Factors Affecting Quality of a CO-OP placement in Engineering TMU

IND605 - Section 1 - Group 5

Experimental Design & Quality Assurance

Group members:
Yasaman Zahedimoghaddam,
Mark Ziannis, Wasif Syed,
Rakan Shukri, Youssouf Koulamallah

Outlines

-01

Topic Overview

02

Quality characteristics & Factors 03

Cause & Effect Analysis

04

Normality Test

05

Control Charts & Analysis

06

Factorial Design

-07

Mean Affects & PLots

-08

Design Of Experiment and ANOVA **09**

Conclusión

10

REFERENCE LIST

O1 Topic Overview

 Key focus of the project is analyzing the key factors that affect the quality of co-op placements for engineering students, specifically in INDUSTRIAL, MECHANICAL and COMPUTER Engineering.

2. Co-op Program bridges the gap between theoretical education, and the practical real world jobs. the quality of co-op can affect the students career significantly, either launching their careers towards success, or discouraging them and their initial ambitions

3. Employing (DOE) and Control Chart analysis to identify which factor, them being the students CGPA, and engineering discipline is most impactful.

Project Statement

To provide actionable insights for students and TMU's co-op office in enhancing co-op experiences and outcomes.

QualityCharacteristic

Number of Students who Returned

Discrete Data

Factors

Cause and Effect Diagram

- project was initiated based on the creation of this cause and effect diagram.
- the diagram was made in order to define the factors in order to achieve a high quality co-op placement.

O4 CONTROL CHART ANALYSIS

Control Chart Used to:

- monitor trends
- identify Variation

The Use Of **Control Chart Analysis** To Monitor Trends, And Identify Variation

9 initial configurations of control charts were created

Factor 1: Engineering discipline 3 levels, Industrial,

Mechanical and **Computer**

Factor 2: <u>CGPA</u> is also split into 3 levels being **Low**,

Medium and **High**

 It is important to note that the configurations created will be applied twice, once for each quality characteristic. which would mean 18 control charts will be initially analyzed.

Configuration	Engineering Discipline	CGPA Level
Config 1	Indy	Low
Config 2	Indy	Med
Config 3	Indy	High
Config 4	Mech	Low
Config 5	Mech	Med
Config 6	Mech	High
Config 7	Comp	Low
Config 8	Comp	Med
Config 9	Comp	High

Control Charts Analysis, The out of control configurations

- I-MR control charts was conducted, for the Salary/Year of each student, as it is a continuous data with a sample size of 1.
- A C-chart was used in order to analyze the number of students that returned after graduation, as the sample size remained constant.

 Out of the 18 control Charts were the following configurations (2,6,8) were out of control.

Initial Charts for Configuration 2

Revised Control Charts Configuration 2

Initial I-MR Control Charts For Configuration 6

Revised I-MR Control Charts For Configuration 6

Initial I-MR Control Charts For Configuration 8

Revised I-MR Control Charts For Configuration 8

05

Normality Test

Ensuring the data can be effectively employed for the Statistical techniques

Histogram

Controlled

Probability Plot

QC #1 Salary/Year

QC #2 Number of students who returned

General Design

The Goals Of Factorial Design

Understanding and assessing the individual factors impact

Explore how different factors work Together

Identify the best combinations to improve overall co-op quality

Obtain valuable insights in order to guide students, and co-op office in enhancing the outcome of placements

The Factorial Design analysis QC #1

The Factorial Design analysis QC #2

07

Main Effect & Interaction Plot

To understand the individual effects of each level on the response

Interaction & Main Effect Plots

Salary/Year Quality Characteristic #1

%

Interaction & Main Effect Plots

Number of Students Who Returned Quality Characteristic #2

08

Design Of Experiment & ANOVA

Procedure For The **ANOVA TEST**

Step 1

Identify the levels, and factors

Step 2

Conduct calculations on minitab for the dataset

Step 3

Perform ANOVA Test

Step 4

Interpret results, draw up conclusions

The ANOVA Test Results Determined The Statistical Significance of factor or combination

