Questions Cours

Yago iglesias 6 juin 2024

Table des matières

1	σ -algèbres	1
2	C C1	2
3	Fonctions de répartition	2
4	CC2	3
5	Espérance variable aléatoire réelle	5
6	C C 3	6
7	Vecteurs aléatoires	8
8	Convergence	8

1 σ-algèbres

Question 1. Donner la définition de σ-algèbre.

Définition 1. Une σ -algèbre sur un ensemble E est une famille \mathscr{A} de parties de E telle que :

- **1.** $\emptyset \in \mathscr{A}$
- 2. A est stable par passage au complémentaire
- 3. A est stable par union dénombrable

Question 2. Montrer que la σ -algèbre des boréliens de $\mathbb R$ est la plus petite σ -algèbre contenant les intervalles ouverts.

Démonstration. Soit $\mathscr{B}(\mathbb{R})$ la σ -algèbre des boréliens de \mathbb{R} . On a que $\mathscr{B}(\mathbb{R})$ contient les intervalles ouverts par définition. Soit \mathscr{A} la plus petite σ -algèbre contenant les intervalles

ouverts. On a que:

- 1. A contient les intervalles ouverts.
- 2. A est stable par passage au complémentaire car les intervalles ouverts le sont.
- 3. A est stable par union dénombrable car les intervalles ouverts le sont.

Donc & contient les boréliens (ils vérifient les trois propriétés ci-dessus). Ainsi, & vérifie la propriété demandée.

2 CC1

Question 3. Donner la définition de probabilité sur $(\mathbb{R}, \mathscr{B}(\mathbb{R})$

Définition 2. Une probabilité sur $(\mathbb{R},\mathscr{B}(\mathbb{R})$ est une application P de $\mathscr{B}(\mathbb{R})$ dans [0,1] telle que :

- **1.** $P(\mathbb{R}) = 1$
- 2. P est σ -additive

Question 4. Donner la dfinition de fonction de répartition F_P d'une probabilité P sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

Définition 3. La fonction de répartition d'une probabilité P sur $(\mathbb{R}, \mathcal{B}(\mathbb{R})$ est l'application F_P de \mathbb{R} dans [0,1] définie par :

$$F_P(x) = P(]-\infty,x]$$

Question 5. Montrer que F_P est continue à droite

Démonstration. F_X est CAD car, si (x_n) est une suite décroissante qui tend vers x, on a que $\{X \leq x_{n+1}\} \subset \{X \leq x_n\}$ pour tout n et $\lim_n X \leq x_n = \cap_n \{X \leq x_n\} = \{X \leq x\}$. Par le comportement des probabilités pour des suites monotones dévénements (si (A_n) est une suite décroissante d'événements, alors $P(A_n) \Longrightarrow P(\cap_n \{A_n\})$) on conclut que

$$\lim_n F_X(x_n) = \lim_n P(X \leq x_n) = P(\{X \leq x\}) = F_X(x)$$

П

3 Fonctions de répartition

Question 6. Montrer que $\lim_{x\to\infty} F_X(x) = 0$ et $\lim_{x\to\infty} F_X(x) = 1$

extstyle ext

$$\begin{array}{ll} \lim_{x\to -\infty} F_X(x) & = & \lim_{n\to \infty} F_X(-n) \\ & = & \lim_{n\to \infty} P(X\in]-\infty, -n]) \\ & = & P(\emptyset) \\ & = & 0 \end{array}$$

La deuxième demonstration est similaire.

