Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems

Task 4: Cortex-M0 Connected to External Components

Outlook

- Task 4: Cortex-M0 Connected to External Components
 - Last digital part of the embedded systems fundamentals
 - 2 weeks
- Task 5: Analog and Digital Filters
 - 2 weeks
- Task 6: Analog Output
 - ► 1 week
- ▶ Task 7: Project
 - Think about possible ideas

Orga

- ▶ Register for exam!
- Deadline for Task 1-6: 26.7.

Task 4: Cortex-M0 Connected to External Components

- Using the ChibiOS HAL
- UART communication between the Cortex-A53 and the Cortex-M0
- Sensor control via I²C and ADC

Typical Communication Interfaces in Embedded Systems

- Test ChibiOS HAL
- Interfaces handled in this task:
 - UART
 - ► I²C
 - ADC
- Not handled here:
 - USB
 - CAN
 - ► SPI
 - 1-Wire
 - 1-44116
 - etc.

Serial Peripheral Interface

- Very simple protocol developed by Motorola
- Only a few features are fixed by specification
- See device datasheets
- Master generates clock
- Bidirectional data transfer
- → Master has to write (dummy data) to read from slave

SPI Modes

Inter-Integrated Circuit

- More complex than SPI
- Developed by Philips
- Requires only two signals
- Master generates clock
- Pull-Up at data line
- Slaves are addressed (no slave select signal)
- Base for higher level protocols like PMBus and SMBus

Inter-Integrated Circuit

- Supports enhanced (optional) features, e.g.
 - Clock stretching (slave may slow down master)
 - Multiple masters
 - 10 bit addressing
- More properties are actually specified than for SPI
- Some uncertainty remaining:
 - How to read registers?
 - How to write to successive Registers?
- ⇒ See datasheets

Universal Asynchronous Receiver Transmitter

- ▶ In contrast to SPI and I²C not synchronized to clock signal
- Sender and receiver have to meet the selected timing requirements
- One signal per (independent) transfer direction
- RX of one device is TX of the other device
- Extension:
 - Hardware flow control
 - Parity
 - More stop bits

Analog to Digital Converter

- Some sensors only provide analog outputs (current, voltage)
- ► Some microcontrollers include (simple) ADCs
- ⇒ controlled via CMSIS or HAL drivers
- Compares input voltage to reference voltage
 - Analog signal has to be converted to voltage
 - Reference voltage often provided on-chip
- Some kind of calibration required anyway

Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems

heinz@esa.tu-darmstadt.de

