Vzájemná poloha afinních podprostorů

Odpřednesenou látku naleznete v kapitolách 7.1, 7.2 a 7.3 skript Abstraktní a konkrétní lineární algebra.

Co již víme? (přednášky z teorie soustav lineárních rovnic)

- Pro A: F^s → F^r a b z F^r je obecné řešení soustavy Ax = b tvaru p + ker(A).
 Množina p + ker(A) je d-dimensionální afinní podprostor (kde d = def(A)) v prostoru F^s. Tato plocha prochází bodem p.
- ② Jakoukoli podmnožinu prostoru \mathbb{F}^s tvaru $\mathbf{p} + W$, kde W je lineární podprostor prostoru \mathbb{F}^s a \mathbf{p} je bod \mathbb{F}^s , lze považovat za množinu řešení nějaké vhodné soustavy rovnic $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Dnešní přednáška

- **1** Zaměříme^a se na afinní podprostory prostoru \mathbb{R}^n nad \mathbb{R} .
- ② Budeme studovat vzájemnou polohu afinních podprostorů prostoru \mathbb{R}^n .
- O Porovnáme dva popisy afinních podprostorů: parametrický zápis a rovnicový zápis.

Celá dnešní přednáška projde v prostorech typu \mathbb{F}^n nad \mathbb{F} , kde \mathbb{F} je těleso.

Definice

Množině $\mathbf{p} + W = \{\mathbf{p} + \mathbf{x} \mid \mathbf{x} \in W\}$, kde W je lineární podprostor prostoru \mathbb{R}^n a \mathbf{p} je bod z \mathbb{R}^n , říkáme afinní podprostor prostoru \mathbb{R}^n . Dimense^a afinního prostoru $\mathbf{p} + W$ je číslo $\dim(W)$. Lineárnímu prostoru W říkáme směr afinního podprostoru $\mathbf{p} + W$.

^aAfinním podprostorům v \mathbb{R}^n dimense 0 budeme říkat body, afinním podprostorům v \mathbb{R}^n dimense 1 budeme říkat přímky, afinním podprostorům v \mathbb{R}^n dimense 2 budeme říkat roviny.

Příklady afinních podprostorů prostoru \mathbb{R}^4

Množiny

$$\begin{pmatrix} 1 \\ -2 \\ 6 \\ 7 \end{pmatrix}, \quad \begin{pmatrix} 10 \\ 9 \\ 3 \\ -1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 1 \\ 4 \\ 5 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 7 \\ -3 \\ 9 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 2 \\ 3 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -2 \\ 0 \end{pmatrix})$$

$$\begin{pmatrix} 1 \\ 6 \\ 0 \\ 1 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

jsou afinní podprostory prostoru \mathbb{R}^4 . Jejich dimense jsou postupně 0, 1, 2 a 3. A jejich směry jsou:

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}, \quad \text{span}(\begin{pmatrix} 1 \\ 4 \\ 5 \\ 0 \end{pmatrix}), \quad \text{span}(\begin{pmatrix} 2 \\ 3 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -2 \\ 0 \end{pmatrix}), \quad \text{span}(\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix})$$

Příklad (vzájemná poloha přímek v \mathbb{R}^3 , intuitivní výpočet)

- - Obě přímky mají stejný směr, je jím vektor $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$.
- 2 Přímky $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$ + span $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$) a $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$ + span $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$) jsou různoběžné.

To zjistíme následujícím způsobem: přímky nejsou rovnoběžné: rovnost span $\binom{0}{2}$ = span $\binom{3}{2}$ neplatí. Navíc mají obě

přímky společný bod, je jím vektor $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$.

Příklad (vzájemná poloha přímek v \mathbb{R}^3 , pokrač.)

To zjistíme následujícím způsobem: přímky nejsou rovnoběžné: rovnost span $\binom{0}{2}$ = span $\binom{3}{2}$) neplatí. Navíc obě přímky nemají společný bod: neexistují reálná čísla s, t tak, že

$$\begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

O tom se lze snadno přesvědčit řešením příslušné soustavy rovnic.

Jak postupovat v \mathbb{R}^n ?

Potřebujeme dobré definice a dobrá kritéria vzájemné polohy!

Definice (vzájemná poloha afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n . Řekneme, že

- **1** π a π' jsou rovnoběžné, pokud platí $W \subseteq W'$ nebo $W' \subseteq W$.
- **2** π a π' jsou různoběžné, pokud nejsou rovnoběžné a mají alespoň jeden společný bod.
- π a π' jsou mimoběžné, pokud nejsou rovnoběžné a nemají žádný společný bod.

