Der Bildbereich

(Laplace Transformation)

Motivation

Was

Eine Funktion f wird vom reellen Zeitbereich in eine Funktion F im komplexen Spektralbereich (Frequenzbereich, Bildbereich) überführt.

Warum

Im Bildbereich sind bestimmte Berechnungen einfacher - Faltung wird zu Multiplikation!!!1!!!!elf

Vorwärtstransformation

• Sei $f:[0,\infty[\to \mathbb{C}$ eine Funktion. Die Laplace-Transformation von f(t) ist durch

$$F(s) = \mathcal{L}\{f\}(s) = \int_0^\infty f(t)e^{-st}\,\mathrm{d}t, \qquad s \in \mathbb{C}$$

definiert, insofern das Integral existiert.

• Die Funktion F(s) wird Laplace-Transformierte der Funktion f(t) genannt.

Rückwärtstransformation

Die Zeitfunktion f(t) kann durch die Umkehrformel

$$\mathcal{L}^{-1}\{F(s)\} = rac{1}{2\pi\mathrm{i}}\int_{\gamma-\mathrm{i}\infty}^{\gamma+\mathrm{i}\infty} e^{st} F(s)\,\mathrm{d}s = egin{cases} f(t) & ext{für } t \geq 0 \ 0 & ext{für } t < 0 \end{cases} \quad ext{ mit } \gamma > s_0,$$

aus der Spektralfunktion F(s) bestimmt werden, dabei ist s_0 der größte Realteil einer Singularität von F.

Notationen

- Festlegung: Signale und Syteme im
 - Originalbereich bekommen Kleinbuchstaben y(t), u(t), g(t)
 - Bildbereich bekommen Großbuchstaben Y(s), U(s), G(s)
- Verbreitet sind diese Notationen für die Transformationen:

$$f(t) \circ - \bullet F(s)$$

$$F(s) \bullet - \circ f(t)$$

BTW: Selbe Notation wird auch für die Fourier-Transformation verwendet:

- $Y(j\omega)$, $U(j\omega)$, $G(j\omega)$
- $f(t) \circ -\bullet F(j\omega)$, $F(j\omega) \bullet -\circ f(t)$

Allgemeine Eigenschaften bzw. Operationen

	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
Linearität	$\boxed{ a_1f_1(t) + a_2f_2(t)}$	$oxed{a_1F_1(s)+a_2F_2(s)}$
Ähnlichkeitssatz	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$ $(a>0)$
Verschiebung im Originalbereich (bei einseitiger Transformation nur $a>0$ oder $f(t)=0$ $orall$ $t< a$)	f(t-a)	$e^{-as}F(s)$
Verschiebung im Bildbereich (Dämpfungssatz)	$e^{-at} \cdot f(t)$	$F(s+a) \qquad (a\in \mathbb{C})$
Komplexe Konjugation	$f^*(t)$	$F^*(s^*)$
Zeitspiegelung (bei einseitiger Transformation nicht anwendbar!)	f(-t)	F(-s)
Zeitdehnung ($T eq 0$; bei einseitiger Transformation nur für $T > 0$)	$f(rac{t}{T})$	$TF(s\cdot T)$

Allgemeine Eigenschaften bzw. Operationen 2

	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
1. Ableitung im Originalbereich	$\int f'(t)$	sF(s)-f(0)
2. Ableitung im Originalbereich	$\int f''(t)$	$s^2F(s)-sf(0)-f'(0)$
1. Ableitung im Bildbereich	-tf(t)	F'(s)
2. Ableitung im Bildbereich	$\int t^2 f(t)$	F''(s)
Integration im Olriginalbereich	$\int_0^t f(u) \mathrm{d}u$	$\frac{1}{s}F(s)$
Integration im Bildbereich	$-rac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) \mathrm{d}u$
Faltung / Multiplitkation	$\int_0^t f(u)g(t-u)\mathrm{d}u$	F(s) G(s)
Periodische Funktion	f(t)=f(t+T)	$rac{1}{1-e^{-sT}}\int_0^T f(t)\cdot e^{-st}\mathrm{d}t$

