Quiz 4 - Computational Physics II

NAME:	SCORE:
Date: Thursday 29 May 2025 (17h00) Duration: 45 minutes	
Credits: 20 points (4 questions) Type of evaluation: LAB	
Provide <u>concise answers</u> to the following items:	

- 1. (4 points) Partial differential equations (PDEs) in Fourier space
 - (a) Write down the 1D heat equation and the 1D one-way wave equation in Fourier space.
 - (b) Explain the difference between diffusion and advection processes.

2. (6 points) Numerical Stability

Explain 3 different methods by which we can determine the stability of a numerical scheme.

3. (5 points) Finite-difference methods for PDEs
Write down the 3D Poisson equation and its central-difference approximation including errors.

4. (5 points) Boundary Conditions for advection problems

Consider the advection equation, $u_t + c u_x = 0$ (with c > 0) on the domain $x \in [0, L]$ with N_x physical grid points plus 2 ghost zones (one at each end). The array u has size $N_x + 2$, and the physical points have indices 1 to N_x . The CFL number is defined as CFL = $c \Delta t/\Delta x$. The upwind scheme for interior points is: $u_new[1:Nx+1] = u[1:Nx+1] - CFL * (u[1:Nx+1] - u[0:Nx])$. Provide the Python code lines to set the ghost zone values of u_new for each boundary condition type below:

- 1. **Periodic boundaries:** The domain wraps around, so u(0,t) = u(L,t).
- 2. Dirichlet boundaries: The boundaries have fixed values, so u(0,t) = 0.5 and u(L,t) = 0.0.
- 3. Neumann boundaries: The boundary gradients are set, so $u_x(0,t) = 0.0$ and $u_x(L,t) = 1.0$.