UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 32, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

			GCE A/A3 LEVEL - October/November 2009 9709	32	
1	Use	law of the	logarithm of a product or quotient and remove logarithms	M1	
1			ic equation $x^2 - 5x + 5 = 0$, or equivalent	A1	
			undratic obtaining 1 or 2 roots	A1	
			s 1.38 and 3.62	A1	[4]
	Obt	aiii aiisweis	S 1.36 and 3.02	AI	[+]
•	(1)	P 1 .		3.61	
2	(1)		or consider the sign of, $x^3 - 8x - 13$ for two integer values of x, or equivalent	M1	[0]
		Conclude	x = 3 and $x = 4$ with no errors seen	A1	[2]
	(22)	Tina 4h a i4.	anation formula compathy at least once	N/1	
	(11)		erative formula correctly at least once al answer 3.43	M1 A1	
			icient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is	AI	
			nge in the interval (3.425, 3.435)	A1	[3]
		a sign cha	inge in the interval (3.423, 3.433)	711	[2]
			du		
3	(i)	State 2xy	$+x^2 \frac{dy}{dx}$ as derivative of x^2y	B1	
					
		State $3v^2$	$\frac{dy}{dx}$ as derivative of y^3	B1	
			dx	2.	
		Equato da	rivative of LUS to zero and salve for dy	M1	
		Equate de	rivative of LHS to zero and solve for $\frac{dy}{dx}$	IVI I	
			$3r^2-2rv$		
		Obtain ans	swer $\frac{3x^2-2xy}{x^2+3y^2}$, or equivalent	A 1	[4]
			x + 3y		
	(ii)	Find gradi	ient of tangent at (2, 1) and form equation of tangent	M1	
	(11)		swer $8x - 7y - 9 = 0$, or equivalent	A1	[2]
		Ootain an	o, or equivalent	711 ([2]
4	T T	4- ·· (A + D)		N/1*	
4		,	formula and obtain an equation in $\tan \alpha$ and $\tan \beta$	M1*	*)
			ughout for $\tan \alpha$ or for $\tan \beta$ $\alpha + \tan \beta - 1 = 0$ or $\tan^2 \alpha + \tan \alpha - 2 = 0$, or equivalent	M1(de	p*)
				M1	
			quadratic and find an angle $\alpha = 45^{\circ}, \beta = 26.6^{\circ}$		
			$\alpha = 43^{\circ}, \beta = 20.0^{\circ}$ $\alpha = 116.6^{\circ}, \beta = 135^{\circ}$	A1 A1	Γ 6 1
			given in radians as a misread. Ignore answers outside the given range.]	AI	[6]
			ect values of α (or β) score A1; then A1 for both correct α , β pairs]		
	[SK	. I wo com	ect values of α (of β) score AT , then AT for both correct α , β pairs		
=	(E)	Cubatituta	x = 2 adjusts to zero and state a convent adjustion $a = 16 + 4 = 2k + 4 = 0$	D 1	
5	(i)		x = -2, equate to zero and state a correct equation, e.g. $-16 + 4a - 2b - 4 = 0$	B1 M1	
			ate p(x), substitute $x = -2$ and equate to zero		
		Solve for	correct equation, e.g. $24 - 4a + b = 0$	A1	
			a or for b = 7 and b = 4	M1 A1	[5]
		Obtian <i>a</i> -	- / and $D-4$	AI	[5]
	(ii)	EITHER:	State or imply $(x + 2)^2$ is a factor	B1	
	(**)		Attempt division by $(x + 2)^2$ reaching a quotient $2x + k$ or use inspection with		
			unknown factor $cx + d$ reaching $c = 2$ or $d = -1$	M1	
			Obtain factorisation $(x + 2)^2 (2x - 1)$	A1	
		OR:	Attempt division by $(x + 2)$	M1	
			Obtain quadratic factor $2x^2 + 3x - 2$	A1	
			Obtain factorisation $(x + 2)(x + 2)(2x - 1)$	A1	[3]
			[The M1 is earned if division reaches a partial quotient of $2x^2 + kx$, or if inspect		
			unknown factor of $2x^2 + ex + f$ and an equation in e and/or f, or if two coefficients		
			correct moduli are stated without working.]		

