Федеральное государственное автономное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных технологий Кафедра «Информатика и информационные технологии»

Направление подготовки/ специальность: Автоматизированные системы обработки информации и управления

ОТЧЕТ

по проектной практике

Студент: Меркулов Антон Сергеевич	Группа: _241-336
Место прохождения практики: Московски	й Политех, кафедра <u>«Информатика и</u>
информационные технологии»	
O "	п
Отчет принят с оценкой	Дата
Руководитель практики: Рябчикова Анна Е	Валерьевна

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	. 3
1 Общая информация о проекте	. 5
2 Общая характеристика деятельности организации (заказчика проекта)	. 6
3 Описание задания по проектной практике	. 7
4 Описание достигнутых результатов по проектной практике	11
ЗАКЛЮЧЕНИЕ (выводы о проделанной работе и оценка ценности выполненных	•
задач для заказчика)	19
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ2	20

ВВЕДЕНИЕ

современном мире информационных технологий, где разработка программного обеспечения и создание веб-приложений достигли небывалых масштабов, владение ключевыми инструментами и технологиями является не просто преимуществом, а необходимостью для успешного старта в карьере ІТспециалиста. Данный отчет посвящен анализу проектной практики, направленной освоение фундаментальных навыков, которые являются основой для дальнейшего профессионального роста в сфере ІТ. В рамках данной практики, особое версий внимание уделялось освоению системы контроля использованию Markdown для создания документации, разработке статических веб-сайтов с применением HTML и CSS, а также работе по созданию модели нейросети.

Во время практики я получил ценный как теоретический, так и практический опыт. Я научился создавать репозитории и управлять ими на платформе GitHub. Эта система контроля версий позволяет не только отслеживать изменения в коде в процессе командной разработки продукта, но и позволяет эффективно сотрудничать в команде, решать конфликты версий и восстанавливать предыдущие состояния проекта. В течение всей практики я с командой активно пользовался возможностями этой платформы.

Markdown - это простой и легкий в освоении язык разметки, который позволяет создавать структурированные и читаемые документы. Он широко используется для написания документации, README-файлов, веб-контента и многого другого. Я изучил синтаксис этого языка разметки и в течение проектной практики создавал и оформлял документы для проекта в данном формате.

Разработка статических сайтов с использованием HTML и CSS – еще один ключевой элемент данной проектной практики. В рамках практики, я получил возможность самостоятельно разработать веб-сайт, посвященный моему проекту по дисциплине «Проектная деятельность».

В рамках практики также была реализована простая искусственная нейросеть на языке Python с нуля — без использования высокоуровневых библиотек для машинного обучения. Это позволило не просто воспользоваться готовыми решениями, а по-настоящему разобраться в механизмах работы нейронных сетей.

1 ОБЩАЯ ИНФОРМАЦИЯ О ПРОЕКТЕ

1.1 Название проекта

Полное наименование проекта — Система централизованной отчетности и предиктивная модель операционных показателей для образовательного учреждения «Московский Политех».

1.2 Цели и задачи проекта

Цель: разработать и внедрить централизованную ВІ-систему с предиктивной аналитикой, обеспечивающую консолидацию данных, прогнозирование ключевых операционных показателей и контролируемую прозрачность управленческих процессов для Московского Политеха.

Задачи проекта:

- провести аудит текущих источников данных (LMS, ERP, CRM, Excel, финансовые и кадровые системы);
- разработать архитектуру единого хранилища данных (Data Warehouse) и реализовать процессы ETL/ELT;
- настроить валидацию, очистку и унификацию данных по ключевым метрикам;
- создать ВІ-дашборды с визуализацией показателей для разных уровней управления (ректорат, деканаты, подразделения);
- определить КРІ и метрики для академического, административного и финансового блоков;
- реализовать модель управления доступом (role-based access control) с разграничением прав по ролям и зонам ответственности;
- разработать и внедрить ML-модели для предсказания набора студентов, академических отчислений, финансовой эффективности образовательных программ и др.;
- обеспечить автоматическое обновление моделей и интеграцию прогнозов в дашборды;
- реализовать протоколы безопасности и соответствие Ф3-152 (о персональных данных), а при необходимости GDPR;

- подготовить документацию, инструкции и методические материалы по работе с системой;
- обучить пользователей (администраторов, аналитиков, управленцев) работе с ВІ-инструментами и предиктивной аналитикой;
- регламентировать процедуры обновления данных и прав доступа;
- адаптировать лучшие практики корпоративного сектора в области data governance и ML-анализов.

