Chap 1 : Résolution d'équations non-linéaires

 $\mathbf{But}:$ Recherche des solutions de l'équation non linéaire f(x)=0 où f est une fonction donnée

- → Les méthodes numériques pour approcher une solution consistent à
 - localiser grossièrement un zéro de f en procédant le plus souvent par des considérations graphiques; la solution grossière est noté x_0 .
 - construire à partir de x_0 une suite $x_1, x_2, x_3, ...$ telle que

$$\lim_{n \to \infty} x_n = \bar{x} \quad \text{où } \bar{x} \text{ v\'erifie } f(\bar{x}) = 0.$$

1 Existence de solutions, localisation des solutions

On se donne une application f continue d'un ouvert I de $\mathbb R$ dans $\mathbb R$ et on cherche à approcher numériquement une solution du système

$$f(x) = 0.$$

 \longrightarrow est-ce qu'un tel x existe?

Exemples Fonctions polynômiales de degré < 5. Dans un contexte plus large, applications linéaires.

1.1 Définitions

Définition. Soit $f: I \longrightarrow \mathbb{R}$, on appelle **zéro** de f tout $\bar{x} \in I$ qui satisfait

$$f(\bar{x}) = 0.$$

On dit aussi que \bar{x} est une racine de f.

Définition. On appelle **point fixe** de f tout \bar{x} qui satisfait

$$f(\bar{x}) = \bar{x}$$
.

Exercice 1 Déterminer les zéros de l'application $f(x) = x^2 - 5x + 6$. Faire un dessin. Déterminer les points fixes de l'application $g(x) = x^2 - 4x + 6$. Faire un dessin. En déduire une interprétation graphique d'un zéro et d'un point fixe d'une fonction.

Remarque: Si \bar{x} est un zéro de f alors \bar{x} est un point fixe de $g: x \mapsto f(x) + x$.

1.2 Premiers résultats théoriques

Théorème 1 (Théorème des valeurs intermédiaires) Soit f une fonction continue sur I = [a, b]. Alors f atteint toutes les valeurs entre f(a) et f(b)

$$\forall d \in [f(a), f(b)] \ il \ existe \ c \in I \ tel \ que \ f(c) = d.$$

Corollaire 1 Soit $f: I = [a, b] \to \mathbb{R}$ une application continue telle que

c'est-à-dire que f(a) et f(b) sont non nuls et de signes opposés. Alors il existe $\bar{x} \in]a,b[$ tel que $f(\bar{x})=0$.

Si de plus f est strictement monotone, alors \bar{x} est unique.

Exemples:

- une fonction polynômiale à coefficients réels de degré impair admet au moins un zéro sur \mathbb{R} .
- l'équation $x(1+2x) = e^x$ admet une unique solution dans l'intervalle [0,1[.

Corollaire 2 (Théorème de point fixe) Soit $g : [a,b] \to [a,b]$ continue sur [a,b]. Alors g admet un point fixe \bar{x} dans l'intervalle [a,b].

Preuve. Supposons par l'absurde que g n'admet pas de point fixe sur [a,b]. Alors en particulier

$$\begin{cases} g(a) > a \\ g(b) < b \end{cases}$$

Posons f(x) = g(x) - x, f est continue puisque g l'est. De plus

$$\begin{cases} f(a) > 0 \\ f(b) < 0 \end{cases}.$$

Le TVI nous donne alors l'existence d'un zéro de f dans [a,b], \bar{x} , qui est donc par définition de f un point fixe de g.

2 Construction de solutions approchées

Définition. On appelle *méthode itérative* un procédé de calcul de la forme

$$x_{n+1} = F(x_n), \quad n = 0, 1, 2, \dots$$

qui part d'une valeur donnée x_0 pour calculer x_1 , puis à l'aide de x_1 on calcule x_2 , etc. La formule qui donne x_{n+1} est dite formule de récurrence.

Le procédé est dit convergent si x_n tend vers un nombre fini lorsque n tend vers l'infini.

Définition. Soit p un entier positif. On dit qu'une méthode convergente est d'ordre p s'il existe une constante C telle que si $\bar{x} = \lim x_n$

$$|\bar{x} - x_{n+1}| \le C|\bar{x} - x_n|^p$$

ou encore

$$\lim_{n\to\infty} \frac{|\bar{x} - x_{n+1}|}{|\bar{x} - x_n|^p} = C.$$

Si p=1 on parle de convergence linéaire, si p=2 de convergence quadratique.

Remarque : Dans le cas où p = 1, il est nécessaire que C < 1 pour que (x_n) converge vers \bar{x} .

2.1 Méthodes de la dichotomie et de Lagrange

Principe des deux méthodes. Ces méthodes s'appuient sur le théorème des valeurs intermédiaires. On considère la fonction f continue sur [a,b] à valeurs dans \mathbb{R} avec f(a)f(b) < 0. On sait donc qu'il existe un zéro de f dans $I_0 =]a,b[$ qu'on note \bar{x} . Pour localiser \bar{x} on va calculer à chaque itération un sous-intervalle $I_n = [a_n,b_n]$ de I_{n-1} dans lequel \bar{x} est localisé.

2.1.1 Algorithme de dichotomie

La méthode de dichotomie consiste à découper l'intervalle I_n en deux intervalles de même longueur. Concrètement, supposons par exemple que $f(a_n) < 0$, $f(b_n) > 0$ et notons $x_n = \frac{a_n + b_n}{2}$. On étudie le signe de $f(x_n)$

- si $f(x_n) = 0$ alors $\bar{x} = x_n$
- si $f(x_n) < 0$, d'après de TVI, il existe un zéro de f sur l'intervalle $]x_n, b_n[$. On pose donc $a_{n+1} = x_n$ et $b_{n+1} = b_n$.
- si $f(x_n) > 0$, d'après de TVI, il existe un zéro de f sur l'intervalle a_n, x_n . On pose donc $a_{n+1} = a_n$ et $b_{n+1} = x_n$.

On poursuit alors la construction jusqu'à obtenir la précision souhaitée.

La méthode de dichotomie consiste donc à construire deux suites adjacentes (a_n) et (b_n) (qui sont les extrémités des intervalles successifs dans lesquels \bar{x} est localisé) convergeant vers \bar{x} .

