IHC

Interação Homem-Computador

Modelagem de Usuários e Tarefas

Modelagem de Usuários e Tarefas

Modelagem de Usuários e Tarefas

- Processos
 - Processos de Softwares
 - Modelos de processos de Software
 - Sem Modelos de processos de Software
 - Cascata
 - Espiral
 - Iterativo / Incremental
- Modelagem de Usuários
 - Introdução
 - Técnicas
 - Ciclos de Vida
- Modelagem de Tarefas
 - GOMS(Goals, Operators, Methods, Selection Rules)
 - Exemplos 1 e 2

Processos

- Objetivos / Introdução
 - Latim = Procedere (verbo que indica a ação de avançar, ir para frente)
 - Conjunto de ações que objetivam atingir uma meta;
- Processos de Softwares
 - Conjunto de passos ordenados a serem realizados para entregar um produto software(meta), de maneira mais eficiente possível, previsível e que atinja as necessidades e requisitos funcionais do negócio.
 - Atividades de especificação, desenvolvimento e ou design do projeto, implementação e teste de softwares, bem como a parte de melhoramento.

Processos

Modelos de Processo de Software

Modelos centrados no Produto

Modelos de Processo de Software

Sem Processo de Softwares

- Estratégia de Desenvolvimento
- Caótico
 - Especificação básica ou nenhuma
 - Começa a codificação
 - Sem documentação e nem processo
 - Tentativa e erro

Modelos de Processo de Software

Processo de Softwares - Cascata

- Muito usada nas empresas (clássico)
- Quando o analista não termina uma fase dessas ele não pode passar para próxima.
- Foco no produto final
- Engenharia "tradicional", teve seu início por volta de 1950, na crise de software.

Modelos de Processo de Software

Processo de Softwares - Cascata

- Projetos raramente seguem a risca esse modelo;
- É raro e difícil para o cliente saber e estabelecer explicitamente todas as suas necessidades;
- Um modelo fortemente baseado em definição de requisitos(dependência da fase anterior);
- Um produto "pronto" para o cliente usar, não vai estar disponível até que esteja bem próximo ao final do projeto;

Modelos de Processo de Software

Processo de Softwares - Espiral

- o Criado por Barry Boehm em 1988;
- Cada volta no espiral percorre todas as fases do processo e isso pode acontecer "n" vezes até a entrega completa do software;
- Prototipação e redução de riscos entram na jogada; - PRESSMAN (2006) também diz que o modelo é "uma abordagem realista do desenvolvimento de sistemas e softwares de grande porte ... usando a prototipagem como mecanismo de redução de riscos".
- Evolucionário;
- As atividades podem variar;

Processo de Softwares - Espiral

Quadrantes:

- Definição de objetivos:
 - Identificação das restrições e preparação de um plano de gerenciamento detalhado e possíveis riscos
- Avaliação e redução dos riscos:
 - Realização e identificação das estratégias para redução e até evitar os riscos.
- Implementação e validação:
 - Pode-se utilizar modelos diferentes em cada volta de implementação, conforme a necessidade
- Planejamento e Especificação:
 - Verificar o que foi realizado com o que foi planejado anteriormente e planejar os próximos passos.

Processo de Softwares - Espiral

Vantagens:

- Mas versatil de testar e lidar com mudanças;
- São mais realistas as estimativas e o tempo de implementação é reduzido;

Desvantagens:

- Se um risco importante n\u00e3o for descoberto e gerenciado corretamente, vai ter muitos problemas;
- Pode ser difícil convencer os clientes que o processo de evolução é controlável, devido a competição de análise de risco.

Modelos de Processo de Software

Processo de Softwares - Iterativo / Incremental

Iterativo é algo repetitivo, reiterado, que ocorre com frequência. É importante não confundir Iterativo com Interativo, são coisas diferentes.

Tem como benefício de se criar ferramentas em um prazo menor e direcionar o foco para as demandas da empresa e dos usuários.

"melhorar (ou refinar) pouco - a - pouco" o sistema (iterações). Em cada iteração a equipe de desenvolvimento identifica e especifica os requisitos relevantes, cria um projeto utilizando a arquitetura escolhida como guia, implementa o projeto em componentes e verifica se esses componentes satisfazem os requisitos.

Caso contrário a equipe deve rever as suas decisões e tentar uma nova abordagem.

