1.Data type of all columns in the "customers" table.

Sol:

∓Fi	〒 Filter Enter property name or value								
	Field name	Туре	Mode	Key	Collation	Default value	Policy tags ?	Description	
	customer_id	STRING	NULLABLE						
	customer_unique_id	STRING	NULLABLE						
	customer_zip_code_prefix	INTEGER	NULLABLE						
	customer_city	STRING	NULLABLE						
	customer_state	STRING	NULLABLE						

There are only 2 data types I,e STRING and INTEGER

2.Get the time range between which the orders were placed.

Sol:

```
select max(order_purchase_timestamp) as max_dt,
min(order_purchase_timestamp) as min_dt FROM case_study.orders;
```


We can see that , orders has been placed from 04^{th} Sep 2016 to 17^{th} oct 2018 . so, customer engagement was almost for 2 years.

3. Count the Cities & States of customers who ordered during the given period.

```
select count(distinct customer_city) as customer_city, count(distinct customer_state ) as
customer_state from case_study.customers
where customer_id IN (select customer_id from case_study.orders );
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	CI
Row	customer_city -	customer_stat	e 🕶		
1	411	9	27		

Here , there are total 4119 cities and 27 countries from where customer orders during given time period.

2.1 Is there a growing trend in the no. of orders placed over the past years? Sol:

```
with cte as (
    select extract(Year from order_purchase_timestamp) as Year, count(*) as total_orders from 
case_study.orders
    group by Year order by 1
)

select * , round((total_orders - prev_order) / prev_order * 100,2) as growth_rate
from ( select *,
lag(total_orders) over(order by Year) as prev_order from cte ) a
order by Year
```

JOB IN	FORMATION		RESULTS	JS0	N EXE	CUTION	DETAILS C	HART
Row /	Year ▼	11	total_orders	· /	prev_order	· /	growth_rate ▼	4
1	201	6		329		null	null	
2	201	7	4	45101		329	13608.51	
3	201	8	5	54011		45101	19.76	

Here we can see that , In 2017 13608% growth from 2016 .

Similarly, In 2018, around 20% growth from 2017.

Overall it's indicate increasing/growing trend on YoY.

2.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Sol:

```
select FORMAT_TIMESTAMP('%Y',order_purchase_timestamp) as Year,
FORMAT_TIMESTAMP('%m',order_purchase_timestamp) as Month , count(*) as total_sale from
case_study.orders
group by Year,Month
order by 1,2
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS CHA	RT PREVIEW	EXECUTIO
Row	Year ▼	le	Month ▼	le.	total_sale ▼	h	
1	2016		09			4	
2	2016		10		32	4	
3	2016		12			1	
4	2017		01		80	0	
5	2017		02		178	0	
6	2017		03		268	2	
7	2017		04		240	4	
8	2017		05		370	0	
9	2017		06		324	5	
10	2017		07		402	6	

We can see that, there is uptrend in month-wise till 2017 and then again, In 2018, there is drop may be because of natural calamities, they may have shut the shop.

2.2 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
with cte as (
select *, EXTRACT(HOUR FROM order_purchase_timestamp) as Hr from case_study.orders
order by Hr
)

select
case when Hr between 0 and 6 then 'Dawn'
    when Hr between 7 and 12 then 'Mornings'
    when Hr between 13 and 18 then 'Afternoon'
    else 'Night' END Status,
count(*) as total_sale from cte
group by Status
order by 1
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EX	ECUTION DETAILS	CHART
Row /	Status ▼	h	total_sale	· //		
1	Afternoon			38135		
2	Dawn			5242		
3	Mornings			27733		
4	Night			28331		

We can see that , Brazilian customers mostly place their order in the afternoon . Then after, at 2nd position , order has been placed in Night . Dawn has very poor traffic since very less order has been placed that time.

3.1 Get the month on month no. of orders placed in each state.

```
select c.customer_state, FORMAT_TIMESTAMP('%Y',o.order_purchase_timestamp) as
Year,FORMAT_TIMESTAMP('%m',o.order_purchase_timestamp) as Month,
count(*) as total_sales from case_study.orders o
inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state, Year, Month
order by c.customer_state,Year, Month
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS CH	ART PREVIEW	EXECUTION GI	RAPH
Row /	customer_state	· //	Year ▼	//	Month ▼	h	total_sales ▼	=
1	AC		2017		01		2	
2	AC		2017		02		3	
3	AC		2017		03		2	
4	AC		2017		04		5	
5	AC		2017		05		8	
6	AC		2017		06		4	
7	AC		2017		07		5	
8	AC		2017		08		4	
9	AC		2017		09		5	
10	AC		2017		10		6	

As we can see here, state AC has avg 5-6 number of orders are placed in each months. Also, we can see there is up / increasing trend in order s placed across year. Year 2016 has lowest number of orders while 2018 has highest number of orders placed.

3.2 How are the customers distributed across all the states?

Sol:

```
select g.geolocation_state as state, count(distinct customer_unique_id) as total_cust from
case_study.customers c INNER JOIN case_study.geolocation g
on c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
group by g.geolocation_state
order by total_cust desc
```

Query results

CHAR	ECUTION DETAILS	JSON EX	RESULTS	FORMATION	JOB IN
		total_cust ▼	6	state ▼	Row
		40287		SP	1
		12372		RJ	2
		11248		MG	3
		5284		RS	4
		4871		PR	5
		3547		SC	6
		3268		BA	7
		1959		ES	8
		1944		GO	9
		1913		DF	10

Here, SP state has highest number of customer ie 40k. RJ has the second most number of customers. DF has 1913 numbers of customers are distributed. We can see that, SP state may generate more revenue than other states since more number of customer are distributed there.

4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

Sol:

```
with cte as (
select extract(Year from order_purchase_timestamp) as Year, sum(payment_value) as cost from
case_study.orders o
Inner join case_study.payments p on o.order_id = p.order_id
where extract(Year from order_purchase_timestamp) between 2017 and 2018
and extract(Month from order_purchase_timestamp) between 01 and 08
group by Year
order by Year )

select *,
lag(cost) over(order by cost ) as prev_cost,
round((cost-lag(cost) over(order by cost )) / lag(cost) over(order by cost ) * 100,2) as
percentage from cte
order by Year
```

Query results

JOB IN	FORMATION		RESULTS	JS0	N EXECUTION	N DETAILS CH	ART PREVIEW
Row /	Year ▼	h	cost ▼	1.	prev_cost ▼	percentage ▼	
1	20)17	3669022.120	000	null	null	
2	20)18	8694733.839	999	3669022.120000	136.98	

Here we can see that , in 2017 , total cost was 3669022 while in 2018, it's increased and reached to 8694733 which is 136% hike from 2017.

4.2 Calculate the Total & Average value of order price for each state.

Sol:

```
select c.customer_state, sum(i.price) as total_price, avg(i.price) as avg_price from
case_study.order_items i
inner join case_study.orders o on i.order_id = o.order_id
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by total_price desc ,avg_price desc
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	CHART PREVIEW
Row	customer_state		total_price ▼	avg_price ▼	
1	SP		5202955.050001	. 109.6536291597	
2	RJ		1824092.669999	. 125.1178180945	
3	MG		1585308.029999	. 120.7485741488	
4	RS		750304.0200000	. 120.3374530874	
5	PR		683083.7600000	. 119.0041393728	
6	SC		520553.3400000	124.6535775862	
7	BA		511349.9900000	. 134.6012082126	
8	DF		302603.9399999	. 125.7705486284	
9	GO		294591.9499999	. 126.2717316759	
10	ES		275037.3099999	. 121.9137012411	

We can see that, SP state has highest number of total sale followed by RJ, MG etc while, lowest sale has RR state which is only 8k approximately. Similarly, Avg price of SP states is 109.

4.3 Calculate the Total & Average value of order freight for each state.

```
select c.customer_state, sum(i.freight_value) as total_price, avg(i.freight_value) as
avg_price from case_study.order_items i
inner join case_study.orders o on i.order_id = o.order_id
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by total_price desc
```

query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	CHART PREVIEW
Row	customer_state ▼	6	total_freight_value	avg_freight_value	
1	SP		718723.0699999	. 15.14727539041	
2	RJ		305589.3100000	. 20.96092393168	
3	MG		270853.4600000	. 20.63016680630	
4	RS		135522.7400000	. 21.73580433039	
5	PR		117851.6800000	. 20.53165156794	
6	BA		100156.6799999	. 26.36395893656	
7	SC		89660.26000000	. 21.47036877394	
8	PE		59449.65999999	. 32.91786267995	
9	GO		53114.97999999	. 22.76681525932	
10	DF		50625.49999999	. 21.04135494596	

Here , we can see that state SP has highest freight value , followed by RJ , MG , RS and so on .

Highest freight value is calculated as 718723 in SP state. Also , Average fright value of SP has 15 .

It's observe that avg freight value comes to 20 to 21 across country.

5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

```
select *, date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY) as
delivery_time,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,DAY) as Diff_days from
case_study.orders
order by delivery_time desc
```


Here , as you can see , max delivery time has taken 209 days too from the date of purchase. So, for almost all order delivery time has taken more than 100 days atleast so seems they need to improve in logistic area. Also, maximum day taken from estimated to time from purchase is -181.

