PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/20024 C07K 5/08, G01N 33/573 $\mathbf{A}\mathbf{1}$ (43) International Publication Date: 14 May 1998 (14.05.98) (21) International Application Number: PCT/CA97/00824 (81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, (22) International Filing Date: 3 November 1997 (03.11.97) (30) Priority Data: Published 60/030,411 4 November 1996 (04.11.96) US With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71) Applicant (for all designated States except US): MERCK amendments. FROSST CANADA INC. [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). (72) Inventors; and (75) Inventors/Applicants (for US only): DESMARAIS, Sylvie [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). FRIESEN, Richard [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). ZAMBONI, Robert [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). (74) Agent: MURPHY, Kevin, P.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College, Montreal, Quebec H3A 2Y3 (CA).

(54) Title: LIGANDS FOR PHOSPHATASE BINDING ASSAY

(57) Abstract

Disclosed are new ligands for use in a binding assay for proteases and phosphatases, which contain cysteine in their binding sites or as a necessary structural component for enzymatic binding. The sulfhydryl group of cysteine is the nucleophilic group in the enzyme's mechanistic proteolytic and hydrolytic properties. The assay can be used to determine the ability of new, unknown ligands and mixtures of compounds to competitively bind with the enzyme versus a known binding agent for the enzyme, e.g., a known enzyme inhibitor. By the use of a mutant form of the natural or native wild-type enzyme, in which serine, or another amino acid, e.g., alanine, replaces cysteine, the problem of interference from extraneous oxidizing and alkylating agents in the assay procedure is overcome. The interference arises because of oxidation or alkylation of the sulfhydryl, -SH (or $-S^-$), in the cysteine, which then adversely affects the binding ability of the enzyme. Specifically disclosed is an assay for tyrosine phosphatases and cysteine proteases, including capsases and cathepsins, e.g., Cathepsin K(O2), utilizing scintillation proximity assay (SPA) technology. The assay has important applications in the discovery of compounds for the treatment and study of, for example, diabetes, immunosuppression, cancer, Alzheimer's disease and osteoporosis. The novel feature of the use of a mutant enzyme can be extended to its use in a wide variety of conventional colorimetric, photometric, spectrophotometric, radioimmunoassay and ligand—binding competitive assays.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

l .							
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swazifand
AZ	Azerhaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	IIU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	lre land	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	13	Italy	MX	Mexico	UZ	Uzhekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	K E	Kenya	NI.	Netherlands	YU	Yugosłavia
СН	Switzerland	kG	Kyrgyzstan	NO	Norway	ZW	Zimhabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ.	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	kZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	1.1	Liechtenstein	SD	Sudan		
DK	Denmark	1.K	Sri Lanka	SE	Sweden		
FE	Estonia	LR	Liberia	SG	Singapore		
1							

TITLE OF THE INVENTION LIGANDS FOR PHOSPHATASE BINDING ASSAY

5

10

15

20

25

FIELD OF THE INVENTION

This invention relates to the use of mutant phosphatase and protease enzymes in a competitive binding assay. Specific examples are the enzymes, tyrosine phosphatase and cysteine protease, e.g. Cathepsin K, and the assay specifically described is a scintillation proximity assay using a radioactive inhibitor to induce scintillation.

BACKGROUND OF THE INVENTION

The use of the scintillation proximity assay (SPA) to study enzyme binding and interactions is a new type of radioimmunoassay and is well known in the art. The advantage of SPA technology over more conventional radioimmunoassay or ligand-binding assays, is that it eliminates the need to separate unbound ligand from bound ligand prior to ligand measurement. See for example, Nature, Vol, 341, pp. 167-178 entitled "Scintillation Proximity Assay" by N. Bosworth and P. Towers, Anal. Biochem. Vol. 217, pp. 139-147 (1994) entitled "Biotinylated and Cysteine-Modified Peptides as Useful Reagents For Studying the Inhibition of Cathepsin G" by A.M. Brown, et al., Anal. Biochem. Vol. 223, pp. 259-265 (1994) entitled "Direct Measurement of the Binding of RAS to Neurofibromin Using Scintillation Proximity Assay" by R. H. Skinner et al. and Anal. Biochem. Vol. 230, pp. 101-107(1995) entitled "Scintillation Proximity Assay to Measure Binding of Soluble

Fibronectin to Antibody-Captured alpha5ß1 Integrin" by J. A. Pachter *et al.*

5

10

15

20

25

30

The basic principle of the assay lies in the use of a solid support containing a scintillation agent, wherein a target enzyme is attached to the support through, e.g., a second enzyme-antienzyme linkage. A known tritiated or I¹²⁵ iodinated binding agent, i.e., radioligand inhibitor ligand for the target enzyme is utilized as a control, which when bound to the active site in the target enzyme, is in close proximity to the scintillation agent to induce a scintillation signal, e.g., photon emission, which can be measured by conventional scintillation/radiographic techniques. The unbound tritiated (hot) ligand is too far removed from the scintillation agent to cause an interfering measurable scintillation signal and therefore does not need to be separated, e.g., filtration, as in conventional ligand-binding assays.

The binding of an unknown or potential new ligand (cold, being non-radioactive) can then be determined in a competitive assay versus the known radioligand, by measuring the resulting change in the scintillation signal which will significantly decrease when the unknown ligand also possesses good binding properties.

However, a problem arises when utilizing a target enzyme containing a cysteine group, having a free thiol linkage, - SH,(or present as -S⁻) which is in the active site region or is closely associated with the active site and is important for enzyme-ligand binding. If the unknown ligand or mixture, e.g. natural product extracts, human body fluids, cellular fluids, etc. contain reagents which can alkylate, oxidize or chemically interfere with the cysteine thiol group such that normal enzyme-ligand binding is disrupted, then false readings will occur in the assay.

What is needed in the art is a method to circumvent and avoid the problem of cysteine interference in the scintillation proximity assay (SPA) procedure in enzyme binding studies.

SUMMARY OF THE INVENTION

We have discovered that by substituting serine for cysteine in a target enzyme, where the cysteine plays an active role in the wild-type enzyme-natural ligand binding process, usually as the catalytic nucleophile in the active binding site, a mutant is formed which can be successfully employed in a scintillation proximity assay without any active site cysteine interference.

This discovery can be utilized for any enzyme which contains cysteine groups important or essential for binding and/or catalytic activity as proteases or hydrolases and includes phosphatases, e.g., tyrosine phosphatases and proteases, e.g. cysteine proteases, including the cathepsins, i.e., Cathepsin K (O2) and the capsases.

Further, use of the mutant enzyme is not limited to the scintillation proximity assay, but can be used in a wide variety of known assays including colorimetric, spectrophotometric, ligand-binding assays, radioimmunoassays and the like.

We have furthermore discovered a new method of amplifying the effect of a binding agent ligand, e.g., radioactive inhibitor, useful in the assay by replacing two or more phosphotyrosine residues with 4-phosphono(difluoromethyl) phenylalanine (F2Pmp) moieties. The resulting inhibitor exhibits a greater and more hydrolytically stable binding affinity for the target enzyme and a stronger scintillation signal.

By this invention there is provided a process for determining the binding ability of a ligand to a cysteine-containing wild-type enzyme comprising the steps of:

(a) contacting a complex with the ligand, the complex comprising a mutant form of the wild-type enzyme, in which cysteine, at the active site, is replaced with serine, in the presence of a known binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable signal.

35

5

10

15

20

25

PCT/CA97/00824 WO 98/20024

Further provided is a process for determining the binding ability of a ligand, preferably a non-radioactive (cold) ligand, to an active site cysteine-containing wild-type tyrosine phosphatase comprising the steps of:

contacting a complex with the ligand, the complex 5 (a) comprising a mutant form of the wild-type enzyme, the mutant enzyme being PTP1B, containing the same amino acid sequence 1-320 as the wild type enzyme, except at position 215, in which cysteine is replaced with serine in the mutant enzyme, in the 10 presence of a known radioligand binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable beta radiation-induced scintillation signal.

Also provided is a new class of peptide binding agents selected from the group consisting of:

N-Benzovl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONII2), where 20 E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl; N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4phosphono(difluoromethyl)]-L-phenylalanine amide;

N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4phosphono(difluoromethyl)]-L-phenylalanine amide;

L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;

L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;

L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-30 (difluoromethyl)]-L-phenylalanine amide;

L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and

L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and their tritiated and I^{125} iodinated

derivatives.

15

25

Further provided is a novel tritiated peptide, tritiated BzN-EJJ-CONH2, being N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanineamide, wherein E as used herein is glutamic acid and J, as used herein, is the (F2Pmp) moiety, (4-phosphono(difluoromethyl)-phenylalanyl).

Furthermore there is provided a process for increasing the binding affinity of a ligand for a tyrosine phosphatase or cysteine protease comprising introducing into the ligand two or more 4-phosphono(difluoromethyl)-phenylalanine groups; also provided is the resulting disubstituted ligand.

In addition there is provided a complex comprised of:

- (a) a mutant form of a wild-type enzyme, in which cysteine, necessary for activity in the active site, is replaced with serine and is attached to:
- (b) a solid support.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

30

35

FIGURE 1 illustrates the main elements of the invention including the scintillation agent 1, the supporting (fluomicrosphere) bead 5, the surface binding Protein A 10, the linking anti-GST enzyme 15, the fused enzyme construct 20, the GST enzyme 25, the mutant enzyme 30, the tritiated peptide inhibitor 35, the beta radiation emission 40 from the radioactive peptide inhibitor 35 and the emitted light 45 from the induced scintillation.

FIGURE 2 (A and B) illustrates the DNA and amino acid sequences for PTP1B tyrosine phosphatase enzyme, truncated to amino acid positions 1-320. (Active site cysteine at position 215 is in bold and underlined).

FIGURE 3 (A, B and C) illustrates the DNA and amino acid sequences for Cathepsin K. The upper nucleotide sequence represents the cathepsin K cDNA sequence which encodes the cathepsin K preproenzyme (indicated by the corresponding three letter amino acid codes). Numbering indicates the cDNA nucleotide

position. The underlined amino acid is the active site Cys¹³⁹ residue that was mutated to either Ser or Ala.

FIGURE 4 (A and B) illustrates the DNA and amino acid sequences for the capsase, apopain. The upper nucleotide sequence represents the apopain (CPP32) cDNA sequence which encodes the apopain proenzyme (indicated by the corresponding three letter amino acid codes). Numbering indicates the cDNA nucleotide position. The underlined amino acid is the active site Cys¹⁶³ residue that was mutated to Ser.

DETAILED DESCRIPTION OF THE INVENTION

15

20

25

30

35

The theory underlying the main embodiment of the invention can be readily seen and understood by reference to FIGURE 1.

Scintillation agent 1 is incorporated into small (yttrium silicate or PVT fluomicro-spheres, AMERSHAM) beads 5 that contain on their surface immunosorbent protein A 10. The protein A coated bead 5 binds the GST fused enzyme construct 20, containing GST enzyme 25 and PTP1B mutant enzyme 30, via anti-GST enzyme antibody <u>15</u>. When the radioactive e.g., tritiated, peptide <u>35</u> is bound to the mutant phosphatase enzyme 30, it is in close enough proximity to the bead 5 for its beta emission 40 (or Auger electron emission in the case of I^{125}) to stimulate the scintillation agent 1 to emit light (photon emission) 45. This light 45 is measured as counts in a beta plate counter. When the tritiated peptide 35 is unbound it is too distant from the scintillation agent 1 and the energy is dissipated before reaching the bead 5, resulting in low measured counts. Nonradioactive ligands which compete with the tritiated peptide 35 for the same binding site on the mutant phosphatase enzyme 30 will remove and/or replace the tritiated peptide 35 from the mutant enzyme 30 resulting in lower counts from the uncompeted peptide control. By varying the concentration of the unknown ligand and measuring the resulting lower counts, the inhibition at 50%(IC50) for ligand binding to the mutant enzyme 30 can be obtained. This then is a measure of

the binding ability of the ligand to the mutant enzyme and the wildtype enzyme.

5

10

15

20

25

30

35

support.

The term "complex" as used herein refers to the assembly containing the mutant enzyme. In its simplest embodiment, the complex is a solid support with the mutant enzyme attached to the surface of the support. A linker can also be employed. As illustrated in FIGURE 1, the complex can further comprise a bead (fluopolymer), anti-enzyme GST/enzyme GST-mutant enzyme-PTP1 linking construct, immunosorbent protein A, and scintillation agent. In general, the complex requires a solid support (beads, immunoassay column of e.g., Al₂O₃, or silica gel) to which the mutant enzyme can be anchored or tethered by attachment through a suitable linker, e.g., an immunosorbent (e.g, Protein A, Protein G, anti-mouse, anti-rabbit, anti-sheep) and a linking assembly, including an enzyme/anti-enzyme construct attached to the solid

The term "cysteine-containing wild-type enzyme", as used herein, includes all native or natural enzymes, e.g., phosphatases, cysteine proteases, which contain cysteine in the active site as the active nucleophile, or contain cysteine clearly associated with the active site that is important in binding activity.

The term "binding agent" as used herein includes all ligands (compounds) which are known to be able to bind with the wild-type enzyme and usually act as enzyme inhibitors. The binding agent carries a signal producing agent , e.g., radionuclide, to initiate the measurable signal. In the SPA assay the binding agent is a radioligand.

The term "measurable signal" as used herein includes any type of generated signal, e.g., radioactive, colorimetric, photometric, spectrophotometric, scintillation, which is produced when binding of the radioligand binding agent to the mutant enzyme.

