Homework 8

Table of Contents

Problem 5.1: Frequency estimation using Pisarenko's method	.1
Problem 5.2: Pisarenko	
1) Calculate the autocorrelation function	
2) Choose appropriate values for the amplitudes and frequencies and for the noise power	. 2
3) Calculate the eigenvalues of the autocorrelation matrix as a function of its size and compare with your	
expectation	2
4) Use the Pisarenko method to calculate the spectrum and compare with the expected results	. 2
Problem 5.3: Frequency resolution of the Pisarenko method	2
1) Create two realisations, use the Pisarenko method to compute the spectrum and comment on the stability	
of the method	. 3
2) Can shifts in frequency be measured?	. 3
3) How small a frequency shift can you measure with a sequence length of N=128?	
Problem 5.4: Pisarenko and coloured noise	
1) Create a MATLAB model of a sinusoidal signal in white, slightly coloured and very coloured noise	.4
2) Compare the eigenvalues of the autocorrelation matrix for the three different scenarios	4
3) Calculate the Pisarenko spectra and discuss whether Pisarenko is useful when the noise is coloured	. 4
Problem 5.5: Pisarenko, wrong choise of eigenvector	. 4
1) How does the use of a wrong eigenvalue influence the solution?	. 4
Exam 2012, Problem 3: PSD Estimation	4
1) Estimate PSD assuming sinusoidal white noise	5
2) Estimate PSD assuming MA(2) process	. 5

Problem 5.1: Frequency estimation using Pisarenko's method

Find the frequency and amplitude of a single real sinusoidal signal in white noise, $y(n) = A\cos(2\pi f n + \phi) + w(n)$ when the first few values of the autocorrelation function are given by

$$r_y(l) = \begin{cases} 3, & l = 0 \\ 0, & l = \pm 1 \\ -2, & l = \pm 2 \end{cases}$$

Problem 5.2: Pisarenko

Let a signal be given by

$$x(n) = A_1 \sin(\omega_1 n + \phi_1) + A_2 \sin(\omega_2 n + \phi_2) + w(n)$$

Where the phases ϕ_1 and ϕ_2 are uncorrelated and uniformly distributed from 0 to 2π , w(n) is zero mean gaussian white noise.

- 1) Calculate the autocorrelation function
- 2) Choose appropriate values for the amplitudes and frequencies and for the noise power
- 3) Calculate the eigenvalues of the autocorrelation matrix as a function of its size and compare with your expectation
- 4) Use the Pisarenko method to calculate the spectrum and compare with the expected results

Problem 5.3: Frequency resolution of the Pisarenko method

In this problem the goal is to investigate the frequency resolution of the Pisarenko method. We will use your two-sinusoids-in-white-noise model from the previous problem:

Let a signal be given by

$$x(n) = A_1 \sin(\omega_1 n + \phi_1) + A_2 \sin(\omega_2 n + \phi_2) + w(n)$$

Where the phases ϕ_1 and ϕ_2 are uncorrelated and uniformly distributed from 0 to 2π , w(n) is zero mean gaussian white noise.

1) Create two realisations, use the Pisarenko method to compute the spectrum and comment on the stability of the method
a) Create a number of short realizations, i.e. N=64 or N=128 with different initial phases.
b) Calculate the autocorrelation matrices of the realizations.
c) Comment on the stability of the Pisarenko method
2) Can shifts in frequency be measured? Create a number of short realizations where one of the frequencies is shifted 1% up or down. Can this shift in frequency be measured?
3) How small a frequency shift can you measure with a sequence length of <i>N</i> =128?
Problem 5.4: Pisarenko and coloured noise
In the derivation of the harmonic methods it was assumed that the signal consisted of a sinusoids or complex exponentials in white noise. In real life, the assumption of white noise is likely to be wrong in a lot of situations.

- 1) Create a MATLAB model of a sinusoidal signal in white, slightly coloured and very coloured noise.
- 2) Compare the eigenvalues of the autocorrelation matrix for the three different scenarios.
- 3) Calculate the Pisarenko spectra and discuss whether Pisarenko is useful when the noise is coloured.

Problem 5.5: Pisarenko, wrong choise of eigenvector

In example 14.5.1 from the note the autocorrelation matrix for a process consisting of a single sinusoid in additive white noise is given as

$$m{R}_y = \left[egin{array}{ccc} 3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{array}
ight]$$

The example proceeds to $\oint f_1 = \frac{1}{8}$

1) How does the use of a wrong eigenvalue influence the solution?

Repeat the example, but use the two other eigenvalues as starting points. How does the use of a wrong eigenvalue in vence the solution?

Exam 2012, Problem 3: PSD Estimation

For a given random process $\{x(n)\}$ the autocorrelation has been estimated and is given by

$$\begin{array}{c|c}
|m| & r_x(m) \\
\hline
0 & 4 \\
1 & 2 \\
2 & -1
\end{array}$$

1) Estimate PSD assuming sinusoidal white noise

Estimate the power density spectrum under the assumption that $\{x(n)\}$ consist of a single sinusoidal signal in additive white noise.

2) Estimate PSD assuming MA(2) process

Estimate the power density spectrum under the assumption that $\{x(n)\}$ can be described as a MA(2) process.