

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2025/0263744 A1 **THOMPSON**

Aug. 21, 2025 (43) Pub. Date:

(54) PLASMID ENCODING A NGF AND FC **FUSION PROTEIN**

(71) Applicant: Wyvern Pharmaceuticals Inc., Calgary

(72) Inventor: Bradley G. THOMPSON, Calgary (CA)

(21) Appl. No.: 18/964,155

(22) Filed: Nov. 29, 2024

Related U.S. Application Data

Division of application No. 18/582,222, filed on Feb. 20, 2024.

Publication Classification

(51)	Int. Cl.	
	C12N 15/86	(2006.01)
	C07K 14/48	(2006.01)
	C07K 14/62	(2006.01)
	C07K 14/705	(2006.01)
	C12N 9/22	(2006.01)

(52) U.S. Cl.

CPC C12N 15/86 (2013.01); C07K 14/48 (2013.01); C07K 14/62 (2013.01); C07K 14/705 (2013.01); C07K 14/70596 (2013.01); C12N 9/22 (2013.01); C07K 2319/30 (2013.01); C12N 2750/14143 (2013.01); C12N 2800/00 (2013.01)

(57)ABSTRACT

Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of mRNA. The sequences of mRNA may encode for translation of a target biomolecule, thereby causing an increase in bioavailability of the target biomolecule within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecule is a fusion protein with an Fc fragment, such as a toll-like receptor 3-Fc (TLR3-Fc). In some embodiments of the present disclosure, the target biomolecule is toll-like receptor 9-Fc (TLR9-Fc). In some embodiments of the present disclosure, the target biomolecule is deoxyribonuclease I-Fc (DNAse I-Fc). In some embodiments of the present disclosure, the target biomolecule is neural growth factor-Fc (NGF-Fc). In some embodiments of the present disclosure, the target biomolecule is insulin-Fc.

Specification includes a Sequence Listing.

PLASMID ENCODING A NGF AND FC FUSION PROTEIN

[0001] This application contains a Sequence Listing electronically submitted via Patent Center to the United States Patent and Trademark Office as an XML Document file entitled "A8149440US-Sequence Listing.xml" created on 2024 Feb. 8 and having a size of 68,245 bytes. The information contained in the Sequence Listing is incorporated by reference herein.

TECHNICAL FIELD

[0002] The present disclosure generally relates to compositions for regulating the production of fusion proteins. In particular, the present disclosure relates to compositions for regulating gene expression and, consequently, the production of fusion proteins.

BACKGROUND

[0003] Bioactive molecules, including toll-like receptors, enzymes, and hormones, are necessary for the homeostatic control of biological systems.

[0004] When bioactive molecules are over-expressed, under-expressed or mis-expressed, homeostasis is lost, and disease is often the result.

[0005] As such, it may be desirable to establish therapies, treatments and/or interventions that address when homeostasis and the regulation of bioactive molecules are lost in order to prevent or treat the resulting disease.

SUMMARY

[0006] Some embodiments of the present disclosure relate to one or more compositions that upregulate the production of one or more sequences of mRNA. The sequences of mRNA may encode for translation of a target biomolecule, thereby causing an increase in bioavailability of the target biomolecule within a subject that is administered the one or more compositions. In some embodiments of the present disclosure, the target biomolecule is a fusion protein with an Fc fragment, such as a toll-like receptor 3-Fc (TLR3-Fc). In some embodiments of the present disclosure, the target biomolecule is toll-like receptor 9-Fc (TLR9-Fc). In some embodiments of the present disclosure, the target biomolecule is deoxyribonuclease I-Fc (DNAse I-Fc). In some embodiments of the present disclosure, the target biomolecule is neural growth factor-Fc (NGF-Fc). In some embodiments of the present disclosure, the target biomolecule is insulin-Fc.

[0007] In some embodiments of the present disclosure the compositions comprise a plasmid of deoxyribonucleic acid (DNA) that includes one or more insert sequences of nucleic acids that encode for the production of mRNA and a backbone sequence of nucleic acids that facilitates introduction of the one or more insert sequences into one or more of a subject's cells where it is expressed and/or replicated. Expression of the one or more insert sequences by one or more cells of the subject results in an increased production of the mRNA and, consequently, increased translation of the target biomolecule by one or more of the subject's cells.

[0008] Some embodiments of the present disclosure relate to a recombinant plasmid (RP). In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 2. The RP comprises a

nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for the fusion protein TLR3-Fc.

[0009] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 3. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for the fusion protein TLR9-Fc.

[0010] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 4. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for the fusion protein DNAse I-Fc.

[0011] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 5. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for the fusion protein NGF-Fc.

[0012] Some embodiments of the present disclosure relate to a recombinant plasmid. In some embodiments of the present disclosure, the RP comprises a nucleotide sequence of SEQ ID NO. 1 and SEQ ID NO. 6. The RP comprises a nucleotide sequence encoding one or more nucleotide sequences encoding an mRNA sequence that encodes for the fusion protein insulin-Fc.

[0013] Some embodiments of the present disclosure relate to a method of making a composition/target cell complex. The method comprising a step of administering a RP comprising SEQ ID NO. 1 and one of SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5 or SEQ ID NO. 6 to a target cell for forming the composition/target cell complex, wherein the composition/target cell complex causes the target cell to increase production of one or more sequences of mRNA that increases production of a target biomolecule.

[0014] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for a target biomolecule, for example TLR3-Fc. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences and/or combinations thereof of TLR3-Fc, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.

[0015] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for a target biomolecule, for example TLR9-Fc. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences and/or combinations thereof of TLR9-Fc, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.

[0016] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for a target biomolecule, for example DNAse I-Fc. A first approach

utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences and/or combinations thereof of DNAse I-Fc, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.

[0017] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for a target biomolecule, for example NGF-Fc. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences and/or combinations thereof of NGF-Fc, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.

[0018] Embodiments of the present disclosure relate to at least one approach for inducing endogenous production of one or more sequences of mRNA that encodes for a target biomolecule, for example insulin-Fc. A first approach utilizes gene vectors containing nucleotide sequences for increasing the endogenous production of one or more sequences of mRNA, which are complete or partial sequences and/or combinations thereof of insulin-Fc, which can be administered to a subject to increase the subject's production of one or more sequences of the mRNA.

DETAILED DESCRIPTION

[0019] Unless defined otherwise, all technical and scientific terms used therein have the meanings that would be commonly understood by one of skill in the art in the context of the present description. Although any methods and materials similar or equivalent to those described therein can also be used in the practice or testing of the present disclosure, the preferred compositions, methods and materials are now described. All publications mentioned therein are incorporated therein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.

[0020] As used therein, the singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise. For example, reference to "a composition" includes one or more compositions and reference to "a subject" or "the subject" includes one or more subjects.

[0021] As used therein, the terms "about" or "approximately" refer to within about 25%, preferably within about 20%, preferably within about 15%, preferably within about 10%, preferably within about 5% of a given value or range. It is understood that such a variation is always included in any given value provided therein, whether or not it is specifically referred to.

[0022] As used therein, the term "ameliorate" refers to improve and/or to make better and/or to make more satisfactory.

[0023] As used therein, the term "cell" refers to a single cell as well as a plurality of cells or a population of the same cell type or different cell types. Administering a composition to a cell includes in vivo, in vitro and ex vivo administrations and/or combinations thereof.

[0024] As used therein, the term "complex" refers to an association, either direct or indirect, between one or more particles of a composition and one or more target cells. This association results in a change in the metabolism of the

target cell. As used therein, the phrase "change in metabolism" refers to an increase or a decrease in the one or more target cells' production of one or more proteins, and/or any post-translational modifications of one or more proteins.

[0025] As used therein, the term "composition" refers to a substance that, when administered to a subject, causes one or more chemical reactions and/or one or more physical reactions and/or one or more immunological reactions in the subject. In some embodiments of the present disclosure, the composition is a plasmid vector.

[0026] As used therein, the term "endogenous" refers to the production and/or modification of a molecule that originates within a subject.

[0027] As used therein, the term "exogenous" refers to a molecule that is within a subject but that did not originate within the subject. As used therein, the terms "production", "producing" and "produce" refer to the synthesis and/or replication of DNA, the transcription of one or more sequences of RNA, the translation of one or more amino acid sequences, the post-translational modifications of an amino acid sequence, and/or the production of one or more regulatory molecules that can influence the production and/or functionality of an effector molecule or an effector cell. For clarity, "production" is also used therein to refer to the functionality of a regulatory molecule, unless the context reasonably indicates otherwise.

[0028] As used therein, the term "subject" refers to any therapeutic target that receives the composition. The subject can be a vertebrate, for example, a mammal including a human. The term "subject" does not denote a particular age or sex. The term "subject" also refers to one or more cells of an organism, an in vitro culture of one or more tissue types, an in vitro culture of one or more cell types, ex vivo preparations, and/or a sample of biological materials such as tissue, and/or biological fluids.

[0029] As used therein, the term "target biomolecule" refers to a protein-Fc fusion molecule that is found within a subject. A biomolecule may be endogenous or exogenous to a subject.

[0030] As used therein, the term "target cell" refers to one or more cells and/or cell types that are affected, either directly or indirectly, by a biomolecule.

[0031] As used therein, the term "therapeutically effective amount" refers to the amount of the composition used that is of sufficient quantity to ameliorate, treat and/or inhibit one or more of a disease, disorder or a symptom thereof. The "therapeutically effective amount" will vary depending on the composition used, the route of administration of the composition and the severity of the disease, disorder or symptom thereof. The subject's age, weight and genetic make-up may also influence the amount of the composition that will be a therapeutically effective amount.

[0032] As used therein, the terms "treat", "treatment" and "treating" refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing an occurrence of a disease, disorder or symptom thereof and/or the effect may be therapeutic in providing a partial or complete amelioration or inhibition of a disease, disorder, or symptom thereof. Additionally, the term "treatment" refers to any treatment of a disease, disorder, or symptom thereof in a subject and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not

yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; and (c) ameliorating the disease.

[0033] As used therein, the terms "unit dosage form" and "unit dose" refer to a physically discrete unit that is suitable as a unitary dose for patients. Each unit contains a predetermined quantity of the composition and optionally, one or more suitable pharmaceutically acceptable carriers, one or more excipients, one or more additional active ingredients, or combinations thereof. The amount of composition within each unit is a therapeutically effective amount.

[0034] Where a range of values is provided therein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also, encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.

[0035] In some embodiments of the present disclosure, a composition is a recombinant plasmid (RP) for introducing genetic material, such as one or more nucleotide sequences, into a target cell for reproduction or transcription of an insert that comprises one or more nucleotide sequences that are carried within the RP. In some embodiments of the present disclosure, the RP is delivered without a carrier, by a viral vector, by a protein coat, or by a lipid vesicle. In some embodiments of the present disclosure, the vector is an adeno-associated virus vector.

[0036] In some embodiments of the present disclosure, the insert comprises one or more nucleotide sequences that encode for production of at least one sequence of mRNA that increases the production of target biomolecules, such as a fusion protein with an Fc fragment. An Fc fragment is the distal portion of the heavy chain of an antibody.

[0037] In some embodiments of the present disclosure, the target biomolecule is TLR3-Fc.

[0038] In some embodiments of the present disclosure, the target biomolecule is TLR9-Fc.

[0039] In some embodiments of the present disclosure, the target biomolecule is DNAse I-Fc.

[0040] In some embodiments of the present disclosure, the target biomolecule is NGF-Fc.

[0041] In some embodiments of the present disclosure, the target biomolecule is insulin-Fc.

[0042] Some embodiments of the present disclosure relate to a composition that can be administered to a subject with a condition that results, directly or indirectly, from the dysregulated production of a biomolecule. When a therapeutically effective amount of the composition is administered to the subject, the subject may change production and/or functionality of one or more biomolecules.

[0043] In some embodiments of the present disclosure, the subject may respond to receiving the therapeutic amount of the composition by changing production and/or functionality of one or more intermediary molecules by changing production of one or more DNA sequences, one or more RNA sequences, and/or one or more proteins that regulate the levels and/or functionality of the one or more intermediary molecules. The one or more intermediary molecules regulate the subject's levels and/or functionality of the one or more biomolecules.

[0044] In some embodiments of the present disclosure, administering a therapeutic amount of the composition to a

subject upregulates the production, functionality or both one or more sequences of mRNA that each encode for one or more biomolecules.

[0045] In some embodiments of the present disclosure, the composition is an RP that may be used for gene therapy. The gene therapy is useful for increasing the subject's endogenous production of one or more sequences of mRNA that encode for a target biomolecule. For example, the RP can contain one or more nucleotide sequences that cause increased production of one or more nucleotide sequences that cause an increased production of one or more mRNA sequences that encode for one biomolecule, such as TLR3-Fc, TLR9-Fc, DNAse I-Fc, NGF-Fc or insulin-Fc.

[0046] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a vector that comprises a virus that can be enveloped, or not (unenveloped), replication effective or not (replication ineffective), or combinations thereof. In some embodiments of the present disclosure, the vector is a virus that is not enveloped and not replication effective. In some embodiments of the present disclosure, the vector is a virus of the Parvoviridae family. In some embodiments of the present disclosure, the vector is a virus of the present disclosure, the vector is an adeno-associated virus (AAV). In some embodiments of the present disclosure, the vector is a recombinant AAV. In some embodiments of the present disclosure, the vector is a recombinant AAV. In some embodiments of the present disclosure, the vector is a recombinant AAV6.2FF.

[0047] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a protein coat.

[0048] In some embodiments of the present disclosure, the delivery vehicle of the RP used for gene therapy may be a lipid vesicle.

[0049] The embodiments of the present disclosure also relate to administering a therapeutically effective amount of the composition. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is between about 10 and about 1×10¹⁶ TCID₅₀/kg (50% tissue culture infective dose per kilogram of the patient's body mass). In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to the patient is about 1×10^{13} TCID₅₀/kg. In some embodiments of the present disclosure, the therapeutically effective amount of the composition that is administered to a patient is measured in TPC/kg (total particle count of the composition per kilogram of the patient's body mass). In some embodiments of the present disclosure, the therapeutically effective amount of the composition is between about 10 and about 1×10¹⁶ TCP/kg.

[0050] Some embodiments of the present disclosure relate to an adeno-associated virus (AAV) genome consisting of a RP that when operable inside a target cell will cause the target cell to produce a mRNA sequence that upregulates production of a biomolecule, with examples being TLR3-Fc, TLR9-Fc, DNAse I-Fc, NGF-Fc, or insulin-Fc. The RP is comprised of AAV2 inverted terminal repeats (ITRs), a composite CASI promoter, and a human growth hormone (HGH) signal peptide followed by a mRNA expression cassette encoding for TLR3-Fc, TLR9-Fc, DNAse I-Fc, NGF-Fc, or insulin-Fc, followed by a Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE) and a Simian virus 40 (SV40) polyadenylation (polyA) signal.

SEQ ID NO. 1 (backbone sequence No. 1): 5' TTCTAGAATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTA ACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTA $\tt TTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTT$ ${\tt ATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGTGTTGCTGACG}$ ${\tt CAACCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTT}$ $\tt GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTC$ $\tt CTTGGCTGCTCGCCTGTTTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCC$ $\tt CTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC$ $\tt TTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGC$ CTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAA TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGT GGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCA TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT GGAGTTGGCCACTCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT $\tt TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC$ $\tt TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT$ GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA $\tt TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC$ TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG $\tt GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT$ ${\tt GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT}$ TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT TGCCGATTTCGGCCTATTGGTTAAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT TTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGG GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACACA TTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTGTATGA $\tt TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT$

 ${\tt CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC}$ $\tt CCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCG$ $\tt CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCAT$ $\tt CACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA$ $\tt TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC$ $\tt CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT$ ${\tt GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG}$ CCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGG $\tt TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC$ TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG $\tt ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT$ TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG AAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC $\tt GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA$ $\tt TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGC$ ${\tt CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG}$ ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT $\tt TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT$ TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA ${\tt TACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG}$ $\tt CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATA$ AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAA ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT TGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGCAAGAGCGCCCAATACGCAAACCGCCTC

AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA $\tt CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG$ $\tt TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC$ $\tt CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA$ $\tt CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT$ $\tt ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC$ ${\tt CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT}$ AGAGGTGCGGCGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGG TGCCTTCGCCCGTGCCCCGCTCCGCCGCCCCCCGCCCCGCCCCGGCTCTGACTG ACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGG TCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACC $\tt CCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTT$ CTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGGG ${\tt ATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTTT}$ TTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACC 3'

SEQ ID NO. 2 (mRNA expression cassette No. 2-TLR3-Fc): 5' ATGAGGGGCATGAAGCTGCTGGGGGCGCTGCTGGCACTGGCGGCCCTACTGCAGGG $\tt GGCCGTGTCCCTGAAGATCGCAGCCTTCAACATCCAGACATTTGGGGAGACCAAGATGTC$ ${\tt CAATGCCACCTCGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGT}$ CCAGGAGGTCAGAGACACCTGACTGCCGTGGGGAAGCTGCTGGACAACCTCAATCA GGATGCACCAGACACCTATCACTACGTGGTCAGTGAGCCACTGGGACGGAACAGCTATAA $\tt GGAGCGCTACCTGTTCGTGTACAGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACTA$ $\tt GTTCTTCTCCCGGTTCACAGAGGTCAGGGAGTTTGCCATTGTTCCCCTGCATGCGGCCCC$ GGGGGACGCAGTAGCCGAGATCGACGCTCTCTATGACGTCTACCTGGATGTCCAAGAGAA ATGGGGCTTGGAGGACGTCATGTTGATGGGCGACTTCAATGCGGGCTGCAGCTATGTGAG ACCCTCCCAGTGGTCATCCATCCGCCTGTGGACAAGCCCCACCTTCCAGTGGCTGATCCC CGACAGCGCTGACACCACAGCTACACCCACGCACTGTGCCTATGACAGGATCGTGGTTGC AGGGATGCTGCTCCGAGGCGCCGTTGTTCCCGACTCGGCTCTTTCCCTTTAACTTCCAGGC TGCCTATGGCCTGAGTGACCAACTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGT GATGCTGAAGGGCGGATCAGCCGAAATCTTGTGACAAAACTCACACATGCCC ACCGTGCCCAGCACCTGAACTCCTGGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAG $\tt CCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC$

CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCAC
CGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC
CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAAGGGCAGCCCCGAGAACCACA
GGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTG
CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC
GGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTA
CAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGGGGAACGTCTTCTCATGCTCCGT
GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCCGGGTAA
ATAG 3'

SEQ ID NO. 3 (mRNA expression cassette No. 3-TLR9-Fc): 5' GCCAGACCCTGCCGTGCATTTATTTTTGGGGCCGGCCTGCCGTTTGGCATGCTGTG CGCGAGCACCACCAAATGCACCGTGAGCCATGAAGTGGCGGATTGCAGCCATCTGAA ACTGACCCAGGTGCCGGATGATCTGCCGACCAACATTACCGTGCTGAACCTGACCCATAA CCAGCTGCGCCGCCGCCGCGCGAACTTTACCCGCTATAGCCAGCTGACCAGCCTGGA TGTGGGCTTTAACACCATTAGCAAACTGGAACCGGAACTGTGCCAGAAACTGCCGATGCT GAAAGTGCTGAACCTGCAGCATAACGAACTGAGCCAGCTGAGCGATAAAACCTTTGCGTT $\tt TTGCACCAACCTGACCGAACTGCATCTGATGAGCAACAGCATTCAGAAAATTAAAAACAA$ CCCGTTTGTGAAACAGAAAACCTGATTACCCTGGATCTGAGCCATAACGGCCTGAGCAG $\tt CACCAAACTGGGCACCCAGGTGCAGCTGGAAAACCTGCAGGAACTGCTGCTGAGCAACAA$ ${\tt CAAAATTCAGGCGCTGAAAAGCGAAGAACTGGATATTTTTGCGAACAGCAGCCTGAAAAA}$ ${\tt ACTGGAACTGAGCAGCAACCAGATTAAAGAATTTAGCCCGGGCTGCTTTCATGCGATTGG}$ $\tt CCGCCTGTTTGGCCTGTTTCTGAACAACGTGCAGCTGGGCCCGAGCCTGACCGAAAAACT$ ${\tt CACCACCAGCAACACCACCTTTCTGGGCCTGAAATGGACCAACCTGACCATGCTGGATCT}$ ${\tt GAGCTATAACAACCTGAACGTGGTGGGCAACGATAGCTTTGCGTGGCTGCCGCAGCTGGA}$ ATATTTTTTTCTGGAATATAACAACATTCAGCATCTGTTTAGCCATAGCCTGCATGGCCT $\tt GTTTAACGTGCGCTATCTGAACCTGAAACGCAGCTTTACCAAACAGAGCATTAGCCTGGC$ GAGCCTGCCGAAAATTGATGATTTTAGCTTTCAGTGGCTGAAATGCCTGGAACATCTGAA $\mathtt{CATGGAAGATAACGATATTCCGGGCATTAAAAGCAACATGTTTACCGGCCTGATTAACCT}$ GAAATATCTGAGCCTGAGCAACAGCTTTACCAGCCTGCGCACCCTGACCAACGAAACCTT TGTGAGCCTGGCGCATAGCCCGCTGCATATTCTGAACCTGACCAAAAACAAAATTAGCAA AATTGAAAGCGATGCGTTTAGCTGGCTGGGCCATCTGGAAGTGCTGGATCTGGGCCTGAA CGAAATTGGCCAGGAACTGACCGGCCAGGAATGGCGCGCCTGGAAAACATTTTTGAAAT TTATCTGAGCTATAACAAATATCTGCAGCTGACCCGCAACAGCTTTGCGCTGGTGCCGAG GTTTCAGCCGCTGCGCAACCTGACCATTCTGGATCTGAGCAACAACAACATTGCGAACAT TAACGATGATATGCTGGAAGGCCTGGAAAAACTGGAAATTCTGGATCTGCAGCATAACAA GAGCCATCTGCATATTCTGAACCTGGAAAGCAACGGCTTTGATGAAATTCCGGTGGAAGT $\tt GTTTAAAGATCTGTTTGAACTGAAAATTATTGATCTGGGCCTGAACAACCTGAACACCCT$

GCCGGCGAGCGTGTTTAACAACCAGGTGAGCCTGAAAAGCCTGAACCTGCAGAAAAACCT GATTACCAGCGTGGAAAAAAAGTGTTTGGCCCGGCGTTTCGCAACCTGACCGAACTGGA TATGCGCTTTAACCCGTTTGATTGCACCTGCGAAAGCATTGCGTGGTTTGTGAACTGGAT TAACGAAACCCATACCAACATTCCGGAACTGAGCAGCCATTATCTGTGCAACACCCCGCC $\tt GCATTATCATGGCTTTCCGGTGCGCCTGTTTGATACCAGCAGCTGCAAAGATAGCGCGCC$ GTTTGAACTGTTTTTATGATTAACACCAGCATTCTGCTGATTTTTATTTTTATTGTGCT $\tt GCTGATTCATTTTGAAGGCTGGCGCATTAGCTTTTATTGGAACGTGAGCGTGCATCGCGT$ GCTGGGCTTTAAAGAAATTGATCGCCAGACCGAACAGTTTGAATATGCGGCGTATATTAT ${\tt TCATGCGTATAAAGATAAAGATTGGGTGTGGGAACATTTTAGCAGCATGGAAAAAGAAGA}$ ${\tt TCAGAGCCTGAAATTTTGCCTGGAAGAACGCGATTTTGAAGCGGGCGTGTTTGAACTGGA}$ AGCGATTGTGAACAGCATTAAACGCAGCCGCAAAATTATTTTTTGTGATTACCCATCATCT $\tt GCTGAAAGATCCGCTGTGCAAACGCTTTAAAGTGCATCATGCGGTGCAGCAGGCGATTGA$ ACAGAACCTGGATAGCATTATTCTGGTGTTTTCTGGAAGAAATTCCGGATTATAAACTGAA $\tt CCATGCGCTGTGCCTGCGCCGGGCATGTTTAAAAGCCATTGCATTCTGAACTGGCCGGT$ GCAGAAAGAACGCATTGGCGCGTTTCGCCATAAACTGCAGGTGGCGCTGGGCAGCAAAAA CAGCGTGCATGGGCGGATCAGGCGGATCACCCAAATCTTGTGACAAAACTCACACATGCC CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA $\tt GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG$ $\tt CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA$ $\tt CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG$ CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC AGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT $\tt GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC$ CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT ${\tt ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG}$ TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCCGGGTA AATAG 3'

SEQ ID NO. 4 (mirna expression cassette No. 4-DNAse I-Fc):
5' ATGAGGGGCATGAAGCTGCTGGGGGGCCTGCTGCACTGCAGGGGG
CCGTGTCCATGGGCTTTTGCCGCAGCGCGCTGCATCCGCTGAGCCTGCTGGTGCAGGCGA
TTATGCTGGCGATGACCCTGGCGCTGGGCACCCTGCCGGCGTTTCTGCCGTGCGAACTGC
AGCCGCATGGCCTGGTGAACTGCAACTGGCTGTTTCTGAAAAGCGTGCCGCATTTTAGCA
TGGCGGCGCCGCGGCAACGTGACCAGCCTGAGCCTGAGCAACCGCATTCATCATC
TGCATGATAGCGATTTTGCGCATCTGCCGAGCCTGCGCCATCTGAACCTGAAATGGAACT
GCCCGCCGGTGGGCCTGAGCCCGATGCATTTTCCGTGCCATATGACCATTGAACCGAGCA
CCTTTCTGGCGGTGCCGACCCTGGAAGAACTGAACCTGAACCATTATGACCG

TGCCGGCGCTGCCGAAAAGCCTGATTAGCCTGAGCCTGAGCCATACCAACATTCTGATGC $\tt TGGGCAACCTGACCCATCTGAGCCTGAAATATAACAACCTGACCGTGGTGCCGCGCAACC$ $\tt TGCCGAGCAGCCTGGAATATCTGCTGCTGAGCTATAACCGCATTGTGAAACTGGCGCCGG$ ${\tt AAGATCTGGCGAACCTGACCGCGCTGCGCGTGCTGGATGTGGGCGGCAACTGCCGCCGCT}$ $\tt GCGATCATGCGCCGAACCCGTGCATGGAATGCCCGCGCCATTTTCCGCAGCTGCATCCGG$ ATACCTTTAGCCATCTGAGCCGCCTGGAAGGCCTGGTGCTGAAAGATAGCAGCCTGAGCT GGCTGAACGCGAGCTGGTTTCGCGGCCTGGGCAACCTGCGCGTGCTGGATCTGAGCGAAA ACTTTCTGTATAAATGCATTACCAAAACCAAAGCGTTTCAGGGCCTGACCCAGCTGCGCA AACTGAACCTGAGCTTTAACTATCAGAAACGCGTGAGCTTTGCGCATCTGAGCCTGGCGC GCCTGGATGAAACCACCCTGCGCCCGCTGCCGCTGCCGATGCTGCAGACCCTGCGCC TGCAGATGAACTTTATTAACCAGGCGCAGCTGGGCATTTTTCGCGCGTTTCCGGGCCTGC $\tt TGGATACCCCGAGCAGCGAAGATTTTCGCCCGAACTGCAGCACCCTGAACTTTACCCTGG$ ${\tt ATCTGAGCCGCAACAACCTGGTGACCGTGCAGCCGGAAATGTTTGCGCAGCTGAGCCATC}$ $\tt TGCAGTGCCTGAGCCATAACTGCATTAGCCAGGCGGTGAACGGCAGCCAGTTTC$ $\tt TGCCGCTGACCGGCCTGCAGGTGCTGGATCTGAGCCATAACAAACTGGATCTGTATCATG$ $\tt CGTTTGGCATGCAGGGCGTGGGCCATAACTTTAGCTTTGTGGCGCATCTGCGCACCCTGC$ GCCATCTGAGCCTGGCGCATAACAACATTCATAGCCAGGTGAGCCAGCAGCTGTGCAGCA $\tt CCAGCCTGCGCGCTGGATTTTAGCGGCAACGCGCTGGGCCATATGTGGGCGGAAGGCG$ ${\tt ATCTGTATCTGCATTTTTTCAGGGCCTGAGCGGCCTGATTTGGCTGGATCTGAGCCAGA}$ $\tt TGCGCCTGCGCGATAACTATCTGGCGTTTTTTAAATGGTGGAGCCTGCATTTTCTGCCGA$ ${\tt AACTGGAAGTGCTGGATCTGGCGGGCAACCAGCTGAAAGCGCTGACCAACGGCAGCCTGC}$ CGGGCTTTTTTAGCAAAGCGAAAGAACTGCGCGAACTGAACCTGAGCGCGAACGCGCTGA AAACCGTGGATCATAGCTGGTTTGGCCCGCTGGCGAGCGCGCTGCAGATTCTGGATGTGA GCGCGAACCCGCTGCATTGCGCGTGCGGCGCGCGTTTATGGATTTTCTGCTGGAAGTGC AGGCGGCGGTGCCGGGCCTGCCGAGCCGCGTGAAATGCGGCAGCCCGGGCCAGCTGCAGG GCCTGAGCATTTTTGCGCAGGATCTGCGCCTGTGCCTGGATGAAGCGCTGAGCTGGGATT GCTTTGCGCTGAGCCTGCTGGCGGTGGCGCTGGGCCTGGGCGTGCCGATGCTGCATCATC TGTGCGGCTGGGATCTGTGGTATTGCTTTCATCTGTGCCTGGCGTGGCTGCCGTGGCGCG GCCGCCAGAGCGGCCGCGATGAAGATGCGCTGCCGTATGATGCGTTTTGTGGTGTTTTGATA $\verb|AAACCCAGAGCGCGGTGGCGGATTGGGTGTATAACGAACTGCGCGGCCAGCTGGAAGAAT|$

 $\tt CCCTGTTTGAAAACCTGTGGGCGAGCGTGTATGGCAGCCGCAAAACCCTGTTTGTGCTGG$ $\tt GCCGCTATGTGCGCCTGCGCCAGCGCCTGTGCCGCCAGAGCGTGCTGTGGCCGCATC$ $\tt AGCCGAGCGGCAGCTTTTGGGCGCAGCTGGGCATGGCGCTGACCCGCGATAACC$ ATCATTTTATAACCGCAACTTTTGCCAGGGCCCGACCGCGGAAGGGCGGATCAGGCGGA ${\tt TCACCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTG}$ GGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGG ACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTC AACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAG TACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGGTCAAAGGCTTCTATCCCAGC GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCT CCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGC AGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC TACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATAG 3'

SEQ ID NO. 5 (mRNA expression cassette No. 5-NGF-Fc): 5' ATGAGGGGCATGAAGCTGCTGGGGGCCCTGCTGGCACTGGCGGCCCTACTGCAGGGGG $\tt CCGTGTCCATGAGCATGCTGTTTTATACCCTGATTACCGCGTTTCTGATTGGCATTCAGG$ $\tt CGGAACCGCATAGCGAAAGCAACGTGCCGGCGGGCCATACCATTCCGCAGGCGCATTGGA$ CGATTGCGGCGCGCGGGCCAGACCCGCAACATTACCGTGGATCCGCGCCTGTTTA $\tt CGGATACCCAGGATCTGGATTTTGAAGTGGGCGGCGGCGGCGCGTTTAACCGCACCCATC$ $\tt GCAGCAAACGCAGCAGCCATCCGATTTTTCATCGCGGCGAATTTAGCGTGTGCGATA$ GCGTGAGCGTGTGGGTGGGCGATAAAACCACCGCGACCGATATTAAAGGCAAAGAAGTGA TGGTGCTGGGCGAAGTGAACATTAACAACAGCGTGTTTAAACAGTATTTTTTTGAAACCA AATGCCGCGATCCGAACCCGGTGGATAGCGGCTGCCGCGCATTGATAGCAAACATTGGA TGCGCCGCGGGGGGATCAGGCGGATCACCCAAATCTTGTGACAAAACTCACACATGCC $\tt CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCTCCCCCCAAAAC$ CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG CCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC

AGGTGTACACCCTGCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCT
GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC
CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT
ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG
TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA
AATAG 3'

SEQ ID NO. 6 (mRNA expression cassette No. 6-insulin-Fc): 5 ' ATGAGGGGCATGAAGCTGCTGGGGGCGCTGCTGGCACTGGCGGCCCTACTGCAGGGGG CCGTGTCCATGGCGCTGTGGATGCGCCTGCTGCCGCTGCTGGCGCTGTGGG ${\tt GCCCGGATCCGGCGGCGGCGTTTGTGAACCAGCATCTGTGCGGCAGCCATCTGGTGGAAG}$ CGCTGTATCTGGTGTGCGGCGAACGCGGCTTTTTTTATACCCCGAAAACCCGCCGCAAG AGCCGCTGGCGCTGGAAGGCAGCCTGCAGAAACGCGGCATTGTGGAACAGTGCTGCACCA GCATTTGCAGCCTGTATCAGCTGGAAAACTATTGCAACGGGCGGATCAGGCGGATCACCC AAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGGA CCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT GAGGTCACATGCGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG ${\tt TACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC}$ ${\tt AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG}$ ${\tt GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC}$ $\tt ATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATC$ GCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTG $\tt CTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGG$ $\tt CAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG$ CAGAAGAGCCTCTCCCTGTCTCCCGGGTAAATAG 3'

TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT $\tt GGAGTTGGCCACTCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT$ $\tt GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG$ ${\tt AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT}$ TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC $\tt TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT$ GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG CCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTAC GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT $\tt TTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGG$ $\tt GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT$ ${\tt TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA}$ $\verb| CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA| \\$ ${\tt TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACACA}$ $\tt TTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGA$ AATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGA $\tt TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT$ ${\tt CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC}$ $\tt CCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCG$ $\tt CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCAT$ CACCGAAACGCCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG CCCTTATTCCCTTTTTTTGCGGCATTTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC ${\tt TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA}$ AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG

ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT $\tt TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG$ AAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA ${\tt CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG}$ ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGTTTGTT TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA TACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG GCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA ${\tt ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT}$ ${\tt TGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC}$ $\tt GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT$ $\tt CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA$ CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGCAAGAGCGCCCAATACGCAAACCGCCTC ${\tt AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA}$ $\tt CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG$ $\tt TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC$ $\tt CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA$ ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT GAGAGGTGCGGCGCCAATCAGAGCGCGCGCTCCGAAAGTTTCCTTTTATGGCGAG GCGCGGCGCGCGCCCTATAAAAAGCGAAGCGCGCGGCGGCGGGAGTCGCTGCGCG

 $\tt CTGCCTTCGCCCCGTGCCCCGCTCCGCCCGCCCGCCCCGCCCCGGCTCTGACT$

GACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGG ATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAAC $\tt CCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTT$ GATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTT TTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGAGGGGCATGAAGCTG GCCTTCAACATCCAGACATTTGGGGAGACCAAGATGTCCAATGCCACCCTCGTCAGCTAC ATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGTCCAGGAGGTCAGAGACAGCCAC TACGTGGTCAGTGAGCCACTGGGACCGGAACAGCTATAAGGAGCGCTACCTGTTCGTGTAC AGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACGATGATGGCTGCGAGCCCTGC GGGAACGACACCTTCAACCGAGAGCCAGCCATTGTCAGGTTCTTCTCCCGGTTCACAGAG GTCAGGGAGTTTGCCATTGTTCCCCTGCATGCGGCCCCGGGGGACGCAGTAGCCGAGATC GACGCTCTCTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGCTTGGAGGACGTCATG $\tt CGCCTGTGGACAAGCCCCACCTTCCAGTGGCTGATCCCCGACAGCGCTGACACCACAGCT$ $\tt GTTGTTCCCGACTCGGCTCTTCCCTTTAACTTCCAGGCTGCCTATGGCCTGAGTGACCAA$ $\tt CTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGTGATGCTGAAGGGCGGATCAGGC$ $\tt GGATCACCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTC$ $\tt CTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC$ $\tt CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAG$ ${\tt CAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG}$ AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAA ACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC CGGGAGGAGTGACCAAGAACCAGGTCAGCCTGACCTGCTGACAAGGCTTCTATCCC AGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG CACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATAG 3'

 $\tt GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTC$ $\tt CTTGGCTGCTCGCCTGTTTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCC$ $\tt CTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC$ $\tt TTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGC$ $\tt CTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAA$ TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGT GGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCA $\tt TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT$ GGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT TGCAATGGCTGGCGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG $\tt GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTAC$ $\tt GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT$ ${\tt GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT}$ TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT $\tt TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT$ TTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGG $\tt GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT$ ${\tt TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA}$ $\tt CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA$ TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACACA TTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGA AATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTGTATGA TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC CCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCG CACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC $\tt CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT$

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG $\tt CCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGG$ $\tt TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC$ ${\tt TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA}$ $\tt CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC$ ${\tt TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA}$ AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG AAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGC CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT $\tt TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT$ $\tt TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA$ ${\tt TACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG}$ CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG $\tt GCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA$ ${\tt GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA}$ ${\tt ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT}$ $\tt TGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC$ GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTC AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG $\tt TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC$ CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT

 ${\tt CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT}$ GACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGG ATCCTTCCGCCCGGACGCTCAGGACAGCGCCCGCTGCTCATAAGACTCGGCCTTAGAAC CCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAGG GATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTT TTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCGCCAGACCCTGCCGTGCA TTTATTTTTGGGGCGGCCTGCTGCCGTTTGGCATGCTGTGCGCGAGCACCACCAAAT $\tt GCACCGTGAGCCATGAAGTGGCGGATTGCAGCCATCTGAAACTGACCCAGGTGCCGGATG$ $\verb|ATCTGCCGACCAACATTACCGTGCTGAACCTGACCCATAACCAGCTGCGCCGCCTGCCGG|$ $\tt CGGCGAACTTTACCCGCTATAGCCAGCTGACCAGCCTGGATGTGGGCTTTAACACCATTA$ $\tt GCAAACTGGAACCGGAACTGTGCCAGAAACTGCCGATGCTGAAAGTGCTGAACCTGCAGC$ ATAACGAACTGAGCCAGCTGAGCGATAAAACCTTTGCGTTTTGCACCAACCTGACCGAAC TGCATCTGATGAGCAACAGCATTCAGAAAATTAAAAACAACCCGTTTGTGAAACAGAAAA ACCTGATTACCCTGGATCTGAGCCATAACGGCCTGAGCAGCACCAAACTGGGCACCCAGG $\tt TGCAGCTGGAAAACCTGCAGGAACTGCTGCTGAGCAACAACAAAATTCAGGCGCTGAAAA$ $\tt GCGAAGAACTGGATATTTTTGCGAACAGCCTGAAAAAAACTGGAACTGAGCAGCAACC$ ${\tt AGATTAAAGAATTTAGCCCGGGCTGCTTTCATGCGATTGGCCGCCTGTTTGGCCTGTTTC}$ $\tt TGAACAACGTGCAGCTGGGCCCGAGCCTGACCGAAAAACTGTGCCTGGAACTGGCGAACA$ $\tt CCAGCATTCGCAACCTGAGCCTGAGCAACAGCCAGCTGAGCACCACCAGCAACACCACCT$ $\tt TTCTGGGCCTGAAATGGACCAACCTGACCATGCTGGATCTGAGCTATAACAACCTGAACG$ ACAACATTCAGCATCTGTTTAGCCATAGCCTGCATGGCCTGTTTAACGTGCGCTATCTGA ACCTGAAACGCAGCTTTACCAAACAGAGCATTAGCCTGGCGAGCCTGCCGAAAATTGATG ATTTTAGCTTTCAGTGGCTGAAATGCCTGGAACATCTGAACATGGAAGATAACGATATTC CGGGCATTAAAAGCAACATGTTTACCGGCCTGATTAACCTGAAATATCTGAGCCTGAGCA ACAGCTTTACCAGCCTGCGCACCCTGACCAACGAAACCTTTGTGAGCCTGGCGCATAGCC CGCTGCATATTCTGAACCTGACCAAAAACAAAATTAGCAAAATTGAAAGCGATGCGTTTA GCTGGCTGGGCCATCTGGAAGTGCTGGATCTGGGCCTGAACGAAATTGGCCAGGAACTGA $\tt CCGGCCAGGAATGGCGCGGCCTGGAAAACATTTTTGAAATTTATCTGAGCTATAACAAAT$ ATCTGCAGCTGACCCGCAACAGCTTTGCGCTGGTGCCGAGCCTGCAGCGCCTGATGCTGC

TGACCATTCTGGATCTGAGCAACAACAACATTGCGAACATTAACGATGATATGCTGGAAG $\tt GCCTGGAAAAACTGGAAATTCTGGATCTGCAGCATAACAACCTGGCGCGCCTGTGGAAAC$ $\verb|ATGCGAACCCGGGCGGCCCGATTTATTTTCTGAAAGGCCTGAGCCATCTGCATATTCTGA|$ ${\tt ACCTGGAAAGCAACGGCTTTGATGAAATTCCGGTGGAAGTGTTTAAAGATCTGTTTGAAC}$ $\tt TGAAAATTATTGATCTGGGCCTGAACAACCTGAACACCCTGCCGGCGAGCGTGTTTAACA$ ACCAGGTGAGCCTGAAAAGCCTGAACCTGCAGAAAAACCTGATTACCAGCGTGGAAAAAA ${\tt AAGTGTTTGGCCCGGCGTTTCGCAACCTGACCGAACTGGATATGCGCTTTAACCCGTTTG}$ ATTGCACCTGCGAAAGCATTGCGTGGTTTGTGAACTGGATTAACGAAACCCATACCAACA $\tt TTCCGGAACTGAGCAGCCATTATCTGTGCAACACCCCGCCGCATTATCATGGCTTTCCGG$ TGCGCCTGTTTGATACCAGCAGCTGCAAAGATAGCGCGCCGTTTGAACTGTTTTTTATGA GGCGCATTAGCTTTTATTGGAACGTGAGCGTGCATCGCGTGCTGGGCTTTAAAGAAATTG ATCGCCAGACCGAACAGTTTGAATATGCGGCGTATATTATTCATGCGTATAAAGATAAAG ATTGGGTGTGGGAACATTTTAGCAGCATGGAAAAAGAAGATCAGAGCCTGAAATTTTGCC TGGAAGACGCGATTTTGAACGGGCGTGTTTGAACTGGAAGCGATTGTGAACAGCATTA ${\tt AACGCAGCCGCAAAATTATTTTTGTGATTACCCATCATCTGCTGAAAGATCCGCTGTGCA}$ ${\tt AACGCTTTAAAGTGCATCATGCGGTGCAGCAGCGGATTGAACAGAACCTGGATAGCATTA}$ $\tt CGTTTCGCCATAAACTGCAGGTGGCGCTGGGCAGCAAAAACAGCGTGCATGGGCGGATCA$ GGCGGATCACCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA $\tt CTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATC$ TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC $\verb|AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG|$ ${\tt GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG}$ $\tt CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG$ AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATAG 3 ' SEQ ID NO: 9 = SEQ ID NO: 1 + SEQ ID NO: 45 TTCTAGAATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTA

SEQ ID NO: 9 = SEQ ID NO: 1 + SEQ ID NO: 4
5' TTCTAGAATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTT

ACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGATCATGCTA

TTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTT

ATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGTGCACTGTGTTTGCTGACG

CAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCCGGGACTTTCGCTT

TCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCTGCCTTGCCCGCTGCTGGACAG

GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTC $\tt CTTGGCTGCTCGCCTGTTTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCC$ CTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC $\tt CTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAA$ TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGT GGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCA TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT GGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTTCCTGT TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGGCGCATTAAGCGCGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG $\tt GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT$ ${\tt GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT}$ ${\tt TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT}$ TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT TTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGG GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT ${\tt TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA}$ CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA ${\tt TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACACA}$ $\tt TTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGA$ AATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTTGCTAATTCTTTGCCTTGCCTGTATGA TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC CCCGACACCCGCCAACACCCGCTGACGCGCCTTGACGGGCTTGTCTGCTCCCGGCATCCG CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCAT CACCGAAACGCCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC $\tt CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT$

GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG $\tt CCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGG$ $\tt TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC$ ${\tt TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA}$ $\tt CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCCAACCAACCCAACCCAACCCAACCCAACCCAACAACA$ ${\tt TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA}$ AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG AAGCCATACCAAACGACGAGGGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT $\tt CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT$ $\tt TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT$ $\tt TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA$ $\tt CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATA$ ${\tt AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG}$ GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA ${\tt ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT}$ TGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC $\tt GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT$ CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGCAAGAGCGCCCAATACGCAAACCGCCTCAGCGCGCAGAGAGGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC

 ${\tt CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT}$ GGAGAGGTGCGGCGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGA GCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCCCCGCCCCGCCCCGGCTCTGAC TGACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTTGGCGCCTCCCGCG GATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAA CCCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTT TTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGGAG GGATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTT TTTTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGAGGGGCATGAAGCT GCTGGGGGCCTGCTGCACTGCGGCCCTACTGCAGGGGCCCTGTCCATGGGCTTTTG $\tt CCGCAGCGCGCTGCATCCGCTGAGCCTGCTGGTGCAGGCGATTATGCTGGCGATGACCCT$ GGCGCTGGGCACCCTGCCGGCGTTTCTGCCGTGCGAACTGCAGCCGCATGGCCTGGTGAA CTGCAACTGGCTGTTTCTGAAAAGCGTGCCGCATTTTAGCATGGCGGCGCCGCGCGCAA $\tt CGTGACCAGCCTGAGCCTGAGCAGCAACCGCATTCATCATCTGCATGATAGCGATTTTGC$ $\tt GCATCTGCCGAGCCTGCGCCATCTGAACCTGAAATGGAACTGCCCGCCGGTGGGCCTGAG$ $\tt CCCGATGCATTTTCCGTGCCATATGACCATTGAACCGAGCACCTTTCTGGCGGTGCCGAC$ $\tt CCTGGAAGAACTGAACCTGAGCTATAACAACATTATGACCGTGCCGGCGCTGCCGAAAAG$ $\tt CCTGATTAGCCTGAGCCTGAGCCATACCAACATTCTGATGCTGGATAGCGCGAGCCTGGC$ GGGCCTGCATGCGCTTTCTGTTTATGGATGGCAACTGCTATTATAAAAACCCGTG $\tt CCGCCAGGCGCTGGAAGTGGCGCCGGGCGCGCTGCTGGGCCTGGGCAACCTGACCCATCT$ GAGCCTGAAATATAACAACCTGACCGTGGTGCCGCGCAACCTGCCGAGCAGCCTGGAATA $\tt CGCGCTGCGCTGCTGGATGTGGGCGGCAACTGCCGCCGCTGCGATCATGCGCCGAACCC$ GTGCATGGAATGCCCGCGCCATTTTCCGCAGCTGCATCCGGATACCTTTAGCCATCTGAG ${\tt TCGCGGCCTGGGCAACCTGCGCGTGCTGGATCTGAGCGAAAACTTTCTGTATAAATGCAT}$ TACCAAAACCAAAGCGTTTCAGGGCCTGACCCAGCTGCGCAAACTGAACCTGAGCTTTAA CTATCAGAAACGCGTGAGCTTTGCGCATCTGAGCCTGGCGCGCGAGCTTTGGCAGCCTGGT $\tt GGCGCTGAAAGAACTGGATATGCATGGCATTTTTTTTTCGCAGCCTGGATGAAACCACCCT$ GCGCCCGCTGCCGCCTGCCGATGCTGCAGACCCTGCGCCTGCAGATGAACTTTATTAA CCAGGCGCAGCTGGGCATTTTTCGCGCGTTTTCCGGGCCTGCGCTATGTGGATCTGAGCGA TAACCGCATTAGCGGCGCGAGCGAACTGACCGCGACCATGGGCGAAGCGGATGGCGGCGA AAAAGTGTGGCTGCAGCCGGCGATCTGGCGCCGCCGCCGCTGGATACCCCGAGCAGCGA AGATTTTCGCCCGAACTGCAGCACCCTGAACTTTACCCTGGATCTGAGCCGCAACAACCT

GGTGACCGTGCAGCCGGAAATGTTTGCGCAGCTGAGCCATCTGCAGTGCCTGCGCCTGAG GGTGCTGGATCTGAGCCATAACAAACTGGATCTGTATCATGAACATAGCTTTACCGAACT $\tt GGGCCATAACTTTAGCTTTGTGGCGCATCTGCGCACCCTGCGCCATCTGAGCCTGGCGCA$ TTTTAGCGGCAACGCGCTGGGCCATATGTGGGCGGAAGGCGATCTGTATCTGCATTTTTT TCAGGGCCTGAGCGGCCTGATTTGGCTGGATCTGAGCCAGAACCGCCTGCATACCCTGCT GCCGCAGACCCTGCGCAACCTGCCGAAAAGCCTGCAGGTGCTGCGCCTGCGCGATAACTA TCTGGCGTTTTTTAAATGGTGGAGCCTGCATTTTCTGCCGAAACTGGAAGTGCTGGATCT GGCGGCCACCAGCTGAAAGCGCTGACCAACGGCAGCCTGCCGGCGGCACCCGCCTGCG CCGCCTGGATGTGAGCTGCAACAGCATTAGCTTTGTGGCGCCGGGCTTTTTTAGCAAAGC GAAAGAACTGCGCGAACTGAACCTGAGCGCGAACGCGCTGAAAACCGTGGATCATAGCTG GTTTGGCCCGCTGGCGAGCCGCTGCAGATTCTGGATGTGAGCCCGAACCCGCTGCATTG GCCGAGCCGCGTGAAATGCGGCAGCCCGGGCCAGCTGCAGGGCCTGAGCATTTTTGCGCA GGATCTGCGCCTGTGCCTGGATGAAGCGCTGAGCTGGGATTGCTTTGCGCTGAGCCTGCT $\tt GGCGGTGGCGTGGGCTGCCGATGCTGCATCATCTGTGCGGCTGGGATCTGTG$ $\tt TGAAGATGCGCTGCCGTATGATGCGTTTTGTGGTGTTTTGATAAAACCCAGAGCGCGGTGGC$ $\tt GGATTGGGTGTATAACGAACTGCGCGGCCAGCTGGAAGAATGCCGCGGCCGCTGGGCGCT$ $\tt GCGCCTGTGCCTGGAAGAACGCGATTGGCTGCCGGGCAAAACCCTGTTTGAAAACCTGTG$ $\tt GGCGAGCGTGTATGGCAGCCGCAAAACCCTGTTTGTGCTGGCGCATACCGATCGCGTGAG$ CGGCCTGCTGCGCGCGAGCTTTCTGCTGGCGCAGCAGCGCCTGCTGGAAGATCGCAAAGA TGTGGTGGTGGTGATTCTGAGCCCGGATGGCCGCCGCAGCCGCTATGTGCGCCTGCG $\tt CTTTTGGGCGCAGCTGGCCATGGCGCTGACCCGCGATAACCATCATTTTTATAACCGCAA$ CTTTTGCCAGGGCCCGACCGCGGAAGGGCGGATCAGGCGGATCACCCAAATCTTGTGACA AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCC TCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG $\tt TGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG$ TGGAGGTGCATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTG TGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA AGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGG AGCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCGGGAGGAGATGACCAAGAACC AGGTCAGCCTGACCTGCTCGAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG ${\tt TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT}$

CCCTGTCTCCGGGTAAATAG 3'

SEQ ID NO: 10 = SEQ ID NO: 1 + SEQ ID NO: 5 5' TTCTAGAATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTA ACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTA $\tt TTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTT$ ${\tt CAACCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTT}$ GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTC $\tt CTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGGACGTCCTTCTGCTACGTCC$ $\mathtt{CTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC}$ $\tt TTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGC$ CTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAA TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGT GGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCA TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT GGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG ${\tt AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT}$ $\tt TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC$ $\tt TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT$ GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA $\tt TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC$ TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGGCGCATTAAGCGCGGGGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG CCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTTCTCGCCACGTTCGCCG $\tt GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTAC$ $\tt GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT$ GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT TTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGG GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGA AATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT

 ${\tt AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGA}$

TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT ${\tt CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC}$ $\tt CCCGACACCCGCCAACACCCGCTGACGGCCCTGACGGGCTTGTCTGCTCCCGGCATCCG$ $\tt CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCAT$ $\tt CACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA$ $\tt TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC$ $\tt CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT$ GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG $\tt CCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGG$ TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA ${\tt AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG}$ ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG $\verb|AAGCCATACCAAACGACGAGGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC|$ GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA $\tt TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGC$ ${\tt CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG}$ ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT $\tt CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT$ $\tt TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT$ $\tt TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA$ ${\tt TACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG}$ CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG GCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAA ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT GGTTCCTGGCCTTTTTGCTGGCCTTTTTGCTCACATGTTCTTTTCCTGCGTTATCCCCTGATT CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTC

 ${\tt AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA}$ $\tt CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG$ $\tt TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC$ $\tt CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA$ $\tt CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT$ $\tt ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC$ ${\tt CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT}$ GAGAGGTGCGGCGCCCAATCAGAGCGCGCGCTCCGAAAGTTTCCTTTTATGGCGAG $\tt CTGCCTTCGCCCGTGCCCGCTCCGCCGCCGCCCGCCCGGCCCCGGCTCTGACT$ GACCGCGTTACTAAAACAGGTAAGTCCGGCCTCCGCGCCGGGTTTTGGCGCCTCCCGCGG $\verb|ATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAAC| \\$ $\tt CCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTT$ ${\tt GATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTT}$ TTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGAGGGGCATGAAGCTG $\tt CTGGGGGCGCTGCTGGCACTGGCGGCCCTACTGCAGGGGGCCGTGTCCATGAGCATGCTG$ $\tt TTTTATACCCTGATTACCGCGTTTCTGATTGGCATTCAGGCGGAACCGCATAGCGAAAGC$ $\verb|AACGTGCCGGCGGCCATACCATTCCGCAGGCGCATTGGACCAAACTGCAGCATAGCCTG|$ $\tt CCGCGCGTGCTGTTTAGCACCCAGCCGCGCGCGCGAAGCGGCGGATACCCAGGATCTGGAT$ TTTGAAGTGGGCGCGCGCCGTTTAACCGCACCCATCGCAGCAAACGCAGCAGCAGC GATAAAACCACCGCGACCGATATTAAAGGCAAAGAAGTGATGGTGCTGGGCGAAGTGAAC ATTAACAACAGCGTGTTTAAACAGTATTTTTTTGAAACCAAATGCCGCGATCCGAACCCG GTGGATAGCGGCTGCCGCGGCATTGATAGCAAACATTGGAACAGCTATTGCACCACCACC CATACCTTTGTGAAAGCGCTGACCATGGATGGCAAACAGGCGGCGTGGCGCTTTATTCGC GGCGGATCACCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAA TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAG ${\tt GAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG}$

 $\tt CTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG$ AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA $\tt CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACC$ $\verb|ACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGAC|$ ${\tt AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC}$ AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATAG 3 ' SEQ ID NO: 11 = SEQ ID NO: 1 + SEQ ID NO: 6 5' TTCTAGAATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTA ACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTA $\tt TTGCTTCCGGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTT$ CAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTTCCGGGACTTTTCCCCTT GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTC CTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCC CTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC $\tt CTAAGCTTATCGATACCGTCGAGATCTAACTTGTTTATTGCAGCTTATAATGGTTACAAA$ ${\tt TAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTCACTGCATTCTAGTTGT}$ ${\tt GGTTTGTCCAAACTCATCATGTATCTTATCATGTCTGGATCTCGACCTCGACTAGAGCA}$ TGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGAT $\tt GGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT$ GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG ${\tt AATGGAATTCCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGT}$ $\tt TGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTC$ $\tt TTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCGACAACGGTTAATTT$ GCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGA TTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTC TGATTCTAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCT GTAGCGCCCATTAAGCGCGGCGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTG CCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCCTTTCTTCTCGCCACGTTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTAC GGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCT GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTT TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATT

TTAACAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTTGG

GGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGT TCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAGA CCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCA ${\tt TATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCGTTTGAATCTTTACCTACACA}$ $\tt TTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGA$ AATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTT AGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGA TTTATTGGATGTTGGAATTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT CACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGC $\tt CCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCG$ CACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC CTATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCG CCCTTATTCCCTTTTTTTGCGGCATTTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGG TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC ${\tt TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA}$ $\tt CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC$ ${\tt TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA}$ AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTG ATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT $\tt TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATG$ AAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGA $\tt TTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGC$ ${\tt CAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG}$ ${\tt ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT}$ CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTT CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGTTTGTT TGCCGGATCAAGAGCTACCAACTCTTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGA TACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAG CACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG GCTGAACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA

GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGCGCACGAGGGGAGCTTCCAGGGGGAA ${\tt ACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTT}$ $\tt TGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC$ $\tt GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT$ $\tt CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA$ CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTC AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTGTAGTTAATGATTAA CCCGCCATGCTACTTATCTACGTAGCCATGCTCTAGGACATTGATTATTGACTAGTGGAG $\tt TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC$ CCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCAT ATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCC CAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCT CCACCCCAATTTTGTATTTATTTTTTTTAATTATTTTTTGTGCAGCGATGGGGGCGGG ATCCTTCCGCCCGGACGCTCAGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAAC $\tt CCCAGTATCAGCAGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTT$ ${\tt GATCTCCGTGGGGCGGTGAACGCCGATGATGCCTCTACTAACCATGTTCATGTTTTCTTT}$ TTTTTCTACAGGTCCTGGGTGACGAACAGGGTACCGCCACCATGAGGGGCATGAAGCTG ATGCGCCTGCTGCCGCTGCTGCGCGCTGTGGGGCCCGGATCCGGCGGCGCG $\tt TTTGTGAACCAGCATCTGTGCGGCAGCCATCTGGTGGAAGCGCTGTATCTGGTGTGCGGC$ GAACGCGGCTTTTTTTATACCCCGAAAACCCGCCGCGAAGCCGGAAGATCTGCAGGTGGGC CAGGTGGA ACTGGGCGGCCGGGCCGGGCGGCAGCCTGCAGCCGCTGGCGCTGGA AGGC AGCCTGCAGAAACGCGGCATTGTGGAACAGTGCTGCACCAGCATTTGCAGCCTGTATCAG CTGGAAAACTATTGCAACGGCGGATCAGGCGGATCACCCAAATCTTGTGACAAAACTCA CACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCC CCCAAAACCCAAGGACACCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGT GCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG

-continued CGTCCTCACCGTCCTGCACCAGGACTGGCTGATGGCAAGGAGTACAAGTGCAAGGTCTC CAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAG CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAA TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTT CTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGGGAACGTCTTCTC ATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTC TCCGGGTAAATAG 3'

[0051] As will be appreciated by those skilled in the art, because the recombinant plasmid is a circular vector, the one or more sequences of the mRNA expression cassettes may be connected at the 3' end of SEQ ID NO. 1, as shown in SEQ ID NO. 7-11 or at the 5' end of SEQ ID NO. 1.

[0052] As will be appreciated by those skilled in the art, a perfect match of nucleotides with each of the miRNA expression cassette sequences is not necessary in order to have the desired result of increased bioavailability of the target biomolecule as a result of the target cell producing the miRNA sequence that will bind to and degrade the mRNA of the target biomolecule. In some embodiments of the present disclosure, about 80% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 85% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 90% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result. In some embodiments of the present disclosure, about 95% to about 100% nucleotide sequence matching with each of the mRNA expression cassettes causes the desired result.

Example 1—Expression Cassette

[0053] Expression cassettes for expressing mRNA were synthesized. The synthesized miRNA expression cassettes were cloned into the pAVA-00200 plasmid backbone containing the CASI promoter, multiple cloning site (MCS), Woodchuck Hepatitis Virus post-transcriptional regulatory element (WPRE), and Simian virus 40 (SV40) polyadenylation (polyA) sequence, all flanked by the AAV2 inverted terminal repeats (ITR). pAVA-00200 was cut with the restriction enzymes KpnI and XbaI in the MCS and separated on a 1% agarose gel. The band of interest was excised and purified using a gel extraction kit. Each mRNA expression cassette was amplified by polymerase chain reaction (PCR) using Taq polymerase and the PCR products were gel purified and the bands on interest were also excised and purified using a gel extraction kit. These PCR products contained the mRNA expression cassettes in addition to 15 base pair 5' and 3' overhangs that aligned with the ends of the linearized pAVA-00200 backbone. Using in-fusion cloning, the amplified mRNA expression cassettes are integrated with the pAVA-00200 backbone via homologous recombination. The resulting RP contained the following: 5' ITR, CASI promoter, miRNA expression cassette, WPRE, SV40 polyA and ITR 3'.

SEQUENCE LISTING

```
Sequence total quantity: 11
SEO ID NO: 1
                       moltype = DNA length = 5861
FEATURE
                       Location/Qualifiers
source
                       1..5861
                       mol_type = other DNA
                       organism = synthetic construct
SEQUENCE: 1
ttctagaata atcaacctct ggattacaaa atttgtgaaa gattgactgg tattcttaac
tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta tcatgctatt
getteeegta tggettteat ttteteetee ttgtataaat eetggttget gtetetttat
gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt tgctgacgca
acceccactg gttggggcat tgccaccace tgtcagetee tttccgggae tttcgettte
cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg ctggacaggg
gctcggctgt tgggcactga caattccgtg gtgttgtcgg ggaaatcatc gtcctttcct
tggctgctcg cctgtgttgc cacctggatt ctgcgcggga cgtccttctg ctacgtccct
teggeetea atecagegga estteettee egeggeetge tgeeggetet geggeetett
                                                                   540
cogegtette geettegeee teagaegagt eggateteee tttgggeege eteecegeet
                                                                   600
aagettateg atacegtega gatetaaett gtttattgea gettataatg gttacaaata
                                                                   660
aagcaatagc atcacaaatt tcacaaataa agcatttttt tcactgcatt ctagttgtgg
                                                                   720
tttgtccaaa ctcatcaatg tatcttatca tgtctggatc tcgacctcga ctagagcatg
gctacgtaga taagtagcat ggcgggttaa tcattaacta caaggaaccc ctagtgatgg
                                                                   840
agttggccac tccctctctg cgcgctcgct cgctcactga ggccgggcga ccaaaaggtcg
                                                                   900
cccgacgccc gggctttgcc cgggcggcct cagtgagcga gcgagcgcgc cagctggcgt
                                                                   960
aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa
                                                                   1020
tggaattcca gacgattgag cgtcaaaatg taggtatttc catgagcgtt tttcctgttg
```

