Stochastische Signale und Systeme

Zusammenfassung Formeln

Autor: Daniel Thiem - studium@daniel-thiem.de

Version 1.1 - 15.02.2013

Inhaltsverzeichnis

1	Kombinatorik & reine Stochastik			6	
	1.1	Menge	enlehre	6	
	1.2	Wahrs	cheinlichkeitsdichtefunktion	6	
		1.2.1	Eigenschaften der Wahrscheinlichkeitsdichtefunktion	6	
		1.2.2	Berechnung bei Abhängigkeit zu anderer Zufallsvariablen	7	
	1.3	Vertei]	lungsfunktion	7	
		1.3.1	0	7	
		1.3.2	Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion	7	
	1.4	Vertei]	lungen	8	
		1.4.1	Normalverteilung	8	
		1.4.2	Rechteckverteilung	8	
		1.4.3	Exponentialverteilung	8	
	1.5	Forme	el von Bayes	9	
	1.6	Erwar	tungswerte	9	
		1.6.1	Erwartungswertberechnung	9	
		1.6.2	Rechenregeln für Erwartungswerte	10	
	1.7	Varian	ız	10	
		1.7.1	Berechnung der Varianz	10	
		1.7.2	Rechenregeln für Varianzen	10	
	1.8	1.8 Konvergenz			
		1.8.1	Konvergenz mit Wahrscheinlichkeit eins (Convergence with		
			probability one)	11	
		1.8.2	Konvergenz im "Mean Square Sense"	11	
		1.8.3	Convergence in Pobability	11	
		1.8.4	Convergence in Distribution	11	
		1.8.5	Gewichtung der Konvergenzen	11	
2	Disc	rete-Ti	me-Fourier-Transformation	12	
	2.1	Abtast	rung	12	
		2.1.1	Im Zeitbereich	12	
		2.1.2	Im Frequenzbereich	12	
	2.2		Formation	12	
		2.2.1	Rücktransformation	12	

			Zusammenhang Ω und n	13 13		
			Berechnen einer Übertragungsfunktion im zeitdiskreten Fall.	13		
	2.3		spondenzen, welche nicht auf der DSS-Formelsammlung ent-	13		
	2.3			13		
		2.3.1	sind	13		
		2.3.1	ingonomenische Funktionen im Frequenzbereich	13		
3	Proz	zesse		14		
	3.1		e Stationarität	14		
	3.2	Second order moment function(SOMF)				
		3.2.1		14		
		3.2.2	0	14		
	3.3	Cross-	SOMF	15		
		3.3.1	Gemeinsame Statonarität (joint stationary)	15		
		3.3.2	Eigenschaften der Cross-SOMF	15		
		3.3.3	Unkorreliertheit (uncorrelated) anhand der Cross-SOMF	15		
		3.3.4	Orthogonalität	15		
	3.4		ianz (Covariance,Central-SOMF)	15		
		3.4.1	Eigenschaften der Kovarianz	16		
		3.4.2	Kovarianz einer zusammengesetzten Funktion	16		
		3.4.3	Überführung der Central-SOMF in die Varianz	16		
	3.5		-Kovarianz (Cross-covariance)	16		
		3.5.1	Eigenschaften der Kreuzkovarianz	16		
		3.5.2	Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz .	17 17		
	3.6	3.6 Komplexe Prozesse				
		3.6.1	Erwartungswert eines Komplexen Zufallsprozess	17		
		3.6.2	SOMF eines Komplexen Zufallsprozess	17		
		3.6.3	cross-SOMF komplexer Zufallsprozesse	17		
		3.6.4	Kovarianz (Covariance) eines komplexen Zufallsprozess	18		
		3.6.5	Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse	18		
		3.6.6	Eigenschaften komplexer Zufallsprozesse	18		
4	Spe	ktraldi	chten (Power Spectral Density)	19		
	4.1	Leistungsdichte				
		4.1.1	Leistungsspektraldichte (Power Spectral Density, PSD)	19		
		4.1.2	Durchschnittliche Leistung eines Zufallsprozesses	19		
		4.1.3	Kreuzleistungsdichte (cross-power density)	20		
		4.1.4	Durchschnittliche Kreuzleistung zweier Zufallsprozesse	20		
		4.1.5	Wiener-Khinchine theorem			
		4.1.6	Kreuzleistungsdichte durch Cross-SOMF	21		

