Survey HW 6

Sankalpa Banjade nxr8dq

October 2023

1 Introduction

1.1 Problems: 13.3.1, 13.3.4, 14.2.1, 14.2.2, 14.2.5, 15.4.1, 15.4.4.

13.3.1 **Proof**: Let R be a ring. We consider the set R^{\times} which consists of all invertible elements of R under multiplication.

Definition: An element a in R is called invertible if there exists an element b in R such that

$$a \cdot b = b \cdot a = e$$
,

where e is the multiplicative identity in R.

To prove that R^{\times} forms a group under multiplication, we need to verify the four group axioms:

1. Closure: Let a, b be elements in R^{\times} . Then there exist a^{-1} and b^{-1} in R such such that

$$a \cdot a^{-1} = e$$

and

$$b \cdot b^{-1} = e.$$

Considering the product $(a \cdot b) \cdot (b^{-1} \cdot a^{-1})$, we have:

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot b^{-1}) \cdot a^{-1} = a \cdot e \cdot a^{-1} = a \cdot a^{-1} = e.$$

Hence, $b^{-1} \cdot a^{-1}$ is the inverse of $a \cdot b$, which means $a \cdot b$ is in R^{\times} . Therefore, R^{\times} is closed under multiplication.

- 2. **Identity**: The multiplicative identity e of R is also in R^{\times} , because $e \cdot e = e$. In this case, e will be 1, and 1 is in R^{\times} because the inverse of 1 is 1.
- 3. Invertibility: By the definition of R^{\times} , for every a in R^{\times} , there exists a^{-1} in R^{\times} such that

$$a \cdot a^{-1} = e.$$

4. **Associativity**: This property is inherited from the ring R. For any a, b, c in R^{\times} , we have:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

Hence, the set R^{\times} with multiplication forms a group. 13.3.4 **Proof**:

Let $G = \mathbb{R} \setminus \{1\}$ be the set of real numbers different from 1, and define a binary operation * on G by

$$x * y = x + y - xy.$$

Prove that (G,*) is a group. Consider two numbers x and y in \mathbb{R} , the set of real numbers. We define a binary operation * on \mathbb{R} by

$$x * y = x + y - xy.$$

To ascertain that this operation equips \mathbb{R} with a group structure, we must verify the following group axioms:

To show that the operation * defined by

$$x * y = x + y - xy$$

on a set G forms a group, we need to verify the group axioms:

1. Closure: If G is the set of real numbers different from 1, then x * y = x + y - xy always yields another real number different from 1. Therefore, the operation is closed on G. We proceed by contradiction. Assume that the operation can result in 1 even when neither of its arguments are 1, where both x and y are real numbers different from 1.

Starting with the equation:

$$x + y - xy = 1$$

Add the additive inverse of x to both sides:

$$(-x) + x + y - xy = 1 + (-x)$$

By the property of additive inverses, this becomes:

$$y - xy = 1 - x$$

Using the distributive property, we can factor out y:

$$y(1-x) = 1-x$$

Since $x \in G$, it follows that $x \neq 1$. Thus, we may cancel, giving

$$y = 1$$
.

But as $y \in G$, y cannot be 1, giving a contradiction. So, it must be the case that $x * y \neq 1$, and thus, $x * y \in G$.

2. **Associativity:** For $x, y, z \in G$, we need to show that (x*y)*z = x*(y*z):

$$(x * y) * z = (x + y - xy) * z$$

= $x + y + z - xy - xz - yz + xyz$
 $x * (y * z) = x * (y + z - yz)$
= $x + y + z - yz - xy - xz + xyz$

Both expressions are equal, thus the operation is associative.

3. **Identity:** For an identity element $e \in G$, we need:

$$x * e = x$$

Substituting the operation we get:

$$x + e - xe = x$$

From which we infer:

$$e = 0$$

Thus, 0 is the identity element for G.

4. **Invertibility:** For each $x \in G$, we need to find an inverse x^{-1} such that:

$$x * x^{-1} = 0$$

This gives:

$$x + x^{-1} - xx^{-1} = 0$$

From which we deduce:

$$x^{-1} = \frac{x}{x-1}$$

Therefore, every element x in G has an inverse in G.

