Contemporary Computer Architecture TDSN13

LECTURE 8 - CUDA HISTOGRAM & REDUCTION
ANDREAS AXELSSON (ANDREAS.AXELSSON@JU.SE)

Key Concept of Atomic Operations

- A read-modify-write operation performed by a single hardware instruction on a memory location address
 - Read the old value, calculate a new value, and write the new value to the location
- The hardware ensures that no other threads can perform another readmodify-write operation on the same location until the current atomic operation is complete
 - Any other threads that attempt to perform an atomic operation on the same location will typically be held in a queue
 - All threads perform their atomic operations serially on the same location

Atomic Operations in CUDA

- Performed by calling functions that are translated into single instructions (a.k.a. intrinsic functions or intrinsics)
 - Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap)
 - Read CUDA C programming Guide for details
- Atomic Add

```
int atomicAdd(int* address, int val);
```

 reads the 32-bit word old from the location pointed to by address in global or shared memory, computes (old + val), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

More Atomic Adds in CUDA

Unsigned 32-bit integer atomic add

```
unsigned int atomicAdd(unsigned int* address,
    unsigned int val);
```

Unsigned 64-bit integer atomic add

```
unsigned long long int atomicAdd(unsigned long long
int* address, unsigned long long int val);
```

- Single-precision floating-point atomic add (Compute capability 2.x+)
 float atomicAdd(float* address, float val);
- Double-precision floating-point atomic add (Compute capability 6.x+) double atomicAdd(double* address, double val);
- 16-bit floating-point atomic add (Compute capability 7.x+)
 half atomicAdd(half* address, half val);

Atomic Operation on Global Mem

- An atomic operation on a DRAM location starts with a read, which has a latency of a few hundred cycles
- The atomic operation ends with a write to the same location, with a latency of a few hundred cycles
- During this whole time, no one else can access the location

Atomic Operations on DRAM

- Each Read-Modify-Write has two full memory access delays
 - All atomic operations on the same variable (DRAM location) are serialized

atomic operation N

atomic operation N+1

Latency determines throughput

- Throughput of atomic operations on the same DRAM location is the rate at which the application can execute an atomic operation.
- The rate for atomic operation on a particular location is limited by the total latency of the read-modify-write sequence, typically more than 1000 cycles for global memory (DRAM) locations.
- This means that if many threads attempt to do atomic operation on the same location (contention), the memory throughput is reduced to < 1/1000 of the peak bandwidth of one memory channel!

Supermarket checkout experience

- Some customers realize that they missed an item after they started to check out
- They run to the isle and get the item while the line waits
 - The rate of checkout is drastically reduced due to the long latency of running to the isle and back.
- Imagine a store where every customer starts the check out before they even fetch any of the items
 - The rate of the checkout will be 1 / (entire shopping time of each customer)

Hardware Improvements

- Atomic operations on Fermi L2 cache
 - Medium latency, about 1/10 of the DRAM latency
 - Shared among all blocks
 - "Free improvement" on Global Memory atomics

Hardware Improvements

- Atomic operations on Shared Memory
 - Very short latency
 - Private to each thread block
 - Need algorithm work by programmers (more later)

Privatization

Heavy contention and serialization Block 0 Block 1 Block N Copy 0 Copy 1 Copy N Final Copy **Final** Atomic Updates Copy

Privatization (cont.)

Privatization (cont.)

Cost and Benefit of Privatization

Cost

- Overhead for creating and initializing private copies
- Overhead for accumulating the contents of private copies into the final copy

Benefit

- Much less contention and serialization in accessing both the private copies and the final copy
- The overall performance can often be improved more than 10x

Shared mem atomics in histogram

- Each subset of threads are in the same block
- Much higher throughput than DRAM (100x) or L2 (10x) atomics
- Less contention only threads in the same block can access a shared memory variable
- This is a very important use case for shared memory!

A Text Histogram Example

- Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, n-p, ...
- For each character in an input string, increment the appropriate bin counter.
- In the phrase "Programming Massively Parallel Processors" the output histogram is shown below:

Our Text Histogram Kernel (cont.)

