## XXI. Nemzetközi Magyar Matematikaverseny

Kecskemét, 2012. március 14-18.

## 9. osztály

1. feladat: A Gumimacik megszervezték a Nemzetközi Gumibogyó Szüreti Fesztivált, ahol minden résztvevő Gumimaci ugyanannyi üveg idei termésből készült gumibogyó szörpöt kapott ajándékba. Ha a Szüreti Fesztiválon tízzel kevesebb Gumimaci lett volna jelen, akkor az elkészített mennyiségből minden résztvevő két üveggel több gumibogyó szörpöt kaphatott volna. Amennyiben a Szüreti Fesztiválon nyolc Gumimacival többen vettek volna részt, akkor az idén sajtolt gumibogyó szörp mennyiségből mindannyian egy üveggel kevesebbet kaptak volna. Valójában hány Gumimaci vett részt a Nemzetközi Gumibogyó Szüreti Fesztiválon, és fejenként hány üveg gumibogyó szörpöt kapott ajándékba?

Péics Hajnalka (Szabadka)

1. feladat megoldása: Jelölje x a Nemzetközi Gumibogyó Szüreti Fesztiválon résztvevő Gumimacik számát, y pedig azoknak a gumibogyó szörppel teli üvegeknek a számát, amennyit minden Gumimaci ajándékba kapott! A feladat feltételei alapján ekkor a következő egyenletrendszert állíthatjuk fel:

$$(x-10)(y+2) = xy$$

$$(x+8)(y-1) = xy$$

$$xy + 2x - 10y - 20 = xy$$

$$xy - x + 8y - 8 = xy$$

$$x - 5y = 10$$

$$-x + 8y = 8$$

Ebből következik, hogy x = 40 és y = 6.

A Nemzetközi Gumibogyó Szüreti Fesztiválon tehát 40 Gumimaci vett részt, és fejenként 6 üveg gumibogyó szörpöt kaptak ajándékba.

Nemecskó István (Budapest)

2. feladat megoldása: A PQDR négyszög paralelogramma, tehát átlója felezi a területét:

$$T_{PQD} = \frac{T_{PQDR}}{2} = T_{QDR}.$$

**<sup>2.</sup>** feladat: Az ABCDE szabályos ötszög AD és EB átlóinak metszéspontja legyen S, az AC és EB szakaszok metszéspontja P, az AD és EC átlók metszéspontja R, a DB és EC szakaszok metszéspontja pedig Q! Határozzuk meg az APQD négyszög területét, ha az átlók által meghatározott ABCDE csillagötszög (ötágú csillag) területe 2 egység!

Az RESháromszög egybevágó a QDRháromszöggel, tehát területük egyenlő:

$$T_{QDR} = T_{RES}$$
.

A keresett terület:

$$T_{APQD} = T_{APQD} - T_{PQD} + T_{RES}.$$

Az ábráról látszik, hogy ez a csillagötszög (ötágú csillag) fele, tehát a keresett terület 1 egység.



**3. feladat:** Az asztalon egy egyenes mentén 50 zsetont helyeztek el. Aladár és Bea a következő játékot játssza: felváltva vesznek el a zsetonok közül alkalmanként 3-3 darabot addig, amíg 2 zseton nem marad. Ha ezek nem szomszédosak, akkor a kezdő játékos győz, ha pedig szomszédosak, akkor a második játékos a győztes. Kinek van nyerő stratégiája, ha a játékot Bea kezdi?

Szabó Magda (Szabadka)

3. feladat megoldása: Aladárnak van nyerő stratégiája. Ez a következő:

Valamelyik irányból megszámozza és párba állítja a zsetonokat, az  $(1;2), (3;4), \ldots, (49;50)$  párokba, majd Bea választása után ő az alábbiak szerint kontrázik:

- ha Bea választ 3 zsetont 3 különböző párból, akkor kiveszi mindhárom kiválasztott párból a másodikat;
- ha Bea egy pár két zsetonját és egy tetszőleges harmadikat választ, akkor Aladár a harmadik zseton párját és egy tetszőleges pár két zsetonját veszi el.

Mivel  $50 = 6 \cdot 8 + 2$ , ezért a nyolcadik lépés után két szomszédos zseton marad.

Általában is igaz, hogy a másodikként elvevő játékosnak van nyerő stratégiája, ha a zsetonok száma 6k+2.

4. feladat: Határozzuk meg azokat a pozitív egész n számokat, amelyekre a  $2^n - 1$  és a  $2^n + 1$  számok közül legalább az egyik osztható 7-tel!

Kántor Sándor (Debrecen)

**4. feladat megoldása:** Keressük a megfelelő n-eket a 3-as maradékaik szerint megkülönböztetve, azaz n = 3k + r alakban, ahol  $r \in \{0; 1; 2\}!$ 

 $2^n-1=2^r\cdot \left(8^k-1\right)+2^r-1$ . Mivel  $8^k-1$  osztható 7-tel, ezért  $2^n-1$  7-es maradéka egyenlő  $2^r-1$  7-es maradékával, ami lehet 0, 1 vagy 3.  $2^n-1$  tehát pontosan akkor osztható 7-tel, ha n osztható 3-mal.  $2^n+1=2^r\cdot \left(8^k-1\right)+2^r+1$ . Mivel  $8^k-1$  osztható 7-tel, ezért  $2^n+1$  7-es maradéka egyenlő  $2^r+1$  7-es maradékával, ami lehet 2, 3 vagy 5.  $2^n+1$  tehát egyetlen pozitív egész n esetén sem osztható 7-tel. Kaptuk, hogy a  $2^n-1$  és  $2^n+1$  számok közül legalább az egyik (ez mindig a  $2^n-1$ ) pontosan a 3-mal osztható pozitív egész n-ek esetén osztható 7-tel.

