```
import pandas as pd
import numpy as np
```

from google.colab import files
uploaded = files.upload()

Choose Files diabetes_da...upload.xlsx

• diabetes_data_upload.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 437 modified: 10/18/2021 - 100% done

auddan

Saving diabetes data unload.xlsx to diabetes data unload (1).xlsx

import io
df = pd.read_excel(io.BytesIO(uploaded['diabetes_data_upload.xlsx']))
df

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring
0	40	Male	No	Yes	No	Yes	No	No	No
1	58	Male	No	No	No	Yes	No	No	Yes
2	41	Male	Yes	No	No	Yes	Yes	No	No
3	45	Male	No	No	Yes	Yes	Yes	Yes	No
4	60	Male	Yes	Yes	Yes	Yes	Yes	No	Yes
515	39	Female	Yes	Yes	Yes	No	Yes	No	No
516	48	Female	Yes	Yes	Yes	Yes	Yes	No	No
517	58	Female	Yes	Yes	Yes	Yes	Yes	No	Yes
518	32	Female	No	No	No	Yes	No	No	Yes
519	42	Male	No	No	No	No	No	No	No

520 rows × 17 columns

df.dtypes

Age	int64
Gender	object
Polyuria	object
Polydipsia	object
sudden weight loss	object
weakness	object
Polyphagia	object
Genital thrush	object
visual blurring	object

Itching	object
Irritability	object
delayed healing	object
partial paresis	object
muscle stiffness	object
Alopecia	object
Obesity	object
class	object
dtype: object	

print(df.isnull().values.any())

False

There are no missing values.

df.info

<bou< th=""><th>nd me</th><th>thod Data</th><th>aFrame.inf</th><th>o of</th><th>Age</th><th>Gender</th><th>Polyuria</th><th> Alopecia Obesity</th><th>clas</th></bou<>	nd me	thod Data	aFrame.inf	o of	Age	Gender	Polyuria	Alopecia Obesity	clas
0	40	Male	No		Yes	Yes	Positive		
1	58	Male	No		Yes	No	Positive		
2	41	Male	Yes		Yes	No	Positive		
3	45	Male	No		No	No	Positive		
4	60	Male	Yes		Yes	Yes	Positive		
					• • •		• • •		
515	39	Female	Yes		No	No	Positive		
516	48	Female	Yes		No	No	Positive		
517	58	Female	Yes		No	Yes	Positive		
518	32	Female	No		Yes	No	Negative		
519	42	Male	No	• • •	No	No	Negative		
[520	rows	x 17 col	Lumns]>						

df.describe(include='object')

	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Ι
count	520	520	520	520	520	520	520	520	
unique	2	2	2	2	2	2	2	2	
top	Male	No	No	No	Yes	No	No	No	
freq	328	262	287	303	305	283	404	287	

import seaborn as sns
sns.boxplot(x=df['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f700982af50>

Any age over 80 are outliers. We can proceed to remove them.

```
df_new = df.drop(df[df.Age > 80].index)
```

df_new.describe

<box< th=""><th>nd me</th><th>thod NDFr</th><th>ame.desc</th><th>ribe of</th><th>Age</th><th>Gend</th><th>er Polyuria</th><th> Alopecia Obesity</th><th>c]</th></box<>	nd me	thod NDFr	ame.desc	ribe of	Age	Gend	er Polyuria	Alopecia Obesity	c]
0	40	Male	No		Yes	Yes	Positive		
1	58	Male	No		Yes	No	Positive		
2	41	Male	Yes		Yes	No	Positive		
3	45	Male	No		No	No	Positive		
4	60	Male	Yes		Yes	Yes	Positive		
					• • •				
515	39	Female	Yes		No	No	Positive		
516	48	Female	Yes		No	No	Positive		
517	58	Female	Yes		No	Yes	Positive		
518	32	Female	No		Yes	No	Negative		
519	42	Male	No	• • •	No	No	Negative		
[E16	nous	v 17 col	umne 1s						
[210	rows	x 17 col	umris]>						
4									•

Rows with the outliers are removed and dataset is renamed to be df_new

First, I will try to deploy classification algorithm but I will convert all the string value to numerical value first

```
d = {'Male': 1, 'Female': 0}
df_new['Gender'] = df_new['Gender'].map(d)
d = {'Yes': 1, 'No': 0}
df_new['Polyuria'] = df_new['Polyuria'].map(d)
df_new['Polydipsia'] = df_new['Polydipsia'].map(d)
df_new['sudden weight loss'] = df_new['sudden weight loss'].map(d)
```

```
df_new['weakness'] = df_new['weakness'].map(d)
df_new['Polyphagia'] = df_new['Polyphagia'].map(d)
df_new['Genital thrush'] = df_new['Genital thrush'].map(d)
df_new['visual blurring'] = df_new['visual blurring'].map(d)
df_new['Itching'] = df_new['Itching'].map(d)
df_new['Irritability'] = df_new['Irritability'].map(d)
df_new['delayed healing'] = df_new['delayed healing'].map(d)
df_new['partial paresis'] = df_new['partial paresis'].map(d)
df_new['muscle stiffness'] = df_new['muscle stiffness'].map(d)
df_new['Alopecia'] = df_new['Alopecia'].map(d)
df_new['Obesity'] = df_new['Obesity'].map(d)
df_new['class'] = df_new['class'].map(d)
df_new['class'] = df_new['class'].map(d)
df_new['class'] = df_new['class'].map(d)
```

