Glass with high proportion of zirconium-oxide and its uses

Publication number: DE19945517
Publication date: 2000-08-31

Inventor: NAUMANN KARIN (DE); GREULICH-HICKMANN

NORBERT (DE); KOLBERG UWE (DE); KIEFER

WERNER (DE)

Applicant: SCHOTT GLAS (DE)

Classification:

- international: C03C3/087; C03C13/00; C03C13/02; C03C3/076;

C03C13/00; (IPC1-7): C03C3/087; C03C3/093;

C03C13/02

- european: C03C3/087; C03C13/00B2 Application number: DE19991045517 19990923

Priority number(s): DE19991045517 19990923; DE19991006241 19990215

Also published as:

more >>

Report a data error here

Abstract of **DE19945517**

The invention relates to a glass containing a high proportion of zirconium oxide, with the following composition (based on the weight percent of oxide): SiO2 54-72; Al2O3 0.5-7; ZrO2 8-20; B2O3 0-<5; Na2O 3-<8; K2O 0-5; with Na2O + K2O 2-<8; CaO 3-11; MgO 0-10; SrO 0-8; BaO 0-10; with CaO+MgO+SrO+BaO>5-24; La2O3 0-5; TiO2 0-4. The glass displays a high degree of chemical stability.

Data supplied from the esp@cenet database - Worldwide

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 199 45 517 A 1

199 45 517.1 (2) Aktenzeichen: ② Anmeldetag:

23. 9. 1999 31. 8.2000 (43) Offenlegungstag:

⑤ Int. Cl.⁷: C 03 C 3/087 C 03 C 3/093 C 03 C 13/02

(66) Innere Priorität:

199 06 241. 2

15. 02. 1999

(7) Anmelder:

Schott Glas, 55122 Mainz, DE

(12) Erfinder:

Naumann, Karin, Dr., 55270 Ober-Olm, DE; Greulich-Hickmann, Norbert, Dr., 55127 Mainz, DE; Kolberg, Uwe, Dr., 55252 Mainz-Kastel, DE; Kiefer, Werner, Dr., 55126 Mainz, DE

(56) Entgegenhaltungen:

DE	17 96 339 C3
DE	40 32 460 A1
DE	31 07 600 A1
DE	30 09 953 A1
DE	29 27 445 A1
DE	26 56 002 A1
DE	26 14 395 A1
DE-OS	24 06 888
DE-OS	23 23 932
DD-03	2 93 105 A5
GB	22 32 988 A
GB	12 90 528
EP	04 46 064 B1
EP	08 53 070 A1
FP	05 00 325 A1
JP	62-13 293 B2
JP	55-1 62 444 A
J۳	55-1 62 444 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Hochzirconiumoxidhaltiges Glas und seine Verwendungen
- Die Erfindung betrifft ein hochzirconiumoxidhaltiges Glas mit einer Zusammensetzung (in Gew.-% auf Oxidbasis) von SiO₂ 54-72; $A_{2}O_{3}$ 0,5-7; ZrO_{2} 8-20; $B_{2}O_{3}$ 0-< 5; $Na_{2}O$ 3-< 8; $K_{2}O$ 0-5; mit $Na_{2}O$ + $K_{2}O$ 2-< 8; CaO 3-11; CaO + Casche Beständigkeit auf.

Beschreibung

Die Erfindung betrifft ein hochzirconiumoxidhaltiges Glas sowie seine Verwendungen.

Hochzirconiumoxidhaltige Gläser sind vor allem im Zusammenhang mit alkaliresistenten Glasfasern zur Betonverstärkung beschrieben.

Im Vergleich zu E-Glas, einem weitgehend alkalifreien Aluminoborosilicatglas, weisen Fasern aus bekannten ZrO₂-haltigen Gläsern zwar eine höhere Alkalibeständigkeit auf, jedoch ist insbesondere ihre Beständigkeit im Zement über lange Zeiträume hinweg noch unzureichend. Die Alkalibeständigkeit von betonverstärkenden Fasern ist von Bedeutung und steht daher bei der Glasentwicklung meist im Vordergrund, weil das Abbinden des Zementes unter stark alkalischen Bedingungen (pH-Werte bis ca. 12,5) erfolgt.

Offensichtlich ist jedoch für den Langzeiteinsatz als Verstärkungsmittel in Beton neben der Alkalibeständigkeit auch die sonstige chemische Beständigkeit, insbesondere die hydrolytische Beständigkeit, von Bedeutung, da sie die Langzeitbeständigkeit verbessert.

Gläser, die sowohl gegenüber Wasser, Säuren und Laugen eine hohe Resistenz zeigen, sind für die verschiedensten Anwendungen interessant, z. B. für Pharmaverpackungen oder für Sichtkontrollfenster in Prozeßbehältern, insbesondere, wenn sie zusätzlich eine hohe Temperaturbelastbarkeit aufweisen.

