Lecture 1: Introduction

Hado van Hasselt

Admin

- Lectures on RL mostly 9am-11am on Thursdays
- Backgroud material:
 - ► An Introduction to Reinforcement Learning, Sutton & Barto, 2017
 - http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Hado van Hasselt Lecture 1: Introduction 2 / 58

Outline

- 1 What is reinforcement learning?
- 2 Core concepts
- 3 Core components
- 4 Challenges in reinforcement learning

Hado van Hasselt Lecture 1: Introduction 3 / 58

What is reinforcement learning?

What is Reinforcement Learning?

- Science of learning to make decisions, from experience
- This requires us to think about
 - ...predicting (long-term) consequences of actions
 - ▶ ...time
 - ...gathering experience
 - ...dealing with uncertainty
- Huge potential applicability

RL = AI?

Many Faces of Reinforcement Learning

Branches of Machine Learning

Hado van Hasselt Lecture 1: Introduction 8 / 58

Characteristics of Reinforcement Learning

How does reinforcement learning differ from other machine learning paradigms?

- No supervision, only a reward signal
- Feedback can be delayed, not instantaneous
- Time really matters (sequential, non-i.i.d data)
- Agent's actions affect the subsequent data it receives
- Can be considered more general than supervised learning

Motivation

- First, we started automating physical solutions
 - ▶ Industrial revolution (1750 1850) and Machine Age (1870 1940)
- Second, we started automating repetitive mental solutions
 - Digital revolution (1960 now) and Information Age
- Next step: allow machines to find solutions themselves
 - ► Al revolution (now ????)
- This requires learning how to make decisions

Examples of decision problems

- Examples:
 - Fly stunt manoeuvres in a helicopter
 - Manage an investment portfolio
 - Control a power station
 - Make a robot walk
 - Playing Atari games better than humans
 - Defeat the world champion at Go
- The RL framework applies to all such problems (Whether you use classical RL algorithms or not)

Atari

Core concepts

Rewards

- A reward R_t is a scalar feedback signal
- ullet Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

$$R_{t+1} + R_{t+2} + R_{t+3} + \dots$$

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

Any goal can be formalized as the outcome of maximizing a cumulative reward

Do you agree?

Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Agent and Environment

Hado van Hasselt Lecture 1: Introduction 17 / 58

Agent and Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - ► Receives scalar reward R_t
- The environment:
 - ightharpoonup Receives action A_t
 - ightharpoonup Emits observation O_t
 - Emits scalar reward R_t
- Rewards could be intrinsic (The agent defines its goals)

History and State

A history is a sequence of observations, actions, rewards

$$H_t = O_0, A_0, R_1, O_1, ..., O_{t-1}, A_{t-1}, R_t, O_t$$

- i.e. the sensorimotor stream of a robot
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

- The agent state is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

Hado van Hasselt Lecture 1: Introduction 21 / 58

- The agent state is typically smaller than the environment state
- Need to consider carefully how to construct

Hado van Hasselt Lecture 1: Introduction 22 / 58

The full state of a maze

A limited view (a potential observation)

Same view in a different location

The two observations are indistinguishable

Information State

An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

• "The future is independent of the past given the present"

$$H_t \rightarrow S_t \rightarrow H_{t+1}$$

- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Hado van Hasselt Lecture 1: Introduction 27 / 58

Fully Observable Environments

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- This is a Markov decision process (MDP)
- A useful mathematical framework to reason about sequential decisions

Partially Observable Environments

Formally, MDPs fulfill

$$\mathbb{P}[S_{t+1}, R_{t+1} \mid S_t, A_t] = \mathbb{P}[S_{t+1}, R_{t+1} \mid H_t, A_t]$$

- Partial observability: agent gets partial information
 - A robot with camera vision isn't told its absolute location
 - A poker playing agent only observes public cards
- Now observation is not Markov
- Formally this is a partially observable Markov decision process (POMDP)

Hado van Hasselt Lecture 1: Introduction 29 / 58

These two states are not Markov

How would you construct a Markov state?

Partially Observable Environments

- Agent can construct a state representation S_t^a , e.g.
 - ▶ Last observation: $S_t^a = O_t$
 - Complete history: $S_t^a = H_t$
 - ▶ Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = S^1], ..., \mathbb{P}[S_t^e = S^n])$
 - Recurrent neural network: $S_t^a = f(S_{t-1}^a, O_t)$
- Constructing a Markov agent state may not be feasible
- This is the common case!
- It is more important thing is that the state carries sufficient information to define a good policy, or make good predictions

Hado van Hasselt 31 / 58

Core components

Major Components of an RL Agent

- An agent may include one or more of these components:
 - ▶ Policy: agent's behaviour function
 - Value function(s): predictions about the future (Typically cumulative reward, but can be more general)
 - ▶ Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from agent state to action
- Deterministic policy: $A = \pi(S)$
- Stochastic policy: $\pi(A|S) = \mathbb{P}[A|S]$

Value Function

Value function is the expected future reward

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s, \pi\right]$$

- Depends on a policy
- Used to evaluate the goodness/badness of states
- Can be used to select between actions
- $\gamma \in [0,1]$ is called a discount factor
 - ► Trades off importance of immediate vs long-term rewards
- If we would know the value of each policy, we could act optimally by selecting the policy with highest value. This has the optimal value

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Value Functions

• Value function for a policy π has a recursive form:

$$v_{\pi}(s) = \mathbb{E} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots \mid S_{t} = s, \pi \right]$$

= $\mathbb{E} \left[R_{t+1} + \gamma \left(R_{t+2} + \gamma^{2} R_{t+3} + \dots \right) \mid S_{t} = s, \pi \right]$
= $\mathbb{E} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, \pi \right]$

- This is known as a Bellman equation (Bellman 1957)
- A similar equation holds for the optimal policy:

$$v_*(s) = \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a, \pi\right]$$

- We heavily exploit such equalities, and use them to create algorithms
- More in the next lecture

Hado van Hasselt Lecture 1: Introduction 37 / 58

Model

- A model predicts what the environment will do next
- ullet ${\cal P}$ predicts the next state
- \bullet \mathcal{R} predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_{t} = s, A_{t} = a]$$

$$\mathcal{R}_{ss'}^{a} = \mathbb{E}[R_{t+1} \mid S_{t} = s, A_{t} = a, S_{t+1} = s']$$

 A model does not immediately give us a good policy - we would still need to plan

Hado van Hasselt Lecture 1: Introduction 38 / 58

Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

ullet Arrows represent policy $\pi(s)$ for each state s

Hado van Hasselt Lecture 1: Introduction 40 / 58

Maze Example: Value Function

ullet Numbers represent value $v_\pi(s)$ of each state s

Hado van Hasselt Lecture 1: Introduction 41 / 58

Maze Example: Model

- ullet Grid layout represents transition model $\mathcal{P}^{a}_{ss'}$
- Numbers represent immediate reward $\mathcal{R}^a_{ss'}$ from each state s (same for all a and s' in this case)

Hado van Hasselt Lecture 1: Introduction 42 / 58

Categorizing RL agents (1)

- Value Based
 - ► No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - ▶ No Value Function
- Actor Critic
 - Policy
 - Value Function

Categorizing RL agents (2)

- Model Free
 - Policy and/or Value Function
 - ► No Model
- Model Based
 - Optionally Policy and/or Value Function
 - Model

RL Agent Taxonomy

Challenges in reinforcement learning

Learning and Planning

Two fundamental problems in reinforcement learning

- Learning:
 - ► The environment is initially unknown
 - ► The agent interacts with the environment
- Planning:
 - A model of the environment is given
 - ► The agent plans in this model (without external interaction)
 - a.k.a. reasoning, pondering, thought, search, planning

Prediction and Control

- Prediction: evaluate the future
 - ► Given a policy
- Control: optimize the future
 - Find the best policy
- These are strongly related:

$$\pi_*(s) = \operatorname*{argmax}_{\pi} v_{\pi}(s)$$

• If we could predict everything do we need anything else?

Hado van Hasselt Lecture 1: Introduction 49 / 58

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystic see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Exploration and Exploitation (1)

- We learn from trial-and-error learning
- The agent should discover a good policy
- ...from its experiences of the environment
- ...without losing too much reward along the way

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is important to explore as well as exploit

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant Exploration Try a new restaurant

Oil Drilling

Exploitation Drill at the best known location Exploration Drill at a new location

Game Playing

Exploitation Play the move you currently believe is best Exploration Try a new strategy

Gridworld Example: Prediction

Reward is -1 when bumping into a wall, $\gamma=0.9$

What is the value function for the uniform random policy?

Hado van Hasselt Lecture 1: Introduction 55 / 58

Gridworld Example: Control

What is the optimal value function over all possible policies? What is the optimal policy?

Major Components of an RL Agent

- An agent may include one or more of these components:
 - ▶ Policy: $\pi(a|s)$
 - ▶ Value function: $v_{\pi}(s)$, $v_{*}(s)$, $q_{\pi}(s,a)$, $q_{*}(s,a)$
 - ▶ Model: s', r = m(s, a)
- All of these are functions
- We often represent these as deep neural networks, then use deep learning to optimize these
- However, we also often violate typical assumptions from supervised learning (e.g., i.i.d. data, stationarity)
- Deep reinforcement learning is a rich and active research field

Topics

- Introduction
- Markov decision processes
- Planning by dynamic programming
- Model-free prediction
- Model-free control
- Deep reinforcement learning
- Policy-gradient methods
- Integrating Learning and Planning
- Case study: Deep RL in simulations (Volodymyr Mnih)
- Case study: AlphaGo (David Silver)