GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA Mecánica Clásica

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primer Semestre	0011	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante los conceptos y herramientas de la mecánica clásica para resolver problemas relacionados con las leyes de Newton, el trabajo, la energía y potencia, así como también los teoremas de conservación de la energía, del ímpetu en colisiones y del momento angular y aplicarlos en problemas reales de la ingeniería y la física.

TEMAS Y SUBTEMAS

1. Álgebra Vectorial

- 1.1 Suma de Vectores.
 - 1.2 Producto punto y producto cruz de vectores.
 - 1.3 Triple producto escalar y triple producto vectorial.
 - 1.4 Campo escalar y campo vectorial.
 - 1.5 Aplicaciones.

2. Cinemática

- 2.1 Movimiento unidimensional: Velocidad promedio, velocidad instantánea, aceleración promedio, aceleración instantánea.
- 2.2 Movimiento con aceleración constante en una y dos dimensiones: Caída libre, tiro parabólico.
- 2.3 Movimiento circular uniforme.
- 2.4 Movimiento relativo.
- 2.5 Aplicaciones.

3. Dinámica

- 3.1 Primera Ley de Newton.
- 3.2 Segunda Lev de Newton.
- 3.3 Tercera Ley de Newton.
- 3.4 Aplicaciones.
- 3.5 Fuerzas de fricción.
- 3.6 Aplicaciones.
- 3.7 La dinámica del movimiento circular uniforme.
- 3.8 Fuerzas de arrastre y el movimiento de proyectiles.
- 3.9 Más aplicaciones.

Trabajo y Energía

- 4.1 Definición de trabajo.
- 4.2 Trabajo realizado por fuerzas variables en una y dos dimensiones.
- 4.3 Energía cinética y el teorema trabajo-energía.
- 4.4 Potencia.
- 4.5 Fuerzas conservativas y su energía potencial.
- 4.6 Teorema generalizado de la conservación de la energía.

Sistemas de Partículas

- 5.1 Sistemas de muchas partículas.
- 5.2 Centro de masa de muchas partículas y de objetos sólidos.
- 5.3 Impetu lineal de una partícula y de un sistema de partícula.

COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

1.E.E.P.D

5.4 Conservación del ímpetu lineal.

6. Colisiones

- 6.1 Impulso e impetu.
- 6.2 Conservación del ímpetu durante colisiones.
- 6.3 Colisiones en una y dos dimensiones: elásticas e inelásticas.
- 6.4 Aplicaciones.

7. Cinemática de la Rotación

- 7.1 Movimiento de rotación y sus variables.
- 7.2 Rotación con aceleración angular constante.
- 7.3 Cantidades de rotación como vectores.
- 7.4 Aplicaciones..

Dinámica de la Rotación

- 8.1 Energía cinética de rotación e inercia de rotación.
- 8.2 Inercia de rotación de cuerpos sólidos.
- 8.3 Torca sobre una partícula.
- 8.4 Dinámica de la rotación de sistemas de partículas.
- 8.5 Movimiento de rotación y traslación combinados.
- 8.6 Ímpetu angular de una partícula y de un sistema de partículas.
- 8.7 Ímpetu angular y velocidad angular.
- 8.8 Conservación del ímpetu angular.
- 8.9 Aplicaciones.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio, con un constante uso de aparatos y equipo de cómputo en los aspectos teórico y práctico. Fuerte trabajo extraclase de los alumnos con aparatos y el equipo de cómputo, otorgando solución a problemas sobre los temas del curso. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como retroproyectores, cañón, programas de cómputo educativos, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Física I. Resnick, R., Halliday, D., Kenneth, S. K. CECSA. 1999. Cuarta edición. México.
- Física I. Serway, R., Faughn, J. S. Pearson Educación. 2001. Quinta edición. México.
- Física I. Tipler, P. A. Edit. Reverté. 1994. Tercera edición. España.
- 4. Física para ciencias e ingeniería, Gettys, Edwars, Mc Graw Hill, 2ª edición 2005.

Libros de Consulta:

- 1. Física. Alonso, M. y Finn, E. Fondo Educativo Interamericano. 1990. México.
- University Physics. Young, H. D. Addison Wesley. 1992. 8ª Edición. USA.
- Física Universitaria, vol 1. Sears, F. W., Zemansky, M. W., Young, H. D., Free Addison Wesley. 2004. 11^a edición. México.

🔭 R. A. Pearson COORDINACIÓN GENERAL DE EDUCACIÓN

MEDIA SUPERIORIY SUPERIOR

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física o Matemáticas, Doctorado en Física o Matemáticas, con especialidad en Física.