

WORLD INTELLECTUAL PROPERTY ORGAN International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, C07K 14/22, G01N 33/68

(11) International Publication Number:

WO 97/32980

A1

(43) International Publication Date: 12 September 1997 (12.09.97)

(21) International Application Number:

PCT/CA97/00163

US

US

(22) International Filing Date:

7 March 1997 (07.03.97)

(30) Priority Data:

08/613.009 08/778.570 8 March 1996 (08.03.96)

3 January 1997 (03.01.97)

Rose Drive, Aurora, Ontario L4G 4R4 (CA). DU, Run-Pan [CA/CA]; 299 Chelwood Drive, Thornhill, Ontario L4J 7Y8 (CA). YANG, Yan-Ping [CA/CA]; Apartment 1709, 120 Torresdale Avenue, Willowdale, Ontario M2R 3N7 (CA). KLEIN, Michel, H. [CA/CA]: 16 Munro Boulevard, Willowdale, Ontario M2P 1B9 (CA).

(74) Agent: STEWART, Michael, I.; Sim & McBurney, 6th floor. 330 University Avenue, Toronto, Ontario M5G 1R7 (CA).

(60) Parent Application or Grant (63) Related by Continuation

US Filed on

08/778,570 (CIP) 3 January 1997 (03.01.97)

(71) Applicant (for all designated States except US): CONNAUGHT LABORATORIES LIMITED [CA/CA]; 1755 Steeles Avenue West, North York, Ontario M2R 3T4 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MYERS, Lisa, E. [CA/CA]; 187 Elizabeth Street, Guelph, Ontario NIE 2X5 (CA). SCHRYVERS, Anthony, B. [CA/CA]; 39 Edforth Road, N.W., Calgary, Alberta T3A 3V8 (CA). HARKNESS, Robin, E. [CA/CA]; Apartment #1706, 640 Sheppard Avenue East, Willowdale, Ontario M2K 1B8 (CA). LOOSMORE, Sheena, M. [CA/CA]; 70 Crawford (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: TRANSFERRIN RECEPTOR GENES OF MORAXELLA

(57) Abstract

Purified and isolated nucleic acid molecules are provided which encode transferrin receptor proteins of Moraxella, such as M. catarrhalis or a fragment or an analog of the transferrin receptor protein. The nucleic acid sequence may be used to produce recombinant transferrin receptor proteins Top1 and Top2 of the strain of Moraxella free of other proteins of the Moraxella strain for purposes of diagnostics and medical treatment. Furthermore, the nucleic acid molecule may be used in the diagnosis of infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE.	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Paso	í B	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	· PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP .	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

15

20

25

30

35

1

TITLE OF INVENTION TRANSFERRIN RECEPTOR GENES OF MORAXELLA

5 FIELD OF INVENTION

The present invention relates to the molecular cloning of genes encoding transferrin receptor (TfR) proteins and, in particular, to the cloning of transferrin receptor genes from Moraxella (Branhamella) catarrhalis.

REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of copending United States Patent Application No. 08/778,570 filed January 3, 1997, which itself is a continuation-in-part of United States Patent Application No. 08/613,009 filed March 8, 1996.

BACKGROUND OF THE INVENTION

Moraxella (Branhamella) catarrhalis bacteria are Gram-negative diplococcal pathogens which are carried asymptomatically in the healthy human respiratory tract. In recent years, M. catarrhalis has been recognized as important causative agent of otitis media. addition, Μ. catarrhalis has been associated sinusitis, conjunctivitis, and urogenital infections, as well as with a number of inflammatory diseases of the respiratory tract in children and adults, including pneumonia, chronic bronchitis, tracheitis, and emphysema (refs. 1 to 8). (Throughout this application, various references are cited in parentheses to describe more fully the state of the art to which this invention pertains. Full bibliographic information for citation is found at the end of the specification, immediately preceding the claims. The disclosures of these references are hereby incorporated by reference

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

into the present disclosure). Occasionally, M. catarrhalis invades to cause septicaemia, arthritis, endocarditis, and meningitis (refs. 9 to 13).

Otitis media is one of the most common illnesses of early childhood and approximately 80% of all children suffer at least one middle ear infection before the age of three (ref. 14). Chronic otitis media has been associated with auditory and speech impairment children, and in some cases, has been associated with learning disabilities. Conventional treatments otitis media antibiotic administration and include including tonsillectomies. surgical procedures, In the United adenoidectomies, and tympanocentesis. States, treatment costs for otitis media are estimated to be between one and two billion dollars per year.

In otitis media cases, M. catarrhalis commonly is co-isolated from middle ear fluid along with Streptococcus pneumoniae and non-typable Haemophilus influenzae, which are believed to be responsible for 50% and 30% of otitis media infections, respectively. M. catarrhalis is believed to be responsible approximately 20% of otitis media infections (ref. 15). Epidemiological reports indicate that the number of cases of otitis media attributable to M. catarrhalis is along with the number ofincreasing, resistant isolates of M. catarrhalis. Thus, prior to 1970, no β -lactamase-producing M. catarrhalis isolates had been reported, but since the mid-seventies, an increasing number of β -lactamase-expressing have been detected. Recent surveys suggest that 75% of clinical isolates produce β -lactamase (ref. 16, 26).

Iron is an essential nutrient for the growth of many bacteria. Several bacterial species, including M. catarrhalis, obtain iron from the host by using transferrin receptor proteins to capture transferrin. A number of bacteria including Neisseria meningitidis

10 -

15

20

25

(ref. 17), N. gonorrhoeae (ref. 18), Haemophilus influenzae (ref. 19), as well as M. catarrhalis (ref. 20), produce outer membrane proteins which specifically bind human transferrin. The expression of these proteins is regulated by the amount of iron in the environment.

The two transferrin receptor proteins of *M. catarrhalis*, designated transferrin binding protein 1 (Tbp1) and transferrin binding protein 2 (Tbp2), have molecular weights of 115 kDa (Tbp1) and approximately 80 to 90 kDa (Tbp2). Unlike the transferrin receptor proteins of other bacteria which have an affinity for apotransferrin, the *M. catarrhalis* Tbp2 receptors have a preferred affinity for iron-saturated (i.e., ferri-) transferrin (ref. 21).

catarrhalis infection may lead to disease. Ιt would be advantageous to recombinant source of transferrin binding proteins as antigens in immunogenic preparations including vaccines, carriers for other antigens and immunogens generation of diagnostic reagents. The genes encoding transferrin binding proteins and fragments thereof are particularly desirable and useful in the specific identification and diagnosis of Moraxella and immunization against disease caused by M. catarrhalis and for the generation of diagnostic reagents.

SUMMARY OF THE INVENTION

The present invention is directed towards 30 provision of purified and isolated nucleic acid molecules encoding a transferrin receptor of a strain of Moraxella or a fragment or an analog of the transferrin receptor protein. The nucleic acid molecules provided herein are useful for the specific detection of strains 35 Moraxella and for diagnosis of infection by Moraxella. The purified and isolated nucleic acid

10

15

20

25

30

molecules provided herein, such as DNA, are also useful for expressing the tbp genes by recombinant DNA means for providing, in an economical manner, purified and isolated transferrin receptor proteins subunits, fragments or analogs thereof. The transferrin receptor, subunits or fragments thereof OT thereof, as well as nucleic acid molecules encoding the same and vectors containing such nucleic acid molecules, are useful in immunogenic compositions for vaccinating against diseases caused by Moraxella, the diagnosis of infection by Moraxella and as tools for the generation of immunological reagents. Monoclonal antibodies or mono-specific antisera (antibodies) raised against the transferrin receptor protein, produced in accordance with aspects of the present invention, are useful for the diagnosis of infection by Moraxella, the specific detection of Moraxella (in, for example, in vitro and in vivo assays) and for the treatment of diseases caused by Moraxella.

In accordance with one aspect of the present invention, there is provided a purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of *Moraxella*, more particularly, a strain of *M. catarrhalis*, specifically *M. catarrhalis* strain 4223, Q8 or R1, or a fragment or an analog of the transferrin receptor protein.

In one preferred embodiment of the invention, the nucleic acid molecule may encode only the Tbpl protein of the Moraxella strain or only the Tbp2 protein of the Moraxella strain. In another preferred embodiment of the invention, the nucleic acid may encode a fragment of the transferrin receptor protein of a strain of Moraxella having an amino acid sequence which is conserved.

In another aspect of the present invention, there is provided a purified and isolated nucleic acid

15

20

25

30

35

molecule having a DNA sequence selected from the group consisting of (a) a DNA sequence as set out in Figure 5, 6, 10, 11 or 27 (SEO ID Nos: 1, 2, 3, 4, 5, 6, 7, 8, 45 or 46) or the complementary DNA sequence thereto; (b) a DNA sequence encoding an amino acid sequence as set out in Figure 5, 6, 10, 11 or 27 (SEQ ID Nos: 9, 10, 12, 13, 14, 15, 16 or 47) or the complementary sequence thereto; and (c) a DNA sequence hybridizes under stringent conditions to any one of the DNA sequences defined in (a) or (b). The DNA sequence defined in (c) preferably has at least about sequence identity with any one of the DNA sequences defined in (a) and (b). The DNA sequence defined in (c) may be that encoding the equivalent transferrin receptor protein from another strain of Moraxella.

In an additional aspect, the present invention includes a vector adapted for transformation of a host, comprising a nucleic acid molecule as provided herein may have the characteristics of a nucleotide sequence contained within vectors LEM3-24. pLEM3. pLEM25, pLEM23, SLRD-A, DS-1698-1-1, DS-1754-1, pSLRD2, pSLRD3, pSLRD4 and pSLRD5.

The vector may be adapted for expression of the encoded transferrin receptor, fragments or thereof, in a heterologous or homologous host, in either lipidated or non-lipidated form. Accordingly, further aspect of the present invention provides an expression vector adapted for transformation of a host comprising a nucleic acid molecule as provided herein and expression means operatively coupled to the nucleic acid molecule for expression by the host of the transferrin receptor protein or the fragment or analog the transferrin receptor protein. In specific embodiments of this aspect of the invention, the nucleic acid molecule may encode substantially all transferrin receptor protein, only the Tbpl protein,

. 5

10

15

20

25

30

35

only the Tbp2 protein of the Moraxella strain fragments of the Tbpl or Tbp2 proteins. The expression means may include a promoter and a nucleic acid portion encoding a leader sequence for secretion from the host of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein. expression means also may include a nucleic acid portion encoding a lipidation signal for expression from the host of a lipidated form of the transferrin receptor protein or the fragment or the analog of the transferrin receptor protein. The host may be selected from, for example, Escherichia coli, Bordetella, Haemophilus, Moraxella, fungi, yeast or baculovirus and Semliki Forest virus expression systems may be used. particular embodiment, the plasmid adapted expression of Tbpl is pLEM29 and that for expression of Tbp2 is pLEM33. Further vectors include pLEM-37, SLRD35-A and SLRD-35-B.

In an additional aspect of the invention, there is provided a transformed host containing an expression vector as provided herein. The invention further includes a recombinant transferrin receptor protein or fragment or analog thereof of a strain of *Moraxella* producible by the transformed host.

Such recombinant transferrin receptor protein may be provided in substantially pure form according to a further aspect of the invention, which provides a method of forming a substantially pure recombinant transferrin receptor protein, which comprises growing transformed host provided herein to express: a transferrin receptor inclusion protein as bodies. purifying the inclusion bodies free from material and soluble proteins, solubilizing transferrin receptor protein from the purified inclusion bodies, and purifying the transferrin receptor protein free from other solubilized materials. The substantially pure

ю.

15

20

25

30

35

recombinant transferrin receptor protein may comprise Tbpl alone, Tbp2 alone or a mixture thereof. The recombinant protein is generally at least about 70% pure, preferably at least about 90% pure.

Further aspects of the present invention. therefore, provide recombinantly-produced Tbpl protein of a strain of Moraxella devoid of the Tbp2 protein of the Moraxella strain and any other protein of the Moraxella strain and recombinantly-produced Tbp2 protein of a strain of Moraxella devoid of the Tbpl protein of the Moraxella strain and any other protein of Moraxella strain. The Moraxella strain may be M. catarrhalis 4223 strain, M. catarrhalis Q8 strain or M. catarrhalis R1 strain.

In accordance with another aspect of the invention, an immunogenic composition is provided which comprises at least one active component selected from at least one nucleic acid molecule as provided herein and at least one recombinant protein as provided herein, and a pharmaceutically acceptable carrier therefor or vector therefor. The at least one active component produces an immune response when administered to a host.

The immunogenic compositions provided herein may be formulated as vaccines for in vivo administration to a host. such purpose, the compositions For formulated as a microparticle, capsule, ISCOM or liposome preparation. The immunogenic composition may be provided in combination with a targeting molecule for delivery to specific cells of the immune system or to mucosal surfaces. The immunogenic compositions of the invention (including vaccines) may further comprise at one other immunogenic or immunostimulating material and the immunostimulating material may be at least one adjuvant or at least one cytokine. adjuvants for use in the present invention include (but are limited to) not aluminum phosphate, aluminum

10

15

20

25

30

35

hydroxide, QS21, Quil A, derivatives and components thereof, ISCOM matrix, calcium phosphate, calcium hydroxide, zinc hydroxide, a glycolipid analog, an octadecyl ester of an amino acid, a muramyl dipeptide polyphosphazene, ISCOPREP, DC-chol, DDBA and a lipoprotein. Advantageous combinations of adjuvants are described in copending United States Patent Applications Nos. 08/261,194 filed June 16, 1994 and 08/483,856, filed June 7, 1995, assigned to the assignee hereof and the disclosures of which are incorporated herein by reference thereto (WO 95/34308).

In accordance with another aspect of the invention, there is provided a method for generating an immune response in a host, comprising the step of administering to a susceptible host, such as a human, an effective amount of the immunogenic composition provided herein. The immune response may be a humoral or a cell-mediated immune response and may provide protection against disease caused by *Moraxella*. Hosts in which protection against disease may be conferred include primates, including humans.

In a further aspect, there is provided a live vector for delivery of transferrin receptor to a host, comprising a vector containing the nucleic acid molecule as described above. The vector may be selected from Salmonella, BCG, adenovirus, poxvirus, vaccinia and poliovirus.

The nucleic acid molecules provided herein are useful in diagnostic applications. Accordingly, in a further aspect of the invention, there is provided a method of determining the presence, in a sample, of nucleic acid encoding a transferrin receptor protein of a strain of *Moraxella*, comprising the steps of:

(a) contacting the sample with a nucleic acid molecule as provided herein to produce duplexes comprising the nucleic acid molecule and any nucleic

15

20

25

30

acid molecule encoding the transferrin receptor protein of a strain of *Moraxella* present in the sample and specifically hybridizable therewith; and

(b) determining the production of the duplexes.

In addition, the present invention provides a diagnostic kit for determining the presence, in a sample, of nucleic acid encoding a transferrin receptor protein of a strain of *Moraxella*, comprising:

- (a) a nucleic acid molecule as provided herein;
- (b) means for contacting the nucleic acid molecule with the sample to produce duplexes comprising the nucleic acid molecule and any such nucleic acid present in the sample and hybridizable with the nucleic acid molecule; and
- (c) means for determining production of the duplexes.

The invention further includes the use of the nucleic acid molecules and proteins provided herein as medicines. The invention additionally includes the use of the nucleic acid molecules and proteins provided herein in the manufacture of medicaments for protection against infection by strains of *Moraxella*.

Advantages of the present invention include:

- an isolated and purified nucleic acid molecule encoding a transferrin receptor protein of a strain of *Moraxella* or a fragment or an analog of the transferrin receptor protein;
- recombinantly-produced transferrin receptor proteins, including Tbpl and Tbp2, free from each other and other *Moraxella* proteins; and
- diagnostic kits and immunological reagents for specific identification of *Moraxella*.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be further understood from the following description with reference to the

drawings, in which:

5

10

15

20

25

30

35

Figure 1 shows the amino acid sequences (SEQ ID Nos: 17 and 18) of a conserved portion of Tbpl proteins used for synthesis of degenerate primers used for PCR amplification of a portion of the M. catarrhalis 4223 tbpA gene;

Figure 2 shows a restriction map of clone LEM3-24 containing the tbpA and tbpB genes from M. catarrhalis isolate 4223:

Figure 3 shows a restriction map of the tbpA gene for M. catarrhalis 4223;

Figure 4 shows a restriction map of the tbpB gene for M. catarrhalis 4223;

Figure 5 shows the nucleotide sequence of the tbpA gene (SEQ ID No: 1 - entire sequence and SEQ ID No: 2 - coding sequence) and the deduced amino acid sequence of the Tbp1 protein from M. catarrhalis 4223 (SEQ ID No: 9 - full length and SEQ ID No: 10 - mature protein). The leader sequence (SEQ ID No: 19) is shown by underlining;

Figure 6 shows the nucleotide sequence of the tbpB gene (SEQ ID No: 3 - entire sequence and SEQ ID No: 4 - coding sequence) and the deduced amino acid sequence of the Tbp2 protein from M. catarrhalis 4223 (SEQ ID Nos: 11 - full length and SEQ ID No: 12 - mature protein). The leader sequence (SEQ ID No: 20) is shown by underlining;

Figure 7 shows a restriction map of clone SLRD-A containing the tbpA and tbpB genes from M. catarrhalis O8;

Figure 8 shows a restriction map of the tbpA gene from M. catarrhalis Q8;

Figure 9 shows a restriction map of the tbpB gene from M. catarrhalis Q8;

Figure 10 shows the nucleotide sequence of the tbpA gene (SEQ. ID No: 5 - entire sequence and SEQ ID No: 6 - coding sequence) and the deduced amino acid sequence of

the Tbpl protein from M. catarrhalis Q8 (SEQ ID No: 13 - full length and SEQ ID No: 14 - mature protein);

Figure 11 shows the nucleotide sequence of the tbpB gene (SEQ. ID No: 7 - entire sequence and SEQ ID No: 8 - coding sequence) and the deduced amino acid sequence of the Tbp2 protein from M. catarrhalis Q8 (SEQ ID No: 15 - full length and SEQ ID No: 16 - mature protein);

Figure 12 shows a comparison of the amino acid sequences of Tbp1 from *M. catarrhalis* strain 4223 (SEQ ID No: 9) and Q8 (SEQ ID No: 13), *H. influenzae* strain Eagan (SEQ ID No: 21), *N. meningitidis* strains B16B6 (SEQ ID No: 22) and M982 (SEQ ID No: 23), and *N. gonorrhoeae* strain FA19 (SEQ ID No: 24). Dots indicate identical residues and dashes have been inserted for maximum alignment;

Figure 13 shows a comparison of the amino acid sequences of Tbp2 from M. catarrhalis isolate 4223 (SEQ ID No: 11) and Q8 (SEQ ID No: 15), H. influenzae strain Eagan (SEQ ID No: 25), N. meningitidis strains B16B6 (SEQ ID No: 26) and M918 (SEQ ID No: 27), and N. gonorrhoeae strain FA19 (SEQ ID No: 28). Dots indicate identical residues and dashes have been inserted for maximum alignment;

Figure 14 shows the construction of plasmid pLEM29 for expression of recombinant Tbpl protein from E. coli;

Figure 15 shows an SDS-PAGE analysis of the expression of Tbpl protein by *E. coli* cells transformed with plasmid pLEM29;

Figure 16 shows a flow chart for purification of recombinant Tbpl protein;

Figure 17 shows an SDS-PAGE analysis of purified recombinant Tbpl protein;

Figure 18 shows the construction of plasmid pLEM33 and pLEM37 for expression of TbpA gene from M. catarrhalis 4223 in E. coli without and with a leader sequence respectively;

Ю.

15

20

25

30

35

10

15

25

30

35

Figure 19 shows an SDS-PAGE analysis of the expression of rTbp2 protein by *E. coli* cells transformed with plasmid pLEM37;

Figure 20 shows the construction of plasmid sLRD35B for expression of the tbpB gene from M. catarrhalis Q8 in E. coli without a leader sequence, and the construction of plasmid SLRD35A for expression of the tbpB gene from M. catarrhalis Q8 in E. coli with a leader sequence. Restriction site B = BamHI; Bg = Bgl II; H = Hind III; R = EcoRI;

Figure 21 shows SDS PAGE analysis of the expression of rTbp2 protein in *E. coli* cells, transformed with plasmids SLRD35A and SLRD35B;

Figure 22 shows a flow chart for purification of recombinant Tbp2 protein from *E. coli*;

Figure 23, which includes Panels A and B, shows an SDS-PAGE analysis of the purification of recombinant Tbp2 protein from *M. catarrhalis* strains 4223 (Panel A) and Q8 (Panel B) from expression in *E. coli*;

20 Figure 24 shows the binding of Tbp2 to human transferrin;

Figure 25, which includes Panels A, B and C, shows the antigenic conservation of Tbp2 protein amongst strains of M. catarrhalis;

Figure 26 shows a restriction map of the tbpB gene for M. catarrhalis R1;

Figure 27 shows the nucleotide sequence of the tbpB gene (SEQ ID No: 45 - entire sequence and SEQ ID No: 46 - coding sequence) and the deduced amino acid sequence of the Tbp2 protein of M. catarrhalis R1 (SEQ ID No: 47); and

Figure 28 shows a comparison of the amino acid sequences of Tbp2 for *M. catarrhalis* 4223 (SEQ ID No: 21), Q8 (SEQ ID No: 15) and R1 (SEQ ID No: 47). Dots indicate identical residues and dashes have been inserted for maximum alignment. The asterisks indicate

10

15

20

25

30

35

stop codons.

GENERAL DESCRIPTION OF THE INVENTION

Any Moraxella strain may be conveniently used to provide the purified and isolated nucleic acid, which may be in the form of DNA molecules, comprising at least a portion of the nucleic acid coding for a transferrin receptor as typified by embodiments of the present invention. Such strains are generally available from clinical sources and from bacterial culture collections, such as the American Type Culture Collection.

application, this the terms "transferrin receptor" (TfR) and "transferrin binding proteins" (Tbp) are used to define a family of Tbpl and/or Tbp2 proteins which includes those having variations in their amino acid sequences including those naturally occurring in various strains of. for example, Moraxella. The purified and isolated DNA molecules comprising at least a portion coding for transferrin receptor of the present invention also include those encoding functional analogs of transferrin receptor proteins Tbpl and Tbp2 of Moraxella. In this application, a first protein is a "functional analog" of a second protein if the first protein is immunologically related to and/or has the same function as the second protein. The functional analog may be, for example, a fragment of the protein, or a substitution, addition or deletion mutant thereof.

Chromosomal DNA from Μ. catarrhalis 4223 digested with Sau3A in order to generate fragments within a 15 to 23 kb size range, and cloned into the BamHI site of the lambda vector EMBL3. The library was screened with anti-Tbpl guinea pig antisera, and a positive clone LEM3-24, containing an approximately 13.2 kb in size was selected for further Lysate from E. coli LE392 infected with LEM3-24 was found to contain a protein approximately 115 kDa

15

20

25

30

35

in size, which reacted on Western blots with anti-Tbpl antisera. A second protein, approximately 80 kDa in size, reacted with the anti-Tbp2 guinea pig antisera on Western blots.

In order to localize the tbpA gene on the 13.2 kb insert of LEM3-24, degenerate PCR primers were used to amplify a small region of the putative tbpA gene of M. catarrhalis 4223. The sequences of the degenerate oligonucleotide primers were based upon conserved amino acid sequences within the Tbpl proteins of several Neisseria and Haemophilus species and are shown Figure 1 (SEQ ID Nos: 17 and 18). A 300 base-pair amplified product was generated and its location within the 4223 tbpA gene is indicated by bold letters in Figure 5 (SEQ ID No: 29). The amplified product was subcloned into the vector pCRII, labelled, and used to probe Southern blot а containing restrictionendonuclease digested clone LEM3-24 DNA. The probe hybridized to a 3.8 kb HindIII-HindIII, a 2.0 kb AvrII-AvrII, and 4.2 kb SalI-SphI fragments (Figure 2).

The 3.8 kb HindIII-HindIII fragment was subcloned into pACYC177, and sequenced. A large open reading frame was identified, and subsequently found to contain approximately 2 kb of the putative tbpA gene. The remaining 1 kb of the tbpA gene was obtained by subcloning an adjacent downstream HindIII-HindIII fragment into vector pACYC177. The nucleotide sequence of the tbpA gene from M. catarrhalis 4223 (SEQ ID Nos: 1 and 2), and the deduced amino acid sequence (SEQ ID No: 9 - full length; SEQ ID No: 10 mature protein) are shown in Figure 5.

Chromosomal DNA from *M. catarrhalis* strain Q8 was digested with Sau3A I and 15-23 kb fragments were ligated with BamHI arms of EMBL3. A high titre library was generated in *E. coli* LE392 cells and was screened using oligonucleotide probes based on the 4223 tbpA

PCT/CA97/00163

sequence. Phage DNA was prepared and restriction enzyme analysis revealed that inserts of about 13-15 kb had been cloned. Phage clone SLRD-A was used to subclone fragments for sequence analysis. A cloning vector (pSKMA) was generated to facilitate cloning of the fragments and plasmids pSLRD1, pSLRD2, pSLRD3, pSLRD4 and pSLRD5 were generated which contain all of tbpA and most of tbpB. The nucleotide (SEQ ID Nos: 5 and 6) and deduced amino acid sequence (SEQ ID No: 13 - full length, SEQ ID No: 14 - mature protein) of the tbpA gene from strain Q8 are shown in Figure 10.

The deduced amino acid sequences for the Tbp1 protein encoded by the tbpA genes were found to share some nomology with the amino acid sequences encoded by genes from a number of Neisseria and Haemophilus species (Figure 12; SEQ ID Nos: 21, 22, 23 and 24).

to the present discovery, tbpA genes identified in species of Neisseria, Haemophilus, Actinobacillus have been found to be preceded by a tbpB gene with several conserved regions. The two genes typically are separated by a short intergenic sequence. However, a tbpB gene was not found upstream of the tbpA gene in M. catarrhalis 4223. In order to localize the tbpB gene within the 13.2 kb insert of clone LEM3-24, a denerate oligonucleotide probe was synthesized based upon an amino acid sequence EGGFYGP (SEQ ID No: 30), conserved among Tbp2 proteins of several species. oligonucleotide was labelled and used to probe Southern blot containing different restriction endonuclease fragments of clone LEM3-24. The probe hybridized to a *NheI-SalI* 5.5 kb fragment, subsequently was subcloned into pBR328, and sequenced. The fragment contained most of the putative tbpB gene, with the exception of the promoter region. The clone LEM3-24 was sequenced to obtain the remaining upstream sequence. The tbpB gene was located approximately 3 kb

10

15

20

25

30

35

10

15

20

25

30

35

downstream from the end of the tbpA gene, in contrast to the genetic organization of the tbpA and tbpB genes in Haemophilus and Neisseria. The nucleotide sequence (SEQ ID Nos: 3 and 4) of the tbpB gene from M. catarrhalis 4223 and the deduced amino acid sequence (SEQ ID Nos: 11, 12) are shown in Figure 6. The tbpB gene from M. catarrhalis Q8 was also cloned and sequenced. nucleotide sequence (SEQ ID Nos: 7 and 8) and deduced amino acid sequence (SEQ ID Nos: 15 and 16) are The tbpB gene from M. catarrhalis shown in Figure 11. R1 was also cloned and sequenced. The nucleotide sequence (SEQ ID Nos: 45 and 46) and the deduced amino acid sequence (SEQ ID No: 47) are shown in Figure 27. evident between Regions of homology are catarrhalis Tbp2 amino acid sequences as shown in the comparative alignment of Figure 28 (SEQ ID Nos: and 47) and between the M. catarrhalis Tbp2 amino acid the Tbp2 sequences of and a number Neisseria and Haemophilus species, as shown comparative alignment in Figure 13 (SEQ ID Nos: 25, 26, 27, 28).

