

BIONETICS

DTIC ELECTE APR 4 1980

C

THIS DOCUMENT IS HEST QUALITY PRACTICABLE.
THE COPY SUBJECTED TO DDC CONTAINED A
REGNIFICANT NUMBER OF PAGES WHICH DO NOT
MERODUCT LEGISTY.

This document has been approved for public release and sale; its distribution is unlimited.

5516 Nicholson Lane Kensington, Maryland 20795

DISCLAIMER NOTICE

1

-

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Mammalian Toxicological
Evaluation
of DIMP and DCPD

(Phase 2)

FINAL REPORT

OF COLORS 2

APR 4 1980

10 E. Ross/Harti Ph.D.

(11 March=1980)

12 531

Supported by
U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Washington, D.C. 20314

Contract No. DAMD 17-77-C-7,003

Contracting Officer's Technical Representative: Dr. Jack C. Dacre Environmental Protection Research Division
U.S. Army Medical Bioengineering Research and Development Laboratory Fort Detrick, Frederick, Maryland 21701

Litton Bionetics, Inc. 5516 Nicholson Lane Kensington, Maryland 20795

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

390625

jas

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Further Mammalian Toxicological		
Evaluation of DIMP and DCPD	:	6. PERFORMING ORG. REPORT NUMBER
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(*)
E. Ross Hart, Ph.D.		DAMD 17-77-C-7003 气
L. Ross Hart, This.		5/11/5 27 77 6 7 6 6 6
		10 DOCCAN ELEVENT DECLECT TACK
9. PERFORMING ORGANIZATION NAME AND ADDRESS Litton Bionetics, Inc.		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
5516 Nicholson Lane		
Kensington, MD 20795		·
11. CONTROLLING OFFICE NAME AND ADDRESS	·	12. REPORT DATE
U.S. Army Medical Research and De	velopment Comman	March 1980
Washington, D.C. 20314		13. NUMBER OF PAGES 518
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
U. S. Army Medical Bioengineering and Development Command	Kesearch	Uniciassified
Fort Detrick, Frederick, MD 2170	17	15a. DECLASSIFICATION/DOWNGRADING
		541.2502
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; dist	emibution unlimit	ad
Approved for public release; also	cribacion unimit	eu ·
17. DISTRIBUTION STATEMENT (of the ebstract entered	in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES		
		·
19. KEY WORDS (Continue on reverse side if necessary an DIMP (DIISOPROPYLMETHYLPHOSPHONA"		
DCPD (DICYCLOPENTADIENE)	,	•
Teratology		
Reproduction		
Subchronic Toxicity		
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)	
Specially purified samples of DIMP proved non-mutagenic. About 90% of		
administered DIMP is recoverable	of rats, mice or dogs and	
95% of this is in the form of is	opropyl-methyl-ph	osphonic acid (IMPA). No
teratologic effects were produce	d by dietary leve	els of 100 to 3000 ppm
given on days 6 through 15 of get	station. Dietary	Incorporation of DIMP

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

In the rat over three successive generations with two matings per generation. Nerve fiber degeneration (demyelination) in chickens treated once at 1500 mg/kg or twice at 1000 or 500 mg/kg. No toxic effects were seen over a 90-day period in beagles given dietary mixes containing 150, 1500 or 3000 ppm of DIMP.

Purified DCPD proved non-mutagenic. No teratologic effects were observed in rats given dietary levels of 80, 250 or 750 ppm on days 6 through 15 of gestation. No deleterious effects on reproductive processes were seen with two matings per generation. No important evidence of toxicity was seen in beagles given 100, 300 or 1000 ppm in their diet over a 90 day period.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

					PAGE
PART I - DIMP (DIISOPROPYLMETHYLPHOSPHONATE)					
SECTION A - INTRODUCTION AND MATERIAL	•		•		6
SECTION B - MICROBIAL MUTAGENESIS	•	•	•	•	8
SECTION C - PHARMACOKINETICS AND METABOLISM	•	•	•	•	26
SECTION D - TERATOLOGY IN RATS	•	•	•	•	41
SECTION E - THREE-GENERATION REPRODUCTION IN RATS .	•	•	•	•	62
SECTION F - DEMYELINATION IN CHICKENS	•	•	•	•	147
SECTION G - THREE-MONTH SUBCHRONIC TOXICITY IN DOGS	•	•	•	•	210
PART II - DCPD (DICYCLOPENTADIENE)					
SECTION A - INTRODUCTION AND MATERIAL	•	•	•	•	261
SECTION B - MICROBIAL MUTAGENESIS	•	•	•		262
SECTION C - PHARMACOKINETICS AND METABOLISM	•	•	•	•	281
SECTION D - TERATOLOGY IN RATS	•	•	•	•	282
SECTION E - THREE-GENERATION REPRODUCTION IN RATS .	•	•	•	•	316
SECTION F - THREE-MONTH SUBCHRONIC TOXICITY IN DOGS	•	•	•	•	369

Accession For
NTIS CHARI DEC TAB Unamounced Justification
By
Availand/or Dist special
H33

LIST OF TABLES

PART I -	DIMP (DIISOPROPYLMETHYLPHOSPHONATE)	
TABLE		PAGE
I-B-1	SUMMARY OF PLATE TEST RESULTS	11
I-B-2	SUMMARY OF PLATE TEST RESULTS	20
I-D-3	SUMMARY OF REPRODUCTION PERFORMANCE	44
I-D-4	BODY WEIGHT AND FOOD CONSUMPTION OF PREGNANT RATS	47
I-D-5	OBSERVATIONS AT CAESAREAN SECTION	49
I-D-6	OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS	53
I-E-7	TIME FRAMEWORK FOR STUDY	64
I-E-8	SUMMARY OF FIRST GENERATION - FIRST MATING (F1a)	67
I-E-9	SUMMARY OF FIRST GENERATION - SECOND MATING (F1b)	68
I-E-10	LITTER MATE PAIRINGS	70
I-E-11	SUMMARY OF SECOND GENERATION - FIRST MATING (F2a)	71
I-E-12	SUMMARY OF SECOND GENERATION - SECOND MATING (F2b)	73
I-E-13	SUMMARY OF THIRD GENERATION - FIRST MATING (F3a)	74
I-E-14	SUMMARY OF THIRD GENERATION - SECONL MATING (F3b)	75
I-E-:3	RESULTS OF FIRST GENERATION - FIRST MATING (Fla)	79
I-E-16	LITTER OBSERVATIONS	82
I-E-17	PUP NECROPSY OBSERVATIONS (Fla) AT DAY 21	83

PART I -	DIMP (DIISOPROPYLMETHYLPHOSPHONATE)	
TABLE		PAGE
I-E-18	RESULTS OF FIRST GENERATION - SECOND MATING (F1b)	84
I-E-19	LITTER OBSERVATIONS	87
I-E-20	BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (FO)	88
I-E-21	TOXICOLOGY OBSERVATION REPORT	90
I-E-22	PARENT NECROPSY OBSERVATIONS (FO) - MALES	93
I-E-23	RESULTS OF SECOND GENERATION - FIRST MATING (F2a)	96
I-E-24	LITTER OBSERVATIONS	99
I-E-25	PUP NECROPSY OBSERVATIONS (F2a) AT DAY 21	100
I-E-26	RESULTS OF SECOND GENERATION - SECOND MATING (F2b)	101
I-E-27	LITTER OBSERVATIONS	104
I-E-28	BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (F1b)	105
I-E-29	TOXICOLOGY OBSERVATION REPORT	107
I-E-30	PARENT NECROPSY OBSERVATIONS (F1b) - MALES	109
I-E-31	RESULTS OF THIRD GENERATION - FIRST MATING (F3a)	112
I-E-32	THIRD GENERATION - FIRST MATING (F3a)	115
I-E-33	PUP NECROPSY OBSERVATIONS (F3a) AT DAY 21	116
I-E-34	RESULTS OF THIRD GENERATION - SECOND MATING (F3b)	117
I-E-35	LITTER OBSERVATIONS	120
I-E-36	PUP NECROPSY OBSERVATIONS	121
I-E-37	BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS	122

PARI I - I	JIMP (DIISUPROPYLME! 4YLI'HOSPHUNAIE)	
TABLE		PAGE
I-E-36	TOXICOLOGY OBSERVATION REPORT	124
T-E-39	PARENT NECROPSY OBSERVATIONS (F2b) - MALES	127
I-E-40	COMPARISON OF EXTRACTION PROCEDURES FOR DIMP	138
I-5-41	STABILITY OF DIMP IN DIET	139
I-E-42	WEFKLY DIMP FEED ANALYSIS	140
I-F-43	STUDY DESIGN	149
I-F-44	MORTALITY	154
1-F-45	CLINICAL SIGNS	155
I-F-46	MICROSCOPIC OBSERVATIONS	165
I-G-47	FREQUENCY OF CLINICAL OBSERVATIONS IN DOGS	213
I-G-48	MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN MALE DOGS	216
I-G-49	MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN FEMALE DOGS	219
I-G-50	MEAN ORGAN WEIGHTS	223
I-G-51	BODY WEIGHT (KG)	226
I-G-52	FOOD CONSUMPTION (KG)	230
I-G-53	TABLE OF HISTOLOGIC FINDINGS	254
I-G-54	INCIDENCE TABLE	258

PART	II	_	DCPD	(DICYCLOPENTADIENE)	
------	----	---	------	---------------------	--

TABLE		PAGE
I I-B-1	SUMMARY OF PLATE TEST RESULTS	256
II-B-2	SUMMARY OF PLATE TEST RESULTS	275
II-D-3	SUMMARY OF REPRODUCTIVE PERFORMANCE	285
II-D-4	BODY WEIGHTS AND FOOD CONSUMPTION OF PREGNANT RATS	290
II-D-5	OBSERVATIONS AT CAESAREAN SECTION	291
II-D-6	OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS	295
II-E-7	SUMMARY OF FIRST GENERATION - FIRST MATING (Fla)	319
II-E-8	SUMMARY OF FO GENERATION - SECOND MATING (F1b)	320
II-E-9	SUMMARY OF F1b GENERATION - FIRST MATING (F2a)	322
II-E-10	SUMMARY OF F1b GENERATION - SECOND MATING (F2b)	324
II-E-11	SUMMARY OF F2b GENERATION - FIRST MATING (F3a)	325
II-E-12	SUMMARY OF F2b GENERATION - SECOND MATING (F3b)	326
II-E-13	MEAN BODY WEIGHTS (G) OF FO RATS	328
II-E-14	MEAN FOOD CONSUMPTION (G) IN FO RATS	329
II-E-15	RESULTS OF FIRST GENERATION - FIRST MATING (F1a)	330
II-E-16	PUP OBSERVATIONS (Fla)	333
II-E-17	PUP NECROPSY OBSERVATIONS (Fla)	334
II-E-18	RESULTS OF FO GENERATION - SECOND MATING (F1b)	335
II-E-19	PUP OBSERVATIONS (F1b)	338
II-E-20	ADULT NECROPSY OBSERVATIONS	339

PART II -	DCPD (DICYCLOPENTADIENE)	
TABLE		PAGE
II-E-21	MEAN BODY WEIGHTS (G) OF F1b RATS	340
II-E-22	MEAN FOOD CONSUMPTION (G) IN F1b RATS	341
II-E-23	RESULTS OF F1b GENERATION - FIRST MATING (F2a) .	342
II-E-24	PUP OBSERVATIONS (F2a)	345
II-E-25	PUP NECROPSY OBSERVATIONS (F2a)	346
II-E-26	RESULTS OF F1b GENERATION - SECOND MATING (F2b)	347
II-E-27	PUP OBSERVATIONS (F2b)	350
II-E-28	MEAN BODY WEIGHTS (G) OF F2b RATS	351
II-E-29	MEAN FOOD CONSUMPTION (G) IN MALE F2b RATS	352
II-E-30	RESULTS OF THIRD GENERATION - FIRST MATING (F3a)	353
1I-E-31	PUP OBSERVATIONS (F3a)	356
1I-E-32	PUP NECROPSY OBSERVATIONS (F3a)	357
II-E-33	RESULTS OF F2b GENERATION - SECOND MATING (F3b)	358
II-E-34	PUP OBSERVATIONS (F3b)	361
II-E-35	PUP NECROPSY OBSERVATIONS (F3b)	362
II-E-36	ADULT NECROPSY OBSERVATIONS (F2b)	363
II-F-37	GROUP ASSIGNMENT	371
II-F-38	MEAN BODY WEIGHTS (KG)	375
II-F-39	MEAN DAILY FOOD INTAKE (G)	376
II-F-40	CLINICAL HEMATOLOGY - MEAN VALUES	377
TT-F-41	CLINICAL CHEMISTRY	381

PART II -	DCPD (DICYCLOPENTADIENE)	
TABLE		PAGE
II-F-42	MEAN ORGAN WEIGHTS	385
II-F-43	MEAN ORGAN WEIGHT - BODY WEIGHT PERCENTAGES	386
II-F-44	CLINICAL SIGNS	389
II-F-45	BODY WEIGHT DATA	414
II-F-46	DAILY FOOD INTAKE (G)	422
II-F-47	CLINICAL HEMATOLOGIES	431
II-F-48	CLINICAL CHEMISTRIES	448
II-F-49	URINALYSIS	465
II-F-50	ORGAN WEIGHTS	471
II-F-51	ORGAN WEIGHT/BODY WEIGHT PERCENTAGES	479
II-F-52	WEEKLY DCPD FEED ANALYSIS	491
II-F-53	INCIDENCE OF HISTOLOGIC FINDINGS	497
II-F-54	SUMMARY OF HISTOLOGIC FINDINGS	500

EXECUTIVE SUMMARY

DIMP

The test compound, DIMP USAMBRDL EPRD-1, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

The test compound, DIMP Lot AF-74, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

Greater than 90% of the radioactivity of administered labelled diisopropyl methyl phosphonate (DIMP) to rats, mice and dogs was recovered in the urine. In all three species about 95% of recovered radioactivity comes from a single highly polar component. This component is identified as isopropyl-methyl-phosphonic acid (IMPA). The identification is based on comparing the metabolite with authentic IMPA by three different chromatographic techniques; namely, thin layer chromatography, ion chromatography and gas liquid chromatography coupled with mass spectrometry.

$$H_3C^*$$
 $p^0 - - - \rightarrow H_3C^*$ $p^0 \longleftrightarrow H_3C^*$ p^0 $i - PrO^*$ $i - PrO^*$

The test material was administered in the diet at doses of 100, 300 and 3000 ppm to pregnant female rats on days 6 through 15 of gestation. There were no changes in the dams or among the fetuses that indicated an adverse compound-related effect.

Dietary incorporation of DIMP at levels of 300 and 3000 ppm produced no dose-related reproductive response in the rat for three successive generations with two matings per generation. The first mating of the third generation resulted in significant pup losses from Day 4 to Day 21 for the treatment groups. This decrease was not evidenced for the second mating. Food consumption and body weight data for the parent (FO), second generation (FIb) and third generation (F2b) rats, indicated statistical equivalence with the controls for all treatment levels except the high dose F2b female group. Litter and necropsy observations for the first breeding of the three generations were unremarkable and free of any dose-dependent relationship.

Treatment of atropinized White Leghorn hens with DIMP once at 1500 mg/kg or twice at 1000 or 500 mg/kg did not produce evidence of nerve fiber degeneration after 21 days (animals treated once) or 46 days (animals treated twice) when the sciatic nerve was examined microscopically. Evidence of unsteady gait was easily distinguished clinically from signs exhibited by the positive control animals and was judged to be unrelated to nerve fiber degeneration.

The positive control animals, treated with TOCP once at 500 mg/kg, developed classical progressive clinical signs of nerve fiber degeneration beginning 12 to 14 days after treatment. Most of the animals showed microscopic evidence of nerve fiber degeneration.

Beagle dogs, four per sex per group, were given diisopropylmethylphosphate (DIMP) in the diet for 90 days. Dietary concentrations were 150, 1500 and 3000 ppm, and a control group was maintained in parallel. Initially and at 4, 8 and 13 weeks hemograms and clinical chemistry values were obtained on all dogs. The dogs were examined daily as to general condition, and weekly body weights and food consumption data were obtained. An ophthalmologic examination was conducted initially and at 13 weeks. At termination each dog was grossly necropsied and approximately 27 tissues were preserved. Eight organs were weighed. Tissues from the control and high-level groups were examined histologically. The dogs continued in good general health throughout the study. No clear or meaningful changes were seen in the data collected that could be ascribed to the ingestion of DIMP by these dogs, and it is concluded that this compound produced no toxic effects at a dietary concentration of 3000 ppm or below, over the 90-day period of study.

DCPD

The test compound, DCPD Lot No. 040667, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

The test compound, DCPD W-761226, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

With the concurrence of the Project Officer, emphasis was placed on DIMP rather than DCPD with the result that no additional significant information was developed regarding DCPD. Previous findings are summarized below:

DCPD was absorbed after oral administration to mice, rats, and dogs. Peak plasma levels occurred in 2 hours in mice and dogs, and in 6 hours in rats. DCPD was widely distributed in all three species at 1 to 2 hours with the highest levels in urinary bladder, gall bladder and body fat in mice, in gall bladder and bile in dogs, and in body fat, adrenals and urinary bladder in rats. Excretion appeared to be primarily via the urine in all three species. About 85% of the administered radioactivity was accounted for in urine and feces within 24 hours. Urine from mice and dogs showed two radioactive components while rat urine also contained a third. All of these seemed to differ from DCPD on TLC, but none has yet been identified.

The test material was administered in the diet at doses of 80, 250 and 750 ppm to pregnant female rats on Days 6 through 15 of gestation. There were no changes in the dams or among the fetuses that indicated an adverse compound-related effect.

Two groups of 10 male and 20 female albino rats each (FO generation) were given dicyclopentadiene (DCPD) in the diet at 80 or 750 ppm, with a similar group maintained as controls. The rats in each group were mated twice to produce the Fla and Flb litters.

The same number of F1b pups per sex per group were likewise mated to produce F2a and F2b pups, and the F2b animals were maintained to produce F3a and F3b litters. Analyses of the diet mixes indicated 87 and 92% of the desired concentrations were achieved, on the average, for the lowand high-dose levels, respectively.

For each generation in each group there were determined fertility indices, live-to-total pup ratios, mean litter sizes, pup survival indices and mean body weights at Day 4 post partum and at weaning. Gross necropsy observations were made of representative pups of all Fa litters, of the F3b litters, and of the parent rats. Body weights and food consumption were determined for parent rats at various intervals, also.

It is concluded no deleterious effects on reproductive processes or general condition of the rats were produced by DCPD in this study. Likewise, no evidence of dose-related teratologic effect was seen.

The test material, Dicyclopentadiene, was administered by incorporation into the diet at concentrations of 100, 300, and 1000 ppm to Beagle dogs for 13 weeks. The animals were observed daily for general condition and behavior. Clinical pathological evaluations, including analysis of the clinical chemical constituents of serum, urine and hemograms, were performed at approximately monthly intervals. Tissues from the control and high dose dogs were compared histopathologically for differences. Based on the results obtained using these criteria it was concluded that treatment produced no significant toxicity with the possible exception of minor indications of intestinal distress expressed as vomiting and soft stools among dogs of the treated groups, especially the highest dose (1000 ppm).

FOREWORD

This report includes the results of microbial mutagenesis and demylination studies authorized under a predecessor contract (DAMD 17-75-C-5068).

In conducting the research described in this report, the investigator(s) adhered to the "Guide for Laboratory Animal Facilities and Care", as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences-National Research Council.

The method of euthanasia consisted of overdosage with carbon dioxide by inhalation in the case of group sacrifices or overdosage of pentobarbital sodium intraperitoneally or intravenously when one or a few individuals were sacrificed at a given time.

PART I - SECTION A

INTRODUCTION AND MATERIAL

DIMP

1. INTRODUCTION

In a continuation of an evaluation of the mammalian toxicity of DIMP, this compound has been studied by subchronic (90 day) administration to dogs, for reproductive and teratologic effects in rats, for neurotoxicity in chickens, for mutagenic effects in certain tester strains of salmonella and additional aspects of its metabolic fate have been investigated in mice, rats and dogs.

Earlier parts of the evaluation were reported in November 1976 under Contract No. DAMD 17-75-C-5068.

2. MATERIAL

DIMP (Diisopropylmethylphosphonate) was obtained as a custom synthesis from Richmond Organics, 7342 Forest Hill Avenue, Richmond, Virginia 23225. Three separate orders were placed and three shipments were received and designated as follows:

Receipt Date	<u>Quantity</u>	LBI No.
8/5/75 12/15/75	500 g 500 g	755A 776A
2/16/76	500 g	781A

DIMP was analyzed using an OV-17/Reoplex 400 column as described in the procedure for analysis of DIMP in water samples used by Shell Chemical Company and the Colorado Department of Health. DIMP had a retention time of 6.2 minutes. Two impurities were observed, one at 5.2 minutes and the other at 11.8 minutes. Content was calculated on a total peak area basis.

		Impu	rity_
LBI No.	DIMP	<u>#1</u>	#2
755A	95.2%	3.1%	1.7%
776A	89.6%	5.6%	4.8%
781A	88.0%	6.7%	5.3%

Because of poor water solubility, solutions were prepared for administration to animals by dissolving DIMP in polyethylene glycol 400 (PEG 400) "Carbowax" obtained from Fisher Scientific Company.

On January 8, 1977 an additional supply of DIMP was received from USAMBRDL. The bulk sample used for mammalian tests was provided by Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland, and purified by distillation through a 12 foot packed column under reduced pressure. The purity was estimated by gas chromatography to be approximately 96%, with impurities consisting most probably of triisopropyl phosphite and all five compounds obtainable from DIMP by interchange of isopropyl and methyl groups. A small sample of high purity (>99.9%) was prepared by reaction of methylphosphonodichloridate with isopropyl alcohol in basic medium for use in mutagenesis tests.

PART I - SECTION B

MICROBIAL MUTAGENESIS

DIMP

LBI PROJECT NO. 10734-01

SUMMARY

The test compound, DIMP USAMBRDL EPRD-1, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

The test compound, DIMP Lot AF-74, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

1. OBJECTIVE

The objective of this study was to evaluate the test compound for genetic activity in microbial assays with and without the addition of mammalian metabolic activation preparations.

2. MATERIALS

- A. Test Compound
 - 1. Date Received: December 14, 1976
 - 2. <u>Description</u>: Colorless liquid labelled USAMBRDL EPRD-1
- B. Indicator Microorganisms

Salmonella typhimurium, strains: TA-1535 TA-98 TA-1537 TA-100 TA-1538

Saccharomyces cerevisiae, strain: D4

- C. Activation System (Ames et al., Mutation Research 31:347, 1975)
 - 1. Reaction Mixture

Component	Final Concentration/ml
TPN Glucose-6-phosphate Sodium phosphate (diabasic) MgCl ₂ KCl Homogenate fraction equivalent to 25 mg of wet tissue	4 µmoles 5 µmoles 100 µmoles 8 µmoles 33 µmoles 0.1-0.15 ml 9,000 x g supernatant of rat liver

2. MATERIALS (Continued)

2. S-9 Homogenate

A 9,000 x \underline{g} supernatant was prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 five days prior to kill.

D. Positive Control Chemicals

Table 1 below lists the chemicals used for positive controls in the nonactivation and activation assays.

TABLE 1

ASSAY	CHEMICAL	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY
Nonactiva- tion	Methylnitrosoguanidine (MNNG)	Water or Saline	8 _P S _p
	2-Nitrofluorene (NF)	${\tt Dimethylsulfoxide}^{\sf C}$	FS ^b
	Quinacrine mustard (QM)	Water or saline	FS ^b
Activation	2-Anthramine (ANTH)	Dimethylsulfoxide ^C	BPS ^b
	<pre>2-Acetylaminofluorene (AAF)</pre>	Dimethylsulfoxıde ^C	FS ^b
	8-Aminoquinoline (AMQ)	${\tt Dimethylsulfoxide}^{\tt C}$	FS ^b

^aConcentrations given in Results Section

FS = Frameshift

E. Solvent

Either deionized water or dimethylsulfoxide (DMSO) was used to prepare stock solutions of solid materials. All dilutions of test materials were made in either deionized water or DMSO. The solvent employed and its concentration are recorded in the Results Section:

^bBPS = Base-pair substitution

^CPreviously shown to be nonmutagenic

3. EXPERIMENTAL DESIGN

er de la complementation de la complementati

A. Plate Test (Overlay Method*)

Approximately 108 cells from an overnight culture of each indicator strain were added to separate test tubes containing 2.0 ml of molten agar supplemented with biotin and a trace of histidine. For nonactivation tests, at least four dose levels of the test compound were added to the contents of the appropriate tubes and poured over the surfaces of selective agar plates. In activation tests, a minimum of four different concentrations of the test chemical were added to the appropriate tubes with cells. Just prior to pouring, an aliquot of reaction mixture (0.5 ml containing the 9,000 x g liver homogenate) was added to each of the activation overlay tubes, which were then mixed, and the contents poured over the surface of a minimal agar plate and allowed to solidify. The plates were incubated for 48 hours at 37C, and scored for the number of colonies growing on each plate. The concentrations of all chemicals are given in the Results Section. Positive and solvent controls using both directly active positive chemicals and those that require metabolic activation were run with each assay.

B. Recording and Presenting Data

The numbers of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and the solvent controls are provided as reference points. Other relevant data are provided on the computer printout.

^{*}Certain classes of chemicals known to be mutagens and carcinogens do not produce detectable responses using the standard Ames overlay method. Some dialkyl nitrosamines and certain substituted hydrazines are mutagenic in suspension assays, but not in the plate assay. Chemicals of these classes should be screened in a suspension assay.

LITTON BIONETICS. INC.

4. SUBBABY OF PLAIR IEST BESULIS

Salar Sa

MICROLITERS (UL) OR MICROGRAMS (UG) PER PLATE. NAME OR CODE DESIGNATION OF THE TEST COMPOUNDS DIMP SOLVENTS DASO
TEST DATE: JAN. 3, 1977
CONCENTRATIONS ARE GIVEN IN MICROLITERS (UL) OR MI

04 54 93 140 140 125 2025 1A-100_2 202 235 241 233 223 188 205 163 207 207 196 1A-1535 - 1A-1537 - 1A-1538 - 1A-28 - 1A-28 - 1A-1538 - 1A-28 35 35 37 32 38 18 >1000 25 >1000 26 28 28 29 29 29 23 891 12 > 1000 1.1VER 1.1VER 1.1VER 1.1VER 1.1VER LIVER LIVER 11SSUE SPECIES 0.00100 UL 0.01000 UL 0.10000 UL 1.00000 UL 5.00000 UL 크로로로로 0.00100 0.01000 0.10000 1.00000 5.00000 SULVENT CONTROL
POSITIVE CONTROL***
TEST COMPOUND SOLVENT CONTROL
POSITIVE CONTROL**
TEST COMPOUND NOUBCLIVALION **ACTIVATION**

IBY. CONVERTANTS PER PLATE

100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 MC/PLATE 2.5 1/PLATE AAF AAF ANTH DHNA DMSO TA-1535 TA-1537 TA-1538 TA-98 TA-100 D4 SOLVENT 10 UG/PLATE 10 UG/PLATE 100 UG/PLATE 10 UG/PLATE 10 UG/PLATE 2.5 %/PLATE MUNG OM NF NF MNNG MRNG UMSO TA-1535 TA-1537 TA-1538 TA-98 TA-100 D4 SOLVENT

March Statement of the March

A SECTION AND ADDRESS OF THE PARTY OF THE PA

5. INTERPRETATION OF RESULTS AND CONCLUSIONS

The test compound was examined for mutagenic activity in a series of in vitro microbial assays employing Salmonella and Saccharomyces indicator organisms. The compound was tested directly and in the presence of liver microsomal enzyme preparations from Aroclorinduced rats. The following results were obtained:

Α. Toxicity

The compound was tested over a series of concentrations such that there was either quantitative or qualitative evidence of some chemically induced physiological effects at the high dose level. The low dose in all cases was below a concentration that demonstrated any toxic effect. The dose range employed for the evaluation of this compound was from 0,001 µl to 5 µl per plate.

В. Nonactivation Test Results

The results of the tests conducted on the compound in the absence of a metabolic systerm were all negative.

Activation Test Results С.

The results of the tests conducted on the compound in the presence of the rat liver activation system were all negative.

D. Conclusions

The test compound, DIMP USAMBRDL EPRD-1, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

Submitted by:

Director

Department of Genetics

Reviewed by:

Robert J/Weir, Ph.D. Vice President

12

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test chemical and the cells are incubated in the overlay for 2 to 3 days, and a few cell divisions occur during the incubation period, the test is semi-quantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the compound and the cells in the overlay permits constant exposure of the indicator cells for 2 to 3 days.

A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test chemical, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol normally employs several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria.

B. Dose Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test chemical may kill any mutants that are induced, and the compound will not appear to be mutagenic.

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

C. <u>Control Tests</u>

Positive and negative control assays are conducted with each experiment and consist of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consist of the test compound solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data are compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

D. <u>Evaluation Criteria for Ames Assay</u>

Because the procedures used to evaluate the mutagenicity of the test chemical are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

1. Strains TA-1535, TA-1537, and TA-1538

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the lowest increase equal to twice the solvent control value is considered to be mutagenic.

2. Strains TA-98, TA-100, and D4

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-100 and two to three times the solvent control value for strains TA-98 and D4 is considered to be mutagenic. For these strains, the dose response increase should start at approximately the solvent control value.

3. Pattern

Because TA-1535 and TA-100 were both derived from the same parental strain (G-46) and because TA-1538 and TA-98 were both derived from the same parental strain (D3052), there is a built-in redundancy in the microbial assay. In general the two strains of a set respond to the same mutagen and such a pattern is sought. It is also anticipated that if a

6. EVALUATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

D. <u>Evaluation Criteria for Ames Assay</u>

3. Pattern

given strain, e.g. TA-1537, responds to a mutagen in nonactivation tests it will generally do so in activation tests. (The converse of this relationship is not expected.) While similar response patterns are not required for all mutagens, they can be used to enhance the reliability of an evaluation decision.

4. Reproducibility

If a chemical produces a response in a single test that cannot be reproduced in one or more additional runs, the initial positive test data loses significance.

The preceding criteria are not absolute and other extenuating factors may enter into a final evaluation decision. However, these criteria are applied to the majority of situations and are presented to aid those individuals not familiar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established.

E. Relationship Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames <u>Salmonella/microsome</u> test is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relationships have been demonstrated between these two end points. The results of comparative tests on 300 chemicals by McCann <u>et al.</u> (Proc. Nat. Acad. Sci. USA, <u>72</u>:5135-5139, 1975) show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays.

All evaluation and interpretation of the data presented in this report are based only on the demonstration of or lack of mutagenic activity.

STANDARD OPERATING PROCEDURES

To ensure an accurate and reliable mutagenicity testing program, LBI instituted the following procedures:

- The test compound was registered in a bound log book recording the date of receipt, complete client identification, physical description and LBI code number.
- Complete records of weights and dilutions associated with the testing of the submitted material were entered into a bound notebook.
- Raw data information was recorded on special printed forms that were dated and initialed by the individual performing the data collection at the time the observations were made. These forms were filed as permanent records.
- All animal tissue S-9 preparations used in the activation tests were taken from dated and pretested frozen lots identified by a unique number. The S-9 preparations were monitored for uniformity and the information recorded.

1. OBJECTIVE

The objective of this study was to evaluate the test compound for genetic activity in microbial assays with and without the addition of mammalian metabolic activation preparations.

2. MATERIALS

A. Test Compound

1. Date Received: December 20, 1976

Description: Colorless liquid labelled Lot AF-74

B. <u>Indicator Microorganisms</u>

Salmonella typhimurium, strains: TA-1535 TA-98 TA-1537 TA-100

TA-1538

Saccharomyces cerevisiae, strain: D4

- C. Activation System (Ames et al., Mutation Research 31:347, 1975)
 - 1. Reaction Mixture

Component	Final Concentration/ml
TPN Giucose-6-phosphate Sodium phosphate (diabasic) MgCl ₂ KCl	4 µmoles 5 umoles 100 µmoles 8 µmoles 33 µmoles
Homogenate fraction equivalent to 25 mg of wet tissue	C.1-O.15 ml 9,000 x g supernatant of rat liver

2. S-9 Homogenate

A 9,000 x \underline{g} supernatant was prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 five days prior to kill.

2. MATERIALS (Continued)

D. <u>Positive Control Chemicals</u>

Table I below lists the chemicals used for positive controls in the nonactivation and activation assays.

TABLE 1

ASSAY	CHEMICALa	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY
Nonactiva- tion	Methylnitrosoguanidine (MNNG)	Water or Saline	BPSb
	2-Nitrofluorene (NF)	${\tt Dimethylsulfoxide}^{\tt C}$	FS.b
	Quinacrine mustard (QM)	Water or saline	FS ^b
Activation	2-Anthramine (ANTH)	Dimethylsulfoxide ^C	BPS ^b FS ^b
	2-Acetylaminofluorene (AAF)	Dimethylsulfoxide ^C	FS ^b
	8-Aminoquinoline (AMQ)	Dimethylsulfoxide ^C	FSb

 $^{^{\}rm a}$ Concentrations given in Results Section

FS = Frameshift

E. Solvent

Either deionized water or dimethylsulfoxide (DMSO) was used to prepare stock solutions of solid materials. All dilutions of test materials were made in either deionized water or DMSO. The solvent employed and its concentration are recorded in the Results Section.

bBPS = Base-pair substitution

 $^{^{\}mathtt{C}}\mathtt{Previously}$ shown to be nonmutagenic

3. EXPERIMENTAL DESIGN

A. Plate Test (Overlay Method*)

Approximately 108 cells from an overnight culture of each indicator strain were added to separate test tubes containing 2.0 ml of molten agar supplemented with biotin and a trace of histidine. For nonactivation tests, at least four dose levels of the test compound were added to the contents of the appropriate tubes and poured over the surfaces of selective agar plates. In activation tests, a minimum of four different concentrations of the test chemical were added to the appropriate tubes with cells. Just prior to pouring, an aliquot of reaction mixture (0.5 ml containing the 9,000 x g liver homogenate) was added to each of the activation overlay tubes, which were then mixed, and the contents poured over the surface of a minimal agar plate and allowed to solidify. The plates were incubated for 48 hours at 37C, and scored for the number of colonies growing on each plate. The concentrations of all chemicals are given in the Results Section. Positive and solvent controls using both directly active positive chemicals and those that require metabolic activation were run with each assay.

B. Recording and Presenting Data

The numbers of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and the solvent controls are provided as reference points. Other relevant data are provided on the computer printout.

^{*}Certain classes of chemicals known to be mutagens and carcinogens do not produce detectable responses using the standard Ames overlay method. Some dialkyl nitrosamines and certain substituted hydrazines are mutagenic in suspension assays, but not in the plate assay. Chemicals of these classes should be screened in a suspension assay.

TABLE 1-8-2

LITTON BIONETICS. INC.

4...SUBBABY_UE_PLAIE_IESI_BESULIS

NAME OR CODE DESIGNATION OF THE TEST COMPOUND: DIMP LOT AF-74 SOLVEHT: DMSO TEST DATE: JAN- 3+ 1977 CONCENTRATIONS ARE GIVEN IN MICHOLITERS (UL) OR MICHOGRAMS (UG) PEH PLATE.

1331	SPECIES	LISSUE		B E V E B I	A_N_1_S_0	1A=1535 HA=1531 IA=1538 1A=28	I E IA-100	04
1521				7	7 1	•	4	1
HUNACITYA I 19N						•		76
10ata00 km/m mo	1 1	!	12	54	20	25	211	062
POSTITVE CONTROL "	į	!	×1000	363	>1000			
LEST COMPOUND			į	7	ř	52	125	12
0.00100 UL	-	1 1	* 7	,		**	101	23
U 001000	!	:	32	7 7	9 4	5 6	101	22
0.10000 UL	!	;	3.	9 7		0	80	21
1.00000 UL	1 1	t 1	25	7 7	24	` =	20	m
5.00000 UL	!	1 1	27	*/	ť	;	ţ	
ACITYAITON								
1	140	3771	20	33	27	37	901	621
SOLVENT CONTROL	¥ ¥	LIVER	1000	285	× 1000	×1000	0001	663
IF SI COMPOUND			:	•	đ	3.8	114	68
0.00100 UL		LIVER	53	- (. 7	75	117
0.01000 UL		LIVER	6	5.3	4 4	: 7	140	125
0.10000 UL		LIVER	0.	9 (2 5		153	118
1.00000 UL		LIVER	. 0 ;	. .	y &	36	116	113
17 00000 PT		L. I VER	52	2	•			

100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 HICHUHOLES/PLATE 2.5 %/PLATE ANTH AMO AAF AAF ANTH DHNA 1A-1535 1A-1537 1A-1538 1A-98 TA-100 B4 S0LVENF * 2 * 10 UG/PLATE 10 UG/PLATE 100 UG/PLATE 100 UG/PLATE 10 UG/PLATE 2.5 %/PLATE * IBY. CONVEHIANTS PLR PLATE HRING OH NF NF NF HNNG HNNG 1A-1535 1A-1537 1A-1538 1A-98 1A-100 84 *

5. INTERPRETATION OF RESULTS AND CONCLUSIONS

The test compound was examined for mutagenic activity in a series of in vitro microbial assays employing Salmonella and Saccharomyces indicator organisms. The compound was tested directly and in the presence of liver microsomal enzyme preparations from Aroclorinduced rats. The following results were obtained:

A. Toxicity

The compound was tested over a series of concentrations such that there was either quantitative or qualitative evidence of some chemically induced physiological effects at the high dose level. The low dose in all cases was below a concentration that demonstrated any toxic effect. The dose range employed for the evaluation of this compound was from 0.001 μ l to 5 μ l per plate.

B. <u>Nonactivation Test Results</u>

The results of the test conducted on the compound in the absence of a metabolic system were all negative.

C. Activation Test Results

The results of the tests conducted on the compound in the presence of the rat liver activation system were all negative.

D. Conclusions

The test compound, DIMP Lot AF-74, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

Submitted by:

David J. Brusick, Ph.D. Director

Department of Genetics

Reviewed by:

Robert J., Weir, Ph.D.

Vice President

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test chemical and the cells are incubated in the overlay for 2 to 3 days, and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the compound and the cells in the overlay permits constant exposure of the indicator cells for 2 to 3 days.

A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test chemical, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol normally employs several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria.

B. Dose Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test chemical may kill any mutants that are induced, and the compound will not appear to be mutagenic.

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

C. <u>Control</u> Tests

Positive and negative control assays are conducted with each experiment and consist of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consist of the test compound solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data are compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

D. <u>Evaluation Criteria for Ames Assay</u>

Because the procedures used to evaluate the mutagenicity of the test chemical are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

1. Strains TA-1535, TA-1537, and TA-1538

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the lowest increase equal to twice the solvent control value is considered to be mutagenic.

2. Strains TA-98, TA-100, and D4

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-100 and two to three times the solvent control value for strains TA-98 and D4 is considered to be mutagenic. For these strains, the dose response increase should start at approximately the solvent control value.

3. Pattern

Because TA-1535 and TA-100 were both derived from the same parental strain (G-46) and because TA-1538 and TA-98 were both derived from the same parental strain (D3052), there is a built-in redundancy in the microbial assay. In general the two strains of a set respond to the same mutagen and such a pattern is sought. It is also anticipated that if a

6. EVALUATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

D. <u>Evaluation Criteria for Ames Assay</u>

3. Pattern

given strain, e.g. TA-1537, responds to a mutagen in nonactivation tests it will generally do so in activation tests. (The converse of this relationship is not expected.) While similar response patterns are not required for all mutagens, they can be used to enhance the reliability of an evaluation decision.

4. Reproducibility

If a chemical produces a response in a single test that cannot be reproduced in one or more additional runs, the initial positive test data loses significance.

The preceding criteria are not absolute and other extenuating factors may enter into a final evaluation decision. However, these criteria are applied to the majority of situations and are presented to aid those individuals not familiar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established.

E. Relationship Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames Salmonella/microsome test is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relationships have been demonstrated between these two end points. The results of comparative tests on 300 chemicals by McCann et al. (Proc. Nat. Acad. Sci. USA, 72:5135-5139, 1975) show an extremely good correlation between results of microbial mutagenesis tests and in vivo rodent carcinogenesis assays.

All evaluation and interpretation of the data presented in this report are based only on the demonstration of or lack of mutagenic activity.

STANDARD OPERATING PROCEDURES

To ensure an accurate and reliable mutagenicity testing program, LBI instituted the following procedures:

- The test compound was registered in a bound log book recording the date of receipt, complete client identification, physical description and LBI code number.
- Complete records of weights and dilutions associated with the testing of the submitted material were entered into a bound notebook.
- Raw data information was recorded on special printed forms that were dated and initialed by the individual performing the data collection at the time the observations were made. These forms were filed as permanent records.
- All animal tissue S-9 preparations used in the activation tests were taken from dated and pretested frozen lots identified by a unique number. The S-9 preparations were monitored for uniformity and the information recorded.

PART I - SECTION C

PHARMACOKINETICS AND METABOLISM

DIMP

LBI PROJECT NO. 10734-02

SUMMARY

Greater than 90% of the radioactivity of administered labelled diisopropyl methyl phosphonate (DIMP) to rats, mice and dogs was recovered in the urine. In all three species about 95% of recovered radioactivity comes from a single highly polar component. This component is identified as isopropyl-methyl-phosphonic acid (IMPA). The identification is based on comparing the metabolite with authentic IMPA by three different chromatographic techniques; namely, thin layer chromatography, ion chromatography and gas liquid chromatography coupled with mass spectrometry.

$$H_3C^*$$
 P_1^0 $+$ $i-P_1O^*$ OH $i-P_1O^*$ OH $i-P_1O^*$ OH

1. Objective:

The purpose of this study was to isolate and identify the major metabolite of diisopropyl-methyl $(-*CH_3)$ phosphonate $(^{14}C-DIMP)$ in the urine of rats, mice and dogs, following a single oral dose.

2. Material:

DIMP (Lot No. 922-057), labelled in the methyl position with $^{14}\text{C},$ was synthesized by New England Nuclear Corporation, Boston Massachusetts. The specific activity was 3.07 $_{\text{H}}\text{Ci/mM}$ and the purity was greater than 99% as indicated by gas and thin-layer chromatography.

IMPA was supplied by Dr. Leon Schiff of DRDAR, Edgewood, Aberdeen Proving Grounds, Maryland. The compound was analyzed for purity by thin-layer chromatography using three different solvent systems. The results showed purity > 97%.

The urine collected in the first phase of the study (1976) was used here for investigating the metabolites. The urine was stored frozen at -20°C. The urine was rechecked chromatographically and no significant changes in the initial pattern were found, indicating that no appreciable change has occurred over the storage period.

Rat and mouse 0-24 hours urine was pooled and used in this phase. Dog 0-24 hours urine from 2 different animals was used interchangeably.

All solvents used were analytical grade reagents. TLC plates precoated with silica gel G, as well as cellulose, were obtained from Brinkman Instrument Inc, Westbury, New Jersey.

3. Experimental Design:

A. Extraction of radioactivity from urine:

(1) Extraction of DIMP from urine:

Two to five ml of 0-24 hour urine of all three species, as well as coatrol urine spiked with 14C-DIMP, were extracted with three equal volumes of chloroform.

(ii) Extraction of DIMP metabolites from urine:

In another experiment, urine from the three species was acidified with conc HCl (2 to 3 drops per ml) and extracted with 3 equal volumes of water saturated 1 Butanol.

(iii) Percentage distribution of radioactivity between two phases:

In both cases, after separating the two phases by centrifugation, 50 μ l aliquots of each phase were placed in a scintillation vial with 20 ml of Hydromix (liquid scintillation cocktail for aqueous samples, Yorktown Research, New Jersey) and counted. The percentage distribution of radioactivity between the two phases was then calculated.

B. Thin Layer Chromatography:

Ten to thirty microliter samples containing 3000 to 5000 cpm were spotted on TLC silica gel G as well as cellulose plates. Several solvent systems were used for developing the TLC plates. The radioactive spots on the TLC plates (5 x 20 cm) were localized by scanning with a radiochromatogram scanner, (Model 7201, Packard Instrument Co.) at appropriate settings for time constant (10 seconds), linear range (300 cpm) and chart speed (1.0 cm/min). Radioactivity present in each peak area was quantitated by a disc integrator. Further localization was made by placing the plates on Kodak XR-1 x-ray film in an 8" x 10" cassette for 1 to 2 weeks. The films were developed and copies of the positive spots were made. In order to quantitate activity, the spots were scraped directly into scintillation vials containing 15-20 ml of scintillation fluid. The samples were counted and the radioactivity was calculated as percent in each zone.

C. Enzyme Hydrolysis:

To one ml of urine from each of the three species, l ml of 0.1M acetate buffer (pH 5.0) was added, as well as 0.1 ml of glusulase containing 176,133 units/ml ß glucuronidase and 42,048 units sulphatase (Lot No. KN409A, Endo Laboratories, Garden City, New York). The mixtures were incubated for 24 hours at 37°C in a shaking water bath.

The hydrolyzed urine was then subjected to thin layer chromatography as described above. The chromatographic pattern was compared to non-hydrolyzed samples of the same urine.

D. Isolation & Purification:

One ml of 0-24 hour rat DIMP urine, as well as control rat urine, were each spread across a 20 x 20 cm, 2 mm thick silica gel plate, one inch from the base.

The plate was developed in 1-Butanol:Water:Acetic acid (5:4:1). (The solvents were thoroughly mixed in a separatory funnel, the phases were allowed to separate and the aqueous layer was discarded.)

The radioactivity was first visualized by radio-autography using Kodak XR-1 X-ray film. The radioactive zone was then localized and scraped off from the plate into a 50 ml centrifuge tube and extracted with 3 x 15 ml of methanol. All the methanol extracts were combined and centrifuged at 9000 rpm and filtered through a 0.45 micron millipore filter. The methanol was then taken to dryness at 40°C under a stream of nitrogen. An equivalent zone from the plate with the control urine was scraped, extracted, filtered and taken to dryness.

E. Preparing the methyl derivative of the major metabolite.

Approximately 2 millimoles (250 mg) of MNNG (N-methyl-N'-nitro-N-nitroso guanidine) were placed in the inside tube of the diazomethane generator (Aldrich) with half a milliliter of water to dissipate any heat generated. Ether (≈ 3 ml) was placed in the outside tube and the two parts were assembled with a butyl-0-ring and held with a pinch-type clamp. The lower part was immersed in an ice bath and about 0.6 ml of 5 N NaOH was injected dropwise through the silicone rubber septum by a syringe. The diazomethane thus formed was collected into the ether layer.

Two ml of diazomethane in ether prepared as above were added to each of three separate vials, one containing 2 microliters of neat IMPA, the second had the fractionated metabolite as described in section 'D', and the third had the fractionated control (section 'D').

The vials were capped and allowed to stand overnight. The ether was then removed under a stream of nitrogen and all 3 vials were reconstituted in 1.0 ml of methanol.

Gas Chromatography/Mass Spectrometry:

A Finnigan GC/MS model 4000 equipped with 6110 data system was used to acquire both EI & CI spectra for the methyl derivatives of IMPA, the urinary major metabolite and urine control. These were prepared as described in section E (Experimental Design).

A 6' x 2 mm I.D. glass column packed with 10% FFAP on 80/100 Chromosorb W AW was used. The other GLC conditions were set as follows: flow rate was held at 20 ml/min of He, the injector temperature was set at 170°C, the separator at 200°C and the transfer line at 210°C. The column temperature was held at 100° C for 2 minutes, then temperature programmed to 170° C at 5° C/min.

The mass spectometer was tuned and calibrated with FC-43. The following conditions were used: electron energy - 70 ev, emission current - 250 mA, E.M. voltage - -1700 v, ion source temperature = 200° C in EI mode and 150° C at isobutane CI mode. Under computer control, the mass spectometer was scanned repetitively from m/e 40 to 200 in EI mode and m/e 60 - 250 in CI mode at a rate of 2 sec/scan.

After the sample was injected to the gas chromatograph, the solvent was diverted for 110 sec. and the data acquisition was started at 120 sec.

Ion Chromatography

For the analysis of the major metabolite by ion chromatography, it was necessary to prepare a sample of non-radioactive metabolite. A rat weighing 225g was dosed with 1 ml of non-radiolabeled DIMP in PEG 400 (48.8 mg/ml). The rar was maintained in a Roth metabolism chamber with food and water ad lib. for a 24-hr period. A total of 5 ml of urine was collected.

A 0.25 ml aliquot (1.7 mg IMPA) of the urine was streaked across a TLC plate 1 inch from the bottom edge. On each end of the plate a marker (aliquot of a 24-hr urine specimen from a rat administered 1 4 C-DIMP) was also spotted. The TLC parameters were:

Plate: 200 micron silica gel 60 F-254, 20 x 20 cm.

Solvent system: n-propanol/benzene/diethyl ether/ethanol/ 2N NH₄OH (30/10/20/20)

Development: 107 mm from origin.

The two ends (sides - edges) of the plate containing the radioactive marker were removed with a glass cutter and scanned in a Packard Model 7201 Radiochromatogram Scanner. The Rf of the radiolabeled metabolite was determined to be 0.38.

The TLC plate was reassembled and the area at Rf 0.38 corresponding to the non-radiolabeled metabolite was scraped off. One-half of the material, containing approximately 850 μg of suspected IMPA, was eluted by shaking with three 5.0 ml portions of deionized distilled water. The material was centrifuged after each shaking and the supernatents further clarified by passing through a 0.45 micron Millipore filter.

A control urine sample (0-24 hour rat urine) was processed similarly and the area corresponding to Rf of the metabolite was scraped and treated in the same way.

A third sample was scraped from a silica gel plate developed in the same solvent system but with nothing applied on it.

RESULTS AND DISCUSSION:

A. <u>Extraction</u>:

Table I summarizes the results of chloroform extraction experiment.

Table I

Percent ¹⁴C Radioactivity Extracted into Chloroform From 0-24 Hour Mouse, Rat, and Dog Urine After Administration of a Single Oral Dose of 225 mg/kg of DIMP-¹⁴C

Sample	% ¹⁴ C Extracted In Chloroform	% ¹⁴ C Remaining In Urine	Total % 1°C Recovered
Chloroform Extract Control Urine Spiked With DIMP-1 C	98.37	1.63	100.00
Chloroform Extract 0-24 Hour Mouse Urine	3.23	95.97	99.20
Chloroform Extract 0-24 Hour Rat Urine	2.80	96.30	99.10
Chloroform Extract 0-24 Hour Dog Urine	1.10	99.00	101.13

As shown in Table I, over 98% of the radioactive DIMP was extracted to the chloroform layer. However, the low percentage of radioactivity present in the chloroform extract of the 0-24 hr urine from each of the three species indicates that most of the DIMP was metabolized to more polar compound(s) and remained in the aqueous phase.

The results of the water saturated butanol extract (Table I!) shows a marked similarity across the three species. It also reflects the highly polar nature of the metabolite.