2 ОБЩАЯ ХАРАКТЕРИСТИКА ДЕЯТЕЛЬНОСТИ ОРГАНИЗАЦИИ

2.1 Наименование заказчика

Федеральное государственное автономное образовательное учреждение высшего образования «Московский политехнический университет».

2.2 Организационная структура

- Ректорат;
- административные подразделения;
- студенческое самоуправление;
- научные и исследовательские центры;
- факультеты;
- кафедры.

2.3 Описание деятельности

Многопрофильное высшее учебное заведение, участник программы «Приоритет 2030». Учредителем университета является Министерство науки и высшего образования Российской Федерации.

3 ОПИСАНИЕ ЗАДАНИЯ ПО ПРОЕКТНОЙ ПРАКТИКЕ

1. Настройка Git и репозитория:

- о Создайте личный или групповой репозиторий на <u>GitHub</u> или <u>GitVerse</u> на основе предоставленного <u>шаблона</u>.
- Освойте базовые команды Git: клонирование, коммит, пуш и создание веток.
- Регулярно фиксируйте изменения с осмысленными сообщениями к коммитам.

2. Написание документов в Markdown:

- Все материалы проекта (описание, журнал прогресса и др.) должны быть оформлены в формате Markdown.
- о Изучите синтаксис Markdown и подготовьте необходимые документы.

3. Создание статического веб-сайта:

- Вы можете использовать только HTML и CSS для создания сайта, если освоение более сложных инструментов представляется трудным.
 Это делает задание доступным для студентов с базовым уровнем подготовки.
- Создайте новый сайт об основном проекте по дисциплине «Проектная деятельность», выберите тему и добавьте контент. Оформление и наполнение сайта должны быть уникальными (не совпадать с работами других студентов) более, чем на 50%.
- о Сайт должен включать:
 - Домашнюю страницу с аннотацией проекта.
 - Страницу «О проекте» с описанием проекта.
 - Страницу или раздел «Участники» с описанием личного вклада каждого участника группы в проект по «Проектной деятельности».
 - Страницу или раздел «Журнал» с минимум тремя постами (новостями, блоками) о прогрессе работы.

- Страницу «Ресурсы» со ссылками на полезные материалы (ссылки на организацию-партнёра, сайты и статьи, позволяющие лучше понять суть проекта).
- Оформите страницы сайта графическими материалами (фотографиями, схемами, диаграммами, иллюстрациями) и другой медиа информацией (видео).
- о **Ожидаемое время:** изучение и настройка 10–14 часов, дизайн и наполнение 4–8 часов.

4. Взаимодействие с организацией-партнёром:

- о Организуйте взаимодействие с партнёрской организацией (визит, онлайн-встреча или стажировка).
- Участвуйте в профильных мероприятиях по тематике проекта и профилю организации-партнёра (конференции, выставки, митапы, семинары, хакатоны и др.).
- о Напишите отчёт в формате Markdown с описанием опыта, полученных знаний и связи с проектом. Отчёт добавьте в репозиторий и на сайт.

5. Отчёт по практике

о Составьте отчёт по проектной (учебной) практике.

Вариативная часть задания

По решению ответственного за проектную (учебную) практику студентам назначается одно из следующих вариативных заданий. Студенты могут направить ответственному свои пожелания по распределению.

1. Кафедральное индивидуальное отдельное задание

- Выполните все задачи базовой части.
- Выполните кафедральное индивидуальное отдельное задание.
- Интегрируйте результаты индивидуального задания и отчёт по нему в репозиторий и сайт, созданные в базовой части.
- Ожидаемое время: 32–40 часов.

2. Практическая реализация технологии

- Выполните все задачи базовой части.
- Для достижения объёма в 72 часа выберите один из следующих проектов:
- 1. Выберите любую технологию (тематику) из списка, представленного в репозитории <u>codecrafters-io/build-your-own-x</u>. По согласованию с ответственными за практику можно использовать другой источник проектов.
- 2. Согласуйте внутри команды выбранную тему. Выберите стек технологий (подсказки также есть в репозитории).
- 3. Проведите исследование: изучите, как создать выбранную технологию с нуля, воспроизведите практическую часть.
- 4. Создайте подробное описание в формате Markdown, включающее:
 - о Последовательность действий по исследованию предметной области и созданию технологии.
 - о Напишите техническое руководство по созданию этой технологии, ориентированное на начинающих.
 - о Включите в руководство:
 - Пошаговые инструкции.
 - Примеры кода.
 - о Иллюстрации (картинки, диаграммы, схемы) в количестве от 3 до 10 штук, вставленные в текст для наглядности.
 - о Поместите результаты исследования и руководства в общий Gitрепозиторий.
- 5. Создайте техническое руководство или туториал по созданию проекта на выбранную тему. Для визуализации архитектуры, процессов и прочего используйте разные типы диаграмм UML, схемы, графики, таблицы.
- 6. Сделайте модификацию проекта согласно полученным знаниям и навыкам в течение года (творческий пункт, самостоятельно выбираете в какой части модифицировать). Описать в технической документации модификации.
- 7. Сделайте видео презентацию выполненной работы (цель, задачи, как решали, демонстрация работоспособного результата).
- 8. Задокументируйте проект в репозитории в формате Markdown и представьте его на сайте в формате HTML.
- 9. Подготовить финальный отчет (в хронологической последовательности опишите этапы работы, отдельно должны быть представлены индивидуальные планы каждого участника).

• Пример 1:

о Для технологии «собственный интерпретатор» опишите этапы изучения синтаксиса, парсинга и выполнения кода, добавив схему работы интерпретатора и примеры кода.

• Пример 2:

- о Для технологии «собственный HTTP-сервер» создайте руководство с шагами по настройке сокетов, обработке запросов и отправке ответов, дополнив текст схемой взаимодействия клиент-сервер.
- Ожидаемое время: 32–40 часов.

4 ОПИСАНИЕ ДОСТИГНУТЫХ РЕЗУЛЬТАТОВ ПО ПРОЕКТНОЙ ПРАКТИКЕ

1. Базовая часть

Был успешно создан групповой репозиторий на GitHub на основе предоставленного шаблона и заполнен в соответствии с требованиями к базовой части проектной практики:

Доловшев денил дата размещено в папке тазк в файле <u>README.md.</u>

Задание

Задание размещено в папке тазк в файле <u>README.md.</u>

Вариативная часть задания

Neural Network

Ответственный по проектной (учебной) практике

Рябчикова Анна Валерьевна, кафедра "Информатика и информационные технологии".

Проектная деятельность

Проектная деятельность

Проектная (учебная) практика проводилась в связке с выполнением проекта Система централизованной отчётности и предикативная модель операционных показателей для Московского Политеха (I курс) по дисциплине «Проектная деятельность».

Кормановский Иван Антонович куратор по проектной деятельности.

Период проведения

С 03 февраля 2025 г. по 24 мая 2025 г.

Рисунок 2 – Скриншот с репозиторием №2

•

Помимо этого, в репозитории создана дополнительная папка **src**, в которой будут храниться файлы из вариативной части задания.

В репозитории в папке **docs** в файле README.md указаны ссылки на документы «Отчёт по выполнению задания по работе с Git», «Отчёт по созданию статического вебсайта для проектной практики», «Создание простой нейросети на Python: Техническое руководство для новичков», «Описание технологии нейросети» и «Взаимодействие с организацией-партнёром».

В папке **site** был размещен статический сайт:

Рисунок 3— Скриншот папки «site» в репозитории.

Сайт успешно разработан исключительно на HTML и CSS без использования различных генераторов. В соответствии с требованиями задания были созданы все необходимые страницы. Скриншоты сайта ниже.

Рисунок 4- Сайт. Страница «Главная».

Страница «О проекте». Добавлены различные схемы, диаграммы.

Рисунок 5 – Сайт. Страница «О проекте».

Рисунок 6– Сайт. Страница «О проекте» №2.

Страница «Участники» с данными обо всех участниках и описанием их вклада в проект:

Рисунок 7 – Сайт. Страница «Участники».