Théorème 2 Soient $a, b \in \mathbb{R}, a < b, f : [a, b] \mapsto \mathbb{R}$ une application continue possédant un unique zéro noté $\bar{x} \in]a, b[$. On suppose de plus que f(a)f(b) < 0. Alors les deux suites (a_n) et (b_n) convergent vers \bar{x} et on a les majorations d'erreur suivantes

$$\forall n \ge 0, \quad 0 \le \bar{x} - a_n \le \frac{b - a}{2^n}, \quad 0 \le b_n - \bar{x} \le \frac{b - a}{2^n}.$$

Preuve. On va montrer que les deux suites (a_n) et (b_n) sont adjacentes. Plus précisément, on va montrer par récurrence sur n que

$$\forall n \ge 1, \quad a_{n-1} \le a_n, \quad b_n \le b_{n-1}, \quad b_n - a_n = \frac{b-a}{2^n} \quad \text{(ou bien } a_n = b_n = \bar{x}\text{)}.$$
 (1)

Rappel: (a_n) et (b_n) sont dites adjacentes si l'une est croissante, l'autre décroissante et $|a_n - b_n| \to 0$ quand $n \to \infty$. Résultat: si (a_n) et (b_n) sont adjacentes alors ces deux suites sont convergentes et ont la même limite $l \in \mathbb{R}$, $\forall n, a_n \leq l \leq b_n$.

• Initialisation. n = 1. Si $f(x_0)$ est du signe de f(a) alors $a_1 = x_0 = \frac{a_0 + b_0}{2}$ et $b_1 = b_0 = b$. Ainsi on vérifie que

$$a_0 \le \frac{a+b}{2} = a_1 \le b_1 = b_0$$

$$b_1 - a_1 = b - \frac{a+b}{2} = \frac{b-a}{2}.$$

On fait le raisonnement si $f(x_0)f(a) < 0$.

• Hérédité. On suppose la propriété (1) vraie au rang n. On étudie le signe de $f(x_n) = f\left(\frac{a_n + b_n}{2}\right)$. Si $f(x_n)f(a) > 0$ (l'opposé se traitant de manière complètement analogue), alors $a_{n+1} = x_n$

$$a_n \le \frac{a_n + b_n}{2} = a_{n+1}$$

et par hypothèse de récurrence on obtient

$$b_{n+1} - a_{n+1} = b_n - \frac{a_n + b_n}{2} = \frac{b_n - a_n}{2} = \frac{1}{2} \frac{b - a}{2^n} = \frac{b - a}{2^{n+1}},$$

ce qui achève la démonstration de (1).

On a ainsi montré que (a_n) et (b_n) sont adjacentes, on note l la limite commune. Afin de conclure la démonstration du théorème, il reste à montrer que $l = \bar{x}$. Pour cela on va prouver que f(l) = 0. Pour tout n on a

$$\begin{cases} f(a_n)f(a) \ge 0\\ f(b_n)f(b) \ge 0 \end{cases}$$

ce qui donne en passant à la limite par continuité de f

$$\begin{cases} f(l)f(a) \ge 0\\ f(l)f(b) \ge 0 \end{cases}$$

Comme par ailleurs on a supposé que a et b étaient non nuls et de signes opposés on a nécessairement

$$\begin{cases} f(l) \le 0 \\ f(l) \ge 0 \end{cases} \implies f(l) = 0.$$

On conclut enfin en disant que

$$0 \le \bar{x} - a_n \le b_n - a_n \le \frac{b - a}{2^n}$$

$$0 \le b_n - x_n \le b_n - a_n \le \frac{b - a}{2^n}.$$

Remarque: Comme on l'a dit, les itérations s'achèvent à la m-ième étape quand

$$|\bar{x} - x_m| \le |I_m| < \varepsilon$$

où ε est une tolérance fixée. On a $|I_m| = \frac{b-a}{2^m}$ donc pour avoir une erreur inférieure à ε , on doit prendre le plus petit m tel que

$$m \ge \frac{\log\left(\frac{b-a}{\varepsilon}\right)}{\log(2)} = \log_2\left(\frac{b-a}{\varepsilon}\right).$$

La méthode de dichotomie ne garantit pas la réduction *monotone* de l'erreur absolue d'une itération à l'autre, c'est-à-dire qu'on n'a pas

$$|\bar{x} - x_{n+1}| < C_n |\bar{x} - x_n|$$
 pour tout $n > 0$

avec $C_n < 1$. La méthode de dichotomie n'est pas une méthode d'ordre 1.

Conclusion:

Avantage: Facile à implémenter, une fois un zéro isolé on a convergence à coup sûr. Inconvénients: Convergence lente, méthode pas généralisable en dimension supérieure, ne s'applique pas par exemple pour chercher les extrema, par ex. pour $x\mapsto x^2$.

2.1.2 Algorithme de Lagrange

Plutôt que de couper l'intervalle en deux intervalles de même longueur, on découpe $I_n = [a_n, b_n]$ en $[a_n, x_n]$ et $[x_n, b_n]$ où x_n est le point d'intersection de la droite passant par $(a_n, f(a_n))$ et $(b_n, f(b_n))$ et l'axe des abscisses. Autrement dit x_n satisfait les équations suivantes

$$\frac{f(b_n) - f(a_n)}{b_n - a_n} (x_n - b_n) + f(b_n) = 0,$$

ou encore

$$x_n = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}.$$

On est alors ramené comme précédemment à étudier le signe de $f(x_n)$.

Proposition 1 Si f (régulière sur [a,b]) avec f'' de signe constant sur [a,b] (càd f convexe ou concave sur [a,b]) alors soit il existe un n tel que $f(x_n) = 0$, soit x_n est bien défini pour tout n et x_n converge à l'ordre 1 vers \bar{x} où \bar{x} est l'unique zéro de f dans [a,b].

Preuve. Supposons que f(a) < 0 et f(b) > 0 avec f convexe $(f'' \ge 0)$.

- f admet un unique zéro sur [a, b].
- Dans la suite on suppose qu'il n'existe pas d'indice pour lequel $x_n = \bar{x}$. Montrons que pour tout n on a $a_{n+1} = x_n$, $b_{n+1} = b$ avec (x_n) strictement croissante. On raisonne par récurrence, on sait que $x_n > a_n = x_{n-1}$ car $f(a_n) < 0$. x_n appartient au segment $[a_n, b_n]$ donc s'écrit comme barycentre des points a_n et b_n

$$x_n = \lambda_n a_n + (1 - \lambda_n) b_n$$
 où $\lambda_n = \frac{x_n - b_n}{a_n - b_n}$

l'inégalité de convexité nous donne alors

$$f(x_n) = f(\lambda_n a_n + (1 - \lambda_n)b_n) \le \lambda_n f(a_n) + (1 - \lambda_n)f(b_n) = 0.$$

Ceci montre bien qu'on pose au rang suivant $a_{n+1} = x_n$.

