

Kirtipur - 03, Kathmandu

Lab report of MATLAB

Submitted by:-

Submitted to:-

 $2^{nd}\ semester$

Bharat Pokherel

Amir Maharjan

LAB REPORT

Objective:

To carryout numerical computations and analysis.

Introduction:

MATLAB is an interactive matrix-based system for scientific and engineering numerical computation as well as visualization. MATLAB is developed by MathWorks. It is high level programming language.

There are several commands we must get familiar with to learn how to use the MATLAB.

1. >>

This command is the prompt command. It indicates that MATLAB is ready is accept any input.

```
Command Window

To get started, select MATLAB Help or Demos from the Help menu.

>> a = 5

a =

5
```

2.;(semicolon)

It's a command that takes us to a next line.

```
To get started, select MATLAB Help or Demos from the Help menu.

>> A = [1; 3; 4; 4];
>> A = [1; 3; 4; 4]

A =

1
3
4
4
>> B = [2 5 6];
>> |
```

Assignment

1. Type

It will display

$$X=$$

4

2. Assigning Arrays, vectors and Matrices.

An array is a collection of values by a single variable. One dimensional arrays are called vectors and two dimensional arrays are called matrices. For example.

The above image shows that the result is displayed horizontally. Thus the assigned datas are displayed in an array.

In this image the result is displayed vertically. Thus the displayed result is in vector form.

Finally, A matrix can be displayed as follows:

$$>> A = [103; 305; 987]$$

A =

103

305

987

Also, we can separate the rows by the help of Enter key

$$>> A = [103]$$

305

987]

 $A(m,\,n)$ selects the elements in $m^{th}\,row$ and $n^{th}\,column.$ For example

$$Ans =$$

4

Note: There are several built in functions to create matrices.

Arithmetic Operations

Operations	Meanings
+	Addition
-	Subtraction
*	Multiplication
/	Left division
/	Right division
٨	Power
6	Transpose

Note: In MATLAB A*A is same as A^2 but tis is different from A.^2. The last gives the square of every numbers.

The difference between left division (\) and right division(/) is as follows:

 $8 \setminus 4 = 2$ [It means 8 is divided by 4]

8/4 = 0.5000 [It means 4 is divided by 8]

Built in function

Command	Function		
Abs ()	Absolute value		
Exp()	Exponential function		
Sqrt ()	Square root		
Log()	Logarithmic function		

Note: By default MATLAB produces 4 digits after decimal places.

If we want move digits after the decimal places, then we should >> format long.

If you need, any help, take help of >> help fomat.

Trigonometric function

Command	Function
Sin()	Sine
Cos()	Cosine
Tan()	Tangent
Cot()	Cotangent
Sec ()	Secant
Cosec ()	Cosecant

Solving Algebric Equations in MATLAB

We solve the algebric equations as follows:

(2) Solve
$$x^2 - 5x + 6 = 0$$

>> solve (' $x^2 - 5x + 6 = 0$ ')
Ans =

3
2.

LAB3

Plotting

The plot in MATLAB appears in a graphic figure window. MATLAB provide 2-D and 3-D plotting.

1. 2-D Plotting

Syntax: Plot (x data, y date)

Here, X data is given and y data s obtained by the function y = f(X). Here, X data plot in horizontal axis y data plot in vertical axis.

Some examples are as follows:

Plot the following in MATLAB

b. Y = sinX: x E [-pi,pi]

>> x = [-pi:0.01:pi];

 \gg y = sin(x);

>> plot (x,y)

2. **3-D Plotting**

Syntax: plot 3(x,y)

Some examples are as follows:

a. y=sinx , z=x+y, x E [-10,10]

x=[-10:0.01:10];

 \gg y = $\sin(x)$;

>> z = x + y;

>> plot3(x,y,z)


```
b. y=cosx, z=x^2+2y x E [-5,5]

>> x=[-5:0.01:5];

>> y = cos(x);

>> z = x.^2+2*y;

>> plot3(x,y,z)
```


Command	Explanation		
Who	Gives a list of the variables in use		
Whos	Gives a list of the variables in use as well as some extra information		
Clear	Removes all variables		
Cle	Clear all		
Clear x, y	Removes the variables of x and y		

MATLAB commands for limit, derivative and integration

	Mathematical operation	MATLAB command	
1	$\lim_{x \to a} f(x)$	Limit (f, x, a) or limit (f, a)	
2.	$\lim_{x \to a} -f(x)$	Limit (f, x, a, 'left')	
3.	$\lim_{x \to a} + f(x)$	Limit (f, x, a, 'right')	
4.	$\frac{dy}{dx}(y)$	Diff (y)	
5.	$\int y dx$	Int (y)	

Examples:

Using MATLAB, evaluate.

