13 Direct Current Circuits

13.1 Circuit Rules

Current Rules

- **Kirchoff's first law**: At any junction in a circuit, the total current leaving the junction is equal to the total current entering the junction.
- For components in series
 - The current entering a component is the same as the current leaving the component.
 - The current passing through two or more components in series is the same through each component.

Potential Difference Rules

- If the charge carriers lose energy, the potential difference is a **potential** drop.
- If the charge carriers gains energy, the potential difference is a **potential** rise equal to the pd across the battery of the cell's terminal.
- For two or more **components in series**, the total pd across all the components is equal to the sum of the potential differences across each component.
- The pd across components in parallel is the same.
- **Kirchoff's second law**: For any complete loop of a circuit, the sum of the emfs around the loop is equal to the sum of the potential drops around the loop.

13.2 More about Resistance

For resistors in series, the total resistance is equal to the sum of the individual resistances.

$$R = R_1 + R_2 + R_3 + \cdots$$

For resistors in parallel, the resistance total resistance is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

Resistance Heating

The heating effect of an electric current in any component is due to the **resistance of the component**.

$$P=IV=I^2R$$

13.3 Electromotive Force and Internal Resistance

The **internal resistance of a source** of electricity is due to opposition to the flow of charge through the source.

• Electromotive force ϵ of the source is the electrical energy per unit charge produced by the source.

$$\epsilon = \frac{\Delta E}{\Delta Q}$$

• The **pd across terminals** of the source is the electrical energy per unit charge delivered by the source when it is in a circuit.

The internal resistance of a source is the loss of potential difference per unit current in the source when current passes through the source.

$$\epsilon = IR + Ir$$

The **lost pd** inside the cell is equal to the difference between the cell emf and the terminal pd.

Power Supplied by Cell

$$P = I\epsilon = I^2R + I^2r$$

Since
$$I = \frac{\epsilon}{R+r}$$
, the power delivered to $R = \frac{\epsilon^2}{(R+r)^2}R$

The peak of the **power curve** is at R=r - **maximum power** is delivered to the load when the load resistance is equal to the internal resistance of the source.

Internal Resistance Measurements

- A **voltmeter** connected directly across the cell to measure the **terminal pd**.
- An ammeter in series with the cell to measure the cell current.
- A variable resistor to adjust the current.

The measurements of terminal pd and current can be plotted on a graph.

- \bullet Terminal pd is \mathbf{equal} to the \mathbf{emf} at zero current.
- Graph is a straight line with negative gradient.

$$V = \epsilon - Ir$$

The **internal resistance** is given by $r = \frac{V_1 - V_2}{I_2 - I_1}$

13.5 The Potential Divider

A potential divider consists of

- Two or more **resistors in series** which each other.
- A source of fixed potential difference.

Supply a Fixed PD

The ratio of the pds across each resistor is equal to the resistance ratio of the two resistors.

$$\frac{V_1}{V_2} = \frac{R_1}{R_2}$$

and

$$V_2 = \frac{V_0 R_2}{R_1 + R_2}$$

Supply a Variable PD

The source pd connected to a **fixed length of uniform resistance wire** where a **sliding contact** on the wire can be moved along the wire. Giving a variable pd between the contact and the end of the wire.

Sensor Circuits

A sensor circuit produces an output pd which changes as a result of a change of a physical variable.

- A temperature sensor consists of a potential divider made using a thermistor and a variable resistor.
- A light sensor uses a light-dependent resistor and a variable resistor.