Nome	completo:	

Nº de aluno: Curso:

INSTRUÇÕES PARA O EXAME DE ANÁLISE MATEMÁTICA III-C

LEIA ATENTAMENTE AS SEGUINTES INSTRUÇÕES ATÉ AO FIM

Hora de início do exame: 09.00 Duração: 3 horas (sem tolerância) Intervalo: Entre as 10.00 e as 11.00.

Todas as respostas são dadas no enunciado que vos será distribuído pelo que não necessitam, nem podem, utilizar outras folhas de resposta.

O exame é constituído por duas partes.

PRIMEIRA PARTE

A primeira parte é constituída por 6 folhas agrafadas, que **não podem** desagrafar (à exceção das folhas de rascunho), que para além desta primeira página de instruções (folha 1), é constituída pelo Grupo I.

Na página 1 e no cabeçalho da página 3, devem preencher completamente os vossos dados pessoais no espaço para isso reservado: nome completo, curso e nº de aluno. O não preenchimento dos vossos dados pessoais conduz ao anulamento desta parte da prova.

O Grupo I possui 10 perguntas de escolha múltipla, valendo um valor (na escala de 0 a 20) cada. Devem selecionar de forma inequívoca a opção (única) de resposta. Respostas erradas **não são** penalizadas.

As páginas de 5 a 10 da primeira parte estão em branco destinam-se a ser utilizadas como rascunho e **não serão corrigidas**.

SEGUNDA PARTE

A segunda parte é constituída por 5 folhas agrafadas, que **não podem** desagrafar (à exceção das folhas de rascunho). Esta segunda parte do exame ser-vos-á entregue assim que solicitada.

No cabeçalho da página 13, devem voltar a preencher completamente os vossos dados pessoais no espaço para isso reservado: nome completo, curso e nº de aluno. O não preenchimento dos vossos dados pessoais conduz ao anulamento desta parte da prova.

IMPORTANTE: Caso **não pretendam** realizar intervalo durante o exame, podem solicitar logo no início do mesmo a segunda parte e começar a resolver o exame pela ordem que entenderem conveniente. Caso pretendam realizar um intervalo durante a prova, entregam a primeira parte e devem solicitar a segunda assim que regressem do intervalo.

A segunda parte do exame é constituída por dois grupos (Grupos II e III correspondentes às páginas 13-18) com perguntas de resposta aberta e que são respondidas no próprio enunciado. As cotações de cada pergunta destes grupos estão assinaladas no início da pergunta. Devem ter em atenção o espaço destinado à resposta de cada alínea e gerir esse espaço convenientemente (por exemplo, não utilizar letra ou símbolos matemáticos demasiado grandes). As páginas em branco, destinam-se a ser utilizadas como rascunho e **não serão corrigidas**.

Para entregarem a primeira parte, a segunda ou ambas, devem com a autorização do professor vigilante colocar a prova/primeira parte, na mesma mesa onde se encontra a folha de presenças (que deverão assinar se estiverem a entregar a prova completa ou a segunda parte) em cima de outras provas que já tenham sido eventualmente entregues.

COTAÇÕES

Grupo I

Grupo II

- 1. a)
- 1. b)
- 2.

Grupo III

- 1.
- 2.
- 3.

