

OCT 24, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.dm6gp3o68vzp/v1

Protocol Citation: Hao Zhang, Ryan Mulqueen, Andrew Adey, Darren Cusanovich 2023. Ten(10)Xcompatible Combinatorial Indexing ATAC sequencing (txci-ATAC-seq).

protocols.io

https://dx.doi.org/10.17504/protocols.io.dm6gp3o68vzp/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Ten(10)X-compatible Combinatorial Indexing ATAC sequencing (txci-ATAC-seq)

Andrew Darren

Hao Zhang¹, Ryan Mulqueen², Adey², Cusanovich¹

¹University of Arizona, Department of Cellular and Molecular Medicine, Tucson, AZ;

²Oregon Health & Science University

Hao Zhang

ABSTRACT

The txci-ATAC-seq method is a large-scale single-cell ATAC-seq technique that combines the Tn5-based pre-indexing with the 10X Chromium-based microfluidic barcoding. This molecular hashing strategy enables the profiling of up to 200,000 nuclei across multiple samples in a single emulsion reaction.

MATERIALS

Loading Tn5

Annealing Buffer:

Reagent	Final Concentration	Per 10 ml
1M Tris-HCl, pH8.0	40 mM	400 μΙ
5M NaCl	50 mM	100 μΙ
H20		9.5 ml

 Sequences of Tn5 linker oligos (The 'N' bases shown in the Tn5ME-B sequence represent the Tn5 barcodes):

Linker Oligo	Sequence 5' -> 3'
Tn5ME-A	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
Tn5ME-B	CGTGTGCTCTTCCGATCTNNNNNNNNAGATGTGTATAAGAGACA G
Tn5MErev	[phos]CTGTCTCTTATACACATCT

Sequences of Tn5ME-B barcode:

Row	1	2	3	4	5	6	7	8	9	10	11	12
Α	CCG	TTA	TCC	CTT	CAC	TGT	AAT	GGC	AGA	TGC GAG AC	GTC	ACT

Created: Oct 22, 2023

Last Modified: Oct 24, 2023

PROTOCOL integer ID:

89713

Keywords: Single-cell, ATAC-seq, Chromatin accessibility, Combinatorial indexing, Molecular hashing

Funders Acknowledgement:

NIH/NIGMS

Grant ID: R35GM137896

NIH/NIGMS

Grant ID: R35GM124704

NIH/NIMH, BICCN

Grant ID: RF1MH128842

Row	1	2	3	4	5	6	7	8	9	10	11	12
В	TGG	CAA	ATA	GCG	CTA	TCG	CGT	TAC	ACG	GTA	CGC	TAT
	CCG	TTA	ATG	GCA	GCG	ATA	CTG	TCA	CAC	TGT	TAT	CGC
	GT	AC	TG	CA	CT	TC	CG	TA	CT	TC	GT	AC
С	TCT	CTC	TAT	CGC	TCT	CTC	CCA	TTG	GGC	AAT	TAA	CGG
	GTT	ACC	TAG	CGA	CTA	TCG	AGT	GAC	TTA	CCG	TAC	CGT
	GG	AA	CT	TC	CT	TC	CT	TC	AG	GA	AG	GA
D	ATG	GCA	GGT	AAC	GCA	ATG	ACT	GTC	CCG	TTA	GGA	AAG
	TAA	CGG	ACC	GTT	GAA	AGG	AAG	GGA	CGG	TAA	CTT	TCC
	GT	AC	TT	CC	TT	CC	AT	GC	TT	CC	GG	AA
E	ATC	GCT	CAA	TGG	AGT	GAC	TGA	CAG	AGC	GAT	TCG	CTA
	CAC	TGT	GCT	ATC	TCA	CTG	CGA	TAG	CTC	TCT	TAG	CGA
	TG	CA	AG	GA	GG	AA	AT	GC	AT	GC	TG	CA
F	TAA	CGG	ATA	GCG	AAG	GGA	ATG	GCA	GTT	ACC	CTT	TCC
	GTG	ACA	TGG	CAA	ATA	GCG	GCA	ATG	CCA	TTG	ATC	GCT
	GT	AC	AT	GC	CT	TC	TG	CA	AT	GC	GG	AA
G	GCT	ATC	CTT	TCC	CCG	TTA	GGC	AAT	TAC	CGT	CAC	TGT
	CAT	TGC	GGT	AAC	TGA	CAG	ATT	GCC	CGA	TAG	GAG	AGA
	TG	CA	AT	GC	AG	GA	CT	TC	GG	AA	CG	TA
Н	GAT	AGC	CGG	TAA	TTG	CCA	ACA	GTG	TTC	CCT	GCC	ATT
	CTA	TCG	AAC	GGT	CCT	TTC	CTA	TCG	CTG	TCA	ACA	GTG
	TC	CT	TG	CA	AG	GA	AG	GA	TT	CC	GG	AA

