4. Find all function f N->N such that:

f(0) = 0

There is a real number z such that $f(n^{2022}) < n^{2022} + z$ for all $n \in N$ For all $a,b,c \in N$, we have $af^b(a) + bf^c(b) + cf^a(c)$ is a square

Solution:

We have af(a)+1 is a square for all a (1)

We have 3af^a(a) is a square for all a (2)

We have $af(a)+f^{c}(1)+cf^{a}(c)$ is a square for all c,a (3)

We have $cf^{a}(c)+a^{2}$ is a square for all a,c (4)

Case 1: There exists a u such that $f^{u}(1)=0$

Then for all large a and b we have $af^b(a)+bf(b)$ is a square.

For a large a, if f(a)>0 then af(a)+f(1) and af(a)+1 is a square then f(1)=1, but then 3 is a square, contradiction.

Then f(a)=0 for all large a. Now from (3) consider a large c we have af(a) is a square for all a, but from (1) we have af(a)=0 for all a.

We conclude that in case 1 the only solution is f(a)=0 for all a.

Case 2: $f^{u}(1) \neq 0$ for all u. Let $S = \{p^{2022} \mid p \in p\}$

Fix a positive integer a.

Case 2.1: $f^a(c)=0$ for a large $c \in S$.

Then from (3) $bf(b)+f^c(1)$ is a square for all b>a and a large $c\in S$. For all b>>c, if f(b) is not equal to 0, then from (1) we have $f^c(1)=1$, since c is large enough we have f(1)=1 and we reach a contradiction. Therefore f(b)=0 for all large b, making f bounded, but we have $a^2+f^a(1)$ is a square for all a, then $f^a(1)$ is unbounded, contradiction.

Case 2.2: For all large $c \in S$, $f^a(c) \neq 0$

We have cf(c)+1 is a square for all $c \in S$. For a large c, if f(c)=0, then it is **case 2.1**. Otherwise, we have f(c)=c-2 or f(c)=c+2 for all large $c \in S$.

If f(a)=0 then $cf(c)+f^a(1)$ is a square for all large $c \in S$, thus $f^a(1)=1$, but we also have $cf(c)+f(1)+f^c(1)$ is a square for all large $c \in S$, thus $f(1)+f^c(1)=1$, contradiction.

Case 2.2.1: f(c)=c-2 for all large $c \in S$

We have $c(c-2)+f^c(1)+f(1)$ and $c^2+f^c(1)$ is a square for all large $c \in S$. We will prove that

$$c(c-2)+f^{c}(1)+f(1) > (\sqrt{c^2+f^c(1)}-2)^2$$

This is equivalent to $f(1)+4\sqrt{c^2+f^c(1)}>2c+4$ which is true for all large $c \in S$

Thus
$$c(c-2)+f^c(1)+f(1) = (\sqrt{c^2+f^c(1)}-1)^2$$
 for all large c∈S

This is to
$$2\sqrt{c^2 + f^c(1)} = 2c + 1 - f(1)$$

Thus
$$f^c(1) = c(1-f(1)) + \frac{1}{4}(1-f(1))^2$$
 for all large $c \in S$

Let
$$M = \frac{1}{2}(1 - f(1))$$
 then $M < 0$ since $f(1) \ne 1$

From (3) we have $af(a)+2Mc+M^2+cf^a(c)$ is a square for all $c \in S$

We have $cf^a(c)+a^2$ is a square for all $c \in S$, thus $cf^a(c)+a^2=(k_cc\pm a)^2$ for all $c \in S$

Case 2.2.1.1: $cf^a(c) + a^2 = (k_cc + a)^2$ for infinitely many $c \in S$

Then $f^a(c) = k_c^2 c + 2ak_c$ for infinitely many $c \in S$ and $k_c > 0$.

We have $g(c)=af(a)+M^2+k_c^2c^2+2ak_cc+2Mc$ is a square for infinitely many $c\in S$. It is easy to see that if $k_c>M$ then $(k_cc+a-1)^2< g(c)<(k_cc+a)^2$ therefore $k_c\leq M$ for infinitely many $c\in S$. Thus there are infinitely many $c\in S$ such that k_c attain the same value, let it be $T\leq M$.

We have $g(c) = af(a) + M^2 + T^2c^2 + 2aTc + 2Mc$ for infinitely many c, thus g(c) is a square of a polynomial in c, therefore we have $aT + M = \pm T\sqrt{af(a) + M^2}$

Thus for each positive integer a, there is a positive $T \le M$ such that $(af(a) + M^2)T^2 = a^2T^2 + 2aTM + M^2$, it is easy to see that if a is large enough, we have T=1 and f(a)=a+2M.

Plugging $a \in S$ we have M=-1. Now for a=1 we have T=1 and M=-1, thus f(1)=3 and 3+1=1+2(-1)+1, contradiction.

Case 2.2.1.2: $cf^a(c)+a^2=(k_cc-a)^2$ for infinitely many $c \in S$

Then $f^a(c) = k_c^2 c - 2ak_c$ for infinitely many $c \in S$.

af(a)+ M^2 + $k_c^2c^2$ - $2ak_cc$ +2Mc is a square for many c∈S. Similarly, for all a there is a positive T≤M such that (af(a)+ M^2) T^2 = a^2T^2 -2aTM+ M^2 , if a is large enough we have T=1 and f(a)=a-2M. Plugging a∈S then M=1, thus f(1)<0, contradiction.

Thus in case 2.2.1 we have no such function.

Case 2.2.2: f(c)=c+2 for all infinitely many $c \in S$

Similarly we have $c(c+2)+f^{c}(1)+f(1) < (\sqrt{c^2+f^c(1)}+2)^2$

Thus $c(c+2)+f^{c}(1)+f(1)=(\sqrt{c^{2}+f^{c}(1)}+1)^{2}$ for infinitely many $c \in S$

This is equivalent to $2\sqrt{c^2 + f^c(1)} = 2c + f(1) - 1$

Thus $f^c(1) = c(f(1)-1) + \frac{1}{4}(f(1)-1)^2$ for infinitely many $c \in S$

Let $M = \frac{1}{2}(f(1)-1)$ then M > 0 since $f(1) \ne 1$

From (3) we have $af(a)+2Mc+M^2+cf^a(c)$ is a square for infinitely many $c\in S$ We have $cf^a(c)+a^2$ is a square for all $c\in S$, thus $cf^a(c)+a^2=(k_cc\pm a)^2$ for infinitely many $c\in S$

Case 2.2.2.1: $cf^a(c)+a^2=(k_cc+a)^2$ for infinitely many $c \in S$

Do exacly what we did in **Case 2.2.1.1**, we see that for each positive integer a, there is a positive $T \le M$ such that $(af(a)+M^2)T^2=a^2T^2+2aTM+M^2$, plugging a large a such that f(a)=a+2, we have T=1 and M=1, thus f(a)=a+2 for all a.

Case 2.2.2.2: $cf^a(c)+a^2=(k_cc-a)^2$ for infinitely many $c \in S$

Do exacly what we did in **Case 2.2.1.1**, we see that for each positive integer a, there is a positive $T \le M$ such that $(af(a)+M^2)T^2=a^2T^2-2aTM+M^2$, plugging a large a such that f(a)=a+2, we have T=1 and M=-1, thus f(1)=-3, contradiction.

Thus in case 2.2.2 we have f(a)=a+2 for all a.

We conclude that in case 1 the only solution is f(a)=a+2 for all a.