Отчет по лабораторной работе №6 Эпидемия

Ширяев Кирилл Владимирович

Содержание

Цель работы	4
Задание	5
Теоретическая справка	6
Выполнение лабораторной работы	8
Библиотеки	8
Значения	8
Решение	9
Решение системы для случая $I(0) \leq I^*$	9
Решение системы для случая $I(0) > I^*$	9
Вывод графика №1	9
Вывод графика №2	10
Выводы	12

Список иллюстраций

0.1	Вывод графика №1															10
0.2	Вывод графика №2															11

Цель работы

Ознакомиться с моделью "эпидемия" и построить графики по этой модели.

Задание

Вариант 39

Для модели «эпидемия»:

$$\frac{dS}{dt} = \begin{cases} -0.01S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

$$\frac{dI}{dt} = \begin{cases} 0.01S - 0.02I, I(t) > I^* \\ -0.02I, I(t) \le I^* \end{cases}$$

$$\frac{dR}{dt} = 0.02I$$

Построить графики изменения числа особей в каждой из трех групп в случае:

- $1)I(0) \le I^*$
- $2)I(0) > I^*$

При следующих начальных условиях: N = 12800, I(0) = 180, R(0) = 58.

Теоретическая справка

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие им-

мунитет к болезни)

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α , β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия .Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

Выполнение лабораторной работы

Библиотеки

Подключаю все необходимые библиотеки

import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint

Значения

Ввод значений из своего варианта (39 вариант)

a = 0.01

b = 0.02

N = 12800

I = 180

R = 58

S = N - I - R

t = np.arange(0,400,0.01)

v = [S,I,R]

Решение

```
Решение системы для случая I(0) \leq I^*
def f1(v,t):
   dS = 0
   \mathrm{d}I = \text{-}1*b*v[1]
   dR = b*v[1]
   return [dS,dI,dR]
res = odeint(f1,v,t)
Решение системы для случая I(0) > I^*
def f2(v,t):
   dS = -1*a*v[0]
   dI = a*v[0] - b*v[1]
   dR = b*v[1]
   return [dS,dI,dR]
res = odeint(f2,v,t)
```

Вывод графика изменения числа особей в каждой из трех групп для случая $I(0) \leq I^*$ (рис. @fig:001).

Рис. 0.1: Вывод графика №1

Вывод графика №2

Вывод графика изменения числа особей в каждой из трех групп для случая $I(0) > I^*$ (рис. @fig:002).

Рис. 0.2: Вывод графика \mathbb{N}^2

Выводы

Я ознакомился с моделью "эпидемия" и построил графики по этой модели.