In[1]:= Remove["Global`*"]

Please see

 $http://www.sci.utah.edu/\sim gerig/CS7960-S2010/handouts/04\%20 Gaussian\%20 derivatives.pdf and$

 $http://www.cse.yorku.ca/{\sim}kosta/CompVis_Notes/fourier_transform_Gaussian.pdf$

$$ln[3]:=$$
 gaussian[x_, sigma_] := Exp[-x^2 / (2 * sigma^2)]

normalizedGaussian [x_, sigma_] = Evaluate[gaussian[x, sigma]/gaussian[0, sigma]] Plot[Evaluate[normalizedGaussian[x, 1.0/2.355]], $\{x, -10, 10\}$, PlotRange \rightarrow All] normalizedGaussian[0.5, 1.0/2.355]

 $\mathsf{Out[6]} = 0.499947$

In[7]:=

In[8]:= **order = 1**

gaussianderivative [x_, sigma_] := Evaluate [D[gaussian[x, sigma], {x, order}]]
maxValue[sigma_] := Solve[{Evaluate[D[gaussianderivative [x, sigma], {x, 1}]] == 0}, {x}]
normalizedGaussianDerivative [x_, sigma_] :=
gaussianderivative [x, sigma]/(-gaussianderivative [x, sigma]/. maxValue[sigma][[1]])

Evaluate[Simplify[normalizedGaussianDerivative [x, sigma]]]

Out[8]=

Out[12]=
$$\frac{e^{\frac{1}{2} - \frac{x^2}{2 \operatorname{sigma}^2}} \times}{\operatorname{sigma}}$$

Maxima of a gaussian derivative is $Solve[\{Evaluate[D[gaussian[x,sigma],\{x,2\}]]==0\},\{x\}],\\ in this case maximum is sigma.$

Out[62]=
$$\{\{x \rightarrow -sigma\}, \{x \rightarrow sigma\}\}$$

In[13]:=

In[14]:= Plot[Evaluate[normalizedGaussianDerivative [x, 1.0 / 2.355]], {x, -10, 10}, PlotRange \rightarrow All]

