

Plan:

Contexte:

- Objectif: une ville neutre en émission de carbone en 2050
- Problématique : des relevés minutieux réalisés mais coûteux à obtenir

I. Objectif de la démarche :

- Prédire la consommation totale d'énergie
- Prédire les émissions de CO2

II. Présentation des données:

Source:

Seattle Open Data

2015

2016

2017

42 colonnes

3 340 observations

46 colonnes

3 376 observations

45 colonnes

3 461 observations

Propriétés décrites par les variables :

- **Géographiques** (longitude, latitude, ...)
- Architecturales (YearBuilt, NumberofFloors, ...)
- Usage (BuildingType, PrimaprPrepertyType, ...)
- Energétiques et émissions (Electricity(kBtu), TotalGHGEmissions, ...)

II. Présentation des données

1. Prétraitement:

- Uniformisation des noms des colonnes : données de 2015, 2016 et 2017
- Suppression des colonnes avec 50% de Nan
- Choix des features pertinentes : 20 variables
- Identification des variables cibles pour les prédictions : SiteEnergyUse(KBtu) et TotalGHGEmissions

10 177 observations 20 variables

II. Présentation des données

2. Nettoyage:

Variables catégorielles

- Uniformisation des catégories
- Suppression des bâtiments résidentiels

4471 observations 20 variables

Variables numériques

- Suppression des lignes avec trop de Nan
- Suppression des observations négatives

ocenil di TD	
OSEBuildingID	1.00000
DataYear	2015.00000
Latitude	47.49917
Longitude	-122.41182
YearBuilt	1900.00000
NumberofBuildings	0.00000
NumberofFloors	0.00000
PropertyGFATotal	11285.00000
PropertyGFAParking	-2.00000
PropertyGFABuilding(s)	-50550 <u>.00000</u>
LargestPropertyUseTypeGFA	5656.00000
ENERGYSTARScore	1.00000
SiteEnergyUse(kBtu)	0.00000
TotalGHGEmissions	-0.80000
BuildingAge	1.00000
dtype: float64	

III. Préparation des données

Analyse exploratoire

- Analyse des corrélations
- Analyse des distributions des targets

Feature engineering

- Création de nouvelles variables
- Transformation des targets : Log

)

III. Préparation des données

1. Analyse exploratoire

- Corrélation entre les targets et la surface totale
- Forte corrélation de l'énergie avec les émissions

S

III. Préparation des données

2. Feature engineering:

Building_Age
-> suppression
de DataYear et
Year_Built

Visualisation des cibles transformées au log

1. Preprocessing

- Séparation des données : entraînement, test
- Encodage: TargetEncoder
- Feature selection : RFECV

2. Pipeline

- Scaler : RobustScaler
- Modèle: linéaire, non linéaire, ensembliste

3. Evaluation

- Validation croisée
- GridSearchCV,
- RandomizedSearchCV

Preprocessing

Train test split

TargetEncoder

Recursive feature elimination

Données d'entraînement : (3758, 13)

Données de test : (940, 13)

Train_test_plit (test_size = 0.2)

	BuildingType_encoded	PrimaryPropertyType_encoded	LargestPropertyUseType_encoded	${\sf Neighborhood_encoded}$
1831	14.942503	15.211435	15.177833	14.918621
2174	14.942503	15.211435	15.177833	15.530043
1228	14.942503	15.234731	15.144186	15.005398
3411	14.942503	15.211435	15.177833	15.530043
4183	14.942503	14.892388	14.674313	14.749136

Variable cible:

SiteEnergyUse(kBtu)

Modèle utilisé : régression linéaire

Fea	atures Sélectionnées par	la RFEC	V :
	Feature	Ranking	Selected
0	BuildingType	1	True
1	PrimaryPropertyType	1	True
2	LargestPropertyUseType	1	True
3	Neighborhood	1	True
4	CouncilDistrictCode	1	True
5	BuildingAge	3	False
6	Latitude	1	True
7	Longitude	1	True
8	NumberofBuildings	1	True
9	NumberofFloors	2	False
10	PropertyGFATotal	1	True
11	PropertyGFABuilding(s)	1	True
12	Largest Property Use Type GFA	5	False
13	PropertyGFAParking	1	True
14	Building_Rate	1	True
15	Largest_Use_Rate	4	False
16	Parking_Rate	1	True

2

IV. Modélisation et optimisation

Modèles:

Linéaires

- Régression linéaire
- Ridge
- Lasso
- ElasticNet

Non linéaires

- KernelRidge
- SVR

Ensemblistes

RandomForest

score

XGBoost

Prédiction

- Consommation totale d'énergie
- Emissions de CO2

Métriques

- R2 (score de détermination)
- RMSE (écart quadratique moyen)
- RMSE relatif
- MAE (erreur absolue moyenne)
- MeAE (erreur absolue médiane)
- Time (entraînement, prédiction)

1. Consommation d'énergie

Avec transformation Log

Scores avec la cible transformée en log puis exp

		31	
	Training scores	Test scores log	Test scores
RMSE	0.902888	0.931081	3.836384e+07
MAE	0.702853	0.728584	6.772472e+06
R2	0.486995	0.424815	-4.693841e+00
Median Abs Err	0.580556	0.619739	1.459816e+06
Time	0.017231	0.000485	4.851818e-04

Régression linéaire

Prédiction en log

Passage à exp

- RMSE, MAE augmentent
- Median augmente
- R2 négatif

Prédiction valeur réelle

- RMSE, MAE diminuent
- Median augmente
- R2 positif

Sans transformation Log

Training scores

7.068392e-01

RMSE 1.728966e+07 1.135137e+07

Relative RMSE 1.632724e+00 4.401329e+00

MAE 5.727079e+06 5.101810e+06

Median Abs Err 2.688634e+06 2.672325e+06

Time 1.605606e-02 5.786419e-04

Prédire des valeurs réelles

Test scores

5.015082e-01

2

IV. Modélisation et optimisation

1. Consommation d'énergie

Comparaison des scores des modèles

Modèle retenu pour l'énergie : XGBoost

1. Consommation d'énergie

Modèle final: XGBRegressor

Modèle final : XGBRegressor Meilleurs paramètres : n_estimators=300,			max_depth=5,	learning_rate=0.2
	Gridsearch scores	Test scores	_	
R2	8.365303e-01	8.866144e-01		
RMSE	1.218480e+07	4.002454e+06		
Relative RMSE	1.150654e+00	2.727716e+00		
MAE	3.514826e+06	1.476902e+06		
Median Abs Err	1.666925e+06	6.522830e+05		
Time	4.875211e+01	3.101587e-03		

1. Consommation d'énergie

Features importances XGBRegressor

Analyse globale

Analyse locale

2. Emissions de CO2

Comparaison des scores des modèles

Modèle retenu pour les émissions de CO2 : XGBoost

2. Emissions de CO2

Modèle final : XGBRegressor

Modèle final : XGBRegressor Meilleurs paramètres : n_estimators=300, max_depth=5, learning_rate=0.2				
	Gridsearch scores	Test scores		
R2	0.797959	0.780268		
RMSE	350.318134	239.164153		
Relative RMSE	1.535638	2.146992		
MAE	90.723312	64.843141		
Median Abs Err	39.788963	21.126569		
Time	26.165442	0.002236		

2. Emissions de CO2

Analyse globale

Features importances XGBRegressor

Analyse locale

ENERGYSTARScore

- i. Outil d'analyse comparative.
- ii. Permet d'évaluer le rendement énergétique des bâtiments commerciaux.

- Variable non utilisée pour la modélisation
- Taux de remplissage ~ 75%
- Réduction du nombre d'observations : 3 126

Répartition du EnergyStarScore sur la carte de Seattle

- ENERGYSTARScore importante pour le modèle
- Quel impact sur les précisions ?
- Scores ?

Comparaisons des scores

- Meilleurs scores avec la variable ENERGYSTARScore
- Entraînement du modèle sur moins d'observations
- Fiabilité ?

Fiabilité des scores

Test
Comparaison des distributions
Emissions de CO2

Test de Kolmogorov-Smirnov :

Statistique KS = 0.016981663739943642 Valeur de p = 0.6427914928053903 Les distributions des émissins de CO2 sont identiques.

Scores fiables
ENARGYSTARScore pertiente pour prédire
les émissions de CO2

VI. Conclusion

- Modèle retenu pour les prédictions : XGBoost
- Les prédictions des émissions de CO2 moins précises par rapport aux prédictions de la consommation énergétique
- ENERGYStarScore semble améliorer les prédictions des émissions de CO2
- Avec
 - i. Un plus grand nombre de données
 - ii. Des informations supplémentaires sur les bâtiments (matérieux de construction, isolants, présence de panneaux solaires, ...)

Il est possible d'améliorer les performances des modèles.