SUMO Project

Deadline: December 28th

You should defend your project on December 29th or 31st.

Tasks:

- 1. Build your own Sioux Falls network from Fig. 1.
 - o Each edge should be at least 200m.
 - o Each edge should have at least 2 lanes.
 - Speed limit for all edges is 60kmph or 16.67m/s.
 - O Priority for all edges is "-1" (priority -1).

Figure 1. Sioux Falls network.

- 2. Define 3 vehicle types:
 - Naive passenger vehicles:

Acceleration: 2.6 m/s^2Deceleration: 4.5 m/s^2

Sigma: 0.5Length: 5 mminGap: 2.5 m

■ They must not pass the speed limit (speedFactor=1).

Color: YellowvClass: passenger

guiShape: passenger/sedan

Passenger vehicles in a rush:

Acceleration: 3.6 m/s^2Deceleration: 5 m/s^2

Sigma: 1Length: 5 mminGap: 2 m

They can pass the speed limit (speedFactor=1.1).

■ Color: Red

vClass: passenger

guiShape: passenger/sedan

Emergency vehicles:

Acceleration: 3.6 m/s^2Deceleration: 5 m/s^2

Sigma: 1Length: 6.5 mminGap: 1.5 m

They can pass the speed limit (speedFactor=1.5).

vClass: passengerguiShape: emergency

- 3. Make trips from Origin-Destination (OD) Demand data in Table 1 and Table 2.
 - Define flows for each OD (Choose an edge started from the origin and an edge ended at the destination).
 - o All passenger vehicles are "Naive passenger vehicles".
 - o Flows should enter in an hour (3600 seconds).
 - o Emergency Vehicles (EVs) should be defined separately.
 - Departure and arrival positions for all vehicles should be selected randomly.
 - o Departure lanes for all vehicles should be selected freely.

Table 1. OD Demand data.

Origin	Destination	Demand	Origin	Destination	Demand
1	20	400	2	23	300
7	12	300	9	13	100
10	1	200	11	20	100
12	2	200	13	7	200
13	4	200	13	18	200
14	16	100	18	15	100
20	20	200	24	8	100

Table 2. EV trips.

Origin	Destination	Departure times	
1	15	300,600,900,2400	
4	18	600,3000	
24	8	1000,2000,3000	

- 4. Simulate.
 - o Get tripInfo and edgeData as outputs.
 - o Let's call this scenario "Base".
- 5. Put detectors on the shown edges in Fig. 2.
 - o Red ones should force vehicles to change lanes to adjacent ones.
 - Blue ones should change the vehicle type of "Naive passenger vehicles" to "Passenger vehicles in a rush".
 - Detectors should cover all lanes. Red ones are in the middle of their edge and blue ones are in the beginning.

Figure 2. Detectors' locations.

- 6. Simulate with TraCl.
 - o Get tripInfo and edgeData as outputs.
 - Let's call this scenario "Advanced"
- 7. Calculate the total travel time in both scenarios.
- 8. Write a report.
 - o Explain each task.
 - o Compare the results of Base and Advanced.

- 9. Submit the following files.
 - o Network.xml
 - o Route.xml
 - o Det.add.xml
 - o TraCl.py
 - o Calculation.py
 - o Base.tripinfo.xml
 - o Base.edgedata.xml
 - o Advanced.tripinfo.xml
 - o Advanced.edgedata.xml
 - o Report.pdf