Lesson 6: Solutions of the Schrödinger equation

Clara E. Alonso Alonso

January 11, 2012

General properties of wave functions	2
	6
Constant potential: free particle	11
Square well of infinite depth	15
	21
Bibliography	22
-····- 3 · ······ ,	23

• $\phi(x)$ and $\phi'(x)$ finite, single-valued and continuous $\phi'(x)$ may be discontinuous if there are discontinuities in the potential

 x^{\prime} y $x^{\prime\prime}$ classical turning points

3 / 23

• **Bound** state → the classically allowed range is finite → it is not allowed any value of energy quantized values ("**unbound states**" are called "**scattering states**")

Bound state $\ \rightarrow \ E < V(-\infty)$ and $V(+\infty)$

Scattering states $\ \rightarrow \ E > V(-\infty)$ or/and $V(+\infty)$

- Bound states eigenfunctions of the Hamiltonian are nondegenerate in one dimension
- Bound states eigenfunctions of the Hamiltonian can always be chosen real in one dimension

- ullet Bound-state eigenfunctions of Hamiltonians corresponding to even potentials V(x)=V(-x) have good parity (are odd or even)
- For bound states the minimum eigenvalue of \hat{H} is larger than the bottom of the potential (**Zero-Point Energy**)

5 / 23

From the time-independent Schrodinger equation

$$\frac{d^2\phi(x)}{dx^2} = \frac{2m}{\hbar^2} \left[V(x) - E \right] \phi(x)$$

- classically forbidden regions $\mbox{sign}(\frac{d^2\phi}{dx^2}) = \mbox{sign}\,\phi$ classically allowed regions $\mbox{sign}(\frac{d^2\phi}{dx^2}) = -\mbox{sign}\,\phi$

- ullet the wave function has no zeros in forbidden regions containing $\pm\infty$
- for $x = \pm \infty$ $\phi(x) \to 0$ (if ϕ is normalizable \leftrightarrow bound state)
- in classically allowed regions |V-E| larger \to larger T kinetic energy \to larger p (momentum) \to smaller λ (semiclassical reasoning)
- in classically allowed regions if $E_1 < E_2$ (eigenvalues of \hat{H}) \to $T_1 < T_2$ (in every point) \to $\lambda_1 > \lambda_2 \to \phi_2$ oscillates more than ϕ_1 (semiclassical reasoning)
- for bound states, at a given energy, in the classically allowed region larger E-V implies larger $T\to$ larger $v\to$ less probability \to lower amplitude (semiclassical reasoning)

7 / 23

• if two eigenfunctions of the Hamiltonian cross in a classically allowed region \to the one with larger $|\frac{d^2\phi}{dx^2}|$ is of higher energy

$$\phi_1(x) = \phi_2(x) \text{ and } |\frac{d^2\phi_1}{dx^2}| > |\frac{d^2\phi_2}{dx^2}| \rightarrow E_1 > E_2$$

- the ground state (the eigenstate of \hat{H} lower in energy) has no zeros in the classically allowed region. The next (first excited state) has one, and so on
- · exceptions can be found for our semiclassical reasonings

V(x)=0 the particle is not bound to any region of space \to any value of energy is allowed, there is no quantization of it (the energy is quantized when the classical range of motion of the particle is finite)

$$\hat{H} \; \neq \; \hat{H}(t) \; \; \rightarrow \; \; <\hat{H}> \quad \text{is conserved}$$

$$rac{\partial V}{\partial x} \, = \, 0 \ \,
ightarrow \, <\hat{p}_x> \ \, ext{is conserved}$$

 \hat{H} and \hat{p}_x are constants of motion

$$-\frac{\hbar^2}{2m}\frac{d^2\phi}{dx^2} = E\phi$$

$$\frac{d^2\phi}{dx^2} + \frac{2mE}{\hbar^2}\phi = 0$$

12 / 23

$$\frac{d^2\phi}{dx^2} + k^2\phi = 0$$

$$\phi(x) = e^{\pm ikx}$$
 ; $k = \frac{\sqrt{2mE}}{\hbar}$; $E = \frac{\hbar^2 k^2}{2m}$

General solution $\phi(x) = A e^{ikx} + B e^{-ikx}$

$$\Psi(x,t) = \left(A e^{ikx} + B e^{-ikx}\right) e^{-\frac{iEt}{\hbar}}$$

$$\hat{p}_x e^{\pm ikx} = -i\hbar \frac{\partial}{\partial x} e^{\pm ikx} = \pm \hbar k e^{\pm ikx} = \pm \sqrt{2mE} e^{\pm ikx}$$

 $e^{\pm\;ikx}\;$ are eigenfunctions of $\;\hat{p}_x\;$ with eigenvalues $\;\pm\;\hbar k\;$

 $e^{ikx}\,$ plane wave traveling towards increasing values of $\,x\,$

 e^{-ikx} plane wave traveling towards decreasing values of x

for
$$e^{ikx}$$
 (or e^{-ikx}) $\Delta \hat{p}_x = 0 \rightarrow \Delta \hat{x} = \infty$

We could have used a potential $V(x) = V_0 \quad \forall x$

The solution obtained is valid if we make the change $\,E\,
ightarrow\,E-V_0$

Normalization of the wave function

$$\int_{-\infty}^{\infty} dx \, e^{-ikx} \, e^{ik'x} \, = \, 2\pi \delta(k - k')$$

If k = k' non-normalized

If $k \neq k' \rightarrow$ orthogonal functions (eigenfunctions of \hat{p}_x associated with different eigenvalues)