Dimensi lineárního podprostoru $W \cap W'$ budeme říkat stupeň rovnoběžnosti afinních podprostorů π a π' .

Poznámka

Pro dva afinní podprostory π a π' prostoru \mathbb{R}^n platí:

Tvrzení (charakterisace rovnoběžných disjunktních afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n . Ať $W' \subseteq W$. Potom jsou následující podmínky ekvivalentní:

- **1** Afinní podprostory π a π' jsou disjunktní.
- ② Pro jakýkoli vektor $\mathbf{x} \vee \boldsymbol{\pi}$ a jakýkoli vektor $\mathbf{x}' \vee \boldsymbol{\pi}'$ vektor $\mathbf{x} \mathbf{x}'$ neleží ve W.
- **3** Vektor $\mathbf{p} \mathbf{p}'$ neleží ve W.
- **3** Existuje vektor $\mathbf{x} \vee \mathbf{\pi}$ a existuje vektor $\mathbf{x}' \vee \mathbf{\pi}'$ tak, že vektor $\mathbf{x} \mathbf{x}'$ neleží ve W.

Důkaz.

Tvrzení (charakterisace různoběžných afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n , které nejsou rovnoběžné. Potom jsou následující podmínky ekvivalentní:

- Afinní podprostory π a π' jsou různoběžné.
- ② Pro jakýkoli vektor $\mathbf{x} \vee \mathbf{\pi}$ a jakýkoli vektor $\mathbf{x}' \vee \mathbf{\pi}'$ vektor $\mathbf{x} \mathbf{x}'$ leží ve $W \vee W'$.
- **3** Vektor $\mathbf{p} \mathbf{p}'$ leží ve $W \vee W'$.
- **3** Existuje vektor $\mathbf{x} \vee \mathbf{\pi}$ a existuje vektor $\mathbf{x}' \vee \mathbf{\pi}'$ tak, že vektor $\mathbf{x} \mathbf{x}'$ leží ve $W \vee W'$.

Důkaz.

Tvrzení (charakterisace mimoběžných afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n , které nejsou rovnoběžné. Potom jsou následující podmínky ekvivalentní:

- **1** Afinní podprostory π a π' jsou mimoběžné.
- 2 Vektor $\mathbf{p} \mathbf{p}'$ neleží ve $W \vee W'$.

Důkaz.

Příklad (dva různé zápisy jedné přímky)

Dva zápisy téže přímky v \mathbb{R}^2

$$\underbrace{\binom{1}{2} + \binom{3}{1} \cdot t, \quad t \in \mathbb{R}}_{\text{parametrický zápis}} \qquad \underbrace{-x + 3y = 5}_{\text{rovnicový zápis}}$$

Oba typy zápisu jsme již potkali při úvahách o řešitelnosti soustav lineárních rovnic a zapisovali jsme je jako

$$\binom{1}{2} + \operatorname{span}(\binom{3}{1}) \qquad (-1\ 3\mid 5)$$

Získáváme informace o směrovém vektoru a normálovém vektoru.

Tvrzení (Existence parametrického a rovnicového zápisu)

Ať $\pi=\mathbf{p}+W$ je d-dimensionální afinní podprostor prostoru \mathbb{R}^n . Potom existují dvě matice $\mathbf{S}:\mathbb{R}^d\to\mathbb{R}^n$ a $\mathbf{N}^T:\mathbb{R}^n\to\mathbb{R}^{n-d}$ tak, že platí:

- Platí $im(\mathbf{S}) = W = ker(\mathbf{N}^T)$, $rank(\mathbf{N})^T = n d$ a $rank(\mathbf{S}) = d$.
- **2** Vektor **x** leží v π právě tehdy, když platí rovnost $\mathbf{x} = \mathbf{p} + \mathbf{S} \cdot \mathbf{t}$ pro nějaké **t**. Tomuto zápisu říkáme parametrický zápis afinního podprostoru π .
- **3** Vektor \mathbf{x} leží v π právě tehdy, když platí rovnost $\mathbf{N}^T \cdot (\mathbf{x} \mathbf{p}) = \mathbf{o}$. Tomuto zápisu říkáme rovnicový zápis afinního podprostoru π .

Důkaz.

Poznámky

Pozor: musí platit rovnosti $rank(\mathbf{S}) = d$ a $rank(\mathbf{N}^T) = n - d$.

