

AYUDANTÍA II

Profesora: Adriana Piazza. Ayudantes: Agustín Farías Lobo, Camila Carrasco.

Pregunta 1

Una relación de preferencias \succeq definida en el conjunto de consumo $X = \mathbb{R}_+^L$ es débilmente monótona si y solamente si $x \ge y$ implica que $x \succeq y$.

a) Demuestre que si una relación de preferencias es monótona entonces es débilmente monótona.

Respuesta

Recuerde que \succeq es monótona si para todo $x, y \in X$, se cumple que

$$x \gg y \implies x \succ y$$
.

Suponga por contradicción que \succeq es monótona pero que no es débilmente monótona. Suponga que $x \gg y$. En tal caso, puesto que \succeq no es débilmente monótona, se tiene que $x \not\succ y$, por lo que $y \succeq x$. Sin embargo, ello contradice que $x \succ y$.

Así, concluimos que si \succsim es monótona entonces es débilmente monótona.

b) Demuestre que si ≿ es transitiva, localmente no saciada, y débilmente monótona entonces es monótona.

Respuesta

Suponga que \succeq es transitiva, localmente no saciada y débilmente monótona. Suponga que $x \gg y$. Luego, por la monotonía débil se tiene que $x \succeq y$.

Dado que \succeq es localmente no saciada, para cada $y \in X$ y cada $\varepsilon > 0$ existe $z \in X$ tal que $||y - z|| \le \varepsilon$ y que $z \succ y$. De esta manera, existe un $z \ll x$ tal que $z \succ y$ al escoger un ε lo suficientemente pequeño.

Dado que $x \gg z$, la monotonía débil asegura que $x \succsim z$. Dado que $x \succsim z$ y que $z \succ y$, la transitividad asegura que $x \succ y$. Luego, $x \gg y$ implica $x \succ y$, por lo que \succsim es monótona.

Pregunta 2

Sea \succeq una relación de preferencias racional y $u: X \to \mathbb{R}$ una función de utilidad que la representa. Muestre que \succeq es convexa si y solo si u es cuasicóncava. Asimismo, muestre que \succeq es estrictamente convexa si y solo si u es estrictamente cuasicóncava.

Respuesta

Suponga que \succeq es convexa y que es representable por u. Sean x e y dos canastas de consumo tales que $x \succeq y$. Así, la convexidad de \succeq asegura que

$$\lambda x + (1 - \lambda)y \succeq y, \quad \forall \lambda \in (0, 1).$$

Dado que u representa a \succeq , se tiene que

$$u(\lambda x + (1 - \lambda)y) \ge u(y) = \min\{u(x), u(y)\}.$$

Luego, hemos demostrado que si \succeq es convexa, entonces u es cuasicóncava.

Suponga ahora que \succeq es representable por u y que u es cuasicóncava. Suponga que $u(y) \ge u(x) \ge u(z)$. Luego, la cuasiconcavidad de u asegura que

$$u(\lambda x + (1 - \lambda)y) \ge \min\{u(x), u(y)\} = u(x) \ge u(z).$$

Dado que *u* representa a \succsim , se tiene que $y \succsim z$, que $x \succsim z$ y que

$$\lambda x + (1 - \lambda)y \succeq z$$
.

Así, si u es cuasicóncava y representa a \succeq , entonces \succeq es convexa.

Para la convexidad estricta y la cuasiconcavidad estricta el procedimiento es análogo. Suponga que \succeq es estrictamente convexa y que es representable por u. Sean x e y dos canastas de consumo tales que $x \succeq y$. Así, la convexidad de \succeq asegura que

$$\lambda x + (1 - \lambda)y \succ y, \quad \forall \lambda \in (0, 1).$$

Dado que *u* representa a \succeq , se tiene que

$$u(\lambda x + (1 - \lambda)y) > u(y) = \min\{u(x), u(y)\}.$$

Luego, hemos demostrado que si \succeq es estrictamente convexa, entonces u es estrictamente cuasicóncava.

Suponga ahora que \succeq es representable por u y que u es estrictamente cuasicóncava. Suponga que $u(y) \ge u(x) \ge u(z)$. Luego, la cuasiconcavidad estricta de u asegura que

$$u(\lambda x + (1 - \lambda)y) > \min\{u(x), u(y)\} = u(x) \ge u(z).$$

Dado que *u* representa a \succsim , se tiene que $y \succsim z$, que $x \succsim z$ y que

$$\lambda x + (1 - \lambda)y > z$$
.

