Fibonacci Heap

Heaps as Priority Queues

- You have seen binary min-heaps/max-heaps
- Can support creating a heap, insert, finding/extracting the min (max) efficiently
- Can also support decrease-key operations efficiently
- However, not good for merging two heaps
 - O(n) where n is the total no. of elements in the two heaps
- Variations of heaps exist that can merge heaps efficiently
 - May also improve the complexity of the other operations
 - Ex. Binomial heaps, Fibonacci heaps
- We will study Fibonacci heaps, an amortized data structure

A Comparison

Operation	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	Θ (1)	Θ (1)	Θ (1)
INSERT	Θ (lg n)	O(lg n)	Θ (1)
MINIMUM	Θ (1)	O(lg n)	Θ (1)
EXTRACT-MIN	Θ (lg n)	Θ (lg n)	O(lg n)
MERGE/UNION	Θ (n)	O(lg n)	Θ (1)
DECREASE-KEY	Θ (lg n)	Θ (lg n)	Θ (1)
DELETE	Θ (lg n)	Θ (lg n)	O(lg n)

Fibonacci Heap

- A collection of min-heap ordered trees
 - Each tree is rooted but "unordered", meaning there is no order between the child nodes of a node (unlike, for ex., left child and right child in a rooted, ordered binary tree)
 - Each node x has
 - One parent pointer p[x]
 - One child pointer child[x] which points to an arbitrary child of x
 - The children of x are linked together in a circular, doubly linked list
 - Each node y has pointers left[y] and right[y] to its left and right node
 in the list
 - So x basically stores a pointer to start in this list of its children

- The root of the trees are again connected with a circular, doubly linked list using their left and right pointers
- A Fibonacci heap H is defined by
 - A pointer min[H] which points to the root of a tree containing the minimum element (minimum node of the heap)
 - A variable n[H] storing the number of elements in the heap

Additional Variables

- Each node x also has two other fields
 - degree[x] stores the number of children of x
 - mark[x] indicates whether x has lost a child since the last time x was made the child of another node
 - We will denote marked nodes by color black, and unmarked ones by color grey
 - A newly created node is unmarked
 - A marked node also becomes unmarked whenever it is made the child of another node

Amortized Analysis

- We mentioned Fibonacci heap is an amortized data structure
- We will use the potential method to analyse
- Let t(H) = no. of trees in a Fibonacci heap H
- Let m(H) = number of marked nodes in H
- Potential function used

$$\Phi(H) = t(H) + 2m(H)$$

Operations

- Create an empty Fibonacci heap
- Insert an element in a Fibonacci heap
- Merge two Fibonacci heaps (Union)
- Extract the minimum element from a Fibonacci heap
- Decrease the value of an element in a Fibonacci heap
- Delete an element from a Fibonacci heap

Creating a Fibonacci Heap

- This creates an empty Fibonacci heap
- Create an object to store min[H] and n[H]
- Initialize min[H] = NIL and n[H] = 0
- Potential of the newly created heap Φ (H) = 0
- Amortized cost = actual cost = O(1)

Inserting an Element

- Add the element to the left of min[H]
- Update min[H] if needed

Insert 21 min[H] **(30**) **(52)**

Inserting an Element (contd.)

- Add the element to the left of node pointed to by min[H]
- Update min[H] if needed

Amortized Cost of Insert

- Actual Cost O(1)
- Change in potential +1
 - One new tree, no new marked node
- Amortized cost O(1)

Merging Two Heaps (Union)

- Concatenate the root lists of the two Fibonacci heaps
- Root lists are circular, doubly linked lists, so can be easily concatenated

Merging Two Heaps (contd.)

- Concatenate the root lists of the two Fibonacci heaps
- Root lists are circular, doubly linked lists, so can be easily concatenated

Amortized Cost of Merge/Union

- Actual cost = O(1)
- Change in potential = 0
- Amortized cost = O(1)

Extracting the Minimum Element

- **Step 1:**
 - Delete the node pointed to by min[H]
 - Concatenate the deleted node's children into root list

- **Step 1:**
 - Delete the node pointed to by min[H]
 - Concatenate the deleted node's children into root list

- Step 2: Consolidate trees so that no two roots have same degree
 - Traverse the roots from min towards right
 - Find two roots x and y with the same degree, with key[x] \leq key[y]
 - Remove y from root list and make y a child of x
 - Increment degree[x]
 - Unmark y if marked
- We use an array A[0..D(n)] where D(n) is the maximum degree of any node in the heap with n nodes, initially all NIL
 - If A[k] = y at any time, then degree[y] = k

• Step 2: Consolidate trees so that no two roots have same degree. Update min[H] with the new min after consolidation.

