# SinoMCU 8 位单片机

# MC35P7050

用户手册

V1.1





# 目录

| 1 | 产品  | 慨要          | 4        |
|---|-----|-------------|----------|
|   | 1.1 | 产品特性        | 4        |
|   | 1.2 | 订购信息        | 5        |
|   | 1.3 | 引脚排列        | 5        |
|   | 1.4 | 端口说明        | <i>6</i> |
| 2 | 电气/ | 导性          | 7        |
|   | 2.1 | 极限参数        | 7        |
|   | 2.2 | 直流电气特性      | 7        |
|   | 2.3 | 交流电气特性      | 8        |
|   | 2.4 | ADC 特性参数    | 8        |
| 3 | CPU | 及存储器        | 10       |
|   | 3.1 | 指令集         |          |
|   | 3.2 | 程序存储器       | 11       |
|   | 3.3 | 数据存储器       | 12       |
|   | 3.4 | 堆栈          | 13       |
|   | 3.5 | 控制寄存器       | 14       |
|   | 3.6 | 用户配置字       |          |
| 4 | 系统  | 寸钟          | 18       |
|   | 4.1 | 内部高频 RC 振荡器 |          |
|   | 4.2 | 内部低频 RC 振荡器 |          |
| 5 | 系统  | 工作模式        |          |
|   | 5.1 | 高速模式        |          |
|   | 5.2 | 低速模式        | 21       |
|   | 5.3 | 休眠模式        |          |
|   | 5.4 | 空闲模式(绿色模式)  |          |
| 6 | 复位  |             |          |
|   | 6.1 | 复位条件        |          |
|   | 6.2 | 上电复位        |          |
|   | 6.3 | 外部复位        |          |
|   | 6.4 | 低电压复位       |          |
|   | 6.5 | 看门狗复位       |          |
| 7 |     | : ローファンス E  |          |
| , | 7.1 | 通用 I/O 功能   |          |
|   | 7.2 | 内部上拉电阻      |          |
|   | 7.3 | 端口模式控制      |          |
| 8 |     | 器 TIMER     |          |
| Ü | 8.1 | 看门狗定时器 WDT  |          |
|   | 8.2 | 定时器 T0      |          |
|   | 8.3 | 定时器 T1      |          |
| 9 |     | 转换器 ADC     |          |
| , | 9.1 | ADC 概述      |          |
|   | 9.2 | ADC 操作步骤    |          |
|   | 7.4 |             |          |







|    | 9.3  | ADC 相关寄存器 | 35 |
|----|------|-----------|----|
|    | 9.4  | ADC 校准流程  | 37 |
| 10 | 中断   |           | 39 |
|    | 10.1 | 外部中断      | 39 |
|    | 10.2 | 定时器中断     | 39 |
|    | 10.3 | ADC 中断    | 40 |
|    | 10.4 | 中断相关寄存器   | 40 |
| 11 | 特性曲  | 1线        | 42 |
|    | 11.1 | I/O 特性    | 42 |
|    | 11.2 | 功耗特性      | 45 |
|    | 11.3 | 模拟电路特性    | 49 |
| 12 | 封装尺  | <u></u>   | 52 |
|    | 12.1 | SOP8      | 52 |
|    | 12.2 | DIP8      | 52 |
|    | 12.3 | SOT23-6   | 53 |
| 13 | 修订证  |           |    |



## 1 产品概要

## 1.1 产品特性

- 8 位 CPU 内核
  - ◆ 精简指令集,4级缓存寄存器型堆栈
  - ◆ CPU 为双时钟,可在系统高/低频时钟之间切换
  - ◆ 系统高频时钟下 FCPU 可配置为 2/4/8/16 分频,系统低频时钟下 FCPU 固定为 4 分频
- 存储器
  - ◆ 1K×16 位 OTP 型程序存储器,可通过间接寻址读取程序存储器内容
  - ◆ 64 字节 SRAM 型通用数据存储器,支持直接寻址、间接寻址等多种寻址方式
- 3组共6个I/O
  - ♦ P0 (P02/P04), P4 (P40/P41/P44), P5 (P53)
  - ◆ P04 可配置为单输入口或输入/开漏输出口,可复用为外部复位 RST 输入,编程时为高压 VPP 输入
  - ◆ 除 P04 外其余端口均内置上拉电阻,均可单独使能
  - ◆ P0 所有端口均支持输入电平变化唤醒功能
- 系统时钟源
  - ◆ 内置高频 RC 振荡器 (16MHz), 可用作系统高频时钟源
  - ◆ 内置低频 RC 振荡器(32KHz@5V, 16KHz@3V),可用作系统低频时钟源
- 系统工作模式
  - ◆ 高速模式: CPU 在高频时钟下运行, 低频时钟源工作
  - ◆ 低速模式: CPU 在低频时钟下运行, 高频时钟源可选停止或工作
  - ◆ 空闲模式: CPU 停止运行, 高频时钟源可选停止或工作, 低频时钟源工作
  - ◆ 休眠模式: CPU 停止运行, 所有时钟源停止工作
- 内部自振式看门狗计数器(WDT)
  - ☆ 溢出时间: 8192 / 内部低频 RC 振荡器频率(FLIRC), 约为 256ms@VDD=5V
  - ◆ 工作模式可配置:始终开启、始终关闭、低功耗模式下关闭
- 2个定时器
  - ◆ 8 位定时器 T0,可实现外部计数、BUZ 和 PWM 功能,支持空闲模式下溢出唤醒
  - ◆ 8 位定时器 T1,可实现外部计数、BUZ 和 PWM 功能
- 1 个 12 位高精度逐次逼近型 ADC
  - ◆ 3路外部通道: AN0/AN1/AN4; 1路内部通道: VDD/4
  - ◆ 参考电压可选: VDD、内部参考电压 VIR (2V/3V/4V)、外部参考电压 VER (VERI 输入)
  - ◆ ADC 时钟: FCPU 的 4/8/32/64 分频
  - ◆ 支持零点或顶点校准
- 中断
  - ◆ 外部中断 (INT0~INT1)
  - ◇ 定时器中断(T0~T1)
  - ◆ ADC 中断
- 低电压复位 LVR: 2.0V/2.4V/2.7V/3.6V
- 低电压检测 LVD: 关闭/2.4V/3.6V
- 工作电压

*晟矽微电子* 4/54



- $\Rightarrow$  VLVR27 ~ 5.5V @ Fcpu = 0~8MHz
- $\Rightarrow$  VLVR20 ~ 5.5V @ Fcpu = 0~4MHz
- 封装形式
  - ♦ SOP8/DIP8/SOT23-6

## 1.2 订购信息

| 产品名称         | 封装形式    | 备注 |
|--------------|---------|----|
| MC35P7050A0H | SOP8    |    |
| MC35P7050A0A | DIP8    |    |
| MC35P7050A0T | SOT23-6 |    |
| MC35P7050A1T | SOT23-6 |    |

# 1.3 引脚排列

#### MC35P7050A0H/A0A



### MC35P7050A0T



晟矽微电子 5/54



### MC35P7050A1T

| [SCK]/AN4/PWM0/BUZ0/P44 GND GND SDI]/VERI/AN0/PWM1/BUZ1/P53/P40 | ı | $\neg >$ | 6<br>5<br>4 | P04/RST/[VPP] VDD P02/INT0/TC0/[SD0] |
|-----------------------------------------------------------------|---|----------|-------------|--------------------------------------|
|                                                                 | S | OT23-    | 6           |                                      |

注:PIN3 是端口 P40 和 P53 同封在 1 个引脚上,使用时应确保 2 个端口的工作模式、上拉电阻、复用功能、数模端口等设置不会产生冲突;若应用 P40 的 AD 功能时,静态功耗会偏大约 100uA。

# 1.4 端口说明

| 端口名称                    | 类型 | 功能说明                     |
|-------------------------|----|--------------------------|
| VDD                     | Р  | 电源                       |
| GND                     | Р  | 地                        |
| P02, P40, P41, P44, P53 | D  | GPIO (推挽输出),内部上拉         |
| P04                     | D  | GPIO (可配置为单输入口或输入/开漏输出口) |
| INT0~INT1               | DI | 外部中断输入                   |
| TC0~TC1                 | DI | 定时器 T0~T1 的外部计数输入        |
| PWM0/BUZ0               | DO | 定时器 T0 的 PWM/BUZ 输出      |
| PWM1/BUZ1               | DO | 定时器 T1 的 PWM/BUZ 输出      |
| AN0~AN4                 | AI | ADC 模拟输入通道               |
| VERI                    | AI | ADC 外部参考电压输入             |
| RST                     | DI | 外部复位输入                   |
| SCK , SDI , SDO         | D  | 编程时钟/数据输入/数据输出接口         |
| VPP                     | Р  | 编程高压输入                   |

注:P-电源;D-数字输入输出,DI-数字输入,DO-数字输出;A-模拟输入输出,AI-模拟输入,AO-模拟输出。

晟矽微电子 6/54



# 2 电气特性

# 2.1 极限参数

| 参数          | 符号      | 值            | 单位 |
|-------------|---------|--------------|----|
| 电源电压        | VDD     | -0.3~6.0     | V  |
| 输入电压        | Vin     | -0.3~VDD+0.3 | V  |
| 工作温度        | Та      | -40~85       | °C |
| 储存温度        | Tstg    | -65~150      | °C |
| 流入 VDD 最大电流 | IVDDmax | 50           | mA |
| 流出 GND 最大电流 | IGNDmax | 50           | mA |

注:若芯片工作条件超过极限值,则将造成永久性损坏;若芯片长时间工作在极限条件下,则会影响其可靠性。

# 2.2 直流电气特性

VDD=5V, T=25℃

| 特性                                             | 符号     | 端口                       | 条件                           | 最小                | 典型  | 最大     | 单位 |    |
|------------------------------------------------|--------|--------------------------|------------------------------|-------------------|-----|--------|----|----|
|                                                |        |                          | Fcpu=8MHz@Fhirc/2            | VLVR27            |     | 5.5    |    |    |
|                                                |        |                          | Fcpu=4MHz@Fhirc/4            | VLVR20            |     | 5.5    |    |    |
| 工作电压                                           | VDD    | VDD                      | Fcpu=2MHz@Fhirc/8            | VLVR20            |     | 5.5    | V  |    |
|                                                |        |                          | Fcpu=1MHz@Fhirc/16           | VLVR20            |     | 5.5    |    |    |
|                                                |        |                          | Fcpu=8KHz@Flirc/4            | VLVR20            |     | 5.5    |    |    |
| 输入漏电流                                          | Ileak  | 所有输入脚                    | VDD=5V                       | -1                |     | 1      | uA |    |
| 输入高电平                                          | Vih    | 所有输入脚                    |                              | 0.8VDD            |     |        | V  |    |
| 输入低电平                                          | Vil    | 所有输入脚                    |                              |                   |     | 0.2VDD | V  |    |
| 输出拉电流                                          | Ioh    | 推挽输出脚                    |                              | 8                 | 12  |        | mA |    |
| 输出灌电流                                          | Iol    | 所有输出脚                    |                              | 8                 | 15  |        | mA |    |
| L+六中70                                         | Devi   | 5C <del>≠t</del> ♠ \ 0+0 | VDD=5V, Vin=0                | 50                | 100 | 150    | ΚΩ |    |
| 上拉电阻                                           | Rpu    | 所有输入脚                    | VDD=3V, Vin=0                | 100               | 200 | 300    | ΚΩ |    |
|                                                | 71 . 1 |                          |                              | Fcpu=8MHz@Fhirc/2 |     | 3.0    |    | mA |
| <b>=</b> '++++++++++++++++++++++++++++++++++++ |        | \/DD                     | Fcpu=4MHz@Fhirc/4            |                   | 1.8 |        | mA |    |
| 高速模式功耗                                         | Ihigh  | n VDD                    | Fcpu=2MHz@Fhirc/8            |                   | 1.0 |        | mA |    |
|                                                |        |                          | Fcpu=1MHz@Fhirc/16           |                   | 0.7 |        | mA |    |
|                                                |        |                          | VDD=5V, Fcpu=FLIRC/4, HIRC 开 |                   | 500 |        | uA |    |
| 低速模式功耗                                         | Ilow   | VDD                      | VDD=5V, Fcpu=FLIRC/4, HIRC 关 |                   | 5   | 10     | uA |    |
|                                                |        |                          | VDD=3V, Fcpu=FLIRC/4, HIRC 关 |                   | 2   | 4      | uA |    |
|                                                |        |                          | VDD=5V, 空闲模式, LVR/LVD 关      |                   | 3   | 6      | uA |    |
| 空闲模式功耗                                         | Ihold  | VDD                      | VDD=3V, 空闲模式, LVR/LVD 关      |                   | 1   | 3      | uA |    |
|                                                |        |                          | VDD=5V, 空闲模式, LVR/LVD 开      |                   | 5   | 8      | uA |    |

