Yönsel Türev

Directional Derivative

Yönsel türev (directional derivative)

Klasik Türev

 $\partial \mathbf{f} / \partial \mathbf{x}$ ile +x yönünde, $\partial \mathbf{f} / \partial \mathbf{y}$ ise +y yönündeki parlaklık değişimini verir.

Yönsel Türev

Belirli bir yöndeki, örneğin 45 derecedeki türevi hesaplamak için yönsel türev kullanılır.

Yönsel türev (directional derivative)

$$ec{m{u}}$$
 vektörü birim seçilirse $egin{array}{c} |u_x| = cos(heta) \ |u_y| = sin(heta) \end{array}$ olur

Böylece yönsel türev:

Bu harika bir sonuçtur. Çünkü dilediğimiz yöndeki türevi yatay ve dikey türevden elde edebileceğimizi gösterir!!

Yüksek dereceli yönsel türev

$$f_{\theta}'(x,y) = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$$

$$f_{\theta}''(x,y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

$$\left| f_{\theta}^{"''}(x,y) = \frac{\partial^3 f}{\partial x^3} \cos^3 \theta + 3 \frac{\partial^3 f}{\partial x^2 \partial y} \cos^2 \theta \sin \theta + 3 \frac{\partial^3 f}{\partial x \partial y^2} \cos \theta \sin^2 \theta + \frac{\partial^3 f}{\partial y^3} \sin^3 \theta \right|$$

Ikinci yönsel türev (gradient yönü boyunca)

$$f_{\theta}''(x,y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

Gradient Yönü
$$\theta = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_X^2 f_{XX} + 2f_X f_y f_{Xy} + f_y^2 f_{yy}}{f_X^2 + f_y^2}$$

İkinci yönsel türev kullanarak kenar yakalama

Laplacian:
$$\nabla^2 f(x, y) \equiv \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

Veya $\nabla^2 f \equiv f_{xx} + f_{yy}$

Gradyan yönü boyunca ikinci yönsel türev

$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_X^2 f_{XX} + 2f_X f_y f_{Xy} + f_y^2 f_{yy}}{f_X^2 + f_y^2}$$

Kenar noktasında;

- (i) İkinci yönsel türev sıfıra eşittir.
- (ii) Üçüncü yönsel türev negatiftir.

İkinci Yönsel Türevin Özellikleri

Mathematical:

- $\frac{\partial^2}{\partial n^2}$ is non-linear
- $\frac{\partial^2}{\partial n^2}$ neither commutes nor associates with convolution

$$\frac{\partial^{2}}{\partial n^{2}}(g*f) \neq \left(\frac{\partial^{2}g}{\partial n^{2}}\right)*f$$

$$\left(\frac{\partial^{2}g}{\partial n^{2}}\right)*f \neq g*\left(\frac{\partial^{2}f}{\partial n^{2}}\right)$$

3 $\frac{\partial^2}{\partial n^2}$ is not everywhere defined (i.e., require $f_X^2 + f_y^2 \neq 0$)

Experimental:

 $\frac{\partial^2}{\partial n^2}$ provides better localization, especially at corners

Yönsel Türevler

Fig. 1. LM filter set.

Fig. 2. S filter set.

Fig. 3. MR8 filter bank.

Yönsel Türevler

Fig. 5. Local derivative filter set.

Fig. 6. Ring and wedge filter set. The first row are 4 ring filters and the second row are six wedge-shaped orientation filters.

Tek boyutlu maske kullanımı

1. İlk olarak 2d → 1d dönüşüm yapılır

Local descriptor vector

2. Tek boyutlu bir f maske fonksiyonunun türevleri elde edilir:

$$f_{1} = \frac{-2t}{\sigma^{2}} e^{-\frac{t^{2}}{\sigma^{2}}},$$

$$f_{2} = e^{-\frac{t^{2}}{\sigma^{2}}},$$

$$f_{3} = \frac{2}{\sigma^{2}} \left(\frac{2t^{2}}{\sigma^{2}} - 1\right) e^{-\frac{t^{2}}{\sigma^{2}}},$$

$$f_{4} = \frac{2t}{\sigma^{2}} e^{-\frac{t^{2}}{\sigma^{2}}}.$$

Basic filters	Filter in x	Filter in y
G_{x}	f_1	f_2
G_{y}	f_2	f_1
G_{xx}	f_3	f_2
G_{xy}	f ₄	f ₄
G_{yy}	f_2	f_3

