Da produção de conhecimento à inovação de base científica

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

Cinemática de manipuladores

Sandro Magalhães

Neeeil it, FEUP

29 de abril de 2023

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

Rotações

Transformações homogéneas

Manipuladores e juntas

Cinemática directa

Cinemática inversa

Rotações no plano

$$R_1^0 = [x_1^0 | y_1^0] =$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} =$$

$$\begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_o \\ x_1 \cdot y_0 & y_1 \cdot y_0 \end{bmatrix}$$

Rotação em torno do eixo Z

Composição de rotações

$$R_2^0 = R_2^1 R_1^0$$

Movimentação de corpos rígidos

$$p^0 = R_1^0 p^1 + d_{0,1}^0 e p^1 = R_2^1 p^2 + d_{1,2}^1$$

Assim temos: $p^0 = R_2^0 p^2 + d_{0,2}^0$

Por fim, manipulando as equações: $p^0 = R_1^0 R_2^1 p^2 + R_1^0 d_{1,2}^1 + d_{0,1}^0$

Transformações Homogéneas

$$H = \begin{bmatrix} R & d \\ 0 & 1 \end{bmatrix}$$

Sendo R uma matriz ortogonal, temos:

$$H^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 1 \end{bmatrix}$$

$$P^0 = \begin{bmatrix} p^0 \\ 1 \end{bmatrix}$$
 e $P^1 = \begin{bmatrix} p^1 \\ 1 \end{bmatrix}$ $\Rightarrow P^0 = H_1^0 P^1$

Manipuladores Robóticos

Manipulador Esférico (RRP)

Cinemática directa

Cinemática Direta – Convenções

- 1. n articulações (1..n) e n+1 segmentos (0..n)
- 2. Articulação i liga o segmento i-1 ao segmento i
- 3. Quando se atua na articulação i, o segmento i move-se
- 4. O segmento 0 (base) é fixo e não se move
- 5. Cada articulação é caracterizada por um vector q_i , tal que θ rotativa e d prismática
- 6. O referencial $O_i x_i y_i z_i$ está ligado ao segmento i

Cinemática Direta – Método DH

$$A_i = \begin{bmatrix} c\theta_i & -s\theta_i \ c\alpha_i & s\theta_i \ s\alpha_i & a_i \ c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $a_i \Rightarrow$ comprimento do segmento (distância $O_i \in Z_{i-1}$)

 $\alpha_i \Rightarrow$ torção do segmento (ângulo entre z_i e z_{i-1})

 $d_i \Rightarrow$ desvio do segmento (distância entre x_i e O_{i-1})

 $\theta_i \Rightarrow$ ângulo da articulação (ângulo entre x_i e x_{i-1})

DH – atribuição de referenciais

- 1. Atribuir o eixo z_i como sendo o eixo de atuação da articulação i + 1
- 2. Escolher x_0 e y_0 pela regra da mão direita
- 3. Iterativamente escolher $O_i x_i y_i z_i$ em função de $O_{i-1} x_{i-1} y_{i-1} z_{i-1}$ conforme os casos seguintes:
 - a) z_i e z_{i-1} não estão no mesmo plano: existe uma linha perpendicular a ambos que liga os dois pela menor distância. Esta linha define o eixo x_i e o ponto onde intersecta z_i a origem O_i .
 - b) z_i e z_{i-1} são paralelos: escolhe-se x_i na linha perpendicular a ambos, preferivelmente, que passe por O_{i-1} . Se forem coincidentes pode ser em qualquer ponto dos referidos eixos z.
 - z_i intersecta z_{i-1} : o eixo x_i é escolhido de forma a ser perpendicular ao plano formado por z_i e z_{i-1} . A escolha para a origem O_i é o ponto de intersecção entre z_i e z_{i-1} .

Exemplo: Manipulador cilíndrico

Segmento i	a _i	α_{i}	di	θ_{i}
1	0	0	d ₁	θ_1^*
2	0	-90°	d_2^*	0
3	0	0	d_3^*	0

^{* -} variáveis

Cinemática inversa

Cinemática inversa

$$\cos\theta_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

 $\theta_1 = \operatorname{atan2}(y,x) - \operatorname{atan2}(a_1 + a_2 \cos \theta_2, a_2 \sin \theta_2)$

Cinemática inversa

$$\theta_2^* = -\theta_2$$

 $\theta_1 = \operatorname{atan2}(y,x) + \operatorname{atan2}(a_1 + a_2 \cos \theta_2, a_2 \sin \theta_2)$

Cinemática inversa - desacoplamento

Correspondendo a última coluna de R às coordenadas de z₆ no referencial de base, teremos:

$$o = o_c^0 + d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

ou seja:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

que depende apenas das 3 primeiras articulações e determina R_3^0 , sendo:

$$R_6^3 = (R_3^0)^T R$$

Para se encontrar a variável q_i projecta-se o manipulador no plano formado por x_{i-1} - y_{i-1} .

Projecção no plano formado por x_0 - y_0 .

Soluções:

$$\theta_1 = Atan2(x_c, y_c)$$
 ou $\theta_1 = \pi + Atan2(x_c, y_c)$

Cálculo de θ₃

$$\cos \theta_3 = \frac{r^2 + s^2 - a_2^2 - a_3^2}{2a_2a_3}$$
, sendo $r^2 = x_c^2 + y_c^2 - d^2$ e $s = z_c - d_1$

,sendo
$$r^2 = x_c^2 + y_c^2 - d^2$$

$$e s = z_c - d_1$$

 θ_2 = Atan2(r,s) - Atan2(a₂+a₃cos θ_3 , a₃sin θ_3)

Referências

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). *Robot Modeling and control*. John Wiley & Sons, Inc.

Moreira, A. (2013). Robótica Industrial. Apontamentos de Robótica Industrial - MIEEC, Faculdade de Engenharia da Universidade do Porto.