STAT 206B

Chapter 3: From Prior Information to Prior Distributions

Winter 2022

- A fundamental basis of Bayesian decision theory is that statistical inference should start with the rigorous determination of three factors.
 - ** the distribution family for the observations (sampling distribution), $f(x \mid \theta)$ for $x \in \mathcal{X}$
 - ** the prior distribution for the parameter $\pi(\theta)$, $\theta \in \Theta$
 - ** the loss association with the decisions, $L(\theta, \delta) \in [0, +\infty)$.
- In this chapter, we will discuss prior distributions CR Chapter 3 and JB Chapters 3 & 4.

† Priors!

- Priors are carriers of external knowledge (outside the data being modeled and analyzed) that is coherently incorporated via Bayes theorem to the inference.
- Parameters (θ) are unobservable.
 - ⇒ Prior specification is **subjective** in nature.
- There is no unique way of choosing a prior distribution.
 - ⇒ There is no such a thing as *the* prior distribution.
- The choice of the prior distribution has an influence on the resulting inference.
 - ⇒ Ungrounded prior distributions produce unjustified posterior inference.

† Is using a prior a problem?

- The elicitation of a model (likelihood) and loss function is highly subjective, and Bayesians merely divide the necessary subjectivity to two sources - that from the model and from the prior.
- Vast amount scientific information coming from theoretical and physical models is guiding specification of priors and merging such information with the data for better inference.
- Being subjective ≠ Being nonscientific

- If complete information is given, an exact prior can be elicited.
 However, it is very rare!
- How to specify priors?
 - ** Subjective determination and approximations (Sec 3.2)
 - ** Conjugate priors (Sec 3.3)
 - ** Noninformative prior distributions (Sec 3.5): have **little in- fluence** on the posterior distribution
- criticism Bayesian inference is overly sensitive to the choice of a prior
 - ⇒ the development of non-informative and robust priors (so change in the prior distribution does not change the posterior inference much)

- † Subjective Determination (Sec 3.2)
 - Subjective prior distributions exist as a consequence of an ordering of relative likelihoods.
 - Approximations to the prior distribution. e.g.
 - ** When the parameter space Θ is finite, obtain a subjective evaluation of the probabilities of the different values of θ .
 - ** When Θ is noncountable (e.g. an interval of the real line), use the histogram approach.
 - Divide Θ into intervals
 - Determine the subjective probability of each interval
 - Plot a probability histogram
 - If needed, a smooth density $\pi(\theta)$ can be sketched.

• Approximations to the prior distribution. (contd)

JB Example 1 Assume that $\Theta = [0, 1]$. Suppose that

- the parameter point $\theta=3/4$ is felt to be the most likely, while $\theta=0$ is the least likely.
- ** 3/4 is estimated to be three times as likely to be the true value of θ as is 0.
- ** $\theta=1/2$ and $\theta=1$ are twice likely as $\theta=0$ while $\theta=1/4$ is 1.5 times as likely as $\theta=0$.

- Approximations to the prior distribution. (contd)
 - ** So far we have seen "histogram approach" and "relative likelihood approach".
 - ** JB discusses using a subjective construction of CDF in Section 3.2.
- When Θ is not bounded, the subjective determination of π is complicated due to the difficulty of subjectively evaluating the probabilities of the extreme regions of Θ (will see this from Example 3.2.6).
- Using marginal distribution to determine the prior (JB 3.5)

- Parametric Approximations
 - ** How? Assume that $\pi(\theta)$ is of a given functional form and then choose the density of this given form which most closely matches prior beliefs (through the moments or the quantiles).
 - ** Most used (and misused)
 - ** Very useful when a density of a standard functional form gives a good match to the prior information.
 - ** Also useful when only vague prior information is available.
 - ** Considerably different functional forms can often be chosen for the prior density (as seen in the example).
 - ** drawback: The choice of the parameterized family is often based on ease in the mathematical treatment. The resulting posterior inference is affected by the choice.

