EDP1: TP1 - Problème de Poisson

Desmond Ngueguin roussel-desmond.nzoyem-ngueguin@etu.unistra.fr

Université de Strasbourg — March 26, 2020

1 Le Laplacien

Question 1

Création du maillage avec gmsh.

Voir figure 1 - (a)

Question 2

Formulation variationnelle.

On a le problème aux limites:

$$-\Delta u = 1$$

$$u = 0 \text{ sur } \Gamma_D$$

$$\frac{\partial u}{\partial n} = 0 \text{ sur } \Gamma_N$$

$$u + \frac{\partial u}{\partial n} = 0 \text{ sur } \Gamma_F$$
(1)

Posons $V=\{v\in H^1\langle\Omega\rangle, v_{|\Gamma_D}=0\}$. V est de Hilbert car l'application $\gamma_0:H^1(\Omega)\to L^2(\Gamma_D)$ est continue et linéaire d'après le théorème de la trace. $V=\gamma_0^{-1}(\{0\})$ est fermé en tant qu'image réciproque d'en fermé par une application continue. V est donc un sous-espace fermé d'un Hilbert, soit un Hilbert. Soit $u\in H^2(\Omega)$ solution de (1) et $v\in V$, on a:

$$\begin{split} -\Delta u &= 1 \Rightarrow \int_{\Omega} -\Delta u \, v \, d\Omega = \int_{\Omega} v \, d\Omega \\ &\Rightarrow -\int_{\Gamma} \frac{\partial u}{\partial n} \, v \, d\Gamma + \int_{\Omega} \nabla u \, \nabla v \, d\Omega = \int_{\Omega} v \, d\Omega \\ &\Rightarrow -\int_{\Gamma_D} \frac{\partial u}{\partial n} \, v \, d\Gamma_D - \int_{\Gamma_N} \frac{\partial u}{\partial n} \, v \, d\Gamma_N - \int_{\Gamma_F} \frac{\partial u}{\partial n} \, v \, d\Gamma_F + \int_{\Omega} \nabla u \, \nabla v \, d\Omega = \int_{\Omega} v \, d\Omega \\ &\Rightarrow -\int_{\Gamma_F} (-u) \, v \, d\Gamma_F + \int_{\Omega} \nabla u \, \nabla v \, d\Omega = \int_{\Omega} v \, d\Omega \end{split} \qquad \qquad \text{(Car } v|_{\Gamma_D} = 0 \text{, et d'après (1))} \\ &\Rightarrow a(u,v) = l(v) \end{split}$$

avec

$$a(u,v) = \int_{\Gamma_F} u \, v \, d\Gamma_F + \int_{\Omega} \nabla u \, \nabla v \, d\Omega$$

$$l(v) = \int_{\Omega} v \, d\Omega \qquad \qquad \forall \, v \in V = \{ v \in H^1 \langle \Omega \rangle, v_{|\Gamma_D} = 0 \}$$

Le maillage et la solution sont représentés à la figure 1:

Figure 1: Maillage et Solution

Question 3

Étude de convergence avec $u(x, y) = \sin(\pi x) \cos(\pi y)$

Avec la logiciel $feelpp_qs_laplacian$, on obtient les résultats suivant:

$$\begin{split} f(x,y) &= 2\pi^2 \sin(\pi x) \cos(\pi y) \\ g(x,y) &= \sin(\pi x) \cos(\pi y) \\ m(x,y) &= \pi \cos(\pi x) \cos(\pi y) - \pi \sin(\pi x) \sin(\pi y) \\ l(x,y) &= \pi \cos(\pi x) \cos(\pi y) - \pi \sin(\pi x) \sin(\pi y) + \sin(\pi x) \cos(\pi y) \end{split}$$

Les erreurs en normes sont présentées dans le tableau 1.

h	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
0.400	$1.06 \cdot 10^{-2}$	$2.70 \cdot 10^{-1}$
0.200	$1.64 \cdot 10^{-3}$	$7.79 \cdot 10^{-2}$
0.100	$2.17 \cdot 10^{-4}$	$2.05 \cdot 10^{-2}$
0.050	$2.75 \cdot 10^{-5}$	$5.21 \cdot 10^{-3}$
0.025	$3.58 \cdot 10^{-6}$	$1.34 \cdot 10^{-3}$

Table 1: Erreur de convergence

Figure 2: Illustration

Les valeurs présentées sur la figure 2 correspondent bien à celles prédîtes par le théorème 1 de la page 39. En effet, nous résolvons le problème dans H_2 , et on remarque bien que la pente de la courbe de l'erreur en log-log est proche de 2 pour la norme H_1 et de 3 = 2+1 pour la norme L_2 .

2 Fonction peu régulière

Question

Vérifiions que le Laplacien est bien nul.

