August 27, 2024

0.1 ML_LAB_5

Name: Imaad Hajwane

SRN: 202101132 Roll No: 21

Program: Computer Engineering

Year: Last year

Div: A Subject: ML

Q. Write a program to implement K-Nearest Mean clustering Algorithm and find the value of k using WCSS

import libraries

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     from sklearn.cluster import KMeans
     from sklearn.metrics import classification_report, roc_auc_score, roc_curve
     from sklearn.datasets import make_blobs
     from sklearn.metrics import confusion_matrix
     from sklearn.metrics import accuracy_score
     from sklearn.metrics import precision_score
     from sklearn.metrics import recall_score
     from sklearn.metrics import f1_score
     from sklearn.metrics import roc_auc_score
     from sklearn.metrics import roc_curve
     from sklearn.metrics import auc
     from sklearn.metrics import precision_recall_curve
     from scipy.spatial import distance
     from sklearn.metrics import silhouette_score
     from sklearn.metrics import davies_bouldin_score
     from sklearn.metrics import calinski_harabasz_score
     from sklearn.metrics import adjusted_rand_score
```

read csv file

```
[2]: # Read the CSV file
df = pd.read_csv("Almond.csv")
```

basic informations

22619.0 643.813269

```
[3]: # Display the basic information about the dataset
     print("Dataset Info:")
     print(df.info())
     # Display the first few rows of the dataset
     print("\nDataset Head:")
     print(df.head())
     # Display the statistical summary of the dataset
     print("\nDataset Description:")
     print(df.describe())
    Dataset Info:
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2803 entries, 0 to 2802
    Data columns (total 14 columns):
         Column
                                    Non-Null Count
                                                    Dtype
         _____
     0
         Unnamed: 0
                                    2803 non-null
                                                    int64
     1
         Length (major axis)
                                    1946 non-null
                                                    float64
     2
         Width (minor axis)
                                    1861 non-null
                                                    float64
     3
         Thickness (depth)
                                    1799 non-null
                                                    float64
     4
         Area
                                    2803 non-null
                                                    float64
     5
         Perimeter
                                    2803 non-null
                                                    float64
         Roundness
                                    1946 non-null
     6
                                                    float64
     7
         Solidity
                                    2803 non-null
                                                    float64
     8
         Compactness
                                    2803 non-null
                                                    float64
         Aspect Ratio
                                    1004 non-null
                                                    float64
     10 Eccentricity
                                    1004 non-null
                                                    float64
     11 Extent
                                    2803 non-null
                                                    float64
     12 Convex hull(convex area)
                                    2803 non-null
                                                    float64
     13 Type
                                    2803 non-null
                                                    object
    dtypes: float64(12), int64(1), object(1)
    memory usage: 306.7+ KB
    None
    Dataset Head:
                   Length (major axis) Width (minor axis)
                                                             Thickness (depth)
       Unnamed: 0
    0
                0
                                    NaN
