2.2.2 共射极放大电路的组成及其工作原理

1. 共射极放大电路的组成

电路存在的问题:

(1)信号源与放大电路 相互影响。

(2)放大电路与负载相 互影响。

2.3 放大电路的静态分析

静态 — 当输入信号为零时电路的工作状态。

静态时放大电路只有宣流分量。

静态分析——就是通过放大电路 的直流通路求解静态工作点值 I_{BQ} 、 I_{CQ} 、 U_{CEQ} 。

直流通路

如何得到直流通路?

断开电容 C_1 及 C_2

求解静态工作点的常用方法

2.3.1 图解法在放大电路静态分析中的应用

1. 输入回路

列写输入回路方程

$$V_{\rm CC} = i_{\rm B}R_{\rm B} + u_{\rm BE}$$

方程 $V_{\rm CC} = i_{\rm B}R_{\rm B} + u_{\rm BE}$

在i_B、 u_{BE}坐标系上是一条直线

三极管输入 特性曲线

称为输入回路的直流负载线

直流负载线与三极管输入特性曲线的交点,即为放大电路的输入静态工作点 Q_i 。

输出回路 输出回路方程

$$V_{\rm CC} = i_{\rm C} R_{\rm C} + u_{\rm CE}$$

在i_C、 u_{CE}坐标系上是一条直线

称为输出回路的直流负载线

直流负载线与晶体管输出特性曲线的交点,即为放大电路的输出 静态工作点Q。。

上页 下页 后退

总结

直流通路

2.3.2 估算法在放大电路静态分析中的应用

由输入回路方程

$$V_{\rm CC} = I_{\rm BQ}R_{\rm B} + U_{\rm BEQ}$$

得

三步法!

$$I_{\rm BQ} = \frac{V_{\rm CC} - U_{\rm BEQ}}{R_{\rm B}} \qquad (1)$$

式中, $|U_{
m BEO}|$ 硅管可取为 $0.7{
m V}$,锗管 $0.3{
m V}$

$$I_{\rm CQ} = \overline{\beta} I_{\rm BQ}$$
 (2)

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{C}} (3)$$

直流通路

求解静态工作点的常用方法:

估算法——分析电路的实用方法

[例] 在图示电路中,已知: V_{CC} =12V, R_{C} =2 $k\Omega$, R_{B} =360 $k\Omega$;

晶体管T为硅管,其 β =100; C_1 = C_2 =10 μ F, R_L =2 $k\Omega$ 。试求:

晶体管的 I_{BQ} , I_{CQ} 及 U_{CEQ} ;

直流通路

(b) 求出放大电路的直流参数

(1)
$$I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_{B}} = \frac{12 - 0.7}{360 \times 10^{3}}$$
$$= 31.4 \mu A$$

(2)
$$I_{CQ} = \overline{\beta}I_{B} = 100 \times 31.4 \times 10^{-6}$$

= 3.14 mA

(3)
$$U_{CEQ} = V_{CC} - I_{CQ} R_{C}$$

= $12 - 3.14 \times 2$
= 5.72 V

