

Building a UART Driver for STM32F746ZG

Objective

In this exercise, you will create a basic UART driver for the STM32F746ZG microcontroller. The driver will include functions to initialize UART, send data, and receive data using UART registers directly.

Requirements

- 1. **Initialize UART**: Configure the UART peripheral with specified parameters (baud rate, word length, stop bits, etc.).
- Write Data: Send data through the UART.
- 3. Read Data: Receive data from the UART.

Constraints

- Do not use the HAL library.
- Interact with the UART peripheral using direct register access.

Provided Document

Refer to the provided STM32F746ZG datasheet for detailed information on UART registers and their configurations.

Task Details

1. Initialize UART

Create a function UART_Init to initialize the UART peripheral with the following prototype:

```
void UART_Init(uint32_t baudrate);
```

Parameters:

baudrate: The desired baud rate for UART communication.

2. Write Data

Create a function UART_Write to send data through UART with the following prototype:

```
void UART_Write(uint8_t data);
```

Parameters:

data: The byte of data to be sent.

3. Read Data

Create a function UART_Read to receive data from UART with the following prototype:

```
uint8_t UART_Read(void);
```

Return:

• The byte of data received.

Helper Functions

You may create helper functions as needed to manage UART settings and operations.

Steps to Implement

1. UART_Init Function:

- o Enable the UART clock.
- o Configure the UART baud rate.
- o Configure the word length, stop bits, and parity.
- o Enable the UART peripheral.

2. **UART_Write Function**:

- Wait for the transmit data register to be empty.
- o Write the data to the transmit data register.

3. **UART_Read Function**:

- Wait for the receive data register to have data.
- o Read the data from the receive data register.