Theoretische Physik I

Vorlesung von Prof. Dr. Gerhard Stock im Sommersemester 2018

> Markus Österle Andréz Gockel

> > 17.04.2018

Inhaltsverzeichnis

In	Introduction 4								
	Einführung								
	Bede	eutung der Mechanik	4						
1	New	rtonsche Mechanik	6						
	1.1	allgemeine Begriffe	6						
		1.1.1 Bezugsystem	6						
	1.2	Die Newtonsche Gesetze (1687)	6						
		1.2.1 Bem:	8						
		1.2.2 Beispiele:	9						
	1.3	Erhaltungssätze	9						
		1.3.1 Impulserhaltung	10						
		1.3.2 Drehimpulserhaltung	10						
		1.3.3 Energieerhaltung	10						
	1.4	Beschleunigte Bezugsysteme	13						
		1.4.1 Rotierendes Bezugsystem:	14						
	1.5	Mehr-Körper-Probleme	15						
	1.6	Die Hamilton-Funktion (1833)	18						
		Newtonsche Mechanik: theoretisches Konzept	19						
	1.7	Schwingungen	21						
		1.7.1 Gedämpfte Schwingungen	23						

		1.7.2	Der getriebene Oszillator	24		
		1.7.3	gekoppelte Oszillatoren	26		
		1.7.4	Eigenschwingungen	28		
	1.8	Das Z	weikörperproblem	30		
		1.8.1	Diskussion des Zweikörperproblems	33		
		1.8.2	Keplerproblem	34		
2	Lag	range-	Formalismus	38		
	2.1	Zwang	gsbedingungen	38		
	2.2		nge-Gl 1.Art	40		
	2.3	Ü	nge-Gl. 2. Art	43		
		2.3.1	Lagrange Formalismus	50		
		2.3.2	Energieerhaltung	50		
	2.4	Symm	netrie und Erhaltungsgrößen	51		
		2.4.1	Noether-Theorem	53		
	2.5	Hamil	tonsches Prinzip	58		
		2.5.1	Funktionale und Variationsrechnung	58		
		2.5.2	Euler-Lagrange-Gl	58		
		2.5.3	Variationsrechnung	60		
	2.6	3. Ha	amiltonsche Prinzip	62		
		2.6.1	Schwingung einer Seite	63		
		2.6.2	Der Starre Körper	66		
		2.6.3	Rotation des Starren Körpers	72		
	2.7	9 Han	nilton-Formalismus	75		
	2.8	8 Hamiltonsche Mechanik				
	2.9	Phasenraum				
		291	Zeitentwicklung im Phasenraum (PR)	80		

		2.9.2	PR-Dichte	82			
3	Relativistische Mechanik						
	3.1	Relati	vistische Mechanik	84			
		3.1.1	Einsteinsches Relativitätsprinzip (1905)	84			
	3.2	Lorenz	z-Trafo	86			

Einleitung - Theoretische Physik

Einführung

- geht von grundlegenden Naturgesetzen aus, die als Postulate (=Axiome)
- benutzt mathematische Methoden um daraus physikalische Aussagen herzuleiten (z.B. $E_{kin} \sim v^2$)
- Eine Theorie basiert auf definierten (Def.) Annahmen
 - \rightarrow gilt innerhalb eines Anwendungsbereiches und muss hier experimentell (Exp.) verifizierbare Ergebnisse liefern
 - z.B. klassische Mechanik funktioniert für
 - $-v \ll c$
 - $\int (p)dx \gg \hbar$
- Ein <u>theoretisches Modell</u> macht oft <u>idealisierende Annahmen</u> um <u>explizite</u> Lösungen zu erlauben z.B. harmonischer Oszillator
- Computational Physics löst theoretische Ansätze numerisch

Bedeutung der klassischen Mechanik

- zentrale Rolle, da anschauliche Theorie
- Einführung:
 - zentrale Größen (z.B. Energie, Drehimpuls, Wirkung)
 - Methoden (z.B. Variationsrechnung, Störungstheorie)
 - Modelle (z.B. harmonischer Oszillator, wichtig in Quantenmechanik (QM), Feldtheorie, ...)
- praktische Bedeutung:
 - Himmelsmechanik

- Statik
- Molekül-
- Chemie- und Biophysik
- $\bullet\,$ nicht lineare Dynamik (z.B. Chaostheorie, Strukturbildung) sind Beispiele aktueller Forschung

Kapitel 1

Newtonsche Mechanik

allgemeine Begriffe 1.1

- Statik (ruhende Körper)
- Kinematik (Bewegung, ohne Beschreibung der Wechselwirkungen (WW))
- Dynamik (Bewegung <u>mit</u> Beschreibung der WW)

Bezugsystem 1.1.1

Ursprung O

Basisvektoren
$$\vec{e_i} = \begin{cases} x, y, z \\ 1, 2, 3 \end{cases}$$

 $\underline{\text{Ort:}}\ \vec{r}$ eines Teilchens (Massenpunkte) (Bahnkurve, Trajektorie)

$$\overline{\vec{r}(t)} = \sum_{i} \vec{x}_i(t) \vec{e}_i$$

Geschwindigkeit:
$$\vec{v}(t) = \frac{d}{dt}\vec{r}(t) = \dot{\vec{r}}(t)$$

Impuls: $\vec{p}(t) = m \cdot \vec{v}(t)$

$$\overline{\text{Impuls: } \vec{p}(t) = m} \cdot \vec{v}(t)$$

Beschleunigung:
$$\vec{a}(t) = \frac{d^2 \vec{r}(t)}{dt^2} = \ddot{\vec{r}}(t)$$

z.B. geradlinige - gleichmäßige Bewegung

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t$$

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t$$
$$\vec{v}(t) = \dot{\vec{r}} = \vec{v}_0$$

$$\vec{a}(t) = 0$$

Die Newtonsche Gesetze (1687) 1.2

NG1: Trägheitsgesetz

Kräftefreie Bewegung ist gleichförmig, d.h. v = const.

NG2: Grundgesetz der Mechanik

$$F = \frac{dp}{dt} = \frac{d}{dt}(mv) = ma \ m = \text{const.}$$

def. Kraft und Masse, Bewegungsgleichung

NG3: Action = Reactio

 $F_{12} = -F_{21}$

Kraft von 1 auf 2 = Kraft von 2 auf 1 Voraussetzung (Annahme):

- "absoluter" Raum
- "absolute" Zeit
- "absolute" Masse

 \rightarrow nur gültig für $\frac{v}{c} \ll 1$

(c = Lichtgeschwindigkeit)

<u>Diskussion NG1:</u> Macht nur Sinn bei Angabe von Bezugsystem z.B. Vergleich rotierendes vs. ruhendes Bezugssystem

 \rightarrow Ein Bezugssystem, in dem das NG1 gilt heißt "Inertialsystem" (IS)

Bsp: Hörsaal, relativ zum Fixsternhimmel Näherung, z.B. wegen Erdrotation

- \rightarrow Foucaultsches Pendel
- \rightarrow physikalische Gesetze nehmen in IS eine besonders einfache Form an.

NG1: In einem IS ist die kräftefreie Bewegung durch $\vec{r}(t) = const.$ beschrieben Relativitätsprinzip (Galilei)

Geg. sei IS S mit Bahnkurve $\vec{r}(t)$

und IS \bar{S} mit Bahnkurve $\vec{r}(t)$

worin \bar{S} um \vec{r}_0 zu S verschoben sei und sich mit einer Geschwindigkeit $\vec{v}_0 = const.$ dazu bewege:

Dann gilt die Galilei Transformation (Trafo)

 $r \to \bar{r}$ mit

$$\bar{r}(t) = \vec{r}(t) + \vec{r}_0 + \vec{v}_0 t$$
(1)

\rightarrow Relativitätsprinzip

Alle IS sind gleichwertig.

NG2:
$$F = \dot{p} = m \cdot \vec{a}$$

- setzt ebenfalls ein IS voraus
- ullet beschreibt Bewegung mittels Wirkung $m \cdot a$ und <u>Ursache</u> Kraft F
- \bullet Definition der Kraft und der (trägen) Masse m

• grundlegendes Postulat der klassischen Mechanik: sind alle Kräfte F_1 bekannt, so beschreibt

$$m \cdot a = \sum_{i} F_i$$

vollständig die Bewegung.

Für gegebene Kraft \vec{F} ergibt sich vollständig die Bewegung.

<u>NG3:</u>

$$\vec{F}_{12} = -\vec{F}_{21}$$

d.h die Kraft ergibt sich als WW zwischen Körpern.

$$\rightarrow \frac{d}{dt}p_1 = -\frac{d}{dt}p_2 \qquad \rightarrow \qquad \frac{d}{dt}(p_1 + p_2) = 0$$

 \rightarrow Impulserhaltung

eigentlich auf Grund der "Homogenität des Raumes".

Zusatz: Kräfte addieren sich wie Vektoren

$$\vec{F}_{tot} = \sum_{i} \vec{F}_{i}$$

1.2.1 Bem:

- vorher Aristotelesche Mechanik: unterschied
 - Bewegung auf der Erde
 - Bewegung der Gestirne
- Newton vereinheitlichte beide Bereiche: Theorie gilt sowohl für Bewegung der Planeten als auch für fallenden Apfel

 \rightarrow immense Abstraktionsleistung! allg. Ansatz: Vereinheitlichung von z.B. elektrischer und magnetischer WW Maxwell

• Wesentliches Axiom ist das 2.NG. (das 1.NG definiert IS, 3.NG entspricht Impulserhaltung)

2.NG:

$$m\ddot{\vec{r}}(t) = F(\vec{r}, \dot{\vec{r}}, t)$$

DGL 2.Ord, Lösung ergibt Bahnkurve $\vec{r}(t)$ "Bewegungsgleichung" Integrationskonstanten gegeben durch Anfangsbedingungen: z.B. $\vec{r}(0)$, $\dot{\vec{r}}(0)$

1.2.2 Beispiele:

- 1.) Konstante Kraft: $\vec{F} = \vec{F_0}$ z.B. $\vec{F} = m\vec{g}$ $\rightarrow \vec{r}(t) = \frac{1}{2m}\vec{F_0} \cdot t^2 + \vec{v_0} \cdot t + \vec{r_0}$
- 2.) <u>Lineare Kraft:</u> $\vec{F} \sim \vec{r}$ z.B. bei Federpendel mit $r = |\vec{r}|$ $m\ddot{r} = -kr$ mit $r(t) = x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$, $\omega^2 = \frac{k}{m}$
- 3.) <u>Zentrale Kraft:</u> $\vec{F} = \vec{F}(\vec{r} = |\vec{r_2} \vec{r_1}|)$ z.B. Gravitation $\vec{F} = \gamma \frac{m_1 m_2}{r^2} \frac{\vec{r}}{r}$
- 4.) <u>Lorenzkraft:</u> (geschwindigkeitsabhängig) $\vec{F} = \vec{r}(t) = F(\vec{r}, \dot{\vec{r}}, t) = e[\hat{E}(\vec{r}, t) + \dot{\vec{r}} \cdot \vec{B}(\vec{r}, t) \text{ Ladung e im elektrischen Feld } \vec{E} \text{ und magnetischen Feld } \vec{B}$
- 5.) Reibungskräfte:
 - Stokesche Reibung $\vec{F} = -\gamma \vec{v}$
 - Luftreibung: $\vec{F} \sim \vec{v}^2 \frac{\vec{v}}{v}$

1.3 Erhaltungssätze

- spielen Zentrale Rolle in der Physik
- sind allg. gültig, z.B. auch in der QM
- reflektieren Symmetrie des Systems

allg Form eines erhaltungssatzes der Größe $A(\vec{r},\dot{\vec{r}},t)$ $\frac{d}{dt}A=0 \leftrightarrow {\bf A}$ ist erhalten

1.3.1 Impulserhaltung

$$\vec{F} = 0 \rightarrow \frac{d\vec{p}}{dt} = 0 \rightarrow \vec{p} = \text{const.}$$

1.3.2 Drehimpulserhaltung

Vektorielle Multiplikation von NG2 mit $\vec{r}(t)$ ergibt:

$$m\vec{r}(t) \times \ddot{\vec{r}}(t) = \vec{r}(t) \times \vec{F}$$

Mit Drehimpuls:

$$\vec{T} = \vec{r}(t) \times \vec{p}(t) = \vec{r} \times (m\dot{\vec{r}})$$

Drehmoment:

$$\vec{M} = \vec{r} \times \vec{F}$$

ist

$$\frac{d}{dt}\vec{l} = \underbrace{\dot{\vec{r}} \times (m\dot{\vec{r}})}_{=0} + \vec{r} \times m\ddot{\vec{r}} = \vec{M}$$

$$\frac{d\vec{l}}{dt} = \vec{M}$$

$$\vec{M} = 0 \quad \Leftrightarrow \quad \frac{d\vec{l}}{dt} = 0, \quad \vec{l} \text{ erhalten}$$

Bsp: Zentralkraft

 $\vec{F} \parallel \vec{r} \rightarrow \vec{M} = 0 \rightarrow \vec{l} = const.$ legt man o Ed
A \vec{l} in z - Richtung

$$\vec{l} = l\vec{e}_z = m\vec{r} \cdot \dot{\vec{r}}$$

liegen \vec{r} und $\dot{\vec{r}}$ in x - y - Ebene.

1.3.3 Energieerhaltung

Ein Teilchen, das sich unter \vec{F} von \vec{r} nach $\vec{r}+d\vec{r}$ bewegt, verrichtet die Arbeit:

$$dW = \vec{F} \cdot d\vec{r}$$

Längs eines eges C von \vec{r}_1 nach \vec{r}_2 ist die geleistete Arbeit

$$W = \int_C dW = \int_C d\vec{r} \cdot \vec{F}$$

die von \vec{r}_1, \vec{r}_2 und i.h. auch von der Wegführung abhängt-

Die pro Zeit verrichtete Arbeit heißt Leistung

$$P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \dot{\vec{r}}$$
 [\oint_C = geschlossenes Wegintegral]

Multiplikation von NG2 mit $\dot{\vec{r}}$ gibt:

$$\begin{split} m \ddot{\vec{r}} \cdot \dot{\vec{r}} &= \vec{F} \cdot \dot{\vec{r}} \quad (\widehat{=} \text{ Leistung P }) \\ \frac{d}{dt} \underbrace{\frac{m(\dot{\vec{r}})^2}{2}}_{=T} &= \frac{dT}{dt} = P = (\vec{F}_{\text{kons}} + \vec{F}_{\text{diss}}) \cdot \dot{\vec{r}} \end{split}$$

Kinetische Energie T

konservative Kräfte \vec{F}_{kons} und dissipative Kräfte \vec{F}_{diss} , wobei \vec{F}_{kons} alle Anteile mit:

$$\vec{F}_{\mathrm{kons}} \cdot \dot{\vec{r}} = -\frac{d}{dt}U(\vec{r}) = -\vec{\nabla}U \cdot \dot{\vec{r}}$$

erhält, wobei k das Potential oder die potentielle Energie ist. Minuszeichen ist Konvention.

Zusammen:

$$\frac{d}{dt} \left(\frac{m\dot{\vec{r}}^2}{2} + U(\vec{r}) \right) = \vec{F}_{\text{diss}} \cdot \dot{\vec{r}}$$
 (2)

Konservative Kraft $\Leftrightarrow E = T + U = \text{const.}$

Mit

$$\vec{F}_{kons} \cdot \dot{\vec{r}} = -\frac{dU(\vec{r})}{dt} = -\frac{\partial U}{\partial x} \frac{\partial x}{\partial t} - \frac{\partial U}{\partial y} \frac{\partial y}{\partial t} - \frac{\partial U}{\partial z} \frac{\partial z}{\partial t}$$

$$= -\operatorname{grad}(U(\vec{r})) \cdot \dot{\vec{r}} = -\vec{\nabla}U \cdot \dot{\vec{r}}$$

$$\vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})^{\top}$$

$$\operatorname{grad}(U(\vec{r})) = (\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z})^{\top}$$

folgt:

$$\vec{F}_{\text{kons}} = -\text{grad}(U(\vec{r}))$$
 (3)

Bsp: Der gedämpfter harmonischer Oszillator

$$F = -kx - \gamma \dot{x} = F_{\text{kons}} + F_{\text{diss}}$$

mit

$$F_{\rm kons} = -\frac{dk}{dx} \to k(x) = \frac{k}{2}x^2$$

Da $F_{\text{diss}} \cdot \dot{x}$ quadratisch in $\dot{x}, \frac{dk(x)}{st}$ aber linear in \dot{x} kann $F_{\text{diss}}\dot{x}$ nicht in der Form $\frac{dk}{dt}$ geschrieben werden.

Bedingung für konservative Kraft ist

$$rot(\vec{F}(\vec{r})) = \vec{\nabla} \times \vec{F}(\vec{r}) = 0 \quad \leftrightarrow \quad \vec{F}(\vec{r}) = -\vec{\nabla}k(\vec{r})$$

Dann ist das Wegintegral:

$$W = \int_C d\vec{r} \; \vec{F}(\vec{r})$$

Wegunabhängig, verschwindet also für jeden geschlossenen Pfad:

$$\vec{F}_{\text{kons}} = -\vec{\nabla}U(\vec{r}) \quad \leftrightarrow \quad \vec{\nabla} \times \vec{F} = 0 \quad \leftrightarrow \quad \oint_C d\vec{r} \cdot \vec{F} = 0$$

allg.:

$$\vec{F}_{\mathrm{kons}} = -\vec{\nabla}U(\vec{r}) + \underbrace{\dot{\vec{r}} \times \vec{B}(\vec{r}, t)}_{z \text{ B. Lorenz-Kraft}}$$

da:

$$P_L = \dot{\vec{r}} \cdot (\dot{\vec{r}} \times \vec{R}) = 0$$

Anwendung: Vereinfachung von Bewegungsgleichungen

$$\vec{F} = m\ddot{\vec{r}} = -\vec{\nabla}U(x)$$

DGL 2. Ordnung

Bsp: 1 Dimensionales System mit Energieerhaltung

$$\frac{1}{2}m\dot{x}^2 + U(x) = E$$

$$\rightarrow \dot{x} = \pm \sqrt{\frac{2}{m}(E - U(x))}$$
 DGL 1. Ordnung

"erstes Integral" (da eine Integration bereits vollzogen)

$$dt = \frac{dx}{\sqrt{\frac{2}{m}(E - U(x))}}$$

$$t - t_0 = \int_{x_0}^{x} \frac{dx'}{\sqrt{\frac{2}{m}(E - U(x'))}}$$

Qualitative Diskussion der Bewegung:

$$E = T + U > U$$

Numerische Integration der Bewegungsgleichung: Bsp:

$$f(t) = m\ddot{x}(t) = m\dot{v}(t)$$

Idee: Taylor Entwicklung von x zur Zeit

$$x(t + \Delta t) = x(t) + \underbrace{\frac{dx}{dt}}_{v} \underbrace{((t + \Delta t) - t)}_{\Delta t} + \underbrace{\frac{1}{2} \underbrace{\frac{d^2x}{dt^2}}_{F/m=a} \Delta t^2 + \frac{1}{3!} \underbrace{\frac{d^3x}{dt^3}}_{dt^3} \Delta t^3 + \mathcal{O}(t^4)$$

$$= x(t) + v(t)\Delta t + \underbrace{\frac{f(t)}{2m} \Delta t^2 + \frac{\Delta t^3}{3!}}_{dt^3} + \mathcal{O}(t^4)$$

z.B. Lösung durch Abbruch in 2.Ordnung (Euler-Algorithmus) Besser:

$$x(t - \Delta t) = x(t) - v(t)\Delta t + \frac{f(t)}{2m}\Delta t^2 - \frac{\Delta t^3}{3!}\ddot{x} + \mathcal{O}(\Delta t^4)$$
$$x(t + \Delta t) + x(t - \Delta t) = 2x(t) + \frac{f(t)}{m}\Delta t^2 + \mathcal{O}(\Delta t^4)$$

bzw.

$$x(t + \Delta t) \approx 2x(t) - x(t - \Delta t) + \frac{f(t)}{m} \Delta t^2$$
 (1)

Geschwindigkeit über:

$$x(t + \Delta t) - x(t - \Delta t) = 2v(t)\Delta t + \mathcal{O}(\Delta t^{3})$$

$$\Rightarrow v(t) \approx \frac{x(t + \Delta t) - x(t - \Delta t)}{2\Delta t}$$
(2)

Gl. (1) und (2) bestimmen den Verlet-Algorithmus

1.4 Beschleunigte Bezugsysteme

Newton Gesetze gelten für Inertialsysteme (IS), Bezugsystem, das relativ zu IS beschleunigt ist, ist kein IS \rightarrow es treten sogenannte Scheinkräfte auf. z.B. Beschleunigung bei linearer Bewegung

1.4.1 Rotierendes Bezugsystem:

Geg: IS S mit $\vec{r}(t)$

und nicht-IS S' mit $\vec{r}'(t)$, das gegenüber S mit einer Winkelgeschwindigkeit

$$\vec{\omega} = \frac{d\vec{\varphi}}{dt} \tag{1}$$

rotiert, $\vec{\varphi}, \vec{\omega}$ zeigen in Richtung der Drehachse.