Cloned tbpA and tbpB genes were expressed in E. coli to produce recombinant Tbpl and Tbp2 proteins free of other Moraxella proteins. These recombinant proteins were purified and used for immunization.

The antigenic conservation of Tbp2 protein amongst strains of *M. catarrhalis* was demonstrated by separation of the proteins in whole cell lysates of *M. catarrhalis* or strains of *E. coli* expressing recombinant Tbp2 proteins by SDS PAGE and antiserum immunoblotting with anti-4223 rTbp2 antiserum or anti-Q8 rTbp2 antiserum raised in guinea pigs. *M. catarrhalis* strains 3, 56, 135, 585, 4223, 5191, 8185 and ATCC 25240 were tested in this way and all showed specific reactivity with anti-4223 rTbp2 or anti-Q8 rTbp2 antibody (Figure 25).

10

15

20

25

30

35

In addition, the ability of anti-rTbp2 antibodies from one strain to recognize native or recombinant protein from the homologous or heterologous strain by ELISA is shown in Table 1 below.

Amino acid sequencing of the N-termini and cyanogen bromide fragments of transferrin receptor from *M. catarrhalis* 4223 was undertaken. Both N-termini of Tbpl and Tbp2 were blocked. The putative signal sequences of Tbpl and Tbp2 are indicated by underlining in Figures 5 and 6 (SEQ ID Nos: 19 and 20) respectively. The deduced amino acid sequences for the N-terminal region of Tbp2 suggests a lipoprotein structure.

Results shown in Tables 1 and 2 below illustrate anti-Tbpl and anti-Tbp2 guinea pig the ability of antisera, produced by the immunization with Tbpl or Tbp2, to lyze M. catarrhalis. The results show that the antisera produced by immunization with Tbpl or Tbp2 protein isolated from M. catarrhalis isolate 4223 were non-clumping bactericidal against a homologous catarrhalis strain RH408 (a strain previously deposited in connection with United States Patent Application No. 08/328,589, assigned to the assignee hereof, (WO 96/12733) with the American Type Culture Collection, located at 1301 Parklawn Drive, Rockville, 20852, USA under the terms of the Budapest Treaty on December 13, 1994 under ATCC Deposit No. 55,637) derived from isolate 4223. In addition, antisera produced by immunization with Tbp1' protein isolated from Μ. bactericidal catarrhalis 4223 were against the heterologous non-clumping strain Q8 (a gift from Dr. M.G. Bergeron, Centre Hospitalier de l'Université Laval, In addition, antiserum raised against St. Foy, Quebec). recombinant Tbp2 (rTbp2) protein was bacteriacidal against the homologous strain of M. catarrhalis.

The ability of isolated and purified transferrin binding proteins to generate bactericidal antibodies is

10

15

20

25

30

35

in vivo evidence of utility of these proteins as vaccines to protect against disease caused by Moraxella.

Thus, in accordance with another aspect of the present invention, there is provided a vaccine against infection caused by *Moraxella* strains, comprising an immunogenically-effective amount of a transferrin binding protein from a strain of *Moraxella* and a physiologically-acceptable carrier therefor. Vaccine preparations may comprise antigenically or sequence divergent transferrin binding proteins.

The transferrin binding protein provided herein is useful as a diagnostic reagent, as an antigen for the generation of anti-transferrin protein binding antibodies, as an antigen for vaccination against the disease caused by species of *Moraxella* and for detecting infection by *Moraxella* and other such bacteria.

The transferrin binding protein provided herein may also be used as a carrier protein for haptens, polysaccharides or peptides to make conjugate vaccines against antigenic determinants unrelated to transferrin binding proteins. In additional embodiments of the present invention, therefore, the transferrin binding protein as provided herein may be used as a carrier molecule to prepare chimeric molecules and conjugate vaccines (including glycoconjugates) against pathogenic bacteria, including encapsulated bacteria. example, glycoconjugates of the present invention may be used to confer protection against disease and infection caused by any bacteria having polysaccharide antigens and PRP. Such including lipooligosaccharides (LOS) pathogens include, for bacterial may example, influenzae, Haemophilus Streptococcus pneumoniae, Escherichia coli, Neisseria meningitidis, Salmonella typhi, Streptococcus mutans, Cryptococcus neoformans, Klebsiella, Staphylococcus aureus and Pseudomonas aeruginosa. Particular antigens which can be conjugated WO 97/32980

10

15

20

25

30

35

to transferrin binding protein and methods to achieve such conjugations are described in U.S. Patent Application No. 08/433,522 filed November 23, 1993 (WO 94/12641), assigned to the assignee hereof and the disclosure of which is hereby incorporated by reference thereto.

In another embodiment, the carrier function of transferrin binding protein may be used, for example, to induce an immune response against abnormal polysaccharides of tumour cells, or to produce antitumour antibodies that can be conjugated to chemotherapeutic or bioactive agents.

The invention extends to transferrin binding proteins from Moraxella catarrhalis for use as an active ingredient in a vaccine against disease caused by infection with Moraxella. The invention also extends to a pharmaceutical vaccinal composition containing transferrin binding proteins from Moraxella catarrhalis and optionally, a pharmaceutically acceptable carrier and/or diluent.

In a further aspect the invention provides the use of transferrin binding proteins for the preparation of a pharmaceutical vaccinal composition for immunization against disease caused by infection with *Moraxella*.

It is clearly apparent to one skilled in the art, that the various embodiments of the present invention have many applications in the fields of vaccination, diagnosis, treatment of, for example, *Moraxella* infections and the generation of immunological and other diagnostic reagents. A further non-limiting discussion of such uses is further presented below.

1. Vaccine Preparation and Use

Immunogenic compositions, suitable to be used as vaccines, may be prepared from immunogenic transferrin receptor proteins, analogs and fragments thereof encoded by the nucleic acid molecules as well as the nucleic

acid molecules disclosed herein. The vaccine elicits an immune response which produces antibodies, including anti-transferrin receptor antibodies and antibodies that are opsonizing or bactericidal. Should the vaccinated subject be challenged by Moraxella, the antibodies bind to the transferrin receptor and thereby prevent access of the bacteria to an iron source which is required for viability. Furthermore, opsonizing or bactericidal anti-transferrin receptor antibodies may also provide protection by alternative mechanisms.

Immunogenic compositions, including vaccines, may be prepared as injectables, as liquid solutions The transferrin receptor proteins, analogs nucleic and encoding thereof fragments molecules may be mixed with pharmaceutically acceptable excipients which are compatible with the transferrin receptor proteins, fragments, analogs or nucleic acid Such excipients may include water, saline, molecules. dextrose, glycerol, ethanol, and combinations thereof. The immunogenic compositions and vaccines may further auxiliary substances, such as emulsifying agents, pH buffering agents, or adjuvants, the effectiveness of vaccines. the to enhance compositions and vaccines be Immunogenic administered parenterally, by injection subcutaneously, intradermally or intramuscularly. Alternatively, provided according the immunogenic compositions present invention, may be formulated and delivered in a manner to evoke an immune response at mucosal surfaces. Thus, the immunogenic composition may be administered to mucosal surfaces by, for example, the nasal or oral (intragastric) routes. The immunogenic composition may be provided in combination with a targeting molecule for delivery to specific cells of the immune system or to mucosal surfaces. Some such targeting molecules include and fragments of bacterial toxins, B12

10

15

20

25

30

35

10

15

20

25

30

35

described in WO 92/17167 (Biotech Australia Pty. Ltd.), and monoclonal antibodies, as described in U.S. Patent 5,194,254 (Barber et al). Alternatively, other modes of administration, including suppositories and oral formulations, may be desirable. For suppositories, for example, carriers may include, and triglycerides. Oral glycols or polyalkalene formulations may include normally employed incipients pharmaceutical grades for example, saccharine, cellulose and magnesium carbonate. of solutions, the form compositions mav take suspensions, tablets, pills, capsules, sustained release formulations or powders and contain about 1 to 95% of the transferrin receptor proteins, fragments, analogs and/or nucleic acid molecules.

administered in The vaccines are manner compatible with the dosage formulation, and in such amount as will be therapeutically effective, protective The quantity to be administered immunogenic. depends on the subject to be treated, including, example, the capacity of the individual's immune system to synthesize antibodies, and, if needed, to produce a Precise amounts of cell-mediated immune response. active ingredient required to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are readily determinable by one skilled in the art and may be of the order of micrograms of the transferrin receptor proteins, analogs and fragments thereof and/or nucleic acid molecules. Suitable regimes for initial administration and booster doses are also variable, but may include an initial administration The dosage of followed by subsequent administrations. vaccine may also depend on the administration and will vary according to the size of the host.

The nucleic acid molecules encoding the transferrin

10

15

20

25

30

35

receptor may be used directly of Moraxella immunization by administration of the DNA directly, for example, by injection for genetic immunization or by constructing a live vector, such as Salmonella, adenovirus, poxvirus, vaccinia or poliovirus containing the nucleic acid molecules. A discussion of some live vectors that have been used to carry heterologous antigens to the immune system is contained in, example, O'Hagan (ref 22). Processes for the direct injection of DNA into test subjects for genetic immunization are described in, for example, Ulmer et al. (ref. 23).

Immunogenicity can be significantly improved if the antigens are co-administered with adjuvants, commonly used as an 0.05 to 1.0 percent solution in phosphate buffered saline. Adjuvants enhance the immunogenicity antigen but are not necessarily immunogenic themselves. Adjuvants may act by retaining the antigen locally near the site of administration to produce a depot effect facilitating a slow, sustained release of antigen to cells of the immune system. Adjuvants can also attract cells of the immune system to an antigen depot and stimulate such cells to elicit immune responses.

Immunostimulatory agents or adjuvants have been used for many years to improve the host immune responses to, for example, vaccines. Intrinsic adjuvants, such as lipopolysaccharides, normally are the components of killed or attenuated bacteria used as vaccines. Extrinsic adjuvants are immunomodulators which are typically non-covalently linked to antigens and are formulated to enhance the host immune responses. adjuvants have been identified that enhance the immune response to antigens delivered parenterally. adjuvants are toxic, however, and can undesirable side-effects, making them unsuitable for use

Ō1

15

20

25

30

Indeed, only aluminum in humans and many animals. hydroxide and aluminum phosphate (collectively commonly referred to as alum) are routinely used as adjuvants in The efficacy of alum in human and veterinary vaccines. increasing antibody responses to diphtheria and tetanus toxoids is well established and an HBsAg vaccine has been adjuvanted with alum. While the usefulness of alum is well established for some applications, alum is ineffective limitations. For example, influenza vaccination and inconsistently elicits a cell The antibodies elicited by mediated immune response. alum-adjuvanted antigens are mainly of the IgGl isotype in the mouse, which may not be optimal for protection by some vaccinal agents.

A wide range of extrinsic adjuvants can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens (immune stimulating complexes), pluronic polymers with mineral oil, killed mycobacteria and mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as lipid A, and liposomes.

To efficiently induce humoral immune responses (HIR) and cell-mediated immunity (CMI), immunogens are often emulsified in adjuvants. Many adjuvants are inducina acute toxic. granulomas, and chronic inflammations FCA), (Freund's complete adjuvant, cytolysis (saponins and pluronic polymers) and pyrogenicity, arthritis and anterior uveitis (LPS and Although FCA is an excellent adjuvant and widely used in research, it is not licensed for use in human or veterinary vaccines because of its toxicity.

Desirable characteristics of ideal adjuvants include:

- 35 (1) lack of toxicity;
 - (2) ability to stimulate a long-lasting immune

10

15

20

25

30

35

- (3) simplicity of manufacture and stability in longterm storage;
- (4) ability to elicit both CMI and HIR to antigens administered by various routes, if required;
- (5) synergy with other adjuvants;
- (6) capability of selectively interacting with populations of antigen presenting cells (APC);
- (7) ability to specifically elicit appropriate $T_{H}1$ or $T_{H}2$ cell-specific immune responses; and
- (8) ability to selectively increase appropriate antibody isotype levels (for example, IgA) against antigens.
- U.S. Patent No. 4,855,283 granted to Lockhoff et al on August 8, 1989, which is incorporated herein by reference thereto, teaches glycolipid analogues including N-glycosylamides, N-glycosylureas and Nglycosylcarbamates, each of which is substituted in the sugar residue by an amino acid, as immuno-modulators or adjuvants. Thus, Lockhoff et al. 1991 (ref. 24) reported that N-glycolipid analogs displaying structural similarities to the naturally-occurring glycolipids, such as glycophospholipids and glycoglycerolipids, are capable of eliciting strong immune responses in both herpes simplex virus vaccine and pseudorabies virus Some glycolipids have been synthesized from vaccine. long chain-alkylamines and fatty acids that are linked directly with the sugars through the anomeric carbon atom, to mimic the functions of the naturally occurring lipid residues.
- U.S. Patent No. 4,258,029 granted to Moloney, assigned to the assignee hereof and incorporated herein by reference thereto, teaches that octadecyl tyrosine hydrochloride (OTH) functions as an adjuvant when complexed with tetanus toxoid and formalin inactivated type I, II and III poliomyelitis virus vaccine. Also,

15

20

25

30.

35

Nixon-George et al. 1990, (ref. 25) reported that octadecyl esters of aromatic amino acids complexed with a recombinant hepatitis B surface antigen, enhanced the host immune responses against hepatitis B virus.

2. Immunoassays

The transferrin receptor proteins, analogs and/or fragments thereof of the present invention are useful as in immunoassays includingimmunogens, as antigens enzyme-linked immunosorbent assays (ELISA), RIAs other non-enzyme linked antibody binding assays or procedures known in the art for the detection of anti-Moraxella, transferrin receptor protein antibodies. ELISA assays, the transferrin receptor protein, analogs portions and/or fragments corresponding to protein, are immobilized onto a selected surface, for example, a surface capable of binding proteins such as the wells of a polystyrene microtiter peptides plate. After washing to remove incompletely adsorbed transferrin receptor, analogs and/or fragments, a nonspecific protein such as a solution of bovine serum casein that is known albumin (BSA) or antigenically neutral with regard to the test sample may This allows be bound to the selected surface. blocking of nonspecific adsorption sites the immobilizing surface and thus reduces the background caused by non-specific bindings of antisera onto the surface.

The immobilizing surface is then contacted with a sample, such as clinical or biological materials, to be tested in а manner conducive to immune complex (antigen/antibody) formation. This procedure include diluting the sample with diluents, such as BSA, bovine gamma globulin (BGG) and/or phosphate buffered The sample is then allowed to saline (PBS)/Tween. incubate for from about 2 to 4 hours, at temperatures such as of the order of about 25° to 37°C. Following

10

15

20

25

30

35

incubation, the sample-contacted surface is washed to remove non-immunocomplexed material. The washing procedure may include washing with a solution such as PBS/Tween or a borate buffer.

Following formation of specific immunocomplexes sample and the bound transferrin between the test protein, analogs and/or fragments receptor subsequent washing, the occurrence, and even amount, of immunocomplex formation may be determined by subjecting second immunocomplex to а antibody the specificity for the first antibody. If the test sample is of human origin, the second antibody is an antibody having specificity for human immunoglobulins and general IgG. To provide detecting means, the second antibody may have an associated activity such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate. Quantification may then achieved by measuring the degree of color generation using, for example, a spectrophotometer.

3. Use of Sequences as Hybridization Probes

The nucleotide sequences of the present invention, comprising the sequence of the transferrin receptor gene, now allow for the identification and cloning of the transferrin receptor genes from any species of Moraxella.

The nucleotide sequences comprising the sequence of the transferrin receptor genes of the present invention are useful for their ability to selectively form duplex molecules with complementary stretches of other TfR genes. Depending on the application, a variety of hybridization conditions may be employed to achieve varying degrees of selectivity of the probe toward the other TfR genes. For a high degree of selectivity, relatively stringent conditions are used to form the duplexes, such as low salt and/or high temperature

PCT/CA97/00163

conditions, such as provided by 0.02 M to 0.15 M NaCl at temperatures of between about 50°C to 70°C. For some applications, less stringent hybridization conditions M to 0.9 M required such as 0.15 temperatures ranging from between about 20°C to 55°C. be rendered more Hybridization conditions can also stringent by the addition of increasing amounts of formamide, to destabilize the hybrid duplex. particular hybridization conditions can be readily manipulated, and will generally be a method of choice depending the desired results. In on convenient hybridization temperatures in the presence of 50% formamide are: 42°C for a probe which is 95 to 100% homologous to the target fragment, 37°C for 90 to 95% homology and 32°C for 85 to 90% homology.

In a clinical diagnostic embodiment, the nucleic acid sequences of the TfR genes of the present invention may be used in combination with an appropriate means, such as a label, for determining hybridization. variety of appropriate indicator means are known in the art, including radioactive, enzymatic or other ligands, such as avidin/biotin and digoxigenin-labelling, which are capable of providing a detectable signal. diagnostic embodiments, an enzyme tag such as urease, alkaline phosphatase or peroxidase, instead radioactive tag may be used. In the case of enzyme tags, colorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with samples containing TfR sequences.

The nucleic acid sequences of TfR genes of the present invention are useful as hybridization probes in solution hybridizations and in embodiments employing solid-phase procedures. In embodiments involving solid-

5

10

15

20

25

30

35

about 30 to 90 bp.

5

10

15

20

25

30

35

phase procedures, the test DNA (or RNA) from samples, samples, including exudates, clinical amniotic fluid, middle serum, fluids (e. g., effusion, sputum, bronchoalveolar lavage fluid) or even tissues, is adsorbed or otherwise affixed to a selected The fixed, single-stranded nucleic matrix or surface. acid is then subjected to specific hybridization with selected probes comprising the nucleic acid sequences of the TfR genes or fragments thereof of the present under desired conditions. The selected invention conditions will depend on the particular circumstances based on the particular criteria required depending on, for example, the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization Following washing of the hybridization probe etc. surface so as to remove non-specifically bound probe molecules, specific hybridization is detected, or even quantified, by means of the label. It is preferred to nucleic acid sequence portions which conserved among species of Moraxella. The selected probe may be at least 18bp and may be in the range of

4. Expression of the Transferrin Receptor Genes

Plasmid vectors containing replicon and control sequences which are derived from species compatible with the host cell may be used for the expression of the The transferrin receptor genes in expression systems. vector ordinarily carries a replication site, as well as are capable of providing sequences which phenotypic selection in transformed cells. For example, E. coli may be transformed using pBR322 which contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed The pBR322 plasmid, or other microbial plasmid or phage, must also contain, or be modified to contain, promoters which can be used by the host cell

10

15

20

25

30

35

expression of its own proteins.

In addition, phage vectors containing replicon and control sequences that are compatible with the host can be used as a transforming vector in connection with these hosts. For example, the phage in lambda $GEM^{TM}-11$ may be utilized in making recombinant phage vectors which can be used to transform host cells, such as E. coli LE392.

recombinant Promoters commonly used in DNA construction include the β -lactamase (penicillinase) and lactose promoter systems and other microbial promoters, such as the T7 promoter system as described in U.S. Patent No. 4,952,496. Details concerning the nucleotide sequences of promoters are known, enabling a skilled worker to ligate them functionally with genes. particular promoter used will generally be a matter of choice depending upon the desired results. Hosts that appropriate for expression of the transferrin receptor genes, fragments, analogs or variants thereof, may include E. coli, Bacillus species, Haemophilus, fungi, yeast, Moraxella, Bordetella, or the baculovirus expression system may be used.

In accordance with this invention, it is preferred to make the transferrin receptor protein, fragment or analog thereof, by recombinant methods, particularly since the naturally occurring TfR protein as purified from a culture of a species of Moraxella may include trace amounts of toxic materials or other contaminants. This problem can be avoided by using recombinantly produced TfR protein in heterologous systems which can be isolated from the host in a manner to minimize contaminants in the purified material. Particularly desirable hosts for expression in this regard include Gram positive bacteria which do not have LPS and are, therefore, endotoxin free. Such hosts include species of Bacillus and may be particularly useful for the

10

15

20

25

production of non-pyrogenic transferrin receptor, fragments or analogs thereof. Furthermore, recombinant methods of production permit the manufacture of Tbpl or Tbp2 or respective analogs or fragments thereof, separate from one another which is distinct from the normal combined proteins present in *Moraxella*.

Biological Deposits

Certain vectors that contain at least a portion coding for a transferrin receptor protein from strains of Moraxella catarrhalis strain 4223 and Q8 and a strain of M. catarrhalis RH408 that are described and referred to herein have been deposited with the American Type Culture Collection (ATCC) located at 12301 Parklawn pursuant Rockville, Maryland, USA, Drive, Budapest Treaty and prior to the filing of this application. Samples of the deposited vectors bacterial strain will become available to the public and the restrictions imposed on access to the deposits will be removed upon grant of a patent based upon this United In addition, the deposit States patent application. will be replaced if viable samples cannot be dispensed by the Depository. The invention described and claimed herein is not to be limited in scope by the biological materials deposited, since the deposited embodiment is intended only as an illustration of the invention. equivalent or similar vectors or strains that encode similar or equivalent antigens as described in this application are within the scope of the invention.

WO 97/32980

5

10

15

20

25

Deposit Summary

DEPOSIT	ATCC DESIGNATION	DATE DEPOSITED
Phage LEM3-24	97,381	December 4, 1995
Phage SLRD-A	97,380	December 4, 1995
Plasmid pLEM29	97,461	March 8, 1996
Plasmid pSLRD35A	97,833	January 13, 1997
Plasmid pLEM37	97,834	January 13, 1997
Strain RH408	55,637	December 9, 1994

EXAMPLES

disclosure generally describes above present invention. A more complete understanding can be following obtained by reference to the These Examples are described solely for purposes of illustration and are not intended to limit the scope of the invention. Changes in form substitution of equivalents contemplated are circumstances may suggest or render expedient. specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitations.

Methods of molecular genetics, protein biochemistry and immunology used but not explicitly described in this disclosure and these Examples are amply reported in the scientific literature and are well within the ability of those skilled in the art.

Example 1

This Example illustrates the preparation and immunization of guinea pigs with Tbpl and Tbp2 proteins from M. catarrhalis.

10

15

20

25

30

35

Tbp1 and Tbp2 proteins were obtained as follows:

Iron-starved crude total membrane preparations were diluted to 4 mg protein/ml in 50 mM Tris.HCl-1M NaCl, pH in a total volume of 384 ml. Membranes were solubilized by the addition of 8 ml each of 0.5M EDTA and 30% sarkosyl and samples were incubated for 2 hours at room temperature, with gentle agitation. Solubilized membranes were centrifuged at 10K rpm for 20 min. of apo-hTf-Sepharose 4B were added to the supernatant, and incubated for 2 hours at room temperature, gentle shaking. The mixture was added into a column. The column was washed with 50 ml of 50mM Tris. HCl-1 M quanidine hydrochloride, NaCl-250mM contaminating proteins. Tbp2 was eluted from the column 1.5M guanidine 100 ml of addition of by Tbpl was eluted by the addition of 100 hydrochloride. ml of 3M guanidine hydrochloride. The first fractions were dialyzed against 3 changes of Samples were stored at -20°C, or Tris.HCl, pH 8.0. dialyzed against ammonium bicarbonate and lyophilized.

River) were immunized Guinea pigs (Charles intramuscularly on day +1 with a 10 µg dose of Tbpl or Tbp2 emulsified in complete Freund's adjuvant. were boosted on days +14 and +29 with the same dose of protein emulsified in incomplete Freund's adjuvant. Blood samples were taken on day +42, and sera were used for analysis of bactericidal antibody activity. In addition, all antisera were assessed by immunoblot reactivity with М. catarrhalis for analysis proteins.

The bactericidal antibody activity of guinea pig anti-M. catarrhalis 4223 Tbpl or Tbp2 antisera was determined as follows. A non-clumping M. catarrhalis strain RH408, derived from isolate 4223, was inoculated into 20 ml of BHI broth, and grown for 18 hr at 37°C, shaking at 170 rpm. One ml of this culture was used to

10

15

20

25

30

of inoculate 20 ml BHI supplemented with mM ethylenediamine-di-hydroxyphenylacetic acid (EDDA; The culture was grown to an OD, of 0.5. cells were diluted 1:200,000 in 140 mM NaCl, 93mM NaHCO,, 2mM Na barbiturate, 4mM barbituric acid, 0.5mM MgCl..6H,0, 0.4mM CaCl..2H,0, pH 7.6 (Veronal buffer), containing 0.1% bovine serum albumin (VBS) and placed on ice. Guinea pig anti-M. catarrhalis 4223 Tbpl or Tpb2 antisera, along with prebleed control antisera, were heated to 56°C for 30 min. to inactivate endogenous complement. Serial twofold dilutions of each antisera in VBS were added to the wells of a 96-well Nunclon microtitre plate (Nunc, Roskilde, Denmark). started at 1:8, and were prepared to a final volume of 25 μL in each well. 25 µL of diluted bacterial cells added to each of the wells. Α guinea complement (Biowhittaker, Walkersville, MD) was diluted 1:10 in VBS, and 25 µL portions were added to each well. The plates were incubated at 37°C for 60 min, gently shaking at 70 rpm on a rotary platform. 50 μL of each reaction mixture were plated onto Mueller (Becton-Dickinson, Cockeysville, MD) agar plates. plates were incubated at 37°C for 72 hr and the number of colonies per plate were counted. Bactericidal titres were assessed as the reciprocal of the highest dilution of antiserum capable of killing greater than 50% of bacteria compared with controls containing pre-immune sera. Results shown in Table 1 below illustrate the ability of the anti-Tbpl and anti-Tbp2 guinea pig antisera to lyze M. catarrhalis.

Example 2

This Example illustrates the preparation of chromosomal DNA from M. catarrhalis strains 4223 and Q8.

M. catarrhalis isolate 4223 was inoculated into 100
 ml of BHI broth, and incubated for 18 hr at 37°C with

10

15

20

25

30

shaking. The cells were harvested by centrifugation at $10,000 \times g$ for 20 min. The pellet was used for extraction of M. catarrhalis 4223 chromosomal DNA.

The cell pellet was resuspended in 20 ml of 10 mM Tris-HCl (pH 7.5)-1.0 mM EDTA (TE). Pronase and SDS were added to final concentrations of 500 µg/ml and 1.0%, respectively, and the suspension was incubated at 37°C for 2 hr. After several sequential extractions with phenol, phenol:chloroform (1:1).chloroform:isoamyl alcohol (24:1), the aqueous extract was dialysed, at 4°C, against 1.0 M NaCl for 4 hr, and against TE (pH 7.5) for a further 48 hr with three buffer changes. Two volumes of ethanol were added to the dialysate, and the DNA was spooled onto a glass rod. The DNA was allowed to air-dry, and was dissolved in 3.0 ml of water. Concentration was estimated, by UV spectrophotometry, to be about 290 µg/ml.

M. catarrhalis strain Q8 was grown in BHI broth as described in Example 1. Cells were pelleted from 50 ml of culture by centrifugation at 5000 rpm for 20 minutes, at 4°C. The cell pellet was resuspended in 10 ml of TE (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and proteinase K and SDS were added to final concentrations of 500 µg/ml and 1%, respectively. The sample was incubated at 37°C for 4 hours until a clear lysate was obtained. The lysate was extracted twice with Tris-saturated phenol/chloroform (1:1), and twice with chloroform. The final aqueous phase was dialysed for 24 hours against 2 X 1000 ml of 1 M NaCl at 4°C, changing the buffer once, and for 24 hours against 2 x 1000 ml of TE at 4° C, changing the buffer once. The final dialysate was precipitated with two volume of 100% ethanol. The DNA was spooled, dried and resuspended in 5 to 10 ml of TE buffer.

Example 3

35 This Example illustrates the construction of M.

15

20

25

30

35

catarrhalis chromosomal libraries in EMBL3.

of Sau3A restriction digests series chromosomal DNA, in final volumes of 10 µL each, were to optimize the conditions out in order necessary to generate maximal amounts of restriction fragments within a 15 to 23 kb size range. Using the optimized digestion conditions, a large-scale digestion was set up in a 100 μL volume, containing the following: 50 μL of chromosomal DNA (290 μg/ml), 33 μL water, 10 μL 10X Sau3A buffer (New England Biolabs), 1.0 μL BSA (10 mg/ml, New England Biolabs), and 6.3 µL Sau3A (0.04 Following a 15 min. incubation at 37°C, the digestion was terminated by the addition of 10 μL of 100 mM Tris-HCl (pH 8.0)-10 mM EDTA-0.1% bromophenol blueglycerol (loading buffer). Digested DNA electrophoresed through a 0.5% agarose gel in 40 mM Tris acetate-2 mM Na,EDTA.2H,0 (pH8.5) (TAE buffer) at 50 V for The region containing restriction fragments within a 15 to 23 kb molecular size range was excised from the gel, and placed into dialysis tubing containing 3.0 ml of TAE buffer. DNA was electroeluted from the gel fragment by applying a field strength of 1.0 V/cm for 18 hr. Electroeluted DNA was extracted once each with phenol and phenol:chloroform (1:1),änd precipitated with ethanol. The dried DNA was dissolved in 5.0 µL water.

Size-fractionated chromosomal DNA was ligated with BamHI-digested EMBL3 arms (Promega), using T4 DNA ligase in a final volume of 9 μ L. The entire ligation mixture was packaged into lambda phage using a commercial packaging kit (Amersham), following manufacturer's instructions.

The packaged DNA library was amplified on solid media. 0.1 ml aliquots of *Escherichia coli* strain NM539 in 10 mM MgSO. $(OD_{100} = 0.5)$ were incubated at 37°C for 15

10

15

20

25

30

35

min. with 15 to 25 μ L of the packaged DNA library. Samples were mixed with 3 ml of 0.6% agarose containing 1.0% BBL trypticase peptone-0.5% NaCl (BBL top agarose), and mixtures were plated onto 1.5% agar plates containing 1.0% BBL trypticase peptone-0.5% NaCl, and incubated at 37°C for 18 hr. 3 ml quantities of 50 mM Tris-HCl (pH 7.5)-8 mM magnesium sulfate heptahydrate-100 mM NaCl-0.01% (w/v) gelatin (SM buffer) were added to each plate, and plates were left at 4°C for 7 hr. SM buffer containing phage was collected from the plates, pooled together, and stored in a screwcap tube at 4°C, with chloroform.

Chromosomal DNA from M. catarrhalis strain Q8 was digested with Sau3A I (0.1 unit/30 μg DNA) at 37°C for 30 minutes and size-fractionated on a 0.6% low melting point agarose gel. DNA fragments of 15-23 kb were excised and the DNA was electroeluted for 25 minutes in dialysis tubing containing TAE (40 mM Tris acetate pH 8.5, 2 mM EDTA) at 150 V. The DNA was extracted once phenol/chloroform (1:1),precipitated, resuspended in water. The DNA was ligated overnight (Promega) with EMBL3 BamH I arms and the ligation mixture was packaged using the Lambda in vitro packaging kit (Stratagene) and plated onto E. coli LE392 cells. The library was titrated and stored at 4°C in presence of 0.3% chloroform.

Example 4

This Example illustrates screening of the M. catarrhalis libraries.

Ten μL aliquots of phage stock from the EMBL3/4223 sample prepared in Example 3 above were combined each with 100 μL of *E. coli* strain LE392 in 10 mM MgSO4 (OD₂₀₀ = 0.5) (plating cells), and incubated at 37°C for 15 min. The samples were mixed with 3 ml each of BBL top agarose, and the mixtures were poured onto 1.5% agarose

10

15

20

25

30

35

plates containing 1% bacto tryptone-0.5% bacto yeast extract-0.05% NaCl (LB agarose; Difco) and supplemented The plates were incubated at 37°C μM EDDA. with 200 Plaques were lifted onto nitrocellulose for 18 hr. using a (Amersham Hybond-C Extra) filters protocol, and the filters were immersed into 5% bovine serum albumin (BSA; Boehringer) in 20 mM Tris-HCl (pH 7.5)-150 mM NaCl (TBS) for 30 min at room temperature, or 4°C overnight. Filters were incubated for at least 1 at room temperature, or 18 hr at 4°C, containing a 1/1000 dilution of guinea pig anti-M. antiserum. Following catarrhalis 4223 Tbp1 sequential 10 min. washes in TBS with 0.05% Tween 20 (TBS-Tween), filters were incubated for 30 min. at room temperature in TBS-Tween containing a 1/4000 dilution of labelled horseradish Protein G with recombinant Filters were peroxidase (rProtein G-HRP; Zymed). washed as above, and submerged into CN/DAB substrate solution (Pierce). Color development was arrested by immersing the filters into water. Positive plaques were cored from the plates, and each placed into 0.5 ml of SM buffer containing a few drops of chloroform. The screening procedure was repeated two more times, until 100% of the lifted plaques were positive using the guinea pig anti-M. catarrhalis 4223 Tbpl antiserum.

The EMBL3/Q8 library was plated onto LE392 cells on YT plates using 0.7% top agar in YT as overlay. Plaques were lifted onto nitrocellulose filters and the filters were probed with oligonucleotide probes labelled with 32 P α -dCTP (Random Primed DNA labeling kit, Boehringer Mannheim). The pre-hybridization was performed in sodium chloride/sodium citrate (SSC) buffer (ref. 27) at 37 °C for 1 hour and the hybridization was performed at 42 °C overnight. The probes were based upon an internal sequence of 4223 tbpA:

10

15

20

25

30

IRDLTRYDPG

(Seq ID No. 31)

4236-RD 5' ATTCGAGACTTAACACGCTATGACCCTGGC 3'

(Seg ID No 32)

4237-RD 5' ATTCGTGATTTAACTCGCTATGACCCTGGT 3'

(Seq ID No 33).

Putative plaques were re-plated and submitted to second and third rounds of screening using the same procedures. Phage clone SLRD-A was used to subclone the tfr genes for sequence analysis.

Example 5

buffer).

This Example illustrates immunoblot analysis of the phage lysates using anti-M. catarrhalis 4223 Tbp1 and Tbp2 antisera.

Proteins expressed by the phage eluants selected in Example 4 above were precipitated as follows. 60 μ L of each phage eluant were combined with 200 µL E. coli LE392 plating cells, and incubated at 37°C for 15 min. The mixture was inoculated into 10 ml of 1.0% NZamine A-0.5% NaCl-0.1% casamino acids-0.5% yeast extract-0.2% sulfate heptahydrate (NZCYM magnesium supplemented with 200 mM EDDA, and grown at 37°C for 18 DNAse was added to 1.0 ml of the hr, with shaking. culture, to a final concentration of 50 μ g/ml, and the 37°C incubated for 30 was at Trichloroacetic acid was added to a final concentration of 12.5%, and the mixture was left on ice for 15 min. Proteins were pelleted by centrifugation at 13,000 x g for 10 min, and the pellet was washed with 1.0 ml of acetone. The pellet was air-dried and resuspended in 50 μL 4% SDS-20 mM Tris- HCl (pH 8.0)-0.2 mM EDTA (lysis

Following SDS-PAGE electrophoresis through an 11.5% gel, the proteins were transferred to Immobilon-P

filters (Millipore) at a constant voltage of 20 V for 18 glycine-20% 25mM Tris-HCl, 220mM hr. in Membranes were blocked in 5% BSA in (transfer buffer). TBS for 30 min. at room temperature. Blots were exposed either to guinea pig anti-M. catarrhalis 4223 Tbpl, or to guinea pig anti-M. catarrhalis 4223 Tbp2 antiserum, for 2 hr TBS-Tween, 1/500 in diluted temperature. Following three sequential 10 min. washes in TBS-Tween, membranes were incubated in TBS-Tween containing a 1/4000 dilution of rProtein G-HRP for 30 Membranes were washed as min. at room temperature. and immersed into CN/DAB substrate described above, Color development was arrested by immersing solution. blots into water.

Three EMBL3 phage clones expressed both a 115 kDa protein which reacted with anti-Tbpl antiserum, and an 80 kDa protein, which reacted with anti-Tbp2 antiserum on Western blots and were thus concluded to contain genes encoding the transferrin receptor proteins of Moraxella catarrhalis.

Example 6

5

10

15

20

25

30

35

This Example illustrates the subcloning of the M. catarrhalis 4223 Tbpl protein gene, tbpA.

Plate lysate cultures of the recombinant phage described in Example 5 were prepared by combining phage eluant and *E. coli* LE392 plating cells, to produce confluent lysis on LB agar plates. Phage DNA was extracted from the plate lysates using a Wizard Lambda Preps DNA Purification System (Promega), according to manufacturer's instructions.

The EMBL3 clone LM3-24 was found to contain a 13.2 kb insert, flanked by two SalI sites. A probe to a tbpA gene was prepared and consisted of a 300 base pair amplified product generated by PCR using two degenerate oligonucleotide primers corresponding to an amino acid sequence of part of the Tbpl protein (Figure 1). The

10

15

20

25

30

35

based upon the amino primer sequences were acid sequences NEVTGLG (SEQ ID No: 17) and GAINEIE (SEQ ID No: 18), which had been found to be conserved among the deduced amino acid sequences from several different N. meningitidis and Haemophilus influenzae tbpA genes. amplified product was cloned into pCRII (Invitrogen, San The deduced amino acid Diego, CA) and sequenced. sequence shared homology with other putative amino acid sequences derived from N. meningitidis and H. influenzae tbpA genes (Figure 12). The subclone was linearized with NotI (New England Biolabs), and labelled using a digoxigenin random-labelling kit (Boehringer Mannheim), according manufacturer's instructions. to The concentration of the probe was estimated to be 2 ng/µL.

DNA from the phage clone was digested with HindIII, Sall/SphI, or Sall/AvrII, and electrophoresed through a 0.8% agarose gel. DNA was transferred to a nylon membrane (Genescreen Plus, Dupont) using an LKB VacuGene XL vacuum transfer apparatus (Pharmacia). Following transfer, the blot was air-dried, and prehybridized in 5X SSC-0.1% N-lauroylsarcosine-0.02% sodium dodecyl sulfate-1.0% blocking reagent (Boehringer Mannheim) in 10 mM maleic acid-15 mM NaCl (pH 7.5) (prehybridization solution). Labelled probe was added to the pre-hybridization solution to a final concentration of 6 ng/ml, and the blot was incubated in the probe solution at 42°C for 18 hr. The blot was washed twice in 2X SSC-0.1% SDS, for 5 min. each at room temperature, then twice in 0.1% SSC-0.1% SDS for 15 min. each at 60°C. Following washes, the the membrane was equilibrated in 100mM maleic acid-150 mM NaCl (pH 7.5) (buffer 1) for 1 min, then left in 1.0% blocking reagent (Boehringer Mannheim) in buffer 1 (buffer 2) for 60 min, at room temperature. The blot was exposed to anti-DIGalkaline phosphatase (Boehringer Mannheim) diluted 1/5000 in buffer 2, for 30 min. at room temperature.

Following two 15 min. washes in buffer 1, the blot was equilibrated in 100 mM Tris-HCl (pH 9.5), 100 mM NaCl, 50 mM MgCl, (buffer 3) for 2 min. The blot was wetted with Lumigen PPD substrate (Boehringer-Mannheim), diluted 1/100 in buffer 3, then wrapped in Saran wrap, and exposed to X-ray film for 30 min. The probe hybridized to a 3.8 kb HindIII-HindIII, a 2.0 kb AvrII-AvrII, and a 4.2 kb SalI-SphI fragment.

In order to subclone the 3.8 kb HindIII-HindIII fragment into pACYC177, phage DNA from the EMBL3 clone, and plasmid DNA from the vector pACYC177 (New England Biolabs), were digested with HindIII, and fractionated by electrophoresis on a 0.8% agarose gel. The 3.8 kb HindIII-HindIII phage DNA fragment, and the HindIII-HindIII pACYC177 fragment, were excised from the gel and purified using a Geneclean kit (Bio 101 Inc., LaJolla, CA), according to manufacturer's directions. Purified insert and vector were ligated together using T4 DNA ligase (New England Biolabs), and transformed into E. coli HB101 (Gibco BRL). A Qiagen Plasmid Midi-Kit (Qiagen) was used to extract and purify sequencingquality DNA from of one the ampicillinresistant/kanamycin-sensitive transformants, which was found to carry a 3.8 kb HindIII-HindIII insert. The subclone was named pLEM3. As described in Example 7, below, subsequent sequencing revealed that pLEM3 contained the first about 2.0 kb of tbpA sequence (Figures 2 and 5).

In order to subclone the remaining 1 kb of the tbpA gene, a 1.6 kb HindIII-HindIII fragment was subcloned into pACYC177 as described above, and transformed by electroporation into E. coli HB101 (Gibco BRL). A Midi-Plasmid DNA kit (Qiagen) was used to extract plasmid DNA from a putative kanamycin-sensitive transformant carrying a plasmid with a 1.6 kb HindIII-HindIII insert. The subclone was termed pLEM25. As described in

10

15

20

25

30

35

WO 97/32980

5

10

15

20

25

30

35

Example 7 below, sequencing revealed that pLEM25 contained the remaining 1 kb of the tbpA gene (Figure 2 and 5).

Example 7

This Example illustrates the subcloning of the M. catarrhalis 4223 tbpB gene.

Neisseriae in all and described above, As Haemophilus species examined prior to the present have been found immediately tbpB genes invention, upstream of the tbpA genes which share homology with the tbpA gene of M. catarrhalis 4223. However, the sequence upstream of M. catarrhalis 4223 did not correspond with other sequences encoding tbpB.

In order to localize the tbpB gene within the EMBL3 phage clone, a Southern blot was carried out using a degenerate probe from a highly conserved amino acid Α degenerate within the Tbp2 protein. oligonucleotide probe, was designed corresponding to the sequence encoding EGGFYGP (SEQ ID No: 30), which is conserved within the Tbp2 protein in a variety of Neisseriae and Haemophilus species. The probe was oligonucleotide labelled with digoxigenin using an tailing kit (Boehringer Mannheim), following HindIII - digested EMBL3 manufacturer's instructions. clone DNA was fractionated through a 0.8% agarose gel, and transferred to a Geneclean Plus nylon membrane as Following hybridization as described in Example 6. described above, the membrane was washed twice in 2X SSC-0.1% SDS, for 5 min. each at room temperature, then twice in 0.1% SSC-0.1% SDS for 15 min. each, at 50°C. Dytection of the labelled probe was carried out as described above. The probe hybridized to a 5.5 kb NheI-SalI fragment.

The 5.5 kb NheI-SalI fragment was subcloned into pBR328 as follows. LEM3-24 DNA, and pBR328 DNA, were digested with NheI-SalI, and electrophoresed through

PCT/CA97/00163

0.8% agarose. The 5.5 kb NheI-SalI fragment, and the 4.9 kb pBR328 NheI-SalI fragments were excised from the gel, and purified using a Geneclean kit as described in Example 6. The fragments were ligated together using T4 DNA ligase, and transformed into E. coli DH5. Plasmid DNA kit (Qiagen) was used to extract DNA from an ampicillin resistant / tetracycline sensitive clone containing a 5.5 kb NheI-SalI insert. This subclone was Sequencing revealed pLEM23. that contained 2 kb of the tbpB gene from M. catarrhalis 4223 (Figure 2).

Example 8:

5

10

15

20

25

30

35

This Example illustrates the subcloning of catarrhalis Q8 tfr genes.

The M. catarrhalis Q8 tfr genes were subcloned as Phage DNA was prepared from plates. the top agarose layer from three confluent plates was scraped into 9 ml of SM buffer (0.1 M NaCl, 0.2% MgSO4, 50 mM Tris-HCl, pH 7.6, 0.01% gelatin) and 100 μ l of chloroform was added. The mixture was vortexed for 10 sec, then incubated at room temperature for 2h. The cell debris was removed by centrifugation at 8000 rpm for 15 min at 4°C in an SS34 rotor (Sorvall model RC5C). The phage was pelleted by centrifugation at 35,000 rpm in a 70.1 Ti rotor at 10°C for 2h (Beckman model L8-80) and was resuspended in 500 µl of SM buffer. The sample was incubated at 4°C overnight, then RNAse and DNAse were added to final concentrations of 40 µg/ml and 10 µg/ml, respectively and the mixture incubated at :37°C To the mixture were added 10 μ l of 0.5 M EDTA and 5 µl of 10% SDS and the sample was incubated at 6°C for 15 min. The mixture was extracted twice with phenol/chloroform (1:1) and twice with chloroform and the DNA was precipitated by the addition of 2.5 volumes of absolute ethanol.

10

A partial restriction map was generated fragments were subcloned using the external Sal I sites from EMBL3 and internal AvrII or EcoR I sites as indicated in Figure 4. In order to facilitate the subcloning, plasmid pSKMA constructed was which multiple introduces a novel cloning pBluescript.SK (Stratagene). Oligonucleotides were used to introduce restriction sites for Mst II, Sfi I, and Avr II between the Sal I and Hind III sites pBluescript.SK:

Sfi I

Sal I Cla I Mst II Avr II HindIII

15 4639-RD 5' TCGACGGTAT CGATGGCC TTAG GGGC CTAGGA 3' (SEQ ID No: 34)

4640-RD 3' GCCATA GCTACCGG AATC CCCG GATCCTTCGA (SEQ ID No: 35)

Plasmid pSLRD1 contains a ~1.5 kb Sal I-Avr II fragment cloned into pSKMA; plasmids pSLRD2 and pSLRD4 contain ~2 kb and 4 kb AvrII-AvrII fragments cloned into pSKMA, respectively and contain the complete tbpA gene. Plasmid pSLRD3 contains a ~2.3 kb AvrII-EcoR I fragment cloned into pSKMA and plasmid SLRD5 is a 22.7 kb EcoRI - EcoRI fragment cloned into pSKMA. These two clones contain the complete tbpB gene (Figure 7).

Example 9

This Example illustrates sequencing of the M. catarrhalis tbp genes.

Both strands of the *tbp* genes subcloned according to Examples 6 to 8 were sequenced using an Applied Biosystems DNA sequencer. The sequences of the *M. catarrhalis* 4223 and Q8 *tbpA* genes are shown in Figures 5 and 10 respectively. A derived amino acid sequence was compared with other Tbpl amino acid sequences, including

30

35

15

20

25

30

those of Neisseriae meningitidis, Neisseriae gonorrhoeae, and Haemophilus influenzae (Figure 12). The sequence of the M. catarrhalis 4223 and Q8 tbpB genes are shown in Figures 6 and 11 respectively. In order to obtain sequence from the putative beginning of the tbpB gene of M. catarrhalis 4223, sequence data were obtained directly from the clone LEM3-24 DNA. sequence was verified by screening clone DS-1754-1. The sequence of the translated tbpB genes catarrhalis 4223 and Q8 shared homology with deduced Tbp2 amino acid sequences of Neisseria meningitidis, Neisseria gonorrhoeae. and Haemophilus influenzae (Figure 13).

Example 10

This Example illustrates the generation of an expression vector to produce recombinant Tbpl protein.

The construction scheme is shown in Figure 14.

Plasmid DNA from subclone pLEM3, prepared described in Example 6, was digested with HindIII and to generate a 1.84 kb BglI-HindIII fragment. containing approximately two-thirds of the tbpA gene. BamHI was added to the digest to eliminate comigrating 1.89kb BglI-HindIII vector fragment. plasmid DNA from the vector pT7-7 digested with NdeI and HindIII. To create the beginning of the tbpA gene, an oligonucleotide was synthesized based upon the first 61 bases of the tbpA gene to the Ball site: an NdeI site was incorporated into the 5' Purified insert, vector and oligonucleotide were ligated together using T4 ligase (New England Biolabs), and transformed into E. coli DH5α. DNA was purified of the 4.4 kb ampicillin-resistant transformants containing correct restriction sites (pLEM27).

Purified pLEM27 DNA was digested with HindIII, ligated to the 1.6 kb HindIII-HindIII insert fragment

10

15

20

25

30

35

of pLEM25 prepared as described in Example 6, and transformed into *E. coli* DH5α. DNA was purified from an ampicillin-resistant transformant containing the correct restriction sites (pLEM29), and was transformed by electroporation into BL21 (DE3) (Novagen; Madison, WI) to produce *E. coli* pLEM29B-1.

A single isolated transformed colony was used to inoculate 100 ml of YT broth containing $100\mu g/ml$ ampicillin, and the culture was grown 37°C at overnight, shaking at 200 rpm. 200 μl of the overnight culture were inoculated into 10 ml of containing $100\mu g/ml$ ampicillin, and the culture was grown at 37° C to an OD₅₇₈ of 0.35. The culture was induced by the addition of 30 μl of 100 mM IPTG, and the culture was grown at 37°C for an additional 3 One ml of culture was removed at the time of induction (t=0), and at t=1 hr and t=3 hrs. samples were pelleted by centrifugation, resuspended in 4%SDS-20 mM Tris.Cl, pH 8-200 μM EDTA (lysis buffer). Samples were fractionated on an 11.5% SDS-PAGE gel, and transferred onto Immobilon filters (Amersham). Blots were developed using anti-Tbp1 (M. catarrhalis 4223) antiserum, diluted 1:1000, as primary antibody, and rproteinG conjugated with horseradish peroxidase (Zymed) as the secondary A chemiluminescent substrate (Lumiglo: Kirkegaard and Perry Laboratories, Gaithersburg, MD) was used for detection. Induced recombinant proteins were visible on the Coomassie-stained gels (Fig 15). anti-Tbpl (4223)antiserum recognized the recombinant proteins on Western blots.

Example 11

This Example illustrates the extraction and purification of recombinant Tbpl of M. catarrhalis 4223.

Recombinant Tbpl protein, which is contained in inclusion bodies, was purified from E. coli cells

10 -

15

20

25

30

35

expressing the tbpA gene (Example 10), by a procedure as shown in Figure 16. E. coli cells from a 500 ml culture, prepared as described in Example 10, resuspended in 50 ml of 50 mM Tris-HCl, containing 0.1 М NaCl and 5 mΜ AEBSF (protease inhibitor), and disrupted by sonication (3 \times 10 min. 70% duty circle). The extract was centrifuged at $20,000 \times g$ min. and the resultant supernatant contained > 85% of the soluble proteins from E. coli was discarded.

The remaining pellet (Figure 16, PPT₁) was further extracted in 50 ml of 50 mM Tris, pH 8.0 containing 0.5% Triton X-100 and 10 mM EDTA. After centrifugation at 20,000 x g for 30 min., the supernatant containing residual soluble proteins and the majority of the membrane proteins was discarded.

The remaining pellet (Figure 16, PPT_2) was further extracted in 50 ml of 50 mM Tris, pH 8.0 containing 2M urea and 5 mM dithiothroitol (DTT). After centrifugation at 20,000 x g for 30 min., the resultant pellet (Figure 16, PPT_3) obtained after the above extraction contained the purified inclusion bodies.

The Tbpl protein was solubilized from PPT3 in 50 mM Tris, pH 8.0, containing 6 M guanidine hydrochloride and mΜ DTT. After centrifugation, the supernatant was further purified on a Superdex 200 gel filtration column equilibrated in 50 mM Tris, pH 8.0, containing 2M guanidine hydrochloride and 5 mM DTT. fractions were analyzed by SDS-PAGE and those containing purified Tbpl were pooled. Triton X-100 was added to the pooled Tbpl fraction to a final concentration of The fraction was then dialyzed overnight at 4°C against 50 mM Tris, pH 8.0 and then centrifuged at 20,000 x g for 30 min. The protein remained soluble under these conditions and the purified Tbpl was stored at -20° C. The purification procedure shown in Figure

10

15

20

25

30

35

16 produced Tbpl protein that was at least 70% pure as determined by SDS-PAGE analysis (Figure 17).

Example 12

This Example illustrates the construction of an expression plasmid for rTbp2 of *M. catarrhalis* 4223 without a leader sequence.

