Operációs rendszerek

ELTE IK.

© Dr. Illés Zoltán

Mi történt a múlt héten...

- Operációs rendszerek kialakulása
 - Sz.gép Op.rendszer generációk
- Op. Rendszer fogalma
- Fogalmak:
 - Fájlok, könyvtárak, processzek
- Rendszerhívások
- Rendszer struktúrák
 - Ma: Vegyes, tipikus kliens-szerver modell, rétegelt jellemzőkkel

Mi következik ma...

- Háttértárak
- Fájlok
 - Fájltípusok
- Könyvtárak
 - Könyvtárszerkezetek
- Fájlrendszerek
- Fájlrendszer kérés ütemezések
- Biztonsági kérdések

• ...

Háttértár típusok ma

- Mágneses elvű
 - Mágnesszalagok
 - Mágneslemezek
 - Merevlemez
 - Floppy
- Optikai elvű
 - CD, DVD, Blu-Ray, lézer elv, kb. 5xDVD a kapacitás
- Félvezető (flash)
 - USB, memóriakártya
 - SSD(Solid State Drive/Disk) diszk

Háttértár típusok holnap

- Holografikus
 - GE 2011 bejelentés, 500GB, hologramok a bitek
- Biológiai
 - DNS lánc alapú (MS 2019 ...)
- Nano felépítésű
-
- Moore törvény, …"1-2 évenként duplázódik az integrált áramkörök összetettsége ..", nem kifejezetten a lemezekre vonatkozik, de...

Mágnesszalagok fizikai felépítése

- Mágnesszalagok- sorrendi, lineáris felépítés
 - 9 bites keret (8 bit + paritás)
 - Keretek rekordokba szerveződnek
 - Rekordok között: rekord elválasztó (record gap)
 - Egymás utáni rekordok után, fájl elválasztó (file gap)
 - Szalag elején a könyvtárszerkezet
- Jellemző használat
 - Biztonsági mentés
 - Nagy mennyiségű adattárolásra
- Nem igazán olcsó
- Jellemző méret: DLT (Digital Linear Tape), LTO (Linear Tape-Open) 4 Ultrium 800/1600 GB, LTO5 1.5TB/3TB, LTO6 3TB/6TB

Mágneslemezek felépítése I.

- FDD Floppy Disk Drive
 - Jellemzően egy lemez
- HDD Hard Disk Drive
 - Jellemzően több lemez
- Kör alakú lemez sávos felosztás
- Sávok szektorokra oszthatók blokk
 - Klaszter több blokk
- Több lemez egymás alatti sávok : cilinder
- Logikailag egy folytonos blokksorozat
- A fizikai működést a meghajtó (firmware) eltakarja.

Mágneslemez felépítése II.

• A: sáv

• B: szektor

• C: blokk, 512 byte

- D: klaszter, a fájlrendszer által megválasztott logikai tárolási egység. D=n x C, ahol n=1.. 128.
- Cilinder: Az egymás alatti sávok (pirossal)

Mágneslemez felépítése példa

- CHS címzés (Cilinder- Head- Sector)
 - Példa: 1.44 MB FD
 - Sávok(cilinder) száma: 80 (0-79)
 - Fejek száma: 2 (0-1)
 - Szektorok száma egy sávon: 18 (1-18)
 - Össz. Méret: 80*2*18=2880 szektor * 512byte
- LBA címzés (Logical Block Addressing)
 - Korábban 28 bites, kb 137GB-ig jó.
 - Jelenleg 48 bites, 144 PB (Petabájt), (144 000 000 GB)

$$A = (c \cdot N_{\text{heads}} \cdot N_{\text{sectors}}) + (h \cdot N_{\text{sectors}}) + s - 1$$

Optikai tárolók

- Tipikusan 8 vagy 12 cm átmérőjű optikai lemezek
 - CD Compact Disc, DVD Digital Versatile Disc
 - Méret: 650MB 17 GB között
 - Sebesség: 1x = 150 KB/sec
 - CDFS, ISO 9660, UDF(Universal Disk Format)-subset ISO-13346, multiple platform
- Működési elv: Fény visszaverődés idő különbség alapján.
 - Belső résztől spirális "hegyek völgyek" (pit-land) sorozata
 - Írható lemezek: Írás a lemezfelület mágnesességét, fény törésmutatóját változtatja meg, így más lesz a fény terjedési sebessége.