oEdA: $\vec{\varphi} \sim \vec{e}_z$

Berechne Vektor \vec{G} , der in S' ruht. Änderung $d\vec{G}_{\rm rot}$ aufgrund Rotation

$$|d\vec{G}_{\text{rot}}| = |d\vec{\varphi}||\vec{G}|\sin\theta$$

$$d\vec{G}_{\text{rot}} \perp \vec{\omega} \qquad d\vec{G}_{\text{rot}} \perp \vec{G}$$

$$\rightarrow d\vec{G}_{\text{rot}} = d\vec{\varphi} \times \vec{G} = (\vec{\omega} \ dt) \times \vec{G}$$
(2)

Beliebiger Vektor $\vec{G}(t)$, der sich in S' während dt um $d\vec{G}_{S'}$ ändert, ändert sich damit in S um:

$$d\vec{G}_S = d\vec{G}_{S'} + d\vec{G}_{\rm rot}$$

Damit:

$$\frac{d\vec{G}_S}{dt} = \frac{d\vec{G}_{S'}}{dt} + \vec{\omega} \times \vec{G}$$
 (3)

Für $\vec{G} = \dot{\vec{r}}$ ist:

$$\dot{\vec{r}} = \dot{\vec{r}}' + \vec{\omega} \times \vec{r}' \qquad (4)$$

$$G = \dot{\vec{r}} : \frac{d}{dt} \dot{\vec{r}} = \frac{d}{dt} (\dot{\vec{r}}' + \vec{\omega} \times \vec{r}') + \vec{\omega} \times (\dot{\vec{r}} + \vec{\omega} \times \vec{r}')$$

$$\ddot{\vec{r}} = \ddot{\vec{r}}' + \dot{\omega} \times \vec{\omega} \times \dot{\vec{r}}' + \vec{\omega} \times \vec{r}' + \vec{\omega} \times \vec{\omega} \times \vec{r}'$$

Für $\omega = \text{const.}$ erhalten wir:

$$\ddot{\vec{r}} = \ddot{\vec{r}}' + 2(\vec{\omega} \times \dot{\vec{r}}') + \vec{\omega} \times (\vec{\omega} \times \vec{r}')$$

Für ein in S' kräftefreies Teilchen mit:

$$m\ddot{\vec{r}} = 0$$

erhalten wir dann:

$$m\ddot{\vec{r}}' = -\underbrace{2m(\vec{\omega} \times \dot{\vec{r}}')}_{\text{Corioliskraft}} - \underbrace{m\vec{\omega} \times (\vec{\omega} \times \vec{r}')}_{\text{Zentrifugalkraft}}$$

 $F_z \sim \omega^2 r$, zeigt von Drehachse weg $F_c \sim \omega \dot{r}$, steht \perp zur Bewegungsrichtung

Bsp:

- Erddrehung, Foucaultsches Pendel
- Ball auf Drehscheibe

1.5 Mehr-Körper-Probleme

Betrachte N Teilchen (Massenpunkte) mit:

Ort: $\vec{r_i}$, Masse m_i und die auf sie wirkende Kraft $\vec{F_i}$

$$m_i \ddot{\vec{r}}_i = \vec{F}_i \qquad (i = 1, \dots, N)$$

Unterscheidung:

Innere Kräfte: Kräfte der Teilchen aufeinander. z.B. Coulomb-Kräfte \vec{F}_{ij} von (geladenen) Teilchen i und j

<u>Äußere Kräfte:</u> \vec{F}_i^A wirken von außen. z.B. Schwerkraft oder externes elektromagnetisches Feld.

$$m_i \ddot{\vec{r}}_i = \vec{F}_i^A + \sum_{j \neq i} \vec{F}_{ij}$$

Schwerpunktbewegung und Impuls Ortsvektor des Schwerpunktes

$$\vec{R} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r_i} \qquad M = \sum_{i} m_i$$

Bewegungsgleichung für \vec{R} :

$$M\ddot{\vec{R}} = \sum_{i} m_{i} \ddot{\vec{r}}_{i} = \sum_{i} \sum_{j \neq i} F_{ij}$$

$$3.\text{NG:} F_{ij} = -F_{ji}$$

$$M\ddot{\vec{R}} = \sum_{i} \vec{F}_i^A + 0 = \vec{F}^A$$

Schwerpunktsystem:

Schwerpunkt bewegt sich nur gemäß äußerer Kräfte

- \Rightarrow vergleiche Münchhausen-Trick
- \rightarrow Rechtfertigung der Idealisierung realer Körper durch Massepunkte

Auf ein <u>abgeschlossenes System</u> wirken keine (oder vernachlässigbare) äußeren Kräfte

$$\rightarrow \frac{d}{dt}M\dot{\vec{R}} = 0 \quad \rightarrow \vec{P} = M \cdot \dot{\vec{R}} = \text{const}$$

abgeschlossenes System \leftrightarrow Schwerpunktsystem ist erhalten

Drehimpuls: Vektorielle Multiplikation des 2. NG mit $r\vec{r}_i$

$$\sum_{i} \vec{r_{i}} \times m_{i} \ddot{\vec{r_{i}}} = \sum_{i} \vec{r_{i}} \times \vec{F_{i}}$$

$$(\dot{\vec{r_{i}}} \times \dot{\vec{r_{i}}}) = 0$$

$$\frac{d}{dt} \sum_{i} m_{i} (\vec{r_{i}} \times \dot{\vec{r_{i}}}) = \sum_{i} \vec{r_{i}} \times \vec{F_{i}}^{k} + \sum_{i} \vec{r_{i}} \times \sum_{j \neq i} \vec{F_{ij}}$$

$$\sum_{i} \sum_{j \neq i} \vec{r_{i}} \times \vec{F_{ij}} = \frac{1}{2} \sum_{i,j \neq i} (\vec{r_{i}} \times \vec{F_{ij}} + \vec{r_{j}} \times \vec{F_{ji}})$$

$$\stackrel{3. \text{ MG}}{=} \frac{1}{2} \sum_{i,j \neq i} \underbrace{(\vec{r_{i}} - \vec{r_{j}}) \times \vec{F_{ij}}}_{\text{Annahme: } \vec{F_{i}} = \vec{r_{i}}} = 0$$

d.h. innere Kräfte ergeben kein resultierendes Drehmoment.

$$\frac{d\vec{L}}{dt} = \sum_{i} \vec{r_i} \times \vec{F_i}^A = \vec{M}$$

abgeschlossenes System \leftrightarrow Gesamtdrehimpuls \vec{L} ist erhalten Energie: Mult. von 2.NG mit $\dot{\vec{r}}_i$

$$\sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \dot{\vec{r}}_{i} = \frac{d}{dt} \underbrace{\sum_{i} \frac{m_{i}}{2} \cdot \dot{\vec{r}}_{i}^{2}}_{T} = \frac{dT}{dt}$$
$$= \underbrace{\sum_{i} (\vec{F}_{i}^{\text{kons}} + \vec{F}_{i}^{\text{diss}}) \dot{\vec{r}}_{i}}_{T}$$

wobei

$$\sum_{i} \vec{F}_{i}^{\text{kons}} \cdot \dot{\vec{r}}_{i} = -\frac{dU(\vec{r}_{1}, \dots, \vec{r}_{N})}{dt} = -\sum_{i} \frac{\partial U}{\partial \vec{r}_{i}} \cdot \dot{\vec{r}}_{i}$$

mit

$$\frac{\partial U(\vec{r}_1, \dots, \vec{r}_N)}{\partial \vec{r}_i} = \frac{\partial U}{\partial x_i} \vec{e}_x + \frac{\partial U}{\partial y_i} \vec{e}_y + \frac{\partial U}{\partial z_i} \vec{e}_z$$

Energiesatz:

$$\frac{d}{dt}(T+U) = \sum_{i} \vec{F}_{i}^{\text{diss}} \cdot \dot{\vec{r}}_{i}$$

Kräfte konservativ $\leftrightarrow E = T + U$ erhalten

Energieerhaltung gilt also auch bei äußeren Kräften, solange sie konservativ sind.

Aufteilung:

$$\begin{split} \vec{F}_i^{\text{kons}} &= \vec{F}_i^A(\vec{r}_i) + \sum_{i \neq j} F_{ij}^I(\vec{r}_i, \vec{r}_j) \\ &= -\frac{\partial U^A(\vec{r}_1, \dots, \vec{r}_N)}{\partial \vec{r}_i} - \frac{\partial U^F(\vec{r}_1, \dots, \vec{r}_N)}{\partial \vec{r}_i} \end{split}$$

mit

$$U^A = \sum_i U_i(\vec{r_i}), \quad \vec{F}_i^A = -\frac{\partial U_i(\vec{r_i})}{\partial \vec{r_i}}$$
 äußere Kräfte wirken auf einzelne Teilchen

$$U^{I} = \sum_{i < j} U_{i,j}(\vec{r}_i, \vec{r}_j)$$
 Annahme: 2 Teilchen WW.

mit $\frac{\partial U_{ij}}{\partial \vec{r_i}} \stackrel{3.NG}{=} -\frac{\partial U_{ij}}{\partial \vec{r_j}}$ hängt U nur von $\vec{r_i} - \vec{r_j}$ ab

Annahme: $\vec{F}_{ij} \parallel \vec{r}_i - \vec{r}_j = \vec{r}_{ij} \rightarrow \text{hängt nur von } r_{ij} = |\vec{r}_{ij}| \text{ ab}$

$$\vec{F}_{ij}^{I} = -\frac{\partial U_{ij}^{I}(r_{ij} = |\vec{r}_i - \vec{r}_j|)}{\partial \vec{r}_{ij}}$$

$$U(\vec{r}_1, \dots, \vec{r}_N) = \sum_i U_i(\vec{r}_i) + \sum_{i < j} U_{ij}(|\vec{r}_i - \vec{r}_j|)$$

<u>z.B.:</u>

$$U_i = q_i \Phi(\vec{r}_i)$$
$$U_{ij} = \frac{q_i q_j}{|\vec{r}_i - \vec{r}_j|}$$

Allgemein: Abgeschlossene N-Teilchen System $(N \ge 2)$ mit ausschließlich konservativen Kräften haben also mindestens 10 Erhaltungsgrößen:

• der Gesamtimpuls

 $\vec{P} = \sum_{i} m_{i} \dot{\vec{r}_{i}}$ (*) 3 Größen $M\vec{R} - \vec{P} \cdot t$ (Int. von (*)) 3 Größen • ein Vektor, der die Schwerpunktsbewegung beschreibt

• der Gesamtdrehimpuls $\vec{L} = \sum_i m_i \vec{r}_i \times \dot{\vec{r}}_i$ 3 Größen

• und die Gesamtenergie E = T + U1 Größe

10 Größen

Selten mehr: z.B. Lenzscher Vektor im Keplerproblem

Die Hamilton-Funktion (1833) 1.6

Newton: Kraft ist zentrale Größe

Hamilton: Energie ist zentrale Größe

Gegeben sei N-Teilchen System mit ausschließlich konservativen Kräften

$$F_i = -\frac{\partial U(r)}{\partial r_i} = \dot{p}_i$$
 (3 DGL 2. Ordnung) (1)

$$r \equiv (r_1, r_2, \dots, r_{3N})$$
 $p = (p_1, p_2, \dots, p_{3N})$ $i = (1, \dots, 3N)$

$$T = \sum_{i} \frac{m_i}{2} v_i^2$$
 $\stackrel{p_i = m_i v_i}{=}$ $\sum_{i} \frac{p_i^2}{2m_i}$, Potential U

Gesamtenergie E = T + U wird durch die Hamilton-Funktion beschrieben: "Hamiltonian":

$$H = H(r, p) = T(p) + U(r)$$

$$= \sum_{i=1}^{3N} \frac{p_i^2}{2m_i} + U(r)$$
(2)

Mit

$$\frac{\partial H}{\partial r_i} = \frac{\partial U}{\partial r_i} \stackrel{\text{(1)}}{=} -\dot{P}_i$$

$$\frac{\partial H}{\partial p_i} = \frac{p_i}{m_i} = \dot{r}_i$$

 $m_1 = m_2 = m_3 =$ Masse des ersten Teilchens

$$m_4 = m_5 = m_6 =$$
 Masse des zweiten Teilchens .

äquivalent zu den Newton Gleichungen: Hamilton-Gleichungen: Bewegungsgleichungen im Hamilton-Formalismus

$$r_{i} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial r_{i}}$$
(3)

6N DGL 1. Ordnung (Hamilton)

3N DGL 2. Ordnung (Newton)

$$\frac{d}{dt}H(r(t), p(t)) = \sum_{i} \left[\frac{\partial H}{\partial p_{i}} \underbrace{\dot{p}_{i}}_{-\partial H/\partial r_{i}} + \frac{\partial H}{\partial r_{i}} \underbrace{\dot{r}_{i}}_{\partial H/\partial p_{i}} \right] = 0$$

d.h. Energie ist erhalten. <u>Bem:</u>

- Im Gegensatz zu vektoriellen Kräften ist der Hamiltonian (die Hamilton Funktion) ein <u>Skalar</u>, und damit wesentlich leichter aufzustellen.
- Hamilton-Funktion kann für allgemeine Fälle (z.B. geschw. abhängige Potentiale oder zeitabhängige Potentiale (siehe später)) und hat dann nicht notwendigerweise die Bedeutung der Gesamtenergie.
- \bullet (r,p)bilden den 2.3N dimensionalen
 <u>Phasenraum</u> der die Bewegung vollständig beschreibt.

Bsp: harmonischer Oszillator

gedämpfter harm. Oszillator

ebenes Pendel mit überschlag

Newtonsche Mechanik: theoretisches Konzept

<u>1.Def:</u>

• Masse, Kraft, Energie

- Innertialsystem, beschleunigte Bezugssysteme
- konservative/ dissipative, innere/ äußere Kräfte
- 2. Bew. Gl.: N Teilchen, konservative Kräfte mit Pot U(r)

$$r?(r_1,\ldots,1_{3N})$$

$$m_i \ddot{r}_i = -\frac{\partial U(r)}{\partial r_i}$$

gewöhnlich = DGL 2. Ord i. A. nicht linear

3. Erhaltungssätze Schwerpunkt $\vec{R}, \vec{P}, M = \sum_{i} m_i$

•
$$\frac{d}{dt}\vec{p} = M \cdot \ddot{\vec{R}} = \underbrace{\vec{F}^A}_{\text{äußere Kraft}} \text{ abgeschlossenes System } 0 \leftrightarrow \vec{p} = \text{const.}$$
Impulserhaltung

- $\frac{d}{dt}\vec{L} = \sum_{i} \vec{r}_{\times} \vec{F}_{i}^{A} = \vec{M} \to 0 \leftrightarrow \vec{L} = \text{const.}$ Drehimpulserhaltung
- $\frac{d}{dt}(T+U) = \sum_{i} \vec{F}_{i}^{diss} \dot{\vec{r}}_{i} \xrightarrow{\text{Kräftegleichgewicht}} 0$ E = T + U = const. Energieerhaltung

Alternativ: Hamilton Funktion mit Impuls $p = (p_1, \dots, p_{3N}) = Gesamtenergie$

$$H(r,p) = T(p) + U(r) = \sum_{i} \frac{p_i^2}{dm} + U(r)$$

 $\rightarrow \dot{r_i} = \frac{\partial H}{\partial p_i}, \quad \dot{p_i} = -\frac{\partial H}{\partial r_i} \qquad 2 \times 3N \text{DGL 1. Ord}$

(r,p) bilden den 2 3N dim Phasenraum

- Wichtig für Übergang zur QM und statistischen Mechanik
- Beschreibt Bewegung vollständig, d.h. geg. Bew. Gl. mit Anfangsbedingungen $r_i(0), p_i(0)$, so ist r(t) und p(t) für alle Zeiten vollständig bestimmt. Man sagt die klassische Mechanik ist deterministisch.

Nichtlineare Dynamik und Chaos

- Man kann zeigen: Existieren für ein System mit 2f-dim Phasenraum f Erhaltungsgrößen, so heißt das System Integrabel.
 Bsp.:
 - 1) Konservative Bewegung in 1D \rightarrow f = 1Energie ist erhalten \rightarrow System ist Integrabel
 - 2) 2-Körperproblem: f=6 Erhaltung von Energie, Gesamtimpuls, $\vec{L}^2, L_z \to \text{System}$ ist integrabel
 - 3) 3-Körperproblem: f = 96 Erhaltungsgrößen \rightarrow i.A. nicht integrabel, <u>kann chaotisch</u> sein (Poincare' um 1900)

• Grund

Nichtlineare Bwe. Gl. können instabile Lösungen haben d.h. bei geringstfügiger Änderung der Anfangsbedingungen zeigt System für lange Zeiten eine qualitativ andere Bewegung: "Schmetterlingseffekt" sog. deterministisches Chaos

- Bedingung für chaotisches Verhalten
 - Anzahl der Freiheitsgrade $f \geq 2$
 - Nichtlinearität der Kraft
 - $\underline{\operatorname{Bsp:}} \text{ Vergleiche} \\ \text{harm Oszillator } F \sim r, U(r) \sim r^2 \\ \text{mit stabilem Fixpunkt und } H(r) \\ \text{Pendel: } F \sim \sin \varphi, U \sim \cos \varphi \text{ und } U(\varphi) \\ \text{mit stabilen Fixpunkten in sinus Tälern und instabilen Fixpunkten} \\ \text{auf den sinus Bergen}$

1.7 Schwingungen

Harm. Oszillator ist ein zentrales Modell der Physik

• analytisch lösbar, auch mit Reibung und Antrieb und in vielen Dimensionen

• lineares System

1D System mit Harm. Fkt.

$$H(p,q) = \frac{p^2}{2m} + U(q)$$

das bei $q=q_0$ eine stable Gleichgewichtslage besitzt. Idee("harmonische Näherung"): Taylor Entwicklung von k um q_0

$$U(q) = \underbrace{U(q_0)}_{\text{oEdA} = 0} + \underbrace{\frac{dU}{dq}}_{\substack{q_0 \text{oGWlage}}} (q - q_0) + \underbrace{\frac{1}{2} \underbrace{\frac{d^2U}{dq^2}}}_{=k} (q - q_0)^2 + \dots$$

$$\approx \frac{1}{2}k(q-q_0)^2 \equiv \frac{k}{2}x^2$$

Bew Gl:

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$$
 ; $\dot{p} = -\frac{\partial H}{\partial x} = -kx$

oder:

$$m\ddot{m} + kx = 0$$

Lösungen sind sin ωt , cos ωt mit $\omega^2 = \frac{k}{m}$ Die allg. Lösung mit Anfangsbedingungen $x_0 = x(0), p_0 = 0(0)$

$$x(t) = x_0 \cos \omega t + \frac{p_0}{m\omega} \sin \omega t$$

$$p(t) = p_0 \cos \omega t - mx_0 \omega \sin \omega t$$

Mit

$$e^{ix} = \cos x + i \sin x$$
 $(i^2 = -1)$
 $x(t) = Re(Ae^{i\omega t} + Be^{i\omega t})$

Im folgenden werden Schwingungen in 1D mit Reibung:

$$F_R = -\gamma \dot{x}(t)$$

und einer Zeitabhängigen externen Kraft:

$$F_{ext}(t)$$
 "Antrieb"

bezeichnet.

