LISTA DE EXERCÍCIOS

1 - MAPAS DE KARNOUGH

- 1.1 O código Braille é um sistema que permite pessoas cegas lerem caracteres alfanuméricos através do tato quando passam os dedos sobre um padrão de pontos salientes. Projete um circuito combinacional que converta o código BCD para Braille:
 - a) Encontre a expressão algébrica mínima que representa esta tabela;
 - b) Quantos e quais CIs da família 74LSXX serão necessários para a construção deste circuito digital?
 - c) Desenhe o circuito em função das portas utilizadas no item b
 - d) Qual o tempo de atraso máximo do caminho crítico da saída (em nanosegundos).

CIs: 74LS00 – 4 NANDs de 2 entradas cada 74LS08 – 4 ANDs de 2 entradas cada 74LS04 – 6 NOTs 74LS32 – 4 ORs de 2 entradas cada

				W	X
A	B	C	D	Z	Y
0	0	0	0		:
0	0	0	1	•	
0	0	1	O	:	
0	0	1	1	•	•
0	1	0	0	•	:
0	1	0	1	•	
0	1	1	0	:	•
0	1	1	1	:	:
1	0	0	0	:	
1	0	0	1		•

- 1.2 Considere um robô, cuja plataforma possui um sistema de parachoques com 4 sensores, distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional para comandar os motores, a fim de que o robô se desvie toda vez que se chocar com um obstáculo. O controle deverá obedecer as seguintes regras:
- I- Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
- II- Se apenas F e D forem pressionados, giro para a esquerda;
- III- Se apenas F e E forem pressionados, giro para a direita;
- IV- Se apenas D ou E for pressionado, o movimento é para trás;
- VI- Caso nenhum sensor seja pressionado e para as demais combinações (consideradas inválidas), o movimento é para frente.

Sabendo que em cada roda existe um motor (motor direito MD e motor esquerdo ME), quando o comando do motor for igual a 1 o giro será para frente e quando o comando do motor for igual a zero o giro será para tráz. Construa a tabela verdade e encontre as menores expressões booleanas para o circuito combinacional do seu projeto. Não se esqueça de montar o diagrama de portas lógicas correspondente.

a) Tabela verdade

A	F	D	E	MD	ME	SENTIDO	CONDIÇÕES
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	Χ	Χ	Х				

b) Expressões algébricas mínimas.

MAPAS DE KARNOUGH

MD	A'F'	A'F	AF	AF'
D'E'				
D'E				
DE				
DE'				

MD =

ME	A'F'	A'F	AF	AF'
D'E'				
D'E				
DE				
DE'				

ME=

c) Circuito combinacional do comando MD e ME (questão anterior).

- $1.3 \text{ Dada a expressão} \quad S = \left(D*((B*\overline{A}) + (A*(\overline{B} + \overline{C})))\right) + \left(\overline{D}*(C*(B+A))\right) \quad \text{reencha a tabela verdade;}$
- a) Preencha a tabela verdade (2 pontos);
- b) Encontre a expressão mínima utilizando Mapas de Karnough (2 pontos);
- c) Desenhe o circuito digital da expressão mínima (2 pontos).

A	В	C	D	S
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

REPOSTAS MAPAS DE KARNOUGH

1.2 -

a) Tabela verdade

A	F	D	Е	MD	ME	SENTIDO	CONDIÇÕES
0	0	0	0	1	1	PARA FRENTE	VI - Nenhum Sensor
0	0	0	1	0	0	PARA TRÁS	IV – Apenas E
0	0	1	0	0	0	PARA TRÁS	IV - Apenas D
0	0	1	1	1	1	PARA FRENTE	VI - Comb. Inválidas
0	1	0	0	0	0	PARA TRÁS	I - Apenas F
0	1	0	1	0	1	PARA DIREITA	III - Apenas F e E
0	1	1	0	1	0	PARA ESQUERDA	II - Apenas F e D
0	1	1	1	0	0	PARA TRÁS	I – 3 Sensores Frontais
1	Χ	Х	Х	1	1	PARA FRENTE	VI - Comb. Inválidas

b) Expressões algébricas mínimas.

