

Aula 12

Prof. Marcelo Sousa

Agenda

Avaliação NP2

Avaliação

- Avaliação NP2
 - − 1) Nota Teórica − 25%
 - 1 Prova
 - − 2) Nota Prática − 25%
 - Práticas
 - 3) Trabalho Final 50%

Temas

Temas do Trabalho

- Sistemas de Comunicação de Tempo Real
- Sistemas Automotivos de Tempo Real
- Sistemas Médicos de Tempo Real

- Tipo de Escalonador
 - Time Sliced Round Robin Scheduling
 - Tarefas ready são postas numa fila circular;
 - Prioridade fixa: Cada task possui uma prioridade que não é alterada pelo próprio *kernel*.
 - Pre-emptivo: As tarefas podem interromper tarefas de menor prioridade caso entrem em estado Ready.

Escalonamento FreeRTOS

• Premissas:

- Cada task possui uma prioridade definida
- Cada task pode estar em um dos estados possíveis
- Apenas uma task pode estar em estado Running em qualquer momento
- O escalonador sempre seleciona a tarefa de maior prioridade que está em estado *Ready* para passar para o estado *Running*

- Tarefas podem esperar no estado Blocked por um evento e são automaticamente movidas de volta para o estado Ready quando este ocorrer.
 - Exemplo.:
 - Estouro de um determinado Tick.
 - Geralmente implementados para implementar tasks perióricas ou comportamento de timeout

- Durante as próximas aulas serão estudados formas de sincronismos entre tarefas.
 - Filas
 - Eventos de sincronismo
 - Interrupt Service Rotine
- Estas estruturas geralmente são utilizadas para sinalizar atividades assíncronas, como chegada de dados em periféricos.

- Idle Task
 - Rodando em prioridade mais baixa
- Task 3
 - Roda em uma prioridade relativa mais baixa, mas ainda acima da Idle Task
 - Passa maior parte do tempo no estado Blocked aguardando um evento de interesse.
 - Podem ser utilizados mecanismos de comunicação inter-processos para desbloquear a Task.

- Task 2
 - Tarefa periódica que é executada com prioridade acima da task 3, mas abaixo da task 1.
- Task 1
 - É uma tarefa event-driven
 - É executada na prioridade mais alta

Escalonamento FreeRTOS

- Seleção as Prioridades
 - É o que tornará o sistema executável
 - Regra Geral:
 - Hard-Real Time Task devem possuir prioridade maior que tarefas Soft-Real Time
 - No entanto, outros pontos devem ser levados em conta:
 - Tempo de Execução
 - Utilização do processador

— ...

- Seleção as Prioridades
 - Utilização do RMA
 - Tarefas com maior frequência de execução devem possuir maior prioridade.
 - Dificuldades:
 - Dificilmente todas as tarefas são periódicas e outros fatores devem ser levados em consideração, (escalonabilidade geral do sistema, variação de tempo de execução) tornando a escolha exclusivamente por RMA um processo bastante complexo.

- Escalonamento Co-operativo
 - Também pode ser realizado pelo FreeRTOS
 - Quando um escalonador co-operativo é selecionado, a troca de contexto só ocorre quando :
 - Uma tarefa passa para estado Blocked
 - Uma tarefa explicitamente chama taskYIELD()
 - As tarefas nunca realizarão preempção em outra tarefa
 - Tarefas com mesma prioridade nunca compartilhão o tempo de processamento automaticamente

- Escalonamento Co-operativo
 - É uma forma bastante simples de executar o sistemas
 - Pode interferir diretamente na resposta do sistema

Próxima Aula

• Compartilhamento de Recursos