1.7.1 Gedämpfte Schwingungen

$$\ddot{x}(t) + \gamma \dot{x}(t) + \omega^2 x(t) = 0$$

 $\underline{Grenzf\"{a}lle:}$

• $\gamma = 0 \rightarrow \text{harm. Oszillator}, x \sim e^{\pm i\omega t}$

•
$$\omega = 0$$
, $\ddot{x} + \gamma \dot{x} = 0$, $v = \dot{x}$
 $\dot{v} = -\gamma v \rightarrow v \sim e^{-\gamma t}$

Ansatz:

$$x(t) = e^{\lambda t}$$
 , $\lambda = a + ib \in \mathbb{C}$

eingesetzt:

$$(\lambda^2 + \gamma\lambda + \omega^2)e^{\lambda t} = 0$$

 $\lambda^2 + \gamma \lambda + \omega^2 = 0$ charakteristische Gleichung

$$\lambda_{1/2} = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - 4\omega^2} = -\frac{\gamma}{2} \pm \frac{\sqrt{D}}{2}$$

 \rightarrow i.A. 2 Lösungen $x_0(t) = e^{\lambda_1 t}, x_2(t) = e^{\lambda_2 t}$ $\underline{D < 0}$: d.h. $\gamma < 2\omega$, komplexe Lösungen

$$\lambda_{1/2} = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{4\omega^2 - \gamma^2}$$

allg. Lösung:

$$x(t) = e^{-\gamma \frac{1}{2}t(c_1 e^{i\Omega t} + c_2 e^{i\Omega t})}$$

 γ bewirkt Dämpfung und Änderung der Frequenz $\underline{D>0}:\gamma>2\omega$: "Überdämpfte Schwingung"

$$\to x(t) = c_1 e^{i\lambda_2 t} + c_2 e^{i\lambda_2 t}$$

 $\underline{D=0}$: $\gamma=2\omega$ \rightarrow wir erhalten

$$x(t) = Ce^{-\frac{\gamma}{2}t}$$

d.h. nur eine Lsg. anstelle von 2 unabhängigen Lsg. Variation der Konstanten:

$$x(t) = C(t)e^{-\frac{\gamma}{2}t}$$

$$\dot{x} = (\dot{C} - \frac{\gamma C}{2})e^{-\frac{\gamma}{2}t}$$

$$\ddot{x} = (\ddot{C} - \gamma \dot{C} + \frac{\gamma^2 C}{4})e^{-\frac{\gamma}{2}t}$$

eingesetzt:

$$0 = (\ddot{C} - \gamma \dot{C} + \frac{\gamma^2 C}{4} + \gamma \dot{C} - \frac{\gamma^2 C}{2} + \omega^2 C) e^{-\frac{\gamma}{2}t}$$

$$= (\ddot{C} + C \underbrace{(\omega^2 - \frac{\gamma^2}{4})}_{=v}) e^{-\frac{\gamma}{2}t}$$

$$\rightarrow \ddot{C} = 0, C(t) = C_0 + C_1 t$$

 \rightarrow allg:

$$x(t) = C_0 e^{-\frac{\gamma}{2}t} + C_1 t e^{-\frac{\gamma}{2}t}$$

"kritische gedämpfte Schwingung" Bem:

- Allg. <u>lineare</u> DGL (mit konstanten Koeffizienten) n-ter Ordnung können durch einen Exponentialansatz gelöst werden.
 - \rightarrow charakteristische Gl. ist Polynom vom Grad n

Gedämpfte Schwingungen (Wiederholung)

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0$$

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

$$\lambda_{1/2} = \underbrace{-\gamma/2}_{\text{Dämpfung}} \pm \frac{1}{2} \underbrace{\sqrt{\gamma^2 - 4\omega^2}}_{\text{für } \omega > 2\gamma \to \text{schwingung}}$$
sonst Dämpfung

1.7.2 Der getriebene Oszillator

$$\underbrace{\ddot{x} + \gamma \dot{x} - \omega_0^2 x}_{\text{homogene DGL}} = f(t) \quad \text{externer Antrieb } f(t)$$

Lösung der DGL:

$$\underbrace{x_{tot}}_{\text{bereits bekannt}} = \underbrace{x_{hom}(t)}_{\text{partikul\"are L\"osung}} + x(t)$$

Betrachten periodischen Antrieb

$$f(t) = f\cos(\omega t) = \frac{f}{2}(e^{i\omega t} + e^{-i\omega t})$$

bzw.

$$f(t) = f e^{\pm i\omega t}$$

mit Exp. ansatz: $x(t) = A \pm e^{\pm i\omega t}$

Eingesetzt: $[\omega \pm i\omega\gamma + \omega_0^2] A \pm = f$ [Ermitteln mit z^*]

$$\rightarrow A \pm = f \frac{\omega_0^2 - \omega^2 \mp i\gamma\omega}{(\omega_0^2 - \omega^2)^2 + \omega^2\gamma^2}$$

$$A = \sqrt{a^2 + b^2} \to A(\omega) = \frac{f}{\sqrt{(\omega_o^2 - \omega^2)^2 - (\omega^2 \gamma^2)^2}}$$

Amplitude

$$\tan(y) = \frac{a}{b} \to y(\omega) = \arctan\left(\frac{\gamma\omega}{\omega_0^2 - \omega^2}\right)$$
 Phase

Resonanz bei $\omega=\omega_0,\,A$ groß für γ klein $\gamma\to 0$ und $\omega\to\omega_0$ "Resonanz-katastrophe"

z.B. Brücke, Tacoma Narrows Bridge 1940

Gesamtlösung

$$x_{tot}^{(t)} = x_{hom}^{(t)} - x(t)$$

$$\xrightarrow{t \to \infty} x(t) \quad \text{,Station\"are L\"osung\''}$$

Resonanz wichtig:

- Schwingende Karrosserieteile
- Schwingkreis (E-Dynamik)
- Molekülschwingungen etc.

1.7.3 gekoppelte Oszillatoren

 m_1 und m_2 sind aneinander und an zwei wänden mit federn gekoppelt (äußere federn mit c und innere feder mit k)

$$m\ddot{x}_1 = -cx_1 + k(x_2 - x_1) \tag{1}$$

$$m\ddot{x}_2 = -cx_2 - k(x_2 - x_1) \tag{2}$$

System von gekoppelten DGL. Mit

$$y_1 = \frac{1}{\sqrt{2}}(x_1 + x_2)$$
 $y_2 = \frac{1}{\sqrt{2}}(x_1 - x_2)$

ist (1) + (2):

$$m\ddot{y}_1 = -cy_1$$

(1) - (2):

$$m\ddot{y}_2 = -(c+2k)y_2$$

→ entkoppelte DGL mit Frequenzen

$$\omega_1 = \sqrt{\frac{c}{m}}$$
 , $\omega_2 = \sqrt{\frac{c+2k}{m}}$

Anfangsbedingungen: z.B. $X_2(0) = a$, $x_1(0) = \dot{x}_1(0) = \dot{x}_2(0) = 0$

$$y_1(t) = \frac{a}{\sqrt{2}}\cos\omega_1 t$$
 , $y_2 = -\frac{a}{\sqrt{2}}\cos\omega_2 t$ Eigenschwingungen

eingesetzt:

$$x_1(t) = \frac{a}{2}(\cos \omega_1 t - \cos \omega_2 t)$$
$$x_2(t) = \frac{a}{2}(\cos \omega_1 t + \cos \omega_2 t)$$

Zusammenhang mit Eigenwertproblem

$$m\vec{x} = -V\vec{x}$$

$$\vec{x} = \begin{pmatrix} x_1 \\ x2 \end{pmatrix} , \quad V = \begin{pmatrix} c+k & -k \\ -k & c+k \end{pmatrix}$$

Ansatz:

$$x_1(t) = a_1 e^{i\omega t}$$
$$\ddot{x}_i(t) = -\omega^2 a_i e^{i\omega t}$$

eingesetzt:

$$-m\omega^2 e^{i\omega t} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = -V \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{i\omega t}$$

 $mit \lambda = m\omega^2$

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \qquad (V - \lambda 1)\vec{a} = 0$$

Lösung für

$$\det(V - \lambda 1) = 0$$

$$(c + k - \lambda)^{2} - k^{2} = 0$$
$$\lambda^{2} - 2(c + k)\lambda + (c - k)^{2} - k^{2} = 0$$

"Eigenfrequenzen" Eigenwerte

Lösung der Eigenwertgleichung (1) für die Eigenwerte ergibt die "Eigenvektoren" hier Eigenschwingungen

$$\vec{a}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \vec{a}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\underbrace{V}_{\substack{\text{Operator}\\ \text{Abbildung}\\ \text{Matrix}}} \cdot \underbrace{\vec{a}_i}_{\substack{\text{Eigenvektor}}} = \underbrace{\lambda_i}_{\substack{\text{Eigenwert}}} \cdot \underbrace{\vec{a}_i}_{\substack{\text{Eigenvektor}}}$$

Eigenschwingungen

z.B. betrachte Molekül mit N
 Atomen (nicht lineare Mol)(für lineare Mol. $3N-5~{\rm FG})$

$$3N - 3 - 3 = 3N - 6$$

-3 Translation -3 Rotation also 3N-6 Freiheitsgrade für innere Bewegung f=3N-6 innere FG $x_1,\ldots x_f$ mit Gleichgewichtslage $x_1^{(0)}, \quad \rightarrow \frac{\partial V}{\partial x_i}\big|_{x_i^{(0)}}=0$ und Potential $V(x_1,\ldots,x_f)$ Entwickle V um $\vec{x}^{(0)}$

$$\underbrace{V(x_1, \dots, x_f)}_{\text{oEdA} = 0} = V(x_1^{(0)}, \dots, x_f^{(0)}) + \sum_i \underbrace{\left(\frac{\partial V}{\partial x_i}\right)_{x_i^{(0)}}}_{=0} (x_i - x_i^{(0)})$$

$$T = \frac{1}{2} \sum_{i,j} \underbrace{\left(\frac{\partial^2 V}{\partial x_i \partial x_j}\right)_0}_{V_{ij}} \underbrace{\left(x_i - x_i^{(0)}\right)}_{\equiv x_i} \underbrace{\left(x_j - x_j^{(0)}\right)}_{\equiv x_j} + \dots$$

Hessematrix: $V = \frac{1}{2} \sum_{i,j} V_{ij} x_i x_j$ harmonische Näherung <u>Bew. GL</u>:

$$m_i \ddot{x}_i = -\frac{\partial V}{\partial x_i} = -\sum_i V_{ij} x_j$$

massenbehaftete Koordinaten: $q_i = \sqrt{m_i}x_i$

$$\rightarrow \qquad \ddot{q}_i + \sum_i V_{ij} q_j = 0 \qquad V_{ij} = \frac{V_{ij}}{\sqrt{m_i m_j}}$$

Exp. Ansatz: $q_i(t) = q_i r^{i\omega t}$

$$\rightarrow \sum_{i} V_{ij} a_J - \omega^2 a_i = 0$$
 charakteristische Gl.

Mit

$$\mathcal{V} = \{V_{ij}\}$$
 , $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$

ist $(\mathcal{V} - \lambda 1)\vec{a} = 0$ Eigenwertproblem

1.7.4 Eigenschwingungen

$$\mathcal{V} = \{v_{ij}\}$$
 $i, j = 1, \dots, N$ $\vec{a} = (a_1, \dots, a_N)$
Eigenwertproblem: $\boxed{\mathcal{V}\vec{a} = \lambda\vec{a}}$ $\lambda = \omega^2$

Eigenwerte $\lambda_k \det(\mathcal{V} - \lambda 1) \stackrel{!}{=} 0$ charakteristische Gleichung., Polynom N-ter Ordung Eigenvektoren \vec{a}_k : Lösungen (1) mit $\lambda = \lambda_k$ orthogonal (bzw. Orthonormal)

$$\vec{a}_i \cdot \vec{a}_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{sonst} \end{cases}$$

 \rightarrow Eigenwertproblem $A = (\vec{a}_1, \dots, \vec{a}_N)$ ist orthogonal

$$A^{\top} = A^{-1} \to AA^{\top} = 1A^{\top}A$$

A ist diagonalisierbar die Hessematrix \mathcal{V}

$$A^{\top}VA = \operatorname{diag}(\lambda_1, \dots, \lambda_N) = \Lambda$$

$$\rightarrow$$
 Lösungen: $q_i(t) = a_{ik}e^{i\omega_k t}$ $(k = 1, ..., N)$

Allg. Lsg.:

$$q_i(t) = \sum_k C_k \ q_{ik} \ e^{i\omega_k t}$$

mit Koeffizienten C_k aus Anfangsbedingungen

$$q_i(t) = \sum_k a_{ik} \ Q_k(t) \leftrightarrow \vec{q} = A\vec{Q}$$

$$Q_k(t) = C_k e^{i\omega_k t}$$

 $Q_k(t) = C_k e^{i\omega_k t}$ "Eigenschwingung" oder Normalmoden

Pot.Energie:

$$U = \frac{1}{2} \sum_{i,j} v_{ij} q_i q_j = \frac{1}{2} \vec{q} V \vec{q}$$

$$= \frac{1}{2} \vec{Q}^\top \underbrace{A^\top V A}_{A} \vec{Q} = \frac{1}{2} \vec{Q}^\top A \vec{Q}$$

$$= \frac{1}{2} \sum_{n=1}^{N} w_k^2 Q_k^2 \quad \text{pot. Energie in } \vec{Q}_k \text{ ist diagonal}$$

$$\begin{split} T &= \frac{1}{2} \sum_{i} \dot{q}_{i}^{2} = \frac{1}{2} \dot{\vec{q}}^{\top} \dot{\vec{q}} \\ &= \frac{1}{2} \dot{Q}^{\top} \underbrace{A^{\top} A}_{=1} \dot{\vec{Q}} = \frac{1}{2} \dot{\vec{Q}}^{\top} \dot{\vec{Q}} \\ &= \frac{1}{2} \sum_{n=1}^{N} \dot{Q}_{k}^{2} \quad \text{kin. Energie ist auch Diagonal} \end{split}$$

Mit $P_k = \dot{Q}_k$ ist damit der Hamiltonian

$$H(Q, P) = \frac{1}{2} \sum_{k=1}^{N} (p_k^2 + \omega_k^2 Q_k^2)$$

der in ein System unabhängiger Oszillatoren seperiert.

Bsp: Normalmoden von Wasser

Bilder: Wasser Molekül mit Biegeschwingung und symmetrischer oder asymmetrischer Streckschwingung.

Anwendung: Wasser absorbiert (infrarot) Licht mit den Eigenfrequenzen: ω_k sind exp. observable Größen \to Schwingungsspektroskopie

1.8 Das Zweikörperproblem

- beschränkt z.B. das Keplerproblem (Erde,Sonne) das H-atom, das 2-atomige Molekül
- analytisch lösbar

• Anwendung von Symmetrieüberlagerungen

2 Körper mit Masssen m_i , Orten $\vec{r_i}$, Impulsen $\vec{p_i}$ (i = 1, 2) Wechselwirken durch ein Zentralpotential $U(|\vec{r_2} - \vec{r_1}|)$. abgeschlossenes, konservatives System mit Energie

$$H = T + U = \sum_{i=1}^{2} \frac{\vec{p}_i^2}{2m_i} + U(|\vec{r}_2 - \vec{r}_1|)$$
 (1)

Vorgehen:

- Seperation der Schwerpunktsbewegung (Impulserhaltung)
 → Reduktion auf Einkörperproblem (3 statt 6 Freiheitsgrade)
- Drehimpulserhaltung \rightarrow 1D Problem
- Diskussion des Keplerproblems , $k \sim 1/r$
- (1.) Trafo in Schwerpunkts- und Relativbewegung Schwerpunktskoordinaten:

$$\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$

Relativkoordinaten:

$$\vec{r} = \vec{r}_1 - \vec{r}_2$$

$$T = \frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} = \frac{m_1}{2}\dot{\vec{r}}_1^2 + \frac{m_2}{2}\dot{\vec{r}}_2^2$$

$$\stackrel{(2)}{\longrightarrow} \underbrace{\frac{m_1 + m_2}{2}}_{M/2}\dot{\vec{R}}^2 + \frac{1}{2}\underbrace{\frac{m_1 m_2}{m_1 + m_2}}_{\mu/2}\dot{\vec{r}}^2 = \frac{\vec{P}^2}{2M} + \frac{\vec{p}^2}{2\mu}$$
(3)

Gesamtmasse: $M = m_1 + m_2$ reduzierte Masse

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \to \begin{cases} m_1 \text{ für } \frac{m_1}{m_2} \ll 1 & \text{Sonne Erde} \\ \frac{m}{2} \text{ für } m_1 = m_2 = m & \text{2-atom Modell} \end{cases}$$

Da Gesamtimpuls erhalten ist

$$\vec{P} = M\vec{R} = \vec{P}_0 = \text{const.}$$

ist schwerpunktsbewegungs, die unabhängig von Relativbewegung ist

$$\vec{R}(t) = \vec{R}(0) + \frac{\vec{P}(0)}{u}t$$

 \to Seperation von SP- und Relativbewegung oder Entkopplung \to Einkörperproblem mit 3 (statt 6) Freiheitsgraden Beobachte Relativbewegung

$$\mu \ddot{\vec{r}} = -\nabla k(|\vec{r}|)$$

(2.) Drehimpulserhaltung Das Zentralproblem, d.h.

$$\vec{L} = \mu \vec{r} \times \dot{\vec{r}} = \text{const.}$$
 also auch Richtung konstant

o Ed
A sei $\vec{L} = l\vec{e}_z$

Mit $\vec{L} \perp \vec{r}$, ist $\vec{r} \perp \vec{e_z}$ und damit $z(t) = \text{const.} \stackrel{\text{oEdA}}{=} 0$

d.h. Bewegung findet in x-y-Ebene statt. (nur noch 2 FG)

Polarkoordinaten:

$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \end{pmatrix} \quad , \quad \dot{\vec{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi \end{pmatrix}$$
$$T = \frac{\mu}{2}\dot{\vec{r}}^2 = \frac{\mu}{2}(\dot{r}^2 + r^2\dot{\varphi}^2)$$

mit:

 $l = \mu(x\dot{y} - y\dot{x}) = \mu r \cos\varphi(\dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi) - \mu r \sin\varphi(\dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi)$ $l = \mu r^2\dot{\varphi} = \text{const.}$

ergibt sich für die Gesamtenergie

$$E = \frac{\mu}{2}\dot{r}^2 + \frac{l^2}{2\mu r^2} + U(r) = \frac{\mu}{2}\dot{r}^2 + U_{\text{eff}}(r)$$
 (7)

effektives Ptential $U_{\rm eff}(r)=U(r)+\frac{l^2}{2\mu r^2}$ hat neben dem "normalen" Radialterm U(r) noch den sogenannten Zentrifugalterm $\frac{l^2}{2\mu r^2}$ oder Zentrifugalbarriere

 \rightarrow 1D Syste, Bewegungsglechung ist lösbar

Lösung durch

$$\frac{dr}{dt} = \pm \sqrt{\frac{2}{\mu}(E - U_{\text{eff}}(r))}$$

ist:

$$\int_{t_0}^t dt' = t - t_0 = \pm \int_{r_0}^r \frac{dr'}{\sqrt{\frac{2}{\mu}(E - U_{\text{eff}}(r'))}}$$

was $r = r(t, E, l, r_0)$ ergibt die Bahnkurve $r(\varphi)$ und wir erhalten

$$\dot{r}(\varphi) = \frac{dr(\varphi)}{d\varphi} = \frac{dr}{d\varphi} \frac{d\varphi}{dt} = \frac{dr}{d\varphi} \dot{\varphi}$$

$$\frac{dr}{d\varphi} = \frac{\dot{r}}{\dot{\varphi}} = \frac{\pm \sqrt{\frac{2}{\mu}(E - U_{\text{eff}}(r))}}{\frac{l}{\mu r^2}}$$

$$\Rightarrow \varphi - \varphi_0 = \pm \frac{l}{\sqrt{\mu}} \int_{r_0}^r \frac{dr'}{r'^2 \sqrt{(E - U_{\text{eff}}(r))}}$$

 r_0, p_0, E, l sind dann Anfangsbedingungen

1.8.1 Diskussion des Zweikörperproblems

$$\varphi - \varphi_0 = \pm \frac{l}{\sqrt{2\mu}} \int_{r_0}^r \frac{dr'}{r'^2 \sqrt{E - U_{\text{eff}}(r')}}$$

 $r_0, \varphi_0, E, l \cong \text{Anfangsbedingungen des 3D Problems}$ $(z(0) = \dot{z}(0) = 0 \text{ Anfangsbedingungen des 3D Problems})$

- wegen $\dot{\varphi} = \frac{l}{\mu r^2}$ kann $\dot{\varphi}$ nicht das Vorzeichen wechseln \rightarrow Drehung immer in selbe Richtung d.h. für $E = U_{\text{eff}}$ ist $r' = 0 \rightarrow$ Umkehrpunkte
- Bsp: Sei $U_{\text{eff}}(r) = dr^2 + \frac{l^2}{2\mu r^2}$ $\alpha > 0, l \neq 0, E = E_0$
- r oszilliert zwischen r_{\min} und r_{\max}
- Form der Bahnkurve zwischen je 2 Umkehrpunkten gleich
 → Bahn ist durch Teilschleife festgelegt
- \bullet Bahn ist nicht notwendigerweise geschlosssen $\Delta \varphi$ zwischen zwei Umkehrpunkten

$$\Delta \varphi = 2 \int_{r_{\min}}^{r_{\max}} \frac{\frac{l}{r^2} dr}{\sqrt{2\mu(E - U_{\text{eff}}(r))}}$$

 \rightarrow geschlossen, wenn nach n Umlaufen $n\Delta\varphi = m\pi \quad (n, m \in \mathbb{N})$

 Bsp: r^2 oder $\frac{1}{r}$ Potential $\Delta \varphi = \pi$

• Für $E = E_{\text{kin}}$ ist $r = r_0 = \text{const.} \to \text{Kreisbahn mit } \varphi(t) = \varphi_0 + \frac{l}{\mu r_0^2} t$

 \bullet Für l=0verschwindet Zentrifugalbarriere

• $\dot{\varphi} = 0, \vec{r} \parallel \dot{\vec{r}} \rightarrow$ Bewegung zentral

 \bullet je nach Potential wird auch $N \to 0$ möglich (unelastisch, wegen endlicher Größe der Teilchen)

• Standartfall $l \neq 0$

 $\begin{array}{ccc} U_{\text{eff}} \stackrel{r \to 0}{\to} \infty & \text{(endliche größe)} \\ U_{\text{eff}} \stackrel{r \to \infty}{\to} 0 & \text{WW nicht "gebundener Zustand"} \\ U_{\text{eff}} = \text{min.} & \text{"gebundener Zustand"} \end{array}$

E<0: gebundene Bewegung (auch bei H-Atomen, Elektronenstruktur, H₂-Molekül, Kernbewegung)

