

Spring\_2018\_INFO6205\_... 30 minutes

| Question - 1 Question 1 |                                                                                                                                              | SCORE: 5 points |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                         | the worst case time complexity guarantee for search, nd delete operations in a Binary Search Tree?                                           |                 |
| •                       | O(n) for<br>all                                                                                                                              |                 |
| 0                       | O(log n) for<br>all                                                                                                                          |                 |
| 0                       | $O(log\ n)$ for search and insert, $O(n)$ for delete                                                                                         |                 |
| 0                       | O(log n) for search, O(n) for insert and delete                                                                                              |                 |
| Questi<br><b>Questi</b> | ion - 2<br>on 2                                                                                                                              | SCORE: 5 points |
| tree in                 | owing numbers are inserted into an empty binary search<br>the given order: 10, 1, 3, 5, 15, 12, 16. What is the height<br>inary search tree? |                 |
| 0                       | 2                                                                                                                                            |                 |
| •                       | 3                                                                                                                                            |                 |
| 0                       | 4                                                                                                                                            |                 |
| 0                       | 6                                                                                                                                            |                 |
| Question - 3 Question 3 |                                                                                                                                              | SCORE: 5 points |
| Which o                 | of the following is true about Red Black Trees?                                                                                              |                 |
| 0                       | At least one child of every black node is red                                                                                                |                 |
| 0                       | The root may be red                                                                                                                          |                 |
| 0                       | A leaf node may be red                                                                                                                       |                 |
| •                       | None of the above                                                                                                                            |                 |
|                         |                                                                                                                                              |                 |

Question - 4
Question 4

SCORE: 5 points

| is also a perfect Binary Tree can have all black nodes.                                                                   |                  |
|---------------------------------------------------------------------------------------------------------------------------|------------------|
| True                                                                                                                      |                  |
| ☐ False                                                                                                                   |                  |
| Question - 5 Left Leaning Red Black Tree Implementation                                                                   | SCORE: 30 points |
| You are required to implement following methods of RedBlackBST class:  1. get method for standard BST search              |                  |
| public Value get(Key key) {}                                                                                              |                  |
| 2. put method for RedBlackBST insertion // hint: need to keep the Left Leaning RedBlackBST structure after each insertion |                  |
| public void put(Key key, Value val) {}                                                                                    |                  |
|                                                                                                                           |                  |
|                                                                                                                           |                  |

Is the following statement true? A Red-Black Tree which