Ein Merkmal für eine hohe Temperaturbelastbarkeit ist eine hohe Transformationstemperatur T_g . Bei Gläsern mit hohem T_g ist erfahrungsgemäß die sogenannte "Compaction" (Schrumpf oder "Shrinkage") gering. Es handelt sich hierbei um den Schrumpf von Glasteilen bei Temperaturbehandlungen unterhalb von T_g , eine Eigenschaft, die selbst nur mit großem experimentellen Aufwand hinreichend genau bestimmt werden kann und beispielsweise für Anwendungen, bei denen sehr strenge Maßstäbe an die Formtreue der Glasteile gelegt werden, von Bedeutung ist, so z. B. für Anwendungen in der Displaytechnik.

Ein hoher Tg und damit eine hohe Temperaturbelastbarkeit des Glases ist ebenso in der Dünnschichtphotovoltaiktechnologie, insbesondere in Solarzellen auf der Basis von Chalkopyriten wie Kupferindiumdiselenid (CIS), aber auch alternativen Verbindungshalbleitern wie CdTe von Bedeutung. In der Dünnschichtphotovoltaiktechnologie sind somit höhere Beschichtungstemperaturen möglich, die eine optimierte Aufbringung von Dünnschichten mit einer verbesserten Materialqualität gewährleisten, die sich, z. B. in einer Solarzelle, wirkungsgraderhöhend auswirkt.

Für optische Anwendungen sind zur Korrektur von Abbildungsfehlern Gläser mit hoher negativer anomaler Teildispersion im blauen Spektralbereich (Δ P_{g,F}) höchst interessant. Nachteilig an den bisher bekannten Gläsern dieser Serie ist, daß sie entweder hohe Mengen an PbO aufweisen, was aus Umweltgesichtspunkten unerwünscht ist, und/oder eine schlechte chemische Beständigkeit besitzen oder daß für bleifreie Substitutionsprodukte große Mengen der sehr teuren Rohstoffe Nb₂O₅ und insbesondere Ta₂O₅ verwendet werden müssen, was die wirtschaftliche Fertigung stark erschwert. Solche bleifreien Gläser sind aus DE-OS 27 29 706 bekannt.

In der Patentliteratur sind auch bereits die verschiedensten Schriften bekannt, die alkalibeständige Gläser mit hohen ZrO₂-Gehalten beschreiben, welche jedoch noch Nachteile aufweisen.

DE-OS 29 27 445 beschreibt eine alkalibeständige Glasmasse, die wenigstens aus 8 Gew.-% R₂O, nämlich 8-17 Gew.-% Na₂O und 0-5 Gew.-% K₂O enthält. Auch CZ 236 744 beschreibt Glasfasern aus Mineralrohstoffen, die wenigstens 8 Gew.-% Na₂O und/oder K₂O enthalten.

Die britische Patentschrift GB 1 290 528 beschreibt Glaszusammensetzungen zur Herstellung von Glasfasern, die 13 bis 23 mol-% R₂O enthalten.

Gläser mit einem so hohen Alkaligehalt, wie sie auch in der Glasfasermateriallien für Komponenten von Abgassystemen für Verbrennungsmotoren beschreibenden europäischen Patenschrift EP 0 446 064 B1 (13–18 Gew.-% Na_2O+K_2O) vorkommen und wie auch die kommerziell erhältliche Cemfil-Faser mit einer Zusammensetzung V1 (s. u.), zeigen eine schlechte hydrolytische Beständigkeit.

Dasselbe gilt für die Glasfasern gemäß DE 17 96 339 C3 auf der Grundlage eines Glases mit 11 Gew.-% Na₂O und 1 Gew.-% Li₂O sowie für die zu Fasern verarbeiteten Gläser der DE 40 32 460 A1 mit 10–15 Gew.-% Na₂O und 0,1–2 Gew.-% K₂O.

Die Patentschrift DD 293 105 A5 beschreibt ein Verfahren zur Herstellung von hochalkaliresistenten Glasfasern und daraus hergestellte Produkte, wobei die zu verspinnende Glasschmelze neben SiO₂, R₂O₃, ZrO₂, RO und R₂O (K₂O, Na₂O und/oder Li₂O) auch Fluorid enthält. Auf dieses Flußmittel kann nur verzichtet werden, wenn Li₂O vorhanden ist. Auch diese Gläser sind mit 8–14 Gew.-% R₂O relativ hoch alkalihaltig.

Die ebenfalls hochalkalihaltigen (10–25 Gew.-% R₂O) Glaszusammensetzungen aus der deutschen Offenlegungsschrift DE-OS 24 06 888 enthalten bis zu 20 Gew.-% an Oxiden der Seltenen Erden, beispielsweise Ceroxid oder auch natürlich vorkommende Mischungen dieser Oxide.

Seltenerdoxide, und zwar zusammen mit TiO₂ 0,5–16 Gew.-%, wobei der TiO₂-Anteil höchstens 10 Gew.-% des Glases beträgt, sind auch in den Gläsern aus der deutschen Offenlegungsschrift DE 31 07 600 A1 enthalten. Sie enthalten weiterhin 0,1–1 Gew.-% Cr₂O₃. Wesentlich ist hierbei, daß das Chrom vorwiegend im dreiwertigem Zustand vorliegt.