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring
0	40	1	0	1	0	1	0	0	0
1	58	1	0	0	0	1	0	0	1
2	41	1	1	0	0	1	1	0	0
3	45	1	0	0	1	1	1	1	0
4	60	1	1	1	1	1	1	0	1
515	39	0	1	1	1	0	1	0	0
516	48	0	1	1	1	1	1	0	0
517	58	0	1	1	1	1	1	0	1
518	32	0	0	0	0	1	0	0	1
519	42	1	0	0	0	0	0	0	0

516 rows × 17 columns

Let's do some more visualization on the data

```
import matplotlib.pyplot as plt
sns.pairplot(data=df_new, hue = 'class')
```

C→

sns.heatmap(df_new.corr())

Going to prepare for the decision tree

Y = d

, , , , , , ,				Detecting	Diabotos III E	any otage con	aboratory		
	Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring
0	40	1	0	1	0	1	0	0	0
1	58	1	0	0	0	1	0	0	1
2	41	1	1	0	0	1	1	0	0
3	45	1	0	0	1	1	1	1	0
4	60	1	1	1	1	1	1	0	1
515	39	0	1	1	1	0	1	0	0
516	48	0	1	1	1	1	1	0	0
df_new	[ˈcla	ss']							
0	1								
1	1								

```
0 1
1 1
2 1
3 1
4 1
...
515 1
516 1
517 1
518 0
519 0
Name: class, Length: 516, dtype: int64
```

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=1)
```

from sklearn.tree import DecisionTreeClassifier

```
dtree = DecisionTreeClassifier()
dtree = dtree.fit(x_train, y_train)
```

from sklearn import tree

tree.plot_tree(dtree)

```
V[2] / 0.2/118-11-
Text(102.3000000000001, 163.079999999998, 'X[1] <= 0.5\ngini = 0.347\nsamples = 148\
Text(53.733333333334, 141.336, 'X[14] <= 0.5\ngini = 0.482\nsamples = 37\nvalue = [15]
Text(33.0666666666667, 119.592, 'X[0] <= 34.5\ngini = 0.269\nsamples = 25\nvalue = [4]
Text(16.53333333333335, 97.848, 'X[0] <= 30.5\ngini = 0.48\nsamples = 5\nvalue = [3, 2
Text(8.26666666666667, 76.1039999999998, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(24.80000000000004, 76.103999999999, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
Text(49.6000000000001, 97.848, X[10] <= 0.5 = 0.095 = 20 = 20 = 11,
Text(41.333333333333336, 76.10399999999998, 'gini = 0.0 \nsamples = 19 \nvalue = [0, 19]
Text(57.866666666666674, 76.1039999999998, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
Text(74.4, 119.592, X[6] \le 0.5 = 0.153 = 12 = 12 = 11, 1]
Text(66.133333333334, 97.848, 'gini = 0.0\nsamples = 11\nvalue = [11, 0]'),
Text(82.6666666666667, 97.848, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(150.86666666666667, 141.336, 'X[10] <= 0.5\ngini = 0.179\nsamples = 111\nvalue =
Text(107.4666666666668, 119.592, 'X[5] <= 0.5\ngini = 0.097\nsamples = 98\nvalue = [9]
Text(99.2000000000000, 97.848, 'gini = 0.0 \times 50 = 56 \times 10^{-2}, 'gini = 0.0 \times 50 = 56 \times 10^{-2},
Text(115.7333333333335, 97.848, 'X[0] <= 38.0\ngini = 0.21\nsamples = 42\nvalue = [37]
Text(95.06666666666668, 76.1039999999998, 'X[14] <= 0.5\ngini = 0.49\nsamples = 7\nval
Text(86.8000000000001, 54.36000000000014, 'gini = 0.0\nsamples = 4\nvalue = [4, 0]'),
Text(103.333333333334, 54.360000000000014, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]')
Text(136.4, 76.1039999999999, 'X[4] \le 0.5 = 0.108 = 35 = 35 = [33, 2]
Text(119.8666666666667, 54.360000000000014, 'X[9] <= 0.5\ngini = 0.062\nsamples = 31\r
Text(103.333333333334, 10.872000000000014, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]')
Text(119.8666666666667, 10.872000000000014, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'
Text(128.133333333335, 32.61599999999995, 'gini = 0.0\nsamples = 27\nvalue = [27, 0]
Text(144.6666666666669, 32.61599999999985, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'
Text(161.2000000000002, 32.61599999999985, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'
Text(194.2666666666668, 119.592, 'X[7] <= 0.5\ngini = 0.497\nsamples = 13\nvalue = [7]
Text(186.00000000000003, 97.848, 'X[0] <= 42.5 \ngini = 0.346 \nsamples = 9 \nvalue = [7,
Text(177.7333333333335, 76.10399999999998, 'X[13] <= 0.5 \ngini = 0.444 \nsamples = 3 \nv
Text(169.4666666666667, 54.360000000000014, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
Text(186.0000000000000, 54.360000000000014, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]')
Text(194.2666666666666, 76.103999999999, 'gini = 0.0\nsamples = 6\nvalue = [6, 0]'),
Text(202.53333333333336, 97.848, 'gini = 0.0\nsamples = 4\nvalue = [0, 4]'),
Text(252.133333333335, 163.079999999999, 'X[10] <= 0.5\ngini = 0.358\nsamples = 30\
Text(243.8666666666667, 141.336, 'X[13] <= 0.5\ngini = 0.492\nsamples = 16\nvalue = [7]
Text(227.333333333334, 119.592, 'X[12] <= 0.5\ngini = 0.219\nsamples = 8\nvalue = [1,
Text(219.0666666666667, 97.848, 'gini = 0.0\nsamples = 5\nvalue = [0, 5]'),
Text(235.600000000000, 97.848, 'X[5] <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2
Text(227.333333333334, 76.103999999999, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
Text(243.866666666667, 76.1039999999998, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(260.4000000000003, 119.592, 'X[8] <= 0.5\ngini = 0.375\nsamples = 8\nvalue = [6,
Text(252.133333333335, 97.848, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
Text(268.666666666667, 97.848, 'gini = 0.0\nsamples = 6\nvalue = [6, 0]'),
Text(260.40000000000003, 141.336, 'gini = 0.0\nsamples = 14\nvalue = [0, 14]'),
Text(301.733333333335, 184.824, 'X[0] <= 69.5\ngini = 0.144\nsamples = 167\nvalue =
Text(285.2000000000005, 163.079999999999, 'X[15] <= 0.5\ngini = 0.095\nsamples = 160
Text(276.9333333333334, 141.336, 'gini = 0.0\nsamples = 121\nvalue = [0, 121]'),
Text(293.466666666667, 141.336, 'X[11] <= 0.5\ngini = 0.326\nsamples = 39\nvalue = [8]
Text(285.2000000000005, 119.592, 'gini = 0.0 \times 10^{-2} = 24 \times 10^{-2} = [0, 24]'),
Text(301.7333333333335, 119.592, 'X[3] <= 0.5 \setminus 1 = 0.498 \setminus 1 = 15 
Text(293.4666666666667, 97.848, 'X[1] \le 0.5 \ngini = 0.198\nsamples = 9\nvalue = [8, 1]
Text(285.2000000000005, 76.1039999999998, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]')
Text(301.733333333335, 76.1039999999999, 'gini = 0.0\nsamples = 8\nvalue = [8, 0]'),
Text(310.0000000000006, 97.848, 'gini = 0.0\nsamples = 6\nvalue = [0, 6]'),
Text(318.266666666667, 163.0799999999998, 'X[8] <= 0.5\ngini = 0.408\nsamples = 7\nva
```

```
Text(310.00000000000000, 141.336, gini = 0.0\nsamples = 2\nvalue = [0, 2]),
Text(326.533333333333, 141.336, 'gini = 0.0\nsamples = 5\nvalue = [5, 0]')]
```


import graphviz
dot_data = tree.export_graphviz(dtree, out_file=None)
graph = graphviz.Source(dot_data)
graph

print("Accuracy for Simple Classification Tree:",accuracy_score(y_test, y_pred))

Accuracy: 0.9883040935672515

We will try using Random Forest classifer to see compare the accuracy since it is an extension of decision tree with more complication

Since the two accuracy is the same. I believe the first decision tree was the final decision tree Random Forest Classifier chose as the best decision tree.

Now we will look at confusion matrix.

print(classification report(y test, y pred))

support	f1-score	recall	precision	
65	0.98	0.98	0.98	0
106	0.99	0.99	0.99	1
171	0.99			accuracy
171	0.99	0.99	0.99	macro avg

weighted avg

0.99

0.99

0.99

171

Now I will try to use Logistic Regression

```
from sklearn.linear_model import LogisticRegression
```

```
logreg = LogisticRegression()
logreg.fit(x_train, y_train)
```

```
y_predreg = logreg.predict(x_test)
print("Accuracy for Logistic Regression:",accuracy_score(y_test, y_predreg))
```

Accuracy for Logistic Regression: 0.9707602339181286

confusion_matrix(y_test, y_predreg)

print(classification report(y test, y predreg))

	precision	recall	f1-score	support
0	0.95	0.97	0.96	65
1	0.98	0.97	0.98	106
accuracy			0.97	171
macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97	171 171

We can now compare decision tree vs logistic regression and we can see that using decision tree is a better option