STATS 8: Introduction to Biostatistics

Analysis of Variance

Babak Shahbaba UCI, Spring of 2012

Introduction

- We discuss Analysis of Variance (ANOVA) models that generalize the t-test and are used to compare the means of multiple groups identified by a categorical variable with more than two possible categories.
- The categorical variable is called the factor and is typically considered as the explanatory variable.
- In contrast, the numerical variable, whose means across different groups are compared, is regarded as the response variable.
- e mainly focus on ANOVA models with only one factor; These models are known as **one-way ANOVA**.

Example

 As an example, we analyze the Cushings data set, which is available from the MASS package.

Between-groups vs. within-groups variations

- Across the four groups, there appears to be considerable variation in the group means (i.e., deviations of the small solid lines from the dashed line), SS_B
- Likewise, within groups, there are different degrees of variation of the observations from their specific mean (i.e., variation of points around the corresponding small horizontal line), SS_W
- Both sources of variation contribute to the total variation of the observations around the overall mean (dashed line).

$$SS = SS_B + SS_W$$
.

Hypothesis testing

- Let us denote the overall population mean of Y as μ and group-specific population means as μ_1, \ldots, μ_4 .
- We want to evaluate the null hypothesis,

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu,$$

For this, we use the following test statistic

$$F = \frac{SS_B/(k-1)}{SS_W/(n-k)},$$

where n is the total sample size, and k is the number of groups.

Hypothesis testing

- The *F*-statistic has $F(df_1 = k 1, df_2 = n k)$ distribution under the null hypothesis.
- For the above example, the degrees of freedom parameters are $df_1 = 4 1 = 3$ and $df_2 = 27 4 = 23$.
- The observed value of F is f = 3.2.

The assumptions of ANOVA

- To use ANOVA models, we assume that the samples are selected randomly from the population and independently from each other (e.g., by using simple random sampling).
- Further, we assume that the response variable in each group has a normal distribution.
- While the means of these normal distributions can change from one group to another, we assume that they all have the same variance.

The assumptions of ANOVA

- Violation of these assumption could lead to wrong inference.
- For the example discussed above, the constant variance assumption does not seem reasonable.

The assumptions of ANOVA

 Sometimes, we can stabilize the variance (i.e., making it approximately constant) by using simple data transformations such as log or square root.

