KMML Homework 4

Mahdi Kallel

TOTAL POINTS

5/5

QUESTION 1

1 Exercice 12/2

- √ 0 pts Correct
 - 0.25 pts need to prove the continuity of Bn
 - 1 pts Bn is p.d. only for n even.
 - 0.5 pts description of the RKHS is missing
 - 0.5 pts need to treat B1 separately (not continuous
- => no Bochner)
 - 1.5 pts need to treat the case n > 1
- 0.5 pts we need to study the continuity of Bn to apply Bochner
 - 2 pts missing exercise

QUESTION 2

2 Exercice 2.11/1

- √ 0 pts Correct
 - 0.75 pts Some ideas but important caveats
 - 0.25 pts Proof that the Laplacian of the grid can

be written as a sum of Kronecker products missing or incorrect

- 0.5 pts Error or incomplete proof to find the
- eigenvalues
 - 1 pts Wrong or not done

QUESTION 3

3 Exercice 2.2 1/1

- √ 0 pts Correct
 - 1 pts Wrong or not done
 - 0.5 pts Justification lacking

QUESTION 4

4 Exercice 2.3 1/1

- √ 0 pts Correct
 - 0.5 pts Error
 - 1 pts Wrong or not done

Exercice 1:

1) For B_1 , k(x,y) is not a p. d kernel if we take $X_1, X_2, X_3 = \{0,1,2\}$ then the kernel matrix K = [[1,1,0],[1,1,1],[0,1,1]] has a determinant of -1. And therefore a negative eigenvalue.

By recurrence: We show that $B_n \in L_{\infty} \forall n$.

For $i = 1 B_1(x) < 1 \forall x$.

Suppose it's true for n. For n+1 we have $: ||B_{n+1}(x)||_{\infty} \le ||\int B_n(u)\mathbb{1}_{[-1,1]}(x-u) du||_{\infty}$ $\le \int ||B_n(x-u)\mathbb{1}_{[-1,1]}(u) du||_{\infty} \le \sqrt{2} ||B_n||_{\infty}.$

For $n \ge 2$ B_n is the convolution of I which is continuous on the compact [-1,1] and $B_{n-1} \in L_{\infty}$. Therefore B_n is continuous.

Let $\mathcal{F}: L_2 \to L_2$ denote the fourrier transform operator.

In \mathbb{R} , the fourrier stiejlis transform coincides with the usual fourrier transform.

We have that for
$$n \ge 2$$
, $\mathcal{F}(B_n) = \mathcal{F}(I*...*I) = \mathcal{F}(B)^n$, where $F(B)(w) = \frac{2sin(w)}{w} = Sinc(w)$

For any n, B_n is pair therefore $B_n = \mathcal{F}^{-1}(\mathcal{F}(B_n)) = \mathcal{F}(\mathcal{F}(B_n))$.

For n pair ≥ 2 : We find that $B_n = \mathcal{F}(\mathcal{F}(B_n)) = \mathcal{F}(Sinc(w)^n)$ is continuous and is the fourrier transform of $Sinc(w)^{2n'}$.

which is positive and finite $\left(\int |sinc(w)|^n \leq \int |\frac{2}{w^n}| < \infty \text{ for } n \geq 2\right)$,

Therefore using Bochner's theorem we find that k(x, y) defines a p. d kernel.

For n impair: We find that B_n is continuous and is the fourrier transform of $Sinc(w)^{2n'+1}$ which is not a positive measure. And therefore using Bochner's theorem k(x, y) is not p.d.

We now explicit the RKHS of B_{2n} :

Let \mathcal{H}_{2n} denote the RKHS of B_{2n} , we know that $H = \left\{ f : \int \frac{|F(f)|^2}{Sinc(w)^{2n}} < \infty \right\}$

$$= \left\{ f \colon \int \widehat{|f}(w) \, \frac{(w)^n}{2 sin(w)^n} |^2 < \infty \right\} = \left\{ f \colon \int |\widehat{f}(w) \, w^n|^2 < \infty \right\} \left(\frac{1}{Sinc(w)} \ge 2w \right)$$

If $\hat{f}(w) w^n \in L_2$, then $(f)^n = \mathcal{F}(\hat{f}(w) w^n)$ and thus \mathcal{H} is the set of n times differentiable functions all the derivatives in L_2 .

1 Exercice 12/2

√ - 0 pts Correct

- 0.25 pts need to prove the continuity of Bn
- 1 pts Bn is p.d. only for n even.
- **0.5 pts** description of the RKHS is missing
- **0.5 pts** need to treat B1 separately (not continuous => no Bochner)
- 1.5 pts need to treat the case n > 1
- **0.5 pts** we need to study the continuity of Bn to apply Bochner
- 2 pts missing exercise

Exercice 2:

We can see the Grid graph G as the sum of two graphs on the same set of vertices, whos edges are distinct.

If we take G_1 being the graph formed by the set of all the horizontal line graphs.

And G_2 the graph formed by the set of all the vertical line graphs.

We get that $G = G_1 \cup G_2$.

