Zadanie: INW Graf inwersji

Laboratorium z ASD, lab 11. Dostępna pamięć: 128 MB.

31.01.2021, 23:59:59

Bajtazar odkrył nową rodzinę grafów nieskierowanych, które można reprezentować za pomocą inwersji. Niech $V = \{1, 2, ..., n\}$ będzie zbiorem wierzchołków grafu, natomiast $a_1, a_2, ..., a_n$ — pewnym ciągiem parami różnych liczb ze zbioru V. Wierzchołki a_i oraz a_j są połączone krawędzią w grafie, jeśli para (i, j) jest inwersjq w tym ciągu, to znaczy i < j oraz $a_i > a_j$.

Dla przykładu rozważmy n=4 i ciąg2,3,1,4. Wtedy uzyskujemy graf jak na rysunku:

Bajtazar chce pokazać, że wymyślona przez niego reprezentacja jest użyteczna. Postanowił napisać program, który wyznacza spójne składowe grafu. Przypomnijmy, że dwa wierzchołki $u,v\in V$ znajdują się w tej samej spójnej składowej grafu, jeśli istnieje taki ciąg wierzchołków, którego pierwszym wyrazem jest u, ostatnim — v, a każde dwa kolejne wierzchołki są połączone krawędzią grafu. W naszym przykładzie mamy dwie spójne składowe: $\{1,2,3\}$ oraz $\{4\}$.

Pomóż Bajtazarowi!

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($1 \le n \le 1\,000\,000$) oznaczająca liczbę wierzchołków grafu. W drugim wierszu znajduje się ciąg n liczb całkowitych a_1, a_2, \ldots, a_n .

Wyjście

W pierwszym wierszu wyjścia należy wypisać liczbę spójnych składowych grafu; oznaczmy tę liczbę przez m. W każdym z kolejnych m wierszy należy podać opis jednej spójnej składowej grafu. Na początku wiersza wypisać należy liczbę k oznaczającą rozmiar składowej, a następnie rosnący ciąg k numerów wierzchołków tej składowej. Składowe należy wypisać w takiej kolejności, by pierwsze numery wierzchołków z każdego wiersza tworzyły ciąg rosnący. Innymi słowy, jeśli S i S' są dwiema składowymi, $u \in S$, $v \in S'$ są ich najmniejszymi wierzchołkami oraz u < v, to składową S należy wypisać przed składową S'.

Przykład

```
Dla danych wejściowych:
```

4 2 3 1 4

poprawnym wynikiem jest:

2 3 1 2 3 1 4