Преобразование выражений

Формулы сокращённого умножения

$$(a \pm b)^{2} = a^{2} \pm 2 \cdot a \cdot b + b^{2}$$

$$a^{2} - b^{2} = (a - b) \cdot (a + b)$$

$$a^{3} \pm b^{3} = (a \pm b) \cdot (a^{2} + a \cdot b + b^{2})$$

Применение формулы приведения

3 этапа

- 1. Аргумент функции должен быть представлен в виде $\frac{3\pi}{2}\pm \alpha$, $\pi\pm \alpha$, $\frac{3\pi}{2}\pm \alpha$, $2\pi\pm \alpha$ причем α обязательно острый угол (от 0 до 90 градусов).
- **2.** Для аргументов $\frac{\pi}{2} \pm \alpha$, $\frac{3\pi}{2} \pm \alpha$, тригонометрическая функция преобразуемого выражения меняется на кофункцию, то есть противоположную (синус на косинус, тангенс на котангенс и наоборот). Для аргументов $\pi \pm \alpha$, $2\pi \pm \alpha$ функция не меняется.
- **3.** Определяется знак исходной тригонометрической функции. Такой же знак будет иметь функция, записываемая в правой части формулы.

Формулы двойного угла

$$sin2x = 2 \cdot sinx \cdot cosx = \frac{2tgx}{1 + tg^2x}$$

$$cos2x = cos^2 x - sin^2 x = 2 cos^2 x - 1 = 1 - 2 sin^2 x = \frac{1 - tg^2x}{1 + tg^2x}$$

$$sin^2 \frac{x}{2} = \frac{1 - cosx}{2}$$

$$cos^2 \frac{x}{2} = \frac{1 + cosx}{2}$$

$$tg^2 \left(\frac{x}{2}\right) = \frac{1 - cosx}{1 + cosx}$$

$$ctg^2 \left(\frac{x}{2}\right) = \frac{1 + cosx}{1 - cosx}$$

Тригонометрические формулы сложения

$sin(x + y) = sinx \cdot cosy + cosx \cdot siny$	$sin(x - y) = sinx \cdot cosy - cosx \cdot siny$
$cos(x + y) = cosx \cdot cosy - sinx \cdot siny$	$cos(x - y) = cosx \cdot cosy + sinx \cdot siny$
$tg(x+y) = \frac{tgx + tgx}{1 - tgx \cdot tgy}$	$tg(x-y) = \frac{tgx-tgx}{1+tgx\cdot tgy}$
$ctg(x+y) = \frac{1 - tgx \cdot tgy}{tgx + tgy} = \frac{ctgx \cdot ctgy - 1}{ctgy + ctgx}$	$ctg(x-y) = \frac{1 + tgx \cdot tgy}{tgx - tgy} = \frac{ctgx \cdot ctgy + 1}{ctgy - ctgx}$

Формулы понижения степени

$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$	$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$
$tg^2\left(\frac{x}{2}\right) = \frac{1-\cos x}{1+\cos x}$	$ctg^{2}\left(\frac{x}{2}\right) = \frac{1 + \cos x}{1 - \cos x}$

Корень п-ой степени

$$\sqrt[n]{a} = b, b^n = a,$$

$$z \partial e \ a \ge 0, b \ge 0, n \in \mathbb{N}, n > 1$$

$$C B O \ddot{u} C m B a \ K O D H B n - O \ddot{u} C m e n e H u$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}, z \partial e \ a \ge 0, b \ge 0$$

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a^k}, z \partial e \ a \ge 0, b > 0$$

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a^k}, z \partial e \ a \ge 0$$

$$\sqrt[n]{a} = \sqrt[n]{a}, n - H e u e m H O$$

$$\sqrt[n]{a} = \sqrt[n]{a}, z \partial e \ a \ge 0$$

$$\sqrt[n]{a} = \sqrt[n]{a}, n - H e u e m H O$$

$$\sqrt[n]{a} = \sqrt[n]{a}, z \partial e \ a \ge 0$$

$$\sqrt[n]{a} = \sqrt[n]{a}, z \partial e \ a \ge 0$$

Степени

$a^{\frac{p}{q}} = \sqrt[q]{a^p}$, εδε $a \ge 0$, $q \in N$, $p \in Z$		
Свойства степени (для $n \in R$, $k \in R$)		
a ⁰ = 1, где a ≠ 0	$a^1 = a$,	
$a^{-1} = \frac{1}{a'} : \partial e \ a \neq 0$	$a^{-n} = \frac{1}{a^{n'}} \operatorname{rde} a \neq 0$	
$a^n \cdot a^k = a^{n+k}$	a^n : $a^k = a^{n-k}$, где $a \neq 0$	
$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n, \ ε \partial e \ b \neq 0$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n, \ \partial e \ a \neq 0, \ b \neq 0$	

Логарифм

$log_a b = c$, $a^c = b$, ε $de a > 0$, $a \ne 1$, $b > 0$		
Основное логарифмическое тождество: $a^{\log_a b} = b$		
Свойства логарифма		
$log_a 1 = 0$	$a^{\log_a c} = c^{\log_a a}$	
$log_a a = 1$	$\log_a b = \frac{\log_c b}{\log_c a}$	
$\log_{a^k} b = \frac{1}{k} \log_a b$	$\log_a b = \frac{1}{\log_b a}$	
$\log_a b^k = k \log_a b$	$\log_a b \cdot c = \log_a b + \log_a c$	
$\log_{a^k} b^m = \frac{m}{k} \log_a b$	$\log_a \frac{b}{c} = \log_a b - \log_a c$	