Higgs Boson Signal Classification Report

Prepared By: Touseef Ahmed

Date: June 29, 2025

Contact: Touseefahmed00710@gmail.com

1. Project Overview

Objective: Develop a neural network to distinguish Higgs boson signals from background noise in particle collision data.

Key Achievements:

- 81.3% test accuracy
- 0.892 ROC AUC score
- 3.1% improvement over XGBoost baseline

2. Methodology

2.1 Data Pipeline

Pseudocode:

- 1. Load 250,000 collision events
- 2. Split into 70/15/15 (train/val/test)
- 3. Normalize with StandardScaler
- 4. Handle class imbalance (32.8% signal)

2.2 Model Architecture

Layer Configuration:

Layer Type Units Activation Regularization

Dense 64 ReLU Dropout(0.3) + BatchNorm Dense 128 ReLU Dropout(0.4) + L2(0.01)

Output 1 Sigmoid

3. Performance Analysis

3.1 Metrics Comparison

Model Accuracy Precision Recall F1 Score

XGBoost 78.2% 0.741 0.752 0.746

Neural Network 81.3% 0.792 0.774 0.783

Training Time:

• XGBoost: 4m 22s

• Neural Network: 8m 15s

3.2 Training Curves

[Insert Image 2: Training Curves Here]

Key Observations:

- Early stopping triggered at epoch 47
- Validation loss plateaued at 0.421
- Minimal overfitting observed

4. Technical Findings

4.1 Hyperparameter Impact

Learning Rate Validation Accuracy Convergence Epochs Notes

0.01	79.1%	32	Unstable
0.001	81.3%	47	Best
0.0001	80.2%	68	Slow

4.2 Regularization Effects

Technique Accuracy Change

No Dropout	-4.2%	Severe overfitting
No BatchNorm	-2.1%	Slower convergence

Weight explosion

Notes

No L2 Reg -1.3%

5. Recommendations

Production Deployment:

- Convert model to ONNX for faster inference
- Monitor feature drift monthly

6. Conclusion

The developed deep neural network demonstrates a statistically significant improvement over traditional methods (p < 0.01), while maintaining computational efficiency suitable for real-time particle detection systems.