1

Assignment 3

Vaddamani Saketh - CS20BTECH11054

Download all python codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment_3/codes/Assignment_3.py

and latex-tikz codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment 3/Assignment 3.tex

1 Problem

A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$, then P(X > 1) is

2 Solution

Let the CDF of f(x) be denoted by $F_X(x)$ We know that,

$$\frac{d(F_X(x))}{dx} = f(x)$$

$$d(F_X(x)) = f(x) dx$$
(2.0.1)

Therefore, applying definite integral on both sides from 0 to x in (2.0.1), we get,

$$\int_{0}^{x} d(F_X(x)) = \int_{0}^{x} f(x) dx = \int_{0}^{x} e^{-x} dx \quad (2.0.2)$$

We know that,

$$\int_{a}^{b} e^{-x} = -e^{-b} - (-e^{-a}) = -e^{-a} - e^{-b}$$
 (2.0.3)

We also know that,

$$\int_{a}^{b} d(F_X(x)) = F_X(b) - F_X(a)$$
 (2.0.4)

By using (2.0.3) and (2.0.4) in (2.0.2) we can write that,

$$F_X(x) - F_X(0) = e^{-0} - e^{-x} = 1 - e^{-x}$$
 (2.0.5)

We know that,

$$F_X(x) = P(X \le x) \tag{2.0.6}$$

But we know that there is no probability for the random variable X to satisfy $X \le 0$, So, from (2.0.6), we can write,

$$F_X(0) = P(X \le 0) = 0$$
 (2.0.7)

Substituting (2.0.7) and (2.0.6) in (2.0.5), we get

$$P(X \le x) = F_X(x) = 1 - e^{-x}$$
 (2.0.8)

Substituting x=1 in (2.0.8) we get,

$$P(X \le 1) = 1 - e^{-1} \tag{2.0.9}$$

We know that, as total probability is equal to 1,

$$P(X > 1) + P(X \le 1) = 1$$

 $P(X > 1) = 1 - P(X \le 1)$ (2.0.10)

To find P(X > 1), we substitute (2.0.9) in (2.0.10),

$$P(X > 1) = 1 - (1 - e^{-1}) = e^{-1}$$
 (2.0.11)

Therefore, $P(X > 1) = \frac{1}{e}$

Fig. 0: **PDF**

Fig. 0: \mathbf{CDF}