CS4036: Advanced Database Management Systems

A Course File By

Nadiya T T

Department of Computer Science and Engineering

National Institute of Technology, Calicut

Winter-2017

Table of Contents

1	First Mid-term Question Paper	3
2	First Mid-term Key	5
3	Second Mid-term Question Paper	7
4	Second Mid-term Key	9
5	Assignments	11
6	Assignments Key	13
7	Course Outcome Attainment Scores	17

Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	Total
Marks:	3	3	4	5	5	20
Score:						

1. A binary operation * on a finite set S can be represented by a square grid where rows and columns are indexed by elements of S; and the entry in the row corresponding to a and the column corresponding to b is a*b. For example, $(\mathbb{Z}/5\mathbb{Z}, \times)$ can be represented by the following grid:

×	1	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{1}$	1	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
	$ \begin{array}{c c} \overline{1} \\ \overline{2} \\ \overline{3} \\ \overline{4} \end{array} $	$ \begin{array}{c} \overline{2} \\ \overline{4} \\ \overline{1} \\ \overline{3} \end{array} $	$\frac{\overline{1}}{\overline{4}}$	$ \begin{array}{c} \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \end{array} $
$\overline{4}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

If (G, *) is a group and G is a finite set, prove that every row and every column of its grid is a permutation of the elements of G.

2. What is wrong with the following proof:

Theorem. All horses are of the same colour.

Proof. We prove the theorem by induction on the number of horses.

Base case: If there is only one horse, the theorem is trivial.

Inductive step: Suppose the theorem is true for n-1 horses i.e. every horse in a group of n-1 horses is of the same colour. Now consider a group of n horses. By induction hypothesis, horses $1, 2, \ldots, n-1$ are of the same colour. Similarly, by induction hypothesis, horses $2, 3, \ldots, n$ are of the same colour. Therefore horses 1 and n are also of the same colour. So horses $1, 2, \ldots, n$ are of the same colour. This completes the proof.

3. Suppose (G, *) is a group and H is a non-empty subset of G. Suppose for all a, b in H, $a * b^{-1}$ is also in H. Prove that (H, *) is a group.

4

- 4. Recall $\mathbb{R}[x]$ is the set of polynomials with Real coefficients and non-negative degree. We can define congruence relation on $\mathbb{R}[x]$. We say two polynomials f and g are congruent modulo a polynomial h if h divides f g. Given $h \in \mathbb{R}[x]$, we can define $\mathbb{R}[x]/h\mathbb{R}[x]$ analogous to $\mathbb{Z}/m\mathbb{Z}$.
 - (a) What are the elements of the set $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

1

(b) How are operations + and × defined on $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

1

(c) Is $(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]) - \{0\}, \times$ a group? Why / Why not?

- 5. Let + denote the usual addition operation on integers. Let $a, b \in \mathbb{Z}$.
 - (a) Is there a proper subset S of \mathbb{Z} containing a and b such that (S, +) is a group. If yes, give the subset; otherwise prove that such a subset doesn't exist.

(b) Given a group (G, +). An element $g \in G$ is called a generator of the group if $G = \{ig \mid i \in \mathbb{Z}\}$. [Note: Here na is a shorthand for $\underbrace{a + a + \cdots + a}_{n \text{ times}}$]. Does (S, +) (defined in the previous part of the question) have a generator? If yes, give the generator; otherwise prove it doesn't exist.

3

Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	Total
Marks:	3	3	4	5	5	20
Score:						

1. A binary operation * on a finite set S can be represented by a square grid where rows and columns are indexed by elements of S; and the entry in the row corresponding to a and the column corresponding to b is a*b. For example, $(\mathbb{Z}/5\mathbb{Z}, \times)$ can be represented by the following grid:

×	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
$\frac{\overline{1}}{\overline{2}}$ $\frac{\overline{3}}{\overline{4}}$	$\frac{\overline{1}}{\overline{2}}$ $\frac{\overline{3}}{\overline{4}}$		$\frac{\overline{1}}{4}$	$ \begin{array}{c} \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \end{array} $
$\overline{4}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

If (G, *) is a group and G is a finite set, prove that every row and every column of its grid is a permutation of the elements of G.

Solution: We first show that no row has duplicate elements. For the sake of contradiction, suppose there is a row (say row indexed by a) with duplicate elements. Let the columns corresponding to these elements be indexed by b and c respectively where $b \neq c$. So, a * b = a * c. This implies $a^{-1} * a * b = a^{-1} * a * c$. So, b = c. This contradicts the fact that $b \neq c$. So, our assumption that there is a row with with duplicate elements is false.

