

1/5

Gemeente Rotterdam T.a.v. mevrouw A. Posyeday Postbus 6633 3002 AP ROTTERDAM

Uw kenmerk : IB-2024-0149-WABO ALE5

Ons kenmerk : Project 1917936 Validatieref. : 1917936_certificaat_v1 Opdrachtverificatiecode: HAPN-YMFP-UUNL-ADAB Inkoopnummer : bestek 1-D-04439-21

Bijlage(n) : Bijlage BemestingsWijzer Compleet (extern lab) in

1917936_-_8764484_BemestingsWijzer_Compleet_(extern_lab).pdf

Bijlage BemestingsWijzer Compleet (extern lab) in

1917936_-_8771358_BemestingsWijzer_Compleet_(extern_lab).pdf

Bijlage BemestingsWijzer Compleet (extern lab) in

1917936_-_8771359_BemestingsWijzer_Compleet_(extern_lab).pdf

Bijlage BemestingsWijzer Compleet (extern lab) in

1917936_-_8771357_BemestingsWijzer_Compleet_(extern_lab).pdf

Amsterdam, 15 mei 2025

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Ing. J. Tukker

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

CSOmegam@etbnl.eurofins.com

www.eurofins.nl

Manager productie

Ref.: 1917936_certificaat_v1

ANALYSECERTIFICAAT

1917936 **Projectcode**

Uw project omschrijving IB-2024-0149-WABO ALE5 **Opdrachtgever Gemeente Rotterdam**

Uw Monsterreferenties

8771357 = ALE5_OW_MV54_S (61-100) 8771358 = ALE5_OW_MV83_S (53-100) **8771359** = ALE5_OW_MV91_S (22-98)

Opgegeven bemonsteringsdatum: 14/04/2025 16/04/2025 23/04/2025 Ontvangstdatum opdracht 29/04/2025 29/04/2025 29/04/2025 Startdatum 29/04/2025 29/04/2025 29/04/2025 Monstercode 8771357 8771358 8771359 **Uw Matrix** Grond Grond Grond

Uitbestede analyses

BemestingsWijzer Compleet bijlage bijlage bijlage

(extern lab)

ANALYSECERTIFICAAT

Projectcode : 1917936

Uw project omschrijving : IB-2024-0149-WABO ALE5 Opdrachtgever : Gemeente Rotterdam

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Opdrachtverificatiecode: HAPN-YMFP-UUNL-ADAB

Ref.: 1917936_certificaat_v1

Ref.: 1917936_certificaat_v1

ANALYSECERTIFICAAT

Projectcode : 1917936

Uw project omschrijving : IB-2024-0149-WABO ALE5
Opdrachtgever : Gemeente Rotterdam

Barcodeschema's

Monstercode	Uw referentie	uw monsterref.	uw diepte	uw barcode
8771357	ALE5_OW_MV54_S (61-100)	54BS01 54BS02 54BS03 54BS04 54BS05 54BS06 54BS07 54BS08 54BS09 54BS10	0.94-1 0.93-1 0.75-1 0.87-1 0.61-0.85 0.91-1 0.9-1 0.65-1 0.81-1	0720166537 0720166567 0720166426 0720166419 0720166431 0720166433 0720166432 0720166430 0720166584 0720166575
8771358	ALE5_OW_MV83_S (53-100)	83BS01 83BS02 83BS03 83BS04 83BS05 83BS06 83BS07 83BS08 83BS09 83BS10	0.67-1 0.62-0.9 0.53-0.85 0.54-0.9 0.65-0.85 0.65-0.9 0.71-0.89 0.71-0.95 0.66-0.95 0.63-0.89	0720166238 6100007259 0720166590 0720166243 0720166235 0720166582 0720166242 0720166587 0720166593 0720166566
8771359	ALE5_OW_MV91_S (22-98)	91BS03 91BS04 91BS05 91BS06 91BS07 91BS11 91BS09 91BS12 91BS02a 91BS01	0.51-0.73 0.22-0.6 0.42-0.73 0.52-0.73 0.64-0.73 0.65-0.73 0.69-0.73 0.65-0.73 0.65-0.98 0.8-0.98	0720166594 0720166564 6100006393 0720166571 6100006364 0720166427 0720166415 6100007322 0720166576 0720166583

BemestingsWijzer

8771358 barc. 8764484

Uw klantnummer: 8729638

Eurofins Omegam BV H.J.E.Wenckebachweg 120 1114 AD AMSTERDAM DUIVENDR. Eurofins Agro

Binnenhaven 5 NL - 6709 PD Wageningen

T monstername: Hilco de Goeij: 0652002131 T klantenservice: 088 876 1010 E agro@ftbnl.eurofins.com I www.eurofins-agro.com

Onderzoek

Onderzoek-/ordernr: 769928/006665845

Datum monstername: Datum verslag:

01-05-2025 13-05-2025

IB 2024 0149 WABO ALES (1917936)

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Chemisch	N-totale bodemvoorraad C/N-ratio	kg N/ha	7070 14	5420 - 8130 13 - 17					
Chemisch	N-leverend vermogen	kg N/ha	100	95 - 145					
	S-plantbeschikbaar S-totale bodemvoorraad	kg S/ha kg S/ha	443 3090	20 - 30 1185 - 2200					
	C/S-ratio S-leverend vermogen	kg S/ha	32 45	50 - 75 20 - 30					
	P-plantbeschikbaar P-bodemvoorraad	kg P/ha kg P/ha	2,3 1305	6,0 - 10,0 505 - 650					
	K-plantbeschikbaar K-bodemvoorraad	kg K/ha kg K/ha	305 2935	230 - 365 730 - 1220					
	Ca-plantbeschikbaar Ca-bodemvoorraad	kg Ca/ha kg Ca/ha	25 9460	240 - 560 9465 - 12050	•				
	Mg-plantbeschikbaar Mg-bodemvoorraad	kg Mg/ha kg Mg/ha	500 815	230 - 365 575 - 955					
	Na-plantbeschikbaar Na-bodemvoorraad	kg Na/ha kg Na/ha	478 229	50 - 100 258 - 429					
	Si-plantbeschikbaar Fe-plantbeschikbaar Zn-plantbeschikbaar	g Si/ha g Fe/ha g Zn/ha	119520 8670 < 330	19920 - 86320 8300 - 14940 1660 - 2490			ı		
	Mn-plantbeschikbaar Cu-plantbeschikbaar	g Mn/ha g Cu/ha	20680 125	3320 - 4320 135 - 215					
	Co-plantbeschikbaar B-plantbeschikbaar Mo-plantbeschikbaar	g Co/ha g B/ha g Mo/ha	55 2715 140	15 - 25 530 - 730 330 - 16600					
Fysisch	Se-plantbeschikbaar	g Se/ha	6.8	12 - 15 > 6,2					
	Zuurgraad (pH)	0/		> 0,2					
	C-organisch Organische stof C/OS-ratio	% %	2,96 5,1 0,58	0,45 - 0,55				<u> </u>	
	Koolzure kalk	%	8,8	2,0 - 3,0					
	Klei (<2 μm) Silt (2-50 μm) Zand (>50 μm) Slib (<16 μm)	% % % %	14 18 54 19						
	Klei-humus (CEC) CEC-bezetting Ca-bezetting	mmol+/kg % %	188 100 76 11	> 143 > 95 80 - 90 6.0 - 10					
	Mg-bezetting K-bezetting Na-bezetting H-bezetting	% % %	11 12 1,6 < 0,1	6,0 - 10 2,0 - 4,0 1,0 - 1,5 < 1,0					

Pagina: 1

Totaal aantal pagina's: 6 Rapportidentificatie: 769928/006665845, 13-05-2025

Dit rapport is vrijgegeven onder verantwoording van H.A.C. Martin, Managing Director. Op al onze vormen van dienstverlening zijn onze Algemene Voorwaarden van toepassing. Op verzoek worden deze en/of de specificaties van de analysemethoden toegezonden. Eurofins Agro Testing Wageningen B.V. stelt zich niet aansprakelijk voor eventruele schadelijke gevolgen voortvloeiend uit het gebruik van door of namens ons verstrekte onderzoeksresultaten en/of adviezen.

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
	Al-bezetting	%	< 0,1	< 1,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	zeer goed	i
	Verkruimelbaarheid Verslemping Stuifgevoeligheid	rapportcijfer rapportcijfer rapportcijfer	8,4 5,0 8,0	6,0 - 8,0 6,0 - 8,0 6,0 - 8,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Distantant	Vochthoudend vermoge	nmm	47						
Biologisch	Microbiële biomassa Microbiële activiteit Schimmel/bacterie-ratio	mg C/kg mg N/kg	280 64 1,1	255 - 765 43 - 71 0,6 - 0,9					

Bemestingsadviezen

Het resultaat wordt afgezet tegen het landbouwkundig streeftraject en krijgt een waardering; laag, vrij laag, goed, vrij hoog, hoog. Dit is geen beoordeling zoals bedoeld in ISO 17025 (par. 7.8.6).

Wetgeving

De bemestingsadviezen streven een landbouwkundig optimale opbrengst en kwaliteit na. De adviezen houden geen rekening met restricties vanuit wetgeving. Wanneer u op bedrijfsniveau niet voldoende ruimte heeft, adviseren we de giften van de minst behoeftige gewassen te verminderen, overleg met uw adviseur.

Bodemgericht a	advies (4-ja	rig)	
Fosfaat (P ₂ O ₅)	0	kg/ha	
Kali (K ₂ O)	0	kg/ha	
Calcium (CaO)	1575	kg/ha	
Magnesium (MgO)	0	kg/ha	
Kalk (nw)	0	kg/ha	
Effectieve org.stof	16700	kg/ha	

Border

Bij hoge adviesgiften is een verdeling van de gift gedurende de 4 jaar aan te raden, bijvoorbeeld tweejaarlijks de helft geven. De bodemgerichte adviezen zijn bedoeld om de bodemvoorraden van fosfaat, kalium, calcium en magnesium op peil te brengen.

De kalkgift is gebaseerd op een optimale pH van 6,5 De benodigde hoeveelheid effectieve organische stof is weergegeven voor 4 jaar. Zie de OS-balans voor de berekening van de gemiddelde jaarlijkse gift.

0

	Gewas	Ras/Teelttype	Gift					
Gewasgericht advies (jaarlijks)								
Stikstof (N)	Border		60					
Sulfaat (SO ₃)	Border		0					
Fosfaat (P ₂ O ₅)	Border		15					
Kali (K ₂ O)	Border		5					
Calcium (CaO)	Border		50					
Magnesium (MgO)	Border		0					
Natrium (Na ₂ O)	Border							
Zink (Zn)	Border		0,5					
Mangaan (Mn)	-		Zie de toelichting.					
Koper (Cu)	Border		0					

Pagina: 2

Borium (B)

in kg/ha

Totaal aantal pagina's: 6 Rapportidentificatie: 769928/006665845, 13-05-2025

Advies

Gewasgericht advies

Het gewasgerichte advies is gebaseerd op de gewasbehoefte, gemiddelde opbrengst en klimaatomstandigheden en is gecorrigeerd voor de bodemvoorraad en bodemnalevering. Tijdens het seizoen kan worden bijgestuurd met bijmestonderzoek.

