Analysis and Correlation of Reported Insomnia with Nutritional Intake Patterns in Adolescents and Adults Using NHANES 2017-2020 Data

Caitlyn Chow

I. Data Preperation

```
In [52]: pip install pandas pyreadstat
                Requirement already satisfied: pandas in /Users/caitlynchow/anaconda3/lib/python3.10/site-packages (1.5.3)
                Requirement already satisfied: pyreadstat in /Users/caitlynchow/anaconda3/lib/python3.10/site-packages (1.2.7)
                Requirement already satisfied: python-dateutil>=2.8.1 in /Users/caitlynchow/anaconda3/lib/python3.10/site-packa
                ges (from pandas) (2.8.2)
                Requirement already satisfied: pytz>=2020.1 in /Users/caitlynchow/anaconda3/lib/python3.10/site-packages (from
                pandas) (2022.7)
                Requirement already satisfied: numpy>=1.21.0 in /Users/caitlynchow/anaconda3/lib/python3.10/site-packages (from
                pandas) (1.23.5)
                Requirement already satisfied: six>=1.5 in /Users/caitlynchow/anaconda3/lib/python3.10/site-packages (from pyth
                on-dateutil>=2.8.1->pandas) (1.16.0)
                Note: you may need to restart the kernel to use updated packages.
In [53]: import pandas as pd
                import pyreadstat
                 # Load datasets into pandas DataFrames
                df_individual_foods_day1, meta = pyreadstat.read_xport('P_DR1IFF.XPT')
                df individual foods day2, meta = pyreadstat.read xport('P DR2IFF.XPT')
                df_total_nutrient_day1, meta = pyreadstat.read_xport('P_DR1TOT.XPT')
df_total_nutrient_day2, meta = pyreadstat.read_xport('P_DR2TOT.XPT')
                 df_sleep_disorders, meta = pyreadstat.read_xport('P_SLQ.XPT')
                df_alcohol_use, meta = pyreadstat.read_xport('P_ALQ.XPT')
                df_demographics, meta = pyreadstat.read_xport('P_DEMO.XPT')
                 df_diabetes, meta = pyreadstat.read_xport('P_DIQ.XPT')
                df bp cholesterol, meta = pyreadstat.read xport('P BPQ.XPT')
                df_cardiovascular_health, meta = pyreadstat.read_xport('P_CDQ.XPT')
In [54]: # Define columns to keep from each DataFrame based on actual column names
                 columns_to_keep = {
                        'df_individual_foods_day1': ['SEQN', 'DR1IKCAL', 'DR1ICARB', 'DR1IPROT', 'DR1ITFAT', 'DR1ISFAT', 'DR1IMFAT'
'df_individual_foods_day2': ['SEQN', 'DR2IKCAL', 'DR2ICARB', 'DR2IPROT', 'DR2IFAT', 'DR2ISFAT', 'DR2IMFAT'
                       'df_sleep_disorders': ['SEQN', 'SLQ050'],
'df_alcohol_use': ['SEQN', 'ALQ121'],
'df_demographics': ['SEQN', 'RIDAGEYR'],
                        'df_diabetes': ['SEQN', 'DIQ010'],
'df_bp_cholesterol': ['SEQN', 'BPQ080'],
                        'df cardiovascular health': ['SEQN', 'CDQ001', 'CDQ002', 'CDQ003', 'CDQ004', 'CDQ005', 'CDQ006', 'CDQ009D',
In [55]: # Filter columns
                df_individual_foods_day1 = df_individual_foods_day1[columns_to_keep['df_individual_foods_day1']]
                df_individual_foods_day2 = df_individual_foods_day2[columns_to_keep['df_individual_foods_day2']]
df_sleep_disorders = df_sleep_disorders[columns_to_keep['df_sleep_disorders']]