Eszközmeghajtó-Device driver

- Az a program, amely a közvetlen kommunikációt végzi.
- A kernelnek, az operációs rendszer magjának része.
- A lemezek írása-olvasása során jellemzően DMA-t használnak (nagy adatmennyiség).
 - Megszakítás üzenet, tipikusan azt jelzi ha befejeződött az írás-olvasás művelet.
 - I/O portokon az írás, olvasási paraméterek beállítását végzik.
- Réteges felépítés

Mágneslemez formázása

- Sávos-szektoros rendszer kialakítása
- Jellemzően egy szektor 512 byte
- Gyárilag a lemezek "elő vannak készítve"
- Quick format- Normal format
 - A normál hibás szektorokat (bad sector) keres
- Szektor= Szektorfej+adatblokk+lábléc
 - Szektorfej: sáv száma, fej száma, szektor száma
 - Lábléc: hibajavító blokk
- A szektorok kialakítását alacsonyszintű formázásnak nevezzük.

Logikai formázás

- Partíciók kialakítása
 - Egy lemezen PC-s rendszeren maximum 4 logikai lemezrész kialakítható.
- 0. szektor- MBR (Master Boot Record)
 - 2 részből áll, mérete: 512 bájt
 - Rendszerindító kód (bootloader, 446 bájt)
 - Max. 4 partíció adatai (4x 16 bájt=64 bájt)
 - 2 bájt, mindig: 0x55 0xAA
 - Elsődleges partíció- erről tölthető be operációs rendszer
 - Kiterjesztett partíció- több logikai meghajtó lehet
 - Swap partíció
 - UEFI esetén is létezik-Protektív MBR-egy teljes méretet megadó partíciós bejegyzés
- A partíción a szükséges adatszerkezet (fájlrendszer) kialakítása

Az MBR szerkezete

MBR szerkezet									
	Cím		Leírás	Méret					
Hex	Oct	Dec	Leiras	(bájt)					
0000	0000	0	Betöltő programkód	440 (max. 446)					
01B8	0670	440	Opcionális Disk kód	4					
01BC	0674	444	Tipikusan: 0x0000	2					
01BE	0676	446	Elsődleges partíciós tábla adatok (4 db 16-bájtos rész, I Partició Tábla séma)	BM 64					
01FE	0776	510	55h MBR zárás:						
01FF	0777	511	AAh 0xAA55	2					
MBR, teljes méret: 446 + 64 + 2 =									

Partíciós tábla bejegyzés

- 1. bájt: Partíció státusa (80=aktív, 0=nem boot)
- 2-3-4. bájt : Partíció kezdőblokk CHS címe
 - 0-5. bit: fej száma
 - 6-15. bit: cilinder száma
 - 16-23. bit: szektor száma
- 5. bájt: Partíció típusa
- 6-7-8. bájt : Partíció befejező szektor CHS címe
- 9-10-11-12. bájt: Partíció kezdőszektor LBA címe
- 13-14-15-16. bájt: Szektorok száma
 - 4 bájt: 4 GB *512= 2 TB

Boot folyamat

- ROM-BIOS megvizsgálja, lehet-e operációs rendszert betölteni, ha igen betölti a lemez MBR programját a 7c00h címre.
- Egy elsődleges partíció lehet aktív, az MBR programja megvizsgálja melyik az.
- Az aktív partíció boot szektorát (1. szektor) betölti a memóriába.
- Ez már a partícióra installált operációs rendszer betöltő programja Pl. LILO, NTFS boot
- A boot program tudja, hogy a partíció melyik fájljait kell a memóriába tölteni, majd elindít egy "rendszerstartot"
- Többszintű folyamat, rendszerfüggő.