Toelichting

De resultaten en/of het advies van dit bemestingsonderzoek kunt u t/m 2028 gebruiken.

Voor een uitgebreide toelichting kunt u onderstaande link

https://www.eurofins-agro.com/nl-nl/toelichting-grondonderzoek

Het bodemgerichte advies is bedoeld om de bodemvoorraad van de nutriënten op peil te houden. Voor het K, Ca en Mg advies betekent dit dat de samenstelling aan het klei-humus complex (CEC) geoptimaliseerd wordt. Het is verstandig het bodemgerichte advies van nutriënten en kalk over de 4 jaar te verdelen. Wanneer er een bodemgerichte bemesting is uitgevoerd kunnen de bodemkengetallen worden bijgewerkt door een nieuw bodemgericht onderzoek uit te voeren.

De gewasgerichte adviezen zijn bedoeld om het gewas te voeden en de kwaliteit te verbeteren. Door hogere/lagere opbrengsten en verliezen zoals uitspoeling kan de hoeveelheid plantbeschikbare nutriënten fluctueren. Het is raadzaam elk jaar voor het seizoen een gewasgericht onderzoek uit te voeren (pakket Teelt) voor de actuele hoeveelheid plantbeschikbare nutriënten en een update van het gewasgerichte advies.

Bekijk de waardering van de nutriënten op pagina 1 goed. Geven de streefwaarden aan dat één of meerdere nutriënten heel laag zijn, overleg dan met uw adviseur om dit weer op peil te krijgen.

Bij de berekening van de adviezen is uitgegaan van de volgende opbrengsten in ton/ha:

Border -

Zijn uw opbrengsten, lager dan wel hoger, dan is het verstandig uw bemesting daar op aan te passen.

Stikstof:

We adviseren de N-gift - zo mogelijk - op te delen in meerdere giften. Of de vervolggift nodig is, kunt u tijdens het groeiseizoen laten controleren via ons BodemCheck onderzoek. In dit onderzoek wordt onder andere de plantbeschikbare (=minerale) N in de bodem gemeten.

Zwavel:

Zwavel (S) komt vrij bij de afbraak van organische stof of mest. Deze afbraak vindt plaats door bodemleven. Bodemleven is onder koudere omstandigheden niet erg actief. Vroeg in het voorjaar komt er derhalve weinig S vrij uit de bodem. Voor veel vroege gewassen kan het dan ook verstandig zijn om S te bemesten, zelfs al is de bodemvoorraad goed of hoog.

Fosfaat:

Het berekende Pw-getal is voor dit perceel 47 $\,$ mg $\rm P_2O_5/I$. De P-buffering is 129 . Het streeftraject ligt tussen de 17 - 27 De P-buffering geeft aan of de P-bodemvoorraad in staat is de P-plantbeschikbaar op het huidige peil te houden. Als de P-buffering laag is, dan zal de P-plantbeschikbaar tijdens het groeiseizoen niet op peil blijven en zal op termijn ook de P-bodemvoorraad terug gaan lopen.

Kali:

Het berekende K-getal is voor dit perceel 45 K-getal wordt niet meer gebruikt bij de adviesberekening.

Calcium:

Calcium bemesting kan ook een positief effect hebben op de bodemstructuur.

Mangaan:

Er is geen mangaangebrek te verwachten.

Bodemleven:

De biologische bodemvruchtbaarheid wordt nu weergegeven via 3 kengetallen, te weten de microbiële biomassa, de microbiële activiteit en de schimmel/bacterie-ratio.

Op basis van de huidige kennis wordt een waardering gegeven die afhankelijk is van de hoeveelheid organische stof. Er wordt nu nog geen advies gegeven. Via diverse onderzoeksprojecten zal er meer informatie beschikbaar komen.

Organische stof Figuur: Organische stofbalans

en/of compost.

Jaarlijks afbraakpercentage van de totale voorraad organische stof (%): 2,6

Gewas(rest)	l eelt/ras	organische stof
Border		200
Gemiddelde aanvoer/jaar		200
	Border	Border

Om het organische stofgehalte met 0,1% te verhogen dient u een extra hoeveelheid effectieve organische stof aan te voeren van: 3320 kg per ha.

Figuur: Kwaliteit van de organische stof Gebaseerd op C/OS-ratio.

Organische stof bestaat uit met name C, N, P, S. Wanneer de organische stof relatief veel N en of S bevat is dit aantrekkelijk voor bodemleven. Bodemleven vreet deze organische stof graag. Hierbij komt N en S vrij en het gehalte aan organische stof daalt licht (dynamische organische stof). Organische stof kan ook veel C bevatten. Dat is over het algemeen minder aantrekkelijk voor bodemleven. De organische stof wordt derhalve minder aangevreten door bodemleven; de organische stof is stabieler. Stabiele organische stof draagt onder andere bij aan de bewerkbaarheid van de bodem en aan de rulheid. Dynamische organische stof draagt bij aan met name het vrijkomen van N en S en is daarmee een bron van deze nutriënten voor het gewas. De kwaliteit van de organische stof is (geleidelijk) aan te passen door onder andere te letten op de eigenschappen van bodemverbeteraars als dierlijke mest, compost en gewasresten.

Fysisch

De beoordeling van de potentiële structuur wordt gedaan op basis van de verhouding tussen calcium, magnesium en overige kationen aan het klei-humuscomplex. Uiteraard is de werkelijke structuur ook afhankelijk van weersomstandigheden en vochttoestand van de bodem tijdens berijden en bewerken en de zwaarte van machines.

Figuur: Structuurdriehoek

Fysisch Figuur: Textuurdriehoek

Naast klei (lutum), worden ook de silt- en zandfracties weergegeven. Klei is kleiner dan 2 micrometer (μ m), siltdeeltjes zijn 2-50 μ m en zanddeeltjes groter dan 50 μ m. De onderlinge verdeling van bodemdeeltjes wordt onder andere gebruikt om het verslempingsrisico van een bodem in te schatten. Bij verslemping wordt de bodem dichtgesmeerd met kleinere deeltjes (klei en silt). Een heel eenzijdige verdeling (bijvoorbeeld hoofdzakelijk zand- of kleideeltjes) levert het minste risico van slemp op. Bij 10-20% klei is het risico op slemp het grootst.

De verkruimelbaarheid is goed te noemen. Echter is dit ook afhankelijk van de soort teelt. Er is kans op verslemping. Het is raadzaam om de organische stof in de bodem op peil te houden of zelfs op termijn te verhogen. De organische stof zorgt namelijk voor binding tussen de gronddeeltjes.

Figuur: Waterretentiecurve

De hoeveelheid plant beschikbaar water in de bemonsterde laag is 47 mm, dit is wat u maximaal zou moeten beregenen. Alles wat u meer geeft spoelt af van het perceel of zakt naar diepere lagen.

Veldcapaciteit (pF 2,0):	31,8	% vocht
Aanvulpunt (pF 3,3):	18,8	% vocht
Verwelkingspunt (pF 4,2):	13,0	% vocht

Als het vochtgehalte van het perceel daalt hebben gewassen moeite om voldoende water op te nemen, de grens ligt bij pF 3,3. Wanneer u het vochtgehalte kan bepalen, begin dan met beregenen als het vochtgehalte van dit perceel op 18,8 % vocht zit en geef dan 33 mm.

Het actuele vochtgehalte kan bepaald worden door een vochtsensor of verzamel grond van een tiental plekken in het perceel. Meet het gewicht van de vochtige grond en het gewicht van de grond na 24 uur drogen, het verschil tussen de twee is een indicatie van het vochtgehalte van het perceel.

 Contact & info
 Bemonsterde laag:
 0 - 25 cm

 Grondsoort:
 Zavel

 Monster genomen door:
 Derden

Contactpersoon monstername: Hilco de Goeij: 0652002131

Indien de volgende informatie wordt getoond op de rapporten is deze informatie verstrekt door de opdrachtgever en kan dit van invloed zijn op de waardering, advisering en/of het analyseresultaat: gewas, teelttype/ras.

Dit geldt ook voor de bemonsteringsdiepte wanneer er sprake is van monstername door derden.

Methode Analyse resultaten

Resultaat	Eenheid	Methode	RvA
2130	mg N/kg	Em: NIRS	Q
133,4	mg S/kg	Em: CCL3 (Gw NEN 17294-2)	
930	mg S/kg	Em: NIRS	Q
0,7	mg P/kg	Em: CCL3 (Gw NEN 15923-1)	Q
90	mg P ₂ O ₅ /100 g	PAL1: Gw NEN 5793	Q
39	mg P/100 g	PAL1: Gw NEN 5793	Q
92	mg K/kg	Em: CCL3 (Gw NEN 17294-2)	
22,6	mmol+/kg	Em: NIRS	
0,1	mmol Ca/l	Em: NIRS	
205	mmol+/kg	Em: NIRS	
150	mg Mg/kg	Em: CCL3 (Gw NEN 17294-2)	
20,2	mmol+/kg	Em: NIRS	
144	mg Na/kg	Em: CCL3 (Gw NEN 17294-2)	
3,0	mmol+/kg	Em: NIRS	
36000	μg Si/kg	Em: CCL3 (Gw NEN 17294-2)	
2610	μg Fe/kg	Em: CCL3 (Gw NEN 17294-2)	
< 100	μg Zn/kg	Em: CCL3 (Gw NEN 17294-2)	
			Q
	μg Co/kg		Q
	μg B/kg		
	μg Se/kg		
			Q
			Q
14			
	mg C/kg		
	mg N/kg		
133	mg C/kg	Em: NIRS	
117	mg C/kg	Em: NIRS	
1328	kg/m³	Em: NIRS	
	2130 133,4 930 0,7 90 39 92 22,6 0,1 205 150 20,2 144 3,0 36000 2610 < 100 6230 37 17 818 43 3,8 6,8 2,96 5,1 1,06 8,8 14 18 188 280 64 133	2130 mg N/kg 133,4 mg S/kg 930 mg S/kg 0,7 mg P/kg 90 mg P ₂ O ₂ /100 g 99 mg K/kg 22,6 mmol+/kg 0,1 mmol Ca/l 205 mmol+/kg 150 mg Mg/kg 20,2 mmol+/kg 144 mg Na/kg 3,0 mmol+/kg 43 a6000 µg Si/kg 6230 µg Mn/kg 6230 µg Mn/kg 37 µg Cu/kg 43 µg Cu/kg 43 µg Mo/kg 43 µg Se/kg 6,8 2,96 5,1 % 1,06 % 8,8 % 14 % 18 % 54 mmol+/kg mg C/kg 64 mg N/kg 63 mg C/kg 64 mg C/kg 64 mg C/kg 613 mg C/kg 613 mg C/kg 613 mg C/kg 613 mg C/kg 614 mg N/kg 613 mg C/kg	2130 mg N/kg Em: NIRS 133,4 mg S/kg Em: CCL3 (Gw NEN 17294-2) 930 mg S/kg Em: CCL3 (Gw NEN 17294-2) 930 mg P/kg Em: CCL3 (Gw NEN 15923-1) 90 mg P/J00 g PAL1: Gw NEN 5793 39 mg P/100 g PAL1: Gw NEN 5793 39 mg M/kg Em: CCL3 (Gw NEN 17294-2) 22,6 mmol+/kg Em: NIRS 0,1 mmol Call Em: NIRS 205 mg Mg/kg Em: CCL3 (Gw NEN 17294-2) 20,2 mmol+/kg Em: NIRS 150 mg Mg/kg Em: CCL3 (Gw NEN 17294-2) 20,2 mmol+/kg Em: NIRS 144 mg Na/kg Em: CCL3 (Gw NEN 17294-2) 3,0 mmol+/kg Em: CCL3 (Gw NEN 17294-2) 410 µg Fe/kg Em: CCL3 (Gw NEN 17294-2) 410 µg Fe/kg Em: CCL3 (Gw NEN 17294-2) 6230 µg Mr/kg Em: CCL3 (Gw NEN 17294-2) 818 µg Co/kg Em: CCL3 (Gw NEN 17294-2) 818 µg B/kg Em:

