AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions including the claims in the application.

Listing of the claims:

1. (Currently amended) A method of inhibiting both angiotensin converting enzyme and neutral endopeptidase for treatment of a disease amenable to treatment with a compound that inhibits both angiotensin converting enzyme and neutral endopeptidase which comprises administering to a patient in need of said treatment a therapeutically effective amount of a compound of formula (I)

wherein

A is H, C₁-C₈-alkyl, -CH₂OCH₂CH₂OCH₃, or -(C₁-C₄-alkyl)-aryl;

R₁ is hydrogen, -CH₂OC(O)C(CH₃)₃, or an acyl group;

 R_2 is hydrogen, -CH₂O-C(O)C(CH₃)₃, C₁-C₄-alkyl, aryl, -(C₁-C₄-alkyl)-aryl, or diphenylmethyl;

X is $-(CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR₅, wherein R₅ is C₁-C₄-alkyl, aryl, or -(C₁-C₄-alkyl)-aryl or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy, or a pharmaceutically acceptable salt or stereoisomer thereof.

- 2. (Currently amended) The method according to claim 1 wherein the disease is selected from the group consisting of non-diabetic nephropathy, diabetic nephropathy, insulin resistance, diabetic neuropathy, diabetic retinopathy, myocardial infarction, cataracts, and diabetic cardiomyopathy, atheroselerosis and endethelial dysfunction.
- 3. (Original) The method according to claim 2 wherein the disease is non-diabetic nephropathy.
- 4. (Original) The method according to claim 2 wherein the disease is diabetic nephropathy.
- 5. (Original) The method according to claim 2 wherein the disease is insulin resistance.
- 6. (Original) The method according to claim 2 wherein the disease is diabetic neuropathy.
- 7. (Original) The method according to claim 2 wherein the disease is diabetic retinopathy.
- 8. (Original) The method according to claim 2 wherein the disease is myocardial infarction.
- 9. (Original) The method according to claim 2 wherein the disease is cataracts.

- 10. (Original) The method according to claim 2 wherein the disease is diabetic cardiomyopathy.
 - 11. Cancelled.
 - 12. Cancelled.
- 13. (Original) The method according to claim 1, wherein the compound is the compound of formula (II)

wherein R₁ is acetyl or hydrogen.

- 14. (Original) The method according to claim 13, wherein R₁ is acetyl.
- 15. (Original) The method according to claim 13, wherein R₁ is hydrogen.
- 16. (Original) The method according to claim 13, wherein B_1 and B_2 are hydrogen.
 - 17. (Original) The method according to claim 13, wherein X is -CH₂.
- 18. (Original) The method according to claim 1, wherein the compound is the compound of formula (II-A)

wherein R₁ is acetyl or hydrogen.

19. (Original) The method according to claim 18, wherein the compound has the formula (II-B)

20. (Original) The method according to claim 18, wherein the compound has the formula (II-C)

21. (Original) The method according to claim 1, wherein the compound is the compound of formula (III)

wherein R₁ is acetyl or hydrogen.

22. (Original) The method according to claim 21, wherein R₁ is acetyl.

23. (Original) The method according to claim 21, wherein R₁ is hydrogen.

24. (Original) The method according to claim 21, wherein B_1 and B_2 are hydrogen.

25. (Original) The method according to claim 21, wherein X is -CH₂.

26. (Original) The method according to claim 1, wherein the compound is the compound of formula (III-A)

wherein R₁ is acetyl or hydrogen.

27. (Original) The method according to claim 26, wherein the compound has the formula (III-B)

28. (Original) The method according to claim 26, wherein the compound has the formula (III-C)

29. (Original) A method for inhibition of both angiotensin converting enzyme and neutral endopeptidase which comprises administering to a patient in need of said inhibition an effective inhibitory amount of a compound of formula (I)

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

wherein

A is H, C_1 - C_8 -alkyl, - $CH_2OCH_2CH_2OCH_3$, or - $(C_1$ - C_4 -alkyl)-aryl; R₁ is hydrogen, - $CH_2OC(O)C(CH_3)_3$, or an acyl group; R₂ is hydrogen, - CH_2O - $C(O)C(CH_3)_3$, C_1 - C_4 -alkyl, aryl, - $(C_1$ - C_4 -alkyl)-aryl, or diphenylmethyl;

-7-

X is $-(CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR5, wherein R_5 is $C_1\text{-}C_4\text{-}$ alkyl, aryl, or -(C1-C4-alkyl)-aryl or, where B1 and B2 are attached to adjacent carbon atoms, B_1 and B_2 can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy, or a pharmaceutically acceptable salt or stereoisomer thereof.

30. (Currently amended) A method for the preparation of a pharmaceutical composition having both angiotensin converting enzyme and neutral endopeptidase inhibitory activity for treatment of a disease amenable to treatment with a compound that inhibits both angiotensin converting enzyme and neutral endopeptidase which comprises comprising mixing a pharmaceutically acceptable carrier, optionally one or more pharmaceutically acceptable excipients, and a therapeutically effective amount of a compound of formula (I)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

wherein

A is H, C₁-C₈-alkyl, -CH₂OCH₂CH₂OCH₃, or -(C₁-C₄-alkyl)-aryl; R₁ is hydrogen, -CH₂OC(O)C(CH₃)₃, or an acyl group;

DEAV2002/0044 US NP

SEP. 2. 2004 10:22AM

 R_2 is hydrogen, -CH₂O-C(O)C(CH₃)₃, C₁-C₄-alkyl, aryl, -(C₁-C₄-alkyl)-aryl, or diphenylmethyl;

X is $-(CH_2)_n$ wherein n is an integer 0 or 1, -S-, -O-,

wherein R_3 is hydrogen, C_1 - C_4 -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl; and R_4 is CF_3 , C_1 - C_{10} -alkyl, aryl, or -(C_1 - C_4 -alkyl)-aryl;

 B_1 and B_2 are each independently hydrogen, hydroxy, or -OR₅, wherein R₅ is C₁-C₄-alkyl, aryl, or -(C₁-C₄-alkyl)-aryl or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbon atoms to form a benzene ring or methylenedioxy,

or a pharmaceutically acceptable salt or stereoisomer thereof.