

Ácidos e Bases no dia a dia

Ácidos

Têm um gosto azedo. O vinagre deve o seu gosto ao ácido acético. Os citrinos contém ácido cítrico.

Reagem com certos metais produzindo hidrogénio.

Reagem com carbonatos e bicarbonatos produzindo dióxido de carbono.

Bases

Têm um sabor amargo.

Escorregadios. Muitos sabões contém bases.

Ácidos e Bases de Arrehnius

Um ácido de Arrehnius é uma substância que produz H⁺ (H₃O⁺) em água

Uma base de Arrhenius é uma substância que produz OH- em água

Ácidos e Bases de Brønsted-Lowry

Um ácido de Brønsted é um dador de protões Uma base de Brønsted é um aceitador de protões

Propriedades ácido-base da água

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

Auto-ionização da água

$$H \rightarrow 0$$
 $+ H \rightarrow 0$ $+ H \rightarrow$

Ácido/Base Lewis: aceitador/dador de par electrões

Produto iónico da água

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq) \quad K_c = \frac{[H^+][OH^-]}{[H_2O]}$$

$$[H_2O]$$
 = constante

$$K_c[H_2O] = K_w = [H^+][OH^-]$$

A constante do produto iónico (K_w) é o produto das concentrações molares dos iões de H⁺ e OH⁻ a uma determinada temperatura.

 $A 25^{\circ}C$ $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

Só 1 molécula em 200 milhões está ionizada

A solução é

$$[H^+] = [OH^-]$$
 neutra

$$[H^+] > [OH^-]$$
 ácida

Produto iónico da água

Qual a concentração de iões OH- numa solução de HCl cuja concentração de iões H+ é 1.3 M?

$$K_W = [H^+][OH^-] = 1.0 \times 10^{-14}$$

[H⁺] = 1.3 M [OH⁻] =
$$\frac{K_w}{[H^+]} = \frac{1 \times 10^{-14}}{1.3} = 7.7 \times 10^{-15} \text{ M}$$

pH uma medida da acidez

$$pH = -log [H^+]$$

<u>A solução é</u>		A 25°C	
neutra	$[H^{+}] = [OH^{-}]$	$[H^+] = 1 \times 10^{-7}$	pH = 7
ácida	$[H^+] > [OH^-]$	$[H^+] > 1 \times 10^{-7}$	pH < 7
básica	$[H^+] < [OH^-]$	$[H^+] < 1 \times 10^{-7}$	pH > 7
	Ηq	[H+]	

Th Co

Con

The pHs of Some Common Fluids

Sample	pH Value
Gastric juice in the stomach	1.0-2.0
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	4.8 - 7.5
Water exposed	5.5
to air*	
Saliva	6.4 - 6.9
Milk	6.5
Pure water	7.0
Blood	7.35-7.45
Tears	7.4
Milk of	10.6
magnesia	
Household	11.5
ammonia	

^{*} Water exposed to air for a long period of time absorbs atmospheric CO₂ to form carbonic acid, H₂CO₃.

pOH = -log [OH-]
$$[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$$
-log [H+] - log [OH-] = 14.00
$$pH + pOH = 14.00$$

pH uma medida da acidez

O pH da água da chuva recolhida numa determinada região do norte de Portugal num dia particular foi 4.74. Qual a concentração de iões H⁺ da água da chuva?

pH = -log [H⁺]
[H⁺] =
$$10^{-pH}$$
 = $10^{-4.74}$ = 1.8×10^{-5} M

A concentração de iões OH- de uma amostra de sangue é 2.5 x 10-7 *M*. Qual o pH do sangue?

pH + pOH =
$$14.00$$

pOH = $-\log [OH^-] = -\log (2.5 \times 10^{-7}) = 6.60$
pH = $14.00 - pOH = 14.00 - 6.60 = 7.40$

Força de ácidos e bases e electrólitos fortes e fracos

Electrólitos fortes – 100% dissociados

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Electrólitos fracos – não estão completamente dissociados

$$CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Ácidos fortes são electrólitos fortes

