PATENT ABSTRACTS OF JAPAN

(11)Publication number:

MENU | SEARCH | INDEX

10-165380

DETAIL

(43) Date of publication of application: 23.06.1998

(51)Int.CI.

A61B 5/0245

A61B 5/0452

(21)Application number: 08-333249

(71)Applicant: YAMAHA MOTOR CO LTD

(22)Date of filing:

13.12.1996

(72)Inventor:

MIZUNO YASUFUMI

(54) FATIGUE JUDGING METHOD, FATIGUE JUDGING DEVICE, AND RATIONALIZATION SYSTEM OF WORK BY USE OF THIS DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the effectively of fatigue evaluation by comparing the value in reference with the value in judgment of fatigue for a plurality of indexes calculated from R-R interval(RRI) to calculate the change quantity, and judging the fatigue of a worker from this change quantity. SOLUTION: A fatigue judging device 2 has a detecting means 3, a CPU 4, and a memory 5. The detecting means 3 detects the heat beat or blood flow pulse pressure of a worker including driver. The CUP 5 has a calculating means 6 in reference for calculating the integrated value of high frequency fluctuating

components in which the time average value of R-wave interval in reference and the interval of R-wave are frequency-converted on the basis of the detected interval of R-wave, and a calculating means 7 for calculating each value in fatigue. It also has a change quantity calculating means 8 for comparing them to calculate the change quantity, a fatigue judging means 9 for judging the fatigue of the worker from the value, and a judgment result output means 10 for outputting the judgment result as signal.

LEGAL STATUS

[Date of request for examination]

13.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-165380

(43)公開日 平成10年(1998)6月23日

(51) Int.Cl. ⁶ A 6 1 B	5/0245	設別記号 0245	F I A 6 1 B	5/02	3 2 0 Z 3 2 0 C
	5/0452	•		5/04	3 1 2 A

寒杏請求 未請求 請求項の数3 OL (全 9 J	킟,	,
---------------------------	----	---

(21)出願番号	特願平8-333249	(71) 出願人	ヤマハ発動機株式会社	
(22)出願日	平成8年(1996)12月13日	静岡県路田市新貝2500番地 (72)発明者 水野 康文 静岡県路田市新貝2500番地 ヤマハ発動		
•		(74)代理人	株式会社内 弁理士 ・	

疲労度判定方法及び疲労度判定装置及びその装置を用 (54) 【発明の名称】 化システム

いた作業の適正

(57)【要約】

【課題】RRIから算出される個々の指標に着目するだ けではなく、複数の指標を多元的にとらえることによっ て、自律神経の活動バランスを評価するととによって、 RRIから算出される複数の指標を多元的に評価し、疲 労度評価の有効性を向上させる。

【解決手段】作業者の心拍あるいは血流脈圧を検知し、 この検知された心室の緊張波であるR波の間隔に基づき 基準時のR波の間隔の時間平均値とR波の間隔を周波数 変換したものの髙周波変動成分の積分値を算出し、所定 の疲労度を判定する時に検知された心室の緊張波である R波の間隔に基づきR波の間隔の時間平均値とR波の間 隔を周波数変換したものの高周波変動成分の積分値を算 出し、前記基準時の時間平均値及び高周波変動成分の積 分値と前記所定の疲労度を判定する時の前記時間平均値 及び高周波変動成分の積分値とを比較して変化量を算出 し、との変化量から作業者の疲労度を判定し、との判定 結果を信号として出力する。

【特許請求の範囲】

【請求項1】作業者の心拍あるいは血流脈圧を検知し、 この検知された心室の緊張波である R 波の間隔に基づき 基準時のR波の間隔の時間平均値とR波の間隔を周波数 変換したものの髙周波変動成分の積分値を算出し、所定 の疲労度を判定する時に検知された心室の緊張波である R波の間隔に基づきR波の間隔の時間平均値とR波の間 隔を周波数変換したものの髙周波変動成分の積分値を算 出し、前記基準時の前記時間平均値及び高周波変動成分 の積分値と前記所定の疲労度を判定する時の前記時間平 10 均値及び高周波変動成分の積分値とを比較して変化量を 算出し、との変化量から作業者の疲労度を判定し、との 判定結果を信号として出力することを特徴とする疲労度 判定方法。