	4.2	Kohär	enz (coherence)	21				
		4.2.1	Eigenschaften der Kohärenz	21				
	4.3	Root N	Mean Square (RMS) und Gleichsstrom (DC) Werte	21				
		4.3.1	DC-Values	21				
		4.3.2	Normalisierte DC-Leistung	21				
		4.3.3	RMS-Value	22				
	4.4	Spektr	um	22				
		4.4.1	Spektrum eines stationären Zufallsprozesses	22				
		4.4.2	Kreuzspektrum zweier gemeinsam stationärer Zufallsprozesse	22				
5	Filter 24							
	5.1	Linear	e Filter	24				
		5.1.1	Stabilität	24				
		5.1.2	Eigenschaften eines Linearen Filters	24				
		5.1.3	Instabiler linearer Filter	24				
		5.1.4	Leistungsdichtespektrum des Ausgangs eines Filters	25				
		5.1.5	Spektrum/Kovarianz des Ausgangs eines Filters	25				
		5.1.6	Kreuzkovarianz des Ausgangs des Filters	25				
		5.1.7	Kreuzkovarianz des Ausgangs zweier paralleler Filter	25				
		5.1.8	Kaskade linearer Filter	26				
	5.2	Match	ed Filter	26				
		5.2.1	Annahmen des Matched Filters	26				
		5.2.2	Ziel des Matched Filters	26				
		5.2.3	Übertragungsfunktion des Matched Filters	27				
		5.2.4	Matched Filter für Weißes Rauschen	27				
	5.3	Wiene	r Filter	27				
		5.3.1	Ziel des Wiener Filters	27				
		5.3.2	Annahmen des Wiener Filters	28				
		5.3.3	Die Übertragungsfunktion des Wiener Filters	28				
		5.3.4	Mean Square Error des Wiener Filters	29				
		5.3.5	Orthogonalitätsprinzip (Herleitung des Wiener Filters)	29				
		5.3.6	Der Wiener Filter mit additivem Rasuchen	29				
6	Son	stiges		30				
_	6.1							
		6.1.1	Gaussian white noise process	30 30				
		6.1.2	Kronecker delta function	30				
	6.2		matische nützliche Formeln	30				
		6.2.1	Ungleichung von Schwarz	30				
		6.2.2	Orthogonalitäts- und Normierungsbeziehungen	31				
			5					

6.2.3	Betragsquadrat komplexer Funktionen	31
6.2.4	Doppelte Faltungssumme	32
6.2.5	Einzelne Faltungssumme ohne Differenz im Argument	32

Vorwort

Fehler und Verbesserungen bitte an studium@daniel-thiem.de senden oder als Issue bei https://github.com/Tyde/stosigsysfs/issues melden. Der Quelltext dieser Formelsammlung ist auf https://github.com/Tyde/stosigsysfs und darf gerne erweitert werden.

1 Kombinatorik & reine Stochastik

1.1 Mengenlehre

$$P(\overline{A} [\overline{B}) = P(\overline{A} \setminus \overline{B}) \tag{1.1a}$$

$$P(\overline{A \setminus B}) = P(\overline{A} [\overline{B}) \tag{1.1b}$$

$$P(A [(A \setminus B)) = P(A)$$
 (1.1c)

$$P(A \setminus (A [B)) = P(A) \tag{1.1d}$$

$$P(\overline{A}) = P(A) \tag{1.1e}$$

Falls A und B stochastisch unabhängig:

$$P(A \setminus B) = P(A) \ P(B) \tag{1.2}$$

1.2 Wahrscheinlichkeitsdichtefunktion

Sei ${\cal F}_X(x)$ die Verteilungsfunktion der Zufallsvariablen X

$$f(x) = \frac{dF_X(x)}{dx} \tag{1.3}$$

1.2.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion

$$f_X(x) = 0 ag{1.4a}$$

$$f_X(x) = P(X = x) \tag{1.4b}$$

1.2.2 Berechnung bei Abhängigkeit zu anderer Zufallsvariablen

Sei Y = g(X) und die Wahrscheinlichkeitsdichtefunktion von Y, $f_y(t)$, sei gesucht, während die Wahrscheinlichkeitsdichtefunktion $f_x(t)$ gegeben ist,

$$f_y(t) = f_x(g^{-1}(t)) \left| \frac{d}{dt} g^{-1}(t) \right|$$
 (1.5)

1.3 Verteilungsfunktion

f(t) sei die Wahrscheinlichkeitsdichtefunktion der Zufallsvariablen X

$$F(x) = P(X \quad x) = \int_{1}^{x} f(t)dt \tag{1.6}$$

1.3.1 Eigenschaften der Verteilungsfunktion

0
$$F_X(x)$$
 1 (1.7a)

$$F_X(1) = 1$$
 (1.7b)

$$F_X(1) = 0$$
 (1.7c)

 $F_X(x)$ ist rechtsstetig, d.h.

$$\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x) \tag{1.7d}$$

1.3.2 Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion

$$F(a) = \lim_{\epsilon \to 0} F_X(x - \epsilon) \tag{1.8a}$$

$$P(X = a) = F(a) \quad F(a)$$
 (1.8b)

$$P(a < X \quad b) = F(b) \quad F(a) \tag{1.8c}$$

$$P(a \quad X < b) = F(b \quad) \quad F(a \quad) \tag{1.8d}$$

$$P(a \quad X \quad b) = F(b) \quad F(a \quad) \tag{1.8e}$$

$$P(X > a) = 1 \quad F(a) \tag{1.8f}$$

1.4 Verteilungen

1.4.1 Normalverteilung

$$f(x) = \frac{1}{\sigma} \frac{1}{2\pi} e^{-\frac{1}{2} \left(\frac{t}{\sigma}\right)^2}$$
 (1.9)

Erwartungswert und Varianz:

$$E[f(x)] = \mu \tag{1.10a}$$

$$Var[f(x)] = \sigma^2 \tag{1.10b}$$

1.4.2 Rechteckverteilung

$$f(t) = \begin{cases} \frac{1}{b-a} & a < t < b \\ 0 & \text{sonst} \end{cases}$$
 (1.11)

$$F(x) = \begin{cases} 0 & x & a \\ \frac{x-a}{b-a} & x \ 2 \ (a,b] \\ 1 & x > b \end{cases}$$
 (1.12)

Erwartungswert und Varianz:

$$\operatorname{E}\left[f(x)\right] = \frac{a+b}{2} \tag{1.13a}$$

$$Var[f(x)] = \frac{(b-a)^2}{12}$$
 (1.13b)

