Sharing Large Bags of Tasks in Heterogeneous NOWs: Greedier Is Not Better

Arnold L. Rosenberg

Department of Computer Science
University of Massachusetts
Amherst, Massachusetts, USA
rsnbrg@cs.umass.edu

The \mathcal{TAPADS} Group "where technology meets mathematics"

The Case for Mathematical Models

A well-crafted (= faithful and tractable) mathematical model of a real-life computing environment can help one:

- 1. hone one's intuition
 - Which features of the environment impact one's computational efficiency?
 - Precisely how do they impact the computation?
- 2. verify or refute one's intuition
 - "Sometimes I even think that what I know's not so!"

 The King and I
- 3. put items 1 and 2 together to craft efficient algorithms.

Two Work-Sharing Problems

The Computational Environment

- A "master" workstation P_0
- A NOW \mathcal{N} of *n heterogeneous* workstations

$$P_1, P_2, \ldots, P_n$$

that are available for "rental"

• a large bag of equally complex tasks

The NOW-Exploitation Problem

- One has access to \mathcal{N} for L time units.
- One wants to accomplish as much work as possible during that time.

The NOW-Rental Problem

- \bullet One has W units of work to complete.
- ullet One wishes to "rent" \mathcal{N} for as short a period of time as is necessary to complete that work.

Our Contributions

Within a heterogeneous, long-message analogue of the LogP model, we offer

A Generic Work-Sharing Protocol

- The Protocol is *robust*:
 - It works predictably for many variants of our model.
- The Protocol is *self-scheduling:* It determines:
 - all work-allocations to the "rented" workstations;
 - all communication times.

A Myth-Dispelling Analysis of Work-Sharing Protocols

- We present two provably efficient solutions to the NOW-Exploitation and -Rental problems.
 - The nongreedy solution outperforms the greedy one.

The Model, 1

Calibration

- All units time and packet size are calibrated to workstation P_0 's computation rate:
 - $-P_0$ does one "unit" of work in one "unit" of time.
- Each unit of work produces δ units of results (for simplicity).

Computation Rates

 $\rho_i \stackrel{\text{\tiny def}}{=} \text{per-unit work time for workstation } P_i$

- $\rho_0 = 1$ (by our calibration)
- $\rho_1 \leq \rho_2 \leq \cdots \leq \rho_n$ (by convention)

The Model, 2

The Costs of Communication, 1

Message Processing time for P_i :

Transmission setup: σ_{ij} time units $per\ message$ to P_j

Transmission packaging: π_i time units $per\ packet$ Reception unpackaging: $\overline{\pi}_i$ time units $per\ packet$

• Subscripts reflect workstations' heterogeneity.

Message Transmission Time:

Latency: λ time units for *first packet*

Bandwidth limitation: $\tau \stackrel{\text{def}}{=} 1/\beta$ time units/packet for

remaining packets

• $\beta \stackrel{\text{def}}{=}$ network's end-to-end bandwidth.

The Model, 3

The Costs of Communication, 2

The "bottom line":

For a p-packet message from P_i to P_i :

Processing by P_i : $\sigma_{ij} + \pi_i p$ time units

Pipelined transmission: $\lambda + (p-1)\tau$ time units

Nonpipelined transmission: λp time units

Processing by P_j : $\overline{\pi}_j p$ time units

An Added Constraint:

Network capacity: $\leq \kappa$ packets can simultaneously

be in transit in the network

The Communication Regimen

• The model uses a *strict* single-port communication regimen

 \rightarrow No two messages can simultaneously be in transit \leftarrow

but our conclusions hold for many relaxations of this regimen.

