T and F Distributions

The purpose of both of these distributions is to allow for inferences about μ and σ in an unknown distribution. Both are quotients of known distributions.

Preliminaries

Sample Mean: Let Y_1, \ldots, Y_n be a random, independent sample from a distribution with mean μ and variance σ^2 . Then,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 Sample Mean

is a distribution with mean $\overline{\mu}=\mu$ and variance $\overline{\sigma}^2=\frac{\sigma^2}{n}$. If the underlying distribution is a normal distribution, then $\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ is a *standard* normal distribution.

Sample Variance: The sample variance is defined as

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$
 Sample Variance

It is important to note that the sample variance is found for samples drawn from a distribution; for population standard deviation/variance, we use n instead of n-1 in the denominator.

When Y_i is a normal distribution, then $\frac{(n-1)S^2}{\sigma^2}$ is a χ^2 distribution with n-1 df — S^2 and \overline{Y} are independent.

Definition of $\mathcal T$ Distribution

Let Z be a standard normal distribution, W be χ^2 with ν df, and Z and W be independent. Then,

$$T = \frac{Z}{\sqrt{W/\nu}}$$

has a T distribution with ν df.

Creating a T Distribution: Let Y_i be sampled from a normal distribution with mean μ and standard deviation σ .

Then, $Z=rac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ is a standard normal distribution, and $W=rac{(n-1)S^2}{\sigma^2}$ is χ^2 with n-1 df.

So,

$$T = \frac{Z}{\sqrt{W/(n-1)}}$$

$$= \frac{(\overline{Y} - \mu)\sqrt{n}}{\sigma} \sqrt{\frac{(n-1)\sigma^2}{S^2}}$$

$$= \frac{(\overline{Y} - \mu)\sqrt{n}}{S}$$

has a T distribution with n-1 df.

T Distribution: Let Y_1, \ldots, Y_6 be samples from a normal distribution with unknown μ , σ . Estimate $P(|\overline{Y} - \mu| < (2S/\sqrt{n}))$.

Thus, we have

$$P\left(|\overline{Y} - \mu| \le \frac{2S}{\sqrt{n}}\right) = P\left(-2 \le \frac{\sqrt{n}(\overline{Y} - \mu)}{S} \le 2\right)$$
$$= P(-2 \le T \le 2)$$

Thus, for n=6, we have that our random variable T has 5 df. By looking at a T distribution table, we can find that $P\approx 0.9$. We can also use R.