PROBLEMA 1

Se bombea un fluido newtoniano incompresible de densidad ρ y viscosidad μ desde el depósito A al depósito B mediante dos cintas transportadoras que se mueven a una velocidad constante v_2 (superior) y v_1 (inferior) y que pueden considerarse de profundidad b infinita.

El fluido circula en régimen laminar y completamente desarrollado entre las cintas transportadoras que se encuentran separadas una distancia e mucho menor que la longitud L entre las secciones 1 y 2.

Calcular, en función de los parámetros del problema

- a) (4 puntos) Perfil de velocidad en función del gradiente de presiones.
- b) (4 puntos) Gradiente de presiones necesario entre la sección 1 y 2 para que circule fluido del depósito A al B.
- c) (2 puntos) Obtener la expresión adimensional del esfuerzo cortante en la pared en función de los parámetros relevantes del problema (μ , ν_1 , ν_2 , e, dp/dx).

Justificar todas las hipótesis realizadas.

a) (4 puntos) Perfil de velocidad en función del gradiente de presiones.

Por ser dos placas paralelas horizontales, la única componente de la velocidad debe ser u.

$$\vec{v} = u(x, y, z)\vec{i}$$

Se parte de la ecuación de la conservación de la masa para fluido incompresible.

$$\nabla \cdot \vec{v} = 0 \rightarrow \frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial z} = 0 \rightarrow \frac{\partial u}{\partial x} = 0 \rightarrow u \neq f(x)$$

 $L\gg e$ por tanto, no existe variación del perfil de velocidad en dirección z. Así:

$$u = u(v)$$

De las ecuaciones de Navier-Stokes:

$$\begin{split} \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) &= \rho \left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} u + \frac{\partial u}{\partial y} v + \frac{\partial u}{\partial z} w \right) \\ \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) &= \rho \left(\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} u + \frac{\partial v}{\partial y} v + \frac{\partial v}{\partial z} w \right) \\ \rho g_z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) &= \rho \left(\frac{\partial w}{\partial t} + \frac{\partial w}{\partial x} u + \frac{\partial w}{\partial y} v + \frac{\partial w}{\partial z} w \right) \end{split}$$

En el eje z, al no existir w ni g, se llega a:

$$-\frac{\partial p}{\partial z} = 0 \to p \neq f(z)$$

En el eje y, al no existir v, se llega a:

$$-\rho g - \frac{\partial p}{\partial y} = 0 \to p(x, y) = -\rho g y + f(x) \quad (1)$$

En el eje x:

$$\rho \not/ g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 \not/ u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 \not/ u}{\partial z^2} \right) = \rho \left(\frac{\partial \not/ u}{\partial t} + \frac{\partial y}{\partial x} u + \frac{\partial u}{\partial y} \middle/ v + \frac{\partial u}{\partial z} \middle/ w \right)$$
1
2
3
4
2
5
6

- 1. No hay g en esta dirección.
- 2. La componente u(y), no depende de x.
- 3. La componente u(y), no depende de z.
- 4. No depende del tiempo.
- 5. No hay v.
- 6. No hay *w*.

$$-\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial y^2} \right) = 0 \to \frac{1}{\mu} \frac{\partial p}{\partial x} = \left(\frac{\partial^2 u}{\partial y^2} \right) \quad (2)$$

La componente u solamente depende de y, por lo que $\partial p/\partial x$ sólo podría depender de y según la ecuación anterior (2). Por otro lado, según (1), $\partial p/\partial x = \partial f(x)/\partial x$, y por tanto solo podría depender de x. De esta forma, para que la función $\partial p/\partial x$ cumpla las ecuaciones (1) y (2), $\partial p/\partial x$ ha de ser igual a una constante K. Por tanto:

$$\frac{1}{\mu} \frac{\partial p}{\partial x} = \left(\frac{\partial^2 u}{\partial y^2}\right) = K$$

De esta forma se puede integrar fácilmente:

$$K\partial y = \partial \left(\frac{\partial u}{\partial y}\right) \to \frac{\partial u}{\partial y} = Ky + A$$

$$u(y) = K\frac{y^2}{2} + Ay + B$$

Y sustituyendo:

$$u(y) = \frac{1}{\mu} \frac{\partial p}{\partial x} \frac{y^2}{2} + Ay + B$$

Para determinar las constantes A y B, se definen las siguientes condiciones de contorno.

En la pared inferior:

$$u(y=0)=v_1\to v_1=B$$

En la pared superior:

$$u(y = e) = v_2 \rightarrow A = \left(\frac{v_2 - v_1}{e} - \frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e}{2}\right)$$

$$u(y) = \frac{dp}{dx} \frac{1}{\mu} \cdot \frac{y^2}{2} + \left(\frac{v_2 - v_1}{e} - \frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e}{2}\right) y + v_1$$

b) (4 puntos) Gradiente de presiones necesario entre la sección 1 y 2 para que circule fluido del depósito A al B.

