

Table: Laplace Transformation for Elementary Functions

Differential Equations

Fall 2024

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}, s > a$
$t^n, n \in \mathbb{Z}_{>0}$	$\frac{n!}{s^{n+1}}, s > 0$
$\sin(at)$	$\frac{a}{s^2 + a^2}, s > 0$
$\cos(at)$	$\frac{s}{s^2 + a^2}, s > 0$
$\sinh(at)$	$\frac{a}{s^2 - a^2}, s > 0$
$\cosh(at)$	$\frac{s}{s^2 - a^2}, s > 0$
$e^{ct}f(t)$	F(s-c)
$u_c(t) = u(t-c)$	$\frac{e^{-cs}}{s}$
$u_c(t)f(t-c) = u(t-c)f(t-c)$	$e^{-cs}F(s)$
f'(t)	$s\mathcal{L}\{f\}-f(0)$
f''(t)	$s^2 \mathcal{L}\{f\} - sf(0) - f'(0)$
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
$\delta(t-c)$	e^{-cs}
$(f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$	F(s)G(s)