Email: rifkin@virginia.edu | Phone: (631) 626-3153 | https://itsja.red University of Virginia, Center for Applied Biomechanics 4040 Lewis and Clark Drive, Charlottesville, VA, 22911

JARED RIFKIN

EDUCATION	2020 - present	Ph.D., Department of Mechanical and Aerospace Engineering (GPA: 4.0) University of Virginia, Center for Applied Biomechanics Expected Graduation Date: 2024
	2016 - 2019	B.S.E, M.S.E, Department of Bioengineering (GPA: 3.89, 3.91) University of Pennsylvania
HONORS &	2022	NNS Trainee Travel Award
AWARDS	2022	University of Virginia: Engineering-in-Medicine Seed Grant
	2021	University of Virginia: UVA Engineering is Beautiful Dean's Research Art Contest, 1st Place, Graduate Student Category
	2021	National Science Foundation: Graduate Research Fellowship Program Honorable Mention
	2019	University of Pennsylvania: Graduated <i>summa cum laude</i>
	2016 - 2019	University of Pennsylvania: Dean's List
RESEARCH	2022 - present	Differential brain network response to simulated lesion
ACTIVITIES		Lesioning brain networks according to strain distributions from finite element simulated impacts.
	2021 - present	Endovascular surgery simulator
		Developing computational finite element model for rapid simulation of catheters in neuro-endovascular surgery.
	2021 - present	Pediatric skull surgical screw characterization
		Determining the strength of surgical screw integration in pediatric skull samples.
	2019 - 2022	Brain network architecture typing
	2020 - 2021	Identifying distinct patterns of structural connectivity networks and simulated neural dynamics within a population of brains. Risk function development of skin response to blunt impact
		Characterizing skins response to blunt impact over a parametric sweep of impactor shape, size, and speed.
WORK	2020 -	University of Virginia, Center for Applied Biomechanics
EXPERIENCE	present	Position: Graduate Research Assistant
		Mentor: Matthew B. Panzer, Ph.D.
	2019 - 2020	University of Pennsylvania, Meaney Lab
		Position: Research Specialist
	2017 - 2019	University of Pennsylvania, Department of Bioengineering
		Position: Undergraduate Research Specialist
		Mentor: David F. Meaney, Ph.D.
TEACHING &	2021 - present	University of Virginia, Mechanical and Aerospace Engineering Department
MENTORSHIP		Position: Graduate Teaching Assistant
		Class: Finite Element Analysis, Professor: Matthew Panzer, Ph.D. Class: Constitutive Modeling of Biosystems, Professor: Jason Kerrigan, Ph.D.
	2021	University of Virginia, School of Engineering
		Position: Engineering Graduate School Mentor
SERVICE &	2022 - present	University of Virginia, Mechanical and Aerospace Engineering Department
LEADERSHIP		Position: Graduate Student Board Social Chair

Rifkin CV Page | 1 of 2

PUBLICATIONS & PRESENTATIONS

Journal Publications

Taotao Wu, Jared A. Rifkin, Adam C. Rayfield, Erin D. Anderson, Matthew B. Panzer, David F. Meaney. Concussion Prone Scenarios: A Multi-Dimensional Exploration in Impact Directions, Brain Morphology, and Network Architectures Using Computational Models. (2022). ABME

Jared A. Rifkin, Taotao Wu, Adam Rayfield, Erin D. Anderson, Matthew B. Panzer, David F. Meaney. **Brain architecture-based vulnerability to traumatic injury.** (2022). Frontiers in Bioengineering

Taotao Wu, Jared A. Rifkin, Adam Rayfield, Matthew B. Panzer, David F. Meaney. An Interdisciplinary Computational Model for Predicting Traumatic Brain Injury: Linking Biomechanics and Functional Neural Networks. (2022). NeuroImage

Daniel F. Shedd, Parker R. Berthelson, **Jared A. Rifkin**, Justin McMahon, J. Sebastian Giudice, Jason L. Forman, Matthew B. Panzer. **The Risk of Skin Injury Caused by High-Rate Blunt Impacts to the Human Thorax.** (2022). Hum Factors Mech Eng Def Saf

Parker R. Berthelson, Daniel F. Shedd, **Jared A. Rifkin**, Justin McMahon, J. Sebastian Giudice, Jason L. Forman, Matthew B. Panzer. **Evaluation of an In Situ Ovine Model as a Surrogate for Human Skin Injury Caused by High-Rate Blunt Impact.** (2022). Hum Factors Mech Eng Def Saf

David Gabrieli, Nick Vigilante, Rich Scheinfield, **Jared A. Rifkin**, Samantha Schumm, Taotao Wu, Lee F. Gabler, Matthew B. Panzer, David F. Meaney. **A multibody model for predicting spatial distribution of human brain deformation following impact loading.** (2020). JBME

Conference Publications

Jared A. Rifkin, Taotao Wu, Adam Rayfield, David F. Meaney, Matthew B. Panzer. Brain architecture types experience differential response to structural lesions from simulated impacts. (2022). National Neurotrauma Society Symposium

Rifkin CV Page | 2 of 2