Lineáris algebra

Algoritmikus módszerek

1. Oldjuk meg a következő egyenletrendszereket:

(a)
$$\begin{cases} x_1 + 3x_2 - x_3 - 2x_4 = 3\\ 2x_1 - x_2 + 3x_3 - 4x_4 = -1\\ 3x_1 + 5x_2 + 7x_3 - 6x_4 = 1 \end{cases}$$
;

Megoldás. Az egyenletrendszer bővített mátrixát beírjuk egy táblázatba (az x_1, x_2, x_3, x_4 oszlopokba az egyenletrendszer megfelelő ismeretleneinek az együtthatói kerülnek, a b oszlopába pedig a szabadtagok). Így az alábbi táblázathoz jutunk.

Választuk egy pivotot (egy nem nulla elemet) a táblázat x_1, x_2, x_3, x_4 -gyel jelölt oszlopaiból. Ezt az elemet bekeretezzük, így jelölve, hogy az a pivot elem. Ha a pivot nem egyenlő 1-gyel, akkor a sorát osztjuk a pivot értékével. Az átláthatóság és visszakövethetőség kedvéért a jobb oldalon jelöljük, hogy az adott sorral milyen műveletet fogunk végezni. A pivot sorának elejére beírjuk az oszlopot (ismeretlent), amelyből válaszottuk.

A cél, hogy a pivot alatti és feletti elemeket kinullázuk. Ezt sorműveletekkel érhetjük el. A pivot felett az első sorban 3 szerepel, ezért az első sorból levonjuk 3-szor a pivot sorát, a második sort (ezt az első sor jobb oldalán az $S_1 - 3S_2$ -vel jelöljük). A pivot alatt a harmadik sorban 5 szerepel, ezért a harmadik sorból levonjuk 5-ször a pivot sorát (ezt a harmadik sor jobb oldalán az $S_3 - 5S_2$ -vel jelöljük). A jelölt műveleteket elvégezve az alábbi táblázathoz jutunk.

	x_1	x_2	x_3	x_4	b	
	1	3	-1	-2	3	$S_1 - 3S_2$
x_2	-2	1	-3	4	1	
	3	5	7	-6	1	$S_3 - 5S_2$
	7	0	8	-14	0	
x_2	-2	1	-3	4	1	
	13	0	22	-26	-4	

Az újabb pivotot első sor első oszlopából választjuk (ezt jelöljük a táblázat bal oldalán), majd a pivot sorát végigosztjuk 7-tel, így az alábbi táblázathoz jutunk. Ugyanezen táblázaton jelöltük, hogy a második sorhoz hozzá fogjuk adni az első sor kétszeresét, valamint a táblázat harmadik sorából le fogjuk vonni az első sor 13-szorosát. A jelölt műveleteket elvégezve az alábbi táblázathoz jutunk.

Az újabb pivotot a táblázat harmadik sorából és harmadik oszlopából választjuk, melyet a táblázat harmadik sorának bal oldalán jelöljük. A pivot sorát osztjuk $\frac{50}{7}$ -del. Az első sorból levonjuk a harmadik sor $\frac{8}{7}$ -dét, illetve második sorhoz hozzáadjuk a harmadik sor $\frac{5}{7}$ -szeresét (Ezeket a fenti a táblázat jobb oldalán jelöltük). A jelölt műveleteket elvégezve az alábbi táblázathoz jutunk.

Amely oszlopokból pivotot választottunk (és a táblázat bal oldalán jelöltük őket), azoknak megfelelő ismeretlenek lesznek a főismeretlenek, a többiek pedig a mellékismeretlenek. A kapott táblázat alapján visszaírható az eredeti egyenletrendszerrel egyenértékű egyenletrendszer (a táblázat soraiban található számokat szorozzuk az oszlopokat jelölő ismeretlenekkel, összeadjuk őket és egyenlővé tesszük a szabadtag oszlopában lévő számmal, így kapva az egyenletrendszer egyenleteit).

$$\begin{cases} x_1 - 2x_4 = \frac{16}{25} \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_1 = \frac{16}{25} + 2x_4 \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_1 = \frac{16}{25} + 2\alpha \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} , \alpha \in \mathbb{R}.$$

Ezek alapján az egyenletrendszer összeférhető és határozatlan, a megoldáshalmaza

$$M = \left\{ \left(\frac{16}{25} + 2\alpha, \frac{3}{5}, -\frac{14}{25}, \alpha \right) \mid \alpha \in \mathbb{R} \right\}.$$

Megjegyzés. Ezeket a számításokat egy összefüggő táblázatban szoktuk elvégezni:

	x_1	x_2	x_3	x_4	b	
	$\frac{x_1}{1}$	$\frac{x_2}{3}$	$\frac{x_3}{-1}$	$\frac{x_4}{-2}$	3	
x_2	2	$\lfloor -1 \rfloor$	3	-4	-1	$\cdot (-1)$
	3	5	7	-6	1	
	1	3	-1	-2	3	$S_1 - 3S_2$
x_2	-2	1	-3	4	1	
	3	5	7	-6	1	$S_3 - 5S_2$
x_1	7	0	8	-14	0	: 7
x_2	-2	1	-3	4	1	
	13	0	22	-26	-4	
x_1	1	0	$\frac{8}{7}$	-2	0	
x_2	-2	1	-3	4	1	$S_2 + 2S_1$
	13	0	22	-26	-4	$S_3 - 13S_1$
x_1	1	0	$\frac{8}{7}$	-2	0	
x_2	0	1	$-\frac{5}{7}$	0	1	
x_3	0	0	$\frac{50}{7}$	0	-4	$: \frac{50}{7}$
x_1	1	0	$\frac{8}{7}$	-2	0	$S_1 - \frac{8}{7}S_3$
x_2	0	1	$-\frac{5}{7}$	0	1	$S_2 + \frac{5}{7}S_3$
x_3	0	0	1	0	$-\frac{14}{25}$	
x_1	1	0	0	-2	$\frac{16}{25}$	
x_2	0	1	0	0	$\frac{3}{5}$	
x_3	0	0	1	0	$-\frac{14}{25}$	
		-				

