Государственная система обеспечения единства измерений

ПРИМЕНЕНИЕ "РУКОВОДСТВА ПО ВЫРАЖЕНИЮ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ"

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАНЫ Всероссийским научно-исследовательским институтом метрологии им. Д.И. Менделеева (ВНИИМ им. Д.И. Менделеева) Госстандарта России

ВНЕСЕНЫ Госстандартом России

2 ПРИНЯТЫ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 20 от 02 ноября 2001 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации,
Азербайджанская республика	Азгосстанларт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Кыргызская Республика	Кыргызстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 26 марта 2003 г. № 96-ст рекомендации по метрологии РМГ 43-2001 введены в действие в качестве Рекомендации по метрологии Российской Федерации с 1 июля 2003 г.

4 ВВЕДЕНЫ ВПЕРВЫЕ

© ИПК Издательство стандартов, 2002

Настоящие рекомендации не могут быть полностью или частично воспроизведены, тиражированы и распространены в качестве официального издания без разрешения Технического секретариата Межгосударственного Совета по стандартизации, метрологии и сертификации

Содержание

1 Область прим	енения	1
	ссылки	1
	и обозначения	1
	по применению Руководства	2
5 Соответствие	между формами представления результатов измерений, используемыми в НД	
ГСИ по метр	оологии, и формой, используемой в Руководстве	5
Приложение А	Сравнительный анализ двух подходов к выражению характеристик точности	
	измерений	8
Приложение Б	Пример оценивания характеристик погрешности и вычисления неопределен-	
	ности измерений. Измерения силы электрического тока с помощью вольт-	
	метра и токового шунта	11
Приложение В	Пример оценивания характеристик погрешности и вычисления неопределен-	
	ности измерений. Измерения длины штриховой меры	15
Приложение Г	Значения коэффициента $t_{p}(\nu)$ для случайной величины, имеющей распре-	
	деление Стьюдента с истепенями свободы	18
Приложение Д	Библиография	19

Введение

В 1993 г. под эгидой Международного комитета мер и весов (МКМВ), Международной электротехнической комиссии (МЭК), Международной организации по стандартизации (ИСО), Международной организации по законодательной метрологии (МОЗМ), Международного союза по чистой и прикладной физике, Международного союза по чистой и прикладной химии и Международной федерации клинической химии разработано "Руководство по выражению неопределенности измерения" (далее – Руководство).

Целями Руководства являются:

- обеспечение полной информации о том, как составлять отчеты о неопределенностях измерений;
 - предоставление основы для международного сопоставления результатов измерений;
- предоставление универсального метода для выражения и оценивания неопределенности измерений, применимого ко всем видам измерений и всем типам данных, которые используются при измерениях.

Существуют два подхода к оцениванию параметров (характеристик) точности измерений. Один подход основан на понятиях и терминах, используемых в Руководстве, другой - на понятиях и терминах, применяемых в основополагающих нормативных документах (НД) в области метрологии, используемых в национальных системах обеспечения единства измерений государств — участников Соглашения "О проведении согласованной политики в области стандартизации, метрологии и сертификации" (далее - Соглашение).

Задачами настоящих рекомендаций являются:

- изложение основных положений Руководства и рекомендаций по их практическому применению;
 - сравнительный анализ двух подходов к описанию точности измерений;
- показ соответствия между формами представления результатов измерений, используемыми в основополагающих НД в области метрологии, и формой, используемой в Руководстве.

РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ

Государственная система обеспечения единства измерений

ПРИМЕНЕНИЕ "РУКОВОДСТВА ПО ВЫРАЖЕНИЮ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ"

Дата введения 2003-07-01

1 Область применения

Настоящие рекомендации распространяются на методы оценивания точности результатов измерений, содержат практические рекомендации по применению Руководства [1] и показывают соответствие между формами представления результатов измерений, принятыми в основополагающих нормативных документах (НД) по метрологии, применяемых в странах — участниках Соглашения, и формой, принятой в Руководстве.

2 Нормативные ссылки

2.1 В настоящих рекомендациях использованы ссылки на следующие стандарты и рекомендации: ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.381-80 Государственная система обеспечения единства измерений. Эталоны. Способы выражения погрешностей

 $PM\Gamma$ 29-99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения

3 Определения и обозначения

3.1 В настоящих рекомендациях использованы следующие основные термины, определенные в Руководстве

неопределенность (измерений): Параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые могли бы быть обоснованно приписаны измеряемой величине;

стандартная неопределенность (и): Неопределенность результата измерений, выраженная в виде среднего квадратического отклонения (СКО);

суммарная стандартная неопределенность (u_c): Стандартная неопределенность результата измерений, полученного через значения других величин, равная положительному квадратному корню суммы членов, причем члены являются дисперсиями или ковариациями этих других величин, взвешенными в соответствии с тем, как результат измерений изменяется при изменении этих величин:

расширенная неопределенность (U): Величина, определяющая интервал вокруг результата измерений, в пределах которого, как можно ожидать, находится большая часть распределения значений, которые с достаточным основанием могли бы быть приписаны измеряемой величине.

РМГ 43-2001

3.2 В настоящих рекомендациях использованы следующие обозначения:

 x_{i} - оценка i-й входной величины;

 x_{il} - l-й результат измерения i-й входной величины;

 \overline{x}_i - среднее арифметическое значение *i*-й входной величины;

у - оценка измеряемой величины;

и - стандартная неопределенность;

 u_{A} - стандартная неопределенность, оцененная по типу A;

 u_B - стандартная неопределенность, оцененная по типу В;

 $u\left(x_{i}\right)$ - стандартная неопределенность оценки i-й входной величины;

 u_i - стандартная неопределенность единичного измерения i-й входной величины;

 $r(x_{i}, x_{j})$ - коэффициент корреляции оценок *i*-й и *j*-й входных величин;

 u_c - суммарная стандартная неопределенность;

k - коэффициент охвата;

 $t_p(\nu)$ - квантиль распределения Стьюдента для доверительной вероятности (уровня доверия) p и числа степеней свободы ν ,

 v_i - число степеней свободы при вычислении неопределенности оценки i-й входной величины;

 v_{eff} - эффективное число степеней свободы, принятое в Руководстве;

 $\hat{\mathcal{V}}_{\it eff}$ - оценка эффективного числа степеней свободы;

U - расширенная неопределенность;

 U_{n} - расширенная неопределенность для уровня доверия p;

S - СКО случайной погрешности результата измерений;

 $S(x_i)$ - СКО единичного измерения при многократных измерениях i-й входной величины;

 $S\left(\overline{x}_{i}\right)$ - СКО среднего арифметического значения при многократных измерениях i-й входной величины;

 S_{Σ} - СКО суммы случайных и неисключенных систематических погрешностей;

K — коэффициент при суммировании систематической и случайной составляющих суммарной погрешности, принятый в НД ГСИ по метрологии * ;

 f_{b} - оценка эффективного числа степеней свободы, принятая в НД ГСИ по метрологии;

 Δ_p - доверительные границы суммарной погрешности результата измерений для доверительной вероятности p;

 z_p - квантиль нормального распределения для доверительной вероятности p;

 θ_i - границы i-й составляющей неисключенной систематической погрешности;

 θ (p) - доверительные границы систематической погрешности измерения для доверительной вероятности p:

 b_{i-} - нижняя граница отклонения измеряемой величины от результата измерений;

 b_{i+} - верхняя граница отклонения измеряемой величины от результата измерений;

 b_i - симметричные границы отклонения измеряемой величины от результата измерений.

4 Рекомендации по применению Руководства

- 4.1 Основным количественным выражением неопределенности измерений является стандартная неопределенность u.
- 4.2 Основным количественным выражением неопределенности измерений, при котором результат определяют через значения других величин, является суммарная стандартная неопределенность u_c .
- $4.3\,$ В тех случаях, когда это необходимо, вычисляют расширенную неопределенность U по формуле

$$U = k \cdot u_{c}, \tag{1}$$

 $^{^*}$ Здесь и далее обобщенная ссылка «НД ГСИ по метрологии» означает группу нормативных документов по разделу 2 и нормативные документы по приложению Д – [2] и [3]

где k - коэффициент охвата (числовой коэффициент, используемый как множитель при суммарной стандартной неопределенности для получения расширенной неопределенности).

4.4 В Руководстве измеряемую величину У определяют как

$$Y = f(X_1, ..., X_m), (2)$$

где X_1 , . . . , X_m - входные величины (непосредственно измеряемые или другие величины, влияющие на результат измерения);

т - число этих величин;

f - вид функциональной зависимости.

4.5 Оценку измеряемой величины y вычисляют как функцию оценок входных величин x_1, \dots, x_m после внесения поправок на все известные источники неопределенности, имеющие систематический характер

$$y = f(x_1, \dots, x_m) \tag{3}$$

- $y = f(x_i, ..., x_m)$ (3) 4.6 Затем вычисляют стандартные неопределенности входных величин $u(x_i)$ (i = 1, ..., m) и возможные коэффициенты корреляции $r(x_i, x_j)$ оценок i-й входных величин (j = 1, ..., m).
 - 4.7 Различают два типа вычисления стандартной неопределенности: вычисление по типу А – путем статистического анализа результатов многократных измерений; вычисление по типу В – с использованием других способов.

4.8 Вычисление стандартной неопределенности и

- 4.8.1 Вычисление стандартной неопределенности по типу $A u_A$
- 4.8.1.1 Исходными данными для вычисления u_A являются результаты многократных измерений: $x_{i1},...,x_{in_i}$ (где i=1,...,m; n_i – число измерений i-й входной величины).
- 4.8.1.2 Стандартную неопределенность единичного измерения i-й входной величины $u_{A,i}$ вычисляют по формуле

$$u_{A,i} = \sqrt{\frac{1}{n_i - 1} \sum_{q=1}^{n_i} \left(x_{iq} - \overline{x_i} \right)^2} , \qquad (4)$$

где $\frac{1}{x_i} = \frac{1}{n_i} \sum_{q=1}^{n_i} x_{iq}$ - среднее арифметическое результатов измерений *i*-й входной величины.

4.8.1.3 Стандартную неопределенность $u_4(x_i)$ измерений *i*-й входной величины, при которых результат определяют как среднее арифметическое, вычисляют по формуле

$$u_{A}(x_{i}) = \sqrt{\frac{1}{n_{i}(n_{i}-1)} \sum_{q=1}^{n_{i}} (x_{iq} - \overline{x_{i}})^{2}}.$$
 (5)

- 4.8.2 Вычисление стандартной неопределенности по типу В u_B
- 4.8.2.1 B качестве исходных данных для вычисления u_B используют:
- данные предшествовавших измерений величин, входящих в уравнение измерения; сведения о виде распределения вероятностей;
- данные, основанные на опыте исследователя или общих знаниях о поведении и свойствах соответствующих приборов и материалов;
 - неопределенности констант и справочных данных;
 - данные поверки, калибровки, сведения изготовителя о приборе и т.п.
- 4.8.2.2 Неопределенности этих данных обычно представляют в виде границ отклонения значения величины от ее оценки. Наиболее распространенный способ формализации неполного знания о значении величины заключается в постулировании равномерного закона распределения возможных значений этой величины в указанных (нижней и верхней) границах $[(b_{i-},b_{i+})$ для i-й входной величины]. При этом стандартную неопределенность, вычисляемую по типу B - $u_B(x_i)$, определяют по формуле

$$u_B(x_i) = \frac{b_{i+} - b_{i-}}{2\sqrt{3}},\tag{6}$$

а для симметричных границ $(\pm b_i)$ - по формуле

$$u_B(x_i) = \frac{b_i}{\sqrt{3}}. (7)$$

- 4.8.2.3 В случае других законов распределения формулы для вычисления неопределенности по типу В будут иными.
- 4.8.3 Для вычисления коэффициента корреляции $r(x_i, x_i)$ используют согласованные пары измерений (x_{il}, x_{il}) (где $l = 1, \ldots, n_{ij}; n_{ij}$ – число согласованных пар результатов измерений)

$$r(x_i, x_j) = \frac{\sum_{l=1}^{n_{ij}} (x_{il} - \overline{x}_i)(x_{jl} - \overline{x}_j)}{\sqrt{\sum_{l=1}^{n_{ij}} (x_{il} - \overline{x}_i)^2 \sum_{l=1}^{n_{ij}} (x_{jl} - \overline{x}_j)^2}}.$$
(8)

4.9 Вычисление суммарной стандартной неопределенности u_c

4.9.1 В случае некоррелированных оценок $x_1,...,x_m$ суммарную стандартную неопределенность $u_c(y)$ вычисляют по формуле

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i})}$$
 (9)

 $4.9.2~{\rm B}$ случае коррелированных оценок $x_1,...,x_m$ суммарную стандартную неопределенность вычисляют по формуле

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} r(x_{i}, x_{j}) u(x_{i}) u(x_{j})},$$
(10)

где $r(x_i, x_j)$ - коэффициент корреляции; $u(x_i)$ - стандартная неопределенность i-й входной величины, вычисленная по типу А или по типу В.

4.10 Выбор коэффициента охвата k при вычислении расширенной неопределенности

4.10.1 В общем случае коэффициент охвата к выбирают в соответствии с формулой

$$k = t_p(v_{eff}), \tag{11}$$

где $t_p(v_{eff})$ - квантиль распределения Стьюдента с эффективным числом степеней свободы v_{eff} и доверительной вероятностью (уровнем доверия) p. Значения коэффициента $t_p(v_{eff})$ приведены в приложении Г.

4.10.2 Эффективное число степеней свободы определяют по формуле

$$v_{eff} = \frac{u_c^4}{\sum_{i=1}^m \frac{u^4(x_i)}{v_i} \left(\frac{\mathcal{J}}{\partial x_i}\right)^4},$$
(12)

где v_i - число степеней свободы при определении оценки i-й входной величины, при этом:

 $v_i = n_i - 1$ — для вычисления неопределенностей по типу А;

 $v_i = \infty$ — для вычисления неопределенностей по типу В.