The construction scheme for the plasmid expressing rTbp2 is shown in Figure 18. Oligonucleotides were used to construct the first approximately 58 bp of the *M. catarrhalis* 4223 *tbpB* gene encoding the mature protein. An *NdeI* site was incorporated into the 5' end of the oligonucleotides:

5'TATGTGTGGTGGCAGTGGTTCAAATCCACCTGCTCCTACGCCCATT CCAAATG (SEQ ID NO: 36) 3'

3'ACACACCACCACCACCAAGTTTAGGTGGACGAGGATGCGGGTAAGG TTTACGATC (SEQ ID NO: 37) 5'

An NheI-ClaI fragment, containing approximately 1kb of the tbpB gene from pLEM23, prepared as described in Example 7, was ligated to the above oligonucleotides and inserted into pT7-7 cut with NdeI-ClaI, generating pLEM31, which thus contains the 5'-half of tbpB. Oligonucleotides also were used to construct the last approximately 104 bp of the tbpB gene, from the AvaII site to the end of the gene. A BamHI site was incorporated into the 3' end of the oligonucleotides:

5'GTCCAAATGCAAACGAGATGGGCGGGTCATTTACACACAACGCCGATG ACAGCAAAGCCTCTGTGGTCTTTGGCACAAAAAGACAACAAGAAGTTAAGTAGTA G (SEQ ID NO: 38) 3'

3'GTTTACGTTTGCTCTACCCGCCCAGTAAATGTGTGTTGCGGCTACTGTC GTTTCGGAGACACCAGAAACCGTGTTTTTCTGTTGTTCTTCAATTCATCCTAG (SEQ ID NO: 39) 5' WO 97/32980

5

10

15

20

25

30

35

A ClaI-AvaII fragment from pLEM23, containing approximately 0.9 kb of the 3'-end of the tbpB gene, was ligated to the AvaII-BamHI oligonucleotides, and inserted into pT7-7 cut with ClaI-BamHI, generating pLEM32. The 1.0 kb NdeI-ClaI insert from pLEM31 and the 1.0 kb ClaI-BamHI insert from pLEM32 were then inserted into pT7-7 cut with NdeI-BamHI, generating pLEM33 which has a full-length tbpB gene under the direction of the T7 promoter.

DNA was purified from pLEM33 and transformed by electroporation into electrocompetent BL21(DE3) cells Madison, WI), to generate strain pLEM33B-1. Strain pLEM33B-1 was grown, and induced using IPTG, as described above in Example 10. Expressed proteins were by SDS-PAGE and transferred to membranes resolved suitable for immunoblotting. Blots were developed using anti-4223 Tbp2 antiserum, diluted 1:4000, as the primary antibody, and rprotein G conjugated with horseradish peroxidase (Zymed) as the secondary antibody. chemiluminescent substrate (Lumiglo; Kirkegaard and Perry Laboratories, Gaithersburg, MD) was detection. Induced recombinant proteins were visible on the Coomassie blue-stained gels (Fig. 19). The anti-4223 Tbp2 antiserum recognized the recombinant proteins on Western blots.

Example 13

This Example illustrates the generation of an expression plasmid for rTbp2 of M. catarrhalis 4223 with a leader sequence.

The construction scheme is shown in Figure 18. Oligonucleotides containing the natural leader sequence of the *M. catarrhalis* 4223 *tbpB* gene were used to construct the first approximately 115 bp of the *tbpB* gene to the *NheI* site. An *NdeI* site was incorporated into the 5' end of the oligonucleotides:

10

15

20

25

30

35

5'TATGAAACACATTCCTTTAACCACACTGTGTGGCAATCTCTGCCGTC TTATTAACCGCTTGTGGTGGCAGTGGTGGTTCAAATCCACCTGCTCCTACGCCCAT TCCAAATG (SEQ ID NO: 40) 3'

3'ACTTTGTGTAAGGAAATTGGTGTGACACACCGTTAGAGACGGCAGAA TAATTGGCGAACACCACCGTCACCACCAAGTTTAGGTGGACGAGGATGCGGGTAAG GTTTACGATC (SEQ ID NO: 41) 5'

The NdeI-NheI oligonucleotides were ligated to pLEM33 cut with NdeI-NheI, generating pLEM37, which thus contains a full-length 4223 tbpB gene encoding the Tbp2 protein with its leader sequence, driven by the T7 promoter.

DNA from pLEM37 was purified and transformed by electroporation into electrocompetent BL21(DE3) cells (Novagen; Madison, WI), to generate strain pLEM37B-2. pLEM37B-2 was grown, and induced using described above in Example 10. Expressed proteins were resolved by SDS-PAGE and transferred to suitable for immunoblotting. Blots were developed using anti-4223 Tbp2 antiserum, diluted 1:4000, as the antibody, and rprotein G conjugated with horseradish secondary peroxidase (Zymed) as the A chemiluminescent substrate (Lumiglo; antibody. Kirkegaard and Perry Laboratories, Gaithersburg, MD) was used for detection. Induced recombinant proteins were visible on Coomassie-blue stained gels (Fig. 21). anti-4223 Tbp2 antiserum recognized the recombinant proteins on Western blots.

Example 14

This Example illustrates the construction of an expression plasmid for rTbp2 of $\it M.$ catarrhalis Q8 without a leader sequence.

The construction scheme for rTbp2 is shown in Figure 20. The 5'-end of the tbpB gene of M. catarrhalis Q8 was PCR amplified from the Cys¹ codon of

the mature protein through the Bsm I restriction site. An Nde I restriction site was introduced at the 5' end, for later cloning into pT7-7, and the final PCR fragment was 238 bp in length. The PCR primers are indicated below:

NdeI C G G S S G G F N
5' GAATTCCATATG TGT GGT GGG AGC TCT GGT GGT TTC AAT C
3' 5247.RD (SEQ ID No: 42)

10

15

20

25

30

5' CCCATGGCAGGTTCTTGAATGCCTGAAACT 3' 5236.RD (SEQ ID No: 43).

The Q8 tbpB gene was subcloned in two fragments contained on plasmids SLRD3 and SLRD5, prepared as SLRD3-5 was Plasmid described in Example 8. constructed to contain the full-length tbpB gene by digesting SLRD5 with EcoR I and Dra I, which releases and inserting this 3'-end of tbpB, fragment into SLRD3 which had been digested with EcoR I and Sma I. The 1.85 kb Bsm I-BamH I fragment from SLRD 3-5 was ligated with the 238 bp PCR fragment inserted into pT7-7 that had been digested with Nde I and BamH I, generating plasmid SLRD35B. This plasmid thus contains the full-length tbpB gene without of direction **T7** leader sequence, under the purified promoter. DNA from SLRD35B was transformed by electroporation into electrocompetent BL21(DE3) cells to generate strain SLRD35BD which was grown and induced using IPTG, as described above in Expressed proteins were resolved by SDS-Example 10. PAGE and the induced Tbp2 protein was clearly visible by Coomassie blue staining (Fig. 19).

Example 15

This Example illustrates the generation of an expression plasmid for rTbp2 of M. catarrhalis Q8 with

15

20

25

35

The construction scheme for the rTbp2 is shown in Figure 20. The 5'-end of the Q8 tbpB gene was PCR amplified from the ATG start codon to the Bsm I restiction site. An Nde I site was engineered at the 5'-end, to facilitate cloning into the pT7-7 expression vector, and the final PCR fragment was 295 bp. The PCR primers are indicated below:

Nde I K H I P L T

5' GAATTCCATATG AAA CAC ATT CCT TTA ACC 3' 5235.RD

(SEO ID No: 44)

5' CCCATGGCAGGTTCTTGAATGCCTGAAACT 3' 5236.RD (SEQ ID No: 43).

SLRD3-5 (Example 14) was digested with Bsm I and BamH I, generating a 1.85 kb fragment, which was ligated with the 295bp PCR fragment and ligated into pT7-7 that had been digested with Nde I and BamH I. The resulting plasmid SLRD35A thus contains the full-length Q8 tbpB gene with its endogenous leader sequence under the control of the T7 promoter. DNA from SLRD35A was transformed by purified and electroporation electrocompetent BL21(DE3) cells to generate strain SLRD35AD which was grown and induced using IPTG, as described above in Example 10. Expressed proteins were resolved by SDS-PAGE and the induced Tbp2 protein was clearly visible by Coomassie blue staining (Fig. 19).

30 Example 16

This Example illustrates the extraction and purification of rTbp2 of *M. catarrhalis* 4223 and Q8 from *E. coli*.

pLEM37B (4223) and SLRD35AD (Q8) transformants were grown to produce Tbp2 in inclusion bodies and then the Tbp2 was purified according to the scheme in Figure

15

20

25

30

35

E. coli cells from a 500 mL culture, 22. 50 mM mL of Tris-HCl, pH resuspended in 50 inhibitor), 5 mM AEBSF (protease containing disrupted by sonication (3 \times 10 min, 70% duty circle). The extract was centrifuged at $20,000 \times g$ for 30 min and the resultant supernatant which contained > 95% of the soluble proteins from E. coli was discarded.

The remaining pellet (PPT₁) was further extracted in 50 mL of 50 mM Tris, pH 8.0 containing 0.5% Triton X-100 and 10 mM EDTA. The mixture was stirred at 4° C for at least 2 hours and then centrifuged at 20,000 x g for 30 min and the supernatant containing residual soluble proteins and the majority of the membrane proteins was discarded.

The resultant pellet (PPT2) obtained after the above extraction contained the inclusion bodies. The Tbp2 protein was solubilized in 50 mM Tris, pH 8.0, containing 6 M guanidine and 5 mΜ DTT. centrifugation, the resultant supernatant was further purified on a Superdex 200 gel filtration column equilibrated in 50 mM Tris, pH 8.0, containing 2 M quanidine and 5 mM DTT. The fractions were analyzed by SDS-PAGE and those containing purified pooled. Triton X-100 was added to the pooled Tbp2 fraction to a final concentration of 0.1%. The fraction was then dialyzed overnight at 4°C against PBS, and then centrifuged at $20,000 \times q$ for 30 min. The protein remained soluble under these conditions purified Tbp2 was stored at -20°C. Figure 22 shows the SDS PAGE analysis of fractions of the purification process for rTbp2 from strain 4223 (Panel A) and strain Q8 (Panel B). The rTbp2 was at least 70% pure.

Groups of five BALB/c mice were injected three times subcutaneously (s.c.) on days 1, 29 and 43 with purified rTbp2 (0.3 mg to 10 mg) from *M. catarrhalis* strains 4223 and Q8 in the presence or absence of AlPO₄

15

20

25

30

(1.5 mg per dose). Blood samples were taken on days 14, 28, 42 and 56 for analysing the anti-rTbp2 antibody titers by EIAs.

Groups of two rabbits and two guinea pigs (Charles River, Quebec) were immunized intramuscularly (i.m.) on day 1 with a 5 mg dose of purified rTbp2 protein emulsified in complete Freund's adjuvant (CFA). Animals were boosted on days 14 and 29 with the same dose of protein emulsified in incomplete Freund's adjuvant (IFA). Blood samples were taken on day 42 for analysing anti-rTbp2 antibody titers and bactericidal activity. Table 2 below shows the bactericidal activity of antibodies raised to the recombinant tranferrin binding proteins rTbp1 (4223), rTbp2 (4223) and rTbp2 (Q8), prepared as described in these Examples, against M. catarrhalis strains 4223 and Q8.

Example 17

This Example illustrates the binding of Tbp2 to human transferrin in vitro.

Transferrin-binding activity of Tbp2 was assessed according to the procedures of Schryvers and Lee (ref. 28) with modifications. Briefly, purified rTbp2 was subjected to discontinuous electrophoresis SDS-PAGE gels. The proteins were electrophoretically transferred to PVDF membrane and incubated with horseradish peroxidase-conjugated human transferrin (HRP-human transferrin, 1:50 (Jackson ImmunoResearch Labs Inc., Mississauga, 4°C for overnight. at LumiGLO substrate (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) was used for chemiluminescent detection of HRP activity according to the manufacturer's instructions. Both 4223 rTbp2 and Q8 rTbp2 bind to human transferrin under these conditions, as shown in Figure 24.

35 Example 18

This Example illustrates antigenic conservation of

WO 97/32980

5

10

15

20

25

Tbp2 amongst M. catarrhalis strains.

Whole cell lysates of *M. catarrhalis* strains and *E. coli* strains expressing recombinant Tbp2 proteins were separated by SDS-PAGE and electrophoretically transferred to PVDF membrane. Guinea pig anti-4223 rTbp2 or anti-Q8 rTbp2 antisera were used as first antibody and alkaline phosphatase conjugated goat anti-guinea pig antibody was used as second antibody to detect Tbp2. *M. catarrhalis* strains 3, 56, 135, 585, 4223, 5191, 8185 and ATCC 25240 were tested and all showed specific reactivity with anti-4223 rTbp2 or anti-Q8 rTbp2 antibody (Figure 25).

Table 3 illustrates the ability of anti-rTbp2 antibodies from one *M. catarrhalis* strain to recognize native or recombinant protein from a homologous or heterologous *M. catarrhalis* strain.

Example 19

This Example illustrates PCR amplification of the tbpB gene from M. catarrhalis strain Rl and characterization of the amplified Rl tbpB gene.

Chromosomal DNA from *M. catarrhalis* strain Rl was prepared using standard techniques. The design of the oligonucleotide sense primer was based on a region approximately 274 bases upstream of the *M. catarrhalis* 4223 tbpB gene, and the antisense primer was based upon a region approximately 11 bases downstream of the end of 4223 tbpB. The following primers were used:

sense primer (4940): 5' GATATAAGCACGCCCTACTT 3'

(SEQ ID No: 48)

antisense primer (4967): 5' CCCATCAGCCAAACAACATTGTGT 3'

(SEQ ID No: 49).

Each reaction tube contained 10 mM Tris-HCl (pH 8.85), 25 mM KCl, 5 mM (NH₄)₂SO₄, 2 mM MgSO₄, 800 mM dNTPs, 1.0 mg each of primers 4940 and 4967, 10 ng of Rl DNA, and 2.5 U Pwo DNA polymerase (Boehringer

10

15

20

25

30

35

Mannheim) in a total volume of 100 μl . The thermocycler was programmed for 5 min at 95°C, followed by 25 cycles of 95°C for 30 sec, 50°C for 45 sec, and for 2 min, and a 10 min final elongation elongation at 72°C. The amplified product was purified using a Geneclean (BIO 101) according manufacturer's instructions, and sequenced.

A partial restriction map of M. catarrhalis strain R1 tbpB prepared as just described is shown in Figure The nucleotide and deduced amino acid sequences of the PCR amplified R1 tbpB gene are shown in Figure 27. The R1 tbpB gene encodes a 714 amino acid protein of molecular weight 76.8 kDa. The leader sequence of the R1 Tbp2 protein is identical to that of the 4223 and Q8 Tbp2 proteins. When the deduced R1 Tbp2 sequence was aligned with the 4223 Tbp2 sequence, it was found to be 83% identical and 88% homologous (Fig. 28). The conserved LEGGFYG (SEQ ID No: 50) epitope was present, as found in Tbp2 from other M. catarrhalis strains as well as the H. influenzae and N. meningitidis Tbp2 proteins.

SUMMARY OF THE DISCLOSURE

In summary of this disclosure, the invention provides purified and isolated DNA molecules containing transferrin receptor genes of Moraxella catarrhalis, the sequences of these transferrin receptor genes, and the derived amino acid sequences thereof. The genes and DNA sequences are useful for diagnosis, and the generation of diagnostic and immunization, immunological reagents. Immunogenic compositions, including vaccines, based upon expressed recombinant Tbpl and/or Tbp2, portions thereof, or analogs thereof, can be prepared for prevention of diseases caused by Moraxella. Modifications are possible within the scope of this invention.

TABLE I

BACTERICIDAL ANTIBODY TITRES FOR M. CATARRHALIS ANTIGENS

ANTIGEN'	SOURCE OF ANTISERA 2	BACTERICIDAL TITRE ³ RH408 ⁴		BACTERICIDAL TITRE Q85	
	4.6	Pre-Immune	Post-Immune	Pre-Immune	Post-Immune
TBP1	GP	< 3.0	4.2-6.9	< 3.0	4.46.2
TBP2	GP	< 3.0	12.0-13.6	< 3.0	< 3.0-4.0

- 1 antigens isolated from M. catarrhalis 4223
- 2 GP = guinea pig
- bactericidal titres: expressed in log₂ as the dilution of antiserum capable of killing 50% of cells
- 4 M. catarrhalis RH408 is a non-clumping derivative of M. catarrhalis 4223
- 5 M. catamhalis Q8 is a clinical isolate which displays a non-clumping phenotype

TABLE 2

Antigen	Bactericidal titre -	RH408	Bactericidal titre - Q8		
	pre-immune	post-immune	pre-immune	post-immune	
rTbp1 (4223)	< 3.0	< 3.0	< 3.0	< 3.0	
rTbp2 (4223)	< 3.0	10-15	< 3.0	< 3.0	
rTbp2 (Q8)	NT	NT	< 3.0	5.5-7.5	

Antibody titres are expressed in log₂ as the dilution of antiserum capable of killing 50% of cells

NT = not tested

TABLE 3

ELISA titres for anti-rTbp2 antibodies recognizing native or rTbp2 from strain 4223 or rTbp2 from strain Q8

L Anti «Thn2 (422	3) Antibody Titres	Anti-rTbp2 (Q8) Antib	ody litres
Rabbit	Guinea pig	Rabbit antisera	Guinea pig antisera
409,600	1,638,400	25,600 25,600	51,200 102,400
409,600	1,638,400	102,400	204,800 204,800
409,600	1,638,400	1,638,400	1,638,400 1,638,400
	Rabbit antisera 409,600 204,800 409,600 409,600	antisera antisera 409,600 1,638,400 204,800 1,638,400 409,600 1,638,400 409,600 1,638,400 409,600 1,638,400	Rabbit Guinea pig antisera 409,600 1,638,400 25,600 204,800 1,638,400 25,600 409,600 1,638,400 102,400 409,600 1,638,400 102,400 409,600 1,638,400 1,638,400

REFERENCES

- 1. Brorson, J-E., A. Axelsson, and S.E. Holm. 1976. Studies on Branhamella catarrhalis (Neisseria catarrhalis) with special reference to maxillary sinusitis. Scan. J. Infect. Dis. 8:151-155.
- Catlin, B.W., 1990. Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin. Microbiol. Rev. 3: 293-320.
- 3. Hager, H., A. Verghese, S. Alvarez, and S.L. Berk.
 1987. Branhamella catarrhalis respiratory
 infections. Rev. Infect. Dis. 9:1140-1149.
- 4. McLeod, D.T., F. Ahmad, M.J. Croughan, and M.A. Calder. 1986. Bronchopulmonary infection due to M. catarrhalis. Clinical features and therapeutic response. Drugs 31(Suppl.3):109-112.
- 5. Nicotra, B., M. Rivera, J.I. Luman, and R.J. Wallace.
 1986. Brannamella catarrhalis as a lower
 respiratory tract pathogen in patients with
 chronic lung disease. Arch.Intern.Med. 146:890-
- 6. Ninane, G., J. Joly, and M. Kraytman. 1978.
 Bronchopulmonary infection due to Branhamella catarrhalis 11 cases assessed by transtracheal puncture. Br.Med.Jr. 1:276-278.
- 7. Srinivasan, G., M.J. Raff, W.C. Templeton, S.J. Givens, R.C. Graves, and J.C. Mel. 1981.

 Brannamella catarrhalis pneumonia. Report of two cases and review of the literature. Am.Rev. Respir. Dis. 123:553-555.
- 8. West, M., S.L. Berk, and J.K. Smith. 1982.

 Brannamella catarrhalis pneumonia. South.Med.

 J. 75:1021-1023.
- 9. Christensen, J.J., and B. Bruun. 1985. Bacteremia caused by a beta-lactamase producing strain of Branhamella catarrhalis. Acta.Pathol. Microbiol. Immunol. Scand. Sect.B 93:273-275.
- 10. Craig, D.B., and P.A. Wehrle. 1983. Branhamella catarrhalis septic arthritis. J. Rheumatol. 10:985-986.

- 11. Guthrie, R., K. Bakenhaster, R.Nelson, and R. Woskobnick. 1988. Branhamella catarrhalis sepsis: a case report and review of the literature. J.Infect.Dis. 158:907-908.
- 12. Hiroshi, S., E.J. Anaissie, N.Khardori, and G.P. Bodey. 1988. *Branhamella catarrhalis* septicemia in patients with leukemia. Cancer 61:2315-2317.
- 13. O'Neill, J.H., and P.W. Mathieson. 1987. Meningitis due to Branhamella catarrhalis. Aust. N.Z. J. Med. 17:241-242.
- 14. Murphy, T.F. 1989. The surface of Branhamella catarrhalis: a systematic approach to the surface antigens of an emerging pathogen. Pediatr. Infect. Dis. J. 8:S75-S77.
- 15. Van Hare, G.F., P.A. Shurin, C.D. Marchant, N.A. Cartelli, C.E.Johnson, D. Fulton, S. Carlin, and C.H. Kim. Acute otitis media caused by Branhamella catarrhalis: biology and therapy. Rev. Infect. Dis. 9:16-27.
- 16. Jorgensen, J.H., Doern, G.V., Maher, L.A., Howell, A.W., and Redding, J.S., 1990 Antimicrobial resistance among respiratory isolates of Haemophilus influenza, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antibicrob. Agents Chemother. 34: 2075-2080.
- 17. Schryvers, A.B. and Morris, L.J. 1988 Identification and Characterization of the transferrin receptor from *Neisseria meningitidis*. Mol. Microbiol. 2:281-288.
- 18. Lee, B.C., Schryvers, A.B. Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol. Microbiol. 1988; 2-827-9.
- 19. Schryvers, A.B. Characterization of the human transferrin and lactoferrin receptors in Haemophilus influenzae. Mol. Microbiol. 1988; 2: 467-72.
- 20. Schryvers, A.B. and Lee, B.C. (1988) Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can. J. Microbiol. 35, 409-415.

- 21. Yu, R. and Schryvers, A.B., 1993. The interaction between human transferrin and transferrin binding protein 2 from Moraxella (Branhamella) catarrhalis differs from that of other human pathogens. Microbiol. Pathogenesis, 15:433-445.
- 22. O'Hagan, 1992. Clin. Pharmokinet. 22:1
- 23. Ulmer et al., 1993. Curr. Opinion Invest. Drugs 2: 983-989.
- 24. Lockhoff, C., 1991. glycolipds as immunomoclutators: Synthesis and properits. Chem. Int. Ed. Engl. 30: 1611-1620.
- 25. Nixon-George, 1990. J. Immunol. 14: 4798-4802.
- 26. Wallace, R.J. Jr., Nash, D.R., and Steingrube, V.A. 1990. Antibiotic susceptibilites and drug resistance in *Moraxella (Branhaemella) catarrhalis*. Am. J. Med. 88 (5A): 465-50S.
- 27. F.M. Ausubel et al., Short protocols in Molecular Biology, Greene Publishing Associates and John Wiley and Sons.
- 28. Schryvers, A.B., Lee, B.C. 1989. Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can. J. Microbiol. 35: 409-415.

CLAIMS

What we claim is:

- 1. A purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of Moraxella or a fragment or an analog of the transferrin receptor protein.
- 2. The nucleic acid molecule of claim 1 wherein the transferrin receptor protein is the transferrin receptor binding protein 1 (Tbp1) of the *Moraxella* strain.
- 3. The nucleic acid molecule of claim 2 wherein the transferrin receptor protein is the transferrin receptor binding protein 2 (Tbp2) of the *Moraxella* strain.
- 4. The nucleic acid molecule of claim 1 wherein the strain of *Moraxella* is a strain of *Moraxella* catarrhalis.
- 5. The nucleic acid molecule of claim 4 wherein the strain of *Moraxella catarrhalis* is *Moraxella catarrhalis* 4223, Q8 or R1.
- 6. A purified and isolated nucleic acid molecule having a DNA sequence selected from the group consisting of:
- (a) a DNA sequence as set out in Figure 5, 6, 10, 11 or 27 (SEQ ID Nos: 1, 2, 3, 4, 5, 6, 7, 8, 45 or 46) or the complementary DNA sequence thereto;
- (b) a DNA sequence encoding an amino acid sequence as set out in Figure 5, 6, 10, 11 or 27 (SEQ ID Nos: 9, 10, 11, 12, 13, 14, 15, 16 or 47) or the complementary DNA sequence thereto; and
- (c) a DNA sequence which hybridizes under stringent conditions to any one of the DNA sequences defined in (a) or (b).
- 7. The nucleic acid molecule of claim 6, wherein the DNA sequence defined in (c) has at least about 90% sequence identity with any one of the DNA sequences

defined in (a) or (b).

- 8. The nucleic acid molecule of claim 6 wherein the DNA sequence defined in (c) is that encoding the equivalent transferrin receptor protein from another strain of *Moraxella*.
- 9. A vector adapted for transformation of a host comprising the nucleic acid molecule of claim 1 or 6.
- 10. The vector of claim 9 encoding a fragment of a transferrin receptor protein and having the characteristics of a plasmid selected from the group consisting of pLEM3, pLEM25, pLEM23, DS-1698-1-1, DS-1754-1, pSLRD2, pSLRD3, pSLRD4 and pSLRD5.
- 11. The vector of claim 9 further comprising expression means operatively coupled to the nucleic acid molecule for expression by the host of said transferrin receptor protein of a strain of *Moraxella* or the fragment or the analog of the transferrin receptor protein.
- 12. The vector of claim 11 having the characteristics of plasmid pLEM-29, pLEM-33, pLEM-37, SLRD35-A and SLRD35-B.
- 13. A transformed host containing an expression vector as claimed in claim 11.
- 14. A method of forming a substantially pure recombinant transferrin receptor protein of a strain of *Moraxella*, which comprises:

growing the transformed host of claim 13 to express a transferrin receptor protein as inclusion bodies,

purifying the inclusion bodies free from cellular material and soluble proteins,

solubilizing transferrin receptor protein from the purified inclusion bodies, and

purifying the transferrin receptor protein free

from other solubilized materials.

