기술개발 결과보고서

책임자	팀장	실장	사업부장
召号	老鱼	Mule	25

책임지		팀장	실장	사업부장			
77	7. 3	公童	July .	29	1AA.160		
조		직	 전력프	로세스설계팀	CODE NO.	R24507	
과 제 명 MAIN STEAM PIPING LOSS 기준 수립							
기		간	2022.0	1 ~ 2022.11	과제구분	자체	

단위 : 천원

예		구분	***	예 산	실 적	비 율(%)				
			현금							
산	국책	성모	인건비							
집		현물 경 비								
_	자체	경	비	_	-	-				
행	Ä									
<기술개발 내용요약> 1. 목적										
	- 성	능 및 L	ine Sizing	회적화를 위한 Main	Steam Piping Loss 계상	산서 마련.				

<기술개발 내용요약>

1. 목적

- 성능 및 Line Sizing 최적화를 위한 Main Steam Piping Loss 계산서 마련.
- 현 팀내 표준 Main Steam Piping Loss 기준을 보조하는 Calculation Tool 사용하여 성능 및 물량 최적화.

2. 개발범위

- Piping Loss (열손실) 계산서

3. 개발결과

- 열 손실 및 보온재 두께 계산서 작성.
- 실행/입찰 시 주증기 배관의 열/압력 손실 계산에 적용 예정.

4. 기대효과

팀 내 Main Steam Piping Loss 기준의 획일적인 적용 대신, Calculation Tool 을 통해 프로젝트 상황에 맞는 Piping Loss 적용하여 최적화된 성능 및 주증기 배관 물량 산정 가능할 것으로 기대.

관리30-04(2-5)-A4 현대엔지니어링㈜

2020년 기술개발 결과보고서

과 제 명	MAIN STEAM PIPING LOSS 기준 수립
주관조직	플랜트사업본부 엔지니어링사업부 플랜트기본설계실 전력프로세스설계팀
제 출 일	2021. 12. 23.
책 임 자	김광문 책임
개 발 자	김광문 책임

목 차

I. 서론

- 1. 기술개발 필요성
- 2. 기술개발 방향

Ⅱ. 본론

- 1. 기술개발 방법
- 2. 기술개발 내용
- 3. 기술개발 결과

Ⅲ. 결론

1. 활용방안 및 기대효과

IV. 첨부

1. 열 손실 및 보온재 두께 계산서

I. 서론

1. 기술개발 필요성

전력플랜트 시장의 수주 경쟁이 심화됨에 따라 경쟁력 있는 성능과 더불어 발전소 구성 요소들의 물량 최적화 또한 수주 등락에 유의미한 영향을 미치고 있다. 입찰 설계 업무 시 최상의 성능만을 도출하는 것이 아닌, 발전소 전체의 최적화가 중요한 시기인 것이다.

Main Steam Piping Loss (주증기 배관 손실)는 발전소 성능을 결정하는 인자 중 하나이다. 주증기 배관은 보일러에서 생산한 증기를 스팀터빈으로 이송하는 역할을 하는데, 증기가 이송되는 과정에서 열과 압력의 손실이 발생한다. 이는 보일러에서 생산한 에너지 중 일부의 손실을 의미하며, 그만큼 스팀터빈 출력 감소를 야기한다.

주증기 배관의 사이즈를 증가하면 압력 손실을 축소할 수 있으나 열 손실 및 배관 물량이 증가한다. 이와 반대로 배관 사이즈를 축소하면 압력 손실이 증가한다. 즉, 열 손실 / 압력 손실 / 배관 사이즈 3 가지 요소를 모두 최소화 할 수 있는 최적의 설계를 수행해야 한다.

현재 입찰 시 적용하는 주증기 배관 손실은 팀 내 표준을 기반으로 하고 있으나, 이는 경험에 기반한 Data 이다. 기기 및 배관 배치, 부지 크기 등 여러 요소에 따라 주증기 배관 손실이 달라질수 있으나, 이를 고려하지 않고 있다.

