

SPRING LOADED V-BELT TENSIOMETER

V-BELT TENSIONING

This document examines the formula method when using a spring loaded tensiometer. Carlisle also offers several other tools to help tension belts properly. The Carlisle Frequency-Finder allows simple, fast and reliable tensioning on virtually any type of belt. It works on the principle of forced vibration. Carlisle's Tension-Finder is a simple, easy and accurate tool to assure proper tensioning of individual belts or V-Bands. The Tension-Finder should not be used with aramid or glass cord belts.

V-BELT TENSIONING

INTRODUCTION

Because V-belts operate on the friction principle, multiplied by the mechanical advantage of the wedging principle, proper tensioning of v-belts is the single most important factor necessary for long, satisfactory operation. Too little tension will result in slippage, causing rapid belt and sheave wear, and loss of productivity. Too much tension can result in excessive stress on belts, bearings, and shafts and reduced efficiency.

However, there is still a wide range of tension within which a drive will operate satisfactorily. The intent is to find this proper range for any V-belt drive.

IMPORTANT

Although the values in the Average Tensioning Values Table included in this brochure can be used satisfactorily for most V-belt drives, they are based on drives which are designed using recommended procedures and ratings in the Carlisle Engineering Guide for Industrial V-Belt Drives (102161). They DO NOT, for example, consider drives originally designed for wrapped type belts, which are later upgraded to the premium Power-Wedge® Cog-Belt® (3VX, 5VX, 8VX) belts or Gold Ribbon™ Cog-Belt® (AX, BX, CX, DX) belts. In these cases, where known, the values for the wrapped type Super Power-Wedge® (3V, 5V, 8V) belts or Super Blue Ribbon® (AP, BP, CP, DP) belts should be used. For more precise tension values, Carlisle recommends that the "Formula Method" of tensioning described in the Engineering Guide for Industrial V-Belt Drives be used. Failure to observe the limitations of the Average Tensioning Values Table may result in excessive loads on bearings and/or shafts.

GENERAL METHOD

A few simple rules should be followed to satisfy most drive requirements:

- 1. For installation, reduce the center distance so the belts may be placed in the sheave grooves without force. Arrange the belts so that both the top and bottom spans have about the same amount of sag. Apply tension to the belts by increasing the center distance until the belts are snug and have a live, springy action when struck with the hand.
- 2. Operate the drive a few minutes to seat the belts in the sheave grooves. Observe the operation of the drive under its highest load condition (usually starting). A slight bowing of the slack side of the drive indicates adequate tension. If the slack side remains taut during the peak load, the drive is too tight.
- 3. Check the tension on a new drive several times during the first 24 hours of operation, by observing the slack side span.
- 4. Keep the drive free of foreign material which might cause slippage or damage to the belt and sheave surfaces.
- 5. If a V-belt slips, it is too loose. Increase the tension by increasing the center distance. Never apply belt dressing, as this will damage the belt and cause early failure.

V-BELT TENSIONING

(Continued)

Strand Deflection — Formula Method

This method is based on the fact that the force required to deflect a given span length by a given amount is related to the tension in the belt. (Note: If the drive uses banded V-belts, use "Belt Elongation Method." See page 10.

Step 1. Install the belts per rules 1 and 2 of the "General Method" discussed previously. Measure span length (t) in inches as shown in Figure 26, or calculate as follows:

$$t = \sqrt{C^2 - \left(\frac{D-d}{2}\right)^2}$$

Where:

t = span length, in inches

C = center distance, in inches

D = large sheave pitch diameter, in inches

d = small sheave pitch diameter, in inches

Figure 26 — BELT DEFLECTION DIAGRAM

Step 2. Calculate the deflection distance by: t/64 = deflection. Note from Figure 26 that the deflection distance is always 1/64" per inch of span length (for example, a 32" span length would require a deflection of 32/64 or 1/2 inch).

Step 3. Calculate the static strand tension (T_s) per belt by the following formula:

$$T_S = \frac{\text{Design HP x K}}{\text{Q x S}} + T_c$$

Where: $K = \text{value from Table 29 depending on value of } \frac{D - d}{C}$

Q = number of belts/ribs on drive

S = belt speed, feet per minute / 1000

 T_c = add-on tension allowance for centrifugal force, from Table 31 on page 7.

Note: The value of T_s is for an individual V-belt. If a banded V-belt is used, refer to "Elongation Method."

Step 4. Calculate the recommended minimum and maximum deflection forces (P), in pounds:

$$P_{min} = \frac{T_s + Y}{16}$$
 $P_{max} = \frac{(1.5 \text{ x } T_s) + Y}{16}$

Where:

 T_S = Static strand tension (from Step 3)

Y = Constant from Table 30 on page 5.