2b filtreye örnek

- 1. Filtre fonksiyonumuzun Gauss olduğunu farz edelim: $G(x,y) = e^{\frac{-(x^2+y^2)}{\sigma^2}}$
- Bu durumda görüntülerimizin birinci ve ikinci türevleri aşağıdaki gibi elde edilir:

Maksimum birinci yönsel türev

$$\begin{split} I_{\theta} &= \cos(\theta)I * G_{x} + \sin(\theta)I * G_{y} \\ &= \sqrt{\left(I * G_{x}\right)^{2} + \left(I * G_{y}\right)^{2}} \left(\cos(\theta) \frac{I * G_{x}}{\sqrt{\left(I * G_{x}\right)^{2} + \left(I * G_{y}\right)^{2}}} + \sin(\theta) \frac{I * G_{y}}{\sqrt{\left(I * G_{x}\right)^{2} + \left(I * G_{y}\right)^{2}}}\right) \\ &= \sqrt{\left(I * G_{x}\right)^{2} + \left(I * G_{y}\right)^{2}} \sin(\theta + \phi), \end{split}$$

where $\phi=\arctan\frac{I*G_x}{I*G_y}$. Thus, when $\theta=\frac{\pi}{2}-\phi$, the maximum value of I_{θ} obtains

$$I_{\theta max} = \sqrt{\left(I * G_{x}\right)^{2} + \left(I * G_{y}\right)^{2}}.$$

Maksimum ikinci yönsel türev-Hessian özdeğeri ile ilişkisi

$$\begin{split} I_{2\theta} &= \cos^2(\theta)I * G_{xx} - 2\cos(\theta)\sin(\theta)I * G_{xy} + \sin^2(\theta)I * G_{yy} \\ &= \frac{2\cos^2(\theta)I * G_{xx} - I_{xx}}{2} - 2\cos(\theta)\sin(\theta) - \frac{I_{yy} - 2\sin^2(\theta)I_{yy}}{2} \\ &+ \frac{I * G_{xx} + I * G_{yy}}{2} \\ &= \frac{\cos(2\theta)I_{xx}}{2} - \sin(2\theta)I_{xy} - \frac{\cos(2\theta)I_{yy}}{2} + \frac{I * G_{xx} + I * G_{yy}}{2} \\ &= \sqrt{\frac{(I * G_{xx} - I * G_{yy})^2}{4} + (I * G_{xy})^2\cos(2\theta - \phi)} \\ &+ \frac{I * G_{xx} + I * G_{yy}}{2}, \end{split}$$

where $\phi=\arctan\frac{2l*G_{Ny}}{l*G_{Nx}+l*G_{Ny}}$. Thus, when $\theta=\pi+\frac{\phi}{2}$, the maximum value of $I_{2\theta}$ obtains,

$$I_{2\theta max} = \sqrt{\frac{\left(I * G_{xx} - I * G_{yy}\right)^{2}}{4} + \left(I * G_{xy}\right)^{2}} + \frac{I * G_{xx} + I * G_{yy}}{2}.$$

$$H = \begin{bmatrix} I * G_{xx} & I * G_{xy} \\ I * G_{xy} & I * G_{yy} \end{bmatrix}$$

$$\lambda = \pm \sqrt{\frac{(I*G_{XX}-I*G_{YY})^2}{4} + (I*G_{XY})^2 + \frac{I*G_{XX}+I*G_{YY}}{2}}$$

Temel eğrilikler (Principal curvatures - k1,k2)

$$K = \frac{I_{xx}I_{yy} - I_{xy}^{2}}{\left(1 + I_{x}^{2} + I_{y}^{2}\right)^{2}},$$

$$H = \frac{I_{xx}\left(1 + I_{y}^{2}\right) + I_{yy}\left(1 + I_{x}^{2}\right) - 2I_{x}I_{y}I_{xy}}{\left(1 + I_{x}^{2} + I_{y}^{2}\right)^{3/2}}$$

the principal curvatures (k_1, k_2) are

$$k_1 = H + \sqrt{H^2 - K},$$

$$k_2 = H - \sqrt{H^2 - K}.$$

 $k_1 > 0, k_2 > 0$

