

CS 4390 Computer Networks

Network Layer
The Internet Protocol – Part I

The Internet Protocol Suite

IP is the glue to interconnects heterogeneous networks and to provide inter-host packet transport!

Network Layer for the Internet

host, router network layer functions:

IP Datagram Format

IP Fragmentation, Reassembly

- network links have MTU (max.transfer size) - largest possible link-level frame
 - different link types,
 different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation, Reassembly

IP Addressing: Introduction

• *IP address:* 32-bit identifier for host, router *interface*

 interface: connection between host/router and physical link

- router's typically have multiple interfaces
- host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP Addressing: Introduction

Q: how are interfaces actually connected?

A: we'll learn about that later when we study link layer!

223.1.1.1 223.1.2 223.1.1.2 223.1.1.4 223.1.2.9 223 1¹3 27 **223.1.1.3** 223.1.3.1 223.1.3.2

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station

IP Addresses

- Fixed length: 32 bits (total ~4 billion addresses)
- Hierarchical
 - Two parts: network ID and host ID
- Divided into classes (indicated by the first few bits)
 - Class A: assigned to Internet "pioneers" and large networks
 - Class B: for middle-size networks
 - Class C: for small enterprise networks

First Bits	<u>Class</u>	Number of networks and hosts
0	Α	128 networks, 16M hosts each
10	В	16K networks, 65K hosts each
110	С	2M networks, 256 hosts each

IP Address Classes

IP Addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

Q: How to obtain the subnet part of an IP address?

A: Using a subnet mask

Subnets

what 's a subnet ?

- device interfaces with same subnet part of IP address
- -can physically reach each other without intervening router

• IP address:

- -subnet part high order bits
- -host part low order bits

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- *each isolated network
 is called a subnet

subnet mask: /24

Subnets

223.1.1.2 how many? 223.1.1. 223.1.1.4 223.1.1.3 223.1.7.0 223.1.9.2 223.1.9.1 223.1.7.1 223.1.8.1 223.1.8.0 223.1.2.6 223.1.3.27 **22**3.1.2.2 223.1.2.1 223.1.3.1 **|22**3.1.3.2

IP Addresses: How to Get One?

Q: How does a *host* get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server Scenario

DHCP client-server Scenario

DHCP: more than IP Addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS server
- network mask (indicating network versus host portion of address)

DHCP Example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP Example

- DCP server formulates
 DHCP ACK containing
 client's IP address, IP
 address of first-hop router
 for client, name & IP
 address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

DHCP: Wireshark output (home LAN)

Message type: **Boot Request (1)** Hardware type: Ethernet Hardware address length: 6 request Hops: 0 Transaction ID: 0x6b3a11b7 Seconds elapsed: 0 Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0) Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a) Server host name not given Boot file name not given Magic cookie: (OK) Option: (t=53,l=1) **DHCP Message Type = DHCP Request** Option: (61) Client identifier Length: 7: Value: 010016D323688A: Hardware type: Ethernet Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a) Option: (t=50,l=4) Requested IP Address = 192.168.1.101 Option: (t=12,I=5) Host Name = "nomad" **Option: (55) Parameter Request List** Length: 11; Value: 010F03062C2E2F1F21F92B 1 = Subnet Mask; 15 = Domain Name 3 = Router: 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

```
Message type: Boot Reply (2)
                                           reply
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP ACK
Option: (t=54,l=4) Server Identifier = 192.168.1.1
Option: (t=1,l=4) Subnet Mask = 255.255.255.0
Option: (t=3,l=4) Router = 192.168.1.1
Option: (6) Domain Name Server
   Length: 12; Value: 445747E2445749F244574092;
   IP Address: 68.87.71.226:
   IP Address: 68.87.73.242:
   IP Address: 68.87.64.146
Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."
```

IP Addresses: How to Get One?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	00010000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	00010000	00000000	200.23.16.0/23
Organization 1	·		<u> </u>	00000000	200.23.18.0/23
Organization 2	11001000	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
 Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

IP Addressing: the Last Word...

- Q: how does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes