

Atividade: As imagens

Habilidades

LAF3 Calcular e interpretar a taxa de variação média de uma função em um intervalo dado, tanto algebricamente quanto a partir de dados gráficos ou de uma tabela, identificando tendências de crescimento e decrescimento.

Para o professor

Objetivos específicos

OE1 Calcular imagens de alguns pontos sendo conhecidas as taxas de variação médias em intervalos do domínio.

OE2 Relacionar a disposição dos pontos no gráfico com a variação da taxa de variação média.

Observações e recomendações

- A principal atenção na hora de fazer as contas deve estar nos intervalos em que estão definidas as taxas médias.
- Ao finalizar a atividade, estimule que os estudantes façam conjecturas sobre a variação da taxa e a forma do gráfico. Por exemplo, "o que ocorre quando a taxa é igual a zero?", "se for constante e positiva?", "constante e negativa?", "qual a forma do gráfico quando a taxa de variação é crescente?", "e decrescente?" etc.
- Como extensão, proponha que os estudantes investiguem que taxas médias gerariam outras formas de gráficos; desafie-os a conjecturar ou pelo menos a dar exemplos de taxas que correspondam às formas abaixo,

Atividade

Nas tabelas abaixo encontram-se as taxas de variação médias de funções e os intervalos correspondentes. Complete-as com os valores da função e em seguida represente os pontos no sistema de coordenadas

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

Realização: OLIMPÍADA BRASILEIRA Patrocínio:

a)

[a,b]	f(0) = 1	$\Delta y/\Delta x$
[0, 1]	f(1) =	2
$\boxed{[1,2]}$	f(2) =	2
[2, 3]	f(3) =	2
[3, 4]	f(4) =	2

b)

[a,b]	f(0) = 10	$oxed{\Delta y/\Delta x}$
$[0,\frac{1}{2}]$	f(1/2) =	-2
$\boxed{[\frac{1}{2},1]}$	f(1) =	-2
$[1, \frac{3}{2}]$	f(3/2) =	-2
$[\frac{3}{2}, 2]$	f(2) =	-2
$[2, \frac{5}{2}]$	f(5/2) =	-2
$[\frac{5}{2}, 3]$	f(3) =	-2
$[3, \frac{7}{2}]$	f(7/2) =	-2
$\boxed{[\frac{7}{2}, 4]}$	f(4) =	-2

c)

[a,b]	f(0) = 0	$\Delta y/\Delta x$
[0, 2]	f(2) =	1
[2, 4]	f(4) =	2
[4, 6]	f(6) =	3
[6, 8]	f(8) =	4

d)

[a,b]	f(0) = 0	$\Delta y/\Delta x$
[0, 1]	f(1) =	10
[1, 2]	f(2) =	-8
[2, 3]	f(3) =	6
[3, 4]	f(4) =	0

e)

[a,b]	f(0) = 0	$\Delta y/\Delta x$
[0, 1]	f(1) =	1
[1,2]	f(2) =	3
[2, 3]	f(3) =	5
[3, 4]	f(4) =	7
[4, 5]	f(5) =	5
[5, 6]	f(6) =	3
[6, 7]	f(7) =	1
[7, 8]	f(8) =	0

Solução:

