NOTE FROM THE AUTHOR:

Nemojte uzeti ovu skriptu zdravo za gotovo. Neke zadatke sam sama rješavala i nisu provjereni. Also ovim putem želim napisati da ako netko nauči nešto krivo iz ove skripte i sj*** zadatak na ispitu, nisam kriva. Tko vam kriv što niste išli provjerit negdje da ja nisam luda. :D

also, ovo je napravljeno u markdown editoru koji mi je default za sve, zato je editing off jer nemam pageve.

IP adrese

// note: razumijem zadatke s IP adresama, nisam ih objasnjavala, vidi IP calc stranicu da ti pomogne shvatit (at least i did it that way)

- 1. Uspostavljena je komunikacija između računala s adresama 79.144.98.159/18 i 79.144.68.116/18. Jesu li ona povezana usmjeriteljem?
- nisu
- 1. | b. | IP adresa računala je 156.149.149.50/20. Adresa mreže u kojoj se nalazi to računalo je:
- 156.149.144.0
- 1. C. IP adresa klase A koja odgovara nekom konkretnom računalu u mreži sastoji se od:
- mrežnog prefiksa i računalnog dijela
- 1. d. IP adresa računala je 131.129.141.128/19. Adresa mreže u kojoj se nalazi to računalo je:
- 131.129.128.0
- 1. U podmreži u kojoj se nalazi računalo s adresom 161.53.114.131/19, najveći broj računala koje je moguće adresirati je:
- 2⁽³²⁻¹⁹⁾ 2 = 8190
- 1. Proizvođač mrežne kartice svakoj kartici dinamički dodjeljuje IP adresu.
- netočno

Postupci i akcije u procesu usmjeravanja

- 2. Koji postupak slijedi ako je u procesu usmjeravanja utvrđena neispravnost zaglavlja IP datagrama?
- IP datagram se odbacuje, bez slanja ICMP poruke o pogrešci pošiljatelju.
- 3. Koju od sljedećih akcija izvršava čvor u procesu usmjeravanja ako koristi algoritam preplavljivanja?
- Prati "već viđene" pakete, kako bi se duplikati mogli odbaciti.

- a. Ako u tablici usmjeravanja ne postoji odredište koje se podudara s odredištem datagrama kojeg je potrebno proslijediti, usmjeritelj će:
- ispustiti datagram i poslati ICMP poruku na izvorište paketa
- 3. Preplavljivanje kao statički algoritam usmjeravanja određuje prosljeđivanje svih dolaznih paketa u komutacijskom čvoru:
- Na sva sučelja, osim onog po kojem je primio paket, ako se radi o paketu koji taj čvor nije već ranije primio.

Ping

- 5. Koristite alat ping da biste poslali IP-datagram veličine 2000 okteta. Koju zastavicu koristite?
- -5

Slike topologije

6. Na slici je prikazana mrežna topologija. Može li računalo pc1 ARP-upitom saznati MAC-adresu računala server?

Mrežni promet, wireshark, traceroute, ping

- 7. a. Između izvorišta i odredišta je 10 usmjeritelja. Na izvorištu pokrećemo naredbu traceroute i nastojimo saznati put do odredišta. Istovremeno, na četvrtom usmjeritelju (na sučelju koje je bliže odredištu) pokrećemo mrežni analizator prometa Wireshark i snimamo promet. Koji promet je snimljen?
- Svi datagrami u kojima je TTL bio postavljen na 5 ili više.
- 7. b. Traceroute radi tako da:
- od svakog čvora na putu do odredišta saznaje IP adresu na temelju ICMP poruka u greški
- 8. Računalo PC 1 i računalo PC 2 nalaze se u istoj lokalnoj mreži. Na mrežnom sučelju eth0 računala PC 1 vrijednost MTU-a je postavljena na 500 okteta. S računala PC 1 poslan je ICMP Echo Request s parametrom veličine podatkovnog polja postavljenim na 1000 okteta. Koliko fragmentiranih IP-datagrama će primiti računalo PC 2?
- 3

