

Casos de Uso e Diagrama de Casos de Uso

Luanda 2022 1

INTRODUÇÃO

O UML (*Unified Modelling Language*) é uma linguagem diagramática, utilizável para especificação, visualização e documentação de sistemas de software.

O UML (*Unified Modeling Language*) é uma linguagem para especificação, construção, visualização e documentação de artefactos de um sistema de software.

O UML providencia os seguintes tipos de diagramas:

- 1. Diagramas de casos de USO
- 2. Diagramas de classes e diagramas de objectos
- 3. Diagramas de comportamento
- 3.1 Diagramas de estados (*statechart*)
- 3.2 Diagramas de actividades
- 3.3 Diagramas de interacção (diagramas de sequência e diagramas de colaboração)

Tipos de Elementos Básicos

A estrutura de conceitos do UML é razoavelmente abrangente consistindo num conjunto variado de notações, as quais podem ser aplicados em diferentes domínios de problemas e a diferentes níveis de abstracção. A estrutura de conceitos do UML pode ser vista através das seguintes noções:

- (1) "coisas" ou elementos básicos, com base nos quais se definem os modelos;
- (2) relações, que relacionam elementos;
- (3) diagramas, que agrupam elementos.

Resumo dos elementos de estrutura.

Resumo dos elementos de estrutura.

Comportamento

Agrupamento

Anotação

Resumo dos elementos de comportamento, agrupamento e anotação.

Tipos de Relações

As relações são conceitos gerais que apresentam uma sintaxe (neste caso, uma notação) e uma semântica bem definida, e que permite o estabelecimento de interdependências entre os elementos básicos acima introduzidos.

os principais tipos de relações do UML, nomeadamente relações do tipo associação, dependência, realização, generalização e transição de estado. (Mais abaixo será descrito em detalhe a semântica e aplicação destes diferentes tipos de relações.)

Tipos de Diagramas

Os diagramas são conceitos que traduzem a possibilidade de agrupar elementos básicos e suas relações de uma forma lógica ou de uma forma estrutural. Existem diferentes tipos de diagramas em UML. Em cada tipo de diagrama é usado um subconjunto dos elementos básicos acima descritos, com diferentes tipos de relações que tenha sentido existir.

1. Diagramas de casos de USO

Diagramas de casos de utilização, que representam a visão do sistema na perspectiva do seu utilizador.

- ✓ É o diagrama mais abstrato, flexível e informal da UML.
- ✓ Descrições narrativas de processos do domínio da aplicação.
- ✓ Normalmente, é utilizado no início da modelagem para identificar os requisitos do sistema.
- ✓ Pode ser utilizado como base para criação de outros diagramas.
- ✓ Usando uma linguagem simples, permite que qualquer pessoa compreenda o comportamento externo do sistema.

VANTAGENS DE VLANS

- ✓ Identifica os tipos de usuários que interagem com o sistema, os papéis que eles assumem e as funções requisitadas;
- ✓ Pode (e deve ser) apresentado durante reuniões iniciais com os clientes porque pode auxiliar na identificação de possíveis falhas;
- ✓ Descreve os requerimentos funcionais do sistema de maneira consensual entre usuários e desenvolvedores de sistema.

Software de Modelagem – Astah

Para modelagem dos diagramas de casos de uso e dos demais diagramas UML será utilizado o software **Astah Community**.

Versões:

Community: gratuita (com limitações) **Professional**: licenciada (completa)

UMLpad: gratuita para iPad

http://www.astah.net

Elementos básicos

- ✓ Atores
- ✓ Caso de Uso
- ✓ Associação
- ✓ Sistema

Atores

Representam os papéis desempenhados pelos diversos usuários que poderão utilizar ou interagir com os serviços e funções do sistema.

Pode ser qualquer elemento externo que interaja com o sistema, inclusive um software ou hardware.

Exemplos típicos: cliente, aluno, supervisor, professor, impressora fiscal, dispositivo de conexão de rede, sistema de faturamento etc.

Identificando atores de um sistema:

Quem utilizará a principal funcionalidade do sistema?

Quem (ou o que) tem interesse nos resultados do sistema?

