

Oleksandr Frei MIPT-NORMENT, October 21st, 2019

Genetics of Complex Traits

- Mendelian vs polygenic inheritance
- Heritability, twin studies
- Genome-wide association studies

Big Data samples

- GWAS consortia
- TOP, MoBa (Norwegian samples)
- UK Biobank, ABCD

Challenges and advanced in statistical analysis

- Correlation structure in the genotype matrix
- Specific tools (conjFDR, MiXeR, MOSTest)

Genetics of Complex Traits

- Mendelian vs polygenic inheritance
- Heritability, twin studies
- Genome-wide association studies

Big Data samples

- GWAS consortia
- TOP, MoBa (Norwegian samples)
- UK Biobank, ABCD

Challenges and advanced in statistical analysis

- Correlation structure in the genotype matrix
- Specific tools (conjFDR, MiXeR, MOSTest)

Genes and their alleles

- ~24,000 genes in humans
- Most genes exist in many forms called alleles (A or a)
- Our cells have two alleles for each gene, one from each parent (AA, Aa, aa)

Huntington's disease

Dominant inheritance

Fig. 1 Pedigree of an American Huntington's disease family.

Huntington Gene on chromosome 4

Article | Published: 17 November 1983

A polymorphic DNA marker genetically linked to Huntington's disease

An edited microscopic image of <u>medium spiny</u> <u>neurons</u>(yellow) with <u>nuclear inclusions</u> (orange), which occur as part of the disease process

Quantitative genetics: complex traits

- Most traits are not discrete
- Height is a great example, can range from 74.6 cm (He Pingping) to 272 cm (Robert Pershing Wadlow)
- This also applies to discrete traits such as Schizophrenia diagnosis: Liability (or predisposition) to the disorder is a complex genetic trait
- Many genes involved ("polygenic")
- Effects of the environment

Height of North American Men

Additive effects of multiple genes

Additive effects of multiple genes

Additive effects of multiple genes

M: +3 cm

N: +2 cm

m: +2 cm

n: +1 cm

$$y_i = \sum_j w_{ij} u_j + e_i$$

(simple additive genetic model)

Effects of the environment

Assume no environmental effects:

Adding the effect of environment:

Heritability

- Heritability represents the proportion of the phenotypic variation in a population that is explained by genetic factors
- For example, how is intelligence in people determined? Did someone with a high IQ just inherit it from her parents, or does stimulation while growing up make a difference too?

Broad-sense heritability:

$$V_P = V_G + V_E$$

$$V_P = (V_A + V_D + V_I) + V_E$$

$$H^2 = V_G/V_P$$

$$h^2 = V_A/V_P$$

Twin studies

- Monozygotic (MZ) twins were conceived in a single egg, which later split
- Dizygotic (DZ)
 twins were
 conceived
 when two or more
 eggs were
 fertilised at the
 same time

Genes or environment?

A famous example would be the Genain quadruplets. Born in 1930, these identical (MZ) German sisters <u>all</u> developed schizophrenia, which suggests a "schizophrenic gene" is at work. The mother and father also had family histories of mental illness, which adds to the credibility of the theory that schizophrenia is at least partly due to genetical factors.

- Schizophrenia heritability: 80-90%
- Schizophrenia concordance rates: 40-50% MZ twins
 4% DZ twins

Complex traits and GWAS

Complex traits and GWAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Sequencing and genotyping technologies

approx. 10 million common SNPs (frequency above 0.5%)

Input data for GWAS analysis

Input:

N attributes (3-category), I binary class variable

M samples

	SNP	SNP ₂	 SNP _n	Class
Patient _I	1	1	 0	1
Patient ₂	0	2	 1	0
Patient ₃	1	0	 2	1
Patient _M	2	1	 1	0

Output:

SNPs associated with diseases

I- order: {SNP₁},{SNP₂},{SNP₃}...

2-order : {SNP₁, SNP₂}...

3-order : $\{SNP_1, SNP_2, SNP_3\}...$

Encoding:

- AA -> 0, Aa -> 1, aa -> 2
- Case-> I, Control -> 0

Schizophrenia GWAS

ARTICLE

Figure 1 | Manhattan plot showing schizophrenia associations. Manhattan plot of the discovery genome-wide association meta-analysis of 49 case control samples (34,241 cases and 45,604 controls) and 3 family based association studies (1,235 parent affected-offspring trios). The x axis is chromosomal

position and the *y* axis is the significance ($-\log_{10} P$; 2-tailed) of association derived by logistic regression. The red line shows the genome-wide significance level (5×10^{-8}). SNPs in green are in linkage disequilibrium with the index SNPs (diamonds) which represent independent genome-wide significant associations.