Table 29 Factors Table

	Factors	Table	()	Jiitiiiaea)				
Arc of Contact (degrees)	(D-d) C	Α	В	Н	K	М	N (C _q)	0
180 179 178 177 176	0.000 0.017 0.035 0.052 0.070	 57.297 28.649 19.101 14.327	1.000 1.000 1.000 1.000 0.999	2.000 2.000 2.000 1.999 1.999	24.750 24.843 24.937 25.032 25.129	1.000 1.000 1.000 1.000 0.999	1.00 1.00 1.00 0.99 0.99	0.75 0.75 0.76 0.76 0.76
175 174 173 172 171	0.087 0.105 0.122 0.140 0.157	11.463 9.554 8.190 7.168 6.373	0.999 0.998 0.998 0.997 0.996	1.998 1.997 1.996 1.995 1.994	25.227 25.326 25.427 25.529 25.632	0.999 0.999 0.998 0.998 0.997	0.99 0.99 0.98 0.98 0.9	0.76 0.77 0.77 0.77 0.77
170 169 168 167 166	0.174 0.192 0.209 0.226 0.244	5.737 5.217 4.783 4.417 4.103	0.996 0.995 0.994 0.993 0.992	1.992 1.991 1.989 1.987 1.985	25.737 25.844 25.952 26.061 26.172	0.996 0.995 0.995 0.994 0.993	0.98 0.97 0.97 0.97 0.97	0.77 0.78 0.78 0.78 0.78
165 164 163 162 161	0.261 0.278 0.296 0.313 0.330	3.831 3.593 3.383 3.196 3.029	0.991 0.990 0.988 0.987 0.986	1.983 1.981 1.978 1.975 1.973	26.285 26.399 26.515 26.633 26.752	0.992 0.990 0.989 0.988 0.987	0.96 0.96 0.96 0.96 0.95	0.79 0.79 0.79 0.79 0.80
160 159 158 157 156	0.347 0.364 0.382 0.399 0.416	2.879 2.744 2.620 2.508 2.405	0.984 0.983 0.981 0.979 0.977	1.970 1.967 1.963 1.960 1.956	26.873 26.996 27.120 27.247 27.375	0.985 0.984 0.982 0.980 0.979	0.95 0.95 0.95 0.94 0.94	0.80 0.80 0.80 0.81 0.81
155 154 153 152 151	0.433 0.450 0.467 0.484 0.501	2.310 2.223 2.142 2.067 1.997	0.975 0.973 0.971 0.969 0.967	1.953 1.949 1.945 1.941 1.936	27.505 27.638 27.772 27.908 28.046	0.977 0.975 0.973 0.971 0.969	0.94 0.93 0.93 0.93 0.93	0.81 0.81 0.81 0.82 0.82
150 149 148 147 146	0.518 0.534 0.551 0.568 0.585	1.932 1.871 1.814 1.760 1.710	0.965 0.962 0.960 0.957 0.954	1.932 0.927 1.923 1.918 1.913	28.187 28.329 28.474 28.621 28.771	0.967 0.965 0.963 0.961 0.959	0.92 0.92 0.92 0.91 0.91	0.82 0.82 0.83 0.83 0.83
145 144 143 142 141	0.601 0.618 0.635 0.651 0.668	1.663 1.618 1.576 1.536 1.498	0.952 0.949 0.946 0.943 0.940	1.907 1.902 1.897 1.891 1.885	28.922 29.076 29.233 29.392 29.553	0.956 0.954 0.952 0.949 0.947	0.91 0.91 0.90 0.90 0.90	0.83 0.83 0.84 0.84 0.84
Arc of Contact (degrees)	(D-d) C	A	В	н	K	М	N	0
1 ' '							(C _q)	U
140 139 138 137 136	0.684 0.700 0.717 0.733 0.749	1.462 1.428 1.395 1.364 1.335	0.936 0.933 0.930 0.926 0.922	1.879 1.873 1.867 1.861 1.854	29.718 29.884 30.054 30.226 30.402	0.944 0.942 0.939 0.936 0.934	N (C _q) 0.89 0.89 0.89 0.88	0.84 0.84 0.85 0.85 0.85
140 139 138 137 136 135 134 133 132 131	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229	0.936 0.933 0.930 0.926 0.922 0.919 0.915 0.911 0.907 0.903	1.879 1.873 1.867 1.861 1.854 1.848 1.841 1.834 1.827 1.820	29.718 29.884 30.054 30.226 30.402 30.580 30.761 30.945 31.132 31.323	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.925 0.923	0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.87	0.84
140 139 138 137 136 135 134 133 132 131 130 129 128 127 126	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829 0.845 0.861 0.877 0.892 0.908	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229 1.206 1.183 1.161 1.141 1.121	0.936 0.933 0.930 0.926 0.922 0.919 0.915 0.911 0.907 0.903 0.898 0.894 0.889 0.885 0.880	1.879 1.873 1.867 1.861 1.854 1.848 1.841 1.834 1.827 1.820 1.813 1.805 1.790 1.782	29.718 29.884 30.054 30.226 30.402 30.580 30.761 30.945 31.132 31.323 31.516 31.713 31.914 32.118 32.325	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.923 0.920 0.917 0.914 0.911 0.908 0.905	0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.85	0.84 0.84 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.85
140 139 138 137 136 135 134 133 132 131 130 129 128 127 126	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829 0.845 0.861 0.877 0.892 0.908	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229 1.206 1.183 1.161 1.141 1.121 1.101 1.065 1.048 1.031	0.936 0.933 0.930 0.926 0.922 0.919 0.915 0.911 0.907 0.903 0.898 0.894 0.889 0.885 0.880	1.879 1.873 1.867 1.861 1.854 1.848 1.841 1.834 1.827 1.820 1.813 1.805 1.790 1.782	29.718 29.884 30.054 30.226 30.402 30.580 30.761 30.945 31.132 31.323 31.516 31.713 31.914 32.325 32.752 32.970 33.193 33.420	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.923 0.920 0.917 0.914 0.911 0.908 0.905	0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.85 0.84	0.84 0.84 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.85 0.85
140 139 138 137 136 135 134 133 132 131 130 129 128 127	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829 0.845 0.861 0.877 0.892 0.908 0.939 0.954 0.970 0.985	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229 1.206 1.183 1.161 1.141 1.121 1.101 1.065 1.048 1.031 1.015 1.000 0.985 0.971 0.957	0.936 0.933 0.933 0.926 0.922 0.919 0.915 0.911 0.907 0.903 0.898 0.894 0.889 0.885 0.880 0.870 0.864 0.853 0.853	1.879 1.873 1.867 1.861 1.854 1.848 1.841 1.834 1.827 1.820 1.813 1.805 1.798 1.790 1.782 1.766 1.758 1.749 1.741 1.732 1.723 1.714 1.705 1.696	29.718 29.884 30.054 30.226 30.402 30.580 30.761 31.132 31.323 31.516 31.713 31.914 32.318 32.325 32.752 32.970 33.193 33.420 33.651 33.886 34.126 34.370 34.618	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.923 0.920 0.917 0.914 0.911 0.908 0.905 0.893 0.896 0.893 0.890 0.884 0.880 0.877 0.874	0.89 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.83 0.83 0.83 0.83 0.83	0.84 0.84 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.83 0.83 0.83 0.83 0.83
140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 123 122 121 120 119 118 117 116	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829 0.845 0.861 0.877 0.892 0.908 0.939 0.954 0.970 0.985 1.000 1.015 1.030 1.045 1.060 1.075 1.089 1.104 1.118	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229 1.206 1.183 1.161 1.141 1.121 1.101 1.065 1.048 1.031 1.015 1.000 0.985 0.971 0.957 0.944 0.931 0.918 0.906 0.883	0.936 0.933 0.933 0.930 0.926 0.922 0.919 0.915 0.911 0.907 0.903 0.898 0.889 0.885 0.880 0.870 0.864 0.859 0.853 0.853 0.841 0.853 0.841 0.835 0.822 0.815 0.808 0.801 0.793 0.793	1.879 1.873 1.861 1.861 1.854 1.848 1.841 1.834 1.827 1.820 1.813 1.805 1.798 1.790 1.782 1.766 1.758 1.749 1.741 1.732 1.741 1.705 1.696 1.687 1.668 1.658 1.648	29.718 29.884 30.054 30.226 30.402 30.580 30.761 31.132 31.323 31.516 31.713 31.914 32.318 32.325 32.752 32.970 33.193 33.420 33.651 33.886 34.126 34.370 34.618	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.923 0.920 0.917 0.914 0.911 0.908 0.905	0.89 0.89 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.80 0.79 0.79 0.79	0.84 0.84 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.85 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.81 0.80 0.79 0.79
140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 123 122 121 120 119 118 117 116	0.684 0.700 0.717 0.733 0.749 0.765 0.781 0.797 0.813 0.829 0.845 0.861 0.877 0.892 0.908 0.939 0.954 0.970 0.985 1.000 1.015 1.030 1.045 1.060	1.462 1.428 1.395 1.364 1.335 1.307 1.280 1.254 1.229 1.206 1.183 1.161 1.141 1.121 1.101 1.065 1.048 1.031 1.015 1.000 0.985 0.971 0.957 0.944 0.931 0.918 0.906 0.894	0.936 0.933 0.933 0.930 0.926 0.922 0.919 0.915 0.911 0.907 0.903 0.898 0.889 0.885 0.880 0.870 0.864 0.859 0.853 0.853 0.847 0.841 0.835 0.822 0.815 0.808 0.801 0.793	1.879 1.873 1.861 1.861 1.854 1.848 1.841 1.834 1.827 1.820 1.813 1.805 1.798 1.798 1.790 1.782 1.766 1.758 1.741 1.732 1.741 1.732 1.714 1.705 1.696 1.687 1.696 1.687 1.668	29.718 29.884 30.054 30.226 30.402 30.580 30.761 30.945 31.132 31.323 31.516 31.713 31.914 32.325 32.752 32.970 33.193 33.420	0.944 0.942 0.939 0.936 0.934 0.931 0.928 0.925 0.923 0.920 0.917 0.914 0.911 0.908 0.905 0.896 0.893 0.890 0.896 0.893 0.897 0.844 0.880 0.877 0.874	0.89 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.83 0.83 0.83 0.83 0.83	0.84 0.84 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.83 0.83 0.83 0.83 0.83