1.4.3 Exponentialverteilung

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t = 0 \end{cases} \tag{1.14}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 & e^{-\lambda x} & x = 0 \end{cases}$$
 (1.15)

Erwartungswert und Varianz:

$$E[f(x)] = \frac{1}{\lambda} \tag{1.16a}$$

$$Var[f(x)] = \frac{1}{\lambda^2}$$
 (1.16b)

1.5 Formel von Bayes

$$P(AjB) = \frac{P(A \setminus B)}{P(B)} \quad P(A_k jB) = \frac{P(A_k) P(BjA_k)}{\sum_{i=1}^{n} P(BjA_i) P(A_i)}$$
(1.17)

1.6 Erwartungswerte

1.6.1 Erwartungswertberechnung

Allgemein

Sei f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E(X) = \int_{1}^{1} x f(x)dx \qquad (1.18)$$

Erweitert

Sei Y = g(X) und f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E[Y] = E[g(X)] = \int_{1}^{1} g(x) f(x)dx$$
 (1.19)

1.6.2 Rechenregeln für Erwartungswerte

Sei A eine von B unabhängige Zufallsvariable

$$E[A B] = E[A] E[B]$$
 (1.20)

Sei *X* eine Zufallsvariable und *a*, *b* jeweils Konstanten

$$E[aX + b] = aE[X] + b \tag{1.21}$$

Seien X_i Zufallsvariablen

$$E\left[\sum_{i=0}^{n} X_{i}\right] = \sum_{i=0}^{n} E\left[X_{i}\right]$$
 (1.22)

1.7 Varianz

1.7.1 Berechnung der Varianz

$$Var(X) = E(X^2) \quad E(X)^2$$
 (1.23)

1.7.2 Rechenregeln für Varianzen

$$Var(aX + b) = a^{2}Var(x)$$
 (1.24)

Seien X_i Zufallsvariablen

$$\operatorname{Var}\left[\sum_{i=0}^{n} X_{i}\right] = \sum_{i=0}^{n} \operatorname{Var}\left[X_{i}\right]$$
 (1.25)

1.8 Konvergenz

Es wird eine Konvergenz von Zufallsvariablen X_k mit $k=0,1,2\dots$ betrachtet:

1.8.1 Konvergenz mit Wahrscheinlichkeit eins (Convergence with probability one)

$$P\left(\lim_{k = 1} jX_k \quad Xj = 0\right) = 1 \tag{1.26}$$

1.8.2 Konvergenz im "Mean Square Sense"

$$\lim_{k \to 1} \mathbb{E} \left[jX_k \quad Xj^2 \right] = 0 \tag{1.27}$$

1.8.3 Convergence in Pobability

$$\lim_{k \to 1} P(jX_k \quad Xj > \epsilon) = 0 \tag{1.28}$$

1.8.4 Convergence in Distribution

$$\lim_{k \to 1} F_{X_k}(x) = F_X(x) \quad \text{Für alle stetigen punkte } x \text{ aus } F_X$$
 (1.29)

1.8.5 Gewichtung der Konvergenzen

- Convergence with probability 1 (1.8.1) implies convergence in probability (1.8.3)
- Convergence with probability 1 (1.8.1) implies convergence in the MSS (1.8.2), provided second order moments exist.
- Convergence in the MSS (1.8.2) implies convergence in probability (1.8.3).
- Convergence in probability (1.8.3) implies convergence in distribution (1.8.4).

2 Discrete-Time-Fourier-Transformation

2.1 Abtastung

2.1.1 Im Zeitbereich

Sei $x_c(t)$ das zu abtastende Signal und $T_s = \frac{1}{f_s}$ die Abtastdauer bzw. Abtastfrequenz

$$x_{s}(t) = \sum_{n=-1}^{1} x_{c}(nT_{s})\delta(t \quad nT_{s})$$
 (2.1)

2.1.2 Im Frequenzbereich

$$X_{s}(e^{j\omega}) = \frac{1}{T_{s}} \sum_{k=-1}^{1} X_{c}(j(\Omega - \frac{2\pi k}{T_{s}}))$$

$$= \frac{1}{T_{s}} \sum_{k=-1}^{1} X_{c}(j\Omega - kj\Omega_{s}) \quad \text{mit} \quad \Omega_{s} = \frac{2\pi}{T_{s}}$$
(2.2)

2.2 Transformation

2.2.1 Rücktransformation

$$x[n] = \frac{1}{2\pi} \int_{\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 (2.3)

2.2.2 Zusammenhang Ω und n

ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem Hilfsblatt von DSS

$$\omega = \Omega T_{\rm s} \tag{2.4}$$

2.2.3 Dirac-Kamm

$$\eta(\omega) = \sum_{l=-1}^{1} \delta(\omega + 2\pi l)$$
 (2.5)

2.2.4 Berechnen einer Übertragungsfunktion im zeitdiskreten Fall

- 1. Zeitkontinuierliches $H(j\Omega) = \frac{Y(j\Omega)}{X(j\Omega)}$ berechnen
- 2. Formel aus (2.2.2) einsetzen, um $H(e^{j\omega})$ zu erreichen

2.3 Korrespondenzen, welche nicht auf der DSS-Formelsammlung enthalten sind

2.3.1 Trigonometrische Funktionen im Frequenzbereich

$$\cos(\omega) \quad \bullet \quad \frac{1}{2}(\delta(n-1) + \delta(n+1))$$
 (2.6a)

$$\sin(\omega) \quad \bullet \quad \bigcirc \quad \frac{j}{2}(\delta(n-1) \quad \delta(n+1))$$
 (2.6b)

