```
In [18]: import pandas
import numpy as np
```

In [20]: ODAQ_results

Out[20]:

	score	method	condition	process	item	subject
0	47.0	LP	LP3.5	LP35	LP_11_guitar	Subject 1: USLA08
1	5.0	LP	LP3.5	LP35	LP_11_guitar	Subject 2: DEID44
2	10.0	LP	LP3.5	LP35	LP_11_guitar	Subject 3: DEID1115
3	20.0	LP	LP3.5	LP35	LP_11_guitar	Subject 4: DEID337
4	30.0	LP	LP3.5	LP35	LP_11_guitar	Subject 5: USLA06
•••						•••
6235	100.0	DE	Ref	reference	DE_SitaSings_remix2_LD6	Subject 22: DEID2
6236	100.0	DE	Ref	reference	DE_SitaSings_remix2_LD6	Subject 23: USLA01
6237	100.0	DE	Ref	reference	DE_SitaSings_remix2_LD6	Subject 24: USLA05
6238	100.0	DE	Ref	reference	DE_SitaSings_remix2_LD6	Subject 25: DEID1
6239	100.0	DE	Ref	reference	DE_SitaSings_remix2_LD6	Subject 26: DEID3

6240 rows × 6 columns

```
In [21]: methods = ODAQ_results['method'].unique()
    conditions = ODAQ_results['condition'].unique()
    processes = ODAQ_results['process'].unique()
    items = ODAQ_results['item'].unique()
```

```
print(methods)
         print(conditions)
         print(processes)
         print(items)
        ['LP' 'TM' 'UN' 'SH' 'PE' 'DE']
        ['LP3.5' 'LP7' '01' '02' '03' '04' '05' 'Ref']
        ['LP35' 'LP70' 'LP50' 'LP90' 'LP105' 'LP120' 'LP150' 'reference' 'TM3k'
         'TM5k' 'TM7k' 'TM9k' 'TM10.5k' 'UN3k' 'UN5k' 'UN7k' 'UN9k' 'UN10.5k'
         'SH70 MS' 'SH50 MS' 'SH30 MS' 'SH20 MS' 'SH10 MS' 'PE 4096 MS NMR10'
         'PE_2048_MS_NMR10' 'PE_1024_MS_NMR10' 'PE_2048_MS_NMR16'
         'PE_1024_MS_NMR16' 'OpenUnmix_mid' 'TFC_TDF_U_Net_mid' 'Cocktail_mid'
         'DeepFilterNet2_mid' 'PSM_quantize_mask']
        ['LP_11_guitar' 'LP_23_jazz' 'LP_AmateurOnPurpose'
         'LP_CreatureFromTheBlackjackTable' 'TM_01b_trumpet' 'TM_02_violin'
         'TM AmateurOnPurpose' 'TM CreatureFromTheBlackjackTable'
         'UN_20c_accordion' 'UN_21_violin' 'UN_AmateurOnPurpose'
         'UN CreatureFromTheBlackjackTable' 'SH 04 choral' 'SH 13 glockenspiel'
         'SH AmateurOnPurpose' 'SH CreatureFromTheBlackjackTable'
         'PE 27 castanets' 'PE 39 clapping' 'PE AmateurOnPurpose'
         'PE_CreatureFromTheBlackjackTable' 'DE_CosmosLandromat_remix1_LD6'
         'DE_CosmosLandromat_remix3_LD3' 'DE_ElephantsDream_LD0'
         'DE_female_speech_music_1_LD0' 'DE_female_speech_music_2_LD9'
         'DE_female_speech_music_3_LD3' 'DE_Meridian_remix1_LD3'
         'DE Meridian remix2 LD6' 'DE SitaSings remix1 LD0'
         'DE SitaSings remix2 LD6']
In [22]: # Get unique subjects from ODAQ_results
         unique_subjects = ODAQ_results['subject'].unique()
         print(unique_subjects)
         # Dynamically create expert variables
         for i, subject in enumerate(unique subjects, start=1):
             globals()[f"expert{i}"] = ODAQ_results[ODAQ_results['subject'] == subject
        ['Subject 1: USLA08' 'Subject 2: DEID44' 'Subject 3: DEID1115'
         'Subject 4: DEID337' 'Subject 5: USLA06' 'Subject 6: DEID5'
         'Subject 7: DEID9' 'Subject 8: DEID4' 'Subject 9: USLG04'
         'Subject 10: USLA04' 'Subject 11: USLA07' 'Subject 12: DEID256'
         'Subject 13: DEID6' 'Subject 14: USLG05' 'Subject 15: USLA09'
         'Subject 16: USLG02' 'Subject 17: USLG03' 'Subject 18: DEID7'
         'Subject 19: USLA12' 'Subject 20: DEID10' 'Subject 21: DEID8'
         'Subject 22: DEID2' 'Subject 23: USLA01' 'Subject 24: USLA05'
         'Subject 25: DEID1' 'Subject 26: DEID3']
In [23]: # Initialize score lists dynamically for 26 experts
         for i in range(1, 27): # Assuming 26 experts
             globals()[f"expert{i}_scores"] = []
         # Append scores systematically
```

```
for item in items:
    for i in range(1, 27):
        expert_df = globals()[f"expert{i}"] # Access expert data frame
        scores = expert_df[expert_df['item'] == item]['score'].values
        globals()[f"expert{i}_scores"].append(scores)
```

```
In [26]: # Perfect ranking
perfect_ranking = np.array([1, 2, 3, 4, 5, 6, 7, 8])
```

For $\mathbf{v}_1=[v_{1,1},v_{1,2},\ldots,v_{1,n}]$ and $\mathbf{v}_2=[v_{2,1},v_{2,2},\ldots,v_{2,n}]$, with n=8, we compute the euclidean distance between them as follows:

$$d(\mathbf{v}_1,\mathbf{v}_2) = \sqrt{\sum_{i=1}^n (v_{1,i}-v_{2,i})^2}$$

```
In [28]: # Initialize a 26x30 matrix to store distances
distance_matrix = np.zeros((26, 30))
# Compute distances systematically
```

```
for i in range(1, 27): # 26 experts
    expert_rankings = globals()[f"expert{i}_rankings"] # Get expert ranking
    for j in range(30): # 30 ranking vectors per expert
        distance_matrix[i-1, j] = compute_distance(expert_rankings[j], perfe

distance_matrix_df = pandas.DataFrame(distance_matrix, columns=items)
```

In [29]: distance_matrix_df

III [29].	distance_matrix_di				
Out[29]: LP_11_guitar LP_23		LP_23_jazz	LP_AmateurOnPurpose	LP_CreatureFromTheBlackjackTal	
	0	2.828427	4.472136	2.645751	3.3166
	1	2.645751	1.414214	1.414214	1.4142
	2	3.162278	2.449490	2.000000	2.4494
	3	3.162278	1.732051	4.000000	3.0000
	4	3.316625	2.645751	1.000000	3.8729
	5	1.732051	1.732051	2.645751	3.0000
	6	1.414214	2.000000	2.000000	2.8284
	7	1.414214	1.414214	2.828427	1.4142
	8	4.898979	2.828427	1.414214	3.3166
	9	1.732051	3.872983	1.414214	1.7320
	10	1.414214	2.236068	2.000000	2.4494
	11	3.316625	3.162278	3.464102	3.1622
	12	2.000000	2.000000	1.414214	2.0000
	13	3.000000	5.000000	3.605551	3.3166
	14	2.828427	2.828427	2.449490	2.0000
	15	5.656854	2.645751	3.605551	1.7320
	16	2.236068	2.236068	1.732051	3.3166
	17	1.414214	3.162278	1.000000	1.7320
	18	1.414214	3.000000	4.358899	4.0000
	19	2.000000	2.000000	1.732051	1.4142
	20	2.000000	2.828427	2.000000	2.0000
	21	4.000000	3.316625	2.828427	2.8284

22	1.732051	2.828427	1.414214	4.1231
23	1.414214	3.464102	2.645751	2.8284
24	2.645751	4.000000	2.645751	1.7320
25	4.358899	3.316625	3.464102	3.1622

26 rows × 30 columns

```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd

# Create a heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(distance_matrix_df, cmap="coolwarm", annot=False, linewidths=0.5

# Labels and title
plt.xlabel("Audio Sample")
plt.ylabel("Expert")
plt.title("Heatmap of Distance Between Expert Rankings and Perfect Ranking (
# Show the plot
plt.show()
```



```
In [31]: from scipy.cluster.hierarchy import linkage, dendrogram

# Perform hierarchical clustering (using Ward's method)
linkage_matrix = linkage(distance_matrix, method='ward')

# Create a clustermap (heatmap with hierarchical clustering)
clustermap = sns.clustermap(
    distance_matrix_df,
    cmap="coolwarm",
    method="ward",
    figsize=(12, 10),
    xticklabels=True, # Display column labels (optional)
```

```
yticklabels=True # Display row labels (optional)

# Add axis labels
clustermap.ax_heatmap.set_xlabel("Audio Samples", fontsize=12)
clustermap.ax_heatmap.set_ylabel("Experts", fontsize=12)
clustermap.ax_heatmap.set_title("Clustermap of Expert Ranking Distances from
# Show the plot
plt.show()
```

