Image Acquisition and Digitization

Image Digitization

Q: How can we create a digital image?

With different resolution & intensity level

GETTING DIGITAL IMAGES

Image Properties

Analog-to-Digital Image

Digital Image Properties

Sampling Quantization Binary representation

- Image Resolution (Pixels)
 - Related to _____ process
- Image Intensity Level (Bit depth)
 - Related to _____ process

Sampling

Quantization

Binary representation

Analog-to-Digital Image

Sampling freq. vs Bit depth

http://www.synaudcon.com/site/wp-content/uploads/2010/01/Vol36_Sep08_ThinkingDigitally-graph1.png

Sampling (การสู่มวัดค่า)

+เป็นขั้นตอนในการสร้างภาพคิจิตอล ซึ่งเป็นตัวแปลงข้อมูลต่อเนื่อง (Continuous interval) ให้อยู่ในช่วงไม่ต่อเนื่องที่กำหนด (discrete interval) ซึ่งจะสัมพันธ์กับจำนวนพิกเซล (pixel) คือ จำนวนจุด หรือ สี่เหลี่ยมจัตุรัส เล็กๆ ที่เก็บค่าระดับความเข้มแสงในภาพ

Analog signal

Sampled signal

- ความถี่ในการ Sampling มีผลต่อ sample หรือจำนวนพิกเซล ซึ่งมีผลต่อความละเอียดของภาพ
 - Sampling Rate สูงมากๆ
 - ภาพมีความละเอียคมาก
 - ขนาดของไฟล์ภาพมีขนาดใหญ่
 - รับภาพได้ช้า (Single Sensor / Row Sensor)
 - ค่าใช้จ่ายเพิ่มเนื่องจากต้องเพิ่ม CCD มากขึ้น (Array Sensor)

Sampling

• ตามทฤษฎีของ Nyquist จะกำหนดความถี่ในการ sampling ให้มากกว่า 2 เท่าของความถี่สูงสุดของสัญญาณ

Sampling Rate >= 2 × ความถี่สูงสุดของสัญญาณ

• หากกำหนด Sampling Rate ไม่เป็นไปตาม ทฤษฎีของ Nyquist จะทำให้ เกิดผลกระทบหรือปรากฏการณ์ที่เรียกว่า aliasing

Sampling

Sampling effect

Nyquist theorem

Sampling Rate $>= 2 \times ความถี่สูงสุดของสัญญาณ$

Sampling rate $\geq 2xf_{High}$

If Sampling rate < 2 x fHigh

æ.

128

256

512

aliasing

Sampling

4608 x 3456 (15.9 MP, 4:3), 3264 x 2448 (8.0 MP, 4:3), 1920 x 1080 (2.1 MP, 16:9), 1600 x 1200 (1.9 MP, 4:3), 640 x 480 (0.3 MP, 4:3), 640 x 424 (0.3 MP, 3:2), 640 x 360 (0.2 MP, 16:9),

Image (Pixels)	Video (max)	fps (max)	Brand
40 M	1080p	60	Olympus OM-D E-M5 Mark II
45.7 M	4K Ultra HD	120	Nikon D850 FX
51.4 M	1080p	60	Pentax 645Z
42.3 M	4K Ultra HD	30	Sony a7R

Image resolution

Video Format

and properties

- NTSC (The National Television System Committee)
 - สหรัฐอเมริกา แคนาดา ญี่ปุ่น พม่า
 - สัญญาณภาพ 525 เส้น (line) / 60Hz
 - จำนวนภาพ 30 ภาพ (frame) / วินาที

- PAL (Phase Alternation Line)
 - ไทย อังกฤษ ฝรั่งเศส เยอรมัน หรือประเทศทางยุโรป
 - สัญญาณภาพ 625 เส้น (line) / 50Hz
 - จำนวนภาพ 25 ภาพ (frame) / วินาที

มาตรฐานการแพร่ภาพ Analog Video

NTSC: National Television Standards Committee (US & Japan)

PAL: Phase Alternating Line

- Video Frame
 - จำนวนพิกเซล ใน แถว (Row)
 - NTSC M = 525
 - PAL = 625
 - จำนวนพิกเซล ในหลัก (Column) ขึ้นอยู่กับอัตราส่วนลักษณะ (Aspect Ratio) โดยเป็นอัตราส่วนของ Column : Row เช่น
 - NTSC RS-170 มีจำนวนแถว 485 Aspect Ratio 4:3
 - จะได้ภาพ 646 imes 485 โดยจะใช้เพียง 640 imes 480 o VGA