4.10.3 Во многих практических случаях при вычислении неопределенностей результатов измерений делают предположение о нормальности закона распределения возможных значений измеряемой величины и полагают

$$k = 2$$
 при $p \approx 0.95$ и $k = 3$ при $p \approx 0.99$

k=2 при $p\approx 0.95$ и k=3 при $p\approx 0.99$. При предположении о равномерности закона распределения полагают

$$k = 1.65$$
 при $p \approx 0.95$ и $k = 1.71$ при $p \approx 0.99$

4.11 При представлении результатов измерений Руководство рекомендует приводить достаточное количество информации для возможности проанализировать или повторить весь процесс получения результата измерений и вычисления неопределенностей измерений, а именно:

- алгоритм получения результата измерений;
- алгоритм расчета всех поправок и их неопределенностей;
- неопределенности всех используемых данных и способы их получения;
- алгоритмы вычисления суммарной и расширенной неопределенностей (включая значение коэффициента k).

5 Соответствие между формами представления результатов измерений, используемыми в НД ГСИ по метрологии, и формой, используемой в Руководстве

- 5.1 При проведении совместных работ с зарубежными странами, в работах, проводимых под эгидой МКМВ и его Консультативных комитетов, при подготовке публикаций в зарубежной печати, при публикациях работ по определению физических констант и в других случаях, связанных с выполнением международных метрологических работ, целесообразно руководствоваться нижеприведенными схемами.
- 5.1.1 При вычислении неопределенности измерений следует придерживаться последовательности, показанной на рисунке 1.

Рисунок 1

5.2 Сопоставление способов оценивания доверительных границ погрешности Δ_p и вычисления расширенной неопределенности U_p измерений приведено в таблице 1.

PMΓ 43-2001

Таблица 1

	$\frac{\theta(p)}{S} < 0.8$	$0.8 \le \frac{\theta(p)}{S} \le 8.0$	$\left \frac{\theta(p)}{S}\right> 8,0$		
оологии	$\Delta_p = t_p(f_{\vartheta\phi})S,$	$\Delta_{p} = \frac{t_{p}(f_{9\phi})S + \theta(p)}{S + \sqrt{\sum_{i=1}^{m} \left(\frac{\mathcal{J}}{\partial x_{i}}\right)^{2} \frac{\theta_{i}^{2}}{3}}} \sqrt{S^{2} + \sum_{i=1}^{m} \left(\frac{\mathcal{J}}{\partial x_{i}}\right)^{2} \frac{\theta_{i}^{2}}{3}},$	$\Delta_p = \theta(p)$		
о метј		$\sqrt{\sum_{i=1}^{2} \left(\partial x_i \right)} = 3$			
НД ГСИ по метрологии	где $S = \sqrt{\sum_{i=1}^{m} \left(\frac{\mathcal{J}}{\partial x_i}\right)^2 S^2}$	$\overline{x_i}$); $\theta(p) = k \sqrt{\sum_{i=1}^m \left(\frac{\partial f}{\partial x_i}\right)^2 \theta_i^2}$, здесь $k = 1$,1 при $p = 0$),95		
		и $k = 1,4$ при $p = 0,99$ и m	> 4		
	$f_{9\phi} = \frac{\left(\sum_{i=1}^{m} \left(\frac{\mathcal{J}}{\partial x_i}\right)^2 S^2(\bar{x}_i)\right)^2 - \frac{2}{m+1} \sum_{i=1}^{m} \left(\frac{\mathcal{J}}{\partial x_i}\right)^4 S^4(\bar{x}_i)}{S^4(\bar{x}_i)}$				
	$\frac{1}{m+1} \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}\right)^{-1} S^4(\overline{x}_i)$				
	$U_p = t_p(v_{eff}) \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)},$				
Руководство	где $v_{eff} = \frac{u_c^4}{\sum_{i=1}^m \frac{u^4(x_i)}{v_i} \left(\frac{\mathcal{J}}{\partial x_i}\right)^4}$,				
	i=1 i				
	Для большинства практических случаев в предположении: - нормального закона распределения $U_{0,95}=2u_c$, $U_{0,99}=3u_c$; - равномерного закона распределения $U_{0,95}=1,65u_c$, $U_{0,99}=1,71u_c$				

5.3 При сопоставлении оценок характеристик погрешности и неопределенностей результатов измерений рекомендуется использовать следующую схему (с учетом пояснений A.5 и A.6 приложения A):

5.4 Если отсутствует достаточная информация для вычисления неопределенности u в соответствии с Руководством (раздел 4 настоящей рекомендации), то ее оценка \hat{u} может быть получена на основании оценок характеристик погрешности по приведенным ниже схемам. Схемы 1 и 2 соответствуют двум различным способам представления результатов измерений, принятым в НД ГСИ по метрологии. Необходимо отметить, что оценки неопределенностей, полученные таким образом, в ряде случаев не совпадают со значениями неопределенностей, полученными в соответствии с Руководством (см. приложение B).

Схема 1

у - результат измерений;	у - результат измерений;
S - СКО случайной погрешности	$\dot{u}_A = S$ - оценка стандартной не-
результата измерений;	определенности, вычис- ленной по типу А;
$\theta(p)$ - доверительные границы неис- ключенной систематической	$\hat{u}_B = \frac{\theta(p)}{k\sqrt{3}}$ - оценка стандартной неопределенности. вы-
погрешности результата изме-	· F-//
рений;	численной по типу В, при этом:
т - число входных величин;	k = 1,1 - при $p = 0,95$ и
f_{ϕ} - оценка эффективного числа	k = 1,4 - при $p = 0.99$ и $m > 4$;
степеней свободы,	$\hat{u}_{\mathcal{C}} = \sqrt{\hat{u}_{A}^{2} + \hat{u}_{B}^{2}}$ - оценка суммарной стандартной не-
$f_{9\phi} = n - 1$ - при прямых измерениях, (где n - число измерений)	$ac = \bigvee aA + aB$ стандартной неопределенности;
(i de n inesio iismepenini)	
	$\hat{v}_{\it eff} = f_{\it 9} \phi \cdot \left[I + \frac{\hat{u}_B^2}{\hat{u}_A^2} \right]^2$ - оценка эффективного числа степеней свободы;
	\hat{u}_A^2 ней свободы;
	$\hat{U}_p = t_p(\hat{v}_{eff})\hat{u}_c$ - оценка расширенно неопределенности
	постродология

РМГ 43-2001

Схема 2

Оценить неопределенности u_A и u_B по отдельности, зная только Δ_p , невозможно.

ПРИЛОЖЕНИЕ А (Справочное)

Сравнительный анализ двух подходов к выражению характеристик точности измерений

А.1 Целью измерений является получение оценки истинного значения измеряемой величины. Понятие погрешности измерений как разности между результатом измерений и истинным (действительным) значением измеряемой величины используется для описания точности измерений в НД ГСИ по метрологии. Говоря об оценивании погрешности, в метрологической практике государств – участников Соглашения подразумевают оценивание ее характеристик.

