COMP90042 Web search and text analysis

Workshop Week 3

xudong.han@unimelb.edu.au https://github.com/HanXudong/COMP90042 Workshops

Review

- Inverted index
- TF*IDF
- BM25

Inverted index

	two	tea	me	you
doc1	0.707	0.707	0	0
doc2	0	0.707	0.353	0.353
doc3	0	0	0.707	0.707

Query 1: Tea me

Query 2: Two

$$S_{TF-IDF}(d,Q) = \sum_{t \in Q} tf_{d,t} \times log \frac{N}{df_t}$$

two 1: 0.707;

tea 1:0.707; 2: 0.707

me 2: 0.353; 3:0.707

you 2: 0.353; 3:0.707

This workshop

- Postings list
- Variable Byte Compression
- WAND
- Query expansion
- Relevance feedback

Posting List Compression

Motivations:

- Minimise storage costs
- Fast sequential access
- Support GEQ(x) operation: Return the smallest item in the list that is greater or equal to x

Posting List Compression

Inverted index

the ids: 25 26 29 ... 12345 12347

house ids: 5213 5234 5454 5591 ...

aeronaut ids: 251235 251239 251240

8	10	13	15	18
256	1024	8192	32768	262144

Posting List Compression

the	ids:	25	26	29		12345	12347
	gaps:	25	1	3		1	2
house	ids:	5213	5234	5454	5591	•••	
	gaps:	5213	1	220	137	•••	
aeronaut	ids:	251235	251239	251240			
	gaps:	251235	4	1			

Gaps between ids or term frequencies?

Variable Byte Compression

Idea of Variable Byte Compression:

Use variable number of bytes to represent integers. Each byte contains 7 bits "payload" and one continuation bit.

Number		Encoding	
824	00000110	10111000	
5	10000101		

Bitwise operators

https://wiki.python.org/moin/BitwiseOperators

The Operators:

- x << y
 Returns x with the bits shifted to the left by y places
- x >> y
 Returns x with the bits shifted to the right by y places.
- x & y
 Does a "bitwise and".
- x | yDoes a "bitwise or".
- x ^ y
 Does a "bitwise exclusive or".

Variable Byte Compression

Encoding

```
1: function ENCODE(x)
```

2: while
$$x >= 128 \text{ do}$$

3: WRITE(
$$x \mod 128$$
)

4:
$$x = x \div 128$$

6: WRITE(
$$x + 128$$
)

7: end function

Q: why do we use " ^ "?

Decoding

1: **function** DECODE(bytes)

2:
$$x = 0, s = 0$$

3:
$$y = READBYTE(bytes)$$

4: while
$$y < 128$$
 do

5:
$$x = x \land (y << s)$$

6:
$$s = s + 7$$

$$y = READBYTE(bytes)$$

8: end while

9:
$$x = x \land ((y - 128) << s)$$

10: return x

11: end function

Variable Byte Compression

Decoding(Q1-c):

Determine the values of integers X and Y that were encoded as the byte sequence [52,34,147,42,197] using the Variable Byte algorithm described in the lecture slides 9/10.

52	00110100
34	00100010
147	10010011
42	00101010
167	11000101

WAND

- Top K retrieval
- Overestimate

Query Q: The quick brown fox

with k=2

Maximum Contribution for each query term

The 0.9 2 3 7 8 9 10 11 12 13 17 18 19 ...

quick 1.9 5 6 9 11 14 18

brown 2.3 2 4 5 15 42 84 96

fox 7.1 5 7 8 13

$$S_{TF-IDF}(d,Q) = \sum_{t \in Q} t f_{d,t} \times log \frac{N}{df_t}$$

Assume Document 13 has just been evaluated. In the setting below, what is the next document that will be evaluated?

Query Expansion

Q3

Query expansion increases query recall

How many selected items are relevant?

How many relevant items are selected?

Recall and Precision

- Documents: [1, 2, 3, 4, 5, ...,99, 100]
- Relevance documents: [1, 3, 5, 7, 9]
- Prediction 1: [1, 2, 3, 4, 5, 6, 7, 8, 9]

$$Recall = \frac{5}{5} \quad Precision = \frac{5}{9}$$

• Prediction 2: [1, 2, 3, 4, 5, ..., 99, 100]

$$Recall = \frac{5}{5} \quad Precision = \frac{5}{100}$$

Prediction 3: [1]

$$Recall = \frac{1}{5} Precision = \frac{1}{1}$$

Relevance Feedback

Q4

- A. User relevance feedback
 - -E.g. ask users to click
- B. Pseudo relevance feedback
 - -E.g. blink feedback
- C. Indirect relevance feedback
 - -E.g. analysis query click logs to re-rank

Relevance Feedback

Q5 query expansion without relevance feedback

WordNet based query expansion

"Improving Query Expansion Using WordNet" https://arxiv.org/abs/1309.4938