

머신러닝 프로젝트

- 1. 프로젝트 주제소개
- 2. 탐색적 데이터 분석 및 전처리
- 3. 머신러닝 성능 올리기
- 4. 최종 예측과 성능평가

제주도 버스의 퇴근시간 승차인원 예측

알고리즘 | 회귀 | RMSE

기본 데이터

```
train = pd.read_csv('data/train.csv')
X = train.drop(['18~20_ride', 'date', 'in_out', 'station_name'], axis = 1)
y = train['18~20_ride']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = RandomForestRegressor(random_state=42, n_estimators = 100)
neg_mse_scores = cross_val_score(rf, X, y, scoring = "neg_mean_squared_error", cv=3, n_jobs=-1)
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg rmse = np.mean(rmse scores)
print('Negative MSE scores: ', np.round(neg_mse_scores, 2))
print('개별 RMSE scores : ', np.round(rmse_scores, 2))
print('평균 RMSE : {0:.3f}'.format(avg_rmse))
Negative MSE scores: [-12.06 -10.43 -11. ]
개별 RMSE scores : [3.47 3.23 3.32]
평균 RMSE : 3,340
  • 3.340
```

탐색적 데이터 분석

데이터 훑어보기

train & test 컬럼	설명
id	해당 데이터에서의 고유한 ID(train, test와의 중복은 없음)
date	날짜
bus_route_id	노선ID
in_out	시내버스, 시외버스 구분
station_code	해당 승하차 정류소의 ID
station_name	해당 승하차 정류소의 이름
latitude	해당 버스 정류장의 위도 (같은 정류장 이름이어도 버스의 진행 방향에 따라 다를 수 있음)
longitude	해당 버스 정류장의 경도 (같은 정류장 이름이어도 버스의 진행 방향에 따라 다를 수 있음)
X~Y_ride	X:00:00부터 X:59:59까지 승차한 인원 수
X~Y_takeoff	X:00:00부터 X:59:59까지 하차한 인원 수
18~20_ride	18:00:00부터 19:59:59까지 승차한 인원 수 (train data에만 존재)

train.info()				test.info()			
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 415423 entries, 0 to 415422 Data columns (total 21 columns): # Column Non-Null Count Dtype</class></pre>				Rang		.frame.DataFrame' entries, O to 228 20 columns): Non—Null Count	2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V
1 d 2 b 3 i 4 s 5 s 6 l 7 l 8 6 9 7 10 8 11 9 12 1 13 1 14 6 15 7 16 8 17 9 18 1 19 1 20 1 dtypes	d late us_route_id n_out station_code station_name atitude ongitude i~7_ride i~8_ride i~1_ride 1~12_ride i~9_takeoff i~1_takeoff 1~12_takeoff 1~10_takeoff 1~12_takeoff	415423 non-null	int64 object int64 object int64 object int64 object float64	50000000	id date bus_route_id in_out station_code station_name latitude longitude 6~7_ride 7~8_ride 8~9_ride 9~10_ride 10~11_ride 11~12_ride 6~7_takeoff 7~8_takeoff 9~10_takeoff 10~11_takeoff 11~12_takeoff 11~12_takeoff es: float64(14) ry usage: 34.8+	228170 non-null , int64(3), objec	int64 object int64 object int64 object float64

데이터 시각화

데이터 시각화

데이터 시각화

승하차 인원 전처리

```
# 2시간 간격으로 묵기
train['6~8\_ride'] = train['6~7\_ride'] + train['7~8\_ride']
train['8~10_ride'] = train['8~9_ride'] + train['9~10_ride']
train['10~12_ride'] = train['10~11_ride'] + train['11~12_ride']
train['6~8_takeoff'] = train['6~7_takeoff'] + train['7~8_takeoff']
train['8~10_takeoff'] = train['8~9_takeoff'] + train['9~10_takeoff']
train['10~12 takeoff'] = train['10~11 takeoff'] + train['11~12 takeoff']
# test 동일 적용
test['6~8_ride'] = test['6~7_ride'] + test['7~8_ride']
test['8~10 ride'] = test['8~9 ride'] + test['9~10 ride']
test['10~12 ride'] = test['10~11 ride'] + test['11~12 ride']
test['6~8_takeoff'] = test['6~7_takeoff'] + test['7~8_takeoff']
test['8~10 takeoff'] = test['8~9 takeoff'] + test['9~10 takeoff']
test['10~12_takeoff'] = test['10~11_takeoff'] + test['11~12_takeoff']
```


승하차 시간 상관 관계 알아보기

The same of the sa	6~8_ride	8~10_ride	10~12_ride	6~8_takeoff	8~10_takeoff	10~12_takeoff	18~20_ride
0	1.0	7.0	8.0	0.0	0.0	0.0	0.0
1	5.0	6.0	11.0	0.0	0.0	0.0	5.0
2	2.0	2.0	0.0	0.0	0.0	0.0	2.0
3	17.0	32.0	30.0	0.0	0.0	0.0	53.0
4	0.0	0.0	0.0	0.0	1.0	0.0	0.0
		(444			W		
415418	4.0	0.0	0.0	0.0	0.0	0.0	0.0
415419	4.0	0.0	0.0	0.0	0.0	0.0	0.0
415420	0.0	0.0	0.0	1.0	0.0	0.0	0.0
415421	1.0	0.0	0.0	0.0	0.0	0.0	0.0
415422	0.0	0.0	0.0	0.0	4.0	0.0	0.0

```
corr = ride_df.corr()
plt.figure(figsize=(10,8))
sns.heatmap(corr, annot=True, fmt ='.2f', cmap='Reds', linewidth=0.5);
                                                0.17
                                                          0.12
                                                                    0.13
                                                                              0.39
      6~8 ride -
                                                                                             - 0.9
                                                0.17
                                                          0.35
                                                                    0.28
    8~10 ride
                           1.00
                                                                                              -0.8
                                                                                              -0.7
   10~12_ride -
                                      1.00
                                                0.20
                                                          0.31
                                                                    0.42
                                                                                             -0.6
   6~8 takeoff - 0.17
                           0.17
                                      0.20
                                                1.00
                                                                    0.40
                                                                              0.25
                                                                                             - 0.5
  8~10 takeoff - 0.12
                           0.35
                                      0.31
                                                          1.00
                                                                              0.33
                                                                                             -0.4
 10~12 takeoff - 0.13
                           0.28
                                      0.42
                                                0.40
                                                                    1.00
                                                                              0.34
                                                                                             -0.3
                                                                                             -0.2
   18~20 ride
                 0.39
                                                0.25
                                                          0.33
                                                                    0.34
```