                                                 227.940628
                                                                     127.759132
    1
                1
                                    NaN
                                                 234.188126
                                                                     128.199509
    2
                2
                                    NaN
                                                 229.418610
                                                                     125.796547
    3
                3
                                    NaN
                                                 232.763153
                                                                     125.918808
    4
                                    NaN
                                                 230.150742
                                                                     107.253448
          Area
                 Perimeter Roundness
                                        Solidity Compactness Aspect Ratio
```

1.458265

0.973384

NaN

2 223	38.0 680.9848 86.5 646.9432	212 Na	N 0.967270	1.6018 1.4877	72	NaN NaN	
	78.5 661.2274			1.5409		NaN	
4 190	68.0 624.8427	706 Na	N 0.951450	1.6293	95	NaN	
	v		x hull(convex		Гуре		
0		381193			AMRA		
1		356353			AMRA		
2		383620			AMRA		
3		385360			AMRA		
4	NaN 0.7	714800	20	0041.0 M	AMRA		
Datase	t Description	•					
240420	_	Length (majo	r axis) Widtl	n (minor a	axis) \		
count	2803.000000	•	.000000	1861.0			
mean	1401.000000		.609274	171.0			
std	809.300727		.719433	29.9	16529		
min	0.000000		.335266		50529		
25%	700.500000	245	.966293	149.4	53659		
50%	1401.000000	279	279.879883 170.168365				
75%	2101.500000	330	.508575	190.640427			
max	2802.000000	515	.352478	258.5	69794		
	Thickness (de	_		imeter	Roundness	Solidity	\
count	1799.00				946.000000	2803.000000	
mean	109.70			363770	0.470466	0.955828	
std				632076	0.118673	0.039596	
min				563489	0.173748	0.718772	
25%				730009	0.384810 0.472718	0.944579 0.970422	
50% 75%	110.28 121.39						
max	181.84			947387	0.577553 0.697293	0.981484 0.992889	
lliax.	101.0-	10200 09202.	000000 1804.	941301	0.031233	0.992009	
	Compactness	Aspect Ratio	Eccentricity	y E:	xtent \		
count	2803.000000	1004.000000			00000		
mean	1.825233	1.753216	0.813114	1 0.7	24587		
std	0.794058	0.206616	0.04131	2 0.0	47474		
min	1.164469	1.400082	0.69989	7 0.4	54538		
25%	1.357398	1.612490	0.78447	0.70	01673		
50%	1.576412	1.705716	0.81012	0.73	33720		
75%	1.965953	1.833339	0.83814	0.7	57551		
max	9.660057	2.731251	0.93056	0.8	45813		
	O						
	Convex hull(
count	2803.000000						
	,						
mean		27696.218159					

25%	17088.500000
50%	24589.000000
75%	34863.250000
max	90642.500000

identification of missing values and filling the missing values

[4]: df.isnull()

[4]:		Unnamed: 0	Length	(major ax	is) Width	(minor axis)	Thickness (depth)	\
	0	False	:	T	rue	False	e False	
	1	False	:	T	rue	False	e False	
	2	False	:	T	rue	False	e False	
	3	False	:	T	rue	False	e False	
	4	False	!	T	rue	False	e False	
		•••		•••		•••	•••	
	2798	False	:	Т	rue	False	e False	
	2799	False	:	Т	rue	False	e False	
	2800	False	:	Т	rue	False	e False	
	2801	False	:	Т	rue	False	e False	
	2802	False	•	Fa	lse	False	e True	
					•	-	Aspect Ratio \	
	0	False	False	True	False	False	True	
	1	False	False	True	False	False	True	
	2	False	False	True	False	False	True	
	3	False	False	True	False	False	True	
	4	False	False	True	False	False	True	
	•••				•••	•••		
		False	False	True	False	False	True	
	2799	False	False	True	False	False	True	
	2800	False	False	True	False	False	True	
	2801	False	False	True	False	False	True	
	2802	False	False	False	False	False	False	
		Fccentrici	tv Fyto	nt Convey	hull (conv	ex area) Ty	<i>7</i> pe	
	0		ue Fal		Hull (COHV	False Fal	-	
	1		ue Fal			False Fal		
	2		ue Fal			False Fal		
	3		ue Fal:			False Fal		
	4		ue Fal:			False Fal		
		11	uc rui				.50	
	 2798	 Tr	ue Fal:	se	•••	 False Fal	se	
	2799		ue Fal:			False Fal		
	2800		ue Fal			False Fal		
	2801		ue Fal:			False Fal		
	2802	Fal				False Fal		
		- 41						