【請求項2】作業者の心拍あるいは血流脈圧を検知する 検知手段と、この検知された心室の緊張波であるR波の 間隔に基づき基準時のR波の間隔の時間平均値とR波の 間隔を周波数変換したものの高周波変動成分の積分値を 算出する基準時の算出手段と、所定の疲労度を判定する 時に検知された心室の緊張波であるR波の間隔に基づき R波の間隔の時間平均値とR波の間隔を周波数変換した ものの髙周波変動成分の積分値を算出する疲労時の算出 手段と、前記基準時の前記時間平均値及び高周波変動成 分の積分値と前記所定の疲労度を判定する時の前記時間 平均値及び高周波変動成分の積分値とを比較して変化量 を算出する変化量算出手段と、この変化量から作業者の 疲労度を判定する疲労度判断手段と、この判定結果を信 号として出力する判定結果出力手段とを有することを特 徴とする疲労度判定装置。

【請求項3】前記請求項2記載の疲労度判定装置を備 え、判定結果を表示する表示手段、警報を行う警報手段 及び作業者の負担を軽減する作業負担軽減手段の少なく とも1つを有することを特徴とする疲労度判定装置を用 いた作業の適正化システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、疲労度判定方法 及び疲労度判定装置及びその装置を用いた作業の適正化 システムに関するものである。

[0002]

【従来の技術】例えば、二輪車運転時等の疲労度は、時 々刻々と変化する交通状況などの外部環境の変化に起因 する精神的負荷や風圧などの物理的負荷が長時間作用す ることによって生じるものと考えられ、生理学的には循 環調節系にも変化を生する。

【0003】心電図あるいは血流脈圧図から得られるR 波のR-R間隔(RR Interval:RRI)を用いて、二輪車運 転に伴う疲労度とRRIの関係についてはすでに研究さ れているが、走行時間とともにRRIの変動成分が増加 すること、またRRIの変動成分が運転疲労に伴って増 加すること、さらに走行距離の増加に伴って心拍数が減 少すること等、疲労度とRRIから算出される個々の指 標との関係の把握に向けられている。

[0004]

[発明が解決しようとする課題] ところで、RRIは心 臓の交感神経と副交感神経の活動パランスを反映するも ので、例えば心拍数の増加は自律神経の活動バランスが 交感神経が有意に、RRIの呼吸周期に一致した変動成 分(Respiratory SinusArrhythmia:RSA)の増加は副交感 神経が有意に変化したことを示す等が知られている。

【0005】との発明は、かかる点に鑑みてなされたも ので、RRIから算出される個々の指標に着目するだけ ではなく、複数の指標を多元的にとらえ、自律神経の活 動バランスを評価することによって、RRIから算出さ れる複数の指標を多元的に評価し、疲労度評価の有効性 を向上させる疲労度判定方法及び疲労度判定装置及びそ の装置を用いた作業の適正化システムを提供することを 目的としている。

[0006]

【課題を解決するための手段】前記課題を解決し、かつ 目的を達成するために、請求項1記載の疲労度判定方法 は、作業者の心拍あるいは血流脈圧を検知し、との検知 された心室の緊張波であるR波の間隔に基づき基準時の R波の間隔の時間平均値とR波の間隔を周波数変換した ものの髙周波変動成分の積分値を算出し、所定の疲労度 を判定する時に検知された心室の緊張波であるR波の間 隔に基づきR波の間隔の時間平均値とR波の間隔を周波 数変換したものの高周波変動成分の積分値を算出し、前 記基準時の前記時間平均値及び高周波変動成分の積分値 と前記所定の疲労度を判定する時の前記時間平均値及び 高周波変動成分の積分値とを比較して変化量を算出し、 この変化量から作業者の疲労度を判定し、この判定結果 を信号として出力することを特徴としている。RRIの 時間平均値とRRIを周波数変換したものの髙周波変動 成分の積分値によるモデルの作業時生体負担評価への有 効性が確認される。即ち、RRIの時間平均値の低下は 交感神経を、RRIを周波数変換したものの髙周波変動 成分の積分値の大きさは副交感神経の活動力を反映する ことから、作業による生体負担はある程度自律神経の活 動バランスで評価することができる。このように、RR Iから算出される個々の指標に着目するだけではなく、 複数の指標を多元的にとらえ、自律神経の活動パランス を評価することによって、RRIから算出される複数の 指標を多元的に評価し、疲労度評価の有効性を向上させ ることができる。

