Chapter 8: Instance Based Learning

CS 536: Machine Learning Littman (Wu, TA)

Instance-Based Learning

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

Problem of noisy labels?

Instance Based Learning

[Read Ch. 8]

- *k*-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

Adding Robustness

k-Nearest neighbor method:

- Given x_q, take vote among its k nearest neighbors (if discretevalued target function)
- take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \Sigma_{i=1}^k f(x_n) / k$$

When To Consider kNN

- Instances map to points in \Re^n
- Fewer than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time
- Easily fooled by irrelevant attributes

Decision Rules

Say p(x) defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Gibbs Algorithm:

- with probability p(x) predict 1, else 0 Bayes optimal decision rule:
- if p(x) > .5 then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal.

(Look familiar?)

Voronoi Diagram

Partition of space by nearness to instances.

Behavior in the Limit

Nearest neighbor:

- As number of training examples grows, approaches Gibbs Algorithm
- *k*-Nearest neighbor:
- As number of training examples grows and k gets large, approaches Bayes optimal

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \sum_{i=1}^k W_i f(x_n) / \sum_{i=1}^k W_i$$

where $w_i = 1/d(x_q, x_i)^2$ and $d(x_q, x_i)$ is distance between x_q

and $u(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use *all* training examples instead of just *k*

Shepard's method

One approach:

Stretch j th axis by weight z_j, where z₁,
 ..., z_n chosen to minimize prediction error

Attribute Weighting

- Use cross-validation to automatically choose weights $z_1, ..., z_n$
- Note setting z_j to zero eliminates this dimension altogether

see Moore and Lee (1994)

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: NN is easily misled in high-dimensional space

How do data requirements grow with dimensionality?

Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_a

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_a ?

- Fit linear function to *k* nearest neighbors
- Fit quadratic, ...
- Produces "piecewise approximation" to f

What to Minimize

Several choices of error to minimize:

 Squared error over k nearest neighbors

$$E_1(x_q) = 1/2 \sum_{x \text{ in } kNN(xq)} (\hat{f}(x) - f(x))^2$$

 Distance-weighted squared error over all neighbors

$$E_2(x_q) = \frac{1}{2} \sum_{x \text{ in } D} (\hat{f}(x) - f(x))^2 K(d(x_q, x))$$

Radial Basis Function Nets

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance weighted regression, but "eager" instead of "lazy"

Radial Basis Function Nets

where $a_i(x)$ are the attributes describing instance x_i , and

$$f(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

One common choice is

$$K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$

Training RBF Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_{ij})

- First choose variance (and perhaps mean) for each K_u
 - e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \Re^n$

• need different "distance" metric

Case-Based Reasoning is instancebased learning applied to instances with symbolic logic descriptions

CBR in CADET

CADET: 75 stored examples of mechanical devices

- each training example: < qualitative function, mechanical structure >
- new query: desired function,
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

CBR Example

```
( (user-complaint error53-on-shutdown)
(cpu-model PowerPC)
(operating-system Windows)
(network-connection PCIA)
(memory 48meg)
(installed-applications Excel Netscape
   VirusScan)
(disk 1gig)
(likely-cause ???))
```

CBR in CADET

CBR in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Which is Better?

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H = linear functions)

Lazy and Eager Learning

Lazy: wait for query before generalizing

• *k*-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query

 Radial basis function networks, ID3, Backpropagation, NaiveBayes, ...