Université Laval	Examen partiel informatique
Faculté des Sciences et de Génie	Hiver 2018
École d'actuariat	Date: 25 février 2018

Act-2001 Introduction à l'actuariat 2

Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

Instructions:

- L'examen contient 5 questions à développement.
- Le total des points est de 135 points.
- La durée est de 180 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le présent cahier seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Important : on ne doit pas utiliser la fonction R "integrate" pour effectuer les calculs ou tout autre fonction d'intégration numérique.
 - Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		24
2		30
3		20
4		32
5		29
Total		135

© Etienne Marceau, 2017.

Symboles et abréviations 1

Symboles 1.1

- 1. $\mathbb{N} = \{0, 1, 2...\}$ = ensemble des entiers naturels (incluant $\{0\}$)
- 2. $\mathbb{N}^+ = \{1, 2...\}$
- 3. \mathbb{R} = ensemble des nombres réels
- 4. \mathbb{R}^+ = ensemble des nombres réels positifs (incluant $\{0\}$)
- 5. $i = \sqrt{-1} = \text{unit\'e imaginaire}$
- 6. $\mathbb{C} = \{x + yi; \ x, y \in \mathbb{R}\}$ = ensemble des nombres complexes
- 7. $\sum_{k=1}^{0} a_k = 0$
- 8. $\rho_P(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}}$ 9. $\Phi(x)$ = fonction de répartition de la loi normale standard
- 10. $\Phi^{-1}(u)$ = fonction quantile de la loi normale standard

1.2 Abréviations

- 1. fmp = fonction de masses de probabilité
- 2. fgp = fonction génératrice des probabilités
- 3. fgm = fonction génératrice des moments
- 4. i.i.d. = indépendant(e)s et identiquement distribué(e)s
- 5. v.a. = variable(s) aléatoire(s)
- 6. TLS = transformée de Laplace-Stieltjes

2 Questions

1. (24 points). On considère un portefeuille homogène de n contrats d'assurance IARD. Selon un modèle simple, les coûts sont définis par les v.a. i.i.d. $X_1, ..., X_n$ avec

$$X_i \sim X \quad (i = 1, 2, ..., n),$$

où la TLS de la v.a. X est $\mathcal{L}_X(t) = \left(\frac{b}{b+t}\right)^c$, t > 0, b > 0, c > 0. Les coûts totaux pour le portefeuille sont définis par la v.a.

$$S_n = \sum_{i=1}^n X_i.$$

La part allouée par contrat est définie par la v.a. $W_n = \frac{1}{n}S_n$.

Questions: (note: on ne doit pas utiliser la fonction R "integrate" pour effectuer les calculs)

- (a) (1 point). Identifer la loi de la v.a. X.
- (b) (2 points). Développer l'expression de la TLS de la v.a. W_n , notée par $\mathcal{L}_{W_n}(t)$, pour t > 0, en fonction de n, b, et c.
- (c) (1 point). À partir de l'item [1b], identifier la loi de W_n , pour $n \in \mathbb{N}^+$, en indiquant clairement les paramètres de cette loi en fonction de n, b, et c.
- (d) (3 points). Développer les expressions $E[W_n]$ et $\sqrt{Var(W_n)}$, pour $n \in \mathbb{N}^+$. Développer les expressions de

$$\lim_{n \to \infty} E[W_n] \text{ et } \lim_{n \to \infty} \sqrt{Var(W_n)}.$$
 (1)

Commenter les résultats en (1) dans le contexte de mutualisation des risques en assurance

- (e) (1 point). Identifier l'expression de $TVaR_{\kappa}(W_n)$ (en fonction de n, κ, b , et c) pour $\kappa \in (0,1)$ et pour $n \in \mathbb{N}^+$.
- (f) (16 points). On effectue les calculs suivants en supposant b = 0.001 et c = 0.1:
 - i. (3 points). Tracer les courbes de $f_{W_n}(x)$, pour n=1, 10 et 100. Utiliser ces dessins pour commenter sur le comportement de W_n (la part allouée par contrat), quand n augmente. Indiquer les valeurs de $f_{W_n}(x)$, x=0 et $E[W_n]$, pour n=1, 10 et 100.
 - ii. (3 points). Calculer $E[W_n]$ et $\sqrt{Var(W_n)}$ pour $n=2^2$ et $n=10^2$.
 - iii. (2 points). Calculer $VaR_{\kappa}(W_n)$, pour $\kappa = 0.9999$ et pour $n = 2^2$ et $n = 10^2$.
 - iv. (4 points). Calculer $TVaR_{\kappa}(W_n)$, pour $\kappa = 0.9999$ et pour $n = 2^2$ et $n = 10^2$.
 - v. (4 points). Pour un contrat (en supposant que n contrats seront émis), la prime, notée par $\Pi_{\kappa,n} = \rho_k(W_n)$, est calculée avec une mesure de risque ρ_{κ} qui garantit $\Pi_{\kappa,n} \geq E[W_n]$, pour $\kappa \in (0,1)$.
 - Choisir une seule mesure parmi la VaR et la TVaR afin de calculer $\Pi_{\kappa,n}$, pour $\kappa = 0.9999$ et pour $n = 2^2$ et $n = 10^2$.
 - Justifier brièvement votre choix. Commenter à propos de l'impact de l'augmentation du nombre n de contrats sur la prime $\Pi_{\kappa,n}$ (pour κ fixé).

Solution:

(a) (1 point). Identifer la loi de la v.a. X.

Gamma

(b) (2 points). Développer l'expression de la TLS de la v.a. W_n , notée par $\mathcal{L}_{W_n}(t)$, pour t > 0, en fonction de n, b, et c. On a

$$\mathcal{L}_{W_n}(t) = E\left[e^{-W_n t}\right]$$

$$= E\left[e^{-\frac{1}{n}(X_1 + \dots + X_n)t}\right]$$

$$= E\left[e^{-X_1 \frac{t}{n}}\right] \times \dots \times E\left[e^{-X_n \frac{t}{n}}\right]$$

$$= E\left[e^{-X \frac{t}{n}}\right]^n$$

$$= \mathcal{L}_X\left(\frac{t}{n}\right)^n$$

qui devient

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_X \left(\frac{t}{n}\right)^n$$

$$= \left(\frac{b}{b + \frac{t}{n}}\right)^{nc}$$

$$= \left(\frac{nb}{nb + t}\right)^{nc}$$

(c) (1 point). À partir de l'item [1b], identifier la loi de W_n , pour $n \in \mathbb{N}^+$, en indiquant clairement les paramètres de cette loi en fonction de n, b, et c. On déduit

$$W_n \sim Gamma(nc, nb)$$

(d) (3 points). Développer les expressions $E[W_n]$ et $\sqrt{Var(W_n)}$, pour $n \in \mathbb{N}^+$. Développer les expressions de

$$\lim_{n\to\infty} E\left[W_n\right] \text{ et } \lim_{n\to\infty} \sqrt{Var\left(W_n\right)}.$$

Commenter les résultats en (1) dans le contexte de mutualisation des risques en assurance.

On obtient

$$E\left[W_n\right] = \frac{nc}{nb} = \frac{c}{b}$$

et

On a

$$\sqrt{Var\left(W_{n}\right)} = \frac{\sqrt{c}}{b\sqrt{n}}$$

(e) (1 point). Identifier l'expression de $TVaR_{\kappa}(W_n)$ (en fonction de n, κ, b , et c) pour $\kappa \in (0,1)$ et pour $n \in \mathbb{N}^+$.

$$TVaR_{\kappa}\left(W_{n}\right) = \frac{nc}{nb} \frac{1}{1-\kappa} \overline{H}\left(VaR_{\kappa}\left(W_{n}\right); nc+1; nb\right)$$

(f) (16 points). On effectue les calculs suivants en supposant b = 0.001 et c = 0.1: i. (3 points). Tracer les courbes de $f_{W_n}(x)$, pour n = 1, 10 et 100. Utiliser ces

dessins pour commenter sur le comportement de W_n (la part allouée par contrat), quand n augmente. Indiquer les valeurs de $f_{W_n}(x)$, x = 0 et $E[W_n]$, pour n = 1, 10 et 100.

. .

- ii. (3 points). Calculer $E[W_n]$ et $\sqrt{Var(W_n)}$ pour $n=2^2$ et $n=10^2$. Valeurs : 100 et 100 ; 158.1139 et 31.62278
- iii. (2 points). Calculer $VaR_{\kappa}(W_n)$, pour $\kappa = 0.9999$ et pour $n = 2^2$ et $n = 10^2$. Valeurs : 1790.0651 et 261.9299
- iv. (4 points). Calculer $TVaR_{\kappa}(W_n)$, pour $\kappa = 0.9999$ et pour $n = 2^2$ et $n = 10^2$. Valeurs : 2024.2310 et 276.4484
- v. (4 points). Pour un contrat (en supposant que n contrats seront émis), la prime, notée par $\Pi_{\kappa,n} = \rho_k(W_n)$, est calculée avec une mesure de risque ρ_{κ} qui garantit $\Pi_{\kappa,n} \geq E[W_n]$, pour $\kappa \in (0,1)$.
 - Choisir une seule mesure parmi la VaR et la TVaR afin de calculer $\Pi_{\kappa,n}$, pour $\kappa=0.9999$ et pour $n=2^2$ et $n=10^2$. TVaR
 - Justifier brièvement votre choix. Commenter à propos de l'impact de l'augmentation du nombre n de contrats sur la prime $\Pi_{\kappa,n}$ (pour κ fixé). TVaR introduit une marge relative strictement positive

2. (30 points). Les coûts pour les 3 lignes d'affaires d'un portefeuille d'une société d'assurance sont représentés par les v.a. indépendantes X_1 , X_2 et X_3 avec $X_i \sim Gamma(\alpha_i, \beta_i)$, i = 1, 2, 3.

Hypothèses:

i	α_i	β_i
1	0.5	$\frac{0.5}{10}$
2	1.5	$\frac{1.5}{10}$
3	2.5	$\frac{2.5}{10}$

Les coûts pour le portefeuille sont définis par la v.a. S où

$$S = X_1 + X_2 + X_3.$$

On a recours au générateur par défaut de R pour produire m=100000 (cent milles) réalisations de (U_1,U_2,U_3) où $U_1,\,U_2,\,U_3$ sont des v.a. i.i.d. de loi uniforme standard.

On fixe set.seed(2018).

On produit dans l'ordre $(U_1^{(1)}, U_2^{(1)}, U_3^{(1)}), (U_1^{(2)}, U_2^{(2)}, U_3^{(2)}), ..., (U_1^{(m)}, U_2^{(m)}, U_3^{(m)})$:

j	$U_1^{(j)}$	$U_2^{(j)}$	$U_3^{(j)}$
1	0.33615347	0.46372327	0.06058539
2	0.1974336	0.4743142	0.3010486
\overline{m}	0.5308576	0.4349172	0.2569627

On fournit les deux lemmes suivants :

• Lemme #1. Soit une v.a. Y avec fonction de répartition F_Y . Soit une suite de v.a. i.i.d. $Y^{(1)}, ..., Y^{(m)}$ où $Y^{(i)} \sim Y$, i = 1, 2, ..., m. Alors, on a

$$TVaR_{\kappa}(Y) = \lim_{m \to \infty} \frac{\sum_{j=\lfloor m\kappa \rfloor + 1}^{m} Y^{[j]}}{|m(1 - \kappa)|} \text{ (p.s.)},$$
 (2)

où $Y^{[1]} \leq Y^{[2]} \leq ... \leq Y^{[m-1]} \leq Y^{[m]}$ sont les statistiques d'ordre de $Y^{(1)}$, ..., $Y^{(m)}$ et |u| correspond à la partie entière de u.

• Lemme #2. Soit une suite de v.a. i.i.d. $Y^{(1)}$, ..., $Y^{(m)}$ où $Y^{(j)} \sim Y$, j = 1, 2, ..., m. Pour un entier j_0 tel que $1 \leq j_0 + 1 \leq m$ $(j_0 \in \{0, 1, 2, ..., m - 1\})$, l'égalité suivante est vérifiée

$$\sum_{j=j_0+1}^{m} Y^{[j]} = \sup \left\{ Y^{(i_{j_0+1})} + \dots + Y^{(i_m)}; 1 \le i_{j_0+1} < \dots < i_m \le m \right\}.$$

Questions:

(a) (7 points). Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$. On utilise $U_i^{(j)}$ pour calculer $X_i^{(j)}$ pour j=1,...,m et i=1,2,3. i. (1 point). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3.

ii. (3 points). Indiquer la réalisation #3 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$.

iii. (3 points). Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. Les valeurs de vérification sont les suivantes :

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	1.8888466	7.260302	2.511576
2	0.6251355	7.439780	6.013419
\overline{m}	5.2399519	6.784813	5.440269

(b) (6 points). Avec les résultats de l'item [2a], calculer une approximation $\varphi_i(\kappa)$ de $TVaR_{\kappa}(X_i)$, i=1,2,3, pour $\kappa=0.99$.

