Representación Topológica del Entorno en Robótica Móvil

Introducción

La **representación topológica del entorno** es un enfoque clave en robótica móvil y en sistemas de inteligencia artificial que requieren una abstracción eficiente y útil del espacio en el que operan. A diferencia de las representaciones métricas que capturan las propiedades geométricas detalladas del entorno, las representaciones topológicas se centran en la **estructura y conectividad** de los espacios, proporcionando una vista más abstracta y simplificada.

Mapas Topológicos

- **Definición**: Un mapa topológico es una representación basada en grafos que captura la relación entre diferentes lugares o estados en el entorno.
- Componentes:
 - Nodos: Representan lugares distintivos o estados del entorno que son relevantes para las tareas del robot.
 - Aristas (Arcos): Indican relaciones o conectividades entre los lugares, como caminos transitables o transiciones posibles.

Importancia en Robótica Móvil

- Simplificación del Entorno: Los mapas topológicos permiten manejar entornos complejos mediante la abstracción de información esencial.
- **Eficiencia**: Reducen la complejidad computacional al evitar el manejo de detalles geométricos innecesarios para ciertas tareas.
- Aplicaciones:
 - Navegación Global: Planificación de rutas a través de lugares clave.
 - Localización: Identificación del lugar actual basándose en observaciones.
 - SLAM (Simultaneous Localization and Mapping): Construcción de mapas simultáneamente mientras se localiza el robot.

Falta de Consenso

No existe un acuerdo unánime sobre cómo deben construirse los mapas topológicos o qué elementos específicos deben incluir. Esto se debe a que los mapas topológicos se adaptan a las necesidades particulares de cada aplicación y pueden variar en:

- **Significado de Nodos y Aristas**: Dependiendo del contexto, un nodo puede representar desde un punto físico hasta un estado abstracto del robot.
- Granularidad: La cantidad de detalle y la definición de lugares distintivos pueden cambiar según los objetivos.

Elementos Comunes en Mapas Topológicos

A pesar de las variaciones, existen elementos comunes en la construcción y estructura de los mapas topológicos:

Identificación de Nodos

- **Lugares Distintivos**: Se identifican utilizando los sensores del robot, que pueden ser características del entorno, lecturas sensoriales únicas o patrones detectados.
- **Estados Distintivos (ds)**: Asociados a vistas o lecturas específicas de los sensores que permiten distinguir diferentes lugares.

Relaciones entre Nodos (Aristas)

- **Conectividad**: Se establecen relaciones de conexión entre los nodos basadas en la capacidad del robot para moverse de un lugar a otro.
- Acciones Asociadas: Las transiciones pueden estar etiquetadas con las acciones necesarias para moverse entre lugares.

Información Métrica Asociada

• Aunque los mapas topológicos son abstractos, es común asociar información métrica local a las aristas, como distancias aproximadas o ángulos de giro, para mejorar la navegación.

Generación Automática de Mapas Topológicos

La construcción automática de mapas topológicos implica la transformación de las experiencias del robot en una representación estructurada del entorno.

Secuencia de Experiencias

El robot acumula una secuencia de experiencias en forma de:

$$v_0, a_0, v_1, a_1, \ldots, a_{n-1}, v_n$$

- v_i : Vista o lectura sensorial en el estado i.
- a_i : Acción ejecutada para pasar de v_i a v_{i+1} .

Estados Distintivos

- **Definición**: Un estado del entorno en el que el robot ha tomado datos específicos (una vista o lectura sensorial).
- Características:
 - Posición y Orientación: Cada estado distintivo está asociado a una posición y orientación en el mapa.
 - Identificación Única: Las vistas permiten distinguir estados distintivos, aunque pueden darse casos donde la misma vista ocurre en diferentes lugares.

Acciones

- Tipos de Acciones:
 - Giros (Turns): Acciones que cambian la orientación del robot sin cambiar su posición (ejemplo: girar 90 grados a la derecha).
 - Desplazamientos (Travels): Acciones que mueven al robot de un lugar a otro (ejemplo: avanzar 5 metros).

Esquemas de Transición

La secuencia de experiencias se transforma en un conjunto de **esquemas**, que representan transiciones entre estados distintivos:

$$\{(v_i, ds_i), \ a_i, \ (v_{i+1}, ds_{i+1})\}$$

- (ds_i): Estado distintivo asociado a la vista (v_i).
- Los esquemas capturan cómo las acciones llevan al robot de un estado distintivo a otro.

Agrupación en Lugares y Regiones

- **Lugares**: Conjunto de estados distintivos que están conectados por acciones de giro (turns). Representan posiciones del robot donde puede cambiar su orientación.
- Regiones: Agrupan varios lugares, permitiendo crear mapas topológicos jerárquicos.

Construcción del Mapa Topológico

Objetivo

- Minimizar el conjunto de caminos topológicos y lugares dados los datos de experiencia.
- Crear una representación eficiente que capture las conexiones esenciales sin redundancias innecesarias.

Caminos Topológicos

- Un camino establece una relación entre dos lugares mediante una acción de desplazamiento (travel) sin incluir acciones de giro.
- Los caminos tienen una dirección, lo que significa que ir de (A) a (B) puede ser diferente que ir de (B) a (A).
- Rutas: Son caminos entre dos regiones, permitiendo planificación a mayor escala.

