ME400 **CAPSTONE DESIGN 1**

FINAL PRESENTATION

Advisor: Prof. Junho Oh

Teaching Assistance: Kangkyu Lee

20140344 Yejun Yang

20140870 Bomi Lee

20140931

Simeneh S.Gulelat Jaeseong Lee Jeongsoo Park

20150027 Jiwon Kang

20150589

20150629

Haewoo Lee

20160259

Our Namsame-2 has...

HEAT MONITORING SYSTEM

UNIQUE PICK-UP MECHANISM

CREATIVE WAY TO AVOID RED BALL

ACCURATE CONTROL SYSTEM

1. HEAT MANAGEMENT

6. MOTOR OPERATION AND CONTROL

2. VIBRATION REDUCTION

5. ROS INTEGRATION

3. PICK-UP PART

4. VISION RECOGNITION

CONTENTS

COOLING SYSTEM

 HEAT MANAGEMENT
 MOTOR OPERATION AND CONTROL VIBRATION REDUCTION

2. VIBRATION REDUCTION4. VISION RECOGNITION

OPERATION MECHANISM

3. PICK-UP PART4. VISION RECOGNITION5. ROS INTEGRATION6. MOTOR OPERATION AND CONTROL

COOLING SYSTEM

Related criteria:

- 1. HEAT MANAGEMENT
- 6. MOTOR OPERATION AND CONTROL

PROBLEM DEFINITION

COMPONENT	OPTIMUM TEMPERATURE	
myRIO	0 ~ 70 °C	
Converter	-40 ~ 85 °C	
NUC	0 ~ 50 °C	
Motor (MX 64)	-5 ~ 80 °C	
Motor (MX 28)	-5 ~ 80 °C	

Before operating

Optimum temperature

EXPERIMENT

Before operating

COMPONENT	TEMPERATURE
myRIO	43.2 °C
Converter	37.3 °C
NUC	28.7 °C
Motor (MX 64)	34.2 °C
Motor (MX 28)	39.1 °C

After operating 2hr

RESULT

COMPONENT	TEMPERATURE	
myRIO	43.2 °C	< 70 °C
Converter	37.3 °C	< 85 °C
NUC	28.7 °C	< 50 °C
Motor (MX 64)	34.2 °C	< 80 °C
Motor (MX 28)	39.1 °C	< 80 °C

Before operating

After operating 2hr

1. STRUCTURAL SOLUTION

Maximum contact area with the air

Space between each component and base

2. DESIGN SOLUTION

Heatsink

Fan

3. SELECTIVE CONTROL SOLUTION

MEASURING ---- MONITORING

IF NEEDED

CONTROLING ---- COOLING

POWER EFFICIENCY!!

3. SELECTIVE CONTROL SOLUTION

Use analog output and GND from myRIO

FAN control

3. SELECTIVE CONTROL SOLUTION

Example with threshold of 30 °C

VIBRATION REDUCTION

Related criteria:

2. VIBRATION REDUCTION

PROBLEM DEFINITION

EXPERIMENT

Accelerometer: built in myRIO

Velocity: 5~55 RPM (increment of 5 RPM)

Weight: 8.2kg

Shape of the wheel: pentadecagon

(regular polygon with 15 side)

RESULT

Raw data

Raw Data (10RPM, x-direction)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

10

20

30

40

Major Vibration Analysis by Discrete FFT

ANALYSIS

pentadecagon (regular polygon with 15 side)

Ex) 60 RPM

- → 1 revolution per 1 sec
- → 15 impulses per 1 sec due to wheel geometry
- → Main input frequency of 15 Hz

Fit with our hypothesis!!

DESIGN SOLUTION

Target stiffness: 12337 N/m

8 x Spring with stiffness of 1,500 N/m connected parallel

→ result stiffness: 12000 N/m

VIBRATION REDUCTION SYSTEM

OPERATION MECHANISM

Related criteria:

- 3. PICK-UP PART
- 4. VISION RECOGNITION
- 5. ROS INTEGRATION
- 6. MOTOR OPERATION AND CONTROL

PICKING UP

DRIVING

DUMPING

PICKUP PART

Picking up Storing

25:1
GEARBOX

5:1 gear

Coupling

5:1 gear

ADJUSTABLE STRING

AX12 Dynamixel

FEEDBACK

"Pick-up mechanism is still slow"

How can we improve our speed problem?

