmatrix} 13,5 \\ -7 \end{pmatrix} = \overrightarrow{UA} \begin{pmatrix} 13,5 \\ -7 \end{pmatrix}$$

- b) $CA = AF = \frac{5\sqrt{37}}{2}$.
- c) $CF = 5 \text{ et } AE = \sqrt{445}$.
- d) CAFE est un losange qui n'est pas carré.

LG Jeanne d'Arc, 2nd