Operációs rendszerek BSc

9. Gyak.

2022. 04. 04.

Készítette: Szabó Larion Bsc BGI NWS74Y

- 1. A tanult rendszerhívásokkal (open (), read () / write (), close() ők fogják a rendszerhívásokat tovább hívni írjanak egy neptunkod_openclose.c programot, amely megnyit egy fájlt neptunkod.txt, tartalma: hallgató neve, szak, neptunkod. A program következő műveleteket végezze:
 - olvassa be a neptunkod.txt fåjlt, melynek attribútuma: O RDWR
 - hiba ellenőrzést,
 - write() mennyit ír ki a konzolra.
 - read() kiolvassa a neptunkod.txt tartalmát és mennyit olvasott ki (byte), és kiírja konzolra.
 - lseek() pozícionálja a fájl kurzor helyét, ez legyen a fájl eleje: SEEK_SET, és kiírja a konzolra.

```
#include <stdio.h>
#include <stdib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/stat.h>
#include <string.h>

#define FILE "NWS74Y.txt"

#int main() {
    int fileHandle = open(FILE, O_RDWR);
    if(fileHandle == -1)
    {
        perror("Nem sikerult megnyitni a fajlt!");
        return 1;
    } else
        printf("Megnyitottam a fajlt!");
        char tartalom[64];

    int olvasott = read(fileHandle, tartalom, sizeof(tartalom));
    printf("beolvasott tartalom: \"%s\" osszesen \"%i\" byte.\n", tartalom, olvasott);

    lseek(fileHandle, 0, SEEK_SET);

    char szoveg[] = "teszt";
    int irt = write(fileHandle, szoveg, sizeof(szoveg));
    printf("A fajlba irtuk a(z) \"%s\" szoveget. osszesen \"%i\" byte.\n", szoveg, irt);
    close(fileHandle);
    return 0;
}
```

- 2. Készítse el a következő feladatot, melyben egy szignálkezelő több szignált is tud kezelni:
- a.) Készítsen egy szignál kezelőt (handleSignals), amely a SIGINT (CTRL + C) vagy SIGQUIT (CTRL + \) jelek fogására vagy kezelésére képes.
- b.) Ha a felhasználó SIGQUIT jelet generál (akár kill paranccsal, akár billentyűzetről a CTRL
- +\) a kezelő egyszerűen kiírja az üzenetet visszatérési értékét a konzolra.
- c.) Ha a felhasználó először generálja a SIGINT jelet (akár kill paranccsal, akár billentyűzetről a CTRL + C), akkor a jelet úgy módosítja, hogy a következő alkalommal alapértelmezett műveletet hajtson végre (a SIG_DFL) kiírás a konzolra.
- d.) Ha a felhasználó másodszor generálja a SIGINT jelet, akkor végrehajt egy alapértelmezett műveletet, amely a program befejezése - kiírás a konzolra.

Mentés: neptunkod_tobbszignal.c

```
Epinclude <stdio.h>
#include <unistd.h>
#include <sisgnal.h>

void handleSignals(int signum);

Eint main() {
    void(*sigHandlerInterrupt)(int);
    void(*sigHandlerReturn)(int);
    void(*sigHandlerReturn)(int);
    sigHandlerReturn = sigHandlerQuit = handleSignals;
    sigHandlerReturn = signal(SIGINT, sigHandlerInterrupt);

Eif (sigHandlerReturn = SIG_ERR) {
        perror("Signal error");
        return 1;
    }

    sigHandlerReturn = SIG_ERR) {
        perror("Signal error");
        return 1;
    }

For(;;) {
        printf("\nA program leallitasahoz a kovetkezoket vegezze el: \n");
        printf("1. Nyisson meg egy másik terminalt.\n");
        printf("2. Adja ki a parancsot: kill: %d \n", getpid());
        sleep(10);
    }

    return 0;
}

Evoid handleSignals(int signum) {
        case SIGINT:
            printf("\n CTRL+C-t eszlelt\n");
            signals(SIGINT, SIG_OFL);
            break;
        case SIGQUIT:
            printf("SIQUIT aktivalodott\n");
            break;
        default:
            printf("\nFogadott jel szama: %d\n", signum);
            break;
    }
    return;
}
```

3. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR: 4 ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS	P1	P2	P3	P4		CPU kihasználtság		98,90%					
Érkezés	0	0	2	5		Körülfordulási idők átlaga		28,25					
CPU idő	24	3	6	3		Várakozási idők átlaga		19,25					
Indulás	0	24	27	33		Válaszidők átlaga		19,25					
Befejezés	24	27	33	36									
Várakozás	0	24	25	28									
Körülf. Idők	24	27	31	31									
SJF	P1	P2	P3	P4		CPU kihasználtság		98,90%					
Érkezés	0	0	2	5		Körülfordulási idők átlaga		13,25					
CPU idő	24	3	6	3		Várakozási idők átlaga		4,25					
Indulás	12	0	3	9		Válaszidők átlaga		4,25					
Befejezés	36	3	9	12									
Várakozás	12	0	1	4									
Körülf. Idők	36	3	7	7									
RR: 4m	p1	p1*	p1*	p1*	p1*	p1*	p2	р3	p4	p4*	CPU kihasználtság		97,30%
Érkezés	0	4	11	19	25	32	0	2	15	5	Körülfordulási idők átla		8,5
CPU idő	24	20	16	12	8	4	3	6	2	3	Várakozási idők átlaga		4,9
Indulás	0	7	15	21	28	32	4	11	19	25			
Befejezés	4	11	19	25	32	36	7	15	21	28			
Várakozás	0	3	4	2	3	0	4	9	4	20			
Körülf. Idők	4	7	8	6	7	4	7	13	6	23			