晟矽微电子 7/54



| /_ nc.l++_b-t_+-t | Intern         | VDD      | VDD=5V, 休眠模式, LVR/LVD 关 |      | 0.1  | 1    | uA |
|-------------------|----------------|----------|-------------------------|------|------|------|----|
| 休眠模式功耗            | Istop          | VDD      | VDD=5V, 休眠模式, LVR/LVD 开 |      | 2    | 4    | uA |
| 低压检测电压            | VLVD           | VDD      |                         | -15% | 2.4  | +15% | V  |
| 似还位则电压            | VLVD           | VDD      |                         | -15% | 3.6  | +15% | v  |
|                   | VLVR20         | VR24 VDD | LVRVS 配置                | -15% | 2.0  | +15% |    |
| 低压复位电压            | VLVR24         |          | LVRVS 配置                | -15% | 2.4  | +15% | V  |
| 瓜还复位电压            | <b>V</b> LVR27 |          | LVRVS 配置                | -15% | 2.7  | +15% | V  |
|                   | VLVR36         |          | LVRVS 配置                | -15% | 3.6  | +15% |    |
| LVD/LVR           |                | VDD      |                         |      | 6%   | 12%  |    |
| 回滞电压              |                | טטי      |                         |      | 0 /0 | 12/0 |    |

注:功耗特性参数的条件说明中,诸如 HIRC/LIRC/WDT/LVR/LVD/ADC 等未注明模块,默认其为关闭状态。

## 2.3 交流电气特性

| 特性        | 符号    | 条件                           | 最小   | 典型 | 最大   | 单位  |
|-----------|-------|------------------------------|------|----|------|-----|
| LIDC 拒禁店交 | F     | VDD=5V, T=25°C               | -2%  | 16 | +2%  | MHz |
| HIRC 振荡频率 | FHIRC | VDD=2.0V~5.5V, T=-40°C~85°C  | -5%  | 10 | +5%  |     |
| LIRC 振荡频率 | FLIRC | VDD=5 <mark>V, T=25°C</mark> | -50% | 32 | +50% | KHz |

# 2.4 ADC 特性参数

VDD=5V, T=25℃

| 特性         | 符号   | 条件                             | 最小  | 典型  | 最大   | 单位     |
|------------|------|--------------------------------|-----|-----|------|--------|
| ADC 有效工作电压 | Vadc | T=-40°C~85°C                   | 2.7 |     | 5.5  | V      |
| 积分非线性误差    | INL  | Vref=VDD, Fadc=1MHz, Tcon=27us | ±2  |     | ±4   | LSB    |
| 微分非线性误差    | DNL  | Vref=VDD, Fadc=1MHz, Tcon=27us | ±1  |     | ±3   | LSB    |
| 零点偏移误差     | EZ   | Vref=VDD, Fadc=1MHz, Tcon=27us |     |     | ±3   | LSB    |
| 增益误差       | ET   | Vref=VDD, Fadc=1MHz, Tcon=27us |     |     | ±3   | LSB    |
| 转换时钟       | FADC | VDD=5V                         |     |     | 1    | MHz    |
| 转换时间       | Tcon |                                |     | 27  |      | 1/Fadc |
| ADC 输入电压   | Vain |                                | GND |     | VREF | V      |
| ADC 输入阻抗   | Rain |                                | 2   |     |      | МΩ     |
| ADC 输入电流   | Iain |                                |     |     | 2    | uA     |
| ADC 动态电流   | Iadd | VDD=5V, AD 转换中                 |     | 0.3 | 2    | mA     |
| ADC 静态电流   | Iads | VDD=5V, ADC 关闭                 |     | 0.1 | 1    | uA     |

晟矽微电子 8/54



# MC35P7050 用户手册

| 模拟信号源推荐阻抗     | Zain  |                          |         |       | 10  | ΚΩ  |
|---------------|-------|--------------------------|---------|-------|-----|-----|
| 内部 1/4 分压电阻总值 | Rvddi | Vin=VDD=2.5V~5.5V        | 16      | 24    | 32  | ΚΩ  |
| 电阻分压比值        |       |                          | -1%     | 1/4   | +1% | VDD |
|               | \/    | 选择 VDD                   |         | VDD   |     |     |
| ADC 条本中正      |       | 选择内部参考电压 VIR, T=25℃      | -1%     | 2/2/4 | +1% | V   |
| ADC 参考电压      | VREF  | 选择内部参考电压 ViR, T=-40℃~85℃ | -3%     | 2/3/4 | +3% | \ \ |
|               |       | 选择外部参考电压 VER             | 2       |       | VDD |     |
| VIR 有效工作电压    | Vvir  | 选择内部参考电压 VIR             | VIR+0.5 |       | VDD | V   |



晟矽微电子 9/54



# 3 CPU 及存储器

# 3.1 指令集

芯片的指令集为精简指令集。所有指令均为单字指令,即指令码只占用1个程序存储器地址空间。

## 指令汇总表

| 助记     | 符  | 说明                            | 操作                       | 周期    | 标志     |
|--------|----|-------------------------------|--------------------------|-------|--------|
| ADDAR  | R  | ACC和R相加,结果存入ACC               | ACC+R→ACC                | 1     | C,DC,Z |
| ADDRA  | R  | ACC和R相加,结果存入R                 | ACC+R→R                  | 1+M   | C,DC,Z |
| ADCAR  | R  | ACC和R相加(带C标志),结果存入ACC         | ACC+R +C→ACC             | 1     | C,DC,Z |
| ADCRA  | R  | ACC 和 R 相加 ( 带 C 标志 ), 结果存入 R | ACC+R +C→R               | 1+M   | C,DC,Z |
| ASUBAR | R  | ACC和R相减,结果存入ACC               | ACC-R→ACC                | 1     | C,DC,Z |
| ASUBRA | R  | ACC和R相减,结果存入R                 | ACC-R→R                  | 1+M   | C,DC,Z |
| ASBCAR | R  | ACC和R相减(带C标志),结果存入ACC         | ACC-R-/C→ACC             | 1     | C,DC,Z |
| ASBCRA | R  | ACC 和 R 相减 ( 带 C 标志 ), 结果存入 R | ACC-R-/C <mark>→R</mark> | 1+M   | C,DC,Z |
| ANDAR  | R  | ACC和R与操作,结果存入ACC              | ACC and R→ACC            | 1     | Z      |
| ANDRA  | R  | ACC 和 R 与操作,结果存入 R            | ACC and R→R              | 1+M   | Z      |
| ORAR   | R  | ACC和R或操作,结果存入ACC              | ACC or R→ACC             | 1     | Z      |
| ORRA   | R  | ACC和R或操作,结果存入R                | ACC or R→R               | 1+M   | Z      |
| XORAR  | R  | ACC 和 R 异或操作,结果存入 ACC         | ACC xor R→ACC            | 1     | Z      |
| XORRA  | R  | ACC和R异或操作,结果存入R               | ACC xor R→R              | 1+M   | Z      |
|        |    | 4                             | R[7]→C                   |       |        |
| RLAR   | R  | R循环左移(带C标志),结果存入ACC           | R[6:0]→ACC[7:1]          | 1     | С      |
|        |    | 4                             | C→ACC[0]                 |       |        |
|        |    |                               | R[7]→C                   |       |        |
| RLR    | R  | R 循环左移(带 C 标志), 结果存入 R        | R[6:0]→R[7:1]            | 1+M   | С      |
|        |    |                               | C→R[0]                   |       |        |
|        |    |                               | R[0]→C                   |       |        |
| RRAR   | R  | R 循环右移 ( 带 C 标志 ), 结果存入 ACC   | R[7:1]→ACC[6:0]          | 1     | С      |
|        |    |                               | C→ACC[7]                 |       |        |
|        |    |                               | R[0]→C                   |       |        |
| RRR    | R  | R 循环右移 ( 带 C 标志 ), 结果存入 R     | R[7:1]→R[6:0]            | 1+M   | С      |
|        |    |                               | C→R[7]                   |       |        |
| CMVDVD | D  | 六格 B 的宣佈业学共 结甲壳 》ACC          | R[7:4]→ACC[3:0]          | 1     |        |
| SWAPAR | N. | 交换 R 的高低半字节,结果存入 ACC          | R[3:0]→ACC[7:4]          | 1     | _      |
| SWAPR  | D  | <br> 交换 R 的高低半字节 , 结果存入 R     | R[7:4]→R[3:0]            | 1+M   |        |
| OHAFIK | 11 | 기사하차다 , 나 나는 제미대 기 첫째         | R[3:0]→R[7:4]            | 1+141 |        |
| MOVRA  | R  | 将 ACC 存入 R                    | ACC→R                    | 1     | -      |
| MOVAR  | R  | 将 R 存入 ACC                    | R→ACC                    | 1     | Z      |
| XCH    | R  | ACC 和 R 交换                    | ACC←→R                   | 1+M   | _      |

*晟矽微电子* 10/54



| CLRR   | R    | 清零 R                              | 0→R                            | 1     | Z      |
|--------|------|-----------------------------------|--------------------------------|-------|--------|
| JZR    | R    | R 自加 1;结果为 0则跳过下一条指令              | R+1→R;结果为0则PC+2→PC             | 1+J+M | -      |
| JZAR   | R    | R 加 1 , 结果存入 ACC ; 结果为 0 则跳过下一条指令 | R+1→ACC;结果为0则PC+2→PC           | 1+J   | -      |
| DJZR   | R    | R 自减 1;结果为 0则跳过下一条指令              | R-1→R ; 结果为 0 则 PC+2→PC        | 1+J+M | -      |
| DJZAR  | R    | R 减 1 , 结果存入 ACC ; 结果为 0 则跳过下一条指令 | R-1→ACC; 结果为 0则 PC+2→PC        | 1+J   | -      |
| BCLR   | R, b | 将 R 的第 b 位清 0                     | 0→R[b]                         | 1+M   | -      |
| BSET   | R, b | 将 R 的第 b 位置 1                     | 1→R[b]                         | 1+M   | -      |
| JBCLR  | R, b | 若 R 的第 b 位为 0 , 则跳过下一条指令          | 若 R[b]=0,则 PC+2→PC             | 1+J   | -      |
| JBSET  | R, b | 若 R 的第 b 位为 1,则跳过下一条指令            | 若 R[b]=1,则 PC+2→PC             | 1+J   | -      |
| CMPR   | R    | ACC和R比较;相等则跳过下一条指令                | ACC-R;结果为0则PC+2→PC             | 1+J   | C,Z    |
| CMPI   | K    | ACC 和 K 比较;相等则跳过下一条指令             | ACC-K;结果为0则PC+2→PC             | 1+J   | C,Z    |
| ADDA I | K    | ACC 和 K 相加,结果存入 ACC               | ACC+K→ACC                      | 1     | C,DC,Z |
| ASUBAI | K    | ACC 和 K 相减,结果存入 ACC               | ACC-K→ACC                      | 1     | C,DC,Z |
| ANDA I | K    | ACC 和 K 与操作,结果存入 ACC              | ACC and K→ACC                  | 1     | Z      |
| ORAI   | K    | ACC 和 K 或操作,结果存入 ACC              | ACC or K→ACC                   | 1     | Z      |
| XORA I | K    | ACC 和 K 异或操作,结果存入 ACC             | ACC xor K→ACC                  | 1     | Z      |
| MOVAI  | K    | 将 K 存入 ACC                        | K→ACC                          | 1     | -      |
| CALL   | К    | 子程序调用                             | PC+1→TOS                       | 2     | 1      |
| UALL   | IX.  | 了作:                               | K→PC[10:0]                     | 2     |        |
| GOT0   | K    | 无条件跳转                             | K→PC[10:0]                     | 2     | -      |
| RETURN |      | 从子程序返回                            | TOS→PC                         | 2     | -      |
| RETIE  |      | 从中断返回                             | TOS→PC                         | 2     | _      |
| KLIIL  |      |                                   | 1→GIE                          | 2     | _      |
| NOP    |      | 空操作                               | 空操作                            | 1     | -      |
| PUSH   |      | 缓存 ACC 和 C,DC,Z                   | ACC和C,DC,Z→BUF                 | 1     | -      |
| P0P    |      | 恢复 ACC 和 C,DC,Z                   | BUF→ACC 和 C,DC,Z               | 1     | C,DC,Z |
| MOVC   | _    | 读取程序存储器内容                         | ROM(@[FSR1:FSR0])→[HIBYTE:ACC] | 2     | -      |