The proof for columns is similar.

Since every row and every column contains n elements and there are no duplicates, every row and every column is a permutation of the elements of the group.

2. What is wrong with the following proof:

Theorem. All horses are of the same colour.

Proof. We prove the theorem by induction on the number of horses.

Base case: If there is only one horse, the theorem is trivial.

Inductive step: Suppose the theorem is true for n-1 horses i.e. every horse in a group of n-1 horses is of the same colour. Now consider a group of n horses. By induction hypothesis, horses $1, 2, \ldots, n-1$ are of the same colour. Similarly, by induction hypothesis, horses $2, 3, \ldots, n$ are of the same colour. Therefore horses 1 and n are also of the same colour. So horses $1, 2, \ldots, n$ are of the same colour. This completes the proof.

Solution: If n = 2, the sets $\{1, \ldots, n-1\}$ and $\{2, \ldots, n\}$ do not intersect; and so it cannot be inferred that horses 1 and n have the same colour. So, the *Inductive Step* fails for n = 2.

3. Suppose (G,*) is a group and H is a non-empty subset of G. Suppose for all a,b in H, $a*b^{-1}$ is also in H. Prove that (H,*) is a group.

Solution:

- *Identity element:* Since $H \neq \emptyset$, there exists an element in H. Let this element be called a. Since $a \in H$, $a * a^{-1} = e \in H$. Therefore H contains the identity element.
- Inverse: Let $a \in H$. We have to show that $a^{-1} \in H$. Since $e, a \in H$, so $e * a^{-1} = a^{-1} \in H$.
- Closure: Let $a, b \in H$. We have to show that $a * b \in H$. Since $b \in H$, $b^{-1} \in H$. Since $a, b^{-1} \in H$, $a * (b^{-1})^{-1} = a * b \in H$.
- Associativity: Since (a * b) * c = a * (b * c) for all $a, b, c \in G$, and since H is a subset of G, (a * b) * c = a * (b * c) for all $a, b, c \in H$.
- 4. Recall $\mathbb{R}[x]$ is the set of polynomials with Real coefficients and non-negative degree. We can define congruence relation on $\mathbb{R}[x]$. We say two polynomials f and g are congruent modulo a polynomial h if h divides f g. Given $h \in \mathbb{R}[x]$, we can define $\mathbb{R}[x]/h\mathbb{R}[x]$ analogous to $\mathbb{Z}/m\mathbb{Z}$.
 - (a) What are the elements of the set $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

Solution: Given $f \in \mathbb{R}[x]$, let $\overline{f} = \{g \in \mathbb{R}[x] \mid f \equiv g \pmod{x^2 + 1}\}$, Then $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x]$ is defined as follows: $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x] = \{\overline{f} \mid f \text{ is a polynomial of degree less than } 2\}$.

Notice that all zero degree polynomials (i.e. Real numbers) lie in different congruence classes. If $a \neq b$, polynomials x + a and x + b lie in different congruence classes. If a, α and β are Real numbers, then polynomials x + a and $\alpha(x^2 + 1) + \beta(x + a)$ lie in the same congruence class.

(b) How are operations + and \times defined on $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

Solution: $\overline{f} + \overline{g} \stackrel{def}{=} \overline{f+g}$ and $\overline{f} \times \overline{g} \stackrel{def}{=} \overline{f \times g}$

If we have to add two congruence classes \overline{f} and \overline{g} , we add polynomials f and g and return the corresponding congruence class $\overline{f+g}$. Since the degree of f+g is less than 2 if the degree of both f and g is less than 2, so $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is closed under +.

If we have to multiply two congruence classes \overline{f} and \overline{g} , we multiply polynomials f and g and return the corresponding congruence class $\overline{f \times g}$. If the degree of $f \times g$ is greater than or equal to 2, then there is another polynomial h of degree less than 2 such that $f \times g = h$. Therefore, $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ is closed under \times .

(c) Is $\left(\left(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x] \right) - \{0\}, \times \right)$ a group? Why / Why not?

Solution: Yes, it is a group.

