입	력	출력
A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

(a) 2입력인 경우: F = AB

입	력	출력
A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

(a) 2입력인 경우: F = A +B

입 A	력 R	출력 <i>F</i>
0	0	0
0	1	1
1	0	1
1	1	0

(a) 2입력인 경우: $F = \overline{AB} + A\overline{B} = A \oplus B$

- 기본적인 불 대수식은 AND, OR, NOT을 이용하여 표현
- AND식은 곱셈의 형식으로 표현하고, OR 식은 덧셈의 형식으로 표현
- NOT식은 \overline{A} 또는 A'로 표현
- 완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식

진리표에서 출력 F 가 1인 경우만 불 대수식으로 표현

*F가 1인 경우는 사용자가 정함

02 불 대수

1 불 대수 법칙

- 불 대수의 모든 항은 0 또는 1을 갖는다.
- [표 3-1]은 증명 없이 사용하기로 한 AND와 OR의 불 대수 공리다.

표 3-1 불 대수 공리

P1	A=0 또는 A=1
P2	$0 \cdot 0 = 0$
P3	$1 \cdot 1 = 1$
P4	0+0=0
P5	1+1=1
P6	$1 \cdot 0 = 0 \cdot 1 = 0$
P7	1+0=0+1=1

표 3-2 불 대수의 기본 법칙

항등 · 누승 · 보간 · 이중 부정 법칙

- $\mathbf{1} A + 0 = 0 + A = A$
- $QA \cdot 1 = 1 \cdot A = A$
- 3A+1=1+A=1
- $\mathbf{Q} A \cdot 0 = 0 \cdot A = 0$

6 A + A = A

 $\mathbf{6} A \cdot A = A$

쌍대성duality

불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1을 서로 바 꾸고 ·과 +도 서로 바꾸면 다른 한쪽이 얻어지는 성질이다. 한 쪽을 다른 쪽의 쌍대레리고 한다. 예를 들어 ◑과 ◑는 쌍대성 이 성립하며 3과 4, 5와 6, 7과 3도 마찬가지다.

 $\bigcirc A + \overline{A} = 1$

 $\mathbf{8} A \cdot \overline{A} = 0$

 $\mathbf{9}\overline{\overline{A}} = A$

교환 법칙commutative law

- $\bigcirc A + B = B + A$
- $\mathbf{m} A \cdot B = B \cdot A$

결합 법칙associate law

- (A+B)+C=A+(B+C)
- $(B \cdot (A \cdot B) \cdot C = A \cdot (B \cdot C)$

분배 법칙distributive law

- $(A \cdot (B+C)=A \cdot B + A \cdot C)$

02 불 대수

드모르간의 정리De Morgan's theorem

- $\mathbf{B} \overline{A+B} = \overline{A} \cdot \overline{B}$
- $\mathbf{1} \overline{A \cdot B} = \overline{A} + \overline{B}$

흡수 법칙absorptive law

$$3A+1=1+A=1$$

합의合意의 정리 consensus theorem

$$\bigcirc A + \overline{A} = 1$$

$$3A+1=1+A=1$$

$$\bigcirc AB + BC + \overline{A}C = AB + \overline{A}C$$
 AB+BC+A'C = AB+ $(A+A')$ BC+A'C = AB+ABC+A'BC+A'C=AB(1+C)+A'C(B+1)

$$(A+B)(B+C)(\overline{A}+C) = (A+B)(\overline{A}+C)$$

$$(A+B)(B+C)(A'+C) = (A+B)(AA'+B+C)(A'+C) = (A+B)(A+B+C)(A'+B+C)(A'+B+C)(A'+C) = (A+B)(A+B+C)(A'+C) = (A+B)(A+C)(A'+C) = (A+C)(A'+C) = (A+C$$