• $x_n \to \bar{x}$: d'après ce qui précède, la suite (x_n) est croissante, majorée par b. C'est donc une suite convergente, on note sa limite l. Reste à montrer donc que $l = \bar{x}$. Pour cela, écrivons la formule de récurrence donnant la suite (x_n)

$$x_{n+1} = x_n - \frac{b - x_n}{f(b) - f(x_n)} f(x_n).$$
 (2)

En multipliant les deux membres de l'équation par $f(b) - f(x_n)$ et en passant à la limite $n \to \infty$ on obtient

$$(b-l)f(l) = 0. (3)$$

Par ailleurs l'inégalité $x_n < \bar{x} < b$ implique qu'à la limite : $l \leq \bar{x} < b$. En revenant à l'équation (3) on en déduit que f(l) = 0 donc que $l = \bar{x}$.

• la convergence est linéaire : on utilisant la formule de récurrence (2) on écrit

$$\bar{x} - x_{n+1} = \bar{x} - x_n + \frac{b - x_n}{f(b) - f(x_n)} f(x_n)$$

puis

$$\bar{x} - x_{n+1} = (\bar{x} - x_n) \left(1 + \frac{b - x_n}{f(b) - f(x_n)} \frac{f(x_n)}{\bar{x} - x_n} \right)$$
$$= (\bar{x} - x_n) \left(1 - \frac{b - x_n}{f(b) - f(x_n)} \frac{f(\bar{x}) - f(x_n)}{\bar{x} - x_n} \right)$$

Passons à la limite $n \to \infty$ dans cette dernière équation pour aboutir à

$$\lim_{n \to \infty} \frac{\bar{x} - x_{n+1}}{\bar{x} - x_n} = 1 - \frac{b - \bar{x}}{f(b) - f(\bar{x})} f'(\bar{x}) = C \tag{4}$$

Il nous faut donc montrer que $0 \le C < 1$. C'est la convexité de f qui permet de conclure. En effet elle nous permet d'écrire les inégalités suivantes

$$\begin{cases} f(b) \le f(\bar{x}) + f'(\bar{x})(b - \bar{x}) \\ f(a) \le f(\bar{x}) + f'(\bar{x})(b - \bar{x}) \end{cases}$$

ou encore en utilisant que $a < \bar{x} < b$ et $f(\bar{x}) = 0$

$$\begin{cases} f'(\bar{x}) \le \frac{f(b)}{b - \bar{x}} & \Longrightarrow C \ge 0 \\ f'(\bar{x}) \ge \frac{f(a)}{a - \bar{x}} & \Longrightarrow C < 1 \end{cases}$$

Remarque : Le critère d'arrêt $|I_m| < \varepsilon$ est peu adapté en pratique pour l'algorithme de Lagrange. On préfère utiliser plutôt l'un des deux critères suivant (voir complément en fin de chapitre)

- contrôle du résidu : on s'arrête $|f(x_n)| < \varepsilon$.
- contrôle des incréments : on s'arrête quand $|x_{n+1} x_n| < \varepsilon$.

Exercice 2 Décrire les méthodes de dichotomie et de Lagrange et les utiliser pour calculer le zéro de la fonction

$$f(x) = 2x^3 - x - 5$$

dans l'intervalle [1,2] avec une précision de 10^{-2} .

2.2 Méthodes de points fixe

Théorème 3 (Théorème de point fixe contractant) Soient I un intervalle fermé non vide de \mathbb{R} et $g: I \to I$ une application strictement contractante càd qu'il existe une constante 0 < k < 1 telle que

$$\forall (x,y) \in I^2 \quad |g(x) - g(y)| < k|x - y|.$$

Alors il existe un unique $\bar{x} \in I$ tel que $g(\bar{x}) = \bar{x}$ la suite définie par

$$\begin{cases} x_0 \in I \\ \forall n \in \mathbb{N} \quad x_{n+1} = g(x_n) \end{cases}$$

converge vers \bar{x} . De plus, on a la majoration d'erreur

$$|x_n - \bar{x}| \le k^n |x_0 - \bar{x}| \quad \forall n \in \mathbb{N}.$$

Remarque : I peut être de la forme $I=\mathbb{R},\,I=]-\infty,a],\,[a,+\infty[$ ou I=[a,b].

Preuve. On se place dans le cas plus simple où I = [a, b].

- existence d'un point fixe : ok par le corollaire 2 (on remarquera pour cela que la ppté de k-contractivité entraîne la continuité de g).
- unicité du point fixe : soient \bar{x} et \tilde{x} deux points fixes de g sur I. Comme g est strictement contractante on a

$$|\bar{x} - \tilde{x}| = |g(\bar{x}) - g(\tilde{x})| \le k|\bar{x} - \tilde{x}|.$$

La condition k < 1 impose donc $|\bar{x} - \tilde{x}| = 0$ càd $\bar{x} = \tilde{x}$.

• convergence et majoration d'erreur : On va démontrer par récurrence sur n que

$$|x_n - \bar{x}| \le k^n |x_0 - \bar{x}|.$$

- initialisation : on a bien $|x_0 \bar{x}| \le k^0 |x_0 \bar{x}|$.
- hérédité : on suppose l'inégalité vérifiée au rang n. Au rang n+1 on a

$$|x_{n+1} - \bar{x}| = |g(x_{n+1}) - g(\bar{x})| \le k|x_n - \bar{x}| \le k^{n+1}|x_0 - \bar{x}|.$$

L'inégalité est bien satisfaite au rang n+1 ce qui conclut la preuve par récurrence.

Comme k < 1, on a $k^n \to 0$ et cette inégalité permet ainsi de montrer la convergence de x_n vers \bar{x} .