- 2 Proč je rovnicový zápis ve tvaru $\mathbf{N}^T \cdot (\mathbf{x} \mathbf{p}) = \mathbf{o}$?
 - **9** Bod **p** vyhovuje rovnici $\mathbf{N}^T \cdot (\mathbf{x} \mathbf{p}) = \mathbf{o}$. Ihned vidíme, že afinní podprostor prochází bodem **p**.
 - Pokud označíme jako $\mathbf{N}=(\mathbf{n}_1,\ldots,\mathbf{n}_{n-d})$, pak rovnost $\mathbf{N}^T\cdot(\mathbf{x}-\mathbf{p})=\mathbf{o}$ je ekvivalentní rovnostem $\langle \mathbf{n}_1\mid \mathbf{x}-\mathbf{p}\rangle=0, \quad \langle \mathbf{n}_2\mid \mathbf{x}-\mathbf{p}\rangle=0, \quad \ldots, \quad \langle \mathbf{n}_{n-d}\mid \mathbf{x}-\mathbf{p}\rangle=0$ To znamená, že sloupce matice \mathbf{N} si lze přestavit jako seznam lineárně nezávislých "normál" příslušného afinního podprostoru.

Tvrzení (charakterisace rovnoběžných disjunktních afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n , zadány parametricky jako $\mathbf{x} = \mathbf{p} + \mathbf{S} \cdot \mathbf{t}$ a $\mathbf{x}' = \mathbf{p}' + \mathbf{S}' \cdot \mathbf{t}'$.

- 1 Následující podmínky jsou ekvivalentní:
 - Platí $W' \subseteq W$.
 - Platí span $(\mathbf{s}_1', \dots, \mathbf{s}_{d'}') \subseteq \text{span}(\mathbf{s}_1, \dots, \mathbf{s}_d)$, kde $\mathbf{S}' = (\mathbf{s}_1', \dots, \mathbf{s}_{d'}')$ a $\mathbf{S} = (\mathbf{s}_1, \dots, \mathbf{s}_d)$.
 - 3 Simultánní soustava (**S** | **S**') má řešení.
- **2** Ať $W' \subseteq W$. Následující podmínky ekvivalentní:
 - **1** Afinní podprostory π a π' jsou disjunktní.
 - **2** Pro jakýkoli vektor $\mathbf{x} \vee \boldsymbol{\pi}$ a jakýkoli vektor $\mathbf{x}' \vee \boldsymbol{\pi}'$ soustava $(\mathbf{S} \mid \mathbf{x} \mathbf{x}')$ nemá řešení.
 - Soustava ($\mathbf{S} \mid \mathbf{p} \mathbf{p}'$) nemá řešení.
 - **3** Existuje vektor $\mathbf{x} \vee \boldsymbol{\pi}$ a existuje vektor $\mathbf{x}' \vee \boldsymbol{\pi}'$ tak, že soustava $(\mathbf{S} \mid \mathbf{x} \mathbf{x}')$ nemá řešení.

Důkaz.

Tvrzení (charakterisace různoběžných afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n , které nejsou rovnoběžné. Ať π a π' zadány parametricky jako $\mathbf{x} = \mathbf{p} + \mathbf{S} \cdot \mathbf{t}$ a $\mathbf{x}' = \mathbf{p}' + \mathbf{S}' \cdot \mathbf{t}'$. Potom jsou následující podmínky ekvivalentní:

- **1** Afinní podprostory π a π' jsou různoběžné.
- 2 Pro jakýkoli vektor $\mathbf{x} \vee \boldsymbol{\pi}$ a jakýkoli vektor $\mathbf{x}' \vee \boldsymbol{\pi}'$ soustava $(\mathbf{S}', \mathbf{S} \mid \mathbf{x} \mathbf{x}')$ má řešení.
- **3** Soustava (S', $S \mid p p'$) má řešení.
- **1** Existuje vektor \mathbf{x} v $\boldsymbol{\pi}$ a existuje vektor \mathbf{x}' v $\boldsymbol{\pi}'$ tak, že soustava $(\mathbf{S}', \mathbf{S} \mid \mathbf{x} \mathbf{x}')$ má řešení.

Důkaz.

Tvrzení (charakterisace mimoběžných afinních podprostorů)

Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n , které nejsou rovnoběžné. Ať π a π' zadány parametricky jako $\mathbf{x} = \mathbf{p} + \mathbf{S} \cdot \mathbf{t}$ a $\mathbf{x}' = \mathbf{p}' + \mathbf{S}' \cdot \mathbf{t}'$. Potom jsou následující podmínky ekvivalentní:

- **1** Afinní podprostory π a π' jsou mimoběžné.
- **2** Soustava (\mathbf{S}' , $\mathbf{S} \mid \mathbf{p} \mathbf{p}'$) nemá řešení.

