Ley de los grandes números

Fabiola Vázquez

1 de diciembre de 2020

1. Introducción

En el presente trabajo se aborda la ley de los grandes números. Primero, se presentan algunos resultados teóricos preliminares, seguido de la demostración [2] de la ley de los grandes números. Así mismo, se enuncia la ley fuerte de los grandes números. Finalmente, se habla del método de Monte-Carlo como una aplicación de los resultados teóricos previos.

2. Ley de los grandes números

Teorema 1. Si X es una variable aleatoria no negativa, entonces para $\varepsilon > 0$ se tiene que

$$P(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}[X]}{\varepsilon}.\tag{1}$$

Teorema 2. Si X es una variable aleatoria no negativa, entonces, para todo $\varepsilon > 0$ y para todo entero positivo n, se tiene

$$P(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}[X^n]}{\varepsilon^n}.$$
 (2)

Demostración. Se considera la desigualdad

$$X \geqslant \varepsilon.$$
 (3)

Elevando ambos lados de la desigualdad a la potencia n, se tiene que

$$X^n \geqslant \varepsilon^n$$
. (4)

Entonces, es claro que

$$P(X \geqslant \varepsilon) = P(X^n \geqslant \varepsilon^n), \tag{5}$$

donde X^n es una variable aleatoria no negativa, ya que X es no negativa. Por el teorema anterior, se tiene que

$$P(X^n \geqslant \varepsilon^n) \leqslant \frac{\mathbb{E}[X^n]}{\varepsilon^n}.$$
 (6)

Por lo tanto,

$$P(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}[X^n]}{\varepsilon^n}.$$
 (7)

Teorema 3 (Desigualdad de Chebyshev). Sea X una variable aleatoria discreta con valor esperado $\mathbb{E}[X] = \mu$, y sea $\varepsilon > 0$ cualquier número real positivo. Entonces,

$$P(|X - \mu| \le \varepsilon) \le \frac{\operatorname{Var}[X]}{\varepsilon^2}$$
 (8)

Demostración. Se considera la variable aleatoria $|X - \mathbb{E}[X]|$ y la ecuación 7 con n = 2, se tiene

$$P(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]}{\varepsilon^2}.$$
 (9)

Como $Var[X] = (X - \mathbb{E}[X])^2$, se tiene que

$$P(|X - \mathbb{E}[X]| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}[X]}{\varepsilon^2}.$$
 (10)

Teorema 4 (Ley de los grandes números [2]). Sea X_1, X_2, \ldots un proceso independiente de ensayos con valor esperado finito $\mu = \mathbb{E}[X_i]$ y varianza finita $\sigma^2 = \text{Var}[X_j]$. Sea $S_n = X_1 + X_2 + \ldots + X_n$. Entonces para cualquier $\varepsilon > 0$,

$$P\left(\frac{S_n}{n} - \mu \geqslant \varepsilon\right) \longrightarrow 0 \tag{11}$$

 $cuando\ n \longrightarrow \infty$. Equivalentemente,

$$P\left(\frac{S_n}{n} - \mu < \varepsilon\right) \longrightarrow 1 \tag{12}$$

cuando $n \longrightarrow \infty$.

Demostración. Dado que X_1, X_2, \dots, X_n son variables aleatorias independientes con las mismas distribuciones, se tiene que

$$Var\left[S_n\right] = n\sigma^2,\tag{13}$$

У

$$\operatorname{Var}\left[\frac{S_n}{n}\right] = \frac{\sigma^2}{n}.\tag{14}$$

Como $\mathbb{E}\left[\frac{S_n}{n}\right] = \mu$ y por la desigualdad de Chebyshev, se tiene que par cualquier $\varepsilon > 0$

$$P\left(\left|\frac{S_n}{n} - \mu\right| \geqslant \varepsilon\right) \leqslant \frac{\sigma^2}{n\varepsilon^2}.\tag{15}$$

Como

$$\lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0 \tag{16}$$

y $P\left(\left|\frac{S_n}{n} - \mu\right| \geqslant \varepsilon\right) \geqslant 0$, por lo tanto

$$\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - \mu \right| \geqslant \varepsilon \right) = 0. \tag{17}$$

Equivalentemente,

$$\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - \mu \right| \geqslant \varepsilon \right) = 1. \tag{18}$$

Teorema 5 (Ley fuerte de los grandes números [1]). Sea X_1, X_2, \ldots, X_n una secuencia de variables aleatorias independientes e idénticamente distribuidas, tales que $\mathbb{E}[X_i] < \infty$. Para $N \ge 1$, se denota la media empírica de X_1, X_2, \ldots, X_n por

$$\hat{S}_N := \frac{1}{N} \sum_{i=1}^N X_i. \tag{19}$$

Entonces,

$$\lim_{N \to \infty} \hat{S}_N = \mathbb{E}\left[X_i\right]. \tag{20}$$

3. Método de Monte-Carlo

Una de las aplicaciones de la ley de los grandes números es la aproximación de integrales definidas [1]. Suponga que se tiene una función f(x) y se busca el valor φ donde

$$\varphi = \int_0^1 f(x)dx. \tag{21}$$

Por la definición de valor esperado se sabe que

$$\varphi = \mathbb{E}\left[f(U)\right] \tag{22}$$

si $U \sim \text{Unif}(0,1)$. Si U_1, \ldots, U_k son variables aleatorias independientes distribuidas uniformemente en (0,1), se sigue que $f(U_1), \ldots, f(U_k)$ son variables aleatorias independientes idénticamente distribuidas con media φ . Entonces, por la ley fuerte de los grandes números, se sigue que, con probabilidad 1,

$$\sum_{i=1}^{n} \frac{f(U_i)}{n} \longrightarrow \mathbb{E}[f(U)] = \varphi \tag{23}$$

cuando $n \to \infty$. Por lo tanto, se puede aproximar φ generando una cantidad grande de números pseudo aleatorios u_i y tomando como aproximación la media de los valores de $f(u_i)$. Este método para aproximar integrales es llamado el método de Monte-Carlo.

Para aproximar cualquier integral sobre el intervalo [a, b] se puede modificar la integral que se tenía en el intervalo [0, 1] con el cambio de variable x = a + (b - a)u, es decir

$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} f(a+(b-a)u)du \approx \frac{b-a}{N} \sum_{i=1}^{N} f(a+(b-a)u_{i}), \tag{24}$$

donde u_i son variables aleatorias uniformemente distribuidas en [0,1].

Como ejemplo, se quiere estimar el valor de la integral,

$$\int_0^1 \frac{x}{e^x + e^{-x}} \, dx. \tag{25}$$

Para ello se genera una cantidad de números pseudo aleatorios, cada uno se evalúa en la función $f(x) = \frac{x}{e^x + e^{-x}}$, se suman los resultados y se divide entre la cantidad de números. Esto se realiza con el código 1 en el software R [3].

La figura 1 muestra como el valor obtenido con el método de Monte-Carlo se aproxima al valor real (línea roja) cuando la cantidad de números pseudo aleatorios aumenta.

Figura 1: Aproximación de la integral 25 mediante el método de Monte-Carlo.

Código 1: Función para aproximar una integral con el método de Monte-Carlo.

Referencias

- [1] Carl Graham and Denis Talay. Stochastic Simulation and Monte Carlo Methods. Springer.
- [2] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. 2006.
- [3] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.