MACM 201 Homework 9 (Quiz Nov. 20)

Textbook problems:

Section	Question
11.3	2
11.3	16
11.3	18
11.3	30

Instructor quesions:

- 1. Let G = (V, E) be a graph with n vertices and n 1 edges. Prove that G either has a vertex of degree 1 or a vertex of degree 0.
- 2. Let G be a connected graph with exactly two vertices of odd degree, say u and v. Prove that there is a walk from u to v. Hint: construct a new graph G^+ from G by adding an edge incident to u and v.
- 3. Let T = (V, E) be a rooted tree with the property that every internal vertex has exactly 2 children. If there are k internal vertices, prove that |V| = 2k + 1. Hint: induction.
- 4. Let T = (V, E) be a rooted tree with the property that every internal vertex has an even number of children. Prove that there exists a function $f: V \to \{-1, 1\}$ with the property that for every internal vertex v with children v_1, v_2, \ldots, v_{2k} the sum $f(v_1) + f(v_2) + \ldots + f(v_{2k}) = 0$. Hint: induction.