	Normal Pe	erformance	Aggressive Performance		
	Pressure Drop	Enthalpy Drop	Pressure Drop	Enthalpy Drop	
	(%)	(kJ/kg)	(%)	(kJ/kg)	
HP Piping	3.0	1.0	1.2	0.7	
CRH Piping	2.0	1.0	1.0	0.7	
Reheater	5.0	-	4.0	-	
HRH Piping	4.0	1.0	1.5	0.7	
LP Piping	8.0	2.5	7.0	2.3	

[표 1. 현 주증기 배관 손실 표준]

획일적인 기준을 적용할 경우 주증기 배관 손실을 축소할 수 있는 여지가 있음에도 불구하고 이를 검토할 수 있는 기회를 놓칠 수 있으며, 이와 반대로 실행 설계 단계에서 달성할 수 없는 비현실적인 손실을 입찰 단계에서 적용할 수도 있다. 이에 따라, 주증기 배관 손실 결정 시 보조할 수 있는 Calculation Tool 의 필요성이 대두되었다. 팀 표준의 획일적인 적용 대신, Calculation Tool을 통한 프로젝트 별 최적화된 주증기 배관 손실을 적용할 수 있도록 하고자 함이다.

2. 기술개발 방향

현재 팀 내에는 배관의 압력 손실을 계산할 수 있는 Calculation Tool 이 존재 하므로, 이와 함께 사용될 수 있는 열 손실 계산서를 추가 개발하는 것을 목표로 하였다.

열 손실 계산서는 열역학과 열전달의 이론을 기본으로 작성하며, 이를 보조할 수 있는 "ASTM C680 Standard Practice for Estimate of the Heat gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs" Code 를 함께 적용하고자 하였다.

입찰 설계 초기 단계에서는 주증기 배관에 적용하는 보온재의 두께 확인이 어려우므로, 예상되는 보온재 두께를 확인할 수 있는 계산서 또한 추가하여 신뢰성 있는 계산 결과를 도출 할 수 있도록 하였다. 보온재 종류는 이전 사업들을 참고하여 대표적인 보온재들을 적용하였다.

계산서 구성은 대기 조건, 배관 및 보온재 정보를 입력하면 결과값을 도출할 수 있는 간단한 구성을 목표로 하였다.

Ⅱ. 본론

1. 기술개발 방법

기술개발은 아래의 절차로 진행하였다.

- 1) 열 손실 계산서에 적용될 열역학/열전달 이론 식 확인
- 2) 사업 별 적용 보온재 종류 확인 및 보온재 사양 취합
- 3) 열 손실 계산서 작성
- 4) 보온재 두께 계산서 작성
- 5) 실제 운전 Data 취합 및 계산서 정확도 확인

2. 기술개발 내용

주증기 배관의 열 손실 계산은 아래와 같은 배관 및 보온재 구성을 기반으로 수행하였으며, 각 층별 열 저항을 계산하여 배관 내 유체에서 대기까지 발생하는 열 손실을 계산하도록 하였다.

[그림 1. 각 층별 열 저항]

열 손실 및 보온재 두께 계산은 다음의 이론 식을 바탕으로 수행된다.

이론 식	용도
$h = Nu \frac{k}{D}$	배관 내 유체, 대기의 열전달율 계산
$Nu = 0.023 Re^{0.8} Pr^{0.4}$	배관 내 유체의 Nusselt Number 계산
$Nu_{free} = \left[0.60 + \frac{0.387Ra^{1/6}}{\left(1 + \left(\frac{0.559}{Pr}\right)^{9/16}\right)^{8/27}}\right]^{2}$	바람이 없는 대기의 Nusselt Number 계산 (자연 대류)