Visszaírjuk a táblázatot egyenletrendszer alakjába, x_1, x_2, x_3 főismeretlenek, x_4 mellékismeretlen:

$$\begin{cases} x_1 - 2x_4 = \frac{16}{25} \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_1 = \frac{16}{25} + 2x_4 \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_1 = \frac{16}{25} + 2\alpha \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} , \alpha \in \mathbb{R}.$$

Ezek alapján az egyenletrendszer összeférhető és határozatlan, a megoldáshalmaza

$$M = \left\{ \left(\frac{16}{25} + 2\alpha, \frac{3}{5}, -\frac{14}{25}, \alpha \right) \mid \alpha \in \mathbb{R} \right\}.$$

Második megoldás. Más pivot választásokkal más formában kapjuk meg a megoldáshalmazt:

	x_1	x_2	x_3	x_4	b	
$\overline{x_4}$	1	3	-1	-2	3	: (-2)
	2	-1	3	-4	-1	
	3	5	7	-6	1	
$\overline{x_4}$	$-\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	1	$-\frac{3}{2}$	•
	2	-1	3	-4	-1	$S_2 + 4S_1$
	3	5	7	-6	1	$S_2 + 6S_1$
$\overline{x_4}$	$-\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	1	$-\frac{3}{2}$	
	0	-7	5	0	-7	
x_3	0	-4	10	0	-8	: 10
$\overline{x_4}$	$-\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	1	$-\frac{3}{2}$	$S_1 - \frac{1}{2}S_3$
	0	-7	5	0	-7	$S_1 - 5S_3$
x_3	0	$-\frac{2}{5}$	1	0	$-\frac{4}{5}$	
$\overline{x_4}$	$-\frac{1}{2}$	$-\frac{13}{10}$	0	1	$-\frac{11}{10}$	
x_2	0	-5	0	0	-3	: (-5)
x_3	0	$-\frac{2}{5}$	1	0	$-\frac{4}{5}$	
$\overline{x_4}$	$-\frac{1}{2}$	$-\frac{13}{10}$	0	1	$-\frac{11}{10}$	$S_1 + \frac{13}{10}S_2$
x_2	0	1	0	0	$\frac{3}{5}$	
x_3	0	$-\frac{2}{5}$	1	0	$-\frac{4}{5}$	$S_3 + \frac{2}{5}S_2$
$\overline{x_4}$	$-\frac{1}{2}$	0	0	1	$-\frac{8}{25}$	
x_2	0	1	0	0	$\frac{3}{5}$	
x_3	0	0	1	0	$-\frac{14}{25}$	

Innen visszaírható az eredeti egyenletrendszerrel egyenértékű egyenletrendszer, amelyben x_2, x_3, x_4 a főismeretlenek és x_1 mellékismeretlen.

$$\begin{cases} -\frac{1}{2}x_1 + x_4 = -\frac{8}{25} \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_4 = -\frac{8}{25} + \frac{1}{2}x_1 \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \end{cases} \iff \begin{cases} x_1 = \alpha \\ x_2 = \frac{3}{5} \\ x_3 = -\frac{14}{25} \\ x_4 = -\frac{8}{25} + \frac{1}{2}\alpha \end{cases}, \alpha \in \mathbb{R}.$$

Ezek alapján az egyenletrendszer összeférhető és határozatlan, a megoldáshalmaza pedig

$$M = \left\{ \left(\alpha, \frac{3}{5}, -\frac{14}{25}, -\frac{8}{25} + \frac{1}{2}\alpha \right) \mid \alpha \in \mathbb{R} \right\}.$$

(b)
$$\begin{cases} x_1 + 3x_2 - x_3 - 2x_4 = 3\\ 2x_1 - x_2 + 3x_3 - 4x_4 = -1\\ 3x_1 - 5x_2 + 7x_3 - 6x_4 = 1 \end{cases}$$
;

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	x_1	x_2	x_3	x_4	b	
x_1	1	3	-1	-2	3	
	2	-1	3	-4	-1	$S_2 - 2S_1$
	3	-5	7	-6	1	$S_3 - 3S_1$
$\overline{x_1}$	1	3	-1	-2	3	
x_3	0	-7	5	0	-7	: 5
	0	-14	10	0	-8	
$\overline{x_1}$	1	3	-1	-2	3	$S_1 + S_2$
x_3	0	$-\frac{7}{5}$	1	0	$-\frac{7}{5}$	
	0	-14	10	0	-8	$S_3 - 10S_2$
$\overline{x_1}$	1	$\frac{8}{5}$	0	-2	$\frac{8}{5}$	
x_3	0	$-rac{8}{5} \\ -rac{7}{5}$	1	0	$-\frac{8}{5} - \frac{7}{5}$	
	0	0	0	0	6	

Több pivotot nem tudunk választani, mivel a harmadik sor ismeretleneknek megfelelő oszlopaiban csupa nulla szerepel. Visszaírjuk a táblázatot egyenletrendszer alakjába:

$$\begin{cases} x_1 + \frac{8}{5}x_2 - 2x_4 = \frac{8}{5} \\ -\frac{7}{5}x_2 + x_3 = -\frac{7}{5} \\ 0 = 6 \end{cases}.$$

Az egyenletrendszer utolsó egyenlete sosem teljesül, ezért a rendszer összeférhetetlen (inkompatibilis), vagyis az egyenletrendszernek nincs megoldása. (Ezt a táblázat utolsó sorából egyenletrendszer alakba való visszaírás nélkül is meg tudjuk mondani.)