[0007] 請求項2記載の疲労度判定装置は、作業者 の心拍あるいは血流脈圧を検知する検知手段と、この検 知された心室の緊張波であるR波の間隔に基づき基準時 のR波の間隔の時間平均値とR波の間隔を周波数変換し たものの高周波変動成分の積分値を算出する基準時の算 3

出手段と、所定の疲労度を判定する時に検知された心室 の緊張波であるR波の間隔に基づきR波の間隔の時間平 均値とR波の間隔を周波数変換したものの高周波変動成 分の積分値を算出する疲労時の算出手段と、前記基準時 の前記時間平均値及び高周波変動成分の積分値と前記所 定の疲労度を判定する時の前記時間平均値及び髙周波変 動成分の積分値とを比較して変化量を算出する変化量算 出手段と、この変化量から作業者の疲労度を判定する疲 労度判断手段と、この判定結果を信号として出力する判 定結果出力手段とを有することを特徴としている。RR I の時間平均値の低下は交感神経を、RRIを周波数変 換したものの高周波変勁成分の積分値の大きさは副交感 神経の活動力を反映することから、作業による生体負担 はある程度自律神経の活動バランスで評価することがで きる。このように、RRIから算出される個々の指標に 着目するだけではなく、複数の指標を多元的にとらえ、 自律神経の活動バランスを評価することによって、RR Iから算出される複数の指標を多元的に評価し、疲労度 評価の有効性を向上させることができる。

【0008】請求項3記載の疲労度判定装置を用いた作 20 業の適正化システムは、前記請求項2記載の疲労度判定 装置を備え、判定結果を表示する表示手段、警報を行う 警報手段及び作業者の負担を軽減する作業負担軽減手段 の少なくとも1つを有することを特徴としている。疲労 度評価を表示、または警報、あるいは自動的に作業者の 負担を軽減することができる。

[0009]

【発明の実施の形態】以下、との発明の疲労度判定方法 及び疲労度判定装置及びその装置を用いた作業の適正化 システムの実施の形態について説明する。

【0010】図1は疲労度判定装置を用いた運転を含む 作業の適正化システムを示す概略構成図である。作業の 適正化システム1には、疲労度判定装置2が備えられて いる。疲労度判定装置2は、検知手段3、CPU4及び メモリ5を有している。検知手段3は、運転者を含む作 業者の心拍あるいは血流脈圧を検知する。CPU4に は、検知された心室の緊張波であるR波の間隔に基づき 基準時のR波の間隔の時間平均値RRM。とR波の間隔 を周波数変換したものの高周波変動成分の積分値HFA 。を算出する基準時の算出手段6と、所定の疲労度を判 定する時に検知された心室の緊張波であるR波の間隔に 基づきR波の間隔の時間平均値RRMxとR波の間隔を 周波数変換したものの髙周波変動成分の積分値HFA、 を算出する疲労時の算出手段7と、この基準時のR波の 間隔の時間平均値RRM。及びR波の間隔を周波数変換 したものの髙周波変動成分の積分値HFA。と、所定の 疲労度を判定する時のR波の間隔に基づきR波の間隔の 時間平均値RRM、及びR波の間隔を周波数変換したも のの髙周波変動成分の積分値HFAxとを比較して変化 量を算出する変化量算出手段8と、この変化量から作業 者の疲労度を判定する疲労度判断手段9と、この判定結果を信号として出力する判定結果出力手段10とを有している。メモリ5には、基準時の算出手段6及び疲労時の算出手段7からの算出データが記憶され、またCPU4を実行するプログラムが記憶されている。

【0011】また、作業の適正化システム1には、表示手段11、警報手段12及び作業負担軽減手段13が備えられている。表示手段11は、判定結果を例えばアナログ表示またはデジタル表示する。警報手段12は、判定結果を例えばブザー、ランブ等により警報する。また、作業負担軽減手段13は、自動的に運転者を含む作業者の負担を軽減して例えば運転を含む作業の中断を行る