TABLE 30 - FACTORS C. & Y

BELT	Cc	Cc	Y
CROSS	SINGLE	BANDED	
SECTION	BELTS	BELTS	
A	0.72	-	6.00
AP	0.72	0.86	5.00
AX	0.68	0.81	6.00
B BP BX	0.99 1.09 0.95	1.36 1.17	9.00 8.00 9.00
C	2.09	-	18.00
CP	1.84	2.24	18.00
CX	1.69	-	19.00
DP	3.65	4.19	28.00
DX	3.83	4.78	40.00
3VX	0.55	0.47	4.00
5VX/5V	1.25	1.32	11.00
8V	2.95	3.46	25.00
8VX	2.95	3.46	30.00

NOTE: For drives using only one belt, and at least one shaft is free to turn, use the following for the deflection forces (P):

$$P_{\min} = \frac{T_s + \frac{t}{L}r}{16}$$
 $P_{\max} = \frac{(1.5xT_s) + \frac{t}{L}Y}{16}$

Where: t = span length, inches (from step 1)

L = belt pitch length, inches

Y = constant from Table 30 above

STEP 5

Tension the V-belts by this procedure:

- a) Using a Carlisle Tensiometer (part no. 102761), or other suitable spring scale, apply force to ONE belt of the drive, perpendicular to the span at its mid-point, as shown in figure 27. See Page 13 for the Tensiometer instructions.
- b) Measure the deflecting force being applied when the belt has been deflected the distance calculated in Step 2 (use an adjacent belt as reference point; on single belt drives, use straight edge or taut string across sheaves). The measured force should be between the values of P_{min} and P_{max} calculated in Step 4. If the measured force is outside these values, adjust center distance to increase or reduce tension, and repeat above procedure. On multiple belt drives an average of readings on each belt is recommended.

NOTE: If new belts are being installed for the first time, it is permissible to tension as much as $1.33 \times P_{\text{max}}$ to allow for initial stretch and seating in the grooves.

STEP 6

During the first 24 hours of operation, it is advisable to repeat the procedure in Step 5 at least once.