Dans le cas plus général où I est un fermé de \mathbb{R} , l'existence de \bar{x} et la convergence de la suite s'obtiennent simultanément en montrant que (x_n) est une suite de Cauchy. En effet comme g est k-contractante on peut écrire pour $n \geq 1$

$$|x_{n+1} - x_n| = |g(x_n) - g(x_{n-1})|$$

 $\leq k|x_n - x_{n-1}|$
 $\leq k^n|x_1 - x_0|$

Soit maintenant $p > n \ge 0$, on a

$$\sum_{j=n+1}^{p} (x_j - x_{j-1}) = x_p - x_n$$

et l'inégalité précédente donne

$$|x_{p} - x_{n}| \leq \sum_{j=n+1}^{p} k^{j-1} |x_{1} - x_{0}|$$

$$= \sum_{j=0}^{p-(n+1)} k^{n+j} |x_{1} - x_{0}|$$

$$= k^{n} |x_{1} - x_{0}| \sum_{j=0}^{p-(n+1)} k^{j}$$

$$\leq k^{n} |x_{1} - x_{0}| \sum_{j=0}^{+\infty} k^{j}$$

$$= \frac{k^{n} |x_{1} - x_{0}|}{1 - k} \underset{n, p \to \infty}{\longrightarrow} 0.$$

La suite (x_n) est donc une suite de Cauchy dans I qui est un fermé de \mathbb{R} . Elle converge donc dans I, on note l la limite; par continuité de g, en passant à la limite dans l'égalité $x_{n+1} = g(x_n)$, on obtient

$$l = g(l)$$
.

L'unicité se démontre de la même manière que pour le cas d'un segment.

Corollaire 3 Supposons $g: \mathbb{R} \to \mathbb{R}$ de classe C^1 et soit \bar{x} un point fixe de g. Si $|g'(\bar{x})| < 1$, alors il existe $\varepsilon > 0$ tel que si x_0 satisfait $|\bar{x} - x_0| \le \varepsilon$, alors la suite donnée par

$$x_{n+1} = g(x_n)$$

converge vers \bar{x} lorsque n tend vers l'infini.

Exercice 3 Preuve du corollaire 3.

Définition Soit \bar{x} un point fixe d'une application g, on dit que \bar{x} est un point fixe

- attractif si |g'(x)| < 1
- répulsif si $|g'(\bar{x})| > 1$

Le corollaire 3 nous donne donc la convergence locale autour des point fixes attractifs. A contrario le résultat suivant donne la non-convergence pour les points fixes répulsifs

Proposition 2 Soient $g: I \to \mathbb{R}$ une application de classe C^1 et \bar{x} un point fixe répulsif de g. On pose (x_n) la suite définie par l'approximation de point fixe $x_{n+1} = g(x_n)$. Alors soit la suite (x_n) est stationnaire, égale à \bar{x} à partir d'un certain rang, soit (x_n) ne converge pas vers \bar{x} .

Preuve. Comme g' est continue sur I, il existe $\delta > 0$ tel que

$$\forall x \in I, \quad |\bar{x} - x| < \delta \implies |g'(x)| > 1.$$

Soit $x_0 \in I$. Supposons par l'absurde que la suite (x_n) converge vers \bar{x} . Alors il existe un rang N_0 (qui dépend de δ) tel que

$$\forall n \geq N_0, \quad |x_n - \bar{x}| \leq \delta$$

et donc

$$\forall n \ge N_0, \quad |g'(x_n)| > 1.$$

D'après le théorème des accroissements finis il existe c_n entre x_n et \bar{x} tel que

$$g(x_n) - g(\bar{x}) = g(c_n)(x_n - \bar{x}).$$

Donc pour tout $n \geq N_0$ on a

$$|x_{n+1} - \bar{x}| = |g(x_n) - g(\bar{x})| = |g'(c_n)||x_n - \bar{x}| > |x_n - \bar{x}|.$$

Si pour tout $n \leq N_0$ on a $x_n \neq \bar{x}$, l'inégalité précédente entre en contradiction avec la convergence des (x_n) vers \bar{x} .

Exercice 4 On considère la suite d'itérés $x_{n+1} = g_i(x_n)$, $x_0 \in [0,1]$. Dire dans les deux cas suivants si la suite converge (donner la nature des points fixes éventuels de g_i)

1.
$$g_1(x) = \frac{1}{2}x(1-x)$$

2.
$$g_2(x) = \frac{1}{2}x(1+x)$$

 \longrightarrow Peut-on étendre le résulat du théorème au cas k=1?

Exercice 5 On considère la suite d'itérés $x_{n+1} = g(x_n)$, $x_0 \in [0,1]$ avec

$$g(x) = x + x^3$$
 puis $g(x) = x - x^3$.

Dire si la suite converge (donner la nature des points fixes éventuels de g).

Exercice 6 On cherche à déterminer le zéro de la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = 1 - 3e^{-x}$$

- 1. Rappeler pourquoi f admet un unique zéro sur $\mathbb R$ noté $\bar x$
- 2. Calculer \bar{x} directement à partir de l'équation satisfaite par \bar{x} .
- 3. Méthode itérative de relaxation : L'équation f(x) = 0 est équivalente à

$$\forall \lambda \neq 0 \quad x = x + \lambda f(x)$$

Si on pose $g(x) = x + \lambda f(x)$ on est donc ramené à trouver λ pour que la suite définie par $x_{n+1} = g(x_n)$ converge.

- (a) On fixe x_0 dans [1,2]. Trouver λ pour que la suite converge et justifier le choix de x_0 .
- (b) Que peut-on dire de la vitesse de convergence de la suite?

2.2.1 La méthode de Newton

Soit f une fonction définie sur un intervalle [a, b], continûment dérivable sur [a, b] (i.e. de classe C^1 sur [a, b]). Soit \bar{x} un zéro de f que [a, b] tel que $f'(\bar{x}) \neq 0$. On reprend la méthode de relaxation introduite dans l'exercice précédent

$$\{f(\bar{x}) = 0\} \iff \{\forall \lambda \neq 0, \quad \bar{x} = g_{\lambda}(\bar{x})\} \qquad g_{\lambda}(x) = x + \lambda f(x).$$

Alors le meilleur choix de constante λ est celui pour lequel la méthode est d'ordre 2, soit celui pour lequel $g'_{\lambda}(\bar{x}) = 0$

$$\lambda = -\frac{1}{f'(\bar{x})}.$$

En pratique il n'est pas possible (sauf cas particulier) de calculer $f'(\bar{x})$ puisqu'on ne connaît pas \bar{x} . Une solution consiste alors à approximer à chaque itération $f'(\bar{x})$ par $f'(x_n)$. C'est la méthode de Newton.

