

### Lógica

- La lógica es la parte de las matemáticas que se ocupa de las reglas del razonamiento.
- Un enunciado o proposición es una frase declarativa que expresa algo de manera que podamos decir si es verdadero o falso.

| Negación      | no           | $\neg$            |
|---------------|--------------|-------------------|
| Conjunción    | У            | ^                 |
| Disyunción    | 0            | V                 |
| Condicional   | sientonces   | $\rightarrow$     |
| Bicondicional | si y sólo si | $\leftrightarrow$ |

### Lógica – ejercicio / ejemplo

Sean las proposiciones:

expresar en lenguaje simbólico

- p = "Hace frío"
- q = "Llueve"
- No hace frío  $\neg p$

- Llueve o no hace frío

 $q \vee \neg p$ 

 $\neg p \land \neg q$ 

- Hace frío y llueve  $p \wedge q$ 

- No hace frío y no llueve

- Hace frío o llueve  $p \lor q$ 

- No es verdad que no llueve  $\neg(\neg q) = q$ 

### Tablas de verdad

#### negación (¬, not, !)



#### conjunción (∧, and, &)

| p     | q     | $p \land q$ |
|-------|-------|-------------|
| true  | true  | true        |
| true  | false | false       |
| false | true  | false       |
| false | false | false       |

#### disyunción (∨, or, |)

| p     | q     | $p \lor q$ |
|-------|-------|------------|
| true  | true  | true       |
| true  | false | true       |
| false | true  | true       |
| false | false | false      |

#### condicional $(\rightarrow)$

| p     | q     | p 	o q |
|-------|-------|--------|
| true  | true  | true   |
| true  | false | false  |
| false | true  | true   |
| false | false | true   |

#### bicondicional $(\leftrightarrow)$

| p     | q     | $p \leftrightarrow q$ |
|-------|-------|-----------------------|
| true  | true  | true                  |
| true  | false | false                 |
| false | true  | false                 |
| false | false | true                  |

### Equivalencia lógica (≡)

• Dos proposiciones compuestas p y q son lógicamente equivalentes cuando tienen la misma tabla de verdad.

$$p \equiv q$$



# Álgebra de proposiciones

| Idempotentes          | $p \lor p \equiv p$                                                            | $p \wedge p \equiv p$                                                              |
|-----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Asociativas           | $(p \lor q) \lor r = p \lor (q \lor r)$                                        | $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$                               |
| Conmutativas          | $p \lor q \equiv q \lor p$                                                     | $p \wedge q \equiv q \wedge p$                                                     |
| Distributivas         | $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$                        | $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$                        |
| De identidad          | $ \begin{array}{rcl} p \lor F &\equiv p \\ p \lor V &\equiv V \end{array} $    | $ \begin{array}{ccc} p \wedge V &\equiv p \\ p \wedge F &\equiv F \end{array} $    |
| Involutiva o de doble | $\neg (\neg p) \equiv p$                                                       |                                                                                    |
| negación              |                                                                                |                                                                                    |
| Del complementario    | $ \begin{array}{rcl} p \lor \neg p &\equiv V \\ \neg V &\equiv F \end{array} $ | $ \begin{array}{ccc} p \wedge \neg p & \equiv F \\ \neg F & \equiv V \end{array} $ |
| De Morgan             | $\neg (p \lor q) \equiv \neg p \land \neg q$                                   | $\neg (p \land q) \equiv (\neg p) \lor (\neg q)$                                   |

### Razonamientos y reglas de inferencia

Un razonamiento es el proceso consistente en partir de un grupo de proposiciones (llamadas hipótesis o premisas) y obtener como resultado otra proposición (la conclusión).

$$P1, P2, ..., Pn \Rightarrow Q$$

P1, P2, ..., Pn son las premisas y Q la conclusión

Un razonamiento es correcto o válido si se cumple que cuando las premisas P1, P2,...., Pn son verdaderas, también lo es la conclusión Q.

En este caso, decimos que P1, P2,...., Pn implican lógicamente Q.

Un razonamiento no válido se llama falacia.

# Razonamientos y reglas de inferencia (ejemplo)

Jorge tiene frío o tiene fiebre. Si Jorge tiene fiebre va al Médico. Jorge no va al Médico. Luego Jorge tiene frío.