Sampling

- HDTV (High Definition Television)
 - การถ่ายทอดสัญญาณภาพ HD เกิดขึ้นครั้งแรกของโลกในช่วงปี
 ค.ศ.1980
 - สถานีโทรทัศน์ที่ออกอากาศระบบ HD แห่งแรกของโลกคือสถานีโทรทัศน์
 NBC ของสหรัฐอเมริกา
 - จากนั้นเริ่มแพร่หลายไปในยุโรปช่วงยุคปี ค.ศ.1992
 - สัญญาณภาพ 1080i เส้น / 50 Hz หรือ 1080p เส้น / 60 Hz
 - ความละเอียดของภาพ 1280 x 720 พิกเซล HD (720p)
 - ความละเอียดของภาพ 1920 x 1080 พิกเซล หรือเรียกว่า Full HD (1080p)

มาตรฐานการแพร่ภาพวิดีโอดิจิ

Graphic Resolution

- Video frame resolution
- แนวแกน x-y เรียกว่า spatial resolution

High-Definition						
Name	x (px)	у (рх)	х:у	x·y (Mpx)		
nHD	640	360	16:9	0.230		
qHD	960	540	16:9	0.518		
HD	1280	720	16:9	0.921		
HD+	1600	900	16:9	1.44		
FHD	1920	1080	16:9	2.073		
QHD	2560	1440	16:9	3.686		
WQXGA+	3200	1800	16:9	5.76		
UHD (4K)	3840	2160	16:9	8.294		
UHD (8K)	7680	4320	16:9	33.178		

VGA: 640x480

2 times the width and 1.5 times the height of 4:3 VGA

3 times the width and 2.25 times the height of 4:3 VGA

6 times the width and 4.5 times the height of 4:3 VGA

12 times the width and 9 times the height of 4:3 VGA

Analog-to-Digital Image

Quantization

(การจัดระดับสัญญาณ หรือ การแทนค่าบิตให้ sample)

- หลังจากการ Sampling แล้วจะทำการวัดค่าของสัญญาณที่ sample มา ซึ่งค่าที่ได้ จะเป็นจำนวนจริง จึงจำเป็นต้องแปลงค่าเป็นจำนวนเต็มที่สามารถเก็บเป็น เลขฐานสองได้
- จำนวนเต็มที่ใช้คือค่าลับคับขั้นของ quantize
 - หากจำนวนขั้นมากๆ จะทำให้สามารถแทนระดับของสัญญาณภาพได้ถูกต้อง มากขึ้น
- เนื่องจากคอมพิวเตอร์เก็บค่าเป็นเลขฐานสอง ลำคับขั้นที่เก็บระคับ สัญญาณจะเป็น $\mathbf{n} = 2^b$ ช่วง
 - โดยมีค่าตั้งแต่ 0 ถึง 2^b -1 (b เป็นจำนวน bitในการทำ quantize)

- การแสดงผลจะเริ่มตั้งแต่สีขาวไล่ความเข้มจนถึงสีดำ
 - เรียกจำนวนขั้นของ quantize ว่า Gray Level
 - เรียกการเปลี่ยนระดับค่าของสีขาวเป็นคำว่า Grayscale

- จำนวน bit ในการทำ quantize
 - ภาพถ่ายคิจิตอลส่วนใหญ่จะใช้ 8 bit ทำ quantize ทำให้ได้ Gray Level 256 ระคับ ค่า Grayscale 0 - 255
 - ภาพถ่ายทางการแพทย์ หรือภาพถ่ายอวกาศ มีความจำเป็นต้องใช้ รายละเอียคมาก ปกติจะใช้ 10 – 12 bit ทำ quantize

Quantization

Uniform Quantization

Real number

represent in

Desired Integer (bits)

สัญญาณไฟฟ้าจาก sensor

สัญญาณดิจิตอลผลลัพธ์

Min. Value	Max. Value	Range	Quantization level	Quantization Step
-3.5	3.5	7	8 (3 bits)	0.875

	Signed	Unsigned	
$2.625 < s(t) \le 3.5$	3	7	
$1.75 < s(t) \le 2.625$	2	6	
$0.875 < s(t) \le 1.75$	1	5	
$0 < s(t) \le 0.875$	0	4	
$-0.875 < s(t) \le 0$	0	3	
$-1.75 < s(t) \le -0.875$	-1	2	
$-2.625 < s(t) \le -1.75$	-2	1	
$-2.625 < s(t) \le -3.5$	-3	0	

Uniform Quantization

$$Q = floor(NormValue(Si) * Qlevel)$$
$$= floor\left(\left(\frac{Si - Smin}{Smax - Smin}\right) * Qlevel\right)$$

- คุณภาพของภาพ & จำนวน bit ในการทำ quantize
 - ระดับสัญญาณไฟฟ้าที่ได้ อยู่ที่ 0 3.5