승하차 인원 전처리 추가 (ID 컬럼도 제거)

```
train = pd.read_csv('data/train_time.csv', index_col=0)
X = train.drop(['18~20_ride', 'id', 'date', 'in_out', 'station_name'], axis = 1)
v = train['18~20 ride']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = RandomForestRegressor(random_state=42, n_estimators = 100)
neg_mse_scores = cross_val_score(rf, X, y, scoring = "neg_mean_squared_error", cv=3, n_jobs=-1)
rmse scores = np.sqrt(-1 * neg mse scores)
avg rmse = np.mean(rmse scores)
print('Negative MSE scores: ', np.round(neg_mse_scores, 2))
print('개별 RMSE scores : ', np.round(rmse_scores, 2))
print('평균 RMSE : {0:.3f}'.format(avg_rmse))
Negative MSE scores: [-7.86 -9.36 -7.73]
개별 RMSE scores : [2.8 3.06 2.78]
평균 RMSE : 2.881
  2.881
```

```
날짜 전처리 ¶
train['date'] = pd.to_datetime(train['date'])
test['date'] = pd.to_datetime(test['date'])
train['weekday'] = train['date'].dt.weekday
test['weekday'] = test['date'].dt.weekday
train = pd.get_dummies(train, columns = ['weekday'])
test = pd.get_dummies(test, columns = ['weekday'])
train.head()
longitude 6~7_ride 7~8_ride ... 10~11_takeoff 11~12_takeoff 18~20_ride weekday_0 weekday_1 weekday_2 weekday_3 weekday_4 weekday_5 weekday_6
126.49373
             0.0
                     1.0 ...
                                     0.0
                                                  0.0
                                                            0.0
                                                                         0
                                                                                   0
                                                                                                        0
                                                                                                                   0
                                                                                                                             0
126.48508
             1.0
                     4.0 ...
                                     0.0
                                                  0.0
                                                            5.0
                                                                         0
                                                                                   0
                                                                                              0
                                                                                                        0
                                                                                                                   0
                                                                                                                             0
126.47352
             1.0
                      1.0 ...
                                     0.0
                                                  0.0
                                                            2.0
                                                                         0
                                                                                   0
                                                                                              0
                                                                                                        0
                                                                                                                   0
                                                                                                                             0
126,49252
             0.0
                     17.0 ...
                                     0.0
                                                  0.0
                                                            53.0
                                                                         0
                                                                                   0
                                                                                              0
                                                                                                        0
                                                                                                                   0
                                                                                                                             0
                                                                                                                                        1
126.41260
             0.0
                     0.0 ...
                                     0.0
                                                  0.0
                                                            0.0
                                                                        0
                                                                                   0
                                                                                              0
                                                                                                        0
                                                                                                                   0
                                                                                                                             0
                                                                                                                                        1
```

```
시내/외 버스 전처리
train['in_out'].value_counts()
       408500
시내
시외
         6923
Name: in_out, dtype: int64
train['in_out'].replace({'시외': 1, '시내': 0}, inplace=True)
# test 동일 적용
test['in_out'].replace({'시외': 1, '시내': 0}, inplace=True)
train.head()
       date bus_route_id in_out station_code station_name latitude
      2019-
0 0
                4270000
                                            제주썬호텔 33.48990
                           1
               4270000
                           1
                                             한라병원 33.48944
                                     357
      2019-
09-01
2 2
               4270000
                           1
                                     432
                                             정존마을 33.48181
                                          제주국제공항
      2019-
09-01
3 3
               4270000
                                                     33.50577
                           0
                                               (600번)
                                          중문관광단지
입구
      2019-
09-01
                4270000
                                                     33.25579
                           0
```

label encoding

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
label = ['bus_route_id', 'station_code', 'station_name']
for i in label:
   le.fit(train[i])
   train[i] = le.transform(train[i])
le = LabelEncoder()
label = ['bus_route_id', 'station_code', 'station_name']
for i in label:
   le.fit(test[i])
   test[i] = le.transform(test[i])
train.head(2)
   id date bus_route_id
                        in_out station_code station_name
                                                        latitude longitude 6~7_ride 7~8_ride ... weekday_3 weekday_4 weekday_5 weekday_6 6
      2019-
0 0
                                                       33.48990 126.49373
                                                                                       1.0 ...
                      0
                                       321
                                                  1481
                                                                              0.0
                                                                                                      0
      09-01
      2019-
                                       334
                                                  1822 33.48944 126.48508
                                                                              1.0
                                                                                       4.0 ...
                                                                                                      0
                                                                                                                           0
                      0
      09-01
```

날짜, 승하차인원(시간별), 노선ID, 정류장ID 전처리 추가

```
train = pd.read csv('data/base model.csv', index col=0)
X = train.drop(['id', 'date', '18~20 ride', '6~7 ride', '7~8 ride', '8~9 ride',
       '9~10 ride', '10~11 ride', '11~12 ride', '6~7 takeoff', '7~8 takeoff',
       '8~9 takeoff', '9~10 takeoff', '10~11 takeoff', '11~12 takeoff'], axis = 1)
y = train['18~20 ride']
X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 42)
rf = RandomForestRegressor(random_state=42, n_estimators = 100)
neg mse scores = cross val score(rf, X, y, scoring = "neg mean squared error", cv=3, n jobs=-1)
rmse scores = np.sart(-1 * neg mse scores)
avg rmse = np.mean(rmse scores)
print('Negative MSE scores: ', np.round(neg_mse_scores, 2))
print('개별 RMSE scores : ', np.round(rmse scores, 2))
print('평균 RMSE : {0:.3f}'.format(avg rmse))
Negative MSE scores: [-7.32 -8.99 -7.32]
개별 RMSE scores : [2.71 3. 2.71]
평균 RMSE : 2.803
  2.803
```

머신러닝 성능 올리기

머신러닝 성능 올리기

