

Advanced CV methods Discriminative tracking – tracking by classifiers

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Tracking by a classifier

- A case study: tracking faces
- Take a (huge) number of cropped face images and even larger number of non-face images

Online discriminative tracking

- The target does not move a lot between consecutive frames.
- Apply sliding window only within the region located at previous position.

• Choice of the type of classifier (object model) crucial for practical purpose!

Discriminative appearance model: Requirements

- Capability to adapt during tracking
 - Appearance changes (e.g. out of plane rotations)

- Appearance model robustness
 - Occlusions, cluttered background, illumination conditions

- Appearance model generality
 - Any object

Tracking as a binary classification

A single supervised training example provided in the first frame

Tracking as a binary classification

A single supervised training example provided in the first frame

Boosting for Feature Selection

Object Detector

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

Fixed Training set General object detector

Object Tracker

On-line update
Object vs. Background

Combination of simple image features using Boosting as Feature Selection

On-Line Boosting for Feature Selection

H. Grabner and H. Bischof. On-line boosting and vision. CVPR, 2006.

Tracking by online Adaboost

H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.

Tracking by online Adaboost

- Realtime performance
 - Fast feature computation
 - Efficient update of classifier

Tracking

Confidence Map

H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.

Tracking by online Adaboost

H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.

Failure modes

Do not trust all learning examples

- Assume all negative examples are really negative
- Assume positive examples might contain some negatives
- A multiple instance learning (MIL) problem!

Babenko et al., "Robust Object Tracking with Online Multiple Instance Learning", TPAMI2011

Do not trust all learning examples

- Note that the online Adaboost failed in this run on the David sequence!
- Be sure that TMIL authors worked to show this, but it also says a lot about robustness of oAB to initialization!
- Code for TMIL available here.

Babenko et al.,"Robust Object Tracking with Online Multiple Instance Learning", TPAMI2011

Apply weights to training examples

Online AdaBoost and TMIL make hard decision on the class identity:

• But some positive examples are more positive than others and some negative examples are "more negative" then others...

Apply weights to training examples

Weights proportional to estimated position overlap:

- Learning machinery:
 - Structured Support Vector Machine (online version)

Sam Hare, Amir Saffari, Philip H. S. Torr, Struck: Structured Output Tracking with Kernels, ICCV 2011

Struck tracking example

Sam Hare, Amir Saffari, Philip H. S. Torr, Struck: Structured Output Tracking with Kernels, ICCV 2011

Let's take a step back...

How is target detection carried out?

- Looks like a convolution/correlation
- A simplest model is the template

Correlation-based tracking

• Target localization: maximum of correlation of image f with a template h.

- Recall how correlation is computed:
 - Crop a patch from f, pointwise multiply with the template h and sum.
 - I.e., a dot product between the cropped patch and template.

Dot product implements a linear classifier / regressor

A decision boundary, in general, a *hyper-plane*:

$$af_1 + cf_2 + b = 0$$

Define:

$$\mathbf{h} = \begin{bmatrix} a \\ c \\ b \end{bmatrix} \qquad \mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ 1 \end{bmatrix}$$

A general hyper-plane eq:

$$\langle \mathbf{h}, \mathbf{f} \rangle = \mathbf{h}^T \mathbf{f} = 0$$

- 1. Correlation is a convolution using a flipped image:
- 2. Correlation equivalent to point-wise product in Fourier domain:

$$g = f \star h \Leftrightarrow \widehat{g} = \widehat{f} \odot \overline{\widehat{h}}$$

- Where:
 - $\widehat{g} = \mathcal{F}(g)$... Fourirer transform of g.
 - • ... element-wise product
 - (i.e., imaginary part negated)
- Requirement:

f and h must be of the same size

• Correlation via Fourier domain: $g = f \star h \iff \widehat{g} = \widehat{f} \odot \overline{\widehat{h}}$

- Orders of magnitude speedup:
 - For $n \times n$ images, cross-correlation is $\mathcal{O}(n^4)$.
 - Fast Fourier Transform (and its inverse) are $\mathcal{O}(n^2 \log n)$.

• Correlation is *circular* in discrete Fourier transform (DFT)!

Circular shifts

• To reduce the boundary effect, multiply the image f by a Hanning window:

• Correlation via Fourier domain: $g = f \star h \iff \widehat{g} = \widehat{f} \odot \overline{\widehat{h}}$

- Conclusion:
 - Correlation can be significantly accelerated by FFT
 - Since it evaluates $\langle f, h \rangle$ at all displacements it implements a fast linear classifier (regressor) evaluation at all displacements!
 - But how to learn the most suitable template h?

Discriminative correlation learning

• Ideally, we would like a well expressed maximum at the object location: Image: f Template: h Correlation output: g' = f * h

Image: f

Template: h

Discriminative Correlation Filters

Template: h

Ideal correlation output: g

Find $m{h}$ that minimizes the cost ϵ .

