

Softwaretechnik - 5. Tutorium

Tutorium Nr. 17

Kay Schmitteckert | 18.06.2015

INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION (IPD

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft vww.kit.edi

Zu...

Übungsblatt 4

Zum Aufwärmen

Quiz

Übungsblatt 5

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,		
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an		
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		
die aktuelle Revision		

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		×
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,		
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an		
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		
die aktuelle Revision		

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		×
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,	×	
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an		
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		
die aktuelle Revision		

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		×
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,	×	
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an	×	
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		
die aktuelle Revision		

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		×
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,	×	
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an	×	
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		×
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		
die aktuelle Revision		

Aussage	wahr	falsch
Die Durchführbarkeitsuntersuchung und Erzeugung		×
des Pflichtenhefts werden beide in der Definitions-		
phase durchgeführt		
Wenn eine Klasse eine abstrakte Methode besitzt,	×	
dann ist sie auch selbst abstrakt		
Ein Pflichtenheft spezifiziert die Anforderungen an	×	
eine Software so, dass sie impl. werden kann		
Bei der Implementierungsvererbung kann die Im-		×
plementierung einer Methode mit einer neuen Si-		
gnatur versehen werden		
Vorwärtsdeltas erlauben den schnellen Zugriff auf		×
die aktuelle Revision		

Zum Aufwärmen


```
if (iAmSomeBooleanExpression)
     return true;
else
     return false;
```

→ Was kann man hier besser machen?

18.06.2015

Einführung

Entwurfsmuster

Einführung

Variantenmuster

18.06.2015

- ziehen Gemeinsamkeiten verwandter Einheiten aus diesen heraus
- ... und beschreiben sie an einer einzigen Stelle
- So k\u00f6nnen unterschiedliche Komponenten aufgrund ihrer Gemeinsamkeiten einheitlich verwendet werden

- ziehen Gemeinsamkeiten verwandter Einheiten aus diesen heraus
- ... und beschreiben sie an einer einzigen Stelle
- So k\u00f6nnen unterschiedliche Komponenten aufgrund ihrer Gemeinsamkeiten einheitlich verwendet werden

- ziehen Gemeinsamkeiten verwandter Einheiten aus diesen heraus
- ... und beschreiben sie an einer einzigen Stelle
- So k\u00f6nnen unterschiedliche Komponenten aufgrund ihrer Gemeinsamkeiten einheitlich verwendet werden

Schablonenmethode

Schablonenmethode

- definiert das Skelett eines Algorithmus in einer Methode
- delegiert einzelne Schritte an Unterklassen
- Unterklassen k\u00f6nnen bestimmte Schritte eines Algorithmus \u00fcberschreiben, aber nicht die Struktur ver\u00e4ndern

Kay Schmitteckert - Softwaretechnik - 5. Tutorium

Schablonenmethode

- definiert das Skelett eines Algorithmus in einer Methode
- delegiert einzelne Schritte an Unterklassen
- Unterklassen k\u00f6nnen bestimmte Schritte eines Algorithmus \u00fcberschreiben, aber nicht die Struktur ver\u00e4ndern

Schablonenmethode

- definiert das Skelett eines Algorithmus in einer Methode
- delegiert einzelne Schritte an Unterklassen
- Unterklassen können bestimmte Schritte eines Algorithmus überschreiben, aber nicht die Struktur verändern

Schablonenmethode: Struktur

Kay Schmitteckert - Softwaretechnik - 5. Tutorium

Schablonenmethode: Beispiel

Kompositum

18.06.2015

Kompositum

- fügt Objekte zu Baumstrukturen zusammen, um Bestandshierarchien zu repräsentieren
- ermöglicht es Klienten, sowohl einzelne Objekte als auch Aggregate einheitlich zu behandeln

Kompositum

- fügt Objekte zu Baumstrukturen zusammen, um Bestandshierarchien zu repräsentieren
- ermöglicht es Klienten, sowohl einzelne Objekte als auch Aggregate einheitlich zu behandeln

Kompositum: Struktur

Möglichkeit 1: Kompositum-Operationen in der Komponente

Kompositum: Struktur

Möglichkeit 2: Kompositum-Operationen im Kompositum

Kompositum: Beispiel

Zusammengefügte Grafik-Objekte

Gemeinsame Operationen: zeichne(), verschiebe(), lösche(), skaliere()

Kompositum: Beispiel

Dekorierer

18.06.2015

Dekorierer

- Fügt dynamisch neue Funktionalität zu einem Objekt hinzu
- ... ohne es dabei zu ändern

Dekorierer

- Fügt dynamisch neue Funktionalität zu einem Objekt hinzu
- ... ohne es dabei zu ändern

Dekorierer: Struktur

Dekorierer: Beispiel

Dekorierer: Beispiel

Entwurfsmuster

Aufgaben

Übungsblatt 5

Die folgende Schnittstelle lAusdrucksVisualisierer wird von Ihrem Programm als visuelle Komponente verwendet, um arithmetische Ausdrücke auf dem Bildschirm auszugeben. Der Methode zeichne(s: String) übergibt man dazu den arithmetischen Ausdruck als Zeichenkette, die von dem konkreten AusdrucksVisualisierer darqestellt wird.

Verwenden Sie das Entwurfsmuster Dekorierer um einen RahmenDekorierer zu entwerfen. Dieser soll eine zusätzliche Methode zeichneRahmen() bieten, die die visuelle Komponente mit einem Rahmen dekoriert. Ergänzen Sie dazu das folgende UML-Klassendiagramm um einen abstrakten Dekorierer und um einen konkreten RahmenDekorierer. Geben Sie die Implementierung der Methode zeichne(s: String) in dem konkreten Dekorierer an (Die Implementierung der Methode zeichneRahmen() brauchen Sie nicht anzugeben).

Musterlösung

Entwurfsmuster - Klausuraufgabe SS 2006

Ein binärer arithmetischer Ausdruck enthält einen Operanden, einen Operator (+ - * /) und einen anderen Operanden. Die Operanden können entweder eine Zahl sein oder selbst wieder ein anderer binärer arithmetischer Ausdruck.

Entwerfen Sie mit Hilfe eines Entwurfsmusters ein Klassendiagramm, um die Bestandteile eines binären arithmetischen Ausdrucks zu einer Baumstruktur zusammenzufügen und seine Bestandshierarchien zu repräsentieren. Nennen Sie das verwendete Entwurfsmuster

Hinweis: z.B. 2 + 3 und (2 + 3) + (4 * 6) sind beide gültige arithmetische Ausdrücke.

Entwurfsmuster - Klausuraufgabe SS 2006

Musterlösung: Kompositum

Welches aus der Vorlesung bekannte Entwurfsmuster ist in der untenstehenden Abbildung zu sehen?

Welches aus der Vorlesung bekannte Entwurfsmuster ist in der untenstehenden Abbildung zu sehen?

Schablonenmethode

Wie werden die Operationen 1, 2 und 3 genannt?

Wie werden die Operationen 1, 2 und 3 genannt?

Einschubmethoden

Kay Schmitteckert - Softwaretechnik - 5. Tutorium

Wiederholung - Sequenzdiagramme


```
public class A {
                               public class B {
                                                         public class C {
  private C c:
                                  private C c:
                                                            private A a:
                                                             private B b1, b2, last;
  public static void
                                  public B(C c) {
      main(String[] args) {
                                     this.c = c:
                                                            public C(A a) {
                                                               this.a = a;
     A = new A();
      a.r();
                                                               b1 = new B(this);
                                  public void u() {
                                                               b2 = new B(this);
  public A() {
                                                             public void x() {
      c = new C(this);
                                  public void w() {
                                                               if (b1 == last) {
                                     c.x();
                                                                  b2.u();
                                                                } else {
  public void r() {
                                                                  b1.u();
     c.y();
                                                             public void v() {
  public void s() {
                                                               last = b1:
      t();
                                                               b1.w();
                                                               a.s();
                                                               last = b2;
  private void t() {
                                                               b2.w();
```

Wiederholung

Zu...

Übungsblatt 5

Sequenzdiagramme

18.06.2015

Übungsblatt 5

• 33/33