【0012】次に、図2乃至図7に基づき疲労度判定について説明する。図2は疲労度判定のメインプログラム、図3は算出サブプログラム、図4は検知された心室の緊張波であるR波を示す図、図5はRRI値関数を示す図、図6はPSD関数を示す図、図7は疲労判定モデルを示す図である。

【0013】図2は疲労度判定のメインプログラムにお いて、ステップS11で検知された心室の緊張波である R波の間隔に基づき、作業中、あるいは作業を行う前の リラックスした状態の基準時に、R波の間隔の時間平均 値RRMとR波の間隔を周波数変換したものの髙周波変 動成分の積分値HFAを図3の算出サブプログラムを用 いて算出し、基準時のR波の間隔の時間平均値RR M。、R波の間隔を周波数変換したものの髙周波変動成 分の積分値HFA。として、メモリ5に格納し記憶す る。ステップS12で所定の疲労度を判定する時に検知 された心室の緊張波であるR波の間隔の時間平均値RR MとR波の間隔を周波数変換したものの高周波変動成分 の積分値HFAを図3の算出サブプログラムを用いて算 出し、疲労度を判定する時のR波の間隔の時間平均値R RM、とR波の間隔を周波数変換したものの高周波変動 成分の積分値HFAxとしてメモリ5に格納し記憶す る。ステップS13でメモリ5に記憶されたそれぞれの データを読み出し、基準時のR波の間隔の時間平均値R RM。及びR波の間隔を周波数変換したものの高周波変 動成分の積分値HFA。と、所定の疲労度を判定する時 のR波の間隔に基づきR波の間隔の時間平均値RRM。 及びR波の間隔を周波数変換したものの髙周波変動成分 の積分値HFAxとを比較し、基準時から疲労度を判定 する時までの変化量(差)を算出し、ステップS14で 変化量から作業者の疲労度を判定する。

【0014】この疲労度の判定結果が下記する①の場合には、ステップS14へ移行して警報手段12で黄色あるいは緑色の点灯を行い(ステップS15)、作業(運転)中止状態にされているか否かの判断を行い(ステップS16)、作業(運転)が継続中であるならば、ステップS12へ移行し、次の判定対象時(X+1)につい

て上記と同様の判定を行い、作業(運転)が中止状態にされたと判断されれば、判定を終了する。疲労度の判定結果が下記する②③の場合には、ステップS17へ移行して、疲労度の判定結果が下記する②の場合は警報手段12で赤色の点灯し、また疲労度の判定結果が下記する③の場合には点滅を行い、ステップS18で自動的に作業(運転)者の負担を軽減してさらに自動的に作業(運転)の中断を行い(ステップS19)、判定を終了する。

【0015】次に、図3の算出サブプログラムについて 10 説明する。ステップS21において、図4に示すように 検知手段3から検出される心室の緊張波であるR波の連 続するRバルスから、RR間隔(RRI)をシーケンシ ャルに求め、シーケンシャル番号と対応するRRI値 (秒)を所定個メモリ5に格納する。あるいは所定時間 T中のシーケンシャル番号と対応する複数のRRI値 (秒)をメモリ5に格納する。メモリ5中のRRI値の データ数をYとするとき、ステップS22で、メモリ5 中のY個のRRI値の平均値RRMを算出し、メモリ5 に格納する。ステップS23で、メモリ5からRRIデ ータを取り出し、ステップS24でメモリ5中のシーケ ンシャル番号と対応するRRI値(秒)のY個のデータ から、シーケンシャル番号を変数とするRRI値関数 (図5)を求め、このRR | 値関数に基づき、RR | 値 関数をフーリエ変換し、RRI値関数を周波数分解す る。これが、周波数変換である。この周波数分解結果、 ステップS25で横軸をHz、縦軸をPSD(Power Sp ectral Density Function)単位とするPSD関数が得 られる(図6)。