Ra = GrPr	Rayleigh Number 계산
$Gr = \frac{D^3 \rho^2 g (T_1 - T_2) \beta}{\mu^2}$	Grashof Number 계산
$Nu_{forced} = 0.3 + \frac{0.62Re^{1/2}Pr^{1/3}}{[1 + (0.4/Pr)^{2/3}]^{1/4}} \left[1 + \left(\frac{Re}{282000}\right)^{5/8}\right]^{4/5}$	강제 대류 유체의 Nusselt Number 계산
$Nu = 0.3 + \left[\left(Nu_{forced} - 0.3 \right)^4 + \left(Nu_{free} - 0.3 \right)^4 \right]^{1/4}$	바람이 있는 대기의 Nusselt Number 계산
$h = \frac{\varepsilon \sigma (T_1^4 - T_2^4)}{T_1 - T_2}$	배관 표면 복사에 의한 열전달율 계산
$R = \frac{1}{h(2\pi rL)}$	배관 내 유체, 대기의 열저항 계산
$R = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi kL}$	배관, 보온재의 열저항 계산

[표 2. 계산서 적용 공식]

계산서에 적용된 보온재는 이전 사업들을 참고하여 아래의 4 개 종류 중 하나를 선택할 수 있도록 구성하였다. 보온재 종류 및 사양은 아래와 같다.

- 1) ASTM C533 Type I Calcium Silicate
- 2) ASTM C547 Type II Mineral Fiber (Pipe Size ≤ DN250)
- 3) ASTM C592 Type II Mineral Fiber (Pipe Size > DN250)
- 4) ASTM C610 Perlite
- 5) ASTM C1086 Glass Fiber

보온재 내/외부	열전도율 (W/m-K)								
평균 온도	ASTM C533	ASTM C547	ASTM C592	ASTM C610	ASTM C1086				
(°C)	Type I	Type II	Type II						
-4			0.030						
24			0.036		0.042				
38	0.059	0.036	0.039	0.069					
93	0.065	0.045	0.049	0.076					
149	0.072	0.053	0.061	0.085	0.058				
204	0.079	0.065	0.076	0.092					
260	0.086	0.078	0.092	0.099	0.072				
316	0.095	0.094	0.108	0.108					
371	0.102	0.111	0.124	0.115	0.094				

[표 3. 보온재 별 열전도율]

보온재 두께 계산서에는 "ASTM C585 Standard Practice for Inner and Outer Diameters of Thermal Insulation for Nominal Sizes of Pipe and Tubing"에서 제시하는 보온재 외경 Tolerance 를 적용하여 좀더 보수적인 두께가 산출되도록 하였다.

Outside Diameter (O.D.) of	Outside Diameters
Insulation, mm	Tolerances (O.D.), mm
73 to 163	± 4.8
194 to 356	± 6.4
381 to 506	± 7.9
533 to 737	± 9.5
762 and larger	± 11.1

[표 4. 보온재 외경 Tolerance (ASTM C585, Table 4a, 4b)]

계산서 내 계산은 아래의 과정을 통해 이루어 지도록 구성하였다.

1) 열 손실 계산서

임의의 보온재 표면 온도 자동 입력

이론 식을 바탕으로 한 각 층별 열전달율/열전도율 계산

도출된 열전달율/열전도율을 이용한 각 층의 열저항 계산

R1: 배관 내 유체의 열저항 / R2: 배관의 열저항 R3: 보온재의 열저항 / R4: 대기의 열저항

R1, R2, R3 이용하여 유체 \rightarrow 보온재 표면 으로의 열전달 계산 (Q1) R4 를 이용하여 보온재 표면 \rightarrow 대기 로의 열전달 계산 (Q2)

VBA 를 이용한 반복 계산 통해 Q1 = Q2 가 되는 보온재 표면 온도 계산

최종 보온재 표면 온도에서의 열손실 확인 (열손실 = Q1 = Q2)

2) 보온재 두께 계산서

임의의 보온재 두께 자동 입력

이론 식을 바탕으로 한 각 층별 열전달율/열전도율 계산

도출된 열전달율/열전도율을 이용한 각 층의 열저항 계산

R1: 배관 내 유체의 열저항 / R2: 배관의 열저항 R3: 보온재의 열저항 / R4: 대기의 열저항

R1, R2, R3 이용하여 유체 \rightarrow 보온재 표면 으로의 열전달 계산 (Q1) R4 를 이용하여 보온재 표면 \rightarrow 대기 로의 열전달 계산 (Q2)

