

Lecture on Kalman Filter State Observer or State Estimator

ESP 3201 Dr Ng Gee Wah

- An example when you play guessing game such as guess what is in the cage or guess what is his mood?
 - Give an input such as a cookie and observe his facial expression;
 this indirectly measure his mood.

• In control theory, a state observer or state estimator is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system.

Example of State Observer or State Estimator

• An spacecraft example of estimated state of the internal temperature of its engine \widehat{T}

• Estimated state \widehat{T}

$$e_{obs} = x - \hat{x}$$

$$\dot{x} = Ax + Bu \qquad y = Cx$$

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - \hat{y}) \qquad \hat{y} = C\hat{x}$$

$$\frac{\dot{x} - \dot{\hat{x}}}{\dot{e}_{obs}} = \underbrace{Ax - A\hat{x} + Bu - Bu + K(y - \hat{y})}_{Ae_{obs}} \qquad y - \hat{y} = C(x - \hat{x})$$

$$e_{obs}$$

$$e_{obs} = x - \hat{x}$$

$$\dot{x} = Ax + Bu$$

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - \hat{y})$$

$$y = Cx$$

$$\hat{y} = C\hat{x}$$

 $y - \hat{y} = Ce_{obs}$

$$\dot{e}_{obs} = (A - KC)e_{obs}$$

If
$$(A-KC) < 0$$
, then $e_{obs} \to 0$ as $t \to \infty$. So, $\hat{x} \to x$.

Thank you for your attention