Based on the above, the set of real numbers different from 1 with the operation x*y = x+y-xy forms a group. The proof for invertibility would commence by finding the inverse of an element with respect to the defined operation.

14.2.1 Show that the following are equivalent:

- 1. $(x * y)^n = x^n * y^n$ for all $x, y \in G$ and $n \in \mathbb{Z}$;
- 2. $(x * y)^{-1} = x^{-1} * y^{-1}$ for all $x, y \in G$;
- 3. G is an abelian group, i.e., x * y = y * x for all $x, y \in G$.

Proof:

To show that the statements are equivalent, we will demonstrate the implications: (1) implies (2), (2) implies (3), and (3) implies (1).

1. **(1 implies 2):** Given (1)

$$(x*y)^n = x^n * y^n,$$

if we let n = -1, we get

$$(x*y)^{-1} = x^{-1}*y^{-1},$$

proving statement (2).

2. **(2 implies 3):** Assuming (2)

$$(x*y)^{-1} = x^{-1}*y^{-1},$$

to show G is abelian, we want x * y = y * x. Using the inverse property and the given:

$$e = (x * y) * (x^{-1} * y^{-1})$$

= $x * (y * x^{-1}) * y^{-1},$

which implies that

$$x * y = y * x$$
.

Thus, G is abelian, proving statement (3).

3. (3 implies 1): Given (3) that G is abelian, for positive n:

$$(x*y)^n = x^n * y^n.$$

Given that G is abelian, and let $x, y \in G$. We wish to show $(xy)^n = x^n y^n$ for all $n \in \mathbb{Z}$. We will split into two cases: when $n \geq 0$ and when n < 0.

First, consider when $n \geq 0$. We proceed by induction.

For n = 0, observe that

$$(xy)^0 = e = e \cdot e = x^0 y^0$$

as desired.

Now, suppose for some $n \in \mathbb{Z}$ with $n \geq 0$, $(xy)^n = x^n y^n$. Observe that

$$(xy)^{n+1} = (xy) \cdot (xy)^n$$

$$= (xy) \cdot (x^n y^n) \text{ by the inductive hypothesis}$$

$$= (yx) \cdot (x^n y^n) \text{ as } G \text{ is abelian}$$

$$= y(x \cdot x^n) y^n$$

$$= yx^{n+1} y^n$$

$$= x^{n+1} (y \cdot y^n)$$

$$= x^{n+1} y^{n+1}$$

as desired. For the case in which n is negative, we can induct in the negative direction, i.e., for 1-n, and the proof for when n is less than 0 becomes analogous to this proof.

Having shown each implication, it follows that the three statements are equivalent.

14.2.2

Let G be a group, and suppose that $x^{-1} = x$ for all $x \in G$. Prove that G is abelian. **Proof:**

Let G be a group, and assume that for all $x \in G$, $x^{-1} = x$. We aim to show that G is abelian.

For any two elements $x,y\in G,$ we will evaluate their product in two different orders:

- 1. The product xy
- 2. The product yx

To show that G is abelian, we need to prove xy = yx.

Given the property $x^{-1} = x$ and $y^{-1} = y$, we can manipulate the product xy:

$$x(xy)y = x^2yy$$
$$= x^2y^2$$
$$= e$$

Similarly, for yx:

$$y(yx)x = y^2xx$$
$$= y^2x^2$$
$$= e$$

Since the identity element in a group is unique, it implies xy = yx. Thus, G is abelian.

14.2.5 Review this Let G be a finite set with a binary operation * such that it respects (G1), (G2), and the cancellation law. That is, if $a \cdot x = a \cdot y$ then x = y for all $a, x, y \in G$. Prove that G satisfies (G3) and is thus a group. Is this true without the assumption that G is finite?

