

Applicative programming with effects

Luis Eduardo Bueso de Barrio Ibueso@acm.org April 11, 2018

ACM

Contents

- 1. Why would you need Applicative functors?
- 2. Introduction
- 3. The Applicative class
- 4. Traversing data structures
- 5. Monoids are phantom Applicative functors
- 6. Applicative versus Monad

Why would you need Applicative

functors?

TODO

Introduction

Introduction

This is the story of a pattern that popped up time and again in our daily work, programming in Haskell, until the temptation to abstract it became irresistible. – Simon Peyton Jones

Sequencing commands

Sequencing commands and collect the results is a very common pattern.

```
sequence :: (Monad m, Traversable t) \Rightarrow t (m a) \rightarrow m (t a) sequence :: (Monad m) \Rightarrow [m a] \rightarrow m [a] sequence :: [IO a] \rightarrow IO [a]
```

Let's take a look at some implementations for this pattern.

Sequencing commands

If we implement this sequence operator for the IO we will get something like this using do-notation:

```
sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (c:cs) = do
  x <- c
  xs <- sequence cs
  return (x:xs)</pre>
```

Sequencing commands

We will rewrite it using the ap function from the Monad library.

```
ap :: Monad m => m (a -> b) -> m a -> m b
ap mf mx = do
   f <- mf
   x <- mx
   return (f x)</pre>
```

So we get something like this:

```
sequence :: [I0 a] -> I0 [a]
sequence [] = return []
sequence (c:cs) = return (:) `ap` c `ap` sequence cs
```

Transposing 'matrices'

If we model matrices as lists of lists, we can implement transposition as:

```
transpose :: [[a]] -> [[a]]
transpose [] = repeat []
transpose (xs:xss) = zipWith (:) xs (transpose xss)
```

The repeat function is just:

```
repeat :: a -> [a]
repeat x = x : repeat x
```

Transposing 'matrices'

If we implement some zapp function like this:

We can rewrite transpose as:

```
transpose :: [[a]] -> [[a]]
transpose [] = repeat []
transpose (xs:xss) = repeat (:) `zapp` xs `zapp` transpose xss
```

Comparison between the functions

```
So let's take a look at their types:
sequence :: [IO a] -> IO [a]
transpose :: [[a]] -> [[a]]
and their implementation:
sequence [] = return []
sequence (c:cs) = return (:) `ap` c `ap` sequence cs
transpose [] = repeat []
transpose (xs:xss) = repeat (:) `zapp` xs `zapp` transpose xss
```

Comparison between the functions

We can see a relation in the "application" function:

```
ap :: Monad m \Rightarrow m (a \rightarrow b) \rightarrow m a \rightarrow m b

zapp :: [a \rightarrow b] \rightarrow [a] \rightarrow [b]
```

So we can create an abstraction of this operation called "apply" which will be the function:

All this patterns will lead us to the creation of the Applicative type class.

```
class Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
```

We can check that applicative functors are functors by implementing fmap:

```
(<$>) :: Applicative f => (a -> b) -> f a -> f b f <$> u = pure f <*> u
```

Any expression can be transformed to "canonical form"

We can transform any monad into an applicative just with:

An Applicative instance for IO would be:

```
instance Applicative IO where
  pure = return
  (<*>) = ap
```

So our sequence function becomes:

```
sequence :: [I0 a] -> I0 [a]
sequence [] = pure []
sequence (c:cs) = pure (:) <*> c <*> (sequence cs)
```

The same way we have various instances of Monoid for a type, we have various of Applicative.

In our list example we need the Applicative ZipList instance:

```
instance Applicative [] where
  pure = repeat
  (<*>) = zapp
```

So our transpose function becomes:

```
transpose :: [[a]] -> [[a]]
transpose [] = pure []
transpose (xs:xss) = pure (:) <*> xs <*> (transpose xss)
```

It must be notice that repeat are not the return and ap equivalents of any Monad.

Applicative laws

- Identity

 pure id <*> u = u
- Composition
 pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism
 pure f <*> pure x = pure (f x)
- Interchange

QuickCheck

QuickCheck can help us writing correct Applicative functors using Checkers

In order to use it we must implement two instances:

```
class Arbitrary a where
  arbitrary :: Gen a
class EqProp a where
  (=-=) :: a -> a -> Property
And to make the test we just need to:
trigger = undefined :: Pair (String, Int, Bool)
main :: IO ()
main = do
  quickBatch $ applicative trigger
```

applicative:

identity: +++ OK, passed 500 tests.
composition: +++ OK, passed 500 tests.

homomorphism: +++ OK, passed 500 tests.

interchange: +++ OK, passed 500 tests.
functor: +++ OK, passed 500 tests.

Let's take a look at sequence and transpose types again:

```
sequence :: [I0 a] -> I0 [a]
transpose :: [[a]] -> [[a]]
```

This common pattern is called *applicative distributor* for lists:

```
dist :: Applicative => [f a] -> f [a]
dist [] = pure []
dist (v:vs) = pure (:) <*> v <*> (dist vs)
```

This is again in applicative style.

This is usually used with map, for example here we use it for "failure propagation":

```
flakyMap :: (a -> Maybe b) -> [a] -> Maybe [b]
flakyMap f ss = dist (fmap f ss)
```

We can implement a generalization of this:

```
traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse f [] = pure []
traverse f (x:xs) = pure (:) <*> (f x) <*> (traverse f xs)
```

This pattern is very useful so we can abstract in a type class:

```
class Traversable t where
  traverse :: Applicative f \Rightarrow (a \rightarrow f b) \rightarrow t a \rightarrow f (t b)
             :: Applicative f \Rightarrow t (f a) \rightarrow f (t b)
  dist
  dist = traverse id
If we implement an Id type like:
newtype Id a = An { an :: a }
We can implement fmap very easily:
fmap f = an . traverse (An . f)
```

Another interesting Traversable instance is:

In the latest GHC we need Functor, Applicative and also Foldable in order to have a Traversable instance.

Monoids are phantom

Applicative functors

Monoids are phantom Applicative functors

As we know the Monoid is just:

```
class Monoid o where
  mempty :: o
  (<>) :: o -> o -> o -- also called "mappend"
```

Monoids are very useful in functional programming, we have them in numeric types, lists, booleans... And every monoid also induces an applicative functor!

Monoids are phantom Applicative functors

If we define:

```
newtype Accy o a = Acc { acc :: o }
```

We can implement an applicative functor that accumulates computations:

```
instance Monoid o => Applicative (Accy o) where
pure _ = Acc mempty
(Acc x) <*> (Acc y) = Acc (x <> y)
```

Monoids are phantom Applicative functors

reduce = accumulate id

This accumulation can be seen as a special kind of traversal:

```
accumulate :: (Traversable t, Monoid o) => (a -> o) -> t a -> o
accumulate f = acc . traverse (Acc . f)

reduce :: (Traversable t, Monoid o) => t o -> o
```

With this monoid instance we get operations like flatten and concat nearly for free!

```
flatten :: Tree a -> [a] -- our Tree data type will need a flatten = accumulate (:[]) -- Monoid and Traversable instance
```

```
concat :: [[a]] -> [a] -- the same for our list
concat = reduce
```

Applicative versus Monad

Applicative versus Monad

TODO

Composing applicative functors

TODO

Accumulating exceptions

If we define a data type to model exceptions:

```
data Except err a = OK a | Failed err
```

If we use a Monad instance, it will abort once the computation fails, however we can define the Applicative instance as:

With this instance we can collect errors using the list Monoid