

Aprendizado de Máquina com Dados em Larga Escala

Gesiel Rios Lopes¹

¹Laboratório de Sistemas Embarcados e Evolutivos (LSEE) Instituto de Ciências Matemática e de Computação (ICMC) Universidade de São Paulo (USP) gesielrios@usp.br

About me, by myself

Gesiel Rios Lopes

Uma pequena introdução a era digital

Fonte:

https://www.forbes.com/sites/timbajarin/2025/01/21/mind-blowing-stats-of-what-transpires-on-the-internet-every-minute/

Number of internet and social media users worldwide as of February 2025

(in billions)

Fonte: https://www.statista.com/statistics/617136/digital-population-worldwide/

- Vivemos em uma época digital onde existe uma enorme quantidade de dados sendo produzidas, onde a quantidade de informações produzidas atualmente é superior à quantidade de informação que uma pessoa conseguiria lidar durante toda sua vida (Marquesone, 2016).
- Este cenário proporciona um mundo cheio desafios importantes no armazenamento, manipulação e análise de forma inteligente (Goldman et al., 2012).

Baseado nessas e em outras aplicações que possuem um volume gigantesco de dados, surgiu o conceito denominado "Big Data".

Esse termo faz menção não apenas ao volume, mas também à sua variedade e a velocidade necessária para o seu processamento.

Big Data é um termo usado principalmente para descrever os conjuntos de dados que são muito grandes e complexos e que requerem de tecnologias avançadas de armazenamento, gestão, análise e visualização (Marquesone, 2016).

- Big Data é um conceito abrangente, que engloba ferramentas, técnicas e até mesmo define características dos dados
- O mundo está se preparando cada vez mais para o uso de soluções de Big Data, devido ao seu enorme potencial de geração de valor para o negócio
- Apesar desse potencial, o uso de Big Data traz contrapartidas que devem ser levadas em consideração

Processamento de Dados Massivos

O limite físico dos hardwares

Até meados dos anos 2000, os computadores desenvolvidos até então avançavam em termos de hardware no seguinte sentido:

É possível entender isso como uma escalabilidade vertical, porque o que é feito é aumentar significativamente a capacidade de um único componente.

O limite físico dos hardwares

Processador mais

poderoso de 1 só núcleo

No entanto, esse modelo de escalabilidade vertical atingiu um limite físico: chegou um ponto em que não era possível dissipar a quantidade de calor gerada pelos processadores.

Processador com vários

Núcleo menos poderosos

Processamento Paralelo

- Com a disponibilidade de várias unidades de processamento, é possível adotar a estratégia de paralelização das tarefas da seguinte forma:
 - 1. Programa recebe uma tarefa de grande custo computacional.
 - 2. A tarefa grande é quebrada em várias listas de pequenas tarefas, que são enviadas aos executores.
 - 3. Cada executor realiza suas tarefas ao mesmo tempo, uma de cada vez.
 - 4. Os resultados das tarefas dos executores são agregados para retornar o resultado final.

Processamento Distribuído

O processamento distribuído segue os mesmos princípios da computação em paralelo com a diferença de que a paralelização é feita a partir de uma rede de computadores interligados (também chamado de cluster), ao invés de ser somente a nível de processadores de uma máquina.

Processamento Distribuído

- Vantagens da Paralelização
 - Escalabilidade
 - Tolerância a Falhas

- Desafios
 - Gerenciamento de Tarefas
 - Gerenciamento de Partições de Dados
 - Segurança
 - Gerenciamento de Executores

- Arcabouço para processamento e armazenamento de dados em larga escala:
 - Código aberto
 - Implementado em Java
 - Inspirado no GFS e MapReduce do Google

- Projeto top-level da Fundação Apache
- Tecnologia recente, porém já muito utilizada

- A biblioteca principal conta com os seguintes módulos:
 - Hadoop Common: módulo que contém os utilitários comuns a todos os outros módulos do Hadoop.
 - Hadoop Distributed File System (HDFS): módulo que contém as funcionalidades relacionadas ao armazenamento distribuído de dados.
 - Hadoop MapReduce: módulo que oferece serviços de computação distribuída no ambiente Hadoop.
 - Hadoop YARN: módulo que realiza o gerenciamento de recursos e divisão de tarefas dentro do ambiente distribuído do Hadoop.

