

Token Ring

- Consists of a set of nodes connected in a ring.
- Data flows in a particular direction only.
- Data received from upstream neighbour forwarded to downstream neighbour.
- Token access to the shared ring
 - A special sequence of bits
 - Circulates around the ring.

- Each node receives and forwards token.
- Frame makes its way back to sender
 - Frame removed by sender
 - Sender reinsert token.
- As token circulates around ring, each station gets
 a chance to transmit
 - Service round robin fashion

Token Ring Issues

- Any link or node failure
 - Network rendered useless

Solution –

- Electromechanical relay
- Station active relay is open and station included

Token Ring Issues

Multistation Access Unit (MSAU

- Several relays in a box
- Looks like a star topology
- Add or delete a station
- station

 Plug into or plug out of MSAU

- Date rate: 4 Mbps or 16 Mbps
- Encoding: differential manchester
 - 802.5 upto 250 station

Token Ring Access Control Field

(Note: The AC field is also used in frames)

- P = Priority bits
 - Provides up to 8 levels of priority when accessing the ring
- T = Token bit
 - T=0: Token
 - T=1: Frame

- M = Monitor Bit
 - All frames and tokens are issued with M=0
 - On passing through the "monitor station," M is set to 1
 - All other stations repeat this bit as set
 - Prevents tokens and frames from circulating indefinitely

- Network adapter: receiver, and transmitter, and one or more bits of data storage between them.
- When no stations have anything to transmit token circulates
- Ring has enough storage capacity to hold an entire token.
 - 1 bit/station

Token Ring Access Control

- Token Size: 24 bits
 - Minimum number of stations is 24
 - Overcome this by including a monitor
 which adds the extra bits of delay
- Token operation
 - Token circulates
 - Station seizes a token

Token operation Cont...

- Station that has token transmits data
- Station drains token out of the ring
- Station sends data
- All stations downhill check destination address
- Destination copies packet
- Packet finds its way back to sending station
- Sending station removes packet from ring
- Station reinserts token into the ring

Issues

- Size of data that a given node is allowed to transmit or
- How long a given node is allowed to hold the token
 - Token holding time (THT) = ∞ ?
 - Utilization is 100%
- Unfair to stations to other than the station holding the token
- THT affects ring performance

Cont...

- Token Rotation Time (TRT):
 - TRT ≤ Active nodes * THT + Ring Latency
- Ring Latency token circulation time (total propagation delay)

Reliable Transmission

- Use 2 bits in the frame trailer say, A and C bits
- Initially A and C are zero.
- Receiver sets A bit after seeing that it is the intended recipient
- Receiver sets C bit after copying frame
- On receiving the frame back the sender checks for A and C bits.
 - If both A and C are not set retransmit

- Supports different levels of priority
 - 3 bits
 - Each station waiting to send, sets priority for packet
 - Then token can be seized
 - Lower priority packets circulate for long in ring

Token Release

- Early release
 - After transmitting packet
- Delayed release
 - After removing packet when it returns to the sender

- Makes sure that the token is not lost
- Any station can become a monitor
- Defined procedures for becoming a monitor when the ring is connected or on the failure
- Healthy monitor announces that it is a monitor at periodic interval
- Any station can send a "claim token"
- If claim token comes back to station then it is monitor

Role of monitor

- Insert additional delay in ring
- Ensure always that there is a token somewhere in the ring
- Regenerate a vanished token
- No token seen for $TRT \rightarrow regenerate$

- Orphaned / corrupted packets drain them if orphaned
 - A and C bits set → parent dies
 - A bit set C bit not set → parent dies
- Monitor bit is initially set to 1
 - Monitor notices back when packet passes by monitor a second time

- Some problem un detected
- Suspecting station sends a beacon frame –
- How far beacon goes decide which stations must be bypassed.