Theoretische Informatik

Julian Schubert

4. Mai 2021

Inhaltsverzeichnis

1	Wichtige Vermutungen	2
2	Elementare Begriffe	2
	2.1 Komplexitätsklassen	2
	2.2 Funktionen	3
	2.3 Binärdarstellung	3
	2.4 Listencodierung	4
3	While-Programme	4
	3.1 Berechnende Funktion bestimmen	4
4	Ram-Programme	4
5	Alphabete und Wörter	5
6	Turing-Maschinen	6
7	Laufzeit von Algorithmen	7

1 Wichtige Vermutungen

Definition 1: Goldbachsche Vermutung

Jede natürliche gerade Zahl größer 2 ist Summe zweier Primzahlen

Definition 2: Collaz-Problem (3n +1)-Vermutung

- Beginne mit irgendeiner natürlichen Zahl n > 0
- Ist n gerade, so nimm als nächstes n//2 (abrundende Division)
- ist n ungerade, so nimm als nächstes 3n + 1
- Wiederhole das Vorgehen mit der erhaltenen Zahl

Vermutung: Jede so konstruierte Zahlenfolge mündet in den Zyklus 4, 2, 1, egal mit welcher natürlichen zahl n > 0 beginnt

Definition 3: Ackermann-Funktion

Frage: Gilt LOOP = $\{f \in \text{WHILE} \mid f \text{ ist total}\}$? Die folgende Funktion (auch **Ackermann-Funktion** genannt) $a : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Die folgende Funktion (auch **Ackermann-Funktion** genannt) $a : \mathbb{N} \times \mathbb{N} - \mathbb{N}$ ist total und While-berechenbar, aber nicht Loop-berechenbar:

$$a(n,m) = \begin{cases} m+1 & \text{falls } n=0\\ a(n-1,1) & \text{falls } n>0 \text{ und } m=0\\ a(n-1,a(n,m-1)) & \text{falls } n>0 \text{ und } m>0 \end{cases}$$

 \Rightarrow Die Ackermann-Funktion ist eine totale Funktion in WHILE-LOOP

Definition 4: Hauptsatz der Algorithmentheorie

RAM = WHILE = MINIWHILE = TM

2 Elementare Begriffe

2.1 Komplexitätsklassen

$$ALL \subset P \subset NP$$

• ALL: Alle Probleme

- **NP:** Probleme, deren Lösungen schnell übrprüft weden können (effizient überprüfbare Probleme)
- P: Probleme, die isch in polynomieller Zeit lösen lassen (effizient lösbare Probleme)

2.2 Funktionen

Definition 5: Funktionen

Seien $f: A \to B$ und $g: B \to C$ Funktionen

• Definitionsbereich von f:

 $D_f = \{a \in A | \text{ es existiert ein } b \in B \text{ mit } f(a) = b\}$ \Rightarrow Alles was etwas im Wertebereich trifft

• Wertebereich von f:

 $D_f = \{a \in A | \text{ es existiert ein } a \in A \text{ mit } f(a) = b\}$ \Rightarrow alles was von etwas im Definitionsbereich getroffen wird

• Total: $D_f = A$

• Surjektiv: $W_f = B$

• Injektiv: aus $a_1, a_2 \in D$ und $a_1 \neq a_2$ folgt $f(a_1) \neq f(a_2)$

 \bullet **Bijektiv:** f ist total, surjektiv und injektiv

• ist f injektiv, so existiert die **Umkehrfunktion** $f^{-1}: B \to A$ mit $f^{-1}(b) = \text{dasjenige } a \in A$ mit f(a) = b

2.3 Binärdarstellung

Definition 6

Jede natürliche Zahl $n \ge 1$ ist in genau einer Weise darstellbar als

$$n = \sum_{i=0}^{m} a_i \cdot 2^i$$

mit $m \in \mathbb{N}$, $a_m = 1$ und $a_0, \dots, a_{m-1} \in \{0, 1\}$.

Eigenschaft 1: Binärdarstellung

$$bin(2n+a) = bin(n)a$$
 für $n \ge 1$ und $a \in \{0,1\}$

2.4 Listencodierung

Liste von Binärzahlen: $\langle x_1, \ldots, x_n \rangle$

Anwendung: Bits verdoppeln, 10 alss Anfangs-, Trenn- und Enmarkierung **Beispiele:**

```
\langle \rangle = bin^{-1}(10) = 2

\langle 2 \rangle = bin^{-1}(10110010) = 178

\langle 5, 3, 2 \rangle = bin^{-1}(10110011101111110110010) = 2944946
```

3 While-Programme

Definition 7: While-Berechenbarkeit

Eine Funktion ist dann **While-Berechenbar**, falls es ein While-Programm gibt, sodass der Definitionsbereich von beiden identisch ist und der Wert für alle Eingaben übereinstimmt.