UEFI vs. Legacy vs. BIOS

- BIOS probléma: MAX. 2TB háttértár kezelés
 - Basic Input-Output System, IBM PC alap firmware
- UEFI (BIOS utód) Unified Extensible Firmware Interface
 - BIOS x86 valós módban fut mindenhol, UEFI natívban (x86-32, x64)
 - 2TB-nál nagyobb meghajtók, 128 partíció, nagyobb RAM
 - MBR nem használt, helyette GPT (GUID Partition Table)
 - OS betöltő saját fájlrendszerben .efi kiterjesztés
 - Csak 64 bites OS betöltő!
 - Secure boot(csak digitálisan aláírt driverek, OS boot betöltő engedélyezés)
 - Általános boot lehetőségek: Legacy boot (BIOS), UEFI boot, Dual (Compatibility Support Module)

UEFI G(uid)PT táblázat

- Az MBR (0.szektor) Protective MBR, 0xEE GPT típus az egész lemez méretre vonatkozik
- 1. szektor- GPT fejléc (header) , lemez GUID, stb.
- 2. szektortól- 32 szektor, 128 byte egységenként a partíciós bejegyzések (Partition Entry Array)
 - 128 partíció, 128/4=32
- Partíció végén a partíciós bejegyzések másolata és a fejléc másolata.

Címszámítás

- Blokkok sorszámainak meghatározása
 - Kell a fejek száma, szektorok száma
 - Tegyük fel adott 4 fej (2 vagy 4 lemez)
 - Egy sáv legyen felosztva 7 szektorra
- Lemezek forgási sebessége miatt a blokkok nem feltétlenül szomszédosak (interleave)
 - 1:2 interleave, párosával "szomszédosak"

	1 szektor	2 szektor	3 szektor	4 szektor	5 szektor	6 szektor	7 szektor
1 fej.	1	17	5	21	9	25	13
2 fej.	2	18	6	22	10	26	14
3 fej.	3	19	7	23	11	27	15
4 fej.	4	20	8	24	12	28	16

Lemez elérés fizikai jellemzői

- Forgási sebesség (ma tipikusan 5400,7200,10000 vagy 15000 percenként)
 - Egy sávon (cilinderen) belül mekkorát kell fordulni
- Fej mozgási sebesség
 - Egy cilinderen belül nem kell mozgatni a fejet.
- Az írás-olvasás ütemezés feladata a megfelelő (gyors, hatékony) kiszolgálási sorrend megválasztása
 - Hozzáférési idő csökkentése
 - Átviteli sávszélesség növelése

Írás-Olvasás műveletek

- Alacsonyszintű hívás során az alábbi adatok szükségesek:
 - Beolvasandó (kiírandó) blokk(ok) sorszáma
 - Memóriaterület címe, ahova be kell olvasni.
 - Bájtok száma
- Több folyamat használja
 - Melyiket hajtsuk végre először?

Írás-Olvasási műveletek ütemezése

- Alacsonyszintű (kernel) feladat paraméterek
 - Kérés típusa (írás-olvasás)
 - A blokk kezdőcíme, (LBA cím vagy sáv, szektor, fej száma)
 - DMA memóriacím
 - Mozgatandó bájtok száma
- Több folyamat is használná a lemezt
 - Ütemező feladata: Kit szolgáljunk ki először?
 - Fejmozgás figyelembevétele (olvasandó blokk adataiból következik)

Sorrendi ütemezés (FCFS)

- First Come First Service
- Legegyszerűbb "stratégia", ahogy jönnek a kérések, úgy sorban kiszolgáljuk azokat.
- Biztosan minden kérés kiszolgálásra kerül.
 - Nincs kiéheztetés.
- Nem törődik a fej aktuális helyzetével.
- Nem igazán hatékony.
- Kicsi az adatátviteli sávszélesség.
- Átlagos kiszolgálási idő, kis szórással.

SSTF ütemezés

- Shortest Seek Time First SSTF, leghamarabb elérhetőt először
- A legkisebb fejmozgást részesíti előnyben.
- Átlagos várakozási idő kicsi.
 - A várakozási idő szórása nagy
- Átviteli sávszélesség nagy
- Fennáll a kiéheztetés veszélye

Pásztázó ütemezés

- SCAN (LOOK) módszer
- A fej állandó mozgásban van, és a mozgás útjába eső kéréseket kielégíti.
- A fej mozgás megfordul ha a mozgás irányában nincs kérés, vagy a fej szélső pozíciót ért el.
- Rossz ütemben érkező kérések kiszolgálása csak odavissza mozgás(írás-olvasás) után kerül kiszolgálásra.
 - Várakozási idő közepes, Szórás nagy
- Középső sávok elérés szórása kicsi

Egyirányú pásztázás

- Circural SCAN, C-SCAN
- A SCAN javítása, írás-olvasás, csak a fej egyik irányú mozgásakor történik.
- Gyorsabb fejmozgás
- Nagyobb sávszélesség
- Az átlagos várakozási idő hasonló mint a SCAN esetén, viszont a szórás kicsi.
 - Nem fordulhat elő igazán rossz ütemű kérés

Ütemezés javítások

- FCFS módszernél, ha az aktuális sorrendi kérés kiszolgálás helyén van egy másik kérés blokkja (mozgás nélkül elérhető), akkor szolgáljuk ki azt is. (Pick up)
- Egy folyamat adatai jellemzően egymás után vannak, így egy kérés kiszolgálásnál "picit" várva, a folyamat az adatainak további részét is kéri a folyamat.
 - Előlegező ütemezésnek is nevezzük
- A lemez közepe általában hatékonyan elérhető.

Ütemezés javítása memória használattal

- A DMA maga is memória
- Memória puffer (átmeneti tár) használat
 - Kettős körszerű használat
 - Olvasás: Ütemező tölti, felhasználói folyamat üríti
 - Írás: Felhasználó folyamat tölti, ütemező üríti
- Disc cache- Lemez gyorsítótár
 - Előre dolgozik az ütemező, a memóriába tölti a kért adatok "környéki" lemezterületet is.
 - Operációs rendszernek jelent plusz feladatot
 - PL: Smartdrive

Milyen ütemezést válasszunk?

- A fenti algoritmusok csak a fejmozgás idejét vették figyelembe, az elfordulást nem.
- A sorrendi ütemezést tipikusan egy felhasználós rendszernél használt.
- SSTF, kiéheztetés veszélye nagy
- C-Scan, nagy IO átvitel, nincs kiéheztetés
- Beépített ütemező: PL. SCSI vezérlők
 - OS ömlesztve adja a kéréseket.

SLE Block device ütemezés

- CFQ Completely Fair Queuing
 - Minden folyamat saját I/O sort kap.
 - Ezen sorok között azonosan próbálja az ütemező elosztani a sávszélességet.
 - Ez az alapértelmezett ütemező.

• Létezik még:

- NOOP ez felel meg a "Strucc" algoritmusnak. Egy sor van, amit a (RAID) vezérlők gyorsan teljesítenek.
- Deadline egy kéréshez határidő tartozik, két sort használ. Egy blokksorrend alapján készített sort(SSTF) és egy határidő alapján készített sort. Alapból a blokksorrend a lényeges, de ha határidő van, akkor az kerül sorra!

Ütemezés kulcsfeladata

- Gyorsan (minél gyorsabban) kiszolgálni a kéréseket.
- Ezt mi is (OS is) elősegíthetjük.
 - Összetartozó adatok együtt legyenek (töredezettség)
 - Sávszélesség a lemez közepén a legnagyobb.
 - Leggyorsabban a lemez közepét érjük el (virtuális memória)
 - Lemez gyorsító tár a memóriában.
 - Esetleg adattömörítés (nagyobb CPU terhelés)

Lemezek megbízhatósága

- Jelentése: Az adatok redundáns tárolása, hogy lemezsérülés esetén se legyen adatvesztés
- Operációs rendszer szolgáltatás
 - Dinamikus kötet- több lemezre helyez egy logikai meghajtót.
 Méret összeadódik.
 - Tükrözés- két lemezre helyez egy meghajtót. Mérete az egyik (kisebb) lemez mérete lesz.
 - Nagy(obb) CPU igény.
- Hardware szolgáltatás
 - Intelligens meghajtó szolgáltatás
 - Az SCSI eszköz világban jelent meg először (RAID)

Megbízható lemezmeghajtók

- RAID Redundant Array of Inexpensive Disks
 - I Independent
- SCSI lemezegységeknél jelent meg először
 - Nem scsí...©
 - Small Computer System Interface
 - Számítógépek és perifériák közti adatcsere egy ma is népszerű szabvány együttese.
 - Leggyakrabban lemezek körében használt, szerver gépek használják (ták)
 - Ennek egy újabb változata: SAS csatoló (Serial Attached SCSI, SATA

