Planche TD 0

Exercice 1 (Distance discrète) Soit X un ensemble et δ la distance discrète sur cet ensemble.

- 1. Vérifier que δ est une distance sur X.
- 2. Déterminer les boules ouvertes et fermées de (X, δ) . Puis déterminer la topologie \mathcal{T}_{δ} associée a δ .

Exercice 2 (Distance et normes) Soit E un espace vectoriel et \mathcal{N} une norme sur E, montrer que $d(x,y) = \mathcal{N}(y-x)$ est une distance sur E

Exercice 3 (Normes sur \mathbb{R}^n) Montrer que $\mathcal{N}_1(x_1,\ldots,x_n) = \sum_{i=1}^n |x_i|$ et $\mathcal{N}_{\infty}(x_1,\ldots,x_n) = \max(|x_i|)$ sont des normes sur \mathbb{R}^n et dessiner leurs boules unités lorsque n=2.

Exercice 4 (Distance Fly Emirate) Soit (X, d) un espace métrique et Dubai=D un point de X, on défini d_{FE} par $d_{FE}(x, y) = 0$ si x = y et $d_{FE}(x, y) = d(x, D) + d(y, D)$ sinon.

- 1. Montrer que d_{FE} est une distance sur X.
- 2. On suppose que $(X,d)=(\mathbb{R}^2,euclidien)$ et D=0. Pour $x\in X,$ dessiner les boules ouvertes centrées en x.
- 3. Montrer que pour $x \neq D$, le singleton $\{x\}$ est ouvert.