                 df_alcohol_use = df_alcohol_use[columns_to_keep['df_alcohol_use']]
                df_demographics = df_demographics[columns_to_keep['df_demographics']]
df_diabetes = df_diabetes[columns_to_keep['df_diabetes']]
                 df_bp_cholesterol = df_bp_cholesterol[columns_to_keep['df_bp_cholesterol']]
                 df cardiovascular health = df cardiovascular health[columns to keep['df cardiovascular health']]
In [56]:
                # Merge datasets on SEQN before excluding rows
                dfs_to_merge = [df_individual_foods_day1, df_individual_foods_day2, df_sleep_disorders, df_alcohol_use, df_diab
                 df = df demographics
                for data in dfs to merge:
                       df = pd.merge(df, data, on='SEQN', how='left')
In [57]: # Apply exclusion criteria
                df = df[(df['RIDAGEYR'] >= 13) & (df['RIDAGEYR'] <= 60)]</pre>
                df = df[df['DIQ010'] != 1]
                df = df[df['BPQ080'] != 1]
                df = df[ -((df['CDQ001'] == 1) & (df['CDQ002'] == 1) & (df['CDQ003'] == 1) & (df['CDQ004'] == 1) & (df['CDQ005'] == 1) & (df['CDQ0
                 # Drop unnecessary columns
                 columns to drop = ['DIQ010', 'BPQ080', 'CDQ001', 'CDQ002', 'CDQ003', 'CDQ004', 'CDQ005', 'CDQ006', 'CDQ009D',
                df.drop(columns=columns_to_drop, inplace=True)
```

```
In [58]: # Drop rows with any NaN values
           df = df.dropna()
In [59]: # Compute average nutritional intake
           df['Avg_Energy'] = df[['DR1IKCAL', 'DR2IKCAL']].mean(axis=1)
           df['Avg Carbohydrates'] = df[['DR1ICARB', 'DR2ICARB']].mean(axis=1)
           df['Avg_Proteins'] = df[['DR1IPROT', 'DR2IPROT']].mean(axis=1)
df['Avg_Total_Fat'] = df[['DR1ITFAT', 'DR2ITFAT']].mean(axis=1)
           df['Avg_Saturated_Fat'] = df[['DR1ISFAT', 'DR2ISFAT']].mean(axis=1)
           df['Avg_Monounsaturated_Fat'] = df[['DR1IMFAT', 'DR2IMFAT']].mean(axis=1)
df['Avg_Polyunsaturated_Fat'] = df[['DR1IPFAT', 'DR2IPFAT']].mean(axis=1)
          df['Avg_Vitamin_A'] = df[['DR1IVARA', 'DR2IVARA']].mean(axis=1)
df['Avg_Vitamin_C'] = df[['DR1IVC', 'DR2IVC']].mean(axis=1)
df['Avg_Vitamin_D'] = df[['DR1IVD', 'DR2IVD']].mean(axis=1)
df['Avg_Calcium'] = df[['DR1ICALC', 'DR2ICALC']].mean(axis=1)
           df['Avg_Iron'] = df[['DR1IIRON', 'DR2IIRON']].mean(axis=1)
           df['Avg_Magnesium'] = df[['DR1IMAGN', 'DR2IMAGN']].mean(axis=1)
           df['Avg_Zinc'] = df[['DR1IZINC', 'DR2IZINC']].mean(axis=1)
df['Avg_Sodium'] = df[['DR1ISODI', 'DR2ISODI']].mean(axis=1)
           df['Avg Potassium'] = df[['DR1IPOTA', 'DR2IPOTA']].mean(axis=1)
In [60]: # Convert columns to float
           df['DR1_020'] = df['DR1_020'].astype(float)
df['DR2_020'] = df['DR2_020'].astype(float)
In [61]: # Helper function to fix the HHMM6.0 format
           def fix_hhmm6_format(hhmm6_float):
               hhmm6_int = int(hhmm6_float) # Convert to integer
               hours = hhmm6 int // 10000 # Extract hours
               minutes = (hhmm6 int % 10000) // 100 # Extract minutes
               # Adjust minutes to be within 0-59
