EEOR6616

Convex Optimization

Instructed by **Prof. Tianyi Lin***
Transcribed by **Satvik Saha**†

Table of Contents

1. Basic Definitions	1
1.1. Convex Sets and Functions	1
1.2. The Optimization Problem	3
2. Gradient Descent	3
2.1. Projections	3
2.2. L-Lipschitz Functions	5
2.3. ℓ-smoothness	6

1. Basic Definitions

1.1. Convex Sets and Functions

Definition 1.1 (Convex set). We say that $\mathcal{K} \subseteq \mathbb{R}^d$ is convex if

$$\lambda x + (1 - \lambda)y \in \mathcal{K}$$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Definition 1.2 (Convex function). We say that $f: \mathcal{K} \to \mathbb{R}$ is convex if \mathcal{K} is convex, and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Department of Industrial Engineering and Operations Research (IEOR), Columbia University

[†]Department of Statistics, Columbia University

Proposition 1.3 (Jensen's Inequality). *f is convex if and only if*

$$f(\lambda_1 x_1 + \ldots + \lambda_n x_n) \leq \lambda_1 f(x_1) + \ldots + \lambda_n f(x_n)$$

for all $x_1,...,x_n \in \mathcal{K}$ and $\lambda_1,...,\lambda_n \geq 0$ such that $\sum_k \lambda_k = 1$,

Definition 1.4 (Epigraph). The epigraph of $f: \mathcal{K} \to \mathbb{R}$ is defined as

$$\mathrm{epi}(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) \le \alpha\}.$$

Remark. The epigraph of f is simply the region above the graph of f,

$$\Gamma(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) = \alpha\}.$$

Proposition 1.5. f is convex if and only if epi(f) is convex.

Proof. (\Longrightarrow) For $(x_1, \alpha_1), (x_2, \alpha_2) \in \operatorname{epi}(f)$ and $\lambda \in [0, 1]$, we have

$$\begin{split} f(\lambda x_1 + (1-\lambda)x_2) & \leq \lambda f(x_1) + (1-\lambda)f(x_2) \\ & \leq \lambda \alpha_1 + (1-\lambda)\alpha_2. \end{split}$$

 $(\Longleftarrow) \text{ For } x_1,x_2 \in \mathcal{K} \text{ and } \lambda \in [0,1] \text{, since } (x_1,f(x_1)),(x_2,f(x_2)) \in \operatorname{epi}(f) \text{, we have } f(x_1,f(x_1)) \in \operatorname{epi}(f) \text{.}$

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

From now on, we will always assume that $f: \mathcal{K} \to \mathbb{R}$ is differentiable. Under this setting, we have a simpler characterization of convexity.

Proposition 1.6 (Gradient Inequality). *f is convex if and only if*

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

for all $x, y \in \mathcal{K}$.

Proof. (\Longrightarrow) Note that for $t \in (0,1)$, we may write

$$f(x) + \frac{f(x+t(y-x)) - f(x)}{t} = \frac{f((1-t)x+ty) - (1-t)f(x)}{t}$$

$$\leq f(y).$$

Taking the limit $t \to 0$ gives the desired result.

 (\Leftarrow) Let $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$. Setting $z = \lambda x + (1 - \lambda)y$, we have

$$f(x) > f(z) + \nabla f(z)^{\top} (x - z), \qquad f(y) > f(z) + \nabla f(z)^{\top} (y - z).$$

Combining these gives $\lambda f(x) + (1 - \lambda)f(y) \ge f(z)$.

Remark. This is often presented as

$$f(x) - f(y) \le \nabla f(x)^{\top} (x - y).$$

1.2. The Optimization Problem

Definition 1.7 (Global Minimizer). We say that x^* is a global minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{K}$.

Definition 1.8 (Local Minimizer). We say that x^* is a local minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{U}$ for some neighborhood $\mathcal{U} \subseteq \mathcal{K}$ of x^* .

Proposition 1.9. Let $x^* \in \text{int}(\mathcal{K})$ be a local minimizer of f. Then, $\nabla f(x^*) = 0$.

