Diamonds Exploratory Data Analysis

Diamonds EDA

The goal of this document is to explore the diamonds dataset. First, we begin by loading the important packages

Checking out the first 10 rows of the dataset

```
head(diamonds, 10)
## # A tibble: 10 x 10
##
     carat cut color clarity depth table price
                                                  X
                                                       У
  ##
                               <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                61.5
                                           326 3.95 3.98 2.43
   2 0.21 Premium E
##
                        SI1
                                59.8
                                       61
                                           326
                                               3.89
                                                     3.84 2.31
##
   3 0.23 Good
               E
                        VS1
                                56.9
                                       65
                                           327
                                                4.05
                                                     4.07
                                                          2.31
##
  4 0.290 Premium I
                        VS2
                                62.4
                                       58
                                           334
                                               4.2
                                                     4.23 2.63
  5 0.31 Good
                        SI2
                                63.3
                                       58
                                           335
                                               4.34
                                                     4.35 2.75
  6 0.24 Very Good J
                        VVS2
                                62.8
                                       57
                                           336
                                                     3.96 2.48
                                               3.94
                                62.3
   7 0.24 Very Good I
                        VVS1
                                       57
                                           336
                                               3.95
                                                     3.98 2.47
## 8 0.26 Very Good H
                        SI1
                                61.9 55
                                           337 4.07
                                                     4.11 2.53
## 9 0.22 Fair
                        VS2
                                65.1
                                       61
                                           337 3.87 3.78 2.49
                   Ε
## 10 0.23 Very Good H
                        VS1
                                59.4
                                           338 4
                                                     4.05 2.39
                                       61
df <- diamonds
```

A bar chart for the diamond's cut

```
bar_cut <- ggplot(df) +
  geom_bar(aes(x = cut), fill = "blue") +
  labs(title = "Ideal cut diamonds exist in abundance compared to others", x = "cut", y = "count")
bar_cut</pre>
```

Ideal cut diamonds exist in abundance compared to others


```
ggsave("bar_cut.png", bar_cut)
```

Saving 12 x 8 in image

A histogram of diamond's price

```
ggplot(df) +
  geom_histogram(aes(x = price), color = "blue") +
  facet_wrap(~cut, nrow = 2) +
  labs(title = "A histogram of diamond's prices", x = "Price")
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

A histogram of diamond's prices

Bar chart for clarity based on cut

```
df_bar <- ggplot(df) +
  geom_bar(aes(x = clarity, fill = cut), position = "fill") +
  labs(title = "Bar chart for clarity based on cut", x = "clarity") +
  coord_polar() +
  theme_gray()
df_bar</pre>
```


ggsave("bar-chart.png", df_bar)

Saving 12 x 8 in image

Price vs Carat

```
model <- lm(price ~ carat, data = df)
coeff <- coef(model)
ggplot(df) +
   geom_point(aes(x = carat, y = price), color = "blue") +
   geom_abline(intercept = coeff[1], slope = coeff[2], color = "red") +
   labs(title = "Price vs Carat", x = "Carat", y = "Price")</pre>
```

Price vs Carat

Price vs Carat based on cut

```
ggplot(df) +
  geom_point(aes(x = carat, y = price, color = cut)) +
  facet_wrap(~clarity, nrow = 2) +
  labs(title = "Price vs Carat", x = "Carat", y = "Price")
```


colnames(df)

```
## [1] "carat" "cut" "color" "clarity" "depth" "table" "price"
## [8] "x" "y" "z"

nam <- c("carat", "x", "y", "z")
max <- c(max(df$carat), max(df$x), max(df$y), max(df$z))
max_df <- data.frame(name = nam, max = max)
max_df</pre>
```

unique(df\$color)

[1] E I J H F G D ## Levels: D < E < F < G < H < I < J

unique(df\$clarity)

[1] SI2 SI1 VS1 VS2 VVS2 VVS1 I1 IF ## Levels: I1 < SI2 < SI1 < VS2 < VS1 < VVS2 < VVS1 < IF