#### Paso 1: formalizar el razonamiento

p = "Jorge tiene frío"q = "Jorge tiene fiebre"r = "Jorge va al médico"

**Premisa 1**: Jorge tiene frío o tiene fiebre:  $p \lor q$ 

**Premisa 2**: Si Jorge tiene fiebre va al Médico:  $q \rightarrow r$ 

**Premisa 3**: Jorge no va al Médico:  $\neg r$ 

**Conclusión**: Jorge tiene frío: p

 $\begin{array}{c}
p \lor q \\
q \to r \\
\neg r \\
\hline
p
\end{array}$ 

# Razonamientos y reglas de inferencia (ejemplo)

Paso 2: Crear la tabla de verdad

| p | q | r | $p \lor q$ | q  ightarrow r | $\neg r$ | p |
|---|---|---|------------|----------------|----------|---|
| V | V | V | V          | V              | F        | V |
| V | V | F | V          | F              | ٧        | V |
| V | F | V | V          | V              | F        | V |
| V | F | F | V          | V              | V        | V |
| F | V | V | V          | V              | F        | F |
| F | V | F | V          | F              | V        | F |
| F | F | V | F          | V              | F        | F |
| F | F | F | F          | V              | V        | F |

$$\begin{array}{c}
p \lor q \\
q \to r \\
\neg r \\
\hline
p
\end{array}$$

#### Paso 3:

Buscar en la tabla las líneas donde todas las premisas sean verdaderas. Si en todas esas líneas la conclusión es verdadera, el razonamiento será **válido**. Si al menos en una de esas líneas la conclusión es falsa, será una **falacia**.

# Razonamientos y reglas de inferencia (ejemplo)

Paso 2: Crear la tabla de verdad

| p | q | r | $p \lor q$ | q  ightarrow r | $\neg r$ | p |
|---|---|---|------------|----------------|----------|---|
| V | V | V | V          | ٧              | F        |   |
| V | V | F | V          | F              |          |   |
| V | F | V | V          | ٧              | F        |   |
| V | F | F | ٧          | V              | V        | V |
| F | V | V | V          | ٧              | F        |   |
| F | V | F | V          | F              |          |   |
| F | F | V | F          |                |          |   |
| F | F | F | F          |                |          |   |

$$\begin{array}{c}
p \lor q \\
q \to r \\
\neg r
\end{array}$$

#### Paso 3:

Buscar en la tabla las líneas donde todas las premisas sean verdaderas. Si en todas esas líneas la conclusión es verdadera, el razonamiento será **válido**. Si al menos en una de esas líneas la conclusión es falsa, será una **falacia**.

- Es una colección bien definida de objetos.
- Estos objetos se denominan elementos del conjunto.
- Para indicar si un elemento x está en un conjunto A se indica

 $x \in A$  x pertenece a A

o  $x \notin A$  x NO pertenece a A

• Para que un conjunto esté bien definido debe ser posible discernir si un elemento arbitrario está o no en él.

- Los conjuntos se pueden determinar por extensión (detallando los elementos de forma explícita) o por comprensión (indicando las propiedades que caracterizan a sus elementos).
- También se pueden determinar gráficamente.

**Explícita** 

$$A = \{1, 2, 3, 4, 5\}$$

**Implícita** 

$$A = \{n \text{ imeros naturales del 1 al 5}\}$$
$$A = \{x \mid x \in \mathbb{N} \land x \leq 5\}$$



- Cardinal de un conjunto: card(A). Número de elementos que posee. Puede ser infinito.
- Conjunto universal: U. Conjunto de todos los elementos que entran en consideración para un determinado problema.

Conjunto vacío

# Inclusión $A = \{1, 2, 3, 4, 5\} \\ B = \{5, 2\}$ $B \subset A \circ B \subseteq A \\ A \supset B \circ A \supseteq B$

B es un subconjunto de A

$$\begin{array}{c}
A = \{1, 2, 3, 4, 5\} \\
B = \{6, 2\}
\end{array}$$

$$\begin{array}{c}
B \not\subset A \circ B \not\subseteq A \\
A \not\supseteq B \circ A \not\supset B$$

$$\forall A: \emptyset \subset A \subset U$$

$$\forall A: A \subset A$$

$$Si \ A \subset B \ y \ B \subset C \implies A \subset C$$

$$A = B \iff A \subset B \ y \ B \subset A$$

### Ejercicio: definir por extensión

$$A = \{x \in N \mid 3 < x \le 12\}$$

$$A = \{4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

$$D = \{x \mid x > 0 \land 4 + x = 3\}$$

$$D = \emptyset$$

$$B = \{x \in N \mid x \text{ es impar } \land x < 9\}$$

$$E = \{2x - 1 \mid x \in N\}$$

$$B = \{1, 3, 5, 7\}$$

$$E = \{1, 3, 5, 7, ...\}$$

$$C = \{x \in N / x^2 - 3x + 1 = 0\}$$
  
 $C = \{\emptyset\}$ 

### Ejercicio: definir por compresión

$$A = \{4, 9, 16, 25, 36\}$$

$$A = \{x^2/x \in N \land 2 \le x \le 6\}$$

$$C = \{1, 2, 4, 8, 16, 32\}$$

$$C = \{2^x \mid x \in N_0 \land x \leq 5\}$$

$$B = \{-3, -2, -1, 0, 1, 2, 3\}$$

$$B = \{x \in \mathbb{Z} / -3 \le x \le 3\}$$

$$D = \{2, 4, 6, 8\}$$

$$D = \{2x \mid x \in N \land x \leq 4\}$$

### Operaciones de Conjuntos

**Unión:**  $A \cup B = \{x \mid x \in A \lor x \in B\}$ 



**Diferencia:**  $A - B = \{x / x \in A \land x \notin B\}$ 



**Intersección:**  $A \cap B = \{x / x \in A \land x \in B\}$ 



**Complemento:**  $A^C = \{x \mid x \notin A\}$ 



### Operaciones de Conjuntos. ejercicio

#### Dados U, A, B, C Y D



1- 
$$A \cup B$$
,  $A \cup C$ ,  $B \cup D$ ,  $C \cup D$ 

**2-** 
$$A \cap B$$
,  $C \cap D$ ,  $B \cap C$ 

3- 
$$A^C$$
,  $C^C$ 

4- 
$$A - B$$
,  $C - D$ 

### Bases numéricas

Base decimal

12

(0,1,2,3,4,5,6,7,8,9)

• Base binaria

1100

(0,1)

Base Hexadecimal

C

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Base Octal

14

(0,1,2,3,4,5,6,7)

### Sistemas numéricos Conversión decimal a binario



### Sistemas numéricos Conversión decimal a hexadecimal

$$139_{10} = 10001011_2 = 8B_{16}$$

### Sistemas numéricos Conversión a decimal

$$139_{10} = 10001011_2 = 8B_{16}$$

8 B  

$$16^{1} \times 8 = 128$$
  $16^{0} \times B = 11$   
 $128 + 11 = 139$ 

### Por qué Hexa y Octal

• Binario 0000 1111

• Hexa 0 F

• Binario 000 111

• Octal 0 7

• Binario 1010 0011

• Hexa A 3  $10100011_2 = A3_{16} = 163_{10}$ 

• Binario 101 110

• Octal 5 6

 $101110_2 = 56_8 = 46_{10}$ 

### Por qué Hexa y Octal

#### Con 4 dígitos binarios

| <ul><li>Binario 0000</li></ul> | 1111 |
|--------------------------------|------|
|--------------------------------|------|

- Decimal 0 15
- Hexa 0 F
- Binario 1010 0011
- Hexa A 3

$$10100011_2 = A3_{16} = 163_{10}$$

#### Con 3 dígitos binarios

| <ul><li>Binario</li></ul>   | 000 | 111 |
|-----------------------------|-----|-----|
| <ul> <li>Decimal</li> </ul> | 0   | 7   |

- Octal 0 7
- Binario 101 110
- Octal 5 6

$$101110_2 = 56_8 = 46_{10}$$

## Álgebra de variables lógicas

 En 1938, Claude E. Shanon desarrolló la aplicación del cálculo lógico de enunciados a problemas de construcción y análisis de redes eléctricas.

 A partir de entonces, el Álgebra de Boole se ha utilizado en el diseño de circuitos lógicos de las computadoras, pues permite simplificar las conexiones físicas reduciendo el hardware y consiguientemente el espacio necesario para alojarlo.

### Álgebra de variables lógicas

#### Circuito eléctrico



## Álgebra de variables lógicas

# Interruptor abierto



• Es un dispositivo de 2 estados.