- А.2 В Руководстве для выражения точности измерений вводят понятие неопределенности измерений. Неопределенность измерений понимают как неполное знание значения измеряемой величины и для количественного выражения этой неполноты вводят распределение вероятностей возможных (обоснованно приписанных) значений измеряемой величины. Таким образом, параметр этого распределения (также называемый неопределенность) количественно характеризует точность результата измерений.
- А.3 Сходными для обоих подходов являются последовательности действий при оценивании характеристик погрешности и вычислении неопределенности измерений:
 - анализ уравнения измерений;
 - выявление всех источников погрешности (неопределенности) измерений и их количественное оценивание;
 - введение поправок на систематические погрешности (эффекты), которые можно исключить.
- А.4 Методы вычисления неопределенности, также как и методы оценивания характеристик погрешности, заимствованы из математической статистики, однако при этом используются различные ин-

терпретации закона распределения вероятностей случайных величин. Кроме изложенных в Руководстве и НД ГСИ по метрологии методов вычисления неопределенности и оценивания характеристик погрешности на практике используют и другие методы.

Возможные различия между оценками характеристик погрешности (в соответствии с НД ГСИ по метрологии) и неопределенностями (в соответствии с Руководством) показаны в примерах, приведенных в приложениях Б и В.

Различие двух подходов проявляется также в трактовке неопределенности и характеристик погрешности, основанной на разных интерпретациях вероятности: частотной и субъективной. В частности, доверительные границы погрешности (отложенные от результата измерений) накрывают истинное значение измеряемой величины с заданной доверительной вероятностью (частотная интерпретация вероятности). В то же время аналогичный интервал $(y-U_p,y+U_p)$ трактуется в Руководстве как интервал, содержащий заданную долю распределения значений, которые могли бы быть обоснованно приписаны измеряемой величине (субъективная интерпретация вероятности).

А.5 В общем случае не существует однозначного соответствия между случайными погрешностями и неопределенностями, вычисленными по типу A (а также неисключенными систематическими погрешностями и неопределенностями, вычисленными по типу B). Деление на систематические и случайные погрешности обусловлено природой их возникновения и проявления в ходе измерительного эксперимента, а деление на неопределенности, вычисляемые по типу A и по типу B, – методами их расчета.

А.6 Результаты сравнительного анализа процедур оценивания характеристик погрешности и вычисления неопределенности измерений приведены в таблицах А.1 и А.2.

Таблица А.1 - Процедура оценивания характеристик погрешности результата измерений

_					
Погрешность	$\xi = y - y_{ucm} \iff y = y_{ucm} + \xi$				
Модель погрешности	ξ - случайная величина с плотностью распределения вероятностей $p(x; E, \sigma^2,)$, где E - математическое ожидание, σ^2 - дисперсия				
Характеристики погрешности	S - СКО θ - границы неисключенной систематиче- Δ_p - доверительные границы ской погрешности				
Исходные данные для оценивания характеристик погрешности	1 Модель объекта исследования. 2 Экспериментальные данные x_{iq} , где $q=1,,n_i$; $i=1,,m$. 3 Информация о законах распределения. 4 Сведения об источниках погрешностей, их природе и характеристиках составляющих $(S(x_i), \theta_i)$, структурная модель погрешности.				
Методы оценивания характеристик: 1 случайных погрешностей	$S(x_{il}) = \sqrt{\frac{1}{n_i - 1} \sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2}; S(\overline{x}_i) = \sqrt{\frac{1}{n_i (n_i - 1)} \sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2};$ $S(x_{il}) = \sqrt{\frac{1}{n_i (n_i - 1)} \sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2};$ $S(x_{il}) = \sqrt{\frac{1}{n_i (n_i - 1)} \sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2};$				
2 неисключенных систематических погрешностей	$\theta(p) = k \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}\right)^2 \theta_i^2},$				
	где $k = 1,1$ при $p = 0,95$ и $k = 1,4$ при $p = 0,99$ и $m > 4$				
3 суммарной погрешности	$\Delta_{p} = \frac{t_{p} (f_{3\phi}) S + \theta (p)}{S + \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \frac{\theta_{i}^{2}}{3}}} \sqrt{S^{2} + \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \frac{\theta_{i}^{2}}{3}}$				

PMΓ 43-2001

Окончание таблицы А.1

Форма представления		_	
характеристик погрешно-	$\theta(p), S, n, f_{\circ\phi}$	Δ_p	
сти		•	
Интерпретация полу-	Интервац $(-A_n + A_n)$ с вероятностью I	р солержит погрешность измерений что рав-	
ченных результатов	Интервал ($-\Delta_p$, $+\Delta_p$) с вероятностью p содержит погрешность измерений, что рав-		
	носильно тому, что интервал $(y - \Delta_p, y + \Delta_p)$ с вероятностью p содержит истинное		
	значение измеряемой величины.		

Таблица А.2 - Процедура вычисления неопределенности измерений

	I		2	
Модель неопреде-	η - случайная величина с плотностью распределения вероятностей $p(x; y, u^2,)$, где y -			
ленности (пред- ставление знания о	математическое ожидание,			
значении измеряе-	u^2 - дисперсия			
мой величины)				
Неопределенность	Стандартная и	Суммарная	Расширенная $U_p = k u_c$	
(количественная			r · · · · · · · · · · · · · · · · · · ·	
мера)		$u_c = \sqrt{\sum_{i=1}^m u_i^2}$		
Исходные данные	1 Модель объекта исследования.			
для вычисления	2 Экспериментальные данные x_{iq} , где	$q = 1,,n_i; i = 1,,m.$		
неопределенности	3 Информация о законах распределен	.RM		
	4 Сведения об источниках неопределе	нности и информация о з	начениях неопределенно-	
	сти.			
3.6	5 Стандартные справочные данные и д	цругие справочные матері	иалы	
Методы вычисле-				
ния неопределен-				
1 по типу А				
1 110 111111 111	$\sum_{i=1}^{n_i} (x_i - \overline{x}_i)$	$\left \begin{array}{c} n_i \\ \Sigma \end{array} \right $	$(x_1 - \overline{x}_1)^2$	
	$\sum_{i=1}^{n} (x_{iq} - x_i)$			
	$u_{A,i} = \sqrt{\frac{q-1}{n_i - 1}}, u_A(x_i) = \sqrt{\frac{q-1}{n_i(n_i - 1)}}$			
2 по типу В	$u_{A,i} = \sqrt{\frac{\sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2}{n_i - 1}} \cdot u_A(x_i) = \sqrt{\frac{\sum_{q=1}^{n_i} (x_{iq} - \overline{x}_i)^2}{n_i(n_i - 1)}}$ $u_B(x_i) = \frac{b_i}{\sqrt{3}}$			
3 расширенной неопределенности	$U_p = t_p(v_{eff}) \cdot u_c,$			
	4			
	где $\frac{u \frac{4}{c}}{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}} u (x_{i})\right)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i} u(x_i) \right)^2 ;$	
	$i=1$ v_i			
	$U_{0,95}=2u_c, U_{0,99}=3u_c $ – для нормального закона; $U_{0,95}=1,65u_c, \ U_{0,99}=1,71u_c$ – для равномерного закона			
Представление				
неопределенности	u c	$,U_{p},k,u_{i},v_{i}$		
Интерпретация	Интервал ($y-U_p$, $y+U_p$) содержит большую долю (p) распределения значений, ко-			
полученных результатов	торые могли бы быть обоснованно приписаны измеряемой величине			

ПРИЛОЖЕНИЕ Б (справочное)

Пример оценивания характеристик погрешности и вычисления неопределенности измерений.

