

DE LA SALLE UNIVERSITY College of Science Mathematics and Statistics Department

MTH221A – Linear Algebra (3 units)

Prerequisite: MTH202A (Mathematical Analysis 2)

Prerequisite to: MTH253A (Operations Research 1), STT141A (Linear Models),

MTH242A (Numerical Analysis), MTH230A (Modern Geometry)

Contact details:
Room class schedule:

Course Description

This is an introductory course in linear algebra taken up as a major course by students in the mathematics programs. Topics discussed include matrices, vector spaces, linear transformation and its matrix representations, eigenvalues and eigenvectors, and diagonalization.

Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA) and the outcomes prescribed by the CHED Memorandum Order for the BS Mathematics program.

ELGA	Learning Outcome	Program Outcome							
Critical and Creative	At the end of the course, the	1	2	3	4	5	6	7	8
Thinker	student will								
Effective	apply appropriate linear	✓	✓	✓	✓	✓	√	✓	✓
Communicator	algebraic concepts, thinking								
Lifelong Learner	processes, tools, and								
	technologies in the solution to								
	various conceptual or real-								
	world problems.								

Program Outcomes (BS Mathematics)

A graduate of the program should be able to

- 1. Apply analytical, critical and problem-solving skills using the scientific method.
- 2. Carry out basic mathematical and/or statistical computations and use appropriate technologies in the analysis of data, and in pattern recognition, generalization, abstraction, critical analysis, and problem solving.
- 3. Gain mastery in the core areas of mathematics: algebra, analysis and geometry
- 4. Demonstrate skills in pattern recognition, generalization, abstraction, critical analysis, problem-solving and rigorous argument.
- 5. Develop an enhanced perception of the vitality and importance of mathematics in the modern world, including the interrelationships within mathematics and its connection to other disciplines
- 6. Appreciate the concept and role of proof and reasoning and demonstrate knowledge in reading and writing mathematical proofs.
- 7. Make and evaluate mathematical conjectures and arguments and validate their own mathematical thinking
- 8. Communicate mathematical ideas orally and in writing using clear and precise language

Final Course Outputs

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

ı	Tonowing during the indicated dates of the term.						
	Learning Outcome	Required Outputs	Due Date				
	At the end of the course, the	Carefully crafted	Problems will be given				
	student will apply appropriate	compilation of solved	weekly, and students				
	linear algebraic concepts, thinking	problems (theoretical	will submit the solutions on the				
	processes, tools, and technologies	exercises) that will manifest	following week. After				
	in the solution to various	the application of the	the solutions are				
	conceptual or real-world problems.	concepts learned and	returned, the students				
		reflection.	will edit these and will				
			write an explanation about how the item				
			should be solved. The				
			compilation of				
			corrected solutions will				
			be submitted at Week				
		• Construct a consent men to	13 Week 13				
		• Construct a concept map to	Week 13				
		illustrate the inter-					
		relationships among the					
		various concepts and					
		processes studied in the					
		course					

Rubric for assessment for compilation of solutions to problems						
				Needs		
CRITERIA	Excellent (4)	Very Good (3)	Satisfactory (2)	Improvement		
				(1)		
Understanding	Shows complete	Shows nearly	Shows some	Shows very		
of mathematical	understanding of	complete	understanding of	limited		
concepts	the underlying	understanding of	the mathematical	understanding		
	mathematical	the problem's	concepts and	of the		
	concepts and	mathematical	principles needed	problem's		
	principles	concepts and	to solve the	mathematical		
	needed to solve	principles.	problem.	concepts and		
	the problem.			principles.		
Clarity of	Explanation is	Explanation is	Explanation is	Explanation is		
Explanation	well-written,	clear but few	little difficult to	difficult to		
	complete and	simple details	understand.	understand.		
	unambiguous.	are missed.	Some symbols			
		Terminologies	and notations are			

	Terminologies	and symbols are	used	
	and symbols are	used	inappropriately.	
	used correctly.	appropriately.		
Understanding	Shows correct	Shows correct	Shows correct	Lacks
of methods of	understanding of	understanding of	understanding of	understanding
proof	the method of	the method of	the method of	of the method
	proof.	proof. The	proof but there	of proof but an
	Statements are	proof proceeded	are major errors	attempt to solve
	logical and the	logically except	in reasoning.	the problem is
	desired	for a few minor		evident.
	conclusion is	errors.		
	arrived at.			

