Topology

Adam Yin

A glossary reference for Topology and related terms. Definitions are from various texts which I have read [1].

Glossary

Accumulation (Limit) Point Let $A \subseteq \mathbb{R}$. A point $p \in \mathbb{R}$ is an **accumulation point** or **limit point** of A iff every open set G containing p contains a point of A different from p, i.e.:

$$G$$
 open, $p \in G$ implies $A \cap (G \setminus \{p\}) \neq \emptyset$

The set of accumulation points of A, denoted by A', is called the *derived set* of A. *Examples*: — Every real number $p \in \mathbb{R}$ is a limit point of \mathbb{Q} since every open set contains rational numbers.

- The set of integers \mathbb{Z} does not have any accumulation points, i.e. derived set of \mathbb{Z} is \emptyset (as open sets in \mathbb{R} can span between integers).
- Let $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, the point 0 is an accumulation point of A since any open set G with $0 \in G$ contains an open interval $(-a_1, a_2) \subseteq G$ with $-a_1 < 0 < a_2$, which contains points in A. Note that the limit point 0 of A does not belong to A and there are no other limit points, i.e. $A' = \{0\}$.

$$-a_1$$
 a_2
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Note: "Limit point of a set" is not to be confused with the concept "limit of a sequence".

Bolzano-Weierstrass Theorem: Let *A* be a bounded, infinite set of real numbers. Then *A* has at least one accumulation point. However, do note that not every set, even if it is infinite, has a limit point.

Closed Set is a subset $A \subseteq \mathbb{R}$, iff its complement, A^c , is an open set. Alternatively, $A \subseteq \mathbb{R}$ is closed iff A contains each of its points of accumulation.

Examples: – The closed interval [a,b] is a closed set since its complement $(-\infty,a) \cup (b,\infty)$, the union of two open infinite intervals, is open.

- The set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is not closed since 0 is a limit point of A but does not belong to A.
- The empty set \emptyset and the entire line \mathbb{R} are closed sets since their complements \mathbb{R} and \emptyset , respectively, are open sets.
- Consider the open-closed interval A = (a, b]. Note that A is not open since $b \in A$ is not an interior point of A, and is not closed since $a \notin A$ but is a limit point of A.

Note: Open and Closed sets are not inverses of each other as sets can be neither open nor closed.

Interior Point Let *A* be a set of real numbers. A point $p \in A$ is an **interior point** of *A* iff *p* belongs to some open interval S_p which is contained in *A*:

$$p \in S_p \subseteq A$$

Open Set A set A is **open** (or \mathcal{U} -open) iff each of its points is an interior point. Observer that a set is not open iff there exists a point in the set that is not an interior point.

Examples: - An open interval A = (a,b) is an open set, for we may choose $S_p = A$ for each $p \in A$.

- The real line $\mathbb R$ is oppn since any open interval S_p is a subset of $\mathbb R$, i.e. $p \in S_p \subseteq \mathbb R$
- The empty set 0 is open since there is no point in 0 which is not an interior point.
- The closed interval B = [a,b] is not an open set, for any open interval containing a or b must contain points outside of B, i.e. the end points a and b are not interior points of B.
- Infinite open intervals (a, ∞) , $(-\infty, a)$ and $(-\infty, \infty)$ are open. On the other hand, infinite closed intervals $[a, \infty)$, $(-\infty, a]$ are not open sets since a is not an interior point.

Note: The union of any number of open sets in \mathbb{R} is open and the intersection of any finite number of open sets in \mathbb{R} is open. For consider the class of open intervals:

$${A_n = (-\frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}}$$
 i.e. ${(-1, 1), (-\frac{1}{2}, \frac{1}{2}), (-\frac{1}{3}, \frac{1}{3}), \dots}$

and the intersection, $\bigcap_{n=1}^{\infty} A_n = \{0\}$, is a single point which is not open.

References

[1] Lipschutz S. *Theory and applications of general topology*. Schaum's outlines. 1965.