The present invention assay further overcomes problems encountered in the past, where compounds were evaluated by their ability to affect the reaction rate of the enzyme in the phosphatase activity assay. However this did not give direct evidence that compounds were actually binding at the active site of the enzyme. The herein described invention binding assay using a substrate

analog can determine directly whether the mixtures of natural products can irreversibly modify the active site cysteine in the target enzyme resulting in inhibition of the enzymatic activity. To overcome inhibition by these contaminates in the phosphatase assay, a mutated Cys(215) to Ser(215) form of the tyrosine phosphatase PTP1B was cloned and expressed resulting in a catalytically inactive enzyme. In general, replacement of cysteine by serine will lead to a catalytically inactive or substantially reduced activity mutant enzyme.

1() PTP1B is the first protein tyrosine phosphatase to be purified to near homogeneity (Tonks et al. JBC 263, 6731-6737 (1988)) and sequenced by Charbonneau et al. PNAS 85, 7182-7186 (1988). The sequence of the enzyme showed substantial homology to a duplicated domain of an abundant protein present in hematopoietic cells 15 variously referred to as LCA or CD45. This protein was shown to possess tyrosine phosphatase activity (Tonks et al. Biochemistry 27, 8695-8701 (1988). Protein tyrosine phosphatases have been known to be sensitive to thiol oxidizing agents and alignment of the sequence of PTP1B with subsequently cloned Drosophila and mammalian 20 tyrosine phosphatases pointed to the conservation of a Cysteine residue (M. Strueli et al. Proc. Nat'l Acad USA, Vol. 86, pp. 8698-7602 (1989)) which when mutated to Ser inactivated the catalytic activity of the enzymes. Guan et al.(1991) {J.B.C. Vol. 266, 17926-17030, 1991} cloned the rat homologue of PTP1B, expressed a truncated version of 25 the protein in bacteria, purified and showed the Cys at position 215 is the active site residue. Mutation of the Cvs^{215} to Ser^{215} resulted in loss of catalytic activity. Human PTP1B was cloned by Chernoff et al. Proc. Natl. Acad. Sci. USA 87, 2735-2739 (1990).

Work leading up to the development of the substrate analog BzN-EJJ-CONH₂ for PTP₁B was published by T. Burke *et al. Biochem. Biophys. Res. Comm.* 205, pp. 129-134 (1994) with the synthesis of the hexamer peptide containing the phosphotyrosyl mimetic F₂Pmp. We have incorporated the (F₂Pmp) moiety (4-phosphono-(difluoromethyl)phenylalanyl) into various peptides that led to the discovery of BzN-EJJ-CONH₂, (where E is glutamic acid and J as used herein is the F₂Pmp moiety) an active (5 nM) inhibitor

30

of PTP1B. This was subsequently tritiated giving the radioactive substrate analog required for the binding assay.

5

10

15

20

25

30

35

The mutated enzyme, as the truncated version, containing amino acids 1-320 (see FIGURE 2), has been demonstrated to bind the substrate analog Bz-NEJJ-CONH2 with high affinity for the first time. The mutated enzyme is less sensitive to oxidizing agents than the wild-type enzyme and provides an opportunity to identify novel inhibitors for this family of enzymes. The use of a mutated enzyme to eliminate interfering contaminates during drug screening is not restricted to the tyrosine phosphatases and can be used for other enzyme binding assays as well.

Other binding assays exist in the art in which the basic principle of this invention can be utilized, namely, using a mutant enzyme in which an important and reactive cysteine important for activity can modified to serine (or a less reactive amino acid) and render the enzyme more stable to cysteine modifying reagents, such as alkylating and oxidizing agents. These other ligand-binding assays include, for example, colorimetric and spectrophotometric assays, e.g. measurement of produced color or fluorescence, phosphorescence (e.g. ELISA, solid absorbant assays) and other radioimmunoassays in which short or long wave light radiation is produced, including ultraviolet and gamma radiation).

Further, the scintillation proximity assay can also be practiced without the fluopolymer support beads (AMERSHAM) as illustrated in FIGURE 1. For example, Scintistrips® are commercially available (Wallac Oy, Finland) and can also be employed as the scintillant-containing solid support for the mutant enzyme complex as well as other solid supports which are conventional in the art.

The invention assay described herein is applicable to a variety of cysteine-containing enzymes including protein phosphatases, proteases, lipases, hydrolases, and the like.

The cysteine to serine transformation in the target enzyme can readily be accomplished by analogous use of the molecular cloning technique for Cys²¹⁵ to Ser²¹⁵ described in the below-cited reference by M. Strueli *et al.*, for PTP1B and is hereby incorporated by reference for this particular purpose.

A particularly useful class of phosphatases is the tyrosine phosphatases since they are important in cell function. Examples of this class are: PTP1B, LCA, LAR, DLAR, DPTP(See Strueli et al., below). Ligands discovered by this assay using, for example, PTP1B can be useful, for example, in the treatment of diabetes and immunosuppression.

5

10

15

25

30

A useful species is PTP1B, described in *Proc. Nat'l Acad USA*, Vol. 86, pp. 8698-7602 by M. Strueli *et al.* and *Proc. Nat'l Acad Sci. USA*, Vol 87, pp. 2735-2739 by J. Chernoff *et al.*

Another useful class of enzymes is the proteases, including cysteine proteases (thiol proteases), cathepsins and capsases.

The cathepsin class of cysteine proteases is important since Cathepsin K (also termed Cathepsin O2, see *Biol. Chem. Hoppe-Seyler*, Vol. 376 pp. 379-384, June 1995 by D. Bromme *et al.*) is primarily expressed in human osteoclasts and therefore this invention assay is useful in the study and treatment of osteoporosis. See US Patent 5,501,969 (1996) to Human Genome Sciences for the sequence, cloning and isolation of Cathepsin K (O2). See also *J. Biol.*

20 Chem. Vol. <u>271</u>, No. 21, pp. 12511-12516 (1996) by F. Drake et al. and Biol. Chem. Hoppe-Seyler, Vol. <u>376</u>, pp. 379-384(1985) by D. Bromme et al., supra.

Examples of the cathepsins include Cathepsin B, Cathepsin G, Cathepsin J, Cathepsin K(O2), Cathesin L, Cathepsin M, Cathepsin S.

The capsase family of cysteine proteases are other examples where the SPA technology and the use of mutated enzymes can be used to determine the ability of unknown compounds and mixtures of compounds to compete with a radioactive inhibitor of the enzyme. An active site mutant of Human Apopain CPP32 (capsase-3) has been prepared. The active site thiol mutated enzymes are less sensitive to oxidizing agents and provide an opportunity to identify novel inhibitors for this family of enzymes.

Examples of the capsase family include: capsase-1(ICE), capsase-2 (ICH-1), capsase-3 (CPP32, human apopain, Yama), capsase-4(ICE_{rel}-11, TX, ICH-2), capsase-5(ICE_{rel}-111, TY), capsase-

6(Mch2), capsase-7(Mch3, ICE-LAP3, CMH-1), capsase-8(FLICE, MACH, Mch5), capsase-9 (ICE-LAP6, Mch6) and capsase-10(Mch4).

Substitution of the cysteine by serine (or by any other amino acid which lowers the activity to oxidizing and alkylating agents, e.g., alanine) does not alter the binding ability of the mutant enzyme to natural ligands. The degree of binding, i.e., binding constant, may be increased or decreased. The catalytic activity of the mutant enzyme will, however, be substantially decreased or even completely eliminated. Thus, natural and synthetic ligands which bind to the natural wild-type enzyme will also bind to the mutant enzyme.

5

10

15

20

25

30

Substitution by serine for cysteine also leads to the mutant enzyme which has the same qualititative binding ability as the natural enzyme but is significantly reduced in catalytically activity. Thus, this invention assay is actually measuring the true binding ability of the test ligand.

The test ligand described herein is a new ligand potentially useful in drug screening purposes and its mode of action is to generally function as an inhibitor for the enzyme.

The binding agent usually is a known ligand used as a control and is capable of binding to the natural wild-type enzyme and the mutant enzyme employed in the assay and is usually chosen as a known peptide inhibitor for the enzyme.

The binding agent also contains a known signalproducing agent to cause or induce the signal in the assay and can be an agent inducing e.g., phosphorescence or fluorescence (ELISA), color reaction or a scintillation signal.

In the instant embodiment, where the assay is a scintillation assay, the signal agent is a radionuclide, i.e., tritium, I¹²⁵, which induces the scintillant in the solid support to emit measurable light radiation, i.e., photon emission, which can be measured by using conventional scintillation and beta radiation counters.

We have also discovered that introducing two or more 4-35 phosphonodifluoromethyl phenylalanine (F2Pmp) groups into a known binding agent greatly enhances the binding affinity of the

binding agent to the enzyme and improves its stability by rendering the resulting complex less susceptible to hydrolytic cleavage.

A method for introducing one F2Pmp moiety into a ligand is known in the art and is described in detail in *Biochem*.

5 Biophys. Res. Comm. Vol. <u>204</u>, pp. 129-134 (1994) hereby incorporated by reference for this particular purpose.

As a result of this technology we discovered a new class of ligands having extremely good binding affinity for PTP1B. These include:

- 1() N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenyl-alanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
 N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
 L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-
- phosphono(difluoromethyl)]-L-phenylalanine amide, L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
- 20 L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, and L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide.
- A useful ligand in the series is Bz-NEJJ-CONH2, whose chemical name is: N-Benzoyl-L-glutamyl-[4-phosphono(difluoro-methyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenyl-alanineamide, and its tritiated form, N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-
- 30 (dilfuoromethyl)]-L-phenylalanineamide.

35

 $Synthesis \ of \ both \ cold \ and \ hot \ ligands \ is \ described \ in \ the \\ Examples.$

The following Examples are illustrative of carrying out the invention and should not be construed as being limitations on the scope or spirit of the instant invention.

EXAMPLES

 Preparation of PTP1B Truncate (Amino Acid Sequence from 1-320 and Fused GST-PTP1B Construct

An *E. coli* culture carrying a PET plasmid expressing
the full length PTP1B protein was disclosed in J. Chernoff *et al. Proc*Natl. Acad. Sci. USA, 87, pp. 2735-2739, (1990). This was modified to
a truncated PTP1B enzyme complex containing the active site with
amino acids 1-320 inclusive, by the following procedure:

amino acids 1-320 inclusive, by the following procedure: The full length human PTP-1B cDNA sequence 1() (published in J. Chernoff et al., PNAS, USA, supra) cloned into a PET vector was obtained from Dr. Raymond Erickson (Harvard University). The PTP-1B cDNA sequence encoding amino acids 1-320 (Seq. ID No. 1) was amplified by PCR using the full length sequence as template. The 5' primer used for the amplification included a Bam HI site at the 5' end and the 3' primer had an Eco RI site at the 15 3' end. The amplified fragment was cloned into pCR2 (Invitrogen) and sequenced to insure that no sequence errors had been introduced by Taq polymerase during the amplification. This sequence was released from pCR2 by a Bam HI/Eco RI digest and the PTP-1B cDNA fragment ligated into the GST fusion vector pGEX-2T (Pharmacia) 20 that had been digested with the same enzymes. The GST-PTP-1B fusion protein expressed in E. Coli has an active protein tyrosine phosphatase activity. This same 1-320 PTP-1B sequence (Seq. ID No. 1) was then cloned into the expression vector pFLAG-2, where FLAG is the octa-peptide AspTyrLysAspAspAspAspLys. This was done by 25 releasing the PTP-1B sequence from the pGEX-2T vector by Nco I/Eco RI digest, filling in the ends of this fragment by Klenow and blunt-

is the octa-peptide AspTyrLysAspAspAspAspLys. This was done by releasing the PTP-1B sequence from the pGEX-2T vector by Nco I/Eco RI digest, filling in the ends of this fragment by Klenow and bluntend ligating into the blunted Eco RI site of pFLAG2. Site-directed mutagenesis was performed on pFLAG2-PTP-1B plasmid using the Chameleon (Stratagene) double-stranded mutagenesis kit from

Stratagene, to replaced the active-site Cys-215 with serine. The mutagenesis was carried out essentially as described by the manufacturer and mutants identified by DNA sequencing. The FLAG-PTP-1B Cys215Ser mutant (Seq. ID No. 7) was expressed,

30

35 purified and found not to have any phosphatase activity. The GST-

PTP-1B Cys²¹⁵Ser mutant was made using the mutated Cys²¹⁵Ser sequence of PTP-1B already cloned into pFLAG2, as follows. The pFLAG2- PTP-1B Cvs²¹⁵Ser plasmid (Seq. II) No. 7) was digested with Sal I (3' end of PTP-1B sequence), filled in using Klenow polymerase (New England Biolabs), the enzymes were heat inactivated and the DNA redigested with Bgl II. The 500 bp 3' PTP-1B cI)NA fragment which is released and contains the mutated active site was recovered. The pGEX-2T-PTP-1B plasmid was digested with Eco RI (3' end of PTP-1B sequence), filled in by Klenow, phenol/chloroform extracted and ethanol precipitated. This DNA 1() was then digested with Bgl II, producing two DNA fragments a 500 bp 3' PTP-1B cDNA fragment that contains the active site and a 5.5 Kb fragment containing the pGEX-2T vector plus the 5' end of PTP-1B. The 5.5 Kb pGEX-2T 5' PTP-1B fragment was recovered and ligated with the 500 bp Bgl II/Sal I fragment containing the mutated active 15 site. The ligation was transformed into bacteria (type DH5α, G) and clones containing the mutated active site sequence identified by

20

2. Preparation of Tritiated Bz-NEJJ-CONH2

purified and found not to have any phosphatase activity.