(Vérification : $TVaR_{0.9}(X_1) \simeq \varphi_1(0.9) = 43.97499$; $TVaR_{0.9}(X_2) \simeq \varphi_2(0.9) = 28.26282$; $TVaR_{0.9}(X_3) \simeq \varphi_3(0.9) = 23.58501$)

- i. Indiquer les expressions des approximations $\varphi_i(\kappa)$, i = 1, 2, 3.
- ii. Indiquer les valeurs des approximations $\varphi_i(\kappa)$, i=1,2,3.
- (c) (3 points). Produire m réalisations $S^{(j)}$ de S:
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer les réalisations #3 et #4 de S.
- (d) (2 points). Avec les résultats de l'item [2c], calculer une approximation $\psi(\kappa)$ de $TVaR_{\kappa}(S)$ pour $\kappa = 0.99$.
 - i. Indiquer l'expression de l'approximation $\psi(\kappa)$.
 - ii. Indiquer la valeur de l'approximation $\psi(\kappa)$.
- (e) (8 points). En utilisant de façon astucieuse les statistiques d'ordres, les propriétés des sup, et un passage à la limite, démontrer que

$$\sum_{i=1}^{3} TVaR_{\kappa}(X_{i}) \ge TVaR_{\kappa}\left(\sum_{i=1}^{3} X_{i}\right), \quad \text{pour } \kappa \in (0,1).$$
 (3)

Note : Il ne faut pas faire la démonstration basée sur les fonctions indicatrices et ni celle basée sur la fonction stop-loss.

(f) (4 points). Comparer [2b] et [2d] en regard de [2e]. Quelle est la propriété souhaitable pour une mesure de risque en lien avec (4)? Quelle est l'importance de cette propriété pour l'assurance?

Solution:

- (a) (7 points). Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$. On utilise $U_i^{(j)}$ pour calculer $X_i^{(j)}$ pour j = 1, ..., m et i = 1, 2, 3.
 - i. (1 point). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3.
 - ii. (3 points). Indiquer la réalisation #3 de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$.
 - iii. (3 points). Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. Valeurs :

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
3	7.888964	2.378845	23.11989
4	5.627596	6.162504	11.42912

(b) (6 points). Avec les résultats de l'item [2a], calculer une approximation $\varphi_i(\kappa)$ de $TVaR_{\kappa}(X_i)$, i=1,2,3, pour $\kappa=0.99$.

(Vérification : $TVaR_{0.9}(X_1) \simeq \varphi_1(0.9) = 43.97499$; $TVaR_{0.9}(X_2) \simeq \varphi_2(0.9) = 28.26282$; $TVaR_{0.9}(X_3) \simeq \varphi_3(0.9) = 23.58501$)

i. Indiquer les expressions des approximations $\varphi_i(\kappa)$, i=1,2,3. Pour $\kappa=(0,1)$ et pour $\kappa\times m$ entier (noté j_0), on a

$$TVaR_{\kappa}(X_{i}) \simeq \varphi_{i}(\kappa)$$

$$= \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=1}^{m} X_{i}^{(j)} \times 1_{\left\{X_{i}^{(j)} > X_{i}^{[j_{0}]}\right\}}$$

$$= \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=j_{0}+1}^{m} X_{i}^{[j]}$$

οù

$$X_i^{[1]} < \dots < X_i^{[m]}$$

ii. Indiquer les valeurs des approximations $\varphi_i(\kappa)$, i=1,2,3. Valeurs : 83.49539; 45.01924; 34.68944

- (c) (3 points). Produire m réalisations $S^{(j)}$ de S:
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer les réalisations #3 et #4 de S.

Valeurs: 32.78720; 23.21027

- (d) (2 points). Avec les résultats de l'item [2c], calculer une approximation $\psi(\kappa)$ de $TVaR_{\kappa}(S)$ pour $\kappa = 0.99$.
 - i. Indiquer l'expression de l'approximation $\psi(\kappa)$. Pour $\kappa = (0,1)$ et pour $\kappa \times m$ entier (noté j_0), on a

$$TVaR_{\kappa}(S) \simeq \psi(\kappa)$$

$$= \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=1}^{m} S^{(j)} \times 1_{\{S^{(j)} > S^{[j_0]}\}}$$

$$= \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=j_0+1}^{m} S^{[j]}$$

οù

$$S^{[1]} < \dots < S^{[m]}$$

ii. Indiquer la valeur de l'approximation $\psi(\kappa)$.

Valeurs: 107.5526

(e) (8 points). En utilisant de façon astucieuse les statistiques d'ordres, les propriétés des sup, et un passage à la limite, démontrer que

$$\sum_{i=1}^{3} TVaR_{\kappa}(X_{i}) \ge TVaR_{\kappa}\left(\sum_{i=1}^{3} X_{i}\right), \text{ pour } \kappa \in (0,1).$$
 (4)

Note : Il ne faut pas faire la démonstration basée sur les fonctions indicatrices et ni celle basée sur la fonction stop-loss.

Démonstration.

Lemme #2. Soit une suite de v.a. i.i.d. $Y^{(1)}, ..., Y^{(m)}$ où $Y^{(j)} \sim Y, j = 1, 2, ..., m$.

Pour un entier j_0 tel que $1 \le j_0 + 1 \le m$ $(j_0 \in \{0, 1, 2, ..., m-1\})$, l'égalité suivante est vérifiée

$$\sum_{j=j_0+1}^m Y^{[j]} = \sup \left\{ Y^{(i_{j_0+1})} + \dots + Y^{(i_m)}; 1 \le i_{j_0+1} < \dots < i_m \le m \right\}.$$

Soit un vecteur de v.a. $\underline{X} = (X_1, X_2, X_3)$ dont la fonction de répartition est désignée par F_X .

