MAT-INF4130 Mandatory Assignment 2

Andreas Slyngstad

19. oktober 2016

We are presented the general problem

Find a k-dimensional subspace W of R m so that the sum of the (squared) distances from a set of n given points $x1, x2, \ldots, xn$ in R m to W is as small as possible We define the matrix of observations \mathbf{X} as

$$\mathbf{X} = \begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_n^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)} \end{pmatrix}$$

1 Problem 1

First we assume that W is known such that $\{w_i\}_{i=1}^k$ is an orthonormal basis for W, and let $\{w_i\}_{i=k+1}^m$ be an orthonormal basis for W^{\perp} . We define the projection operator $proj_u v = \frac{\langle v, u \rangle}{\langle u, u \rangle}$ as the projection of a vector v onto the vector u.

Now using this operator to find the projection of the columns of the matrix of observations x_i on the space W^{\perp} we get

$$\sum_{i=1}^{n} ||proj_{W^{\perp}} x_i||^2 = \sum_{i=1}^{n} \frac{\langle x_i^T, W^{\perp} \rangle}{\langle W^{\perp}, W^{\perp} \rangle} = \sum_{i=1}^{n} \sum_{i=k+1}^{m} \frac{\langle x_i^T, w_j \rangle}{\langle w_j, w_j \rangle}$$

Since $\{w_i\}_{i=k+1}^m$ spans an orthonormal basis for W^{\perp} , by definition $\langle w_i, w_i \rangle = 1$. From this we can rewrite the last sum in a more compact form as the frobenius norm of the matrix product $||X^T \mathbf{W}||$, where \mathbf{W} is the matrix with columns $\{w_i\}_{i=k+1}^m$

$\mathbf{2}$ Problem 2

As introduced, if $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^*$ is and SVD of \mathbf{X} then $\mathbf{X}^T = \mathbf{V}\Sigma^T\mathbf{U}^*$ we have the relation

$$||\mathbf{X}^T\mathbf{W}||_F^2 = ||\Sigma^T\mathbf{U}^*\mathbf{W}||_F^2 = \sum_{i=1}^m \sum_{j=k+1}^m \sigma_i^2 \langle \mathbf{u}_i, \mathbf{w}_j \rangle^2 = \sum_{i=1}^m \sigma_i^2 ||proj_{w^\perp} \mathbf{u}_i||^2$$

From SVD we know that the unitary matrix \mathbf{U} spans an orthonormal basis of \mathbf{X} such that $(\mathbf{u}_1, \mathbf{u}_2....\mathbf{u}_k)$ for k = rank(X). Now to minimize $||\mathbf{X}^T\mathbf{W}||_F^2$ we want in some sence to construct W such that W is in the same span as X, hence we want to construct W such that W spans the same space as the orthonormal basis U of X.

Since W is a k-dimensional subspace of \mathbb{R} , we can orientate W such that $\{w_i\}_{i=1}^k$ spans the same space as the components \mathbf{u}_i for i=1,2..k, in other words $W=span(\mathbf{u}_1,...,\mathbf{u}_k)$. Then $\sum_{i=1}^k ||proj_{w^{\perp}}\mathbf{u}_i||^2 = 0$ (Mark the upper limit of the sum) Now \mathbf{u}_i for i=k+1,k+2...m will lie in $span(W^{\perp})$, and therefore $\sum_{i=k+1}^m ||proj_{w^{\perp}}\mathbf{u}_i||^2 = m-k$ since both $\{w_i\}_{i=k+1}^m$ and $\{u_i\}_{i=k+1}^m$ spans an orthonormal basis.

From this argumentation, finding the optimal subspace of W is equivalent to minimizing the system $\sum_{i=1}^{m} \sigma_i^2 x_i$ which will happen when the conditions $x_1 = \cdots = x_k = 0$, $x_{k+1} = \cdots = x_m = 1$ and $\sum_{i=1}^{m} x_i = m - k$.

And finally since $||proj_{w^{\perp}}\mathbf{u}_{i}||^{2} = 1$ for i = k+1, k+2...m,

$$\sum_{i=k+1}^{m} \sigma_i^2 ||proj_{w^{\perp}} \mathbf{u}_i||^2 = \sum_{i=k+1}^{m} \sigma_i^2 = ||\mathbf{X}^T \mathbf{W}||_F^2$$