```
[5]: df.isnull().sum()
[5]: Unnamed: 0
                                     0
    Length (major axis)
                                   857
     Width (minor axis)
                                   942
     Thickness (depth)
                                  1004
     Area
                                     0
     Perimeter
                                     0
     Roundness
                                   857
     Solidity
                                     0
                                     0
     Compactness
     Aspect Ratio
                                  1799
    Eccentricity
                                  1799
    Extent
                                     0
     Convex hull(convex area)
                                     0
     Type
                                     0
     dtype: int64
[6]: # Replace missing values with O
     df.fillna(0, inplace=True)
[7]: df.isnull().sum()
[7]: Unnamed: 0
                                  0
     Length (major axis)
                                  0
     Width (minor axis)
                                  0
     Thickness (depth)
                                  0
     Area
                                  0
     Perimeter
                                  0
    Roundness
                                  0
    Solidity
                                  0
                                  0
     Compactness
     Aspect Ratio
                                  0
    Eccentricity
    Extent
     Convex hull(convex area)
                                  0
     Туре
                                  0
     dtype: int64
    selection of relevant features in the dataset
[8]: # Select relevant features for clustering
     X = df[['Length (major axis)', 'Width (minor axis)', 'Thickness (depth)']]
```

Implementation of K-Means clustering using WCSS

```
[9]: # Implement K-Means clustering and find the optimal value of K using WCSS
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10,
    random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
```

Elbow Plot

```
[10]: # Plot the Elbow curve to find the optimal value of K
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters (K)')
plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
plt.show()
```


Identification of Elbow Point

```
[11]: from kneed import KneeLocator

k_range = list(range(1, 11))

# Use kneedle to find the elbow
kneedle = KneeLocator(k_range, wcss, curve='convex', direction='decreasing')

# Get the optimal k value
optimal_k = kneedle.elbow
print(f"The optimal number of clusters is: {optimal_k}")
```

The optimal number of clusters is: 3

Evaluation Score (Silhouette score)

```
[13]: from sklearn.metrics import silhouette_score

# Calculate the Silhouette Score
silhouette_avg = silhouette_score(X, pred_y)
print(f"Silhouette Score: {silhouette_avg}")
```

Silhouette Score: 0.7121232447493592

Cluster Plot K=3

```
[14]: # Convert DataFrame to NumPy array
X_array = X.to_numpy()

# Plotting the clusters and centroids
plt.scatter(X_array[pred_y == 0, 0], X_array[pred_y == 0, 1], s=60, c='red', u=1abel='Cluster 1')
plt.scatter(X_array[pred_y == 1, 0], X_array[pred_y == 1, 1], s=60, c='blue', u=1abel='Cluster 2')
plt.scatter(X_array[pred_y == 2, 0], X_array[pred_y == 2, 1], s=60, c='green', u=1abel='Cluster 3')
# Add more scatter plots for additional clusters if needed

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], u=100, c='black', label='Centroids')
plt.xlabel('Length (major axis)')
plt.ylabel('Width (minor axis)')
plt.legend()
```

plt.show()

PLOTS

c:\Users\iamim\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning:
The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

PLOTS (Imporved Interactions)

```
[16]: import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.io as pio
import pandas as pd

# Seaborn style
sns.set(style="whitegrid", palette="muted", font_scale=1.2)
```

```
pairplot.fig.suptitle("Pairplot of Key Features by Type", y=1.02)
pairplot.savefig("pairplot.png")
plt.show()
```

c:\Users\iamim\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning:
The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)


```
plt.savefig("scatter_plot.png")
plt.show()
```



```
[19]: # Box Plots with enhanced layout and color

plt.figure(figsize=(14, 10))
boxplot = sns.boxplot(data=df[['Roundness', 'Solidity', 'Compactness', 'Aspect

→Ratio', 'Eccentricity']], palette="Set2")

plt.title("Box Plots of Shape Features")

plt.savefig("box_plots.png")

plt.show()
```



```
[20]: # Count Plot with Seaborn
    plt.figure(figsize=(8, 6))
    countplot = sns.countplot(data=df, x='Type', palette="pastel")
    plt.title("Count of Each Type")
    plt.xlabel("Type")
    plt.ylabel("Count")
    plt.savefig("count_plot.png")
    plt.show()
```



```
[21]: import matplotlib.pyplot as plt
      import plotly.graph_objects as go
      import plotly.io as pio
      # Matplotlib version
      plt.figure(figsize=(10, 6))
      plt.plot(range(1, 11), wcss, marker='o', linestyle='--', color='b')
      plt.title('Elbow Method for Optimal K', fontsize=16)
      plt.xlabel('Number of Clusters (K)', fontsize=14)
      plt.ylabel('Within-Cluster Sum of Squares (WCSS)', fontsize=14)
      plt.grid(True)
      plt.savefig("elbow_curve.png")
      plt.show()
      # # Plotly interactive version
      # elbow_fig = go.Figure()
      # elbow_fig.add_trace(go.Scatter(
            x=list(range(1, 11)),
```

