Jason M.T. Roos

FMAC 2018

Motivation

Why we're talking about Stan today

Why we're talking about Stan today

Why we're talking about Stan today

- Highly efficient sampling from complex Bayesian models that Gibbs and Metropolis-Hastings might fail at
- ▶ Interfaces to R, Python, Matlab, etc.
- Coding errors limited to the model (not sampling algorithm)
- Diagnostic tools to evaluate if your sampler works
- Might require you to learn a new programming language (not necessarily)

00000

Part 1: Introduction to Hamiltonian Monte Carlo and Stan

- Sampling from complex Bayesian models using standard methods is inefficient and error-prone
- ► Hamiltonian Monte Carlo (HMC) offers huge improvements
- Intuition for how HMC works
- Implementing an HMC sampler in Stan

Part 2: Alina Ferecatu on hierarchical logit and models of bounded rationality

Part 3: Hernan Bruno on multivariate Tobit and two-stage "hurdle" models

Setup

00000

- Goal: Sample from some distribution (the target)
 - ▶ Typically a Bayesian posterior distribution, $\pi(\theta|y,x)$
 - But generally any distribution $\pi(\theta)$
- Requirements:
 - ▶ All elements $\theta_i \in \theta$ (parameters) are continuous
 - Discrete parameters cannot be sampled
 - Usually they can be integrated out before sampling
 - Target distribution can be evaluated at any permitted value of \(\theta \)
 - With or without normalizing constant

- Metropolis-Hastings (MH) or Gibbs sampling
- Typical problems:

0000

- High parameter correlation kills efficiency
- Finite chains may dramatically over- and under-sample certain regions, with biased inferences
 - Convergence guaranteed asymptotically
- Many alternatives alleviate these problems
 - One discussed today: Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo

Hamiltonian mechanics

- Idealized physical model of random particle motion
- A particle's potential energy is $-\log \pi(\theta)$
 - Start thinking of θ as the parameter vector and $\pi(\theta)$ its density
- ▶ Particle has mass M, momentum p, and position θ
 - Start thinking of p as the random step in standard random-walk Metropolis, and M as its step size
- ► Total energy of the physical system is constant

 Hamilton's equations describe the particle's motion in continuous time

Change in position:
$$\frac{d\theta}{dt} = M^{-1}p$$

Change in momentum:
$$\frac{dp}{dt} = \nabla_{\theta} \log \left[\pi \left(\theta\right)\right]$$

- Motion is like "a frictionless puck that slides over a surface of varying height" (Neal 2011, p.2)
- ▶ I prefer: "a frictionless skateboarder in an empty swimming pool"

one_particle.mp4

- ► Take a particle and give it a random shove (momentum *p*)
 - Let it move for a while and then stop it
 - ightharpoonup Record its position (value of the parameter vector θ)
- Give it another random shove
 - Let it more for a while and then stop it
 - Record its position again
- Repeat

hmct1.mp4...

- ► Take a particle and give it a random shove (momentum *p*)
 - Let it move for a while and then stop it
 - ightharpoonup Record its position (value of the parameter vector θ)
- Give it another random shove
 - Let it more for a while and then stop it
 - Record its position again
- Repeat

hmct2.mp4...

- ► Take a particle and give it a random shove (momentum *p*)
 - Let it move for a while and then stop it
 - Record its position (value of the parameter vector θ)
- Give it another random shove
 - Let it more for a while and then stop it
 - Record its position again
- Repeat

hmct3.mp4...

hmct4.mp4...

Idealized version of HMC is just that...an ideal

- ► It would generate exact samples from target distribution
- However:
 - ► Analytical solutions to this continuous time model aren't available
 - Numerical approximation is necessary
- Solution:
 - Discretize the model by dividing time into discrete steps
 - Simulate the particle's motion in discrete time

ightharpoonup Discretize time into small steps of length ϵ , leading to sampling trajectories

$$\theta^{(t)} \to \theta^{(t+\epsilon)} \to \theta^{(t+2\epsilon)} \to \theta^{(t+3\epsilon)} \to \theta^{(t+4\epsilon)} \to \cdots \to \theta^{(t+1)}$$

- ▶ Monte Carlo samples are t and t + 1
- $t + \epsilon$, $t + 2\epsilon$, etc. are intermediate "leapfrog" steps
- ▶ No longer a trajectory in $\pi(\theta)$, but close
 - Must correct for discrepancy between continuous model and discrete approximation
 - Occasionally reject samples (as in MH) to correct for discrepancy

ani.mp4

Costs and benefits of standard HMC

Benefits:

- Rarely rejects proposals, lower autocorrelation
- Almost always more efficient than Gibbs or MH

Costs:

- Need to compute $\nabla_{\theta} \log \pi(\theta)$, the gradient (first derivative) of the log of the target density, with respect to the parameters θ , for all L intermediate steps
- Calculus is hard
 - However: Automatic differentiation will save us

Detour: What is automatic differentiation?