• Formalize the cost: difference between the correlation of template $m{h}$ with the image $m{f}$, i.e.,

$$\epsilon = \|\mathbf{f} \star \mathbf{h} - \mathbf{g}\|^2 + \lambda \|\mathbf{h}\|^2.$$

• Learning: Given the image f, find the filter h that minimizes ϵ .

Discriminative Correlation Filters in a nutshell

Target localized

Training example: **f**

Template: **h**

Desired response: q

green bbox: target region, red bbox: search region

*

Pixel-wise product!

$$\arg\min_{\mathbf{h}} |\mathbf{f} \star \mathbf{h} - \mathbf{g}|^2 + \lambda |\mathbf{h}|^2 = \arg\min_{\mathbf{\tilde{h}}} |\mathbf{\hat{f}} \odot \mathbf{\tilde{h}} - \mathbf{\hat{g}}|^2 + \lambda |\mathbf{\hat{h}}|^2$$

Closed-form solution:
$$ar{\hat{\mathbf{h}}} = rac{\hat{\mathbf{g}}\odotar{\hat{\mathbf{f}}}}{\hat{\mathbf{f}}\odotar{\hat{\mathbf{f}}}+\lambda}$$

Pixel-wise division!

Tracking algorithm outline

Localization step: Filter application

target center

 $(\cdot)^{\dagger} = \bar{(\cdot)}$

Filter: h, \hat{h}

Tracking algorithm outline

Update step: Filter learning

Current image

(2) Compute FFT of the modified region

(3) Compute FFT of desired response $\hat{g} = FFT(g)$

Final filter: h, \hat{h}

$$\widehat{\boldsymbol{h}}_k = \widehat{\boldsymbol{h}}_{k-1}\alpha + \widehat{\boldsymbol{h}}(1-\alpha) \iff \widehat{\mathbf{h}}^{\dagger}$$

(5) Average the filter with filter from previous time-step

$$oldsymbol{\hat{\mathbf{h}}}^{\dagger} = rac{\hat{\mathbf{g}} \odot \hat{\mathbf{f}}^{\dagger}}{\hat{\mathbf{f}} \odot \hat{\mathbf{f}}^{\dagger} + \lambda}$$

(4) Compute the filter

A basic CF tracker: MOSSE

Simplest version reaches speeds approximately 300fps.

Bolme, Beveridge, Draper, Lui, Visual Object Tracking using Adaptive Correlation Filters, CVPR2010

Scale estimation during tracking

- Extract patches with different scales and normalize them to the same size
- Run classification (correlation) on all patches and output bounding box with the highest response

Scale estimation by DCF: Learning

Resize the image patch to various sizes (i.e., build image pyramid)

 Take image intensities along each pixel through the scale-space.

• Learn a correlation filter h_1 over the 1D

signal

Jdeal response scale

• Repeat this for all N pixels and obtain many 1D correlation filters $\{\boldsymbol{h}_i\}_{i=1:N}$.

Multichannel version proposed in [1]

[1] Danelljan et al.,.: <u>Accurate scale estimation for robust visual tracking</u>. BMVC2014

many scales

Scale estimation by DCF: Estimation

Resize the image patch to various sizes (i.e., build image pyramid)

 Take image intensities along each pixel through the scale-space.

• Apply the corresponding filter $m{h}_i$ on 1D

Repeat for all 1D signals at other
 N locations.

Average the responses, take the max over scale.

Scale estimation by DCF

- Localize (standard DCF)
- Estimate scale (scale DCF)

Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. BMVC2014

Multichannel formulations

Multichannel formulation

Henriques et al. – KCF (HoG 31-multi-channel features)

Further work

- Li et al. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration, ECCVW2014:
 - HoG (31), color-naming (11 dimensional color representation) and grayscale pixels features
 - Quantize scale space and normalize each scale to a single (common) size by bilinear interpolation
 → only one filter on normalized size

Better channel features

CNN-based Correlation Trackers

- Bhat et al. (ECCV 2018)
 - Goutam Bhat et al. "Unveiling the Power of Deep Tracking", ECCV 2018.
 - features: VGG-Net pretrained on ImageNet dataset extracted from several layers
 - Fusion of different feature channels into a single response
- Valmadre et al. (CVPR 2017)
 - Learn CNN features for DCF

Test image: 255x255x3

Pictures were obtained from authors publication:

Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang, "Hierarchical Convolutional Features for Visual Tracking," International Conference on Computer Vision (ICCV), 2015.