Let $g \in G$ and consider the transformation f that maps G to G such that f(h) = g * h. Now, suppose f(h) = f(j) for some $h, j \in G$. By the definition of the map, we have g*h = g*j. Since the transformation satisfies the cancellation law, it follows that h = j. Thus, f can be considered an injection on G. Since we consider G to be finite in this case and that the cardinality of G is equal to itself, it follows that f must also be surjective. Hence, there exists some $g_R \in G$ such that $f(g_R) = g * g_R = e$.

We can observe that

$$g_R = e * g_R = (g_L * g) * g_R = g_L * (g * g_R) = g_L * g = g_L,$$

and thus, for each $g \in G$, there exists some $g^{-1} \in G$ satisfying both $g^{-1} * g = e$ and $g * g^{-1} = e$. Namely, $g^{-1} = g_L = g_R$. Thus, G satisfies (G3), and G is a group.

This does not necessarily hold without the assumption that G is finite, as an injection from an infinite set to another infinite set of the same cardinality is not required to be surjective. This can be observed by considering the natural numbers. Note that \mathbb{N} satisfies (G1), (G2), and the cancellation law, but no $n \in \mathbb{N}$ has an inverse also in \mathbb{N} , and thus \mathbb{N} is not a group.

15.4.1

Multiplication table for the group of symmetries of an equilateral triangle, D_3 :

•	e	r	r^2	f	rf	fr		
e	e	r			rf	fr		
r	r	r^2	e		fr	f		
r^2	r^2	e	r	fr	f	rf		
f	f		rf	e		r^2		
rf	rf	f	fr	r^2	e	r		
fr	fr	rf	$\begin{array}{c c} fr \\ f \end{array}$	r	r^2	e		
15 1 1								

For each of the following groups, write out its multiplication table, and determine whether it is cyclic. If it is cyclic, give a generator; if it is not, explain why not.

1. $(\mathbb{Z}/(7))^{\times}$ Multiplication table for $\mathbb{Z}/7\mathbb{Z}$:

×	[1]	[2]	[3]	[4]	[5]	[6]	
[1]	[1]	[2]	[3]	[4]	[5]	[6]	-
[2]	[2]	[4]	[6]	[1]	[3]	[5]	
[3]	[3]	[6]	[2]	[5]	[1]	[4]	This group is cyclic as 3 is the gen-
[4]	[4]	[1]	[5]	[2]	[6]	[3]	
[5]	[5]	[3]	[1]	[6]	[4]	[2]	
[6]	[6]	[5]	[4]	[3]	[2]	[1]	

erator. The powers of 3 modulo 7 are:

$$3^{1} = 3$$
 $3^{2} = 2$
 $3^{3} = 6$
 $3^{4} = 4$
 $3^{5} = 5$
 $3^{6} = 1$

2. $(\mathbb{Z}/(9))^{\times}$ Multiplication table for $\mathbb{Z}/9\mathbb{Z}$:

×	[1]	[2]	[4]	[5]	[7]	[8]
[1]	[1]	[2]	[4]	[5]	[7]	[8]
[2]	[2]	[4]	[8]	[1]	[5]	[7]
[4]	[4]	[8]	[7]	[2]	[1]	[5]
[5]	[5]	[1]	[2]	[7]	[8]	[4]
[7]	[7]	[5]	[1]	[8]	[4]	[2]
[8]	[8]	[7]	[5]	[4]	[2]	[1]

This group is cyclic for 5 as the generator. The powers of 5 modulo 9 are:

$$5^1 = 5$$

$$5^2 = 7$$

$$5^3 = 8$$

$$5^4 = 4$$

$$5^5 = 2$$

$$5^6 = 1$$

 $(\mathbb{Z}/(12))^{\times}$ Multiplication table $\mathbb{Z}/9\mathbb{Z}$:

×	[1]	[5]	[7]	[11]
[1]	[1]	[5]	[7]	[11]
[5]	[5]	[1]	[11]	[7]
[7]	[7]	[11]	[1]	[5]
[11]	[11]	[7]	[5]	[1]

Not cyclic as every element has itself as an inverse, so when trying any number you would just get a loop with 1. Hence there is no generator ie 1's across the diagonal.