Lecture 6: Covering and metric entropy

1/18

Announcements

- HW was due, thanks for handing in
- HW solutions will be up end of this week. HW2 will be up in 1.5 weeks, i.e. **27.10.**
- Thanks for signing up for projects a few have not yet signed up
- Project proposals due Friday, 24.10. 23:59 send to konstantin.donhauser at inf.ethz.ch via email

Plan today

- Rademacher complexity as supremum of subgaussian process
- Bounding the supremum using max of subgaussian result and covering argument (metric entropy)
- Examples beyond linear functions

Recap: Uniform law

Recap $\mathcal{H} = \ell \circ \mathcal{F}$

Theorem (Uniform law for the risk)

For b-unif. bounded \mathcal{H} , with prob. over the training data

$$\mathbb{P}(\sup_{h\in\mathcal{H}}\mathbb{E}h(Z)-\frac{1}{n}\sum_{i=1}^nh(Z_i)\geq 2\mathcal{R}_n(\mathcal{H})+t)\leq e^{-\frac{nt^2}{2b^2}}$$

Our task was then to bound $\tilde{\mathcal{R}}_n(\mathcal{H}(z_1^n))$

$$\mathcal{R}_n(\mathcal{H}) := \mathbb{E}_z \underbrace{\mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i} \epsilon_i h(z_i)}_{\in \mathcal{H}} =: \mathcal{R}_n(\mathcal{H})$$

Here, we write $\tilde{\mathcal{R}}_n(\mathcal{H}(Z^n))$ (where we stress dependence on samples) for $\tilde{\mathcal{R}}_n(\mathcal{H})$ with a slight abuse of notation. More generally, for any set $\mathbb{T} \subset \mathbb{R}^n$ we define

$$\tilde{\mathcal{R}}_n(\mathbb{T}) = \mathbb{E}_{\epsilon} \sup_{\theta \in \mathbb{T}} \sum_{i=1}^n \epsilon_i \theta_i.$$

3/18

Recap: VC bound vs. margin bound

Last lecture, we obtained a completely distribution independent VC bound of the Rademacher complexity via

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{Z^n} \tilde{\mathcal{R}}_n(\mathcal{H}) \leq \sup_{Z^n} \tilde{\mathcal{R}}_n(\mathcal{H}(Z_1^n))$$

by bounding the RHS via the VC dimension.

Q: How about the margin bound for linear functions? Is it to distribution dependent?

A: It depended on $D := \sup_{x \in \mathcal{X}} \|x\|_2$. When using the upper bound for the 0-1 loss (for some empirically trained \widehat{f}), it implicitly also depends on the margin of the distribution γ as that affects how small $R_n^{\gamma}(\widehat{f})$ can be.

Recap: Margin bound proof and Rademacher contraction

Assume that for some function class \mathcal{F} all samples z_1^n from the distribution \mathbb{P} can achieve a margin of γ

- 1. Define the proxy function class $\widetilde{\mathcal{F}}(z_1^n) = \{y_i f(x_i) : f \in \mathcal{F}\}$ function class. Then $\mathcal{H} := \{h : h(z) = \ell(z; f), f \in \mathcal{F}\} = \ell \circ \widetilde{\mathcal{F}}$
- 2. Rademacher contraction implies that (via uniform law) that L-Lipschitz loss functions would generalize better.
- 3. Then we can use the uniform law on the $\mathcal{H}=\ell_{\gamma}\circ\mathcal{F}$ with ramp loss ℓ_{γ} and obtain that with probability at least $1-\delta$

$$R^{0}(f) \leq R_{\ell_{\gamma}}(f) \leq R_{\ell_{\gamma},n}(f) + 2\mathcal{R}_{n}(\ell_{\gamma} \circ \widetilde{\mathcal{F}}) + \sqrt{\frac{c \log(1/\delta)}{n}}$$

$$\leq R_{n}^{\gamma}(f) + \frac{2}{\gamma} \underbrace{\mathcal{R}_{n}(\widetilde{\mathcal{F}})}_{\leq \sup_{x_{1}^{n}} \widetilde{\mathcal{R}}_{n}(\widetilde{\mathcal{F}}(x_{1}^{n}))} + \sqrt{\frac{c \log(1/\delta)}{n}}$$

Intuition for Rademacher contraction on the board.

