

Quantale Enriched Framework for Mathematical Morphology

Ignacio Bellas Acosta¹

¹School of Computer Science University of Leeds

April 2025

IBA (UL) BCTCS 2025 April 2025 1/30

Overview

Background and Motivation

Quantales and Quantale Enriched Categories

3 Generalising Dilations, Erosions, Converse and Complement

IBA (UL) BCTCS 2025 April 2025

Background

- Mathematical Morphology (MM), 1960s image processing (Serra [2], Serra et al [3]).
- Two main ingredients:
 - Binary image: Modelled as $I \subset \mathbb{Z}^2$.

• Structuring element: A pattern of of pixels $B \subseteq \mathbb{Z}^2$.

Dilation

$$I \oplus B := \bigcup_{b \in B} I_b$$
 where $I_b := \{i + b \mid i \in I\}$.

Erosion

$$I \ominus B := \bigcap_{b \in B} I_{-b}$$
 where $I_{-b} := \{i - b \mid i \in I\}.$

IBA (UL) BCTCS 2025 April 2025 4 / 30

Relational Approach

• Structuring elements $B \subseteq \mathbb{Z}^2$ induce binary relations $R_B := \{(x, x + b) \mid x \in \mathbb{Z}^2 \text{ and } b \in B\}.$

Dilation of I by R

$$I \oplus R := \{ x \in \mathbb{Z}^2 \mid \exists y \in \mathbb{Z}^2 : yRx \land y \in I \}$$

Erosion of I by R

$$I \ominus R := \{ x \in \mathbb{Z}^2 \mid \forall y \in \mathbb{Z}^2 : xRy \to y \in I \}$$

- $\bullet \ I \oplus B = I \oplus R_B,$
- $\bullet \ \ I\ominus B=I\ominus R_B,$
- $I \oplus \breve{R} = \Diamond I$
- \bullet $I \ominus R = \square I$

IBA (UL)

Relational approach

Equipping $\mathcal{P}\mathbb{Z}^2$ with the binary relation \subseteq yields an adjunction:

Corollary

For any $R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$:

$$\mathcal{P}\mathbb{Z}^2 \xrightarrow[-\ominus R]{-\ominus R} \mathcal{P}\mathbb{Z}^2$$

Lemma

$$\begin{array}{ccc} \mathcal{P}\mathbb{Z}^2 & \xrightarrow{-\oplus R} & \mathcal{P}\mathbb{Z}^2 \\ - & & \downarrow - \\ (\mathcal{P}\mathbb{Z}^2)^{op} & \xrightarrow{-\ominus \breve{R}} & (\mathcal{P}\mathbb{Z}^2)^{op} \end{array}$$

$$\begin{array}{ccc} \mathcal{P}\mathbb{Z}^2 & \stackrel{-\ominus R}{\longrightarrow} \mathcal{P}\mathbb{Z}^2 \\ - \uparrow & & \downarrow - \\ (\mathcal{P}\mathbb{Z}^2)^{op} & \stackrel{-\oplus \breve{\mathsf{R}}}{\longrightarrow} (\mathcal{P}\mathbb{Z}^2)^{op} \end{array}$$

IBA (UL)

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	
Relation	$R\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	
Image space	$\mathcal{P}\mathbb{Z}^2$	
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	
Complement	$-: \mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	
Image space	$\mathcal{P}\mathbb{Z}^2$	
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	
Complement	$-:\mathcal{P}\mathbb{Z} o(\mathcal{P}\mathbb{Z})^{op}$	
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R \subseteq \mathbb{X}^{op} \times \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	
Converse	$\check{R} \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	
Complement	$-: \mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R \subseteq \mathbb{X}^{op} \times \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	$Upsets\;Up(\mathbb{X})$
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	
Complement	$-: \mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R\subseteq \mathbb{X}^{op} imes \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	$Upsets\ Up(\mathbb{X})$
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	Left and right converse $\smile R, \smile R \subseteq \mathbb{X}^{op} \times \mathbb{X}$
Complement	$-:\mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R\subseteq \mathbb{X}^{op} imes \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	$Upsets\ Up(\mathbb{X})$
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	Left and right converse $\smile R, \smile R \subseteq \mathbb{X}^{op} imes \mathbb{X}$
Complement	$-:\mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	Pseudocomplement and dual $\neg, \neg : Up(\mathbb{X}) o Up(\mathbb{X})^{op}$
Dilation	$-\oplus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R\subseteq \mathbb{X}^{op} imes \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	$Upsets\ Up(\mathbb{X})$
Converse	$\check{R}\subseteq\mathbb{Z}^2 imes\mathbb{Z}^2$	Left and right converse $\smile R, \smile R \subseteq \mathbb{X}^{op} imes \mathbb{X}$
Complement	$-:\mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	Pseudocomplement and dual $\neg, \neg : Up(\mathbb{X}) o Up(\mathbb{X})^{op}$
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	$-\oplus R: Up(\mathbb{X}) o Up(\mathbb{X})$
Erosion	$-\ominus R:\mathcal{P}\mathbb{Z}\to\mathcal{P}\mathbb{Z}$	$-\ominus R: Up(\mathbb{X}) o Up(\mathbb{X})$

Binary Graph MM (Stell [4]):

Concept	(Binary) Set MM	(Binary) Graph MM
Grid of Pixels	Set \mathbb{Z}^2	Preorder $\mathbb{X} = (X, \leq)$
Relation	$R \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$	Monotone relation $R \subseteq \mathbb{X}^{op} \times \mathbb{X}$
Image space	$\mathcal{P}\mathbb{Z}^2$	$Upsets\;Up(\mathbb{X})$
Converse	$ \check{R} \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2 $	Left and right converse $\smile R, \smile R \subseteq \mathbb{X}^{op} \times \mathbb{X}$
Complement	$-: \mathcal{P}\mathbb{Z} o (\mathcal{P}\mathbb{Z})^{op}$	Pseudocomplement and dual $\neg, \neg : Up(\mathbb{X}) o Up(\mathbb{X})^{op}$
Dilation	$-\oplus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	$-\oplus R: Up(\mathbb{X}) o Up(\mathbb{X})$
Erosion	$-\ominus R: \mathcal{P}\mathbb{Z} \to \mathcal{P}\mathbb{Z}$	$-\ominus R: Up(\mathbb{X}) o Up(\mathbb{X})$

• Semantics for BISKT (Stell et al [5]):

$$\bullet \ \, \boldsymbol{\phi} \varphi := \llbracket \varphi \rrbracket \oplus R$$

$$\bullet \ \Box \varphi := \llbracket \varphi \rrbracket \ominus R$$

$$\circ \Diamond \varphi \leftrightarrow \Box \Box \neg \varphi$$
,

$$\bullet \quad \blacksquare \varphi := \llbracket \varphi \rrbracket \ominus \smile R$$

$$\bullet \quad \blacksquare \varphi \leftrightarrow \neg \blacklozenge \neg \varphi$$

IBA (UL) BCTCS 2025 April 2025 7 / 30

Extend the MM framework to account for:

Extend the MM framework to account for:

Graphical images

Extend the MM framework to account for:

 $\bullet \ \, \mathsf{Graphical} \ \mathsf{images} \to \mathsf{Order} \ \mathsf{Theory} \\$

Extend the MM framework to account for:

- ullet Graphical images o Order Theory
- Images valued on Greyscale/Colours

Extend the MM framework to account for:

- ullet Graphical images o Order Theory
- Images valued on Greyscale/Colours→ Quantale Theory

IBA (UL) BCTCS 2025 April 2025

Extend the MM framework to account for:

- ullet Graphical images o Order Theory
- Images valued on Greyscale/Colours→ Quantale Theory

 ${\sf Order\ Theory}\,+\,{\sf Quantale\ Theory}\,\to\,{\sf Quantale\ Enriched\ Theory}$

IBA (UL) BCTCS 2025 April 2025

Extend the MM framework to account for:

- ullet Graphical images o Order Theory
- ullet Images valued on Greyscale/Colourso Quantale Theory

 ${\sf Order\ Theory}\ +\ {\sf Quantale\ Theory}\ \to\ {\sf Quantale\ Enriched\ Theory}$

Project

We propose a framework within Quantale Enriched Category Theory that accounts for Colour/Greyscale Graph MM.

IBA (UL) BCTCS 2025 April 2025

Quantales

Quantale Q

A complete lattice \mathcal{Q}_0 equipped with a composition operation $\cdot: \mathcal{Q} \times \mathcal{Q} \to \mathcal{Q}$ that preserves sups in both arguments and has a unit element $e \in \mathcal{Q}_0$.

