Exemplar Problem

Matrix and Determinants

55. The determinant
$$\begin{vmatrix} \sin \mathbf{A} & \cos \mathbf{A} & \sin \mathbf{A} + \cos \mathbf{B} \\ \sin \mathbf{B} & \cos \mathbf{A} & \sin \mathbf{B} + \cos \mathbf{B} \\ \sin \mathbf{C} & \cos \mathbf{A} & \sin \mathbf{C} + \cos \mathbf{B} \end{vmatrix}$$
 is equal to zero.

Ans: Here, we have
$$\begin{vmatrix} \sin A & \cos A & \sin A + \cos B \\ \sin B & \cos A & \sin B + \cos B \\ \sin C & \cos A & \sin C + \cos B \end{vmatrix}$$

$$= \begin{vmatrix} \sin A & \cos A & \sin A \\ \sin B & \cos A & \sin B \\ \sin C & \cos A & \sin C \end{vmatrix} + \begin{vmatrix} \sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B \end{vmatrix}$$

Since, the value of the determinant having two identical rows and columns is zero. Therefore,

$$= 0 + \begin{vmatrix} \sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B \end{vmatrix}$$

$$= \begin{vmatrix} \sin A & \cos A & \cos B \\ \sin B & \cos A & \cos B \\ \sin C & \cos A & \cos B \end{vmatrix}$$

Taking common $\cos A$ and $\cos B$ from C_2 and C_3

$$= \cos A \cdot \cos B \begin{vmatrix} \sin A & 1 & 1 \\ \sin B & 1 & 1 \\ \sin C & 1 & 1 \end{vmatrix}$$

=0

Since, the value of the determinant having two identical rows and columns is zero.

Hence, the given statement is true.