Table II

Sample	%14C Extracted in water sat. 1-butanol	%14C Remaining in urine
Dog (0-24 hour urine)	88.7	11.3
Mouse (0-24 hour urine)	82.8	17.2
Rat (0-24 hour urine)	87.1	12.9

B. Fractionation of Radioactive components by TLC.

Distribution of Radioactivity:

Urine from rat, mouse and dog containing approximately 5000 cpm were each spotted on a 5 x 20 cm silica gel plate (0.25 mm thick). The plates were then developed in n-butanol: H_2O :acetic acid. Table III summarizes the findings of these experiments.

Table III

THIN LAYER ANALYSIS OF 24-HOUR URINE SAMPLES FROM RAT, MOUSE AND DOG DOSED WITH 14-C-DIMP

Species	Metabol (IMP/ Rf	A)	Metabol ¹ Rf	ite B	Metabol Rf	ite C		lite D
Rat	0.12	93.2	0.31	2.7	0.56	2.6	0.55	1.5
Mouse	0.17	95.6	0.36	3.5	ND	ND	0.72	0.9
Dog	0.15	99.6	0.31	0.4	סא	ND	ИD	ND

System: Silica Gel: n-butanol/water/acetic acid (50/40/10)

In this system, 14C-DIMP had an Rf of 0.60.

Again the results here stress the similarity across the species at least as far as the major metabolite is concerned.

Relation of major metabolite to IMPA

Further thin layer work was done using different solvent systems and different stationary phases. Urine from species containing approximately 5000 cpm were spotted on both 5 x 20 cm (cellulose and silica gel) plates at the origin, one inch from the base. Five μl of 5% IMPA aqueous solution were spotted alongside the urine. The plates were then developed by two different solvent systems. The metabolite was localized by radioscanning. IMPA was localized by iodine vapor.

		Table IV					
_	Do	g	Mot	ıse	R	at	
TLC System	14c(Rf)	IMPA(Rf)	14 _{C(Rf)}	IMPA(R _f)	14 _{C(Rf)}	IMPA(R _f)	
Cellulose plate Solvent system A	0.42	0.45	0.40	0.42	0.42	0.47	
Silica gel plate Solvent system B	0.29	0.32	0.30	0.34	0.33	0.34	

Solvent system A: n-butanol: n-propanol: 1N NH40H (3:1:1)
Solvent system B: benzene: 1-propanol: ethanol: ether: 2N NH40H (1:3:2:2:2)

Here again the R_f values show the species similarity and that the metabolite is identifiable as IMPA.

c. <u>Enzyme hydrolysis</u>:

An experiment was set up as described in Section C to determine if the metabolites were conjugated to glucuronic acid. The urine, before and after incubation was spotLed on silica gel G and developed in n-butanol: H_2O : acetic acid (5:4:1). No difference in the pattern of radioactivity distribution was found. Extraction with CHCl $_3$ before and after enzyme incubation showed no appreciable difference in percent distribution of radioactivity.

This is taken as good evidence that glucuronic acid and sulphate conjugation do not take place in DIMP metabolism.

d. Ion Chromatography:

The samples prepared as described above (experimental design Section E) were sent to Dr. Leon J. Schiff of DRDAR-CLB-CA, Bldg. 3220, Edgewood Area, Aberdeen Proving Ground, Md. 21010, for ion chromatographic analysis.

The ion chromatograms obtained are shown in figures 1 thru 4. Fig. 1 is the ion chromatogram of 5.0 ppm IMPA standard in 0.005M sodium borate buffer; fig. 2 is that of control urine silica gel extract; fig. 3 is blank silica gel extract and fig. 4 is the ion chromatogram of DIMP 0-24 hrs urine metabolite, silica gel TLC extract.

Figure 1

Figure 2

Figure 3

Figure 4

It is evident that only the DIMP metabolite sample showed a peak which matched the retention time of IMPA standard at 2.6-2.8 min region. This provides more evidence that the major metabolite isolated from rat urine is IMPA.

e. Gas Chromatography/Mass Spectrometry Identification of Major Metabolite

Attempts had been made to analyze intact IMPA gas chromatographically without any success. This may be due to its high polarity and low volatility which were overcome by forming a methyl derivative with diazomethane.

$$H_3C^*$$
 0 CH_2N_2 P 0 CH_3C^* 0 CH_3

IMPA standard, fractionated rat urine extract and fractionated urine control extract were methylated under the same conditions as described in Section D. All of them were submitted to both El and isobutane Cl GC/MS.

Under electron impact conditions, comparison of the total ion current (TIC) trace obtained from the methylated major metabolite isolated from rat urine (Fig. 5) with IMPA methyl ester (Fig. 6) and with methylated urine control (Fig. 7) clearly indicated that the peak with a retention time of 8.3 min (scan no. 197) from the methylated major metabolite was isopropyl methyl methyl phosphonate (IMMPA). The same peak was absent in the control urine. The El mass spectrum (Fig. 8) taken at that peak was in good agreement with that of the IMMPA standard (Fig. 9). Although the molecular ion (m/e 152) intensity in both cases was quite low, the same fragmentation pattern and other characteristic ions confirmed the identity of the major methylated metabolite as IMPA methyl ester. The ions at m/e 137 and m/e 93 correspond to (M - CH₃)+ and M-OCH(CH₃)₂+ respectively. The second strongest ions at m/e 111 may arise from double hydrogen rearrangement ("McLafferty + 1" rearrangement):

409905: 5 UL HETABOLITE EXTRACT CERIVATIZED EI GC/MS

Fig. 5

409904; IMPA METHYL ESTER: STD.; EI GC/MS

Fig. 6

409906: S UL CERIVATIZED CONTROL URINE EI GC/ MS

Fig. 7

#12902:ME DERIY OF METREGLITE CI (ISD-8)
- EKG-169

Fig. 10

412901: CI (ISO-8) ME DERIV OF IMPA -+ 2MG - 8KG#189

Fig. 11

\$12903; HE CERIV OF CONTROL URINE CI (ISO-8)

Fig. 12

Figure 13

Figure 14

The ions at m/e 79 may be attributed up to a loss of CH_3OH from the m/e lll ions:

Further evidence for the identity of the major metabolite as IMPA was provided by isobutane CI GC/MS. The super-imposition of the retention time of the peak from the methylated major metabolite (Fig. 10) with that from the IMMPA (Fig. 11) was in excellent agreement with the EI GC/MS data. Once again, that peak was totally absent in the control urine (Fig. 12). CI mass spectrum from the methylated major metabolite (Fig. 13) and that from IMPA methyl ester (Fig. 14) were almost identical. The quasimolecular ion m/e 153, $(M + H)^+$, in both spectra unambiguously confirmed it was IMPA methyl ester.

The ions at m/e 137 $(M + H = CH_4)^+$ and m/e 111 share the same structure as the corresponding ions formed i to El mode.

5. Conclusion

Based on the R_f value on two different TLC plates and three different developing solvent systems, ion chromatograms, GLC retention time as well as El and isobutane Cl mass spectra, it is evident that the major metabolite isolated from the urine of rats dosed with DIMP can be identified as IMPA (isopropyl methyl phosphonic acid).

PART I - SECTION D

TERATOLOGY IN RATS

DIMP

LBI PROJECT NO. 10734-04

SUMMARY

The test material was administered in the diet at doses of 100, 300 and 3000 ppm to pregnant female rats on days 6 through 15 of gestation. There were no changes in the dams or among the fetuses that indicated an adverse compound-related effect.

1. OBJECTIVE

The objective of this study was to investigate the effect of the test material on fetuses during the period of organogenesis when administered to the pregnant rat.

2. MATERIAL

Refer to Part I - Section A.

3. EXPERIMENTAL DESIGN

Female rats [CRL:COBS CD (SD) BR] were obtained from Charles River Breeding Laboratories, Inc., Portage, Michigan, and acclimated to laboratory conditions for one week. At that time, each female was paired with a sexually mature male of the same strain from the same supplier. The females were examined daily for the presence of a copulatory plug. The presence of such a plug was taken as evidence of mating and designated as day 0 of gestation. The female rats were II weeks of age at the time of the first dose (March 3, 1977). Mated female rats were assigned sequentially to treatment groups and identified by cage cards as indicated on the following page.

3. EXPERIMENTAL DESIGN (Continuea)

Group No.	Female Rat Numbers	Dose in Diet (ppm)
1 2	4720 - 4739 4740 - 4759	0 (Control) 100
3	4760 - 4779	300
4	4780 - 4799	3000

These doses were approved by Dr. E. Ross Hart of Litton Bionetics, Inc., based on previous studies.

The female rats were individually housed in wire cages in a temperature-controlled animal room with artificial illumination automatically controlled to provide a 12-hour light cycle. No other species were housed in the animal room during the course of the study. No other chemicals were under concurrent investigation in the animal room. The appropriate diets and fresh water were provided ad libitum. The test material was incorporated into the basal diet (Purina Laboratory Chow Meal) on gestation days 6 through 15 so as to provide the dose levels indicated previously. The test material (1, 3 or 30 g) was suspended in 100 ml of polyethylene glycol 400 and blended with 10 kg of the basal diet in a twin shell blender for 15 minutes. The control diet contained 100 ml of PEG 400 per 10 kg of meal.

The mated female rats were weighed on days 0, 6, 16 and 20 of gestation. Food consumption was measured during the periods 0-6, 6-16 and 16-20 days of gestation. The female rats were observed daily for changes in general appearance, behavior and condition.

On day 20 of gestation, the adult female rats were anesthetized with chloroform and the visceral and thoracic organs examined. The uterus was removed and opened. The number of implantation sites and their placement in the uterine horns, live and dead fetuses, and resorption sites were recorded. The fetuses were removed, examined externally for abnormalities, weighed and the crown to rump length was measured.

One third of the fetuses of each litter were fixed in Bouin's fluid. These were later examined for changes in the soft tissues of the head, thoracic and visceral organs. The remaining fetuses of each litter were examined for skeletal abnormalities following staining with Alizarin Red S.

The uterus and ovaries from the adult females were preserved in 10% formalin for possible future examination.

4. RESULTS

No deaths occurred among the adult female rats. Except for female rat number 4735 (control), these animals were normal in appearance throughout the study. Rat number 4735 delivered a litter of pups on her calculated day 19 of gestation. Because the pups appeared to be full term, the assignment of day 0 of gestation was judged to be erroneous, possibly due to the retention of the copulatory plug by the female. Although the data on this litter was included in Table 2 of the Appendix, it was not used in the calculations or summary.

Mean body weight and food consumption, as shown in the Appendix on Table 1, indicated no marked difference between treated and control pregnant rats (p < 0.05 Dunnett's t-test, Americal Statistical Assn., 50: 1096-1121, 1955).

Based on the observations of the uterine contents obtained on day 20 of gestation, the test material did not produce any effect. These data have been summarized in Table A and the details have been tabulated in Table 2 included in the Appendix. Although a 2 x 2 contingency with Yate's correction (Hollander and Wolfe) analysis of the total number of implantation sites in both the right and left horns in the 300 ppm dose level shows a significant decrease from the control group, a Wilcoxon Rank Sum analysis (Snedecor and Cochran Statistical Methods, Iowa State Press, Ames, Iowa, pp. 215-223, 1974) did not indicate a significant difference (p < 0.05) and this effect was judged to be a statistical artifact. Examination of the internal organs of the females revealed no abnormalities except for an ovarian cyst in female rat number 4774 (300 ppm). This change was not judged to be related to treatment.

Examination of the offspring at delivery revealed subcutaneous hematomas on two fetuses of the control group (4729 and 4738) and on one fetus of the 3000 ppm dose group (4797). In addition, two fetuses of female number 4769 (300 ppm) were dead, although, apparently at a normal stage of development on day 20 of gestation; and one fetus of female rat number 4740 (100 ppm) had a short lower jaw. This last abnormality was also observed at examination of cleared specimens as a malformation of the maxilla and mandible.

TABLE I-D-3

TABLE A
SUMMARY OF REPRODUCTION PERFORMANCE

		DOSE (1	opm)	
	0	100	300	3000
Pregnancy Ratio (Pregnant/Bred)	14/20	14/20	11/20	15/20
<pre>Implantation Sites (Left Horn/Right Horn)</pre>	86/67	78/90	50 ^b /68 ^b	91/91
Resorptions/Live Fetuses	13/140	16/152	7/110	9/173
Average Fetal Weight (G) ^a	3.7	3.9	3.8	3.9
Average Fetal Length (cm) ^a	3.1	3.1	3.1	3.1
Mean Live Litter Size (pups)	11	11	10	12

^aBased on average of litter means

 $[^]b p$ < 0.05 $\,$ 2 x 2 contingency table with Yate's correction; not significant p > 0.05 Wilcoxon Rank Sum (LSA)

4. RESULTS (Continued)

Examination of the Bouin's fixed specimens revealed one fetus of female rat number 4732 (control) with posterior displacement of the left kidney. There were no other changes observed. The sex and number of fetuses examined for soft tissue changes were as follows:

Treatment	Males	<u>Females</u>
0 (Control)	26	27
100	21	29
300	17	20
3000	30	28

The results of the skeletal examination of the cleared and stained fetuses have been detailed in Appendix Table 3. Most of the changes noted, while not strictly normal, are frequently observed in 21 day old rat fetuses of this strain and source in our laboratory.

Those findings not commonly encountered have been so indicated in Table 3. The results have been summarized below:

Dose	Number Examined	Number Normal	Number with Common Skeletal Variations	Number with Unusual Changes
Control	100	73	27	0
100 ppm	102	69	33	2
300 ppm	75	58	15	4
3000 ppm	114	67	45*	3

^{* (}p < 0.05 2 x 2 contingency table)

There was a slight increase in the ratio of abnormal/normal fetuses at the high level as compared to the control. However, analysis of these data using Wilcoxon Rank Sum analysis which employs the litter as the basic unit for comparison, did not indicate a statistically significant effect. Furthermore, the nature of the changes observed did not suggest a specific area of involvement. Therefore, the changes observed were not judged to indicate a drug-induced teratogenic effect at this dose.

5. CONCLUSION

Administration of the test material to female rats by incorporation into the diet at 100, 300 and 3000 ppm produced no effect on the pregnant dams. There was no evidence of compound-induced terata, variation in sex ratio, embryo toxicity or inhibition of fetal growth and development.

Submitted By:

Director

Department of Toxicology

Guard S. Makrio

Pelile 8/18/19

1/30/79

Animal Resources Supervisor:

Desmond E. Davis Certified Laboratory Animal Technologist

> Susan L. Makris, B.S. Toxicology Technician

Reviewed By:

Vice President

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 1 BODY WEIGHT AND FOOD CONSUMPTION OF PREGNANT RATS

1-6 DAY 6-16 DAY 16-20	18 25 1 5	0.6 5 13	20 23 2 4 0.5 1.0
DAY 0	20	2.2	22 9 13.3
DAY 20	337 28	7.7	346 40 10.6 14
DAY 16	281 22	13	299 27 7.3 14
DAY 6	240 19	13.4 4.	245 16 4.2 14
DAY O	214	4.6 13	219 17 4.5 14
	O (Control) Mean SD	SE u	100 Mean SD SE n
	DAY 0-6 DAY 6-16	Mean 214 240 281 337 20 DAY 6-16 SD 17 19 22 28 7 1	Mean 214 240 281 337 20 18 SD 17 19 22 28 7 1 SE 4.6 5.4 6.1 7.7 2.2 0.6 n 13 13 13 10 5

^aCalculations do not include non-pregnant females

The state of the s

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 1 (Continued)
BODY WEIGHT AND FOOD CONSUMPTION OF PREGNANT RATS

MEAN DAILY FOOD CONSUMPTION IN GRAMS ^a	Y 6-16 DAY 16-20	. 25 4 1.1	26 3 0.7
MEAN DAILY FOOT	DAY 0-6 DAY	18 19 2 3 0.7 1 17 7	19 21 1 2 0.3 0.8 15 8
	DAY 20	341 34 10.1	346 29 7.5 15
WEIGHTS IN GRAMS ^a	DAY 16	286 25 7.5 11	295 19 4.8 15
N WEIGHTS	DAY 6	242 19 5.8 11	247 13 3.5
MEAN BOD	DAY 0	217 19 5.6 11	217 15 3.9 15
(E		Mean SD SE n	Mean SD SE n
DOSE (ppm)		300	3000

^aCalculations do not include non-pregnant females

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 2

OBSERVATIONS AT CAESAREAN SECTION

DOSE - Control (0 ppm)

	MEAN LENGTH (cm)	•	: :	3.0	3.2	1 1	3.0	3.0	2.9	3.2	3.1	3.1	1 .	3.1	t !		3.4	3.1	2.9	3.2	3,3	3.1 0.1 0.04 13
FETUSES	MEAN WEIGHT (gram)	1	! !	3.7	3.9	1 1 1	3.7	4.0	3.5	3.6	3.6	3.5		3.6		: 1	5,9	3.7	3.7	3.6	4.5	3.7 0.3 0.07
VIABLE FE	NUMBER	0	0	9	9	0	73	12	\$	13	17	11	0	15	0	0	13	7	ታ	13	2	140 11 5 1.3
DEAD	FETUSES	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0
RESORPTION	SITES	0	0	2	က	0	_	0	~~	2	0		C		0	0		0		,	0	13
ON SITES	RIGHT HORN	0	0	വ	ഹ	0	Q	7	2	9	7	2	0	ō	0	0	J.	9	4	9	2	29
IMPLANTATION SITES	LEFT HORN	0	0	က	4	0	æ	വ	က	6	10	7	0	10	0	C	o	∞	=	œ	0	98
FEMALE	NUMBER	4720	4721	4722	4723	4724	4725	4726	4727	4728	4729	4730	4731	4732	4733	4734	4735+	4736	4737	4738	4739	Total Mean* SD SE n

*Mean, SD and SE do not include non-pregnant females +Delivered prior to sacrifice (day 19), not included in Mean, SE and SE

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 2 (Continued)

OBSERVATIONS AT CAESAREAN SECTION

DOSE - 100 ppm

MEAN LENGTH (cm)	3.0	3.2	25.0	33.50 5.120	V	0 0 8 0 0 4	3.1 0.2 0.05 14
			•				
FETUSES MEAN (gran	3.4	3.9	3.3		. 44 4	4.0.0 6.0.4	3.9 0.5 1.
VIABLE F NUMBER	-00	0 4 0			+ o E o Z		152 11 5 1.4
DEAD FETUSES	000	000	000	0000	0000	0000	0
RESORPTION SITES	-00	000		01	~~~00	سما منما سنا (ر	91
ION SITES RIGHT HORN	000	.000	0 E 0	ဝကေးပ	o / / O d	, a 8 0	06
IMPLANTATION SITE	N O C	0020	04.	0 / O I	n ⊖ ∞ ⊖ u	യയര	78
FEMALE NUMBER	4740 4741 4743	4742 4743 4744 4745	4746 4747 4748	4749 4750 4751	4752 4753 4755 4755	4757 4758 4759	Total Mean* SD SE n

*Mean, SD and SE do not include non-pregnant females

and establishment from the state of the

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 2 (Continued)

OBSERVATIONS AT CAESAREAN SECTION

DOSE - 300 ppm

ANTATION SI 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SITES RESORPTION DEAD VIABLE FETUSES GHT HORN SITES FETUSES NUMBER MEAN WEIGHT MEAN LENGTH (Gram) (Cm)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 2 110 10 3.8 4 0.6 1.1 0.18
←: (P=)	ION SITES RIGHT		7 89

*Mean, SD and SE do not include non-pregnant females

LITTON BIONETICS, INC. PROJECT NO. 9004

Q	
Continued)	
_	
TABLE 2	
1	

SECTION	
CAESAREAN	
AT	
VATIONS	
OBSERVA	

шdd
Q.
3000
=
=
(L)
1
بين
JOSE
0
_

LENGTH	
MEAN (cm)	
FETUSES MEAN WEIGHT (gram)	3.4 3.4 3.7 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
VIABLE F NUMBER	8 0 4 0 5 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DEAD FETUSES	000000000000000000000000000000000000000
RESORPTION SITES	0000-0000-0000-0 6
MPLANTATION SITES EFT HORN RIGHT HORN	2000 2000 2000 2000 2000 2000 2000 200
IMPLANTA LEFT HOR	-0804658808008V0-0000
FEMALE NUMBER	4780 4781 4783 4783 4784 4785 4786 4790 4791 4792 4793 4794 4798 4799 4799 4799 70 tall Mean* SE

*Mean, SD and SE do not include non-pregnant females

TABLE 3
OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - CONTROL

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4722	4	4 . No visible skeletal abnormalities.
4723	4	3 No visible skeletal abnormalities. 1 Unilateral rib 14.
4725	9	 No visible skeletal abnormalities. Reduced ossification of interparietal bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone.
4726	8	 No visible skeletal abnormalities. Reduced ossification of interparietal bone, reduced ossification of hyoid bone. Bilateral rib 14.
4727	2	<pre>No visible skeletal abnormalities. Non-fused thoracic vertebral centra.</pre>
4728	8	7 No visible skeletal abnormalities.1 Unilateral rib 14.
4729	11	 No visible skeletal abnormalities. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, hyoid not ossified, reduced ossification of parietal bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, hyoid not ossified. Reduced ossification of interparietal bone, reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone.

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE- CONTROL

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4730	7	5 No visible skeletal abnormalities. l Hyoid not ossified. l Unilateral rib 14.
4732	10	 No visible skeletal abnormalities. Hyoid not ossified, reduced ossification of interparietal bone, reduced ossification of supraoccipital bone. Reduced ossification of interparietal bone. Reduced ossification of hyoid bone. Reduced ossification of interparietal bone, reduced ossification of hyoid bone, unilateral rib 14.
4735	9	8 No visible skeletal abnormalities. 1 Bilateral rib 14.
4736	9	9 No visible skeletal abnormalities.
4737 ·	9	7 No visible skeletal abnormalities.2 Reduced ossification of right rib 13.
4738	9	 4 No visible skeletal abnormalities. 1 Reduced ossification of interparietal bone, reduced ossification of hyoid bone. 1 Hyoid not ossified. 1 Non-fused thoracic vertebral centra. 1 Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone. 1 Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone.
4739	1	1 Reduced ossification of left rib 13.

TABLE I-D-6 (Continued)

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE- 100 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS	
4740	1	*1 Maxilla malformed, mandible malformed, ur lateral rib 14.	ni-
4744	9	 No visible skeletal abnormalities. Bilateral rib 14. Unilateral rib 14. Reduced ossification of interparietal bor reduced ossification of hyoid bone. Reduced ossification of hyoid bone. 	ıe,
4747	10	9 No visible skeletal abnormalities.1 Bilateral rib 14.	
4748	1	1 No visible skeletal abnormalities.	
4749	8	6 No visible skeletal abnormalities.1 Unilateral rib 14.1 Bilateral rib 14.	
4750	10	4 No visible skeletal abnormalities. 1 Hyoid not ossified. 2 Reduced ossification of interparietal bor reduced ossification of hyoid bone. 1 Reduced ossification of supraoccipital bor reduced ossification of hyoid bone. 1 Reduced ossification of interparietal bor reduced ossification of supraoccipital bor reduced ossification of sternebrae, reduced ossification of pubes.	one, ne, one,
4751	8	7 No visible skeletal abnormalities.1 Bilateral rib 14.	
4752	3	No visible skeletal abnormalities.Unilateral rib 14.	
4753	4	4 No visible skeletal abnormalities.	

^{*}Not commonly encountered.

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 100 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4754	8	7 No visible skeletal abnormalities.1 Bilateral rib 14.
4756	11	8 No visible skeletal abnormalities.2 Unilateral rib 14.1 Reduced ossification of hyoid bone.
4757	9	 4 No visible skeletal abnormalities. 1 Unilateral rib 14. 1 Reduced ossification of hyoid bone, unilateral rib 14. 1 Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone. 1 Hyoid not ossified. 1 Reduced ossification of hyoid bone.
4758	9	 No visible skeletal abnormalities. Hyoid not ossified. Hyoid not ossified, unilateral rib 14. Reduced ossification of hyoid bone. Hyoid not ossified, reduced ossification of supraoccipital bone.
4759	11	<pre>10 No visible skeletal abnormalities. 1 Unilateral rib 14.</pre>

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 300 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	<u>08</u>	SERVATIONS
4763	4 .	3 1	No visible skeletal abnormalities. Reduced ossification of interparietal bone.
4764	9		No visible skeletal abnormalities. Non-fused thoracic vertebral centra. Reduced ossification of interparietal bone, hyoid not ossified, reduced ossification of sacral vertebral arches, reduced ossification of sternebrae, wavy ribs (right side), distal phalanges of hind extremities not ossified.
4765	3] *]	Non-fused thoracic vertebral centra. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone. Reduced ossification of hyoid bone, reduced ossification of right ischium.
4766	8	7	No visible skeletal abnormalities. Reduced ossification of hyoid bone.
4767	5	2 1 *1 *1	No visible skeletal abnormalities. Reduced ossification of interparietal bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of parietal bone, unilateral rib 14, reduced ossification of hyoid bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of parietal bone, hyoid not ossified, reduced ossification of right ribs, wavy ribs (right side).
4769	6	6	No visible skeletal abnormalities.
4773	7	7	No visible skeletal abnormalities.
4775	4	3 1	No visible skeletal abnormalities. Reduced ossification of hyoid bone.
4776	10	9 1	No visible skeletal abnormalities. Bilateral rib 14.

^{*}Not commonly encountered.

TABLE I-D-6 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 9004

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 300 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4777	8	7 No visible skeletal abnormalities.1 Unilateral rib 14.
4779	11	8 No visible skeletal abnormalities.2 Bilateral rib 14.1 Unilateral rib 14.

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE- 3000 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4780	2	2 No visible skeletal abnormalities.
4782	10	 No visible skeletal abnormalities. Reduced ossification of hyoid bone. Non-fused thoracic vertebral centra. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone, reduced ossification of right rib 10. Reduced ossification of supraoccipital bone, reduced ossification of hyoid bone. *i Reduced ossification of supraoccipital brance, reduced ossification of hyoid bone, reduced ossification of parietalbone, reduced ossification of parietalbone, reduced ossification of interparietal bone.
4784	10	5 No visible skeletal abnormalities. 4 Unilateral rib 14. 1 Bilateral rib 14.
4785	7	 3 No visible skeletal abnormalities. 1 Reduced ossification of interparietal bone, unilateral rib 14. 1 Reduced ossification of interparietal bone, reduced ossification of hyoid bone, norfused thoracic vertebral centra. 1 Unilateral rib 14. 1 Reduced ossification of interparietal bone.
4786	1	1 Bilateral rib 14.
4787	7	6 No visible skeletal abnormalities. 1 Unilateral rib 14.
4788	9	 No visible skeletal abnormalities. Reduced ossification of hyoid bone. Reduced ossification of hyoid bone, bilateral rib 14.

^{*}Not commonly encountered.

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 3000 ppm

FEMALE NUMBER	NUMBER OF FETUSES EXAMINED	OBSERVATIONS
4790	8	 No visible skeletal abnormalities. Reduced ossification of supraoccipital bone, reduced ossification of hyoid bone. Reduced ossification of hyoid bone, unilateral rib 14. Reduced ossification of supraoccipital bone, hyoid not ossified, unilateral rib 14. Reduced ossification of interparietal bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone, reduced ossification of parietal bone, reduced ossification of sacral vertebral arches. Reduced ossification of hyoid bone, bilateral rib 14.
4792	4	3 No visible skeletal abnormalities.1 Reduced ossification of interparietal bone.
4793	9	 No visible skeletal abnormalities. Unilateral rib 14. Bilateral rib 14. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone. Reduced ossification of interparietal bone, reduced ossification of supraoccipital bone, reduced ossification of hyoid bone.
4794	8	8 No visible skeletal abnormalities.
4796	10	 No visible skeletal abnormalities. Reduced ossification of hyoid bone. Reduced ossification of interparietal bone. Reduced ossification of interparietal bone, reduced ossification of hyoid bone.

^{*}Not commonly encountered

TABLE I-D-6 (Continued)

LITTON BICNETICS, INC. PROJECT NO. 9004

TABLE 3 (Continued)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 3000 ppm

FEMALE OF FET NUMBER EXAMIN	USES	SERVATIONS
4797 10	2	No visible skeletal abnormalities. Reduced ossification of interparietal bone, reduced ossification of hyoid bone. Hyoid not ossified. Reduced ossification of hyoid bone. Reduced ossification of supraoccipital bone, reduced ossification of hyoid bone. Reduced ossification of hyoid bone, unilateral rib 14.
4798 10	5 1 2 1 *1	
4799 9	9	No visible skeletal abnormalities.

^{*}Not commonly encountered.

PART I - SECTION E

THREE-GENERATION REPRODUCTION IN RATS

DIMP

LBI PROJECT NO. 10734-06

SUMMARY

Dietary incorporation of DIMP at levels of 300 and 3000 ppm produced no dose-related reproductive response in the rat for three successive generations with two matings per generation. The first mating of the third generation resulted in significant pup losses from Day 4 to Day 21 for the treatment groups. This decrease was not evidenced for the second mating. Food consumption and body weight data for the parent (FO), second generation (FIb) and third generation (F2b) rats, indicated statistical equivalence with the controls for all treatment levels except the high dose F2b female group. Litter and necropsy observations for the first breeding of the three generations were unremarkable and free of any dose-dependent relationship.

1. OBJECTIVE

The objective of this study was to evaluate the effects of dietary incorporation of DIMP in the rat on several indicators of the reproductive process for three successive generations with two breedings per generation.

2. MATERIAL

Refer to Part I - Section A.

3. EXPERIMENTAL DESIGN

A. First Generation (FO Parents, Fla and Flb Offspring)

One hundred and twenty weanling rats [CRL:COBS CD (SD) BR] were obtained from Charles River Breeding Laboratories, Inc., Portage, Michigan on March 30, 1977, at the Falls Church facility of the Department of Toxicology. Thirty male and sixty female rats were selected as the FO parents and assigned by randomization into the following three groups.

Group	Animal Numbe	ers	Dose
Number	Males	Females	(ppm)
1	5020-5029	5030-5049	0
2	5050-5059	5060-5079	300
3	5080-5089	5090-5109	3000

The remaining rats were sacrificed and discarded. The FO parents were ear tagged and individually housed in hanging shoebox cages with AB-SORB-DRI bedding. The rats were maintained in a temperature-controlled animal room with artificial

EXPERIMENTAL DESIGN (Continued)

A. First Generation (FO Parents, Fla and Flb Offspring - Continued)

illumination automatically controlled to provide a 12-hour light cycle. The FO parents were fed Purina Laboratory Chow for one week and observed for any gross effects prior to initiation of the test diets. The test diet and acidified water (pit 2.5) were provided ad libitum. The time framework for this study has been presented in Text Table A.

Ten kg of the test diet for each dose level were prepared weekly by adding the requisite amount of DIMP for a given dose leve! to 300 ml of a PEG 400 vehicle and mixing the vehicle and basal diet in a twin-shell blender for 20 minutes. Control diet was prepared with the suspension vehicle in a similar fashion. Appendix B lists the concentration data as a function of the study week and also describes the analytical procedure for quantitating the DIMP level. Stability tests for the low and high level feed mixtures from the fifteenth study week were performed for samples stored in open and closed containers. The results (Table 1 of Appendix B) were indicative of considerable sample volatility from open containers. The mean sample concentrations and associated standard errors for the 300 and 3000 ppm feed mixtures were 251 \pm 5 ppm and 2667 ± 36 ppm, respectively, for the time course of this study.

During the twelfth study week, the FO parents were placed in breeding cages, one male and two females, for a two-week mating period. The males and females were then returned to their individual cages where the females were allowed to litter and nurse their pups. One-third of the Fla pups were subjected to a cursory necropsy after weaning. One week after lactation of the Fla pups, the FO females were remated in a similar manner with a different male. During Day 4 of lactation the Fla and Flb litters were reduced for subsequent viability and weight measurements at Days 9 and 21. One week after lactation of the Flb pups all FO parents were killed and necropsied.

The data and observations listed below were recorded for the parents and their offspring.

FO Parents

Body weights and food consumption (averaged over seven days) at study Weeks 4, 9, 11 and 20.
Daily observations for mortality.
Weekly appearance observations.
Anatomic observations at necropsy.

TABLE I-E-7

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE A

TIME FRAMEWORK FOR STUDY

STUDY WEEK NO(S).	PHASE
WEEK NO(S). 1 12, 13, 14 16, 17 19, 20 21, 22, 23 24, 25, 26 27, 28, 29 40, 41, 42 43, 44, 45 47, 48 49, 50, 51 53, 54 56, 57, 58 70, 71, 72 73, 74 77, 78 78, 79, 80	Fo parents begin DIMP dietary input Fla mating period (Fo parents) Lactation Day O for Fla pups Fla pup necropsy Flb mating period (Fo parents) Lactation Day O for Flb pups Fo parents necropsied F2a mating period (Flb parents) Lactation Day O for F2a pups F2a pup necropsy F2b mating period (Flb parents) Lactation Day O for F2b pups Flb parents necropsied F3a mating period (F2b parents) Lactation Day O for F3a pups F3a pup necropsy
81, 82, 83 85, 86 87	F3b mating period (F2b parents) Lactaton Day 0 for F3b pups F3b pup necropsy F2b parents necropsied

EXPERIMENTAL DESIGN (Continued)

A. First Generation (FO Parents, Fla and Flb Offspring - Continued)

Fla and Flb Pups

Number of live and dead pups at birth, sex and body weights. Number and sex of surviving pups at lactation Day 4. Number, sex and body weights for reduced litter pups surviving at Day 21.

Daily mortality and appearance observations.

Anatomic observations at necropsy of one-third of Fla litters.

B. Second Generation (Flb Parents, F2a and F2b Offspring)

After weaning, 10 male and 20 female Flb pups were selected from each dose and control group, and identified by ear tag as listed below. The rats were individually housed for the second generation breedings.

Group	Animal Numbe	ers	Dose
Number	Males	<u>Females</u>	<u>(ppm)</u>
1	5446-5455	5456-5475	0
2	5476-5485	5486-5505	300
3	5506-5515	5516-5535	3000

The same schedule for mating, littering and observations, as previously described for the first generation rats, was followed for the second generation rats.

C. Third Generation (F2b Parents, F3a and F3b Offspring)

After weaning, 10 male and 20 female F2b pups were selected from each dose and control group, and ear tagged as listed below. They were individually housed for the third generation breedings.

Group	Animal Numbe	ers ^a	Dose
Number	Males	Females	(ppm)
1	1097-1406	1407-1426	0
2	1427-1436	1437-1456	300
3	1457-1466	1467-1487	3000

a_"A" series animal number ear tags.

The same schedule for mating, littering and observations, as previously described for the first generation rats, was followed for the third generation rats. In addition, one-third of the F3b litters were killed and necropsied at reaning.

EXPERIMENTAL DESIGN (Continued)

C. Third Generation (F2b Parents, F3a and F3b Offspring - Continued)

The newborn viability ratios (live pups/total pups), pup viability ratios (pups at Day 4/pups at Day 0), lactation indices (pups at Day 21/pups at Day 4) and gestation indices (females littering/pregnant) for the treatment groups were statistically compared with the controls using 2x2 contingency tables with Chi-squared corrected for continuity. Dunnett's t-test for analysis for statistical differences was used to compare control and treatment means for the parent body weights, parent food consumption and pup weights. A p value of 0.05 was used to determine statistical significance.

4. RESULTS

A. First Generation (FO Parents, Fla and Flb Offspring)

The detailed litter data, parent body weights, parent food consumption data, litter and parent observations, and necropsy data for parents and pups have been incorporated in Appendix A for this and succeeding generations. Litter summaries have been presented as text tables.

One female rat in the high dose group (No. 5109) died during the sixth week of the study. No visible abnormalities were noted and the death was judged not to be related to treatment. One male control rat (No. 5027) failed to successfully mate for two breedings. Necropsy data for this rat failed to show any evidence of sexual or reproductive dysfunction.

During the second week of study female control rat (No. 5030) developed ocular changes in the right eye which persisted until necropsy. A consultant ophthalmologist examined the animal and he indicated the presence of a unilateral cataract. His report has been appended.

The litter summaries for the first and second matings, Text Tables B and C, respectively, with detailed listing in appended Tables I and 4, showed a slight weight reduction of approximately 12% for the Flb control pups, both males and females at Day 21, versus the Flb pups. All other indices of reproductive performance presented in the summary tables exhibited statistical equivalence between control and treatment levels for both male and female groups. The pup viability counts for Days 4 and 21 were greater than 96% in all instances. Pup viability counts are usually calculated from the differential totals at Days 4 and 21 because of pup cannibalization by the dam. For this reason, the litter observation tables, appended Tables 2 and 5 do not correspond with the viability counts presented in the summaries.

The parent body weights and daily food consumption means, appended in Table 6, for the treatment groups were statistically equivalent to the controls for both male and female groups at all measurement levels.

LITTON BIONETICS PROJECT NO. 10734-06

TABLE B

SUMMARY OF FIRST GENERATION - FIRST MATING (Fla)

	PERCENT		100	84 100	66	100							
0000	RATIO		10/10	16/19 16/16	206/208	206/206 128/128		7±0.7	7±0.6	53±5.8	51±5.6	100/106	13±1.8
	PERCENT		100	85 100	97	86 66							
	RATIO		10/10	17/20	231/237	226/231 134/135		6±0.6	0.0 ± 9	50±4.7	48±4.7	107/124	14±2.7
	PERCENT		06	85	100	100 99							
DOSE (PPM)	RATIO		9/10	17/20	227/227	226/227 133/134		7±1.2	6+0+9	53±6.9	49±4.7	104/123	13±2.6
		Indices	Male virility (males producing litter/ mated)	Female fertility (females producing litter/mated)	Gestation (Temales 11Ve (Titter/pregnanc)	Newboll Viability (hips pub) 2331 party Pup bup viability (hups Day 4/pups Day 4) Lactation (pups Day 21/pups Day 4)	Pup weight in grams (Mean ± S.D.)	0 O	Day O males	חסונים וליינים	Day 21 males Day 21 females	Sex ratio offspring (M/F) Day 0	Live pups per litter (Mean ± S.D.)

^aAfter litters were reduced at Day 4.

TABLE I-E-9

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE C

SUMMARY OF FIRST GENERATION - SECOND MATING (F1b)

	0 PERCENT		10/10 100	·	•	208/209 100 130/132 98		7±0.6	0.7	2.5	8./	108/101	12±3.0
	SUUD ENT RATI		10/	17,	777 209/	208/ 130/		7±() + /	53±3	±0c	108,	12
	PERCENT		100			100							.
	300 RATIO		10/10	18/20	18/18 243/246	239/243		7±0.6	7±0.7	49±5.7	48±5.7	107/136	14±2.2
PM)	PERCENT		06	•		988						~	m
DOSE (PPM)	0 RATIO		9/10	16/18	16/16 204/206	195/204 118/120		7±0.7	9.0 1 9	46±7.0	43±7.8	96/108	14±1.8
		Indices	Male virility (males producing litter/ mated)	<pre>Femalc fertility (females producing litter/mated)</pre>	Gestation (females live litter/pregnant)	Newborn Viability (11ve pubs/cocal pubs/ Pup viability (pups Day 4/pups Day 0) Lactation (pups Day 21/pups Day 4)	Pup weight in grams (Mean ± S.D.)	Day D males	Day O females	Day 21 males	Day 21 females	Sex ratio offspring (M/F) Day 0	Live pups per litter (Mean \pm S.D.)

^aAfter litters were reduced at Day 4.

4. RESULTS (Continued)

A. First Generation (FO Parents, Fla and Flb Offspring - Continued)

Parent observations have been appended in Table 7. A slight incidence of alopecia was observed throughout the study. The alopecia frequently disappeared with time.

Pup necropsy observations for one-third of the Fla control and treatment groups have been presented in Appendix Table 3. No gross abnormalities were recorded for the 17 litters that were examined.

Adult necropsy findings have been noted in Appendix Table 8. The major finding was the high incidence of kidney mottling. The number of occurrences was equally distributed across the control and treatment groups.

B. Second Generation (Flb Parent, F2a and F2b Offspring)

It was discovered that litter mates had inadvertently been paired for the F2a and F3b matings, appended Tables 9 and 20. Text Table D lists the brother-sister pairs and whether the matings were successful. The pairings were judged not to compromise the integrity of the study because the majority of the occurrences were in the F2a mating, whose litters were not subsequently bred, and because the majority of these matings (85%) successfully littered. It was interesting to note that 16 control pups from the litter-mate pairings died between Days O and 4. Inclusion of this number in the pup viabilities (Text Table E, Day 4/Day O) raised this ratio to 91%. This percentage, however, was still significantly depressed, using the Chi-square statistic, from the treatment ratios. No F1b parents died on the study.

For the first mating, female parent No. 5527 (3000 ppm) produced stillborn Siamese twins which were joined at the ventral thoracic region. One twin was well developed anatomically, but the second twin lacked a discernible head. The remaining observations for the F2a and F2b litters, detailed on Appendix lables 10 and 13, were not indicative of any compound-related effects and appeared unremarkable.

Within the 300 ppm group, male rat Nos. 5476 and 5477 failed to successfully mate for the first breeding. Male parent No. 5507 (3000 ppm) also failed to successfully mate. This was reflected in the newborn pup counts (Text Table E) which were decreased from the controls by 20%. The number of live pups per litter was equivalent.

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE D

LITTER MATE PAIRINGS

F2a MATING

	TER			
	ESE	No Yes Yes Yes Yes Yes Yes Yes		Yes
Σ	FEMALE NUMBER	5518 5520 5522 5524 5526 5529 5530 5531		1485
3000 PPM	MALE NUMBER	5507 5508 5509 5510 5511 5512 5513 5513 5514		1465
	LITTE	No Yes Yes Yes Yes		Yes Yes
	FEMALE NUMBER	5488 5490 5492 5494 5496 5500 5502 5503		1444 1445
300 PPM	MALE NUMBER	5477 5478 5479 5480 5481 5482 5483 5484		1430 1431
	LITTER PRODUCED	Yes Yes Yes Yes No Yes Yes Yes	,	
	FEMALE NUMBER	5458 5460 5462 5464 5466 5468 5469 5470 5471	JNC	
O PPM	MALE NUMBER	5447 5448 5449 5450 5451 5452 5453 5453	F3b MATING	

and Ministers was investment

TABLE I-E-11

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE E

SUNMARY OF SECOND GENERATION - FIRST MATING (F2a)

	DOSE (PPM)	(1				
	0 RA, 10	PERCENT	300 RATIO	PERCENT	3000 RATIO	PERCENT
Indices						
Male virility (males producing litter/ mated) Female fertility (females producing	10/10	100	8/10	80	9/10	06
<pre>litter/mated) Gestation (females live litter/pregnant)</pre>	18/20 18/18	90 100	15/16 15/15	94	16/18	100
Newborn viability (live pups/total pups)	223/233	96	173/178	97	184/189	97
rup viabliity (pups Day 4/pups Day U) Lactation (pups Day 21/pups Day 4)	186/223 112/121	83 33 33	167/173 109/118	97 92	175/184 124/125	9 9 9
Pup weight in grams (Mean ± S.D.)						
Day 0 males	6+0.9		6±1.2		7±0.7	
Day O females Day 21 males	6±1.1		6±1.0		7±0.9	
Day 21 females	38±7.7		39±8.1		38±3.8	
Sex ratio offspring (M/F) Day 0	106/117		82/91		79/105	
Live pups per litter (Mean ± S.D.)	12±2.6		12±2.4		12±2.0	

^aAfter litters were reduced at Day 4.

4. RESULTS (Continued)

B. <u>Second Generation</u> (Flb Parents, F2a and F2b Offspring - Continued)

The F2b mating (Text Table F and Appendix Table 12) produced a greater number of pregnant dams which was reflected in the larger total pup counts for the 300 and 3000 ppm levels. Concurrently, there was a slight, but insignificant, increase in the average litter size. Average pup veights at Day 21 for the F2b males and females were 9 and 19% greater than those from the F2a mating. Pup viabilities for both matings ranged from 92 to 99%.

Body weight and food consumption Jata have been tabulated in Appendix Table 14. Analysis of the data showed that the only statistical difference from the controls occurred at Leek 4 for the high dose male parents. This significance c'isappeared by Week 9.

Clinical signs have been appended in Table 15. Localized hair loss (female No. 5489) and ulceration of the right ear with subsequent loss of this ear (female No. 5524) were the only observable clinical signs recorded for the Flb parents.

Pup necropsy observations for the F2a litters have been appended in Table 11. No significant observations were noted.

There were several instances of ovariar, uterine and Fallopian tube cysts observed at necropsy for the Flb dams. These findings have been detailed in Appendix Table 16. These findings were not considered to be treatment related since the number of occurrences was distributed equally between treatment and control groups.

C. Third Generation (F2b Parents, F3a and F3b Offspring)

No F2b parents died during the study. The third generation matings resulted in newborn viabilities of 98 to 100% and equivalent average litter size for all groups. These findings have been summarized in Text Tables G and H and appended in Tables 17 and 20. Many pup losses were noted for the 3000 ppm F2b group from Day 0 to Day 4, significantly reducing this viability ratio from the control (Appendix Table 2. Lactation viabilities for the F2a treatment groups from Day 4 to Day 21 were significantly decreased from the controls. The Chi-square significance in the 300 ppm group could be attributed to the total litter loss of female No. 1443. Application of Wilcoxon Rank Sum analysis did not indicate a significant difference. The pup losses at the high treatment level were distributed among eight dams.

LITTON BIONETICS, INC. PROJECT NO. 16734-06

SUMMARY OF SECOND GENERATION - SECOND MATING (F2b)

TABLE F

PERCENI	100 100 99 99	
3000 RATIO	10/10 18/20 18/18 233/235 230/233 140/141	7±0.8 6±0.6 48±8.7 45±7.0 117/116
300 RATIO PERCENT	10/10 100 17/20 85 17/17 100 228/230 99 222/228 97 135/136 99	7±1.0 7±1.0 47±6.3 44±5.0 117/111 13±3.1
DOSE (PPM) 0 RATIO PERCENT	10/10 100 18/20 90 18/18 100 250/256 98 242/250 97 142/144 99	6±0.6 6±0.6 44±5.5 42±5.4 119/131
	Indices Male virility (males producing litter/ mated) Female fertility (females producing litter/mated) Gestation (females live litter/pregnant) Newborn viability (live pups/total pups) Pup viability (pups Day 4/pups Day 0) Lactation (pups Day 21/pups Day 4)	Dup weight in grams (Mean ± S.D.) Day 0 males Day 21 males Day 21 females Day 21 females Sex ratio offspring (M/F) Day 0 Live pups per litter (Mean ± S.D.)

^aAfter litters were reduced at Day 4.

TABLE I-E-13

LITTON BIONETICS, INC. PROJEC: NO. 10734-06

The state of the state of

TABLE G

SUMMARY OF THIRD GENERATION - FIRST MAFING (F3a)

	DOSE (PPM)	(
	RATIO	PERCENT	300 RAT I 0	PERCENT	3000 RATIO	PERCENT
Indices						
Male virility (males producing litter/ mated) Female fertility (females producing	10/10	100	10/10	1.00	9/10	90
<pre>litter/mated) Gestation (females live litter/pregnant)</pre>	18/20 18/18	90 100	17/20	85 100	18/20	90 100
Newborn viability (live pups/total pups)	210/212	66	212/212	100	219/221	66
Pup viability (pups Day 4/pups Day 0) Lactation (pups Day 21/pups Day 4)	202/210 128/129	96 66	204/212 116/129	96 906	217/219 108/138	99 78*
Pup weight in grams (Mean ± S.D.)						
Day 0 males	670.9		6±0.7		7±1.0	
Day U Temales Day 21 males	6 ± 1.0 42 ± 6.2		6±0.8 39±7.2		6±1.1 32±7.9	
Day 21 females	41±7.1		37±7.2		30±8.1	
Sex ratio offspring (M/F) Day O	108/102		127/85		124/95	
Live pups per litter (Mean ± S.D.)	12±3.7		13±4.		12±3.3	

^aAfter litters were reduced at Day 4.

 $^{^*}p<0.05$, Chi-square with correction for continuity.

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE H

SUMMARY OF THIRD GENERATION - SECOND MATING (F3b)

	DOSE (PPM)	4)				
	RATIO	PERCENT	300 RATIO	PERCENT	3000 RATIO	PERCENT
Indices						
Male virility (males producing litter/						
mated) Female fertility :emales producing	1.0/10	100	10/10	100	10/10	160
litter/mated)	20/20	100	19/20	95	18/20	06
Gestation (females live litter/pregnant)	20/20	100	19/19	100	18/18	100
Newborn Viability (11Ve pups/total pups)	287/290	66	256/257	100	242/246	86
rup viability (pups Cay 4/pups Day 0)	279/287	97	249/256	26	217/242	*06
ractation (pups bay ZI/pups bay 4)"	138/15/	88	145/149	24	126/133	95
Pup weight in grams (Mean ± S.D.)						
Day O males	6±0.7		6±0.7		6±0.7	
Day O females	5±0.6		6±0.7		6+0.9	
Day 21 males	49±5.3		47±5.1		46±5.4	
Uay 21 temales	45±5.0		43±5.9		41±4.5	
Sex ratio offspring (M/F) Day 0	159/128		136/120		115/127	
Live pups per litter (Mean \pm S.D.)	14±3.5		13±3.7		13±2.9	

^aAfter litters were reduced at Day 4.

 $^{^{\}star}$ p<. 0.05, Chi-square with correction for continuity.

4. RESULTS (Continued)

C. Third Generation (F2b Parents, F3a and F3b Offspring)

The F3b pup weights at Day 21 were 9 to 30% greater than the F3a pup weights. A similar trend was observed in the second generation matings.

The only statistically significant feature of the parent body weight and food consumption data, appended in Table 23, was the 7% weight reduction of the high dose level females recorded at Week 20. Dunnett's t-test of analysis of the Week 20 male and female parent weights showed that there was a statistical equivalence among the three generations for the control and treatment groups.

Pup appearance and necropsy observations did not show any evidence of treatment-related effects for the F3a and F3b litters. These data have been detailed in Tables 18, 19, 21 and 22, respectively, of the Appendix.

Observations for the F2b parents have been detailed in Appendix Table 24. The clinical signs listed were not judged to be treatment related.

There were numerous incidences of kidney mottling recorded during the necropsy of the F2b parents (Appendix Table 25). They were divided across treatment and control groups for both sexes, and were therefore judged unrelated to treatment. The only other significant finding was the presence of a mammary mass in female No. 1444 (3000 ppm).

Thirty days after transmittal of this report, original data from the Department of Toxicology will be transferred to the LBI Archivist, 5516 Nicholson Lane, Kensington, Maryland, for distribution to the proper repositories. A copy of this report was reviewed by the LBI Quality Assurance Unit.

5. CONCLUSION

Dietary incorporation of DIMP at levels of 300 and 3000 ppm produced no dose-related reproductive response in the rat for three successive generations with two matings per generation. The first mating of the third generation resulted in significant pup losses from Day 4 to Day 21 for the treatment groups. This decrease was not evidenced for the second mating. Food consumption and body weight data for the parent (FO), second generation (F1b) and third generation (F2b) rats, indicated statistical equivalence with the controls for all treatment levels except the high dose F2b female group. Litter and necropsy observations for the first breeding of the three generations were unremarkable and free of any dose-dependent relationship.

Submitted by:

Anthony P. D'Addario, Ph.D. Date

Post Doctoral Fellow
Department of Toxicology

Robert P. Beliles, Ph.D.

3//3//9

Director

Department of Toxicology

Reviewed by:

Robert J. Weir, Ph.D.