caatggctgg	cggtaatatt	attetagata	ttaccaccaa	ggccgatagt	ttgagttctt	1140
	aagtgatgtt					1200
	gactctttta					1260
	gttcctgtct					1320
attctaacga	ggaaagcacg	ttatacgtgc	tcgtcaaagc	aaccatagta	cgcgccctgt	1380
agcggcgcat	taagcgcggc	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	1440
agcqccctag	cgcccgctcc	tttcqctttc	ttcccttcct	ttctcqccac	qttcqccqqc	1500
	aagctctaaa					1560
	ccaaaaaact					1620
						1680
	ttcgcccttt					
	caacactcaa					1740
ccgatttcgg	cctattggtt	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaatttt	1800
aacaaaatat	taacgtttac	aatttaaata	tttgcttata	caatcttcct	gtttttgggg	1860
cttttctgat	tatcaaccgg	ggtacatatg	attgacatgc	tagttttacg	attaccgttc	1920
atcqattctc	ttgtttgctc	caqactctca	ggcaatgacc	tqataqcctt	tqtaqaqacc	1980
	agctaccctc					2040
	tttgactgtc					2100
	tgcatttaaa					2160
	tcccgcaaaa					2220
	tgaggcttta					2280
tattggatgt	tggaattcct	gatgcggtat	tttctcctta	cgcatctgtg	cggtatttca	2340
caccgcatat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	2400
cgacacccgc	caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcatccgct	2460
	ctgtgaccgt					2520
	cgagacgaaa					2580
	tttcttagac					2640
	ttttctaaat					2700
_					_	
	aataatattg					2760
	tttttgcggc					2820
aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	2880
aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	2940
tttaaaqttc	tgctatgtgg	cqcqqtatta	tcccqtattq	acqccqqqca	agagcaactc	3000
	tacactattc					3060
	atggcatgac					3120
						3180
	ccaacttact					
-	tgggggatca					3240
	acgacgagcg					3300
aaactattaa	ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	3360
gaggcggata	aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	3420
gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	3480
gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	3540
	gacagatcgc					3600
	actcatatat					3660
	agatcctttt					3720
						3780
	cgtcagaccc					
	tctgctgctt					3840
	agctaccaac					3900
	tccttctagt					3960
ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	4020
tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	4080
tgaacggggg	gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	cgaactgaga	4140
	gtgagctatg					4200
	gcggcagggt					4260
	tttatagtcc					4320
						4380
	cagggggggg					4440
	tttgctggcc					
	gtattaccgc					4500
	agtcagtgag					4560
cccgcgcgtt	ggccgattca	ttaatgcagc	agctgcgcgc	tegetegete	actgaggccg	4620
cccgggcaaa	gcccgggcgt	cgggcgacct	ttggtcgccc	ggcctcagtg	agcgagcgag	4680
cgcgcagaga	gggagtggcc	aactccatca	ctaggggttc	cttgtagtta	atgattaacc	4740
	cttatctacg					4800
	taacttacgg					4860
					_	4920
	ataatgacgt					
	gagtatttac					4980
gccaagtacg	ccccctattg	acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	5040
gtacatgacc	ttatgggact	ttcctacttq	gcagtacatc	tacgtattaq	tcatcgctat	5100
	gaggtgagcc					5160
	ttgtatttat					5220
	_		_			
	gcgcgccagg					5280
agaggtgcgg	cggcagccaa	tcagagcggc	gcgctccgaa	agtttccttt	tatggcgagg	5340
cggcggcggc	ggcggcccta	taaaaagcga	agcgcgcggc	gggcgggagt	cgctgcgcgc	5400
tgccttcgcc	ccgtgccccg	ctccgccqcc	gcctcgcgcc	gcccgccccq	gctctgactg	5460
	taaaacaggt					5520
						5580
	ctcacggcga					
LUCCLLCCGCC	cggacgctca	yyacagcggc	cogorgetea	Laayactcgg	ccluagaacc	5640

```
ccagtatcag cagaaggaca ttttaggacg ggacttgggt gactctaggg cactggtttt
                                                                   5700
ctttccagag agcggaacag gcgaggaaaa gtagtccctt ctcggcgatt ctgcggaggg
                                                                   5760
atctccgtgg ggcggtgaac gccgatgatg cctctactaa ccatgttcat gttttctttt
                                                                   5820
tttttctaca ggtcctgggt gacgaacagg gtaccgccac c
                                                                   5861
SEO ID NO: 2
                       moltype = DNA length = 1560
FEATURE
                       Location/Qualifiers
source
                      1..1560
                      mol type = other DNA
                      organism = synthetic construct
SEQUENCE: 2
atgaggggca tgaagctgct gggggcgctg ctggcactgg cggccctact gcagggggcc
gtgtccctga agatcgcagc cttcaacatc cagacatttg gggagaccaa gatgtccaat
gccaccctcg tcagctacat tgtgcagatc ctgagccgct atgacatcgc cctggtccag
gaggtcagag acagccacct gactgccgtg gggaagctgc tggacaacct caatcaggat
gcaccagaca cctatcacta cgtggtcagt gagccactgg gacggaacag ctataaggag
cgctacctgt tcgtgtacag gcctgaccag gtgtctgcgg tggacagcta ctactacgat
gatggctgcg agccctgcgg gaacgacacc ttcaaccgag agccagccat tgtcaggttc
ttctcccggt tcacagaggt cagggagttt gccattgttc ccctgcatgc ggccccgggg
qacqcaqtaq ccqaqatcqa cqctctctat qacqtctacc tqqatqtcca aqaqaaatqq
ggcttggagg acgtcatgtt gatgggcgac ttcaatgcgg gctgcagcta tgtgagaccc
                                                                   600
tcccagtggt catccatccg cctgtggaca agcccacct tccagtggct gatccccgac
                                                                   660
agegetgaca ceacagetae acceaegeae tgtgeetatg acaggategt ggttgeaggg
                                                                   720
atgetgetee gaggegeegt tgttcccgac teggetette cetttaactt ccaggetgee
                                                                   780
tatggcctga gtgaccaact ggcccaagcc atcagtgacc actatccagt ggaggtgatg
                                                                   840
ctgaagggcg gatcaggcgg atcacccaaa tcttgtgaca aaactcacac atgcccaccg
                                                                   900
tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc aaaacccaag
                                                                   960
gacaccctca tgatctcccg gacccctgag gtcacatgcg tggtggtgga cgtgagccac
                                                                   1020
qaaqacctq aqqtcaaqtt caactqqtac qtqqacqqcq tqqaqqtqca taatqccaaq
                                                                   1080
acaaagccgc gggaggagca gtacaacagc acgtaccgtg tggtcagcgt cctcaccgtc
                                                                   1140
ctgcaccagg actggctgaa tggcaaggag tacaagtgca aggtctccaa caaagccctc
                                                                   1200
ccagccccca tcgagaaaac catctccaaa gccaaagggc agccccgaga accacaggtg
                                                                   1260
tacaccetge ecceateeeg ggaggagatg accaagaace aggteageet gacetgeetg
                                                                   1320
qtcaaaqqct tctatcccaq cqacatcqcc qtqqaqtqqq aqaqcaatqq qcaqccqqaq
                                                                   1380
aacaactaca agaccacgcc tecegtgetg gacteegacg geteettett eetetacage
                                                                   1440
aagctcaccg tggacaagag caggtggcag caggggaacg tcttctcatg ctccgtgatg
                                                                   1500
catgaggete tgcacaacca ctacacgcag aagageetet ecetgtetee gggtaaatag
SEO ID NO. 3
                      moltype = DNA length = 3423
                      Location/Qualifiers
FEATURE
source
                      1..3423
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 3
gccagaccct gccgtgcatt tatttttggg gcggcctgct gccgtttggc atgctgtgcg
cgagcagcac caccaaatgc accgtgagcc atgaagtggc ggattgcagc catctgaaac
                                                                   120
tgacccaggt gccggatgat ctgccgacca acattaccgt gctgaacctg acccataacc
                                                                   180
agetgegeeg cetgeeggeg gegaacttta eeegetatag eeagetgace ageetggatg
                                                                   240
tgggctttaa caccattagc aaactggaac cggaactgtg ccagaaactg ccgatgctga
                                                                   300
aagtgetgaa eetgeageat aacgaactga gecagetgag egataaaace tttgegtttt
                                                                   360
gcaccaacct gaccgaactg catctgatga gcaacagcat tcagaaaatt aaaaacaacc
cgtttgtgaa acagaaaaac ctgattaccc tggatctgag ccataacggc ctgagcagca
ccaaactggg cacccaggtg cagctggaaa acctgcagga actgctgctg agcaacaaca
aaattcaggc gctgaaaagc gaagaactgg atatttttgc gaacagcagc ctgaaaaaaac
                                                                   600
tggaactgag cagcaaccag attaaagaat ttagcccggg ctgctttcat gcgattggcc
gcctgtttgg cctgtttctg aacaacgtgc agctgggccc gagcctgacc gaaaaactgt
                                                                   720
gcctggaact ggcgaacacc agcattcgca acctgagcct gagcaacagc cagctgagca
ccaccagcaa caccaccttt ctgggcctga aatggaccaa cctgaccatg ctggatctga
                                                                   840
gctataacaa cctgaacgtg gtgggcaacg atagctttgc gtggctgccg cagctggaat
atttttttct ggaatataac aacattcagc atctgtttag ccatagcctg catggcctgt
                                                                   960
ttaacgtgcg ctatctgaac ctgaaacgca gctttaccaa acagagcatt agcctggcga
qcctqccqaa aattqatqat tttaqctttc aqtqqctqaa atqcctqqaa catctqaaca
tggaagataa cgatattccg ggcattaaaa gcaacatgtt taccggcctg attaacctga
                                                                   1140
aatatctgag cctgagcaac agctttacca gcctgcgcac cctgaccaac gaaacctttg
                                                                   1200
tgagcctggc gcatagcccg ctgcatattc tgaacctgac caaaaacaaa attagcaaaa
                                                                   1260
ttgaaagega tgegtttage tggetgggee atetggaagt getggatetg ggeetgaaeg
aaattggcca ggaactgacc ggccaggaat ggcgcggcct ggaaaacatt tttgaaattt
                                                                   1380
atotgagota taacaaatat otgoagotga ooogoaacag otttgogotg gtgoogagoo
                                                                   1440
tgcagcgcct gatgctgcgc cgcgtggcgc tgaaaaacgt ggatagcagc ccgagcccgt
                                                                   1500
ttcagccgct gcgcaacctg accattctgg atctgagcaa caacaacatt gcgaacatta
                                                                   1560
acgatgatat gctggaaggc ctggaaaaac tggaaattct ggatctgcag cataacaacc
tggcgcgcct gtggaaacat gcgaacccgg gcggcccgat ttattttctg aaaggcctga
                                                                   1680
gccatctgca tattctgaac ctggaaagca acggctttga tgaaattccg gtggaagtgt
                                                                   1740
ttaaagatct gtttgaactg aaaattattg atctgggcct gaacaacctg aacaccctgc
                                                                   1800
cggcgagcgt gtttaacaac caggtgagcc tgaaaagcct gaacctgcag aaaaacctga
ttaccagegt ggaaaaaaaa gtgtttggcc eggegttteg caacetgace gaactggata
```

```
tgcgctttaa cccgtttgat tgcacctgcg aaagcattgc gtggtttgtg aactggatta
acgaaaccca taccaacatt ceggaactga geagecatta tetgtgeaac acceegeege
                                                                   2040
attatcatgg ctttccggtg cgcctgtttg ataccagcag ctgcaaagat agcgcgccgt
                                                                   2100
ttgaactgtt ttttatgatt aacaccagca ttctgctgat ttttattttt attgtgctgc
                                                                   2160
tgattcattt tgaaggctgg cgcattagct tttattggaa cgtgagcgtg catcgcgtgc
                                                                   2220
tgggctttaa agaaattgat cgccagaccg aacagtttga atatgcggcg tatattattc
                                                                   2280
atgcgtataa agataaagat tgggtgtggg aacattttag cagcatggaa aaagaagatc
                                                                   2340
agagcetgaa attttgeetg gaagaacgeg attttgaage gggegtgttt gaactggaag
                                                                   2400
cgattgtgaa cagcattaaa cgcagccgca aaattatttt tgtgattacc catcatctgc
                                                                   2460
tgaaagatcc gctgtgcaaa cgctttaaag tgcatcatgc ggtgcagcag gcgattgaac
agaacctgga tagcattatt ctggtgtttc tggaagaaat tccggattat aaactgaacc
                                                                   2580
atgcgctgtg cctgcgccgc ggcatgttta aaagccattg cattctgaac tggccggtgc
                                                                   2640
agaaagaacg cattggcgcg tttcgccata aactgcaggt ggcgctgggc agcaaaaaca
gcgtgcatgg gcggatcagg cggatcaccc aaatcttgtg acaaaactca cacatgccca
ccgtgcccag cacctgaact cctgggggga ccgtcagtct tcctcttccc cccaaaaccc
aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtggtggt ggacgtgagc
cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc
aaqacaaaqc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc
gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaagcc
ctcccagccc ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agaaccacag
                                                                   3120
gtgtacaccc tgcccccatc ccgggaggag atgaccaaga accaggtcag cctgacctgc
                                                                   3180
ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg
                                                                   3240
gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctac
                                                                   3300
agcaagctca ccgtggacaa gagcaggtgg cagcagggga acgtcttctc atgctccgtg
                                                                   3360
atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tccgggtaaa
                                                                   3420
                                                                   3423
taq
SEQ ID NO: 4
                      moltype = DNA length = 3877
FEATURE
                      Location/Oualifiers
                      1..3877
source
                      mol type = other DNA
                      organism = synthetic construct
SEOUENCE: 4
atgaggggca tgaagctgct gggggcgctg ctggcactgg cggccctact gcagggggcc
gtgtccatgg gcttttgccg cagcgcgctg catccgctga gcctgctggt gcaggcgatt
                                                                   120
atgctggcga tgaccctggc gctgggcacc ctgccggcgt ttctgccgtg cgaactgcag
                                                                   180
ccgcatggcc tggtgaactg caactggctg tttctgaaaa gcgtgccgca ttttagcatg
                                                                   240
geggegeege geggeaacgt gaccageetg ageetgagea geaacegeat teateatetg
                                                                   300
catgatageg attitigegea tetigeegage etgegeeate tigaacetgaa atggaactge
                                                                   360
ccgccggtgg gcctgagccc gatgcatttt ccgtgccata tgaccattga accgagcacc
                                                                   420
tttctggcgg tgccgaccct ggaagaactg aacctgagct ataacaacat tatgaccgtg
                                                                   480
coggogotgo ogaaaagoot gattagootg agootgagoo ataccaacat totgatgotg
                                                                   540
gatagegega geetggeggg cetgeatgeg etgegettte tgtttatgga tggeaactge
                                                                   600
tattataaaa accegtgeeg ceaggegetg gaagtggege egggegeget getgggeetg
                                                                   660
ggcaacctga cccatctgag cctgaaatat aacaacctga ccgtggtgcc gcgcaacctg
                                                                   720
ccgagcagcc tggaatatct gctgctgagc tataaccgca ttgtgaaact ggcgccggaa
                                                                   780
gatetggega acetgacege getgegegtg etggatgtgg geggeaactg eegeegetge
                                                                   840
gatcatgcgc cgaacccgtg catggaatgc ccgcgccatt ttccgcagct gcatccggat
                                                                   900
acctttagcc atctgagccg cctggaaggc ctggtgctga aagatagcag cctgagctgg
                                                                   960
ctgaacgcga gctggtttcg cggcctgggc aacctgcgcg tgctggatct gagcgaaaac
                                                                   1020
tttctgtata aatgcattac caaaaccaaa gcgtttcagg gcctgaccca gctgcgcaaa
                                                                   1080
ctgaacctga gctttaacta tcagaaacgc gtgagctttg cgcatctgag cctggcgccg
                                                                   1140
agetttggca geetggtgge getgaaagaa etggatatge atggeatttt ttttegeage
                                                                   1200
ctggatgaaa ccacctgcg cccgctggcg cgcctgccga tgctgcagac cctgcgcctg
                                                                   1260
cagatgaact ttattaacca ggcgcagctg ggcatttttc gcgcgtttcc gggcctgcgc
tatgtggatc tgagcgataa ccgcattagc ggcgcgagcg aactgaccgc gaccatgggc
gaageggatg geggegaaaa agtgtggetg cageegggeg atetggegee ggegeeggtg
gataccccga gcagcgaaga ttttcgcccg aactgcagca ccctgaactt taccctggat
ctgageegea acaacetggt gaeegtgeag eeggaaatgt ttgegeaget gageeatetg
cagtgcctgc gcctgagcca taactgcatt agccaggcgg tgaacggcag ccagtttctg
ccgctgaccg gcctgcaggt gctggatctg agccataaca aactggatct gtatcatgaa
catagettta ecqaactgee gegeetggaa gegetggate tgagetataa eageeageeg
tttggcatgc agggcgtggg ccataacttt agctttgtgg cgcatctgcg caccctgcgc
                                                                   1800
catctgagcc tggcgcataa caacattcat agccaggtga gccagcagct gtgcagcacc
                                                                   1860
agcetgegeg egetggattt tageggeaac gegetgggee atatgtggge ggaaggegat
                                                                   1920
ctgtatctgc attttttca gggcctgagc ggcctgattt ggctggatct gagccagaac
                                                                   1980
cgcctgcata ccctgctgcc gcagaccctg cgcaacctgc cgaaaagcct gcaggtgctg
                                                                   2040
cgcctgcgcg ataactatct ggcgtttttt aaatggtgga gcctgcattt tctgccgaaa
                                                                   2100
ctggaagtgc tggatctggc gggcaaccag ctgaaagcgc tgaccaacgg cagcctgccg
                                                                   2160
gegggeacce geetgegeeg eetggatgtg agetgeaaca geattagett tgtggegeeg
                                                                   2220
ggctttttta gcaaagcgaa agaactgcgc gaactgaacc tgagcgcgaa cgcgctgaaa
accgtggatc atagctggtt tggcccgctg gcgagcgcgc tgcagattct ggatgtgagc
                                                                   2340
gcgaacccgc tgcattgcgc gtgcggcgcg gcgtttatgg attttctgct ggaagtgcag
                                                                   2400
geggeggtge egggeetgee gageegegtg aaatgeggea geeegggeea getgeaggge
                                                                   2460
ctgagcattt ttgcgcagga tctgcgcctg tgcctggatg aagcgctgag ctgggattgc
```

tttgcgctga gcctgctggc ggtggcgctg ggcctgggcg tgccgatgct gcatcatctg

```
tgcggctggg atctgtggta ttgctttcat ctgtgcctgg cgtggctgcc gtggcgcggc
                                                                   2700
cgccagagcg gccgcgatga agatgcgctg ccgtatgatg cgtttgtggt gtttgataaa
acccagageg eggtggegga ttgggtgtat aacgaactge geggeeaget ggaagaatge
                                                                   2760
cgcggccgct gggcgctgcg cctgtgcctg gaagaacgcg attggctgcc gggcaaaacc
                                                                    2820
ctgtttgaaa acctgtgggc gagcgtgtat ggcagccgca aaaccctgtt tgtgctggcg
                                                                    2880
cataccgatc gcgtgagcgg cctgctgcgc gcgagctttc tgctggcgca gcagcgcctg
                                                                    2940
ctggaagatc gcaaagatgt ggtggtgctg gtgattctga gcccggatgg ccgccgcagc
                                                                    3000
cgctatgtgc gcctgcgcca gcgcctgtgc cgccagagcg tgctgctgtg gccgcatcag
                                                                   3060
ccgagcggcc agcgcagctt ttgggcgcag ctgggcatgg cgctgacccg cgataaccat
                                                                    3120
catttttata accgcaactt ttgccagggc ccgaccgcgg aagggcggat caggcggatc
acccaaatct tgtgacaaaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg
                                                                    3240
gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac
                                                                    3300
ccctgaggtc acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa
ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta
caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg
caaggagtac aagtgcaagg tctccaacaa agccctccca gcccccatcg agaaaaccat
ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga
ggagatgacc aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga
catcgccgtg gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc
                                                                    3720
cqtqctqqac tccqacqqct ccttcttcct ctacaqcaaq ctcaccqtqq acaaqaqcaq
gtggcagcag gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta
                                                                   3840
cacgcagaag agcctctccc tgtctccggg taaatag
                       moltype = DNA length = 1503
SEO ID NO: 5
FEATURE
                       Location/Qualifiers
                       1..1503
source
                       mol_type = other DNA
organism = synthetic construct
SEOUENCE: 5
atgagggca tgaagctgct gggggcgctg ctggcactgg cggccctact gcagggggcc
gtgtccatga gcatgctgtt ttataccctg attaccgcgt ttctgattgg cattcaggcg
                                                                   120
gaaccgcata gcgaaagcaa cgtgccggcg ggccatacca ttccgcaggc gcattggacc
                                                                   180
aaactgcagc atagcetgga tacegegetg egeegegege geagegegee ggeggeggeg
                                                                   240
attqcqqcqc qcqtqqcqqq ccaqacccqc aacattaccq tqqatccqcq cctqtttaaa
                                                                   300
aaacgccgcc tgcgcagccc gcgcgtgctg tttagcaccc agccgccgcg cgaagcggcg
                                                                   360
gatacccagg atotggattt tgaagtgggc ggcgcggcgc cgtttaaccg cacccatcgc
                                                                    420
agcaaacgca gcagcagcca tccgattttt catcgcggcg aatttagcgt gtgcgatagc
                                                                   480
gtgagcgtgt gggtgggcga taaaaccacc gcgaccgata ttaaaggcaa agaagtgatg
                                                                   540
gtgctgggcg aagtgaacat taacaacagc gtgtttaaac agtatttttt tgaaaccaaa
                                                                    600
tgccgcgatc cgaacccggt ggatagcggc tgccgcggca ttgatagcaa acattggaac
                                                                   660
agetattgca ccaccaccca tacctttgtg aaagegetga ccatggatgg caaacaggeg
                                                                    720
gegtggeget ttattegeat tgatacegeg tgegtgtgeg tgetgageeg caaageggtg
                                                                    780
cgccgcgcgg gcggatcagg cggatcaccc aaatcttgtg acaaaactca cacatgccca
                                                                   840
ccgtgcccag cacctgaact cctgggggga ccgtcagtct tcctcttccc cccaaaaccc
                                                                   900
aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtggtggt ggacgtgagc
                                                                   960
cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc
                                                                   1020
aagacaaagc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc
                                                                   1080
gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaagcc
                                                                    1140
ctcccagccc ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agaaccacag
                                                                   1200
gtgtacaccc tgcccccatc ccgggaggag atgaccaaga accaggtcag cctgacctgc
                                                                   1260
ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg
                                                                    1320
gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctac
                                                                    1380
agcaagetea cegtggacaa gagcaggtgg cagcagggga acgtettete atgeteegtg
                                                                    1440
atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tccgggtaaa
                                                                   1500
tag
SEQ ID NO: 6
                       moltype = DNA length = 1111
                       Location/Qualifiers
FEATURE
source
                       1..1111
                       mol type = other DNA
                       organism = synthetic construct
SEOUENCE: 6
atgaggggca tgaagctgct gggggcgctg ctggcactgg cggccctact gcagggggcc
gtgtccatgg cgctgtggat gcgcctgctg ccgctgctgg cgctgctggc gctgtggggc
ccggatccgg cggcggcgtt tgtgaaccag catctgtgcg gcagccatct ggtggaagcg
                                                                   180
ctgtatctgg tgtgcggcga acgcggcttt ttttataccc cgaaaacccg ccgcgaagcg
gaagatetge aggtgggeea ggtggaactg ggeggeggee egggegeggg eagcetgeag
                                                                   300
ccgctggcgc tggaaggcag cctgcagaaa cgcggcattg tggaacagtg ctgcaccagc
atttgcagcc tgtatcagct ggaaaactat tgcaacgggc ggatcaggcg gatcacccaa
atottgtgac aaaactcaca catgoccaco gtgcccagca cotgaactoo tggggggaco
                                                                    480
gtcagtcttc ctcttccccc caaaacccaa ggacaccctc atgatctccc ggacccctga
ggtcacatgc gtggtggtgg acgtgagcca cgaagaccct gaggtcaagt tcaactggta
cgtggacggc gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agtacaacag
                                                                   660
cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag gactggctga atggcaagga
                                                                   720
gtacaagtgc aaggtctcca acaaagccct cccagccccc atcgagaaaa ccatctccaa
                                                                    780
```