VBA 를 이용한 반복 계산 통해 Q1 = Q2 가 되는 보온재 두께 계산

VBA 를 이용한 반복 계산 통해 Pipe Size 및 운전 온도 별 보온재 두께 계산

입찰 설계 초기 보온재 두께 확인이 어려울 경우, 당 계산서를 통해 확인한 보온재 두께를 "열 손실 계산서"에 입력하여 예상되는 주증기 배관의 열 손실을 계산할 수 있다.

개발된 계산서의 정확도를 검토하기 위해 현재 시운전 중인 현장 및 종료 사업장의 운전 Data 를 수집 비교 하고자 하였으나, Data 수집의 어려움과 현장 상황 등으로 인해 이는 수행하지 못하였다. 향후 기회가 된다면 운전 Data를 수집하여 계산서의 정확도 검토 및 추가 수정이 가능하다.

3. 기술개발 결과

1) 열 손실 계산서

계산서는 "INPUT DATA" 항과 "OUTPUT DATA" 항으로 구분하였다.

INPUT DATA									
1. 대기 조건			(설명서 3)						
대기 압력	1.013	barA							
대기 온도	25	°C							
상대 습도	80	%							
바람 속도	0.25	m/s							
2. 배관 및 보온재 정보			(설명서 4)						
배관 사이즈 (외경)	500	DN	(선택)						
배관 두께	38.1	mm							
운전 압력	111.5	barA							
운전 온도	526.3	°C							
유량	336	ton/h							
보온재 재질	Calcium Silicate (ASTM C533)	-	(선택)						
Jacket 방사율	0.1	-	(설명서 4)						
보온재 두께	175	mm	(선택)						
배관 길이	869	m							
배관 압력 손실	2.5	bar	(설명서 5)						
	계 산 (CLICK)		(완료)						
보온재 재질	Calcium Silicate (ASTM C533)	~							
	alcium Silicate (ASTM C533)								
보온재 두께 Pe	ineral Fiber (ASTM C547&C592) erlite (ASTM C610) ass Fiber (ASTM C1086)		ım						

[그림 2. 열 손실 계산 Input 항목]

Input Data 항에는 발전소 운전 대기 조건과 배관 및 보온재의 정보를 입력한다. 보온재 재질은 대표적인 보온재 4 종류 중 한 가지를 선택할 수 있도록 탭으로 구성 하였다. Jacket 방사율은 직접 입력하도록 구성하였고, 그 기준을 설명서 형식으로 별도 제공하였다.

ASTM C1729 5. Classification5.1 Classification of aluminum jacketing is based on three factors: 5.1.1 Outer surface treatment and emittance (ε): 5.1.1.1 Type I = Bare surface, $\varepsilon \ge 0.1$, 5.1.1.2 Type II = Painted with pigmented paint, $\varepsilon \ge 0.8$, 5.1.1.3 Type III = Painted with unpigmented paint, $\varepsilon \ge 0.5$, 5.1.1.4 Type IV = Plastic film coated surface, $\varepsilon \ge 0.85$, and 5.1.1.5 Type V = Painted with a PVdF based paint system, $\varepsilon \ge 0.8$.

[그림 3. 보온재 Jacket 방사율 기준]

Input 값 입력 후 을 클릭하면 주어진 조건에서의 배관 열 손실을 계산한다. 당 계산을 통해 도출된 열 손실 값과 팀 내 표준 열 손실 값을 비교하여 프로젝트 상황에 맞는 최적의 주증기 배관 열 손실 값을 적용할 수 있다.

OUTPUT DATA						
보은재 표면 온도	62.03	°c				
	454.89	kW				
열손실	523.46	W/m				
	4.87	kJ/kg				
출구 온도	523.33	°C				

[그림 4. 열 손실 계산 결과 예시]

2) 보온재 두께 계산서

계산서는 "INPUT DATA" 항과 "OUTPUT DATA" 항으로 구분하였다.

