UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Homework 12

Spring 2023

1. Flipping Coins and Hypothesizing

You flip a coin until you see heads. Let 0 , and suppose that your hypotheses are

$$X = \begin{cases} 0 & \text{if the bias of the coin is } p \\ 1 & \text{if the bias of the coin is } q. \end{cases}$$

You observe Y, the number of flips until you see heads. Find a decision rule \hat{X} that maximizes $\mathbb{P}(\hat{X}=1\mid X=1)$ subject to $\mathbb{P}(\hat{X}=1\mid X=0)\leq \beta$ for some $\beta\in[0,1]$.

Hint: Remember to calculate the randomization constant γ .

Solution:

1. The likelihood ratio is

$$L(y) = \frac{\mathbb{P}(Y = y \mid X = 1)}{\mathbb{P}(Y = y \mid X = 0)} = \frac{(1 - q)^{y - 1}q}{(1 - p)^{y - 1}p}.$$

As p < q, this is a strictly decreasing function of y, so the Neyman–Pearson decision rule will be of the form $\mathbb{1}_{Y < t}$ for some t.

2. The threshold t should satisfy $\mathbb{P}(Y < t \mid X = 0) = 1 - (1 - p)^{t-1} \le \beta$, so we should take

$$t \coloneqq 1 + \left| \frac{\log(1 - \beta)}{\log(1 - p)} \right|.$$

3. It is possible that $1 - (1 - p)^{t-1} < \beta$ for the choice of the integer threshold above, so we will need to introduce randomization. Letting $\mathbb{P}(\hat{X} = 1 \mid Y = t) = \gamma$, the probability of false alarm becomes

$$\mathbb{P}(\hat{X} = 1 \mid X = 0) = \mathbb{P}(Y < t \mid X = 0) + \gamma \, \mathbb{P}(Y = t \mid X = 0)$$
$$= 1 - (1 - p)^{t-1} + \gamma p(1 - p)^{t-1},$$

so to achieve PFA = β , we take the randomization constant

$$\gamma = \frac{\beta - 1 + (1 - p)^{t - 1}}{p(1 - p)^{t - 1}}.$$

The final decision rule is given by, for the values of t and γ above,

$$\hat{X} = \begin{cases} 1 & \text{if } Y < t \\ \text{Bernoulli}(\gamma) & \text{if } Y = t \\ 0 & \text{if } Y > t. \end{cases}$$

1

2. One Flip

You flip a single coin and observe its result $Y \sim \text{Bernoulli}(p)$. Suppose the hypotheses are

$$X = \begin{cases} 0 & \text{if } p = \frac{1}{3} \\ 1 & \text{if } p = \frac{2}{3}. \end{cases}$$

- a. Find the MLE of X and its associated type I and type II error rates.
- b. Plot the error curve.
- c. Derive the randomized decision rule that minimizes type II error subject to the constraint of $\beta=0.5$ on the type I error.

Hint: You should only need to look at the plot from part b.

Solution:

a. We see that the MLE is simply Y itself:

$$\hat{X}_{\text{MLE}} = \mathbb{1}\{p_{Y|X}(Y \mid 1) \ge p_{Y|X}(Y \mid 0)\} = \begin{cases} 0 & \text{if } Y = 0\\ 1 & \text{if } Y = 1. \end{cases}$$

The probability of type I error is $\mathbb{P}(\hat{X} = 1 \mid X = 0) = \mathbb{P}(Y = 1 \mid X = 0) = \frac{1}{3}$, and the probability of type II error is $\mathbb{P}(\hat{X} = 0 \mid X = 1) = \frac{1}{3}$.

b. Note that $\hat{X}_{\text{MLE}} = \mathbb{1}\{L(Y) \geq 1\}$. More generally, the likelihood ratio is

$$L(y) = \begin{cases} \frac{1}{2} & \text{if } y = 0\\ 2 & \text{if } y = 1, \end{cases}$$

so the threshold test $\hat{X}_{\lambda} = \mathbb{1}\{L(Y) > \lambda\}$ is

$$\hat{X}_{\lambda} = \begin{cases} 1 & \text{if } \lambda \leq \frac{1}{2} \\ Y & \text{if } \frac{1}{2} < \lambda \leq 2 \\ 0 & \text{if } \lambda > 2. \end{cases}$$

The error rates of the possible threshold tests are (1,0), $(\frac{1}{3},\frac{1}{3})$, and (0,1) respectively, and the error curve is the piecewise-linear function connecting these three points.

c. For a test to actually achieve the point $(\frac{1}{2}, \frac{1}{4})$ on the error curve, we will need to take a convex combination of simple threshold tests, or introduce randomization. From the plot, it is clear that taking Y w.p. $\frac{3}{4}$ and 1 w.p. $\frac{1}{4}$ gives us the Neyman–Pearson optimal decision rule subject to $PFA \leq \frac{1}{2}$.

