Groupe IPESUP Année 2022-2023

TD 9: Matrices et applications

Opérations sur les matrices :

Exercice 1. (*)

On considère les matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & -2 \\ 0 & 0 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & 4 \\ 1 & 0 & -2 \end{pmatrix};$$
$$C = \begin{pmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 1 \end{pmatrix};$$
$$D = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}; \qquad E = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}.$$

Calculer (lorsque cela est bien défini) les produits de matrices suivants : AB, BA, AC, CA, AD, AE, BC, BD, BE, CD, DE.

Exercice 2. (*)

Soient les matrices suivantes :

$$A = \begin{pmatrix} 2 & 5 & -1 \\ 0 & 1 & 3 \\ 0 & -2 & 4 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 7 & -1 \\ 2 & 3 & 4 \\ 0 & 0 & 0 \end{pmatrix};$$
$$C = \begin{pmatrix} 1 & 2 \\ 0 & 4 \\ -1 & 0 \end{pmatrix}.$$

Calculer : (A-2B)C, C^TA , C^TB , $C^T(A^T-2B^T)$, où C^T désigne la matrice transposée de C.

Exercice 3. (*)

Pour x réel, on pose :

$$A(x) = \begin{pmatrix} \operatorname{ch} x & \operatorname{sh} x \\ \operatorname{sh} x & \operatorname{ch} x \end{pmatrix}.$$

Déterminer $(A(x))^n$ pour x réel et n entier relatif. La matrice (A(x)) est-elle toujours inversible?

Exercice 4. (*)

On pose $u_0=1,\ v_0=0,$ puis, pour $n\in\mathbb{N},$ $u_{n+1}=2u_n+v_n \text{ et } v_{n+1}=u_n+2v_n.$

- 1. Soit $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Pour $n \in \mathbb{N}$, calculer A^n . En déduire u_n et v_n en fonction de n.
- 2. En utilisant deux combinaisons linéaires intéressantes des suites u et v, calculer directement u_n et v_n en fonction de n.

Exercice 5. (*)

Soit $A, B \in M_2(\mathbb{R})$ les matrices définies par

$$A = \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}.$$

Comparer les deux matrices $(A + B)^2$ et $A^2 + 2AB + B^2$. Puis comparer les deux matrices $(A + B)^2$ et $A^2 + AB + BA + B^2$.

Exercice 6. (**)

Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice 7. (**)

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices telles que la somme des coefficients sur chaque ligne de A et sur chaque ligne de B vaut 1 (on dit qu'une telle matrice est une matrice stochastique). Montrer que la somme des coefficients sur chaque ligne de AB vaut 1.

Exercice 8. (**)

Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 9. (**)

Soient $S_n(\mathbb{R})$ l'ensemble des matrices symétriques $(A = {}^tA)$ et $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices anti-symétriques $(A = -{}^tA)$. Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ il existe un unique couple $(S,A) \in \mathcal{S}_n(\mathbb{R}) \times \mathcal{A}_n(\mathbb{R})$ tel que M = S + A.

Exercice 10. (*)

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. Démontrer que si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont deux matrices nilpotentes telles que AB = BA, alors AB et A + B sont nilpotentes.

Exercice 11. (**)

- 1. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Ensemble des matrices carrées :

Exercice 12. (*)

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
. Calculer $A^3 - A$. En déduire

que A est inversible puis déterminer A^{-1} .

Exercice 13. (**) (Théorème de HADAMARD) Soit $A \in \mathcal{M}_n(\mathbb{C})$ à diagonale strictement dominante, telle que : $\forall i \in \{1,...,n\}, |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$ Montrer que A est inversible.

Exercice 14. (**)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $Tr(A^T A) \ge 0$. Que peut-on en déduire sur la matrice A si $Tr(A^T A) = 0$?

Exercice 15. (**)

Les affirmations suivantes sont-elles vraies?

- 1. $\forall A, B, C \in \mathcal{M}_2(\mathbb{R}) : Tr(ABC) = Tr(BAC)$
- 2. $\exists A, B \in \mathcal{M}_n(\mathbb{R}) : AB BA = I_n$
- 3. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ tels que AB BA = A. Alors pour tout $n \in \mathbb{N}^*$ on a $Tr(A^n) = 0$

Exercice 16. (*)

Soient A et $B \in \mathcal{M}_n(\mathbb{R})$ telles que $\forall X \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(AX) = \operatorname{tr}(BX)$. Montrer que A = B.

Exercice 17. (*)

Calculer (s'il existe) l'inverse des matrices :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & \bar{\alpha} & \bar{\alpha}^2 \\ \alpha & 1 & \bar{\alpha} \\ \alpha^2 & \alpha & 1 \end{pmatrix} (\alpha \in \mathbb{C})$$

$$\begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \ddots & & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ & \cdots & 0 & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & 1 & 2 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Exercice 18. (**)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ antisymétrique.

- 1. Montrer que I + M est inversible (si (I + M)X = 0, calculer ${}^{t}(MX)(MX)$).
- 2. Soit $A = (I M)(I + M)^{-1}$. Montrer que ${}^tA = A^{-1}$.

Exercice 19. (*)

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, \quad I = \begin{pmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$$

Exercice 20. (**)

Soient A et B deux matrices de tailles n vérifiant AB - BA = A. Montrer pour tout entier naturel k: $A^{k+1}B - BA^{k+1} = (k+1)A^{k+1}$

Exercice 21. (**)

Déterminer les réels λ tels qu'il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$ non nulle vérifiant ${}^tA = \lambda A$.

Exercice 22. (**)

Soit T une matrice triangulaire supérieure de taille $n \in \mathbb{N}$. Montrer que T commute avec sa transposée, si et seulement si T est diagonale.

Exercice 23. (***)

Déterminer le centre de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{R})$ telle que, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on a AM = MA.

Systèmes linéaires:

Exercice 24. (*)

Résoudre les systèmes linéaires suivants :

$$\begin{cases} x+y+2z &= 3 \\ x+2y+z &= 1 \\ 2x+y+z &= 0 \end{cases} \begin{cases} x+2z &= 1 \\ -y+z &= 2 \\ x-2y &= 1 \end{cases}$$

Exercice 25. (**)

Résoudre le système suivant :

$$\begin{cases} x+y+z-3t &= 1\\ 2x+y-z+t &= -1 \end{cases}$$

Exercice 26. (*)

Discuter suivant la valeur du paramètre $m \in \mathbb{R}$ le système :

$$\begin{cases} 3x + y - z = 1 \\ x - 2y + 2z = m \\ x + y - z = 1 \end{cases}$$

Exercice 27. (**)

Résoudre le système suivant, en discutant suivant la valeur du paramètre m.

$$\begin{cases} x+y+mz = 0\\ x+my+z = 0\\ mx+y+z = 0 \end{cases}$$

Exercice 28. (**)

Déterminer tous les triplets $(a, b, c) \in \mathbb{R}^3$ tels que le polynôme $P(x) = ax^2 + bx + c$ vérifie

1.
$$P(-1) = 5$$
, $P(1) = 1$ et $P(2) = 2$;

2.
$$P(-1) = 4$$
 et $P(2) = 1$.

Exercice 29. (**)

Résoudre, pour $\lambda \in \mathbb{C}$, le système

$$\begin{cases} \lambda x + y + z + t &= 1\\ x + \lambda y + z + t &= \lambda\\ x + y + \lambda z + t &= 1 \end{cases}$$