INSTITUTO DE COMPUTAÇÃO

MATA50 – Linguagens Formais e Autômatos – 2023.1 Professor: Roberto Freitas Parente

Monitor: Fernando Franco de Lacerda Neto Gabarito — Prova 02

Questão 1. Utilizando seu conhecimento sobre AFD's, expressões regulares e os algoritmos visto em sala, faça o seguinte:

1. Construa um AFD para a linguagem $\{w \in \{a,b\}^* : w \text{ possui quantidade par de a's } e \mid w \mid \text{\'e divis\'ivel por 3} \}$. Posteriormente, gere a expressão regular a partir do AFD proposto.

Resposta. Um AFD é :

Sendo que p representa que a quantidade de a's é par, i representa que a quantidade de a's é impar e os números representam o resto do tamanho da palavra por 3.

Segundo o algoritimo visto em sala primeiro removemos o estado intermediário p_{-1} :

Removendo o estado intermediário i_{-1} :

E assim por diante, até restar apenas o estado incial e final, por fim, uma expressão regular é: $(bbb + aab + aba + baa + (bba + aaa + bab + abb)(bba + aaa + bab + abb))^*$

2. Gere a expressão regular a linguagem $\{w \in \{a,b\}^* : w \text{ possui sufixo bab}\}$. Posteriormente gere o ε -AFN associado.

Resposta. Uma expressão regular é: $bab(a+b)^*$

Questão 2. Utilizando os algoritmos visto em sala, converta a expressão regular a^*ab^* em ε -AFND e posteriormente minimize o AFD equivalente.

Resposta. O ε -AFD $\acute{\mathrm{e}}$:

Tabela de conversão para os estados alcançáveis:

	a	b
$\to \{q_3, q_1, q_4, q_4, q_5\} = A$	$\{q_2, q_1, q_4, q_5, q_6, q_7, q_8, q_{10}\}$	Ø
$*\{q_2, q_1, q_4, q_5, q_6, q_7, q_8, q_{10}\} = B$	$\{q_2, q_1, q_4, q_5, q_6, q_7, q_8, q_{10}\}$	$\{q_9, q_8, q_{10}\}$
$^*\{q_9, q_8, q_{10}\} = C$	Ø	$\{q_9, q_8, q_{10}\}$
Ø	Ø	Ø

Tabela de minimização

В	X	-	-
С	X	X	-
Ø	X	X	X
	A	В	С

Ou seja, o AFD já está minimizado

Questão 3. Prove o seguinte sobre linguagens regulares:

1. Se L é uma linguagem, e a um símbolo, então L/a, o quociente de L e a, é o conjunto das palavras w tais que wa estão em L. Prove que se L é regular, então L/a é regular.

Resposta. Seja $A = (Q, \Sigma, \delta, q_0, F)$ o AFD associado a L já que ela é regular, podemos criar o AFD $B = (Q, \Sigma, \delta, q_0, F')$, sendo $F' = \{q \in Q | \delta(q, a) \in F\}$. Assim, uma palavra w chega em um estado final de B apenas quando wa chega em um estado final de A, i.e., B irá aceitar a palavra w apenas quando $wa \in L$, que é a definição de L/a, logo B é um AFD para L/a, ou seja, L/a é um linguagem regular. \square

2. Se L é uma linguagem, e a um símbolo, então $a \setminus L$ é o conjunto das palavras tais que aw estão em L. Prove que se L é regular, então $a \setminus L$ é regular.

Resposta. Seja $A = (Q, \Sigma, \delta, q_0, F)$ o AFD associado a L já que ela é regular, podemos criar o AFD $B = (Q, \Sigma, \delta, \delta(q_0, a), F)$. Logo $w \in L(B)$ se e somente se $\hat{\delta}(\delta(q_0, a), w) = \hat{\delta}(q_0, aw) \in F$, ou seja, é um AFD para $a \setminus L$, logo $a \setminus L$ é regular.

3. Sejam L regular e a e b símbolos, prove que $b \setminus (L/a)$ é regular.

Resposta. Pela 1, sabemos que (L/a) é regular e, pela 2, sabemos que $b \setminus M$ é regular se M for linguagem regular, logo $b \setminus (L/a)$ é regular

- 4. Quais das identidades a seguir são falsas? Dê um contraexemplo para cada.
 - (a) (L/a)a = L
 - (b) $a(a \setminus L) = L$
 - (c) (La)/a = L
 - (d) $a \setminus (aL) = L$

Resposta.

- (a) Falsa. $L = \{b\}$. $L/a = \emptyset = (L/a)a \neq L$
- (b) Falsa. $L = \{b\}$. $a \setminus L = \emptyset = a(a \setminus L) \neq L$
- (c) Verdadeiro
- (d) Verdadeiro

Questão 4. Prove que as seguintes linguagens não são regulares.

1. $\{ww^R : w \in \{0,1\}^*\}$

Resposta. Sejam n dado pelo lema do bombeamento e a palvra $w=0^n110^n$. Assim, w=xyz, sendo $y=0^i, 1\leq i\leq n$. Dessa maneira

$$xy^2z = 0^{n+i}110^n$$

não pertence a linguagem já que a quantidade de 0's na primeira metade é diferente da de 0's na segunda metade $\hfill\Box$

2. $\{0^n: n \text{ \'e uma potência de dois}\}$ não 'e regular.

Resposta. Sejam uma potência de dois $p \ge n+1$ dado pelo lema do bombeamento e a palvra $w=0^p$. Assim, w=xyz, sendo $y=0^i, 1 \le i \le n$. Dessa maneira

$$xu^2z = 0^{p+i}$$

não pertence a linguagem já que p , logo <math>p + i é maior que uma potência de dois e menor que a próxima.

3. $\{0^n 1^m 2^{n-m} : n > m > 0\}$

Resposta. Sejam n dado pelo lema do bombeamento e a palvra $w=0^n1^n$. Assim, w=xyz, sendo $y=0^i, 1\leq i\leq n$. Dessa maneira

$$xy^2z = 0^{n+i}1^n$$

não pertence a linguagem já que deveria existir pelo menos um 2, o que não é verdade.

4. $\{w_1w_2: w_1, w_2 \in \{a, b\}^* \ e \ w_1 \neq w_2\}$

Resposta. Suponha, por absurdo, que a linguagem é regular logo seu complemento $\bar{L} = \{w_1w_2 \colon w_1, w_2 \in A\}$

 $\{a,b\}^*$ e $w_1=w_2\}$ também tem que ser regular, contudo \bar{L} não é regular. Prova que \bar{L} não é regular. Sejam n a constante do lema do bombeamento e $w=0^n10^n1$, assim $y=0^i$, $i\leq n$ A palavra xy^0z não irá pertencer a linguagem pois

$$xz = 0^{n-i}10^n1$$

Se i for impar a palavra obviamente não pertence a linguagem, pois o tamanho dela é impar.

Se i for par ao dividir a palavra no meio haverá um 0 após o 1 na primeira metade, o que não ocorre na segunda. Logo a palavra não pertence a linguagem.