P_0 prepares work for P_i		P ₀ transmits work	*	_	P_i prepares results for P_0		•	P ₀ unpacks results
$\pi_0^{}$ $w_i^{}$	_{0 i}	λ τ(w _i - 1)	$\bar{\pi}_{i} w_{i}$	$\rho_{i} W_{i}$	$π_i$ δ w_i	σ _{i 0}	$\lambda \mid \tau(\delta w_i - 1)$	$\bar{\pi}_0 \delta w_i$
in <i>P</i> ₀	in P ₀ , P _i and network	in network		in P _i		in P ₀ , P _i and network	in network	in P ₀

A Generic Work-Sharing Protocol

Specifying a worksharing protocol

- P_0 sends work to P_1, P_2, \ldots, P_n in the order $P_{s_1}, P_{s_2}, \ldots, P_{s_n}$
- P_1, P_2, \ldots, P_n return results to P_0 in the order $P_{f_1}, P_{f_2}, \ldots, P_{f_n}$

We thus have *three indexings* of the "rented" workstations:

the power-related indexing:	$1, 2, \ldots, n$
the startup indexing:	s_1, s_2, \ldots, s_n
the finishing indexing:	f_1, f_2, \ldots, f_n

The latter two specify each specific worksharing protocol.

Some useful abbreviations:

	Quantity	Meaning
$ ilde{ au}$	$ au(1+\delta)$	2-way network transmission rate
$\overline{\widetilde{\pi}_i}$	$\overline{\pi}_i + \pi_i \delta$	P_i 's 2-way message-packaging rate
FC	$ (\sigma_{0i}+\sigma_{i0})+2(\lambda-\tau) $	P_i 's fixed comm. overhead
VC	$\pi_0 + \tilde{ au} + \widetilde{\pi}_i$	P_i 's $variable$ comm. overhead rate

The Generic Protocol's Work-Allocations

$$\begin{pmatrix} \mathsf{VC}_1 + \rho_1 & B_{1,2} & \cdots & B_{1,n-1} & B_{1,n} \\ B_{2,1} & \mathsf{VC}_2 + \rho_2 & \cdots & B_{2,n-1} & B_{2,n} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \ddots \\ B_{n-1,1} & B_{n-1,2} & \cdots & \mathsf{VC}_{n-1} + \rho_{n-1} & B_{n-1,n} \\ B_{n,1} & B_{n,2} & \cdots & B_{n,n-1} & \mathsf{VC}_n + \rho_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_{n-1} \\ w_n \end{pmatrix}$$

$$= \begin{pmatrix} L - \mathsf{FC}_1 - c_1(\lambda - \tau) - \sum_{j \in \mathsf{SB}_1} \sigma_{0j} - \sum_{j \in \mathsf{FA}_1} \sigma_{j0} \\ L - \mathsf{FC}_2 - c_2(\lambda - \tau) - \sum_{j \in \mathsf{SB}_2} \sigma_{0j} - \sum_{j \in \mathsf{FA}_2} \sigma_{j0} \\ \vdots \\ L - \mathsf{FC}_{n-1} - c_{n-1}(\lambda - \tau) - \sum_{j \in \mathsf{SB}_n - 1} \sigma_{0j} - \sum_{j \in \mathsf{FA}_{n-1}} \sigma_{j0} \\ L - \mathsf{FC}_n - c_n(\lambda - \tau) - \sum_{j \in \mathsf{SB}_n} \sigma_{0j} - \sum_{j \in \mathsf{FA}_n} \sigma_{j0} \end{pmatrix}$$

The $B_{i,j}$ are specified as follows:

Procedure Fill_In_Coefficients

begin

1. Set all
$$B_{i,j} = 0$$

2. for
$$i \in \{1, 2, \dots, n\}$$
 for $j \in \{1, 2, \dots, n\} - \{i\}$

(a) if
$$j \in SB_i$$
 then $B_{i,j} = B_{i,j} + \pi_0 + \tau$;

(b) if
$$j \in \mathsf{FA}_i$$
 then $B_{i,j} = B_{i,j} + \tau \delta$

end

Robust Protocols Are Self-Scheduling

Theorem. Every robust worksharing protocol is self-scheduling:

The protocol's startup and finishing indexings determine:

- all work-allocations
- the times for all communications.

Proof Sketch. In the system of linear equations specifying a robust protocol's work-allocations, the matrix of coefficients is nonsingular.

$$\approx\approx\approx\approx\approx\approx$$

We now focus on two special work-sharing protocols

- One epitomizes the greedy allocation of work to faster workstations.
- One moderates greed by a bit of balancing/fairness.

