

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF INFORMATION SYSTEMS

Academic Year 2014/2015 - First Year Examination - Semester I - 2015

IS1102 – Computer Systems

TWO (2) HOURS

To be completed by the candidate

Examination Index No:

Important Instructions to candidates:

- 1. The medium of instruction and questions is **English**.
- 2. If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- 3. Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- 4. Write your index number in each and every page of the question paper.
- 5. This paper has 4 questions and 14 pages.
- 6. Answer ALL questions. All questions carry equal marks (25 marks).
- 7. Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are not allowed.
- 8. Calculators are not allowed.

For Examiner's use only						
Question No	Marks					
1						
2						
3						
4						
Total						

(a) What is the decimal number equivalent of the 16-bit floating point number 0 10101 0101010101? Assume that 16-bit floating point representation is with a sign bit, 5-bit exponent and 10-bit mantissa. [6 Marks] Therefore Actual Baponent = 21-15 = 6 +1.0101010101 K2 (b) What is the loss of accuracy (round-off-error) when converting the decimal value +511.875 to 16bit floating point representation with a sign bit, 5-bit exponent and a 10-bit mantissa? [6 Marks] Bacessic, Baponent = 15+8 = 23

c) what is the IEEE standard 32-off floating point representation of the decimal nur	
	[6 Marks]
$+42,625 = +101010 \cdot 101$	45
= +1.010101011 K2	
·····(->-·····	*********
In Eacess 1c, 1c=127	
In Bacess 1c, 1c=127 In Bacess 1c, Baponent = 127+5	= /32
. : Depresentation.	
·	-
0 10000 100 0101010.	
	//
(d) What is the equivalent decimal number to the IEEE standard 32-bit floating point 0 10000100 01010101000000000000000000	representation of
In Eaces 1c, 1c=127	
Actual Exponent = 132-127:	25
Grent = +1.01010101 x 2	
= + 1010101 101 XZ	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
= + 42.625	•••••
*	•••••

2. Consider the following truth table for a digital circuit.

F(A,B,C,D)	D	C	В	Α
1	0	0	0	0
0	1	0	0	0
1	0	1	0	0 `
0	1	1	0	0
1	0	0	1	. 0
0	1	0	1	0
1	0	1	1	0
0	1	1	1	0
1	0	0	0	1
. 0	1	0	0	1
1	0	1	0	1
0	1	1	0	1
1	0	0	1	1
0	1		1	1
0	0	1	1	1
0	1	1	1	1

(b) Write the Boolean expression (Sum of Products) that represents the logic function performed by the above circuit

[3 Marks]

$$F(A,B,C,D) = \widehat{ABCD} + \widehat{ABCD} + \widehat{ABCD} + \widehat{ABCD} + \widehat{ABCD} + \widehat{ABCD} + \widehat{ABCD}$$

(c) Write the Boolean expression (Product of Sums) that represents the logic function performed by the above circuit

represents the logic func					of Sums (POS) expressions that [7 Marks]
	•••••		************		······································
ΑI	3		•••••		
	00	01	1.1	110	
00		ı			
01					
10					
······································				············	J
		1) 		
Sum of me	dects	7 ,	D -	+ 85	+60
Product of	- Sav	~ <u>.</u> =	D).	(A+B+C)

(d) Design the logic circuit for the above SOP expression in (c) using only NAND gates. Clearly indicate the method and steps.

[6 Marks]

(e) Design the logic circuit for the above POS expression in (c) using only NOR gates. Clearly indicate the method and steps.

[6 Marks] POS = D + A + B + C

3. (a) Consider a machine with instruction format of the form **opcode** R M where R is a register address and M is a memory address. Instructions are 16 bits long and one of the instruction formats provides 4 bits for the op-code, 4 bits for the register and other 8 bits for the memory address of the operand. Assume that the word size of this machine is 8 bits (byte addressable).

Some of the op-codes of the above (a) processor is given below:

0001 – L R, A	LOAD the register R with the content of memory cell A
0010 - LI R, I	LOAD the register R with the value I
0011 - ST R, A	STORE the content of the register R to the memory cell whose address is A
0101 - ADD RO, R1, R2	$\underline{\textbf{ADD}}$ the numbers in registers R1 and R2 and place the result in register R0
1001 - XOR RO, R1, R2	XOR the bit patterns in R1 and R2 and place the result in R0
1000 - AND R0, R1, R2	$\underline{\textbf{AND}}$ the bit patterns in R1 and R2 and place the result in R0
1110 - JMP R, A	JUMP to the instruction located in the memory cell A if the bit pattern in R is equal to the one in R0
1111 - HALT	HALT the execution

Write down the machine code instructions sequence to execute the following program statements.