Théorème 4 (Théorème de convergence globale) On reprend les hypothèses précédentes et on suppose de plus que f est de classe C^2 sur I et que f' et f'' ne s'annulent pas sur I. Soit $x_0 \in I$ tel que $f(x_0)$ soit du même signe que f'' (on suppose qu'il existe au moins un tel x_0). Alors la suite définie par la méthode de Newton

$$\begin{cases} x_0 & donn\acute{e} \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n) \end{cases}$$

est bien définie et converge de manière monotone vers \bar{x} unique zéro de f sur I. De plus $g'(\bar{x}) = 0$.

Preuve. Comme f' est de signe constant sur I, f est strictement monotone sur I et l'équation f(x) = 0 admet au plus une solution. Le point \bar{x} est donc l'unique zéro de f sur I. L'égalité $g'(\bar{x}) = 0$ découle directement de la définition de la méthode de Newton (on a choisi λ dans la méthode de relaxation pour avoir cette égalité).

Reste à prouver la convergence de la suite (x_n) vers \bar{x} . On remarque que quitte à changer f en -f, on peut supposer sans perte de généralité que f'' > 0 le cas f'' < 0 se traitant de manière identique. On doit maintenant distinguer deux cas f' > 0 et f' < 0.

• f' > 0: f est donc strictement croissante sur I et comme $f(x_0) > 0 = f(\bar{x})$ ceci implique que $x_0 > \bar{x}$. Faire le tableau de signe de g', g: on observe que g décroissante pour $x < \bar{x}$ et croissante pour $x > \bar{x}$. Comme $x_1 = g(x_0) > g(\bar{x})$, on a $x_1 > \bar{x}$. D'autre part

$$f(x_0) > 0, f'(x_0) > 0 \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} < x_0$$

donc on a $\bar{x} < x_1 < x_0$. Par récurrence on montre que la suite x_n décroît. Comme elle minorée par \bar{x} elle converge et sa limite est l'unique point fixe de g sur $I:\bar{x}$.

• f' < 0: les variations sont échangées, on montre que $x_0 < x_1 < \bar{x}$ et on obtient une suite (x_n) croissante majorée qui doit converger vers \bar{x} .

Remarque si on enlève l'hypothèse $f(x_0)$ de même signe que f'': si $x_1 \in I$ alors on peut montrer que $f(x_1)$ est de même signe que f'' et donc on commence l'itération à partir de x_1 .

Interprétation géométrique : La définition de x_{n+1} peut se réécrire sous la forme

$$0 = f'(x_n)(x_{n+1} - x_n) + f(x_n).$$

Ceci signifie que $(x_{n+1}, 0)$ est le point d'intersection de la tangente à f en x_n avec l'axe des abscisses.

Exercice 7 On cherche le zéro dans \mathbb{R} du polynôme $f(x) = x^3 - x - 3$ en utilisant la méthode de Newton

1. Expliciter la méthode de Newton dans ce cas particulier.

2. Effectuer quelques itérations de la méthode à partir du point $x_0 = 0$ puis $x_0 = 1$. Interpréter.

Théorème 5 (Convergence quadratique locale) I = [a,b], on considère la fonction f définie sur I de classe C^2 et $\bar{x} \in I$ tel que $f(\bar{x}) = 0$ mais $f'(\bar{x}) \neq 0$. Soient m et M > 0 tels que

$$|f'(x)| \ge m, \quad |f''(x)| \le M \quad \forall x \in I,$$

On pose

$$c = \frac{M}{2m}(b - a).$$

Soit $x_0 \in I$. On suppose que la suite définie par la méthode de Newton à partir de x_0 est bien définie, est à valeurs dans I et converge vers \bar{x} . Alors on a

- $|x_{n+1} \bar{x}| \le \frac{M}{m} \frac{(\bar{x} x_n)^2}{2}$ pour tout $n \ge 0$.
- $|x_n \bar{x}| \le \frac{2m}{M}c^{2^n}$ pour tout $n \ge 0$.
- Si de plus c < 1

$$\forall \varepsilon > 0, \quad n \ge \ln \left(\ln \left(\frac{M\varepsilon}{2m} \right) / \ln c \right) / \ln 2 \implies |x_n - \bar{x}| \le \varepsilon.$$

Preuve : La formule de Taylor-Lagrange à l'ordre 2 appliquée à f au point x_n s'écrit

$$f(\bar{x}) = f(x_n) + (\bar{x} - x_n)f'(x_n) + \frac{(\bar{x} - x_n)^2}{2}f''(c_n)$$

avec c_n dans l'intervalle entre x_n et \bar{x} . Comme $f(\bar{x}) = 0$, on obtient en divisant par $f'(x_n)$:

$$-\frac{f(x_n)}{f'(x_n)} - \bar{x} + x_n = \frac{(\bar{x} - x_n)^2}{2} \frac{f''(c_n)}{f'(x_n)},$$

c'est-à-dire

$$x_{n+1} - \bar{x} = \frac{(\bar{x} - x_n)^2}{2} \frac{f''(c_n)}{f'(x_n)}.$$

Il en découle l'inégalité

$$|x_{n+1} - \bar{x}| \le \frac{(\bar{x} - x_n)^2}{2} \frac{M}{m}.$$

Le deuxième point s'en déduit alors par simple récurrence :

• initialisation: pour n=0 on a bien l'inégalité

$$|x_0 - \bar{x}| \le (b - a) = \frac{2m}{M}c.$$

$$|x_n - \bar{x}| \le \frac{2m}{M}c^{2^n}.$$

D'après ce qui précède,

$$|x_{n+1} - \bar{x}| \le (\bar{x} - x_n)^2 \frac{M}{2m}$$

$$\le \left(\frac{2m}{M}c^{2^n}\right)^2 \frac{M}{2m}$$

$$\le \frac{2m}{M}c^{2^{n+1}}.$$

Ceci permet de conclure la démonstration du second point du théorème.

Supposons que c < 1 et soit $\varepsilon > 0$. D'après les estimations précédentes on a $|\bar{x} - x_n| < \varepsilon$ dès que $\frac{2m}{M}c^{2^n} < \varepsilon$ cad

$$n\ln 2 \geq \ln \left(\left(\frac{M\varepsilon}{2m}\right)/\ln c \right).$$

2.2.2 Méthode de la corde

Cette méthode permet d'éviter qu'à chaque itération on ait à évaluer $f'(x_n)$. La méthode de la corde consiste à remplacer $f'(x_n)$ par $f'(x_0)$ ce qui donne

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}.$$

Interprétation géométrique : Le calcul des itérés s'effectue en prenant toujours la même pente $f'(x_0)$.

