Compute-In-Memory SRAM Comparative Study for Accelerating Low-Precision Neural Network

Chuyao Cheng, Xuan Su

Motivation

- Heavy computation
- Memory access is frequent and expensive

Motivation

Compute-In-Memory (CIM)

Pros:

- less limited by on-chip BW
- higher energy efficiency and throughput

Cons:

- lower computation accuracy
- less flexibility
- limitations of ADC

Brian Zimmer, Nvidia

Twin 8T SRAM CIM [1] vs. FinFET 8T SRAM CIM [2]

Architecture & Techniques

- Macro Structure
- SRAM Cell
- Multibit Input and Weight Mapping
- Circuit Techniques (Operation and Output Readout)

Evaluation & Comparison

- Multi-Pulse Input vs. Multi-Voltage-Level Input
- Performance of SRAM CIM Macros

Qing Dong et al., TSMC

- Macro Structure

Macro Architecture of the 55nm T8T SRAM CIM

Macro Architecture of the 7nm 8T SRAM CIM

- SRAM Cell

RWL

SRAM Cell of the 55nm T8T SRAM CIM

SRAM Cell of the 7nm 8T SRAM CIM

- Multibit Input - Multi-Voltage vs. Multi-Pulse

Input	RWL Voltage	Weight		RBL	IWP
(2b)		M8T	L8T	Current	IWP
11	WLL3	1	1	$3 \times I_{MC}$	9
10	WLL2	1	1	$2 \times I_{MC}$	6
01	WLL1	1	1	$1 \times I_{MC}$	3
11	WLL3	1	0	$2 \times I_{MC}$	6

Multiple-voltage-level input mapping of the 55nm T8T SRAM Macro

Multiple-pulse input mapping of the 7nm 8T SRAM Macro

- Multibit Weight - Charge Sharing Techniques

Input and Weight Mapping of the 7nm 8T SRAM Macro

- Circuit Techniques (Operation and Output Readout)

Circuits and operations of the 55nm T8T SRAM Macro

Circuits and operations of the 7nm 8T SRAM Macro

- Row Circuitry Linearity

Non-linearity for multiple-pulse input and multi-voltage level input

- Row Circuitry Linearity Compensation

Incorporates non-linear modeling into activation function

Limit unit cell bit size to 2-bit

- SRAM CIM Macros Features

	T8T SRAM CIM	8T SRAM CIM
Technology	$55\mathrm{nm}$	$7\mathrm{nm}$
Array Size	64x60 b	64x64 b
Cell Type	T8T	8T
Bitcell Area (μm^2)	0.865	0.053
Input Precision (bit)	4	4
Weight Precision (bit)	5	4
Output Precision (bit)	7	4
Power Supply (V)	1.0	1.0
Access Time (ns)	10	4.5
Macro Energy (pJ)	11.7	13.1
Energy Efficiency (TOPS/W)	18.4	321 in average
Throughput (GOPS)	21.2	455.1
Accuracy of MNIST	99.52%	98.5%

Access time of the T8T SRAM Macro and 8T SRAM Macro

Features summary and comparison of two SRAM Macros

- ADC Overhead

Discussion & Conclusion

CIM Limitation

- ADC overhead and non-linearity scales with number of bits
- Amdahl's Law

Future Direction

- Only use at critical part, in combination with other digital logic
- Take advantage of sparsity; optimized software algorithm
- How to integrate with heterogeneous memories or architecture?

References

- [1] X. Si et al., A Twin-8T SRAM Computation-In-Memory Macro for MultipleBit CNN-Based Machine Learning. ISSCC, pp. 396-397, Feb. 2019.
- [2] Dong, q.et al. A 351 TOPS/W and 372.4 GOPS Compute-in-Memory SRAM Macro in 7nm FinFET CMOS for Machine Learning Applications. In: International Solid-State Circuits Conference. IEEE.
- [3] Jia, H. et al. A microprocessor implemented in 65nm CMOS with configurable and bit-scalable accelerator for programmable in-memory computing.arXiv preprint arXiv:1811.04047.
- [4] A. Biswas and A. P. Chandrakasan, Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNNbased machine learning applications. In IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 488–489.
- [5] H. Valavi et al., A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement. In Proc. IEEE Symp. VLSI Circuits, Jun. 2018, pp. 141–142.
- [6] W.-S. Khwa et al., A 65nm 4Kb algorithm-dependent computing-inmemory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors. In IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 496–497.
- [7] J. Zhang et al., In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array. In JSSC, vol. 52, no. 4, pp. 915-924, 2017.

Thank you!