InfoSeminar

Deep Learning Seminar

Chapter 19 Approximate Inference

Heechul Lim

Department of Information and Communication Engineering

DGIST

2017.01.31

Contents

- Chapter 19 Approximate Inference
 - 19.1 Inference as Optimization
 - 19.2 Expectation Maximization
 - 19.3 MAP Inference and Sparse Coding
 - 19.4 Variational Inference and Learning
 - 19.5 Learned Approximate Inference

Variational inference in the book

$$egin{aligned} \log p_{ heta}(x^{(1)},\cdots,x^{(N)}) &= \sum_{i=1}^N \log p_{ heta}(x^{(i)}) \ \log p_{ heta}(x^{(i)}) &= D_{KL}(q_{\phi}(z|x^{(i)})||p_{ heta}(z|x^{(i)})) + \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] \ \log p_{ heta}(x^{(i)}) &\geq \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] = \mathcal{L}(heta,\phi;x^{(i)}) \ (heta^*,\phi^*) &= rg\max_{ heta,\phi} \mathcal{L}(heta,\phi;x^{(i)}), \end{aligned}$$

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Machine learning and Algorithm

- Understanding of algorithms
 - Good algorithms and bad algorithms
 - Problems that can be solved or cannot be solved
- Understanding of these things
 - Big O notation
 - P and NP
 - Reduction
 - NP Complete problem
 - Approximation algorithm

Big O notation

- The algorithm should have three things
 - Input data
 - Output
 - Purpose
- We need a good algorithm, not an arbitrary algorithm
- How to distinguish between good or bad
 - Big O notation. e.g. O(n)
 - n is size of input
 - *o*() is upper limit time

P and NP

- Polynomial time. e.g. $O(n^2)$
- Exponential time. e.g. $O(e^n)$
- P problem
 - A problem that can present an algorithm that can solve the problem in polynomial time
- NP problem
 - A problem that can be used to distinguish whether a given solution is a polynomial time solution or not
- P is the subset of NP

InfoLab DGVISV 대구경북과학기술원

Approximation

- Reduction from Problem X to Y
 - If we have an algorithm that solves Problem Y, we can find an algorithm that can solve problem X using this
- NP-Complete(NPC) problem
 - All NP problems can be reduced to the problem
 - When solving the problem of machine learning, there are many cases where the problem is an NPC problem
- Needs for ways to solve NPC problem
- The approximation algorithm
 - It does not provide an exact answer,
 but it does get an approximated solution in the polynomial
 - When the original algorithm gave the answer x, the α -approximation algorithm gives the answer αx

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Decision rule

$$p(C|X) = \frac{p(X|C)p(C)}{p(X)}$$

x: Input data

C: Classes of data

http://sanghyukchun.github.io/61/

Frequentists V.S. Bayesians

Frequentists

- Probability is given as a frequency
- The parameters are unknown, but fixed constants
- Good estimates can be obtained through many trials

Bayesians

- Probability is degree of faith
- The parameters are random variables
- A good estimates should be obtained only with given data

Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)

MLE

$$\hat{ heta} = rg \max_{ heta} [Pr(\mathbf{x}_{i=1,\cdots,I})] = rg \max_{ heta} [\prod_{i=1}^{I} Pr(\mathbf{x}_{i}| heta)]$$

MAP

$$\hat{ heta} = rg \max_{ heta} [\prod_{i=1}^{I} Pr(\mathbf{x}_i | heta) Pr(heta)]$$

Bayesian approach

$$Pr(heta|\mathbf{x}_{1,\cdots,I}) = rac{\prod_{i=1}^{I} Pr(\mathbf{x}_{i}| heta) Pr(heta)}{Pr(\mathbf{x}_{1,\cdots,I})}$$

x: Input data

 θ : Parameters

Simple example about MLE and MAP

Classification

- Look at the x (length) of the hair falling on the floor, and classify whether the hair is from c (male or female)

MLE method

A method of choosing a high probability (sex) by comparing the probability that such a hair will come from a man, p(x | male), and the probability that such hair will come from a woman, p(x | female)

MAP method

A method of choosing a high probability (sex) by comparing the probability of finding a male x, p ($male \mid x$), and female probability p ($female \mid x$)

Simple example about MLE and MAP

- Solve this problem in an area where the sex ratio is uneven
- MAP can find a more accurate model than MLE

MLE method

p(x | male), p(x | female)

$$p(x|female) = \frac{p(x,female)}{p(female)}$$

MAP method

p (male | x), p (female | x)

$$p(female|x) = \frac{p(female,x)}{p(x)} = \frac{p(female,x)}{p(x,female) + p(x,male)}$$
$$= \frac{p(female,x)}{p(x|female)p(female) + p(x|male)p(male)}$$