Die deutsche Offenlegungsschrift DE-OS 26 14 395 beschreibt Al₂O₃-freie Gläser, die für ihre Alkalibeständigkeit 0,5–10 Gew.-% Cr₂O₃ + SnO₂ enthalten müssen, Komponenten, die folgende Nachteile aufweisen: Cr₂O₃ löst sich nur schwer im Glassluß auf, und auch bei Verwendung von Chromsalzen können Schwierigkeiten durch "Chromknoten" auftreten. SnO₂ ist ein guter Keimbildner und fördert daher die Kristallisation. Weiter benötigen die Gläser als Schmelzhilfsmittel 0,05–1 Gew.-% SO₃, was zu störender Schaum- und Gallebildung führen kann.

DE-OS 30 09 953 beschreibt Glasfasern, die neben ZrO₂ ThO₂ enthalten müssen. Diese Komponente ist zur Erzielung der Alkalibeständigkeit erforderlich. Aufgrund ihrer Radioaktivität ist es jedoch erstrebenswert, auf diese Komponente verzichten zu können.

Aus EP 0 500 325 A1 sind Glasfasern mit 5-18 mol-% TiO₂ bekannt. Ihre resultierende chemische Beständigkeit wird erkauft mit einer sehr hohen Kristallisationsanfälligkeit, was insbesondere hinsichtlich der Spinnbarkeit von Nachteil ist. JP 62-13293 B2 beschreibt Glaszusammensetzungen für Kernglas und Überzug von Glasfasern, die wenigstens

 $5~{\rm Gew.-}\%~B_2O_3$ enthalten. ${\rm ZrO_2}$ ist lediglich fakultative Komponente. Diese Gläser sollen zwar eine hohe Wasserbeständigkeit haben, was jedoch aufgrund der hohen B_2O_3 -Gehalte bei relativ hohen Alkaligehalten nicht über den gesamten Zusammensetzungsbereich gewahrt sein wird, da sich leicht wasserlösliche Alkaliboratphasen bilden können.

DE-OS 23 23 932 beschreibt Glasfasern, die sowohl P₂O₅ als auch B₂O₃ neben sehr hohen Gehalten an ZrO₂ (8-16 mol-%) enthalten. Der Alkaligehalt kann innerhalb eines weiten Bereiches variieren (1,5-25 mol-%). Ein solch hoher ZrO₂-Gehalt hebt zwar die Alkaliresistenz stark an, P₂O₅ verringert sie jedoch wieder. Außerdem kann die hydrolytische Beständigkeit nicht über den gesamten Zusammensetzungsbereich hinweg ausreichend sein.

GB 2 232 988 A beschreibt ZrO₂-haltige Glasfasern, die zur Verbesserung ihrer Alkalibeständigkeit mit einem thermoplastischen Harz überzogen sind. Aufgrund dieses zusätzlichen Verfahrensschrittes sind solche Fasern nur teuer und aufwendig herstellbar. Als Fasermaterial können Gläser aus dem System SiO₂ – ZrO₂ – R₂O mit recht großer Variationsbreite der Komponenten und mit weiteren lediglich fakultativen Komponenten verwendet werden, da aufgrund des Überzugs die entsprechenden Eigenschaften des Glases an Bedeutung verlieren.

Es ist nun Aufgabe der Erfindung, ein Glas bereitzustellen, das nicht nur eine hohe Laugenbeständigkeit, sondern auch eine hohe hydrolytische Beständigkeit und eine relativ gute Säurebeständigkeit aufweist, das thermisch belastbar und noch gut verarbeitbar ist.

15

Diese Aufgabe wird durch das im Hauptanspruch beschriebene hochzirconiumoxidhaltige Glas gelöst.

Das erfindungsgemäße Glas enthält 54 bis 72 Gew.-% SiO₂. Bei höheren Gehalten wurde die Schmelzbarkeit verschlechtert, bei niedrigeren Gehalten wurde die Glasbildung erschwert. Wenigstens 55 Gew.-% sind besonders bevorzugt, wenigstens 59 Gew.-% sind ganz besonders bevorzugt.

Al₂O₃, in Anteilen von 0,5 bis 7 Gew.-%, bevorzugt bis 6 Gew.-%, vorhanden, dient ähnlich wie SiO₂ als Glasbildner und verbessert damit die Glasbildung und trägt wesentlich zur Verbesserung der chemischen Beständigkeit bei. Zu hohe Gehalte würden jedoch, insbesondere bei ZrO₂-reichen und R₂O-armen Zusammensetzungen, zu einer erhöhten Kristallisationsneigung führen.

Wesentlich für die hohe Alkalibeständigkeit ist der ZrO₂-Gehalt des Glases. Er beträgt daher wenigstens 8 Gew.-%. Der maximale Gehalt beträgt 20 Gew.-%, da ansonsten die Entglasungstendenz zu sehr ansteigt. Auftretende Kristalle würden zu Glasfehlern führen. Bevorzugt ist ein Gehalt zwischen 8 und 18 Gew.-%. Besonders bevorzugt ist ein Gehalt von wenigstens 10 Gew.-%. Besonders bevorzugt ist ein Gehalt von höchstens 15 Gew.-%.