• Ex 3.2.5 Let $X_i \sim \text{Bin}(n_i, p_i)$ be the number of passing students in a freshman calculus course of n_i students. Over the previous years, the average of the p_i is 0.70, with variance 0.1. If we assume that the p_i 's are all generated according to the same beta distribution, $\text{Be}(\alpha, \beta)$, then we choose the values of α and β which most closely matches the prior beliefs. That is, set

$$\mu = \frac{\alpha}{\alpha + \beta}$$
 and $\tau^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$,

and solve for α and β .

- **Example 3.2.6** Let $x \sim N(\theta, 1)$. Assume that the prior median of θ is 0, the first quartile is -1, and the third quartile is +1. Use the quadratic loss function.
 - ** Case 1: Assume $\theta \sim N(\mu, \tau^2)$ and set $\mu = 0$ and $\tau^2 = 2.19$. $\Rightarrow \delta_1^{\pi}(x) = x \frac{x}{3.19}$

****** Suppose x = 4 is observed, and have $\delta_1^{\pi}(x) = 2.75$.

- **Example 3.2.6** (contd)
 - ** Case 2: Assume θ has a Cauchy distribution and set $\theta \sim \operatorname{Cauchy}(0,1)$.

$$\Rightarrow \delta_1^{\pi}(x) \approx x - \frac{x}{1+x^2} \text{ for } |x| \ge 4$$

 $\star\star$ For x=4, we have $\delta_2^{\pi}(x)=3.76$.

• **Example 3.2.6** (contd)

• **Example 3.2.6** (contd)

• **Example 3.2.6** (contd)

• **Example 3.2.6**(contd) If x = 10 is observed,

- Example 3.2.6 (contd) Take-home message;
 - ** The selection of the parameterized family greatly affects the inference about θ , especially due to the tail of the chosen prior where prior information is scarce.
 - ** These posterior discrepancies call for some tests on the validity (or robustness) of the selected priors.

† Empirical Bayes

- Use data to estimate some features of the prior distribution
- Choose a prior distribution a posteriori! ⇒ It does not belong to the Bayesian paradigm.
- Parametric empirical Bays:
 - ** Assume that the prior distribution of θ is in some parametric class with unknown parameters.
 - ** Use data to specify the unknown parameters.

JB in Section 4.5.2 Assume that $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$ with known σ^2 , $i=1,\ldots,p$ and θ_i are from a common prior distribution. Specify the prior distribution for $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_p)$ using data. Assume $\theta_i \stackrel{iid}{\sim} N(\mu,\tau^2)$. The hyperparameters μ and τ^2 are unknown.

 X_i is the test score of individual i, random about his/her true ability θ_i with known "reliability" σ^2 . True abilities θ_i , $i=1,\ldots,p$ are from an unknown normal population.

JB 4.5.2 (contd) How do we specify values for μ and τ^2 ?

- ****** We use the data to estimate μ and τ^2 .
- ** One way is to consider $m(\mathbf{x} \mid \pi)$ as a likelihood function for π as follows;
- ** Intuition $m(\mathbf{x} \mid \pi)$ is the density according to which X will actually occur.

If X_i is a test score of individual i which was normally distributed about "true ability" θ_i , and the true ability in the population varied according to a normal distribution with mean μ and τ^2 , then $m(x_i)$ would be the actual distribution of observed test scores.

** Recall we called $m(x \mid \pi)$ the predictive distribution for x.

JB 4.5.2 (contd)

** Seek to maximize $m(\mathbf{x} \mid \pi)$ over the hyperparameters μ and τ^2 by maximum likelihood.

Intuition If $m(x \mid \pi_1) > m(x \mid \pi_2)$, we can conclude that the data provides more support for π_1 than for π_2 .