Измерения силы электрического тока с помощью вольтметра и токового шунта

Б.1 Уравнение измерений

$$I = f(V, R) = \frac{V}{R} , \qquad (B.1)$$

где I - сила тока;

V – напряжение;

R - сопротивление шунта.

Б.2 Нахождение результата измерений

Б.2.1 В результате измерений напряжения при температуре $t = (23,00 \pm 0,05)$ °C получают ряд значений V_i в милливольтах (где i = 1,...,n; n = 10):

100,68; 100,83; 100,79; 100,64; 100,63; 100,94; 100,60; 100,68; 100,76; 100,65.

Б.2.2 На основе полученных значений вычисляют среднее арифметическое значение напряжения \overline{V} , MB, по формуле

$$\overline{V} = \frac{1}{n} \sum_{i=1}^{n} V_i = 100 ,72$$
 (6.2)

Б.2.3 Значение сопротивления шунта R_0 , O_M , установлено при его калибровке для I=10~A и t=23,00 °C и равно:

$$R_0 = 0.010 088$$
.

Б.2.4 Результат измерений силы тока I, A, получают по формуле

$$I = \frac{\overline{V}}{R_0} = 9,984 \quad . \tag{5.3}$$

Б.3 Анализ источников погрешности результата измерений

Б.3.1 СКО, характеризующее случайную составляющую погрешности при измерениях напряжения $S(\overline{V})$, мB, вычисляют по формуле

$$S(\overline{V}) = \sqrt{\frac{\sum_{i=1}^{n} (V_{i} - \overline{V})^{2}}{n(n-1)}} = 3, 4 \cdot 10^{-2} ,$$

$$\widetilde{S}(\overline{V}) = 0,034 \%^{*}.$$
(6.4)

Б.3.2 Границы неисключенной систематической погрешности вольтметра в милливольтах определены при его калибровке в виде следующего выражения ** :

$$\theta_V = 3 \cdot 10^{-4} \cdot V + 0.02$$
 (6.5)

Тогда при $V=\overline{V}\,$ получают

$$\theta_V = 5.0 \cdot 10^{-2} \text{ MB},$$

$$\widetilde{\theta}_V = 0.05 \ 0 \ \%$$
.

Б.З.З Границы неисключенной систематической погрешности значения сопротивления шунта, определенные при его калибровке, равны

$$\widetilde{\theta}_R = 0.07 \ 0 \ \%$$
.

^{*)}Здесь и далее по тексту знак тильды над буквой, обозначающей характеристику погрешности (неопределенности), означает, что данная характеристика приведена в относительном виде.

 $^{^{**}}$) В выражениях для границ погрешностей при равных значениях отклонений от нуля знак \pm здесь и далее опущен.

Тогда при $R = R_0$ получают

$$\theta_R = 7 \cdot 10^{-4} \cdot R_0 = 7.1 \cdot 10^{-6} \text{ Om.}$$
 (5.6)

Б.3.4 Границы неисключенной систематической составляющей погрешности значения сопротивления шунта, обусловленной погрешностью измерений температуры, находят из формулы, определяющей зависимость сопротивления от температуры

$$R = R_0 \cdot [1 + \alpha \cdot (t - t_0)], \tag{5.7}$$

где R_0 - значение сопротивления при $t=t_0$ ($t_0=23\,,\!00\,^{\circ}\mathrm{C};\ R_0=0,\!010\,^{\circ}088\,^{\circ}O_{\!M}$);

 α - температурный коэффициент ($\alpha = 6 \cdot 10^{-6} \; K^{-1}$).

В случае, когда границы погрешности измерения температуры равны Δt , границы соответствующей составляющей погрешности значения сопротивления равны

$$\theta_{R,t} = \alpha \cdot \Delta t \cdot R , \qquad (5.8)$$

Таким образом, при $\Delta t = 0.05$ °C получают:

$$\theta_{R,t} = 3.0 \cdot 10^{-9} OM,$$

 $\widetilde{\theta}_{R,t} = 3.0 \cdot 10^{-5} \%.$

В дальнейшем эту составляющую погрешности (ввиду ее малости по сравнению с другими составляющими) можно не учитывать.

Б.4 Вычисление характеристик погрешности результата измерений

Б.4.1 Делают предположение о равномерном распределении неисключенных систематических составляющих погрешности результата измерений внутри их границ θ_V и θ_R . Тогда СКО суммарной неисключенной систематической составляющей погрешности результата измерений силы тока S_{θ} , А определяют по формуле

$$S_{\theta} = \sqrt{\left(\frac{\partial f}{\partial V}\right)^2 \cdot \frac{\theta_V^2}{3} + \left(\frac{\partial f}{\partial R}\right)^2 \cdot \frac{\theta_R^2}{3}},$$
 (5.9)

где $\frac{\partial f}{\partial V} = \frac{1}{R}$, $\frac{\partial f}{\partial R} = -\frac{V}{R^2}$ - коэффициенты влияния.

Таким образом, получают

$$S_{\theta} = \sqrt{\left(\frac{1}{R_0}\right)^2 \cdot \frac{\theta_V^2}{3} + \left(\frac{\overline{V}}{R_0^2}\right)^2 \cdot \frac{\theta_R^2}{3}} = 5,0 \cdot 10^{-3} A,$$

$$\widetilde{S}_{\theta} = 0,050 \%.$$

Б.4.2 Доверительные границы суммарной неисключенной систематической составляющей погрешности результата измерений силы тока $\theta(p)$ при доверительной вероятности p=0.95 оценивают по формуле

$$\theta(0,95) = 1,1\sqrt{\left(\frac{1}{R}\right)^2 \theta_V^2 + \left(\frac{V}{R^2}\right)^2 \cdot \theta_R^2} = 9,5 \cdot 10^{-3} A,$$

$$\widetilde{\theta}_{0,95} = 0,095 \%.$$
(E.10)

Б.4.3 СКО случайной составляющей погрешности результата измерений силы тока S определяют по формуле

$$S = \frac{\partial f}{\partial V} \cdot S(\overline{V}) = 3,4 \cdot 10^{-3} A,$$

$$\widetilde{S} = 0.034 \%.$$
(B.11)

Б.4.4 СКО суммарной погрешности результата измерений силы тока $S_{\scriptscriptstyle \Sigma}$ вычисляют по формуле

$$S_{\Sigma} = \sqrt{S^2 + S_{\theta}^2} = 6.0 \cdot 10^{-3} A,$$
 (B.12)
 $\widetilde{S}_{\Sigma} = 0.060$ %.