Valmadre, Bertinetto, Henriques, Vedaldi, Torr, End-to-end representation learning for Correlation Filter based tracking, CVPR2017

Issues with standard DCFs: search region

Filter learned from cyclic shifts

Unrealistic training examples

Search region size equal to filter size

Difficult to address large displacements

Poor approximation with bbox

CSRDCF: Constrained filter learning

- Discriminative Correlation Filter with Channel and Spatial Reliability Lukežič, Čehovin, Vojir, Matas, Kristan, Discriminative Correlation Filter with Channel and Spatial Reliability, CVPR2017 (extended/updated version IJCV2019)
- State-of-the-art results, outperformed even trackers based on CNN
- Simple features:
 - HoG features (18 contrast sensitive orientation channels)
 - binarized grayscale channel (1 channel)
 - color names (~mapping of RGB to 10 channels)
- Single-CPU single-thread, Matlab implementation @13 fps,
 C++ realtime; part of OpenCV & NVIDIA embedded lib; over 1.2k citations

CSRDCF outline

Training:

Estimate object segmentation → object mask

- Learn correlation filter using the object mask as constraints
- Estimate weights of the feature channels

Localization:Compute r

- Compute response map from the weighted feature channels responses
- Estimate best position
- Estimate scale (standard approach in correlation tracking)

CSRDCF computational challenges

The cost function becomes complicated when filter masking is considered

$$\epsilon = ||\hat{\mathbf{f}} \odot \bar{\hat{\mathbf{h}}} - \hat{\mathbf{g}}||^2 + \lambda ||\hat{\mathbf{h}}||^2 ; \mathbf{h} = \mathbf{h} \odot \mathbf{m}$$

 A closed-form solution does not exist, but the problem can be reformulated and solved by Alternate Direction Method of Multipliers (ADMM).

See these papers for a practical example of ADMM uses:

(full derivation in the appendix of [1])

[1] Lukežič, Čehovin, Vojir, Matas, Kristan, <u>Discriminative Correlation Filter with Channel and Spatial</u>
<u>Reliability</u>, CVPR2017 (extended/updated version IJCV2019)

[2]Lukežič, Čehovin Zajc, Kristan, <u>Fast Spatially Regularized Correlation Filter Tracker</u>, ERK 2018

CSRDCF – example

Tracking result

Channel reliability weights

CSRDCF – segmentation mask

Lukežič, Vojíř, Čehovin, Matas, Kristan, Discriminative Correlation Filter with Channel and Spatial Reliability, CVPR 2017.

CSRDCF – nonrigid target

Input image

CF response

Lukežič, Vojíř, Čehovin, Matas, Kristan, Discriminative Correlation Filter with Channel and Spatial Reliability, CVPR 2017.

Applications: AR.Drone [1]

Alan Lukežič, Jon Natanael Muhovič, Tina Strgar

[1] M. Kristan, Računalniški vid v avtonomnih robotskih sistemih, Noč raziskovalcev (Ljubljana, September 2015)

Alternative constrained filter learning approaches

- Constrained filter learning has been explored before:
 - [1] Danelljan, Häger, Khan, Felsberg, Learning Spatially Regularized Correlation Filters for Visual Tracking. ICCV 2015
 - [2] Hamed Kiani Galoogahi, Terence Sim, Simon Lucey, Correlation Filters with Limited Boundaries. CVPR 2015

- A followup continuous formulation:
 - [3] Martin Danelljan, Goutam Bhat, Fahad Khan, Michael Felsberg, ECO: Efficient Convolution Operators for Tracking, CVPR 2017

Discriminative tracking – summary

- Optimization technique:
 - various, some in closed form, some as efficient variants of gradient descent
- Cost functions:
 - Discriminative foreground/background differentiability maximized!

- Attractive properties:
 - Potentially fast learning and fast application (e.g., ~300fps MOSE)
 - Performance may be boosted in straight-forward manner by better features.
 - Further boosts by learning the best features for tracking

References

- Online Adaboost for tracking:
 - H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.
- Multiple instance learning for tracking:
 - Babenko et al., "Robust Object Tracking with Online Multiple Instance Learning", TPAMI2011
- Structured SVM tracking:
 - Hare, Saffari, Torr, Struck: Structured Output Tracking with Kernels, ICCV 2011
- Correlation filter tracking:
 - Bolme, Beveridge, Draper, and Y. M. Lui. Visual Object Tracking using Adaptive Correlation Filters, CVPR 2010.
 - Henriques, Caseiro, Martins, Batista, High-Speed Tracking with Kernelized Correlation Filters, TPAMI2015
 - Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking, BMVC2014
 - Danelljan, Häger, Khan, Felsberg, Learning Spatially Regularized Correlation Filters for Visual Tracking. ICCV 2015
 - Lukežič, Vojíř, Čehovin, Matas, Kristan, Discriminative Correlation Filter with Channel and Spatial Reliability, CVPR 2017
 - Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang, Hierarchical Convolutional Features for Visual Tracking, ICCV 2015
 - Valmadre, et al., End-To-End Representation Learning for Correlation Filter Based Tracking, CVPR2017