** Recall that

$$\begin{split} \textit{m}(\textit{x} \mid \pi) &= \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi(\sigma^2 + \tau^2)}} \exp\left\{-\frac{(x_i - \mu)^2}{2(\sigma^2 + \tau^2)}\right\} \\ &= \left\{2\pi(\sigma^2 + \tau^2)\right\}^{-p/2} \exp\left\{-\frac{s^2}{2(\sigma^2 + \tau^2)}\right\} \exp\left\{-\frac{p(\bar{x} - \mu)^2}{2(\sigma^2 + \tau^2)}\right\}, \\ \text{where } \bar{x} &= \sum_{i=1}^{p} x_i/p \text{ and } s^2 = \sum_{i=1}^{p} (x_i - \bar{x})^2. \end{split}$$

JB 4.5.2 (contd)

** We find the MLEs

$$\hat{\mu} = \bar{x}$$
 and $\hat{\tau}^2 = \max \left\{ 0, \frac{1}{p} s^2 - \sigma^2 \right\}.$

- ** We can pretend that the θ_i are iid from $N(\hat{\mu}, \hat{\tau}^2)$ and proceed with a Bayesian analysis.
- ** **Or** we can use the moment method by matching the first two moments, $\hat{\mu} = \bar{x}$ and $\hat{\tau}^2 = \sum_{i=1}^p (x_i \bar{x})^2/(p-1) \sigma^2$.

- Drawbacks of Empirical Bayes
 - ** Seems paradoxical since it uses data twice.
 - ** It ignores the fact that μ and τ^2 were estimated; the errors undoubtedly introduced in the hyperparameter estimation will not be reflected in any of the conclusions.
 - ⇒ do not fully enjoy the optimality properties of the true Bayes estimators although asymptotically equivalent.
 - ** Too many choices are possible for the estimation techniques, e.g. MLE, MoM.
 - ⇒ arbitrariness in the selection of the prior.

† Hierarchical Bayes

A hierarchical model is simply a special case of Bayesian model.

$$\underbrace{x \sim f(x \mid \theta)}_{\text{sampling model}}, \quad \underbrace{\theta \sim \pi_1(\theta \mid \theta_1)}_{\text{stage 1 prior}}, \ldots, \quad \underbrace{\theta_n \sim \pi_{n+1}(\theta_n)}_{\text{stage } n+1 \text{ prior}}.$$

Then we recover the usual Bayes model

$$x \sim f(x \mid \theta), \theta \sim \pi(\theta),$$

for the prior

$$\pi(\theta) = \int_{\Theta_1 \times \ldots \times \Theta_n} \pi_1(\theta \mid \theta_1) \pi_2(\theta_1 \mid \theta_2) \ldots \pi_{n+1}(\theta_n) d\theta_1 \ldots d\theta_n.$$

Most of time θ is of the primary interest, less interest for hyperparameters, $\theta_1, \dots, \theta_n$.

 BJ Result 7, p180 Supposing all densities below exist and are nonzero, we have

$$\pi(\theta \mid \mathbf{x}) = \int_{\Theta_1 \times ... \times \Theta_n} \pi(\theta, \theta_1, ..., \theta_n \mid \mathbf{x}) d\theta_1 ... d\theta_n.$$

- ** Implication? Recall the posterior of θ is of main interest. Our strategy is
- ** Find the joint posterior of $\theta, \theta_1, \dots, \theta_n$.
- ** Then integrate out $\theta_1, \ldots, \theta_n$ to obtain the marginal posterior of θ .
- ** Analytically impossible most of time, so numerically evaluate using posterior simulation.
- ** See CR Chapter 10 for more on Empirical Bayes and Hierarchical Bayes.