Б.4.5 Доверительные границы погрешности результата измерений силы тока $\Delta_{0,95}$ при p=0,95 и эффективном числе степеней свободы $f_{adid}=n-1=9$ вычисляют по формуле

$$\Delta_{0.95} = \frac{t_{0.95}(9) \cdot S + \theta(0.95)}{S + S_{\theta}} \cdot S_{\Sigma} = 0.012 A,$$

$$\widetilde{\Delta}_{0.95} = 0.12 \%.$$
(E.13)

Б.5 Вычисление неопределенности измерений

- Б.5.1 По типу А вычисляют стандартную неопределенность, обусловленную источниками неопределенности, имеющими случайный характер.
- Б.5.1.1 Стандартную неопределенность напряжения, обусловленную источниками неопределенности, имеющими случайный характер, $u_{\scriptscriptstyle A}(V)$ определяют по формуле

$$u_{A}(V) = \sqrt{\frac{\sum_{i=1}^{n} (V_{i} - \overline{V})^{2}}{n(n-1)}},$$

$$u_{A}(V) = 3,4 \cdot 10^{-2} MB,$$

$$\widetilde{u}_{A}(V) = 0,034^{-6}.$$
(B.14)

Б.5.1.2 Стандартную неопределенность силы тока, обусловленную источниками неопределенности, имеющими случайный характер, определяют по формуле

$$u_{A} = \frac{\partial f}{\partial V} \cdot u_{A}(V) = 3,4 \cdot 10^{-3} A,$$

$$\tilde{u}_{A} = 0,034 \%.$$
(E.15)

- Б.5.2 По типу В вычисляют стандартные неопределенности, обусловленные источниками неопределенности, имеющими систематический характер. Закон распределения величин внутри границ считают равномерным.
- Б.5.2.1 Границы систематического смещения при измерениях напряжения, определенные при калибровке вольтметра, равны $_{3.10}$ $_{4.V}$ + $_{0.02}$. Тогда соответствующую стандартную неопределенность $u_{B,V}$ вычисляют по формуле

$$u_{B,V} = \frac{3 \cdot 10^{-4} \cdot \overline{V} + 0.02}{\sqrt{3}} = 2.9 \cdot 10^{-2} MB,$$
 (B.16)
 $\widetilde{u}_{B,V} = 0.029$ %.

Б.5.2.2 Границы, внутри которых лежит значение сопротивления шунта, определены при калибровке шунта и равны 7 \cdot 10 $^{-4}$ \cdot $_R$. Тогда при $_{R}$ $_{R}$ соответствующую стандартную неопределенность $u_{B,R}$ вычисляют по формуле

$$u_{B,R} = \frac{7 \cdot 10^{-4} \cdot R_0}{\sqrt{3}} = 4.0 \cdot 10^{-6} O_M,$$
 (B.17)
 $\widetilde{u}_{B,R} = 0.040^{-9/6}.$

Б.5.2.3 Границы изменения значения сопротивления шунта, обусловленного изменением температуры, равны $\alpha \cdot \Delta t \cdot R_0$. Соответствующую стандартную неопределенность $u_{B,t}$ получают в соответствии с формулой

$$u_{B,t} = \frac{\alpha \cdot \Delta t \cdot R_0}{\sqrt{3}} = 1,7 \cdot 10^{-9} O_M,$$

$$\widetilde{u}_{B,t} = 1,7 \cdot 10^{-5} \%.$$
(E.18)

В дальнейшем этой составляющей неопределенности (ввиду ее малости по сравнению с другими составляющими) можно пренебречь.

Б.5.2.4 Суммарную стандартную неопределенность $u_{\rm B}$, вычисленную по типу B, определяют по формуле

$$u_{B} = \sqrt{\left(\frac{\partial f}{\partial V}\right)^{2} u_{B,V}^{2} + \left(\frac{\partial f}{\partial R}\right)^{2} \cdot u_{B,R}^{2}} = 5,0 \cdot 10^{-3} A,$$

$$\widetilde{u}_{R} = 0,050^{-9} \%.$$
(B.19)

Б.5.3 Суммарную стандартную неопределенность $u_{\rm C}$ вычисляют по формуле

$$u_{c} = \sqrt{u_{A}^{2} + u_{B}^{2}} = 6,0 \cdot 10^{-3} A,$$

$$\widetilde{u}_{c} = 0,060^{-9} \%.$$
(6.20)

Б.5.4 Эффективное число степеней свободы $v_{\rm eff}$ рассчитывают по формуле

$$v_{eff} = \frac{u_c^4}{\left(\frac{1}{R} \cdot u_A\right)^4 + \left(\frac{1}{R} \cdot u_{B,V}\right)^4 + \left(\frac{V}{R^2} \cdot u_{B,R}\right)^4} = 87$$
(6.21)

Б.5.5 Коэффициент охвата k получают по формуле

$$k = t_{0.95} (v_{eff}) = 1.99$$
 (6.22)

Б.5.6 Расширенную неопределенность $U_{0.95}$ определяют следующим образом

$$U_{0,95} = k \cdot u_c = 0,012 \quad A,$$

$$\widetilde{U}_{0,95} = 0,12 \quad \%.$$
(B.23)

Б.б. Переход от характеристик погрешности к неопределенности измерений

Б.6.1. Используя оценки характеристик погрешности, полученные в Б.3 и Б.4 настоящего приложения, можно продемонстрировать получение оценок неопределенностей в соответствии с 5.4 настоящих рекомендаций.

Схема 1

$$I = 9,984 \quad A,$$

$$S = 3,4 \cdot 10^{-3} \quad A,$$

$$\theta(0,95) = 9,5 \cdot 10^{-3} \quad A,$$

$$m = 2,$$

$$n = 10$$

$$I = 9,984 \quad A, \quad \hat{u}_A = S = 3,4 \cdot 10^{-3} \quad A,$$

$$U_B = \frac{\theta(0,95)}{k \cdot \sqrt{3}} = 5,0 \cdot 10^{-3} \quad A,$$

$$U_C = \sqrt{\hat{u}_A^2 + \hat{u}_B^2} = 6,0 \cdot 10^{-3} \quad A,$$

$$V_{eff} = (n-1) \cdot \left[1 + \frac{\hat{u}_B^2}{\hat{u}_A^2}\right]^2 = 87,$$

$$\hat{U}_{0,95} = t_{0,95} \quad (v_{eff}) \cdot \hat{u}_C = 0,012 \quad A$$

В данном примере неопределенности измерений, вычисленные в Б.5 настоящего приложения в соответствии с Руководством, совпадают с их оценками, полученными по схеме 1.

В данном примере разность неопределенностей измерений, вычисленных в Б.5 настоящего приложения в соответствии с Руководством, и их оценок, полученных по схеме 2, меньше погрешности округления при вычислениях.

ПРИЛОЖЕНИЕ В

(справочное)

Пример оценивания характеристик погрешности и вычисления неопределенности измерений. Измерения длины штриховой меры

Измерение длины штриховой меры проводят на государственном первичном эталоне единицы длины интерференционным методом.

В.1 Уравнение измерений

$$L = A \cdot \frac{\lambda}{2 n_{e}} + \alpha L_{0} \cdot (20 - t) + \Delta l_{S} , \qquad (B.1)$$

где L - длина штриховой меры;

A - число импульсов;

 λ - длина волны излучения (λ = 0,632 991 398 2 мкм);

 n_{e} - показатель преломления воздуха (n_{e} = 1,000 275 236);

 α - коэффициент линейного расширения ($\alpha = 1,15 \cdot 10^{-5}~K^{-1}$);

 L_0 - опорное значение длины штриховой меры (L_0 = 1,000 \emph{m});

t - температура штриховой меры (t = 20,125 °C);

 $_{A\ l_{S}}$ - поправка на размер коллиматорной щели ($_{A\ l_{S}}=0\,,031\,$ мкм).

