QUI022 - Química Orgânica: Teste 3 (Módulo 10)			Pontuação ↓
Data: 19/11/2024	Questões: 2	Pontos totais: 5	
Matrícula:	Nome:		

$Quest\~ao$	Pontos	Nota
1	3	
2	2	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 1. (3 pontos) Uma aluna realizou a nitração sucessiva do benzeno, conforme mostrado abaixo (considere que os produtos representadas em cada etapa são os majoritários).

- (a) Ao analisar os rendimentos das reações, a aluna percebeu que o da primeira etapa foi igual a 98 %, o da segunda etapa foi igual a 60 % e o da terceira, igual a 25 %. Justifique os dados observados.
- (b) Justifique a regioquímica observada para a formação do 1,3-dinitrobenzeno.

Resposta:

Na letra a, os rendimento caem pois os anéis aromáticos vão ficando cada vez mais desativados com a inserção de grupos nitro, que são grupos desativantes tanto por indução quanto por conjugação.

Na letra b, a regioquímica para a formação do 1,3-dinitrobenzeno pode ser justificada pela orientação meta do grupo nitro, melhor analisada pelos complexos- σ .

Ataque em orto:

Forma canônica altamente instável

Ataque em meta:

Ataque em para:

$$NO_2$$
 NO_2
 NO_2

Pode-se observar que o ataque nas posições orto e para levam à formação de complexos- σ altamente instáveis em comparação ao ataque em meta. Logo, a reação tem regioquímica meta, como é de se esperar para um substituinte retirador como o $-NO_2$.

altamente instável

2. (2 pontos) Um aluno de iniciação científica desejou sintetizar o seguinte composto aromático.

1-(3-bromofenil)propan-1-ona

Ao planejar os caminhos possíveis para se obter o composto, percebeu-se que haviam dois. O primeiro envolvia a bromação do benzeno, utilizando Br₂ e FeBr₃, seguida da acilação de Friedel-Crafts, utilizando cloreto de propanoíla e AlCl₃. O segundo envolvia a acilação de Friedel-Crafts

do benzeno seguida da bromação, utilizando os mesmos reagentes. Todavia, verificou-se que apenas um dos caminhos foi capaz de fornecer o produto desejado.

Indique qual caminho é capaz de gerar o produto desejado e justifique a regioquímica observada.

Resposta:

O caminho que resulta na formação do produto desejado é a acilação de Friedel-Crafts seguida da bromação. A acilação insere um grupo desativante do anel que é *meta*-dirigente, direcionando a posterior entrada do substituinte Br na posição desejada. Caso a bromação fosse feita primeiro, o grupo acil iria entrar nas posições *orto* e *para*, já que halogênios são *orto/para*-dirigentes.

Pode-se justificar a regioquímica de forma similar ao mostrado na Questão 1 (considerem que R é o grupo acil introduzido pela acilação de Friedel-Crafts - C(O)CH₂CH₃).

Ataque em orto:

$$\begin{array}{c} R \\ R \\ FeBr \\ FeBr_3 \end{array} \longrightarrow \begin{array}{c} R \\ H \\ Br \\ H \\ Br \end{array} \longrightarrow \begin{array}{c} R \\ H \\ Br \\ H \\ Br \end{array}$$

Ataque em meta:

Ataque em para: