Indian Institute of Technology Roorkee

MAN-001(Mathematics-1):

Autumn Semester: 2022-23

Assignment-9: Vector Calculus I (Gradient, Divergence, Curl)

Notation: $\mathbf{i} = \vec{i}$, $\mathbf{j} = \vec{j}$ and $\mathbf{k} = \vec{k}$ are the unit vectors along x, y and z axis respectively. Boldface letters represent vectors.

1. Show that

- (i) the necessary and sufficient condition for the vector function $\mathbf{u}(t) = u_1(t)\mathbf{i} + u_2(t)\mathbf{j} + u_3(t)\mathbf{k}$ to be a constant is that $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{0}$.
- (ii) the necessary and sufficient condition for the vector function $\mathbf{u}(t) = u_1(t)\mathbf{i} + u_2(t)\mathbf{j} + u_3(t)\mathbf{k}$ to have constant magnitude is that $\mathbf{u} \cdot \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = 0$.
- (iii) the necessary and sufficient condition for the vector function $\mathbf{u}(t) = u_1(t)\mathbf{i} + u_2(t)\mathbf{j} + u_3(t)\mathbf{k}$ to have constant direction is $\mathbf{u} \times \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{0}$.
- 2. (i) If $\mathbf{r} = (\sinh t)\mathbf{a} + (\cosh t)\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors, show that $\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t} = \mathbf{r}$.
 - (ii) If $\mathbf{r} = \mathbf{a}e^{nt} + \mathbf{b}e^{-nt}$, where \mathbf{a} and \mathbf{b} are constant vectors, show that $\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t} = n^2\mathbf{r}$.
 - (iii) If $\mathbf{r} = (\cos nt)\mathbf{i} + (\sin nt)\mathbf{j}$, show that $\mathbf{r} \times \frac{d\mathbf{r}}{dt} = n\mathbf{k}$.
- 3. The position vector of a particle at time t is $\mathbf{r} = \cos(t-1)\mathbf{i} + \sinh(t-1)\mathbf{j} + \alpha t^3\mathbf{k}$. Find the condition imposed on α by requiring that at time t=1, the acceleration is normal to the position vector.
- 4. Let $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$, for $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$. Given $\mathbf{r} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + b t \mathbf{k}$, show that
 - (i) $\mathbf{r}^2 = \mathbf{r} \cdot \mathbf{r} = a^2 + b^2 t^2$,
 - (ii) $(\mathbf{r}' \times \mathbf{r}'')^2 = a^2(a^2 + b^2),$
 - (iii) $[\mathbf{r}' \ \mathbf{r}'' \ \mathbf{r}'''] = a^2 b,$

where $\mathbf{r}' = \frac{d\mathbf{r}}{dt}$, $\mathbf{r}'' = \frac{d^2\mathbf{r}}{dt^2}$ and $\mathbf{r}''' = \frac{d^3\mathbf{r}}{dt^3}$.

5. If **f** is a vector function of the scalar variable t, show that

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathbf{f}\ \mathbf{f}'\ \mathbf{f}''] = [\mathbf{f}\ \mathbf{f}'\ \mathbf{f}'''].$$

1

- 6. (i) If $\varphi = 2xz^4 x^2y$, find $\nabla \varphi$ and $|\nabla \varphi|$ at the point (2, -2, 1).
 - (ii) If $\nabla \varphi = (y+y^2+z^2)\mathbf{i} + (x+z+2xy)\mathbf{j} + (y+2zx)\mathbf{k}$, find φ such that $\varphi(1,1,1) = 3$.
- 7. If $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $|\mathbf{r}| = r$, then show that
 - (i) $\nabla r^n = nr^{n-2}\mathbf{r}$,
 - (ii) $\nabla \left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}$,
 - (iii) $\nabla f(r) = \frac{f'(r)}{r} \mathbf{r}, \ \nabla f(r) \times \mathbf{r} = \mathbf{0},$
 - (iv) $\nabla[\mathbf{r} \ \mathbf{a} \ \mathbf{b}] = \mathbf{a} \times \mathbf{b}$,

where \mathbf{a} and \mathbf{b} are constant vectors.

- 8. (i) Find the directional derivative of $\varphi = x^2 2y^2 + 4z^2$ at (1, 1, -1) in the direction of $2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
 - (ii) Find the directional derivative of $\varphi = x^2(y+z)$ at (1,1,0) in the direction of the line joining the origin to the point (2,-1,2).
 - (iii) Find the directional derivative of the function $\varphi = x^2 y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ, where Q is the point (5,0,4).
 - (iv) Find the direction along which the directional derivative of the function $\varphi = xy + 2yz + 3xz$ is greatest at the point (1, 1, 1). Also find the greatest directional derivative.
- 9. (i) Find the unit vector normal to the level surface $xy + y^2 z^2 = 5$ at (1, 2, 1).
 - (ii) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 10. If **a** is a constant vector and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ with $r = |\mathbf{r}|$, then show that
 - (i) $\operatorname{div}(\mathbf{r} \times \mathbf{a}) = 0$, i.e., $\mathbf{r} \times \mathbf{a}$ is solenoidal,
 - (ii) $\operatorname{curl}(\mathbf{r} \times \mathbf{a}) = -2\mathbf{a} \text{ or } \nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a},$
 - (iii) $\operatorname{grad}(\mathbf{a} \cdot \mathbf{r}) = \mathbf{a}$,
 - (iv) $\nabla \cdot (r^2 \mathbf{a}) = 2\mathbf{a} \cdot \mathbf{r}$.
- 11. (i) Determine a so that the vector $\mathbf{F} = (z+3y)\mathbf{i} + (x-2z)\mathbf{j} + (x+az)\mathbf{k}$ is soleniodal.
 - (ii) Find the value of a if $\mathbf{F} = (axy z^2)\mathbf{i} + (x^2 + 2yz)\mathbf{j} + (y^2 axz)\mathbf{k}$ is irrotational.
 - (iii) A field **F** is of the form $\mathbf{F} = (6xy + z^3)\mathbf{i} + (3x^2 z)\mathbf{j} + (3xz^2 y)\mathbf{k}$. Show that **F** is a conservative filed (i.e., **F** is irrotational) and find its scalar potential.
- 12. If **F** is a differentiable vector function and φ is a differentiable scalar function, then prove that

(i)
$$\operatorname{div}(\varphi \mathbf{F}) = \operatorname{grad} \varphi \cdot \mathbf{F} + \varphi \operatorname{div} \mathbf{F} \text{ or } \nabla \cdot (\varphi \mathbf{F}) = \nabla \varphi \cdot \mathbf{F} + \varphi \nabla \cdot \mathbf{F},$$

(ii) $\operatorname{curl}(\varphi \mathbf{F}) = \varphi \operatorname{curl} \mathbf{F} + \operatorname{grad} \varphi \times \mathbf{F} \text{ or } \nabla \times (\varphi \mathbf{F}) = \varphi(\nabla \times \mathbf{F}) + (\nabla \varphi) \times \mathbf{F}.$

13. For $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, show that

(i)
$$\nabla \cdot \left(\frac{\mathbf{r}}{r^3}\right) = 0$$
,

(ii)
$$\nabla \cdot (r^3 \mathbf{r}) = 6r^3$$
,

(iii)
$$\nabla \cdot \left\{ r \nabla \left(\frac{1}{r^3} \right) \right\} = 3r^{-4}$$
,

(iv)
$$\nabla \cdot \{r^n(\mathbf{a} \times \mathbf{r})\} = 0$$
,

where $r = |\mathbf{r}|$ and **a** is a constant vector.

14. If **r** is the position vector of a variable point (x, y, z) and $|\mathbf{r}| = r$, then show that

$$\nabla \cdot \{f(r)\mathbf{r}\} = rf'(r) + 3f(r)$$

Also, if $\nabla \cdot \{f(r)\mathbf{r}\} = 0$, then show that $f(r) = \frac{C}{r^3}$, where C is a constant.

15. (i) Show that $r^n \mathbf{r}$ is an irrotational vector for any value of n, but is solenoidal only if n = -3.

(ii) Prove that the vector $f(r)\mathbf{r}$ is irrotational.

16. If **a** is a constant vector, then prove that

$$\operatorname{curl}\left(\frac{\mathbf{a} \times \mathbf{r}}{r^3}\right) = -\frac{\mathbf{a}}{r^3} + \frac{3\mathbf{r}}{r^5}(\mathbf{a} \cdot \mathbf{r}).$$

17. (i) If **F** is a vector function, prove that $\operatorname{curl}(\operatorname{curl} \mathbf{F}) = \operatorname{grad}(\operatorname{div} \mathbf{F}) - \nabla^2 \mathbf{F}$, where $\nabla^2 = \nabla \cdot \nabla$.

(ii) Use the above result to establish that curl curl curl curl $\mathbf{F} = \mathbf{0}$ if \mathbf{F} is solenoidal.

18. Prove that

(i)
$$\nabla^2 \left(\frac{1}{r}\right) = 0$$
,

(ii)
$$\nabla^2(r^n\mathbf{r}) = n(n+3)r^{n-2}\mathbf{r},$$

(iii)
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$
,

where $r = |\mathbf{r}|$.

19. If $\nabla^2 f(r) = 0$, then show that $f(r) = a + \frac{b}{r}$, where $r^2 = x^2 + y^2 + z^2$ and a and b are constants.

3

20. Show that

(i) $\varphi = x^2 - y^2$ satisfies the Laplace equation $\nabla^2 \varphi = 0$.

(ii)
$$\nabla^2 \left\{ \nabla \cdot \left(\frac{\mathbf{r}}{r^2} \right) \right\} = \frac{2}{r^4},$$

(iii) if
$$\varphi = \frac{x}{r^3}$$
, then $\nabla^2 \varphi = 0$.

Answers.

3.
$$\alpha = \pm \frac{1}{\sqrt{6}}$$
.

6. (i)
$$\nabla \varphi \big|_{(2,-2,1)} = 10\mathbf{i} - 4\mathbf{j} - 16\mathbf{k}, \ |\nabla \varphi| = 2\sqrt{93}$$
. (ii) $\varphi = xy + xy^2 + xz^2 + yz - 1$.

8. (i)
$$-4$$
. (ii) $\frac{5}{3}$. (iii) $\frac{4}{3}\sqrt{21}$. (iv) $4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$, $5\sqrt{2}$.

9. (i)
$$\frac{2\mathbf{i}+5\mathbf{j}-2\mathbf{k}}{\sqrt{33}}$$
. (ii) $\theta = \cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$.

11. (i)
$$a = 0$$
. (ii) $a = 2$. (iii) $\varphi = 3x^2y + xz^3 - yz + C$.