Université Pierre et Marie Curie 2006–2007

LM220 Maths-Info groupes 1, 2 et 5

Devoir maison 1

L'objectif du devoir est de caractériser les entiers $n \geqslant 2$ pour lesquels le groupe $(\mathbf{Z}/n\mathbf{Z})^{\times}$ est cyclique. On admet le fait que, pour p premier, $(\mathbf{Z}/p\mathbf{Z})^{\times}$ est cyclique. En effet, on sait que $\mathbf{Z}/p\mathbf{Z}$ est un corps, et il sera démontré plus loin dans le cours (corollaire 6 p. 97) que le groupe multiplicatif d'un corps fini est cyclique.

1 Préliminaires

Soit $n\geqslant 2$ un entier. On considère sa décomposition en facteurs premiers $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, où les p_i sont des premiers distincts et les α_i des entiers non nuls.

1.1 Montrer par récurrence sur r que l'on a un isomorphisme de groupes :

$$(\mathbf{Z}/n\mathbf{Z})^{\times} pprox \prod_{i=1}^{r} (\mathbf{Z}/p_i^{\alpha_i}\mathbf{Z})^{\times} .$$

(Indication : utiliser le théorème chinois.)

On va donc dans les deux sections suivantes étudier chaque facteur du membre de droite, c'est-à-dire les groupes de la forme $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$, en distinguant les cas p=2 et p impair. Avant de commencer cette étude, on établit un résultat utile de théorie des groupes.

1.2 Soit G un groupe abélien, noté multiplicativement. On considère deux éléments x et y, d'ordres respectifs a et b. Montrer que si a et b sont premiers entre eux, leur produit xy est d'ordre ab. (Indication: si $(xy)^d = 1$, montrer que a et b divisent d en élevant cette égalité à la puissance b ou a.)

2 Le cas $p \neq 2$

On suppose dans toute cette section que p est un nombre premier impair, et α un entier supérieur ou égal à 2. On va montrer que $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ est cyclique.

- **2.1** Calculer l'ordre de $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$. Justifier par ailleurs que $(1+p) \in (\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$.
- **2.2** Montrer que, si i est un entier compris entre 1 et p-1, alors p divise le coefficient binomial C_p^i . En déduire que si $i \ge 2$, alors p^3 divise $C_p^i p^i$.
- **2.3** Montrer qu'il existe un entier $u \in \mathbf{N}^*$ tel que $(1+p)^p = 1 + p^2(1+up)$.
- **2.4** En déduire par récurrence que pour tout entier $k \ge 1$, il existe un entier λ (dépendant de k), premier à p, tel que $(1+p)^{p^k} = 1 + \lambda p^{k+1}$. (Indication: si $(1+p)^{p^k} = 1 + \lambda p^{k+1}$, on pourra montrer qu'il existe $u \in \mathbf{N}^*$ tel que $(1+p)^{p^{k+1}} = 1 + p^{k+2}(\lambda + up)$.)
- **2.5** Déduire de la question précédente que $(1+p)^{p^{\alpha-1}} \equiv 1 \mod p^{\alpha}$ et que $(1+p)^{p^{\alpha-2}} \not\equiv 1 \mod p^{\alpha}$. En déduire que 1+p est d'ordre $p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$.
- 2.6 On considère à présent l'application

$$\pi: (\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times} \longrightarrow (\mathbf{Z}/p\mathbf{Z})^{\times}$$
$$x \bmod p^{\alpha} \longmapsto x \bmod p$$

dont on admet qu'elle est bien définie et constitue un morphisme de groupes surjectif. Montrer qu'il existe $x \in (\mathbf{Z}/p^{\alpha}\mathbf{Z})^{\times}$ tel que $\pi(x)$ soit d'ordre p-1.

- **2.7** Montrer qu'alors l'ordre de x est multiple de p-1 et qu'il existe un entier k tel que $y=x^k$ soit d'ordre exactement p-1.
- **2.8** En utilisant le résultat des questions 2.5 et 1.2, calculer l'ordre de y(1+p) et conclure.

3 Le cas p=2

L'objectif de cette section est de montrer que $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ est cyclique si et seulement si $\alpha=1$ ou $\alpha=2$.

3.1 Expliciter $(\mathbf{Z}/2\mathbf{Z})^{\times}$ et $(\mathbf{Z}/4\mathbf{Z})^{\times}$ et vérifier qu'ils sont cycliques.

On supposera pour la suite de la section que $\alpha \geqslant 3$.

- **3.2** Calculer l'ordre de $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$.
- **3.3** En s'inspirant des questions 2.3 et 2.4, montrer que pour tout $k \in \mathbb{N}^*$, il existe un entier impair λ (dépendant de k) tel que $5^{2^k} = 1 + \lambda 2^{k+2}$. (Indication: 5 = 1 + 4.)
- **3.4** En déduire comme à la question 2.5 que 5 est d'ordre $2^{\alpha-2}$ dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$.
- **3.5** On note μ_2 le groupe multiplicatif à deux éléments $\{1, -1\}$. On rappelle que le produit $\mu_2 \times \mathbf{Z}/2^{\alpha-2}\mathbf{Z}$ est un groupe dont la loi est donnée par $(\varepsilon, a) \cdot (\varepsilon', a') = (\varepsilon \varepsilon', a + a')$. On considère l'application

$$f: \mu_2 \times \mathbf{Z}/2^{\alpha-2}\mathbf{Z} \longrightarrow (\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$$

 $(\varepsilon, a) \longmapsto \varepsilon \cdot 5^a$

Montrer que f est un morphisme de groupes.

- **3.6** Soit $a \in \mathbf{Z}/2^{\alpha-2}\mathbf{Z}$. Montrer que dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ on a $5^a = 1$ si et seulement si a = 0 dans $\mathbf{Z}/2^{\alpha-2}\mathbf{Z}$. Montrer par ailleurs que pour tout $a \in \mathbf{Z}$, on a $5^a \neq -1$ dans $\mathbf{Z}/2^{\alpha}\mathbf{Z}$. (*Indication*: on pourra au choix réduire 5^a modulo 4 ou utiliser le résultat de 3.3.)
- **3.7** En déduire que l'application f de la question 3.5 est injective, en vérifiant que $\ker f = \{(1,0)\}$. Prouver alors que f est un isomorphisme en utilisant la question 3.2.
- **3.8** Montrer que tous les éléments de $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^{\times}$ sont d'ordre divisant $2^{\alpha-2}$ et conclure.

4 Conclusion

- **4.1** Soient a et b deux entiers non nuls. Montrer que si a et b ne sont pas premiers entre eux, alors $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ n'est pas cyclique.
- **4.2** Déduire des questions précédentes que le groupe $(\mathbf{Z}/n\mathbf{Z})^{\times}$ est cyclique si et seulement si n vaut 2 ou 4 ou est de la forme p^{α} ou $2p^{\alpha}$, avec p premier et α entier non nul.