Modelos de Processo de Software

Processo de Softwares - Iterativo / Incremental

A noção de processo incremental corresponde à ideia de "aumentar (alargar) pouco-a-pouco" o âmbito do sistema.

Especialmente nas primeiras fases do ciclo de desenvolvimento, os desenvolvedores podem substituir um projeto superficial por um mais detalhado ou sofisticado.

Adição de novas partes ao projeto.

Vantagens:

- Aceleração do tempo de desenvolvimento do projeto como um todo;
- Redução do risco de lançar o projeto no mercado fora da data planejada;

Modelos de Processo de Software

Processo de Softwares - Iterativo / Incremental

- Dificuldade de gerenciamento. Isso ocorre porque as fases de do ciclo podem estar ocorrendo de forma simultânea;
- O usuário pode se entusiasmar excessivamente com a primeira versão do sistema e pensar que tal versão já corresponde ao sistema como um todo;
- Como todo modelo está sujeito a riscos de projeto:
 - O projeto pode n\u00e3o satisfazer aos requisitos do usu\u00e1rio.
 - A verba do projeto pode acabar.

Incremental

Iterative

Modelos de Processo de Software

Processo de Softwares - Iterativo / Incremental

- Prevê Ciclos;
- Cada iteração:
 - Modelagem
 - Análise e design
 - Implementação
 - Teste
 - Implantação
- Evita riscos ao longo do ciclo, pois possui integrações a cada repetição.

Modelos de Processo de Software

Processo de Softwares - Iterativo / Incremental

Centro Universitário

Modelagem de Usuários

No desenvolvimento de modelagem de usuários ou modelo centrado-no-usuário a interface é projetada com o objetivo de satisfazer as necessidades do usuário através da construção de um sistema que amplie as suas capacidades.

Para isso é necessário conhecer quem são os usuários, quais as suas tarefas e quais são os seus problemas.

A literatura de engenharia de software [R. Pressman 91] apresenta diversos métodos, técnicas e ferramentas para análise. Eles geralmente podem pertencer a três paradigmas: **métodos estruturados, orientado-a-dados e orientado-a-objetos**. Entretanto, essas metodologias são voltadas para o processo de construção do software e muitas vezes não consideram projeto de interface. Vamos apresentar algumas técnicas necessárias à elicitação do conhecimento necessário ao projeto da interação usuário-sistema.

Modelagem de Usuários

Para conduzir o processo de análise, o analista deve utilizar algumas técnicas de comunicação para aquisição das informações necessárias. As três técnicas de comunicação mais utilizadas são a **observação**, a entrevista e os encontros.

Na *observação*, o analista obtém as informações no próprio ambiente onde a aplicação será utilizada. Ele deve observar o fluxo de trabalho, conversar com usuários, examinar documentos, etc.

Na entrevista, o analista tenta adquirir informações sobre o negócio através de sessões de questionamento e discussões com o(s) especialista(s) (Product Owner - P.O) do negócio. Esse(s) P.O passa a ser o provedor de todas as informações sobre esse negócio.

Os encontros consistem de jornadas onde um grupo de analistas, desenvolvedores e especialistas se reúnem para exposições e discussões sobre o domínio do problema e ou produto. Esses encontros são coordenados por um **mediador(AM)**, que é uma pessoa neutra, com domínio da técnica e que determina quais atividades devem ser realizadas.

Modelagem de Usuários

- Processo de design de interação com resolução de problemas, direcionada à metas informadas pelo uso pretendido, domínio de destinos, materiais, custos e viabilidade.
- É uma atividade bastante criativa.
- Possui algumas atividades básicas e práticas para auxiliar na modelagem;

Modelagem de Usuários

- Após as 3 técnicas...
- Análise para classificar e ordenar suas descobertas para que façam sentido.
- Narrativas/Histórias de como é utilizado ou feito determinado processo.
- Análise das Tarefas

Modelagem de Usuários

- Projetar uma solução potencial de acordo com as diretrizes de design e princípios fundamentais de design
- Faça uma prototipagem
- Implemente e implante o que você construiu

Modelagem de Usuários - Estrela

Na área de IHC poucos modelos de ciclo de vida foram propostos, mas os que merecem destaque são: **o modelo simplificado** proposto por Preece et. Al (2005), **o modelo estrela** sugerido por Hartson e Hix em 1989.