```
# y=wcss,
# mode='lines+markers',
# line=dict(dash='dash', color='blue'),
# marker=dict(symbol='circle', size=10, color='blue'),
# name='WCSS'
# ))

# elbow_fig.update_layout(
# title='Elbow Method for Optimal K',
# xaxis_title='Number of Clusters (K)',
# yaxis_title='Within-Cluster Sum of Squares (WCSS)',
# template='plotly_white'
# )

# elbow_fig.write_image("elbow_curve_interactive.png")
# # pio.write_html(elbow_fig, file="elbow_curve_interactive.html",uauto_open=True)
```



```
[22]: import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import numpy as np
```

```
# Matplotlib Version
plt.figure(figsize=(10, 8))
# Plotting each cluster with customized markers and colors
plt.scatter(X_array[pred_y == 0, 0], X_array[pred_y == 0, 1], s=80, c='red', u
 →marker='o', edgecolors='black', label='Cluster 1')
plt.scatter(X_array[pred_y == 1, 0], X_array[pred_y == 1, 1], s=80, c='blue',_
 →marker='s', edgecolors='black', label='Cluster 2')
plt.scatter(X_array[pred_y == 2, 0], X_array[pred_y == 2, 1], s=80, c='green', u
 marker='D', edgecolors='black', label='Cluster 3')
# Add more scatter plots for additional clusters if needed
# Plotting centroids with larger, distinct markers
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
 ⇒s=200, c='black', marker='X', edgecolor='yellow', label='Centroids')
# Adding labels, title, and legend
plt.xlabel('Length (Major Axis)', fontsize=14)
plt.ylabel('Width (Minor Axis)', fontsize=14)
plt.title('Clusters and Centroids', fontsize=16)
plt.legend()
plt.grid(True)
plt.savefig("clusters_and_centroids.png")
plt.show()
# # Plotly Interactive Version
# plotly_fiq = qo.Fiqure()
# # Adding clusters
# plotly_fig.add_trace(qo.Scatter(
      x=X_array[pred_y == 0, 0],
      y=X_array[pred_y == 0, 1],
     mode='markers',
      marker=dict(color='red', size=10, symbol='circle', line=dict(width=2, ____
\hookrightarrow color = 'black')),
     name='Cluster 1'
# ))
# plotly_fig.add_trace(go.Scatter(
     x=X_array[pred_y == 1, 0],
      y=X_array[pred_y == 1, 1],
     mode='markers',
      marker=dict(color='blue', size=10, symbol='square', line=dict(width=2, ____
\hookrightarrow color = 'black')),
     name='Cluster 2'
# ))
```

```
# plotly_fig.add_trace(go.Scatter(
    x=X_array[pred_y == 2, 0],
      y=X_array[pred_y == 2, 1],
     mode='markers',
      marker=dict(color='green', size=10, symbol='diamond', line=dict(width=2,__
 ⇔color='black')),
      name='Cluster 3'
# ))
# # Adding centroids
# plotly_fig.add_trace(go.Scatter(
     x=kmeans.cluster_centers_[:, 0],
      y=kmeans.cluster_centers_[:, 1],
    mode='markers',
      marker=dict(color='black', size=15, symbol='x', line=dict(width=2,_
⇔color='yellow')),
      name='Centroids'
# ))
# # Customizing layout
# plotly_fig.update_layout(
      title='Clusters and Centroids',
      xaxis_title='Length (Major Axis)',
#
    yaxis_title='Width (Minor Axis)',
      template='plotly_white'
# )
# # Saving the Plotly figure
# plotly_fig.write_image("clusters_and_centroids_interactive.png")
\# pio.write_html(plotly_fig, file="clusters_and_centroids_interactive.html", \sqcup
 →auto_open=True)
```

