Control Engineering Assignment

Name	Section	B. N	ID
Karim Mahmoud Kamal	2	10	9203076
Omar Fareed	2	4	9202968
Mustafa Mahmoud Hamada	2	25	9203519

Supervised by

Dr. Meena Elia Samouil Girgis Eng. Youssef Hassan Mohamed

Requirement 1: The dynamic equations and the block diagram of the system

Figure 1: Handwritten analysis

Requirement 2:

Requirement 3:

Figure 2: Poles of the two transfer functions X1, X2

As shown in Fig 2, For both of X1 and X2 all the poles are in the left half plane and no poles in the right half plane, so the system is stable.

Requirement 4:

Figure 3: Response of X1 for input 1N

Figure 4: Response of X2 for input 1N

Steady State Values for X1	Steady State Values for X2		
RiseTime: 41.7004	RiseTime: 41.5076		
TransientTime: 74.3184	TransientTime: 76.1248		
SettlingTime: 74.3184	SettlingTime: 76.1248		
SettlingMin: 0.0946	SettlingMin: 0.0860		
SettlingMax: 0.1048	SettlingMax: 0.0952		
Overshoot: 0	Overshoot: 0		
Undershoot: 0	Undershoot: 0		
Peak: 0.1048	Peak: 0.0952		
PeakTime: 199.7833	PeakTime: 138.7141		
Steady State error X1: 0.895	Steady State error X2: 0.905		

Requirement 5:

Figure 5: System modification such that Xd is input.

Requirement 6:

Figure 6: Response of the system for input Xd = 2

Requirement 7:

Figure 7: Poles of the system

As show in Fig 7, the system is stable as all the poles are in the negative side.

Steady State error: 1.827

• System Information:

• RiseTime: 37.4676

TransientTime: 68.9668SettlingTime: 68.9668SettlingMin: 0.0784SettlingMax: 0.0869

Overshoot: 0Undershoot: 0Peak: 0.0869

• PeakTime: 125.293

Requirement 8:

Kp value = 1

The stability of the system:

All poles are in left half plane, so the system is stable.

Kp value = 10

All poles are in left half plane, so the system is stable.

Kp value = 100

All poles are in left half plane, so the system is stable.

Kp value = 1000

There are some poles in the right half plane, so the system is unstable.

Kp value = 1	Kp value = 10	Kp value = 100	Kp value = 1000	
RiseTime: 37.4676	RiseTime: 18.8465	RiseTime: 2.2180	RiseTime: NaN	
TransientTime:	TransientTime:	TransientTime:	SettlingTime: NaN	
68.9668	35.7815	31.0141	SettlingMin: NaN	
SettlingTime: 68.9668	SettlingTime: 35.7815	SettlingTime: 31.0141	SettlingMax: NaN	
SettlingMin: 0.0784	SettlingMin: 0.4393	SettlingMin: 0.6622	Overshoot: NaN	
SettlingMax: 0.0869	SettlingMax: 0.4873	SettlingMax: 1.3416	Undershoot: NaN	
Overshoot: 0	Overshoot: 0	Overshoot: 48.2520	Peak: Inf	
Undershoot: 0	Undershoot: 0	Undershoot: 0	PeakTime: Inf	
Peak: 0.0869	Peak: 0.4873	Peak: 1.3416		
PeakTime: 125.2935	PeakTime: 61.3895	PeakTime: 6.3068		
Steady State error :	Steady State error :	Steady State error:	Steady State error :	
1.82667805	1.02440233	0.19004232	308984905426371084288	
The system is stable.	The system is stable.	The system is stable.	The system is not stable.	

Comments:

- Increasing the proportional controller gain Kp can improve the system's accuracy in reaching the desired output value (ess decreases) and speed up its response, resulting in a decreased rise time and settling time.
- However, this improvement is only observed up to a certain point (Kp = 1000), after which the system becomes unstable, and the rise time and settling time become NaN. High gains cause instability, which can affect the system's peak time.
- As Kp increases, the peak time decreases, and the overshoot increases. Therefore, there is a tradeoff between accuracy, speed, and stability when increasing Kp.

Requirement 9:

No, we cannot obtain a steady state error less than 0.01 m using proportionalonly controller, because the system will not be stable (There are some poles in the right half plane).

Requirement 10:

Kp = 150

Ki = 9.7

we got these values by try and error.

The system response:

The stability of the system:

As shown in the last Figure, the system is stable (all poles are in the left half plane even the 2 poles on the right that seems to be on the zero axis but they are not on the zero, they really on the left half plane).