HOÀN THÀNH BẢNG SAU VỀ ƯỚC LƯỢNG KHOẢNG

Parameter	Conditions (if any)	The formula of Confident Interval				
20000000		2 sided	Upper	Lower		
Mean	aknow	$\varphi\left(z_{\frac{\alpha}{2}}\right) = \frac{1-\alpha}{2} \rightarrow z_{\frac{\alpha}{2}} \Rightarrow \mathcal{E} = z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}} \Rightarrow (\bar{x} - \varepsilon; \bar{x} + \varepsilon)$	$\varphi\left(z_{\alpha}\right) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \mathcal{E} = z_{\alpha} \cdot \frac{d}{\sqrt{n}} \Rightarrow (\bar{x} - \varepsilon; +\infty)$	$\varphi\left(z_{\frac{\alpha}{2}}\right) = 0.5 - \alpha \to z_{\alpha} \to \mathcal{E} = z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \to (-\infty; \bar{x} + \varepsilon)$		
Mean	σ unknow; $n \ge 30$	$\varphi\left(z_{\frac{\alpha}{2}}\right) = \frac{1-\alpha}{2} \rightarrow z_{\frac{\alpha}{2}} \Rightarrow \varepsilon = z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\bar{x} - \varepsilon, \bar{x} + \varepsilon)$	$\varphi\left(z_{\frac{\alpha}{2}}\right) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \mathcal{E} = z_{\alpha}, \frac{s}{\sqrt{n}} \Rightarrow (\bar{x} - \varepsilon; +\infty)$	$\varphi\left(z_{\frac{\alpha}{2}}\right) = 0.5 - \alpha \rightarrow z_{\alpha} \rightarrow \mathcal{E} = z_{\alpha}, \frac{s}{\sqrt{n}} \rightarrow (-\infty; \bar{x} + \varepsilon)$		
Proportion		$\varphi\left(z_{\frac{\alpha}{2}}\right) = \frac{1-\alpha}{2} \rightarrow z_{\frac{\alpha}{2}} \rightarrow \varepsilon = z_{\frac{\alpha}{2}} \frac{\sqrt{f(1-f)}}{\sqrt{f\epsilon}} \rightarrow (f-\varepsilon, f+\varepsilon)$	$\varphi\left(z_{\alpha}\right) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \mathcal{E} = z_{\alpha} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (f - \varepsilon; 0)$	$\varphi\left(z_{\frac{\sigma}{n}}\right) = 0.5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{f(1 - f)}{\sqrt{n}} \Rightarrow (0; f + \varepsilon)$		
Variance	μ Unknow	$\ \alpha + X_1^2 = X_{(n-1)1-\frac{\theta}{2})}^2, X_2^2 = X_{(n-1)\frac{\theta}{2})}^2 \Rightarrow (\frac{(n-1)s^2}{x_2^2}, \frac{(n-1)s^2}{x_2^2})$	$\alpha \to X_1^2 = X_{(n-1;\alpha)}^2 \to (\frac{(n-1)s^2}{x_2^2}; +\infty)$	$a \to X_1^2 = X_{(n-1;1-\alpha)}^2 \Rightarrow (0, \frac{(n-1)s^2}{x_1^2})$		
2 MEANS	σknow	$(\overline{x_1} - \overline{x_2}) \pm z_{\frac{a}{2}} \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$				
2 MEANS	σ unknow	$(\overline{x_1} - \overline{x_2}) \pm t_{\frac{\alpha}{2}n_1 + n_2 - 2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$				
2 PROPORTIONS	$ \widehat{p_1} - \widehat{p_2} \\ \neq 0; 1 $	$(\widehat{p_1} - \widehat{p_2}) \pm \frac{w_e}{2} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}$				
2 VARIANCE	$\sigma unknow$ $n \ge 30$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$s + z_1 - \frac{\alpha}{2} \frac{s}{\sqrt{2n}}$	$s - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{2n}}$		