3 Prozesse

3.1 Strikte Stationarität

$$F_x(x_1, \dots, x_N; n_1, \dots, n_N) = F_x(x_1, \dots, x_N; n_1 + n_0, \dots, n_N + n_0) \quad \text{mit } N ! \quad 1$$
(3.1)

3.2 Second order moment function(SOMF)

$$r_{XX}(n_1, n_2) = \mathbb{E}[X(n_1)X(n_2)]$$
 (3.2)

3.2.1 Stationär im weiteren Sinne

$$E[X(n)] = const. (3.3a)$$

$$r_{XX}(n_1, n_2) = r_{XX}(\kappa) = E[X(n + \kappa) \ X(n)] \text{ mit } \kappa = jn_2 \ n_1 j$$
 (3.3b)

3.2.2 Eigenschaften der SOMF

$$r_{XX}(0) = E[X(n)^2] = \sigma_X^2 + \mu_X^2$$
 (3.4a)

$$r_{XX}(\kappa) = r_{XX}(\kappa)$$
 (3.4b)

$$r_{XX}(0)$$
 $jr_{XX}(\kappa)j$ $j\kappa j > 0$ (3.4c)

3.3 Cross-SOMF

$$r_{XY}(n_1, n_2) = E[X(n_1) \ Y(n_2)]$$
 (3.5)

3.3.1 Gemeinsame Statonarität (joint stationary)

Sei X(n) und Y(n) nach (3.2.1) *stationär*, dann sind die Prozesse gemeinsam stationär, wenn gilt:

$$r_{XY} = r_{XY}(n_1 \quad n_2) = r_{XY}(\kappa) \quad \text{mit} \quad \kappa = n_1 \quad n_2$$
 (3.6)

3.3.2 Eigenschaften der Cross-SOMF

$$r_{XY}(\kappa) = r_{YX}(\kappa) \tag{3.7a}$$

$$jr_{XY}(\kappa)j \quad \sqrt{r_{XX}(0) \quad r_{YY}(0)}$$
 (3.7b)

$$jr_{XY}(\kappa)j = \frac{1}{2}(r_{XX}(0) + r_{YY}(0))$$
 (3.7c)

3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF

$$r_{XY}(\kappa) = \mu_{X} \quad \mu_{Y} = \mathbb{E}\left[X(n+\kappa)\right]\mathbb{E}\left[Y(n)\right] \tag{3.8}$$

3.3.4 Orthogonalität

$$r_{XY}(\kappa) = 0 \tag{3.9}$$

3.4 Kovarianz (Covariance, Central-SOMF)

$$c_{XX}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) \quad \mathbb{E}\left[X(n+\kappa)\right]\right) \quad (X(n) \quad \mathbb{E}\left[X(n)\right]\right)] \tag{3.10a}$$

$$c_{XX}(n+\kappa,n) = r_{XX}(n+\kappa,n) \quad \mathbb{E}\left[X(n+k)\right]\mathbb{E}\left[X(n)\right] \tag{3.10b}$$

3.4.1 Eigenschaften der Kovarianz

Falls X zumindest stationär im weiteren Sinne(3.2.1) ist, gilt

$$c_{XX}(\kappa) = r_{XX}(\kappa) \quad (\mathbb{E}[X(n)])^2 \tag{3.11}$$

3.4.2 Kovarianz einer zusammengesetzten Funktion

Falls Y(n) = X(n) + V(n) und X(n) ist von V(n) statistisch unabhängig und einer der beiden Prozesse mittelwertfrei, dann gilt:

$$c_{YY}(\kappa) = C_{XX}(\kappa) + C_{VV}(\kappa) \tag{3.12a}$$

Ist X(n) jedoch abhängig von V(n), so gilt:

$$c_{YY}(\kappa) = C_{XX}(\kappa) + C_{VV}(\kappa) + C_{XV}(\kappa) + C_{VX}(\kappa)$$
(3.12b)

3.4.3 Überführung der Central-SOMF in die Varianz

$$c_{XX}(0) = \operatorname{Var}(X) \tag{3.13}$$

3.5 Kreuz-Kovarianz (Cross-covariance)

$$c_{XY}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) \quad \mathbb{E}\left[X(n+\kappa)\right]\right) \quad (Y(n) \quad \mathbb{E}\left[Y(n)\right]\right)$$
(3.14a)

$$c_{XY}(n+\kappa,n) = r_{XY}(n+\kappa,n) \quad \mathbb{E}\left[X(n+k)\right]\mathbb{E}\left[Y(n)\right] \tag{3.14b}$$

3.5.1 Eigenschaften der Kreuzkovarianz

Falls X und Y zumindest gemeinsam stationär im weiteren Sinne (3.3.1) sind, gilt:

$$c_{XY}(\kappa) = r_{XY}(\kappa) \quad \mathbb{E}[X(n)]\mathbb{E}[Y(n)] \tag{3.15}$$

3.5.2 Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz

$$c_{XY}(\kappa) = 0 \tag{3.16}$$

3.6 Komplexe Prozesse

Seien X(n) und Y(n) reale Zufallsprozesse, so ist

$$Z(n) = X(n) + jY(n) \tag{3.17}$$

ein Komplexer Zufallsprozess

3.6.1 Erwartungswert eines Komplexen Zufallsprozess

$$E[Z(n)] = E[X(n)] + jE[Y(n)]$$
 (3.18)