- Além desses módulos, o framework conta com tecnologias disponíveis para outros propósitos, como:
 - Apache HIVE: banco de dados que utiliza uma interface de SQL no ambiente distribuído.
 - Apache Mahout: módulo para a criação de aplicações de machine learning.

- Além desses módulos, o framework conta com tecnologias disponíveis para outros propósitos, como:
 - Apache Ambari: serviços de provisionamento, gerenciamento e monitoramento de clusters no Apache Hadoop.
 - Apache Oozie: serviços de agendamento de jobs.
 - Apache Zookeeper: módulo para coordenar os serviços do Ecossistema Hadoop.

- MapReduce
 - O Hadoop MapReduce assim como a implementação anterior do Google, é a ferramenta utilizada no processamento paralelo e distribuído de volumes massivos de dados
 - Ela funciona com base em duas operações distintas:
 - Map: usada para segmentar os dados em pares chave/valor antes do processamento
 - Reduce: Operação responsável por realizar as computações em forma de operações de agregação

Apache Hadoop MapReduce

- Desvantagens do MapReduce
 - Complexidade Operacional
 - Modelo de Programação Verboso
 - Escrita em Disco

Introdução ao Apache Spark

O que é o Apache Spark?

- O Apache Spark é um framework 100% open source de processamento distribuído e computação em clusters, projetado especialmente para trabalhar com quantidades massivas de dados.
- O framework dispõe de vários componentes para diferentes formas de processamento dos dados, como operações em dados estruturados, processamento em streaming, computação de grafos e até mesmo ajuste de modelos de Machine Learning.

Velocidade

Simplicidade

Modularidade

Extensibilidade

- Velocidade
 - Armazenamento em memória.
 - O Directed Acyclic Graph (DAG).
 - Catalyst Optimizer.
 - Lazy Evaluation.

	Hadoop MR Record	Spark Record	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	570 GB/s
Sort Benchmark Daytona Rules	Yes	Yes	No
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network	virtualized (EC2) 10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

Fonte: https://www.databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

- Simplicidade
 - No seu nível mais baixo, o Spark abstrai os dados em uma estrutura chamada de **Resilient Distributed Dataset (RDD)**, que é uma coleção particionada e imutável de registros.
 - Operar com RDDs é uma tarefa bastante complexa, e, por isso, nas APIs mais recentes do Spark, é possível realizar operações com essas construções a partir dos Spark DataFrames, uma estrutura baseada em linhas e colunas que é bastante comum no contexto de dados.

- Simplicidade
 - Além disso, as operações sobre dados estruturados herdam princípios fortes do SQL, e é, inclusive, possível utilizar a popular linguagem de consultas para manipular os dados.

- Modularidade
 - Spark SQL: Módulo para o processamento de dados estruturados.
 - Structured Streaming: Módulo para o processamento de dados em tempo real.
 - Spark ML: Módulo de préprocessamento e Machine Learning.
 - GraphX: Módulo para computação de grafos.

- Extensibilidade
 - Spark é unicamente uma ferramenta de processamento de dados distribuídos e, por causa disso, é capaz de se conectar com as mais diferentes fontes de dados.

Aplicação Spark

- A arquitetura distribuída do Spark é dividida em dois componentes principais:
 - Driver: Responsável por manter informações sobre a aplicação, responder a inputs do programa ou usuário e analisar, distribuir e agendar tarefas nos executores.
 - Executores: São responsáveis por, de fato, realizar as tarefas designadas a eles pelo driver.

Aplicação Spark

Spark Session

- A Spark Session é o ponto de entrada pra acessar todas as funcionalidades do Spark. Por meio dela, é possível:
 - Ler e criar DataFrames;
 - Realizar queries do SQL;
 - Configurar a aplicação;
 - Acessar o catálogo de metadados.
- Além disso, esse objeto também unifica o ponto de entrada de todos os módulos, não só do Spark SQL.

Obrigado!

Perguntas?

That's all Folks!