《并行计算: Parallel Computing》

结构

编程

算法

应用

§2.1 并行计算机系统结构模型

(第一部分)

徐悦甡(Yueshen Xu)

ysxu@xidian.edu.cn

软件工程系 西安电子科技大学

本节提纲

□并行计算机体系结构分类

- 通用计算机体系结构
- Flynn的四种体系结构划分方法
- 并行计算机体系结构的具体实现
- 并行计算机体系结构多种实现的比较。

从处理器的角度

□并行计算机访存模型

- 均匀存储访问与非均匀存储访问
- 高速缓存存储访问
- 非远程存储访问模型等
- 体系结构与访存模型的关系

从存储器的角度

学习动机

- □ 为什么要学习并行计算机体系结构
 - 知识体系的完整性
 - 与其它学校的同类专业竞争
 - ▶ 中科大,哈工大,南大
 - 职业发展的可能性
 - 并行计算平台架构师
 - 并行计算平台高级工程师
 - 并行计算机体系结构设计师
 - 教学大纲的要求
 - 而且内容本身也很有趣

并行计算应用

并行算法设计

知识栈

并行与并发 编程

并行计算机体系 结构

通用计算机体系结构

摘自尹朝庆.《计算机系统结构》

通用计算机体系结构

□涉及到的重要组件或结构

- 总线 (物理层面)
 - ➤ 连接处理器、存储模块和I/O外围设备等的一组导线和插座
- 本地总线
 - ➤ CPU上的总线
- 存储(器)总线
 - > 存储器板上的总线

- 数据总线
 - ▶ 把CPU的数据传送到存储器或输入输出接口等部件,或将其它部件的数据传送到CPU
 - ▶ 位于I/O板与通信板上

通用计算机体系结构

- SCSI总线(Small Computer System Interface)
 - I/O总线的一种,通用接口标准,用于与多种 类型的外设进行通信
- 各插入板上较通用的组件
 - ➤ IOC: input/output controller, I/O控制器
 - ➤ IOP: input/output processor, I/O处理器
 - ➤ IF: interface logic, 专用逻辑接口
 - ➤ LM: local memory, 局部存储器
 - ➤ MC: memory controller, 存储器控制器
 - CC: communication controller, 通信控制器

□Flynn分类法

■ 分类依据: 指令流和数据流的执行方式

指令流:机器执行的指令序列

数据流:由指令流调用的数据序列,包括输入数据和中间结果

-<mark>SISD</mark> (Single instruction stream, single data stream),单指令流 单数据流

Flynn 分类法 SIMD(Single instruction stream, multiple data streams), 单指令流 多数据流

MISD(Multiple instruction streams, single data stream), 多指令流 单数据流

MIMD(Multiple instruction streams, -multiple data streams),多指令流 多数据流

Michael J. Flynn

□ SISD(早期计算机)

Single instruction stream, single data stream

- 从存储在内存中的程序那里获得指令,并作用于单一的数据流,即一条指令处理一条数据
- > 多用于早期计算机
 - 目前很少使用
 - 并行计算机也不使用

PU: processing unit

□ SIMD(单核计算机)

> Single instruction stream, multiple data streams

- 单条的指令流作用于多于一个的数据流上,在单个时钟周期内处理多个数据单元
- > 主要用于单核计算机
 - 不是并行计算机的主流模式

PU: processing unit

□ MISD (实际很少用)

Multiple instruction streams, single data stream

采用多个指令流来处理单个 数据流

□ MIMD(多核计算机,并行)

Multiple instruction streams, multiple data streams

以同时执行多个指令流,这 些指令流分别对不同数据流 进行操作

→ MIMD:多指令流多数据流

□ MIMD的常见具体实现

PVP (Parallel Vector Processor),并行向量处理机

SMP(Symmetric Multi-processor),对称 多处理机

五种常见 的MIMD -实现方式

MPP(Massively Parallel Processor),大规模并行处理机

DSM(Distributed Shared-Memory),分布式共享内存机

COW(Cluster of Workstations), 工作站 集群 传统分类法, 结构越来越 复杂

→ MIMD:多指令流多数据流

- □高性能并行计算机发展历程
 - 均为MIMD结构

CRAY-1(1976年)

