Homework 1, due February 14th 5pm CST

Handin at 1102 DCL. Slide under door if no TA present.

Important: Please type or neatly write your solutions. Anything we can't read will receive no credit. You must show work to receive full credit.

- 1. (25 points) Suppose that DS = 1310H, ES = 1102H, AX = 40H, BX = 500H, and CX = 6000H. Determine the address accessed by each of the following instructions assuming real-mode operation.
 - (a) MOV [BOOH], EDX (5 points)
 - (b) MOV [BX], EDX (5 points)
 - (c) MOV CX[BX], EDX (5 points)
 - (d) MOV CX[BX+AX], EDX (5 points)
 - (e) MOV ES: [BX+AX], EDX (5 points)
- 2. (25 points) The function kaboom is defined below. What will be printed to the screen when "kaboom(100, 200, 300)" is called?

```
void kaboom(unsigned int x, unsigned int y, unsigned int z)
  {
2
      __asm__ ("mov1 %2, %0"
3
                "addl %1, %0"
                "subl %2, %1"
                : "=a" (x)
6
                : "b" (y), "c" (z)
7
               );
      cout << "x = " << x << endl;
       cout << "y = " << y << endl;
11
       cout << "z = " << z << endl;
12
13
```

- 3. (25 points) Suppose that SP = 200H, SS = 100H, and AX = AA77H. Now suppose the instruction PUSH AX is run.
 - (a) Annotate the diagram below by filling out *all* the addresses on the stack and the contents of locations in which AX's value is stored. Leave the memory contents blank if they are unknown. (20 points)
 - (b) What are the values of SS and SP after the instruction is finished? Also draw where SP points in the stack after the instruction. (5 points)

4. (25 points) Suppose we have an A/D – D/A card which uses 16-bit data and status registers. The base address of the card is set at 200H. We also have the following registers.

Base + AH Low word of A/D channel: bits 8...15 are bits 0...7 of the 18-bit data register.

Base + BH High word of A/D channel: bits 0...9 are bits 8...17 of the 18-bit data register.

Base + DH Write 0 into this register to start A/D conversion.

Base + FH 16-bit status and control register. The effects of each bit is as follows.

- Bit 15 = 1 when A/D conversion is finished (read only).
- Bit 12 = 1 to set input range to -2.5 to +2.5v.
- Bit 11 = 1 to set input range to -5 to +5v.
- Bit 10 = 1 to set input range to -10 to +10v.
- Bit 7 = 0 to enable interrupt, = 1 to disable.
- Bit 6 = 0 to enable DMA, = 1 to disable.
- The other bits are irrelevant.

For programmed read and write, interrupt and DMA must be disabled. You have available to you functions hw_in() and hw_out() that will input and output 16-bit unsigned *short* ints (a regular int is 32 bits). They function exactly like the ones seen in lab except now they deal with 16 bits instead of 8.

```
unsigned short int hw_in(unsigned int address);
void hw_out(unsigned int address, unsigned short int value);
```

Suppose that the signal voltage range is from -8v to +8v and the noise is $\pm 1v$.

- (a) What should be the input voltage range in the configuration? (2 points)
- (b) Using your answer in part (a), write a C or C++ function to read an input voltage and print out the voltage as a float. (23 points)