【0016】即ち、RRI値には、図6に示すように、 $0.08\sim0.15\,\mathrm{Hz}\,\mathrm{DMayer}\,\mathrm{Wave}\,\mathrm{related}\,\mathrm{SinusAr}$ rhythmia(MWSA)と呼ぼれる動脈血圧が示す約10 秒周期の低周波変動成分(LF:Low Frequency compor nent)と0.15Hz以上のRSAによる髙周波変動成 分 (HF:High Frequency comporment) が存在するこ とが知られている。HFは副交感神経の活動を、LFは 交感神経の指標であるとともに、副交感神経の圧受容体 反射感受性を反映する指標であると考えられている。本 願発明者の実施した主観的疲労感に関するアンケート調 査によれば、前記RRMと、HFのパワーすなわちHF の積分値と2つのファクターが、疲労度に対して相関性 の高いことが分かった。そして、RRI値からこれら変 動成分を抽出するためには、スペクトル解析などが適用 されるが、そのためには系列時系列は定常性であること が必要である。したがって、必ずしも定常性が保証され ていない作業時のRRI値からLF、HFを検出するに は非定常成分を除去することが必要である。そこで、非 定常成分を除くために、McClellanと Parksによる直線位 相FIR(Finite Impulse Response)フィルタの設計 法に基づき、Pemezのアルゴリズムにより設計され 50

た標本化周波数1.0Hz、通過域の下限周波数軌0. 06 H z 、通過域の最大減衰量0.1 d B、阻止域の上 限周波数0.03Hz、阻止域の最大減衰量40.0d Bなるフィルタを適用した。次に、100 beats毎に、 フーリエ変換FFT (Fast Fourier Transform) によっ てパワースペクトル密度(Power Spctral Density: P SD)を算出する。本疲労度判定方法において、HFの 積分値はとのようにして求められる図6に示すPDS関 数について、LFとHFの山の鞍部以上を積分するか、 あるいは0.15Hz以上を積分して求める。これが積 分値HFA(High Frequency Amplitude)である。ま た、上記のように算出されたPDSについて、これらを 1000beatsにわたって平均じたものを対象に、LF とHF各々のピーク周波数±0.04c/b(cycle/be at)の帯域パワーを算出し、それぞれを積分値LFA (Low Freq Amplitude)、積分値HFAとしても良い。 【0017】上記いずれかの方法による算出HFA値を メモリ5中に格納する。なお、メモリ5中において、算 出実施回次Xに対応するして、RRM*、HFA*のセッ トデータとして記憶される。最後にメモリ5中のY個の RRI値データをクリアして、この算出サブプログラム が終了される。

【0018】次に、基準時から疲労度を判定する時までの変化量から作業者の疲労度判定を、図7に基づいて説明する。

【0019】基準時から疲労度を判定する時までの変化 置が、算出値DIFF・RRM(X)と算出値DIFF ·HFA(X)に基づき算出され、これを図7に示す。 ロジスティック回帰分析を用いて、作業時の生体負担度 を評価する方法を検討した結果、RRM値と積分値HF Aの2つのRRI指標によるモデルの有効性が確認され た。RRM値の低下は自律神経の活動バランスが交感神 経側に傾き、「攻撃や逃避」に備える状態を反映するも のである。また、積分値HFAの大きさは、副交感神経 活動の強さに比例することが知られている。RRM値の 低下が交感神経、積分値HFAが副交換神経の活動を反 映することから、交感神経と副交感神経の活動バランス を表すものと考えられる。さらに、作業 (運転) 時の生 体負担度の変化の評価には、作業(運転)時の生体負担 度の変化は、ある程度自律神経の活動バランスの変化で 説明できる。

【0020】図7に示すように、変化のバターンは③領域(第1象限)はRRM上昇、HFA上昇、②領域(第2象限)はRRM低下、HFA上昇、①領域(第3象限)はRRM低下、HFA低下に大別できる。HFAは緊張度が増したり、ストレス環境下では低下し、緊張度が低下してリラックス状態になると上昇することが知られている。さらに、作業(運転)時には、作業(運転)に必要な適正緊張の維持が困難になった結果、緊張度が低下してHFAが上昇することが考えられる。また、R

RMの上昇は覚醒度低下の前兆と考えられる。従って、 ③領域は覚醒度が低下(RRM上昇)して、作業(運転)に必要な適切な緊張が維持されていない(HFA上昇)状態、②領域は生体が「長距離走行」というタスクに対して「攻撃や逃避」体制をつくっている(RRM低下)ものの、作業に必要な適切は緊張の維持がもはや困難(HFA上昇)になった状態、①領域は運転を負担と感じているが、まだ運転するのに必要な緊張度の維持は可能な状態(HFA低下)にあると推定される。