5 / 18

R.C. rates for different function classes

So far we bounded R.C. of finite VC classes, of linear (parametric) function classes by $O(\frac{1}{\sqrt{n}})$.

- Today we'll see examples for infinite-dimensional \mathcal{F} where $\tilde{\mathcal{R}}_n(\mathcal{H}(z_1^n)) \leq O(\frac{1}{n^{\beta}})$ for some $\beta \leq 1/2$, for every z_1^n
- Then with probability at least $1-\delta$, the generalization gap

$$\sup_{f \in \mathcal{F}} R(f) - R_n(f) \le O(\frac{1}{n^{\beta}}) + O(\sqrt{\frac{\log 1/\delta}{n}})$$

• For $\beta < 1/2$ the Rademacher term always dominates the excess risk since we have fast concentration for the sup of empirical process \rightarrow the parametric \sqrt{n} rate is "best one can hope for"

A general approach to bound the R.C.

- For finite classes \rightarrow used max of subgaussians
- ullet For special parameterization such as linear model o used boundedness of parameters and inputs

Today, we present a generic approach by

- 1. viewing the R.C. as the expecteed supremum of a subgaussian process
- 2. bounding the expected supremum of subgaussian processes via metric entropy

Definition (subgaussian process)

 $\{X_{\theta}, \theta \in \mathbb{T}\}$ is a zero-mean subgaussian process if for all $\theta, \tilde{\theta} \in \mathbb{T}$, random variable $X_{\theta} - X_{\tilde{\theta}}$ is subgaussian w/ parameter $\rho(\theta, \tilde{\theta})$ for some metric ρ and $\mathbb{E}X_{\theta} = 0$

7 / 18

From R.C. to supremum of subgaussian processes

First note that we can write $\mathbb{T}\subset\mathbb{R}^n$

$$\tilde{\mathcal{R}}_n(\mathbb{T}) = \mathbb{E}_{\epsilon} \sup_{\theta \in \mathbb{T}} \frac{1}{n} \sum_i \epsilon_i \theta_i =: \frac{1}{\sqrt{n}} \mathbb{E}_{\epsilon} \sup_{\theta \in \mathbb{T}} X_{\theta}$$

where $X_{\theta} \mathrel{\mathop:}= \frac{1}{\sqrt{n}} \langle \epsilon, \theta \rangle$ and the scaling is chosen for later convenience

Then X_{θ} is a subgaussian process as per the next

Proposition (Rademacher as a sup of subgaussian processes)

For any \mathbb{T} , X_{θ} is a σ -subgaussian process with parameter $\sigma = \sup_{\theta, \tilde{\theta} \in \mathbb{T}} \rho(\theta, \tilde{\theta})$ where $\rho(\theta, \tilde{\theta}) = \frac{\|\theta - \tilde{\theta}\|_2}{\sqrt{n}}$ and it holds that

$$\sqrt{n}\tilde{\mathcal{R}}_n(\mathbb{T}) \leq \mathbb{E}\sup_{\theta,\theta' \in \mathbb{T}} X_{\theta} - X_{\theta'}$$

