Homework 3

Problem 1:

A linear elastic cantilever beam of length 2L (constant Young modulus E and area moment I_y) is loaded by a distributed transverse load q(x) of the sketched form with known q_0 . We use Bernoulli's theory of elastic beams: the governing equation for the deflection w(x) in the z-direction reads

$$E I_y w_{,xxxx}(x) = q(x).$$

The transverse force (in the positive z-direction) and the bending moment (about the y-axis) are given by

$$F_z(x) = -E I_y w_{,xxx}(x),$$

$$M_y(x) = -E I_y w_{,xx}(x),$$

respectively. In the given problem, the beam is loaded by the distributed force as well as a single force F at its free end (and the moment at the free end vanishes). Let us find an approximate solution for the deflection.

a) Formulate the Galerkin weak form of the problem.

b)	Let us find an approximate solution by assuming a polynomial of degree n with appropriate restrictions on the polynomial coefficients to satisfy essential boundary conditions. Use this approximation in a
	Bubnov-Galerkin formulation to arrive at a linear system $Ka = F$ for the unknown coefficients a_i . What are matrix and vector components K_{ij} and F_i , respectively (generally written for i and j)?

c)	Solve the system for the unknown coefficients for $n=2,3,4,5$ and plot the resulting deflection curve for each case. For this part, you can use the following numerical values for a beam made of steel: $E=210\cdot 10^9 {\rm N/m^2},~I_y=~^{1\over2}~(10{\rm mm})^4,~q_0=100{\rm N/m},~L=100{\rm mm},~F=40{\rm N}$

d) Let us show that the problem can also be solved by the *Rayleigh-Ritz* method. To this end, use variational calculus to show that the above boundary value problem derives from the potential

$$I[w] = \int_0^{2L} \left[\frac{1}{2} E I_y w_{,xx}^2(x) - q(x) w(x) \right] dx + F w(2L).$$

e) Using variations, show that the solution indeed corresponds to a minimum of the total potential energy.

f) The error of an approximate solution can be characterized by the *energy norm* which is defined by $I[w_{\sf approx}(x) - w_{\sf exact}(x)]$. Since we do not have an exact solution, let us assume that the solution for n=5 from c) is the exact solution (the error is indeed negligible). Compute the energy error for your solutions from c) for n=2, n=3 and n=4 (using the above numerical values).