Exercises 8

1. Let $\langle x_1, x_2, \dots \rangle$ be a data stream of unknown length, where each $x_i \in \{1, 2, \dots, n\}$. Devise an algorithm to produce a single sample s after one pass over the stream, such that the sample is distributed proportionally to its value: that is,

$$\Pr[s = x_i] = \frac{x_i}{\sum_i x_i}.$$

Argue the correctness of your algorithm.

- 2. For a set S and $x \in S$, we define $\operatorname{rank}_S(x) = |\{y \in S \mid y \leq x\}|$. Suppose, given a data stream S of m distinct values, you want to find an approximate median: an element x such that $\operatorname{rank}_S(x) = \frac{m}{2} \pm \epsilon m$, for some ϵ such that $0 < \epsilon < 1/4$ (that is, $|\operatorname{rank}_S(x) m/2| \leq \epsilon m$). Consider drawing t samples (with replacement) from the data stream. Given these samples, how would you choose x? How large would t need to be for your choice of t to be suitable with probability at least $t \delta$? What if you wanted t such that t rank t for some t if t rank t rank t for some t if t rank t for some t if t rank t rank
- 3. Let $Z \in \{0,1\}^{k \times n}$ be a fixed matrix and $f = (f_1, \ldots, f_n)$ denote the frequency vector of a data stream: that is, f_i is the number of times value i appears in the stream. Describe a data stream algorithm to compute the product $Z \cdot f$ exactly, using $O(k \log m)$ bits of memory (in addition to the memory required to hold Z) for a stream of length m.
- 4. Suppose your data stream algorithm is allowed to make two passes over the data (possibly retaining any memory content in between the passes). Describe and analyse a data stream algorithm to find the exact median of the stream using only $O(n^{2/3} \cdot \ln(1/\delta))$ storage, where n is the known length of the data stream and δ is the error probability of the algorithm.

Solutions to these exercises are to be handed in at the lecture on 12 March 2019.