Modern Algebraic Geometry Hand in 2

Christophe Marciot

24 septembre 2020

Part (a):

We have to verify that I_Y checks the gluing properties of a sheaf. If $s \in I_Y(U)$ and $\{V_i\}_{i \in I}$ is an open cover of U such that $s|_{V_i} = 0$ for each i then it is clear that s = 0 as this property comes from the fact that \mathcal{O}_X is a sheaf. Now if we have $s_i \in I_Y(V_i)$, where $\{V_i\}_{i \in I}$ is again an open cover of U such that $s_i|_{V_{ij}} = s_j|_{V_{ij}}$, we know we can glue back those s_i 's to some $s \in \mathcal{O}_X(U)$. To see that s is in fact in $I_Y(U)$, we observe that for $p \in U$, in particular $p \in V_i$ for some $i \in I$, we have

$$s(p) = s|_{V_i}(p) = s_i(p) = 0$$

since s_i vanishes on $U \cap V_i$ and thus $s \in I_Y(U)$. We then conclude that I_Y is a sheaf.

Part (b) :

Here we first begin by a remark. Note that for $f \in \mathcal{O}_X(U)$, then for $p \in U$, one can associate f_p with f(p). Indeed, suppose that for $g \in \mathcal{O}_X(V), p \in V$ such that $f_p = g_p$. Then we get that there exists a neighbourhood of $p,W \subseteq U \cap V$ such that $f|_W = g|_W$ and thus

$$f(p) = f|_{W}(p) = g|_{W}(p) = g(p).$$

Now if f(p) = g(p) we get that (f - g)(p) = 0. Since Supp(f - g) is an open set, we know there exists a neighbourhood $U \subseteq \text{Supp}(f - g)$ of p. This said, we get that $f|_U = g|_U$ and thus $f_p = g_p$. Now let us go back to the problem at hand. Let us define the morphism of sheaves

$$\varphi_U: \mathcal{O}_X(U)/I_Y(U) \longrightarrow (\iota_*\mathcal{O}_Y)(U) = \mathcal{O}(Y \cap U): \bar{f} \longrightarrow f|_{Y \cap U},$$

where \bar{f} is the class of f in $\mathcal{O}_X(U)/I_Y(U)$. Note that if $\bar{f}=\bar{g}$, then f=g+r with $r\in I_Y(U)$. Thus

$$f|_{Y \cap U} = (g+r)|_{Y \cap U} = g|_{Y \cap U} + r|_{Y \cap U} = g|_{Y \cap U}$$

and thus φ_U is a well defined map. Note that these are homomorphisms of rings. To show that this is a morphism of sheaves, we go to the level of stlaks. Let $p \in X$. we distinguish two cases. If $p \notin Y$, then we have

$$I_{Y,p} = \lim_{\longrightarrow p \in U} I_Y(U).$$

Note that since $p \notin \bar{Y} = Y$, we know there exists a neighbourhood of p,U, such that $Y \cap U = \emptyset$. We then get that for each $p \in V \subseteq U$ open, one has $I_Y(V) = \mathcal{O}_X(V)$ and thus, by te properties of the direct limit, we have that $I_{Y,p} = \mathcal{O}_{X,p}$ and thus

$$(\mathcal{O}_X/I_Y)_p = \mathcal{O}_{X,p}/I_{Y,p} = \mathcal{O}_{X,p}/\mathcal{O}_{X,p} = 0.$$

Also note that for small enough neighbourhoods U of p, we have

$$(\iota_*\mathcal{O}_Y)(U) = \mathcal{O}_Y(Y \cap U) = \mathcal{O}_Y(\emptyset) = 0$$

and thus

$$(\iota_*\mathcal{O}_Y)_p = \lim_{\longrightarrow p \in U} (\iota_*\mathcal{O}_Y)(U) = \lim_{\longrightarrow p \in U} \mathcal{O}_Y(Y \cap U) = 0.$$

We then deduce that φ_p is an isomorphism. Now suppose that $p \in Y$. Since $p \in Y$, we know that f(p) = 0 for all neighbourhoods U of p and $f \in I_Y(U)$ and thus we conclude that $I_{Y,p} = 0$. Thus φ_p becomes

$$\varphi_p: \mathcal{O}_{X,p} \longrightarrow \mathcal{O}_{Y,p}: [(U,f)] \longrightarrow [(Y \cap U, f|_{Y \cap U})]$$

and thus φ_p is an isomorphism. This tells us that φ is an isomorphism.

Part (c):

Let us consider $Y = \{p, q\}$. Recall that singletons are closed in X and thus Y is closed. We want to show that $\iota_* \mathcal{O}_Y \simeq \iota_* \mathcal{O}_p \oplus \iota_* \mathcal{O}_q$. We set

$$\varphi_U: \mathcal{O}_Y(Y\cap U) \longrightarrow \mathcal{O}_p(\{p\}\cap U) \oplus \mathcal{O}_q(\{q\}\cap U): f \longrightarrow (f|_{\{p\}}, f|_{\{q\}}),$$

By noting that $\iota_*\mathcal{O}_{Y,x}, \iota_*\mathcal{O}_{p,x}, \iota_*\mathcal{O}_{q,x} = 0$ if $x \neq p,q$, and $\iota_*\mathcal{O}_{Y,p} = \iota_*\mathcal{O}_{p,p}$ and $\iota_*\mathcal{O}_{q,p} = 0$, and $\iota_*\mathcal{O}_{Y,q} = \iota_*\mathcal{O}_{q,q}$ and $\iota_*\mathcal{O}_{p,q} = 0$, we see that φ is an isomorphism of sheaves. Note that φ_U and φ_p are ring homomorphisms for each $U \subseteq X$ open and $p \in X$. Also we note that $\mathcal{O}_X(X) \simeq k$ and $\mathscr{F}(X) \simeq k \oplus k$ and thus the morphism $\varphi_X : \Gamma(X, \mathcal{O}_X) \longrightarrow \Gamma(X, \mathscr{F})$ can not reach the zerodivisors of $k \oplus k$ (elements like (1,0) for example) and we conclude that φ_X is not surjective.