This compound can be prepared as outlined in Scheme 1, below, and by following the procedures:

sequencing. The GST-PTP-1B Cvs²¹⁵Ser mutant was overexpressed,

25 Synthesis of N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH2)

1.0 g of TentaGel® S RAM resin (RAPP polymer, ~ 0.2 mmol/g) as represented by the shaded bead in Scheme 1, was treated 30 with piperidine (3 mL) in DMF (5 mL) for 30 min. The resin (symbolized by the circular P, containing the remainder of the organic molecule except the amino group) was washed successively with DMF (3 x 10 mL) and CH₂Cl₂ (10 mL) and air dried. A solution of DMF (5 mL), N°-Fmoc-4-[diethylphosphono-(difluoromethyl)]-L-

phenylalanine (350 mg) , where Fmoc is 9-fluorenylmethoxycarbonyl, and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluranium hexafluorphosphate,(acronym being HATU, 228 mg) was treated with diisopropyl-ethylamine (0.21 mL) and, after 15 min., was added to the resin in 3 mL of DMF. After 1 h, the resin was washed successively with DMF (3x10 mL) and CH₂Cl₂ (10 mL) and air dried. The sequence was repeated two times, first using N°-Fmoc-4-[diethylphosphono-(difluoromethyl)]-L-phenylalamine and then using N-Fmoc-L-glutamic acid gamma-t-butyl ester. After the final coupling, the resin bound tripeptide was treated with a mixture of piperidine (3 mL) in DMF (5mL) for 30 min. and was then washed successively with DMF (3x10 mL) and CH₂Cl₂ (10 mL) and air dried.

5

10

15

20

25

30

To a solution of benzoic acid (61 mg) and HATU (190 mg) in DMF (1 mL) was added diisopropylethylamine (0.17 mL) and, after 15 min. the mixture was added to a portion of the resin prepared above (290 mg) in 1 mL DMF. After 90 min. the resin was washed successively with DMF (3 x 10 mL) and CH₂Cl₂ (10 mL) and air dried. The resin was treated with 2 mL of a mixture of TFA: water (9:1) and 0.05 mL of triisopropylsilane (TIPS-H) for 1 h. The resin was filtered off and the filtrate was diluted with water (2 mL) and concentrated *in vacuo* at 35°C. The residue was treated with 2.5 mL of a mixture of TFA:DMS:TMSOTf (5:3:1) and 0.05 mL of TIPS-H, and stirred at 25°C for 15 h. (TFA is trifluoroacetic acid, DMS is dimethyl sulfate, TMSOTf is trimethylsilyl trifluoromethanesulfonate).

The desired tripeptide, the title compound, was purified by reverse phase HPLC (C18 column, 25 x 100 mm) using a mobile phase gradient from 0.2% TFA in water to 50/50 acetonitrile/0.2% TFA in water over 40 min. and monitoring at 230 nm. The fraction eluting at approximately 14.3 min. was collected, concentrated and lyophylized to yield the title compound as a white foam.

Synthesis of N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoro-methyl)]-L-phenylalanyl-[4-phosphono(dilfuoromethyl)]-L-phenylalanineamide

The above procedure described for the preparation of BzN-EJJ-CONH2 was repeated, but substituting 3,5-dibromobenzoic acid for benzoic acid. After HPLC purification as before, except using a gradient over 30 min. and collecting the fraction at approximately 18.3 min., the dibromo containing tripeptide was obtained as a white foam.

5

A portion of this material (2 mg) was dissolved in methanol/triethylamine (0.5 mL, 4/1), 10% Pd-C (2 mg) was added, and the mixture stirred under an atmosphere of tritium gas for 24 h. The mixture was filtered through celite, washing with methanol and the filtrate was concentrated. The title compound was obtained after purification by semi-preparative HPLC using a C18 column and an isocratic mobile phase of acetonitrile/0.2% TFA in water (15:100). The fraction eluting at approximately 5 min. was collected and concentrated *in vacuo*. The title compound was dissolved in 10 mL of methanol/water (9:1) to provide a 0.1 mg/mL solution of specific activity 39.4 Ci/mmol.

TentaGel® S RAM polymer

HATU, (i-Pr)₂NEt, DMF 2. piperidine, DMF

SCHEME 1 CONT'D

1.
$$CO_2(t\text{-Bu})$$

HATU, $(i\text{-Pr})_2\text{NEt}$, DMF

2. piperidine, DMF

(EtO) $_2\text{OP}$

(ETO)

HATU, $(i Pr)_2 NEt$, DMF 2. piperidine, DMF

SCHEME 1 CONT'D

- 1. TFA-H₂O (9:1)
- 2. TFA-DMS-TMSOTf-TIPSH
- 3. HPLC purification
- 4. for X = Br: T₂ (g), 10% Pd-C MeOH, Et₃N; HPLC purification

By following the above described procedure for BzN-EJJ-CONH₂, the following other peptide inhibitors were also similarly

- 5 prepared:
 - N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenyl-alanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, [4-phosphono(difluoromethyl)]-L-phenylalanine amide,
- L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-
- phosphono(difluoromethyl)]-L-phenylalanine amide, L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, and

L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide.

4. <u>Phosphatase Assay Protocol</u>

5

Materials:

EDTA - ethylenediaminetetraacetic acid (Sigma)

DMH - N,N'-dimethyl-N,N'-bis(mercaptoacetyl)hydrazine (synthesis published in *J. Org. Chem.* 56, pp. 2332-

10 2337,(1991) by R. Singh and G.M. Whitesides and can be substituted with DTT - dithiothreitol Bistris - 2,2-bis(hydroxymethyl)2,2',2"-nitrilotriethanol-(Sigma) Triton X-100 - octylphenolpoly(ethyleneglycolether) 10 (Pierce)

Antibody: Anti-glutathione S-transferase rabbit (H and L) fraction (Molecular Probes)

Enzyme: Human recombinant PTP1B, containing amino acids 1-320, (Seq. ID No. 1) fused to GST enzyme (glutathione S-transferase) purified by affinity chromatography. Wild type (Seq. ID No. 1) contains active site cysteine(215), whereas mutant (Seq. ID No. 7) contains active site serine(215).

 $\label{eq:configuration} Tritiated\ peptide:\ Bz-NEJJ-CONH_2,\ Mwt.\ 808,\ empirical\ formula,\ C32H32T2O12P2F4$

Stock Solutions

25

20

15

(10X) Assay Buffer

500 mM Bistris (Sigma), pH 6.2,

MW = 209.2

20mM EDTA (GIBCO/BRL)

Store at 4° C.

30 Prepare fresh daily:

Assay Buffer (1X)

50 mM Bistris

(room temp.)

2 mM EDTA

5 mM DMH (MW=208)

Enzyme Dilution

5

10

15

30

Buffer (keep on ice) 50 mM Bistris

2 mM EDTA

5 mM DMH

20% Glycerol (Sigma)

0.01 mg/ml Triton X-100 (Pierce)

Antibody Dilution

Buffer (keep on ice) 50 mM Bistris

2 mM EDTA

IC50 Binding Assay Protocol:

Compounds (ligands) which potentially inhibit the binding of a radioactive ligand to the specific phosphatase are screened in a 96-well plate format as follows:

To each well is added the following solutions @ $25^{\circ}C$ in the following chronological order:

- 1. 110 μl of assay buffer.
- 20 2. 10 μ l. of 50 nM tritiated BzN-EJJ-CONH2 in assay buffer (1X) @ 25°C.
 - 3. 10 $\mu l.$ of testing compound in DMSO at 10 different concentrations in serial dilution (final DMSO, about 5% v/v) in duplicate @ 25°C.
- 25 4. 10 μ l. of 3.75 μ g/ml purified human recombinant GST-PTP1B in enzyme dilution buffer.
 - 5. The plate is shaken for 2 minutes.
 - 6. 10 μ l. of 0.3 μ g/ml anti-glutathione S-transferase (anti-GST) rabbit IgG (Molecular Probes) diluted in antibody dilution buffer @ 25°C.
 - 7. The plate is shaken for 2 minutes.
 - 8.~ 50 $\mu l.$ of protein A-PVT SPA beads (Amersham) @ $25^{\circ}C.$
- 9. The plate is shaken for 5 minutes. The binding signal is quantified on a Microbeta 96-well plate counter.
 - 10. The non-specific signal is defined as the enzymeligand binding in the absence of anti-GST antibody.

11. 100% binding activity is defined as the enzymeligand binding in the presence of anti-GST antibody, but in the absence of the testing ligands with the non-specific binding subtracted.

5

15

- 12. Percentage of inhibition is calculated accordingly.
- 13. IC50 value is approximated from the non-linear regression fit with the 4-parameter/multiple sites equation (described in: "Robust Statistics", New York, Wiley, by P.J. Huber (1981) and reported in nM units.

10 Test ligands (compounds) with larger than 90% inhibition at 10 μM are defined as actives.

The following Table I illustrates typical assay results of examples of known compounds which competitively inhibit the binding of the binding agent, BzN-EJJ-CONH2.

TABLE I GST-PTP1B SPA Binding Assay with Non-Mutated (Cys215) and Mutated enzyme (Ser215)

Compound	Structure	Non- Mutated	Mutated
Control:			
Tripeptide(F2PMP)2	OO H)2	14 nM	8 nM
	N CONH2 CO2H		
	ш. `ш.		
DADE(F2PMP)L hexapeptide	Asp Giu Leu NH2		
(T. Burke et al, Biochem. Biophys.			
Res. Comm. 204, 129, (1994))	F PO ₃ H ₂	400 nM	100
	L	100	nM

TABLE I (Cont'd.)

CH chociffo Lin Ji			
Vanadate	0==>	2 μМ	>100
Insulin Receptor Peptide	Asp Glu Asp OH	17 рМ	Мц 70 µМ
Potential Oxidizing agents:	- 0		
Hydrogen peroxide	H202	90% at	0% at
Quinone	O	83 µM 4 µM	83 µM >100 µM
Potential Alkylating agents:	5		
Imine		67% at 2 µM	10% at 2
			hM.

TABLE II

Raw Data, Counts (dpm) (duplicates)

	on 0	antibody			conc. B:	2N-EJJ-CC	conc. BzN-EJJ-CONH2, nM					
	antibody											
	(-control)	(+ control)	250	125	62.5	31.25	125 62.5 31.25 15.625 7.813 3.906 1.953 0.977 0.488	7.813	3.906	1.953	0.977	0.488
dpm	252	5652	288 873	873	3 757	1550 2775	2775	3367 4743	4743	5220	5454 5384	5384
mdp	304	6380	273	588	1109	1109 1337 2525		4165	1838	5501	1012	5011
)	001		000	0/0	

ABLE III

ou	antibody			conc. B2	conc. Bz-EIJ-CONH2, nM	H2, nM					
antibody	·										
(-control)	(+ control)	250	125	62.5	31.25	250 125 62.5 31.25 15.625 7.813 3.906 1.953 0.977 0.488	7.813	3.906	1.953	7700	887
000										0.777	0.100
100	5	100	<u> </u>	92	78	56	45	21		•	
							,	1,7	71	0	7
100	<u>~</u>	100 95 85	95	85		60	30	10	7	,	,

% Inh % Inh WO 98/20024

Preparation of Cathepsin K(O2) Mutant (CAT-K Mutant)

Cathepsin K is a prominent cysteine protease in human osteoclasts and is believed to play a key role in osteoclast-mediated bone resorption. Inhibitors of cathepsin K will be useful for the treatment of bone disorders (such as osteoporosis) where excessive bone resorption occurs. Cathepsin K is synthesized as a dormant preproenzyme (Seq. ID No. 4). Both the pre-domain (Met ¹-Ala ¹⁵) and the prodomain (Leu ¹⁶-Arg ¹¹⁴) must be removed for full catalytic activity. The mature form of the protease (Ala ¹¹⁵-Met ³²⁹) contains the active site Cys residue (Cys ¹³⁹).

The mature form of cathepsin K is engineered for expression in bacteria and other recombinant systems as a Met Ala 115-Met 329 construct by PCR-directed template modification of a clone that is identified. Epitope-tagged variants are also generated: (Met[FLAG]Ala¹¹⁵-Met³²⁹ and Met Ala¹¹⁵-Met³²⁹[FLAG]; where 15 FLAG is the octa-peptide AspTyrLysAspAspAspAspLys). For the purpose of establishing a binding assay, several other constructs are generated including Met[FLAG]Ala 115 -[Cys 139 to Ser 139]-Met 329 and Met Ala 115 -[Cys 139 to Ser 139]-Met 329 [FLAG] (where the active site Cys is mutated to a Ser residue), and $Met[FLAG]Ala^{115}$ - $[Cys^{139}\ to$ 20 Ala^{139}]-Met³²⁹ and Met Ala¹¹⁵-[Cys¹³⁹ to Ala¹³⁹]-Met³²⁹[FLAG] (where the active site Cys is mutated to an Ala residue). In all cases, the resulting re-engineered polypeptides can be used in a binding assay by tethering the mutated enzymes to SPA beads via specific 25 anti-FLAG antibodies that are commercially available (IDI-KODAK). Other epitope tags, GST and other fusions can also be used for this purpose and binding assay formats other than SPA can also be used. Ligands based on the preferred substrate for cathepsin K (e.g. Ac-P2-P₁, Ac-P₂-P₁-aldehydes, Ac-P₂-P₁-ketones; where P₁ is an amino 30 acid with a hydrophilic side chain, preferably Arg or Lys, and P2 is an amino acid with a small hydrophobic side chain, preferably Leu, Val or Phe) are suitable in their radiolabeled (tritiated) forms for SPA-based binding assays. Similar binding assays can also be established for other cathepsin family members.