【0021】従って、この実施の形態では、算出値DIFF・HFA(X)>0の時、図7の②、③領域にあり、さらに、算出値DIFF・RRM(X)<0ならば、図7の②領域にあり、作業(運転)を続行する集中力の維持が困難と判定し、警報手段12の赤を点灯する。さらに、算出値DIFF・RRM(X)>0ならば、図7の③領域にあり、覚醒度低下と判定する。この場合には警報手段12の赤を点滅する。

[0022] 図7の②、③領域にある場合、例えば運転 におけるエンジンの間欠失火、燃料供給量低下により走 行速度を低減する。また、所定時間経過後作業(運転) を中断するように完全失火、燃料供給停止を行う。

【0023】また、算出値DIFF・HFA(X)<
0、且つ算出値DIFF・RRM(X)<0の時、図7
の①領域にあり、作業(運転)を負担と感じ始めたと判定する。警報手段12の黄を点灯する。図7の①領域にあっても、算出値DIFF・HFA(X)の自乗、算出値DIFF・RRM(X)の自乗の和の平方根により、図7の極座標表示におけるr値を求め、r(X)とする。r(X)が所定値r。より小なる時、作業(運転)負荷を感じない状態と判定し、警報手段12の緑を点灯 30してもよい。そして、r(X)が所定値r。より大なる時、作業(運転)負荷を感じた状態と判定し、警報手段12の黄を点灯する。なお、図7の疲労度判定領域図において、両算出値を示す座標点×は時間の経過とともに、図中太矢印方向に①、②. ③の領域に移動する。

【0024】図8及び図9は作業の適正化システムを自動二輪車に適用した実施の形態を示し、図8は自動二輪車の側面図、図9はハンドル部の平面図である。

【0025】自動二輪車20の右側のアクセルグリップ21には、検知手段3が設けられ、運転者の心拍あるいは血流脈圧を検知する。検知手段3はRバルス(心室の緊張波)を検知し、連続して疲労度判定装置2のCPU4に送信する。疲労度判定装置2のCPU4は、図1に示すように構成され、図2及び図3に示すプログラムに実行による疲労度判定の実施結果に基づき、表示手段11、警報手段12を作動する。表示手段11、警報手段12は、ハンドル22に取り付けられた表示装置23に設けられている。表示装置23には、スピードメータ24及びタコメータ25が取り付けられ、タコメータ25の近傍に表示手段11、警報手段12が位置している。

表示手段11は、液晶表示パネルで構成される。 警報手段12は、例えば警告灯で構成される。

[0026] 警報手段12の警告灯は、図7の疲労度判定領域図に基づき、①領域の時、黄を点灯、②領域の時、赤を点灯、②領域の時、赤を点滅する。なお、②、③領域の時赤を点滅、且つ③領域の時の方が点滅間隔を短くするようにしても良い。

【0027】また、疲労度判定の実施結果に基づき、

②、③領域の時、点火制御装置26を介して点火ブラグ 27を間欠的に失火させるとともに、間欠間隔を徐々に 短くし、あるいは燃料供給装置28の燃料供給量を徐々 に減少させ、エンジン回転数を徐々に低下させる。ま た、所定時間におけるR波数から心拍数を算出し、所定 時間毎に、心拍数を表示手段11の液晶表示パネルにデ シタル表示する。

【0028】図10は作業の適正化システムを飛行機に 適用した実施の形態を示している。飛行機30の操縦士 の心拍あるいは血流脈圧を検知し、判定のための算出値 が図7の②. ③領域にある時、自動操縦モードにする。 あるいは、地上管制塔31で管制管理者は、遠隔操縦モードにする。

【0029】なお、列車、船舶、原子力等の運転においても、同様に判定のための算出値が図7の②. ③領域にある時、自動運転モードにし、あるいは管制管理者による遠隔運転モードにする。