There are two residual operations $\rhd: \mathcal{Q} \times \mathcal{Q}^{co} \to \mathcal{Q}^{co}$ and $\lhd: \mathcal{Q}^{co} \times \mathcal{Q} \to \mathcal{Q}^{co}$ satisfying the following condition:

$$f \cdot - \dashv f \rhd - \text{ and } - \cdot g \dashv - \lhd g.$$

Quantale morphism

A quantale morphism $\alpha: \mathcal{Q} \to \mathcal{Q}'$ is a sup-lattice morphism that preserves the composition and the unit element.

IBA (UL) BCTCS 2025 April 2025

Involutive and Girard Quantales

Involutive Quantale

A quantale $\mathcal Q$ equipped with an involutive quantale morphism $(-)^\dagger:\mathcal Q\to\mathcal Q^{op}$ is said to be an involutive quantale.

Girard Quantale

A quantale $\mathcal Q$ is Girard if there exists an element $d\in\mathcal Q_0$ that:

- $f \triangleright d = d \triangleleft f$ (Cyclic),
- $d \triangleleft (f \triangleright d) = f$ (Dualising)

for every $f \in \mathcal{Q}_0$.

The cyclic and dualising element in a Girard quantale $\mathcal Q$ induces an involutive sup-lattice morphism $(-)^{\perp}:\mathcal Q\to\mathcal Q^{coop}$ $(f\mapsto f\rhd d).$

IBA (UL) BCTCS 2025 April 2025

Some examples of involutive Girard quantales:

- The Boolean algebra 2 where $\cdot = \wedge$.
- The three element chain 3 equipped with the composition operation:

	Т	1	T
Т	Т	Т	1
1	Т	1	\perp
\perp	上	Т	\perp

• The diamond lattice M_3 ($\bot \le a, b, c \le \top$) equipped with the composition operation:

	\perp	а	b	С	Т
Τ	\perp	Τ	Τ	1	1
а	Т	а	b	С	Т
Ь	Т	Ь	С	а	Т
С	\perp	С	а	Ь	Т
T	Τ	Τ	Т	T	Т

IBA (UL) BCTCS 2025 April 2025 11 / 30

Q-enriched structures

Q-category

A \mathcal{Q} -enriched category \mathcal{X} consists of a set \mathcal{X}_0 equipped with a function $\mathcal{X}(-,-):\mathcal{X}_0\times\mathcal{X}_0\to\mathcal{Q}$ that satisfies:

- $e \leq \mathcal{X}(x,x)$,
- $\bullet \ \mathcal{X}(x,x') \cdot \mathcal{X}(x',x'') \leq \mathcal{X}(x,x'').$
- $\mathcal{X}(-,-)$ induces a preorder on \mathcal{X}_0 :
 - $x \le x'$ (in \mathcal{X}) $\Leftrightarrow e \le \mathcal{X}(x, x')$ (in \mathcal{Q}).

Q-functor

A Q-functor $F: \mathcal{X} \to \mathcal{Y}$ is a function where $\mathcal{X}(x, x') \leq \mathcal{Y}(Fx, Fy)$.

We let Cat_Q be the 2-category of Q-categories and Q-functors.

IBA (UL) BCTCS 2025 April 2025

Q-distributors

Q-distributor

Given two \mathcal{Q} -categories \mathcal{X} and \mathcal{Y} , a \mathcal{Q} -distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ is a function $R: \mathcal{X}_0 \times \mathcal{Y}_0 \to \mathcal{Q}$ satisfying the following two axioms:

- $\mathcal{X}(x,x') \cdot R(x',y) \leq R(x,y)$
- $R(x,y) \cdot \mathcal{Y}(y,y') \leq R(x,y')$

Let $\mathbf{Dist}_{\mathcal{Q}}$ be the quantaloid of \mathcal{Q} -categories and \mathcal{Q} -distributors. Then:

- $(R \cdot S)(x, z) := \bigvee_{y \in \mathcal{Y}_0} R(x, y) \cdot S(y, z),$
- $(R \triangleright T)(y,z) := \bigwedge_{x \in \mathcal{X}_0} R(x,y) \triangleright T(x,z),$
- $(T \triangleleft S)(x,y) := \bigwedge_{z \in \mathcal{Z}_0} T(x,z) \triangleleft S(y,z).$

IBA (UL) BCTCS 2025 April 2025

Q(-co)-presheaves

Q-co-presheaves

A \mathcal{Q} -co-presheaf is a \mathcal{Q} -distributor $\varphi: * \hookrightarrow \mathcal{X}$. $\mathcal{U}\mathcal{X}$ is the \mathcal{Q} -category of co-presheaves where $\mathcal{U}\mathcal{X}(\varphi, \varphi') = \varphi \blacktriangleleft \varphi'$.

