TD1. Ensemble fini

Exercice 1. [Principe d'inclusion-exclusion] Soit A, B, et C des sous-ensembles d'un ensemble fini E. Démontrer

$$\operatorname{card}(A \cup B \cup C) = \operatorname{card}(A) + \operatorname{card}(B) + \operatorname{card}(C) - \operatorname{card}(A \cap B) - \operatorname{card}(B \cap C) - \operatorname{card}(C \cap A) + \operatorname{card}(A \cap B \cap C).$$

Exercice 2. Soit A_1, \ldots, A_n des sous-ensembles d'un ensemble fini E. Démontrer

$$\operatorname{card}(A_1 \cup A_2 \cup \ldots \cup A_n) \le \sum_{i=1}^n \operatorname{card}(A_i).$$

Exercice 3. Pour n et p entiers naturels, avec n non nul, on note $u_{n,p}$ le nombre de n-listes (x_1, \ldots, x_n) d'entiers naturels telles que $x_1 + x_2 + \ldots + x_n = p$. Montrer que, pour $n \geq 2$ et $p \in \mathbb{N}$, on a

$$u_{n,p} = \sum_{k=0}^{p} u_{n-1,k}.$$

Exercice 4. [Principe des tiroirs] Si on place n objects dans m tiroirs, avec n > m, il y a un tiroir contient au moins deux objects.

Exercice 5. [Application du principe des tiroirs]

- a) Soit $n \in \mathbb{N}^*$. Parmi n+1 réels d'intervalle [0,1], montrer qu'il y en a au moins deux dont la distance est inférieure à 1/n.
- b) Soit $n \in \mathbb{N}^*$. On considère des entiers a_1, \ldots, a_n non nécessairement distincts. Montrer qu'on peut trouver un sous-ensemble non vide de cet ensemble d'entier, dont la somme est divisible par n. (Indication : on pourrait considérer les sommes $s_1 = a_1, s_2 = a_1 + a_2, \ldots, s_n = a_1 + \ldots + a_n$.)

Exercice 6. Soit $n \in \mathbb{N}^*$.

- a) Combien y a-t-il de surjections de [1, n] dans [1, 2].
- b) Combien y a-t-il de surjections de [1, n] dans [1, 3].

Exercice 7. Soit E un ensemble fini de cardinal n. Calculer

$$\sum_{X \subset E} \operatorname{card}(X), \qquad \qquad \sum_{X,Y \subset E} \operatorname{card}(X \cap Y).$$

Exercice 8. Pour tous $n \in \mathbb{N}^*$, on note a_n le nombre de listes d'entiers naturels non nuls dont la somme est n.

- a) Calculer a_n pour $n \leq 3$.
- b) Conjecturer la formule donnant a_n . La démontrer.

Exercice 9. Un groupe de 2n personnes comprend n hommes et n femmes.

- a) Combien y a-t-il de manières de les disposer autour d'une table ronde, en ne tenant compte que de leurs position relative? (deux dispositions sont identiques si chaque invité a le même voisin à sa gauche et le même voisin à sa droite).
- b) Même question si on veut respecter l'alternance homme-femme.
- c) Même question si on veut respecter l'alternance homme-femme et que de plus Madame X soit à côté de Monsieur Y?

Exercice 10. Etant donné un mot m, on appelle anagramme de m tout mot formé des même lettres que m.

- a) Quel est le nombre d'anagrammes du mot orange.
- b) Quel est le nombre d'anagrammes du mot ananas.
- c) Quel est le nombre d'anagrammes d'un mot contenant n_1 fois la lettre ℓ_1 , n_2 fois la lettre ℓ_2 , ..., et n_p fois la lettre ℓ_p ?