Looking locally to see globally:

motif sampling to distinguish interaction type and predict dynamical properties of whole networks

Matthew J. Michalska-Smith University of Chicago

distinguish interaction type

								J			
	e Santa Tanàna					4					
				T	 , , 						
											4.4
										7 6	
*											
		is a second							9 (4) (3) (4) (4) (4)		
7											
an E says							L,				

How can we tell where this matrix has come from?

Why might this be desirable/interesting?

- Insights into mechanisms of network formation
- Unknown/ambiguous interactions

Why might this be possible?

- Observed diffrences (sensu Thébault & Fontaine, Science, 2010)
- Different reactions/ coevolutions to mutualistic vs antagonistic interactions

Data

- ▶ 323 Bipartite Networks
 - ▶ 3-21977 rows
 - ▶ 2-888 columns
 - ▶ 0.008-0.93 connectance
- Subdivided into 4 types, 14 subtypes

Antagonism	Mutualism	Biogeography	Non-biological
Bacteria-Phage	Ant-Plant	Species-Islands	Awards-Recipients
Host-Parasitoid	Plant-Seed Disperser	Species-Mountains	Participant-Answer
Host-Parasite	Plant-Pollinator	OTU-Body Site	Cultural Evolution
Plant-Herbivore	Anemone-Fish		

Methods: Measuring network properties

36 nonindependent metrics for each network

- ▶ Number of rows, columns, edges, connectance
- Leading eigenvalues
- Gaps between leading eigenvalues
- Traces of matrix powers
- Subgraph (motif) counts
- Nestedness
- Modularity

Methods: Controlling for unreliable variation

Randomized Networks

- Erdős-Rényi
 - Preserves average number of interactions/species
- Configuration
 - Preserves actual number of connections/species

Normalization

p-value

Number of random networks with Value < Observed Value Number of randomizations

z-score

Observed value — Mean of random network values
Standard deviation of random values

Principal Component Analysis

Desired results

Desired results

P-Values

P-Values

Z-Scores

Z-Scores

Significantly Over/Under

Significantly Over/Under

What went wrong?

Insufficient Power?

- More data
- More metrics

Improper normalization?

Conserve subgraph distributions

Low resolution?

What if nothing went wrong?

Variation within network types/subtypes is greater than variance between them

(Biological) networks are more similar than we thought

The processes which we invoked to form our expectation are not (as) important to network structure

Take-Home Message

There is no silver bullet

- Biological networks are hard to disentangle using network structure
- Further exploration is needed to identify which (if any) structural properties are important in delineating different types of biological networks

thank you

Stefano Allesina Elisa Thébault Jacopo Grilli Jakez Rolland

What about "known" differences?