Interruptor: cerrado/abierto

Cable: pasa corriente/no pasa corriente

Proposiciones: verdadero/falso

# Interruptor cerrado





abierto, no, falso



0

cerrado, si, verdadero



1

### Variables lógicas - operaciones

#### Interruptores en serie





**x** . **y** 

#### producto

| Х | У | x.y |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

suma

- x, y son variables lógicas o variables booleanas.
- Equivalencia entre

$$. con \land y + con \lor$$

• Complemento:

Si 
$$x = 0$$
  $\overline{x} = 1$ 

Si 
$$x = 1$$
  $\overline{x} = 0$ 

## Interruptores en paralelo





1 + 1 = 1

### Funciones lógicas

• Una función lógica es una expresión en la que aparecen variables y operaciones lógicas.

• Ejemplos:

a) 
$$f(x, y, z) = x\overline{z} + y$$

b) g (x, y) = x y + 
$$\overline{x}$$
 (x + y)

Si para la función f del punto a), x = 0, y = 1 y z = 0 f  $(x, y, z) = x \overline{z} + y$  valdrá:  $0 \cdot 1 + 1 = 0 + 1 = 1$ 

### Tabla de una función lógica

a) 
$$f(x, y, z) = x\overline{z} + y$$

| X | У | Z | Z | x . z | $x.\overline{z} + y$ |
|---|---|---|---|-------|----------------------|
| 0 | 0 | 0 | 1 | 0     | 0                    |
| 0 | 0 | 1 | 0 | 0     | 0                    |
| 0 | 1 | 0 | 1 | 0     | 1                    |
| 0 | 1 | 1 | 0 | 0     | 1                    |
| 1 | 0 | 0 | 1 | 1     | 1                    |
| 1 | 0 | 1 | 0 | 0     | 0                    |
| 1 | 1 | 0 | 1 | 1     | 1                    |
| 1 | 1 | 1 | 0 | 0     | 1                    |

## Álgebra de Boole binaria

| Idempotentes                         | x + x = x                                                              | $X \cdot X = X$                                      |
|--------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Asociativas                          | (x+y)+z=x+(y+z)                                                        | $(x \cdot y) \cdot z = x \cdot (y \cdot z)$          |
| Conmutativas                         | x + y = y + x                                                          | $x \cdot y = y \cdot x$                              |
| Distributivas                        | $x + (y \cdot z) = (x + y) \cdot (x + z)$                              | $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$        |
| De identidad                         | $   \begin{aligned}     x + 0 &= x \\     x + 1 &= 1   \end{aligned} $ | $x \cdot 1 = x$ $x \cdot 0 = 0$                      |
| Involutiva o de doble complementario | =<br>X =                                                               | X                                                    |
| Del complementario                   | $x + \overline{x} = 1$                                                 | $x \cdot \overline{x} = 0$                           |
| De Morgan                            | $\overline{x+y} = \overline{x} \cdot \overline{y}$                     | $\overline{x \cdot y} = \overline{x} + \overline{y}$ |

### Puertas lógicas

- Son dispositivos que efectúan ciertas tareas durante el proceso de datos.
- Por ejemplos, dispositivos electrónicos con una función de tipo booleana

Puerta **NOT** (inversión)



Puerta AND (conjunción)



Puerta OR (disyunción)



### Puertas lógicas - ejemplo

Construir un circuito para resolver

$$f(x, y, z) = x\overline{z} + y$$



### Operaciones lógicas o booleanas

| NOMRE                          | AND - Y         | OR - O          | XOR<br>O-exclusiva                                | NOT<br>Inversor         | NAND                                | NOR                        |
|--------------------------------|-----------------|-----------------|---------------------------------------------------|-------------------------|-------------------------------------|----------------------------|
| SÍMBOLO                        | az              | az              | a b                                               | <u>a</u>                | az                                  | az                         |
| SÍMBOLO                        | a _ & _ & _ z   | a — ≥1<br>b — z | a—=1<br>b— z                                      | a1z                     | a _ & _ & _ z                       | a — ≥1<br>b — □ □ □ z      |
| TABLA DE<br>VERDAD             | a   b   z       | a   b   z       | a   b   z                                         | a   z     0   1   1   0 | a   b   z                           | a   b   z                  |
| EQUIVALENTE<br>EN<br>CONTACTOS | a b Z           | a z             | a b                                               | a z                     | $\frac{\overline{a}}{\overline{b}}$ | <u>a</u> <u>b</u> <u>z</u> |
| AXIOMA                         | $z = a \cdot b$ | z = a + b       | $z = \overline{a} \cdot b + a \cdot \overline{b}$ | $z = \overline{a}$      | $z = \overline{a \cdot b}$          | $z = \overline{a + b}$     |