## 注:

- 1、 ACC-算术逻辑单元累加器 , R-数据存储器 , K-立即数 ;
- 2、对于条件跳转类指令,若跳转条件成立,则J=1,否则J=0;
- 3、部分访问数据存储器的指令,若目的寄存器为 GPR,则 M=1,若目的寄存器为 SFR,则 M=0;
- 4、 PUSH/POP 指令涉及的缓存器 BUF 仅有 1 层,所以 PUSH/POP 必须成对使用,否则将导致数据错误;

## 3.2 程序存储器

芯片的程序存储器为 OTP 型存储器, $1K\times16$  位的地址空间范围为 0000H $\sim$ 03FFH。程序存储器地址分配如下图所示:

*晟矽微电子* 11/54



通用程序区 (0009H - 03FFH)

程序存储器支持间接寻址,可通过 MOVC 指令访问 FSR1×256+FSR0 指向的程序存储器地址中的内容。例:通过间接寻址读取程序存储器 0155H 地址中的内容,高 8 位存入数据存储器 11H 地址,低 8 位存入数据存储器 10H 地址

| MOVAI | 01H    |                                                   |
|-------|--------|---------------------------------------------------|
| MOVRA | FSR1   | ;将 01H 写入 FSR1                                    |
| MOVAI | 55H    |                                                   |
| MOVRA | FSR0   | ;将 55H 写入 FSR0                                    |
| MOVC  |        | ;读取 FSR1×256+F <mark>SR0</mark> 指向的程序存储器地址(0155H) |
|       |        | ;中的内容,高8位存入HIBYTE,低8位存入A寄存器                       |
| MOVRA | 10H    | ;低8位存入数据存储器10H地址                                  |
| MOVAR | HIBYTE | ;从 HIBYTE 读 <mark>取高 8</mark> 位                   |
| MOVRA | 11H    | ;高8位存入数据存储器11H地址                                  |

## 3.3 数据存储器

数据存储器包括通用数据存储器 GPR 和特殊功能寄存器 SFR,具体地址分配参照下表。GPR/SFR可直接寻址或通过 INDF 间接寻址。

### 数据存储器区地址映射表

| 地址      | 类型  | 0/8  | 1/9      | 2/A    | 3/B  | 4/C  | 5/D  | 6/E   | 7/F    |  |  |  |
|---------|-----|------|----------|--------|------|------|------|-------|--------|--|--|--|
| 00H-3FH | GPR |      | 通用数据寄存器区 |        |      |      |      |       |        |  |  |  |
| 40H-7FH | 保留  |      |          |        | 保    | 留    |      |       |        |  |  |  |
| 80H-87H |     |      |          | HIBYTE | FSR0 | FSR1 |      | PFLAG |        |  |  |  |
| 88H-8FH |     |      |          |        |      |      |      |       |        |  |  |  |
| 90H-97H |     |      |          |        |      |      |      |       |        |  |  |  |
| 98H-9FH |     |      |          |        |      |      |      |       |        |  |  |  |
| AOH-A7H | SFR |      |          |        |      |      |      |       |        |  |  |  |
| A8H-AFH |     |      |          |        |      |      |      | P4CON | VREFCR |  |  |  |
| BOH-B7H |     |      | ADM      | ADB    | ADR  | ADT  |      |       |        |  |  |  |
| B8H-BFH |     | OEP0 |          |        |      |      |      |       | EINTCR |  |  |  |
| COH-C7H |     |      |          |        |      | OEP4 | OEP5 |       |        |  |  |  |

*晟矽微电子* 12/54



| C8H-CFH | INTF   | INTE   | OSCM   |        | WDTCR  | T0LDR  | PCL    | PCH    |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| DOH-D7H | IOP0   |        |        |        | IOP4   | IOP5   |        |        |
| D8H-DFH | TMRCR  |        | T0CR   | T0CNT  | T1CR   | T1CNT  | T1LDR  | MCR    |
| E0H-E7H | PUP0   |        |        |        | PUP4   | PUP5   |        | INDF   |
| E8H-EFH |        |        |        |        |        |        |        |        |
| F0H-F7H |        |        |        |        |        |        |        |        |
| F8H-FFH | STKR3L | STKR3H | STKR2L | STKR2H | STKR1L | STKR1H | STKR0L | STKR0H |

注:上表中灰色部分地址为系统保留区,读出数据不确定,写入操作可能会影响芯片正常工作。

直接寻址模式,是以指令的低 8 位为数据存储器地址,通过指令访问,寻址范围为 00H~FFH。例:通过直接寻址模式将数据 55H 写入数据存储器 10H 地址

MOVAI 55H MOVRA 10H

; 将数据 55H 写入数据存储器 10H 地址

间接寻址模式,是以 [FSR1:FSR0] 为数据存储器地址指针,通过 INDF 访问,寻址范围为 0000H~FFFFH。例:通过间接寻址模式将数据 55H 写入数据存储器 0010H 地址

MOVAI 00H
MOVRA FSR1
MOVAI 10H
MOVRA FSR0
MOVAI 55H
MOVRA INDF

; 将数据 55H 写入 FSR1×256+FSR0 指向的数据存储器中

## 3.4 堆栈

4级10位堆栈缓存寄存器 STKRm (m=3-0), 位于特殊功能寄存器 SFR 区,3位堆栈指针 STKP 位于杂项控制寄存器 MCR 中,指向堆栈栈顶。CPU 在响应中断或执行子程序调用指令时,先将 STKP 减1,然后将 PC 值压入 STKP 所指栈顶的堆栈缓存寄存器中;当 CPU 执行中断或子程序返回指令时,先将栈顶数据送入 PC 中,再将 STKP 加 1 指向新的栈顶地址。若在堆栈满时压栈、或堆栈空时出栈,会导致数据错误。

| 压栈操<br>(CALL/中   | <br>出栈操<br>(RETURN/R | 作  堆栈<br>ETIE)层数 | 堆栈指针<br>(STKP) | 指向<br>栈顶 | 堆栈<br>(STM | 缓存<br>(Rm) |
|------------------|----------------------|------------------|----------------|----------|------------|------------|
| 1                | 10                   | 5                | STKP=010B      | <b>─</b> | 空          | 空          |
| STKP-1<br>(层数+1) | 栈顶数据<br>送至PC         | 4                | STKP=011B      | <b></b>  | STKR3H     | STKR3L     |
|                  |                      | 3                | STKP=100B      | <b></b>  | STKR2H     | STKR2L     |
| PC值存<br>入栈顶      | STKP+1<br>(层数−1)     | 2                | STKP=101B      | <b></b>  | STKR1H     | STKR1L     |
| 7 112/32         | (12)                 | 1                | STKP=110B      | <b></b>  | STKR0H     | STKR0L     |
|                  | 1                    | , 0              | STKP=111B      | <b>─</b> | 保留         | 保留         |

*晟矽微电子* 13/54



## 3.5 控制寄存器

### 数据指针寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| FSR0 | FSR07 | FSR06 | FSR05 | FSR04 | FSR03 | FSR02 | FSR01 | FSR00 |
| R/W  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| 初始值  | Х     | Х     | Х     | Х     | Х     | Х     | Х     | Х     |

BIT[7:0] **FSR0[7:0]** - 数据指针寄存器 0

FSR0: 间接寻址模式的指针低 8 位。

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| FSR1 | FSR17 | FSR16 | FSR15 | FSR14 | FSR13 | FSR12 | FSR11 | FSR10 |
| R/W  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| 初始值  | Х     | Х     | Х     | Х     | Х     | Х     | Χ     | Χ     |

BIT[7:0] **FSR1[7:0**] - 数据指针寄存器 1

FSR1: 间接寻址模式的指针高 8 位。

### 间接寻址寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| INDF | INDF7 | INDF6 | INDF5 | INDF4 | INDF3 | INDF2 | INDF1 | INDF0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| 初始值  | Х     | Х     | Χ     | Х     | Х     | Х     | Х     | Χ     |

BIT[7:0] INDF[7:0] - 间接寻址寄存器

INDF: INDF 不是物理寄存器,对 INDF 寻址实际是对 FSR1×256+FSR0 指向的数据存储器地址进行访问,从而实现间接寻址功能。

### 字操作高字节缓存器

|        | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| HIBYTE | HIBYTE7 | HIBYTE6 | HIBYTE5 | HIBYTE4 | HIBYTE3 | HIBYTE2 | HIBYTE1 | HIBYTE0 |
| R/W    | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| 初始值    | Х       | Х       | Х       | Х       | Х       | Х       | Х       | Х       |

BIT[7:0] **HIBYTE[7:0]** – 字操作高字节缓存器

HIBYTE: 用于存放通过 MOVC 指令访问程序存储器时所读取内容的高 8 位数据。

### 程序指针计数器

|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PCH | -     | -     | -     | -     | -     | -     | PC9   | PC8   |
| R/W | -     | -     | -     | -     | -     | -     | R/W   | R/W   |
| 初始值 | -     | -     | -     | -     | -     | -     | 0     | 0     |

BIT[1:0] PC[9:8] - 程序指针计数器高 2 位

*晟矽微电子* 14/54



|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PCL | PC7   | PC6   | PC5   | PC4   | PC3   | PC2   | PC1   | PC0   |
| R/W | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| 初始值 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

BIT[7:0] PC[7:0] - 程序指针计数器低 8 位

程序指针计数器 (PC) 有以下几种操作模式:

- ◆ 顺序运行指令: PC = PC + 1;
- ◆ 分支指令 GOTO/CALL: PC = 指令码低 10 位;
- ◆ 返回指令 RETIE/RETURN: PC = 堆栈栈顶 (TOS);

#### 对 PCL 操作指令:

- → 对 PCL 操作的加法指令: PC = (PC[9:0]+ALU[7:0]);
- → 对 PCL 操作的其它指令: PC = {PC[9:8]:ALU[7:0](ALU 运算结果)};

注:以 PCL 为目的寄存器的算术/逻辑操作指令中,仅有加法指令产生进位时会影响 PCH 的值,而其他指令均不会影响 PCH 的值。

#### CPU 状态寄存器

|       | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PFLAG | ТО    | PD    | LVD36 | LVD24 | A - " | С     | DC    | Z     |
| R/W   | R/W   | R/W   | R     | R     | -     | R/W   | R/W   | R/W   |
| 初始值   | Х     | Х     | 0     | 0     | -     | 0     | 0     | 0     |

BIT[7,6] **TO,PD** - 复位状态标志位

| то | PD | 复位状态      |
|----|----|-----------|
| 0  | 0  | WDT 溢出复位  |
| 0  | 1  | 保留        |
| 1  | 0  | LVR 低电压复位 |
| 1  | 1  | RST 外部复位  |

BIT[5] LVD36 - 3.6V 检测状态标志位(仅配置字 LVDVS 选择 3.6V 时有效)

0: VDD 电压高于 3.6V (有回滞);

1: VDD 电压低于 3.6V;

BIT[4] LVD24 - 2.4V 检测状态标志位(仅配置字 LVDVS 选择 2.4V 时有效)

0: VDD 电压高于 2.4V (有回滞);

1: VDD 电压低于 2.4V;

注:因 LVD 电路有回滞特性 ( 回滞电压典型值为 6% ),所以 VDD 需上升至检测量值 + 6% 后标志位才被清 0。

0: 加法运算时无进位;减法运算时有借位;移位后移出逻辑0;比较运算结果<0;

1: 加法运算时有进位;减法运算时无借位;移位后移出逻辑 1;比较运算结果≥0;

*晟矽微电子* 15/54



BIT[1] DC - 半字节进/借位标志位

0: 加法运算时半字节无进位; 减法运算时半字节有借位;

1: 加法运算时半字节有进位;减法运算时半字节无借位;

BIT[0] **Z** - 零标志位

0: 算术或逻辑运算的结果不为零;

1: 算术或逻辑运算的结果为零;

## 杂项控制寄存器

|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| MCR | GIE   | ı     | ı     | -     | ı     | STKP2 | STKP1 | STKP0 |
| R/W | R/W   | -     | -     | -     | -     | R/W   | R/W   | R/W   |
| 初始值 | 0     | -     | -     | -     | -     | 1     | 1     | 1     |

BIT[7] GIE - 中断总使能位

0: 屏蔽所有中断;

1: 由相应的中断使能位决定 CPU 是否响应中断源所触发的中断;

BIT[2:0] **STKP[2:0]** - 堆栈指针控制位

注:虽然堆栈指针的复位初始值已为 111<mark>B,但仍推</mark>荐在<mark>程序初始部分</mark>重新设定 STKP=7 并禁止程序再访问堆栈 相关寄存器,以确保芯片能正常使用堆栈。

### 堆栈缓存寄存器 (m=0-3)

|        | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1   | Bit 0   |
|--------|-------|-------|-------|-------|-------|-------|---------|---------|
| STKRmH | -     | 1     | -     | -     | -     | -     | STKRmB9 | STKRmB8 |
| R/W    | -/    | -     | -     | -     | -     | -     | R/W     | R/W     |
| 初始值    |       | -     | -     | -     | 1     | 1     | 0       | 0       |

BIT[1:0] **STKRmB[9:8]** - 堆栈缓存寄存器 STKRm 的高 2 位

|        | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| STKRmL | STKRmB7 | STKRmB6 | STKRmB5 | STKRmB4 | STKRmB3 | STKRmB2 | STKRmB1 | STKRmB0 |
| R/W    | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| 初始值    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

BIT[7:0] **STKRmB[7:0**] - 堆栈缓存寄存器 STKRm 的低 8 位

*晟矽微电子* 16/54



## 3.6 用户配置字

芯片为保证系统正常工作,会将关键模块的配置信息预先存储于单独的存储器区域中,在上电或其他复位发生后将配置信息载入寄存器中,通过寄存器控制关键模块的工作状态。该部分存储器中用户可选的内容即为用户配置字,可在烧录用户程序代码时进行配置与烧录。

芯片的用户配置字,定义如下:

| 符号       | 功能说明                                                                     |  |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| FCPUS    | 高频时钟下 FCPU 分频选择:                                                         |  |  |  |  |  |  |  |  |
| rcrus    | FCPU=FHOSC/2; FCPU=FHOSC/4; FCPU=FHOSC/8; FCPU=FHOSC/16;                 |  |  |  |  |  |  |  |  |
| RSTEN    | RST 外部复位设置:                                                              |  |  |  |  |  |  |  |  |
| KSTEN    | P04 为外部复位脚; P04 为输入/输出脚;                                                 |  |  |  |  |  |  |  |  |
| LVRVS    | LVR 复位电压选择:(LVR 电压应满足由 FCPU 决定的工作电压特性)                                   |  |  |  |  |  |  |  |  |
| LVKV3    | 2.0V ; 2.4V ; 2.7V ; 3.6V ;                                              |  |  |  |  |  |  |  |  |
| LVDVS    | LVD 检测电压选择:                                                              |  |  |  |  |  |  |  |  |
| LVDV3    | LVD 关闭;2.4V;3.6V;                                                        |  |  |  |  |  |  |  |  |
| WDTM     | WDT 模式设置:                                                                |  |  |  |  |  |  |  |  |
| WDIW     | WDT 始终关闭;  WDT 低功耗模式下关闭;  WDT 始终开启;                                      |  |  |  |  |  |  |  |  |
| P04PMS   | P04端口模式选择:(仅在通过 RSTEN 设置 P04 为输入/输出脚时有效)                                 |  |  |  |  |  |  |  |  |
| FOAFIVIS | P04 为单输入口; P04 为输入/开漏输出口;                                                |  |  |  |  |  |  |  |  |
|          | 数字功能端口映射选择:                                                              |  |  |  |  |  |  |  |  |
| DIGPS    | 端口不映射: <mark>数字功能 PW</mark> M0/ <mark>BUZ0、</mark> INT0/TC0、INT1/TC1 无效; |  |  |  |  |  |  |  |  |
|          | 端口映射:P <mark>WM0/BUZ0、INT</mark> 0/TC0、INT1/TC1 端口与 GPIO 复用;             |  |  |  |  |  |  |  |  |
| ENCR     | 程序代码加密设置:                                                                |  |  |  |  |  |  |  |  |
| LITCK    | 程序代码加密;    程序代码不加密;                                                      |  |  |  |  |  |  |  |  |

*晟矽微电子* 17/54



## 4 系统时钟

芯片为双时钟系统,内部电路均在系统高频时钟 Fhosc 或系统低频时钟 FLosc 下工作,部分模块的时钟还可在 Fhosc 和 FLosc 之间切换。

系统高频时钟 FHOSC 固定为内部高频 RC 振荡器 HIRC(16MHz)时钟 FHIRC; 系统低频时钟 FLOSC 固定为内部低频 RC 振荡器 LIRC(32KHz)时钟 FLIRC。

CPU 的时钟源可在系统高频时钟 Fhosc 和系统低频时钟 FLosc 之间切换。选择 Fhosc 时,CPU 的时钟频率 FCPU 通过配置字 FCPUS 选择;选择 FLosc 时,FCPU 固定为 FLosc 的 4 分频。

WDT (看门狗) 电路的时钟源固定为内部低频 RC 振荡器。

#### 系统时钟示意图



# 4.1 内部高频 RC 振荡器

芯片内置 1 个振荡频率为 16MHz 的高精度 HIRC 振荡器,可用作系统高频时钟源。

## 4.2 内部低频 RC 振荡器

芯片内置 1 个振荡频率典型值为 32KHz 的 LIRC 振荡器,可用作系统低频时钟源,也用于系统上电延时控制、WDT 定时器等电路。

*晟矽微电子* 18/54



# 5 系统工作模式

芯片支持高速模式、低速模式、空闲模式和休眠模式等多种系统工作模式,其中高/低速模式为运行模式,CPU运行:而空闲模式和休眠模式为低功耗模式,CPU暂停工作。

| 工作模式   | 切入条件                      | 系统状态                      |  |  |
|--------|---------------------------|---------------------------|--|--|
|        | 任意模式下,系统复位                | -                         |  |  |
| 高速模式   | 低速模式下,CLKS清0              | CPU 高速运行,高/低频时钟源均工作       |  |  |
|        | 空闲/休眠模式下, CPU 唤醒          |                           |  |  |
| /仁:古-世 | 高速模式下,CLKS 置 1            | - CPU 低速运行,高频时钟源由 HFDE 决定 |  |  |
| 低速模式   | 空闲/休眠模式下,CPU 唤醒           |                           |  |  |
| 空闲模式   | 高/低速模式下,CPUM 写 10         | CPU 暂停,高频时钟源由 HFDE 决定     |  |  |
| /+     | 高速模式下,CPUM写 01、或 HFDE 置 1 |                           |  |  |
| 休眠模式   | 低速模式下,CPUM写 01            | CPU 暂停,高/低频时钟源均停止         |  |  |

注:WDT 时钟源为 LIRC, WDT 开启时 LIRC 将一直工作而不受系统工作模式影响。

### 工作模式切换示意图



#### **工作模式寄存器**

|      | 13 88 |       |       |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| OSCM | -     | -     | -     | CPUM1 | CPUM0 | CLKS  | HFDE  | -     |
| R/W  | -     | -     | -     | R/W   | R/W   | R/W   | R/W   | -     |
| 初始值  | -     | -     | -     | 0     | 0     | 0     | 0     | -     |

BIT[4:3] **CPUM[1:0]** - 系统工作模式控制位

| CPUM[1:0] | 系统工作模式         |
|-----------|----------------|
| 00        | 高/低速模式(硬件自动清0) |
| 01        | 进入休眠模式         |

*晟矽微电子* 19/54



| 10 | 进入空闲模式 |
|----|--------|
| 11 | 保留     |

BIT[2] CLKS - 系统时钟及 CPU 时钟选择位

0: FHOSC 作为 FOSC, FHOSC 的分频时钟作为 FCPU;

1: FLosc 的 4 分频时钟作为 Fosc 和 FCPU;

BIT[1] HFDE - 高频时钟源控制位

0: 使能高频时钟源;

1: 关闭高频时钟源;

## 系统功能和模块在各工作模式下的状态

| 功能/模块的工作状态  | 高速模式         | 低速模式       | 空闲模式                 | 休眠模式           |
|-------------|--------------|------------|----------------------|----------------|
| 内/外部高频时钟源   | 工作           | 通过 HFDE 控制 | 继续原状态                | 停止             |
|             |              |            |                      | 由 WDTM 决定      |
| 内部低频 RC 振荡器 | 工作           | 工作         | 工作                   | WDT 开则 LIRC 工作 |
|             |              |            |                      | WDT 关则 LIRC 停止 |
| CPU         | 工作           | 工作         | 停止                   | 停止             |
| 看门狗定时器 WDT  | 由 WDTM 决定    | 由 WDTM 决定  | 由 WDTM 决定            | 由 WDTM 决定      |
| TO 及其中断     | 通过 TOEN 控制   | 通过 TOEN 控制 | 继续原状态,溢出置标志位         | 暂停             |
| 10 及兵中國     | 溢出可产生中断      | 溢出可产生中断    | TOWUEN 决定溢出是否唤醒      |                |
| T1 及其中断     | 通过 T1EN 控制   | 通过 T1EN 控制 | 继续原状态                | 暂停             |
| 11 及兵中國     | 溢出可产生中断      | 溢出可产生中断    | 溢出仅置标志位,不可唤醒         |                |
| ADC 及其中断    | 通过 ADEN 控制   | 通过 ADEN 控制 | 暂停                   | 暂停             |
| ADC 及其中剧    | 结束可产生中断      | 结束可产生中断    |                      |                |
| 外部中断        | 触发可产生中断      | 触发可产生中断    | 触发仅置标志位              | 触发仅置标志位        |
| 唤醒方法        | \ \ <u>\</u> | -          | P0 电平变化 , T0 溢出 , 复位 | P0 电平变化,复位     |

在高/低速模式中,可通过位操作指令 BSET 将 CPUM0 置 1 进入休眠模式、或将 CPUM1 置 1 进入 空闲模式。但请注意,因指令的预读寄存器机制及 CPU 的并行流水线架构,若唤醒后的第一条指令又 立即对寄存器 OSCM 进行操作,则会再次进入休眠或空闲模式。

可按以下例程实现运行-休眠、运行-空闲的模式切换:

 .....
 ; 运行模式

 BSET
 CPUMO
 ; CPUMO 置 1, 进入休眠模式

 NOP
 ; 唤醒后第一条指令

 .....
 CPUM1
 ; CPUM1 置 1, 进入空闲模式

 NOP
 ; 唤醒后第一条指令

 .....
 ; 运行模式

*晟矽微电子* 20/54



## 5.1 高速模式

高速模式下,系统(包括 CPU)的工作时钟由高频时钟 Fhosc 提供。上电复位或其他复位触发后,系统以高速模式工作,当系统从休眠模式唤醒后也进入高速模式。

- ◆ CPU 以 FHOSC 为时钟源,在其分频时钟下执行指令代码;
- ◆ 系统在 FHOSC 下工作; 所有模块均可在选定的时钟下工作;
- ◆ 高频时钟源和内部低频 RC 振荡器均正常工作;
- ◆ 系统可从高速模式转入其他任意模式:
- ◆ 系统可从低速模式转入高速模式;
- ◆ 系统从高速模式转入空闲模式后,再唤醒将返回到高速模式;
- ◆ 系统从休眠模式唤醒后,转入高速模式;

