A mathematical model for the prospects of trachoma elimination through mass treatment targeted at children

Laing Lourens

BSc Mathematical Statistics (NMMU)

BSc Hons Biomathematics (Stell.)

MIT Big Data Science (UP)*

Trachoma

- What is it
 - Leading infectious cause of blindness

 inside of the eyelid may be scarred so severely that the eyelid turns inward and the lashes rub on the eyeball, scarring the cornea

Trachoma

- How does it spread?
 - Direct contact with discharge from eyes, nose and throat of infected persons
 - Aerosolizaed pathogens from nasal infections
 - Active transfer of bacterium due to flies

- Prevalence
 - 21.4 million active infections
 - 1.2 million suffering blinding
 - Endemic in 53 countries as of 2012

Trachoma

- Prevalence
 - Highly prevalent in children
 - Children form core group for transmission
- WHO Eradication Strategy
 - GET 2020
 - SAFE strategy
 - Mass Drug Administration:
 Oral dose of Azithromycin (~95% efficacy)
 - ANNUAL treatment of ALL individuals if ...

Problem Statement

 Can antibiotic treatment targeted at children alone eliminate trachoma infection from an entire community?

Data

- Trachoma Amelioration in Northern Amahara (TANA) study:
 - Investigation of the impact of 1 year of quarterly single dose oral azithromycin treatment in children aged 1-9 on adult trachoma prevalence
 - 24 subkebeles in randomized trial with control group

	Child treatment group	Control group
Child prevalence	3.6% (95% CI: 0.8–6.4)	45.6% (95% CI: 36.7–54.5)
Adult prevalence	8.2% (95% CI: 5.1–11.4)	12.7% (95% CI: 8.9–16.6)

Model

Susceptible-infected-susceptible (SIS)

- 2 age classes
 - Adults
 - Children

Parameters

Recovery

$$\gamma_c y_c = r_1
\gamma_a y_a = r_2$$

Transmission

$$(\beta_{a\to c} \frac{y_a}{N_a} + \beta_{c\to c} \frac{y_c}{N_c}) x_c = r_3$$

$$(\beta_{a\rightarrow a}\frac{y_a}{N_a}+\beta_{c\rightarrow a}\frac{y_c}{N_c})x_c=r_4$$

 y_a : Infected Adults

 $\boldsymbol{y_c}$: Infected Children

 x_c : Susceptible Children

 x_a : Susceptible Adults

 N_a : Adult Population

 N_c : Children Population

Simulation

Simulation

- Each village simulated for 100 months to allow the model to reach a state of endemic quasi-equilibrium
 - One absorbing state (epidemic extinction)
- After reaching quasi-equilibrium:
 - Simulated mass administration of azithromycin to children
 - Months 0,3,6 and 9
 - Repeated simulations averaged to derive the estimated adult and child prevalence

Results

Parameter	Initial Value	Final Value
Adult recovery γ _a	$\frac{0.25}{yr}$	$\frac{0.64}{yr}$
Child recovery γ_c	$\frac{0.083}{yr}$	$\frac{0.23}{yr}$
Adult \rightarrow child transmission β_{ac}	$\frac{0.125}{yr}$	$\frac{0.43}{yr}$
Child \rightarrow child transmission β_{cc}	$\frac{0.125}{yr}$	$\frac{0.32}{yr}$
Child \rightarrow adult transmission β_{ca}	$\frac{0.0625}{yr}$	$\frac{0.34}{yr}$
Adult \rightarrow adult transmission β_{aa}	0.0625 yr	$\frac{0.18}{yr}$
Odds of consecutive treatment	1	3.58
Antibiotic efficacy	0.9	0.98

Results

Trachoma Prevalence with Mass Treatment

Conclusion

 Quarterly MDA campaigns administered for 10 years can greatly reduce, possibly eliminate trachoma in adults

Transmission involving children more likely than adults

Child recovery much slower than adults

[1] J.F. Martins, J.A. Oliveira-Lima, V. Delgado-Gomes, R. Lopes, D. Silva, S. Vieira, and C. Lima, "Smart Homes and Smart buildings," CTS/UNINOVA-DEE-FCT Univ. Nova Lisboa, Lisbon, Portugal, Electronics Conference (BEC), 2012 13th Biennial Baltic, Pages 27-38, 2012.

our future through science