MTH 212: Mid-semester exam

Maximum marks: Euler $\phi(61)$

Time: 70 minutes

Instructions. Be sure to show your work and explain your reasoning for full credit. No calculators, phones, notes, etc. are allowed. Unless otherwise stated G always denotes a group.

1. (13+1) Let $G = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8\}$ be a group defined by the following table:

-				1				
	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_1	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_2	g_2	g_5	g_4	g_7	g_6	g_1	g_8	g_3
g_3	g_3	g_8	g_5	g_2	g_7	g_4	g_1	g_6
g_4	g_4	g_3	g_6	g_5	g_8	g_7	g_2	g_1
g_5	g_5	g_6	g_7	g_8	g_1	g_2	g_3	g_4
g_6	g_6	g_1	g_8	g_3	g_2	g_5	g_4	\dot{g}_7
g_7	-97-	g_4	g_1	-95	g_3	g_8	g_5	g_2
g_8	g_8	g_7	g_2	g_1	g_4	g_3	g_6	g_5

- (a) Find the identity element, order of each element, inverse of each element, and the centralizer of each element of G.
- (b) What is the center of G?
- 2. (2+2+2+2) Let $G = \langle a \rangle$ be a group generated by an element a of order 30.
 - (a) Find all elements of G which generate G.
 - (b) List all elements in the subgroup $< a^6 >$.
 - (c) What are the generators of subgroup $< a^6 > ?$
 - (d) Find all elements in G of order 3.

(2+2+2+1+1+2) Let $\mathbb R$ be the additive group of real numbers and let $\mathbb T$ be the multiplicative group of complex numbers with absolute value 1. Consider the map $\phi:\mathbb R\to\mathbb T$ given by $\phi(x)=\cos(x)+i\sin x$.

(a) Show that ϕ is a homomorphism from $\mathbb R$ to $\mathbb T$.

o in

- (b) What is the kernel of ϕ ?
- (c) What is the image of ϕ ?
- (d) Is ϕ injective?
- (e) Is ϕ surjective?

(f)	Is ϕ an isomorphism?	7
4. (2+2	$(2+1+2)$ Let G be a group and H be a subgroup of G . Let $a \in G$.	(S)
(a)	Define the left coset of H in G containing a .	
70.00 M 2.00 0 T 10	Describe the distinct cosets of $\mathbb Z$ in $\mathbb R$ and hence write $\mathbb R$ as disjoint union of $\cos \mathbb Z$ in $\mathbb R$.	sets of
(c)	Write the index of H in G .	
(d)	Let $H = 3\mathbb{Z}$. Which of the following cosets are same.	व । त
	i. $11 + H$ and $17 + H$	J(E-)-/a
	ii. $-1 + H$ and $5 + H$	
	iii. $7 + H$ and $23 + H$	
	iv. $6+H$ and $2+H$	
5. (2+2	2+1+0.5) Let $\alpha = (1\ 2\ 4\ 6)(3\ 7\ 5)$ and $\beta = (1\ 4)(2\ 7)(3\ 5)$ be elements in S_7 .	
(a)	Compute $\alpha\beta$ and $\beta\alpha$.	12,24
(b)	Compute α^{-1} and β^{-1} .	3,1,2
(c)	Compute $\alpha\beta\alpha^{-1}$.	3,1,1
(d)	Do α and β commute?	
6. (2+1	1+2+0.5) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 8 & 6 & 7 & 1 & 5 & 9 & 2 \end{pmatrix}$ be an element of S_9 .	3 9 j
(a)	Write α as product of disjoint cycles. $(2 3 8 6 7 1 5 9 2) 9 9 9 9 9 9 9 9 9 $	q 2
(b)	Find the order of α .	
(c)	Write α as product of transpositions. (2 3 8	9)
(d)	Is α an even or odd permutation?	
B(V)	2+2+2+2) Fill in the blanks. Give a proof and state any result or theorem you are rive at your answer clearly.	using
(a)	The minimum possible order of a group consisting of elements of orders 1 throu is(Hint: Order of an element divides order of the group).	gh 10,
(b)	Let G be an infinite cyclic group generated by a , and T is an automorphism of $C(a) = a^t$, the possible values of t are and	3, then
(c)	If $a \in G$ and $o(a) = 18$, then $o(a^2) =$	
	Consider the center of a group G , i.e., $Z(G) = \{g \in G gh = hg \text{ for all } h \in a \in Z(G), \text{ then the centralizer of a, } C(a) = \underline{\hspace{1cm}}$	
(e)	Let $\phi: \mathbb{Z}_{15} \to \mathbb{Z}_{25}$ be a group homomorphism. One possible pair of order of	$\phi(1)$ is
		Ψ(1) 13
Balling Towns 1999		