Bornykhale MH-6a, cogeptayine none, 1 mueroi glocia benegro Mx motho zagara glogus enocosamu

Conjugate set

Conjugate (dual) set

Пусть $S \subseteq \mathbb{R}^n$ - произвольное непустое множество. Тогда сопряженное к нему множество пределяется, как:

Множество S^{**} называется вторым сопряженным к множеству S, если:

$$oxed{S^{**} = \{y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -1 \ \ orall x \in S^*\}}$$

Inter-conjugate and self-conjugate sets

- ullet Множества S_1 и S_2 называются **взаимосопряженными**, есл $\sqrt{S_1^*}$
- ullet Множество S называется **самосопряженным**, есл $S^*=S$

conpeckelle ce KO=1

Properties

- Сопряженное множество всегда замкнуто, выпукло и содержит нуль.
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$:

ullet Если $S_1\subset S_2$, то $S_2^*\subset S_1^*$

$$ullet \left(igcup_{i=1}^m S_i
ight)^* = igcap_{i=1}^m S_i^*$$

Если S - замкнуто, выпукло, включает 0, то $S^{stst}=S$

$$ullet$$
 $S^* = \left(\overline{S}\right)^*$

Examples

1

NOLOMA JIC

2

Доказать, что $(\mathbf{conv}(S))^*$

Решение:

3

Доказать, что если B(0,r) - шар радиуса r по некоторой норме с центром в нуле, то

 $(B(0,r))^* = B(0,1/r)$

Решение:

Dual cones

Чтобы показать, что это определение непосредственно следует из теории выше вспомним, что такое сопряженное множество и что такое конус $\forall \lambda>0$

Dual cones properties

- ullet Если K замкнутый выпуклый конус. Тогда $K^{**}=K$
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$ и конуса $K\subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^m K_i
ight)^* = igcap_{i=1}^m K_i^*$$

 $\left(igcap_{i=1}^m K_i
ight)^* = \sum_{i=1}^m K_i^*$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n . Пусть так же, их пересечение имеет внутреннюю точку, тогда:

Examples

4

Найти сопряженнй конус для монотонного неотрицательного конуса:

$$oxed{K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}}$$

Решение:

Polyhedra

Множество решений системы линейных неравенств и равенств представляет собой многогранник:

$$Ax \leq b$$
, $Cx = d$

Здесь $A \in \mathbb{R}^{m imes n}, C \in \mathbb{R}^{p imes n}$, а неравенство - поэлементное.

Теорема:

Пусть $x_1,\dots,x_m\in\mathbb{R}^n$. Сопряженным к многогранному множеству:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник):

$$S^* = \Big\{ p \in \mathbb{R}^n \ igg(\langle p, x_i
angle \geq -1, i igg) = \overline{1, k} igg(\langle p, x_i
angle \geq 0, i = \overline{k+1, m} \Big\}$$

Доказательство:

ullet Пусть $S=X,S^*=Y$. Возьмем некоторый $p\in X^*$, тогда $\langle p,x_i
angle\geq -1,i=\overline{1,k}$. В то же время для любых $heta>0,i=\overline{k+1,m}$:

$$egin{aligned} \langle p, x_i
angle \geq -1 &
ightarrow \langle p, heta x_i
angle \geq -1 \ \langle p, x_i
angle \geq -rac{1}{ heta} &
ightarrow \langle p, x_i
angle \geq 0 \end{aligned}$$

Значит, $p \in Y o X^* \subset Y$

ullet Пусть, напротив, $p \in Y$. Для любой точки $x \in X$:

$$x = \sum_{i=1}^m heta_i x_i \qquad \sum_{i=1}^k heta_i = 1, heta_i \geq 0$$

Значит:

$$\langle p,x\rangle = \sum_{i=1}^m \theta_i \langle p,x_i\rangle = \sum_{i=1}^k \theta_i \langle p,x_i\rangle + \sum_{i=k+1}^m \theta_i \langle p,x_i\rangle \geq \sum_{i=1}^k \theta_i (-1) + \sum_{i=1}^k \theta_i \cdot 0 = -1$$

Значит, $p \in X^* o Y \subset X^*$

5

Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

Лемма (теорема) Фаркаша (Фаркаша - Минковского)

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax = b, x \ge 0$$

2)
$$pA \geq 0, \langle p, b \rangle < 0$$

Ax=b при $x\geq 0$ означает, что b лежит в конусе, натянутым на столбцы матрицы A $pA\geq 0,\; \langle p,b\rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором b и конусом из столбцов матрицы A.

Следствие:

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$

$$2)\ pA=0, \langle p,b\rangle<0, p\geq 0$$

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.