

What we cover today

Quantum Advantage

Quantum Advantage and Quantum Value

Quantum Algorithms

- Gate-based Algorithms
- Photonic Native Algorithms

Quantum Use Cases

- Battery Design
- Image Generation
- Molecular Docking
- Quantum Machine Learning

Quantum Advantage

Quantum Advantage and Quantum Value

Advantage

A quantum advantage is obtained if a quantum computer can solve a given task **faster**, **more precise** or with **less energy** than the best classical solution.

Value

Quantum value is obtained if a quantum computer is used to solve a practical relevant problem while providing an advantage over available classical solutions.

State of the Technology

Photonic

Advantage:

Zhong H-S et al 2020 Madsen L S et al 2022

Google 2019 and 2024

Munoz-Bauza H et al 2025

Value:

None so far

Quantum Algorithms

Gate based Quantum Algorithms

Photonic Native Quantum Algorithms

- Quantum Machine Learning
- Graph based algorithms
- Photonic Reservoirs
- Cryptography

Use-cases

CONFIDENTIALITY NOTICE - The ord ents of this presentation is intended so lety for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure. SIGHT - Any reproduction of the images contained in this without the author kation of the author is prohibited.

Battery design

Challenges when designing a Battery

- Understanding the interface of electrodes and electrolytes.
- Predicting the properties of novel electrode materials.
- Predict lifetime and capacity of the battery.
- Simulation of the full battery.
- Finding chemical compounds for new battery designs.

Mathematical Problems to solve

- Partial Differential Equations (PDEs)
- Electronic Structure Problem
- Optimisation
- Stochastic processes
- Machine learning

CONFIDENTIALITY NOTICE - The contents of this presentation is intended solely for the addressee and may contain confidential and/or privileged information and may be legally protected from disclosure.

Battery design

Understanding the interface of electrodes and electrolytes.

Predicting the **lithium-oxide layer accumulation** by solving a **partial differential equation (PDE)**.

The phase shifter encodes the data, and the unitary matrices are trained to find the solution of the differential equation.

Image Generation from Day to Night

Challenges when generating images

- Generalising to novel instances.
- Dealing with high-dimensional data.
- Hallucinating wrong details.
- Working with limited training data.

Mathematical Problems to solve

- Avoid overfitting
- Dimensionality reduction
- Maximum likelihood problem
- Sample complexity

Image Generation from Day to Night

Generalising to novel instances.

Generating night images by training the model on daytime images.

Image Generation from Day to Night

Generalising to novel instances.

Generating night images by training the model on daytime images.

COPY RIGHT - Any reproduction of the images contained in document without the authorization of the author is prohib

Pharma

Finding enzymes to clean up pollution

Challenges when finding new enzymes

- Finding the right docking configuration between the enzyme and the pollutant.
- Screening large databases of potential candidates.
- Predicting molecular properties.
- Modelling Molecular Flexibility and Dynamics

Open Quantum Institute – Use-case

Mathematical Problems to solve

- Molecular docking (Maximum Clique Problem)
- Optimisation
- Machine learning
- Differential equations
- Monte Carlo methods

COPY RIGHT - Any reproduction of the images contained in the document without the authorization of the author is prohibite

Pharma

Finding enzymes to clean up pollution

Finding the right docking configuration between the enzyme and the pollutant.

Comparing **docking configuration** by finding dense subgraphs.

Fig. A graph and its corresponding adjacency matrix