Théorème 6 Supposons f continûment dérivable (\mathcal{C}^1) qui admet un zéro \bar{x} tel que $f'(\bar{x}) \neq 0$. Alors il existe $\varepsilon > 0$ tel que si x_0 satisfait $|\bar{x} - x_0| \leq \varepsilon$, la suite (x_n) donné par la méthode de la corde converge vers \bar{x} . La convergence est linéaire.

2.2.3 Méthode de la sécante

Toujours dans la même idée d'éviter le calcul de la dérivée de f, on peut faire l'approximation

$$f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

ce qui nous définit la méthode de la sécante

$$\begin{cases} x_0, x_1 \text{ donnés dans } I, x_0 \neq x_1 \\ \forall n > 0, \quad x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n). \end{cases}$$

Théorème 7 Soit f de classe C^2 qui admet un zéro \bar{x} tel que $f'(\bar{x}) \neq 0$. Alors il existe $\varepsilon > 0$ tel que si x_0 satisfait $|\bar{x} - x_0| \leq \varepsilon$, la suite (x_n) définie par la méthode de la sécante converge vers \bar{x} et on a

$$|\bar{x} - x_{n+1}| \le C|\bar{x} - x_n|^{\varphi}$$

où φ est le nombre d'or $\left(=\frac{1+\sqrt{5}}{2}\sim 1,62\right)$.

2.3 Critères d'arrêts pour les méthodes de point fixe

Supposons que (x_n) soit une suite qui converge vers \bar{x} , zéro de f et on pose g la fonction telle $x_{n+1} = g(x_n)$. On a le choix entre deux critères d'arrêt pour interrompre le processus itératif d'approximation de \bar{x} : ceux basés sur le résidu $f(x_n)$, et ceux basés sur l'incrément $x_{n+1} - x_n$. On suppose que la fonction f est continûment dérivable sur un voisinage de \bar{x} . On note ε la tolérance sur l'erreur $e_n = \bar{x} - x_n$ dans l'approximation de \bar{x} .

- Contrôle du résidu : on arrête le processus quand $|f(x_n)| < \varepsilon$. Il y a des situations pour lesquelles ce test s'avère trop restrictif ou au contraire pas assez.
 - $-\sin f'(\bar{x}) \simeq 1$ alors $|e_n| \simeq \varepsilon$ le test donne une indication satisfaisante de l'erreur.
 - si $|f'(\bar{x})| \ll 1$, le test n'est pas bien adapté car $|e_n|$ peut-être assez grand pas rapport à ε .
 - $-\sin |f'(\bar{x})| \gg 1$ alors $|e_n| \ll \varepsilon$ et le test est trop restrictif.

• Contrôle de l'incrément : les itérations s'achèvent quand $|x_{n+1} - x_n| < \varepsilon$. On a $\bar{x} = g(\bar{x})$ et $x_{n+1} = g(x_n)$, en écrivant le développement de Taylor de g au 1er ordre on a l'existence de $c_n \in [\min\{\bar{x}, x_n\}, \max\{\bar{x}, x_n\}]$ tel que

$$e_{n+1} = \bar{x} - x_{n+1} = g(\bar{x}) - g(x_n)$$

= $g'(c_n)(\bar{x} - x_n)$
= $g'(c_n)e_n$

Mais par ailleurs

$$e_n = e_{n+1} + (x_{n+1} - x_n)$$

= $g'(c_n)e_n + (x_{n+1} - x_n)$

Donc

$$e_n = \frac{x_{n+1} - x_n}{1 - g'(c_n)}.$$

Par conséquent, ce critère fournit un estimateur d'erreur satisfaisant si $1/(1-g'(c_n))$ est proche de 1. Sur la figure ci-dessous on a tracé le graphe de la fonction $x \mapsto 1/(1-x)$

on observe que

- le test est satisfaisant si $g'(x) \simeq 0$ dans un voisinage de \bar{x} , optimal pour des méthodes d'ordre 2 (telles que $g'(\bar{x}) = 0$)
- le test n'est pas satisfaisant si $g'(\bar{x})$ est proche de 1
- le test est encore satisfaisant si $-1 < g'(\bar{x}) < 0$.

Référence : Quarteroni, Sacco, Saleri, "Méthodes numériques", Springer.

3 Applications

Exercice 8 (Calcul de racine carrée) Soit $A \geq 0$, on considère l'algorithme suivant

$$x_{n+1} = x_n + \frac{1}{2}(A - x_n^2), \quad x_0 \in \mathbb{R}.$$

- 1. Montrer que si la suite (x_n) converge alors sa limite est soit \sqrt{A} soit $-\sqrt{A}$.
- 2. On suppose que $A \in]0,4[$. Montrer qu'il existe $\varepsilon > 0$ tel que si $|x_0 \sqrt{A}| \le \varepsilon$ alors la suite (x_n) converge vers \sqrt{A} .
- 3. Vérifier à l'aide d'un graphique que si x_0 est proche de $-\sqrt{A}$ mais différent de $-\sqrt{A}$, alors la suite (x_n) ne converge pas vers $-\sqrt{A}$.

- 4. Vérifier que si on prend $x_0 = 1$ alors l'algorithme coïncide avec la méthode de la corde pour résoudre $x^2 A$.
- 5. Proposer un méthode plus efficace pour calculer la racine carrée de A.

Exercice 9 (Calcul d'inverse) Soient A > 0 et $g : \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$g(x) = 3x - 3Ax^2 + A^2x^3.$$

- 1. Déterminer les points fixes de g. Donner la nature de ces points fixes.
- 2. On construit la suite $x_{n+1} = g(x_n)$, avec x_0 dans \mathbb{R} .
 - (a) Montrer que $g([0, \frac{2}{A}]) = [0, \frac{2}{A}].$
 - (b) En déduire que pour $x_0 \in [0, \frac{2}{A}]$ la suite (x_n) converge et préciser la limite.

On pose $\bar{x} = \frac{1}{A}$.