- While computing the value of a function, obtain exact values of derivatives of that function
- ▶ Not magic: Exploit the chain rule from calculus:

$$(f \circ g)' = (f' \circ g)g' \qquad \dots \text{or...}$$

$$\frac{\partial}{\partial x} f(g(x)) = f'(g(x))g'(x)$$

Example: mean μ of normal distribution:

$$-\frac{1}{2}(y-\mu)^2 = \mu \rightarrow y-(\cdot) \rightarrow (\cdot)^2 \rightarrow -\frac{1}{2}(\cdot)$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\frac{\partial}{\partial \mu} = -1 \times 2(y-\mu) \times -\frac{1}{2}$$

hmc.rw.mp4

Stan

Stan for Hamiltonian Monte Carlo

- ► In its simplest form, Stan implements an HMC sampler
 - You specify the target distribution $\pi(\theta)$ in a way Stan can understand
 - Stan generates and compiles C++ code to evaluate $\pi(\theta)$ and $\nabla_{\theta} \log \pi(\theta)$
 - Stan adapts the HMC step size during a burn-in phase
- ► HMC samplers are (notoriously?) difficult to tune
 - ► The the total length of the path followed by the particle (integration length) affects sampling efficiency

An inefficient HMC sampler

badL.mp4

Stan's NUTS sampler

- Stan also implements the No U-Turn Sampler
- Stops the particle when the sampler detects it has started making a U-Turn
- ightharpoonup Only tuning parameter needed is ϵ (the step size) which Stan tunes during burn-in

Stopping before a U-turn

Basics of a Stan model

```
parameters {
    real theta;
}
model {
    theta ~ normal(0, 1);
}
sm <- stan_model(model_code = ...)
fit <- sampling(sm)</pre>
```

chain

Output from a basic Stan model

stan_trace(fit)

Bayesian linear regression example

- Data y and X
 - \triangleright *n* observations in y and X
 - $\triangleright p$ columns in X
- Likelihood: $y|X \sim N(\alpha + X\beta, \sigma^2)$
- Priors:
 - \bullet $\alpha, \beta \sim N(0,1)$
 - \bullet $\sigma \sim Expo(1)$

0000000000000

Stan model for linear regression

```
data {
  int<lower = 0> n:
  int<lower = 0> p;
  vector[n] y;
  matrix[n, p] X;
parameters {
  real alpha;
  vector[p] beta;
  real<lower = 0> sigma;
model {
  alpha \sim normal(0, 1);
  beta \sim normal(0, 1);
  sigma \sim exponential(1);
  v \sim normal(alpha + X * beta, sigma);
```

Compiling and sampling from R

Trace plots

stan_trace(fit)

Sample autocorrelation

stan_ac(fit)

Posterior means and intervals

stan_plot(fit)

Parts of a Stan model

```
functions { ... }
data { ... }
transformed data { ... }
parameters { ... }
transformed parameters { ... }
model { ... }
generated quantities { ... }
```

Stan Inside™

What if I don't want to write my own Stan code?

- rstanarm uses Stan to estimate complex hierarchical and non-gaussian models
- Created by Stan team, integrates nicely with bayesplot
 - Another alternative is brms, but rstanarm seems better so far

summary(fit)

Model Info:

function: stan_glm

family: gaussian [identity]

formula: $y \sim 1 + X1 + X2 + X3 + X4$

algorithm: sampling

observations: 100
predictors: 5

Estimates:

	mean	sd	2.5%	25%	50%	75%	97.5%
(Intercept)	1.0	0.1	0.8	0.9	1.0	1.1	1.2
X1	-0.7	0.1	-0.9	-0.8	-0.7	-0.6	-0.4
X2	0.2	0.1	0.0	0.2	0.2	0.3	0.4
X3	1.5	0.1	1.3	1.4	1.5	1.6	1.7
X4	-1.1	0.1	-1.3	-1.2	-1.1	-1.1	-0.9
sigma	1.1	0.1	1.0	1.1	1.1	1.2	1.3
mean_PPD	1.1	0.2	0.8	1.0	1.1	1.2	1.4
log-posterior	-161.3	1.8	-165.8	-162.2	-161.0	-160.0	-158.9

Diagnostics:

(Intercept) 0.0 1.0 4000 X1 0.0 1.0 4000 X2 0.0 1.0 4000 ХЗ 0.0 1.0 4000 X4 0.0 1.0 4000 1.0 sigma 0.0 4000 mean_PPD 0.0 1.0 4000 log-posterior 0.0 1.0 1724

mcse Rhat n eff

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

fit %>% as.array() %>% bayesplot::mcmc_dens_overlay()

Posterior predictive checks

pp_check(fit)


```
loo(fit)
```

Computed from 4000 by 100 log-likelihood matrix

```
Estimate SE elpd_loo -157.0 5.4 p_loo 5.5 0.7 looic 314.1 10.9
```

Monte Carlo SE of elpd_loo is 0.0.

```
All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.
```

Conclusion

Why Stan is so important

- Coding errors confined to model specification
- ▶ If Stan fails, more likely due to a problem with your model than Stan
 - Numerically ill-conditioned
 - Non-identified
 - Improper posterior
- Nothing privileged about conjugacy
 - Choose priors based on what makes sense for the model
- Stan best practices and defaults should be MCMC best practices and defaults
 - Sampling diagnostics based on output from HMC
 - $ightharpoonup \hat{R}$ for assessing convergence
 - ► Model comparison via the loo package

Part 1: Introduction to Hamiltonian Monte Carlo and Stan

- Sampling from complex Bayesian models using standard methods is inefficient and error-prone
- ► Hamiltonian Monte Carlo offers huge improvements
- Intuition for how HMC works
- Implementing an HMC sampler in Stan

Part 2: Alina Ferecatu on hierarchical logit and models of bounded rationality

Part 3: Hernan Bruno on multivariate Tobit and two-stage "hurdle" models