MAPAS DE KARNOUGH

MD	A'F'	A'F	AF	AF'
D'E'	1	0	1	1
D'E	0	0	1	1
DE	1	0	1	1
DE'	0	1	1	1

MD = A+FDE'+F'DE+F'D'E'

ME	A'F'	A'F	AF	AF'
D'E'	1	0	1	1
D'E	0	1	1	1
DE	1	0	1	1
DE'	0	0	1	1

ME=A+F'DE+FD'E+F'D'E'

2. CIRCUITOS DE CONEXÃO

- 2.1 Implementar a função Z = A B' + B' C' + A B C, utilizando um multiplexador.
- 2.2- Sabendo que o CI abaixo é um MUX 8x1, qual a expressão algébrica que define o circuito:

2.3 - A expressão algébrica que representa a saída S em função da seleção A, B e C.

1. ()
$$S = \overline{A}BC + AC + \overline{C}$$

2. ()
$$S = BC + \overline{A}C + \overline{A}B$$

3. ()
$$S = \overline{B}C + AC + \overline{B}$$

4. ()
$$S = \overline{A} \overline{B} C + \overline{A} \overline{C} B + \overline{A} BC$$

5. ()
$$S = \overline{A} \overline{B} C + \overline{A} \overline{C} B + ABC$$

RESPOSTAS CIRCUITOS DE CONEXÃO

$$2.2 \quad \overset{\cdot}{Z} = \overline{A}\overline{B}C + \overline{A}B\overline{C} + ABC$$

$$2.3 - S = A'B'C+A'BC'+A'BC+ABC$$

3. CIRCUITOS ARITMÉTICOS

3.1 O circuito digital da figura abaixo foi projetado para realizar operações aritméticas entre dois números inteiros com sinal "A" e "B", representados em binário com 4 bits, e assumindo que números inteiros negativos estão em complemento de dois. Neste circuito, cada bloco referenciado por "SC" é um somador completo (também conhecido por *full adder*).

Considerando o circuito da figura **a**, numere a **Coluna 2** de modo a associar cada operação aritmética com a respectiva combinação de valores que deve ser aplicada nas entradas "op1" e "op0".

Coluna 1	Coluna 2
I. op1=0 e op0=0	() S=A+1
II. op1=0 e op0=1	() S=A-1
III. op1=1 e op0=0	() S=A-B
IV. op1=1 e op0=1	() S=A+B

- 3.2 Sabendo que HAD (Half Adder) é um circuito aritmético que implementa um Meio Somador, qual a função do circuito abaixo:
 - (a) () Divisor de 4 bits
 - (b) () Subtrator de 2 bits
 - (c) () Somador Completo de 2 bits
 - (d) () Multiplicador de 2 bits
 - (e) () Multiplicador de 4 bits

RESPOSTAS CIRCUITOS ARITMÉTICOS

3.1

Coluna 1	Coluna 2
I. op1=0 e op0=0	(II) S=A+1
II. op1=0 e op0=1	(III) S=A-1
III. op1=1 e op0=0	(IV) S=A-B
IV. op1=1 e op0=1	(I) S=A+B

4. CIRCUITOS SEQUENCIAIS E REGISTRADORES

4.1 - Apresente a forma de onda na saída dos Flip-Flops considerando os valores apresentados nas entradas:

4.2 Considere que os sinais representados pelas formas de onda da figura A são aplicados ao registrador da figura B. "R" refere-se ao vetor de bits (r3, r2, r1, r0), onde r3 é o bit mais significativo e r0 é o bit menos significativo.

Figura B

Nos instantes t2, t4, t6 e t7 a saída "Q" do registrador da figura B (onde q3 é o bit mais significativo e q0 é o bit menos significativo) exibirá, respectivamente, os seguintes valores, expressos em decimal:

4.3 Considere o seguinte circuito:

- a) Identifique o circuito:
- b) Descreva o seu funcionamento em função das variáveis de controlo S1 e S2:

s2	s1	DESCRIÇÃO
0	0	
0	1	
1	0	
1	1	

c)Que nome dá ao circuito constituído pelas portas A, B, C e D e a porta OR a seguir?

RESPOSTAS CIRCUITOS SEQUENCIAIS E REGISTRADORES

4.1

$$4.2 - t2 = 12$$
, $t4 = 6$, $t6 = 13 e t7 = 8$

4.3 -

a) Registrador de 4 bits com carga paralela, deslocamento para direita e deslocamento para esquerda.

b)

s2	s1	DESCRIÇÃO
0	0	Mantém o valor da saída
0	1	Deslocamento à esquerda
1	0	Deslocamento à direita
1	1	Carga paralela

c) Multiplexador de 4 bits