TABLA DE TRANSFORMADAS DE LAPLACE

f(t)	$\mathcal{L}\{f(t)\} = F(s)$
1. 1	<u>1</u> s
2. t	$\frac{1}{s^2}$
3. t ⁿ	$\frac{n!}{s^{n+1}}$, <i>n</i> un entero positivo
4. $t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$
5. t ^{1/2}	$\frac{\sqrt{\pi}}{2s^{3/2}}$
6. t^{α}	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \alpha > -1$
7. sen <i>kt</i>	$\frac{k}{s^2 + k^2}$
8. cos <i>kt</i>	$\frac{s}{s^2+k^2}$
9. sen² <i>kt</i>	$\frac{2k^2}{s(s^2+4k^2)}$
10. $\cos^2 kt$	$\frac{s^2+2k^2}{s(s^2+4k^2)}$
11. <i>e</i> ^{at}	$\frac{1}{s-a}$
12. senh <i>kt</i>	$\frac{k}{s^2 - k^2}$
13. cosh <i>kt</i>	$\frac{s}{s^2 - k^2}$
14. senh ² kt	$\frac{2k^2}{s(s^2-4k^2)}$
15. cosh ² <i>kt</i>	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$
16. te ^{at}	$\frac{1}{(s-a)^2}$
17. $t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}, n \text{ un entero positivo}$
18. e^{at} sen kt	$\frac{k}{(s-a)^2+k^2}$
19. $e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$

 $\frac{1}{\sqrt{s^2 + k^2}}$

38. $J_0(kt)$

$$\mathcal{L}{f(t)} = F(s)$$

$$39. \quad \frac{e^{bt} - e^{at}}{t} \qquad \qquad \ln \frac{s - a}{s - b}$$

42.
$$\frac{\operatorname{sen} at}{t}$$
 $\arctan\left(\frac{a}{s}\right)$

43.
$$\frac{\operatorname{sen} at \cos bt}{t}$$
 $\frac{1}{2} \arctan \frac{a+b}{s} + \frac{1}{2} \arctan \frac{a-b}{s}$

$$44. \quad \frac{1}{\sqrt{\pi t}}e^{-a^2/4t} \qquad \qquad \frac{e^{-a\sqrt{s}}}{\sqrt{s}}$$

45.
$$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$$
 $e^{-a\sqrt{s}}$

46.
$$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$
 $\frac{e^{-a\sqrt{t}}}{s}$

47.
$$2\sqrt{\frac{t}{\pi}}e^{-a^2/4t} - a\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$
 $\frac{e^{-a\sqrt{s}}}{s\sqrt{s}}$

48.
$$e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right)$$

$$\frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$$

49.
$$-e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right)$$
 $\frac{be^{-a\sqrt{s}}}{s(\sqrt{s}+b)}$ $+\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$

50.
$$e^{at}f(t)$$
 $F(s-a)$

$$51. \quad \mathcal{U}(t-a) \qquad \qquad \frac{e^{-as}}{s}$$

52.
$$f(t-a)\mathcal{U}(t-a)$$
 $e^{-as}F(s)$

53.
$$g(t)\mathcal{U}(t-a)$$
 $e^{-as}\mathcal{L}\lbrace g(t+a)\rbrace$

54.
$$f^{(n)}(t)$$
 $s^n F(s) - s^{(n-1)} f(0) - \cdots - f^{(n-1)}(0)$

$$(-1)^n \frac{d^n}{ds^n} F(s)$$

56.
$$\int_0^t f(\tau)g(t-\tau)d\tau \qquad F(s)G(s)$$

58.
$$\delta(t-t_0)$$
 e^{-st_0}