1. FIND THE
OPTIMIZED ROUTE
TO PICK UP THE
BLUE BALL

2. REDUCE THE TIME OF STANDSTILL

1. FIND THE OPTIMIZED ROUTE TO PICK UP THE BLUE BALL

UNIQUENESS OF OUR PICK UP MECHANISM

BIG WHEEL AND HIGH CAR FRAME

WHAT A REVOLUTION!!

2. REDUCE THE TIME OF STANDSTILL

2. REDUCE THE TIME OF STANDSTILL

Strengths

Adaptable to various environments

- balls closer to each other
- higher basket height
- other target shapes

Picking up, dumping, storage in one subsystem

Solving the Problems

Require higher accuracy

Picking up time

DRIVING MECHANISM

1st webcam 2nd webcam

DRIVING MODE

1st webcam:

Set the target using wide sight view

2nd webcam:

When the object is no longer detected by 1st camera, 2nd camera takes over the control

Rplidar:

Measures the distance from the wall to place mobile platform in front of the basket

DRIVING MODE

1st webcam:

Set the target using wide sight view

2nd webcam:

When the object is no longer detected by 1st camera, 2nd camera takes over the control

Rplidar:

Measures the distance from the wall to place mobile platform in front of the basket

DRIVING MODE

1st webcam:

Set the target using wide sight view

2nd webcam:

When the object is no longer detected by 1st camera, 2nd camera takes over the control

Rplidar:

Measures the distance from the wall to place mobile platform in front of the basket

VISION RECOGNITION

Camera

Position (m)	5	4	3	2	1
Fraction	1/5	2/5	3/5	4/5	5/5
Correction	0.2x10	0.4x10	0.6x10	0.8x10	1x10

Ball coordinates

Reflection problem

Trial and errors

- 1. Findblue
- 2. Gofar
- 3. Gonear
- 4. Pickup
- 5. Gomid
- 6. Findgoal
- 7. Goalfar
- 8. Goalnear
- 9. Goallidar
- 10.Trash
- 11. Trashend
- 12. End

Webcam x 2 Rplidar myRIO

We reduce the time of approaching by not considering the red ball

Decrease while approaching Target value for accuracy

- 1. Findblue
- 2. Gofar
- 3. Gonear
- 4. Pickup
- 5. Gomid ← rplidar
- 6. Findgoal
- 7. Goalfar
- 8. Goalnear
- 9. Goallidar
- 10.Trash
- 11. Trashend
- 12. End

After picking up all three blue balls

Use rplidar to get to center of the field

Reach target position

- 1. Findblue
- 2. Gofar
- 3. Gonear
- 4. Pickup
- 5. Gomid
- 6. Findgoal
- 7. Goalfar
- 8. Goalnear
- 9. Goallidar ← Rplidar
- 10.Trash
- 11. Trashend
- 12. End

Align with the wall and approaching

Calculate wall distance

$$y = ax + b$$

$$a = \frac{(2n+1)\sum xy - \sum x\sum y}{(2n+1)\sum x^2 - \sum x\sum x}$$

$$b = \frac{\sum x^2 \sum y - \sum x \sum xy}{(2n+1)\sum x^2 - \sum x \sum x}$$

CONSIDERING EXCEPTIONAL CONDITIONS

1. Red ball blocking the last blue ball

2. First webcam detects but second can't detect

MOTOR OPERATION AND CONTROL

Related criteria:

6. MOTOR OPERATION AND CONTROL

Temperature to cut the maximum speed if the motors are heated too much

Wheel x 4

Torque control to prevent damage on gears

We also prevent Bottle-neck effect to remove delay

TCP Communication

Embedded system that we do not need to use external computer

Code written inside

SUMMARY

Heat Monitoring System

Unique Pickup System Creative optimum route

Accurate Control system

Adaptable to various environments

Thank you for listening

APPENDIX