Soient la suite de couple de v.a. i.i.d. $\underline{X}^{(j)}$, j pour j = 1, 2, ...m. On définit $S = X_1 + X_2 + X_3$ et $S^{(j)} = X_1^{(j)} + X_2^{(j)} + X_3^{(j)}$, pour j = 1, 2, ..., m. Par le **Lemme 1**, on a

$$TVaR_{\kappa}(S) = \lim_{m \to \infty} \frac{\sum_{j=\lfloor m\kappa \rfloor + 1}^{m} S^{[j]}}{|m(1 - \kappa)|} \text{ (p.s.)},$$

où $Y^{[1]} \leq Y^{[2]} \leq ... \leq Y^{[m-1]} \leq Y^{[m]}$ sont les statistiques d'ordre de $S^{(1)}$, ..., $S^{(m)}$ et [u] correspond à la partie entière de u.

On fixe $j_0 = |m\kappa|$.

On a

$$\sum_{j=\lfloor m\kappa\rfloor+1}^{m} S^{[j]} = \sum_{j=j_0+1}^{m} S^{[j]}$$

$$= \sup \left\{ S^{(i_{j_0+1})} + \ldots + S^{(i_m)}; 1 \leq i_{j_0+1} < \ldots < i_m \leq m \right\} \text{ (Lemme 2)}$$

$$= \sup \left\{ \left(X_1^{(i_{j_0+1})} + X_2^{(i_{j_0+1})} + X_3^{(i_{j_0+1})} \right) + \ldots + \left(X_1^{(i_m)} + X_2^{(i_m)} + X_3^{(i_m)} \right); 1 \leq i_{j_0+1} < \ldots \right\}$$

$$= \sup \left\{ \left(X_1^{(i_{j_0+1})} + \ldots + X_1^{(i_m)} \right) + \left(X_2^{(i_{j_0+1})} + \ldots + X_2^{(i_m)} \right) + \left(X_3^{(i_{j_0+1})} + \ldots + X_3^{(i_m)} \right) \right\}$$

$$\leq \sup \left\{ \left(X_1^{(i_{j_0+1})} + \ldots + X_1^{(i_m)} \right); 1 \leq i_{j_0+1} < \ldots < i_m \leq m \right\}$$

$$+ \sup \left\{ \left(X_2^{(i_{j_0+1})} + \ldots + X_2^{(i_m)} \right); 1 \leq i_{j_0+1} < \ldots < i_m \leq m \right\}$$

$$+ \sup \left\{ \left(X_3^{(i_{j_0+1})} + \ldots + X_3^{(i_m)} \right); 1 \leq i_{j_0+1} < \ldots < i_m \leq m \right\}$$

$$= \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_1^{[j]} + \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_2^{[j]} + \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_3^{[j]}.$$

Il suffit de diviser par $[m(1-\kappa)]$ et de faire tendre $m \to \infty$ et on déduit le résultat voulu en appliquant le **Lemme 1**.

(f) (4 points). Comparer [2b] et [2d] en regard de [2e]. Quelle est la propriété souhaitable pour une mesure de risque en lien avec (4) ? Quelle est l'importance de cette propriété pour l'assurance ?

La relation en (??) correspond à la propriété de sous-additivité. Cette dernière est en lien avec l'effet positif de la mutualisation. En comparant (??) et (??), on observe la mutualisation conduit à un effet positif.

3. (20 points). Soit un contrat d'assurance IARD dont les coûts sont représentés par la v.a. X où

$$X \sim PoisComp(\lambda; F_B)$$

avec $\lambda = 1$ et

$$B \sim Gamma\left(\alpha = 1.5, \beta = \frac{1.5}{10}\right).$$

La fonction de répartition d'une loi gamma de paramètres α et β , qui est évaluée à x, est notée par $H(x; \alpha, \beta)$.

Le fonction de masse de probabilité d'une loi Poisson, qui est évaluée à k, est notée par $p(k; \lambda), k \in \mathbb{N}$.

Questions: (Note: pour les fins de cette question, on effectue les calculs en sommant de 0 jusqu'à $k_0 = 1000$).

- (a) (4 points). Calculer l'espérance et la variance de la v.a. X:
 - i. (2 points). Démontrer les expressions de l'espérance et de la variance de la v.a. X.
 - ii. (2 points). Indiquer les valeurs de l'espérance et la variance de la v.a. X:
- (b) **(4 points).** Calculer F_X (0), F_X (50), F_X (100) :
 - i. Écrire l'expression de $F_X(x)$ en termes des fonctions p et H et des paramètres λ , α , et β .
 - ii. Indiquer les valeurs de F_X (0), F_X (30), F_X (60) (**Vérification**: F_X (90) = 0.9996227) :
- (c) (2 points). Tracer la courbe de F_X , $x \ge 0$, en indiquant la valeur de F_X (0).
- (d) (4 points). Utiliser l'optimisation numérique pour calculer $VaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99
 - i. Expliquer comment obtenir $VaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99.
 - ii. Indiquer les deux valeurs.
- (e) (4 points). Calculer $TVaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99:
 - i. Donner l'expression de $TVaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99, en utilisant, si nécessaire, le niveau de confiance κ , les fonctions p et H, et les paramètres λ , α , et β (si nécessaire).
 - ii. Indiquer les deux valeurs.
- (f) (2 points). Tracer sur un même graphique les courbes de $VaR_{\kappa}(X)$ et $TVaR_{\kappa}(X)$, en indiquant clairement leurs valeurs quand $\kappa \to 0$. S'il y en a, indiquer les portions plates ou les sauts dans les courbes.

Solutions

- (a) (4 points). Calculer l'espérance et la variance de la v.a. X:
 - i. (2 points). Démontrer les expressions de l'espérance et de la variance de la v.a. X.
 - ii. (2 points). Indiquer les valeurs de l'espérance et la variance de la v.a. X: Valeurs : 10 et 166.67
- (b) **(4 points).** Calculer F_X (0), F_X (50), F_X (100) :
 - i. Écrire l'expression de $F_X(x)$ en termes des fonctions p et H et des paramètres λ , α , et β .
 - ii. Indiquer les valeurs de $F_X(0)$, $F_X(30)$, $F_X(60)$ (**Vérification**: $F_X(90) = 0.9996227$);

Valeurs: 0.3678794; 0.9845376; 0.9998581

(c) (2 points). Tracer la courbe de F_X , $x \ge 0$, en indiquant la valeur de F_X (0).