Proof of proposition

- 1. First $\mathbb{E}X_{\theta} = 0$ for all θ
- 2. $X_{\theta} X_{\tilde{\theta}}$ is subgaussian wrt $\rho(\theta, \tilde{\theta}) := \frac{1}{\sqrt{n}} \|\theta \tilde{\theta}\|_2 =: \|\theta \tilde{\theta}\|_n$ since

$$\mathbb{E} e^{\lambda(X_{\theta} - X_{\tilde{\theta}})} = \mathbb{E} e^{\frac{\lambda}{\sqrt{n}} \sum_{i} \epsilon_{i} (\theta_{i} - \tilde{\theta}_{i})} \leq \prod_{i} \mathbb{E} e^{\frac{\lambda(\theta_{i} - \tilde{\theta}_{i})}{\sqrt{n}} \epsilon_{i}} \leq e^{\frac{\lambda^{2} \frac{1}{n} \|\theta - \tilde{\theta}\|_{2}^{2}}{2}}$$

3. Because $\mathbb{E} X_{\tilde{\theta}}=0$ for all $\tilde{\theta}\in\mathbb{T}$, we can then write empirical Rademacher complexity

$$egin{aligned} \sqrt{n} ilde{\mathcal{R}}_n(\mathbb{T}) &= \mathbb{E}_\epsilon \sup_{ heta \in \mathbb{T}} rac{1}{\sqrt{n}} \langle \epsilon, heta
angle = \mathbb{E} \sup_{ heta \in \mathbb{T}} X_ heta - \mathbb{E} X_{ ilde{ heta}} \ &\stackrel{(i)}{=} \mathbb{E} \sup_{ heta \in \mathbb{T}} X_ heta - X_{ ilde{ heta}} \leq \mathbb{E} \sup_{ heta, ilde{ heta} \in \mathbb{T}} X_ heta - X_{ ilde{ heta}} \end{aligned}$$

where (i) holds because of linearity of expectation and for any $\tilde{\theta}$, which is smaller than sup-ing the difference over $\tilde{\theta}$

9/18

How can we leverage max of subgaussian lemma now?

For general function classes, the set e.g. $\mathbb{T} = \mathcal{H}(z_1^n)$ is infinite (even when it's bounded). How to get to a finite set to use max of subgaussians like in Massarts Lemma?

Main idea (high-level):

- 1. Cover $\mathbb T$ with a finite set of N points such that for any $\theta \in \mathbb T$, there is a point in the cover with distance $\leq \delta$
- 2. Can then take expected sup over grid points
- 3. Bound difference to other points again using naive bound

$$\frac{1}{\sqrt{n}} \mathbb{E}_{\epsilon} \sup_{\frac{\|\theta\|}{\sqrt{n}} \le \delta} \frac{1}{\sqrt{n}} \sum_{i} \epsilon_{i} \theta_{i} \le \delta \mathbb{E}_{\epsilon} \frac{\|\epsilon\|_{2}}{\sqrt{n}} \le \delta$$

10 / 18

Bound using naive (1-step) covering argument Proposition (using Pollard's bound - MW Prop 5.17)

Let $\delta > 0$. If a set of points $\theta^1, \ldots, \theta^N$ satisfies $\min_j \rho(\theta, \theta^j) \leq \delta$ for all $\theta \in \mathbb{T}$ and $\sup_{\theta, \theta' \in \mathbb{T}} \rho(\theta, \theta') \leq \sigma$ with $\rho = \frac{\|\cdot\|_2}{\sqrt{n}}$, then we have

$$\mathcal{\tilde{R}}_n(\mathbb{T}) \leq 2[\delta + 2\sigma\sqrt{\frac{\log N(\delta)}{n}}]$$

Proof: For general ρ we can rewrite for any arbitrary $\theta, \tilde{\theta} \in \mathbb{T}$

$$X_{\theta} - X_{\tilde{\theta}} = X_{\theta} - X_{\theta^{\star}} + X_{\theta^{\star}} - X_{\tilde{\theta}^{\star}} + X_{\tilde{\theta}^{\star}} - X_{\tilde{\theta}}$$

$$= 2 \sup_{\rho(\theta, \theta') \leq \delta} X_{\theta} - X_{\theta'} + \max_{i, j \in [N]} X_{\theta^{i}} - X_{\theta^{j}}$$

ullet Taking expectations, we obtain Pollard's bound for general ho

$$\mathbb{E}\sup_{\theta,\tilde{\theta}\in\mathbb{T}}X_{\theta}-X_{\tilde{\theta}}\leq 2\mathbb{E}\sup_{\rho(\theta,\theta')\leq\delta}X_{\theta}-X_{\theta'}+2\sqrt{2\sigma^2\log N(\delta)}$$

using the max of subgaussians upper bound you proved in HW1.

