Caminhos e Noções de Conectividade

Zenilton Patrocínio

Passeio / Trajeto / Caminho

Dado um grafo G = (V, E), um **passeio** é uma sequência alternante de vértices e arestas (começando e terminando em vértices) com v_0 , e_1 , v_1 , e_2 , v_2 , . . ., e_k , v_k em que v_i representa um vértice e e_i uma aresta.

Cada aresta da sequência é incidente ao vértice que a precede e ao vértice que a segue na sequência, isto é, v_i e v_{i+1} são adjacentes para todo i = 0, ..., k-1.

Em um grafo simples, pode-se representar um passeio apenas pela sequência de vértices $v_0, v_1, v_2, \ldots, v_k$ (omitindo-se as arestas) pois existe no máximo uma aresta entre cada par de vértices.

1 a 2 d 5 e 3 f 6 j 7 i 5 d 2 h 8 \rightarrow Passeio

1 2 5 3 6 7 5 2 8

→ Passeio

Passeio aberto × Passeio fechado

1 4 6 7 \rightarrow Passeio aberto (origem \neq término)

1 a 2 d 5 e 3 f 6 j 7 i 5 d 2 h 8 \rightarrow Passeio

1 2 5 3 6 7 5 2 8

→ Passeio

Passeio aberto × Passeio fechado

1 4 6 7 \rightarrow Passeio aberto (origem \neq término)

1 4 6 3 1 \rightarrow Passeio fechado (origem = término)

Trajeto

Dado um grafo G = (V, E), um trajeto (ou cadeia) é um passeio que não repete arestas.

Caminho

Dado um grafo G = (V, E), um caminho é um trajeto que não repete vértices entre sua origem e seu término.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a **distância** entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Dado um grafo G = (V, E), a distância entre dois vértices $v \in w$ – representada por d(v, w) é igual ao tamanho do menor caminho entre $v \in w$.

Distância entre dois vértices também é denominada de distância geodésica.

Excentricidade de um vértice v ou $\varepsilon(v)$ é a maior distância de v para qualquer outro vértice.

O raio e diâmetro de um grafo G representam a menor e a maior excentricidade de um vértice de G.

Caminho Aberto × Caminho Fechado

Dado um grafo G = (V, E), um caminho é dito **fechado** quando sua origem e seu término são iguais; caso contrário, o caminho é chamado de **aberto**.

1 2 5 3 \rightarrow Caminho aberto

1 2 5 3 1 \rightarrow Caminho fechado

Grafo Linear

Um grafo G = (V, E) com n > 1 vértices é dito linear (ou grafo caminho) quando possui apenas 2 vértices de grau 1 e os demais vértices possuem grau 2 e estão no caminho entre os vértices de grau 1 – representado por P_n .

Ciclo

Dado um grafo G = (V, E), um ciclo é um caminho fechado.

 $25782 \rightarrow Ciclo$

1 3 6 4 1 \rightarrow Ciclo

Em grafos direcionados, utiliza-se também o termo circuito.

Grafo Ciclo

Um grafo G = (V, E) com n > 2 vértices é chamado de grafo ciclo (ou circular) quando consiste de um único ciclo passando por todos os seus vértices – representado por C_n .

Todos os vértices de um grafo ciclo possuem grau igual a 2.

Noções de Conectividade

Grafo Conexo

Um grafo G = (V, E) é dito conexo quando existir pelo menos um caminho para todo par de vértices.

Existe caminho entre 1 e 2 ? \Rightarrow OK

Existe caminho entre 1 e 3 ? \Rightarrow OK

:

Existe caminho entre 1 e 8 ? \Rightarrow OK

Existe caminho entre 2 e 3 ? \Rightarrow OK

:

Como existem caminhos entre todos os pares de vértices

Conexo

Grafo Desconexo

Um grafo G = (V, E) é dito desconexo quando não existir um caminho entre algum par de vértices.

Existe caminho entre 1 e 7 ? \Rightarrow NÃO

Existe caminho entre 1 e 8 ? ⇒ NÃO

Como não existe caminho entre todos os pares de vértices

Um grafo desconexo é formado por 2 ou mais grafos conexos chamados componentes conexos.

Dado um grafo G = (V, E), seus componentes conexos são os subgrafos maximais que são conexos.

Subgrafo maximal é aquele de maior tamanho que atende a uma propriedade (para componentes conexos, a propriedade é ser conexo).

Dado um grafo G = (V, E), seus componentes conexos são os subgrafos maximais que são conexos.

Subgrafo maximal é aquele de maior tamanho que atende a uma propriedade (para componentes conexos, a propriedade é ser conexo).

Dado um grafo G = (V, E), seus componentes conexos são os subgrafos maximais que são conexos.

Subgrafo maximal é aquele de maior tamanho que atende a uma propriedade (para componentes conexos, a propriedade é ser conexo).

Dado um grafo G = (V, E), seus componentes conexos são os subgrafos maximais que são conexos.

Subgrafo maximal é aquele de maior tamanho que atende a uma propriedade (para componentes conexos, a propriedade é ser conexo).

Número de Arestas – Limites

Dado um grafo simples G = (V, E) com n vértices e k componentes. O número mínimo de arestas de G é igual n - k.

Além disso, o grafo G possui no máximo $(n - k) \times (n - k + 1)/2$ arestas.

