NSI 1ère - Données

Introduction et historique

qkzk

Comment stocker des informations dans une machine ?

Une idée relativement récente

- Machine à calculer : Antiquité
- Machine pour stocker de l'information : XVIIIeme siècle.

Historique sommaire

En 1725 on voit l'apparition des cartes perforées : feuilles de papier rigides sur lesquelles sont disposés des trous qui symbolisent des données.

On stockait, par exemple, les plans de conception de tricot jacquard

Technologies modernes

- *l'électromagnétisme* (aimants) et de la mécanique (ça tourne): bande, cassette, disquette et disques durs pour le stockage.
- de l'électronique pure pour la mémoire vive et la mémoire flash. 10^4 fois plus rapide. . .

Mémoire vive vs mémoire morte

- $m\'{e}moire$ vive RAM : non persistante. Perdue sans alimentation.
- mémoire morte ROM : persistante. écrite une fois, ne peut qu'être lue.
- *mémoire de masse* : persistante. sert au stockage. Peut-être réinscrite plusieurs fois.

Pourquoi utiliser la mémoire vive si on peut la perdre ? Parce que c'est plus (beaucoup) rapide !

Objectifs

Optimiser à la fois l'espace en mémoire et les temps d'accès.

Mémoire flash

Depuis $30~{\rm ans}$: mémoire flash, plus rapide, sans élément mécanique, peu gourmande en énergie mais coûteuse.

Pyramide de la mémoire

On peut résumer ainsi :

- \bullet Lent = économique = vaste en espace

Pyramide de la mémoire

Données : deux unités de mesure

Nous avons 10 doigts et comptons avec 10 chiffres.

En informatique on emploie un autre système pour représenter les nombres :

les bits 0 et 1 vs les octets

- 1 bit : 0 ou 1. Unité minimale de symbole b, parfois bit.
- 1 octet : paquet de 8 bits. Symbole B (anglais pour Byte) ou o.
 1 octet peut donc représenter 2⁸ = 256 valeurs distinctes.

Attention aux confusions!

Données : ordre de grandeur

Préfixe	long	10^{n}	Exemple
kilo	milliers	10^{3}	3,5 kb = 3500 bits
mega	millions	10^{6}	1 Mb = 1 million de bits = 125 kB

Préfixe	long	10^{n}	Exemple
giga téra péta	milliards billions billiards	10^9 10^{12} 10^{15}	$1 \text{ TB} = 8 \times 10^{12} \text{ b}$

Quelques exemples

Objet	Espace mémoire
1 lettre	7 bits en ASCII
1 page de texte	3×10^4 bits
Disquette 3.5"	$1,44 \text{ MB} = 1,2 \times 10^7 \text{ bits}$
Disque dur en 1980	$20 \text{ MB} = 1,6 \times 10^8 \text{ bits}$
Bdd du WDCC	$5000 \text{ TB} = 4 \times 10^{16} \text{ bits}$
Trafic internet (2016)	$1.56 \times 10^9 \text{ TB} = 1,25 \times 10^{22} \text{ bits}$
1 gramme d'ADN	$1,8 \times 10^{22}$ bits

Nombres en informatique.

Pourquoi les bits de données?

Partons de ce qu'on sait faire :

- On sait construire de très petits transistors.
- On sait les concentrer sur une petite surface.
- L'amélioration des technologies permet de concentrer l'information et la puissance de calcul.

Par exemple :

- 1971 : 2300 transistors dans un processeur 4004.
- 2014 : 2,6 milliards dans un core i7 d'intel.

Le choix d'utiliser l'électronique pour stocker l'information est une *conséquence* de notre capacité à calculer avec des portes logiques.

Les nombres en en informatique

On rencontre d'autres manières de représenter les nombres :

- binaire
- complément à 2
- octal
- hexadécimal etc.
- nombres à virgules flottantes

Figure 1: Intel C4004 - 1971