Huffman

Huffman-code is een binaire boom toegepast

Huffman-code

- Bedoeld om teksten te comprimeren.
- Niet alle letters een even lange (binaire) code
 - o letter die vaak voorkomt een korte code
 - o letter die zelden voorkomt de langere code
- Dus moet de frequentie van alle letters in de code worden bepaald.

Voorbeeld

- Code: "bananen"
 - o b:1 keer
 - o e:1 keer
 - o a:2keer
 - o n:3 keer
- "b" en "e" krijgen een lange code
- "a" een kortere
- "n" de kortste

Bepaling code

De letters op frequentie sorteren: (Array van Knopen)

Van links af in een boom zetten: B en E vervangen door 2

Tenslotte: 3 4 2 A wordt wordt 2

Nu nog binaire waarden geven

Post-order door de boom

- elke linker-tak (lijntje) krijgt een 0
- elke rechtertak (lijntje) krijgt een 1

Coderen bericht

- We hadden gevonden
 - o n=0
 - o a=11
 - o b=100
 - o e=101
- bananen wordt dus 100 11 0 11 0 101 0

Terug lezen

- Bericht 1001101101010
- Net zo lang met een cijfer de boom in (o→ naar links, 1→ naar rechts) totdat je op een blad bent aangeland

Huffman codering

- Je zult de gebruikte binairy tree moeten meezenden met het bericht
- De boodschap moet 2 keer worden gelezen.
 - o t.b.v. frequentie tellen
 - o boom maken

```
public class CharCount {
         public int count;
         public char character;
         public string binaireWaarde="";
         public CharCount(char c) {
                 character=c;
                 count=0;
public class Knoop {
     public CharCount userObject;
     public Knoop rechts, links;
     public Knoop(CharCount o){
              userObject=o;
IDictionaryEnumerator etr = tree.GetEnumerator();
while (etr.MoveNext())
  CharCount ccnt = (CharCount)etr.Value;
```

1. "A_DEAD_DAD_CEDED_A_BAD_BABE_A_BEADED_ABACA_BED"

- 2. C: 2 CB: 8
 E: 7 O/ \1
 :10 C: 2 B: 6
 D:10
 A:11

- 6. D:20 DAECB:46

 AECB:26 DD:20 AECB:26

 O/ \1 O/ \1

 D:20 AECB:26

 O/ \1 O/ \1

 -:10 D:10 A:11 ECB:15

 O/ \1

 E: 7 CB: 8
 - D: 01 A: 10 E: 110 C: 1110 B: 1111
- https://en.wikipedia.org/wiki/Huffman_coding

B: 6