- A simple example of *Hierarchical Bayes* with two levels:
- JB 4.5.2 (contd) Recall that we have $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$ with known σ^2 , $i = 1, \ldots, p$ and $\theta_i \stackrel{iid}{\sim} N(\mu, \tau^2)$, where hyperparameters $(\mu, \tau^2) \in \Theta_2 = \mathbb{R} \times \mathbb{R}^+$ are unknown.
 - ****** Sampling model: $X_i \mid \theta_i \stackrel{indep}{\sim} N(\theta_i, \sigma^2)$.
 - ****** The first-level prior: $\theta_i \stackrel{iid}{\sim} \pi(\theta) = N(\mu, \tau^2)$
 - ** The second-level prior $\pi_2(\mu, \tau^2)$:

$$\pi_2(\mu, \tau^2) = \pi_{21}(\mu \mid \tau^2) \ \pi_{22}(\tau^2).$$

- $\star\star$ π_2 is called a *hyperprior*.
- $\star\star$ The parameters of π_2 are called *hyperparameters*.

JB 4.5.2 (contd)

- ** Let $\pi_2(\mu, \tau^2) = N(\mu_0, \kappa \tau^2) IG(a_\tau, b_\tau)$. Now we need to specify values of μ_0 , κ , a_τ and b_τ .
- ** May use subjective beliefs to choose the values.

Say,

- $\ast\ast$ "mean true ability" is near 100 with a "standard error" of \pm 20
- ** "variance of true abilities", τ^2 is about 200 with "standard error" of \pm 100.

† Comments on Hierarchical Bayes

- A full Bayesian approach using hierarchical priors
- A hierarchical Bayesian model compares very favorably with empirical Bayes analysis in practical and theoretical senses.
- A hierarchical modeling of the prior information decomposes the prior distribution into several conditional levels of distributions.
- According to the Bayesian paradigm, uncertainty at any of these levels is incorporated into additional prior distributions.
- The hierarchical model improves the robustness of the resulting Bayes estimator: while still incorporating prior information, the estimators are also well performing from a frequentist point of view.

- † Conjugate Priors (Sec 3.3)
 - **Example 3.2.6** Let $x \sim N(\theta, 1)$. For Case 2, we considered the prior, $\theta \sim \text{Cauchy}(0, 1)$. In the case, $\pi(\theta \mid x)$ and m(x) are not easily calculable.
 - **Def 3.3.1:** A family \mathcal{F} of probability distributions on Θ is said to be *conjugate* (or closed under sampling) for a likelihood function $f(x \mid \theta)$ if, for every $\pi \in \mathcal{F}$, the posterior distribution $\pi(\theta \mid x)$ also belong to \mathcal{F} .
 - The main motivation for using conjugate priors is their tractability
 - Also, when limited prior input is available, they are easy to specify since only the determination of a few parameters are needed.

- † Examples: Conjugate Priors
- e.g1 Assume $x \mid \theta \sim N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$.

$$\Rightarrow \ \theta \mid x \sim \mathsf{N}\left(\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1} \left(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}\right), \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}\right).$$

** Normal priors are a conjugate family for normal sampling distributions.

e.g2 Assume $X \mid \theta \sim \text{Bin}(n, \theta)$ and $\theta \sim \text{Be}(\alpha, \beta)$.

$$\Rightarrow \theta \mid x \sim \text{Be}(\alpha + x, \beta + n - x).$$

** Beta priors are a conjugate family for binomial sampling distributions.

- † Comments on conjugate priors
 - Sometimes called *objective* because the sampling model entirely determines the class of priors.
 - Can be a reasonable approximation to the true prior
 - Updating parameters provides an easy way of seeing the effect of prior and sample information
 - \Rightarrow easily calculate $\pi(\theta \mid x)$ (computationally convenient)
 - <u>However</u>, possibly limited modeling capacity since it is not justified for its proper fitting of the available prior information (so, sometimes resulting in unappealing conclusions)

- † Extension: The class of finite mixtures of natural conjugate priors (CR 3.4)
 - Recall: One disadvantage of conjugate priors limiting modeling capacity, but a big advantage – computational convenience.
 - One possible extension to overcome the disadvantage while keeping the advantage is using a mixture model.
 - Mixtures can be used as a basis to approximate any prior distribution.
 - Example 3.4.1 When a coin is spun on its edge, instead of being thrown in the air, the proportion of *heads* is rarely close to 1/2, but is rather 1/3 and 2/3 because of irregularities in the edge that causes the game to favor one side or the other.