3 Problem 3

In exercise 2 we introduced the a vector \mathbf{c} to help find the best approximation for the matrix \mathbf{X} on \mathbf{W} such that the distance from $\mathbf{x}_i - \mathbf{c}$ to \mathbf{W} is as small as possible. Using the results from exercise 2 we replace \mathbf{x}_i with $\mathbf{x}_i - \mathbf{c}$. This relation is the same as replacing \mathbf{X} with $\tilde{\mathbf{X}} = \mathbf{X} - \mathbf{c}(1 \ 1 \cdots \ 1)$ Using this relation we get

$$\begin{split} ||\tilde{\mathbf{X}}^T\mathbf{w}_i||^2 &= (\tilde{\mathbf{X}}^T\mathbf{w}_i)^T(\tilde{\mathbf{X}}^T\mathbf{w}_i) = \mathbf{w}_i^T\tilde{\mathbf{X}}\tilde{\mathbf{X}}^T\mathbf{w}_i \\ \mathbf{w}_i^T(\mathbf{X} - \mathbf{c}(1\ 1\cdots 1))(\mathbf{X} - \mathbf{c}(1\ 1\cdots 1))^T\mathbf{w}_i \\ &= \mathbf{w}_i^T(\mathbf{X} - \mathbf{c}(1\ 1\cdots 1))(\mathbf{X}^T - (1\ 1\cdots 1)^T\mathbf{c}^T)\mathbf{w}_i \\ &= \mathbf{w}_i^T(\mathbf{X}\mathbf{X}^T - \mathbf{X}(1\ 1\cdots 1)^T\mathbf{c}^T - \mathbf{c}(1\ 1\cdots 1)\mathbf{X}^T + \mathbf{c}(1\ 1\cdots 1)(1\ 1\cdots 1)^T\mathbf{c}^T)\mathbf{w}_i \end{split}$$

- 1. $\mathbf{w}^T \mathbf{X} \mathbf{X}^T \mathbf{w}$ falls out directly from multiplication
- 2. From $\mathbf{w}_i^T \mathbf{c} (1 \ 1 \cdots 1) (1 \ 1 \cdots 1)^T \mathbf{c}^T \mathbf{w}_i$ we observe that the matrix multiplication $\mathbf{c} (1 \ 1 \cdots 1) \mathbf{c} (1 \ 1 \cdots 1)^T$ (which is a scalar $(1 \times n)(n \times 1)$) will just be sum n, and by rearranging the terms we get $n\mathbf{c}_i^T \mathbf{w}_i \mathbf{w}_i^T \mathbf{c}$
- 3. The two final terms can be rewritten into one term. By a closer look at the $\mathbf{w}^T \mathbf{c}(1 \ 1 \cdots 1) \mathbf{X}^T \mathbf{w}$ we change the order of multiplication and still get the equivalent expression $(\sum_{i=1}^n x_i^{(i)} \ \sum_{i=1}^n x_i^{(i)} \cdots \ \sum_{i=1}^n x_m^{(i)}) \mathbf{w}_i \mathbf{w}_i^T \mathbf{c}$. Equivalent argument yields for the last term

And we find that

$$||\tilde{\mathbf{X}}^T \mathbf{w}_i||^2 = n\mathbf{c}_i^T \mathbf{w}_i \mathbf{w}_i^T \mathbf{c} - 2(\sum_{i=1}^n x_1^{(i)} \sum_{i=1}^n x_2^{(i)} \cdots \sum_{i=1}^n x_m^{(i)}) \mathbf{w}_i \mathbf{w}_i^T \mathbf{c} + n\mathbf{c}_i^T \mathbf{w}_i \mathbf{w}_i^T \mathbf{c}$$

4 Problem 4

In general the Lagrange method or method of Lagrange multipliers we want to find a local maxima or minima of a function f, with some constraints evalued from a function g. We define a Lagrange function \mathcal{L} such that

$$\mathcal{L}(x_1, x_2, ..., x_n, \lambda_1, ..., \lambda_n) = f(1, x_2, ..., x_n) - \sum_{i=1}^n \lambda_i g_i(x_1, x_2, ..., x_n)$$

where λ_i yields some scalar value to each constraint. Here the funtion g is limited to the set of points such that $g(x_1, x_2, ... x_n) = 0$ Further from a mathematical evaluation these local maxima or minima occur when the function f and g are parallel, which is equivalent to that the gradient of f and g are parallel. Hence the problem is reduced on the form

$$\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i \nabla g_i(\mathbf{x}) \tag{1}$$

In our case these multiple constraints is defined as $\mathbf{w}_i^T \mathbf{c} = 0$ for i = 1, ..., k as set in exercise 3 by the assumtion that vector $\mathbf{c} \in W$. Further the function f, generalized to our problem is to minimize $||\tilde{\mathbf{X}}^T \mathbf{W}||_F^2$, and the gradient is taken with respect to \mathbf{c} , as this is the value of interest to find the best approximation.

Now by (1) we easily see that the left hand side is just the gradient of $||\tilde{\mathbf{X}}^T\mathbf{W}||_F^2$ with respect to \mathbf{c} as defined in exercise 3. For the right hand side we get the result by

$$\frac{\partial}{\partial \mathbf{c}} g(\mathbf{x}) = \frac{\partial}{\partial \mathbf{c}} \mathbf{w}_i^T c = \mathbf{w}_i^T \quad \text{for i} = 1, ..., k$$

$$\sum_{i=1}^{k} \lambda_i \nabla g_i(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i \mathbf{w}_i^T = (\mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_k) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{pmatrix}$$