Vice President

Date

. Ross Hart, Ph.D.

Study Director

Dato

APPENDIX A

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 1

RESULIS OF FIRST GENERATION - FIRST MATING (Fla)

DOSE - 1) PPM

	HEAN F PUP WT 45 55 45 40	49 49 50 50 45 47	49 51 50	49 4.7 1.1
	MEAN M PUP WI 45 56 41 44	57 60 53 51 59 47	60 56 57 51	53 6.9 1.7
	SEX M/F 4/4 4/4 2/6 2/6	4/4 4/4 4/4 3/5 4/5	4 4 4 4 4 4 4 4 4	61/72
	LIVE PUPS 8 8 8 8 8	& ∞ ~ ∞ ∞ ∞ ∞	ထ ထ ထ ထ	133 8 0.5 0.1
DAY 21	DEATHS DAY 4-21			rel
	LITTER REDUCED M/F 4/4 2/6 2/4 2/4	444440004 444440004	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 61/73
	SEX M/F 8/8 7/8 2/9 8/5	9/5 10/6 9/5 8/6 9/7 2/8 3/9	6/8 5/9 4/10 5/7	103/123
	LIVE PUPS 16 11 11 11 11 11 11 11 11 11 11 11 11	14 14 14 15 15 15	14 14 12	226 13 2.5 0.6
DAY 4	DEATHS DAY 1-4			-
	MEAN F PUP WT 6 6 6 9	മയയയയയസസസ	9979	6.0 0.2
	MEAN M PUP WI 6 6 6 11	6 6 6 7 6 6	~~~~	.23 7 1.2 0.3
	SEX M/F 8/8 7/8 2/9 2/5	9/5 10/6 9/5 8/6 9/7 2/8 3/9 6/9	6/8 5/9 4/10 5/7	104/123
	DEAD PUPS			
O AVU	LIVE PUPS 16 15 11 14	12 10 10 10 12 12 13	14 14 12	227 13 2.6 0.6 17
	MALE NUMBER 5020 5020 5021 5021 5022	5023 5023 5024 5024 5025 5025 5026 5026	5028 5028 5028 5029 5029	
	FEMALE NUNBER 5030 5031 5033 5034 5034	5036 5037 5038 5039 5040 5041 5043	5046 5047 5048 5049	707AL MEAU SD SE N

The state of the s

TABLE I-E-15 (Continued)

TABLE 1 (Continued)

RESULTS OF FIRST GENERATION - FIRST MATING (Fla)

00SE - 300 PPM

	MEAN F PUP WI	45 50	51 45 47	53 60	44	44 46	45 47 57	51 49	48 4.7 1.1
	MEAN M PUP WT	49 52	56 49 46	48 47	58 49	44 50	47 48 60	56 52	50 4.7 1.1
	SEX M/F	4/4	4/4	4 4 4 4 4 6	4/4	3/5	4/4	4/4 5/3	99/89
	LIVE	ထလ	& & & & (သထယ	ထဆ	ထထ	ထထထ	ထထ	134 8 0.5 0.1 17
DAY 21	DEATHS DAY 4-21			H	ı				н
	LITTER REDUCED M/F	4/4	4/4	4/4 5/2	4/4	4/4 3/5	4/4 4/4	4/4 5/3	2 69/66
	SEX M/F	9/9 8/8	8/1 1/7 1/7	4/6 5/2	7/6 5/10	3/9	6/10 6/11 5/10	6/5 8/3	104/122
	LIVE	16 12	144	10 7	ក្ត	16 12	16 17 15	11	226 13 2.6 0.6 17
DAY 4	DEATHS DAY 1-4				~		1		ស
	MEAN F PUP WT	9	666	യയ	യയ	യയ	999	9 9	6.0 0.0 0.0
	MEAN M PUP WT	9 9	9 / 9	യയ	99	2	2 2 2	9	6 0.6 0.1
	SEX M/F	8/8 6/6	6/7 7/5 7/5	5/6 5/2	5/10		6/10 7/11 5/10	6/5 8/3	107/124
	DEAD PUPS		H ,	⊣ 4					ø
DAY 0	LIVE	16	2443	117	15	17	16 15 15	11	231 14 2.7 0.7
	MALE	5050 5050 5051	5051 5052 5052	5053 5053 5054	5054 5055	5055 5056	5057 5057 5058 5058	5059 5059 5059	
	FFMALE	5060 5061 5063	5063 5063 5065	5067 5068 5068	5069	5071 5072	5074 5075 5075 5076	5078 5079	TOTAL MEAN SD SE SE N

^aPup mis-sexed at Day O.

TABLE I-E-15 (Continued)

TABLE 1 (Continued)

RESULTS OF FIRST GENERATION - FIRST MATING (Fla)

00SE - 3000 PPM

	MEAN F PUP WT	52 60 60 60 57 57 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	51 5.6 1.4
	MEAN M PUP WI	52 51 53 54 54 55 54 54 54 54 54 54 54 54 54 54	53 1.4
	SEX M/F	444 444444 46444	63/65
	LIVE PUPS	တာတာတာ တာတာတာတာတာတာ တာတာသာတ	128 8 0.0 0.0
DAY 21	DEATHS DAY 4-21		
	LITTER REDUCED M/F	444 4444444 4644 444 4444444 4644	63/65
,	SEX M/F	4/9 10/4 6/5 6/5 11/7 11/7 5/6 5/6 5/7 7/7 7/7 5/6	100/106
	LIVE	111223 33245114883	206 13 1.8 0.5
DAY 4	DEATHS		
	MEAN F PUP WT	0/8 /0000/v0 /00/0	7 0.6 0.2
	MEAN N PUP WT	9 78 8977 877 9	16 7 0.7 0.2
	SEX M/F	4/9 10/4 6/5 6/5 9/4 111/7 5/6 8/5 7/6 7/6 7/7	100/106
	DEAD	8	~
0 AVG	LIVE	11 12 13 13 15 15 11 11 11 11 11 11 11 11 11 11 11	206 13 1.8 1.5 16
	NUMBER	5080 5080 5081 5081 5082 5082 5083 5084 5084 5085 5086 5087 5087 5087 5088 5088	
	r Etale Number	5093 5093 5093 5093 5093 5094 5100 5100 5100 5100 5100 5100 5100 510	TOTAL NEAH SO SE N

^aDeath recorded during sixth study week.

TABLE I-E-16

TABLE 2

LITTER OBSERVATIONS

FIRST GENERATION - FIRST MATING (Fla)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATION
0	5033	2	ONE MALE PUP - FOUND DEAD; NO ABNORMALITIES NOTED.
	5038	19	ONE FEMALE PUP - FOUND DEAD.
	5042	21	ONE FEMALE PUP - OPACITY RIGHT EYE.
300	5063	0	ONE MALE PUP ~ FOUND DEAD.
	5066	0	ONE MALE PUP - FOUND DEAD.
	5068	0	ONE MALE PUP - FOUND DEAD.
		0	ONE FEMALE PUP - FOUND DEAD.
	5071	2 2	ONE MALE PUP - FOUND DEAD.
	5072	2	ONE MALE PUP - FOUND DEAC.
	5075	2	ONE MALE PUP - FOUND DEAD.
3000	5105	0	TWO MALE PUPS - FOUND DEAD.

TABLE I-E-17

TABLE 3

PUP NECROPSY OBSERVATIONS (Fla) AT DAY 21

DOSE (PPM)	FEMALE NUMBER	NUMBER OF PUPS	OBSERVATION
0	5030 5031 5033 5037 5039	8 8 8 8	ALL TISSUES APPEAR NORMAL
300	5060 5064 5069 5070 5074 5075	8 8 8 8 8	ALL TISSUES APPEAR NORMAL
3000	5093 5095 5098 5104 5106 5107	8 8 8 8 8	ALL TISSUES APPEAR NORMAL

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 4

RESULTS OF FIRST GENERATION - SECOND MATING (F1b)

Май 0 - 3500

	MEAN F PUP WT	4 4 5 5 4 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	48 37 40	47 43 43	54 32 52	43 7.8 2.0
	MEAN M PUP WT	50 51 45 46	50 40 40	53 50 50 45	56 39 53	46 7.0 1.9
	SEX M/F	4/4 4/4 3/4	4/4 4/4a 4/4	4444	3/4 4/4 4/4	58/60
	LIVE	8887	ထထထ	& & & & & & & & & & & & & & & & & & &	7 8 8 8	118 8 0.4 0.1
DAY 21	DEATHS DAY 4-21				_	2
	REDUCED M/F	4/4 4/4 4/4	4/4 3/5 4/4	4/4 4/4 4/4 4/4 4/4	3/5 4/4 4/4 4/4	58/62
	SEX N/F	7/8 7/9 4/6 6/9	8/6 3/10 9/4	11/5 6/6 4/10 5/6 4/7	3/6 6/5 5/9	90/105
	LIVE	15 10 21 31	13 13	16 11 11 11	e [54	195 13 2.1 0.6 16
DAY 4	DEATHS DAY 1-4	2		عبو مع	- 2	თ
	MEAN F PUP WT	9979	മമര	~ 9998	8 9 9 7	0.6 0.2
	MEAN II PUP WT	ر 5 5	տ ա Հ	8 ~ 0 ~ 8	7 2 8 8	7. 0.7 0.2
	SEX M/F	7/8 7/9 5/7 6/9	9/6 4/10 9/4	11/5 7/6 4/11 5/6 4/7	4/6 7/6 6/6 5/9	96/108
	DEAD PUPS				%	8
DAY 0	LIVE	15 15 15	15 14 13	35 115 11	10 12 14	204 14 1.8 0.5
	MALE NUMBER	5029 5029 5028 5028 5027	5026 5026 5025 5025	5024 5024 5023 5023 5022	5021 5021 5020 5020	
	FEMALE	5030 5033 5033 5034 5034	5036 5037 5038 5038	5040 5041 5043 5043 5044	5046 5048 5048 5049	TOTAL MEAN SD SE SE N

^aPup mis-sexed at Day 4; corrected at Day 21.

to dail a substitution of the substitution of

TABLE 4 (Continued)

RESULTS OF FIRST GENERATION - SECOND MATING (F1b)

00SE - 300 PPM

	MEAN F PUP WI	45 49	48 33 51	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	45425244 144252444 144252444	48 5.7 1.3
	MEAN N PUP WT	46 52	35 5]	52 50 50 50 50	452 422 53 53 41	49 1.3 3.4
	SEX M/F	4/4	4/4	. 4 4 4 4 . 2 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ET/1T
	LIVE	ထထ	ထထထ		& & & & & & & & & & & & & & & & & & &	144 8 0.0 0.0
DAY 21	DEATHS					0
	LITTER REDUCED M/F	4/4	4/4 4/4	3,75 4,44 4,44 4,44	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 71/73
	SEX M/F	7/5 8/5	4/12 7/11 0/15	3/7 4/8 8/6 6/9	8/4 6/7 6/4 6/6 7/7	105/134
	LIVE	13	16 18 15	55455	12 13 13 14 14	239 13 2.0 0.5 18
DAY 4	DEATHS DAY 1-4		ten ten			4
	MEAN F PUP WT	7	တတထ	7999	99877779	7 0.7 0.2
	MEAN M PUP WT	7	7 9	999	99778779	6 7 0.6 0.2
	SEX M/F	7/5 8/5	4/13 8/11 0/15 ^a	3/7 4/8 9/6 6/9	8/4 6/7 6/4 6/7 7/7	107/136
	DEAD	8			<u>-</u> ·	m
DAY 0	LIVE	12	71 19 15	15 15 15 15	123 133 144 144 144 144 144 144 144 144 14	243 14 2.2 0.5 18
	MALE	5059 5059 5058	5058 5057 5057	5056 5055 5055 5055	5054 5053 5053 5052 5051 5050 5050	
	FEMALE	5060 5061 5062	5063 5064 5065	5066 5067 5068 5069 5070	5071 5072 5073 5074 5075 5077 5078	TOTAL MEAN SD SE SE N

THE PROPERTY OF THE PROPERTY O

The state of the s

apups mis-sexed at Day O.

IABLE 4 (Continued)

RESULTS OF FIRST GENERATION - SECOND MATING (FIb)

DOSE - 3000 PPH

	MEAN F PUP WT	52 45 51	477 58 58	49 29 51 59	38 49 49 43	50 7.8 2.0
	MEAN M PUP WT	57 41 54	65 52	54 54 61	39 54 54 43	53 2.1 2.1
	SEX M/F	4444	444	4/4 4/4 4/4	4/4 3/5 3/5 4/4	63/67
	LIVE	ထ ထ ထ ထ	ာထာထ	ದ ದ ದ ದ	878748	130 8 1.0 0.2 17
DAY 21	DEATHS DAY 4-21					8
	LITTER EFONCED N/F	4/4	444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10/4 4/4 6/8 4/4 3/5 3/5 4/6 4/4 2/2 2/2 6/5 4/4	1 65/67
	SEX M/F	4/7 6/8 7/7	4/8 5/7 6/8	7/4 11/5 8/6 7/6	10/4 6/8 3/5 4/6 2/2 6/5	107/10
	LIVE	11 41 4	12 12 14	11 14 13	448 07 4 L	208 12 3.2 0.8
DAY 4	DEATHS DAY 1-4				~	-
	MEAN F PUP WT	8 2 7 1		9 2 9 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, 0.7 0.2
	MEAN M PUP WT	787		~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	1 7 0.6 0.1
	SEX M/F	4/7 6/8 7/7	4/8 5/7 6/8	7/4 11/5 8/6 7/6	11/4 6/8 3/5 4/6 6/5	108/101
	DEAD PUPS			8	ນາ	7
DAY 0	LIVE	1 4 4 5	2227	11 16 13	15 8 10 4 11	209 12 3.0 0.7
	NALE NUMBER	5089 5089 5088	5087 5087 5086 5086	5085 5085 5084 5084	5083 5083 5081 5081 5081	
	FEMALE	5090 5091 5092	5094 5095 5095 5096	5098 5098 5099 5100	5102 5103 5105 5107 6108	TOTAL HEAN SD SE N

The state of the state of

TABLE 5

LITTER OBSERVATIONS

FIRST GENERATION - SECOND MATING (F1b)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATION:
0	5040	0	ONE FEMALE PUP - SUBCUTANEOUS HEMATOMA, DORSAL-THORACIC AREA.
3000	5092	0	ONE FEMALE PUP - SUBCUTAHEOUS HEMATOMA, TOP OF NOSE.
	5095	0	ONE FEMALE PUP - BLEEDING FROM LACERATION, RIGHT EAR.
	5096	0	ONE FEMALE PUP - SUBCUTANEOUS HEMATOMA, TOP OF NOSE.
	5096	e	ONE FEMALE PUP - SUBCUTAMEOUS HEMATOMA RIGHT FAR

TABLE I-E-20

TABLE 6
BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (Fo)

BODY WEIGHTS

DOSE (PPM)		MALES WK 4	WK 9	WK 11	WK 2U
0	MEAN	301	435	458	551
	SD	21.2	34.2	42.3	45.5
	SE	6.7	10.8	13.4	14.4
	N	10	10	10	10
300	MEAN	290	438	468	562
	SD	26.1	38.5	42.2	50.6
	SE	8.3	12.2	13.4	16.0
	N	10	10	10	10
3000	MEAN	288	426	453	532
	SD	20.0	30.8	· 38.7	42.4
	SE	6.3	9.7	12.2	13.4
	N	10	10	10	10

FOOD CONSUMPTION

DOSE (PPM)		MALES WK 4	WK 9	WK 11	WK 20
0	MEAN	22.0	25.4	23.8	23.2
	SD	2.2	2.5	3.8	4.0
	SE	0.7	0.8	1.2	1.3
	N	10	9	10	10
300	MEAN	21.7	24.9	24.2	22.9
	SD	1.5	1.0	1.4	2.4
	SE	0.6	0.4	0.5	0.8
	N	7	7	8	10
3000	MEAN	21.7	24.6	23.7	24.5
	SD	1.5	1.6	2.1	2.9
	SE	0.5	0.6	0.8	0.9
	N	10	8	7	10

TABLE I-E-20 (Continued)

TABLE 6 (Continued)

BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (Fo)

BODY WEIGHTS

DOSE		FEMALES			
(PPM)		WK 4	WK 9	WK 11	WK 20
. 0	MEAN	189	246	255	299
	SD	11.7	14.8	26.0	14.7
	SE	2.6	3.3	5.8	3.3
	N	20	20	20	20
300	MEAN	193	249	261	301
	SD	11.5	15.7	17.4	18.0
	SE	2.6	3.5	3.9	4.0
	N	20	20	20	20
3000	MEAN	195	252	263	296
	SD	19.0	26.0	26.1	24.3
	SE	4.2	6.0	6.0	5.6
	N	20	19	19	19

FOOD CONSUMPTION

DOSE		FEMALES			
(PPM)		WK 4	WK 9	WK 11	WK 20
0	MEAN SD SE N	16.1 2.0 0.5 18	19.3 2.5 0.6 19	19.3 3.3 0.8 19	21.2 3.2 0.7 19
300	MEAN SD SE N	15.9 1.8 0.4 19	19.1 3.1 0.7 20	18.8 3.0 0.7 20	20.6 3.2 0.7
3000	MEAN SD SE N	16.9 2.4 0.5 20	19.9 3.4 0.8 19	18.9 3.6 0.8 19	21.9 4.5 1.0 19

TABLE 7

JOXICOLOGY OBSERVATION REPORT

LINICAL SIGNS PROJECT NUMBER - 10734-06

IEEK	** DOSE GROU	P/SEX *	ANIMAL NUMBER	OBSERVATIONS : QUALIFIER ************************************
-001	CONTROL	MALE		STARTED APRIL 8,1977 3 GENERATION REPRODUCTION—RAT
001	CONTROL	FEMALE	05030	EYE OPACITY-RIGHT EYE
002	CONTROL 300 PPM	FEMALE MALE	05030 05050	EYE OPACITY-RIGHT EYE SKIN REDNESS : EYE-RIGHT
003	300 PPM	MALE	05052 05075	EYE DPACITY-RIGHT FYE SOFT STOOL EAR TAG LOST EAR TAG LOST
004		MALE FEMALE MALE	05055 05070 05087	EYE DPACITY-RIGHT EYE ULCERATION : LATERAL-RIGHT, NECK EAR TAG LOST EAR TAG LOST
005	CONTROL 300 PPM 3000 PPM	FEMALE MALE	05030 05055	EAR TAG LOST EYE OPACITY-RIGHT EYE ULCERATION : LATERAL-RIGHT, NECK FOUND DEAD
006	CONTROL 300 PPM 3000 PPM		05055	EYE OPACITY-RIGHT EYE ULCERATION : LATERAL-RIGHT, NECK LOCAL HAIR LOSS : LIMBS-FORE
007	CONTROL 300 PPM 3000 PPM	MALE FEMALE MALE FEMALE	05030 05055	MISSING EAR TAG EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LATERAL-RIGHT, NECK LOCAL HAIR LOSS : LIMBS-FORE
008	CONTROL 3000 PPM	FEMALE	05030 05093	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE
009	CONTROL 3000 PPM	FEMALE	05030 05093	EYE OPACITY-RIGHT EYF LOCAL HAIR LOSS : LIMBS-FORE
010	CONTROL 3000 PPM	FEMALE	05030 05091 05093	EYE OPACITY-RIGHT EYE EYE DISCHARGE : EYE-RIGHT:AROUND LOCAL HAIR LOSS : LIMBS-FORE

TABLE I-E-21 (Continued)

TABLE 7 (CONTINUED)

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NO. - 10734-06

WEEK	•	P/SEX *	ANIMAL NUMBER	OBSERVATIONS : QUALIFIER **********
011	CONTROL 300 PPM		05030	MATE TO GET FIA EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS: LIMB-FORE, RIGHT
012	CONTROL 300 PPM	FEMALE	05030 05066	EYE DPACITY-RIGHT EYE LCCAL HAIR LOSS : LIMB-FORE, RIGHT
013	CONTROL 300 PPM	FEMALE	05030 05066	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
014	CONTROL 300 PPM	FEMALE		EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
015	CONTROL 300 PPM 3000 PPM		05066	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS: LIMB-FORE, RIGHT EYE PARTIALLY CLOSED: EYE-LEFT
016	CONTROL 300 PPM 3000 PPM		05066	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMB-FORE, RIGHT EYE PARTIALLY CLOSED : EYE-LEFT
017	300 PPM	FEMALE MALE	05066	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMB-FORE, RIGHT EYE PARTIALLY CLOSED : EYE-LEFT
018	CONTROL 300 PPM 3000 PPM	FEMALE MALE	05052 ****	CRUST : NOSE:AROUND
019	CONTROL	FEMALE		LOCAL HAIR LOSS: LIMBS-FORE EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS: LIMB-FORE, LEFT
020	CONTROL	MALE FEMALE	05020 05030 05034	MATE TO GET F1B MATE TO GET F1B LOCAL HAIR LOSS: LIMBS-FORE EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS: LIMB-FORE.LEFT
021	CONTROL 3000 PPM	FEMALE		EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
022	CONTROL 3000 PPM	FEMALE		EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT

TABLE I-E-21 (Continued)

TABLE 7 (CONTINUED)

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NO. - 10734-06

WEEK	** DOSE GROUP	/SEX *	AN IMAL NUMBER	OBSERVATIONS : QUALIFIER ***** COMMENTS ************************************
023	CONTROL 3000 PPM	FEMALE	05102	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
024	CONTROL 3000 PPM	FEMALE	05102	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
025	CONTROL 3000 PPM	FEMALE	05102	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT
026	CONTROL 3000 PPM	FEMALE	05102	EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS: LIMBS-FORE LOCAL HAIR LOSS: LIMB-FORE, RIGHT
027	CONTROL 3000 PPM	FEMALE		EYE OPACITY-RIGHT EYE LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMB-FORE, RIGHT

TABLE I-E-22

TABLE 8

PARENT NECROPSY OBSERVATIONS (FO) - MALES

DOSE (PPM)	MALE <u>NUMBER</u>	OBSERVATION
0	5020 5021 5022 5023 5024 5025 5026 5027 5028 5029	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL ULCERATION (3 X 3 CM) RIGHT LATERAL THORACIC REGION; ALL TISSUES APPEAR NORMAL
300	5050 5051 5052 5053 5054 5055 5056 5057 5058 5059	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
3000	5080 5081 5082 5083 5084 5085 5086 5087	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL BOTH KIDNEYS PALE AND PITTED; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL

TABLE I-E-22 (Continued)

TABLE 8 (Continued)

PARENT NECROPSY OBSERVATIONS (FO) - FEMALES

DOSE (PPM)	FEMALE NUMBER	OBSERVATION				
0	5030	RIGHT EYE OPAQUE; ALL TISSUES APPEAR NORMAL				
	5031	ALL TISSUES APPEAR NORMAL				
	5032	ALL TISSUES APPEAR NORMAL				
	5033	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL				
	5034	DIARRHEA, BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL				
	5035	ALL TISSUES APPEAR NORMAL				
	5036	ALL TISSUES APPEAR NORMAL				
	5037	ALL TISSUES APPEAR NORMAL				
	5038	ALL TISSUES APPEAR NORMAL				
	5039	ALL TISSUES APPEAR NORMAL				
	5040	ALL TISSUES APPEAR NORMAL				
	5041	ALL TISSUES APPEAR NORMAL				
	5042	ALL TISSUES APPEAR NORMAL				
	5043	ALL TISSUES APPEAR NORMAL				
	5044	ALL TISSUES APPEAR NORMAL				
	5045	ALL TISSUES APPEAR NORMAL				
	5046	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL				
	5047	ALL TISSUES APPEAR NORMAL				
	5048	ALL TISSUES APPEAR NORMAL				
	5049	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES				
		APPEAR NORMAL				
300	5060	ALL TISSUES APPEAR NORMAL				
	5061	ALL TISSUES APPEAR NORMAL				
	5062	ALL TISSUES APPEAR NORMAL				
	5063	ALL TISSUES APPEAR NORMAL				
	5064	NECROPSY NOT PERFORMED				
	5065	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL				
	5066	ALL TISSUES APPEAR NORMAL				
	5067	ALL TISSUES APPEAR NORMAL				
	5068	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL				
	5069	ALL TISSUES APPEAR NORMAL				

TABLE I-E-22 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 8 (Continued)

PARENT NECROPSY OBSERVATIONS (FO) - FEMALES

DOSE (PPM)	FEMALE NUMBER .	OBSERVATION
300	5070 5071	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5072 5073 5074	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
	5075 5076	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5077 5078	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5079	ALL TISSUES APPEAR NORMAL
3000 .	5090	ALL TISSUES APPEAR NORMAL
	5091	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5092	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5093	ALL TISSUES APPEAR NORMAL
	5094	ALL TISSUES APPEAR NORMAL
	5095	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5096	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5097	ALL TISSUES APPEAR NORMAL
	5098	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5099 5100	ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5101	ALL TISSUES APPEAR NORMAL
	5102	ALL TISSUES APPEAR NORMAL
	5103	ALL TISSUES APPEAR NORMAL
	5104	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5105	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	5106	ALL TISSUES APPEAR NORMAL
	5107	ALL TISSUES APPEAR NORMAL
	5108	ALL TISSUES APPEAR NORMAL

1110N BIONETICS, INC.

TABLE 9

RESULTS OF SECOND GENERATION - FIRST MATING (F2a)

DOSE - 0 PPM

	HEAN F PUP WT	33 33 33 33 33 33 33 33 33 33 33 33 33	39 42 43 52 20	38 7.7 2.1
	MEAN M PUP WT	40 47 41 41 41 41	43 42 47 22	39 7.5 2.0
	SEX M/F	3/4 4/4 6/2 4/4 4/4 4/4 4/4	4/4 4/4 4/4 2/6	55/57
	LIVE		ထောင် ထောင်ထ	112 6 3.4 0.8
DAY 21	DEATHS DAY 4-21	ω	-	თ
	LITTER REDUCED M/F	3/5 4/4 4/4 4/4 4/4 4/4 4/4	4/4 4/4 4/4 0/1	59/62
	SEX N/F	3/6 8/5 8/5 7/8 6/2 6/7 6/6 6/6 8/6	5/7 6/4 4/10 7/5 0/1 2/13	85/101
	LIVE	e	12 12 10 12 15 15 15 15 15 15 15 15 15 15 15 15 15	186 10 5.0 1.2
DAY 4	DEATHS DAY 1-4	2 1 2 4 1 8	- 2 21	37
	MEAN F PUP WT	សេសស+សេសស ៤ ១ ८ ៤	9 7 9 9 9	6 1.1 0.2
	MEAN M PUP WT	ត្ត ក្រុម ភេទភាព ភេទក្រុម ភេទក្រុម ភេទភាព ភេទក្រុម ភេទភាព ភេទក្រុម ភេទភាព ភេទក្រុម ភេទភាព ភេទក្រុម ភេទក្រុម ភេទភាព ភេទក្រុម ភេទក្រុម ភេច ភេទក្រុម ភេទក្រុម ភេទក្រុម ភេច ភេទក្រុម ភេទក្រុម ភេច ភេទក្រុម ភេទក្រុម ភេទក្រិម ភេច ភេច ភេទក្រុម ភេច ភេទក្រុម ភេច	55 T T T T T T T T T T T T T T T T T T	7 6.9 0.2
DAY 0	SEX M/F	2,4 8,5 8,6 8,6 8,7 1,7 1,7 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	6/7 6/6 4/10 7/5 6/7 2/13	106/117
	DEAD	~		01
	LIVE	EE48E222EE84e	22 45 26	223 12 2.6 0.6 18
	MALE NUMBER	5465 5465 5466 5466 5466 5465 5651 5651	645 645 645 645 645 645 645 645 645 645	
	FEMALE	5456 5457 5459 5459 5460 5461 5465 5465 5465 5465	96 5470 5471 5472 5473 5474 5474	TOTAL HEAN SD SE N

One pup mis-sexed, corrected at Day 21.

ermone services the horizon one extraction that the services the services of the services the services that the team of the extraction of the recognition of the services of the extraction of t

LITTON BIONETICS, INC. PROJECF NO. 10734-06

TABLE 9 (Continued)

RESULTS OF SECOND GENERATION - FIRST MATING (F2a)

DOSE - 300 PPM

	NEAN F PUP WT	43 48 48 46 48 33 33 41 41 41 37	39 8.1 2.1
	MEAN M PUP WT	488 488 488 488 40 40 40 40 40 40	2. 1 2. 1
	SEX M/F	44 40,444446	53/56
	LIVE	88 88788788808 78	109 7 2.1 6.5 15
DAY 21	DEATHS DAY 4-21	 w	o.
	LITTER REDUCED M/F	44 47444444444444444444444444444444444	19/25
	SEX	7/7 4/11 6/5 6/5 8/5 8/5 3/12 5/5	74/93
	LIVE	11 13 13 15 10 10 10 10 10 10 10 10 10 10 10 10 10	167 11 2.5 0.7
DAY 4	DEATHS DAY 1-4	mm	۲
	MEAN F PUP WT	37 37783888899	6 0.3
	MEAN M PUP WT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 0.3 0.3
	SEX M/F	7/7 4/5 10/4 ^a 2/8 3/4 ^a 4/4 6/5 6/5 6/5 4/9 4/6 4/11 ^a	82/91
	DEAD PUPS		យ
DAY 0	LIVE	40 50 50 50 50 50 50 50 50 50 50 50 50 50	173 12 2.4 0.6
	MALE	5485 5477 5477 5477 5477 5478 5483 5484 5484 5484 5484 5484 5484	2
	FEMALE	5488 5488 5488 5488 5488 5488 5488 5488	SSUS TOTAL MEAN SD SE N

TABLE I-E-23 (Continued)

IABLE 9 (Continued)

RESULTS OF SECOND GENERATION - FIRST MATING (FZa)

DOSE - 3000 PPM

	MEAN F PUP WT	45	33 35	29 37 37	36 40	42 40 33 35 34 34	38 3.8 1.0
	MEAN M PUP WT	46	20-	890 -	ω Ο	40 38 39 31 33	99 - 1 - 1
	SEX M	5/3 4				4/4 3/5 4/4 4/4 3 2/4 3	58/66
	LIVE	ω	80 80 80	V 88 B V	ထထ	ထားလ ထယ	124 8 0.6 0.1 16
DAY 21	DEATHS DAY 4-21			-			-
	LITIER REDUCED M/F	4/4a	4/4 4/4 2/6	3/4 3/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4	4/4	4/4 4/4 2/4	58/67
	SEX M/F	5/8	5/7 6/6 2/8	3/4 8/6 8/6	5/8	4/7 4/8 4/8 6/4 2/4	76/99
	LIVE	13	12 10 10	7 2 4 6	225	11 12 12 10 6	175 11 2.2 0.5 16
DAY A	DAY 1-4					,	6
	MEAN F PUP WT	۲	7 9 2	9792	. 7 8	レレレの 9 4	7 0.9 0.2
	MEAN M PUP WT	7	r-r	· · · 9 ·	· ~ 8	88 7 2 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7. 0.2
	SEX	5/8	6/6 6/6 2/8	2/5 ⁰ 5/9 8/7	2/8 5/8	4/7 3/7 4/8 8/4 5/8	79/105
	DEAD				₅ c		ហ
>	LIVE	13	21 20	7 7 51 51	30E		184 12 2.0 0.5 16
	MALE NUMBER	5515 5515 5507	5508 5508 5508	5509 5510 5510	5511 5512	5513 5513 5514 5514 5506	
200	FEMALE	5516 5517 5518	5520 5520 5521 5522	5523 5524 5525 5525	5527 5528 5528	5529 5537 5532 5533 5534 5535	TOTAL MEAN SD SE N

^ahis-sexed pup, corrected at Day 21. bhis-sexed pup, corrected at Day 4. Csiamese birth, recorded as 2 male pups.

TABLE I-E-24

TABLE 10

LITTER OBSERVATIONS

SECOND GENERATION - FIRST MATING (F2a)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	<u>OBSERVATION</u>
0	5463	0	ONE FEMALE PUP - HEMATOMA,
	5461	1	ONE MALE PUP AND ONE FEMALE PUP - FOUND DEAD: NO
	5467	1	VISIBLE ABNORMALITIES. SURVIVING PUPS - TWO MALE AND ONE FEMALE - DRY SPLITTING SKIN AROUND AXILLA AND VENTRAL
	5474	1	SIDE OF NECK. ONE MALE PUP - FOUND DEAD; NO
	5458	21	VISIBLE ABNORMALITIES. ONE MALE PUP - FOUND DEAD; NO VISIBLE ABNORMALITIES.
300	5503	0	ONE FEMALE PUP - HEMATOMA, RIGHT
	5495	2	SIDE OF FACE. ONE FEMALE PUP - FOUND DEAD; NO VISIBLE ABNORMALITIES.
3000	5527	0	TWO MALE PUPS CONNECTED AT VENTRAL THORACIC REGION - FOUND DEAD; EACH HAS A COMPLETE SET OF LIMBS, ONE HAS COMPLETELY FORMED HEAD AND FACE, THE OTHER HAS ONLY TWO PROTRUSIONS FROM THE
	5533	2	ANTERIOR NECK. ONE PUP - FOUND DEAD; UNABLE TO DETERMINE SEX DUE TO CAN-
	5526	21	NIBALIZATION. ONE MALE AND TWO FEMALE PUPS -
	5527	21	THREE MALE AND THREE FEMALE
	5534	26	PUPS - PARTIALLY CLOSED END ONE MALE PUP - VERY EMACIATED AND SMALL, RIGHT EYE CLOSED

TABLE I-E-25

TABLE 11
PUP NECROPSY OBSERVATIONS (F2a) AT DAY 21

DOSE (PPM)	FEMALE NUMBER	NUMBER OF PUPS	OBSERVATION
0	5456 5458 5462 5463 5466 5470	8 6 8 8 8	ALL TISSUES APPEAR NORMAL
300	5490 5491 5494 5496 5499 5502	8 8 8 8 6 7	ALL TISSUES APPEAR NORMAL
3000	5520 5523 5524 5530 5533 5534	8 7 8 8 8	ALL TISSUES APPEAR NORMAL

ITTON BIONETICS, INC.

TABLE 12

RESULTS OF SECOND GENERATION - SECOND MATING (F2b)

DOSE - 0 PPM

	NEAN F PUP WT	46 40 46 41 33 37 50	48 35	######################################	5.4 1.4 1.4
	MEAN M PUP WT	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	46 38 38	55 55 56 56 56 56 56	5.5 4.5 4.5
	SEX M/F	4444	4/4 4/4 4/4	-44 6/4 6/4 6/4 74 74 74 74 74 74 74 74 74 74 74 74 74	70/72
	LIVE	ထ ထ ထ ထ ထ ထ ထ ထ	ထာ ထားထာ	∞∞~~∞∞ ∞	142 0.3 0.1 18
DAY 21	DEATHS DAY 4-21				N
	LITTER REDUCED M/F	4444644 444644 444644	4/4 4/4	_44/444, _44/444,	•
	SEX M/F	6/6 8/7 5/9 3/8 8/7	9/2 9/6 6/5	5/1 9/8 9/8 5/8 5/8	118/124
	LIVE	254855	15 11	8 17 2 8 1 1 5 8 8 1 1 5 1 5 1 5 1 5 1 5 1 5 1	242 13 2.7 0.6 18
DAY 4	DEATHS DAY 1-4	-	-	ភេ -	- ω
	MEAN F PUP WT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	യയ മ	~~05~00°	0.00
	MEAN M PUP WT	9979	. 00	977999	11 6 0.2 0.2
	SEX M/F	8/8 8/8 8/8 8/8	8/6- 9/6 7/5	5/8 8/5 8/5 1/9 1/9	119/131
	DEAD				- დ
DAY 0	LIVE	25249125	<u> </u>	8275555	250 2.4 2.4 0.6
	MALE	5455 5455 5455 5453 5453	5451 5451 5451	5443 5443 5443 5443 5447	2

anis-cexed at Day O, corrected at Day 4.

LITION BIONETICS, INC.

TABLE 12 (Continued)

RESULIS OF SECOND GENERATION - SECOND MATING (F2b)

DOSE - 300 PPN

	MEAN F PUP WT	46 47 47 48 48 49 40 40 40 40 40 40 40	44 5.0 1.4
	HEAN N PUP WT	44 44 43 44 43 44 43 44 44 44 44 44 44 4	47 6.3 1.7
	SEX M/F	4W4 4844444	73/62
	LIVE	∞∞∞ ∼∞∞∞∞∞∞∞ ∞∞∞∞	135 8 0.2 0.1 17
DAY 21	DEATHS DAY 4-21	-	-
	LITTER REDUCED M/F	4 % 4 4 % 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15/107 74/62
	SEX M/F	3/10 3/10 1/4 1/6 8/0 8/10 1/10 1/7 10/7 10/7 10/7 10/7	115/10
	LIVE	1135 1137 114 117 117 118 118 118 118 118 118 118 118	222 13 3.0 0.7
DAY 4	DEATHS DAY 1-4	2 -	ယ
	MEAN F PUP WT	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 1.0 0.3
	MEAN M PUP WT	00r rrr808999 9999 .	7 1.0 0.2
	SEX M/F	8/8 2/11a 7/5 7/5 8/6 8/6 8/10 8/10 8/10 8/9 10/7 8/8 8/8 8/8 8/8 8/8	ווו/211
	DEAD PUPS	۰. م	8
DAY 0	LIVE	555 58557575 50 e e 555	228 13 3.1 0.8
	MALE	5485 5485 5484 5484 5484 5483 5483 5481 5480 5479 5479 5476 5477	
	FENALE	5.486 5.486 5.486 5.486 5.496 5.500	TOTAL NEAN SD SE N

^aMis-sexed at Day 0, corrected at Day 4.

TON BIONETICS, INC.

TABLE 12 (Continued)

RESULTS OF S:COND GENERATION - SECOND MATING (F2b)

DOSE - 3000 PPM

	MEAN F PUP WT	49	51 39 52	552 44 44 44 44	44 44 45 50	45 7.0 1.7
	MEAN M PUP WT	56	51 46 68	502 33 44 51 64 72	200 438 438 40 40 40 40 40 40 40 40 40 40 40 40 40	48 8.7 2.2
	SEX M/F	4/4	6/2 4/4 4/4	1	4444 4444 3444 4444 4444	74/66
	LIVE	8	ထထထထ	o ⇔ ~ ⇔ ⇔ ⇔ ⇔		140 8 0.5 0.1
DAY 21	DEATHS				-	
	LITTER REDUCED M/F	8/4	6/2 4/4 8/4	7	44444 44444 44444	116/114 74/67
	SEX M/F	9/9	10/2 9/5 6/8	8/5 8/6 8/5 8/5 8/5	4/9 5/10 8/5 4/9 10/6 6/9	116/11
	LIVE	12	2444	1974E	: ដក្សដ្ឋសត្ថ	230 13 2.6 0.6
DAY 4	DEATHS DAY 1-4			_		m
	MEAN F PUP WT	9	V C 9 C	~~soo~c	, røðrrøð	6 0.6 1.0
	MEAN M PUP WT	9	∠	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ജ ~ യയായായ	6 7 0.8 0.2
	SEX M/F	9/9	10/2 9/5 _a · 8/6 ^a	8,472 8,44 8,5 6,5 8,5	4/9 5/10 8/5 4/10 10/6 7/6	117/116
	DEAD PUPS				8	cı
DAY 0	LIVE	12	<u> </u>	<u> </u>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	233 13 2.5 0.6 18
	MALE	5515	5514 5514 5513	5512 5511 5511 5510 5510	5509 5509 5508 5508 5507 5507 5506	
	FEMALE	5516	5518 5519 5520 5521	5522 5523 5524 5525 5525 5526	5528 5529 5530 5531 5532 5533 5533	TOTAL MEAN SD SE N

^aMis-sexed at Day O, corrected at Day 4.

TABLE 13

LITTER OBSERVATIONS

SECOND GENERATION - SECOND MATING (F2b)

DOSE (PPM)	FEMALE NUMBER	DAY OF <u>LACTATION</u>	OBSERVATION
0	5471	0	ONE MALE PUP - PALE AND INACTIVE; DEATH RECORDED SUBSEQUENTLY.
	5471	21	ONE PUP - FOUND DEAD; CANNIBALIZED.
	5472	0	ONE FEMALE PUP - HEMATOMA, MID- DORSAL THORACIC REGION.
300	5504	1	ONE MALE PUP - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5494	4	ONE FEMALE PUP - FOUND DEAD.
	5497	6	ONE FEMALE PUP - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5490	9	ONE FEMALE PUP - FOUND DEAD.
3000	5524	21	ONE FEMALE PUP - ACCIDENTALLY DIED DURING HANDLING.

TABLE I-E-28

TABLE 14
BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (F1b)

BODY WEIGHTS

DOSE		MALES				
(PPM)		WK 4	WK 9	WK 11	WK 20	
	MEAN SD SE N	341 27.6 8.7 10	464 30.4 9.6 10	468 37.2 11.8 10	578 45.3 14.3 10	
300	MEAN SD SE N	313 32.2 10.2 10	445 22.2 7.0 10	451 27.5 8.7 10	572 41.4 13.1 10	
3000	MEAN SD SE N	310* 27.3 8.6 10	438 31.5 10.0 10	442 33.7 10.7	541 38.6 12.2 10	

FOOD CONSUMPTION

DOSE		MALES	\#\ O	WK 11	WK 20
<u>(PPM)</u>		WK 4	WK 9	MV TT	WK ZU
0	MEAN	24.3	25.3	26.0	32.0
	SD	2.2	1.4	2. 5	5.4
	SE	0.7	0.6	1.0	1.8
	N	9	5	6	9
300	MEAN	24.0	25.9	23.9	31.7
	SD	1.8	2.9	6.1	3.9
	SE	0.6	1.2	2.1 ·	1.2
	N	9	6	8	10
3000	MEAN	24.6	27.3	27.9	28.6
	SD	2.1	2.4	2.5	4.2
	SE	0.7	0.9	0.9	1.4
	N	9	7	8	9

^{*}p< 0.05 as compared to controls: Dunnett's t-test.

TABLE I-E-28 (Continued)

TABLE 14 (Continued)

BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (F1b)

BODY WEIGHTS

DOSE		FEMALES				
(PPM)		WK 4	WK 9	WK 11	WK 20	
0	MEAN	200	246	249	295	
	SD	20.9	18.6	22.0	16.6	
	SE	4.7	4.2	4.9	3.7	
	N	20	20	20	20	
300	MEAN	203	261	259	308	
	SD	24.0	25.2	24.3	26.5	
	SE	5.4	5.6	5.4	5.9	
	N	20	20	20	20	
3000	MEAN	194	247	243	287	
	SD	18.6	22.3	22.0	23.3	
	SE	4.2	5.0	4.9	5.2	
	N	20	20	20	20	

FOOD CONSUMPTION

DOSE (PPM)		FEMALES WK 4	WK 9	WK 11	WK 20
0	MEAN	17.4	23.1	22.7	31.0
	SD	3.7	4.′.7	4.9	4.7
	SE	0.8	1.2	1.1	1.3
	N	19	17	20	14
300	MEAN	18.8	21.9	22.5	31.4
	SD	2.7	4.1	4.2	5.7
	SE	0.6	1.0	1.0	1.3
	N	20	18	19	18
3000	MEAN	17.2	24.2	23.1	31.4
	SD	2.7	3.1	3.4	6.1
	SE	0.6	0.7	0.7	1.4
	N	18	17	20	20

TABLE 15

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS
PROJECT NUMBER - 10734-06

WEEK NO. ** DOSE GROU	ANIMAL P/SEX * NUMBER	
-001 CONTROL	MALE 05446 ****	
001 CONTROL	MALE 05446	ALL ANIMALS NORMAL
002 CONTROL	MALE 05446	ALL ANIMALS NORMAL
003 CONTROL	MALE 05446	ALL ANIMALS NORMAL
004 CONTROL	MALE 05446	ALL ANIMALS NORMAL
005 CONTROL	MALE 05446	ALL ANIMALS NORMAL
006 CONTROL	MALE 05446	ALL ANIMALS NORMAL
007 CONTROL	MALE 05446	ALL ANIMALS NORMAL
008 CONTROL	MALE 05446	ALL ANIMALS APPEAR NORMAL
009 CONTROL 3000 PPM	MALE 05446 FEMALE 05524 *****	ULCERATION : HEAD
010 3000 PPM	FEMALE 05524 *****	MEDIUM SCAB(1-5CM) : EAR-RIGHT
011 3000 PPM	FEMALE 05524	MEDIUM ULCERATION(1-5CM) : EAR-RIGHT LOSS OF : EAR-RIGHT MATE TO GET F2A
012 300 PPM 3000 PPM		LOCAL HAIR LOSS : LIMBS-FORS MEDIUM SCAB(1-5CM) : EAR-RIGHT RIGHT EAR MISSING SCAB ON RT SIDE OF HEAD LOSS OF : EAR-RIGHT
013 CONTROL 300 PPM 3000 PPM		REMOVED FROM MATING LOCAL HAIR LOSS : LIMBS-FORE LOSS OF : EAR-RIGHT
014 300 PPM	FEMALE 05489	LOCAL HAIR LGSS : LIMBS-FORE

The state of the s

TABLE I-E-29 (Continued)

TABLE 15 (CONTINUED)

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NO. - 10734-06

WEEK NO. ** DOSE GROUP	AN SEX * NU	IIMAL JMBER	OBSERVATIONS : QUALIFIER ***** COMMENTS ************************************
3000 PPM	(5524	LOSS OF : EAR-RIGHT
015 300 PPM 3000 PPM	FEMALE ()5489)552 4	LOCAL HAIR LOSS : LIMBS-FORE LOSS OF : EAR-RIGHT
016 300 PPM 3000 PPM	FEMALE	05489 05524	LOCAL HAIR LOSS : LIMBS-FORE LOSS OF : EAR-RIGHT
017 300 PPM	FEMALE	05489	LOCAL HAIR LOSS : LIMBS-FORE
018 300 PPM 3000 PPM	FEMALE	05489 05524	LOCAL HAIR LOSS : LIMBS-FORE LOSS OF : EAR-RIGHT
020 300 PPM 3000 PPM	FEMALE	05489 05524	LOCAL HAIR LOSS : LIMBS-FORE LOSS OF : EAR-RIGHT
021 CONTROL 300 PPM		05446 05489	
022 300 PPM	FEMALE	05489	LOCAL HAIR LOSS : LIMBS-FORE
023 CONTROL 300 PPM	MALE FEMALE	05446 05489	
024 300 PPM	FEMALE	05489	LOCAL HAIR LOSS : LIMBS-FORE LOCAL HAIR LOSS : LIMBS-FORE
025 CONTROL 300 PPM	FEMALE	05468 05489	
026 300 PPM	FEMALE	05489	LOCAL HAIR LOSS : LIMBS-FORE
027 CONTROL	MALE	05446	ALL MALES SACRIFICED-GROSS NECROPSY ALL TISSUES NORMAL
	FEMALE	05456	
300 PPM		05489	LOCAL HAIR LOSS : LIMBS-FORE
028 300 PPM	FEMALE	05489	LOCAL HAIR LOSS : LIMBS-FORE

A STATE OF THE STA

TABLE I-E-30

TABLE 16

PARENT NECROPSY OBSERVATIONS (F1b) - MALES

DOSE (PPM)	MALE NUMBER	OBSERVATION
0	5446 5447 5448 5449 5450 5451 5452 5453 5454 5455	ALL TISSUES APPEAR NORMAL
300	5476 5477 5478 5479 5480 5481 5482 5483 5484 5485	ALL TISSUES APPEAR NORMAL
3000	5506 5507 5508 5509 5510 5511 5512 5513 5514 5515	ALL TISSUES APPEAR NORMAL

TABLE I-E-30 ... tinued)

TABLE 16 (Continued)

PARENT NECROPSY OBSERVATIONS (F1b) - FEMALES

DUSE (PPM)	FEMALE NUMBER	OBSERVATION
0	5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474	ALL TISSUES APPEAR NORMAL CYST ON RIGHT OVARY (10 X 15 X 10 MM) CYST ON UTERUS (13 X 10 MM) ALL TISSUES APPEAR NORMAL
300	5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL SMALL CYST ON RIGHT OVARY; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
	5505	ALL TISSUES APPEAR NORMAL

TABLE I-E-30 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 16 (Continued)

PARENT NECROPSY OBSERVATIONS (F1b) - FEMALES

FEMALE NUMBER	OBSERVATION
5516 5517 5518	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
5519 5520	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
5521	ALL TISSUES APPEAR NORMAL
5522 5523	ALL TISSUES APPEAR NORMAL FOUR STONES IN URINARY BLADDER, EACH APPROXIMATELY
	1 CM ³
5524	ALL TISSUES APPEAR NORMAL
	ALL TISSUES APPEAR NORMAL
5529	ALL TISSUES APPEAR NORMAL
5530	CYST ON RIGHT FALLOPIAN TUBE NEAR UTERUS
	(5 X 5 X 5 MM)
5531	ALL TISSUES APPEAR NORMAL
5532	ALL TISSUES APPEAR NORMAL
5534	ALL TISSUES APPEAR NORMAL
5535	ALL TISSUES APPEAR NORMAL
	NUMBER 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5534

TABLE 17

RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

DOSE - 0 PPM

	MEAN F PUP WT	33 36 44 45 46	42 40 42 42 49	447 43 28 28	41 7.1 1.7
	NEAN M PUP WT	34 33 33 47 46	2444 301 6 31 10	3 3 3 5 0 -	42 6.2 1.6
	SEX M/F	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4/44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	v9/v9
	LIVE	~~~~~~~	ලකතන ක ර	3 8 8 7 E 8	128 8 1.3 0.3
DAY 21	DEATHS DAY 4-21			-	-
	L1 FTER REDUCED M/F	4/4 4/4 4/4 4/4	4/4 4/4 4/4 4/4	4/4 4/4 4/4 4/4	64/65
	SEX M/F	8/5 5/7 10/6 5/10 7/6	5/4 5/6 5/6 5/6	8/8 8/7 6/5 6/8	105/97
	LIVE	<u> </u>	1122113	4 5 1 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	202 12 3.3 0.8 17
DAY 4	DEATHS DAY 1-4	-	- 5	-	ω
	MEAN F PUP WT	∂ 888888	ကထကက က4း	~ 0 0 0 0 0	6 1.0 0.2
	MEAN M PUP WT	V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0879 74	9 7 7 7	2 6 0.9 0.2
	SEX M/F	8/5 6/7 10/6 5/10 7/6	10/4 5/7 6/6 5/6 5/4 1/4	8/6 8/7 6/3 6/8	108/102
	DEAD PUPS		-		8
DAY 0	LIVE	55 55 50 50 50 50 50 50 50 50 50 50 50 5	45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	135 E 2	210 12 3.7 0.9 18
	MALE NUMBER	1405 1406 1406 1397 1398 1398	1399 1399 1400 1401 1401	1402 1403 1404 1404 1405	
	FEMALE	1407 1408 1409 1410 1411 1412	112	1421 1423 1423 1425 1425	101AL HEAH SID SE SE

^aOne pup mis-sexed, corrected at Day 21.

