WF4113-Fisheries Science

Lecture 10: Population and harvest dynamics

Housekeeping

- No lab... Will post and you can do as a take home.
- Exam I is Wednesday February 15th.
- Multiple choice
- True false
- Intepretation
- Will post some examples on web

Recruitment variability

- Match-mismatch: food resources don't match emergence timing
- Micropredation: smaller fish eating eggs
- Allee effect: spawners have a tough time finding each other
- · Depensation?
- Depensation-offspring reduced at low spawning levels

Recruitment variability

- Temperature-incubation time
- · Water quality-turbidity,
- Spawning Habitat-gravel, aerated substrates
- Macrophytes-needed to spawn for some fish Water levels-access to spawning areas

Fisheries icon: Emmaline Moore

- Summer investigator for the U.S. Bureau of Fisheries
- Ph.D. in 1916 in biology from Cornell

Penn Yan, July 21, 1915 - Miss Emmeline Moore of Churchville, N.Y., Ph.D. (student) Cornell University and an instructor in botany at Vassar College, passed through this village yesterday afternoon in an automobile en route to Lakes

Waneta and Lamoka to spend some time in the investigation of water plant and weed life for which these lakes offer unusual opportunity. Miss Moore fishes with a long handled rake or grappling device from a flat bottomed boat, and usually locates her prey at a depth of fifteen feet or less. (Comment: the reporter appeared to be slightly confused over fish or plants.)

Claims to fame

 1920 she became the first woman biologist for the

New York State Department of Conservation.

 She undertook a fish productivity study delineating the biological, chemical, and physical characteristics of Lake George.

The effects of fishing may be obfuscated

		Length	
Lake	County	Limit	Creel Limit
Enid Lake	Yalobusha, Lafayette, Panola	12" MLL	20
Grenada Lake	Grenada, Calhoun, Yalobusha	12" MLL	20
Horn Lake	Desoto Co.	10" MLL	30
Lake Okhissa	Franklin	10"MLL	10
Lake Washington	Washington	10" MLL	30 (5 under 10")
Moon Lake (includes part east of Hwy 1)	Coahoma	10" MLL	30 (5 under 10")
Pickwick & Tenn-Tom Waterway	Hwy 25 in Divide Section to Aliceville Lock & Dam	9" MLL	30
Sardis Lake	Lafayette, Marshall, Panola	11" MLL	15
Spillways of Arkabutla	To Prichard Road Bridge		20
Enid	To I-55		20
Grenada	To Hwy 51		20
Sardis & Barrow Lake	To Spaulding Creek		20

http://www.mdwfp.com/media/218652/creel_limits_pt._3_chaper_1.pdf

Types 1 fishing mortality

- F and M occur concurrently
- Generally assume F and M are distributed proportionally throughout year
- · Most fisheries models assume this

Types 2 fishing mortality

- F and M separated in time
- F during intense, short season (days few months)
- · M during rest of year
- Less common; sometimes less efficient

GAINS AND LOSSES DEPENDENT ON POPULATION ABUNDANCE

Assumptions

- · Growth dependent on population size
- No density dependence

$$\frac{dA_t}{dt} = r \cdot A_t$$

$$\begin{aligned} & \frac{dA}{dt} = r \cdot A_{t} \cdot \frac{K - A}{K} \\ & \frac{A_{t+dt} - A_{t}}{dt} = r \cdot A_{t} \cdot \frac{K - A_{t}}{K} \\ & A_{t+dt} - A_{t} = dt \cdot \left(r \cdot A \cdot \frac{K - A_{t}}{K}\right) \\ & A_{t+dt} = A_{t} + dt \cdot \left(r \cdot A_{t} \cdot \frac{K - A_{t}}{K}\right) \end{aligned}$$

Surplus production

- Compensatory effect of harvest
- Fish populations produce more offspring than necessary to replace themselves
- Harvest the 'doomed surplus', those fish that were going to die anyways
- Harvest has no effect on stock...

Sustainability

- 1. Ability to persist in the long-term. Often used as "short hand" for sustainable development;
- 2. Characteristic of resources that are managed so that the natural capital stock is non-declining through time, while production opportunities are maintained for the future.