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	8	740190185	92523773	3.80	0.001
Linear	4	593185370	148296343	6.09	0.000
Engineering Discipline	2	379102407	189551204	7.79	0.001
CGPA Level	2	214082963	107041481	4.40	0.015
2-Way Interactions	4	147004815	36751204	1.51	0.205
Engineering Discipline*CGPA Level	4	147004815	36751204	1.51	0.205
Error	99	2408764167	24330951		
Total	107	3148954352			

A		C 1 1		
/\na	VICIC	Ot V	aria	nco
Ana	1 1 2 1 2	UI V	ana	IICE
137.7	1			100

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	8	776.4	97.05	0.94	0.491
Linear	4	528.8	132.20	1.27	0.285
Engineering Discipline	2	371.2	185.59	1.79	0.173
CGPA Level	2	157.6	78.81	0.76	0.471
2-Way Interactions	4	247.6	61.90	0.60	0.666
Engineering Discipline*CGPA Level	4	247.6	61.90	0.60	0.666
Error	99	10271.2	103.75		
Total	107	11047.7			

Anova Table for Salary/Yr QC#1

Anova Table for Student Returning QC#2

 $F_{0.05,2,99} = 3.09 \quad F_{0.05,4,99} = 2.46$

F-Value, Independent Factors F-Value, For Interaction Of Factors

Let's talk about facts

Before analyzing the ANOVA tables the critical F-value must be calculated, this will be used to determine if the factors or their combination are statistically significant. Using Minitab the calculated critical F-values are as follow.

ANOVA results Quality Characteristic #1

CGPA Level Factor Result

Engineering Discipline Factor Result

Interaction Of Factors

F-value: 4.40 (greater than critical value 3.09).

P-value: < 0.05.

Result: Significant effect on group mean, but smaller than the impact of discipline.

F-value: 7.79 (greater than critical value 3.09).

P-value: < 0.05.

Result: Significant impact on the group mean, with the largest effect among factors.

F-value: 1.51 (less than critical value 2.46).

P-value: 0.205 (greater than **0.05**).

Result: Interaction of factors does not significantly impact the group means

ANOVA results Quality Characteristic #2

CGPA Level Factor Result

Engineering Discipline Factor Result

Interaction Of Factors

F-value: <u>0.76 (</u>Less than critical value <u>3.09</u>).

P-value: > 0.05.

Result: No Significant effect on group response mean.

F-value: 1.79 (greater than critical value 3.09).

P-value: < 0.05.

Result: No Significant effect on group response mean.

F-value: 0.60 (less than critical value 2.46).

P-value: 0.205 (greater than **0.05**).

Result: Interaction of factors does not significantly impact the group mean

ANOVA Pareto Charts

Pareto Chart of the Standardized Effects

(response is Salary/Year, $\alpha = 0.05$)

Pareto Chart of the Standardized Effects

(response is Number of Students Who Returned, $\alpha = 0.05$)

Pareto for Standardized Effects Salary/Yr

Pareto for Standardized Number of students who returned

Factor	Level	Mean Effect	
	Industrial Engineering	495.37	
Engineering Discipline	Mechanical Engineering	-2501.85	
	Computer Engineering	2006.48	
	Low	-1962.96	
CGPA Level	Med	1270.37	
	High	692.59	

Mean Effect Data Summary

Computer and Industrial Engineering lead to higher salaries, while Mechanical Engineering offers lower salaries.

Inference that success in co-ops depends more on personal and professional growth outside academics.

Students with medium GPA (2.56-3.44) earned the highest salaries

Jila, A. (2024). TMU FEAS Co-op Office. Student Co-op Data. Retrieved September 27, 2024,.

Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Inc.

Graham, H. (2005). *University of Sussex*. F-Ratio Table. Retrieved from:

https://users.sussex.ac.uk/~grahamh/RM1web/F-ratio%20table%202005.pdf

National Institute of Standards and Technology. (n.d.). *US Department of Commerce*. Three-level full factorial designs. https://www.itl.nist.gov/div898/handbook/pri/section3/pri339.htm

100 . . THE OWNER WHEN THE Total III