### Simplificación de expresiones booleanas

$$f(x,y) = \overline{x} y + x y$$



| Х | У   | X | <del>x</del> .y | х.у | $\overline{x} \cdot y + x \cdot y$ |
|---|-----|---|-----------------|-----|------------------------------------|
| 0 | 0   | 1 | 0               | 0   | 0                                  |
| 0 | 1   | 1 | 1               | 0   | 1                                  |
| 1 | 0   | 0 | 0               | 0   | 0                                  |
| 1 | 1 / | 0 | 0               | 1   | 1                                  |
|   |     |   |                 |     |                                    |

$$f(x,y) = \overline{x} y + x y = y$$

### Mapas de Karnaugh

• Es un método gráfico para simplificar expresiones booleanas.

$$f(x,y) = \overline{x} y + x y$$

| х | У | X | <del>x</del> .y | х.у | $\overline{x}$ .y+x.y |
|---|---|---|-----------------|-----|-----------------------|
| 0 | 0 | 1 | 0               | 0   | 0                     |
| 0 | 1 | 1 | 1               | 0   | 1                     |
| 1 | 0 | 0 | 0               | 0   | 0                     |
| 1 | 1 | 0 | 0               | 1   | 1                     |

#### Mapa de Karnaugh para 2 variables



$$f(x,y)=y$$

### Mapas de Karnaugh

#### Mapa de Karnaugh para 3 variables

$$f(x, y, z) = x y z + x y \overline{z} + \overline{x} y \overline{z} + \overline{x} \overline{y} \overline{z} + \overline{x} \overline{y} z$$

| х | 11 | 10 | 00 | 01 |
|---|----|----|----|----|
| 1 | 1  | 1  |    |    |
| 0 |    | 1  | 1  | 1  |

$$f(x, y, z) = x y + y \overline{z} + \overline{x} \overline{y}$$



$$f(x, y, z) = x y + \overline{x} \overline{z} + \overline{x} \overline{y}$$

### Mapas de Karnaugh

#### Mapa de Karnaugh para 4 variables

$$f(w, x, y, z) = w \overline{x} y z + w x \overline{y} \overline{z} + \overline{w} \overline{x} y \overline{z} + \overline{w} \overline{x} y z + w x \overline{y} z + w \overline{x} y \overline{z} + \overline{w} x \overline{y} \overline{z}$$

| yz<br>wx | 11 | 10 | 00 | 01  |
|----------|----|----|----|-----|
| 11       |    | 1  | 1  | (1) |
| 10       | 1  | 1  |    |     |
| 00       | 1  | 1  |    |     |
| 01       |    |    | 1  |     |

$$f(w, x, y, z) = \overline{x} y + w x \overline{y} + x \overline{y} \overline{z}$$

1. Simplificar por el método de Karnaugh la siguiente expresión:

$$S = \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d$$

2. Diseñar un circuito electrónico que cumpla la siguiente tabla de verdad para la función f(a,b,c) con el menor número de puertas

lógicas.

| а | b | С | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

3. Un motor eléctrico puede girar en ambos sentidos por medio de dos salidas (contactores) "D", giro derecha e "I", giro izquierda. Estos contactores son comandados por 3 interruptores, 2 de giro: "d" (derecha), "i" (izquierda) y uno de selección: "L" bajo las siguientes condiciones:

Si sólo se activa uno de los dos de giro, el motor gira en el sentido correspondiente.

Si se activa los dos de giro simultáneamente, el sentido de giro depende del estado del de selección:

Si "L" está activado, gira a la derecha.

Si "L" está desactivado, gira a la izquierda.

#### Establecer:

- a) La tabla de verdad.
- b) Las funciones lógicas D e I y simplificarlas.
- c) Diseñar el circuito

4. Un motor es controlado por tres interruptores A, B y C.

Diseñe su circuito de control bajo las siguientes condiciones:

- Si se activan los tres interruptores, el motor se activa.
- Si se activan dos cualesquiera, el motor se activa, pero se enciende una lámpara adicional de emergencia.
- Si sólo se activa uno, el motor no se activa, pero se enciende la lámpara de emergencia.
- Si no se activa ningún interruptor, ni el motor ni la lámpara se activan.

5. Obtener la tabla de verdad que se corresponde con el circuito siguiente; y las ecuaciones de cada una de las funciones S0, S1, S2 y S3.



6. Diseñe un circuito que realice la suma aritmética de dos números binarios, uno de un bit y otro de dos bits.