В.2 Нахождение результата измерений

В.2.1 В результате измерений числа импульсов и внесения поправок на известные систематические погрешности в соответствии с уравнением измерения (В.1) получают ряд значений длины штриховой меры L_i в метрах, (где $i=1,...,n;\; n=10$):

 $1,000\ 001\ 356;\ 1,000\ 001\ 584;\ 1,000\ 001\ 383;\ 1,000\ 001\ 469;\ 1,000\ 001\ 491;\ 1,000\ 001\ 466;\ 1,000\ 001\ 575;\ 1,000\ 001\ 397;\ 1,000\ 001\ 405;\ 1,000\ 001\ 334.$

В.2.2 Оценку значения длины штриховой меры \overline{L} , как среднее арифметическое значений L_i , определяют по формуле

$$\overline{L} = \frac{1}{n} \sum_{i=1}^{n} L_{i} = 1,000 \quad 001 \quad 474 \quad .$$
 (B.2)

В.З Анализ источников погрешности результата измерений

В.3.1 СКО случайной составляющей погрешности S, M, определяют по формуле^{*)}

$$S = \sqrt{\frac{\sum_{i=1}^{n} (L_i - \overline{L})^2}{n(n-1)}} = 2.5 \cdot 10^{-8},$$

$$S = 0.025 \quad MKM.$$
(B.3)

В.3.2 Границы неисключенных систематических погрешностей:

- определения показателя преломления воздуха $\theta_{g} = 2.0 \cdot 10^{-8}$;
- значения длины волны $\theta_{\lambda} = 6.2 \cdot 10^{-9}$ мкм;
- определения температуры меры $\theta_t = 0.003$ °C;
- определения поправки на размер коллиматорной щели $\theta_{Al} = 0{,}002~$ мкм.

Составляющие погрешности результата измерений, обусловленные погрешностями значений L_0 и α , пренебрежимо малы.

В.4 Вычисление характеристик погрешности результата измерений

В.4.1 В предположении о равномерном распределении неисключенных систематических составляющих суммарной погрешности внутри границ $\theta_{\it g}$, $\theta_{\it \lambda}$, $\theta_{\it t}$ и $\theta_{\it \Delta l}$ СКО неисключенной систематической составляющей погрешности результата измерений $S_{\it \theta}$ вычисляют по формуле

 $^{^{*)}}$ Для более компактной записи значений характеристик погрешности (неопределенности) далее будут выражены в микрометрах (мкм).

$$S_{\theta} = \sqrt{\left(\frac{\partial f}{\partial n_{\theta}}\right)^{2} \cdot \frac{\theta_{\theta}^{2}}{3} + \left(\frac{\partial f}{\partial \lambda}\right)^{2} \cdot \frac{\theta_{\lambda}^{2}}{3} + \left(\frac{\partial f}{\partial t}\right)^{2} \cdot \frac{\theta_{t}^{2}}{3} + \left(\frac{\partial f}{\partial (\Delta l)}\right)^{2} \cdot \frac{\theta_{\lambda}^{2}}{3}}, \quad (B.4)$$

где $\frac{\partial f}{\partial m_{\,_{\it{B}}}} = -A \cdot \frac{\lambda}{2\,n_{\,_{\it{B}}}^{\,\,2}}; \frac{\partial f}{\partial \lambda} = A \cdot \frac{1}{2\,n_{\,_{\it{B}}}}; \frac{\partial f}{\partial \, t} = \alpha \cdot L_{\,_{\it{0}}}; \frac{\partial f}{\partial \, (\varDelta \, l\,)} = 1$ - коэффициенты влияния.

Таким образом, получают

$$S_{\theta} = \sqrt{\left(A \cdot \frac{\lambda}{2 n_{\theta}^{2}}\right)^{2} \cdot \frac{\theta_{\theta}^{2}}{3} + \left(A \cdot \frac{1}{2 n_{\theta}}\right)^{2} \cdot \frac{\theta_{\lambda}^{2}}{3} + (\alpha \cdot L_{0})^{2} \cdot \frac{\theta_{t}^{2}}{3} + (1)^{2} \cdot \frac{\theta_{\lambda}^{2}}{3}}.$$
 (B.5)

Для упрощения расчетов можно принять: $A \cdot \frac{\lambda}{2 \, n_{_B}} \approx 1^{-M}, \; n_{_B} \approx 1,00^{-}, \; \lambda \approx 0\,,633^{---} \, \text{мкм}.$

Тогда получают

$$S_{\theta} \approx 0.024$$
 mkm,

В.4.2 Доверительные границы неисключенной систематической составляющей погрешности результата измерений при $p=0.99\,$ и $m=4\,$ ($k=1.23\,$, [3]) вычисляют по формуле

$$\theta(0,99) = 1,23 \sqrt{\left(\frac{\partial f}{\partial n_{\theta}}\right)^{2} \cdot \theta_{\theta}^{2} + \left(\frac{\partial f}{\partial \lambda}\right)^{2} \cdot \theta_{\lambda}^{2} + \left(\frac{\partial f}{\partial t}\right)^{2} \cdot \theta_{t}^{2} + \left(\frac{\partial f}{\partial (\Delta l)}\right)^{2} \cdot \theta_{\Delta l}^{2}}, \quad (B.6)$$

Рассчитывая коэффициенты влияния по В.4.1 получают

$$\theta(0.99) = 0.051$$
 MKM.

В.4.3 СКО суммарной погрешности S_{Σ} , $m\kappa n$, определяют по формуле

$$S_{\Sigma} = \sqrt{S^2 + S_{\theta}^2} = 0,035$$
 (B.7)

В.4.4. Доверительные границы суммарной погрешности при p=0,99 и $f_{9\phi\phi}=n-1=9$ вычисляют по формуле:

$$\Delta_{0,99} = \frac{t_{0,99}(9) \cdot S + \theta(0,99)}{S + S_{\theta}} \cdot \sqrt{S^2 + S_{\theta}^2} = 0,094 \quad MKM. \tag{B.8}$$

В.5 Вычисление неопределенности измерений

В.5.1 По типу А вычисляют стандартную неопределенность, обусловленную источниками неопределенности, имеющими случайный характер при измерении длины штриховой меры

$$u_{A} = \sqrt{\frac{\sum_{i=1}^{n} (L_{i} - \overline{L})^{2}}{n(n-1)}} = 0,025 \quad MKM.$$
 (B.9)

В.5.2 По типу В вычисляют стандартные неопределенности, обусловленные источниками неопределенности, имеющими систематический характер. Закон распределения величин внутри границ считают равномерным.