3.6.2 SOMF eines Komplexen Zufallsprozess

$$r_{ZZ}(n_1, n_2) = E[Z(n_1) \ Z(n_2)]$$
 (3.19)

Besondere Eigenschaften

Für einen komplexen Zufallsprozess, welcher stationär im weiteren Sinne(3.2.1) ist, gilt

$$r_{ZZ}(\kappa) = r_{ZZ}(\kappa) \tag{3.20}$$

3.6.3 cross-SOMF komplexer Zufallsprozesse

$$r_{Z_1Z_2}(n_1, n_2) = \mathbb{E}\left[Z_1(n_1) \ Z_2(n_2)\right]$$
 (3.21)

3.6.4 Kovarianz (Covariance) eines komplexen Zufallsprozess

$$c_{ZZ}(n+\kappa,n) = \mathbb{E}\left[\left(Z(n+\kappa) \quad \mathbb{E}\left[Z(n+\kappa)\right]\right) \quad (Z(n) \quad \mathbb{E}\left[Z(n)\right]\right) \quad (3.22)$$

3.6.5 Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse

$$c_{Zc}$$
 $n\kappa$, n) = E $[Z(n+\kappa)$ $E[Z(n+\kappa)]$) $(Z(n)$ $E[Z(n)]$)] +)

4 Spektraldichten (Power Spectral Density)

4.1 Leistungsdichte

4.1.1 Leistungsspektraldichte (Power Spectral Density, PSD)

$$S_{XX}(e^{j\omega},\xi) = \lim_{M \to 1} \frac{\mathbb{E}\left[\left|X_N\left(e^{j\omega},\xi\right)\right|^2\right]}{2M+1}$$
(4.1)

mit

$$X_N(e^{j\omega},\xi) = \sum_{n=-M}^M x_N(n,\xi)e^{-j\omega n}$$
(4.2)

Eigenschaften der Leistungsspektraldichte

$$S_{XX}(e^{j\omega}) = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \ 2 \ \mathbb{C}$$
 (4.3a)

$$S_{XX}(e^{j\omega})$$
 0 mit $X(n) 2 \mathbb{C}$ (4.3b)

$$S_{XX}(e^{-j\omega}) = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \ 2 \ \mathbb{R}$$
 (4.3c)

4.1.2 Durchschnittliche Leistung eines Zufallsprozesses

$$P_{XX} = \int_{\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi} = r_{XX}(0)$$
 (4.4a)

$$= \lim_{M! \to 1} \int_{\pi}^{\pi} \frac{E\left[\left|X_N\left(e^{j\omega}, \xi\right)\right|^2\right]}{2M + 1} \frac{d\omega}{2\pi}$$
 (4.4b)

4.1.3 Kreuzleistungsdichte (cross-power density)

$$S_{XY}(e^{j\omega},\xi) = \lim_{M! \to 1} \frac{\mathbb{E}\left[X_N\left(e^{j\omega},\xi\right)Y_N\left(e^{j\omega},\xi\right)\right]}{2M+1} \tag{4.5}$$

Eigenschaften der Kreuzleistungsdichte

$$S_{XY}(e^{j\omega}) = S_{YX}(e^{j\omega})$$
 mit $X(n), Y(n) \ge \mathbb{C}$ (4.6a)

$$S_{XY}(e^{j\omega}) = S_{YX}(e^{j\omega})$$
 mit $X(n), Y(n) \ge \mathbb{R}$ (4.6b)

$$\Re efS_{XY}(e^{j\omega})g$$
 und $\Re efS_{YX}(e^{j\omega})g$ sind gerade, wenn $X(n), Y(n) \ge \mathbb{R}$ (4.6c)

$$\mathfrak{Imf}S_{XY}(e^{j\omega})$$
g und $\mathfrak{Imf}S_{YX}(e^{j\omega})$ g sind ungerade, wenn $X(n),Y(n)$ 2 $\mathbb R$ (4.6d)

$$S_{XY}(e^{j\omega}) = S_{YX}(e^{j\omega}) = 0$$
 wenn $X(n)$ und $Y(n)$ orthogonal (3.3.4) (4.6e)

4.1.4 Durchschnittliche Kreuzleistung zweier Zufallsprozesse

$$P_{XY} = \int_{\pi}^{\pi} S_{XY}(e^{j\omega}) \frac{d\omega}{2\pi}$$
 (4.7)

4.1.5 Wiener-Khinchine theorem

Ist X(n) ein *im weiteren Sinne stationärer*(3.2.1) Zufallsprozess, so kann die *Leistungsspektraldichte* (4.1.1) aus der Fourier-Transformation der *Momentenfunktion zweiter Ordnung*(SOMF) (3.2) gewonnen werden:

$$S_{XX}(e^{j\omega}) = F fr_{XX}(\kappa)g = \sum_{k=-1}^{1} r_{XX}(\kappa)e^{-k\omega\kappa}$$
 (4.8a)

und invers

$$r_{XX}(\kappa) = \mathsf{F}^{-1} \mathsf{f} S_{XX}(e^{j\omega}) \mathsf{g} = \int_{\pi}^{\pi} S_{XX}(e^{j\omega}) (e^{j\omega\kappa}) \frac{d\omega}{2\pi}$$
(4.8b)