HCI
$$(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

HNO₃ $(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$
HCIO₄ $(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CIO_4^-(aq)$
H₂SO₄ $(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$

Força de ácidos e bases e electrólitos fortes e fracos

Ácidos fracos são electrólitos fracos

HF
$$(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + F^-(aq)$$

HNO₂ $(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + NO_2^-(aq)$
HSO₄- $(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + SO_4^{2-}(aq)$
H₂O $(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$

Bases Fortes são electrólitos fortes

NaOH (s)
$$H_2O$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) H_2O K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) H_2O Ba²⁺ (aq) + 2OH⁻ (aq)

Força de ácidos e bases e electrólitos fortes e fracos

Bases fracas são electrólitos fracos

$$F^{-}(aq) + H_2O(I) \longrightarrow OH^{-}(aq) + HF(aq)$$

 $NO_2^{-}(aq) + H_2O(I) \longrightarrow OH^{-}(aq) + HNO_2(aq)$

Pares ácido-base conjugados:

- A base conjugada de um ácido forte não tem uma força mensurável.
- H₃O⁺ é o ácido mais forte que pode existir em solução aquosa.
- O ião OH- é a base mais forte que pode existir em solução aquosa.

Relative Strengths of Conjugate Acid-Base Pairs

		Acid	Conjugate Base
,	^	HClO ₄ (perchloric acid)	ClO ₄ (perchlorate ion)
	Strong acids	HI (hydroiodic acid)	I ⁻ (iodide ion)
		HBr (hydrobromic acid)	Br ⁻ (bromide ion)
		HCl (hydrochloric acid)	Cl ⁻ (chloride ion)
8	Str	H ₂ SO ₄ (sulfuric acid)	HSO ₄ (hydrogen sulfate ion)
Acid strength increases		HNO ₃ (nitric acid)	NO ₃ ⁻ (nitrate ion)
ıcre		H ₃ O ⁺ (hydronium ion)	H ₂ O (water)
th ii	Weak acids	HSO ₄ (hydrogen sulfate ion)	SO ₄ ²⁻ (sulfate ion)
eng		HF (hydrofluoric acid)	F (fluoride ion)
str		HNO ₂ (nitrous acid)	NO ₂ (nitrite ion)
Acid		HCOOH (formic acid)	HCOO ⁻ (formate ion)
1		CH ₃ COOH (acetic acid)	CH ₃ COO ⁻ (acetate ion)
		NH ₄ ⁺ (ammonium ion)	NH ₃ (ammonia)
		HCN (hydrocyanic acid)	CN ⁻ (cyanide ion)
		H ₂ O (water)	OH ⁻ (hydroxide ion)
		NH ₃ (ammonia)	NH ₂ (amide ion)

Ácido forte

Ácido fraco

Qual é o pH de uma solução 2 x 10⁻³ M de HNO₃?

HNO₃ é um ácido forte – 100% dissociação.

inicio 0.002 M 0.0 M 0.0 M
$$HNO_3 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$$
final 0.0 M 0.002 M 0.002 M $PH = -log [H^+] = -log [H_3O^+] = -log (0.002) = 2.7$

Qual é o pH de uma solução 1.8 x 10⁻² M de Ba(OH)₂?

Ba(OH)₂ é uma base forte – 100% dissociação

início 0.018 M 0.0 M 0.0 M
Ba(OH)₂ (s)
$$\longrightarrow$$
 Ba²⁺ (aq) + 2OH⁻ (aq)
final 0.0 M 0.018 M 0.036 M
pH = 14.00 - pOH = 14.00 + log(0.036) = 12.56

Cálculo de pH de soluções de ácidos fortes diluídos

Qual é o pH de uma solução 2.0 x 10⁻⁸ M de HNO₃?

$$HNO_3 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$$

$$2H_2O(I) \longrightarrow OH^-(aq) + H_3O^+(aq)$$
 $K_w = [H_3O^+][OH^-]$

Balanço de massas: Balanço de cargas:

Da expressão de K_w tira-se o valor de $[OH^-]$ em função de $[H^+]$ $[OH^-] = K_w/[H^+]$

Substituindo no balanço de cargas e resolvendo para [H⁺]

$$[H^{+}]^{2} - C_{\text{inicial}}(HNO_{3}) \times [H^{+}] - Kw = 0$$

Resolve-se a equação de 2º grau e calcula-se o pH

Cálculo de pH de soluções de ácidos fortes diluídos

$$[H^{+}]^{2} - 2.0 \times 10^{-8} [H^{+}] - 1.0 \times 10^{-14} = 0$$

$$ax^{2} + bx + c = 0 \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$[H^+] = 1.1 \times 10^{-7}$$

$$pH = -log [H^+] = 6.96$$

Caso não se tivesse considerado o produto iónico da água [H⁺] = 2.0 x 10⁻⁸ (erro de 80 % na concentração de [H⁺])

$$pH = -log [H^+] = 7.7$$

Ácidos fracos e constantes de ionização de ácidos

HA
$$(aq)$$
 + H₂O (I) \Longrightarrow H₃O⁺ (aq) + A⁻ (aq)
HA (aq) \Longrightarrow H⁺ (aq) + A⁻ (aq)

$$\mathcal{K}_a = \frac{[H^+][A^-]}{[HA]}$$

*K*_a é a constante de ionização do ácido ou constante de acidez

Ionization Constants of Some Weak Acids and Their Conjugate Bases at 25°C

T	Name of Acid	Formula	Structure	Ka	Conjugate Base	K _b
	Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
	Nitrous acid	HNO ₂	O=N-O-H	4.5×10^{-4}	NO_2^-	2.2×10^{-11}
	Acetylsalicylic acid (aspirin)	C ₉ H ₈ O ₄	O C-O-H O-C-CH ₃	3.0×10^{-4}	C ₉ H ₇ O ₄	3.3×10^{-11}
	Formic acid	НСООН	О Н—С—О—Н	1.7×10^{-4}	HCOO ⁻	5.9×10^{-11}
	Ascorbic acid*	C ₆ H ₈ O ₆	C = C $C = C$	8.0×10^{-5}	C ₆ H ₇ O ₆	1.3×10^{-10}

Qual é o pH de uma solução 0.5 M de HF (a 25°C)?

HF (aq)
$$\longrightarrow$$
 H⁺ (aq) + F⁻ (aq) $K_a = \frac{[H^+][F^-]}{[HF]} = 7.1 \times 10^{-4}$

$$HF(aq) \longrightarrow H^+(aq) + F^-(aq)$$

Inicial (M)

0.50

0.00

0.00

mudança (M)

-X

 $+\chi$ $+\chi$

equilíbrio (M) 0.50 - x

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$
 $K_a << 1 \quad 0.50 - x \approx 0.50$

$$0.50 - x \approx 0.50$$

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-4}$ $x = 0.019 \text{ M}$

$$x^2 = 3.55 \times 10^{-4}$$

$$x = 0.019 \text{ M}$$

$$[H^+] = [F^-] = 0.019 M$$

$$pH = -log[H^+] = 1.72$$

$$[HF] = 0.50 - x = 0.48 M$$

Quando se pode utilizar a aproximação?

$$K_a << 1 \quad 0.50 - x \approx 0.50$$

Quando x for menos de 5% do valor do qual é subtraído.

$$x = 0.019$$
 $\frac{0.019 \text{ M}}{0.50 \text{ M}} \times 100\% = 3.8\%$ Menos de 5% Aproximação válida.

Qual o pH de uma solução 0.05 M de HF (a 25°C)?

$$K_a \approx \frac{x^2}{0.05} = 7.1 \times 10^{-4} \quad x = 0.006 \text{ M}$$

$$\frac{0.006 \text{ M}}{0.05 \text{ M}} \times 100\% = 12\%$$
 Mais de 5% Aproximação **inválida**.

Tem que ser resolvido exactamente para x utilizando a equação quadrática.

Cálculo de pH de soluções de ácidos fracos diluídos

Quando o pH calculado para a solução é > 6 temos que entrar em linha de conta com a autoprotólise da água

$$HA (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + A^- (aq)$$

$$2H_2O(I) \longrightarrow OH^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}]$$

4 equações e 4 incógnitas

Cálculo de pH de soluções de ácidos fracos diluídos

Da expressão de K_w tira-se o valor de $[OH^-]$ em função de $[H^+]$ $[OH^-] = K_w/[H^+]$

Substituindo no balanço de cargas e resolvendo para [A-]

$$[A^{-}] = [H^{+}] - [OH^{-}] = [H^{+}] - K_{w}/[H^{+}]$$

Substituindo no balanço de massas e resolvendo para [HA]:

$$[HA] = [HA]_{inicial} - [A^-] = [HA]_{inicial} - [H^+] + K_w/[H^+]$$

Agora substitui-se na expressão de K_a

Cálculo de pH de soluções de ácidos fracos diluídos

$$K_a = \frac{[H^+] \times ([H^+] - K_w/[H^+])}{[HA]_{inicial} - [H^+] + K_w/[H^+]}$$

Resolvendo para $[H^+] = x$

$$x^3 + K_a x^2 - (K_w + K_a [HA]_{inicial})x - K_a K_w = 0$$

Aproximações:

$$[H^+] > 10^{-6}$$
 (ou seja assumir pH < 6) Logo $K_w/[H^+] < 10^{-8}$

$$[H^+] <<< [HA]_{inicial} e [HA]_{inicial} >>> K_w/[H^+]$$

Cálculo de pH de soluções de ácidos fracos diluídos

Aproximações:

- a) $[H^+] > 10^{-6}$ (ou seja assumir pH < 6) logo $K_w/[H^+] < 10^{-8}$
- b) $[H^+] <<< [HA]_{inicial} e [HA]_{inicial} >>> K_w/[H^+]$

a) a) e b)
$$K_{a} = \frac{[H^{+}] \times [H^{+}]}{[HA]_{inicial} - [H^{+}]} \qquad K_{a} = \frac{[H^{+}] \times [H^{+}]}{[HA]_{inicial}}$$

Resolvendo para $[H^+] = x$

$$\chi^2 + \chi K_a - K_a[HA]_{inicial} = 0$$
 $\chi^2 - K_a[HA]_{inicial} = 0$

Resolução de problemas de ionização de ácidos fracos

- 1. Identificar as espécies que podem afectar o pH.
 - Na maioria dos casos, a auto-ionização da água pode ignorar-se.*
 - Ignorar [OH⁻] porque é determinado pelo [H⁺].
- 2. Utilizar Inicial/Mudança/Equilíbrio para expressar as concentrações de equilíbrio em termos de uma única incógnita x.
- 3. Escrever K_a em termos de concentrações de equilíbrio. Resolver para x pelo método das aproximações. Se a aproximação não for válida, resolver exactamente para x.
- 4. Calcular as concentrações de todas as espécies e/ou o pH da solução.

^{*}Excepto para ácidos diluídos (quando pH > 6), nestes casos deve fazer-se uma análise com balanço de cargas, balanço de massas e as constantes de equilíbrio (K_w e K_a) para obter uma expressão para [H⁺] e os pontos 2 a 4 não se aplicam.

Qual é o pH de uma solução 0.122 M de um ácido monoprótico cujo K_a é 5.7 x 10⁻⁴?