[그림 5. 보온재 두께 계산 Input 항목]

Input Data 항에는 발전소 운전 대기 조건이 아닌 보온재 설계 기준을 입력한다. 보온재 설계 기준은 ITB 를 참조하여 확인한다. 보온재 재질은 대표적인 보온재 4 종류 중 한 가지를 선택할 수 있도록 탭으로 구성 하였다.

Input 값 입력 후 을 클릭하면 배관 사이즈 및 운전 온도 별 필요로 하는 보온재 두께를 아래와 같이 계산할 수 있다.

	OUTPUT - 보온재 두께												
			운전 온도 (°C)										
		~100	101~150	151~200	201~250	251~300	301~350	351~400	401~450	451~500	501~550	551~600	601~650
	25	15	25	40	50	65	65	80	90	100	115	125	140
	50	15	25	40	50	65	80	90	100	115	140	150	165
	65	15	25	40	50	65	80	90	115	125	140	165	175
	80	15	40	40	65	65	80	100	115	125	140	165	190
	100	15	40	50	65	80	90	100	115	140	150	175	190
	125	15	40	50	65	80	90	115	125	140	165	190	200
	150	15	40	50	65	80	90	115	125	150	165	190	215
	200	15	40	50	65	80	100	115	140	165	175	200	225
SIZE	250	25	40	50	65	90	100	125	140	165	190	215	240
(DN)	300	25	40	50	80	90	115	125	150	165	190	215	250
	350	25	40	50	80	90	115	125	150	175	200	225	250
	400	25	40	50	80	90	115	140	150	175	200	240	265
	450	25	40	65	80	90	115	140	165	190	215	240	265
	500	25	40	65	80	100	115	140	165	190	215	240	275
	600	25	40	65	80	100	115	140	165	190	215	250	275
	750	25	40	65	80	100	125	150	175	200	225	265	290
	900	25	40	65	80	100	125	150	175	200	240	265	300
	1200	25	40	65	80	100	125	150	190	215	240	275	

[그림 6. 보온재 두께 계산 결과 예시]

상기 표의 가로 항은 운전 온도 범위를 나타낸다. 50°C 단위로 분리하였으며, 최대 650°C 까지나타내었다. 상기 표의 세로 항은 배관 사이즈를 나타내며, DN25 에서 DN1200 까지 계산을 수행한다. 보온재 두께는 상기 표의 가운데 영역에 표시된다. 보온재 두께는 최대 12inch (300mm)까지 표현하며, 이를 초과할 경우 공란으로 표기하도록 구성하였다.

Ⅲ. 결론

1. 활용방안 및 기대효과

입찰 설계 초기 Plot Plan을 기반으로 대략적인 주증기 배관 배치를 가정하고 금번 개발된 열 손실계산서와 현재 팀 내에서 사용 중인 압력 손실계산서를 이용해 주증기 배관의 손실을 계산해 봄으로써 Heat Balance Diagram 작성에 적용 할 주증기 배관 손실 기준을 최적화 할 수 있다. 이는 발전소 성능과 주증기 배관 물량 최적화에 기여할 것으로 예상한다.

또한, 주증기 배관 손실을 직접 계산해 봄으로써 입찰 시 과대/과소한 배관 손실을 적용하여 발전소 성능 저하를 초래하거나 실행 단계에서 달성할 수 없는 공격적인 배관 손실을 입찰 시 적용하는 경우를 사전에 방지할 수 있다.

금번 개발된 열 손실 계산서는 주증기 배관 외에 주요 물 배관 또는 열병합 발전소의 장거리 Process Steam 공급 배관의 열 손실 계산에도 사용할 수 있다. 이를 통해 그동안 크게 주목하지 않았던 열 배관들의 최적화에도 기여할 수 있을 것으로 예상한다.

IV. 첨부

1. 열 손실 및 보온재 두께 계산서