The optimization problem for convex f on a convex set \mathcal{K} can be described as

$$\min_{x \in \mathcal{K}} f(x). \tag{$\mathcal{M}_{\mathcal{K}}$})$$

In the special case $\mathcal{K} = \mathbb{R}^d$, this is

$$\min_{x \in \mathbb{R}^d} f(x). \tag{$\mathcal{M}_{\mathbb{R}^d}$}$$

The convexity of f allows us to characterize solutions of $(\mathcal{M}_{\mathbb{R}^d})$ via its critical points.

Proposition 1.10. Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex. Then, $x^* \in \mathbb{R}^d$ is a global minimizer of f if and only if $\nabla f(x^*) = 0$.

Proof. Follows directly from Proposition 1.9 and Proposition 1.6.

Gradient Descent

Gradient descent algorithms for solving $(\mathcal{M}_{\mathbb{R}^d})$ follow the iterative scheme

$$x_{t+1} = x_t - \eta_t \nabla f(x_t). \tag{\mathcal{GD}}$$

It is possible for (\mathcal{GD}) to take our iterates x_t outside \mathcal{K} ; we can rectify this using projections.

2.1. Projections

Theorem 2.1 (Hilbert Projection). Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. Then, for each $y \in \mathbb{R}^d$, there exists unique $z \in \mathcal{K}$ such that $||z - y|| \le ||x - y||$ for all $x \in \mathcal{K}$.

Proof. Set $\delta = \inf_{x \in \mathcal{K}} \|x - y\|$ and pick a sequence $\{z_n\} \subset \mathcal{K}$ such that $\|z_n - y\| \to \delta$. Note that $(z_n + z_m)/2 \in \mathcal{K}$; the parallelogram law gives

$$\begin{split} \left\| z_n - z_m \right\|^2 &= 2 \|z_n - y\|^2 + 2 \|z_m - y\|^2 - 4 \|(z_n + z_m)/2 - y\|^2 \\ &\leq 2 \|z_n - y\|^2 + 2 \|z_m - y\|^2 - 4 \delta^2. \end{split}$$

Since this goes to 0 as $m, n \to \infty$, $\{z_n\}$ is Cauchy and hence has a limit $z \in \mathcal{K}$. Furthermore, if $\delta = \|z' - y\|$ for some other $z' \in \mathcal{K}$, then

$$||z - z'||^2 = 4(\delta^2 - ||(z + z')/2 - y||)^2 \le 0,$$

forcing z = z'.

Definition 2.2. Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. The projection onto \mathcal{K} is defined by

$$\Pi_{\mathcal{K}}: \mathbb{R}^d \to \mathcal{K}, \quad y \mapsto \mathop{\arg\min}_{x \in \mathcal{K}} \ \|x - y\|.$$

Remark. Theorem 2.1 guarantees that $\Pi_{\mathcal{K}}$ is well defined; the minimizer of $x\mapsto \|x-y\|$ on \mathcal{K} exists and is unique.

Proposition 2.3 (Variational Inequality). Let $y \in \mathbb{R}^d$ and $z \in \mathcal{K}$ for closed convex \mathcal{K} . Then, $z = \Pi_{\mathcal{K}}(y)$ if and only if $\langle z - y, z - x \rangle \leq 0$ for all $x \in \mathcal{K}$.

Proof. (\Longrightarrow) Let $t\in(0,1)$, and $z_t=(1-t)\Pi_{\mathcal{K}}(y)+tx\in\mathcal{K}.$ Then,

$$||z - y||^2 \le ||z_t - y||^2 = ||z - y - t(z - x)||^2$$

which simplifies to

$$-2\langle z-y,z-x\rangle+t\|z-x\|^2\geq 0.$$

Taking the limit $t \to 0$ gives the desired inequality.

 (\Leftarrow) For $x \in \mathcal{K}$,

$$\|y-x\|^2 = \|y-z\|^2 + \|z-x\|^2 - 2\langle z-y, z-x\rangle \ge \|y-z\|^2.$$

Lemma 2.4 (Pythagoras). For all $x \in \mathcal{K}$ and $y \in \mathbb{R}^d$,

$$\|\Pi_{\mathcal{K}}(y) - x\|^2 \leq \|y - x\|^2 - \|y - \Pi_{\mathcal{K}}(y)\|^2.$$

Proof. It suffices to show that $\langle \Pi_{\mathcal{K}}(y) - y, \Pi_{\mathcal{K}}(y) - x \rangle \leq 0$ for all $x \in \mathcal{K}$, which holds via Proposition 2.3.

