EDIPT设计思维在小学3D打印教学中的 实践探索

陈大楠 安徽省阜阳市颍州区鼓楼中心校

摘要: 本研究以培养学生创意与创造能力为理念, 构建了以学生创造力为目标的"3D打印设计"课程, 研究3D教学中 培养学生创造力的方法与策略,选用适合小学生学习3D设计的软件,依托EDIPT设计理念,探索3D打印课程的实践教学方 法、使学生在体验设计师思维与行动的同时创造性地解决生活实际问题、培养学生批判性思维、体现出3D创意课程在创造 力培养上蕴含的独特教育价值。

关键词: 3D打印, EDPT设计思维, 创新意识, 创造能力

中图分类号: G434 文献标识码: A 论文编号: 1674-2117 (2023) 01-0074-03

目前的中小学3D打印课程普 遍存在以下几个问题:3D课程基本 是以"3D打印概述""3D软件的基 本操作""对模型范例进行模仿制 作的学习"等内容构成,教师普遍 重视3D建模软件技术性知识的教 学,与开展3D课程的核心目标"培 养学生创新意识和创造能力,批判 性思维和解决现实问题的能力"有 一定差距。因此,本研究着重对一 线教师开展3D打印课程创新教学 方式进行探索,并基于EDIPT设计 思维教学模式对学生创新意识和 创造能力的培养进行探索。

● EDIPT模型及3D打印教学 方式分析

1.EDIPT模型

EDIPT模型是由斯坦福设计 学院(D.School)提出的设计思维 模型(如图1),主要包括同理心、定 义、构想、原型和测试五个阶段。 同理心阶段要求设计者站在使用 者的角度考虑需求;定义阶段是 对搜集到的信息进行加工筛选,定 义出具体可操作的问题:构想阶段 根据定义的问题提出多角度的解 决方法,通过讨论,对问题进行比 较、修正,形成最佳方案:原型阶段 根据解决方案制作简单的具有相 关功能的原型作品;测试阶段对原 型进行测试和优化(或对作品进 行实际应用设想讨论),经过多轮 迭代最终形成更科学、完善的作品 方案。

图1

2.基于设计思维的3D打印教 学模型

围绕EDIPT模型的五个阶段, 笔者设计了学习流程图,如下页图2 所示。学生通过体验设计师行为过 程,慢慢理解和形成设计思维,提 高创新设计的能力。

● 项目案例

1.项目选题

教师引导学生围绕主题选取 题材(以《分体式订书机》作品为研 究案例),并完成创意设计单(如下 页图3)。

2.收集资料

学生在接到主题任务后,往往 无从下手或思路很窄, 选取的方案 往往脱离实际应用。因此,教师要 引导学生先根据主题内容对生活 和学习场景讲行观察,确定生活中

图2

图3

有待改善的地方,通过观察、倾听、访 谈、网上搜索、请教专家、同学讨论 等方式收集信息,并对其可行性进 行分析和思考,然后通过召开团队项 目讨论会(基础水平好、语言表达能 力强的学生对团队确定的生活需改 善的应用场景进行描述),其他学生 根据自己收集的信息进行互动讨论, 经过几轮的项目研讨,初步确定对日 常使用的订书机进行优化改进。

3.设计构思

(1) 定义问题。学生发现, 无论 是正常尺寸的订书机,还是学生使 用的小型订书机,在资料的边角和

侧面都能正常装订,可是 在遇到纸张比较大,需 从中间进行装订时往往 无法完成,因此,教师引 导学生带着寻找一种更 方便、更有效的订书机 的想法,通过网络或请 教专家等方式多途径收 集解决方案。经调查,市 场上大部分日常订书机 都不能解决这类问题, 个别订书机采用压钉部 件旋转的方式来进行解 决,但对于学生来说机 身尺寸偏大,不易携带, 而且装订方向单一。因 此,教师引导学生站在 应用者角度,提炼出作 品方案要满足的功能: ①可以在纸张中间装订。 ②在尺寸、配色、携带等 方面满足学生的日常使 用需求。

(2) 创想构思。学生根据定义 的问题,设计出方案一的草图(如图 4)。学生对该方案进行再次讨论后 发现,方案一虽然缩小了尺寸,满足 装订纸张中间的要求,但并不能完 美解决此类问题。于是,学生提出磁 吸概念,对方案一进行修正,最终形 成方案二的设计草图(如图5)。