- 15. The method of claim 14 wherein said transferrin receptor protein comprises Tbpl alone, Tbp2 alone or a mixture of Tbpl and Tbp2.
- 16. The method of claim 15 wherein said transferrin receptor protein is at least about 70% pure.
- 17. The method of claim 16 wherein said transferrin receptor protein is at least about 90% pure.
- 18. A recombinant transferrin receptor protein or fragment or analog thereof producible by the transformed host of claim 12.
- 19. The protein of claim 18 which is transferrin receptor binding protein 1 (Tbpl) of the *Moraxella* strain devoid of other proteins of the *Moraxella* strain.
- 20. The protein of claim 18 which is transferrin receptor binding protein 2 (Tbp2) of the *Moraxella* strain devoid of other proteins of the *Moraxella* strain.
- 21. The protein of claim 18 wherein the strain of Moraxella is a strain of Moraxella catarrhalis.
- 22. An immunogenic composition, comprising at least one active component selected from the group consisting of:
- (A) a purified and isolated nucleic acid molecule encoding a transferrin receptor protein of a strain of *Moraxella* or a fragment or an analog of the transferrin receptor protein;
- (B) a purified and isolated nucleic acid molecule having a DNA sequence selected from the group consisting of:
 - (a) a DNA sequence as set out in Figure 5, 6, 10, 11 or 27 (SEQ ID Nos: 1, 2, 3, 4, 5, 6, 7, 8, 45 or 46) or the complementary DNA sequence thereto;

- (b) a DNA sequence encoding an amino acid sequence as set out in Figure 5, 6, 10, 11 or 27 (SEQ ID Nos: 9, 10, 11, 12, 13, 14, 15, 16 or 47) or the complementary DNA sequence thereto; and
- (c) a DNA sequence which hybridizes under stringent conditions to any one of the DNA sequences defined in (a) or (b); or
- (C) a recombinant transferrin receptor protein fragment or or analog thereof producible by transformed host containing an expression vector comprising a nucleic acid molecule as defined in (A) or and expression means operatively coupled to the nucleic acid molecule for expression by the host of the recombinant transferrin receptor protein or fragment or analog thereof:

and a pharmaceutically acceptable carrier therefor, said at least one active component producing an immune response when administered to a host.

- 23. A method for generating an immune response in a host, comprising administering to the host an immunoeffective amount of the immunogenic composition of claim 22.
- 24. A method of determining the presence, in a sample, of nucleic acid encoding a transferrin receptor protein of a strain of *Moraxella*, comprising the steps of:
- (a) contacting the sample with the nucleic acid molecule of claim 1 or 6 to produce duplexes comprising the nucleic acid molecule and any said nucleic acid molecule encoding the transferrin receptor protein of a strain of *Moraxella* present in the sample and specifically hybridizable therewith; and
 - (b) determining production of the duplexes.

- 25. A diagnostic kit for determining the presence, in a sample, of nucleic acid encoding a transferrin receptor protein of a strain of *Moraxella*, comprising:
 - (a) the nucleic acid molecule of claim 1 or 6;
- (b) means for contacting the nucleic acid molecule with the sample to produce duplexes comprising the nucleic acid molecule and any said nucleic acid present in the sample and hybridizable with the nucleic acid molecule; and
- (c) means for determining production of the duplexes.

THIS PAGE BLANK (USPTO)

AMINO ACID SEQUENCES OF A CONSERVED PORTION OF Tbp1 PROTEIN FOR CONSTRUCTION OF DEGENERATE PRIMERS USED IN PCR AMPLIFICATION OF A PORTION OF THE M. cattarhalis 4223 tbpA GENE.

NEVTGLG

SEQ ID NO: 17

GAINEIE

SEQ ID NO: 18

FIG.1

SUBSTITUTE SHEET (RULE 26)

HindIII

Sall

FIG.3

M. catarrhalis 4223 tbpA gene enzyme Avall Ddel Dral EcoRII Foll HindII Pvull Rsal Sphl

SUBSTITUTE SHEET (RULE 26)

FIG.4

SUBSTITUTE SHEET (RULE 26)

catarrhalis 4223 tbpA gene Sequence of M.

TTGATGCCTGCCTTGTGATTGGTTTGGGGTGTATCGGTGTATCAAAGTGCAAAAGCCAACAGGTGGTCATTG TATTTTGGTAAACAATTAAGTTCTTAAAAACGATACACGCTCATAAACAGATGGTTTTTGGCATCTGCAAT

Lys108 TCC AAA CAA GTA TTA AAA GCA Ser Lys Gln Val Leu CTG Leu GCA Ala GTG CAG (ACG Thr LysCAA TCA AAA CAA AAC AAC AAA TCC AAA AAA AAC ATC Asn Ile Lys Ser CTT Leu Ser Lys Gln Asn Asn Lys 27 CTGLeu GGTTTG Leu TCT Ser TTG Gln Ala CCCAsn AGT Ser AAT ATG Leu MET

162 TTG Leu GLL Val GTT GAA AAC GTT Val ggg CTTLeu AAC Asn AAA ACA CGT Thr AAG Lys CCC GATAsp AAC ACA Thr AAA 189 GCA Ala AAG GAG Glu 909 GCG Ala ACA GAT AAG ASP Lys CCC ACG Thr ACA Thr GAT

216 **ACA** Thr Val Glu Asn Ala Lys Arg Ala Asn Lys Lys Ala Thr GTT GTA Val Val GAA, ACT Glu Thr Asp

FIG.5B

270	CTA	Len
į	0.T.O	Val
ć	¥ ;	Gin
	46.	
AAA		LY S
	Acn	
ATC	Ile	` }
ACC	Thr	
GAG		
243 GCC	Ala	
ACT	TUL	
AAA	o Z	
GTC Val	4	
GTG Val		
AAG Lys		
GGT 31y		
Crr (
GGG Gly		

324 GGT G1y	ı
s caa	
GAG Glu	
GTT Val	
GTG Val	
GCT GTG	
ATT Ile	
GGC	
CCT Pro	
297 GAC Asp	. 1
auA $ au$	
CGC Arg	
ACA Thr	
TTA	
GAC Asp	
CGA Arg	
ATT Ile	
AAC ATT CGA GAC Asn Ile Arg Asp	E E E
- 0 · -1	

378	929
	GTG
	CGT
!	MAT (
E	l dsv
ATG C	Ile Arg Gly MET ASD Lvs Ash Ave 11
GGT	Gly
CGT	Arg
351 ATT	Ile
TCT	Ser
TAT	Tyr
GGC TAT	61 <i>Y</i>
TCA	
AGC	7)
GCA Ala	5
GGG Gly	1
CGT Arg	

DITE TO C	432 GTG
1	CCT
)	6GC
	432 CAA GGC CCT GTG Gln Glv Pro V21
	TA
	3CC
	i'aı I'yr
	CAC His
	CAG 31n
	405 4 GCC (
	CAA Gln
	ATC AAT Ile Asn
	ATC Ile
	${\tt GGC \atop G1y}$
	GAT Asp
	GTT Val
	TTG Leu
	GTA Val
F	RULE 26)

486 AAT Asn
GAA Glu
Tyr G
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A GAA e Glu
ATA Ile
GAA Glu
AAC Asn
ATC I1e
GCA Ala
GGG GIY
$\begin{array}{c} \textbf{GGT} \\ \text{G}1 \end{array}$
GCA (
GCC G Ala A
F H
r TAT
AAT Asn
AAA Lys
GGC 1
GCA (Ala (
U &

540 GGG Gly TCT Ser T'AC Tyr TCA AAT Asn 513 GGT G1y AAA Lys AGT Ser GAG Glu GTT Val TCC Ser CGC Arg GTC Val

810 CGA Arg

> AAC Asn

AAT Asn

CCA

GAC Asp

ACT Thr

ACC Thr

GCA Ala

GTG Val

AGA Arg

GAT Asp

TTT Phe

AGT Ser

CAA Gln

AGC Ser

GGT Gly

CAG Gln

783 GCG Ala

C)
U	0
اح	7
_	-
Ц	-

548 4AC 4sn	702 CTT	756 TAT Tyr
		GCC 7 Ala 7
AAA 1		GAT C Asp A
AGT Ser		SAT (Asp A
GCC	TCT	AAG GCA CAT GAT (Lys Ala His Asp 1
TAT Tyr	3GT 31Y	GCA (
GCC	GCA Ala	AAG Lys
ACC Thr	AAG Lys	TAC Tyr
AAA Lys	GGC G1y	GAA Glu
621 ACC Thr	675 GCA Ala	729 CAA Gln
CAG Gln	GCA Ala	GGT Gly
GTG Val	GCA Ala	CGT Arg
GGC Gly	GTG Val	CGC Arg
TGG Trp	TCT Ser	GAC
GAT Asp		ACC Thr
AAA Lys	GTT Val	TAC Tyr
$_{\rm G1Y}^{\rm GGT}$	TGG Trp	ATC Ile
GAT Asp	GCA Ala	ATC . Ile
	621 GGC GTG CAG ACC AAA ACC GCC Gly Val Gln Thr Lys Thr Ala	GGT AAA GAT TGG GGC GTG CAG ACC AAA ACC GCC TAT GCC AGT AAA AAT Gly Lys Asn Thr Lys Thr Ala Tyr Ala Ser Lys Asn 675 TGG GTT AAT TCT GTG GCA GCA GCA GGC AAG GCA GGT TCT TTT AGC GGT Trp Val Asn Ser Val Ala Ala Ala Gly Lys Ala Gly Ser Phe Ser Gly

864 GCT Ala 918 AAT Asn GCT Ala GTC Val TGT GCG Ala GAT Asp ĠAG Glu CGT Arg TAT Tyr GTG Val AAT Asn AAT Asn ${\tt GGT} \\ {\tt Gly}$ ACC Thr AAT Asn CCA Pro 837 GCC Ala 891 AAG Lys TGT GCC GAA Glu CAA Gln AAT Asn CTT GCA Ala AAA Lys ATA Ile ACC Thr TTA Leu CAA Gln TTT GGT Gly ACA Thr GGC

His

972 GAC Asp CAA ACC Thr CTC CCA Pro AAC Asn CCA Pro ATC Ile CTTLeu 945 CGC Arg AAC Asn CCTPro GGT Gly ACA Thr TAT TyrAsp GAT AAA Lys GTC Val

026 GTC Val TAT CAC AAG Lys GAT Asp AAC Asn CTA Leu CAG Gln TAT 999 GGT G1y CCA CGC Arg CTTLeu CTG TTA Leu TCC AAA Lys AGC Ser

1080 GTG AAA Lys GAT Asp CAA Gln MET ATG GCC Ala TAC Tyr AAC Asn 1053 CAA GlnAAA Lys ACC ATC Ile GAA Glu TAT Tyr GTG Val GGT

AAC Asn AGC Ser CTC Leu AGG Arg Ser AAA Lys GAA Glu 1107 ATT Ile GAC Asp CAT His GTT Val ACG Thr CTG Leu Γyr **TAT**

1188 GAT Asp Arg ATT Ile CGC Arg GAA Glu GGT G1yLeu CTT Asn AAT AAT Gly Asn 1161 CAA Gln TAT TyrTAT GGC Gly AAT Asn CAA 31n

TAT Phe GT'A Val GGC Gly TAT Tyr AAC Asn 1215 CGC TAT Tyr GGT Gly TCA GAT CCA ggg

MET

Lys

Asn AAC

Phe

Val

Ala

Ile

Asn

His

AAA Lys

TTT

GTC

ညည

AAA Lys

ATC

TTA Leu

AAT

CAC

.5E

GGT LysAGC GAC Asp TAT Tyr Val Γ Y Γ TAT Glu GAA Leu CTT 999 G1y1269 Leu Arg Asp GAC AAA Lys CAA Gln CAC His AAA Lys GAA Glu

ACG 1.350 GAC Asp CAA Gln AAG Lys GAT Asp TAT ľyr TCT GTG Val CGT Arg 1323 GTGVal Asp GAT Asp GAT TTT Phe Trp Lys AAA Asn AAT **3AA**

GAC AAA Lys Asp Ile CAC CCG TAT Tyr ACC Thr TCA Ser TGT Cys CAC His 377 Thr ACG AAC Asn ACC Thr CTG Leu Gln CAG AGC Ser Arg Ceu

Asn 1458 AAT AAC Asn Asp GATGTG Val GAG Glu AAA Lys GTA Val TCG Ser Phe TTT CCTPro 1485 431 LysAAA AAT Asn GTC Val CAG Gln GAT Asp CCT Pro GAA Glu AAA Lys ACG Thr TAC Cys Asn AAT

1566 AAT Asn Phe Lys GAT Asp TyrTAT SGC GTT Val CAA Gln CTG Leu Asn AAC 1539 Ile CAC His CAT His CAT His ACG Thr AGT Ser GGC G1y Leu

1620 AAA Lys CAA Gln TAT TCT Ser CAG Gln CAT His ACC Thr GCA Ala TTG Leu CGT Arg 593 Tyr TAT Asp GAT GAA Glu Arg CGT Ser CTG Leu AGC Ser

FIG.5F

I,eu CCC Pro AAG Lys TTTPhe AAG Lys Asp GATCCA Pro Leu TTG CCTPro 1647 Asn 1 AAC AGT Ser CCA Pro CCA ACC Thr TAC Γ yr Asp GATLeu

CAT His GGT Gly TAT TyrGGT Gly TyrGCT GAT Asp CTTLeu 1701 Cys TGC ATT Ile CCC Lys AAA AAC Asn Asn AAC Ser

AAA AAA Lys Lys GCC TTTPhe AAT Asn CAA Gln TAT Tyr ACT Thr AAC AGC Asn Ser 1755 AAA Lys GCC AAC TGT Ala CAG Gln CCA

GCC CAA Gln TAT TyrGAT Asp ATT Ile AAG Lys Asp GAT ACC Thr AAT Asn AAA ACC Lys Thr 808 CAA Gln AAC Asn TAC CAA Gln GAG Glu Ile 3GC G1y

890 GAG Phe ညည Pro AAA Lys CTA ACC Thr AGC Asn AAC ညည Pro CAA AAC Asn 1863 Gln AAA IJYS GATAsp TAT CAA Gln GAC Ile

1944 ggLeu GAA Glu GAC Asp ATA Ile AAG Lys AAC Asn TAC TyrAAA Lys GAA Glu 917 CAA Gln GGG Gly TTGLeu AGT Ser CAA Gln AAA Lys ATC

11/90

FIG.5G

AAC Asn Asp , GAC AAT Asn ACT Thr TGG Trp GGT Gly GCG TGGGlu GAA CGC AAC Asn Arg TTA Leu GATAsp AAA Lys TAT Tyr GCT AAA Lys $T'\Gamma'$ Phe

2052 AAT Asn Pro CCA Gln CAG TAT ATC Ile Asn AAT Asp GATACG 2025 Thr GGC G1y AAA Lys AAT Asn Ala CCC AAT Asn CAA Gln CAA Gln

GAT TAT TyrAGC Ser AAC Asn ACC Thr GAG Glu AGC TAT Tyr 2079 AAA Lys Cys $_{
m LGT}$ AAA Lys GAC GATAsp AAA Lys GTC Val GTG Val ACT Thr

2160 TTA Leu GCT ATC Ile TTC Phe 1yr TAT Asn AAT Asp GAT GGTSer Gly 2133 AGT ATC Ile CAC His CGC Arg ACT Thr ACC Thr TCA TGC

GAC AGA Asp Arg TAT Tyr CGC Arg GCT GGTCTG Leu GGG G1yTTG 2187 GAT Asp Val TAT Γ yr Lys AAA AAT Asn ATC Ile ACC Thr ATG MET AAC Asn

2268 CAG AAC Asn AGC Ser AGT Ser AAC Asn GAC Asp GTA Val TTGLeu 2241 GTG Val GAT Asp Ser AAA Lys CAC His Lys

Leu

G1y

Lys

Phe

Ser

Lys

TATTyrGAC Asp CTGLeu Trp Asn AAT ACC Thr Pro သည AAG Lys GTCVal GTC Val Val G1yPhe AAT Asn TGG Trp TCTSer

2376 CGC Glu GAA 299 G1yTAT TyrATG MET Glu GAA TCTSer Phe TTT AGT Ser CCA Pro 2349 ATG MET Arg TTTPhe CGC G1yGln CAA Ser AGC Ser AGA

2430 TAC TAT CTTGGT AAG CysTGT G1yCGC CAT His Gln CAA ACG 2403 Gly Thr CGC AAA Lys GGT G1yATC Ile ACC Thr GTA Val GGC Gly Phe

2484 AAC TyrTTT Γ AAA GAA Glu Pro CCTAAA Lys CTA Leu AAG Lys CAA ACC Gln Thr 457 CAT His GIC Val ACT Thr CAG Gln CAG Gln TGT Cys

TAT AGT Ser Val GAG Glu CTT Leu AGT Ser CGC GlyTTA Leu CAC His Asn CAT AAC 2511 His TTA ACT Thr CCG Ala GGA G1yGAA Glu

2592 ACC 2646 TTT AGA Arg TTG Len GAG Asp Glu GAT GAA GGTGlu G1yAGT AAA Ser Lys AAA GGTLys G1yGGTGlyArg CGT Gln GTTCAG Val ATT Ile Lys 565 2619 GGC AAA TTG Leu G1yGAT Asp Ala Thr AAT Asn TAT TyrGAT Asp CGC Arg GGT G1yAAT Asn Gln AAA Lys Thr Phe Leu

FIG.5

2700 Asp Iren Arg AGA Gly CCC Leu Ile AT'T AAC Asn Ile ATT GGC Gly 2673 ACA Thr TTG Leu GATAsp GCTAsp GAT CAA Gln GGA G1yAsn AAT CAT

CTG Leu ACA Thr TCA TAC TTA GGA Gly TAT Tyr Pro 2727 Leu CTTCGC Arg AGT Ser AAT Asn Val GTC Asn AAC Leu

ACA AAC Thr Asn GGA Gly GCA Ala TTG Leu ACT Thr CCA AAC Asn TTA AAA ACC Lys Thr 2781 GGA Gly AAA Lys GTT Val GAT Asp GTT Val AAA Lys **AAC** Asn

2862 GAT Asp \mathtt{TAT} CCC Gly Leu CTTGly000GTG Val GTG Val Tyr TAT Arg CGT TCTSer Pro CCA Gln CAG ATC Ile GCC GAT Asp TTTPhe Leu ATA Ile

AAA Lys Ala GAT Asp TCTSer CAT His ACC Thr TTTPhe I1eATA GCC Ala Asn 2889 GCA AAC Ala G1yGGA TGG Trp Lys AAA Gln CAA AGC Ser Pro

AAC Asn G1yAsn AAT GGT Gly TTA Len Asn AAC AAG Lys 2943 GAT Asp GCA TTG Len Leu CTT Glu GAG AGC Ser Asn

3186

FIG.5.

GGT3024 G1yTCA Ser TTIG GAT Asp CTT Leu ACA Thr CAA Gln TGG Trp CCG 2997 ACG Thr TCCSer AAA Lys GCA AAA Lys ACC Thr GCC CAA AAA Lys

3078 GTA Val Asn AAT T'AC T'yr GTG Val GGC Gly GCT CGTArg TTG 051 ACC Thr Phe AAT Asn GAT Asp AAA Lys ATA Ile AAC Asn GTA Val TAT Tyr

3.132 GTCVal GCG Ala GGG G1y GAA Glu GCA Ala ACA Thr CAA Gln CGC Arg TTA Leu 3105 GCT Ala GAG TGG Trp ACT Thr ACC Thr TAC l'AT l'yr ACC Thr AAT Asn

TAT CGC GGT Gly TAT CAT His AAG Lys 3159 GAT Asp CAA Gln AGC Ser CTG GGA G1yACA Thr Gln CAG AAT Asn

TAA I'I'T Phe AAG Lys ATG MET GAA Glu 3213 Leu GCA TTG Leu CAA Gln TAC AAT Asn Sec Arg GGA Gly

FIG.64

Sequence of M. catarrhalis 4223 tbpB gene

TGTCAGCATGCCAAAATAGGCATCAACAGACTTTTTTAGATAATACCATCAACCCATCAGAGGATTATTTT

54 TTA Leu	108 CCA Pro
TTA	ATT Ile
GTC Val	CCC Pro
GCC Ala	ACG
Ser	CCT Pro
ATC Ile	GCT (
GCA	CCT (Pro /
27 F TTA ACC ACA CTG TGT GTG GCA ATC TCT GCC GTC TTA TTA b Leu Thr Thr Leu Cys Val Ala Ile Ser Ala Val Leu Leu	AAT CCA CCT GCT CCT ACG CCC ATT CCA Asn Pro Pro Ala Pro Thr Pro Ile Pro
TGT Cys	AAT Asn
27 CTG Leu	81 TCA Ser
ACA	AGT GGT GGT TCA Ser Gly Gly Ser
ACC	GGT Gly
TTA	AGT
CCT	GGC Gly
ATT Ile	GGT Gly
CAC	TGT Cys
AAA CAC ATT CCT Lys His Ile Pro	GCT Ala
ATG 2	ACC GCT Thr Ala

162 GAT ASD
ACT Thr
GGT G1y
GGC (
GCT
AAT Asn
GGT G1y
ACT Thr
AAC Asn
135 GGC Gly
ACT (
AAT Asn
GGT
TCA
3GT 31Y
AGC (
GCT A
AAT G Asn A

216	270
GCC	GAT
Ala	Asp
AGT	AAA
Ser	Lys
GGC	GAA
Gly	Glu
ACA	AAT
Thr	Asn
GGT	AAA
Gly	Lys
TCT	GAG
Ser	Glu
AAC	ACT
Asn	Thr
ACA	CCA
Thr	Pro
GGT	GTA
G1y	Val
189	243
GGC	GAT
G1y	Asp
ACA	CAA
Thr	Gln
AAT	TAT
Asn	Tyr
$_{\rm GLY}^{\rm GGT}$	AAA Lys
GCA	CCA
AAT GCA	GAG
Asn Ala	Glu
GCC	CCA GAG Pro Glu
ACA	ACA
Thr	Thr
AAT	AAC
Asn	Asn

594 CAG Gln

> CGT Arg

GTG Val

AAA Lys

Leu

GAA Glu

GAA

567 GAA

540 GAT Asp

GAA

AAA

AAT

GGT

AAG AAA

AGA

GAC Asp

GAT AAA AAT GCC

Asn

Ile

FIG.6B

AAA GTT TCA TCC ATT CAA GAA CCT GCC ATG GGT TAT GGC ATG GCT TFG AGT AAA Lys Val Ser Ser Ile Gln Glu Pro Ala MET Gly Tyr Gly <u>MET Ala Leu Ser Lys</u>	378 ATT AAT CTA CAC AAC CGA CAA GAC ACG CCA TTA GAT GAA AAA AAT ATC ATT ACC Ile Asn Leu His Asn Arg Gln Asp Thr Pro Leu Asp Glu Lys Asn Ile Ile Thr	TTA GAC GGT AAA AAA CAA GTT GCA GAA GGT AAA AAA TCG CCA TTG CCA TTT TCG Leu Asp Gly Lys Lys Gln Val Ala Glu Gly Lys Lys Ser Pro Leu Pro Phe Ser	486 TTA GAT GTA GAA AAT AAA TTG CTT GAT GGC TAT ATA GCA AAA ATG AAT GTA GCG Leu Asp Val Glu Asn Lys Leu Leu Asp Gly Tyr Ile Ala Lys <u>MET Asn Val</u> Ala
TCC Ser	CAC	AAA Lys	GAA Glu
Ser	CTA	GGT Gly	GTA Val
GTT	AAT Asn	GAC Asp	GAT Asp
AAA Lys	ATT 11e	TTA	TTA Leu

•	_	J
C	(Ź
	_	•
(1	3
_	Ξ	_
L	1	_
	_	_

648 ACC Thr	702 AAT Asn	756 GTG Val	810 GAT Asp	864 AGA Arg	918 GCA
ACA Thr	GCG	CCT	CAA Gln	AGA Arg	918 TAT GGA GCA Tyr Gly Ala
GGA	TTG	GGC	ACA	AAC	TAT
Gly	Leu	G1y	Thr	Asn	Tyr
GAC	TAC	TTA	CCC	GCC	ТАТ
Asp		Leu	Pro	Ala	Ту <i>г</i>
AAT Asn	TAC	AAT	TTG	GTT Val	TGG Trp
TCA AAT (GAT TAT GGT TAC	TGG AAT '	GCC AAA GAG TTG CCC ACA CAA	ATG ACC GAT GTT GCC AAC AGA AGA	CAA GCA GGC TGG
	Asp Tyr Gly Tyr	Trp Asn	Ala Lys Glu Leu Pro Thr Gln	MET Thr Asp Val Ala Asn Arg Arg	Gln Ala Gly Trp
AAA ATT TTT CAT	TAT	GAC AAA CTT 1	AAA	ACC	GCA
Lys Ile Phe His	Tyr	Asp Lys Leu 1	Lys		Ala
TTT Phe		AAA Lys	GCC Ala	ATG	CAA G1n
ATT Ile	GTT Val	GAC Asp	ACC	TTT Phe	TCT
AAA Lys	675 TAT Tyr	729 ACA I'hr	783 ACG Thr	837 GAC Asp	891 AAC Asn
AAC	AAA	AAA	ACA	TGG	GAA
Asn	Lys	Lys	Thr	Trp	Glu
GAA Glu	TTA	GTC Val	GGC Gly	CAT	AAA Lys
CTG	GAT Asp	ACC	TTT TAT AAT GGC Phe Tyr Asn Gly	GGA Gly	GTG Val
TCA	CGA	CTA	TAT	AAA	GAA
	Arg	Leu	Tyr	Lys	Glu
TCA	ACA	TAT	TTT	TAT	AGC
Ser	Thr	Tyr	Phe	Tyr	
TTA	ACC	AAT	GTG	AAA	TTT
Leu	Thr	Asn	Val	Lys	
CAA GTA TTA TCA TCA CTG GAA	AAA GCA ACC ACA CGA GAT TTA	GAT GGC AAT TAT CTA ACC GTC	GGT GGT GTG	GCG GTC AAA TAT AAA GGA	AAC CGA TTT AGC GAA GTG AAA
Gln Val Leu Ser Ser Leu Glu	Lys Ala Thr Thr Arg Asp Leu	Asp Gly Asn Tyr Leu Thr Val	Gly Gly Val	Ala Val Lys Tyr Lys Gly	Asn Arg Phe Ser Glu Val Lys
CAA	AAA	GAT	$_{\rm G1\gamma}$	GCG	AAC
Gln	Lys	Asp		Ala	Asn
				•	

F1G.6L

972 GAT 1026 CCT Ser GAC GAA Glu AAA Lys ACT Thr TTA Leu 945 TTA l,eu 999 AGC Ser Arg CGC Asn AAC TyrTAC GAA Glu GAT Asp Lys AAA TCA Ser GGT Gly

AAG GAA Lys Glu 1080 AAG Phe Asn CAT His AAT GTT Val CGC Arg GAC Asp ACT Thr TTTPhe CAA Gln GAG Glu CTA Leu AGT Ser AAC Asn AGT Ser 1053 CAT His TTTPhe GGC Gly CTG Leu AAG Lys Tyr GAA Glu GGT Gly GGT Gly ACA Thr AGC Ser TTA CAT His Lys AAA Lys

AAC Asn GGC Gly CAC His ATC Ile AAT Asn GCC Ala GAT Asp ATC Ile Asp GAC TAT CGC Arg GAA Glu ACC Thr AAA Lys ACA Thr STT Val

Thr CAC His AAA Lys AGC Ser ACA Thr GAC AAT Asn AAT AAA Asn Lys AGC Ser GCA Ala ACC Thr GCC AGT Ser GGC

GAG AAA Lys CCA GGG Gly TAT Tyr TTT Phe GGT G1yGGTGly GAA Glu CTA Leu AGG Arg AAT Asn AAC Asn GAT Asp

FIG.6E

1296 GGT GCT Gly Ala	1350 GCA Ala	1404 ACC GAA AAA Thr Glu Lys	1458 ATT Ile	1512 GAG Glu	1566 AGC GTC
GGT G1y	TAT Tyr	GAA Glu	GTC	CCA Pro	AGC
TTT Phe	GCC	ACC Thr	ACC Thr	AAG Lys	GTT
GTC Val	GAT Asp	TTT Phe	TCT Ser	GAC Asp	GAA
GGC	TTA Leu	CCA	GGT G1y	AAA Lys	GAT
TTT Phe	ATC Ile	ACC Thr	TTA Leu	ACC Thr	AAT
CTC	GCC	TTC	GTC	TTC Phe	GTG Val
1269 CTG GCA GGT AAA TTC TTA ACC AAT GAC AAC AAA CTC TTT GGC GTC TTT Leu Ala Gly Lys Phe Leu Thr Asn Asp Asn Lys Leu Phe Gly Val Phe	ACC GAA GCC ATC TTA GAT GCC TAT GCA Thr Glu Ala Ile Leu Asp Ala Tyr Ala	GGG ACA TTT AAT ACA AGT AAC GCA ACC ACA TTC ACC CCA TTT Gly Thr Phe Asn Thr Ser Asn Ala Thr Thr Phe Thr Pro Phe	1431 GGC AAT GCC AAA AAA TTG GTC TTA GGT TCT ACC GTC ATT Gly Asn Ala Lys Lys Leu Val Leu Gly Ser Thr Val Ile	1485 NT GCC ACC AAA AAT GAA TTC ACC AAA GAC AAG CCA GAG P Ala Thr Lys Asn Glu Phe Thr Lys Asp Lys Pro Glu	ATG
AAC Asn	ACC Thr	ACC	AAA Lys	AAT Asn	TTG
1269 GAC Asp	CGA GAG AGT AAA GCT GAG GAA AAA Arg Glu Ser Lys Ala Glu Glu Lys	.377 GCA Ala	431 AAA Lys	1485 AAA Lys	GCC ACA AAC GAA GCG GGC GAG ACT TTG ATG GTG AAT GAT GAA GTT AGC GTC Ala Thr Asn Glu Ala Gly Glu Thr Leu MET Val Asn Asn Glu Ala Gly Glu Thr Leu MET Val Asn Asn Glu
AAT Asn	GAA Glu	1 AAC Asn	GCC Ala	ACC Thr	1 GAG Glu
ACC Thr	GAG Glu	AGT Ser	AAT Asn	GCC Ala	GGC G1y
TTA Leu	GCT Ala	ACA Thr	GGC G1y	GAT Asp	GCG Ala
TTC	AAA Lys	AAT Asn	TTT Phe	ACT	GAA Glu
AAA Lys	AGT	TTT Phe	AAC Asn	G CCT ACT GAT	AAC. Asn
$_{\rm G1Y}^{\rm GGT}$	GAG Glu	ACA	GAT Asp	GTG Val	ACA
GCA Ala	CGA Arg	GGG G1y	CTG	TTG	3CC Ala
Crc	AAA Lys	CTT	CAA CTG GAT AAC Gln Leu Asp Asn	GAT '	TCT (
	,			•	

Asp

620 GGTGIyAGT Ser Leu CTTGAG Glu GGTG1y T^T Phe CTA AAA Leu Lys GAA TAC TTTGGC AAA AAC Asn LVS \mathtt{TAT} TVI ACC AAA . LVS

1674 GAG AAA Lys Glu SGC G1yACA Thr ACC Thr GCT Ala ACC Thr Arg CGC Glu GAA 299Gly Gln CAA TTA Leu Phe TTTVal AGC Ser CAT His AGC Ser G1y

1728 ATC TAC TyrGGA Gly Val GTA TGGTrp AAC Asn 666 $T^{T}G$ Leu TAT TyrLys AAA 1701 Ala ACA Thr GGC Gly Thr ACA ACC Thr CCA Pro Val

1782 GAT CAA Asp GATACC Thr TTTPhe AGC Ser AAA Lys GGA Gly GGC ACA Gly Thr 1755 ACG rhrGGA Gly ACA Thr GAC Asp AAG Lys Gly ACA Thr

1836 Leu AAA Lys GGTGly AGC GTC Val TCA Ser AAA LysAAT Asn T'IT GGA / Phe Gly 809 GAT Asp ATT GAC Asp Phe Asp Val

890 AAT ATC CAA Gln GGTThr ACA ATC Ile AGC Ser TTT1863 Phe GTA Val Pro Asp GAC CAA Gln CGC Gly AAA Lys

FIG.66

1944	1998	2052	2106
TAC AAG ATA	GGG	ACA CAC AAC GCC	, AAG
Tyr Lys Ile	G1y	Thr His Asn Ala	Lys
AAG Lys	ACA Thr	AAC Asn	GTT Val
TAC	GTT	CAC	GAA
Tyr	Val		Glu
GGC	AAT	ACA	CAA
G1y	Asn	Th <i>r</i>	Gln
GGA	GCC	rtt	CAA
Gly	Ala	Phe	Gln
AAA GCG GAC GCA GGA GGC Lys Ala Asp Ala Gly Gly	1998 GCC ATC AAA GAT GCC AAT GTT ACA GGG Ala Ile Lys Asp Ala Asn Val Thr Gly	TCA	2106 AAA AGA CAA GAA GTT AAG Lys Arg Gln Gln Glu Val Lys
GAC	AAA	. GGG	AAA
Asp	Lys	. G1y	Lys
GCG	ATC	66C	ACA
Ala	Ile	61y	Thr
AAA	GCC	ATG	GGC
Lys	Ala	MET	Gly
.917 ACC Thr	ACA GGC AAA TCC ATC Thr Gly Lys Ser Ile	2025 CCA AAT GCA AAC GAG ATG Pro Asn Ala Asn Glu MET	2079 GTC TTT Val Phe
ACC Thr	1 TCC Ser	2 AAC Asn	2 GTC Val
1917 ACA GCC AGC ACC ACC Thr Ala Ser Thr Thr	AAA Lys	GCA Ala	GTG Val
GCC	GGC	AAT	TCT
Ala	Gly	Asn	
ACA	ACA	CCA	AGC AAA GCC TCT GTG
Thr	Thr		Ser Lys Ala Ser Val
TGG ACA GGG /	GAT TCT AGC AGT	GGT	AAA
Trp Thr Gly	Asp Ser Ser Ser	Gly	Lys
ACA Thr	AGC	\mathtt{TAT}	AGC Ser
TGG	TCT	TTT	GAC
Trp	Ser	Phe	Asp
GGC G	GAT Asp	GGC Gly	GAT GAC A

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

A A

Ø ں ပ Ø Ø

A G

⊱

•		ζ
	_)
٦		-
(٢	j
-	Ξ	_
L	L,	_

08 thpA gene sequence

A.T ⊢ ₽ G Ċ ¥ Ø ٢ Æ G AATT

ර ₽ Z G TGT. 20 CAAA.

æ TA Ø Ø Z. Ø Ø ī Ø Ø Z Z, K TAC K Ę

E G ල 9999 S ර

T A 150 AAG ۲ A T 140 K Ø <u>ი</u> ₽

ပ

99 Ø ပ AAA ₽ æ C ACGC A C 160 ۳ Ø ပ Z, Ø K

T G 210 T T ₽ ပ ₽ ၁၁ S A T 200 T G Z, K

T T G . 230 Z 9 S S ق ග T G 220 ဌ G ₽ E A ပ

GA E ပ ₽ G T G 260 G හ K ပ AGCCAAC 250 Ø Ø Ø ں K

S

SUBSTITUTE SHEET (RULE 26)

Ø

460

FIG. 10B

ASN GLN SER LYS LYS SER LYS LYS SER LYS A A T C A A T C C A A A A A T C C A A A A	LEU SER ALA LEU SER LEU CTTAGTGCCTTGTCTTTG 320	GLY LEU LEU ASN ILE THR GLN VAL ALA LEU GGTCTGCTTAACATCACGCAGGTGGCACTG 340	ALA ASP LYS ALA GLU ALA GCCGATAAGCCGAGCA 380 390	THR ASP LYS THR ASN LEU VAL VAL LEU A C A G A T A A G A C A A A C C T T G T T G T C T T G 400 420	VAL THR ALA LYS LYS ASN GTAACAGCGAAGAAAC 440 450	ALA ARG LYS ALA ASN GLU VAL THR GLY LEU GCCCGTAAAGCCAACGAAGTTACAGGGCTT
A	F-		7.3	A	<	5

CGAGAC

J 9 9

FIG. 100

AAC CTA GAACAAGTG GLU GCCGAGACC AATAAA LYS AAGGTGGTCAAAACT 混 MAT.

CGCTATGACCCTGGCATTGCTGTG 550 550

VAL GLU GIN GLY ARG

TGAGCAAGGTCGTGGGGCAAGC 580

C G TGGATAAAAAT 620 æ GGT ARG SEC TAT

630 VAL ALA VAL LEU VAL

GTGGCGGTATTGGTTGATGGCATCAAT

82 CAA CTA C A C T A T C 670 TR

SUBSTITUTE SHEET (RULE 26)

四

AAA

GCA 0000 GGT GCA C : A A A A T 7 700 ASIN

GAAI ILE A A A ' ASN

ASS GCA GGT AAA AGT GAGAT

TCA

0 0 0 Ø GGGGCA

TACGGC

GAA

SE

黑 贸

强 A A A 7 8 830 GTT GCATTT G T G

TGGGGC GAT ASP AAA GGT GLY GA CAAA LYS K

AC

G CAAA CAG

TATCAGGGT

TYR

960

GLY

SER

AAGGCAGGTTCTTTAGC AIA AATTCTGTGGCAGCA G.C.A.G.G.C GLY ALA ASS GCATGGGTT 3 136 ALA AATAAC ASIN PS S

CAA TACACCGACCGCGTGGT APG ARG 温 A T C

TACAAGGCACATGATGATGCC ALA ASP ASP HIS ALA

AGAGCGGTGGCAACC ¥ ALA ARG AGTTTTGAT ASP 出 SER CAA AGC (

GACCCAAATAACCCAAAATTTTA E LYS 8 PS. <u>R</u> ASP

ATA

1080

SE AAT A A T G T G C C A A T G G T 1090 1100 GLY ර

AAC

LYS TGTGCTGCCGGTCAAACC GIN $G \subset G'$

CGTGATAAG ASP ARG GTG MAT ASN K AAGCCA PR 084 C L J S CAA

ASP ASN

CCTAAC 82 用用 AATGTCAAAGAT GTC

CAAGAC ACC CCACTC 国 PR 0 CAAAC ASIN PRO

图 E SE

GGTTAT P3 $\mathcal{S} \mathcal{S} \mathcal{S}$ AAATCCTTACTG AGC

ASP ACGA ASS E S. S.

CACTATGTCGGTGGT

AAG

ASIN AAACAA K GAAA GE GTG

SUBSTITUTE SHEET (RULE 26)

E

292

ARG

TYR GTGCCTGCT <u>2</u> M TAAA LYS S GIN 否

GAAAAATCA CATGACATT

AGGCTC

GGCTAT CAAGC CATGGC STS AAC AGC

GLY 回 ASI ASN

AATAACCTTGGTGAACGC EE CE CAAGGC

SER AS S A.P. N E GATGC

AATTCAGGTTATGGC 1470 GCA TTGGG Ø

ZAL M TATGCTCAT TAR ATCAAC PS A

回 ASP LXS Z CAC GAA

SUBSTITUTE SHEET (RULE 26)

SE

AAT

GCAAA

GA

GAA

BNSDOCID: <WO 9732980A1>

SER

CAG CGTAGC CTAິ ບ AAT ASIN AA ACA GAT G

CAAGA GIN ASP CYS

SUBSTITUTE SHEET (RULE 26)

GTGCGTGTCTTAT

GAT

AAA

VAL

ď AACACG 9

Lis AAT ASIN

ACA

GTAAAA S

ASN ASN

GAG

CA CAG AA G CCTACAAA ATG Z K

ARG

CTTAGCCGTGAAGATTATCGTTTGGCAACC

GATTACACC 国

PR 8 ASI R 2 8

PR0

国

GATAAG TTGCCAC 1910

TCAAACAACAGA ASS TTTAGGT 8

FIG. 10

AACAAAAAA LYS ASI AAAGCCGTCTTT A T'C,

田田

AAT CATCATCACATC AATACG ე ე ე TTG

ASN

GATAAATTC

AATTCAAGC 园

TCTTATCAAAACTT

SE

CAA GIN

CAT

AAAAAA

ATC

LYS

2160

CAT TATGGT TTGATGCT ALA ASP E

TGTAAC ASS CCACAGGCT GIN GACCAT

GEN 開

TTTGCC7 2030 出出 AAC ASS. TATCAA AGCAC

黑 CIP ASI GAGCAA SIN ں . 9 9

ACCAATACC AACCAA

ASP LXS GAT ASP

ATTGAC TATCAAGCCGTC AAGATTGAT

2090

2100

AACAGCACC ASIN AACCCC SE SE K CAA

3 ILE

CCTTTGAGAAAATC CTAAAAC

回

AAAGAT

-1G.10K

GGCTTTAATGCTTAT 2200 2210 ASS. 出 ATAGAC GAATGGCGGGTTGGACTAATGAC GLY CTG AGA TACGACGAG ARG ASIN SE ASP TYR TTGGGGCAAGAA GL GLY 哥

GCCAATAAAGGCACG CAACAAAAC AACAGC

ASP CAAGCAACT LYS CAGCCAAAT ASN PR 08 ATCTAT GATAAT

CYS

AAAGATGACAAATGTAAATAT TGCTCAACC GTGGTC GCTGAT GAGACCAACAGCTAT

GGTGAT

ASP

SE

ACTCGCCACA

AACATGACCATCAAT

ASIN

TTAAAAGAC

LYS

2430 ME TATAGA

CATC

G A

GGGCTGGGT GTTGAT

2490

ASP

CACAAA

AAA

AGAATC

SER TAGAC WAL G R2

AGTGCC AAC

AACCAG

ASN GIN

2550

GGCGTGGTC

GGAA

E

CTG

贸

MAL

ASIN

つつつ

ACCAATTGGCTG

37/90

CAG

CAG

TGT

FIG. 10M

黑 CGCATG CAAGGC7 2590 SER AGC SER

SER GLU MET TYR GLY G

盟

ARG

CTGAAATGTATGGCGAACGC 2620

GGTAAAGGCACGCAACATGGCTGT

.0 2670 LYS GLY 1.F11 TVR

LYS GLY LEU TYR TYR I AAGGGTCTTTATTACA

VAL HIS GLN THR LYS LEU LYS PRO GLU LYS

CATCAAACCAAGCTAAAACCTGAAAA

SER PHE ASN GLN GLU ILE GLY ALA TI TCCTTTAACCAAGAAATCGGAGCGA

2730

GTTAGT GAG G T SE TTA E CAC AAC ASIN

CAT

2780

CAGCGT

SER

TCAACA

FIG. 10N

AAAATCGCTATACC 那 TYR ARG 2800 T T T 1 TAT AGA GAGATT GE

GTAAAAGTGAAGAGATTAGAACCCTA 2830 2850

SE

THR GIN GLY ASP ASN ALA GLY LY ACCCAAGGTGATAATGCAGGCA

2860

LYS GLY ASP LEU GLY PHE HIS ASN GLY TAAAGGTGATTTGGGCTTTCATAATGGG

2890 2900 2

GIN ASP ALA ASP LEU THR GLY ILE ASN ILE CAAGATGCTGATTTGACAGGCATTAACATT

2920 2930

2940

GCTGTCAAT WAL. GACCTAAAC ASN ASP LEU AGA 3

2960

SER ARG LEU PRO TYR GLY LEU TYR A G T C G C C T T C C C T A T G G A T T A T A C

39 ,	/90
-------------	-----

TGGC

9

AGC AAT

GCCAAA GAT

CATTCT

GGT

TTA(

FIG. 10C

GTTAAA ⊏ T T G ATATAAC NSA NSA 扫

ASN

GLY

TAA ⊢ AA

GCCATTCAG

GAT

CTG

SUBSTITUTE SHEET (RULE 26)

ASP

ල

GGAGCA

SER

EB AAGAAC ASN GAT ASP

BNSDOCID: <WO 9732980A1:

FIG. 10P

LYS A A A 3240	ASN A A T 3300	ALA G C T 3360	HIS CAT 3420
T把 A C C	ASP 3 A T	GLU ; A G (LYS A G (
ALA 3 C C /	ASN ILE LYS ASP AACATAAAAGATA 3290	TRP G G G	ASP A T A
GLN A A (30	ILE TAA	HR C T T	IIN 1
.YS A A C 32	SN ACA 329	HR 1	ER GLN SCCAP 3410
A A	AA	T A C	S. A. C.
THE A C	VAL 3 T	TYR I' A' (LEU T C
GLN CAA	TYR TAT(TYR I A T T	GLY 3 G A C
GLY ASN ILE GLN THR LYS GLN ALA THR LYS GGCAACATTCAAACAAACAAGCCACCAAA 3220	THR LEU ASP A C A C T T G A T 3270 LEU SER GLY TYR VAL ASN ILE LYS ASP ASN T T G T C A G G T T A T G T A A A C A T A A A G A T A A T 3280 3300	TYR ASN VAL TACAATGTA 3330 PHE ASN THR TYR TYR THR THR TRP GLU ALA TTTAATACCTATTACACCACTTGGGAGGCT 3340 3340	ALA VAL ASN GCGGTCAAT 3390 GIN HIS THR GLY LEU SER GLN ASP LYS HIS CAGCATACAGGACTGAGCCAAGATAAGCAT 3400 3420
ASN A A C	THR LEUACTT LEUSER	ASN A A T ASN A A T	VAL G T C / HIS C A T /
C C C	SER THR PRO TRP GLN THR LEU ASP A T C C A C G C G T G G C A A A C A C T T G A T 3250 3270 LEU SER GLY T T G T C A G G T	TY VAL TYR ASN VAL GCGTGTACAATGTA 3320 3330 PHE ASN THR TTTAATACC	GLU GLY ALA VAL ASN A A G G G C G T C A A T 3380 GLN HIS THR C A G C A T A C A 340
	TRP GIN G G C A A A 3260	C G T G 3320	J GLY A G G G G 3380
	TRP T G G 33	G G G C	GLU GAA 33
	PRO C C G	ALA G C T	ALA 3 C A (
	SER THR CCACG 3250	ARG C G T (THR ALA ACAGCA
	SER T C C 3250	LEU ARG ALA C CTTGCGTGCTG 3310	GIN THR ALA C CAAACAGCAG 3370
	Æ	<u> </u>	<u> </u>

3660

AAG

CCA

C

ပ

AAG

Ø

FIG. 10Q

E GIN TYR PR0 CGCTAT TATGGI

TACCAATTGGCAO S 3460

K

Z L

GAAATGA 3470

> AGTGGCTTTGATGTGATCATGCCAAATC 3490 3510

3510 CCAATCAACCAATGAAT

3520

CATCGCTGA 3570

₽

T A

₽

Ø

ں

999

K

ග

K

GTATGCTCTTAGCGGTCATCACTCAGA

Z Z, Ø E GAT ن G Z, **—** ₽ AT K Z ں

GTAATCACGCTGCTCTTTGATGA

3640 3650

SUBSTITUTE SHEET (RULE 26)

3480

5 Ø

 \mathfrak{O}

ე ე

V

C

Œ

Ø

S

ပ

ACC

Q8 tbpB Sequence.

K GTAACAA CA V T G \mathcal{C} S S ර Ø

K C ں TAC ₽ Ø G C K ن K G

G

Ø

K

ں Ø 5 Ø, ں G G 9 9 S

Z

₽

Ø

C

Ø

ර CA K ں ں G G Z, K A A K G H Z G ⊱ K

Ā

ACA C G K E K G G 140 E G G G T G K ල

150

<u>ე</u> S G ď. S K V J 5 5 160 S G G ₽ ₽ \mathcal{O}

A A A 210 Ø K K A G ں ⊱ K Ø Ø ල

G

K

A A A C 9 230 Z, S Ø K K Z, G A 260 S K 5 ⊏ A A 250 æ C K 9 G ₽

G

C T G G 290 H [-- C G K K

A G

E.

C A 840

<u>ე</u>

ပ ₽

AA

O 9 9

ည ၅

A H

G G T

TCA

ပ

SE

ပ

K

E--

Ø æ

Ø

ACA S S Ø T A AG 回 ں Z, AT ල GGTGG7 A G AA GLY K Ø Ø ₽ ¥ Ø TGT Z, ပ Ø K S K S $C_{\mathbf{T}}$ ₽, Ø G \leftarrow CA Ø V ල ₽ ں K G ₽ K ď G C K ည ဗ Z, Z CA

AAT

G

K

Ä

ں

E

G

K

E--

K

Z, S

K

K

C

⊱

K

Æ CA ර C G G CA Ø Ö A C ی ⊱ K G ල G S K æ K Z ⊱

ں ₽ K Ø Z, K C A €-

K

K

Ø

K

A A 390 T G G E G

G A

⊱

E

ე ე

G

Z,

G E Ø <u>-</u>

Z G A T Ø K K Ø Z Ø

A T Z N. Ø S A A 500 Z Ø K Z G K K Ø K

K 4

9

Æ K A A 520 ₽ Ø K K

Ø

S

G C 560 **E** ₽ K Ø G Ø K

Z, **E**--Z, K G A A Ø F Z

SUBSTITUTE SHEET (RULE 26)

K

S

G

CATCT

ن ں 3540

GLI ARG IYR ALA ALA PRO GLY ARG ASN GGICGCTATGCCGCTCCTGGACGCAAT 3430 3450 TAT TYR

TEG GIN

GAAATGAAGTT 3470 GEU TACCAATTGGCACTT E

K

က ဗ GATCA

C A A A T C 3510 3500

TAAAGCC AA CCAATG AATCAA ပ

ATCGCTGA ں ⊢ TTA K G G G (3550 K ග K

TCTTAG ں T G K [G

AGATTA TCACTC CA G ပ

K ⊢ K Ø ₽ CGAT G Ø Ø ⊢ ATT Æ Ø

3620

AATCACGCTG 亡 9

G G TGAT 3640

SUBSTITUTE SHEET (RULE 26)

G

ග

G

Ø

3480

C

K

K æ

Ø

C

S

G

K

ACC

Q8 tbpB Sequence.

Ø, TGACAGTAACAA S S S

K ں F ¥ Ø ں S Ø

Ø G

S

K G Ø G G G ပ S æ C G

¥

æ A G Ø ں 9 Ø Ø, A A K G K G E

ACA ی S [K E S ی G Ø T G Ø, ₽ K

G G 140

G S ပ ර G C 170 G G Ø, G K Ø G C 160 G S S \mathfrak{O} ₽ ₽ \mathcal{C}

ى ₽ Ø Ø G C 9 ø

< Ø A G

A A 230 K ں K 5 ග \mathfrak{O}

ပ Z K K G G A ' 260 K G A A

A G 5 Z 9 F ₽ ں \mathcal{O} K E S K K

009

	ĭ	_
(r	5
L	L	_

ATTCACAAATGGGGCATCACGCCAGGCTG 310 320
ACCATCAGCACAACATAAAAGCAA 340 350 360
AGTTTAGT
400 410 420 TGGGATAAGCATGCCCTACTTTTTTTT 430 440
AAGAAAAT 510 490 TTATGATAATTGTTATTATTATT TTAATGATAATTGTTATTGTTATG
3 T A T T T G T 570
CCATCATAAACGCATTAATGCTCAA 580 590 600

99

FIG. 110

A G \mathcal{O} K Ø Ø \circ ර G Ø K Z K K K C G \mathcal{O} G K ပ G K V C S ں K Ø Ø

Z **E--**K S G Z ပ Ø ပ E Ø C C Ø K C

A.

