ME 57200 Aerodynamic Design

Lecture #9: Inviscid Incompressible Flow

Dr. Yang Liu

Steinman 253

Tel: 212-650-7346

Email: yliu7@ccny.cuny.edu

Midterm Exam

- Tuesday, 3/12, from 09:30 to 10:45 am at Shepard S-308.
- The exam is open-book and open-notes.
- 5 True/False Questions: 10 pt
- 4 Math-based Problems: 40 pt
- Total: 50 pt

Stream Function

Stream Function: $\overline{\Psi} = constant$ designates a streamline, and $\Delta \overline{\Psi}$ equals to the mass flow rate between streamlines.

Mass flow =
$$\Delta \overline{\psi} = \rho V \Delta n = \rho u \Delta y + \rho v (-\Delta x)$$

$$d\overline{\psi} = \rho u \, dy - \rho v \, dx$$

$$d\,\overline{\psi} = \frac{\partial\,\overline{\psi}}{\partial x}dx + \frac{\partial\,\overline{\psi}}{\partial y}dy$$

$$\rho u = \frac{\partial \,\overline{\psi}}{\partial y}$$

$$\rho v = -\frac{\partial \overline{\psi}}{\partial x}$$

Stream Function

Stream Function: $\overline{\Psi} = constant$ designates a streamline, and $\Delta \overline{\Psi}$ equals to the mass flow rate between streamlines.

$$\rho u = \frac{\partial \,\overline{\psi}}{\partial y}$$

$$\rho v = -\frac{\partial \overline{\psi}}{\partial x}$$

$$\rho V_r = \frac{1}{r} \frac{\partial \overline{\psi}}{\partial \theta}$$

$$\rho V_{\theta} = -\frac{\partial \,\overline{\psi}}{\partial r}$$

For incompressible flow:

$$\psi \equiv \overline{\psi}/\rho$$

$$u = \frac{\partial \psi}{\partial y}$$

$$v = -\frac{\partial \psi}{\partial x}$$

$$V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$

$$V_{\theta} = -\frac{\partial \psi}{\partial r}$$

Velocity Potential

Velocity Potential: For an irrotational flow, there exists a scalar function φ such that the velocity is given by the gradient of φ . We denote φ as the <u>velocity potential</u>.

$$u\mathbf{i} + v\mathbf{j} + w\mathbf{k} = \frac{\partial \phi}{\partial x}\mathbf{i} + \frac{\partial \phi}{\partial y}\mathbf{j} + \frac{\partial \phi}{\partial z}\mathbf{k}$$

Cartesion

$$u = \frac{\partial \phi}{\partial x} \quad v = \frac{\partial \phi}{\partial y} \quad w = \frac{\partial \phi}{\partial z}$$

Cylindrical

$$V_r = \frac{\partial \phi}{\partial r}$$
 $V_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$ $V_z = \frac{\partial \phi}{\partial z}$

Spherical

$$V_r = \frac{\partial \phi}{\partial r}$$
 $V_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$ $V_{\Phi} = \frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \Phi}$

- A line of constant $\overline{\Psi}$: Streamline
- A line of constant φ: Equipotential Line

The differential of ψ along a streamline is zero.

$$d\psi = \frac{\partial \psi}{\partial x}dx + \frac{\partial \psi}{\partial y}dy = 0$$

$$d\psi = -v dx + u dy = 0$$

$$\left(\frac{dy}{dx}\right)_{w=\text{const}} = \frac{v}{u}$$

- A line of constant $\overline{\Psi}$: Streamline
- A line of constant φ: Equipotential Line

The differential of ϕ along an equipotential line is zero.

$$d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy = 0$$

$$d\phi = udx + vdy = 0$$

$$\left(\frac{dy}{dx}\right)_{\phi = \text{const}} = -\frac{u}{v}$$

- A line of constant $\overline{\Psi}$: Streamline
- A line of constant φ: Equipotential Line

$$\left(\frac{dy}{dx}\right)_{\psi=\text{const}} = -\frac{1}{(dy/dx)_{\phi=\text{const}}}$$

The slope of a $\Psi = constant$ line is the negative reciprocal of the slop of a $\varphi = constant$ line.

Streamlines and equipotential lines are mutually perpendicular

Similarity between stream function and velocity potential

They are both related to velocity by taking the derivative

Differences between stream function and velocity potential

- The flow field velocities are obtained by differentiating φ in the same direction as the velocities, whereas ψ is differentiated normal to the velocity direction.
- The velocity potential is defined for irrotational flow only. The stream function can be used in either rotational or irrotational flows
- The velocity potential can be applied to 3D flows, the stream function is defined for 2D flow only.