Predicados y Relaciones

Para formalizar las relaciones entre los distintos elementos, se utilizan **predicados**:

- on(pa, p): El lugar (p) está en el camino (pa).
- order(pa, dir, p, q): El lugar (p) está antes que (q) en el camino (pa) siguiendo la dirección (dir).
- at(ds, p): El estado distintivo (ds) está en el lugar (p).
- along(ds, pa, dir): El estado distintivo (ds) está a lo largo del camino (pa) en dirección (dir).
- **teq(ds1, ds2)**: Los estados distintivos (ds1) y (ds2) son topológicamente equivalentes (representan el mismo lugar o posición en el mapa).

Axiomas y Teoremas

- · Conectividad de Acciones:
 - Dos acciones de desplazamiento **travel** consecutivas comparten un mismo camino.
 - Una acción de giro en U (turn-around) permite al robot recorrer un camino en la dirección opuesta.
 - Las acciones de **giro a la izquierda (turn-left)** o **giro a la derecha (turn-right)** conducen al robot a caminos diferentes.

Ejemplos Prácticos

Ejemplo 1: Camino Lineal con Retorno

Secuencia de Esquemas:

- 1. $\langle a, travel, b \rangle$
- 2. $\langle b, turnAround, c \rangle$
- 3. $\langle c, travel, d \rangle$

Análisis:

- Lugares Topológicos:
 - $\circ A = \{a\}$
 - $\circ \ B = \{b,c\}$ (mismo lugar con orientación diferente)
 - $C = \{d\}$
- · Camino Topológico:
 - Pa: camino que conecta a con d pasando por b y c.
- Al ejecutar $\langle d, turnAround, a' \rangle$, donde a' es equivalente a a, completamos el ciclo.

Ejemplo 2: Camino con Bifurcaciones

Secuencia de Esquemas:

- 1. $\langle a, turnRight, b \rangle$
- 2. $\langle b, travel, c \rangle$
- 3. $\langle c, turnAround, d \rangle$
- 4. $\langle d, travel, e \rangle$
- 5. $\langle e, turnRight, a' \rangle$
- 6. $\langle a', turnRight, b' \rangle$

Análisis:

- Lugares Topológicos:
 - $P = \{a, b\}$
 - $Q = \{c, d\}$
 - $R = \{e, a', b'\}$
- Se observa que a y a' son equivalentes, al igual que b y b', por lo que P=R.

Ejemplo 3: Intersecciones y Nuevos Caminos

Secuencia de Esquemas:

```
1. \langle ds1, travel, ds2 \rangle
```

2. $\langle ds2, turnRight, ds3 \rangle$

3. $\langle ds3, travel, ds4 \rangle$

4. $\langle ds4, turnLeft, ds5 \rangle$

5. $\langle ds5, travel, ds6 \rangle$

Análisis:

· Lugares:

```
(A = {ds1})
```

- o (B = { ds2, ds3 })
- o (C = { ds4, ds5 })
- o (D = {ds6})

• Caminos Topológicos:

- (Pa): conecta (ds1) con (ds2).
- (Pa1): conecta (ds3) con (ds4).
- (Pa2): conecta (ds5) con (ds6).

Ejemplo 4: Ambigüedad en el Mapa

Situación:

- El robot visita lugares (A, B, C, D, E, F, C) en orden.
- Las vistas en las intersecciones, especialmente en (B) y (C), son muy similares o idénticas.

Problema:

• El robot puede confundir los lugares debido a vistas similares, generando ambigüedad en el mapa topológico.

Solución:

 Utilizar información métrica local adicional (como distancias recorridas o ángulos de giro) para desambiguar lugares que pueden tener vistas similares.

Uso de Información Métrica Local

Para mejorar la precisión y resolver posibles ambigüedades en el mapa topológico, se asocia información métrica local a los elementos del mapa.

Asociación de Información Métrica

- · Caminos:
 - Se almacena la distancia aproximada entre lugares a lo largo del camino.

• Ayuda a estimar posiciones relativas y tiempos de recorrido.

Lugares:

- Se asocia el ángulo o dirección en la que comienzan los caminos desde ese lugar.
- Permite al robot orientar sus acciones basándose en referencias métricas.

Ventajas

- Desambiguación: Al incorporar medidas métricas, es posible distinguir entre lugares con vistas similares pero
 posiciones diferentes.
- Navegación Más Precisa: Se mejora la planificación de movimientos y se reducen errores en la ejecución de acciones.

Ejemplo de Desambiguación

- Dos intersecciones con vistas similares pueden diferenciarse si el robot sabe que una está a 10 metros de su
 posición actual y la otra a 30 metros.
- Al comparar las distancias recorridas, el robot puede determinar en cuál de las dos se encuentra.

Conclusiones

La representación topológica del entorno es una herramienta poderosa en robótica móvil, especialmente para tareas que requieren una abstracción del espacio y una navegación eficiente sin necesidad de detalles geométricos precisos.

Beneficios de los Mapas Topológicos

- Eficiencia Computacional: Reducen la cantidad de datos a procesar y almacenar.
- Adaptabilidad: Pueden ajustarse fácilmente a diferentes entornos y escalas.
- Simplificación: Facilitan la planificación y ejecución de movimientos basados en transiciones entre lugares clave.

Desafios

- Ambigüedad en Lugares: Vistas similares pueden llevar a confusiones en la localización.
- Necesidad de Información Adicional: En algunos casos, es necesario complementar con información métrica o características únicas del entorno.

Integración con Otras Representaciones

- Mapas Híbridos: Combinar mapas topológicos con métricos para aprovechar las ventajas de ambos enfoques.
- **Jerarquías**: Crear mapas topológicos jerárquicos donde las regiones se organizan en niveles, facilitando la navegación a diferentes escalas.