```
In [1]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]: from sklearn import datasets
        iris load = datasets.load iris()
        # iris = pd.DataFrame(data=iris_load.data, columns=iris_load.feature_names)
         iris = pd.DataFrame(data=iris_load.data, columns=iris_load.feature_names)
         iris['Species'] = pd.Categorical.from codes(iris load.target, iris load.target)
         iris.head()
Out[2]:
            sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) Species
         0
                         5.1
                                         3.5
                                                          1.4
                                                                           0.2
                                                                                setosa
         1
                         4.9
                                         3.0
                                                          1.4
                                                                           0.2
                                                                                setosa
         2
                         4.7
                                         3.2
                                                          1.3
                                                                           0.2
                                                                                setosa
         3
                         4.6
                                         3.1
                                                          1.5
                                                                           0.2
                                                                                setosa
         4
                         5.0
                                         3.6
                                                          1.4
                                                                           0.2
                                                                                setosa
In [3]: data = { "weight": [4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33,
                              5.14, 4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.
                              6.31, 5.12, 5.54, 5.50, 5.37, 5.29, 4.92, 6.15, 5.80, 5.
                              , "group": ["ctrl"] * 10 + ["trt1"] * 10 + ["trt2"] * 10
         PlantGrowth = pd.DataFrame(data)
In [4]: PlantGrowth.head()
Out[4]:
            weight group
         0
              4.17
                      ctrl
         1
              5.58
                      ctrl
         2
              5.18
                      ctrl
              6.11
                      ctrl
              4.50
                      ctrl
In [5]: #1a.
         sns.histplot(x='sepal width (cm)', data=iris)
         plt.show()
```


1b. I would expect the mean to be slightly higher than the median due to the graph being right skewed.

In [6]:	<pre>iris.describe()</pre>
	#1C. We see the mean is 3.06 and the median is 3.0

Out[6]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

1D. 2.8

```
In [7]: #1E
sns.pairplot(iris, height=3, aspect=1.2)
```

5/22/25, 10:33 AM Week3Assignment2

1F. It appears that petal length and petal width have the strongest relationship whereas sepal width and petal length have the weakest.

```
In [8]: #2A.
bin_edges = [3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6.0, 6.3, 6.6]
plt.hist(x=PlantGrowth['weight'], bins=bin_edges)
plt.show()
```


2C. Based on the boxplot, I would say between 95-98% of weights are below trt2

```
In [10]: #2D
min_trt2 = PlantGrowth[PlantGrowth['group']=='trt2']['weight'].min()
trt1 = PlantGrowth[PlantGrowth['group']=='trt1']['weight']

percent_below = float((trt1 < min_trt2).sum() / len(trt1) * 100)
percent_below</pre>
```

Out[10]: 80.0

```
In [11]: #2E
    weight_above = PlantGrowth[PlantGrowth['weight']> 5.5]
    sns.barplot(data=weight_above, x='group', y='weight', palette='Set2')
    plt.show()
```

/var/folders/c8/5t9shnnx55s9qks08wcp_zp40000gn/T/ipykernel_6864/2782251643.p
y:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=weight_above, x='group', y='weight', palette='Set2')

In []: