MATH2640 Introduction to Optimisation

Example Sheet 4 Solutions to Assessed Questions

Thursday 28th November 2019 homework

Constrained optimisation, equality constraints, Lagrange multipliers, NDCQ, bordered Hessians.

Based on material in Lectures 13 to 17

Assessed Questions

A1.

(i) Find the maximum (x^*, y^*, z^*) of the Cobb-Douglas production function

$$Q(x, y, z) = x^{1/4}y^{1/4}z^{1/4}$$

subject to the budget constraint h(x, y, z) = ax + by + cz - d = 0, (where a, b, c, d are positive constants), in terms of these constants. Hence, find an expression for the maximum value Q^* of the budget in terms of a, b, c, d and the corresponding value λ^* of the Lagrange multiplier. Check also that the NDCQ is satisfied.

Answer: The Lagrangian is:

$$L(x,y,z) = Q(x,y,z) - \lambda h(x,y,z) = x^{1/4} y^{1/4} z^{1/4} - \lambda (ax + by + cz - d).$$
 (1)

FOCs are:

$$L_x = \frac{1}{4}x^{-3/4}y^{1/4}z^{1/4} - \lambda a = 0 \Longrightarrow \frac{1}{4}Q = \lambda ax$$
 (2)

$$L_y = \frac{1}{4}x^{1/4}y^{-3/4}z^{1/4} - \lambda b = 0 \Longrightarrow \frac{1}{4}Q = \lambda by$$
 (3)

$$L_z = \frac{1}{4}x^{1/4}y^{1/4}z^{-3/4} - \lambda c = 0 \Longrightarrow \frac{1}{4}Q = \lambda cz$$
 (4)

$$-L_{\lambda} = ax + by + cz - d = 0. \tag{5}$$

Substituting the first three relations into the last one yields/gives $\lambda = 3Q/(4d)$. We note from these first three FOCs that ax = by = cz. Hence by using this (i.e. by = ax, cz = ax) into the last FOC we obtain 3ax = d such that $x^* = \frac{d}{3a}, y^* = \frac{d}{3b}, z^* = \frac{d}{3c}$, which in turn gives

$$Q^* = (x^*)^{1/4} (y^*)^{1/4} (z^*)^{1/4} = (d/3)^{3/4} \frac{1}{(abc)^{1/4}};$$

and, also $\lambda^* = 3Q^*/(4d) = \frac{1}{4} \left(\frac{3}{(abcd)}\right)^{1/4}$. Hence, the stationary point becomes

$$(x^*, y^*z^*, \lambda^*) = \left(\frac{d}{3a}, \frac{d}{3b}, \frac{d}{3c}, \frac{1}{4} \left(\frac{3}{(abcd)}\right)^{1/4}\right).$$

The NCDQ condition is $\nabla h = (a, b, c)^T \neq (0, 0, 0)^T$, so the NCDQ is satisfied.

(ii) Minimise $x^2 + \frac{1}{2}y^2 + (\frac{z}{2})^2$ subject to the constraints given by the intersection of two planes x - y + z = 1 and x + y + z = -1. Check that the NDCQ is satisfied at the stationary point. What is the "distance" from the origin to that point under the alternative distance norm $\sqrt{x^2 + \frac{1}{2}y^2 + (\frac{z}{2})^2}$? Make a sketch to illustrate the geometry of the situation (optional).

Answer: The relevant Lagrangian reads/is:

$$L(x,y,z) = x^2 + \frac{1}{2}y^2 + (\frac{z}{2})^2 - \lambda_1(x-y+z-1) - \lambda_2(x+y+z+1).$$
 (6)

Its FOCs are

$$L_x = 2x - \lambda_1 - \lambda_2 = 0 \Longrightarrow 2x = \lambda_1 + \lambda_2 \tag{7}$$

$$L_y = y + \lambda_1 - \lambda_2 = 0 \Longrightarrow y = -\lambda_1 + \lambda_2 \tag{8}$$

$$L_z = \frac{1}{2}z - \lambda_1 - \lambda_2 = 0 \Longrightarrow z = 2(\lambda_1 + \lambda_2)$$
(9)

$$-L_{\lambda_1} = x - y + z - 1 = 0 \Longrightarrow 2x - 2y + 2z = 2 \tag{10}$$

$$-L_{\lambda_2} = x + y + z + 1 = 0 \Longrightarrow 2x + 2y + 2z = -2. \tag{11}$$

Substitution of the first three FOCs into the last two FOCs gives the system:

$$\lambda_1 + \lambda_2 + 2\lambda_1 - 2\lambda_2 + 4\lambda_1 + 4\lambda_2 = 7\lambda_1 + 3\lambda_2 = 2 \tag{12}$$

$$\lambda_1 + \lambda_2 - 2\lambda_1 + 2\lambda_2 + 4\lambda_1 + 4\lambda_2 = 3\lambda_1 + 7\lambda_2 = -2; \tag{13}$$

Multiplication of each equation by 3 and -7 respectively 7 and -3 gives $\lambda_1 = 1/2, \lambda_2 = -1/2$ such that we obtain the stationary points, i.e. by using the first there FOCs again to obtain:

$$(x^*, y^*, z^*, \lambda_1^*, \lambda_2^*) = (0, -1, 0, 1/2, -1/2).$$

The distance of this stationary point from the origin under this alternative norm is:

$$||\sqrt{0^2 + 1/2 + 0^2}|| = 1/\sqrt{(2)!}$$

A2. Use Bordered Hessians to determine the sign properties (definiteness) of the following constrained quadratic form:

$$Q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - 2x_3^2 + 4x_1x_2 - 2x_2x_3$$

subject to the constraints $2x_1 + x_2 + x_3 = 0$ and $x_1 - x_2 - x_3 = 0$. Verify the result by eliminating two of the variables using the constraints, and determining the sign property of the reduced quadratic form.