萌芽

行处理机

2000 -

1964 - 1975

CM-5(1993年)

CDC 6600(1964年)

集群

按照MIMD的类 别来详细讲解

→ MIMD:多指令流多数据流

- □ PVP (Parallel Vector Processor)
 - 并行向量处理机 (依赖流水线技术)

PVP

- 向量处理机 (Vector Processor, VP)
 - 向量由一组有序、具有相同类型和位数的元素组成
 - 向量处理机:在基于流水线技术的计算机中,具有向量数据表示和相应向量指令的处理机

→ MIMD:多指令流多数据流

□ PVP (Parallel Vector Processor,续)

- ▶ 相对地, 标量处理机: 不具有向量数据表示和相应向量指令的处理机
- > 一般应用的计算机均为标量处理机
- ▶ vs. 向量处理机应用于 → 科学计算(非/线性规划、傅里叶变换、偏微分方程、矩阵计算等等)
- 早期 (70~90年代) 的超级计算机、巨型机,如银河早期系列,均为向量处理机

常规处理器设计性价比的快速下降,使向量处理器在90年代末开始不再占主导地位

银河-I

Seymor Cray与设计的CDC STAR

→ MIMD:多指令流多数据流

- SMP(Symmetric Multi-processor)
 - 对称多处理机

SM =Shared Memory

- 各处理器完全平等,无主从之分
- ▶ 所有的处理器都可以访问任何存储单元和I/O设备
- 通信上,可用共享变量(读写同一内存单元)来实现

→ MIMD:多指令流多数据流

- □商用SMP系统特性比较
 - 2005年之前
 - ▶ 最新型号的数据各位同学可自行查找

特性 	DEC Alphaserver	HP 9000	SUN Ultra 6000	SGI Power XL
处理器数目	12	12	30	36
最大主存	28 GB	16 GB	30 GB	16 GB
磁盘容量	192 GB	168 GB	63 GB	144 GB
I/O带宽	1.2 GBps	1 GBps	2.6 GBps	320 MBps乘 以网卡槽数

DEC: Digital Equipment Corporation

SGI: Silicon Graphics

→ MIMD:多指令流多数据流

■ MPP(Massively Parallel Processor)

■ 大规模并行处理机

NIC = Network Interface Circuitry

LM = Local Memory

MPP

- 规模非常大的并行计算机系统,含有成千上万个处理器
- 一般采用分布的存储器,存储器一般为处理器私有
- 各处理器之间用消息传递的方式通信

Intel Paragon

→ MIMD:多指令流多数据流

□ MPP的设计问题

- 可扩展性
 - ▶ MPP在处理器方面有很高的可扩展性
 - ➤ 但由此会带来I/O容量、存储器等的平衡问题
- 可用性
 - ▶ 据估计,10000个处理器/计算节点的MPP系统,每天至少有一个 处理器/计算节点失效
- 存储器与I/O能力
 - ➤ 存储器部分发展较快,但I/O部分发展较慢
- 系统成本
 - 针对一个任务,需要多少处理器/计算节点

MPP

→ MIMD:多指令流多数据流

- DSM(Distributed Shared-Memory)
 - 分布式共享内存机

MB = Memory Bus

NIC = Network Interface

Circuitry

LM = Local Memory

DIR = 缓存目录

- 存储器在物理上是分布在各个结点中的
- 但是通过硬件和软件为用户提供一个单一地址的编程空间,即形成一个虚拟的共享存储器

→ MIMD:多指令流多数据流

- □ DSM(Distributed Shared-Memory,续)
 - 分布式共享内存机
 - 通过高速缓存目录 (DIR) 支持分布高速缓存的一致性

Cray Inc.