4.1.6 Kreuzleistungsdichte durch Cross-SOMF

$$S_{XY}(e^{j\omega}) = \operatorname{F} \operatorname{fr}_{XY}(\kappa) \operatorname{g} = \sum_{k=-1}^{1} r_{XY}(\kappa) e^{-k\omega\kappa}$$
(4.9)

4.2 Kohärenz (coherence)

$$Coh_{XY}(e^{j\omega}) = \frac{\left|S_{XY}(e^{j\omega})\right|^2}{S_{XX}(e^{j\omega})S_{YY}(e^{j\omega})}$$
(4.10)

4.2.1 Eigenschaften der Kohärenz

Die Kohärenz zwischen den Zufallsprozessen X(n) und Y(n) besagt, wie gut X zu Y bei einer gegebenen Frequenz ω korrespondiert.

$$0 \quad \mathsf{Coh}_{\mathsf{XY}}(\mathsf{e}^{\mathsf{j}\omega}) \quad 1 \tag{4.11}$$

4.3 Root Mean Square (RMS) und Gleichsstrom (DC) Werte

4.3.1 DC-Values

$$X_{dc} = \lim_{M \in \mathcal{A}} \frac{1}{2M+1} \sum_{n=-M}^{M} X$$

4.3.3 RMS-Value

$$X_{RMS} = \sqrt{\lim_{M \to 1} \frac{1}{2M+1} \sum_{n=-M}^{M} X(n)^2} = \sqrt{r_{XX}(0)} = \sqrt{\int_{\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi}}$$
(4.14)

4.4 Spektrum

4.4.1 Spektrum eines stationären Zufallsprozesses

Ist X(n) ein *stationärer* (3.1) Zufallsprozess, so ist sein Spektrum die Fouriertransformierte der *Kovarianzfunktion* (3.4)

$$C_{XX}(e^{j\omega}) = \sum_{n=-1}^{1} c_{xx}(n)e^{-j\omega n}$$
 (4.15)

Eigenschaften des Spektrums

- 1. Wenn $\sum_{n} jc_{XX}(n)j < 1$, dann existiert C_{XX} und ist begrenzt und stetig
- 2. C_{XX} ist Real, 2π -Periodisch und C_{XX} 0
- 3.

$$c_{XX}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} C_{XX}(e^{j\omega}) e^{j\omega n} d\omega$$
 (4.16)

4.4.2 Kreuzspektrum zweier gemeinsam stationärer Zufallsprozesse

Ist X(n) und Y(n) gemeinsam stationär (3.3.1), dann ist das Kreuzspektrum definiert durch

$$C_{XY}(e^{j\omega}) = \sum_{n=-1}^{1} c_{XY}(n)e^{-j\omega n}$$
 (4.17)

Eigenschaften der Kreuzspektrums

Das Spektrum eines Realen Zufallsprozesses ist komplett im Intervall $[0,\pi]$ bestimmt

$$C_{XY}(e^{j\omega}) = C_{YX}(e^{j\omega}) \tag{4.18a}$$

$$c_{XY}(n) = \frac{1}{2\pi} \int_{\pi}^{\pi} C_{XY}(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.18b)$$

Wenn X(n), $Y(n) \ge \mathbb{R}$ dann

$$C_{XX}(e^{j\omega}) = C_{XX}(e^{-j\omega}) \tag{4.18c}$$

$$C_{XY}(e^{j\omega}) = C_{XY}(e^{-j\omega}) = C_{YX}(e^{-j\omega}) = C_{YX}(e^{j\omega})$$
 (4.18d)

5 Filter

5.1 Lineare Filter

Wenn X(n) und Y(n) stationär (3.1) sind, h(n) eine Impulsantwort eines LTI-Systems ist und das Filter stabil (5.1.1) ist, existiert mit Wahrscheinlichkeit eins (1.8.1) das lineare Filter mit:

$$Y(n) = \sum_{k=-1}^{1} h(k)X(n-k) = \sum_{k=-1}^{1} h(n-k)X(k)$$
 (5.1)

5.1.1 Stabilität

Die Stabilität eines Filters ist gegeben, wenn:

$$\sum jh(n)j < 1 \tag{5.2}$$

Alternativ: Sei H(z) die z-Transformation des Filters h(n). Dann ist das Filter stabil, falls die Polstellen von H(z) innerhalb des Einheitskreises liegen

5.1.2 Eigenschaften eines Linearen Filters

Die folgenden Eigenschaften gelten nur, wenn das Filter stabil (5.1.1) ist

- Ist X(n) stationär (3.1) und E[jX(n)j] < 1, dann ist Y(n) stationär
- Y(n) wird linearer Prozess genannt (linear process)

5.1.3 Instabiler linearer Filter

Ist das Filter nicht *stabil* (5.1.1), aber $\int jH(e^{j\omega})d\omega < 1$) trifft zu und für X(n) $\sum jc_{XX}(n) < 1$, sodann existiert im *Mean-Square-Sense* (1.8.2) die Formel (5.1) und Y(n) ist *stationär im weiteren Sinne* (3.2.1) mit

$$\mu_Y = \mathbb{E}[Y(n)] = \sum_{k=-1}^{1} h(k)\mathbb{E}[X(n-k)] = \mu_X H(e^{j0})$$
 (5.3)

5.1.4 Leistungsdichtespektrum des Ausgangs eines Filters

Sei die Übertragungsfunktion des Filters $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$, und das Leistungsdichtspektrum von X(n) sei $S_{XX}(e^{j\omega})$, dann gilt:

$$S_{YY}(e^{j\omega}) = jH(e^{j\omega})j^2 S_{XX}(e^{j\omega})$$
(5.4)