• **Example 3.4.1** (contd): When spinning, n times, a given coin on its edge, we observe the number of heads, $x \sim \text{Be}(n, p)$. The prior distribution on p is then likely to be bimodal.

Let's consider three different priors.

- ** π_1 : Be(1,1)
- ** π_2 : a mixture prior distribution, 1/2Be(10,20) + 1/2Be(20,10)
- ** π_3 : previous experiments with the same coin have already hinted at a bias toward *head* and they lead to the following alternative, 0.5Be(10,20) + 0.2Be(15,15) + 0.3Be(20,10).

 \clubsuit Densities of Be(10, 20) (black), Be(15, 15) (red), and Be(20, 10) (green).

♣ The mixture w_1 Be(10,20) + w_2 Be(15,15) + w_3 Be(20,10) with different weights.

• Example 3.4.1 (contd): Three prior distributions

gure 3.4.1. Three prior distributions for a spinning-coin experiment.

• **Example 3.4.1** (contd): Suppose x = 3 for n = 10 is observed.

The corresponding posterior distributions are

** π_1 : Be(4,8)

** π_2 : 0.84Be(13, 27) + 0.16Be(23, 17)

** π_3 : 0.77Be(13, 27) + 0.16Be(18, 22) + 0.07Be(23, 17).

3.4.2. Posterior distributions for the spinning model for 10 observations

• **Example 3.4.1** (contd): Suppose x = 14 for n = 50 is observed.

The corresponding posterior distributions are

** π_1 : Be(15, 37)

** π_2 : 0.997Be(24, 56) + 0.003Be(34, 46)

** π_3 : 0.95Be(24, 56) + 0.047Be(29, 51) + 0.003Be(34, 46).

Figure 3.4.3. Posterior distributions for 50 observations.

- Use a mixture of priors and find the posterior distribution
 - $\star\star$ Consider the set of mixtures of N distributions,

$$\pi(\theta) = \sum_{i=1}^{N} w_i \pi(\theta \mid \mu_i),$$

where μ_i is hyperparameters.

** Then the posterior distribution is a mixture

$$\pi(\theta \mid x) = \sum_{i=1}^{N} w_i'(x) \pi(\theta \mid \mu_i, x),$$

with

$$w'(x) = \frac{w_i m(x \mid \mu_i)}{m(x)} = \frac{w_i m(x \mid \mu_i)}{\sum_{i=1}^{N} w_i m(x \mid \mu_i)}.$$

- Finite mixtures of natural conjugate priors.
 - See **Lemma 3.4.2** for the case where the prior is the natural conjugate family of an exponential family.
 - ★★ Mixture models approximate bimodal or more complicated subjective prior distributions (⇒ flexibility); see Theorem 3.4.3.
 - ** Also, they preserve much of the calculational simplicity of natural conjugate priors.
 - In general, mixture models can be useful when the population of sampling units consists of a number of subpopulations within each of which a relatively simple model applies.

- Finite mixtures of natural conjugate priors (contd)
 - ** Possible extensions.
 - ** unknown number of mixture components (random N)
 - ** random mixture weights (random w_i).
 - e.g. $(w_1, \ldots, w_N) \mid N \sim Dir(\alpha_1, \ldots, \alpha_N)$.

- † Noninformative Prior Distributions (CR 3.5 & JB 3.3)
 - When no (or minimal) prior information is available, we may use noninformative prior distributions:
 - ** Priors which contain "no" information about θ (roughly favor no possible values of θ over others!)
 - ** A mathematical expression of the state of ignorance about a parameter in a statistical model
 - Noninformative priors cannot be expected to represent exactly total ignorance about the problem at hand. A choice of noninformative priors affects the posterior inference.
 - Noninformative priors: Laplace priors, invariant priors, Jeffreys priors, reference priors...