Corollary 2.4.1. For all $x, y \in \mathbb{R}^d$,

$$\|\Pi_{\mathcal{K}}(x) - \Pi_{\mathcal{K}}(y)\| \leq \|x - y\|.$$

Projected gradient descent algorithms for solving $(\mathcal{M}_{\mathcal{K}})$ follow the iterative scheme

$$\begin{aligned} y_{t+1} &= x_t - \eta_t \nabla f(x_t), \\ x_{t+1} &= \Pi_{\mathcal{K}}(y_{t+1}). \end{aligned} \tag{\mathcal{PGD}}$$

We can establish rates of convergence of (\mathcal{GD}) and (\mathcal{PGD}) under certain regularity conditions on f.

2.2. L-Lipschitz Functions

Definition 2.5 (*L*-Lipschitz). We say that $f: \mathcal{K} \to \mathbb{R}$ is *L*-Lipschitz for some $L \geq 0$ if

$$|f(x)-f(y)| \leq L\|x-y\|$$

for all $x, y \in \mathcal{K}$.

Remark. When f is differentiable, f is L-Lipschitz if and only if $\|\nabla f\| \leq L$.

Theorem 2.6. Let f be convex and L-Lipschitz, $x^* \in \mathcal{K}$ be its global minimizer, and $\|x_1 - x^*\| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{PGD}) with $\eta = R/L\sqrt{T}$. Then,

$$f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right) - f(x^{*}) \leq \frac{RL}{\sqrt{T}}.$$

Proof. Compute

$$\begin{split} f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right) - f(x^{*}) &\leq \frac{1}{T}\sum_{t=1}^{T}f(x_{t}) - f(x^{*}) \\ &\leq \frac{1}{T}\sum_{t=1}^{T}\nabla f(x_{t})^{\top}(x_{t} - x^{*}) \\ &= \frac{1}{T\eta}\sum_{t=1}^{T}\left[x_{t} - y_{t+1}\right]^{\top}(x_{t} - x^{*}) \\ &= \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - y_{t+1}\right\|^{2} + \left\|x_{t} - x^{*}\right\|^{2} - \left\|y_{t+1} - x^{*}\right\|^{2}\right] \\ &= \frac{\eta}{2}\|\nabla f(x_{t})\|^{2} + \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - x^{*}\right\|^{2} - \left\|y_{t+1} - x^{*}\right\|^{2}\right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - x^{*}\right\|^{2} - \left\|\underline{\Pi_{\mathcal{K}}(y_{t+1})} - x^{*}\right\|^{2}\right] \\ &= \frac{\eta L^{2}}{2} + \frac{1}{2T\eta}\left[\left\|x_{1} - x^{*}\right\|^{2} - \left\|x_{T+1} - x^{*}\right\|^{2}\right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{R^{2}}{2T\eta} \\ &= \frac{RL}{\sqrt{T}}. \end{split}$$

2.3. ℓ -smoothness

Definition 2.7 (ℓ -smoothness). We say that $f: \mathcal{K} \to \mathbb{R}$ is ℓ -smooth for some $\ell \geq 0$ if

$$\|\nabla f(x) - \nabla f(y)\| \le \ell \|x - y\|$$

for all $x, y \in \mathcal{K}$.

Lemma 2.8. Let $f: \mathcal{K} \to \mathbb{R}$ for convex \mathcal{K} be ℓ -smooth. Then,

$$|f(y)-f(x)-\nabla f(x)^\top (y-x)| \leq \frac{\ell}{2}\|y-x\|^2.$$

Proof. Using the Fundamental Theorem of Calculus,

$$\begin{split} |f(y) - f(x) - \nabla f(x)^\top (y - x)| &= \left| \int_0^1 (\nabla f(x + t(y - x)) - \nabla f(x))^\top (y - x) \; dt \right| \\ &\leq \int_0^1 \|\nabla f(x + t(y - x)) - \nabla f(x)\| \cdot \|y - x\| \; dt \\ &\leq \int_0^1 \ell t \|y - x\| \cdot \|y - x\| \; dt \\ &= \frac{\ell}{2} \|y - x\|^2. \end{split}$$

When f is convex, the norm on the left hand side is redundant, giving the estimate

$$0 \leq f(y) - f(x) - \nabla f(x)^\top (y-x) \leq \frac{\ell}{2} \|y-x\|^2.$$

In fact, we can use ℓ -smoothness to improve upon the estimate in Proposition 1.6.

Lemma 2.9. Let f be convex and ℓ -smooth. Then,

$$f(x) - f(y) \leq \nabla f(x)^\top (x-y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. Set $z = y + (\nabla f(x) - \nabla f(y))/\ell$. Using Proposition 1.6, Lemma 2.8,

$$\begin{split} f(x) - f(y) &= (f(x) - f(z)) + (f(z) - f(y)) \\ &\leq \nabla f(x)^\top (x - z) + \nabla f(y)^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \\ &= \nabla f(x)^\top (x - y) + (\nabla f(y) - \nabla f(x))^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \\ &= \nabla f(x)^\top (x - y) - \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2 + \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2 \\ &= \nabla f(x)^\top (x - y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2. \end{split}$$

Corollary 2.9.1. Let f be convex and ℓ -smooth. Then,

$$(\nabla f(x) - \nabla f(y))^\top (x - y) \geq \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Theorem 2.10. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer. Further let $\{x_t\}_{t \in \mathbb{N}}$ be iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$\left\| x_{t+1} - x^* \right\| \le \|x_t - x^*\|$$

for all $t \in \mathbb{N}$.

Proof. Using $\nabla f(x^*) = 0$ and Corollary 2.9.1,

$$\begin{split} \left\| x_{t+1} - x^* \right\|^2 &= \left\| x_{t+1} - x_t \right\|^2 + 2 \big(x_{t+1} - x_t \big)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &= \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell} \nabla f(x_t)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &\leq \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &= -\frac{1}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &\leq \left\| x_t - x^* \right\|^2. \end{split}$$

Remark. This remains true with (\mathcal{PGD}) as long as $x^* \in \text{int}(\mathcal{K})$, via

$$\left\| x_{t+1} - x^* \right\| = \left\| \Pi_{\mathcal{K}}(y_{t+1}) - x^* \right\| \le \left\| y_{t+1} - x^* \right\|.$$

Theorem 2.11. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer, and $\|x_1 - x^*\| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$f(x_T) - f(x^*) \le \frac{2R^2\ell}{T-1}.$$

Proof. Using Lemma 2.8, note that

$$\begin{split} f(x_{t+1}) - f(x_t) &\leq \nabla f(x_t)^\top \big(x_{t+1} - x_t \big) + \frac{\ell}{2} \big\| x_{t+1} - x_t \big\|^2 \\ &= -\frac{1}{2\ell} \| \nabla f(x_t) \|^2. \end{split}$$

Setting $\delta_t = f(x_t) - f(x^*)$, this reads

$$\delta_{t+1} \le \delta_t - \frac{1}{2\ell} \|\nabla f(x)\|^2.$$

Now,

$$\delta_t \leq \nabla f(x_t)^\top (x_t - x^*) \leq \|\nabla f(x_t)\| \|x_t - x^*\| \leq \|\nabla f(x_t)\| \|x_1 - x^*\|,$$

with the last inequality guaranteed by Theorem 2.10. Setting $w=1/2\ell\|x_1-x^*\|^2$, this is $\|\nabla f(x_t)\|^2/2\ell \geq w\delta_t^2$. Thus, $\delta_{t+1} \leq \delta_t - w\delta_t^2$, which rearranges to

$$\frac{1}{\delta_{t+1}} - \frac{1}{\delta_t} \geq w \frac{\delta_t}{\delta_{t+1}} \geq w.$$

Summing over t gives $1/\delta_T \ge w(T-1)$, which is the desired estimate.

Remark. We have shown that

$$\frac{1}{\ell} \|\nabla f(x_t)\|^2 \leq f(x_t) - f\big(x_{t+1}\big) \leq \frac{1}{2\ell} \|\nabla f(x_t)\|^2.$$