→ MIMD:多指令流多数据流

- □ COW (Cluster of Workstations)
 - 工作站集群

NIC = Network Interface Circuitry

LD = Local Disk

M = Memory

Bridge = 网桥

COW

- 用高速商业互连网络或者定制的网络连接
 - ▶ 以太网,ATM网络等

→ MIMD:多指令流多数据流

- □ COW (Cluster of Workstations,续)
 - 工作站集群
 - 每个结点都是一台完整的计算机
 - > 现代超级计算机主流体系结构,也是商用产品的主流形式
 - > 表现形式:一排排的机柜

□各实现形式比对

MPP

- □各并行计算机体系结构渐趋一致
 - SMP、MPP、DSM和COW并行结构渐趋一致
 - 特征
 - > 大量的节点通过高速网络互连起来
 - ▶ 节点遵循Shell结构:用专门定制的Shell电路将商用微处理器和节点的其它部分(包括板级Cache、局存、NIC和DISK)连接起来

注: Shell -> 专门设计定制的电路 vs. Linux中的命名解释器

- 当处理器芯片更新换代时系统的其他部分无需改变
- 动机
 - 简化并行计算机的设计,提高并行计算机的通用性

□三种通用的体系结构

(a)无共享

(b)共享磁盘

(c)共享存储

区别:

- > 是否共享外存
- > 是否共享内存

□我国的曙光系列超级计算机阵

曙光一号 SMP 1993

曙光1000 MPP 1995

曙光2000l Cluster 1998

曙光2000II Cluster 1999

曙光3000 Cluster 2000

曙光4000A Cluster 2004

注:来源自曙光公司解决方案中心总经理,曹振南

SMP = Symmetric Multi-processor MPP = Massively Parallel Processor

曙光5000A 2009

□我国的曙光系列超级计算机

曙光20001

曙光4000A

曙光2000II

曙光5000A

曙光3000

曙光6000

曙光 vs. 天河 中国并行超级 计算机的北派 南派, 移动联

作业

□题目

- 题目1. 从可扩展性上比较SMP与MPP两种体系结构
 - 可扩展性的角度包括:内存大小可扩展性、处理器数目可扩展性、磁盘容量可扩展性等,至少选取一个
- 题目2. 试说明(可举例,也可论证): 如何使用SIMD的机器 上实现MIMD并行应用?
 - 即假设你身边有的只是SIMD的机器,但任务却是要实现一个并行应用 ,那是否有办法可完成?

作业

□要求

- 独立完成,发送电子版,可以是word,也可以pdf
- 作业提交地址
 - xdsepc2018@163.com
 - 附件命名规则: "学号+姓名+作业一"
 - ▶ 时间:两周之内,至第四次上课之前提交
 - ▶ 篇幅:没有绝对的页数要求,但是两道题目一般不应少于1页A4纸的2/3
- 课件地址
 - http://web.xidian.edu.cn/ysxu/teach.html

课件地址

徐悦甡的主页: 个人信息 科学研究 论文成果 荣誉奖励 科研团队 课程教学 招生信息 English

课程教学

1. 承担课程与竞赛:

主讲:《信息检索》

《信息检索》课件:

上机报告、课堂作业与课程大作业说明:/ysxu/files/20170609_152043.pdf

§ 4.1 文本聚类: /ysxu/files/20170427_104024.pdf

§ 4.2 文本分类: /ysxu/files/20170506_135325.pdf

§ 5 推荐系统:/ysxu/files/20170516_183350.pdf

§ 6 语义网: /ysxu/files/20170530_200219.pdf

§ 7 课程回顾与复习:/ysxu/files/20170609_165935.pdf

并行计算课件

§ 1 课程说明与并行计算概述: ppt (点击直接下载)

§2.2 主流并行计算机系统与性能测评

http://web.xidian.edu.cn/ysxu/

梅 编程 算法

应用