- (9) 1. Name and sketch the following surfaces:
 - (a) $x^2 = 4(y z^2)$
 - (b) $r^2 = z^2 + 4$
 - (c) $\rho \tan \phi (\cos \theta + \sin \theta) = 2 \sec \phi \rho$
- (8) 2. The motion of an object is given by $\mathbf{r}(t) = \langle \ln t^2, \sqrt{8}t, t^2 \rangle$ for t > 0.
 - (a) Find parametric equations of the tangent line to the trajectory at time t=1.
 - (b) Find an expression for the speed v of the object in terms of t.
 - (c) Find the curvature κ of the trajectory at time t=1.
 - (d) Find the tangential and normal components of acceleration at time t = 1.
- (4) 3. Find the limit if it exists or show that it does not exist.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{(-9x+y)^2}{81x^2+y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{3x^2 + 5y^2}{\sqrt{3x^2 + 5y^2 + 1} 1}$
- (4) 4. Consider $z = f(x, y) = \sqrt{x^2 + y^2}$.
 - (a) Find the differential dz.
 - (b) Use dz to find an approximation for f(3.06, 3.92).
- (7) 5. Consider the surface $F(x, y, z) = xz + 2x^2y + y^2z^3 = 11$ and the point P(2, 1, 1).
 - (a) Find the directional derivative of F at P in the direction of $\mathbf{v} = \langle -1, 1, 1 \rangle$.
 - (b) Find the maximum rate of increase of F at P?
 - (c) In what direction (unit vector) does F increase the fastest at P?
 - (d) Find the equation (in ax + by + cz = d form) of the tangent plane to the surface at P.
 - (e) Assume that $Q \neq P$ is a point on this tangent plane. What is the directional derivative of F at P in the direction \overrightarrow{PQ} ?
 - (f) Find $\frac{\partial z}{\partial y}$.
- (3) 6. Assume f is a differentiable function and $z = yf(x^2 y^2)$. Show that $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \frac{xz}{y}$
- (5) 7. Find and classify the critical points of $f(x,y) = x^4 + 2y^2 4xy$.
- (5) 8. Use the method of Lagrange multipliers to find the point on the sphere $x^2 + y^2 + z^2 = 4$ that is farthest from the point P(1, -1, 1).
- (12) 9. Evaluate the integrals.
 - (a) $\int_0^8 \int_{\sqrt[3]{x}}^2 \sin(y^4) dy dx$
 - (b) $\int_0^1 \int_0^{\sqrt{1-x^2}} \cos(x^2 + y^2 + 4) dy dx$

(c)
$$\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) dz dx dy$$
.

- (6) 10. **Set up, but do not evaluate**, triple integrals to find the volume of the region between the sphere $x^2 + y^2 + z^2 = 19$ and the upper sheet of the hyperboloid $z^2 x^2 y^2 = 1$, z > 0 in
 - (a) Cartesian coordinates
 - (b) cylindrical coordinates
- (4) 11. Using a suitable change of variables, find the following double integral over T where T is the triangle enclosed by the lines y x = 0, y + x = 2 and the x-axis.

$$\iint_T (x+y)^3 dx dy$$

- (2) 12. Let $f(x) = \sum_{n=1}^{\infty} \frac{n(x+6)^{3n}}{(3n+1)!}$; evaluate $f^{(27)}(-6)$.
- (5) 13. Find the Maclaurin series for the following functions and state the radius of convergence.
 - (a) $f(x) = \frac{x^3}{5+x^2}$
 - (b) $g(x) = \frac{\arctan(3x^2)}{x}$
- (5) 14. Approximate $\int_0^{0.1} xe^{-x^3} dx$ to six decimal places of accuracy.
- (7) 15. Let $f(x) = \frac{1}{\sqrt{x}}$
 - (a) Use the binomial series to expand f(x) as a power series centered at x = 9 and state the radius of convergence.
 - (b) If $T_2(x)$ is used to approximate f(9.5), give an upper bound on the error using the Lagrange form of the remainder.
- (8) 16. Consider the curve \mathcal{C} having parametric equations: $\begin{cases} x = 2\cos t + 1 \\ y = 3\sin t \end{cases}$ where $t \in \mathbb{R}$.
 - (a) Find dy/dx and d^2y/dx^2 .
 - (b) Find all the points on $\mathcal C$ where the tangent line is vertical or horizontal.
 - (c) Eliminate the parameter t to express the curve in the form f(x, y) = d. Using this equation, identify and sketch C.
 - (d) Set up, but do not evaluate, an integral expression that gives the area bounded by the curve.
- (6) 17. Consider the polar curves $r = \cos(3\theta)$ and $r = \frac{1}{2}$.
 - (a) Sketch the two curves on the same axes.
 - (b) Set up, but do not evaluate, an integral expression for the area of the region common to both curves.
 - (c) Set up, but do not evaluate, the integral needed to find the length of $r = \cos(3\theta)$.