Example of Determining Tension by Formula Method

Given drive parameters:

Driven HP = 25

Driver = 6 groove, C section, 10.0" p.d. (@ 1750 RPM)

Driven = 6 groove, C section, 30.0" p.d.

Belts = 6 CP162 Super Blue Ribbon

Center Distance = 50.0"

STEP 1

Measure span length (t), or calculate as:

$$t = \sqrt{C^2 - \left(\frac{D-d}{2}\right)^2} =$$

$$t = \sqrt{(50)^2 - (\frac{30 \cdot 10}{2})^2} = 49.0$$
"

STEP 2

Calculate deflection distance: t = 49/64"

STEP 3

To find Static Strand Tension (Ts), first calculate:

$$S (fpm/1000) = \frac{10 \times 1750 \times .262}{1000} = 4.585$$

$$\frac{D - d}{C} = \frac{30 - 10}{50} = \mathbf{0.4}$$

and find factor K from Table 29 on Page 4.

K = 27.257 (interpolating)

$$T_s = \frac{Design \ Horspowerx \ K}{QxS} + T_c$$
 (from Table 31) $= \frac{125 \ x \ 27.257}{6 \ x \ 4.585} + 20.8 = 144.7 \ lbs.$

STEP 4

Calculate minimum and maximum deflection forces:

Pmin =
$$\frac{T_{s+y}}{16} = \frac{144.7 + 16}{16} = 10 \text{ lbs.}$$

Pmax =
$$\frac{(1.5 \text{ x Ts}) + Y}{16} = \frac{217.1 + 16}{16} = 14.6 \text{ lbs.}$$

STEP 5

Belts are tensioned at deflection distance of 49/64" until force readings are between 10 and 15 lbs. If belts are new, between 15 and 20 lbs.)

ALTERNATE FORMULA FOR FINDING STRAND TENSION (T_s):

$$Ts \ = \ 16.5 \quad \left(\frac{2.5 \text{ - N}}{N}\right) \quad \left(\frac{Design \ HP}{Q \ x \ S}\right) \quad \ + \quad \ \frac{C_{\it c} \ x \ S^2}{2}$$

Where: N = Arc Correction Factor, Table 29

Q = Number of belts on drive

Cc = Centrifugal constant from Table 30 S = Belt speed, feet per minute/1000

TABLE 31 - Tc CENTRIFUGAL TENSION ADD-ON VALUES FOR CALCULATING STATIC STRAND TENSION (Ts) OF INDIVIDUAL V-BELTS. (FOR BANDED BELTS SEE TABLE 32)

S	P	POWER-WEDGE SUPER POWER COG-BELT WEDGE			SUPER BLUE RIBBON				GOLD RIBBON COG & SUPER II				
<u>fpm</u> 1000	3VX	5VX	8VX	5V	8V	AP	ВР	СР	DP	AX A	BX B	CX C	DX D
0.50	0.05	0.13	0.44	0.15	0.41	0.08	0.13	0.25	0.47	0.08	0.13	0.22	0.50
0.75	0.11	0.30	0.98	0.34	0.92	0.19	0.30	0.56	1.05	0.17	0.28	0.50	1.12
1.00	0.19	0.54	1.74	0.61	1.64	0.33	0.54	0.99	1.87	0.31	0.50	0.89	1.98
1.25	0.30	0.84	2.72	0.96	2.56	0.52	0.84	1.54	2.92	0.48	0.78	1.39	3.10
1.50	0.44	1.21	3.92	1.38	3.69	0.75	1.21	2.22	4.20	0.69	1.13	2.00	4.46
1.75	0.59	1.65	5.34	1.88	5.02	1.02	1.65	3.03	5.72	0.94	1.53	2.72	6.08
2.00	0.78	2.16	6.97	2.45	6.56	1.33	2.16	3.95	7.47	1.23	2.00	3.55	7.94
2.25	0.98	2.73	8.82	3.10	8.30	1.68	2.73	5.00	9.46	1.55	2.53	4.50	10.05
2.50	1.21	3.37	10.89	3.83	10.24	2.08	3.37	6.17	11.67	1.91	3.13	5.55	12.40
2.75	1.47	4.08	13.18	4.63	12.40	2.51	4.08	7.47	14.12	2.32	3.78	6.72	15.01
3.00	1.75	4.85	15.68	5.51	14.75	2.99	4.85	8.89	16.81	2.76	4.50	8.00	17.86
3.25	2.05	5.70	18.41	6.47	17.31	3.51	5.70	10.43	19.73	3.23	5.29	9.39	20.96
3.50	2.38	6.61	21.35	7.50	20.08	4.07	6.61	12.10	22.88	3.75	6.13	10.89	24.31
3.75	2.73	7.58	24.51	8.61	23.05	4.67	7.58	13.89	26.27	4.31	7.04	12.50	27.90
4.00	3.11	8.63	27.88	9.80	26.23	5.31	8.63	15.80	29.88	4.90	8.01	14.22	31.75
4.25	3.51	9.74	31.48	11.06	29.61	6.00	9.74	17.84	33.74	5.53	9.04	16.05	35.84
4.50	3.93	10.92	35.29	12.40	33.19	6.73	10.92	20.00	37.82	6.20	10.13	17.99	40.18
4.75	4.38	12.17	39.32	13.82	36.98	7.49	12.17	22.29	42.14	6.91	11.29	20.05	44.77
5.00	4.85	13.48	43.57	15.31	40.98	8.30	13.48	24.69	46.69	7.66	12.51	22.21	49.61
5.25	5.35	14.86	48.03	16.88	45.18	9.15	14.86	27.23	51.48	8.44	13.79	24.49	54.69
5.50	5.87	16.31	52.72	18.53	49.58	10.05	16.31	29.88	56.50	9.26	15.14	26.88	60.02
5.75	6.42	17.83	57.62	20.25	54.19	10.98	17.83	32.66	61.75	10.13	16.54	29.38	65.60
6.00	6.99	19.41	62.74	22.05	59.01	11.96	19.41	35.56	67.24	11.03	18.01	31.99	71.43
6.25	7.58	21.06	68.07	23.93	64.03	12.97	21.06	38.59	72.96	11.96	19.55	34.71	77.51
6.50	8.20	22.78	73.63	25.88	69.25	14.03	22.78	41.73	78.91	12.94	21.14	37.54	83.83
6.75	8.84	24.57	79.40	27.91	74.68	15.13	24.57	45.01	85.10	13.95	22.80	40.49	90.41
7.00	9.51	26.42	85.39	30.01	80.32	16.27	26.42	48.40	91.52	15.01	24.52	43.54	97.23