Es ist bevorzugt, daß das Gewichtsverhältnis ZrO2/Al2O3 größer als 2 ist.

Das oder die Alkalioxide, vor allem Na₂O, (2–<8 Gew.-% Na₂O, bevorzugt 3–<8 Gew.-%, besonders bevorzugt bis 4 Gew.-%, und 0–5 Gew.-% K₂O, bevorzugt 1–2 Gew.-%, mit 2–<8 Gew.-% Na₂O + K₂O, bevorzugt 3–<8 Gew.-%, besonders bevorzugt 3–<6 Gew.-%) dienen der Verbesserung der Schmelzbarkeit, d. h. der Erniedrigung der Viskosität, und ermöglichen die hohen ZrO₂-Gehalte, da sie die Löslichkeit des ZrO₂ im Glas erhöhen. Bei zu hohen Alkaligehalten würde jedoch vor allem die hydrolytische Beständigkeit, aber auch, wenn auch in geringerem Maße die Laugenbeständigkeit verschlechtert. Es ist bevorzugt, daß sowohl Na₂O als auch K₂O vorhanden sind.

Mit steigendem Anteil an Al₂O₃ sinkt indirekt die ZrO₂-Löslichkeit; dem kann im durch die genannten Grenzen gegebenen Rahmen durch das Vorhandensein der Alkalioxide begegnet werden kann. Daher ist es bevorzugt, daß das Gewichtsverhältnis Al₂O₃/Na₂O <1,64 beträgt, was einem molaren Verhältnis Al₂O₃/Na₂O <1 entspricht. Es ist besonders bevorzugt, daß nicht nur das Verhältnis Al₂O₃/Na₂O, sondern auch das molare Verhältnis Al₂O₃/R₂O <1 beträgt.

B₂O₃ ist fakultative Komponente und verbessert durch Verringerung der Viskosität die Schmelzbarkeit. Ihr Gehalt soll jedoch auf weniger als 5 Gew.-%, bevorzugt auf 4 Gew.-%, beschränkt bleiben, da B₂O₃ die Alkalibeständigkeit und insbesondere die Säurebeständigkeit verschlechtert.

Von den Erdalkalioxiden, die mit mehr als 5 Gew.-% und höchstens 24 Gew.-% im Glas vorhanden sind, liegt CaO mit 3-11 Gew.-%, bevorzugt 3-10 Gew.-% vor, während MgO mit 0-10 Gew.-%, SrO mit 0-8 Gew.-% und BaO mit 0-10 Gew.-% fakultative Komponenten sind.

Die Erdalkalioxide verringern die Schmelzviskosität, drängen die Kristallisation zurück und tragen auch zur Verbesserung der Alkaliresistenz bei. Insbesondere BaO verringert die Kristallisationsneigung. Daher ist es bevorzugt, daß BaO mit wenigstens 0,1 Gew.-% vorhanden ist. Bei zu geringem Erdalkalioxidgehalt würde sich in diesen alkaliarmen Gläsern die Schmelz- und Verarbeitbarkeit zu sehr verschlechtern, sie wären nicht mehr zu Fasern verarbeitbar, und die ZrO₂-Löslichkeit wäre zu gering. Bei einem höheren als dem genannten Maximalgehalt würden die Gläser entmischen und es käme ebenfalls zur Kristallisation. Bevorzugt ist ein Gesamtgehalt an Erdalkalioxiden von weniger als 23 Gew.-%.

Das Glas kann weiter 0–5 Gew.-% La₂O₃, besonders bevorzugt 0–4 Gew.-%, sowie 0–4 Gew.-% TiO₂ enthalten. Ein Zusatz von La₂O₃ verbessert die Schmelzbarkeit des Glases, es erweitert den Glasbildungsbereich und erhöht den Brechwert. La₂O₃ und TiO₂ betragen hauptsächlich zur Verbesserung der hydrolytischen und der Laugenbeständigkeit bei, wobei La₂O₃ effektiver ist als TiO₂. Zu hohe Gehalte von La₂O₃ und TiO₂ verringern die Säurebeständigkeit und führen zu Kristallisation.

Daher ist es bevorzugt, daß die Summe aus La₂O₃, TiO₂ und ZrO₂ >8,4 ist. Besonders bevorzugt ist, daß die genannte Summe >10 ist.