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Inference

Inference stage

- Learn the model to compute p(C|X) using training data

Decision stage

- Make the actual class assignment decision using the posterior probability computed at the inference stage

Discriminant function

- Directly map the decision to input x without above process

Generative V.S. Discriminative

Generative

- To model the joint probability and to make a decision using the result of 'generate' the samples into the distribution
- Preliminary assumption is needed
- E.g. Gaussian Mixture Model, Restricted Boltzmann Machine

Discriminative

- To directly compute the posterior class probability p(C|X) in the inference stage
- E.g. Logistic regression, SVM, Boosting, Neural networks

```
p(C|X) = \frac{p(X|C)p(C)}{p(X)}
```

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Problem scenario

- Directed graph
- Problem
 - We need to know posterior $p_{\theta}(z|x)$ but $p_{\theta}(x)$ is intractable
 - Because we can't marginalize the $p_{\theta}(x)$ for every z

$$p_{\theta}(z|x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(x)} = \frac{p_{\theta}(x|z)p_{\theta}(z)}{\int_{z} p_{\theta}(x|z)p_{\theta}(z)dz}$$

x: Input data

 θ, ϕ : Parameters

Arrow: $p_{\theta}(x|z)p_{\theta}(z)$

z: Latent variables

Dotted arrow: $p_{\theta}(z|x)$ approxiated using $q_{\phi}(z|x)$

$$\frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(x)} = \frac{p_{\theta}(x|z)p_{\theta}(z)}{\int_{z} \ p_{\theta}(x|z)p_{\theta}(z)dz}$$

Maximum Likelihood

$$\frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(x)} = \frac{p_{\theta}(x|z)p_{\theta}(z)}{\int_{z} p_{\theta}(x|z)p_{\theta}(z)dz}$$
Maximum Likelihood

Explicit density

Implicit density

Tractable density

Approximate density

https://youtu.be/Ws63I3F7Moc?t=2m44s

Variational approximation

- It changes the posterior to an easier matter
 - Evidence Lower Bound(ELBO)

$$p_{\theta}(z|x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(x)} = \frac{p_{\theta}(x|z)p_{\theta}(z)}{\int_{z} p_{\theta}(x|z)p_{\theta}(z)dz}$$

x: Input data

 θ, ϕ : Parameters

Arrow: $p_{\theta}(x|z)p_{\theta}(z)$

z: Latent variables

Dotted arrow: $p_{\theta}(z|x)$ approxiated using $q_{\phi}(z|x)$

 $q_{\phi}(z|x)$: alternative model of $p_{\theta}(z|x)$

$$\mathcal{L}(x;\theta) \le log_{p_{model}}(x;\theta)$$

Calculus of variations

- Variational method is a field of calculus
- Unlike general calculus, it deals with functional
- It deals with derivative, which deals with the functions that maximize or minimize any value

E.g.
$$KL(Q_{\phi}(Z|X)||P(Z|X))$$

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Information theory

- It is introduced by Claude Elwood Shannon
- It quantifies the value of information
- It is defined using a probability function

$$h(x) = -\log\{p(x)\}\$$

The value of information of **the first prize** at lotto

$$h(x) = -\log_2\left(\frac{1}{8,145,060}\right) \cong 23$$

The value of information of the fifth class at lotto

$$h(x) = -\log_2\left(\frac{1}{45}\right) \cong 5.5$$

Entropy

- The average amount of information a system has
- It is possible to compare system V.S. system

$$H(x) = -\sum_{x} p(x) log p(x)$$

Definition

- There is data generated from P probability distribution
- Assuming that this is from the Q probability distribution, this is the amount of additional information that is generated

Scenario

- Samples $\leftarrow p(x)$
- p(x) is intractable, so we need to introduce q(x) instead of p(x)
- The difference between p(x) and q(x) is KLD value

$$KL(p||q) = -\int p(x) \ln q(x) - \left(-\int p(x) \ln p(x) dx\right)$$
$$= -p(x) \ln \left[\frac{q(x)}{p(x)}\right] dx$$

Contents

- Approximation
- Maximum Likelihood(MLE) and Maximum A Posteriori(MAP)
- Inference
- Taxonomy of deep generative models
- KL-Divergence
- Variational Inference

