Probability and Statistics

4 - Continuous Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

December 12, 2023

Standard Normal Distribution

Definition (4.50)

The normal distribution $\mathcal{N}(0,1)$ is called the *standard normal distribution*. Its pdf and cdf are denoted by

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$$

and

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{1}{2}u^2} du$$

respectively.

Standard Normal Distribution

Normal Distributions

Lemma (4.51)

If $X \sim \mathcal{N}(\mu, \sigma)$, then:

- (i) $E(X) = \mu$
- (ii) $Var(X) = \sigma^2$
- (iii) $\phi_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$ (for all $t \in \mathbb{R}$)
- (iv) $aX + b \sim \mathcal{N}(a\mu + b, |a| \cdot \sigma)$ if $a \neq 0$
- $(v) F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$
- (vi) $\Phi(-x) = 1 \Phi(x)$ for all $x \in \mathbb{R}$
- (vii) $\Phi^{-1}(p) = -\Phi^{-1}(1-p)$ for all $p \in (0,1)$

Proof of (4.51)(iv):
$$aX + b \sim \mathcal{N}(a\mu + b, |a| \cdot \sigma)$$
 if $a \neq 0$

Exc. 6-2:
$$f_{Y^{(i)}} = \frac{1}{|a|} f_{X}(\frac{x-b}{a}) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi} \cdot 6} \cdot e^{-\frac{1}{2}(\frac{x-b}{a} - x)^{2}}$$

Proof of (4.51)(v):
$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$(4.51)(iv)$$
 $Y = \frac{1}{4} \cdot X - \frac{1}{4} \sim W(\frac{1}{4} \cdot p - \frac{1}{4}) = W(0,1)$

Proof of
$$(4.51)(vi)$$
: $\Phi(-x) = 1 - \Phi(x)$ for all $x \in \mathbb{R}$

because poly fixe is an even function

Proof of
$$(4.51)$$
(vii): $\Phi^{-1}(p) = -\Phi^{-1}(1-p)$ for all $p \in (0,1)$

$$X_{1} = \overline{\phi}^{-1}(p)$$

$$= J \cdot \overline{\phi}(x) = p$$

$$(0) = J \cdot A - p = A - \overline{\phi}(x) = -\overline{\phi}(-x)$$

$$= -\overline{\phi}^{-1}(1-p) = -\overline{\phi}^{-1}(\overline{\phi}(-x))$$

$$= -(-x) = x = \overline{\phi}^{-1}(p)$$

Normal Distributions

Remark (4.52)

MATLAB provides implementations of pdf's, cdf's and the inverses of cdf's of normal distributions under the names normpdf(), normcdf() and norminv(), respectively.

Sum of independent random variables $X_i \sim \mathcal{N}(\mu_i, \sigma_i)$

Theorem (4.53)

If X_1, \ldots, X_n are independent random variables with

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i)$$

then

$$X = X_1 + \cdots + X_n \sim \mathbf{W}(\mu, \mathbf{r})$$

has a normal distribution with mean $\mu=\mu_1+\cdots+\mu_n$ and variance $\sigma^2=\sigma_1{}^2+\cdots+\sigma_n{}^2$

moment sensety fet. of
$$X$$

$$\frac{\partial x}{\partial t}(t) = \prod_{i=1}^{n} e^{M_i \cdot t} + \frac{1}{2}\sigma_i^2 t^2 = e^{\sum_{i=1}^{n} (\mu_i \cdot t + \frac{1}{2}\sigma_i^2 t^2)} = e^{\sum_{i=1}^{n} (\mu_i \cdot t + \frac$$

Central Limit Theorem

Theorem (4.54)

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of independent, identically distributed random variables with finite mean μ and finite variance σ^2 . Let F_{Y_n} be the cdf of Ac (x") = (7); 4.23

$$Y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right) \stackrel{!}{=} \frac{\left(\sum_{i=1}^n X_i \right) / n - \mu}{\sigma / \sqrt{n}} = \left(\overline{X_n} \right)^n$$

Then $E(Y_n) \stackrel{\checkmark}{=} 0$. $Var(Y_n) \stackrel{\checkmark}{=} 1$ for all $n \in \mathbb{N}$ and:

$$\lim_{n\to\infty} F_{Y_n} = \Phi$$

Proof of Theorem (4.54)

Put
$$Z_{i} = \frac{X_{i} - \mu}{\sigma}$$
. Then:
$$E(\frac{1}{2};) = 0, \quad \sqrt{\sigma}(\frac{1}{2};) = E(\frac{1}{2};) - \sqrt{\sigma}(\frac{1}{2};) - \sqrt{\sigma}(\frac{1}{$$

Proof of Theorem (4.54)

$$\varphi_{Y_n}(v) = \dots = \left(1 - \frac{1}{2} \frac{v^2}{n} + \frac{-jv^3}{6n^{3/2}} E(Z_1^3) + \dots\right)^n$$

$$= \left(1 + \frac{1}{n} \cdot \left(-\frac{1}{2} v^2 + \frac{jv^3}{6n^{1/2}} E(Z_1^3) + \dots\right)\right)^n \xrightarrow{n \to \infty} e^{-\frac{1}{2}v^2}$$

$$x_{i} \rightarrow x_{i}$$
 $y_{i} \rightarrow x_{i}$ $y_{i} \rightarrow x_{i}$

Stefan Heiss (TH OWL)

Proof of Theorem (4.54)

$$\varphi_{Y_n}(v) = \dots = \left(1 - \frac{1}{2} \frac{v^2}{n} + \frac{-jv^3}{6n^{3/2}} E(Z_1^3) + \dots\right)^n$$

$$= \left(1 + \frac{1}{n} \cdot \left(-\frac{1}{2} v^2 + \frac{-jv^3}{6n^{1/2}} E(Z_1^3) + \dots\right)\right)^n \xrightarrow{n \to \infty} e^{-\frac{1}{2}v^2}$$
characteristic (ch.

Hence, the sequence of characteristic functions $\varphi_{Y_n}(v)$ converges to the characteristic function of the standard normal distribution and this implies the convergence of $(Y_n)_{n\in\mathbb{N}}$ to the standard normal distribution.

Stefan Heiss (TH OWL)