

Analysis of Vibration-Induced Measurement Inaccuracies in Riveting Processes

Design Review #2

Group 24: Mansur Ayazbayev, Jingtian Zhu, Yiming Wang, Heng Zhao, Yujia Gao Sponsor: Shanghai Systence Electronics Co.,Ltd Section Instructor: Prof. Peisen Huang

CONTENTS

Problem

Vibrations serve as a major cause of inaccurate riveting results even when using data-driven manufacturing equipment due to factors such as shifted reference height.

Example: Shanghai Systence had an issue with multinational client when riveting equipment was producing inaccurate rivets which lead to a lose of money, time and communication problems.

Products FMW Friedrich [1]

Goals

A system that can collect vibration data of the riveted part during the riveting process, analyze it, identify anomaly behavior, and give suggestions on how to eliminate those.

This can be achieved by simultaneously working on those sub-projects:

- **Sensor** data collection;
- Vibrations theory interpretation of the vibration anomaly behavior and its' solution;
- Software creating UI application to automate and make data analysis more user-friendly;

Goal Image [1]

Final Project Sketch

[3]. Arduino Uno REV3, Available at Amazon. (Accessed 29 June 2024)

Updates Since DR1

Technical

- Narrowed down only studying one type of riveting parts.
- Added more engineering specifications during the concept selection stage.

Technical Communication

Started holding weekly meetings with the sponsor.

Requirements & Specifications

Notes:

Vibrations Theory – used as a way for us to identify vibration issues nature and find reference values

Vibration engineering properties were eliminated based on the feedback from the academic faculty.

Morphological Analysis Conceptual Diagram

Morphological Analysis Potential Path

Sensors

[1]. MEMS Accelerometer

[2]. Laser Displacement Sensor

[3]. Capacity Sensor

Design Criterion	Weight factor	Unit	Accelerometer SG-MEMS-XYZ-V1			Laser Displacement sensor KEYENCE IL-S030			Capacity sensor enDAQ S3-D16		
	ractor	東语語	Value	Score	Rating	Value	Score	Rating	Value	Score	Rating
Price	0.2	RMB	950	10	2	2500	3a0 YUJI 7	1.4	7000	1	G-0.2
Mass	0.11	g	50	9	0.99	60	8	0.88	16	10	1.1
Volume	0.1	mm^3	18900	10	1	36719	8	0.8	34061	8	0.8
Resolution	0.14	um	1.5	7	0.98	1	10	1.4	0.1	10	1.4
Repeatability	0.11	um	1	10	ujia 👼 1.1	1	10	1.1	Tage Vuji 1	10	1.1
Sampling Rate/ Period	0.13	ms	0.04	10	1.3	0.33	9	1.17	0.31	9	1.17
Frequency Response Range	0.1	kHz/mm	6	6	0.6	30	9	0.9	32	9	0.9
Error Range	0.11	%	2	4	0.44	0.1	9	0.99	0.1	9	0.99
Total	1				8.41			8.64	Sijuv -	高洁茄	7.66

^{[1].} Accelerometer SG-MEMS-XYZ-V1, "Three-axis MEMS Accelerometer Manual," Sange-cbm.

^{[2].} Keyence Laser Sensor, https://www.keyence.co.uk/products/sensor/positioning/il/
[3]. enDAQ, Available at enDAQ official website, https://endaq.com/products/s3-vibration-sensor-s3-d16.

Micro-controller

NI DAQ

[1]. Arduino

[2]. Resberry Pi

Design Criterion	Weight	Unit	0160	NI DA	Ś		Arduino			Resberry Pi			
	factor		Value	Score	Rating	Value	Score	Rating	Value	Score	Rating Gao		
Price	0.28	RMB	3500	2	0.56	150	10	2.78	600	6	1.67		
Mass 0160	0.06	g	500	7	0.39	25	9	0.50	45	018	0.44		
Volume	0.11	cm^3	2000	Ga(5)	0.56	35	8	0.89	Gao 80	7	0.78		
Clock speed	0.11	MHz	200	8	0.89	16	8	0.89	1500	9	1.00		
I/O Interface	0.22	1-5	-0160 4	8	1.78	4	8	1.78	5	8	1.78		
Ease-of-use	0.22	1-5	3	6	1.33	5	o Yujia 9	2.00	4	7	1.56		
Total	1.00				5.50		300	8.83			7.22		

^{[1].} Arduino Uno REV3, Available at Amazon. (Accessed 29 June 2024).

^{[2].} Resberry Pi, 2 Model B Desktop, Available at Amazon, https://www.amazon.com/Raspberry-Pi-Model-Desktop-Linux/dp/B00T2U7R7I?th=1

Vibration Analysis Theory

Design Criterion	Weight	Unit	Theo	ory (Analytic	al Solution)		SolidW	orks	Ansys		
	factor		Value	Score	Rating	Value	Score	Rating	Value	Score	Rating
Model Geometry Accuracy	0.2	mm Yujia	1 0160 5	2	0.4	0.5	8 Yujia	1.6	0.05	9	1.8
Material Properties	0.1	%	14	5	0.5	8	8	0.8	3	9	0.9
Ease of Implementation	0.1	#	5	8	0.8	4	6	0.6	Gao Yujia	55 O 4	0.4
Post-Processing & Visualization	0.15	#	2	4	0.6	4	7	1.05	5	9	1.35
Frequency Analysis	0.15	%	0160 7	4	0.6	2	lao Yujia 8	1.2	0.4	9	1.35
Automation	0.2	#	2	4	0.8	4	9	1.8	4	9	1.8
Cost	0.1	RMB	0	10	1	10500	6	0.6	105000	3	0.3
Total	1				4.7			7.65	Siina	高语嘉 07时	7.9

User Interface

Design Criterion	Weight	Unit	tkinter				PyQ	<u>)</u> t	Kivy		
	factor		Value	Score	Rating	Value	Score	Rating	Value	Score	Rating
Learning Curve	0.14	h Yujia alai	20	10	1.43	50	7	1.00	40	8	1.14
Development Speed	0.21	h	30	9	1.93	70	7	1.50	60	8	1.71
Community Support	0.18	1-5	4	8	1.43	5	10	1.79	3	016	1.07
Response time	0.36	ms	100	686	2.14	50	10	3.57	70	7	2.50
Cross-platform Support	0.11	#	_{£0160} 3	6	0.64	4	8 Yulia	0.86	5	10	1.07
Total	1.00				7.57		380	8.71			7.50

Morphological Analysis Final Path

Schedule

Progress made since DR#1

- Finalized the Project Scope
- Selected concepts based on the new scope for sensor, micro-controller, vibration analysis method, and programming framework for user interface, and vibration theory
- Identified target commercial product to purchase.

Tasks after DR#2

- Setup the experimental structure
- Conduct vibration data collection
- Parallelly carry out vibration analysis, writing microcontroller codes, and user interface development
- Conduct repeated and controlled experiments to match each vibration pattern with a specific cause of vibration

Conclusion

Narrowed the study range

- Focusing on the "U-shaped" part
- Can match the vibration pattern with the cause.

Added new engineering specifications

Offered more insights while selecting the concepts.

Generated and selected concepts

- Sensors: MEMS, laser, capacity.
- Vibrations Theory: Analytical Solution, SolidWorks, Ansys.
- Micro-controller: NI DAQ, Arduino, Resberry Pi.
- User Interface: tkinter, PyQt, Kivy.

Reviewed our progress and made sure we were right on schedule

Thank You for Your Attention!

Q&A