Fondamenti di Internet e Reti – SOLUZIONE!!!!!!!!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina		5° A	ppello –	10 Febb	raio 2020	
Cogno	ome e nome:				,	mpatello) leggibile)
Matri	cola:	Es.1	Es.2	Es.3	Ques.	Lab.
	Esercizio	1*				
	(6 punti)	-				
figura s di indir	età <i>Topolonia</i> , costituita dalle sottoreti A, B, C, D, E, F, i ottostante), si rivolge ad un ISP per ottenere un blocco di rizzamento. L'ISP dispone complessivamente del blocco la società <i>Paperinik</i> , il blocco 70.20.4.0/22.	indirizzi I	P sufficient	e a soddisf	are le propr	rie necessità
a)	Si indichi di seguito, utilizzando la notazione decimale p che <u>precede</u> quello assegnato a <i>Paperinik</i> e che abbia, blocco gestito dall'ISP, ovvero 70.20.0.0/18. Si scriva ultimo indirizzo IP) inclusi nel blocco stesso.	come prim	o indirizzo	IP, l'indiri	izzo iniziale	e dell'intero
	Blocco CIDR:70.20.0.0 /22 Rans	ge: da	70.20.0.0	a	70.20.3.255	5
b)	Specificare se il blocco ottenuto al punto a) sarebbe su <i>Topolonia</i> , motivando la risposta. Nel caso in cui tale b è il numero massimo di host che <i>Topolonia</i> potrebbe a che essi siano posti in un'unica rete IP interfacciata ad I	locco non : ccogliere c	fosse suffic	iente per <i>T</i> o ottenuto a	<i>lopolonia</i> , ir al punto a),	ndicare qual
	Il blocco non è sufficiente in quanto <i>Topolonia</i> ha bisog	no di una 1	rete di tipo /	21		
c)	Usando la notazione /n, specificare di seguito la lung soddisfare l'indirizzamento per <i>Topolonia</i> :	hezza mini	ima della m	naschera di	sottorete r	necessaria a
	$n = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}} / 21_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}$					
d)	Si assegni alla società <i>Topolonia</i> il blocco /n immed <i>Paperinik</i> , essendo /n dato dal valore ottenuto al pur decimale puntata:					
	Blocco assegnato a <i>Topolonia</i> : 70.20.8.0 / 2	l				
e)	Effettuare il piano di indirizzamento per la società <i>To</i> adottando la tecnica VLSM. Per ciascuna sottorete speci speciali), l'indirizzo di rete, la <i>netmask</i> (in formato /n). Assegnare gli indirizzi alle sottoreti a partire da que alla presenza dei collegamenti punto-punto tra i router. In	ficare il nu , e l'indiriz lli più bas	mero di indi zzo di broac si del blocc	rizzi occup lcast dirett o. (<u>Sugger</u>	oati (inclusi o, usando la <u>imento</u> : faro	gli indirizzi a Tabella 1. e attenzione
f)	tipo eventualmente presenti in <i>Topolonia</i> .) Assegnare a ogni interfaccia dei router l'indirizzo più indirizzi riservati, compilando la Tabella 2. Si usi la rl'interfaccia del router Rn verso la rete X, ed " <i>Rn-Rm</i> "	otazione '	<i>RnX</i> " (n=1	,2,3,4,5; X	X=A,Β,) Ι	per indicare
g)	Rm. Scrivere nella Tabella 3 la tabella di inoltro (diretto e inche minimizzi il numero di salti per raggiungere la rete	diretto) del	router R3 <u>r</u>	nel modo p	iù compatto	possibile e

rotta per indirizzare le (sotto)reti al di fuori della società Topolonia.

^{*} NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

Tabella 1: Indirizzamento (Usare la notazione decimale puntata)

Rete	Numero di indirizzi IP usati (incluso indirizzi speciali)	Netmask /n	Indirizzo di rete	Ind. broadcast diretto
A	1020 + 2 (router) + 2 (spec.) = 1024	/22	70.20.8.0	70.20.11.255
В	500+1+2=503	/23	70.20.12.0	70.20.13.255
C	233+2+2=237	/24	70.20.14.0	70.20.14.255
D	62+2+2=66	/25	70.20.15.0	70.20.15.127
E	48+2+2=52	/26	70.20.15.128	70.20.15.191
F	12+2+2=16	/28	70.20.15.192	70.20.15.207
R1-R2	0+2+2=4	/30	70.20.15.208	70.20.15.211

Tabella 2: Interfacce dei Router (Usare la notazione decimale puntata)

	Interfaccia	Indirizzo IP	Netmask (/n)
	R1A	70.20.11.254	/22
R1	R1B	70.20.13.254	/23
KI	R1C	70.20.14.254	/24
	R1-R2	70.20.15.210	/30
D2	R2E	70.20.15.190	/26
R2	R2-R1	70.20.15.209	/30
	R3D	70.20.15.126	/25
R3	R3E	70.20.15.189	/26
	R3F	70.20.15.206	/28
	R4A	70.20.11.253	/22
R4	R4C	70.20.14.253	/24
K4	R4D	70.20.15.125	/25
	R4F	70.20.15.205	/28

