Naïve Bayes Model

Rui Xia

School of Computer Science & Engineering Nanjing University of Science & Technology http://www.nustm.cn/~rxia

Naïve Bayes Models

- A Probabilistic Model
- A Generative Model
- Known as the "Naïve" Assumption
- Suitable for Discrete Distributions
- Widely used in Text Classification, Natural Language Processing and Pattern Recognition

Generative vs. Discriminative

Discriminative Model

It models the posterior probability of class label given observation p(y|x)

Generative Model

It models the joint probability of class label and observation p(x, y), and then use the Bayes rule (p(y|x) = p(x, y)/p(x)) for prediction.

Naïve Bayes Assumption

A Mixture Model

Class prior probability

$$p(\mathbf{x}, y = c_j) = p(\mathbf{y} = c_j) p(\mathbf{x}|c_j)$$

Class-conditional probability

Bag-of-words (BOW) representation

$$\mathbf{x} = (\omega_1, \omega_2, \dots, \omega_{|x|})$$

$$p(\mathbf{x}|c_j) = p(\omega_1, \omega_2, \dots, \omega_{|\mathbf{x}|}|c_j) = \prod_{h=1}^{|\mathbf{x}|} p(\omega_h|c_j)$$

Having two event models

Multinomial Event Model

Model Description

Hypothesis

$$p(y = c_j) = \pi_j$$

$$p(x|c_j) = p([\omega_1, \omega_2, ..., \omega_{|x|}]|c_j) = \prod_{h=1}^{|x|} p(\omega_h|c_j)$$

$$= \prod_{i=1}^{V} p(t_i|c_j)^{N(t_i,x)} = \prod_{i=1}^{V} \theta_{i|j}^{N(t_i,x)}$$

Joint Probability

Model Parameters

$$p(\mathbf{x}, y = c_j) = p(c_j)p(\mathbf{x}|c_j) = \pi_j \prod_{i=1}^{V} \theta_{i|j}^{N(t_i, \mathbf{x})}$$

Likelihood Function

• (Joint) Likelihood

$$L(\boldsymbol{\pi}, \boldsymbol{\theta}) = \log \prod_{k=1}^{N} p(x_k, y_k)$$

$$= \log \prod_{k=1}^{N} \sum_{j=1}^{C} I(y_k = c_j) p(y_k = c_j) p(x_k | y_k = c_j)$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_k = c_j) \log p(y_k = c_j) p(x_k | y_k = c_j)$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_k = c_j) \log \pi_j \prod_{i=1}^{V} \theta_{i|j}^{N(t_i, x_k)}$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_k = c_j) \left(\log \pi_j + \sum_{i=1}^{V} N(t_i, x_k) \log \theta_{i|j} \right)$$

Maximum Likelihood Estimation

MLE Formulation

$$\max_{\pi,\theta} L(\pi, \theta)$$

$$s.t. \begin{cases} \sum_{j=1}^{C} \pi_j = 1 \\ \sum_{i=1}^{V} \theta_{i|j} = 1, j = 1, ..., C \end{cases}$$

Applying Lagrange multipliers

$$\begin{split} J &= L(\pmb{\pi}, \pmb{\theta}) + \alpha \left(1 - \sum_{j=1}^{C} \pi_{j}\right) + \sum_{j=1}^{C} \beta_{j} \left(1 - \sum_{i=1}^{V} \theta_{i|j}\right) \\ &= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_{k} = c_{j}) \left(\log \pi_{j} + \sum_{i=1}^{V} N(t_{i}, \pmb{x}_{k}) \log \pmb{\theta}_{i|j}\right) + \alpha \left(1 - \sum_{j=1}^{C} \pi_{j}\right) + \sum_{j=1}^{C} \beta_{j} \left(1 - \sum_{i=1}^{V} \theta_{i|j}\right) \end{split}$$

Close-form MLE Solution

Gradient

$$\frac{\partial J}{\partial \pi_j} = \sum_{k=1}^N I(y_k = c_j) \frac{1}{\pi_j} - \alpha = 0$$

$$\frac{\partial J}{\partial \theta_{i|j}} = \sum_{k=1}^N I(y_k = c_j) \frac{N(t_i, x_k)}{\theta_{i|j}} - \beta_j = 0$$

MLE Solution

$$\pi_j = \frac{\sum_{k=1}^{N} I(y_k = c_j)}{\sum_{k=1}^{N} \sum_{j'=1}^{C} I(y_k = c_j)} = \frac{N_j}{N}$$

$$\theta_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) N(t_i, \mathbf{x}_k)}{\sum_{k=1}^{N} I(y_k = c_j) \sum_{i'=1}^{V} N(t_{i'}, \mathbf{x}_k)}$$

Laplace Smoothing

In order to prevent from zero probability

$$p(\mathbf{x}, y = c_j) = \pi_j \prod_{i=1}^V \theta_{i|j}^{N(t_i, \mathbf{x})}$$