EXAME DE RECURSO DE ANÁLISE MATEMÁTICA III-C 2022/2023 05 DE JULHO DE 2023 - PRIMEIRA PARTE

Nome completo:				
Nº de aluno: Curso:				
PARA RESPONDER ÀS QUESTÕES DO GRUPO I ASSINALE COM X O QUADRADO CORRESPONDENTE À ALTERNATIVA CORRECTA.				
GRUPO I				
[1 valor] 1. A equação diferencial linear de primeira ordem				
$\frac{dy}{dx} + \frac{1}{4}xy = \frac{1}{4}x^3$				
com a condição $y(0) = -4$ tem como solução:				
$\Box y = 4e^{-\frac{x^2}{8}} + x^2 - 8 \qquad \Box y = 4e^{\frac{x^2}{8}} + x^2 - 8 \qquad \Box y = 4e^{-\frac{x^2}{8}} - x^2 + 8$ $\Box y = -4e^{-\frac{x^2}{8}} + x^2 - 8 \qquad \Box y = -4e^{-\frac{x^2}{8}} + x^2 - 8 \qquad \Box y = -4e^{-\frac{x^2}{8}} - x^2 + 8$				
[1 valor] 2. A equação diferencial				
$3xy^2 dx + 4x^2y dy = 0$				
admite um factor integrante da forma $\varphi(x,y)=xy^k,$ em que k é uma constante real. Então				
$\square k = -2 \qquad \square k = -1 \qquad \square k = 0 \qquad \square k = 1 \qquad \square k = 2 \qquad \square k = 3$				
$[1\ valor]$ 3. Designando $\frac{dy}{dx}$ por p a solução geral da equação de Lagrange				
$y = -2x\frac{dy}{dx} + \frac{1}{2}\left(\frac{dy}{dx}\right)^2,$				
na forma paramétrica é:				
$\Box x = c p^{-\frac{2}{3}} + \frac{1}{5}p \qquad \qquad \Box y = c p^{-\frac{2}{3}} + \frac{1}{5}p \qquad \qquad \Box y = -2xp + \frac{1}{2}p^2$				
$\square \left\{ \begin{array}{l} x = c p^{-\frac{2}{3}} + \frac{1}{5}p \\ y = -2xp + \frac{1}{2}p^2 \end{array} \right. \qquad \square \left\{ \begin{array}{l} x = c p^{-\frac{2}{3}} + \frac{3}{5}p \\ y = -2xp + \frac{1}{2}p^2 \end{array} \right. \qquad \square \left\{ \begin{array}{l} x = c p^{\frac{2}{3}} + \frac{3}{5}p \\ y = -2xp + \frac{1}{2}p^2 \end{array} \right.$				
<u>-</u>				

 $[1\ valor]$ 4. Um sistema equivalente ao seguinte sistema de equações diferenciais lineares de coeficientes constantes

$$\left\{ \begin{array}{l} (D-2)x+(D^2+3D)y=t+1\\ (5D^2-12D+4)x+(5D^3+13D^2-7D-3)y=-2t+4 \end{array} \right.$$

(D designa o operador de derivação em ordem a t) é:

$$\Box \begin{cases}
(-5D^2 + 12D - 4)x + (-5D^3 - 13D^2 + 6D)y = 2t - 3 \\
(D + 3)y = 0
\end{cases}$$

$$\Box \begin{cases}
(-5D^2 + 12D - 4)x + (-5D^3 - 13D^2 + 6D)y = 2t - 3 \\
(D + 3)y = -1
\end{cases}$$

$$\Box \begin{cases}
(-5D^2 + 12D - 4)x + (-5D^3 - 13D^2 + 6D)y = 2t - 3 \\
(D - 3)y = 1
\end{cases}$$

$$\Box \begin{cases}
(D - 2)x + (D^2 + 3D)y = t + 1 \\
(D + 3)y = 1
\end{cases}$$

$$\Box \begin{cases}
(D - 2)x + (D^2 + 3D)y = t + 1 \\
(D - 3)y = 0
\end{cases}$$

$$\Box \begin{cases}
(D - 2)x + (D^2 + 3D)y = t + 1 \\
(D - 3)y = 0
\end{cases}$$

$$\Box \begin{cases}
(D - 2)x + (D^2 + 3D)y = t + 1 \\
(D - 3)y = -1
\end{cases}$$

 $[1 \ valor]$ 5. Sabendo que $F(s)=\frac{2s^2-8s}{s^4-16}=\frac{As+B}{(s^2+4)}+\frac{Cs+d}{(s^2-4)},$ em que A, B, C e D são constantes reais, então F(s) tem como transformada de Laplace inversa a função:

$$\Box f(t) = \cos 2t + \sin 2t + \cosh 2t + \sinh 2t$$

$$\Box f(t) = \frac{1}{2}\cos 2t + \frac{1}{2}\sin 2t - \frac{1}{2}\cosh 2t + \frac{1}{2}\sinh 2t$$

