1. (17 points)

[17 marks, approx 15 mins] For the circuit in the figure below, find the input impedance, $Z_{in}(s)$, as a function of s, the Laplace variable. (a) Do a Bode amplitude plot and determine the frequency at which Z_{in} is minimum, ω_o , in rad/s. On the Bode amplitude plot, determine the +3 dB frequencies, (b) ω_1 and (c) ω_2 , also in rad/s. Compute (d) the bandwidth, in rad/s; and (e) the quality factor. Then, scale the circuit so that the circuit uses $10 k\Omega$ resistors instead, and so that the minimum impedance occurs at $20 \frac{krad}{s}$. After scaling, what will be the values of the reactive elements, (f) L and (g) C?. (N.B. scaling won't affect the dependent source coefficient n.) The reactive element values are L = 7.8 H, and C = 0.6 F. The resistor $R_1 = 4\Omega$. The dependent source coefficient n = 3.5.

Figure corresponding to Question 1 of this final exam.

DO NOT GUESS ANSWERS. The right answer without the correct procedure is still an invalid response.

(a) $\omega_o = \underline{\hspace{1cm}} rad/s$

(b) $\omega_1 =$ ___ **rad/s**

(c) $\omega_2 = \underline{\hspace{1cm}} rad/s$

(d) $Bandwidth = \underline{\hspace{1cm}} rad/s$

(e) $Quality\ factor = \underline{\hspace{1cm}}$ no units

(f) $L_{new} =$ ____**H**

(g) $C_{new} = _{--} \mathbf{F}$

Answer(s) submitted:

• 0.2179068

• 0.1542662

• 0.3078016

- 0.153535
- 1.419262
- 0.2124591
- 0.000000002614882

(correct)

2. (9 points)

[9 marks, approx 7 minutes.] A transfer function H(s) is approximated by the Bode amplitude plot in the figure below. Observe that there is a damping factor associated with the frequency 'd' in the figure. A student concludes that the transfer function can be written as

$$H(s) = \frac{ks(s+b)^2}{(s+a)(s+c)^2(s^2 + ms + n)}$$

If you agree with the student, compute and report the constant 'k' on the numerator. If you don't agree with the student, write the correct transfer function on your procedure-page (that you will scan and upload as a PDF), and compute and report below in the entry box the value of the correct 'k' (the one for your transfer function). The values for your question are: a = 900, b = 1550 c = 2800 d = 12000 m = 2400 $n = 1.44 \times 10^8$ All in rad/s except the last two. The decibels level at the highest plateau is $A_x = -176.596$ dB.

N.B. If you are entering results in scientific notation, example $1.234 \times 10^{\circ}(-3)$, use an uppercase E to enter 1.234E-3, never type 1.234e-3.

Bode amplitude plot of a transfer function H(s)

The right value for the constant k =____

Answer(s) submitted:

• 0.001596992416

(incorrect)

3. (8 points)

[8 marks, approx 5 mins] Select the values of the capacitors for the bandpass filter in the top right part of the figure, so that its Bode amplitude plot (frequency response) corresponds to the

1

dB-versus-rad/s-plot on the lower left corner of the figure below. All op amps are ideal. $R_1 = R_2 = R_3 = 13 \, k\Omega$ (that is, all those three resistors have the same value.) Also, if the bandpass gain is to be (the decibels on the plateau) $A_{dB} = 14 \, dB$, what should be the value of the feedback resistor R_f in kilo ohms? For your question, $\omega_L = 320 \, rad/s$ and $\omega_H = 16000 \, rad/s$.

An active bandpass filter and its Bode frequency response

 $C_1 = \underline{\hspace{1cm}} \mathbf{nF}$

 $C_2 = \underline{\hspace{1cm}} \mathbf{nF}$

 $R_f = \underline{\hspace{1cm}} k\Omega$

Answer(s) submitted:

- 4.807692
- 240.3846
- 52.1543403175

(correct)

4. (16 points)

[16 marks, approx. 15 mins.] For the two-port network in the figure below, compute and report the hybrid parameters. For your question, $X_1 = -5 \Omega$, $X_2 = 3 \Omega$ $X_3 = 8 \Omega$ $X_M = 6 \Omega$ $R_1 = 2 \Omega$, $R_2 = 16 \Omega$.

Two port network to find the hybrid parameters.

 $h11 = __ + j__$

 $h12 = __ + j___$

 $h21 = _ + j_$

 $h22 = _ + j_$

Answer(s) submitted:

- 0.04639175
- -0.02061855
- -0.783505154639
- •
- -3.7731958
- 0.237113402062
- •

(score 0.25)

5. (20 points)

A balanced three-phase system has a distribution wire with impedance $Z_1=10.5+j14\,\Omega$ per phase. The system supplies two three-phase loads that are connected in parallel. The first is a balanced wye-connected load that absorbs a total $S_a=350\,kVA$ apparent power at a power factor pf=0.8 lagging. The second load is a balanced delta-connected load with impedance of $Z_\Delta=21+j16.8\,\Omega$ per phase. The magnitude of the line voltage at the loads is $V_{line}^{load}=2400\,V_{rms}$. Find:

- (a) Magnitude of the line voltage at the source: V_{rms}
- (b) Total complex power of the two loads: ___+j____ kVA

Three phase balanced system with two loads in parallel.

Answer(s) submitted:

- 9636.48998611
- 781.74216
- 611.39372

(score 0.666667)

6. (15 points)

The circuit below contains two ideal transformers, where $\mathbf{V_s} = \mathbf{35} \angle \mathbf{0^0}$ V, $R_1 = 6\Omega$, $R_2 = 5\Omega$, $R_3 = 7\Omega$, $\mathbf{Z_{c1}} = -\mathbf{j6} \mathbf{m}$, $\mathbf{Z_{c2}} = -\mathbf{j5} \mathbf{m}$, and $\mathbf{Z_L} = \mathbf{j8} \mathbf{m}$. The turns ratios are $n_1 = 0.5$, and $n_2 = 2$.

Find:

- (a) Current I at the source: ___ A with a phase: ___ deg.
- (b) Voltage V_0 : ____ V with a phase: ____ deg.

Circuit with two ideal transformers.

Answer(s) submitted:

- 0.2039577
- -36.469234
- 2.039577170
- 143.53076561

(correct)

7. (15 points)

In the second-order circuit below, $V_1 = 12V$, $V_2 = 24V$, $R_1 = 15\Omega$, $R_2 = 7\Omega$, L = 1.1H, and C = 0.02F. Find the answers in (a) through (e) below:

Second Order Circuit where the switch closes at t = 0.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- (a) $v(0^+) =$ ____ V.
- **(b)** $i(0^+) = __A$.
- (c) $\frac{dv}{dt}(0^+) =$ ____ V/s.
- (**d**) $\frac{di}{dt}(0^+) =$ ____ A/s.
- (e) $v(\infty) =$ ____ V.
- (f) $i(\infty) =$ ____A.

Answer(s) submitted:

- 0
- 4/5
- 171.428571
- 0
- 0
- 4.228571

(correct)