В.5.2.1 Границы, внутри которых лежит значение показателя преломления воздуха, равны $\theta_{\it g}=2$,0 · 10 $^{-8}$. Стандартную неопределенность, обусловленную неточным знанием данного параметра, определяют, как

$$u_{B,e} = \frac{\theta_e}{\sqrt{3}} = 1,2 \cdot 10^{-8}$$
 (B.10)

В.5.2.2 Границы, внутри которых лежит значение длины волны излучения, равны $\theta_{\lambda}=6,2\cdot 10^{-9}$ мкм. Тогда соответствующую стандартную неопределенность $u_{{\scriptscriptstyle B},\lambda}$ вычисляют по формуле

$$u_{B,\lambda} = \frac{\theta_{\lambda}}{\sqrt{3}} = 3.6 \cdot 10^{-9} \text{ MKM}.$$
 (B.11)

В.5.2.3 Границы, внутри которых лежит значение температуры штриховой меры, равны $\theta_t=0\,,\!003\,$ °C. Стандартную неопределенность, обусловленную неточным знанием температуры, $u_{B,t}$ вычисляют по формуле

$$u_{B,t} = \frac{\theta_t}{\sqrt{3}} = 0,002$$
 °C. (B.12)

В.5.2.4 Границы, внутри которых лежит значение поправки на размер коллиматорной щели, равны $\theta_{AI}=0{,}002$ мкм. Тогда соответствующую стандартную неопределенность $u_{B,\Delta I}$ получают по формуле

$$u_{B,\Delta l} = \frac{\theta_{\Delta l}}{\sqrt{3}} = 0,001 \quad MKM. \tag{B.13}$$

В.5.2.5 Суммарную стандартную неопределенность, вычисленную по типу В, $-u_B$ определяют по формуле

$$u_{B} = \sqrt{\left(\frac{\partial f}{\partial n_{B}}\right)^{2} \cdot u_{B}^{2} + \left(\frac{\partial f}{\partial \lambda}\right)^{2} \cdot u_{\lambda}^{2} + \left(\frac{\partial f}{\partial t}\right)^{2} \cdot u_{t}^{2} + \left(\frac{\partial f}{\partial (\Delta l)}\right)^{2} \cdot u_{\Delta l}^{2}}$$
(B.14)

Расчет коэффициентов влияния - по В.4.1

$$u_B \approx 0,024$$
 мкм.

В.5.3 Суммарную стандартную неопределенность u_c вычисляют по формуле

$$u_c = \sqrt{u_A^2 + u_B^2} = 0,035$$
 MKM. (B.15)

В.5.4 Эффективное число степеней свободы $V_{\it eff}$ определяют по формуле

$$v_{eff} = \frac{u_{c}^{4}}{\left(u_{A}\right)^{4} + \left(\frac{\partial f}{\partial n_{g}} \cdot u_{g}\right)^{4} + \left(\frac{\partial f}{\partial \lambda} \cdot u_{\lambda}\right)^{4} + \left(\frac{\partial f}{\partial t} \cdot u_{t}\right)^{4} + \left(\frac{\partial f}{\partial (\Delta l)} u_{\Delta l}\right)^{4}}$$

$$= 35 .(B.16)$$

B.5.5 Коэффициент охвата k определяют следующим образом

$$k = t_{0.99} (v_{eff}) = 2.73$$
 (B.17)

В.5.6 Расширенную неопределенность $U_{0.99}$ определяют как

$$U_{0.99} = k \cdot u_{c} = 0.096$$
 MKM. (B.18)

В.б. Переход от характеристик погрешности к неопределенности измерений.

В.6.1. Используя оценки характеристик погрешности, полученные в В.4 настоящего приложения, можно продемонстрировать получение оценок неопределенностей в соответствии с 5.4 настоящих рекомендаций.

Схема 1

$$\begin{array}{c} Y = 1,000\,001\,474\,\,\text{м}, \\ S = 0,025\,\,\text{мкм}, \\ \theta(0,99) = 0,051\,\,\text{мкм}, \\ m = 4\,, \\ n = 10 \end{array}$$

$$\begin{array}{c} \hat{u}_A = S = 0,025\,\,\text{мкм}, \\ \hat{u}_B = \frac{\theta(0,99)}{k\cdot\sqrt{3}} = 0,024\,\,\text{мкм}, \\ \hat{u}_C = \sqrt{\hat{u}_A^2 + \hat{u}_B^2} = 0,035\,\,\text{мкм}, \\ v_{eff} = (n-1)\cdot\left[1 + \frac{\hat{u}_B^2}{\hat{u}_A^2}\right]^2 = 35\,, \\ \hat{U}_{0,99} = t_{0,99}(v_{eff})\cdot\hat{u}_C = 0,096\,\,\text{мкм} \end{array}$$

В данном примере неопределенности измерений, вычисленные в В.5 настоящего приложения в соответствии с Руководством, совпадают с их оценками, полученными по схеме 1.

PMΓ 43-2001

Схема 2

$$L = 1,000001474 \text{ M},$$
 $p = 0,99,$
 $\Delta_{0,99} = 0,094 \text{ MKM}$

$$\hat{U}_{0,99} = \Delta_{0,99} = 0,094 \text{ MKM},$$

$$\hat{u}_{C} = \frac{\Delta_{0,99}}{z_{0,99}} = \frac{0,094}{2,576} = 0,036 \text{ MKM}$$

Относительные разности неопределенностей измерений, вычисленных в В.5 настоящего приложения в соответствии с Руководством, и их оценок, полученных по схеме 2 (когда отсутствует достаточная информация для их оценки в соответствии с Руководством), в данном примере равны:

$$\left| \frac{\hat{U}_{0,99} - U_{0,99}}{U_{0,99}} \right| \cdot 100 = \left| \frac{0,094 - 0,096}{0,096} \right| \cdot 100 = 2\%,$$

$$\left| \frac{\hat{u}_c - u_c}{u_c} \right| \cdot 100 = \left| \frac{0,036 - 0,035}{0,035} \right| \cdot 100 = 3\%$$

ПРИЛОЖЕНИЕ Г (справочное)

Значение коэффициента $t_p(\nu)$ для случайной величины, имеющей распределение Стьюдента с ν степенями свободы

	$t_p(\nu)$			$t_p(\nu)$	
ν	p = 0.95	p = 0.99	ν	p = 0.95	p = 0.99
3	3,182	5,841	16	2,120	2,921
4	2,776	4,604	18	2,101	2,878
5	2,571	4,032	20	2,086	2,845
6	2,447	3,707	22	2,074	2,819
7	2,365	3,499	24	2,064	2,797
8	2,306	3,355	26	2,056	2,779
9	2,262	3,250	28	2,048	2,763
10	2,228	3,169	30	2,042	2,750
12	2,179	3,055	∞	1,960	2,576
14	2,145	2,977			

Приложение Д (справочное)

Библиография

- [1] Руководство по выражению неопределенности измерения. /Перевод с английского под редакцией В.А. Слаева. -ВНИИМ. -СПб 1999*)
- [2] МИ 1317-86 Государственная система обеспечения единства измерений. Результаты и характеристики погрешности измерений. Формы и способы представления. Способы использования при испытаниях образцов продукции и контроле их параметров
- [3] МИ 2083-90 Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

*) Подлинник документа - Guide to the Expression of Uncertainty in Measurement: First edition. - ISO, Switzerland, 1993 находится во ВНИИКИ

УДК 389:006.86.352:006.354

MKC 17.020

T 80

Ключевые слова: измерение, результат измерения, стандартное отклонение, неопределенность, стандартная неопределенность, суммарная стандартная неопределенность, расширенная неопределенность, погрешность случайная и систематическая