Question 7. Montrer que $\mathbb{P}(X=x) = F_X(x) - \lim_{y \to x^-} F_X(y)$

 $extbf{D\'emonstration.}$ On remarque que pour tout $x\in\mathbb{R}$ et tout $n\in\mathbb{N}^*$, on a que :

$$\mathbb{P}\left(\left[x - \frac{1}{n}, x\right]\right) = \mathbb{P}\left(\left[-\infty, x\right]\right) - \mathbb{P}\left(\left[-\infty, x - \frac{1}{n}\right]\right)$$
$$= F_X(x) - F_X(x - \frac{1}{n})$$

De plus,

$$\{x\} = \cap_{n \in \mathbb{N}^*} B_n, \quad B_n := \left[x - \frac{1}{n}, x\right]$$

Comme F_x est continue a droite et B_n est décroissante, on a que :

$$\begin{split} \mathbb{P}(\{x\}) &= \lim_{n \to \infty} \mathbb{P}(B_n) \\ &= \lim_{n \to \infty} \left(F_X(x) - F_X(x - \frac{1}{n}) \right) \\ &= F_X(x) - \lim_{n \to \infty} F_X(x - \frac{1}{n}) \\ &= F_X(x) - \lim_{y \to x^-} F_X(y) \end{split}$$

4 CC2

Question 8. Donner la définition de variable aléatoire réelle

Définition 4. Soit (Ω, \mathscr{F}, P) un espace probabilisé. Une variable aléatoire réelle est une application $X: \mathscr{F} \to \mathbb{R}$ telle que pour tout $B \in \mathscr{B}(\mathbb{R})$, $X^{-1}(B) \in \mathscr{F}$

Question 9. Donner la définition de espérance d'une variable aléatoire réelle positive.

Définition 5. Soit (Ω, \mathscr{F}, P) un espace probabilisé. Soit X une variable aléatoire réelle positive. L'espérance de X est le réel positif ou infini défini par :

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X \ge t) dt$$

Question 10. Enoncer et démontrer l'inégalité de Markov

Définition 6. Soit X une variable aléatoire réelle positive. Alors pour tout t>0,

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t}$$

Démonstration. Soit t>0. On a que $x\mathbb{1}_{\{X>x\}}< X$. Par croissance de l'espérance, on a que :

$$\mathbb{E}(x\mathbb{1}_{\{X>x\}}) < \mathbb{E}(X)$$

Question 11. Montrer que si X admet une densité f, alors $\mathbb{E}(X) = \int_0^\infty x f(x) dx$

Markov.

 ${\it D\'{e}monstration}.$ Soit X une variable aléatoire réelle positive. On a que :

$$\begin{split} \mathbb{E}(X) &= \int_0^\infty \mathbb{P}(X > t) dt \\ &= \int_0^\infty \left(\int_0^t f(x) dx \right) dt \\ &= \int_0^\infty \left(\int_0^\infty f(x) \mathbb{1}_{[0,t]} dx \right) dt \\ &= \int_0^\infty f(x) \left(\int_0^\infty \mathbb{1}_{[0,t]} dt \right) dx \\ &= \int_0^\infty x f(x) dx \end{split}$$

5 Espérance variable aléatoire réelle

Question 12. Donner la définition de espérance d'une variable aléatoire réelle.

Définition 7. Soit (Ω, \mathscr{F}, P) un espace probabilisé. Soit X une variable aléatoire réelle. L'espérance de X est le réel positif ou infini défini par :

$$\mathbb{E}(X) = \mathbb{E}(X^+) - \mathbb{E}(X^-)$$

avec $X^+=\max(X,0)etX^-=\max(-X,0)$. Elle es définie si les deux espérances est finie.

Question 13. Montrer que $\mathbb{E}(X^-) = \int_0^\infty \mathbb{P}(X < -t) dt$

Démonstration. On a que

$$X^-(\omega) = \begin{cases} 0 & \text{si } X(\omega) \geq 0 \\ -X(\omega) & \text{si } X(\omega) < 0 \end{cases}$$

Donc

$$X^-(\omega) > t \iff X(\omega) < -t$$

Ainsi,

$$P(X^- > t) = P(X < -t)$$

П

Et donc $\mathbb{E}(X^-) = \int_0^\infty \mathbb{P}(X < -t) dt$.

Question 14. Montrer que si X admet un moment absolu d'ordre p, alors X admet un moment absolu d'ordre q pour tout $q \in [0,p]$. i.e. si $\mathbb{E}(|X|^p) < \infty$, alors $\mathbb{E}(|X|^q) < \infty$ pour tout $q \in [0,p]$.

