תרגול 7

<u>תרגיל:</u>

יהא $\pi(x)=[x]$ מרחב טופולוגי ויהא \sim יחס שקילות על X. תהא $X' \sim \pi$ הטלה טבעית, קרי $\pi(x)=[x]$ לכל $\pi(x)=[x]$ מרחב טופולוגי ויהא $\pi(x)=[x]$ למרחב טופולוגי $\pi(x)=[x]$. הוכיחו כי $\pi(x)=[x]$ רציפה אם ורק אם ההעתקה $\pi(x)=[x]$ למרחב טופולוגי $\pi(x)=[x]$ רציפה אם ורק אם ההעתקה $\pi(x)=[x]$ רציפה.

<u>פתרון:</u>

וזה $(X/\sim,\tau_\sim)$ וזה במרחב פתוחה במרחב $F^{-1}(U)$ -ש שי $U\subset Y$ מתקיים שי $U\subset Y$ היא קבוצה פתוחה במרחב F קורה אם ורק אם $\pi^{-1}(F^{-1}(U))$ היא קבוצה פתוחה ב- π

. רציפה $F \circ \pi$ פתוחה ב- (X, τ) , וזו בדיוק ההגדרה לכך ש- $F \circ \pi$ רציפה ($T \circ \pi$) פתוחה ב-

<u>תרגיל:</u>

 $.S^1$ המתקבל על ידי הדבקת קצוות למעגל היחידה $[0,2\pi]$ הראו כי מרחב המנה של הקטע

פתרון:

הדבקת קצוות פירושה להגדיר יחס שקילות על $[0,2\pi]$ הנוצר על ידי החלוקה $\{\{0,2\pi\}\}\cup \{\{0,2\pi\}\}$. זו חלוקה כי הקבוצות זרות והאיחוד שלהן נותן את כל $[0,2\pi]$. כל חלוקה משרה יחס שקילות.

נגדיר עתה פונקציה $F: [0,2\pi]/_\sim \mapsto S^1$ על ידי $F: [0,2\pi]/_\sim \mapsto S^1$ נשים לב, כי אין תלות בנציגים במקרה $\{a\}$ מתקבל אותו הערך. זה שכן לכל יחידות $\{a\}$

 π כאשר $f:[0,2\pi]\mapsto S^1$ אזי $f:[0,2\pi]\mapsto S^1$ כאשר $f:[0,2\pi]\mapsto S^1$ נגדיר $f:[0,2\pi]\mapsto S^1$ על ידי $f:[0,2\pi]$ ולכן $f:[0,2\pi]$ רציפה ולכן על פי התרגיל הקודם גם f רציפה. כמו כן $f:[0,2\pi]$ היא חד-חד ערכית ועל $f:[0,2\pi]$ נוכל למצוא את ההופכי של $f:[0,2\pi]$

:נגדיר פונקציה $\widetilde{F}^{-1}:S^1\mapsto [0,2\pi]$ על ידי

$$\tilde{F}^{-1}(x,y) = \begin{cases} \arctan \frac{y}{x} & x > 0, y \ge 0\\ \frac{\pi}{2} & x = 0, y = 1\\ \arctan \frac{y}{x} + \pi & x < 0\\ \frac{3\pi}{2} & x = 0, y = -1\\ 2\pi + \arctan \frac{y}{x} & x > 0, y < 0 \end{cases}$$

:כלומר F^{-1} מוגדרת על ידי

$$F^{-1}(x,y) = \begin{cases} \left[\arctan\frac{y}{x}\right] & x > 0, y \ge 0\\ \left[\frac{\pi}{2}\right] & x = 0, y = 1\\ \left[\arctan\frac{y}{x} + \pi\right] & x < 0\\ \left[\frac{3\pi}{2}\right] & x = 0, y = -1\\ \left[2\pi + \arctan\frac{y}{x}\right] & x > 0, y < 0 \end{cases}$$

נשים לב, כי F^{-1} רציפה, אבל $F^{-1}=\pi\circ F^{-1}$, כך שהיות ו- π רציפה, נסיק כי F^{-1} רציפה, אבל העתקות הינה הומיאומורפיזם בין f^{-1} לבין f^{-1} לבין f^{-1} .

 $.S^1$ - על פי תרגיל בגיליון 5 כל קטע סגור וסופי הומיאומורפי ל- $[0,2\pi]$ ולכן המנה שלעיל הומיאומורפית ל--

X על au על בסיס לטופולוגיה על על au

a-ם בסיס לטופולוגיה ב-של Ψ שמכילים את a הם בסיס לטופולוגיה ב-a

פתרון:

<u>תרגיל:</u>

א. לכל סביבה V של $a\in U$ ב-יימת קבוצה $a\in U$ קיימת קבוצה $a\in V$ קיימת קבוצה א. לכל סביבה a שמכילים את $a\in B$ ולכן האיברים ב-a ער כי קיים $a\in B$ כי קיים $a\in B$ כי קיים את $a\in B$ שמכילים את מהווים בסיס לטופולוגיה ב-a

:תרגיל

 $\bigcup_{a\in X}\Psi_a$ ב. נניח כי au הינה טופולוגיה על X, ולכל X קיים בסיס לטופולוגיה ב-a שנסמנו Ψ_a הראו כי $A\in X$ הראו כ

<u>פתרון:</u>

 Ψ_x ב. ראשית, U הינו אוסף של קבוצות פתוחות. לכל U קבוצה פתוחה ב-U הינו אוסף של קבוצות פתוחות. לכל U קבוצה פתוחה ב-U סביבה פתוחה של U ולכן קיים U כך ש-U כמו כן, U סביבה פתוחה של U ולכן קיים U כך ש-U בסיס לטופולוגיה ב-U שכן U פי התנאים להגדרת בסיס לטופולוגיה נקבל כי U בסיס לטופולוגיה כנדרש.