In [1]:
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv("Titanic-Dataset.csv")
 df

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	•••												
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [3]: df.shape

Out[3]: (891, 12)

In [4]: df.head()

Out[4]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
					Allen, Mr.								

Henry

In [5]: df.tail()

Out[5]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

male 35.0 0 0 373450 8.0500 NaN

S

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Column Non-Null Count Dtype
--- 0 PassengerId 891 non-null int64
1 Survived 891 non-null int64

4 5 0 3 William

```
2
              891 non-null
   Pclass
                                   int64
 3 Name
                 891 non-null object
 4 Sex
                 891 non-null object
 5 Age
                 714 non-null float64
6 SibSp
7 Parch
                891 non-null int64
891 non-null int64
8 Ticket
                 891 non-null object
891 non-null float64
   Fare
 9
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
```

memory usage: 83.7+ KB

In [7]: df.describe()

Out[7]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [8]: corr=df.corr() corr

> C:\Users\tejbh\AppData\Local\Temp\ipykernel 25916\3182140910.py:1: FutureWarning: The de fault value of numeric only in DataFrame.corr is deprecated. In a future version, it wil 1 default to False. Select only valid columns or specify the value of numeric only to si lence this warning. corr=df.corr()

Out[8]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

```
In [9]: plt.subplots(figsize=(15,5))
        sns.heatmap(corr,annot=True)
```

<Axes: >Out[9]:


```
df.Sex.value counts()
In [10]:
         male
                   577
Out[10]:
                   314
         female
         Name: Sex, dtype: int64
         df.Survived.value counts()
In [11]:
              549
         0
Out[11]:
              342
         Name: Survived, dtype: int64
         df.Embarked.value counts()
In [12]:
              644
Out[12]:
              168
               77
         Name: Embarked, dtype: int64
         df.isnull().sum()
In [13]:
         PassengerId
                           0
Out[13]:
         Survived
                           0
         Pclass
                           0
         Name
                           0
         Sex
                           0
         Age
                        177
         SibSp
                           0
         Parch
                           0
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
         dtype: int64
In [14]: df = df.drop(columns = ['Name' , 'Ticket' , 'Cabin'])
         mean age = df['Age'].mean()
In [15]:
         df['Age'].fillna(mean age, inplace=True)
         df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
In [16]:
In [17]: print(df.isnull().sum())
         PassengerId
                        0
                         0
         Survived
         Pclass
                         0
```

Sex

```
0
Age
               0
SibSp
Parch
Fare
               0
Embarked
               0
dtype: int64
```

In [18]:

Out[18]:

df

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	S
1	2	1	1	female	38.000000	1	0	71.2833	С
2	3	1	3	female	26.000000	0	0	7.9250	S
3	4	1	1	female	35.000000	1	0	53.1000	S
4	5	0	3	male	35.000000	0	0	8.0500	S
•••									
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 9 columns

```
In [19]: plt.title('Survival Count')
         sns.barplot(data=df,x=df.Sex,y=df.Age,hue=df.Survived,ci=None)
        C:\Users\tejbh\AppData\Local\Temp\ipykernel 25916\3205349858.py:2: FutureWarning:
        The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.
         sns.barplot(data=df,x=df.Sex,y=df.Age,hue=df.Survived,ci=None)
        <Axes: title={'center': 'Survival Count'}, xlabel='Sex', ylabel='Age'>
```

Out[19]:

Survival Count Survived


```
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Age Distribution')
```

Text(0.5, 1.0, 'Age Distribution') Out[20]:


```
sns.boxplot(data=df, x='Fare')
In [21]:
         plt.title('Fare Distribution')
```

Out[21]: Text(0.5, 1.0, 'Fare Distribution')

Fare Distribution


```
In [22]: sns.pairplot(data=df[['Fare', 'SibSp', 'Parch','Age']])
   plt.title('Pair Plot')
```

Out[22]: Text(0.5, 1.0, 'Pair Plot')


```
In [23]: corr=df.corr()
   plt.subplots(figsize=(10,5))
   sns.heatmap(corr,annot=True)
```

C:\Users\tejbh\AppData\Local\Temp\ipykernel_25916\1909905835.py:1: FutureWarning: The de fault value of numeric_only in DataFrame.corr is deprecated. In a future version, it wil 1 default to False. Select only valid columns or specify the value of numeric_only to si lence this warning.

corr=df.corr()

Out[23]: <Axes: >

In [24]: df.median()

C:\Users\tejbh\AppData\Local\Temp\ipykernel_25916\530051474.py:1: FutureWarning: The def ault value of numeric_only in DataFrame.median is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[24]:

 PassengerId
 446.000000

 Survived
 0.000000

 Pclass
 3.000000

 Age
 29.699118

 SibSp
 0.000000

 Parch
 0.000000

 Fare
 14.454200

dtype: float64

In [25]: sns.boxplot(df.Age)

Out[25]: <Axes: >


```
from scipy import stats
In [26]:
In [27]:
         z scores = np.abs(stats.zscore(df['Age']))
         max threshold=3
         outliers = df['Age'][z_scores > max_threshold]
         print(outliers)
In [28]:
         96
                71.0
                70.5
         116
         493
                71.0
         630
                80.0
         672
                70.0
         745
                70.0
         851
                74.0
         Name: Age, dtype: float64
In [29]: q1=df.Age.quantile(0.25)
         q3=df.Age.quantile(0.75)
         IQR=q3-q1
         upperlim=q3+1.5*IQR
         lowerlim=q1-1.5*IQR
         df["Age"] = np.where (df.Age>upperlim, 29.699118, df.Age)
         df["Age"] = np.where(df.Age<lowerlim, 29.699118, df.Age)</pre>
         df
```