Masse de probabilité à $0 = F_X(0)$

- (d) (4 points). Utiliser l'optimisation numérique pour calculer $VaR_{\kappa}\left(X\right), \ \kappa=0.01$ et 0.99
 - i. Expliquer comment obtenir $VaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99.
 - ii. Indiquer les deux valeurs.

Valeurs: 0 et 54.92079

- (e) (4 points). Calculer $TVaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99 :
 - i. Donner l'expression de $TVaR_{\kappa}(X)$, $\kappa = 0.01$ et 0.99, en utilisant, si nécessaire, le niveau de confiance κ , les fonctions p et H, et les paramètres λ , α , et β (si nécessaire).
 - ii. Indiquer les deux valeurs.

Valeurs: 10.1010 et 65.80757

(f) (2 points). Tracer sur un même graphique les courbes de $VaR_{\kappa}(X)$ et $TVaR_{\kappa}(X)$, en indiquant clairement leurs valeurs quand $\kappa \to 0$. S'il y en a, indiquer les portions plates ou les sauts dans les courbes.

4. (32 points). Soit les v.a. indépendantes X_1 , X_2 , X_2 où $X_i \sim Exp(\beta_i)$ ($E[X_i] = \frac{1}{\beta_i}$) avec $\beta_1 > \beta_2 > \beta_3 > 0$.

Selon un modèle simple, la v.a. X_i représente les coûts pour la filiale i de la compagnie d'assurance GAG (Grondines Assurances Générales).

Les coûts totaux pour la compagnie GAG sont définis par la v.a. $S_n = \sum_{i=1}^3 X_i$.

Les mesures de risque VaR et TVaR sont utilisées pour calculer le capital.

Questions : (note : on ne doit pas utiliser la fonction R "integrate" pour effectuer les calculs)

- (a) (2 points). Avec démonstration à l'appui, ordonner (de la plus petite valeur à la plus grande) $VaR_{\kappa}(X_1)$, $VaR_{\kappa}(X_2)$, $VaR_{\kappa}(X_3)$, pour tout $\kappa \in (0,1)$. Commenter à l'égard du capital attribué à chaque filliale.
- (b) (2 points). Avec démonstration à l'appui, ordonner (de la plus petite valeur à la plus grande) $TVaR_{\kappa}(X_1)$, $TVaR_{\kappa}(X_2)$, $TVaR_{\kappa}(X_3)$, pour tout $\kappa \in (0,1)$. Commenter à l'égard du capital attribué à chaque filliale.
- (c) (2 points). Développer l'expression de la fgm de S. Identifier la distribution de S.
- (d) (3 points). Démontrer (à partir du document d'annexes) que l'expression de F_S est donnée par

$$F_S(x) = \sum_{i=1}^{3} c_i F_{X_i}(x), x \ge 0,$$

où $c_i = \prod_{j=1, j\neq i}^n \frac{\beta_j}{\beta_j - \beta_i}$, i = 1, 2, 3. (Note: $\sum_{i=1}^3 c_i = 1$, et les valeurs de c_i peuvent être positives ou négatives).

- (e) (2 points). Démontrer que la prime stop loss de v.a. S est $\pi_S(x) = \sum_{i=1}^3 c_i \pi_{X_i}(x)$, $x \ge 0$, où c_i est définie en [4d]. Note : Soit une v.a. positive Y avec $E[Y] < \infty$. Alors, $\pi_Y(x) = E[\max(Y x; 0)], x \ge 0$.
- (f) (3 points). Démontrer (à partir du document d'annexes) que l'expression de $TVaR_{\kappa}(S)$ est donnée par

$$TVaR_{\kappa}\left(S\right) = VaR_{\kappa}\left(S\right) + \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times \pi_{X_{i}}\left(VaR_{\kappa}\left(S\right)\right)$$

$$= VaR_{\kappa}\left(S\right) + \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times E\left[X_{i}\right] \times \overline{F}_{X_{i}}\left(VaR_{\kappa}\left(S\right)\right), \text{ pour } \kappa \in \left(0,1\right),$$

où c_i est définie en [4d].

(g) (3 points). Soit une mesure de risque ρ_{κ} , $\kappa \in (0,1)$. On définit le bénéfice de mutualisation par

$$BM_{\kappa} = \sum_{i=1}^{3} \rho_{\kappa}(X_{i}) - \rho_{\kappa}(S), \text{ pour } \kappa \in (0,1).$$

Soit la propriété PRO (parmi les 4 propriétés requises pour qu'une mesure soit déclarée cohérente) requise pour que $BM_{\kappa} \geq 0$, pour tout $\kappa \in (0,1)$.

- i. Identifier la propriété PRO.
- ii. Identifier la mesure (parmi la VaR et la TVaR) qui satisfait la propriété PRO.
- iii. Développer l'expression de BM_{κ} pour cette mesure, en fonction de VaR et prime

stop-loss.

- (h) (15 points). On effectue les calculs suivants en supposant $\beta_1 = \frac{1}{2}$, $\beta_2 = \frac{1}{6}$, et $\beta_3 = \frac{1}{12}$:
 - i. (3 points). Calculer $VaR_{\kappa}(X_i)$, i=1,2,3 et $\kappa=0.995$.
 - ii. (3 points). Calculer $TVaR_{\kappa}(X_i)$, i = 1, 2, 3 et $\kappa = 0.995$.
 - iii. (2 points). Calculer $F_S(x)$, x = 50, 80. (Vérification: $F_S(100) = 0.9994232$)
 - iv. (3 points). Utiliser l'optimisation numérique pour calculer $VaR_{\kappa}(S)$, $\kappa = 0.995$. (Vérification : $VaR_{0.9999}(S) = 121.0294$ avec optimize en R).
 - v. (2 points). Calculer $TVaR_{\kappa}(S)$, $\kappa = 0.995$.
 - vi. (2 points). Calculer BM_{κ} , $\kappa = 0.995$.

Solution:

(a) (2 points). Avec démonstration à l'appui, ordonner (de la plus petite valeur à la plus grande) $VaR_{\kappa}(X_1)$, $VaR_{\kappa}(X_2)$, $VaR_{\kappa}(X_3)$, pour tout $\kappa \in (0,1)$. Commenter à l'égard du capital attribué à chaque filliale.

