Lista de Exercícios

Disciplina de Redes Complexas - PESC - COPPE - UFRJ Vinícius W. Salazar, Prof. Daniel R. Figueiredo

Novembro de 2019

Questão 1

Vamos supôr o seguinte grafo e sua respectiva matriz de adjacência A:

##		[,1]	[,2]	[,3]	[,4]
##	[1,]	0	1	1	1
##	[2,]	1	0	0	0
##	[3,]	1	0	0	1
##	[4,]	1	0	1	0

1.1) Para uma matriz $B^{(k)}$ onde k representa alcançabilidade em exatamente k passos, é fácil notar que para $k=1, B^{(k)}=A$, ou seja, a matriz de adjacência codifica alcançabilidade em exatamente 1 passo. Logo, $B^{(k)}$ codifica alcançabilidade em exatamente k passos. Podemos verificar isso multiplicando a matriz por ela mesma para k=2. Observemos $B^{(2)}$, tomando todos os inteiros positivos como iguais a 1 e a diagonal como 0:

- 1.2) O caminho entre V_1 e V_2 é o único que não pode ser alcançado em exatamente 2 passos. Para codificar a matriz $C^{(k)}$ onde k representa alcançabilidade em k ou menos passos, basta somar as matrizes anteriores, ou seja $C^{(k)} = \sum_{k=1}^{k} B^{(k)}$. Por exemplo, para k = 3, $C^3 = B^3 + B^2 + A$.
- **1.3)** Assumindo um algoritmo ingênuo para a multiplicação de matrizes, para $B^{(k)}$, $\mathcal{O}(n^3)$, onde n a dimensão da matriz. Para $C^{(k)}$, $\mathcal{O}(kn^3)$, pois a operação de multiplicação de matrizes é realizada k vezes.
- 1.4) Para diminuir significativamente o tempo de computação, podemos aproveitar as contas que fizemos antes, criando uma solução de programação dinâmica. Por exemplo, digamos que precisamos calcular $C^{(8)}$. Podemos começar calculando B^2 . Para B^4 , fazemos $B^4 = B^2 \times B^2$, assim aproveitando a operação do B^2 , e sucessivamente para $C^{(8)} = B^4 \times B^4$. Aproveitando as operações, o custo computacional baixa significativamente, para $\mathcal{O}(\log(kn^3))$.

Questão 2

Sim, é possível! Em redes pequenas e altamente conectadas, é perfeitamente possível ter um grau médio pequeno $\overline{g}=3$ e densidade $\rho=1$:

No entanto, em redes reais, com um número muito grande de vértices, é mais fácil que o contrário aconteça: o grau médio aumente e a densidade diminua.

Podemos definir o grau médio como $\overline{g} = 2m/n$ e a densidade do grafo como $\rho = \frac{2m}{n(n-1)}$. Logo, existe uma relação analítica entre essas duas medidas, com a densidade aumentando em função do grau médio (\overline{g}) e

2

diminuindo em função do número de vértices (n) pois $\rho = \overline{g} \times (n-1)^{-1}$. Logo, se o grau médio não aumentar junto com o número de vértices, a densidade diminui.

Questão 3

- **3.1.a)** Clusterização local determinada por $C_i = \frac{2E_i}{d_i(d_i-1)}$ para cada vértice a,b,c,d,e,f respectivamente:
- ## [1] 1.0000000 0.3333333 0.3333333 1.0000000 0.3333333 0.0000000
- 3.1.b) Clusterização média:
- ## [1] 0.5
- 3.2) Clusterização global:
- ## [1] 0.4

 $Cqlobal < \overline{C_i}$

- 3.3) Densidade:
- ## [1] 0.5333333

Questão 4

4.4)

 $APD(L_{3,1}) = 1.\overline{3}$

 $APD(L_{3,2}) = 1.7$

 $APD(L_{4,1}) = 1.3$

 $APD(L_{4,1}) = 1.\overline{6}$

Questão 5

Grafo completo com |V| = n vértices:

 $b_v(i,j) = 0$ pois como o grafo é completo, não existem caminhos mínimos pois todas os vértices são vizinhos Para os outros casos, sendo k a partição do grafo:

Def. 1: $b_{v_k}(i,j) = 1$ caso $i,j \notin V_k$, pois se i e j estão na mesma partição, precisam passar por outra partição V_k e por isso $b_{v_k}(i,j) = 1$. Se estão em partições diferentes, $b_{v_k}(i,j) = 0$ pois i e j são vizinhos.

Def. 2: $b_v(i,j) = \frac{1}{|V| - V_k}$ se $i,j \in V_k$, pois a carga é o total de vértices |V| menos os vértices que estão na partição V_k que contém i,j.

Def. 3: $b_v(i,j) = 0$ pois como todos os vértices entre diferentes partições estão ligados, um vértice só está em uma fração $\frac{1}{|V|-V_k}$ dos caminhos mínimos, conforme a Definição 2.