

NORTHEASTERN UNIVERSITY, KHOURY COLLEGE OF COMPUTER SCIENCE

CS 6220 Data Mining — Assignment 3 Due: February 15, 2023(100 points)

YOUR NAME YOUR GIT USERNAME YOUR E-MAIL

Multisource Joins

News articles are commonly aggregated from multiple sites and companies. The landscape of news has been evolving ever since social media has amplified its effects. In politics, Congress has explored the topic of bias with the diversity of news sources. That is, news articles may cover news stories with differing perspectives and language.

The data that we will be using today comes from Kaggle, and it is available here. There are two CSV files that we wish to join in this week's homework: data/id_titles.csv and data/id_publishers.csv.

As the name suggests, there is publishing data associated with articles and there is title and description information associated with the same articles. Each table has many instances, and each instance for both tables have an associated ID, where it is possible to join the two data sources.

In this particular case, there is some missing information in the join. Your task is as follows.

1. Write out a file that has all the data columns, but where the rows are only those articles where there are titles but no publisher information. Call it titles_no_publishers.txt. In your PDF writeup, include the first 10 rows ordered by ID. This table should look something like the below (ignore the values):

+		+	+·	++	tt	tt	++
ID	STORY	TITLE	PUBLISHER	CATEGORY	HOSTNAME	URL	TIMESTAMP
+		+	+·	++	tt	tt	++
100126 dM3BF51	flKhsL6MQ	null	TheDay.com	m	www.theday.com	http://www.theday	1397245711691
100152 dM3BF51	flKhsL6MQ	null	HealthLeaders Media	m	www.healthleaders	http://www.health	1397245718290
10021 dtBNhkt	0YyqHCuM_A	null	Android Headlines	į tį	www.androidheadli	http://www.androi	1394714719418
10026 dtBNhkt	0YyqHCuM_A	null	The Herald \ Her	t	www.heraldonline.com	http://www.herald	1394714720435
100374 dFxU4YS	ThH_gU7MT9	null	thejournal.ie	m	www.thejournal.ie	http://www.thejou	1397246468342
100444 dfp-Hn8	YgXYtiKMx9	null	Daily Mail	m	www.dailymail.co.uk	http://www.dailym	1397247313815
10046 dtBNhkt	0YyqHCuM_A	null	Computerworld	t	www.computerworld	http://www.comput	1394714725232
100471 d0Kyvrp	UXPQ3XmM2h	null	Indianapolis Reco	m	www.indianapolisr	http://www.indian	1397247386697
100571 dBU-y8m	nlizhV4Mzv	null	Motley Fool	m	www.fool.com	http://www.fool.c	1397247496216
100785 dou7Qef	9Jcn7_IM4Q	null	Today's Medical D	m	www.onlinetmd.com	http://www.online	1397248500577

2. Write out a file that has all the data columns, but where the rows are only those articles where there are publishers but not title information. Call it titles_no_publishers.txt. In your PDF writeup, include the first 10 rows ordered by ID. That table should look something like the below (ignore the values):

+	+	+	t	tt	+	++
ID	STORY	TITLE	PUBLISHER	CATEGORY	HOSTNAME URL	TIMESTAMP
+	+ -	+ -	t	t	+	++
100068	dJ_k5DjBr5MzK0MHf	Networks: Kathlee	null	null	null null	null
100176	dM3BF5lflKhsL6MQ	Medicare data giv	null	null	null null	null
100192	dM3BF5lflKhsL6MQ	Medicare Records	null	null	null null	null
100422	duBSqD7s8phcPsMQK	Sales get leaner	null	null	null null	null
100442	dfp-Hn8YgXYtiKMx9	More than 100 pas	null	null	null null	null
100570	dBU-y8mnlizhV4Mzv	Today's Pre-Marke	null	null	null null	null
100653	dwnBgdLk-3bzGBMNi	Aid workers back	null	null	null null	null
100716	dwnBgdLk-3bzGBMNi	WHO says West Afr	null	null	null null	null
100850	dk_vhtrqQFe_dsMiu	Flu Drugs Tamiflu	null	null	null null	null
100939	dk_vhtrqQFe_dsMiu	Study Questions O	null	null	null null	null
100969	dk_vhtrqQFe_dsMiu	Tamiflu use calle	null	null	null null	null
101119	dDtTmiUm0P1qeMMK8	US close: Sell-of	null	null	null null	null
101301	d4p273oepCNzWtMV5	Can Family Dollar	null	null	null null	null
101330	dhpby_46Ae5iB8ME	A Turbulent Week	null	null	null null	null
10152	dOQvzWTEFn4NkVM9c	T. rex's 'pygmy'	null	null	null null	null
101704	dq4CkE5dd_NRkmMCB	Ron Agostini: Col	null	null	null null	null
101839	dSAALz3Yg1Ijh5MZV	Fitch: JPMorgan 1	null	null	null null	null
10191	dA0ddnisozIS59MZa	Earth has a secre	null	null	null null	null
101912	dJVPX-uN99u nuMNg	GGG-GAME CHANGER:	null	null	null null	null

3. Explore the data further, and identify potential problems that could arise if we were to further analyze the data (e.g., apply a machine learning algorithm). Is there still missing data? That is to say, do all the columns have the correct data? What could have gone wrong in the data creation step? (You needn't code anything, but conceptually describe any issues you see and how you would remedy it.)

Frequent Itemsets

Consider the following set of frequent 3-itemsets:

```
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}.
```

Assume that there are only five items in the data set. This question was taken from Tan et al., which may help in reviewing Candidate Generation.

- 4. List all candidate 4-itemsets obtained by a candidate generation procedure using the $F_{k-1} \times F_1$ merging strategy.
- 5. List all candidate 4-itemsets obtained by the candidate generation procedure in A Priori, using $F_{k-1} \times F_{k-1}$.
- 6. List all candidate 4-itemsets that survive the candidate pruning step of the Apriori algorithm.

Association Rules

Consider the following table for question 7:

Transaction ID	Items
1	$\{ { m Beer, Diapers} \}$
2	{Milk, Diapers, Bread, Butter}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	$\{ Milk, Beer, Diapers, Eggs \}$
6	$\{ { m Beer, Cookies, Diapers} \}$
7	{Milk, Diapers, Bread, Butter}
8	{Bread, Butter, Diapers}
9	{Bread, Butter, Milk}
10	{Beer, Butter, Cookies}

- 7. a) What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?
 - b) What is the confidence of the rule $\{Milk, Diapers\} \Rightarrow \{Butter\}$?
 - c) What is the support for the rule $\{Milk, Diapers\} \Rightarrow \{Butter\}$?
- 8. True or False with an explanation: Given that $\{a,b,c,d\}$ is a frequent itemset, $\{a,b\}$ is always a frequent itemset.
- 9. True or False with an explanation: Given that {a,b}, {b,c} and {a,c} are frequent itemsets, {a,b,c} is always frequent.
- 10. True or False with an explanation: Given that the support of $\{a,b\}$ is 20 and the support of $\{b,c\}$ is 30, the support of $\{b\}$ is larger than 20 but smaller than 30.
- 11. True or False with an explanation: In a dataset that has 5 items, the maximum number of size-2 frequent itemsets that can be extracted (assuming minsup > 0) is 20.
- 12. Draw the itemset lattice for the set of unique items $\mathcal{I} = \{a, b, c\}$.

Principle Components Analysis

Italy is home to over 2000 grape varieties. Even within a single region, wines exhibit distinct attributes from different cultivators that can be measured with objective and numerical features. Notably, in the dataset we are exploring today, there are thirteen different measurements taken for different constituents found in the three types of wine. We would like to visualize how well-separated the data is for the different wineries in a 2D scatter plot.

We will be using the UCI Wine's dataset. Please review sklearn's description of wine data, and load it in with the following code:

```
from sklearn.datasets import load_wine
wine = load_wine()
```

13. Preprocess the the data with **z-score normalization** and scatter the data that's been projected onto the first two principle components with different colors for each target/class of wine. Include your code (linked or inline).

The below scatter plot is an example of displaying multiple classes with different colors on a single plot. (Ignore the contents of the plot.)