Struktura

- 9. a. Mreže koje su temeljene na potpuno različitim arhitekturama i protokolnim slojevima moraju se povezati usmjeriteljima (router).
- netočno
- 9. Koji uređaj razdvaja domene sudara, ali ne razdvaja MAC broadcast domene?
- Ethernetski komutator eternetski switch
- 9. V. Koji uređaj razdvaja domene sudara i MAC broadcast domene?
- usmjeritelj
- 9. W. Koji uređaj ne razdvaja ni domene sudara ni MAC broadcast domene?
- parični obnavljač hub
- 9. c. Logička topologija 10BASE5 mreže je:
- Sabirnica
- 9. Logička topologija mreže povezane obnavljačem je:
- sabirnica
- 9. y. Logička topologija Token Bus mreže je:

9. Logička topologija Token Ring Mreže je • prsten 9. d. Fizička topologija mreže povezane komutatorom je: • zvijezda 9. u. Fizička topologija 10BASE5 mreže je: • sabirnica v. Fizička mrežna topologija najčešće korištena kod izvedbe lokalnih mreža tehnologijom Gigabitnog Etherneta? • zvijezda 9. Redostatak komutatora (switcha) u odnosu na parični obnavljač (hub) leži u činjenici da obnavljač uklanja mogućnost kolizije. • netočno 9. Prednost komutatora u odnosu na parični obnavljač leži u činjenici da komutator uklanja mogućnost kolizije. • točno 9. W. Prednost obnavljača u odnosu na koaksijalni kabel leži u činjenici da obnavljač uklanja mogućnost kolizije. • netočno 9. Kako se zove uređaj kojim se povezuje mreže temeljene na potpuno različitim mrežnim arhitekturama prilaz - gateway g. Koliko bita je dugačka MAC adresa mrežnih kartica koja se danas najčešće koristi? • 48 bita i. Svaki krajnji uređaj mora imati jedinstvenu hardversku (MAC) adresu u cijelom svijetu.

• sabirnica

- točno
- 9. U svakom mrežnom uređaju koji podržava neki od protokola mrežnog sloja nužno postoji i podrška za protokole svih nižih slojeva
- točno
- 9. S obzirom da komutator kapaciteta 10Mbit/s mora obavljati obradu primljenih okvira, njegov efektivni kapacitet je manji od paričnog obnavljača (hub) istog kapaciteta.
- netočno
- 9. K. Kod nespojne usluge bez potvrde primitka okvira NIJE implementirano upravljanje tokovima pri upravljanju logičkom poveznicom.
- točno
- 9. Kod nespojne usluge bez potvrde primitka okvira implementirano JE upravljanje tokovima pri upravljanju logičkim linkom
- netočno
- 9. Zadnja 24 bita u hardverskoj (MAC) adresi mrežne kartice označavaju:
- karticu pojedinog proizvođača
- 9. Prva 24 bita u hardverskoj (MAC) adresi mreže kartice označavaju:
- proizvođača kartice
- 9. Kašnjenje transfera informacija između dvije krajnjh točaka u lokalnoj mreži manje je u odnosu na kašnjenje u javnoj mreži.
- točno
- 9. Prilikom slanja okvira na mrežu, šalje se preambula okvira. Njena je uloga:
- sinkronizacija takta