agccaaaggg cagccccgag aaccacaggt gtacaccctg cccccatccc gggaggagat

```
gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc ttctatccca gcgacatcgc
cgtggagtgg gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgtgct
                                                                   960
ggactecgae ggeteettet teetetacag caageteace gtggacaaga geaggtggea
                                                                   1020
gcaggggaac gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacgca
                                                                   1080
gaagagcctc tccctgtctc cgggtaaata g
                                                                   1111
SEQ ID NO: 7
                      moltype = DNA length = 7421
FEATURE
                      Location/Qualifiers
                      1..7421
source
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 7
ttctagaata atcaacctct ggattacaaa atttgtgaaa gattgactgg tattcttaac
tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta tcatgctatt
getteeegta tggettteat ttteteetee ttgtataaat eetggttget gtetetttat
gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt tgctgacgca
acceccactg gttggggcat tgccaccace tgtcagetee tttcegggae tttcgettte
ccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg ctggacaggg
gctcggctgt tgggcactga caattccgtg gtgttgtcgg ggaaatcatc gtcctttcct
tggctgctcg cctgtgttgc cacctggatt ctgcqcggga cgtccttctg ctacgtccct
teggecetea atecagegga cetteettee egeggeetge tgeeggetet geggeetett
                                                                   540
ccgcgtcttc gccttcgccc tcagacgagt cggatctccc tttgggccgc ctccccgcct
aagettateg atacegtega gatetaaett gtttattgea gettataatg gttacaaata
                                                                   660
aagcaatagc atcacaaatt tcacaaataa agcatttttt tcactgcatt ctagttgtgg
                                                                   720
tttgtccaaa ctcatcaatg tatcttatca tgtctggatc tcgacctcga ctagagcatg
                                                                   780
gctacgtaga taagtagcat ggcgggttaa tcattaacta caaggaaccc ctagtgatgg
                                                                   840
agttggccac tccctctctg cgcgctcgct cgctcactga ggccgggcga ccaaaggtcg
                                                                   900
cccgacgcc gggctttgcc cgggcggcct cagtgagcga gcgagcgcgc cagctggcgt
                                                                   960
aataqcqaaq aqqccqcac cqatcqcct tcccaacaqt tqcqcaqcct qaatqqcqaa
                                                                   1020
tggaattcca gacgattgag cgtcaaaatg taggtatttc catgagcgtt tttcctqttg
                                                                   1080
caatggctgg cggtaatatt gttctggata ttaccagcaa ggccgatagt ttgagttctt
                                                                   1140
ctactcaggc aagtgatgtt attactaatc aaagaagtat tgcgacaacg gttaatttgc
                                                                   1200
gtgatggaca gactetttta eteggtggee teaetgatta taaaaacaet teteaggatt
                                                                   1260
ctggcgtacc gttcctgtct aaaatccctt taatcggcct cctgtttagc tcccgctctg
                                                                   1320
attetaaega ggaaageaeg ttataegtge tegteaaage aaceatagta egegeeetgt
                                                                   1380
ageggegeat taagegegge gggtgtggtg gttaegegea gegtgaeege taeaettgee
                                                                   1440
agggeeetag egecegetee tttegettte tteeetteet ttetegeeac gttegeegge
                                                                   1500
tttccccgtc aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg
                                                                   1560
cacctcgacc ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga
                                                                   1620
tagacggttt ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc
                                                                   1680
caaactggaa caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg
                                                                   1740
ccgatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt
                                                                   1800
aacaaaatat taacgtttac aatttaaata tttgcttata caatcttcct gtttttgggg
                                                                   1860
cttttctgat tatcaaccgg ggtacatatg attgacatgc tagttttacg attaccgttc
                                                                   1920
atcgattctc ttgtttgctc cagactctca ggcaatgacc tgatagcctt tgtagagacc
                                                                   1980
totcaaaaat agotacooto tooggoatga atttatoago tagaacggtt gaatatoata
                                                                   2040
ttgatggtga tttgactgtc tccggccttt ctcacccgtt tgaatcttta cctacacatt
                                                                   2100
actcaggcat tgcatttaaa atatatgagg gttctaaaaa tttttatcct tgcgttgaaa
                                                                   2160
taaaggette teeegeaaaa gtattacagg gteataatgt ttttggtaca accgatttag
                                                                   2220
ctttatgctc tgaggcttta ttgcttaatt ttgctaattc tttgccttgc ctgtatgatt
                                                                   2280
tattggatgt tggaatteet gatgeggtat ttteteetta egeatetgtg eggtatttea
                                                                   2340
caccgcatat ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagccc
                                                                   2400
cgacaccege caacaccege tgacgegeee tgacgggett gtetgeteee ggeateeget
                                                                   2460
tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca
                                                                   2520
ccgaaacgcg cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg
ataataatgg tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct
attigtitat tittictaaat acattcaaat atgtatccgc tcatgagaca ataaccctga
taaatgcttc aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc
cttattccct tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg
aaaqtaaaaq atqctqaaqa tcaqttqqqt qcacqaqtqq qttacatcqa actqqatctc
aacagcggta agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact
tttaaaqttc tqctatqtqq cqcqqtatta tcccqtattq acqccqqqca aqaqcaactc
qqtcqccqca tacactattc tcaqaatqac ttqqttqaqt actcaccaqt cacaqaaaaq
                                                                   3060
catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat
                                                                   3120
aacactgcgg ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt
                                                                   3180
ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa
gccataccaa acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc
                                                                   3300
aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg
                                                                   3360
gaggeggata aagttgeagg accaettetg egeteggeee tteeggetgg etggtttatt
                                                                   3420
gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca
                                                                   3480
gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat
gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca
                                                                   3600
gaccaagttt actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg
                                                                   3660
atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg
                                                                   3720
ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt
ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg 3840
```

```
ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata
ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca
                                                                  3960
cogoctacat acctogotot gotaatootg ttaccagtgg otgotgocag tggogataag
                                                                  4020
tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc
                                                                  4080
tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga
                                                                  4140
tacctacage gtgagetatg agaaagegee aegetteeeg aagggagaaa ggeggacagg
                                                                  4200
tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac
                                                                  4260
gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg
                                                                  4320
tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg
                                                                  4380
ttcctggcct tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct
gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc
                                                                  4500
gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc caatacgcaa accgcctctc
                                                                  4560
cccgcgcgtt ggccgattca ttaatgcagc agctgcgcgc tcgctcgctc actgaggccg
cccgggcaaa gcccgggcgt cgggcgacct ttggtcgccc ggcctcagtg agcgagcgag
cgcgcagaga gggagtggcc aactccatca ctaggggttc cttgtagtta atgattaacc
                                                                  4740
cgccatgcta cttatctacg tagccatgct ctaggacatt gattattgac tagtggagtt
ccgcgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg acccccgccc
attgacgtca ataatgacgt atgttcccat agtaacgcca atagggactt tccattgacg
tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat
gccaaqtacq cccctattq acqtcaatqa cqqtaaatqq cccqcctqqc attatqccca
gtacatgace ttatgggact ttectacttg geagtacate taegtattag teategetat
                                                                  5100
taccatggtc gaggtgagcc ccacgttctg cttcactctc cccatctccc cccctcccc
                                                                  5160
acccccaatt ttgtatttat ttattttta attattttgt gcagcgatgg gggcgggggg
                                                                  5220
ggggggggc gcgcgccagg cggggcgggg cggggcgagg ggcggggcgg ggcgaggcgg
                                                                  5280
agaggtgegg eggeageeaa teagagegge gegeteegaa agttteettt tatggegagg
                                                                  5340
cggcggcggc ggcggcccta taaaaagcga agcgcgcggc gggcgggagt cgctgcgcgc
                                                                  5400
5460
accgcgttac taaaacaggt aagtccggcc tccgcgccgg gttttggcgc ctcccgcggg
                                                                  5520
ogococotto otcacggoga gogotgocac gtoagacgaa gggogoagcg agogtootga
                                                                  5580
teetteegee eggaegetea ggaeagegge eegetgetea taagaetegg eettagaace
                                                                  5640
ccagtatcag cagaaggaca ttttaggacg ggacttgggt gactctaggg cactggtttt
                                                                  5700
                                                                  5760
ctttccagag agcggaacag gcgaggaaaa gtagtccctt ctcggcgatt ctgcggaggg
atctccgtgg ggcggtgaac gccgatgatg cctctactaa ccatgttcat gttttctttt
                                                                  5820
tttttctaca qqtcctqqqt qacqaacaqq qtaccqccac catqaqqqqc atqaaqctqc
                                                                  5880
tgggggggct gctggcactg gcggccctac tgcagggggc cgtgtccctg aagatcgcag
                                                                  5940
cetteaacat ceagacattt ggggagaeca agatgteeaa tgeeaceete gteagetaca
                                                                  6000
ttgtgcagat cctgagccgc tatgacatcg ccctggtcca ggaggtcaga gacagccacc
                                                                  6060
tgactgccgt ggggaagctg ctggacaacc tcaatcagga tgcaccagac acctatcact
                                                                  6120
acgtggtcag tgagccactg ggacggaaca gctataagga gcgctacctg ttcgtgtaca
                                                                  6180
ggcctgacca ggtgtctgcg gtggacagct actactacga tgatggctgc gagccctgcg
                                                                  6240
ggaacgacac cttcaaccga gagccagcca ttgtcaggtt cttctcccgg ttcacagagg
                                                                  6300
teagggagtt tgccattgtt cecetgeatg eggeeeeggg ggaegeagta geegagateg
                                                                  6360
acgeteteta tgaegtetae etggatgtee aagagaaatg gggettggag gaegteatgt
                                                                  6420
tgatgggcga cttcaatgcg ggctgcagct atgtgagacc ctcccagtgg tcatccatcc
                                                                  6480
gcctgtggac aagccccacc ttccagtggc tgatccccga cagcgctgac accacagcta
                                                                  6540
cacccacgca ctgtgcctat gacaggatcg tggttgcagg gatgctgctc cgaggcgccg
                                                                  6600
ttgttcccga ctcggctctt ccctttaact tccaggctgc ctatggcctg agtgaccaac
                                                                  6660
tggcccaagc catcagtgac cactatccag tggaggtgat gctgaagggc ggatcaggcg
                                                                  6720
gatcacccaa atcttgtgac aaaactcaca catgcccacc gtgcccagca cctgaactcc
                                                                  6780
tggggggacc gtcagtcttc ctcttccccc caaaacccaa ggacaccctc atgatctccc
                                                                  6840
ggacccctga ggtcacatgc gtggtggtgg acgtgagcca cgaagaccct gaggtcaagt
                                                                  6900
tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg cgggaggagc
                                                                  6960
agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag gactggctga
                                                                  7020
atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagccccc atcgagaaaa
                                                                  7080
ccatctccaa agccaaaggg cagccccgag aaccacaggt gtacaccctg cccccatccc
gggaggagat gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc ttctatccca
                                                                   7200
gcgacatcgc cgtggagtgg gagagcaatg ggcagccgga gaacaactac aagaccacgc
ctcccgtgct ggactccgac ggctccttct tcctctacag caagctcacc gtggacaaga
                                                                  7320
gcaggtggca gcaggggaac gtcttctcat gctccgtgat gcatgaggct ctgcacaacc
actacacgca gaagageete teeetgtete egggtaaata g
SEQ ID NO: 8
                      moltype = DNA length = 9284
FEATURE
                      Location/Qualifiers
source
                      1..9284
                      mol_type = other DNA
                      organism = synthetic construct
SEQUENCE: 8
ttctagaata atcaacctct ggattacaaa atttgtgaaa gattgactgg tattcttaac 60
tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta tcatgctatt
getteeegta tggettteat ttteteetee ttgtataaat eetggttget gtetetttat
gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt tgctgacgca
acceccactg gttggggcat tgccaccace tgtcagetee tttcegggae tttegettte
cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg ctggacaggg
gctcggctgt tgggcactga caattccgtg gtgttgtcgg ggaaatcatc gtcctttcct
                                                                  420
tggctgctcg cctgtgttgc cacctggatt ctgcgcggga cgtccttctg ctacgtccct
```

teggeeetea ateeagegga cetteettee egeggeetge tgeeggetet geggeetett

ccacatcttc	accttcaccc	tcagacgagt	cqqatctccc	tttgggccgc	ctccccacct	600
				gcttataatg		660
aagcaatagc	atcacaaatt	tcacaaataa	agcatttttt	tcactgcatt	ctagttgtgg	720
tttqtccaaa	ctcatcaatq	tatcttatca	tqtctqqatc	tcgacctcga	ctagagcatg	780
				caaggaaccc		840
agttggccac	tecetetetg	cgcgctcgct	cgctcactga	ggccgggcga	ccaaaggtcg	900
cccqacqccc	qqqctttqcc	cqqqcqqcct	caqtqaqcqa	gcgagcgcgc	caqctqqcqt	960
				tgcgcagcct		1020
tggaattcca	gacgattgag	cgtcaaaatg	taggtatttc	catgagcgtt	tttcctgttg	1080
caatqqctqq	cqqtaatatt	qttctqqata	ttaccaqcaa	ggccgatagt	ttqaqttctt	1140
				tgcgacaacg		1200
gtgatggaca	gactctttta	ctcggtggcc	tcactgatta	taaaaacact	tctcaggatt	1260
ctqqcqtacc	attectatet	aaaatccctt	taatcqqcct	cctgtttagc	teceqetetq	1320
				aaccatagta		1380
				gcgtgaccgc		1440
agcgccctag	cgcccgctcc	tttcgctttc	ttcccttcct	ttctcgccac	gttcgccggc	1500
tttccccatc	aaggtgtaaa	tragagacte	cctttagggt	tccgatttag	tactttacaa	1560
				gtagtgggcc		1620
tagacggttt	ttcgcccttt	gacgttggag	tccacgttct	ttaatagtgg	actcttgttc	1680
				ttgatttata		1740
				aaaaatttaa		1800
aacaaaatat	taacgtttac	aatttaaata	tttgcttata	caatcttcct	gtttttgggg	1860
				tagttttacg		1920
				tgatagcctt		1980
tctcaaaaat	agctaccctc	tccggcatga	atttatcagc	tagaacggtt	gaatatcata	2040
				tgaatcttta		2100
				tttttatcct		2160
taaaggcttc	tcccgcaaaa	gtattacagg	gtcataatgt	ttttggtaca	accgatttag	2220
				tttgccttgc		2280
				cgcatctgtg		2340
caccgcatat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	2400
cgacacccgc	caacaccccc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcat.ccgct	2460
						2520
				agaggttttc		
ccgaaacgcg	cgagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	2580
ataataatgg	tttcttagac	atcadatadc	acttttcggg	gaaatgtgcg	cggaacccct	2640
						2700
_			-	tcatgagaca	_	
taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	2760
cttattccct	tttttqcqqc	attttqcctt	cctqtttttq	ctcacccaga	aacqctqqtq	2820
				gttacatcga		2880
aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	2940
tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtattg	acgccgggca	agagcaactc	3000
				actcaccagt		3060
catettaegg	atggcatgac	agtaagagaa	ttatgeagtg	ctgccataac	catgagtgat	3120
aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	aaccgctttt	3180
				gggaaccgga		3240
						3300
				caatggcaac		
aaactattaa	ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	3360
gagggggata	aaqttqcaqq	accacttctq	cactcaaccc	ttccggctgg	ctggtttatt	3420
				tcattgcagc		3480
gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	3540
qaacqaaata	gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	3600
				ttcattttta		3660
atctaggtga	agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	3720
ttccactqaq	cqtcaqaccc	cqtaqaaaaq	atcaaaqqat	cttcttgaga	tcctttttt	3780
				taccagcggt		3840
ccggatcaag	agctaccaac	tettttteeg	aaggtaactg	gcttcagcag	agcgcagata	3900
ccaaatactg	tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	3960
				ctgctgccag		4020
-	_	-				
tegtgtetta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	geggteggge	4080
tgaacggggg	gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	cgaactgaga	4140
				aagggagaaa		4200
tateeggtaa	geggeagggt	eggaacagga	gagegeaega	gggagcttcc	agggggaaac	4260
gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	4320
	_		_	gcaacgcggc		4380
ttcctggcct	tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	4440
gtggataacc	gtattaccoc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacg	4500
						4560
				caatacgcaa	_	
cccgcgcgtt	ggccgattca	ttaatgcagc	agctgcgcgc	tegetegete	actgaggccg	4620
				ggcctcagtg		4680
cgcgcagaga	gggagtggcc	aactccatca	ctaggggttc	cttgtagtta	atgattaacc	4740
cgccatqcta	cttatctacq	tagccatqct	ctaggacatt	gattattgac	tagtqqaqtt	4800
						4860
				ccgcccaacg		
attgacgtca	ataatgacgt	atgttcccat	agtaacgcca	atagggactt	tccattgacg	4920
				gtacatcaag		4980
gccaagtacg	ccccctattg	acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	5040
qtacatqacc	ttatqqqact	ttcctacttq	qcaqtacatc	tacgtattag	tcatcqctat	5100
	555	- 3		5 -5	5	