Modelo Estrela;

- É uma proposta que não especifica um ordenamento das atividades, mas sua flexibilidade exige que uma avaliação sempre seja feita antes de iniciar uma nova atividade;
- ANALÍTICO com característica de organização, formalidade e com uma visão que partia do sistema para a visão do usuário;
- SINTÉTICO caracterizado pela criatividade, livre pensamento e improviso com a visão que partia do usuário para a do sistema.

Modelagem de Usuários - Simplificado

Já o **Ciclo de Vida Simplificado** possibilita um número ilimitado de repetição do ciclo, desde que a última atividade sempre seja um teste.

Ele foi proposto por Preece et. Al, após observações sobre como a prática do projeto de interação acontece na vida real. Ele possui o foco nos usuários e determina e possibilita que um produto evolua da forma que for compreendida como melhor pela equipe, havendo uma única limitação de repetições: o orçamento.

A sequência das atividades nos ciclos iterativos (nas repetições) depende da dinâmica estabelecida pela equipe e dos problemas encontrados nas avaliações

Modelagem de Tarefas

A análise de tarefas ajuda ter uma visão da aplicação sob a perspectiva do usuário, isto é, um modelo das tarefas do usuário quando executando sessões da aplicação.

Modelos de tarefas são estruturas hierárquicas. Eles expressam decomposição de metas em sub-metas até o nível de base (que não é mais decomponível).

Modelagem de Tarefas - GOMS

Proposto por Card, Moran & Newell em 1983 - The Psychology of Human-Computer Interaction

- Um modelo que "considera as atividades cognitivas de processamento de informação realizadas pelos usuários".
- "De acordo com este modelo, os usuários agem racionalmente."
- O modelo permite "fazer previsões sobre o comportamento do usuário".

Modelagem de Tarefas - GOMS

- Goals (METAS) as intenções (finais ou imediatas) dos usuários;
- Operators (OPERADORES) ações que o software permite ao usuário realizar (atuação sobre controles de interface);
- Methods (MÉTODOS) sequências ("well-learned sequences") de submetas e operadores que levam à consecução de alguma meta superior (ou final)
- Selection Rules (REGRAS DE SELEÇÃO) regras "pessoais" de decisão sobre qual de vários métodos alternativos possíveis pode/deve ser utilizado quando se quer atingir alguma meta.

Modelagem de Tarefas - GOMS

O GOMS permite que se construa modelos de tarefas bem mais complexos e detalhados do que o necessário numa tarefa de análise para a construção de interfaces, por isso vamos analisar as diretrizes do Modelo de tarefa Simplificado.

Uma vez que a hierarquia de metas representa um aumento no nível de detalhe, se nos limitarmos à descrição de metas e submetas de mais alto nível, nenhuma decisão de design será envolvida.

Modelagem de Tarefas - GOMS

- Faça a análise "top-down" comece das metas mais gerais em direção às mais específicas.
- Use termos gerais para descrever metas não use termos específicos da interface.
- Examine todas as metas antes de descer para um nível mais baixo isso facilita reuso de metas.
- Considere todos os cenários de tarefas as regras de seleção possibilitam representar alternativas.
- Use sentenças simples para especificar as metas estruturas complexas indicam a necessidade de decomposição da meta em submetas.
- Retire os passos de um método que sejam operadores os operadores são dependentes da interface.
- Pare a decomposição quando as descrições estiverem muito detalhadas quando os métodos são operadores ou envolvem pressuposições de design.

Modelagem de Tarefas - Atividade

Exemplo 1: Efetuar Login

Usuários

- U1: Usuário Final
- U2: Suporte Técnico

Tarefas

- 1: Inserir Login e Senha (U1 e U2)
- 2: Acessar Ajuda (U1 e U2)
- 2: Recuperar Login e Senha (U2)
- 3: Informar que precisa trocar a senha (U1)
- 4: Realizar Troca de senha(U2)

Modelagem de Tarefas - Atividade

Exemplo 2: Sistema de Biblioteca

Usuários

- U1: Usuários da Biblioteca
- U2: Funcionário responsável pelo empréstimo
- U3: Funcionário responsável pelo cadastro de exemplares

Tarefas

- 1: Consultar uma referência (U1, U2 e U3)
- 2: Reservar um exemplar (U1 e U2)
- 3: Registrar um empréstimo (U2)
- 4: Registrar uma devolução (U2)
- 5: Cadastrar um exemplar (U3)

Engenharia de Software - Roger S. Pressman, 2021