De op pagina 1 en 2 bij Resultaat vermelde waarden zijn berekend uit bovenstaande analyseresultaten.

Em: Eigen methode, Gw: Gelijkwaardig aan, Cf: Conform

De resultaten zijn weergegeven in droge grond.

Alle verrichtingen zijn binnen de gestelde houdbaarheidstermijn tussen monstername en analyse uitgevoerd.

Het monster is geanalyseerd in het Eurofins Agro laboratorium in Wageningen, tenzij anders is vermeld.

De resultaten hebben uitsluitend betrekking op het aangeleverde materiaal, dat Eurofins Agro heeft ontvangen en in behandeling is genomen op 02-05-2025 en daarmee op het geanalyseerde monster. Nadere omschrijving van de toegepaste monstername en analyse methoden is te vinden op www.eurofins-agro.com

De meetonzekerheid van de methode is opvraagbaar bij Eurofins Agro. De analyse datum staat niet apart vermeld omdat deze gelijk is aan datum optvanget.

aan datum ontvangst.

Methode geaccrediteerd door RvA

BemestingsWijzer

8771357 barc. 8753127

Uw klantnummer: 8729638

Eurofins Omegam BV H.J.E.Wenckebachweg 120 1114 AD AMSTERDAM DUIVENDR. **Eurofins Agro**

Binnenhaven 5 NL - 6709 PD Wageningen

T monstername: Hilco de Goeij: 0652002131 T klantenservice: 088 876 1010 E agro@ftbnl.eurofins.com I www.eurofins-agro.com

Onderzoek

Onderzoek-/ordernr: 769929/006665845

Datum monstername: Datum verslag: 01-05-2025

14-05-2025

IB 2024 0149 WABO ALES (1917936)

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Chemisch	N-totale bodemvoorraad C/N-ratio	_	5560 17	5130 - 7690 13 - 17					
	N-leverend vermogen	kg N/ha	65	95 - 145					
	S-plantbeschikbaar	kg S/ha	812	20 - 30					
	S-totale bodemvoorraad C/S-ratio	kg S/ha	27620 3	1120 - 2085 50 - 75					
	S-leverend vermogen	kg S/ha	45	20 - 30					
	P-plantbeschikbaar	kg P/ha	0,7	6,1 - 10,2					
	P-bodemvoorraad	kg P/ha	475	520 - 670					
	K-plantbeschikbaar	kg K/ha	200	240 - 375		_			
	K-bodemvoorraad	kg K/ha	775	375 - 625					
	Ca-plantbeschikbaar	kg Ca/ha	135	245 - 575		+			
	Ca-bodemvoorraad	kg Ca/ha	5845	5120 - 6515					
	Mg-plantbeschikbaar	kg Mg/ha	420	240 - 375					
	Mg-bodemvoorraad	kg Mg/ha	320	345 - 575					
	Na-plantbeschikbaar	kg Na/ha	460	51 - 102					
	Na-bodemvoorraad	kg Na/ha	< 87	82 - 136					
	Si-plantbeschikbaar	g Si/ha	40920	20460 - 88660					
	Fe-plantbeschikbaar	g Fe/ha	< 6890	8530 - 15350	<u> </u>				
	Zn-plantbeschikbaar	g Zn/ha	440	1710 - 2560					
	Mn-plantbeschikbaar Cu-plantbeschikbaar	g Mn/ha g Cu/ha	9960 < 70	3410 - 4430 135 - 220					
	Co-plantbeschikbaar	g Co/ha	25	155 - 220					
	B-plantbeschikbaar	g B/ha	3655	545 - 750					
	Mo-plantbeschikbaar	g Mo/ha	450	340 - 17050					
Evolooh	Se-plantbeschikbaar	g Se/ha	< 7,2	12 - 15	•				
Fysisch	Zuurgraad (pH)		7,5	6,1 - 6,7					
	C-organisch	%	2,73						
	Organische stof	%	4,7						
	C/OS-ratio		0,58	0,45 - 0,55					
	Koolzure kalk	%	3,2	2,0 - 3,0					
	Klei (<2 µm)	%	7						
	Silt (2-50 µm)	%	30						
	Zand (>50 µm)	%	55						
	Klei-humus (CEC)	mmol+/kg	99	> 86					
	CEC-bezetting	%	100	> 95					
	Ca-bezetting	%	86	80 - 90					
	Mg-bezetting	% %	7,8 5,9	6,0 - 10 2,0 - 4,0					
	K-bezetting Na-bezetting	% %	5,9 < 0,1	2,0 - 4,0 1,0 - 1,5					
	H-bezetting	%	< 0,1	1,0 - 1,5 < 1.0	ľ				
	Al-bezetting	%	< 0,1	< 1,0					

Pagina: 1

Totaal aantal pagina's: 6 Rapportidentificatie: 769929/006665845, 14-05-2025

Dit rapport is vrijgegeven onder verantwoording van H.A.C. Martin, Managing Director.
Op al onze vormen van dienstverlening zijn onze Algemene Voorwaarden van toepassing. Op verzoek
worden deze en/of de specificaties van de analysemethoden toegezonden. Eurofins Agro Testing
Wageningen B.V. stelt zich niet aansprakelijk voor eventruele schadelijke gevolgen voortvloeiend
uit het gebruik van door of namens ons verstrekte onderzoeksresultaten en/of adviezen.

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	zeer goed	t
	Verkruimelbaarheid Verslemping Stuifgevoeligheid	rapportcijfer rapportcijfer rapportcijfer	9,4 6,6 8,2	6,0 - 8,0 6,0 - 8,0 6,0 - 8,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Biologisch	Vochthoudend vermoge		Resultaat 53	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog

Bemestingsadviezen

Het resultaat wordt afgezet tegen het landbouwkundig streeftraject en krijgt een waardering; laag, vrij laag, goed, vrij hoog, hoog. Dit is geen beoordeling zoals bedoeld in ISO 17025 (par. 7.8.6).

De bemestingsadviezen streven een landbouwkundig optimale opbrengst en kwaliteit na. De adviezen houden geen rekening met restricties vanuit wetgeving. Wanneer u op bedrijfsniveau niet voldoende ruimte heeft, adviseren we de giften van de minst behoeftige gewassen te verminderen, overleg met uw adviseur.

Advies	Gift	Eenheid

Bodemgericht advies (4-jarig)						
Fosfaat (P ₂ O ₅)	105	kg/ha				
Kali (K ₂ O)	0	kg/ha				
Calcium (CaO)	0	kg/ha				
Magnesium (MgO)	15	kg/ha				
Kalk (nw)	0	kg/ha				
Effectieve org.stof	8840	kg/ha				

Bij hoge adviesgiften is een verdeling van de gift gedurende de 4 jaar aan te raden, bijvoorbeeld tweejaarlijks de helft geven. De bodemgerichte adviezen zijn bedoeld om de bodemvoorraden van fosfaat, kalium, calcium en magnesium op peil te brengen.

De kalkgift is gebaseerd op een optimale pH van 6,4 De benodigde hoeveelheid effectieve organische stof is weergegeven voor 4 jaar. Zie de OS-balans voor de berekening van de gemiddelde jaarlijkse gift.

		G	ewas	Ras/Teelttype	Gift

in kg/ha

Gewasgericht advies (jaarlijks)					
Stikstof (N)	Border	68			
Sulfaat (SO ₃)	Border	0			
Fosfaat (P ₂ O ₅)	Border	40			
Kali (K ₂ O)	Border	50			
Calcium (CaO)	Border	50			
Magnesium (MgO)	Border	0			
Natrium (Na ₂ O)	Border				
Zink (Zn)	Border	0,5			
Mangaan (Mn)	-	Zie de toelichting.			
Koper (Cu)	Border	0,25			
Borium (B)	Border	0			

Gewasgericht advies

Het gewasgerichte advies is gebaseerd op de gewasbehoefte, gemiddelde opbrengst en klimaatomstandigheden en is gecorrigeerd voor de bodemvoorraad en bodemnalevering. Tijdens het seizoen kan worden bijgestuurd met bijmestonderzoek.

Pagina: 2

Totaal aantal pagina's: 6 Rapportidentificatie: 769929/006665845, 14-05-2025

Toelichting

De resultaten en/of het advies van dit bemestingsonderzoek kunt u t/m 2028 gebruiken.

Voor een uitgebreide toelichting kunt u onderstaande link gebruiken:

https://www.eurofins-agro.com/nl-nl/toelichting-grondonderzoek

Het bodemgerichte advies is bedoeld om de bodemvoorraad van de nutriënten op peil te houden. Voor het K, Ca en Mg advies betekent dit dat de samenstelling aan het klei-humus complex (CEC) geoptimaliseerd wordt. Het is verstandig het bodemgerichte advies van nutriënten en kalk over de 4 jaar te verdelen. Wanneer er een bodemgerichte bemesting is uitgevoerd kunnen de bodemkengetallen worden bijgewerkt door een nieuw bodemgericht onderzoek uit te voeren.