Preparation of Apopain (capsase-3) Mutant

5

10

15

20

25

30

Apopain is the active form of a cysteine protease belonging to the capsase superfamily of ICE/CED-3 like enzymes. It is derived from a catalytically dormant proenzyme that contains both the 17 kDa large subunit (p17) and 12 kDa (p12) small subunit of the catalytically active enzyme within a 32 kDa proenzyme polypeptide (p32). Apopain is a key mediator in the effector mechanism of apoptotic cell death and modulators of the activity of this enzyme, or structurally-related isoforms, will be useful for the therapeutic treatment of diseases where inappropriate apoptosis is prominent, e.g., Alzheimer's disease.

The method used for production of apopain involves folding of active enzyme from its constituent p17 and p12 subunits which are expressed separately in E. coli. The apopain p17 subunit $(Ser^{29}-Asp^{175})$ and p12 subunit $(Ser^{176}-His^{277})$ are engineered for expression as MetSer²⁹-Asp¹⁷⁵ and MetSer¹⁷⁶-His²⁷⁷ constructs, respectively, by PCR-directed template modification. For the purpose of establishing a binding assay, several other constructs are generated, including a MetSer²⁹-[Cys¹⁶³ to Ser¹⁶³]-Asp¹⁷⁵ large subunit and a Met¹-[Cys¹⁶³ to Ser¹⁶³]-His²⁷⁷ proenzyme. In the former case, the active site Cys residue in the large subunit (p17) is replaced with a Ser residue by site-directed mutagenesis. This large subunit is then re-folded with the recombinant p12 subunit to generate the mature form of the enzyme except with the active site Cys mutated to a Ser. In the latter case, the same Cys 163 to Ser 163 mutation is made, except that the entire proenzyme is expressed. In both cases, the resulting re-engineered polypeptides can be used in a binding assay by tethering the mutated enzymes to SPA beads via specific antibodies that are generated to recognize apopain (antibodies against the prodomain, the large p17 subunit, the small p12 subunit and the entire p17:p12 active enzyme have been generated). Epitope tags or GST and other fusions could also be used for this purpose and binding assay formats other than SPA can also be used.

Ligands based on the prefered substrate for apopain (varients of AspGluValAsp), such as Ac- AspGluValAsp, Ac-AspGluValAsp-aldehydes, Ac-AspGluValAsp-ketones are suitable in their radiolabeled forms for SPA-based binding assays. Similar binding assays can also be established for other capsase family members.

DESCRIPTION OF THE SEQUENCE LISTINGS

5

- SEQ ID NO. 1 is the top sense DNA strand of Figures 2A and 2B for the PTP1B tyrosine phosphatase enzyme.
 - SEQ ID NO. 2 is the amino acid sequence of Figures 2A and 2B for the PTP1B tyrosine phosphatase enzyme.
- 15 SEQ ID NO. 3 is the top sense cDNA strand of Figures 3A, 3B and 3C for the Cathepsin K preproenzyme.
 - SEQ ID NO. 4 is the amino acid sequence of Figures 3A, 3B and 3C for the Cathepsin K preproenzyme.
 - SEQ ID NO. $5\,$ is the top sense cDNA strand of Figures 4A and 4B for the CPP32 apopain proenzyme.
- SEQ ID NO. 6 is the amino acid sequence of Figures 4A and 4B for the CPP32 apopain proenzyme.
 - SEQ ID NO. 7 is the cDNA sequence of the human PTP-1B₁₋₃₂₀ Ser mutant.
- 30 SEQ ID NO. 8 is the amino acid sequence of the human PTP-1B1-320 Ser mutant.
 - SEQ ID NO. 9 is the cDNA sequence for apopain C163S mutant.
- 35 SEQ ID NO. 10 is the amino acid sequence for the apopain C163S mutant.

SEQ ID N(). 11 is the large subunit of the heterodimeric amino acid sequence for the apopain C163S mutant.

- SEQ ID NO. 12 is the cDNA sequence for the Cathepsin K C139S mutant.
 - SEQ ID NO. 13 is the cDNA sequence for the Cathepsin K C139A mutant.
- 10) SEQ ID NO. 14 is the amino acid sequence for the Cathepsin K C139S mutant.
 - SEQ ID NO. 15 is the amino acid sequence for the Cathepsin K C139A mutant.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Desmarais, Sylvie Friesen, Richard Zamboni, Richard
 - (ii) TITLE OF INVENTION: NEW LIGANDS FOR PHOSPHATASE BINDING ASSAY
 - (iii) NUMBER OF SEQUENCES: 15
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ROBERT J. NORTH MERCK & CO., INC.
 - (B) STREET: 126 EAST LINCOLN AVENUE P.O. BOX 2000
 - (C) CITY: RAHWAY
 - (D) STATE: NEW JERSEY
 - (E) COUNTRY: USA
 - (F) ZIP: 07065
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US unknown
 - (B) FILING DATE: 04-NOV-1996
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: North, Robert J.
 - (B) REGISTRATION NUMBER: 27,366
 - (C) REFERENCE/DOCKET NUMBER: 19840 PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 732-594-7262
 - (B) TELEFAX: 732-594-4720
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

.xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGAGATGG	AAAAGGAGTT	CGAGCAGATC	GACAAGTCCG	GGAGCTGGGC	GGCCATTTAC	60
CAGGATATCC	GACATGAAGO	CAGTGACTTC	CCATGTAGAG	TGGCCAAGCT	TCCTAAGAAC	120
AAAAACGGAA	ATAGGTACAG	AGACGTCAGT	CCCTTTGACC	ATAGTCGGAT	TAAACTACAT	180
CAAGAAGATA	ATGACTATAT	CAACGCTAGT	TTGATAAAAA	TGGAAGAAGC	CCAAAGGAGT	240
TACATTCTTA	CCCAGGGCCC	TTTGCCTAAC	ACATGCGGTC	ACTTTTGGGA	GATGGTGTGG	300
GAGCAGAAAA	GCAGGGGTGT	CGTCATGCTC	AACAGAGTGA	TGGAGAAAGG	TTCGTTAAAA	360
TGCGCACAAT	ACTGGCCACA	AAAAGAAGAA	AAAGA/3AT/3A	TOTTTGAAGA	CACAAATTTG	420
AAATTAACAT	TGATCTCTGA	AGATATCAAG	TCATATTATA	CAGTGCGACA	GCTAGAATTG	480
GAAAACCTTA	CAACCCAAGA	AACTCGAGAG	ATCTTACATT	TOCACTATAC	CACATGGCCT	540
GACTTTGGAG	TOTOTGAATC	ACCAGCCTCA	TTCTTGAACT	TTOTTTTCAA	AGTCCGAGAG	600
TCAGGGTCAC	TOAGCCCGGA	GCACGGGCCC	GTTGTGGTGC	ACTGCAGTGC	AGGCATCGGC	660
AGGTCTGGAA	CCTTCTGTGT	GGCTGATACC	TGCCTCCTGC	TGATGGACAA	GAGGAAAGAC	720
CCTTCTTCCG	TTGATATCAA	GAAAGTGCTG	TTAGAAATGA	GGAAGTTTCG	GATGGGGTTG	780
ATCCAGACAG	CCGACCAGCT	GCGCTTCTCC	TACCTGGCTG	TGATCGAAGG	TGCCAAATTC	840
ATCATGGGGG	ACTOTTOOGT	GCAGGATCAG	TGGAAGGAGC	TTTCCCACGA	GGACCTGGAG	900
CCCCCACCCG	AGCATATCCC	CCCACCTCCC	CGGCCACCCA	AACGAATCCT	GGAGCCACAC	960
TGA						963

(2) INFORMATION FOR SEQ ID NO:2:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 320 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: peptide

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met 1	Glu	Met	Glu	Lys 5	Glu	Phe	Glu	Gln	Ile 10	Asp	Lys	Ser	Gly	Ser 15	Trp
Ala	Ala	Ile	Tyr 20	Gln	Asp	Ile	Arg	His 25	Glu	Ala	Ser	Asp	Phe 30	Pro	Cys
Arg	Val	Ala 35	Lys	Leu	Pro	Lys	Asn 40	Lys	Asn	Arg	Asr	Arg 45	Tyr	Arg	Asp
Val	Ser 50	Pro	Ph∈	Asp	His	Ser 55	Arg	Il€	Lys	Leu	His	Gln	Glu	Asp	Asn
Asp 65	Tyr	Ile	Asn	Ala	Ser 70	Leu	Ile	Lys	Met	Glu 75	Glu	Ala	Gln	Arg	Ser 80
Tyr	Ile	Leu	Thr	Gln 85	Gly	Pro	Leu	Pro	Asn 90	Thr	Сув	Gly	His	Phe 95	Trp
Glu	Met	Val	Trp 100	Glu	Gln	Lys	Ser	Arg 105	Gly	Val	Val	Met	Leu 110	Asn	Arg

		115					120					125		Gln	
Glu	Glu 130	Lys	Glu	Met.	Ile	Phe 135	Glu	Asp	Thr	Asn	Leu 140	Lys	Leu	Thr	Leu
145					150					155				Glu	160
Glu	Asn	Leu	Thr	Thr 165	Gln	Glu	Thr	Arg	Glu 170	Ile	Leu	His	Phe	His 175	Tyr
Thr	Thr	Trp	Pro 180	Asp	Phe	Gly	Val	Pro 185	Glu	Ser	Pro	Ala	Ser 190	Phe	Leu
Asn	Phe	Leu 195	Phe	Lys	Val	Arg	Glu 200	Ser	Gly	Ser	Leu	Ser 205	Pro	Glu	His
Gly	Pro 210	Val	Val	Val	His	Cys 215	Ser	Ala	Gly	Ile	Gly 220	Arg	Ser	Gly	Thr
225					230					235				Lys	240
Pro	Ser	Ser	Val	Asp 245	Ile	Lys	Lys	Val	Leu 250	Leu	Glu	Met	Arg	Lys 255	Phe
			260					265					270	Tyr	
Ala	Val	Ile 275	Glu	Gly	Ala	Lys	Phe 280	Ile	Met	Gly	Asp	Ser 285	Ser	Val	Gln
Asp	Gln 290	Trp	Lys	Glu	Leu	Ser 295	His	Glu	Asp	Leu	Glu 300	Pro	Pro	Pro	Glu
His 305		Pro	Pro	Pro	Pro 310	Arg	Pro	Pro	Lys	Arg 315	Ile	Leu	Glu	Pro	His 320

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1669 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

60	TTATCGCTAT	ATGGTTCAGA	CCAAAACCGC	TATCCCACTG	CTGGATTCCA	GAAACAAGCA
120	ACAGATTTCC	AAGCCAGACA	'I'GCCGAAACG	ACACCTTTGC	ATCATAATAC	TGCAGCTTTC
180	TGCTCTGTAC	TGGTGAGCTT	CTGCTACCTG	CAAGGTTCTG	TGTGGGGGCT	ATCAGCAGGA
240	GAAGCAATAT	AGACCCACAG	CTATGGAAGA	CCACTGGGAG	TACTGGACAC	CCTGAGGAGA
300	GAAGTATATT	AAAAAAACCT	TTAATTTGGG	CTCTCGGCGT	TGGATGAAAT	AACAACAAGG
360	TATGAACCAC	ATGAACTGGC	GTCCATACAT	TTCTCTTGGT	ACCTTGAGGC	TCCATCCATA
420	AGTACCCCTG	CTGGACTCAA	CAGAAGATGA	AGAGGTGGTT	TGACCAGTGA	CTGGGGGACA
480	AGCCCCAGAC	GGGAAGGTAG	ATCCCAGAAT	CACCCTTTAT	GCAGTAATGA	TCTCATTCCC
540	TCAGTGTGGT	AAAATCAGGG	ACTCCTGTCA	AGGATATGTT	ATCGAAAGAA	TCTGTCGACT
600	GAAAACTGGC	AACTCAAGAA	CTGGAGGGCC	TGTGGGTGCC	CTTTTAGCTC	TCCTGTTGGG
660	TGATGGCTGT	TGTCTGAGAA	GTGGATTGTG	CCAGAACCTA	ATCTGAGTCC	AAACTCTTAA
720	TATTGACTCT	AGAACCGGGG	TATGTGCAGA	TGCCTTCCAA	ACATGACCAA	GGAGGGGGCT

GAAGATGUCT	ACCCATATGT	GGGATAGGAA	GAGAGTTGTA	TGTACAACCC	AACAGGCAAG	780
JCAGCTAAAT	GCAGAGGGTA	CAGAGAGATC	CCUGAGGGGA	ATGAGAAAG?	CCTGAAGAGG	840
GUAGTG 3000	GAGTGGGACC	TGTCTCTGTG	GCCATTGATG	CAAGCCTGAC	CTCCTTCCAG	900
TTTTACAGCA	AAGGTGTGTA	TTATGATGAA	AGCTGCAATA	GOGATAATOT	GAACCATGCG	960
GTTTTGGCAG	TGGGATATGG	AATCCAGAAG	GGAAACAAGC	ACTGGATAAT	TAAAAACAGC	1020
TGGGGA-3AAA	ACTGGGGAAA	CAAAGGATAT	ATCCTCATGG	CTCGAAATAA	GAACAACGCC	1080
TGTGGCATTG	-DCAACCT/GGC	CAGCTTCCCC	AAGATGTGAC	TOCAGCCAGC	CAAATCCATC	1140
TGCTCTTCC	ATTTCTTCCA	CGATGGTGCA	GTGTAACGAT	GCACTTTGGA	AGGGAGTTGG	1200
TGTGCTATTT	TTGAAGCAGA	TGTGGTGATA	CTGAGATTGT	CTGTTCAGTT	TCCCCATTTG	1260
TTTGTGCTTC	AAATGATCCT	TCCTACTTTG	CTTCTCTCCA	CCCATGACCT	TTTTCACTGT	1320
GGCCATCAGG	ACTTTCCCTG	ACAGCTGTGT	ACTOTTAGGO	TAAGAGATGT	GACTACAGCC	1380
TGCCCCTGAC	TGTGTTGTCC	CAGGGCTGAT	GCTGTACAGG	TACAGGCTGG	AGATTTTCAC	1440
ATAGGTTAGA	TTOTCATTCA	CGGGACTAGT	TAGCTTTAAG	CACCCTAGAG	GACTAGGGTA	1500
ATCTGACTTC	TCACTTCCTA	AGTTCCCTTC	TATATCCTCA	AGGTAGAAAT	GTCTATGTTT	1560
TCTACTCCAA	TTCATAAATC	TATTCATAAG	TCTTTGGTAC	AAGTTTACAT	GATAAAAAGA	1620
AATGTGATTT	GTOTTOCCTT	CTTTGCACTT	TTGAAATAAA	GTATTTATC		1669

