Name: Priyanka Kumari Registration Number: 20BCE2334 DECISION TREE CLASSIFIER TO PREDICT COVID -19 ML ASSIGNMENT 2 In [66]: import pandas as pd from sklearn.model_selection import train_test_split from sklearn import metrics covid=pd.read_csv("Cleaned-Data.csv") print(covid.head(2)) Fever Tiredness Dry-Cough Difficulty-in-Breathing Sore-Throat \ 1 1 1 None_Sympton Pains Nasal-Congestion Runny-Nose Diarrhea ... \ 0 1 1 1 Gender_Transgender Severity_Mild Severity_Moderate Gender_Male 0 1 1 0 1 1 1 0 Severity_None Severity_Severe Contact_Dont-Know Contact_No Contact_Yes 0 0 Country China China [2 rows x 27 columns] defining X and Y In [21]: #defining X and Yfeature_cols=['Fever','Tiredness','Dry-Cough','Sore-Throat','Difficulty-in-Breathing','Pains','Nasal-Congestion','Runny-Nose','Diarrhea'] #As X is a matrix so we use [] to access the features we want in feature_cols X=covid[feature_cols] print(X) Tiredness Dry-Cough Difficulty-in-Breathing Pains \ 1 1 1 1 1 1 1 1 1 1 1 316795 0 0 0 0 0 0 316796 316797 0 0 0 0 0 0 316798 0 316799 Nasal-Congestion Runny-Nose 0 1 1 1 1 1 1 1 1 3 1 4 1 1 1 316795 0 0 0 316797 316798 0 0 316799 [316800 rows x 8 columns] In [23]: #y is a vector , so we can use dot to access 'Severity_Severe' Y=covid.Severity_Severe print(Y) 0 0 316795 1 316796 1 316797 316798 316799 Name: Severity_Severe, Length: 316800, dtype: int64 Splitting X and Y into training and testing data In [24]: X_train, X_test, Y_train, Y_test=train_test_split(X, Y, random_state=0, train_size=0.8) Importing Decision Tree Classifier from sklearn In [25]: from sklearn.tree import DecisionTreeClassifier In [26]: clf=DecisionTreeClassifier(criterion='entropy') **Training Decision Tree Classifier** clf.fit(X_train,Y_train) DecisionTreeClassifier(criterion='entropy') In [28]: #predicting the labels on test set y_pred=clf.predict(X_test) **Calculating Accuracy** In [48]: from sklearn import metrics print('Accuracy Score on test data is:', metrics.accuracy_score(Y_test,y_pred)*100) Accuracy Score on test data is: 74.9652777777777 In [49]: print(metrics.confusion_matrix(Y_test,y_pred))

[[47498

[15862 0]] In [43]: #save confusion matrix and slice into four pieces confusion=metrics.confusion_matrix(Y_test,y_pred)

print(confusion) TP=confusion[1,1] TN=confusion[0,0] FP=confusion[0,1] FN=confusion[1,0] [[47498 [15862 0]]

#use float to perform true division, not integer division #from sklearn import metrics from sklearn.metrics import accuracy_score print((TP+TN)/float(TP+TN+FP+FN)) print('Accuracy Score on confusion_matrix is:',accuracy_score(Y_test,y_pred,normalize=True,sample_weight=None))

Accuracy Score on confusion_matrix is: 0.749652777777777 In [61]: classification_error=(FP+FN)/float(TP+TN+FP+FN) print(classification_error)

0.749652777777777

In [63]:

nan

print('Error Score on confusion matrix:',1-metrics.accuracy_score(Y_test,y_pred)) 0.250347222222222 Error Score on confusion matrix: 0.2503472222222223

sensitivity=TP/float(FN+TP) print(sensitivity) print('sensitivity Score on confusion matrix:',metrics.recall_score(Y_test,y_pred)) sensitivity Score on confusion matrix: 0.0

In [64]: specificity=TN/(TN+FP) print(specificity) print('specificity Score on confusion_matrix:',specificity)

specificity Score on confusion_matrix: 1.0 In [65]: precision=TP/float(TP+FP) print(precision) print('precision Score on confusion matrix:', metrics.precision_score(Y_test,y_pred))

precision Score on confusion matrix: 0.0 <ipython-input-65-78085f27110a>:1: RuntimeWarning: invalid value encountered in true_divide precision=TP/float(TP+FP) C:\Users\Priyanka Kumari\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1245: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result)) In []: