Ανακεφαλαίωση

Τι είδαμε μέχρι τώρα:

- □ Συζητήσαμε συστήματα πολλών σωμάτων
 - > Εσωτερικές και εξωτερικές δυνάμεις
 - Νόμους δράσης-αντίδρασης
 - Ορμές, νόμους διατήρησης (γραμμική ορμή, στροφορμή, κινητική και δυναμική ενέργεια)
- □ Εισήγαμε την έννοια των δεσμών
 - > Ολόνομους και μή ολόνομους δεσμούς

$$f(r_1, r_2, r_3, ..., t) = 0$$

- ightharpoonup Γενικευμένες συντεταγμένες $\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, q_3, ..., t)$
- Συζητήσαμε την φυσική έννοια των δεσμών και πως μεταβάλουν τους βαθμούς ελευθερίας ενός συστήματος

Τι θα δούμε σήμερα...?

- □ Πώς μπορούμε να μετασχηματίσουμε την εξίσωση κίνησης χρησιμοποιώντας γενικευμένες συντεταγμένες
- □ Εξαγωγή των εξισώσεων Lagrange
- □ Θα αποδείξουμε ότι οι εξισώσεις Lagrange είναι ισοδύναμες με τις εξισώσεις του Newton
 - Θα εισάγουμε την αρχή του D' Alembert
 - Θα στηριχθούμε σε μερικές υποθέσεις αλλά θα τις ξεκαθαρίσουμε στο δρόμο

Δυνατή μετατόπιση (virtual displacements)

- Υποθέστε ένα σύστημα με δεσμούς
 - Συνήθεις συντεταγμένες r_i (i=1,...N)

$$d\vec{r}_{i} = \sum_{j=1}^{N} \frac{\partial \vec{r}_{i}}{\partial q_{j}} dq_{j} + \frac{\partial \vec{r}_{i}}{\partial t} dt$$

Υποθέστε ένα σύστημα με δεσμούς
$$\begin{cases} \vec{r_{_{1}}} = \vec{r_{_{1}}}(q_{_{1}},q_{_{2}},...,q_{_{n}},t) \\ \vec{r_{_{2}}} = \vec{r_{_{2}}}(q_{_{1}},q_{_{2}},...,q_{_{n}},t) \end{cases}$$

$$> Συνήθεις συντεταγμένες $\mathbf{r_{_{i}}}$ $(\mathbf{i=1},...\mathbf{N})$

$$> Γενικευμένες συντεταγμένες $\mathbf{q_{_{j}}}$ $(\mathbf{j=1},...\mathbf{n})$

$$\vdots$$

$$\vec{r_{_{N}}} = \vec{r_{_{N}}}(q_{_{1}},q_{_{2}},...,q_{_{n}},t)$$$$$$

Φανταστείτε ότι μετακινείτε όλα τα σημεία κατά μια στιγμιαία απειροστή μετατόπιση

$$\vec{r}_i
ightarrow \vec{r}_i + \delta \vec{r}_i \qquad q_i
ightarrow q_i + \delta q_i$$
 δυνατή μετατόπιση

Προσοχή ότι η μετατόπιση $\delta \mathbf{r_i}$ πρέπει να ικανοποιεί τους δεσμούς

$$\delta\vec{r_i} = \sum_j \frac{\partial\vec{r_i}}{\partial q_j} \delta q_j$$
 3N συντεταγμένες μή ανεξάρτητες
$$\frac{n \, \text{συντεταγμένες}}{\text{ανεξάρτητες}}$$

Η αρχή του D' Alembert

- \Box Από την εξίσωση κίνησης του Newton: $\mathbf{F}_i = \dot{\mathbf{p}}_i$ \Box $\mathbf{F}_i \dot{\mathbf{p}}_i = 0$
- □ Τμήμα της δύναμης F; πρέπει να οφείλεται σε δεσμούς
- □ Η δύναμη λόγω δεσμών f; (συνήθως) δεν παράγει έργο

$$\mathbf{F}_i = \mathbf{F}_i^{(a)} + \mathbf{f}_i$$
 αντίδραση δεσμού

- ightarrow Η δεδομένη δύναμη είναι «γνωστή» $\mathbf{F}_{i}^{(a)} = \mathbf{F}_{i}^{(a)}(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{i},...,\mathbf{r}_{N},t)$
- ightharpoonup Η μετατόπιση είναι κάθετη στην δύναμη: $f_i \cdot \delta r_i = 0$
- > Εξαίρεση: Τριβή
- oxdot Πολλαπλασιάστε $oldsymbol{\mathbf{F}}_i^{(a)} + oldsymbol{\mathbf{f}}_i \dot{oldsymbol{p}}_i = 0$ με $\delta oldsymbol{\mathbf{r}}_i$ και αθροίστε ως προς i

Το δυνατό έργο των δυνάμεων δεσμών είναι μηδέν

- Αυτό δεν ισχύει πάντοτε, (π.χ. τριβή) αλλά περιοριζόμαστε σε συστήματα που το έργο των δυνάμεων των δεσμών κατά μια δυνατή μετατόπιση είναι μηδέν.
- Θέλουμε να απαλείψουμε ουσιαστικά τις δυνάμεις των δεσμών που είναι εν γένει άγνωστες ή πολύπλοκες στον υπολογισμό
- Για στερεό σώμα αυτό μπορεί να δειχθεί. Έστω μια μικρή μετακίνηση:

$$r_{ij} = r_{i} - r_{j}$$

$$r_{ij} = r_{i} + \delta r_{i}, \quad r'_{j} = r_{j} + \delta r_{j}$$

$$r'_{ij} = r_{ij} + \delta r_{ij}$$

$$r'_{ij} = r_{ij} + \delta r_{ij} + \delta r_{ij}$$

$$r'_{ij} =$$

Αλλά:
$$F_{ij} \cdot \delta r_{ij} = F_{ij} \cdot \delta r_{i} - F_{ij} \cdot \delta r_{j} = F_{ij} \cdot \delta r_{i} + F_{ji} \cdot \delta r_{j}$$
W στο i από j W στο j από i

Για κεντρικές δυνάμεις επομένως $F_{ii} \cdot \delta r_{ii} = 0$ δηλαδή οι εσωτερικές δυνάμεις δεν παράγουν έργο $r_{ij} \perp \delta r_{ij}$

Η αρχή του D' Alembert

$$\sum_{i} (\mathbf{F}_{i}^{(a)} - \dot{\mathbf{p}}_{i}) \delta \mathbf{r}_{i} = 0$$

Η δύναμη δεσμού δεν επηρεάζει και μηδενίζεται

- □ Η δύναμη λόγω των δεσμών μηδενίζεται επειδή f_i ·δr_i=0
- □ Καλείται ως αρχή του D' Alembert (1743)
- □ Τώρα αλλάζουμε από r; σε q;

1ος όρος =
$$\sum_{i} \mathbf{F}_{i}^{(a)} \cdot \sum_{j} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{j} Q_{j} \delta q_{j} \qquad Q_{j} \equiv \sum_{i} \mathbf{F}_{i}^{(a)} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}$$

$$Q_j \equiv \sum_i \mathbf{F}_i^{(a)} \cdot \frac{\partial \mathbf{r}_i}{\partial q_j}$$

- Η μονάδα του Q_i δεν υπάρχει πάντα [Δ ύναμη]
- Q_iq_i είναι πάντα [έργο]

$$\delta \mathbf{r}_{i} = \sum_{j} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j}$$

Η αρχή του D' Alembert

2°ς όρος =
$$\sum_{i} \dot{\mathbf{p}}_{i} \delta \mathbf{r}_{i} = \sum_{i} \dot{\mathbf{p}}_{i} \sum_{j} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{i,j} m_{i} \ddot{\mathbf{r}}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j}$$

Μετά από κάποιες πράξεις μπορούμε να δείξουμε ότι

$$\ddot{\mathbf{r}}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} = \frac{d}{dt} \left(\dot{\mathbf{r}}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \right) - \dot{\mathbf{r}}_{i} \frac{d}{dt} \left(\frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \right) \longrightarrow \ddot{\mathbf{r}}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \rightarrow \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\mathbf{v}_{i}^{2}}{2} \right) \right] - \frac{\partial}{\partial q_{j}} \left(\frac{\mathbf{v}_{i}^{2}}{2} \right)$$

$$\dot{\mathbf{r}}_{i} = \sum_{k=1}^{N} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{r}_{i}} \dot{\mathbf{q}}_{k} \implies \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{i}} = \frac{\partial^{2} \dot{\mathbf{r}}_{i}}{\partial q_{i}}$$

Aλλά $\dot{\mathbf{r}}_i = \sum_{k=1}^N \frac{\partial \mathbf{r}_i}{\partial q_k} \dot{q}_k \Rightarrow \frac{\partial \dot{\mathbf{r}}_i}{\partial \dot{q}_j} = \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j}$

Για τη 2^{η} παρένθεση ξέρουμε ότι: $\frac{d}{dt}f(q_j,t) = \sum_k \frac{\partial f}{\partial q_k}\dot{q}_k + \frac{\partial f}{\partial t}$

Άρα
$$\frac{d}{dt} \left(\frac{\partial \mathbf{r}_i}{\partial q_j} \right) = \sum_k \frac{\partial^2 \mathbf{r}_i}{\partial q_k \partial q_j} \dot{q}_k + \frac{\partial^2 \mathbf{r}_i}{\partial q_j \partial t} = \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j} \quad \text{Iσοδύναμο με} \quad \frac{d}{dt} \frac{\partial \mathbf{r}_i}{\partial q_j} = \frac{\partial}{\partial q_j} \frac{d\mathbf{r}_i}{dt} = \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j}$$
$$= \sum_j \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right\} \delta q_j \qquad T \equiv \sum_i \frac{m v_i^2}{2}$$

$$= \sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j}$$

$$T \equiv \sum_{i} \frac{m v_{i}^{2}}{2}$$

□ Η αρχή του D' Alembert γίνεται

$$\sum_{j} \left\{ \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] - Q_{j} \right\} \delta q_{j} = 0$$