               while minutes >= 60:
                    hours += 1
                    minutes -= 60
               # Adjust hours to be within 0-23
               hours = hours % 24
                # Combine into HHMM format
               hhmm = hours * 100 + minutes
                return hhmm
           # Apply the function to the DataFrame
           df['DR1_020'] = df['DR1_020'].apply(lambda x: fix_hhmm6_format(x) if not pd.isnull(x) else None)
           df['DR2'020'] = df['DR2'020'].apply(lambda x: fix hhmm6 format(x) if not pd.isnull(x) else None)
In [62]: # Function to convert HHMM to total minutes
           def hhmm_to_minutes(hhmm):
               hours = hhmm // 100
               minutes = hhmm % 100
               return hours * 60 + minutes
In [63]: # Match DR1 030Z and DR2 030Z values with DR1 020 and DR2 020 for breakfast, lunch, and dinner
           df['Breakfast_Time_Minutes'] = df.apply(lambda row: hhmm_to_minutes(row['DR1_020']) if row['DR1_030Z'] == 1 els
           df['Lunch_Time_Minutes'] = df.apply(lambda row: hhmm_to_minutes(row['DR1_020']) if row['DR1_030Z'] == 2 else (h
           df['Dinner_Time_Minutes'] = df.app1y(lambda row: hhmm_to_minutes(row['DRI_020']) if row['DRI_030Z'] == 3 else (
           # Fill NaN values with the median time for the respective meal !!???????
           df['Breakfast Time Minutes'].fillna(df['Breakfast Time Minutes'].median(), inplace=True)
           df['Lunch_Time_Minutes'].fillna(df['Lunch_Time_Minutes'].median(), inplace=True)
           df['Dinner_Time_Minutes'].fillna(df['Dinner_Time_Minutes'].median(), inplace=True)
           # Take the average of chosen DR1_020 and DR2_020 values
df['Avg_Breakfast_Time_Minutes'] = df[['Breakfast_Time_Minutes']].mean(axis=1)
           df['Avg Lunch Time Minutes'] = df[['Lunch Time Minutes']].mean(axis=1)
           df['Avg Dinner Time Minutes'] = df[['Dinner Time Minutes']].mean(axis=1)
In [64]: df['Short Term Intake Change'] = abs(df['DR1IKCAL'] - df['DR2IKCAL'])
In [65]: # Calculate consistency for breakfast, lunch, and dinner
    df['Breakfast_Consistency'] = df.apply(lambda row: abs(row['DR1_020'] - row['DR2_020']) if row['DR1_030Z'] == 1
           df['Lunch_Consistency'] = df.apply(lambda row: abs(row['DR1_020"] - row['DR2_020"]) if row['DR1_030Z'] == 2 and
           df['Dinner_Consistency'] = df.apply(lambda row: abs(row['DR1_020'] - row['DR2_020']) if row['DR1_030Z'] == 3 an
           # Fill NaN values with the median of the respective differences
           df['Breakfast Consistency'].fillna(df['Breakfast Consistency'].median(), inplace=True)
           df['Lunch Consistency'].fillna(df['Lunch Consistency'].median(), inplace=True)
           df['Dinner_Consistency'].fillna(df['Dinner_Consistency'].median(), inplace=True)
In [66]: # Define a function to calculate meal skipping
           def meal_skipping(row, meal_code):
               skip\_count = 0
```

```
if not (row['DR1 030Z'] == meal code and not pd.isnull(row['DR1 020'])):
                      skip_count += 1
                 if not (row['DR2_030Z'] == meal_code and not pd.isnull(row['DR2_020'])):
                     skip count += 1
