

The Risks of Recourse in Binary Classification

The Risk of Recourse in Binary Classification

- Preprint on ArXiv (2306.00497)
- All work presented was created in collaboration with:

Dr. Tim van Erven

Dr. Damien Garreau

Programme of today

- Explainable Al
- Introduction to the problem
- Result for Optimal Classifiers
- Conclusion

Explainable Al

Call for XAI

Some Reasons

- Fairness: Biases can be detected earlier
- Trustworthiness
- Increases reliability
- Regulation

Explanations Explosion

Methods

CAM with global average pooling [42], [91]

- + Grad-CAM [43] generalizes CAM, utilizing gradient
- + Guided Grad-CAM and Feature Occlusion [68]
- + Respond CAM [44]
- + Multi-layer CAM [92]

LRP (Layer-wise Relevance Propagation) [13], [53]

- + Image classifications. PASCAL VOC 2009 etc [45]
- + Audio classification. AudioMNIST [47]
- + LRP on DeepLight. fMRI data from Human Connectome Project [48]
- + LRP on CNN and on BoW(bag of words)/SVM [49]
- + LRP on compressed domain action recognition algorithm [50]
- + LRP on video deep learning, selective relevance method [52]
- + BiLRP [51]

DeepLIFT [57]

Prediction Difference Analysis [58]

Slot Activation Vectors [41]

PRM (Peak Response Mapping) [59]

LIME (Local Interpretable Model-agnostic Explanations) [14]

- + MUSE with LIME [85]
- + Guidelinebased Additive eXplanation optimizes complexity, similar to LIME [93]
- # Also listed elsewhere: [56], [69], [71], [94]

Others. Also listed elsewhere: [95]

- + Direct output labels. Training NN via multiple instance learning [65]
- + Image corruption and testing Region of Interest statistically [66]
- + Attention map with autofocus convolutional layer [67]

DeconvNet [72]

Inverting representation with natural image prior [73]

Inversion using CNN [74]

Guided backpropagation [75], [91]

Activation maximization/optimization [38]

- + Activation maximization on DBN (Deep Belief Network) [76]
- + Activation maximization, multifaceted feature visualization [77]

Visualization via regularized optimization [78]

Semantic dictionary [39]

Network dissection [36], [37]

Decision trees

Propositional logic, rule-based [82]

Sparse decision list [83]

Decision sets, rule sets [84], [85]

Encoder-generator framework [86]

Filter Attribute Probability Density Function [87]

MUSE (Model Understanding through Subspace Explanations) [85]

(2019) A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI

, ,	SEDC [129]
. ,	OAE [51]
, ,	HCLS [110, 112]
1 ,	Feature Tweaking [186]
	CF Expl. [196]
	Growing Spheres [114]
	CEM [55]
1 ,	POLARIS [209]
` /	LORE [80]
, ,	Local Foil Trees [190]
, ,	Actionable Recourse [189]
, ,	Weighted CFs [77]
, ,	Efficient Search [175]
1 ,	CF Visual Expl. [76]
` '	MACE [99]
1 ,	DiCE [145]
. ,	CERTIFAI [179]
(2019.06)	MACEM [56]
(2019.06)	Expl. using SHAP [165]
(2019.07)	Nearest Observable [201]
(2019.07)	Guided Prototypes [191]
(2019.07)	REVISE [95]
(2019.08)	CLEAR [202]
, ,	MC-BRP [123]
	FACE [162]
. ,	Equalizing Recourse [83]
	Action Sequences [163]
	C-CHVAE [156]
` '	FOCUS [124]
. ,	Model-based CFs [127]
, ,	LIME-C/SHAP-C [164]
	EMAP [41]
. ,	PRINCE [71]
. ,	LowProFool [18]
	ABELE [79]
, ,	SHAP-based CFs [66]
1	CEML [11–13]
. ,	MINT [100]
. ,	ViCE [74]
. ,	Plausible CFs [22]
, ,	SEDC-T [193]
, ,	MOC [52]
, ,	SCOUT [199]
	ASP-based CFs [28]
	CBR-based CFs [103]
, ,	Survival Model CFs [106]
, ,	
	Probabilistic Recourse [101]
	C-CHVAE [155]
` /	FRACE [210]
. ,	DACE [96]
, ,	CRUDS [60]
,	Gradient Boosted CFs [5]
, ,	Gradual Construction [97]
. ,	DECE [44]
, ,	Time Series CFs [16]
	PermuteAttack [87]
(2020.10)	Fair Causal Recourse [195]
	December Communica [167]
(2020.10)	Recourse Summaries [167]
(2020.10) (2020.10)	Strategic Recourse [43] PARE [172]

(2020) A survey of algorithmic recourse: definitions, formulations, solutions, and prospects

(2019) A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI

(2021) Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics

Explanations Explosion

(2014.03) SEDC [129]
(2015.08) OAE [51]
(2016.05) HCLS [110, 112]
(2017.06) Feature Tweaking [186]
(2017.11) CF Expl. [196]
(2017.12) Growing Spheres [114]
(2018.02) CEM [55]
(2018.02) POLARIS [209]
(2018.05) LORE [80]
(2018.06) Local Foil Trees [190]
(2018.09) Actionable Recourse [189]
(2018.11) Weighted CFs [77]
(2019.01) Efficient Search [175]
(2019.04) CF Visual Expl. [76]
(2019.05) MACE [99]

(2019.05) DiCE [145]

(2020.08) PermuteAttack [87]

(2020.10) Fair Causal Recourse [195]

(2020.10) Strategic Recourse [43]

(2020.11) PARE [172]

(2020.10) Recourse Summaries [167]

(2020) A survey of algorithmic

recourse: definitions,

formulations, solutions, and

prospects

Methods
Linear probe [101]
Regression based on CNN [106]
Backwards model for interpretability of linear models [107]
GDM (Generative Discriminative Models): ridge regression + least square [100]
GAM, GA²M (Generative Additive Model) [82], [102], [103]
ProtoAttend [105]
Other content-subject-specific models:

+ Kinetic model for CBF (cerebral blood flow) [131]
+ CNN for PK (Pharmacokinetic) modelling [132]
+ CNN for brain midline shift detection [133]
+ Group-driven RL (reinforcement learning) on personalized healthcare [134]
+ Also see [108]–[112]

PCA (Principal Components Analysis), SVD (Singular Value Decomposition)
CCA (Canonical Correlation Analysis) [113]

(2019) A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI

Methods

CAM with global average pooling [42], [91]

- + Grad-CAM [43] generalizes CAM, utilizing gradient
- + Guided Grad-CAM and Feature Occlusion [68]
- + Respond CAM [44]
- + Multi-layer CAM [92]

LRP (Layer-wise Relevance Propagation) [13], [53]

- + Image classifications. PASCAL VOC 2009 etc [45]
- + Audio classification. AudioMNIST [47]
- + LRP on DeepLight. fMRI data from Human Connectome Pro
- + LRP on CNN and on BoW(bag of words)/SVM [49]
- + LRP on compressed domain action recognition algorithm [50
- + LRP on video deep learning, selective relevance method [52]
- + BiLRP [51]

DeepLIFT [57]

Prediction Difference Analysis [58]

Slot Activation Vectors [41]

PRM (Peak Response Mapping) [59]

LIME (Local Interpretable Model-agnostic Explanations) [14]

- + MUSE with LIME [85]
- + Guidelinebased Additive eXplanation optimizes complexity,
- # Also listed elsewhere: [56], [69], [71], [94]

Others. Also listed elsewhere: [95]

- + Direct output labels. Training NN via multiple instance learn
- + Image corruption and testing Region of Interest statistically
- + Attention map with autofocus convolutional layer [67]

DeconvNet [72]

Inverting representation with natural image prior [73]

Inversion using CNN [74]

Guided backpropagation [75], [91]

- Activation maximization/optimization [38]
- + Activation maximization on DBN (Deep Belief Network) [76
- + Activation maximization, multifaceted feature visualization

Visualization via regularized optimization [78]

Semantic dictionary [39]

Network dissection [36], [37]

Decision trees

Propositional logic, rule-based [82]

Sparse decision list [83]

Decision sets, rule sets [84], [85]

Encoder-generator framework [86]

Filter Attribute Probability Density Function [87]

MUSE (Model Understanding through Subspace Explanations) [85]

(2019) A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI

But not a lot of Theoretical/ Mathematical understanding!

(2021) Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics

3544

Introduction to the problem With a peculiar example

Explanations

Counterfactual explanation

"If you would have had an income of € 40 000 instead of €35 000, your loan request would have been approved."

