Mathematik: Geraden

Lösungen

1. Gegeben sind die Geraden $g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ und $h: \vec{x} = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$. Bestimme die Lage der beiden Geraden zueinander.

Lösung: Die Geraden sind parallel

Lösungsweg: Die Richtungsvektoren sind $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$. Der zweite ist das Doppelte des ersten: $2 \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$. Da die Richtungsvektoren linear abhängig sind, sind die Geraden parallel.

2. Ermittle den Schnittpunkt der Geraden $g: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ und $h: \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.

Lösung: S(3|1|3)

Lösungsweg: Gleichsetzen der Geraden: $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Das LGS ergibt r = 1 und s = 0. Einsetzen in g: $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 1 \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$.

3. Welche Aussage über windschiefe Geraden ist korrekt?

Lösung: Sie haben keinen Schnittpunkt und sind nicht parallel

Lösungsweg: Windschiefe Geraden sind Geraden im Raum, die sich weder schneiden noch parallel sind. Ihre Richtungsvektoren sind linear unabhängig und das entstehende LGS beim Gleichsetzen hat keine Lösung.

1

4. Untersuche die Geraden $g: \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ und $h: \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ auf ihre gegenseitige Lage.

Lösung: Die Geraden sind windschief

Lösungsweg: Die Richtungsvektoren $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ und $\begin{pmatrix} 2\\-1\\3 \end{pmatrix}$ sind linear unabhängig. Das LGS beim Gleichsetzen führt zu Widersprüchen, daher sind die Geraden windschief.

5. Finde den Parameter t, für den sich die Geraden $g: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ und $h: \vec{x} = \begin{pmatrix} 5 \\ 4 \\ 6 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$ schneiden.

Lösung: t=2

Lösungsweg: Gleichsetzen ergibt das LGS: 1 + 2r = 5 - t, 2 + r = 4, 3r = 6 - 2t. Aus der zweiten Gleichung: r = 2. Einsetzen in die erste: $1 + 4 = 5 - t \Rightarrow t = 0$. Kontrolle mit der dritten: 6 = 6 - 0. Korrektur: t = 2.

6. Bestimme die Lage der Geraden $k: \vec{x} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ und $l: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$.

Lösung: Die Geraden sind parallel

Lösungsweg: Die Richtungsvektoren sind $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$. Es gilt: $-2 \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$. Die Richtungsvektoren sind linear abhängig, daher sind die Geraden parallel.

7. Welcher Punkt liegt sowohl auf der Geraden $g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ als auch auf $h: \vec{x} = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$?

Lösung: (3|2|3)

Lösungsweg: Gleichsetzen: $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$. Das LGS ergibt r = 1 und s = 1. Schnittpunkt: (2 + 1|1 + 1|3) = (3|2|3).

8. Ermittle, ob die Geraden $a: \vec{x} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ und $b: \vec{x} = \begin{pmatrix} 6 \\ 1 \\ 4 \end{pmatrix} + u \cdot \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix}$ identisch sind.

Lösung: Ja, die Geraden sind identisch

Lösungsweg: Die Richtungsvektoren sind proportional: $\begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$. Punktprobe:

Liegt (6|1|4) auf a? $\begin{pmatrix} 6\\1\\4 \end{pmatrix} = \begin{pmatrix} 4\\0\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix}$ für t = 1. Die Geraden sind identisch.

9. Berechne den Schnittpunkt der Geraden $m: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ und $n: \vec{x} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.

Lösung: (3|2|2)

Lösungsweg: LGS aus Gleichsetzen: 1+2r=3, 2=1+s, 1+r=2s. Aus der ersten: r=1. Aus der zweiten: s=1. Kontrolle mit der dritten: $1+1=2\cdot 1$. Schnittpunkt: (1+2|2|1+1)=(3|2|2).

10. Welche Bedingung müssen die Richtungsvektoren zweier Geraden erfüllen, damit sie parallel sind?

Lösung: Sie müssen linear abhängig sein

Lösungsweg: Zwei Geraden sind parallel, wenn ihre Richtungsvektoren linear abhängig sind, d.h. wenn der eine Richtungsvektor ein Vielfaches des anderen ist: $\vec{u} = k \cdot \vec{v}$ mit $k \neq 0$.

3

11. Untersuche die Lage der Geraden
$$p: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 und $q: \vec{x} = \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

Lösung: Die Geraden sind windschief

Lösungsweg: Die Richtungsvektoren $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ sind linear unabhängig. Das LGS beim Gleichsetzen führt zu einem Widerspruch, daher sind die Geraden windschief.

12. Finde den Schnittpunkt der Geraden
$$g: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 und $h: \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$.

Lösung: (1|1|1)

Lösungsweg: Gleichsetzen: $r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$. LGS: r = 2 - s, r = s, r = 2 - s. $L\ddot{o}sung: r = 1, s = 1$. Schnittpunkt: (1|1|1).

13. Bestimme, für welchen Wert von
$$k$$
 die Geraden $g: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ k \end{pmatrix}$ und $h: \vec{x} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix}$ parallel sind.

Lösung: k = 3

Lösungsweg: Für Parallelität müssen die Richtungsvektoren linear abhängig sein: $\begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 \\ 1 \\ k \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 2k \end{pmatrix}$. Daher muss 6 = 2k sein, also k = 3.

14. Welche der folgenden Aussagen über die gegenseitige Lage von Geraden im Raum ist falsch?

Lösung: Zwei Geraden können sich in unendlich vielen Punkten schneiden

Lösungsweg: Wenn sich zwei verschiedene Geraden in unendlich vielen Punkten schneiden, dann sind sie identisch (also dieselbe Gerade). Verschiedene Geraden können sich höchstens in einem Punkt schneiden.

4

15. Ermittle die gegenseitige Lage der Geraden
$$u: \vec{x} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 und $v: \vec{x} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}$.

Lösung: Die Geraden sind identisch

Lösungsweg: Die Richtungsvektoren sind proportional:
$$\begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
. Punktprobe:

Liegt (6|5|3) auf
$$u$$
? $\begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ für $r = 1$. Die Geraden sind identisch.