Εξισώσεις Lagrange

$$\sum_{j} \left\{ \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] - Q_{j} \right\} \delta q_{j} = 0$$
 Αυτά είναι ελεύθερα

lacktriangle Οι γενικευμένες συντεταγμένες q_i είναι ανεξάρτητες

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j$$
σχεδόν τελειώσαμε

lacksquare Υποθέτοντας ότι οι δυνάμεις είναι συντηρητικές: $\mathbf{F}_i = -\nabla_i V$

$$Q_{j} \equiv \sum_{i} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} = -\sum_{i} \nabla_{i} V \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} = -\frac{\partial V}{\partial q_{j}}$$
Αντικατάσταση

Οι εξισώσεις Lagrange

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial (T - V)}{\partial q_j} = 0$$

Υποθέτοντας ότι V δεν εξαρτάται από τα \dot{q}_j \Longrightarrow $\frac{\partial V}{\partial \dot{q}_j} = 0$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0 \qquad L = T(q_j, \dot{q}_j, t) - V(q_j, t)$$

$$L = T(q_j, \dot{q}_j, t) - V(q_j, t)$$

Τελειώσαμε!!!

Υποθέσεις που κάναμε

- □ Οι δεσμοί είναι ολόνομοι
 - Αυτό το υποθέτουμε πάντα

- □ Οι δυνάμεις δεσμών δεν παράγουν έργο
 - > Αγνοούμε τριβές

- Οι ενεργούσες δυνάμεις είναι συντηρητικές
 - Η εξίσωση Lagrange είναι ok ανV εξαρτάται από το χρόνο t

- Το δυναμικό V ανεξάρτητο από τις γενικευμένες ταχύτητες \dot{q}_i
 - > Το τελευταίο θα το επανεξετάσουμε αργότερα

Παράδειγμα: Χρονικά εξαρτημένο σύστημα

□ Οι συναρτήσεις μετασχηματισμού μπορεί να εξαρτώνται από το χρόνο t

$$\mathbf{r}_i = \mathbf{r}_i(q_j, t)$$

- > Το γενικευμένο σύστημα συντεταγμένων μπορεί να κινείται
 - π.χ. Σύστημα συντεταγμένων πάνω στη γη
- Ένα παράδειγμα

Παράδειγμα: Χρονικά εξαρτημένο σύστημα

Οι συναρτήσεις μετασχηματισμού: $\begin{cases} x = (l+r)\cos(at) \\ y = (l+r)\sin(at) \end{cases}$

$$T = \frac{m}{2} \{ \dot{x}^2 + \dot{y}^2 \} = \frac{m}{2} \{ \dot{r}^2 + (l+r)^2 a^2 \}$$

- $V = \frac{K}{2}r^2$

$$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{r}} \right] - \frac{\partial L}{\partial r} = m\ddot{r} - ma^2(l+r) + Kr = 0$$

Παράδειγμα: Χρονικά εξαρτημένο σύστημα

$$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{r}} \right] - \frac{\partial L}{\partial r} = m\ddot{r} - ma^2(l+r) + Kr = 0$$

$$m\ddot{r} + (K - ma^2) \left(r - \frac{ma^2l}{K - ma^2}\right) = 0$$

- ightharpoonup Αν K>m α^2 , ένας αρμονικός ταλαντωτής με $\omega = \sqrt{\frac{K ma^2}{m}}$
 - Το κέντρο ταλάντωσης έχει μετατοπιστεί κατά $\sqrt{\frac{ma^2l}{K-ma^2}}$
- ▶ Αν K<mα², απομακρύνεται εκθετικά</p>
- > Αν K= mα², η ταχύτητα είναι σταθερή
 - Η κεντρομόλος δύναμη ισορροπεί με την δύναμη ελατηρίου

- □ Η Lagrangian δεν είναι μοναδική για ένα δεδομένο σύστημα
 - > Αν η Lagrangian L περιγράφει ένα σύστημα
 - ightharpoonup Μπορεί να αποδειχθεί ότι $L' = L + \frac{dF(q,t)}{dt}$

δουλεύει εξ΄ ίσου καλά για οποιαδήποτε συνάρτηση F

$$\frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}} \left(\frac{dF}{dt} \right) \right) - \frac{\partial}{\partial q} \left(\frac{dF}{dt} \right) = 0$$
 χρησιμοποιώντας
$$\frac{dF}{dt} = \frac{\partial F}{\partial q} \dot{q} + \frac{\partial F}{\partial t}$$