E>0: Streuung d.h. Teilchen kommt aus dem Unendlichen fliegt bis zum Umkehrpunkt r_0 und verschwindet wieder Abstoßung bei r_0 wegen Zentrifugalbarriere $\frac{l^2}{2\mu r^2}$

bilder zu anziehendem-/abstoßendem Potential

1.8.2 Keplerproblem

d.h.
$$U(r) = -\frac{\alpha}{r}$$
 $(\alpha > 0)$
 $\alpha = Gm_1m_2$ Gravitations-Potential
 $\alpha = -\frac{q_1q_2}{4\pi\epsilon_0}$ Coulomb-Potential

$$U_{\text{eff}}(r) = -\frac{\alpha}{r} + \frac{l^2}{2\mu r^2}$$

$$\frac{dU_{\text{eff}}}{dr} = \frac{\alpha}{r^2} - \frac{2l^2}{2\mu r^3} \stackrel{!}{=} r_0 = \frac{l^2}{\alpha\mu}$$

Mit:

$$q = \int dr \frac{\frac{l}{r^2}}{\sqrt{2\mu E + 2\mu \frac{\alpha}{r} - \frac{l^2}{r^2}}}$$

mit

$$r = \frac{1}{s} \quad s = \frac{1}{r} \quad \frac{ds}{dr} = -\frac{1}{r^2}$$
$$q = -\int ds (2\mu \frac{E}{l^2} + 2\mu \alpha \frac{s}{l^2} - s^2)^{-\frac{1}{2}}$$

und

$$\int dx (c + 2bx - x^2)^{-\frac{1}{2}} = -\arccos\frac{x - b}{\sqrt{b^2 + c}}$$

ist

$$\varphi(r) - \varphi_0 = \arccos \frac{\frac{1}{r} - \frac{\alpha\mu}{l^2}}{\sqrt{\mu^2 \frac{\alpha^2}{l^4} 2p\frac{E}{l^2}}} = \arccos \frac{\frac{l^2}{\alpha\mu} (\frac{1}{r}) - 1}{\sqrt{1 + 2l^2 \frac{E}{\mu\alpha^2}}}$$

Mit
$$p=\frac{l^2}{\alpha p}$$
 Abstand r_0
$$\epsilon=\sqrt{1+2l^2\frac{E}{\mu\alpha^2}} \quad \text{"Exzentrität"}$$
 $\varphi_0=0$

folgt $\varphi = \arccos \frac{\frac{p}{r} - 1}{\epsilon}$

oder:

$$r = \frac{p}{1 + \epsilon \cos \varphi}$$

Polar-Gleichung für Kegelschnitte:

 $\epsilon > 1$ E > 0 Hyperbolen

 $\epsilon = 1 \ E = 0 \text{ Parabel}$

 $\epsilon < 1 \ E < 0$ Ellipse

Bsp:

Merkur: $\epsilon = 0,206$ schwer zu beobachten)

Erde: $\epsilon = 0.017$

 $\epsilon = 0,043$ an ihm entdeckt) Mars:

gebundene bewegung \rightarrow Keplersche Gesetze

1) Planetenbewegung sind Ellipsen mit Sonne in einen Brennpunkt

2) Flächensatz

Die vom Fahrstrahl pro Zeit dt überstrichene Fläche $dA=r^2\frac{d\varphi}{2}$ ist konstant

Also $A_1 = A_2$ wurden vom Fahrstrahl in der gleichen Zeit überfahren.

3) Umlaufzeit T und die große Halbachse a verhalten sich wie

$$T^2 = \text{const.}a^3$$

- Kepler (1571-1701): aufgrund von Beobachtungen der Planeten
- Newton leitete Gravitationsgesetz aus Keplerschen Gesetzen ab
- KG3: $\frac{r^3}{T^2} = \text{const.}$ Kreisbahn: $\omega = \frac{2\pi}{T} \to r^3 \omega^2 = \text{const.} \to r\omega^2 = \text{const.} \frac{1}{r^2}$

$$\vec{r}(t) = r \begin{pmatrix} \cos \omega t \\ \sin \omega t \end{pmatrix}$$

$$\ddot{\vec{r}}(t) = -\omega^2 \vec{r}(t)$$

$$\vec{F} = m\ddot{\vec{r}}(t) \sim \omega^2 \vec{r}(t) \qquad |F| \sim \frac{1}{r^2} \qquad \text{Gravitationsgesetz}$$

Streuung:

• $\epsilon=1, E=0 \rightarrow$ Parabel als Grenzfall

• $\epsilon > 1, E > 0 \rightarrow \underline{\text{Hyperbeln}}$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \leftrightarrow \frac{p}{r} = 1 + \epsilon \cos \varphi$$

$$\rightarrow p = \frac{l^2}{\mu\alpha} > 0$$

attraktives Potential: $\alpha>0$ $\rightarrow p=\frac{l^2}{\mu\alpha}>0$ Asymptoten: def Richtung durch $\cos\varphi_{\infty}=-\frac{1}{\epsilon}$

repulsives Potential: $\alpha < 0 \rightarrow p < 0$

Kapitel 2

Lagrange-Formalismus

nach J-L Lagrange (1736-1813) 1788,,Mechanique Analytique" section 0. Motivation

• Newtonsche Mechanik: alle Kräfte müssen bekannt sein

$$m\ddot{r} = \sum_{i} \vec{F}_{i}$$

• Aber oft nur Wirkung, nicht Kraft selbst bekannt bsp: Pendel (Abstand fest) oder Gas im geschlossenen Gefäß (Moleküle "gefangen")

2.1 Zwangsbedingungen

 \rightarrow schränken Bewegung des Systems auf einen Unterraum ein (z.B. Achterbahn, Bewegung in 2D)

Bsp.: Fadenpendel

• Gravitationskraft \vec{F}_a wirkt nach unten aber Faden der Länge l hat Masse m auf Kreisbahn (allg. Kugelschale)

$$\rightarrow \text{ ZB } y = 0 \qquad x^2 + z^2 = l^2$$
 (1)

- übersetzen der ZB Newtonschen Bew. Gl.
 - \rightarrow Zwangskraft \vec{Z}

$$m\ddot{r} = \vec{F}_G \vec{Z} \tag{2}$$

• \vec{Z} nicht von vornherein bekannt, nur Wirkung (1)

Lösungansätze

- \bullet \vec{Z} bestimmern: Lagrange-Gl
n 1. Art
- Zwangsbedingungen durch Wahl geeigneter Koordinaten eliminieren (Bsp: $\varphi(r)$ anstattr(t))
 - \rightarrow Bew.-Gl. für neue Koordinaten
 - \rightarrow Lagrange-Gln 2.Art

Klassifizierung von ZB

- \bullet System mit f
 Freiheitsgraden (N Massenpktf=3N) $x_1, \dots, x_f \to \text{Anzahl ZB } R < f$
- Formulierung der ZB:

$$g_{\alpha}(x_1, \dots, x_f, t) = 0 \quad \alpha = 1, \dots, R$$
(3)

Bsp:
$$f = 3$$

 $g_{\alpha}(x, y, z, t) = y = 0$
 $g_{\alpha}(x, y, z, t) = x^2 + z^2 - l^2 = 0$

• jede ZB reduziert Anzahl der Freiheitsgrade 1 Massenpunkt:

keine ZB: Bew. 3D

erste ZB: Bew. auf Fläche

zweite ZB: Bew. auf Schnitt 2-er Flächen

- ZB der Art (3) heißen <u>holonom</u>
- ZB die Zeit
t explizit enthalten $\rightarrow \underline{\text{rheonom}}$
- ZB die Zeit
t $\underline{\text{nicht}}$ explizit enthalten $\rightarrow \underline{\text{skleronom}}$
- Bsp für nicht-holonom:

$$g_k(\vec{r}) = r - R < 0$$
 (Inneres einer Kugel)

$$g_k(\vec{r}, \dot{\vec{r}}) = 0$$
 (Geschw. benötigt)

2.2 Lagrange-Gl 1.Art

• Eine holonome ZB: Beschränkung der Bewegung eines Teilchens auf eine Fläche

$$g_1(\vec{r},t) = y = 0 \quad (xz - Ebene)$$

oder
 $g_2(\vec{r},t) = x^2 + z^2 - l^2 = 0$ (Kugelschale mit Radius I)

- \bullet keine weitere Einschränkung der Bew. innerhalb dieser Fläche durch die ZB
 - $\rightarrow \vec{Z}$ kann keiner Komponente tangential zur Fläche haben
 - $\rightarrow \vec{Z}$ ist orthogonal zur Fläche, die durch ggegeben ist
 - \rightarrow wird erfüllt durch Ansatz

$$\vec{Z}(\vec{r},t) = \lambda(t) \quad \nabla g(\vec{r},t)$$
 (4)

mit zeitabhängigem Parameter $\lambda(t)$

Bsp:
$$\nabla g_1(\vec{r},t) = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
 ; $\nabla g_2(\vec{r},t) = \begin{pmatrix} 2x\\0\\2z \end{pmatrix}$

Ansatz (4) zwar plausibel, kann aber nicht bewiesen werden
 → (4) ost eigenständiges Axiom der Mechanik

Bemerkung

1. Skalare Fkt 2er Variablen $f(x,y) \to \text{"Gebirge"}$ in 3D \to partielle Abl. zeigen in Richtung des <u>maximalen Anstiegs</u> Bsp: Kreiskegel

$$z = f(x,y) = \sqrt{x^2 + y^2}$$

$$\binom{f_x}{f_y} = \frac{1}{\sqrt{x^2 + y^2}} \binom{x}{y} \sim \binom{x}{y}$$
 ...Höhenlinien"

2. Implizit durch holonome ZB F(x, y, z) = z - f(x, y) = 0Bsp: $F = z^2 - x^2 - y^2 = 0$ $\vec{\nabla} F = -\begin{pmatrix} 2x \\ 2y \\ -2z \end{pmatrix} \sim \begin{pmatrix} x \\ y \\ -z \end{pmatrix} \rightarrow \text{senkrecht auf Kugel}$

- 3. Kraft $\sim \vec{\nabla} g$ legt nahe, dass ZB gals Art "Potential" verstanden werden kann
- Aus (4) und (2) \rightarrow <u>Lagrange-Gln 1. Art</u> für 1 Teilchen unter einer ZB:

$$m\ddot{\vec{r}} = \vec{F} + \lambda(t)\vec{\nabla}g(\vec{r},t)$$

$$q(\vec{r},t) = 0$$
(5)

(4 Gln für 4 Unbekannte x, y, z, λ)

- Zwei holonome ZB Beschränken die Bewewgung auf Raumkurve
 - $\rightarrow \vec{\nabla} g_1$ und $\vec{\nabla} g_2$ unabhängig von
einander, senkrecht auf Kurve
 - $\rightarrow \vec{Z}(\vec{r},t) = \lambda_1(t) \vec{\nabla} g_1(\vec{r},t) + \lambda_2(t) \vec{\nabla} g_2(\vec{r},t)$ $\rightarrow \text{Senkrecht (häckchen)}$
- Verallgemeinerung auf R ZB und N Teilchen $(f = 3N) x \equiv (x_1, \dots, x_{3N})$

$$m_n \ddot{x}_n = F_n + \sum_{\alpha=1}^R \lambda_{\alpha}(t) \frac{\partial g_{\alpha}(x,t)}{\partial x_n}$$
 $n = 1, \dots, 3N$

$$g_{\alpha}(x,t) = g_{\alpha}(x_1,\ldots,x_{3N},t) = 0 \qquad \alpha = 1,\ldots,R$$

Lagrange-Gl
n 1. Art für 3N Variablen und Rholonome ZB (3
N+RGl
n für 3N+R unbekannte $x_n,\lambda_\alpha)$

Bsp: 2 Teilchen, 1ZB $g(\vec{r}_1, \vec{r}_2, t)$

$$-g = g(\vec{r}_1, t) \to \vec{Z}_1 = \lambda(t) \vec{\nabla}_1 g(\vec{r}_1, t)$$

$$-g(\vec{r}_1, \vec{r}_2, t) = g(|\vec{r}_1 - \vec{r}_2|) = |\vec{r}_1 - \vec{r}_2| - l = 0$$

$$\to \vec{Z}_1 = -\vec{Z}_2$$

Bemerkungen

1. Zusätzliches Axiom (4) \rightarrow nichttriviale Verallgemeinerung der Newton-Axiome

- 2. d'alembertsche Prinzip (virtuelle Verrückungen)
- 3. LG 1 insbesondere in technischer Mechanik. Physik haupsächlich LG 2. Art
- 4. <u>Erhaltung</u> von Impuls, Energie, Drehimpuls wenn Zwangsbedingungen entsprechende Symmetrie erhalten

Lagrange Formalismus

Beispiele Zwangsbedingungen:

- Körper auf Tisch $\rightarrow z = 0$
- Fadenpendel $\to y = 0 \to g_1 = y = 0$ $x^2 + z^2 = l^2 \to g_2 = x^2 + z^2 l^2 = 0$

allgemein: R ZB $g_{\alpha}(\vec{r}_1, \dots, \vec{r}_N, t) = 0 \quad \alpha = 1, \dots, R$

holonome ZB

Zwangskräfte: $m\ddot{\vec{r}} = \vec{F}_G + \vec{Z}$

- bechränkt Bewegung auf eine Fläche
- innerhalb Fläche keine Einschränkung
- $\rightarrow \vec{Z}$ ist orthogonal zur Fläche (zu Beweisendes axiom)

Ansatz: $\vec{Z}(\vec{r}, t) = \lambda(t) \operatorname{grad} g(\vec{r}, t)$

hier fehlt was vielleicht was

Bsp: Tisch: g = z = 0

hier fehlt was noch mehr

Lagrange-Gl. 1. Art 3N + R Gl.

Bsp: Atwoodsche Fallmaschiene (1784)

massenlose Rolle (Radius R), über die 2 Massen (reibungslos) verbunden sind, d.h. 2 Massen \rightarrow 6 Freiheitsgrade

$$\begin{array}{l} \underline{ZB} \\ y_1 = 0 = y_2 \\ x_1 = -R, x_2 = R \\ g(z_1, z_2) = z_1 + z_2 + l = 0 \qquad l = L - \pi R l = \text{Seillänge} \\ \rightarrow \text{ keine Dynamik in } x_i \text{ und } y_i \\ \rightarrow \text{ es reicht, Bewegungs-Gl. für } z_i \text{ zu betrachten} \\ \text{Zwangskräfte: } z_i = \lambda \frac{\partial y}{\partial z_i} = \lambda \text{ in Richtung } z_i \end{array}$$

$$m_1 \ddot{z}_1 = -m_1 g + \lambda$$

$$m_2 \ddot{z}_2 = -m_2 g + \lambda$$

$$\frac{d^2}{dt^2} g(z_1, z_2) = \ddot{z}_1 + \ddot{z}_2 = 0$$

$$\Rightarrow -g + \frac{\lambda}{m_1} - g + \frac{\lambda}{m_2} = 0 \Rightarrow \lambda 2g \frac{m_1 m_2}{m_1 + m_2}$$

$$\ddot{z}_1 = -g + \frac{2m_2}{m_1 + m_2} = g \frac{2m_2 - (m_1 + m_2)}{m_1 + m_2} = g \frac{m_2 - m_1}{m_1 + m_2}$$

$$z_1(t) = z_1(0) + \dot{z}_1(0)t + \frac{m_1 - m_2}{m_1 + m_2} \frac{g}{2} t^2$$

2.3 Lagrange-Gl. 2. Art

Ausgangspunkt: Lag. Gl. 1. Art. (1)

$$m_1 \ddot{x}_1 = F_n + \sum_{\alpha} \frac{\partial g_{\alpha}(x)}{\partial x_n} \tag{1}$$

$$x = (x_1, \dots, x_3 N)$$
 $n = 1, \dots, 3N$ $g_{\alpha}(x) = 0$ $\alpha = 1, \dots, R$

Die Anzahl der Freiheitsgrade f = 3N - R

<u>Idee:</u> Führe "generalisierte" (oder verallgemeinerte) Koordinaten ein $q=(q_1,\ldots,q_t)$

• die die Lage aller Teilchen festlegen, d.h.

$$x_n = x_n(q, t) = x_n(q_1, \dots, q_t, t)$$
 $n = 1, \dots, 3N$ (2)

• ZB q_{α} sollen für beliebige q_i hier fehlt was

$$g_{\alpha}(x_1(q,t),\dots,x_{3N}(q,t),t) = 0$$
 (3)

 \rightarrow ZB schränken Bewegung der q_i nicht ein

Bsp: Ebenes Pendel mit variabler Länge l(t)

$$x = l(t)\sin\varphi = x(\varphi, t)$$

$$z = -l(t)\cos\varphi = z(\varphi, t)$$

$$y = 0 = y(\varphi, t)$$

d.h. φ ist verallg. Koord. , die die ZB

$$g(\vec{r},t) = x^{2}(\varphi,t) + y^{2}(\varphi,t) - l^{2}(t)$$

= $l^{2} \cos^{2} \varphi + l^{2} \sin^{2} - l^{2} = 0$

für alle Werte φ erfüllt.

2. Bsp: Teilchen im Kreiskegel \rightarrow general. Koord. r,φ Zylinderkoordinaten

 $x = r \cos \varphi$

 $y = r \sin \varphi$

 $z=r\cot\alpha$ alpha Azimutalwinkel phi Himmelsrichtungs Winkel

Eliminierung der Zwangskräfte

Ausgangspunkt: Gl. (1)

Nach (3) hängen ZB g_{α} nicht von q_i ab

$$\frac{dg_{\alpha}}{dq_k} = \sum_{n=1}^{3N} \frac{\partial g_{\alpha}}{\partial x_n} \frac{\partial x_n}{q_k} = 0 \quad k = 1, \dots, f$$
 (4)

Gl. (1) multipliziert mit $\partial x_n/\partial q_n$ ergibt:

$$\sum_{n} m_{n} \ddot{x}_{n} \frac{\partial x_{n}}{\partial q_{k}} = \sum_{n} \left[F_{n} \frac{\partial x_{n}}{\partial q_{k}} + \sum_{\alpha} \lambda_{\alpha} \frac{\partial g_{\alpha}}{\partial x_{n}} \frac{\partial x_{n}}{\partial q_{k}} \right]$$

$$\sum_{n} \left[m_n \ddot{x}_n - F_n \right] \frac{\partial x_n}{\partial q_q} = 0$$
 (5)

 $n = 1, \dots, 3N \quad k = 1, \dots, f$

Bem:

- (5) enthält keine Zwangskräfte, nur f Gl. aber die Transformation $\frac{\partial x_n}{\partial q_k}$
- \bullet Durch Einführung der Lagrange-Funktion L=T-Ukann (5) wesentlich vereinfacht werden

Dazu betrachten wir:

$$\dot{x}_n = \frac{d}{dt}x_n(q,t) = \sum \frac{\partial x_n}{\partial q_k}\dot{q}_k + \frac{\partial x_n}{\partial t} = \dot{x}_n(q,\dot{q},t)$$
 (6)

mit general. Geschw. \dot{q}_i Es gilt:

$$\frac{\partial \dot{x}_n(q,\dot{q},t)}{\partial \dot{q}_k} = \frac{\partial x_n(q,t)}{\partial q_k} \tag{7}$$

Mit

$$T = T(\dot{x}) = \sum_{n=1}^{3N} \frac{m_n}{2} \dot{x}_n^2 \tag{8}$$

ergibt sich:

$$T = T(q, \dot{q}, t) = \frac{1}{2} \sum_{n} m_{n} \left[\sum_{k} \frac{\partial x_{n}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial x_{n}}{\partial t} \right] \left[\sum_{i} \frac{\partial x_{n}}{\partial q_{i}} \dot{q}_{i} + \frac{\partial x_{n}}{\partial t} \right]$$

$$= \frac{1}{2} \sum_{i,k} \sum_{n} m_{n} \frac{\partial x_{n}}{\partial q_{i}} \frac{\partial x_{n}}{\partial q_{k}} \dot{q}_{i} \dot{q}_{k} + \sum_{k} \sum_{n} m_{n} \frac{\partial x_{n}}{\partial q_{k}} \frac{\partial x_{n}}{\partial t} \dot{q}_{k}$$

$$+ \frac{1}{2} \sum_{n} m_{n} \left(\frac{\partial x_{n}}{\partial t} \right)^{2}$$

$$T(q, \dot{q}, t) \equiv \sum_{i,k} m_{ik}(q, t) \dot{q}_{1} \dot{q}_{k} + \sum_{k} b_{k}(q, t) \dot{q}_{k} + c(q, t)$$

$$(9)$$

Bem:

- Die Größe T in (8) und (9) bezeichnet verschiedene Funktionen der Argumente, stellt aber die gleiche physikalische Größe dar.
- Da x_n linear in \dot{q}_k ist (7), ist die kin. Energie maximal quadratisch in den \dot{q}_k
- Hängen die x_n nicht explizit von der Zeit ab, $x_n = x_n(q)$ so wird Gl. (9)

$$T(q, \dot{q}) = \sum_{i,k} m_{ik}(q) \dot{q}_i \dot{q}_k$$

Wir bilden die Ableitung

$$\frac{\partial T(q, \dot{q}, t)}{\partial q_k} \stackrel{(8)}{=} \sum_n m_n \dot{x}_n \frac{\partial \dot{x}_n}{\partial q_k}$$
 (10)

$$\frac{\partial T(q, \dot{q}, t)}{\partial \dot{q}_k} = \sum_n m_n \dot{x}_n \frac{\partial \dot{x}_n}{\partial \dot{q}_n} \stackrel{(7)}{=} \sum_n m_n \dot{x}_n \frac{\partial x_n}{\partial q_k}$$
(11)

$$\frac{\partial T}{\partial q_k} = \sum n m_n \ddot{x}_n \frac{\partial x_n}{\partial q_k} + \sum_n m_n x_n \frac{\partial \dot{x}_n}{\partial q_k}$$
 (12)

$$\left[\frac{d}{dt}\frac{\partial x_n}{\partial q_k} - \sum_l \frac{\partial^2 x_n}{\partial q_l \partial q_k} q_l + \frac{\partial^2 x_n}{\partial t \partial q_k} = \frac{\partial}{\partial q_k} \left(\sum_l \frac{\partial x_n}{\partial q_l} q_l + \frac{\partial x_n}{\partial t}\right) = \frac{\partial}{\partial q_k} \frac{dx_n}{dt}\right]$$

Beachte: Der erste und der zweite Term von (12) kommt auch in (5) <u>Def:</u> verallgemeinerung der Kräfte:

hier fehlt was

Beachte konservative Kräfte

$$F_n = -\frac{\partial U(x)}{\partial x_n}$$

Mit Trafo $x_n = x_n(q, t)$ ist $U(q, t) = U(x_q(q, t), \dots, x_{3N}(q, t))$ Damit ergibt sich die verallgemeinerte Kraft:

$$Q_k = \sum_n F_n \frac{\partial x_n}{\partial q_k} = -\sum_n \frac{\partial U(x)}{\partial x_n} \frac{\partial x_n}{\partial q_k} = -\frac{\partial U(q, t)}{\partial q_k}$$
(15)

Damit wird (14) (da $\partial U/\partial \dot{q}_k = 0$)

$$\frac{d}{dt}\frac{\partial(T-U)}{\partial \dot{q}_k} = \frac{\partial(T-U)}{\partial q_k} \tag{16}$$

Def der sogenannten Lagrange Funktion:

Lagrange-Gleichungen

N Teilchen, $x = (x_1, ..., x_{3N}) = \{x_n\}$ k = 1, ..., 3N

R Zwangsbedingungen $g_{\alpha}(x,t) = 0$ $\alpha = 1, \ldots, R$

Lagrange-Gl- 1. Art:

$$m_n \ddot{x}_n = F_n + \sum_{\alpha} \lambda_{\alpha} \frac{\partial g_{\perp}}{\partial x_n}$$

Verallg. Koord.:
$$1 = (q_1, \dots, q_f) = \{q_k\}$$
 $k = 1, \dots, f$ $f = 3N - R$ mit $x_n = x_n(q, t)$, $g_\alpha = g_\alpha(q, t) = 0$
$$\rightarrow \frac{\partial g_\alpha}{\partial q_k} = 0$$

Eliminierung der Zwangskräfte

$$\sum_{n} m_{n} \ddot{x}_{n} \frac{\partial x_{n}}{\partial q_{k}} = \underbrace{\sum_{n} F_{n} \frac{\partial x_{n}}{\partial q_{k}}}_{Q_{k}} \qquad k = 1, \dots, f \text{ Gl. ohne Zwangskräfte}$$

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{k}} - \frac{\partial T}{\partial q_{k}} = Q_{k} = -\frac{\partial U(q, t)}{\partial q_{k}}$$

Lagrange-Fkt.: $L(q, \dot{q}, t) = T(q, \dot{q}, t) - U(q, t)$

$$\left[\begin{array}{c} \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \frac{\partial L}{\partial q_k} \end{array} \right]$$
 Lagrange-Gl (2. Art)

Diskussion:

- 1.) Gl: (18) stellt ein System von f=3N-R DGL
n 2. rd. dar d.h. eine Vereinfachung der Lagrange-Gl. 1. Art, aber ohne explizit gegebene Zwangskräfte
- 2.) Da es i.a. unterschiedliche verallg. Koord. q_k für gegebene Probleme gibt, ist L nicht eindeutig. Weiterhin sind Zusatztherme zu L möglich, die die Bew. Gl. nicht ändern (siehe Übungen).

Daher ist L eine theoretische Größe, im Vergleich zu direkt messbaren Größen wie T und U.

Die allg. Form der Lagrange-Gl. bleibt aber gleich "Forminvarianz" (Nicht so bei den Nowton-Gl. z.B. in Polar Koord. gilt $m\ddot{r}=-\frac{\partial U}{\partial r}$ und $mr^2\ddot{\varphi}\neq -\frac{\partial U}{\partial r}$)

- 3.) L ist eine Skalare Größe \to Leichter aufzustellen als vektorielle Kräfte im \mathbb{R}^{3N} . Zudem ist L eine einfache Funktion der Variablen.
- 4.) Liegen keine Zwangskräfte vor, so sind die q_k einfach die kartesischen Koordinaten x_n und mit

$$L(x, \dot{x}) = \frac{1}{2} \sum_{n=0}^{3N} m_n \dot{x}_n^2 - U(x)$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}_n} = m_n \ddot{x}_n$$

$$\frac{\partial L}{\partial x_n} = -\frac{\partial U}{\partial x_n}$$

$$\to m_n \ddot{x}_n = -\frac{\partial U}{\partial x_n}$$
 Newton Bwe- Gl.

5.) Bei geschwindigkeitsabhängigem Potential muss die Def. der allg. Kraft erweitert werden, $U = U(q, \dot{q}, t)$

$$Q_k = -\frac{\partial U}{\partial q_k} + \frac{d}{dt} \frac{\partial U}{\partial \dot{q}_k}$$

→ führt wieder auf Lagrange-Gl. wichtigstes Bsp. ist Lorenz Kraft mit Potential

$$U(\vec{r}, \dot{\vec{r}}, t) = \underbrace{e\Phi(\vec{r}, t)}_{\text{el. Pol}} - \underbrace{\frac{e}{c}\vec{A}(\vec{r}, t) \cdot \dot{\vec{r}}}_{\text{Vektorpotential}}$$

6.) Wesentlich ist die Wahl der verallg. Koord. q_k , die das betrachtete "System" definieren.

Restliche Freiheitsgrade werden vernachlässigt oder über Reibungstherme oder externe zeitabhängige Funktionen berücksichtigt.

Bsp 1: Schiefe Ebene mit Steigung α . Achse s liegt in der schiefen Eben ist also die verallg. Koord

$$x(t) = s(t)\cos\alpha$$
 $z(t) = s(t)\sin\alpha$

Mit $T = \frac{m}{2}(\dot{x}^2 + \dot{z}^2)$ und U = mgz

ist

$$L(s, \dot{s}) = T - U = \frac{m}{2}\dot{s}^2 - mg\sin\alpha s$$

mit Lagrange-Gl.

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{s}} = m\ddot{s} = \frac{\partial L}{\partial s} = -mg\sin\alpha$$

mit Lösung:

$$s(t) = -\frac{g}{2}\sin\alpha t^2 + v_0t + s_0$$

Bsp 2: Kreiskegel [bild]

Kart. Koord:
$$L = T + U = \frac{m}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mgz$$

Zylinder Koord:

 $\overline{x = r \cos \varphi} \quad \dot{x} = \dot{r} \cos \varphi - r \sin \varphi \dot{\varphi}$ $y = r \sin \varphi \quad \dot{y} = \dot{r} \sin \varphi + r \cos \varphi \dot{\varphi}$ $z = r \cot \alpha \quad \dot{z} = \dot{r} \cot \alpha$ $\rightarrow \text{ verallg. Koord. z.B. } r, \varphi$

$$L = \frac{m}{2} \left[r^2 \varphi^2 + \dot{r}^2 (1 + \cot^2 \alpha) \right] - mgr \cot \alpha = L(r, \dot{r}, \varphi, \dot{\varphi})$$

Lagrange-Gl.:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial r} = \boxed{\frac{m}{2}(1 + \cot^2 \alpha)2\ddot{x} - mr\dot{\varphi}^2 + mg\cot\alpha = 0}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = \frac{m}{2}\frac{d}{dt}\left[2r^2\dot{\varphi}\right] = m\left[2r\dot{r}\dot{\varphi} + r^2\ddot{\varphi}\right] = 0$$

Reibungskräfte

z.B. Stokessche Reibungskraft

$$F_n^R = -\gamma_n \dot{x}_n$$

Reibungskräften kann kein Potential zugeordnet werden Daher zurück zu Gl.(15)

$$\sum_{n} m_n \ddot{x}_n \frac{\partial x_n}{\partial q_k} = \sum_{n} F_n \frac{\partial x_n}{\partial q_k} = Q_k$$

mit verallg. Kräften

$$Q_k^R = sum_n F_n^R \frac{\partial x_n}{\partial q_k}$$

Rayleisghsche Dissipationsfunktion

$$D(\dot{x}) = \sum_{n} \frac{\gamma_{n}}{2} \dot{x}_{n}^{2}$$

$$\rightarrow D(q, \dot{q}, t) = \sum_{n} \frac{\gamma_{n}}{2} x_{n}(q, \dot{q}, t)$$

$$Q_{k}^{R} = -\sum_{n} \frac{\partial D}{\partial \dot{x}_{n}} \frac{\partial x_{n}}{\partial q_{k}} \stackrel{(7)}{=} -\sum_{n} \frac{\partial D}{\partial \dot{x}_{n}} \frac{\partial \dot{x}_{n}}{\partial \dot{q}_{k}} = \frac{\partial D(q, \dot{q}, t)}{\partial \dot{q}_{k}}$$

$$(7) : \frac{\partial \dot{x}_{n}}{\partial \dot{q}_{k}} = \frac{\partial x_{n}}{\partial q_{k}}$$

 \rightarrow Lagrange-Gl. mit Reibung

2.3.1 Lagrange Formalismus

verallgemeinerte Koordinaten $q=(q_1,\ldots,q_f)$ f=3N-Rn beschw. $q=(\dot{q}_1,\ldots,\dot{q}_f)$

$$L(q, \dot{q}, t) = T - U$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} \quad K = 1, \dots, F$$

2.3.2 Energieerhaltung

Wir betrachten

$$\frac{d}{dt} \sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \dot{q}_{k} = \sum_{k} \dot{q}_{k} \underbrace{\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{k}}}_{\partial L/\partial q_{k}} + \sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}$$
$$\frac{dL}{dt} = \sum_{k} \frac{\partial L}{\partial q_{k}} \dot{q}_{k} + \sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k} + \frac{\partial L}{\partial t}$$
$$\frac{d}{dt} \left(\sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \dot{q}_{k} - L \right) = -\frac{\partial L}{\partial t}$$

 \rightarrow Erhaltungssatz

wenn $\frac{\partial L}{\partial t} = 0$ ist $\sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \dot{q}_{k} - L$ erhalten.

$$\rightarrow k = U(q) \neq U(q,t)$$

Hängen zB nicht explizit von der Zeit ab, $x_n = x - n(q) \neq x_n(q,t)$ sowie das Potential U nicht explizit von den geschwind. U = U(q) ist

$$T = \sum_{k,l} m_{kl}(q) \dot{q}_k \dot{q}_l = T(q, \dot{q})$$

und

$$\sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} = \sum_{k} \frac{\partial T}{\partial \dot{q}_{k}} \dot{q}_{k} = 2T(q, \dot{q})$$

Damit folgt mit: $\partial L/\partial t = 0$

$$\sum_{k} \frac{\partial L}{\partial \dot{q}_{k}} \dot{q}_{k} = -L = T + U = E = \text{conts.} \quad \text{Energieerhaltung}$$

2.4 Symmetrie und Erhaltungsgrößen

Lagrange-Formelismus erleichtert das Finden von Erhaltungsgrößen

Def: 1) Zyklische Koordinate q_k

$$\frac{\partial L}{\partial q_k} = 0$$

2) Verallgemeinerte (oder "kanonisch konjungierter") Impuls

$$p_k = \frac{\partial L}{\partial \dot{q}_k}$$

Mit $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \frac{\partial L}{\partial q_k}$ Wenn q_k Zyklisch, ist p_k erhalten

$$\frac{\partial L}{\partial q_k} = 0 \to p_k = \text{const.}$$

Bsp: freies Teilchen

$$L=T=\frac{m}{2}\vec{\dot{r}}^2$$
hängt von \vec{r} ab $\rightarrow \vec{r}$ ist zyklisch Koord.

 \rightarrow damit $\vec{p}=m\vec{\dot{r}}$ erhalten

Bem: Bezeichnung verallg. Impuls p

$$L = \frac{m}{2}\dot{r}^2 - U(r) \rightarrow p = \frac{\partial L}{\partial \dot{r}} = m\dot{r}$$
 kinematischer Impuls

Die Äquivalenz zwischen verallg. Impuls (2) und kinematischen Impuls $m\dot{r}$ gilt für Geschw.-unabhängige Potentiale.

(gegen)- Bsp: elektormagnetisches Potential mit Vektorpotential \vec{A}

$$\vec{p}=m\vec{\dot{r}}+q\vec{A}$$
 kan. Impuls
$$m\vec{\dot{r}}=\vec{p}-q\vec{A}$$
 kinem. Impuls

Gl. (3) beschreibt Zusammenhang zwischen

• Symmetrie oder Invarianz zB System verändert sich nicht bei Translation in q_k d.g. L kann nicht von q_k abhängen $\frac{\partial L}{\partial q_k} = 0$ und

• Erhaltung zugehöriger verallg. Impuls p_k ist erhaltern: $\frac{dp_k}{dt} = 0$

allg. Idee:

geg. Erhaltungsgröße f, mit $\frac{d}{dt}f(q,\dot{q},t)=0$ bildet eine "Konstante der Bewegungöder ërtes Integral"

- → erleichtert Lösung der Lagrange-Gl.
- \rightarrow Wähle verallg. Koord. so, da möglichst viele Erhaltungsgrößen aufgestellt werden, da
 - jede Erhaltungsgröße (zB E, \vec{p}, \vec{L}) verringert die Anzahl der Integrationen der Bew.Gl unter 1.
 - \bullet Erhaltungsgößen sind nützlich bei Interpretation z
B Drehimpulserhaltung $\to 2.$ Keplersche Gesetz
 - \bullet geg. genügende Anzahl von Erhalt. größen \rightarrow system kann nicht chaotisch sein

Bsp: kreiskegel: verallg. Koord. r, φ

$$L = \frac{m}{2} [r^2 \dot{\varphi}^2 + \dot{r}^2 (1 + \cot^2 \alpha)] - mg \cot \alpha r$$

Bew.Gl:

$$2\dot{r}\dot{\varphi} - r\ddot{\varphi} = 0\tag{1}$$

$$(1 + \cot^2 \alpha)\ddot{r} - r\dot{\varphi}^2 - g\cot \alpha = 0 \tag{2}$$

L hängt nicht von φ ab $\to \varphi$ ist zykl. Koord.

$$\rightarrow p_{\varphi} = \frac{\partial L}{\partial \varphi} = mr^2 \dot{\varphi} = \text{const.}$$
 (3)

- ullet Erhaltung der z-Komp. der Drehimpulses
- Energieerhaltung

$$E = T + U = \text{const.} \tag{4}$$

(3) und (4) sind DGL 1. Ord. während Gl. (1), (2) DGL 2. Ord. sind. \rightarrow leite (3), (4) aus (1), (2) her:

- 1. Mutiplikation: (1), $r: 2r\dot{r}\dot{\varphi} + r^2\ddot{\varphi} = 0$ $\rightarrow \frac{d}{dt}(r^2\dot{\varphi}) = 0 \rightarrow r^2\dot{\varphi} = \text{const.}$
- 2. Multiplikation von (2) mit \dot{r} : $(1 + \cot^2 \alpha)\dot{r}\ddot{r} \dot{r}\frac{p_{\varphi}^2}{m^2r^3} + g\cot\alpha\ \dot{r} = 0$ und Gl. (3)

$$\rightarrow \frac{d}{dt}[(1+\cot^2\alpha)\frac{\dot{r}^2}{2} + \frac{1}{m^2r^2}p_{\varphi}^2 + g\cot\alpha \ r] = 0$$
$$= \frac{d}{dt}\left(\frac{E}{m}\right) = 0$$

Intergration von (4) mit

$$\left(\frac{dr}{dt}\right)^2 = \left[E - \frac{m}{2} \frac{p_{\varphi}^2}{m^2 r^2} - mg \cot \alpha\right] \frac{2}{m} \frac{1}{(1 + \cot^2 \alpha)}$$
$$1 + \cot^2 \alpha = \frac{a \sin^2 \alpha + \cos^2 \alpha}{\sin^2 \alpha} = 1/\sin^2 \alpha$$

Separation der Variablen:

$$t = \pm \int \frac{dr}{\frac{2}{m} \left[E - \frac{p_{\varphi}^2}{2mr^2} - mg\cot\alpha \ r\right] \sin\alpha}$$
 (5)

und damit r(t)

Damit kann Gl. (3) integriert werden

$$\varphi(t < 9) = \frac{p_{\varphi}}{m} \int \frac{dt}{r^2(t)} \tag{6}$$

Vgl mit Zentralproblem: effektives Potential

$$U_{\text{eff}}(r) = \frac{mg \cot \alpha \ r}{\gamma} + \frac{p_{\varphi}^2}{2mr^2}$$

minimum bei: $\frac{\partial U_{\text{eff}}}{dr} = \gamma \frac{p_{\varphi}^2}{2mr^3} = 0$

2.4.1 Noether-Theorem

Emmi Noether (1882 - 1935), deutsche Mathematikerin Verallg. des Zusammenhangs zwischen Invarianz und Erhaltung Geg: $L = L(q, \dot{q}, t)$ mit Lösung $q(t) = (q_1(t), \dots, q_f(t))$

"Noether Theorem"

Ist L invariant unter der Trafo

$$q_i(t) \to q_i(t, \alpha)$$
 (1)

also

$$L(q(t,\alpha),\dot{q}(t,\alpha),t) = L(q(t),\dot{q}(t),t) \tag{2}$$

so ist die größe

$$\sum_{i=1}^{f} \left. \frac{\partial L}{\partial \dot{q}_i} \left. \frac{\partial q_i}{\partial \alpha} \right|_{\alpha=0} \right. \tag{3}$$

erhalten.

Bsp. für Trafos sind:

- Transformation $q_i = q_i + \alpha$
- Rotation um geg. Achse mit Winkel α

Beweis:

$$\begin{split} \frac{\partial}{\partial \alpha} L(q(t,\alpha),\dot{q}(t,\alpha),t) \bigg|_{\alpha=0} &\stackrel{(2)}{=} \frac{\partial}{\partial \alpha} L(q(t)\dot{q}(t),t) \bigg|_{\alpha=0} = 0 \\ 0 &= \sum_{i=1}^{f} \left(\frac{\partial L}{\partial q_i} \frac{\partial q_i}{\partial \alpha} + \frac{\partial L}{\partial \dot{q}_i} \frac{\partial \dot{q}_i}{\partial \alpha} \right) \bigg|_{\alpha=0} \\ &= \sum_{i} \underbrace{\left[\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \right]}_{=0, \text{ wenn } q_i \text{ L\"osung}} \frac{\partial q_i}{\partial \alpha} \bigg|_{\alpha=0} + \underbrace{\frac{d}{dt} \sum_{i} \frac{\partial L}{\partial \dot{q}_i} \frac{\partial q_i}{\partial \alpha}}_{=0} \bigg|_{\alpha=0} = 0 \end{split}$$

Bem: Beweis gilt für alle α , also auch für $\alpha = 0$. Mit $\alpha = 0$ werden oft Ausdrücke einfacher.

Invarianz

Zyklische Variable q_a mit $\frac{\partial L}{\partial q_a} = 0 \leftrightarrow \text{verallg. Impuls } p_a = \frac{\partial L}{\partial \dot{q}_a} = \text{const.}$

zB:
$$L = \frac{m}{l}\dot{x}^2 \rightarrow p = m\dot{x} = \text{const.}$$

Allg: Ist $L(q(t), \dot{q}(t), t)$ invariant bzgl. $q_i(t) \to q_i(t, \alpha)$ ist die Größe

$$\left. \sum_{i=1}^{f} \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial q_{i}}{\partial \dot{\alpha}} \right|_{\alpha=0} \text{ erhalten}$$

Verallg.: Falls L nicht invariant bzgl. Trafo, aber gilt

$$\left. \frac{\partial}{\partial \alpha} L(q(t,\alpha),\dot{q}(t,\alpha),t) \right|_{\alpha=0} = \underbrace{\frac{\partial}{\partial \alpha} L(q(t),\dot{q}(t),t)}_{=0} + \underbrace{\frac{d}{dt} F(q(t),\dot{q}(t),t)}_{=0}$$

mit beliebiger Funktion F, so folgt

$$0 = \frac{\partial L}{\partial \alpha} + \frac{dF}{dt} = \sum_{i} \frac{\partial L}{\partial q_{i}} \left. \frac{\partial q_{i}}{\partial \alpha} \right|_{\alpha=0} + \frac{\partial L}{\partial \dot{q}_{i}} \left. \frac{\partial \dot{q}_{i}}{\partial \alpha} \right|_{\alpha=0} + \frac{dF}{dt}$$

$$= \sum_{i} \left[\frac{\partial L}{\partial q_{i}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{i}} \right] \frac{\partial q_{i}}{\partial \alpha} \Big|_{\alpha=0} + \underbrace{\frac{d}{dt} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial q_{i}}{\partial \alpha} + F \right]}_{=0} = 0$$

und damit

$$\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial q_{i}}{\partial \alpha} + F(q, \dot{q}, t) \tag{*}$$

ist erhalten.

