Matrix Analysis

Part. 1

Chang Jae Ho jaehochang@konkuk.ac.kr

October 7, 2020

- 1 Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

- 1 Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

Rank I

Theorem

If A is an m \times n matrix of rank r > 0, then there **exists** nonsingular m \times m and n \times n matrices B and C, such that H = BAC and A = $B^{-1}HC^{-1}$ where H is given by

$$a l_r \text{ if } r = m = n$$

Rank II

Following is straightforward from the theorem.

Corollary

Let A be an $m \times n$ matrix with rank r > 0. Then, there **exist** an $m \times r$ matrix F and an $r \times n$ matrix G such that rank(F) = rank(G) = r and A = FG.

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

Complex Matrix I

Any complex number c can be written in the form c=a+bi where a and b are real numbers. Put $a=r\cos \vartheta$ and $b=r\sin \vartheta$, or, simply $c=re^{i\vartheta}$. Then,

$$|c| = \sqrt{a^2 + b^2} = r.$$

Likewise, $|c_1c_2|=|c_1|\cdot |c_2|$ and $|c\bar{c}|=|c|^2$. Hence,

$$|c_1+c_2|\leq |c_1|+|c_2|.$$

Proof.

(Exercise)

Complex Matrix II

Complex matrix is defined as

$$C = A + iB$$

$$\bar{C} = A - iB$$

where A and B are real-valued matrices. If C is square and $\bar{C}'=C$, so that $\bar{c}_{ij}=c_{ji}$, then C is said to be **Hermitian**.

Remark If C is Hermitian and real-valued, then C is symmetric.

The square matrix C is said to be **unitary** if $\bar{C}'C = I$.

- 1 Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

Random Vectors I

EXPECTATIONS

(Exercises)

1.
$$cov(a'x, \beta'x) = a'\Sigma\beta$$
 where $\Sigma = cov(x)$

2.
$$cor(x) = D\Sigma D$$
 where $D = diag(\sigma_1^{-1/2}, \cdots, \sigma_p^{-1/2})$

3. If
$$x \sim \mathcal{N}(0, I)$$
, then $Tx + \mu \sim \mathcal{N}(\mu, \Sigma)$ where $\Sigma = \Pi'$.

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

Definitions I

Definition

A collection of *m*-dimensional vectors that is closed under addition and scalar multiplication is called a **vector space** in *m*-dimensional space.

Theorem

Let $\{x_1, \dots, x_p\}$ be a set of $n \times 1$ vectors in the vector space S, and let \mathcal{Y} be the set of all possible linear combinations of these vectors. That is,

$$\mathcal{Y} = \left\{ y; y = \sum_{i=1}^p x_i \beta_i, |\beta_i| < \infty \text{ for all } i \right\}.$$

Then, \mathcal{Y} is a vector subspace of S.

Definitions II

Definition

Let S be a vector space. A function, $\langle x, y \rangle$, defined for all $x \in S$ and $y \in S$, is an **inner product** if for any x, y and z in S, and any scalar c,

- $a < x, x > \ge 0 \text{ and } < x, x > = 0 \text{ iff } x = 0$
- b < x, y > = < y, x >
- c < x + y, z > = < x, z > + < y, z >
- d < cx, y >= c < x, y >.

Definitions III

Theorem

If x and y are in the vector space S and < x, y > is an inner product defined on S, then

$$< x, y >^{2} \le < x, x > < y, y >$$

Definitions IV

Definition

A function ||x|| is a **vector norm** on the vector space S if, for any vectors x and y in S, we have

- $|x| \ge 0$
- **b** ||x|| = 0 iff x = 0
- ||cx|| = |c|||x|| for any scalar c
- $||x + y|| \le ||x|| + ||y||$

Definitions V

Definition

A function d(x, y) is a **distance function** defined on the vector space S if for any vectors x, y, and z in S, we have

- $d(x,y) \ge 0$
- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,z) \leq d(x,y) + d(y,z)$

Remark $d_{\Sigma}(x,\mu) = \sqrt{(x-\mu)'\Sigma^{-1}(x-\mu)}$ is called the Mahalanobis distance between x and μ .

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Basis and Dimension I

Definition

Let $\{x_1, \dots, x_p\}$ be a set if $n \times 1$ vectors in a vector space S. This set is called a **basis** of S if it spans S and its vectors are linearly independent.

Definition

dim(S) is the number of vectors in any basis for S.