Das Glas kann weiter jeweils bis zu 2 Gew.-%, vorzugsweise bis zu 1 Gew.-%, Fe₂O₃, MnO₂, CeO₂ enthalten, wobei auch die Summe dieser drei Komponenten nicht mehr als 2 Gew.-%, vorzugsweise nicht mehr als 1 Gew.-%, betragen soll. Bei diesen Verbindungen handelt es sich um übliche Verunreinigungen in natürlich vorkommenden Rohstoffen der Glasbestandteile. Insbesondere bei der Verwendung der erfindungsgemäßen Gläser zur Herstellung von Fasern für die Betonverstärkung und als Substrat in der Photovoltaiktechnik sind preisgünstige Rohstoffe von Bedeutung. Bei der Verwendung der Gläser für optische Zwecke sind die Anforderungen an die Reinheit der Gläser und damit auch an die Reinheit der Rohstoffe i. a. deutlich höher. Hier liegt die genannte Summe und insbesondere der Fe₂O₃ Gehalt bevorzugt jeweils unter 0,005 Gew.-%.

Das Glas kann zur Läuterung übliche Läuterungsmittel in üblichen Mengen, also beispielsweise Arsenoxid, Antimonoxid, Chloride oder auch Fluoride, z. B. jew. als Ca- oder Ba-Halogenid, oder, wie bevorzugt, SnO₂ enthalten.

Innerhalb des Zusammensetzungsbereiches des Hauptanspruchs gibt es zwei bevorzugte Zusammensetzungsbereiche (in Gew.-% auf Oxidbasis).

Dies ist zum einen:

SiO₂ 54–72, Al₂O₃ 0,5–6, ZrO₂ 8–18, B₂O₃ 0–4, Na₂O 3–<8, K₂O 0–5, mit Na₂O + K₂O 3–<8, CaO 3–10, MgO 0–10, SrO 0–8, BaO 0,1–10, mit CaO + MgO + SrO + BaO >5–<23, La₂O₃ 0–5, TiO₂ 0–4.

Die Gläser dieses Zusammensetzungsbereiches sind hoch temperaturbeständig. Sie weisen Transformationstemperaturen von wenigstens 670°C auf.

Ein weiterer bevorzugter Zusammensetzungsbereich ist folgender:

SiO₂ 59–72, Al₂O₃ 0,5–6, ZrO₂ 8–15, B₂O₃ 0–4, Na₂O 2–4, K₂O 1–2, mit Na₂O + K₂O 3–<6, CaO 3–10, MgO 0–10, SrO 0–8, BaO 0,1–10, mit CaO + MgO + SrO + BaO >5–<23, La₂O₃ 0–5, TiO₂ 0–4.

In diesem Zusammensetzungsbereich finden sich Gläser mit thermischen Ausdehnungskoeffizienten $\alpha_{20/300}$ zwischen 4,5 und 6,0 · 10⁻⁶/K.

Beispiele

Aus üblichen Rohstoffen wurden sechzehn Beispiele erfindungsgemäßer Gläser in Pt/Rh-Tiegeln geschmolzen und zu Blöcken gegossen. Außerdem wurden Fasern im Wiederziehverfahren gezogen.

In Tabelle 1 sind die Zusammensetzung (in Gew.-% auf Oxidbasis) der Ausführungsbeispiele (A1–A16) und eines alkalireichen Vergleichsbeispiels V1 angegeben. Der bei A1–A15 zum jeweiligen Gesamtgehalt von 100,0% noch fehlende Anteil ist das in der Tabelle 1 nicht angegebene Läutermittel SnO₂. A16 wurde mit zugesetztem NaCl geläutert, das im fertigen Glas mit ≤ 0,1 Gew.-% zu finden ist. In Tabelle 2 sind die wesentlichen Eigenschaften der Gläser angegeben. Dies sind der thermische Ausdehnungskoeffizient α₂0/300 [10⁻⁶/K], die Transformationstemperatur Tg [°C], die Verarbeitungstemperatur VA [°C], die Dichte ρ [g/cm³], der Elastizitätsmodul E [GPa], die Temperatur, bei der das Glas einen spezifischen elektrischen Volumenwiderstand von 10⁸ cm hat, T_{K100} [°C], sowie die hydrolytische Beständigkeit H nach DIN/ISO 719 [μg Na₂O/g], die Säurebeständigkeit S nach DIN 12116 [mg/dm²] und die Laugenbeständigkeit L nach ISO 675 (= DIN 52322) [mg/dm²]. Für einige Beispiele sind außerdem die optischen Daten Brechwert n_d, Abbezahl v_d und die Anomalie der Teildispersion im blauen Bereich des Spektrums Δ P_{g,F} angegeben.

30

15

35

40

45

50

55

60

Tabelle 1

Ausführungsbeispiele (A) und Vergleichsbeispiel (V1)

Zusammensetzungen (in Gew.-% auf Oxidbasis)

	A1	A2	A3 -	A4	A5	A6	A7	A8
SiO ₂	69,5	70,0	54,8	56,8	54,9	64,8	60,0	57,5
Al ₂ O ₃	1,0	1,0	1,0	6,0	1,0	2,0	1,0	1,0
ZrO ₂	17,0	17,0	17,9	18,0	17,9	17,0	17,9	17,3
B ₂ O ₃								3,8
BaO		3,0	10,0	8,2	0,3	8,0	4,0	3,8
CaO	5,0	5,0	4,3	3,0	4,0	3,0	8,1	7,7
MgO					10,0		1,0	1,0
SrO						-		
Na₂O	7,2	3,7	7,8	2,8	7,7	2,0	7,8	7,7
K₂O				5,0		3,0		
La ₂ O ₃								
TiO ₂			4,0		4,0			