The LIFO Work-Sharing Protocol

The defining startup and finishing orderings:

For each
$$i \in \{1, 2, ..., n\}$$
: $s_i = i$ and $f_i = n - i + 1$.

This epitomizes a greedy allocation strategy:

- 1. Allocate as much work as possible to the fastest workstation.
- 2. Within the constraints of (1), allocate as much work as possible to the second fastest workstation.
- $3. \dots$ and so on

The LIFO Protocol's Work-Allocations:

$$\begin{pmatrix} \mathsf{VC}_{1} + \rho_{1} & 0 & \cdots & 0 & 0 \\ \pi_{0} + \tilde{\tau} & \mathsf{VC}_{2} + \rho_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \pi_{0} + \tilde{\tau} & \pi_{0} + \tilde{\tau} & \cdots & \mathsf{VC}_{n-1} + \rho_{n-1} & 0 \\ \pi_{0} + \tilde{\tau} & \pi_{0} + \tilde{\tau} & \cdots & \pi_{0} + \tilde{\tau} & \mathsf{VC}_{n} + \rho_{n} \end{pmatrix} \cdot \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n-1} \\ w_{n} \end{pmatrix}$$

$$= \left(egin{array}{c} L - \mathsf{FC}_1 \ L - (\mathsf{FC}_1 + \mathsf{FC}_2) \ dots \ L - \sum_{i=1}^{n-1} \mathsf{FC}_i \ L - \sum_{i=1}^n \mathsf{FC}_i \end{array}
ight)$$

The FIFO Work-Sharing Protocol

The defining startup and finishing orderings:

For each
$$i \in \{1, 2, ..., n\}$$
: $s_i = f_i = i$.

Greed mollified by fairness (In fact, the greed is not so obvious.)

The FIFO Protocol's Work-Allocations:

$$\begin{pmatrix} \mathsf{VC}_1 + \rho_1 & \tau\delta & \cdots & \tau\delta & \tau\delta \\ \pi_0 + \tau & \mathsf{VC}_2 + \rho_2 & \cdots & \tau\delta & \tau\delta \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \pi_0 + \tau & \pi_0 + \tau & \cdots & \mathsf{VC}_{n-1} + \rho_{n-1} & \tau\delta \\ \pi_0 + \tau & \pi_0 + \tau & \cdots & \pi_0 + \tau & \mathsf{VC}_n + \rho_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_{n-1} \\ w_n \end{pmatrix}$$

$$= \begin{pmatrix} L - (n+1)(\lambda - \tau) - \sigma_{01} - \sum_{i=1}^{n} \sigma_{i0} \\ L - (n+1)(\lambda - \tau) - (\sigma_{01} + \sigma_{02}) - \sum_{i=2}^{n} \sigma_{i0} \\ \vdots \\ L - (n+1)(\lambda - \tau) - \sum_{i=1}^{n-1} \sigma_{0i} - (\sigma_{n-1,0} + \sigma_{n,0}) \\ L - (n+1)(\lambda - \tau) - \sum_{i=1}^{n} \sigma_{0i} - \sigma_{n,0} \end{pmatrix}$$

Greedy Is Not Optimal, 1

Theorem. For all sufficiently long lifespans L:

- the "rented" NOW is homogeneous (all ρ_i are equal)
- the first "rented" workstation is fast, in the sense that

$$\rho_1 \leq \frac{1}{1+\widetilde{\pi}_0} \left(\frac{L}{W^{(\text{FIFO})}} - (\pi_0 + \widetilde{\tau}) \right),$$

THEN

the FIFO Protocol outperforms the LIFO Protocol

$$W^{(\text{FIFO})} > W^{(\text{LIFO})}$$

during a lifespan-L worksharing opportunity.