Para que circule fluido de la sección 1 a la sección 2 se debe tener Q>0 siendo el caudal que circula entre las dos cintas transportadoras el siguiente:

$$Q = b \int_0^e u(y) \, dy$$

$$Q = b \int_0^e \left[\frac{dp}{dx} \frac{1}{\mu} \cdot \frac{y^2}{2} + \left(\frac{v_2 - v_1}{e} - \frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e}{2} \right) y + v_1 \right] \, dy$$

$$Q = b \left[\frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e^3}{6} + \left(e \frac{v_2 - v_1}{2} - \frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e^3}{4} \right) + v_1 \cdot e \right]$$

$$Q = b \left[-\frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e^3}{12} + \left(e \frac{v_2 + v_1}{2} \right) \right]$$

$$Q > 0 \to b \left[-\frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e^3}{12} + \left(e \frac{v_2 + v_1}{2} \right) \right] > 0$$

$$-\frac{dp}{dx} \frac{1}{\mu} \cdot \frac{e^3}{12} > \left(e \frac{v_2 + v_1}{2} \right)$$

$$\frac{dp}{dx} < 6\mu \cdot \frac{(v_2 + v_1)}{e^2}$$

c) (2 puntos) Obtener la expresión adimensional del esfuerzo cortante en la pared en función de los parámetros relevantes del problema (μ , ν_1 , ν_2 , e, dp/dx).

<u>Dimensiones</u>: n = 6 variables: τ , μ , v_1 , v_2 , e, dp/dx

Dependiente:

$$\tau = [Pa] = \left[\frac{N}{m^2}\right] = \left[\frac{kg \cdot m}{s^2 \cdot m^2}\right] = [ML^{-1}T^{-2}];$$

Independientes:

$$\mu = [kg/m \cdot s] = [ML^{-1}T^{-1}];$$

$$v_1 = [m/s] = [LT^{-1}];$$

$$v_2 = [m/s] = [LT^{-1}];$$

$$e = [m] = [L];$$

$$\frac{dp}{dx} = \left[\frac{Pa}{m}\right] = [ML^{-2}T^{-2}];$$

Determinación de j: j = 3 = [M, L, T].

Grupo dimensional: μ , v_1 , e

$$\mu^{a} \mathbf{v}_{1}{}^{b} e^{c} = [ML^{-1}T^{-1}]^{a} [LT^{-1}]^{b} [L]^{c} = M^{0}L^{0}T^{0}$$

$$M \to a = 0$$

$$L \to -a + b + c = 0 \to c = 0$$

$$T \to -a - b = 0 \to b = 0$$

Se obtiene a=b=c=0, por lo que μ, v_1, e forman un grupo dimensional.

Grupos adimensionales: k = n - j = 6 - 3 = 3

El primer grupo haremos que contenga la variable dependiente (τ):

$$\begin{split} \Pi_{dep} &= \tau \mu^a \mathbf{v_1}^b e^c = [ML^{-1}T^{-2}][ML^{-1}T^{-1}]^a [LT^{-1}]^b [L]^c \\ M &\to 1+a=0 \\ L &\to -1-a+b+c=0 \\ T &\to -2-a-b=0 \end{split}$$

Se obtiene a = -1; b = -1; c = 1;

$$\Pi_{dep} = \tau \mu^{-1} \mathbf{v_1}^{-1} e^1 = \frac{\tau}{\mu \cdot v_1 / e}$$

Los siguientes grupos adimensionales se obtienen agrupando las variables seleccionadas como grupo dimensional con el resto de las variables independientes, una a una:

$$\begin{split} \Pi_1 &= \frac{dp}{dx} \cdot \mu^a \mathbf{v_1}^b e^c = [ML^{-2}T^{-2}][ML^{-1}T^{-1}]^a [LT^{-1}]^b [L]^c \\ M &\to 1 + a = 0 \\ L &\to -2 - a + b + c = 0 \\ T &\to -2 - a - b = 0 \end{split}$$

Se obtiene a = -1; b = -1; c = 2;

$$\Pi_1 = \frac{dp}{dx} \mu^{-1} \mathbf{v}_1^{-1} e^2 = \frac{dp/dx}{\mu \cdot v_1/e^2}$$

Apellidos, Nombre:

Mayo 2021

$$\Pi_2 = \frac{v_2}{v_1}$$

$$\frac{\tau}{\mu \cdot v_1/e} = f\left(\frac{dp/dx}{\mu \cdot v_1/e^2}, \frac{v_2}{v_1}\right)$$

Otro grupo dimensional posible: dp/dx, v_1 , e

$$\frac{\tau}{\frac{dp}{dx} \cdot e} = f\left(\frac{\mu}{\frac{dp}{dx} \cdot e^2/v_1}, \frac{v_2}{v_1}\right)$$