

8086 Hardware Specifications

Dept. of Computer Science and Engineering BRAC University

CSE 341 Team

? Book:

? Microprocessors and Interfacing: Programming and Hardware,

Author: Douglas V. Hall

? The 8086/8088 Family: Design, Programming, And Interfacing,

Author: John Uffenbeck.

- ? is a 40-pin DIPs; **Dual in-line package**
- ? DIP refers to a rectangular housing with two parallel rows of electrical connection pins.
- ? DIPs have a notch on one end to show its correct orientation.
- ? The pins are then numbered as shown in the figure below.

Recap

8086 Pin Specification

CLK, input

- provides basic timing to control processor operation
- frequencies of different versions are 5, 8 or 10 MHz
- asymmetric with a 33% duty cycle

$$AD_0 - AD_{15}$$
, $bi - directional$

- lines are multiplexed bidirectional address/data bus.
- During T_1 , they carry 16-bit address.
- In remaining clock cycles T_2 , T_3 and T_4 , I 6-bit data.
- $AD_0 AD_7$ carry lower order data byte
- $AD_8 AD_{15}$ carry higher order data byte

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

- lines are multiplexed address and status bus.
- During T_1 , they carry the highest order 4-bit address.
- During T_2 , T_3 and T_4 , status signals.
- S_3 and S_4 , segment identifiers as in table below

S4	<i>S3</i>	Function
0	0	Extra segment access
0	1	Stack segment access
1	0	Code segment access
1	1	Data segment access

Notice, its first S4 and then S3

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

 S_5 : Indicates if interrupt is enabled or disabled.

- If $S_5 = I$, then the IF = I, so the interrupt is enabled.
- If $S_5 = 0$, then the IF = 0, so the interrupt is disabled.

 S_6 : Indicates if 8086 is the bus master or not

- If $S_6 = 0$, 8086 is the bus master
- If $S_6 = 1$, 8086 is not the bus master

 \overline{RD} , output

- is active low
- Indicates read operation when low
- Processor reading from memory or I/O device
- Is low during T_2 , T_3 and T_w states of the read cycle

RD' is 0 → read RD' is 1 → not read

Signal Low or $0 \rightarrow Active (On)$

If
$$RD = 0$$
,

$$\frac{--}{RD} = \frac{--}{0} = 1$$

 \overline{BHE}/S_7 , output

- Bus High Enable
- \overline{BHE} is active low
- To indicate the transfer of data over $AD_8 AD_{15}$
- Related to memory bank
- Selects odd/high memory bank when \overline{BHE} is 0
- S_7 : Reserved for further development

BHE' is 0 → high byte is read BHE' is 1 → high byte is not read

\overline{TEST} , input

- Is examined by the WAIT instruction.
- If this pin is Low, execution continues.
- Else the processor waits in an idle state.

8086 Pin Specification

READY, input

- acknowledgement from a slow I/O device or memory
- To indicate ready/completion of data transfer
- When low, microprocessor enters wait state, T_w .

RESET, input

- To reset the system reset.
- And terminates the current activity.
- Must be active for at least four clock cycles

Maskable can be stopped.

Non Maskable = can NOT be stopped

INTR, input

- Interrupt request
- Used to request a hardware interrupt.
- Can be masked.

NMI, input

- Non-maskable interrupt signal.
- Causes a type-2 interrupt.
- Initiates the interrupt at the end of the current instruction.

Interrupt in INTR pin (Maskable)

INTR pin ← 1 (interrupt)

Check IF flag (S5 value).

IF S5 = 0, wait. then INTA' = 1 (Not acknowledged) else, (Interrupt Service) then INTA' = 0 (Acknw)

As long as S5 =0, the interrupt is not serviced.

Interrupt in NMI pin (Non - Maskable)

NMI pin ← 1 (interrupt)

Check IF flag (S5 value).

IF S5 = 0, change to 1 (Interrupt Serviced)

else, (Interrupt Serviced)

HOLD, input

- To request for bus by another device.
- It is an active HIGH signal.

HLDA, output

- Hold Acknowledgment.
- When acknowledged, it relinquish the bus to the requesting device

\overline{WR} , output

- Active low write signal.
- Writes data to memory or output device depending on M/\overline{IO} signal.

M/\overline{IO} , output

- Differentiates memory access from I/O access.
- When high, memory is accessed.
- When low, I/O devices are accessed.

DT/\bar{R} , output

- Data Transmit/Receive signal.
- indicates the direction of flow through the transceiver.
- When high, data is transmitted out i.e. written to.
- When low, data is received in i.e. read in.

\overline{DEN} , output

- Data Enable signal.
- Used to enable a transceiver connected to the μP

RD' or WR' pin sends signal to the I/O or Memory

DT/R' pin sends signal to the transceiver (the bridge between CPU and I/O or memory)

If CPU is performing read then,

$$RD' = 0$$
 $WR' = 1$

$$DT/R' = 0.$$

ALE, output

- Address Latch Enable
- indicates an address is available on bus $AD_0 AD_{15}$.
- active high during T_1 state

ALE is 1 → Address is transmitted

ALE is 0 → Address is NOT transmitted

INTA, output

- An active low signal.
- An interrupt acknowledge signal.
- When microprocessor receives an INTR signal, it acknowledges the interrupt by generating this signal
- When low it indicates an interrupt is being serviced.

Thank You Questions are welcome in the discussion class