Démonstration. Si $0 \le p \le r$, on a les inégalités suivantes entre variables aléatoires positives :

$$|X|^p \le \mathbb{1}_{\{|X| \le 1\}} + |X|^r \mathbb{1}_{\{|X| > 1\}} \le 1 + |X|^r$$

Par croissance de l'espérance des v.a. positives, on en déduit

$$\mathbb{E}(|X|^p) \le \mathbb{E}(1) + \mathbb{E}(|X|^r) = 1 + \mathbb{E}(|X|^r) < +\infty$$

Question 15. Donner la définition de variance d'une variable aléatoire réelle.

Définition 8. Soit (Ω, \mathscr{F}, P) un espace probabilisé. Soit X une variable aléatoire réelle. La variance de X est le réel positif ou infini défini par :

$$Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$

Elle est définie si $\mathbb{E}(X^2)$ est finie.

Question 16. Montrer que $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Démonstration. On a que

$$\begin{aligned} Var(X) &= & \mathbb{E}((X - \mathbb{E}(X))^2) \\ &= & \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) \\ &= & \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2 \\ &= & \mathbb{E}(X^2) - \mathbb{E}(X)^2 \end{aligned}$$

Question 17. Enoncer et démontrer l'inégalité de Bienaymé-Tchebychev.

Définition 9. Soit X une variable aléatoire réelle. Alors pour tout t>0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{Var(X)}{t^2}$$

Démonstration. On a que

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) = \mathbb{P}((X - \mathbb{E}(X))^2 \ge t^2)$$

$$\le \frac{\mathbb{E}((X - \mathbb{E}(X))^2)}{t^2}$$

$$= \frac{Var(X)}{t^2}$$

6 **CC**3

Soit $X=(X_1,\ldots,X_n), n\geq 2$ un vecteur aléatoire à valeurs dans \mathbb{R}^n .

Question 18. Montrer que pour tout $i \in \{1, ..., n\}$, X_i est une variable aléatoire.

Démonstration. $X_i=\pi_i\circ X$ où π_i est la projection sur la i-ème coordonnée. Or π_i est continue, elle est borélienne, donc messurable $\mathscr{B}(\mathbb{R}^n)\to \mathscr{B}(\mathbb{R})$. Donc X_i est une variable aléatoire. \square

Question 19. Donner la définition d'indépendance de X_1, \ldots, X_n .

Définition 10. X_1,\ldots,X_n sont indépendantes si pour tout $B_1,\ldots,B_n\in \mathscr{B}(\mathbb{R})$,

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \mathbb{P}(X_1 \in B_1) \dots \mathbb{P}(X_n \in B_n)$$

Question 20. Montrer que si X_1, \ldots, X_n sont indépendantes alors $h_1(X_1), \ldots, h_n(X_n)$ sont indépendantes, pour tout h_1, \ldots, h_n boréliennes.

Démonstration. Soit h_1,\ldots,h_n boréliennes. On a que :

$$\mathbb{P}(h_1(X_1) \in B_1, \dots, h_n(X_n) \in B_n) = \mathbb{P}(X_1 \in h_1^{-1}(B_1), \dots, X_n \in h_n^{-1}(B_n))
= \mathbb{P}(X_1 \in h_1^{-1}(B_1)) \dots \mathbb{P}(X_n \in h_n^{-1}(B_n))
= \mathbb{P}(h_1(X_1) \in B_1) \dots \mathbb{P}(h_n(X_n) \in B_n)$$

Supposons que $\mathbb{E}(X_i^2)<\infty$ pour tout $i\in\{1,\ldots,n\}$.

Question 21. Montrer que $|\mathbb{E}(X_iX_j)|<\sqrt{\mathbb{E}(X_i^2)\mathbb{E}(X_j^2)}$ pour tout i et j.