3. On prend $x_0 \in]0, \frac{2}{A}[$. Montrer que

$$|x_{n+1} - \bar{x}| = A^2 |x_n - \bar{x}|^3.$$

Préciser l'ordre de convergence de (x_n) vers \bar{x} .

Exercice 10 (Recherche de racines de polynômes) Soit $p(x) = c_0 + c_1 x + ... + c_n x^n$ un polynôme de degré $n \geq 2$ à coefficients réels et admettant n racines distinctes réelles $\alpha_n < \alpha_{n-1} < ... < x_1$.

- 1. Rappeler la méthode de Newton pour l'approximation des racines de p.
- 2. Démontrer que pour toute valeur initiale $x_0 > \alpha_1$, la suite (x_n) donnée par la méthode de Newton est strictement décroissante et converge vers la plus grande racine α_1 .
- 3. Montrer que la convergence est quadratique.

4 Solutions

1

 $\mathbf{2}$

3 Si $|g'(\bar{x})| < 1$, alors par continuité de g', il existe $\varepsilon > 0$ et k < 1 tels que

$$|g'(x)| \le k$$
, pour tout $x \in [\bar{x} - \varepsilon, \bar{x} + \varepsilon]$.

On en déduit que pour tous $x, y \in [\bar{x} - \varepsilon, \bar{x} + \varepsilon]$, on a

$$|g(y) - g(x)| = |\int_{x}^{y} g'(z) dz| \le \left(\max_{z \in [\bar{x} - \varepsilon, \bar{x} + \varepsilon]} |g'(z)| \right) |y - x| \le k|y - x|.$$

En prenant $y = \bar{x} = g(\bar{x})$, on en conclut que

$$|\bar{x} - g(x)| = |g(\bar{x}) - g(x)| \le k|x - \bar{x}| < \varepsilon,$$

et donc que $g(x) \in [\bar{x} - \varepsilon, \bar{x} + \varepsilon]$. Le théorème du point fixe contractant nous donne alors la convergence souhaitée.

4 g_1 est continue et dérivable sur [0,1]

$$g_1'(x) = -x + \frac{1}{2}.$$

Le seul point fixe dans [0,1] est $\bar{x}=0$ et comme $g_1'(\bar{x})=\frac{1}{2}$ ce point fixe est attractif. De manière analogue on calcule

$$g_2'(x) = x + \frac{1}{2}.$$

Les points fixes dans [0,1] sont $\bar{x}_1=0$ et $\bar{x}_2=1$ avec $g_2'(\bar{x}_1)=\frac{1}{2}$ et $g_2'(\bar{x}_2)=\frac{3}{2}$ donc \bar{x}_1 est attractif tandis que \bar{x}_2 est répulsif.

5 Le seul point fixe éventuel de g est $\bar{x} = 0$. On a $g'(x) = 1 = 3x^2$ donc $g'(\bar{x}) = 1$. On ne peut pas conclure sur la nature de ce point fixe directement. À l'aide d'un graphique on voit que \bar{x} est répusif. Pour le montrer, on reprend la relation de récurrence

$$x_{n+1} = g(x_n), \quad x_0 > 0$$

Si cette suite converge c'est forcément vers \bar{x} . On vérifie que g(x) > 0 pour tout $x \in \mathbb{R}_+^*$ et donc $x_n > 0$ pour tout n. Comme

$$x_{n+1} - x_n = x_n^3 > 0$$

la suite est strictement croissante donc elle ne peut pas converger vers 0.

6 La fonction f est continue et dérivable sur \mathbb{R} , on calcule pour tout $x \in \mathbb{R}$

$$f'(x) = 3e^{-x} > 0$$

tandis que $\lim_{-\infty} f(x) = -\infty$ et $\lim_{+\infty} f(x) = 1$. D'après le corollaire du TVI, il existe un unique \bar{x} tel que $f(\bar{x}) = 0$.

En résolvant l'équation $1 - 3e^{-\bar{x}} = 0$ on trouve $\bar{x} = \ln(3)$. Par la méthode de relaxation on est ramené à la détermination d'un point fixe pour g

$$\begin{cases} x_0 \in [1, 2] \\ x_{n+1} = g(x_n) = x_n - \frac{1 - 3e^{-x_n}}{3e^{-x_n}} \end{cases}$$

On a \bar{x} dans [1,2] (f(1) < 0 et f(2) > 0) et f'(x) > 0 sur cet intervalle ce qui justifie le choix de x_0 .

On calcule

$$g'(x) = 1 + 3\lambda e^{-x}, \quad \forall x \in \mathbb{R}.$$

Pour que la méthode converge on a besoin de garantir |g'(x)| < 1 pour tout $x \in [1,2]$. Il est alors nécessaire de prendre d'une part $\lambda < 0$ pour avoir g'(x) < 1 et d'autre part $\lambda > -\frac{2}{3}e$ pour assurer g'(x) > -1. Au final la méthode de point fixe converge si

$$\lambda \in]-2e/3,0[$$
.

Le choix optimal (en terme de vitesse de convergence) pour λ est alors celui pour lequel $g'(\bar{x}) = 0$, en résolvant l'équation on trouve

$$\lambda = -\frac{e^{\bar{x}}}{3}.$$

En effet la formule de Taylor à l'ordre 2 garantit l'existence d'un réel $c_n \in [1,2]$ tel que

$$g(x_n) = g(\bar{x}) + g'(\bar{x})(x_n - \bar{x}) + \frac{g''(c_n)}{2}(x_n - \bar{x})^2.$$

et comme pour cette valeur de λ , $g(\bar{x}) = \bar{x}$ et $g'(\bar{x}) = 0$ on en déduit que

$$|\bar{x} - x_{n+1}| \le \sup_{[1,2]} |g''(x)| |\bar{x} - x_n|^2.$$

La méthode est donc d'ordre 2.

7 La méthode de Newton s'écrit

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$= \frac{2x_n^2 + 3}{3x_n^3 - 1}$$

On sait que la méthode de Newton converge pour un x_0 suffisamment proche de \bar{x} . De plus, puisque la dérivée de f ne s'annule pas en \bar{x} , la méthode converge quadratiquement. On calcule x_1, x_2, x_3, \dots pour les deux x_0 . On voit que ça converge pour 1 mais pas 0.

8 Supposons que la suite (x_n) converge vers \bar{x} , en passant à la limite dans la relation de récurrence on obtient l'équation satisfaite par \bar{x}

$$\bar{x} = \bar{x} + \frac{1}{2}(A - \bar{x}^2),$$

c'est-à-dire

$$\bar{x}^2 = A$$
.