Definition 8: Loop-Programm

ein ${\bf Loop\text{-}Programm}$ ist ein While-Programm mit folgenden Eigenschaften:

- Das Programm enthält keine While-Schleifen
- Aus einer Funktion können nur weiter oben deklarierte Funktionen aufgerufen werden. Insbesondere sind keine Selbstaufrufe erlaubt
- Das Programm enhält nur Funktionsdeklarationen mit Initialiserung
- Das Programm ist für alle Eingaben definiert
- ⇒ Alle Loop-berechenbaren Funktionen sind total.

3.1 Berechnende Funktion bestimmen

- 1. Schauen für welche Eingabe(n) die Schleife(n) wie oft ausgeführt werden
- 2. Schauen was sich mit jedem Schleifendurchlauf verändert

4 Ram-Programme

Definition 9: modifizierte Differenz

$$x - y = md(x, y)$$

$$\begin{cases} x - y & \text{falls } x > y \\ 0 & \text{sonst} \end{cases}$$

5 Alphabete und Wörter

Definition 10: Alphabete und Wörter

- Ein Alphabet ist eine endliche, nichtleere Menge
- Die Elemente eines Alphabets werden **Buchstaben** oder **Symbole** genannt
- Ein Wort über einem Alphabet Σ ist eine endliche Folge von 0 oder mehr Elementen aus Σ
- \bullet das leere Wort (d.h. das Wort, das aus 0 Buchstaben) besteht bezeichnen wir mit ε

Definition 11: Mengen von Wörtern

Sei Σ ein Alphabet, $n \ge 0$ und $a_1, a_2, \dots a_n \in \Sigma$

- Die Länge eines Wortes w $a_1 a_2 \dots a_n$ ist |w| = n
- \bullet Menge aller Wörter mit Länge n:

$$\varSigma^n=\{w|w \text{ ist ein Wort über } \varSigma \text{ mit } |w|=n\}$$
 Es gilt $\varSigma^0=\{\varepsilon\}$

• Menge aller Wörter:

$$\Sigma^* = \{w | w \text{ ist ein Wort "über } \Sigma\} = \bigcup_{u \ge 0} \Sigma^n \text{ und } \Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$$

- eine formale Sprache über Σ ist eine Teilmenge von Σ^*
- Das **Entscheidungsproblem** einer formalen Sprache $L \subseteq \Sigma^*$ ist folgende Aufagbe:

Eingabe: $w \in \Sigma^*$

Ausgabe:

1, falls $w \in L$

0, falls $w \notin L$

Definition 12: Dyadische dartstellung

dya: $\mathbb{N} \to \{1, 2\}^*$ ist definiert durch

- $dya(0) = \varepsilon$
- day(n) = $a_m \dots a_0$ falls $n \ge 1, n = \sum_{i=0}^m a_i \cdot 2^i$ und $a_0, \dots, a_m \in \{1, 2\}$

Eigenschaft 2: k-adische Darstellung

Sei $k \ge 2$

- 1. $\operatorname{ad}_k(\operatorname{kn} + \operatorname{a}) = \operatorname{ad}_k(\operatorname{n})\operatorname{a} \text{ für } n \geq 0 \text{ und } a \in \{1, \ldots k\}$
- 2. $ad_k^{-1}(xa) = k \cdot ad_k^{-1}(x) + a \text{ für } x \in \{1, \dots, k\}^*, a \in \{1, \dots, k\}$

6 Turing-Maschinen

Definition 13: Turing Maschiene

Sei $k \geqslant 1$. Eine **k-Band-Turing-Maschine** ist ein Quintupel (Σ, Z, f, z_0, z_1) mit

- Σ ist eine endliche Menge (Alphabet)
- Z ist eine endliche Menge (Zustandsmenge)
- $f(Z\setminus\{z_1\}) \times \Sigma^k \to Z \times \Sigma^k \times \{L, O, R\}^k$ ist eine totale Funktion (Überführungsfunktion)
- $z_0 \in Z$ (Startzustand)
- $z_1 \in Z$ (Stoppzustand)

 $M(z, a_1 \dots a_m)$: Wort das auf Band 1 steht, alle anderen Bänder leer, und $a \in \Sigma \setminus \{\text{Leersymbol}\}$

Definition 14: Palindrom

Ein wort $a_1 \dots a_n$ heißt symmetrisch oder auch **Palindrom**, falls $a_1 \dots a_n = a_n \dots a_1$

7 Laufzeit von Algorithmen

Definition 15: Länge einer Zahl

$$|x| = |dya(abs(x))|$$