Lecture 1: Laying the Foundations + Terminology

Chapters 1.1-1.2

Goals for Today

- ► Go over the syllabus
- ► Show some examples of statistics
- ▶ Discuss how to evaluate the efficacy of a treatment
- ► Describe the different kinds of variables we'll consider

What is statistics?

The general scientific process of investigation can be summed up as follows:

- 1. Identify the scientific question or problem
- 2. Collect relevant data on the topic
- 3. Analyze the data
- 4. Form a conclusion and communicate it

Statistics concerns itself with points 2 through 4.

2/2

Example: 2012 Election - Nate Silver's Predictions vs Actual Results

4/2

Example: Brain & Breast Cancer in Western Washington

My PhD dissertation involved detecting cancer "clusters": areas of residual spatial variation of disease risk.

We modeled the (Bayesian) probability of cluster membership for each of the n=887 census tracts in Western Washington in 2000, using cancer data from 1995–2005, controlling for age, race, and gender.

Brain Cancer Controlling for Age, Race, & Gender

6/21

Say we want answer the following questions:

- ► Does a new kind of cognitive therapy alter levels of depression in patients?
- You question the effectiveness of antioxidants in preventing cancer.
- ► Will reassuring potential new users to a gambling website that we won't spam them increase the sign-up rate?

11 /2

Evaluating the efficacy of a 'treatment'

Website Experiments

Treatment:

Example of a treatment vs control

Two other examples in the media of late

- ► Facebook's tinkering with user's emotions (link)
- $\qquad \qquad \textbf{OkCupid's admission that they experiment on human beings} \\ \textit{(link)} \\$

Variables

-- ---

Data

At its simplest, data values are presented in a data table/frame where each

- row corresponds to cases or observations
- ► column corresponds to variables

This is also called long/tidy format.

Data Summaries

Consider the variable "federal spending per capita" in each of the 3,143 counties in the US. One can hardly digest this:

[1]	6.068095	6.139862	8.752158	7.122016	5.130910	9.973062	9.311835	15.439218
[9]	8.613707	7.104621	6.324061	10.640378	9.781442	8.982702	6.840035	20.330684
[17]	9.687698	11.080738	7.839761	9.461856	9.650295	7.760627	25.774791	13.948106
[3121]	7.520731	10.246400	3.106800	17.679572	4.824044	7.247212	8.484211	8.794626
[3129]	9.829593	8.100945	17.090715	4.855849	6.621378	22.587359	10.813260	11.422522
F94977	9 580965	4 368986	5 062138	6 236968	4 549105	8 713817	6 694784	

Data Summaries

We boil them down via summary statistics: single values summarizing a large amount of data.

Using the summary() command in R:

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
0.000	6.964	8.669	9.991	10.860	204.600	4

Relationships between variables

We can best display the relationship between two variables using a scatterplot AKA bivariate plot:

19 / 21

Relationships between variables

Almost always we are interested in the relationship between two or more variables.

A pair of variables are either related in some way (associated) or not (independent).

We can have either a negative association (as the value of one variable increases, the other decreases) or a positive association.