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Trp	Gly	Leu	Lys	Val	Leu	Leu	Leu	Pro	Val	Val	Ser	Phe	Alā	Leu
1				5					10					15	
			20					25					30	Lys	
His	Arg	Lys 35	Gln	Тут	Asn	Asn	Lys 40	Vàl	Asp	Glu	Ile	Ser 45	Arg	Arg	Leu
	5.0					55					60			Glu	
Ser 65	Leu	Gly	Val	H15	Thr 70	Tyr	Glu	Leu	Ala	Met 75	Asrı	His	Leu	Gly	Asp 80
Met	Thr	Ser	Glu	Glu 85	Val	Val	Gln	ГЛЗ	Met 90	Thr	Gly	Leu	Lys	Val 95	
Leu	Ser	His	Ser 100	Arg	Ser	Asn	Asp	Thr 105	Leu	Тут	Ile	Pro	Glu 110	Trp	Glu
Gly	Arg	Ala 115	Prc	Asp	Ser	Val	Asp 120	Туг	Arg	Lys	Lys	Gly 125		Val	Thr
Pro	Val 130	Lys	Asn	Gln	Gly	Gln 135	Сув	Gly	Ser	Cys	Trp.	Ala	Phe	Ser	Ser
Val 145	Gly	Ala	Leu	Glu	Gly 150	Gln	Leu	Lys	Lys	Lys 155	Thr	Gly	Lys	Leu	Leu 160

Asn	Leu	Ser	Pro	Gln 165	Asn	Leu	Val	Asp	Cys 170	Val	Ser	Glu	Asn	Asp 175	Gly
Cys	Gly	Gly	Glγ 180	Tyr	Met	Thr	Asn	Ala 185	Phe	Gln	Tyr	Val	Gln 190	Lys	Asn
Arg	Gly	Ile 195	Asp	Ser	Glu	Asp	Ala 200	Tyr	Pro	Tyr	Val	Gly 205	Gln	Glu	Glu
Ser	Cys 210	Met	Tyr	Asn	Pro	Thr 215	Gly	Lys	Ala	Ala	Lys 220	Cys	Arg	Gly	Tyr
Arg 225	Glu	Ile	Pro	Glu	Gly 230	Asn	Glu	Lys	Ala	Leu 235	Lys	Arg	Ala	Val	Ala 240
Arg	Val	Gly	Pro	Val 245	Ser	Val	Ala	Ile	Asp 250	Ala	Ser	Leu	Thr	Ser 255	Phe
Gln	Phe	Tyr	Ser 260	Lys	Gly	Val	Tyr	Tyr 265	Asp	Glu	Ser	Cys	Asn 270	Ser	Asp
Asn	Leu	Asn 275	His	Ala	Val	Leu	Ala 280	Val	Gly	Tyr	Gly	Ile 285	Gln	Lys	Gly
Asn	Lys 290	His	Trp	Ile	Ile	Lys 295	Asn	Ser	Trp	Gly	Glu 300	Asn	Trp	Gly	Asn
Lys 305	Gly	Tyr	Ile	Leu	Met 310	Ala	Arg	Asn	Lys	Asn 315	Asn	Ala	Cys	Gly	Ile 320
Ala	Asn	Leu	Ala	Ser 325	Phe	Pro	Lys	Met							

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1001 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CTGCAGGAAT	TCGGCACGAG	GGGTGCTATT	GTGAGGCGGT	TGTAGAAGTT	AATAAAGGTA	60
TCCATGGAGA	ACACTGAAAA	CTCAGTGGAT	TCAAAATCCA	TTAAAAATTT	GGAACCAAAG	120
ATCATACATG	GAAGCGAATC	AATGGACTCT	GGAATATCCC	TGGACAACAG	TTATAAAATG	180
GATTATCCTG	AGATGGGTTT	ATGTATAATA	ATTAATAATA	AGAATTTTCA	TAAGAGCACT	240
GGAATGACAT	CTCGGTCTGG	TACAGATGTC	GATGCAGCAA	ACCTCAGGGA	AACATTCAGA	300
AACTTGAAAT	ATGAAGTCAG	GAATAAAAAT	GATCTTACAC	GTGAAGAAAT	TGTGGAATTG	360
ATGCGTGATG	TTTCTAAAGA	AGATCACAGC	AAAAGGAGCA	GTTTTGTTTG	TGTGCTTCTG	420
AGCCATGGTG	AAGAAGGAAT	AATTTTTGGA	ACAAATGGAC	CTGTTGACCT	GAAAAAAATA	480
ACAAACTTTT	TCAGAGGGGA	TCGTTGTAGA	AGTCTAACTG	GAAAACCCAA	ACTTTTCATT	540
ATTCAGGCCT	GCCGTGGTAC	AGAACTGGAC	TGTGGCATTG	AGACAGACAG	TGGTGTTGAT	600
GATGACATGG	CGTGTCATAA	AATACCAGTG	GAGGCCGACT	TCTTGTATGC	ATACTCCACA	660
GCACCTGGTT	ATTATTCTTG	GCGAAATTCA	AAGGATGGCT	CCTGGTTCAT	CCAGTCGCTT	720
TGTGCCATGC	TGAAACAGTA	TGCCGACAAG	CTTGAATTTA	TGCACATTCT	TACCCGGGTT	780
AACCGAAAGG	TGGCAACAGA	ATTTGAGTCC	TTTTCCTTTG	ACGCTACTTT	TCATGCAAAG	840

AAACAGATTO	CATGTATTGT	TTCCATGCTC	ACAAAAGAAC	TCTATTTTA	TCACTAAAGA	900
AATGGTTGGT	TGGTGGTTTT	TITTAGTTTG	TATGCCAAGT	GAGAAGATGG	TATATTTGGT	960
ACTGTATTTC	CCTCTCATTT	TGACCTACTC	TCATGCTGCA	G		1001

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met 1	Glu	Asn	Thr	Glu 5	Asn	Ser	Val	Asp	Ser 10	Lys	Ser	Ile	Lys	Asn 15	Leu
Glu	Pro	Lys	Ile 20	Ile	His	Gly	Ser	Glu 25	Ser	Met	Asp	Ser	Gly 30	Ile	Ser
Leu	Asp	Asn 35	Ser	Tyr	Lys	Met	Asp 40	Тут	Pro	Glu	Met	Gly 45	Leu	Суѕ	Ile
Ile	Ile 50	Asn	Asn	Lys	Asn	Phe 55	His	Lys	Ser	Thr	Gly 60	Met	Thr	Ser	Arg
Ser 65	Gly	Thr	Asp	Val	Asp 70	Ala	Ala	Asn	Leu	Arg 75	Glu	Thr	Phe	Arg	Asn 80
				85					90					Glu 95	
			100					105					110	Arg	
		115					120		_			125		Ile	
	130					135					140			Phe	_
Gly 1 4 5	Asp	Arg	Cys	Arg	Ser 150	Leu	Thr	Gly	Lys	Pro 155	Lys	Leu	Phe	Ile	Ile 160
Gln	Ala	Cys	Arg	Gly 165	Thr	Glu	Leu	Asp	Cys 170	Gly	Ile	Glu	Thr	Asp 175	Ser
			180					185					190	Ala	
Phe	Leu	Tyr 195	Ala	Tyr	Ser	Thr		Pro	Gly	Tyr	Tyr	Ser	Trp	Arg	Asn
							200			_		205			
	210	Asp	_		_	215	Ile			Leu	220	Ala		Leu	•
	210	Asp	_		_	215	Ile			Leu	220	Ala		Leu Val	•
Gln 225 Arg	210 Tyr Lys	Asp Ala Val	Asp Ala	Lys Thr 245	Leu 230 Glu	215 Glu Phe	Ile Phe Glu	Met Ser	His Phe 250	Leu Ile 235 Ser	220 Leu Phe	Ala Thr Asp	Arg Ala	Val Thr 255	Asn 240 Phe
Gln 225 Arg	210 Tyr Lys	Asp Ala Val	Asp Ala	Lys Thr 245	Leu 230 Glu	215 Glu Phe	Ile Phe Glu	Met Ser	His Phe 250	Leu Ile 235 Ser	220 Leu Phe	Ala Thr Asp	Arg Ala	Val Thr	Asn 240 Phe

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGG	AGATGG	AAAAGGAGTT	CGAGCAGATC	GACAAGTCCG	GGAGCTGGGC	GGCCATTTAC	60
CAGG	ATATCC	GACATGAAGC	CAGTGACTTC	CCATGTAGAG	TGGCCAAGCT	TCCTAAGAAC	120
AAAA	ACCGAA	ATAGGTACAG	AGACGTCAGT	CCCTTTGACC	ATAGTCGGAT	TAAACTACAT	180
CAAG	AAGATA	ATGACTATAT	CAACGCTAGT	TTGATAAAAA	TGGAAGAAGC	CCAAAGGAGT	240
TACA	TTCTTA	CCCAGGGCCC	TTTGCCTAAC	ACATGCGGTC	ACTTTTGGGA	GATGGTGTGG	300
GAGC	AGAAAA	GCAGGGGTGT	CGTCATGCTC	AACAGAGTGA	TGGAGAAAGG	TTCGTTAAAA	360
TGCG	CACAAT	ACTGGCCACA	AAAAGAAGAA	AAAGAGATGA	TCTTTGAAGA	CACAAATTTG	420
AAAT	TAACAT	TGATCTCTGA	AGATATCAAG	TCATATTATA	CAGTGCGACA	GCTAGAATTG	480
GAAA	ACCTTA	CAACCCAAGA	AACTCGAGAG	ATCTTACATT	TCCACTATAC	CACATGGCCT	540
GACT	TTGGAG	TCCCTGAATC	ACCAGCCTCA	TTCTTGAACT	TTCTTTTCAA	AGTCCGAGAG	600
TCAG	GGTCAC	TOAGOCCGGA	GCACGGGCCC	GTTGTGGTGC	ACAGCAGTGC	AGGCATCGGC	660
AGGT	CTGGAA	COTTOTGTOT	GGCTGATACC	TGCCTCCTGC	TGATGGACAA	GAGGAAAGAC	720
CCTT	CTTCCG	TTGATATCAA	GAAAGTGCTG	TTAGAAATGA	GGAAGTTTCG	GATGGGGTTG	780
ATCC	AGACAG	CCGACCAGCT	GCGCTTCTCC	TACCTGGCTG	TGATCGAAGG	TGCCAAATTC	840
ATCA	TGGGGG	ACTCTTCCGT	GCAGGATCAG	TGGAAGGAGC	TTTCCCACGA	GGACCTGGAG	900
cccc	CACCCG	AGCATATCCC	CCCACCTCCC	CGGCCACCCA	AACGAATCCT	GGAGCCACAC	960
TGA							963

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 322 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val	Ser 50	Pro	Phe	Aup	His	Ser 55	Arg	He	Lys	Leu	His 60	Gln	Glu	Asp	Asn
Asp 65	Tyr	lle	Asn	Ala	Ser 70	Leu	Ile	Lys	Met	Glu 75	Glu	Ala	Gln	Arg	Ser 80
Тут	Ile	Leu	Thr	Gln 85	Gly	Pro	Leu	Pro	Asn 90	Thr	САг	Gly	His	Phe 95	Trp
Glu	Met	Val	Trp 100	Glu	Gln	Lys	Ser	Arg 105	Gly	Val	Val	Met	Leu 110	Asn	Arg
Val	Met	Glu 115	Lys	Gly	Ser	Leu	Lys 120	Сув	Ala	Gln	Tyr	Trp 125	Pro	Gln	Lys
Glu	Glu 130	Lys	Glu	Met	Ile	Phe 135	Glu	Asp	Thr	Asn	Leu 140	Lys	Leu	Thr	Leu
145					150					155			Leu		160
Glu	Asn	Leu	Thr	Thr 165	Gln	Glu	Thr	Arg	Glu 170	Ile	Leu	His	Phe	His 175	туг
Thr	Thr	Trp	Pro 180	Asp	Phe	Gly	Val	Pro 185	Glu	Ser	Pro	Ala	Ser 190		Leu
Asn	Phe	Leu 195	Phe	Lys	Val	Arg	Glu 200	Ser	Gly	Ser	Leu	Ser 205	Pro	Glu	His
Gly	Pro 210	Val	Val	Val	His	Ser 215	Ser	Ala	Gly	Ile	Gly 220	Thr	Cys	Gly	Arg
Ser 225	Gly	Thr	Phe	Cys	Leu 230	Ala	Asp	Thr	Cys	Leu 235	Leu	Leu	Met	Asp	Lys 240
Arg	Lys	Asp	Pro	Ser 245	Ser	Val	Asp	Ile	Lys 250	Lys	Val	Leu	Leu	Glu 255	Met
Arg	Lys	Phe	Arg 260	Met	Gly	Leu	Ile	Gln 265	Thr	Ala	Asp	Gln	Leu 270	Arg	Phe
Ser	Tyr	Leu 275	Ala	Val	Ile	Glu	Gly 280	Ala	Lys	Phe	Ile	Met 285	Gly	Asp	Ser
Ser	Val 290	Gln	Asp	Gln	Trp	Lys 295	Glu	Leu	Ser	His	Glu 300	Asp	Leu	Glu	Prc
305		Glu	His	Ile	Pro 310	Pro	Pro	Pro	Arg	Pro 315	Pro	Lys	Arg	Ile	Leu 320
Glu	Pro														