                 return skip count
            # Calculate skipping behavior for breakfast, lunch, and dinner
           df['Breakfast Skipping'] = df.apply(lambda row: meal skipping(row, 1), axis=1)
           df['Lunch_Skipping'] = df.apply(lambda row: meal_skipping(row, 2), axis=1)
           df['Dinner_Skipping'] = df.apply(lambda row: meal_skipping(row, 3), axis=1)
In [67]: # List of required variables
            variables needed = [
                 'Dinner Skipping', 'Lunch Skipping', 'Breakfast Skipping',
                'Dinner_Skipping', 'Lunch_Skipping', 'Breakfast_Skipping',
'Dinner_Consistency', 'Lunch_Consistency', 'Breakfast_Consistency',
'SLQ050', 'Avg_Energy', 'Avg_Carbohydrates', 'Avg_Proteins', 'Avg_Total_Fat',
'Avg_Saturated_Fat', 'Avg_Monounsaturated_Fat', 'Avg_Polyunsaturated_Fat',
'Avg_Vitamin_A', 'Avg_Vitamin_C', 'Avg_Vitamin_D', 'Avg_Calcium', 'Avg_Iron',
'Avg_Magnesium', 'Avg_Zinc', 'Avg_Sodium', 'Avg_Potassium',
'Avg_Breakfast_Time_Minutes', 'Avg_Lunch_Time_Minutes', 'Avg_Dinner_Time_Minutes',
'Short_Term_Intake_Change', 'ALQ121'
            1
            # Create a copy of the DataFrame with only the required variables
           df selected = df[variables needed].copy()
In [68]: for var in variables needed:
                df_selected[var] = df_selected[var].astype(int)
In [69]: df selected=df selected.drop duplicates(keep='first')
           # Rename the columns
In [70]:
           df selected.rename(columns={
                 'ALQ121': 'Low Frequency Of Drinking Alcohol',
                  'Short_Term_Intake_Change': 'Short_Term_Nutrient_Intake_Change',
                 'SLQ050': 'Insomnia_Presence'
           }, inplace=True)
In [71]: # Filter out rows where 'Insomnia_Presence' is 7, 9, or missing
           df selected = df_selected[~df_selected['Insomnia_Presence'].isin([7, 9, '.'])]
            # Convert 'Insomnia_Presence' to numeric, handling potential conversion issues
           df selected['Insomnia Presence'] = pd.to numeric(df selected['Insomnia Presence'], errors='coerce')
            # Map values: 1 to 1 (Yes) and 2 to 0 (No)
           df selected['Insomnia Presence'] = df selected['Insomnia Presence'].map({1: 1, 2: 0})
           # Verify the changes
           print(df_selected['Insomnia_Presence'].value_counts())
                  450161
                 140461
           1
           Name: Insomnia Presence, dtype: int64
           II. Exploratory Data Analysis
In [72]:
           import warnings
            import pandas as pd
            import seaborn as sns
```

```
import warnings
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [73]: # Calculate the correlation matrix
correlation_matrix = df_selected.corr()

# Focus on the 'Insomnia_Presence' column correlation
insomnia_presence_corr = correlation_matrix[['Insomnia_Presence']].sort_values(by='Insomnia_Presence', ascendin

# Plot the heatmap for 'Insomnia_Presence' correlation
plt.figure(figsize=(10, 8))
sns.set(font_scale=1)
sns.heatmap(insomnia_presence_corr, annot=True, cmap='coolwarm', cbar=True)

plt.title('Correlation of Insomnia Presence with Other Variables')
plt.show()
```