5.1.5 Spektrum/Kovarianz des Ausgangs eines Filters

Sei die Übertragungsfunktion des Filters $H(e^{j\omega})=\frac{Y(e^{j\omega})}{X(e^{j\omega})}$, und das Sepektrum von X(n) sei $C_{XX}(e^{j\omega})$, dann gilt:

$$C_{YY}(e^{j\omega}) = jH(e^{j\omega})j^2C_{XX}(e^{j\omega})$$
(5.5a)

$$c_{YY}(\kappa) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} h(k)h(l) \ c_{XX}(\kappa - k + l)$$
 (5.5b)

5.1.6 Kreuzkovarianz des Ausgangs des Filters

Sei X(n) das Eingangssignal und Y(n) das Ausgangssignal

$$c_{YX} = \sum_{k=1}^{1} h(k)c_{XX}(\kappa \quad k)$$
 (5.6a)

$$C_{YX}(e^{j\omega}) = H(e^{j\omega})C_{XX}(e^{j\omega})$$
(5.6b)

$$c_{YX} = \int_{\pi}^{\pi} H(e^{j\omega}) C_{XX}(e^{j\omega}) e^{-j\omega\kappa} \frac{d\omega}{2\pi}$$
 (5.6c)

5.1.7 Kreuzkovarianz des Ausgangs zweier paralleler Filter

$$c_{Y_1Y_2}(\kappa) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} h_1(k)h_2(l) \quad c_{X_1X_2}(\kappa \quad k+l)$$
 (5.7a)

$$c_{Y_1Y_2}(\kappa) = h_1(\kappa) \star h_2(\kappa) \star c_{X_1X_2}(\kappa)$$
 (5.7b)

$$C_{Y_1Y_2}(e^{j\omega}) = H_1(e^{j\omega})H_2(e^{j\omega}) C_{X_1X_2}(e^{j\omega})$$
 (5.7c)

5.1.8 Kaskade linearer Filter

$$H(e^{j\omega}) = \prod_{i=1}^{L} H_i(e^{j\omega})$$
 (5.8a)

$$C_{YY}(e^{j\omega}) = C_{XX}(e^{j\omega}) \prod_{i=1}^{L} \left| H_i(e^{j\omega}) \right|^2$$
 (5.8b)

$$C_{YX}(e^{j\omega}) = C_{XX}(e^{j\omega}) \prod_{i=1}^{L} H_i(e^{j\omega})$$
 (5.8c)

5.2 Matched Filter

5.2.1 Annahmen des Matched Filters

 Das eingehende Signal X(n) besteht entweder aus einem Signal mit Rauschen oder nur Rauschen:

$$X(n) = \begin{cases} s(n) + V(n) \\ V(n) \end{cases}$$
 (5.9)

- Dabei ist s(n) reelwertig, deterministisch und betrachtet in $n \ 2 \ [0, N)$
- E[V(n)] = 0 und $C_{VV}(e^{j\omega})$ bekannt

5.2.2 Ziel des Matched Filters

Maximierung des Signal-Rausch-Verhältnis:

$$\left(\frac{S}{N}\right) = \max \frac{j s_0(n_0) j^2}{E[V_0(n_0)^2]}$$
 (5.10)

5.2.3 Übertragungsfunktion des Matched Filters

Sei $S(e^{j\omega}) = F fs(n)g$, C_{VV} das Spektrum des Rauschens, n_0 die Abtastungszeit, bei welcher (S/N) berechnet wird, und k eine reele Konstante

$$H(e^{j\omega}) = k \frac{S(e^{j\omega})}{C_{VV}(e^{j\omega})} e^{-j\omega n_0}$$
(5.11)

Dabei geht der Signalverlauf am Ende des Filters verloren und der Filter kann zur Signaldetektion genutzt werden

5.2.4 Matched Filter für Weißes Rauschen

Bei weißem Rauschen wird die Impulsantwort des Filters zu

$$h(n) \quad c \quad s(n_0 \quad n) \tag{5.12}$$

) Die Impulsantwort des Filters ist das bekannte Signal "rückwärts gespielt" und um n_0 verschoben

Der Signal zu Rausch Abstand ergibt sich dann zu:

$$\left(\frac{S}{N}\right)_{out} = \frac{E_s}{\sigma_V^2} \tag{5.13}$$

5.3 Wiener Filter

5.3.1 Ziel des Wiener Filters

Der Wiener Filter versucht die optimale Schätzung (nach (1.8.2)) eines Zufallsprozesses durch die Beobachtung eines anderen Prozesses

5.3.2 Annahmen des Wiener Filters

- X(n) ist der zu schätzende Zufallsprozess
- Y(n) ist der betrachtete Zufallsprozess
- $\epsilon(n)$ ist der Fehlerprozess
- X(n) und Y(n) sind reelwertig, mittelwertfrei und *gemeinsam stationär im* weiteren Sinne (3.3.1)
- Aufgrund der *gemeinsamen Stationarität im weiteren Sinne* (3.3.1) der beiden Prozesse ist die Impulsantwort h(n) stabil und der Fehlerprozess $\epsilon(n)$ *stationär im weiteren Sinne* (3.2.1)