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 17 (Continued)

RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

00SE - 300 PPM

	MEAN F PUP WT	29 27	40	42 29	42 45 39 28 42	35 35 39	37 7.2 1.9
	MEAN N PUP WT	33	40 40 45	45 29	46 48 37 28 28 48	38 41	39 7.2 1.9
	SEX M/F	5/3 2/2	5/3 5/3 7/0	4/4 5/3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0/2 4/4 4/4	65/51
	LIVE	ಐಕ	88 %	သထထ	& ~ & & & & & & & & & & & & & & & & & & &	% & &	116 7 2.4 0.6 17
DAY 21	DEATHS DAY 4-21	4		20			13
	LITTER REDUCED M/F	5/3 4/4	5/3 7/1	4/4 5/3	4/4 4/4 4/4		
	SEX M/F	6/3 6/5	13/3 9/3 9/1	5/7 6/5 11/3	9/4 4/3 11/11 8/4 6/7	0/2 4/9 6/9	121/83
	LIVE	911	9270	217	E 7 2 2 2 E E	2 13 15	204 13 3.3 0.8 16
4	DEATHS DAY 1-4						
DAY	DA	ოო					ω
DAY	MEAN DE	មេខ	666	9		9	6 0.8 0.2
DAY		ດເລ	999	, 7 7 6 6	7 7 7 7 6 6 5 7 7	7 6	6 6 0.7 0.8 0.2
DAY	MEAN F PUP WT	8/4 5 5 3 3 9/5 5 5 3	13/3 6 6 1 1 9/2 6 6 1 1	5// / 6 6/5 7 7 11/3 6 6	9/4 7 7 7 4/3 11/11 7 7 7 8/4 6 5 6 6/7 7 6/7	0/2 4/9 7 6 6/9 7 7	6 0.8 0.2
DAY	MEAN HEAN HEAN H PUP WT	8/4 5 5 3 3 9/5 5 5 3	13/3 6 6 10/3 6 6 10/2 6 6	5/1 / 6 6/5 7 7 11/3 6 6	9/4 7 7 7 4/3 11/11 7 7 8/4 6 5 5 6/7 7 6	0/2 4/9 7 6 6/9 7 7	6 6 0.7 0.8 0.2
DAY O DAY	SEX MEAN MEAN MY F PUP WT	32 8/4 5 5 3 34 9/5 5 5 5 3			13 9/4 7 7 7 2 22 11/11 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		127/85 6 6 0.7 0.8 0.2 0.2
DAY O DAY	DEAD SEX MEAN MEAN PUP WT F PUP WT	32 14	.9E.E.	2 = 2		2 2 2 3	127/85 6 6 0.7 0.8 0.2 0.2

TABLE I-E-31 (Continued)

TABLE 17 (Continued)

RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

DOSE - 3000 PPM

	MEAN F PUP WT	32 33 33 28 28 33 31	21 30 26 26 26 26 28 28 28 26 28 26 26 26 26 26 27 28 28 28 26 26 26 26 26 26 26 26 26 26 26 26 26	30 8.1 2.0
	NEAN M PUP WI	33 33 33 31 31	20 33 28 28 27 27 33	32 7.9 2.0
	SEX M/F	4/4 4/4 4/4 4/4	2/4 2/4 2/2 2/2 0/2	53/55
	L IVE PUPS	8775988	∞	108 6 1.9 0.5 17
D.W 21	DEATHS DAY 4-21	, 8 ·	- 8 የ 04 æ	30
	LITTER Reducco M/F	4444 4444 4444	44444444444444444444444444444444444444	72/66
	SEX N/F	10/7 10/6 7/5 4/1 9/5 5/8 8/5	4/6 4/8 4/8 6/5 8/5 3/2 3/2 8/6 9/5	123/94
	LIVE	725 25 EEE	085115485441	217 12 3.3 0.8 18
* > 40	DEATHS	-	-	8
	NEAN F PUP WT	9997999	८७८४८ ७७७८७७	6.1.1 0.3
	MEAN M PUP WT	66 66 67 67 67	78747969 9077 9077	7 7 9.0
	SEX N/F	10/7 10/6 7/6 4/1 9/5 5/8 8/5	4/6 4/4 4/8 6/5 8/5 3/2 3/2 8/6 8/6 6/6	124/95
	DEAD	_	- ·	2
:	LIVE PUPS	13 13 13 13 13	0 8 2 1 5 5 5 5 5 5 5 5	219 12 3.3 0.8
3000 FFR	· MALE MUMBER	1465 1466 1466 1457 1458 1458 1458	1459 1460 1460 1461 1461 1462 1463 1464 1464	
005 - 30	FENALE	1467 1468 1469 1470 1472 1472	1475 1476 1477 1478 1480 1481 1482 1483 1483	FOTAL NEAN SD SE N

i mi

TABLE 18

LITTER OBSERVATIONS

THIRD GENERATION - FIRST MATING (F3a)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATION
300	1438	20	ONE MALE AND TWO FEMALE PUPS - FOUND DEAD; ONE PUP - CANNI- BALIZED.
3000	1478	9	ALL PUPS (EIGHT) - FOUND DEAD.
0000	1484	14	THREE FEMALE PUPS - FOUND DEAD; ONE PUP - CANNIBALIZED.
	1469	17	ONE MALE PUP - FOUND DEAD.
	1477	19	ONE MALE PUP - FOUND DEAD.
	1471	20	ONE MALE PUP - FOUND DEAD; ONE PUP - CANNIBALIZED.
	1486	20	TWO FEMALE AND TWO MALE PUPS - FOUND DEAD; ONE PUP - CANNIBALIZED.
•	1481	21	FOUR FEMALE PUPS - FOUND DEAD; ONE PUP - CANNIBALIZED.
	1481	23	ONE PUP - CANNIBALIZED.

TABLE I-E-33

TABLE 19

PUP NECROPSY OBSERVATIONS (F3a) AT DAY 21

DOSE (PPM)	FEMALE NUMBER	NUMBER OF PUPS	OBSERVATION
0	1408 1410 1415 1423 1424 1426	8 8 8 8 7 8	ALL TISSUES APPEAR NORMAL
300	1437 1438 1440 1442 1449 1454	8 4 8 7 8 2	ALL TISSUES APPEAR NORMAL
3000	1468 1470 1476 1480 1484 1485	7 5 8 8 4	ALL TISSUES APPEAR NORMAL

TABLE 20

RESULTS OF THIRD GENERATION - SECOND MATING (F3b)

DOSE - 0 PPM

	MEAN F PUP WT	47 47 48 44 47 47 47 47	45 5.0 1.2
	NEAN M PUP WT	444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	49 1.3
	SEX M/F	44440 44444444444444444444444444444444	78/60
	LIVE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	138 8 0.8 0.2
DAY 21	DAY 4-21	ω ω ო	19
	TTER DUCED	3/2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 21/
	그윤	maaaaaaaaaaaaaaaa	52/127 85/125
	SEX M/F	3,12 5,2 12,7 8,8 8,8 11,0 8,5 12,6 6,6 6,6 6,7 6,7 10,8 10,8 10,2 10,8 10,8 10,8 10,8 10,8 10,8 10,8 10,8	152/1
	LIVE	57 25 27 25 27 25 27 25 27 25 27 25 27 25 27 25 27 25 27 25 27 27 27 27 27 27 27 27 27 27 27 27 27	279 14 3.3 0.7 20
DAY 4	DEATHS DAY 1-4	o o - o	01
	MEAN T PUP WT	שמממממשמאע∼מא ממשמש	5 0.6 1.
	MEAN M PUP WT	5000000000000000000000000000000000000	8 6 0.7 0.2
	SEX M/F	5/12 ^a 5/2 13/7 13/7 12/5 11/0 8/5 11/0 6/6 6/6 6/7 6/7 6/7 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1	159/128
	DEAD PUPS		ю
DAY 0	LIVE	7	287 14 3.5 0.8 20 sexed.
	MALE NUMBER	1405 1405 1406 1406 1397 1398 1398 1399 1400 1400 1401 1403	0TAL 287 16 14 16 3.5 6 6 6 8 6 9 6 8 9 9 9 9 9 9 9 9 9 9 9 9
	FEHALE	1408 1408 1410 1411 1411 1413 1415 1415 1416 1416 1418 1420 1421 1421 1421 1423 1424 1423 1424 1425	101AL NEAN SD SF SF N H

ITTON BIONETICS, INC.

IABLE 20 (Continued)

RESULTS OF THIRD GENERATION - SECOND MATING (F3b)

DOSE - 300 PPM

		MEAN F PUP WT	94444444444444444444444444444444444444	43 5.9 1.4
		NEAN M PUP WT	4	47 5.1 1.2
		SEX M/F	40	73/72
		LIVE	ფ იი ფფფფო ∼ ფფფფ ფფფ	145 8 0.8 0.2 19
	DHY 21	DEATHS DAY 4-21	~ ~	4
		L111ER REDUCED M/F	40444004044444444444444444444444444444	77/72
		SEX M/F	4/5 2/4 2/4 2/4 1/6 8/8 8/8 8/8 10/4 10/3 10/3 10/3	132/117
		LIVE	e e 5:5:5:544	249 13 3.4 0.8 19
	DAY 4	DEATHS DAY 1-4	~ ~ ~ ~	^
		MEAN F PUP WT	ονοοουνονν4οοοοουν υ	6 0.7 0.2
		MEAN M PUP WT	~~556675v	6 0.7 0.2
		SEX N/F	4/5 2/4 2/4 5/7 4/9 8/8 8/8 10/4 10/4 10/10 ^a 10/10 ^a 10/3 8/9 8/9	136/120
		DEAD		-
	DAY 0	LIVE	9 6 13 13 13 13 13 13 13 13 13 13 13 13 13	256 13 3.7 0.8 19
:		MALE	1436 1428 1428 1429 1429 1431 1431 1432 1433 1433 1434 1427	07AL 256 18.N 13.7 19.
		FEMALE	1433 1439 1440 1441 1442 1444 1444 1450 1450 1450 1453 1453 1455 1455	TOTAL NEAN SD SE H H

TABLE 20 (Continued)

RESULTS OF THIRD GENERATION - SECOND MATING (F3b)

DOSE - 3000 PPM

	MEAN F PUP WT	445 443 443 440 442 37 37	39 45	41 1.1
	MEAN M PUP WT	52 47 45 47 47 47 46 46 46 46 46 46 46 46 46 46 46 46 46	33 20	46 5.4 1.4
	SEX M/F	4444 4444 4444 4444 4444 4444 4444 4444 4444	4/4	9/19
	LIVE	සසසසස ස	စ္ ထ ထ	126 7 2.0 0.5 17
DAY 21	DEATHS	ω		7
	LITTER REDUCED N/F	8/8 4/4 8/6 4/4 3/5 4/4 8/9 4/4 3/3 3/5 3/10 3/5 3/10 3/5 4/4 4/4 4/4 4/4 4/6 4/4 4/6 4/4	4/4	9 65/68
	SEX M/F	8/8 8/6 3/3 3/3 3/6 4/8 6/6 6/6 6/6	10/5	108/10
	LIVE	64227 e 2277 - 70 ;	<u> </u>	217 13 3.3 0.8
DAY 4	DEATHS DAY 1-4	- L 2 <u>5</u> 9		. 52
	MEAN F PUP WT	י ממטטטטמט מאמאאס	~ ជា ហ	0.0 0.2 0.2
	MEAN M PUP WT	0 		7 6 0.7 0.2
	SEX M/F	8/8 ^a 9/6 ^a 7/5 3/39 ^a 3/10 3/10 6/9 6/9 4/7 4/6 4/6	10/5	115/127
	DEAD PUPS	m		4
DAY 0	LIVE	15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	7 52 4	242 13 2.9 0.7
	MALE	1456 1457 1458 1459 1460 1461 1461 1462 1463 1464	1465 1465 1463	
	FEMALE	1483 1483 1483 1483 1483 1483	1484 1485 1486	TOTAL MEAN SD SE N

a Pups initially mis-sexed.

TABLE I-E-35

TABLE 21

LITTER OBSERVATIONS

THIRD GENERATION - SECOND MATING (F3b)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATION
0	1414	4	ALL PUPS (EXCEPT ONE MALE PUP) - FOUND DEAD.
300	1453 1452 1440	2 16 25	ONE PUP - FOUND CANNIBALIZED. TWO PUPS - FOUND CANNIBALIZED. TWO PUPS (ONE CANNIBALIZED) - FOUND DEAD.
3000	1480	15	ONE PUP - FOUND CANNIBALIZED.

TABLE I-E-36

TABLE 22

PUP NECROPSY OBSERVATIONS (F3b) AT DAY 21

DOSE	FEMALE	NUMBER	OBSERVATION
(PPM)	NUMBER	OF PUPS	
0	1408 1410 1411 1421 1422 1425	6 8 8 5 8	ALL TISSUES APPEAR NORMAL
300	1439	6	ALL TISSUES APPEAR NORMAL
	1440	6	ALL TISSUES APPEAR NORMAL
	1443	8	ALL TISSUES APPEAR NORMAL
	1447	8	ALL TISSUES APPEAR NORMAL
	1453	8	ALL TISSUES APPEAR NORMAL
	1455	8	ALL TISSUES APPEAR NORMAL
3000	1471 1477 1478 1482 1484 1485	8 8 8 8 8	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL

TABLE I-E-37

TABLE 23

BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (F2b)

BODY WEIGHTS

DOSE		MALES				
(PPM)		WK 4	WK 9	WK 11	WK 20	•
0 .	MEAN SD SE N	338 26.1 8.2 10	481 40.7 12.9 10	504 41.2 13.0 10	564 43.6 13.8 10	
300	MEAN SD SE N	328 19.1 6.0 10	441 30.7 9.7 10	482 41.1 13.0 10	553 51.0 16.1 10	
3000	MEAN SD SE N	328 32.0 10.1 10	449 45.9 14.5 10	480 49.7 15.7 10	538 68.2 21.6 10	

FOOD CONSUMPTION

DOSE (PPM)		MALES WK 4	WK 9	WK 11	WK 20
0	MEAN SD SE N	38.6 2.4 0.9 7	33.7 4.3 1.3	30.4 3.9 1.2 10	29.4 3.6 1.1 10
300	MEAN	39.1	31.4	29.3	29.2
	SD	3.6	2.4	2.8	3.9
	SE	1.3	0.9	0.9	1.2
	N	8	8	10	10
3000	MEAN	38.2	31.2	28.8	28.9
	SD	3.8	4.4	3.7	4.0
	SE	1.3	1.4	1.2	1.3
	N	9	10	10	10

TABLE I-E-37 (Continued)

TABLE 23 (Continued)

BODY WEIGHTS AND FOOD CONSUMPTION (G) OF PARENT RATS (F2b)

BODY WEIGHTS

DOSE		FEMALES			
(PPM)		WK 4	WK 9	WK 11	WK 20
0	MEAN	212	264	278	300
	SD	19.7	24.9	26.6	23.5
	SE	4.4	5.6	6.0	5.2
	N	20	20	20	20
300	MEAN	210	255	269	297
	SD	31.2	17.5	17.8	20.2
	SE	7.0	3.9	4.0	4.5
	N	20	20	20	20
3000	MEAN	204	250	265	281*
	SD	18.9	22.2	24.4	23.7
	SE	4.3	5.0	5.5	5.3
	N	19	20	20	20

FOOD CONSUMPTION

DOSE (PPM)		FEMALES WK 4	WK 9	WK 11	WK 20
(FFII)		<u> </u>	MK 3	111/ 11	111 20
0	MEAN	34.8	29.8	29.3	30.0
	SD	5.1	4.2	6.7	2.2
	SE	1.1	1.0	1.5	0.6
	N	20	18	20	15
300	MEAN	33.2	25.4	25.9	29.5
	SD	5.8	5.5	6.8	6.4
	SE	1.3	1.3	1.5	1.5
	N	19	19	20	18
3000	MEAN	33.6	27.4	25.4	29.2
	SD	6.4	6.0	5.9	4.4
	SE	1.6	1.5	1.4	1.1
	N	16	17	18	16

^{*}p<0.05 as compared to controls: Dunnett's t-test.

TABLE 24

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NUMBER - 10734-06

WEEK NO. ** DOSE GROU	ANIMAL P/SEX * NUMBER	OBSERVATIONS : QUALIFIER ***** COMMENTS ************************************
-001 CONTROL	MALE 01397	
001 CONTROL	MALE 01397	ALL ANIMALS NORMAL
002 CONTROL	MALE 01397	ALL ANIMALS NORMAL
003 CONTROL	MALE 01397	ALL ANIMALS NORMAL
004 CONTROL	MALE 01402	MISSING FOUND-RETURNED TO STUDY
005 CONTROL	MALE 01397	ALL ANIMALS NORMAL
006 CONTROL	MALE 01397	ALL ANIMALS NORMAL
007 CONTROL	MALE 01397	ALL ANIMALS NORMAL
008 CONTROL	MALE 01397	ALL ANIMALS NORMAL
009 CONTROL	MALE 01397	ALL ANIMALS NORMAL
010 CONTROL	MALE 01397	ALL ANIMALS NORMAL
Oll CONTROL	MALE 01397	ALL ANIMALS NORMAL
012 CONTROL	MALE 01397	MATE TO GET F3A ALL ANIMALS NORMAL
013 CONTROL	MALE 01397	ALL ANIMALS NORMAL
014 CONTROL	MALE 01397 FEMALE 01409	
015 CONTROL 300 PPM	FEMALE 01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC SMALL MASS(<1CM) : VENTRAL-AXILLARY, LEFT
016 CONTROL	FEMALE 01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
300 PPM	0.1444	HED TON HOUSE DOWN - Tanking History Park

TABLE 24 (CONTINUED)

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NO. - 10734-06

WEEK	** DOSE GROUP		IN I MAL IUMBER	OBSERVATIONS : QUALIFIER ***** COMMENTS ************************************
017	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
018	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
019	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM 3000 PPM		01444 01477	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT LOCAL HAIR LOSS : DORSAL-LUMBAR, MID
020		MALE FEMALE	01397 01409	MATE TO GET F3B LOCAL HAIR LOSS: LATERAL-RIGHT, THORACIC
	300 PPM 3000 PPM		01444 01477	LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC MEDIUM MASS(1-5CM) : VENTRAL-AYILLARY, LEFT LOCAL HAIR LOSS : DORSAL-LUMBAR, MID
021	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
022		MALE FEMALE	01397 01409	REMOVED FROM MATING LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC
	300 PPM	LUMBE	01444	LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
023		FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC
023	300 PPM	FEMALE	01444	LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
024	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
025	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
026	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT
027	CONTROL	FEMALE	01409	LOCAL HAIR LOSS : LATERAL-RIGHT, THORACIC LOCAL HAIR LOSS : LATERAL-LEFT, THORACIC
	300 PPM		01444	MEDIUM MASS(1-5CM) : VENTRAL-AXILLARY, LEFT

TABLE I-E-38 (Continued)

TABLE 24 (CONTINUED)

TOXICOLOGY OBSERVATION REPORT

CLINICAL SIGNS PROJECT NO. - 10734-06

WEEK NO. ** DOSE GR		NIMAL UMBER			ONS:	QUALIFIER	*****
				TAIN ON CO	DAT		
	(EMACIAT				
			NASAL D	ISCHARGE			
	:	****	CRUSTY	NOSE			
			URINE S'	TAIN ON CO	DAT		
	(01453	URINE S	TAIN ON CO	CAT		
028 CONTROL	FEMALE (01409	LOCAL H	AIR LOSS	: LATE	ERAL-RIGHT,	THORACIC
			LOCAL H	AIR LOSS	: LAT	ERAL-LEFT, T	HORACIC
	(01422	URINE S	TAIN ON CO	TAD		
300 PPM	•	01444	MEDIUM	MASS(1-5C)	M) : 1	VENTRAL-AXI	LLARY, LEFT
	(01451	EMACIAT	ED			
029 CONTROL	FEMALE (01409	LOCAL H	AIR LOSS	: LATE	ERAL-RIGHT,	THORACIC
			LOCAL H	AIR LOSS	: LATI	ERAL-LEFT,T	HORACIC
	(TAIN ON CO			
300 PPM						VENTRAL-AXI	LLARY, LEFT
330 1111			EMACIAT		• •		
	•	~					

TABLE I-E-39

TABLE 25

PARENT NECROPSY OBSERVATIONS (F2b) - MALES

DOSE (PPM)	MALE NUMBER	OBSERVATION
0	1397 1398 1399	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1400 1401 1402	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1403 1404 1405 1406	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
300	1427 1428 1429	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1430	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1431	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1432	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1433	ALL TISSUES APPEAR NORMAL
	1434	ALL TISSUES APPEAR NORMAL
	1435	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1436	ALL TISSUES APPEAR NORMAL
3000	1457	ALL TISSUES APPEAR NORMAL
	1458	ALL TISSUES APPEAR NORMAL
	1459	ALL TISSUES APPEAR NORMAL
	1460	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1451	ALL TISSUES APPEAR NORMAL
	1462	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1463	ALL TISSUES APPEAR NORMAL
	1464	ALL TISSUES APPEAR NORMAL
	1465	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1466	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL

TABLE I-E-39 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-06

TABLE 25 (Continued)

PARENT NECROPSY OBSERVATIONS (F2b) - FEMALES

DOSE (PPM)	FEMALE NUMBER	OBSERVATION
0	1407	ALL TISSUES APPEAR NORMAL
	1408	ALL TISSUES APPEAR NORMAL
	1409	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1410	ALL TISSUES APPEAR NORMAL
	1411	ALL TISSUES APPEAR NORMAL
	1412	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1413	ALL TISSUES APPEAR NORMAL
	1414	ALL TISSUES APPEAR NORMAL
	1415	ALL TISSUES APPEAR NORMAL
	1416	ALL TISSUES APOFAR NORMAL
	1417	BOTH KIDNEYS MUTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1418	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1419	ALL TISSUES APPEAR NORMAL
	1420	ALL TISSUES APPEAR NORMAL
	1421	ALL TISSUES APPEAR NORMAL
	1422	ALL TISSUES APPEAR NORMAL
	1423	ALL TISSUES APPEAR NORMAL
	1424	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1.425	ALL TISSUES APPEAR NORMAL
	1426	ALL TISSUES APPEAR NORMAL
300	1437	ALL TISSUES APPEAR NORMAL
	1438	ALL TISSUES APPEAR NORMAL
	1439	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1440	ALL TISSUES APPEAR NORMAL
	1441	ALL TISSUES APPEAR NORMAL
	1442	ALL TISSUES APPEAR NORMAL
	1443	ALL TISSUES APPEAR NORMAL
	1444	BOTH KIDNEYS MOTTLED; SUBCUTANEOUS MAMMARY MASS (1 CM ²) ON LEFT AXILLA
	1445	ALL TISSUES APPEAR NORMAL
•	1446	ALL TISSUES APPEAR NORMAL
	1447	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL

TABLE I-E-39 (Continued)

TABLE 25 (Continued)

PARENT NECROPSY OBSERVATIONS (F2b) - FEMALES

DOSE (PPM)	FEMALE NUMBER	OBSERVATION
300	1448	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1449	ALL TISSUES APPEAR NORMAL
	1450	ALL TISSUES APPEAR NORMAL
	1451	ALL TISSUES APPEAR NORMAL
	1452	ALL TISSUES APPEAR NORMAL
	1453	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1454	ALL TISSUES APPEAR NORMAL
	1455	ALL TISSUES APPEAR NORMAL
	1456	ALL TISSUES APPEAR NORMAL
2000	1467	
3000	1467 1468	ALL TISSUES APPEAR NORMAL ALL TISSUES APPEAR NORMAL
	1469	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR
•	-	NORMAL
	1470	ALL TISSUES APPEAR NORMAL
	1471	ALL TISSUES APPEAR NORMAL
	1472	ALL TISSUES APPEAR NORMAL
	1473	ALL TISSUES APPEAR NORMAL
	1474	ALL TISSUES APPEAR NORMAL
	1475	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1476	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1477	ALL TISSUES APPEAR NORMAL
	1478	ALL TISSUES APPEAR NORMAL
	1479	ALL TISSUES APPEAR NORMAL
	1480	BOTH KIDNEYS MOTTLED; ALL OTHER TISSUES APPEAR NORMAL
	1481	ALL TISSUES APPEAR NORMAL
	1482	ALL TISSUES APPEAR NORMAL
	1483	ALL TISSUES APPEAR NORMAL
	1484	ALL TISSUES APPEAR NORMAL
	1485	ALL TISSUES APPEAR NORMAL
	1486	ALL TISSUES APPEAR NORMAL

APPENDIX B

SPONSOR:

Environmental Protection Department, US Army Medical Bioengineering Research

and Development Laboratory

MATERIAL:

Diisopropylmethylphosphonate (DIMP)

SUBJECT:

FINAL REPORT

Analysis of Diet Formulations

LBI Project No. 10734

1. OBJECTIVE

The purpose of the study was to analyze DIMP in animal chow with regard to stability and formulation content in diet.

2. MATERIAL AND EXPERIMENTAL DESIGN

Analysis of the dosed feed was performed by the following chromatographic method:

Scope

This method describes the analytical procedure for the determination of DIMP in dosed feed used by Litton Bionetics, Inc. (LBI) from July, 1977 to September, 1978.

Principle

A five gram subsample is extracted with 15 ml of acetone by shaking for 10 minutes in an automatic shaker. The extract is clarified by centrifugation for 10 minutes at 1350 rpm and decanted into a separate tube. A second extraction is performed with 10 ml of acetone in the same manner. The two extracts are combined and centrifuged again prior to analysis by gas-liquid chromatography.

The amount of DIMP found is calculated by reference to calibration curves prepared by analysis of standard solutions of DIMP in acetone.

Equipment and Suppliers:

50 ml graduated conical Falcon tubes with positive seal caps (available from Becton, Dickinson, and Company, Oxnord, CA 93030), stock number H8292-209811

Short-stem glass funnels (corning 6180).

15 ml graduated glass centrifuge tubes with ground glass stoppers.

Centrifuge.

Volumetric glassware - 1, 4, and 10 ml pipettes; 50 and 100 ml flasks.

2. MATERIALS AND EXPERIMENTAL DESIGN (Continued)

Graduated cylinders - 25 ml capacity.

Mechanical shaker.

Analytical laboratory balance (accurate to 0.01 mg).

Top-loading laboratory balance (accurate to 0.01 g).

Gas-liquid chromatograph - Varian 2100, equipped with 1.8 m \times 2 mm I.D. glass column packed with 10% FFAP on 80/100 mesh Supelcoport, flame ionization detectors.

Acetone (Burdick & Jackson).

Preparation of Standard:

Prepare a stock standard solution of DIMP by dissolving 75 mg of DIMP in 50 ml of acetone.

Take a 10 ml aliquot and dilute to 100 ml with acetone in a volumetric flask. This solution has a concentration of 0.15 mg/ml.

Prepare a standard curve by injecting 1, 2 and 3 μ l of the standard solution at the following parameters:

Column temperature: 120°C Injector temperature: 250°C FID temperature: 275°C

Chart: 6 minutes/inch Carrier gas flow: 40 cc/min_nitrogen

Attn: 16×10^{-11}

Procedure:

Weigh a 5 g sample of the dosed feed to the nearest 0.01 g in a Falcon tube.

Extract the sample with 15 ml of acetone by mixing for 10 min in a mechanical shaker, followed by centrifugation at 1300 rpm for 10 min.

Decant the supernatant into a Falcon tube and tightly seal to prevent solvent loss.

Repeat the extraction one additional time with 10 ml of acetone. Combine the extracts in the Falcon tube. Stopper tightly and mix well. Allow the sample to settle for 1 min, then centrifuge for 10 min at 1350 rpm.

Dilute the high-dose level (3000 ppm) in a 15 ml graduated centrifuge tube by adding a 1 ml aliquot to 4 ml of acetone.

2. MATERIAL AND EXPERIMENTAL DESIGN (Continued)

Repeat above procedure using undosed animal feed of the same lot used for the preparation of the dosed feed. This extract will be used as a negative control to assure that there are no interfering peaks contributed by the feed itself.

Repeat above procedure using undosed animal feed of the same lot which has been spiked in the laboratory with DIMP at corresponding dose levels.

Quantitate the amount of DIMP in solution by comparing to calibration curve prepared above.

Calculations:

• Calculate the ppm of DIMP in the dosed feed or spiked (recovery) sample as follows:

To determine mg of sample injected:

$$\frac{5 \text{ g feed}}{25 \text{ ml acetone}} = \frac{200 \text{ mg feed}}{1.0 \text{ ml acetone}}$$

$$\frac{200 \text{ mg feed}}{1.0 \text{ ml acetone}} \times \text{Dilution Factor} = \frac{(x) \text{ mg feed}}{1.0 \text{ ml acetone}}$$

$$\frac{(x) \text{ mg feed}}{1.0 \text{ ml acetone}} \times \frac{\mu \text{l sample}}{1000} = \text{mg of feed injected}$$

Calculate the intercept and slope from standard curve, as determined by linear regression correlation.

To determine ppm:

Determine method recovery from spiked samples as follows:

percent recovery =
$$\frac{ppm found \times 100}{ppm added}$$

Correct the result of the dosed feed sample for method recovery for its corresponding spiked sample.

corrected ppm =
$$\frac{\text{sample ppm x } 100}{\text{percent recovery}}$$

3. MATERIAL AND EXPERIMENTAL DESIGN

(Method Modification of 17 September 1978)

Scope

This method describes the analytical procedure used for the determination of DIMP in dosed feed used by Litton Bionetics, Inc. (LBI) from 17 September 1978 to the termination of the study.

<u>Principle</u>

A five gram subsample is extracted with 15 ml of acetone by shaking for 10 min in an automatic shaker. The extract is clarified by centrifugation for 10 min at 1350 rpm and decanted into a separate tube. A second extraction is performed with 10 ml of acetone in the same manner. The two extracts are combined and centrifuged again prior to analysis by gas-liquid chromatography.

An aliquot of the extract is diluted with a standard solution of trimethyl phosphate $(CH_30)_3P(0)$. The trimethyl phosphate serves as an internal standard.

Analysis is performed by gas-liquid chromatography using a Hewlett-Packard 5840A with a 7672 Auto Liquid Sampler. Quantitation is by the automatic internal standard method.

Equipment and Supplies:

The basic laboratory equipment previously listed (see Section 2) is ammended to include:

Gas-liquid chromatograph - Hewlett Packard 5840A with 7672 Auto Liquid Sampler equipped with 1.8 m \times 2 mm I.D. glass column packed with 10% FFAP on 80/100 mesh supelcoport flame ionization detector.

Trimethyl phosphate (Aldrich 13,219-5)

Septa vial (Wheaton Industries 07081)

Preparation of Standards:

Prepare a stock standard solution of DIMP by dissolving 75 mg of DIMP in 50 ml of acetone.

Take a 4 ml aliquot and dilute to a final volume of 100 ml in a volumetric flask. This solution has a concentration of 0.06 mg/ml.

Prepare a stock standard solution of Trimethyl phosphate by dissolving 75 mg of trimethyl phosphate in 50 ml of acetone.

Take a 50 ml aliquot and dilute to a final volume of 100 ml in a volumetric flask. This solution has a concentration of 0.75 mg/ml.

MATERIAL AND EXPERIMENTAL DESIGN (Continued)

To prepare a working standard, take a 4 ml aliquot of the 0.06 mg/ml DIMP solution and combine with 4 ml of the 0.75 mg/ml trimethyl phosphate solution. Inject 3 μ l of the solution 4 times using the internal standard method (see <u>Calculations</u>, section 3 for description).

Procedure:

Weigh a 5 g sample of the dosed feed to the nearest 0.01 g into a Falcon tube.

Extract the sample with 15 ml of acetone by mixing for 10 min in a mechanical shaker followed by centrifugation at 1300 rpm for 10 min.

Decant the supernatant into a second Falcon tube and tightly seal to prevent solvent loss.

Repeat the extraction one additional time with 10 ml of acetone. Combine the extracts in the second Falcon tube. Stopper tightly and mix well. Allow the sample to settle for one minute, then centrifuge for 10 min at 1350 rpm.

Dilute the high-dose level (3000 ppm) in a 15 ml graduated centrifuge tube by taking a 1 ml aliquot with 9 ml of acetone.

Dilute 4 ml of the extract with 4 ml of trim is posphate. The extract is now ready for analysis by gas () (12) hy.

Repeat above procedure using undosed anima. I the same lot used for the preparation of the dosed feed. This ___act will be used as a negative control and will assure that there are no interfering peaks contributed by the feed itself.

Repeat above procedure using undosed animal feed of the same lot which has been spiked in the laboratory with DIMP at corresponding dose levels.

Inject 3 μ l using the 7672 Auto Liquid Sampler, and calculate using internal standard method.

Calculations:

Calculate the ppm of DIMP in the dosed feed or spiked (recovery) sample as follows:

Determine mg of sample injected.

$$\frac{5 \text{ g feed}}{25 \text{ ml acetone}} = \frac{200 \text{ mg feed}}{1.0 \text{ ml acetone}}$$

$$\frac{200 \text{ mg feed}}{1.0 \text{ ml acetone}} \times \text{Dilution Factor} = \frac{(x) \text{ mg feed}}{1.0 \text{ ml acetone}}$$

MATERIAL AND EXPERIMENTAL DESIGN (Continued)

Instrumental Dilution Factor = 1/(x) mg feed injected
= 2.5 for 300 ppm level
= 25 for 3000 ppm level

The 5840A Gas Chromatograph is a microprocessor-based instrument which is capable of automatically calculating analytical results by internal programming. A standard is established by making four equal injections of the DIMP standard solution and averaging the results. The nanograms of DIMP injected using the STND corresponds to the nanograms of DIMP in the samples (achieved by dilution if necessary). The actual analytical sequence used is:

Concentration of DIMP (ppm) = $\frac{\text{Area } 1 \times \text{Response } 1}{\text{Area } 2 \times \text{Response } 2} \times \frac{\text{Amount}}{\text{I.S.}} \times \text{IDF}$

Area 1 = Area of DIMP peak Response I = Response of DIMP peak

Area 2 = Area of trimethyl phosphate peak Response 2 = Response of trimethyl phosphate

Amount I.S. = Amount of trimethyl phosphate present in the injection

= Instrumental dilution factor (corrects to ppm)

Determine method recovery from spiked armples as follows:

Percent recovery = $\frac{ppm found \times 10^{\circ}}{ppm added}$

Correct the result of the dosed feed sample for method recovery of its corresponding spiked sample.

corrected ppm = $\frac{\text{sample ppm x 100}}{\text{Percent recovery}}$

4. RESULTS

I.D.F.

Stability Analysis

Samples were analyzed the day the mix was received by the analytical laboratory. This corresponded to Day 5 of the stability study. Two aliquots of feed were removed from each diet level of samples 0417, 0418, and 0419 and stored at ambient conditions. One aliquot was stored in a closed container, while the other was stored in an open container.

The two aliquots were analyzed five days later (Day 10) by the standard method. Results of the analysis are indicated in Table 1.

In the open containers, the concentration dropped 18.3% for the 300 ppm level and 31.3% for the 3000 ppm level.

In the closed container, the concentration remained the same for the 300 ppm level and dropped 9.3% for the 3000 ppm level.

5. DISCUSSION

The results of the stability study indicated that DIMP was not lost from the feed mixes stored in closed containers, whereas considerable loss occurred from open containers. The loss, therefore, appears to result from volatility of the compound.

The concentration of test compound found in feed mixes prepared for the rat reproduction study (Table 2) varied significantly at each dose level. In general, the amount of DIMP found in the 300 ppm diets were 83% of the intended dosage and at the higher dose level, the concentrations found averaged 88% of the theoretical dosage.

The levels of DIMP found in the diet mixes in Table 3 also showed significant variation. The amount of DIMP in the low level diet averaged about 77% of the intended dose level. However, the concentrations found in the two higher levels were usually within $\pm 10\%$ of the theoretical dosage.

LITTON BIONETICS, INC. Kensington, Maryland 20795

Submitted by:

Reviewed by:

J.D. Mitchell

Analytical Chemist

H.J. Paulin,/M.S.

Analytical Chemist

E.D. Helton, Ph.D.

Director, Department of Chemistry

TABLE I-E-40

COMPARISON OF EXTRACTION PROCEDURES FOR DIM!

CURRENT METHOD

	3000 PPM Sample	15 ml	10 ml	25 ml	60PPM	_
	300 PPM 30	15 ml	10 ml	25 ml 18 Sample stration		_
CURRENT METHOD	Control	15 ml	10 ml	25 mi 25 mi Dilute to Make all Sample Equal Concentration	60PPM	All sample Equivalent in concentration Dilute 1:1 with internal STND
CURR	Spike 2	E 10	10 ml	, 25 ml	В	All Sar
	Spike 1	14 ml	10 mi	25 ml	90РРМ	_
	Add 5 Grams of Feed Spike Control Feed with Stock DIMP Solution for Method Recovery	First Extraction Volume 15 ml of Acetone Centrifuge and	Decant Supernatant Second Extraction with 10 ml Acatone	Centriluge and Docant Combine Extracts - Finst Volume 25 ml		
	3000 PPM Sample	15 ml	10 ml	25 ml		
	300 PPM Sample	15 ml	10 mf	25 mi aphic Analysis		
INITIAL METHOD	Control	15 m3	10 mJ	25 ml 25 ml 25 mi Perform Gas - Chromatographic Analysis		
INI	Spike 2	E 9	10 m	25 ml Perform Gas		

Spike 1

5 E

25 ml

Gas - Chromatographic Analysis Standard 3 pl Injection

TABLE I-E-41

TABLE 1
STABILITY OF DIMP IN DIET MIXED 07/14/77

SAMPLE NUMBER	ANALYSIS DATE	DAY	DOSAGE PPM	ANALYSIS VALUE (PPM) ^a
0417 0418 0419	07/19/77 07/19/77 07/19/77	5 5 5	0 300 3000	0 252 2882
Closed Container 0417 0418 0419	07/27/77 07/27/77 07/27/77	10 10 10	0 300 3000	0 254 2614
Open Container 0417 0418 0419	07/27/77 07/27/77 07/27/77	10 10 10	0 300 3000	0 206 1980

 $^{^{\}rm a}$ All values have been corrected for respective method recovery, run simultaneously with analyses.

TABLE I-E-42

TABLE 2 WEEKLY DIMP FEED ANALYSIS - RAT REPRODUCTION STUDY

STUDY · WEEK	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
1	04/07/77	07/18/77	b b	300 3000	194 2581
2	04/14/77	07/18/77	b b	300 3000	209 2452
3	04/21/77	07/18/77	b b	300 3000	178 2339
4 .	04/28/77	07/18/77	b b	300 3000	218 2178
5	05/05/77	07/18/77	b b	300 3000	242 3226
6	05/12/77	07/18/77	b b	300 3000	2581 ^c 306 ^c
10	06/09/77	07/19/77	0336 0337 0338	0 300 3000	0 240 2282
11	06/16/77	07/13/77	0366 0367 0368	0 300 3000	0 267 2786
15	07/14/77	07/19/77	0417 0418 0419	0 300 3000	0 252 2882
16	07/21/77	07:/27/77	0430 0431 0432	0 300 3000	0 - 246 3010
17	07/28/77	08/23/77	0459 0460 0461	0 300 3000	0 185 2554

 $^{^{\}rm a}$ All values have been corrected for respective method recovery run simultaneously with analysis.

bSamples received in quart jars with no I.D. number.

cPossible mixup of the jar label indicated.

TABLE I-E-42 (Continued)

TABLE 2 (CONTINUED)

WEEKLY DIMP FEED ANALYSIS - RAT REPRODUCTION STUDY

STUDY. WEEK	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
19	08/11/77	08/23/77	0499 0500	300 3000	199 2316
20 .	08/18/77	09/07/77	b	300 3000	182 2348
21	08/25/77	09/07/77	0526 0527 0528	0 300 3000	0 244 2386
24	09/15/77	09/27/77	0616 0617 0618	0 300 3000	0 199 2392
27	10/06/77	10/25/77	0689 0688	300 3000	316 2297
28	10/14/77	10/25/77	0748 0747	300 · 3000	244 2511
29	10/20/77	10/25/77	0796 0797 0798	- 0 300 3000	333 2547
30	10/27/77	11/03/77	0855 0857	300 3000	189 2136
31	11/03/77	11/11/77	0922 0923	300 3000	204 2294
36	12/09/77	12/15/77	1095 1096	0 300	. 0°
		12/16/77	1097 1128	3000 300	2516 253 ^d

^aAll values have been corrected for respective method recovery run simultaneously with analysis.

d_{Repeat} of 1096.

bSamples received in quart jars with no 1.D. number. CAnalysis repeated to confirm results, sample resubmitted and analyzed immediately.

TABLE I-E-42 (Continued)

TABLE 2 (CONTINUED)

STUDY . WEEK	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
38	12/22/77	12/28/77	1161 1162 1163	300 3000	0 206 3024
39	12/28/77	01/05/78	1188 1189 1190	0 300 3000	.0 . 234 2749
40	01/04/78	01/10/78	1229 1230 1231	0 300 3000	0 184 22 85
41	01/11/78	01/13/78	1262 1263 1264	0 300 3000	0 231 2679
42	01/19/78	01/22/78	1293 1294 1295	0 300 3000	0 2 ¹ 47 2700
42	01/19/78	01/25/78	1293 1294 1295	0 300 3000	0 ^b 239 2335
43	01/24/78	02/03/78	1319 1320 1321	0 300 3000	0 271 2860
44	02/01/78	02/03/78	FC0047K78 FC0048K78 FC0049K78	0 300 3000	0 271 3180
45	02/08/78	02/13/78	FC0152K78 FC0153K78 FC0154K78	0 300 3000	0 255 27 55
46	02/15/78	02/19/78	FC0212K78 FC0213K78 FC0214K78	0 300 3000	0 256 2836

^aAll values have been corrected for respective method recovery run simultaneously with analysis.

bRepeat analysis to confirm original results.

TABLE I-E-42 (Continued)

TABLE 2 (CONTINUED)

STUDY. WEEK	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
47	02/22/78	02/23/78	FC0306K78 FC0307K78 FC0308K78	0 300 3000	0 300 2912
48	03/02/78	03/08/78	FC0437K78 FC0438K78 FC0439K78	0 300 3000	0 240 2631
49	03/08/78	03/13/78	FC0517K78 FC0518K78 FC0519K78	0 300 3000	0 301 2517
50	03/15/78	03/20/78	FC0653K78 FC0654K78 FC0655K78	0 300 3000	0 239 2732
51 .	03/21/78	03/23/78	FC0727K78 FC0728K78 FC0729K78	0 300 3000	0 249 2867
52	03/29/78	04/02/78	FC0819K78 FC0820K78 FC0821K78	0 300 3000	0 231 2628
53	04/05/78	04/06/78	FC0901K78 FC0902K78 FC0903K78	0 300 3000	0 263 2452
54	04/12/78	04/13/78	FC0972K78 FC0973K78 FC0974K78	0 300 3000	0 278 2759
55	04/19/78	04/19/78	FC1017K78 FC1018K78 FC1019K78	0 300 3000	0 269 2822
56	04/26/78	04/27/78	FC1087K78 FC1088K78 FC1089K78	0 300 3000	0 299 3022

^aAll values have been corrected for respective method recovery run simultaneously with analysis.

TABLI I-E-42 (Continued)

TABLE 2 (CONTINUED)

STUDY. WEEK :	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm)a
57	05/03/78	05/04/78	FC1143K78 FC1144K78 FC1145K78	0 300 3000	0 274 2821
58	05/10/78	05/13/78	FC1192K78 FC1193K78 FC1194K78	0 300 3000	0 249 2276
59	05/17/78	05/21/78	FC1244K78 FC1245K78 FC1246K78	0 300 3000	0 27 <i>5</i> 2907
60	05/24/78	05/31/78	FC1302K78 FC1303K78 FC1304K78	0 300 3000	0 263 2619
61	05/31/78	06/02/78	FC1336K78 FC13337K78 FC13338K78	0 300 3000	0 257 3003
62	06/07/78	06/!1/78	FC1402K78 FC1403K78 FC1404K78	0 300 3000	0 316 3146
63	06/14/78	06/14/78	FC1467K78 FC1468K78 FC1469K78	0 300 3000	0 286 3133
64	06/21/78	06/27/78	FC1570K78 FC1571K78 FC1572K78	0 300 3000	0 234 2608
65	06/28/78	07/08/78	R0121K78 R0122K78 R0123K78	0 300 3000	0 227 2423
66	07/05/78	07/08/78	R0143K78 R0144K78 R0145K78	0 300 3000	0 269 3033

^aAll values have been corrected for respective method recovery run simultaneously with analysis.

TABLE I-E-42 (Continued)

TABLE 2 (CONTINUED)

STUDY. WEEK	MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
67	07/13/78	07/16/78	R0172K78 R0173K78 R0174K78	0 300 3000	0 269 2992
68	07/20/78	07/25/78	ь	0 300 3000	0 194 2101
69	07/26/78	07/28/78	R0220K78 R0221K78 R0222K78	0 300 3000	0 198 2575
70	08/03/78	08/07/78	R0267K78 R0268K78 R0269K78	0 300 3000	0 253 2971
71	08/10/78	08/14/78	R0327K78 R0328K78 R0329K78	0 300. 3000	0 293 2851
72	08/17/78	08/20/78	R0376K78 R0377K78 R0378K78	0 300 3000	0 270 2748
73	08/24/78	08/27/78	R0489K78 R0490K78 R0491K78	0 300 3000	0 274 2858
74	08/31/78	09/02/78	R0525K78 R0526K78 R0527K78	0 300 3000	0 257 2870
76	09/14/78	09/17/78	R0595K78 R0596K78 R0597K78	0 300 3000	- 0 267 2746

^aAll values have been corrected for respective method recovery run simultaneously with analysis. bNo sample number indicated.

TABLE I-E-42 (Continued)

TABLE 2 (CONTINUED)

STUDY. WEEK	MIX DATE	ANALYS IS DATE	SAMPLE NUMBER	PPM LEVEL	ANALYSIS VALUE (ppm) ^a
77	09/20/78	09/30/78	R0617K78 R0618K78 R0619K78	0 300 3000	0 279 1705
78	09/26/78	09/30/78	R0662K78 R0663K78 R0664K78	0 300 3000	0 277 2745
79	10/03/78	10/17/78	R0694K78 R0695K78 R0696K78	0 300 3000	0 300 2799
81	10/17/78	10/24/78 ·	R0754K78 R0755K78 R0756K78	0 : 300 3000	0 trace 2760
82	10/25/78	10/26/78	R0782K78 R0783K78 R0784K78	0 300 3000	0 293 3040
83	11/01/78	11/05/78	R0817K78 R0818K78 R0819K78	0 300 3000	0 241 251 3
84	11/07/78	11/10/78	R0834K78 R0835K78 R0836K78	0 300 3000	0 250 2698
85	11/14/78	11/16/78	R0874K78 R0875K78 R0876K78	0 300 3000	0 242 2632
86	11/21/78	11/25/78	R0897K78 R0898K78 R0899K78	0 300 3000	0 296 3106

^aAll values have been corrected for respective method recovery run simultaneously with analysis.

PART I - SECTION F

DEMYELINATION PARALYSIS IN CHICKENS

DIMP

LBI PROJECT NO. 2566

SUMMARY

Treatment of atropinized White Leghorn hens with DIMP once at 1500 mg/kg or twice at 1000 or 500 mg/kg did not produce evidence of nerve fiber degeneration after 21 days (animals treated once) or 46 days (animals treated twice) when the sciatic nerve was examined microscopically. Evidence of unsteady gait was easily distinguished clinically from signs exhibited by the positive control animals and was judged to be unrelated to nerve fiber degeneration.

The positive control animals, treated with TOCP once at 500 mg/kg, developed classical progressive clinical signs of nerve fiber degeneration beginning 12 to 14 days after treatment. Most of the animals showed microscopic evidence of nerve fiber degeneration.

1. OBJECTIVE

The objective of this study was to determine the potential of the test material to cause demyelination of the sciatic nerve in hens after one or two single oral treatments.

2. MATERIAL

Refer to Part I - Section A.

3. EXPERIMENTAL DESIGN

Young adult Leghorn hens (weighing 1.1 to 1.8 kg and 18 to 20 weeks of age at the time of treatment, February 10, 1978) were obtained from Bowman's Hatchery, Westminster, Maryland, and acclimated to laboratory conditions for 13 days. The hens were singly housed in stainless steel rabbit cages in a temperature-controlled room with artificial illumination automatically controlled to provide a 12-hour light cycle. Growena chicken meal and water were provided ad libitum, except the night before treatment when food was removed from the cages. No other test chemicals were under concurrent investigation in this animal room. This study was performed in the Falls Church facility of the Toxicology Department.

3. EXPERIMENTAL DESIGN (Continued)

The dose levels of DIMP administered to the test animals were selected based on data generated during the acute oral toxicity study in chickens, dated September 8, 1977. Treatment mixtures of DIMP and TOCP were prepared in corn oil. Atropine sulfate was prepared using deionized water and was made to a concentration of 54 mg/ml. The specific gravities for DIMP and TOCP were 1.0 and 1.16, respectively. Fresh treatment mixtures were prepared for each use.

The study design has been summarized in Text Table A. Each animal received a measured volume of atropine sulfate solution (54 mg/ml) prior to administration of the test compounds or vehicle control so that a dose of 15 mg/kg was received. Typically, 15 minutes elapsed between the time of atropine administration and treatment with the test compound.

The animals were treated and observed for 21 days. At Day 22, surviving animals from the high dose group, the positive control group and half of the negative control animals were killed. The remaining animals were redosed with atropine sulfate and their respective treatment mixtures, and observed for an additional 24 days. This second treatment was performed on the low and intermediate dose level DIMP animals because there were no indications of neural toxicity after 21 days. The hens in the high DIMP dose level were not redosed since significant mortality resulted after the initial treatment.

The animals were observed twice daily for mortality and general appearance. Particular attention was given to observing the gait of the hens, since demyelination of the sciatic nerve and its concomitant disruption of normal walking and standing was the parameter under investigation. Ill animals were weighed prior to creatment.

Animals dying within 96 hours of treatment were necropsied to ensure proper dosing technique only. Animals dying after 96 hours of treatment, as well as all animals terminated, were subjected to a special truncated necropsy procedure. During this necropsy, the left leg sciatic nerves were dissected and preserved in 10% formalin. The five nerve junctions with the spinal cord were left intact and the entire nerve (encompassing sciatic, tibial and plantar nerves) leading to the foot was removed. No other tissues were observed for gross lesions or preserved.

TABLE I-F-43

TABLE A

STUDY DESIGN

GROUP NUMBER	GROUP DESIGNATION	COMPOUND	DOSE LEVEL (MG/KG)	TEST MATERIAL CONCENTRATION (MG/ML)	ANIMAL NUMBERS
1 2	Vehicle Control	Corn Oil	0	0	16-35
	Positive Control	TOCP	500	250	36-55
3	Treatment	DIMP	500	250	56-75
4	Treatment	DIMP	1000	500	76-95
5	Treatment	DIMP	1500	750	96-115

Date of first dose: February 10, 1978, all groups.
Date of second dose: March 3, 1978, groups 1*, 3, 4.
Date of first terminal kill: March 3, 1978, groups 1*, 2, 5.
Date of second terminal kill: March 27, 1978, groups 1, 3, 4.

^{*}Nine animals only.

4. RESULTS

Mo. tality data has been summarized in Appendix Table 1. Two control hens were judged moribund and killed on Days 18 and 41 of study. There were no deaths among the positive control animals. Seven hens in the high dose and five hens in the medium dose were killed shortly after first treatment with DIMP. These deaths were clearly related to treatment with the test compound. One hen in the medium dose and two hens in the low dose were found dead after the second dosing. Additionally, three medium dose hens were judged moribund and killed.

