Wydział Cybernetyki WAT

Przedmiot: Wprowadzenie do kryptoanalizy klucza publicznego

SPRAWOZDANIE

Temat: ATAK DIOFANTYCZNY

Wykonał:

Paweł Witkowski [K5X4S1]

Data wykonania ćwiczenia:

24.11.2016

Prowadzący ćwiczenie:

Kpt. Dr Mariusz Jurkiewicz

1. Wprowadzenie teoretyczne

Atak diofantyczny, inaczej też nazywany atakiem Wienera, polega na znalezieniu elementu odwrotnego tj. współczynnika deszyfrującego, dalej nazywanego "d", do szyfrującego "e", przy założeniu, że d jest możliwie małe.

$$d<\frac{1}{3}N^{\frac{1}{4}}$$

, gdzie ${\bf N}$ to nasz klucz publiczny, który jest iloczynem dwóch dużych liczb pierwszych N=p*q

Współczynnik **d** można znaleźć wyznaczając element odwrotny do **e**, w kongruencji $d*e\equiv 1(mod(p-1)(q-1))$

jeżeli gcd(e,(p-1)(q-1))=1, ponieważ wtedy kongruencja posiada dokładnie jedno rozwiązanie.

Skończony ciąg liczb \mathbf{R} < $a_0,a_1...a_n$ > nazywa się ułamkiem łańcuchowym jeśli te liczby są dodatnie, a " \mathbf{n} " wyznacza długość tego ułamka. Zapisujemy to wtedy [$a_0,a_1...a_n$] i oznacza:

$$a_0+rac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{\ddots+\dfrac{1}{a_n}}}$$

N-tym reduktem danego ułamka łańcuchowego jest rozwijanie go tak jak powyżej, do elementu o indeksie **n**. Jeżeli **a** \in Q to można przedstawić **a** w postaci skończonego ułamka łańcuchowego: <a₀,a₁...a_n>, gdzie:

$$q_0 = [a]$$
 $a_1 = \frac{1}{(a - q_0)};$
 $q_1 = [a_1]$ $a_2 = \frac{1}{(a_1 - q_1)}$
 \vdots
 $q_{n-1} = [a_{n-1}]$ $a_n = \frac{1}{(a_{n-1} - q_{n-1})}$
 $q_n = [a_n]$

Wprowadzenie ułamka łańcuchowego było potrzebne, ponieważ twierdzenie o zbieżności mówi:

*Jeżeli p,q
$$\epsilon Z$$
,* $\int_{\overline{q}}^{\underline{p}} - x/<\frac{1}{q^2}$, wtedy istnieje takie $i=0,1,2...n$, $\dot{z}e^{\frac{\underline{p}}{q}}$ będzie i-tym reduktem x .

W celu wyznaczenia k-tego reduktu ułamka łańcuchowego, można posłużyć się dwoma specyficznymi ciągami wielomianów. $P_k:=P_k(x_0,x_1...x_k), Q_k:=Q_k(x_0,x_1...x_k),$ których kolejne elementy są wyznaczone za pomocą wzorów:

$$\begin{split} P_{-1} &= 1, \ Q_{-1} = 0 \\ P_{0}(x_{0}) &= x_{0}; \ Q_{0}(x_{0}) = 1; \\ P_{k+1} &= x_{k+1} P_{k} + P_{k-1}; \ Q_{k+1} = x_{k+1} Q_{k} + Q_{k-1}; \\ r_{k} &= [x_{0}, x_{1} ... x_{k}] = P_{k}(x_{0}, x_{1} ... x_{k}) / Q_{k}(x_{0}, x_{1} ... x_{k}) \end{split}$$

Wszystkie narzędzia zostały już podane. Wyznaczamy kolejne redukty za pomocą wielomianów i sprawdzamy czy jest to $\frac{k}{d}$. Trzeba wykonać podstawienie $k=P_k$, $p=\mathbf{d}=Q_k$, $Fi(N)=\frac{ed-1}{k}$, następnie rozwiązać równanie p^2 - (N-Fi(N)+1)p+N=0. Jeżeli rozwiązanie faktoryzuje \mathbf{N} , to nasze $\mathbf{d}=Q_k$, a miejsca zerowe to liczby których iloczyn jest równy \mathbf{N} .

2. Wykorzystanie teorii do rozwiązania problemu

Posiadając **N** i **e** możemy rozwinąć w ułamek łańcuchowy **e/N**. Dzięki temu obliczamy współczynniki **q** rozwinięcia tego ilorazu w ułamek łańcuchowy.

Posłuży do tego algorytm Euklidesa który przebiega następująco:

- 1) A←N, B←e
- 2) Do
- 3) $q \leftarrow [A/B]$
- 4) $A \leftarrow B$, $B \leftarrow A qB$
- 5) $Vector[] \leftarrow q$
- 6) While $B \neq 0$
- 7) $gcd(N,e) \leftarrow A$
- 8) Return (gcd)

W tej chwili wszystkie współczynniki ułamka łańcuchowego są w tablicy Vector. Do obliczenia kolejnych reduktów, należy się posłużyć rekurencyjnym wyznaczaniem kolejnych elementów wielomianów P oraz Q.

Po kolei obliczamy każdy redukt ri= $\frac{P_i}{Q_i}$. Dla tak obliczonego Pi/Qi, podstawiamy k=Pi, p=d=Qi.

Następnie obliczany ϕ (N)= $\frac{e^{d-1}}{k}$, podstawiamy to do równania kwadratowego względem p. p2- $(N-\phi(N)+1)p+N=0$. Jeżeli rozwiązania faktoryzują N, to znaczy, że z równania $N=p^*q$, $p=p_1$, $q=p_2$, jednocześnie $d=Q_i$.

3. Wnioski/Analiza

Na zadany przykład N=160523347, e=60728973 udało się znaleźć element odwrotny d. Po wykonaniu algorytmu Euklidesa na N oraz e, oraz zapisywaniu poszczególnych iloczynów naszych reszt q_i do wektora nastąpiło sprawdzenie poszczególnych reduktów. Po kolei wartości były brane i podstawiane do równań

 ϕ (N)= $\frac{e\mathbf{d}-1}{k}$, p_2 - (N – ϕ (N)+1)p+N=0. Rozwiązaniami równania kwadratowego okazały się p = p1=12347, q = p2=13001, więc N=12347*13001. Po odnalezieniu elementów faktoryzujących N, podstawiamy \mathbf{d} =Qi=37. W celu sprawdzenia poprawności znalezionego elementu deszyfrującego szukamy elementu odwrotnego w ciele F(ϕ (N)), a więc \mathbf{d} * \mathbf{e} =1(mod ϕ (N)). Podstawiając za \mathbf{e} , p-1, q-1 otrzymujemy \mathbf{d} =37, a więc faktycznie jest to element odwrotny do \mathbf{e} w tym ciele. Atak diofantyczny na podanym przykładzie był możliwy ponieważ \mathbf{d} spełnia warunek:

$$d<rac{1}{3}N^{rac{1}{4}}$$
, ponieważ 37 < 37.5