INDEX BCA 507(C):- PRACTILE ON DATA MINING USING PYTHON

SR.NO	TITLE	REMARK	SIGN
1.	Calculate the mean and standard deviation.		
2.	Read the CSV file.		
3.	Perform data filtering and calculate aggregate statistics.		
4.	Calculate total sales by month.		
5.	Implement the Clustering using K-means.		
6.	Classification using Random Forest.		
7.	Regression Analysis using Linear Regression.		
8.	Association Rule Mining using Apriori.		
9.	Visualize the result of the clustering and compare.		
10.	Visualize the correlation matrix using a pseudocolor plot.		
11.	Use of degrees distribution of a network.		
12.	Graph visualization of a network using maximum, minimum, median, first quartile and third quartile.		

1. Calculate the mean and standard deviation.

```
import numpy as np
data=np.array([10,20,30,40,50])
mean_value=np.mean(data)
std_dev=np.std(data,ddof=1)
print(f"mean:{mean_value}")
print(f"Standard Deviation:{std_dev}")
Output:-
mean:30.0
```

Standard Deviation:15.811388300841896

2.Read the CSV file.

#create csv file:-

```
import pandas as pd
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [30, 25, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
df.to_csv('people.csv', index=False)
print("CSV file created successfully.")
```

Output:-

CSV file created successfully.

#Read csv file:-

```
import pandas as pd
file_path = 'people.csv'
df = pd.read_csv(file_path)
df.head() # Shows the first 5 rows of the data
```

	Name	Age	City
0	Alice	30	New York
1	Bob	25	Los Angeles
2	Charlie	35	Chicago

3.Perform data filtering and calculate aggregate statistics.

```
import pandas as pd
data={
  'name':[ 'alice', 'bob', 'charlie', 'david', 'eve'],
  'age':[20,22,32,21,19],
  'salary':[3000,4000,2000,5000,3500]
}
df=pd.DataFrame(data)
f_d=df[df['age']>20]
ave_sal=f_d['salary'].mean()
ave_sal1=f_d['salary'].sum()
print(f_d)
print('_____
               _')
print(f'average salary of employees older than 25:(ave_sal,ave_sal1)')
Output:-
    name age salary
     bob 22 4000
2 charlie 32 2000
   david 21 5000
average salary of employees older than 25:(ave_sal,ave_sal1)
```

4. Calculate total sales by month.

```
import pandas as pd
data = {
    'Date': ['2023-01-05', '2023-01-12', '2023-02-01','2023-02-14'],
    'Sales': [100, 150,200,300]
}
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])
df['Year-Month'] = df['Date'].dt.to_period('M')
total_sales_by_month = df.groupby('Year-Month')['Sales'].sum().reset_index()
print(total_sales_by_month)
```

```
Year-Month Sales
0 2023-01 250
1 2023-02 500
```

5.Implement the Clustering using K-means.

```
import numpy as np
```

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

np.random.rand(0)

x=np.random.rand(100,2)

kmeans=KMeans(n_clusters=3)

kmeans.fit(x)

centers=kmeans.cluster_centers_

labels=kmeans.labels_

plt.scatter(x[:,0],x [:,1],c=labels,s=50,cmap='viridis')

plt.scatter(centers[:,0],centers[:,1],c='red',s=200,alpha=0.75)

plt.show()

6. Classification using Random Forest.

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
data = {
  'Age': [25, 45, 35, 33, 50, 23, 43, 36, 29, 48],
  'Income': [40000, 80000, 60000, 58000, 90000, 42000, 75000, 62000, 50000,
85000],
  'Education': [1, 2, 1, 0, 2, 1, 2, 0, 1, 2],
  'Purchased': [0, 1, 0, 0, 1, 0, 1, 0, 0, 1]
}
df = pd.DataFrame(data)
X = df[['Age', 'Income', 'Education']]
y = df['Purchased']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
rf model = RandomForestClassifier(n estimators=100, random state=42)
rf_model.fit(X_train, y_train)
y_pred = rf_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
feature_importances = pd.DataFrame({
  'Feature': X.columns,
  'Importance': rf_model.feature_importances_
}).sort_values(by='Importance', ascending=False)
print("\nFeature Importances:")
```

print(feature_importances)

Output:-

Accuracy: 1.0

Classification Report:

support	f1-score	recall	precision	
2	1.00	1.00	1.00	0
1	1.00	1.00	1.00	1
3	1.00			accuracy
3	1.00	1.00	1.00	macro avg
3	1.00	1.00	1.00	weighted avg

Feature Importances:

	Feature	Importance
1	Income	0.363636
0	Age	0.353535
2	Education	0.282828

7. Regression Analysis using Linear Regression.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
np.random.seed(0)
x=np.random.rand(100,1)*10
y=2.5*x+np.random.randn(100,1)
data=pd.DataFrame(np.hstack((x,y)),
columns=['Feature','Target'])
model=LinearRegression()
model.fit(data[['Feature']],data[['Target']])
y_pred=model.predict(data[['Feature']])
plt.scatter(data['Feature'], data['Target'],color='red', label='Data_line')
plt.plot(data['Feature'],y_pred,label='Regression_line')
plt.xlabel('Features')
plt.ylabel('Target')
plt.title('Regression Analysis using Linear Regression')
plt.legend()
plt.show()
```


8. Association Rule Mining using Apriori.

Index: []

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
d_S=[['Milk','Bread'],
   ['Bread', 'Beer', 'Eggs'],
   ['Milk','Beer','Cola'],
   ['Bread', 'Milk', 'cola']]
encoder=TransactionEncoder()
onehot=encoder.fit(d_S).transform(d_S)
df=pd.DataFrame(onehot,columns=encoder.columns_)
f_i=apriori(df,min_support=0.4,use_colnames=True)
print(f_i)
rules = association_rules(f_i, num_itemsets=len(f_i), metric="lift", min_threshold=1)
print("\nAssociation Rules:")
print(rules)
Output:-
             itemsets
   support
     0.50
              (Beer)
     0.75
              (Bread)
     0.75
              (Milk)
     0.50 (Bread, Milk)
 Association Rules:
 Empty DataFrame
 Columns: [antecedents, consequents, antecedent support, consequent support, support, confidence, lift, representativity, leverage, conviction, zhangs_met
 ric, jaccard, certainty, kulczynski]
```

9. Visualize the result of the clustering and compare.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
np.random.seed(42)
X1 = \text{np.random.normal(loc=[2, 2], scale=0.5, size=(50, 2))}
X2 = np.random.normal(loc=[6, 6], scale=0.5, size=(50, 2))
X3 = \text{np.random.normal(loc=}[10, 2], scale=0.5, size=(50, 2))
X = \text{np.vstack}((X1, X2, X3)) \# \text{Combine into a single dataset}
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X)
labels = kmeans.labels_
centroids = kmeans.cluster centers
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c='green', s=50, alpha=0.7, label="Original Data")
plt.title("Original Dataset")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend()
plt.subplot(1, 2, 2)
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7, label="Clustered
Data")
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200, marker='X',
label="Centroids")
plt.title("Clustered Dataset (K-Means)")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend()
```

plt.tight_layout()

plt.show()

10. Visualize the correlation matrix using a pseudocolor plot.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(42)
data = {
  'Feature1': np.random.rand(100),
  'Feature2': np.random.rand(100),
  'Feature3': np.random.rand(100),
  'Feature4': np.random.rand(100)
}
df = pd.DataFrame(data)
corr_matrix = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1, fmt='.2f',
linewidths=0.5)
plt.title('Correlation Matrix Heatmap')
plt.show()
```


11.Use of degrees distribution of a network.

```
import networkx as nx
import matplotlib.pyplot as plt

G = nx.erdos_renyi_graph(n=100, p=0.05)

degree_sequence = [G.degree(n) for n in G.nodes()]

plt.figure(figsize=(8, 6))

plt.hist(degree_sequence, bins=range(min(degree_sequence), max(degree_sequence) + 1), alpha=0.75, color='blue', edgecolor='black')

plt.title("Degree Distribution of the Network")

plt.xlabel("Degree")

plt.ylabel("Frequency")

plt.grid(True)

plt.show()
```


$12. Graph\ visualization\ of\ a\ network\ using\ maximum\ ,\ minimum\ ,\ median\ ,$ first quartile and third quartile.

```
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
G = nx.barabasi_albert_graph(n=100, m=3)
degree_sequence = [G.degree(n) for n in G.nodes()]
max_degree = max(degree_sequence)
median_degree = np.median(degree_sequence)
q1_degree = np.percentile(degree_sequence, 25)
q3_degree = np.percentile(degree_sequence, 75)
node_size = [degree * 20 for degree in degree_sequence]
plt.figure(figsize=(10, 8))
pos = nx.spring_layout(G)
nx.draw(G, pos, node_size=node_size, with_labels=True, node_color='skyblue',
edge_color='gray', font_size=8)
plt.title(f"Network Visualization\nMax Degree: {max_degree}, Median Degree:
{median_degree}\n"
     f"Q1 Degree: {q1_degree}, Q3 Degree: {q3_degree}", fontsize=12)
plt.show()
```

Network Visualization Max Degree: 30, Median Degree: 4.0 Q1 Degree: 3.0, Q3 Degree: 6.0