Megjegyzés. Hasonlóan indítva a számításokat a második pivot választás után észrevehető, hogy a harmadik sorból kivonva a második sort összeférhetetlen rendszerhez jutunk, ezért nem is szükséges osztani 5-tel a pivot sorát:

		x_1	x_2	x_3	x_4	b	
_	x_1	1	3	-1	-2	3	
		2	-1	3	-4	-1	$S_2 - 2S_1$
		3	-5	7	-6	1	$S_3 - 3S_1$
	x_1	1	3	-1	-2	3	
	x_3	0	-7	5	0	-7	
		0	-14	10	0	-8	$S_3 - 5S_2$
	x_1	1	3	-1	-2	3	
	x_3	0	-7	5	0	-7	
		0	0	0	0	6	

A táblázat utolsó sora alapján 0=6 kellene teljesüljön, ezért a rendszer összeférhetetlen, vagyis nincs megoldása.

(c)
$$\begin{cases} x_1 + 3x_2 - x_3 - 2x_4 = 3\\ 2x_1 - x_2 + 3x_3 - 4x_4 = -1\\ 3x_1 - 5x_2 + 7x_3 - 6x_4 = -5 \end{cases}$$
;

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	$ x_1 $	x_2	x_3	x_4	b	
$\overline{x_1}$	1	3	-1	-2	3	
	2	-1	3	-4	-1	$S_2 - 2S_1$
	3	-5	7	-6	-5	$S_3 - 3S_1$
$\overline{x_1}$	1	3	-1	-2	3	
x_3	0	-7	5	0	-7	: 5
	0	-14	10	0	-14	
$\overline{x_1}$	1	3	-1	-2	3	$S_1 + S_2$
x_3	0	$-\frac{7}{5}$	1	0	$-\frac{7}{5}$	
	0	-14	10	0	-14	$S_3 - 10S_2$
x_1	1	$\frac{8}{5}$	0	-2	8 5	
x_3	0	$-rac{8}{5} \\ -rac{7}{5}$	1	0	$-\frac{8}{5}$ $-\frac{7}{5}$	
	0	0	0	0	0	

Több pivotot nem tudunk választani, mivel a harmadik sor ismeretleneknek megfelelő oszlopaiban csupa nulla szerepel. Visszaírjuk a táblázatot egyenletrendszer alakjába: x_1, x_3 főismeretlenek és x_2, x_4 mellékismeretlenek.

$$\begin{cases} x_1 + \frac{8}{5}x_2 - 2x_4 = \frac{8}{5} \\ -\frac{7}{5}x_2 + x_3 = -\frac{7}{5} \\ 0 = 0 \end{cases} \iff \begin{cases} x_1 = \frac{8}{5} - \frac{8}{5}x_2 + 2x_4 \\ x_3 = -\frac{7}{5} + \frac{7}{5}x_2 \end{cases} \iff \begin{cases} x_1 = \frac{8}{5} - \frac{8}{5}\alpha + 2\beta \\ x_2 = \alpha \\ x_3 = -\frac{7}{5} + \frac{7}{5}\alpha \\ x_4 = \beta \end{cases}, \quad \alpha, \beta \in \mathbb{R}.$$

Az egyenletrendszer megoldáshalmaza

$$M = \left\{ \left(\frac{8}{5} - \frac{8}{5}\alpha + 2\beta, \alpha, -\frac{7}{5} + \frac{7}{5}\alpha, \beta \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

(d)
$$\begin{cases} x_1 - 2x_2 - 2x_3 - 2x_4 - x_5 = 0 \\ x_1 - x_2 - x_3 - 3x_4 + x_5 = 1 \\ x_1 + x_2 - 5x_3 - x_4 + 7x_5 = 2 \end{cases}$$

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

					U		
	x_1	x_2	x_3	x_4	x_5	b	
$\overline{x_1}$	1	-2	-2	-2	-1	0	
	1	-1	-1	-3	1	1	$S_2 - S_1$
	1	1	-5	-1	7	2	$S_3 - S_1$
$\overline{x_1}$	1	-2	-2	-2	-1	0	$S_1 + 2S_2$
x_2	0	1	1	-1	2	1	
	0	3	-3	1	8	2	$S_3 - 3S_2$
$\overline{x_1}$	1	0	0	-4	3	2	
x_2	0	1	1	-1	2	1	
x_5	0	0	-6	4	$\boxed{2}$	-1	: 2
$\overline{x_1}$	1	0	0	-4	3	2	$S_1 - 3S_3$
x_2	0	1	1	-1	2	1	$S_2 - 2S_3$
x_5	0	0	-3	2	1	$-\frac{1}{2}$	
$\overline{x_1}$	1	0	9	-10	0	$\frac{7}{2}$	
x_2	0	1	7	-5	0	2	
x_5	0	0	-3	2	1	$-\frac{1}{2}$	

Táblázat alapján az egyenletrendszer összeférhető és határozatlan, az x_1, x_2, x_5 főismeretlenek és x_3, x_4 mellékismeretlenek. Az egyenletrendszer megoldásai

$$\begin{cases} x_1 = \frac{7}{2} - 9\alpha + 10\beta \\ x_2 = 2 - 7\alpha + 5\beta \\ x_3 = \alpha \\ x_4 = \beta \\ x_5 = -\frac{1}{2} + 3\alpha - 2\beta \end{cases}, \quad \alpha, \beta \in \mathbb{R}$$

alakúak, ahonnan a megoldáshalmaz

$$M = \left\{ \left(\frac{7}{2} - 9\alpha + 10\beta, \ 2 - 7\alpha + 5\beta, \ \alpha, \ \beta, \ -\frac{1}{2} + 3\alpha - 2\beta \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

(e)
$$\begin{cases} x_1 + 2x_2 + x_3 + 3x_4 + 3x_5 = 3\\ -x_1 - x_2 - x_3 - 2x_4 - 2x_5 = -2\\ x_1 + 3x_2 + 2x_3 + 5x_4 + 4x_5 = 2 \end{cases}$$

