CS557: Cryptography

Public-key Cryptography-1

S. Tripathy IIT Patna

Previous Class

- Symmetric key cryptography
 - Block cipher
 - Stream Cipher
 - Random Number Generator
 - Hash Function
 - -MAC

Present Class

- Public Key Cryptography
 - Public Key Encryption
 - · RSA

Private-Key Cryptography

- Traditional <u>private/secret key</u> cryptography uses <u>one</u> key shared by both sender and receiver
- <u>symmetric</u>, Means parties are equal.
- · if this key is disclosed communications are compromised

Whats Problem?

- Does not protect sender from receiver forging a message & claiming is sent by sender
- Key distribution and management is a serious problem! N users $-O(N^2)$ keys!

Public-Key Cryptography

- uses <u>two</u> keys a public & a private key
- complements <u>rather than</u> replaces private key crypto
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- Asymmetric because
 - those who encrypt messages or verify signatures
 <u>cannot</u> decrypt messages or create signatures
 - uses clever application of number theoretic concepts to function

Public Key Cryptography

Public-Key Applications

- 3 different categories of applications:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
 - some algorithms are suitable for all uses, others are specific to one
- Must ensure that the public key belongs to the correct party (binding of identity to key). The public key directory may be corrupted:
 - Solution: Use a Public Key Infrastructure (PKI) to certify your keys

Public-Key Cryptosystems (confidentiality)

Public-Key Cryptosystem: Secrecy

Public-Key Cryptosystems (Authentication)

Public-Key Cryptosystem: Authentication

Public-Key Cryptosystems

Figure 9.4 Public-Key Cryptosystem: Secrecy and Authentication

Public-Key Characteristics

- •Two keys:
 - •public encryption key e & private decryption key d
- •Encryption is easy when e is known
- Decryption is hard when d is not known
 - •d provides "trap door": decryption is easy when d is known

One-way Trapdoor function

- A function f() is said to be one-way if given x it is "easy" to compute y = f(x), but given y it is "hard" to compute $x = f^{-1}(y)$.
- A trap-door one-way function $f_K()$ is such that to compute
- $y = f_K(x)$ is easy if K and x are known.
- $x = f^{-1}_{K}(y)$ is easy if K and y are known.
- $x = f^{-1}K(y)$ is hard if y is known but K is unknown.
- Given a trap-door one-way function one can design a public key cryptosystem.

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible but keys used are too large
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalysis) problems
- more generally the hard problem is known, its just made too hard to do in practise
- requires the use of very large numbers hence is slow compared to private key schemes

RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - number factorization takes $O(e^{\log n \log \log n})$ operations (hard)

RSA Key Setup

- each user generates a public/private key pair by:
 - selecting two large primes at random : p, q
 - computing their system modulus N=p.q
 - **note** \emptyset (N) = (p-1) (q-1)
- select at random the encryption key e
 - where $1 < e < \emptyset(N)$, $gcd(e, \emptyset(N)) = 1$
- ullet solve following equation to find decryption key ${\tt d}$
 - e.d=1 mod \emptyset (N) and $0 \le d \le N$
- publish their public encryption key: KU={e,N}
- keep secret private decryption key: KR={d,p,q}

RSA Use

- to encrypt a message M the sender:
 - obtains public key of recipient KU={e, N}
 - computes: C=Me mod N, where 0≤M<N
- to decrypt the ciphertext C the owner:
 - uses their private key KR={d,p,q}
 - -computes: M=Cd mod N
- note that the message M must be smaller than the modulus N (block if needed)

Correctness

RSA

- -N=b.d
- $\emptyset (N) = (p-1) (q-1)$
- carefully chosen e & d to be inverses $mod \varnothing (N)$
- hence $e.d=1+k.\varnothing(N)$ for some k

• hence:

```
C^{d} = (M^{e})^{d} = M^{1+k \cdot \varnothing(N)} = M^{1} \cdot (M^{k \cdot \varnothing(N)})

C^{d} \mod N = M^{1} \cdot (1)^{k} \mod N = M \mod N
```

RSA Example

- Select primes: p = 61 and q = 53
- Compute n = pq = 61 * 53 = 3233
- Compute $\emptyset(n) = (p-1)(q-1) = 60 \times 52 = 3120$
- Select e : gcd (e, 3120) =1; choose e=17
- Determine d: $d.e=1 \mod 3120$ and d < 3120 Value is d = 2753 since 17 * 2753 = 46801 = 1 + 15 * 3120.
- Publish public key $KU = \{ n = 3233, e = 17 \}$
- Keep secret private key $KR = \{(d = 2753, p = 61, q = 53)\}$

sample RSA encryption/decryption is:

- given message M = 123 (number 123<3233)
- encryption:

$$C = 123^{17} \mod 3233 = 855$$

decryption:

```
M = 855^{2753} \mod 3233 = 123
```

Computation over Large numbers (Multi precision integer)

Exponentiation

- can use the Square and Multiply Algorithm (Already discussed) a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent; only takes $O(log_2 n)$ multiples for number n
 - $-eq. 7^5 = 7^4.7^1 = 3.7 = 10 \mod 11$
 - $-eq. 3^{129} = 3^{128}.3^1 = 5.3 = 4 \mod 11$

RSA Encryption is one-way trapdoor

- Now D_d [E_e[x]] = x
- E[x] and D[y] can be computed efficiently if keys are known
- E⁻¹[y]cannot be computed efficiently without knowledge of the (private) decryption key d.
- Also, it should be possible to select keys reasonably efficiently. Efficiency requirements are less stringent since it has not to be done too often.

Thanks