Complexity of presenting cohesive powers

Paul Shafer
University of Leeds
p.e.shafer@leeds.ac.uk
https://peshafer.github.io

Joint meeting of the NZMS, AustMS and AMS
Auckland, NZ
11 December 2024

Joint work with David Gonzalez

Reminder: cohesive sets

Let

$$\vec{A} = (A_0, A_1, A_2, \dots)$$

be a countable sequence of subsets of \mathbb{N} .

Then there is an **infinite** set $C \subseteq \mathbb{N}$ such that for every n:

either
$$C \subseteq^* A_n$$

or $C \subseteq^* \mathbb{N} \setminus A_n$.

C is called **cohesive** for \vec{A} , or simply \vec{A} -cohesive.

If \vec{A} is the sequence of r.e. sets, then C is called **cohesive**.

Cohesive powers

Dimitrov (2009):

Let A be a computable structure.

(i.e., A has domain $\mathbb N$ and recursive functions and relations.)

Let C be cohesive. Form the **cohesive power** $\prod_{C} A$ of A over C:

Consider partial recursive $\varphi, \psi \colon \mathbb{N} \to \mathbb{N}$ with $C \subseteq^* \operatorname{dom}(\varphi)$. Define:

$$\begin{split} \varphi &=_C \psi & \text{if} & C \subseteq^* \{n: \varphi(n) = \psi(n)\} \\ R(\psi_0, \dots, \psi_{k-1}) & \text{if} & C \subseteq^* \{n: R(\psi_0(n), \dots, \psi_{k-1}(n))\} \\ F(\psi_0, \dots, \psi_{k-1})(n) & = & F(\psi_0(n), \dots, \psi_{k-1}(n)) \end{split}$$

Let $[\varphi]$ denote the $=_C$ -equivalence class of φ .

Let $\prod_C \mathcal{A}$ be the structure with domain $\{[\varphi]: C \subseteq^* \operatorname{dom}(\varphi)\}$ and

$$R([\psi_0], \dots, [\psi_{k-1}])$$
 if $R(\psi_0, \dots, \psi_{k-1})$
 $F([\psi_0], \dots, [\psi_{k-1}]) = [F(\psi_0, \dots, \psi_{k-1})].$

Decidability, n-decidability, and a little Łoś

A computable structure A is:

- decidable if its elementary diagram is recursive
- n-decidable if its Σ_n -elementary diagram is recursive.

The following is due to Dimitrov, Harizanov, Morozov, (S), A. Soskova, and Vatev, building on work of Dimitrov.

Theorem

Let $\mathcal A$ be a computable structure, C be cohesive, $\Phi(v)$ a first-order formula, and $[\varphi]$ an element of $\prod_C \mathcal A$.

• If A is n-decidable and Φ is Π_{n+2} , then

$$\forall^{\infty}i\in C \ \mathcal{A}\models\Phi(\varphi(i)) \ \ \textit{implies} \ \ \prod_{C}\mathcal{A}\models\Phi([\varphi]).$$

• If A is decidable, then

$$\forall^{\infty}i\in C \ \ \mathcal{A}\models\Phi(\varphi(i)) \quad \text{if and only if} \quad \prod\nolimits_{C}\mathcal{A}\models\Phi([\varphi]).$$

Cohesive powers and saturation

A structure is:

- recursively saturated if it realizes every recursive type
- Σ_n -recursively saturated if it realizes every recursive type of Σ_n formulas.

Let $\mathcal A$ be a computable structure and C be cohesive.

- If $\mathcal A$ is decidable, then $\prod_C \mathcal A$ is recursively saturated. (Essentially Nelson).
- If \mathcal{A} is n-decidable for $n \geq 1$, then $\prod_{C} \mathcal{A}$ is Σ_n -recursively saturated. (Dimitrov, Harizanov, Morozov, (S), A. Soskova, and Vatev).
- If \mathcal{A} is n-decidable and C is Π_1 , then $\prod_C \mathcal{A}$ is Σ_{n+1} -recursively saturated. (Dimitrov, Harizanov, Morozov, (S), A. Soskova, and Vatev).
- If \mathcal{A} is n-decidable and C is Δ_2 , then $\prod_C \mathcal{A}$ is Σ_{n+1} -recursively saturated. ((S), building on the above).

The point: If C is Δ_2 , then we get one more level of saturation (and also n=0).

Cohesive powers of recursive presentations of $\boldsymbol{\omega}$

Previous work of Dimitrov, Harizanov, Morozov, (S), A. Soskova, and Vatev and of (S) focused on cohesive powers of different recursive presentations of ω .

For example: For the standard presentation $(\mathbb{N}; <)$ and any cohesive C:

$$\prod_C(\mathbb{N};<) \ \cong \ \omega + \zeta \eta \quad \text{(i.e., ω plus dense copies of the integers)}.$$

But also:

Theorem (S)

Let $X \subseteq \mathbb{N} \setminus \{0\}$ be a Boolean combination of Σ_2 sets. There is a recursive copy \mathcal{L} of ω such that for every Δ_2 cohesive C:

$$\prod_{C} \mathcal{L} \cong \omega + \sigma (X \cup \{\omega + \zeta \eta + \omega^*\}).$$

Moreover, if X is finite, then $\omega + \zeta \eta + \omega^*$ can be removed.

Here X represents a collection of finite linear orders, and σ denotes shuffle sum.

Are non-recursive order-types possible?

From the previous slide:

If $X \subseteq \mathbb{N} \setminus \{0\}$ is a Boolean combination of Σ_2 sets, then

$$\omega + \sigma(X \cup \{\omega + \zeta\eta + \omega^*\})$$

appears as a cohesive power of a recursive copy of ω .

However, by Ash, Jockusch, Knight:

If X is Σ_3 , then $\omega + \sigma(X \cup \{\omega + \zeta \eta + \omega^*\})$ is a recursive order-type.

On the other hand:

- If \mathcal{L} is a recursive linear order, then $\{n : \mathcal{L} \text{ contains a block of size } n\}$ is Σ_3 .
- Hence if X is (say) Π_3 but not Σ_3 , then $\omega + \sigma(X \cup \{\omega + \zeta\eta + \omega^*\})$ is **not** a recursive order-type.

Question:

If $X \subseteq \mathbb{N} \setminus \{0\}$ is Π_3 , does $\omega + \sigma(X \cup \{\omega + \zeta\eta + \omega^*\})$ appear as a cohesive power of a recursive copy of ω ?

Are non-recursive order-types possible?

Indeed, is it possible to achieve non-recursive order-types at all?

Questions:

- Is there a recursive copy \mathcal{L} of ω such that $\prod_C \mathcal{L}$ has non-recursive order-type for every cohesive C? For every Δ_2 cohesive C? For some cohesive C?
- Is there a recursive linear order $\mathcal L$ such that $\prod_C \mathcal L$ has non-recursive order-type for every cohesive C? For every Δ_2 cohesive C? For some cohesive C?
- Is there uniformly recursive sequence of linear orders $(\mathcal{L}_n)_n$ such that $\prod_C \mathcal{L}_n$ has non-recursive order-type for every cohesive C? For every Δ_2 cohesive C? For some cohesive C?

Gonzalez & (S):

The answer to the last question is yes. We will come back to this.

How complicated are cohesive powers anyway?

If $\mathcal A$ is a computable structure and C is cohesive, then how complicated is $\prod_C \mathcal A$?

Potentially this depends on the complexity of C.

So we stick to Δ_2 cohesive sets for a moment.

Note that there are differences between powers over Δ_2 cohesive sets and powers over Π_2 cohesive sets:

Example (S):

- There is a computable copy $\mathcal L$ of ω such that $\prod_C \mathcal L \cong \omega + \eta$ for every Δ_2 cohesive C.
- For every computable copy $\mathcal L$ of ω , there is a Π_2 cohesive C such that $\prod_C \mathcal L \ncong \omega + \eta$.

Presenting cohesive powers over Δ_2 cohesive sets

Fact:

If $\mathcal A$ is a computable structure and C is a Δ_2 cohesive set, then $\prod_C \mathcal A$ has a Δ_3 presentation.

(The next slides have the calculation, but we'll skip it.)

Presenting cohesive powers over Δ_2 cohesive sets

Represent elements of $\prod_{C} \mathcal{A}$ by pairs $\langle e, N \rangle$ where

$$\underbrace{\forall n > N \ \left(n \in C \ \to \ \varphi_e(n) \downarrow \right)}_{\Pi_2 \text{ formula } D(\langle e, N \rangle)}$$

We need to identify when $\langle e, N \rangle$ and $\langle i, M \rangle$ represent the same element. Define:

$$\underbrace{D(\langle e,N\rangle \, \wedge \, \langle i,M\rangle \, \Leftrightarrow}_{\sum_{S \text{ property}}} \underbrace{D(\langle e,N\rangle) \, \wedge \, D(\langle i,M\rangle) \, \wedge \, \exists K \, \forall n>K \, \big(n\in C \, \rightarrow \, \varphi_e(n)=\varphi_i(n)\big)}_{\sum_{S} \text{ property}}$$

By cohesiveness:

$$\underbrace{ \neg D(\langle e, N \rangle) \ \lor \ \neg D(\langle i, M \rangle) \ \lor \ \exists K \ \forall n > K \ \big(n \in C \ \to \ \varphi_e(n) \neq \varphi_i(n) \big) }_{\Sigma_3 \ \text{property}}$$

Presenting cohesive powers over Δ_2 cohesive sets

Thus $\langle e,N\rangle\sim\langle i,M\rangle$ is a Δ_3 relation. So the set X of least representatives is Δ_3 :

$$X = \big\{ \langle e, N \rangle \ : \ D(\langle e, N \rangle) \ \land \ \forall \langle i, M \rangle < \langle e, N \rangle \ \big(\langle e, N \rangle \nsim \langle i, M \rangle \big) \big\}.$$

For simplicity, let's say A has one binary relation R.

By reasoning as above, the following relation S is Δ_3 :

$$\begin{split} S(\langle e, N \rangle, \langle i, M \rangle) &\Leftrightarrow \\ D(\langle e, N \rangle) &\wedge D(\langle i, M \rangle) &\wedge \exists K \ \forall n > K \ \big(n \in C \ \rightarrow \ R(\varphi_e(n), \varphi_i(n)) \big). \end{split}$$

Then $(X, X^2 \cap S)$ is a Δ_3 presentation of $\prod_C A$.

Achieving the maximum complexity

Theorem (Gonzalez & S)

There is a recursive graph \mathcal{G} such that for every cohesive set C, every presentation of $\prod_C \mathcal{G}$ computes 0''.

So if we restrict to Δ_2 cohesive sets C:

- ullet every $\prod_C \mathcal{G}$ has a 0''-recursive presentation, and
- every presentation of every $\prod_C \mathcal{G}$ computes 0''.

Idea:

- Code Σ_3 facts about arithmetic into Σ_1 facts about $\prod_C \mathcal{G}$.
- Then both $k \in 0''$ and $k \notin 0''$ can be coded into Σ_1 facts about $\prod_C \mathcal{G}$. That is, $0'' \oplus \overline{0''}$ becomes r.e. in all presentations of $\prod_C \mathcal{G}$.
- So every presentation of $\prod_C \mathcal{G}$ computes 0''.

Achieving the maximum complexity

The plan:

Let $\Phi(k)$ be a Σ_3 formula.

Arrange for $\prod_C \mathcal{G}$ to have a vertex a such that for all k:

 $\Phi(k) \Leftrightarrow \mathbf{a} \text{ lies on a } (\langle k, \ell \rangle + 3) \text{-cycle for some } \ell.$

The lengths of the cycles at a determine the k for which $\Phi(k)$ holds.

Back to linear orders

We can compute a sequence of linear orders $(\mathcal{L}_n)_n$ whose cohesive products $\prod_C \mathcal{L}_n$ never have recursive presentations.

Theorem (Gonzalez & S)

There is a uniformly recursive sequence $(\mathcal{L}_n)_n$ of linear orders such that for every cohesive set C, the cohesive product $\prod_C \mathcal{L}_n$ is not elementarily equivalent to any recursive linear order.

Idea:

Adapt the diagonalization strategy of Jockusch & Soare.

The diagonalization strategy

For each k, let $S_k = (k+2) + \mathbb{Q} + (k+2) + \mathbb{Q} + (k+2)$.

Compute $(\mathcal{L}_n)_n$ so that:

$$\prod_{C} \mathcal{L}_{n} \cong (\mathcal{S}_{0} + \mathcal{A}_{0} + \mathcal{S}_{1} + \mathcal{A}_{1} + \mathcal{S}_{2} + \cdots) + J$$

Where

- each A_k is infinite and every non-max element has an immediate successor;
- J (for 'junk') does not have finite blocks of size ≥ 2 .

Then S_k is the only interval of its type in $\prod_C \mathcal{L}_n$.

Diagonalization:

If φ_e computes an infinite l.o. \mathcal{O}_e with unique intervals like \mathcal{S}_e and \mathcal{S}_{e+1} , then:

the interval between \mathcal{S}_e and \mathcal{S}_{e+1} in \mathcal{O}_e has a maximum element \Leftrightarrow

 \mathcal{A}_e has no maximum element.