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	x_1	x_2	x_3	x_4	x_5	b	
$\overline{x_1}$	1	2	1	3	3	3	
	-1	-1	-1	-2	-2	-2	$S_2 + S_1$
	1	3	2	5	4	2	$S_3 - S_1$
$\overline{x_1}$	1	2	1	3	3	3	S_1-2S_2
x_2	0	1	0	1	1	1	
	0	1	1	2	1	-1	$S_3 - S_1$
$\overline{x_1}$	1	0	1	1	1	1	$S_1 - S_3$
x_2	0	1	0	1	1	1	
x_3	0	0	1	1	0	-2	
$\overline{x_1}$	1	0	0	0	1	3	
x_2	0	1	0	1	1	1	
x_3	0	0	1	1	0	-2	

Táblázat alapján az egyenletrendszer határozatlan és összeférhető, az x_1, x_2, x_3 főismeretlenek és x_4, x_5 mellékismeretlenek. Az egyenletrendszer megoldásai

$$\begin{cases} x_1 = 3 - \beta \\ x_2 = 1 - \alpha - \beta \\ x_3 = -2 - \alpha \end{cases}, \quad \alpha, \beta \in \mathbb{R}$$

$$\begin{cases} x_1 = 3 - \beta \\ x_2 = 1 - \alpha - \beta \\ x_3 = -2 - \alpha \end{cases}$$

$$\begin{cases} x_1 = 3 - \beta \\ x_2 = 1 - \alpha - \beta \\ x_3 = -2 - \alpha \end{cases}$$

alakúak, ahonnan a megoldáshalmaz

$$M = \{(3 - \beta, 1 - \alpha - \beta, -2 - \alpha, \alpha, \beta) \mid \alpha, \beta \in \mathbb{R}\}.$$

(f)
$$\begin{cases} \hat{2}x_1 + x_2 - \hat{2}x_3 = \hat{1} \\ \hat{2}x_1 + \hat{2}x_2 + \hat{2}x_3 = \hat{0} \\ x_1 + \hat{4}x_2 + \hat{2}x_3 = \hat{2} \end{cases}$$
, $(K = \mathbb{Z}_5)$.

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	x_1	x_2	x_3	b	
	$\hat{2}$	î	$-\hat{2}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	
	î	$\hat{4}$	$\hat{2}$	$\hat{2}$	
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	$S_2 + \hat{3}S_1$
	î	$\hat{4}$	$\hat{2}$	$\hat{2}$	$S_3 + S_1$
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	
	$\hat{3}$	Ô	î	$\hat{3}$	
x_1	$[\hat{3}]$	ô	ô	$\hat{3}$	$\cdot \hat{2}$
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	$S_1 + \hat{3}S_3$
	$\hat{3}$	ô	$\hat{1}$	$\hat{3}$	$S_2 + \hat{2}S_3$
x_1	î	Ô	Ô	î	
x_2	Ô	î	$\hat{3}$	$\hat{4}$	$S_1 + \hat{2}S_2$
x_3	ô	Ô	$\hat{1}$	ô	
x_1	î	Ô	Ô	î	
$\overline{x_2}$	Ô	î	Ô	$\hat{4}$	
x_3	ô	Ô	î	ô	
x_1	î	Ô	Ô	î	

Táblázat alapján a rendszer összeférhető és határozott, egyenletrendszer megoldása

$$\begin{cases} x_1 = \hat{1} \\ x_2 = \hat{4} \\ x_3 = \hat{0} \end{cases},$$

ahonnan a megoldáshalmaz $M = \left\{ \left(\hat{1}, \hat{4}, \hat{0} \right) \right\}.$

(g)
$$\begin{cases} \hat{2}x_1 + x_2 - \hat{2}x_3 = \hat{1} \\ \hat{2}x_1 + \hat{2}x_2 + \hat{2}x_3 = \hat{0} \\ x_1 + \hat{4}x_2 + \hat{3}x_3 = \hat{2} \end{cases}$$
, $(K = \mathbb{Z}_5)$.

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	x_1	x_2	x_3	b	
	$\hat{2}$	Î	$-\hat{2}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	
	î	$\hat{4}$	$\hat{3}$	$\hat{2}$	
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	$S_2 + \hat{3}S_1$
	î	$\hat{4}$	$\hat{3}$	$\hat{2}$	$S_3 + S_1$
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	Î	
	$\hat{3}$	Ô	î	$\hat{3}$	
x_1	$\hat{3}$	ô	î	$\hat{3}$	$\cdot \hat{2}$
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	$S_1 + \hat{3}S_3$
	$\hat{3}$	ô	$\hat{1}$	$\hat{3}$	$S_2 + \hat{2}S_3$
x_1	î	Ô	$\hat{2}$	î	
$\overline{x_2}$	Ô	î	$\hat{4}$	$\hat{4}$	$S_1 + \hat{2}S_2$
	ô	ô	ô	ô	
x_1	$\hat{1}$	Ô	$\hat{2}$	î	

Táblázat alapján a rendszer összeférhető és határozotlan, x_1, x_2 főismeretlenek és x_3 mellékismeretlen. Visszaírjuk a táblázatot egyenletrendszer formájába:

$$\begin{cases} x_2 + \hat{4}x_3 = \hat{4} \\ x_1 + \hat{2}x_3 = \hat{1} \end{cases} \iff \begin{cases} x_2 = \hat{4} - \hat{4}x_3 \\ x_1 = \hat{1} - \hat{2}x_3 \end{cases} \iff \begin{cases} x_2 = \hat{4} + x_3 \\ x_1 = \hat{1} + \hat{3}x_3 \end{cases}.$$

Az egyenletrendszer megoldásai

$$\begin{cases} x_1 = \hat{1} + \hat{3}\alpha \\ x_2 = \hat{4} + \alpha &, \alpha \in \mathbb{Z}_5, \\ x_3 = \alpha \end{cases}$$
alakúak, ahonnan a megoldáshalmaz $M = \left\{ \left(\hat{1} + \hat{3}\alpha, \hat{4} + \alpha, \alpha \right) \mid \alpha \in \mathbb{Z}_5 \right\}.$

(h)
$$\begin{cases} \hat{2}x_1 + x_2 - \hat{2}x_3 = \hat{1} \\ \hat{2}x_1 + \hat{2}x_2 + \hat{2}x_3 = \hat{0} \\ x_1 + \hat{4}x_2 + \hat{3}x_3 = \hat{4} \end{cases}$$
, $(K = \mathbb{Z}_5)$.