Lokalne mreže

9. U lokalnim mrežama uglavnom se koristi decentralizirano upravljanje pristupom prijenosnom mediju

j. Na rad lokalnih mreža ne utječu elektromagnetske smetnje. • netočno 9. K. Krajnji uređaji u lokalnim mrežama međusobno komuniciraju na načelu ravnopravnosti. • točno I. Koja od navedenih karakteristika nije karakteristika lokalne mreže (LAN-a) Mreža je obično instalirana na širem geografskom području (npr. grad) Velika vjerojatnost nastupa pogreške 9. Svi okviri u LAN-u moraju sadržavati adresu pošiljatelja i adresu odredišta. • točno n. Mostovi uče topologiju LAN-a na osnovu odredišnih adresa upisanih u primljene okvire. • netočno 9. Kašnjenje transfera informacija između dvije krajnjh točaka u lokalnoj mreži manje je u odnosu na kašnjenje u javnoj mreži. • točno n. Kako bi se omogućio dvosmjerni prijenos u lokalnoj mreži, nužno je koristiti: ethernetski komutator - switch 9. U LANu se tipično koriste mreže veće od 1 Mbit/s. • točno 9. U LANu se tipično koriste prijenosne brzine manje od 10 Gbit/s. • točno p. U 10BROAD36 LAN-u prijenos se obavlja: širokopojasno

• točno

q. Podsloj upravljanja logičkom poveznicom jednak je za sve vrste lokalnih mreža. • točno v. Fizička mrežna topologija najčešće korištena kod izvedbe lokalnih mreža tehnologijom Gigabitnog Etherneta? • zvijezda **Ethernet** 9. U ethernetu se problem višestrukog pristupa mediju rješava pomoću: metode otkrivanja nosioca 9. Kod etherneta izvedenog pomoću neoklopljenih parica (UTP), dio koji povezuje stanicu i priključak na obnavljaču naziva se: • Segment 9. Kod paričnog etherneta, dio koji povezuje stanicu i priključak na obnavljaču naziva se: • segment i. Područje u ethernetskoj mreži unutar kojeg može doći do sudara naziva se domena sudara 9. Ethernetski komutator šalje primljeni okviri na sve priključke, osim na priključak po kojem je dotični okvir primio: • U slučaju da u tablici komutiranja nema odgovarajuću adresu 9. ac. Kada ethernetski komutator primi okvir za čiju odredišnu MAC-adresu nema zapis u tablici komutiranja, tada komutator: prosljeđuje okvir po svim priključcima, osim po priključku po kojem je primio okvir.

k. Ethernetski komutator dozvoljeno je spojiti na obnavljač pri povezivanju LAN-ova

točno

9. III.	kolizijom
• (netoč	ino
9. (I. (netoč	Za upravljanje pristupom prijenosnom mediju kod ethernetskih mreža koristi se metoda prozivanja.
9. t. netoč	Za upravljanje pristupom prijenosnom mediju kod ethernetskih mreža koristi se metoda prozivanja s prioritetima.
	Područje u ethernetskoj mreži unutar kojeg vrijedi pravilo da kad bilo koje dvije stanice istovremenu šalju svoje okvire, dolazi do sudara naziva se:
15. c. poviš	Sudar se u ethernetskoj mreži manifestira kao: en napon
15. d.	Što predstavlja tzv. rani sudar u mreži Ethernet?
• (Situa	ciju kad stanica otkrije sudar napoveznici za vrijeme slanja svog okvira
9. (n. (Duljina segmenta kod paričnog etherneta ograničena je na:
9. (o. (U tablici komutiranja ethernetskog komutatora su spremljeni parovi:
• (MAC	adresa, broj priključaka
9. v. (zvijez	Fizička mrežna topologija najčešće korištena kod izvedbe lokalnih mreža tehnologijom Gigabitnog Etherneta?

Sloj podatkovne poveznice

- 10. Koji od navedenih uređaja radi na sloju podatkovne poveznice OSI referentnog modela?
 - komutator switch
 - most bridge
- 10. Aktivni mrežni uređaj koji radi na sloju podatkovne poveznice je:
- komutator switch
- 10. E. Kako se naziva postupak kojim se paket višeg sloja referentnog modela OSI pretvara u paket nižeg sloja referentnog modela OSI?
- enkapsulacija

Koji sloj OSI / (TCP/IP)

