ANALYSE EXPLORATOIRE DES DONNÉES

Data preprocessing

INDEX

Statistiques descriptives

Analyse univariée

Analyse bivariée

Tests de corrélation

• STATISTIQUES DESCRIPTIVES

« Pourquoi explorer les données avant toute modélisation ? »

1 Objectif

Résumer les caractéristiques principales d'une variable ou d'un jeu de données ;

Identifier les anomalies ;

Visualiser les relations entre les variables ;

Orienter le choix des transformations

« Connaissez-vous des indicateurs permettant d'atteindre ces objectifs ? »

2 Indicateurs principaux

Exemples d'indicateurs (métriques principales) :

- Moyenne, médiane, mode
- Écart-type, variance
- Min, max

Pour aller plus loin:

- Quartiles (pour identifier les valeurs aberrantes)
- Distribution des données (histogrammes)

ANALYSE UNIVARIÉE

« Quel est l'objectif principale de l'analyse univariée ? »

1 Objectif

Étudier chaque variable individuellement.

« Quelle est la meilleure façon de détecter des outliers dans une variable quantitative ? »

2 Méthodes principales

Outils:

- Countplots (pour analyser les variables catégorielles)
- Histogrammes
- Boxplots (pour visualiser les valeurs aberrantes)
- Recherche des outliers :
 - Méthode IQR (Écart interquartile)
 - Méthode Z-score

Types de distributions principaux

ANALYSE BIVARIÉE

« Quel est l'objectif principale de l'analyse bivariée ? »

1 Objectif

Étudier les relations entre deux variables.

« Quelles méthodes utilisées? »

2 Méthodes principales

Exemples d'outils :

- Scatterplots (pour les variables continues)
- Boxplots (Boxplots pour une variable catégorielle vs quantitative)
- Heatmaps pour visualiser des corrélations

TESTS DE CORRÉLATION

« Qu'est-ce que la corrélation de Spearman ? En quoi est-elle différente de Pearson ? »

1 Objectif et définition

Identifier les relations linéaires ou monotones entre variables.

- Corrélation de Pearson : Relations linéaires
- Corrélation de Spearman : Relations monotones

Outil pour la visualisation : Matrice de corrélation avec des heatmaps.

« Dans quel cas je peux avoir une corrélation de Spearman plus élevée que de Pearson ? »

2 Simulation d'un exemple

Exemple:

- Générer des données monotones non linéaires à l'aide d'une relation logarithmique
- Ajouter des outliers
- Calculer les corrélations de Pearson et de Spearman

« Si deux variables ont une corrélation proche de zéro, cela signifie-t-il qu'elles ne sont pas liées ? Pourquoi ? »

3 Simulation d'un exemple

Exemple:

- Générer des données avec une relation quadratique avec un bruit gaussien
- Calculer la corrélation linéaire (Pearson)
- Visualisation : interpréter visuellement la relation quadratique existante

CONCLUSIONS

Bonnes pratiques:

- Nettoyer les données avant d'analyser (valeurs manquantes, doublons).
- Toujours explorer les données avant de modéliser.
- Utiliser des visualisations adaptées pour comprendre les relations.

Objectif	Type de graphique
Distribution d'une variable	Histogramme, Boxplot
Comparaison de catégories	Barplot, Countplot
Relation entre deux variables	Scatterplot, Regression
Corrélation entre variables	Heatmap

Réflexion sur l'interprétabilité des résultats.
 Un graphique doit parler!

