Homework 3.1 - Stat 215A, Fall 2015

Due: Friday, October 9, 10:00 AM

1 EM Algorithm

Suppose X_1, \ldots, X_n are i.i.d. observations from a mixture of two Poisson distributions:

$$P_{0}(X) = \frac{\mu_{0}^{X} e^{-\mu_{0}}}{X!}$$

$$P_{1}(X) = \frac{\mu_{1}^{X} e^{-\mu_{1}}}{X!}$$

with mixing probabilities of π and $1-\pi$ (i.e. there is an initial probability that and observation X_i is drawn from P_0 and a probability $1-\pi$ from P_1).

- 1. Define the complete data vector and the distribution of the missing random variable.
- 2. Write down the E and M steps for estimating μ_0, μ_1, π .
- 3. Give an initial estimator to start the EM algorithm.
- 4. Write down the E and M steps if the second distribution is actually Bernoulli(p)

$$P_1(X) = p^X (1-p)^{1-X}$$

- 5. Write R code to implement the E and M steps. Run it on some simulated data where you know the true parameters. Show the accuracy of clustering as you vary the values of μ_0 and μ_1 .
- 6. How would you create confidence intervals for the inferred parameters μ_0 and μ_1 ? Can you use an asymptotic normality argument?

2 The Linear Model in the Neyman-Rubin framework

Recall the Neyman-Rubin model of potential outcomes:

$$Y_i = T_i a_i + (1 - T_i) b_i$$

where $T_i \in \{0,1\}$ is a random treatment indicator for subject i, and a_i, b_i are the potential outcomes.

Say there is a covariate z_i which is measured for each subject. Define Q_a to be constant used for adjustment of the a potential outcomes, define Q_b to be the constant used for adjustment of the b potential outcomes. Define $\bar{a}, \bar{b}, \bar{z}$ to be the population means of a_i, b_i, z_i , respectively.

By simply adding and subtracting some terms, we can write the Neyman - Rubin model as

$$Y_i = \bar{a}T_i + \bar{b}(1 - T_i) + Q_a(z_i - \bar{z})T_i + Q_b(z_i - \bar{z})(1 - T_i) + \epsilon_i$$

where

$$\epsilon_{i} := T_{i} \left(a_{i} - \left(\bar{a} + Q_{a} \left(z_{i} - \bar{z} \right) \right) \right) + \left(1 - T_{i} \right) \left(b_{i} - \left(\bar{b} + Q_{b} \left(z_{i} - \bar{z} \right) \right) \right)$$

$$E(\epsilon_{i}) = E(T_{i}(a_{i} - (\bar{a} + Q_{a}(z_{i} - \bar{z}))) + (1 - T_{i})(b_{i} - (\bar{b} + Q_{b}(z_{i} - \bar{z}))))$$

$$= p_{A}(a_{i} - (\bar{a} + Q_{a}(z_{i} - \bar{z}))) + (1 - p_{A})(b_{i} - (\bar{b} + Q_{b}(z_{i} - \bar{z})))$$

- 1. In your own words, give an interpretation of each term in this decomposition. What are the predictors in the model? What is the response? What are the error terms, and are they i.i.d.?
- 2. How should you choose Q_a and Q_b ? Justify your choice.