De gewasgerichte adviezen zijn bedoeld om het gewas te voeden en de kwaliteit te verbeteren. Door hogere/lagere opbrengsten en verliezen zoals uitspoeling kan de hoeveelheid plantbeschikbare nutriënten fluctueren. Het is raadzaam elk jaar voor het seizoen een gewasgericht onderzoek uit te voeren (pakket Teelt) voor de actuele hoeveelheid plantbeschikbare nutriënten en een update van het gewasgerichte advies.

Bekijk de waardering van de nutriënten op pagina 1 goed. Geven de streefwaarden aan dat één of meerdere nutriënten heel laag zijn, overleg dan met uw adviseur om dit weer op peil te krijgen.

Bij de berekening van de adviezen is uitgegaan van de volgende opbrengsten in ton/ha:

Border

Zijn uw opbrengsten, lager dan wel hoger, dan is het verstandig uw bemesting daar op aan te passen.

Stikstof:

We adviseren de N-gift - zo mogelijk - op te delen in meerdere giften. Of de vervolggift nodig is, kunt u tijdens het groeiseizoen laten controleren via ons BodemCheck onderzoek. In dit onderzoek wordt onder andere de plantbeschikbare (=minerale) N in de bodem gemeten.

Zwavel:

Zwavel (S) komt vrij bij de afbraak van organische stof of mest. Deze afbraak vindt plaats door bodemleven. Bodemleven is onder koudere omstandigheden niet erg actief. Vroeg in het voorjaar komt er derhalve weinig S vrij uit de bodem. Voor veel vroege gewassen kan het dan ook verstandig zijn om S te bemesten, zelfs al is de bodemvoorraad goed of hoog.

Fosfaat:

Het berekende Pw-getal is voor dit perceel 20 $\,\mathrm{mg}\,\mathrm{P}_2\mathrm{O}_5/\mathrm{l}$. De P-buffering is 160 . Het streeftraject ligt tussen de 17 - 27 De P-buffering geeft aan of de P-bodemvoorraad in staat is de P-plantbeschikbaar op het huidige peil te houden. Als de P-buffering laag is, dan zal de P-plantbeschikbaar tijdens het groeiseizoen niet op peil blijven en zal op termijn ook de P-bodemvoorraad terug gaan lopen.

Kali:

Het berekende K-getal is voor dit perceel 20 K-getal wordt niet meer gebruikt bij de adviesberekening.

Calcium:

Calcium bemesting kan ook een positief effect hebben op de bodemstructuur.

Mangaan:

Er is geen mangaangebrek te verwachten.

Bodemleven:

De biologische bodemvruchtbaarheid wordt nu weergegeven via 3 kengetallen, te weten de microbiële biomassa, de microbiële activiteit en de schimmel/bacterie-ratio.

Op basis van de huidige kennis wordt een waardering gegeven die afhankelijk is van de hoeveelheid organische stof. Er wordt nu nog geen advies gegeven. Via diverse onderzoeksprojecten zal er meer informatie beschikbaar komen.

Organische stof Figuur: Organische stofbalans

en/of compost.

Jaarlijks afbraakpercentage van de totale voorraad organische stof (%): 1,5

Voorraad organische stof die over 1 jaar in de bemonsterde laag nog aanwezig zal zijn als er geen (effectieve)	Gewas(rest)	Teelt/ras	Aanvoer effectieve organische stof
organische stof wordt aangevoerd.			
Totaal benodigde aanvoer van effectieve organische stof	Border		200
als gevolg van afbraak van de organische stof.			
Aanvoer via gewasresten (gemiddeld binnen opgegeven	Gemiddelde aanvoer/jaar		200
rotatie of gewassen).			
Nog aan te vullen via bijv. dierlijke mest, groenbemesters			

Om het organische stofgehalte met 0,1% te verhogen dient u een extra hoeveelheid effectieve organische stof aan te voeren van: 3410 kg per ha.

Figuur: Kwaliteit van de organische stof Gebaseerd op C/OS-ratio.

Organische stof bestaat uit met name C, N, P, S. Wanneer de organische stof relatief veel N en of S bevat is dit aantrekkelijk voor bodemleven. Bodemleven vreet deze organische stof graag. Hierbij komt N en S vrij en het gehalte aan organische stof daalt licht (dynamische organische stof). Organische stof kan ook veel C bevatten. Dat is over het algemeen minder aantrekkelijk voor bodemleven. De organische stof wordt derhalve minder aangevreten door bodemleven; de organische stof is stabieler. Stabiele organische stof draagt onder andere bij aan de bewerkbaarheid van de bodem en aan de rulheid. Dynamische organische stof draagt bij aan met name het vrijkomen van N en S en is daarmee een bron van deze nutriënten voor het gewas. De kwaliteit van de organische stof is (geleidelijk) aan te passen door onder andere te letten op de eigenschappen van bodemverbeteraars als dierlijke mest, compost en gewasresten.

Fysisch

De beoordeling van de potentiële structuur wordt gedaan op basis van de verhouding tussen calcium, magnesium en overige kationen aan het klei-humuscomplex. Uiteraard is de werkelijke structuur ook afhankelijk van weersomstandigheden en vochttoestand van de bodem tijdens berijden en bewerken en de zwaarte van machines.

Figuur: Structuurdriehoek

Fysisch Figuur: Textuurdriehoek

Naast klei (lutum), worden ook de silt- en zandfracties weergegeven. Klei is kleiner dan 2 micrometer (μ m), siltdeeltjes zijn 2-50 μ m en zanddeeltjes groter dan 50 μ m. De onderlinge verdeling van bodemdeeltjes wordt onder andere gebruikt om het verslempingsrisico van een bodem in te schatten. Bij verslemping wordt de bodem dichtgesmeerd met kleinere deeltjes (klei en silt). Een heel eenzijdige verdeling (bijvoorbeeld hoofdzakelijk zand- of kleideeltjes) levert het minste risico van slemp op. Bij 10-20% klei is het risico op slemp het grootst.

De verkruimelbaarheid is goed te noemen. Echter is dit ook afhankelijk van de soort teelt. Gezien het resultaat is de kans op verslemping klein.

Figuur: Waterretentiecurve

De hoeveelheid plant beschikbaar water in de bemonsterde laag is 53 mm, dit is wat u maximaal zou moeten beregenen. Alles wat u meer geeft spoelt af van het perceel of zakt naar diepere lagen.

Veldcapaciteit (pF 2,0):	30,6	% vocht
Aanvulpunt (pF 3,3):	15,2	% vocht
Verwelkingspunt (pF 4,2):	9,3	% vocht

Als het vochtgehalte van het perceel daalt hebben gewassen moeite om voldoende water op te nemen, de grens ligt bij pF 3,3. Wanneer u het vochtgehalte kan bepalen, begin dan met beregenen als het vochtgehalte van dit perceel op 15,2 % vocht zit en geef dan 39 mm.

Het actuele vochtgehalte kan bepaald worden door een vochtsensor of verzamel grond van een tiental plekken in het perceel. Meet het gewicht van de vochtige grond en het gewicht van de grond na 24 uur drogen, het verschil tussen de twee is een indicatie van het vochtgehalte van het perceel.

Contact & info Bemonsterde laag: 0 - 25 cm
Grondsoort: Lemig zand
Monster genomen door: Derden

Contactpersoon monstername: Hilco de Goeij: 0652002131

Indien de volgende informatie wordt getoond op de rapporten is deze informatie verstrekt door de opdrachtgever en kan dit van invloed zijn op de waardering, advisering en/of het analyseresultaat: gewas, teelttype/ras.

Dit geldt ook voor de bemonsteringsdiepte wanneer er sprake is van monstername door derden.

Dit rapport is vrijgegeven onder verantwoording van H.A.C. Martin, Managing Director.
Op al onze vormen van dienstverlening zijn onze Algemene Voorwaarden van toepassing. Op verzot
worden deze en/of de specificaties van de analysemethoden toegezonden. Eurofins Agro Testing
Wageningen B.V. stelt zich niet aansprakelijk voor eventuele schadelijke gevolgen voortvloeiend
uit het gebruik van door of namens ons verstrekte onderzoeksresultaten en/of adviezen.

Methode Analyse resultaten

	Resultaat		Eenheid	Methode	RvA
N-totale bodemvoorraad	1630		mg N/kg	Em: NIRS	Q
S-plantbeschikbaar	238,1		mg S/kg	Em: CCL3 (Gw NEN 17294-2)	
S-totale bodemvoorraad	8100	ind)	mg S/kg	Em: STT6 `	
P-plantbeschikbaar	0,2	,	mg P/kg	Em: CCL3 (Gw NEN 15923-1)	Q
P-bodemvoorraad	32		mg P ₂ O ₅ /100 g	PAL1: Gw NEN 5793	Q
P-bodemvoorraad	14		mg P/100 g	PAL1: Gw NEN 5793	Q
K-plantbeschikbaar	59		mg K/kg	Em: CCL3 (Gw NEN 17294-2)	
K-bodemvoorraad	5,8		mmol+/kg	Em: NIRS	
Ca-plantbeschikbaar	0,5		mmol Ca/l	Em: NIRS	
Ca-bodemvoorraad	114		mmol+/kg	Em: NIRS	
Mg-plantbeschikbaar	123		mg Mg/kg	Em: CCL3 (Gw NEN 17294-2)	
Mg-bodemvoorraad	7,7		mmol+/kg	Em: NIRS	
Na-plantbeschikbaar	135		mg Na/kg	Em: CCL3 (Gw NEN 17294-2)	
Na-bodemvoorraad	< 1,1		mmol+/kg	Em: NIRS	
Si-plantbeschikbaar	12000		μg Si/kg	Em: CCL3 (Gw NEN 17294-2)	
Fe-plantbeschikbaar	< 2020		μg Fe/kg	Em: CCL3 (Gw NEN 17294-2)	
Zn-plantbeschikbaar	130		μg Zn/kg	Em: CCL3 (Gw NEN 17294-2)	
Mn-plantbeschikbaar	2920		μg Mn/kg	Em: CCL3 (Gw NEN 17294-2)	
Cu-plantbeschikbaar	< 21		μg Cu/kg	Em: CCL3 (Gw NEN 17294-2)	Q
Co-plantbeschikbaar	8,0		μg Co/kg	Em: CCL3 (Gw NEN 17294-2)	Q
B-plantbeschikbaar	1072		μg B/kg	Em: CCL3 (Gw NEN 17294-2)	
Mo-plantbeschikbaar	133	ind)	μg Mo/kg	Em: CCL3 (Gw NEN 17294-2)	
Se-plantbeschikbaar	< 2,1		μg Se/kg	Em: CCL3 (Gw NEN 17294-2)	
Zuurgraad (pH)	7,5			Em:PHC3(Cf NEN ISO 10390)	Q
C-organisch	2,73		%	Em: NIRS	Q
Organische stof	4,7		%	Em: NIRS	Q
C-anorganisch	0,39		%	Em: NIRS	
Koolzure kalk	3,2		%	Em: NIRS	
Klei (<2 µm)	7		%	Em: NIRS	
Silt (2-50 µm)	30		%	Em: NIRS	
Zand (>50 μm)	55		%	Em: NIRS	
Klei-humus (CEC)	99		mmol+/kg	Em: NIRS	
Microbiële biomassa	216		mg C/kg	Em: NIRS	
Microbiële activiteit	30		mg N/kg	Em: NIRS	
Schimmel biomassa	103		mg C/kg	Em: NIRS	
Bacteriële biomassa	92		mg C/kg	Em: NIRS	
Bulkdichtheid	1364		kg/m ³	Em: NIRS	

De op pagina 1 en 2 bij Resultaat vermelde waarden zijn berekend uit bovenstaande analyseresultaten.

