Advanced Methods in Stochastic Collocation for Polynomial Chaos in RAVEN

Paul W. Talbot

University of New Mexico

Dissertation Proposal, January 22nd 2016

Funded by a Laboratory Directed Research effort at Idaho National Laboratory

Outline

Discussion Points

- 1 Background
 - Terminology
 - Raven
 - Intrusiveness
 - Sampling Strategies
- 2 Methods
 - UQ Methods
 - Physics Models
- 3 Proposal
 - HDMR
 - Adaptive HDMR
 - Mammoth

Outline

- 1 Background
 - Terminology
 - Raven
 - Intrusiveness
 - Sampling Strategies
- 2 Methods
- 3 Proposal

Background

Terminology

- Model Mathematical representation
- Simulation/Code Algorithms to Solve Model
- Output Solution to Model
- Input Space Space Spanning Possible Input Values
- Response Map of Input Space to Output Space

Background

Understanding Simulations

- Verification Is the code consistent?
 - Spatial, Temporal Convergence
- Validation Does it match experiment?
 - Fitting, Extrapolation
- Uncertainty Quantification Behavior of Response
 - Response Surface Characterization

Background

Verification and Validation

Background

Uncertainty Quantification

Oberkampf and Roy, 2010

Background BAVEN

- (R)isk (A)nalysis (V)irtual (EN)vironment
- Verification and Validation
- Uncertainty Quantification
- Response Surfaces, Risk
- Reduced-Order Models
- Operates on Black-box Models

Goal: Add New UQ Methods to RAVEN

Intrusiveness

Background

Intrusiveness

Two approaches to UQ:

- Intrusive
 - Interacts with Simulation Algorithms
 - Examples: Stochastic Galerkin, Adjoint-Based
- Non-Intrusive
 - Agnostic of Code
 - Example: Monte Carlo, Stochastic Collocation

For RAVEN, need non-intrusive algorithms

Sampling Strategies

Sampling Strategies

Non-Intrusive Sampling Strategies

Monte Carlo

- Generate independent, identically-distributed samples
- Derive mean, variance, response surface

Latin Hypercube

Distributed Monte Carlo

Sampling Strategies

Sampling Strategies

Limitations

Monte Carlo common choice for UQ

- Pro: Convergence agnostic of dimensionality
- Con: Convergence can take many, many samples

Outline

- 1 Background
- 2 Methods
 - UQ Methods
 - Physics Models
- 3 Proposal

Definitions

- lacksquare $N \in \mathbb{N}^+$ Cardinality of Input Space
- Probabilty Space (Ω, Θ, ρ) , $Y : \Theta \to \mathbb{R}^N$
- lacksquare $Y=(y_1,\cdots,y_N)$ Uncertain Input Parameter Vector
- Subspaces $(\Omega_n, \Theta_n, \rho_n)$
- $\mathbf{Y} \in \mathbb{R}^N$, $y_n \in \mathbb{R} \forall n \leq N, n \in \mathbb{N}^+$
- Members of Y are uncorrelated
- $ho(Y) = \prod_{n=1}^{N} \rho_n(y_n)$ Joint Probability Density Function
- u(Y) Qol as a function of Input Parameters Y

$$u(Y) = \sum_{k \in \Lambda} c_k \Phi_k(Y),$$

- Λ a finite set of polynomial indices,
- $k = (k_1, \dots, k_N)$ indexes Λ , $k_n \in \mathbb{N}^0$,
- lacksquare $c_k \in \mathbb{R}$ scalar coefficients,
- $\phi_{k_n}(y_n)$ Gauss polys order k_n orthonormal w.r.t $\rho_n(y_n)$,
- $\Phi_k(Y)$ orthonormal w.r.t $\rho(Y)$ over Ω.

Truncated

In practice, truncate to some gPC level $L \in \mathbb{N}^+$,

$$u(Y) \approx G_L[u](Y) \equiv \sum_{k \in \Lambda(L)} c_k \Phi_k(Y).$$

Error is of order equal to the polynomial terms removed by truncation.

Constructing $\Lambda(L)$

 $\Lambda(L)$ is list of multidimensional polynomial indices k

For example, N = 3:

$$k = (3, 1, 2) \rightarrow \Phi_k(Y) = \phi_3(y_1)\phi_1(y_2)\phi_2(y_3).$$

Constructing $\Lambda(L)$

Naïve choice for $\Lambda(L)$ is tensor product of all polynomials of order less than or equal to L,

$$\Lambda_{\mathsf{TP}}(L) = \Big\{ k = (k_1, \cdots, k_N) : \max_{1 \le n \le N} k_n \le L \Big\}.$$

Size of Index Set: $|\Lambda_{TP}(L)| = (L+1)^N$.

$$(3,0)$$
 $(3,1)$ $(3,2)$ $(3,3)$

$$(2,0)$$
 $(2,1)$ $(2,2)$ $(2,3)$

$$(0,0)$$
 $(0,1)$ $(0,2)$ $(0,3)$

Table: Tensor Product Index Set, N = 2, L = 3

Constructing $\Lambda(L)$

Common choice for $\Lambda(L)$: Total Degree of all polynomials of order less than or equal to L,

$$\Lambda_{\mathsf{TD}}(L) = \Big\{ \bar{p} = (p_1, \cdots, p_N) : \sum_{n=1}^N p_n \leq L \Big\}.$$

Size of Index Set:
$$|\Lambda_{TD}(L)| = {L+N \choose N}$$
.

$$(2,0)$$
 $(2,1)$

Table: Total Degree Index Set, N = 2, L = 3

Constructing $\Lambda(L)$

Hyperbolic Cross: Limited by product of all polynomial orders,

$$\Lambda_{HC}(L) = \left\{ \bar{p} = (p_1, \dots, p_N) : \prod_{n=1}^N p_n + 1 \le L + 1 \right\}.$$

Index Set Bound:
$$|\Lambda_{HC}(L)| \le (L+1)(1+\log(L+1))^{N-1}$$
.

$$(1,0)$$
 $(1,1)$

$$(0,0)$$
 $(0,1)$ $(0,2)$ $(0,3)$

Table: Hyperbolic Cross Index Set, N = 2, L = 3

Constructing $\Lambda(L)$

Anisotropic Rules using weights $\alpha = (\alpha_1, \dots, \alpha_N)$

$$\tilde{\Lambda}_{\mathsf{TD}}(L) = \left\{ \bar{p} = (p_1, \cdots, p_N) : \sum_{n=1}^{N} \alpha_n p_n \leq |\alpha|_1 L \right\},$$

$$\tilde{\Lambda}_{HC}(L) = \left\{ \bar{p} = (p_1, \cdots, p_N) : \prod_{n=1}^{N} (p_n + 1)^{\alpha_n} \leq (L + 1)^{|\alpha|_1} \right\}.$$

$$|\alpha|_1 \equiv \frac{\sum_{n=1}^N \alpha_n}{N}.$$

Sparse Grid Quadrature

Necessary to find coefficients c_k ,

$$G[u](Y) = \sum_{k \in \Lambda(L)} c_k \Phi_k(Y).$$

Using orthonormality of $\Phi_k(Y)$,

$$c_k = \langle u(Y)\Phi_k(Y)\rangle = \int_{\Omega} \rho(Y)u(Y)\Phi_k(Y)dY$$

└UQ Methods

Generalized Polynomial Chaos

Sparse Grid Quadrature

The quadrature and polynomials to use depends on the distribution $\rho_n(y_n)$,

PDF Kind	Polynomials / Quadrature
Uniform	Legendre
Normal	Hermite
Gamma	Laguerre
Beta	Jacobi

└UQ Methods Generalized Polynomial Chaos

Order of Quadrature

Determine order of quadrature

$$\int_{\Omega_X} f(x)\rho(x)dx = \sum_{\ell=1}^{\infty} w_{\ell}f(x_{\ell}).$$

If f(x) is a polynomial of order 2m-1,

$$\int_{\Omega_x} f(x)\rho(x)dx = \sum_{\ell=1}^m w_\ell f(x_\ell).$$

Let

$$q^m[f(x)] \equiv \sum_{\ell=1}^m w_\ell f(x_\ell).$$

Order of Quadrature

$$c_k = \int_{\Omega} u(Y)\Phi(Y)\rho(Y)dY = q^m[u(Y)\Phi_k(Y)].$$

To determine m, replace u(Y) = G[u](Y):

$$egin{aligned} c_k &= q^m \left[\Phi_k(Y) \sum_{k' \in \Lambda(L)} c_{k'} \Phi_{k'}(Y)
ight], \ &= q^m \left[c_k \Phi_k(Y)^2
ight], \ &= q^m \left[\mathcal{O}(k^2)
ight], \end{aligned}$$

$$2m+1=2k \to m=k+\frac{1}{2}\approx m=k+1.$$

Sparse Grid Quadrature

Multidimensional Quadrature

- Each point needs N quadrature sets
- **Ex.** N = 2, k = (4,4), need (5,5) quadratures
- Needed for each k in Λ