Uniform Quantization Example

$$Q = floor\left(\left(\frac{Si - Smin}{Smax - Smin}\right) * Qlevel\right)$$

157	202	221	245
133	126	210	207
119	100	97	54
112	85	76	65

8 bits/pixel

4 bits/pixel

6 bits/pixel

2 bits/pixel

452 × 374 CAT projection image : gray levels

256 128 64 32 16 8 4 2

Quantization

Category of Digital Image

- Binary Image
 - or Black and White Image (1 bit / pel)

Digital Image

(Gray-level Intensity example)

99	71	61	51	49	40	35	53	86	99
93	74	53	56	48	46	48	72	85	102
101	69	57	53	54	52	64	82	88	101
107	82	64	63	59	60	81	90	93	100
114	93	76	69	72	85	94	99	95	99
117	108	94	92	97	101	100	108	105	99
116	114	109	106	105	108	108	102	107	110
115	113	109	114	111	111	113	108	111	115
110	113	111	109	106	108	110	115	120	122
103	107	106	108	109	114	120	124	124	132
103	107	106	108	109	114	120	124	124	132

Normally 8 bits/pel

Indexed Image

Grayscale represented as colors

Color Image or RGB Image

IMAGE REPRESENTATION

Format & data type

Image Format

- Types of image format
 - Bitmap / Raster / Spatial -> pixel-based image
 - .jpg / .tif / .gif / .bmp / .jpg2 / .psd / .png
 - Raster image quality -> resolution
 - Vector
 - Object based
 - Eps (Encapsulated PostScript)
 - Pdf (Portable Document Format)
 - Ai (Adobe Illustrator)

Bitmap vs Vector

What is the difference?

Realworld or Computer Graphic

Image Attributes

Conversion Possibility

Pixel-based Image

Original 285 x 200 pixels resolution

Bitmap x5 zoom

Vector Image

Original 100% size

Vector 500% size

Bitmap vs Vector

Table 1: Raster and vector images compared			
Raster formats (bitmaps)	vector formats (object-oriented)		
Used for representation of continuous tones - suited to photographs and photo-realistic imagery	Used for drawings and diagrams that can be described by mathematically defined shapes and attributes		
Grid/matrix structure	Mathematical or textual description		
Resolution dependent: scaling-up will diminish quality	Resolution independent: scaling-up is easy with no loss in quality		
Most common format when digitising analogue images	Not normally used for digitising, apart from some specialised mapping applications		
Most common web format	Less common web format		
Layering of images less common	Layering of images easy and common		
Usually larger in file size	Usually smaller in file size		
Usually quicker to display	Usually slower to display		
Difficult to convert to a vector format	Easily and often converted to a raster format		

Bitmap-Vector Conversion

- Vector to Bitmap
 - Conversion is a simple case
 - After conversion all the editable attributes will be transformed into grid of fixed pixel
- Bitmap to Vector
 - Possible conversion but complicated

Vector Images

- made up of many individual, scalable objects.
- These objects are defined by mathematical equations rather than pixels
 - always render at the highest quality.
- Changing the attributes of a vector object does not effect the object.

SVG format

	Rectangle	Circle	Combination
Image			Un texte
Drawing List	<pre><rect fill="green" height="50" stroke="black" stroke-width="1" width="250" x="14" y="23"></rect></pre>	<pre><circle cx="100" cy="100" fill="red" r="50" stroke="black" stroke-width="5"></circle></pre>	<pre><rect fill="green" height="80" width="100" x="0" y="70"></rect> e x1="5" y1="5" x2="250" y2="95" stroke="red" /> <circle cx="90" cy="80" fill="blue" r="50"></circle> <text x="180" y="60"> Un texte </text></pre>
Notes	x and y give the top left start location	Note that the centre co-ordinate is defined through cx and cy r gives the radius	Note that the circle is on top, this is because it was drawn last. To leave out an edge stroke don't put the stroke command in. The line has start x1,y1 and end x2,y2 coordinates.

SVG format


```
    width="100" height="80"
    x="0" y="70"
    fill="green" />
<line
    x1="5" y1="5"
    x2="250" y2="95"
    stroke="red" />
<circle
    cx="90" cy="80"
    r="50"
    fill="blue" />
    <text x="180" y="60">
        Un texte
    </text>
```

Note that the circle is on top, this is because it was drawn last. To leave out an edge stroke don't put the stroke command in. The line has start x1,y1 and end x2,y2 coordinates.

```
<svg xmlns="http://www.w3.org/2000/svg">
 <rect
  width="100" height="80"
  x="0" y="70"
  fill="green" />
 line
  x1="5" y1="5"
  x2="250" y2="95"
  stroke="red"/>
 <circle
  cx="90" cy="80"
   r="50"
  fill="blue" />
 <text x="180" y="60">
  Un texte
 </text>
</svg>
```


<svg>
<polyline points="0,0 50,0 150,100 250,100 300,150"
fill="rgb(249,249,249)" stroke-width="1" stroke="rgb(0,0,0)"/>
</svg>

<polyline> element has points attributes that store all the coordinates that form the lines.