- Methode geaccrediteerd door RvA
- Em: Eigen methode, Gw: Gelijkwaardig aan, Cf: Conform ind) Resultaat geeft een indicatieve waarde weer.

De resultaten zijn weergegeven in droge grond.
Alle verrichtingen zijn binnen de gestelde houdbaarheidstermijn tussen monstername en analyse uitgevoerd.
Het monster is geanalyseerd in het Eurofins Agro laboratorium in Wageningen, tenzij anders is vermeld.
De resultaten hebber oost genomen op 02-05-2025 en daarmee op het geanalyseerde monster. Nadere omschrijving van de toegepaste monstername en analyse methoden is te vinden op www.eurofins-agro.com

De meetonzekerheid van de methode is opvraagbaar bij Eurofins Agro. De analyse datum staat niet apart vermeld omdat deze gelijk is aan datum ontvangst.

BemestingsWijzer

8771358 barc. 8764484

Uw klantnummer: 8729638

Eurofins Omegam BV H.J.E.Wenckebachweg 120 1114 AD AMSTERDAM DUIVENDR. Eurofins Agro

Binnenhaven 5 NL - 6709 PD Wageningen

T monstername: Hilco de Goeij: 0652002131 T klantenservice: 088 876 1010 E agro@ftbnl.eurofins.com I www.eurofins-agro.com

Onderzoek

Onderzoek-/ordernr: 769928/006665845

Datum monstername: Datum verslag:

01-05-2025 13-05-2025

IB 2024 0149 WABO ALES (1917936)

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Chemisch	N-totale bodemvoorraad C/N-ratio	kg N/ha	7070 14	5420 - 8130 13 - 17					
CHEITIISCH	N-leverend vermogen	kg N/ha	100	95 - 145					
	S-plantbeschikbaar S-totale bodemvoorraad	kg S/ha kg S/ha	443 3090	20 - 30 1185 - 2200					
	C/S-ratio S-leverend vermogen	kg S/ha	32 45	50 - 75 20 - 30					
	P-plantbeschikbaar P-bodemvoorraad	kg P/ha kg P/ha	2,3 1305	6,0 - 10,0 505 - 650					
	K-plantbeschikbaar K-bodemvoorraad	kg K/ha kg K/ha	305 2935	230 - 365 730 - 1220					
	Ca-plantbeschikbaar Ca-bodemvoorraad	kg Ca/ha kg Ca/ha	25 9460	240 - 560 9465 - 12050	•				
	Mg-plantbeschikbaar Mg-bodemvoorraad	kg Mg/ha kg Mg/ha	500 815	230 - 365 575 - 955					
	Na-plantbeschikbaar Na-bodemvoorraad	kg Na/ha kg Na/ha	478 229	50 - 100 258 - 429					
	Si-plantbeschikbaar Fe-plantbeschikbaar Zn-plantbeschikbaar	g Si/ha g Fe/ha g Zn/ha	119520 8670 < 330	19920 - 86320 8300 - 14940 1660 - 2490			ı		
	Mn-plantbeschikbaar Cu-plantbeschikbaar	g Mn/ha g Cu/ha	20680 125	3320 - 4320 135 - 215					
	Co-plantbeschikbaar B-plantbeschikbaar Mo-plantbeschikbaar	g Co/ha g B/ha g Mo/ha	55 2715 140	15 - 25 530 - 730 330 - 16600					
Fysisch	Se-plantbeschikbaar	g Se/ha	6.8	12 - 15 > 6,2					
	Zuurgraad (pH)	0/		> 0,2					
	C-organisch Organische stof C/OS-ratio	% %	2,96 5,1 0,58	0,45 - 0,55				<u> </u>	
	Koolzure kalk	%	8,8	2,0 - 3,0					
	Klei (<2 μm) Silt (2-50 μm) Zand (>50 μm) Slib (<16 μm)	% % % %	14 18 54 19						
	Klei-humus (CEC) CEC-bezetting Ca-bezetting	mmol+/kg % %	188 100 76 11	> 143 > 95 80 - 90 6.0 - 10					
	Mg-bezetting K-bezetting Na-bezetting H-bezetting	% % %	11 12 1,6 < 0,1	6,0 - 10 2,0 - 4,0 1,0 - 1,5 < 1,0					

Pagina: 1

Totaal aantal pagina's: 6 Rapportidentificatie: 769928/006665845, 13-05-2025

Dit rapport is vrijgegeven onder verantwoording van H.A.C. Martin, Managing Director. Op al onze vormen van dienstverlening zijn onze Algemene Voorwaarden van toepassing. Op verzoek worden deze en/of de specificaties van de analysemethoden toegezonden. Eurofins Agro Testing Wageningen B.V. stelt zich niet aansprakelijk voor eventruele schadelijke gevolgen voortvloeiend uit het gebruik van door of namens ons verstrekte onderzoeksresultaten en/of adviezen.

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
	Al-bezetting	%	< 0,1	< 1,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	zeer goed	i
	Verkruimelbaarheid Verslemping Stuifgevoeligheid	rapportcijfer rapportcijfer rapportcijfer	8,4 5,0 8,0	6,0 - 8,0 6,0 - 8,0 6,0 - 8,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Distantant	Vochthoudend vermoge	nmm	47						
Biologisch	Microbiële biomassa Microbiële activiteit Schimmel/bacterie-ratio	mg C/kg mg N/kg	280 64 1,1	255 - 765 43 - 71 0,6 - 0,9					

Bemestingsadviezen

Het resultaat wordt afgezet tegen het landbouwkundig streeftraject en krijgt een waardering; laag, vrij laag, goed, vrij hoog, hoog. Dit is geen beoordeling zoals bedoeld in ISO 17025 (par. 7.8.6).

Wetgeving

De bemestingsadviezen streven een landbouwkundig optimale opbrengst en kwaliteit na. De adviezen houden geen rekening met restricties vanuit wetgeving. Wanneer u op bedrijfsniveau niet voldoende ruimte heeft, adviseren we de giften van de minst behoeftige gewassen te verminderen, overleg met uw adviseur.

Bodemgericht advies (4-jarig)						
Fosfaat (P ₂ O ₅)	0	kg/ha				
Kali (K ₂ O)	0	kg/ha				
Calcium (CaO)	1575	kg/ha				
Magnesium (MgO)	0	kg/ha				
Kalk (nw)	0	kg/ha				
Effectieve org.stof	16700	kg/ha				

Border

Bij hoge adviesgiften is een verdeling van de gift gedurende de 4 jaar aan te raden, bijvoorbeeld tweejaarlijks de helft geven. De bodemgerichte adviezen zijn bedoeld om de bodemvoorraden van fosfaat, kalium, calcium en magnesium op peil te brengen.

De kalkgift is gebaseerd op een optimale pH van 6,5 De benodigde hoeveelheid effectieve organische stof is weergegeven voor 4 jaar. Zie de OS-balans voor de berekening van de gemiddelde jaarlijkse gift.

0

	Gewas	Ras/Teelttype	Gift					
Gewasgericht advie	Gewasgericht advies (jaarlijks)							
Stikstof (N)	Border		60					
Sulfaat (SO ₃)	Border		0					
Fosfaat (P ₂ O ₅)	Border		15					
Kali (K ₂ O)	Border		5					
Calcium (CaO)	Border		50					
Magnesium (MgO)	Border		0					
Natrium (Na ₂ O)	Border							
Zink (Zn)	Border		0,5					
Mangaan (Mn)	-		Zie de toelichting.					
Koper (Cu)	Border		0					

Pagina: 2

Borium (B)

in kg/ha

Totaal aantal pagina's: 6 Rapportidentificatie: 769928/006665845, 13-05-2025

Advies

Gewasgericht advies

Het gewasgerichte advies is gebaseerd op de gewasbehoefte, gemiddelde opbrengst en klimaatomstandigheden en is gecorrigeerd voor de bodemvoorraad en bodemnalevering. Tijdens het seizoen kan worden bijgestuurd met bijmestonderzoek.

Toelichting

De resultaten en/of het advies van dit bemestingsonderzoek kunt u t/m 2028 gebruiken.

Voor een uitgebreide toelichting kunt u onderstaande link

https://www.eurofins-agro.com/nl-nl/toelichting-grondonderzoek

Het bodemgerichte advies is bedoeld om de bodemvoorraad van de nutriënten op peil te houden. Voor het K, Ca en Mg advies betekent dit dat de samenstelling aan het klei-humus complex (CEC) geoptimaliseerd wordt. Het is verstandig het bodemgerichte advies van nutriënten en kalk over de 4 jaar te verdelen. Wanneer er een bodemgerichte bemesting is uitgevoerd kunnen de bodemkengetallen worden bijgewerkt door een nieuw bodemgericht onderzoek uit te voeren.

De gewasgerichte adviezen zijn bedoeld om het gewas te voeden en de kwaliteit te verbeteren. Door hogere/lagere opbrengsten en verliezen zoals uitspoeling kan de hoeveelheid plantbeschikbare nutriënten fluctueren. Het is raadzaam elk jaar voor het seizoen een gewasgericht onderzoek uit te voeren (pakket Teelt) voor de actuele hoeveelheid plantbeschikbare nutriënten en een update van het gewasgerichte advies.

Bekijk de waardering van de nutriënten op pagina 1 goed. Geven de streefwaarden aan dat één of meerdere nutriënten heel laag zijn, overleg dan met uw adviseur om dit weer op peil te krijgen.

Bij de berekening van de adviezen is uitgegaan van de volgende opbrengsten in ton/ha:

Border -

Zijn uw opbrengsten, lager dan wel hoger, dan is het verstandig uw bemesting daar op aan te passen.

Stikstof:

We adviseren de N-gift - zo mogelijk - op te delen in meerdere giften. Of de vervolggift nodig is, kunt u tijdens het groeiseizoen laten controleren via ons BodemCheck onderzoek. In dit onderzoek wordt onder andere de plantbeschikbare (=minerale) N in de bodem gemeten.

