MUDANÇAS DE BASE

- **2.** Para cada um dos seguintes pares de bases ordenadas, U e V, para o espaço linear \mathbb{R}^3 , obtenha as matrizes mudança de base, $M_{\mathrm{U} \to \mathrm{V}}$ e $M_{\mathrm{V} \to \mathrm{U}}$, que relacionam essas mesmas bases.
 - a) $U = \{(1,0,0), (0,1,0), (0,0,1)\}\ e\ V = \{(2,1,-1), (0,-1,-1), (1,0,2)\}.$
 - **b**) $U = \{(1,-1,0), (0,1,2), (1,0,-2)\}\ e\ V = \{(-1,1,0), (0,1,1), (1,0,-1)\}\ .$
 - c) $U = \{(1,0,0), (0,1,0), (0,0,1)\}\ e\ V = \{\frac{1}{\sqrt{2}}(1,0,-1), \frac{1}{\sqrt{2}}(1,0,1), (0,1,0)\}.$
 - **d**) $U = \left\{ \frac{1}{\sqrt{2}} (1,0,-1), \frac{1}{\sqrt{2}} (1,0,1), (0,1,0) \right\} e V = \left\{ \frac{1}{\sqrt{3}} (1,1,-1), \frac{1}{\sqrt{2}} (1,0,1), \frac{1}{\sqrt{6}} (1,-2,-1) \right\}.$
- **5.** Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, definida por

$$T(x, y, z) = (y + z, y - z)$$

em relação às bases canónicas $E_3 = \left\{\vec{i}, \vec{j}, \vec{k}\right\}$ e $E_2 = \left\{\vec{i}_1, \vec{j}_1\right\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Considere as bases ordenadas $U = \left\{(0,1,0),(0,0,1),(1,0,0)\right\}$ para \mathbb{R}^3 e $V = \left\{(-1,1),(1,1)\right\}$ para \mathbb{R}^2 . Determine:

- a) A matriz que representa T em relação às bases canónicas.
- **b**) A matriz mudança de base de U para E_3 .
- c) A matriz mudança de base de V para E₂.
- **d**) As coordenadas dos vectores $\vec{x} = (1,1,2)$ e $\vec{y} = (1,5)$ em relação às bases U e V, respectivamente.
- e) A matriz $T_{E_3,V} = m(T)_{E_3,V}$, que representa T em relação às bases ordenadas E_3 e V.
- **f**) A matriz $T_{U,E_2} = m(T)_{U,E_2}$, que representa T em relação às bases ordenadas U e E_2 .
- g) A matriz $T_{U,V} = m(T)_{U,V}$, que representa T em relação às bases ordenadas U e V.
- **h**) A imagem, através de T, do vector $\vec{x} = (1,1,2)$, expressa em relação às bases E_2 e V.

J.A.T.B. NAL-4.1

6. Sejam as transformações lineares $T: \mathbb{R}^2 \to \mathbb{R}^3$ e $S: \mathbb{R}^3 \to \mathbb{R}^3$, que possuem as representações matriciais

$$T = m(T) = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 e $S = m(S) = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$

em relação às bases canónicas $E_3 = \left\{\vec{i}, \vec{j}, \vec{k}\right\}$ e $E_2 = \left\{\vec{i}_1, \vec{j}_1\right\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Seja a base ordenada $B = \left\{(1,0,1),(0,2,0),(1,2,3)\right\}$ para \mathbb{R}^3 . Determine:

- a) As matrizes mudança de base de B para E₃ e de E₃ para B.
- **b**) A matriz que representa a transformação linear $ST : \mathbb{R}^2 \to \mathbb{R}^3$ em relação às bases canónicas.
- c) A matriz $T_{E_2,B} = m(T)_{E_2,B}$, que representa T em relação às bases ordenadas E_2 e B.
- **d**) A matriz $S_{B,E_3} = m(S)_{B,E_3}$, que representa S em relação às bases ordenadas B e E_3 .
- e) A matriz $S_{E_3,B} = m(S)_{E_3,B}$, que representa S em relação às bases ordenadas E_3 e B.
- f) A matriz semelhante a S, definida em relação à base ordenada B.
- **g**) A matriz $m(ST)_{E_2,B}$, que representa ST em relação às bases E_2 e B.
- **9.** Sejam $A \in B$ duas matrizes semelhantes e $n \in \mathbb{N}$. Mostre que:
 - a) Se uma delas é uma matriz não singular, então a outra também o é.
 - **b**) As matrizes A^n e B^n são, também, matrizes semelhantes.