Tabella 3: Tabella di Routing di R3	(Usare la notazione decimale :	puntata)
--	--------------------------------	----------

Rete/reti	Indirizzo IP CIDR (/n)	Next-hop (indirizzo IP)	Interfaccia next-hop (RnX)
D*	70.20.15.0/25	Diretto	-
E*	70.20.15.128/26	Diretto	-
F*	70.20.15.192/28	Diretto	-
A, B, C**	70.20.8.0/21	70.20.15.205	R4F
R1-R2***	70.20.15.208/30	70.20.15.190	R2E
default	0.0.0.0/0	70.20.15.190	R2E

^{*} Pur essendo incluse anche nello stesso blocco delle reti A,B,C e nella defoult route, sono reti per cui si effettua inoltro diretto. In ogni caso hanno netmask più lunga di /21 e di /0, pertanto si userebbe LPM.

Piano di indirizzamento:

^{**} Accorpando in tal modo, rientrano nel blocco 70.20.8.0/21 anche le subnet generate dalla partizione VLSM e rimaste non assegnate (70.20.15.208/28, 70.20.15.224/28, 70.20.15.240/28 e le 3 reti /30). Se tali reti dovessero in futuro essere utilizzate, bisognerebbe fare attenzione a controllare che il next-hop sia lo stesso (R4F), altrimenti bisogna aggiungere una eccezione.

^{***} E' necessario inserire la riga corrispondente alla rete R1-R2 altrimenti il suo indirizzo di rete ricadrebbe nello stesso gruppo delle reti A,B,C che non sarebbe a minima distanza.

Esercizio 2

(6 punti)

Nella rete in figura, C è un client HTTP che vuole ottenere dal server HTTP S un documento base di 15 [kByte] e 5 immagini di 525 kByte ciascuna. Si assuma che i messaggi per l'apertura della connessione TCP siano di dimensione trascurabile (suggerimento: il tempo di apertura della connessione TCP dipende solo dai ritardi di propagazione). Si calcoli il tempo necessario al trasferimento assumendo 1 flusso interferente di lunga durata tra A e B e 2 flussi interferenti di lunga durata tra B e D, nei due casi seguenti:

- 1. un'unica connessione persistente tra C e S;
- 2. connessioni non-persistenti tra C e S e trasferimento in parallelo delle immagini.

SOLUZIONE

1) Il tempo di apertura della connessione HTTP/TCP da S verso C è:

$$T_{open} = RTT = 2(\tau_1 + \tau_2 + \tau_3 + \tau_4) = 28 \ ms$$

Link	1	2	3	4
Capacità	24	6	12	48
Flussi	1	2	3	1
Rate flusso	24	3	4	48

$$\begin{split} T^a_{html} &= \frac{L_{html}}{C_2/2} = 40 \ ms \\ T^a_{obj} &= \frac{L_{obj}}{C_2/2} = 1.4 \ s \\ T^a_{tot} &= T_{open} + RTT + T^a_{html} + 5(RTT + T^a_{obj}) \end{split}$$

2) Le connessioni sono non persistenti. Scaricata la pagina HTML, la connessione TCP da S a C viene chiusa e ne vengono aperte altre 5 in parallelo. La capacità equivalente per scaricare la pagina html non cambia rispetto al caso precedente, essendo il link collo di bottiglia sempre il link 2.

$$T_{html}^b = \frac{L_{html}}{C_2/2} = 40 \ ms$$

Quando vengono aperte le 5 connessioni TCP in parallelo, la situazione dei flussi allocati ai diversi link è invece la seguente:

Link	1	2	3	4
Capacità	24	6	12	48
Flussi	5	6	7	5
Rate flusso	4,8	1	1,7	9,6

Il tempo per scaricare la singola immagine sarà quindi:

$$T_{obj}^b = \frac{L_{obj}}{C_2/6} = 4.2 \, s$$

$$T_{tot}^b = T_{open} + RTT + T_{html}^b + T_{open} + RTT + T_{obj}^B$$

Esercizio 3

(6 punti)

Si consideri la configurazione di reti LAN mostrata in figura che comprende 6 LAN (Lan1, ..., Lan6), **4** Switch (S₁, S₂, S₃, S₄), un hub (H₅) e 11 host, i cui MAC address sono indicati in figura (A, B, C, D, E, F, G, J, K, L, M). Lo spanning tree è evidenziato in figura con i collegamenti a tratto continuo; i collegamenti tratteggiati indicano le porte bloccate degli switch in seguito all'esecuzione da parte dei Bridge dello Spanning Tree Protocol.