$$\varphi \leq \varphi'$$
 (in \mathcal{UX}) iff $\varphi' \leq \varphi$ (in $\mathbf{Dist}_{\mathcal{Q}}$)

Q-presheaves

A \mathcal{Q} -presheaf is a \mathcal{Q} -distributor $\psi: \mathcal{X} \hookrightarrow *. \mathcal{DX}$ is the \mathcal{Q} -category of presheaves where $\mathcal{DX}(\psi, \psi') = \psi \blacktriangleright \psi'$.

$$\psi \leq \psi'$$
 (in \mathcal{DX}) iff $\psi \leq \psi'$ (in $\mathbf{Dist}_{\mathcal{O}}$)

IBA (UL) BCTCS 2025 April 2025

• Any preorder $\mathbb{X}=(X,\leq)$ is a $\mathcal{Q}(2)$ -category \mathcal{X} where $\mathcal{X}(x,x')=\top$ iff $x\leq x'$,

- Any preorder $\mathbb{X}=(X,\leq)$ is a $\mathcal{Q}(2)$ -category \mathcal{X} where $\mathcal{X}(x,x')=\top$ iff $x\leq x'$,
- Any monotone relation $R \subseteq \mathbb{X}^{op} \times \mathbb{X}$ is a $\mathcal{Q}(2)$ -distributor $R: \mathcal{X} \hookrightarrow \mathcal{X}$.

IBA (UL) BCTCS 2025 April 2025 15 / 30

- Any preorder $\mathbb{X}=(X,\leq)$ is a $\mathcal{Q}(2)$ -category \mathcal{X} where $\mathcal{X}(x,x')=\top$ iff $x\leq x'$,
- Any monotone relation $R \subseteq \mathbb{X}^{op} \times \mathbb{X}$ is a $\mathcal{Q}(2)$ -distributor $R: \mathcal{X} \hookrightarrow \mathcal{X}$.
- Any upset $U \in \mathsf{Up}(\mathbb{X})$ is a $\mathcal{Q}(2)$ -co-presheaf $\varphi_U : * \hookrightarrow \mathcal{X}$ where $\varphi_U(x) = \top$ iff $x \in U$.

IBA (UL) BCTCS 2025 April 2025 15/30

Concept	Graph MM	\mathcal{Q} -generalisation
Grid	X	$\mathcal Q$ -category $\mathcal X$
Relation	$R \subseteq \mathbb{X}^{op} \times \mathbb{X}$	\mathcal{Q} -distributor $R: \mathcal{X} \hookrightarrow \mathcal{X}$
Image Space	$Up(\mathbb{X})$	\mathcal{Q} -category $\mathcal{U}\mathcal{X}$
Dilation	$-\oplus R$	
Erosion	$-\ominus R$	
Converse	$\smile R \subseteq \mathbb{X}^{op} \times \mathbb{X}$	
Complement	¬, ¬	

IBA (UL) BCTCS 2025 April 2025 15 / 30

Generalising dilations and erosions

Theorem (Stubbe [6])

For any two \mathcal{Q} -categories \mathcal{X} and \mathcal{Y} , $\mathbf{Dist}_{\mathcal{Q}}(\mathcal{X},\mathcal{Y})$ is locally equivalent to $\mathbf{Co\text{-}Cont}_{\mathcal{Q}}^{op}(\mathcal{U}\mathcal{X},\mathcal{U}\mathcal{Y})$ and $\mathbf{Cont}_{\mathcal{Q}}^{co}(\mathcal{U}\mathcal{X},\mathcal{U}\mathcal{Y})$.

ldea

Any \mathcal{Q} -distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ acts on $\mathcal{U}\mathcal{X}$ and $\mathcal{U}\mathcal{Y}$ defining an adjunction of \mathcal{Q} -categories:

$$\mathcal{U}\mathcal{Y} \xrightarrow{-\blacktriangleleft R} \mathcal{U}\mathcal{X}$$

- $\cdot R = \mathcal{Q}$ -generalisation of $\oplus R$
- $\blacktriangleleft R = \mathcal{Q}$ -generalisation of $\ominus R$

IBA (UL) BCTCS 2025 April 2025

Lemma

For any Q-category \mathcal{X} , the structure \mathcal{X}^{\dagger} where $\mathcal{X}^{\dagger}(x,x')=\mathcal{X}(x',x)^{\dagger}$ is a Q-category. For any Q-distributor $R:\mathcal{X}\hookrightarrow\mathcal{Y}$, the function $R^{\dagger}(y,x)=R(x,y)^{\dagger}$ is a Q-distributor $R^{\dagger}:\mathcal{Y}^{\dagger}\hookrightarrow\mathcal{X}^{\dagger}$.