Supplementary Table 2: 128 genome-wide significant associations for schizophrenia

Rank	Index SNP	A12	Frq _{case}	Frq _{control}	Chr	Position	Combined		Discovery		Replication	
							OR (95% CI)	P	OR	Р	OR	P
54	rs4648845	TC	0.533	0.527	1	2,372,401-2,402,501	1.072 (1.049-1.097)	8.7e-10	1.071	4.03e-9	1.088	8.85e-2
57	chr1_8424984_D	I2D	0.319	0.301	1	8,411,184-8,638,984	1.071 (1.048-1.095)	1.17e-9	1.071	2.03e-9	1.057	2.96e-1
65	rs1498232	TC	0.311	0.296	1	30,412,551-30,437,271	1.069 (1.046-1.093)	2.86e-9	1.072	1.28e-9	0.999	9.88e-1
50	rs11210892	AG	0.659	0.677	1	44,029,384-44,128,084	0.934 (0.914-0.954)	3.39e-10	0.933	4.97e-10	0.949	3.08e-1
22	rs12129573	AC	0.377	0.358	1	73,766,426-73,991,366	1.078 (1.056-1.101)	2.03e-12	1.072	2.35e-10	1.217	6.25e-5
107	rs76869799	CG	0.959	0.964	1	97,792,625-97,834,525	0.846 (0.798-0.897)	2.64e-8	0.850	1.44e-7	0.779	5.34e-2
2	rs1702294	TC	0.175	0.191	1	98,374,984-98,559,084	0.887 (0.865-0.911)	3.36e-19	0.891	2.79e-17	0.831	1.35e-3
52	rs140505938	TC	0.151	0.164	1	149,998,890-150,242,490	0.914 (0.888-0.940)	4.49e-10	0.913	9.34e-10	0.928	2.53e-1
120	rs6670165	TC	0.196	0.184	1	177,247,821-177,300,821	1.075 (1.047-1.103)	4.45e-8	1.074	1.16e-7	1.090	1.46e-1
121	rs7523273	AG	0.695	0.685	1	207,912,183-208,024,083	1.063 (1.040-1.087)	4.47e-8	1.062	1.61e-7	1.092	8.85e-2
101	rs10803138	AG	0.232	0.238	1	243,503,719-243,612,019	0.933 (0.911-0.956)	2.03e-8	0.932	1.79e-8	0.968	5.56e-1
68	rs77149735	AG	0.0225	0.0191	1	243,555,105-243,555,105	1.317 (1.202-1.444)	3.73e-9	1.329	4.4e-9	1.173	3.66e-1
119	rs14403	TC	0.207	0.222	1	243,639,893-243,664,923	0.934 (0.911-0.957)	4.42e-8	0.935	1.31e-7	0.920	1.53e-1
78	chr1_243881945_I	I2D	0.638	0.619	1	243,690,945-244,002,945	1.068 (1.045-1.092)	6.53e-9	1.066	3.11e-8	1.107	6.17e-2
30	rs11682175	TC	0.52	0.542	2	57,943,593-58,065,893	0.933 (0.914-0.952)	1.47e-11	0.928	2.54e-12	1.018	7.08e-1
117	rs75575209	AT	0.904	0.913	2	58,025,192-58,502,192	0.902 (0.869-0.936)	3.95e-8	0.896	1.01e-8	1.056	5.6e-1
80	rs3768644	AG	0.0967	0.101	2	72,357,335-72,368,185	0.904 (0.874-0.935)	7.39e-9	0.910	1.3e-7	0.765	2.15e-3
62	chr2_146436222_I	I2D	0.176	0.163	2	146,416,922-146,441,832	1.086 (1.057-1.116)	1.81e-9	1.084	1.07e-8	1.128	5.72e-2
95	chr2_149429178_D	I2D	0.955	0.961	2	149,390,778-149,520,178	0.857 (0.813-0.904)	1.59e-8	0.856	2.62e-8	0.880	2.97e-1
124	rs2909457	AG	0.568	0.593	2	162,798,555-162,910,255	0.944 (0.925-0.964)	4.62e-8	0.943	4.38e-8	0.971	5.36e-1
18	rs11693094	TC	0.44	0.458	2	185,601,420-185,785,420	0.929 (0.910-0.948)	1.53e-12	0.929	7.13e-12	0.918	7.64e-2
83	rs59979824	AC	0.322	0.337	2	193,848,340-194,028,340	0.937 (0.916-0.958)	8.41e-9	0.936	1.08e-8	0.959	4.32e-1
33	rs6434928	AG	0.635	0.643	2	198,148,577-198,835,577	0.929 (0.909-0.949)	2.06e-11	0.927	1.48e-11	0.969	5.36e-1
82	rs6704641	AG	0.819	0.805	2	200,161,422-200,309,252	1.081 (1.053-1.110)	8.33e-9	1.079	3.4e-8	1.123	8.1e-2
10	chr2_200825237_I	I2D	0.741	0.754	2	200,715,237-200,848,037	0.909 (0.887-0.932)	5.65e-14	0.906	1.78e-14	1.011	8.7e-1
87	rs11685299	AC	0.313	0.326	2	225,334,096-225,467,796	0.939 (0.919-0.959)	1.12e-8	0.937	1.11e-8	0.974	6.12e-1
23	rs6704768	AG	0.54	0.552	2	233,559,301-233,753,501	0.930 (0.911-0.949)	2.32e-12	0.929	3.15e-12	0.953	3.19e-1

GWAS aims to find genetic effects => PRS

Input (known):

 y_i – phenotypes w_{ij} – genotypes

10 cm **]**

MMNN

6 cm

mmnn

MmNn

Output (unknown):

 \hat{u}_j - genetic effects of allele substitution

M: +? cm

N: +? cm

m: +? cm

n: +? cm

$$\hat{y}_i = \sum_j w_{ij} \hat{u}_j + e_i$$

Polygenic Risk Scoring, or Naïve Bayes classifier

- Genetics of Complex Traits
 - Mendelian vs polygenic inheritance
 - Heritability, twin studies
 - Genome-wide association studies
- Big Data samples
 - · GWAS consortia
 - TOP, MoBa (Norwegian samples)
 - UK Biobank, ABCD
- Challenges and advances in statistical analysis
 - Correlation structure in the genotype matrix
 - Specific tools (conjFDR, MiXeR, MOSTest)

Big data NORMENT

- Clinical samples
 - Hospitals n=25k (Psychosis, dementia, ASD etc)
- Population genetics (prospective, registries):
 - MoBa n=240k (100k kids, parents)
 - HUSK n=36k (cohort)
 - HUNT n=70k (collaboration)
 - TromsøStudy n=35k(cohort, 2019)
- Total n=400k

Other samples: 550k

NORMENT In-house Data

- N = 500k
- Aged 40-69 recruited between 2006 and 2010
- Genetic data (500k genotype, 50k whole-exome sequence)
- Registry-based information
- Extensive self-reported baseline data on lifestyl environment, personal & family medical history, includir detailed mental health questionnaire
- Brain imaging data ~45k

NORMENT In-house Data

- N ~ 12k
- Aged 9-10 at recruitment
- Will be followed up through early adulthood
- Genetic data
- Extensive self-reported baseline data on lifestyle. environment, personal & family medical history, including detailed mental health questionnaire
- Brain imaging data all
- Wait for phenotypes to develop longitudinal, prospective

Teen Brains. Today's Science. Brighter Future.

Data Sensitivity

- Most sensitive individual data
 - Individual identification
 - Privacy around mental health status
- All data stored and analyzed on secure computing cluster (TSD)
 - Individual level data anonymized and cannot be exported
- TRYGGVE data sharing across Nordic countries

neic.no/tryggve

NeIC Tryggve

Collaboration on sensitive data

The NORMENT Big Data pipeline

- Genetics of Complex Traits
 - Mendelian vs polygenic inheritance
 - Heritability, twin studies
 - Genome-wide association studies
- Big Data samples
 - GWAS consortia
 - TOP, MoBa (Norwegian samples)
 - UK Biobank, ABCD
- Challenges and advances in statistical analysis
 - Correlation structure in the genotype matrix
 - Specific tools (conjFDR, MiXeR, MOSTest)

What's so challenging?