## 5.2 低速模式

低速模式下,系统(包括 CPU)的工作时钟由 FLosc 提供。高/低速模式的切换由寄存器位 CLKS 控制,CLKS 清 0 后转入高速模式,CLKS 置 1 后转入低速模式。从高速模式转入低速模式时,高频时钟源并不自动停止,可通过寄存器位 HFDE 关闭高频时钟源以降低功耗;而从低速模式转入高速模式时,需先通过 HFDE 清 0 开启高频时钟源,然后再通过 CLKS 清 0 切换模式。

- ◆ CPU 以 FLosc 的 4 分频时钟执行指令代码;
- ◆ 系统在 FLosc 的 4 分频时钟下工作;所有模块均可在选定的时钟下工作;
- ◆ 内部低频 RC 振荡器正常工作,高频时钟源由 HFDE 控制;
- ◆ 系统可从低速模式转入其他任意模式:
- ◆ 系统可从高速模式转入低速模式;
- ◆ 系统从低速模式转入空闲模式后,再唤醒将返回到低速模式;

## 5.3 休眠模式

休眠模式为低功耗模式,系统和 CPU 均停止工作,高频时钟源停止工作,内部低频 RC 振荡器根据 WDT 模式决定(若 WDT 始终工作则 LIRC 工作,否则 LIRC 停止)。休眠模式可由选定端口的电平变 化来唤醒,系统从其他任意模式转入到休眠模式后,再唤醒均将以高速模式恢复工作。可通过寄存器位 CPUM 控制是否进入休眠模式,当 CPUM=01 时,系统进入休眠模式,唤醒后 CPUM 自动恢复成 00,CLKS 也自动清为 0,系统进入高速模式。

- ◆ CPU 停止工作,程序代码暂停执行:
- ◆ 包括内部高/低速 RC 振荡器、外部高速振荡器在内的所有时钟源均停止工作。
- ◇ 选定端口的电平变化,将唤醒系统;
- ◆ 系统从休眠模式唤醒后进入高速模式;

注:高速模式下 HFDE 置 1,系统也将进入休眠模式;在低速模式且 HFDE 置 1 时,直接将 CLKS 清 0 会误进入 休眠模式。

*晟矽微电子* 21/54



## 5.4 空闲模式 (绿色模式)

空闲模式又称为绿色模式,也为低功耗模式,CPU停止工作,但切入空闲模式前选定的时钟源仍保持工作,系统和内部模块也将在Fosc或FcPu下继续工作。空闲模式下,选定端口的电平变化、或使能唤醒功能的定时器的溢出,均将唤醒系统。可通过寄存器位CPUM控制是否进入空闲模式,当CPUM=10时,系统进入空闲模式,唤醒后CPUM自动恢复成00,系统按之前的模式恢复工作。

- ◆ CPU 停止工作,程序代码暂停执行;
- ◆ 此前作为系统时钟源的振荡器仍正常工作,其他振荡器的状态取决于工作模式的配置;
- ◆ 支持唤醒功能的定时器继续原工作状态;
- ◆ 选定端口的电平变化、或使能唤醒功能的定时器的溢出,将唤醒系统;
- ◆ 由高速模式切换到空闲模式,唤醒后系统返回到高速模式;
- ◆ 由低速模式切换到空闲模式,唤醒后系统返回到低速模式;



*晟矽微电子* 22/54



## 6 复位

## 6.1 复位条件

芯片共有如下几种复位方式:

- ◆ 上电复位 POR;
- ♦ 外部复位;
- ◆ 低电压复位 LVR:
- ◆ WDT 看门狗复位;

任何一种复位发生后,系统进入复位状态,执行初始化操作并重置 SFR 为复位初始值;复位条件解除后,系统退出复位状态,CPU 开始重新从程序存储器 0000H 地址处执行指令。

上电复位 POR 和低电压复位 LVR 会关闭系统主时钟振荡器,复位解除后才重新打开振荡器,因为振荡器起振和稳定需要一定的时间,所以系统会保持一定时间的上电延时和振荡等待后才开始工作;而外部复位和 WDT 复位不会关闭主时钟振荡器,复位解除时系统会在较短的复位延时和振荡等待后即开始工作。

下图是复位产生和系统工作状态之间时序关系的示意图:



*晟矽微电子* 23/54



## 6.2 上电复位

芯片的上电复位电路可以适应快速、慢速上电的情况,且当芯片上电过程中出现电源电压抖动时均能保证系统可靠的复位。

上电复位过程可以概括为以下几个步骤:

- (1) 检测系统工作电压,等待电压高于上电复位电压 VPOR 并保持稳定;
- (2) 若有 LVR 功能,则需等待电压高于 VLVR 并保持稳定;
- (3) 若有外部复位功能,则需等待复位引脚电压高于 Vih;
- (4) 初始化所有寄存器;
- (5) 开启主时钟振荡器,并等待一段时间以待振荡器稳定;
- (6) 上电结束,系统开始执行指令。

## 6.3 外部复位

芯片的外部复位功能可通过配置字 RSTEN 开启,引脚设为外部复位脚即开启外部复位功能,端口的内部上拉电阻自动使能。外部复位输入端口 RST 为施密特结构,低电平有效。当端口输入为高电平时,系统正常运行;输入为低电平时,系统复位。

## 6.4 低电压复位

芯片的低电压复<mark>位电压</mark>可通过配置字 LVRVS 选择。电压检测电路有一定的回滞特性,回滞电压为 6%左右(典型值),当电源电压下降至 LVR 电压时 LVR 复位有效,反之则电源电压需上升至 LVR 电压 +6%后 LVR 复位才解除。

## 6.5 看门狗复位

看门狗(WDT)复位是一种对程序正常运行的保护机制。正常情况下,用户程序需定时对 WDT 定时器进行清零操作,以保证 WDT 不溢出。若出现异常情况,程序未按时对 WDT 定时器清零,则芯片会因 WDT 溢出而产生看门狗复位,系统重新初始化,返回受控状态。

*晟矽微电子* 24/54



# 7 I/O 端口

## 7.1 通用 I/O 功能

芯片的输入/输出端口包括一组 2 位端口 P0、一组 3 位端口 P4、和一组 1 位端口 P5。所有 I/O 端口均支持施密特输入,除 P14 可配置为单输入口或输入/开漏输出口外,其余 I/O 端口均支持推挽输出。

除用作通用数字 I/O 端口外,部分端口还具有外部中断输入、PWM 输出、或 ADC 模拟输入等复用功能。

### 端口数据寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| IOP0 | -     | -     | -     | P04D  | -     | P02D  | 4     | 1 -   |
| R/W  | -     | -     | -     | R/W   | -     | R/W   | 1-1   | 1-1   |
| 初始值  | -     | -     | -     | 0     | -     | 0     | -     | -     |

BIT[4,2] **P0nD** – P0n 端口数据位(n=4,2)

#### 注:通过配置字 RSTEN 将 PO4 用作复位脚时,PO4D 读出恒为"1"。

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| IOP4 | -     | -     | -//   | P44D  | V.V   | -     | P41D  | P40D  |
| R/W  | -     | -     | 1-    | R/W   | -     | -     | R/W   | R/W   |
| 初始值  | -     | -     | 1-    | 0     | -     | -     | 0     | 0     |

BIT[4,1,0] **P4nD** – P4n 端口数据位(n=4,1,0)

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| IOP5 | (-)   | 1 -   | -     | -     | P53D  | -     | -     | -     |
| R/W  | 1-1   | 1     | -     | -     | R/W   | -     | -     | -     |
| 初始值  |       | -     | -     | -     | 0     | -     | -     | -     |

BIT[3] **P5nD** – P5n 端口数据位(n=3)

#### 端口方向寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| OEP0 | -     | -     | -     | P04OE | -     | P02OE | -     | -     |
| R/W  | -     | -     | -     | R/W   | -     | R/W   | -     | -     |
| 初始值  | -     | -     | -     | 0     | -     | 0     | -     | -     |

BIT[4,2] **P0nOE** – P0n 端口输出使能位(n=4,2)

0: 端口作为输入口, 读端口操作将读取端口的输入电平状态;

1: 端口作为输出口,读端口操作将读取端口的数据寄存器值;

注:P04 配置为单输入口时,P04OE 位无效。

*晟矽微电子* 25/54



|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| OEP4 | -     | -     | -     | P440E | -     | -     | P410E | P40OE |
| R/W  | -     | -     | -     | R/W   | -     | -     | R/W   | R/W   |
| 初始值  | -     | -     | -     | 0     | -     | -     | 0     | 0     |

BIT[4,1,0] **P4nOE** – P4n 端口输出使能位(n=4,1,0)

0: 端口作为输入口,读端口操作将读取端口的输入电平状态;

1: 端口作为输出口,读端口操作将读取端口的数据寄存器值;

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| OEP5 | -     | -     | -     | -     | P53OE | -     | -     | -     |
| R/W  | -     | -     | -     | -     | R/W   | -     | -     | -     |
| 初始值  | -     | -     | -     | -     | 0     | -     | - 4   | 7-    |

BIT[3] **P5nOE** – P5n 端口输出使能位(n=3)

0: 端口作为输入口,读端口操作将读取端口的输入电平状态;

1: 端口作为输出口,读端口操作将读取端口的数据寄存器值:

## 7.2 内部上拉电阻

除 P04 外其余端口均有内部上拉电阻,且均有单独的<mark>寄存</mark>器位控制其上拉电阻在端口处于输入状态时是否有效。端口处于输出状态时,上拉电阻及其控制位无效。

#### 上拉电阻控制寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| PUP0 | -     | -     | -     | P04PU | -     | P02PU | 1     | 1     |
| R/W  | -     | 1     | -     | R     | -     | W     | -     | -     |
| 初始值  | 1 V   | -     | -     | 0     | -     | 0     | -     | -     |

BIT[4,2] **P0**nPU – P0n 端口上拉电阻控制位(n=4,2)

0: 端口内部上拉电阻无效;

1: 端口内部上拉电阻有效;

注:P04 同样具有内部上拉电阻,在端口配置为复位脚时固定有效,配置为单输入口时固定无效,配置为输入/开漏输出口时则在端口处于输入状态时可通过 P04PU 控制上拉电阻是否有效。

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| PUP4 | -     | -     | -     | P44PU | -     | -     | P41PU | P40PU |
| R/W  | -     | -     | -     | W     | -     | -     | W     | W     |
| 初始值  | -     | -     | -     | 0     | -     | -     | 0     | 0     |

BIT[4,1,0] **P4nPU** – P4n 端口上拉电阻控制位(n=4,1,0)

0: 端口内部上拉电阻无效;

1: 端口内部上拉电阻有效;

*晟矽微电子* 26/54



|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| PUP5 | -     | -     | -     | -     | P53PU | -     | -     | -     |
| R/W  | -     | -     | -     | -     | W     | -     | -     | -     |
| 初始值  | ı     | -     | ı     | -     | 0     | -     | -     | -     |

BIT[3]

**P5nPU** – P5n 端口上拉电阻控制位 (n=3)

- 0: 端口内部上拉电阻无效;
- 1: 端口内部上拉电阻有效;

## 7.3 端口模式控制

部分端口除可作为数字端口外,还可复用为模拟端口。端口输入或输出模拟信号时,若数字 I/O 功能同时开启,则会产生漏电流,可通过端口数模控制寄存器关闭端口的数字 I/O 功能(内部上/下拉电阻及其控制位不受影响)。

### P4 端口模式设置寄存器

|       | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1  | Bit 0  |
|-------|-------|-------|-------|--------|-------|-------|--------|--------|
| P4CON | -     | -     | -     | P44CON | 1     | -     | P41CON | P40CON |
| R/W   | -     | -     | 1     | R/W    | V     | -     | R/W    | R/W    |
| 初始值   | -     | -     | -     | 0      | -     | -     | 0      | 0      |

BIT[4,1,0] **P4nCON** – P4n 端口数字功能控制位(n=4,1,0)

- 0: 使能端口的数字 I/O 功能;
- 1: 关闭端口的数字 I/O 功能;

用作数字输入口时,PO 所有端口支持端口电平变化唤醒功能,P02/P41 可作为外部中断输入口(需配置字 DIGPS 选择端口映射)。

注:应用端口电平变化唤醒或外部中断功能时,端口不能浮空且需外部输入电平稳定,否则易产生误触发。

*晟矽微电子* 27/54



## 8 定时器 TIMER

## 8.1 看门狗定时器 WDT

看门狗定时器 WDT 的时钟源为内部低频 RC 振荡器, WDT 计数器溢出将复位芯片。

可通过配置字 WDTM 设置 WDT 工作模式。若选择始终开启,则 WDT 一直工作,任意模式下 WDT 溢出均将复位芯片。若选择低功耗模式下关闭,则 WDT 在休眠/空闲模式下自动停止、在其他方式唤醒 CPU 后恢复工作。

WDT 控制寄存器 WDTCR 写 5AH 将清零 WDT 计数器。

WDT 溢出时间 = 8192 / 内部低频 RC 振荡器频率 (FLIRC)。

注:WDT 溢出时间为典型值,实际值偏差大,必须保证清 WDT 时间小于典型值的 1/4。

#### WDT 控制寄存器

|       | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| WDTCR | WDTCR7 | WDTCR6 | WDTCR5 | WDTCR4 | WDTCR3 | WDTCR2 | WDTCR1 | WDTCR0 |
| R/W   | W      | W      | W      | W      | W      | W      | W      | W      |
| 初始值   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

BIT[7:0] **WDTCR[7:0]** – WDT 控制寄存器,写 5AH 将清零 WDT 计数器

### 8.2 定时器 TO

定时器 T0 为 8 位定时/计数器,包含 1 个 8 位递增计数器、可编程预分频器、控制寄存器、8 位重载/比较寄存器。

- ♦ 时钟源可选择内部 FCPU、Fosc,或外部 TCO 输入;
- ◆ 选择内部时钟时可通过预分频比设置计数频率;
- ◆ 可实现 BUZ、PWM 功能;
- ◆ 用于定时/计数/BUZ 时,可通过重载/比较寄存器控制计数周期;用于 PWM 输出时,可通过重载/比较寄存器设置 PWM 占空比;
- ◆ 支持溢出中断,可使能或关闭溢出唤醒功能;

定时器 T0,可通过寄存器位 T0CKS 和 T0ICKS 选择内部或外部时钟源,通过 T0PRS 选择内部时钟源的预分频比,外部时钟或经过预分频器后的内部时钟作为 T0 计数器 T0CNT 的计数时钟。预分频器对Fosc 或 Fcpu/2 进行 1~128 分频,对 T0CNT 的写操作将清零预分频计数器,而预分频比保持不变。

PWM0OE=0 时,T0 可实现定时/计数功能,T0CNT 递增计数至FFH,溢出后从0开始重新计数;可通过T0LDEN 使能自动重载功能,即T0CNT 计数溢出时将自动载入T0LDR 的值后继续递增计数。

*晟矽微电子* 28/54



TOLDR 配有 1 个 8 位缓冲器,写 TOLDR 操作会将数据先写入该缓冲器中,在 TO 溢出时才将缓冲器中的值自动载入 TOLDR 和 TOCNT 中。若通过 TOLDR 调整 TO 的计数周期,只从下一个周期开始有效,因此在使能 TO 前需对 TOLDR 和 TOCNT 写相同的值,以使首个计数周期正确。



PWM0OE=0 且 BUZ0EN=1 时,T0 可实现BUZ 功能,端口BUZ0 将输出蜂鸣器驱动信号,频率为T0 溢出频率的 2 分频。

PWM0OE=1 时,T0 可实现PWM 功能,端口PWM0 将输出PWM 波形。每个PWM 周期内,T0CNT 从 0 开始递增计数,并与重载/比较寄存器 T0LDR 的值比较,当计数到与 T0LDR 相等时,PWM0 信号变为低电平;当计数溢出时,PWM0 信号变为高电平。写 T0LDR 操作仅将数据写入缓冲器,T0 溢出时才载入 T0LDR 中,所以通过 T0LDR 调整 PWM0 的占空比,只在下一个周期开始有效。



PWM0OE=1 时,T0LDEN 和 BUZ0EN 位用于设置 T0CNT 的最大计数值 N,即设置 PWM0 的计数周期(详见寄存器位说明)。

TO 选择外部时钟时,端口复用为数字输入端口 TCO, 其外部中断及电平变化唤醒功能将被禁止。 TO 使能 PWM 或 BUZ 功能后,端口复用为数字输出端口 PWM0/BUZ0, 其通用 I/O 功能将被禁止。

系统在高/低速模式之间切换时,T0的内部时钟源会同时在系统高/低频时钟源之间自动切换。休眠模式下,T0暂停工作。空闲模式下,T0继续原有工作状态,溢出时中断标志位将被置 1,T0WUEN=1时溢出还可唤醒 CPU。

#### 定时器控制寄存器

|       | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0 |
|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| TMRCR | -     | -     | -     | -     | T1ICKS | T0ICKS | T0WUEN | -     |
| R/W   | -     | -     | -     | -     | R/W    | R/W    | R/W    | -     |
| 初始值   | -     | -     | -     | -     | 0      | 0      | 0      | -     |

*晟矽微电子 29/54* 



BIT[3] T1ICKS-T1 内部时钟源选择位

BIT[2] TOICKS-TO 内部时钟源选择位

0: T0 内部时钟源为 FCPU/2;

1: T0 内部时钟源为 Fosc;

BIT[1] TOWUEN - TO 溢出唤醒使能位

0: 关闭 T0 溢出唤醒功能;

1: 使能 TO 溢出唤醒功能;

## 定时器 T0 控制寄存器

|      | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3 | Bit 2  | Bit 1  | Bit 0  |
|------|-------|--------|--------|--------|-------|--------|--------|--------|
| T0CR | T0EN  | T0PRS2 | TOPRS1 | T0PRS0 | T0CKS | T0LDEN | BUZ0OE | PWM0OE |
| R/W  | R/W   | R/W    | R/W    | R/W    | R/W   | R/W    | R/W    | R/W    |
| 初始值  | 0     | 0      | 0      | 0      | 0     | 0      | 0      | 0      |

BIT[7] **T0EN** - 定时器 T0 使能位

0: 关闭定时器 T0;

1: 开启定时器 T0;

BIT[6:4] **T0PRS[2:0]** – T0 预分频比选<u>择位</u>

| T0PRS[2:0] | T0 时钟预分频比 |
|------------|-----------|
| 000        | 1:128     |
| 001        | 1:64      |
| 010        | 1:32      |
| 011        | 1:16      |
| 100        | 1:8       |
| 101        | 1:4       |
| 110        | 1:2       |
| 111        | 1:1       |

BIT[3] TOCKS-TO 时钟源选择位

0: T0 时钟源为内部时钟源;

1: T0 时钟源为外部 TC0 输入下降沿;

BIT[2] TOLDEN – TO 自动重载使能位(仅 PWM0OE=0 时有效)

0: 禁止 T0 自动重载;

1: 使能 T0 自动重载;

BIT[1] BUZ0OE – BUZ0 端口输出使能位(仅 PWM0OE=0 时有效)

0: 禁止端口输出 BUZ 波形;

1: 允许端口输出 BUZ 波形;

*晟矽微电子* 30/54



| BIT[2.1] | T0LDEN.BUZ0OE - | -PWM0 | 周期选择位 | (仅 | PWM0OE=1 时有效) |
|----------|-----------------|-------|-------|----|---------------|
|----------|-----------------|-------|-------|----|---------------|

| T0LDEN: BUZ0OE | N   | T0CNT 范围 | T0CNT/T0LDR 有效值(二进制)  | PWM0 周期   |
|----------------|-----|----------|-----------------------|-----------|
| 00             | 255 | 0~255    | 0000 0000 ~ 1111 1111 | 256 个时钟周期 |
| 01             | 63  | 0~63     | xx00 0000 ~ xx11 1111 | 64 个时钟周期  |
| 10             | 31  | 0~31     | xxx0 0000 ~ xxx1 1111 | 32 个时钟周期  |
| 11             | 15  | 0~15     | xxxx 0000 ~ xxxx 1111 | 16 个时钟周期  |

BIT[0] PWM0OE-PWM0 使能位及端口输出控制位

0: 关闭 PWM0 功能,并禁止端口输出 PWM 波形;

1: 使能 PWM0 功能,并允许端口输出 PWM 波形:

#### 定时器 T0 计数器

|       | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| T0CNT | T0CNT7 | T0CNT6 | T0CNT5 | T0CNT4 | T0CNT3 | T0CNT2 | T0CNT1 | TOCNTO |
| R/W   | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| 初始值   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

BIT[7:0] **T0CNT[7:0]** – T0 计数器,为可读写的递增计数器

#### 定时器 T0 重载/比较寄存器

|       | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| T0LDR | T0LDR7 | T0LDR6 | T0LDR5 | T0LDR4 | T0LDR3 | T0LDR2 | T0LDR1 | T0LDR0 |
| R/W   | W      | W      | W      | W      | W      | W      | W      | W      |
| 初始值   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

BIT[7:0] **T0LDR[7:0] - T0** 重载/比较寄存器,用于设置 T0 的计数周期、或设置 PWM0 的占空比

## 8.3 定时器 T1

定时器 T1 为 8 位定时/计数器,包含 1 个 8 位递增计数器、可编程预分频器、控制寄存器、8 位重载/比较寄存器。除不支持溢出唤醒外,T1 的定时/计数/PWM/BUZ 功能与 T0 完全相同。



*晟矽微电子* 31/54



### 定时器控制寄存器

|       | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0 |
|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| TMRCR | -     | -     | -     | -     | T1ICKS | T0ICKS | T0WUEN | -     |
| R/W   | -     | -     | -     | -     | R/W    | R/W    | R/W    | -     |
| 初始值   | -     | -     | -     | -     | 0      | 0      | 0      | -     |

BIT[3] T1ICKS-T1 内部时钟源选择位

0: T1 内部时钟源为 FCPU/2;1: T1 内部时钟源为 Fosc;

BIT[2] **TOICKS**-TO 内部时钟源选择位

BIT[1] TOWUEN - TO 溢出唤醒使能位

#### 定时器 T1 控制寄存器

|      | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3 | Bit 2  | Bit 1  | Bit 0  |
|------|-------|--------|--------|--------|-------|--------|--------|--------|
| T1CR | T1EN  | T1PRS2 | T1PRS1 | T1PRS0 | T1CKS | T1LDEN | BUZ1OE | PWM10E |
| R/W  | R/W   | R/W    | R/W    | R/W    | R/W   | R/W    | R/W    | R/W    |
| 初始值  | 0     | 0      | 0      | 0      | 0     | 0      | 0      | 0      |

BIT[7] **T1EN** - 定时器 T1 使能位

0: 关闭定时器 T1;

1: 开启定时器 T1;

#### BIT[6:4] **T1PRS[2:0**] - T1 预分频比选择位

| T1PRS[2:0] | T1 时钟预分频比 |  |  |  |
|------------|-----------|--|--|--|
| 000        | 1:128     |  |  |  |
| 001        | 1:64      |  |  |  |
| 010        | 1:32      |  |  |  |
| 011        | 1:16      |  |  |  |
| 100        | 1:8       |  |  |  |
| 101        | 1:4       |  |  |  |
| 110        | 1:2       |  |  |  |
| 111        | 1:1       |  |  |  |

BIT[3] T1CKS-T1 时钟源选择位

0: T1 时钟源为内部时钟源;

1: T1 时钟源为外部 TC1 输入下降沿;

BIT[2] T1LDEN – T1 自动重载使能位(仅 PWM1OE=0 时有效)