Corollary

The dagger involution in $\mathcal Q$ induces a quantaloid isomorphism $(-)^{\dagger}: \mathbf{Dist}_{\mathcal Q} \to \mathbf{Dist}_{\mathcal O}^{op} \ (\mathcal X \mapsto \mathcal X^{\dagger}, \ R \mapsto R^{\dagger}).$

IBA (UL) BCTCS 2025 April 2025 17 / 30

Goal

Define a converse type of operation \smile : $\mathbf{Dist}_{\mathcal{Q}} \to \mathbf{Dist}_{\mathcal{Q}}^{op}$ that is the identity on objects.

Definition

 $Matr_{\mathcal{Q}}$ is the quantaloid where:

- Objects are sets,
- For any two sets X and Y, $\mathbf{Matr}_{\mathcal{Q}}(X,Y)$ is the complete lattice of matrices $\Phi: X \leftrightarrow Y$, functions of type $\Phi: X \times Y \to \mathcal{Q}$.

Proposition

The function |-|: **Dist**_{\mathcal{Q}} \rightarrow **Matr**_{\mathcal{Q}} that:

- \bullet Maps ${\mathcal X}$ to its underlying set $|{\mathcal X}|$
- Maps $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ to the underlying matrix $|R|: |\mathcal{X}| \leftrightarrow |\mathcal{Y}|$ is a lax quantaloid morphism.

IBA (UL) BCTCS 2025

Lemma

For any two Q-categories X and Y:

where:

- $\bullet \ \Phi^{\uparrow} := 1_{\mathcal{X}} \bullet \Phi \bullet 1_{\mathcal{Y}},$
 - $\bullet \ \Phi^{\downarrow} := 1_{\mathcal{X}} \blacktriangleright \Phi \blacktriangleleft 1_{\mathcal{V}}$

IBA (UL)

April 2025

Since for any Q-categories \mathcal{X} , $|\mathcal{X}|=|\mathcal{X}^{\dagger}|$ and $|\mathcal{Y}|=|\mathcal{Y}^{\dagger}|$:

Definition

For any Q-distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ let:

$$\bullet \ \smile R := 1_{\mathcal{V}} \cdot |R^{\dagger}| \cdot 1_{\mathcal{X}},$$

$$\bullet \sim R := 1_{\mathcal{V}} \triangleright |R|^{\dagger} \blacktriangleleft 1_{\mathcal{X}}.$$

IBA (UL) BCTCS 2025 April 2025

Theorem

The map \smile : $\mathbf{Dist}_{\mathcal{Q}} \to \mathbf{Dist}_{\mathcal{Q}}^{op}$ that:

- Is the identity on Q-categories,
- Maps every Q-distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ to $\smile R: \mathcal{Y} \hookrightarrow \mathcal{X}$,

is a function that satisfies the following properties:

•
$$\smile(\bigvee_i R_i) = \bigvee_i \smile R_i$$
,

•
$$1_{\mathcal{O}_{\mathcal{X}}} \leq \mathcal{O}1_{\mathcal{X}}$$
,

21/30

IBA (UL) BCTCS 2025 April 2025

Theorem (Rosenthal [1])

If $\mathcal Q$ is a Girard quantale, then $\mathbf{Dist}_{\mathcal Q}$ is a Girard quantaloid.

The linear negation $(-)^{\pm}: \mathbf{Dist}_{\mathcal{Q}} \to \mathbf{Dist}_{\mathcal{Q}}^{coop}$ maps every \mathcal{Q} -distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$ to the \mathcal{Q} -distributor $R^{\pm}: \mathcal{Y} \hookrightarrow \mathcal{X}$ where $R^{\pm}(y,x) = R(x,y)^{\perp}$.

Corollary

For any two \mathcal{Q} -categories \mathcal{X} and \mathcal{Y} , there exists a local equivalence betwen $\mathbf{Dist}_{\mathcal{Q}}(\mathcal{X},\mathcal{Y})$ and $\mathbf{Dist}_{\mathcal{Q}}^{coop}(\mathcal{X},\mathcal{Y})$.