$$y = Gx + \epsilon$$

- y phenotype vector
- *G* − genotype matrix
- *x* unknown genetic effects
- ϵ environmental noise

MmNn

Challenges in GWAS analysis

- "BigData" scale:
 - 10^7 genetic variants (SNPs)
 - 10^6 individuals
- Correlation structure:
 - Relatedness among individuals
 - "Linkage disequilibrium" in SNPs
- Heterogeneity in GWAS cohorts
 - Different populations
 - Potential overlap between cohorts
- Statistical power
 - Small individual effects
 - ca. 1 000 000 independent tests,
 multiple hypothesis correction
 typical p-value threshold 5x10-8

Models to estimate heritability from genotype data

Mixed effects model

GCTA - Restricted maximum likelihood (RELM) [Patterson and Thompson, 1971] [Harville, 1974], Average Information (AI) inference [Arthur R. Gilmour, 1995]

BoltLMM – more efficient inference with Monte Carlo REML approximation, conjugate gradient iteration to solve mixed model equations, Variational Bayes iteration

Polygenicity affects power to discover loci in GWAS

MOSTest – increase discovery (Multivariate Omnibus Statistical Test)

Polygenic overlap – mathematical modeling

Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation

Oleksandr Frei 🗠, Dominic Holland, Olav B. Smeland, Alexey A. Shadrin, Chun Chieh Fan, Steffen Maeland, Kevin S. O'Connell, Yunpeng Wang, Srdjan Djurovic, Wesley K. Thompson, Ole A. Andreassen & Anders M. Dale 🖾

https://github.com/precimed/mixer

Extensive genetic overlap Conditional/conjunctional False Discovery Rate

Discovery of shared genomic loci using the conditional false discovery rate approach

Review

First Online: 13 September 2019

Polygenic prediction disease onset

Age	Population	PHS 1	PHS 20 th	PHS 80 th	PHS 99 th	APOE	APOE ε4-
_	Baseline*	percentile	percentile	percentile	percentile	ε4+	(95% CI)
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
60				0.14	0.48	0.19	
		0.03	0.05	(0.08,	(0.27,	(0.18,	0.06
	0.08	(0.02,0.04)	(0.03, 0.07)	0.21)	0.69)	0.20)	(0.06, 0.7)
65			0.1	0.29		0.38	0.13
		0.05	(0.06,	(0.17,	0.97	(0.36,	(0.12,
	0.17	(0.03,0.08)	0.15)	0.42)	(0.56,1.39)	0.40)	0.13)
70				0.6	1.98	0.78	0.26
		0.11	0.21	(0.35,	(1.13,	(0.74,	(0.25,
	0.35	(0.06, 0.16)	(0.12,0.3)	0.85)	2.84)	0.82)	0.27)
75				1.22		1.58	0.53
		0.22	0.43	(0.71,	4.03	(1.51,	(0.52,
	0.71	(0.13,0.32)	(0.25, 0.62)	1.73)	(2.3, 5.77)	1.66)	0.55)
80				2.47	8.2	3.22	1.08
		0.45	0.88	(1.44,	(4.67,	(3.06,	(1.05,
	1.44	(0.26,0.64)	(0.51,1.25)	3.51)	11.73)	3.38)	1.11)
85			1.8	5.03	16.68	6.55	2.2
		0.92	(1.04,	(2.92,	(9.5,	(6.23,	(2.13,
	2.92	(0.54,1.31)	2.55)	7.15)	23.86)	6.87)	2.27)
90			3.65	10.24	33.93	13.33	4.48
		1.88	(2.12,	(5.94,	(19.33,	(12.68,	(4.34,
	5.95	(1.09,2.66)	5.18)	14.53)	48.54)	13.98)	4.61)
95			7.43	20.82	69.02	27.11	9.1
		3.82	(4.32,	(12.09,	(39.32,	(25.79,	(8.83,
	12.1	(2.22,5.42)	10.54)	29.56)	98.72)	28.43)	9.38)

Thank you

NORMENT
Oslo University Hospital HF
Division of Mental Health and Addiction
Psychosis Research Unit/TOP
Ullevål Hospital, building 49
P.O. Box 4956 Nydalen
N-0424 Oslo
Norway

Kevin O'Connell - kevin.oconnell@medisin.uio.no Oleksandr Frei - oleksandr.frei@medisin.uio.no Ole Andreassen - ole.Andreassen@medisin.uio.no