

Tarea 5

3 de Noviembre 2023

 $2^{\underline{0}}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías
 Diego Pérez - 22203583

Problema 1

Sean S_f y S_I los conjuntos de todas las sucesiones monótonas en los naturales que son finitas e infinitas respectivamente.

1. Para una sucesión finita $s = (s_0, \dots, s_n) \in S_f$, definimos sum $(s) = n + \sum_{i=0}^n s_i$, donde la suma es la normal en los naturales. Además, definimos para cada n natural el conjunto $S_n = \{s \mid s \in S_f, \text{sum}(s) = n\}$.

Proposición: Los conjuntos S_0, S_1, \cdots particionan S_f , son finitos y disjuntos 2 a 2.

<u>Demostración:</u> Notar que para todo $s \in S_f$, se tiene $s \in S_{\text{sum}(s)}$ y además, dado un x, si se cumple $x \in S_m$ y $x \in S_n$, entonces m = sum(x) = n, implicando que los S_i particionan S.

Supongamos que $s=(s_0,\cdots,s_{m-1})\in S_n$ para algún n. Como sum $(x)=n=m+\sum_{i=0}^m s_i\geq m$, entonces $0\leq m\leq n$. Similarmente sum $(x)=n=m+\sum_{i=0}^m s_i\geq s_i$ para todo i, por lo que $0\leq s_i\leq n$, luego, se tiene:

$$S_n \subseteq \{s = (s_0, \dots s_m) \mid s \in S_f, \ 0 \le m \le n, \ 0 \le s_i \le n \text{ para todo } i\} := F$$

Como F tiene a lo más $n^{n+100} + 10^{100}$ elementos, entonces S_n es finito.

Ahora para demostrar que S_f es enumerable, creamos una lista L inicialmente vacia y vamos recorriendo uno por uno los conjuntos S_0, S_1, S_2, \cdots anotando los (finitos) elementos de cada conjunto en L en algún orden (no importa el orden de los elementos de S_i ya que son finitos). Al final tendremos una lista L con todos los elementos de S_f . Tomamos la biyección $s \leftrightarrow i$, donde i es la posición de s en L. Esta es una biyección entre los naturales y S_f , por lo que S_f es enumerable.

2. Supongamos por contradicción que existe una biyección de los naturales $i \leftrightarrow k_i$ tal que $\{k_0, k_1, k_2, \cdots\} = S_I$, con $k_i = (k_i(0), k_i(1), k_i(0), \cdots) \in S_I$. Para cada n natural, sea $M_n = \max_{i=0,1,\cdots,n}(k_i(n))$. Definimos la sucesión $M = (M_0 + 1, M_1 + 1, M_2 + 1, \cdots)$.

Proposición: $M \in S_I$

<u>Demostración</u>: Como M es claramente infinita y compuesta de naturales, solo basta demostrar que es monótona. Esto se reduce a demostrar que si a < b, entonces $M_a \le M_b$. Esto se puede demostrara usando las siguientes desigualdades:

$$M_a = \max_{i=0,1,\dots,a} (k_i(a)) \le \max_{i=0,1,\dots,b} (k_i(a)) \le \max_{i=0,1,\dots,b} (k_i(b)) = M_b$$

Donde la última desigualdad se debe a que k_i es una sucesión monótona para todo i, por lo que si x < y, entonces $k_i(x) \le k_i(y)$.

Como asumimos que S_I es enumerable y $M \in S_I$, entonces existe un l natural tal que $k_l = M$. Por definición, el elemento en la posición l de M es $M_l + 1$, mientras que el elemento en la posición l de k_l es $k_l(l)$, pero

$$M_l + 1 > M_l = \max_{i=0,1,\dots,l} (k_i(l)) \ge k_l(l)$$

implicando $M \neq k_l$ contradicción. Sigue que S_I no es enumerable.

Problema 2

- 1. Dice que para todo c positivo, se cumple la desigualdad $g(n) \leq cf(n)$ para todo n natural lo suficientemente grande. Esto quiere decir que cualquier función de $\Theta(f)$ tiene un crecimiento más rápido que cualquier función de $\Theta(g)$. Esta definición se diferencia de la de \mathcal{O} ya que esta última te pide que exista al menos un c para la desigualdad pedida, mientras que la primera garantiza que la desigualdad se cumpla para todo c.
- 2. Tomamos g(n) = n y $f(n) = n^2$ para todo n natural. Sea c un real positivo arbitrario y sea m un natural que cumple mc > 1. Tenemos que si $n \ge m$, entonces $g(n) = n < (mc)n \le ncn = c \cdot f(n)$, por lo que tomar $n_0 = \lfloor \frac{1}{c} \rfloor + 10^{100}$ sirve para demostrar $g \in o(f)$.
- 3. a) Como $g \in o(f)$, para todo c existe un n_0 tal que para todo $n \ge n_0$, se cumple $g(n) \le cf(n)$. Particularmente, para c = 1 existe dicho n_0 , implicando $g \in O(f)$.
 - b) Supongamos por contradicción que $f \in O(g)$, por lo que existen constantes c' y n'_0 tales que $f(n) \le c'g(n)$ para todo $n \ge n'_0$. Notar que $c' \ne 0$ ya que f es positiva para inputs lo suficientemente grandes.

Como $g \in o(f)$, para todo c existe un n_0 tal que para todo $n \ge n_0$, se cumple $g(n) \le cf(n)$. Particularmente, para $c = \frac{1}{2c'}$ existe dicho n_0 , llamemoslo N.

Sigue que si $n > \max\{N, n'_0\}$, se deben cumplir las siguientes desigualdades:

$$f(n) \le c' \cdot g(n)$$
 y $g(n) \le \frac{1}{2c'} \cdot f(n)$ \Longrightarrow $0 \le f(n) \le c' \cdot g(n) \le \frac{1}{2} f(n)$

Implicando f(n) = 0 para todo n lo suficientemente grande, que contradice el enunciado del problema. Se concluye por contradicción,