HOÀN THÀNH BẢNG SAU VỀ KIỂM ĐỊNH

	2/03/05/05/05/05	10) /00 /- 1	一一 一 一 一 五 五	
40.00		Fig. 1		Shall -
Conditions Cid any	Test statistic		Critical values	THE PARTY OF THE P
		2 Tails		
or known	$Z = \frac{\overline{X} - \lambda I}{2} \sim N(0, 1)$	+ 24		left tail
o unknown	$\overline{T} = \frac{\overline{x} - \lambda 1}{S / \sqrt{n}} \sim \pm (n - 1)$	+ 162	T	-2 _d
	$Z = \hat{p} - P_{ab}$	+ 2	Z	-Z ₂
	$\mathcal{L}^{2} = \frac{(n-1)5^{2}}{\sigma^{2}}$	+ X1/2	X2	- X2
or known	$Z = \frac{(\gamma_1 - \chi_1) - (\mu_1 - \mu_2)}{\sqrt{2^2 / n_1 + \sigma_2^2 / n_2}} $ only	± 2 2	Z _a	- Z _U
o unknown	+ = (X1-X2)-(11,-112) ~	+ 7 7 2	Z	- Za
0.2.2	$Z = \frac{\left(\frac{\hat{p}_{1} - \hat{p}_{2}}{n_{4}}\right) - \left(\frac{p_{1} - p_{2}}{n_{2}}\right)}{\sqrt{\frac{p_{1} \left(1 - p_{1}\right)}{n_{4}} + \frac{p_{2} \left(1 - p_{2}\right)}{n_{2}}}} \sim h(t_{1})$	+ Z _d	2,1	- 22
$cha sw o_1^2 = o_2^2$	$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\lambda I_1 - \lambda I_2\right)}{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim + \left(n_{p+n}\right)$	+ T	To	- r _t
	or known or unknown or unknown	or known $Z = \frac{\overline{X} - \lambda l}{\sqrt{Nn}} \sim N(0, l)$ $Z = \frac{\widehat{P} - P_{ss}}{\sqrt{Nn}} + (n-1)$ $Z = \frac{\widehat{P} - P_{ss}}{\sqrt{Nn}} + (n-1)$ $Z = \frac{\widehat{P} - P_{ss}}{\sqrt{Nn}} + \frac{P_{s}(1 - P_{s})}{\sqrt{Nn}} \sim N(0, 1)$ $Z = \frac{(\widehat{P}_{1} - \widehat{P}_{2}) - (N_{1} - N_{2})}{\sqrt{Nn}} \sim N(0, 1)$ $Z = \frac{(\widehat{P}_{1} - \widehat{P}_{2}) - (N_{1} - N_{2})}{\sqrt{Nn}} \sim N(0, 1)$	Tails T	The second second with the second se

HOÀN THÀNH BẢNG SAU VỀ REG.

Parameter	Conditions	The formula of confident interval				
	(if any)	2 slides	upper	lower		
Beta_0		$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$				
Beta_1		$\left \hat{\beta}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]} \right \le \beta_0 \le \hat{\beta}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]} \right $				
Mean reponse		$\hat{\mu}_{\gamma_{ x_0}} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$				
		$ \leq \mu_{\gamma_{X_0}} \leq \hat{\mu}_{\gamma_{X_0}} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]} $				
Future observation		$\hat{y}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$				
		$\leq Y_0 \leq \hat{y}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]}$				

		aliana.			
Parameter	Condition (if any)	The formula of Ct			
Mean		2 sided	Upper	Lower	
in care	o waknown	(x-E)x+E) E=24.00	(-00; 1x+E) E=Z2.00	(7-8;+vo) 8=Zx, 80	
Mean	o unknown	(x-8); x +8) 8-4: .8	(- 6 jic + E)	(z-E;+00)	
		$\epsilon = \frac{1}{2} \cdot n_{-1} \cdot \frac{s}{\sqrt{n}}$	E = 4 Jin-1 S	E= +2, n-1 · 5	
Proportion	n - large np 75 nc 1-p) 75	(p-E; p+E) E= 2/ (p(1))		A. P.	
Variance		$\frac{(n-1)s^{2}}{\chi_{\frac{n}{2},n-4}^{2}} \leq \sigma^{-2} \leq (n-1)s^{2}$	$\int_{\mathbb{R}^{2}} \frac{1}{2^{2}} \frac{2}{2} \frac{(n-1)}{2} \frac{6^{2}}{2}$	$\frac{\sigma^2 \sqrt{(n-1)} \delta^2}{\sqrt{\chi_{d,j} n-1}}$	

