TUBERÍAS

ALFONSO TAMAYO RODRÍGUEZ LUIS LUIS VILLEGAS NEREA GIL LOZANO BRUNO GAGO TORRADO

ASPECTOS GENERALES

Por Orden de 28 de julio de 1974 se creó la Comisión Permanente de Tuberías de Abastecimiento de Aguas y Saneamiento de Poblaciones, entre cuyas funciones figura la de redacción de los Pliegos de Prescripciones Técnicas Generales de Tuberías.

Presión interior:

- ✓ En régimen normal, no soportar presión interior.
- ✓ Sin embargo, puede entrar parcialmente en carga.

 - → obstrucción de una tubería.

Presión Interior Mínima de 1 kp/cm² (0,098 Mp).

Clasificación de los tubos:

- ✓ Se caracterizan por su diámetro nominal y por su resistencia a la flexión transversal, resistencia al aplastamiento.
- ✓ Según el material de que estén constituidos:
 - → En los tubos de hormigón en masa, hormigón armado, de amianto-cemento y grés, las series se definen por su resistencia al aplastamiento expresada por la carga en kp/m².
 - → En los tubos de policloruro de vinilo no plastificado y polietileno de alta densidad la serie normalizada viene definida por el diámetro nominal y espesor.

Condiciones generales:

- ✓ El DN de los tubos de la red de saneamiento no será inferior a trescientos mm.
- ✓ La superficie interior de cualquier elemento será lisa.
- ✓ La Administración se reserva el derecho de verificar previamente los modelos, moldes y encofrados que vayan a utilizarse para la fabricación de cualquier elemento.

• Marcado:

- ✓ Marca del fabricante.
- ✓ Diámetro nominal.
- ✓ La sigla SAN que indica que se trata de un tubo de saneamiento, seguida de la indicación de la serie de clasificación a que pertenece el tubo.
- ✓ Fecha de fabricación y marcas que permita identificar los controles a que ha sido sometido

DIAMETROS

Conceptos Básicos

 Diámetro nominal (DN): Designación numérica del diámetro de un componente mediante un número entero aproximadamente igual a la dimensión real en milímetros.

- ✓ Éste valor viene definido por:
- ✓ Diámetro interior (ID)
- ✓ Diámetro exterior medio (OD)

Según el tipo de material tomamos un valor u otro:

Táboa 1. Diámetros nominais(DN) segundo tipoloxías.

Tipo de tubo	O DN coincide con	
Materiais termoplásticos de parede compacta (PE, PVC-U, PVC-O)	OD	
Materiais termoplásticos de parede estruturada	ID ou OD, segundo tipoloxías	
PRFV	ID/OD	
Formigón	ID	
Gres	ID ID	
Fundición	Apoximadamente ID	
Aceiro	OD	

Bibliografía tabla: INSTRUCIÓNS TÉCNICAS PARA OBRAS HIDRÁULICAS EN GALICIA

Valores adoptados

Diámetros (UNE-EN 805)

DN/IN: 20, 30, 40, 50, 60, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450,

500, 600, 700, 800, 900, 1.000, 1.100, 1.200, 1.250, 1.300, 1.400, 1.500,

1.600, 1.800, 2.000, 2.100, 2.200, 2.400, 2.500, 2.600, 2.800, 3.000,

3.200, 3.500, 4.000

DN/OD: 25, 32, 40, 50, 63, 75, 90, 110, 125, 160, 180, 200, 225, 250, 280, 315.

355, 400, 450, 500, 630, 710, 800, 900, 1.000, 1.100, 1.200, 1.250, 1.300,

1.400, 1.500, 1.600, 1.800, 2.000, 2.100, 2.200, 2.400, 2.500, 2.600,

2.800, 3.000, 3.200, 3.500, 4.000

Gres

Diámetros de 200-1400 mm.

Hormigón en Masa o Armado

Diámetros entre 300-3500 mm

PRFV (Poliéster reforzado con fibra de vidrio)

Diámetros entre 150-2000 mm

PVC (Policloruro de Vinilo)

Diámetros entre 110-800 mm.