3. Exam Difficulty

The difficulty of an EECS 126 exam, Θ , is uniformly distributed on [0, 100] (continuously). Alice gets a score X that is uniformly distributed on $[0, \Theta]$, and she wants to estimate the difficulty of the exam given her score.

- a. What is the MLE of Θ ? What is the MAP of Θ ?
- b. What is the LLSE for Θ ?

Solution:

a. Since the prior on Θ is uniform, the MLE and MAP estimates will be the same. Both are equal to $\hat{\Theta} = X$, as

$$\operatorname*{argmax}_{\theta} f_{X\mid\Theta}(x\mid\theta) = \operatorname*{argmax}_{\theta} \frac{1}{\theta} \cdot \mathbb{1}_{x\leq\theta\leq100} = x.$$

b. Recall that the LLSE of Θ given X can be found as

$$\mathbb{L}(\Theta \mid X) = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} (X - \mathbb{E}(X)).$$

First, $\mathbb{E}(\Theta) = 50$ and $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid \Theta)) = \mathbb{E}(\frac{\Theta}{2}) = 25$. Let us find var(X) using the law of total variance and $\text{cov}(\Theta, X) = \mathbb{E}(\Theta X) - \mathbb{E}(\Theta) \mathbb{E}(X)$:

$$\mathbb{E}(\operatorname{var}(X\mid\Theta)) = \mathbb{E}\left(\frac{\Theta^2}{12}\right) = \int_0^{100} \frac{\theta^2}{12} \cdot \frac{1}{100} \, d\theta = \frac{10000}{36}.$$

$$\operatorname{var}(\mathbb{E}(X\mid\Theta)) = \operatorname{var}\left(\frac{\Theta}{2}\right) = \frac{1}{4} \frac{10000}{12} = \frac{10000}{48}.$$

$$\operatorname{var}(X) = \mathbb{E}(\operatorname{var}(X\mid\Theta)) + \operatorname{var}(\mathbb{E}(X\mid\Theta)) = \frac{70000}{144}.$$

$$\mathbb{E}(\Theta X) = \mathbb{E}(\mathbb{E}(\Theta X\mid\Theta)) = \mathbb{E}\left(\frac{\Theta^2}{2}\right) = \frac{10000}{6}.$$

$$\operatorname{cov}(\Theta, X) = \mathbb{E}(\Theta X) - \mathbb{E}(\Theta) \, \mathbb{E}(X) = \frac{1250}{3}.$$

Putting everything together, the LLSE is

$$\mathbb{L}(\Theta \mid X) = 50 + \frac{6}{7}(X - 25).$$

4. Gaussian LLSE

Let X, Y, Z be i.i.d. $\mathcal{N}(0, 1)$.

- a. Find $\mathbb{L}(X^2 + Y^2 \mid X + Y)$.
- b. Find $\mathbb{L}(X + 2Y \mid X + 3Y + 4Z)$.
- c. Find $\mathbb{L}((X+Y)^2 \mid X-Y)$.

Solution:

a. We note that

$$\mathrm{cov}(X^2+Y^2,X+Y) = \mathbb{E}((X^2+Y^2)(X+Y)) = \mathbb{E}(X^3+X^2Y+XY^2+Y^3) = 0.$$

Thus, $\mathbb{L}(X^2 + Y^2 \mid X + Y) = \mathbb{E}(X^2 + Y^2) = 2$.

b. We find that

$$cov(X + 2Y, X + 3Y + 4Z) = \mathbb{E}[(X + 2Y)(X + 3Y + 4Z)] = \mathbb{E}(X^2) + 6\mathbb{E}(Y^2) = 7$$
$$var(X + 3Y + 4Z) = var(X) + 9var(Y) + 16var(Z) = 26$$
$$\mathbb{E}(X + 2Y \mid X + 3Y + 4Z) = \frac{7}{26}(X + 3Y + 4Z).$$

c. We observe that cov(X+Y,X-Y)=0, so that the jointly Gaussian X+Y and X-Y are independent. Hence,

$$\mathbb{L}((X+Y)^2 \mid X-Y) = \mathbb{E}((X+Y)^2) = \text{var}(X+Y) = 2.$$

5. Projections

The following exercises are from the note on the Hilbert space of random variables. See the notes for some hints.

- a. Let $\mathcal{H} := \{X : X \text{ is a real-valued random variable with } \mathbb{E}(X^2) < \infty\}$. Prove that \mathcal{H} is closed under addition and scalar multiplication over the real numbers \mathbb{R} , and prove that the function $\langle X, Y \rangle := \mathbb{E}(XY)$ is an inner product on \mathcal{H} .
- b. Let U be a subspace of a real inner product space V. We define the *projection* map P onto U as follows: for each $v \in V$, let Pv be the unique vector in U such that $v Pv \in U^{\perp}$. Prove that P is a linear transformation.
- c. Using part b, prove that $\mathbb{L}(X+Y\mid Z)=\mathbb{L}(X\mid Z)+\mathbb{L}(Y\mid Z)$ for all $X,Y,Z\in\mathcal{H}$.
- d. Now, suppose that U is a finite-dimensional subspace, $\dim U := n$, with an orthonormal basis $\{u_i\}_{i=1}^n$. Prove that $Px = \sum_{i=1}^n \langle x, u_i \rangle u_i$ for all $x \in V$.

Solution:

a. Let $X, Y, Z \in \mathcal{H}$ and $c \in \mathbb{R}$. Then

$$\mathbb{E}((X+Y)^2) = \mathbb{E}(X^2) + 2\mathbb{E}(XY) + \mathbb{E}(Y^2)$$

$$\leq \mathbb{E}(X^2) + 2\sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)} + \mathbb{E}(Y^2)$$

by the Cauchy–Schwarz inequality, and $\mathbb{E}(X^2)$, $\mathbb{E}(Y^2) < \infty$ by hypothesis, which shows that $X + Y \in \mathcal{H}$. We also have $\mathbb{E}((cX)^2) = c^2 \mathbb{E}(X^2) < \infty$, so \mathcal{H} is closed under scalar multiplication as well.

Now, we check that $\langle X, Y \rangle = \mathbb{E}(XY)$ defines an inner product:

- $\mathbb{E}(XY) = \mathbb{E}(YX)$.
- $\mathbb{E}((X+cY)Z) = \mathbb{E}(XZ) + c\mathbb{E}(YZ)$ by the linearity of expectation.
- $\mathbb{E}(X^2) \ge 0$, with $\mathbb{E}(X^2) = 0$ if and only if X = 0. (See footnote.)

(The other properties in the definition of a vector space are familiar properties of random variables, so we have shown that \mathcal{H} is a real inner product space. \mathcal{H} is in particular also a *Hilbert space*, because it satisfies an analytic property called *completeness*.)

- b. Let $x, y \in V$ and $c \in \mathbb{R}$. We wish to show that P(x + cy) = Px + cPy, and it suffices to check that $Px + cPy \in U$ and $x + cy (Px + cPy) \in U^{\perp}$.
 - $Px, Py \in U$ by definition of P and U is a subspace, so $Px + cPy \in U$.
 - For any $u \in U$, we have $\langle u, x + y Px cPy \rangle = \langle u, x Px \rangle + c \langle u, y Py \rangle = 0$ by $x Px, y Py \in U^{\perp}$.

By definition of P, this shows that Px + cPy = P(x + cy).

- c. Let $V = \mathcal{H}$. Then $X \mapsto \mathbb{L}(X \mid Z)$ is the projection map onto the subspace $U = \text{span}\{1, Z\}$, and we have shown that projections are linear in part b.
- d. For $x \in V$, we check that $\sum_{i=1}^{n} \langle x, u_i \rangle u_i \in U$ and $x \sum_{i=1}^{n} \langle x, u_i \rangle u_i \in U^{\perp}$.

¹Remark. It is possible for $X \neq 0$ to have $\mathbb{E}(X^2) = 0$, e.g. if X = 0 with probability 1. To fix this, we can take almost-sure equivalence classes of random variables, where X and Y are equivalent if $\mathbb{P}(X = Y) = 1$. You may cite this construction when checking that $X \neq 0$ implies $\mathbb{E}(X^2) > 0$.