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1001 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CTGCAGGAAT	TCGGCACGAG	GGGTGCTATT	GTGAGGCGGT	TGTAGAAGTT	AATAAAGGTA	60
TCCATGGAGA	ACACTGAAAA	CTCAGTGGAT	TCAAAATCCA	TTAAAAATTT	GGAACCAAAG	120
ATCATACATG	GAAGCGAATC	AATGGACTCT	GGAATATCCC	TGGACAACAG	TTATAAAATG	180
GATTATCCTG	AGATGGGTTT	ATGTATAATA	ATTAATAATA	AGAATTTTCA	TAAGAGCACT	240
GGAATGACAT	CTCGGTCTGG	TACAGATGTC	GATGCAGCAA	ACCTCAGGGA	AACATTCAGA	300
AACTTGAAAT	ATGAAGTCAG	GAATAAAAAT	GATCTTACAC	GTGAAGAAAT	TGTGGAATTG	360

PCT/CA97/00824

ATGCGTGATG	TTTCTAAAGA	AGATCACAGC	AAAAGGAGCA	GTTTTGTTTG	TGTGCTTCTG	420
AGCCATGGTG	AAGAAGGAAT	AATTTTTGGA	ACAAATGGAC	CTGTTGACCT	GAAAAAAATA	480
ACAAACTTTT	TCAGAGGGGA	TCGTTGTAGA	AGTCTAACTG	GAAAACCCAA	ACTTTTCATT	540
ATTCAGGCCT	CCCGTGGTAC	AGAACTGGAC	TGTGGCATTG	AGACAGACAG	TGGTGTTGAT	600
GATGACATGG	CGTGTCATAA	AATACCAGTG	GAGGCCGACT	TCTTGTATGC	ATACTCCACA	660
GCACCTGGTT	ATTATTCTTG	GCGAAATTCA	AAGGATGGCT	CCTGGTTCAT	CCAGTCGCTT	720
TGTGCCATGC	TGAAACAGTA	TGCCGACAAG	CTTGAATTTA	TGCACATTCT	TACCCGGGTT	780
AACCGAAAGG	TGGCAACAGA	ATTTGAGTCC	TTTTCCTTTG	ACGCTACTTT	TCATGCAAAG	840
AAACAGATTC	CATGTATTGT	TTCCATGCTC	ACAAAAGAAC	TCTATTTTA	TCACTAAAGA	900
AATGGTTGGT	TGGTGGTTTT	TTTTAGTTTG	TATGCCAAGT	GAGAAGATGG	TATATTTGGT	960
ACTGTATTTC	CCTCTCATTT	TGACCTACTC	TCATGCTGCA	G		1001

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met. 1	Glu	Asn	Thr	Glu 5	Asn	Ser	Val	Asp	Ser 10	Lys	Ser	Ile	Lys	Asn 15	Leu
			20					25				Ser	30		
Leu	Asp	Asn 35	Ser	Tyr	Lys	Met	Asp 40	Tyr	Pro	Glu	Met	Gly 45	Leu	Cys	Ile
	50					55					60	Met			
Ser 65	Gly	Thr	Asp	Val	Asp 70	Ala	Ala	Asn	Leu	Arg 75	Glu	Thr	Phe	Arg	Asn 80
Leu	Lys	Tyr	Glu	Val 85	Arg	Asn	Lys	Asn	Asp 90	Leu	Thr	Arg	Glu	Glu 95	Ile
Val	Glu	Leu	Met 100	Arg	Asp	Val	Ser	Lys 105	Glu	Asp	His	Ser	Lys 110	Arg	Ser
Ser	Phe	Val 115	Cys	Val	Leu	Leu	Ser 120	His	Gly	Glu	Glu	Gly 125	Ile	Ile	Phe
Gly	Thr 130	Asn	Gly	Pro	Val	Asp 135	Leu	Lys	Lys	Ile	Thr 140	Asn	Phe	Phe	Arg
Gly 1 4 5	Asp	Arg	Cys	Arg	Ser 150	Leu	Thr	Gly	Lys	Pro 155	Lys	Leu	Phe	Ile	Ile 160
Gln	Ala	Ser	Arg	Gly 165	Thr	Glu	Leu	Asp	Cys 170	Gly	Ile	Glu	Thr	Asp 175	Ser
Gly	Val	Asp	Asp 180	Asp	Met	Ala	Cys	His 185	Lys	Ile	Pro	Va1	Glu 190	Ala	Asp
Phe	Leu	Tyr 195	Ala	Tyr	Ser	Thr	Ala 200	Pro	Gly	Tyr	Tyr	Ser 205	Trp	Arg	Asn
Ser	Lys 210	Asp	Gly	Ser	Trp	Phe 215	Ile	Gln	Ser	Leu	Cys 220	Ala	Met	Leu	Lys

Gln Tyr Ala Asp Lys Leu Glu Phe Met His Ile Leu Thr Arg Val Asn 225 230 235 240

Arg Lys Val Ala Thr Glu Phe Glu Ser Phe Ser Phe Asp Ala Thr Phe 245 250 255

His Ala Lys Lys Gln Ile Pro Cys Ile Val Ser Met Leu Thr Lys Glu 260 265

Leu Tyr Phe Tyr His 275

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Glu Asn Thr Glu Asn Ser Val Asp Ser Lys Ser Ile Lys Asn Leu 1 10Glu Pro Lys Ile Ile His Gly Ser Glu Ser Met Asp Ser Gly Ile Ser 25 3.0 Leu Asp Asn Ser Tyr Lys Met Asp Tyr Pro Glu Met Gly Leu Cys Ile 40 45 Ile Ile Asn Asn Lys Asn Phe His Lys Ser Thr 3ly Met Thr Ser Arg 55 Ser Gly Thr Asp Val Asp Ala Ala Asn Leu Arg Glu Thr Phe Arg Asn 7.0 75 Leu Lys Tyr Glu Val Arg Asn Lys Asn Asp Leu Thr Arg Glu Glu Ile 90 Val Glu Leu Met Arg Asp Val Ser Lys Glu Asp His Ser Lys Arg Ser 100 105 110 Ser Phe Val Cys Val Leu Leu Ser His Gly Glu Glu Gly Ile Ile Phe 115 120 125 Gly Thr Asn Gly Pro Val Asp Leu Lys Lys Ile Thr Asn Phe Phe Arg 135 140 Gly Asp Arg Cys Arg Ser Leu Thr Gly Lys Pro Lys Leu Phe Ile Ile 150 155 Gln Ala Ser Arg Gly Thr Glu Leu Asp Cys Gly Ile Glu Thr Asp Ser 165 170 175 Gly Val Asp Asp Met Ala Cys His Lys Ile Pro Val Glu Ala Asp 180 185 Phe Leu Tyr Ala Tyr Ser Thr Ala Pro Gly Tyr Tyr Ser Trp Arg Asn 195 200 205 Ser Lys Asp Gly Ser Trp Phe Ile Gln Ser Leu Cys Ala Met Leu Lys 215 220 Gln Tyr Ala Asp Lys Leu Glu Phe Met His Ile Leu Thr Arg Val Asn 230 235 Arg Lys Val Ala Thr Glu Phe Glu Ser Phe Ser Phe Asp Ala Thr Phe 245 250 His Ala Lys Lys Gln Ile Pro Cys Ile Val Ser Met Leu Thr Lys Glu 260 265 Leu Tyr Phe Tyr His 275

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 990 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGTGGGGGC	TCAAGGTTCT	GCTGCTACCT	GTGGTGAGCT	TTGCTCTGTA	CCCTGAGGAG	60
ATACTGGACA	CCCACTGGGA	GCTATGGAAG	AAGACCCACA	GGAAGCAATA	TAACAACAAG	120
GTGGATGAAA	TCTCTCGGCG	TTTAATTTGG	GAAAAAAACC	TGAAGTATAT	TTCCATCCAT	180
AACCTTGAGG	CTTCTCTTGG	TGTCCATACA	TATGAACTGG	CTATGAACCA	CCTGGGGGAC	240
ATGACCAGTG	AAGAGGTGGT	TCAGAAGATG	ACTGGACTCA	AAGTACCCCT	GTCTCATTCC	300
CGCAGTAATG	ACACCCTTTA	TATCCCAGAA	TGGGAAGGTA	GAGCCCCAGA	CTCTGTCGAC	360
TATCGAAAGA	AAGGATATGT	TACTCCTGTC	AAAAATCAGG	GTCAGTGTGG	TTCCTCTTGG	420
GCTTTTAGCT	CTGTGGGTGC	CCTGGAGGGC	CAACTCAAGA	AGAAAACTGG	CAAACTCTTA	480
AATCTGAGTC	CCCAGAACCT	AGTGGATTGT	GTGTCTGAGA	ATGATGGCTG	TGGAGGGGGC	5 4 0
TACATGACCA	ATGCCTTCCA	ATATGTGCAG	AAGAACCGGG	GTATTGACTC	TGAAGATGCC	600
TACCCATATG	TGGGACAGGA	AGAGAGTTGT	ATGTACAACC	CAACAGGCAA	GGCAGCTAAA	660
TGCAGAGGGT	ACAGAGAGAT	CCCCGAGGGG	AATGAGAAAG	CCCTGAAGAG	GGCAGTGGCC	720
CGAGTGGGAC	CTGTCTCTGT	GGCCATTGAT	GCAAGCCTGA	CCTCCTTCCA	GTTTTACAGC	780
AAAGGTGTGT	ATTATGATGA	AAGCTGCAAT	AGCGATAATC	TGAACCATGC	GGTTTTGGCA	840
GTGGGATATG	GAATCCAGAA	GGGAAACAAG	CACTGGATAA	TTAAAAACAG	CTGGGGAGAA	900
AACTGGGGAA	ACAAAGGATA	TATCCTCATG	GCTCGAAATA	AGAACAACGC	CTGTGGCATT	960
GCCAACCTGG	CCAGCTTCCC	CAAGATGTGA				990

- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 990 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGTGGGGGC	TCAAGGTTCT	GCTGCTACCT	GTGGTGAGCT	TTGCTCTGTA	CCCTGAGGAG	50
ATACTGGACA	CCCACTGGGA	GCTATGGAAG	AAGACCCACA	GGAAGCAATA	TAACAACAAG	120
GTGGATGAAA	TCTCTCGGCG	TTTAATTTGG	GAAAAAAACC	TGAAGTATAT	TTCCATCCAT	180

AACCTTGAGG	CTTCTCTTGG	${\tt TGTCCATACA}$	TATGAAFTGG	CTATGAACCA	CCTGGGGGAC	240
ATGACCAGTG	AAGAGGTGGT	TCAGAAGATG	ACTGGACTCA	AAGTAGGGGT	GTOTCATTCC	300
CGCAGTAATG	ACCCCTTTA	TATOCCAGAA	TGGGAAGGTA	GAGCCCCCAGA	CTCTGTCGAC	360
TATOGAAAGA	AAGGATATGT	TACTCCTGTC	AAAAATCAGG	GTCAGTGTGG	TTCCGCTTGG	420
GCTTTTAGCT	CTGTGGGTGC	COTGGAGGGC	CAACTCAAGA	AGAAAACTGG	CAAACTCTTA	480
AATSTGAGTS	CCCAGAACCT	AGTGGATTGT	GTGTOTGAGA	ATGATGGCTG	TGGAGGGGGC	5 4 0
TACATGACCA	ATGCCTTCCA	ATATGTGCAG	AAGAA-DOGGG	GTATTGACTC	TGAAGATGCC	600
TACCCATATG	TGGGACAGGA	AGAGAGTTGT	ATGTACAACC	CAACAGGCAA	GGCAGCTAAA	660
TGCAGAGGGT	ACAGAGAGAT	CCCCGAGGGG	AATGAGAAAG	CCCTGAAGAG	GGCAGTGGCC	720
CGAGTGGGAC	CTGTCTCTGT	GGCCATTGAT	GCAAGCCTGA	CCTCCTTCCA	GTTTTACAGC	780
AAAGGTGTGT	ATTATGATGA	AAGCTGCAAT	AGCGATAATC	TGAACCATGC	GGTTTTGGCA	840
GTGGGATATG	GAATCCAGAA	GGGAAACAAG	CACTGGATAA	TTAAAAACAG	CTGGGGAGAA	900
AACTGGGGAA	ACAAAGGATA	TATCCTCATG	GCTCGAAATA	AGAACAACGC	CTGTGGCATT	960
GCCAACCTGG	CCAGCTTCCC	CAAGATGTGA				990

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Trp Gly Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu 10 Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr 20 25 His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu 40 Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala 55 60 Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp 70 Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro 85 90 Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 100 105 Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr 120 125 Pro Val Lys Asn Gln Gly Gln Cys Gly Ser Ser Trp Ala Phe Ser Ser 135 140 Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Lys Thr Gly Lys Leu Leu 155 150 Asn Leu Ser Pro Gln Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly 170

