Nome, Cognome	Matricola

Compito 38

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere <u>solo ed esclusivamente</u> il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. <u>NON</u> si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = -\frac{2x^2 + 12x - 54}{2x^2 + 12x + 34},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \ln \left(\frac{1}{\sqrt[6]{14^n}} \right) \ln \left(\left(\frac{n+8}{n} \right)^8 \right)$$

b) $\lim_{n \to +\infty} \left(\sqrt{2n^2 + 2n + 1} \right) \sqrt{2n^2 + 5n}$

b) $\lim_{x \to +\infty} (\sqrt{3x^2 + 2x + 1} - \sqrt{3x^2 + 5x})$

Esercizio 3 (1 punto) Calcolare il valore della seguente somma finita.

$$\sum_{n=1}^{41} n$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^{11} \left(1-\cos\left(\frac{1}{n^4}\right)\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -\frac{125}{2}\sqrt{3} - \frac{125}{2}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{2x^2 + 16x + 30}{3x^2 + 3x - 18} \ge 0 \right\}$$

$$C = \left\{ x \in \mathbb{R} : \sqrt{3x^2 - 48} < \sqrt{4x^2 - 6x - 43} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

$$\mathbf{a}) \int e^x \cos(x) \, \mathrm{d}x$$

b)
$$\int_0^1 x^2 e^{-2x} dx$$

c)
$$\int_{8^{-1/9}}^{+\infty} \frac{-8x^8}{1+64x^{18}} dx$$

Esercizio 8 (2 punti) Calcolare la soluzione del seguente problema di Cauchy.

$$\begin{cases} y''(x) - 4y'(x) + 85y(x) = 0\\ y(0) = -4\\ y'(0) = -5 \end{cases}$$

Nome, Cognome	Matricola
Compito 37	
Scritto di esercizi di Istituzioni di Mate	matica del 19/01/2022
Corso di Laurea Triennale in Informa	tica – a.a. 2021/2022
Svolgere solo ed esclusivamente il compito associato alla propria matric Classroom. Scrivere in maniera leggibile nome cognome e matricola. Ri	sola, come indicato nel file che si trova nello stream di inortare le soluzioni degli esercizi dietro questa pagina.

Esercizio 1 (5 punti) Data la funzione

NON si devono includere gli svolgimenti. Il punteggio massimo è 25.

$$f(x) = \frac{-11 - 12x}{3 + 3x},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

c l'insieme dei punti $x \in D$ in cui f'(x) > 0; (MQSSIMI & MINIMI)

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \left(n - \frac{4}{n} \right) \ln \left(1 - \frac{4}{n} \right)$$
b)
$$\lim_{x \to 0} \frac{3 \ln(e + x^4) - 3}{1 - \cos(x^2)}$$

Esercizio 3 (1 punto) Calcolare il valore della serie numerica $\sum_{n\geqslant 0}(a_n-a_{n+1})$ con

$$a_n = \frac{(-5n+2)^2}{(-5n+9)^2}.$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^7 \tan\left(\frac{1}{n^9}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -\frac{27}{2}\sqrt{2} - \frac{27}{2}\sqrt{2}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{x+1}{x+6} \le \frac{x+1}{x-9} \right\}$$
$$C = \left\{ x \in \mathbb{R} : \sqrt{2x^2 + 14x + 20} \le \sqrt{3x^2 + 20x + 25} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int \frac{3x^2 - 2x}{5 - x^2 + x^3} \ln(5 - x^2 + x^3) dx$$
b)
$$\int_0^{\sqrt{\frac{\pi}{2}}} 2x \sin(x)^2 dx$$
c)
$$\int_0^{+\infty} x^3 e^{-x} dx$$

Esercizio 8 (2 punti) Calcolare la soluzione del seguente problema di Cauchy.

$$\begin{cases} y'(x) = \frac{1}{x}y(x) + x^{-1} \\ y(3) = 2 \end{cases}$$

Compito 38

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

- Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è ordinato e completo.
- **Enunciato 2.** Se $n \in \mathbb{N}$ è pari allora $f(x) = x^n$ è una funzione dispari nel suo dominio di definizione.
- Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} p(x) \geqslant 0 \\ q(x) \geqslant 0. \end{cases}$
- Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \arccos(x)$.

$$\frac{y}{\pi/2}$$

- Enunciato 5. $P = (\sin(x), \cos(x))$
- **Enunciato 6.** Se $z \in \mathbb{C}$, allora $\Im m(z) = \frac{z \overline{z}}{2i}$.
- Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 \delta, x_0).$
- Enunciato 8. $\lim_{x\to 0} \frac{a^x-1}{x} = 1 \ \forall a > 0$
- **Enunciato 9.** Se tutte le sottosuccessioni di $\{a_n\}_n$ convergono ad L, allora $\lim_{n \to +\infty} a_n = L$.
- Enunciato 10. La serie armonica a segno alterno diverge.
- Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è tale che f([a,b]) è un intervallo, allora f è continua in [a,b].
- Enunciato 12. $\frac{d}{dx}\tan(x) = \frac{1}{\cos(x)^2}$
- Enunciato 13. Per la regola di De L'Hôpital si ha che $\lim_{x \to +\infty} \frac{x^2 + \sin(x)}{x + 2\cos(x)} = \lim_{x \to +\infty} \frac{2x + \cos(x)}{1 2\sin(x)} = +\infty$

Enunciato 14.
$$\int \frac{\mathrm{d}x}{\cos(x)^2} = \tan(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V							Graph.				1111111			
F														

Compito 37

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali N è un campo.

F

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(|x|).

F

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

V

Enunciato 4. tan(0) = 0

V

Enunciato 5. $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$

V

Enunciato 6. Se $z \in \mathbb{C}$, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

,

F

Enunciato 7. $\lim_{x \to x_0} f(x) = L$ se $\exists \varepsilon > 0$ t.c. $\forall \delta = \delta(\varepsilon) > 0$ $\exists x \in D$ con $0 < |x - x_0| < \delta$ t.c. $|f(x) - L| > \varepsilon$.

F

Enunciato 8. $\lim_{x\to 0} \frac{a^x-1}{x} = 1 \ \forall a > 0$

v

Enunciato 9. Se per ogni $\{x_n\}_n \subset \mathbb{R} \setminus \{x_0\}$ convergente ad x_0 si ha che $\lim_{n \to +\infty} f(x_n) = L$, allora $\lim_{x \to x_0} f(x) = L$.

F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n \ge 1} b_n$.

V

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

V

Enunciato 12. $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

F

Enunciato 14. $\int \frac{dx}{x\sqrt{x^2 - 1}} = \arcsin(x) + c$

F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V					1	5 5				1	Louis		-	
F														