Megoldás. Átírjuk az egyenletrendszert táblázat formájába:

	$ x_1 $	x_2	x_3	b	
	$\hat{2}$	î	$-\hat{2}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	
	î	$\hat{4}$	$\hat{3}$	$\hat{4}$	
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	
	$\hat{2}$	$\hat{2}$	$\hat{2}$	ô	$S_2 + \hat{3}S_1$
	î	$\hat{4}$	$\hat{2}$	$\hat{4}$	$S_3 + S_1$
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	
	$\hat{3}$	ô	î	$\hat{3}$	
x_1	$\hat{3}$	ô	$\hat{1}$	ô	$ \cdot \hat{2} $
$\overline{x_2}$	$\hat{2}$	î	$\hat{3}$	î	$S_1 + \hat{3}S_3$
	$\hat{3}$	ô	î	$\hat{3}$	$S_2 + \hat{2}S_3$
x_1	$\hat{1}$	ô	$\hat{2}$	ô	
$\overline{x_2}$	Ô	î	$\hat{4}$	$\hat{4}$	$S_1 + \hat{2}S_2$
	ô	Ô	ô	$\hat{3}$	
x_1	î	Ô	$\hat{2}$	ô	

Táblázat alapján a rendszer összeférhetetlen (inkompatibilis), mivel ha visszaírjuk egyenletrendszer formájába, akkor az

$$\begin{cases} x_2 + \hat{4}x_3 = \hat{4} \\ \hat{0} = \hat{3} \\ x_1 + \hat{2}x_3 = \hat{0} \end{cases}$$

egyenletrendszerhez jutunk, amelynek nincs megoldása. Tehát a megoldáshalmaz $M = \emptyset$.

2. Határozzuk meg a következő mátrixok inverzét és számoljuk ki a determinánsaikat:

(a)
$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Q});$$

Megoldás. Beírjuk a négyzetes mátrixot a táblázat első felébe, míg egy ugyanolyan méretű identikus mátrixot a táblázat második felébe. Sorműveletekkel a táblázat első felében kialakítjuk az identikus mátrixot, így a táblázat második felében az inverzmátrixot fogjuk megkapni.

	o_1	o_2	o_3				
o_1	1	4	2	1	0	0	
	2	3	1	0	1	0	$S_2 - 2S_1$
	3	0	-1	0	0	1	$S_3 - 3S_1$
o_1	1	4	2	1	0	0	
o_3	0	-5	-3	-2	1	0	: (-3)
	0	-12	-7	-3	0	1	
o_1	1	4	2	1	0	0	$S_1 - 2S_2$
o_3	0	$\frac{5}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	
	0	-12	-7	-3	0	1	$S_3 + 7S_2$
o_1	1	$\frac{2}{3}$	0	$-\frac{1}{3}$	$\frac{2}{3}$	0	
o_3	0	$\frac{5}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	
o_2	0	$ \begin{array}{c c} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{array} $	0	$\frac{5}{3}$	$-\frac{7}{3}$	1	$: (-\frac{1}{3})$
o_1	1	$\frac{2}{3}$	0	$-\frac{1}{3}$	$\frac{2}{3}$	0	$S_1 - \frac{2}{3}S_3$
o_3	0	$\frac{5}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	$S_2 - \frac{5}{3}S_3$
o_2	0	1	0	-5	7	-3	
o_1	1	0	0	3	-4	2	
o_3	0	0	1	9	-12	5	
o_2	0	1	0	-5	7	-3	
o_1	1	0	0	3	-4	2	
o_2	0	1	0	-5	7	-3	
03	0	0	1	9	-12	5	

A táblázat alapján a megadott mátrix inverze

$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -4 & 2 \\ -5 & 7 & -3 \\ 9 & -12 & 5 \end{pmatrix}.$$

Az adott mátrix determinánsát a táblázatból a következőképpen olvashatjuk le. A determináns az eredetileg választott pivotok szorzata (mielőtt őket 1-é tettük volna osztva az adott sort), amelyet még kell szorozni az utolsó lépésben végrehajtott sorcserének megfelelő permutáció előjelével. A mi esetünkben

$$\begin{vmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{vmatrix} = \operatorname{sgn} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \cdot 1 \cdot (-3) \cdot \left(-\frac{1}{3} \right) = (-1) \cdot 1 \cdot (-3) \cdot \left(-\frac{1}{3} \right) = -1.$$

(b)
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Q});$$

Megoldás. Beírjuk a mátrixot a táblázatba.