Laplace Smoothing

$$\theta_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) N(t_i, \mathbf{x}_k)}{\sum_{i'=1}^{V} \sum_{k=1}^{N} I(y_k = c_j) N(t_i, \mathbf{x}_k)} \qquad \pi_j = \frac{\sum_{k=1}^{N} I(y_k = c_j)}{\sum_{j'=1}^{C} \sum_{k=1}^{N} I(y_k = c_j)}$$

$$\pi_{j} = \frac{\sum_{k=1}^{N} I(y_{k} = c_{j})}{\sum_{j'=1}^{C} \sum_{k=1}^{N} I(y_{k} = c_{j})}$$

$$\theta_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) N(t_i, \mathbf{x}_k) + 1}{\sum_{i'=1}^{V} \sum_{k=1}^{N} I(y_k = c_j) N(t_i, \mathbf{x}_k) + V} \qquad \pi_j = \frac{\sum_{k=1}^{N} I(y_k = c_j) + 1}{\sum_{i'=1}^{C} \sum_{k=1}^{N} I(y_k = c_j) + C}$$

$$\pi_j = \frac{\sum_{k=1}^{N} I(y_k = c_j) + 1}{\sum_{j'=1}^{C} \sum_{k=1}^{N} I(y_k = c_j) + C}$$

Multi-variate Bernoulli Event Model

Model Description

Hypothesis

$$p(\mathbf{y} = c_j) = \pi_j$$

$$p(\mathbf{x}|\mathbf{y} = c_j) = p(t_1, t_2, ..., t_V | c_j)$$

$$= \prod_{\substack{i=1 \ V}} \left[I(t_i \epsilon \mathbf{x}) p(t_i | c_j) + I(t_i \notin \mathbf{x}) \left(1 - p(t_i | c_j) \right) \right]$$

$$= \prod_{\substack{i=1 \ V}} \left[I(t_i \epsilon \mathbf{x}) \mu_{i|j} + I(t_i \notin \mathbf{x}) \left(1 - \mu_{i|j} \right) \right]$$

Joint Probability

Model Parameters

$$p(\mathbf{x}, c_j) = \prod_{i=1}^{V} \left[I(t_i \in \mathbf{x}) \mu_{i|j} + I(t_i \notin \mathbf{x}) (1 - \mu_{i|j}) \right]$$

Likelihood Function

• (Joint) Likelihood

$$L(\pi, \mu) = \log \prod_{k=1}^{N} p(\mathbf{x}_{k}, y_{k})$$

$$= \sum_{k=1}^{N} \log \sum_{j=1}^{C} I(y_{k} = c_{j}) p(\mathbf{x}_{k}, y_{k})$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_{k} = c_{j}) \log p(c_{j}) \prod_{i=1}^{V} I(t_{i} \in \mathbf{x}) p(t_{i} | c_{j}) + I(t_{i} \notin \mathbf{x}) (1 - p(t_{i} | c_{j}))$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_{k} = c_{j}) \left(\log \pi_{j} + \sum_{i=1}^{V} I(t_{i} \in \mathbf{x}_{k}) \log \mu_{i|j} + I(t_{i} \notin \mathbf{x}_{k}) \log (1 - \mu_{i|j}) \right)$$

Maximum Likelihood Estimation

MLE Formulation

$$\max_{\pi,\mu} L(\boldsymbol{\pi}, \boldsymbol{\mu})$$

$$s. t. \sum_{j=1}^{C} \pi_j = 1$$

Applying Lagrange multipliers

$$J = L(\pi, \mu) + \alpha \left(1 - \sum_{j=1}^{C} \pi_{j} \right)$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{C} I(y_{k} = c_{j}) \left(\log \pi_{j} + \sum_{i=1}^{V} I(t_{i} \in x_{k}) \log \mu_{i|j} + I(t_{i} \notin x) \log (1 - \mu_{i|j}) \right) + \alpha \left(1 - \sum_{j=1}^{C} \pi_{j} \right)$$

Close-form MLE Solution

Gradient

$$\frac{\partial J}{\partial \pi_j} = \sum_{k=1}^N I(y_k = c_j) \frac{1}{\pi_j} - \alpha = 0$$

$$\frac{\partial J}{\partial \mu_{i|j}} = \sum_{k=1}^{N} I(y_k = c_j) \left(\frac{I(t_i \in \mathbf{x}_k)}{\mu_{i|j}} - \frac{I(t_i \notin \mathbf{x}_k)}{1 - \mu_{i|j}} \right) = 0, \forall j = 1, \dots, C.$$

MLE Solution

$$\pi_{j} = \frac{\sum_{k=1}^{N} I(y_{k} = c_{j})}{\sum_{k=1}^{N} \sum_{j'=1}^{C} I(y_{k} = c_{j'})} = \frac{N_{j}}{N}$$

$$\mu_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) I(t_i \epsilon x_k)}{\sum_{k=1}^{N} I(y_k = c_j)}$$

Laplace Smoothing

In order to prevent from zero probability

$$p(\mathbf{x}, c_j) = \pi_j \prod_{i=1}^{V} [I(t_i \in \mathbf{x}) \mu_{i|j} + I(t_i \notin \mathbf{x}) (1 - \mu_{i|j})]$$