Polietileno y Plásticos

Diámetros entre 110-600 mm

Fundición Dúctil

Diámetros entre 80-1000 mm

Diámetros

DN 80	DN 450
DN 100	DN 500
DN 125	DN 600
DN 150	DN 700
DN 200	DN 800
DN 250	DN 900
DN 300	DN 1000
DN 350	DN 1100
DN 400	DN 1200

TIPOS

Tuberías rígidas

- Hormigón armado
- Hormigón en masa
- Gres vitrificado
- (Fibrocemento)

Tuberías flexibles de material termoplástico

- PVC compacto
- PVC estructurado
- PE corrugado
- PP corrugado
- PE compacto (emisarios)

Tuberías flexibles de material termoestable

- Poliéster RFV filament winding
- Poliéster RFV centrifugado
- Hormigón polímero (hincas)

Años 50 – 60: Hormigón, Fibrocemento y otras

Materiales muy conocidos, con amplia gama

Años 70:

PVC compacto

Material Inerte, muy fácil y barato de instalar

Años 80: PVC estructurados

Mejora la rigidez del anterior, e incrementa la gama

Material muy resistente, con excelente estanqueidad y gama muy amplia

Años 00: PE y PP corrugados

Materiales que permiten tubos muy ligeros y baratos

Fuente: Adequa (2009)

Criterios para la selección de materiales

Técnicos:

- ✓ Diámetro.
- ✓ Presión interna.
- ✓ Características de las aguas residuales.
- ✓ Resistencia mecánica.
- ✓ Capacidad hidráulica.
- ✓ Funcionalidad.

• Económicos:

- ✓ Rendimiento de montaje.
- ✓ Durabilidad.
- ✓ Precio.

Sociales:

- ✓ Molestias durante instalación y seguridad en el proceso.
- ✓ Garantía sanitaria y durabilidad.

Hormigón en masa o armado:

- ✓ Es el material por excelencia.
- ✓ Diámetros entre 300-3500 mm (con camisa de chapa).
- ✓ Atacado por aguas residuales, sulfatos, cloruros, aceites, ARI. Se acentúa el ataque con temperaturas altas.
- ✓ Rugoso.
- ✓ Gran resistencia mecánica.
- ✓ Muy económico.

Gres:

- ✓ Mezcla de arcilla molida de distinta composición y agua.
- ✓ Diámetros de 200-1400 mm.
- ✓ Aconsejable para ARI, ya que no es atacado por corrosivos.
- ✓ Liso.
- ✓ Soporta presiones de 10 m.c.a.
- ✓ Frágil y permeable

Polietileno y plásticos:

- ✓ Se obtienen por polimerización del etileno.
- ✓ Según el pliego de PTG del MOPU, sólo se puede usar el de alta densidad.
- ✓ Diámetros entre 110-600 mm.
- ✓ Buena resistencia a productos químicos.

Tuberías aligeradas:

✓ Son tuberías de PVC, o Polietileno construidas con sección en Y o en I para dar inercia a la sección para resistir aplastamiento.

Fundición dúctil:

- ✓ Diámetros entre 80-1000 mm.
- ✓ Resistencia a presión interior, acciones exteriores, estanqueidad, durabilidad y buenas características hidráulicas.
- Sensibles a corrosión de ácidos y sulfatos.
- ✓ Se usan en lugares concretos expuestos a acciones exteriores.

Fibrocemento:

- ✓ PROHIBIDO POR LA DIRECTIVA 1997/77/CEE POR SER CANCERÍGENO.
- ✓ Compuesto por conglomerante hidráulico y fibras de amianto.
- ✓ PRFV (Poliéster reforzado con fibra de vidrio)
- ✓ Resiste acción agresivas de las aguas.
- ✓ Pueden trabajar hasta temperaturas de hasta 80°C.
- ✓ Diámetros entre 150-2000 mm.
- ✓ Impermeable.
- ✓ Muy caro.

PVC

- ✓ Alternativa a fibrocemento y gres.
- ✓ Ligeras, inertes a aguas agresivas y corrosión y durabilidad muy buena.
- ✓ Lisas, aguanta sobrepresiones.
- ✓ Sus características resistentes se afectan por encima de 50°C (se reduce el 60%).
- ✓ Diámetros entre 110-800 mm.

MATERIAL	DIÁMETROS (mm)	INCONVENIENTES	VENTAJAS
HORMIGÓN	En masa: 300- 400 Armado sin camisa: 500-2000 (ovoidal) 500-3000 (circular)	Ataques químicos de aguas residuales transportadas. Vertidos a altas temperaturas son perjudiciales. Elevado peso tubos: instalación más difícil y mayor nº de uniones.	Se fabrican a medida. Son económicas.
FIBROCEMENTO	Se han usado mu utilización. (icho pero hoy día está prohib Orden 7/12/2001).	ida su comercialización y
GRES	Circular: 100- 1400 Ovoidal: 200- 900	Frágil ante impactos puntuales.	 Alta resist. agresividad química y abrasión mecánica y soportan Tº extremas (-10 a 70 °C): adecuadas para A.R.I. No se corroe por acciones bioquímicas: adecuadas para R. separativa. Bajo coeficiente de dilatación térmica y baja rugosidad hidráulica: permite altas velocidades de circulación.
FUNDICIÓN DÚCTIL	80-1200	Sensibles a la corrosión por ácidos y al ataque del SH ₂ : proteger mediante revestimientos interiores y exteriores	 Alta resistencia a la presión interior. Buena estanqueidad. Lisas

