8	L	

[10 marks - 2, 3, 2, 3]

Test 3 (Continuous Random Variables, 2019 YEAR 12 MATHEMATICS: METHODS

[ɛ 'z	[2 msrks - 3		smdtineso	l vaiwollot adt ateulev
				DESTION 1
	Marks: 41	Working time: 25 minutes	Formula sheet provided	Calculator-Free
	HTIMS	YADIRA	IΑ	TEACHER:
			::::::::::::::::::::::::::::::::::	OIIE E E E E E A E N E N E N E N E N E N E
	87	n, Logarithms)	Normal Distributio	6

		7C ^S 801	
2 + 42 ₆ 30l - 8 ₆ 30l 2	(q	8 ₂ 801 SE ₂ 801	(ષ્ટ
2 Jog 3 – Jog 54 + 2	ાપ	8 -gol	

a) If $\log_a 3 = x$ and $\log_a 5 = y$, express the following in terms of x and y. **QUESTION 2**

$\left(\frac{e}{nZ}\right)_{n}Bol$ (ii	(<u>5</u> \5 <u>)</u> log _a (3\ <u>5</u>)

b) If $\log m = 7$ and $\log n = 4$, evaluate the following.

$\left(\frac{\overline{m}\sqrt{001}}{}\right)$ Bol	ii	((_ε иш)Ցօլ	(i

[6 marks - 2, 1, 1, 1, 1] **QUESTION 5**

A uniform continuous random variable X is defined over the interval 5 \leq x \leq 15.

a) State its probability density function.

b) State the mean of X.

c) The variance of X is $\frac{280}{3}$. Write the definite integral that can be used to obtain this value.

d) The continuous random variable of Y is such that Y = 3X + 2

I) State the mean of Y

ii) State the variance of Y

[3 marks - 1, 2] **OUESTION 6**

Use the 68%, 95%, 99.7% rule to calculate the following probabilities for $X \sim N(0,1)$.

End of Calculator Free Section

QUESTION 3

[8 marks - 3, 2, 3]

a) Solve the following equation, stating your answer in terms of base ten logarithms.

$$3^{7x-2} = 5^{x+1}$$

b) Solve the following equations, stating your answers in terms of **natural logarithms**.

$$e^{x+1} = 19$$

ii)
$$2e^{2x} - 3e^x = 2$$

QUESTION 4

[9 marks - 1, 2, 2, 2, 2]

The graph of $y = \log_3 x$ is shown below.

- a) Use the graph above to solve for the approximate solution to $\log_3 x = 2.5$.
- b) Use the graph above to approximate the solutions to $log_3(x 8) = 3.25$.

- i) If $y = \log_3 x$ is translated 27 units to the right and 2 units up, state its new equation.
- ii) State the equation of the asymptote and the coordinates of the *x*-intercept of the new function.

iii) Add the sketch of the translated function onto the axes above, labelling its key features. Also label the coordinates of two other points.