	o_1	o_2	o_3				
$\overline{o_1}$	1	2	2	1	0	0	
	2	1	-2	0	1	0	$S_2 - 2S_1$
	2	-2	1	0	0	1	$S_3 - 2S_1$
$\overline{o_1}$	1	2	2	1	0	0	
o_2	0	-3	-6	-2	1	0	: (-3)
	0	-6	-3	-2	0	1	
$\overline{o_1}$	1	2	2	1	0	0	$S_1 - 2S_2$
o_2	0	1	2	$\frac{2}{3}$	$-\frac{1}{3}$	0	
	0	-6	-3	-2	0	1	$S_3 + 6S_1$
$\overline{o_1}$	1	0	-2	$-\frac{1}{3}$	$\frac{2}{3}$	0	
o_2	0	1	2	$\frac{2}{3}$	$-\frac{1}{3}$	0	
o_3	0	0	9	2	-2	1	: 9
$\overline{o_1}$	1	0	-2	$-\frac{1}{3}$	$\frac{2}{3}$	0	$S_1 + 2S_3$
o_2	0	1	2	$\frac{2}{3}$	$-\frac{1}{3}$	0	$S_2 - 2S_3$
o_3	0	0	1	$\frac{2}{9}$	$-\frac{2}{9}$	$\frac{1}{9}$	
o_1	1	0	0	$\frac{1}{9}$	$\frac{2}{9}$		
o_2	0	1	0	$\frac{2}{9}$	$\frac{1}{9}$	$-\frac{2}{9}$ $-\frac{2}{9}$	
o_3	0	0	1	$\frac{2}{9}$	$-\frac{2}{9}$	$\frac{1}{9}$	

A táblázat alapján a megadott mátrix inverze

$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{1}{9} & -\frac{2}{9} \\ \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}.$$

A megadott mátrix determinánsa

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = \operatorname{sgn} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \cdot 1 \cdot (-3) \cdot 9 = -27.$$

$$(c) \begin{pmatrix} \hat{2} & \hat{0} & \hat{1} \\ \hat{1} & \hat{2} & \hat{1} \\ \hat{2} & \hat{1} & \hat{1} \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_3);$$

 $Megold\acute{a}s.$ Beírjuk a mátrixot a táblázatba.

	o_1	o_2	o_3				
	$\hat{2}$	Ô	î	Î	Ô	Ô	$S_1 + S_2$
o_1	$\hat{1}$	$\hat{2}$	$\hat{1}$	ô	î	ô	
	$\hat{2}$	î	$\hat{1}$	ô	ô	î	$S_3 + S_2$
	Ô	$\hat{2}$	$\hat{2}$	î	î	Ô	
o_1	î	$\hat{2}$	î	ô	î	Ô	
03	ô	ô	$\hat{2}$	ô	î	î	$ \cdot \hat{2} $
	Ô	$\hat{2}$	$\hat{2}$	î	î	Ô	$S_1 + S_3$
o_1	î	$\hat{2}$	$\hat{1}$	ô	î	ô	$S_2 + \hat{2}S_3$
o_3	ô	Ô	$\hat{1}$	ô	$\hat{2}$	$\hat{2}$	
o_2	ô	$\hat{2}$	ô	î	ô	$\hat{2}$	$ \cdot \hat{2} $
o_1	î	$\hat{2}$	Ô	ô	$\hat{2}$	î	
o_3	ô	Ô	$\hat{1}$	ô	$\hat{2}$	$\hat{2}$	
o_2	ô	$\hat{1}$	ô	$\hat{2}$	ô	î	
o_1	î	$\hat{2}$	ô	ô	$\hat{2}$	î	$S_2 + S_1$
03	ô	ô	$\hat{1}$	ô	$\hat{2}$	$\hat{2}$	
o_2	Ô	î	Ô	$\hat{2}$	Ô	î	
o_1	î	Ô	Ô	$\hat{2}$	$\hat{2}$	$\hat{2}$	
03	ô	Ô	î	ô	$\hat{2}$	$\hat{2}$	
o_1	î	Ô	Ô	$\hat{2}$	$\hat{2}$	$\hat{2}$	
o_2	ô	$\hat{1}$	Ô	$\hat{2}$	ô	î	
03	Ô	<u> </u>	Î	Ô	$\hat{2}$	$\hat{2}$	

A táblázat alapján a megadott mátrix inverze

$$\begin{pmatrix} \hat{2} & \hat{0} & \hat{1} \\ \hat{1} & \hat{2} & \hat{1} \\ \hat{2} & \hat{1} & \hat{1} \end{pmatrix}^{-1} = \begin{pmatrix} \hat{2} & \hat{2} & \hat{2} \\ \hat{2} & \hat{0} & \hat{1} \\ \hat{0} & \hat{2} & \hat{2} \end{pmatrix}.$$

A megadott mátrix determinánsa

$$\begin{vmatrix} \hat{2} & \hat{0} & \hat{1} \\ \hat{1} & \hat{2} & \hat{1} \\ \hat{2} & \hat{1} & \hat{1} \end{vmatrix} = \operatorname{sgn} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \cdot \hat{1} \cdot \hat{2} \cdot \hat{2} = -\hat{1} = \hat{2}.$$

$$(\mathrm{d}) \ \begin{pmatrix} \hat{2} & \hat{4} & \hat{2} \\ \hat{1} & \hat{1} & \hat{1} \\ \hat{0} & \hat{2} & \hat{1} \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_5).$$

 $Megold\'{a}s$. Beírjuk a mátrixot a táblázatba.

	o_1	o_2	o_3				
	$\hat{2}$	$\hat{4}$	$\hat{2}$	Î	Ô	Ô	$S_1 + \hat{3}S_2$
o_1	î	î	î	ô	î	ô	
	ô	$\hat{2}$	î	ô	Ô	î	
	Ô	$\hat{2}$	Ô	î	$\hat{3}$	Ô	
o_1	î	î	î	ô	î	ô	$S_2 + \hat{4}S_3$
o_3	ô	$\hat{2}$	$\hat{1}$	ô	ô	î	
o_2	Ô	$\hat{2}$	Ô	î	$\hat{3}$	ô	$ \cdot \hat{3} $
o_1	î	$\hat{4}$	Ô	ô	î	$\hat{4}$	
o_3	Ô	$\hat{2}$	î	ô	Ô	î	
o_2	ô	î	Ô	$\hat{3}$	$\hat{4}$	ô	
o_1	î	$\hat{4}$	Ô	ô	î	$\hat{4}$	$S_2 + S_1$
03	Ô	$\hat{2}$	î	ô	ô	î	$S_3 + 3S_1$
o_2	Ô	î	Ô	$\hat{3}$	$\hat{4}$	Ô	
o_1	î	Ô	Ô	$\hat{3}$	ô	$\hat{4}$	
o_3	Ô	Ô	î	$\hat{4}$	$\hat{2}$	î	
o_1	î	Ô	Ô	$\hat{3}$	Ô	$\hat{4}$	
o_2	Ô	î	Ô	$\hat{3}$	$\hat{4}$	ô	
03	Ô	Ô	î	$\hat{4}$	$\hat{2}$	î	

