## Overheads: - Outline

**Recap Monday:** Oxidation of Alcohols:



## Reactions of Ethers

R—O—R' strong base :: not good LG (like OH<sup>-</sup>)

can add H<sup>+</sup> — HOR' = LG

$$\frac{\Delta}{R} = \frac{1}{R} + \frac{1}{R} = \frac{1}{R} + \frac{1}{R} = \frac{1}{R} + \frac{1}{R} = \frac{1}{R} + \frac{1}{R} = \frac{1}{R} = \frac{1}{R} + \frac{1}{R} = \frac{1}{R} =$$

 $\rightarrow$  as long as one R or R' can make C<sup>+</sup>, goes S<sub>N</sub>1

e.g. 
$$CH_3$$
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH$ 

If both R's can make C<sup>+</sup>:

If neither R can make C<sup>+</sup>:

- \* ethers do not react with HCl  $\rightarrow$  Cl not strong enough Nu in protic solvents
- \* only common reaction of ethers!

Epoxides: special cyclic ethers



ring strain: much less stable than "normal" ether less stable = more reactive!



⇒ don't even need to protonate O first if Nu is strong:

## Regiochemistry: - if unsymmetrical, which end does Nu add to?

- depends if O is protonated first (acidic conditions) or not (basic)



 $\bigcirc$  Base: O is not protonated, so reaction is simple  $S_N 2$ 

- $\rightarrow$  In acid, Nu- adds to most sub. end (similar to  $S_N1$ )
- $\rightarrow$  In base, Nu- adds to least sub. end (S<sub>N</sub>2)
  - \*\* In both cases, Nu- adds from bottom (anti to O)
    - : chiral center where Nu- adds gets inverted.

## New type of Nu:



