Sleep Health and Lifestyle -SAS viya

a資料來源

本研究使用 Kaggle 上的「Sleep Health and Lifestyle Dataset」(作者:Laksika Tharmalingam,授權:CC0 公領域)。

此資料為合成資料(synthetic),涵蓋性別、年齡、職業、睡眠時數、睡眠品質、運動、壓力、BMI類別、血壓、心率、日走步數與睡眠障礙(None/Insomnia/Sleep Apnea, 共 200 筆、13 欄

link: https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset

研究目的

- 1.建立基準分類模型,預測個體睡眠狀態(None/Insomnia/Sleep Apnea)
- 2.量化各特徵(睡眠時數、壓力、運動、血壓等)對預測的貢獻,找出關鍵影響因子

研究流程

流程圖:

環境設置:

平台:

SAS Viya(站台:ENGAGE PLATFORM AIOT TRIAL 2025) 介面:

SAS Studio(穩定版本 2025.08); VS Code(SAS 擴充)輔助程式與路徑:

/Public/Sandy/sleep_test/procdata.sasnb(SAS Drive → Content)(程式碼詳請可見附錄1)

重現性:

隨機種子 1234;資料以 FILESRVC 讀取;不依賴 CAS 表(僅需可使用 PROC HPSPLIT)

(將「環境快照」輸出為 env_snapshot.csv 存回原路徑作為留證) (說明:本專案以 Compute 工作階段執行;

如需查詢 CAS 版本/節點狀態, 可先建立 CAS 連線後再執行 ```bash

proc cas;

builtins.about;

quit;

۹۰

若未啟用 CAS, 報告仍可重現, 因程式主要依賴 FILESRVC 與 Compute 端程序)

Step 1 讀檔與檢視:

輸入:

'/Public/Sandy/sleep test /sleepdata1.csv` (SAS Content)

資料擴充(DataMaker):

以「有放回抽樣」(URS) 方式將原始約 200 筆 擴充到2,000,000筆,此作法保留原始類別與 數值分布(屬於複製抽樣, 非合成新樣本)

Step 2 清理與補值:

- 1.去除干擾欄位:刪掉 FOLD 欄位(此欄位為紀錄資料合併來源檔)
- 2.補缺值:使用中位數補 Sleep_Duration、Quality_of_Sleep 的缺漏。
- 3.新增風險標記:依血壓產生 BP_Abnormal:
 - 若 Systolic ≥ 130 或 Diastolic ≥ 85 → Yes
 - 否則 → No; 若缺值 → 留空

處理前

處理後(遺失值、刪除欄位)

Variable	N	N Miss
Person_ID	2000000	0
Age	2000000	0
Sleep_Duration	1920669	79331
Quality_of_Sleep	1969632	30368
Physical_Activity_Level	2000000	0
Stress_Level	2000000	0
Systolic	2000000	0
Diastolic	2000000	0
Heart_Rate	2000000	0
Daily_Steps	2000000	0
fold	2000000	0
RowID	2000000	0

The MEANS Procedure					
Variable	N	N Miss			
Person_ID	2000000	0			
Age	2000000	0			
Sleep_Duration	2000000	0			
Quality_of_Sleep	2000000	0			
Physical_Activity_Level	2000000	0			
Stress_Level	2000000	0			
Systolic	2000000	0			
Diastolic	2000000	0			
Heart_Rate	2000000	0			
Daily_Steps	2000000	0			
RowID	2000000	0			

Step 3 探索分析(EDA):

按照敘述統計方式完成筆數、平均、標準差、最小/最大、中位數、四分位數

目標變數分布:看 Sleep_Disorder 各類別的件數

*Sleep_Disorder 長條圖:一眼看哪一類最多

Normal樣本最多,約一百多萬筆; Insomnia和Sleep Apnea各只有四十多萬 筆,約為 Normal 樣本的33%。 說明資料不平均, Normal 遠多於其他兩類

建議:

在切訓練/測試集時改用分層抽樣來固定 各類別比例,避免簡單隨機抽樣造成的比例漂移,讓訓練與評估更穩定、更接近真 實分佈

*Sleep_Duration 直方圖 + 密度(依類別分組):觀察不同睡眠障礙類別的時數分布差異

- 1.Normal 的睡眠時間多集中在 7-8 小時, 右邊比較高
- 2.Insomnia(紫色)偏短, 常落在 6-7 小時, 曲線低而分散
- 3.Sleep Apnea(卡其色)在 6-6.5 小時附近有一堆尖峰, 也出現零星較長的睡眠

正常睡的人大多睡得比較久;失眠較短且 不穩定;睡眠呼吸中止偏短、分布不均

*Sleep_Duration 盒鬚圖(依類別):比較各類的中位數與離群值

正常組睡得最久、最穩,中央値大約7.5小時:

失眠組最短,落在6.5~7小時附近;睡眠呼吸中止介於兩者之間,但波動最大,同時有很多很短也有偏長的夜晚。

白色菱形是平均值、上下鬚與散點顯示離 群與變異

Gender × Sleep_Disorder 列聯表:看性別與睡眠障礙的關聯概況

Step 3 Gender × Sleep_Disorder(列聯表) The FREQ Procedure							
Frequency	Table of Gender by Sleep_Disorder						
		Sleep_Disorder					
	Gender	Insomnia Normal Sleep Apnea					
	Female	219770	400868	399688	1020326		
	Male	189067	760600	30007	979674		
	Total	408837	1161468	429695	2000000		

