Logique - Calculabilité - Complexité

Université de Montpellier Entrainement de calculabilité - 2025 15 octobre 2025

Durée 1h30 Aucun document n'est autorisé Pas de calculatrice, téléphone portable, montre programmable, appel à un ami, consultation d'internet, de Moodle etc.

Justifiez vos réponses avec grand soin!

Dans tout ce qui suit, comme dans le cours, le symbole \(\times \) désigne la réduction many-one; les ensembles considérés sont des ensembles d'entiers, qu'ils contiennent des données ou des programmes. L'expression [a|b] représente le calcul du programme a sur l'entrée b et $[a|b] \downarrow (resp. [a|b] \uparrow)$ exprime que ce calcul s'arrête (resp. ne s'arrête pas).

Rice Exercice I

Soit $A = \{x, \exists n > 0 \ \forall y \ [x|y] = y^n\}.$

(1. Exprimez cet ensemble avec des mots en Français.

2 Peut-on écrire $A=P_{\mathcal{C}}$ pour une certaine propriété \mathcal{C} où $P_{\mathcal{C}}=\{x,[x|\cdot]\in\mathcal{C}\}$? Si oui proposez une telle propriété, si non faites une preuve.

3. En appliquant proprement le théorème de Rice, montrez que A est indécidable.

Exercice 2 progressif

Soit g une fonction calculable totale qui ne s'annule jamais. $p:\langle x,y\rangle\mapsto \text{if }[x|x]\downarrow \text{ then }\{\text{ if }y=0\text{ then }\perp\text{ else return }1\}$ On définit aussi la fonction f par $f(x) = (S_1^1 \backslash p, x)$.

- 1. La fonction f est-elle calculable? est-elle totale? Justifier.
- 2. Soit x tel que $[x|x] \downarrow$. Quelle fonction est calculée par $y \mapsto [f(x)|y]$?
- 3. Soit x tel que $[x|x] \uparrow$. Quelle fonction est calculée par $y \mapsto [f(x)|y]$?

4. Montrez que $\mathbb{K} \prec A$.

- (5.) Montrez que l'ensemble A n'est pas récursif.
- Aurait-t'on pu montrer que A n'est pas récursif en appliquant le Théorème de Rice?
- Ecrivez un programme q tel que les deux conditions suivantes soient vérifiées : $\int_{\bullet} \forall x \, [q|\langle x, 0\rangle] \downarrow \iff x \in \mathbb{K}$

• $\forall x, y \ y \neq 0 \implies [q|\langle x, y \rangle] = 1$

- 8. Montrez que $\overline{\mathbb{K}} \prec A$.
- 9. Montrez que ni l'ensemble \overline{A} ni l'ensemble \overline{A} ne sont énumérables.

énumérabilité Exercice 3

Soit $E = \{x, \exists y [x|y] = x\}.$

- 1. Exprimez cet ensemble avec des mots en Français.
- 2. Soit le programme $tata: y \mapsto \text{return } (y \text{ div } 2)$. A-t-on $tata \in E$? A-t-on $tata \in \overline{E}$?
- 3. Montrez que E est énumérable.
- 4. Rappelez la définition d'un programme auto-reproducteur. Fixons un tel programme (qu'on notera α) et montrez que $\alpha \in E$. Soit $\beta \neq \alpha$ tel que $[\beta|\cdot] = [\alpha|\cdot]$ (ne vous inquiétez pas, il existe toujours un tel β , on l'a montré dans le cours et on le remontrera dans un exercice plus loin). Est-ce que $\beta \in E$?
 - 5. Aurait-t'on pu montrer que E n'est pas récursif en appliquant le Théorème de Rice?
 - 6. Montrez que $\mathbb{K} \prec E$ et en déduire que E n'est pas récursif.

points fixes Exercice 4

Soit $F: x \mapsto a$ où a est un entier fixé. Notons n_0 un point fixe de F.

- I. Que calcule le programme n_0 ?
- 2. Est-ce que a est un point fixe de F?

Soit b tel que $[b|\cdot] \neq [a|\cdot]$ et considérons la fonction F_1 suivante : F_1 vaut a partout sauf sur les entrées $x \in \{a, n_0\}$ auquel cas elle vaut b. Remarquons que F_1 est récursive et notons n_1 un de ses points fixes.

- 3. Peut-on avoir $n_1 = a$? $n_1 = n_0$? Que calcule n_1 ?
- 4. Montrez qu'il existe un programme partout convergent qui prend en entrée a et bet donne en sortie le point fixe n_1 . En d'autres termes, il faut montrer que n_1 est récursif en $\langle a, b \rangle$.
- 5. En vous inspirant de ce qui précède, montrez qu'il existe un programme partout convergent toto qui, sur l'entrée $\langle a,b,i \rangle$ donne un programme noté n_i qui calcule la même fonction que a ($[a|\cdot] = [n_i|\cdot]$), tous les n_i étant différents quand i varie — aet b étant fixés.

Considérons maintenant deux programmes bo et bo qui calculent respectivement la fonction constante de valeur 0 et celle de valeur 1.

- 6. Si le programme a calcule la fonction constante de valeur 2, que donnent $toto\langle a,b_0,i\rangle$ et $toto(a, b_1, i)$?
- 7. Si le programme a calcule la fonction constante de valeur 1, que donnent $toto\langle a, b_0, i \rangle$ et toto $\langle a, b_1, i \rangle$?
- 8. A l'aide de b_0 , b_1 et toto, définissez un programme partout convergent qui, sur l'entrée $\langle a,i \rangle$, donne un programme n_i qui calcule la même fonction que a, tous les n_i étant différents quand i varie — a étant fixé.