=(A+B)(A'+C)

$$\mathbf{B} A \cdot \overline{A} = 0$$

3
$$A \cdot \overline{A} = 0$$
 5 $A + B \cdot C = (A + B) \cdot (A + C)$

❖ 진리표를 이용한 분배법칙 *A*+*BC*=(*A*+*B*)(*A*+*C*)의 증명

표 3-3 진리표를 이용한 분배 법칙 $A+B\cdot C=(A+B)\cdot (A+C)$ 의 증명

4	A B C		좌변식		우변식		
A	В	C	$B \cdot C$ $A+B \cdot C$ $A+B$	A+C	$(A+B)\cdot (A+C)$		
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

02 불 대수

❖ 진리표를 이용한 드모르간의 정리 증명

표 3-4 진리표를 이용한 드모르간의 정리 $\overline{A+B}$ = $\overline{A}\cdot\overline{B}$ 의 증명

A	B	A+B	좌변식 $\overline{A+B}$	\overline{A}	\overline{B}	우변식 $\overline{A}\cdot\overline{B}$		
0	0	0	1	1	1	1		
0	1	1	0	1	0	0		
1	0	1	0	0	1	0		
1	1	1	0	0	0	0		
	동일한 결과							

• 드모르간의 정리는 논리 게이트로 표현할 수 있고 항이 많아도 동일하게 적용할 수 있다.

그림 3-16 드모르간의 정리를 논리 게이트로 표현한 논리 기호와 일반식

02 불 대수

2 불 대수식의 표현 형태

□ 곱의 합과 최소항

• 곱의 합(SOP, Sum Of Product)은 1단계인 입력이 AND항(곱의 항)으로 구성되고, 2단계인 출력이 OR항(합의 항)으로 만들어진 논리식이다.

그림 3-17 $F = \overline{A}BC + \overline{B}D + \overline{A}C$ 의 회로도

❖ 최소항

- 최소항(minterm)은 입력 변수를 모두 포함하는 AND항이다.
- 최소항은 입력이 0이면 입력 변수의 부정을 쓰고, 입력이 1이면 입력 변수를 그대로 쓴 후 AND로 결합한다.
- 예를 들어 입력 변수가 A, B일 때 만들 수 있는 최소항은 \overline{AB} , \overline{AB} , $A\overline{B}$, AB 다.

표 3-5 최소항 표현 방법

(a) 2변수 최소항

A	B	최소항	기호
0	0	$\overline{A}\overline{B}$	$m_{\scriptscriptstyle 0}$
0	1	$\overline{A}B$	m_1
1	0	$A\overline{B}$	m_2
1	1	AB	m_3

(b) 3변수 최소항

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	호
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_0
	n_1
0 1 1 4PC *	n_2
U I I ABC I	n_3
1 0 0 $A\overline{B}\overline{C}$	η_4
1 0 1 $A\overline{B}C$	n_5
1 1 0 $AB\overline{C}$	n_6
1 1 1 ABC n	n_7

02 불 대수

❖ 최소항 식

• 최소항 식은 출력이 1이 되는 항의 입력 변수를 AND 연산하고, 각 항을 OR 연산하는 식이다.

A	В	C	F	최소항	기호
0	0	0	1	$\overline{A}\overline{B}\overline{C}$	$m_{\scriptscriptstyle 0}$
0	0	1	1	$\overline{A}\overline{B}C$	m_1
0	1	0	0	$\overline{A}B\overline{C}$	m_2
0	1	1	1	$\overline{A}BC$	m_3
1	0	0	0	$A\overline{B}\overline{C}$	m_4
1	0	1	1	$A\overline{B}C$	m_5
1	1	0	0	$AB\overline{C}$	m_6
1	1	1	1	ABC	m_7

요구사항: 입력 변수가 3개(A,B,C)이고, 원하는 출력(F)이 옆에 진리표처럼 0,1,3,5,7번째만 1로 되도록 함

$$F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$
$$= m_0 + m_1 + m_3 + m_5 + m_7$$
$$= \sum m(0, 1, 3, 5, 7)$$

(b) 최소항 식

(a) 진리표

그림 3-18 F(A,B,C)= $\sum m(0,1,3,5,7)$ 의 진리표와 최소항 식

OR 게이트의 '곱의 합; minterm' 부울대수식 표현

입	력	출력
A	B	F
0	0	0
0	1	1
1	0	1
	1	1

• $F = \sum m(1,2,3) = \bar{A}B + A\bar{B} + AB = \bar{A}B + AB + A\bar{B} + AB$ = $(\bar{A} + A)B + A(\bar{B} + B) = B + A = A + B$

(a) 2입력인 경우: F = A + B

02 불 대수

□ 합의 곱과 최대항

• 합의 곱(POS, Product Of Sum)은 1단계인 입력이 OR항(합의 항)으로 구성되고, 2단계인 출력이 AND항(곱의 항)으로 만들어진 논리식이다.

그림 3-19 $F=(\overline{A}+B+C)(\overline{B}+D)(\overline{A}+C)$ 의 회로도

❖ 최대항

- 최대항(maxterm)은 입력 변수를 모두 포함하는 OR항이다.
- 최대항은 입력이 0이면 입력 변수를 그대로 쓰고, <mark>입력이 1이면 입력 변수의 부정</mark>을 쓴 후 OR로 결합한다.
- 예를 들어 논리 변수가 A, B일 때 만들 수 있는 최대항은 (A+B), $(A+\overline{B})$, $(\overline{A}+B)$, $(\overline{A}+\overline{B})$ 다.

표 3-6 최대항 표현 방법

(a) 2변수 최대항

A	B	최대항	기호
0	0	A+B	M_0
0	1	$A+\overline{B}$	M_1
1	0	$\overline{A}+B$	M_2
1	1	\overline{A} + \overline{B}	M_3

(b) 3변수 최대항

B	C	최대항	기호
0	0	A+B+C	M_0
0	1	$A+B+\overline{C}$	M_1
1	0	$A+\overline{B}+C$	M_2
1	1	$A + \overline{B} + \overline{C}$	M_3
0	0	$\overline{A}+B+C$	M_4
0	1	$\overline{A}+B+\overline{C}$	M_5
1	0	$\overline{A} + \overline{B} + C$	M_6
1.	1	$\overline{A} + \overline{B} + \overline{C}$	M_7
	0 0 1 1 0 0	0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

02 불 대수

❖ 최대항 식

• 최대항 식은 출력이 0이 되는 항의 입력 변수를 OR 연산하고, 각 항을 AND 연산하는 식이다.

A	B	С	F	최대항	기호
0	0	0	0	A+B+C	M_0
0	0	1	0	$A+B+\overline{C}$	M_1
0	1	0	1	$A+\overline{B}+C$	M_2
0	1	1	0	$A + \overline{B} + \overline{C}$	M_3
1	0	0	1	$\overline{A}+B+C$	M_4
1	0	1	0	$\overline{A}+B+\overline{C}$	M_5
1	1	0	1	$\overline{A} + \overline{B} + C$	M_6
1	1	1	0	$\overline{A} + \overline{B} + \overline{C}$	M_7

(a) 진리표

$$\begin{split} F(A,B,C) &= (A+B+C)(A+B+\overline{C})(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+\overline{C})\\ &= M_0 \cdot M_1 \cdot M_3 \cdot M_5 \cdot M_7\\ &= \prod M(0,1,3,5,7) \\ \text{(b) 최대항 식} \end{split}$$

그림 3-20 $F(A,B,C) = \prod M(0,1,3,5,7)$ 의 진리표와 최대항 식

□ 최소항과 최대항의 관계

- 최소항 식은 출력이 1인 항을 곱의 합(SOP)으로 나타낸 것이고, 최대항 식은 출력이 0인 항을 합의 곱(POS)으로 나타낸 것이다.
- 따라서 최소항과 최대항은 서로 보수의 성질을 띤다고 할 수 있다.