REPRESENTING IN COMPUTER

Image Data Types

for each pixel intensity

- Uint8 (unsigned integer 8 bits)
 - Values: 0-255
 - No negative / No number greater than 255
 - Truncate outside its range
 - Cannot perform mathematical operation
 - In some developing tools
- Double
 - Safe for math operation

Video Standard Format

- MPEG 3 รูปแบบ คือ
 - MPEG- 1 (VCD) -> 352 X 240 ที่ 30 เฟรมต่อวินาที (fps)
 - MPEG- 2 (DVD) -> 720 x 480 และ 1280 x 720 ที่ 60 fps
 - MPEG- 4 part 2 (DivX, XviD)
 - MPEG- 4 part 3 AAC (Advance Audio Coding)
 - MPEG- 4 part 10 (H.264)
 - Apple จะนำไปใช้ใน QuickTime 7 และ MacOSX 10.4
 - Bluray กับ HD-DVD และ งานด้านกล้องวงจรปิด CCTV โดยเครื่อง บันทึกภาพ DVR

MPEG basic Encoder

JPEG for I frame (reference frame)

รูปแบบไฟล์วิดีโอ (Video File Format)

.dat

เป็นระบบของไฟล์ภาพยนตร์หรือไฟล์คาราโอเกะจากแผ่น VCD ที่อยู่ในรูปแบบ ไฟล์ MPEG-1 สามารถเปิดเล่นด้วยโปรแกรมดูหนัง เช่น Power DVD

.wmv (Windows Media Video)

เป็นไฟล์วิดีโอของบริษัทไมโครซอฟท์ เป็นไฟล์ที่ได้รับความนิยมในปัจจุบันจาก สื่ออินเทอร์เน็ต มีจุดประสงค์ที่สร้างขึ้นมาเพื่อชมวิดีโอแบบ Movie on Demand

.mov

เป็นฟอร์แมตที่พัฒนาโดยบริษัท Apple ซึ่งมีความนิยมสูงในเครื่องตระกูล Macintosh สามารถใช้ได้กับเครื่องที่ใช้ระบบ Windows แต่จำเป็นต้องติดตั้ง โปรแกรม QuickTime ก่อน นิยมใช้นำเสนอข้อมูลไฟล์ผ่านอินเทอร์เน็ต

รูปแบบไฟล์วิดีโอ (Video File Format)

💠 .rm หรือ .ram

เป็นรูปแบบของแฟ้มที่พัฒนาโดยบริษัท Real Network รูปแบบไฟล์ชนิดนี้มี โปรแกรมใช้ในการอ่านข้อมูลของไฟล์ประเภทนี้ได้แก่ Real Player และ Real One Player

.flv (Flash Video)

เป็นไฟล์วิดีโอในรูปแบบของ Flash ซึ่งมีข้อดีคือ สามารถนำมาใช้งานร่วมกับ
Component ของ Flash รวมทั้งไฟล์ที่บีบอัดแล้วมีขนาดเล็กแต่ยังคงรายละเอียด
ของไฟล์ต้นฉบับได้เป็นอย่างดี นิยมใช้นำเสนอข้อมูลบนอินเทอร์เน็ต

รูปแบบไฟล์วิดีโอ (Video File Format)

.avi (Audio / Video Interleave)

เป็นฟอร์แมตที่พัฒนาโดยบริษัทไมโครซอฟต์ ปัจจุบันมีโปรแกรมแสดงผลติดตั้ง มาพร้อมกับชุด Microsoft Windows คือ Windows Media Player เป็นไฟล์วิดีโอที่ มีความละเอียดสูง เหมาะสมกับการนำมาใช้ในงานตัดต่อวิดีโอ แต่ไม่นิยมนำมาใช้ ในสื่อดิจิตอลอื่น ๆ เพราะไฟล์มีขนาดใหญ่มาก

🌣 .mpg หรือ .mpeg

ไฟล์ MPEG เป็นไฟล์มาตรฐานในการบีบอัดไฟล์วิดีโอ ซึ่งเป็นรูปแบบของวิดีโอ ที่มีคุณภาพสูงและนิยมนำมาใช้กับงานวิดีโอหลายประเภท