Translation: Lagrange Funktion $L(\vec{r_1}, \dots, \vec{r_N}, \vec{\dot{r_1}}, \dots, \vec{\dot{r_N}}, t)$ sei invariant unter Trafo

$$\vec{r}_i(t) \to \vec{r}_i(t, \alpha) = \vec{r}_i(t) + \alpha \vec{e}$$

wobei \vec{e} ein beliebiger (aber konst.) Einheitsvektor ist. Gilt zB wenn Pot. U nur von Differenzvektoren abhängt

$$\vec{r}_i(t,\alpha) - \vec{r}_j(t,\alpha) = \vec{r}_i(t) - \vec{r}_j(t)$$

Damit ist

$$\left. \frac{\partial \vec{r_i}(t,\alpha)}{\partial \alpha} \right|_{\alpha=0} = \vec{e}$$

und

$$\sum_i \frac{\partial L}{\partial \vec{r}_i} \vec{e} = \sum_i m_i \vec{r}_i \cdot \vec{e} = \vec{p} \cdot \vec{e} \quad \text{ ist die erhaltene Größe}$$

Da \vec{e} beliebig ist, ist Gesamt Impuls erhalten. Bei speziellen Vektor $\vec{e_0}$ ist nur $\vec{p} \cdot \vec{e_0}$ Komponente erhalten d.h.

Invarianz bzgl. Translation um $\vec{e} \leftrightarrow$ Impuls p_e ist erhalten. Symmetrie: "Homogenität der Raumes"

anschaulich: keine Hindernisse im Raum

Rotationsinvarianz Sei

$$L(\vec{r}, \vec{r}) = \frac{m}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - U(x^2 + y^2 + z^2)$$

in Zylinderkoord:

$$L(r, \varphi, z, \dot{r}, \dot{\varphi}, \dot{z}) = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\varphi}^2 + \dot{z}^2) - U(r^2, z)$$

ist bzgl. der Trafo $\varphi \to \varphi + \alpha$ invariant

Folglich ist

$$\frac{\partial L}{\dot{\varphi}} \left. \frac{\partial \varphi}{\partial t} \right|_{\alpha=0} = mr^2 \dot{\varphi} \frac{\partial (\varphi + d)}{\partial \alpha} = mr^2 \dot{\varphi} = L_z$$

erhalten

Invarianz bzgl. Drehung um $\vec{e} \leftrightarrow$ Drehimpuls L_e ist erhalten. Symmetrie: Isotropie des Raumes

d.h. keine Richtung ausgezeichnet.

Translation in der Zeit

$$t \to t + \alpha$$
. d.h. $q_i(t, \alpha) = q_i(t + \alpha)$

Damit

$$\frac{\partial q_i(t,\alpha)}{\partial \alpha} \bigg|_{\alpha=0} = \frac{\partial q_i}{\partial t} \frac{\partial \alpha}{\partial t} \bigg|_{\alpha=0} = q_i$$

$$\frac{\partial \dot{q}_i(t,\alpha)}{\partial \alpha} \bigg|_{\alpha=0} = \ddot{q}_i$$

Betrachte

$$\frac{\partial}{\partial \alpha} L(q(t+\alpha), \dot{q}(t+\alpha), t) \Big|_{\alpha=0} = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} \frac{\partial q_{i}(t+\alpha)}{\partial \alpha} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\partial \dot{q}_{i}(t+\alpha)}{\partial \alpha} \right)_{\alpha=0}$$

$$= \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}$$

und

$$\frac{dL(q(t), \dot{q}(t), t)}{dt} = \frac{\partial L}{\partial t} + \sum_{i} \left(\frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i \right)$$

$$\rightarrow \frac{\partial L}{\partial \alpha}\Big|_{\alpha=0} = \frac{dL}{dt}$$
 falls L nicht explizit von Ziel abhängt d.h. $\frac{\partial L}{\partial t} = 0$

mit (*) und $F(q, \dot{q}, t) = -L(q, \dot{q}, t)$, somit ist erhalten

$$\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} - L(q, \dot{q}) \text{ Formel hergeleitet bei Energieerhaltung}$$

$$=T+U=E=$$
 const. d.h. Energieerhaltung

Invarianz unter Zeittranslation \leftrightarrow Energieerhaltung Symmetrie: Homogenität der Zeit

anschaulich: Experiment verläuft heute genauso wie morgen

Bem:

• Die durch das Noether Theorem beschriebene Beziehung

 $Invarianz/Symmetrie \leftrightarrow Erhaltung$

ist fundamental und allg. gültig. Gilt also auch in QM und relativistischer Mechanik.

• zB: liefert die Erhaltung von Ladung, Isospin,... Konstruktionsbedingungen für entsprechende Theorien.

2.5 Hamiltonsches Prinzip

2.5.1 Funktionale und Variationsrechnung

- Funktion $x \to y = f(x)$ ordnet jeder Zahl x eine Zahl y zu. Extrema durch Nullstellen der Ableitung $\frac{df}{dx}$
- Funktional $y = f(x) \to J[y]$ ordnet einer Funktion f(x) eine Zahl J zu.

Bsp1: Kürzeste Wegstrecke Wegstrecke:

$$J = J[y] = \int_1^2 ds$$
$$= \int_{\lambda_1}^{\lambda_2} dx \sqrt{1 + y'(x)^2}$$

kürzeste Wegstrecke: $J[y] = \min$. (Ergebnis aus Kurvenintegral)

Bsp2: Brachistochrone Bernulli (1696)

Masse m gleitet reibungslos wegen Schwerkraft auf Kurve y(x). Für welcher y(x) ist die Zeit T minimal?

$$\left. \begin{array}{l} \text{Mit } v = \frac{ds}{dt} \quad dt = \frac{ds}{V} \\ ds = \sqrt{1 + y^{12}} \ dx \\ \frac{1}{2}mv^2 = mgy \to v = \sqrt{2gy} \end{array} \right\} \to T = \int_{x_1}^{x_2} dx \ \sqrt{\frac{1 + y^{12}}{2gy(x)}}$$

2.5.2 Euler-Lagrange-Gl.

Problem: Welche Funktion y(x) macht Funktional

$$J[y] = \int_{x_1}^{x_2} dx \ F(y, y', x) \tag{1}$$

minimal, wobei differentierter Funktion F und $y_1 = y(x_1), y_2 = y(x_2)$ bekannt sind.

Sei y(x) die gesuchte Funktion mit $J[y] = \min$.

Die Variation

$$y(x) \to y(x) + \epsilon \eta(t)$$
 (2)

mit infinit. ϵ und beliebigen diff. baren Funktion $\eta(1)$ die die Randbeding. $\eta(x_1) = \eta(x_2) = 0$

$$J[y + \epsilon \eta]$$
 ist minimal bei $\epsilon = 0 \quad \forall \eta$ (3)

Die Bestimmung von y über (3) wird als Variationsrechnung bezeichnet.

$$J[y + \epsilon \eta] = \int_{x_1}^{x_2} dx \ F(y + \epsilon \eta, y' + \epsilon \eta', x)$$
$$= \int_{x_1}^{x_2} dx \ [F(y, y', x) + \frac{\partial F}{\partial y}(y, y', x) \epsilon \eta(x) + \frac{\partial F}{\partial y'}(y, y', x) \epsilon \eta'(x)]$$

Damit

$$0 = \frac{dJ(y + \epsilon \eta)}{d\epsilon} \bigg|_{\epsilon=0} = \int_{x_1}^{x_2} dx \left[\frac{\partial F}{\partial y} \eta(x) + \frac{\partial F}{\partial y'} \eta'(x) \right]$$

[Par. Int: $\int uv' = \int uv - \int vu'$ für 2. Term]

$$\underbrace{\frac{\partial F}{\partial y'}\eta(t)\Big|_{x_1}^{x_2}}_{y, \text{ da } \eta(x_1)=\eta(x_2)=0} + \int_{x_1}^{x_2} dx \left[\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'}\right]\eta(t)$$

Da η beliebig sein kann, muss Klammer verschwinden

$$\rightarrow \frac{d}{dx}\frac{\partial F(y,y',t)}{\partial y'} = \frac{\partial F(y,y',t)}{\partial y}$$
 (4)

Euler-Lagrange-Gl.

- Hängt nicht von $\eta(x)$ ab
- notwendige Bedingung für Extremum

Mit variation $\delta_y = \epsilon \eta(x)$ können wir (3) schreiben

$$\delta J = J[y + \delta y] - J[y] = 0$$

$$= \int_{x_1}^{x_2} dx \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right)$$

$$= \int_{x_1}^{x_2} dx \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} \right) \delta y$$

$$= \int_{x_1}^{x_2} dx \left(\frac{\delta F}{\delta y} \right) \delta y = \int_{x_1}^{x_2} dx + \delta F(y, y', t)$$
(5)

wobei

$$\frac{\delta F}{\delta y} = \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} \text{ als } \underline{\text{Funktionalableitung}} \text{ bezeichnet wird}$$

Gl. (4) und (5) sind äquivalent

"Variationsprinzip"

$$\frac{d}{dt}\frac{\partial F}{\partial y} = \frac{\partial F}{\partial y} \leftrightarrow \delta J = 0$$

2.5.3 Variationsrechnung

 $\underline{\text{Funktional:}} y = f(x) \to J[y]$

z.B. Weglänge s der Kurve y(x)

$$J[y] = \int_{x_1}^{x_2} \sqrt{1 + y'(x)^2} \, dx$$

allg:

$$J[y] = \int_{x_1}^{x_2} dx F(y, y', x)$$

Extrema über <u>Variation</u> $\delta_y = \epsilon \eta(x)$

$$\left. \frac{\partial J}{\partial t} \right|_{\epsilon=0} = 0$$

$$\delta J = J[y + \delta_y] - J[y] = 0 \leftrightarrow \text{ Extrema von } J$$

äquivalent zu den Euler-Lagrange-Gl

Extremalbedingungen

$$\frac{d}{dx}\frac{\partial F}{\partial \dot{y}} = \frac{\partial F}{\partial y} \quad \leftrightarrow \quad \delta J = 0$$

Bsp: Kürzeste Verbindung

$$J = \int ds = \int_{x_1}^{x_2} dx \underbrace{\sqrt{1 + y'^2}}_{F} = \min$$

Euler-Lagrange-Gl.

$$\frac{d}{dx}\frac{\partial F}{\partial \dot{y}} = \frac{d}{dx}\frac{2y'(x)}{2\sqrt{1+y'^2}} = \frac{\partial F}{\partial y} = 0$$

Integration:

$$\frac{\partial F}{\partial \dot{y}} \int_{x_1}^{x_2} = \frac{y'(x_2)}{\sqrt{1 + y'(x_2)^2}} - \frac{y'(x_1)}{\sqrt{1 + y'(x_1)^2}} = 0$$

$$\to y' = \text{const.} \quad , \quad y(x) = ax + b$$

a, b aus x_1, x_2

Verallgemeinerung:

(1) Hängt F von meheren Funktionen y_i (i = 1, ..., f) ab, so erhalten wir $\frac{\partial J}{\partial \epsilon_i}|_{\epsilon_i=0} = 0$ und damit f Euler-Lag-Gl.

$$\frac{d}{dx}\frac{\partial F}{\partial y_i'} = \frac{\partial F}{\partial y_i}$$

(2) Hängt y von mehreren Argumenten ab, $y = y(x_1, ..., x_n)$ so erhalten wir

$$J[y] = \int dx_1 \cdots \int dx_n F(y, \frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_n}, x)$$

$$\left. \text{Mit } \left. \frac{\partial J}{\partial E} \right|_{\epsilon=0} = 0$$

Euler-Lagrange-Gl:

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \frac{\partial F}{\partial y / \partial x_i} - \frac{\partial F}{\partial y} = 0$$

2.6 3. Hamiltonsche Prinzip

Die Korrespondierenz

$$y_{i}(x) \quad \leftrightarrow \quad q_{i}(t)$$

$$F(y, y', x) \quad \leftrightarrow \quad L(q, \dot{q}, t)$$

$$\frac{d}{dx} \frac{\partial F}{\partial y'_{i}} = \frac{\partial F}{\partial y} \quad \leftrightarrow \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{k}} = \frac{\partial L}{\partial q_{i}}$$

$$y = (y_1, \dots, y_f) \qquad q = (q_1, \dots, q_f)$$

 \rightarrow

- Lösungsverfahren der Lagrange-Gl. (z.B. über Erhaltungssätze) können in Variationsrechnung verwendet werden
- physikalische Bedeutung der Variationsrechnung

Wir ordnen jeder Bahnkurve q(t) ein Wirkungsfunktional

$$S = S[q] = \int_{t_1}^{t_2} dt \ L(q, \dot{q}, t)$$

S wird oft Wirkung genannt

Gemäß dem Variationsprinzip sind damit die Lagrange-Gleichungen äquivalent zu der Formulierung, dass die Variation der Wirkung gleich Null ist:

"Hamiltonsche Prinzip"

$$\delta S[q] = 0$$

Bewegung verläuft so, dass Bahnkurve q(t) die Wirkung S minimiert: "Prinzip der kleinsten Wirkung" Bem:

- Anstele von <u>DGL</u> (wie Newton, Lagrange) kann das Grundgesetz der Mechanik also auch als Variationsprinzip formuliert werden
- andere Bsp:

- Optik: Fermatsche Prinzip Licht nimmt seinen Weg so, dass die Laufzeit $t[x] = \frac{1}{C} \int_{x_1}^{x_2} dx \ n(x) \stackrel{!}{=} \min \quad n(x)$: Brechungsindex
- Thermodynamik: 2. Hauptsatz Entropie S nimmt immer zu
- auch die QM kann durch ein Variationsprinzip beschrieben werden

2.6.1 Schwingung einer Seite

Seite zwischen zwei wänden mit Abstand 1 auf der x Achse Auslenkung n(x,t) = Feld

- Bsp für Kontinuumsmechanik, d.h. Dynamik elastischer Körper inklusive Balkenbiegung und Hydrodynamik
- Bsp für einfahce klassische Feldtheorie
- führt auf Wellengleichung
- Analogie zu QM

Bsp für Felder: el. Feld $\vec{E}(\vec{r},t)$, Temperaturfeld $T(\vec{r},t)$, Wellen
funktion $\Psi(\vec{r},t)$ zentrale Größe in Feldtheorie

Bewegungsgleichung für Felder, sogenannte Feldgleichung, sind partielle DGL

Herleitung der Wellengleichung

Ansatz:

- Saite = N Massenelemente Δm durch Federn verbunden
- \bullet zuletzt: $N \to \infty$ "Kontinuumslimes"
- $l = N\Delta x \quad N \gg 1$
- Massen Δm_i bei $x_i (i \frac{1}{2})\Delta x$ (i = 1, ..., N) Auslenkung $u_i(t) = u(x_i, t)$

$$T = \sum_{i} \frac{\Delta m_i}{2} \left(\frac{du_i}{dt}\right)^2 = \sum_{i} \frac{\rho \Delta x}{2} \dot{u}_i^2 \tag{1}$$

mit Massendichte $\rho = \text{Masse/Länge}$ Abstand zwischen *i*-ten und (i+1)-ten Massenpunkt

$$\Delta s = \sqrt{\Delta x^2 + (u_{i+1} - u_i)^2}$$

für kleine Auslenkungen

$$\approx \Delta x \left[1 + \frac{(u_{i+1} - u_i)^2}{2\Delta x^2}\right]$$

(keine wurzel mehr wegen 1. Ordnung Entwicklung ...) In Ruhelage $\Delta s = \Delta x$ existiert eine Vorspannkraft P der Seite Beitrag zur pot. Energie $\sim P \cdot (\Delta s - \Delta x)$

$$U = \sum_{i} P\Delta x \frac{(u_{i+1} - u_i)^2}{2\Delta x^2} \tag{2}$$

 $N \to \infty$: $u_i(t) \to u(x,t)$

$$T = \lim_{N \to \infty} \frac{\rho}{2} \sum_{i} \Delta x \left(\frac{\partial u(x_{i}, t)}{\partial t} \right)^{2}$$
$$= \frac{\rho}{2} \int_{0}^{l} dx \underbrace{\left(\frac{\partial u(x_{i}, t)}{\partial t} \right)^{2}}_{=:\dot{u}^{2}}$$

$$\lim_{\Delta x \to 0} \frac{u_{i+1}(t) - u_i(t)}{\Delta x} = \frac{\partial u(x, t)}{\partial x} = u'$$

$$U = \lim_{N \to \infty} \frac{\rho}{2} \sum_{i} \Delta x \frac{(u_{i+1} - u_i)^2}{\Delta^2 x}$$
$$= \frac{\rho}{2} \int_0^l dx \underbrace{\left(\frac{\partial u(x,t)}{\partial x}\right)^2}_{=:u'^2}$$

Damit ist

$$L(\dot{u}, u') = \int_0^l dx \underbrace{\left[\frac{\rho}{2}\dot{u}^2 - \frac{P}{2}u'^2\right]}_{\text{Lagrange-Dichte}} \mathcal{L}_{(\dot{u}, u')}$$
(3)

Hamilton Prinzip

$$\delta S = \delta \int_{t_1}^{t_2} dt \int_0^l dx \mathcal{L}(\dot{u}, u') = 0$$

Euler-Lagrange-Gl.

für 2 Argumente $x_1 = x, x_2 = t$

und $F = \mathcal{L}, y = u$

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{u}} + \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial u'} - \frac{\partial \mathcal{L}}{\partial u} = 0$$
$$\rho \ddot{u} + P u'' - 0 = 0$$

mit $c=\sqrt{\frac{P}{S}}$ " Wellengeschwindigkeit"

Wellengleichung

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t} = 0$$

Randbedingungen: U(0,t) = u(l,t) = 0

Anfangsbedingungen: $U(x, t_0) = u_0$, $\dot{u}(x, t_0) = \dot{u}_0$

Lösung der Wellengleichung: Ansatz:

$$u(x,t) = u_0 e^{\pm i(kx - \omega t)}$$

Amplitude u_0 , Wellenvektor k, Frequenz ω

eingesetzt: $u'' = \frac{1}{c^2}\ddot{u} \rightarrow -uk^2 = -\frac{1}{c^2}\omega^2u$

Lösung, falls $\omega = ck$ Dispersions relation

allg. Lösung durch Linearkombination im Kontinuumlimit erhalten

$$u(x,t) = \int_{-\infty}^{\infty} dk \ u(k)e^{\pm(kx-\omega t)}$$
 Fourier-Trafo

Bsp: Stehende Welle

Superposition zwischen rechtslaufenden und linkslaufenden Wellen

$$u = \cos(kx - \omega t) - \cos(-kx + \omega t)$$

$$= \operatorname{Re} e^{ikx} \underbrace{\left(e^{-i\omega t} - e^{i\omega t}\right)}_{2i\sin\omega t}$$

$$= 2 \operatorname{Im} e^{ikx} \sin\omega t = 2\sin kx \sin\omega t$$

d.h. unabhängig von t erhält man "Knoten" (Nullstellen) für $\sin kx=0$ Randbedingung: u(x=0,t)=u(x=l,t)=0 $\sin kl=0 \to k=\pi \frac{n}{l}$

s.h. es können nur Wellen mit bestimmten Wellenlängen λ_n auftreten

$$\lambda_n = \frac{2\pi}{k} = \frac{2l}{n}$$
$$\omega_n = ck = \frac{n\pi c}{l}$$

 $n = 1, 2, 3 \dots$

ein Wellenbauch \rightarrow "Grundschwinung"

zwei Bäuche (doppelte Frequenz) "1. angeregte Schwingung" 1. Oberton drei Bäuche (1,5 fache Frequenz) "2. angeregte Schwinung" 2. Oberton Analogie zum QM Teilchen im Kasten

 \rightarrow Quantisierung

2.6.2 Der Starre Körper

- System von Massenpunkten mit $|\vec{r_i} \vec{r_j}| = \text{const.}$ z.B.
 - starres Molekül
 - Näherung für kontinuierliche Massenverteilung
- Bewegung besteht aus
 - Translation, d.h. alle Teilchen haben gleiche Geschwindigkeit
 - Drehung um einen körperfesten Koordinaten Ursprung 0
 - $\rightarrow 2 + 3 = 6$ Freiheitsgrade

Raumfestes Inertialsystem (IS) mit x, y, z und Körperfestes Koord.system (KS) x_1, x_2, x_3 KS: Ursprung bei $0 \cong \text{im IS } \vec{r_0}(t)$