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

0.122

0.00

0.00

 $+\chi$ $+\chi$

equilíbrio (
$$M$$
) 0.122 - x

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$$
 $K_a << 1 \quad 0.122 - x \approx 0.122$

$$K_a << 1$$

$$K_a \approx \frac{x^2}{0.122} = 5.7 \times 10^{-4}$$
 $x^2 = 6.95 \times 10^{-5}$ $x = 0.0083 M$

$$x^2 = 6.95 \times 10^{-5}$$

$$\frac{0.0083 M}{0.122 M} \times 100\% = 6.8\%$$

Mais de 5%

Aproximação inválida.

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$$
 $x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$

$$x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 0.0081$$

$$x = -0.0081$$

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

inicial (M)

0.122

0.00

0.00

mudança (M)

-X

 $+\chi$

 $+\chi$

equilíbrio (M)

0.122 - x

X

$$[H^+] = x = 0.0081 \text{ M}$$

$$pH = -log[H^+] = 2.09$$

Bases fracas e constantes de ionização de bases

$$NH_3 (aq) + H_2O (I) \longrightarrow NH_4^+ (aq) + OH^- (aq)$$

$$K_b = \frac{[\mathsf{NH_4^+}][\mathsf{OH}^-]}{[\mathsf{NH_3}]}$$

K_b é a constante de ionização da base ou constante de basicidade

$$K_b$$

Os problemas de bases fracas resolvem-se exactamente como os problemas de ácidos fracos **excepto** que se resolvem para [OH-] e não [H+].

Ionization Constants of Some Weak Bases and Their Conjugate Acids at 25°C

פרב	Name of Base	Formula	Structure	К ь*	Conjugate Acid	K _a
_	Ethylamine	C ₂ H ₅ NH ₂	.: СН ₃ —СН ₂ — N —Н Н	5.6×10^{-4}	$C_2H_5\overset{+}{N}H_3$	1.8×10^{-11}
	Methylamine	CH ₃ NH ₂	CH ₃ —N—H H	4.4×10^{-4}	CH ₃ NH ₃	2.3×10^{-11}
	Caffeine	C ₈ H ₁₀ N ₄ O ₂	O	4.1×10^{-4}	$C_8H_{11}\overset{+}{N}_4O_2$	2.4×10^{-11}
			ON CH ₃			
	Ammonia	NH ₃	H—N—H H	1.8×10^{-5}	NH ₄ ⁺	5.6×10^{-10}
	Pyridine	C ₅ H ₅ N	N:	1.7×10^{-9}	C ₅ H ₅ NH	5.9×10^{-6}
	Aniline	C ₆ H ₅ NH ₂	 N—H H	3.8×10^{-10}	$C_6H_5\overset{+}{N}H_3$	2.6×10^{-5}
	Urea	N ₂ H ₄ CO	O H—N—C—N—H	1.5×10^{-14}	H ₂ NCONH ₃	0.67
120			п п			

Constantes de ionização e pares ácido-base conjugados

$$HA (aq) \rightleftharpoons H^+ (aq) + A' (aq)$$
 K_a

$$A^- (aq) + H_2O (I) \rightleftharpoons OH^- (aq) + HA (aq) \qquad K_b$$

$$H_2O (I) \rightleftharpoons H^+ (aq) + OH^- (aq) \qquad K_w$$

$$K_aK_b=K_w$$

Ácido fraco e a sua base conjugada

$$K_a = \frac{K_w}{K_b}$$
 $K_b = \frac{K_w}{K_a}$

Ionization Constants of Some Diprotic Acids and a Polyprotic Acid and Their Conjugate Bases at 25°C

Name of Acid	Formula	Structure	Ka	Conjugate Base	K_{b}
Sulfuric acid	H ₂ SO ₄	О H—O—S—О—Н O	very large	HSO ₄	very small
Hydrogen sulfate ion	HSO ₄	O H-O-S-O- O	1.3×10^{-2}	SO ₄ ²⁻	7.7×10^{-13}
Oxalic acid	$C_2H_2O_4$	O O H-O-C-C-O-H O O 	6.5×10^{-2}	C ₂ HO ₄	1.5×10^{-13}
Hydrogen oxalate ion	$C_2HO_4^-$	H—O—C—C—O	6.1×10^{-5}	$C_2O_4^{2-}$	1.6×10^{-10}
Sulfurous acid*	H ₂ SO ₃	O H—O—S—O—H 	1.3×10^{-2}	HSO ₃	7.7×10^{-13}
Hydrogen sulfite ion	HSO_3^-	$H-O-S-O^-$	6.3×10^{-8}	SO ₃ ²⁻	1.6×10^{-7}