Laplace Smoothing

$$\mu_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) I(t_i \in x_k)}{\sum_{k=1}^{N} I(y_k = c_j)}$$

$$\pi_{j} = \frac{\sum_{k=1}^{N} I(y_{k} = c_{j})}{\sum_{j'=1}^{C} \sum_{k=1}^{N} I(y_{k} = c_{j})}$$

$$\mu_{i|j} = \frac{\sum_{k=1}^{N} I(y_k = c_j) I(t_i \in x_k) + 1}{\sum_{k=1}^{N} I(y_k = c_j) + 2}$$

$$\pi_j = \frac{\sum_{k=1}^{N} I(y_k = c_j) + 1}{\sum_{j'=1}^{C} \sum_{k=1}^{N} I(y_k = c_j) + C}$$

Text Classification as An Example

Data sets

Training data

ID	Text	Label
$d_{tr}1$	Chinese Beijing Chinese	C
d _{tr} 2	Chinese Chinese Shanghai	С
d _{tr} 3	Chinese Macao	С
d _{tr} 4	Tokyo Japan Chinese	J

Test data

ID	Text
$d_{te}1$	Chinese Chinese Tokyo Japan
$d_{te}2$	Tokyo Tokyo Japan Shanghai

Class labels

$$c1 = C;$$

 $c2 = J$

Feature vector

$$t2 = Chinese$$

$$t3 = Japan$$

$$t4 = Macao$$

$$t6 = Tokyo$$

Multinomial Naïve Bayes

Training

		Doc	t1	t2	t3	t4	t5	t6
Term Frequency	c1	3	1	5	0	1	1	0
	c2	1	0	1	1	0	0	1
Probability	c1	3/4	2/14	(5+1)/(1+5+1+1+6)=6/14	1/14	2/14	2/14	1/14
	c2	1/4	1/9	(1+1)/(1+1+1+6)=2/9	2/9	1/9	1/9	2/9

Prediction

	Un-normalized	Normalized
$P(c1 d_{te}1)$	(3/4)*(6/14)^3*(1/14)*(1/14)=0.0030121	0.689757
$P(c2 d_{te}1)$	(1/4)*(2/9)^3*(2/9)*(2/9)=0.0013548	0.310243
$P(c1 d_{te}2)$	(3/4)*(1/14)^2*(1/14)*(2/14)	0.113547
$P(c2 d_{te}2)$	(1/4)*(2/9)^2*(2/9)*(1/9)	0.886453

Multi-variate Bernoulli Naïve Bayes

Training

		Doc	t1	t2	t3	t4	t5	t6
Decument Frequency	c1	3	1	3	0	1	1	0
Document Frequency	c2	1	0	1	1	0	0	1
Duahahilitra	c1	3/4	2/5	(3+1)/(3+2)=4/5	1/5	2/5	2/5	1/5
Probability	c2	1/4	1/3	(1+1)/(1+2)=2/3	2/3	1/3	1/3	2/3

Prediction

	Un-normalized	Normalized
$P(c1 d_{te}1)$	(3/4)*(1-2/5)*4/5*1/5*(1-2/5)* (1-2/5)* 1/5=0.005184	0.1911
$P(c2 d_{te}1)$	(1/4)*(1-1/3)*2/3*2/3*(1-1/3)* (1-1/3)*2/3=0.02195	0.8089
$P(c1 d_{te}2)$	(3/4)*(1-2/5)*(1-3/5)*1/5*(1-2/5)*2/5*1/5=0.001728	0.2395
$P(c2 d_{te}2)$	(1/4)*(1-1/3)*(1-2/3)*2/3*(1-1/3)*1/3*2/3=0.005487	0.7605

Xia-NB Software

Functions

- Written in C++
- Support multinomial and multi-variate Bernoulli event model
- Laplace smoothing
- Uniform data format like SVM-light/LibSVM
- Fast running with sparse representation

Download

https://github.com/NUSTM/XIA-NB

Practice 7: Naïve Bayes for Text Classification

- Implement naïve Bayes algorithm with
 - Multinomial event model
 - Multi-variate Bernoulli model
- Running the algorithm on the Tsinghua text classification data set (http://www.nustm.cn/member/rxia/ml/data/Tsinghua.zip) and report the classification accuracy.
- Implement softmax regression based on the Bag-of-words (BOW) representation and two kinds of term weighting methods (term frequency and presences).
- Compare the naïve Bayes and softmax regression, from the perspective of model and results.

Text Representation (in softmax regression)

Vector Space Model (VSM)
 also called Bag-of-words (BOW) model

Vocabulary $[t_1, t_2, \cdots, t_i, \cdots, t_V] =$ [baseball, specs, graphics, ..., quicktime, computer]

- Term Weighting Methods
 - BOOL (presence)

$$\omega_{ki} = \begin{cases} 1, & \text{if } t_i \text{ exists in } \boldsymbol{d}_k \\ 0, & \text{otherwise} \end{cases}$$

Term frequency (TF)

$$\omega_{ki} = t f_{ki}$$

Inverse document frequency (IDF)

$$\omega_i = \log \frac{N}{df_i}$$

TF-IDF

$$\omega_{ki} = t f_{ki} \cdot \log \frac{N}{df_i}$$

Questions?