Data Mining - Lab - 2

Numpy & Perform Data Exploration with Pandas

23010101407

Numpy

- 1. NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing.
- 2. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on them efficiently.
- 3. NumPy is highly optimized and written in C, making it much faster than using regular Python lists for numerical operations.
- 4. It serves as the foundation for many other Python libraries in data science and machine learning, like pandas, TensorFlow, and scikit-learn.
- 5. With features like broadcasting, vectorization, and integration with C/C++ code, NumPy allows for cleaner and faster code in numerical computations.

Step 1. Import the Numpy library

```
In [3]: import numpy as np
```

Step 2. Create a 1D array of numbers

```
In [5]: # array ma badha element same data type na leva na
arr = np.array([1,4,2,5,6,3])
arr

Out[5]: array([1, 4, 2, 5, 6, 3])

In [21]: # jetli range hoy enathi ek ocho ave
# jyathi start krvu hoy te coma seprated dy devanu (2,10) to otp 2 to 9 no array
arr = np.arange(10)
type(arr) #type of arr
arr.dtype # datatype ape int, float etc...
arr.size # size ape
arr.ndim # ---> no. of dimantion
```

Out[21]: 1

Step 3. Reshape 1D to 2D Array

Step 4. Create a Linspace array

Step 5. Create a Random Numbered Array

```
In [37]: arr = np.random.rand(5)
arr
Out[37]: array([0.92066394, 0.18001599, 0.27637333, 0.82266963, 0.04610274])
In [ ]:
```

Step 6. Create a Random Integer Array

```
In [ ]: # starting , ending , size
    arr = np.random.randint(1,100,size=10)
    arr
In [ ]:
```

Step 7. Create a 1D Array and get Max, Min, ArgMax, ArgMin

```
In [39]: arr = np.array([1,4,2,5,6,3])
arr
Out[39]: array([1, 4, 2, 5, 6, 3])
```

```
In [41]: arr = np.array([1,4,2,5,6,3])
arr.max()

Out[41]: 6

In [43]: arr = np.array([1,4,2,5,6,3])
arr.min()

Out[43]: 1

In [47]: #index ape and index 0 thi start thy
arr = np.array([1,4,2,5,6,3])
arr.argmax()

Out[47]: 4

In [49]: arr = np.array([1,4,2,5,6,3])
arr.argmin()

Out[49]: 0
```

Step 8. Indexing in 1D Array

```
In [55]: arr = np.array([1,4,2,5,6,3])
arr[0]
Out[55]: 1
```

Step 9. Indexing in 2D Array

```
In [57]: arr2D= np.arange(12).reshape(3,4)
arr2D[1,0]
```

Out[57]: 4

Step 10. Conditional Selection

```
In [63]: arr= np.arange(12)
arr
arr[arr%2==0]
Out[63]: array([ 0,  2,  4,  6,  8,  10])
In [ ]:
```

♦ You did it! 10 exercises down — you're on fire!

Pandas

Step 1. Import the necessary libraries

[n [1]: import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

In [3]: df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/dat
df

Out[3]:		user_id	age	gender	occupation	zip_code
	0	1	24	М	technician	85711
	1	2	53	F	other	94043
	2	3	23	М	writer	32067
	3	4	24	М	technician	43537
	4	5	33	F	other	15213
	•••			•••		
93 94 94	938	939	26	F	student	33319
	939	940	32	М	administrator	02215
	940	941	20	М	student	97229
	941	942	48	F	librarian	78209
	942	943	22	М	student	77841

943 rows × 5 columns

Step 4. See the first 25 entries

In [5]: tp=df.head(25)
tp

Out[5]:		user_id	age	gender	occupation	zip_code
	0	1	24	М	technician	85711
	1	2	53	F	other	94043
	2	3	23	М	writer	32067
	3	4	24	М	technician	43537
	4	5	33	F	other	15213
	5	6	42	М	executive	98101
	6	7	57	М	administrator	91344
	7	8	36	М	administrator	05201
	8	9	29	М	student	01002
	9	10	53	М	lawyer	90703
1 1 1 1 1 1	10	11	39	F	other	30329
	11	12	28	F	other	06405
	12	13	47	М	educator	29206
	13	14	45	М	scientist	55106
	14	15	49	F	educator	97301
	15	16	21	М	entertainment	10309
	16	17	30	М	programmer	06355
	17	18	35	F	other	37212
	18	19	40	М	librarian	02138
	19	20	42	F	homemaker	95660
	20	21	26	М	writer	30068
	21	22	25	М	writer	40206
	22	23	30	F	artist	48197
	23	24	21	F	artist	94533
	24	25	39	М	engineer	55107

Step 5. See the last 10 entries

In [7]: tp=df.tail(10)
tp

Out[7]:		user_id	age	gender	occupation	zip_code
	933	934	61	М	engineer	22902
	934	935	42	М	doctor	66221
	935	936	24	М	other	32789
	936	937	48	М	educator	98072
g	937	938	38	F	technician	55038
9:	938	939	26	F	student	33319
93	939	940	32	М	administrator	02215
	940	941	20	М	student	97229
	941	942	48	F	librarian	78209
	942	943	22	М	student	77841

Step 6. What is the number of observations in the dataset?

```
In [11]: df["user_id"].count()
Out[11]: 943
```

Step 7. What is the number of columns in the dataset?

```
In [17]: # 1 is col
    #0 is row
    df.shape[1]
```

Out[17]: 5

Step 8. Print the name of all the columns.

```
In [19]: df.columns
Out[19]: Index(['user_id', 'age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

```
In [21]: df.index
Out[21]: RangeIndex(start=0, stop=943, step=1)
```

Step 10. What is the data type of each column?

```
In [29]: df.dtypes
```

```
Out[29]: user_id int64
age int64
gender object
occupation object
zip_code object
dtype: object
```

Step 11. Print only the occupation column

```
In [25]: cl = df[["user_id","occupation"]]
    cl
```

Out[25]:		user_id	occupation
	0	1	technician
	1	2	other
	2	3	writer
	3	4	technician
	4	5	other
	•••	•••	
	938	939	student
	939	940	administrator
	940	941	student
	941	942	librarian
	942	943	student

943 rows × 2 columns

Step 12. How many different occupations are in this dataset?

```
In [45]: df["occupation"].nunique()
Out[45]: 21
```

Step 13. What is the most frequent occupation?

Out[51]: 'student'

Step 14. Summarize the DataFrame.

```
In [39]: tp=df.describe()
tp
```

Out[39]:		user_id	age
	count	943.000000	943.000000
	mean	472.000000	34.051962
	std	272.364951	12.192740
	min	1.000000	7.000000
	25%	236.500000	25.000000
	50%	472.000000	31.000000
	75%	707.500000	43.000000
	max	943.000000	73.000000

Step 15. Summarize all the columns

Step 16. Summarize only the occupation column

Step 17. What is the mean age of users?

```
In [59]: df["age"].mean()
Out[59]: 34.05196182396607
```

Step 18. What is the age with least occurrence?

You're not just learning, you're mastering it. Keep aiming higher! 💉