Cys Gly Gly Gly Tyr Met Thr Asn Ala Phe Gln Tyr Val Gln Lys Asn 185 180 Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu 200 205 195 Ser Cys Met Tyr Asn Pro Thr Gly Lys Ala Ala Lys Cys Arg Gly Tyr 215 220 Arg Glu Ile Pro Glu Gly Asn Glu Lys Ala Leu Lys Arg Ala Val Ala 230 235 Arg Val Gly Pro Val Ser Val Ala Ile Asp Ala Ser Leu Thr Ser Phe 245 250 Gln Phe Tyr Ser Lys Gly Val Tyr Tyr Asp Glu Ser Cys Asn Ser Asp 265 260 Asn Leu Asn His Ala Val Leu Ala Val Gly Tyr Gly Ile Gln Lys Gly 275 280 Asn Lys His Trp Ile Ile Lys Asn Ser Trp Gly Glu Asn Trp Gly Asn 290 295 300 Lys Gly Tyr Ile Leu Met Ala Arg Asn Lys Asn Asn Ala Cys Gly Ile 310 Ala Asn Leu Ala Ser Phe Pro Lys Met 325

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Trp Gly Leu Lys Val Leu Leu Pro Val Val Ser Phe Ala Leu Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr 25 His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu 40 Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala 55 Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp 75 70 Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro 85 Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 105 Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr 125 120 Pro Val Lys Asn Gln Gly Gln Cys Gly Ser Ala Trp Ala Phe Ser Ser 140 135 Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Lys Thr Gly Lys Leu Leu 155 150 Asn Leu Ser Pro Gln Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly 170 165 Cys Gly Gly Gly Tyr Met Thr Asn Ala Phe Gln Tyr Val Gln Lys Asn 185 190 180 Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu 200

Ser	Сув 210	Met	Тут	Asn			Gly			Ala	Lys 220	Cys	Arg	Gly	Туг
Arg 225	Glu	Ile	Pro	Glu	Gly 230	Asn	Glu	Lys	Ala	Leu 235	Lys	Arg	Ala	Val	Ala 240
Arg	Val	Gly	Pro	Val 2 4 5	Ser	Val	Ala	Ile	Asp 250	Ala	Ser	Leu	Thr	Ser 255	Phe
Gln	Phe	Tyr	Ser 260	Lys	Gly	Val	Tyr	Tyr 265	Asp	Glu	Ser	Сув	Asn 270	Ser	Asp
Asn	Leu	Asn 275	His	Ala	Val	Leu	Ala 280	Val	Gly	Tyr	Gly	Ile 285	Gln	Lys	Gly
Asn	Lys 290	His	Trp	Ile	Ile	Lys 295	Asn	Ser	Trp	Gly	Glu 300	Asn	Trp	Gly	Asn
Lys 305	Gly	Tyr	Ile	Leu	Met 310	Ala	Arg	Asn	Lys	Asn 315	Asn	Ala	Суѕ	Gly	Ile 320
Ala	Asn	Leu	Ala	Ser	Phe	Pro	Lys	Met							

WHAT IS CLAIMED:

- 1. A peptide comprising a ligand having binding affinity for a tyrosine phosphatase or cysteine protease, wherein said ligand contains two or more 4-phosphono(difluoromethyl) phenylalanine groups.
 - 2. The peptide of Claim 1 wherein said ligand has a greater binding affinity than the corresponding ligand only containing one of said 4-phosphono(difluoromethyl) phenylalanine groups.

10

5

- 3. A peptide selected from the group consisting of: N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH₂), where E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl;
- N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
 N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
- L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-20 (difluoromethyl)]-L-phenylalanine amide;
 - L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
 - L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
- L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide.

30

- 4. The peptide of Claim 3 in tritiated or I¹²⁵ iodinated form.
- 5. A tritiated peptide, N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide.

6. A process for increasing the binding affinity of a ligand for a tyrosine phosphatase or cysteine protease comprising introducing into the ligand two or more 4-phosphono(difluoromethyl) phenylalanine groups.

SUBSTITUTE SHEET (RULE 26)

	ATGGAGATGGAAAAGGAGTTCGAGCAGATCGACAAGTCCGGGGAGUTCGGCCGCCATTTAC
	TACCTCTACCTTTTCCTCAAGCTCGTCTAGCTGTTCAGGCCCTCGACCCGCCGGTAAATG MetGluMetGluLysGluPheGluGlnIleAspLysSerGlySerTrpAlaAlaIleTyr
	CAGGATATCCGACAT5AAGCCAGTGACTTCCCATGTAGAGTGGCCAAGCTTCCTAAGAAC
	GTCCTATAGGCTGTACTTCGGTCACTGAAGGGTACATCTCACCGGTTCGAAGGATTCTTG G1nAspIleArgHisG1uAlaSerAspPheProCysArgValAlaLysLeuProLysAsn
	AAAAACCGAAATAGGTACAGAGACGTCAGTCCCTTTGACCATAGTCGGATTAAACTACAT
	TTTTTGGCTTTATCCATGTCTCTGCAGTCAGGGAAACTGGTATCAGCCTAATTTGATGTA LysAsnArgAsnArgTyrArgAspVa1SerProPheAspHisSerArgI1eLysLeuHis
(CAAGAAGATAATGACTATATCAACGCTAGTTTGATAAAAATGGAAGAAGCCCAAAGGAGT
(GTTCTTCTATTACTGATATAGTTGCGATCAAACTATTTTTACCTICTTCGGGTTTCCTCA GlnGluAspAsnAspTyrIleAsnAlaSerLeuIleLysMetGluGluAlaGlnArgSer
	TACATTCTTACCCAGGGCCCTTTGCCTAACACATGCGGTCACTTTTGGGAGATGGTGTGG
1	ATGTAAGAATGGGTCCCGGGAAACGGATTGTGTACGCCAGTGAAAACCCTCTACCACACC TyrIleLeuThrGlnGlyProLeuProAsnThrCysGlyHisPheTrpGluMetValTrp
	GAGCAGAAAAGCAGGGGTGTCGTCATGCTCAACAGAGTGATGGAGAAAGGTTCGTTAAAA
	CTCGTCTTTTCGTCCCCACAGCAGTACGAGTTGTCTCACTACCTCTTTCCAAGCAATTTT GluGlnLysSerArgGlyValValMetLeuAsnArgValMetGluLysGlySerLeuLys
	TGCGCACAATACTGGCCACAAAAAGAAGAAGAAAAAGAGATGATCTTTGAAGACACAAATTTG
1	ACGCGTGTTATGACCGGTGTTTTTCTTCTTTTTTCTCTACTAGAAACTTCTGTGTTTAAAC CysAlaGlnTyrTrpProGlnLysGluGluLysGluMetIlePheGluAspThrAsnLeu
	AAATTAACATTGATCTCTGAAGATATCAAGTCATATTATACAGTGCGACAGCTAGAATTG
-	TTTAATTGTAACTAGAGACTTCTATAGTTCAGTATAATATGTCACGCTGTCGATCTTAAC LysLeuThrLeuIleSerGluAspIleLysSerTyrTyrThrValArgGlnLeuGluLeu
	GAAAACCTTACAACCCAAGAAACTCGAGAGATCTTACATTTCCACTATACCACATGGCCT
	++++++

FIG.2A

SUBSTITUTE SHEET (RULE 26)

3/8

C 41	GACTTTGGAGTCCCTGAATCACCAGCCTCATTCTTGAACTTTCTTT	600
541 181	CTGAAACCTCAGGGACTTAGTGGTCGGAGTAAGAACTTGAAAGAAA	200
601		660
201	AGTCCCAGTGAGTCGGGCCTCGTGCCCGGGCAACACCACGTGACGTCACGTCCGTAGCCG SerGlySerLeuSerProGluHisGlyProValValValHis <u>Cys</u> SerAlaGlyIleGly	220
661	AGGTCTGGAACCTTCTGTCTGGCTGATACCTGCCTCCTGCTGATGGACAAGAGGAAAGAC	720
221	TCCAGACCTTGGAAGACAGACCGACTATGGACGGAGGACGACTACCTGTTCTCCTTTCTG ArgSerGlyThrPheCysLeuAlaAspThrCysLeuLeuLeuMetAspLysArgLysAsp	240
721	CCTTCTTCCGTTGATATCAAGAAAGTGCTGTTAGAAATGAGGAAGTTTCGGATGGGGTTG	780
241	GGAAGAAGGCAACTATAGTTCTTTCACGACAATCTTTACTCCTTCAAAGCCTACCCCAAC ProSerSerValAspIleLysLysValLeuLeuGluMetArgLysPheArgMetGlyLeu	260
781	ATCCAGACAGCCGACCAGCTGCGCTTCTCCTACCTGGCTGTGATCGAAGGTGCCAAATTC	840
261	TAGGTCTGTCGGCTGGTCGACGCGAAGAGGATGGACCGACACTAGCTTCCACGGTTTAAG IleGlnThrAlaAspGlnLeuArgPheSerTyrLeuAlaValIleGluGlyAlaLysPhe	
841	ATCATGGGGGACTCTTCCGTGCAGGATCAGTGGAAGGAGCTTTCCCACGAGGACCTGGAG	900
841	TAGTACCCCCTGAGAAGGCACGTCCTAGTCACCTTCCTCGAAAGGGTGCTCCTGGACCTC IleMetGlyAspSerSerValGlnAspGlnTrpLysGluLeuSerHisGluAspLeuGlu	
001	CCCCCACCGAGCATATCCCCCCACCTCCCGGCCACCCAAACGAATCCTGGAGCCACACTGA	960
901	GGGGGTGGGCTCGTATAGGGGGGTGGAGGGGCCGGTGGGTTTGCTTAGGACCTCGGTGTGACT ProProProBluHisIleProProProProArgProProLysArgIleLeuGluProHisEnd	320

FIG.2B

	GAAACAAGCACTGGATTCCATATCCCACTGCCAAAACCGCATGGTTCAGATTATCGCTAT
l	CTTTGTTCGTGACCTAAGGTATAGGGTGACGGTTTTGGCGTACCAAGTCTAATAGCGATA
	TGCAGCTTTCATCATAATACACACCTTTGCTGCCGAAACGAAGCCAGACAACAGATTTCC
61	ACGTCGAAAGTAGTATTATGTGTGGAAACGACGGCTTTGCTTCGGTCTGTTGTCTAAAGG
101	ATCAGCAGGATGTGGGGGCTCAAGGTTCTGCTGCTACCTGTGGTGAGCTTTGCTCTGTAC
121	TAGTCGTCCTACACCCCCGAGTTCCAAGACGACGATGGACACCACTCGAAACGAGACATG MetTrpGlyLeuLysValLeuLeuLeuProValValSerPheAlaLeuTyr
	CCTGAGGAGATACTGGACACCCACTGGGAGCTATGGAAGAAGACCCACAGGAAGCAATAT
181	GGACTCCTCTATGACCTGTGGGTGACCCTCGATACCTTCTTCTGGGTGTCCTTCGTTATA ProGluGluIleLeuAspThrHisTrpGluLeuTrpLysLysThrHisArgLysGlnTyr
241	AACAACAAGGTGGATGAAATCTCTCGGCGTTTAATTTGGGAAAAAAACCTGAAGTATATT
	TTGTTGTTCCACCTACTTTAGAGAGCCGCAAATTAAACCCTTTTTTTT
201	TCCATCCATAACCTTGAGGCTTCTCTTGGTGTCCATACATA
301	AGGTAGGTATTGGAACTCCGAAGAGAACCACAGGTATGTAT
261	CTGGGGGACATGACCAGTGAAGAGGTGGTTCAGAAGATGACTGGACTCAAAGTACCCCTG
361	GACCCCCTGTACTGGTCACTTCTCCACCAAGTCTTCTACTGACCTGAGTTTCATGGGGAC LeuGlyAspMetThrSerGluGluValValGlnLysMetThrGlyLeuLysValProLeu
401	TCTCATTCCCGCAGTAATGACACCCTTTATATCCCAGAATGGGAAGGTAGAGCCCCAGAC
421	AGAGTAAGGGCGTCATTACIGTGGGAAATATAGGGTCTTACCCTTCCATCTCGGGGTCTG SerHisSerArgSerAsnAspThrLeuTyrIleProGluTrpGluGlyArgAlaProAsp
101	TCTGTCGACTATCGAAAGAAAGGATATGTTACTCCTGTCAAAAATCAGGGTCAGTGTGGT
481	AGACAGCTGATAGCTTTCCTTTCCTATACAATGAGGACAGTTTTTAGTCCCAGTCACACCA ServalAsptyrArglyslysGlyTyrValThrProValLysAsnGlnGlyGlnCysGly