	A9	A10	A11	A12	A13	A14	A15	A16	V1
SiO₂	64,7	55,6	69,9	54,8	69,9	67,6	65,5	67,0	62,0
Al ₂ O ₃	2,0	1,0	1,0	1,0	1,0	0,5	5,0	2,0	0,8
ZrO₂	17,0	15,1	10,0	10,0	11,9	17,0	17,0	8,5	16,7
B₂O₃								3,5	
BaO		9,3	1,2	4,0				5,0	
CaO	3;0	7,7	8,0	8,0	4,0	5,0	5,0	8,4	5,6
MgO				10,0	10,0	2,5		1,6	
SrO	8,0		5,1						
Na₂O	2,0	6,8	3,5	3,0	3,0	7,2	7,2	2,0	14,8
K₂O	3,0	1,0	0,5					2,0	
La ₂ O ₃		3,2	0,6	5,0					
TiO ₂		0,1		4,0		 ·			0,1

Tabelle 2

Eigenschaften der Gläser A (Ausführungsbeispiele) und V1

(Vergleichsbeispiel)

(Zusammensetzungen siehe Tabelle 1)

	A1	A2	А3	A4
α _{20/300} [10 ⁻⁶ /K]	5,10	4,13	6,30	5,90
Tg [°C]	747	802	730	810
V _A [°C]	1326	1405	1203	1341
ρ [g/cm³]	2,664	2,687	2,937	2,849
E [GPa]	84	86	88	84
T _{K100} [°C]	n.b	n.b.	205	279
H [µgNa₂O/g]	14	7	17	8
S [mg/dm ²]	0,4	0,5	1,3	1,4
L [mg/dm²]	10	13	9	12
n _d	1,55395	1,55792	1,6012	1,57249
V_d	54,27	54,25	n.b.	53,48
ΔP _g , _F	-0,0117	-0,0075	n.b.	-0,0059

n.b. = nicht bestimmt

	A5	A6	A7	A8 '
α _{20/300} [10 ⁻⁶ /K]	6,51	4,60	6,43	6,29
Tg [°C]	695	821	725	672
V _A [°C]	1026	1390	1194	1151
ρ [g/cm³]	2,873	2,787	2,863	2,836
E [GPa]	95	85	90	89
T _{K100} [°C]	238	300	213	371
H [μg Na₂O/g]	10	8	19	16
S [mg/dm ²]	1,3	0,4	0,9	1,8
L [mg/dm²]	19	11	8	9
n _d	n.b.	1,56136	1,5860	1,58415
ν _d	n.b.	55,28	n.b.	53,19
ΔP _g , _F	n.b.	n.b.	n.b.	-0,0070

65

5

10

15

20

25

Fortsetzung von Tabelle 2

5

10

15

20

25

30

35

40

45

50

	A9	A10	A11	A12	A13
α _{20/300} [10 ⁻⁶ /K]	4,82	7,11	5,17	6,18	4,49
Tg [°C]	822	700	731	715	741
V _A [°C]	1371	1163	1285	1092	1325
ρ [g/cm³]	2,788	2,984	2,702	2,968	2,633
E [GPa]	85	88	82	96	88
T _{K100} [°C]	303	235	260	436	336
H [µg Na₂O/g]	6	9	12	26	17
S [mg/dm²]	0,9	1,2	<0,3	2,7	1,3
L [mg/dm²]	8	7	18	13	18
n _d	1,5644	n.b.	1,54758	1,617	1,54953
v_d	n.b.	n.b.	57,00	49,07	65,51
ΔP _g , _F	n.b.	n.b.	-0,0050	-0,003	n.b.

	A14	A15	A16	V1 .
α _{20/300} [10 ⁻⁶ /K]	5,30	5,36	5,27	7,50
Tg [°C]	738	784	650	546
V _A [°C]	n.b.	n.b.	1239	1183
ρ [g/cm³]	n.b.	n.b.	2,633	2,700
E [GPa]	n.b.	83	n.b.	83
T _{K100} [°C]	n.b.	n.b.	294	n.b.
H [μg Na₂O/g]	16	16	16	77
S [mg/dm²]	0,6	0,9	1,1	0,9
L [mg/dm²] :	9	13	24	10
n _d	1,56065	n.b.	n.b.	n.b.
$\nu_{\sf d}$	54,25	n.b.	n.b.	n.b.
ΔP _g , _F	-0,0071	n.b.	n.b.	n.b.

n.b.= nicht bestimmt 55

Für das Glas A2 wurde außerdem die Knoop-Härte nach DIN 52333 bestimmt. Sie beträgt 630 HK.

Die erfindungsgemäßen Gläser weisen sehr gute chemische Beständigkeiten auf:

Bei der Bestimmung der hydrolytischen Beständigkeit H nach DIN/ISO 719, bei der das Basenäquivalent des Säureverbrauchs als µg Na₂O/g Glasgrieß angegeben ist, bedeutet ein Wert 31 die Zugehörigkeit eines Glases zur Hydrolytischen Klasse 1 ("chemisch hochresistentes Glas"). Dies ist für die erfindungsgemäßen Gläser erfüllt.

Bei der Bestimmung der Säurebeständigkeit S nach DIN 12116 bedeutet ein Gewichtsverlust bis 0,7 mg/dm² die Zugehörigkeit zur Säureklasse 1 ("säurebeständig"), über 0,7 bis 1,5 mg/dm² zur Säureklasse 2 ("schwach säurelöslich") und über 1,5 bis 15 mg/dm² zur Säureklasse 3 ("mäßig säurelöslich"). Die erfindungsgemäßen Gläser gehören der Säureklasse 3 und besser an.

Bei der Bestimmung der Laugenbeständigkeit nach ISO 675 (= DIN 52322) bedeutet ein Gewichtsverlust bis 75 mg/dm² die Zugehörigkeit zur Laugenklasse 1 ("schwach laugenlöslich"), was für die erfindungsgemäßen Gläser erfüllt ist.

Die Gläser sind sehr gut geeignet als Behälterglas, speziell für chemisch aggressive Substanzen, insbesondere Flüssigkeiten.

Das Vergleichsbeispiel V1 erfüllt weder die Anforderungen an eine hohe hydrolytische Beständigkeit noch an eine hohe Transformationstemperatur. Dagegen besitzen die erfindungsgemäßen Gläser hohe Transformationstemperaturen Tg von wenigstens 650°C, meist sogar wenigstens 670°C. Damit sind sie für Verwendungen geeignet, bei denen thermisch hoch belastbare Gläser benötigt werden, beispielsweise auch als Komponenten für hochtemperaturbelastete Teile in Abgassystemen mit Katalysatoren. Aufgrund ihrer mit einer hohen Transformationstemperatur einhergehenden geringen Compaction sinddie Gläser auch gut für die Verwendung als Substratgläser in der Displaytechnik geeignet.

Die erfindungsgemäßen Gläser besitzen thermische Ausdehnungskoeffizienten α_{20/300} zwischen 4,1·10⁻⁶/K und 7,4·10⁻⁶/K und sind damit mit Wolfram und Molybdän verschmelzbar und gut als Einschmelzglas für diese Metalle bzw. Legierungen geeignet.

Gläser mit thermischen Ausdehnungskoeffizienten $\alpha_{20/300}$ zwischen 4,5 · 10^{-6} /K und 5,2 · 10^{-6} /K sind angepaßt an das Ausdehnungsverhalten der in der CIS-Technologie als Elektrode aufgebrachten Mo-Schicht, während Gläser mit thermischen Ausdehnungskoeffizienten $\alpha_{20/300}$ zwischen 5,0 und 6,0 · 10^{-6} /K an das Ausdehnungsverhalten von CdTe angepaßt sind. Damit sind diese thermisch hoch belastbaren Gläser hervorragend geeignet als Substrate in der Photovoltaik, speziell in diesen Dünnschichttechnologien.

Die erfindungsgemäßen Gläser sind durch Ionenaustausch chemisch vorspannbar, wodurch sie auch für Anwendungen, bei denen eine erhöhte Bruchfestigkeit wichtig ist, z. B. als Substrate für EDV-Speichermedien, gut geeignet sind.

Die erfindungsgemäßen Gläser lassen sich gut zu Glasfasern verarbeiten. Aufgrund der sehr guten chemischen Beständigkeit der Gläser, die eine erhöhte Langzeitbeständigkeit bewirkt, sind diese Glasfasern hervorragend geeignet zur Verstärkung von Betonbauteilen. Sowohl der Einsatz als Kurzfaser wie auch als Endlosfaser (Herstellung von Beton-Glasfaser-Kompositen) ist möglich.

Die Gläser weisen Verarbeitungseigenschaften auf, um z. B. Blöcke, Platten, Stangen, Röhren und Fasern herzustellen; und sie sind je nach Verwendungszweck auch in diesen Formen einsetzbar.

Die optischen Daten der Gläser, nämlich ein Brechwert n_d zwischen 1,53 und 1,63, eine Abbezahl v_d zwischen 47 und 66 und insbesondere eine negative Abweichung der Teildispersion von der Normalgeraden (= negative anomale Teildispersion) im blauen Spektralbereich Δ $P_{g,F}$ bis -0,0130, machen sie auch für optische Anwendungen, z. B. für Gläser zur Korrektur chromatischer Ausbildungsfehler, interessant.