- 10. c. Koji je sloj OSI referentnog modela zadužen za uspostavljanje, upravljanje i raskid veze između aplikacija?
 - sloj sesije
- 10. 🕻 d. 🖟 Koji sloj OSI referentnog modela pruža neovisnost o razlikama u načinu prikaza podataka?
- prezentacijski sloj
- 10. E. Koji sloj referentnog modela OSI omogućava usmjeravanje jedinica podataka kroz jednu ili više mreža?
- mrežni sloj
- 10. f. Koji sloj OSI referentnog modela je zadužen za sinkronizaciju okvira?
- sloj podatkovne poveznice
- 10. g. Koji sloj OSI referentnog modela sadrži skup funkcija koje omogućuju korisnicima pristup OSI okružju?
- aplikacijski sloj
- 10. Koji sloj referentnog modela je zadužen za pretvorbu podatkovnih paketa u struju bita i obrnuto?
- podatkovni sloj

- 10. Koji sloj OSI referentnog modela definira mehaničke i električne karakteristike uređaja za pristup dfizičkom mediju?
- fizički sloj

10. 10. **Koji sloj OSI referentnog modela ima funkcije koje obavlja ethernetski komutator?** - sloj podatkovne poveznice

- 10. Koji sloj OSI referentnog modela omogućuje pouzdan i transparentan prijenos podataka između krajnjih komunikacijskih točaka?
- transportni sloj
- 10. K. Koji sloj TCP/IP obavlja funkcije usmjeravanja IP datagrama?
- mrežni sloj

Podslojevi

- 11. Podsloj upravljanja logičkom poveznicom različit je za različite vrste lokalnih mreža.
 - netočno
- 11. Podsloj upravljanja logičkom poveznicom jednak je za sve vrste lokalnih mreža.
- točno
- 11. C. Podsloj upravljanja pristupom prijenosnom mediju implementiran je:
- hardverski, u mrežnoj kartici
- 11. d. Podsloj upravljanja pristupom prijenosnom mediju neovisan je o vrsti lokalnih mreža za koju je namijenjen
- netočno
- 11. Podsloj upravljanja pristupom prijenosnom mediju jednak je za sve vrste lokalnih mreža.
- netočno
- 11. Podsloj upravljanja logičkom poveznicom jednak je za sve vrste lokalnih mreža.
- točno

f. Uloga podsloja upravljanja logičkim poveznicom je Onemogućavanje višim protokolima da dijele zajednički medij omogućavanje višim protokolima da dobije zajednički medij g. Podsloj upravljanja logičkom poveznicom ovisi i korištenoj metodi pristupa mediju. netočno Na kojem sloju ... / ... radi na ... sloju 11. Na kojem sloju OSI referentnog modela su definirane funkcije za upravljanje pogreškama na krajnjim točkama? • transportni sloj 11. Na kojem sloju OSI referentnog modela su definirane mehaničke i električne karakteristike uređaja za pristup fizičkom mediju? • na fizičkom sloju 11. g. Koji od navedenih uređaja radi na fizičkom sloju OSI referentnog modela? • parični obnavljač - hub 11. h. Komutator (switch) radi na: sloju podatkovne poveznice i. Most (bridge) radi na: sloju podatkovne poveznice e. Parični obnavljač (hub) radi na: • fizičkom sloju j. Usmjeritelj (router) radi na: • mrežnom sloju

k. Prolaz(gateway) radi na:

- 1. Aktivni mrežni uređaj koji radi na podatkovnom sloju je
- most bridge
- komutator switch