The diagonalization strategy

Recall: $S_k = (k+2) + \mathbb{Q} + (k+2) + \mathbb{Q} + (k+2)$.

Compute $(\mathcal{L}_n)_n$ so that:

$$\prod_{C} \mathcal{L}_{n} \cong (\mathcal{S}_{0} + \mathcal{A}_{0} + \mathcal{S}_{1} + \mathcal{A}_{1} + \mathcal{S}_{2} + \cdots) + J$$

Diagonalization:

If φ_e computes an infinite l.o. \mathcal{O}_e with unique intervals like \mathcal{S}_e and \mathcal{S}_{e+1} , then:

the interval between \mathcal{S}_e and \mathcal{S}_{e+1} in \mathcal{O}_e has a maximum element

 \mathcal{A}_e has no maximum element.

Then $\prod_{C} \mathcal{L}_n$ and \mathcal{O}_e differ on the sentence that says:

There are unique intervals like S_e and S_{e+1} , and there is a maximum element between those intervals.

The set-up

Compute each \mathcal{L}_n as an ω -sum

$$\mathcal{L}_n = \mathcal{M}_0^n + \mathcal{M}_1^n + \mathcal{M}_2^n + \cdots.$$

Then:

$$\prod_{C} \mathcal{L}_{n} = \prod_{C} \sum_{m \in \mathbb{N}} \mathcal{M}_{m}^{n} \cong \sum_{[\theta] \in \prod_{C}(\mathbb{N}; <)} \prod_{C} \mathcal{M}_{\theta(n)}^{n}$$

$$= \left(\underbrace{\prod_{C} \mathcal{M}_{0}^{n}}_{\mathcal{S}_{0}} + \underbrace{\prod_{C} \mathcal{M}_{1}^{n}}_{\mathcal{A}_{0}} + \cdots\right) + \underbrace{\sum_{\substack{[\theta] \in \prod_{C} (\mathbb{N}; <) \\ [\theta] \text{ nonstd}}}_{\mathcal{I}} \prod_{C} \mathcal{M}_{\theta(n)}^{n}$$

The set-up

Again remember: $S_k = (k+2) + \mathbb{Q} + (k+2) + \mathbb{Q} + (k+2)$.

It's not hard to show that $\prod_C \mathcal{S}_k \cong \mathcal{S}_k$.

So set $\mathcal{M}_{2m}^n = \mathcal{S}_m$ for all m.

Compute each \mathcal{M}^n_{2m+1} to have either order-type:

- $\omega \ell$ for some $\ell > 0$ or
- $\omega \ell + q$ for some $\ell > 0$ and q > m

with uniformly recursive successor relation.

This suffices to make

$$\mathcal{J} = \sum_{\substack{[\theta] \in \prod_C(\mathbb{N}; <) \\ [\theta] \text{ nonstd}}} \prod_C \mathcal{M}^n_{\theta(n)}$$

have no finite blocks of size ≥ 2 .

Diagonalizing

Recall: \mathcal{O}_e is the linear order computed by φ_e (if total).

Goal:

Compute $(\mathcal{M}^n_{2e+1})_n$ to diagonalize $\mathcal{A}_e=\prod_C \mathcal{M}^n_{2e+1}$ against $\mathcal{O}_e.$

That is:

If \mathcal{O}_e has unique intervals like \mathcal{S}_e and \mathcal{S}_{e+1} , then:

the interval between \mathcal{S}_e and \mathcal{S}_{e+1} in \mathcal{O}_e has a maximum element \Leftrightarrow

 \mathcal{A}_e has no maximum element.

Diagonalizing

Guess where the finite blocks of copies of \mathcal{S}_e and \mathcal{S}_{e+1} in \mathcal{O}_e might be.

Order the guesses by priority. Verifying a guess is Π_2 .

Collect evidence that guesses are correct.

When a guess of the locations of S_e and S_{e+1} in O_e gets evidence, check if the O_e -interval between them has a bigger max element since the last time we checked.

- If so, it looks like the \mathcal{O}_e -interval has **no** max element. Add an e+1-sequence to the top of \mathcal{M}^n_{2e+1} for the next low priority n to try to make $\prod_C \mathcal{M}^n_{2e+1}$ have a max element.
- If not, it looks like the \mathcal{O}_e -interval **has** a max element. Add an ω -sequence to the top of \mathcal{M}^n_{2e+1} for the next low priority n to try to make $\prod_C \mathcal{M}^n_{2e+1}$ have **no** max element.

The highest priority correct guess wins!

Thank you!

Do you have a question about it? Thank you for coming to my talk!

55 / 55