Deep Learning Cheat Sheet

A concise reference for core deep learning concepts, especially for building and evaluating baseline models.

1. Activation Functions

Function	Formula	Notes
ReLU Sigmoid Tanh GELU	max(0, x) 1 / (1 + e^{-x}) (e^x - e^{-x}) / (e^x + e^{-x}) Smooth variant of ReLU	Fast, prevents saturation Good for binary output Zero-centered sigmoid Used in Transformers

2. Training Parameters

• Batch Size: Number of samples per training step

• Epoch: One full pass through the training set

• Learning Rate: Step size for parameter updates

• Dropout: Randomly disables neurons to reduce overfitting

• Weight Decay: L2 regularization to penalize large weights

3. Normalization Techniques

Batch Normalization

- Normalizes across batch dimension
- Reduces internal covariate shift

Layer Normalization

- Normalizes across features (per sample)
- Preferred in RNNs and Transformers

4. Bias vs Variance

Model Type	Bias	Variance	Risk
Underfit	High	Low	Can't learn
Overfit	Low	High	Poor generalization

Model Type	Bias	Variance	Risk
Balanced	Low	Low	Ideal

5. Evaluation Metrics

- Accuracy: Correct predictions / Total
- Macro F1 Score: Average F1 across classes equally
- $\bullet\,$ Use macro F1 when data is balanced (e.g., AG News)

6. Attention Mechanism (Transformers)

The scaled dot-product attention formula:

"'math
$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V$$