- † Laplace's Priors (uniform priors or flat priors)
 - The principles of insufficient reason: Assign the equiprobability to elementary events
 - When Θ is a finite set, consisting of n elements, the obvious noninformative prior is to give each element of Θ probability 1/n.

JB Sec 3.3.1 in testing between two simple hypotheses, the prior gives probability $\frac{1}{2}$ to each of the hypothesis.

- Improper priors: a prior probability distribution which has infinite mass (i.e., $\int_{\Theta} \pi(\theta) d\theta = \infty$)
 - JB Ex4, p82 Suppose the parameter of interest is a normal mean θ , so $\Theta = (-\infty, \infty)$. It seems reasonable that a natural noninformative prior gives equal weight to all possible values of θ , uniform density on \mathbb{R} . Thus, $\pi(\theta) = c > 0$. Since a choice of the value of c is not important, typical $\pi(\theta) = 1$.
 - ** Observe π has infinite mass!
 - ** The posterior distribution $\pi(\theta \mid x)$ can be given by Bayes formula when the pseudo marginal distribution $\int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta < \infty$ for every x in the support of $f(x \mid \theta)$.
 - ** Since $\pi(\theta \mid x)$ is proper, $\rho(\pi(\theta \mid x), a)$ is finite and so we can find a Bayes action!

- Invariance under Reparameterization
 - ** Consider a reparameterization $\eta = g(\theta)$, where $g(\cdot)$ is monotone over the domain of θ .
 - ****** Find the induced prior for η

$$\pi_{\eta}(\eta) = \pi_{\theta}(g^{-1}(\eta))|dg^{-1}(\eta)/d\theta|.$$

- ** A more intrinsic and more acceptable notion of noninformative priors should satisfy *invariance under reparameterization*.
- i.e., $\pi_{\eta}(\eta)$ is also a flat prior for η .

- JB Ex4, p82 (contd) Consider $\eta = \exp(\theta)$ by a one-to-one transformation.
 - ** It is reasonable to assume that $\pi^*(\eta)$ is also a noninformative prior for η .
 - ** We can find

$$\pi(\theta) = 1 \quad \Rightarrow \quad \pi^{\star}(\eta) = \left| \frac{d}{d\eta} g^{-1}(\eta) \right| = \eta^{-1}.$$

Observe $\pi^*(\eta) = \eta^{-1}$ is not constant. \Rightarrow Not invariant under reparameterization.

** Do Ex 3.5.1 for more example.

† Invariant Priors

- priors invariant under transformation of x. Ex 3.5.2 (location parameter) and Ex 3.5.3 (scale parameter)
 - ** (intuition) Consider $x \sim N(\theta, \sigma^2)$, σ^2 fixed. Assume instead of observing x, we observe y = x + c with a constant $c \in \mathbb{R}$. Defining $\eta = \theta + c$, the problems of (x, θ) and (y, η) are identical so θ and η should have the same noninofrmative prior.
- For a location parameter θ , $\pi(\theta) = c$
- For a scale parameter σ , $\pi(\sigma) = c/\sigma$

- † Fisher Information (CB p338 or 203 Textbook §8.8)
 - (Def: Fisher Information in a Random Variable) Let X be a random variable whose distribution depends on a parameter θ that takes values in an open interval Θ of the real line. Let the pf or pdf of X be $f(x \mid \theta)$. Assume that the set of x such that $f(x \mid \theta) > 0$ is the same for all θ and that $\log(f(x \mid \theta))$ is twice differentiable as a function of θ . The Fisher information $I(\theta)$ in the random variable X is defined as

$$I(\theta) = \mathsf{E}_{\theta} \left[\left(\frac{\partial \log f(x \mid \theta)}{\partial \theta} \right)^2 \right].$$

