絥

江

絥

西 安 电 子 科 技 大 学 考试时间 120 分钟

试

颙

题号	_	11	111	四	五	附	总分
分数							

- 1. 考试形式: 闭卷
- 2. 考试日期: 2020 年 8 月 日
- (答题内容请写在装订线外)
- 一. 简要分析与设计题(任选其中 6 小题, 每小题 7 分, 本题共 42 分)

说明: 选作超过6小题时, 评判前面6个小题

1. 假设机器字长为 8 位,已知[X]*=D5H,求[X]*、[-X]*、[X/2]*、[2X]*。

- 2. 某计算机指令字 24 位,定长格式,指令类型有双操作数指令、单操作数指令和无操作数指令,每个操作数地址字段均用 8 位表示,采用扩展操作码。若该指令系统已设计出 M 条双操作数指令,N 条无操作数指令(其中 0<M<2⁸,0<N<2¹⁶),那么最多还可设计出多少条单操作数指令?
- 3.8088CPU 中,设(DS)=2000H,(BX)=0100H,(SI)=0002H,(20100H)=12H,(20101H)=34H,(20102H)=56H,(20103H)=78H,(21200H)=2AH,(21201H)=4CH,(21202H)=B7H,(21203H)=65H,试分别说明下列各条指令执行完后 AX 寄存器中的内容是多少?
 - ① MOV AX, 1200H
 - ② MOV AX, [1200H]
 - ③ MOV AX, [BX]
 - 4 MOV AX, 1100H[BX]
 - (5) MOV AX, [BX][SI]
 - ⑥ MOV AX, 1100H[BX][SI]
 - ⑦ LEA AX, 1100H[BX][SI]

4. 设浮点数字长 16 位,基值为 2 (以 2 为底)。其中阶码 7 位(含一位阶符),用移码表示;尾数 9 位(含一位数符),用补码表示。请分该析规格化浮点数表示的最大正数、最小正数、最大负数、最小负数。
5. 简述 RISC 构架的主要特点。
6. 某微程序控制器采用的微指令字长为 24 位。微命令生成部分由 4 个字段构成,各字段所包括的互斥微命令分别为 5 个、8 个、14 个和 3 个。另外控制产生后继(次)地址的条件有 3 种。试设计该微指令的格式,说明各个字段(包括次地址等字段)的划分方法,并指出控制存储器的最大容量为多少?
7. 简述冯•诺依曼机硬件的基本组成,其主要特点有哪些?

二.(本题 18 分)设浮点数字长 12 位,阶码 4 位(含1 位符号位),尾数 8 位(含1 位符号位),阶码、尾数均用补码表示。

 $[X]_{\#} = 0110 \quad 01001011 \qquad [Y]_{\#} = 0101 \quad 01010110$

请按照浮点数运算规则,计算 $[X \cdot Y]_{\#}$ 的结果。(要求:给出浮点运算步骤;尾数相乘采用布斯法,运算过程也要给出)

三. (本题 15 分)读下面的程序,说明程序完成的功能

```
BUF DB 100 DUP(?)
 RES1 DB 0
 RES2 DB 0
START: MOV AX, SEG BUF
      MOV DS, AX
      LEA SI, BUF
      MOV BL, 0
      XOR AX, AX
      MOV CX, 100
GOON: MOV DL, [SI]
      TEST DL, 01H
      JNZ NEXT
      MOV DH, 0
      ADD AX, DX
      INC BL
NEXT: INC SI
      LOOP GOON
      DIV BL
      MOV RES1, BL
      MOV RES2, AL
      HLT
```


采用数据通路描述方式、控制信号描述方式或两者混合的描述方式,写出在该计算机上,指令 OR [1500H],AX 的取指令、指令执行的微操作流程。(假设该指令由二个 16 位的字构成,主存中占二个地址)

装订

級

年课 新师

級

片

ا ئ

学号:

压允:

裁订

絥

丼级.

五. (本题 10 分) 某计算机指令对应的微操作表如下所示

工作周期标记	节拍	状态条件	微操作命令信号	CAL	COM	SHR	CSL	STP	ADD	SAT	LDA	JMP	BAN
-	<i>T</i> ₁		PC+MAR	1	1	1	1	1	1	1	1	1	-1
			1-R	1	1	1	1	1	1	- 1	1	-1	1
	T _i		M(MAR)→MDR	1	10	1	1	1	1	1	1	1	-1
FE			(PC)+1→PC	1	- 1	-1	1	1	1	1	1	1	- 1
(取指)			MDRIR	1.	1	1	1	1	1.	- 1	1	1	1
	7,		OP(TR) +ID	1	1	1	1	1	1	1	1	-1	- 1
	1,	1	1→[ND	V 10				100	- 1	1.	1	1	1
		î	I→EX	1	-1	1	1	1	- 1	- 1	1	1	- 1
	T,		Ad(IR) MAR						1	- 1	1	- 1	1
IND			1-R						1	1	1	1	1
(阿肚)	T,		M(MAR) →MDR						- 1	1	1	1	1
Chines	T ₁		MDR-+Ad(IR)						- 1	1	1	1	1
		ĪND	1-EX			0			1	-1	1	- 1	- 1
	T _a		Ad(IR) →MAR						1	- 1	1		
			1→R						1	- 000	1		
			1W	100	V-1					1	10000		
- 1	T _i	100	M(MAR) →MDR						1		1		
- 9			AC→MDR			1				- 1			
			(AC)+(MDR) →AC		1				1				
EX			MDR-+M(MAR)							1			
(执行)			MDR-AC								1		
(34())			0-AC	1									
			ĀC →AC		1								
2 9	T		R(AC) →L(AC), AC,不变			1							
- 1			p ⁴ (AC)			-	1						
			Ad(IR)→PC		1							1	
		A,	Ad(IR)→PC								-		1
			0-G					1					

根据上表可知 I→IND 的触发逻辑为: I→IND = FE • T2 • (ADD + SAT + LDA + JMP + BAN) 请参照该形式,写出 M(MAR) →MDR 的触发逻辑表达式。

附加题(本题 10 分) 附加题成绩作为参考,试卷成绩不超过100 分

1. 以 IEEE754 单精度浮点数格式表示以下三数: 2020.0820(10), -1.9889×10³⁰

注: IEEE754 单精度浮点数格式如下图所示:

31	30	23 22	0
s	E(30:23)	f(22:0)	

其中,

单精度格式位模式	IEEE 浮点数的值
0 <e<255< td=""><td>(−1)^s×2^{e-127}×1.f (正规数)</td></e<255<>	(−1) ^s ×2 ^{e-127} ×1.f (正规数)
e=0; f≠0 (f 中至少有一位不为零)	(-1) ^s ×2 ⁻¹²⁶ ×0.f (次正规数)
e=0; f=0 (f的所有位均为零)	(-1) ^s ×0.0 (有符号的零)
s=0; e=255; f=0 (f的所有位均为零)	+INF (正无穷大)
s=1; e=255; f=0 (f的所有位均为零)	一INF (负无穷大)
s=u; e=255; f≠0 (f中至少有一位不为零)	NaN (非数值)

2. 写出 $[x]_{\mathbb{Q}} \rightarrow [x]_{\mathbb{A}}$ 的转化规则,并证明。