Страница Журнал с прогрессом работы в проекте:

Рисунок 8 - Сайт. Страница «Журнал».

И страница «Ресурсы» с полезными источниками, которые использовались при разработке проекта.

Рисунок 9 – Сайт. Страница «Ресурсы»

Также мы посетили несколько мероприятий от университета. В репозитории в папке **docs** находится отчет по взаимодействию с организацией-партнером.

2.Вариативная часть

В рамках вариативной части проектной практики была поставлена задача — разработать и обучить простую искусственную нейронную сеть (ИНС) с использованием библиотеки NumPy. Основная цель — понять и реализовать базовые принципы работы многослойного перцептрона (MLP), изучить методы обучения и визуализации динамики ошибок.

Архитектура нейросети

Разработанная нейросеть имеет следующую структуру:

- Входной слой: 3 входа
- Первый скрытый слой: 4 нейрона, функция активации ReLU
- Второй скрытый слой: 4 нейрона, функция активации tanh
- Выходной слой: 1 нейрон, функция активации сигмоида (для бинарной классификации)
- Метод обучения: обратное распространение ошибки (backpropagation) с использованием пакетной обработки (batch size = 2)

Рисунок 10 – Схема нейросети.

Этапы разработки

1. **Нормализация данных** — входные данные были стандартизированы с помощью StandardScaler из библиотеки sklearn.

- 2. **Инициализация весов** использовались случайные значения в диапазоне [-1, 1].
- 3. **Прямой проход (forward pass)** реализовано последовательное применение матричных операций и функций активации.
- 4. **Обратное распространение ошибки** произведены расчеты градиентов на каждом слое, обновление весов выполнялось без дополнительного коэффициента скорости обучения (learning rate).
- 5. **Обучение** сеть обучалась на протяжении 10 000 эпох с перемешиванием данных в каждой эпохе.
- 6. **Визуализация** динамика средней абсолютной ошибки отображена на графике, обновлявшемся каждые 100 эпох.

Результаты

В результате обучения нейросеть достигла сходимости, что подтверждается снижением ошибки на графике. Выходные значения нейросети после обучения:

Рисунок 11 – Обученные выходы.

Рисунок 12 – График ошибки обучения.

Эти значения свидетельствуют о способности сети различать входные паттерны, приближаясь к правильным меткам (0 или 1).

Также была создана техническая документация, включающая:

- описание функций активации и их производных;
- пояснение архитектуры сети и всех этапов обучения;
- исследование применяемых технологий;
- визуализация ошибки обучения.

ЗАКЛЮЧЕНИЕ

Базовая часть проектной практики стала отличным началом в изучении платформы GitHub, написании документов в Markdown, а также в разработке статических сайтов на HTML+CSS. Мы приобрели большое количество навыков, востребованных каждому IT-специалисту, и применил их на практике. Также разработка собственной нейросети позволила углубиться в ключевые принципы работы MLP, реализовать с нуля обучение и предсказание, а также ознакомиться с тонкостями настройки архитектуры и визуализации результатов. Это задание расширило практические знания в области машинного обучения и подготовки данных, укрепив фундамент для дальнейшего изучения нейросетевых технологий.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Информация о практике Московского политеха. Режим доступа: https://mospolytech.ru/obuchauschimsya/praktika/?ysclid=m9fpo3pwmu710957340
- 2. Информация о проектной деятельности.
 Режим доступа:

 https://mospolytech.ru/obuchauschimsya/proektnaya-deyatelnost/?ysclid=m9fpsda3ad786727228
- 3. Официальный сайт организации-партнера. Режим доступа: https://mospolytech.ru/?ysclid=m9fs5s6lpc322996049
- 4. Организационная структура организации-партнера. Режим доступа: https://mospolytech.ru/sveden/struct/
- 5. Репозиторий GitHub, созданный в рамках проектной практики. Режим доступа: https://github.com/dro0nt/practice-2025-1
- 6. Вариативная часть задания. Режим доступа: https://github.com/dro0nt/practice-2025-1/tree/main/src

Подтверждаю, что отчет выполнен лично и соответствует требованиям практики.

ФИО: Меркулов Антон Сергеевич

Дата: 24.05.2025

Подпись: Шер