In [23]: plt.hist(df_selected['Insomnia_Presence']);
plt.title('Histogram of Insomnia Values');

In [24]: #Treat outliers in a dataframe using the flooring and capping method based on the Interquartile Range (IQR).
#https://careerfoundry.com/en/blog/data-analytics/how-to-find-outliers/#:~:text=Using%20the%20IQR%2C%20the%20ou

def treat_outliers(df_selected, col):
 # Calculate the first (Q1) and third (Q3) quartiles of the column.
 Q1 = df_selected[col].quantile(0.25)
 Q3 = df_selected[col].quantile(0.75)

Compute the Interquartile Range (IQR) as the difference between Q3 and Q1.
 IQR = Q3 - Q1

Define the Lower Whisker as 1.5 times the IQR below Q1.
 Lower_Whisker = Q1 - 1.5 * IQR

Define the Upper Whisker as 1.5 times the IQR above Q3.
 Upper_Whisker = Q3 + 1.5 * IQR

Clip values outside the range defined by the Lower and Upper Whiskers. This replaces values below the Low
with the Lower Whisker value and values above the Upper Whisker with the Upper Whisker value.

```
df_selected[col] = np.clip(df_selected[col], Lower_Whisker, Upper_Whisker)
                return df
In [25]: df_selected.shape
           (590622, 28)
Out[25]:
In [26]:
           import seaborn as sns
           import matplotlib.pyplot as plt
           %matplotlib inline
In [28]: plt.figure(figsize=(20,8))
           sns.countplot(data=df_selected, x='Frequency_Of_Drinking_Alcohol', hue='Insomnia_Presence');
             80000
             70000
             50000
           8 40000
             30000
             20000
             10000
           plt.figure(figsize=(20,8))
In [29]:
            sns.countplot(data=df selected, x='Avg Dinner Time Minutes', hue='Insomnia Presence');
             250000
             200000
           150000
             100000
              50000
                                                                   I. .
                                                                                                                    L
                  0 9 18365468728690042736407208407298990308222640495963666773747576838898993989699081414142022228262834383440444449505458535658564686467476848488899989496990090506081815182626353841

Avg_Dinner_Time_Minutes
```

sns.countplot(data=df_selected, x='Avg_Breakfast_Time_Minutes', hue='Insomnia_Presence');

In [30]:

plt.figure(figsize=(20,8))


```
In [31]: plt.figure(figsize=(20,8))
sns.countplot(data=df_selected, x='Avg_Lunch_Time_Minutes', hue='Insomnia_Presence');
```



```
In [34]: df_selected['Insomnia_Presence'] = df_selected['Insomnia_Presence'].astype('category')
```

