UIUC IE510 Applied Nonlinear Programming

Lecture 11: Lagrangian Multipliers
Part b: Inequality Constraints

Ruoyu Sun

If the late of the

Hum Vf(x) + Z \lambda, (x) = 0 | \(\frac{\

• Question 1: Judge: For (smooth) equality constrained problems, at a local-min the gradient of the objective and gradients of constraints are always linearly dependent.

Trop 1. We learned "regular" local-mi lost t/me. Trop 2. always $\exists \lambda_0.\lambda_1$'s, st. $\lambda_0.\nabla f(\vec{x}) + \Sigma.\lambda_1.h.(\vec{x}) = 0$. (3)

• Question 2: Judge: For (smooth) equality constrained problems, regular at a local-min the Hessian of the objective is positive semi-definite on the null space defined by the gradients of the constraints. "some" linear combination of objective & constraints PALSE.

Vf(x*)+ Z λ* y2 ho(x+).

 Question 3: Judge: At a regular local-min, the Lagrangian multipliers are unique.

TRUE.

Summary of Last Lecture

Optimality condition for

$$\min_x f(x), \text{ s.t. } h_i(x) = 0, i = 1, \dots, m,$$
 where f and h_i 's are cts-differentiable.

- Lagrangian function $L(x; \lambda) = \int (x) + \sum_{c} \lambda_{c} h_{c}(x)$.
- Lagrangian multiplier theorem: at a "regular" local-min x* (gradients of constraints are linearly independent), we have
 - The gradient of the Lagrangian function is zero $\diamond \nabla f(x^*)$ lies in span $\{\nabla h_i(x^*)\}$, with coefficients λ_i^* 's $\diamond h_i(x) = 0, \forall i$.
 - $\nabla^2_{xx}L$ is positive semidefinite in the nullspace defined by all gradients of constraints
- If $\nabla^2_{xx}L$ is PD in that nullspace, then sufficient condition.

Summary of Last Lecture

Optimality condition for

$$\min_x f(x), \text{ s.t. } h_i(x) = 0, i = 1, \dots, m,$$
 where f and h_i 's are cts-differentiable.

- Lagrangian function $L(x; \lambda) =$
- Lagrangian multiplier theorem: at a "regular" local-min x^* (gradients of constraints are linearly independent), we have
 - The gradient of the Lagrangian function is zero $\nabla f(x^*)$ lies in span $\{\nabla h_i(x^*)\}$, with coefficients λ_i^* 's $(\nabla_{\!\!x} \mathcal{L} = \mathcal{O})$.
 - $\nabla^2_{xx}L$ is positive semidefinite in the nullspace defined by all gradients of constraints
- If $\nabla^2_{xx}L$ is PD in that nullspace, then sufficient condition.

This Lecture

- Today: optimization with both equality/inequality constraints
- After the lecture, you should be able to
 - Write down KKT condition for inequality/equality constrained problems
 - Describe what is "complementary slackness"
 - Compute/verify optimal solutions for simple inequality constrained problems

Outline

One Constraint Case

KKT Conditions
Statement of KKT Conditions
Examples
Proof Ideas

Inequality Constrained Problem

minimize
$$f(x)$$
 subject to $h_i(x)=0,\ i=1,\ldots,m$ $g_j(x)\leq 0,\ j=1,\ldots,r.$

where $f: R^n \mapsto R, h_i: R^n \mapsto R, g_j: R^n \mapsto R$ are continuously differentiable functions.

- If all $g_j = 0$, becomes equality constrained problems.
- If all h_i are affine, g_j are convex, becomes optimization over convex set.
 - If further, f is convex, becomes a convex problem

| (mu fix)

of the fix = 0 - (mu fix)

One Constraint Case: Change of 1st Order Condition

For simplicity, consider one inequality constraint:

$$\min_{x} f(x), \text{ s.t. } g(x) \leq 0.$$

- Suppose x^* is a local minimum. There are two possibilities of $g(x^*)$:
 - $\star \ g(x^*) < 0$: in the interior, the constraint does NOT matter
 - $\star g(x^*) = 0$: treated (almost) as equality constraint
- Assuming $\nabla g(x^*) \neq 0$, then

$$\begin{cases} \nabla f(x^*) = 0, & \text{if } g(x^*) < 0; \\ \nabla f(x^*) + \mu^* \nabla g(x^*) = 0, & \text{if } g(x^*) = 0, \end{cases}$$

• Extra property: $\mu^* \geq 0$.