BÀI TẬP B

<u>9.92</u>


```
a. Let X weight of a paper sheet d.
    Y: weights of a paper sheet 2.
 Using shapino test we can test the normality of the
 variables X & Y in a software.
  Null . a & Alternative hypothesis:
  Ho: The data is not mornally distributed . Vs .
  Ha: The data is normally distributed.
 R-code:
 2m ( list = (s ())
 x = c (3, 481, 3. 448, 3. 485, 3. 475, 3. 472, 5. 472, 3.
     464.3.470, 3.470, 3.477, 3.473, 3.474);
 y = c (3.268, 3.254, 256, 3. 249, 3.241, 3.254, 3.
      247, 5. 257, 3. 239, 3. 250, 3. 258, 3. 239, 3.
     241, 3.240, 3.254)
49 norm (x)
garoam (y)
shapiso test (z)
shapiro test (y)
R- output
tm (list = ls())
```


11.12

8.40

a)

In the previously described way we construct a normal probability plot based on observations 8.24 8.25 8.20 8.23 8.24 8.21 8.26 8.26 8.20 8.25 8.23 8.23 8.24 8.21

If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , $\text{textbf} \{ a \ 100(1-\alpha)\% \text{ confidence interval on } \mu \}$ \$\,\text{s given by}

$$\bar{x} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}},$$
 (1)

where $t_{\frac{n}{2},n-1}$ is the upper $100\frac{n}{2}$ percentage point of the t distribution with n-1 degrees of freedom.

b)

The simple mean is

$$\ddot{x} = \frac{1}{15} \sum_{i=1}^{15} x_i = 8.234,$$

and standard deviation is

$$s = \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}\right)^{\frac{1}{2}} = \left(\frac{\sum_{i=1}^{15} (x_i - 8.234)^2}{14}\right)^{\frac{1}{2}} = 0.0253.$$

Now, we need to find a 95% CI on the population mean, then

$$\frac{\alpha}{2} = \frac{1 - 0.95}{2} = 0.025 \implies t_{\frac{\pi}{2}, n-1} = t_{0.025, 14} = 2.145.$$
 (2)

From Equations (1) and (2) we get

$$8.234 - 2.145 \frac{0.0253}{\sqrt{15}} \le \mu \le 8.234 + 2.145 \frac{0.0253}{\sqrt{15}}$$

$$8.234 - 2.145 \times 0.0065 \le \mu \le 8.234 + 2.145 \times 0.0065.$$

Therefore, a 95% CI on the population mean is

$$8.219 \le \mu \le 8.248$$
.

If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , a $\star \tau$ upper confidence bound for μ is given by $\star \tau$

$$\mu \le \bar{x} + t_{\alpha, n-1} \frac{s}{\sqrt{n}}.$$
 (3)

Now, we need to find a 95% upper confidence bound on the population mean, then

$$\alpha = 1 - 0.95 = 0.05 \implies t_{\alpha, n-1} = t_{0.05, 14} = 1.761.$$
 (4)

From Equations (1) and (2) we get

$$\mu \leq 8.234 + 1.761 \frac{0.0253}{\sqrt{15}}$$

$$\mu \leq 8.234 + 1.761 \times 0.0065.$$

Therefore, a 95% upper confidence bound on the population mean is

$$\mu \le 8.2455$$
.

From subsection b) and c) we conclude that 95% two-sided confidence interval on the population mean is higher then 95% upper confidence bound on the population mean, because

$$t_{0.05,14} = 1.761 < 2.145 = t_{0.025,14}$$
.