- Closure: Proved in the previous part.
- Associativity: Proof similar to $\mathbb{Z}/m\mathbb{Z}$.
- *Identity:* Identity element is $\overline{1}$.
- Inverse: Given $f \in \mathbb{R}[x]/h\mathbb{R}[x]$, it can be shown that equation $\overline{f} \times \overline{X} = \overline{1}$ has a solution in $\mathbb{R}[x]/h\mathbb{R}[x]$ if $\gcd(f,h)$ is a unit. Since $x^2 + 1$ is a irreducible, every polynomial f of degree less than $x^2 + 1$ satisfies $\gcd(f,x^2 + 1)$ is a unit. Therefore every element of $\mathbb{R}[x]/(x^2 + 1)\mathbb{R}[x]$ has an inverse.

- 5. Let + denote the usual addition operation on integers. Let $a, b \in \mathbb{Z}$.
 - (a) Is there a proper subset S of \mathbb{Z} containing a and b such that (S, +) is a group. If yes, give the subset; otherwise prove that such a subset doesn't exist.

2

Solution: $S = \{ax + by \mid x, y \in \mathbb{Z}\}$ is the smallest subset of \mathbb{Z} containing a and b which is a group. This is a proper subset of \mathbb{Z} if $\gcd(a,b) \neq 1$.

(b) Given a group (G, +). An element $g \in G$ is called a generator of the group if $G = \{ig \mid i \in \mathbb{Z}\}$. Note: Here na is a shorthand for $\underbrace{a + a + \cdots + a}_{n \text{ times}}$. Does (S, +) (defined in the previous part of the

3

question) have a generator? If yes, give the generator; otherwise prove it doesn't exist.

Solution: If $gcd(a, b) \neq 1$, then (S, +) is a group and gcd(a, b) is a generator.

Mid Sem II Number Theory and Cryptography (B. Tech.) Max:20 Marks

Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	6	Total
Marks:	4	4	3	2	3	4	20
Score:							

1. If the input to the following algorithm is an odd, composite, non-Carmichael number; then show that $\Pr(Error) \leq \frac{1}{2}$.

Algorithm 1 Fermat's Test

```
1: procedure IsPRIME(n)

2: Select a \in \{1, 2, ..., n-1\} uniformly at random

3: if a^{n-1} \equiv 1 \pmod{n} then

4: print "Prime"

5: else

6: print "Composite"

7: end if

8: end procedure
```

2. If n is an odd Carmichael number then show that $n=p_1\cdot p_2\cdots p_t$ for some primes $p_1,p_2,\ldots p_t$ satisfying (p_i-1) divides (n-1) for $i=1,2,\ldots t$.

3. What is the order of 538 in \mathbb{Z}_{1287}^* ?

4. For $n=p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}$, we used the isomorphism between (\mathbb{Z}_n^*,\times) and $(\mathbb{Z}_{p_1^{e_1}}^*\times\mathbb{Z}_{p_2^{e_2}}^*\times\cdots\times\mathbb{Z}_{p_t^{e_t}}^*,\times)$ to calculate the value of $\varphi(n)$. Can we use the same technique to calculate the value of $\varphi(p_i^{e_i})$ for $i=1,2,\ldots t$. Justify your answer.

5. If $n = 2 \cdot p^e$ for some odd prime p, then show that \mathbb{Z}_n^* is cyclic.

6. Give a subgroup of \mathbb{Z}_{323}^* of size 18.

1. If the input to the following algorithm is an odd, composite, non-Carmichael number; then show that $\Pr(Error) \leq \frac{1}{2}$.

4

4

3

Algorithm 1 Fermat's Test

```
1: procedure IsPrime(n)
2: Select a \in \{1, 2, ..., n-1\} uniformly at random
3: if a^{n-1} \equiv 1 \pmod{n} then
4: print "Prime"
5: else
6: print "Composite"
7: end if
8: end procedure
```

Solution: Proved in the class.

2. If n is an odd Carmichael number then show that $n = p_1 \cdot p_2 \cdots p_t$ for some primes $p_1, p_2, \dots p_t$ satisfying $(p_i - 1)$ divides (n - 1) for $i = 1, 2, \dots t$.

Solution: Proved in the class.

3. What is the order of 538 in \mathbb{Z}_{1287}^* ?

Solution: We know that the group $(\mathbb{Z}_{1287}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*, \times)$. [Here $f: \mathbb{Z}_{1287}^* \to \mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*$, defined by $f(a) = (a \mod 9, a \mod 11, a \mod 13)$, is the isomorphism function.]

Since f is an isomorphism, the order of 538 in \mathbb{Z}_{1287}^* is same as the order of f(538) [which is equal to (-2, -1, 5)] in $(\mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*, \times)$.