Matrix Analysis

Vector Spaces

Matrix Rank and Linear Independence

Contents¹

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors
- 2 Vector Spaces
 - Definitions
 - Bases and Dimension
 - Matrix Rank and Linear Independence
 - Orthonormal Bases AND Projections
 - Projection Matrices
 - Linear Transformation and System of Linear Equations
 - Intersection and Sum of Vector Spaces
 - Convex Sets

Matrix Rank I

Definition

Let X be an $n \times p$ matrix. The subspace of \mathbb{R}^n spanned by the n row vectors of X is called the **row space** of X. Likewise, the **column space(range)** of X can also be defined;

$$R(X) = \left\{ y; y = \sum_{j=1}^{p} x_{j} \beta_{j}, |\beta_{j}| < \infty \text{ for all } j \right\}$$
$$= \left\{ y; y = X\beta, \beta \in \mathbb{R}^{p} \right\}$$

Remark R(X') is a row space of X.

Matrix Rank II

Theorem

Let X be an $n \times p$ matrix. If r is the number of linearly independent rows of X and c is the number of linearly independent columns of X, then rank(X) = r = c.

Theorem

Let A, B be $m \times n$ matrices and C be $n \times p$ matrix. Then,

- a rank $(AC) \leq min\{rank(A), rank(C)\}$
- b $rank(A + B) \le rank(A) + rank(B)$
- rank(A) = rank(A') = rank(AA') = rank(A'A)

Matrix Rank III

Theorem

Let A, B and C be any matrices for which the partitioned matrices below are defined. Then,

3
$$rank \begin{pmatrix} A & (0) \\ C & B \end{pmatrix} = rank \begin{pmatrix} C & B \\ A & (0) \end{pmatrix} = rank \begin{pmatrix} B & C \\ (0) & A \end{pmatrix} = rank \begin{pmatrix} (0) & A \\ B & C \end{pmatrix} \ge rank(A) + rank(B)$$

Matrix Rank IV

Theorem

Let A, B and C be any matrices for which ABC can be defined. Then,

$$rank(ABC) \ge rank(AB) + rank(BC) - rank(B)$$

Remark If $C = I_n$, for example, then the lower bound becomes rank(A) + rank(B) - n.

Matrix Analysis

Vector Spaces

Orthonormal Bases AND Projections

Contents

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Orthonormal Basis I

REGRESSION EXAMPLE

In simple linear regression, we find $\hat{\beta}$ such that minimizes $(y-\hat{y})'(y-\hat{y})=(y-X\hat{\beta})'(y-X\hat{\beta})$. For a choice of $\hat{\beta}$, $\hat{y}=X\hat{\beta}$ gives a point in the subspaces of \mathbb{R}^n spanned by 1_n and x. Thus, the point \hat{y} that minimizes the distance from y will be given by the orthogonal projection of y onto this plane. That is,

$$(y - \hat{y})'1_n = 0, (y - \hat{y})'x = 0$$

through which we obtain an LS estimator.

Matrix Analysis

LVector Spaces

Orthonormal Bases AND Projections

Orthonormal Basis II

REGRESSION EXAMPLE

Orthonormal Basis III

REGRESSION EXAMPLE

Definition

Let $S=X\beta$ be a (data) vector subspace of \mathbb{R}^n . The **orthogonal complement** of S, denoted by S^\perp , is the collection of all n-dimensional vectors that are orthogonal to every vector in S; that is,

$$S^{\perp} = \{x; x \in \mathbb{R}^n \text{ and } x'a = 0 \ \forall a \in S\}.$$

Theorem

If S is a vector subspace of \mathbb{R}^n then S^{\perp} is also a vector subspace of \mathbb{R}^n .

Orthonormal Basis IV

REGRESSION EXAMPLE

Theorem

Suppose that $\{X_1, \cdots, X_p\}$ is an orthonormal basis for \mathbb{R}^n and $\{X_1, \cdots, X_s\}$ is an orthonormal basis for the vector subspace S. Then $\{X_{s+1}, \cdots, X_p\}$ is an orthonormal basis for S^{\perp} .

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Orthogonal Projection I

Theorem

Suppose the columns of the $n \times p$ matrix X_1 forms an orthonormal basis for the vector subspace S of \mathbb{R}^n . if $x \in \mathbb{R}^n$, then the orthogonal projection of x onto S is given by $X_1X_1'x$.

Example

By this theorem, the projection of y onto $R(XP\Lambda^{-1/2})$ is $X(X'X)^{-1}X'y$ where $X'X = P\Lambda P'$ (s-decomposition). Here,

$$\Lambda^{-1/2} P' X' X P \Lambda^{-1/2} = \Lambda^{-1/2} P' P \Lambda P' P \Lambda^{-1/2} = \Lambda^{-1/2} \Lambda \Lambda^{-1/2} = I.$$

Linear Transformation and System of Linear Equations

Contents

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Null Space I

Theorem

Let $u = X\beta$ where $X \in \mathbb{R}^{n \times p}$ and $\beta \in \mathbb{R}^p$. The null space of X, given by the set

$$N(X) = \{\beta \in \mathbb{R}^p; X\beta = 0\}$$

is a vector space.