Estrutura molecular e força de ácidos

A força dos ácidos, ou seja a força desta ligação, pode ser relacionada com a estrutura molecular

Tamanho e eletronegatividade

Força de ácidos e tamanho dos átomos

Quanto mais estável for o anião mais forte será o ácido

Para os haletos de hidrogénio obtém-se a seguinte série

Pode ser justificada considerando o tamanho do anião e a dispersão de carga negativa

Estrutura molecular e força de ácidos

$$\sum Z - O - H \longrightarrow Z - O^{-} + H^{+}$$

A ligação O-H será mais polar e mais facilmente ionizada quando:

- Z é muito electronegativo ou
- Z está num estado de oxidação elevado

TABLE 10.4 Correlation of Acid Strength and Electronegativity

Acid, HXO	Structure*	Electronegativity of atom X	pK_a
hypochlorous acid, HClO	:Ül-Ö-Н	3.2	7.53
hypobromous acid, HBrO	:Br-Ö-Н	3.0	8.69
hypoiodous acid, HIO	:ї — Ö—Н	2.7	10.64

^{*}The red arrows indicate the direction of the shift of electron density away from the O-H bond.

TABLE 10.5 Correlation of Acid Strength and Oxidation Number

Acid	Structure*	Oxidation number of chlorine atom	pK_a
hypochlorous acid, HClO	:Cl-Ö-H	+1	7.53
chlorous acid, HClO ₂	:Cl-Ö-H	+3	2.00
chloric acid, HClO ₃	:O: :Cl—O—H ::O:	+5	strong
perchloric acid, HClO ₄	:O: :O: :O: :O: :O: :O:	+7	strong

^{*}The red arrows indicate the direction of the shift of electron density away from the O—H bond. The Lewis structures shown are the ones with the most favorable formal charges, but it is unlikely that the bond orders are as high as these structures suggest.

Estrutura molecular e força de ácidos

1. Oxoácidos com átomo central (Z) do **mesmo grupo** e com o mesmo n de oxidação

A força do ácido aumenta com o aumento da electronegatividade de Z

CI é mais eletronegativo que Br

$$HCIO_3 > HBrO_3$$

Estrutura molecular e força de ácidos

2. Oxoácidos com o mesmo átomo central (Z) mas grupos substituintes diferentes.

A força do ácido aumenta quando o nº de oxidação de Z aumenta.

TABLE 10.6 Correlations of Molecular Structure and Acid Strength

Acid type

Trend

Binary

1 The more polar the H—A bond, the stronger the acid.

This effect is dominant for acids of the same period.

2 The weaker the H—A bond, the stronger the acid.

This effect is dominant for acids of the same group.

Oxoacid

1 The greater the number of O atoms attached to the central atom (the greater the oxidation number of the central atom), the stronger the acid.

In each diagram, the vertical orange arrow indicates the corresponding increase in acid strength.

TABLE 10.6 Correlations of Molecular Structure and Acid Strength

Acid type

Trend

2 For the same number of O atoms attached to the central atom, the greater the electronegativity of the central atom, the stronger the acid.

Carboxylic

1 The greater the electronegativities of the groups attached to the carboxyl group, the stronger the acid.

In each diagram, the vertical orange arrow indicates the corresponding increase in acid strength.

Propriedades ácido base dos sais

Soluções neutras:

Sais contendo um ião de um metal alcalino ou alcalino terroso (excepto Be²⁺) **e** a base conjugada de um ácido **forte** (*e.g.* Cl⁻, Br⁻, e NO₃⁻).