On a

$$VaR_{\kappa}\left(X_{i}\right) = -\frac{1}{\beta_{i}}\ln\left(1 - \kappa\right)$$

Alors,

$$VaR_{\kappa}(X_i) \uparrow \text{ quand } \beta_i \downarrow$$

(b) (2 points). Avec démonstration à l'appui, ordonner (de la plus petite valeur à la plus grande) $TVaR_{\kappa}(X_1)$, $TVaR_{\kappa}(X_2)$, $TVaR_{\kappa}(X_3)$, pour tout $\kappa \in (0,1)$. Commenter à l'égard du capital attribué à chaque filliale.

$$TVaR_{\kappa}\left(X_{i}\right) = \frac{1}{\beta_{i}}\left(1 - \ln\left(1 - \kappa\right)\right)$$

Alors,

On a

$$TVaR_{\kappa}\left(X_{i}\right)\uparrow \text{ quand }\beta_{i}\downarrow$$

(c) (2 points). Développer l'expression de la fgm de S. Identifier la distribution de S. On observe

$$\mathcal{M}_{S}(t) = \mathcal{M}_{X_{1}}(t) \times \mathcal{M}_{X_{2}}(t) \times \mathcal{M}_{X_{3}}(t)$$
$$= \left(\frac{\beta_{1}}{\beta_{1} - t}\right) \left(\frac{\beta_{2}}{\beta_{2} - t}\right) \left(\frac{\beta_{3}}{\beta_{3} - t}\right)$$

⇒Distribution Erlang Généralisée

(d) (3 points). Démontrer (à partir du document d'annexes) que l'expression de F_S est donnée par

$$F_{S}(x) = \sum_{i=1}^{3} c_{i} F_{X_{i}}(x), x \geq 0,$$

où $c_i = \prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j - \beta_i}$, i = 1, 2, 3. (Note: $\sum_{i=1}^3 c_i = 1$, et les valeurs de c_i peuvent être positives ou négatives).

D'après le document d'annexes, on a

$$F_{S}(x) = \sum_{i=1}^{3} \left(\prod_{j=1, j \neq i}^{3} \frac{\beta_{j}}{\beta_{j} - \beta_{i}} \right) \left(1 - e^{-\beta_{i}x} \right)$$
$$= \sum_{i=1}^{3} c_{i} F_{X_{i}}(x)$$

(e) (2 points). Démontrer que la prime stop loss de v.a. S est $\pi_S(x) = \sum_{i=1}^3 c_i \pi_{X_i}(x)$, $x \geq 0$, où c_i est définie en [4d]. Note : Soit une v.a. positive Y avec $E[Y] < \infty$. Alors, $\pi_Y(x) = E[\max(Y - x; 0)], x \geq 0$. On a

$$\pi_{S}(x) = E\left[\max(S - x; 0)\right]$$

$$= \int_{x}^{\infty} \overline{F}_{S}(y) dy$$

$$= \sum_{i=1}^{3} c_{i} \int_{x}^{\infty} \overline{F}_{X_{i}}(y) dy$$

$$= \sum_{i=1}^{3} c_{i} E\left[\max(X_{i} - x; 0)\right]$$

$$= \sum_{i=1}^{3} c_{i} \pi_{X_{i}}(x)$$

(f) (3 points). Démontrer (à partir du document d'annexes) que l'expression de $TVaR_{\kappa}(S)$ est donnée par

$$TVaR_{\kappa}(S) = VaR_{\kappa}(S) + \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times \pi_{X_{i}}(VaR_{\kappa}(S))$$

$$= VaR_{\kappa}(S) + \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times E[X_{i}] \times \overline{F}_{X_{i}}(VaR_{\kappa}(S)), \text{ pour } \kappa \in (0,1),$$

où c_i est définie en [4d].

On sait

$$TVaR_{\kappa}(S) = VaR_{\kappa}(S) + \frac{1}{1-\kappa} \pi_{S}(VaR_{\kappa}(S))$$
$$= VaR_{\kappa}(S) + \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times \pi_{X_{i}}(VaR_{\kappa}(S))$$

(g) (3 points). Soit une mesure de risque ρ_{κ} , $\kappa \in (0,1)$. On définit le bénéfice de mutualisation par

$$BM_{\kappa} = \sum_{i=1}^{3} \rho_{\kappa}(X_{i}) - \rho_{\kappa}(S), \text{ pour } \kappa \in (0,1).$$

Soit la propriété PRO (parmi les 4 propriétés requises pour qu'une mesure soit déclarée cohérente) requise pour que $BM_{\kappa} \geq 0$, pour tout $\kappa \in (0,1)$.

- i. Identifier la propriété PRO. Réponse : Sous-additivité
- ii. Identifier la mesure (parmi la VaR et la TVaR) qui satisfait la propriété PRO. Réponse : TVaR
- iii. Développer l'expression de BM_{κ} pour cette mesure, en fonction de VaR et prime stop-loss.

Réponse : On a

$$BM_{\kappa} = \sum_{i=1}^{3} \rho_{\kappa}(X_{i}) - \rho_{\kappa}(S)$$

$$= \sum_{i=1}^{3} \left(VaR_{\kappa}(X_{i}) + \frac{1}{1-\kappa} \pi_{X_{i}} \left(VaR_{\kappa}(X_{i}) \right) \right) - VaR_{\kappa}(S) - \frac{1}{1-\kappa} \sum_{i=1}^{3} c_{i} \times \pi_{X_{i}} \left(VaR_{\kappa}(S) \right)$$

$$= \sum_{i=1}^{3} VaR_{\kappa}(X_{i}) - VaR_{\kappa}(S) + \frac{1}{1-\kappa} \sum_{i=1}^{3} \left(\pi_{X_{i}} \left(VaR_{\kappa}(X_{i}) \right) - c_{i} \times \pi_{X_{i}} \left(VaR_{\kappa}(S) \right) \right)$$

- (h) (15 points). On effectue les calculs suivants en supposant $\beta_1 = \frac{1}{2}$, $\beta_2 = \frac{1}{6}$, et $\beta_3 = \frac{1}{12}$:
 - i. (3 points). Calculer $VaR_{\kappa}(X_i)$, i = 1, 2, 3 et $\kappa = 0.995$.

Réponses: 10.59663; 31.7899; 63.57981

- ii. (3 points). Calculer $TVaR_{\kappa}(X_i)$, i = 1, 2, 3 et $\kappa = 0.995$.
- Réponses : 12.59663 ; 37.7899; 75.57981 iii. (2 points). Calculer $F_S(x)$, x = 50, 80. (Vérification : $F_S(100) = 0.9994232$)
- Réponses : 0.9631513 et 09969481 iv. (3 points). Utiliser l'optimisation numérique pour calculer $VaR_{\kappa}(S)$, $\kappa = 0.995$. (Vérification : $VaR_{0.9999}(S) = 121.0294$ avec optimize en R).

