(2018) 求 $\iint_D x^2 dx dy$, 其中 $D \oplus y = \sqrt{3(1-x^2)}$ 与 $y = \sqrt{3}x$ 及 y 轴围成。

(2017)计算积分 $\iint_D \frac{y^3}{(1+x^2+y^4)^2} dx dy$, 其中 D 是第一象限中以曲线 $y=\sqrt{x}$ 与 x 轴为边界的无界区域

(2013) 设平面区域 D 是由直线 x = 3y, y = 3x 及 x + y = 8 所围成,求 $\iint_D x^2 dx dy$

(2012)设区域 D 由曲线 $y = \sin x, x = \pm \frac{\pi}{2}, y = 1$ 围成,则 $\iint_D (xy^5 - 1) dx dy =$ ()

(A) π

(B) 2 (C) -2

(D) - π

(2012)计算二重积分 $\iint_D e^x xy dx dy$, 其中 D 是以曲线 $y = \sqrt{x}, y = \frac{1}{\sqrt{x}}$ 及 y 轴为边界的无界区域.