Clinical signs have been summarized in Appendix Table 2. Predictably, animals treated with TOCP developed unsteady gait on Days 12 to 14 (19 hens of the 20 treated were affected). This condition progressed as described below until termination at Day 21, in 17 animals. In two instances the animals finally could neither walk nor stand.

The animals treated with DIMP showed toxic signs, the severity of which was related to the dose administered. Within minutes of treatment, particularly in the high dose, the hens became very quiet and soon were prostrate. While these animals gave the appearance of being very close to death, most recovered. Many of the surviving hens had an unsteady gait on Days 1 to 3 after treatment. This unsteadiness was judged to be related to the test compound.

Among the animals treated with 500 mg/kg of DIMP initially, all animals remained clinically normal throughout the 21 day observation period. When these animals were treated a second time with 500 mg/kg of the compound, five animals (Nos. 57, 58, 60, 65, 67) developed signs of unsteady gait or inability to walk. In four of these animals, the signs were judged unsimilar to those of the positive control. In assessing these signs, they were compared to the characteristics shown by the positive control animals. These characteristics were:

a. The regular onset of "unsteady gait" 12 to 14 days after initial treatment in those animals affected (95% of treated). This regularity was seen both temporally and in severity. Eleven animals were judged, initially, to show "slightly unsteady gait". All of these then progressed to "unsteady gait" and seven also were judged by Day 19 to 20 to show "very unsteady gait". Eight animals were judged, initially, to show "unsteady gait". Five of these progressed to "very unsteady gait" by Day 19 to 20 (with one hen, No. 38, showing "very unsteady gait" as early as Day 16) and two animals (Nos. 38 and 54) progressed to "unable to stand" by Day 19 to 20. Thus, 16 animals showed progressive signs, three showed steady signs and one remained normal.

4. RESULTS (Continued)

- b. The gradual progressiveness of the "unsteady gait" once this sign was evidenced. In general, the "slight" to "unsteady" to "very unsteady" changes in clinical condition were noted on Days 13, 14 and 19. There were no instances of dramatic rapid deterioration of the animals.
- c. The failure of any affected animals to improve, clinically, in the time frame of this study.

Among the animals treated with 1000 mg/kg of DIMP, initially, 13 of the surviving 16 animals were normal (neglecting the early signs of toxicity after treatment) for the entire initial observation period. One animal (No. 82) was normal for 20 days, but deteriorated rapidly and was judged moribund on Day 21. Two animals (Nos. 93 and 95) both showed signs relating to unsteady gait, but returned to normal by the end of the initial observation period. Thus, using the criteria above, none of the animals treated once with 1000 mg/kg DIMP developed clinical signs similar to those shown by the positive control TOCP animals.

Among the 15 animals treated a second time with 1000 mg/kg DIMP, one animal died after treatment and eight remained normal (neglecting the initial signs of toxicity after treatment) throughout the additional 24 day observation period. The remaining six animals (three of which were judged moribund) showed signs that were not similar to the positive control animals and it was, again, judged that treatment with 1000 mg/kg DIMP was without similar effect as seen after TOCP treatment.

Among the surviving animals treated once with 1500 mg/kg DIMP, 11 of 12 hens were clinically normal for the 21 day observation period (neglecting the initial signs of toxicity after treatment). One animal (No. 100) was normal through Day 18, developed a slight unsteady gait for two days, but was again normal at Day 21. These signs were judged unsimilar to the positive control animals.

The summary of necropsy findings has been tabulated in Appendix Table 3. One animal (No. 80), treated twice with DIMP at 1000 mg/kg, showed slight muscle wasting on its left leg. There were no other remarkable findings relating to the musculature or sciatic nerve of the left leg of any of the animals.

4. RESULTS (Continued)

The pathology report, written by Herman Seibold, D.M.V. (LBI), has been appended. He examined the sciatic nerve of these hens using two sections of each specimen--one stained with hematoxylin and eosin, and the other stained with luxol-fast blue and counter stained with cresyl violet. It should be noted that the nerve specimens submitted for microscopic evaluation as dissected from the spinal cord to the foot included anatomically the sciatic, tibial and plantar nerves. Microscopic distinction of tibial and plantar segments, however, was not possible; thus, the results are discussed under the one category of sciatic nerve.

There was evidence of nerve fiber degeneration in 13 of the 19 hens that showed signs of unsteady gait after TOCF treatment. The severity of this degeneration averaged 1.8 on a scale that used 1 to indicate minimal, 2 to indicate slight and 3 to indicate moderate nerve fiber degeneration. The absence of microscopic lesions in six animals that showed clinical signs led Dr. Seibold to observe that the clinical manifestation of TOCP toxicity was more sensitive an indicator of TOCP induced nerve damage than routine microscopic evaluation.

There were lesions rated as "trace" in two hens treated with 1000 mg/kg and "slight" in one hen treated with 1500 mg/kg. One hen with trace amounts of degeneration was treated once with DIMP, was normal until Day 20 and became moribund on Day 21. The other hen in the 1000 mg/kg group was treated twice with DIMP. This hen was normal throughout the first observation period, normal for the first 20 days of the second observation period, unable to stand for the next three days but improved at Day 24, in that it was able to stand but unable to walk.

The one hen in the 1500 mg/kg group that had "slight" evidence of nerve lesions was normal (except for signs of initial acute toxicity) throughout its observation period.

There was no evidence of nerve fiber degeneration in any of the other hens receiving the vehicle alone, DIMP at 500 mg/kg, 1000 mg/kg or 1500 mg/kg. Dr. Seibold concluded that the trace lesions in the two hens treated with 1000 mg/kg DIMP were probably not unusual in light of similar lesions reported for normal hens and that the minimal lesion in the 1500 mg/kg hen was coincidental since this animal showed no clinical signs and he concluded that nerve fiber degeneration attributable to delayed neurotoxicity of DIMP was not apparent in these animals.

4. RESULTS (Continued)

These data indicate that DIMP does not induce nerve fiber degeneration in hens after either one treatment at 1500 mg/kg or two treatments at 1000 or 500 mg/kg. The high dose was the maximum that could be administered as judged by the mortality immediately following treatment. The delayed appearance of an unsteady gait observed in one animal (No. 60) after two treatments with 500 mg/kg had similar characteristics of the positive control animals, but is judged to be incidental and not related to nerve fiber degeneration.

The remaining clinical signs were different in one or more respects when compared to the positive control animals. Animals lacked substantive evidence of nerve fiber degeneration and it was judged that DIMP is without effect with regard to nerve fiber degeneration in hens.

Thirty days after transmittal of this report, original data from the Department of Toxicology will be transferred to the LBI Archivist, 5516 Nicholson Lane, Kensington, Maryland, for distribution to the proper repositories. A copy of this report was reviewed by the LBI Quality Assurance Unit.

5. CONCLUSION

Treatment of atropinized White Leghorn hens with DIMP once at 1500 mg/kg or twice at 1000 or 500 mg/kg did not produce evidence of nerve fiber degeneration after 21 days (animals treated once) or 46 days (animals treated twice) when the sciatic nerve was examined microscopically. Evidence of unsteady gait was easily distinguished clinically from signs exhibited by the positive control animals and was judged to be unrelated to nerve fiber degeneration.

The positive control animals, treated with TOCP once at 500 mg/kg, developed classical progressive clinical signs of nerve fiber degeneration beginning 12 to 14 days after treatment. Most of the animals showed microscopic evidence of rerve fiber degeneration.

Submitted by:

Elliot B. Gordon, Ph.D. Date

Senior Toxicologist

Department of Toxicology

Reviewed by:

Robert P. Beliles, Ph.D.

Director

Department of Toxicology

LITTON BIONETICS, INC. PROJECT NO. 20566

TABLE 1

MORTALITY

	CUMULATIVE TOTAL MORTALITY MORTALITY (DEAD/TREATED) (DEAD/TREATED)	2/20	. 0/50	2/20	9/20	7/20
	CUMU MORT	1/9	ı	2/20	4/15	1
SECOND DOSING	MORTALITY BY DAY	22 23 24 25-46 1	NOT TREATED	2	4 4	NOT TREATED
9N	CUMULATIVE MORTALITY (DEAD/TREATED)	1/20	0/20	0/20	5/20	7/20
INITIAL DOSING	MORTALITY BY DAY	1 2 3 4-21 1	1 1	t 1 1	14	3 4
	DOSE LEVEL (MG/KG)	0	200	200	1000	1500
	COMPOUND	1	T0CP	OIMP	DIMP	DIMP
	GROUP DESIGNATION	CONTROL	POSITIVE CONTROL	TREATMENT	TREATMENT	TREATMENT

TABLE I-F-45

TABLE 2

CLINICAL SIGNS

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
CONTROL	17 28	1 ^a 18	QUIET; EYES SLIGHTLY CLOSED. DOWN IN CAGE AND UNABLE TO STAND; MORIBUND KILL.
TOCP 500	. 36	14-16 17	UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	37	18-21 13-18 19-21	UNSTEADY GAIT. UNSTEADY GAIT. VERY UNSTEADY GAIT.
	38	14, 15 16-18	UNSTEADY GAIT. VERY UNSTEADY GAIT.
	39	19-21 13 14-18 19-21	SITTING, UNABLE TO STAND OR WALK. SLIGHTLY UNSTEADY GAIT. UNSTEADY GAIT.
	40	13 14-19 20, 21	VERY UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT. UNSTEADY GAIT. VERY UNSTEADY GAIT.
	41	14-21	UNSTEADY GAIT.
	42	14, 16, 17	SLIGHTLY UNSTEADY GAIT.
		15, 18-21	UNSTEADY GAIT.
	43	13-18	UNSTEADY GAIT.
		19-21	VERY UNSTEADY GAIT.
	44	13 - 18	UNSTEADY GAIT.
	4=	19-21	VERY UNSTEADY GAIT.
	45	13	SLIGHTLY UNSTEADY GAIT.
		14-19	UNSTEADY GAIT.
	46	20, 21 13	VERY UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	40	14-18	UNSTEADY GAIT.
		19-21	VERY UNSTEADY GAIT.
	47	13	SLIGHTLY UNSTEADY GAIT.
		14-18	UNSTEADY GAIT.
		19-21	VERY UNSTEADY GAIT.
	48	13-21	UNSTEADY GAIT.
	49	13	SLIGHTLY UNSTEADY GAIT.
		14-19	UNSTEADY GAIT.
		20, 21	VERY UNSTEADY GAIT.
	50	13	SLIGHTLY UNSTEADY GAIT.
		14-21	UNSTEADY GAIT.

 $^{^{\}mathrm{a}}\mathrm{Day}\ 1$ observations made one hour after treatment.

TABLE I-F-45 (Continued)

TABLE 2 (CONTINUED)

CLINICAL SIGNS

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
TOCP 500	51 52	13-18 19-21 12, 13	SLIGHTLY UNSTEADY GAIT. UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	. 54	12, 13 14-19 20, 21 12-18	UNSTEADY GAIT. VERY UNSTEADY GAIT. UNSTEADY GAIT.
	' 54	19 20, 21	VERY UNSTEADY GAIT. SITTING, UNABLE TO STAND OR WALK.
	55	13-18 19-21	SLIGHTLÝ UNSTEADY GAIT. UNSTEADY GAIT.
DIMP - DIMP 1000	56 57 58 59 60 62 63 64 65 66 67 68 69 70 71 73 74 75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QUIET, UNABLE TO STAND. UNSTEADY GAIT. UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	78	1	PROSTRATE. UNSTEADY GAIT.
	79	1 2	UNSTEADY GAIT. FOUND DEAD.
	80 81	2 1 2 1 2 1 2	PROSTRATE. VERY UNSTEADY GAIT. PROSTRATE. UNSTEADY GAIT.
_		_	

TABLE I-F-45 (Continued)

TABLE 2 (CONTINUED)

CLINICAL SIGNS

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
DIMP 1000	82	1 2 21	PROSTRATE. UMSTEADY GAIT. SITTING, UNABLE TO STAND OR WALK;
	83 84 85	1, 2 1, 2	MORIBUND KILL. UNSTEADY GAIT. UNSTEADY GAIT. PROSTRATE.
	86	2 1 2	FOUND DEAD. PROSTRATE. UNSTEADY GAIT.
	87	1 2	PROSTRATE. UNSTEADY GAIT.
	88	3 1 2	SLIGHT UNSTEADY GAIT. PROSTRATE. FOUND DEAD.
	[*] 89	1 2	PROSTRATE. UNSTEADY GAIT.
	90	2 1 2 3 1 2 1 2 3 1 2 1 2	SLIGHTLY UNSTEADY GAIT. PROSTRATE. VERY UNSTEADY GAIT.
	91	3 1	UNSTEADY GAIT. PROSTRATE.
	92	1 2	SLIGHTLY UNSTEADY GAIT. UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	93	1 12-17	PROSTRATE. SLIGHTLY UNSTEADY GAIT.
	94	1 2	UNSTEADY GAIT. FOUND DEAD.
	95	1, 2 3 12-14 15 16, 17	UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT. UNABLE TO STAND. VERY UNSTEADY GAIT. UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	96	1	FOUND DEAD.
DIMP 1500	97	1 2 3 1	UNSTEADY GAIT. VERY UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	98	1 2	PROSTRATE. FOUND DEAD.

TABLE I-F-45 (Continued)

TABLE 2 (CONTINUED)

CLINICAL SIGNS

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
DIMP	99	1	PROSTRATE.
1500	100	1 2 1 2 19, 20	FOUND DEAD. PROSTRATE. UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	, 101		PROSTRATE. UNSTEADY GAIT.
	102 103	î 1	FOUND DEAD. PROSTRATE.
	400	2	VERY UNSTEADY GAIT. UNSTEADY GAIT.
	104	1	FOUND DEAD.
	105	1 2 1 1 2 3 1 1 2 3 1 2 3	PROSTRATE. VERY UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	106	1 2	PROSTRATE. VERY UNSTEADY GAIT.
	107	1 2, 3	PROSTRATE. VERY UNSTEADY GAIT.
	108	1	FOUND DEAD.
	109	1 1 2 1, 2 3	PROSTRATE. UNSTEADY GAIT.
	110		PROSTRATE. SLIGHTLY UNSTEADY GAIT.
	111	1, 2 3	PROSTRATE. SLIGHTLY UNSTEADY GAIT.
	112	1 2	PROSTRATE. FOUND DEAD.
	113	1, 2	UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT.
	114	1, 2 3 1 2 1, 2 3 1 2	PROSTRATE. FOUND DEAD.
	115	1, 2	UNSTEADY GAIT.

TABLE I-F-45 (Continued)

TABLE 2 (CONTINUED)

CLINICAL SIGNS

SECOND DOSING

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
CONTROL	35	41	PROSTRATE, EYES CLOSED; MORIBUND KILL.
DIMP 500	56 57	22 22 43 44	SITTING, UNSTEADY GAIT WHEN TOUCHED. QUIET, SLIGHTLY UNSTEADY GAIT. SITTING, UNABLE TO STAND. STANDS, BUT WALKS WITH GREAT DIFFICULTY.
	58	45 22 34-45	WALKS, BUT UNSTEADY ON RIGHT LEG. UNSTEADY GAIT. UNSTEADY ON RIGHT LEG, JOINT
	59 60	22 22	ENLARGED. SLIGHTLY UNSTEADY GAIT. SITTING, SLIGHTLY UNSTEADY GAIT WHEN TOUCHED.
	61	41-45 22	SLIGHTLY UNSTEADY GAIT. STANDING, QUIET; UNSTEADY GAIT WHEN TOUCHED.
	62 63	22 22	SLIGHTLY UNSTEADY GAIT. SITTING, VERY UNSTEADY GAIT WHEN TOUCHED.
	64	22	STANDING WITH EYES CLOSED; UNSTEADY GAIT WHEN TOUCHED.
	65	22 35 36	SLIGHTLY UNSTEADY GAIT. PROSTRATE. PROSTRATE; NOT EATING OR DRINKING; MORIBUND KILL.
•	66	22	STANDING, QUIET; UNSTEADY GAIT WHEN TOUCHED.
	67	22	SITTING, EYES CLOSED; SLIGHTLY REACTIVE WHEN TOUCHED.
	68 70 71 72 73	22 22 22 22 22 22	SLIGHTLY UNSTEADY GAIT. SLIGHTLY UNSTEADY GAIT. UNSTEADY GAIT. UNSTEADY GAIT. SITTING, EYES CLOSED; UNSTEADY GAIT WHEN TOUCHED. UNSTEADY GAIT.
DIMP 1000	76	22-24 25 26 27	PROSTRATE. SITTING, UNABLE TO STAND. PROSTRATE; COMB LIMP, EDGES PURPLE. FOUND DEAD.

TABLE I-F-45 (Continued)

TABLE 2 (CONTINUED)

CLINICAL SIGNS

SECOND DOSING

DOSE GROUP (MG/KG)	ANIMAL NUMBER	DAY OF STUDY	SIGN
DIMP	77	22	PROSTRATE.
1000	78	22	PROSTRATE.
	80	22	PROSTRATE.
		23	UNSTEADY GAIT.
		36-45	UNABLE TO STAND ON LEFT LEG.
	[,] 81	22	PROSTRATE.
	J.	23	
		36, 37	SLIGHTLY UNSTEADY GAIT.
		38, 39	PROSTRATE.
		40	PROSTRATE; COMB LIMP, EDGES PURPLE.
			PROSTRATE; COMB LIMP, COLOR NORMAL.
	83	41	PROSTRATE; COMB LIMP; MORIBUND KILL.
	03	22	SITTING, SLIGHT MOVEMENT WHEN TOUCHED.
		36-41	SLIGHTLY UNSTEADY GAIT.
	84	22	PROSTRATE.
		23	SITTING/STANDING, UNSTEADY GAIT WHEN TOUCHED.
		42-44	PROSTRATE.
		45	STANDING, BUT UNABLE TO WALK.
	86	22	STANDING, QUIET; VERY UNSTEADY GAIT WHEN TOUCHED.
		36-40	PROSTRATE.
		41	PROSTRATE; MORIBUND KILL.
	87	22	PROSTRATE.
		23	SLIGHTLY UNSTEADY GAIT.
	89	22	PROSTRATE.
		23	SLIGHTLY UNSTEADY GAIT.
	90	22	SITTING, SLIGHT MOVEMENT WHEN
	50		
		23	TOUCHED.
		60	SITTING/STANDING, VERY UNSTEADY
	91	22	GAIT WHEN TOUCHED.
	92		PROSTRATE.
		22	STANDING, QUIET; UNSTEADY GAIT WHEN TOUCHED.
	93	22	PROSTRATE.
	95	22 .	SITTING, SLIGHT MOVEMENT WHEN
		-	TOUCHED.
		23	PROSTRATE.
		24-32	SLIGHTLY UNSTEADY GAIT.
		36	PROSTRATE.
		37	PROSTRATE; COMB LIMP.
		38	PROSTRATE; COMB LIMP, EDGES PURPLE;
		50	MORIBUND KILL.

SUBJECT:

FINAL PATHOLOGY REPORT

Demyelination Paralysis in Chickens

LBI Project No. 20566

OBJECTIVE

The objective was to determine the status of selected nerve tissue specimens with regard to the presence and degree of demyelination. Comparable nerve tissue specimens from chickens treated with Tri-O-Tolyl phosphate were provided as control material to serve as a basis for the microscopic evaluation.

2. METHODS

Specimens of sciatic, tibial and plantar nerve were fixed in buffered 10% formalin solution, pH 7.0, dehydrated with ascending concentrations of ethyl alcohol, cleared with xylene and embedded in Paraplast R. Sciatic nerve of each chicken was embedded in one block, while the tibial and plantar nerve segments were embedded together in a second block.

Duplicate sections were prepared at 6 microns; one was stained with hematoxylin and eosin and the other with Luxol-fast blue and counterstained with cresyl violet.

3. DEFINITIONS

Demyelination is the historical term applied to nerve fiber changes associated with the delayed neurotoxicity of Tri-O-cresyl phosphate (Tri-O-Tolyl phosphate is a synonym). In a recent discussion of the pathology of delayed neurotoxicity due to organo-phosphates the following statement was rade, "Basically the lesion is a "dying back" process or Wallerian degeneration in the axons although earlier work tended to consider it a demyelinating disease." The term "die back" is used in another report² and agreement is expressed with the concept that Wallerian degeneration of the axon represents the primary morphologic effect of organo-phosphates with delayed neurotoxicity. However, this author used the designation "nerve fiber degeneration" in general discussion of the subject. The designation nerve fiber degeneration is therefore appropriate for the purpose of this report.

* Also known as TOCP.

4. RESULTS

A tabulation of nerve fiber degeneration in the different groups of chickens (vehicle controls, positive controls, low dose, medium dose and high dose) is given in Table 1.

None of the 20 chickens in the vehicle control group (of which nine were redosed) had microscopic evidence of nerve fiber degeneration. A total of 13 of the 20 chickens in the positive control group had microscopic evidence of nerve fiber degeneration with an average degree of 1.8 (1=minimal, 2=slight). This compares with 19 that had clinical signs and indicates that the microscopic examination was a less sensitive indicator of delayed neurotoxicity than the clinical signs under the conditions of this test.

None of the 20 chickens in the low dose group (of which all were redosed) had microscopic evidence of nerve fiber degeneration. Two of the 16 chickens in the middle dose group (of which 15 were redosed) had trace nerve fiber degeneration consisting of one short segment of a single nerve fiber showing degenerative changes.

One of the 12 chickens in the high dose group (of which none were redosed) had slight nerve fiber degeneration.

5. DISCUSSION

The nerve fiber degeneration in two of the middle dose (DIMP) chickens and in one of the high dose has debatable validity in the interpretation of the test. Trace lesions similar to those in two of the middle dose chickens have been reported to occur in odd nerve fibers in normal hens. The high dose chicken with slight nerve fiber degeneration had not shown any clinical signs.

6. CONCLUSIONS

Nerve fiber degeneration that can be attributed to delayed neurotoxicity was not recognized in the various groups of chickens dosed with DIMP.

SUBMITTED BY:

Herman R. Seibold, V.M.D. Veterinary Pathologist 9-26-78 Date

REVIEWED BY:

Richard H. Cardy, D.V.M.

Director

Department of Pathology

29.55.008

¹Bradley, W.A.: The Pathology of Delayed Neurotoxicity Due to Organophosphates. In, <u>Pesticide Induced Delayed Neurotoxicity</u>, Proceedings of a Conference held in Washington, D.C., on February 19 and 20, 1976. US Department of Commerce, National Technical Information Service, PB-256 416. Prepared for National Institute of Environmental Health Sciences. pp 84-161, July 1, 1976.

²Cavanagh, J.B.: Peripheral Neuropathy Caused by Chemical Agents, <u>CRC</u>, <u>Critical Reviews in Toxicology</u>, 2:365-417, November, 1973.

LEGEND TO TABLE OF MICROSCOPIC OBSERVATIONS

Column "A" = Animal number

Column "B" = Chicken disposition

TK = killed at termination of test.

MK = killed when moribund.

FD = found dead.

* = chicken did not survive for delayed neurotoxicity observation.

Column "C" = Nerve fiber degeneration

- = microscopic lesions not recognized.

1 = present in minimal degree.

2 = present in slight degree.

3 = present in moderate degree.

T = trace (one short segment of a single nerve fiber showing degenerative changes).

LITTON BIONETICS, INC. LBI PROJECT NO. 20566

TABLE 1 MICROSCOPIC OBSERVATIONS

	707	7	ပ		•	1	•	•	ŧ	•	ı	1	2	1	•	ı											
Group #5	High Dose	MII OOCI	8	7.1	<u> </u>	ᆂ	ΤX	포	¥	¥	¥	¥	×	¥	¥	¥	*	*	*	*	*	#	*	*			
Gr	H;	DIENT	A	6.5	7	<u>8</u>	101	103	105	106	107	109	110	111	113	115	96	98	66	102	104	108	112	114			
	se section	17 Kg J	ວ	ŀ	_		ckens		•	1		•	H	•		1	ı	ı	•	ı	•	:	1				
Group #4	Idle Dose	1000	63	Ì	Ę		Redosed Chickens		ᆂ	¥	X	¥	¥	¥	¥	Τ	¥	¥	¥	¥	关	¥	G	*	*	*	*
G.	Mic	חושב	4	ć	ž		Redos		11	78	8	83	84	87	68	8	<u>6</u>	95	93	8	98	92	92	79	. 85	8	94
	7697	/KAI	၁	1	Kens	•	1	•	•	ı	•	•	1	•	ı	,	·	•	ı	,	•	1	•	•	ı		
Group #3	Low Dose	FA / Fill Onc !	83	7	Redosed Unickens		¥	¥	¥	¥	¥	¥	¥	ᆂ	¥	¥	ᆂ	¥	Τ	¥	¥	꿏	¥	¥	¥	美	
5	L .	DIME	∢	7 6	Kedos		26	22	58	29	9	61	62	63	64	99	9 9	69	20	71	72	73	74	75	65	6 3	
	trol	7 Fy 7	ပ		1	7	ო	က		_		_	7	•		1	7	7	ı	1	7	1	2				
Group #2	ive Contro	Tall One	8	À	<u>~</u>	꿏	폭	¥	¥	¥	¥	¥	Τ	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥			
9	Positiv	1001	4	,	8	37	38	33	\$	41	42	43	44	45	46	47	48	49	20	સ	52	23	54	22			
	.0]		ပ		ı	,	1	ı	,		•	•	1	1	1		ens			1	1		•	1	1	1	1
Group #1	Vehicle Control		6 2	1,1	<u>~</u>	ᆂ	¥	¥	¥	¥	¥	ᆂ	¥	¥	美		Redosed Chickens		¥	×	¥	¥	¥	ΤX	¥	+	¥
Gr	Vehic		4	١,	<u>0</u>	17	18	19	23	21	22	23	24	25	5 8		Redos		5 6	27	53	30	31	35	33	34	32

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0016	PM NUMBER:	78/4660
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion r MICROSCOPIC FIND Tibial nervices	INGS: e, Plantar nerve - cne	e lost in processing	; other no lesio
ANIMAL NUMBER:	0017	PM NUMBER:	78/4661
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female

GROSS FINDINGS:
No lesion recognized.

METHOD OF KILL: <u>Cervical dislocation</u>

MICROSCOPIC FINDINGS: No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

NNIWAL NOWBEK: _	0018	PM NUMBER:	78/4662
OOSAGE:	0 mg/kg	GROUP NUMBER:	1
ATE OF DEATH:	3/3/78	SPECIES:	Chicken
EATH:	Terminal kill	SEX:	Female
	Cervical dislocation		
ROSS FINDINGS: No lesion i	recognized.		
	DINGS: recognized.		
MICROSCOPIC FIN No lesion ANIMAL NUMBER:	recognized.	PM NUMBER:	78/4663
No lesion No lesion	recognized.	PM NUMBER:	
No lesion ANIMAL NUMBER: _	recognized. 00.9		1
No lesion ANIMAL NUMBER: _ DOSAGE: DATE OF DEATH: _	recognized. 00.9 0 mg/kg	GROUP NUMBER:	1 Chicken

MICROSCOPIC FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0020	PM NUMPER:	78/4664
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female.
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion r	recognized.		
MICROSCOPIC FINE No lesion r			
No lesion r	recognized.	Pi: NUMBER:	78/4665
No lesion r	recognized.	PI: NUMBER:	_
No lesion r ANIMAL NUMBER: _ DOSAGE:	ecognized. 0021 0 mg/kg	GROUP NUMBER:	1
No lesion r	0021 0 mg/kg 3/3/78		<u>l</u> Chicken

GROSS FINDINGS:

No lesi in recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

INDIVIDUAL AMIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0022		PM NUMBER:	78/4666
DOSAGE:	0 mg/kg		GROUP NUMBER:	1
DATE OF DEATH:	3/3/78		SPECIES:	Chicken
DEATH:	Termina1	kill	SEX:	Female
METHOD OF KILL:	Cervica1	dislocation		
GROSS FINDINGS: No lesion red	cognized.			
MICROSCOPIC FINDING No lesion red				

ANIMAL NUMBER:	0023	PM NUMBER:	78/4667	 .
DOSAGE:	0 mg/kg	GROUP NUMBER:	1	
DATE OF DEATH:	3/3/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation			

GROSS FINDINGS:

No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0024	PM NUMBER: _	78/4668
DOSAGE:	0 mg/kg	GROUP NUMBER	: 1
DATE OF DEATH: _	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Fem: '-
METHOD OF KILL:	Cervical dislocation	•	
GROSS FINDINGS:	ecognized		
MICROSCOPIC FIND No lesion r	INGS:		
No lesion r MICROSCOPIC FIND No lesion r ANIMAL NUMBER:	INGS: ecognized. 0025	PM NUMBER:	
No lesion r MICROSCOPIC FIND No lesion r ANIMAL NUMBER: DOSAGE:	INGS: ecognized. OG25 O mg/kg	GROUP NUMBER:	1
No lesion r	OINGS: ecognized. O025 O mg/kg 3/3/78		1 Chicken

No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0026	PM NUMBER:	78/4670
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL: _	Cervical dislocation		
GROSS FINDINGS: No lesion re	cognized.		
MICROSCOPIC FINDI No lesion re	NGS: cognized.		
MISSING TISSUES: Sciatic nerve Tibial nerve	e - lost in processing. - lost in processing.		
ANIMAL NUMBER:	0027	PM NUMBER:	78/4671
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH:			Chicken
DEATH:	Terminal kill	SEX:	Female
	Cervical dislocation		
GROSS FINDINGS: No lesion re	ecognized.		

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0028	PM NUMBER:	78/4672
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH: _	2/27/78	SPECIES:	Chicken
DEATH:	Moribund sacrifice	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: Animal sacri	ificed.		
ICROSCOPIC FIND No lesion re			
ISSING TISSUES: Tibial nerve	e - one lost in processing.		
ANIMAL NUMBER: _	0029	PM NUMBER:	78/4673
DOSAGE:	0 mg/kg	GROUP NUMBER:	1
DATE OF DEATH: _	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

DOSAGE:	0030 0 mg/kg	PM NUMBER: GROUP NUMBE	<u>78/4674</u>
DATE OF DEATH:		SPECIES:	
DEATH:	Terminal kill	SEX:	
	Cervical dislocation		**************************************
GROSS FINDINGS:			
No lesion (recognized.		
No lesion of the No les	DINGS:		·
MICROSCOPIC FINI No lesion a	DINGS: recognized.	PM NUMBER:	78/4675
MICROSCOPIC FINE No lesion a	DINGS: recognized. 0031	PM NUMBER: _ GROUP NUMBE!	
MICROSCOPIC FIND No lesion n ANIMAL NUMBER: _ DOSAGE:	DINGS: recognized. 0031 0 mg/kg	GROUP NUMBER	R: 1
MICROSCOPIC FINE NO lesion of ANIMAL NUMBER: DOSAGE: DATE OF DEATH:	DINGS: recognized. 0031 0 mg/kg	-	R: <u>l</u> Chicken

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0032	PM NUMBER:	78/4676
DOSAGE:	Q mg/kg	GROUP NUMBER	1
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion re MICROSCOPIC FINDI	NGS:		

ANIMAL NUMBER: 0033 PM NUMBER: 78/4677

DOSAGE: 0 mg/kg GROUP NUMBER: 1

DATE OF DEATH: 3/27/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 0034 PM NUMBER: 78/4678

DOSAGE: 0 mg/kg GROUP NUMBER: 1

DATE OF DEATH: 3/27/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER: 0035 PM NUMBER: 78/4679

DOSAGE: 0 mg/kg GROUP NUMBER: 1

DATE OF DEATH: 3/22/78 SPECIES: Chicken

DEATH: Moribund kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0036	PM NUMBER:	76/4680
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kil!	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER: _	0037	PM NUMRED.	78/4681
DOSAGE:	500 mg/kg	GROUP NUMBER:	
	3/3/78		Chicken
DEATH:	Terminal kill	CEV.	Female
METHOD OF KILL:	Cervical dislocation	***************************************	Telle 15

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - slight nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:		PM NUMBER:	
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion re	cognized.		
MICROSCOPIC FINDI Sciatic nerv Tibial nerve	NGS: e - minimal nerve fiber deg , Plantar nerve - moderate	generation. nerve fiber de	egeneration.
ANIMAL NUMBER:	0039	PM NUMBER:	78/4683
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
	3/3/78	SPECIES:	Chicken
DEATH:		SEX:	
	Cervical dislocation		
COOCC FINDINGS.			

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - moderate nerve fiber degeneration.

ANIMAL NUMBER.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

0040

101111111 10110 Ett.	0070		7074004	_
DOSAGE:	500 mg/kg	GROUP NUMBER	R: 2	_
DATE OF DEATH:	3/3/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation			
GROSS FINDINGS: No lesion re MICROSCOPIC FINDI No lesion re	NGS:			

DM NUMBER.

70 / 4604

ANIMAL NUMBER: 0041 PM NUMBER: 78/4685

DOSAGE: 500 mg/kg GROUP NUMBER: 2

DATE OF DEATH: 3/3/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tirial nerve, Plantar nerve - minimal nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0042	PM NUMBER:	78/4686
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion red MICROSCOPIC FINDINGS Tibial nerve	•	nerve fiber deç -	generation.
ANIMAL NUMBER:	0043	PM NUMBER:	78/4687
	500 mg/kg		2
	3/3/78	SPECIES:	
	Terminal kill	SEX:	
	Cervical dislocation		
GROSS FINDINGS: No lesion rec			

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - minimal nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0044	PM NUMBER:	78/4688
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation	\ <u>\ \</u>	

GROSS FINDINGS:

No lesion recognized.

MICRG3COPIC FINDINGS:

Tibial nerve, Plantar nerve - one lost in processing, the other slight nerve fiber degeneration in tissue.

ANIMAL NUMBER:	J045	PM NUMBER:	78/4689
DOSAGE:	500 mg/kg	GROUP NUMBER:	
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0046	PM NUMBER:	78/4690
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
Tibial nerve, Plantar nerve - minimal nerve fiber degeneration.

ANIMAL NUMBER:	0047	PM NUMBER:	78/4691
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

DOSAGE: 500 mg/kg GROUP NUMBER: 2	592
DATE OF DEATH: 3/3/78 SPECIES: Chick DEATH: Terminal kill SEX: Femal METHOD OF KILL: Cervical dislocation GROSS FINDINGS: No lesion recognized. MICROSCOPIC FINDINGS: Tibial nerve. Plantar nerve - slight nerve fiber degenerate ANIMAL NUMBER: 0049 PM NUMBER: 78/4 DOSAGE: 500 mg/kg GROUP NUMBER: 2	
DEATH: Terminal kill SEX: Femal METHOD OF KILL: Cervical dislocation GROSS FINDINGS No lesion recognized. MICROSCOPIC FINDIMOS: Tibial nerve Plantar nerve - slight nerve fiber degenerated. ANIMAL NUMBER: 0049 PM NUMBER: 78/4 DOSAGE: 500 mg/kg GROUP NUMBER: 2	
METHOD OF KILL:	
MICROSCOPIC FINDINGS: Tibial nerve, Plantar nerve - slight nerve fiber degenerate ANIMAL NUMBER: 0049 PM NUMBER: 78/4 DOSAGE: 500 mg/kg GROUP NUMBER: 2	
Tibial nerve, Plantar nerve - slight nerve fiber degenerate ANIMAL NUMBER: 0049 PM NUMBER: 78/4 DOSAGE: 500 mg/kg GROUP NUMBER: 2	
DOSAGE: 500 mg/kg GROUP NUMBER: 2	ion.
DOSAGE: 500 mg/kg GROUP NUMBER: 2	
	1693
DATE OF DEATH: 3/3/78 SPECIES: Chic	
DEATH: Terminal kill SEX: Fema	
METHOD OF KILL: Cervical dislocation	ken

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
Tibial nerve, Plantar nerve - slight nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0050	PM NUMBER:	78/4694
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Fema1e
METHOD OF KILL:	Cervical dislocation		

No lesion recognized.

GROSS FINDINGS:

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER:	0051	PM NUMBER:	78/4695
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0052	PM NUMBER:	78/4696
	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Fenale
METHOD OF KILL: _	Cervical dislocation	1	

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - slight nerve fiber degeneration.

ANIMAL NUMBER:	0053	PM NUMBER:	78/4697
DOSAGE:	500 mg/kg	GROUP NUMBER:	2
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - one lost in processing; the other no lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 0054 PM NUMBER: 78/4698

DOSAGE: 500 mg/kg GROUP NUMBER: 2

DATE OF DEATH: 3/3/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - slight nerve fiber degeneration.

ANIMAL NUMBER: 0055 PM NUMBER: 78/4699

DOSAGE: 500 mg/kg GROUP NUMBER: 2

DATE OF DEATH: 3/3/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - minimal nerve fiber degeneration.

ANIMAL NUMBER.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

0056

WITTING HALIDRING					
DOSAGE:	500 mg/kg	GROUP	NUMBER:	3	
DATE OF DEATH:	3/27/78	 SPECIE	:S:	Chicken	
DEATH:	Terminal kill	SEX:		Female	
METHOD OF KILL:	Cervical disloc	<u>ati</u> on			
MICROSCOPIC FIN	recognized. DINGS: recognized.				

ANIMAL NUMBER: 0057

DOSAGE: 500 mg/kg

DATE OF DEATH: 3/27/78

DEATH: Terminal kill

METHOD OF KILL: Cervical dislocation

PM NUMBER: 78/4701

GROUP NUMBER: 3

SPECIES: Chicken

SEX: Female

78/4700

PM NUMBER:

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0058 500 mg/kg 3/27/78 Terminal kill	PM NUMBER: GROUP NUMBER: SPECIES: SEX:	Chicken
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion re MICROSCOPIC FIND No lesion re	INGS:		
ANIMAL NUMBER:	0059	PM NUMBER:	78/4703
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation	<u></u> _	

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0060		PM NUMBER:	78/4704
DOSAGE:	500 mg/kg	g	GROUP NUMBER:	3
DATE OF DEATH:	3/27/78		SPECIES:	Chicken
DEATH:	Terminal	kill	SEX:	Fema le
METHOD OF KILL:	Cervical	dislocation		
GROSS FINDINGS: No lesion r	ecognized.			
MICROSCOPIC FIND No lesion r				
ANIMAL NUMBER:	0061		PM NUMBER:	78/4705
DOSAGE:			GROUP NUMBER	3
DATE OF DEATH:	3/27/78		SPECIES:	Chicken
בייייייייייייייייייייייייייייייייייייי	Torminal		CEY.	Female

GROSS FINDINGS:
No lesion recognized.

METHOD OF KILL: <u>Cervical dislocation</u>

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

	0062	PM NUMBER:	78/4706
NIMAL NUMBER:	500 mg/kg	GROUP NUMBER:	3
OSAGF:	3/27/78	SPECIES:	Chicken
ATE OF DEATH: EATH:	Terminal kill	SEX:	Female
	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

***CROSCOPIC FINDINGS:
No lesion recognized.

HILLIAND HOUSE THE	0063 500 mg/kg	PM NUMBER: GROUP NUMBER:	
DATE OF DEATH:	3/27/78	SPECIES:	Chicken Female
DEATH:	Terminal kill Cervical dislocation	SEX:	remate

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

INDIAIDONE WATHAL	PATROLOGI	CANCONITON		
ANIMAL NUMBER:	0064		PM NUMBER:	78/4708
DOSAGE:	500 mg/k	g	GROUP NUMBER:	3
DATE OF DEATH:			SPECIES:	Chicken
DEATH:	Terminal	kill	SEX:	Female
METHOD OF KILL: _				
GROSS FINDINGS: No lesion re MICROSCOPIC FINDI No lesion re MISSING TISSUES: Tibial nerve	NGS: cognized.	nerve - both	tissues lost in p	rocessing.
ANIMAL " MBER:			PM NUMBER: GROUP NUMBER:	
DOSAG_:			SPECIES:	
DATE OF DEATH:	Moribund	sacrifice	SEX:	
METHOD OF KILL:	Cervical	dislocation		
GROSS FINDINGS: No lesion re				

MICROSCOPIC FINDINGS:
No lesion recognized.

MISSING TISSUES:
Tibial nerve, Plantar nerve - lost in processing.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0066	PM NUMBER:	78/4710
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion re MICROSCOPIC FINDING No lesion re	INGS:		
ANIMAL NUMBER:	0067	PM NUMBER:	78/4711
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
DATE OF DEATH:	3/10/78	SPECIES:	Chicken
DEATH:	Moribund sacrifice	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: DOSAGE: DATE OF DEATH: DEATH: METHOD OF KILL:	0068 500 mg/kg 3/27/78 Terminal kill Cervical dislocation	PM NUMBER: GROUP NUMBER: SPECIES: SEX:	: 3 Chicken	
GROSS FINDINGS: No lesion	recognized.			
MICROSCOPIC FINE No lesion	DINGS: recognized.			
ANIMAL NUMBER:	0069 500 mg/kg	GROUP NUMBER	78/4713 : 3 Chicken	
DATE OF DEATH:	3/27/78	SPECIES:	CHICKEH	

SEX: Female

GROSS FINDINGS:
No lesion recognized.

DEATH:

Terminal kill

METHOD OF KILL: <u>Cervical dislocation</u>

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0070	PM NUMBER:	78/4714	_
	500 mg/kg	GROUP NUMBER:	3	_
DOSAGE:	3/27/78	SPECIES:	Chicken	_
DEATH:	Terminal kill	SEX:	Female	_
	Cervical dislocation			

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER:	0071	PM NUMBER:	78/4715
DOSAGE:	500 mg/kg	GROUP NUMBER:	
	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	<u>Female</u>
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0072	PM NUMBER:	78/4716
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL: _	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER:	0073	PM NUMBER:	78/4717
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0074	PM NUMBER:	78/4718
DOSAGE:	500 mg/kg	GROUP NUMBER:	3
	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANTMAL NUMBED.	0075	PM NUMBER:	78/4719	
_		GROUP NUMBER:	3	
	500 mg/kg	SPECIES:		
DATE OF DEATH:	3/27/78 Terminal kill		Female	
DEATH:		SEX:	· Cind · C	
METHOD OF KILL:	Cervical dislocation			

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:		PM NUMBER:	
DOSAGE:		GROUP NUMBER:	
DATE OF DEATH: _	3/8/78	SPECIES:	Chicken
DEATH:	Found dead	SEX:	Female
METHOD OF KILL: _	Cervical dislocation		
GROSS FINDINGS: No lesion re	ecognized.		
MICROSCOPIC FINDI No lesion re			
ANIMAL NUMBER:	0077	PM NUMBER:	78/4721
DOSAGE:		GROUP NUMBER:	4
DATE OF DEATH:		SPECIES:	Chicken
	Terminal kill	SEX:	Femals
	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0078	PM NUMBER:
DOSAGE:	1000 mg/kg	GROUP NUMBER: 4
DATE OF DEATH: _	3/27/78	SPECIES: Chicken
DEATH:	Terminal kill	SEX:Female
METHOD OF KILL:	Cervical dislocation	

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER:	0080	PM NUMBER:	78/4723
		GROUP NUMBER:	
	1000 mg/kg	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
	Cervical dislocation		

GROSS FINDINGS:

Comment - Appears to be slight muscle wasting of left leg. Representative sections of muscle saved in 10% neutral buffered formalin. No other gross abnormalities noted.

MICROSCOPIC FINDIGNS:

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	1800	PM NUMBER:	78/4724
DOSAGE:	1000 mg/kg	GROUP NUMBER:	
DATE OF DEATH: _	3/22/78	SPECIES:	Chicken
DEATH:	Moribund sacrifice	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion r	ecognized.		
MICROSCOPIC FIND No lesion r			
ANIMAL NUMBER:	. 0082	PM NUMBER:	78/4725
DOSAGE:	1000 mg/kg	GROUP NUMBER:	4
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Moribund sacrifice	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
			•
GROSS FINDINGS:			
No lesion r	ecognized.		

198

Tibial nerve, Plantar nerve - trace nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0083	PM NUMBER:	78/4728	
DOSAGE:	1000 mg/kg	GROUP NUMBER:	4	
DATE OF DEATH:	3/27/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation			
GROSS FINDINGS: No lesion red MICROSCOPIC FINDIN	NGS:			

ANIMAL NUMBER:	0084	PM NUMBER:	78/4729
DOSAGE:	1000 mg/kg	GROUP NUMBER:	4
DATE OF DEATH:	3/27/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Sciatic nerve - trace nerve fiber degeneration.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0086	PM NUMBER:	78/4730
	1000 mg/kg	GROUP NUMBER:	4
DATE OF DEATH:		SPECIES:	Chicken
DEATH:	Moribund sacrifice	SEX:	Female
	Cervical dislocation	•	
GROSS FINDINGS: No lesion rec	ognized.		
MICROSCOPIC FINDIN No lesion rec			
ANIMAL NUMBER:	0087	PM NUMBER:	78/4731
	1000 mg/kg	GROUP NUMBER:	4
DATE OF DEATH:	3/27/78	SPECIES:	
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion rec	ognized.		

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	0089	PM NUMBER:	78/4732	
DOSAGE:	1000 mg/kg	GROUP NUMBER:	4	
DATE OF DEATH:	3/27/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation	•		
GROSS FINDINGS: No lesion r	ecognized.			
MICROSCOPIC FIND No lesion r				
	0000	DM MUMO 5 D	70/4700	
ANIMAL NUMBER: _	0090	PM NUMBER:	78/4733	
DOSAGE:	1000 mg/kg	GROUP NUMBER:	4	
DATE OF DEATH: _	3/27/78	SPECIES:	Chicken	
NFATH•	Terminal kill	SEX:	Female	

Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

METHOD OF KILL: __

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0091		PM NUMBER:	78/4734	
DOSAGE:	1000 mg/1	kg	GROUP NUMBER:	4	
DATE OF DEATH:	3/27/78		SPECIES:	Chicken	
DEATH:	Terminal	kill	SEX:	Female	
METHOD OF KILL: _	Cervical	dislocation			
GROSS FINDINGS: No lesion red MICROSCOPIC FINDIN	IGS:				

ANIMAL NUMBER: 0092 PM NUMBER: 78/4735

DOSAGE: 1000 mg/kg GROUP NUMBER: 4

DATE OF DEATH: 3/27/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - one lost in processing; the other no lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 0093 PM NUMBER: 78/4736

DOSAGE: 1000 mg/kg GROUP NUMBER: 4

DATE OF DEATH: 3/27/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:

No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER: 0095 PM NUMBER: 78/4737

DOSAGE: 1000 mg/kg GROUP NUMBER: 4

DATE OF DEATH: 3/19/78 SPECIES: Chicken

DEATH: Moribund sacrifice SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

MICROSCOPIC FINDINGS:
Tibial nerve, Plantar nerve - one lost in processing; the other no no lesion recognized.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0097	PM NUMBER:	78/4738	
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5	
DATE OF DEATH:	3/3/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation			
GROSS FINDINGS: No lesion re	ognized.			

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER:	0100	PM NUMBER:	78/4739
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		

GROSS FINDINGS:
No lesion recognized.

LITTON BIONETICS, INC. LBI PROJECT NO. 20566

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0101	PM NUMBER:	78/4740
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
	Cervical dislocation		
GROSS FINDINGS: No lesion re	cognized.		
MICROSCOPIC FINDI No lesion re			
ANIMAL NUMBER: _	0103	PM NUMBER: _	78/4741
DOSAGE:	1500 mg/kg	GROUP NUMBER	: 5

SPECIES: Chicken

SEX: <u>Female</u>

DEATH: Terminal kill

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

DATE OF DEATH: 3/3/78

LITTON BIONETICS, INC. LBI PROJECT NO. 20566

INDIVIOUAL ANIMAL PATHOLOGY EVALUATION

2110 2 1 2 401 15 7 11 15 7 11			
ANIMAL NUMBER:	01 05	PM NUMBER:	78/4742
	1500 mg/kg	GROUP NUMBER:	
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	
METHOD OF KILL:	Cervical dislocation	•	
GROSS FINDINGS: No lesion re MICROSCOPIC FINDI No lesion re	INGS:		
ANIMAL NUMBER:	0106	PM NUMBER:	78/4743
	1500 mg/kg	GROUP NUMBER:	5
DATE OF DEATH:		SPECIES:	
DEATH:	Terminal kill	SEX:	
METHOD OF KILL:]_	Cervical dislocation		

GROSS FINDINGS:

No lesion recognized.

LITTON BIONETICS, INC. LBI PROJECT NO. 20566

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0107	PM NUMBER:	78/4744	
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5	
DATE OF DEATH: _	3/3/78	SPECIES:	Chicken	
DEATH:	Terminal kill	SEX:	Female	
METHOD OF KILL:	Cervical dislocation			

GROSS FINDINGS:

Comment - Nerve at about midway.

MICROSCOPIC FINDINGS:

Tibial nerve, Plantar nerve - one tissue inadequate; the other no lesion recognized.

ANIMAL NUMBER:	0109	PM NUMBER:	78/4745
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Corvical dislocation		

GROSS FINDINGS:
No lesion recognized.

LITTON BIONETICS, INC. LBI PROJECT NO. 20566

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	0110	PM NUMBER:	78/4746
DOSAGE:	1500 mg/kg	GROUP NUMBER:	5
DATE OF DEATH:	3/3/78	SPECIES:	Chicken
DEATH:	Terminal kill	SEX:	Female
METHOD OF KILL:	Cervical dislocation		
GROSS FINDINGS: No lesion re MICROSCOPIC FINDI Sciatic nerv	NGS: ve - slight nerve fiber deg	eneration.	
	, Plantar nerve - minimal i	PM NUMBER: _	78/4747
DOSAGE:	1500 mg/kg	GROUP NUMBER	
	3/3/78	SPECIES:	
DEATH:	Terminal kill	SEX:	Female
	Cervical dislocation		
GROSS FINDINGS: No lesion re	ecognized.		

LITTON BIONETICS, INC. LBI PROJECT NO. 20506

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 0113 PM NUMBER: 78/4748

DOSAGE: 1500 mg/kg GROUP NUMBER: 5

DATE OF DEATH: 3/3/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

MICROSCOPIC FINDINGS:
No lesion recognized.

ANIMAL NUMBER: 0115 PM NUMBER: 78/4749

DOSAGE: 1500 mg/kg GROUP NUMBER: 5

DATE OF DEATH: 3/3/78 SPECIES: Chicken

DEATH: Terminal kill SEX: Female

METHOD OF KILL: Cervical dislocation

GROSS FINDINGS:
No lesion recognized.

PART I - SECTION G

THREE-MONTH SUBCHRONIC TOXICITY IN DOGS

DIMP

LBI PROJECT NO. 10734-08

SUMMARY

Beagle dogs, four per sex per group, were given diisopropylmethylphosphate (DIMP) in the diet for 90 days. Dietary concentrations were 150, 1500 and 3000 ppm, and a control group was maintained in parallel. Initially and at 4, 8 and 13 weeks hemograms and clinical chemistry values were obtained on all dogs. The dogs were examined daily as to general condition, and weekly body weights and food consumption data were obtained. An ophthalmologic examination was conducted initially and at 13 weeks. At termination each dog was grossly necropsied and approximately 27 tissues were preserved. Eight organs were weighed. Tissues from the control and high-level groups were examined histologically. The dogs continued in good general health throughout the study. No clear or meaningful changes were seen in the data collected that could be ascribed to the ingestion of DIMP by these dogs, and it is concluded that this compound produced no toxic effects at a dietary concentration of 3000 ppm or below, over the 90-day period of study.

