Virtual Mouse

Al Model Development

Time: 60 mins

Introduction

In this class, the student/s will learn to control the movements of the mouse pointer on your screen using hand gestures.

New Commands Introduced

•	pyautogui.size()	Finds the screen size
•	np.interp()	Estimates data points between two data points
•	pyautogui.moveTo(x, y)	Moves the cursor to a coordinate
•	cv2.circle(img, x, y, radius, color, width)	Draws a circle at (x, y) coordinates of specified radius, color and width
•	cv2.line(img, starting coordinate, ending coordinate, color, thickness)	Finds the hands in the given frame
•	pyautogui.scroll()	Adds a mouse scroll upwards for positive value and scrolls downwards for negative value

Vocabulary

- Virtual mouse allows users to interface with machines without the use of mechanical or physical devices, and even control mouse functionalities.
- Interpolation is the estimation of unknown data points between two known data points is known as interpolation.

Learning Objectives

Student/s should be able to:

- Recall how to detect hands and fingers in a camera feed.
- Demonstrate how to use hands and fingers detection to create a virtual mouse.
- *Explain* the concepts of integrating the features to create a virtual mouse.

.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s about using the hands and fingers detection to create a virtual mouse.

2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to control the movement of the mouse pointer on your screen using a hand gesture.
- Using the slides, explain that the student/s will learn:
 - To move the cursor.
 - o To click the cursor.
 - o To scroll up and down the cursor.

3. Activity 1: Move the Cursor: (12 mins)

Teacher Activity: (6 mins).

- Explain the process of storing the 3D coordinates of specific hand points.
- Explain how to get the set the camera size using variables and get the screen size using pyautogui.size().
- Explain the process of mapping the coordinates of virtual mouse pointer to those of mouse pointer using an interpolator.
- Demonstrate to the student/s how to draw the circle at the current position of the mouse pointer.

 Note: Install the pyautogui library using 'pip install pyautogui'

Student Activity: (6 mins)

• Guide the student/s to move the cursor with the index finger tip.

4. Activity 2: Click the Cursor: (12 mins)

Teacher Activity: (6 mins)

- Explain to the students how to define the finger gesture to depict clicking mouse by bringing the index and middle finger close.
- Demonstrate detecting the distance between the two fingers if less than 20 then draw the green circle and perform click operation.

Student Activity: (6 mins)

Guide the student/s to detect the distance between index and middle finger and perform a click.
 Probing question: How do you find the midpoint of any object?
 Expected answer: We can find the midpoint of any object by dividing it's length by 2.

5. Activity 3: Scroll Up and Down the cursor: (12 mins)

Teacher Activity: (6 mins)

- Demonstrate the student/s how to scroll updown by defining the gesture control and using pyautogui.scroll().
- Demonstrate to the student/s how to take screenshot by defining the gesture control and using pyautogui.screenshot()

Student Activity: (6 mins)

Guide the student/s to scroll down the page, and to take screenshots.

6. Introduce the Post class project: (2 min)

Show the messages on the basis of different hand gestures.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to perform a right click using a virtual mouse.
- Encourage the student/s to move the cursor using hand gestures.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will place different face filters at the top of the camera screen.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table				
Activity	Activity Name	Link		
Class Presentation	Virtual Mouse	https://s3-whjr-curriculum-uploads. whjr.online/0d068ea9-9419-405c-9 d9a-04dbfb6f7840.html		
Explore Activity	Virtual Mouse	https://github.com/Tynker-Comput er-Vision/TNK-M9-PRO-C70-SAS- BP		
Teacher Activity 1	Move the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS-BP		
Teacher Activity 1 Solution	Move the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS		
Student Activity 1	Move the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS-BP		
Teacher Reference: Student Activity 1 Solution	Move the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS		
Teacher Activity 2	Click the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS-BP		
Teacher Activity 2 Solution	Click the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS		
Student Activity 2	Click the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS-BP		

Teacher Reference: Student Activity 2 Solution	Click the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS
Teacher Activity 3	Scroll Up the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS-BP
Teacher Activity 3 Solution	Scroll Up the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-TAS
Student Activity 3	Scroll Down the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS-BP
Teacher Reference: Student Activity 3 Solution	Scroll Down the Cursor	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS
Student's Additional Activity 1	Perform Right Click	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Perform Right Click	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS
Student's Additional Activity 2	Move the Cursor using Hand Gesture	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Move the Cursor using Hand Gesture	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-SAS
Post Class Project	Sign Language App	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-PCP-BP
Teacher Reference: Post Class Project Solution	Sign Language App	https://github.com/Tynker-Computer -Vision/TNK-M9-PRO-C70-PCP