$$\Box f(t) = \cos 2t + \frac{1}{2}\sin 2t - \cosh 2t + \frac{1}{2}\sinh 2t$$

$$\Box f(t) = \frac{1}{2}\cos 2t + \sin 2t - \frac{1}{2}\cosh 2t + \sinh 2t$$

$$\Box f(t) = \cos 2t + \frac{1}{2}\sin 2t + \cosh 2t + \frac{1}{2}\sinh 2t$$

$$\Box f(t) = \frac{1}{2}\cos 2t + \sin 2t + \frac{1}{2}\cosh 2t + \sinh 2t$$

[1 valor] 6. Seja $w \in \mathbb{R} \setminus \{0\}$. Sabendo que $\mathcal{L}(\sin^2(wt)) = \frac{2w^2}{s(s^2 + 4w^2)}$ então as transformadas de Laplace das funções $e^{-t}\sin^2(wt)$, $\sin^2(2t)u\left(t - \frac{\pi}{2}\right)$ e $\cos^2(wt)$ são respectivamente:

$$\Box \frac{2w^2}{(s-1)(s^2-2s+1+4w^2)} , \frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} - \frac{2w^2}{s(s^2+4w^2)}$$

$$\Box \frac{2w^2}{(s+1)(s^2+2s+1+4w^2)} , -\frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} - \frac{2w^2}{s(s^2+4w^2)}$$

$$\Box \frac{2w^2}{(s+1)(s^2+1+4w^2)} , -\frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} - \frac{2w^2}{s(s^2+4w^2)}$$

$$\Box \frac{2w^2}{(s+1)(s^2+1+4w^2)} , \frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} - \frac{2w^2}{s^2+4w^2}$$

$$\Box \frac{2w^2}{(s-1)(s^2-2s+1+4w^2)} , -\frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} + \frac{2w^2}{s(s^2+4w^2)}$$

$$\Box \frac{2w^2}{(s+1)(s^2+2s+1+4w^2)} , \frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} + \frac{2w^2}{s(s^2+4w^2)}$$

$$\Box \frac{2w^2}{(s+1)(s^2+2s+1+4w^2)} , \frac{8e^{-\frac{\pi}{2}s}}{s(s^2+16)} e^{-\frac{1}{s}} + \frac{2w^2}{s(s^2+4w^2)}$$

[1 valor] 7. Das seguintes séries numéricas apenas uma é convergente. Indique qual:

$$\Box \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}} \ \Box \sum_{n=1}^{\infty} \frac{(3n+2)^n}{(2n)^n} \ \Box \sum_{n=1}^{\infty} (-1)^n \left(1-\sin\frac{1}{n}\right)$$

$$\Box \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}} \qquad \Box \sum_{n=1}^{\infty} \frac{\cos \frac{1}{n}}{n} \qquad \Box \sum_{n=0}^{\infty} (\sqrt{n^4 + 2} - n^2)$$

 $[1\ valor]$ 8. A série redutível

$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)},$$

é:

 \square Divergente \square Convergente e tem por soma 1

 \Box Convergente e tem por soma $\frac{5}{6}$ \Box Convergente e tem por soma $\frac{11}{6}$

 \Box Convergente e tem por soma $\frac{1}{2}$ \Box Convergente e tem por soma $\frac{1}{3}$

 $\begin{bmatrix} 1 \ valor \end{bmatrix}$ 9. A função f(x) é par, periódica de período p=1 e no intervalo $\Big]0, \frac{1}{2} \Big[$ está definida por $\Big\{ egin{array}{ll} 1 & 0 < x \leq 1/4 \\ -1 & 1/4 < x < 1/2 \\ \Big. \end{array} \Big]$. Então a sua série de Fourier é:

$$\Box \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)} \cos((2n-1)\pi x) \qquad \Box \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)} \cos((4n-2)\pi x)$$

$$\Box \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)} \cos((4n-2)\pi x) \qquad \Box \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)} \cos((2n-1)\pi x)$$

$$\Box \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)} \cos((4n-2)\pi x) \qquad \Box \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)} \cos((2n-1)\pi x)$$

[1 valor] 10. A equação com derivadas parciais

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0,$$

admite uma solução da forma $u(x,y) = X(x) \cdot Y(y)$ (X função apenas da variável x e Y função apenas da variável y) verificando a condição u(1,1) = 1. Então existe uma constante k tal que:

$$\square \ u(x,y) = |xy|^k \qquad \qquad \square \ u(x,y) = |x^2y|^k \qquad \qquad \square \ u(x,y) = |xy^2|^k$$

$$\Box \ u(x,y) = \left| \frac{x}{y} \right|^k \qquad \qquad \Box \ u(x,y) = \frac{|x|^k}{|y|} \qquad \qquad \Box \ u(x,y) = \frac{|x|}{|y|^k}$$