Isolation of nuclei from cell lines

Buffers to make beforehand

• Omni Resuspension Buffer (RSB; filter and store at 4°C):

Reagent	Final Concentration	Per 50 ml
1M Tris-HCl, pH 7.5	10 mM	500 µl
5M NaCl	10 mM	100 µl
1M MgCl2	3 mM	150 µl
H20		49.25 ml

• Omni TD Buffer (filter and store at -20°C):

Reagent	Final Concentration	Per 50 ml
1M Tris-HCl, pH 7.5	20 mM	1 ml
1M MgCl2	10 mM	0.5 ml
Dimethyl Formamide	20%	10 ml
Sterile water		38.5 ml

• Freezing buffer stock solution (FB stock; filter and store at -20°C):

	Reagent	Final Concentration	Per 50 ml
--	---------	---------------------	-----------

Reagent	Final Concentration	Per 50 ml
1M Tris-HCI, pH 8.0	50 mM	2.5 ml
1M Mg(OAc)2	5 mM	0.25 ml
50% Glycerol	25%	25 ml
0.5M EDTA	0.1 mM	0.01 ml
Sterile water		22.24 ml

Buffers to make on the day of the experiment

■ RSB Lysis Buffer (200 µl per sample):

Reagent	Final Concentration	Per 200 µl
RSB	~1x	194 µl
10% Igepal-CA630	0.1%	2 μΙ
1% Digitonin	0.01%	2 μΙ
10% Tween-20	0.1%	2 μΙ

• RSB Washing Buffer (1 ml per sample):

Reagent	Final Concentration	Per 1 ml
RSB	~1x	990 µl
10% Tween-20	0.1%	10 μΙ

• Freezing buffer working solution (FBW; 1 ml for every 3 millions of nuclei):

Reagent	Final Concentration	Per 1 ml
FB stock	~1x	975 μl
1M DTT	5 mM	5 µl
Protease Inhibitors (Sigma P8340)	2% (v/v)	20 μΙ

txci-ATAC-seq protocol

Buffers to make beforehand

■ TMG washing buffer (50 ml):

Reagent	Final Concentration	Per 50 ml
0.2M Tris-acetate pH 7.8	10 mM	2.5 ml
1M Magnesium acetate	5 mM	0.25 ml

Reagent	Final Concentration	Per 50 ml
50% Glycerol	10%	10 ml
Sterile water		37.25 ml

■ Loading Buffer was made by mixing buffer 1 (5x) and buffer 2 below (5x):

1. Buffer1 (5x):

Reagent	Final Concentration	Per 1000 µl
0.2M Tris-acetate pH 7.6	50 mM	250 μl
1M Magnesium acetate	25 mM	25 μΙ
Dimethyl Formamide	50%	500 μl
H20		225 μΙ

2. Buffer2 (5x):

Reagent	Final Concentration	Per 1000 µl
100% Glycerol	50%	500 μl
5M NaCl	100 mM	20 μΙ
1M Tris-HCl, pH 7.5	50 mM	50 μΙ
0.5M EDTA	0.1 mM	0.2 μΙ
1M DTT	1 mM	1 μΙ
H20		428.8 µl

3. Loading Buffer:

Reagent	Fina	I concentration	Per 250 μl
5x Buffe	1 1x		50 μl
5x Buffe	² 1x		50 μΙ
H20			150 µl

• Omni Resuspension Buffer (RSB; filter and store at 4C):

Reagent	Final Concentration	Per 50 ml
1M Tris-HCl, pH 7.5	10 mM	500 μl
5M NaCl	10 mM	100 μΙ
1M MgCl2	3 mM	150 µl
H20		49.25 ml

■ 10% (100 mg/mL) BSA:

Dissolve 1 g powdered Fraction V or molecular biology grade BSA in 10 mL of

Buffers to make on the day of the experiment

■ PBSB (containing 0.04% BSA) (2 ml):

Reagent	Final concentration	Per 2 ml	
PBS ~1x		1960 µl	
20 mg/ml BSA	0.4 mg/ml	40 μl	

RSB washing buffer (4 ml per sample):

Reagent	Final Concentration	Per 4 ml
RSB	~1x	3920 μl
10% Tween-20	0.1%	40 μΙ
10% BSA	0.1%	40 μl

