Variational Inference for Bayesian Mixture of Factor Analysers

Angermueller Christof

20 January 2014

1 Notations

Symbol	Description
\overline{P}	Dimensionality data
Q	Number of factors/components
S	Number of factor analysers
N	Number of samples
G	Number of genes

2 Factor analysis

Symbol	Dimension	Description
\overline{y}	P	Observed data vector
$oldsymbol{x}$	Q	Latent factors
η	P	Random Gaussian noise
Λ	$P \times Q$	Factor loading matrix
$\Lambda_{:q}$	P	Column loading matrix/principal component
\boldsymbol{z}	Q	Indicators factor analysers
π	S	Mixing proportions

$$P(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|0, I_Q) \tag{1}$$

$$P(\eta) = \mathcal{N}(\eta|0, \Psi) \tag{2}$$

2.1 Single factor analyser

$$y = \Lambda x + \eta \tag{3}$$

$$P(\boldsymbol{y}|\boldsymbol{x}, \Lambda, \Psi) = \mathcal{N}(\boldsymbol{y}|\Lambda \boldsymbol{x}, \Lambda \Lambda^T + \Psi)$$
(4)

2.2 Mixture factor analysers

$$\boldsymbol{y} = \boldsymbol{\eta} + \sum_{s=1}^{S} \Lambda^{s} \boldsymbol{x} P(z_{s} | \boldsymbol{\pi})$$
 (5)

$$P(\boldsymbol{y}|\boldsymbol{x}, \Lambda, \Psi) = \sum_{s=1}^{S} \mathcal{N}(\boldsymbol{y}|\Lambda \boldsymbol{x}, \Lambda^{s} \Lambda^{sT} + \Psi) P(z_{s}|\boldsymbol{\pi})$$
(6)

3 Gene expression model

Symbol	Dimension	Description
$oldsymbol{y}^{n,g}$	P	Counts sample n gene g
$oldsymbol{x}^{n,g}$	Q	Factors sample n gene g
$oldsymbol{z}^{n,g}$	Q	Indicators factor analysers sample n gene g
π	S	Mixing proportions
Λ^s	$P \times Q$	Loading matrix factor analyser s
$oldsymbol{ u}^s$	Q	Precisions components factor analyser s
\overline{a}	1	Shape gamma distribution
b	1	Rate gamma distribution
α	1	Dirichlet parameter
Ψ	$Q \times Q$	Noise matrix

Figure 1: Graphical model

3.1 Conditional probability distributions

$$P(\boldsymbol{y}^{n,g}|\boldsymbol{x}^{n,g},\boldsymbol{z}^{n,g},\boldsymbol{\pi},\Lambda) = \sum_{s=1}^{S} \mathcal{N}(\boldsymbol{y}^{n,g}|\Lambda^{s}\boldsymbol{x}^{n,g},\Lambda^{s}\Lambda^{sT} + \Psi)P(z_{s}^{n,g}|\boldsymbol{\pi})$$
(7)

$$P(\boldsymbol{x}^{n,g}) = N(\boldsymbol{x}^{n,g}|0, I_Q)$$
(8)

$$P(\boldsymbol{z}^{n,g}|\boldsymbol{\pi}) = Mult(\boldsymbol{z}^{n,g}|\boldsymbol{\pi}) \tag{9}$$

$$P(\boldsymbol{\pi}|\alpha) = Dir(\boldsymbol{\pi}|\alpha) \tag{10}$$

$$P(\Lambda^{s}) = \prod_{q=1}^{Q} N(\Lambda^{s}_{:q}|0, I_{P} \frac{1}{\nu_{q}^{s}})$$
(11)

$$P(\boldsymbol{\nu}^s) = \prod_{q=1}^{Q} \Gamma(\nu_q^s | a, b)$$
 (12)