A táblázat alapján a megadott mátrix inverze

$$\begin{pmatrix} \hat{2} & \hat{4} & \hat{2} \\ \hat{1} & \hat{1} & \hat{1} \\ \hat{0} & \hat{2} & \hat{1} \end{pmatrix}^{-1} = \begin{pmatrix} \hat{3} & \hat{0} & \hat{4} \\ \hat{3} & \hat{4} & \hat{0} \\ \hat{4} & \hat{2} & \hat{1} \end{pmatrix}.$$

A megadott mátrix determinánsa

$$\begin{vmatrix} \hat{2} & \hat{4} & \hat{2} \\ \hat{1} & \hat{1} & \hat{1} \\ \hat{0} & \hat{2} & \hat{1} \end{vmatrix} = \operatorname{sgn} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \cdot \hat{1} \cdot \hat{2} \cdot \hat{1} = -\hat{2} = \hat{3}.$$

3. Határozzuk meg a következő mátrixok rangját:

(a)
$$\begin{pmatrix} 1 & -1 & 1 & 2 & 2 \\ 1 & -1 & -1 & 1 & 3 \\ 2 & 2 & 0 & 3 & 5 \end{pmatrix};$$

Megoldás. Az egyenletrendszer megoldásához hasonlóan a mátrixot táblázatba írjuk (nem lesz szabadtagok oszlopa), pivotokat választuk és sorműveletekkel a pivotok alatt és felett kinullázzuk az elemeket. A mátrix rangja meg fog egyezni a kiválaszható pivotok számával, vagyis a lineárisan független sorok maximális számával.

	o_1	o_2	o_3	o_4	o_5	
o_1	1	-1	1	2	2	
	1	-1	-1	1	3	$S_2 - S_1$
	2	2	0	3	5	S_3-2S_1
o_1	1	-1	1	2	2	S_1-2S_1
o_5	0	0	-2	-1	1	
	0	4	-2	-1	1	$S_3 - S_2$
o_1	1	-1	5	4	0	
o_5	0	0	-2	-1	1	
o_2	0	4	0	0	0	:4
o_1	1	-1	5	4	0	$S_1 + S_3$
o_5	0	0	-2	-1	1	
o_2	0	1	0	0	0	
o_1	1	0	5	4	0	
o_5	0	0	-2	-1	1	
o_2	0	1	0	0	0	

Három pivotot tudunk választani (az 1, 2, 5 oszlopokból), így a mátrix rangja 3.

(b)
$$\begin{pmatrix} 1 & -2 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ 1 & -4 & 5 & 7 \end{pmatrix}.$$

Megoldás. A mátrixot beírjuk a táblázatba.

	ı				ı
	o_1	o_2	o_3	o_4	
o_1	1	-2	1	3	
	1	-1	-1	1	$S_2 - S_1$
	1	-4	5	7	$S_3 - S_1$
o_1	1	-2	1	3	$S_1 + 2S_2$
o_2	0	1	-2	-2	
	0	-2	4	4	$S_3 + 2S_2$
o_1	1	0	-3	-1	
o_2	0	1	-2	-2	
	0	0	0	0	

Csak két pivotot tudunk választani (az 1,2 oszlopokból), így a mátrix rangja 2.

4. Legyen $f: \mathbb{R}^n \to \mathbb{R}^m$ egy lineáris függvény. Határozzuk meg a ker f és Im f vektorterek egy-egy bázisát, ha adott az f mátrixa a kanonikus bázisokban:

(a)
$$[f]_{E'E} = \begin{pmatrix} 3 & -1 & -1 & 1 \\ 1 & 2 & -1 & -1 \end{pmatrix};$$

Megoldás.A ker fegy bázisának meghatározásához az $f(x)=\vec{0}$ egyenletet kell megoldani, amely egyenértékű az

$$\begin{pmatrix} 3 & -1 & -1 & 1 \\ 1 & 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} 3x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 + 2x_2 - x_3 - x_4 = 0 \end{cases}$$

egyenletrendszerrel. A táblázatos módszerrel megoldjuk ezt az egyenletrendszert.

A táblázat alapján a x_2, x_4 főismeretlenek és x_1, x_3 mellékismeretlenek. A táblázatot visszaírjuk egyenletrendszer alakjába:

$$\begin{cases} 7x_1 - 3x_3 + x_4 = 0 \\ 4x_1 + x_2 - 2x_3 = 0 \end{cases} \iff \begin{cases} x_4 = -7x_1 + 3x_3 \\ x_2 = -4x_1 + 2x_3 \end{cases}$$

Az egyenletrendszer megoldásai

$$(x_1, x_2, x_3, x_4) = (\alpha, -4\alpha + 2\beta, \beta, -7\alpha + 3\beta) = \alpha(1, -4, 0, -7) + \beta(0, 2, 1, 3), \quad \alpha, \beta \in \mathbb{R}$$

alakúak, tehát a ker f minden vektora egyértelműen felírható az $u_1 = (1, -4, 0, -7), u_2 = (0, 2, 1, 3)$ vektorok lineáris kombinációjaként. Ez alapján a $(u_1 = (1, -4, 0, -7), u_2 = (0, 2, 1, 3))$ a ker f egy bázisa.

Mivel a főismeretlenek x_2, x_4 , ezért az Im f egy bázisa $(f(e_2), f(e_4)) = ((-1, 2), (1, -1))$.

