

Peking University
卫晟课 #6 (Od. 18) 1)课上已讲完矩阵分块运输应用,乘积的行列式,
2)数材PL命题 2. 指导的含两个证明
3)期中复习(前三章内容).
Prop. AERSXN 则有 rank ATA = rank AAT = rank A.
Proof. DF rank A=rank AT. 7-to Rive rank ATA=rank A.
$ \pm -: A^T A_X = 0 \Rightarrow x^T A^T A_X = 0 \Rightarrow A_X ^2 = 0 \Rightarrow A_X = 0 $
EP kerATA ⊆ kerA ⇒ dimkerATA ≤ dimkerA
⇒ rankA ≤ rankATA. 又易和 rankATA ≤ rankA, 展示影得证
法二: 考虑 ATA的 r的子式: (主子式)
$ \frac{A^{T}A\left(\hat{i}_{1},\hat{i}_{2},,\hat{i}_{r}\right)}{\left(\hat{i}_{1},\hat{i}_{2},,\hat{i}_{r}\right)} = \frac{1}{V_{K}\times V_{r}}A\left(\frac{\hat{i}_{1},,\hat{i}_{r}}{V_{1},,V_{r}}\right)A\left(\frac{\hat{i}_{1},,\hat{i}_{r}}{\hat{i}_{1},,\hat{i}_{r}}\right) $
$= \sum_{v_{k} = v_{k}} \left(A(v_{1}, \dots, v_{r})^{2} \right)^{2}$
对于rankA=r,存在非零个阶子式,对应ATA存在非零价主子式
ttp rankATA>r=rankA.

Rem. 对于A
$$\in$$
 Rem. 对于A \in Rem. 对于A \in Rem. 对于A \in Rem. 对于A \in Rem. 和 \in Rem. A \in

Prop. A ERSXN 有 rank AATA = rank ATAAT = rank A.
mot mank A Strank A ATA PROT
Touch AN + ve hD/ 1D TOUGHT AND
TA - rank AA AA = rank AAT = rank AAT
类似地,可以得到 rank A= rank AAT = rank AATA= -···
△ Pizily rank AB ≤ rank A, rank AB ≤ rank B. 下面研究/讨论等是何时成
a) rank AB = rank A iff. rank AB > rank A
又 ImAB ⊆ ImA, 放上水分影也等价于 ImAB ≥ ImA.
ImA = ImAB (Ax = ABy)
$\Leftrightarrow \forall x \exists y (x-By \in ker A)$
⟨⇒ ∀x (x ∈ kerA+ImB) (⇒ kerA+ImB=Fn.
b) rank AB = rank B iff. ker AB = ker B iff. ker AB < ker B.
kerAB = kerB (=> (ABz=0 => Bz=0)
$\Leftrightarrow (Bz \in kerA \Rightarrow Bz = 0)$
⇔(ImB∩kerA=0)
综片所述: rankAB=rankA iff. kerA+ImB=Fn.
rankAB=rankB iff. kerAN]mB=0
充分各件: (kerA=F^(A=0)或ImB=F^(B行英族))⇒kerA+ImB=F^.
(kerA =0 (A行满秩) ImB=0 (B=0)) ⇒ kerA ∩ 2mB=0.
*基本事实: 对于AEF sxn, kerA=D (=) A行满我
ImA=F5 (或cokerA=0) (A引满代

Prof.由dimF=n有限和1成立.下证2:
ImAk=ImAkH iff. rankAk=rankAkH
(注意!一般地, ImA=ImB⇒rankA=rankB≠>ImA=ImB)
即rank ARA = rankAR 利用前述结论,这等价于
$\ker A^R + \lim_{n \to \infty} A = F^n$
$\chi rank A^k = rank A^{k+1} \Rightarrow dimker A^k = dimker A^{k+1} \Rightarrow ker A^k = ker A^{k+1}$
是有 karAkH+]mA=Fn,有 rankAkHA=rankAkH,故]mAkH=]mAkH2
不另一方面, kenAk=kenAkH ⇒ rankAk=rankAkH ⇒ ImAk=ImAkH
$\Rightarrow \lim_{A^{k+1}} = \lim_{A^{k+1}} \Rightarrow \operatorname{rank} A^{k+1} = \operatorname{rank} A^{k+2} \Rightarrow \ker A^{k+1} = \ker A^{k+1}$
2月3),可由 ber Ak=ber AkH () InAk=ImAkH 立即得到
Zem. S=P事实上描述了 \=O对应最大Jordon块的尺寸。(极小多项式上的次数)
$A \sim (B_N)$. B可选, N幂零. S=p为 N的幂零指数.
m_设CEFman 告
a) C行满铁 (rank C=m),则 C存在右连元,即存在DEFnom, CD=Im
b) C到满铁 (rank C=n),则 C存在左逆元,即存在DGFnm. DC=In
Prof a) C分满秩 → Im C=Fm → ∀j∃y; s.t. Cy;=ej.
取D=(v,···, vm) 即有CD=Im.
d) C列满秩 ⇒ CT行满秩 ⇒ CT存在为近下(CTF=In)
取D=FT、则有DC=(CTF)T=IT=In

综上所述、关于 AEFSM 行/创满的	失有如下等价刻面:
A 行满秩(rankA=s)	A到满秧 (rankA=n)
if A行向量线性无关	if. A到向量线性无关
开. A的到向量换为s.张成空间	A行解粉n、张成全空间
iff. Im A = FS (cokerA=D)	iff. kerA=0
开. Ax=b 科任-b任·有配	开. 若Ax=b有解则解唯一
开. A存在方途元	A存在左连元.