The wave function represents a **beam of particles**, not a particle (for particles the wave function must be square integrable). Possible constants in the wave function are related to the flux of particles (unbound states)

14 / 23

Square well of infinite depth

15 / 23

$$V(x) = \begin{cases} \infty & \begin{cases} x \le 0 \\ x \ge a \end{cases} \\ 0 & 0 \le x \le a \end{cases}$$

$$\phi(x) = 0 \begin{cases} x \le 0 \\ x \ge a \end{cases}$$

particle confined in a one-dimensional box

Boundary conditions
$$\phi(0) \,=\, 0 \quad ; \quad \phi(a) \,=\, 0$$

$$-\frac{\hbar^2}{2m}\frac{d^2\phi}{dx^2} \,=\, E\phi \qquad 0 \leq x \leq a$$

$$\frac{d^2\phi}{dx^2} \,+\, k^2\phi \,=\, 0 \;; \quad k \,=\, \frac{\sqrt{2mE}}{\hbar}$$

$$\phi(x) \,=\, A\,e^{ikx} \,+\, B\,e^{-ikx}$$

$$\phi(0) \,=\, 0 \quad \rightarrow \quad A \,+\, B \,=\, 0$$

$$\phi(a) \,=\, 0 \,\rightarrow\, Ae^{ika} \,+\, B\,e^{-ika} \,=\, A\,\left(e^{ika} \,-\, e^{-ika}\right) \,=\, 2iA\sin ka \,=\, 0$$

$$k_n \,=\, \frac{n\pi}{a} \quad ; \qquad n \,=\, 1,2,3,\cdots$$

17 / 23

$$E_n \,=\, rac{\hbar^2}{2m} \left(rac{n\pi}{a}
ight)^2 \quad ext{quantized energy}$$

All eigenstates are bound ones (∞)

$$\phi_n(x) = 2A \sin\left(\frac{n\pi x}{a}\right); n = 1, 2, 3, \dots (n = 0 \to \phi_0(x) = 0)$$

• Overall factor i (modulus 1) can be taken out (a constant factor of modulus 1, the so-called **phase**, is undetermined in the wave function) since $\phi(x)$ and $e^{i\delta}\phi(x)$ with $\delta \in \mathcal{R}$ represent the same state)

Determination of A (normalization constant)

$$1 = \int_{-\infty}^{\infty} |\phi|^2 dx = 4 |A|^2 \int_0^a \sin^2 \left(\frac{n\pi x}{a}\right) dx =$$

$$= 4 |A|^2 \int_0^{n\pi} \frac{a}{n\pi} \sin^2 y \, dy = 2|A|^2 a$$

$$\left(\int \sin^2 y \, dy = \frac{1}{2} (y - \frac{1}{2} \sin 2y)\right)$$

19 / 23

$$|A| = \frac{1}{\sqrt{2a}} \rightarrow A = \frac{1}{\sqrt{2a}} e^{i\alpha} \; ; \; \alpha \; {
m real}$$

in x=0 and x=a the potential is discontinuous \to in addition it becomes <u>infinite</u> \to $\phi'(x)$ is discontinuous (if it was not infinite $\phi'(x)$ would be continuous)

Symmetric infinite well of length a

$$V(x') = \begin{cases} \infty & \begin{cases} x' \le -\frac{a}{2} \\ x' \ge \frac{a}{2} \end{cases} \\ 0 & -\frac{a}{2} \le x' \le \frac{a}{2} \end{cases}$$

$$x' = x - \frac{a}{2}$$
; $\Phi_n(x') = \phi_n(x) = \phi_n(x' + \frac{a}{2})$

$$\sin(A+B) = \sin A \cos B + \sin B \cos A$$

$$\Phi_n(x') = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x'}{a} + \frac{n\pi}{2}\right)
= \sqrt{\frac{2}{a}} \left[\cos\frac{n\pi x'}{a} \sin\frac{n\pi}{2} + \sin\frac{n\pi x'}{a} \cos\frac{n\pi}{2}\right]$$

n even
$$\rightarrow \sin \frac{n\pi}{2} = 0$$
; $\cos \frac{n\pi}{2} = (-1)^{\frac{n}{2}}$

$$\Phi_n(x') = \sqrt{\frac{2}{a}}(-1)^{\frac{n}{2}}\sin\frac{n\pi x'}{a} \to \sqrt{\frac{2}{a}}\sin\frac{n\pi x'}{a}$$

$$\mathsf{n} \; \mathsf{odd} \;\; \to \;\; \sin \tfrac{n\pi}{2} \; = \; (-1)^{\tfrac{n-1}{2}} \;\; ; \quad \cos \tfrac{n\pi}{2} \; = \; 0$$

$$\Phi_n(x') = \sqrt{\frac{2}{a}}(-1)^{\frac{n-1}{2}}\cos\frac{n\pi x'}{a} \to \sqrt{\frac{2}{a}}\cos\frac{n\pi x'}{a}$$

Think of well of length 2L!

21 / 23

Bibliography 22 / 23

- [1] R.C. Greenhow, "Intoductory Quantum Mechanics", IoP Publishing, 1995
- [2] S. Gasiorowicz, "Quantum Physics", ed. John Wiley, 2003, Apéndice B
- [3] D.J. Griffiths, "Introduction to Quantum Mechanics", ed. Pearson Education Inc., 2005
- [4] D. Park, "Introduction to the Quantum Theory", ed. McGraw-Hill, 1992