Namn och CID på gruppmedlemmar:

Blend Ahmed Omar (blend) Ebbe Ledin (ebbel) Albin Östling (ostlinga)

In [19]: import numpy as np import matplotlib.pyplot as plt plt.style.use("ggplot")

In [26]: # (i) $R \to R$

In [28]: # (iii) $L \rightarrow R$

print(I4_ut, E4_ut)

Uppgift 1 - 3D-bio

(a) Skriv en kort funktion $J_{proj}(lpha)$, som ger Jones-matrisen som projicerar E-fältets komponenter på ett koordinatsystem vridet vinkeln lpha

In [20]: # Byt ut np.nan värdena så att det blir rätt! def J_proj(alpha): return np.array([[np.cos(alpha), np.sin(alpha)], [-np.sin(alpha), np.cos(alpha)]])

(b) Skriv de två korta funktionerna $J_{pol}(lpha)$, som genererar Jones-matrisen för en roterad polarisator med transmissionsriktningen vinkeln lpha från x-axeln, samt $J_{ret}(lpha, arphi)$ som ger Jones-matrisen för en roterad "retarder" med fasförskjutningen arphi radianer (en kvartsvågsplatta har alltså $arphi=\pi/2$) och eo-riktningen vinkeln lpha från x-axeln. Utnyttja funktionen $J_{proj}(lpha)$.

In [21]: **def** J_pol(alpha): # J_pol med rotation med vinkel alpha. return J_proj(-alpha)@np.array([[1, 0],[0, 0]])@J_proj(alpha) def J_ret(alpha, phi): # J_ret med rotation med vinkel alpha och fasförskjutning phi. return np.matmul(J_proj(-alpha), np.array([[np.exp(1j*phi), 0],[0, 1]]))@J_proj(alpha)

(c) Relatera E^{ut} till E^{in} för de fyra olika fallen. Beräkna även I^{ut} och visa att inget ljus kommer fram i fall (ii) och (iii), medan hela E^{in} :s amplitud finns kvar vid observatörens öga i fall (i) och (iv).

In [22]: # (i) $R \to R$ E1_ut = J_pol(0)@J_ret(-np.pi/4,np.pi/2)@J_ret(np.pi/4,np.pi/2)@np.array([1,0]) I1_ut = np.linalg.norm(E1_ut) **2 print(I1_ut, E1_ut) print("Intensiteten är 1 så allt ljus går igrnom.")

1.000000000000000 [1.11022302e-16+1.j 0.00000000e+00+0.j] Intensiteten är 1 så allt ljus går igrnom. In [23]: # (ii) $R \rightarrow L$ E2_ut = J_pol(0)@J_ret(np.pi/4,np.pi/2)@J_ret(np.pi/4,np.pi/2)@np.array([1,0]) I2_ut = np.linalg.norm(E2_ut)**2 print(I2_ut, E2_ut) print("Intensiteten är ungefär 0 så inget ljus går igenom.")

2.4651903288156624e-32 [-1.11022302e-16+1.11022302e-16j 0.00000000e+00+0.0000000e+00j] Intensiteten är ungefär 0 så inget ljus går igenom. In [24]: # (iii) $L \rightarrow R$ E3_ut = J_pol(0)@J_ret(-np.pi/4,np.pi/2)@J_ret(-np.pi/4,np.pi/2)@np.array([1,0]) I3_ut = np.linalg.norm(E3_ut)**2 print(I3_ut, E3_ut)

print("Intensiteten är ungefär 0 så inget ljus går igenom.") $2.4651903288156624e-32 \quad [-1.11022302e-16+1.11022302e-16j \quad 0.00000000e+00+0.00000000e+00j]$ Intensiteten är ungefär 0 så inget ljus går igenom. In [25]: # (iv) $L \rightarrow L$ E4_ut = J_pol(0)@J_ret(-np.pi/4,np.pi/2)@J_ret(np.pi/4,np.pi/2)@np.array([1,0]) I4_ut = np.linalg.norm(E4_ut)**2 print(I4_ut, E4_ut)

print("Intensiteten är 1 så allt ljus går igrnom.") 1.000000000000000 [1.11022302e-16+1.j 0.00000000e+00+0.j] Intensiteten är 1 så allt ljus går igrnom.

(d) Tyvärr är inte kvartsvåglängdsplattan våglängdsoberoende i verkligheten, utan fungerar bara perfekt för en våglängd i mitten av det synliga spektrumet. Antag att för en våglängd i kanten av det synliga området så avviker fasförskjutningen med 25% (välj själv åt vilket håll) från den perfekta $\pi/2$, för alla kvartsvågsplattorna. Hur mycket av den oönskade bilden – den som tidigare var svart – ser man nu?