NOTE: When value of S is greater than 6.00, special sheaves and/or dynamic balancing may be necessary. See the Carlisle V-Belt Drive Design catalog (102161)

TABLE 32 - Tc CENTRIFUGAL TENSION ADD-ON VALUES FOR CALCULATING STATIC STRAND TENSION (Ts) OF BANDED V-BELTS. (FOR INDIVIDUAL V-BELTS SEE TABLE 31)

S fpm		Wedge-Band	d	Super Vee-Band			Gold Ribbon Cog-Band			
1000	R3V	R5V	R8V	RBP	RCP	RDP	RBX	RCX	RDX	
0.50	0.06	0.16	0.47	0.17	0.29	0.54	0.16	0.26	0.57	
0.75	0.14	0.37	1.07	0.39	0.66	1.21	0.36	0.59	1.28	
1.00	0.25	1.03	2.97	1.08	1.82	3.35	1.00	1.64	3.56	
1.25	0.40	1.03	2.97	1.08	1.82	3.35	1.00	1.64	3.56	
1.50	0.57	1.48	4.27	1.55	2.62	4.82	1.44	2.36	5.12	
1.75	0.78	2.02	5.81	2.11	3.57	6.57	1.96	3.21	6.97	
2.00	1.02	2.64	7.59	2.76	4.66	8.58	2.55	4.19	9.11	
2.25	1.29	3.34	9.61	3.49	5.90	10.85	3.23	5.31	11.53	
2.50	1.59	4.12	11.86	4.31	7.28	13.40	3.99	6.55	14.23	
2.75	1.92	4.99	14.35	5.22	8.81	16.21	4.83	7.93	17.22	
3.00	2.29	5.94	17.08	6.21	10.48	19.29	5.75	9.43	20.50	
3.25	2.69	6.97	20.05	7.29	12.30	22.64	6.74	11.07	24.06	
3.50	3.12	8.08	23.25	8.45	14.27	26.26	7.82	12.84	27.90	
3.75	3.58	9.28	26.69	9.71	16.38	30.15	8.98	14.74	32.03	
4.00	4.07	10.56	30.37	11.04	18.63	34.30	10.21	16.77	36.44	
4.25	4.60	11.92	34.28	12.47	21.04	38.72	11.53	18.93	41.14	
4.50	5.15	13.36	38.43	13.98	23.58	43.41	12.93	21.23	46.12	
4.75	5.74	14.89	42.82	15.57	26.28	48.37	14.40	23.65	51.39	
5.00	6.36	16.50	47.45	17.25	29.12	53.60	15.96	26.20	56.94	
5.25	7.01	18.19	52.31	19.02	32.10	59.09	17.69	28.89	62.77	
5.50	7.70	19.96	57.41	20.88	35.23	64.85	19.31	31.71	68.90	
5.75	8.41	21.82	62.75	22.82	38.51	70.88	21.11	34.66	75.30	
6.00	9.16	23.76	68.33	24.85	41.93	77.18	22.98	37.73	81.99	
6.25	9.94	25.78	74.14	26.96	45.49	83.74	24.94	40.94	88.97	
6.50	10.75	27.88	80.19	29.16	49.21	90.58	26.97	44.29	96.23	
6.75	11.60	30.07	86.47	31.45	53.06	97.68	29.09	47.76	103.77	
7.00	12.47	32.34	93.00	33.82	57.07	105.05	31.28	51.36	111.60	

-NOTE-

When value of S is greater than 6.00, special sheaves and/or dynamic balancing may be necessary - see the Carlisle V Belt Drive design catalog 102161

AVERAGE TENSIONING TABLES

Although the Formula Method is recommended for the most accurate means of determining V-Belt tension, Table 33 may be used satisfactorily for most drives. However, these values are based on drives which are designed using recommended procedures and ratings in this catalog for the belt types and cross-sections indicated in the tables. They do NOT, for example, consider drives originally designed for wrapped-type belts, which are later upgraded to the premium Power-Wedge Cog-Belt or Gold Ribbon Cog-Belt. In these cases, where known, the values for the wrapped-type Super Power-Wedge or Super Blue Ribbon should be used.

Failure to observe these limitations of the tables may result in excessive loads on bearings and/or shafts.

TABLE 33 AVERAGE TENSIONING VALUES (RECOMMENDED MINIMUM FORCE PER BELT)

			•		Deflection Force for Drive Speed Patin (lbs.)						
V-Belt	V-Belt	Small She		Deflection Force for Drive Speed Ratio (lbs.)							
Туре	Section	Speed Range	Diameter	1.00	1.5	2.0	4.0 & over				
	Α	1800-3600	3.0	2.0	2.3	2.4	3.3				
	AP	1800-3600	4.0	2.6	2.8	3.0	3.3				
	7.1.	1800-3600	5.0	3.0	3.3	3.4	3.7				
		1800-3600	7.0	3.5	3.7	3.8	4.3				
	В	1200-1800	4.6	3.7	4.3	4.5	5.0				
Super II	BP	1200-1800	5.0	4.1	4.6	4.8	5.6				
		1200-1800	6.0	4.8	5.3	5.5	6.3				
		1200-1800	8.0	5.7	6.2	6.4	7.2				
	С	900-1800	7.0	6.5	7.0	8.0	9.0				
Super	СР	900-1800	9.0	8.0	9.0	10.0	11.0				
Blue Ribbon	0.	900-1800	12.0	10.0	11.0	12.0	13.0				
		700-1500	16.0	12.0	13.0	13.0	14.0				
		900-1500	12.0	13.0	15.0	16.0	17.0				
	DP	900-1500	15.0	16.0	18.0	19.0	21.0				
		700-1200	18.0	19.0	21.0	22.0	24.0				
		700-1200	22.0	22.0	23.0	24.0	26.0				
		1800-3600	3.0	2.5	2.8	3.0	3.3				
	AX	1800-3600	4.0	3.3	3.6	3.8	4.2				
	, ,,,	1800-3600	5.0	3.7	4.1	4.3	4.6				
		1800-3600	7.0	4.3	4.6	4.8	5.3				
	вх	1200-1800	4.6	5.2	5.8	6.0	6.9				
		1200-1800	5.0	5.4	6.0	6.3	7.1				
		1200-1800	6.0	6.0	6.4	6.7	7.7				
Gold Ribbon		1200-1800	8.0	6.6	7.1	7.5	8.2				
Cog-Belt	CX	900-1800	7.0	10.0	11.0	12.0	13.0				
		900-1800	9.0	11.0	12.0	13.0	14.0				
		900-1800	12.0	12.0	13.0	13.0	14.0				
		700-1500	16.0	13.0	14.0	14.0	15.0				
		900-1500	12.0	16.0	18.0	19.0	20.0				
		900-1500	15.0	19.0	21.0	22.0	24.0				
		700-1200	18.0	22.0	24.0	25.0	27.0				
		700-1200	22.0	25.0	27.0	28.0	30.0				
		1200-3600	2.2	2.2	2.5	2.7	3.0				
		1200-3600	2.5	2.6	2.9	3.1	3.6				
	3VX	1200-3600	3.0	3.1	3.5	3.7	4.2				
		1200-3600	4.1	3.9	4.3	4.5	5.1				
		1200-3600	5.3	4.6	4.9	5.1	5.7				
		1200-3600 1200-3600	6.9	5.0	5.4	5.6	6.2				
Power-			4.4 5.2	6.5	7.5 9.0	8.0 9.5	9.0				
		1200-3600 1200-3600	6.3	8.0 9.5	10.0	9.5	10.0				
Wedge Cog-Belt	5VX	1200-3600	7.1	10.0	11.0	12.0	13.0				
Cog-Deit		900-1800	9.0	12.0	13.0	14.0	15.0				
		900-1800	14.0	14.0	15.0	16.0	17.0				
		900-1800	12.5	18.0	21.0	23.0	25.0				
		900-1800	14.0	21.0	23.0	24.0	28.0				
	8VX	700-1500	17.0	24.0	26.0	28.0	30.0				
	OVA	700-1500	21.2	28.0	30.0	32.0	34.0				
		400-1000	24.8	31.0	32.0	34.0	36.0				
		900-1800	7.1	8.5	9.5	10.0	11.0				
		900-1800	9.0	10.0	9.5	12.0	13.0				
	5V	900-1800	14.0	12.0	13.0	14.0	15.0				
Super		700-1200	21.2	14.0	15.0	16.0	17.0				
Power-		900-1800	12.5	18.0	21.0	23.0	25.0				
Wedge		900-1800	14.0	21.0	23.0	24.0	28.0				
weage	8V	700-1500	17.0	24.0	26.0	28.0	30.0				
	OV	700-1500	21.2	28.0	30.0	32.0	34.0				
		400-1000	24.8	31.0	32.0	34.0	36.0				
		400-1000	24.0	31.0	32.0	34.0	30.0				

USE OF TABLES

(NOTE: For banded V-Belts, Use the Elongation Method)

STEP 1

Install the belts per rules 1 and 2 of the "General Method" discussed previously. Measure span length (t) in inches, or calculate per "Formula Method".

STEP 2

Calculate the deflection distance by t/64 = deflection.

STEP 3

Depending on the belt type and cross section, and the small sheave diameter and speed, locate the Minimum Deflection Force (Pmin) in the appropriate drive ratio column of Table 33 on Page 9. For intermediate diameters or ratios, use interpolation.

Maximum Deflection Force = 1.5 x minimum (for new belts, 2.0 x Minimum can be used.)

STEP 4

Tension belts per Steps 5 & 6 of "Formula Method". When using Carlisle Tensiometer (part no. 102761) see instructions on page 13.

ELONGATION METHOD

This method is recommended for tensioning Super Vee-Band, Wedge-Band and Gold Ribbon Cog-Band drives where larger deflection forces make the use of other methods impractical.

Because belt elongation is related to the tension causing it, tape-measured lengths, both slack and tight, can be used to obtain proper Vee-Band tension.

VEE-BAND INSTALLATION AND TENSIONING PROCEDURE

STEP 1

Check sheaves to make sure they are properly aligned and that the grooves are not excessively worn (they should not be dished out more than 1/64").

STEP 2

Decrease the center distance until the Vee-Band(s) can be easily slipped into the sheave grooves. Forcing the belts on can damage the load-carrying cords and cause premature failure.

STEP 3

With the Vee-Band(s) still on the drive at no tension, tape their outside circumference (slack O.C.).