— Considérons le trinôme $f(t): \mathbb{E}(X_j^2)t^2 + 2\mathbb{E}(X_iX_j)t + \mathbb{E}(X_i^2)$. Il a des solutions si et seulement si son discriminant est positif, c'est-à-dire si et seulement si :

$$\Delta = \mathbb{E}(X_i X_j)^2 - \mathbb{E}(X_i^2) \mathbb{E}(X_i^2) \ge 0$$

Or c'est un polynôme positif, donc son discriminant est négatif ou nul. Donc :

$$\Delta \leq 0$$

On retrouve bine l'inégalité de Cauchy-Schwarz.

Question 22. Donner la définition de covariance et montrer que si X_1, \ldots, X_n sont indépendantes, alors $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$.

Définition 11. Définition : $cov(X_i,X_j)=\mathbb{E}(X_iX_j)-\mathbb{E}(X_i)\mathbb{E}(X_j)$., qui est aussi égal à $\mathbb{E}((X_i-\mathbb{E}(X_i))(X_j-\mathbb{E}(X_j)))$. On sait que :

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i,j=1}^{n} cov(X_i, X_j)$$
$$= \sum_{i=1}^{n} Var(X_i) + \sum_{i \neq j} cov(X_i, X_j)$$

Or si $i \neq j$, $cov(X_i, X_j) = 0$ car X_i et X_j sont indépendantes. Donc :

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

7 Vecteurs aléatoires

Question 23. Donner la définition de produit de convolution de deux densités. Et montrer que $f_{X+Y} = f_X * f_Y$.

Définition 12. Soient X et Y deux variables aléatoires réelles indépendantes admettant des densités f et g. On a que :

$$(f * g)(s) = \int_{\mathbb{R}} f(s-t)g(t)dt = \int_{\mathbb{R}} f(t)g(s-t)dt$$

Démonstration. Calculons $\mathbb{E}(h(X+Y))$, por tout h continue bornée.

$$\mathbb{E}(h(X+Y)) = \int_{\mathbb{R}^2} h(x+y)f(x)g(y) \, dx \, dy$$

$$= \int_{\mathbb{R}^2} h(s)f(s-t)g(t) \, ds \, dt$$

$$= \int_{\mathbb{R}} h(s) \left(\int_{\mathbb{R}} f(s-t)g(t) \, dt \right) \, ds$$

$$= \int_{\mathbb{R}} h(s)(f*g)(s) \, ds$$

8 Convergence

Question 24. Donner la définition de convergence en loi d'une suite de variables aléatoires réelles.

Démonstration. Soit (X_n) une suite de variables aléatoires réelles. On dit que (X_n) converge en loi vers X si pour tout $x\in\mathbb{R}$ tel que F_X est continue en x, on a que :

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

Question 25. Montrer que si X_i est une suite de variables aléatoires réelles IID, alors $\lim_n X_x = X_1$.

extstyle ext

$$\lim_{n\to\infty} F_{X_n}(x) = \lim_{n\to\infty} F_{X_1}(x)$$
$$= F_{X_1}(x)$$

Question 26. Donner la définition de convergence en probabilité d'une suite de variables aléatoires réelles.

Définition 13. Soit (X_n) une suite de variables aléatoires réelles. On dit que (X_n) converge en probabilité vers X si pour tout $\epsilon>0$, on a que :

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0$$

Question 27. Monter que la convergence en probabilité implique la convergence en loi.

Démonstration. Soit (X_n) une suite de variables aléatoires réelles qui converge en probabilité vers X.

$$F_{X_n}(x) = \mathbb{P}(X_n \le x)$$

$$= \mathbb{P}(X + (X_n - X) \le x)$$

$$Z \le \mathbb{P}(X + (X_n - X) \le x, |X_n - X| \le \epsilon) + \mathbb{P}(|X_n - X| > \epsilon)$$

$$\le \mathbb{P}(X \le x - \epsilon) + \mathbb{P}(|X_n - X| > \epsilon) \xrightarrow{\text{produce}} \mathbb{P}(X \le x + \epsilon)$$

Donc $\limsup_n F_{X_n}(x) \leq F_X(x)$. De meme :

$$\begin{split} F_{X_n}(x) &= & \mathbb{P}(X_n \leq x) \\ &\geq & \mathbb{P}(X \leq x + (X - X_n), |X_n - X| \leq \epsilon) \\ &\geq & \mathbb{P}(X \leq x - \epsilon, |X_n - X| \leq \epsilon) \\ &\geq & \mathbb{P}(X \leq x - \epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \underset{n \to +\infty}{\longrightarrow} \mathbb{P}(X \leq x - \epsilon) \end{split}$$

Donc lim sup $_n F_{X_n}(x) \geq F_X(x)$.