Sur $\Omega = \left\{ \mathbf{x} = r(\cos\theta, \sin\theta)^T, r \in (0, 1), \theta \in \left(0, \frac{3\pi}{2}\right) \right\}$, on a :

$$\begin{split} u(r,\theta) &= r^{2/3} \sin(\frac{2}{3}\theta) \quad \Rightarrow \quad \frac{\partial u}{\partial r} = \frac{2}{3} r^{-1/3} \sin(\frac{2}{3}\theta) \quad \text{et} \quad \frac{\partial u}{\partial \theta} = \frac{2}{3} r^{2/3} \cos(\frac{2}{3}\theta) \\ &\Rightarrow \quad \frac{\partial^2 u}{\partial r^2} = -\frac{2}{9} r^{-4/3} \sin(\frac{2}{3}\theta) \quad \text{et} \quad \frac{\partial^2 u}{\partial \theta^2} = -\frac{4}{9} r^{2/3} \sin(\frac{2}{3}\theta) \end{split}$$

Le Laplacien en coordonne polaires est donné par:

$$\begin{split} \Delta u &= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \\ &= -\frac{2}{9} r^{-4/3} \sin(\frac{2}{3}\theta) + \frac{1}{r} \left\{ \frac{2}{3} r^{-1/3} \sin(\frac{2}{3}\theta) \right\} + \frac{1}{r^2} \left\{ -\frac{4}{9} r^{2/3} \sin(\frac{2}{3}\theta) \right\} \\ &= \left(-\frac{2}{9} + \frac{6}{9} - \frac{4}{9} \right) r^{-4/3} \sin(\frac{2}{3}\theta) \\ &= 0 \end{split}$$

Question

Montrons que u est dans $H^1(\Omega)$.

On a

$$\int_{\Omega} |u|^2 d\Omega = \int_{\Omega} \left(r^{2/3} \sin(\frac{2}{3}\theta) \right)^2 (r dr d\theta)$$

$$= \int_{0}^{1} r^{2/3} dr \int_{0}^{3\pi/2} \sin^2(\frac{2}{3}\theta) d\theta$$

$$= \frac{3}{11} \int_{0}^{3\pi/2} \sin^2(\frac{2}{3}\theta) d\theta \in \mathbb{R}$$

Aussi, on a
$$\nabla u=\left(\frac{2}{3}r^{-1/3}\sin(\frac{2}{3}\theta),\,\frac{2}{3}r^{2/3}\cos(\frac{2}{3}\theta)\right)^T$$
, donc:
$$\int_{\Omega}|\nabla u|^2d\Omega==\int_{\Omega}\left(\frac{2}{3}r^{-1/3}\sin(\frac{2}{3}\theta)\right)^2(rdrd\theta)$$

$$=\frac{4}{9}\int_{0}^{1}r^{1/3}dr\int_{0}^{3\pi/2}sin^2(\frac{2}{3}\theta)d\theta$$

$$=\frac{4}{9}\times\frac{3}{4}\int_{0}^{3\pi/2}sin^2(\frac{2}{3}\theta)d\theta\in\mathbb{R}$$

On en déduit que $u \in H^1(\Omega)$

Suivant la courbe $\theta = \frac{3\pi}{4}$ par exemple, on voit que $\nabla u = \frac{2}{3}r^{-1/3}$, et $\lim_{r\to 0} |\nabla u| = +\infty$. On conclut que u n'est pas bornée à l'origine.

Pour montrer que $u \notin H^2(\Omega)$, il suffit de remarquer que le ∇u n'est pas continue, donc pas dérivable au voisinage de l'origine. En effet, si ∇u était continue en 0, on aurait $\lim_{r\to 0} |\nabla u| = 0$.

Question

Créons le maillage avec Gmsh.

y z x

Figure 3: Maillage avec GMSH

Question

Étude de convergence.

h	$\ \cdot\ _{L_2}$	$\ \cdot\ _{H_1}$
0.400	$1.62\cdot 10^{-3}$	$4.20 \cdot 10^{-2}$
0.200	$6.94 \cdot 10^{-4}$	$3.00 \cdot 10^{-2}$
0.100	$2.19 \cdot 10^{-4}$	$1.89 \cdot 10^{-2}$
0.050	$6.89 \cdot 10^{-5}$	$1.19 \cdot 10^{-2}$
0.025	$2.15 \cdot 10^{-5}$	$7.45 \cdot 10^{-3}$

Table 2: Erreur de convergence

Figure 4: Illustration

Comme le montre la figure 4, on obtient une convergence beaucoup plus lente que dans le cas d'une solution régulière. Mais cela vérifie toujours le théorème 1 de la page 39, car la solution n'est que dans $H^1(\Omega)$, et les pentes des erreurs en norme L^2 et H^1 sont respectivement plus petites que 2=1+1 et 1 (a une constante près).