L

MET LYS HIS ILE PRO LEU THR TTATGAACACATTCCTTTAAC

ALA ILLE SER ALA VAL LEU LEU THR GCAATCTCTGCCGTCTTATTAACCG ALA CYS GLY GLY SER SER GLY

CTTGTGGTGGTAGCAGTGGTGGTTTC 760

ASIN

PRO T C Tည ဗ K

GLY ASN SER GLY ASN ALA GLY ASN AI GTAATTCAGGTAATGCTGGCAATGO 820 830

ACCG

GATGTGCC

M

TCTG GCAAAC GGT 000 黑 GGT ည (၁ (၁ (၁ GLY ALA ATG S S

980

ASIN 870 STY GLY

້ ອ AAT

GGT

GGT

GCA G

ALA GCAGGCAGT SER

C G T

CAAAC

88 GLU SS

AAA LYS TAT CCAAAA GAAO CA

G G C A 990

GTT

GAA

 $G \subset T$

A A A A 970

Ø

980

MAL MAL

CGT GAACCTGCC

T'GG

<u>ე</u>

M

GLY

TYR

<u>R</u> A T A (TGG AAC ASIN CGT ARG C T TB AAG K

A A

						*
GLU GLN GLU HIS ALA LYS ILE ASN THR A AACAGGAACATGCCAAAATCAATACAA 1060 1060 1070		AGCATAATCCATTGACAACTCTATTGGC 1120 1130 1140		THR VAL TYR ASN GIN GIJU LYS GIN ASN ILE G CTGTTTACAACCAAGAGAAGCAAACATTG 1180 1190		ARG PRO ASP LYS LYS LEU ASP ASP VAL ALA L GCCCTGACAAAACTTGATGACGTGGCAC 1240 1250 1250
ASN A A		ILE A T'		ASN A A (VAL 3 T G
ILE A T C		SEX C T		GIN		ASP A C (
LYS A A A 1	į	ASN A C 1 1130		LYS A A G C 1190		SP / A T G 250
LA C C A		SP A C A		JU I GA J		U A
T G	*	T G A		G A G A		IE A C T
HIS C A	Ē	TT (GLN C A 2		LYS A A A
GLU GAA .060	A A 10 DDO	C C A 120	V 0	ASN A A C 1180	ပစ	LYS A A A A A 440
GLU 3 A A 1	LEU T T G A 1110	AT (GIN A A A	TYR A C 7	GLN : A A C 1230	ASP A C A 12
GIN A G (U GLU GLY ASP LEU TGAAGGTGACTTGA 1100 1110	ATA	CAAAGAAGTACAAA 1160 1170	AL TTT	AGAAATAAACAAC 1220	70 7 C T G
ilu A A C	ET G	7 9 V	LU A A G	A E C	N T A	9. 2. 0. 1.
G	7 S O C				A A A	AR G
	G A A 1100		LYS A A 116	·	GLU G A A 1220	
	LEU CTT		SER A G C		ARG A G A	
	LYS A A A		ASN A T		LYS A A A A	
	SP VAL VAL LYS LET A T G T T G T A A A A C T 1090		SN ILE LYS ASN SER ACATCAAAAATAG 1150	· · · · · · · · · · · · · · · · · · ·	_က က	
	NL r T G 10		E LYS		N ILI A A T 1210	
	V 47	•	IL	•	GIN C A A A 12	
	A T G		Z A		SP A T	

FIG. 11F

			TEN TEN
			GLU
	ဗ	96	THR
ASP	CTTGATG	1290	PET I
[H]	CTT		ARG
VAL	TT		ASP ARG
LYS	AAA	1280	
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	GAA		
ILE	_		
TYR	TAT	1270	
ALA	G C T	-	
GIN	TACAAGCTTATAT		
뮵	T A		

. T 20		ש רי	0
ILE A T T T 1320		ASP LEU L GATTTGA	1200
PRO C C C		ASP G A T	
LYS A A A		ARG C G T	
ALA LY FGCTAA 1310		THR A C T	1270
LEU		2 G C	
GLU 3 A A (ALA A	
A A C A C 1300	4 0	LYS A A G	9
ASP ARG LEO THR GLU LEO ALA LYS PRO ILE ACCGTCTAACAGAACTTGCTAAACCATTT 1300 1320	ASP 3 A T A 1350	LYS GIN ASN LYS ALA ARG THR ARG ASP LEU L A G C A G A A T A A G C A C G C A C T C G T G A T T T G A	1360
ARG GTC	HIS CAT(GIN A G A	
ASP ARG LEU THR GLU LEU ALA LYS PRO ILE ACCGTCTAACAGAACTTGCTAAACCAT1	SER HIS ASP TCACATGAT	LYS GIN ASN LYS ALA ARG THR AGCAGAATAAAGCACGCACT	
·	TYR T A T 1 1340		
	ASN TYR SER HIS ASP AATTATTCACATGATA 1340 1350		
-	ILE TTA		-
	AGN A T A 30		
·	TGAAAAAATATT 1330		
	IU I A A A		
	o L		

LYS A A A A	
LYS A A G	
PRO C C A	
ILE A T T 1430	
ILE A T C	
ASN 'AATP	
説 こ E	
GLY TYR ILE TYR ARG GGTTATATTTATCGCT 1400 SER GLY TYR S CAGGTTATT 142	1 134
TYR TAT ŒLY GGT	ייייי איזא מיזע מואס
ILE ATT SER CA	> E
TYR T A T 1400) CD
GLY TYR GGTTAT 1400	OLIC
SER T C T	> <u>-</u>
ARG C G T 3390	THE
VAL G T G	SAL
YS TYR VAL ARG SER A G T A T G T G C G T T C T 1390	LE ALA LYS
YS A G	E

TAGCTAAAACTGGT 1450

FIG. 11G

L 00	9 9	M M 20	A A 30
GLN 1 C A A T 1500	LYS A A A A 15	ALA M GCAA 1620	TYR PAT 168
LYS A A A	LYS A A	SER AGTG	ASN TYR A A T T A T A 1680
AT C	P C A	T.	T A I
A G	AI G C	TY T A	AS G A
THR A C T 1490	ASP G A T 1550	ARG TYR CGTTATA	PRO C C A 1670
GLN C A A	THR	ASP G A T	LYS A A A
THE TYR GIN GLY THR GIN THR ALA LYS GIN LTTTATCAAGGTACACAAACTGCTAAACAAT 1480 1490 1500	TYR LYS GLY ATAAAGCA 1530 HR TRP ASP PHE MET THR ASP ALA LYS LYS GCTTGGGATTTTATGACCGATGCCAAAAAG1540 1540 1560	GLY THR SER G T A C A T C G C 1590 GIN ARG LEU ALA GLY ASP ARG TYR SER ALA PARG LEU ALG G T G G T G G T T A T A G T G C A A 1620 1600 1600 1600	SER LEU LEU C T T T A T T A A 1650 THR ASP GLU LYS ASN LYS PRO ASP ASN TYR A C T G A T G A A A A A A C C A G A T A A T A T A T A T A T A T A T A
GLY A G G T 1480	A 30 PHE T T T 540	3 C 590 ALA ' G C T (A 0 LYS A A A i
	GLY G G C A 1530 ASP P G A T T '	SER TCGC 1590 LEU A CTTG	LEU T T A A 1650 GLU L 3 A G A
PHE TYR GIN TTTATCAA	TYR LYS GLY LATAAAGGCA 1530 THR TRP ASP PHE CTTGGGATTTT 1540	THR ACA ARG	LEU TTA ASP 3AT(
HE T	TYR TAT THR	GLY THR SER GGTACATCO 11 GIN ARG LEU AACGTCTT	PRO SER LEU LEU CATCTTTATT 1640 18 THR ASP GLU CTGATGAG
	LYS A A G 1520	R PHE GLY THR SER TTTGGTACATCGC 1580 1590 GLN ARG LEU A AACGTCTTG	PRO C C A ' 1640
·	VAL G T T	SER SER PHE IGCAGTTTT 1580	TYR I-A C (
	GIN C A A	SER A G C	GLU 3 A A '
	SER A T C T 1510	PHE 4 T T T. 1570	HIS C C A T (
	EU PRO VAL SER GIN VAL LYS TYR LYS GLY TGCCTGTATCTCAAGTTAAGTATAAAGGCA 1530 1510 THR TRP ASP P CTTGGGATT	LY GIN SER PHE SER SE GACAATCATTTAGCAG 1570	ET SER TYR HIS GLU TYR PRO SER LEU LEU LEU TGTCTTACCATGAATACCCATCTTTATTAA 1630 1640 1650 THR ASP GLU L CTGATGAGA
	PRO C C T	GIN Y A A	SE C I
	T G C	LY G A (ET TG1

AAACGCT

LYS

LYS

FIG.11H

AGTGAG a B B SER AGC GAATAT GE S

SE IXS LYS M

CTAAAAG 1740 国 AAAAGAGC GTAGATTTTAGT

CAAGACGGCC N U GIN ATA TCTAGTAAC 1750

RES

E

CTG

GAGO

SE ST Cli ГXS

AATAAA ASIN AAGGGCAGTGTT

GLY TYR ASP IE ASP

TACGGCAACC ATC TCGAT(1810 GAC

S G G ARG 思 ARG

AGCGATA 段 GCA CGTGCCAGTGCCACC TTC ည ဗ

1850

1860

ASP

LYS GAAGCA ALA

AAACACCCCT AGC 1880 AAA

AGC

CTAGAA AATAGC AAA AGCGAT

GAGGAGC

GLY

ACC CTA GCAGGTAAA

ASS S

ASP

GGT Ē. ິ ວ ອ ອ

GAA GAAGCTAAG 9 AGT SER ල

GCCA

GCACTTGGG TAT GATGCC

E ACG CCTGGT

AAAGAAA

FIG. 11,

	ى ح					ш,	₽
	PHE GLY ASN ALA LYS LYS LEU V TTGGCAATGCCAAAAAGTTGG	2150				ALA THR LYS ASP VAL ASN GLU F	CCACCAAAGATGTCAATGAAT
	LYS A A G					ASN	AAT
	LYS A A A					VAL	G T C
T 30	ALA G C C	2140		ဗ	90	ASP	GAT
ASN SER LYS LYS GLU LEU ASP ASN A A C A G C A A A A A G A A C T G G A T A A C T 2110 2120 2130	ASN A A T	~	GLY	GTCATTGATTTGGTGCCTACCGGTG	2190	LYS	AAA
ASP G A T	GLY G G C		開	ACC		開	ACC
LEU CTG	PHE T T		PRO	CCT		ALA	ပ
GLU GAAC 2120			VAI.	G T G	2180		
LYS A A A			nen Ten	TTG			
LYS A A A	•		ASP	G A T			
ASN SER LYS LYS GLU LEU ASP ASN AACAGCAAAAAAGAACTGGATAAC 2110 2120 21			VAL ILE ASP LEU VAL, PRO THR GLY	A T T	170		
ASN AAC 2			WAL	ည ' ဗ	~		
HR ALA CCGCT	•		黑 黑	ر. د.			
新 い こ		·	£ (ت			

VAL CIN AGACTTTGATGGTGAAT ASN AAAGCGGGCG 回 GE A A C 7 2240 ACA AAG

GGCAGAAACTTTG 2300 2310 ARG ASIN AAAACCTATGGC

82

YS A G

AU TYR LEU LYS PHE GLY GLU LEU SER ILE GAATACTAAAATTGGTGAGCTTAGTATCG 2330 2340	LEU GIN GLY TACAAGGCG 2370 TU ARG THR ALA GLU LYS ALA VAL PRO THR GAACGG ACCGT GAGAAAGCCGTACCAACCG 2380 2380 2400	GLY ASN TRP GGAACTGGG 2430 AL GLY TYR ILE THR GLY LYS ASP THR GLY TAGGATACATCACAGGAA 2450 2460	ASN GLU ALA A T G A G C C C 2490 ILN ASP ILE ALA ASP PHE ASP ILE ASP PHE G A A G A T A T T T G A C A T T T G A C T T T G A C A T T T G A C A T T T G A C A T T G A C A T T G A C A T T G A C A T T G A C A T T
LEU LYS PHE G TAAAATTTG (2320	GLY GGCG 2370 THR ALA GLU LY ACCGCTGAGAP 2380	GLY ASN TRP 3 G G A A C T G G G 2430 VAL GLY TYR ILE THR GLY T A G G A T A C A T C A C A G G A A 2440	LA C T C
GLU A A 1	NL PHE CTTTT 2360	IU GLY THR ALA LYS TYR LEU GLY ASN TRP A A G G C A C A G C C A A T A T C T G G G G A A C T G G G 2430 VAL GLY TYR I T A G G A T A C A 244	HR SER THR GLY LYS SER PHE ASN GLU ALA CGAGCACAGGAAAAGCTTTAATGAGGCCC 2490 2470 CIN ASP ILE A AAGATATTG
	LY GLY SER HIS SER VR GTGGTAGCCATAGCG1 2350	LU GLY THR AAGGCACA	HR SER THR CGAGCACA(

ASN V

LYS

A.A.

FIG. 11

AGAGAAATCAGTTAAAGGCAAACTGACCA 2550 E LYS LYS M 段 LYS ARG

TTTAACA ¥ CCCAAGGCCGCCAAGAC ASP G Z U TH

TGGA A C A G G T C A A A T C G C A G G T A A T G G C STS STS GIN

2600

CAGGCACAGCACCGCCAAAGCGAACG 出 贸 ALA 景 GLY 混

2630

TCTAGCAGTA 段 GGCTACAAGATAGAT IE LYS TYR GLY TAGGG

2660

CAGGCAAATCCATCGTCATCGAAAATGCCA ASN CIT CILY LYS 黑

2680

2690

CCAAATG 絽 TATGGT TKR 黒 J <u>D</u> D GEY AGGTTACAGGT THR GLY MAT

SUBSTITUTE SHEET (RULE 26)

强

GAGATGGGCGGGTCATTT Ē CAAAC ASIN

AAAGCCTCTGTGGTCT SER

GTTAAGT E C CITA

GATTGA TCGGCT G T G <u>--</u>-TGCTTGG Ø G 2840

K

TAAACACA

Z

G

GAAT

K

TGCCAA CCCAAGCCA æ V Ø ⊱ ATGA ပ K Ø

K

T G A GØ ග G A TGGCA ¥ G AA TAGC TGATTGA

TTAA G E K TAT TATCTGC ₽ K ں H ₽ ₽

₽ K E \mathfrak{O} GTGGT Ġ ₽ CA ₽ T T G 2 ن G Ø

Z
_
<u> </u>
<u>U</u>
正

		GGTTA	3060
		TTAATGAAAGTCAGGGTT	3050
AACATAATAAATGA	3030	TTAAATGATATTT	3040
ATT	3020	T	
TTAATCA	3010		-
Ø			

		AGCAAAAAGCT	3120
		ATGGTTAGCA	3110
TATTAA	3090	ATAATGCGTT	3100
TTTTCATGAT	3080	CIT	
TTGGTCATGGT	3070		
L			

		CGGTAT	3180
		CAAAAAAAT	3170
GTGAT	3150	TGTGCAAAAGATGGTCAAAAAAATCGGTAT	3160
GCTATGGTGAGTGAT	3140	DIDI	
GTCAATGAA	3130		
AGTCT			

GCTAC	3240
A C G C C A A G C C A T	3230
3210 AATGATAATAACAACGCCAAGCCATGCTAC	3220
3200 A	
3190	

₽

හ

G T T

G A

ප

CAGGCGTG

 ${\mathfrak O}$

် ၁

 \mathcal{O}

TCAAGAAA	3270	TCCAACCAAACTATGGTAGATAGCTT	י טטרר טטרר
GCCGACCTCTCAAGAAA	3260		
TGCCAAGTTGTT	3250		

E

FIG. 11C

TGCAGCAGAAGACTA 1 T T G C G T C 3340 C A G G G 3330 TA A G C G A G G G G C 3320

3 C C A A C T A T T T G G A C G G C C G

S

TATTTGGACGGCCG 3380 TTATTTGGCAAA

TTATTGGCAAAAAC 3400

CCAAACGCCCAATCG 3410 3420

GAGATTGTTGAGCA

3430

..SLT...VS.I.S.TA.AALG.TRT.GSS...SLT...LA.I.S.TA.AALG.TRT.GSS.

.LA.I.S.TA.AALG.TRT.GSS.

4223 Q8 B16B6 M982 FA19 Eagan

(エソ	
7	<u>-</u> כ	
Ī	工	

Thus alignment

		100		:		•
		90 KEQVLNIRDI		D	j D	,
60 VJT 	**	80 KVVKTAETIN	.LSSD.L9	LD.LS.	LD.LS.	
10 20 30 40 50 60 MAQSKQNIKSKKSKQVIKISALSIGIINITQVALANITADKAEA-TDKTNILVVVLDETVVT .Q.QHLFRNILCMIPVYNVQAEQAQEKQTIQ.K	NILCMTPAYNVQAGQAQEKQTIQ.K NILCMTPAYNVQAGQAQEKQTIQ.K LSIISC.LI.CYVKAESIKDIKE.ISS.VD.QS.E-DSE.ETIS	70 80 90 100 AKKNA-RKANEVIGLGKVVKTAETINKEQVLNIRDLJRYDE	QKT.RDLSSD.LS	OKT.RD	QKT.RD E.IRDD	
9 40 50 QVALANTTADKAEA-TDKTNLVVVL	PAYNVQA PAYNVQA DTKE.ISS.VD.Q	AKKO	:	•	. H	
30 GLINITQVAL	.CYVK			·		
20 SKQVLKLSALSL NILC	NIIC SIISC.LI					
10 MAQSKQNINKSKKSK .0.QHLFR	.Q.QHLFR .Q.QHLFR .TKKPYFRI					
•						

		58 .

422.3	Q8 B16B6 M982 FA19 Eagan	y.		4223	08 B16B6 M982 FA19 Eagan
170 180 190 200 VRSVEISKGANSSEYGSGALSGSVAFVTKTADDIIKDG	KASNAQAGE. KAS.V.QAQV.GE. KAS.V.QAQV.GE. KAGSNAT.QS.S.A.LEGD	250 260 QEYKAHDDAYQGSQSFDRAVA	R. IHKGK. V N. L. L. G. IREGR. V N. L. P. G. IREA. GR. V N. LAP. 31. TQV. KLK. VYLI.	270 280 290 300 TIDPNINRTFLIANECANFNYEACAAGGOIKLQAKPIN	DE. KKEGGSQY. Y. IVEE H A KNKL ED. SVKD VESSEYAY. IVED EGK T. KSKP KDVVGKD VEGSKYAY. IVEE K GH. K. K. NP KDVVGEDKSSGY. V. QG P DDK PP. TLST
		210 220 230 240 250 260 KTAYASKNNAWNSVAAAGKAGSFSGLIIYTDRRGQEYKAHDDAYQGSQSFDRAVA	SG. DH. LTQ. L. L. RS. GAEA. L K R. IH K GK. V N. L. L		

<u>-1</u>G.1

FIG. 12(

4223 Q8 B16B6 M982 FA19 Eagan	
E. KT. STQ S LA EYG.Q.W.F WH. DNR A. L. R.Q. TFDTR.M. E. QT. STR FLAD SYE. R.W.F FRFENKR I . IL. H.Q. TFDTR.M. K. QT. STR FLAD SYE. R.W.F FRFENKR I . IL. R.Q. TFDTR.M. K. QT. STR FLAD SYE. R.W.F FRFENKR I . IL. R.Q. TFDTR.M. QSET. S. S A IK MKYE.Q.WF G HFSEQ I . IF. F.Q. KFDIR.M.F. QSET. S. S A IK MKYE.Q.WF G HFSEQ I . IF. F.Q. KFDIR.M.F. R. SE. YVPGS. KGLK.S.D. KA LFVQGESSSS F KAVFDANSKQAGSL.PG K.A HKYGGL.FTSGENN . SPTERRDDSSRSFYTMQDH.A HIE	410 420 430 440 450 460SGYGINYAHGVFYDEKHQKDELGLEYVYDSKGENKWFDDVRVSYDKQDITLRSQLTNTHC -TLQGITR.T.N.Y.VHNADKDT.A.YA.LR.G.D.DNR.QQALV.AE.GTT.T.S.YTNADKDT.A.YA.LR.G.G.DNHFQQAPV.AE.GTT.S.YTNADKDT.A.YA.LR.G.G.DNHFQQAPV.AE.GTT.S.YTNADKDT.A.YA.LR.G.G.DNHFQQ

C	V
•	_
	7
1	_

4223 Q8 B16B6 M982 FA19	בשלשו		4223	y8 B16B6 M982 FA19 Eagan
STYPHIDKNCTPDANKPFSVKEVDANAYKEQHNLIKAVFN HDGSRGY.FYKS.RMI.E.SRFQK ADGSY.R.SADYYKS.RVI.G.S.R.LQ.A.K LNPSYYKS.RVI.G.S.K.LQ.A.K	O 540 YRLATHQSYQKLDYTPP	Y. QNAVQAYD. IKP. F. YYQHANRAYSSKKTAN. YYQSANRAYS.KQ.NGTRRVIATASI.RK	570 580 590 600 KPICLDAYGYGHDHPQACNAKNSTYQNFALKKGIEQYN R	N. YRVSIGK

FIG.12E

	4223	Q8 B16B6 M982 FA19 Eagan	·	
	670 680 690 700 NINSQQNANKGRDNI YQPNQA-TVVKDDKCKYSETNS-Y	TNTSPI.RFGNT GNTGQI.LFGNT GNTRQI.LFGNT		
650 660 GFKAYKDLRNEMAGWT . N.	670 680 NSQQNANKGRDNI YQPN		750 760 LVDNSASNQLSMNFGVV	STGTHRN. A. I. STGTHRT. A. I. STGTHRT. A. I. ISVGKFKNF. T. I.
1KQSLQQEKYNKIDELGFKAYKDLA	IN.		740 LGARYDRIKHKSDVPL	A. IYRSTH. EDKS A. LYRSTH. DGS A. LYRSTH. DGS A. LYRSTH. DGS . IYRRT. ANEST
610 620 630 640 650 660 OKTINIDKI DYQALI DQYDKQNPNSTLKPFEK I KQSLQQEKYNKI DELGFKAYKDLRNEMAGMT			710 720 730 740 750 760 ADCSTTRHI SGDNYFIALKDNMTINKYVDLGLGARYDRIKHKSDVPLVDNSA,SNQLSMNFGVV	T P. N. G. NG. YA. VQ. VRLGRWA. V. A. I. YRSTH. EDKS. STGTHRN. A. I. T P. S. N. KS. YA. VR. VRLGRWA. V. A. L. YRSTH. DGS. STGTHRT. A. I. T P. S. N. KS. YA. VR. VRLGRWA. V. A. L. YRSTH. DGS. STGTHRT. A. I. T P. S. N. KS. YA. VR. ARIO. A. I. VSRT. ANESTI SVGKFKNF. T. I. R KV. L. K. K. YF. ARN. ALG.
610 620 QKTINTDK I DYQAL I DQYDKQNIP			710 ADCSTTRHISGDNYF	T P.N.G.NG. Y T P.S.N.KS. Y T P.S.N.KS. Y RKV.L.K.K. Y

Щ	
S	
_	
(ק	
=	

4223	Q8 B16B6 M982 FA19 Eagan		-	4223	Q8 B16B6 M982 FA19 Eagan
770 780 790 800 VKPINMLDIAYRSSQSFRMPSFSEMYGERFGVTIGKG	L. FT.M.LT. A.T. L. A. W.A. ESLKTL. L. AD. LT. T.T. L. A. W.S. OSKAV L. AD. LT. T.T. L. A. W.S. DK. KAV I. E. LS. L.T. N. W.Y. GKNDEV	10 820 830 840 850 860 YYICQQIVHQIKLKPEKSFNQEIGATLINJILGSLEVSYFKNRYTDLIVGKSEEIR		870 880 900 900 TLIQGINAGKQRGKGDLGFHNGQDADLIGINILGRLD	QN.QTSAS. P.YR.A.N.RIA. KI. KN. EEA. PAYL.A.S.RI. KI. KD. EQV. NPAYL.A.S.RI. KI. KD. EQV. NPAYL.A.S.RI. KI.

(ſ	5
Č		_
T		•
(1	5
Ī	Ĺ	-
_		_

4223 Q8 B1686	FA19 Eagan
910 920 930 940 950 960 INBANISRI PYGLYSTLAYNKVDVKGKTLNPTLAG-TNI LFDA I QPSRYVVGLGYDAPSQKWGA WHG. WGS D	1010 1020 1030 1040 1050 1070

80

20

J	

1223	&	B16136	M982	'N19	agan
42	80	BI	£	FA	Ξ

						-
100	SIOEPAM	Ü	ENSCA -	50	X3	KLFI.SL
96	TEKNEKDK-VS	KDE.K.AEG.	3-0P. S00D.	SSPOAO.D	. PSK. P. AR. D	NORK. S-NLK
80	PEPKYQDVPI	Ж.	SKEDEKS	۱S	:	K.RDTS
20	NTGGTNSGTGSANTPEPKYQDVPTEKNEKDK-VSSIQEPAM	A GGA A S	-FDLDSVE, VQDMHSK EDEKS-OP. SOOD ENSGA.	-FDLDSVD EAPRPA	-FDLDSVDEAPRPA	-FDVDNVN.PSK.RDTSNQRK.S-NLKKLFI.SL
	NIGGT-	.AG	-FDLDS	-FDLDS	-FDLDS	-FDVDN

150	GYCMALSKINLINRODIPLD-ERNITILDGKKQVAEG-KKSPLPFS-LDV-ENKLLDGYLA	VE LIKIMIP BEEH-A. IN N VV . LEGDL HIV . FDN . IMONIK . SKEVQTVY	F.VLPRR.AHFN.KYKHKP.GSM.WLQRGEPNSFS.RDE.E	F.M-RLKRR.WYPGAE.SEVK.NES.WEATGLPTKP.EKROKS.I.KVETD-S	F.M-RFKRR.WHPSANPK.DEVK.KND.WEATGLPTEP.KLKQQS.ISEVETN.N-S	SYS.STI.KDVK.NVK-
140	ABG-KKSPLPFS-	JDLHN.FDN.]		PTKP. EKRC	PTEP.KLKC	SYS
130	TTLDGKKQVP	NW.LEC	. GSM:W	(.NES.WEATGL	(. KND. WEATGE	
120	RODTPLD-EKNT	P. EQEEH-A. IN	AHFN. KYK HKI	WYPGAE. SEVI	WHPSANPK. DEVY	.G.K.VAQ.RGNKEPSFIN.DDY
110	GYCMALSKINLHN	VE LKIWI	F.VLPRR.	F.M-RLKRR.	F.M-RFKRR.	.GK. VAQRG

FIG. 13A

Thp2 comparison

MRHIPLITILCVAISAV-LLTACGGS-GGSNPPAPTPIPNASGSGNICANGAAGGTINN-ANAG

20

.NN-..VNQAAMVLP.F..S..L.G-

.NN-..VNQAAMVLP.F..S.. .NN-..VNQAAMVLP.F..S.

wo	97/32980

FIG. 13E

	4223	8 0	B16B6	M982	FA19	Eagan								4223	80	B16B6	M982	FA19	Eagan
160 170 180 190 200	KMNADKNALGDRIKKGNKEISDEELAKQIKEAVRKSHEFQQV-	NQEKQNIEDQIK. EN. QRPDKKLDDV. L. AYIEKVLDDRLTELA	K.R.SS.LI-SKWEDGQSR.VGYIN.T	DIYSSPYLTPSNHONGAGNGVN.P.NQAYGHEN	YTSPYLSQDADSHANG.N.P.NE.TDYKK	GISPSITINPP.KHG	210 220 230 240 250 260	LSSLENKIFHSNDGTTKATTRDLKYVDYGY-YLANDGNYLTVKTDKLMNLGPVGGVFYNGTTT	KPIY.KN.NY.H.KQNRRSI.RSGYSIIPK.IAKT.FD.ALQQ.	D.YLY.K.KEP	DD.YIH.EK	 	270 280 290 300	AKELPTODAVKYKGHIMDFIYITDVANIRRINRFSEVKENSQA	QVSQTKKGQSSFGTQRL.	SSEKITTYVAME-KQGLGAG	PSRQASGK.IV.H.VTKKGQD.R.IIQP.KK.G	PSRQASETV.H.VTKQQQK.NDIL.T.KG.G	. TN VNGVATI.ATKGK.YPLLSNG.H

FIG. 13C

	4223 Q8 B16B6 M982 FA19	
310 320 340 350 360 GWYYGASSKD-EYNRILITKEDSAPDGHSGEYGHSSEFTVNFKEKKLIGKLESNLQDRHKGN . DR. S. M. YHPS D. KNK NYN D. SK. S. K. E. SI G S DK-S L. AL EGV. RNQAE-ASS TD-F. MT E. D. SD. TIK. T. YR. NRIT. NNSENK DR. S. F. GDGS. EYSNKN STLK. D. E FT. NIE. D. GN IR. NAS. NNNTNNND DK. S. F. GDGG. TISNR DSNIN. K. E FT. N. K. D. NN IR. NKVINTAASDG RR AIP. DID. EN-DSKNGILI SADGGT Q YTKRKTNNQPYF 370 380 400	VIKTERYDIDANIHGARFRGSATASNIKNDTSK-HPFTSDAN N.KYDITEASKK QIT.T.Q.TLK.K.L.ADGA.NGSI.SD KHT.QY.SLQ.TN.TTD.K-ENET.LV.SS YY.SLTLRS.K.I.TD.PNTGGT.LVF.SS KK.LD.YSTVKPTESEEEGT	410 420 430 440 NRLEGGFYGPKGEELACKFLINDNKLFGVFGAKRESKAEEKTE S

Ĺ	_	J
C	Y)
Ŧ	-	-
•	ľ	;
<u>`</u>	=	_
L	L	_

4223 Q8 B16B6 M982 FA19 Eagan		4223 Q8 B16B6 M982 FA19 Eagan
450 460 470 480ALIDAYALGIFNTSNATTFTPFTEKQLDNFGNAKKLVTVIRITGEEFKKE.I.SDVL NSKLTTVVE.TLNDKKI.NSAQ ETRLITVVE.TPDGKEI.NS.TR KTNATTSTA.NITTDITANTI.DEKN.KTEDISSE.DY.L	490 LGSTVIDLVPTDATKNEFTKDKPESATNEAGETLMANDEVSV VDGVELS. LSE-GAKAA	

4223 Q8 B16B6 M982 FA19 Eagan

L	I	J
C	۲)
Ť		-
_	ī	j
	Ī	-
		_

	•	
550 570 SVFLQGERTATTGEKAVPTTGTAKYLG SAMQACGNSSQADAKTEQVEQ.MD. EI. DQNVV.R. SVMQAVKNSSQADAKTEQVEQ.MD. NKI.QEQGIV. KETETETETETETETETEKDKEKEKEKEKDKDKEKQTPATTNTYYQL.HPKDDI.K.S.H.	MANGYIT-GKDTGTGTGKSFTDAQDVADFTIDFGAKSVSGKSNEIDERK T.YANTSWS.EANQEGGAR.E.DVST.KIT S.Y.H.ANTSWS.NADKEGGAR.EVN.AD.KIT F.Y.R.ANTSWS.KANATDGAR.KVN.DR.EIT.T S.YDTSYSPS.DKKR.KNAE.NVAE.KLT.E	620 630 640 650 670 LITKGRQDPVFSITGQIAGNGMIGTASTITKADAGGYKIDSSSTGKSIAIKDANVIGGFYG .T.QNANVANVVEN.KTA.D.TS.A.TAM.KDFS.V.KGEN.FAL.PQNN.HYTHE.T.STAEN.AQT.T.E.M.QFEKAES.FDL.QKN.TRTPKAY.T.K.KTAEN.SEAT.T.DAM.EFKKAND.FAP.QNNSTVTHKVH.AN.E.QKRHDIGNEANFNNSS.AFTANFV.GKNSONKNIPINITIK.N.A

4223 Q8 B16B6 M982 FA19 Eagan

	4223	80	B16B6	M982	FA19	Eagan
069 089	PNANEMGSFTPNADDSKASV		ISFPGNAPEGKQE	.K.E.LW.AYPGDKQTEXATATSSDGSAST.	E.LW.AYPGNEQTKNATVESGNGSAST.	.K.S.LYYNGNSTATNSESSSTVSSSS.SKNAP.A.