- The kernel receives a pointer to the input buffer of byte values
- Each thread process the input in a strided pattern

```
global void histo kernel (unsigned char *buffer,
      long size, unsigned int *histo)
    int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
    int stride = blockDim.x * gridDim.x;
// All threads handle blockDim.x * gridDim.x
   // consecutive elements
  while (i < size) {
      int alphabet position = buffer[i] - "a";
      if (alphabet position >= 0 && alpha position < 26)
      atomicAdd(&(histo[alphabet position/4]), 1);
      i += stride;
```

Create private copies of the histo[] array for each thread block _global___ void histo_kernel(unsigned char *buffer, long size, unsigned int *histo) shared unsigned int histo_private[7]; if (threadIdx.x < 7) histo private[threadidx.x] = 0; syncthreads();

Initialize the bin counters in the private copies of histo[]

Build Private Histogram

```
int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;
while (i < size) {
    atomicAdd( &(private_histo[buffer[i]/4]), 1);
    i += stride;
}</pre>
```

Build Final Histogram

```
// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
    atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);
}</pre>
```

More on Privatization

- Privatization is a powerful and frequently used technique for parallelizing applications
- The operation needs to be associative and commutative
 - Histogram add operation is associative and commutative
 - No privatization if the operation does not fit the requirement
- The private histogram size needs to be small
 - Fits into shared memory
- What if the histogram is too large to privatize?
 - Sometimes one can partially privatize an output histogram and use range testing to go to either global memory or shared memory

What is a reduction computation?

- Summarize a set of input values into one value using a "reduction operation"
 - Max
 - Min
 - Sum
 - Product
- Often used with a user defined reduction operation function as long as the operation
 - Is associative and commutative
 - Has a well-defined identity value (e.g., 0 for sum)
 - For example, the user may supply a custom "max" function for 3D coordinate data sets where the magnitude for the each coordinate data tuple is the distance from the origin.

An example of "collective operation"

Efficient Sequential Reduct. O(N)

- Initialize the result as an identity value for the reduction operation
 - Smallest possible value for max reduction
 - Largest possible value for min reduction
 - 0 for sum reduction
 - 1 for product reduction
- Iterate through the input and perform the reduction operation between the result value and the current input value
 - N reduction operations performed for N input values
 - Each input value is only visited once an O(N) algorithm
 - This is a computationally efficient algorithm.

A parallel reduction tree algorithm

A tournament

A reduction tree with "max" operation

A Quick Analysis

For N input values, the reduction tree performs

- (1/2)N + (1/4)N + (1/8)N + ... (1)N = (1- (1/N))N = N-1 operations
- In Log (N) steps 1,000,000 input values take 20 steps
 - Assuming that we have enough execution resources
- Average Parallelism (N-1)/Log(N))
 - For N = 1,000,000, average parallelism is 50,000
 - However, peak resource requirement is 500,000
 - This is not resource efficient.

This is a work-efficient parallel algorithm

- The amount of work done is comparable to the efficient sequential algorithm
- Many parallel algorithms are not work efficient

A Parallel Sum Reduction Example

A Naive Thread to Data Mapping

- Each thread is responsible for an even-index location of the partial sum vector (location of responsibility)
- After each step, half of the threads are no longer needed
- One of the inputs is always from the location of responsibility
- In each step, one of the inputs comes from an increasing distance away

A Simple Thread Block Design

- Each thread block takes 2*BlockDim.x input elements
- Each thread loads 2 elements into shared memory

```
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start + blockDim.x+t];
```

The Reduction Steps

```
for (unsigned int stride = 1;
    stride <= blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % stride == 0)
       partialSum[2*t]+= partialSum[2*t+stride];
}</pre>
```

Why do we need __syncthreads()?

Barrier Synchronization

 __syncthreads() is needed to ensure that all elements of each version of partial sums have been generated before we proceed to the next step

Back to the Global Picture

- At the end of the kernel, Thread 0 in each block writes the sum of the thread block in partialSum[0] into a vector indexed by the blockldx.x
- There can be a large number of such sums if the original vector is very large
 - The host code may iterate and launch another kernel
- If there are only a small number of sums, the host can simply transfer the data back and add them together
- Alternatively, Thread 0 of each block could use atomic operations to accumulate into a global sum variable.

The naïve reduction kernel

- In each iteration, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition still consume execution resources
- Half or fewer of threads will be executing after the first step
 - All odd-index threads are disabled after first step
 - After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence
 - This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),
 where each active warp only has one productive thread until all warps in a block retire

Thread Index Usage Matters

- In some algorithms, one can shift the index usage to improve the divergence behavior
 - Commutative and associative operators
- Always compact the partial sums into the front locations in the partialSum[] array
- Keep the active threads consecutive

An Example of 4 threads

Thread 0 Thread 1 Thread 2 Thread 3

A Better Reduction Kernel

```
for (unsigned int stride = blockDim.x;
    stride > 0; stride /= 2)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}</pre>
```

Takeaway: As long as stride is bigger than a warp size, either all t in a warp is less than stride or bigger than stride. Thus no warp divergence occurce.

A Quick Analysis

For a 1024 thread block

- No divergence in the first 5 steps
 - 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
 - All threads in each warp either all active or all inactive
- The final 5 steps will still have divergence

Introduction to CUDA

Questions?

Contact information

Andreas Axelsson

Email: andreas.axelsson@ju.se

Mobile: 0709-467760