Allgemeine Eigenschaften bzw. Operationen 3

	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
[Sinus]-Multiplikation	$\sin(at) \cdot f(t)$	$rac{1}{2\mathrm{i}}\cdot (F(s-\mathrm{i}a)-F(s+\mathrm{i}a))$
[Cosinus]-Multiplikation	$\cos(at) \cdot f(t)$	$rac{1}{2}\cdot (F(s-\mathrm{i}a)+F(s+\mathrm{i}a))$
	$\sinh(at) \cdot f(t)$	$rac{1}{2}\cdot (F(s-a)-F(s+a))$
	$\cosh(at) \cdot f(t)$	$\frac{1}{2}\cdot (F(s-a)+F(s+a))$

Korrenspondenzen 1

Funktionsname	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
Diracsche Deltadistribution Einheitsimpuls	$\delta(t) rac{\mathrm{d}^n}{\mathrm{d}t^n} \delta(t)$	$1 s^n$

Funktionsname	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
Heavisidesche Sprungfunktion Einheitssprung	$\Theta(t)$	$\frac{1}{s}$
Exponentialfunktion	e^{-at}	$\frac{1}{s+a}$
Exponentialverteilung	$1-e^{-at}$	$\frac{a}{s(s+a)}$
1-te Potenz	t	$\frac{1}{s^2}$
n-te Potenz	t^n	$\frac{n!}{s^{n+1}}$

Korrenspondenzen 2

Funktionsname	Originalfunktion $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Bildfunktion $F(s) = \mathcal{L}\{f(t)\}$
Potenzreihe	$\sum_{n=0}^{\infty}a_n(t-t_0)^n$	$\sum_{n=0}^{\infty}rac{a_nn!}{s^{n+1}}e^{-t_0s}$
Gedämpfte Potenzfunktion	te^{-at}	$\frac{1}{(s+a)^2}$
	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
	$rac{t^{n-1}}{(n-1)!}\cdot e^{-at}$	$(s+a)^{-n}$
n-te Wurzel	$\sqrt[n]{t}$	$s^{-(n+1)/n} \cdot \Gammaig(1+rac{1}{n}ig)$
Sinus	$\sin(at)$	$\frac{a}{s^2+a^2}$
Cosinus	$\cos(at)$	$\frac{s}{s^2+a^2}$
Sinus hyperbolicus	$\sinh(at)$	$\frac{a}{s^2-a^2}$
Cosinus hyperbolicus	$\cosh(at)$	$\frac{s}{s^2-a^2}$

Beispiel 1: Fahrzeugmodell 1/

• Betrachtet wird das Fahrzeug

mit einer Masse von m=1000kg einem Reibbeiwert von $b=50\frac{N\cdot s}{m}$ und einer beschleunigenden Kraft von $F_u=500N$

Aufgabe:

Mit den Korrespondenzen soll die Fahrzeuggeschwindugkeit nach einem:

- 1. Kraftimpuls zur Zeit t_{0}
- 2. einem Kraftsprung der Höhe \hat{F} zur Zeit t_0

berechnet werden.

Beispiel 1: Fahrzeugmodell 2/

Systembeschreibung im Bildbereich

Das Fahrzeug folgt im Zeitbereich der Differentialgleichung:

$$rac{d}{d\,t}v(t) = -rac{b}{m}\cdot v(t) + rac{1}{m}\,u(t)$$

mit der Korrespondenz

	Originalfunktion	Bildfunktion
1. Ableitung im Originalbereich	f'(t)	sF(s)-f(0)

ergibt sich im Bildbereich diese algebraische Gleichung:

$$s\,V(s) = -rac{b}{m}\cdot V(s) + rac{1}{m}\,U(s)$$

(Wir nehmen an: f(0) = 0)

Beispiel 1: Fahrzeugmodell 3/

Eingangssignal im Bildbereich

Eingangssignal festlegen

1. Impuls zut Zeit t_0 : $u(t) = \delta(t-t_0)$

2. Sprung der Höhe \hat{F} zur Zeit t_0 : $u(t) = \hat{F}\,\Theta(t-t_0)$

Funktionsname	Originalfunktion	Bildfunktion
Diracsche Deltadistribution Einheitsimpuls	$\delta(t)$	1
Heavisidesche Sprungfunktion Einheitssprung	$\Theta(t)$	$\frac{1}{s}$
Verschiebung im Originalbereich (bei einse)	$\int f(t-a)$	$e^{-as}F(s)$
Linearität	$a_1f_1(t)+a_2f_2(t)$	$a_1F_1(s)+a_2F_2(s)$

1. Impuls zur Zeit t_0 : $U(s)=e^{-t_0s}$

2. Sprung der Höhe \hat{F} zur Zeit t_0 : $U(s) = \hat{F} \, \frac{1}{s} e^{-t_0 s}$

Beispiel 1: Fahrzeugmodell 4/

Ausgangssignal im Bildbereich

1. System umformen

$$egin{aligned} s\,V(s) &= -rac{b}{m}\cdot V(s) + rac{1}{m}\,U(s) \ s\,V(s) + rac{b}{m}\cdot V(s) &= rac{1}{m}\,U(s) \ V(s)igg(s+rac{b}{m}igg) &= rac{1}{m}\,U(s) \ V(s) &= rac{rac{1}{m}}{\left(s+rac{b}{m}
ight)}\,U(s) \end{aligned}$$

Beispiel 1: Fahrzeugmodell 5/

Ausgangssignal im Bildbereich

Mit dem Eingangssignal: $U(s) = e^{-t_0 s}$

$$V(s) = rac{rac{1}{m}}{\left(s + rac{b}{m}
ight)}\,e^{-t_0 s}$$

Funktionsname	Originalfunktion	Bildfunktion
Exponentialfunktion	e^{-at}	$\frac{1}{s+a}$
Verschiebung im Originalbereich (bei einseitiger Transformation nur $a>0$ oder $f(t)=0$ $orall$ $t< a$)	$\int f(t-a)$	$e^{-as}F(s)$

Rücktransformiert im Zeitbereich:

$$v(t)=rac{1}{m}e^{-rac{b}{m}(t-t_0)}$$

Beispiel 1: Fahrzeugmodell 6/

Ausgangssignal im Bildbereich

Mit dem Eingangssignal: $U(s) = \hat{F} \, {1 \over s} e^{-t_0 s}$

$$V(s) = rac{rac{1}{m}}{\left(s + rac{b}{m}
ight)}\,\hat{F}\,rac{1}{s}e^{-t_0s}$$

Funktionsname	Originalfunktion	Bildfunktion
Exponentialverteilung	$1-e^{-at}$	$\frac{a}{s(s+a)}$
Verschiebung im Originalbereich (bei einseitiger Transformation nur $a>0$ oder $f(t)=0$ $orall$ $t< a$)	f(t-a)	$e^{-as}F(s)$

Rücktransformiert im Zeitbereich:

$$v(t)=rac{\hat{F}}{b}\Big(1-e^{-rac{b}{m}\,(t-t_0)}\Big)$$

Erkenntnisse

	Impuls	Sprung
Eingangssignal	$u(t)=\delta(t-t_0)$	$u(t) = \Theta(t-t_0)$
Ausgangssignal	$v(t)=rac{1}{m}e^{-rac{b}{m}(t-t_0)}$ Impulsantwort	$v(t)=rac{1}{b}\left(1-e^{-rac{b}{m}\left(t-t_{0} ight)} ight)$ Sprungantwort

- genau genommen ist die Sprungantwort (i.d.R. h(t)) die Reaktion auf den Einheitssprung (Höhe 1, Zeitpunkt 0)
- Impulsantwort (riangleGewichtsfunktion) (i.d.R. g(t)) ist die zeitliche Ableitung der Sprungantwort

Literatur

1. Bronstein, et al.: *Taschenbuch der Mathematik*. 7. Auflage, Verlag Harri Deutsch, S. 775, Kap. 15.2.1.1. ←