One can show that in such case (A graph formed by two distinct graphs), the Laplacian matrix is the sum of both the laplacians of the subgraphs.

For both G_1 and G_2 the Laplacians are forward to compute and are : $M_1 = (I_n \odot L_1)$,

$$M_2 = (L_1 \odot I_n)$$

This yields the following result:

$$L_2 = (I_n \odot L_1) + (L_1 \odot I_n) = M_1 + M_2$$

We show that if $M \in S_n + \Longrightarrow I_n \odot M$ and $M \odot I_n \in S_n + :$

Let $M = PDP^{-1}$, then using the property (**) $(A \odot B) (C \odot D) = AC \odot BD$, wet get that :

$$(I_n \odot P^{-1})(I_n \odot M)(I_n \odot P) = {}^{**}(I_n I_n I_n \odot P^{-1} MP) = I_n \odot D \in S_n + (same for the other case..)$$

$$M_1 M_2 \ = \ (I_n \odot \ L_1) \ (L_1 \odot I_n) \ = \ I_n L_1 \ \odot L_1 I_n \ = \ L_1 \ \odot L_1 \ = \ M_2 M_1.$$

 M_1 and M_2 commute therefore they are "co diagonalisable".

$$\exists P \ s. \ t \ PM_1P^{-1} = D_1 \ \ and \ PM_2P^{-1} = D \implies P \ (M_1+M_2) \ P^{-1} = D_1 + D_2.$$

Therefore we deduce that if α_i is an eigenvalue of $L_2 \implies \exists a_i, b_i$ eigenvalues of M_1, M_2 s. $t \alpha_i = a_i + b_i$.

If $C = A \odot B$, and (λ_i, X_i) , (μ_j, Y_i) are the eigenpairs of A, B respectively,

we know all the eigenvalues of C which are of the form $\alpha_{ij} = \lambda_i \mu_j$ with the corresponding

eigenvectors $(X_i \odot Y_j)$. Therefore we deduce that $Spec_{L_1} = Spec_{L_1 \odot I_n} = Spec_{I_n \odot L_1}$

If we denote by $E = \{\lambda_i + \lambda_j, \text{ where } \lambda_i, \lambda_j \in Spec_{L_1} \}$ then we proved that $Spec_{L_2} \in E$.

$$L_{2}(e_{i} \odot e_{j}) = (I_{n} \odot L_{1})(e_{i} \odot e_{j}) + (L_{1} \odot I_{n})(e_{i} \odot e_{j}) = (e_{i} \odot L_{1}e_{j}) + (L_{1}e_{i} \odot e_{j})$$

$$= e_{i} \odot \lambda_{j}e_{j} + e_{i} \odot \lambda_{2}e_{j} = (\lambda_{i} + \lambda_{j})(e_{i} \odot e_{j}).$$

Therefore we find that $e_{ij} = e_i \odot e_j$ is the eigenvector corresponding the the eigenvalue, $\lambda_{ij} = \lambda_i + \lambda_j$

Therefore $E \in Spec_{L_2}$ and thus $E = Spec_{L_2}$.

2 Exercice 2.11/1

√ - 0 pts Correct

- 0.75 pts Some ideas but important caveats
- **0.25 pts** Proof that the Laplacian of the grid can be written as a sum of Kronecker products missing or incorrect
 - **0.5 pts** Error or incomplete proof to find the eigenvalues
 - 1 pts Wrong or not done

2)
$$K_t = \sum_{n^2} e^{-t\lambda_{ij}} e_{ij} e_{ij}^T = \sum_{i,j} e^{-t(\lambda_i + \lambda_j)} (e_i \odot e_j) (e_i \odot e_j)^T = \sum_{i,j} e^{-t(\lambda_i + \lambda_j)} (e_i \odot e_j) (e_i^T \odot e_j^T)$$

$$= \sum_{i,j} e^{-t(\lambda_i + \lambda_j)} \left(e_i e_i^T \odot e_j e_j^T \right) = \sum_{i,j} \left(e^{-t\lambda_i} e_i e_i^T \odot e^{-t\lambda_j} e_j e_j^T \right)$$

$$= \sum_{i} e^{-t\lambda_i} e_i e_i^T \odot \sum_{j} e^{-t\lambda_j} e_j e_j^T = K_1 \odot K_1.$$

From this form we directly deduce that $K_2((i, j), (k, l)) = K_1(i, k)K_1(j, l)$

3 Exercice 2.2 1/1

- √ 0 pts Correct
 - 1 pts Wrong or not done
 - **0.5 pts** Justification lacking

3) As stated before, the complexity of computing the exponential of n * n matrix in N^3 .

So computing K_1 comes with a cost of N^3 .

 K_2 is an N^4 matrix, but from 2) we know how to compute a single entry of K_2 as the product

of two terms of K_1 . Therefore to compute a single entry of K_2 , knowing K_1 is O(1).

Doing this for all entries costs N^4 .

And thus computing K_2 is $O(N^3 + N^4) = O(N^4)$

4 Exercice 2.3 1/1

- √ 0 pts Correct
 - 0.5 pts Error
 - 1 pts Wrong or not done