MATERIAL	DIÁMETROS (mm)	INCONVENIENTES	VENTAJAS
PLASTICOS	PVC-U: entre 110 y 1000 mm PVC-U estructurado: hasta 1500 mm PE: hasta 2000 mm	 Prestaciones mecánicas menores que las de hormigón y metálicos. Alto coef, dilatación térmica: sus caract. mecánicas disminuyen con la T° (Resist. a 50° se reduce al 60%). Envejecimiento (50 años de vida útil): propiedades mecánicas (E y σ a tracción) disminuyen con el t°. Dimensionar para valores a 50 años: a corto plazo sobredimensionados. 	Ligeros. Econômicos. Resist. a ataques químicos. Baja rugosidad. Flexibles. Buen comportamiento bajo heladas. No favorecen desarrollo hongos y algas. Para mejorar propiedades mecánicas frente a cargas exteriores: aligeramientos en su pared, tubos de pared estructurada que aumentan la resistencia al aplastamiento con menos material.
POLIÉSTER REFORZADO DE FIBRA DE VIDRIO	200-2500	Coste económico.	 Se fabrican a medida adaptándose a las necesidades de cada proyecto. Muy flexibles. Muy resistentes a la corrosión y la abrasión. Gran capacidad hidráulica. Muy impermeables. Admite una amplia gama de pH. Garantizados hasta temperaturas de 35° y pH de 1 a 10.

CARACTERÍSTICAS MECÁNICAS

Deformación

- Tubos rígidos: no hay casi deformación previa a rotura (capacidad de carga limitada por la rotura)
- Tubos flexibles: capacidad de carga limitada por la deformación admisible
- Tubos semirrígidos: capacidad de carga limitada por la deformación o por la rotura

- Presión de funcionamiento (PFA): Presión máxima que es capaz de resistir de forma permanente en servicio
- Presión máxima admisible (PMA): Presión máxima, incluido el golpe de ariete, que es capaz de soportar en servicio
- Presión de prueba en obra (PEA): Presión hidrostática máxima que un componente recién instalado es capaz de soportar, durante un periodo de tiempo relativamente corto, con objeto de asegurar la integridad y estanquidad de la conducción

Fundición dúctil (K7):

- ✓ Presión de funcionamiento (PFA): 26-60 bar
- ✓ Presión Máxima Admisible (PMA): 31-71 bar
- ✓ Presión de Prueba en obra (PEA): 36-76 bar
- ✓ Resistencia a tracción: 420 Mpa

 Rigidez nominal (o rigidez anular): Es la resistencia al aplastamiento de un tubo o accesorio, en unas condiciones definidas en la norma UNE-EN-ISO 9969

```
Siendo:
SN = \frac{E \cdot I}{SN = \frac{1}{D_m^3}} (kN/m^2)
SN = \frac{Rigidez anular (kN/m^2)}{E = Módulo de elasticidad (N/mm^2)}
I = Momento de inercía (mm^4/mm)
Dm = Diámetro medio (mm)
```

 Rigidez circunferencial específica: Característica mecánica del tubo que representa su rigidez a flexión transversal por unidad de longitud del mismo a corto (S0) ó a largo plazo (S50). En muchos casos coincide con la rigidez nominal

- Poliéster reforzado con fibra de vidrio (PRFV):
 - ✓ Rigidez nominal (SN2000-<u>2500</u>-4000-<u>5000</u>-8000-<u>10000</u> (N/m²)
 - ✓ Resistencia a tracción: 50-150 MPa

- Polipropileno (PP) y Polietileno (PE):
 - ✓ SN: 8000 N/m²
 - ✓ Serie A: Rigidez circunferencial específica (RCE) : 4800 N/m²
 - ✓ Serie B (RCE): 1830 N/m²

• PVC-U:

✓ SN: 4000-8000-16000-32000 N/m²

✓ RCE: 3900 N/m²

Hormigón en masa:

- ✓ En función del valor mínimo de carga por aplastamiento:
 - ♦ Serie A: 40000 N/m²
 - ♦ Serie B: 60000 N/m²
 - ♦ Serie C: 90000 N/m²
 - ♦ Serie D: 120000 N/m²

- Hormigón armado:
 - √ Sólo series B,C y D

