G6C. Ejercicio 5.- Una chapa de hierro de 1 m² (suma de la superficie de ambas caras) sumergida en agua de mar ha sufrido una pérdida promedio de su espesor de 1 mm por cara al cabo de dos años de exposición. Calcular la masa de hierro perdida por corrosión y la intensidad media de la corriente de corrosión. La densidad del hierro es 8 g/cm3 . Se supone que no ocurre otra reacción de corrosión que la oxidación de hierro metálico a hierro (II).

A = área expuesta =
$$1 \text{ m}^2 = 1 \text{x} 10^4 \text{ cm}^2$$

e = espesor perdido = $2 \text{ caras x} 1 \text{ mm /cara} = 0.2 \text{ cm}$
t = tiempo = $2 \text{ años} = 6.31 \text{ x } 10^7 \text{ s}$
Ar Fe = 56

$$\delta = densidad \ del \ Fe = 8 \frac{g}{cm^3} = \frac{masa \ Fe}{V_{Fe}}$$

$$V_{Fe} = A.e = 1x10^4 \ cm^2.0.2 \ cm = 2x10^3 \ cm^3$$

$$masa \ Fe = \delta .V_{Fe} = 8 \frac{g}{cm^3}.2x10^3 \ cm^3 = 16000 \ g$$

$$n \ Fe = \frac{m}{Masa \ Atómica} = \frac{16000 \ g}{56 \ g \ / \ mol} = 285.72 \ mol \ Fe$$

Oxidación

(-) Ánodo: Fe (s) \rightarrow Fe²⁺ + 2e⁻

1 mol Fe ---- 2 mol e^- ---- 2 x 96500 Coulomb ----- 193000 Coulomb 285.72 mol Fe ----- 5.51 x 10^7 Coulomb = q

$$I = \frac{q}{t} = \frac{5.51 \times 10^7 \, C}{6.31 \times 10^7 \, s} = 0.87 \, A$$

$$j = \frac{I}{A} = \frac{0.87 \, A}{1m^2} = 0.87 \, A / m^2$$

$$v_{corrosión} = \frac{masa \, de \, metal \, corroída}{tiempo} = \frac{16000 \, g}{2 \, a \tilde{n}os}$$
 $v_{corrosión} = 8000 \, g \, / \, a \tilde{n}o = 8 \, kg \, Fe \, / \, a \tilde{n}o$

$$v_{corrosión} = \frac{espesor de metal corroído}{tiempo} = \frac{2mm}{2a\tilde{n}os}$$
 $v_{corrosión} = 1mm Fe / a\tilde{n}o$

$$v_{corrosión} = \frac{masa \, de \, metal \, corroído}{\acute{A}rea \, expuesta. tiempo} = \frac{16000 \, g}{1m^2.2 \, a\~{n}os}$$
 $v_{corrosión} = 8000 \, g \, Fe \, / \, m^2 a\~{n}o$