- a) Si vuole individuare lo stato della tabella di inoltro di tutti i dispositivi di interconnessione dotati di tabella di inoltro (omettendo il campo età), ipotizzando che tutte le tabelle di inoltro siano inizialmente vuote e che siano state trasmesse con successo nell'ordine solo 7 trame con le seguenti coppie MAC sorgente MAC destinazione (SA-DA): A-F, C-D, F-D, D-F, G-M, J-F, E-G. Per ogni riga dove è specificata la coppia SA-DA trasmessa, riportare nella Tabella 1 il contenuto delle voci delle tabelle di inoltro che vengono a riempirsi.
- b) Si consideri uno stato di rete in cui i terminali D, E, J siano stati spostati connettendoli alle reti Lan4, Lan2, e Lan6, rispettivamente. Determinare il nuovo stato delle tabelle di inoltro ipotizzando che siano state trasmesse nell'ordine le altre 4 trame M-J, K-D, D-M, E-J. Per ognuna di queste trame, utilizzando la Tabella 2, si riempiano le voci delle tabelle di inoltro indicando esplicitamente con un asterisco (*) quali delle voci già presenti sono state variate in seguito allo scambio delle nuove trame.
- c) Si specifichino quali delle trame di cui al punto b) vengono eventualmente perse per mancato aggiornamento delle tabelle di inoltro.

a) Tabella 1

ID	S	S_1	S	2	S	3	S	54	
A-F	A	1	A	1	A	2	A	2	
C-D	C	2	C	1	C	1	C	1	
F-D	F	2	F	1	F	1	F	2	
D-F	1	-	D	1	D	1	D	1	
G-M	G	2	G	3	G	1	G	1	
J-F	J	1	-	ı	J	2	J	2	
E-G	-	_	E	1	E	1	E	2	

b) Tabella 2

ID	S	1	S	2	S	53	S	54	
M-J	M	2	-	-	M	2	-	-	
K-D	K	1	K	1	K	2	K	2	
D-M	D	1	-	-	D(*)	1 → 2	-	-	
E-J	Е	2	-	-	E(*)	1 → 2	-	-	

(*) voci delle tabelle di inoltro modificate rispetto al contenuto precedente

c)	Trame Perse (SA-DA):	M-J: E-J	

Esercizio 4 - Domande

(9 punti)

a) Spiegare cos'è la procedura di bit stuffing usata al livello di linea (*data-link*) e per quale motivo essa è necessaria. (3 punti)

SOLUZIONE	
v. teoria	

- b) Indicare se le seguenti osservazioni sono <u>vere</u> o <u>false</u> motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE.
 - 1 Grazie al protocollo DHCP è possibile assegnare un indirizzo IP pubblico a degli host dotati di indirizzo IP privato per poter permettere a questi host di inviare/ricevere pacchetti sulla rete Internet pubblica.
 - 2 In una richiesta HTTP, l'header "*Keep-Alive*" usato con il metodo GET serve ad effettuare il download di una pagina web dal server solo se la pagina è stata modificata dopo una certa data.
 - 3 Il protocollo ALOHA è meno efficiente del protocollo SLOTTED ALOHA in quanto le stazioni non ascoltano il canale broadcast prima di iniziare la trasmissione.

(3 punti)

SOLUZIONE

- 1 FALSO, ciò vale per i router che usano NAT/NAPT
- 2 FALSO, l'header è usato per specificare se la connessione TCP è persistente (GET condizionata si implementa con l'header "*If-modified-since*")
- 3 FALSO, ALOHA è meno efficiente perché il periodo di vulnerabilità è superiore (anche in SLOTTED ALOHA non viene fatto sensing del canale)

c) Si vuole inviare una email all'indirizzo <u>watson@doyle.uk</u> dal mittente <u>holmes@doyle.uk</u>. Il mail agent del mittente si trova in una rete esterna al dominio <u>doyle.uk</u> e si collega direttamente mediante protocollo SMTP al server destinatario. Riportare la successione dei messaggi che Client (mail agent del mittente) e Server (server del destinatario) SMTP si scambiano per trasferire il messaggio indicato di seguito.

MESSAGGIO DI POSTA

Da: Sherlock <holmes@doyle.uk.>
A: John <watson@doyle.uk >
Oggetto: Risolvi presto

L'esercizio sembra difficile,

in verità è...

elementare, Watson!

Bye Sherlock

(3 punti)

SOLUZIONE: Per trasferire il messaggio i messaggi SMTP scambiati possono essere:

S: 220 doyle.uk

C: HELO doyle.uk

S: 250 Hello doyle.uk, pleased to meet you

C: MAIL FROM: <holmes@doyle.uk.>

S: 250 holmes@doyle.uk... Sender ok

C: RCPT TO: < watson@doyle.uk >

S: 250 watson@doyle.uk... Recipient ok

C. DATA

S: 354 Enter mail, end with "." on a line by itself

C: L'esercizio sembra difficile,

C: in verità è...

C: elementare, Watson!

C: Bye

C: Sherlock

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 doyle.uk closing connection