MACHINE LEARNING:

un enfoque más amplio

María Lourdes Linares Barrera Inteligencia Empresarial

SOBRE EL TRABAJO

AUTORA

María Lourdes Linares Barrera

TRABAJO

Machine Learning: un enfoque más amplio (más allá del Deep Learning y PowerBI)

OBJETIVOS

- Alternativas ecosistema R
- Mucho más que el "marketing"
- Mucho más de lo que se ve en la carrera
- Relación con el mundo laboral empresarial y académico

ÍNDICE DE CONTENIDOS

¿Y ESTO PARA QUÉ?

Motivaciones para aprender

PREDICCIÓN

Alternativas al Deep Learning (en el ecosistema R)

VISUALIZACIÓN

Alternativas al PowerBI (en el ecosistema R)

OI ¿Y ESTO PARA QUÉ?

PERFILES Y ÁMBITOS

1

Análisis de datos Descubrir patrones y tendencias Construir modelos predictivos

DATA SCIENTIST

2

Aplicar el conocimiento extraído por Data Scientist a la toma de decisiones

DATA ANALYST

3

Bioinformática Comportamiento social Estudios de mercado Estadística

INVESTIGACIÓN

4

Justificación de las decisiones tomadas por los modelos

XAI

¿Y ESTO PARA QUÉ?

Data Analyst Wealth - Data Science & BI (Openbank)

Santander

Madrid, Madrid provincia

To be successful in the role you must have experience on:

- +2 years of experience in a similar role.
- Statistical analysis: you know the basic statistical concepts, and know how to implement
 them in different programming languages (ideally R, Python or Spark). You know when
 to use different indicators and have experience summarizing data insights with them.
- Dealing with large datasets, and implementing scalable solutions. You know what data cleaning means and how to interact with a data engineer.
- How to solve problems using data: analyze the problem and decompose it into different
 analytical components, and recycle all the components you can from other projects.
- Software development: you know what git means, and how to develop your own code, test it and use it to produce actionable results. Open-source lovers get a plus if you show us your github!
- Data Visualization, and tools like ggplot, matplotlib, tableau, or similar. Bonus points for Microstrategy, or QuickSight.

Research Scientist

Bristol Myers Squibb

Sevilla, Sevilla provincia

Requirements:

- PhD in a relevant discipline, accompanied by original research publications
- Experience incorporating modern deep learning concepts (e.g. attention, graph-based, disentanglement) into models applied towards real-world challenges
- Strong grasp of scientific programming languages (e.g. Python, R) and relevant libraries and software (e.g. PyTorch, TensorFlow).

Data Scientist, Spain

TikTok (parte de ByteDance)

Madrid, Madrid provincia

Oualifications

- Bachelor's degree or above, majoring in statistics or data science is preferred;
- Proficiency in SQL/Excel/R/Python/Tableau. Familiar with common statistical methods and applications (A/B testing, probability, regression);
- At least 3 years of working experience in an analytical role involving e-commerce/user growth/product optimization/business analytics/performance marketing;
- Able to complete English reports and communicate with global staff independently in a diverse and cross-functional environment;

Junior Data Scientist

Deloitte

Madrid, Madrid provincia

Crea una cuenta de Indeed antes de continuar a la página web de la empresa

Solicitar en la página web

Requisitos:

Titulación superior orientada a Ingeniería. Valorable máster.

Experiencia de 0 a 3 años de experiencia

Valorable conocimiento lenguajes Python, Spark, R, y SAS sobre entornos Big Data y Cloud Valorable conocimiento arquitectura Cloud (AWS, Azure, Google)

Nival alta da inglác (hablada y accrita)

PREDICCIÓN DENTRO DEL ML

DATOS

Librerías de estructura de datos y tratamiento de dataframes

ALGORITMOS

Algoritmos de Machine Learning y Deep Learning

XAI

Explicabilidad de los modelos de Machine Learning

Los modelos básicos ya incluyen test estadísticos y estudio ANOVA más precisos

```
Call:
lm(formula = reventa ~ .. data = coches3)
Residuals:
   Min
            10 Median
-8.8760 -1.6292 -0.0984 1.3597 7.2517
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
               15.4588203 8.8347913
                                        1.750 0.083080 .
               -0.0004783 0.0042859 -0.112 0.911349
ventas
tipoCamión
                0.6494654 1.1091668 0.586 0.559439
precio
                0.8500987 0.0445224 19.094 < 2e-16 ***
            -1.1708220 U.0842010 1.712 1.720 0.0124367 0.0150276 0.828 0.409781
                 -1.1708220 0.6842818 -1.711 0.090030 .
motor_s
caballos
batalla
            0.0680193 0.0847377
                                        0.803 0.423959
anchura
                0.1061208 0.1368104
                                        0.776 0.439683
longitud
                 -0.0914974 0.0516296 -1.772 0.079264
peso_revestimiento -4.9036692 1.2878525 -3.808 0.000236
tapon_combustible 0.2738897 0.1623872 1.687 0.094640 .
kpl
                 -0.1898848 0.1306856 -1.453 0.149209
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.802 on 105 degrees of freedom
Multiple R-squared: 0.9472, Adjusted R-squared: 0.9417
F-statistic: 171.4 on 11 and 105 DF, p-value: < 2.2e-16
```

XAI

Explicabilidad de los modelos de Machine Learning

Módulos de XAI especializados:

- ModelStudio
- LIME

XAI

Explicabilidad de los modelos de Machine Learning

XAI

Explicabilidad de los modelos de Machine Learning

XAI

Explicabilidad de los modelos de Machine Learning

Construcción de modelos de explicabilidad sobre modelos existentes:

- Reglas de asociación: ARULES que aprendan los patrones de decisión


```
# Lectura del dataset y preprocesado
install.packages("tidyverse")
library(tidyverse)
library(readr)
coches <- read.table("Car_sales.txt", encoding = "UTF-8")</pre>
coches <- coches %>%
  select(c("reventa", everything()))
View(coches)
coches$fabricante = factor(coches$fabricante)
coches$modelo = factor(coches$modelo)
coches$tipo = factor(coches$tipo)
coches2 <- na.omit(coches)</pre>
summary(coches2)
coches2 \leftarrow coches2[,-c(2,3,5)]
View(coches2)
```

reventa [‡]	ventas ‡	precio [‡]	motor_s	caballos [‡]	batalla [‡]
16.360	16.919	21.500	1.8	140	101.2
19.875	39.384	28.400	3.2	225	108.1
29.725	8.588	42.000	3.5	210	114.6
22.255	20.397	23.990	1.8	150	102.6
23.555	18.780	33.950	2.8	200	108.7
39.000	1.380	62.000	4.2	310	113.0
28.675	9.231	33.400	2.8	193	107.3
	16.360 19.875 29.725 22.255 23.555 39.000	reventa ventas 16.360 16.919 19.875 39,384 29.725 8.588 22.255 20.397 23.555 18.780 39.000 1.380	reventa ventas precio 16.360 16.919 21.500 19.875 39.384 28.400 29.725 8.588 42.000 22.255 20.397 23.990 23.555 18.780 33.950 39.000 1.380 62.000	reventa ventas precio motor_s 16.360 16.919 21.500 1.8 19.875 39.384 28.400 3.2 29.725 8.588 42.000 3.5 22.255 20.397 23.990 1.8 23.555 18.780 33.950 2.8 39.000 1.380 62.000 4.2	reventa ventas precio motor_s caballos 16.360 16.919 21.500 1.8 140 19.875 39.384 28.400 3.2 225 29.725 8.588 42.000 3.5 210 22.255 20.397 23.990 1.8 150 23.555 18.780 33.950 2.8 200 39.000 1.380 62.000 4.2 310

anchura [‡]	longitud [‡]	peso_revestimiento	tapón_combustible [‡]	kpl [‡]
67.3	172.4	2.639	13.2	28.0
70.3	192.9	3.517	17.2	25.0
71.4	196.6	3.850	18.0	22.0
68.2	178.0	2.998	16.4	27.0
76.1	192.0	3.561	18.5	22.0
74.0	198.2	3.902	23.7	21.0
68.5	176.0	3.197	16.6	24.0

Acceso al script https://github.com/lourdesLB/rsample-predicion-visualization-xai

```
# -----
# Representaciones
boxplot(coches2)
heatmap(abs( cor(coches2) ), scale="none")
```



```
Call:
lm(formula = reventa \sim ... data = coches3)
Residuals:
   Min
            10 Median
-8.8760 -1.6292 -0.0984 1.3597 7.2517
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 15.4588203 8.8347913 1.750 0.083080
ventas
                 -0.0004783 0.0042859 -0.112 0.911349
tipoCamión
                0.6494654 1.1091668
                                      0.586 0.559439
precio
                  0.8500987 0.0445224 19.094 < 2e-16 ***
                 -1.1708220 0.6842818 -1.711 0.090030
motor_s
caballos
               0.0124367 0.0150276 0.828 0.409781
batalla
                  0.0680193 0.0847377 0.803 0.423959
anchura
                0.1061208 0.1368104 0.776 0.439683
longitud
                 -0.0914974 0.0516296 -1.772 0.079264
peso_revestimiento -4.9036692 1.2878525 -3.808 0.000236 ***
tapon_combustible 0.2738897 0.1623872 1.687 0.094640 .
kpl
                 -0.1898848 0.1306856 -1.453 0.149209
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.802 on 105 degrees of freedom
Multiple R-squared: 0.9472, Adjusted R-squared: 0.9417
F-statistic: 171.4 on 11 and 105 DF, p-value: < 2.2e-16
```

```
# ModelStudio para explicabilidad
install.packages("DALEX")
install.packages("DALEXtra")
install.packages("mlr")
install.packages("xgboost")
library(modelStudio)
library(xgboost)
library(DALEX)
train_matrix <- model.matrix(reventa ~.-1, train)</pre>
test_matrix <- model.matrix(reventa ~.-1, test)</pre>
xgb_matrix <- xgb.DMatrix(train_matrix, label = train$reventa)</pre>
params <- list(max_depth = 3,</pre>
                objective = "reg:linear",
               eval metric = "rmse")
model <- xgb.train(params, xgb_matrix, nrounds = 500)</pre>
explainer <- explain(model,</pre>
                      data = test_matrix,
                      y = test$reventa,
                      type = "regression",
                      label = "xgboost")
modelStudio::modelStudio(explainer)
```


03 VISUALIZACIÓN

VISUALIZACIÓN DENTRO DEL ML

VISUALIZACIÓN

EDA

Análisis exploratorio de datos

VISUALIZACIÓN

DASHBOARDS

Dashboards e informes. Interfaces web.

RSHINY

RSHINY

Python Data Scientists:

Make a web app with R Shiny.

No R can't be used in production. I demand PyTorch, sklearn, flask, Django, apis, IT, infrastructure, mlops, AWS so my app can scale...

R Data Scientists:

Make a web app with R Shiny.

Yeah let's just make a shiny app.

04HAY MÁS...

(pero eso para otro día)

MUCHAS GRACIAS POR SU ATENCIÓN

