Graham Wilson

graham.wilson08@gmail.com | (859) 551-9293 | linkedin.com/in/wilson-graham Lexington, KY

WORK EXPERIENCE

University of Kentucky - Dr. Muaho Chen PhD.

Jan. 2025 - Present

Position: Aerospace Engineer, Project Lead

Lexington, KY

- Project OMEGA (Orbital Mass Ejection via Gaussian Architecture): Led the full-cycle design and execution of a coilgun electromagnetic launch system capable of propelling a 1 kg projectile at 100 m/s. Designed and integrated solar-powered capacitor banks and optimized coil designs for high-efficiency energy discharge.
- Engineered deployable tensegrity structures using custom designed automated topology optimization for lightweight, stowable architectures suitable for space transport.
- Designed and built custom PCBs and electromagnetic coils; implemented real-time fiber-optic break detection for high-speed projectile tracking.
- Authored advanced Python and MATLAB scripts for electromagnetic field modeling, Lorentz force computation, and Maxwell stress tensor evaluation.
- Fabricated components using FDM/SLA 3D printing, utilizing CAD tools and simulation software for system design validation.
- Integrated system telemetry pipelines for remote control, diagnostics, and data acquisition.
- AIAA Publication (Pending)

University of Kentucky - Dr. Sean Bailey PhD.

Jun. 2022 - Mar. 2025

Position: Unmanned Aerial Vehicle Researcher

Lexington, KY

- Designed and tested multiple UAV platforms, including fixed-wing, multi-rotor, and hybrid VTOLs, for autonomous environmental sensing, aerial photogrammetry, and formation flight.
- Developed a PID-controlled 3-axis articulating antenna tracker to enhance communication range and reliability utilizing custom designed hardware and flight controllers.
- Established a dual-band communication network (915 MHz and 2.4/5 GHz mesh) using onboard telemetry radios and a networked fleet of UAVs.
- Modified ArduTracker firmware to support custom sensor inputs and servo feedback control. Built
 and debugged custom circuit boards for power delivery and ethernet systems.
- Employed Mission Planner Software and QGroundControl for mission planning and live telemetry.
 Used MATLAB, Python, and Lua for signal processing, data analysis, and control scripts.
- Manufactured UAV components using FDM 3D printing, CNC machining, and laser cutting to meet structural and aerodynamic design constraints.

EDUCATION

University of Kentucky

05, 2025

Degree (BSAE), Aerospace Engineering

Lexington, KY

- Team Lead of 6 person Capstone Project Autonomous Recovery Vessel: Led development of a solar-powered, dual-motor electric catamaran (4.5 x 8.5ft 500lbs) with differential thrust control and Starlink satellite communication for full autonomous operation. Mission objective: navigate from San Diego or New Zealand to Point Nemo (~3000miles) for NASA funded KRUPS capsule retrieval from the ISS.
 - ☐ Designed and 3D printed asymmetric hulls for improved hydrodynamic stability; performed CFD and FEA simulations.
 - ☐ Integrated NVIDIA Jetson, ArduRover firmware, and custom Linux/Python-based control

architecture. Executed FMEA, budgeting, and full system testing.

•	Project Singularity – Autonomous Rocket System (Extracurricular): Founded and directed a student-led team to design an autonomous, compressed-gas rocket with self-landing capability.
	 □ Simulated aerodynamic and structural behavior using CFD tools. Designed carbon fiber airframe and articulated nozzle capable of +/-45° control in XY plane. □ Wrote and presented funding proposals, securing sponsorships and university support. Created detailed CAD models and control logic in preparation for flight hardware production.
•	Relevant Coursework and Labs: Propulsion, CFD, Flight Dynamics, Tensegrity Engineering, Orbital Mechanics, Structures, Fluid Mechanics, Controls, Technical Writing. Hands-on experience with flight simulators, wind tunnels, supersonic nozzle rigs, tensile/bending testers, airfoil labs, and multi-rotor control tuning platforms. Produced formal lab reports and statistical data analysis under ABET-aligned aerospace engineering standards.

Lafayette Senior High school

05, 2021

Pre-Engineering Lexington, KY

- First Kentucky Student to attend MIT Beaver Works Summer Institute (Lead engineer on CubeSat project, designed, programmed, and built to detect ocean debris using image recognition)
- Founded and was President of, Bobcat Works, in-partnership with MIT for autonomous vehicles

SKILLS & INTERESTS

- **Skills:** CAD (Fusion 360, Inventor, NX, Creo, Solid Works), OpenFOAM, ANSYS (Fluent, FEA, Maxwell, and STK), 3D Printing (FDM and SLA), CNC, GD&T, PID, MPC, LQR, Linux, MATLAB, SIMULINK, SIMSCAPE, Python, Rust, Swift, Lua, C++. Wind tunnels, Supersonic Nozzle testing, Airfoil Test Stand, Tensile Tester, Soldering, Leading teams, Problem Solving, Time efficiency, Excel.
- Interests: Rocketry, CubeSats, Software Development, Baseball, Sporting Clays, Pyrotechnics.