- ► Tell (A) how to change the decision from -1 to +1
- ► Minimal cost for (A)
- ► Provide *Recourse*

Leading example

2 parties:

► Credit Loan Applicant (A)

► Credit Loan Provider (P)

Loan application process:

► (A) provides (P) with a set of features:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

 \blacktriangleright (P) has an automated decision system f

$$f(x) = +1$$
 if accepted $f(x) = -1$ if not

► (A) can ask for a counterfactual explanation

Leading example

Loan application process:

► (A) provides (P) with a set of features:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

 \blacktriangleright (P) has an automated decision system f

$$f(x) = +1$$
 if accepted $f(x) = -1$ if not

► (A) can ask for a counterfactual explanation

This example us seen as a:

Counterfactual literature

Positive example

Strategic classification

Negative example

Effect of Recourse on Accuracy

What happens to the accuracy?

Model

Learning theoretic setting for classification

$$f: \mathcal{X} \subseteq \mathbb{R}^d \to \{-1,1\}$$

We assume that

$$(X_0, Y) \sim P$$

We care about *accuracy*:

$$R_P(f) = P(f(X_0) \neq Y).$$

The optimal classifier is the *Bayes Classifier*

$$f_P^* = \text{sign}\left(P(Y=1 | X=x) - \frac{1}{2}\right).$$

By adding recourse in the mix,

$$X_0 \to X$$
,

where X is either X_0 or $X^{\mbox{CF}}$, we induce a new distribution

$$(X_0, X, Y) \sim Q$$
.

Accuracy with **Recourse** is defined as

$$R_Q(f) = Q(f(X) \neq Y).$$

Note that Q depends on f in general.

Distribution of $Y \mid X$ may change.

Modelling User Bahaviour

$$X_0 \to X$$

Distribution of Y | X may change.

Modelling User Bahaviour

$$X_0 \to X$$

Distribution of Y | X may change.

Modelling User Bahaviour

$$X_0 \to X$$

Distribution of $Y \mid X$ may change.

- ► Compliant users: $Q(Y|X,X_0) = P(Y|X)$
- ▶ Defiant users: $Q(Y|X,X_0) = P(Y|X_0)$

Modelling Q Examples

Some examples:

- Credit loan application:
 - Compliant: Applicant improves risky behaviour
 - ► Defiant: Applicant tries to "game the system"
- ► Medical Diagnosis:
 - ► Compliant: Patient improves their health
 - ► Defiant: Patient takes medicine to reduce symptoms
- ► Job applications:
 - ► Compliant: Applicant improves their skills
 - Defiant: Applicant improves their CV

Example (Compliant)

We assume that

$$X \mid Y = +1 \sim N(\mu, \Sigma)$$

$$X \mid Y = -1 \sim N(\nu, \Sigma)$$

$$P(Y = +1) = P(Y = -1) = \frac{1}{2}$$

$$R_P(f_P^*) = \Phi(\|\mu - \nu\|_{\Sigma^{-1}})$$

$$R_Q(f_P^*) = \frac{1}{4} + \frac{1}{2} \Phi(\|\mu - \nu\|_{\Sigma^{-1}})$$

$$R_Q(f_P^*) > R_P(f_P^*)$$

Formal result

Theorem

Let $\mathscr C$ be the 0/1 loss and suppose that $P(Y=1|X_0=x)=\frac{1}{2}$ for all x on the decision boundary of f_P^* , then:

A. For the Compliant case,

$$R_{\mathcal{Q}}(f_P^*) = \frac{1}{2}P(f_P^*(X_0) = -1) + P(f_P^*(X_0) = 1, Y = -1) > R_P(f_P^*)$$

B. For the Defiant case,

$$R_Q(f_P^*) = P(Y = -1) > R_P(f_P^*)$$

Proof sketch (Compliant)

$$R_Q(f_P^*) = \frac{1}{2}P(f_P(X_0) = -1) + P(f_P(X_0) = 1, Y = -1) > R_P(f_P^*)$$

- ➡ Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,

Proof sketch (Compliant)

$$R_Q(f_P^*) = \frac{1}{2}P(f_P(X_0) = -1) + P(f_P(X_0) = 1, Y = -1) > R_P(f_P^*)$$

- Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,
 - \implies Half of the original $f_P^*(X_0) = -1$,

 γ

Proof sketch (Defiant)

$$R_Q(f_P^*) = P(Y = -1) > R_P(f_P^*)$$

- Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,

 \mathcal{L}

Proof sketch (Defiant)

$$R_Q(f_P^*) = P(Y = -1) > R_P(f_P^*)$$

- \implies Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,
 - ightharpoonup Original $f_P^*(X_0) = -1$, but Y = -1, because the label does not change in this case

 Υ

Rest of the paper

What else do we show

- Similar results/bounds for Non-Optimal classifiers
- ► What ML providers can do to strategise against this phenomenon
- More examples and empirical results

Thank you for your attention!