LM833 Dual Audio Operational Amplifier

General Description

The LM833 and LM833A are dual general purpose operational amplifiers designed with particular emphasis on performance in audio systems.

These dual amplifier ICs utilize new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 and LM833A are internally compensated for all closed loop gains and are therefore optimized for all preamp and high level stages in PCM and HiFi systems.

The LM833 and LM833A are pin for pin compatible with industry standard dual operational amplifiers.

The LM833A guarantees low noise for noise critical applications by 100% noise testing.

Features

- Wide dynamic range
- Low input noise voltage
- High slew rate
- High gain bandwidth product
- Wide power bandwidth
- Low distortion
- Low offset voltage
- Large phase margin

- 7 V/us (tvp) 5 V/μs (min) 15 MHz (typ)
- 10 MHz (min) 120 kHz

> 140 dB

4.5 nV/√Hz

- 0.002%
- 0.3 mV
- 60°

Schematic Diagram (1/2 LM833)

2(6) 3(5) 1(7) 150 TL/H/5218-1

Connection Diagram

Order Number LM833N See NS Package N08E

@ f = 1 kHz

Typical Application RIAA Preamp

S 1-45

Absolute Maximum Ratings

Supply Voltage V_{CC}/V_{EE} ± 18V Power Dissipation (Note 2) P_D 500 mW Differential Input Voltage (Note 1) V_{ID} ±30V Operating Temperature Range TOPR -40 ~ 85°C Input Voltage Range (Note 1) ±15V Storage Temperature Range $-60 \sim 150$ °C TSTG

DC Electrical Characteristics ($T_A = 25^{\circ}C$, $V_S = \pm 15V$)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vos	Input Offset Voltage	$R_S = 10\Omega$		0.3	5	mV
los	Input Offset Current			10	200	nA
l _B	Input Bias Current			500	1000	nA
A _V	Voltage Gain	$R_L = 2 k\Omega, V_O = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$	±12 ±10	± 13.5 ± 13.4		V. V
V _{CM}	Input Common-Mode Range		±12	± 14.0		V
CMRR	Common-Mode Rejection Ratio	V _{IN} = ±12V	80.	100		dB
PSRR	Power Supply Rejection Ratio	$V_S = 15 \sim 5V, -15 \sim -5V$	80	100		dB
la	Supply Current	V _O = 0V, Both Amps		5	8	mA

AC Electrical Characteristics (TA = 25°C, VS = \pm 15V, RL = 2 k Ω)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 2 k\Omega$	5	7		V/µs
GBWP	Gain Bandwidth Product	f = 100 kHz	10	15		MHz
e _{n1}	LM833A Equivalent Input	RIAA, $R_S = 470\Omega$		0.5	0.8	μ٧
	Noise Voltage (Note 3)					

Design Electrical Characteristics $(T_A = 25^{\circ}C, V_S = \pm 15V)$

The following parameters are not tested or guaranteed.

Symbol	Parameter	Conditions	Тур	Units
ΔV _{OS} /ΔT	Average Temperature Coefficient of Input Offset Voltage		2	μV/°C
THD	Distortion	$R_L = 2 \text{ k}\Omega, f = 20 \sim 20 \text{ kHz}$ $V_{OUT} = 3 \text{ Vrms}, A_V = 1$	0.002	%
e _n 2	Input Referred Noise Voltage 2	$R_S = 100\Omega$, JISA	0.5	μ٧
e _n 3	Input Referred Noise Voltage 3	$R_S = 100\Omega$, $f = 1 \text{ kHz}$	4.5	nV/√Hz
in	Input Referred Noise Current	f = 1 kHz	0.7	pA/√Hz
PBW	Power Bandwidth	$V_{O} = 27 V_{pp}, R_{L} = 2 k\Omega, THD \le 1\%$	120	kHz
fυ	Unity Gain Frequency	Open Loop	9	MHz
фм	Phase Margin	Open Loop	60	deg
	Input Referred Cross Talk	f = 20~20 kHz	-120	dB

Note 1: If supply voltage is less than 15V, it is equal to supply voltage.

Note 2: This is the permissible value at $T_A \le 85^{\circ}C$.

Note 3: Only the LM833A is noise tested and guaranteed.

See "Noise Measurement Circuit" for test conditions.

Typical Performance Characteristics

TL/H/5218-5

TL/H/5218-7

Typical Performance Characteristics (Continued)

Maximum **Output Voltage vs Supply Voltage** 20 T_A = 25°C 15 RL = 10 kΩ OUTPUT VOLTAGE (Vp) 10 0 -5 -- 10 - 15 - 20 5 10 15 SUPPLY VOLTAGE (±V) TL/H/5218-16

Typical Performance Characteristics (Continued)

TL/H/5218-24

TL/H/5218-25

TL/H/5218-26

Application Hints

The LM833 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 50 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 50 pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

Noise Measurement Circuit

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

TL/H/5218-27

Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage: e_n = V0/560,000 (V)

TL/H/5218-28

Flat Amp Voltage Gain vs Frequency

TL/H/5218-29

Typical Applications

NAB Preamp

TL/H/5218-31

Balanced to Single Ended Converter

TL/H/5218-32

Adder/Subtracter

Second Order High Pass Filter (Butterworth)

TL/H/5218-35

if
$$C1 = C2 = C$$

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

R2 = 2•R1

Illustration is $f_0 = 1 \text{ kHz}$

Second Order Low Pass Filter (Butterworth)

if R1 = R2 = R

$$C1 = \frac{\sqrt{2}}{c_1}$$

$$C2 = \frac{C1}{2}$$

Illustration is $f_0 = 1 \text{ kHz}$

Typical Applications (Continued)

State Variable Filter

$$f_0 = \frac{1}{2\pi C1R1}, Q = \frac{1}{2}\left(1 + \frac{R2}{RQ} + \frac{R2}{RQ}\right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

Illustration is $f_0 = 1$ kHz, Q = 10, $A_{BP} = 1$

AC/DC Converter

2 Channel Panning Circuit (Pan Pot)

TL/H/5218-38

TL/H/5218-42

Typical Application (Continued)

Tone Control

Balanced Input Mic Amp

If R2=R5, R3=R6, R4=R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

10 Band Graphic Equalizer

fo(Hz)	C ₁	C ₂	R ₁	R ₂	
32	0.12μF	4.7μF	75kΩ	500Ω	
64	0.056μF	3.3µF	68kΩ	510Ω	
125	0.033µF	1.5μF	62kΩ	510Ω	
250	0.015μF	0.82µF	68kΩ	470Ω	
500	8200pF	0.39μF	62kΩ	470Ω	
1k	3900pF	0.22µF	68kΩ	470Ω	
2k	2000pF	0.1μF	68kΩ	470Ω	
4k	1100pF	0.056μF	62kΩ	470Ω	
8k .	510pF	0.022μF	68kΩ	510Ω	
16k	330pF	0.012μF	51kΩ	510Ω	

At volume of change = $\pm 12dB$

Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61