Variational approximation

- It changes the posterior to an easier matter
 - Evidence Lower Bound(ELBO)

$$p_{\theta}(z|x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(x)} = \frac{p_{\theta}(x|z)p_{\theta}(z)}{\int_{z} p_{\theta}(x|z)p_{\theta}(z)dz}$$

x: Input data

 θ, ϕ : Parameters

Arrow: $p_{\theta}(x|z)p_{\theta}(z)$

z: Latent variables

Dotted arrow: $p_{\theta}(z|x)$ approxiated using $q_{\phi}(z|x)$

 $q_{\phi}(z|x)$: alternative model of $p_{\theta}(z|x)$

$$\mathcal{L}(x;\theta) \le log_{p_{model}}(x;\theta)$$

Variational inference

- Make an inference with the model Q_{ϕ} that we know as close as possible to P_{θ}
- Use KL-Divergence to calculate the difference

$$KL(Q_\phi(Z|X)||P(Z|X)) = \sum_{z \in Z} q_\phi(z|x) \log rac{q_\phi(z|x)}{p(z|x)}$$

Optimization problem

KL-Divergence decomposition

$$KL(q_{\phi}(z|x)||p_{ heta}(z|x)) = \mathbb{E}_{q_{\phi}}igg[\lograc{q_{\phi}(z|x)}{p_{ heta}(z|x)}igg]$$

Optimization problem

Transformation

 A problem that was a statistical inference that estimates posterior into an optimization problem

Optimization problem

 To solve the MLE, solving the optimization problem by adding a regularization term that minimizes the difference between p_{θ} and q_{ϕ}

$$egin{aligned} \log p_{ heta}(x^{(1)},\cdots,x^{(N)}) &= \sum_{i=1}^N \log p_{ heta}(x^{(i)}) \ \log p_{ heta}(x^{(i)}) &= D_{KL}(q_{\phi}(z|x^{(i)})||p_{ heta}(z|x^{(i)})) + \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] \ \log p_{ heta}(x^{(i)}) &\geq \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] = \mathcal{L}(heta,\phi;x^{(i)}) \ (heta^*,\phi^*) &= rg\max_{ heta,\phi} \mathcal{L}(heta,\phi;x^{(i)}). \end{aligned}$$

Maximum likelyhood estimation

X: Observed data tensor

Z: Hidden data tensor

p(): Probability distribution

q(): Probability distribution of Z

 θ : Parameter

$$\max_{\theta} p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, Z|\theta)$$

Maximum log likelyhood estimation

$$\ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)$$

$$L(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \theta)}{q(\mathbf{Z})} \right\}$$

$$KL(q||p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \theta)}{q(\mathbf{Z})} \right\}$$

Maximum likelyhood estimation

X: Observed data tensor

Z: Hidden data tensor

p(): Probability distribution

q(): Probability distribution of Z

 θ : Parameter

$$\ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)$$

Current status

http://norman3.github.io/prml/docs/chapter09/4

http://sanghyukchun.github.io/70/

Maximum likelyhood estimation

X: Observed data tensor

Z: Hidden data tensor

p(): Probability distribution

q(): Probability distribution of Z

 θ : Parameter

$$\ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)$$

E-step

Maximum likelyhood estimation

X: Observed data tensor

Z: Hidden data tensor

p(): Probability distribution

q(): Probability distribution of Z

 θ : Parameter

$$\ln p(\mathbf{X}|\theta) = L(q,\theta) + KL(q||p)$$

M-step

http://norman3.github.io/prml/docs/chapter09/4

http://sanghyukchun.github.io/70/

Reparametric trick for backpropagation

$$egin{aligned} \log p_{ heta}(x^{(i)}) & \geq \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] = \mathcal{L}(heta,\phi;x^{(i)}) \ (heta^*,\phi^*) & = rg\max_{ heta,\phi} \mathcal{L}(heta,\phi;x^{(i)}). \end{aligned}$$

Reparametric trick for backpropagation

$$egin{aligned} \log p_{ heta}(x^{(i)}) & \geq \mathbb{E}_{q_{\phi}(z|x)}\left[-\log q_{\phi}(z|x) + \log p_{ heta}(x,z)
ight] = \mathcal{L}(heta,\phi;x^{(i)}) \ (heta^*,\phi^*) & = rg\max_{ heta,\phi} \mathcal{L}(heta,\phi;x^{(i)}). \end{aligned}$$

Thank you

Decision rule

$$\frac{p(C)}{p(X)}$$

- For example, if a man is 60% and a woman is 40%
- Always choosing the male class is best choice
- But this is not good result, because the error rate is always 0.4
- If we have more information P(X|C) about this, we can make more accurate model

$$C = argmaxP(C|X) = argmax \frac{P(X|C)P(C)}{\sum_{i} P(X|C_{i})P(C_{i})}$$

$$P(error|x) = \begin{cases} P(C1|X) \text{ if we decide C2} \\ P(C2|X) \text{ if we decide C1} \end{cases}$$