TP1: Newton avec région de confiance - Cas unidimensionnel

Année: 2023-2024

Dans ce travail pratique, on vous demande d'implémenter sur Scilab l'algorithme de Newton avec région de confiance (TR_Nwt) pour le cas unidimensionnel (voir le pseudo code ci-dessous) et l'appliquer sur des problèmes d'optimisation où la fonction réelle est au moins deux fois dérivable.

Mais avant toute démarche, Assurez-vous que le "toolbox" diffcode est installé!!!

Vous allez trouver un script "Fcts_et_Drvs.sci" qui fournit les dérivées des fonctions en utilisant le "toolbox" diffcode. Je vous donne également le script "TR_Nwt.sci". Il suffit de le compléter par le code de l'algorithme de Newton avec région de confiance. Essayez d'afficher à chaque itération les valeurs de x^k , $f'(x^k)$, Δ_k , ared, pred pour les confronter aux résultats de la table suivante:

Iter	x	f'(x)	Δ	pred	ared
0	2.0	0.0828402	1		
1	1.0	0.25	2.	-0.142467	-0.1730769
2	1.0	0.25	1.	-0.25	+0.1875
3	1.0	0.25	0.5	-0.1875	+0.05
4	0.5	0.0946746	0.5	-0.109375	-0.0576923
5	0.6065574	0.0064028	1.	-0.0050441	-0.0047867
6	0.5999982	0.0000017	2.	-0.0000210	-0.0000210
7	0.6	0.0	4.	-1.517×10^{-12}	-1.517×10^{-12}

Table 1: Itérations de Newton avec région de confiance sur $1 - \frac{1}{5x^2 - 6x + 5}$

Après avoir compléter le script "TR_Nwt.sci", vous exécutez le fichier "TestTP1.sce" qui affiche la fonction et son approximation quadratique (polynôme de Taylor), fournie avec la fonction : $1-1/(5x^2-6x+5)$. Si cette étape est réussie, vous pourrez le confronter aux résultats de la commande "optim" du scilab. Les scripts pour démarrer ce TP : "Fct_Exemple.sci", "Fcts_et_Drvs.sci", "TR_Nwt.sci", "TestTP1.sce".

```
Algorithme 1 : Newton avec région de confiance
    \mathsf{TR}_{-}\mathsf{Nwt}(x,\Delta,\epsilon,f)
           Données: x;
 2
           un critère d'arrêt: \epsilon;
 3
           une fonction deux fois différentiable: f;
 4
           une taille initiale de la région de confiance: \Delta.
 5
        \left\{ q(d) = f(x) + f'(x) \cdot d + \frac{1}{2}f''(x) \cdot d^2 \cdot \right\}
 6
        répéter
 7
             si (q(\Delta) < q(-\Delta)) alors d_R \leftarrow \Delta
 8
             sinon d_R \leftarrow -\Delta
 9
             d_N \leftarrow -f'(x)/f''(x)
10
             si (|d_N| < \Delta \land q(d_R) > q(d_N)) alors d_R \leftarrow d_N
11
             ared \leftarrow f(x) - f(x + d_R)
12
             pred \leftarrow q(0) - q(d_R)
13
             si (r < 0.25) alors \Delta \leftarrow \Delta/2
15
             sinon
16
                 x \leftarrow x + d_R
17
            si (r > 0.75) alors \Delta \leftarrow 2 * \Delta
18
        jusqu'à (|f'(x)| < \epsilon)
19
        \texttt{R\'esultat} \leftarrow x
20
```