Paul Gustafson (j.w.w. Qing Zhang) MATH 663 - Subfactors, Knots, and Planar Algebras (Fall 2017)

HW 5

15 Let $n \in \mathbb{N}$ with $n \geq 2$ be fixed. Consider the symmetric matrix $\Lambda \in M_n(\mathbb{C})$ defined by

$$\Lambda_{ij} = \begin{cases} 1, & \text{if } |i - j| = 1\\ 0, & \text{else} \end{cases}$$

(a) Prove that the eigenvalues of Λ are precisely the zeros of the *n*-th Chebyshev polynomial S_n of the second kind, i.e.

$$\left\{2\cos\left(\frac{k\pi}{n+1}\right)\mid k=1,\ldots,n\right\},\,$$

where an eigenvector corresponding to the eigenvalue $\lambda_k := 2\cos\left(\frac{k\pi}{n+1}\right)$ is given by

$$t_k = \left(\sin\left(\frac{k\pi}{n+1}\right), \sin\left(\frac{2k\pi}{n+1}\right), \dots, \sin\left(\frac{nk\pi}{n+1}\right)\right)^T$$

Proof. The double angle formula for $\sin(x)$ gives $(\Lambda t_k)_1 = 2\cos\left(\frac{k\pi}{n+1}\right)\sin\left(\frac{k\pi}{n+1}\right) = (\lambda_k t_k)_1$. Moreover, we have $(\Lambda t_k)_n = \sin(k\pi - \frac{2k\pi}{n+1}) = (-1)^{k+1}2\cos\left(\frac{k\pi}{n+1}\right)\sin\left(\frac{k\pi}{n+1}\right) = (\lambda_k t_k)_n$.

Let $q = e^{\frac{k\pi i}{n+1}}$. For 1 < j < n, we have

$$(\Lambda t_k)_j = \frac{1}{2i} (q^{j-1} - q^{1-j} + q^{j+1} - q^{-j-1})$$
$$= \frac{1}{2i} (q + q^{-1}) (q^j - q^{-j})$$
$$= \lambda_k (t_k)_j$$

(b) Deduce that all values in

$$\left\{4\cos^2\left(\frac{\pi}{n+1}\right)\mid n\geq 2\right\}$$

show up as the Jones index for some subfactor of the hyperfinite II_1 factor.

Proof. We showed how to do this in class (using a theorem of Jones about Markov traces + the basic construction).

16 Let a real matrix $P \in M_n(\mathbb{R})$ be a real symmetric matrix with nonnegative entries. Suppose there exists a real eigenvector $y \in \mathbb{R}^n$ of P with positive entries and corresponding eigenvalue $\lambda \geq 0$.

(a) On the set

$$\Gamma_n := \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1, \dots x_n > 0\}$$

consider the function

$$L: \Gamma_n \to [0, \infty), x \mapsto \max\{s \ge 0 \mid sx \le Px\},\$$

where $x \leq x'$ means that it holds entry-wise. Prove that

$$\sup_{x \in \Gamma_n} L(x) = \lambda = L(y).$$

Proof. Since $\lambda y=Py$, we have $\sup_{x\in\Gamma_n}L(x)\geq L(y)\geq\lambda$. To see that $\sup_xL(x)\leq\lambda$, let $x\in\Gamma_n$. Suppose $s\geq0$ with $sx\leq Px$. Then we have

$$\langle sx, y \rangle \le \langle Px, y \rangle$$

= $\langle x, Py \rangle$
= $\lambda \langle x, y \rangle$

Thus, $s \leq \lambda$, so $L(x) \leq \lambda$. Thus, $\sup_{x} L(x) \leq \lambda$.

(b) Deduce that $||P|| = \lambda$.

Proof. Note that the same proof as in (a) works for

$$\Gamma'_n := \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \setminus \{0\} \mid x_1, \dots x_n > 0\}.$$

One important thing to note is that $\langle x,y\rangle>0$ for $x\in\Gamma'$ since $x\neq0$ and y has positive entries. Let $L':\Gamma'_n\to[0,\infty)$ denote the corresponding function.

Let β denote the eigenvalue of P such that $||P|| = |\beta|$. Let x be an eigenvector for β . Define $\hat{x} := (|x_1|, |x_2|, \dots, |x_n|)$. Then for all i, we have $||P||\hat{x}_i = |\lambda x_i| = |(Px)_i| \le (P\hat{x})_i$. Thus $||P||\hat{x} \le \hat{x}$. Thus $||P|| \le L'(\hat{x}) \le \lambda$. Thus $||P|| = \lambda$.