```
map 시각화
                                       # 지도 시각화를 위한 folium 라이브러리
import folium
from folium.plugins import MarkerCluster # 지도 마커 표시를 위한 folium 플러그인
station_df = train[['latitude', 'longitude', 'station_name']].drop_duplicates(keep = 'first')
station df
station_df2 = station_df.groupby(['station_name'])['latitude','longitude'].mean()
station df2
station_df2.to_csv('foilum.csv')
station_df2 = pd.read_csv('foilum.csv')
map_osm= folium.Map(location =[33.399835, 126.506031] ,zoom_start=9)
mc = MarkerCluster()
# itertuples() : 이름이 있는 튜플 (인덱스, 행, 열) 에 대해 순환 반복
for row in station_df2.itertuples():
   mc.add_child(folium.Marker(location=[row.latitude, row.longitude], popup= row.station_name))
   map_osm.add_child(mc)
map osm
```


위도, 경도 거리 좌표

```
import geopy.distance
from geopy import distance
jeju=(33.51411, 126.52969)
gosan=(33.29382, 126.16283)
seongsan=(33.38677, 126.8802)
po=(33.24616, 126.5653)
t1 = [geopy.distance.geodesic((i,j), jeju).km for i,j in list(zip(train['latitude'],train['longitude']))]
t2 = [geopy.distance.geodesic((i,j), gosan).km for i,j in list(zip(train['latitude'],train['longitude']))]
t3 = [geopy.distance.geodesic((i,j), seongsan).km for i,j in list(zip(train['latitude'],train['longitude']))]
t4 = [geopy.distance.geodesic((i,j), po).km for i,j in list(zip(train['latitude'],train['longitude']))]
train['dis jeju']=t1
train['dis gosan']=t2
train['dis seongsan']=t3
train['dis po']=t4
```

위,경도 거리차이 정보 추가

```
train = pd.read csv('data/train_lalo.csv', index col=0)
X = train.drop(['18~20_ride'], axis = 1)
y = train['18~20 ride']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = RandomForestRegressor(random state=42, n estimators = 100)
neg mse scores = cross val score(rf, X, y, scoring = "neg mean squared error", cv=3, n jobs=-1)
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg rmse = np.mean(rmse scores)
print('Negative MSE scores: ', np.round(neg_mse_scores, 2))
print('개별 RMSE scores : ', np.round(rmse_scores, 2))
print('평균 RMSE : {0:.3f}'.format(avg rmse))
Negative MSE scores: [-7.1 -8.8 -7.2]
개별 RMSE scores : [2.66 2.97 2.68]
평균 RMSE : 2.772
  • 2.772
```

```
요일별 18~20 탑승인원 평균, 합 ¶
train['date'] = pd.to_datetime(train['date'])
train['weekday'] = train['date'].dt.weekday
test['date'] = pd.to datetime(test['date'])
test['weekday'] = test['date'].dt.weekday
train['bus_route_id_weekday'] = train['bus_route_id'].astype(str) + ',' + train['weekday'].astype(str)
test['bus_route_id_weekday'] = test['bus_route_id'].astype(str) + ',' + test['weekday'].astype(str)
f = train.groupby(['bus_route_id_weekday'])['18~20_ride'].agg([('mean_bus_weekday_ride','mean')]).reset_index()
tr = pd.merge(train, f, how='left', on='bus_route_id_weekday')
te = pd.merge(test, f, how='left', on='bus route id weekday').fillna(f['mean bus weekday ride'].mean())
def id_statistic(ID, col1, col2) :
# 요일, 평일
    # mean, sum
   rs mean = train.groupby([ID])['18~20 ride'].agg([(col1, 'mean')]).reset index()
   # 요일별 18~20 탑승인원 평균
   rs sum = train,groupby([ID])['18~20 ride'],agg([(col2, 'sum')]),reset index()
    # 요일별 18~20 탑승인원 합
   rs mean sum = pd.merge(rs mean, rs sum, on=ID)
   tr = pd.merge(train, rs_mean_sum, how='left', on=ID)
   # train 데이터에 평균값 합치기
   te = pd.merge(test, rs_mean_sum, how='left', on=ID)
   # test 데이터에 탑승인원 합 합치기
   return tr, te
train, test = id_statistic('weekday', '1820_w_mean', '1820_w_sum')
train.to_csv('bus_train2.csv', index = False)
test.to_csv('bus_test2.csv', index = False)
```

요일별 18~20시 탑승 평균, 합 정보 추가

