CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 24

Topic: Graph Representation and Isomorphism

In today's session, we'll be exploring a fundamental concept in graph theory known as "Isomorphism." This powerful tool allows us to compare and analyze graphs in a way that preserves their underlying structures, irrespective of how they might appear on the surface. Happy Learning!

Student's Name and ID: _	
Instructor's name:	

1 Isomorphism:

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an isomorphism. Two simple graphs that are not isomorphic are called non-isomorphic.

2 Conditions for Graph Isomorphism:

Any two graphs will be known as isomorphism if they satisfy the following four conditions:

- 1) There will be an equal number of vertices in the given graphs.
- 2) There will be an equal number of edges in the given graphs.
- 3) There will be an equal amount of degree sequence in the given graphs.
- 4) If the first graph is forming a cycle of length k with the help of vertices v1, v2, v3, vk, then another graph must also form the same cycle of the same length k with the help of vertices v1, v2, v3, vk.

3 Important Points:

- 1) For any two graphs to be an isomorphism, the necessary conditions are the above-defined four conditions.
- 2) It is not necessary that the above-defined conditions will be sufficient to show that the given graphs

are isomorphic.

- 3) If two graphs satisfy the above-defined four conditions, even then, it is not necessary that the graphs will surely isomorphism.
- 4) If the graph fails to satisfy any conditions, then we can say that the graphs are surely not an isomorphism.

4 Questions

1. prove or disprove whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

2.	Suppose that G and are also isomorphic.	H are isomorphic sin	mple graphs.	Show that the	eir complementary	graphs \overline{G} and \overline{H}