III. Decision Tree Modelling

```
In [35]:
          from sklearn.model selection import train test split, GridSearchCV
          from sklearn import metrics
          \textbf{from} \  \, \textbf{sklearn.tree} \  \, \textbf{import} \  \, \textbf{DecisionTreeClassifier}
          from imblearn.over_sampling import SMOTE
          data = df_selected.copy() # Make copy of dataframe
          X = data.drop('Insomnia_Presence',axis=1) # Drop status from the X features, as it is the outcome
          y = data['Insomnia Presence'].astype('int64') # Status it the target/outcome variable
In [36]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=1)
In [37]: # Apply SMOTE to balance the training data
          smote = SMOTE(random state=1)
          X_train_res, y_train_res = smote.fit_resample(X_train, y_train)
In [38]:
          # Define the parameter grid for hyperparameter tuning
          param grid = {
              'max depth': [None, 10, 20, 30],
              'min_samples_split': [2, 10, 20],
'min_samples_leaf': [1, 2, 4],
               'max_features': [None, 'sqrt', 'log2']
In [39]: # Initialize the model
          model = DecisionTreeClassifier(random state=1)
In [40]: # Apply GridSearchCV to find the best parameters
          grid_search = GridSearchCV(estimator=model, param_grid=param_grid, scoring='recall', cv=5, n_jobs=-1)
```

```
grid_search.fit(X_train_res, y_train_res)
          # Best model from grid search
          best model = grid search.best estimator
In [41]: # Function to calculate recall score
          def get recall score(model):
               pred_train = model.predict(X_train)
               pred_test = model.predict(X_test)
              print("Recall on training set : ", metrics.recall_score(y_train, pred_train))
print("Recall on test set : ", metrics.recall_score(y_test, pred_test))
          # Evaluate the best model
          get recall score(best model)
          # Print the best parameters
          print("Best parameters found: ", grid_search.best_params_)
          Recall on training set : 0.9971445217253706
          Recall on test set : 0.73006993006993
          Best parameters found: {'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2
In [45]: import numpy as np
          # Plot feature importances
          importances = best model.feature importances
          indices = np.argsort(importances)
          # Get feature names
          column names = list(data.columns)
          column names.remove('Insomnia Presence') # Remove y from the model, this is the dependent variable.
          feature names = column names
          # Create a horizontal bar chart to visualize the feature importances
          plt.figure(figsize=(10, 5))
          plt.title('Feature Importance in Correlation with Insomnia Presence')
          plt.barh(range(len(indices)), importances[indices], color='blue', align='center')
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
          plt.xlabel('Relative Importance')
          plt.show()
```



```
In [44]: from sklearn.metrics import accuracy_score, precision_score
         # Function to calculate accuracy and precision
         def evaluate_model_performance(model):
             pred_train = model.predict(X_train)
             pred_test = model.predict(X_test)
             # Calculate recall
             recall_train = metrics.recall_score(y_train, pred_train)
             recall test = metrics.recall score(y test, pred test)
             # Calculate accuracy
             accuracy_train = accuracy_score(y_train, pred_train)
             accuracy_test = accuracy_score(y_test, pred_test)
             # Calculate precision
             precision train = precision score(y train, pred train)
             precision test = precision score(y test, pred test)
             # Print scores
             print("Recall on training set: ", recall train)
             print("Recall on test set: ", recall_test)
```

```
print("Accuracy on training set: ", accuracy train)
             print("Accuracy on test set: ", accuracy_test)
             print("Precision on training set: ", precision_train)
             print("Precision on test set: ", precision test)
         # Evaluate the best model
         evaluate model performance(best model)
         Recall on training set: 0.9971445217253706
         Recall on test set: 0.73006993006993
         Accuracy on training set: 0.9988695347305953
         Accuracy on test set: 0.8280006771626883
         Precision on training set: 0.9980993246843007
         Precision on test set: 0.6236559139784946
In [47]: import pandas as pd
         # Assuming 'best model' is the trained Decision Tree model and 'feature names' contains the names of the featur
         importances = best_model.feature_importances_
         # Create a DataFrame for the feature importances
         importance df = pd.DataFrame({
              'Feature': feature_names,
              'Importance (%)': importances * 100
         })
         # Sort the DataFrame by importance
         importance df = importance df.sort values(by='Importance (%)', ascending=False)
         # Display the DataFrame
         print(importance_df)
                                        Feature Importance (%)
                       Avg Dinner Time Minutes
                                                       9.828472
                 Frequency Of Drinking Alcohol
         26
                                                       9.698764
                    Avg_Breakfast_Time_Minutes
         22
                                                       9.295678
         23
                        Avg_Lunch_Time_Minutes
                                                       8.217793
         20
                                    Avg Sodium
                                                       6.743967
         16
                                   Avg Calcium
                                                       6.244041
                                                       5.724550
                                 {\sf Avg\_Potassium}
         21
         25
            Short Term Nutrient Intake Change
                                                       5.425378
         13
                                 Avg_Vitamin_A
                                                       4.744908
                                 Avg_Magnesium
                                                       4.577455
         18
         6
                                    Avg Energy
                                                       4.497241
         7
                             Avg Carbohydrates
                                                       4.016529
                                 Avg_Vitamin C
         14
                                                       2.755191
         8
                                  Avg Proteins
                                                       2.366483
         3
                            Dinner_Consistency
                                                       1.879712
         9
                                 Avg Total Fat
                                                       1.816280
                                Lunch Skipping
         1
                                                       1.631392
         10
                             Avg Saturated Fat
                                                       1.302611
                       Avg Polyunsaturated Fat
                                                       1.301281
         12
         4
                             Lunch Consistency
                                                       1.258028
                       Avg Monounsaturated Fat
         11
                                                       1.211604
         2
                            Breakfast_Skipping
                                                       1.148912
         0
                               Dinner_Skipping
                                                       1.121245
         17
                                       Avg_Iron
                                                       0.983925
         5
                         Breakfast Consistency
                                                       0.973161
         19
                                                       0.680178
                                       Avg Zinc
         15
                                 Avg Vitamin D
                                                       0.555221
 In [ ]:
 In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js