						F1.60
	gaggtgagcc					5160
	ttgtatttat					5220
	gcgcgccagg					5280
agaggtgcgg	cggcagccaa	tcagagcggc	gcgctccgaa	agtttccttt	tatggcgagg	5340
cggcggcggc	ggcggcccta	taaaaagcga	agcgcgcggc	gggcgggagt	cgctgcgcgc	5400
tgccttcgcc	ccgtgccccg	ctccgccgcc	geetegegee	geeegeeeeg	gctctgactg	5460
accqcqttac	taaaacaggt	aaqtccqqcc	tecqeqeeqq	qttttqqcqc	ctcccqcqqq	5520
	ctcacggcga					5580
	cggacgctca					5640
						5700
	cagaaggaca					
	agcggaacag					5760
	ggcggtgaac					5820
tttttctaca	ggtcctgggt	gacgaacagg	gtaccgccac	cgccagaccc	tgccgtgcat	5880
ttatttttgg	ggcggcctgc	tgccgtttgg	catgctgtgc	gcgagcagca	ccaccaaatg	5940
caccgtgagc	catgaagtgg	cggattgcag	ccatctgaaa	ctgacccagg	tgccggatga	6000
	aacattaccg					6060
	acccgctata					6120
	ccggaactgt					6180
						6240
	agccagctga			-		
	agcaacagca					6300
	ctggatctga					6360
gcagctggaa	aacctgcagg	aactgctgct	gagcaacaac	aaaattcagg	cgctgaaaag	6420
cgaagaactg	gatatttttg	cgaacagcag	cctgaaaaaa	ctggaactga	gcagcaacca	6480
gattaaagaa	tttagcccgg	gctgctttca	tgcgattggc	cgcctgtttg	gcctgtttct	6540
	cagctgggcc					6600
	aacctgagcc					6660
	aaatggacca					6720
						6780
	gatagetttg					
	catctgttta					6840
	agctttacca					6900
ttttagcttt	cagtggctga	aatgcctgga	acatctgaac	atggaagata	acgatattcc	6960
gggcattaaa	agcaacatgt	ttaccggcct	gattaacctg	aaatatctga	gcctgagcaa	7020
cagctttacc	agcctgcgca	ccctgaccaa	cgaaaccttt	gtgagcctgg	cgcatagccc	7080
	ctgaacctga					7140
	catctggaag					7200
						7260
	tggcgcggcc					
	acccgcaaca					7320
	ctgaaaaacg					7380
	gatctgagca					7440
cctggaaaaa	ctggaaattc	tggatctgca	gcataacaac	ctggcgcgcc	tgtggaaaca	7500
tgcgaacccg	ggcggcccga	tttattttct	gaaaggcctg	agccatctgc	atattctgaa	7560
	aacggctttg					7620
	gatctgggcc					7680
	ctgaaaagcc					7740
	ccggcgtttc					7800
						7860
	gaaagcattg					
	agcagccatt					7920
	gataccagca					7980
taacaccagc	attctgctga	tttttattt	tattgtgctg	ctgattcatt	ttgaaggctg	8040
gcgcattagc	ttttattgga	acgtgagcgt	gcatcgcgtg	ctgggcttta	aagaaattga	8100
tegecagace	gaacagtttg	aatatgcggc	gtatattatt	catgcgtata	aagataaaga	8160
ttqqqtqtqq	gaacatttta	qcaqcatqqa	aaaaqaaqat	caqaqcctqa	aattttqcct	8220
	gattttgaag				_	8280
	aaaattattt					8340
	gtgcatcatg					8400
	ctggaagaaa					8460
	aaaagccatt					8520
	aaactgcagg					8580
gcggatcacc	caaatcttgt	gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	8640
tcctgggggg	accgtcagtc	ttcctcttcc	ccccaaaacc	caaggacacc	ctcatgatct	8700
cccggacccc	tgaggtcaca	tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	8760
	gtacgtggac					8820
	cagcacgtac					8880
						8940
	ggagtacaag					
	caaagccaaa					9000
cccgggagga	gatgaccaag	aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	9060
ccagcgacat	cgccgtggag	tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	9120
	gctggactcc					9180
	gcagcagggg					9240
					goodgeaca	
accactacac	gcagaagagc	clelecetgt	creegggtaa	atay		9284
SEQ ID NO:	9	moltype =		n = 9738		
FEATURE		Location/	Qualifiers			

Location/Qualifiers 1..9738 source

mol_type = other DNA organism = synthetic construct

SEQUENCE: 9	•					
ttctaqaata	atcaacctct	ggattacaaa	atttqtqaaa	gattgactgg	tattcttaac	60
				tgcctttgta		120
				cctggttgct		180
				gcactgtgtt		240
_		-		tttccgggac	-	300
				ttgcccgctg		360
gctcggctgt	tgggcactga	caattccgtg	gtgttgtcgg	ggaaatcatc	gtcctttcct	420
tggctgctcg	cctgtgttgc	cacctggatt	ctgcgcggga	cgtccttctg	ctacgtccct	480
teggeeetea	atccagcgga	ccttccttcc	cgcggcctgc	tgccggctct	geggeetett	540
				tttgggccgc		600
				gcttataatg		660
				tcactgcatt		720
						780
				tcgacctcga		
				caaggaaccc		840
				ggccgggcga		900
cccgacgccc	gggctttgcc	cgggcggcct	cagtgagcga	gcgagcgcgc	cagctggcgt	960
aatagcgaag	aggcccgcac	cgatcgccct	tcccaacagt	tgcgcagcct	gaatggcgaa	1020
tggaattcca	gacgattgag	cgtcaaaatg	taggtatttc	catgagcgtt	tttcctgttg	1080
				ggccgatagt		1140
				tgcgacaacg		1200
						1260
				taaaaacact		
				cctgtttagc		1320
				aaccatagta		1380
				gcgtgaccgc		1440
agcgccctag	cgcccgctcc	tttcgctttc	ttcccttcct	ttctcgccac	gttcgccggc	1500
tttccccgtc	aagctctaaa	tcgggggctc	cctttagggt	tccgatttag	tgctttacgg	1560
				gtagtgggcc		1620
				ttaatagtgg		1680
				ttgatttata		1740
						1800
				aaaaatttaa		
				caatcttcct		1860
				tagttttacg		1920
atcgattctc	ttgtttgctc	cagactctca	ggcaatgacc	tgatagcctt	tgtagagacc	1980
tctcaaaaat	agctaccctc	tccggcatga	atttatcagc	tagaacggtt	gaatatcata	2040
ttgatggtga	tttgactgtc	tccggccttt	ctcacccgtt	tgaatcttta	cctacacatt	2100
actcaggcat	tqcatttaaa	atatatqaqq	qttctaaaaa	tttttatcct	tqcqttqaaa	2160
				ttttggtaca		2220
				tttgccttgc		2280
						2340
				cgcatctgtg		
				ccgcatagtt		2400
				gtctgctccc		2460
tacagacaag	ctgtgaccgt	ctccgggagc	tgcatgtgtc	agaggttttc	accgtcatca	2520
ccgaaacgcg	cgagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	2580
ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	2640
atttqtttat	ttttctaaat	acattcaaat	atqtatccqc	tcatgagaca	ataaccctqa	2700
				ttcaacattt		2760
				ctcacccaga		2820
				gttacatcga		2880
						2940
				gttttccaat		
				acgccgggca		3000
				actcaccagt		3060
catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	catgagtgat	3120
aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	aaccgctttt	3180
ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	gctgaatgaa	3240
				caatggcaac		3300
				aacaattaat		3360
				ttccggctgg		3420
				tcattgcagc		3480
						3540
				ggagtcaggc		
				ttaagcattg		3600
-		_	-	ttcattttta		3660
atctaggtga	agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	3720
ttccactqaq	cqtcaqaccc	cqtaqaaaaq	atcaaaqqat	cttcttgaga	tcctttttt	3780
				taccagcggt		3840
						3900
				gcttcagcag		
_	_			acttcaagaa		3960
				ctgctgccag		4020
tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	4080
tgaacggggg	gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	cgaactgaga	4140
				aagggagaaa		4200
				gggagcttcc		4260
						4320
				gacttgagcg		
				gcaacgcggc		4380
ttcctggcct	tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	4440
gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	4500
			_	_		

gagcgcagcg	agtcagtgag	caaaaaaaca	gaagagggg	caatacgcaa	accocctctc	4560
				tegetegete		4620
						4680
				ggcctcagtg		
				cttgtagtta		4740
cgccatgcta	cttatctacg	tagccatgct	ctaggacatt	gattattgac	tagtggagtt	4800
ccgcgttaca	taacttacgg	taaatggccc	gcctggctga	ccgcccaacg	acccccgccc	4860
attqacqtca	ataatqacqt	atqttcccat	aqtaacqcca	atagggactt	tccattqacq	4920
				gtacatcaag		4980
				cccgcctggc		5040
						5100
				tacgtattag		
				cccatctccc		5160
acccccaatt	ttgtatttat	ttattttta	attattttgt	gcagcgatgg	gggcgggggg	5220
ggggggggc	gcgcgccagg	cggggcgggg	cggggcgagg	ggcggggcgg	ggcgaggcgg	5280
agaggtgcgg	cggcagccaa	tcagagcggc	gegeteegaa	agtttccttt	tatggcgagg	5340
caacaacaac	aacaacccta	taaaaagcga	adcacacaac	gggcgggagt	cactacacac	5400
				gcccgccccg		5460
						5520
				gttttggcgc		
				gggcgcagcg		5580
teetteegee	cggacgctca	ggacagcggc	ccgctgctca	taagactcgg	ccttagaacc	5640
ccagtatcag	cagaaggaca	ttttaggacg	ggacttgggt	gactctaggg	cactggtttt	5700
ctttccagag	agcggaacag	gcgaggaaaa	gtagtccctt	ctcggcgatt	ctgcggaggg	5760
atctccqtqq	ggcggtgaac	gccgatgatg	cctctactaa	ccatgttcat	attttcttt	5820
				catgaggggc		5880
				cgtgtccatg		5940
						6000
				tatgctggcg		
				gccgcatggc		6060
gcaactggct	gtttctgaaa	agcgtgccgc	attttagcat	ggcggcgccg	cgcggcaacg	6120
tgaccagcct	gagcctgagc	agcaaccgca	ttcatcatct	gcatgatagc	gattttgcgc	6180
				cccgccggtg		6240
				ctttctggcg		6300
				gccggcgctg		6360
						6420
				ggatagcgcg		
				ctattataaa		6480
gccaggcgct	ggaagtggcg	ccgggcgcgc	tgctgggcct	gggcaacctg	acccatctga	6540
gcctgaaata	taacaacctg	accgtggtgc	cgcgcaacct	gccgagcagc	ctggaatatc	6600
tgctgctgag	ctataaccgc	attgtgaaac	tggcgccgga	agatctggcg	aacctgaccg	6660
				cgatcatgcg		6720
				tacctttagc		6780
				gctgaacgcg		6840
				ctttctgtat		6900
				actgaacctg		6960
atcagaaacg	cgtgagcttt	gcgcatctga	gcctggcgcc	gagctttggc	agcctggtgg	7020
cgctgaaaga	actggatatg	catggcattt	tttttcgcag	cctggatgaa	accaccctgc	7080
gcccgctggc	gegeetgeeg	atgctgcaga	ccctgcgcct	gcagatgaac	tttattaacc	7140
				ctatgtggat		7200
				cgaagcggat		7260
				ggataccccg		7320
						7380
				tctgagccgc		
				gcagtgcctg		7440
ataactgcat	tagccaggcg	gtgaacggca	gccagtttct	gccgctgacc	ggcctgcagg	7500
tgctggatct	gagccataac	aaactggatc	tgtatcatga	acatagcttt	accgaactgc	7560
cgcgcctgga	agcgctggat	ctgagctata	acagccagcc	gtttggcatg	cagggcgtgg	7620
				ccatctgagc		7680
				cagcctgcgc		7740
				tctgtatctg		7800
				ccgcctgcat		7860
						7920
				gcgcctgcgc		
				actggaagtg		7980
				ggcgggcacc		8040
gcctggatgt	gagctgcaac	agcattagct	ttgtggcgcc	gggctttttt	agcaaagcga	8100
aagaactgcg	cgaactgaac	ctgagcgcga	acgcgctgaa	aaccgtggat	catagctggt	8160
				cgcgaacccg		8220
				ggcggcggtg		8280
		-				8340
				cctgagcatt		
				ctttgcgctg		8400
cggtggcgct	gggcctgggc	gtgccgatgc	tgcatcatct	gtgcggctgg	gatctgtggt	8460
			_	ccgccagagc		8520
				aacccagagc		8580
				ccgcggccgc		8640
				cctgtttgaa		8700
cgagcgtgta	tggcagccgc	aaaaccctgt	ttgtgctggc	gcataccgat	cgcgtgagcg	8760
				gctggaagat		8820
				ccgctatgtg		8880
						8940
				gccgagcggc		
				tcatttttat		9000
tttgccaggg	cccgaccgcg	gaagggcgga	tcaggcggat	cacccaaatc	ttgtgacaaa	9060

```
acteacacat geocacegtg eccageacet gaacteetgg ggggacegte agtetteete
ttccccccaa aacccaagga cacctcatg atctcccgga cccctgaggt cacatgcgtg
                                                                   9180
gtggtggacg tgagccacga agaccctgag gtcaagttca actggtacgt ggacggcgtg
                                                                   9240
gaggtgcata atgccaagac aaagccgcgg gaggagcagt acaacagcac gtaccgtgtg
                                                                   9300
gtcagcgtcc tcaccgtcct gcaccaggac tggctgaatg gcaaggagta caagtgcaag
                                                                   9360
gtotocaaca aagcootoco agcooccato gagaaaacca totocaaago caaagggcag
                                                                   9420
ccccgagaac cacaggtgta caccctgccc ccatcccggg aggagatgac caagaaccag
                                                                   9480
gtcagcctga cctgcctggt caaaggcttc tatcccagcg acatcgccgt ggagtgggag
                                                                   9540
agcaatgggc agccggagaa caactacaag accacgcctc ccgtgctgga ctccgacggc
                                                                   9600
teettettee tetacageaa geteacegtg gacaagagea ggtggeagea ggggaaegte
tteteatget cegtgatgea tgaggetetg cacaaccact acaegeagaa gageetetee
                                                                   9720
ctgtctccgg gtaaatag
SEQ ID NO: 10
                       moltype = DNA length = 7364
FEATURE
                       Location/Qualifiers
source
                       1..7364
                       mol type = other DNA
                       organism = synthetic construct
SEOUENCE: 10
ttctaqaata atcaacctct qqattacaaa atttqtqaaa qattqactqq tattcttaac
tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta tcatgctatt
                                                                   120
getteeegta tggettteat ttteteetee ttgtataaat eetggttget gtetettat
gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt tgctgacgca
                                                                   240
acceccactg gttggggcat tgccaccace tgtcagetee tttccgggae tttcgettte
                                                                   300
cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg ctggacaggg
                                                                   360
geteggetgt tgggcactga caatteegtg gtgttgtegg ggaaatcate gteettteet
                                                                   420
tggctgctcg cctgtgttgc cacctggatt ctgcgcggga cgtccttctg ctacgtccct
                                                                   480
toggocotca atocagogga cottoottoo ogoggocotgo tgooggotot goggocotott
                                                                   540
cogequette geettegeee teagacqagt eggateteee tttgggeege eteecegeet
                                                                   600
aaqcttatcq ataccqtcqa qatctaactt qtttattqca qcttataatq qttacaaata
                                                                   660
aaqcaataqc atcacaaatt tcacaaataa aqcatttttt tcactqcatt ctaqttqtqq
                                                                   720
tttgtccaaa ctcatcaatg tatcttatca tgtctggatc tcgacctcga ctagagcatg
                                                                   780
gctacgtaga taagtagcat ggcgggttaa tcattaacta caaggaaccc ctagtgatgg
                                                                   840
agttggccac tecetetetg egegeteget egeteactga ggeegggega ceaaaggteg
                                                                   900
ccegacgece gggetttgee egggeggeet eagtgagega gegagegege eagetggegt
                                                                   960
aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct gaatggcgaa
                                                                   1020
tggaattcca gacgattgag cgtcaaaatg taggtatttc catgagcgtt tttcctgttg
                                                                   1080
caatggctgg cggtaatatt gttctggata ttaccagcaa ggccgatagt ttgagttctt
                                                                   1140
ctactcaggc aagtgatgtt attactaatc aaagaagtat tgcgacaacg gttaatttgc
                                                                   1200
gtgatggaca gactetttta eteggtggee teaetgatta taaaaacaet teteaggatt
                                                                   1260
ctggcgtacc gttcctgtct aaaatccctt taatcggcct cctgtttagc tcccgctctg
                                                                   1320
attotaacga ggaaagcacg ttatacgtgc tegtcaaagc aaccatagta cgegeeetgt
                                                                   1380
ageggegeat taagegegge gggtgtggtg gttaegegea gegtgaeege taeaettgee
                                                                   1440
agegeectag egecegetee tttegettte tteeetteet ttetegeeae gttegeegge
                                                                   1500
tttccccgtc aagctctaaa tcgggggctc cctttagggt tccgatttag tgctttacgg
                                                                   1560
cacctcgacc ccaaaaaact tgattagggt gatggttcac gtagtgggcc atcgccctga
                                                                   1620
tagacggttt ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc
                                                                   1680
caaactggaa caacactcaa ccctatctcg gtctattctt ttgatttata agggattttg
                                                                   1740
ccgatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa cgcgaatttt
                                                                   1800
aacaaaatat taacgtttac aatttaaata tttgcttata caatcttcct gtttttgggg
                                                                   1860
cttttctgat tatcaaccgg ggtacatatg attgacatgc tagttttacg attaccgttc
                                                                   1920
ategattete tigtitgete cagactetea ggeaatgace tgatageett tgtagagace
                                                                   1980
totcaaaaat agotacooto tooggoatga atttatoago tagaacggtt gaatatoata
                                                                   2040
ttgatggtga tttgactgtc tccggccttt ctcacccgtt tgaatcttta cctacacatt
                                                                   2100
actcaggcat tgcatttaaa atatatgagg gttctaaaaa tttttatcct tgcgttgaaa
taaaggette teeegeaaaa gtattacagg gteataatgt ttttggtaca accgatttag
ctttatgctc tgaggcttta ttgcttaatt ttgctaattc tttgccttgc ctgtatgatt
tattggatgt tggaatteet gatgeggtat ttteteetta egeatetgtg eggtatttea
caccgcatat ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagccc
cgacaccege caacaccege tgacgegeee tgacgggett gtetgeteee ggcatceget
                                                                   2460
tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca
ccqaaacqcq cqaqacqaaa qqqcctcqtq atacqcctat ttttataqqt taatqtcatq
ataataatgg tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct
                                                                   2640
atttqtttat ttttctaaat acattcaaat atqtatccqc tcatqaqaca ataaccctqa
                                                                   2700
taaatgcttc aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc
                                                                   2760
cttattccct tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg
aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc
                                                                   2880
aacagcggta agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact
                                                                   2940
tttaaagttc tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc
                                                                   3000
ggtcgccgca tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag
                                                                   3060
catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat
aacactgcgg ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt
                                                                   3180
ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa
                                                                   3240
gccataccaa acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc
                                                                   3300
aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg
gaggeggata aagttgeagg accaettetg egeteggeee tteeggetgg etggtttatt
```

```
gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca
gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat
                                                                   3540
gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca
                                                                   3600
gaccaagttt actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg
                                                                   3660
atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg
                                                                   3720
ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt
                                                                   3780
ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg
                                                                   3840
ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata
                                                                   3900
ccaaatactg teettetagt gtageegtag ttaggeeace actteaagaa etetgtagea
                                                                   3960
ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag
tegtgtetta eegggttgga eteaagaega tagttaeegg ataaggegea geggteggge
                                                                   4080
tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga
                                                                   4140
tacctacage gtgagetatg agaaagegee aegetteeeg aagggagaaa ggeggaeagg
tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac
gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg
tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg
ttcctggcct tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct
gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc
gagegeageg agteagtgag egaggaageg gaagagegee caataegeaa acegeetete
                                                                   4560
cccqcqcqtt ggccgattca ttaatqcaqc aqctqcqcqc tcgctcqctc actgaqqccq
cccgggcaaa gcccgggcgt cgggcgacct ttggtcgccc ggcctcagtg agcgagcgag
                                                                   4680
cgcgcagaga gggagtggcc aactccatca ctaggggttc cttgtagtta atgattaacc
                                                                   4740
cgccatgcta cttatctacg tagccatgct ctaggacatt gattattgac tagtggagtt
                                                                   4800
ccgcgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg acccccgccc
                                                                   4860
attgacgtca ataatgacgt atgttcccat agtaacgcca atagggactt tccattgacg
                                                                   4920
tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat
                                                                   4980
gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc attatgccca
                                                                   5040
gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag tcatcgctat
                                                                   5100
taccateggte gaggtgagee ceaegttetg etteaetete eccatetee eccecteeee acceceaatt ttgtatttat ttattttta attattttgt geagegatgg gggeggggg
                                                                   5160
                                                                   5220
adadadadac acacacrada caadacadad caadacarad aacaadacaa aacaradacaa
                                                                   5280
                                                                   5340
agaggtgegg eggeageeaa teagagegge gegeteegaa agttteettt tatggegagg
cggcggcggc ggcggcccta taaaaagcga agcgcgggc gggcgggagt cgctgcgcgc
                                                                   5400
5460
accgcgttac taaaacaggt aagtccggcc tccgcgccgg gttttggcgc ctcccgcggg
                                                                   5520
cgccccctc ctcacggcga gcgctgccac gtcagacgaa gggcgcagcg agcgtcctga
                                                                   5580
teetteegee eggaegetea ggaeagegge eegetgetea taagaetegg eettagaace
                                                                   5640
ccagtatcag cagaaggaca ttttaggacg ggacttgggt gactctaggg cactggtttt
                                                                   5700
ctttccagag agcggaacag gcgaggaaaa gtagtccctt ctcggcgatt ctgcggaggg
                                                                   5760
atctccgtgg ggcggtgaac gccgatgatg cctctactaa ccatgttcat gttttctttt
                                                                   5820
tttttctaca ggtcctgggt gacgaacagg gtaccgccac catgaggggc atgaagctgc
                                                                   5880
tgggggggct gctggcactg gcggccctac tgcagggggc cgtgtccatg agcatgctgt
                                                                   5940
tttataccct gattaccgcg tttctgattg gcattcaggc ggaaccgcat agcgaaagca
                                                                   6000
acgtgccggc gggccatacc attccgcagg cgcattggac caaactgcag catagcctgg
                                                                   6060
ataccgcgct gcgccgcgcg cgcagcgcgc cggcggcggc gattgcggcg cgcgtggcgg
                                                                   6120
gccagacccg caacattacc gtggatccgc gcctgtttaa aaaacgccgc ctgcgcagcc
                                                                   6180
cgcgcgtgct gtttagcacc cagccgccgc gcgaagcggc ggatacccag gatctggatt
                                                                   6240
ttgaagtggg cggcggcgc ccgtttaacc gcacccatcg cagcaaacgc agcagcac
                                                                   6300
atccgatttt tcatcgcggc gaatttagcg tgtgcgatag cgtgagcgtg tgggtgggcg
                                                                   6360
ataaaaccac cgcgaccgat attaaaggca aagaagtgat ggtgctgggc gaagtgaaca
                                                                   6420
ttaacaacag cgtgtttaaa cagtattttt ttgaaaccaa atgccgcgat ccgaacccgg
                                                                   6480
tggatagcgg ctgccgcggc attgatagca aacattggaa cagctattgc accaccacc
                                                                   6540
atacetttgt gaaagegetg accatggatg geaaacagge ggegtggege tttattegea
                                                                   6600
ttgataccgc gtgcgtgtgc gtgctgagcc gcaaagcggt gcgccgcgcg ggcggatcag
                                                                   6660
geggateace caaatettgt gacaaaacte acacatgece acegtgeeca geacetgaac
teetgggggg acceteagte treetettee ceceaaaace caaggacace eteatgatet
cccggacccc tgaggtcaca tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca
agttcaactg gtacgtggac ggcgtggagg tgcataatgc caagacaaag ccgcgggagg
agcagtacaa cagcacgtac cgtgtggtca gcgtcctcac cgtcctgcac caggactggc
tgaatggcaa ggagtacaag tgcaaggtet ccaacaaage ceteccagee cccategaga
aaaccatctc caaagccaaa gggcagcccc gagaaccaca ggtgtacacc ctgcccccat
ccqqqaqqa qatqaccaaq aaccaqqtca qcctqacctq cctqqtcaaa qqcttctatc
                                                                   7140
ccagcgacat cgccgtggag tgggagagca atgggcagcc ggagaacaac tacaagacca
                                                                   7200
egecteeegt getggactee gaeggeteet tetteeteta eageaagete acegtggaca
                                                                   7260
agagcaggtg gcagcagggg aacgtcttct catgctccgt gatgcatgag gctctgcaca
                                                                   7320
accactacac gcagaagagc ctctccctgt ctccgggtaa atag
SEO ID NO: 11
                      moltype = DNA length = 6972
FEATURE
                      Location/Qualifiers
source
                      1..6972
                      mol_type = other DNA
                      organism = synthetic construct
SEOUENCE: 11
ttctagaata atcaacctct ggattacaaa atttgtgaaa gattgactgg tattcttaac 60
tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta tcatgctatt 120
getteeegta tggettteat ttteteetee ttgtataaat eetggttget gtetetttat 180
```