Calculating the powers of (-2, -1, 5), we get $(-2, -1, 5)^1 = (-2, -1, 5)$, $(-2, -1, 5)^2 = (4, 1, -1)$, $(-2, -1, 5)^3 = (-8, -1, -5) = (1, -1, -5)$, $(-2, -1, 5)^4 = (4, 1, -1)^2 = (-2, 1, 1)$ and so on. We find that 12 is the smallest exponent e such that $(-2, -1, 5)^e = (1, 1, 1)$; and so the order is 12.

4. For $n=p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}$, we used the isomorphism between (\mathbb{Z}_n^*,\times) and $(\mathbb{Z}_{p_1^{e_1}}^*\times\mathbb{Z}_{p_2^{e_2}}^*\times\cdots\times\mathbb{Z}_{p_t^{e_t}}^*,\times)$ to calculate the value of $\varphi(n)$. Can we use the same technique to calculate the value of $\varphi(p_i^{e_i})$ for $i=1,2,\ldots t$. Justify your answer.

Solution: For $n = n_1 \cdot n_2 \cdots n_t$, the Chinese Remainder Theorem requires n_i to be pairwise coprime. Therefore, we cannot say that $(\mathbb{Z}_{p_i^{e_i}}^*, \times)$ is isomorphic to $(\mathbb{Z}_{p_i}^* \times \mathbb{Z}_{p_i}^* \times \cdots \times \mathbb{Z}_{p_i}^*, \times)$

5. If $n = 2 \cdot p^e$ for some odd prime p, then show that \mathbb{Z}_n^* is cyclic.

3

Solution: We know that $\mathbb{Z}_{p^e}^*$ is cyclic for all primes p. Therefore it has a generator. Let g be a generator of $\mathbb{Z}_{p^e}^*$.

The order of (1,g) in $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is same as the order of g in $(\mathbb{Z}_{p^e}^*, \times)$, which is equal to $p^{e-1}(p-1)$. Since $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is isomorphic to $(\mathbb{Z}_{2p^e}^*, \times)$, the order of (1,g) in $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is same as the order of $f^{-1}(1,g)$ in $(\mathbb{Z}_{2p^e}^*, \times)$. [Here $f: \mathbb{Z}_{2p^e}^* \to \mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*$ is the isomorphism function]. Therefore, the order of $f^{-1}(1,g)$ in $(\mathbb{Z}_{2p^e}^*, \times)$ is $p^{e-1}(p-1)$.

Since the size of $(\mathbb{Z}_{2p^e}^*, \times)$ is $\varphi(2p^e) = 2p^e(1 - \frac{1}{2})(1 - \frac{1}{p}) = p^{e-1}(p-1)$, therefore $f^{-1}(1,g)$ is the generator of $(\mathbb{Z}_{2p^e}^*, \times)$. Hence $(\mathbb{Z}_{2p^e}^*, \times)$ is a cyclic group.

6. Give a subgroup of \mathbb{Z}_{323}^* of size 18.

Solution: We know that the group $(\mathbb{Z}_{323}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$. [Here $f: \mathbb{Z}_{323}^* \to \mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*$ is the isomorphism function.]

It is easy to see that $(\{1\} \times \mathbb{Z}_{19}^*, \times)$ is a subgroup of $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$ of size 18. Since the group $(\mathbb{Z}_{323}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$, therefore $(f^{-1}(\{1\} \times \mathbb{Z}_{19}^*), \times)$ is a subgroup of $(\mathbb{Z}_{323}^*, \times)$ of size 18. [Here $f^{-1}(\{1\} \times \mathbb{Z}_{19}^*)$ denotes the set $\{x \in \mathbb{Z}_{323}^* \mid f(x) \in \{1\} \times \mathbb{Z}_{19}^*\}$].

By Chinese Remainder Theorem, we get $f^{-1}(\{1\} \times \mathbb{Z}_{19}^*) = \{17x + 1 \mid 0 \leqslant x < 18\}.$

Test 2

Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	6	Total
Marks:	2	2	3	4	4	5	20
Score:							

Useful formula: If
$$n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$$
, then Euler's totient function
$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_t}\right)$$

1. Is it possible that $a^{\varphi(n)} \equiv 1 \pmod{n}$ if a is not co-prime to n? Justify your answer.

2. Let G be a group and let H be a subgroup of G. Which cosets of G wrt. H are subgroups of G? Justify your answer.

3. Does $\overline{x+5}$ have an inverse in $(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x],\times)$? If yes give the inverse, otherwise prove that it doesn't exist.

4

- 4. Let $\mathbb{Z}_n[x]$ denote the set of all polynomials with non-negative degree and coefficients in \mathbb{Z}_n , with addition and multiplication modulo n. For example, $(x+4)\times(x+7)=x^2+(11\times x)+13$ in $\mathbb{Z}_{15}[x]$. Does Unique Factorization Theorem hold for $\mathbb{Z}_n[x]$? Justify your answer.
 - [Hint: If n is composite, then an equation of degree d may have more than d solutions in \mathbb{Z}_n .]

4

- 5. Suppose Bob wants to securely receive messages from Alice. To do this,
 - **Key generation:** Bob first generates an encryption and a decryption key in the following way:
 - 1. He chooses large distinct primes p and q, and computes n = pq.
 - 2. He chooses e co-prime to $\varphi(n)$. The pair (n, e) is given to Alice who will use it as the encryption key. Bob keeps d and $\varphi(n)$ secret. [Recall $\varphi(n)$ denotes the Euler's totient function.]
 - 3. He then computes d satisfying $de \equiv 1 \pmod{\varphi(n)}$.
 - Encryption: Now suppose Alice wants to send a message m (where gcd(m, n) = 1) to Bob. She computes $c = m^e \mod n$. She sends c to Bob.
 - **Decryption:** Bob receives c and computes $m' = c^d \mod n$.

Prove that m' = m.

6. Is 2 a generator of the group $(\mathbb{Z}_{83}^*, \times)$? Why / Why not? [Note: No marks for brute force or nearly brute force solutions.]

2

2

3

4

|4|

Name and Roll No.:

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Useful formula: If
$$n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$$
, then Euler's totient function
$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_t}\right)$$

1. Is it possible that $a^{\varphi(n)} \equiv 1 \pmod{n}$ if a is not co-prime to n? Justify your answer.

Solution: It is not possible.

Proof (by contradiction): Suppose there exist non-coprime integers a, n such that $a^{\varphi(n)} \equiv 1 \pmod{n}$. Then $a \cdot a^{\varphi(n)-1} \equiv 1 \pmod{n}$. So, $a^{\varphi(n)-1}$ is the inverse of a in \mathbb{Z}_n . But we know that a cannot have an inverse in \mathbb{Z}_n if it is not co-prime to n. This gives us a contradiction, and so our assumption that "there exist non-coprime integers a, n such that $a^{\varphi(n)} \equiv 1 \pmod{n}$ " is false.

2. Let G be a group and let H be a subgroup of G. Which cosets of G wrt. H are subgroups of G? Justify your answer.

Solution: H is the only coset of G wrt. H which is a subgroup of G.

Proof: Since cosets of G wrt. H are disjoint, only one coset can contain the identity element. Since we know that H (which is same as e+H and h+H for all $h \in H$) contains identity, so other cosets cannot contain identity, and hence are not subgroups of G. This completes the proof.

3. Does $\overline{x+5}$ have an inverse in $(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x], \times)$? If yes give the inverse, otherwise prove that it doesn't exist.

Solution: Yes, $\frac{-1}{26}x + \frac{5}{26}$ is the inverse of $\overline{x+5}$.

 $\begin{array}{l} \textit{Proof: } \overline{(x+5)} \times \overline{\left(\frac{-1}{26}x + \frac{5}{26}\right)} = \overline{\frac{-1}{26}x^2 + \frac{25}{26}}. \text{ It can be seen that } \frac{-1}{26}x^2 + \frac{25}{26} = \frac{-1}{26}(x^2+1) + 1. \text{ Therefore } \\ \frac{-1}{26}x^2 + \frac{25}{26} \equiv 1 \pmod{x^2+1}, \text{ and hence } \overline{(x+5)} \times \overline{\left(\frac{-1}{26}x + \frac{5}{26}\right)} = \overline{\frac{-1}{26}x^2 + \frac{25}{26}} = \overline{1}. \end{array}$

4. Let $\mathbb{Z}_n[x]$ denote the set of all polynomials with non-negative degree and coefficients in \mathbb{Z}_n , with addition and multiplication modulo n. For example, $(x+4)\times(x+7)=x^2+(11\times x)+13$ in $\mathbb{Z}_{15}[x]$. Does Unique Factorization Theorem hold for $\mathbb{Z}_15[x]$? Justify your answer.