NOTE: If you are tensioning a used belt, decrease the center distance until there is no tension on it; then tape the outside circumference.

STEP 4

Find the required static tension (Ts) per individual strand (rib) using the formula:

$$Ts = \frac{Design \ HP \ x \ K}{Q \ x \ S} + T_c$$

Where: K = value from table 29 (page 4) depending on $\frac{D-d}{C}$

Q = number of belts

S = belt speed, fpm/1000

Tc = add-on tension allowance for centrifugal force (See Table 32 page 8)

STEP 5

Find a range of recommended Static Strand Tensions:

Lower value = Ts (from Step 4)

Upper value = 1.5 x Ts

STEP 6

Calculate minimum and maximum elongation band lengths for use in tensioning drive:

- a. From table 34, find length multipliers corresponding to the lower and upper values of Ts in Step 5.
- b. Multiply the slack O.C. found in Step 3 by the multipliers to find the minimum and maximum elongated band lengths.

STEP 7

Increase the drive center distance until a tape measurement of the band(s) O.C. is between the two values calculated for elongated band lengths in Step 6(b).

STEP8

Re-tension as required. A new Vee-Band may lose tension rapidly during the run-in period and will probably need re-tensioning. A Vee-Band that has been on a drive for some time may also require re-tensioning due to tension decay from normal use and wear.

TABLE 34 BELT LENGTH MULTIPLIERS FOR TENSIONING BANDED V-BELTS BY THE ELONGATION METHOD

Ts	Wedge-Band					Super Vee-Band					Gold Label Cog-Band			
Per Strand	R3VX All	R5XV	R5V	R8VX	R8V	RBP144	BP over	RCP144	CP over	RDP All	RBX All	RCX up thru	RCX over	RDX All
(lbs.)	All	HOAV	нэч	HOVA	HOV	& under	RBP144	& under	RCP144	All	All	RBX210	CX210	All
10	1.0012	1.0007	1.0006	1.0003	1.0007	1.0006	1.0007	1.0005	1.0007	1.0004	1.0006	1.0005	1.0008	1.0007
12	1.0014	1.0009	1.0008	1.0004	1.0009	1.0008	1.0009	1.0006	1.0008	1.0005	1.0008	1.0006	1.0008	1.0008
14	1.0016	1.0010	1.0009	1.0004	1.0010	1.0009	1.0011	1.0007	1.0009	1.0006	1.0009	1.0007	1.0011	1.0010
16	1.0019	1.0011	1.0010	1.0005	1.0011	1.0010	1.0012	1.0008	1.0011	1.0007	1.0010	1.0008	1.0012	1.0011
18	1.0021	1.0013	1.0012	1.0005	1.0013	1.0012	1.0014	1.0009	1.0012	1.0008	1.0012	1.0009	1.0014	1.0012
20	1.0023	1.0014	1.0013	1.0006	1.0014	1.0013	1.0016	1.0010	1.0013	1.0009	1.0003	1.0010	1.0015	1.0014
24	1.0028	1.0017	1.0016	1.0007	1.0017	1.0016	1.0019	1.0012	1.0016	1.0010	1.0015	1.0012	1.0018	1.0017
32	1.0038	1.0023	1.0021	1.0009	1.0022	1.0021	1.0027	1.0016	1.0021	1.0014	1.0021	1.0015	1.0024	1.0022
36	1.0042	1.0026	1.0023	1.0011	1.0025	1.0024	1.0031	1.0018	1.0024	1.0016	1.0023	1.0017	1.0026	1.0024
40	1.0047	1.0029	1.0026	1.0012	1.0028	1.0026	1.0035	1.0020	1.0026	1.0017	1.0026	1.0019	1.0029	1.0027
45	1.0053	1.0032	1.0029	1.0013	1.0031	1.0030	1.0040	1.0023	1.0030	1.0019	1.0029	1.0022	1.0033	1.0030
	1.0060	1.0032	1.0023	1.0015	1.0031	1.0030	1.0046	1.0025	1.0033	1.0019	1.0029	1.0022	1.0036	1.0030
50														
55	1.0066	1.0039	1.0036	1.0016	1.0037	1.0036	1.0052	100.28	1.0036	1.0024	1.0036	1.0027	1.0039	1.0037
60	1.0072	1.0043	1.0039	1.0018	1.0040	1.0040	1.0058	1.0030	1.0039	1.0026	1.0039	1.0029	1.0043	1.0040
65	1.0079	1.0047	1.0043	1.0019	1.0044	1.0043	1.0064	1.0033	1.0043	1.0028	1.0042	1.0032	1.0046	1.0043
70	1.0085	1.0050	1.0046	1.0021	1.0047	1.0047	1.0071	1.0035	1.0046	1.0031	1.0046	1.0035	1.0049	1.0046
75	1.0092	1.0054	1.0049	1.0022	1.0050	1.0050	1.0077	1.0038	1.0049	1.0033	1.0049	1.0037	1.0053	1.0049
80	1.0098	1.0058	1.0053	1.0024	1.0053	1.0054	1.0084	1.0040	1.0052	1.0035	1.0052	1.0040	1.0056	1.0052
85	1.0105	1.0061	1.0056	1.0025	1.0056	1.0057	1.0092	1.0043	1.0055	1.0037	1.0056	1.0042	1.0059	1.0055
90	1.0111	1.0065	1.0060	1.0027	1.0059	1.0061	1.0099	1.0045	1058	1.0040	1.0059	1.0045	1.0062	1.0058
	1.0111	1.0000	1.0000	1.0027	1.0000	1.0001	1.0000	1.0010	1000	1.0010	1.0000	1.0010	1.0002	1.0000
95	1.0118	1.0069	1.0063	1.0028	1.0062	1.0065	1.0106	1.0048	1.0062	1.0042	1.0062	1.0048	1.0065	1.0060
100	1.0125	1.0072	1.0066	1.0030	1.0065	1.0068	1.0114	1.0050	1.0065	1.0044	1.0066	1.0050	1.0068	1.0063
120	1.0152	1.0087	1.0080	1.0035	1.0076	1.0083	1.0147	1.0061	1.0077	1.0053	1.0079	1.0061	1.0080	1.0074
140	1.0181	1.0102	1.0094	1.0041	1.0087	1.0098	1.0183	1.0071	1.0090	1.0063	1.0093	1.0072	1.0091	1.0085
160	1.0210	1.0117	1.0109	1.0047	1.0097	1.0113	1.0221	1.0082	1.0102	1.0072	1.0107	1.0083	1.0102	1.0095
180	1.0240	1.0133	1.0123	1.0053	1.0107	1.0129	1.0263	1.0092	1.0114	1.0082	1.0121	1.0094	1.0112	1.0104
200	1.0271	1.0148	1.0138	1.0059	1.0116	1.0145	1.0307	1.0103	1.0126	1.0092	1.0136	1.0106	1.0122	1.0114
240	10.336	1.0179	1.0168	1.0033	1.0134	1.078	1.0402	1.0125	1.0150	1.0112	1.0165	1.0129	1.0140	1.0131
280	1.0404	1.0211	1.0198	1.0083	1.0150	1.0213	1.0505	1.0149	1.0174	1.0132	1.0195	1.0154	1.0158	1.0146
320	1.0404	1.0211	1.0190	1.0005	1.0165	1.0213	1.0303	1.0149	1.0174	1.0152	1.0225	10.179	1.0136	1.0140
320	1.0475	1.0243	1.0229	1.0095	1.0103	1.0249	-	1.0174	1.0196	1.0155	1.0225	10.179	1.0174	1.0101
360	1.0550	1.0276	1.0261	1.0106	1.0179	1.0286	-	1.0200	1.0222	1.0175	1.0256	1.0206	1.0190	1.0175
400	-	1.0309	1.0294	1.0118	1.0193	1.0325	-	1.0228	1.0246	1.0197	1.0288	1.0233	1.0206	1.0187
450	-	1.0351	1.0366	1.0133	1.0209	1.0375	-	1.0266	1.0277	10.226	1.0329	10.268	1.0226	1.0202
500	-	1.0394	1.0379	10.148	1.0224	1.0428	-	1.0307	1.0309	1.0255	1.0370	1.0304	1.0247	1.0217
550	-	1.0438	1.0423	1.0163	1.0240	1.0482	-	1.0352	1.0343	1.0285	1.0413	1.0342	1.0269	1,9231
600		1.0482	1.0468	1.0177	1.0056	1.0539		1.0401	1 0277	1.0316	1.0457	1.0381	1.0293	1.0246
	-				1.0256	1.0539	-		1.0377					1 1
650	-	1.0528	1.0513	1.0192	1.0273	_	_	1.0455	1.0414	1.0348	1.0501	1.0421	1.0320	1.0261
700	-	-	-	1.0207	1.0291	-	-	1.0514	1.0452	1.0381	-	1.0463	1.0350	1.0277
750	-	-	-	1.0222	1.0311	_	-	-	1.0493	1.0414	-	1.0506	1.0384	1.0294
800	-	-	-	1.0237	1.033	-	-	-	1.0536	1.0449	-	-	1.0423	1.0313
850	-	-	-	1.0251	1.0357	-	-	-	-	1.0484	-	-	1.0466	1.0334
900	-	-	-	1.0266	1.0384	-	-	-	-	1.0520	-	-	1.0516	1.0358
950	_	-	-	1.0281	.10414	-	-	-	-	-	-	-	-	1.0385
1000	-	-	-	1.0296	1.0448	-	-	-	-	-	-	-	-	1.0414
				1.0200										