표 3-7 3변수 최소항과 최대항의 관계

A	В	C	F	최소항	기호	최대항	기호	관계
0	0	0	0	$\overline{A}\overline{B}\overline{C}$	m_0	A+B+C	M_0	$M_0 = \overline{m_0}$
0	0	1	1	$\overline{A}\overline{B}C$	m_1	$A+B+\overline{C}$	M_1	$M_1 = \overline{m_1}$
0	1	0	1	$\overline{A}B\overline{C}$	m_2	$A+\overline{B}+C$	M_2	$M_2 = \overline{m_2}$
0	1	1	1	$\overline{A}BC$	m_3	$A + \overline{B} + \overline{C}$	M_3	$M_3 = \overline{m_3}$
1	0	0	1	$A\overline{B}\overline{C}$	m_4	$\overline{A}+B+C$	M_4	$M_4 = \overline{m_4}$
1	0	1	1	$A\overline{B}C$	m_5	$\overline{A}+B+\overline{C}$	M_5	$M_5 = \overline{m_5}$
1	1	0	0	$AB\overline{C}$	m_6	$\overline{A}+\overline{B}+C$	M_6	$M_6 = \overline{m_6}$
1	1	1	0	ABC	m_7	$\overline{A} + \overline{B} + \overline{C}$	M_7	$M_7 = \overline{m_7}$

동일한 로직을 최소한의 유니버셜 로직(NAND, NOR)으로 구현하라

3 논리식의 간소화

- 주어진 논리식에서 불필요한 항과 변수를 제거하고 간소화해서 등가 회로로 만드는 것을 논리식의 **간소화**라고 한다.
- **불 대수 법칙 이용**: 불 대수의 공리와 기본 법칙을 이용해 대수적으로 간소화한다. 비교적 단순한 논리식에 사용한다.
- ② 카르노 맵 이용 : 논리 변수의 개수가 4개 이하일 때 주로 사용한다. 불 대수를 이용하는 방법보다 복잡한 논리식에 사용한다.
- 도표법 이용 : 퀸-맥클러스키(Quine Mc-Cluskey) 방법이라고도 한다. 지루하고 단조로운 절차 등으로 에러가 발생할 가능성이 높아 잘 사용하지 않지만 소프트웨어로 만들기는 적합한 방법이다.

02 불 대수

□ 불 대수 법칙을 이용한 간소화

- 대수식이 단순하면 쉽게 간소화할 수 있지만, 식이 복잡해지면 이용하기 어렵다.
- 어떤 항끼리 결합할지 결정하기 힘들고 결과가 최적인지 판단하기도 쉽지 않다.
- 따라서 이 방법은 드물게 사용하고 카르노 맵 방법을 주로 이용한다.

if((!A)&&(!B)&&C) else if((!A)&&B&&(!C)) else if((!A)&&B&&C) else if(A&&(!B)&&(!C)) else if(A&&(!B)&&C) F = 1

(b) 3변수 최소항					
A	\boldsymbol{B}	C	최소항	기호	
0	0	0	$\overline{A}\overline{B}\overline{C}$	$m_{\scriptscriptstyle 0}$	
0	0	1	$\overline{A}\overline{B}C$	m_1	
0	1	0	$\overline{A}B\overline{C}$	m_2	
0	1	1	$\overline{A}BC$	m_3	
1	0	0	$A\overline{B}\overline{C}$	m_4	
1	0	1	$A\overline{B}C$	m_5	
1	1	0	$AB\overline{C}$	m_6	
1	1	1	ABC	m_7	

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} \leftarrow A+A=A \text{ olg}$$

$$= (\overline{A} + A)\overline{BC} + \overline{AB(C} + C) + A\overline{B(C} + C)$$

$$= \overline{BC} + \overline{AB} + A\overline{B}$$

NOT 3개, AND 5개, OR 4개 → 간소화 NOT 2개, AND 3개, OR 2개

*NAND 게이트 수 NOT(=NAND 1개), AND(=NAND 2개), OR(=NAND 3개) if((!B)&&C) else if((!A)&&B) else if(A)&&(!B)) F = 1