5.2 Find out the top 5 states with the highest & lowest average freight value.

Sol:

--FOR LOWEST STATE

```
select c.customer_state, avg(i.freight_value) as lowest_avg_price from case_study.order_items
i
inner join case_study.orders o on i.order_id = o.order_id
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by lowest_avg_price
limit 5;
```

Query results

Here we can see that , first lowest avg freight value state is SP which is 15.14 , followed by PR, then MG etc. DF has 21.04 avg freight value.

■ FOR HIGHEST STATE

```
select c.customer_state, avg(i.freight_value) as highest_avg_price from case_study.order_items
i
inner join case_study.orders o on i.order_id = o.order_id
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by highest_avg_price desc
limit 5;
```

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	СНА
Row	customer_state	~	highest_avg_	price /	
1	RR		42.98442307	692	
2	РВ		42.72380398	671	
3	RO		41.06971223	021	
4	AC		40.07336956	521	
5	PI		39.14797047	970	

Here, it's observe that highest avg freight value is 42 which is for RR value, followed by PB which is 42.72 then RP etc. Average value of PI is 39.

5.3 Find out the top 5 states with the highest & lowest average delivery time. Sol:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY))) as
lowest_AVG_delivery_time
from case_study.orders o
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by lowest_AVG_delivery_time
limit 5;
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	▼	lowest_AVG_d	elivery
1	SP			8.0
2	MG			12.0
3	PR			12.0
4	DF			13.0
5	SC			14.0

It's observe that , SP state has lowest avg delivey time that is 8 days , followed by MG which is 12 days etc. SC state has 14 days delivery time.

-- for highest state

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,DAY))) as
highest_AVG_delivery_time
from case_study.orders o
Inner join case_study.customers c on o.customer_id = c.customer_id
group by c.customer_state
order by highest_AVG_delivery_time desc
limit 5;
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON I	EXECUTION DETAILS
Row	customer_state	~	highest_AVG_deliv	er
1	RR		29.0	
2	AP		27.0	
3	AM		26.0	
4	AL		24.0	
5	PA		23.0	

Here, we can see that, RR state has highest avg delivert time which is 29, followed by AP which is 27 day etc. PA has 23 days avg delivery time, which is the least highest.

5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Sol:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_estimated_delivery_date,DAY))) as
Diff_days from
case_study.orders o
Inner join case_study.customers c on o.customer_id = c.customer_id
where date_diff(order_estimated_delivery_date,o.order_delivered_customer_date,DAY) IS NOT NULL
group by c.customer_state
order by Diff_days
limit 5
```

JOB INFORMATION JSON **EXECUTION DETAILS** RESULTS Row Diff_days ▼ customer_state ▼ 1 AC -20.0 2 AM -19.0 3 RO -19.0 AΡ 4 -19.05 RR -16.0

Here, it's notice that state AC has reached 20 days earlier which is fastest delivery days, followed by AM which is 19 days, and so on. RR state has 16 days fastest delivery than estimated delivery time.

6.1 Find the month on month no. of orders placed using different payment types.

Sol:

```
select extract(Month from o.order_purchase_timestamp) as Month,p.payment_type, count(distinct
p.order_id) as total_orders from case_study.payments p
inner join case_study.orders o on
p.order_id = o.order_id
group by Month, p.payment_type
order by Month,total_orders desc
```

JOB IN	IFORMATION		RESULTS	JSON	EXE	ECUTION DETA	AILS	CHART PREVIEW	Е
Row	Month ▼	11	payment_type	•	1	total_orders	· /		
1		1	credit_card				6093		
2		1	UPI				1715		
3		1	voucher				337		
4		1	debit_card				118		
5		2	credit_card				6582		
6		2	UPI				1723		
7		2	voucher				288		
8		2	debit_card				82		
9		3	credit_card				7682		
10		3	UPI				1942		

It is observe that , we have CC , UPI , voucher, DC as various payment method. In these , Credit card ares widely used by customer which is 6093. second highest method is UPI while debit cards are least widely used across country.

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select payment_installments, count(*) as total_orders from case_study.payments
group by 1
order by total_orders desc
```

JOB IN	IFORMATION	RESULTS	JSC	N EXE
Row	payment_installment	total_orders	· /	
1	1		52546	
2	2			
3	3			
4	4			
5	10		5328	
6	5		5239	
7	8		4268	
8	6		3920	
9	7		1626	
10	9		644	

Here it's observe that, payment installment one has highest total orders which is 52546 and as payment installments increasing, total orders placed are decreasing.

Conclusion:

After analyzing all data, it's observe that this is the 3 year data from 2016 to 2018. There is up trend in sales across year from 2016 to 2018. Also, in terms of monthly seasonality, we can see increasing sales till 2017 and there is a bit downtrend in 2018. Also, customers are so active in afternoon so it would be better if target can send some sorta discount in that period.

Also, from payment point of view, it's observe that, customer are using credit card most. So they should give more discounts on credit cards. Second highest method people using is UPI.