- u_1, \ldots, u_n belong to the subspace U, so the linear combination $\sum_{i=1}^n \langle x, u_i \rangle u_i$ belongs to U as well.
- We want to show that $\langle u, (x \sum_{i=1}^{n} \langle x, u_i \rangle u_i) \rangle = 0$ for all $u \in U$. By the linearity of an inner product, it suffices to show the claim for any basis vector $u_j, j = 1, \ldots, n$:

$$\left\langle u_j, x - \sum_{i=1}^n \langle x, u_i \rangle u_i \right\rangle = \langle u_j, x \rangle - \sum_{i=1}^n \langle x, u_i \rangle \langle u_j, u_i \rangle = \langle u_j, x \rangle - \langle x, u_j \rangle = 0.$$

We used the fact that $\{u_i\}_{i=1}^n$ is an orthonormal basis of U, where $\langle u_i, u_i \rangle = 1$ for all $i = 1, \ldots, n$ and $\langle u_i, u_i \rangle = 0$ for all $i \neq j$.

6. Sufficient Statistics

Suppose X_1, \ldots, X_n are i.i.d. samples drawn from a probability distribution parameterized by θ . (We are in the non-Bayesian setting, so θ is deterministic but unknown).

A statistic $T(X_1, \ldots, X_n)$ is a *sufficient statistic* for θ if for all t, the conditional distribution of (X_1, \ldots, X_n) given T = t does not depend on θ . Intuitively, $T(X_1, \ldots, X_n)$ "captures all there is to know about θ from the sample X_1, \ldots, X_n ."

- a. Let X_1, \ldots, X_n be drawn i.i.d. from a Poisson distribution with mean μ . Show that $T = \sum_{i=1}^{n} X_i$ is a sufficient statistic for μ .
- b. Let T be a sufficient statistic for θ , and let $\hat{\theta}$ be an estimator for θ with $var(\hat{\theta}) < \infty$. Show that in mean-squared error sense, $\mathbb{E}[\hat{\theta} \mid T]$ is at least as good as $\hat{\theta}$ at estimating θ :

$$\mathbb{E}[(\mathbb{E}[\hat{\theta} \mid T] - \theta)^2] \le \mathbb{E}[(\hat{\theta} - \theta)^2].$$

Hint: Consider expanding the decomposition $\mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[((\hat{\theta} - \mathbb{E}[\hat{\theta}]) + (\mathbb{E}[\hat{\theta}] - \theta))^2]$. Remark. Since $\mathbb{E}[\hat{\theta} \mid T]$ is a function of T, the result above suggests we should be looking for estimators of θ that are functions of sufficient statistics.

Solution:

a. We note that $T \sim \text{Poisson}(n\mu)$ has $\mathbb{P}(T=t) = \frac{e^{-n\mu}(n\mu)^t}{t!}$, and

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, T = t) = \prod_{i=1}^n \frac{e^{-\mu} \mu^{x_i}}{x_i!} \cdot \mathbb{1}_{t = \sum_{i=1}^n x_i} = \frac{e^{-n\mu} \mu^t}{\prod_{i=1}^n x_i!} \mathbb{1}_{t = \sum_{i=1}^n x_i}.$$

Then the conditional distribution is

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n \mid T = t) = \frac{t!}{n^t \prod_{i=1}^n x_i!} \mathbb{1}_{t = \sum_{i=1}^n x_i},$$

which has no dependence on μ .

b. From the hint, observe that

$$\mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[((\hat{\theta} - \mathbb{E}[\hat{\theta}]) + (\mathbb{E}[\hat{\theta}] - \theta))^2]$$

$$= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + 2\mathbb{E}[\hat{\theta} - \mathbb{E}[\hat{\theta}]](\mathbb{E}[\hat{\theta}] - \theta) + \mathbb{E}[(\mathbb{E}[\hat{\theta}] - \theta)^2]$$

$$= \operatorname{var}(\hat{\theta}) + (\mathbb{E}[\hat{\theta}] - \theta)^2.$$

This is commonly known as the *bias-variance decomposition* in machine learning contexts. Similarly, we have

$$\mathbb{E}[(\mathbb{E}[\hat{\theta} \mid T] - \theta)^2] = \text{var}(\mathbb{E}[\hat{\theta} \mid T] - \theta) + (\mathbb{E}[\mathbb{E}[\hat{\theta} \mid T] - \theta])^2$$
$$= \text{var}(\mathbb{E}[\hat{\theta} \mid T]) + (\mathbb{E}[\hat{\theta}] - \theta)^2$$

by the law of iterated expectation. From the law of total variance, $var(\hat{\theta}) \ge var(\mathbb{E}[\hat{\theta} \mid T])$, which proves the claim. This result is known as the **Rao-Blackwell theorem**.