• The Fisher information $I(\theta)$ in the random variable X is defined as

$$I(\theta) = \mathsf{E}_{\theta} \left[\left(\frac{\partial \log f(x \mid \theta)}{\partial \theta} \right)^2 \right].$$

- \Rightarrow the expected slope of log $f(x \mid \theta)$
- ⇒ measure the amount of information that a sample of data contains about unknown parameters.
- Under commonly satisfied conditions (true for exponential families),

$$\mathsf{E}_{\theta} \left[\left(\frac{\partial \log f(x \mid \theta)}{\partial \theta} \right)^{2} \right] = -\mathsf{E}_{\theta} \left[\frac{\partial^{2} \log f(x \mid \theta)}{\partial \theta^{2}} \right].$$

• Ex 3.5.4 Consider $x \sim \text{Bin}(n, p)$. Find the Fisher information, I(p).

 Ex 3.5.4: $\log(f(x \mid p))$ with n = 10 and x = 1, 3, ..., 9.

... Ex 3.5.4: $d \log(f(x \mid p))/dp$ with n = 10 and x = 1, 3, ..., 9.

♣ Ex 3.5.4: *l(p)*

† The Jeffreys Prior

 Jeffreys Prior: noninformative priors in general settings based on Fisher information.

$$\pi^*(\theta) \propto [I(\theta)]^{1/2}$$
.

- Recall $I(\theta)$: an indicator of the amount of information brought by the sampling model (or the observation) about θ .
 - i.e. large $I(\theta) \Rightarrow$ more sample info to discriminate between θ and $\theta + d\theta$.
 - \Rightarrow Assign more prior probability to the values that have large $I(\theta)$ so that the influence of the prior distribution is minimized.

Jeffreys Prior:

$$\pi(\theta) \propto [I(\theta)]^{1/2}$$
.

- defined up to a normalizing constant when $\pi^*(\theta)$ is proper.
- Observe for any one-to-one transform $h(\theta)$

$$I(\theta) = I(h(\theta))(h'(\theta))^2$$

⇒ The invariant reparameterization requirement is satisfied.

• **Ex 3.5.4** Consider $x \sim \text{Bin}(n, p)$. Find the Jeffreys prior for this model.

- † The Jeffreys Prior (contd)
 - For multidimensional $oldsymbol{ heta} \in \mathbb{R}^p$,

$$\pi(\boldsymbol{\theta}) = \left\{ \det(\boldsymbol{I}(\boldsymbol{\theta})) \right\}^{1/2},$$

where $I: p \times p$ Fisher information matrix.

Under commonly satisfied conditions (true for exponential families),

$$I_{ij}(\boldsymbol{\theta}) = -\mathsf{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_i} \log f(\boldsymbol{x} \mid \boldsymbol{\theta}) \right].$$

• Ex 3.5.6 Consider $x \sim N(\mu, \sigma^2)$ with μ and σ unknown. Find the Jeffreys prior for this model.

** Jeffreys (1961) was mainly emphasizing the use of the Jeffreys priors in the one-dimensional case.

- **Any drawback?** The use of Jeffreys priors does not satisfy the Likelihood Principle!
- Ex 3.5.7 Consider n | p ~ NB(x, p) where n: total # of trials,
 x: # of successes (pre-determined), p: prob. of success. Find the Jeffreys prior for this model.

- † Reference Priors: Read CR §3.5.4.
 - For multidimensional $\theta = (\theta_1, \theta_2)$, distinguish between θ_1 (parameters of primary interest) and θ_2 (nuisance parameters)
 - ** Conditional on θ_1 , define prior $\pi(\theta_2 \mid \theta_1)$ as the Jeffreys prior associated with $f(x \mid \theta)$ when θ_1 fixed.
 - ** Integrate out θ_2 according to $\pi(\theta_2 \mid \theta_1)$,

$$p(x \mid \theta_1) = \int_{\Theta_2} p(x \mid \theta_1, \theta_2) \pi(\theta_2 \mid \theta_1) d\theta_2.$$

- ****** Find the Jeffreys prior $\pi(\theta_1)$ based on $p(x \mid \theta_1)$.
- $\star\star$ Set $\pi(\theta_1, \theta_2) = \pi(\theta_1)\pi(\theta_2 \mid \theta_2)$.