Out[29]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	male	22.000000	1	0	7.2500	S
	1	2	1	1	female	38.000000	1	0	71.2833	С
	2	3	1	3	female	26.000000	0	0	7.9250	S
	3	4	1	1	female	35.000000	1	0	53.1000	S
-	4	5	0	3	male	35.000000	0	0	8.0500	S

•••									
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	0

891 rows × 9 columns

```
In [30]: q1=df.Fare.quantile(0.25)
q3=df.Fare.quantile(0.75)
IQR=q3-q1

upperlim=q3+1.5*IQR
lowerlim=q1-1.5*IQR

df["Fare"]=np.where(df.Fare>upperlim,14.454200,df.Fare)
```

In [31]: df

Out[31]:

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	S
1	2	1	1	female	38.000000	1	0	14.4542	С
2	3	1	3	female	26.000000	0	0	7.9250	S
3	4	1	1	female	35.000000	1	0	53.1000	S
4	5	0	3	male	35.000000	0	0	8.0500	S
•••									
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 9 columns

```
In [32]: x=df.iloc[:,2:]
x
```

Out[32]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.000000	1	0	7.2500	S
1	1	female	38.000000	1	0	14.4542	С
2	3	female	26.000000	0	0	7.9250	S
3	1	female	35.000000	1	0	53.1000	S
4	3	male	35.000000	0	0	8.0500	S
•••							

886	2	male	27.000000	0	0	13.0000	S
887	1	female	19.000000	0	0	30.0000	S
888	3	female	29.699118	1	2	23.4500	S
889	1	male	26.000000	0	0	30.0000	С
890	3	male	32.000000	0	0	7.7500	Q

891 rows × 7 columns

```
y=df["Survived"]
In [33]:
                 0
Out[33]:
                 1
                 1
         3
                 1
                 0
         886
         887
                 1
         888
                 0
         889
                 1
         890
                 0
         Name: Survived, Length: 891, dtype: int64
In [34]:
          from sklearn.preprocessing import LabelEncoder
         le=LabelEncoder()
In [35]:
          x["Sex"]=le.fit transform(x["Sex"])
          x.head()
Out[35]:
            Pclass Sex Age SibSp Parch
                                           Fare
                                                Embarked
                3
                    1
                       22.0
                                1
                                         7.2500
                                                       S
```

```
0 38.0
                                 0 14.4542
                                                     C
2
                                                     S
            0 26.0
                         0
                                    7.9250
            0 35.0
                                 0 53.1000
                                                     S
       3
                         0
                                                     S
4
               35.0
                                 0
                                     8.0500
```

```
In [36]: embarked=pd.get_dummies(x["Embarked"],drop_first=True)
    x=pd.concat([x,embarked],axis=1)
    x.drop(["Embarked"],axis=1,inplace=True)
    x.head()
```

```
Out[36]:
             Pclass Sex Age SibSp Parch
                                              Fare Q S
          0
                 3
                        22.0
                                            7.2500
                      1
                                        0
                                                   0 1
                      0 38.0
                                        0 14.4542
                                                   0 0
          2
                 3
                      0 26.0
                                 0
                                            7.9250
                                                   0 1
          3
                 1
                      0 35.0
                                        0 53.1000
                                                   0 1
          4
                 3
                      1 35.0
                                 0
                                            8.0500 0 1
```

In [37]: | from sklearn.preprocessing import StandardScaler

```
In [38]: | sc=StandardScaler()
         x=sc.fit transform(x)
        array([[ 0.82737724, 0.73769513, -0.70858401, ..., -0.79755374,
Out[38]:
                -0.30756234, 0.61583843],
                [-1.56610693, -1.35557354, 0.92494776, ..., -0.23055642,
                -0.30756234, -1.62380254],
                [0.82737724, -1.35557354, -0.30020106, ..., -0.74442873,
                -0.30756234, 0.61583843],
               [0.82737724, -1.35557354, 0.07746307, ..., 0.47744647,
                -0.30756234, 0.61583843],
               [-1.56610693, 0.73769513, -0.30020106, ..., 0.99295581,
                -0.30756234, -1.62380254],
               [0.82737724, 0.73769513, 0.31237335, ..., -0.75820188,
                 3.25137334, -1.62380254]])
        from sklearn.model selection import train test split
In [40]: x train, x test, y train, y test=train test split(x, y, test size=0.3, random state=0)
In [41]: x train.shape, x test.shape, y train.shape, y test.shape
         ((623, 8), (268, 8), (623,), (268,))
Out[41]:
In [42]: x train
        array([[-1.56610693e+00, 7.37695132e-01, 2.25219232e+00, ...,
Out[42]:
                 7.21427989e-01, -3.07562343e-01, 6.15838425e-01],
               [-1.56610693e+00, -1.35557354e+00, 2.04800085e+00, ...,
                -2.30556425e-01, -3.07562343e-01, -1.62380254e+00],
               [ 8.27377244e-01, 7.37695132e-01, 7.74631084e-02, ...,
                 2.32304862e+00, -3.07562343e-01, 6.15838425e-01],
               [ 8.27377244e-01, 7.37695132e-01, 7.74630724e-02, ...,
                -7.59516233e-01, 3.25137334e+00, -1.62380254e+00],
               [ 8.27377244e-01, -1.35557354e+00, 7.20756290e-01, ...,
                 1.28898315e-03, -3.07562343e-01, 6.15838425e-01],
               [-3.69364841e-01, 7.37695132e-01, 7.74631084e-02, ...,
                 1.70128926e+00, -3.07562343e-01, 6.15838425e-01]])
```