0: 禁止 T1 自动重载:

1: 使能 T1 自动重载;

BIT[1] BUZ1OE - BUZ1 端口输出使能位(仅 PWM1OE=0 时有效)

0: 禁止端口输出 BUZ 波形;

1: 允许端口输出 BUZ 波形;

*晟矽微电子* 32/54



## BIT[2,1] T1LDEN,BUZ1OE – PWM1 周期选择位(仅 PWM1OE=1 时有效)

| T1LDEN: BUZ10E | N   | T1CNT 范围 | T1CNT/T1LDR 有效值(二进制)  | PWM1 周期   |
|----------------|-----|----------|-----------------------|-----------|
| 00             | 255 | 0~255    | 0000 0000 ~ 1111 1111 | 256 个时钟周期 |
| 01             | 63  | 0~63     | xx00 0000 ~ xx11 1111 | 64 个时钟周期  |
| 10             | 31  | 0~31     | xxx0 0000 ~ xxx1 1111 | 32 个时钟周期  |
| 11             | 15  | 0~15     | xxxx 0000 ~ xxxx 1111 | 16 个时钟周期  |

BIT[0] PWM1OE-PWM1 使能位及端口输出控制位

0: 关闭 PWM1 功能,并禁止端口输出 PWM 波形;

1: 使能 PWM1 功能,并允许端口输出 PWM 波形;

### 定时器 T1 计数器

|       | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| T1CNT | T1CNT7 | T1CNT6 | T1CNT5 | T1CNT4 | T1CNT3 | T1CNT2 | T1CNT1 | T1CNT0 |
| R/W   | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| 初始值   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

BIT[7:0] **T1CNT[7:0**] – T1 计数器,为可读写的递增计数器

### 定时器 T1 重载/比较寄存器

|       | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| T1LDR | T1LDR7 | T1LDR6 | T1LDR5 | T1LDR4 | T1LDR3 | T1LDR2 | T1LDR1 | T1LDR0 |
| R/W   | W      | W      | W      | W      | W      | W      | W      | W      |
| 初始值   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

BIT[7:0] **T1LDR[7:0]** – T1 重载/比较寄存器,用于设置 T1 的计数周期、或设置 PWM1 的占空比

*晟矽微电子* 33/54



## 9 模数转换器 ADC

### 9.1 ADC 概述

芯片内置 1 个 12 位高精度逐次逼近型的模数转换器 ADC。

- ◆ 3 路外部通道: AN0/AN1/AN4: 1 路内部通道: VDD/4:
- ◆ 参考电压可选: VDD、内部参考电压 VIR (2V/3V/4V)、外部参考电压 VER (VERI 输入);
- ◆ ADC 时钟: FCPU 的 4/8/32/64 分频:
- ◆ 支持零点或顶点校准:

ADC 模块可通过寄存器位 ADEN 开启,通过 ADCHS 选择转换的模拟通道,通过 GCHS 控制转换输入的开/关,通过 ADCKS 选择转换速度。ADSTR 为转换启动控制位,ADEOC 为转换状态标志位。ADSTR 位写 1 将启动模数转换;转换完成后 ADSTR 自动清 0、ADEOC 自动置 1,结果存入 ADB/ADR中,同时中断标志 ADIF 置 1 触发 ADC 中断。

ADEN 使能且 GCHS 开启输入通道后,ADCHS 选定的通道端口将自动转为模拟端口,VEREN 使能外部参考电压输入时,端口将自动转为模拟端口。为保证转换效果及防止漏电流产生,应将端口设为数字输入口且关闭内部上拉电阻,再通过 P4CON 寄存器关闭端口的数字 I/O 功能。

ADC 的采样(SAMPLE)时间固定为 15 个 ADCLK(即 ADC 时钟周期),转换(CONVERT)时间固定为 12 个 ADCLK,一次 ADC 转换为 27 个 ADCLK。

ADC 转换时序如下图所示:



#### 注:

- 1、 AD 转换过程中或者 ADEN 未使能时,ADB/ADR 中的数据未知,应在 AD 转换结束且 ADEN 使能的情况下 读取 AD 转换数据;
- 2、 若选择内部参考电压 VIR , 则需保证 VDD> (VIR+0.5V), 否则 VIR 将随之下降;
- 3、 使能 ADC 模块、切换参考电压等操作后,需待电路稳定(时间>200us)后才能启动 AD 转换;切换输入通道后,受外部输入影响,前两次转换的结果会有误差,建议舍弃;
- 4、 AD 转换精度受参考电压精度的影响,且内部参考电压下的转换精度,比外部参考电压略低 2 个 LSB 左右;
- 5、 转换时钟越慢、采样时间越长,则越能过滤外部输入的波动,越能保证 AD 转换的精度;

*晟矽微电子 34/54* 



## 9.2 ADC 操作步骤

模数转换操作步骤:

- (1) 设置相应端口为输入端口,关闭端口的内部上拉电阻;
- (2) 通过 P4CON 寄存器,关闭相应端口的数字 I/O 功能;
- (3) 设置 ADCKS, 选择适当的 ADC 转换时钟;
- (4) ADEN 置 1, 使能 ADC 模块; GCHS 置 1, 开启转换输入通道;
- (5) 设置 ADCHS,选择 ADC 转换通道:
- (6) 延时等待电路稳定后, ADSTR 写 1, 启动 AD 转换;
- (7) 等待 ADEOC 硬件置 1 (或利用 ADC 中断);
- (8) 读取 ADC 转换结果 (ADB、ADR);
- (9) 重复执行(5)~(8),对不同的通道进行转换或对同一通道进行多次转换;

## 9.3 ADC 相关寄存器

#### ADC 控制寄存器

|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  |
|-----|-------|-------|-------|-------|-------|--------|--------|--------|
| ADM | ADEN  | ADSTR | ADEOC | GCHS  |       | ADCHS2 | ADCHS1 | ADCHS0 |
| R/W | R/W   | R/W   | R/W   | R/W   | 1     | R/W    | R/W    | R/W    |
| 初始值 | 0     | 0     | 0     | 0     | -     | 0      | 0      | 0      |

BIT[7] ADEN - ADC 使能位

0: 关闭 ADC;

1: 开启 ADC:

BIT[6] ADSTR - ADC 启动控制位

0: AD 转换结束后自动清 0;

1: 写 1 启动 AD 转换;

BIT[5] ADEOC - ADC 转换状态标志位

0: AD 转换中;

1: AD 转换结束;

BIT[4] GCHS-ADC 转换输入通道控制位

0: 关闭输入通道;

1: 开启输入通道;

BIT[2:0] ADCHS[2:0] - ADC 输入通道选择位

|            | • • • • • • • • • • • • • • • • • • • • |
|------------|-----------------------------------------|
| ADCHS[2:0] | ADC 输入通道                                |
| 000        | AN0                                     |
| 001        | AN1                                     |

*晟矽微电子* 35/54



| 100 | AN4   |
|-----|-------|
| 101 | VDD/4 |
| 其他  | 禁用    |

### 参考电压控制寄存器

|        | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  |
|--------|-------|-------|-------|-------|-------|-------|--------|--------|
| VREFCR | VEREN | -     | -     | -     | -     | -     | ADVRS1 | ADVRS0 |
| R/W    | R/W   | -     | -     | -     | -     | -     | R/W    | R/W    |
| 初始值    | 0     | -     | -     | -     | -     | -     | 0      | 0      |

BIT[7] VEREN – ADC 外部参考电压使能位

0: ADC 参考电压由 ADVRS[1:0]决定;

1: ADC 参考电压为外部参考电压 VER (端口 VERI 的输入电压);

BIT[1:0] ADVRS[1:0] – ADC 参考电压选择位(仅 VEREN=0 时有效)

| ADVRS[1:0] | ADC 参考电压        |
|------------|-----------------|
| 00         | 内部 2.0 <b>V</b> |
| 01         | 内部 3.0V         |
| 10         | 内部 4.0V         |
| 11         | VDD             |

### ADC 转换结果寄存器

|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ADB | ADB11 | ADB10 | ADB9  | ADB8  | ADB7  | ADB6  | ADB5  | ADB4  |
| R/W | R     | R     | R     | R     | R     | R     | R     | R     |
| 初始值 | X     | X     | Х     | Х     | Х     | Х     | Х     | Х     |

BIT[7:0] ADB[11:4] - ADC 转换结果高 8 位

|     | Bit 7 | Bit 6  | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|--------|-------|--------|-------|-------|-------|-------|
| ADR | -     | ADCKS1 | -     | ADCKS0 | ADB3  | ADB2  | ADB1  | ADB0  |
| R/W | -     | R/W    | -     | R/W    | R     | R     | R     | R     |
| 初始值 | -     | 0      | -     | 0      | Χ     | Х     | Χ     | Х     |

BIT[6,4] **ADCKS[1:0]** – ADC 转换时钟选择位

| ADCKS[1:0] | ADC 转换时钟 FADC |
|------------|---------------|
| 00         | Fcpu/64       |
| 01         | Fcpu/32       |
| 10         | Fcpu/4        |
| 11         | Fcpu/8        |

BIT[3:0] ADB[3:0] - ADC 转换结果低 4 位

*晟矽微电子* 36/54



#### ADC 校准寄存器

|     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ADT | ADTS1 | ADTS0 | -     | ADTR4 | ADTR3 | ADTR2 | ADTR1 | ADTR0 |
| R/W | R/W   | R/W   | -     | R/W   | R/W   | R/W   | R/W   | R/W   |
| 初始值 | 0     | 0     |       | U     | U     | U     | U     | U     |

BIT[7:6] **ADTS[1:0**] – ADC 校准模式控制位

| ADTS[1:0] | ADC 校准模式控制         |  |
|-----------|--------------------|--|
| 00        | 工学提士               |  |
| 01        | 正常模式               |  |
| 10        | 零点校准,GND为 ADC输入    |  |
| 11        | 顶点校准, VDD 为 ADC 输入 |  |

BIT[4] ADTR[4] – ADC 校准方向选择位(复位初始值为出厂设定值)

0: 负向修调,即根据修调电压减小转换值(转换结果大于理论值时<mark>应选择负向修调</mark>);

1: 正向修调,即根据修调电压增加转换值(转换结果小于理论值时应选择正向修调);

BIT[3:0] ADTR[3:0] - ADC 校准修调电压选择位(复位初始值为出厂设定值)

| ADTR[3:0] | 修调电压 (典型值) |  |  |
|-----------|------------|--|--|
| 0000      | 0mV        |  |  |
| 0001      | 1mV        |  |  |
| 0010      | 2mV        |  |  |
|           | -          |  |  |
| 1110      | 14mV       |  |  |
| 1111      | 15mV       |  |  |

## 9.4 ADC 校准流程

零点偏移校准流程:

- (1) ADTS[1:0]设为零点校准(即选择 GND 为 ADC 输入),设置 ADTR[4:0]=00H;
- (2) 设置 ADC 时钟、参考电压, ADEN 和 GCHS 置 1, ADSTR 置 1 开始 ADC 转换:
  - ◆ 若 ADC 结果为 0,则执行(4);
  - ◆ 若 ADC 结果不为 0,则执行(3);
- (3) ADTR[3:0]加 1 后进行 ADC 转换:
  - ◆ 若 ADC 结果为 0,则跳至 (6);
  - ◆ 若 ADC 结果不为 0,则循环执行(3),直到结果为 0 或 ADTR[3:0]=0FH 后跳至(6);
- (4) 设置 ADTR[4:0]=1FH, 进行 ADC 转换:
  - ◆ 若 ADC 结果为 0,则跳至 (6);
  - ◆ 若 ADC 结果不为 0,则执行(5);
- (5) ADTR[3:0]减1后进行ADC转换:
  - ◆ 若 ADC 结果为 0,则跳至 (6);
  - ◆ 若 ADC 结果不为 0,则循环执行(5),直到结果为 0 或 ADTR[3:0]=00H 后跳至(6);

*晟矽微电子* 37/54



- (6) ADTR[4:0]中的值即为零点偏移最佳修调电压,校准流程结束,后续 ADC 工作时直接使用,不需要再次修调。
- (7) ADTS[1:0]清 0,恢复为正常模式。