(z.B. der Schwerpunkt) $\rightarrow \vec{v}_0 = \frac{d\vec{r}_0}{dt}$

KS dreht sich relativ zum IS mit

$$\vec{\omega}(t) = \frac{d\vec{\varphi}}{dt}$$

 \vec{r}_n seien die Orte des n-ten Teilchens im KS $\vec{r}_{n,\mathrm{IS}}$ seien die Orte des n-ten Teilchens im IS

$$\vec{r}_n = \vec{r}_{r,\rm IS} - \vec{r}_0$$

Geschwindigkeit im IS:

$$\frac{d\vec{r}_{r,IS}}{dt} = \underbrace{\frac{d\vec{r}_0}{dt}}_{=v_0} + \frac{d\vec{r}_n}{dt}$$

Mit I.4 Beschleunigte Bezugssysteme: für beliebigen Vektor \vec{G} ist

$$\frac{d\vec{G}_{\rm IS}}{dt} = \frac{d\vec{G}_{\rm KS}}{dt} + \vec{\omega} \times \vec{G}_{\rm KS} \tag{*}$$

z.B.
$$\frac{d\vec{r}_{IS}}{dt} = \frac{d\vec{r}}{dt} + \vec{\omega} \times \vec{r}$$
$$\vec{v}_{n,IS} = \vec{v}_0 + \vec{\omega} \times \vec{r}_n$$
(1)

Kinetische Energie

$$T = \sum_{n} \frac{m_{n}}{2} \vec{v}_{n,\text{IS}}^{2} = \sum_{n} \frac{m_{n}}{2} [\vec{v}_{0} + \vec{\omega} \times \vec{r}_{n}] \qquad n = 1, \dots, N$$

$$= \sum_{n} \frac{m_{n}}{2} \vec{v}_{0}^{2} + \sum_{n} m_{n} \vec{v}_{0} (\vec{\omega} \times \vec{r}_{n}) + \sum_{n} \frac{m_{n}}{2} (\vec{\omega} \times \vec{r}_{n})^{2}$$

$$= \frac{M}{2} \vec{v}_{0}^{2} + (\vec{v}_{0} \times \vec{\omega}) \sum_{n} m_{n} \vec{r}_{n} + \sum_{n} \frac{m_{n}}{2} (\vec{\omega} \times \vec{r}_{n})^{2}$$

$$= T_{\text{trans}} + T_{\text{rot-trans}} + T_{\text{rot}}$$

$$(2)$$

2 Fälle:

• Körper wird in keinem Punkt festgehalten Mit $\vec{0} = \vec{R}$ (Schwerpunkt) ist $\sum_{i} m_i \vec{r_i} = 0$

$$\rightarrow T = T_{\rm trans} + T_{\rm rot}$$

• Körper wird in mindestens einem Punkt festgehalten Mit $\vec{0} = \vec{P}$ ist $\vec{v}_0 = 0$ (z.B. bei Kreisel)

$$\rightarrow T = T_{\rm rot}$$

Mit $\vec{\omega} = (\omega_1, \omega_2, \omega_3)$ $\vec{r}_n = (x_{1n}, x_{2n}, x_{3n})$ Und der Identität

$$(\vec{\omega} \times \vec{r})^2 = \omega^2 r^2 - (\vec{\omega} \cdot \vec{r})^2$$

$$= \sum_{k=1}^3 \omega_k^2 r^2 - \sum_{i,k}^3 \omega_i x_i - \omega_k x_k \qquad i, j, k = 1, 2, 3$$

$$= \sum_{i,k} \omega_i \omega_k (r^2 \delta_{ik} - x_i x_k)$$

wird

$$T = \frac{1}{2} \sum_{n=1}^{N} m_1 (\vec{\omega} \times \vec{r}_n)^2$$
$$\equiv \frac{1}{2} \sum_{i,k=1}^{3} I_{ik} \omega_i \omega_k$$

mit dem Trägheitstensor

$$I_{ik} = \sum_{n=1}^{N} m_n (r_n^2 \delta_{ik} - x_{ik} x_{kn})$$
 (3)

Im Matrixschreibweise $I = \{I_{ik}\}$ ist

$$T_{\rm rot} = \frac{1}{2}\vec{\omega}I\vec{\omega} \tag{4}$$

Bem:

• Begriff Tensor: ursprünglich von Spannungstensor (Physik) Mathe: Tensor

2. Stufe $\hat{=}$ Matrix

• (4) ist eine Bilinearform

• Dreht sich Kürper um eine körperfeste Achse (z.B. $\vec{\omega} = \begin{pmatrix} 0 \\ 0 \\ \omega z \end{pmatrix}$) so geht (4) über in

$$T_{\rm rot} = \frac{I_z}{2}\omega_z^2$$

 I_z : Trägheitsmoment des Körpers bzgl. \vec{e}_z

• Bei kontinuierlicher Massenverteilung mit Dichte $\rho(\vec{r})$ ist

$$I_{ij} = \int d\vec{r} \rho(\vec{r}) (\vec{r}^2 \delta_{ij} - rir_j)$$

Trägheitstensor ist symm., $T_{ij} = T_{ji}$ und kann daher mit einer orthogonalen Trafo U

$$(U^+ = U^{-1}, U^+U = 1 = UU^+)$$

auf Diagonalform gebracht werden

$$U^+IU = \begin{pmatrix} I_1 & 0 \\ & I_2 \\ 0 & i_3 \end{pmatrix} \rightarrow \text{Eigenwert Problem "Hauptachsen-Trafo"}$$

wobei die Eigenvektoren die Hauptträgheitsachsen und die Eigenwere I_i (i = 1, 2, 3) die Hauptträgheitsmomente sind.

Symmetrie des Körpers legt die Achse fest z.B. bei Kreisel

- "Kugelkreisel"; wenn alle I_i gleich sind (Kugel, Würfel, Zylinder mit $h = \sqrt{3}r$)
- Symmetrischer Kreisel; $I_1 = I_2, I_3 \neq I_1$
- \bullet asymmetrischer Kreisel; alle I verschieden

Drehimpuls:

in KS ist

$$\vec{L} = \sum_{n=1}^{N} m_n (\vec{r}_n \times \dot{\vec{r}}_n)$$

$$\stackrel{(1)}{=} \sum_n m_n (\vec{r}_n \times (\vec{\omega} \times \vec{r}_n))$$

Mit

$$\vec{r} \times (\vec{\omega} \times \vec{r}) = \vec{\omega}r^2 - \vec{r}(\vec{\omega} \cdot \vec{r})$$
$$= \sum_{i,k=1}^{3} (r^2 \delta_{ij} - x_i x_n) \omega_k \vec{e}_i$$

ist

$$\vec{L} = \sum_{i,k=1}^{3} I_{ik} \omega_k \vec{e_i} = \sum_i L_i \vec{e_i}$$

oder

$$\vec{L} = I\vec{\omega} \tag{5}$$

Eulersche Gleichungen

$$\frac{d}{dt}\vec{L} = \vec{M}$$

$$\frac{d}{dt}\vec{L} = \frac{d}{dt}\sum_{n=1}^{N} m_n(\vec{r}_n \times \dot{\vec{r}}_n) = \frac{d}{dt}(I \cdot \vec{\omega})$$

$$= \vec{M} = \sum_{n=1}^{N} \vec{r}_i \times \vec{F}_n^A$$

Mit Gl. (*) ist dann

$$\frac{d}{dt}(I\vec{\omega})_{\rm IS} = \frac{d}{dt}(I\vec{\omega})_{\rm KS} + \vec{\omega} \times (I\vec{\omega}) = \vec{M}$$
 (6)

Ist KS das Haupsachsensystem mit

$$I = \begin{pmatrix} I_1 & 0 \\ I_2 & \\ 0 & I_3 \end{pmatrix}$$

so ist

$$\frac{d}{dt}(I\vec{\omega})_{KS} = \begin{pmatrix} I_1\dot{\omega}_1\\ I_2\dot{\omega}_2\\ I_3\dot{\omega}_3 \end{pmatrix}$$

$$\begin{pmatrix} \omega_1\\ \omega_2\\ \omega_3 \end{pmatrix} \times \begin{pmatrix} I_1\omega_1\\ I_2\omega_2\\ I_3\omega_3 \end{pmatrix} = \begin{pmatrix} \omega_2\omega_3(I_3 - I_2)\\ \omega_1\omega_3(I_1 - I_3)\\ \omega_1\omega_2(I_2 - I_1) \end{pmatrix}$$

und damit

Eulersche Gleichungen

$$I_{1}\dot{\omega}_{1} + (I_{3} - I_{2})\omega_{2}\omega_{3} = M_{1}$$

$$I_{2}\dot{\omega}_{2} + (I_{1} - I_{3})\omega_{1}\omega_{3} = M_{2}$$

$$I_{3}\dot{\omega}_{3} + (I_{2} - I_{1})\omega_{2}\omega_{1} = M_{3}$$
(7)

I.A. Schwer zu Lösen, da nicht linear und M zeitabhängig

Bsp: Kräftefreier symmetrischer Kreisel

Körper steht auf Schwerpunkt (wie falschrumer Blumentopf) (x_3 in der Kreiselsymmetrieachse: "Figurenachse")

 $I_1 = I_2$ $I_3 \neq I_1 \rightarrow$ relationssymm. bzgl. x_3 Achse $\vec{M} = 0$ Damit:

$$I_1 \dot{\omega}_1 + (I_3 - I_2)\omega_2 \omega_3 = 0 \to \dot{\omega}_1 - \Omega \omega_2 = 0$$
 (a)

$$I_{2}\dot{\omega}_{2} + (I_{1} - I_{3})\omega_{1}\omega_{3} = 0 \rightarrow \dot{\omega}_{2} - \Omega\omega_{1} = 0$$

$$I_{3}\dot{\omega}_{3} = 0 \rightarrow \omega_{3} = \text{const.} \equiv \omega_{0}$$

$$\Omega = \frac{I_{1} - I_{3}}{I_{1}}\omega_{0}$$
(b)

 $\frac{d}{dt}(a)$ mit $(b): \ddot{\omega}_1 + \Omega^2 \omega_1 = 0$

$$\to \omega_1(t) = a\sin(\Omega t + \varphi_0) \tag{8}$$

$$\omega_2 = \frac{\dot{\omega}_1}{\Omega} \to \omega_2(t) = a\cos(\Omega t + \varphi_0)$$

$$\omega_3 = \omega_0$$
(8)

Mit

$$\vec{\omega}^2 = \omega_1^2(t) + \omega_2^2(t) + \omega_3^2 = \text{const.}$$

hat die Projektiion von $\vec{\omega}$ auf x_1 - x_2 -Ebene die konst. Länge a und rotiert mit Ω .

D.h. im KS rotiert Kreisel auf einem Polkegel (mit ω_0 um die eigene symm. Achse)

$$\gamma = \arctan \frac{a}{\omega_0} = \text{const.}$$

Zur Betrachtung im IS brauchen wir verallg. Koord. um die Beziehung zwischen KS und IS zu beschreiben

 \rightarrow Eulersche Winkel $\Phi, \Psi, \Theta \rightarrow$ siehe Übung

Einsetzen von (9) in (8), ergibt nach Lösung von (9)

$$\Psi(t) = \Omega t + \Psi_0 \qquad \Phi(t) = \frac{q}{\sin \Theta_0} + \Phi_0$$
$$\tan \Theta_0 = \frac{q}{\omega_0} \frac{I_1}{I_2}$$

2.6.3 Rotation des Starren Körpers

IS \vec{r}_{IS} und KS \vec{r}

$$\frac{d\vec{r}_{IS}}{dt} = \frac{d\vec{r}}{dt} + \vec{\omega} \times \vec{r}$$

$$T_{\text{rot}} = \frac{1}{2} \sum_{n=1}^{N} m_n (\vec{\omega} \times \vec{r})^2$$
$$= \frac{1}{2} \sum_{i,k=1}^{3} I_{ik} \omega_i \omega_k$$
$$= \frac{1}{2} \vec{\omega} I \vec{\omega}$$

$$I_{ik} = \sum_{n} m_n \left(r_n^2 \delta_{ik} - x_{in} x_{kn} \right)$$
 Trägheitstensor

orthogonale Trafo :
$$U^+IU = \begin{pmatrix} I_1 & 0 \\ & I_2 \\ 0 & & I_3 \end{pmatrix}$$

 $I_i =$ Hauptträgheitsmomente, Hauptträgheitsachse

$$\vec{L} = \sum_{n} m_n (\vec{r}_n \times \dot{\vec{r}}_n)$$
$$= I\omega$$

Mit $\frac{d\vec{L}}{dt}=\vec{M}$ folgen Euler-Gl. (in KS) Kräftefreier Kreisel: $\vec{M}=0\to$ Präzession

Schwerer Kreisel

Betrachte symm. Kreisel mit den Hauptträgheitsmomenten $I_1 = I_2, I_3 \neq I_1$ (fixer Auflagepunkt Rotation um x_3 Präzession um z mit Winkel θ zwischen z und x_3 und der Schwerpunkt S auf x_3 höhe s des Kegelkreisels wird mit mg in Richtung -z gezogen)

Lagrange-Funktion

$$\mathcal{L} = T - U = \underbrace{\frac{1}{2}m\dot{\vec{R}}^2}_{=0} + \frac{1}{2}I_1\omega_1^2 + \frac{1}{2}I_2\omega_2^2 + \frac{1}{2}I_3\omega_3^2 - mgs\cos\theta$$

Mit Eulerwinkel

$$\omega_1 = \dot{\Phi}\sin\Theta\sin\Psi + \dot{\Theta}\cos\Psi$$
$$\omega_2 = \dot{\Phi}\sin\Theta\cos\Psi - \Theta\sin\Psi$$
$$\omega_3 = \dot{\Phi}\cos\Theta + \dot{\Psi}$$

 Φ : Drehwinkel um \vec{e}_z , Ψ : Drehwinkel um \vec{e}_{x_3}

$$\mathcal{L} = \frac{I_1}{2} \left(\dot{\Phi}^2 \sin^2 \Theta + \Theta^2 \right) + \frac{I_3}{2} \left(\dot{\Phi} \cos \Theta + \dot{\Psi} \right)^2 - mgs \cos \Theta \tag{1}$$

Symmetrien:

$$\frac{\partial \mathcal{L}}{\partial t} = 0$$
 , $\frac{\partial \mathcal{L}}{\partial \Theta} = 0$, $\frac{\partial \mathcal{L}}{\partial \Psi} = 0$

Erhaltungsgrößen "erste Integrale"

Energieerhaltung:

$$E = T + U$$

$$= \frac{I_1}{2} \left(\dot{\Phi}^2 \sin^2 \Theta + \dot{\Theta}^2 \right) + \frac{I_3}{2} \left(\dot{\Phi} \cos \Theta + \dot{\Psi} \right)^2 + mgs \cos \Theta = \text{const.} \quad (2)$$

$$l_{z} = \frac{\partial L}{\partial \dot{\Phi}} \qquad \text{Drehimpulskomponente } l_{z}$$

$$= I_{1} \sin^{2} \Theta \dot{\Phi} + I_{3} \underbrace{\left(\cos \Theta \dot{\Psi} + \cos^{2} \Theta \dot{\Phi}\right)}_{(\dot{\Psi} + \dot{\Phi} \cos \Theta) \cos \Theta} = \text{const.}$$
(3)

$$l_3 = \frac{\partial l}{\partial \dot{\Psi}}$$
 Drehimpulskomponente l_3
= $I_3 \Big(\dot{\Psi} + \dot{\Phi} \cos \Theta \Big) = \text{const.}$ (4)

Durch Einsetzen von (3) und (4) in (2) werden $\dot{\Phi}$ und $\dot{\Psi}$ eliminiert. Mit:

$$l_z - l_3 \cos \Theta = I_1 \sin^2 \Theta \dot{\Phi} \tag{5}$$

ist

$$\frac{(l_z - l_3 \cos \Theta)}{2I_1 \sin^2 \Theta} = \frac{I1}{2} \sin^2 \Theta \dot{\Phi}^2 \qquad \text{in (2)}$$

$$E = \frac{I_1}{2}\dot{\Theta}^2 + \frac{(l_z - l_3\cos\Theta)}{2I_1\sin^2\Theta} + \frac{l_3^2}{2I_3} + mgs\cos\Theta = \text{const.}$$
 (6)

Wir schreiben

$$E = \frac{I_1}{2}\dot{\Theta}^2 + U_{\text{eff}}(\Theta)$$

$$U_{\text{eff}} = \frac{(l_z - l_3\cos\Theta)}{2I_1\sin^2\Theta} + \frac{l_3^2}{2I_3} + mgs\cos\Theta$$
(7)

Ähnlichkeit zum Kepplerproblem ergibt sich hier eine 1D Bewegungsgleichung mit effektive, Potential.

Aufgelöst nach $\frac{d\Theta}{dt}$ und integriert ist:

$$t = t_0 + \int_{\Theta_0}^{\Theta} d\Theta' \sqrt{\frac{I_1/2}{E - U_{\text{eff}}(\Theta')}}$$

nicht elementar Lösbar aber Graphisch diskutierbar

Graphische Disskusion der Lösung

- $U_{\text{eff}}(\Theta) \xrightarrow{\Theta \to 0} \infty \text{ und } \xrightarrow{\Theta \to \pi}$
- dazwischen ein Minimum

(Parabel mit 2 Schnittpunkten mit E Energie des Systems an den Winkeln Θ_1 und Θ_2 und dazwischen Minimum) aus $E = U_{\text{eff}}$ ergeben sich Umkehrpunkte Θ_1 , Θ_2 Während die Figurenachse zwischen Θ_1 und Θ_2 oszilliert "Notation", präzediert sie mit (5)

$$\dot{\Phi} = \frac{l_z - l_3 \cos \Theta}{I_1 \sin^2 \Theta} \quad \text{um die raumfeste z-Achse}$$

Bewegung ist definiert durch Kreiselparameter m, s, I_1, I_2 und Anfangsbedingungen E, l_z, l_3

Für $\Theta_1 = \Theta_2$ verschwindet Notation "reguläre Präzession" Im kräftefreien Limes (Grenzfall) $(g \to 0)$ ergibt sich $\Theta = \Theta_0$, $\dot{\Phi} = \text{const.}$

2.7 9 Hamilton-Formalismus

Bereits für konservative Systeme wurde

Hamilton Funktion $\mathcal{H}(q, p, t)$ "Hamiltonian"

und Hamilton Gleichungen hergeleitet.

Ausgehend vom kanonischen Impuls $p = (p_1, \ldots, p_f)$

$$p_i = \frac{\partial L}{\partial \dot{q}_i} \tag{1}$$

leiten wie nun $\mathcal{H}(q, p, t)$ von $\mathcal{L}(q, \dot{q}, t)$ her.

Legendre-Trafo

$$d(x,y) \to g(u,y) \quad \text{mit} \quad u = \frac{\partial f}{\partial x}$$
 (2)

Ausgehend von

$$df = \underbrace{\frac{\partial f}{\partial x}}_{:=u} dx + \underbrace{\frac{\partial f}{\partial y}}_{:=v} dy = u dx + v dy$$

definierten wir die Funktion g = f - ux mit:

$$dg = df - u dx - v du = v dy - x du$$
(3)

Folglich ist g die gewünschte Funktion

$$dg = \frac{\partial g}{\partial u} du \to \frac{\partial g}{\partial y} dy$$

$$v = \frac{\partial g}{\partial y} \quad , \quad x = -\frac{\partial g}{\partial u}$$

$$(4)$$

2.8 Hamiltonsche Mechanik

Ausgehend von
$$\mathcal{L} = \mathcal{L}(q, \dot{q}, t)$$
 $q = (q_1, \dots, q_f)$ und
$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$$
 (1)

def. wir den Hamlitonian $\mathcal{H}=\mathcal{H}(q,p,t)$ über Legendre Trafo: Ansatz: Löse Gl. (1) nach $\dot{q}_i=\dot{q}_i(q,p,t)$ und def. Hamiltonian \mathcal{H} als Legendre-Transformation von \mathcal{L}

$$\mathcal{H}(q,p,t) = \sum_{i} \dot{q}_i(q,p,t) p_i - \mathcal{L}(q,\dot{q}(q,p,t),t)$$

Mit

$$d\mathcal{H} = \sum_{i} \left[d\dot{q}_{i} p_{i} + \dot{q}_{i} dp_{i} - \underbrace{\frac{\partial \mathcal{L}}{\partial q_{i}}}_{\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} = \dot{p}_{i}} dq_{i} - \underbrace{\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}}_{p_{i}} d\dot{q}_{i} \right] - \frac{\partial \mathcal{L}}{\partial t} dt$$

$$= \sum_{i} \left[\dot{q}_{i} dp_{i} - \dot{p}_{i} dq_{i} \right] - \frac{\partial \mathcal{L}}{\partial t} dt$$

Verifizieren wir, dass \mathcal{H} von q, p, t abhängt. Das Totale Differential von \mathcal{H} :

$$d\mathcal{H} = \sum_{i} \left[\frac{\partial \mathcal{H}}{\partial q_i} dq_i + \frac{\partial \mathcal{H}}{\partial p_i} dp_i \right] - \frac{\partial \mathcal{H}}{\partial t} dt$$

liefert durch Koeffizientenvergleich

Hamilton-Gleichungen

$$\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i} \quad , \quad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i}$$
 (1)

 $i = 1, \dots, f$ und:

$$\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial L}{\partial t} \tag{2}$$

Bemerkung:

- Gl. (1) wegen Einfachheit und Symmetrie auch kanonische Gl. genannt
- Die 2f Variablen q_i und p_i sind völlig gleichberechtigt,
 - $-\ p_i$ heißt auch zu " q_i konjugierter Impuls"
 - q_i, p_i heißt "Paar konjugierter Variablen"
- \bullet Wichtig: \mathcal{H} darf keine Geschwindigkeit enthalten
- In Kapitel I.6 wurde bereits gezeigt, dass Energie erhalten ist für $\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial t} = 0$ da \mathcal{H} nicht explizit von der Zeit abhängt.
- Zyklische Koordinaten:

 Hängt $\mathcal{H}(p,q)$ nicht von q_i ab, $\frac{\partial \mathcal{H}}{\partial q_i} = 0$ $\rightarrow p_i = \text{const. Erhaltungsgröße}$

Für ein konservatives System mit

$$\mathcal{L} = T - U = \sum_{i} \frac{m_i}{2} \dot{q}_i^2 - U(t)$$

mit den kanonischen Impulsen $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = m_i \dot{q}_i$ entspricht

$$\mathcal{H} = \sum_{i} i \frac{p_i^2}{m_i} - \frac{p_i^2}{2m_i} + U(t)$$

$$\mathcal{H}(p,q) = \sum_{i} \frac{p_i^2}{2m_i} + U(t) = T + U \tag{3}$$

also der Gesamtenergie.