Zwavel:

Zwavel (S) komt vrij bij de afbraak van organische stof of mest. Deze afbraak vindt plaats door bodemleven. Bodemleven is onder koudere omstandigheden niet erg actief. Vroeg in het voorjaar komt er derhalve weinig S vrij uit de bodem. Voor veel vroege gewassen kan het dan ook verstandig zijn om S te bemesten, zelfs al is de bodemvoorraad goed of hoog.

Fosfaat:

Het berekende Pw-getal is voor dit perceel 47 $\,$ mg $\rm P_2O_5/I$. De P-buffering is 129 . Het streeftraject ligt tussen de 17 - 27 De P-buffering geeft aan of de P-bodemvoorraad in staat is de P-plantbeschikbaar op het huidige peil te houden. Als de P-buffering laag is, dan zal de P-plantbeschikbaar tijdens het groeiseizoen niet op peil blijven en zal op termijn ook de P-bodemvoorraad terug gaan lopen.

Kali:

Het berekende K-getal is voor dit perceel 45 K-getal wordt niet meer gebruikt bij de adviesberekening.

Calcium:

Calcium bemesting kan ook een positief effect hebben op de bodemstructuur.

Mangaan:

Er is geen mangaangebrek te verwachten.

Bodemleven:

De biologische bodemvruchtbaarheid wordt nu weergegeven via 3 kengetallen, te weten de microbiële biomassa, de microbiële activiteit en de schimmel/bacterie-ratio.

Op basis van de huidige kennis wordt een waardering gegeven die afhankelijk is van de hoeveelheid organische stof. Er wordt nu nog geen advies gegeven. Via diverse onderzoeksprojecten zal er meer informatie beschikbaar komen.

Organische stof Figuur: Organische stofbalans

en/of compost.

Jaarlijks afbraakpercentage van de totale voorraad organische stof (%): 2,6

	anische stof die over 1 jaar in de bemonsterde wezig zal zijn als er geen (effectieve)	Gewas(rest)	Teelt/ras	Aanvoer effectieve organische stof
organische s	tof wordt aangevoerd.			
Totaal benod	ligde aanvoer van effectieve organische stof	Border		200
als gevolg va	n afbraak van de organische stof.			
Aanvoer via	gewasresten (gemiddeld binnen opgegeven	Gemiddelde aanvoer/jaar		200
rotatie of gev	vassen).			
Nog aan te v	ullen via bijv. dierlijke mest, groenbemesters			

Om het organische stofgehalte met 0,1% te verhogen dient u een extra hoeveelheid effectieve organische stof aan te voeren van: 3320 kg per ha.

Figuur: Kwaliteit van de organische stof Gebaseerd op C/OS-ratio.

Organische stof bestaat uit met name C, N, P, S. Wanneer de organische stof relatief veel N en of S bevat is dit aantrekkelijk voor bodemleven. Bodemleven vreet deze organische stof graag. Hierbij komt N en S vrij en het gehalte aan organische stof daalt licht (dynamische organische stof). Organische stof kan ook veel C bevatten. Dat is over het algemeen minder aantrekkelijk voor bodemleven. De organische stof wordt derhalve minder aangevreten door bodemleven; de organische stof is stabieler. Stabiele organische stof draagt onder andere bij aan de bewerkbaarheid van de bodem en aan de rulheid. Dynamische organische stof draagt bij aan met name het vrijkomen van N en S en is daarmee een bron van deze nutriënten voor het gewas. De kwaliteit van de organische stof is (geleidelijk) aan te passen door onder andere te letten op de eigenschappen van bodemverbeteraars als dierlijke mest, compost en gewasresten.

Fysisch

De beoordeling van de potentiële structuur wordt gedaan op basis van de verhouding tussen calcium, magnesium en overige kationen aan het klei-humuscomplex. Uiteraard is de werkelijke structuur ook afhankelijk van weersomstandigheden en vochttoestand van de bodem tijdens berijden en bewerken en de zwaarte van machines.

Figuur: Structuurdriehoek

Fysisch Figuur: Textuurdriehoek

Naast klei (lutum), worden ook de silt- en zandfracties weergegeven. Klei is kleiner dan 2 micrometer (μ m), siltdeeltjes zijn 2-50 μ m en zanddeeltjes groter dan 50 μ m. De onderlinge verdeling van bodemdeeltjes wordt onder andere gebruikt om het verslempingsrisico van een bodem in te schatten. Bij verslemping wordt de bodem dichtgesmeerd met kleinere deeltjes (klei en silt). Een heel eenzijdige verdeling (bijvoorbeeld hoofdzakelijk zand- of kleideeltjes) levert het minste risico van slemp op. Bij 10-20% klei is het risico op slemp het grootst.

De verkruimelbaarheid is goed te noemen. Echter is dit ook afhankelijk van de soort teelt. Er is kans op verslemping. Het is raadzaam om de organische stof in de bodem op peil te houden of zelfs op termijn te verhogen. De organische stof zorgt namelijk voor binding tussen de gronddeeltjes.

Figuur: Waterretentiecurve

De hoeveelheid plant beschikbaar water in de bemonsterde laag is 47 mm, dit is wat u maximaal zou moeten beregenen. Alles wat u meer geeft spoelt af van het perceel of zakt naar diepere lagen.

Veldcapaciteit (pF 2,0):	31,8	% vocht
Aanvulpunt (pF 3,3):	18,8	% vocht
Verwelkingspunt (pF 4,2):	13,0	% vocht

Als het vochtgehalte van het perceel daalt hebben gewassen moeite om voldoende water op te nemen, de grens ligt bij pF 3,3. Wanneer u het vochtgehalte kan bepalen, begin dan met beregenen als het vochtgehalte van dit perceel op 18,8 % vocht zit en geef dan 33 mm.

Het actuele vochtgehalte kan bepaald worden door een vochtsensor of verzamel grond van een tiental plekken in het perceel. Meet het gewicht van de vochtige grond en het gewicht van de grond na 24 uur drogen, het verschil tussen de twee is een indicatie van het vochtgehalte van het perceel.

 Contact & info
 Bemonsterde laag:
 0 - 25 cm

 Grondsoort:
 Zavel

 Monster genomen door:
 Derden

Contactpersoon monstername: Hilco de Goeij: 0652002131

Indien de volgende informatie wordt getoond op de rapporten is deze informatie verstrekt door de opdrachtgever en kan dit van invloed zijn op de waardering, advisering en/of het analyseresultaat: gewas, teelttype/ras.

Dit geldt ook voor de bemonsteringsdiepte wanneer er sprake is van monstername door derden.

Methode Analyse resultaten

Resultaat	Eenheid	Methode	RvA
2130	mg N/kg	Em: NIRS	Q
133,4	mg S/kg	Em: CCL3 (Gw NEN 17294-2)	
930	mg S/kg	Em: NIRS	Q
0,7	mg P/kg	Em: CCL3 (Gw NEN 15923-1)	Q
90	mg P ₂ O ₅ /100 g	PAL1: Gw NEN 5793	Q
39	mg P/100 g	PAL1: Gw NEN 5793	Q
92	mg K/kg	Em: CCL3 (Gw NEN 17294-2)	
22,6	mmol+/kg	Em: NIRS	
0,1	mmol Ca/l	Em: NIRS	
205	mmol+/kg	Em: NIRS	
150	mg Mg/kg	Em: CCL3 (Gw NEN 17294-2)	
20,2	mmol+/kg	Em: NIRS	
144	mg Na/kg	Em: CCL3 (Gw NEN 17294-2)	
3,0	mmol+/kg	Em: NIRS	
36000	μg Si/kg	Em: CCL3 (Gw NEN 17294-2)	
2610	μg Fe/kg	Em: CCL3 (Gw NEN 17294-2)	
< 100	μg Zn/kg	Em: CCL3 (Gw NEN 17294-2)	
			Q
	μg Co/kg		Q
	μg B/kg		
	μg Se/kg		
			Q
			Q
14			
	mg C/kg		
	mg N/kg		
133	mg C/kg	Em: NIRS	
117	mg C/kg	Em: NIRS	
1328	kg/m³	Em: NIRS	
	2130 133,4 930 0,7 90 39 92 22,6 0,1 205 150 20,2 144 3,0 36000 2610 < 100 6230 37 17 818 43 3,8 6,8 2,96 5,1 1,06 8,8 14 18 188 280 64 133	2130 mg N/kg 133,4 mg S/kg 930 mg S/kg 0,7 mg P/kg 90 mg P ₂ O ₂ /100 g 99 mg K/kg 22,6 mmol+/kg 0,1 mmol Ca/l 205 mmol+/kg 150 mg Mg/kg 20,2 mmol+/kg 144 mg Na/kg 3,0 mmol+/kg 43 a6000 µg Si/kg 6230 µg Mn/kg 6230 µg Mn/kg 37 µg Cu/kg 43 µg Cu/kg 43 µg Mo/kg 43 µg Se/kg 6,8 2,96 5,1 % 1,06 % 8,8 % 14 % 18 % 54 mmol+/kg mg C/kg 64 mg N/kg 63 mg C/kg 64 mg C/kg 64 mg C/kg 613 mg C/kg 613 mg C/kg 613 mg C/kg 613 mg C/kg 614 mg N/kg 613 mg C/kg	2130 mg N/kg Em: NIRS 133,4 mg S/kg Em: CCL3 (Gw NEN 17294-2) 930 mg S/kg Em: CCL3 (Gw NEN 17294-2) 930 mg P/kg Em: CCL3 (Gw NEN 15923-1) 90 mg P/J00 g PAL1: Gw NEN 5793 39 mg P/100 g PAL1: Gw NEN 5793 39 mg M/kg Em: CCL3 (Gw NEN 17294-2) 22,6 mmol+/kg Em: NIRS 0,1 mmol Call Em: NIRS 205 mg Mg/kg Em: CCL3 (Gw NEN 17294-2) 20,2 mmol+/kg Em: NIRS 150 mg Mg/kg Em: CCL3 (Gw NEN 17294-2) 20,2 mmol+/kg Em: NIRS 144 mg Na/kg Em: CCL3 (Gw NEN 17294-2) 3,0 mmol+/kg Em: CCL3 (Gw NEN 17294-2) 410 µg Fe/kg Em: CCL3 (Gw NEN 17294-2) 410 µg Fe/kg Em: CCL3 (Gw NEN 17294-2) 6230 µg Mr/kg Em: CCL3 (Gw NEN 17294-2) 818 µg Co/kg Em: CCL3 (Gw NEN 17294-2) 818 µg B/kg Em:

De op pagina 1 en 2 bij Resultaat vermelde waarden zijn berekend uit bovenstaande analyseresultaten.

