DM 13 Groupes abéliens de types finis

Notation.

- Si E est un ensemble fini, on note |E| son cardinal.
- Lorsque (G, +) est un groupe abélien, on note 0 son élément neutre.
- Lorsque A est une partie d'un groupe G, on note Gr(A) le groupe engendré par A. Si $x \in G$, on note $Gr(x) = Gr(\{x\})$.

Partie I: Groupes quotients

Soit (G, +) un groupe abélien et H un sous-groupe de G. On définit sur G la relation binaire R_H par : $\forall x, y \in G$, $xR_H y \iff y - x \in H$.

1°) Montrer que R_H est une relation d'équivalence. Soit $a \in G$. Déterminer la classe d'équivalence de a, que l'on notera \overline{a} .

On note G/H l'ensemble des classes d'équivalence et pour tout $a, b \in G$, on convient que $\overline{a} + \overline{b} = \overline{a+b}$.

- **2°)** Montrer que cette dernière égalité structure G/H comme un groupe abélien. Montrer que, pour tout $a \in G$ et $n \in \mathbb{Z}$, $n\overline{a} = \overline{na}$. Quels sont les groupes de la forme \mathbb{Z}/H ?
- 3°) Lorsque G est de cardinal fini, montrer que $|G| = |H| \times |G/H|$.

Partie II: Quelques définitions

Soit (G, +) un groupe abélien.

- On dit que G est de type fini si et seulement si il existe une partie finie A de G telle que G est le groupe engendré par A.
- On dit que G est sans torsion si et seulement si, pour tout $x \in G \setminus \{0\}$, x est d'ordre infini.
- On dit que G est de torsion si et seulement si, pour tout $x \in G$, x est d'ordre fini.

- **4°)** Si G et H sont deux groupes de types finis, montrer que $G \times H$ est de type fini. En déduire que, pour tout $k, \ell \in \mathbb{N}^*$, pour tout $(d_i)_{1 \leq i \leq \ell} \in \mathbb{N}^{*\ell}$, $\mathbb{Z}^k \times (\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$ est un groupe abélien de type fini.
- 5°) Pour chacun des groupes suivants, indiquer s'il est de torsion et s'il est sans torsion : $\mathbb{Z}/n\mathbb{Z}$ (où $n \in \mathbb{N}^*$), \mathbb{Z} , $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$ (où $n \in \mathbb{N}^*$), \mathbb{C}^* , \mathbb{Q}/\mathbb{Z} .
- 6°) Montrer que G est de type fini et de torsion si et seulement si G est de cardinal fini.

Partie III: Groupes abéliens finis

Dans cette partie, on suppose que (G, +) est un groupe abélien de cardinal fini. Pour tout $x \in G$, on note o(x) l'ordre de x.

- **7°)** Soit $x, y \in G$ tels que o(x) et o(y) sont premiers entre eux. Montrer que o(x + y) = o(x)o(y).
- 8°) Soit $x, y \in G$. Montrer qu'il existe $z \in G$ tel que o(z) est égal au plus petit commun multiple de o(x) et de o(y).
- 9°) Montrer qu'il existe $x_0 \in G$ tel que l'ordre de x_0 est maximal parmi les ordres des éléments de G et montrer que, pour tout $x \in G$, l'ordre de x divise l'ordre de x_0 .
- 10°) On admet temporairement le résultat suivant : pour tout groupe (G', +) abélien et fini, si x'_0 est un élément de G' d'ordre maximal, alors G' est isomorphe à $H' \times (G'/H')$, où H' est le groupe engendré par x'_0 .

Montrer qu'il existe $\ell \in \mathbb{N}^*$ et $d_1, \dots, d_\ell \in \mathbb{N}^*$ tels que

- Pour tout $i \in \{1, \ldots, \ell 1\}$, d_{i+1} divise d_i ;
- G est isomorphe à $(\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.

Jusqu'à la fin de cette partie, on suppose que x_0 est un élément de G d'ordre maximal et on pose $H = Gr(x_0)$.

- 11°) Notons A l'ensemble des couples (K, f), où K est un sous-groupe de G et où f est un morphisme de K dans H.
- Si $(K, f), (K', f') \in A$, on convient que $(K, f) \preceq (K', f')$ si et seulement si $K \subset K'$ et $f'|_{K} = f$. Montrer que la relation binaire " \preceq " est une relation d'ordre sur A.

Pour cette relation d'ordre, montrer que $\{(K, f) \in A \mid H \subset K \text{ et } f|_H = Id_H\}$ possède un élément maximal.

On note maintenant (K, f) cet élément maximal.

Afin de montrer que K = G, on raisonne par l'absurde : on suppose que K est strictement inclus dans G. On choisit un élément y_0 dans $G \setminus K$ et on note K' le groupe engendré par $K \cup \{y_0\}$.

- 12°) Construire un morphisme injectif g de H dans \mathbb{U} , où $\mathbb{U} = \{z \in \mathbb{C}/|z| = 1\}$. Prolonger $g \circ f$ en un morphisme de K' dans \mathbb{U} .
- En déduire une contradiction.
- 13°) Montrer la propriété admise au début de la question 10.

Partie IV: Sommes directes

Lorsque H_1 et H_2 sont deux sous-groupes d'un groupe abélien (G, +), on note $H_1 + H_2 = \{h_1 + h_2 / h_1 \in H_1 \text{ et } h_2 \in H_2\}$.

On dit que la somme $H_1 + H_2$ est directe si et seulement si, pour tout $x \in H_1 + H_2$, il existe un unique couple $(h_1, h_2) \in H_1 \times H_2$ tel que $x = h_1 + h_2$.

Dans ce cas, et uniquement dans ce cas, la somme $H_1 + H_2$ est notée $H_1 \oplus H_2$.

- **14°)** a) Lorsque $G = \mathbb{Z}^2$, $H_1 = Gr((2,1))$ et $H_2 = Gr((0,2))$, la somme $H_1 + H_2$ est-elle directe?
- **b)** Lorsque $G = \mathbb{Z}$, $H_1 = a\mathbb{Z}$ et $H_2 = b\mathbb{Z}$ où $a, b \in \mathbb{N}$, la somme $H_1 + H_2$ est-elle directe?
- 15°) Soit H_1 et H_2 deux sous-groupes d'un groupe abélien (G, +).
- a) Montrer que $H_1 + H_2 = Gr(H_1 \cup H_2)$.
- b) Lorsque la somme est directe, montrer que $H_1 \oplus H_2$ est isomorphe à $H_1 \times H_2$.
- **16°)** Montrer que si H_1 , H_2 et H_3 sont des sous-groupes d'un groupe abélien (G, +), alors $(H_1 + H_2) + H_3 = H_1 + (H_2 + H_3)$.

Si l'on suppose que $H_1 \oplus H_2$ est directe, ainsi que $(H_1 \oplus H_2) \oplus H_3$, montrer que $H_2 + H_3$ est une somme directe, ainsi que la somme $H_1 + (H_2 \oplus H_3)$.

On peut donc écrire $H_1 + H_2 + H_3$ au lieu de $(H_1 + H_2) + H_3$ et $H_1 \oplus H_2 \oplus H_3$ au lieu de $(H_1 \oplus H_2) \oplus H_3$.

Plus généralement, lorsque H_1, \ldots, H_n sont n sous-groupes d'un groupe abélien (G, +), on admettra que les quantités $H_1 + \cdots + H_n$ et $H_1 \oplus \cdots \oplus H_n$ ne dépendent pas de la façon dont elles sont parenthésées.

Partie V : Groupes abéliens de rangs finis

Lorsque I est un ensemble quelconque, $\mathbb{Z}^{(I)}$ désigne l'ensemble des familles $(n_i)_{i\in I}$ d'entiers relatifs tels que $\{i\in I\mid n_i\neq 0\}$ est fini.

Dans cette partie, on fixe un groupe abélien (G, +).

Soit $B = (x_i)_{i \in I}$ une famille d'éléments de G, où I est un ensemble quelconque.

On dit que B est une base de G si et seulement si pour tout $x \in G$, il existe une unique famille $(n_i)_{i \in I} \in \mathbb{Z}^{(I)}$ telle que $x = \sum_{i \in I} n_i x_i$.

17°) S'il existe une base de G, montrer que G est sans torsion.

On dit que G est de rang fini si et seulement si il possède une base de cardinal fini.

18°) Dans cette question, on suppose que G est de rang fini.

On note (x_1, \ldots, x_n) une base de G de cardinal $n \in \mathbb{N}$.

- a) Montrer que si $(e_i)_{i\in I}$ est une autre base de G, alors I est de cardinal fini.
- **b)** On note $H = \{2x / x \in G\}$.

Montrer que H est un sous-groupe de G tel que G/H est de cardinal 2^n . En déduire que toutes les bases de G sont de cardinal n.

Ainsi, lorsque G est un groupe de rang fini, toutes ses bases ont le même cardinal, que l'on appelle le rang de G.

- 19°) Dans cette question, on suppose que G est un groupe sans torsion de type fini. Afin de montrer que G est de rang fini, on raisonne par l'absurde en supposant que Gne possède aucune base de cardinal fini.
- a) Pour toute partie génératrice finie X de G, montrer qu'on peut définir

$$m_X = \min\left(\left\{\sum_{x \in X} |n_x| / (n_x)_{x \in X} \in \mathbb{Z}^X \setminus \{0\} \text{ et } \sum_{x \in X} n_x x = 0\right\}\right).$$

b) On note n le cardinal minimal des parties finies génératrices de G. Montrer que nest bien défini et qu'il existe une partie X_0 génératrice de G de cardinal n telle que,

est bien denni et qu'il existe une partie génératrice X de cardinal $n, m_{X_0} \leq m_X$. Il existe alors une famille $(n_x)_{x \in X_0} \in \mathbb{Z}^{X_0} \setminus \{0\}$ telle que $m_{X_0} = \sum_{x \in X_0} |n_x|$ et $\sum_{x \in X_0} n_x x = 0$.

- c) Montrer que, pour tout $x \in X_0$, $|n_x| \neq 1$.
- **d)** Montrer qu'il existe $x, y \in X_0$ tels que $0 < |n_x| < |n_y|$ et $|n_x|$ ne divise pas $|n_y|$.
- e) En effectuant la division euclidienne de $|n_y|$ par $|n_x|$, construire une partie génératrice de G contredisant la minimalité de m_{X_0} .
- En déduire que G est un groupe sans torsion de type fini si et seulement si il existe $n \in \mathbb{N}$ tel que G est isomorphe à \mathbb{Z}^n et que dans ce cas, n est unique.

Partie VI : Théorème de structure des groupes de types finis

On fixe dans cette partie un groupe abélien (G, +) de type fini. On note T(G) l'ensemble des éléments de G dont l'ordre est fini.

- 21° Montrer que T(G) est un sous-groupe de G.
- 22°) Montrer que G/T(G) est un groupe sans torsion de type fini.
- Montrer qu'il existe $k \in \mathbb{N}$, $\ell \in \mathbb{N}^*$ et $d_1, \ldots, d_\ell \in \mathbb{N}^*$, 23°) vérifiant que pour tout $i \in \{1, \dots, \ell - 1\}, d_{i+1} \mid d_i$, tels que

$$G$$
 est isomorphe à $\mathbb{Z}^k \times (\mathbb{Z}/d_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/d_\ell\mathbb{Z})$.