ASR

Automatic Speech Recognition Part 2

ASR

- Encoder-Decoder
- RNN-T

Recap

- ASR metric Word Error Rate
- New sequence loss CTC loss
- Produce conditionally independent outputs
- Use Phonemes, Letters, BPE
- Fastest approach to ASR: parallel forward pass
- Use greedy decoding to get fastest results
- Beam search yields better quality
- Use NGram language model to introduce new information
- Use smaller models in beam search to get N-best
- Rescore N-best using big models

Alignment

- Speech recognition alignment is much harder problem due to continuous input
- Translation problem is word-to-word task. Both source (SRC) and destination (DST) are discrete input values
- Speech recognition input is continuous
- CTC learns sequence alignment via CTC loss with the help of blanks and repeatable characters

Problem: this is a bottleneck!

Dot-product

$$h_t^T \times \circ S_k$$

 $SCOTE(h_t, s_k) = h_t^T s_k$

Bilinear

$$\frac{h_t^T}{\circ \circ \circ \circ \circ} \times \left[\mathbb{W} \right] \times \left[\circ \atop \circ \right] S_k$$

$$score(h_t, s_k) = h_t^T W s_k$$

Multi-Layer Perceptron

$$\frac{w_2^T}{\text{oooo}} \times \text{tanh}\left[W_1 \times \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \right] h_t$$

 $SCOTE(h_t, s_k) = w_2^T \cdot tanh(W_1[h_t, s_k])$

Alignment

Beam Search

<bos>

Start with the begin of sentence token or with an empty sequence

Listen, Attend and Spell

- Encoder (analogous to AM):
 - Transforms input speech into higher-level representation
- Attention (alignment model):
 - Identifies encoded frames that are relevant to producing current output
- Decoder (analogous to PM, LM):
 - Operates autoregressively by predicting each output token as a function of the previous predictions

Listen, Attend and Spell

QuartzNet results

- Link to LAS Paper
- Encoder-Decoder architecture beats CTC Quartznet with LM
- Heavy inference

LM	LibriS	Speech	WSJ		
LIVI	test-clean	test-other	93-test	92-eval	
-	4.19	10.98	8.97	6.37	
4-gram	3.21	8.04	5.57	3.51	
T-XL	2.96	7.53	4.82	2.99	

27	LAS + SpecAugment	2.5	×	SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition	0	Ð	2019	
28	Transformer	2.6	×	A Comparative Study on Transformer vs RNN in Speech Applications	0	Ð	2019	Transformer
29	QuartzNet15x5	2.69	×	QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions	0	Ð	2019	
30	LAS (no LM)	2.7	×	SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition	0	Ð	2019	

Shallow Fusion

- Add language model to prediction
- Mix y_{t} scores using linear rule:

$$\hat{y}_t = (1-lpha) \cdot y_t + lpha \cdot l_t$$

System	Dev	Test		
LAS-G	13.0	10.3		
LAS-G + 20-GRAM-G	10.3	7.7		
LAS-G + 3-GRAM-W	10.0	7.6		
LAS-G + RNN-G	9.3	6.9		

Cold Fusion

- Add language model early in model
- Combine information through gating and projection (trainable weighting)
- Train together

Table 3. Speech recognition results for the various models discussed in the paper.

Model	Train Domain	Test on Source		Test on Target			
		CER	WER	CER	WER	Domain Gap	
Baseline Attention Model	Source	7.54%	14.68%	23.02%	43.52%	100%	
Baseline Attention Model	Target			8.84%	17.61%	0%	
Baseline + Deep Fusion	Source	7.64%	13.92%	22.14%	37.45%	76.57%	
$+ s^{AM}$ in gate	Source	7.61%	13.92%	21.07%	37.9%	78.31%	
+ Fine-Grained Gating	Source	7.47%	13.61%	20.29%	36.69%	73.64%	
+ ReLU layer	Source	7.50%	13.54%	21.18%	38.00%	78.70%	
Baseline + Cold Fusion							
$+ s^{\mathrm{AM}}$ in gate	Source	7.25%	13.88%	15.63%	30.71%	50.56%	
+ Fine-Grained Gating	Source	6.14%	12.08%	14.79%	30.00%	47.82%	
+ ReLU layer	Source	5.82%	11.52%	14.89%	30.15%	48.40%	
+ Probability Projection	Source	5.94%	11.87%	13.72%	27.50%	38.17%	

Encoder Decoder Recap

- Encoder-Decoder does not need actual alignment, alignment is created internally
- Encoder-Decoder models are autoregressive, in order to make prediction the output X_{n} model needs output X {n-1}.
- Outputs are not conditionally independent
- Needs full input sequence in order to make prediction

Encoder Decoder Recap

- Encoder-Decoder does not need actual alignment, alignment is created internally
- Encoder-Decoder models are autoregressive, in order to make prediction the output X_{n} model needs output X {n-1}.
 - Outputs are not conditionally independent
- Needs full input sequence in order to make prediction

What if we want to recognize in streaming mode?

- Output result as fast as possible (ideally after letter is pronounced)
- Guarantee that already predicted words will stay the same
- Realtime speech recognition
- On Device speech recognition

- Use LAS / CTC-LM model on GPU
- Recalculate every N milliseconds
- (Possibly) force decode previous hypotheses to guarantee already recognized outputs stay the same

A lot of processing

- Use LAS / CTC-LM model on GPU
- Recalculate every N milliseconds
- (Possibly) force decode previous hypotheses to guarantee already recognized outputs stay the same

A lot of processing

- Use LAS / CTC-LM model on GPU
- Recalculate every N milliseconds
- (Possibly) force decode previous hypotheses to guarantee already recognized outputs stay the same

Streaming CTC model

CTC does not need whole input

- Create streaming encoder e.g. with causal convolutions
- Fetch output

Standard Convolution

Causal Convolution

Streaming CTC model

- CTC Loss accepts any alignment
- Often latency of produced words is high
- Models tends to "save up" information
- WER degradation is quite high
- Use big language model in decoding time, device computation power does not allow that
- What happens, if we left with N frames to output but have M > N letters to output?

abunt siza (riaht)	WER(%)				
chunk size (right)	test clean	test other			
Full	3.53	8.52			
200 (2.00s)	3.78	9.38			
64 (0.64s)	4.06	9.98			
32 (0.32s)	4.30	10.55			
16 (0.16s)	5.88	12.01			

Streaming CTC model

- CTC Loss accepts any alignment
- Often latency of produced words is high
- Models tends to "save up" information
- WER degradation is quite high
- Use big language model in decoding time, device computation power does not allow that
- What happens, if we left with N frames to output but have M > N letters to output?

abunk siza (riaht)	WER(%)				
chunk size (right)	test clean	test other			
Full	3.53	8.52			
200 (2.00s)	3.78	9.38			
64 (0.64s)	4.06	9.98			
32 (0.32s)	4.30	10.55			
16 (0.16s)	5.88	12.01			

Output will never be correct

- Need more powerful approach to streaming ASR
- Conditional independence is a problem for streaming
- One character per frame is a problem for streaming

- Merge CTC and LAS approaches into new RNN-Transducer approach
- RNN-T elegantly solves both problems associated with CTC, while retaining some of its advantages over attention models

Conditional Independence Assumption

CTC:

- Only uses audio embedding at time "t" (x_t) to generate probability distribution over output units.
 CTC assumes that each output unit is conditionally independent of others.
- Streaming

LAS:

Attends to all audio embeddings and uses text history produced so far to generate probability distribution over output units.

$$f(y_u|y_{u-1}, y_{u-2}, ..., y_0, h_0, h_2, h_3, ..., h_v)$$

Conditional Independence Assumption

CTC:

- Only uses audio embedding at time "t" (x_t) to generate probability distribution over output units.
 CTC assumes that each output unit is conditionally independent of others.
- Streaming

RNN-T:

Text History: y_{u-1}

- Uses both audio embedding at time "t" (x_t) and text history produced so far (y_{u-1}) to generate probability distribution over output units.
- Streaming

LAS:

Attends to all audio embeddings and uses text history produced so far to generate probability distribution over output units.

Grapheme characters y_i are modelled by the CharacterDistribution

Long input sequence x is encoded with the pyramidal BLSTM Listen into shorter sequence h

$$f(y_u|y_{u-1}, y_{u-2}, ..., y_0, h_0, h_2, h_3, ..., h_v)$$

RNN-T

 Audio Encoder: To encode sequence of audio features into audio embeddings. We can use Conformer, Quartznet, or streaming Causal Convolution network

RNN-T

 Text Predictor: To encode transcript produced so far into text embedding. Typically a LSTM.
 Text Predictor is autoregressive: it takes as input the previous outputs and produces features that can be used for predicting the next output, like a standard language model.

RNN-T

 Joiner combines output of audio encoder and text predictor.

Softmax probability distribution over output units.
 P(k)_{t, u} is probability of emitting k from time t and text predictor vector u

- Note: we don't need repetition of characters: prediction network decides to output a symbol
- We allow produce more than 1 output for each time frame t

Training Objective

- Training utterance: "Input Audio" -> "BEE" (transcript)
- #output units (u): 3 BEE -> [[B], [E] ,[E]]
- #audio frames (t) : 4
- . We don't know alignment i.e. which portion of audio aligns to what output unit (A path taken in lattice)
- Training Objective

$$P(BEE|X) = \sum_{\substack{alignment \\ p(BEE|alignment, X) = 1}} P(alignment, BEE|X)$$

$$P(BEE|alignment, X) = 1 \sum_{\substack{alignment \\ alignment}} P(BEE|alignment, X) P(alignment|X)$$

An Alignment During Training

An Alignment During Training

An Alignment During Training

An Alignment During Training

An Alignment During Training

An Alignment During Training

Graves et al., "Sequence transduction with recurrent neural networks"

3

PE(3,2)

An Alignment During Training

RNN-T Lattice And Training

- Training utterance: "Input Audio" -> "BEE" (transcript)
- #output units (u): 3
 BEE -> [[B], [E], [E]]
- #audio frames (t): 4
- We don't know alignment i.e. which portion of audio aligns to what output unit

- Probability of alignment is multiplication of probabilities assigned along the path of alignment
- Training

$$P(BEE|X) = \sum_{\substack{alignment}} P(alignment, BEE|X) \\ \sum_{\substack{alignment}} P(BEE|alignment, X) P(alignment|X) \\ \sum_{\substack{alignment}} P(alignment|X) \\ P(BEE|alignment|X)$$

- Lattice contains all valid alignment paths(traversals). During training, we change (optimize) neural network parameters to maximize sum of probabilities of all alignment paths
- Computation is done efficiently through dynamic programming (slide 54 to 58)

Greedy Decoding

Lets make a local optimal choice: If highest probability is given to blank (Ø), move to the next audio frame else stay in the same audio frame

 Do it until all audio frames are processed

Audio

k	probability				
Ø	0.4				
E	0.2				
В	0.3				
С	0.1				

- RNN-T introduces audio-module and text-module
- Audio module encodes spectogram, text module encodes predicted text
- Aggregate prediction using joint network
- Simpler rules than CTC
- Autoregressive model
- Comparable accuracy
- Better for streaming

RNN-T is used in practice to deploy on device or CPU ASR. Audio and Text encoders must be unidirectional

12	ContextNet (M)	2	×	ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context	0	Ð	2020	
13	Transformer Transducer	2.0	×	Improving RNN Transducer Based ASR with Auxiliary Tasks		Ð	2020	Transformer
14	Conformer (M)	2	×	Conformer: Convolution-augmented Transformer for Speech Recognition	0	Ð	2020	Conformer

RNN-T Shallow Fusion

RNN-T Early shallow fusion

- We can also add language model to prediction network
- Though works at google
 https://arxiv.org/pdf/2012.06749.pdf
 shows that prediction network size is not that important

RNN-T Cold Fusion

- Cold fusion RNN-T and language model
- Train together

Two-Pass architecture

Figure 1: Two-Pass Architecture

- Train RNN-T and LAS together
- Rescore with LAS head in the end

Table 2: WER results, LAS Rescoring.

Exp-ID	Decoding	SU	LU
B0	RNN-T	6.9	4.5
B1	LAS-only	5.4	4.5
<i>E1</i>	Beam Search	6.1	4.8
E2	Rescoring	6.2	4.1

Next time

- Wav2Vec2.0
- Multi model systems