IBA (UL) BCTCS 2025 April 2025

We can define the local adjunction:

$$\begin{array}{c} \textbf{Dist}_{\mathcal{Q}}^{co}(\mathcal{X}^{\dagger},\mathcal{Y}^{\dagger}) \xrightarrow{\stackrel{|-|}{\bot}} \textbf{Matr}_{\mathcal{Q}}^{co}(|\mathcal{X}^{\dagger}|,|\mathcal{Y}^{\dagger}|) \xrightarrow{\cong} \textbf{Matr}_{\mathcal{Q}}^{co}(|\mathcal{X}|,|\mathcal{Y}|) \\ \uparrow \simeq \downarrow & & \uparrow \\ \textbf{Dist}_{\mathcal{Q}}^{op}(\mathcal{X}^{\dagger},\mathcal{Y}^{\dagger}) & & \downarrow \\ \uparrow \simeq \downarrow & & \downarrow \\ \textbf{Dist}_{\mathcal{Q}}(\mathcal{X},\mathcal{Y}) & & \downarrow \\ & \downarrow & & \downarrow \\ \textbf{Dist}_{\mathcal{Q}}(\mathcal{X},\mathcal{Y}) & & \downarrow \\ \end{array}$$

IBA (UL) BCTCS 2025 April 2025 23 / 30

and the local adjunction:

IBA (UL) BCTCS 2025 April 2025 24/30

Definition

For any \mathcal{Q} -co-copresheaf $\varphi: * \hookrightarrow \mathcal{X}$, let:

$$\bullet \ \, \llcorner \varphi := |\varphi|^{\pm \dagger} \cdot X(-,-),$$

$$\bullet$$
 $\neg \varphi := |\varphi^{\dagger \pm}| \cdot X(-,-),$

$$\bullet \ \, \vdash \varphi := |\varphi|^{\pm \dagger} \blacktriangleleft X(-,-)$$

25 / 30

Lemma

For any Q-category \mathcal{X} , the complement-type operations form the adjunctions of Q-categories:

$$\mathcal{U}\mathcal{X} \overset{\vec{\rightarrow}}{\underset{\leftarrow}{\longleftarrow}} (\mathcal{U}\mathcal{X})^{\dagger} \overset{\vec{\rightarrow}}{\underset{\leftarrow}{\longleftarrow}} \mathcal{U}\mathcal{X}$$

IBA (UL) BCTCS 2025 April 2025

Correspondence between dilations and erosions

Theorem

For any Q-distributor $R: \mathcal{X} \hookrightarrow \mathcal{Y}$, the following diagrams commute:

IBA (UL) BCTCS 2025 April 2025

Conclusion and Future Work

 Framework for Colour/Greyscale Graph MM within Quantale Enriched Category Theory

Concept	Q-enriched generalisation
Grid	\mathcal{Q} -category \mathcal{X}
Relation	\mathcal{Q} -distributor $R: \mathcal{X} \hookrightarrow \mathcal{X}$
Image Space	\mathcal{Q} -category $\mathcal{U}\mathcal{X}$
Dilation	- • R
Erosion	- ∢ R
Converse	$\smile R: \mathcal{X} \hookrightarrow \mathcal{X}$
Complement	¬, ¬, ¬, ¬, ¬

- Role of the right converse.
- Build a modal logic that allows for spatial reasoning of Greyscale/Colour Graph MM.

Thank You Very Much!

References I

- Kimmo I. Rosenthal. Girard quantaloids. Mathematical Structures in Computer Science, 2(1):93-108, March 1992.
- [2] Jean Serra. Image Analysis and Mathematical Morphology. Academic Press, Inc., USA, 1983.
- [3] Jean Serra, Pierre Soille, and Max A. Viergever, editors. Mathematical Morphology and Its Applications to Image Processing, volume 2 of Computational Imaging and Vision. Springer Netherlands, Dordrecht, 1994.
- John G. Stell. Relations on Hypergraphs. In Wolfram Kahl and Timothy G. Griffin, editors, Relational and Algebraic Methods in Computer Science, Lecture Notes in Computer Science, pages 326-341, Berlin, Heidelberg, 2012. Springer.

IBA (UL) **BCTCS 2025** April 2025 29 / 30

References II

- John G. Stell, Renate A. Schmidt, and David Rydeheard. A bi-intuitionistic modal logic: Foundations and automation. Journal of Logical and Algebraic Methods in Programming, 85(4):500-519, June 2016.
- Isar Stubbe. Categorical Structures Enriched in a Quantaloid: Categories, Distributors and Functors, September 2004. arXiv:math/0409473.

IBA (UL) **BCTCS 2025** April 2025