

GM Bootloader Updater

Technical Reference

GM Specifics Version 1.0

Authors	Sebastian Loos
Status	Released

Document Information

History

Author	Date	Version	Remarks
Sebastian Loos	2016-07-27	0.1	Initial Version
Sebastian Loos	2016-12-13	1.0	Release

Reference Documents

No.	Source	Title	Version
[1]	Vector	TechnicalReference_FBL_Updater.pdf	1.00.00
[2]	Vector	TechnicalReference_FBL_ <hw>.pdf</hw>	

Contents

1	Introduction	5
2	Theory of Operation	6
3	Getting Started	7
	3.1 Integration	7
	3.2 Mapping	7
	3.3 Configuration	8
	3.3.1 GENy as Generator	8
	3.3.2 Da Vinci Configurator 5	9
4	Glossary and Abbreviations	10
	4.1 Glossary	
	4.2 Abbreviations	10
5	Contact	11

Illustrations

Figure 2-1 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5	Download Process with Invalidation of the Updater Example Mapping for a MPC derivative Flash Block Table adaptions Presence Pattern Address Flash Block Table adaptions Presence Pattern Address	
Tables		
Table 3-1	GM-specific files	7

4

1 Introduction

This document covers the GM-specific particularities of the Bootloader Updater. You will find a general description of the Bootloader Updater in [1]. Please check also for a document describing the hardware specifics (if available) [2].

2 Theory of Operation

The Updater is a component that is downloaded to the ECU like a regular application. The FBL does not have any knowledge about the Updater so that from the FBL's point of view this process is completely transparent. There is no specific handling implemented in the FBL. I.e. the Updater has to pass the usual validation process like for any application download.

For production purpose, the updater requires the typical GM specific container including GM signed header just as any application would. For a detailed description of the update process see [1]. In Figure 2-1 the typical update process of a GM FBL is shown.

Figure 2-1 Download Process with Invalidation of the Updater

The GM Updater does not transmit or receive messages during the update process.

© 2016 Vector Informatik GmbH Version 1.0 6

3 Getting Started

3.1 Integration

The OEM-specific files may have to be customized for your application. The files are found in the FbIUpd_Template folder. You should copy these files to your Bootloader Updater project folder, and rename them, removing the leading underscore from the filename.

File	Description
_upd_oem_ap.c	Callbacks for invalidating the Presence Pattern (Programmed State Indicator) after a successful update.
_upd_oem_ap.h	
_upd_oem_cfg.h	Configuration values

Table 3-1 GM-specific files

3.2 Mapping

On some hardware platforms, and if the Updater shall be reset safe, there may be some restrictions to the mapping.

Figure 3-1 Example Mapping for a MPC derivative

It is required by the GB6002 that the Plain Header is located in the beginning of the application. Unfortunately this is often the region where some magic words are expected by the hardware. These magic words are usually located at the start of a flash block and interfere with the location of the Plain Header. Mostly at least one magic word is necessary for a reset safe updater.

Affected platforms are e.g.:

- Tricore Aurix (BMHD)
- MPC (RCHW)
- ...

Check [2] for some details.

In Figure 3-1 an example for such restrictions on a MPC platform are shown: Because the FBL usually covers most of the flash area below address 0x10000, the application starts from 0x10000. It is required that the Plain Header is placed at the beginning of the application flash area. This leaves only the RCHW at 0x18000 for use by the updater.

3.3 Configuration

If you use multiple memory drivers, make sure that the right value (the same as is used in the bootloader project) for FBL PP SEGMENT SIZE is set.

If you define more than one logical block in the logical block table of the updater, you have to adapt FBL UPD LBT NR OF UPDATER.

Note

Please check the files for "TODO by customer" tags.

Depending on the used configuration tool, please follow the appropriate sub-paragraph:

3.3.1 GENy as Generator

In the flash block table, (fbl_apfb.c), the flash blocks are specified in which the (new) Bootloader resides. In the logical block table (fbl_mtab.c) the location of the presence pattern of the updater is defined.

Create a GENy Configuration, comparable to the Bootloaders configuration. If you re-use the Bootloaders configuration, you have to make these changes:

1. Change the settings of the flash blocks in which the Bootloader resides from "Protected" to "Flash" (see Figure 3-2).

	Start Address	End Address	Memory Device	æ	Description	Logical Block
0×00000000	0x0	0x3fff	Flash	₹	FBL (16KB Block0)	•
0x00004000	0x4000	0x7fff	Flash	▼	FBL (16KB Block 1)	•
0x000080000	0x8000	0xbfff	Flash	▼	FBL (16KB Block2)	•
0x0000C000	0xc000	0xffff	Flash	•	FBL (16KB Block3)	•
0x00010000	0x10000	0x17fff	Flash	•	32KB Block4	Application and Calibration Area1
0x00018000	0x18000	0x1ffff	Flash	Ţ	32KB Block5	Application and Calibration Area 1

Figure 3-2 Flash Block Table adaptions

2. Make sure, the same address for the Presence Pattern as used in the Bootloader Project is set (see Figure 3-3).

Figure 3-3 Presence Pattern Address

3.3.2 Da Vinci Configurator 5

In the flash block table, (Fbl_Fbt.c), the flash blocks are specified in which the (new) Bootloader resides. In the logical block table (Fbl_Lbt.c) the location of the presence pattern of the updater is defined.

Create a GENy Configuration, comparable to the Bootloaders configuration. If you re-use the Bootloaders configuration, you have to make these changes:

Change the settings of the flash blocks in which the Bootloader resides from "Protected" to "Flash" (see Figure 3-4).

Figure 3-4 Flash Block Table adaptions

Make sure, the same address for the Presence Pattern as used in the Bootloader Project is set (see Figure 3-5).

Figure 3-5 Presence Pattern Address

4 Glossary and Abbreviations

4.1 Glossary

Term	Description

4.2 Abbreviations

Abbreviation	Description

5 Contact

Visit our website for more information on

- > News
- > Products
- > Demo software
- > Support
- > Training data
- > Addresses

www.vector.com