FIG.3A

	TCCTGTTGGGCTTTTAGCTCTGTGGGTGCCCTGGAGGGCCAACTCAAGAAGAAAACTGGC	600
541	AGGACAACCCGAAAATCGAGACACCCACGGGACCTCCCGGTTGAGTTCTTCTTTTGACCG Ser <u>Cys</u> TrpAlaPheSerSerValGlyAlaLeuGluGlyGlnLeuLysLysLysThrGly 139	
	AAACTCTTAAATCTGAGTCCCCAGAACCTAGTGGATTGTGTGTCTGAGAATGATGGCTGT	660
501	TTTGAGAATTTAGACTCAGGGGTCTTGGATCACCTAACACACAGACTCTTACTACCGACA LysLeuLeuAsnLeuSerProGlnAsnLeuValAspCysValSerGluAsnAspGlyCys	
	GGAGGGGCTACATGACCAATGCCTTCCAATATGTGCAGAAGAACCGGGGTATTGACTCT	720
661	CCTCCCCGATGTACTGGTTACGGAAGGTTATACACGTCTTCTTGGCCCCATAACTGAGA GlyGlyGlyTyrMetThrAsnAlaPheGlnTyrValGlnLysAsnArgGlyIleAspSer	
721	GAAGATGCCTACCCATATGTGGGACAGGAAGAGAGTTGTATGTA	780
	CTTCTACGGATGGGTATACACCCTGTCCTTCTCTCAACATACAT	
	GCAGCTAAATGCAGAGGGTACAGAGAGATCCCCGAGGGGAATGAGAAAGCCCTGAAGAGG	840
781	CGTCGATTTACGTCTCCCATGTCTCTAGGGGGCTCCCCTTACTCTTTCGGGACTTCTCC AlaAlaLysCysArgGlyTyrArgGluIleProGluGlyAsnGluLysAlaLeuLysArg	
	GCAGTGGCCCGAGTGGGACCTGTCTCTGTGGCCATTGATGCAAGCCTGACCTCCTTCCAG	900
841	CGTCACCGGGCTCACCCTGGACAGAGACACCGGTAACTACGTTCGGACTGGAGGAAGGTC AlaValAlaArgValGlyProValSerValAlaIleAspAlaSerLeuThrSerPheGln	
0.0.1	TTTTACAGCAAAGGTGTGTATTATGATGAAAGCTGCAATAGCGATAATCTGAACCATGCG	960
901	AAAATGTCGTTTCCACACATAATACTACTTTCGACGTTATCGCTATTAGACTTGGTACGC PheTyrSerLysGlyValTyrTyrAspGluSerCysAsnSerAspAsnLeuAsnHisAla	
	GTTTTGGCAGTGGGATATGGAATCCAGAAGGGAAACAAGCACTGGATAATTAAAAACAGC	1020
961	CAAAACCGTCACCCTATACCTTAGGTCTTCCCTTTGTTCGTGACCTATTAATTTTTGTCG ValLeuAlaValGlyTyrGlyIleGlnLysGlyAsnLysHisTrpIleIleLysAsnSer	
	TGGGGAGAAAACTGGGGAAACAAAGGATATATCCTCATGGCTCGAAATAAGAACAACGCC	1080
1021	ACCCCTCTTTTGACCCCTTTGTTTCCTATATAGGAGTACCGAGCTTTATTCTTGTTGCGG TrpGlvGluAsnTrpGlyAsnLysGlyTyrIleLeuMetAlaArgAsnLysAsnAsnAla	

FIG.3B

1081	TGTGGCATTGCCAACCTGGCCAGCTTCCCCCAAGATGTGACTCCAGCCACCCAAATCCATC	1140			
1001	ACACCGTAACGGTTGGACCGGTCGAAGGGGTTCTACACTGAGGTCGGTC				
	CTGCTCTTCCACTTTCTTCCACGATGGTGCAGTGTAACGATGCACTTTGGAAGGGAGTTGG	1200			
1141	GACGAGAAGGTAAAGAAGGTGCTACCACGTCACATTGCTACGTGAAACCTTCCCTCAACC				
	TGTGCTATTTTTGAAGCAGATGTGGTGATACTGAGATTGTCTGTTCAGTTTCCCCATTTG	1260			
1201	ACACGATAAAAACTTCGTCTACACCACTATGACTCTAACAGACAAGTCAAAGGGGTAAAC	1200			
	TTIGTGCTTCAAATGATCCTTCCTACTTTGCTTCTCCCACCCA	1320			
1261	AAACACGAAGTTTACTAGGAAGGATGAAACGAAGAGAGGTGGGTACTGGAAAAAGTGACA	1040			
	GGCCATCAGGACTTTCCCTGACAGCTGTGTACTCTTAGGCTAAGAGATGTGACTACAGCC	1380			
1321	CCGGTAGTCCTGAAAGGGACTGTCGACACATGAGAATCCGATTCTCTACACTGATGTCGG	1000			
	TGCCCCTGACTGTTGTCCCAGGGCTGATGCTGTACAGGTACAGGCTGGAGATTTTCAC	1440			
1381	ACGGGGACTGACACAGGGTCCCGACTACGACATGTCCATGTCCGACCTCTAAAAGTG	1440			
	ATAGGTTAGATTCTCATTCACGGGACTAGTTAGCTTTAAGCACCCTAGAGGACTAGGGTA	1500			
1441	TATCCAATCTAAGAGTAAGTGCCCTGATCAATCGAAATTCGTGGGATCTCCTGATCCCAT	1300			
	ATCTGACTTCTCACTTCCTAAGTTCCCTTCTATATCCTCAAGGTAGAAATGTCTATGTTT	1560			
1501	TAGACTGAAGAGTGAAGGATTCAAGGGAAGATATAGGAGTTCCATCTTTACAGATACAAA	1.000			
	TCTACTCCAATTCATAAATCTATTCATAAGTCTTTGGTACAAGTTTACATGATAAAAAAGA	1620			
1561	AGATGAGGTTAAGTATTTAGATAAGTATTCAGAAAACCATGTTCAAATGTACTATTTTCT	1020			
	AATGTGATTTGTCTTCCCTTCTTTGCACTTTTGAAATAAAGTATTTATC				
1621	1664				

FIG.3C

CACGAGGGGTGCTATTGTGAGGCGGTTGTAGAAGTTAATAA	AlalaTA
GTGCTCCCCACGATAACACTCCGCCAACATCTTCAATTATT	
TGAAAACTCAGTGGATTCAAAATCCATTAAAAATTTGGAAC	CAAAG
ACTTTTGAGTCACCTAAGTTTTAGGTAATTTTTAAACCTTG rGluAsnSerValAspSerLysSerIleLysAsnLeuGluP	GTTTC
CGAATCAATGGACTCTGGAATATCCCTGGACAACAGTTATA	AAATG
GCTTAGTTACCTGAGACCTTATAGGGACCTGTTGTCAATAT erGluSerMetAspSerGlyIleSerLeuAspAsnSerTyrL	TTTAC
GGGTTTAIGTATAATAATAATAATAAGAATTTTCATAAGA	GCACT
ACCCAAATACATATTATTAATTATTATTCTTAAAAGTATTCT etGlyLeuCysIleIleIleAsnAsnLysAsnPheHisLysS	CGTGA
GGTCTGGTACAGATGTCGATGCAGCAAACCTCAGGGAAACAT	TCAGA
CCAGACCATGTCTACAGCTACGTCGTTTGGAGTCCCTTTGTA rgSerGlyThrAspValAspAlaAlaAsnLeuArgGluThrF	AAGTCT
AAGTCAGGAATAAAAATGATCTTACACGTGAAGAAATTGTGG	GAATTG
TTCAGTCCTTATTTTTACTAGAATGTGCACTTCTTTAACACC luValArgAsnLysAsnAspLeuThrArgGluGluIleValC	CTTAAC
CTAAAGAAGATCACAGCAAAAGGAGCAGTTTTGTTTGTGTG	CTTCTG
GATTTCTTCTAGTGTCGTTTTCCTCGTCAAAACAAACACACCC erLysGluAspHisSerLysArgSerSerPheValCysValL	GAAGAC
AAGGAATAATTTTTGGAACAAATGGACCTGTTGACCTGAAAA	4AAATA +
TTCCTTATTAAAAACCTTGTTTACCTGGACAACTGGACTTT luGlyIleIlePheGlyThrAsnGlyProValAspLeuLysi	ITTTAT _ysIle
GAGGGGATCGTTGTAGAAGTCTAACTGGAAAACCCAAACTT	TTCATT
CTCCCCTAGCAACATCTTCAGATTGACCTTTTGGGTTTGAA raGlyAspArgCysArgSerLeuThrGlyLysProLysLeul	AAGTAA

FIG.4A

ATTCAGGCCTGCCGTGGTACAGAACTGGACTGTGGCATTGAGACAGAC	
TAAGTCCGGACGGCACCATGTCTTGACCTGACACCGTAACTCTGTCTG	
GATGACATGGCGTGTCATAAAATACCAGTGGAGGCCGACTTCTTGTATGCATACTCCACA	•
CTACTGTACCGCACAGTATTTTATGGTCACCTCCGGCTGAAGAACATACGTATGAGGTGT AspAspMetAlaCysHisLysIleProValGluAlaAspPheLeuTyrAlaTyrSerThr	
GCACCTGGTTATTATTCTTGGCGAAATTCAAAGGATGGCTCCTGGTTCATCCAGTCGCTT	
CGTGGACCAATAATAAGAACCGCTTTAAGTTTCCTACCGAGGACCAAGTAGGTCAGCGAAAAAAAA	
TGTGCCATGCTGAAACAGTATGCCGACAAGCTTGAATTTATGCACATTCTTACCCGGGTT	_
ACACGGTACGACTTTGTCATACGGCTGTTCGAACTTAAATACGTGTAAGAATGGGCCCAACysAlaMetLeuLysGlnTyrAlaAspLysLeuGluPheMetHisIleLeuThrArgVal	,
AACCGAAAGGTGGCAACAGAATTTGAGTCCTTTTCCTTTGACGCTACTTTTCATGCAAAG	
TTGGCTTTCCACCGTTGTCTTAAACTCAGGAAAAGGAAACTGCGATGAAAAGTACGTTTC AsnArgLysValAlaThrGluPheGluSerPheSerPheAspAlaThrPheHisAlaLys	8
AAACAGATTCCATGTTTCCATGCTCACAAAAGAACTCTATTTTTATCACTAAAGA	
TTTGTCTAAGGTACATAACAAAGGTACGAGTGTTTTCTTGAGATAAAAATAGTGATTTCT LysGlnIleProCysIleValSerMetLeuThrLysGluLeuTyrPheTyrHisEnd	Ç
AATGGTTGGTTGGTGTTTTTTTTAGTTTGTATGCCAAGTGAGAAGATGGTATATTTGGT	
TTACCAACCAACAAAAAAAAATCAAACATACGGTTCACTCTTCTACCATATAAACCA	9
ACTGTATTTCCCTCTCATTTTGACCTACTCTCATGCTGCAG	
TGACATAAAGGAAGAATAAAACTGGATGAGAGTACGACGTC	

FIG.4B

INTERNATIONAL SEARCH REPORT

PCT/CA 97/00824

			1 317 377 30021
A. CLASS IPC 6	FICATION OF SUBJECT MATTER C 07K5/08 G01N33/573		
According t	o international Patent Classification (IPC) or to both national cl	assification and IPC	
	SEARCHED		
IPC 6	ocumentation searched. (classification system followed by clas ${\tt C07K-G01N}$	sification symbols)	
Documenta	tion searched other than minimumdocumentation to the extent	that such documents are include	d in the fields searched
Electronic d	ata base consulted during the international search (name of d	lata base and, where practical, se	earch terms used)
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of t	he relevant passages	Relevant to claim No.
X	R L WANGE ET AL.: "F2(PMP)2-novel competitive inhibitor or of ZAP-70 to the T cell antigoblocks early cell signaling" JOURNAL OF BIOLOGICAL CHEMISTIVOL. 370, no. 2, 13 January 19 pages 944-948, XP002056490 see the whole document	f the binding en receptor, RY.,	1,2
X Furth	er documents are listed in the continuation of box C.	X Patent family men	nbers are listed in annex.
"A" docume conside "E" earlier d filing de which is creation "O" docume other m"P" documer	nt which may throw doubts on priority claim(s) or s cited to establish the publicationdate of another or other special reason (as specified) nt refering to an oral disclosure, use, exhibition or	or priority date and incited to understand the cited to understand the invention. "X" document of particular cannot be considered involve an inventive some "Y" document of particular cannot be considered document is combine.	ned after the international filling date of in conflict with the application but the principle or theory underlying the relevance; the claimed invention of a novel or cannot be considered to the other than the document is taken alone relevance, the claimed invention to involve an inventive step when the docution being obvious to a person skilled
	ictual completion of theinternational search		nternational search report
20) February 1998	06/03/199	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl. Fax:(+31-70) 340-3016	Authorized officer Masturzo,	P
		1	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Ir ational Application No

Category Tation of document with indication where appropriate of the relevant passa-	ges Relevant to daim No
	<u> </u>
S R EATON ET AL.: "Structure-activity relationship of peptides that block the association of PDGF beta-trceptor with phosphatidylinositol 3-kinase" PEPTIDES. CHEMISTRY, STRUCTURE AND BIOLOGY. PROCEEDINGS OF THE 14TH AMERIC PEPTIDE SYMPOSIUM, JUNE 18-23, 1995, COLUMBUS, OHIO, USA, 1996, MAYFLOWER SCIENTIFIC LTD, ENGLAND pages 414-415, XPO02056491 see the whole document	CAN
M F GORDEEV ET AL.: "N-alpha-FMOC-4-phosphono (difluoromethyl)-L-phenylalanine: a new 0-phosphotyrosine isosteric building bi suitable for direct incorporation into peptides " TETRAHEDRON LETTERS., vol. 35, no. 41, 10 October 1994, OXFOR GB, pages 7585-7588, XP000616320 see the whole document	ock
,P WO 97 08300 A (ARIAD PHARMACEUTICALS, INC.) 6 March 1997 see page 17, compound 9	1,2

INTERNATIONAL SEARCH REPORT

Information on patent family members

ir ational Application No PCT/CA 97/00824

	Patent document cited in search report	Publication date	Patent tamily member(s)	Publication date
	WO 9708300 A	06-03-97	AU 6960696 A	19-03-97
ļ				

		8