Math 501 Homework 5

Trevor Klar

October 3, 2017

1. Let $S^1=\{(x,y): x^2+y^2=1\}$ denote the unit circle in \mathbb{R}^2 . Let $f:[0,1)\to S^1$ be $f(t)=(\cos 2\pi t,\sin 2\pi t)$. Show that f is not a homeomorphism.

PROOF Let $U = B((1,0),1) \cap S^1$.

Figure 1: S^1 in red, and B((1,0),1) in purple.

By definition, U is open under the subset topology in \mathbb{R}^2 . Now, consider the preimage $f^{-1}(U)$. Since f is a parameterization of the unit circle which begins at (0,1) and proceeds counter-clockwise, approaching (0,1) again as $t \to 1$; then $f^{-1}(U) = [0,\frac{1}{6}) \cup (\frac{5}{6},1)$. We have already shown that intervals of the form [a,b) are not open in the usual topology, thus we have an open set U whose preimage in f is not open. Therefore, f is not continuous, and not a homeomorphism.

- 2. Prove that the following are both homeomorphic to \mathbb{R}^2 with the usual topology: (i.) the open square $\{(x,y): 0 < x < 1, 0 < y < 1\}$; (ii.) the open ball B(0,1).
 - (i.) **PROOF** Let S_q denote the open square $\{(x,y): 0 < x < 1, 0 < y < 1\}$. Let $t: [0,1) \to \mathbb{R}$ be defined as $t(x) = \tan(\pi x \frac{\pi}{2})$. Let $f: S_q \to \mathbb{R}^2$ be defined as f(x,y) = (t(x), t(y)).

Figure 2: $\tan(\pi x - \frac{\pi}{2})$

Now, f is a homeomorphism because

- t(x) is continuous, since it is a composition of functions which are continuous on (0,1). Also, $\arctan(x)$ is continuous everywhere, so $t^{-1}(x)$ is also continuous by the same reasoning.
- t(x) is monotonically increasing, so it is 1-1.
- t(x) is onto, since for any real number x, one can construct an angle whose tangent is $\pi x + \frac{\pi}{2}$ with two perpendicular segments of length $\pi x + \frac{\pi}{2}$ and 1, respectively.

Thus, t(x) is a continuous bijection whose inverse is also continuous. Therefore, f is a homeomorphism, since it maps each coordinate in S_q to \mathbb{R}^2 according to t(x).

(ii.) **PROOF** Let S_B denote the open ball B(0,1). In this proof, it will be convenient to represent points using polar coordinates, so (r,θ) is the notation we will use. Let $t:[0,1)\to\mathbb{R}$ be defined as $t(x) = \tan(\pi x - \frac{\pi}{2})$, the same as above. Let $f:S_B\to\mathbb{R}^2$ be defined as

$$f(r,\theta) = \left(t\left(\frac{1}{2}r + \frac{1}{2}\right), \theta\right) = \left(\frac{\pi}{2}r, \theta\right).$$

Now, we have already shown that t is continuous, 1-1, and onto, and since $(\frac{1}{2}r + \frac{1}{2})$ is a linear function it also must be a continuous bijection, and clearly so is the identity function. Therefore, since f is a composition of homeomorphisms, then it itself is a homeomorphism.

3. Let $\Delta = \{(x,x)\} \subset \mathbb{R}^2$. Prove that Δ as a subspace of $\mathbb{R}^2_{\text{bad}}$ is homeomorphic to $\mathbb{R}^1_{\text{bad}}$.

PROOF Let $f: \Delta \to \mathbb{R}^1$ be defined as f(x,x) = x. f is clearly 1-1 and onto, since $(a,a) \neq (b,b) \implies a \neq b$, and $\forall x \in \mathbb{R}, \exists (x,x) \in \Delta \mid f(x,x) = x$. Consider any interval [a,b) which is open in $\mathbb{R}^1_{\mathrm{bad}}$. Then, $f^{-1}([a,b))$ is the half-open line segment $\{(x,x): a \leq x < b\} = \Delta \cap [a,b) \times [a,b)$. Therefore, f is continuous. Now we will show that $F = f^{-1}$ is continuous. $F: \mathbb{R}^1 \to \Delta$ is defined as F(x) = (x,x). Let U be any set which is open in Δ . Then, by definition, $U = \Delta \cap [a,b) \times [c,d)$, where $a,b,c,d \in \mathbb{R}$. So, $U = \{(x,x): \max(a,c) \leq x < \min(b,d)\}$. Now the preimage is $F^{-1}(U) = \{x: \max(a,c) \leq x < \min(b,d)\}$, which is open in $\mathbb{R}^1_{\mathrm{bad}}$ by definition. Therefore, F is also continuous, and f is a homeomorphism between Δ as a subspace of $\mathbb{R}^2_{\mathrm{bad}}$ and $\mathbb{R}^1_{\mathrm{bad}}$.