Réponses: 74.06977

v. (2 points). Calculer $TVaR_{\kappa}(S)$, $\kappa = 0.995$.

Réponses: 86.07761

vi. (2 points). Calculer BM_{κ} , $\kappa = 0.995$.

Réponses : 39.88874

5. (29 points). Le tableau (source : Tableau 2 de Swiss Re (2010)) ci-dessous contient les coûts totaux de m=28 inondations importantes survenues au Canada pendant les années 1909, 1910, ..., 2008 (100 ans):

Large Flood Disasters in Canada and Estimated Total Costs (trended to 2008)

Year	Province	Location/Area	Total Costs in millions CAD (trended to 2008)
1954	ON	Southern ON (Hurricane Hazel)	5.392
1948	BC	Fraser River	5.172
1950	MB	Winnipeg	4.652
1996	QC	Saguenay	2.699
1997	MB	Southern Manitoba	1,230
1948	ON	Southern Ontario	706
1993	MB	Winnipeg	618
2005	ON	Southern Ontario	1587
2005	AB	High river, southern AB	1519
1937	ON	Southern Ontario	470
1923	NB	Saint John River Basin	463
1955	SK/MB	Manitoba and Saskatchewan	362
2004	AB	Edmonton	303
1995	AB	Southern Alberta	285
1934	NB	Plaster Rock	198
1936	NB	New Brunswick	188
1999	MB	Melita	163
1916	ON	Central Ontario	161
1909	NB	Chester	149
1961	NB	Saint John River Basin	148
1987	QC	Montréal	147
1996	QC	Montréal and Mauricie Region	145
1920	ON	Southwestern Ontario	132
1920	BC	Prince George	131
2004	ON	Peterborough	129
1972	QC	Richelieu River	124
1983	NF	Newfoundland	115
1974	QC	Maniwaki	103

Data sources: Public Safety Canada, 2007; Shrubsole et al., 1993.

¹ Trended insured losses. Data source: IBC, 2008

Les coûts sont en 1 millions \$ de 2008.

Hypothèses:

- les coûts totaux suite à une inondation importante au Canada sont modélisés par la v.a. $B \sim LNorm(\mu, \sigma)$ (B est en multiple de 1 million; $B = 200 \Rightarrow$ coûts d'une inondation = 200 millions;
- ullet le nombre d'inondations pendant une année au Canada est modélisé par la v.a. $M\sim$ $Pois(\lambda).$

En utilisant la méthode du maximum de vraisemblance, on a estimé que $\mu = 5.9$ et $\sigma = 1.22$. La valeur du paramètre λ est donnée par

$$\lambda = \frac{\text{nombre inondations}}{\text{nombre d'années de la période d'observation}} = 0.28.$$

Les coûts pour une inondation pendant l'année 2018 sont définis par la v.a. B. Le nombre d'inondations au Canada pendant l'année 2018 est défini par la v.a. M. Les coûts totaux résultants de toutes les inondations survenues au Canada en 2018 sont définis par la v.a. $X \sim PoisComp(\lambda, F_B)$, i.e.,

$$X = \begin{cases} \sum_{k=1}^{M} B_k & , & M > 0 \\ 0 & , & M = 0 \end{cases},$$

où $\{B_k, k \in \mathbb{N}^+\}$ forme une suite de v.a. i.i.d. (avec $B_k \sim B$) qui est indépendante de la v.a. M.

Trending methods: Collins & Lowe, 2001

Questions:

(Note: tous les calculs s'effectuent en multiples de 1 million).

(Note: on ne doit pas utiliser la fonction R "integrate" pour effectuer les calculs).

(a) (7 points). Pour calculer les réalisations $X^{(j)}$ de X, on utilise dans l'ordre les réalisations de la v.a. $U \sim Unif(0,1)$ produites avec le générateur par défaut du logiciel R

On fixe set.seed(2018) et les 5 premières réalisations de U sont les suivantes :

j	1	2	3	4	5
$U^{(j)}$	0.33615347	0.46372327	0.06058539	0.19743361	0.47431419

Produire m = 100000 (cent mille) réalisations $(M^{(j)}, X^{(j)})$ de (M, X) selon la procédure suivante :

- Étape 1 : Simuler $M^{(j)}$.
- Étape 2 : Simuler $X^{(j)}$ selon la valeur de $M^{(j)}$.
- Répéter les étapes 1 et 2 pour j=1,2,...,m.

On fournit les réponses suivantes :

- i. (1 point). Détailler l'étape 2.
- ii. (3 points). Calculer $M^{(2)}$ et $X^{(2)}$.

(Vérification : $M^{(1)} = 0$ et $X^{(1)} = 0$)

- iii. (3 points). Calculer $M^{(12)}$ et $X^{(12)}$. (Vérification : $M^{(40)} = 1$ et $X^{(33)} = 909.93766$)
- (b) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_1(x) = \Pr(X > x)$, pour x = 1000.

(Vérification : $Pr(X > 1500) \simeq \psi_1(1500) = 0.03689$)

- i. Indiquer l'expression de l'approximation $\psi_1(x)$, pour x=1000.
- ii. Indiquer la valeur de $\psi_1(x)$, pour x = 1000.
- (c) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_2 = E[\max(X x; 0)]$, pour x = 1000.

(Vérification : $E[\max(X - 1500; 0)] \simeq \psi_2(1500) = 66.43956$)

- i. Indiquer l'expression de l'approximation $\psi_2(x)$, pour x=1000.
- ii. Indiquer la valeur de $\psi_2(x)$, pour x = 1000.
- (d) (10 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer les approximations $\varphi(\kappa)$ et $\gamma(\kappa)$ de $VaR_{\kappa}(X)$ et $TVaR_{\kappa}(X)$ (respectivement), avec $\kappa = 0.99 > \Pr(X > 0) = \Pr(M = 0)$.