Greedy Is Not Optimal, 2

Proof Sketch. Note first that, as L grows without bound:

Asymptotic Approximation #1:

$$W^{(\text{LIFO})} \rightarrow \left[\sum_{i=1}^{n} \frac{1}{\mathsf{VC}_i + \rho_i} \prod_{k=1}^{i-1} \left(1 - \frac{\pi_0 + \tilde{\tau}}{\mathsf{VC}_k + \rho_k}\right)\right] \cdot L$$

Asymptotic Approximation #2:

$$W^{(\mathrm{FIFO})} \rightarrow$$

$$\left[\sum_{i=1}^{n} \frac{1}{\mathsf{VC}_{i} + \rho_{i} - \tau \delta} \prod_{k=1}^{i-1} \left(1 - \frac{\pi_{0} + \tau - \tau \delta}{\mathsf{VC}_{k} + \rho_{k} - \tau \delta}\right)\right] \cdot \left(L - \tau \delta W^{(\mathrm{FIFO})}\right)$$

Analyzing the Approximations:

Now compare the preceding sums term by term to complete the proof.

When does $W^{(\text{FIFO})}$ overtake $W^{(\text{LIFO})}$?, 1

How relevant are the theorem's asymptotics to real computations?—as a function of:

- 1. the size n of the "rented" NOW $\mathcal N$
- 2. the "degree of heterogeneity" of the NOW \mathcal{N} :

 —as exposed by the vector of power rates: $\langle \rho_1, \rho_2, \dots, \rho_n \rangle$
- 3. the (non)pipelineability of \mathcal{N} 's network
- 4. the granularity of the tasks comprising our workload.

An Experimental Setup

Give all parameters "reasonable" values:

Parameter	Wall-Clock Time/Rate
Setup time σ	$300 \ \mu \text{sec}$
Latency λ	$150 \ \mu \mathrm{sec}$
Transit rate τ (pipelined network)	$1 \mu \text{sec}$ /work unit
Transit rate τ (nonpipelined network)	$150 \ \mu \mathrm{sec}$ /work unit
Packaging rate π_0	$10 \ \mu \text{sec}$ /work unit

Set δ to 1 (for definiteness).

When does $W^{(\text{FIFO})}$ overtake $W^{(\text{LIFO})}$?, 2

Pipe-	Power-Rate	Task	By what duration L is $W^{(FIFO)} > W^{(LIFO)}$?			
lined?	Vector $\langle \rho_i \rangle$	Grain	$n = 8 \qquad \qquad n = 32$		n = 128	
YES	YES $\rho_i \equiv 1$		1 minute	1 minute	1 minute	
		$1 \sec$	1 minute	1 minute	1 minute	
-		$10 \mathrm{sec}$	1 minute	1 minute	1 minute	
-	$1 + 2^{i-n}/2$.1 sec	1.59 hours	6.15 minutes	1 minute	
-		$1 \sec$	6.95 days	10.6 hours	$37\frac{1}{2}$ minutes	
		$10 \sec$	31.8 years	44 days	69.45 hours	
	1 - 1/(i+1)	.1 sec	2.39 hours	31 minutes	3.5 minutes	
		$1 \sec$	10.42 days	$2.15 \mathrm{days}$	6.39 hours	
		$10 \sec$	318 years	$4\frac{1}{3}$ years	$27.8 \mathrm{\ days}$	
	$1 - 2^{-i}$.1 sec	3.62 hours	26 minutes	$1\frac{1}{2}$ minutes	
-		$1 \sec$	17.37 days	44 hours	3.12 hours	
		$10 \ sec$	318 years	1.6 years	$13\frac{1}{3}$ days	
NO	$ ho_i \equiv 1$.1 sec	1 minute	1 minute	1 minute	
		$1 \sec$	1 minute	1 minute	1 minute	
		$10 \sec$	1 minute	1 minute	1 minute	
	$(1+2^{i-n})/2$.1 sec	1 minute	1 minute	1 minute	
		$1 \sec$	3 minutes	1 minute	1 minute	
		$10 \sec$	4.87 hours	20 minutes	1.07 minutes	
	1 - 1/(i+1)	.1 sec	1 minute	1 minute	1 minute	
		$1 \sec$	4.5 minutes	1 minute	1 minute	
		$10 \sec$	7.37 hours	94 minutes	11.5 minutes	
	$1 - 2^{-i}$.1 sec	1 minute	1 minute	1 minute	
		$1 \sec$	$6\frac{1}{2}$ minutes	1 minute	1 minute	
		$10 \ sec$	$10\frac{5}{6}$ hours	79 minutes	$5\frac{1}{2}$ minutes	