Loading buffer supplemented with SBS oligo (LBS):

Reagent	Final Concentration	Per 150 μl	
Loading Buffer	~1x	140 µl	
75 μM SBS Oligo	5 μΜ	10 μΙ	

Note: SBS oligo sequence (5'-3') is CGTGTGCTCTTCCGATCT

■ 300 µM DAPI solution:

Reagent	Final Concentration	Per 200 μl
10.9 mM DAPI	300 μΜ	5.5 µl
H20		194.5 μΙ

Note: Add 1 μ l of 300 uM DAPI to each 100 μ l nuclei to make a final concentration of 3 μ M for staining.

Loading Tn5

1 Resuspend Tn5ME-A, Tn5ME-B, and Tn5MErev in the annealing buffer to a final concentration of $100~\mu M$.

- 2 Prepare annealed linker A: Mix one volume of Tn5ME-A with one volume of Tn5MErev in a PCR tube.
 - e.g. 100 µl Tn5ME-A + 100 µl Tn5Merev.
- 3 Prepare annealed linker B: Mix one volume of each barcoded Tn5ME-B with one volume of Tn5MErev on a 96-well plate.
 - e.g. 10 μ l Tn5ME-B (Index A1) + 10 μ l Tn5MErev.
 - 🔙 Table1_Barcoded_Tn5MEB.xlsx
- 4 Mix briefly by pipetting and run the following PCR program in a thermocycler for annealing oligos.

Temperature	Time
95 ℃	5 min
Slowly Cool down to 65 °C	-0.1 °C/sec
65 ℃	5 min
Slowly Cool down to 4 °C	-0.1 °C/sec

The annealed oligos can be kept at -20°C for long-term storage.

- Add 1 μ l of each annealed linker (A and B) to 20 μ l of the Tn5 stock (0.3 mg/ml) on a 96-well plate with a unique annealed linker B in each well.
- 6 Mix briefly by pipetting, and then incubate at 23°C for 30 minutes in a thermomixer at 350 rpm.
- **7** Store at -20°C.

Isolation of nuclei from cell lines

8 Remove approximately $10x10^6$ cells from culture. Note The nuclei isolation protocol was adapted from Corces MR, et al. 2017. **CITATION** Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY (2017). An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues.. https://doi.org/10.1038/nmeth.4396 9 Pellet the cells at 500 RCF at 4°C for 5 min in a swinging-bucket centrifuge. 10 Aspirate supernatant. 11 Resuspend pellet in 200 µl RSB Lysis Buffer. 12 Incubate on ice for 3 minutes.

Add 1 ml RSB Washing Buffer.

13

- Take 10 μ l nuclei and dilute it with 40 μ l of Omni TD buffer, then count the nuclei on a hemocytometer by adding 50 μ l Trypan blue solution to the diluted nuclei (Note: we found that adding the RSB-resuspended nuclei straight to Trypan blue solution will cause inflation of nuclei, and diluting nuclei in Omni TD buffer before exposure to Trypan blue improves the nuclei integrity).
- Pellet the remaining nuclei in RSB Washing Buffer at 500 RCF for 10 min at 4°C in a fixed-angle centrifuge.
- Resuspend nuclei pellet in FBW at ~3 million nuclei/ml.
- Snap-freeze nuclei in liquid nitrogen, and then transfer the cryovials to a liquid nitrogen dewar (or -80°C) for long-term storage.

Isolation of nuclei from lung tissue

The following protocol can be used to isolate nuclei from lung tissues.

CITATION

Nikita Joshi, Alexander Misharin. Single-nucleus isolation from frozen human lung tissue for single-nucleus RNA-seq. protocols.io.

LINK

https://protocols.io/view/single-nucleus-isolation-from-frozen-human-lung-ti-zu8f6zw

txci-ATAC-seq: Preparing nuclei

- Take out flash-frozen nuclei (~3 million in 1 ml) from liquid nitrogen for each sample and thaw in a water bath at 37°C for about 1 min.
- Add 3 ml RSB washing buffer to an empty 15 ml tube for each sample.

21	Transfer 1 ml nuclei stored in the freezing buffer to the 15 ml tube containing 3 ml RSB washing buffer.
22	Pellet the nuclei at 500 RCF for 10 min at 4°C.
23	Resuspend nuclei with 1 ml RSB washing buffer and then transfer to a 1.5 ml LoBind tube through Flowmi (40 micron).
24	Pellet the nuclei at 500 RCF for 5 min at 4°C in a fixed-angle centrifuge.
25	Resuspend nuclei with 100 μl of 1X PBSB for each sample.
26	Count nuclei with DAPI:
26.1	Add 1 μl of 300 μM DAPI to 100 ul nuclei;
26.2	Incubate on ice for 5 mins;

26.3 Add 10 µl stained nuclei to the countess slide to count nuclei.

txci-ATAC-seq: 96 barcoded Tn5 transposition

27 Prepare TD mix:

Reagent	Final Concentration	Per Rxn	X120 rxn (in a 2ml tube)
2X Nextera TD Buffer*	1X	12.5 µl	1500
1% Digitonin	0.01%	0.25 µl	30
10% Tween-20	0.1%	0.25 µl	30

^{*}Omni TD buffer can be used to replace the Illumina Nextera TD buffer.

CITATION

Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY (2017). An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues..

https://doi.org/10.1038/nmeth.4396

- Thaw a 96-well plate preloaded with 5 μ l of barcoded Tn5 on ice. Mix by brief shaking at 1400 rpm for 30 seconds, spin for a minute at 2000 RCF at 4°C, and carefully unseal the aluminum foil seal.
- Dilute nuclei to 2857 nuclei/ μ l in PBSB and then mix 7 μ l diluted nuclei with 13 μ l TD mix for each well.
- Add 20 μ l nuclei/TD mix mixture to each well of the 96-well plate containing 5 μ l of barcoded Tn5 per well (total 25 μ l).

31	Seal the plate using Bio-Rad Microseal B film.
32	Mix by shaking at 1000 rpm for one minute.
33	If liquid splashes to the seal, briefly spin at 500 RCF for 10 sec.
34	Incubate at 37°C for 60 min in a thermocycler block with a heated lid (47°C).
35	Thaw TMG washing buffer on ice.
36	Remove the plate from the thermocycler.
37	Briefly centrifuge at 500 RCF for 10 sec at 4°C.
38	Incubate the plate on ice for 5 min.

39 Pool nuclei in a LoBind 12-tube strip and then transfer them to a 15 ml conical tube preloaded with 400 ul of TMG. 40 Add 50 µl/well of TMG to the first row of the plate and pipette them throughout the whole plate to wash out the residual nuclei remaining in the plate. 41 After washing the last row of the plate, the TMG was transferred to the same conical tube that was used to collect the barcoded nuclei. 42 Centrifuge nuclei at 500 RCF for 10 min at 4°C. 43 Remove most of the supernatant. 44 Resuspend nuclei with 500 µl of TMG, then transfer to a 1.5 ml LoBind Tube through Flowmi. 45 Centrifuge at 500 RCF for 5 min at 4°C. 46 Remove most of the supernatant and resuspend the nuclear pellet with 30 µl of LBS.

- 47 Count nuclei with a hemocytometer.
- Take the volume of solution containing the desired number of nuclei and dilute it with the LBS to make a total of 15 μ l.
- Use the 15 μ l dilution as input into the 10X Chromium droplet generator follow Step 2, page 24 of the Chromium Single Cell ATAC kit instructions (10x Document CG000209 Rev D) to complete the assay.

txci-ATAC-seq: Modification of 10X Chromium protocol

- **50** For Step 2.5. GEM Incubation:
- a. Incubate in a thermal cycler with the following protocol (Lid temperature at 105°C).

Temperature	Time
72 °C	00:05:00
98 °C	00:00:30
98 °C	00:00:10
59 ℃	00:00:30
72 ℃	00:01:00; Go to step 3, repeat 7X (Total 8 cycles)
15 ℃	Hold

- b. Store at 15°C for up to 18 h or at -20°C for up to 1 week, or proceed to the next step.
- 51 For Step 4.1 Sample Index PCR

Oct 24 2023

51.1 c. Add 2.5 μ l of customized i7 TruSeq primer (25 μ M) containing an 8 bp custom barcode to each 10X library. Record assignment. Pipette mix and centrifuge briefly.

Table2_TrueSeq_i7_Primer.xlsx

d. Incubate in a thermal cycler with the following protocol (Lid temperature at 105°C).

Temperature	Time
98 ℃	00:00:45
98 °C	00:00:20
67 °C	00:00:30
72 °C	00:00:20; Go to step 2, repeat 4X (Total 5 cycles)
72 °C	00:01:00
4 °C	Hold

Sequencing

52

Sequencing Read	Cycles			
Read 1N	51 bp			
i7 index (I1)	8 bp			
i5 index (I2)	16 bp			
Read 2N	78 bp			