• Proposition follows by using specific ρ and 3. of previous slide \square .

11 / 18

How large is $N(\delta)$ for a given δ ?

- For a given δ we'd like to find the smallest number N for which the condition in the proposition holds, depends δ and call this $N(\delta)$ (covering number, next slide).
- Then, we can choose δ to minimize $\delta + 2\sigma \sqrt{\frac{\log N(\delta)}{n}}$, i.e.

$$\mathcal{\tilde{R}}_n(\mathbb{T}) \leq 2\inf_{\delta>0} [\delta + 2D\sqrt{\frac{\log N(\delta)}{n}}]$$

In order for this term to decrease with *n* we require

- δ to decrease with n
- $N(\delta)$ not increase exponentially with decreasing δ .

Good example:
$$N(\delta) \sim 1/\delta$$
 and $\delta \sim \frac{1}{\sqrt{n}} \to \tilde{\mathcal{R}}_n(\mathbb{T}) \leq O(\sqrt{\frac{\log n}{n}})$

The minimum $N(\delta)$ for a given δ can be found using the covering number (next slide).

Covering number and entropy

Figure 1: Left: δ -covering, Right: δ -packing

Definition (covering number, metric entropy)

For a metric ρ let the ϵ -covering number $\mathcal{N}(\epsilon; \mathbb{T}, \rho)$ be the smallest N such that a set of N points $S = \{\theta_i\}_{i=1}^N$ satisfies $\max_{\theta \in S} \min_i \rho(\theta_i, \theta) \leq \epsilon$ (S is ϵ -cover). The metric entropy is $\log \mathcal{N}(\epsilon; \mathbb{T}, \rho)$. Usually in our course $\mathcal{N} < \infty$ for any ϵ

13 / 18

Packing number

Definition (packing number)

The ϵ -packing number $\mathcal{M}(\epsilon; \mathbb{T}, \rho)$ is the biggest M such that a set of M points $S = \{\theta_i\}_{i=1}^M$ satisfies $\min_{i \neq j} \rho(\theta_i, \theta_j) \geq \epsilon$ (S is ϵ -packing).

Lemma (Packing vs. covering number - MW Lemma 5.5)

The following sandwich relationship holds $\mathcal{M}(2\epsilon; \mathbb{T}, \rho) \leq \mathcal{N}(\epsilon; \mathbb{T}, \rho) \leq \mathcal{M}(\epsilon; \mathbb{T}, \rho)$

- ullet Growth of ${\mathcal N}$ depends on
 - $\bullet \ \ \mathsf{metric} \ \rho \ \mathsf{on} \ \mathbb{T}$
 - for abstract \mathbb{T} : geometry of the set
 - for $\mathbb{T} = \mathcal{H}(z_1^n)$: covering/complexity of \mathcal{H} (very loose!)

R.C. rates for function classes: Parametric example

We now contrast the covering numbers for a parametric and non-parametric function classes $\mathcal{H}=\mathcal{F}$ (i.e. identity/no loss), i.e. setting $\mathbb{T}=\mathcal{H}(z_1^n)$ and using the empirical error $\rho=\|\cdot\|_n:=\frac{\|\theta-\theta'\|_2}{\sqrt{n}}$ as the metric.