Důkaz.

Důležitá poznámka

Při rozhodování o vzájemné poloze afinních podprostorů π a π' je velmi rozumné postupovat podle obrázku

Povšiměte si, že tak tomu bude ve všech následujících příkladech.

Příklad 1 (vzájemná poloha dvou rovin v \mathbb{R}^5)

V \mathbb{R}^5 rozhodněte o vzájemné poloze afinních podprostorů

$$\pi = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}) \qquad \qquad \pi' = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix})$$

Rovnoběžnost: ani jedna ze simultánních soustav

nemá řešení. Takže π a π' nejsou rovnoběžné.

Příklad 1 (vzájemná poloha dvou rovin v \mathbb{R}^5 , pokrač.)

Různoběžnost: stačí zjistit, zda soustava^a

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

má řešení. Protože řešení neexistuje, jsou π a π' mimoběžné.

Závěr: roviny π a π' jsou mimoběžné.

^aPravá strana je $\mathbf{p} - \mathbf{p}'$.

Příklad 2 (vzájemná poloha přímek v \mathbb{R}^3)

Rozhodněte o vzájemné poloze přímek $\pi = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix})$ a

$$m{\pi}' = egin{pmatrix} 0 \ 1 \ 2 \end{pmatrix} + \mathsf{span}(egin{pmatrix} 0 \ 2 \ 1 \end{pmatrix}).$$

Rovnoběžnost: obě simultánní soustavy

$$\left(\begin{array}{cc|c}
0 & 0 \\
2 & 2 \\
1 & 1
\end{array}\right) \qquad \left(\begin{array}{cc|c}
0 & 0 \\
2 & 2 \\
1 & 1
\end{array}\right)$$

mají zjevně řešení; π a π' jsou rovnoběžné.

② Jsou π a π' disjunktní? Stačí zjistit, zda soustava rovnic

$$\left(\begin{array}{c|c}
0 & 0 \\
2 & -2 \\
1 & 0
\end{array}\right)$$

má řešení. Pravá strana je $\mathbf{p} - \mathbf{p}'$.

Příklad 2 (vzájemná poloha přímek v \mathbb{R}^3 , pokrač.)

Soustava

$$\left(\begin{array}{c|c}
0 & 0 \\
2 & -2 \\
1 & 0
\end{array}\right)$$

evidentně řešení nemá; přímky π a π' jsou disjunktní.

Závěr: přímky π a π' jsou rovnoběžné a disjunktní.

Příklad 3 (vzájemná poloha přímek v \mathbb{R}^3)

Rozhodněte o vzájemné poloze přímek $\pi = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \text{span}(\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix})$ a

$$\pi' = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}).$$

Příklad 3 (vzájemná poloha přímek v \mathbb{R}^3 , pokrač.)

Rovnoběžnost: žádná ze simultánních soustav

$$\left(\begin{array}{cc|c}
0 & 3 \\
2 & 2 \\
1 & 1
\end{array}\right) \qquad \left(\begin{array}{cc|c}
3 & 0 \\
2 & 2 \\
1 & 1
\end{array}\right)$$

řešení nemá; přímky π a π' nejsou rovnoběžné.

Různoběžnost: protože soustava^a

$$\left(\begin{array}{cc|c}
0 & 3 & 0 \\
2 & 2 & 0 \\
1 & 1 & 0
\end{array}\right)$$

má řešení, jsou přímky π a π' různoběžné.

Závěr: přímky π a π' jsou různoběžné.

^aPravá strana je $\mathbf{p} - \mathbf{p}'$.

Příklad 4 (vzájemná poloha přímek v \mathbb{R}^3)

Rozhodněte o vzájemné poloze přímek
$$\pi = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix})$$
 a

$$\pi' = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}).$$

1 Rovnoběžnost: žádná ze simultánních soustav

$$\left(\begin{array}{cc|c}
0 & 3 \\
2 & 2 \\
1 & 1
\end{array}\right) \qquad \left(\begin{array}{cc|c}
3 & 0 \\
2 & 2 \\
1 & 1
\end{array}\right)$$

řešení nemá; přímky π a π' nejsou rovnoběžné.

Příklad 4 (vzájemná poloha přímek v \mathbb{R}^3 , pokrač.)