aplikacijskom sloju

Protokoli

CSMA/CD

- 12. Slobodan medij se kod CSMA/CD protokola manifestira niskim naponom.
- točno
- 12. Slobodan medij se kod CSMA/CD protokola manifestira visokim naponom.
- netočno
- 12. Kako stanica otkriva prisutnost signala na mediju kod pristupnog protokola CSMA/CD?
 - mjerenjem napona na mediju
- 12. Signal zagušenja (jamming signal) kod protokola CSMA/CD šalju samo one stanice koje su slale okvire u trenutku kada je došlo do sudara.
- netočno
- 12. d. Kod CSMA/CD protokola, stanica koja šalje okvir:
- Stalno osluškuje medij, kad uoči da je došlo do sudara, prekida slanje i šalje signal zagušenja duljina 32 bita
- 12. Kod CSMA/CD protokola, stanica koja je slala okvir te uočila da je došlo do sudara će:
 - Prekinuti slanje okvira, poslati signal zagušenja, te pričekati pseudo-slučajno vrijeme pa tek tada pokušati iznova slati okvir
- 12. Kod CSMA/CD protokola, stanica koja se sprema poslati okvir na medij će:
- Provjeriti je li medij slobodan, pričekati da istekne vrijeme razmaka između okvira (IFG) te početi slati okvir
- 12. g. Kod CSMA/CD protokola:

 Svaka stanica mjeri napon na mediju, čime otkriva pristustvo nosioca 12. CSMA/CD je pristupni protokol sa slučajnim pristupom prijenosnom mediju • točno 12. CSMA/CD je primjer decentraliziranog upravljanja pristupom prijenosnom mediju • točno 12. h. Sudar se kod CSMA/CD protokola manifestira promjerom polariteta napona. • netočno **ARP** 13. Zahtjevi koje generira ARP prenose se pomoću protokola Ethernet. • točno g. Zahtjevi koje generira ARP prenose se pomoću protokola IP. • netočno 13. b. ARP (Address Resolution Protocol) upiti: • usmjeravaju se s obzirom na odredišnu IP adresu 13. C. Protokol ARP povezuje: IP adrese i Ethernet MAC adrese 13. d. ARP upiti: • ne prolaze kroz usmjeritelja 13. U ARP datagramima prenosi se pitanje o MAC adresi koja odgovara poznatoj IP adresi. • točno f. Protokol ARP pronalazi odredišnu MAC adresu koristeći opće razašiljanje na sloju podatkovne poveznice.

• točno

g. Protokol ARP ispravlja pogreške nastale kod protokola IP netočno IP protokol i IP mreža i IP datagrami 14. Datagrami se u IP mreži usmjeravaju s obzirom na: odredišnu IP adresu 14. Osim odredišne IP adrese, svaki IP datagram mora sadržavati i: • izvorišnu IP adresu 14. C. Tablica usmjeravanja protokola IP koristi se: • samo u usmjerivačima 14. d. Tablica IP usmjeravanja koristi se u • računalima i usmjeriteljima e. Na putu IP datagrama od izvorišta do odredišta pri prolasku kroz usmjeritelje, u zaglavlju IP datagrama: • ne mijenjaju se izvorišna i odredišna IP adresa 14. f. U zaglavlju IP datagrama • nalazi se oktet koji označava protokol kojem se isporučuje datagram g. Tablica usmjeravanja IP datagram koristi se na drugom sloju za usmjeravanje ethernetskih okvira s obzirom na odredišnu MAC adresu. • netočno h. Fragmentacija IP datagrama događa se • kad je duljina datagrama veća od MTU na sloju podatkovne poveznice

TCP

- 17. TCP segmenti koji imaju iste izvorišne i odredišne IP adrese te ista izvorišna i odredišna vrata:
- pripadaju istoj TCP vezi
- 17. b. Jedna TCP potvrda može potvrditi
 - samo jedan TCP segment
- 17. C. TCP segment može istovremeno sadržavati informacije o potvrdi i nositi korisničke podatke.
- točno
- 17. d. TCP veza se mora uspostaviti
- prije slanja prvog okteta korisničkih podataka.

UDP

- 18. a. Protokol UDP:
- omogućava otkrivanje pogreške prilikom transporta paketa putem zaštitne sume zaglavlja.
- 18. Koje od navedenih su karakteristike protokola UDP?
- može ga se koristiti za višeodredišno adresiranje multicast

Sudari

- 15. a. Nakon detektiranog sudara, svaka stanica čeka slučajno vrijeme prije nego što ponovno počne slati okvir.
- točno