Example I: Smoothly parameterized function class \mathcal{H}_1 with h s.t.

$$\sup_{z} |h(z; u) - h(z; u')| \le L ||u - u'||_2$$

where $u \in \mathbb{B}_2(1) \subset \mathbb{R}^d$ is the 2-norm ball of radius 1. For any z_1^n ,

$$\mathcal{N}(\delta; \mathcal{H}(z_1^n), \|\cdot\|_n) \leq (1 + \frac{2L}{\delta})^d \to \log \mathcal{N}(\delta; \mathcal{H}(z_1^n), \|\cdot\|_n) \times d \log (1 + \frac{L}{\delta})$$

Further the set is bounded as

$$||h(z_1^n; u) - h(z_1^n; u')||_n \le ||h(z; u) - h(z; u')||_{\infty} \le L||u - u'||_2$$

Finally plugging in
$$\delta = \sqrt{\frac{d \log n}{n}}$$
 yields $\mathcal{R}_n(\mathcal{H}_1) \leq O(\sqrt{\frac{d \log n}{n}})$.

15 / 18

Proof of covering number of \mathcal{H}_1 (skipped in class)

1. By assumption on h we have

$$||h(z_1^n; u) - h(z_1^n; u')||_n \le ||h(z; u) - h(z; u')||_{\infty} \le L||u - u'||_2$$

- 2. Any δ/L -cover for $\mathbb{B}_2(1) \subset \mathbb{R}^d$ is also an δ -cover for $\mathcal{H}(z_1^n)$
- 3. (MW Lem. 5.7.) Covering of a ball of metric ρ wrt metric ρ has $\mathcal{N}(\delta; \mathbb{B}_{\rho}, \rho) = (1 + \frac{2}{\delta})^d$ using volume ratio bound

$$\rightarrow \mathcal{N}(\delta; \mathcal{H}(z_1^n), \|\cdot\|_n) \leq \mathcal{N}(\frac{\delta}{L}; \mathbb{B}_2(1), \|\cdot\|_2) \leq (1 + \frac{2L}{\delta})^d$$

R.C. rates for function classes: Nonparametric example

We now move on to an infinite-dimensional function class

Example II: Smooth non-parametric function classes \mathcal{H}_2^{α} with $h:[0,1]\to[0,1]$ s.t. $|h^{(\alpha)}(x)-h^{(\alpha)}(x')|\leq L|x-x'|$

- We use bounds for $\mathcal{N}(\delta; \mathcal{H}_2^{\alpha}, \|\cdot\|_{\infty})$ since for any \mathcal{H} and $f, g \in \mathcal{H}$ $\frac{\|\theta \theta'\|_2}{\sqrt{n}} = \sqrt{\frac{1}{n} \sum_i (f(z_i) g(z_i))^2} \leq \max_i |f(z_i) g(z_i)| \leq \|f g\|_{\infty}$ and thus $\mathcal{N}(\delta; \mathcal{H}(z_1^n), \|\cdot\|_n) \leq \mathcal{N}(\delta; \mathcal{H}, \|\cdot\|_{\infty})$
- For $\alpha = 0$, using the sandwich inequality and constructing a packing, we get for any z_1^n

$$\mathcal{N}(\delta;\mathcal{H}_2^0,\|\cdot\|_\infty) = \mathit{O}(\mathrm{e}^{L/\delta}) o \log \mathcal{N}(\delta;\mathcal{H}_2^0,\|\cdot\|_\infty) symp rac{1}{\delta}$$

and hence we have $\mathcal{R}_n(\mathcal{H}_2^0) \leq \mathit{O}(n^{-1/3})$ (see MW Example 5.10.).

• For general α , we have $\log \mathcal{N}(\delta; \mathcal{H}_2^{\alpha}, \|\cdot\|_{\infty}) \simeq (\frac{1}{\delta})^{\frac{1}{\alpha+1}}$ and hence obtain rates of $\mathcal{R}_n(\mathcal{H}_2^{\alpha}) \leq O(n^{-\frac{1}{2}\frac{(2\alpha+2)}{(2\alpha+3)}})$ (MW Ex. 5.11.).

17 / 18

References

Metric entropy

MW Chapter 5