Advanced Topics in Malware Analysis

Brendan Saltaformaggio, PhD

Assistant Professor

School of Electrical and Computer Engineering

Course Introduction

Georgia Tech

1

Today's Agenda

- · Introduction to the Class and Syllabus
- Basics of x86 Assembly Language
- Basics of 16/32/64bit assembly code and registers
- · Executable files
- Difference between Intel and AT&T syntax

Before We Begin

Professor Brendan Saltaformaggio

"Salt" – "uh" – "for" – "mah" – "gee" – "oh" Assistant Professor, School of ECE and CS Director, Cyber Forensics Innovation Laboratory (CyFl Lab)

Research Interests

- Cyber Forensics & Computer Systems Security
- Binary Analysis & Instrumentation
- · Vetting Of Untrusted Software
- Memory Image Forensics
- · Mobile/IoT Security

brendan@ece.gatech.edu

http://saltaformaggio.ece.gatech.edu

Georgia ∤ Tech ∦

3

The Course in One Slide

· Advanced approaches for detecting vulnerabilities/malware within binary software

Software security is a rapidly changing field!

- NO textbook can keep up
- Instead, we will study published papers from top academic venues

There are a few principle techniques for software analysis

- We will cover these "buildingblocks" in the lecture
- You will apply this knowledge in labs

5

Warning!

- This is a time consuming and challenging course! This is not a "requirement-filler"!
- Malware analysis is "spy versus spy"
 - You are trying to reverse engineer what someone else (the malware author) is trying to hide from you!
- This course will require a significant amount of work!
 - Each assignment will require very careful time allocation to complete by the deadline
 - Start each assignment as soon as it opens!
 - · Malware analysis will become your new hobby!
- If you do not LOVE malware analysis and software security, it will be very hard!
 - Lots and lots of assembly language and C
 - You can learn assembly language as we go

Testimonials

- "The class doesn't aim to mollycoddle you, and I appreciated that. It encouraged you to aspire for more and push your limits. Only in that extreme can one learn so much so well."
- "The labs were long, and incredibly time consuming, but nothing we weren't fairly warned about."
- "One of the most rewarding and challenging courses I have taken at Georgia Tech."
- "The amount of sleep I lost over this class was enormous, but we were warned so I can't complain about it. This course was great."
- · "Professor Brendan is a boss."
- · "Great professor great course Would malware again."

7

Course Agenda (Two Halves)

"In-Class" Half Of The Course

- Binary program analysis principles (building blocks of this research field)
- · Traditional lecture format
- You will complete 6 binary program analysis labs out of class
 - 4 will be static analysis with Ghidra
 - https://ghidra-sre.org
 - 2 will be dynamic analysis with Pin
 - https://software.intel.com/en-us/articles/pina-dynamic-binary-instrumentation-tool
 - More on these tools is later videos...
 - Each lab will require careful time allocation to complete on time!!
 - 1 or 2 week deadlines

Course Agenda (Cont.)

"Research" Half of the Course

- How to conduct cutting-edge research in software security and cyber forensics
- · Study published research papers
 - The building blocks we learn are applied in nearly all malware analysis research.
 - We will learn the limitations of these techniques and see how researchers are trying to solve them (or failing to solve them?).
 - Pay attention to the following in each paper:
 - 1. The Problem
 - 2. Previous Solutions/Techniques
 - 3. Novel Solution Presented In This Paper
 - 4. Limitations Of Their Approach
 - 5. Future Research Opportunities

q

Grading

- No Midterm, No Final Exam
- 6 Labs, 15% each
 - Grade based on the results produced by your tool
 - For some labs, we may schedule demos during office hours
- 10% for class participation
 - Piazza will become your best friend!
 - Help out others on there!
- Small extra credit assignments are likely to be announced in class

Zero-Tolerance Cheating Policy

- Labs are individual or teams of 2
 - Please discuss ideas with other students/teams (class participation points ©)
 - DO NOT share code (that includes comments in code!)
- I reserve the right to use MOSS to detect cases of substantial overlap
 - http://theory.stanford.edu/~aiken/moss/
- Zero tolerance towards violation of the GT honor code
 - http://www.honor.gatech.edu/
- If you are caught cheating:

Zero on lab assignment + One grade drop + Report to dean (Academic Warning in file)

Georgia

11

Our Goal This Semester

- Learn and apply the fundamental principles of dissecting malware, vulnerability finding/defense, and cyber attack triage
- Become aware of limitations of existing defense mechanisms and how to avoid them
- Read cutting-edge research publications on these topics
- Engage in critical discussion around key research topics in software security and forensics
- Propose solutions to open-ended research problems
 - Projects which align with your thesis research are encouraged as long as it still has an interesting security/forensics component
 - There is ample scope to publish in this area: If the results from your course project look promising, we can write a paper on it and I will fund your travel to go present it

Programming Requirements

This course requires heavy programming

- It is a 3-credit course but can feel like a 4-5 credit course
- I said this before: Each project will require careful time allocation to complete on time!

You MUST be proficient in C

- You will be happier if you know some python and Assembler
 - It is ok if you do not
 - Everyone will be masters of them after this course ©

And with that...

 On to an introduction to Assembly Language!

