Schedule Optimization Model

This Python program constructs a **university course timetable** using **Google OR-Tools' CP-SAT solver**. It assigns course sections to time slots and rooms while satisfying hard constraints and minimizing violations of soft preferences.

Data Inputs

Loaded from Excel (data.xlsx and sample_schedule.xlsx):

- classrooms: Room metadata (Room name, Size, Type, Building)
- slots: Valid time slot ranges by day and type (Theory, Lab-2hr, Lab-3hr)
- faculties: Instructor initials, designations, and building preferences
- sample_schedule: Raw course scheduling preferences

Decision Variables

- room_vars[cid]: Assigned room index for course cid
- timeslot_vars[cid][i]: Assigned timeslot index for i-th day of course cid

Hard Constraints (Must be satisfied)

ID	Constraint	Description	
H1	Valid Room Type	Labs must be in lab rooms; theory in any	
H2	Room Capacity	Assigned room must accommodate enrolled students	
НЗ	Time Slot Type Match	Based on course duration and lab/theory tag	
H4	Room-Time Clash	No two courses in the same room at the same time	
H5	Instructor Conflict	A faculty cannot teach two classes simultaneously	

Soft Constraints (Minimized using penalties)

Each violation adds a weighted Boolean penalty:

ID	Constraint	Condition	Penalty
S1	Professors/Deans/Heads get fixed room & timeslot	Room or timeslot not matched	100
S2	Adjunct Faculty get fixed timeslot	Timeslot not matched	100
S3	Weekly Idle Time > 11 hrs	Faculty idle time total > 660 minutes	90
S4	Main Building for Professors, Associate Professors, and Adjuncts	Room not in Main	80
S5	Back-to-Back Classes in Different Buildings	≤10 min gap but rooms differ	70
S6	Office-Building Preference (FUB, AB1, AB3)	Room not in faculty's office building	60
S7	Daily Idle Time > 4 hrs	Faculty idle time span exceeds limit	50
S8	Room Preference (if given)	Preferred room not assigned	50
S9	Others' Time Preference	Preferred time not matched	20

Objective Function

```
model.Minimize(sum(weight * bool_var for (bool_var, _), weight in
zip(penalty_vars, penalty_weights)))
```

The solver minimizes the weighted sum of all soft constraint violations.

Output

- Prints constraint violations with reasons and weights
- Writes final feasible schedule to final_schedule_output.xlsx
- Reports room usage and matched/unmatched preferences for each course