(Vérification : $VaR_{0.995}(X) \simeq \varphi(0.995) = 4956.131$ et $TVaR_{0.995}(X) \simeq \gamma(0.995) = 8436.559$)

- i. (3 points). Indiquer les expressions des 2 approximations $\varphi(k)$ et $\gamma(\kappa)$, pour $\kappa = 0.99$
- ii. (3 points). Indiquer les 2 valeurs de $\varphi(k)$ et $\gamma(\kappa)$, pour $\kappa = 0.99$
- iii. (2 points). Si le capital est égal à $VaR_{0.99}(X)$, est-ce que le montant aurait été suffisant pour payer les coûts des inondations survenues pendant l'année 2004? pendant l'année 2005? Indiquer le nombre d'années pour lesquelles le capital n'aurait pas été suffisant pour financer les coûts (suite aux inondations) d'une année.
- iv. (2 points). Si le capital est égal à $TVaR_{0.99}(X)$, est-ce que le montant aurait été suffisant pour payer les coûts des inondations survenues pendant l'année 2004

- ? pendant l'année 2005 ? Indiquer le nombre d'années pour lesquelles le capital n'aurait pas été suffisant pour financer les coûts (suite aux inondations) d'une année.
- (e) (6 points). Soit la v.a. N(k, 100) qui correspond au nombre d'années où k inondations sont survenus dans une même année, parmi 100 ans. On a

$$N(k, 100) \sim Binom(100, p_k),$$

avec $p_k = \Pr(M = k)$.

- i. (3 points). Calculer E[N(k, 100)], pour k = 0, 1, 2.
- ii. (1.5 points). A partir de l'échantillon fourni dans le tableau, on définit le nombre d'années n_k avec k inondations dans la même année. Calculer les valeurs n_k , pour k = 0, 1, 2.
- iii. (1.5 points). Comparer E[N(k, 100)] et n_k , k = 0, 1, 2. Qu'en pensez-vous? Solution
- (a) (7 points). Pour calculer les réalisations $X^{(j)}$ de X, on utilise dans l'ordre les réalisations de la v.a. $U \sim Unif(0,1)$ produites avec le générateur par défaut du logiciel R.

On fixe set.seed(2018) et les 5 premières réalisations de U sont les suivantes :

j	1	2	3	4	5
$U^{(j)}$	0.33615347	0.46372327	0.06058539	0.19743361	0.47431419

Produire m = 100000 (cent mille) réalisations $(M^{(j)}, X^{(j)})$ de (M, X) selon la procédure suivante :

- Étape 1 : Simuler $M^{(j)}$.
- Étape 2 : Simuler $X^{(j)}$ selon la valeur de $M^{(j)}$.
- Répéter les étapes 1 et 2 pour j = 1, 2, ..., m.

On fournit les réponses suivantes :

- i. (1 point). Détailler l'étape 2.
- ii. (3 points). Calculer $M^{(2)}$ et $X^{(2)}$.

(Vérification : $M^{(1)} = 0$ et $X^{(1)} = 0$)

Valeurs: 0 et 0.

iii. (3 points). Calculer $M^{(12)}$ et $X^{(12)}$.

(Vérification : $M^{(40)} = 1$ et $X^{(33)} = 909.93766$)

Valeurs: 3 et 1688.536.

(b) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_1(x) = \Pr(X > x)$, pour x = 1000.

(Vérification : $Pr(X > 1500) \simeq \psi_1(1500) = 0.03689$)

- i. Indiquer l'expression de l'approximation $\psi_1(x)$, pour x=1000.
- ii. Indiquer la valeur de $\psi_1(x)$, pour x = 1000.

Valeur: 0.05954

(c) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_2 = E[\max(X - x; 0)]$, pour x = 1000.

(Vérification : $E[\max(X - 1500; 0)] \simeq \psi_2(1500) = 66.43956$)

- i. Indiquer l'expression de l'approximation $\psi_2(x)$, pour x=1000.
- ii. Indiquer la valeur de $\psi_2(x)$, pour x = 1000.

Valeur: 89.97229

- (d) (10 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer les approximations $\varphi(\kappa)$ et $\gamma(\kappa)$ de $VaR_{\kappa}(X)$ et $TVaR_{\kappa}(X)$ (respectivement), avec $\kappa = 0.99 > \Pr(X > 0) = \Pr(M = 0)$. (Vérification : $VaR_{0.995}(X) \simeq \varphi(0.995) = 4956.131$ et $TVaR_{0.995}(X) \simeq \gamma(0.995) = 8436.559$)
 - i. (3 points). Indiquer les expressions des 2 approximations $\varphi(k)$ et $\gamma(\kappa)$, pour $\kappa = 0.99$
 - ii. (3 points). Indiquer les 2 valeurs de $\varphi(k)$ et $\gamma(\kappa)$, pour $\kappa = 0.99$ Valeurs : 3455.8796 et 6276.267
 - iii. (2 points). Si le capital est égal à $VaR_{0.99}(X)$, est-ce que le montant aurait été suffisant pour payer les coûts des inondations survenues pendant l'année 2004? pendant l'année 2005? Indiquer le nombre d'années pour lesquelles le capital n'aurait pas été suffisant pour financer les coûts (suite aux inondations) d'une année. Ok pour 2004 et 2005. Insuffisant pour 1948, 1950, 1954
 - iv. (2 points). Si le capital est égal à $TVaR_{0.99}(X)$, est-ce que le montant aurait été suffisant pour payer les coûts des inondations survenues pendant l'année 2004? pendant l'année 2005? Indiquer le nombre d'années pour lesquelles le capital n'aurait pas été suffisant pour financer les coûts (suite aux inondations) d'une année. Ok pour toutes les années.
- (e) (6 points). Soit la v.a. N(k, 100) qui correspond au nombre d'années où k inondations sont survenus dans une même année, parmi 100 ans. On a

$$N(k, 100) \sim Binom(100, p_k)$$
,

avec $p_k = \Pr(M = k)$.

- i. (3 points). Calculer E[N(k, 100)], pour k = 0, 1, 2. Valeurs: 75.57837; 21.16194; 2.962672
- ii. (1.5 points). À partir de l'échantillon fourni dans le tableau, on définit le nombre d'années n_k avec k inondations dans la même année. Calculer les valeurs n_k , pour k = 0, 1, 2.

Valeurs: 72; 23;5

iii. (1.5 points). Comparer E[N(k, 100)] et n_k , k = 0, 1, 2. Qu'en pensez-vous? Les valeurs sont assez semblables. Le modèle semble satisfaisant. Il faudrait tout de même inverstiguer davantage, car il sous-estime le nombre espéré d'années avec 2 évènements.

FIN