AIDE AU CODAGE

- pandas.read_csv0
- describe()
- plt.figure()
- plt.subplots()
- seaborn.countplot()
- seaborn.barplot()
- seaborn.histplot()
- seaborn.scatterplot()
- seaborn.PairGrid∩
- seaborn.boxplot()
- corr()
- seaborn.heatmap()

ANALYSE UNIVARIÉE

seaborn.countplot

seaborn.barplot

seaborn.histplot

ANALYSE BIVARIÉE

seaborn.scatterplot

seaborn.boxplot

seaborn.heatmap

CO

Public

AIDE AU CODAGE

- pandas.read_csv0
- describe()
- plt.figure()
- plt.subplots()
- seaborn.countplot()
- seaborn.barplot()
- seaborn.histplot()
- seaborn.scatterplot()
- seaborn.PairGrid()
- seaborn.boxplot()
- corr()
- seaborn.heatmap()

ANALYSE DONNÉES GÉOLOCALISÉES

folium.Map

```
Here I just use it to show the localisation of the houses, but remember that it can be used for several purpose way useful than this one.
      import folium
      map = folium.Map(location=[df['lat'].mean(), df['long'].mean()], zoom_start=7)
      # Select 100 random rows from the DataFrame
      sample_df = df.sample(n=100, random_state=1)
      # Add markers to the map for each row in your DataFrame
      for index, row in sample_df.iterrows():
          folium.Marker([row['lat'], row['long']]).add_to(map)
      # Display the map
      map
```

FEATURES ENGINEERING

Creating, transforming and selecting features

INDEX

Introduction

1. Qu'est-ce que l'ingénierie des fonctionnalités ?

Techniques courantes

- 1. Traitement des données manquantes
- 2. Codage des variables catégorielles
- 3. Mise à l'échelle et normalisation
- 4. Création de caractéristiques

INTRODUCTION

« Qu'est-ce que Feature Engineering? »

1 Importance de la création de caractéristiques

"Feature engineering et sa **pertinence** dans la science des données »

What is Feature Engineering?

« Importance de l'ingénierie des caractéristiques et son **impact** sur la **performance des modèles** »

« L'ingénierie des caractéristiques est le processus de création de nouvelles caractéristiques significatives à partir de données existantes afin d'améliorer les modèles d'apprentissage automatique »

0 Public

TECHNIQUES COURANTES

« Qu'est-ce que la Feature Engineering? »

1 Traitement des données manquantes (Handling missing data)

« Traitement des données manquantes et **techniques** pour résoudre ce problème ».

Public

Encodage de variables catégorielles (Encoding categorical variables)

« Encodage des variables catégorielles et méthodes pour y parvenir »

One-Hot Encoding

	Places	
	New York	
	Boston	
	Chicago	
	California	
١	lew Jersey	

New York	Boston	Chicago	California	New Jersey
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Label Encoding

Places
New York
Boston
Chicago
California
New Jersey

Places	Map	
New York	1	
Boston	2	
Chicago	3	
California	4	,
New Jersey	5	7

Places	Encoded
New York	1
Boston	2
New York	1
California	4

- Dummy Encoding
- Label Encoding
- Ordinal Encoding
- Binary Encoding
- Count Encoding

Mise à l'échelle et normalisation (Scaling and Normalization)

« La nécessité d'une mise à l'échelle et d'une normalisation »

Feature scaling

- "Standardization": vous modifiez l'étendue de vos données.
- "Normalization": vous modifiez la forme de la distribution de vos données.

Avantages de la "Standardization" :

 Amélioration des performances du modèle: En particulier ceux qui s'appuient sur des mesures de distance ou des gradients pour l'optimisation. Elle garantit que les caractéristiques à grande échelle ne dominent pas le processus d'apprentissage.

Avantages de la "Normalization" :

- Influence égale des caractéristiques: Toutes les caractéristiques ont la même influence ou le même poids dans les analyses et les modèles. Cette caractéristique est particulièrement utile lorsque l'on compare des caractéristiques à des échelles différentes, car elle permet d'éviter que l'une d'entre elles ne domine l'analyse.
- Amélioration des comparaisons

Principaux inconvénients de la "Normalization" et de la "Standardization" : Perte de l'interprétabilité originale

Création de caractéristiques (Feature creation)

Quelques exemples:

1. En classification d'images :

 Création de groupes (Kmeans, PCA) : de nouveaux groupes d'individus avec des caractéristiques similaires

Features