Common Digital Logic Components

ROM:

Number Systems Table

Decimal	Binary	Octal	Hexadecimal
O	0	0	0
1	1	1	1
2	10	2	2
<i>3</i>	11	<i>3</i>	<i>3</i>
4	100	4	4
5	101	<i>5</i>	5
<i>6</i>	110	<i>6</i>	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	<i>12</i>	A
11	1011	<i>13</i>	B
<i>12</i>	1100	14	C
<i>13</i>	1101	<i>15</i>	D
14	1110	<i>16</i>	E
<i>15</i>	1111	<i>17</i>	F
<i>16</i>	10000	20	10

Important number conversions to remember:

$$(10)_{10} = (1010)_2 = (A)_{16}$$

 $(11)_{10} = (1011)_2 = (B)_{16}$

Juxapositional Notation

```
N = number
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \cdot a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_r
= (a_{n-1} \ a_{n-2} \dots a_{-m})_r
= (a_{n-1} \ a
```

Example: decimal number

```
(353.12)<sub>r=10</sub>
= 3 hundreds
5 tens
3 ones
1 tenth
2 hundreths
```

Example: binary number

$$(1010.01)_{r=2}$$

How do we expand this number? <u>Clue</u>: look at polynomial representation.

Polynomial Representation

$$(353.12)_{r=10}$$

$$= 3 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0} + 1 \times 10^{-1} + 2 \times 10^{-2}$$

$$(1010.01)_{r=2}$$

$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

General Polynomial:

$$N = number$$

$$= \sum_{i=-m}^{n-1} a_i r^i$$

$$= a_{n-1} r^{n-1} + a_{n-2} r^{n-2} + ... + a_2 r^2 + a_1 r^1 + a_0 r^0$$

$$+ a_{-1} r^{-1} + a_{-2} r^{-2} + a_{-3} r^{-3} + ... + a_{-m} r^{-m}$$

$$N = N_I + N_F$$

Conversion to Base 10

 N_{α} to N_{10} , by polynomial substitution:

```
(101101)_2 = ?_{10}
      = 1 \times 2^5 +
         0 \times 24 +
         1 \times 2^3 +
         1 \times 2^2 +
         0 \times 21 +
         1 x 20
     = (45)_{10}
(247.1)_8 = ?_{10}
      = 2 \times 8^2 +
        4 \times 81 +
         7 \times 80 +
         1 x 8-1
     =(167.125)_{10}
(1AB)_{16} = ?_{10}
     = 1 \times 16^2 +
         A \times 16^{1} +
         B \times 16^{\circ} (Recall: A = 10, B = 11)
     = (427)_{10}
```

Conversion to Base α

 $(250.4)_{10} = (10021.10121012...)_3$

2^k Conversions

Octal: $2 \rightarrow 8 = 2^3$, in groups of k = 3

Hex: 2 → 16 = 2^4 , in groups of k = 4

Example: Convert (010101100)₂ to base 8 and 16

Example: Convert (110.110)₂ to base 8 and 16

Add zeros

O(110.110)0

C
$$\rightarrow$$
 (6,6)s

C \rightarrow (6,C)16

Adding and Subtracting Numbers

Hamming Code Error Correction

Data-in
$$HC$$
 1234567
1001 PC 0011001

error

 0011001 Data-out

 0111001 $\rightarrow 1001$

Redo $HC \rightarrow 0011001$

Simplification of Circuits using Boolean Algebra

AND-OR: wx / yz = w.c + y.zNAND - NAND: wx / yz = w.c + y.z

NMOS Transistors

G = Gate S = Source D = Drain (S and D are interchangeable)

The NMOS transistor may be configured to operate in one of three different states, as determined by the **voltage** at the gate terminal V_G:

1. Off State (Nonconducting)

2. On State (Conducting)

3. Resistive State (Resistive)

nMOS Based Logic Gates

1. NOT Gate:

3. NOR Gate:

$$y \longrightarrow (x + y)'$$

2. NAND Gate:

If change the y into x..then will get x'. x' = x'

Adjacency pattern :
$$x y + x y' = x$$

AB F

1

Karnaugh Maps

2 Variable Map:

3 Variable Map:

4 Variable Map:

$$f = Em(0,1,2,3,4,5,6,7,8,9,10,11)$$

= $A' + B'$
= $A' \times B'$

D	2	6	4
1	3	7	5

$$d = x = \{0$$
1}

D	2	6	4
1	3	7	5

Identify the most simple POS.

D	2	6	4
1	3	7	5

The most simple expression is \bigwedge

O			8
			9
3			11
2	6	14	10

5 Variable Map:

16	20	28	24
17		29	25
19			27
18	22	30	26

Maxterms: f2(A,B,C) = (A+B+C) (A+B+C') (A'+B+C) (A'+B+C')