CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: SAT

NP-Completeness Via Reductions

- o Claim:
 - If π_1 is NP-hard and $\pi_1 \preceq \pi_2$
 - then π_2 is NP-hard.
- o Proof:
 - Since π_1 is NP-hard ofor all π in NP $\pi \preceq \pi_1$
 - By transitivity $\text{o for all } \pi \text{ in } \mathbb{NP} \ \pi \precsim \pi_2$
 - i.e. π_2 is NP-hard

NP-COMPLETENESS VIA REDUCTIONS

- o Claim: SAT is NP-Complete.
- Proof:
 - SAT is in NP
 - o Given a formula F of length n in Boolean logic, a certificate for satisfiability would be:
 - a Boolean assignment to its variables for which F will evaluate to true.
 - oThe length of this certificate is the number of variables (i.e. \leq n).
 - The time taken for verifying this certificate is

NP-COMPLETENESS VIA REDUCTIONS

- o Claim: CIRCUIT-SAT ≾ SAT
- Proof Argument:
 - The classic technique of constructing an equivalent formula given a circuit does not work:
 - o The time for constructing the table is 2ⁿ (why?), given n inputs to the circuit.
 - The size of the circuit need not be exponential in n
 i.e. the size of the table may be exponential in the
 size of the circuit.
 - Exercise:
 - Construct an example circuit for which this is true.
 - o Can one walk the graph and extract the formula?
 - When <u>fan-out</u> is unlimited, the <u>number of paths</u> walked may be <u>exponential</u>.

NP-COMPLETENESS VIA REDUCTIONS - SAT

- o Proof [contd.]: CIRCUIT-SAT ≾ SAT
 - Given a circuit C:
 - o assume each input line is marked with a variable a_i
 - omark each line connecting the output of a gate to the input of another with a variable $b_{i.}$ i>0
 - omark the final output as b₀
 - Construct a formula:
 - o $(AND_i g_i) AND b_0$ where each g_i is a formula corresponding to a gate:
 - b_{i1} op b_{i2} <--> b_{i3} where b_{i1} and b_{i2} are variables corresponding to input lines and b_{i3} is the output of the gate

CIRCUIT-SAT ≾ SAT

- We need to map every circuit C to a formula F such that
 C is satisfiable iff F is satisfiable
- Given a circuit C:
 - assume each input line is marked with a variable a_j
 - mark each output line of a gate with a variable b_{i.} i>0
 - mark the final output line as b₀
- Construct a formula F:
 - (AND_i g_i) AND b₀ where each g_i is a formula for gate i:
 - o b_{i1} op b_{i2} <--> b_{i3} if the gate is binary
 - o b_{i1} <--> b_{i3} if the gate is unary
 - $\mathbf{o} \mathbf{b}_{i1}$ and \mathbf{b}_{i2} are variables corresponding to input lines
 - b_{i3} corresponds to the output line of the gate, and
 - op is the operator of the gate.

where

- 4/25/2015
- Sundi

SIS, BITS, Pilani

- o Proof [contd.]: CIRCUIT-SAT ≾ SAT
 - (see previous slide)
 - we have a mapping of every combinational Boolean circuit C to some Boolean formula F.
 - Claims:
 - o F is satisfiable iff C is satisfiable [Why?]
 - oi.e. our *mapping is a reduction*.
 - o Length of F is linearly proportional to that of C.
 - i.e. our *mapping is a polynomial time reduction*.