Si
$$F_X$$
 est continue en x , on a que $F_X(x) = \lim_n F_{X_n}(x)$.

Question 28. Donner la définion de convergence presque sûre d'une suite de variables aléatoires réelles.

Définition 14. Soit (X_n) une suite de variables aléatoires réelles. On dit que (X_n) converge presque sûrement vers X si

$$\mathbb{P}(\Omega^{\mathbf{t}})=1$$

avec $\Omega' = \{ \omega \in \Omega, \lim_n X_n(\omega) = X(\omega) \}.$

Question 29. Donner la définition de la limite supérieure d'une suite d'événements et de la limite inférieure d'une suite d'événements.

Définition 15. Soit (A_n) une suite d'événements. On définit la limite supérieure de (A_n) par :

$$\lim_n \operatorname{sup} A_n = \cap_{n \geq 1} \cup_{k \geq n} A_k$$

On définit la limite inférieure de (A_n) par :

$$\lim_{n} \inf A_{n} = \bigcup_{n \geq 1} \cap_{k \geq n} A_{k}$$

Question 30. Enoncer et montrer le lemme de Borel-Cantelli I.

Définition 16. Soit (A_n) une suite d'événements. Si $\sum_n \mathbb{P}(A_n) < \infty$, alors $\mathbb{P}(\lim\sup_n A_n) = 0$

Démonstration. Notons $C_j=\cup_{k\geq j}A_k$. On a que (C_j) est une suite décroissante d'événements. Par continué sequentielle décroissante de la probabilité, on a que :

$$P(C_j) \underset{j \to +\infty}{\longrightarrow} P(\limsup_n A_n)$$

Par sous- σ -additivité de la probabilité, on a que :

$$\forall j \in \mathbb{N}, \quad 0 \le P(C_j) \le \sum_{k \ge j} P(A_k) := r_j$$

Par l'hypothèse, on a que r_j est le reste d'une série convergente, donc il tend vers 0. Ainsi on retoruve que

$$P(\limsup_n \mathbf{S} \, \mathbf{u} \, \mathbf{p} \, A_n) = 0$$

Question 31. Enoncer le lemme de Borel-Cantelli II.

Définition 17. Soit (A_n) une suite d'événements. Si

$$\sum_{n} \mathbb{P}(A_n) = \infty$$

et si les A_n sont indépendants, alors

$$\mathbb{P}(\limsup_{n} \mathbf{Sup} A_n) = 1$$

Démonstration. Notons $C_j=\cup_{k\geq j}A_k$, $C_{j,l}=\cup_{j\leq k\leq l}A_k$. On a que les A_k^c sont indépendants et on a

$$P(C_{j,l}) = 1 - P(C_{j,l}^c) = 1 - P\left(\bigcap_{k=j}^l A_k^c\right) = 1 - \prod_{k=j}^l (1 - P(A_k))$$

Or l'inégalité de convexité donne que $e^{-x} \leq 1-x$ pour tout $x \in [0,1]$. Donc

$$1 \ge P(C_{j,l}) \ge 1 - \prod_{k=j}^{l} e^{-P(A_k)} = e^{-\sum_{k=j}^{l} P(A_k)}$$

Si on fixe j et on fait tendre l vers l'infini, on a que $P(C_{j,l})$ tend vers 1, grace a l'hypothèse de convergence de la série vers 1. Comme $C_{j,l}$ est croissante en l, on a que on a donc que

$$P(C_j) = \lim_{l \to +\infty} P(C_{j,l}) = 1$$

Comme cette égalité est vraie pour tout j, on a que

$$P(\lim_n \sup_n A_n) = P(\lim_n C_n) = \lim_n P(C_n) = 1$$

Question 32. Montrer que si $\sum_{n=0}^{\infty} \mathbb{P}(|X_n - X| > \epsilon) < \infty$ pour tout $\epsilon > 0$, alors (X_n) converge presque sûrement vers X.

Démonstration. Soit $\epsilon>0$. On pose $A_n=\{\omega\in\Omega, |X_n(\omega)-X(\omega)|>\epsilon\}$. En utilisant le premier lemme de Borel-Cantelli, on a que la probabilité de la réalisation infinie des A_n est nulle, i.e.

$$\mathbb{P}(\lim \limits_{n} \mathbf{s} \, \mathbf{u} \, \mathbf{p} \, A_n) = 0$$

Or ceci est équivalent a la convergence presque sûre de (X_n) vers X.

Question 33. Montrer que si (X_n) converge en probabilité il existe une sous-suite (X_{n_i}) qui converge presque sûrement vers X.

Démonstration. Nototns $\epsilon_i=2^{-i}$. La convergence en probabilité implique la convergence de $\mathbb{P}(|X_n-X|>\epsilon_i)$ quand m tends vers 0. On en déduit qu'il eixiste une suite strictement croissant d'indices (n_i) telle que

$$\forall i \le 1, \quad \mathbb{P}(|X_{n_i} - X| > \epsilon_i) < \frac{1}{i^2}$$

Ainsi il suffit de vérifier que

$$\forall \epsilon > 0, \quad \sum_{i>1} \mathbb{P}(|X_{n_i} - X| \ge \epsilon) < \infty$$

En effet la convergence vers 0 des ϵ_i garanti qu'il existes i_0 tel que $\forall i \geq i_o, \quad \epsilon_{i_0} \leq \epsilon$. Pour tout $i \geq i_0$ on a donc que

$$\{|X_{n_i} - X| \ge \epsilon\} \subset \{|X_{n_i} - X| \ge \epsilon_i\}$$

Ainsi on peut majorer la série ci-dessus par i^{-2} a partir d'un certain rang, et donc elle converge. On a donc montré la convergence presque sûre de la sous-suite (X_{n_i}) .

Question 34. Enoncer et demontrer la loi faible des grands nombres.

Définition 18. Soit (X_n) une suite de variables aléatoires réelles indépendantes et identiquement distribuées (IID)

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) \xrightarrow[n \to +\infty]{} \mathbb{E}(X_1)$$
 (1)

Démonstration. Commes les X_i sont IID, on a que $\mathbb{E}(X_i)=\mathbb{E}(X_1)$ pour tout i et donc $Var(X_i)=Var(X_1)$ pour tout i. On pose $S_n=\sum_{i=1}^n X_i$.

Comme les X_i sont IID, on a que $Var(S_n)=nVar(X_1)$ et par linéarité de l'esérance on a aussi que $\mathbb{E}(S_n)=n\mathbb{E}(X_1)$. En utilisant l'inégalité de Bienaymé-Tchebychev, on a que :

$$\forall t > 0, \quad \mathbb{P}(|S_n - n\mathbb{E}(X_1)| \ge t) \le \frac{nVar(X_1)}{t^2}$$

Si on pose $t=\epsilon n$, on a que :

$$\forall \epsilon > 0, \quad \forall n \ge 1, \quad \mathbb{P}\left(|S_n - n\mathbb{E}(X_1)| \ge \epsilon n\right) = \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}(X_1)\right| \ge \epsilon\right) \le \frac{Var(X_1)}{\epsilon^2 n} \underset{n \to +\infty}{\longrightarrow} 0$$

On a ainsi que:

$$\forall \epsilon > 0, \quad \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}(X_1)\right| \ge \epsilon\right) \underset{n \to +\infty}{\longrightarrow} 0$$