5.3.3 Die Übertragungsfunktion des Wiener Filters

Enstehend aus den Wiener-Hopf-Gleichungen

$$c_{XY}(\kappa) = h_{opt}(\kappa) \star C_{YY}(\kappa) \qquad \kappa \ 2 \ \mathbb{Z}$$
 (5.14a)

$$C_{XY}(e^{j\omega}) = H_{opt}(e^{j\omega}) C_{YY}(e^{j\omega}) \quad \omega \ 2 \mathbb{R}$$
 (5.14b)

erlangt man die optimale Übertragungsfunktion:

$$H_{opt}(e^{j\omega}) = \frac{C_{XY}(e^{j\omega})}{C_{VV}(e^{j\omega})}$$
 (5.15)

5.3.4 Mean Square Error des Wiener Filters

Der Mean Square Error ist als der Erwartungswert des quadrates der Fehlerfunktion definiert

$$q(h) = \mathbb{E}\left[\epsilon_x^2(n)\right] \tag{5.16}$$

$$h_{opt} = \arg\min_{h} q(h), n \ 2 \ \mathbb{Z}$$
 (5.17)

Daraus folgt:

$$q_{min} = C_{XX}(0) \sum_{m=-1}^{1} h_{opt}(m)C_{XY}(m)$$
 (5.18a)

$$q_{min} = p(0)$$
 mit (5.18b)
 $p(\kappa) = C_{XX}(\kappa)$ $h_{opt}(\kappa) \star c_{YX}(\kappa)$

5.3.5 Orthogonalitätsprinzip (Herleitung des Wiener Filters)

Zur minimierung des MSE setzt man das Fehlersignal $\epsilon_X(n)$ als unkorreliert mit dem beobachteten Eingangsignal Y(n)

$$C_{\epsilon_X Y}(\kappa) = \mathbb{E}\left[\epsilon_X(n+\kappa)Y(n)\right] = 0 \tag{5.19}$$

5.3.6 Der Wiener Filter mit additivem Rasuchen

$$H_{opt}(e^{j\omega}) = \frac{C_{XX}(e^{j\omega})}{C_{XX}(e^{j\omega}) + C_{VV}(e^{j\omega})}$$
 (5.20)

6 Sonstiges

6.1 Spezielle Funktionen

6.1.1 Gaussian white noise process

GauSSsches weißes Rauschen ist immer stationär (3.1)

$$E[W(n)] = 0 \tag{6.1a}$$

$$r_{WW}(\kappa) = c_{WW}(\kappa) = \sigma_W^2 \delta(\kappa)$$
 (6.1b)

$$S_{WW}(e^{j\omega}) = \sigma_W^2 \tag{6.1c}$$

6.1.2 Kronecker delta function

$$\delta(\kappa) = \begin{cases} 1 & \kappa = 0 \\ 0 & \kappa \notin 0 \end{cases} \tag{6.2}$$

6.2 Mathematische nützliche Formeln

6.2.1 Ungleichung von Schwarz

$$\left| \int_{a}^{b} \varphi_{1}(\omega) \varphi_{2}(\omega) d\omega \right|^{2} \left(\int_{a}^{b} j \varphi_{1}(\omega) j^{2} d\omega \right) \left(\int_{a}^{b} j \varphi_{2}(\omega) j^{2} d\omega \right)$$
(6.3)

6.2.2 Orthogonalitäts- und Normierungsbeziehungen

$$\int_{0}^{2\pi} \cos(mt)\cos(nt)dt = 0 \qquad \text{für } m \in n$$
 (6.4a)

$$\int_{0}^{2\pi} \cos(mt)\cos(nt)dt = 0 \qquad \text{für } m \in n \qquad (6.4a)$$

$$\int_{0}^{2\pi} \sin(mt)\sin(nt)dt = 0 \qquad \text{für } m \in n \qquad (6.4b)$$

$$\int_{0}^{2\pi} \cos(mt)\sin(nt)dt = 0$$
(6.4c)

$$\int_{0}^{2\pi} \cos^{2}(nt) = \begin{cases} \pi & \text{für } n = 1 \\ 2\pi & \text{für } n = 0 \end{cases}$$

$$\int_{0}^{2\pi} \sin^{2}(nt) = \begin{cases} \pi & \text{für } n = 1 \\ 0 & \text{für } n = 0 \end{cases}$$
(6.4d)

$$\int_{0}^{2\pi} \sin^{2}(nt) = \begin{cases} \pi & \text{für } n = 1\\ 0 & \text{für } n = 0 \end{cases}$$
 (6.4e)

$$\int_{0}^{2\pi} \cos(k+t)dt = 0 \qquad \text{mit } k = const \qquad (6.4f)$$

$$\int_{0}^{2\pi} \sin(k+t)dt = 0 \qquad \text{mit } k = const \qquad (6.4g)$$

$$\int_{0}^{2\pi} \sin(k+t)dt = 0 \qquad \text{mit } k = const$$
 (6.4g)

6.2.3 Betragsquadrat komplexer Funktionen

$$jH(e^{j\omega})j^2 = H(e^{j\omega})H(e^{-j\omega})$$
(6.5)

6.2.4 Doppelte Faltungssumme

$$\sum_{m=-1}^{1} \sum_{k=-1}^{1} h(m)h(k)f(k-m) = h(n) \star f(0) \star h(-n)$$
 (6.6)

6.2.5 Einzelne Faltungssumme ohne Di erenz im Argument

$$\sum_{m=-1}^{1} h(m)f(m) = h(-n) \star f(0)$$
 (6.7)