RAID

- Ha operációs rendszer nyújtja, gyakran SoftRaid-nek nevezik.
- Ha intelligens (külső) vezérlőegység nyújtja, gyakran Hardver Raid-nek, vagy csak Raid diszkrendszernek nevezik.
- Bár nevében olcsó (Inexpensive), valójában inkább nem az.
- Több lemezt fog össze, és egy logikai egységként látja az operációs rendszer.
- Többféle "összefogási" elv létezik:RAID 0-6

RAID O(striping)

- Ez az a Raid, ami nem is redundáns...
- Több lemez logikai összefűzésével egy meghajtót kapunk.
- A lemezkapacitások összege adja az új meghajtó kapacitását.
- A logikai meghajtó blokkjait szétrakja a lemezekre (striping), ezáltal egy fájl írása több lemezre kerül.
- Gyorsabb I/O műveletek.
- Nincs meghibásodás elleni védelem.

RAID 1 (tükrözés)

- Két független lemezből készít egy logikai egységet.
- Minden adatot párhuzamosan kiír mindkét lemezre.(Tükrözés, mirror)
- Tárolókapacitás felére csökken.
- Drága megoldás.
- Jelentős hibatűrő képesség.
 - Mindkét lemez egyszerre történő meghibásodása okoz adatvesztést.

RAID 1+0, RAID 0+1

- RAID 1+0: Tükrös diszkekből vonjunk össze többet.
- RAID 0+1: Raid 0 összevont lemezcsoportból vegyünk kettőt.
- A vezérlők gyakran nyújtják egyiket, másikat, mivel így is, úgy is tükrözés van, azaz drága, így ritkán használt.

RAID 2,3,4

- RAID 2: Adatbitek mellett hibajavító biteket is tartalmaz. (ECC-Error Correction Code) Pl. 4 diszkhez 3 javító diszk
- RAID 3: Elég egy plusz "paritásdiszk", n+1 diszk, Σ n a kapacitás
- RAID 4: RAIDO kiegészítése paritásdiszkkel.
- Ma ezen megoldások nem gyakran használatosak.

RAID 5

- Nincs paritásdiszk, ez el van osztva a tömb összes elemére.(stripe set)
- Adatok is elosztva kerülnek tárolásra.
- Intenzív CPU igény (vezérlő CPU!!!)
- Redundáns tárolás, 1 lemez meghibásodása nem okoz adatvesztést.
 - 2 lemez egyidejű meghibásodása már igen
 - Hogy működik? (A paritásbitből meg a többiből az egy eltűnt kiszámítható!)
- N lemez RAID 5 tömbben(N>=3), n-1 lemez méretű logikai meghajtót ad.

RAID 6

- A RAID 5 paritásblokkhoz, hibajavító kód kerül tárolásra.(+1 diszk)
- Még intenzívebb CPU igény.
- Két diszk egyidejű kiesése sem okoz adatvesztést!
- Relatív drága
- N diszk RAID 6-os tömbjének kapacitása, N-2 diszk kapacitással azonos.
- Elvileg általánosítható a módszer (3 diszk kiesése...)

RAID összegzés

- Ma leggyakrabban a RAID 1,5 verziókat használják.
- A RAID 6 vezérlők az utóbbi 1-2 évben jelentek meg.
 - Bár olcsó diszkekről szól a RAID, de valójában ezek nem mindig olcsók!
 - Itt már 2 lemez kiesik, így ez még inkább drága.
- Hot-Swap(forró csere) RAID vezérlő: működés közben a meghibásodott lemezt egyszerűen kicseréljük.
- Tartalék a RAID tömbben

Adattárolás összefoglalása

- Adatok biztonságos tárolását biztosítja.
- Több szintű:
 - 1. Fizikai lemezek (HDD)
 - Hardver RAID
 - 3. Partíciók
 - 4. Szoftver RAID
 - 5. Volume Manager az operációs rendszerben.
 - Nem minden ellen véd
 - PL: Tápellátás elhal, emberi tévedés, stb.
 - Szoftveres támadások, vírusok.
 - Hogy szerveződnek adataink a "volume"-on?

Köszönöm a figyelmet!