Em: Eigen methode, Gw: Gelijkwaardig aan, Cf: Conform

De resultaten zijn weergegeven in droge grond.

Alle verrichtingen zijn binnen de gestelde houdbaarheidstermijn tussen monstername en analyse uitgevoerd.

Het monster is geanalyseerd in het Eurofins Agro laboratorium in Wageningen, tenzij anders is vermeld.

De resultaten hebben uitsluitend betrekking op het aangeleverde materiaal, dat Eurofins Agro heeft ontvangen en in behandeling is genomen op 02-05-2025 en daarmee op het geanalyseerde monster. Nadere omschrijving van de toegepaste monstername en analyse methoden is te vinden op www.eurofins-agro.com

De meetonzekerheid van de methode is opvraagbaar bij Eurofins Agro. De analyse datum staat niet apart vermeld omdat deze gelijk is aan datum optvanget.

aan datum ontvangst.

Methode geaccrediteerd door RvA

BemestingsWijzer

8771359 barc. 8753129

Uw klantnummer: 8729638

Eurofins Omegam BV H.J.E.Wenckebachweg 120 1114 AD AMSTERDAM DUIVENDR. Eurofins Agro

Binnenhaven 5 NL - 6709 PD Wageningen

T monstername: Hilco de Goeij: 0652002131 T klantenservice: 088 876 1010 E agro@ftbnl.eurofins.com I www.eurofins-agro.com

Onderzoek

Onderzoek-/ordernr: 769927/006665845

Datum monstername: Datum verslag: 01-05-2025

14-05-2025

IB 2024 0149 WABO ALES (1917936)

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
	N-totale bodemvoorraad	kg N/ha	13330	12570 - 18860					
Chemisch	C/N-ratio		18	13 - 17					
	N-leverend vermogen	kg N/ha	140	95 - 145					
	S-plantbeschikbaar	kg S/ha	1120	20 - 30					
	S-totale bodemvoorraad	kg S/ha	5815	2750 - 5105					
	C/S-ratio		40	50 - 75		_			
	S-leverend vermogen	kg S/ha	45	20 - 30					
	P-plantbeschikbaar	kg P/ha	1,8	4,1 - 6,9					
	P-bodemvoorraad	kg P/ha	925	350 - 450					
	K-plantbeschikbaar	kg K/ha	360	160 - 255					
	K-bodemvoorraad	kg K/ha	620	445 - 740					
	Ca-plantbeschikbaar	kg Ca/ha	165	165 - 385					
	Ca-bodemvoorraad	kg Ca/ha	11555	10765 - 13705					
	Mg-plantbeschikbaar	kg Mg/ha	715	160 - 255					
	Mg-bodemvoorraad	kg Mg/ha	1020	835 - 1390					
	Na-plantbeschikbaar	kg Na/ha	657	34 - 69					
	Na-bodemvoorraad	kg Na/ha	< 59	103 - 172					
	Si-plantbeschikbaar	g Si/ha	62030	13790 - 59740					
	Fe-plantbeschikbaar	g Fe/ha	< 4710	5740 - 10340				Ī	
	Zn-plantbeschikbaar	g Zn/ha	900	1150 - 1720		_			
	Mn-plantbeschikbaar	g Mn/ha	26610	2300 - 2990					
	Cu-plantbeschikbaar	g Cu/ha	70	90 - 150					
	Co-plantbeschikbaar	g Co/ha	35	10 - 20					
	B-plantbeschikbaar	g B/ha	8810	370 - 505					
	Mo-plantbeschikbaar	g Mo/ha	730	230 - 11490					
Eveisch	Se-plantbeschikbaar	g Se/ha	8,7	8,0 - 10					
Fysisch	Zuurgraad (pH)		7,1	> 5,8					
	C-organisch	%	10,2						
	Organische stof	%	17,1						
	C/OS-ratio		0,60	0,45 - 0,55					
	Koolzure kalk	%	2,5	2,0 - 3,0					
	Klei (<2 μm)	%	14						
	Silt (2-50 μm)	%	44						
	Zand (>50 μm)	%	22						
	Slib (<16 µm)	%	27						
	Klei-humus (CEC)	mmol+/kg	309	> 252					
	CEC-bezetting	%	95	> 95					
	Ca-bezetting	%	81	80 - 90					
	Mg-bezetting	%	12	6,0 - 10					
	K-bezetting	%	2,2	2,0 - 4,0					
	Na-bezetting	%	< 0,1	1,0 - 1,5					
	H-bezetting	%	< 0,1	< 1,0					

Pagina: 1

Totaal aantal pagina's: 6 Rapportidentificatie: 769927/006665845, 14-05-2025

Dit rapport is vrijgegeven onder verantwoording van H.A.C. Martin, Managing Director.
Op al onze vormen van dienstverlening zijn onze Algemene Voorwaarden van toepassing. Op verzoek
worden deze en/of de specificaties van de analysemethoden toegezonden. Eurofins Agro Testing
Wageningen B.V. stelt zich niet aansprakelijk voor eventruele schadelijke gevolgen voortvloeiend
uit het gebruik van door of namens ons verstrekte onderzoeksresultaten en/of adviezen.

Resultaat		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
	Al-bezetting	%	< 0,1	< 1,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	zeer goed	1
	Verkruimelbaarheid Verslemping Stuifgevoeligheid	rapportcijfer rapportcijfer rapportcijfer	9,3 10,0 8,8	6,0 - 8,0 6,0 - 8,0 6,0 - 8,0					
		Eenheid	Resultaat	Streeftraject	laag	vrij laag	goed	vrij hoog	hoog
Dialogical	Vochthoudend vermoge	nmm	47						
Biologisch	Microbiële biomassa Microbiële activiteit Schimmel/bacterie-ratio	mg C/kg mg N/kg	678 57 0,7	855 - 2565 116 - 194 0,6 - 0,9					

Bemestingsadviezen

Het resultaat wordt afgezet tegen het landbouwkundig streeftraject en krijgt een waardering; laag, vrij laag, goed, vrij hoog, hoog. Dit is geen beoordeling zoals bedoeld in ISO 17025 (par. 7.8.6).

Wetgeving

De bemestingsadviezen streven een landbouwkundig optimale opbrengst en kwaliteit na. De adviezen houden geen rekening met restricties vanuit wetgeving. Wanneer u op bedrijfsniveau niet voldoende ruimte heeft, adviseren we de giften van de minst behoeftige gewassen te verminderen, overleg met uw adviseur.

Bodemgericht a	advies (4-ja	rig)	
Fosfaat (P ₂ O ₅)	0	kg/ha	
Kali (K ₂ O)	200	kg/ha	
Calcium (CaO)	795	kg/ha	
Magnesium (MgO)	0	kg/ha	
Kalk (nw)	0	kg/ha	
Effectieve org.stof	28200	kg/ha	

Bij hoge adviesgiften is een verdeling van de gift gedurende de 4 jaar aan te raden, bijvoorbeeld tweejaarlijks de helft geven. De bodemgerichte adviezen zijn bedoeld om de bodemvoorraden van fosfaat, kalium, calcium en magnesium op peil te brengen.

De kalkgift is gebaseerd op een optimale pH van 6,1 De benodigde hoeveelheid effectieve organische stof is weergegeven voor 4 jaar. Zie de OS-balans voor de berekening van de gemiddelde jaarlijkse gift.

G	Sewas	Ras/Teelttype	Gift
Gewasgericht advies (jaa	rlijks)		

ka/ha	

Gewasgericht advie	es (jaarlijks)	
Stikstof (N)	Border	60
Sulfaat (SO ₃)	Border	0
Fosfaat (P ₂ O ₅)	Border	15
Kali (K ₂ O)	Border	10
Calcium (CaO)	Border	50
Magnesium (MgO)	Border	0
Natrium (Na ₂ O)	Border	
Zink (Zn)	Border	0
Mangaan (Mn)	-	Zie de toelichting.
Koper (Cu)	Border	0
Borium (B)	Border	0

Rapportidentificatie: 769927/006665845, 14-05-2025

Advies

Gewasgericht advies

Het gewasgerichte advies is gebaseerd op de gewasbehoefte, gemiddelde opbrengst en klimaatomstandigheden en is gecorrigeerd voor de bodemvoorraad en bodemnalevering. Tijdens het seizoen kan worden bijgestuurd met bijmestonderzoek.

Toelichting

De resultaten en/of het advies van dit bemestingsonderzoek kunt u t/m 2028 gebruiken.

Voor een uitgebreide toelichting kunt u onderstaande link aebruiken:

https://www.eurofins-agro.com/nl-nl/toelichting-grondonderzoek

Het bodemgerichte advies is bedoeld om de bodemvoorraad van de nutriënten op peil te houden. Voor het K, Ca en Mg advies betekent dit dat de samenstelling aan het klei-humus complex (CEC) geoptimaliseerd wordt. Het is verstandig het bodemgerichte advies van nutriënten en kalk over de 4 jaar te verdelen. Wanneer er een bodemgerichte bemesting is uitgevoerd kunnen de bodemkengetallen worden bijgewerkt door een nieuw bodemgericht onderzoek uit te voeren.

De gewasgerichte adviezen zijn bedoeld om het gewas te voeden en de kwaliteit te verbeteren. Door hogere/lagere opbrengsten en verliezen zoals uitspoeling kan de hoeveelheid plantbeschikbare nutriënten fluctueren. Het is raadzaam elk jaar voor het seizoen een gewasgericht onderzoek uit te voeren (pakket Teelt) voor de actuele hoeveelheid plantbeschikbare nutriënten en een update van het gewasgerichte advies.

Bekijk de waardering van de nutriënten op pagina 1 goed. Geven de streefwaarden aan dat één of meerdere nutriënten heel laag zijn, overleg dan met uw adviseur om dit weer op peil te krijgen.

Bij de berekening van de adviezen is uitgegaan van de volgende opbrengsten in ton/ha:

Border -

Zijn uw opbrengsten, lager dan wel hoger, dan is het verstandig uw bemesting daar op aan te passen.

Stikstof:

We adviseren de N-gift - zo mogelijk - op te delen in meerdere giften. Of de vervolggift nodig is, kunt u tijdens het groeiseizoen laten controleren via ons BodemCheck onderzoek. In dit onderzoek wordt onder andere de plantbeschikbare (=minerale) N in de bodem gemeten.

Zwavel:

Zwavel (S) komt vrij bij de afbraak van organische stof of mest. Deze afbraak vindt plaats door bodemleven. Bodemleven is onder koudere omstandigheden niet erg actief. Vroeg in het voorjaar komt er derhalve weinig S vrij uit de bodem. Voor veel vroege gewassen kan het dan ook verstandig zijn om S te bemesten, zelfs al is de bodemvoorraad goed of hoog.