Rubric for asses	ssment of concept 1	nap		
CRITERIA	Excellent (4)	Very Good (3)	Satisfactory (2)	Needs Improvement (1)
Understanding of Mathematical Concepts	Shows complete mastery of the concepts and processes studied in the course as well as their interrelationships with one another	Shows an almost complete mastery of the concepts and processes studied in the course as well as their interrelationships with one another.	Shows a moderate degree of understanding of the concepts and processes studied in the course as well as their interrelationships with one another.	Shows a limited degree of understanding of the concepts and processes studied in the course as well as their interrelationships with one another.
Clarity of Presentation	The ideas presented are easily understood and the existing interrelationships among the concepts and processes are clearly indicated.	Except for a few minor details, the ideas presented are easily understood and the existing interrelationships among the concepts and processes are clearly indicated.	Some ideas are not clearly presented, and some interrelationships are either lacking or not correctly presented,	Many of the ideas presented and interrelationships among concepts and processes are incorrect or lacking.
Creativity and Completeness	The objects in the concept map are aesthetically organized and includes all the important concepts included in the course.	A few objects in the map are not properly organized and a few concepts were not included.	Some major concepts and processes and their interrelationships are either misplaced or not included	Majority of the concepts, processes and interrelationships are incorrectly placed or described, or are missing from the concept map.

Additional Requirements

- Quizzes/Seatwork
- Homework
- Final Exam

\sim 1	•	$\boldsymbol{\alpha}$			
Grad	ına		75	COT	n
Orau				NO.	,,

	FOR EXEMPTED		TUDENTS NAL EXAM
	STUDENTS (w/out Final Exam)	with no missed quiz	With one missed quiz
Average of quizzes	90%	60%	55%
Project	10%	10%	10%
Final exam	-	30%	35%

Scale:	
95-100%	4.0
89-94%	3.5
83-88%	3.0
78-82%	2.5
72-77%	2.0
66-71%	1.5
60-65%	1.0
<60%	0.0

Learning Plan			
LEARNING OUTCOMES	TOPIC	WEEK NO.	LEARNING ACTIVITES
At the end of the course, the student will apply appropriate linear algebraic concepts, thinking processes, tools, and technologies in the solution to various conceptual or real-world problems.	1. Linear Equations and Matrices 1.1 Matrices and Matrix Operations 1.2 Algebraic Properties of Matrix Operations 1.3 Special Classes of Matrices 1.4 The Echelon Form of a Matrix 1.5 Equivalent Matrices 1.6 Solutions of Linear Systems 1.7 The Inverse of a Matrix	Weeks 1-3	 Cooperative Learning Skills exercises Seatwork Computer Aided
		QUIZ 1	
	2. Determinants 2.1 Definition and Related Concepts 2.2 Properties of Determinants 2.3 Cofactor Expansion 2.4 Inverse of a Matrix 2.5 Cramer's Rule	Weeks 4-5	 Cooperative Learning Skills exercises Seatwork Problem Set*
		IZ 2- Includes Section Weeks 6-8	
	3. Vector Spaces	WEEKS 0-0	Cooperative LearningLibrary work

3.1 Vector Spaces and Subspaces 3.2 Linear Combinations and Spanning Sets 3.3 Linear Independence 3.4 Bases and Dimension		Skills exercisesSeatworkProblem Set*
4. Linear Transformations 4.1 Definitions and Examples 4.2 Isomorphisms 4.3 Coordinate Vectors 4.4 Matrix of a Linear Transformation	Weeks 9-11	 Library work Cooperative Learning Skills exercises Seatwork Problem Set*
	QUIZ 3	
5. Eigenvalues, Eigenvectors and Diagonalization 5.1 Eigenvalues and Eigenvectors 5.2 The Characteristic Polynomial 5.3 Diagonalization 5.4 Inner Product Spaces* 5.5 Diagonalization of Symmetric Matrices*	Weeks 12-13	 Cooperative Learning Library work Skills exercises Seatwork Problem Set*
FINAL I	EXAMINATION	

*Problem sets are given weekly and the students are expected to work on the solutions for their fourth hour activity. The returned solutions will be rewritten to include all corrections and reflections.

At the end of the term, the solutions to the problems will be compiled and submitted as one of the course outputs. In the last 2-3 weeks, the students are also expected to on their concept maps.

References

Anton, H. (1981) Elementary Linear Algebra, (2nd edition) N.Y.: Wiley

Fraleigh and Beauregard, (1995). Linear Algebra (3rd Edition). Addison: Wesley

Kolman B. and Hill, D., (2003), *Elementary Linear Algebra*, (7th edition). Upper Saddle River, NJ: Pearson Education

Lee, Riess and Arnold,(1993). Introduction to Linear Algebra, (3rd edition). Reading Mass: Addison - Wesley

Perry, W. (1988). Elementary Linear Algebra, (4th edition). NY: McGraw Hill

Online Resources

A First Course in Linear Algebra Accessed October 24, 2012 from: http://linear.ups.edu/ Dawkins, P. (2012) Paul's Online Notes: Linear Algebra. Accessed October 24, 2012 from: http://tutorial.math.lamar.edu/classes/Linalg/linalg.aspx

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

DR. JOSE TRISTAN F. REYES

Chair, Mathematics and Statistics Department