Mark Scheme: Teachers' version

GCE A/AS LEVEL – October/November 2009

Syllabus

9709

Paper

32

Page 4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	32

6 (i) State or imply $\frac{dx}{d\theta} = 2\sec^2 \theta$ or $dx = 2\sec^2 \theta d\theta$

Substitute for x and dx throughout

Obtain any correct form in terms of θ Obtain the given form correctly (including the limits)

A1 [4]

- (ii) Use $\cos 2A$ formula, replacing integrand by $a+b\cos 2\theta$, where $ab \neq 0$ Integrate and obtain $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$ Use limits $\theta = 0$ and $\theta = \frac{1}{4}\pi$ Obtain answer $\frac{1}{8}(\pi + 2)$, or exact quivalent

 A1 [4]
- 7 (i) (a) State that u + v is equal to 1 + 2i B1 [1]
 - **(b)** EITHER: Multiply numerator and denominator of u/v by 3 i, or equivalent M1 Simplify numerator to -5 + 5i, or denominator to 10 **A**1 Obtain answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent **A**1 Obtain two equations in x and y and solve for x or for yOR1: M1 Obtain $x = -\frac{1}{2}$ or $y = \frac{1}{2}$ A1 Obtain answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent Α1 OR2: Using the correct processes express u/v in polar form M1 Obtain $x = -\frac{1}{2}$ or $y = \frac{1}{2}$ correctly **A**1 Obtain answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent **A**1 [3]
 - (ii) State that the argument of u/v is $\frac{3}{4}\pi$ (2.36 radians or 135°) B1 $\sqrt{}$ [1]
 - (iii) EITHER: Use facts that angle $AOB = \arg u \arg v$ and $\arg u \arg v = \arg(u/v)$ M1
 Obtain given answer A1

 OR1: Obtain tan $A\hat{O}B$ from gradients of OA and OB and the tan $(A \pm B)$ formula M1
 Obtain given answer A1

 OR2: Obtain $\cos A\hat{O}B$ by using the cosine formula or scalar product M1
 Obtain given answer A1

 OBTAINED

 M1
 A1
 [2]
 - (iv) State OA = BC B1 State OA is parallel to BC B1 [2]
- 8 (i) State or imply partial fractions are of the form $\frac{A}{1-x} + \frac{Bx+C}{2+x^2}$ Use a relevant method to determine a constant

 Obtain $A = \frac{2}{3}$, $B = \frac{2}{3}$ and $C = \frac{1}{3}$ B1

 A1 + A1 + A1 [5]

Pa	ge 6	Mark Scheme: Teachers' version	Syllabus	Pape	r
		GCE A/AS LEVEL – October/November 2009	9709	32	
(ii)	Use corre $(1 + \frac{1}{2}x^2)$	ect method to find first two terms of the expansion of $(1-x)^{-1}$	$(2+x^2)^{-1}$ or	M1	
	Obtain complete unsimplified expansions up to x^2 of each partial fraction e.g. $\frac{2}{3}(1+x+x^2)$ and $\frac{1}{2}(\frac{2}{3}x-\frac{1}{3})(1-\frac{1}{2}x^2)$ A1 $\sqrt{+}$ A1 $\sqrt{-}$				
	Carry out	multiplication of $(2 + x^2)^{-1}$ by $(\frac{2}{3}x - \frac{1}{3})$, or equivalent, provi	ided $BC \neq 0$	M1	
	Obtain an	swer $\frac{1}{2} + x + \frac{3}{4}x^2$		A1	[:
	[If <i>B</i> or <i>C</i> 4/10]	c binomial coefficients are not sufficient for the first M1. The comitted from the form of fractions, give B0M1A0A0A0 in (see of an attempt to expand $(1 + x)(1 - x)^{-1} (2 + x^2)^{-1}$, give M1	(i); M1A1√A1√ in	i (ii), max	
		blying out fully, and A1 for the final answer.]	Triffi for the exp	ansions, i	VII
	[Allow M	Iaclaurin, giving M1A1 $\sqrt{A1}$ for differentiating and obtainin	$g f(0) = \frac{1}{2} \text{ and } f'(0)$	(0)=1, A	1√
	for f"(0)	$=\frac{3}{2}$, and A1 for the final answer (the f.t. is on A, B, C if used	d).]		
(i)	Integrate Integrate Use $\theta = 4$	variables correctly and obtain term $\ln(\theta - A)$, or equivalent and obtain term $-kt$, or equivalent A , $t = 0$ to determine a constant, or as limits breatrect answer in any form, e.g. $\ln(\theta - A) = -kt + \ln 3A$, with $\ln A$	o errors seen	B1 B1 B1 M1 A1	[
(;;)			o cirois seen		
(ii)	Substitute $\theta = 3A$, $t = 1$ and justify the given statement B1		ы	[
(iii)		$e t = 2$ and solve for θ in terms of A		M1	
		ogarithms swer $\theta = \frac{7}{4}A$ or equivalent with no errors seen		M1 A1	Г
	Obtain answer $\theta = \frac{7}{3}A$, or equivalent, with no errors seen A1 [The M marks are only available if the solution to part (i) contains terms $a \ln(\theta - A)$ and bt .]			[3]	
(i)	Substitute	e coordinates $(1, 4, 2)$ in $2x - 3y + 6z = d$		M1	
	Obtain pla	ane equation $2x - 3y + 6z = 2$, or equivalent		A1	[
(ii)	EITHER:		dicular from (1, 4,		
		to p	(2) 16	M1	
		Obtain a correct unsimplified expression, e.g. $\frac{ 2-3(4)+6(1) }{(2^2+(-3)^2$	$\frac{(2)-10}{(2+6^2)}$	A1	
		01	,	A 1	

State or imply perpendicular from O to p is $\frac{16}{7}$, or from O to q is $\frac{2}{7}$, or

Obtain correct parameter value, or position vector or coordinates of foot of perpendicular from (1, 4, 2) to $p(\mu = \pm \frac{2}{7}; (\frac{11}{7}, \frac{22}{7}, \frac{26}{7}))$

A1

В1

M1

A1

B1

M1

A1

Obtain answer 2

Obtain answer 2

Obtain answer 2

Find difference in perpendiculars

Calculate the length of the perpendicular

equivalent

OR1:

OR2:

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	r
-	GCE A/AS LEVEL – October/November 2009	9709	32	
OR3:	Carry out correct method for finding the projection onto a normal vector of a			
	line segment joining a point on p , e.g. $(8, 0, 0)$ and a point on q , e.g. $(1, 4, 2)$			
	Obtain a correct unsimplified expression, e.g. $\frac{\left 2(8-1)-3(-4)+6(-2)\right }{\sqrt{(2^2+(-3)^2+6^2)}}$			
	Obtain answer 2		A 1	[3]
(iii) EITHER:	Calling the direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, use scalar product equation in a , b and c Obtain two correct equations, e.g. $2a - 3b + 6c = 0$, $a - 2b$		nt M1* A1	
	Solve for one ratio, e.g. a: b		M1(de	ep*)
	Obtain $a:b:c=6:2:-1$, or equivalent		A1	• /
OR:	State answer $\mathbf{r} = \lambda(6\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ or equivalent Attempt to calculate vector product of two normals, e.g.		A1√	
	$(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$		M2	
	Obtain two correct components Obtain $-6\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, or equivalent		A1 A1	
	State answer $\mathbf{r} = \lambda(-6\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, or equivalent		A1√	[5]