4. 原型实现

学生根据方案草图,运用 3Done三维设计软件绘图、拉伸、抽 壳、圆角等技术进行模型设计。在 利用三维设计软件制作出模型后, 引导学生进行产品渲染以及3D打 印实物,最终设计出分体式订书原 型机(如图6)。作品采用上下分体 磁吸结构,适合各种纸张装订;订书 机整体小巧方便携带;外观整体方 形,边角圆角处理遵循"天圆地方" 的理念;"上绿下黄"配色方案,体现 大地与自然的和谐。

图4

图5

图6

5.优化与评价

测试优化阶段可以由两种方 式呈现:①通过应用场景测试对作 品进行迭代优化。②通过产品发布 会的方式进行模型演讲介绍,邀请 相关专家、教师及学生进行项目式 研讨,对作品进行优化和评价。例 如,方案二的作品通过项目研讨会 的方式展开,会上专家提出:"作品 的功能演示视频初具广告级的水 平,但在装订功能演示上,上方部 件是倾斜式下压,不符合结构原 理。"根据这个问题,学生经过几天 的探究,根据部件工程结构原理, 最终修改成平行下压结构组件。不 仅如此,笔者还鼓励学生根据设想 动手制作出作品的升级版。

6.研究成果(略)

● 实践效果分析

通过对EDIPT教学模式和设 计思维的实践研究,学生的3D设计 能力有了显著提升,而且表现出更 多的自主设计的激情和行动。

1.提升学生创新思维能力

笔者认为,所有的创新性、开 放性想法基础都来源于收集到足 够多的信息,因此需重点培养学生 收集和处理信息的能力。在接到任 务后,学生通过对信息的处理而产 生的各种创意想法,不同于之前的 "四目相对,鸦雀无声"。笔者对学 生创新思维能力提升的训练取得了 一定的效果。

2.鼓励独特性思维,树立学生 自信心

发散思维的最高目标是具有 思维独特性,其对于相关作品的设 计以及问题的解决,都具有非常重 要的价值。笔者在学生收集到足够 多的信息资料后,引导小组成员提 出解决方案,同时,鼓励其他学生 大胆质疑,发表个人意见。笔者在 作品思路、方案优化等环节对学生 的独特性想法进行鼓励,为不同层 次的学生创造获得成功的机会,学 生的自信心显著提升。

3.完善作品原型,培养思维缜 密性

在设计方案描述时,教师应关 注学生的设计思维是否周密,鼓励 学生揣摩设计细节,特别是针对作 品的外形方案设计。例如,在确定作 品外形方案时,笔者鼓励一位学生 大胆说出自己的想法:"方形的外观 设计过于生硬,我建议进行圆边角 设计,体现'天圆地方'的中国传统 文化理念。"在接下来的作品讨论 会上,这位学生积极参与到小组互 动中。在这种氛围下,每位学生都取 长补短,思维全面性、细致性得到 了提升。

4.推进学生主动反思,提高自 身效能感

笔者把设计思维贯穿于每个 环节中, 鼓励学生大胆提出自己的 设计想法,并引导学生主动对自己 的方案进行反思,学生在学习成果 不断形成和完善的过程中提高了自 身效能感。

参考文献:

[1]唐菲菲.基于设计思维的3D打印校本课程案例设计[J].科技风, 2020(14).

[2]周青.面向设计思维的小学3D打印进阶课程实践研究[J].教育传播与技术,2021(01):71-78.

[3]秦瑾若.基于设计思维的STEM教学模式研究[J]. 教学与管理,2021(15):111-115.

[4]陈鹏.基于设计思维的技术教育STEM整合课程研究——以"设计更好的学校"课程为例[J].现代教育技 术,2021,31(01):98-104.

[5]王瑞, 靳大林, 蒋立春. 科技社团活动促进创客教育发展的实践研究——以郑州二中开展3D创意设计为例[J]. 电脑 知识与技术,2018,14(01),163-166.0

本文为安徽省教育信息技术研究课题"3D创意设计在小学信息技术课堂的实践研究"(课题编号: AH2019240)研 究成果。