PRIMO PRINCIPIO DELLA TERMODINAMICA - CICLI

ESERCIZIO 1

Una mole di gas ideale monoatomico alla temperatura $T_i = 300K$ compie un'espansione adiabatica reversibile che ne aumenta il volume dal valore iniziale $V_i = 1m^3$ al valore finale $V_f = 2m^3$. Calcolare la temperatura finale T_f del gas ed il lavoro L compiuto dal gas nell'espansione.

$$[T_f = 189K, L = 1384J]$$

ESERCIZIO 2

In un recipiente cilindrico chiuso superiormente da un pistone scorrevole senza attrito sono contenute n=10 moli di un gas ideale monoatomico alla temperatura $T_i = 300K$ e alla pressione atmosferica. La superficie laterale del cilindro ed il pistone sono adiabatici (non scambiano calore con l'esterno), mentre la base del recipiente conduce calore. Il recipiente viene poggiato su un blocco metallico a temperatura $T_B = 1000K$.

Il blocco é di massa $m_B = 1kg$ ed é costituito da un materiale con calore specifico $c_B = 400 \frac{J}{kgK}$.

Trascurando il calore scambiato dal blocco metallico con l'ambiente, si calcolino la temperatura finale del gas T_f ed il lavoro L compiuto dal gas durante la trasformazione.

$$[T_f = 760.64K, L = 38297.6J]$$

ESERCIZIO 3

Una mole di gas ideale monoatomico si trova inizialmente in uno stato A con volume V_0 e pressione p_0 a temperatura $T_0 = 300K$, ed é sottoposto alla seguente sequenza di trasformazioni reversibili:

- 1. A \rightarrow B trasformazione isocora fino alla pressione $4p_0$.
- 2. B \rightarrow C espansione isobara fino al volume $2V_0$.
- 3. C \rightarrow D espansione isoterma fino alla pressione p_0 .

Si calcoli il lavoro compiuto L ad l'aclore scambiato dal gas durante la sequenza di trasformazioni.

$$[L = 37638J, Q = 63827J]$$

ESERCIZIO 4

L'azoto puó essere considerato approssimativamente un gas perfetto biatomico con peso molecolare M=28g/mol. Si consideri una quantit $\tilde{\mathbf{A}}$ di azoto pari a m=1g. Tale gas compie un ciclo termodinamico composto da:

- 1. A \rightarrow B espansione isoterma da V_A a $V_B=3V_A$ alla temperatura $T_1=380^oC;$
- 2. B \rightarrow C espansione adiabatica da V_B a V_C con temperatura finale $T_2=327^oC;$
- 3. C \rightarrow D compressione isoterma da V_C a V_A ;
- 4. $D\rightarrow A$ trasformazione isocora fino alla pressione iniziale.

Disegnare sul piano (p, V) il ciclo cosí descritto e calcolare il lavoro L compiuto dal gas supponendo tutte le trasformazioni reversibili.

$$[L=19,38J]$$