```
train = pd.read csv('data/train 1820.csv', index col=0)
X = train.drop(['18~20_ride'], axis = 1)
y = train['18~20 ride']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = RandomForestRegressor(random state=42, n estimators = 100)
neg_mse_scores = cross_val_score(rf, X, y, scoring = "neg_mean squared error", cv=3. n iobs=-1)
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg rmse = np.mean(rmse scores)
print('Negative MSE scores: ', np.round(neg_mse_scores, 2))
print('개별 RMSE scores : ', np.round(rmse_scores, 2))
print('평균 RMSE : {0:.3f}'.format(avg rmse))
Negative MSE scores: [-6.81 -8.7 -6.85]
개별 RMSE scores : [2.61 2.95 2.62]
평균 RMSE : 2.726
 • 2.726
```

최종예측과 성능평가

데이콘 제출

```
input_var=['bus_route_id', 'in_out', 'station_code', 'station_name', 'weekday_0', 'weekday_1', 'weekday_2', 'weekday_3', 'weekday_4',
           'weekday 5', 'weekday 6', '6~8 ride', '8~10 ride', '10~12 ride', '6~8 takeoff', '8~10 takeoff', '10~12 takeoff',
           'dis_jejusi', 'dis_seoquipo', 'dis_jeju', 'dis_gosan', 'dis_seongsan', 'dis_po', 'weekday', '1820_w_mean', '1820_w_sum']
target=['18~20 ride']
X train=train[input var]
random.seed(1217)
train list=random.sample(list(range(X train.shape[0])), int(round(X train.shape[0]*0.01, 0)) )
X_train=train[input_var]
X_train=X_train.iloc[train_list,:]
y_train=train[target]
                                          param grid = {
v train=v train.iloc[train list.:]
                                               'max features': [2,3,5],
                                              'min_samples_leaf': [2,3],
X test=test[input var]
                                              'min samples split': [2,4,6],
                                              'n estimators': [100, 200,500]
X_train.shape, y_train.shape
((4154, 26), (4154, 1))
                                          rf = RandomForestRegressor(random state=1217) # 랜덤포레스트 모델을 정의한다.
                                          grid search = GridSearchCY(estimator = rf. param grid = param grid) # GridSearchCV를 정의한다.
                                          grid_search.fit(X_train, y_train)
                                          grid_search.best_params_
                                          {'max features': 5.
                                           'min_samples_leaf': 2,
                                           'min samples split': 2.
                                           'n estimators': 100}
```


데이콘 제출

```
X_train=train[input_var]
y_train=train[target]

X_test=test[input_var]

X_train.shape, y_train.shape, X_test.shape

((415423, 26), (415423, 1), (228170, 26))

rf = RandomForestRegressor(max_features=5,min_samples_leaf=2,min_samples_split=2,n_estimators=500,random_state=1217)

rf.fit(X_train,y_train) #학습

test['18~20_ride'] = rf.predict(X_test) #예측값 생성 후, test['18~20_ride']에 집어 넣는다.

test[['id','18~20_ride']].to_csv("rf_test.csv",index=False)
```

제목 제출일시 public점수 private점수

rf_test.csv edit 2022-12-08 00:15:13 2.4450196752 2.4704608123

Thank you