5. feladat: Az ABC háromszög AB és AC oldalainak belsejében úgy vesszük fel rendre a D és E pontokat, hogy BD = CE teljesüljön. Legyen F és G rendre a BC és DE szakaszok felezőpontja, valamint legyen M az FG egyenesnek az AC oldalal vett metszéspontja! Határozzuk meg az AM szakasz hosszát az AB és AC oldalak hosszának függvényében!

Olosz Ferenc (Szatmárnémeti)

5. feladat I. megoldása: A feladat lényegén nem változtat, ha feltételezzük, hogy AB < AC.

Az AC oldal A-n túli meghosszabbításán felvesszük a B'és D' pontokat úgy, hogy AB' = AB és AD' = AD teljesüljön. Könnyen látható, hogy B'D' = BD = CE = d és BB'párhuzamos DD'-vel.

 Ha $M^\prime$ az  $ED^\prime$ szakasz felezőpontja, akkor  $M^\prime$ a  $CB^\prime$ szakasz felezőpontja is.

Az EDD' háromszögben GM' középvonal, tehát GM'párhuzamos DD'-vel.

A CBB' háromszögben FM' középvonal, tehát FM'párhuzamos BB'-vel.

Mivel GM' párhuzamos DD'-vel, FM' párhuzamos BB'-vel és BB' párhuzamos DD'-vel, ezért F, G, M' egy egyenesen elhelyezkedő pontok, tehát M' egybeesik az M ponttal.



$$ME = MD' = MA + AD' = AM + AD = AM + AB - BD = AM + AB - d$$

és

$$AC = AM + ME + EC = AM + (AM + AB - d) + d,$$

ahonnan AC = 2AM + AB és  $AM = \frac{AC - AB}{2}$ . Tehát  $AM = \frac{|AB - AC|}{2}$ .

5. feladat II. megoldása: A feladat lényegén nem változtat, ha feltételezzük, hogy AB < AC. Legyen L az FG egyenes és az AB egyenes metszéspontja.

Az ABC és ADE háromszögekben alkalmazzuk Menelaosz tételét az FG szelőre nézve:

$$\frac{LB}{LA} \cdot \frac{MA}{MC} \cdot \frac{FC}{FB} = 1 \quad \text{és} \quad \frac{LD}{LA} \cdot \frac{MA}{ME} \cdot \frac{GE}{GD} = 1.$$

Figyelembe véve az FB = FC és GD = GE egyenlőségeket, kapjuk, hogy

$$\frac{LB}{LA} \cdot \frac{MA}{MC} = 1$$
 és  $\frac{LD}{LA} \cdot \frac{MA}{ME} = 1$ . (\*)



- (\*)-ból következik, hogy  $\frac{LB}{LA} = \frac{MC}{MA}$  és  $\frac{LD}{LA} = \frac{ME}{MA}$ , ahonnan az aránypárok megfelelő oldalait egymásból kivonva kapjuk, hogy  $\frac{LB-LD}{LA} = \frac{MC-ME}{MA}$ , vagyis  $\frac{BD}{LA} = \frac{CE}{MA}$ . Mivel BD = CE, ezért LA = MA.
- A (\*) egyenlőségek bal oldalainak egyenlőségéből következik  $\frac{LB}{MC} = \frac{LD}{ME}$ , vagyis  $\frac{LB}{LD} = \frac{MC}{ME}$ , amelyből

származtatjuk az  $\frac{LB}{LB-LD} = \frac{MC}{MC-ME} \Leftrightarrow \frac{LB}{BD} = \frac{MC}{CE}$  aránypárt. Mivel BD = CE, ezért LB = MC, amely felírható LA + AB = AC - AM alakban. Figyelembe véve az LA = MA egyenlőséget, kapjuk, hogy  $AM = \frac{AC - AB}{2}$ . Tehát  $AM = \frac{|AB - AC|}{2}$ .

6. feladat: Egy valós számokból álló  $a_1, a_2, a_3, \ldots, a_n$  véges sorozat tagjaira teljesül, hogy bármely 5 egymást követő tagjának összege negatív, és bármely 8 egymást követő tagjának összege pozitív. Legfeljebb hány tagja lehet egy ilyen sorozatnak?

Kallós Béla (Nyíregyháza)

6. feladat megoldása: Megmutatjuk, hogy 12 tagja már nem lehet a sorozatnak. Vizsgáljuk meg a következő táblázatot:

| $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ | $a_6$    | $a_7$    | $a_8$    |
|-------|-------|-------|-------|-------|----------|----------|----------|
| $a_2$ | $a_3$ | $a_4$ | $a_5$ | $a_6$ | $a_7$    | $a_8$    | $a_9$    |
| $a_3$ | $a_4$ | $a_5$ | $a_6$ | $a_7$ | $a_8$    | $a_9$    | $a_{10}$ |
| $a_4$ | $a_5$ | $a_6$ | $a_7$ | $a_8$ | $a_9$    | $a_{10}$ | $a_{11}$ |
| $a_5$ | $a_6$ | $a_7$ | $a_8$ | $a_9$ | $a_{10}$ | $a_{11}$ | $a_{12}$ |

A feladat egyik feltétele miatt minden oszlop összege negatív, azaz a táblázatban szereplő összes szám összege negatív.

A másik feltétel miatt azonban minden sor összege pozitív, azaz az összes szám összege pozitív.

Ez az ellentmondás azt jelenti, hogy 12 tagja nem lehet a sorozatnak. 11 tagja viszont már lehet a sorozatnak, amint ezt a következő példa is mutatja:

5; -8; 5; 5; -8; 5; -8; 5; 5; -8; 5.