男女在「是否有睡眠障礙」的分布有顯著 差異(χ²=431,123.37, df=2, p<0.001)

女生:失眠21.5%、正常39.3%、睡眠呼吸中止39.2%:

男生:失眠19.3%、正常77.6%、睡眠呼吸中止只有約3.1%

Step 4 分割:

依類別分層隨機切資料:

> 用 Sleep_Disorder 分層, 做 train 80%(1,600,001筆)與 test 20%(399,999筆) 切分

方法:在每個類別內做簡單隨機抽樣 { 'method':'srs', '可重現': { 'seed':'1234'} }

Step 5 建模與評估:

下圖呈現 各模型的「準確率(績效)」與「運行時間」表格, 在 所有達到最高準確率(94.45%)的模型中, MaxDepth=40、LeafSize=150 測試評分時間最短(138 ms),

因此在不犧牲準確度下是最合適的選擇。

決策樹—時間(毫秒)與準確率(累計結果)								
Model	Prune	MaxDepth	LeafSize	TrainMS	ScoreTrainMS	ScoreTestMS	TrainAcc	TestAcc
Decision Tree	OFF	1	1	1,415	465	112	73.05%	73.03%
Decision Tree	OFF	2	2	1,709	525	143	90.50%	90.46%
Decision Tree	OFF	3	3	2,854	580	228	93.00%	92.96%
Decision Tree	OFF	4	5	2,910	596	245	93.00%	92.94%
Decision Tree	OFF	6	7	3,950	601	195	93.50%	93.44%
Decision Tree	OFF	8	10	5,228	596	201	94.50%	94.45%
Decision Tree	OFF	10	15	5,866	778	352	94.50%	94.45%
Decision Tree	OFF	12	20	5,817	646	231	94.50%	94.459
Decision Tree	OFF	15	30	5,893	675	219	94.50%	94.45%
Decision Tree	OFF	20	50	5,927	585	140	94.50%	94.45%
Decision Tree	OFF	25	75	6,118	728	406	94.50%	94.45%
Decision Tree	OFF	30	100	5,859	692	149	94.50%	94.459
Decision Tree	OFF	40	150	5,861	593	138	94.50%	94.45%
Decision Tree	OFF	50	200	5,854	577	173	94.50%	94.45%
Decision Tree	OFF	75	300	5,481	645	320	94.50%	94.45%
Decision Tree	OFF	100	500	2	605	147	94.50%	94.45%
Decision Tree	OFF	150	50	2	647	329	94.50%	94.459
Decision Tree	OFF	200	5	2	599	144	94.50%	94.45%
Decision Tree	OFF	300	2	4	725	205	94.50%	94.45%
Decision Tree	OFF	500	1	2	579	139	94.50%	94.459

混淆矩陣(實際×預測)及準確率

			The HPSPLIT Procedure						
	Model-Based Confusion Matrix								
		Predicted				Error			
Actual	Inso	mnia	Normal	SI	eep Apno	ea	Rate		
Insomnia	7	72000	8000		200	00	0.1220		
Normal		2055 224141		6049		0.0349			
Sleep Apne	ea	1904	1891	81961		0.0443			
Model-Based Fit Statistics for Selected Tree									
N Leaves	ASE	Mis clas		py	Gini		RSS		
17	0.0331	0.054	7 0.28	85	0.0993	39	703.9		

此決策樹有 17 個葉節點, 整體錯誤率約 5.47%(準確率約**94.53%**)

各類別的錯誤率: Insomnia 12.2%、Normal 3.49%、Sleep Apnea 4.43%

模型整體表現符合預期(0.945>0.6), 主要混淆發生在「異常」兩類(失眠/呼吸中止)與 Normal 之間, 特別是失眠較容易被判成正 堂

變數重要性(Features):

Variable Importance						
	Tra					
Variable	Relative	Importance	Count			
BMI_Category	1.0000	315.7	1			
Occupation	0.7671	242.2	2			
Systolic	0.3997	126.2	2			
Gender	0.2660	83.9835	3			
Quality_of_Sleep	0.2007	63.3613	1			
Age	0.1794	56.6297	3			
Sleep_Duration	0.1313	41.4498	4			

數值越大、越靠上,對模型判斷睡眠疾患越關鍵;相對重要性以 BMI_Category=1.00 當基準

BMI_Category(1.00):最有影響力,是模型的第一關鍵因子

Occupation(0.77):影響力約為 BMI 的 77%, 排第二

Systolic (0.40): 收縮壓也很重要, 約為 BMI 的 40%

決策樹 節點:

node1: BMI 類別, 體重在「正常/偏瘦」多 半被判為正常睡眠;「過重/肥胖」一側風 險明顯提高

node2:職業與睡眠品質:在正常/偏瘦的 人中,只要睡眠品質≥5,就幾乎都是正常 ;品質差或特定職業(例如律師、護士、老 師等)才會轉向失眠或睡呼吸中止

node3:血壓(Systolic)是最後的重要分叉 , 高於約 128 的族群更容易被判為失眠 或睡呼吸中止

*底部標示 1=Insomnia、2=Normal、 3=Sleep Apnea, 框內的比例顯示每個葉 節點的預測類別機率。