PC2232: Physics for Electrical Engineers

Tutorial 1 Answers

1. (a)
$$f = 5.45 \times 10^{14} \text{ s}^{-1}$$

(b)
$$\omega = 3.42 \times 10^{15} \text{ rad s}^{-1}$$

 $k = 1.14 \times 10^7 \text{ rad m}^{-1}$

(c)
$$B_0 = 2 \times 10^{-6} \text{ T}$$

$$\begin{split} \text{(d)} \quad & \vec{E}(t,y) = 600 \sin(3.42 \times 10^{15} t - 1.14 \times 10^7 y) \hat{k} \\ & \vec{B}(t,y) = (2 \times 10^{-6}) \sin(3.42 \times 10^{15} t - 1.14 \times 10^7 y) \hat{i} \end{split}$$

We assumed it was traveling in the positive y direction

2. (a)
$$\lambda_q = 3.81 \times 10^{-7} \text{m}$$

(b)
$$\lambda_a = 5.26 \times 10^{-7} \text{m}$$

(c)
$$n = 1.38$$

(d)
$$K = 1.91$$

3. (a)
$$P_{\text{rad}} = 1.34 \times 10^{-11} \text{Pa}$$

(b)
$$E_0 = 1.23 \text{ Vm}^{-1}$$

 $B_0 = 4.10 \times 10^{-9} \text{ T}$

(c)
$$u = 6.69 \times 10^{-12} \text{ Jm}^{-3}$$

(d)
$$50 - 50\%$$

5. (c)
$$\Delta = \pi + 2\theta_a^A - 4\sin^{-1}\left[\frac{\sin\theta_a^A}{n}\right]$$

6. (a)
$$\hat{E} = -\frac{2}{3}\hat{i} + \frac{\sqrt{5}}{3}\hat{j}$$

(b)
$$E_0 = 9 \times 10^4 \,\mathrm{Vm}^{-1}$$

(c) Direction:
$$\frac{\sqrt{5}}{3}\hat{i} + \frac{2}{3}\hat{j}$$

(d)
$$|k| = \pi \times 10^7 \text{m}^{-1}$$

(e)
$$\lambda = 2 \times 10^{-7} \text{ m}$$

(f)
$$f = 1.5 \times 10^{15} \text{ s}^{-1}$$

(g)
$$v \approx 3 \times 10^8 \text{ ms}^{-1}$$