EE 660

MACHINE LEARNING FROM SIGNALS: FOUNDATIONS AND METHODS

Prof. B. Keith Jenkins

Lecture 9

Lecture 9 EE 660 Sep 22, 2020

Announcements

- Homework 3 is due Friday.
- Homework 1 has been graded
 - Your scores and any comments/markups are visible to you on D2L.

Today's Lecture

- Upper bounds on growth function
- VC generalization bound
 - Theorem
 - Interpretation
 - Implications
- Dataset methodology and generalization bounds (part 1)

Bounds on Growth Function my (N)

We know that $m_{\chi}(N) \leq 2^{N}$ and if k is a break point then $m_{\chi}(k) \leq 2^{k}$. We can state other upper bounds (sometimes more useful)

1. Theorem 2.4 If k is a break point for H, then:

$$m_{\mathcal{X}}(N) \leq \sum_{i=0}^{k-1} {N \choose i} \quad \forall N$$

Comment: $\binom{N}{i} = \frac{N!}{(N-i)! i!} = \frac{1}{i!} \left[N(N-i) \cdot \cdot \cdot \cdot (N-i+1) \right]$

polynomial in N? Yes. Degree? i.

(i) (i)

$$\sum_{i=0}^{k-1} \binom{N}{i} = \binom{N}{k-1} \binom{N}{i}, \text{ if } k \text{ is a break point.}$$

2. Let ko be the smallest break point of 7.

What is the relation $d_{vc}(\mathcal{H}) \leftarrow k_0^2$ $d_{vc}(\mathcal{H}) = k_0 - 1$ max # pts. # can shatter min. # pts # cannot shatter

One can show: $m_{\mathcal{H}}(N) \leq N^{d_{vc}} + 1$; due is the order of the polynomial bound.

VC Generalization Bound

(1) Previously:
$$P[E_{out}(h_g) \leq E_{ob}(h_g) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{S}] \geq 1-S$$
(AML (2.1) again)

Now we have;

Theorem 2.5 - VC Generalization Bound

For any tolerance
$$S > 0$$
,

(2)

 $E_{out}(h_g) \le E_{o}(h_g) + \sqrt{\frac{8}{N}} \ln \frac{4 m_{2}(2N)}{8}$

with probability 1-5.

(AML (2,12))

 $\mathcal{E}_{\mathsf{eff}}$

Proof: in AML appendix (N.R.F.)

Comments

1.
$$m_{\mathcal{H}}(N) \leq N^{dvc} + 1 \Rightarrow m_{\mathcal{H}}(2N) \leq (2N)^{dvc} + 1$$
(3) So: $\mathcal{E}_{eff} \leq \sqrt{\frac{8}{N} ln} \frac{4[(2N)^{dvc} + 1]}{S} \stackrel{\triangle}{=} \mathcal{E}_{vc}$

For
$$(2N)^{dve} >> 1$$
:
 $E_{Ve} \approx \sqrt{\frac{8}{N}} \left[ln \left(4 (2N)^{dve} \right) - ln S \right]$

$$= \sqrt{\frac{8ln^4 + 8d_{Ve} ln (2N) - \frac{8}{N} ln S}}$$

$$\Rightarrow$$
 lim $\mathcal{E}_{vc} = ^2 = 0$. $\mathcal{E}_{vc} \rightarrow 0$ asymptotically with $N\rightarrow\infty$ increasing N .

If dre is finite, then a sufficiently large Nexists that will provide good generalization from E to Eout.

This proves that machine learning is feasible, even with an infinite hypothesis set $(M=124)=\infty$, if d_{VC} is finite

2. Using a test set to bound
$$E_{out}(h_g)$$
:

If \mathcal{O}_{Test} has not been used to pick \mathcal{H} or h_g , and if we use $E_q.(i)$:

 $E_{out}(h_g) \leq E_{a_{Test}}(h_g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{S}}$, with probability 1-S,

then $M=?=1$!

3. Eq. (Z) again:
$$E_{out}(h_g) \leq E_{o}(h_g) + \sqrt{\frac{8}{N}} \ln \frac{4 m_{g}(2N)}{S}$$
using (3): $E_{out}(h_g) \leq E_{o}(h_g) + \sqrt{\frac{8}{N}} \ln \frac{4 [(2N)^{dvc} + 1]}{S}$

duc is complexity of H (or model complexity)

N represents sample (dataset) complexity *

 $\mathcal{E}\left(\mathcal{E}_{m}, \mathcal{E}_{eff}, \text{ or } \mathcal{E}_{vc}\right)$ is generalization error $\left(\mathcal{E}_{o} \rightarrow \mathcal{E}_{out}\right)$

S is our tolerance (degree of uncertainty we will accept)

* assuming drawn iid from X based on p(x) (and p(y|x) or p(x,y))

Dependences:

$$E_{out}(h_g) \leq E_{s}(h_g) + \sqrt{\frac{8}{N}} \ln \frac{4[(2N)^{4}vc_{+}]}{S}$$
if dvc \tau then: typ

if dvc \tau then:

if N \tau then:

maybe \tau maybe \tau maybe \tau maybe \tau const.

(at some law ge N)

will \tau sotwate).

Error

$$E_{vc}$$

Generalization

error)

optimal

 dvc

[Adapted from AML Fig. 2.3]

Review: 2 key bounds and their assumptions

(i)
$$E_{out}(h_g) \leq E_{N_o}(h_g) + \sqrt{\frac{8}{N}} \ln \frac{4[(2N)^{dvc} + 1]}{S}$$
 (or in terms of $m_{H_o}(2N)$)

Assumptions:

1. Do and H must be consistent: i.e., to is used to choose he out of Ho.

2. Info. in Do cannot be used to construct Ho.

3. N=N20

(ii)
$$E_{out}(h_g) \leq E_{obs}(h_g) + \sqrt{\frac{1}{2N} ln \frac{2M}{S}}, M=1.$$

Assumptions:

1. Info. in Dest cannot influence choice of hy in any way. 2. N=NTest

And as always we assume data is drawn from X according to $p(\underline{x})$ iid. (possibly also $p(y|\underline{x})$, or $p(\underline{x},y)$, or $p(\underline{x}|y)$).