OBJECTIVE

The objective of this study was to evaluate and characterize the toxicity of the test material by feeding it in the diet to dogs for 90 days.

2. MATERIAL

Refer to Part I - Section A.

3. EXPERIMENTAL DESIGN

Purebred beagle dogs (five to six months old) were received from Hazleton Research Animals, Inc., Cumberland, Virginia, and acclimated to laboratory conditions for at least four weeks. The dogs had been immunized for hepatitis and rabies by the supplier and were further immunized against distemper and leptospirosis in this laboratory. The dogs were individually housed in stainless steel cages in temperature-controlled quarters with automated artificial lighting providing a 12-hr cycle of illumination. Water was provided ad libitum.

3. EXPERIMENTAL DESIGN (Continued)

The dogs were assigned LBJ dog numbers and placed in the following treatment groups:

Group Number	Animal Nu	mber	Diet Concentrations (ppm)		
***********	Males	<u>Females</u>			
1	370-373	374-377	0 (Control)		
2	378-381	382-385	150		
3	386-389	390-393	1500		
4	394-397	398-401	3000		

These dietary concentrations were selected by a representative of the sponsor. The dogs were identified by ear tattoo and cage cards.

DIMP was incorporated in the diet of the dogs (Purina Lab Canine Diet) at the stated concentrations using PEG 400 as a vehicle, and mixed with the feed in a twin-shell blender for 20-30 min. The proportion of PEG 400 to feed was 150 ml to 20 kg for all diet levels, including that of the control. Compound feeding began September 2, 1977.

The dogs were examined daily as to general condition, behavior, fecal consistency and signs of toxicity. Body weights were obtained initially and weekly during the experiment. Food consumption was estimated twice per week and recorded on a weekly basis. In addition, fecal examinations for parasites were made on all dogs, and after finding <u>Giardia canis</u> and <u>Isospora canis</u> in some animals, all were treated with sulfamethazine and quinacrine hydrochloride in sequence over a 12-day period.

Clinical pathology determinations were obtained initially and at 4. 8 and 13 weeks. These included:

Hematology	Blood Chemistry	
erythrocyte count leukocyte count differential leukocyte count hemoglobin packed cell volume clotting time	glucose blood urea nitrogen serum glutamic-pyruvic transaminase serum glutamic-oxaloacetic transaminase serum alkaline phosphatase total protein albumin/globulin ratio* creatinine* sodium* chloride* calcium	uric acid bilirubin cholesterol lactic dehydrogenase acetyl cholinesterase** (RBC and plasma) CPK* total iron* triglycerides* carbon dioxide* phosphorus* albumin* potassium*

*Initially only except as noted **Only on dogs receiving DIMP except as noted

Qualitative urinalyses were performed at Weeks 8 and 13.

3. EXPERIMENTAL DESIGN (Continued)

Detailed physical examinations were performed initially and ophthalmologic examinations were performed initially and at 13 weeks, using a solution of 1.0% Mydriacyl to dilate the pupils. (Note: Initial examinations were all made during the acclimation period.)

At 13 weeks the dogs were killed with an intravenous dose of a barbiturate and exsanguinated.

A gross necropsy was performed and the following organs from all dogs were removed and weighed:

liver brain thyroid kidneys adrenal glands testes ovaries heart spleen

The weighed organs as well as those listed below were fixed in 10% buffered formalin:

spinal cord
lungs
pancreas
stomach
small intestines
colon
urinary bladder
prostate
eyes (with optic nerve)

pituitary
bone marrow (femur)
rib junction
lymph node (mesenteric)
mammary tissue
skin
peripheral nerve (sciatic)
muscle
uterus
gallbladder
any gross lesions

The tissues from dogs of the control and high-level groups were examined histologically while those of the other two groups were stored in case of need.

Thirty days after transmittal of this report, all original data will be transferred to the LBI Archives, 1330 Piccard Drive, Rockville, Maryland.

A draft of this report and underlying data were reviewed by Litton Bionetics Quality Assurance Unit prior to submission.

TABLE I-G-47

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE A

FREQUENCY OF CLINICAL OBSERVATIONS IN DOGS

WEEK	OBSERVATION		ET CON						
		0		150		150		300	
		14	F	H	F	M	F	M	F
-1	Soft Feces Vomiting	2	1		2	2	2	2	1
1	Soft Feces Diarrhea	1 1			1		1	1	1
2	Soft Feces Diarrhea	3	•	1	1		1	3	
3	Vomiting Soft Feces Vomiting	3	1	2	1	2	2	2	1
4	Hair Loss on Foreleg Soft Feces Vomiting	3	2	1		1	3	2	4
5	Soft Feces Estrus Hair Loss on Foreleg	3	î	2	2 1	2 1	1	3	3
6	Vomiting Soft Feces	4	4	1	3 1	2	1 2 2	3 1	4
7	Watery Feces Decreased Activity	Λ	1	2		1	1		1
/	Soft Feces Watery Feces Hair Loss on Foreleg	4 1	1 1	3	2 1	1 1 1	2	2	1
8	Soft Fec's Hair Loss on Foreleg Hair Loss on Ear Estrus	2				1 2	2	1	2 1 1
9	Soft Feces Watery Feces Hair Loss, Sores on Forepaws	2	2	1	2 2	2 1	1	1	1
	Estrus Hair Loss on Foreleg Hair Loss on Ear			1		2	1		1
10	Soft Feces Watery Feces	2	1		4	3	2 2	2	3
	Hair Loss on Foreleg(s) Vomiting	J		1		2	1		1
11	Hair Loss on Ear Soft Feces Watery Feces	3 1	1	1	1	2 2 2	1	3 1	3
	Hair Loss on Foreleg(s) Hair Loss on Ear			1		2	1		1

 $^{^{\}mathrm{a}}\mathrm{Number}$ of dogs showing indicated signs at least once during the week.

TABLE I-G-47 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE A (CONTINUED)

FREQUENCY^A OF CLINICAL OBSERVATIONS IN DOGS

WEEK	OBSERVATION	DIE	CONC	ENTR	ATION	- PPi	4		
	•	0		150		1500)	300	$\overline{0}$
		M	F	M	F	14	F	M	F
12	Soft Feces	3	2	1			1	1	1
	Watery Feces	1	1			^		1	
	Hair Loss on Foreleg(s)			1		2	1		Ţ
13	Hair Loss on Ear . Soft Feces	2			1	3	2	2	2
13	Watery Feces	1			*	2	ì	ī	-
	Hair Loss on Foreleg(s)	_				3	_	-	1
	Hair Loss on Ear						1		
	Hair Loss and Sores on			_					
	Forelegs			1		,			
	Hair Loss on Abdomen					Ţ			

4. RESULTS (Continued)

No changes in the eyes of any dogs were reported following the ophthalmologic examinations. The only notations given at the terminal examination were for amelanotic chorioid in both eyes of female dog No. 383 (150-ppm group) and in male dog No. 388 (1500-ppm group), both notations accompanied by the comment, "normal variation". Male dog No. 386 (1500-ppm group) was thought to have larger-than-normal optic discs at the terminal examination.

Hematologic data are presented in Appendix Table 4 and group means for the hematocrits, hemoglobin concentrations, erythrocyte counts and leukocyte counts are given in Text Tables B and C for males and females, respectively. No dose-related changes were seen in these measurements throughout the 13 weeks of study.

Clinical chemistry data are given in Appendix Table 5, with summaries for those tests which were followed throughout the study also being given in Text Tables B and C. (Some tests not specified in the protocol were done initially as part of routine screening procedures and are shown in Table 5. Since these tests were not repeated, their means are not summarized in Text Tables B and C.)

No dose- or time-related changes were apparent with respect to glucose, blood urea nitrogen, SGOT, SGPT, alkaline phosphatase, lactic dehydrogenase, calcium, phosphorus, total protein, albumin, bilirubin, uric acid or cholesterol. Values for some of these tests varied markedly, but statistical evaluations failed to show significance in any consistent or meaningful way.

Clotting time means (Appendix Table 6, Text Tables B and C) likewise showed no pattern indicative of compound effect. Only one of these means was statistically significantly different from control mean, that of the 1500-ppm males at 4 weeks.

Plasma and RBC cholinesterase data are given in Appendix Talle 5, with summaries of group means in Text Tables B and C. As preface to discussion of these data, it may be noted that a misinterpretation of the wording of the experimental protocol led to the omission of cholinesterase assays for the control dogs at Weeks 4 and 8, and while the enzyme was determined in all eight controls initially, technical difficulties with the RBC samples at Week 0 make all values for RBC invalid for that time interval. (Plasma values were not affected.) Moreover, at Week 13 cholinesterase for only two control dogs was assayed. Thus, attempts to perceive a pattern in RBC and plasma cholinesterases are somewhat complicated.

215

ŝ

LITTON BIGNETICS, INC. PROJECT NO. 10734-08

Market Activities and another and residence and the property and the contraction of the property of the contraction of the cont

TABLE B
MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN MALE DOGS

	DIET CONCENTRATIONS (PPM)	INTERVAL 0	(WEEKS)	8	13
PCV (%)	0 150 1500 3000	48 44 42* 44	48 50 48 46	48 48 48 48	49 47 47 49
HGB (g %)	0 150 1500 3000	15.7 14.8 14.2 15.0	16.9 17.2 17.1 15.9	16.9 16.9 17.1 17.6	16.6 15.8 15.6 16.4
RBC/ MM ³ x 106	0 150 1500 3000	7.54 6.57 6.49 6.63	6.91 7.00 6.95 6.82	8.46 8.07 7.88 7.71	7.21 7.11 7.23 7.60
MBC/ MM3 x 103	0 150 1500 3000	7.7 7.9 6.5 7.6	9.1 10.3 10.9 9.9	12.3 14.5 13.5 11.2	11.0 10.6 10.7 9.4
CLOTTING TIME (SEC)	0 150 1500 3000	353 375 465 435	405 555 675* 578	488 488 533 488	458 570 518 480
GLUCOSE (MG/DL)	0 150 1500 3000	99 120 94 111	97 109 109 106	88 93 93 101	89 99 104 105
BUN (MG/DL)	0 150 1500 300ປ	12 10 14 10	15 14 14 12	18 15 14 13	14 14 14 13
SGOT (MIU/ML)	0 150 1500 3000	40 40 36 31	37 41 37 32	35 46 45 40	45 52 50 49

^{*}p<0.05 as compared to controls: Dunnett's t-test.

TABLE I-G-48 (Continued)

LITTOM BIONETICS, INC. PROJECT NO. 10734-08

TABLE B (CONTINUED)

MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN MALE DOGS

	DIET CONCENTRATIONS (PPM)	INTERVAL 0	(WEEKS)	8	13
SGPT (MIU/ML)	0 150 1500 3000	32 37 29 32	41 36 35 42	38 35 36 42	44 44 36 44
ALK. PHOS. (MIU/ML)	0 150 1500 3000	152 112 113 106	127 87 84 72	124 77 74 71	82 53 51 48
LOH (MIU/ML)	0 150 1500 3000	225 238 213 158	87 98 83 53	183 287 269 201	231 518 499 332
CALCIUM (MG/DL)	0 150 1500 3000	11.9 11.6 11.8 11.4	11.3 11.4 11.4 11.3	10.8 10.8 10.6 10.5	11.2 10.9 11.2 11.0
PHOSPHORUS (MG/DL)	0 150 1500 3000	6.8 6.0 6.3 6.4	4.9 4.6 4.5 4.4	5.4 4.8* 4.7* 4.7*	5.1 4.5 4.6 4.6
TOTAL PROTEIN (G/DL)	0 150 1500 3000	6.3 5.8 6.0 5.8	6.3 5.9 6.1 6.0	6.9 6.6 6.5	6.6 6.3 6.6 6.4
ALBUMIN (G/DL)	0 150 1500 3000	3.5 3.2 2.9 2.9	3.5 3.5 3.7 3.5	3.2 3.1 3.1 3.1	3.3 3.3 3.4 3.3
BILIRUBIN (MG/DL)	0 150 1500 3000	0.2 0.3 0.3 0.3	0.1 0.1 0.1 0.1	0.4 0.4 0.1 0.1	0.1 0.1 0.4 0.2

^{*}p<0.05 as compared to controls: Dunnett's t-test.

TABLE I-G-48 (Continued)

LITTOR BIONETICS, INC. PROJECT NO. 10734-08

TABLE B (CONTINUED)

MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN MALE DOGS

	DIET CONCENTRATIONS	INTERVAL				
	(PPM)	0	4	8	13	
URIC ACID (MG/DL)	0 150 1500 3000	0.4 0.3 0.2 0.3	0.4 0.8 0.3 0.3	0.4 0.6 0.5 0.5	0.6 1.1 0.9 0.6	
CHOLESTEROL (HG/DL)	0 150 1500 3000	182 163 167 169	164 141 167 153	176 152 166 152	156 145 170 142	
PLASMA CHOLIN - ESTERASE (MU/ML)	0 150 1500 3000	2359 2062 1775 2087	1862 1571 1750	2176 1692 1798	2704 ^a 1888 1687 1839	
RBC CHOLIN - ESTERASE (MU/ML)	0 150 1500 3000	685 798 815 523	2667 4804 4889	2688 3181 2709	2688 ^a 2302 1982 3392	

aMean of 2 dogs.

PROJECT NO. 10734-08

TABLE C
MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN FEMALE DOGS

	DIET CONCENTRATION (PPM)	INTERVAL O	(WEEKS)	8	13
	(TPN)	<u> </u>	<u></u>	<u> </u>	13
PCV (%)	0 150 1500 3000	45 46 48 45	49 48 50 49	49 48 50 49	50 46 49 48
IIGB (G %)	0 150 1500 3000	15.2 15.1 16.4 15.1	17.2 16.9 17.3 17.3	17.8 17.0 17.7 17.7	16.9 15.5 16.6 16.5
RBC/ MM ³ x 10 ⁶	0 150 1500 3000	6.84 6.58 7.09 6.84	7.04 6.84 6.90 7.07	9.14 7.87 8.05 8.10	7.38 7.02 7.43 7.32
MBC/ MM3 x 103	0 150 1500 3000	5.7 6.4 6.7 7.6	9.8 9.8 9.5 7.7	11.7 12.4 10.8 14.1	9.8 10.2 11.3 9.8
CLOTTING TIME (SEC)	0 150 1500 3000	338 443 443 465	465 555 668 600	413 495 570 480	458 638 540 600
GLUCOSE (MG/DL)	0 150 1500 3000	108 109 113 122	109 105 118 112	92 91 103 102	88 101 103 104
BUN (MG/DL)	0 150 1590 3000	11 11 12 13	13 14 15 14	15 15 16 15	13 14 15 15
SGOT (MIU/ML)	0 150 1500 3000	36 32 30 33	37 37 39 30	39 34 42 44	42 54 51 46

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE C (CONTINUED)

MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN FEMALE DOGS

	DIET CONCENTRATION (PPM)	INTERVAL 0	(WEEKS)	8	13
SGPT (MIU/ML)	0 150 1500 3000	27 32 33 37	31 38 37 38	34 41 49 46	35 38 41 43
ALK. PHOS. (MIU/ML)	0 150 1500 3000	110 107 99 103	95 92 81 73	96 96 74 76	63 69 60 50
LDH (MIU/ML)	0 150 1500 3000	269 160 156 182	83 105 54 46	175 175 234 256	232 620 422 362
CALCIUM (MG/DL)	0 150 1500 3000	11.9 11.8 11.8 11.6	11.4 11.5 11.7 11.3	11.0 10.8 11.1 10.6	11.1 11.1 11.4 10.9
PHOSPHORUS (MG/DL)	0 150 1500 3000	6.2 6.5 6.1 6.2	4.3 4.5 4.7 4.5	4.6 4.8 4.5 4.5	4.4 4.5 4.5 4.6
TOTAL PROTEIN (G/DL)	0 150 1500 3000	6.1 5.8 6.0 5.8	6.2 6.1 6.0 5.7	6.7 6.4 6.8 6.6	6.4 6.3 6.5 6.4
ALBUMIN (G/DL)	0 150 1500 3000	3.4 3.1 3.1 2.9	3.7 3.7 3.7 3.5	3.3 3.2 3.3 3.2	3.4 3.4 3.1 3.3
BILIRUBIN (MG/DL)	0 150 1500 3000	0.4 0.3 0.2 0.2	0.1 0.1 0.1 0.1	0.4 0.4 0.1 0.1	0.1 0.1 0.3 0.2

ETTIGH BICHETICS, TAC. PROJECT NO. 10734-08

TABLE C (CONTINUED)

MEAN HEMATOLOGICAL AND CLINICAL CHEMISTRY VALUES IN FEMALE DOGS

	DIET CONCENTRATION (PPM)	INTERVAL 0	(WEEKS)	8	13
URIC ÁCID (MG/DL)	0 150 1500 3000	0.3 0.2 0.3 0.2	0.5 0.5 0.7 0.3	1.2 0.5 0.4 0.4	0.5 0.8 0.6 0.5
CHOLESTEROL (MG/DL)	0 150 1500 3000	188 177 176 174	165 180 162 151	175 191 173 166	158 215 186 173
PLASMA CHOLIN - ESTERASE (MU/ML)	0 150 1500 3000	2324 1820 2296 2016	1739 2003 1603	1890 2257 1846	1779 ^a 1919 2284 1779
RBC CHOLIN - ESTERASE (MU/ML)	0 150 1500 3000	1075 865 1018 735	3772 4576 4016	2919 2478 2281	2431 ^a 2302 2045 2045

^aMean of 2 dcgs.

4. RESULTS (Continued)

For plasma, if one considers each group mean at Week O for the DIMP-dosed dogs as the index of enzyme activity (100%), there seemed to be a tendency toward slight inhibition in the 3000-ppm group (16-20% at Week 4, but only 8-14% at Week 13), while dogs of the other two groups showed at most only 13% inhibition at 4 weeks. Or, to take the 13-week values alone (with the two controls of each sex that were assayed as 100%), the males were inhibited to about the same extent (30-38%) in all three groups, while the females were not inhibited at all. For the RSC enzyme the situation is complicated by the invalid Week O values, but if the Week 4 mean of each group is used as the index, there appears to be as much as 45% inhibition for both sexes in the high-dose dogs. If the 13-week means are considered alone, with only two control dogs per sex as 100% activity, there was no clear dose-related effect.

All in all, it is believed that no valid effect on cholinesterase in these dogs was induced by DIMP ingestion.

Appendix Table 7 shows results of qualitative urinalyses. These data are unexceptional and indicate no compound-induced effects.

Absolute organ weights and relative organ weights (organ-to-body weight percentages) are given in Appendix Tables 8 and 9, respectively. Group means of organ weights and relative organ weights are collected in Text Table D. None of the mean values of the 3000-ppm group were statistically significantly different from control mean values. Only the mean relative ovary weight in the group that received 1500-ppm of DIP in the diet was statistically significantly different from the control mean (p<0.05). The mean absolute ovary weight in this group was not statistically different from control value, however. Since the mean ovary weights, absolute and relative, of the other dose groups were not statistically significantly different from control figures, the difference noted for the 1500-ppm group is not believed to be meaningful.

The report of the histopathologist is appended. Most of the changes seen were such as are commonly encountered in dogs and the only one thought to be possibly associated with compound administration was the occurrence of cyslic crypts of Lieberkühn in the small intestines of male dogs No. 395 and No. 397 (both in the 3000-ppm group). Such crypts are thought to be indicative of intestinal hypermotility, and review of daily observations shows these two dogs did have soft or watery faces one or more times per week during much of the study. However, control male No. 370 also had cystic crypts of Lieberkühn and soft faces during the study, and various other dogs had soft faces but no histological intestinal changes. The cystic crypt observations may therefore be regarded as suggestive at most.

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE D

MEAN ORGAN WEIGHTS

MEAN ABSOLUTE ORGAN WEIGHTS (G)

DOSE (PPH)	BODY WEIGHT (KG)	BRAIN	HEART	LIVER	SPLEEN	KIDNEYS	THYROIDS	ADRENALS	TESTES/ OVARIES
MALES									
0 150 1500 3000	11.5 12.4 11.9 10.6	75.45 78.87 80.40 79.65	90.44 88.10 86.79 85.77	296.2 314.6 314.6 296.4	61.89 63.54 63.49 56.38	57.49 59.18 60.06 62.04	0.88 0.95 1.00 0.86	0.93 0.96 1.05 0.97	22.09 23.78 22.59 18.40
FEMALES	<u>S</u>								
0 150 1500 3000	10.5 10.1 10.5 10.1	73.32 75.19 70.43 73.58	81.58 74.88 78.85 74.69	262.4 283.8 283.2 276.0	58.06 50.06 55.76 69.12	50.14 50.39 46.13 45.29	0.84 0.89 0.77 0.83	0.97 1.03 1.10 0.88	0.73 1.04 1.96 1.46

TABLE I-G-50 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE D (CONTINUED)

MEAN ORGAN WEIGHTS

MEAN RELATIVE ORGAN WEIGHTS (G OR MG/100 G OF DODY WEIGHT)

DOSE (PPM)	BRAIN	HEART	LIVER	SPLEEN	KIDNEYS	THYROIDS	ADRENALS	TESTES/ OVARIES
Ex ES								
0 150 1500 3000	0.657 0.643 0.679 0.733	0.783 0.713 0.731 0.785	2.575 2.560 2.661 2.721	0.549 0.511 0.536 0.517	0.492 0.480 0.509 0.570	7.77 7.71 8.48 8.06	8.18 7.80 8.63 8.79	0.192 0.193 0.191 0.168
<u>FEMALES</u>								
0 150 1500 3000	0.713 0.752 0.674 0.744	0.786 0.743 0.751 0.746	2.514 2.829 2.689 2.776	0.549 0.496 0.527 0.692	0.485 0.505 0.439 0.449	8.08 8.75 7.27 8.34	9.36 10.24 10.38 8.85	7.12 9.95 18.27* 14.58

^{*}p<0.05 compared to controls: Student's t-test.

5. CONCLUSION

Based on the results presented it is concluded that no dose- or time-related toxic effects were produced in dogs given DIMP in the diet at concentrations of 150, 1500 and 3000 ppm daily for 90 days.

Submitted by:

Carter D. Johnston, Ph.D. Senior Toxicologist

Reviewed by:

Vice President

225

TABLE 1-G-51

LITTON BIONETICS, INC. PROJECT NO. 10734-08

BODY WEIGHT (KG) GROUP 1 - 0 PPM

TABLE 1

	134	!	10.2		13.4	11.0	36.0	3	a	, e. i	10.8 12.0	1 01	1.67	6.0
		!	9.6	10.9	12.8	11.3	1.26	3	ď	9.00	12.1	10.4	1.74	
		!	8.0	10.8	12.8	11.3	1.27	}	ζ.	96.	11.8	10.3	1.60	3
	10		10.8	2.0	13.2	11.9	1.00	•	8	10.0	11.8	10.5	1.33	5
	6		9.8	10.8 8.61	12.8	11.3	1.29 0.65	ı	8.0	9.5	11.2	8.6	1.44	;
,			9.6	12.5	12.8	11.4	1.37 0.68		8.2	9.5	11.2	6.6	1.45	
			9.4	10.6 11.2	12.2	10.9	1.17 0.59		7.8	9.5	; ,	9.1	1.30	
	9		9,4	10.2	12.4	10.7	1.27 0.63		7.6	10.4	11.0	9.5	1.52 0.76	
	2		3.2	10.2 10.8	12.2	10.6	1.25 0.63		7.6	10.2	10.8	9.4	1.44	
•	4		9.4	20.0	12.4	10.6	1.30 0.65		7.8	& & &	10.6	9.3	1.22 0.61	
	3		ස ද ස ද	11.2	11.2	10.3	0.57		7.4	න න න න	10.4	9.1	1.31 0.66	
	2		0.0	10.6	12.0	10.1	1.12 0.56		7.3	8.6 10.2	10.2	9.1	0.70	bloods.
			9.0	10.0	11.8	10.2	0.67		7.2	8.6 10.2	10.0	9.0	0.70 0.70	Fastod 1 night for bloods
N		MVIES	370	27.	3/3	MEAN	88	FEMALES	374	3/5 376	377	MEAN	22	Prastod 1

TABLE I-G-51 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE 1 (CONTINUED)

BODY WEIGHT (KG) GROUP 2 - 150 PPM

12	13.64	12.1 0.76		9.5 8.6 9.5 6.5	10.2	
	13.0	12.1 0.72 0.36		9 8.5 8.5 8.6 8.6	10.1	•
10	11.8	12.7		10.2 9.4 12.0	11.0	
6	10.8 11.4 12.4	11.9 0.91 0.46		8.8 9.2 11.2	10.3 1.47 0.74	
- BB	11.0 12.2 12.6 11.8	11.9 0.68 0.34		8.2 11.2 12.2	10.1 1.91 0.95	
	10.6 11.2 11.2	11.4 0.75 0.38		8.8 8.6 11.4	10.2 . 1.68 0.84	
9	10.6 11.0 11.8	11.2 0.52 0.26		8.6 8.4 11.4	9.8 1.48 0.74	
2	10.6 11.0 11.8	11.2 0.50 0.25		8.8 8.4 10.2	9.7 1.29 0.64	
4	10.4 11.4 11.4	11.0 0.49 0.24		8.6 8.2 10.6 11.0	9.6 1.40 0.70	
6	10.4 11.4 11.8	11.0 0.77 0.39		8.2 9.8 10.8	9.3 1.23 0.61	
2	10.6 10.8 11.3			8.0 9.8 10.8		-
WEEK	378 10.6 379 10.6 300 11.2 381 11.8	0.57 0.29		8.2 9.8 10.6	9.2 1.20 0.60	night for
ANIMAL NO: MAI.ES	378 379 380 381	MEAN SD SE	FEMALES	382 384 384 385	MEAN SD SE	Fasted)

TABLE I-G-51 (Continued)

INC.	-08
TICS,	10734
BIONETICS, INC	ç
LITTON	PROJECT

TABLE 1 (CONTINUED)

BODY WEIGHT (KG) GROUP 3 - 1500 PPM

ľ											
12		11.3	12.0	12.0	0.36		10.2	10.1		10.6	0.37
11		11.2	12.2	12.0	0,35		10.2	10.2	0.11	10.5	0.37
10		8.11.8	17.8	12.3 0.58	0,29		10.2	10.8	77.7	10.8	0.50
6		10.8	11.6	11.6 0.57	0.29		0.6	10.2	1111	10.2	0.43
88		10.2	12.2	1.5	0.51		9.6	10.5	11:1	10.3	0.40
-		11.6	11:0	11.7	0.10		8.6	. o. t		e.e.	0.54
9		10.6	12.2	11.5	0,35		9.5	9.6	2	9.7	0.38
L G		10.4	12.2	11.2	0.42		0.0	. 0.0	0.01	9.6	0.41
48		8.4 10.5	11.8	10.7	0.80 9.80		8.0	0.00	9	4.0	0.47
3		10.2	11.6	10.9	0,35		9.0	900	2	9.5	0.54
2		10.6	-					9 6			
WEEK		9.6	11.6	10.7	0.44		4.0	9.00	3.04	8.9	0.44
ANIMAL NO.	MALES	386 387 388	389	MI.AN Sid	ij	FIFMLES	390	392	7	MEAN	8 %

11.0 112.5 12.3 11.9 0.69 0.34 10.2 10.2 12.1 10.5 1.09 0.54

TABLE I-G-51 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE 1 (CONTINUED) BODY WEIGHT (KG)

				9.0	11.6 12.8	1.2	1.30 0.65		8.2	e.		0.2	1.54	
		120		11.2	12.4 13.2	11.8	1.24		9.2	6.5	=======================================	10.5	0.3 6.3	
		6		10.6	11.6	11.2	0.91		8.2	2.5	: o:	9.7	1.25 0.62	
	,	8		10.4	11.4	11.0	1.06 0.53		8.2	و ج ح د	1.4	9.5	1.39 0.69	
				10.2	11.2	10.9	1.10 0.55		8.2	2.61	11.2	9.6	1.32 0.66	
		9		10.2	11.2	10.7	0.99		7.0	8 C	10.	9.5	1.43 0.71	
		2		8.6	11.2	10.7	0.51		7.8	10.0	10.8	9.4	1.39 0.69	
	•	4		10.2	11.0	10.7	0.52		7.6	8.0 10.2	1.0	9.4	1.51 0.75	
		3		9.6	11.2	10.5	0.59		7.4	æ 6.	10.8	9.5	1.45 0.73	
		2		10.1 9.3	11.1	10.4	0.30		7.2	8 C	10.11	9.1	1.52 0.76	night for bloods.
- 3000 PPM	WEEK			8.6	11.0	10.3	0.48		7.0	: : : :	10.6	9.1	1.55 0.78	-
GROUP 4	ANIMAL.		MALES	394 395	396 397	MEAN	SE	FEMALES	398	430 400 400	401	MCAN	SE	⁸ Fasted

9.6 9.2 111.1 11.3 1.35 0.68

TABLE I-G-52

PROJECT NO. 10734-08

TABLE 2

FOCD CONSIJMPTION (KG)

GROUP 1 - 0 PPM

13	2.9 2.0 4.1	2.6 0.50 0.25	2.2 2.3 3.4 5.3	2.2 0.22 0.11
21	2.2.5	2.5 0.24 0.12	2.2.2. 2.4.4.	2.3 0.24 0.12
		2.4 0.46 0.23	%	2.2 0.38 0.22
10	6.6.6.6 6.6.6.6	2.7 0.18 0.09	2.2.5. 2.2.5. 2.2.5.	2.3 0.18 0.09
6	8.2.5.8 5.0.4.	3.0 0.62 0.31	22.2 2.3 2.3 3	2.4 0.29 0.14
8:	22.23	2.7 0.30 0.15	2.2.5. 7.1.5.5. 4.	2.4 0.25 0.13
	5.00 m	7.9 0.50 0.25	22.22 01.4.4	2.2 0.21 0.10
o	8232 0759	2.7 0.36 0.18	2.1 2.6 3.0	2.5 0.39 0.20
w)	25.7 25.7 3.5	2.5 0.21 0.12		1.9 0.35 0.20
4	2.3	2.2 0.41 0.20	21:5	1.7 0.22 0.11
34				
2	25.25 4.5.5 5.5.5	2.3 0.06 0.03	2.0 2.1 1.2	1.8 0.40 0.20
WEEK	യ ഗ്യ ഹ്യം ഹ്യം	2.9 0.53 0.27	1.8 2.0 1.6 1.7 2.2 2.1 1.8 1.2	1.9 0.25 0.13
ANIMAL NO.	370 371 372 373	MI.AN SD SE	374 375 375 377	MCAN S0 SE

And the second s

TABLE I-G-52 (Continued)

-98 -08	
LETICS, 10734-	
ON BIONE ECT NO.	
LITTON	

TABLE 2 (CONTINUED)

FOOD CONSUMPTION (KG)

GROUP 2 - 150 PPM

ANIMAL NO.	AT .	WITK	3		J.G.	9	7	y	: ;	01	= :	21	=
MALES													
378 379	2.4 S.F.	S.F.		. v. v.	κ. F. F.	3.3	3.6	2.6	3.0	2.4	2.4	3.10	ν, v, c
381 381	ν. π.π.	. v. v.		 	S.F.	2.3	2.5	2.9	2.9 2.9	2.5	2.2	2.5 6.5	ກີດໄ
MEAN						2.9	3.1	2.7	2.8 0.32	2.8 0.50	2.7 0.53	2.5	00
88						0.29	0.43	0.42	0.19	0.25	0.26	0.33	0
FEMALES													
382 383	2.0	2.1		1.6	2.1 1.r	r	1.4	1.9	2.0	4.2	2.1	2.7.5	~~
384 365	S.F.	2.5	1 1	2.0	vv ∾		. s.	2.3	2.7 2.6	1.9	2.1	5.9 5.3	
MCAN SO	1.9	2.0		1.7	2 0.85		2.1 0.59	2.1 0.48	2.5	2.2 0.46	0.33	0.37	~0
S.	0.29	0.38		0.35	0,49	•	0.34	0.24	91.0	5.5°	<u>:</u>	6.13	=

Anot mensured Week 3: see text.

TABLE 1-6-52 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-08

TABLE 2 (CONTINUED) FOOD CONSUMPTION (KG)

GROUP 3 - 1500 PPM

21	જ જ જ	6000	0000	200	
11	2.2.5.1	2.2 2.3 0.17 0.09	31.25	2.4	ر. د
10	22.33	2.3 0.19 0.10	4.4.6.C	2.2	60.0
6	2.2.2. 1.6.4.	2.3 0.28 0.14	7.02.0 7.02.0	2.4 0.24 0.12	;
8	. 2 2 - 6 5 6 6 6 6	1.9 0.47 0.23	1.8 2.1 2.1 2.0	2.0 0.13 0.06	
	2.5	2.0 0.24 0.12	9.4.9.9 9.6.4.9	0.29	
9		2.2 0.24 0.12	. .	2.2 0.26 0.13	
<u></u>	ผู้หู้หู้ พู			2.1 0.10 0.06	
4	2.6 1.9 1.8	2.0 0.41 0.20	2.0 1.7 5.F.	1.8 0.17 0.10	
33					
2	2,2 2,9 4,9	2.3 0.33 0.17	2.5 2.0.5 1.5	1.8 0.25 0.15	: see text
HEEK	:: 	2.5 0.15 0.09	น อนูะห เ	2.5 0.85 0.60	red Week 3
ANIMAL NO. MALES	386 387 389 389	MEAN SD SE FEMALES	390 391 393 393	MEAN SD SE	^D Not mnasured Week 3: see text

7.5 2.2 1.9 1.9 0.29 0.14

TABLE I-G-52 (Continued)

<u>ب</u>	-08
ETICS	r NO. 10734-
810	₽ 8
LITTON	PROJECT

TABLE 2 (CONTINUED)

FOOD CONSUMPTION (KG)

GROUP 4 - 3000 PPM

	l	1.9. 2.4	œ	45	56		₩.	6 L	35	18
12		v-i	2	~0	o.		~; ~;	2.9	% 0	ö
11		2.1.S 7.5.6	2.5	2.2	0.35		2.1	2.7	2.3	0.22
10		1.7	3.1	7.4	0.29		2.2	2.2	2.2 0.05	0.03
6		2.7	5.6	2.4	0.23		1.8	2.3	2.1 0.50	0.25
80		2.2 2.2 2.2	2.0	2.1	0.17		6.1	1.8	1.9	0.09
7	<i>'</i>	2.19	2.1	2.2	0.11		2.1	2.7	2.1	0.23
9		2.2	2.4	2.2 0.33	0.17		2.1	25.3	2.2 0.26	0.13
S		2.1.8 4.8.7.	2.4	2.2 0.35	0.20		2.1	2.6	2.0	0.25
4		0.4.6	2.3	1.9	0.26		1.6	1.8 2.2	1.7	0.19
38		1 1 1	ı						. ,	1
2		900	2.2	2.0	0.20		1.9 2.3	2.9	2.1 0.26	0.13
WEEK		2.62	1.8	2.1 0.49	0.24		1.4	3.1	2.0	0.39
ANIMAL NO.	MALES	394 395 396	397	MEAN SD	딿	FEMALES	390 399	400 401	MEAN. SD	SE

^aNot measured Week 3: see text.

THREE MONTH TOXICITY STUDY IN DOGS LBI PROJECT NO. 1075..-08 HISTOPATHOLOGIC SUMMARY

A summary of the significant histologic observations in this group of eight high-dose and eight control dogs is appended.

The cystic crypts of Lieberkuhn noted in #395 (3000 ppm) and #397 (3000 ppm) may have been related to oral dosing with this compound. Such changes were not noted in the controls. Cystic crypts are considered to be an indication of intestinal hypermotility, which may have been manifested clinically as diarrhea prior to death. Cystic crypts are a result of diarrhea, not the cause of diarrhea. The cysts were filled with cell debris and none had progressed to the "crypt abscess" stage, therefore the lesion was considered to be mild and of short duration.

The observed hypospermatogenesis was more pronounced in #397 (3000 ppm) than in #373 (0 ppm), but the changes were rather mild in both dogs. Lack of spermatogenesis in a few seminiferous tubules is commonly observed in dogs and is not considered to be particularly significant. Examination of a very large number of dogs would be required to determine whether there was a significant increase in the incidence or severity of this change in dosed dogs. Results from the present group of sixteen dogs do not suggest such an effect.

The remaining lesions are relatively common incidental findings or spontaneous diseases of dogs. The most significant of these was the nonsuppurative thyroiditis noted in #400 (3000 ppm). The lesion was very pronounced in one thyroid lobe and milder in the other lobe. There were multiple nodular aggregations of lymphocytes among the moderate diffuse infiltration of lymphocytes and plasma cells. A few thyroid follicles were compromised by the disease process. This spontaneous lesion occurs primarily in beagles and is presently considered to be an immune-mediated disease.

The focal ulcerative dermatitis in #401 (3000 ppm) probably resulted from minor trauma sustained in the kennel or during handling. An etiologic agent was not observed in the H&E stained sections; contamination by multiple bacterial species is suspected.

Cystic Rathke's pouch remnants in the pituitary and cystic ultimobranchial remnants in the parathyroid/thyroid are common incidental findings in dogs. Such small cysts as were observed in these animals are not considered to be of pathologic significance.

Chronic inflammation of the interstitium of the kidney is commonly seen in dogs and often becomes clinically significant in older dogs. The etiology is speculative. The mild changes seen in the kidney of #374 (0 ppm) were considered to be an early manifestation of that disease process.

Cystic glandular hyperplasia of the prostate is nearly ubiquitous in old dogs. The changes noted in the prostate of #396 (3000 ppm) were very mild.

Phagocytosis of erythrocytes by cells of the fixed reticuloendothelial system in the lymph nodes is commonly observed in dogs. The phagocytized erythrocytes in the lymph nodes of #394 (3000 ppm) and #371 (0 ppm) were well preserved and there was no accumulation of hemosiderin. The peracute erythrophagocytosis observed in these two dogs was considered to be an insignificant agonal event.

The genesis of the intra-alveolar hyaline bodies such as were noted in #399 (3000 ppm) is not known. Very large accumulations of such material cause little or no signs of respiratory distress, therefore the minimal accumulation in #399 was considered to be an incidental finding of no pathologic significance.

A number of very minor histologic observations are recorded on the histopathologic records.

In summary, the only histologic change which could reasonably be related to the dosing was the occurrance of cystic crypts in the small intestine. This findings suggests a very mild gastrointestinal disturbance, which may have been clinically manifested as diarrhea. The lesions were very mild and would be expected to resolve within 4-7 days following the termination of the gastrointestinal disturbance.

3 March 1978

Veterinary Pathologist

THREE MONTH TOXICITY STUDY IN DOGS LBI PROJECT NO. 10734-08

SUMMARY OF SIGNIFICANT HISTOLOGIC FINDINGS

- A. Thyroid nonsuppurative thyroiditis, #400 (3600 ppm).
- B. Small intestine cystic crypts, #395 (3000 ppm) and #397 (3000 ppm).
- C. Skin focal ulcerative dermatitis, #401 (3000 ppm).
- D. Parathyroid/thyroid cystic ultimobranchial remnants, #372 (0 ppm), #395 (3000 ppm) and #397 (3000 ppm).
- E. Kidneys mild nonsuppurative pyelitis #374 (0 ppm).
- F. Mesenteric lymph node erythrophagocytosis, #394 (3000 ppm) and #371 (0 ppm).
- G. Prostate mild cystic glandular hyperplasia, #396 (3000 ppm).
- H. Pituitary cystic Rathke's pouch remnant, #394 (3000 ppm) and #371 (0 ppm).
- I. Testis hypospermatogenesis, #397 (3000 ppm) and #373 (0 ppm).
- J. Lungs intra-alveolar hyaline bodies #399 (3000 ppm).

LITION BIONETICS, INC. PATHOLOGY EVALUATION

ANIMAL NUMBER:	370	PROJECT NUMBER: _	10734
DOSAGE:	0 ppm	PM NUMBER:	77/11148
DATE OF DEATH:	12/5/77		
DEATH:	Terminal kill	GROUP NUMBER:	1
METHOD OF KILL:	OD Somlethol	SEX:	Male
MORIBUND KILL:		WEEK OF STUDY:	

23 Fel 1978
Date

George A. Parker, D.V.M. Veterinary Pathologist

LITTON BIONETICS, INC. PATHOLOGY EVALUATION

ANIMAL NUMBER:	371	PROJECT NUMBER:	10734-08
DOSAGE:	O ppm	PM NUMBER:	77 <i>/</i> 11156
DATE OF DEATH:	12/6/77		
DEATH:	Terminal kill	GROUP NUMBER:	1
METHOD OF KILL:	OD Somlethal	SEX:	Male
MORIBUND KILL:		WEEK OF STUDY:	
	•		
GROSS FINDINGS:			

No gross lesions recognized.

MICROSCOPIC FINDINGS:

Thyroid/parathyroid - C-cell hyperplasia, mild.

Spleen - inactive lymphoid component.

Lung - mild multifocal nonsuppurative perivasculitis.

Adrenal - cytoplasmic vacuolization, zona glomerulosa.

Mesenteric lymph node - erythrophagocytosis, active appearing node.

Prostate - minimal cystic dilatation of glands; mild epithelial vacuolization.

Pituitary - cystic Rathke's pouch remnant.

Brain - focal capillary ectasia.

Comment - all lesions considered to be incidental findings.

23 Lh 1878 Date

George A. Parker, D.V.M. veterinary Pathologist

LITTON BIONETICS, INC. PATHOLOGY EVALUATION

ANIMAL NUMBER:	372	PROJECT NUMBER:	10734
DOSAGE:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DM MIMDED.	
DATE OF DEATH:			
DEATH:	Terminal kill	GROUP NUMBER:	1.
METHOD OF KILL:		SEX:	Male
MORIBUND KILL:		WEEK OF STUDY:	
GROSS FINDINGS: No gross lesio	n recognized.		
thyroid. Kidneys - micr Prostate - min	yroid - abundant C-cells; olithiasis, papilla. imal cystic dilatation. I focal neuronal swelling		
23 Lh 1978 Date	· -	Lionge A. Janker George A. Parker, D.V.M. Veterinary Pathologist	

LITTON BIONETICS, INC. PATHOLOGY EVALUATION

373		PROJECT NUMBER:	10734
O ppm		PM NUMBER:	77/11172
12/8/77			
Terminal kill		GROUP NUMBER:	1
OD Somlethol		SEX:	Mal:
	•	WEEK OF STUDY: _	
	0 ppm 12/8/77 Terminal kill	0 ppm 12/8/77 Terminal kill	0 ppm PM NUMBER: 12/8/77 GROUP NUMBER: OD Somlethol SEX:

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Kidneys - microlithiasis, papilla.

Small intestine - focal mineralization, mucosa.

Testis - minimal giant cell degeneration and focal hypospermatogenesis.

Muscle - minimal focal chronic myositis.

Brain - occasional swollen axon, medulla oblengata.

23 Tel 1978
Date

George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	374	PROJECT NUMBER:	10734
DOSAGE:	0 ppm	PM NUMBER:	77/11149
DATE OF DEATH: _	12/5/77	,	
DEATH:	Terminal kill	GROUP NUMBER:	_1
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL: _		WEEK OF STUDY: _	
MICROSCOPIC FINE Thyroid/parat Spleen - inac Kidneys - mil	ions recognized. DINGS: chyroid - mild C-cell hyperplasia. ctive lymphoid component. ld nonsuppurative pyelitis. I changes are common incidental fin	dings.	

23 Lh 1978

Junge a. Imau prom George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	375	PROJECT NUMBER: _	10734
DOSAGE:	0 ppm	PM NUMBER:	77/11157
DATE OF DEATH:	12/6/77		
DEATH:	Terminal kill	GROUP NUMBER:	1
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL:		WEEK OF STUDY:	
GROSS FINDINGS: No gross lesion re	ecognized.	•	
MICROSCOPIC FINDINGS No lesion recogni			

23 Fel 1975 Date Sleave A. Sankur rang George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	376	PROJECT NUMBER:	10734
DOSAGE:	0 ppm	PM NUMBER:	77/11165
DATE OF DEATH:	12/7/77		
DEATH:	Terminal kill	GROUP NUMBER:	1
METHOD OF KILL: _	OD Somlethol	SEX:	Female_
MORIBUND KILL:		WEEK OF STUDY:	
COOCC EINDINGS.			

MICROSCOPIC FINDINGS:

Kidneys - microlithiasis, papilla.

No gross lesion recognized.

23 Lh 1978 Date

George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	377	PROJECT NUMBER:	10734
DOSAGE:	0 ppm	PM NUMBER:	77/11173
DATE OF DEATH:	12/8/77		
DEATH:	Terminal kill	GROUP NUMBER:	1
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL:		WEEK OF STUDY:	
			<u>-</u>

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Thyroid/parathyroid - abundant C-cells.
Kidneys - microlithiasis, pelvis.
Urinary bladder - perivascular hyaline material, serosa; congestion.

23 Feh 1978
Date

Lorge A. Forbus vons George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	394	PROJECT	NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBI	ER:	77/11154
DATE OF DEATH:	12/5/77			
DEATH:	Terminal kill	GROUP N	UMBER:	4
METHOD OF KILL:	OD Somlethol	SEX:		Male
MORIBUND KILL:			STUDY:	
GROSS FINDINGS: No gross lesion	n recognized.			
Lungs - substar Liver - minima Adrenal - vacuo Mesenteric lymp Prostate - per cells.	NGS: mild lymphoid depletion. ntial number of circulatin l vacuolar change. olization of zona glomerul oh node - erythrophagocyto inuclear vacuoles in a mod stic Rathke's pouch remnan	osa cells. sis. erate number of	prostatic	epithelial
23 Hd 1975 Date		Surge A. Park George A. Park Veterinary Pat		<i>'</i>

ANIMAL NUMBER:	395	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11162
DATE OF DEATH:	12/6/77		
DEATH:	Terminal kill	GROUP NUMBER:	4
METHOD OF KILL:	OD Somlethol	SEX:	Male
MORIBUND KILL:		WEEK OF STUDY: _	

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Thyroid/parathyroid - cystic ultimobranchial remnant, thyroid.

Kidneys - mild multifocal mineralization, papilla.

Adrenal - vacuolization of zona glomerulosa.

Small intestine - cystic crypts.
Colon - mild multifocal mucosal congestion.

Pituitary - pronounced aggregation of pars intermedia cells. No expansion.

23 Fh 1978
Date

George A. Parker, D.V.M. Veterinary Pathologist

	3000 ppm	PM NUMBER:	
DEATH:	12/7/77 Terminal kill OD Somlethol	GROUP NUMBER:SEX:	Male
GROSS FINDINGS: Heart - small (valve. Kidneys - rim o MICROSCOPIC FINDIN Lungs - minimal Kidneys - mild	multifocal perivasculiti mineralization, papilla. cystic glandular hyperpl	aorta beneath one cus	p of semilunar
23 £h 1978 Date		Junge A. Savar George A. Parker, D.V. Veterinary Pathologist	М.

ANIMAL NUMBER:	397	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11178
DATE OF DEATH:	12/8/77		
DEATH:	Terminal kill	GROUP NUMBER:	4
METHOD OF KILL: _	OD Somlethol	SEX:	Male
MORIBUND KILL:		WEEK OF STUDY: _	
-		_	

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Thyroid/parathyroid - cystic ultimobranchial remnants, parathyroid.

Liver - minimal vacuolar change.

Kidneys - microlithiasis, papilla. Several small (immature) glomeruli.

Small intestine - multifocal cystic crypts, mild.

Testis - mild multifocal hypospermatogenesis.

Urinary bladder - perivascular hyalinosis, serosa.

23 Fh 1978 Date

George A. Parker, D.V.M. Veterinary Pathologist

248

ANIMAL NUMBER:	398	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11155
DATE OF DEATH:	12/5/77		
DEATH:	Termina' kill	GROUP NUMBER:	4
	OD Somlethol	SEX:	Female
MORIBUND KILL:		WEEK OF STUDY:	
GROSS FINDINGS:			
No gross lesion	recognized.		
•			
MICROSCOPIC FINDIN	cc •		
Kidneys - mild	mineralization, papilla.		
Adrenal - mild	vacuolization of zona glomerulo	sa cells.	

23 Hh 1978 Date Storge A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER: _	399	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11163
DATE OF DEATH: _	12/6/77		
DEATH:	Terminal kill	GROUP NUMBER:	4
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL: _		WEEK OF STUDY: _	

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Ovary - several large corpora lutea.

Lungs - focal alveolar proteinosis; intra-alveolar hyaline bodies.

Kidneys - microlithiasis, papilla.

Uterus - secretory; no lesion recognized.

Urinary bladder - perivascular hyalinosis, serosa.

Mammary gland - active, not secretory, no lesion recognized.

23 Eh 1978 Date

Georgé A. Parker, D.V.M.

Veterinary Pathologist

ANIMAL NUMBER:	400	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11171
DATE OF DEATH:	12/7/77		
DEATH:	Terminal kill	GROUP NUMBER:	4
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL:		WEEK OF STUDY:	
			

GROSS FINDINGS:

No gross lesion recognized.

MICROSCOPIC FINDINGS:

Thyroid/parathyroid - moderate nonsuppurative thyroiditis.

Ovary - has several large corpora lutea.

Lung - mineralith.

Liver - mottled due to glycogen in centrilobular areas.

Gallbladder - segments of epithelial cells have clear cytoplasm.

Kidneys - microliths, papilla; minimal multifocal glomerulosclerosis.

Uterus - secretory; no lesion recognized.

Urinary bladder - perivascular hyaline material, serosa.

Mammary gland - active, but not secretory.

23 Feb 1978
Date

George A. Parker, D.V.M. Veterinary Pathologist

ANIMAL NUMBER:	401	PROJECT NUMBER:	10734
DOSAGE:	3000 ppm	PM NUMBER:	77/11179
DATE OF DEATH:			
DEATH:	Terminal kill	GROUP NUMBER:	4
METHOD OF KILL:	OD Somlethol	SEX:	Female
MORIBUND KILL:		WEEK OF STUDY: _	
areas. Kidneys - very s MICROSCOPIC FINDING Kidneys - minima nephritis.	(8mm) denuded areas in slaight dark brownish colors S: I microlithiasis, papilla erative dermatitis with se	ation at periphery of c	ortex.
23 Ed 1978 Date		Linge A. Parker, D.V.M. eorge A. Parker, D.V.M. eterinary Pathologist	Drong

THREE MONTH TOXICITY STUDY IN DOGS LBI PROJECT NO. 10734-08

LEGEND FOR TABLE OF HISTOLOGIC FINDINGS

- + = Positive finding (ungraded lesion) encountered in a designated tissue or organ.
- = Negative finding in a designated tissue or organ; tissue examined.
- 1 = Positive finding graded "minimal".
- 2 = Positive finding graded "mild".
- 3 = Positive finding graded "moderate".