Theorem

Let X be an $n \times p$ matrix. Then,

$$p = rank(X) + dim\{R(X')^{\perp}\} = rank(X) + dim\{N(X)\}$$

Null Space II

Example

For an $n \times p$ matrix X, rank(X) = rank(X'X).

Proof.

Let $\beta \in N(X)$ so $X\beta = 0$. Therefore, $X'X\beta = 0$ and $\beta \in N(X'X)$. So, $\dim\{N(X)\} \leq \dim\{N(X'X)\}$, or

$$rank(X) \ge rank(X'X)$$
.

On the other hand, if $\beta \in N(X'X)$ then $\beta'X'X\beta = 0$ which is only satisfied only if $X\beta = 0$. Therefore, $\beta \in N(X)$ so $rank(X) \leq rank(X'X)$.

Linear Transformation and System of Linear Equations

Linear Transformation I

Rotation of Axes

Example

Let

$$A := \begin{bmatrix} \cos \vartheta & \sin \vartheta & 0 \\ -\sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix}.$$

The transformation given by u = Ax rotates axes e_1 , e_2 , e_3 to the new axes x_1 , x_2 , x_3 . This represents a rotation of e_1 and e_2 through an angle of ∂ .

Matrix Analysis

Vector Spaces

Intersection and Sum of Vector Spaces

Contents

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Definitions I

Definition

Let S_1 , S_2 be vector subspaces of \mathbb{R}^m . Define \cup and \cap of vector spaces by

$$S_1 \cap S_2 := \{x \in \mathbb{R}^m; x \in S_1 \text{ and } x \in S_2\}$$

 $S_1 \cup S_2 := \{x \in \mathbb{R}^m; x \in S_1 \text{ or } x \in S_2\}$

and define the sum of vector spaces by

$$S_1 + S_2 := \{x_1 + x_2; x_1 \in X_2 \in S_2\}.$$

Definitions II

Remark If $S_1 \cap S_2 = \{0_m\}$, then $S_1 \oplus S_2 := S_1 + S_2$ is called the direct sum of S_1 , S_2 .

Each $x \in S_1 \oplus S_2$ has a unique representation as $x = s_1 + s_2$ where $s_1 \in S_1$ and $s_2 \in S_2$.

Remark If S_1 and S_2 are orthogonal, then $x \in S_1 \oplus S_2$ has $x = P_{S_1}x + P_{S_2}x$.

For instance, for any vector subspace S of \mathbb{R}^m , $\mathbb{R}^m = S \oplus S^{\perp}$, and $\forall x \in \mathbb{R}^m$,

$$x = P_{S}x + P_{S^{\perp}}x.$$

Orthogonal Decomposition of R(X) I

Theorem

Let X be $n \times p$ with rank(X) = p and

$$X = \begin{bmatrix} X_0 & X_1 \end{bmatrix}, P_X = X(X'X)^{-1}X', P_i = X_i(X_i'X_i)^{-1}X_i' \text{ for } i = 0, 1$$
and $X_{1|0} = (I - P_0)X_1, P_{1|0} = X_{1|0}(X_{1|0}'X_{1|0})^{-1}X_{1|0}'$

Then,

2
$$\{X_{1|0}\beta; \beta \in \mathbb{R}^{p_1}\} = \{X_0\beta; \beta \in \mathbb{R}^{p_0}\}^{\perp}$$

3
$$P_X = P_0 + P_{1|0}$$
 and $P_0 P_{1|0} = 0$

- Review: Elementary Algebra
 - Rank
 - Complex Matrix
 - Random Vectors

2 Vector Spaces

- Definitions
- Bases and Dimension
- Matrix Rank and Linear Independence
- Orthonormal Bases AND Projections
- Projection Matrices
- Linear Transformation and System of Linear Equations
- Intersection and Sum of Vector Spaces
- Convex Sets

Definition I

Convex Set

Definition

A set $S \subseteq \mathbb{R}^m$ is said to be convex if for any $x_1 \in S$ and $x_2 \in S$,

$$cx_1+(1-c)x_2\in S$$

for a constant $c \in (0, 1)$.

Theorem

If $S_1, S_2 \subseteq \mathbb{R}^m$ are convex, then $S_1 \cap S_2$ and $S_1 + S_2$ are convex.

Theorem

If $S \subseteq \mathbb{R}^m$ is convex, then \overline{S} is also convex.