Многомерный статистический анализ

Модели со смешанными эффектами. Часть 1

• большое количество (как минимум 30) единиц анализа на втором уровне

- большое количество (как минимум 30) единиц анализа на втором уровне
- моделирование разной взаимосвязи (разумеется, и разных стартовых условий)

- большое количество (как минимум 30) единиц анализа на втором уровне
- моделирование разной взаимосвязи (разумеется, и разных стартовых условий)
- тестирование характеристик на втором уровне, объясняющих разный характер взаимосвязи (и разные стартовые условия)

- большое количество (как минимум 30) единиц анализа на втором уровне
- моделирование разной взаимосвязи (разумеется, и разных стартовых условий)
- тестирование характеристик на втором уровне, объясняющих разный характер взаимосвязи (и разные стартовые условия)
- моделирование нелинейной взаимосвязи

- большое количество (как минимум 30) единиц анализа на втором уровне
- моделирование разной взаимосвязи (разумеется, и разных стартовых условий)
- тестирование характеристик на втором уровне, объясняющих разный характер взаимосвязи (и разные стартовые условия)
- моделирование нелинейной взаимосвязи
- и не только...

Нулевая (пустая) модель

Условимся, что работаем с пространственным массивом данных, в котором есть более и менее крупные единицы анализа (к примеру, данные по индивидам «вложенные» в страны). Запишите в терминах МЕ-моделей общий вид ANOVA-модели и поясните спецификацию.

Нулевая (пустая) модель

Условимся, что работаем с пространственным массивом данных, в котором есть более и менее крупные единицы анализа (к примеру, данные по индивидам «вложенные» в страны). Запишите в терминах МЕ-моделей общий вид ANOVA-модели и поясните спецификацию.

Спецификация

 $y_{ij} = \gamma_{00} + u_{0j} + e_{ij}$, где

 γ_{00} — среднее значение зависимой переменной

 u_{0j} — межгрупповая изменчивость (в значении зависимой переменной)

 e_{ij} – ошибка на индивидуальном уровне

Зачем нам нужна такая модель?

Определить, достаточно ли вариации объясняется на втором уровне. Для этого понадобится рассчитать внутриклассовый коэффициент корреляции (ICC)

Зачем нам нужна такая модель?

Определить, достаточно ли вариации объясняется на втором уровне. Для этого понадобится рассчитать внутриклассовый коэффициент корреляции (ICC)

$$ICC = \frac{Var(u_{0j})}{Var(u_{0j}) + Var(e_{ij})}$$

ICC показывает долю вариации зависимой переменной, объясняемой межгрупповыми различиями (страновой спецификой). В случае если наблюдаем очень маленькие или, наоборот, очень высокие значения ICC, это свидетельствует о том, что нет необходимости в моделях, учитывающих неоднородность данных (зависимость единиц внутри групп).

Что содержательно включает в себя случайный эффект (u_{0j}) ?

Что содержательно включает в себя случайный эффект (u_{0j}) ?

Ответ

Это страновые характеристики, неучтенные в модели. Включением u_{0j} в модель мы ничего не объясняем, но в явном виде моделируем межгрупповую вариацию. Если «стартовые» условия различаются, то мы должны понять, ПОЧЕМУ? Наша задача на последующих этапах — снизить долю необъясненной как межгрупповой, так и внутригрупповой вариации.

Как это сделать: снизить межгрупповую вариацию?

Как это сделать: снизить межгрупповую вариацию?

Ответ

 $y_{ij} = \gamma_{00} + \gamma_{01}Z_j + u_{0j} + e_{ij}$, где γ – фиксированные эффекты (то, что мы в среднем наблюдаем по всей выборке: либо среднее значение зависимой переменной в стартовых условиях (γ_{00}) , либо среднее значение характера взаимосвязи)

Как это сделать: снизить межгрупповую вариацию?

Ответ

 $y_{ij} = \gamma_{00} + \gamma_{01}Z_j + u_{0j} + e_{ij}$, где γ – фиксированные эффекты (то, что мы в среднем наблюдаем по всей выборке: либо среднее значение зависимой переменной в стартовых условиях (γ_{00}) , либо среднее значение характера взаимосвязи)

 u_{0j} — межгрупповая изменчивость в «стартовых» условиях (то, что осталось необъясненного)

Как снизить внутригрупповую вариацию?

Как снизить внутригрупповую вариацию?

Ответ

Добавляем еще предикторы на первом уровне:

$$y_{ij} = \gamma_{00} + \gamma_{01}Z_j + \gamma_{10}X_{ij} + u_{0j} + e_{ij}$$

В предыдущей модели мы исходим из предположения о том, что у нас одинаковый характер взаимосвязи X_{ij} и y_{ij} . В ряде случаев это содержательно неоправданно. Поэтому мы обращаемся к такой модели:

В предыдущей модели мы исходим из предположения о том, что у нас одинаковый характер взаимосвязи X_{ii} и y_{ii} . В ряде случаев это содержательно неоправданно. Поэтому мы обращаемся к такой модели:

Ответ

 $y_{ij} = \gamma_{00} + \gamma_{01}Z_i + \gamma_{10}X_{ij} + u_{0j} + u_{1j}X_{ij} + e_{ij}$, где u_{1i} — межгрупповая изменчивость в характере взаимосвязи

8/12

На предыдущем шаге мы опять же смоделировали изменчивость по странам, однако не объяснили, а ПОЧЕМУ взаимосвязь X_{ij} и y_{ij} разная? Как можно уточнить модель?

На предыдущем шаге мы опять же смоделировали изменчивость по странам, однако не объяснили, а ПОЧЕМУ взаимосвязь X_{ij} и y_{ij} разная? Как можно уточнить модель?

Ответ

 u_{1j} содержательно включает в себя страновые характеристики – потенциальное объяснение, почему взаимосвязь X_{ij} и y_{ij} разная. Давайте уменьшим долю необъясненной вариации, протестируем предикторы на страновом уровне в роли факторов-«условий» (модерация).

 $y_{ij}=\gamma_{00}+\gamma_{01}Z_j+\gamma_{10}X_{ij}+\gamma_{11}X_{ij}Z_j+u_{0j}+u_{1j}X_{ij}+e_{ij},$ где u_{1j} – оставшаяся межгрупповая изменчивость во взаимосвязи

НЕМНОГО КАРТИНОК

Изобразите схематично фиксированные и случайные эффекты для взаимосвязи (см. далее).

MCA

Fixed, random – в данном случае относится к характеру взаимосвязи. На всех картинках – случайный эффект для стартовых условий.

Источник изображений: L.Hoffman, ICPSR Summer School

Пояснения к картинкам

- Картинка А: ANOVA-модель (нет объясняющих переменных в модели, моделируются межгрупповые различия в стартовых условиях)
- Картинка В. Предположение об одинаковой взаимосвязи X_{ij} и y_{ij} во всех странах.
- Картинка С. Предположение о разной взаимосвязи X_{ij} и y_{ij} . В среднем по всей выборке взаимосвязь незначима, НО это НЕ значит, что можно выбрасывать фиксированный эффект из модели.
- Картинка D. Предположение о разной взаимосвязи X_{ij} и y_{ij} .

4日 × 4周 × 4 至 × 4 至 × 三 至