4. Let $f: S^2 - \{(0,0,1)\} \to \mathbb{R}^2$ be the function pictured below, that takes a point (x,y,z) to the point (a,b,0) on the xy-plane that lies along the line from (0,0,1) to (x,y,z). (This function is called *stereographic projection.*) Find an explicit formula for f, and show that f is a homeomorphism between $S^2 - \{(0,0,1)\}$ and \mathbb{R}^2 .

Figure 3: Stereographic projection.

PROOF By parameterizing the line between (0,0,1) and (x,y,z) and finding the value of t which gives a point on the xy-axis, we can obtain the function

$$f(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right),\,$$

and by parameterizing the line between (0,0,1) and (a,b,0) and finding the value of t which gives a point on the sphere, we can obtain its inverse;

$$F(a,b,0) = \left(\frac{2a}{a^2 + b^2 + 1}, \frac{2b}{a^2 + b^2 + 1}, \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}\right).$$

Now, it can be checked¹ that $(F \circ f)(x, y, z) = (x, y, z)$ and $(f \circ F)(a, b, 0) = (a, b, 0)$, therefore we can conclude that f and F are bijections. Also, since the domain of f is restricted to points in S^2 , then $(1-z) \neq 0$. This means that f is a composition of functions which are continuous on its domain, and thus the function itself is continuous.

Similarly, the domain of F is restricted to the xy-plane, and F is a composition of functions which are continuous on its domain (since the denomiator of F is never zero), and thus the function itself is continuous.

Therefore, f is a homeomorphism between $S^2 - \{(0,0,1)\}$ and \mathbb{R}^2 .

- 5. Which of the following spaces are compact? Explain your reasoning.
 - (a) $\mathbb{R}^1_{\text{bad}}$ Answer: Not compact, since the collection $\{[-n,n):n\in\mathbb{N}\}$ is an open cover of $\mathbb{R}^1_{\text{bad}}$ which has no finite subcover.
 - (b) [-1,1] with either-or topology **Answer:** Compact, since any open set which contains 0 also contains (-1,1), and now only 2 elements remain. Thus, any open cover of ([-1,1], either-or) has a subcover with at most 3 sets.
 - (c) [0,1] as subspace of $\mathbb{R}^1_{\mathrm{bad}}$ Answer: Not compact. First, note that $\{1\}$ is open in this topology, since $[1,2) \cap [0,1] = \{1\}$. Now, $\{[0,1-\frac{1}{n}):n\in\mathbb{N}\}\cup\{\{1\}\}$ is an open cover of the subspace which has no finite subcover.

 $^{^{1}}$ The algebra required for this check is LONG, so we have omitted it here. Also, a graphing calculator confirms that this is accurate.

- (d) $\mathbb{Q} \cap [0,1]$, as a subspace of $(\mathbb{R}, usual)$. **Answer:** Not compact. Consider $\{\mathbb{Q} \cap [0, \frac{1}{\Phi} - \frac{1}{n}) : n \in \mathbb{N}\} \cup \{\mathbb{Q} \cap (\frac{1}{\Phi} + \frac{1}{n}, 1] : n \in \mathbb{N}\}$, where Φ denotes the irrational number² $\Phi \approx 1.618$ which is the solution to the equation $\Phi^{-1} = \Phi - 1$. This collection of sets covers $\mathbb{Q} \cap [0, 1]$, but any finite subcollection leaves out rational numbers in the range $\left(\frac{1}{\Phi} - \frac{1}{\max(n)}, \frac{1}{\Phi} + \frac{1}{\max(n)}\right)$.
- 7. Show that an infinite subset of a compact space must have a limit point.

PROOF by contradiction Let S be an infinite subset of a compact space X, and suppose that S has no limit points. Then, for every $x \in S$, x is not a limit point. This means that for each such x, there exists an open set $U_x \subset X$ such that $x \in U_x$, and $U_x \cap (S - \{x\}) = \emptyset$. Thus, the collection $\{U_x\}_{x \in S}$ is an open cover of S (with respect to the subspace topology) which has no finite subcover, since each U_x is the only set in the collection which contains x. This contradicts our assumption that X is compact.

 $^{^{2}}$ We could have chosen any irrational number between 0 and 1, this one is just my favorite.