2 Různoběžnost: soustava^a

$$\left(\begin{array}{cc|c}
0 & 3 & 0 \\
2 & 2 & 0 \\
1 & 1 & 1
\end{array}\right)$$

nemá řešení, přímky π a π' jsou mimoběžné.

Závěr: přímky π a π' jsou mimoběžné.

^aPravá strana je $\mathbf{p} - \mathbf{p}'$.

Příklad 5 (vzájemná poloha dvou rovin v \mathbb{R}^4)

V R⁴ rozhodněte o vzájemné poloze afinních podprostorů

$$\pi = \begin{pmatrix} 1 \\ -2 \\ 3 \\ 1 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 1 \\ 0 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}) \qquad \pi' = \begin{pmatrix} 2 \\ -1 \\ 3 \\ 1 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 0 \\ 0 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 3 \\ 1 \end{pmatrix})$$

Rovnoběžnost: řešíme simultánní soustavy

$$\left(\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 2 & 0 & 2 \\
3 & 3 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right) \qquad \left(\begin{array}{ccc|c}
0 & 0 & 1 & 1 \\
0 & 2 & 0 & 2 \\
3 & 3 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right)$$

Roviny budou rovnoběžné, pokud alespoň jedna simultánní soustava má řešení.

Příklad 5 (vzájemná poloha dvou rovin v R4, pokrač.)

• Pomocí Gaussovy eliminace dostáváme

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \\ R_3 - 3R_1 \\ R_4 - R_1 \end{pmatrix}$$

Simultánní soustava

$$\left(\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 2 & 0 & 2 \\
3 & 3 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right)$$

tedy řešení nemá.

Příklad 5 (vzájemná poloha dvou rovin v \mathbb{R}^4 , pokrač.)

Pomocí Gaussovy eliminace dostáváme

$$\left(\begin{array}{ccc|c} 0 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 \\ 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 3 & 3 & 3 & 3 \end{array} \right) \left. \begin{array}{ccc|c} R_4 \\ R_2 \\ R_1 \\ R_3 \end{array} \right. \sim \left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \left. \begin{array}{ccc|c} R_1 \\ R_2 \\ R_3 \\ R_4 - 3R_1 \end{array} \right.$$

Ani simultánní soustava

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & 1 \\
0 & 2 & 0 & 2 \\
3 & 3 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right)$$

tedy řešení nemá.

Ukázali jsme, že π a π' nejsou rovnoběžné.

Příklad 5 (vzájemná poloha dvou rovin v \mathbb{R}^4 , pokrač.)

2 Různoběžnost: stačí zjistit, zda soustava^a

$$\left(\begin{array}{ccc|ccc} 1 & 1 & 0 & 0 & -1 \\ 0 & 2 & 0 & 2 & -1 \\ 3 & 3 & 3 & 3 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{array}\right)$$

má řešení.

$$\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 2 & 0 & 2 & | & -1 \\ 3 & 3 & 3 & 3 & | & 0 \\ 1 & 1 & 1 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 2 & 0 & 2 & | & -1 \\ 0 & 0 & 3 & 3 & | & 3 \\ 0 & 0 & 1 & 1 & | & 1 \end{pmatrix} \begin{matrix} R_1 \\ R_2 \\ R_3 - 3R_1 \\ R_4 - R_1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 2 & 0 & 2 & | & -1 \\ 0 & 0 & 3 & 3 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \begin{matrix} R_1 \\ R_2 \\ R_3 \\ 3R_4 - R_3 \end{matrix}$$

Řešení existuje, π a π' jsou různoběžné.

Závěr: roviny π a π' jsou různoběžné.

^aPravá strana je $\mathbf{p} - \mathbf{p}'$.

Závěrečná poznámka

Tvrzení o rovnoběžnosti, různoběžnosti, mimoběžnosti, existenci parametrického zápisu a rovnicového zápisu lze stejným způsobem dokázat v prostoru \mathbb{F}^n , kde \mathbb{F} je jakékoli těleso.

Co příště a přespříště?

- **1** Zavedeme vektorový součin v \mathbb{R}^n , kde $n \geq 2$.
- ② Naučíme se počítat vzájemné vzdálenosti afinních podprostorů prostoru \mathbb{R}^n .

Tyto výsledky budou podstatně využívat existenci standardního skalárního součinu v \mathbb{R}^n .

 $^{^{}a}$ To znamená: rozumíme například pojmům rovnoběžnosti, různoběžnosti, mimoběžnosti afinních podprostorů prostoru \mathbb{C}^{6} nad \mathbb{C} .