INSTRUCTIONS FOR USING THE SPRING LOADED V-BELT TENSIOMETER

Procedure for using the Carlisle V-Belt Tensiometer

- 1. Measure the span length of the drive. (See Figure 27). Set the large "O" ring at 1/64" for each inch of belt span. For example, set the large "O" ring 1/4" for a span length of 16", at 1/2" for a span length of 32", at 1" for a span length of 64" etc.
- **2**. Set the small "O" ring at zero and press down the Carlisle Tensiometer at the center of the belt span (See Figure 28).
- a. On a single belt drive, depress the Tensiometer until the large "O" ring is even with the bottom of a straight edge placed on the outside rims of the two sheaves.
- b. On a multiple belt drive, depress the Tensiometer until the large "O" ring is even with the top of the next belt. Measure each belt in the drive. and take the average reading of all belt tensions.
- **3.** Remove the Tensiometer, and observe that the small "O" ring has moved from its original setting at zero to the number of pounds required to deflect the belt.
- **4.** Check this reading against the value of Pmin and Pmax calculated using the table of Average Tensioning (page 9).

$$t = \sqrt{C^2 - \left(\frac{D \cdot d}{2}\right)^2} \quad h = \frac{t}{64}$$

Where:

t = Span length, inches

C = Center distance, inches

D = Larger sheave diameter

d = Smaller sheave diameter, inches

*Deflection height h = 1/64 per inch of span

Figure 27 MEASURING DEFLECTION FORCE

Part No.	Item
102761	AWI 1 single stem belt tension tester
105575	AWI 2 double stem belt tension tester
105576	AWI 3 triple stem belt tension tester

Figure 28 V-BELT TENSIOMETER (Part No. 102761)

Power Transmission Products, Inc.

Customer Service Phone: (866) 773-2926

Canada Customer Service Phone: (866) 797-2358

www.carlislebelts.com info@carlislebelts.com