Clustermap of Expert Ranking Distances from Perfect Ranking


```
In [32]: # PERFORMANCE-BASED CLUSTERING

from scipy.cluster.hierarchy import fcluster

# Extract clusters from the linkage matrix
num_clusters = 4 # Choose the number of clusters (you can adjust)
cluster_labels = fcluster(linkage_matrix, num_clusters, criterion='maxclust')
```

 ${\tt ODAQ_ranking_comparison}$ 2/1/25, 6:42 PM

Out[32]:

	Expert	Cluster
0	Expert 1	1
1	Expert 2	4
2	Expert 3	1
3	Expert 4	1
4	Expert 5	1
5	Expert 6	3
6	Expert 7	1
7	Expert 8	2
8	Expert 9	1
9	Expert 10	4
10	Expert 11	3
11	Expert 12	1
12	Expert 13	3
13	Expert 14	4
14	Expert 15	3
15	Expert 16	1
16	Expert 17	1
17	Expert 18	3
18	Expert 19	3
19	Expert 20	3
20	Expert 21	4
21	Expert 22	1
22	Expert 23	1
23	Expert 24	3
24	Expert 25	3
25	Expert 26	1

```
In [33]: import seaborn as sns
import matplotlib.pyplot as plt
```

```
# Add cluster labels to the distance matrix
distance_matrix_df['Cluster'] = cluster_labels

# Melt data for visualization
melted_df = distance_matrix_df.melt(id_vars=['Cluster'], var_name='Ranking V

# Plot the distribution of distances per cluster
plt.figure(figsize=(10, 6))
sns.boxplot(x='Cluster', y='Distance', data=melted_df)
plt.xlabel("Cluster")
plt.ylabel("Distance from Perfect Ranking")
plt.title("Distance Distribution Across Clusters")
plt.show()
```

Distance Distribution Across Clusters


```
In [34]: # Example: Find which experts belong to Cluster 1
   cluster_1_experts = cluster_df[cluster_df['Cluster'] == 1]
   print(cluster_1_experts)
```

```
Cluster
                 Expert
         0
               Expert 1
                                 1
         2
               Expert 3
                                 1
         3
                                 1
               Expert 4
         4
               Expert 5
                                 1
         6
                                 1
               Expert 7
         8
               Expert 9
                                 1
                                 1
         11
              Expert 12
         15
              Expert 16
                                 1
         16
              Expert 17
                                 1
                                 1
         21
              Expert 22
         22
                                 1
              Expert 23
                                 1
         25
              Expert 26
In [35]:
          expert1 scores
Out [35]:
           [array([ 47.,
                            66.,
                                   56.,
                                          76.,
                                                 90., 100.,
                                                              91.,
                                                                     94.]),
                                   35.,
            array([ 17.,
                            50.,
                                          46., 100., 100., 100., 100.]),
                                          55.,
                                                 53., 100.,
                                                              78.,
                                                                    100.]),
            array([ 13.,
                            43.,
                                   35.,
            array([ 38.,
                            60.,
                                   47.,
                                          73.,
                                                 83., 100.,
                                                              92.,
                                                                     92.]),
                                          60.,
                            53.,
                                   44.,
                                                 69.,
                                                       78., 100.,
            array([ 22.,
                                                                     82.1).
            array([ 25.,
                            43.,
                                   13.,
                                          50.,
                                                 57.,
                                                       63.,
                                                              68., 100.]),
                                   37.,
                                          54..
                                                 71..
                                                              79., 100.]),
            array([ 11.,
                            38.,
                                                       81.,
                                   28.,
                                                       49.,
            array([ 18.,
                            42.,
                                          39.,
                                                 77.,
                                                              72., 100.]),
                                                62.,
            array([ 55.,
                            74.,
                                   40.,
                                          54.,
                                                       74., 100.,
                                                                     85.]),
                                                 52.,
                                                       87., 100., 100.]),
            array([ 35.,
                            68.,
                                   16.,
                                          44.,
                                   59.,
            array([ 25.,
                            42.,
                                          79.,
                                                 75.,
                                                       89.,
                                                              60., 100.]),
            array([ 16.,
                            32.,
                                   64.,
                                          85.,
                                               100., 100., 100., 100.]),
                                          27.,
                                                 32.,
                                                       32.,
                                                              37., 100.]),
            array([ 37.,
                            65.,
                                   12.,
                            66.,
                                   18.,
                                          26.,
                                                 40..
                                                       52.,
                                                              56., 100.]),
            array([ 15.,
                                                 66.,
                                                              87., 100.]),
            array([ 37.,
                            58.,
                                   49.,
                                          69.,
                                                       78.,
                                   11.,
                            42.,
                                          20.,
                                                 29.,
                                                       43.,
                                                              77., 100.]),
            array([ 17.,
            array([ 46.,
                            72.,
                                   32.,
                                          65.,
                                                 37.,
                                                       61.,
                                                              74., 100.]),
                                                       37.,
                                   15.,
                                          29.,
                                                 47.,
                                                              49., 100.]),
            array([ 45.,
                            78.,
                                                 37.,
                                                       78., 100., 100.]),
            array([ 17.,
                            30.,
                                   63.,
                                          61.,
            array([ 44.,
                            63.,
                                   67.,
                                          74..
                                                 80..
                                                       83.,
                                                              83., 100.]),
                                   18.,
                                                 55.,
                                                       74., 100.,
            array([ 20.,
                            36.,
                                          45.,
                                                                     85.]),
                                   18.,
            array([ 26.,
                            51.,
                                          35.,
                                                 59.,
                                                       60.,
                                                              82., 100.]),
                                   43.,
                                                       60.,
                                                              75., 100.]),
            array([ 13.,
                            63.,
                                          62.,
                                                 59.,
                                   28.,
            array([ 22.,
                            52.,
                                          38.,
                                                 28.,
                                                       32.,
                                                              85., 100.]),
            array([ 17.,
                            40.,
                                   29.,
                                          76.,
                                                 51.,
                                                       75., 100., 100.]),
                                   25.,
                                                 62.,
                                                              82., 100.]),
            array([ 14.,
                            45.,
                                          48.,
                                                       56.,
                                   48.,
                                                              87., 100.]),
                            84.,
            array([ 59.,
                                          62.,
                                                 67.,
                                                       80.,
                                                       74.,
            array([ 32.,
                            81.,
                                   33.,
                                          42.,
                                                 53..
                                                              75., 100.]),
                                          61.,
            array([ 34.,
                            54.,
                                   37.,
                                                 69.,
                                                       79.,
                                                              90., 100.]),
                            64.,
                                   29.,
                                                       74.,
                                                              65., 100.])]
            array([ 21.,
                                          44.,
                                                 60.,
In [36]:
          expert1_rankings
```

```
Out[36]:
          array([[1, 3, 2, 4, 5, 8, 6, 7],
                 [1, 4, 2, 3, 5, 5, 5, 5],
                 [1, 3, 2, 5, 4, 7, 6, 7],
                 [1, 3, 2, 4, 5, 8, 6, 6],
                 [1, 3, 2, 4, 5, 6, 8, 7],
                 [2, 3, 1, 4, 5, 6, 7, 8],
                 [1, 3, 2, 4, 5, 7, 6, 8],
                 [1, 4, 2, 3, 7, 5, 6, 8],
                 [3, 5, 1, 2, 4, 5, 8, 7],
                 [2, 5, 1, 3, 4, 6, 7, 7],
                 [1, 2, 3, 6, 5, 7, 4, 8],
                 [1, 2, 3, 4, 5, 5, 5, 5],
                 [5, 7, 1, 2, 3, 3, 5, 8],
                 [1, 7, 2, 3, 4, 5, 6, 8],
                 [1, 3, 2, 5, 4, 6, 7, 8],
                 [2, 5, 1, 3, 4, 6, 7, 8],
                 [3, 6, 1, 5, 2, 4, 7, 8],
                 [4, 7, 1, 2, 5, 3, 6, 8],
                 [1, 2, 5, 4, 3, 6, 7, 7],
                 [1, 2, 3, 4, 5, 6, 6, 8],
                 [2, 3, 1, 4, 5, 6, 8, 7],
                 [2, 4, 1, 3, 5, 6, 7, 8],
                 [1, 6, 2, 5, 3, 4, 7, 8],
                 [1, 6, 2, 5, 2, 4, 7, 8],
                 [1, 3, 2, 6, 4, 5, 7, 7],
                 [1, 3, 2, 4, 6, 5, 7, 8],
                 [2, 6, 1, 3, 4, 5, 7, 8],
                 [1, 7, 2, 3, 4, 5, 6, 8],
                 [1, 3, 2, 4, 5, 6, 7, 8],
                 [1, 5, 2, 3, 4, 7, 6, 8]])
```