[Hint: If n is composite, then an equation of degree d may have more than d solutions in \mathbb{Z}_n .]

Solution: Unique Factorization Theorem does not hold for $\mathbb{Z}_{15}[x]$ since $x^2 - 1$ has two factorizations (x-1)(x-14) and (x-4)(x-11)

- 5. Suppose Bob wants to securely receive messages from Alice. To do this,
 - **Key generation:** Bob first generates an encryption and a decryption key in the following way:

- 1. He chooses large distinct primes p and q, and computes n = pq.
- 2. He chooses e co-prime to $\varphi(n)$. The pair (n, e) is given to Alice who will use it as the encryption key. Bob keeps d and $\varphi(n)$ secret. [Recall $\varphi(n)$ denotes the Euler's totient function.]
- 3. He then computes d satisfying $de \equiv 1 \pmod{\varphi(n)}$.
- Encryption: Now suppose Alice wants to send a message m (where gcd(m, n) = 1) to Bob. She computes $c = m^e \mod n$. She sends c to Bob.
- **Decryption:** Bob receives c and computes $m' = c^d \mod n$.

Prove that m' = m.

Solution: $c^d \equiv (m^e)^d \equiv m^{de} \pmod{n}$.

Since $de \equiv 1 \pmod{\varphi(n)}$, so $\varphi(n)$ divides de - 1. Therefore $de - 1 = k \cdot \varphi(n)$ for some integer k. So, $de = 1 + k \cdot \varphi(n)$.

Therefore $c^d \equiv m^{de} \equiv m^{1+k\cdot \varphi(n)} \equiv m^1 \cdot m^{k\cdot \varphi(n)} \equiv m \cdot (m^{\varphi(n)})^k \equiv m \pmod{\varphi(n)}$ [by Euler's Theorem].

6. Is 2 a generator of the group $(\mathbb{Z}_{83}^*, \times)$? Why / Why not? [Note: No marks for brute force or nearly brute force solutions.]

Solution: Yes, 2 is a generator.

Proof: Since 83 is prime, size of \mathbb{Z}_{83}^* is 82. We have to show that order(2) = 82.

By Lagrange's Theorem, order(2) divides 82. So, the only possibilities for order(2) are 1, 2, 41 and 82. If we can show that $2^1 \neq 1$, $2^2 \neq 1$ and $2^{41} \neq 1$ in \mathbb{Z}_{83}^* , then By Fermat's Little Theorem order(2) = 82.

It is obvious that $2^1 \neq 1$ and $2^2 \neq 1$ in \mathbb{Z}_{83}^* . To compute 2^{41} we use the fact that $2^{41} = 2^{32} \cdot 2^8 \cdot 2^1$.

In \mathbb{Z}_{83}^* , $2^1 = 2$, $2^2 = 4$, $2^4 = (2^2)^2 = 4^2 = 16$, $2^8 = (2^4)^2 = (16)^2 = 256 = 7$, $2^{16} = (2^8)^2 = 7^2 = 49$, and $2^{32} = (2^{16})^2 = 49^2 = 7^3 \cdot 7 = 343 \cdot 7 = 11 \cdot 7 = 77$.

Therefore, in \mathbb{Z}_{83}^* , $2^{41} = 2^{32} \cdot 2^8 \cdot 2^1 = 77 \cdot 7 \cdot 2 = (77 \cdot 2) \cdot 7 = 154 \cdot 2 = (-12) \cdot 2 = -84 = -1$.

7. [Substitute question] If G is a group of size p where p is a prime, then prove that G has a generator.

Solution: By Lagrange's Theorem for all $a \in G$, order(a) divides p. Since p is a prime, order(a) can either be 1 or p. Since identity is the only element of order 1, every other element has order p, and hence is a generator.

Course Outcome Attainment Scores

CO1(Amortized Analysis)					: 1.08	
	_	_				

CO2(Classical paradigms) : 1.3

CO3(Complexity assessment) : 2.68

CO4(Randomized Algorithms) : 3

Weighted Average CO Attainment : 1.94

Cumulative Percentage Attainment of COs : 64.61

PO1 : 2.09

PO2 : 2.32

PO3 : 2.32

PO4 : 2.13

PO5 : 2.25

PO6 : 0

PO7 : 0

PO8 : 0

PO9 : 0

PO10 : 0

PO11 : 2.25

PO12 : 2.04

Weighted Average PO Attainment : 1.28

Cumulative Percentage Attainment of POs : 42.79