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Soluções Básicas:

Sais derivados de uma base forte e um ácido fraco.

NaCH₃COO (s)
$$\frac{H_2O}{N}$$
a⁺ (aq) + CH₃COO⁻ (aq)

$$CH_3COO^-(aq) + H_2O(I) \longrightarrow CH_3COOH(aq) + OH^-(aq)$$

Propriedades ácido base dos sais

Soluções ácidas:

Sais derivados de um ácido forte e uma base fraca.

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$

$$NH_4^+$$
 (aq) \longrightarrow NH_3 (aq) $+$ H^+ (aq)

Sais com catiões metálicos pequenos e com carga elevada (*e.g.* Al³⁺, Cr³⁺, and Be²⁺) e a base conjugada de um ácido forte.

$$AI(H_2O)_6^{3+}(aq) \implies AI(OH)(H_2O)_5^{2+}(aq) + H^+(aq)$$

Propriedades ácido base dos sais

Soluções em que tanto o catião como o anião hidrolizam:

- K_b para o anião > K_a para o catião, solução será básica
- K_b para o anião < K_a para o catião, solução será ácida
- K_b para o anião $\approx K_a$ para o catião, solução será neutra

Acid-Base Properties of Salts

Type of Salt	Examples	lons That Undergo Hydrolysis	pH of Solution
Cation from strong base; anion from strong acid	NaCl, KI, KNO ₃ , RbBr, BaCl ₂	None	≈ 7
Cation from strong base; anion from weak acid	CH ₃ COONa, KNO ₂	Anion	> 7
Cation from weak base; anion from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation	< 7
Cation from weak base; anion from weak acid	NH ₄ NO ₂ , CH ₃ COONH ₄ , NH ₄ CN	Anion and cation	$< 7 \text{ if } K_{\rm b} < K_{\rm a}$
			$\approx 7 \text{ if } K_{\rm b} \approx K_{\rm a}$
			$> 7 \text{ if } K_{\rm b} > K_{\rm a}$
Small, highly charged cation; anion from strong acid	$AlCl_3$, $Fe(NO_3)_3$	Hydrated cation	< 7

5.7

ABLE

Óxidos dos elementos representativos no seu estado de oxidação mais elevado

$$CO_2(g) + H_2O(I) \longrightarrow H_2CO_3(aq)$$

$$N_2O_5(g) + H_2O(I) \longrightarrow 2HNO_3(aq)$$

Definição de um ácido

Ácido de Arrhenius é uma substância que produz H⁺ (H₃O⁺) em água **Ácido de Brønsted** é um dador de protões

Ácido de Lewis é uma substância que pode aceitar um par de electrões **Base de Lewis** é uma substância que pode doar um par de electrões

Ácidos e bases de Lewis

$$F-B + : N-H \longrightarrow F-B-N-H$$

$$F = H$$

$$Acido base$$

Não há dadores nem aceitadores de protões!

Chemistry In Action: Antacids and the Stomach pH Balance

Some Common Commercial Antacid Preparations

Commercial Name	Active Ingredients	
Alka-2	Calcium carbonate	
Alka-Seltzer	Aspirin, sodium bicarbonate, citric acid	
Bufferin	Aspirin, magnesium carbonate, aluminum glycinate	
Buffered aspirin	Aspirin, magnesium carbonate, aluminum hydroxide-glycine	
Milk of magnesia	Magnesium hydroxide	
Rolaids	Dihydroxy aluminum sodium carbonate	
Tums	Calcium carbonate	

NaHCO₃
$$(aq)$$
 + HCl (aq) \longrightarrow
NaCl (aq) + H₂O (I) + CO₂ (g)

CI⁻H⁺ (active transport)

$$Mg(OH)_2(s) + 2HCI(aq) \longrightarrow$$
 $MgCl_2(aq) + 2H_2O(l)$