(i) $R \rightarrow R$ E1_ut = J_pol(0)@J_ret(-np.pi/4,5*np.pi/8)@J_ret(np.pi/4,5*np.pi/8)@np.array([1,0]) I1_ut = np.linalg.norm(E1_ut)**2 print(I1_ut, E1_ut) 1.000000000000000 [-0.38268343+0.92387953j 0. +0.j In [27]: # (ii) $R \rightarrow L$ # (ii) $R \rightarrow L$ $E2_ut = J_pol(0)@J_ret(np.pi/4,5*np.pi/8)@J_ret(np.pi/4,5*np.pi/8)@np.array([1,0])$ I2_ut = np.linalg.norm(E2_ut)**2 print(I2_ut, E2_ut)

E3_ut = J_pol(0)@J_ret(-np.pi/4,5*np.pi/8)@J_ret(-np.pi/4,5*np.pi/8)@np.array([1,0]) I3_ut = np.linalg.norm(E3_ut) **2 print(I3_ut, E3_ut) 0.14644660940672638 [0.14644661-0.35355339j 0. +0.j In [29]: # (iv) $L \rightarrow L$ E4_ut = J_pol(0)@J_ret(-np.pi/4,5*np.pi/8)@J_ret(np.pi/4,5*np.pi/8)@np.array([1,0]) I4_ut = np.linalg.norm(E4_ut)**2

1.000000000000000 [-0.38268343+0.92387953j 0. Vi ökade fasförskjutningen 25% och fick att R->R och L->L har samma intensitet medan intensiteten ökar för L->R och R->L från 0 till ca. 0.15.

(e) En spökbild, som den oönskade bilden i (d), är inte alls bra för 3D-upplevelsen. Som tur är finns det en mirakulöst enkel lösning på detta problem, som visas i figuren nedan: rotera glasen vid papperslapparna 90°! Visa att detta system inte ger någon spökbild alls, trots en felaktig fasförskjutning så hög som 25%. Ett litet pris får man dock betala för detta, vilket?

In [30]: # kod # (i) $R \rightarrow R$ Ein_roterad = np.array([0,1]) E1_ut = J_pol(0)@J_ret(np.pi/4,5*np.pi/8)@J_ret(np.pi/4,5*np.pi/8)@Ein_roterad I1_ut = np.linalg.norm(E1_ut)**2 print("R till R:", I1_ut, E1_ut) # (ii) $R \rightarrow L$ E2_ut = J_pol(0)@J_ret(np.pi/4,5*np.pi/8)@J_ret(-np.pi/4,5*np.pi/8)@Ein_roterad I2_ut = np.linalg.norm(E2_ut)**2 print(I2_ut, E2_ut) E3_ut = J_pol(0)@J_ret(-np.pi/4,5*np.pi/8)@J_ret(np.pi/4,5*np.pi/8)@Ein_roterad I3_ut = np.linalg.norm(E3_ut)**2 print(I3_ut, E3_ut) # (iv) $L \rightarrow L$ E4_ut = J_pol(0)@J_ret(-np.pi/4,5*np.pi/8)@J_ret(-np.pi/4,5*np.pi/8)@Ein_roterad I4_ut = np.linalg.norm(E4_ut)**2 print(I4_ut, E4_ut) R till R: 0.8535533905932742 [-0.85355339-0.35355339j 0. +0.j

Att intensitetn inte är noll för R->L och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R är inte önskvärt så denna metod löser det problemet, men priset man får betala för lösningen är att intensiteten för R->R och L->R sjunker till ca. 0.85 från 1.

Uppgift 2 - Bildskärmen

0.8535533905932742 [0.85355339+0.35355339j 0.

6.216093914885078e-35 [-7.8842209e-18+0.j 0.0000000e+00+0.j] 6.216093914885078e-35 [7.8842209e-18+0.j 0.0000000e+00+0.j]

0.14644660940672638 [0.14644661-0.35355339j 0.

(a) Skriv en funktion som genererar Jones-matrisen för den n-te roterade tunna skivan, $J_{ret2}(\alpha_n, \delta, n_{eo, \theta}, n_O, \lambda)$ där $n_{eo, \theta} = n_{eo}(\theta)$ för den aktuella tiltvinkeln och λ är (vakuum-)våglängden för ljuset som passerat färgfiltret. Använd $J_{proj}(lpha)$ från föregående uppgift.

