ROB 101: Computational Linear Algebra

Noah Peters

March 29, 2023

Abstract	
Lecture notes for ROB 101 at the University of Michigan.	L ^A T _E Xtemplate by Pingbang Hu.

Contents

11	Solu	ntions of Nonlinear Equations	2
	11.1	Bisection Algorithm	2
	11.2	Derivatives and Approximation	2
	11.3	Newton's Method	3
	11.4	Vectors and Nonlinear Equations	9
	11.5	Partial Derivatives	3
	11.6	Jacobian	4

Chapter 11

Solutions of Nonlinear Equations

Lecture 18: Review and Approximating Nonlinear Equations

11.1 Bisection Algorithm

14 Mar. 12:00

Theorem 11.1.1 (Intermediate Value Theorem). Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and you know two real numbers, a < b, such that $f(a) \cdot f(b) < 0$. Then $\exists c \in \mathbb{R}$ such that:

$$a < c < b$$
$$f(c) = 0$$

Using the midpoint between two numbers to find the root may not give us the root right away. Further, the root isn't always exactly in between a and b. So, we can use the **bisection algorithm** to approximate roots:

Algorithm 11.1: Bisection Algorithm

```
Data: a < b \in \mathbb{R} such that f(a) \cdot f(b) < 0

1 c = (a+b)/2 if f(c) = 0 then

2 \lfloor return \ x^* = c

3 else

4 \rfloor if f(c) \cdot f(a) < 0 then

5 \rfloor \rfloor b = c

6 else

7 \rfloor \rfloor a = c

8 Loop back to 1.
```

11.2 Derivatives and Approximation

Definition 11.2.1 (Derivative). A derivative is the slope of a function at a specific point.

There are 3 ways to represent the numerical approximation of a derivative:

- 1. Forward Difference Approximation: $\frac{df(x_0)}{dx} = \frac{f(x_0+h)-f(x_0)}{h}$
- 2. Backward Difference Approximation: $\frac{df(x_0)}{dx} = \frac{f(x_0) f(x_0 h)}{h}$
- 3. Symmetric Difference Approximation: $\frac{df(x_0)}{dx} = \frac{f(x_0+h)-f(x_0-h)}{2h}$

Remark. If the 3 approximations above don't agree, then the limit does not exist and the function is not differentiable.

For a differentiable function, f(x), $f(x) \approx f(x_0) + \frac{df(x_0)}{dx}(x - x_0)$ near point $(x_0, f(x_0)) \forall x_0$. We can use this idea to *find roots* using linear approximations to nonlinear functions.

11.3 Newton's Method

To find the roots using linear approximations to nonlinear functions we can use Newton's Method:

Definition 11.3.1 (Newton's Method). Assume $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere. Let x_k be our current estimate of a root, then:

$$f(x) \approx f(x_k) + \frac{df(x_k)}{dx}(x - x_k).$$

We want x_{k+1} such that $f(x_{k+1}) = 0$.

If we solve for x_{k+1} we get:

$$x_{k+1} = x_k - \frac{df(x_k)}{dx}^{-1} f(x_k).$$

This method takes very big "steps", so it may be more beneficial to take smaller "steps". This leads to the damped Newton Method,

$$x_{k+1} = x_k - \epsilon \left(\frac{df(x_k)}{dx}\right)^{-1} f(x_k),$$

where $0 < \epsilon < 1$ A typical value may be $\epsilon = 0.1$.

Lecture 19: Vectors and Approximating Nonlinear Equations

11.4 Vectors and Nonlinear Equations

16 Mar. 9:00

We can use vectors for linear approximations by understanding partial derivatives. Given nonlinear functions $f: \mathbb{R}^m \to \mathbb{R}^m$ we want the linear approximation at $x_0 \in \mathbb{R}^m$.

$$f(x) \approx f(x_0) + A(x - x_0)$$

where $A_{n\times m}, x, x_0 \in \mathbb{R}^m$, and $f(x_0), f(x) \in \mathbb{R}^n$. Here, A represents a matrix made up of partial derivatives.

Remark. Everything is the same as finding a linear approximation at a point. We are just replacing the slope with a matrix and the xs with vectors.

11.5 Partial Derivatives

Set $x = x_0 + he_i$ where he_i is some small outside adjustment to x_0 such that all x_0 remain the same except the *i*-th component.

$$x_0 + he_i = \begin{bmatrix} x_{01} \\ x_{02} \\ \vdots \\ x_{0m} \end{bmatrix} + h \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} x_{01} \\ x_{02} \\ \vdots \\ x_{0i} + h \\ \vdots \\ x_{0m} \end{bmatrix}$$
 where h is small

Equivalently, we have:

$$f(x_0 + he_i) \approx f(x_0) + A(x_0 + he_i - x_0) = f(x_0) + ha_i^{col}$$

where we can now solve for a_i^{col} , which represents the derivative of f with respect to x_i .

We can represent the numerical approximation of a partial derivative similar to how we represented the numerical approximation of a standard derivative. A partial derivative is represented with the mathematical symbol del: ∂ .

11.6 Jacobian

Given the nonlinear functions $f: \mathbb{R}^m \to \mathbb{R}^m$, the **Jacobian** is

$$\frac{\partial f(x)}{\partial x} := \left[\frac{\partial f(x)}{\partial x_1} \frac{\partial f(x)}{\partial x_2} \dots \frac{\partial f(x)}{\partial x_m} \right]_{n \times m}.$$

- The partial derivatives are stacked to form a matrix
- For each $x \in \mathbb{R}^m, \, \frac{\partial f(x)}{\partial x}$ is an $n \times m$ matrix
- The **gradient** of $f: \mathbb{R}^m \to \mathbb{R}$ is a special Jacobian that for each $x \in \mathbb{R}^m$, $\nabla f(x)$ is a $1 \times m$ matrix $f: \mathbb{R}^m \to \mathbb{R}^n$ looks like:

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

 $\frac{\partial f(x)}{\partial x}$ looks like:

$$\frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \frac{\partial f_n(x)}{\partial x_2} & \dots & \frac{\partial f_n(x)}{\partial x_m} \end{bmatrix}$$

The linear approximation of nonlinear functions $f: \mathbb{R}^m \to \mathbb{R}^n$ at point $x_0 \in \mathbb{R}^m$ is

$$f(x) \approx f(x_0) + A(x - x_0) = f(x_0) + \frac{\partial f(x_0)}{\partial x}(x - x_0).$$

Problem 11.6.1. We have two functions:

$$f_1(x_1, x_2) = \log(x_1) + \sqrt{x_2}$$

$$f_2(x_1, x_2) = x_1 \cdot x_2$$

and let
$$x_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Answer.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 so

Appendix