Tenstorrent High Performance Computers for HPC & Al

@SC24

Nov 20, 2024

HPC Software roadmap – Al – Enable every level of Developers

AI HPC

- Leverage work from "Pure" Al stack
- o Flexible entry points for high level model and python developers

HPC Software roadmap – AI HPC

- Developers are tired of needing to understand everything before they get started
- Enable users to use the models they have to get reasonable performance
- Focus on enabling perfomance at every level, and meet developers where they are

Classical HPC

- o Leverage work from Al stack MLIR
- Flexible entry points for developers
- Leverage and contribute to the Open Source community
- Provide users a friendly, familiar baseline to start, enable tooling to go further

Why Al Needs Both RISC-V Cores and Al Accelerators

Tensix cores are ideal for big math operations:

- Vector calculations
- Matrix arithmetic
- Large data sets

Merging Tensix cores and CPU cores on the same die:

- Lowers latency
- Boosts utilization
- Increases ML performance

CPU cores are ideal for:

- Conditionality
- Traditional math
- High performance
- Robust programmability

ML Developers need both CPU and Al cores to build dynamic models of the future that are not possible today due to latency and utilization problems of using the host CPU.

TT-Metalium™: Tenstorrent's Low-Level Programming Framework

- TT-Metalium[™] is a groundbreaking lowlevel programming framework designed to harness the power of Tenstorrent's parallel processing cores
- Each processing core in our Tensix architecture contains 5 "baby RISC-V" cores: 3 programmable cores and 2 cores for Network-on-Chip (NoC) management
- Our framework aims to maximize performance, efficiency, and flexibility

Feature	Spec	
Independent NoCs	2	
NoC type	2-dimensional torus	
NoC link width	64 Bytes	
NoC link BW	83 GB/s	
	_ AN - 10	
Tensix -> NoC I/O BW	665 GB/s	
SRAM <-> NoCs	333 GB/s	
SRAM <-> NoC aggregate BW	47 TB/s	

TT Tensix HPC Software Plan

Programming Communication Compiler Math Profiler Debugger Model Library C / C++ TT-Metalium™ Tracy TT-Metalium (GCC for RISC-V) TT-NN™ TT-CCL TT-BLAS (C++ Based) Host Profiler **GDB** Kernels FLANG-MLIR GCC for Multi-Node Tracy Solver Sparse Watcher x86 Host Scale-Out Device Profiler Tensix Fortran GCC for OpenMP/MPI Memory Kernel PRINT REDACTED FFT Rand Gen on Host Only **ARM Host** Allocation

Today

2025-2026

All RISC-V Programmable Baby RISC-Vs

Feature	Spec
Total Baby RISC-Vs	752
Compute	32-bit Int multiplier / divider Floating point (FP32 / BFLOAT16) 128-bit vector (1 per Tensix)
I-cache	4 KB
D-scratch	8 KB

user

kernel

RISC-V

DRAM

All RISC-V Programmable Within the Tensix Core

- 5 baby RISC-Vs
- 32-bit RISC-V ISA

All RISC-V Programmable Within the Tensix Core

- 5 baby RISC-Vs
- 32-bit RISC-V ISA

All RISC-V Programmable Within the Tensix Core

- 3 user C kernels program a single Tensix core
 - 1 compute kernel
 - 2 data movement kernels

Tensix Core – Data Movement

- 2 data movement kernels
- Asynchronous reads & writes
- Access to all SRAM & DRAM banks
- Memory barriers
- Atomic semaphores

Feature	Spec	
Independent NoCs	2	
NoC type	2-dimensional torus	
NoC link width	64 Bytes	
NoC link BW	83 GB/s	
Tensix -> NoC I/O BW	665 GB/s	
SRAM <-> NoCs	333 GB/s	
SRAM <-> NoC aggregate BW	47 TB/s	

Blackhole: Built for Al Data Movement Patterns

- Data patterns in MatMuls, Convolutions, and Sharded Data Layouts are regular.
- They have a great mapping to Mesh Architecture

Memory & I/O	Data Movement Pattern	Bandwidth
SRAM	Local / Sharded	94 TB/s
SRAM	Neighbor (Halo)	47 TB/s
SRAM	Row / Column / Mesh Multicast	24 TB/s
SRAM	Gather / Scatter (3 hops)	16 TB/s
SRAM	Gather / Scatter (10 hops)	5 TB/s
DRAM	Row	512 GB/s
Ethernet	Column	1 TB/s