17 Find braids whose closures are the given links, and their associated Jones polynomials.

Soln: A braid for the Hopf link is $b := \sigma^2$. The Jones polynomial is

$$\begin{split} V_{\hat{b}}(t) &= (\sqrt{t} + \sqrt{t}^{-1})^{n-1} (\sqrt{t})^{\text{wr}(b)} \tau(\pi_t(b)) \\ &= (\sqrt{t} + \sqrt{t}^{-1})^{2-1} (\sqrt{t})^2 \tau((1 - (1 + t)e)^2) \\ &= (\sqrt{t} + \sqrt{t}^{-1}) t \tau (1 - 2(1 + t)e + (1 + 2t + t^2)e) \\ &= \sqrt{t} (t + 1) \tau (1 + (t^2 - 1)e) \\ &= \sqrt{t} (t + 1) (1 + (t^2 - 1) \frac{t}{(t + 1)^2}) \\ &= \sqrt{t} (t + 1 + (t - 1)t) \\ &= t^{5/2} - t^{1/2} \end{split}$$

18 Let $\mathcal H$ be a separable complex Hilbert space and let $U:\mathcal H\to\mathcal H$ be a unitary operator. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n \xi = \pi(\xi)$$

holds for any $\xi \in \mathcal{H}$, where π denotes the orthogonal projection from \mathcal{H} onto the closed subspace \mathcal{H}^U of all U-invariant vectors in \mathcal{H} .

Proof. Let $W := \{U\xi - \xi \mid \xi \in \mathcal{H}\}$. To see that \mathcal{H}^U is orthogonal to \mathcal{W} , suppose $\eta, \xi \in \mathcal{H}$. Then we have $\langle \eta, U\xi - \xi \rangle = \langle U\eta, U\xi \rangle - \langle \eta, \xi \rangle = 0$.

The formula for the mean ergodic theorem obviously holds for $\xi \in \mathcal{H}^U$. Moreover, if $\xi \in \mathcal{H}$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n (U\xi - \xi) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^{n+1} \xi - U^n \xi$$
$$= \lim_{N \to \infty} \frac{1}{N} (U^N \xi - \xi) \to 0.$$

Since \mathcal{H}^U is orthogonal to \mathcal{W} , we have $\pi(U\xi - \xi) = 0$ also. Thus, the formula holds on $\mathcal{H}^U + \mathcal{W}$.

Now suppose the formula holds for some sequence $(\xi_i)_i \subset \mathcal{H}$ with $\xi_i \to \xi$ for some ξ . Then we have

$$\left\| \frac{1}{N} \sum_{n=0}^{N-1} U^n(\xi - \xi_i) \right\| \le \frac{1}{N} \sum_{n=0}^{N-1} \|U^n\| \|\xi - \xi_i\| \le \|\xi - \xi_i\|.$$

Hence,

$$\|\lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n \xi - \pi(\xi)\| \le \|\xi - \xi_i\| + \|\lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n \xi_i - \pi(\xi - \xi_i) - \pi(\xi_i)\|$$

$$\le 2\|\xi - \xi_i\| + \|\lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n \xi_i - \pi(\xi_i)\|$$

$$\to 0.$$

Thus, the formula holds on $\overline{\mathcal{H}^U + \mathcal{W}}$. To see that $\mathcal{H} = \overline{\mathcal{H}^U + \mathcal{W}}$, suppose not. Then there exists a nonzero vector $\xi \in (\mathcal{H}^U + \mathcal{W})^{\perp}$. Since ξ is orthogonal to \mathcal{W} , we have $\langle \xi, U\xi - \xi \rangle = 0$. Thus,

$$\begin{split} \|U\xi - \xi\|^2 &= \langle U\xi, U\xi \rangle - \langle U\xi, \xi \rangle - \langle \xi, U\xi \rangle + \langle \xi, \xi \rangle \\ &= 2\langle \xi, \xi \rangle - \langle U\xi, \xi \rangle - \langle \xi, U\xi \rangle \\ &= \langle \xi - U\xi, \xi \rangle + \langle \xi, \xi - U\xi \rangle \\ &= 0. \end{split}$$

Thus, $\xi \in \mathcal{H}^U$, a contradiction.