Answer: The associated bordered Hessian is:

$$H_B = \begin{pmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 2 & 0 \\ 1 & -1 & 2 & 2 & -1 \\ 1 & -1 & 0 & -1 & -2 \end{pmatrix}$$
 (14)

with m = 2, n = 3; hence 2m + 1 = 5 so we only need to check LPM_5 .

$$LPM_{5} = \det(H_{B}) = \begin{vmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 2 & 0 \\ 1 & -1 & 2 & 2 & -1 \\ 1 & -1 & 0 & -1 & -2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 2 & 0 \\ 1 & -1 & 2 & 2 & -1 \\ 1 & -1 & 0 & -1 & -2 \end{vmatrix}$$

$$= 3 \begin{vmatrix} 0 & 0 & -1 & -1 \\ 2 & 1 & 2 & 0 \\ 1 & -1 & 2 & -1 \\ 1 & -1 & -1 & -2 \end{vmatrix} = 3 \begin{vmatrix} 0 & 0 & -1 & -1 \\ 2 & 1 & 2 & 0 \\ 1 & -1 & 2 & -1 \\ 1 & -1 & -1 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & -1 & -1 \\ 3 & 1 & 2 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -2 \end{vmatrix} = -9 \begin{vmatrix} 0 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & -2 \end{vmatrix} = -9(-2) = 18 > 0. \tag{15}$$

Hence, so $sign(LMP_5) = (-1)^m = 1 > 0$; case PD and the stationary point is a minimum. Given that $x_1 = 0, x_3 = -x_2$ is the solution to the two constrained equations, the quadratic form reduces to $Q(x_1, x_2, x_3)_{(h_1=0, h_2=0)} = \tilde{Q}(x_2) = 2x_2^2 - 2x_2^2 + 2x_2^2 = 2x_2^2 > 0$, which is definitely PD as function of x_2 . Hence, our conclusions are consistent.

A3.

i) Write down the Lagrangian, and hence find the two stationary points of the problem

$$f(x, y, z) = -x^2 + 2y^2 + \frac{4}{3}z^3 + 2yz$$
, subject to $h(x, y, z) = x + y - z - 1 = 0$.

Answer: The corresponding Lagrangian is:

$$L(x,y,z) = -x^2 + 2y^2 + \frac{4}{3}z^3 + 2yz - \lambda(x+y-z-1).$$
 (16)

FOCs:

$$L_x = -2x - \lambda = 0 \Longrightarrow (a) \ \lambda = -2x$$
 (17)

$$L_y = 4y + 2z - \lambda = 0 \tag{18}$$

$$L_z = 4z^2 + 2y + \lambda = 0 \tag{19}$$

$$-L_{\lambda} = x + y - z - 1 = 0. \tag{20}$$

Put (a) into second FOC to obtain 4y + 2z + 2x = 0 or (b) x + 2y + z = 0.

Put (a) into third FOC to obtain (c) $4z^2 + 2y - 2x = 0$.

Solve (b) and the fourth FOC:

(b):
$$x + 2y + z = 0$$
 (21)

(d):
$$x + y - z - 1 = 0$$
, (22)

giving (multiply (b) by one minus (d) to eliminate x) y = -1 - 2z and (multiply (b) by one minus two times (d) to eliminate y) x = 3z + 2. Using these expressions y = -1 - 2z, x = 3z + 2 into (c) yields/gives:

$$4z^{2} - 2 - 4z - 6z - 4 = 2(2z^{2} - 5z - 3) = 0 \Longrightarrow (2z + 1)(z - 3) = 0,$$
 (23)

such that we find the pair of critical points, after using $\lambda = -2x$ again, $(x^*, y^*, z^*, \lambda^*) = (1/2, 0, -1/2, -1)$ and $(x^*, y^*, z^*, \lambda^*) = (11, -7, 3, -22)$.

ii) Find the Bordered Hessian for this problem, and evaluate the required leading principal minors for the (two) solutions.

Answer: The bordered Hessian for this Lagrangian follows from the FOCs by further differentiations:

$$H_B = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & 4 & 2 \\ -1 & 0 & 2 & 8z \end{pmatrix}$$
 (24)

with m = 1, n = 3 such that 2m+1 = 3 and we need to investigate $LPM_3, LPM_4 = \det(H_B)$.

$$LPM_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & 4 \end{vmatrix} = 2 - 4 = -2 < 0 \tag{25}$$

$$LPM_4 = \det(H_B) = \begin{vmatrix} 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & 4 & 2 \\ -1 & 0 & 2 & 8z \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & -2 & 2 & 8z \end{vmatrix}$$
(26)

$$= -1 \begin{vmatrix} 1 & 1 & -1 \\ 2 & 4 & 2 \\ -2 & 2 & 8z \end{vmatrix} = -1(32z - 4 - 4 - 8 - 4 - 16z) = 20 - 16z.$$
 (27)

Hence for z = -1/2 we have $LPM_4 = 28 > 0$, $LPM_3 < 0$, different signs so not PD; also $sign(\det(LPM_4)) > 0 \neq (-1)^n = -1$ so also not ND; hence ID.

For z = 3 we have $LPM_3 < 0$, $LPM_4 = -28 < 0$, so now $sign(LPM_4) = (-1)^m = -1$ and all successive LPM's (namely LPM_3) have the same sign (negative); hence PD, and the stationary point is therefore a minimum.