One Constraint Case: Change of 1st Order Condition

For simplicity, consider one inequality constraint:

$$\min_x f(x), \text{ s.t. } g(x) \le 0.$$

- Suppose x^* is a local minimum. There are two possibilities of $g(x^*)$:
 - $\star~g(x^*) < 0$: in the interior, the constraint does NOT matter
 - $\star \ g(x^*) = 0$: treated (almost) as equality constraint

• Assuming $\nabla g(x^*) \neq 0$, then

$$\begin{cases} \nabla f(x^*) = 0, & \text{if } g(x^*) < 0; \\ \nabla f(x^*) + \mu^* \nabla g(x^*) = 0, & \text{if } g(x^*) = 0, \end{cases}$$

• Extra property: $\mu^* \geq 0$.

Nonnegativity of Lagrangian Multipliers: Intuition

We draw plots to illustrate why $\mu \geq 0$ is necessary.

One Constraint Case: Alternative Forms

Assuming $\nabla g(x^*) \neq 0$, then the local-min satisfies:

• Form 0:

$$\begin{cases} \nabla f(x^*) = 0, & \text{if } g(x^*) < 0; \\ \nabla f(x^*) + \mu^* \nabla g(x^*) = 0, \text{for some } \mu^* \geq 0, & \text{if } g(x^*) = 0, \end{cases}$$

In-class exercise: form groups, discuss how to supply it.

$$f(x^*) + \mu^* \nabla g(x^*) | \mathsf{Preferably}_{\mathsf{qual}} \rangle$$
 one line for two lines but single .

• Form 2:

$$abla f(x^*) + \mu^*
abla g(x^*) = 0, \quad \text{for some } \mu^* \geq 0,$$

$$\mu^* g(x^*) = 0. \qquad \text{[complementary slackness]}$$

• Form 2b (my choice):

$$\nabla f(x^*) + \mu^* \nabla g(x^*) = 0$$
$$\mu^* \ge 0 \quad \perp \quad g(x^*) \le 0$$

One Constraint Case: Alternative Forms

Assuming $\nabla g(x^*) \neq 0$, then the local-min satisfies:

• Form 0:

$$\begin{cases} \nabla f(x^*) = 0, & \text{if } g(x^*) < 0; \\ \nabla f(x^*) + \mu^* \nabla g(x^*) = 0, \text{for some } \mu^* \geq 0, & \text{if } g(x^*) = 0, \end{cases}$$

- Form 1: Id(Statement) = $\begin{cases} f(x) & \text{form } f(x^*) \\ f(x^*) & \text{fold } f(x^*) \\ & \text{otherwise} \end{cases}$ $\forall f(x^*) + \mu^* \nabla g(x^*) | \operatorname{d}(g(x^*)) = 0 = 0, \text{ for some } \mu^* \geq 0.$
- Form 2:

$$\nabla f(x^*) + \mu^* \nabla g(x^*) = 0, \quad \text{for some } \mu^* \geq 0,$$

$$\mu^* g(x^*) = 0. \quad \text{[complementary slackness]}$$

Form 2b (my choice): Assume ①. If g(x*)≠0, then 1 x =0;
 If g(x*)=0, then ① is meanyless.

One Constraint Case: Alternative Forms

Assuming $\nabla g(x^*) \neq 0$, then the local-min satisfies:

• Form 0:

$$\begin{cases} \nabla f(x^*) = 0, & \text{if } g(x^*) < 0; \\ \nabla f(x^*) + \mu^* \nabla g(x^*) = 0, \text{for some } \mu^* \geq 0, & \text{if } g(x^*) = 0, \end{cases}$$

• Form 1:

$$f(x^*) + \mu^* \nabla g(x^*) \frac{\mathrm{Id}(g(x^*) = 0)}{\mathrm{Id}(g(x^*) = 0)} = 0$$
, for some $\mu^* \ge 0$.

• Form 2:

$$abla f(x^*) + \mu^* \nabla g(x^*) = 0, \quad \text{for some } \mu^* \geq 0,$$

$$\mu^* g(x^*) = 0. \qquad \text{[complementary slackness]}$$

• Form 2b (my choice):

$$\nabla f(x^*) + \mu^* \nabla g(x^*) = 0,$$
$$\mu^* \ge 0 \quad \text{if } g(x^*) \le 0.$$

Outline

One Constraint Case

KKT Conditions
Statement of KKT Conditions
Examples
Proof Ideas

First Order Condition in General

• Form 1: Assuming regularity of x^* , we have

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0,$$

$$u_j^* = 0, \quad \forall j \notin A(x^*).$$

$$\mu_j^* \ge 0; \quad \forall j.$$

where the set of active inequality constraints "Orthe" or "effective" $\frac{A(x^*)}{}=\{j\mid g_i(x^*)=0\}\;.$ or "Important"