TABLE I-G-53

THREE-MONTH TOXICITY STUDY IN DOGS
LBI PROJECT NO. 10734-08
TABLE OF HISTOLOGIC FINDINGS

GPÕIIP PURBI R SEX ATIFAL THEBER	370	Ma 371	11es	373	374	#1 Fenta 375	n nales 376	377	394	M 395	#4 tales 396	397	398	98 39	emales	0 401
SPLIAL, CORD		9	ı	1	1	1	•	•	ı	1	1	•	•		•	•
ThyPoln/PbeAlnyROLD Serell hyporplasia Abundant C-cells Cystic ultimobranchial remant Ean-supporative thyrolditis	1	8	+ +	1	N	•	1	+	1	+	1	÷	ι		~	•
SCIATIÇ HERVE	1	•	t	•	1	•	•	1	•	1	•	•	•		1	
SPIFER Inactive lymphoid component Lymphaid depletion	1	+	1	1	+	1	1	ı	8	•	1	1	1		•	i
PAUCATAS	1	•	•	ī	•	•	•		•	•	1	ı	•	•	1	•
LUDA Intradicto Chrocalith Caltifocal non-suppurative perivasculitis Cabetantial number of circulating neutrophils Maltifocal perivasculitis Interstitial pneumonia	ı	2	•		•	1	1	•	+	ı	-++	•	•	•	•	•
ने थहाँ म		1	1	1	t	•	•		•	1	•	ı	1	•	•	1
t. Vacuotar change Glycogen in centritobutar areas	•	•	•		ı	i	•	•		ŧ	1	-	•	•	+	•

TABLE I-G-53 (Continued) THREE-MONTH TOXICITY STUDY IN DOGS

LBI PROJECT NO. 10734-08
TABLE OF HISTOLOGIC FINDINGS

GRÖUP' TUMBLIR SI X AHIYAL IMBER	#1 Males 370 371 372 373	f emales 374 375 376 377	#4 Males 394 395 396 397	Fella les 1398 379 400 401
GALLBLANDER Clear cytoplasm, epithelial cells				•
Kipury Ficrolithnasis Non-suppurative pyelitis Multifocal mineralization - papilla Fultifocal glomerulosclerosis Non-suppurative nephritis	+ +	+	+ 2 2 -	 - ~
Apritial. Vacuot i zat ion	+	1	+ +	
STOUNCII	1		•	
MFSCRIFRIC LYMPH MODE Activo-appearing mode Erythrophagocytosis	+++		, , ,	•
SEALL TRIESTIRE Cyclic crypt Foral mineralization, mucosa	+		. +	•
COLON 'Maltifocal mucosal congestion	,		1 2	
иіо̀ Э			•	•

TABLE I-G-53 (Continued)

THREE-MONTH TOXICITY STUDY IN DOGS

LBI PROJECT NO. 10734-08

TABLE OF HISTOLOGIC FINDINGS

GROUP TÜMBER SEA AUFAL TÜMBER	Ma 370 371	#1 la les 372	373	374 37	#1 Fenales 75 376	377	394	#4 Males 395 396	397	398	я Геша 399	les 400 40
TESTIS - Giant cell degeneration - Foral hypospermatogenesis	1,	1					1	1	8			
SaidĀŌĪŒĪŒ		•	•				•		•			
PROSIATE Cystic dilatation Epithelial vacuolization Cystic glandular hyperplasia	- 2	,					ю		•			
FUSCLE. Focal chronic myositis	1	ı	-	,			ı	1	ı	•	ı	
URIDARY BLADDER Ferivascular hyaline material, serosa Compostion		1		1		+ +	ı	1	+	•	•	,
PSTIVARY GLAND ACLIVA	1	ı	ı		,	•	1	•	•	•	+	-
PITUITARY - Cystic Rathke's pouch remnant Pronounced aggregation of pars intermedia cells	+	•	•		,		+	t +	ı	ı	ı	,
RIB JUHÇTION	1	1	ı	1			•	•	•	•	1	

The second second second second second

TABLE I-G-53 (Continued)

THREE-MONTH TOXICITY STUDY IN DOGS LBI PROJECT NO. 10734-08

TABLE OF HISTOLOGIC FINDINGS

SIERUM	Males 370 371 372 373	Females 374 375 376 377	Males 394 395 396 397	#4 Femalos 398 399 400 401
RRAIN Focal capillary ectasia Focal neuronal swelling Svollen axon medulla oblongata Pryeneration	+ +	•	1	

	Dermatitis
SKIN	Derma

ŗ

	Jutea
Dermatitis	OVARJES
Scabs	Large corpora

	:
≌	
<u>≅</u>	Š
Ξ	

TABLE I-G-54

THREE MONTH TOXICITY STUDY IN DOGS LBI PROJECT NO. 10734-08

INCIDENCE TABLE

GROUP NUMBER			4	4
NUMBER OF ANIMALS EXAMINED	Males 4	Females 4	Males 4	Females 4
THYROID/PARATHYROID C-cell hyperplasia Abundant C-cells Cystic ultimobranchial remnant Non-suppurative thyroiditis	0	00	0070	000-
SPLEEN Inactive lymphoid component Lymphoid depletion	0	- 0	0 -	00
LUNG Intraalveolar hyaline bodies Nineralith Multifocal non-suppurative perivasculitis Substantial number of circulating neutrophils Multifocal perivasculitis Interstitial pneumonia	00-000	000000	000	00000
LIVER Vacuolar change Glycogen in centrilobular areas	00	00	7 0	10
GALLBLADDER Clear cytoplasm, epithelial cells	0		0	-

The said of the sa

TABLE I-G-54 (Continued)

LBI PROJECT NO. 10734-08 INCIDENCE TABLE (Continued)

GROUP NUMBER SEX NUMBER OF ANIMALS EXAMINED	nales 4	l. Females 4	4 Males 4	4 Females 4
KIDNEYS Microlithiasis Non-suppurative pyelitis Multifocal mineralization Multifocal glomerulosclerosis Non-suppurative nephritis	0000	7 -000	-0800	mo
ADRENALS Vacuolization	1	0	8	-
MESENTERIC LYMPH NODES Active appearing node Erythrophagocytosis	7 -	00	10	00
SMALL INTESTINE Cystic crypt Focal mineralization		00	70	00
COLON Multifocal mucosal congestion	0	0	-	0
TESTIS Giant cell degeneration	,		0	
PROSTATE Cystic dilatation Epithelial vacuolization Cystic glandular hyperplasia	0 1 5		- 10	

TABLE 1-G-54 (Continued)

LBI PROJECT NO. 10734-08 INCIDENCE TABLE (Continued)

GROUP NUMBER SEX NIMBER OF ANIMALS EXAMINED	nales 4	l Females 4	4 Males 4	4 Females 4
MUSCLE Focal chronic myositis		0	0	0
URINARY BLADDER Perivascular hyaline material Congestion	00		г 0	0 0
MAMMARY GLAND Active	0	0	0	8
PITUITARY Cystic Rathke's pouch remnant Pronounced aggregation of pars intermedia cells	-0	00		00
BRAIN Focal capillary ectasia Focal neuronal swelling Swollen axon, medulla oblongata Degeneration		0000	0000	0000
SKIN Dermatitis Scabs		00	00	
OVARIES Large corpora lutea		0		2
UTERUS	•	0 .	•	. 2

PART II - SECTION A

INTRODUCTION AND MATERIAL

DCPD

In a continuation of an evaluation of the mammalian toxicity of DCPD, this compound has been studied by subchronic (90 day) administration to dogs, for reproductive and teratologic effects in rats, for mutagenic effects in certain tester strains of salmonella and additional aspects of its metabolic fate.

Earlier parts of the evaluation were reported in November 1976 under Contract No. DAMD 17-75-C-5068.

2. MATERIAL

DCPD (Dicyclopentadiene) also known as 3a,4,7,7a-Tetrahydro-4,7-methanoindene, was purchased from MC/B, 2909 Highland Avenue, Norwood, Ohio 45212, under catalog number TX 310. A single batch of 650 g was received on August 18, 1976, and assigned LBI No. 763A.

Analysis of DCPD was performed with a UC-W98 column. The retention time of the compound was 1.9 minutes. Trace impurities were noted at approximately 1.5 minutes and 2.1 minutes. The purity of DCPD appeared to be 98 to 99%, which is consistent with the MC/B assay of 99.79%. It cannot now be determined if one of these impurities may be the <u>cis</u> form.

Because of poor water solubility, DCPD was prepared for administration to animals by dissolving it in corn oil (Mazola) at concentrations appropriate to the various studies. The handling of DCPD itself was facilitated by slight warming, which converted the waxy solid to an easily measured liqud.

PART II - SECTION B

MICROBIAL MUTAGENESIS

DCPD

LBI PROJECT NO. 10734-01

SUMMARY

The test compound, DCPD Lot No. 040667, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

The test compound, DCPD W-761226, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

OBJECTIVE

The objective of this study was to evaluate the test compound for genetic activity in microbial assays with and without the addition of mammalian metabolic activation preparations.

2. MATERIALS

- A. Test Compound
 - 1. Date Received: January 17, 1977
 - Description: Colorless liquid; DCPD Lot No. 040667
- B. <u>Indicator Microorganisms</u>

Salmonella typhimurium, strains: TA-1535 TA-98 TA-1537 TA-100 TA-1538

Saccharomyces cerevisiae, strain: D4

- C. Activation System (Ames et al., Mutation Research 31:347, 1975)
 - 1. Reaction Mixture

Component	Final Concentration/ml
TPN	4 moles
Glucose-6-phosphate	5 moles
Sodium phosphate (diabasic)	100 moles
MgCl ₂	8 µmoles
KCl	33 µmoles
Homogenate fraction equivalent to 25 mg of wet tissue	0.1-0.15 ml 9,000 x <u>g</u> supernatant of rat liver

2. S-9 Homogenate

A 9,000 x g supernatant was prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 five days prior to kill.

2. MATERIALS (Continued)

Positive Control Chemicals

Table 1 below lists the chemicals used for positive controls in the nonactivation and activation assays.

TABLE 1

ASSAY	<u>CHEMICAL</u> ^a	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY
Nonactiva- tion	Methylnitrosoguanidine (MNNG)	Water or Saline	852p
	2-Nitrofluorene (NF)	Dimethylsulfoxide C	FS ^D
	Quinacrine mustard (QM)	Water or saline	FS ⁵
Activation	2-Anthramine (ANTH)	Dimethylsulfoxide ^C	BPS ^b
	2-Acetylaminofluorene (AAF)	Dimethylsulfoxide ^C	FSb
	8-Aminoquinoline (AMQ)	${\tt Dimethylsulfoxide}^{\tt C}$	FS ^b

^aConcentrations given in Results Section

FS = Frameshift

E. Solvent

Either deionized water or dimethylsulfoxide (DMSO) was used to prepare stock solutions of solid materials. All dilutions of test materials were made in ei. and deionized water or DMSO. The solvent employed and its concentration are recorded in the Results Section.

^bBPS = Base-pair substi tion

^CPreviously shown to be nonmutagenic

3. EXPERIMENTAL DESIGN

A. Plate Test (Overlay Method*)

Approximately 10° cells from an overnight culture of each indicator strain were added to separate test tubes containing 2.0 ml of molten agar supplemented with biotin and a trace of histidine. For nonactivation tests, at least four dose levels of the test compound were added to the contents of the appropriate tubes and poured over the surfaces of selective agar plates. In activation tests, a minimum of four different concentrations of the test chemical were added to the appropriate tubes with calls. Just prior to pouring, an aliquot of reaction mixture (0.5 ml containing the $9,000 \times \underline{q}$ liver homogenate) was added to each of the activation overlay tubes, which were then mixed, and the contents poured over the surface of a minimal agar plate and allowed to solidify. The plates were incubated for 48 hours at 37C, and scored for the number of colonies growing on each plate. The concentrations of all chemicals are given in the Results Section. Positive and solvent controls using both directly active positive chemicals and those that require metabolic activation were run with each assay.

B. Recording and Presenting Data

The numbers of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and the solvent controls are provided as reference points. Other relevant data are provided on the computer printout.

^{*}Certain classes of chemicals known to be mutagens and carcinogens do not produce detectable responses using the standard Ames overlay method. Some dialkyl nitrosamines and certain substituted hydrazines are mutagenic in suspension assays, but not in the plate assay. Chemicals of these classes should be screened in a suspension assay.

TABLE II-8-1

4...SUMMABY_OE_PLAIÊ_IESI_BESULIS

LITTON BIONETICS, INC.

NAME OR CODE DESIGNATION OF THE TEST COMPOUND: DCPD LOT #040667
SOLVENT: DMSO
TEST DATE: FFR. 7, 1977
CORCENIRATIONS ARE GIVEN IN MICHOLITERS (UL) OR MICROGRAMS (UG) PEH PLATE. A. G. NOIF:

1631	SPECIES	1155UE	14-1535	B_E_Y_E_B_]	B_E_V_E_B_I_A_N_I_SP_E_BB_A_I_E	E B E L	A.	E 1A=100	9 70
NOTINALION			2	7	~	-	~1	7	7
SOLVENT CONTROL	1	! !	20	2.5	*	54		182	12
POSITIVE CONTROL **	:	:	×1000	1000	> 1000	×1000	~	>1000	262
TEST COMPOUND		-							
N 00100*6		1 1	13	9	16	52		147	=
0.01000 111.			15	13	19	32		133	11
0.10000 til		1	10	15	24	34		156	17
1.00000 U	1	1	œ	01	15	15		159	6
13.00000 UI		1 1	0	9	•	6		16	•
ACIIYAIIQN									
SOI VENT CONTROL	HAT	LIVER	42	21	56	35	24	194	1.5
POSTITVE CONTROL *** IFST COMPOUND	RAI	LIVFA	>1000	291	×1000	000T<	₹	1000	396
0.00100 Ul	HAT	LIVER	S.	17.	19	45		182	36
0.01000 UL		LIVER	36	54	<u>-</u>	47		161	99
0.10000 UL		LIVER	3 *	15	8.	56	•	181	19
1.00000 UI		I. IVER	56	15	=	23	,	186	19
5.00000 3		LIVER	23	1.	~		15	15	25
10 00000 OK		l. IVER		•	•		67	t	•
- 3	1	٠							.3

* IBY CONVERTANTS PER PLATE

100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 UG/PLATE 100 HICRUMOLES/PLATE 2.5 %/PLATE ANTH ANG AAF AAF ANTH OHNA TA-1535 TA-1537 TA-1538 TA-98 TA-100 D4 10 UG/PLATE 10 UG/PLATE 100 UG/PLATE 100 UG/PLATE 10 UG/PLATE 2.5 %/PLATE HNNG OH NF NF NF HNNG UHSO ** TA-1535 TA-1537 TA-1536 TA-98 TA-100 04 SOLVENT

5. INTERPRETATION OF RESULTS AND CONCLUSIONS

The test compound was examined for mutagenic activity in a series of <u>in vitro</u> microbial assays employing <u>Salmoneila</u> and <u>Saccharomyces</u> indicator organisms. The compound was tested directly and in the presence of liver microsomal enzyme preparations from Aroclorinduced rats. The following results were obtained:

A. Toxicity

The compound was tested over a series of concentrations such that there was either quantitative or qualitative evidence of some chemically-induced physiological effects at the high dose level. The low dose in all cases was below a concentration that demonstrated any toxic effect. The dose range employed for the evaluation of this compound was from 0.001 ul to 5 ul per plate. The compound was toxic to the strains TA-1535, TA-1537, TA-1538, TA-98, and the yeast strain 04 at 5 ul per plate in the nonactivation assays.

B. Nonactivation Test Results

The results of the tests conducted on the compound in the absence of a metabolic system were all negative.

C. Activation Test Results

The results of the tests conducted on the compound in the presence of the rat liver activation system were all negative.

D. Conclusions

The test compound, DCPD Lot No. 040667, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

Submitted by:

David J. Brysick, Ph.D

G: tor □ : ment of Genetics

Reviewed by:

Robert J. Weir, Ph.D.

Vice President

vace

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test chemical and the cells are incubated in the overlay for 2 to 3 days, and a few cell divisions occur doring the incubation period, the test is semi-quantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the compound and the cells in the overlay permits constant exposure of the indicator cells for 2 to 3 days.

A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test chemical, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protoco' normally employs several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria.

B. Dose Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test chemical may kill any mutants that are induced, and the compound will not appear to be mutagenic.

6. <u>EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS</u> (Continued)

C. Control Tests

Positive and negative control assays are conducted with each experiment and consist of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consist of the test compound solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data are compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

D. Evaluation Criteria for Ames Assay

Because the procedures used to evaluate the mutagenicity of the test chemical are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

1. Strains TA-1535, TA-1537, and TA-1538

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the lowest increase equal to twice the solvent control value is considered to be mutagenic.

2. Strains TA-98, TA-100, and D4

If the solvent control value is within the normal range, a chemical that produces a positive dose resporse over three concentrations with the highest increase equal to twice the solvent control value for TA-100 and two to three times the solvent control value for strains TA-98 and D4 is considered to be mutagenic. For these strains, the dose response increase should start at approximately the solvent control value.

3. Pattern

Because TA-1535 and TA-100 were both derived from the same parental strain (G-46) and because TA-1538 and TA-98 were both derived from the same parental strain (D3052), there is a built-in redundancy in the microbial assay. In general the two strains of a set respond to the same mutagen and such a pattern is sought. It is also anticipated that if a

6. EVALUATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

D. <u>Evaluation Criteria for Ames Assay</u>

3. Pattern

given strain, e.g. TA-1537, responds to a mutagen in nonactivation tests it will generally do so in activation tests. (The converse of this relationship is not expected.) While similar response patterns are not required for all mutagens, they can be used to enhance the reliability of an evaluation decision.

4. Reproducibility

If a chemical produces a response in a single test that cannot be reproduced in one or more additional runs, the initial positive test data loses significance.

The preceding criteria are not absolute and other extenuating factors may enter into a final evaluation decision. However, these criteria are applied to the majority of situations and are presented to aid those individuals not familiar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established.

E. Relationship Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames <u>Salmonella/microsome</u> test is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relationships have been demonstrated between these two end points. The results of comparative tests on 300 chemicals by McCann et al. (Proc. Nat. Acad. Sci. USA, 72:5135-5139, 1975) show an extremely good correlation between results of microbial mutagenesis tests and in vivo rodent carcinogenesis assays.

All evaluation and interpretation of the data presented in this report are based only on the demonstration of or lack of mutagenic activity.

STANDARD OPERATING PROCEDURES

To ensure an accurate and reliable mutagenicity testing program, LBI instituted the following procedures:

- The test compound was registered in a bound log book recording the date of receipt, complete client identification, physical description and LBI code number.
- Complete records of weights and dilutions associated with the testing of the submitted material were entered into a bound notebook.
- Raw data information was recorded on special printed forms that were dated and initialed by the individual performing the data collection at the time the observations were made. These forms were filed as permanent records.
- All animal tissue S-9 preparations used in the activation tests were taken from dated and pretested frozen lots identified by a unique number. The S-9 preparations were monitored for uniformity and the information recorded.

1. OBJECTIVE

The objective of this study was to evaluate the test compound for genetic activity in microbial assays with and without the addition of mammalian metabolic activation preparations.

2. MATERIALS

- A. Test Compound
 - 1. Date Received: January 17, 1977
 - 2. Description: Colorless liquid; DCPD W-761226
- B. Indicator Microorganisms
 - Salmonella typhimurium, strains: TA-1535 TA-98 TA-1537 TA-100 TA-1538

Saccharomyces cerevisiae, strain: D4

- C. Activation System (Ames et al., Mutation Research 31:347, 1975)
 - 1. Reaction Mixture

Component	Final Concentration/ml
TPN	4 umoles
Glucose-6-phosphate	5 μmoles
Sodium phosphate (diabasic)	100 µmoles
MgC1 ₂	8 µmoles
KC1	33 µmoles
Homogenate fraction equivalent	0.1-0.15 ml 9,000 x <u>a</u>
to 25 mg of wet tissue	supernatant of rat liver

2. S-9 Homogenate

A 9,000 x g supernatant was prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 five days prior to kill.

2. MATERIALS (Continued)

D. <u>Positive Control Chemicals</u>

Table 1 below lists the chemicals used for positive controls in the nonactivation and activation assays.

TABLE 1

ASSAY	CHEMICAL	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY
Nonactiva- tion	Methylnitrosoguanidine (MNNG)	Water or Saline	8PS ⁵
	2-Nitrofluorene (NF)	Dimethylsulfoxide C	FS ^b
	Quinacrine mustard (QM)	Water or saline	FS ^b
Activation	2-Anthramine (ANTH)	Dimethylsulfoxide ^C	8PS ⁵
	2-Acetylaminofluorene (AAF)	Dimethylsulfoxide ^C	FS ^b
	8-Aminoquinoline (AMQ)	${\tt Dimethylsulfoxide}^{\tt C}$	FS ^b

 $^{^{\}mathrm{a}}\mathrm{Concentrations}$ given in Results Section

FS = Frameshift

E. Solvent

Either deionized water or dimethylsulfoxide (DMSO) was used to prepare stock solutions of solid materials. All dilutions of test materials were made in either deionized water or DMSO. The solvent employed and its concentration are recorded in the Results Section.

^bBPS = Base-pair substitution

 $^{^{\}mathtt{C}}\mathtt{Previously}$ shown to be nonmutagenic

3. EXPERIMENTAL DESIGN

A. Plate Test (Overlay Method*)

Approximately 108 cells from an overnight culture of each indicator strain were added to separate test tubes containing 2.0 ml of molten agar supplemented with biotin and a trace of histidine. For nonactivation tests, at least four dose levels of the test compound were added to the contents of the appropriate tubes and poured over the surfaces of selective agar plates. In activation tests, a minimum of four different concentrations of the test chemical were added to the appropriate tubes with cells. Just prior to pouring, an aliquot of reaction mixture (0.5 ml containing the 9,000 x g liver homogenate) was added to each of the activation overlay tubes, which were then mixed, and the contents poured over the surface of a minimal agar plate and allowed to solidify. The plates were incubated for 48 hours at 37C, and scored for the number of colonies growing on each plate. The concentrations of all chemicals are given in the Results Section. Positive and solvent controls using both directly active positive chemicals and those that require metabolic activation were run with each assay.

B. Recording and Presenting Data

The numbers of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and the solvent controls are provided as reference points. Other relevant data are provided on the computer printout.

^{*}Certain classes of chemicals known to be mutagens and carcinogens do not produce detectable responses using the standard Ames overlay method. Some dialkyl nitrosamines and certain substituted hydrazines are mutagenic in suspension assays, but not in the plate assay. Chemicals of these classes should be screened in a suspension assay.

TABLE II-B-2

4...SUBBABY_DE_PLAIE_IESI_BESULIS

ITTON BIONETICS. INC.

NAME OR CODE DESIGNATION OF THE TEST COMPOUND: DCPDM-761226 SOLVENT: DHSO TEST DATE: FEH. 7. 1977 CONCENTRATIONS ARE GIVEN IN MICROLITERS (UL) OR MICROGRAMS (UG) PER PLATE.

				REVER	SINVE	PERPL	AYE	•
ı£sı	SPECIES	LISSUE	14-1535	16-1537	IA=1536	IA=9B_	IA=100	0.40
			7	-	7	1 2 1 2 1 2	7 7 7	7
NONACILYAIION								
SOLVENT CONTROL	i	1	20	15	=	54	182	3 S
POSITIVE CONTROL ** FEST COMPOUND	;	!	×1000	> 1000	× 1 0 0 0	000 t <	> 1 0 0 0	292
0.00100 UL	1 1	!	±	10	<u>~</u>	87	183	51
U-01000 UL	!	!	12	91	12	52	140	•
0.10000 til	:	!	•	±	8 -	56	145	æ
Ju 00000.1	!!	:	σ	19	S	₹	133	•
5.00000 UL	:	!	c	r	•	0	43	~
ACIIVALION								
SOI VENT CONTROL	RAT	LIVER	42	23	56	22	201	1.4
POSITIVE CONTROL.*** TEST COMPOUND	RAT	LIVER	×1000	297	×1000	×1000	00 01 <	398
0.00100 UL	RAT	LIVER	14	13	18	٥٢	169	₹3
0.01000 UL	RAT	LIVFR	37	56	50	*>	159	26
0.10000 UL	BAT	LIVER	7	20	E1	25	159	56
1.00000 til	RAT	LIVER	23	23	ī,	92	276	84
5.00000 UL	RAT	LIVER	91	*	=	*	35	68
30 00000 10 i	RAT	LIVER	1	,	1	•	1	21

* JBY+ CONVERTANTS PER PLATE

NIH 100 UG/PLATE	HQ 100 UG/PLATE	AAF 100 UG/PLATE	AF 100 UG/PLATE	NTH 100 UG/PLATE	HNA 100 HICROHOLES/PLATE	20 4 /01 4 ft
A 18-1535 A	TA-1537 A	TA-1538 A	A 86-A1	TA-100 A	0 40	COLUMNY
10 UG/PLATE	10 UG/PLATE	100 UG/PLATE	IND UG/PLATE	10 UG/PLATE	10 UG/PLATE	2 G # /D1 4 TE
HNNG	HO	NF 1	NF.	HNNG	HING	0000
A-1535	A-1537	4-1538 NF	A-9A	A-100	7	OI VENT

make the decider with the

5. <u>INTERPRETATION OF RESULTS AND CONCLUSIONS</u>

The test compound was examined for mutagenic activity in a series of in vitro microbial assays employing Salmonella and Saccharomyces indicator organisms. The compound was tested directly and in the presence of liver microsomal enzyme preparations from Aroclorinduced rats. The following results were obtained:

A. Toxicity

The compound was tested over a series of concentrations such that there was either quantitative or qualitative evidence of some chemically-induced physiological effects at the high dose level. The low dose in all cases was below a concentration that demonstrated any toxic effect. The dose range employed for the evaluation of this compound was from 0.001 μ l to 5 μ l per plate. The compound was toxic to all the strains at 5 μ l per plate.

B. <u>Nonactivation Test Results</u>

The results of the tests conducted on the compound in the absence of a metabolic system were all negative.

C. Activation Test Results

The results of the tests conducted on the compound in the presence of the rat liver activation system were all negative.

D. Conclusions

The test compound, DCPD W-761226, did not demonstrate mutagenic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these test conditions.

Submit led by:

avid J. Brusick, Ph.D

Director

Department of Genetics

Reviewed by:

Robert J/Weir, Ph.D.

Vice President

2/25/27

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test chemical and the cells are incubated in the overlay for 2 to 3 days, and a few cell divisions occur during the incubation period, the test is semi-quantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the compound and the cells in the overlay permits constant exposure of the indicator cells for 2 to 3 days.

A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test chemical, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol normally employs several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria.

B. Dose Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test chemical may kill any mutants that are induced, and the compound will not appear to be mutagenic.

6. EXPLANATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

C. <u>Control Tests</u>

Positive and negative control assays are conducted with each experiment and consist of di. ct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consist of the test compound solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data are compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

D. Evaluation Criteria for Ames Assay

Because the procedures used to evaluate the mutagenicity of the test chemical are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

Strains TA-1535, TA-1537, and TA-1538

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the lowest increase equal to twice the solvent control value is considered to be mutagenic.

Strains TA-98, TA-100, and D4

If the solvent control value is within the normal range, a chemical that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-100 and two to three times the solvent control value for strains TA-98 and D4 is considered to be mutagenic. For these strains, the dose response increase should start at approximately the solvent control value.

Pattern

Because TA-1535 and TA-100 were both derived from the same parental strain (G-46) and because TA-1538 and TA-98 were both derived from the same parental strain (D3052), there is a built-in redundancy in the microbial assay. In general the two strains of a set respond to the same mutager and such a pattern is sought. It is also anticipated that if a

6. EVALUATION OF EVALUATION PROCEDURES FOR PLATE ASSAYS (Continued)

D. Evaluation Criteria for Ames Assay

the sound of the second se

3. Pattern

given strain, e.g. TA-1537, responds to a mutagen in nonactivation tests it will generally do so in activation tests. (The converse of this relationship is not expected.) While similar response patterns are not required for all mutagens, they can be used to enhance the reliability of an evaluation decision.

4. Reproducibility

If a chemical produces a response in a single test that cannot be reproduced in one or more additional runs, the initial positive test data loses significance.

The preceding criteria are not absolute and other extenuating factors may enter into a final evaluation decision. However, these criteria are applied to the majority of situations and are presented to aid those individuals not familiar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established.

E. Relationship Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames Salmonella/microsome test is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relationships have been demonstrated between these two end points. The results of comparative tests on 300 chemicals by McCann et al. (Proc. Nat. Acad. Sci. USA, 72:5135-5139, 1975) show an extremely good correlation between results of microbial mutagenesis tests and in vivo rodent carcinogenesis assays.

All evaluation and interpretation of the data presented in this report are based only on the demonstration of or lack of mutagenic activity.

STANDARD OPERATING PROCEDURES

To ensure an accurate and reliable mutagenicity testing program, LBI instituted the following procedures:

- The test compound was registered in a bound log book recording the date of receipt, complete client identification, physical description and LBI code number.
- Complete records of weights and dilutions associated with the testing of the submitted material were entered into a bound notebook.
- Raw data information was recorded on special printed forms that were dated and initialed by the individual performing the data collection at the time the observations were made. These forms were filed as permanent records.
- All animal tissue S-9 preparations used in the activation tests were taken from dated and pretested frozen lots identified by a unique number. The S-9 preparations were monitored for uniformity and the information recorded.

PART II - SECTION C

PHARMACOKINETICS AND METABOLISM

DCPD

LBI PROJECT NO. 10734-02

SUMMARY

With the concurrence of the Project Officer, emphasis was placed on DIMP rather than DCPD with the result that no additional significant information was developed regarding DCPD. Previous findings are summarized below:

DCPD was absorbed after oral administration to mice, rats, and dogs. Peak plasma levels occurred in 2 hours in mice and dogs, and in 6 hours in rats. DCPD was widely distributed in all three species at 1 to 2 hours with the highest levels in urinary bladder, gall bladder and body fat in mice, in gall bladder and bile in dogs, and in body fat, adrenals and urinary bladder in rats. Excretion appeared to be primarily via the urine in all three species. About 85% of the administered radioactivity was accounted for in urine and feces within 24 hours. Urine from mice and dogs showed two radioactive components while rat urine also contained a third. All of these seemed to differ from DCPD on TLC, but none has yet been identified.

PART II - SECTION D

TERATOLOGY IN RATS

DCPD

LBI PROJECT NO. 10734-05

SUMMARY

The test material was administered in the diet at doses of 80, 250 and 750 ppm to pregnant female rats on Days 6 through 15 of gestation. There were no changes in the dams or among the fetuses that indicated an adverse compound-related effect.

1. OBJECTIVE

The objective of this study was to investigate the effect of the test material on fetuses during the period of organogenesis when administered to the pregnant rat.

2. MATERIAL

Refer to Part II - Section A.

3. EXPERIMENTAL DESIGN

Female [CRL:COBS CD (SD) BR] rats were obtained from Charles River Breeding Laboratories, Inc., Portage, Michigan, and acclimated to laboratory conditions for 12 days. At that time, each female was paired with a sexually mature male of the same strain and from the same supplier. The females were examined daily for the presence of a copulatory plug. The presence of such a plug was taken as evidence of mating and designated as Day 0 of gestation. The female rats were 11 weeks of age at the time of the first dose (June 13, 1977). Mated female rats were assigned sequentially to treatment groups and identified by cage cards as indicated below.

Group Number	Female Rat Numbers	Dose (ppm)
1	6615-6635	0 (Control)
2	6640-6659	80
3	6665-6684	250
4	6690-6709	750

3. EXPERIMENTAL DESIGN (Continued)

The female rats were individually housed in wire cages in a temperature-controlled animal room with artificial illumination automatically controlled to provide a 12 hour light cycle. No other species were housed in this animal room during the course of the study. No other test materials were under concurrent investigation in this animal room. The appropriate diets and fresh water (acidified pH 2.5) were provided ad libitum.

The test material was incorporated into the basal diet (Purina Laboratory Chow) on gestation Days 6 through 15 so as to provide the dose levels indicated previously. The test material (0.8, 2.5 or 7.5 g) was suspended in 300 ml of corn oil and blended with 10 kg of the basal diet in a twin shell blender for 15 minutes. The control diet contained 300 ml of corn oil per 10 kg of meal. The dose levels used in this study were approved by Dr. E. Ross Hart of LBI based on previous studies.

Although the revised protocol for this study indicated that the female rats be killed on Day 20 of gestation, the original protocol which called for termination on Day 19 of gestation was inadvertently followed. This was not judged to affect the integrity of the study.

The mated female rats were weighed on Days 0, 6, 16 and 19 of gestation. Food consumption was measured during the period 0-6, 6-16 and 16-19 days of gestation. The female rats were observed daily for changes in general appearance, behavior and condition.

On Day 19 of gestation, the adult female rats were anesthetized with chloroform, and the visceral and thoracic organs examined. The uterus was removed and opened. The number of implantation sites and their placement in the uterine horns, live and dead fetuses, and resorption sites were recorded. The fetuses were removed, examined externally for abnormalities and weighed.

One third of the fetuses of each litter were fixed in Bouin's fluid. These were later examined for changes in the sort tissues of the head, thoracic and visceral organs. The remaining fetuses of each litter were examined for skeletal abnormalities following staining with Alizarin Red S.

The Ligrus and ovaries from the adult females were preserved in 10% formalin for possible future examination. No further examination was judged to be necessary.

3. EXPERIMENTAL DESIGN (Continued)

Statistical analysis of the data was performed using the litter as a basic sampling unit. This concept has been widely supported with regard to teratology [1,2]. Dunnett's t-test [3] was used to determine statistical significance (p<0.05) with regard to difference between means with near normal distribution (body weights and food consumption of dams, mean pup weight based on litter averages). Ratios, for example sex ratio and pregnancy ratio, were analyzed with a 2x2 contingency table with Yates' correction [4]. With regard to discontinuous parameters as measured by the number of abnormal fetuses within a litter, Wilcoxon Rank Sum [5] was used.

4. RESULTS

No deaths occurred among the adult female rats, and except for Group 2 female rat no. 6654, these animals were normal in appearance throughout the study. Female rat no. 6654 was emaciated and had an arched back and a red crust around the nose and mouth on Day 19 of gestation.

Examination of the females at necropsy revealed a dark red area in the lungs of female rat no. 6650 (Group 2) and a liver mottled with small white spots in female no. 6698 (Group 4). These changes were not considered to be related to dose.

Mean body weight and food consumption, as shown in the Appendix Table 1, indicated no significant difference between control and treated pregnant rats [3].

Based on the observations of the uterine contents obtained on Day 19 of gestation, the test material did not produce any effect. These data have been summarized in Text Table A, and the details have been tabulated in Table 2 included in the Appendix.

Examination of the offspring at delivery revealed subcutaneous hematomas in fetuses from litters at all dose levels as tabulated below.

Dose (ppm)	Number of Fetuses with Subcutaneous Hematomas (litters)
0 (Control)	41 (10)
80	15 (7)
250	29 (11)
750	34 (14)

LITTON BIONETICS, INC. PROJECT NO. '3734-05

TABLE A

SUMMARY OF REPRODUCTIVE PERFORMANCE

•	DOSE (PPM)				STATISTICAL METHOD
	0	80	250	750	
PREGNANCY RATIO (PREGNANT/BRED)	:9/21	20/20	19/20	19/20	
LIVE LITTERS	19/19 (100%)	20/20 (100%)	19/19 (160%)	19/19 (100%)	[4]
IMPLANTATION SITES (LEFT HORN/RIGHT HORN)	154/159	132/168	132/160	134/158	[4]
RESORPTIONS	18	22	19	13	[5]
LITTERS WITH RESORPTIONS	14 (74%)	8 (40%)	11 (58%)	8 (42%)	[4]
DEAD FETUSES	0	0	0	0	[2]
LITTERS WITH DEAD FETUSES	0	0	0	0	[4]
LIVE FETUSES/IMPLANTATION SITE	295/313 (94%)	278/300 (93%)	273/292 (93%)	279/292 (96%)	[4]
MEAN LIVE LITTER SIZE (FETUSES)	15.5	13.9	14.4	14.7	[3]
AVERAGE FETAL WEIGHT (G)	2.3	2.3	2.4	2.4	[3]
AVEKAGE FETAL LENGTH (CM)	2.7	5.6	2.7	2.7	[3]

4. RESULTS (Continued)

Although there was a significant decrease in the number of fetuses with subcutaneous hematomas in Group 2 [4], this was not judged to be a dose-related response. Other observations on fetuses at delivery included one fetus of female no. 6622 (Group 1) with swelling of the right hind limb and one fetus of female no. 6617 (Group 1) with intestines protruding at the umbilicus.

Examination of the Bouin's fixed specimens revealed (in addition to the previously mentioned protruding intestines in the fetus of litter no. 6617) the absence of the left kidney in one fetus of litter no. 6620 (Group 1), enlarged kidneys in one fetus of litter no. 6645 (Group 2), and unilateral anophthalmia in one fetus of litter no. 6709 (Group 4). These changes did not indicate a dose-related response. The sex and number of fetuses examined for soft tissue changes were as follows.

<u>Males</u>	<u>Females</u>				
48	46				
40	46				
47	39				
40	47				
	48 40 47				

The sex ratio did not differ significantly between treated and control groups [4].

The results of the skeletal examination of the cleared and stained fetuses have been detailed in Appendix Table 3. Most of the changes noted, while not strictly normal, are frequently observed in 19 day old rat fetuses of this strain and source in our laboratory. These changes have been summarized below.

Dose (ppm)	Number Fetuses Examined	Number Fetuses Normal	Fetuses With Commonly Encountered Changes Only	Fetuses With Unusual Skeletal Variations
0 (Control)	199 ^a (19) ^b	106	91 (17)	2 (2)
80	192 (20)	85	103 (19)	4 (3)
250	187 (19)	92	95 (13)	0 (0)
750	192 (19)	91	98 (17)	3 (2)

^aTwo specimens of litter no. 6634 lost during processing and handling, not examined.

bNumber of litters in parentheses.

4. RESULTS (Continued)

The unusual changes for the most part were related to retarded bone ossification and were not malformations as such. Neither the frequency nor the character of these changes indicated an adverse effect on fetal growth and development, or a teratogenic potential [4,5].

Thirty days after transmittal of this report, original data from the Department of Toxicology will be transferred to the LBI Archives, 5516 Nicholson Lane, Kensington, Maryland. A copy of this report was reviewed by the LBI Quality Assurance Unit.

5. CONCLUSION

Administration of the test material to female rats by incorporation into the diet at 80, 250 and 750 ppm produced no effect on the pregnant dams. There was no evidence of compound-induced terata, variation in sex ratio, embryo toxicity or inhibition of fetal growth and development.

Submitted by:

Robert P. Beliles, Ph.D.

Date

Director

Department of Toxicology

Susan L. Makris, B.S. Toxicology Technician

Reviewed by:

Robert J. Weir, Ph.D.

Robert A Weir Vice President

Date

LITERATURE CITED

- [1] Palmer, A.K. Statistical analysis and choice sampling units. Teratology, 10:301-302, 1974.
- [2] Weil, C.S. Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogens. Fd. Cosmet. Toxicol. 8:172-182, 1970.
- [3] Dunnett, C.W. Multiple comparison procedure for comparing several treatments with a control. J. Amer. Statistical Assn., 50:1096-1121, 1955.
- [4] Snedecor, G. and Cochran, W. <u>Statistical Methods</u>, Iowa State University Press, Ames, Iowa, (Sixth Ed.), pp.215-223, 1974.
- [5] Hc!lander, M. and Wolfe, D. Nonparametric Statistical Methods, John Wiley and Sons, New York, pp. 67-82, 1973.

APPENDIX

- TABLE 1 BODY WEIGHTS AND FOOD CONSUMPTION OF PREGNANT RATS
- TABLE 2 OBSERVATIONS AT CAESAREAN SECTION
- TABLE 3 OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

LITTON BIONETICS, INC. PROJECT NO. 10734-05

BODY WEIGHTS AND FOOD CONSUMPTION OF PREGNANT RATS

ION IN GRAMS ^a DAY 16-19	26 3 0.8 19	23 5 1.2 20	26 4 0.9 18	26 3 0.6 19
FOOD CONSUMPT DAY 6-15	20 4 11.1	91 8.0 8.8	20 1 0.3	20 1 0.3
MEAN' DAILY DAY 0-6	19 4 1.0	20 4 1.0	22 5 1.2	22 4 1.0 16
DAY 19	350 20 4.7 19	334 45 10.0 20	346 17 3.8 19	342 27 6.3 19
GRAMS ^a DAY 15	296 18 4.1	289 34 7.5 20	295 15 3.4 19	291 19 4.4 19
MEAN BODY WEIGHTS IN	244 13 3.0	244 13 2.9 20	247 18 4.2 19	243 14 3.1
MEAN BODY	218 13 3.1	214 18 4.1 20	223 12 2.8 19.8	213 18 4.1
	MEAN SD SE N	MEAN SD SE N	MEAN SD SE N	MEAN SD SE N
DOSE (PPM).	O (CONTROL)	80	250	750

^aCalculations do not include non-pregnant females.

LITTON BIONETICS, INC. PROJECT NO. 10734-05

SECTION	
CAESAREAN	
AT	
ONS	Mdd 0
Ħ	0
Š	•
OBSERVATIONS	DOSE

TABLE 2

MEAN LENGTH (CM) 3.1 2.9 2.9 2.7 2.8 2.9 2.9 2.9 2.9 2.5 2.5 2.5	2.7 0.21 0.049 19
11 ABLE FETUSES 14 2.9 16 2.8 17 1.8 18 2.5 17 2.2 18 2.4 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 19 2.2 17 1.9	295 15.5 2.3 2.09 0.29 0.480 0.067 19 19
FETUSES O O O O O O O O O O O O O	0 2 19
SITES 1 1 0 0 0 1 1 2 0 1 1 1 1 1 1	81 21
MPLANTATION SITES FFT HORN RIGHT HORN 7 8 6 11 10 0 0 9 8 7 10 5 9 8 9 8 10 10 10 10 4 12 5 11 10 10 4 12 9 11 10 10 11 12 6 12 6	159
. IMPLANTAT LEFT HORN 7 10 9 9 10 10 12 9	154
FEMALE NUMBER 6615 6616 6617 6623 6624 6624 6624 6626 6626 6630 6631 6633 6634 6634	TOTAL MEAN* SD SE N

*Mean, SD and SE do not include non-pregnant females.

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 2 (CONTINUED)

OBSERVATIONS AT CAESAREAN SECTION DOSE - 80 PPM

MEAN LENGTH (CM)	3.2	5.6	3.0	2.9	2.8	5.6	2.3	2.3	2.7	2.3	5.6	2.5	2.9	2.5	2.3	2.7	2.5	2.5	2.8	2.4		5.6	0.25	20
E FETUSES R MEAN WEIGHT (G)	3.0	2.3	3.0	2.7	2.7	2.4	1.9	2.0	2.5	1.7	2.3	2.2	2.7	2.2	1.6	2.4	2.1	2.1	2.7	9.1				20.03
VIABLE NUMBER	4	19	ည	15	17	19	14	<u>8</u>	<u>0</u>	Ø	91	7	16	35	<u></u>	7	91	1 6	15	13	278	13.9	4.0	20
DEAD FETUSES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			20
RESORPTION SITES	60	0	_	0	0	0	0	0	.c		0		0	0	, -	0	2	0	0	2	22			20
MPLANTATION SITES EFT HORN RIGHT HORN	20	=	9	∞	ထ	13	7	10	12		6	ထ	7	7	7	7	12	ဖ	თ	10	168			20
IMPLANT LEFT HO	ო	∞	0	7	o	9	~	∞	က	6	7	_	6	∞	_	7	9	2	ပ	2	132			20
FEMALE NUMBER	6640	6641	6642	6643	6644	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654	6655	9699	6657	6658	6999	TOTAL	MEAN	S 2	e e

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 2 (CONTINUED)

OBSERVATIONS AT CAESAREAN SECTION

MEAN LENGTH (CM)	رب د.	3.1	2.3	3.0	2.9	2.9	2.3	2.9	2.7	1 1 1	2.4	2.7	2.5	2.5	3.1	2.6	2.3	2.6	2.3	3.4		2.7	0.077	19
VIABLE FETUSES NUMBER MEAN WEIGHT (G)	4 2.9	6 2.9	1 2.0	4 2.8	5 2.6	4 2.7			16 2.4												က္လ	14.4 2.4 2.50 0.42	0.573 0.097	61 6
DEAD VI	0	0	0	0	0	0	0	0	0	0							0				0 27			19
RESORPTION	0	7		0	0	0	2	ო	0	0	7	2	2	_	8	0	0	0	_	_	19			19
MPLANTATION SITES EFT HORN RIGHT HORN	ഹ	6	4	7	0	7	2	თ	2	0	12	10	12	œ	വ	ത	9	7	9	.	160			19
IMPLANTAT LEFT HORN	6	6	æ	7	9	7	ည	ည	9	0	9	ထ	4	ည	ഹ	6	<u>_</u>	œ	œ	9	132			19
FEMALE NUMBER	9999	9999	2999	8999	6999	0299	1/99	6672	6673	6674	6675	9/99	229	8/99	6299	0899	1899	6682	6683	6684	TOTAL	MEAN*	SE	z .

*Mean, SD and SE do not include non-pregnant female.

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 2 (CONTINUED)
OBSERVATIONS AT CAESAREAN SECTION
DOSE - 750 PPM

7 (G) MEAN LENGTH (CM) 2.9 2.8 3.1 2.8 3.0 2.7 2.1 2.6 2.7 2.7 2.7 2.5	2.7 0.31 0.071
VIABLE FETUSES NUMBER MEAN WEIGHT 14 2.6 19 2.5 12 2.9 18 2.6 16 3.0 16 2.6 16 2.5 17 12 2.0 18 2.0 19 2.1 19 2.1 18 2.2	279 14.7 2.4 3.54 0.42 0.813 0.096 19 19
DEAD FETUSES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
RESORPTION SITES 1 0 0 0 0 0 0 1 1 1	13 91
#PLANTATION SITES ### RIGHT HORN ### ### ### ### ### ### ### ### ### #	158 19
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	134
FEMALE NUMBER 6690 6693 6694 6699 6700 6701 6703 6704 6705 6705 6706 6706	TOTAL MEAN* SD SE N

*Mean, SD and SE do not include non-pregnant female.

TABLE 3

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6615	10	8 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE STERNEBRAE. * 1 STERNEBRAE MALALIGNED, NON-FUSED OSSIFICATION CENTERS OF THE STERNEBRAE.
6616	10	8 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
6617	12	9 REDUCED OSSIFICATION OF THE HYOID BONE, STERNE-BRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE ISCHIUM, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED.
6619	11	7 NO VISIBLE ABNORMALITIES. 2 UNILATERAL RIB 14. 2 REDUCED OSSIFICATION OF THE PUBES.
6620	10 .	9 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES.
6621	12	11 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.

^{*}Some of these findings not commonly encountered.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - O PPM

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6622	10	2 NO VISIBLE ABNORMALITIES. 8 REDUCED OSSIFICATION OF THE PUBES.
6623	12	10 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14. 1 REDUCED OSSIFICATION OF THE PUBES.
6624	9	5 NO VISIBLE ABNORMALITIES. 3 REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.
6625	10	10 NO VISIBLE ABNORMALITIES.
6627	8	8 NO VISIBLE ABNORMALITIES.
6628	10	9 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE PUBES.
		4 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14. 3 PUBES NOT OSSIFIED. 2 REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, NON-FUSED OSSIFICATION CENTERS OF THE STERNEBRAE. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, NON-FUSED OSSIFICATION CENTERS OF THE STERNEBRAE, (PORTIONS OF FORE EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).
6630	10	7 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE PUBES. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	0BS	ERVATIONS
6631	8	5 1 1	NO VISIBLE ABNORMALITIES. PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE HYOID BONE, STERNE- BRAE NOT OSSIFIED.
6632	13	3	REDUCED OSSIFICATION OF THE STERNEBRAE, (PORTIONS OF SKULL, PELVIC GIRDLE AND HIND EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY). REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES, (PORTIONS OF THE SKULL AND HIND EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE
		1	DUCED OSSIFICATION OF THE ISCHIUM, REDUCED OSSIFICATION OF THE PUBES. PUBES NOT OSSIFIED, (PORTIONS OF SKULL AND FORE EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - O PPM

CCWAL C	NO. OF	
FEMALE NO.	FETUSES EXAMINED	OBSERVATIONS
6632 (CONTD)	13	1 REDUCED OSSIFICATION OF THE STERNEBRAE, UNI- LATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES, (PORTIONS OF FORE EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).
		1 REDUCED OSSIFICATION OF THE STERNEBRAE, UNI- LATERAL RIB 14, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED, (PORTIONS OF SKULL DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).
		1 REDUCED OSSIFICATION OF THE STERNEBRAE, (POR- TIONS OF THE SKULL, PELVIC GIRDLE, FORE AND HIND EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).
		1 REDUCED OSSIFICATION OF THE STERNEBRAE, UNI- LATERAL RIB 14, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
6633	9	 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES. PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
		REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
6634	10	 PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. UNILATERAL RIB 14, STERNEBRAE NOT OSSIFIED. STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED, METATARSALS NOT OSSIFIED. REDUCED OSSIFICATION OF THE STERNEBRAE, RE-
	•	DUCED OSSIFICATION OF THE PUBES.

^{*}Some of these findings not commonly encountered.

TABLE II-D-6 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6635	12	2 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE PUBES. 3 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.
		4 REDUCED OSSIFICATION OF THE STERNEBRAL, PUBES NOT OSSIFIED.
		1 PUBES NOT OSSIFIED. 1 PUBES NOT OSSIFIED, STERNEBRAE NOT OSSIFIED.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE -	80	PPM
--------	----	-----

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6640	3	NO VISIBLE ABNORMALITIES. UNILATERAL RIB 14. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE.
6641		 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE PUBES. UNILATERAL RIB 14, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE LUMBAR VERTEBRAL CENTRA, NON-FUSED OSSIFICATION CENTERS OF THE LUMBAR VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA.
6642	4	4 NO VISIBLE ABNORMALITIES.
6643	10	8 NO VISIBLE ABNORMALITIES 1 REDUCED OSSIFICATION OF THE PUBES.

REDUCED OSSIFICATION OF THE INTERPARIETAL BONE.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 80 PPM

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6644	12	8 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, UNILATERAL RIB 14. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE PUBES.
6645	13	8 NO VISIBLE ABNORMALITIES. 2 UNILATERAL RIB 14. 1 BILATERAL RIB 14. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE HYOID BONE, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED. * 1 REDUCED OSSIFICATION OF THE MAXILLA, REDUCED OSSIFICATION OF THE NASAL BONES, REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, HYOID BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, BILATERAL RIB 14, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED, METATARSALS NOT OSSIFIED.
6646	10	6 NO VISIBLE ABNORMALITIES. 2 REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE INTERPARIETAL BONE. 1 REDUCED OSSIFICATION OF THE STERNEBRAE.
6647		 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE. UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE STERNEBRAE.

