Chapter 4: The Structure of $U(\mathbb{Z}/n\mathbb{Z})$

Lemma (Generators of a cyclic group). Let $G = \langle g \rangle$ be a finite cyclic group of order n. Then $G = \langle h \rangle$ iff $h \in \{g^a \mid (a, n) = 1\}$.

Proof. Suppose that $h = g^a$ with (a, n) = 1. Then clearly $\langle h \rangle \subseteq \langle g \rangle$ as a subset. For the reverse containment (\supseteq) , write ra + sn = 1 where $r, s \in \mathbb{Z}$. Then $h^r = g^{ar} = g^{1-sn} = g \cdot (g^n)^{-s} = g \cdot 1 = g$. Then again $\langle g \rangle \subseteq \langle h \rangle$ as a subset.

Now suppose that $\langle g \rangle = \langle h \rangle$. Then $h = g^a$ for some $a \in \mathbb{Z}$. Also, $g = h^r$ for some $r \in \mathbb{Z}$. So $g = h^r = g^{ar}$ or $g^{ar-1} = 1$. So n|(ar-1), or ar + ns = 1 for some $s \in \mathbb{Z}$, that is, (a, n) = 1. \square

Corollary. Let G be a finite cyclic group of order n. Then G has exactly $\phi(n)$ generators.

Theorem 1. $U(\mathbb{Z}/p\mathbb{Z})$ is a cyclic group.

Proof. Let $p-1=q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=\prod_q q^e$ be the prime decomposition of p-1. Consider the congruences

- (1) $x^{q^{e-1}} \equiv 1(p)$
- $(2) \ x^{q^e} \equiv 1(p)$

Therefore,

- (1) Every solution to $x^{q^{e-1}} \equiv 1(p)$ is a solution of $x^{q^e} \equiv 1(p)$.
- (2) $x^{q^e} \equiv 1(p)$ has more solutions than $x^{q^{e-1}} \equiv 1(p)$. In fact, $x^{q^{e-1}} \equiv 1(p)$ has q^{e-1} solutions and $x^{q^e} \equiv 1(p)$ has q^e solutions by Proposition 4.1.2.

Therefore, there exists $g_i \in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_i^{e_i}$ for all i=1,...,t. Pick $g=g_1g_2\cdots g_t\in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=p-1$. That is, $\langle g \rangle = U(\mathbb{Z}/p\mathbb{Z})$. \square

Corollary. $U(\mathbb{Z}/p\mathbb{Z})$ has exactly $\phi(p-1)$ generators.

Exercise 4.1. Show that 2 is a primitive root module 29.

 $\begin{array}{l} \textit{Proof.} \ \ 2^1 \equiv 2(29), \ 2^2 \equiv 4(29), \ 2^3 \equiv 8(29), \ 2^4 \equiv 16(29), \ 2^5 \equiv 3(29), \ 2^6 \equiv 6(29), \ 2^7 \equiv 12(29), \ 2^8 \equiv 24(29), \ 2^9 \equiv 19(29), \ 2^{10} \equiv 9(29), \ 2^{11} \equiv 18(29), \ 2^{12} \equiv 7(29), \ 2^{13} \equiv 14(29), \ 2^{14} \equiv 28(29), \ 2^{15} \equiv 27(29), \ 2^{16} \equiv 25(29), \ 2^{17} \equiv 21(29), \ 2^{18} \equiv 13(29), \ 2^{19} \equiv 26(29), \ 2^{20} \equiv 23(29), \ 2^{21} \equiv 17(29), \ 2^{22} \equiv 5(29), \ 2^{23} \equiv 10(29), \ 2^{24} \equiv 20(29), \ 2^{25} \equiv 11(29), \ 2^{26} \equiv 22(29), \ 2^{27} \equiv 15(29), \ 2^{28} \equiv 1(29). \ \text{Thus} \\ U(\mathbb{Z}/29\mathbb{Z}) = \langle 2 \rangle. \ \Box \end{array}$