Homework #5

I. Lý thuyết

1. Hãy cho biết kích thước khối mã hóa, khóa và số vòng trong phương pháp DES?

Trong phương pháp mã hóa DES (Data Encryption Standard), các thông số kỹ thuật chính gồm:

Kích thước khối mã hóa (Block size): 64 bit

Kích thước khóa (Key size): 56 bit (với 8 bit kiểm tra chẵn lẻ, tổng cộng 64 bit nhưng thực tế chỉ có 56 bit được sử dụng cho mã hóa)

Số vòng (Number of rounds): 16 vòng

II. Bài tập

2.

a. Cho biết kết quả của phép dịch trái 3-bit của từ (10011011)2

Dịch trái 3-bit có nghĩa là dịch tất cả các bit sang trái 3 vị trí, và các bit dịch ra ngoài sẽ được quay lại từ phía bên phải.

$$(10011011)_2 \xrightarrow{\text{dich trái 3-bit}} (11011100)_2$$

b. Cho biết kết quả của phép dịch phải 3-bit của từ kết quả từ câu (a).

Dịch phải 3-bit có nghĩa là dịch tất cả các bit sang phải 3 vị trí, và các bit dịch ra ngoài sẽ được quay lại từ phía bên trái.

$$(11011100)_2 \xrightarrow{\text{dịch phải 3-bit}} (00011011)_2$$

- c. So sánh kết quả câu (b) với từ gốc của (a).
 - Từ gốc của câu (a): (10011011)2
 - Kết quả của câu (b): (00011011)2

Kết quả từ câu (b) không giống hoàn toàn từ gốc của câu (a). Cụ thể, ba bit đầu tiên đã thay đổi từ 100 thành 000, trong khi năm bit cuối cùng vẫn giữ nguyên (11011).

- 3. Cho biết kết quả của những biểu thức sau:
- a. $(01001101) \oplus (01001101)$

Phép toán XOR giữa mỗi cặp bit:

$$0 \oplus 0 = 0$$
 $1 \oplus 1 = 0$
 $0 \oplus 0 = 0$
 $0 \oplus 1 = 0$
 $1 \oplus 1 = 0$
 $1 \oplus 1 = 0$
 $1 \oplus 1 = 0$

Kết quả:

$$(01001101)_2 \oplus (01001101)_2 = (00000000)_2$$

 $1 \oplus 1 = 0$

b. $(01001101) \oplus (10110010)$

Phép toán XOR giữa mỗi cặp bit:

$$0 \oplus 1 = 1$$
 $1 \oplus 0 = 1$
 $0 \oplus 1 = 1$
 $0 \oplus 1 = 1$
 $1 \oplus 0 = 1$
 $1 \oplus 0 = 1$
 $1 \oplus 0 = 1$

Kết quả:

$$(01001101)_2 \oplus (10110010)_2 = (11111111)_2$$

c. $(01001101) \oplus (00000000)$

Phép toán XOR giữa mỗi cặp bit:

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

$$0 \oplus 0 = 0$$

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

$$\mathbf{1}\oplus \mathbf{0}=\mathbf{1}$$

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

Kết quả:

$$(01001101)_2 \oplus (00000000)_2 = (01001101)_2$$

d. $(01001101) \oplus (11111111)$

Phép toán XOR giữa mỗi cặp bit:

$$0 \oplus 1 = 1$$

$$1\oplus 1=0$$

$$0 \oplus 1 = 1$$

$$0\oplus 1=1$$

$$1\oplus 1=0$$

$$\mathbf{1}\oplus\mathbf{1}=\mathbf{0}$$

$$0\oplus 1=1$$

$$1\oplus 1=0$$

Kết quả:

$$(01001101)_2 \oplus (111111111)_2 = (10110010)_2$$

- 4. Một thông điệp có 2000 ký tự, giả sử rằng nếu nó được mã hóa dựa trên khối 64bits, hãy cho biết số bit(s) cần phải thêm vào?
 - Mỗi ký tự thường được mã hóa thành 8 bit (1 byte).
 - Một thông điệp có 2000 ký tự sẽ có độ dài:

$$2000 \text{ ký tự} \times 8 \text{ bit/ký tự} = 16000 \text{ bit}$$

$$rac{16000 \, \mathrm{bit}}{64 \, \mathrm{bit/kh\acute{o}i}} = 250 \; \mathrm{kh\acute{o}i}$$

Kết luận

Số bit cần thêm vào để thông điệp có độ dài là bội của 64 bit:

 $S\hat{o}$ bit cần thêm vào = 0 bit

Note:

- Nếu tổng số bit là bội của 64, thì không cần thêm bit nào.
- Nếu không, cần thêm bit để làm cho tổng số bit là bội của 64.
- 5. Giả sử có bản rõ *P* (plaintext) và khóa *K* (key) được biểu dưới dạng số thập lục phân như sau: 0 1 2 3 4 5 6 7 8 9 A B C D E F. Hãy tính toán kết quả từng bước vòng mã hóa thứ nhất theo phương DES:

a. Tính khóa con *k*1 *Bảng PC-1:*

57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	0.3
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

Ta có:

K = 0123456789ABCDEF

Sau khi hoán vị PC-1, ta được:

C0 = 1111000011001100101010100000

C1 = 1110000110011001010101000001

P0 = **1**010101011001100111100000000

P1= 0101010110011001111000000001

Bång PC-2

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	1.3	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

Sau khi hoán vị PC-2, ta được:

K1 = 0B02679B49A5

b. Cho biết chuỗi bit L₀ và R₀

Ta có P = 0123456789ABCDEF

	Initial Permutation								
58	50	42	34	26	18	10	02		
60	52	44	36	28	20	12	04		
62	54	46	38	30	22	14	06		
64	56	48	40	32	24	16	08		
57	49	41	33	25	17	09	01		
59	51	43	35	27	19	11	03		
61	53	45	37	29	21	13	05		
63	55	47	39	31	23	15	07		

Sau khi hoán vị, ta được:

R0 (32 ký tự từ bên phải) =1111000010101011111000010101010

c. Hãy mở rộng chuỗi con R_0 từ 32 bits thành 48 bits kết quả lưu vào $E(R_0)$. *Bảng mở rộng (E):*

32	01	02	0.3	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

Từ câu b ta có:

 $\mathbf{R0} = 11110000101010101111000010101010$

=> E(R0) = 7A15557A155D (HEX)

d. Hãy tính $A = E(R_0) \oplus k_1$

Từ câu a và câu b, ta có:

K1 = 0B02679B49A5

byte	byte	hexan	dec
1	00001011	OB	11
2	00000010	02	2
3	01100111	67	103
4	10011011	9B	155
5	01001001	49	73
6	10100101	A5	165

E(R0) = 7A15557A155D

byte	byte	byte hexan	
byte	byte	ПЕХАП	dec
1	01111010	7A	122
2	00010101	15	21
3	01010101	55	85
4	01111010	7A	122
5	00010101	15	21
6	01011101	5D	93

byte	$E(R_0) \oplus k_1$	bin	HEX
1	113	01110001	71
2	23	00010111	17
3	50	00110010	32
4	225	11100001	E1
5	92	01011100	5C
6	248	11111000	F8

e. Hãy tính B là kết quả của A khi qua các hộp S-boxes (Table 3.3 Definition of DES S-Boxes)

Từ câu d, ta có:

A = E(R0)XORK1 = 711732E15CF8

stt	bin	hàng	cột	hàng	cột
1	011100	00	1110	0	Е
2	010001	01	1000	1	8
3	011100	00	1110	0	Е
4	110010	10	1001	2	9
5	111000	10	1100	2	С
6	010101	01	1010	1	А
7	110011	11	1001	3	9
8	111000	10	1100	2	С

S-box1	S-box2	S-box3	S-box4	S-box5	S-box6	S-box7	S-box8
0	12 (C)	2	1	6	13(D)	5	15(E)

=> **B** = 0C 21 6D 5E

f. Hãy tính P(B) là hoán vị của B, trong đó P(.) hàm hoán vị 32 bits

16	07	20	21	29	12	28	17
01	15	23	26	0.5	18	31	10
02	08	24	14	32	27	03	09
19	07 15 08 13	30	06	22	11	04	25

Từ câu e ta có:

B = 0C216D5E

B(BIN) = 00001100001000010110110101011110

P(B) = 10011010000111100010000010111100

g. $R_1 = P(B) \oplus L_0$ Từ câu b và câu f ta có:

P(B) = 10011010000111100010000010111100

byte	byte	hexan	dec
1	10011010	9A	154
2	00011110	1E	30
3	00100000	20	32
4	10111100	ВС	188

P(B)= 9A1E20BC

L0 = 1100110000000001100110011111111

byte	byte	hexan	dec
1	11001100	CC	204
2	00000000	00	0
3	11001100	CC	204
4	11111111	FF	255

LO= CC00CCFF

byte	XOR	bin	HEX
1	86	01010110	56
2	30	00011110	1E
3	236	11101100	EC
4	67	01000011	43

P(B)XORL0 = 561EEC43 01010110000111101110110001000011

 $=> R1 = P(B) \oplus L0 = 01010110000111101110110001000011$

h. Viết ra bản mật mã C1 của vòng 1 theo phương pháp DES.

Từ câu b và g ta có:

R1 = 01010110000111101110110001000011

 $\mathbf{L1} = \mathbf{R0} = 111100001010101011111000010101010$

C1 = R1&L1 =