

2020-2021 YM2

ÉPREUVE DE MATHÉMATIQUES

Durée: 2h 00 min Calculatrices interdites

Exercice 1 1. Soient A, B, C trois événements. Montrer que :

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

- 2. On dispose de 3 composants électriques C_1 , C_2 et C_3 dont la probabilité de fonctionnement est p_i , et de fonctionnement totalement indépendant les uns des autres. Donner la probabilité de fonctionnement du circuit
 - (a) si les composants sont disposés en série.
 - (b) si les composants sont disposés en parallèle.
 - (c) si le circuit est mixte : C_1 est disposé en série avec le sous-circuit constitué de C_2 et C_3 en parallèle.

Exercice 2 Déterminer la nature de la série de terme général u_n dans les exemples suivants :

- 1. $\frac{3n+2}{n^3}$
- $2. \frac{n!}{n^n}$
- 3. $\frac{2^{n}}{1+n!}$
- 4. $\frac{1}{n^2 \log(n)}$

Exercice 3 Déterminer la nature des intégrales impropres suivantes :

- 1. $\int_{1}^{+\infty} \frac{\log(x)}{x^2} dx$
- $2. \int_{2}^{+\infty} \frac{1}{\sqrt{x} \log(x)} dx$
- 3. $\int_0^{+\infty} \frac{x^4 + 1}{x^2 e^x + 1} dx$

Exercice 4 On note, pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{+\infty} x^n e^{-\frac{x^2}{2}} dx.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, I_n existe.
- 2. A l'aide d'une intégration par parties sur un segment puis d'un passage à la limite, montrer:

$$\forall n \in \mathbb{N}, \qquad I_{n+2} = (n+1)I_n.$$

3. Admettant que

$$I_0 = \sqrt{\frac{\pi}{2}},$$

calculer I_1

4. Démontrer, par récurrence sur p, que, pour tout $p \in \mathbb{N}$:

$$I_{2p} = \frac{(2p)!}{2^p p!} \sqrt{\frac{\pi}{2}}$$
 et $I_{2p+1} = 2^p p!$.

5. Existence et calcule, pour tout $n \in \mathbb{N}$, de : $J_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{2}} dx$