FORMULÁRIO

Transformadas de Laplace				
f(t)	$\mathcal{L}\{f\}$	f(t)	$\mathcal{L}\{f\}$	
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$	
$t^n (n=1,2,\cdots)$	$\frac{n!}{s^{n+1}}$	$\cos wt$	$\frac{s}{s^2 + w^2}$	
$t^a \ (a \ge 0)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$\sin wt$	$\frac{w}{s^2 + w^2}$	
$u(t-a) = \begin{cases} 0 & t < a \\ 1 & t > a \end{cases}$	$\frac{e^{-as}}{s}$	$\cosh wt$	$\frac{s}{s^2 - w^2}$	
$\delta(t-a) (a>0)$	e^{-as}	$\sinh wt$	$\frac{w}{s^2 - w^2}$	

EXAME DE RECURSO DE ANÁLISE MATEMÁTICA III-C 2022/2023 05 DE JULHO DE 2023 - SEGUNDA PARTE

Nº de aluno:	Curso:					
		GRUPO II				
[2 valores] 1. a constantes não l	a) Determine a solução homogénea	geral da equação	diferencial	linear d	e coeficie	ntes

 $\frac{d^2y}{dx^2} + 4y = x^2 - 2x + \frac{1}{2}.$

1. a) Resposta:

Nome:

 $[1.5\ valores]$ 1. b) Utilizando a mudança de variável
 $x\longrightarrow t$ definida por $t=\frac{1}{x}$ determine a solução geral da equação

$$t^4 \frac{d^2 y}{dt^2} + 2t^3 \frac{dy}{dt} + 4y = \frac{t^2 - 4t + 2}{2t^2}, \quad t > 0.$$

1. b) Resposta:

[1,5 valores] 2. Determine o intervalo de convergência da série de potências

$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}{n^n} \ x^n.$$

Estude a convergência nos extremos do seu intervalo de convergência.

1. Resposta:

(v.s.f.f.)

GRUPO III

 $[1,5 \ valores]$ 1. Acerca de uma função f(x) e da sua derivada, sabe-se são seccionalmente contínuas. Além disso sabe-se também que f(x) é contínua no ponto x=1, f(1)=1 e tem por série de Fourier

$$\frac{8}{\pi} \sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n} + \frac{2}{n^3 \pi^2} ((-1)^n - 1) \right) \sin \frac{n \pi x}{2}.$$

Indique, justificando, a sua paridade e período. Sabendo que $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1} = \frac{\pi}{4}$, determine

a soma da série $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)^3}.$

1. Resposta:

 $\left[1,5\ valores\right]$ 2. Resolva, utilizando a transformada de Laplace, o seguinte problema de valores iniciais

$$y'' + 2y' + 5y = 0,$$
 $y(0) = 1, y'(0) = -3.$

2. Resposta:

(v.s.f.f.)

 $[2 \ valores]$ 3. Suponhamos que a função f(x,y) é continuamente derivável até à segunda ordem em \mathbb{R}^2 e que depende apenas da distância r de cada ponto (x,y) à origem, isto é

$$f(x,y) = g(r)$$
, onde $r = r(x,y) = (x^2 + y^2)^{\frac{1}{2}}$.

a) Mostre que para $(x,y) \neq (0,0)$ se tem

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{1}{r}g'(r) + g''(r).$$

b) Supondo agora que f é uma solução da equação de Laplace

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0, \quad \forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\$$

determine f(x,y) sabendo que f(1,0)=0 e que $\frac{\partial f}{\partial x}(1,1)=1.$

3. Resposta:

•

FORMULÁRIO

Transformadas de Laplace					
f(t)	$\mathcal{L}\{f\}$	f(t)	$\mathcal{L}\{f\}$		
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$		
$t^n \ (n=1,2,\cdots)$	$\frac{n!}{s^{n+1}}$	$\cos wt$	$\frac{s}{s^2 + w^2}$		
$t^a \ (a \ge 0)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$\sin wt$	$\frac{w}{s^2 + w^2}$		
$u(t-a) = \begin{cases} 0 & t < a \\ 1 & t > a \end{cases}$	$\frac{e^{-as}}{s}$	$\cosh wt$	$\frac{s}{s^2 - w^2}$		
$\delta(t-a) (a>0)$	e^{-as}	$\sinh wt$	$\frac{w}{s^2 - w^2}$		