Quais dispositivos (hardware) são necessários?

Com quais outros sistemas o sistema em foco irá interagir?

Casos de Uso

- ✓ Referem-se aos serviços, tarefas ou funções que podem ser utilizados pelosusuários do sistema;
- ✓ São usados para expressar e documentar os comportamentos das funções do sistema;
- ✓ Em geral, podemos associar um caso de uso a uma tela (ou página) de um sistema, apesar de isto não ser uma regra;
- ✓ Contém um texto descrevendo o serviço (iniciando-se com um verbo);

Exemplos:

Cadastrar produto; Gerar relatório de vendas; Emitir NF-e.

Características dos Casos de Uso

- 1. É sempre iniciado por um ator Realizado em nome de um ator que, por sua vez, deve pedir direta ou indiretamente ao sistema tal realização.
- Um caso de uso é completo
 Deve ser uma descrição completa de um determinado processo.
- 3. Deve prover um valor a um ator Como resposta à solicitação do ator, retorna um valor.

Associações

São representadas por uma linha que liga o ator ao caso de uso:

Generalização e Especialização

Existem pequenas diferenças entre os casos de uso associados;

2. Forma de associação na qual existem dois ou mais casos de uso com características semelhantes;

 Também é possível com atores;

Inclusão

- ✓ A execução de um caso de uso obriga a execução de um outro.
- ✓ Pode ser comparado à chamada de uma sub-rotina.
- ✓ Sintaxe mais utilizada: reta tracejada com uma seta apontando para o caso de uso que foi incluído.
- ✓ Estereótipo com o texto <<include>>:

Inclusão Exemplo:

Extensão

- Descreve cenários opcionais de um caso de uso;
- Só ocorrerá se uma determinada condição for satisfeita;
- Sintaxe mais utilizada: reta tracejada com uma seta apontando para o caso de uso que recebe a extensão;
- Estereótipo com o texto <<extend>>:

■ Exemplo:

Restrições

Às vezes, não fica claro a condição que deve ser satisfeita para que um caso de uso seja executado;

Nesses casos, podemos usar restrições com uma nota explicativa determinando a condição para que o caso de uso seja executado;

As restrições são compostas por um texto entre chaves.

Documentação de casos de uso

Descrição bastante simples do caso de uso

Tem como objetivo informar os atores que interagem com o sistema e as etapas que devem ser executadas pelo ator e pelo sistema para que o caso de uso execute sua função;

Não há um modelo padrão para especificação de caso de uso;

Recomenda-se que seja simples e de fácil acesso.

Pré e Pós condições

Condições que devem ser verdadeiras antes de o caso de uso ser executado (pré), ou após sua execução (pós).

Exemplo 1: retirar dinheiro em um caixa.

Pré-condição: cliente precisa ter conta no banco.

Pós-condição: o terminal fica pronto para outro cliente

Tipos de caso de uso com relação à importância

Primário

Representam os processos principais ou mais comuns.

Secundário

Representam os processos menos importantes ou mais raros.

Opcional

Representam os processos que podem ser ignorados ou incluídos em futuras versões do sistema.

Recomendações

Crie nomes sempre começando com um verbo no infinitivo.

Identifique primeiros os fluxos principais, iniciando com:

1. Este caso de uso começa quando <Ator> <inicia evento>

Use a seção "Sequências não típicas" para representar desvios para sequências de eventos incomuns ou excepcionais.

Use subseções para representar desvios para sequências alternativas com igual importância ou probabilidade de ocorrência.

Recomendações

Procure estimar a dimensão de cada caso de uso, não deixando muito extenso.

Procure identificar partes comuns nos seus caso de uso (usar <<include>>).

Identifique serviços comuns aos casos de uso e crie casos de uso genéricos.

À medida que se definem os casos de uso um refinamento no diagrama é possível.

Exercícios

Elabore o Diagrama de Casos de Uso para uma biblioteca escolar.

Elabore o Diagrama de Casos de Uso para um sistema de reserva de passagens aéreas.

Elabore o Diagrama de Casos de Uso para um sistema controle de estoque.