Tensor quadrature

$$Q^M \equiv q_1^{m_1} \otimes q_2^{m_2} \otimes \cdots \otimes q_N^{m_N}, \ = \bigotimes_{n=1}^N q_n^{m_n}.$$

Sparse Grid Quadrature

Smolyak sparse grids S[u](Y):

Let
$$\Delta_k^m[f(x)] \equiv (q_k^m - q_{k-1}^m)[f(x)].$$

$$S_{\Lambda,N}^{M}[u(Y)\Phi_{k}(Y)] = \sum_{k \in \Lambda(L)} \left(\Delta_{k_{1}}^{m_{1}} \otimes \cdots \otimes \Delta_{k_{N}}^{m_{N}} \right) [u(Y)\Phi_{k}(Y)].$$

Sparse Grid Quadrature

Equivalently,

$$S_{\Lambda,N}^{M}[u(Y)\Phi_{k}(Y)] = \sum_{k \in \Lambda(L)} s(k) \bigotimes_{n=1}^{N} q_{n}^{m_{n}}[u(Y)\Phi_{k}(Y)],$$
$$s(k) = \sum_{\substack{j=\{0,1\}^{N},\\k \perp i \in \Lambda}} (-1)^{|j|_{1}}, \quad |j|_{1} \equiv \sum_{p \in j} p.$$

$$c_k = \langle u(Y)\Phi_k(Y)\rangle,$$

$$\approx S_{\Lambda N}^M[u(Y)\Phi_k(Y)].$$

Sparse Grid Quadrature

Comparison, N = 2, L = 4

Adaptive Index Sets

Special property of gPC:

$$G[u](Y) = \sum_{k \in \Lambda} c_k \Phi_k(Y),$$

$$\mathsf{mean} = \langle G[u](Y) \rangle = c_{\{0\}^N},$$

$$\operatorname{var} = \langle G[u](Y)^{2} \rangle - c_{\{0\}^{N}}^{2},$$
$$= \sum_{k \in \Lambda} c_{k}^{2} - c_{\{0\}^{N}}^{2}.$$

Adaptive Index Sets

Adaptive Index Set construction using ANOVA

Impact Parameter
$$\eta_k = \frac{c_k^2}{\text{var}\left\{G[u](Y)\right\}}, \quad 0 \leq \eta_k \leq 1$$
Est. Impact Parameter $\tilde{\eta}_k = \prod_{n=1,k_n>0}^N \eta_{(k_1,\cdots,k_n-1,\cdots,k_N)}$

Example,

$$\tilde{\eta}_{(2,1,3)} = \eta_{(1,1,3)} \cdot \eta_{(2,0,3)} \cdot \eta_{(2,1,2)}$$

└UQ Methods

Generalized Polynomial Chaos

Adaptive Index Sets

Adaptive Index Set Algorithm

- Calculate mean (zeroth-order) polynomial expansion
- While not converged:
 - Collect list of indices whose predecessors are in Λ
 - Using existing impacts, predict impact of each potential index
 - If total of impacts is less than tolerance, convergence is reached
 - Otherwise, add highest-impact index and construct new expansion

└UQ Methods

Generalized Polynomial Chaos

Adaptive Index Sets

Physical Models

Efficiency of gPC compared to Monte Carlo depends on

- Regularity of response surface
- Dimensionality of input space

Demonstrate using three models

- Tensor Polynomial
- Attenuation
- Neutron Diffusion

Physical Models

Tensor Polynomial

From Ayres and Eaton, 2015

$$u(Y) = \prod_{n=1}^{N} (y_n + 1), \quad y_n \sim \mathcal{U}[-1, 1]$$

Features:

- Analytic mean, variance
- Regularity
- Exact in finite polynomial space

Physics Models

Tensor Polynomials

Results

Physical Models

Attenuation

Exit strength of beam incident on discrete absorbing material

$$u(Y) = \prod_{n=1}^{N} e^{-y_n/N}, \quad y_n \sim \mathcal{U}[0, 1]$$

Features:

- Analytic mean, variance
- Regularity
- Inexact in finite polynomial space

Physics Models

Attenuation

Results

Physical Models

Neutron Diffusion

Quarter-core 2-group steady state reactor benchmark, 165x165 cm

$$-\nabla \cdot (D_{1}(\bar{x})\nabla\phi_{1}(\bar{x})) + \left(\Sigma_{a}^{(1)}(\bar{x}) + \Sigma_{s}^{(1\to 2)}(\bar{x})\right)\phi_{1}(\bar{x}) = \frac{1}{k(\phi)} \sum_{g'=1}^{2} \nu_{g'} \Sigma_{f}^{(g')}(\bar{x})\phi_{g'}(\bar{x}),$$

$$-\nabla \cdot (D_{2}(\bar{x})\nabla\phi_{2}(\bar{x})) + \Sigma_{a}^{(2)}(\bar{x})\phi_{2}(\bar{x}) = \Sigma_{s}^{(1\to 2)}(\bar{x})\phi_{1}(\bar{x})$$

Qol: $k(\phi)$

Geometry

Vacuum, Reflective boundaries

BCs

Boundary Conditions

$$\frac{\phi_g}{4} - \frac{D_g}{2} \left. \frac{\partial \phi_g}{\partial x_1} \right|_{\partial \Omega_{\text{top}}} = 0, \ g = 1, 2, \tag{1}$$

$$\frac{\phi_g}{4} - \frac{D_g}{2} \left. \frac{\partial \phi_g}{\partial x_2} \right|_{\partial \Omega_{\text{right}}} = 0, \ g = 1, 2,$$
 (2)

$$-D_g \left. \frac{\partial \phi_g}{\partial x_1} \right|_{\partial \Omega_{\text{bottom}}} = 0, \ g = 1, 2, \tag{3}$$

$$-D_g \left. rac{\partial \phi_g}{\partial x_2} \right|_{\partial \Omega_{\text{left}}} = 0, \ \ g = 1, 2.$$

Input Space

	Region	Group	D_g	$\Sigma_{a,g}$	$\nu \Sigma_{f,g}$	$\Sigma^{1,2}_s$
	1	1	1.255	8.252e-3	4.602e-3	2.533e-2
		2	2.11e-1	1.003e-1	1.091e-1	
	2	1	1.268	7.181e-3	4.609e-3	2.767e-2
		2	1.902e-1	7.047e-2	8.675e-2	
	3	1	1.259	8.002e-3	4.663e-3	2.617e-2
		2	2.091e-1	8.344e-2	1.021e-1	
	4	1	1.259	8.002e-3	4.663e-3	2.617e-2
		2	2.091e-1	7.3324e-2	1.021e-1	
•	5	1	1.257	6.034e-4	0	4.754e-2
iho N	ational Laboratory	2	1.592e-1	1.911e-2	0	• UNI

Physics Models

Neutron Diffusion

Reference Solution

k=1.00007605445

Uncertainty

5% Uncertainty in Parameters:

N=3, N=5

$$\nu \Sigma_{2,f}^{(1)}$$

$$\nu \Sigma_{2,f}^{(4)}$$

$$D_2^{(5)}$$

$$\Sigma_{2,c}^{(1)}$$

$$\Sigma_{2,c}^{(4)}$$

N=10

$$\Sigma_{2,c}^{(1)}, \nu \Sigma_{2,f}^{(1)}$$

$$\Sigma_{2,c}^{(2)}, \nu \Sigma_{2,f}^{(2)}$$

$$\Sigma_{2,c}^{(3)}, \nu \Sigma_{2,f}^{(3)}$$

$$D_2^{(5)}$$

Results

N=3

Physics Models

Neutron Diffusion

Results

N=5

Physics Models

Neutron Diffusion

Results

N = 10

Results

Results

Summary

Preliminary Conclusions

- SC for gPC suffers greatly from curse of dimensionality
- Adaptive SC can help
- For 5 or less dimensions, performs well for regular responses