- All roots covered by current pointer, so done
- Now find the minimum among the roots and make min[H] point to it (already pointing to minimum in this example)

Amortized Cost of Extracting Min

- Recall that
 - D(n) = max degree of any node in the heap with n nodes
 - t(H) = number of trees in heap H
 - m(H) = number of marked nodes in heap H
 - Potential function $\Phi(H) = t(H) + 2m(H)$
- Actual Cost
 - Time for Step 1:
 - \bullet O(D(n)) work adding min's children into root list

- Time for Step 2 (consolidating trees)
 - Size of root list just before Step 2 is $\leq D(n) + t(H) 1$
 - t(H) original roots before deletion minus the one deleted plus the number of children of the deleted node
 - The maximum number of merges possible is the no. of nodes in the root list
 - Each merge takes O(1) time
 - So total O(D(n) + t(H)) time for consoildation
 - O(D(n)) time to find the new min and updating min[H] after consolidation, since at most D(n) + 1 nodes in root list
- Total actual cost = time for Step 1 + time for Step 2 = O(D(n) + t(H))

- Potential before extracting minimum = t(H) + 2m(H)
- Potential after extracting minimum \leq (D(n) + 1) + 2m(H)
 - At most D(n) + 1 roots are there after deletion
 - No new node is marked during deletion
 - Can be unmarked, but not marked
- Amortized cost = actual cost + potential change = O(D(n)+t(H)) + ((D(n)+1) + 2m(H)) - (t(H) + 2m(H))= O(D(n))
- But D(n) can be O(n), right? That seems too costly! So is O(D(n)) any good?
 - Can show that $D(n) = O(\lg n)$ (proof omitted)
 - So amortized $cost = O(\lg n)$

Decrease Key

- Decrease key of element x to k
- Case 0: min-heap property not violated
 - decrease key of x to k
 - change heap min pointer if necessary

- Case 1: parent of x is unmarked
 - decrease key of x to k
 - cut off link between x and its parent, unmark x if marked
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer

- Case 1: parent of x is unmarked
 - decrease key of x to k
 - cut off link between x and its parent, unmark x if marked
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer

- Case 1: parent of x is unmarked
 - decrease key of x to k
 - cut off link between x and its parent, unmark x if marked
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer

- Case 2: parent of x is marked
 - decrease key of x to k
 - cut off link between x and its parent p[x], add x to root list, unmark x if marked
 - cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if marked
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached

- Case 2: parent of x is marked
 - decrease key of x to k
 - cut off link between x and its parent p[x], add x to root list, unmark x if marked
 - cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if marked
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached

- Case 2: parent of x is marked
 - decrease key of x to k
 - ullet cut off link between x and its parent p[x], add x to root list, unmark x if marked
 - cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if marked
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached

Decrease 35 to 5

- Case 2: parent of x is marked
 - decrease key of x to k
 - ullet cut off link between x and its parent p[x], add x to root list, unmark x if marked
 - cut off link between p[x] and p[p[x]], add p[x] to root list, unmark p[x] if marked
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached (cascading cut)

Fib-Heap-Decrease-key(H, x, k)

- 1. if k > key[x]
- 2. error "new key is greater than current key"
- 3. key[x] = k
- 4. $y \leftarrow p[x]$
- 5. if $y \neq NIL$ and key[x] < key[y]
- 6. $\{ CUT(H, x, y) \}$
- 7. CASCADING-CUT(H, y) }
- 8. if key[x] < key[min[H]]
- 9. min[H] = x

CUT(H, x, y)

- 1. remove x from the child list of y, decrement degree[y]
- 2. add x to the root list of H
- 3. p[x] = NIL
- 4. mark[x] = FALSE

CASCADING-CUT(H, y)

- 1. $z \leftarrow p[y]$
- 2. if $z \neq NIL$
- 3. if mark[y] = FALSE
- 4. mark[y] = TRUE
- 5. else CUT(H, y, z)
- 6. CASCADING-CUT(H, z)

Amortized Cost of Decrease Key

- Actual cost
 - \bullet O(1) time for decreasing key value, and the first cut of x
 - O(1) time for each of c cascading cuts, plus reinserting in root list
 - Total O(c)
- Change in Potential
 - H = tree just before decreasing key, H' just after
 - t(H') = t(H) + c
 - t(H) + (c-1) trees from the cascading cut + the tree rotted at x
 - $m(H') \le m(H) c + 2$
 - Each cascading cut unmarks a node except the last one (-(c-1))
 - Last cascading cut could potentially mark a node (+1)

Change in potential

$$= (t(H') + 2m(H')) - (t(H) + 2m(H))$$

$$\leq c + 2(-c + 2) = 4 - c$$

• Amortized cost = actual cost + potential change = O(c) + 4 - c = O(1)

Deleting an Element

- Delete node x
 - Decrease key of x to $-\infty$
 - Delete min element in heap
- Amortized cost
 - O(1) for decrease-key.
 - \bullet O(D(n)) for delete-min.
 - Total O(D(n))
 - Again, can show that $D(n) = O(\lg n)$
 - So amortized cost of delete = $O(\lg n)$