• Form 2: Assuming regularity of x^* , we have

$$\begin{split} \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) &= 0, \\ \underbrace{\mu_j^* \geq 0}_{\text{extra property comp. slock.}} \underbrace{ g_j(x^*) \leq 0,}_{\text{feasibility}} \ \forall \ j. \end{split}$$

Karash-Kuhn-Tucker (KKT) Conditions

- x is regular iff $\nabla h_i(x)'s$ and $\nabla g_j(x)$ for active j's are linearly independent. $\{ s_j(x) = 0 \cdot \}$
- Lagrangian function $L(x; \lambda, \mu) = f(x) + \sum_i \lambda_i h_i(x) + \sum_j \mu_j g_j(x)$.
- Let x^* be a regular local minimum. Then there exist unique Lagrange multipliers $\lambda^* = (\lambda_1^*, ..., \lambda_m^*), \, \mu^* = (\mu_1^*, ..., \mu_r^*), \, \text{such that}$

• If f, $h_i's$, and $g_j's$ are twice continuously differentiable, $y'\nabla_{xx}^2L(x^*,\lambda^*,\mu^*)y \geq 0, \ \forall \ y \in V(x^*),$

where

$$V(x^*) = \{ y \mid \nabla h_i(x^*)^T y = 0, \forall i; \ \nabla g_j(x^*)^T y = 0, \forall j \in A(x^*) \}.$$

• Similar sufficiency conditions, except that now it require strict complementarity [Prop 3.3.2]: $\mu_j^* > 0, \ \forall j \in A(x^*).$

KKT Conditions in Human Language

- Problem: equality/inequality constrained (smooth) optimization
- **Assumption**: for a regular local-min x^*
 - Regular: gradients of all "active" constraints are linearly independent
- 1oC: (a) Gradient of objective is spanned by the gradients of active constraints (equality and active inequality constraints);
 (b) Coefficients of active inequality constraints are non-negative.
- 2oC: The same linear combination of all Hessians is PSD in an orthogonal space (the space orthogonal to all gradients of active constraints).

KKT Conditions in Human Language (Langrangian version)

Consider function

$$L(x; \lambda, \mu) = f(x) + \sum_{i} \lambda_{i} h_{i}(x) + \sum_{j} \mu_{j} g_{j}(x), \quad \mu_{j} \ge 0, \forall j.$$

• For a regular local-min of problem (P1), there exist unique Lagrangian multipliers such that

- 1oC: $(x^*; \lambda^*, \mu^*)$ satisfies 1oC of L [exercise]
- 2oC: Hessian of L is PSD in an orthogonal space (the space orthogonal to gradients of all active constraints)

KKT Condition for Linear Constraints

Consider the linearly constrained problem

$$\min_{a'_j x \le b_j, \ j=1,\dots,r} f(x).$$

- Remarkable property: No need for regularity.
- Proposition: If x^* is a local-min, there exist $\mu^* = (\mu_1^*, ... \mu_r^*)$, such that

$$\nabla f(x^*) + \sum_{j=1}^r \mu_j^* a_j = 0,$$

$$\mu_j^* \ge 0 \quad \perp \quad a_j' x^* \le b_j, \ \forall j.$$

Outline

One Constraint Case

KKT Conditions
Statement of KKT Conditions
Examples
Proof Ideas

Normal Example 1

(rue lo cal arm)

Consider the problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f_0(\boldsymbol{x}) = x_1 + x_2$$

subject to
$$f_1(x) = x_1^2 + x_2^2 - 2 \le 0$$
.

This is a problem with a linear objective function f(x) and one nonlinear inequality constraint $f_1(x) \leq 0$. At the solution x^* , the gradient of the constraint $\nabla f_1(x^*)$ is orthogonal to the level set of the function at x^* , and the following equality holds

$$\nabla f_0(\boldsymbol{x}^*) + \lambda^* \nabla f_1(\boldsymbol{x}^*) = \mathbf{0},$$

for $\lambda^\star = \frac{1}{2} \geq 0$. Note that at the point $\tilde{x} = (1,1)$, $\nabla f_0(\tilde{x}) + \lambda \nabla f_1(\tilde{x}) = \mathbf{0}$ holds as well, however $\lambda = -\frac{1}{2} \leq 0$.

