1. ESTRUTURA E LIGAÇÃO QUÍMICA

- 1. Calcule a carga formal de cada um dos átomos nas seguintes estruturas de Lewis:
 - a. Tribrometo de fósforo

Resolução:

Nem o fósforo nem o bromo têm carga formal no PBr₃:

	Electrões de valência no átomo neutro	Contagem de e	Carga formal
Fósforo	5	1/2(6)+2=5	0
Bromo	7	1/2(2)+6=7	0

b. Ácido sulfúrico

Resolução:

As cargas formais são:

	Electrões de valência no átomo neutro	Contagem de e	Carga formal
Hidrogénio	1	1/2(2)=1	0
Oxigénio (OH)	6	1/2(4)+4=6	0
Oxigénio	6	1/2(2)+6=7	-1
Enxofre	6	1/2(8)+0=4	+2

c. Ácido nitroso

$$H - O - N = O$$

Resolução:

As cargas formais são:

	Electrões de valência no átomo neutro	Contagem de e	Carga formal
Hidrogénio	1	1/2(2)=1	0
Oxigenio (OH)	6	1/2(4)+4=6	0
Oxigenio	6	1/2(4)+4=6	0
Azoto	5	1/2(6)+2=5	0

2. Verifique e corrija, se necessário, as cargas dos seguintes iões:

Resolução:

A contagem de electrões para o azoto e para o boro é 4 (metade de 8 electrões das ligações covalentes). O azoto tem 5 electrões na sua camada de valência, fica então com carga +1; o boro neutro tem 3 electrões de valência, fica com carga -1.

- 3. Expanda as fórmulas condensadas, mostrando as ligações e electrões não partilhados:
 - a. CICH₂CH₂CI
 - **b.** (CH₃)₃CH
 - c. (CH₃)₂CHCH=O

Resolução:

a.

b.

C.

4. Re-escreva as seguintes representações, mostrando as ligações e átomos envolvidos:

a.

b.

C.

Resolução:

a.

b.

c.

- **5.** Escreva as fórmulas estruturais para todos os compostos isoméricos possuidores da fórmula:
 - a. C₂H₆O

b. C₃H₈O

Resolução:

a.

b.

Problemas propostos:

P1. Considere as estruturas A, B, C e D:

- a. Quais das estruturas contém carbono com carga positiva?
- b. Quais das estruturas contém o azoto com carga positiva?
- c. Quais das estruturas contém o oxigénio com carga positiva?
- d. Quais das estruturas contém um carbono com carga negativa?
- e. Quais das estruturas contém azoto com carga negativa?
- f. Quais das estruturas contém oxigénio com carga negativa?
- g. Qual a estrutura mais estável?
- h. Qual a estrutura menos estável?

P2. Quantas ligações σ e ligações π estão presentes nas seguintes estruturas?

a.

CH₃CH=CHCH₃

b.

HC=CHCH₂CH₃

- **P3.** Nos compostos anteriores indique a hibridação para cada um dos átomos de carbono.
- **P4.** Tendo como hipótese os compostos:

Qual/quais a(s) substância(s) linear(es)?

- a. Somente I
- b. lell
- c. lell

d. Somente III

P5. Nos compostos hipotéticos anteriores, assumindo que A é mais electronegativo que B, quais as substâncias polares?

a. I e III

b. Somente II

c. Somente IV

d. II e IV