...E..-.*L.Q-*P.Q-* ...KL.-.* RQ.V.TT.*

FIG. 13F

FIG. 14A

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Expression of rTbp1 in E. coli

- 1. Prestained molecular weight markers
- 2. pLEM29B-1 lysate, non-induced
- 3. pLEM29B-1 lysate, 1 hr post-induction
- 4. pLEM29B-1 lysate, 3 hr post-induction

Fig.15

Purification of Tbp1 from E.Cole

SUBSTITUTE SHEET (RULE 26)

Purification of rTbp1 from E. coli

- 1. E. coli Whole cells
- 2. Soluble proteins after 50 mM Tris/ NaCl extraction
- 3. Soluble proteins after Tris/ Triton X-100/ EDTA extraction
- 4. Soluble proteins after Tris/ urea/ DTT extraction
- 5. Left-over pellet (rTbp1 inclusion bodies)
- 6.7. Purified rTbp1

SUBSTITUTE SHEET (RULE 26)

Expression of rTbp2 in *E. coli*

- 1. Prestained molecular weight markers
- 2. pLEM37B-2 lysate, non-induced
- 3. pLEM37B-2 lysate, induced

Fig.19

SUBSTITUTE SHEET (RULE 26)

- 1. Prestained molecular weight markers
- 2. 4223 rTbp2 protein
- 3. SLRD35A lysate, 3 hr post-induction
- 4. SLRD35B lysate, 3 hr post-induction
- 5. SLRD35A lysate, non-induced
- 6. SLRD35B lysate, non-induced

Purification of Tbp2 from E.Coli

FIG.22

Purification of rTbp2 from E. coli

- 1. E. coli Whole cells
- 2. Soluble proteins after 50 mM Tris extraction
- 3. Soluble proteins after Tris/ Triton X-100/ EDTA extraction
- 4. Left-over pellet (rTbp2 inclusion bodies)
- 5. Purified rTbp2

Binding of Tbp2 to Human Transferrin

- 1. rTbp2 (strain 4223)
- 2. rTbp2 (strain Q8)

- 1. Strain 5191
- 2. Strain 56
- .3. Strain 135
- 4. Strain 4223
- . Strain ATCC25240
- 6. Strain 585
- 7. Strain 3
- 3. Strain 8185

Fig.25

Figure 26 Restriction map of M. catarrhalis strain R1 tbpB

Figure 77 Nucleotide and deduced amino acid sequence of M. catermalis R1 tbpB

TGI	CAG	ATG	CAA	ATA	GCAT	TAAC	AGAC		TTAC	ATA	ATAC	CATC	AACC	CATC	AGAGO	SATT	ATTT
								27									54
ATG	AAA	CAC	AT		TIA	ACC	ACA	CTG	TGI	GIC	SCO	XXX	IC	r god	GTC	TI	A TTA
WEI	Tys	: A15	: TTE	PEC) Leu	Thr	Thr	Leu	Cys	: Val	Ala	lle	: Sex	Ala	Val	. Le	ı Leu
								01									
ACC	GCI	TGI	GGI	GGC	AGT	GGT	GC:1	81 ACCT		CCA	· ·	- ::-	نان ،	ነ አርር	: درد	لمضلا	108 2007
Thr	Ala	Cys	Gly	Gly	Ser	Glv	Glv	Ser	Asn	Pro	Pro	Ala	Pro	Thr	Pro	116	Pro
		_		•	•		2										
								135									162
TAA	GCT	AGC	GGT	TCA	GGT	AAT	ACT	GGC	AAC	ACT	. CCI	AAT	GCT	GGC	GGT	ACI	GAT
Asn	Ala	Ser	Gly	Ser	Gly	Asn	Thr	Gly	Asn	The	Gly	ne.A	Ala	Gly	Gly	The	Asp
												•					
מאר	ACA	acc	ייב מ	GCA	CCT	አአጥ	. ~ .	189	~~~	200	3.00						216
Asn	Thr	Ala	Agn	Ala	GTV	AAI	ALA The	Glaz	GGI	ALA	50-	101	661	ACA	. GGC	AGT	GCC Ala
,				710	GLY	ASI:	44	GIY	GIY	1111	261	261	GIY	Inr	GIA	Ser	ALS
								243									270
AGC	ACG	TCA	GAA	CCA	. AAA	TAT	CAA		GTC	CCA	ACA	ACG	CCC	AAT	AAC	AAA	GAA
Ser	Thr	Ser	Glu	Pro	Lys	Tyr	Gla	Asp	Val	Pro	Thr	Thr	Pro	Asn	Asn	Lys	Glu
		•														•	•
-								297									324
CAA	U-1	TCA	TCC	ATT	CAA	GAA	cct	GCC	ATG	GGT	TAT	GGC	ATG	GCT	TTG	AGT	AAA
GIN	vai	se:	Ser	TIE	GIL	G1.7	Prc	Ala	MET	Cly	TAL	Gly	MET	A_a	Leu	Ser	Lys
								351									770
ATT	AAT	CIA	TAC	GAC	CAA	CAA	GAC		CCA	тта	GDT	GCA	277	ZAT	חדמ	ىنىڭ كا	378
Ile	As:ı	Leu	Tyr	Asp	Gln	Gln	Asp	Thr	Pro	Leu	Asp	Ala	Lvs	Asn	Ile	Ile	Thr
							-				•		- •				
								405									432
TTA	GAC	GGT	AAA	AAA	CAA	GIT	CCT	GAC	TAA	ÇAA	AAA	TCA	CCA	TIG	CCA	TTT	TCG
Leu	Asp	GIA	Lys	Lys	Gln	Val	Ala	Asp	Asn	Gln	Lys	Ser	Pro	Leu	Pro	Pr.e	Ser
								459									
TTA	GAT	GTA	GAA	AAT	AAA	TTG	سعلت		ccc	سلات	מדמ	CCA	aza	ביד יג	220	~~ >	436
Leu	Asp	Val	Glu	Asn	Lys	Leu	Leu	Ago	Glv	Tvr	Tle	Ala	Lvs	ME	Agn Agn	Chi	A. P
	-				•				7	-,-			-,-			314	
								513									540
GAT	AAA	TAA	GCC	ATT	GGT	GAA	ASA	ATT	aag	aga	GAA	AAT	GAA	CAA	TAA	AAA	AAA
Asp	Lys	naƙ	Ala	Ile	Gly	Glu	Arg	Ile	Lys	Arg	Glu	ast.	Glu	Gln	Asn	Lys	Lys
																	: '
ATA	TCC	CAT	CAR	C23	اسبب			567									594
Ile	Set	GWI	GI	GIN	CIT	B1 =	AAA	AAA	ATC	AAA	GAA	AAT	GIG	CGI	AAA	AGC	CCI
	J-1	vah	314	/3T/I	Leu	wrg	1. ¥8	υλε	1- 6	гÀ2	GIL	AST	VAI	Arg	~À3	Ser	Pro
								621									648
CAG	TTT	CAG	CAA	GTA	TTA	TCA			AAA	GCG	AAA	ACT	TTC	CAT	ALYT	AAT	GAC
Glu	Pr.e	Gln	Gln	Val	Leu	Ser	Ser	Ile	Lys	ALa	Lys	Thr	Phe	His	Ser	Asn	ASC
											-						-

F1927 (UN.)

								67									762
AAA	ACA	ACC	CAA	A GC	A AC	CAC	A CG	A GA	r in	نممه	A TA	T GT	T GA	T TA	ت عو	T TA	CTAC
Lys			. Dy.	5 AL.	a 1.1	1111	r AL	3 Yèi) Let	23/8	5 TY	r Va	l As	рту	r Gl	у Ту	E TAT
								72									756
Leu	Val	AA7	GA:	C GC	C AA	TA	CTA	A ACC	GTC	AA	AC.	A GA	CAA	ם ככ	AA A	A CT	I IGG
				, ,,,,	a Mai		. Der	ıını	. val	Lyt	i Im	AS	P AS	n Pr	o Ly	s Le	u Trp
								783			-						810
AAT	Ser	್ ಆಡಾ	. CC1	GIC	GGC	GG	GIG	TIT	TAT	' AAT	GG(TO	ACC	AC	c GC	C AA	A GAG
,	-	0_,		, ,	. GI	GI	Val	. Pne	iyr	ASI	613	/ Sei	Thi	נמד	r Ala	a Lys	5 Glu
-								837	•								864
- CIG	DTE.	ACA	CAA Gla	GAI	GCG	GTC	AAA	TAT	AAA	GGA	CAT	TGG	GAC	777)TA	ACC	GAT
200			GI	ر مم	, MIG	. vai	гλа	TYI	rys	GIĀ	HIS	Trp	ABE	Phe	: WET	Thr	Asp
								891									918
GIT	GCC	AAA	AAA	AGA	AAC	CGA	TIT	AGC	GAA	GTA	AAA	GAA	ACC	TAT	CA	GCA	GCC
Val	VT.	Lys	Lys	ΜŢ	ASI	Æg	Pne	Ser	Glu	Val	Lys	Glu	Thr	Tyr	Glr	Alā	Gly
								945									972
TGG	TGG	TAT	GGG	GCA	TCT	TCA	AAA	GAT	GAA	TAC	AAC	CGC	TIA	TTA	ACC	AAA	GCA
Lib ,	יבי	TYL	GIY	A÷a	Ser	ser	гÀг	Asp	Glu	Tyr	Asn	Arg	Leu	ieu	Thr	Lys	Ala
								999									1026
GAT :	GCC 21a	GCA	CCI	GAT	AAT	TAT	AGC	CGT	GAA	TAT	GGT	CAT	AGC	AGT	GAA	TIT	ACT
Asp /		77,2	120	ردم	75511	ığı	Ser.	GTÅ	GIU	TYT	GIA	Ris	Ser	Ser	GJJ	Fhe	Thr
							:	1053				•					1080
GTT :	AAT Aan	LIL	AAG	GAA	AAA	AAA	TTA	ACA	GGT	GAG	CTG	TI	AGT	AAC	CTA	CAA	GAC
Val 1	1311	+11E	Dys	GIU	rys	гув	_eu	TEL	GIY	GIH	ren	Phe	Ser	Asn	Leu	Gln	Asp
							נ	107								3	1134
AGC (LAT . Jie	AAA Laze	CAA	AAA	GTA	ACC	AAA	ACA	AAA	CCC	TAT	GAT	ATT	AAG	GCT	GAT	ATC
Ser 1		Lys	9111	Lys	vai	1177	Lys	THE	17A8	Arg	TYT	Asp	Ile	Lys	Ala	Asp	Ile
								.161								1	188
CAC (GC .	AAC Ses	CGC	IIC	CGT	GGC	AGT	GCC	ACC	GCA	AGC	GAT	AAG	GCA	GAA	GAC	AGC
His G			<i>1</i> y	FILE	ΑŁĠ	GIY	2GI	Ala	inr	Ala	Ser	Yab	Lys	Aia	Glu	Asp	Ser
							1	215								1	242
AAA A	NGC /	AAA	CAC	220 200	TTT	ACC To-	ACC	GAT	GCC .	AAA	GAT	aag	CTA	GAA	GGT	GGT	TIT
Lys S		Jys .	nis	210	rae	inr	Ser.	Asp	ALE .	Lys	Asp	Lys	Leu	Glu	Gly	314	Pne
m	·						1	269								1	296
TAT G	GA (CA A	AAA	GGC	GAS	GAG	CIG	GCA	GGT .	AAA '	TTC	TTA	ACC	GAT	GAT.	ממ	444
Tyr G	- 7 2	10 /	Lys	ĠΙΆ	GIU	OTI	Leu .	Alu	Gly :	rys	Phe	Leu	Thr	qeA	Дзр	ysu	ГÀа
								323								1	350
CTC T	ri G	GT (ELC :	TT	ogt (GCC .	AAA	CAA	GAG (GGT /	TAA	GTA	GAA .	AAA.	ACC	CAD	GCC
Leu P	·+ - -	יארי	/d_ /	rn c	9-Y .	A.a :	Lys (Gin (ela (Gly A	Asn	Val	Glu :	Lys	Thr	Giu.	Ala

								1377									1404
AT	CIL	A GA	_ GCT:	TAT	' GCA	. CIT	. GG	S AC	TIT	: AA7	LAA	\ CC.	T 957	CAC	ACC	: AAT	CCC
Il	e Le:	L Asj	o Ala	Tyr	Ala	Leu	Gly	/ Thi	Phe	AST	LVS	270	Gly	Th	The	Asn	Pro
		_		_				, 555			,						
								1431									
G.		r a~	- 60-	י אמר	א פר								- ~~			AAA	1458
22	o Dha		- 33-	200	F	AAA	. AAA	GA.	1 0.0	لتقوي	AAC	111	ا تان	AAI	GCC	AAA	AAG
AI.	a Pne	e Tre	Ala	ASD	ser	rys	≟y€	g Glu	Leu	Asp) Asr	Phe	e Gly	Asr	Ala	Lys	Lys
								1485									1512
TT	3 GI	3 7770	GGT	ICI	ACC	CIC	ATI	GAI	TIG	GIG	CCI	, YC1	GAI	. GCC	ACC	AAA	GAT
Le	u Val	Leu	: Gly	Ser	Thr	Val	Ile	Asp	Leu	Val	Pro	The	Asp	Ala	Thr	Lys	ASD
																	•
								1539			•						1566
GI	CAAT	GAA	TTC	AAA	GAA	AAG	CCA	AAG	TCT	GCC	ACA	AAC	444	GCG	GGC	GAA	ACT
Va:	Asr	Glu	Phe	Lvs	Glu	INS	Fren	Live	Ser	L1a		Yes	Tore	- בינה	Civ	Glu	W
						-,,		ya	561	714	****	A-311	בענ	~~a	SIY	GIU	THE
								1603									
~TY	2 ATY		יימם:	CAT	(2 R R	-		1593									1620
7.00	MET	17-1	200	3.00	Cha	911	ALS.		AAA	ALL	IAI	GGC	AAA	AAC	177	GAA	TAC
Let	ME	AGI	ASII	ASD	GIU	Vai	Ser	val	Ly's	The	TYT	Gly	Lys	Asn	Phe	Glu	Tyr
								1647								1	1674
CTA	AAA	TT	GGT	GAG	CII	AGT	GTC	GGT.	GGT	AGC	CAT	AGC	GIC	TIT	TTA	CAA	GGC
Leu	Lys	Phe	GŗĀ	Glu	_eu	Ser	Val	Gly	Gly	Ser	His	Ser	Val	Phe	Leu	Gln	Gly
																	-
								1701								1	728
GAA	CGC	ACC	GCT	ACC	ACA	GGC	GAG	AAA	GCC	GTA	CCA	ACC	ACA	GGC	AAA	GCC	
Glu	Arg	Thr	Ala	Thr	Thr	Glv	Glu	Lvs	Ala	Val	Pro	Thr	Thr	Glv	143	Ala	Taza
	_					•		-3-						,	-,-		Y
								1755								,	782
TAT	TTG	GGG	AAC	TGG	ATT.	CCA			200	CCA	coc	CAC	~~	TO B		GGC	702
TVI	Leu	Siv	Aso	TTD	Val	GZV	73~	Tio	~~~	Clas	21-	Sec.	COT	Can	AAA	GLy	101
- 4 -		,				G ₂ y	TAT	775	-112	Gry	Ma	ASD	361	Ser	rya	GLY	Ser
200	רי אירי							1809								1	835
ACC.	GAI	ادی.	AAA	200	TIT	ACC	GAT	GCC	AAA	GAT	ATT	GCI	GAT	III	GAC	TTA	GAC
1111	ASP	GIY	Lys	GIA	5Vô	Thr	qeA	Ala	Lys	Asp	Ile	Ala	Asp	Phe	Asp	Ile	A Ep
								1863								1	890
TIT	GAG	AAA	AAA	TCA	CII.	AAT	GGC	AAA	CTG	ACC	ACC,	AAA	GAC	CGC	CAA	GAC	CCI.
Phe	Glu	Lys	Lys	Ser	Val	neA	Gly	Lys	Leu	Thr	Thr	Lys	Asp	Arg	Gln	Asp	Pro
																-	
								1917								1	944
GTC	TTT	AAC	ATC	ACA	GGT	GAA	ATC	GCA	GGC	TAA	GGC	TGG	ACA	GGT	AAA	GCC .	AGC
Val	Phe	Asn	Ile	Thr	Gly	Glu	Ile	Ala	Glv	Asn	Glv	Txp	Thr	ดาง	IVE	Ala :	Ser
					-				7		,			,	~y .		362
							7	1971			•					-	999
ACC	GCC	GAA	GCG	AAC	GC≱	GGG			בממ	מדמ	СЪТ	TCT	YGC.	PC.	3 C3	GGC .	998
Thr	Ala	Glu	Ala	Agr	A) a	GIV	<u></u>	47.	Term	TI	ye-	7.7	60-	war.	ALA	GGC : Gly :	MAA
					~~	-1y	G L Y	'AT	пув	TIE	vah	SEL	SEL	36 <u>T</u>	TUL	GIA :	rys
							_										
TOO	7	~~			~~			2025								2	052
200	TIL	710	7.10	MAA	GAT	GCC	5.G	GIT	ACA	CCI.	GGC	III	_AT	GGT	CCA.	AAT	GCA
)EI	116	val	TTE	ьуs	ASP	Ala i	Val	Val	Thr	Gly	Gly	Phe	īλī	G_y	Frc .	Asn	Ala

89/90

F4 27 (cars)

2079

2106

ACC GAG ATG GGT GGG TCA TTT ACA CAC AAC AGC GGT AAT GAT GGT AAA GTC TCT Thr Glu MET Gly Gly Ser Phe Thr His Asn Ser Gly Asn Asp Gly Lys Val Ser

2133

GTG GTC TTT GGC ACA AAA AAA CAA GAA GTT AAG AAG TGA Val Val Phe Gly Tnr Lys Lys Gln Glu Val Lys Lys *

4	

4223 Q8 R1	4223 Q8 R1	4223 08 R1	4223 Q8 R1	4223 Q8 R1	4223 Q8 R1	4223 Q8 R1
10 20 30 40 50 60 70 80 90 10C MKHIPLITICVAISAVI TACGGSGGS-NPPAPTPIPNASGSCUNTCNTGNAGGIDNTAN-ACNTGGTNSGTGSANTPEPKYQDV FTEKNEKUKVSSIQEPAM	110 120 130 130 200 GYGMALSKINLINRQDTPLDEKNIITLDGKKQVARGKKSPLPFSLDVENKLLDGYIAKONALGDRIKKGNKEISDEKLAKQIK-BAVRKSHBFQQVVB.KLR.WIPQKQEEHAKI.TNDVVKLBGDLKHNPFDNSIWQNIK.SKRVQTVYNQEKQNIBDQIK.EN.QRPDKKLDDV.L.AYI.K.LDDRLTELAYDQA	210 220 230 240 250 260 270 280 290 300 LSSLENKIFHSNDGTTRALTRDLKYVDYGYYLANDGNYLTVKTDRLWNLGPVGGVPYNGTTTAKELFTVDAVKYRGHWDFMTDVANRRNRFSHVKENSQA RPIY.KN.NY.H.KQN.RRSIYRSGYSNIIPIAKT.FD.ALQQQVSQTAKKGQSFS.FGTSQRLIKA.TK	310 320 340 360 370 340 400 GWYYGASSKOBYNRLLTKEDSAPDGHSGRYGHSSBFTVNFKEKKLTGKLFSNLQDRHKGNVTKTERYDIDANIHGNRPRGSATASNKNDTSKHPFTSDAN .DR.S.M.YH.PSD.KNK.NYND.SK.S.K.E.S.II.GS.N.KYDTTEASK	HATO 420 410 450 450 460 470 450 500 800 800 800 800 800 800 800 800 8	S10 520 530 600 DKPBSATNEAGETLMVNDEVSVKTYGKNFBYLKFGELSIGGSHSVFLQGBRTATTGBKAVPTIGTAKYLGNWYGYITGKDTGTGKSPTDAQDVADFDI B. K	\$10 620 630 700 DFGNKSVSGRLITKGRQDPVFSITGQLAGNGMTGTASTTKADAGGYKIDSSSTGKSIAIKDANVTGGFYGPNANEMGGSFTHNA-DDSKASVVPGTKRQQKK

INTERNATIONAL SEARCH REPORT

	4					
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C12N15/12 C07K14/22 G01N33/	68	,			
According t	to International Patent Classification (IPC) or to both national class	nfication and IPC				
B. FIELDS	SEARCHED					
IPC 6	locumentation searched (classification system followed by classific CO7K	auon symbols)	-			
Documenta	non searched other than minimum documentation to the extent tha	t such documents are included in the fields so	zarched			
Electronic d	lata base consulted during the international search (name of data b	ase and, where practical, search terms used)				
<u>.</u> -						
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.			
E .	WO 97 13785 A (CONNAUGHT LAB ;YA PING (CA); MYERS LISA E (CA); HA ROB) 17 April 1997 see the whole document		1-25			
Υ .	WO 90 12591 A (UNIV TECHNOLOGIES INTERNATIONA ;SCHRYVERS ANTHONY BERNARD (CA)) 1 November 1990 see claims 1-26					
		-/				
		'				
		· ·				
	,	· j				
	·		·			
X Furd	her documents are listed in the continuation of box C.	Patent family members are listed in	n annex.			
* Special car	tegories of cited documents :	"T" later document published after the inte				
"A" docum	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict wit cited to understand the principle or th invention				
"E" earlier	document but published on or after the international tate	"X" document of particular relevance; the cannot be considered novel or cannot				
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	'Y' document of particular relevance; the cannot be considered to involve an in	cument is taken alone claimed invention			
	ent referring to an oral disclosure, use, exhibition or	document is combined with one or mi	ore other such docu-			
'P' docume	ent published prior to the international filing date but the priority date claimed	in the art. *& document member of the same patent				
Date of the	actual completion of the international search	Date of mailing of the international se	arch report			
1	7 July 1997	30 JULY 1997 (3	30.07.97)			
Name and r	nailing address of the ISA	Authorized officer				
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Ripswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,					
	Fax (+ 31-70) 340-3016	Nauche, S				

Form PCT:15A/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Ini ional Application No 2CT/CA 97/00163

(Continua	DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
•	MICROBIAL PATHOGENESIS, vol. 15, 1993, pages 433-445, XP000612196 RAONG-HUA YU ET AL: "THE INTERACTION BETWEEN HUMAN TRANSFERRIN AND TRANSFERRIN BINDING PROTEIN 2 FROM MORAXELLA (BRANHAMELLA) CATARRHALIS DIFFERS FROM THAT OF OTHER HUMAN PATHOGENS" see the whole document	. *	1-25
۱	WO 95 33049 A (PASTEUR MERIEUX SERUMS VAC ;TRANSGENE SA (FR); MILLET MARIE JOSE) 7 December 1995 see the whole document	C	1-25
4	WO 93 08283 A (UNIV SASKATCHEWAN) 29 Apri 1993 see the whole document	1	1-25
	See the whole document		
		• .	
			;
	·		
		,	

Form PCT/ISA/2I0 (continuation of second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

.ernational application No.

PCT/CA 97/00163

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
, and the same of
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 23 because they relate to subject matter not required to be searched by this Authority, namely. Remark: Although claim 23 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

THIS PAGE BLANK (USPTO)