Définissons maintenant la suite (x_n) par la formule de récurrence $x_{n+1} = g(x_n)$ où $g: \mathbb{R} \to \mathbb{R}$ avec $g(x) = x + \frac{1}{2}(A + x^2)$. On veut appliquer le corollaire du théorème du point fixe contractant à g et $\bar{x} = \sqrt{A}$. Si $A \in]0,4[$

$$|g'(x)| = |1 - \sqrt{A}| < 1,$$

ce qui nous permet de conclure à la convergence de (x_n) vers \sqrt{A} . Soit f la fonction définie par $f(x) = x^2 - A$. La méthode de la corde s'écrit

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)} = x_n - \frac{x_n^2 - A}{2x_0}.$$

Donc pour $x_0 = 1$ les deux méthodes coïncident.

Si nous prenons maintenant la méthode de Newton pour résoudre $f(x) = x^2 - A = 0$, la relation de récurrence s'écrit

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{x_n^2 + A}{2x_n}$$

D'après les résulats de convergence de la méthode de Newton, la suite (x_n) converge vers \sqrt{A} de manière quadratique pour x_0 suffisamment proche de \sqrt{A} . En fait la méthode de Newton converge dans ce cas précis pour tout $x_0 > 0$.

9 Les points fixes de g sont les solutions de l'équation

$$x = A^2 x^3 - 3Ax^2 + 3x.$$

x=0 est une solution évidente. En factorisant l'expression par x on est ramené à calculer les racines d'un polynôme de degré 2. On trouve 1/A et 2/A. g est régulière et

$$g'(x) = 3A^2(x - \frac{1}{A})$$

ce qui nous donne pour les trois points fixes précédents

$$g'(0) = 3$$
, $g'\left(\frac{1}{A}\right) = 0$, $g'\left(\frac{2}{A}\right) = 3$

On en déduit que 1/A est un point fixe attractif tandis que 0 et 2/A sont répulsifs. Comme g est croissante et continue, g([0,2/A]) = [g(0),g(2/A)] = [0,2/A]. Montrons maintenant que la suite (x_n) est monotone. Pour cela on écrit

$$x_{n+1} - x_n = g(x_n) - g(x_{n-1})$$

puisque la fonction g est croissante, on en déduit que le signe de $x_{n+1} - x_n$ est le même que celui de $x_n - x_{n-1}$. En itérant ce raisonnement, on en déduit que (x_n) est croissante si $x_1 \ge x_0$ et décroissante si $x_1 \le x_0$. La suite (x_n) étant monotone et bornée (car à valeurs dans [0, 2/A]), elle converge vers un point fixe de g (par continuité de g).

Si $x_0 \in 0, 1/A, 1/2A$ alors la suite est stationnaire. Si x_0 est différent de 0, 1/A, 1/2A alors (x_n) ne peut converger que vers

bx = 1/A seul point fixe attractif de g.

Comme g est un polynôme de degré 3, la formule de Taylor d'ordre 3 de g en \bar{x} est exacte

$$x_{n+1} - \bar{x} = g(x_n) - g(\bar{x}) = g'(\bar{x})(x_n - \bar{x}) + \frac{g''(\bar{x})}{2}(x_n - \bar{x})^2 + \frac{g^{(3)}(\bar{x})}{6}(x_n - \bar{x})^3.$$

Après calculs, on obtient

$$x_{n+1} - \bar{x} = A^2(x_n - \bar{x})^3,$$

ce qui signifie que la méthode est d'ordre 3.

10 Pour approcher les racines α_i , la méthode de Newton s'écrit

$$\begin{cases} x_0 & \text{donn\'e} \\ x_{n+1} = x_n - \frac{p(x_n)}{p'(x_n)} \end{cases}$$

On suppose que $c_n > 0$, alors pour tout $x > \alpha_1$ on a p(x) > 0. D'autre part, en appliquant le théorème de Rolle, p' admet (n-1) racines notée β_i telles que

$$\alpha_n < \beta_{n-1} < \alpha_{n-1} < \dots < \beta_1 < \alpha_1.$$

Comme on a supposé $c_n > 0$, par le même argument que précédemment, pour tout $x > \alpha_1$ p'(x) > 0. En appliquant une nouvelle fois le théorème de Rolle, on montre que p'' est strictement positif pour tout $x > \alpha_1$ car $n \ge 0$ et finalement $p^{(3)}(x) \ge 0$ pour $x > \alpha_1$. Un développement de Taylor nous donne alors l'existence de $\theta_0 \in [\alpha_1, x_0]$ tel que

$$0 = p(\alpha_1) = p(x_0) + (\alpha_1 - x_0)p'(x_0) + \frac{1}{2}(\alpha_1 - x_0)^2p''(\theta_0).$$

La méthode de Newton s'écrit à la première itération comme

$$x_1 = x_0 - \frac{p(x_0) - p(x_1)}{p'(x_0)} = \alpha_1 + \frac{p''(\theta_0)}{2p'(x_0)}(\alpha_1 - x_0)^2.$$

Ainsi, en utilisant la stricte positivité de p' et p'' pour tout $x > \alpha_1$, on en déduit que la suite (x_n) est strictement décroissante et minorée : $\alpha_1 < x_{n+1} < x_n$. On en déduit que la suite (x_n) est convergente. On note \bar{x} sa limite, on veut montrer que $\bar{x} = \alpha_1$. Par passage à la limite dans la formule de récurrence de Newton on obtient l'équation satisfaite par \bar{x}

$$\bar{x} = \bar{x} - \frac{p(\bar{x})}{p'(\bar{x})} \implies \frac{p(\bar{x})}{p'(\bar{x})} = 0.$$

Or $\bar{x} \ge \alpha_1$ donc $p'(\bar{x}) > 0$ et \bar{x} est la plus grande racine de p, i.e. $\bar{x} = \alpha_1$. Par ailleurs, comme $p^{(3)}(x) \ge 0$ au-delà de α_1 , on a

$$p''(x_n) \le p''(x_0)$$
 et $p'(x_n) > p'(\alpha_1)$.

Ceci entraîne que

$$|x_{n+1} - \alpha_1| \le \frac{|p''(x_0)|}{2|p'(\alpha_1)|} |x_n - \alpha_1|^2$$

et la convergence quadratique de la méthode.