In [31]: def J_ret2(alpha, delta, ne0, n0, lam): return J_proj(-alpha)@np.array([[np.exp(1j*delta*(ne0-n0)*2*np.pi/lam), 0],[0, 1]])@J_proj(alpha)

(b) Med hjälp av funktionen $J_{ret2}(\alpha_n, \delta, n_{eo, \theta}, n_O, \lambda)$ samt $J_{pol}(\alpha)$ från föregående uppgift, skriv kod som beräknar Jones-matrisen som relaterar E^{ut} och E^{in} enligt figuren i uppgiftsbeskrivningen.

Gör detta för ett antal olika värden på tiltvinkeln heta och plotta intensiteten på det ljus som kommer utfrån pixeln (efter högra polarisatorn) som funktion av heta. I plotten, markera vilket värde på heta som svarar mot 0V spänning respektive hög spänning. Är det alltså möjligt att erhålla en kontinuerlig modulation av intensiteten mellan 0 och 100% för alla färger med denna LC skärm?

In [32]: n0 = 1.5ne0 = 1.6d = 20e-6 $lam_r = 633e-9$ $lam_g = 549e-9$ $lam_b = 432e-9$ N = 50theta = np.arange(0, np.pi/2, 0.001)def ne(theta, ne0, n0): return ne0*n0/(np.sqrt(n0**2*np.cos(theta)**2+ne0**2*np.sin(theta)**2)) def I_ut(theta, lam): $E_{in} = np.array([1,0])$ for n in range(N): $alpha_n = np.pi*n/(2*N)$ E_in = J_ret2(alpha_n, d/N, ne(theta, ne0, n0), n0, lam)@E_in E_ut = J_pol(alpha_n)@E_in return np.linalg.norm(E_ut)**2 I_ut_matris = [] for i in theta: I_ut_matris.append(I_ut(i, lam_r)) plt.plot(theta*180/np.pi, I_ut_matris, label="Röd", color="r") I_ut_matris = [] **for** i **in** theta: I_ut_matris.append(I_ut(i, lam_g)) plt.plot(theta*180/np.pi, I_ut_matris, label="Grön", color="g") I_ut_matris = [] for i in theta: I_ut_matris.append(I_ut(i, lam_b)) plt.plot(theta*180/np.pi, I_ut_matris, label="Bla", color="b") plt.legend() plt.xlabel(r'\$\theta\$ [°]') plt.ylabel("Intensitet [\$W/m^2\$]") print ("Theta är 0 vid 0 spänning och 90 grader vid hög spänning. Och det är möjligt att erhålla en kontinuerlig modulation mellan 0 och 100% för varje våglängd.")

Röd - Grön Blå 0.8 Intensitet [W/m^2] 0.2 0.0 60 80 20 θ [°]

(c) Hur ser alltså en "död" pixel ut, d.v.s. en pixel som det, p.g.a. tillverkningsfel, inte går att lägga spänning över? En "död" pixel har theta=0, vilket ger således att intensiteten för de olika färgerna på ljuset är alla 1 och den resulterande färgen blir vit.

Theta är 0 vid 0 spänning och 90 grader vid hög spänning. Och det är möjligt att erhålla en kontinuerlig modulation mellan 0 och 100% för varje våglängd.

(d) Hur tunt kan vätskekristallskiktet göras? Med andra ord, hur liten kan d vara under förutsättning att vi fortfarande vill kunna modulera utintensiteten mellan 0 och 100% genom att ändra tiltvinkeln mellan 0 och $90\degree$. Att ha ett litet värde på d är viktigt eftersom detta ökar snabbheten i ändringen av tiltvinkel så att displayen kan visa snabba bildsekvenser.

In [33]: d=5.2e-6 def I_ut(theta, lam): $E_{in} = np.array([1,0])$ for n in range(N): $alpha_n = np.pi*n/(2*N)$ E_in = J_ret2(alpha_n, d/N, ne(theta, ne0, n0), n0, lam)@E_in E_ut = J_pol(alpha_n)@E_in return np.linalg.norm(E_ut)**2 I_ut_matris = [] for i in theta: I_ut_matris.append(I_ut(i, lam_r)) plt.plot(theta*180/np.pi, I_ut_matris, label="Röd", color="r") I_ut_matris = [] for i in theta: I_ut_matris.append(I_ut(i, lam_g)) plt.plot(theta*180/np.pi, I_ut_matris, label="Grön", color="g") I_ut_matris = [] for i in theta: I_ut_matris.append(I_ut(i, lam_b)) plt.plot(theta*180/np.pi, I_ut_matris, label="Bla", color="b") plt.legend() plt.xlabel(r'\$\theta\$ [°]') plt.ylabel("Intensitet [\$W/m^2\$]") Out[33]: Text(0, 0.5, 'Intensitet [\$W/m^2\$]')

0.8