Normal Example 2

Consider the problem

$$\label{eq:continuous} \begin{aligned} & \underset{\boldsymbol{x} \in \mathbb{R}^2}{\text{minimize}} & f_0(\boldsymbol{x}) = x_1 + x_2 \\ & \text{subject to} & f_1(\boldsymbol{x}) = x_1^2 + x_2^2 - 2 \leq 0, \\ & f_2(\boldsymbol{x}) = -x_2 \leq 0. \end{aligned}$$

At the solution $x^\star = (-\sqrt{2},0), -\nabla f_0(x^\star)$ belongs to the normal cone to the feasible set at point x^\star , hence, there is $\lambda^\star \geq 0$ that satisfies

$$\nabla f_0(\boldsymbol{x}^*) + \lambda_1^* \nabla f_1(\boldsymbol{x}^*) + \lambda_2^* \nabla f_2(\boldsymbol{x}^*) = \mathbf{0}.$$

Normal Example 3

$$\label{eq:maximize} \begin{aligned} & \underset{x \in \mathbb{R}^2}{\text{maximize}} \ f_0(x) = x_1 + x_2 \\ & \text{subject to} \quad f_1(x) = x_2 - x_1^3 \leq 0, \\ & f_2(x) = x_1^5 - x_2 \leq 0, \\ & f_3(x) = -x_2 < 0. \end{aligned}$$

Only the first two inequality constraints are active at the solution $x^*=(1,1)$, which satisfies the KKT necessary conditions with $\lambda_1^\star=3$, $\lambda_2^\star=2$ and $\lambda_3^\star=0$. This can be verified by solving the equation

$$\left[\begin{array}{c} \nabla f_1(x_1) \\ \nabla f_2(x_1) \end{array} \right]^T \left[\begin{array}{c} \lambda_1^\star \\ \lambda_2^\star \end{array} \right] = -\nabla f(x^\star) \Rightarrow \left[\begin{array}{cc} -3 & 1 \\ 5 & -1 \end{array} \right]^T \left[\begin{array}{c} \lambda_1^\star \\ \lambda_2^\star \end{array} \right] = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Degenerate Example 1

Consider the problem

$$\label{eq:force_equation} \begin{aligned} & \underset{\boldsymbol{x} \in \mathbb{R}^2}{\text{minimize}} \ f_0(\boldsymbol{x}) = x_1 + x_2 \\ & \text{subject to} \quad f_1(\boldsymbol{x}) = x_2 - x_1^3 \leq 0, \\ & f_2(\boldsymbol{x}) = -x_2 < 0. \end{aligned}$$

This is a problem with a linear objective function $f_0(x)$, one nonlinear inequality constraint $f_1(x) \leq 0$ and one linear inequality constraint $f_2(x) \leq 0$. There are infinitely many feasible points, however, at x^* (where both inequality constraints are active), there is no λ^* satisfying

$$\nabla f_0(\boldsymbol{x}^\star) + \lambda_1^\star \nabla f_1(\boldsymbol{x}^\star) + \lambda_2^\star \nabla f_2(\boldsymbol{x}^\star) = \mathbf{0}.$$

Degenerate Example 2

Consider the problem

At the solution x^\star , all inequality constraints are active and their gradients are co-linear. There is no λ^\star satisfying

$$\nabla f_0(\boldsymbol{x}^*) + \lambda_1^* \nabla f_1(\boldsymbol{x}^*) + \lambda_2^* \nabla f_2(\boldsymbol{x}^*) + \lambda_3^* \nabla f_3(\boldsymbol{x}^*) = \mathbf{0}.$$

Outline

One Constraint Case

KKT Conditions
Statement of KKT Conditions
Examples
Proof Ideas

Proof Method 1: Penalty Approach

- Use equality-constraints result to obtain all the conditions except for $u_j^* \ge 0$ for $j \in A(x^*)$.
- Introduce the penalty functions $g_j^+(x) = \max\{0, g_j(x)\}, j = 1, ..., r$, and for k = 1, 2, ..., let x^k minimize

$$f(x) + \frac{k}{2} \|h(x)\|^2 + \frac{k}{2} \sum_{j=1}^{r} (g_j^+(x))^2 + \frac{1}{2} \|x - x^*\|^2$$

over a neighborhood (closed sphere) of x^* .

Using the same argument as for equality constraints,

$$\lambda_i^* = \lim_{k \to \infty} k h_i(x^k), \quad i = 1, ..., m,$$
$$\mu_j^* = \lim_{k \to \infty} k g_j^+(x^k), \quad j = 1, ..., r.$$

• Since $g_j^+(x^k) \ge 0$, we obtain $\mu_j^* \ge 0$ for all j.

