Mértékelmélet

Forrás: Simon Péter: Mérték és integrál [1]

Vizsgajegyzet

Tartalomjegyzék

1.	Vizsgakérdés	2
	1.1. Nullamértékű halmaz fogalma	2
	1.2. Lebesgue-kritérium	2

1. Vizsgakérdés

A nullamértékű halmaz fogalma, a majdnem mindenütt terminológia. A Riemannintegrálhatóság Lebesgue-kritériuma.

Túl szűk azoknak a függvényeknek az összessége, amelyek Riemann-integrálhatók, nevezetesen, bizonyos értelemben a folytonosság "majdnem" szükséges az integrálhatósághoz. Másrészt pl. olyan, az analízis szempontjából alapvető művelet, mint a határátmenet eredményére nem "öröklődik" az integrálhatóság, ill. ha ez utóbbi teljesül is, akkor is csak erős feltételek mellett cserélhető fel a határátmenet és az integrálás. Az sem mellékes, hogy pl. a valós vagy a komplex számok körében alapvető fontosságú teljesség (azaz a sorozatok konvergenciájának és a Cauchytulajdonságának az ekvivalenciája) nem igaz az R[a, b]-ben természetes módon értelmezhető távolságfogalom tekintetében. Többek között ezek a szempontok is tették szükségessé egy olyan integrálfogalom megalkotását, amelyik pl. a most felsorolt hiányosságokat kiküszöböli.

1.1. Nullamértékű halmaz fogalma

Megmutatjuk, hogy "lényegében" csak a folytonos függvények Riemann-integrálhatók. Vezessük be ehhez először is a (Lebesgue szerint) nullamértékű halmaz fogalmát: azt mondjuk, hogy az $A \subset \mathbf{R}$ halmaz nullamértékű, ha tetszőleges $\varepsilon > 0$ számhoz megadható $I_k \subset \mathbf{R}$ ($k \in \mathbf{N}$) intervallumoknak egy olyan sorozata, hogy

$$A \subset \bigcup_{k=0}^{\infty} I_k$$
 és $\sum_{k=0}^{\infty} |I_k| < \varepsilon$.

Egyszerűen belátható, hogy az \mathbf{R} minden, legfeljebb megszámlálható részhalmaza nullamértékű. Sőt, ha $X_k \subset \mathbf{R}$ $(k \in \mathbf{N})$ nullamértékű, akkor az $\cup_{k=0}^{\infty}$ halmaz is nullamértékű. Az is egyszerűen adódik, hogy a nullamértékűség előbbi definíciójában (ha adott esetben szükség van rá) nyugodtan feltehető, hogy a szóban forgó I_k $(k \in \mathbf{N})$ intervallumok mindegyike nyílt. Világos, hogy egy nullamértékű halmaz minden részhalmaza is nullamértékű.

Könnyű meggondolni azt is, hogy egy [a, b] $(a, b \in \mathbf{R}, a < b)$ intervallum nem nullamértékű.

1.2. Lebesgue-kritérium

Tétel. Tegyük fel, hogy az $[a, b] \subset \mathbf{R}$ $(a, b \in \mathbf{R}, a < b)$ kompakt intervallumon értelmezett $f : [a, b] \to \mathbf{R}$ függvény korlátos, és legyen az f szakadási helyeinek a halmaza

$$\mathcal{A}_f := \big\{ x \in [a, b] : f \not\in C\{x\} \big\}.$$

Ekkor

 $f \in R[a,\,b] \quad \Longleftrightarrow \quad \mathcal{A}_f$ nullamértékű halmaz.

Bizonyítás. Induljunk ki először abból, hogy $f \in R[a, b]$. Legyen $\alpha \in [a, b]$, és valamilyen $J \subset \mathbf{R}$ intervallum esetén $\alpha \in \operatorname{int} J$, amikor is

$$O_J f := \sup \{ |f(x) - f(y)| : x, y \in J \cap [a, b] \}$$

az f oszcillációja a J intervallumon. Az f függvény α -beli lokális oszcillációját a következőképpen értelmezzük:

$$\Delta_{\alpha} f := \inf\{O_J f : J \subset \mathbf{R} \text{ intervallum, } \alpha \in \text{int } J\}.$$

Mutassuk meg először is azt, hogy

$$f \in C\{\alpha\} \iff \Delta_{\alpha}f = 0.$$

Valóban, ha $f \in C\{\alpha\}$, akkor minden $\varepsilon > 0$ számhoz van olyan $\delta > 0$, hogy

$$|f(x) - f(\alpha)| < \varepsilon \quad (x \in [a, b], |x - \alpha| < \delta).$$

Ezért

$$|f(x) - f(y)| \le$$

$$|f(x) - f(\alpha)| + |f(\alpha) - f(y)| < 2\varepsilon \quad (x, y \in [a, b], |x - \alpha|, |y - \alpha| < \delta).$$

Így minden olyan $J \subset \mathbf{R}$ intervallumra, amelyre $\alpha \in \text{int } J \text{ és } d_J < \delta$, igaz, hogy

$$|f(x) - f(y)| < 2\varepsilon,$$

amiből $O_J f \leq 2\varepsilon$ következik. Ez azt jelenti, hogy $(0 \leq) \Delta_{\alpha} f \leq 2\varepsilon$. Mindez csak úgy lehetséges, ha $\Delta_{\alpha} f = 0$.

Ha most azt tesszük fel, hogy $\Delta_{\alpha}f=0$, akkor az infimum tulajdonságait figyelembe véve bármilyen $\varepsilon>0$ számhoz találunk olyan $J\subset R$ intervallumot, amellyel $\alpha\in \operatorname{int} J$, és $O_Jf<\varepsilon$. Tehát

$$|f(x) - f(y)| < \varepsilon \quad (x, y \in J \cap [a, b]),$$

speciálisan

$$|f(x) - f(\alpha)| < \varepsilon \quad (x \in J \cap [a, b]).$$

Mivel $\alpha \in \text{int } J$, ezért van olyan $\delta > 0$, hogy $x \in J$ $(x \in [a, b], |x - \alpha| < \delta)$. Így

$$|f(x) - f(\alpha)| < \varepsilon \quad (x \in [a, b], |x - \alpha| < \delta),$$

azaz $f \in C\{\alpha\}$.

A lokális oszcilláció és a pontbeli folytonosság kapcsolatáról most belátott ekvivalencia alapján

$$\mathcal{A}_f = \{x \in [a, b] : \Delta_x f > 0\} = \bigcup_{k=1}^{\infty} \{x \in [a, b] : \Delta_x f > 1/k\} =: \bigcup_{k=1}^{\infty} A_k.$$

Az \mathcal{A}_f halmaz nullamértékűségéhez elegendő azt megmutatni, hogy az

$$A_{\delta} := \{x \in [a, b] : \Delta_x f > \delta\} \quad (\delta > 0)$$

halmazok nullamértékűek. Legyen $\sigma > 0$, amikor is a Riemann-integrálhatóságnak az oszcillációs összegekkel való jellemzése folytán az [a, b] intervallum egy alkalmas τ felosztásával

$$\omega(f, \tau) = \sum_{J \in \tau} o_J(f) \cdot |J| < \sigma,$$

 $\mathcal{F}(\tau)$ jelöli a τ felosztás által meghatározott osztásintervallumok halmazát. Ekkor tetszőleges $\delta>0$ mellett

$$\sigma > \omega(f,\,\tau) = \sum_{J \in \mathcal{F}(\tau)} o_J(f) \cdot |J| \ge \sum_{J \in \mathcal{F}(\tau),\,A_\delta \cap \text{int } J \neq \emptyset} o_J(f) \cdot |J|.$$

Világos, hogy minden $J \in \mathcal{F}(\tau)$, $A_{\delta} \cap \text{int } J \neq \emptyset$ osztásintervallum esetén $o_J(f) \geq \delta$, ezért

$$\sigma > \delta \cdot \sum_{J \in \mathcal{F}(\tau), A_{\delta} \cap \text{int } J \neq \emptyset} |J|.$$

Más szóval

$$\sum_{J \in \mathcal{F}(\tau),\, A_\delta \cap \mathrm{int}\, J \neq \emptyset} |J| < \frac{\sigma}{\delta}.$$

Legyen itt valamilyen $\varepsilon > 0$ mellett a $\sigma > 0$ olyan, hogy $\sigma/\delta < \varepsilon/2$. Nyilván

$$A_{\delta} \subset \left(\bigcup_{J \in \mathcal{F}(\tau), \, A_{\delta} \cap \operatorname{int} J \neq \emptyset} J\right) \bigcup \left(\bigcup_{J \in \mathcal{F}(\tau)} (J \setminus \operatorname{int} J)\right),$$

ahol minden $J \setminus \text{int } J \ (J \in \mathcal{F}(\tau))$ nullamértékű halmaz, és így az

$$\bigcup_{J\in\mathcal{F}(\tau)}(J\setminus\operatorname{int}J)$$

halmaz is nullamértékű. Ezért alkalmas $K_j \subset \mathbf{R} \ (j \in \mathbf{N})$ intervallumsorozattal

$$\bigcup_{J\in\mathcal{F}(\tau)}(J\setminus\operatorname{int}J)\subset\bigcup_{j=0}^\infty K_j,$$

és

$$\sum_{j=0}^{\infty} |K_j| < \frac{\varepsilon}{2}.$$

Mindezeket egybevetve

$$A_{\delta} \subset \left(\bigcup_{J \in \mathcal{F}(\tau), A_{\delta} \cap \text{int } J \neq \emptyset} J\right) \bigcup \left(\bigcup_{j=0}^{\infty} K_{j}\right),$$

és

$$\sum_{J\in\mathcal{F}(\tau),\,A_\delta\cap\mathrm{int}\,J\neq\emptyset}|J|+\sum_{j=0}^\infty|K_j|<\varepsilon.$$

Ez pontosan azt jelenti, hogy az A_{δ} halmaz nullamértékű.

Most tegyük fel azt, hogy az \mathcal{A}_f halmaz nullamértékű. Legyen adott az $\varepsilon > 0$ szám, ekkor egy alkalmas, kompakt intervallumokból álló $L_k \subset \mathbf{R}$ $(k \in \mathbf{N})$ intervallumsorozattal

$$\mathcal{A}_f \subset \bigcup_{k=0}^{\infty} \operatorname{int} L_k, \sum_{k=0}^{\infty} |L_k| < \frac{\varepsilon}{4C},$$

ahol C > 0, és $|f(x)| \le C$ $(x \in [a, b])$. Ha $x \in [a, b] \setminus \mathcal{A}_f$, azaz $f \in C\{x\}$, akkor van olyan $I_x \subset \mathbf{R}$ intervallum, amelyre $x \in \operatorname{int} I_x$, és

$$O_{I_x} f = \sup\{|f(t) - f(y)| \in \mathbf{R} : t, y \in I_x \cap [a, b]\} < \frac{\varepsilon}{2(b-a)}.$$

Világos, hogy

$$[a, b] \subset \left(\bigcup_{k=0}^{\infty} \operatorname{int} L_k\right) \bigcup \left(\bigcup_{x \in [a, b] \setminus A_f} \operatorname{int} I_x\right).$$

Az [a, b] kompaktsága miatt az előbbi nyílt lefedést figyelembe véve kapunk olyan véges $A \subset \mathbb{N}$, $B \subset [a, b] \setminus \mathcal{A}_f$ halmazokat, amelyekkel

$$[a, b] \subset \left(\bigcup_{k \in A}^{\infty} \operatorname{int} L_k\right) \bigcup \left(\bigcup_{x \in B} \operatorname{int} I_x\right)$$

Legyen $\tau \subset [a, b]$ az a felosztás, amit az a, b és az L_k $(k \in A), I_x$ $(x \in B)$ intervallumok [a, b]be eső végpontjai alkotnak. Világos, hogy bármelyik $J \in \mathcal{F}(\tau)$ osztásintervallumra egy-egy alkalmas $k \in A$, vagy $x \in B$ mellett $J \subset L_k$, vagy $J \subset I_x$ (esetleg mindkét tartalmazás igaz). Ha $k \in A$ és $J \subset L_k$, akkor $o_J(f) \leq 2C$. Ha pedig $x \in B$ és $J \subset I_x$, akkor $o_J(f) \leq \varepsilon/(2(b-a))$. Ezért a τ -hoz tartozó $\omega(f, \tau)$ oszcillációs összegről az alábbiakat mondhatjuk:

$$\omega(f, \tau) = \sum_{J \in \mathcal{F}(\tau)} o_J(f) \cdot |J| \le$$

$$\sum_{J \in \mathcal{F}(\tau), \exists k \in A: J \subset L_k} o_J(f) \cdot |J| + \sum_{J \in \mathcal{F}(\tau), \exists x \in B: J \subset I_x} o_J(f) \cdot |J| \le$$

$$2C \cdot \sum_{J \in \mathcal{F}(\tau), \exists k \in A: J \subset L_k} |J| + \frac{\varepsilon}{2(b-a)} \cdot \sum_{J \in \mathcal{F}(\tau), \exists x \in B: J \subset I_x} |J| \le$$

$$2C \cdot \sum_{k=0}^{\infty} |L_k| + \frac{\varepsilon}{2(b-a)} \cdot \sum_{J \in \mathcal{F}(\tau)} |J| \le 2C \cdot \frac{\varepsilon}{4C} + \frac{\varepsilon}{2(b-a)} \cdot (b-a) = \varepsilon.$$

Tehát $f \in R[a, b]$.

HIVATKOZÁSOK Mértékelmélet

Hivatkozások

 $[1]\ \$ Péter Simon. Mérték és integrál. Egyetemi jegyzet. Budapest: ELTE E
ötvös Kiadó, 2016.