計算認知神經科學計算視覺

Color Ambiguity: "The Dress"

Blue / Black dress under yellow light?

White / Gold dress under blue light?

Computer Vision is everywhere!

Image is CC0 1.0 public domai Image is CC0 1.0 public domai

Loft to right

Image is free to use
Image is CC0 1.0 public domain
Image by NASA is licensed

mage is CCO 1.0 public doma

Bottom row, left to right Image is CCO 1.0 public domain Image by Derek Keats is licensed under CC BY 2.0; changes made Image is public domain Image is licensed under CC-BY

電腦視覺應用

Instance Semantic Object Classification Segmentation **Segmentation Detection** GRASS, CAT, TREE, **CAT** DOG, DOG, CAT DOG, DOG, CAT SKY No spatial extent No objects, just pixels **Multiple Objects**

Image basics (color)

Light

• What determines the color of a pixel? light source image plane sensor plane surface optics

Figure from Szeliski

Electromagnetic Spectrum

Human Luminance Sensitivity Function

http://www.yorku.ca/eye/photopik.htm

What is an image?

A (color) image is a 3D tensor of numbers.

Color Images as Tensors

channel x height x width

Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

Color Images

Images in Python

One Option: RGB

- 1. Simple
- 2. Common

Cons

- 1. Distances don't make sense
 - 2. Correlated

Slide Credit: J. Hays, RGB cube: https://en.wikipedia.org/wiki/RGB_color_model

Another Option: HSV Cons

1. Intuitive for picking colors

- 1. Not as good as other better spaces
- 2. Sort of common
- 3. Fast to convert

(H=1,V=1)

(H=1,S=0)

Another Option: YUV / YCbCr

Pros

Great for transmission / compression

Cons

1. Not as good as other better smart color spaces

Y (Cb=0.5, Cr=0.5)

Cb (Y=0.5, Cr=0.5)

Cr (Y=0.5, Cb=05)

Another Option: LAB

1. Distances correspond with human judgment 2. Safe

1. Complex to calculate (don't write it yourself, lots of fp calculations)

(a=0,b=0)

(L=65,b=0)

(L=65,a=0)

Slide Credit: J. Hays, Lab diagram cube: https://en.wikipedia.org/wiki/CIELAB color space

What is an image?

color image patch

How many bits are the intensity values?

actual intensity values per channel

Each channel is a 2D array of numbers.

Image Features: Color Histogram

Examples of point processing non-linear lower contrast

original

 \boldsymbol{x}

 $\times 255$

invert

lighten

raise contrast

non-linear raise contrast

255 - x

x + 128

 $x \times 2$

Original

0	0	0
0	1	0
0	0	0

Slide Credit: D. Lowe

Original

The Same!

Original

0	0	0
0	0	1
0	0	0

Slide Credit: D. Lowe

Original

0	0	0
0	0	1
0	0	0

Shifted *LEFT*1 pixel

Original

0	1	0
0	0	0
0	0	0

Slide Credit: D. Lowe

Original

0	1	0
0	0	0
0	0	0

Shifted **DOWN** 1 pixel

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

?

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blur (Box Filter)

Signal

10 12 9 11 10 11 12

Filter

1/3 1/3 1/3

Output

10.33

Signal

10 12 9 11 10 11 12

Filter

1/3 1/3 1/3

Output

10.33 10.66

Signal

10 12 9 11 10 11 12

Filter

1/3 1/3 1/3

Output

10.33 10.66 10

Signal

10 12 9 11 10 11 12

Filter

1/3 1/3 1/3

Output

10.33 10.66 10 10.66

Signal

10 12 9 11 10 11 12

Filter

1/3 1/3 1/3

Output

10.33 10.66 10 10.66 11

Input

l11	l12	l13	l14	l15	I16
121	122	123	124	125	126
l31	132	133	134	135	136
141	142	143	144	145	146
l51	152	153	154	155	156

Filter

Output

011	012	013	014
021	O22	023	024
031	O32	033	034

Input & Filter

F11	F12	F13	114	l15	116
F21	F22	F23	124	125	126
F31	F32	F33	134	135	136
I41	142	143	144	I45	146
I51	152	153	154	155	156

Output

011

$$O11 = I11*F11 + I12*F12 + ... + I33*F33$$

Input & Filter

l11	F11	F12	F13	l15	l16
121	F21	F22	F23	125	126
131	F31	F32	F33	135	136
141	142	143	144	145	146
l51	152	153	154	155	156

Output

$$O12 = I12*F11 + I13*F12 + ... + I34*F33$$

Input

Filter

Output

How many times can we apply a 3x3 filter to a 5x6 image?

Input

l11	l12	l13	l14	l15	I16
I21	122	123	124	125	126
l31	132	133	134	135	136
141	142	143	144	145	146
l51	152	153	154	155	156

Filter

Output

011	012	O13	014	
021	O22	O23	024	
O31	O32	O33	O34	

$$Oij = Iij*F11 + Ii(j+1)*F12 + ... + I(i+2)(j+2)*F33$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{111}}_{\frac{1}{111}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

Recognize the Filter?

It's a Gaussian!

$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

```
      0.003
      0.013
      0.022
      0.013
      0.003

      0.013
      0.060
      0.098
      0.060
      0.013

      0.022
      0.098
      0.162
      0.098
      0.022

      0.013
      0.060
      0.098
      0.060
      0.013

      0.003
      0.013
      0.022
      0.013
      0.003
```


Image

Smoothed

Details

Image

 $+\alpha$

Details

Image

 $+\alpha$

Details

Image

 $+\alpha$

Details

Image

 $+\alpha$

Details

