- (1) (a) Să se defineasca urmatoarele noțiuni: funcție bijectivă, element minimal intr-o mulțiem ordonată, partiție, dimensiunea a unui spațiu vectorial, coordonate (ale unui vector intr-o anumită bază a unui spațiu vectorial).
 - (b) Să se dea câte un exemplu de relație de echivalență pe mulțimea \mathbb{Z} a numerelor întregi, funcție injectivă de la \mathbb{Z} la \mathbb{Z} , subgrup netrivial al grupului \mathbb{Z} , vectori liniar independenți în \mathbb{R}^2 , nucleu al unui endomorfism al \mathbb{R} -spațiului vectorial \mathbb{R}^2 .
 - (c) Fie $m \in \mathbb{Z}$ cu proprietatea că $\sigma^m = e$ unde $\sigma = (2,5,4) \in S_{10}$ iar e este permutarea identică. Să se arate că 3|m.
- (2) Se consideră funcțiile: $f: \mathbb{N} \to \mathbb{Z}$ și $g: \mathbb{Z} \to \mathbb{Z}$

$$f(x) = \begin{cases} x/2, & x \in 2\mathbb{N} \\ -(x+1)/2, & x \in 2\mathbb{N} + 1 \end{cases} \quad \text{si } g(x) = x^2 - 3x + 2.$$

- (a) Să se studieze injectivitatea și surjectivitatea acestor funcții.
- (b) Dacă există să se determine inversele acestor funcții.
- (c) Dacă sunt definite să se calculeze compunerile $f \circ g$ şi $g \circ f$.
- (d) Să se determine numărul funcțiilor $h: \{x \in \mathbb{N} \mid 0 \le x \le 9\} \to \{a, b, c\}$ cu proprietatea că $h(0) \in \{a, b\}$.
- (3) Fie p un număr prim și $\mathbb{Z} + \sqrt{p}\mathbb{Z} = \{a + ib \mid a, b \in \mathbb{Z}\}.$
 - (a) Să se arate că $\mathbb{Z} + \sqrt{p}\mathbb{Z}$ este un subinel cu unitate al inelului $(\mathbb{R}, +, \cdot)$.
 - (b) Să se arate că $f: \mathbb{Z} + \sqrt{p}\mathbb{Z} \to M_{2\times 2}(\mathbb{Z}), f(a + \sqrt{p}b) = \begin{bmatrix} a & b \\ pb & a \end{bmatrix}$ este un morfism unital injectiv de inele.
 - (c) Să se arată că inelele $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ și $\mathbb{Z} + \sqrt{3}\mathbb{Z}$ nu sunt izomorfe.
- (4) Se consideră $S = \langle u_1, u_2, u_3 \rangle$ şi $T = \langle v_1, v_2 \rangle$, unde $u_1 = (1, 2, -1, -2), u_2 = (3, 1, 1, 1), u_3 = (-1, 0, 1, -1), v_1 = (-1, 2, -7, -3), v_2 = (2, 5, -6, -5).$
 - (a) Să se arate că S este subspațiu în \mathbb{R}^3 .
 - (b) Să se determine câte o bază și dimensiunea pentru S, T, S+T și $S\cap T$.
 - (c) Fie V un K-spaţiu vectorial de dimensiune $n \in \mathbb{N}^*$ şi $V_1, V_2 \leq_K V$ astfel încât $\dim_K V_1 = n-1$ şi $V_2 \nsubseteq V_1$. Să se arate că $\dim_K (V_1 \cap V_2) = \dim V_2 1$ şi că $V_1 + V_2 = V$.
- (5) Fie $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1 + x_2, 2x_1 x_2, 3x_1 + 2x_2)$, $\mathbf{v} = [(1, 2), (-2, 1)]^t$ si $\mathbf{w} = [(1, -1, 0), (-1, 0, 1), (1, 1, 1)]^t$.
 - (a) Să se arate că $f \in \operatorname{Hom}_R(\mathbb{R}^2, \mathbb{R}^3)$ şi că \mathbf{v} respectiv \mathbf{w} sunt baze în \mathbb{R}^2 , respectiv \mathbb{R}^3 .
 - (b) Să se determine matricea $[f]_{v,w}$.
 - (c) Să se determine câte o bază și dimensiunea pentru Im(f) și Ker(f).

NOTĂ: Fiecare subiect este notat de la 1 la 10. Toate afirmațiile făcute trebuie sa fie justificate.