Hier ist der kanonische Impuls $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ gleich dem kinetischen Impuls $m_i \dot{q}_i$. Gilt für zeitunabhängige, holonome Zwangsbedingungen ruhenden Koordinaten und konservativen Kräften

$$\sum_{i} \dot{q}_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} = \sum_{i} \dot{q}_{i} \frac{\partial T}{\partial \dot{q}_{i}} = 2T$$

Bsp: harm. Oszillator:
$$\mathcal{H} = \frac{p^2}{2m} + \frac{m}{2}\omega^2 q^2$$

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p} = \frac{p}{m} \quad , \quad \dot{p} = -\frac{\partial \mathcal{H}}{\partial q} = -\frac{\partial U}{\partial q} = -m\omega^2 q = F$$

$$F = \dot{p} = m\ddot{q} = -\frac{\partial U}{\partial q}$$

- Geht aber nicht, z.B. bei:
 - geschw. abhängigen Kräften (Lorenz-Kraft)
 - zeitabhängigen Zwangsbedingungen

Standartfall von f
 Freiheitsgraden q_i

- erhalten durch die Elimination von zeitunabhängigen holonomen Zwangsbedingungen (oder ohne diese)
- die nicht explizit zeitabhängigen sind (z.B. externer Antrieb)
- die konservativen Kräften genügen ist:

$$\mathcal{L}(q, \dot{q}) = T - U = \sum_{i} \frac{m_i}{2} \dot{q}_i^2 - U(q)$$

$$\mathcal{H}(q,p) = T + U = \sum_{i} \frac{p_i^2}{2m_i} + U(q)$$

mit: Bewegungsgleichungen sind äquivalent

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} = m_{i}\ddot{q}_{i} = \frac{\partial \mathcal{L}}{\partial q_{i}} = -\frac{\partial U}{\partial q_{i}}$$

$$\dot{q}_{i} = \frac{\partial \mathcal{H}}{\partial p_{i}} = \frac{p_{i}}{m_{i}} \quad , \quad \dot{p}_{i} = -\frac{\partial \mathcal{H}}{\partial q_{i}} = -\frac{\partial U}{\partial q_{i}} \rightarrow \quad m_{i}\ddot{q}_{i} = -\frac{\partial U}{\partial q_{i}}$$

$$F_{i} = m_{i}\ddot{q}_{i} = -\frac{\partial U}{\partial q_{i}}$$

Mechanik nach:

Newton: – über Def. der Kraft

- einfach und anschaulich

Lagrange: – über Def. von $\mathcal{L}(q,\dot{q},t)$

- berücksichtigung von Zwangsbedingungen

- Zwangskräfte (Lag. Gl. 1. Art)

- Konzept von verallg. Koord. q_i

– Konzept von zyklischen Variablen, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$

 \rightarrow Erhaltung von $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$

- Hamilton-Prinzip

- Ableitung von Feldtheorien

<u>Hamilton:</u> – über Def. von $\mathcal{H}(q, p, t)$

- Zwangsbedingungen nur implizit

- Konzept des Phasenraums

 \rightarrow Ausgangspunkt für statistische Mechanik und QM

2.9 Phasenraum

- \bullet (q, p) bilden einen 2f-dim. Phasenraum (PR)
- Zustand ist im Phasenraum eindeutig beschrieben, d.h. ($\frac{\partial \mathcal{H}}{\partial t} = 0$) schneiden sich Bahnen im Phasenraum nicht.
- $\mathcal{H}(p,q) = E = \text{const.}$ entspricht einer 2f 1 dim. Fläche im PR, welche das 2fdim. Phasenraumvolumen

$$V_{PR}(E) = \int dq_1 \dots dq_f \int dp_1 \dots dp_f$$

 $\mathcal{H}(p,q) < E$

 \bullet Klassisch entspricht ein endliches Phasenraumvolumen ∞ System zustände

• QM entspricht ein endliches Phasenraumvolumen endlich viele System zustände

Bsp:

$$\mathcal{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}q^2 = \mathcal{H}(q, p)$$

 \cong Ellipse mit Halbachsen

$$a = \sqrt{\frac{2E}{m\omega^2}} \quad , \quad b = \sqrt{2mE}$$

d.h. PR-Volumen ist Fläche der Ellipse

$$V_{PR}(E) = \pi ab = \frac{2\pi E}{\omega}$$

Der WM Oszillator hat die dikrete Energiezustände [siehe Theo Phys III]

$$E_n = \hbar\omega(n+1/2)$$
 $n = 0, 1, 2, 3$

Damit ist Anzahl der Zustände mit Energie < E

$$N_E = \sum_{E_{res} < E} 1 \simeq \frac{E}{\hbar \omega} = \frac{V_{PR}(E)}{2\pi \hbar} \qquad (N_E \gg 1)$$

d.h. wir messen das PR Volumen in Einheiten des Plankschen Wirkungsquantum $2\pi\hbar=h$ eund erhalten somit die Anzahl der energetisch erreichbaren Zustände

Für f Freihaitsgrade ist

$$N_E \simeq \frac{V_{PE}(E)}{(2\pi\hbar)f}$$

Durch Einführung von <u>abzählbaren</u> Zuständen liefert die PR-Beschreibung die Grundlage für die <u>Statische Mechanik</u>

2.9.1 Zeitentwicklung im Phasenraum (PR)

Poissonklammer

Zeitentwicklung von A(q(t), p(t), t) ist gegeben

$$\frac{d}{dt}A(q(t), p(t), t) = \sum_{i} \left(\frac{\partial A}{\partial q_{i}} \dot{q}_{i} + \frac{\partial A}{\partial p_{i}} \dot{p}_{i} \right) - \frac{\partial A}{\partial t}$$

$$= \sum_{i} \left(\frac{\partial A}{\partial q_{i}} \frac{\partial \mathcal{H}}{\partial p_{i}} - \frac{\partial A}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q_{i}} \right) + \frac{\partial A}{\partial t}$$

<u>Def:</u> Poissonklammer zweier PR-Funktion f(p,q,t) und g(p,q,t) ist

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right) \tag{1}$$

Ist A explizit zeitabhängig $\frac{\partial A}{\partial t} = 0$, gilt

$$\frac{d}{dt}A(q(t), p(t)) = \{A, \mathcal{H}\}\tag{2}$$

D.h. wenn $\{A, \mathcal{H}\} = 0 \leftrightarrow A$ ist erhaltene Größe Bsp:

- für radialsymmetrisches Potential ist Drehimpuls l_i erhalten $\{l_i, \mathcal{H}\} = 0$
- Bewegungs-Geichung:

$$\{q_{j},\mathcal{H}\} = \sum_{i} \left(\underbrace{\frac{\partial q_{j}}{\partial q_{i}}}_{\delta_{ij}} \frac{\partial \mathcal{H}}{\partial p_{i}} - \underbrace{\frac{\partial q_{j}}{\partial p_{i}}}_{=0} \frac{\partial \mathcal{H}}{\partial q_{i}}\right) = \frac{\partial \mathcal{H}}{\partial p_{j}} = \dot{q}_{j}$$

$$\{p_{j},\mathcal{H}\} = \sum_{i} \left(\underbrace{\frac{\partial p_{j}}{\partial q_{i}}}_{=0} \frac{\partial \mathcal{H}}{\partial p_{i}} - \underbrace{\frac{\partial p_{j}}{\partial p_{i}}}_{\delta_{ij}} \frac{\partial \mathcal{H}}{\partial q_{i}}\right) = -\frac{\partial \mathcal{H}}{\partial q_{i}} = \dot{p}_{j}$$

$$\{q_{i}, p_{i}\} = \sum_{k} \left(\underbrace{\frac{\partial q_{i}}{\partial q_{k}}}_{\delta_{ik}} \underbrace{\frac{\partial p_{j}}{\partial p_{k}}}_{\delta_{ik}} - \underbrace{\frac{\partial q_{j}}{\partial p_{k}}}_{=0} \frac{\partial p_{j}}{\partial q_{k}}\right) = \delta_{ij}$$

Korrespondenz zur QM

$$\underbrace{[g,f]}_{\text{klass. Poissonklammer}} \longrightarrow \underbrace{\frac{1}{i\hbar}[g,f]}_{\text{OM kommutator}} = \frac{1}{i\hbar}(gf - fg) \tag{4}$$

Aus Gl (3) folgt, dann die QM Unschärferelation. Zeitentwicklung einer QM Größe A

$$\frac{dA}{dt} = \frac{1}{i\hbar}[A, \mathcal{H}] + \frac{\partial A}{\partial t}$$

2.9.2 PR-Dichte

Bsp: gedämpfter harmonischer Oszillator.

(<u>Ortsraum</u> p, t Graph abklingende Cosinus Schwingung, im <u>Phasenraum</u> p, q kleiner werdende Spirale)

Wir betrachten viele Teilchen $(N \gg 1)$ mit kontinuierlich verteilten Anfangsbedingungen $q_i(t_0)$, $p_i(t_0)$ wie z.B. in exp. Messung eines Ensembles von Teilchen

<u>Def:</u> PR Dichte $\rho(q, p, t)$ entspricht der Wahrscheinlichkeit, dass sich zur Zeit tam Phasenraumpunkt (p, p) ein Teilchen befindet. Ist die Teilchenzahl erhalten, gilt:

$$\int dq \ dp \ \rho(q, p, t) = N \qquad \text{,,Normierungsbedingung''}$$

$$\frac{d\rho}{dt} = \sum_{i} \left(\frac{\partial \rho}{\partial q_i} \dot{q}_i + \frac{\partial \rho}{\partial p_i} \dot{p}_i \right) + \frac{\partial \rho}{\partial t} = 0$$

d.h. die Phasenraumdichte ist Zeitlich konstant. "Liouville Theorem" Wir erhalten die Liouville-Gl.

$$\frac{\partial \rho}{\partial t} = \{\mathcal{H}, \rho\} \tag{6}$$

Mit Ersetzung (4) wird daraus in der Quantenmechanik die Liouville von Neumann Gleichung:

$$i\hbar \frac{\partial \rho}{\partial t} = [\mathcal{H}, \rho] \tag{7}$$

Kapitel 3

Relativistische Mechanik

IS stillstehend und IS' in Bewegung $\vec{v} = v\vec{e}_x$

Galilei Trafo:

$$x' = x + vt, \quad y' = y, \quad z' = z, \quad t' = t$$
 (1)

<u>Def:</u> Ein <u>Ereignis</u> ist definiert durch Raum-Zeit-Koord. (x, y, z, t) und hat in IS und IS' verschiedene Koordinatenwerte.

Bsp: Schallwellen

 $\overline{\text{Luft}}$ ist Träger für Schallwellen. Bewegt sich die Luft mit $\vec{v}=v\vec{e}_x$, dann breitet sich der Schall

- bei ruhender Luft (v=0) mit $\frac{dx}{dt}=c$ aus
- in Richtung von \vec{v} mit $\frac{dx}{dt} = v + c$ aus
- ullet in Richtung entgegen \vec{v} mit $\frac{dx}{dt} = c v$ aus

Bsp: Elektromagnetische Wellen

Photon wird bei t = t' = 0, x = x' = 0 in x-Richtung ausgesendet und bewegt sich in IS mit der Geschwindigkeit c. (hier IS mit v in x und IS' stillstehend)

Galilei Trafo.:
$$\stackrel{\text{IS}}{\longrightarrow} \stackrel{\vec{v}}{\longrightarrow} \stackrel{\text{IS'}}{\longrightarrow}$$

$$\frac{dx}{dt} = c \longrightarrow \frac{dx'}{dt'} = c + v$$

Michelson Experiment (1885)

Interferenz Exp zum Nachweis des "Äthers" als Träger der Lichtwellen, gemessen mit und gegen die Erdbewegung

 \rightarrow Lichtgeschwindigkeit ist konstant!

3.1 Relativistische Mechanik

Michelson: (Vakuum-) Lichtgeschwindigkeit c = const.

- \bullet die von Galilei-Trafo vorhergesagte Addition von Geschwindigkeiten gilt nicht allg, obwohl gut bestätigt für $v \ll c$
- \bullet Naturgesetze hängen nicht von der Wahl des Inertialsystems ab \to es können nur relative Bewegungen gemessen werden also keine absoluten Geschwindigkeiten
- Maxwell-Gl. enthalten Lichtgeschw. als Konstante c, e.m. Wellen breiten sich (im Vakuum) immer mit c aus
 - Mit Galilei-Trafo wären damit Maxwell-Gl. in unterschiedlichen IS verschieden
 - Gemäß Michelson-Exp wären Maxwell-Gl. in allen IS gültig "relativistische Gl."

3.1.1 Einsteinsches Relativitätsprinzip (1905)

- Konzept von Äther falsch
- Mechanik und Edynamik sollen unter gleiche Trafos form-invariant sein

- \rightarrow 1.) Alle IS sind gleichwertig
 - 2.) Licht breitet sich in allen IS mit Geschw. c aus
- \rightarrow Dann muss Galilei Trafo (1) in eine allgemeine Form bringen: "Lorenz Trafo" (1904)

Für $v \ll c$ muss Gl.(1) als Grenzfall enthalten sein

Bem:

- Einsteinsche Rel. prinzip und die daraus folgende Lorentz-Trafo sind unschwer nachzuvollziehen
- Die Konsequenzen daraus, insbesondere die Relativität von Raum und Zeit sind auch heute nicht leicht zu verstehen, da sie alltäglich Erfahrungen wiedersprechen und zu Paradoxien führen.

Def: Längenmessung Länge eines in IS ruhenden Objekts kann durch ruhende geeichte Maßstäbe bestimmt werden. Die sogenannte <u>Eichlänge</u> hängt nicht vom IS ab, ist also Lorenz-invariant.

Def: Zeitmessung: Synchronisierte Uhren

- Standartuhr ist im Ursprung
- synchronisierte Uhr an andrem Ort soll gleiche Zeit anzeigen Synchronisation erfolgt durch Austausch von Signalen d.h. zur Zeit t sendet Standartuhr ein Signal zur anderen Uhr , das sofort wieder zurückgeschickt wird und zur Zeit $t+\Delta t$ ankommt \to Bei Empfangen des Signals von der anderen Uhr war Zeitpunkt $t+\frac{\Delta t}{2}$

Gleichzeitigkeit

Betrachte Bahnsteig "IS" und Zug mit konstanter Geschw. \vec{v} "IS" A und B sind zwei punkte im IS, in der Mitte M Steht der Beobachter. Dazu Gehören die Gleichen Punkte im IS' A', B' und M'

- 1.) Zur Zeit t_1 werden bei A und B gleichzeitigkeit 2 Lichtquellen eingeschalten.
- 2.) Im Zug haben Lichtquellen zu t_1 die Position A' und B'. Ein Zugreisender bei M' sieht zuerst das von B' kommende Licht (der fahrende Zug verkürzt die Strecke $\overline{\text{M'B}}$)
 - Er weis, dass A' und B' gleich weit entfernt sind und dass Licht isotrop ausbreitet.
 - \rightarrow Für ihn wurde das Licht in B' früher eingeschaltet als in A' und damit nicht gleichzeitig.
- 3.) Etwas später erreichen Beobachter M gleichzeitig die beiden Lichtsignale.
- 4.) Zuletzt sieht M' das von A ausgesandte Lichtsignal.

Gleichzeitigkeit hängt vom Bezugssystem ab, es ist also ein relativer Begriff.

Dieser Effekt verschwindet, wenn Lichtgeschw. $c \to \infty$, also bei <u>instantaner</u> Signalübertragung.

3.2 Lorenz-Trafo

Zur Konstruktion verwenden wir die Symmetrien

• Homogenität von Raum und Zeit d.h. alle Raumzeitpunkte sind äquivalent, man kann also seinen Ursprung beliebig Wählen • Isotropie des Raumes d.h. alle Raumrichtungen sind äquivalent

$$\begin{array}{ccc}
y & & y \\
& & \downarrow & \text{IS'} \\
& & \downarrow & \overrightarrow{v} = v\vec{e_x} \\
& & & \downarrow & x
\end{array}$$

O.B.d.A. betrachten wir Bewegung entlang x-Achse (IS' in x-Richtung mit $\vec{v}=v\vec{e}_x$) d.h. am Anfang y=y' z=z' Zur Zeit z=0 fallen IS und IS' zusammen.

Wegen Homogenität von Raum und Zeit muss Trafo <u>linear</u> sein

- sonst könnte Koord. Ursprung nicht beliebig gewählt werden
- sonst wäre ein gleichförmig bewegter Körper in IS beschleunigt in IS'

Ansatz:

$$x' = a_{11}x + a_{12}t + b_1$$

 $y' = y$, $z' = z$
 $z' = a_{21}x + a_{22}t + b_2$

Aufgrund der Anfangsbed. für t = 0 ist:

$$x_0 = x_0' = 0$$
 , $t_0 = t_0' = 0$

ist: $b_1 = b_2 = 0$, d.h.:

$$x' = a_{11}x + a_{12}t \tag{1}$$

$$t' = a_{21}x + a_{22}t \tag{2}$$

wobei $a_{ij} = a_{ij}(v)$

Betrachte Bewegung des Ursprungs in IS' im IS d.h. x' = 0. Gl. (1) ergibt:

$$0 = a_{11}x + a_{12}t \to -\frac{a_{12}}{a_{11}} = \frac{x}{t} = v \tag{3}$$

Eingesetzt in (1):

$$x' = a_{11}(v)(x - vt) (4)$$

Analog: Bewegung von Ursprung von IS in IS': x = 0

$$x = a_{11}(-v)[x' - (-v)t']$$
(5)

Wegen Isotropie des Raumes ist

$$a_{11}(v) = a_{11}(-v)$$
 oder $a_{ij} = a_{ij}(v^2)$

Betrachten wir nun eine Lichtquelle, die in IS bei x = 0 ruht und sich daher in IS' mit $-\vec{v}$ bewegt, und zur Zeit $t_0 = t_0'$ einen kurzen Lichtblitz aussendet. Wegen c = c' gilt für den Ort des Photons:

$$x = ct \quad x' = ct' \tag{6}$$

Setze $t = \frac{x}{c}$ und $t' = \frac{x'}{c}$ in (4) und (5) ein:

$$x' = a_{11}(v^2)x(1 - \frac{v}{c}) \tag{7}$$

$$x = a_{11}(v^2)x'(1 + \frac{v}{c}) \tag{7}$$

Ineinander eingesetzt und geteilt durch x':

$$1 = a_{11}^2 \left(a - \frac{v}{c}\right) \left(1 + \frac{v}{c}\right) \tag{3.1}$$

$$a_{11}^2 = \frac{1}{1 - (\frac{v}{c})^2} \tag{3.2}$$

Da Galilei-Trafo als Grenzfall sein soll, nur positive Wurzel

$$a_{11} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{8}$$

Mit(3) ist

$$a_{12} = \frac{-v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$(2): t' = a_{21}x + a_{12}t$$

$$(5): x = a_{11}x' + a_{11}vt'$$

$$t' = \frac{x}{a_{11}v} - \frac{a_{12}}{a_{11}v} \frac{(x - vt)}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{x}{v} \sqrt{1 - \frac{v^2}{c^2}} - \frac{(x - vt)}{v\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{x(1 - \frac{v^2}{c^2}) - x + vt}{v\sqrt{1 - \frac{v^2}{c^2}}}$$

$$= \frac{t - \frac{v^2}{c^2}x}{1 - v'}$$