A study and spectral analysis of the discrete Legendre polynomials

Amélie Bernès Carmona Moisés Soto Bajo

Benemérita Universidad Autónoma de Puebla ammel.bernes@gmail.com

6 de junio de 2023

Part One: Definition of the $\mathcal{L}^{n,k}$

Fixed $n \ge 2$, a signal of dimension n will be represented with a vector of \mathbb{R}^n .

We are interested in geometric attributes of the signal, particularly, in knowing when it behaves like a straight line or like a parabola.

$$G_x := \{(m, x_m) : 0 \le m \le n - 1\}.$$

Fixed a dimension $n \ge 2$, we are looking for a basis

$$\mathcal{L}^n = \{\mathcal{L}^{n,k}: \ 0 \le k \le n-1\}$$

of \mathbb{R}^n such that

• (Size) It is an orthonormal basis of \mathbb{R}^n ;

$$\forall x \in \mathbb{R}^n : x = \sum_{k=0}^{n-1} \langle x, \mathcal{L}^{n,k} \rangle$$

and

$$\forall x \in \mathbb{R}^n : ||x||^2 = \sum_{k=0}^{n-1} |\langle x, \mathcal{L}^{n,k} \rangle|^2$$

• (Shape) It's possible to establish a simple criteria for the shape of the graph of any signal x in terms of the coefficients $\langle x, \mathcal{L}^{n,k} \rangle$ of it with respect to \mathcal{L}^n .

Let $x=(x_m)_{m=0}^{n-1}\in\mathbb{R}^n$. Define al operador de discr. puntual. y a los espacios Wk

$$x$$
 is affine \Leftrightarrow $x = (a)$

Likewise,

$$x$$
 is constant iff $x \in W_{n,0}$

and

$$x$$
 is cuadratic iff $x \in W_{n,2}$.

Some properties of the subspaces $W_{n,k}$

Proposición

Let $n \geq 2$, $0 \leq k \leq n-1$. Let $W_{n,k}$ be as.

- $dim(W_{n,k}) = k + 1$,
- $\forall 0 \leq i \leq n-2$: $W_{n,i} \subseteq W_{n,i+1}$,
- $\mathbb{R}^n = W_{n,n-1}$
- Let $\mathcal{P} = \{t_j := t_0 + hj : 0 \le j \le n-1\}$ be a uniform mesh of n points. For all $x \in \mathbb{R}^n$ and all $0 \le i \le n-1$, $x \in W_{n,i}$ if and only if there exists a polynomial g(x) of degree at most i such that $x = \Omega_{n,\mathcal{P}}(g)$.

The belonging to a subspace $W_{n,k}$ determines the shape of the graph of a signal x.

The definition of the degree of a finite signal

Proposición

Let $n \geq 2$ and \mathcal{P} be a uniform mesh of n points. The function

$$\Omega_{n,\mathcal{P}}:\mathbb{R}_{n-1}[t]\longrightarrow\mathbb{R}^n$$

is an isomorphism of \mathbb{R} -vector spaces.

Notice that the mesh $\mathcal P$ is fixed at the beginning. Can we find two meshes $\mathcal P$ and $\tilde{\mathcal P}$ and two polynomials $f,\tilde f$ of degrees $0\leq \partial(f)< partial(\tilde f)\leq n-1$ such that

$$\Omega_{n,\mathcal{P}}(f) = x = \Omega_{n,\tilde{\mathcal{P}}}(\tilde{f})$$
?

What is sure is that we can not assure uniqueness if we remove the restriction in the degrees of the polynomials.

Proposición

Let $n \geq 2$, $x \in \mathbb{R}^n$. If \mathcal{P} and $\tilde{\mathcal{P}}$ are uniform meshes of n points and $f, \tilde{f} \in \mathbb{R}_{n-1}[t]$ are such that

$$\Omega_{n,\mathcal{P}}(f) = x = \Omega_{n,\tilde{\mathcal{P}}}(\tilde{f}).$$

then $\partial(f) = \partial(\tilde{f})$.

Definición

Let $n \geq 2$ and $x \in \mathbb{R}^n$. If $f \in \mathbb{R}_{n-1}[t]$ and \mathcal{P} is a uniform mesh of n points such that $x = \Omega_{n,\mathcal{P}}(f)$, then

$$\partial(x) := \partial(f)$$

Relationship between the degree of a signal and the spaces $W_{n,k}$

Let n > 2 and $x \in \mathbb{R}^n$.

- x has degree 0 iff $x \in W_{n,0}$
- for all $1 \le i \le n-1$, x has degree i iff $x \in W_{n,i}$

Thus, $W_{n,k}$ is the space of signals of degree k. Let's find orthonormal basis for those spaces.

STEP I: Discretization process

{w_{n,k} | 0≤k≤n-1}⊆IR"

STEP II: Orthonormalization process

DISCRETIZATION

ORTHONORMALIZATION

Thus, if $x \in \mathbb{R}^n$,

- x has degree k if and only if $x \in W_{n,k}$ (binary answer)
- We can actually measure how far apart x is from $W_{n,k}$, thus we can measure how much x is far away from the property "having degree k"

How to measure the distance to a subspace?

Why cosine similarity is better for us?

Answer: it is, as well as the shape of the graph of a signal, invariant under scalar multiplication.

Using coefficientes with respect to \mathcal{L}^n to make a morphological analysis

Let
$$x = \sum_{i=0}^{n-1} a_i \mathcal{L}^{n,i} \in \mathbb{R}^n$$
.

- x is approximately constant iff $a_0^2 \sim ||x||^2$
- x is approximately affine iff $a_0^2 + a_1^2 \sim ||x||^2$
- x is approximately cuadratic iff $a_0^2 + a_1^2 + a_2^2 \sim ||x||^2$

In general, x has nearly degree k iff the energy $||x||^2$ is concentrated in the first k coefficients a_k .

poner fórmulas

Example in \mathbb{R}^3

Relationship with the minimum square approximation method

a

Part Two: Spectral analysis