Note: Choosing different nuisance parameters generates different priors.

 \bullet For one dimensional $\theta,$ the reference prior is identical to the Jeffreys prior

† Objectivity (JB §3.7)

- To most non-Bayesians, classical statistics is "objective", while Bayesian statistics is "subjective".
- No method of analysis is fundamentally "objective": e.g. the choice of a loss function is almost always subjective.
 - ** The use of a prior distribution introduces another subjective feature into the analysis.
- When there is an overwhelming amount of data, virtually *any* analysis would yield the same conclusion.
 - ** In such cases, choices of feature as $f(x \mid \theta)$ will have a serious bearing on the conclusion.

- † Posterior Validation and Robustness (CR 3.6, JB 4.7.1 and 4.7.2)
 - Do slight changes in the prior distribution cause significant changes in the decision and, if so, what should be done?
 - JB Example 2, p111 We observe $X \sim N(\theta, 1)$ and subjectively specify a prior median of 0 and prior quantiles of ± 1 .
 - ** Either the C(0,1) (π_C) or $N(0,2.19)(\pi_N)$ densities are thought to be reasonable matches to prior beliefs.
 - ** The difference between the two priors is mainly in the functional form (which is difficult to determine).
 - ** Suppose θ is estimated under the squared-error loss, so that the posterior means will be used. Does it matter whether we use π_C or π_N ?

• JB Ex, p 111 & p 195(contd)

Table 4.7. Posterior Means.

x	0	1	2	4.5	10
$\frac{\delta^{C}(x)}{\delta^{N}(x)}$	0	0.52	1.27	4.09	9.80
$\delta^N(x)$	0	0.69	1.37	3.09	6.87

- ** For small x, $\delta^{C}(x)$ and $\delta^{N}(x)$ are quite close \Rightarrow indicate some degree of robustness with respect to choice of the prior
- ** For moderate or large x, substantial difference between $\delta^{C}(x)$ and $\delta^{N}(x) \Rightarrow$ not robust to reasonable variation in the prior

• JB Ex, p 111 & p 195(contd): Compare priors via m(x) and eliminate from considerations priors which seem to be ruled out by data.

x	0	4.5	6.0	10
$m(x \mid \pi_N) \\ m(x \mid \pi_C)$	0.22 0.21	0.0093 0.018	0.00079 0.0094	$3.5 \times 10^{-8} \\ 0.0032$

• JB Ex, p 111 & p 195(contd): One of the main sources of nonrobustness in estimation (in specific for moderate or large x), will be seen to be the **degree of flatness of the prior tail**.

- Sensitivity of Bayesian analysis to possible misspecification of the prior distribution (assuming the likelihood is known).
 - ** Try different reasonable priors and evaluate how a change in the prior changes the inference about the parameter of interest.

- How to robustify our priors?
 - Robust prior distributions: Parameterized distributions as insensitive as possible to small variations in the prior information.
 - e.g. *t*—distributions are preferable to normal priors in the normal case.
 - Robustify the conjugate priors by hierarchical modeling. e.g.;

$$\lambda \sim \pi_2(\lambda),$$

$$\theta \mid \lambda \sim \pi_1(\theta \mid \lambda),$$

$$x \mid \theta \sim f(x \mid \theta),$$

$$\Rightarrow \pi(\theta) = \int \pi_1(\theta \mid \lambda)\pi_2(\lambda)d\lambda.$$

An additional level in the prior modeling increases the robustness of the prior distributions.