Outline

- 1 Background
- 2 Methods
- 3 Proposal
 - HDMR
 - Adaptive HDMR
 - Mammoth

HDMR

ANOVA method to decompose input space

$$\tilde{H}[u](Y) = u_0 + \sum_{i=1}^{N} u_i + \sum_{i_1=1}^{N} \sum_{i_2=1}^{i_1-1} u_{ij} + \cdots + c_{i_1,\dots,i_N},$$

$$u_0 \equiv \int dy_1 \cdots \int dy_N u(Y),$$

$$u_i \equiv \int dy_1 \cdots \int dy_{i-1} \int dy_{i+1} \cdots \int dy_N u(Y) - u_0$$

HDMR

Sobol' sensitivity coefficients

$$S_i = \frac{\operatorname{var}\left\{u_i\right\}}{\operatorname{var}\left\{\tilde{H}[u](Y)\right\}}$$

$$var\{u(Y)\} = \sum_{i=1}^{N} S_i + \sum_{i_1=1}^{N} \sum_{i_2=1}^{i_1-1} S_{ij} + \dots + S_{i_1,\dots,i_N}$$

HDMR

Problem: Costly integrals (even low-level expansion)

Solution: Cut-HDMR, reference point $\hat{Y} = (\hat{y}_1, \dots, \hat{y}_N)$

Let
$$u(y_i) \equiv u(\hat{y}_1, \dots, \hat{y}_{i-1}, y_i, \hat{y}_{i+1}, \dots, \hat{y}_N)$$

$$H[u](Y) = h_0 + \sum_{i=1}^{N} h_i + \sum_{i_1=1}^{N} \sum_{i_2=1}^{i_1-1} h_{ij} + \cdots + h_{i_1,\dots,i_N},$$

$$h_0 \equiv u(\hat{Y}),$$

$$h_i \equiv u(y_i) - u_0,$$

$$h_{ii} \equiv u(y_i, y_i) - u_i - u_i - u_0$$

HDMR

Problem with Cut-HDMR: Terms not orthogonal

$$S_i \neq \frac{\operatorname{var}\{h_i\}}{\operatorname{var}\{H[u](Y)\}} \equiv \xi_{ij}$$

$$var\{u(Y)\} \neq \sum_{i=1}^{N} \xi_i + \sum_{i_1=1}^{N} \sum_{i_2=1}^{i_1-1} \xi_{ij} + \dots + \xi_{i_1,\dots,i_N}$$

However, no integrals!

HDMR

Next step: HDMR terms are SCgPC

$$H[u](Y) = h_0 + \sum_{i=1}^{N} h_i + \sum_{i_1=1}^{N} \sum_{i_2=1}^{i_1-1} h_{ij} + \cdots + h_{i_1,\dots,i_N},$$

$$h_0 \equiv u(\hat{Y}),$$

 $h_i \equiv G[u](y_i) - u_0,$
 $h_{ij} \equiv G[u](y_i, y_j) - u_i - u_j - u_0$

Benefit: most terms low dimension, regular

Adaptive HDMR

Proposal

Adaptive HDMR

Better than HDMR: Adaptive HDMR with Adaptive SCgPC Choose terms based on impact parameters ξ , η

- Evaluate the reference (all mean) case.
- Construct all HDMR first-order SCgPC models.
- While not converged:
 - Using existing subset impacts, predict importance of future subsets
 - Consider impact of adding polynomials to existing subset gPCs
 - Choose: expand existing subsets or add new subsets
 - If contribution of new HDMR expectation less than tolerance, convergence

Adaptive HDMR

Example, N = 3

Mammoth

Mammoth: MOOSE framework MultiApp

- RattleS_Nake: Neutron Transport code
 - Provides power distributions
 - Tens of thousands of inputs
- Bison: Fuel Performance code
 - Analyzes fuel: stress, temperature, displacement
 - Dozens of inputs

Goal: Demonstrate Adaptive HDMR with Adaptive SCgPC

Special Thanks

Dept. Nuclear Engineering, UNM

- Dr. Anil Prinja, Adviser and Chair
- Aaron Olsen, Peer

RAVEN team, Idaho National Laboratory

- Dr. Cristian Rabiti, Manager
- Andrea Alfonsi, Mentor
- Daniel Maljovec, Peer

Research performed under LDRD grant through Idaho National Laboratory