gaggagttgt	aacccattat	cagggaacgt	aacataatat	gcactgtgtt	tactaacaca	240
						300
				tttccgggac		
cccctcccta	ttgccacggc	ggaactcatc	geegeetgee	ttgcccgctg	ctggacaggg	360
				ggaaatcatc		420
tggctgctcg	cctgtgttgc	cacctggatt	ctgcgcggga	cgtccttctg	ctacgtccct	480
tcqqccctca	atccaqcqqa	ccttccttcc	cqcqqcctqc	tgccggctct	qcqqcctctt	540
				tttgggccgc		600
aagcttatcg	ataccgtcga	gatctaactt	gtttattgca	gcttataatg	gttacaaata	660
aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	tcactgcatt	ctaqttqtqq	720
tttgtccaaa	ctcatcaatg	tatettatea	tgtetggate	tcgacctcga	ctagagcatg	780
gctacgtaga	taagtagcat	ggcgggttaa	tcattaacta	caaggaaccc	ctagtgatgg	840
				ggccgggcga		900
cccgacgccc	gggctttgcc	cgggcggcct	cagtgagcga	gcgagcgcgc	cagctggcgt	960
aatagcgaag	aggcccgcac	cgatcgccct	tcccaacagt	tgcgcagcct	gaatggcgaa	1020
						1080
				catgagcgtt		
caatggctgg	cggtaatatt	gttctggata	ttaccagcaa	ggccgatagt	ttgagttctt	1140
ctactcaggc	aagtgatgtt	attactaatc	aaagaagtat	tgcgacaacg	attaatttac	1200
						1260
gtgatggaca	gactetttta	cteggtggee	teactgatta	taaaaacact	teteaggatt	
ctggcgtacc	gttcctgtct	aaaatccctt	taatcggcct	cctgtttagc	tcccgctctg	1320
				aaccatagta		1380
agcggcgcat	taagcgcggc	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	1440
agcgccctag	caccactcc	tttcqctttc	ttcccttcct	ttctcgccac	attcaccaac	1500
						1560
				tccgatttag		
cacctcgacc	ccaaaaaact	tgattagggt	gatggttcac	gtagtgggcc	atcgccctga	1620
tagacggttt	ttcacccttt	gacgttggag	tccacattct	ttaatagtgg	actcttqttc	1680
						1740
				ttgatttata		
ccgatttcgg	cctattqqtt	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaatttt	1800
				caatcttcct		1860
cttttctgat	tatcaaccgg	ggtacatatg	attgacatgc	tagttttacg	attaccgttc	1920
atcqattctc	ttqtttqctc	caqactctca	qqcaatqacc	tgatagcctt	tqtaqaqacc	1980
						2040
				tagaacggtt		
ttgatggtga	tttgactgtc	tccggccttt	ctcacccgtt	tgaatcttta	cctacacatt	2100
actcaggcat	tgcatttaaa	atatatgagg	gttctaaaaa	tttttatcct	tacattaaaa	2160
				ttttggtaca		2220
ctttatgctc	tgaggcttta	ttgcttaatt	ttgctaattc	tttgccttgc	ctgtatgatt	2280
				cgcatctgtg		2340
caccgcatat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	2400
cqacacccqc	caacacccqc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcatccgct	2460
				agaggttttc		2520
ccgaaacgcg	cgagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	2580
ataataatgg	tttcttagac	atcadatadc	acttttcggg	gaaatgtgcg	cggaacccct	2640
						2700
				tcatgagaca		
taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	2760
cttattccct	tttttacaac	attttgcctt	cctattttta	ctcacccaga	aacactaata	2820
aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatete	2880
aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	2940
				acgccgggca		3000
ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	actcaccagt	cacagaaaag	3060
catcttacqq	atqqcatqac	aqtaaqaqaa	ttatqcaqtq	ctgccataac	catgagtgat	3120
				cgaaggagct		3180
ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	gctgaatgaa	3240
gccataccaa	acqacqaqcq	tgacaccacg	atgcctgtag	caatggcaac	aacqttqcqc	3300
						3360
				aacaattaat		
gaggcggata	aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	3420
gctgataaat	ctqqaqccqq	tgagcgtggg	tctcqcqqta	tcattgcagc	actggggcca	3480
					aactatggat	3540
gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	3600
qaccaaqttt	actcatatat	actttaqatt	qatttaaaac	ttcattttta	atttaaaaqq	3660
				tcccttaacg		3720
ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	3780
ctqcqcqtaa	tctactactt	qcaaacaaaa	aaaccaccqc	taccagcggt	gatttattta	3840
						3900
				gcttcagcag		
ccaaatactg	tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	3960
				ctgctgccag		4020
tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	4080
				cgacctacac		4140
				-		
Lacctacage	gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ygcggacagg	4200
tatccddtaa	gcggcaggat.	cqqaacaqqa	gagcgcacga	gggagcttcc	aggggaaac	4260
geetggtate	LLLALAGECC	rgregggttt	egecacetet	gacttgagcg	Legatttttg	4320
tgatgctcqt	caggggggcg	gagcctatgg	aaaaacqcca	gcaacgcggc	ctttttacqq	4380
				ctgcgttatc		4440
gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	4500
				caatacgcaa		4560
cccgcgcgtt	ggccgattca	ttaatgcagc	agctgcgcgc	tegetegete	actgaggccg	4620
cccaaaaaa	acccaaacat	caaacaacat	ttaatcaccc	ggcctcagtg	agcgagggag	4680
egegeagaga	yyyaytggcc	aactccatca	ctaggggttc	cttgtagtta	argartaacc	4740

cgccatgcta	cttatctacg	tagccatgct	ctaggacatt	gattattgac	tagtggagtt	4800
ccgcgttaca	taacttacgg	taaatggccc	gcctggctga	ccgcccaacg	acccccgccc	4860
attgacgtca	ataatgacgt	atgttcccat	agtaacgcca	atagggactt	tccattgacg	4920
tcaatgggtg	gagtatttac	ggtaaactgc	ccacttggca	gtacatcaag	tgtatcatat	4980
gccaagtacg	ccccctattg	acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	5040
gtacatgacc	ttatgggact	ttcctacttg	gcagtacatc	tacgtattag	tcatcgctat	5100
taccatggtc	gaggtgagcc	ccacgttctg	cttcactctc	cccatctccc	cccctcccc	5160
acccccaatt	ttgtatttat	ttattttta	attattttgt	gcagcgatgg	gggcgggggg	5220
ggggggggc	gcgcgccagg	cggggcgggg	cggggcgagg	ggcggggcgg	ggcgaggcgg	5280
agaggtgcgg	cggcagccaa	tcagagcggc	gcgctccgaa	agtttccttt	tatggcgagg	5340
cggcggcggc	ggcggcccta	taaaaagcga	agcgcgcggc	gggcgggagt	cgctgcgcgc	5400
tgccttcgcc	ccgtgccccg	ctccgccgcc	gcctcgcgcc	gcccgccccg	gctctgactg	5460
accgcgttac	taaaacaggt	aagtccggcc	tccgcgccgg	gttttggcgc	ctcccgcggg	5520
-				gggcgcagcg		5580
tectteegee	cggacgctca	ggacagcggc	ccgctgctca	taagactcgg	ccttagaacc	5640
ccagtatcag	cagaaggaca	ttttaggacg	ggacttgggt	gactctaggg	cactggtttt	5700
ctttccagag	agcggaacag	gcgaggaaaa	gtagtccctt	ctcggcgatt	ctgcggaggg	5760
atctccgtgg	ggcggtgaac	gccgatgatg	cctctactaa	ccatgttcat	gttttctttt	5820
tttttctaca	ggtcctgggt	gacgaacagg	gtaccgccac	catgaggggc	atgaagctgc	5880
tgggggcgct	gctggcactg	gcggccctac	tgcagggggc	cgtgtccatg	gcgctgtgga	5940
				cccggatccg		6000
ttgtgaacca	gcatctgtgc	ggcagccatc	tggtggaagc	gctgtatctg	gtgtgcggcg	6060
aacgcggctt	tttttatacc	ccgaaaaccc	gccgcgaagc	ggaagatctg	caggtgggcc	6120
aggtggaact	gggcggcggc	ccgggcgcgg	gcagcctgca	gccgctggcg	ctggaaggca	6180
gcctgcagaa	acgcggcatt	gtggaacagt	gctgcaccag	catttgcagc	ctgtatcagc	6240
				aatcttgtga		6300
_		_		cgtcagtctt		6360
				aggtcacatg		6420
				acgtggacgg		6480
_	-		_	gcacgtaccg		6540
				agtacaagtg		6600
_	-			aagccaaagg		6660
	_	_		tgaccaagaa		6720
				ccgtggagtg		6780
				tggactccga		6840
				agcaggggaa	_	6900
		tctgcacaac	cactacacgc	agaagagcct	ctccctgtct	6960
ccgggtaaat	ag					6972

- 1. An isolated plasmid comprising messenger ribonucleic acid (mRNA) encoding a fusion protein comprising at least one domain of a neural growth factor (NGF) protein and an Fc domain, wherein the isolated plasmid comprises a nucleotide sequence of SEQ ID NO: 5.
- 2. The isolated plasmid of claim 1, wherein the isolated plasmid is inserted within one or more suitable pharmaceutically acceptable carriers.
 - 3. (canceled)

- 4. (canceled)
- 5. (canceled)
- **6**. An isolated plasmid comprising messenger ribonucleic acid (mRNA) encoding a fusion protein comprising at least one domain of a neural growth factor (NGF) protein and an Fc domain, wherein the isolated plasmid comprises a nucleotide sequence of SEQ ID NO: 10.

* * * * *