【0030】図11は作業の適正化システムをオフィスに適用した実施の形態を示している。作業者、例えば看護婦、医者、オペレータ等においては、勤務開始時に、例えばキーボード40に個人のIDカードを入力し、検知手段3に一定時間指を当て、心拍あるいは血流脈圧を検知する。そして、所定時間後に再び検知手段3に一定時間指を当て、心拍あるいは血流脈圧を検知する。これらの検知情報は、疲労度判定表置2のCPU4に送られ、CPU4で疲労度を判定して管理し、キーボード40に設けた警報手段12を構成するCRT上に、例えば4時間勤務毎の判定結果に基づき、結果を表示する。また、CPU4に蓄積されたデータにより労務管理、健康チェックが行われる。

【0031】図12は作業の適正化システムを時計に適用した実施の形態を示している。腕時計50に作業の適正化システムが組み込まれており、疲労測定開始時リセット51を押すと、検知手段3が心拍あるいは血流脈圧を検知する。この基準時脈波測定後、所定時間毎に脈波測定を行い、疲労度判定して、その判定結果を、図7の疲労度判定領域図と同様に、時間経過とともに①~③領域のどの領域位置にあるか、液晶パネル52にマップ表示する。

【0032】図13は作業の適正化システムの検知手段を自動車のハンドルに組み込んだ実施の形態を示している。図13(a)に示すように運転者は、手60でハン

ドル61を握る。図13(b)に示すようにハンドル61の心材61aの周りに検知手段3が設けられ、メインスイッチにより始動モータを起動させる運転開始時にハンドル61を握ると、検知手段3が血流脈圧を検知する。この基準時脈波測定後、ハンドル61を握って運転している間自動車運転者の血脈圧力の連続測定する。

【0033】図14は作業の適正化システムの検知手段の構成を示す図である。検知手段3は、光電式脈波ビックアップを使用しても良い。光電式脈波ビックアップは、例えば指先を当てると血流脈圧をRバルスに変換し、例えばステアリング表面、グローグ内、あるいは各種パネル表上等に設けられる。

[0034]

【発明の効果】前記したように、請求項1及び請求項2記載の発明では、RRIの時間平均値とR液の間隔を周波数変換したものの高周波変助成分の積分値によるモデルの作業時生体負担評価への有効性が確認され、RRIの時間平均値の低下は交感神経を、RRIを周波数変換したものの高周波変助成分の積分値の大きさは副交感神経の活動力を反映することから、作業による生体負担はある程度自律神経の活動バランスで評価することができる。RRIから算出される個々の指標に着目するだけではなく、複数の指標を多元的にとらえ、自律神経の活動バランスを評価することによって、RRIから算出される複数の指標を多元的に評価し、疲労度評価の有効性を向上させることができる。

【0035】請求項3記載の発明では、疲労度評価を表示、または警報、あるいは自動的に作業者の負担を軽減することができる。

【図面の簡単な説明】

【図1】疲労度判定装置を用いた作業の適正化システム を示す概略構成図である。

【図2】疲労度判定のメインプログラムである。

【図3】算出サブプログラムである。

*【図4】検知された心室の緊張波であるR波を示す図である。

10

【図5】RRI値関数を示す図である。

【図6】PSD関数を示す図である。

【図7】疲労判定モデルを示す図である。

【図8】作業の適正化システムを自動二輪車に適用した 実施の形態を示す自動二輪車の側面図である。

【図9】作業の適正化システムを自動二輪車に適用した 実施の形態を示すハンドル部の平面図である。

「図10」作業の適正化システムを飛行機に適用した実施の形態を示す図である。している。

【図11】作業の適正化システムをオフィスに適用した 実施の形態を示す図である。

【図12】作業の適正化システムを時計に適用した実施 の形態を示す図である。

【図 1 3 】作業の適正化システムの検知手段を自動車の ハンドルに組み込んだ実施の形態を示す図である。

【図 1 4 】作業の適正化システムの検知**手段の構成を**示す図である。

20 【符号の説明】

- 1 作業の適正化システム
- 2 疲労度判定装置
- 3 検知手段
- 4 CPU
- 5 メモリ
- 6 基準時の算出手段
- 7 疲労時の算出手段
- 8 変化量算出手段
- 9 疲労度判断手段
- 30 10 判定結果出力手段
 - 11 表示手段
 - 12 警報手段
 - 13 作業負担軽減手段

【図4】

【図6】

【図14】

【図5】