Así, si u es estrictamente cuasicóncava y representa a \succeq , entonces \succeq es estrictamente convexa.

Pregunta 3

Sea \succeq una relación de preferencias racional y $u: X \to \mathbb{R}$ una función de utilidad que la representa. Demuestre o dé un contraejemplo de la siguiente afirmación:

 \succeq es convexa \iff *u* es cóncava.

Respuesta

Suponga una relación de preferencias definda sobre $X = \mathbb{R}^2_+$ que es representable por una función de utilidad

$$u(x,y) = \min\{x, y^2\}.$$

A continuación se presentan gráficamente la función de utilidad en un plano x - y:

Es posible notar que los conjuntos de conjunto superior son convexos. Luego, \succsim es convexa.

Ahora bien, u(x, y) no es cóncava. En efecto, suponga que A = (100, 5), B = (100, 10) y C = (100, 7, 5). Por tanto u(A) = 25, u(B) = 100 y $u(C) = 7, 5^2 = 56, 25$. Dado que C = 0, 5A + 0, 5B es una combinación convexa de A y B, y que $u(C) < 0, 5 \cdot u(A) + 0, 5 \cdot u(B)$, es posible concluir que u no es cóncava.

Sin embargo, ¡es posible mostrar que es cuasicóncava! Suponga que $u(A) \ge u(B)$. Una combinación convexa de A y B está dada por $C = (\lambda x_A + (1 - \lambda)x_B, \lambda y_A + (1 - \lambda)y_B)$.

Suponga que $x_A \le y_A^2 \land x_B \le y_B^2$, generando que $u(A) = x_A$ y que $u_B = x_B$. Por lo que $x_A \ge x_B$. Luego, $u(C) = \lambda x_A + (1 - \lambda)x_B \ge x_B = \min\{u(A), u(B)\}$.

Suponga que $x_A \ge y_A^2 \wedge x_B \ge y_B^2$, generando que $u(A) = y_A^2$ y que $u(B) = y_B^2$. Por lo que $y_A^2 \ge y_B^2$ (recuerde que $X = \mathbb{R}^2$). Luego, $u(C) = (\lambda y_A + (1 - \lambda) y_B)^2 \ge y_B^2 = \min\{u(A), u(B)\}$.

Suponga que $x_A \ge y_A^2 \land x_B \le y_B^2$, generando que $u(A) = y_A^2$ y que $u(B) = x_B$. Por lo que $y_A^2 \ge x_B$ (recuerde que $X = \mathbb{R}^2$). Luego, $u(C) = \min\{\lambda x_A + (1 - \lambda)x_B, \lambda y_A^2 + (1 - \lambda)y_B^2\} \ge x_B = \min\{u(A), u(B)\}$.

Suponga que $x_A \le y_A^2 \land x_B \ge y_B^2$, generando que $u(A) = x_A$ y que $u(B) = y_B^2$. Por lo que $x_A \ge y_B^2$. Luego, $u(C) = \min\{\lambda x_A + (1-\lambda)x_B, \lambda y_A^2 + (1-\lambda)y_B^2\} \ge y_B^2 = \min\{u(A), u(B)\}$.

Con ello, hemos demostrado que u es cuasicóncava.

Pregunta 4

Sea \succeq una relación de preferencias definida en \mathbb{R}^3_+ . Suponga que \succeq puede ser representada por la siguiente función de utilidad

$$u(x, y, z) = -(x - y - z)^2$$
.

a) ¿Es ≿ estrictamente convexa?

Respuesta

Suponga A=(2,1,1), B=(4,2,2) y una combinación convexa entre las canastas anteriores C=(3,1,5,1,5). Note que u(A)=u(B)=u(C), por lo que $C\not\succ A\land C\not\succ B$. Así, \succsim no es estrictamente convexa.

b) ¿Es ≿ localmente no saciada?

Respuesta

Recuerde que una función de utilidad que representa preferencias localmente no saciadas no debe tener máximos globales en X. Sin embargo, el máximo valor que alcanza u es cero. Así, \succsim no es localmente no saciada.