1.
$$\lim_{x \to 1} 2x + 3$$

Command Window >> syms x >> f= 2*x + 3; >> limit(f,x,1) ans = 5

2.
$$\lim_{x \to -7} 2x + 5$$

3.
$$\lim_{x\to 5} x - 7$$

• Using MATLAB to find the derivatives.

Examples:

1.
$$\frac{dy}{dx}$$
 x⁶ 2. $\frac{dy}{dx}$ (x²tanx) 3. $\frac{dy}{dx}$ (log(3x-2))

Command Window

```
>> syms x

>> y = x^2*tan(x);

>> diff (y)

ans =

2*x*tan(x)+x^2*(1+tan(x)^2)
```

```
Command Window
>> syms x
>> y = log(3*x-2);
>> diff (y)
ans =
3/(3*x-2)
```

Linear programming problem

Let f be a column vector of length n and b be a column vector of length m, and let A be a m x n matrix.

A linear programming associated with f, A and b is the minimum problem min f^Tx or the maximum problem max f^Tx . subject to $Ax \le b$.

If f is a maximixation problem, we change it to the corresponding minimization problem associated with -f, A, b.

Solution of LPP minimization problem with MATLAB.

Without equality constraint, the syntax is

```
X = linprog(f, A, b)
```

To obtain minimum value type $(x, f_{min}) = linprog (f, A, b)$ if inequality and equality constraints are given, use

```
\begin{split} X &= linprog \ (f, \ A, \ b \ Aeq, \ beq) \\ >> f &= [-7; -5] \ ; \\ >> b &= [6 \ ; 6 \ ; 0 \ ; 0 \ ] \ ; \\ >> A &= [1 \ 2 \ ; 4 \ 3 \ ; -1 \ 0 \ ; 0 \ -1] \ ; \\ >> [X, F_{min}] &= linprog \ (f, \ A, \ b) \\ The \ window \ will \ display \\ 1.5000 \\ 0.0000 \\ F_{min} &= \\ -10.5000 \end{split}
```

MATLAB for Bisection Method

Using bisection method, find the root of the equation $x^3 - 2x - 5 = 0$ lying between 2 and 3 correct to 3 places of decimals with error less than 0.001.

2.1094

2.1094

2.1016

2.1016

2.0977

2.0977

2.0957

2.0957

2.0947

2.0947

root =

x0 =

root =

x0 =

root =

x0 =

root =

x0 =

root =

>>

```
>> f = @ (x) x^3-2*x-5;

>> a =2; b=3; tol=0.001;

>> while abs (a-b)>=tol

x0 = (a+b)/2

if f(a)*f(x0)<0;

b=x0;

else

a=x0;

end

root=x0

end
```

CHG		
x0 =		
2.5000		
root =		
2.5000		
$\mathbf{x}0 =$		
2.2500		
root =		
2.2500		
$\mathbf{x}0 =$		
2.1250		
root =		
2.1250		
$\mathbf{x}0 =$		
2.0625		
root =		
2.0625		
x0 = 2.0938		
root =		
2.0938		
$\mathbf{x}0 =$		

MATLAB for Newton-Raphson method

```
Using Newton-Raphson method, find a root of 2x^2 - 3x - 1 = 0 taking X_0 = 1 with error less than 10^{-4}.

>> f = @(x) 2*x^2-3*x-1;

>> Df = @(x) 4*x-3;

>> x0=1; tol=0.0001; diff=1;

>> while diff>=tol

x1=x0-f(x0)/Df(x0);

diff = abs (x1-x0);

x0 = x1;

end

>> root = x0
```

MATLAB code for Simpson's 1/3 rule

```
>> f = @(x) (1/(1+x^2));

>> a = 0;

>> b = 1;

>> n = 4;

>> h = (b-a)/n;

>> s = f(a) + f(b);

>> for i = 1 : n - 1

s = s + 4*f(a + i*h);

end

>> for k = 2: 2: n - 2;

s = s - 2*f(a + k*h);

end

>> I = (h/3)*3

I = 0.2500
```

MATLAB code for Trapezoidal rule

```
>> f = @(x) sin(x);

>> a = 0;

>> b = pi;

>> n = 4;

>> h = (b-a)/n;

>> s = 0.5*(f(a) + f(b));

>> for i = 1: n - 1

s = s+f(a+i*h);

end

>> I = h*s

I =

1.8961
```

