Generalized Linear Models

lacktriangle We would like to predict admit given gre and gpa

<u>y</u>	1	
admit	gre	gpa
0	380	3.61
1	660	3.67
1	800	4.00
1	640	3.19
0	520	2.93
1	760	3.00
1	560	2.98
0	400	3.08
1	540	3.39
0	700	3.92

► Can we use linear model here?

$$\underline{admit} = \beta_0 + \beta_1 \cdot \underline{gre} + \beta_2 \cdot \underline{gpa}$$

► Multiple Linear Regression cannot handle binary/categorical

response

Linear Model

$$admit = \underbrace{\beta_0 + \beta_1 \cdot gre + \beta_2 \cdot gpa}$$

Logistic Regression

$$P(admit = 1) = \underbrace{\frac{1}{1 + exp(-\beta_0 - \beta_1 \cdot gre - \beta_2 \cdot gpa)}}_{}$$

▶ When fit the logistic regression on the data we obtain:

► For example, with a student having 380 GRE and 3.61 gpa, the model will predict

$$P(admit=1) = \frac{1}{1 + exp\big(-0.73 - 0.02 \cdot 600 + 3.57 \cdot 4.0\big)} = 0.01$$

► This means that the chance of the student being admitted is 0.01 or the student will not be admitted by the model prediction.

Logistic Regression

gistic regression
$$f(-1) = 0 \cdot f(\forall = 0) + 1 \cdot f(\forall = 1)$$

$$= \left(f(+1) \right)$$

Suppose the response y can only takes two values $\underline{0}$ and $\underline{1}$. The logistic regression models the probability of y=1 as follows.

or, equivalently
$$\ln\left(\frac{\pi}{1-\pi}\right) = \frac{1}{1+exp(-\beta_0-\beta_1x_1-\beta_2x_2)}$$
 or
$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0+\beta_1x_1+\beta_2x_2$$

$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Generalized Linear Model

▶ The GLM models $\mu = E(y)$ as follows.

$$g(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p = x'\beta$$

where y is assumed to follow an exponential distribution family.

- Exponential distribution family includes all the basic distribution such as normal distribution, binomial distribution, Poisson distribution...
- $ightharpoonup g(\mu)$ is called the canonical link function
- For logistic regression, the link function is a logit function

$$g(x) = \ln\left(\frac{x}{1-x}\right)$$

Some GLMs

$$g(\mu)=\beta_0+\beta_1x_1+\ldots+\beta_px_p=x'\beta$$

Distribution	Canonical Link Function	Mathematical Form
Normal	Identity	$g(\mu) = \mu$
Binomial	Logit	$g(\pi) = \ln[\pi/(1-\pi)]$
Poisson	Natural log	$g(\mu) = \ln \mu$
Gamma	Inverse	$g(\mu) = 1/\mu$
Inverse Gaussian	Squared inverse	$g(\mu) = 1/\mu^2$

A statistician uses logistic regression to model a probability of success of a random variable. The estimated parameters for the intercepts and two predictors are $\hat{\beta}_0=0.02$, $\hat{\beta}_1=-0.4$, and $\hat{\beta}_2=0.3$. Calculate the predicted probability of success at $x_1=1$ and $x_2=1$.

$$P\left(\frac{71}{1-71}\right) = .02 - .4 \times 1 + .3 \times 2$$

$$1 = \frac{1}{1+e} = \frac{.48}{1+e}$$

Example 3
$$\pi =$$

$$3 = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1}}$$

$$\left(\ln \left(\frac{1}{1 - \Omega} \right) = \beta_0 + \beta_1 x_1 \right)$$

A statistician uses logistic regression to model a probability of success of a random variable. You are given

- There is one predictors and an intercept in the model
- ▶ The estimates of success at x = 4 and x = 6 are 0.8 and 0.9, respectively.

$$\beta_1 = \frac{\ln 4 - \ln 9}{-2} = \frac{1905}{1}$$

You are given the following for a fitted GLM. Calculate the modeled probability of an Urban driver having an accident.

	Response variable	Occurrence of Accidents
	Response distribution	Binomial 70
	Link	Logit > 6
	Parameter	$df \qquad \hat{\beta} \qquad \hat{\beta} \qquad \text{se}$
r	Intercept	1 (-2.358) 0.048
H	Area	2
(Suburban	0 0.000
(<u>Urba</u> n	1 0.905 0.062
	Rural	1 - 1.129 0.151

Odd of an event

- The odds of an event A is the ratio of the probability that A occurs to the probability that A does not occur.
- ▶ The odd of tossing an coin and see Tail is 1:1
- The odd of rolling a die and see number 6 is $\frac{1/6}{5/6} = 1.5$

► Logistic regression in terms of Odd

$$\ln(\mathsf{Odd}\;\mathsf{of}\;\mathsf{Success}) = \ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Possion Regression and Other link functions

- Poisson Regression are used when the response are count variables, for example: the number of claims of a customer...
- The response is assume to follow a Poisson distribution and the link function used is a log link function, ln.

$$\underline{\ln(\mu)} = \underline{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n}$$

You are given the following when fitted a GLM model. Calculate the predicted Y value for a female with age of 22.

Response variable	Y	109(4) = 5.421 - 557 + 107*22
Response distribution	Poisson	109(7) = 9.921
Link	log	= 7.218
AIC	221.254	
Parameter	\hat{eta}	${\mathrm{s.e.}(\hat{\beta})}$
Intercept	5.421	0.228
dender dender		= 1362.759
Male	0.000	0.000
Female	(-0.557)	0.217
[≯] Age	$0.10\overline{7}$	0.002

You are given the following GLM output. Calculate the predicted premium for an insured in Risk Group 2 with Vehicle Symbol 2.

	Response variable	Pure Premium		_			4. 2
	Response distribution	n Gamma		05(7) =	4.78	2	+.42
	Link	\log		_			
	Parameter	df	β	= =	= (
	Intercept	1	4.78	Bo			>
				7	7	=	٠
4	Risk Group	2					248.91
	Group 1	0	0.00	^		=	(
	Group 2	1	-0.20) BI			
	Group 3	1	-0.35				
J							
1	Vehicle Symbol	1					
	Symbol 1	0	0.00	_			
	Symbol 2	1	0.42) (32			

You are given the following output of an GLM. Calculate the probability of a policy with 5 years of tenure that experienced at a 10% prior rate increase and has 100,000 in amount of insurance will retain into the next policy term.

Response variable		retention	7 = 6102 + 1320 +0
Response distribution		binomial	7 = 1660
Link		square root	
Pseudo \mathbb{R}^2		0.6521	+ 0015 (100)
Parameter	df	\hat{eta}	
Intercept	1	0.6102	L - 18922
			$\sqrt{y} = \sqrt{x}$
Tenure			2 / 17%
< 5 years	0	0.0000	8922 - 1
≥ 5 years	1	0.1320	Y = .8922 = .796
Prior Rate Change			
< 0%	1	0.0160	
[0%,10%]	0	0.0000 . 32	
> 10%	1	-0.0920	

0.0015