Die Gläser stellen sogenannte Kurzflintsondergläser dar. Es ist überraschend, daß die Gläser neben den beschriebenen guten Eigenschaften hinsichtlich thermischer, mechanischer und chemischer Kenngrößen auch sehr interessante optische Eigenschaften, insbesondere eine negative anomale Teildispersion in blauen Spektralbereich (Δ P_{g,F}) aufweisen. Hier ist bisher nur bekannt gewesen, daß diese Eigenschaft in Kombination mit relativ niedrigen Abbezahlen (Gläser von Flinttyp ν_d < ca. 55) durch PbO, Nb₂O₅ und Ta₂O₅ verursacht wird. Bei Gläsern mit hoher Abbezahl (Krontyp ν_d > ca. 55) kann diese Eigenschaft auch durch die Erdalkalioxide MgO-BaO und Seltenerdelemente La₂O₃, Gd₂O₃, Yb₂O₃, Lu₂O₃ usw. verursacht werden, oft in Kombination mit dem Glasbildner B₂O₃.

Hier liegen nun erstmalig Gläser mit negativem $\Delta P_{g,F}$ mit niedrigen bis mittleren Abbezahlen vor, die relativ niedrige Konzentrationen an Erdallkalioxiden, B_2O_3 und ggf. La_2O_3 als Seltenerdoxid aufweisen und frei von den teuren Komponenten Nb_2O_5 und Ta_2O_5 sind.

40 Patentansprüche

1. Hochzirconiumoxidhaltiges Glas, gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von

45	SiO ₂	54-72
	Al_2O_3	0,5-7
	ZrO_2	8-20
	B_2O_3	0-<5
	Na ₂ O	2-<8
50	K_2O	0–5
	mit $Na_2O + K_2O$	2-<8
	CaO	3-11
	MgO	0-10
	SrŎ	08
55	BaO	010
	mit CaO + MgO + SrO + BaO	>5-24
	La_2O_3	0–5
	TiO ₂	0-4

+ ggf. übliche Läutermittel in üblichen Mengen

60

2. Glas nach Anspruch 1, gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von

65	SiO_2	54-72
	Al_2O_3	0,5–6
	ZrO_2	8-18

B_2O_3	0 -4
Na ₂ O	3-<8
K ₂ O	0-5
mit $Na_2O + K_2O$	3-<8
CaO	3-10
MgO	0-10
SrO	0-8
BaO	0,1-10
mit Cao + MgO + SrO + BaO	>5-<23
La ₂ O ₃	05
TiO ₂	0-4
C 41 11 1 7 11 1 11 11 11 11 11 11	

+ ggf. übliche Läutermittel in üblichen Mengen

3. Glas nach Anspruch 1, gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von

SiO ₂ Al ₂ O ₃ ZrO ₂ B ₂ O ₃	59–72 0,5–6 8–15 0–4	20
Na ₂ O	2-4	
K ₂ O	1-2	
$mit Na_2O + K_2O$	3-<6	
CaO	3–10	25
MgO	0–10	23
SrO	0–8	
BaO	0,1–10	
mit Cao + MgO + SrO + BaO	>5-<23	
La ₂ O ₃	0–5	20
TiO ₂	0-4	30

⁺ ggf. übliche Läutermittel in üblichen Mengen

- 4. Glas nach wenigstens einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß das Gewichtsverhältnis $ZrO_2/Al_2O_3 > 2$ ist.
- 5. Glas nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Summe aus ZrO₂, La₂O₃ und TiO₂ >8,4, insbesondere >10 ist.
- 6. Glas nach wenigstens einem der Ansprüche 1 bis 5, mit einer hydrolytischen Beständigkeit H der hydrolytischen Klasse 1, einer Säurebeständigkeit S der Säureklasse 3 oder besser, einer Laugenbeständigkeit L der Laugenklasse 1, einer Transformationstemperatur T_g von wenigstens 650°C, einem thermischen Ausdehnungskoeffizienten $\alpha_{20/300}$ zwischen 4.1×10^{-6} /K und $7.4 \cdot 10^{-6}$ /K, einem Brechwert n_d zwischen 1,53 und 1,63, einer Abbezahl v_d zwischen 48 und 58 und einer negativen Abweichung der Teildispersion von der Normalgeraden im blauen Spektralbereich $\Delta_{Pg,F}$ bis -0,0130.
- 7. Glasfaser, bestehend aus einem Glas nach wenigstens einem der Ansprüche 1 bis 6.
- 8. Verwendung einer Glasfaser nach Anspruch 7 zur Betonverstärkung.
- 9. Verwendung eines Glases nach wenigstens einem der Ansprüche 1 bis 6 als Substratglas in der Displaytechnik.
 10. Verwendung eines Glases nach wenigstens einem der Ansprüche 1 bis 6 für Wolfram- oder Molybdän-Einschmelzungen.
- 11. Verwendung eines Glases nach wenigstens einem der Ansprüche 1 bis 6 als Glas für optische Anwendungen.
- 12. Verwendung eines Glases nach wenigstens einem der Ansprüche 1 bis 6 als Behälterglas für chemisch aggressive Flüssigkeiten
- 13. Verwendung eines Glases nach wenigstens einem der Ansprüche 1 bis 6 mit einem thermischen Ausdehnungskoeffizienten $\alpha_{20/300}$ zwischen 4,5 und 6,0 · 10⁻⁶/K als Substratglas in der Photovoltaik.

55

5

10

15

60

- Leerseite -