12. Sejam as transformações lineares $S: \mathbb{R}^2 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$S(x, y) = (x + y, 2x, x - y)$$

$$T(1,1,0) = (2,0,-1)$$
, $T(1,-1,0) = (0,0,1)$ e $T(0,0,1) = (0,1,1)$

em relação às bases canónicas $E_3 = \left\{\vec{i}, \vec{j}, \vec{k}\right\}$ e $E_2 = \left\{\vec{i}_1, \vec{j}_1\right\}$ para os espaços lineares \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Considere a base ordenada $B = \left\{(1,1,0),(0,0,1),(1,-1,0)\right\}$ para \mathbb{R}^3 . Obtenha:

- **a**) A matriz que representa *T* em relação à base canónica, usando a matriz mudança de base adequada.
- ${f b}$) A matriz que representa a transformação composta possível de S com T em relação às bases canónicas.
- c) A matriz $S_{E_2,B} = m(S)_{E_2,B}$, que representa S em relação às bases ordenadas E_2 e B.
- **d**) A matriz da transformação composta obtida em b), recorrendo à matriz calculada na alínea anterior.
- **14.** Sejam as transformações lineares $S:\mathbb{R}^2\to\mathbb{R}^3$ e $T:\mathbb{R}^3\to\mathbb{R}^3$, representadas pelas matrizes

$$S = m(S) = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix} \text{ e } T = m(T) = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

em relação às bases canónicas $E_2 = \{\vec{i}_1, \vec{j}_1\}$ e $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$ para os espaços lineares \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Considere a base ordenada para \mathbb{R}^3 , $V = \{(1,1,0), (0,-1,0), (1,1,-1)\}$. Determine:

- a) A representação matricial da transformação TS + S em relação às bases canónicas.
- **b**) A representação matricial da transformação TS , considerando a base V para \mathbb{R}^3 .
- **c**) A representação matricial da transformação TS + S, considerando a base V para \mathbb{R}^3 .

J.A.T.B. NAL-4.3

15. Seja a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^3$, dada por

$$S(1,1,0) = (3,-1,4)$$
, $S(0,-1,1) = (-1,-2,-1)$ e $S(1,-1,1) = (0,-4,0)$

em que $U = \{(1,1,0), (0,-1,1), (1,-1,1)\}$ é uma base ordenada para \mathbb{R}^3 . Sejam, ainda, as transformações lineares $R : \mathbb{R}^3 \to \mathbb{R}^3$ e $T : \mathbb{R}^3 \to \mathbb{R}^2$, representadas pelas matrizes

$$\mathbf{R} = m(R) = \begin{bmatrix} 1 & -1 & -2 \\ 2 & -1 & -3 \\ 0 & 1 & 1 \end{bmatrix} \text{ e } \mathbf{T} = m(T) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

em relação às bases canónicas $E_3 = \{\vec{i}, \vec{j}, \vec{k}\} \subset \mathbb{R}^3$ e $E_2 = \{\vec{i}_1, \vec{j}_1\} \subset \mathbb{R}^2$. Considere as bases ordenadas $B = \{(1,1,0), (0,1,1), (1,0,1)\} \subset \mathbb{R}^3$ e $C = \{(1,-2), (1,2)\} \subset \mathbb{R}^2$. Determine:

- **a**) A matriz que representa *S* em relação à base canónica, usando a matriz mudança de base adequada.
- **b**) A representação matricial de $S^2 : \mathbb{R}^3 \to \mathbb{R}^3$ em relação à base U.
- **c**) A representação matricial de $TR : \mathbb{R}^3 \to \mathbb{R}^2$ em relação às bases B e C.
- **d**) A representação matricial de $(TR+T): \mathbb{R}^3 \to \mathbb{R}^2$ em relação às bases B e C.
- e) A matriz que representa $TR^2 : \mathbb{R}^3 \to \mathbb{R}^2$ em relação às bases E_3 e C, a partir da matriz encontrada em c).
- **f**) A matriz que representa $SR: \mathbb{R}^3 \to \mathbb{R}^3$ em relação à base canónica, a partir da matriz $S_{U,E_3} = m(S)_{U,E_3}$.

J.A.T.B. NAL-4.4

18. Sejam V um espaço linear real e $A = \{a_1, a_2, a_3\}$ e $B = \{b_1, b_2, b_3\}$ duas bases ordenadas distintas para V. Considere a transformação linear $S : \mathbb{R}^4 \to V$, possuindo a representação matricial

$$S_{E,A} = m(S)_{E,A} = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 1 & -1 & -2 \\ -1 & 0 & -1 & 1 \end{bmatrix}_{E,A}$$

em relação à bases ordenadas $E = \{(1,0,0,1), (0,1,0,0), (1,0,1,0), (0,0,1,1)\}$, para \mathbb{R}^4 , e A. Determine a matriz $S_{E,B} = m(S)_{E,B}$, que representa S em relação às bases E e B, se:

$$\mathbf{a}) \ \mathbf{M}_{A \to B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{bmatrix}.$$

$$\mathbf{b}) \ \mathbf{M}_{\mathrm{B} \to \mathrm{A}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$$

21. Sejam as transformações lineares $S: \mathbb{R}^3 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$S(1,1,0) = (4,1,-1)$$
, $S(0,2,-1) = (6,-3,-3)$ e $S(1,0,2) = (1,1,2)$

$$T(x, y, z) = (x + y + 3z, 2x + 2y, x + y + z)$$

em relação à base canónica $E_3 = \left\{ \vec{i} , \vec{j}, \vec{k} \right\}$ para o espaço linear \mathbb{R}^3 . Determine:

- **a**) A matriz que representa *S* em relação à base canónica, usando a matriz mudança de base adequada.
- **b**) A matriz m(TS), que representa a transformação composta TS em relação à base canónica.
- c) A matriz semelhante à obtida em b), definida em relação à base ortonormada

$$\mathbf{B} = \left\{ \vec{b}_1, \vec{b}_2, \vec{b}_3 \right\} = \left\{ \frac{1}{\sqrt{2}} (1, 1, 0), \frac{1}{\sqrt{2}} (-1, 1, 0), (0, 0, 1) \right\}$$

22. Em cada uma das alíneas seguintes A é uma representação matricial de uma dada transformação linear $T:\mathbb{R}^3 \to \mathbb{R}^3$, definida em relação à base canónica $E = \left\{\vec{i}, \vec{j}, \vec{k}\right\}$ para o espaço linear \mathbb{R}^3 . Mostre que B é uma matriz semelhante a A, encontrando-se definida em relação à base ordenada V.

a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix}, B = \frac{1}{2} \begin{bmatrix} -2 & -4 & 4 \\ 4 & 6 & -4 \\ -1 & 1 & 6 \end{bmatrix} e V = \{\vec{i}, \vec{i} + \vec{j}, 2\vec{k}\}.$$

b)
$$A = \begin{bmatrix} -1 & 2 & 0 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
, $B = \frac{1}{2} \begin{bmatrix} 3 & -1 & 0 \\ -1 & -1 & 4 \\ 1 & 1 & 0 \end{bmatrix}$ e $V = \{\vec{i} + \vec{j}, \vec{i} + \vec{k}, \vec{j} + \vec{k}\}$.