(b)
$$[f]_E = \begin{pmatrix} 0 & -1 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix};$$

Megoldás. A mátrixot beírjuk a táblázat első felébe, a szabadtagok oszlopa csupa nulla.

	$ x_1 $	x_2	x_3	b	
	0	-1	5	0	
x_1	1	0	0	0	
	0	1	-5	0	
	0	-1	5	0	$S_1 + S_3$
x_1	1	0	0	0	
x_2	0	1	-5	0	
	0	0	0	0	
x_1	1	0	0	0	
x_2	0	1	-5	0	

A táblázat alapján a x_1, x_2 főismeretlenek és x_3 mellékismeretlen. A táblázatot visszaírjuk egyenletrendszer alakjába:

$$\begin{cases} x_1 = 0 \\ x_2 - 5x_3 = 0 \end{cases} \iff \begin{cases} x_1 = 0 \\ x_2 = 5x_3 \end{cases}$$

Az egyenletrendszer megoldásai

$$(x_1, x_2, x_3) = (0, 5\alpha, \alpha) = \alpha(0, 5, 1), \quad \alpha \in \mathbb{R}$$

alakúak, tehát a ker f egy bázisa $(u_1 = (0, 5, 1))$.

Mivel a főismeretlenek x_1, x_2 , ezért az Im f egy bázisa $(f(e_1), f(e_2)) = ((0, 1, 0), (-1, 0, 1))$ (az f mátrixának első és második oszlopvektorai).

(c)
$$[f]_{E'E} = \begin{pmatrix} 1 & 0 & -3 & 2 \\ -2 & 3 & 0 & 1 \\ 3 & -3 & -1 & 1 \end{pmatrix};$$

Megoldás. A mátrixot beírjuk a táblázat első felébe, a szabadtagok oszlopa csupa nulla.

	x_1	x_2	x_3	x_4	b	
	1	0	-3	2	0	$S_1 - 2S_2$
x_4	-2	3	0	1	0	
	3	-3	-1	1	0	$S_3 - S_1$
	5	-6	-3	0	0	
x_4	-2	3	0	1	0	
x_3	5	-6	-1	0	0	: (-1)
	5	-6	-3	0	0	$S_1 + 3S_3$
x_4	-2	3	0	1	0	
x_3	-5	6	1	0	0	
$\overline{x_1}$	-10	12	0	0	0	: (-10)
x_4	-2	3	0	1	0	
x_3	-5	6	1	0	0	
$\overline{x_1}$	1	$-\frac{6}{5}$	0	0	0	
x_4	-2	3	0	1	0	$S_2 + 2S_1$
x_3	-5	6	1	0	0	$S_3 + 5S_1$
$\overline{x_1}$	1	$-\frac{6}{5}$	0	0	0	
x_4	0	$\frac{3}{5}$	0	1	0	
x_3	0	0	1	0	0	

A táblázat alapján a x_1, x_3, x_4 főismeretlenek és x_2 mellékismeretlen. A táblázatot visszaírjuk egyenletrendszer alakjába:

$$\begin{cases} x_1 - \frac{6}{5}x_2 = 0 \\ \frac{3}{5}x_2 + x_4 = 0 \\ x_3 = 0 \end{cases} \iff \begin{cases} x_1 = \frac{6}{5}x_2 \\ x_4 = -\frac{3}{5}x_2 \\ x_3 = 0 \end{cases}$$

Az egyenletrendszer megoldásai

$$(x_1, x_2, x_3, x_4) = \left(\frac{6}{5}\alpha, \alpha, 0, -\frac{3}{5}\alpha\right) = \alpha\left(\frac{6}{5}, 1, 0, -\frac{3}{5}\right), \quad \alpha \in \mathbb{R}$$

alakúak, tehát a ker f egy bázisa $(u_1 = (\frac{6}{5}, 1, 0, -\frac{3}{5})).$

Mivel a főismeretlenek x_1, x_3, x_4 , ezért az Im f egy bázisa

$$(f(e_1), f(e_3), f(e_4)) = ((1, -2, 3), (-3, 0, -1), (2, 1, 1))$$

(az f mátrixának első, harmadik és negyedik oszlopvektorai).

(d)
$$[f]_E = \begin{pmatrix} 2 & 2 & 1 \\ -1 & -3 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$
.

Megoldás. A mátrixot beírjuk a táblázat első felébe, a szabadtagok oszlopa csupa nulla.

	x_1	x_2	x_3	b	
	2	2	1	0	$S_1 - 2S_3$
	-1	-3	1	0	$S_2 + S_3$
x_1	1	2	-1	0	
	0	-2	3	0	
x_2	0	-1	0	0	: (-1)
x_1	1	2	-1	0	
	0	-2	3	0	$S_1 + 2S_2$
x_2	0	1	0	0	
x_1	1	2	-1	0	S_3-2S_2
$\overline{x_3}$	0	0	3	0	: 3
x_2	0	1	0	0	
x_1	1	0	-1	0	
$\overline{x_3}$	0	0	1	0	
x_2	0	1	0	0	
x_1	1	0	-1	0	$S_3 + S_1$
$\overline{x_3}$	0	0	1	0	
x_2	0	1	0	0	
x_1	1	0	0	0	

A táblázat alapján a x_1, x_2, x_3 főismeretlenek. A táblázatot visszaírjuk egyenletrendszer alakjába:

$$\begin{cases} x_3 = 0 \\ x_2 = 0 \\ x_1 = 0 \end{cases}$$

Az egyenletrendszer egyetlen megoldása $(x_1, x_2, x_3) = (0, 0, 0)$, tehát a ker $f = \{\vec{0}\}$ nem rendelkezik bázissal. Mivel a főismeretlenek x_1, x_2, x_3 , ezért az Im f egy bázisa

$$(f(e_1), f(e_2), f(e_3)) = ((2, -1, 1), (2, -3, 2), (1, 1, -1))$$

(az f mátrixának oszlopvektorai).