Proof Method 2: Transform to Equality Case

The original problem

Consider an equivalent problem

(P2)
$$\min_{x,z} f(x)$$

subject to $h_i(x) = 0, i = 1,...,m$
 $g_j(x) + \frac{z_j^2}{z_j^2} = 0, j = 1,...,r.$ (2)

- From 1oC for (P2), get 1oC for (P1) plus $\mu_i^* = 0, \forall j \notin \mathcal{A}(x^*)$.
- From 2oC for (P2), get 2oC for (P1) and

$$\mu_j \geq 0, \forall j.$$

See details in Sec. 3.3.2.
 Requires twice differentiable, so slightly less general than Penalty approach.

Tip: Transformations Between Problems

Transform inequality constraints to equality constraints?

$$g(x) \le 0 \iff g(x) + 2^2 = 0$$
, for some 2. (introduce additional variable)

Transform equality constraints to inequality constraints?

$$h(x)=0$$
 \Leftrightarrow $h(x) \geq 0$ (increase # of constraints)

Transform constraints to objective?

min 0
$$\Rightarrow$$
 $\min_{x \in \mathbb{R}^n} ||h(x)||^2$; $\max_{x \in \mathbb{R}^n} f(x)$ \Rightarrow $\min_{x \in \mathbb{R}^n} f(x) + \lambda ||h(x)||^2$ \Rightarrow $\sup_{x \in \mathbb{R}^n} f(x) + \lambda ||h(x)||^2$ \Rightarrow $\sup_{x \in \mathbb{R}^n} f(x) + \lambda ||h(x)||^2$ \Rightarrow $f(x) = 0$ \Rightarrow $f(x) = 0$

Transform objective to constraints?

$$(p1) \begin{cases} m_{i} & f(x) \\ s.t. & g(x) \leq 0 \end{cases} (p2) \overset{m_{i}}{s.t} \overset{t}{f(x)} \leq t \qquad (simple objective)$$

(P1) $\begin{cases} m_{ij} & f(x) \\ S.t. & g(x) \leq 0 \end{cases}$ (P2) $\begin{cases} s_{ij}^{*}t. & f(x) \leq t \\ g(x) \leq 0 \end{cases}$ (Simple objective)

• Lesson: constrained-opt "e(p2) can be solved by bisection on $t^{*}t$ $t = f(x) \leq t^{*}t$, (no objective) $t = f(x) \leq t^{*}t$, (no objective)

Tip: Transformations Between Problems

- Transform inequality constraints to equality constraints?
- Transform equality constraints to inequality constraints?

Transform constraints to objective?

Transform objective to constraints?

• Lesson: constrained-opt "equivalent" to solving equations.

Side: Move Objective to Constraints

Consider a problem $\min_{x \in X} f(x)$.

How to move *f* to the constraints?

(P1)
$$\begin{cases} m_i & f(x) \\ s.t. & \chi \in X \end{cases} \iff (P2) \stackrel{\text{fit}}{s.t}. \quad f(x) \leq t \\ & \chi \in X. \end{cases}$$
 (simple objective)

We show (P2) can be solved by bisection on $\hat{t} + (P3)$ $\gamma = 0$.

Assume the optimal value of $(P1)$ is $t \neq 0$.

Assume the optimal value of (P_1) is $t^* \in \mathbb{R}$.

Clash If for some fixed \hat{t} , problem (P3) is feasible, then $t^* \in \hat{t}$; otherwise, t*> f

Bosed on this claim, we can solve (P2) by solving a series of (P3) with changing \hat{t} , where \hat{t} is updated by bisection.

Summary

In this lecture, we learned the following (think yourself before reading):

- KKT conditions (1st and 2nd order) for inequality/equally constrained problems
- Crucial in KKT: complementary slackness
 - $\mu_j \ge 0 \perp g_j(x) \le 0$.
- Two proofs: penalty, transform to equality-constrained case
 - Side: equality ↔ inequality constraints; constraints ↔ objectives

Summary

In this lecture, we learned the following (think yourself before reading):

- KKT conditions (1st and 2nd order) for inequality/equally constrained problems
- Crucial in KKT: complementary slackness
 - $\bullet \ \mu_j \ge 0 \perp g_j(x) \le 0.$
- Two proofs: penalty, transform to equality-constrained case
 - Side: equality ↔ inequality constraints;
 constraints ↔ objectives