#### 顶点偏移校准流程:

- (1) ADTS[1:0]设为顶点校准(即选择 VDD 为 ADC 输入),设置 ADTR[4:0]=10H;
- (2) 设置 ADC 时钟,设置 VDD 为参考电压, ADEN 和 GCHS 置 1, ADSTR 置 1 开始 ADC 转换:
  - 令 若 ADC 结果为 0FFFH,则执行(4);
  - ◆ 若 ADC 结果不为 0FFFH,则执行(3);
- (3) ADTR[3:0]加 1 后进行 ADC 转换:
  - 令 若 ADC 结果为 0FFFH,则跳至 (6);
  - ◆ 若 ADC 结果不为 0FFFH,则循环执行(3),直到结果为 0FFFH 或 ADTR[3:0]=0FH 后跳至(6);
- (4) 设置 ADTR[4:0]=0FH, 进行 ADC 转换:
- (5) ADTR[3:0]减1后进行ADC转换:
  - ◆ 若 ADC 结果为 0FFFH,则跳至 (6);
  - → 若 ADC 结果不为 0FFFH,则循环执行(5),直到结果为 0FFFH 或 ADTR[3:0]=00H 后跳至(6):
- (6) ADTR[4:0]中的值即为顶点偏移最佳修调电压,校准流程结束,后续 ADC 工作时直接使用,不需要再次修调。
- (7) ADTS[1:0]清 0,恢复为正常模式。

晟矽微电子 38/54



## 10 中断

芯片的中断源包括外部中断(INT0~INT1)、定时器中断(T0~T1)、ADC 中断等。可通过中断总使能位 GIE 屏蔽所有中断。

#### CPU 响应中断的过程如下:

- ◆ CPU 响应中断源触发的中断请求时,自动将当前指令的下一条要执行指令的地址压栈保存,自动清 0 中断总使能位 GIE 以暂停响应后续中断。与复位不同,硬件中断不停止当前指令的执行,而是暂时挂起中断直到当前指令执行完成。
- ◆ CPU 响应中断后,程序跳到中断入口地址(0008H)开始执行中断服务程序,中断服务程序应先通过 PUSH 指令保存累加器 A 和状态寄存器 PFLAG,然后处理被触发的中断。
- ◆ 中断服务程序处理完中断后,应先通过 POP 指令恢复累加器 A 和状态寄存器 PFLAG,然后执行 RETIE 返回主程序。此时芯片将自动恢复 GIE 为 1,然后从堆栈取出 PC 值,从中断产生时当前指令的下一条指令继续执行。

### 10.1 外部中断

芯片有 2 路外部中断源 INTn (n=0-1), INTO 可选择上升沿、下降沿或电平变化等触发方式,INT1 固定为下降沿触发。外部中断触发时,中断标志 INTnIF (n=0-1) 将被置 1, 若中断总使能位 GIE 为 1 且外部中断使能位 INTnIE (n=0-1) 为 1, 则产生外部中断。

#### 外部中断控制寄存器

|        | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|-------|-------|--------|--------|-------|-------|-------|
| EINTCR | 4     | 1     | -     | MINT01 | MINT00 | -     | -     | -     |
| R/W    | 1-1   | 1 -7  | -     | R/W    | R/W    | -     | -     | -     |
| 初始值    | -     |       | -     | 1      | 0      | -     | -     | -     |

BIT[4:3] MINT0[1:0] - 外部中断 INT0 触发方式选择位

| MINT0[1:0] | INTO 触发方式 |
|------------|-----------|
| 00         | 保留        |
| 01         | 上升沿触发     |
| 10         | 下降沿触发     |
| 11         | 电平变化触发    |

### 10.2 定时器中断

定时器 Tn(n=0-1) 在计数溢出时触发定时器中断,中断标志 TnIF(n=0-1) 将被置 1,若中断总使能位 GIE 为 1 且定时器中断使能位 TnIE(n=0-1) 为 1,则产生定时器中断。

*晟矽微电子* 39/54



## 10.3 ADC 中断

ADC 转换完成后触发 ADC 中断,中断标志 ADIF 将被置 1,若中断总使能位 GIE 为 1 且 ADC 中断使能位 ADIE 为 1,则产生 ADC 中断。

## 10.4 中断相关寄存器

#### 中断使能寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  |
|------|-------|-------|-------|-------|-------|-------|--------|--------|
| INTE | ADIE  | T1IE  | TOIE  | -     | -     | -     | INT1IE | INT0IE |
| R/W  | R/W   | R/W   | R/W   | -     | -     | -     | R/W    | R/W    |
| 初始值  | 0     | 0     | 0     | -     | -     | -     | 0      | 0      |

BIT[7] ADIE - ADC 中断使能位

0: 屏蔽 ADC 中断;

1: 使能 ADC 中断;

BIT[6] **T1IE** - 定时器 T1 中断使能位

0: 屏蔽定时器 T1 中断;

1: 使能定时器 T1 中断;

BIT[5] TOIE - 定时器 TO 中断使能位

0: 屏蔽定时器 T0 中断;

1: 使能定时器 T0 中断;

BIT[1] INT1IE - INT1 中断使能位

0: 屏蔽 INT1 中断;

1: 使能 INT1 中断;

BIT[0] INTOIE – INTO 中断使能位

0: 屏蔽 INTO 中断;

1: 使能 INT0 中断;

#### 中断标志寄存器

|      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  |
|------|-------|-------|-------|-------|-------|-------|--------|--------|
| INTF | ADIF  | T1IF  | TOIF  | -     | -     | -     | INT1IF | INT0IF |
| R/W  | R/W   | R/W   | R/W   | -     | -     | -     | R/W    | R/W    |
| 初始值  | 0     | 0     | 0     | -     | -     | -     | 0      | 0      |

BIT[7] ADIF - ADC 中断标志位

0: 未触发 ADC 中断;

1: 己触发 ADC 中断, 需软件清 0;

*晟矽微电子* 40/54



BIT[6] **T1IF** - 定时器 T1 中断标志位

0: 未触发定时器 T1 中断;

1: 已触发定时器 T1 中断,需软件清 0;

BIT[5] TOIF - 定时器 TO 中断标志位

0: 未触发定时器 T0 中断;

1: 已触发定时器 T0 中断,需软件清 0;

BIT[1] INT1IF-INT1中断标志位

0: 未触发 INT1 中断;

1: 已触发 INT1 中断, 需软件清 0;

BIT[0] INTOIF - INTO 中断标志位

0: 未触发 INT0 中断;

1: 己触发 INTO 中断, 需软件清 0;

**晟矽微电子** 41/54



# 11 特性曲线

#### 注:

- 1、特性曲线图中数据均来自抽样实测,仅作为应用参考,部分数据因生产工艺偏差,可能与实际芯片不符;为保证芯片能正常工作,请确保其工作条件符合电气特性参数说明;
- 2、 若图文中无特别说明,则电压特性曲线的温度条件为 T=25℃,温度特性曲线的电压条件为 VDD=5V;

# 11.1 I/O 特性

#### 输入 SMT 阈值电压 VS 电源电压





*晟矽微电子* 42/54





#### I/O 输出 驱动电流 VS 端口电压



*晟矽微电子* 43/54









*晟矽微电子* 44/54



#### 上拉电阻值 VS 电源电压



# 11.2 功耗特性

#### 运行模式 功耗 VS 电源电压





*晟矽微电子* 45/54









*晟矽微电子* 46/54





#### 空闲模式 功耗 VS 电源电压/温度





*晟矽微电子* 47/54





#### 休眠模式 功耗 VS 电源电压/温度





*晟矽微电子* 48/54





# 11.3 模拟电路特性

### HIRC 频率 VS 电源电压/温度





*晟矽微电子* 49/54



#### VIR 电压 VS 电源电压/温度







*晟矽微电子* 50/54









*晟矽微电子* 51/54



# 12 封装尺寸

12.1 SOP8









| CVIADOL | MILLIMETER |         |      |  |  |  |  |
|---------|------------|---------|------|--|--|--|--|
| SYMBOL  | MIN        | TYP     | MAX  |  |  |  |  |
| A       | 78         | -       | 1.77 |  |  |  |  |
| A1      | 0.08       | 0.18    | 0.28 |  |  |  |  |
| A2      | 1.20       | 1.40    | 1.60 |  |  |  |  |
| A3      | 0.55       | 0.65    | 0.75 |  |  |  |  |
| b       | 0.39       | 20      | 0.48 |  |  |  |  |
| b1      | 0.38       | 0.41    | 0.43 |  |  |  |  |
| c       | 0.21       | -51     | 0.26 |  |  |  |  |
| c1      | 0.19       | 0.20    | 0.21 |  |  |  |  |
| D       | 4.70       | 4.90    | 5.10 |  |  |  |  |
| E       | 5.80       | 6.00    | 6.20 |  |  |  |  |
| E1      | 3.70       | 3.90    | 4.10 |  |  |  |  |
| e       |            | 1.27BSC | ×    |  |  |  |  |
| L       | 0.50       | 0.65    | 0.80 |  |  |  |  |
| L1      |            | 1.05BSC |      |  |  |  |  |
| θ       | 0          | 20      | 8°   |  |  |  |  |

# 12.2 DIP8









| CVAAROL | MILLIMETER |                |                  |  |  |  |
|---------|------------|----------------|------------------|--|--|--|
| SYMBOL  | MIN        | TYP            | MAX              |  |  |  |
| Α       | 3.60       | 3.80           | 4.00             |  |  |  |
| A1      | 0.51       | <u>=</u>       | 26               |  |  |  |
| A2      | 3.10       | 3.30           | 3.50             |  |  |  |
| A3      | 1.50       | 1.60           | 1.70             |  |  |  |
| b       | 0.44       |                | 0.53             |  |  |  |
| b1      | 0.43       | 0.46           | 0.48             |  |  |  |
| B1.     |            | 1.52BSC        |                  |  |  |  |
| C       | 0.25       | 12             | 0.31             |  |  |  |
| c1      | 0.24       | 0.25           | 0.26             |  |  |  |
| D       | 9.05       | 9.25           | 9.45             |  |  |  |
| E1      | 6.15       | 6.35           | 6.55             |  |  |  |
| е       |            | 2.54BSC        |                  |  |  |  |
| eA      |            | 7.62BSC        |                  |  |  |  |
| eВ      | 7.62       | ) <del>,</del> | 9.50             |  |  |  |
| eС      | 0          | 15             | 0.94             |  |  |  |
| L       | 3.00       | 1-             | . I <del>I</del> |  |  |  |

*晟矽微电子* 52/54



# 12.3 SOT23-6



| CVIADOL |      | MILLIMETER                   | t    |  |
|---------|------|------------------------------|------|--|
| SYMBOL  | MIN  | TYP                          | MAX  |  |
| А       | (20) | (2)                          | 1.35 |  |
| A1      | 0.04 | 5.4007<br>2. <del>4</del> 00 | 0.15 |  |
| A2      | 1.00 | 1.10                         | 1.20 |  |
| A3      | 0.55 | 0.65                         | 0.75 |  |
| b       | 0.30 | N=33                         | 0.50 |  |
| b1      | 0.30 | 0.40                         | 0.45 |  |
| С       | 0.08 | 8 <b>-</b> 80                | 0.22 |  |
| c1      | 0.08 | 0.13                         | 0.20 |  |
| D       | 2.72 | 2.92                         | 3.12 |  |
| E       | 2.60 | 2.80                         | 3.00 |  |
| E1      | 1.40 | 1.60                         | 1.80 |  |
| е       |      | 0.95BSC                      |      |  |
| L       | 0.30 | 220                          | 0.60 |  |
| θ       | 0    | 1754                         | 8°   |  |





# 13 修订记录

| 版本   | 修订日期       | 修订内容                                         |
|------|------------|----------------------------------------------|
| V1.0 | 2019-10-30 | 初版发布;                                        |
| V1.1 | 2020-03-26 | 新增 P04 内部上拉电阻的相关注释;新增通过 CPUM 切换系统工作模式的说明及例程; |



*晟矽微电子* 54/54