

PLANO DE ENSINO 2023

Curso	Engenharia de Software				
Disciplina	Edge Computing & Computer Systems				
Turno	Matutino/Noturno	C/H	2 horas	C/H anual	80 horas
Professores	Dr. Fábio Henrique Cabrini, Me. Lucas Demetrius Augusto, Airton Yassushiko Coppini Toyofuku e Yan Gabriel Coelho				

Ementa

Introdução a computação (time line), hardware e software (open source e proprietário), diferença entre microcontroladores e processadores, aplicações dos sistemas microcontrolados, arquitetura interna de sistemas computacionais (Harvard vs. Neumann), componentes internos e externos, circuitos eletrônicos digitais e analógicos, periféricos, interfaces de comunicação, aplicações focadas em Internet das Coisas, coleta, envio, e armazenamento, visualização (dashboards) e tratamento de dados.

Objetivos	A presente disciplina tem como objetivo que o aluno entenda o funcionamento de sistemas computacionais, elementos de hardware e o impacto em softwares. Aplique computação de borda (edge computing) para coleta de dados, processamento e sensoriamento remoto. Utilize instrumentos básicos de medição, microcontroladores, sensores e atuadores. Realize a integração direta com os times ágeis e DevOps, colaborando com as entregas de valor agregado para o cliente.		
Competências	 Conhecer a estrutura básica de um computador e microcontrolador; Identificar as diferenças entre sistemas processados e microprocessados; Identificar os elementos que compõem as placas de prototipagem; Identificar as características de arquiteturas de microcontroladores e aplicações no cenário de Internet das Coisas; Manipular periféricos, sensores e atuadores; Desenvolver programas básicos em linguagem de programação C e C++; Identificar as vantagens da integração entre os níveis de edge e cloud computing; Identificar arquiteturas de back-end de IoT e seus principais componentes; Desenvolver aplicações práticas para Internet das Coisas (IoT, Internet of Things) ao exemplo de cenários como Industrial Internet of Things (IIoT), Smart Farms, Smart Health e/ou Smart Cities, incluindo a abordagem de edge computing. 		
Habilidades	Durante a disciplina espera-se que o aluno desenvolva as seguintes habilidades: - Compreender o funcionamento dos computadores e microcontroladores; - Identificar as características básicas dos microcontroladores; - Utilizar os periféricos de I/O, canais analógicos, digitais e PWM; - Manipular sensores e atuadores; - Programar e desenvolver projetos com microcontroladores integrados a plataformas de back-end para IoT; - Compreender e projetar aplicações básicas de Internet das Coisas; - Compreender os desafios encontrados na integração entre os níveis de edge e cloud computing.		

Conteúdo				
1º Semestre	2º Semestre			
 ✓ Introdução a computação ✓ Diferença entre microprocessadores e processadores ✓ Arquitetura e pinout do Arduino Uno R3 e ESP32 ✓ Noções de circuitos digitais e analógicos ✓ Interface analógica, digital e PWM ✓ Uso de sensores e atuadores ✓ Recursos avançados dos microcontroladores (Interrupções, Timers, Modo Sleep, RTC, E2PROM, ICSP e WDT) ✓ Comunicação USART, SPI e I2C 	 ✓ Cloud vs. Edge Computing (diferenças entre tratar o dado localmente e na nuvem, conceitos de latência e real time) ✓ Plataformas de back-end para IoT ✓ Comunicação cabeada e sem fio (Wi-Fi e Bluetooth) ✓ Protocolos (HTTP e MQTT) ✓ Short-Time History (armazenamento NoSQL) ✓ Integração com dashboards ✓ Integração entre os níveis de edge e cloud computing. 			

Metodologia

A metodologia é baseadas em projetos (PBL – Project-based Learning) e hands-on. Serão utilizados simuladores, IDE de desenvolvimento, plataformas de back-end de IoT, placas e softwares de prototipação e componentes eletrônicos como sensores e atuadores. Além disso, a disciplina participa de um projeto integrado com outras disciplinas, a ser desenvolvido ao longo do ano.

Avaliação

A média final para aprovação deve ser maior ou igual a 6,0 pontos. Essa nota será resultante do novo sistema de avaliação da FIAP, assim composto:

Média 1º semestre: Challenge Sprint (2 atividades) e Checkpoints (2 a 3), representando 40% da nota semestral; uma Global Solution, representando 60% da nota do semestre. Essa nota representará 40% da média anual. Média 2º semestre: Challenge Sprint (2 atividades) e Checkpoints (2 a 3), representando 40% da nota semestral; uma Global Solution, representando 60% da nota do semestre. Essa nota representará 60% da média anual.

Bibliografia	
Básica	TOCCI, Ronald J., WIDMER, Neal S., MOSS, Gregory L. Sistemas Digitais: princípios e aplicações. 11ª ED. São Paulo: Pearson, 2007. TANENBAUM, Andrew S. Organização estruturada de computadores. 6a Ed. São Paulo: Pearson, 2016. STALLINGS, William. Arquitetura e Organização de Computadores. 8ª Ed. 2010.
Complementar	GIMENEZ, Salvador P. Microcontroladores 8051: teoria do Hardware e do Software: aplicações em controle digital: laboratório e simulação. São Paulo: Pearson, 2002. CAPRON, H. L.; JOHNSON, J. A. Introdução à Informática - 8ª Ed. São Paulo: Pearson, 2008. NILSSON, James W.; RIEDEL, Susan A. Circuitos Elétricos. 10ª ed. São Paulo: Pearson Education do Brasil, 2016.