Assume that A and B are variables refer the memory addresses 80, 81 and the initial program counter (PC) as hexadecimal 30.

[25 Marks]

	. 1	• • • • • • • • • • • • • • • • • • • •						
		ADD	P _t ,	ρ, ,	12)	A = 1	4+B	\
	56	Store	P,	80((A) J	,		do
	·	Lond,						Azf
	5A	AND	Rg	ρ,	, Ag			T
		Load;		00				iz ishile
L	→ 5£	SMP	29	54] }	it(20=	$=P_{q}$	
	[60]	HALT		1				
		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • •	
••••							• • • • • • • • • • • • • • • • • • • •	
						· · · · · · · · · · · · · · · · · · ·		
						· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
•••••								
							• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			
	••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • •	
				•••••			• • • • • • • • • • • • •	
	•••••			·				
			• • • • • • • • • • • • • • • • • • • •	•••••				
	•••••							
				••••				
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		

4. (a) A computer has 16 pages of virtual address space, but only 4 page frames. Initially, memory is empty. A program references the virtual pages in the following order: 0, 1, 2, 1, 2, 4, 3, 6, 0, 5, 7, 8, 7, 8, 2, 1, 3, 7, 3, and 4.

For each memory reference, write the virtual page stored in each page frame under the **Least Recently Used (LRU)** and **First-In-First-Out (FIFO)** page replacement policies (clearly show the page frames in memory for each reference).

fr	ames i	n memory fo	r each i	efere	nce).	1	PИ					[10 Mar	·ks]
*	0	ů	1			2	· T		ſ			2	no ₁
	0		0			0			0			0	
			1			1			1			1	
						2_			2_			2	
	4	_	3			Ь			0			5	-
	0		3			3			3	\ \		3	
	1		/			b			6			6	
	2		2			2			0		,	0	
	4		ر	f I		4	-		4		!	5	
	7			8		7	<u> </u>	18.	8			2	- ,-
	7	-		7		(}		う	1		7	``]
	6			₹	\ \		3		8			8	
	0		,	0		(2		0			2	
	5			5		٠	2		5	7		<u> </u>	>
	1	~ ~		3			7		3			۲	 L
	7			3			3		3			3	
	8			B			7		A			7	-
	9-			Э			z		2			4	-
] 1						1_		1			1	
						٠.				•			
• • • •				• •									7

0	l,	2	1	2
6	O	0	0	0
	//	1	1	1
		2	2	2
	•••••			•••••
4	3	Ь	<i>O</i>	5
0	3	3	3	3
/	1.	6	b	6
2	ð	θ	0	0
4	4	4	4	5
—•			•••••	
7	8	7	8	2
7	7	7	7	7
6	8	8	8	8
0	0	0	0	2
5	5	5	5	5
	3	7	3	4
7	3	3	3	3
8	8	7		7
2	ð	2	B	4

(b) Suppose you have 4GB of virtual memory, 32MB of physical memory, and the page size of 16KB (2^{14}) bytes.

(i). How many pages are there in virtual	memory and in physical memor	ry?
--	------------------------------	-----

[5 Marks]

No.	of Pages	an Virtual	Memy =	46B/16KB
	9		~	
			7	2 3090
		•••••••••••••••••••••••••••••••••••••••	•	······································
N/ 0	1 n =	l) , 1/	On kin

	 10		<i>!</i>		ye	ΔL	0, 1000	, , ,			€ 101 £	16	eppe	7			1 1-10	111	0 /
			1		J				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····				J	••••			7	
													•						
• • • •	 	• • • • • •		• • • • • • •				• • • • • • •	•••••	• • • • • • •		• • • •		• • • • •	• • • • • •		++·;	• • • • • •	- 1
															7	2	Ľ	ax 1	m
	 																`	<u> </u>	\checkmark
																	•		

(ii). Assume that the relevant portion of your Page Table is as follows:

Page	Frame #	Valid Bit
0	2	1
1	3	0
4	8	0
8	0	1
11 .	5	1

15	7	1
****		******
17	4	1
******	F1045F3	*******
. 20	10	1
******	*******	*******

Calculate the referenced address in main memory for the following virtual addresses: **0x0002D910** and **0x00053808**.

[10 Marks]

Ox 0002D910	. "
0000 0000 0000 0010 1101 1001 00	
page No offset	\
i page No = 11 > page drame = 5	
Deforend Eddress = 5 x 16 KB + 6, = 5 x 16, 384 + 6,	
= 88,336	
Ox 00053808	
0000 0000 0000 0101 0011 1000 0000	1000
page NO. offset	
i. page NO = 20] page frame = 10	
Deferenced Address = 10 x 16,384 + 14	1344
= 178,184	