Fosfaat:

Het berekende Pw-getal is voor dit perceel 46 mg $\rm P_2O_5$ /l. De P-buffering is 115 . Het streeftraject ligt tussen de 17 - 27 De P-buffering geeft aan of de P-bodemvoorraad in staat is de P-plantbeschikbaar op het huidige peil te houden. Als de P-buffering laag is, dan zal de P-plantbeschikbaar tijdens het groeiseizoen niet op peil blijven en zal op termijn ook de P-bodemvoorraad terug gaan lopen.

Kali:

Het berekende K-getal is voor dit perceel 22 K-getal wordt niet meer gebruikt bij de adviesberekening.

Calcium:

Calcium bemesting kan ook een positief effect hebben op de bodemstructuur.

Mangaan:

Er is geen mangaangebrek te verwachten.

Bodemleven:

De biologische bodemvruchtbaarheid wordt nu weergegeven via 3 kengetallen, te weten de microbiële biomassa, de microbiële activiteit en de schimmel/bacterie-ratio.

Op basis van de huidige kennis wordt een waardering gegeven die afhankelijk is van de hoeveelheid organische stof. Er wordt nu nog geen advies gegeven. Via diverse onderzoeksprojecten zal er meer informatie beschikbaar komen.

Organische stof Figuur: Organische stofbalans

Jaarlijks afbraakpercentage van de totale voorraad organische stof (%): 1,8

Voorraad organische stof die over 1 jaar in de bemonsterde laag nog aanwezig zal zijn als er geen (effectieve)	Gewas(rest)	Teelt/ras	Aanvoer effectieve organische stof
organische stof wordt aangevoerd.			
Totaal benodigde aanvoer van effectieve organische stof	Border		200
als gevolg van afbraak van de organische stof.			
Aanvoer via gewasresten (gemiddeld binnen opgegeven rotatie of gewassen).	Gemiddelde aanvoer/jaar		200
Nog aan te vullen via bijv. dierlijke mest, groenbemesters			

De hoeveelheid effectieve organische stof die u moet aanvoeren om het huidige organisch stofgehalte te handhaven, is dusdanig hoog dat het in de praktijk niet haalbaar zal zijn dit volledig te compenseren via aanvoer van gewasresten, dierlijke mest en compost.

Om het organische stofgehalte met 0,1% te verhogen dient u een extra hoeveelheid effectieve organische stof aan te voeren van: 2300 kg per ha.

Figuur: Kwaliteit van de organische stof Gebaseerd op C/OS-ratio.

en/of compost.

Organische stof bestaat uit met name C, N, P, S. Wanneer de organische stof relatief veel N en of S bevat is dit aantrekkelijk voor bodemleven. Bodemleven vreet deze organische stof graag. Hierbij komt N en S vrij en het gehalte aan organische stof daalt licht (dynamische organische stof). Organische stof kan ook veel C bevatten. Dat is over het algemeen minder aantrekkelijk voor bodemleven. De organische stof wordt derhalve minder aangevreten door bodemleven; de organische stof is stabieler. Stabiele organische stof draagt onder andere bij aan de bewerkbaarheid van de bodem en aan de rulheid. Dynamische organische stof draagt bij aan met name het vrijkomen van N en S en is daarmee een bron van deze nutriënten voor het gewas. De kwaliteit van de organische stof is (geleidelijk) aan te passen door onder andere te letten op de eigenschappen van bodemverbeteraars als dierlijke mest, compost en gewasresten.

Fysisch

De beoordeling van de potentiële structuur wordt gedaan op basis van de verhouding tussen calcium, magnesium en overige kationen aan het klei-humuscomplex. Uiteraard is de werkelijke structuur ook afhankelijk van weersomstandigheden en vochttoestand van de bodem tijdens berijden en bewerken en de zwaarte van machines.

Figuur: Structuurdriehoek

Pagina: 4 Totaal aantal pagina's: 6 Rapportidentificatie: 769927/006665845, 14-05-2025

Fysisch Figuur: Textuurdriehoek

Naast klei (lutum), worden ook de silt- en zandfracties weergegeven. Klei is kleiner dan 2 micrometer (µm), siltdeeltjes zijn 2-50 µm en zanddeeltjes groter dan 50 µm. De onderlinge verdeling van bodemdeeltjes wordt onder andere gebruikt om het verslempingsrisico van een bodem in te schatten. Bij verslemping wordt de bodem dichtgesmeerd met kleinere deeltjes (klei en silt). Een heel eenzijdige verdeling (bijvoorbeeld hoofdzakelijk zand- of kleideeltjes) levert het minste risico van slemp op. Bij 10-20% klei is het risico op slemp het grootst.

De verkruimelbaarheid is goed te noemen. Echter is dit ook afhankelijk van de soort teelt. Gezien het resultaat is de kans op verslemping klein.

Figuur: Waterretentiecurve

De hoeveelheid plant beschikbaar water in de bemonsterde laag is 47 mm, dit is wat u maximaal zou moeten beregenen. Alles wat u meer geeft spoelt af van het perceel of zakt naar diepere lagen.

Veldcapaciteit (pF 2,0):	46,9	% vocht
Aanvulpunt (pF 3,3):	34,7	% vocht
Verwelkingspunt (pF 4,2):	28,0	% vocht

Als het vochtgehalte van het perceel daalt hebben gewassen moeite om voldoende water op te nemen, de grens ligt bij pF 3,3. Wanneer u het vochtgehalte kan bepalen, begin dan met beregenen als het vochtgehalte van dit perceel op 34,7 % vocht zit en geef dan 31 mm.

Het actuele vochtgehalte kan bepaald worden door een vochtsensor of verzamel grond van een tiental plekken in het perceel. Meet het gewicht van de vochtige grond en het gewicht van de grond na 24 uur drogen, het verschil tussen de twee is een indicatie van het vochtgehalte van het perceel.

Contact & info Bemonsterde laag: 0 - 25 cm
Grondsoort: Zandige leem
Monster genomen door: Derden

Contactpersoon monstername: Hilco de Goeij: 0652002131

Indien de volgende informatie wordt getoond op de rapporten is deze informatie verstrekt door de opdrachtgever en kan dit van invloed zijn op de waardering, advisering en/of het analyseresultaat: gewas, teelttype/ras.

Dit geldt ook voor de bemonsteringsdiepte wanneer er sprake is van monstername door derden.

Methode Analyse resultaten

	Resultaat	Eenheid	Methode	RvA
N-totale bodemvoorraad	5800	mg N/kg	Em: NIRS	Q
S-plantbeschikbaar	487,4	mg S/kg	Em: CCL3 (Gw NEN 17294-2)	
S-totale bodemvoorraad	2530	mg S/kg	Em: NIRS	Q
P-plantbeschikbaar	0,8	mg P/kg	Em: CCL3 (Gw NEN 15923-1)	Q
P-bodemvoorraad	92	mg P ₂ O ₅ /100 g	PAL1: Gw NEN 5793	Q
P-bodemvoorraad	40	mg P/100 g	PAL1: Gw NEN 5793	Q
K-plantbeschikbaar	157	mg K/kg	Em: CCL3 (Gw NEN 17294-2)	
K-bodemvoorraad	6,9	mmol+/kg	Em: NIRS	
Ca-plantbeschikbaar	0,9	mmol Ca/l	Em: NIRS	
Ca-bodemvoorraad	251	mmol+/kg	Em: NIRS	
Mg-plantbeschikbaar	312	mg Mg/kg	Em: CCL3 (Gw NEN 17294-2)	
Mg-bodemvoorraad	36,6	mmol+/kg	Em: NIRS	
Na-plantbeschikbaar	286	mg Na/kg	Em: CCL3 (Gw NEN 17294-2)	
Na-bodemvoorraad	< 1,1	mmol+/kg	Em: NIRS	
Si-plantbeschikbaar	27000	μg Si/kg	Em: CCL3 (Gw NEN 17294-2)	
Fe-plantbeschikbaar	< 2050	μg Fe/kg	Em: CCL3 (Gw NEN 17294-2)	
Zn-plantbeschikbaar	390	μg Zn/kg	Em: CCL3 (Gw NEN 17294-2)	
Mn-plantbeschikbaar	11580	μg Mn/kg	Em: CCL3 (Gw NEN 17294-2)	
Cu-plantbeschikbaar	31	μg Cu/kg	Em: CCL3 (Gw NEN 17294-2)	Q
Co-plantbeschikbaar	16	μg Co/kg	Em: CCL3 (Gw NEN 17294-2)	Q
B-plantbeschikbaar	3834 ind)	μg B/kg	Em: CCL3 (Gw NEN 17294-2)	
Mo-plantbeschikbaar	318 ind)	μg Mo/kg	Em: CCL3 (Gw NEN 17294-2)	
Se-plantbeschikbaar	3,8	μg Se/kg	Em: CCL3 (Gw NEN 17294-2)	
Zuurgraad (pH)	7,1		Em:PHC3(Cf NEN ISO 10390)	Q
C-organisch	10,2	%	Em: NIRS	Q
Organische stof	17,1	%	Em: NIRS	Q
C-anorganisch	0,30	%	Em: NIRS	
Koolzure kalk	2,5	%	Em: NIRS	
Klei (<2 μm)	14	%	Em: NIRS	
Silt (2-50 μm)	44	%	Em: NIRS	
Zand (>50 μm)	22	%	Em: NIRS	
Klei-humus (CEC)	309	mmol+/kg	Em: NIRS	
Microbiële biomassa	678	mg C/kg	Em: NIRS	
Microbiële activiteit	57	mg N/kg	Em: NIRS	
Schimmel biomassa	194	mg C/kg	Em: NIRS	
Bacteriële biomassa	263	mg C/kg	Em: NIRS	
Bulkdichtheid	919	kg/m³	Em: NIRS	

De op pagina 1 en 2 bij Resultaat vermelde waarden zijn berekend uit bovenstaande analyseresultaten.

Em: Eigen methode, Gw: Gelijkwaardig aan, Cf: Conform ind) Resultaat geeft een indicatieve waarde weer.

De resultaten zijn weergegeven in droge grond.
Alle verrichtingen zijn binnen de gestelde houdbaarheidstermijn tussen monstername en analyse uitgevoerd.
Het monster is geanalyseerd in het Eurofins Agro laboratorium in Wageningen, tenzij anders is vermeld.
De resultaten hebber oost genomen op 02-05-2025 en daarmee op het geanalyseerde monster. Nadere omschrijving van de toegepaste monstername en analyse methoden is te vinden op www.eurofins-agro.com

De meetonzekerheid van de methode is opvraagbaar bij Eurofins Agro. De analyse datum staat niet apart vermeld omdat deze gelijk is aan datum ontvangst.

Methode geaccrediteerd door RvA