Bernoulli's Equation:
$$P + \frac{1}{2}PV^2 = \text{constant}$$

5 component of the momentum equation, for sivical flow with no body force: $P = \frac{\partial u}{\partial t} = -\frac{\partial P}{\partial t}$
 $\Rightarrow P = \frac{\partial u}{\partial t} + P = \frac{\partial u}{\partial t} + P = \frac{\partial u}{\partial t} = -\frac{\partial P}{\partial t}$

For steady flow: $\frac{\partial u}{\partial t} = 0$
 $\Rightarrow u = \frac{\partial u}{\partial t} + v = \frac{\partial u}{\partial t} + u = -\frac{1}{2} = -\frac{1}{2} = 0$

Consider the flow along a streamline in 3-D space
$$\begin{array}{c}
\sqrt{34} dx + \sqrt{34} dx + \sqrt{34} dy = -\frac{1}{2} \frac{37}{4} dy \\
\sqrt{34} dx + \sqrt{34} dy + \sqrt{34} dy + \sqrt{34} dy \\
\sqrt{34} dx + \sqrt{34} dy + \sqrt{34} dy + \sqrt{34} dy
\end{array}$$

$$\begin{array}{c}
\sqrt{34} dx + \sqrt{34} dy + \sqrt{34} dy + \sqrt{34} dy \\
\sqrt{34} dx + \sqrt{34} dy + \sqrt{34} dy + \sqrt{34} dy
\end{array}$$

$$\Rightarrow u du = -\frac{1}{2} \frac{\partial^{2} dy}{\partial x^{2}}$$

$$\Rightarrow \left(\frac{1}{2}d(u^{2})\right) = -\frac{1}{2} \frac{\partial^{2} dy}{\partial y^{2}}$$

$$= -\frac{1}{2} \frac{\partial^{2} dy}{\partial y^{2}}$$

$$= -\frac{1}{2} \frac{\partial^{2} dy}{\partial y^{2}}$$

$$\Rightarrow \frac{1}{2}d(u^{2}+v^{2}+u^{2}) = -\frac{1}{2}(\frac{\partial^{2} dy}{\partial y^{2}} + \frac{\partial^{2} dy}{\partial y^{2}} + \frac{\partial^{2} dy}{\partial y^{2}})$$

$$\Rightarrow \frac{1}{2}d(u^{2}+v^{2}+u^{2}) = -\frac{1}{2}(\frac{\partial^{2} dy}{\partial y^{2}} + \frac{\partial^{2} dy}{\partial y^{2}} + \frac{\partial^{2} dy}{\partial y^{2}} + \frac{\partial^{2} dy}{\partial y^{2}})$$

$$\Rightarrow \pm d(V^{2}) = -\frac{1}{p}(dP)$$

$$\Rightarrow dP = -P V dV \quad \text{Euler's Equation''}$$
If the flow is incompressible: $P = \text{constant}$

$$\int_{P_{1}}^{P_{2}} dP = -P \int_{V_{1}}^{V_{2}} V dV$$

$$P_{2} - P_{1} = -P \left(\frac{V_{2}^{2}}{2} - \frac{V_{1}^{2}}{2}\right)$$

=> Pit \frac{1}{2}PV_1^2 = P2 + \frac{1}{2}PV_2^2 = Constant

"Bernaulli'S Equation"

For both volutional and involutional flows.

Laplace's Equation

Continuity Equation:
$$\nabla \cdot \vec{V} = 0$$

incompressible

For an involational flow: $\vec{V} = \nabla \phi$

$$\Rightarrow \quad \nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0)$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \cdot (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi) = 0$$

$$\Rightarrow \quad (\nabla \phi) = 0 \Rightarrow \quad (\nabla \phi)$$

Laplace's Equation

For 2D incompressible flow:
$$u = 3\frac{1}{3}$$
, $v = 3\frac{1}{3}$
 $\frac{34}{34} + 3\frac{3}{34} = 0$
 $\frac{34}{3434} - \frac{34}{3434} = 0$

Laplace's Equation

$$\frac{\partial V}{\partial x} - \frac{\partial U}{\partial y} = 0 \qquad CV \times V = 0$$

$$\Rightarrow \frac{\partial V}{\partial x} \left(-\frac{\partial V}{\partial x} \right) - \frac{\partial V}{\partial y} = 0$$

$$\Rightarrow \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

In-Class Quiz