^{*}Some of these findings not commonly encountered.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE -	80 PPM	
FEMALE	NO. OF FETUSES EXAMINED	OBSERVATIONS
6648	7	5 NO VISIBLE ABNORMALITIES. 2 REDUCED OSSIFICATION OF THE PUBES.
6649	6	 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE HYOID BONE, STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRUM, STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED. STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRUM, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRUM, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
6650	. 11	8 NO VISIBLE ABNORMALITIES. 2 REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.
6651	10 ·	2 NO VISIBLE ABNORMALITIES. 3 REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE INTERPARIETAL BONE. 3 REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRUM.
6652	11	10 NO VISIBLE ABNORMALITIES. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC

^{*}Some of these findings not commonly encountered.

VERTEBRAL CENTRA.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 80 PPM

FEMALE FETUSES NO. EXAMINED OBSERVATIONS 6653 10 6 NO VISIBLE ABNORMALITIES. 1 UNILATERAL RIB 14. 1 REDUCED OSSIFICATION OF THE STERNEBRAE,	E, RE-
1 UNILATERAL RIB 14.	E, RE-
DUCED OSSIFICATION OF THE STERNEBRAE, DUCED OSSIFICATION OF THE PUBES. NON-FUSED OSSIFICATION CENTERS OF THE THE STERNEBRAE, PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THE VERTEBRAL CENTRA.	ION OF
1 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE HYOID BONE, OSSIFICATION OF THE STERNEBRAE. 1 REDUCED OSSIFICATION: OF THE STERNEBRAE, FUSED OSSIFICATION CENTERS OF THE THOR VERTEBRAL CENTRA, PUBES NOT OSSIFIED. 1 HYOID BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE, NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE, NOT OSSIFIED, REDUCED OSSIFICATION OF ISCHIUM. 1 STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE INTERPARIETAL BONE DUCED OSSIFICATION OF THE INTERPARIETAL BONE DUCED OSSIFICATION OF THE THORACIC VERCENTRA, LUMBAR VERTEBRAL CENTRA NOT OSSIFIED, REDUCED OSSIFICATION OF THE SUPRAOCCIPIT REDUCED OSSIFICATION OF THE LUMBAR VERTEBRAL OSS	HE, NON- HORACIC D. FICATION ED. NE, PUBES OF THE SSIFIED, A. DUCED BONE, RE- VERTEBRAL TOSSIFICATION EPITAL BONE, ARIETAL BONE, SSIFICATION REDUCED AL CENTRA, SSIFICATION

^{*}Some of these findings not commonly encountered.

TABLE II-D-6 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 80 PPM

FEMALE NO.		OBSERVATIONS	-
6654 (CONTD)	9	* 1 HYOID BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, SUPRAOCCIPITAL BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE THORACIC AND LUMBAR VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.	N
6655	10	2 NO VISIBLE ABNORMALITIES. 5 REDUCED OSSIFICATION OF THE PUBES. 2 PUBES NOT OSSIFIED. 1 PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF TH STERNEBRAE.	ΙE
6656	11	 PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF TH STERNEBRAE. REDUCED OSSIFICATION OF THE PUBES. PUBES NOT OSSIFIED. 	E
6657	11	 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BON STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED PUBES NOT OSSIFIED. PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THORACIO VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE PUBES, REDUCED OSSIFICATION OF THE STERNEBRAE. 	ID, IE
6658	10	9 NO VISIBLE ABNORMALITIES. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA.) '

^{*}Some of these findings not commonly encountered.

TABLE II-D-6 (Continued)

LITTON BIONETICS. INC. PROJECT NO. 10734-05

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE - 80 PPM

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6659	9	1 PUBES NOT OSSIFIED.
		4 PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE.
		2 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.
		NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, PUBES NOT OSSIFIED.
		1 REDUCED OSSIFICATION OF THE HYOID BONE, NON- FUSED OSSIFICATION CENTERS OF THE THORACIC
		VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE	NO. OF FETUSES		
<u>NO.</u>	EXAMINED	OBS	ERVATIONS
6665	10	10	NO VISIBLE ABNORMALITIES.
6666	11	11	NO VISIBLE ABNORMALITIES.
6667	8	2 1 1 1	CENTRA, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE HYOID BONE, STERNE-BRAE NOT OSSIFIED, PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.
6668	10	5 2 1 1	NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES. UNILATERAL RIB 14. BILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES. UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES.
6669	10	10	NO VISIBLE ABNORMALITIES.
6670	10 .	3 2	NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES.
6671	9	3 2 1 1 1 1	NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6672	8	8 NO VISIBLE ABNORMALITIES.
6673	11	9 NO VISIBLE ABNORMALITIES. 1 REDUCED OSSIFICATION OF THE PUBES. 1 BILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES.
6675	10	3 REDUCED OSSIFICATION OF THE PUBES. 3 PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. 1 STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.
6676	11	8 NO VISIBLE ABNORMALITIES. 1 BILATERAL RIB 14. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. 1 REDUCED OSSIFICATION OF THE STERNEBRAE.
6677	9	 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES, REDUCED OSSIFICATION OF THE PUBES, REDUCED OSSIFICATION OF THE STERNEBRAE. REDUCED OSSIFICATION OF THE STERNEBRAE. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE	NO. OF FETUSES	
NO.	EXAMINED	OBSERVATIONS
6678	8	 PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE PUBES.
		REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, HYOID BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE LUMBAR VERTEBRAL CENTRA, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED.
6679	6	6 NO VISIBLE ABNORMALITIES.
6680	12	 NO VISIBLE ABNORMALITIES. PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE PUBES. PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
6681		3 STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM. 2 PUBES NOT OSSIFIED, STERNEBRAE NOT OSSIFIED. 1 BILATERAL RIB 14, PUBES NOT OSSIFIED, STERNEBRAE NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. 1 HYOID BONE NOT OSSIFIED, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

DOSE -	250 PPM		
FEMALE NO.	NO. OF FETUSES EXAMINED	OBSE	RVATIONS
6681 (CONTD)	11	1	STERNEBRAE NOT OSSIFIED, UNILATERAL RIB 14, REDUCED OJSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
		1	
		1	· · · · · · · · · · · · · · · · · · ·
6682	10	4	REDUCED OSSIFICATION OF THE STERNEBRAE,
		3	REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.
		1	REDUCED OSSIFICATION OF THE PUBES.
		1	NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED.
		1	· · · · · · · · · · · · · · · · · ·
6683	12	1	NO VISIBLE ABNORMALITIES.
	•	6	REDUCED OSSIFICATION OF THE PUBES.
		3	PUBES NOT OSSIFIED.
		2	REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.
6684	11	11	NO VISIBLE ABNORMALITIES.

TABLE II-D-6 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-05

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	<u>08S</u>	ERVATIONS
6690	10	9 1	NO VISIBLE ABNORMALITIES. UNILATERAL RIB 14.
6691	13	1	NO VISIBLE ABNORMALITIES. BILATERAL RIB 14. REDUCED OSSIFICATION OF THE PUBES. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA.
6692	8	8	NO VISIBLE ABNORMALITIES.
6693	12		NO VISIBLE ABNORMALITIES. UNILATERAL RIB 14. BILATERAL RIB 14.
6694	8	1	NO VISIBLE ABNORMALITIES. BILATERAL RIB 14. REDUCED OSSIFICATION OF THE PUBES. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE.
6695	10	10	NO VISIBLE ABNORMALITIES.
6696		8 1 1	NO VISIBLE ABNORMALITIES. UNILATERAL RIB 14. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	<u>OBS</u>	ERVATIONS
6697	11	8 2 1	NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA.
6698	11	8 2 1	NO VISIBLE ABNORMALITIES. NON-FUSED OSSIFICATION CENTERS OF THE THORAC!C VERTEBRAL CENTRA. REDUCED OSSIFICATION OF THE PUBES.
6699	10		NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE PUBES. NON-FUSED OSSIFICATION CENTERS OF THE STERNE-BRAE, REDUCED OSSIFICATION OF THE PUBES.
6700	10		REDUCED OSSIFICATION OF THE HYOID BONE, STERNE- BRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES MOT OSSIFIED. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, REDUCED OSSI- FICATION OF THE ISCHIUM, PUBES NOT OSSIFIED. REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE HYOID BONE, RE- DUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSI- FIED.
		1	REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED.
		1	REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, BILATERAL RIB 14, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED.
		1	REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, BILATERAL RIB 14, PUBES NOT OSSIFIED.
		1	REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE HYOID BONE, STERNE-BRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.

^{*}Some of these findings not commonly encountered.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6700 (CONTD)	10	REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED, ISCHIUM NOT OSSIFIED.
6701		4 NO VISIBLE ABNORMALITIES. 2 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, UNILATERAL RIB 14, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, UNILATERAL RIB 14, REDUCED OSSIFICATION OF THE PUBES.
6702	9	2 STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE STERNEBRAE. 1 REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE ISCHIUM, REDUCED OSSIFICATION OF THE PUBES. 1 REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED. 1 NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6703	10	7 NO VISIBLE ABNORMALITIES. 3 REDUCED OSSIFICATION OF THE PUBES.
6704	14	 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE STERNEBRAE. PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. REDUCED OSSIFICATION OF THE PUBES. STERNEBRAE NOT OSSIFIED.
6706		2 NO VISIBLE ABNORMALITIES 4 REDUCED OSSIFICATION OF THE PUBES. 1 PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE STERNEBRAE. 2 PUBES NOT OSSIFIED, REDUCED OSSIFICATION OF THE STERNEBRAE. 2 REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE STERNEBRAE, PUBES NOT OSSIFIED. 1 REDUCED OSSIFICATION OF THE HYOID BONE, NONFUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, (PORTIONS OF PELVIC GIRDLE AND HIND EXTREMITIES DAMAGED DURING PREPARATION AND HANDLING, UNABLE TO EVALUATE COMPLETELY).
· 6707	4	 NO VISIBLE ABNORMALITIES. REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES. REDUCED OSSIFICATION OF THE SUPRACCCIPITAL BONE, REDUCED OSSIFICATION OF THE PUBES. NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE	NO. OF FETUSES		
NO.	EXAMINED	<u>OBS</u>	ERVATIONS
6708	8	1	
		2	· -
		1	STERNEBRAE NOT OSSIFIED, REDUCED OSSIFICATION
		7	OF THE ISCHIUM, PUBES NOT OSSIFIED.
		1	REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, PUBES NOT OSSIFIED.
	•	* 1	
		*]	REDUCED OSSIFICATION OF THE INTERPARIETAL BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, REDUCED OSSIFICATION OF THE MAXILLA, HYOID BONE NOT OSSIFIED, REDUCED OSSIFICATION OF THE LUMBAR VERTEBRAL CENTRA, STERNEBRAE NOT OSSIFIED, ISCHIUM NOT OSSIFIED, PUBES NOT OSSIFIED.
6709	12	2 5 1 1	

^{*}Some of these findings not commonly encountered.

TABLE 3 (CONTINUED)

OBSERVATIONS RESULTING FROM EXAMINATION OF CLEARED SPECIMENS

FEMALE NO.	NO. OF FETUSES EXAMINED	OBSERVATIONS
6709 (CONTD)	12	REDUCED OSSIFICATION OF THE HYOID BONE, REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE ISCHIUM, PUBES NOT OSSIFIED.
		REDUCED OSSIFICATION OF THE SUPRAOCCIPITAL BONE, NON-FUSED OSSIFICATION CENTERS OF THE THORACIC VERTEBRAL CENTRA, REDUCED OSSIFICATION OF THE STERNEBRAE, REDUCED OSSIFICATION OF THE PUBES.

PART II - SECTION E

THREE-GENERATION REPRODUCTION IN RATS

DCPD

LBI PROJECT NO. 10734-07

SUMMARY

Two groups of 10 male and 20 female albino rats each (FO generation) were given dicyclopentadiene (DCPD) in the diet at 80 or 750 ppm, with a similar group maintained as controls. The rats in each group were mated twice to produce the Fla and Flb litters.

The same number of Flb pups per sex per group were likewise mated to produce F2a and F2b pups, and the F2b animals were maintained to produce F3a and F3b litters. Analyses of the diet mixes indicated 87 and 92% of the desired concentrations were achieved, on the average, for the lowand high-dose levels, respectively.

For each generation in each group there were determined fertility indices, live-to-total pup ratios, mean litter sizes, pup survival indices and mean body weights at Day 4 post partum and at weaning. Gross necropsy observations were made of representative pups of all Fa litters, of the F3b litters, and of the parent rats. Body weights and food consumption were determined for parent rats at various intervals, also.

It is concluded no deleterious effects on reproductive processes or general condition of the rats were produced by DCPD in this study. Likewise, no evidence of dose-related teratologic effect was seen.

1. OBJECTIVE

The purpose of this study was to evaluate the effects of the test material, dicyclopentadiene (DCPD), on the reproductive processes of the albino rat through three consecutive generations, with two matings per generation. Test material was given in the diet at two concentrations.

2. MATERIAL

Refer to Part II - Section A.

3. EXPERIMENTAL DESIGN

Weanling albino rats [CRL:COB (SD) BR] were obtained from the Charles River Breeding Laboratories, Inc., Portage, Michigan, and acclimated to laboratory conditions for 11 days at the Falls Church facility of the Department of Toxicology. They were started on study on May 22, 1977, after being randomly assigned to groups as follows:

Group Number	Number (of Animals	Dietary Concentration (ppm)
	Male	Female	
1	10	20	0 (Control)
2	10	20	80
3	10	20	750

These rats, the FO generation, were identified by ear tags and cage cards, and housed individually (except when mating) in shoe box cages on AB-SORB-DRI bedding. Food and water were provided ad libitum.

Fresh diets were prepared weekly by adding the appropriate quantity of DCPD, dissolved in 300 ml of corn oil, to 10 kg of Purina Laboratory Chow meal, and mixing for at least 15 minutes in a twin shell blender. Control diet was mixed with corn oil in the same fasion.

Because of the possible loss from the diet through volatility of DCPD, samples of each week's dietary batch were analyzed by the LBI Chemistry Department. The analytical method employed gasliquid chromatography and was supplied by the sponsor and developed at LBI.

Seven weeks after starting on compound the rats were mated for the first time. For this purpose each male was caged with two females of its dose group for two weeks. At the end of this time the rats were returned to their respective cages and the females were allowed to litter.

One week after weaning the first litters (Fla pups), the FO parents were remated, each male with a different pair of females from that of the first mating. One week after weaning the second litters (Flb pups), parent FO rats were killed and a gross necropsy was performed on each.

One male and two female Flb pups from each litter (where possible) were selected to be the parents for the next generation, and were caged, fed and watered just as the FO rats were maintained. When the Flb rats were approximately 100 days of age, they were mated to produce the F2a litters, and subsequently the F2b pups. Selected F2b pups in turn were used to produce the F3a and F3b litters.

At 4 and at 8-9 weeks, parent rats were weighed and their food consumption was estimated. These measurements were made again shortly before each mating. Daily observations were made of parent rats for mortality and general condition.

3. EXPERIMENTAL DESIGN (Continued)

For each litter the following observations were made:

Gross abnormalities of pups Numbers of live and dead pups, and their mean body weight by sex at birth

Number per sex at Day 4 of lactation Number per sex and body weights at Day 21 of lactation (weaning)

At Day 4 each litter was reduced to eight total pups, four per sex if possible. At weaning, gross necropsies were performed on approximately one-third of the first litters from all three generations, and on one-third of the F3b litters.

4. RESULTS

A. <u>Diet Concentrations Found</u>

Results of the DCPD weekly feed analyses are presented in a separate report from the LBI Department of Chemistry. Overall, the results showed a 69.3 ppm (87%) average value for the 80-ppm diet level, and 693 ppm (92%) for the 750-ppm diet level. Considering the volatility of DCPD, these results are thought to indicate reasonable achievement of the intended dietary concentrations.

B. <u>First Generation</u> (<u>FO Parents</u>, <u>Fla and Flb Offspring</u>)

Detailed litter data, mean parent body weights and food consumption figures, and pertinent necropsy observations have been presented in numbered Tables of the Appendix for this and succeeding generations. Summaries of reproductive data have been incorporated in the text in lettered tables.

One FO female (No. 5196, 80 ppm) was found dead at Week 28, but all other FO rats survived their portion of the study in generally good condition. Body weight means and daily food consumption means are presented in Appendix Tables 1 and 2, respectively. Data for compound-treated groups were entirely comparable to control figures at each interval.

Table 3 gives litter data for Fla pups, and these are summarized in Text Table A. There is nothing in these data to distinguish DCPD-treated groups from control rats. Likewise, observations of the pups (Table 4) indicate nothing of importance in the three groups. One pup in a 80-ppm litter had an opaque left eye, and one pup in a 750-ppm litter had a crooked tail. Such isolated findings are not meaningful. Table 5 gives necropsy findings of Fla pups. No compound-related findings were reported.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE A

SUMMARY OF FIRST GENERATION - FIRST MATING (Fla)

	DOSE (PPM)	M)				
	RATIO	PERCENT	RATIO	PERCENT	750 RAT 10	PERCENT
INDICES						
Male fertility (males producing litter/mated)	10/10	100	10/10	100	9/10	06
Female fertility (females producing litter/mated)	19/20	95	18/20	06	16/20	80
<pre>Gestation (females live litter/ pregnant)</pre>	19/19	100	18/18	100	16/16	100
Newborn viability (live pups)	209/211	66	210/212	66	198/200	66
Pup viability (pups Day 4/pups Day 0)	205/209	86	207/210	66	194/198	86
Lactation (gups Day 21/pups Day 4)	140/140	100	140/140	100	128/128	100
PUP WEIGHT IN GRAMS (MEAN ± SD)						
Day O males Day O females Day 21 males Day 21 females	7 ± 0.66 7 ± 0.75 52 ± 5.4 49 ± 4.6		7 ± 0.68 6 ± 0.59 50 ± 5.6 46 ÷ 5.1	81 G	7 ± 0.60 6 ± 0.72 48 ± 5.1 46 + 4 7	0.01
Sex ratio offspring (M/F) Day O	110/101		101/111		94/106	
Live pups per litter (Mean ± SD)	11 ± 3.7		12 ± 2.8		12 ± 2.3	

^aAfter litters reduced.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE B

SUMMARY OF FO GENERATION - SECOND MATING - F1b

	DOSE (PPM)	(80		750	
	RATIO	PERCENT	RATIO	PERCENT	RATIO	PERCENT
INDICES						
Male fertility (males producing litter/mated)	10/10	100	10/10	100	10/10	100
Female fertility (females producing litter/mated)	18/20	06	18/20	06	19/20	95
<pre>Gestation (females live litter/ pregnant)</pre>	18/18	100	18/18	100	61/61	100
Newborn viability (live pups/total pups)	199/201	66	196/202	97	229/231	66
Pup viability (pups Day 4/pups Day 0)	193/199	26	187/196	95	216/229	94
Lactation (pups Day 21/pups Day 4)a	128/132	26	128/132	97	139/145	96
PUP WEIGHT IN GRAMS (MEAN ± SD)						
Day O males	6 ± 1.1		5 + 1.6	10	6 ± 0.0	51
Day O females	6 + 1.1		5 +6		9 + 0.	-
Day 21 males Day 21 females	46 ± 7.8 44 ± 6.9		47 ± 8.8 44 ± 8.2	~ ~	42 ± 6.8 40 ± 5.7	~ ~
Sex ratio offspring (M/F) Day 0	100/101		94/108		108/123	
Live pups per litter (Mean ± SD)	11 ± 3.5		11 ± 3.7		12 ± 3.2	Q)

^aAfter litters reduced.

4. RESULTS (Continued)

Tables 6 and 7 present, respectively, litter data and pup observations for the Flb offspring, with the litter data summarized in Table B. All groups were comparable to one another with respect to both litter data and pup observations. Again, the single instance of a pup in the 80-ppm group with an abnormality (a deformed hind foot) cannot be considered meaningful.

Necropsy findings of FO parents (Table 8) indicate no doserelated changes.

C. Second Generation (Flb Parents, F2a and F2b Offspring)

Tables 9 and 10 show mean body weights and daily food consumption figures, respectively, for Flb parent rats. At all intervals, rats in the compound-treated groups weighed as much as or more than the controls, except for the 80-ppm females at 20 weeks (just prior to the second mating). In this instance, the slightly lower mean body weight was not statistically significant. Similarly, food consumption means were comparable among the groups, except that in both males and females of the 750-ppm group, the reductions at 20 weeks in food intake were statistically significant (p<0.05, Student's t-test).

F2a litter data, pup general observations and pup necropsy observations are presented in Tables 11, 12 and 13, respectively; litter data are summarized in Table C. Except for reduced female fertility in the 750-ppm group (discussed below) litter data in all groups were comparable. Similarly, no general or necropsy findings of significance were recorded, but one male pup in the 80-ppm group was found to have had hydrocephalus.

F2b litter data and pup observations are presented in Tables 14 and 15, respectively, with litter data summarized in Table D. General pup observations were unexceptional, but, as with the F2a litters, fertility in the 750-ppm females was reduced. However, neither the 70% figure for the F2a's nor the 85% for the F2b's was statistically significantly different (Chisquare test) from the control index (95% in each instance). In addition, it may be noted that male No. 7349 in the 750-ppm group failed to sire a litter in either mating, and could thus be responsible for the lack of litters from two of six and two of three non-productive females at the first and second matings, respectively. It is therefore concluded that the apparently lowered fertility of the high-dose females at each mating is not related to compound administration.

At necropsy, no gross lesions were found in the Flb parent rats.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE C

SUMMARY OF F1b GENERATION - FIRST MATING - F2a

	DOSE (PPM)	٩)				
	0 RATTO	PERCENT	80 RATTO	PERCENT	750 RAT 10	PERCENT
INDICES						
Male fertility (males producing litter/mated)	10/10	100	10/10	. 100	9/10	90
Female fertility (females producing litter/mated)	19/20	95	18/20	06	14/20	70
<pre>Gestation (females live litter/ pregnant)</pre>	19/19	100	18/18	100	14/14	100
Newborn viability (live pups/total pups)	241/242	100	209/216	97	162/162	100
Pup viability (pups Day 4/pups Day 0)	237/241	86	196/209	94	159/162	86
Lactation (pups Day 21/pups Day 4)a	147/150	. 86	135/139	97	107/109	86
PUP WEIGHT IN GRAMS (MEAN ± S D)						
Day O males Day O females Day 21 males Day 21 females	6 ± 0.90 6 ± 0.79 44 ± 5.9 41 ± 5.3	Q6	6 ± 0.84 6 ± 0.92 46 ± 6.4 43 ± 6.6	4.0	6 ± 0.83 6 ± 0.95 44 ± 5.5 42 ± 5.3	ღა
Sex ratio offspring (M/F) Day 0	111/131 ^b		94/122 ^b		84/78 ^b	
Live µups per litter (Mean ± SD)	13 ± 2.6		12 ± 2.7		12 ± 2.7	
After litters reduced.						

^aAfter litters reduce ^bSome pups mis-sexed.

The state of the s

4. RESULTS (Continued)

D. Third Generation (F2b Parents, F3a and F3b Offspring)

Tables 16 and 17 show, respectively, body weights and food consumption data for the F2b parents. No meaningful differences between groups at the various intervals were seen with respect to these observations.

Litter data (Table 18), pup observations (Table 19) and pup necropsy observations (Table 20) for the F3a offspring are appended. The litter data are summarized in Table E. There was nothing in these records to suggest a compound-related effect, and although female fertility was only 80% and 83% in the DCPD-treated groups, control fertility was worse, only 65%.

Tables 21, 22 and 23 show, respectively, the litter observations, pup general observations and pup necropsy findings for the F3b offspring. Table F summarizes the litter data, and it may be seen that all groups were generally comparable with respect to the various indices. Female fertility percentages were 85, 80 and 83 for the controls, 80- and 750-ppm groups, respectively. The differences are not meaningful. A slight reduction in mean pup weight at weaning (compared to controls) was noted in each compound-treated group, that for the highdose female pups being statistically significant (p<0.05; Student's t-test). The low-dose female pup weight, while numerically the same as that of the 750-ppm weanlings, was not statistically significant. Since mean weanling pup weights in the other generations (Tables A, B, C, D and E) were not appreciably different among the groups involved, it is felt that the F3b differences are fortuitous.

Pup general observations and necropsy observations showed nothing to indicate compound-related effects. Similarly, necropsy findings of the F2b parents (Table 24) were unexceptional.

Thirty days after transmittal of this report, original data from the Department of Toxicology will be transferred to the LBI Archivist, 5516 Nicholson Lane, Kensington, Maryland, for distribution to the proper repositories. A copy of this report was reviewed by the LBI Quality Assurance Unit.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE D

SUMMARY OF F1b GENERATION - SECOND MATING - F2b

	DOSE (PPM)	(
	0 RATIO	PERCENT	80 RATIO PER	PERCENT	750 RATIO	PERCENT
INDICES						
Male fertility (males producing litter/mated)	10/10	100	10/10	100	9/10	06
Female fertility (females producing litter/mated)	19/20	95	19/20	95	17/20	85
<pre>Gestation (females live litter/ pregnant)</pre>	19/19	100	19/19	100	17/17	100
Newborn viability (live pups/total pups)	263/266	66	. 286/282	100	230/235	86
Pup viability (pups Day 4/pups Day 0)	250/263	95	280/286	86	214/230	93
Lactation (pups Day 21/pups Day 4) ^a	149/151	66	149/152	86	127/128	66
PUP WEIGHT IN GRAMS (MEAN ± SD)						
Day O males Day O females Day 21 males Day 21 females	6 ± 0.84 6 ± 0.75 45 ± 6.8 43 ± 7.4	45°°°°	6 ± 0.63 6 ± 0.52 48 ± 7.2 46 ± 6.6		6 ± 0.54 6 ± 0.66 51 ± 6.6 48 ± 6.6	4.0
Sex ratio offspring (M/F) Day O	121/145		146/141		119/116	
Live pups per litter (Mean ± SD)	14 ± 2.5		15 ± 1.6		14 ± 1.4	

^aAfter litters reduced.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE E

SUMMARY OF F2b GENERATION - FIRST MATING - F3a

	DOSE (PPM)	1)	¥.		036	
	0 RATIO	PERCENT	RATTO	PERCENT	RATIO	PERCENT
INDICES						
Male fertility (males producing litter/mated)	9/10	. 06	10/10	100	6/8	88
Female fertility (females producing litter/mated)	13/20	99	16/20	80	15/18	83
<pre>Gestation (females live litter/ pregnant)</pre>	13/13	100	91/91	100	15/15	100
Newborn viability (live pups/total pups)	162/163	66	961/561	66	204/206	66
Pup viability (pups Day 4/pups Day 0)	156/162	96	187/195	96	201/204	66
Lactation (pups Day 21/pups Day 4) ^a	92/100	85	118/118	100	117/120	86
PUP WEIGHT IN GRAMS (MEAN ± SD)						
Day O males Day O females	6 ± 0.77 7 ± 0.80 46 + 5.8	77 80 8	46.50	723	7 ± 0.82 6 ± 0.80 48 ± 6.1	82 80 1
Day 21 females	1 +1	9	+ 4.	2	+1	7
Sex ratio offspring (M/F) Day O	81/85		103/93		108/98	
Live pups per litter (Mean ± SD)	12 ± 3.3	8	12 ± 3.9	6	14 ± 2.0	0
ď						

^aAfter litters reduced.

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE F

SUMMARY OF F2b GENERATION - SECOND MATING - F3b

	DOSE (PPM)	()	·		7.00	
	RATIO	PERCENT	RATIO	PERCENT	RATIO	PERCENT
INDICES						
Male fertility (males producing litter/mated)	9/10	06	10/10	100	6/6	100
Female fertility (females producing litter/mated)	17/20	85	16/20	80	15/18	83
<pre>Gestation (females live litter/ pregnant)</pre>	17/17	100	91/91	100	15/15	100
Newborn viability (live pups/total pups)	211/215	86	206/213	26	188/191	86
Pup viability (pups Day 4/pups Day 0)	207/211	86	206/206	100	185/188	86
Lactation (pups Day 21/pups Day 4)a	134/135	66	127/128	66	114/117	6
PUP WEIGHT IN GRAMS (MEAN ± SD)						
Day O males Day O females Day 21 males	6 ± 0.79 6 ± 0.64 49 ± 10	.79 .64	7 ± 0.9 6 ± 0.8 44 ± 11.	98	7 ± 0.6 6 ± 0.8 43 ± 1.1	0.83 0.83 11
Sex ratio offspring (M/F) Day 0		2	107/106		. 48	.
Live pups per litter (Mean ± SD)	12 ± 2.	2.7	13 ± 2.	2.5	13 ± 2	2.8

^aAfter litters reduced. *p<0.05 compared to control: Student's t-test.

CONCLUSION

Dietary administration of dicyclopentadiene (DCPD) at nominal concentrations of 80 and 750 ppm to three successive generations of male and female albino rats had no deleterious effects on reproductive performance or general condition of the animals, in comparison to performance of control rats maintained concurrently. Analyses of the diet throughout the study indicated actual DCPD concentrations averaged 87 and 92% of those intended for the 80- and 750-ppm levels, respectively. No evidence of dose-related teratogenic effect was seen in pups of any generation.

Submitted by:

1/3 0/7/ Date 7/3 0/7/

Carter D. Johnston, Ph.D. Senior Toxicologist Department of Toxicology

Relie 7/30/19
Ph.D. Date

1/30/79

Director

Department of Toxicology

Reviewed by:

Vice President

327

TABLE II-E-13

TABLE 1
MEAN BODY WEIGHTS (G) OF FO RATS

DOSE			WEEK			
(PPM)	<u>SEX</u>		4	8	11	19
0	M	MEAN SD SE N	313 22 7.1 10	413 40 13 10	447 39 12 10	517 40 13 10
80	M	MEAN SD SE N	319 15 4.6 10	426 24 7.5 10	465 28 9.0 10	538 38 12 10
750	M	MEAN SD SE N	312 16 5.2 10	416 32 10 10	456 34 11 10	529 52 17 10
0	F	MEAN SD SE N	199 10 2.2 20	237 17 3.9 20	4.9 20	290 23 5.1 20
80	F	MEAN SD SE N	206 18 4.1 20	249 27 6.0 20	275 46 10 20	295 32 7.1 20
750	F	MEAN SD SE N	206 20 4.4 20	242 36 8.0 20	264 27 6.1 20	293 31 7.0 20

TABLE 2
MEAN FOOD CONSUMPTION (G) IN FO RATS

DOSE (PPM)	SEX		WEEK 4	8	11	19
0	M	MEAN SD SE N	22 8.4 3.0 8	22 3.0 1.0	21 3.0 0.99 9	19 2.3 0.77 9
80	М	MEAN SD SE N	24 3.0 0.96 10	23 2.2 0.74 9	22 2.4 0.75 10	21 4.0 1.3
750	M	MEAN SD SE N	20 4.2 1.3 10	23 2.4 0.81 9	22 2.7 0.86 10	20 3.0 0.99 9
0	F	MEAN SD SE N	18 3.8 0.84 20	19 5.4 1.2 19	16 4.1 0.91 20	18 2.6 0.64 17
80	F	MEAN SD SE N	18 3.3 0.74 20	18 2.4 0.55 19	16 3.3 0.74 20	19 3.7 0.85 19
750	F	MEAN SD SE N	16 3.8 0.87 19	19 4.7 1.1 19	16 4.9 1.1 20	19 4.2 0.95 20

TABLE 3

RESULTS OF FIRST GENERATION - FIRST MATING (F1a)

		METGIL (G)	48 47 58 53											52 49 5.4 4.6 19.7 1.16
		SEX MALE FEMALE	ययः) 4 ,	er 1	4 4	С.				ი 44		' ਦਵ 'ਦਵ	74 66
		LIVE PUPS	889	. .	ю ı	ထထ	₹ (သ ဆ	80	∞~	87	∞ α		140
	DAY 21	DEATHS TAY 5-2	000	000	5 1	• •	0		0	00	00	00	.o.o	0
		TTER EDUCED ALE FEMALE	440	14.	er 1	44	۳.						पद	94 66
		TERALE M											യം	7
		SEX									τυ ⇔			107
		LIVE PUPS	645	- 6;	<u>.</u>		₹ ;	<u> 4</u>	14	თ —	8 /	==	255	205 11 3 7 3 7 0.86
	DAY 4	DEATHS DRY 1-4	000	00	۰,	00	0	00	0	60		· ~ C	000	*
		MEIGHT (G)	~~	~ @ •	۱ ۵	~ ~							യയ	7 7 7 0.06 0.75 0.40 0.18
		ME WE	200) ()	۱ C	5 7		99			ω 4 . ∞ ∞	6 7		_
		SEX	4 © ¢		۰,	ဖထ					Φ4	~4	99~	119 10
		DEAD PUPS	00,	~ 0 1	- 1	00	0	00	0	٥-	.00	00		N
DOSE - O PPM (CONTROL)	DAY 0	LIVE PUPS	13	<u>-</u> თ ;	 '	113	₹ ;	13	14	o -	· σ	<u> </u>	<u>:=E</u>	209 11 3.7 0.64
O PPM (MALE	5140	1+10	5142	5143	5144	5145		5146	5147	5148	5149	
DOSE -		FEMALE	5150 15151	5153	5154 5155	5156	5158	5159 5160	5161	5162 5163	5164	5166	5168 5169	TOTAL MLAN SD SC N

TABLE II-E-15 (Continued)

TABLE 5 (CONTINUED)
RESULTS OF FIRST GENERATION - FIRST MATING (Fla)

DOSE - 80 PPM

NEAN BEIG	METGHT (G) MALE FEMALE	24 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50 46 5.6 5.1 1.3 1.2 18 18
	SEX MALE FEMALE	। ব্যাব্যব্যব্যব্য । ব্যাব্যব্যব্যব্যব্য । ব্যাব্যব্যব্যব্যব্য	07 07
12	THS LIVE 5-21 FUPS	. ထ ନထထကတတတတကတ . ထ ထထထက လထ	140 8
DAY 21	DEATHS DAY 5-2	1 00000000001000000	0
لقه	REDUCED MALE FEMALE	। प्राच्ययययययय । प्राच्याययय	02
11116		। কথাকাকৰকৰককাৰ। কথাকিতলৰক	70
	PEMALE	047574606077 4840477	66
	SEX	. 004E88VV088V - 800E8848	108
	LIVE	- 5.01580856574-5045715	207 12 3.0 0.70
DAY 4	DEATHS CAY 1-4	10-0000000100000	ო
diid	HT (G)	こ ららてらららしてらら こららうしゃく	6 6 0.59 6 0.14
MEAN	HE IGHT	アファるファファ 日日日 ファ ちっち 日田田	7 0.68 0.16 18
	FERM	0mmn40000m 4840mm	101
	SEX	- 724E88777887 - 8255848	Ξ
	PUPS	1 ~000000000 i 000~000	8
DAY 0	L1VE PUPS	, 57-158255574, 50418-15	210 12 2.8 0.65
	MALE	5170 5171 5172 5173 5176 5176 5176 5177	
	FEMALE	2000	TOTAL MEAN SD SE N

TABLE II-E-15 (Continued)

TABLE 3 (CONTINUED)

RESULTS OF FIRST GENERATION - FIRST MATING (Fla)

	MEAN PUP WEIGHT (G) MALE FEMALE	444 444 444 444 444 444 444 444 444 44	48 46 5.1 4.7 1.1 0.018 16 16
	SEX MALE FEMALE	: प्यंचणविष्यव्या शव्यव्य ।। स्य । प्याः लव्यव्यव्य । लव्यव्य ।। य्य	62 66
DAY 21	DEATHS LIVE DAY 5-21 PUPS	၊ ಐಐಐಐಐಐಐಐಐ ၊ ಐಐಐಐಐ ၊ ၊ ಐಐ	128 8
DAY	DAY	1 000000001000001100	0
	LITTER REDUCED MALE FEMALE	। व्यवण्यवय्ववः।॥व्यव्यवः।।व्य	99
)	। क्वक्षक्षक्षक्ष । ध्वक्ष	62
	FEMALE	 	103
	SEX	 	16
	L IVE PUPS	, E500,805,555, E45,74, 44	194 12 2.4 0.59
DAY 4	E DAY 1-4	1 00000000011 0000011 0000011 0000011 000000	4
	WEIGHT (G) MALE FEMALE	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0.72 0.18 16
	W W W	1 9 7 7 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7	7 0.60 0.15 16
	X ILE FEMALE	, ი ოოოფოოლ, ფოლენ, , , ე.	901
	SEX	ם מוו אמאסטר ואט אמטטטטטוו מסרטר וואס	94
	DEAD PUPS	100-00000100-001100	8
DAY 0	LIVE	, E	198 12 2.3 0.57
	MALE NUMBER	5200 5201 5202 5203 5204 5206 5206 5206 5208	
	FEMALE NUMBER	5210 5211 5211 5212 5214 5216 5220 5220 5222 5223 5226 5226 5226 5226 5226	TOTAL MEAN SD SE N

TABLE 4
PUP OBSERVATIONS (Fla)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
0	5150	0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION. ONE MALE - SMALL SCAB ON SURFACE OF RIGHT EYELID.
	6161 -	0 0	ONE MALE - HEMATOMA TOP OF HEAD.
	5151 - 5154	0	FIVE FEMALES - HEMATOMAS MID-DORSAL THORACIC REGION.
	5156	0	ONE MALE - LESION BETWEEN RIGHT EYE AND RIGHT EAR.
	5159	Ö	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5160	Ö	THREE MALES ~ HEMATOMAS MID-DORSAL THORACIC REGION.
	3100	ŏ	ONE FEMALE - SMALL LESION MID-DORSAL LUMBAR REGION.
	5162	ŏ	ONE MALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5165	4	ONE MALE - FOUND DEAD; SMALL; YELLOW COLOR SKIN.
	3,00	4	ONE FEMALE - APPEARS SMALL.
	5167	0	ONE FEMALE - HEMATOMA HEAD.
	• • • • • • • • • • • • • • • • • • • •	Ö	ONE FEMALE - HEMATOMA LEFT HIND FOOT.
	5168	0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
80	5181	0	ONE MALE - FOUND DEAD.
00	3131	Ö	ONE FEMALE - LACERATION BETWEEN EYES.
		Ŏ	ONE FEMALE - LACERATION ABOVE NOSE.
	5184	Ö	ONE MALE - HEMATOMAS LEFT SIDE MOUTH; LEFT SIDE NOSE.
	5185	Ō	ONE FEMALE - HEMATOMA RIGHT SIDE NOSE.
	5186	0	ONE MALE - HEMATOMA NOSE.
	5187	0	ONE FEMALE - HEMATOMA NOSE.
	5188	0	ONE FEMALE - ABDOMINAL SKIN YELLOW.
	5191	0	ONE MALE - HEMATOMA LEFT HIND FCOT.
		0	ONE MALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5196	0	ONE MALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5199	21	ONE FEMALE - LEFT EYE OPAQUE; SMALLER THAN RIGHT EYE.
750	5211	0	ONE FEMALE - SMALL LESION MID-DORSAL THORACIC REGION.
	5215	Ö	ONE MALE - SCAB OVER NOSE.
		0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5216	0	ONE MALE - HEMATOMA EXTENSIVE OVER HIND LIMBS; SACRUM.
		0	ONE MALE - HEMATCMA HEAD.
	5218	0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5219	0	ONE MALE - HEMATOMA UNDER JAW.
		4	ONE MALE - CROOKED TAIL.
	5225	0	ONE MALE - HEMATOMA MID-DORSAL THORACIC REGION.
		0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
	5228	0	TWO MALES - HEMATOMAS FACE.

TABLE II-E-17

TABLE 5

PUP NECROPSY OBSERVATIONS (Fla)

DOSE (PPM)	FEMALE NUMBER	NUMBER OF PUPS	OBSERVATIONS
0	E3 E0	0	NO VISIBLE ABNORMALITIES.
U	5150	0	
	5152	8	ONE MALE - PORTIONS OF LUNGS DARK RED.
	5153 [°]	8	NO VISIBLE ABNORMALITIES.
	5156	8	NO VISIBLE ABNORMALITIES.
	5160	8 8 8 8	NO VISIBLE ABNORMALITIES.
	5168	8	NO VISIBLE ABNORMALITIES.
80	5181	8	ONE MALE, ONE FEMALE - PORTIONS OF LUNGS DARK RED.
	5182	6 .	NO VISIBLE ABNORMALITIES.
	5184	8 6 8 7	NO VISIBLE ABNORMALITIES.
	5187	8	NO VISIBLE ABNORMALITIES.
	5190	7	NO VISIBLE ABNORMALITIES.
		8	NO VISIBLE ABNORMALITIES.
	5198	8	NO VISIBLE ADNORMALITIES.
750	5211	8	NO VISIBLE ABNORMALITIES.
	5212	8	TWO MALES, TWO FEMALES - VERY DARK LUNGS.
	5214	8	NO VISIBLE ABNORMALITIES.
	5218	8 8 8 8	NO VISIBLE ABNORMALITIES.
	5221	Ř	NO VISIBLE ABNORMALITIES.
	5229	0	NO VISIBLE ABNORMALITIES.
	3663	0	NO ATOTORE ADMONIMETLIES.

THE THE PARTICULAR SECTION OF THE PROPERTY OF

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE 6

. RESULTS OF FO GENERATION - SECOND MATING (F1b)

DOSE - 0 PPM (CONTROL)

	HATE.			હાં ત ે
	MEAN PUP WEIGHT (5228	44 8 6.9 8 1.6
		44460 0000444400 000001000000000000000000000	24 24 26 36	46 7.8 1.8
	FEHALE	ಕಿತ್ಯವ ನು । ವರಾಬಕಕ್ಕಳಲಾಬಕ ।	4440	63
	SEX	ମମଟେବସ । ସସସସସସଦାଧାସକ ।	444-	9
	PUPS	///8/ 889888888	യയയന	128
DAY 21	EATHS AY 5-21			
8	절병		0000	4
	ER FERMI	44444 4400040000 0 1	4440	99
	REDUCED MALE FEI	ぐ ቒቒቒቒ ᢏᢏᢏᢏᢏᢏᠺቒᡏᡇ	444-	29
	EHALE	4 ~ 055010600406000	5679	26
	SEX	らてほら4 こ ちて44753270 1	4 ზ დ ←	96
	LIVE PUPS	044F0, 4E0EFF80E:	<u> </u>	193 11 3.3 0.78
DAY 4	DEATHS DAY 1-4			
20		0000-1000-0-0001	-000	9 9
	SHE (6	とてのの4: のむと4ののとのの:	4799	6 0.2 18
	WE AN F	とてらて4! ららてららなけるの!	4877	6 1.1 0.26 18
	FENALE	ቀ ኮውያው፤ ውይያው 4 መመሪያ ነ ፣	0 2 2	[0
	SEX MALE:	0 C C O O O I O C C C C C C C C C C C C C	4 დ ლ	1 001
	1			
	PUPS	000001000000000000000000000000000000000	0000	8
	İ			
DAY 0	PUPS	545E514E54E56	3 2 4 6	199 11 3.5 0.8
	MALE	5149 5148 5147 5145 5145 5143	5141 5140	
	FEMALE	00000000000000000000000000000000000000	5166 5167 5168 5169	TOTAL MEAN SD SE N

TABLE II-E-18 (Continued)

TABLE 6 (CONTINUED)

. RESULTS OF TO GENERATION - SECOND MATING (F1b) DOSE - 80 PPM

•	MEAN PUP WEIGHT (G) MALE FEMALE	359 399 399 399 399 399 399 399 399 399	®
	SEX HALE FEMALE	यय। यययययय । ™ © ™ ® ष्ट्रक्रि लाग	65 63
DAY 21	DEATHS LIVE DAY 5-21 PUPS	ထထ ၊ ပထထထထထ ၊ ထထဖကတထာတက ပစ	128
' 0	REDUCED DE MALE FEMALE DE	44 444444 4046444444 60 000000 000000000	68 64 4
	SEX MACE: PEMACE	८७। ४७४४७७। ७७७७७०७ ०००००० ८७। ७७७ ००। ४४४०००००८०	<u>.</u>
4	DEATHS LIVE	45 - VISITSIE , SII 9 6 4 5 7 4 6 II.) 187 10 3.5 0.82 18
DAY 4	MEAN PUP WEIGHT (G) DEA MALE FEMALE DAY	87 : 846486 : 846468444 76 : 8868886 : 746 : 888844	۵.4. آ
	SEX MALE FEMALE	86 2045566 60466666446666 645666 645666 645666 645666 645666 645666 645666 64566 64566	94 108
	DEAD PUPS	001000-00,0-000000	ی ا
DAY 0	LIVE	855 - VII 811 25 - OII 1 64 4 56 611 8	196 11 3.7 0.87
	MALE	5178 5178 5176 5176 5175 5173 5173 5172	
	FEMALE		TOTAL MEAN SD SE N

apup mis-sexed.

TABLE II-E-18 (Continued)

	[[~~; egr. i	य च च	W (4 4	ე W - ₫	47 4	4 W 4	mm	m ez	ŕ	5 m		-
	HEAN PI	E 88	348	37.48	883	. 65	. 8 G	8 83	4 45 44 5 5 44	?	42 6.8	- .	<u>(7</u>
	SEX Mare repare	أه	1400	1440 0444	4 W	। কৰ	ाच च च च		144 nmm	68 71			
2	DEATHS LIVE DAY 5-23 PUPS	i i	o eor co	သ ထ ထ ပ	∞ • •	කෙ	ထထ	481	. ~ ~	139	7		
ć	1 .		000	000	001	00	00	00 -	~0	9			
	LITTER REDUCED MALE FEMALE	44	400 440	प प प	441	44	4 4	- 44	- 4 W	74			
	1					•	441		44	11			
	E. FEHALI	e :	V40	5 rv 4 r	. 0.0	~ 8	40.	- ഗ യ	4 m	114			
	SEX	49	900	997	~ ₽1	8	7 9 0	2 4 V	æ 4	102			
	LIVE	13	ည်စစ	255	<u>. 55</u>	16		* O E	9	216	3.6 0.82	19	
DAY 4	DEATHS DAY 1-4	٠	000	0000	۱ – د	0-0	000	o-o	-0	13			
	MEAN PUP WEIGHT (G) MALE FEMALE	ဖွဲ့ဖ	902	n 00 00 m	or,	999	o / /	.	9 /		0.0	_	
		~ 9	997	~99	071	~ 9 0	9 ~ ~	90	~~	ų	0.61	<u>9</u>	
	FEMALE	.6 C.	-4 w	⊙ rv 4 rc	្រក	~ 6 *	4000	യയ	4 W	123			
	SEX	410	e 0 0 1	or 8r		~ 8 ~	~ 	5 7	ο 4	108			
	DEAD	000	000	>c	.0.		000		90	2			
DAY 0	LIVE PUPS	55	် ကလ က	2==2	:=';	<u> </u>	:22	22,	2~	229	0.73	<u>-</u>	
	MALE	5209	5207	5206 5205	5204	5203	5202	5201	0036				
	교찂	5210 5211 5212	5213 5214 5215		5219 5220 5221					TOTAL MEAN	SS	z	

RESULTS OF FO GENERATION - SECOND MATING (FIb)

DOSE - 750 PPM

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE 6 (CONTINUED)

TABLE 7
PUP OBSERVATIONS (F1b)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
كننينيد			
0	5152	6	ONE FEMALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5154	4	ONE FEMALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5159	0	TWO MALES - HEMATOMA MID-DORSAL THORACIC REGION.
	5160	0	ONE MALE - HEMATOMA RIGHT SIDE OF FACE; ONE MALE -
			HEMATOMA MID-DORSAL THORACIC REGION.
	5166	0	ONE FEMALE - HEMATOMA LEFT DORSAL THORACIC REGION.
80	5180	0	ONE FEMALE - HEMATOMA MID-DORSAL THORACIC REGION.
		4	ONE MALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5185	0	ONE FEMALE - HEMATOMA RIGHT HIND LEG.
	5186	4 0 0 0	ONE MALE - FOUND DEAD.
	5188	0	ONE FEMALE - HEMATOMA ON FACE.
	5191	0 0	ONE FEMALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5195	0	ONE FEMALE - FOUND DEAD; MISSING TAIL; RIGHT HIND
			FOOT DEFORMED.
	5196	0	ONE FEMALE - FOUND DEAD; HEMATOMA RIGHT SIDE OF FACE.
	5199	0	ONE MALE - FOUND DEAD; ONE FEMALE - FOUND DEAD; ONE
			MALE - HEMATOMA ENTIRE ABDOMEN AND INGUINAL REGION.
750	5217	0	ONE DUD FOUND DEAD. DARTIALLY CANNIDALIZED
750	5217	0 11	ONE PUP FOUND DEAD; PARTIALLY CANNIBALIZED. ONE MALE - FOUND DEAD; NO VISIBLE ABNORMALITIES.
	5222		
	5225	4	ONE MALE - FOUND DEAD; NO VISIBLE ABNORMALITIES. ALL PUPS VERY SMALL.
	5225 5227	4 0	ONE FEMALE - HEMATOMA LEFT HIND FOOT.
	5227 5228	0	ONE MALE - LABORED RESPIRATION.
	3220	U	OHL PIALE - LADURED RESPIRATION.

TABLE II-E-20

TABLE 8

ADULT NECROPSY OBSERVATIONS (FO)

DOSE (PPM)	SEX	ANIMAL NUMBER	OBSERVATIONS
0	M F	5161	NO VISIBLE ABNORMALITIES. FIRM MASS (1 CM ²) LEFT VENTRAL THORACIC REGION.
80	M F F	5181 5199	NO VISIBLE ABNORMALITIES. CLEAR FLUID-FILLED SAC (0.5 CM ²) ON LEFT OVARY. STONE (1 X 0.5 CM) IN URETER; STONE (1 X 0.5 CM) IN BLADDER.
750	M F	5207	HAIR LOSS; DISCHARGE LEFT EYE. NO VISIBLE ABNORMALITIES.

TABLE II-E-21

TABLE 9
MEAN BODY WEIGHTS (G) OF F1b RATS

DOSE (PPM)	SEX		WEEK 4	9	11	20
0	M	MEAN SD SE N	281 29 9.0 10	416 31 9.8 10	432 39 12 10	513 45 14 10
80	M	MEAN SD SE N	290 36 12 10	447 34 11 10	472 35 11 10	574 51 16 10
750	M	MEAN SD SE N	281 27 8.4 10	429 36 12 10	449 29 9.2 10	569 48 15 10
0	F	MEAN SD SE N	183 16 3.6 20	239 14 3.1 20	246 16 3.6 20	291 18 4.0 20
80	F	MEAN SD SE N	183 22 5.0 20	246 22 4.9 20	251 23 5.2 20	283 24 5.4 20
750	F	MEAN SD SE N	185 20 4.4 20	250 24 5.3 20	256 24 5.3 20	309 26 5.7 20

TABLE II-E-22

TABLE 10
MEAN FOOD CONSUMPTION (G) IN F1b RATS

DOSE			WEEK			
(PPM)	SEX		4	9	11	20
0	М	MEAN SD SE N	25 3.8 1.2 10	26 3.0 1.1 8	26 3.7 1.4 7	32 5.7 1.8 10
80	М	MEAN SD SE N	26 3.2 1.3 6	28 1.3 0.46 8	27 1.7 0.55 10	30 3.2 1.0 10
750	М	MEAN SD SE N	25 1.9 0.67 8	25 1.9 0.63 9	25 0.58 0.20 8	25* 3.2 1.0 10
0	F	MEAN SD SE N	22 4.6 1.1 17	22 4.2 0.89 18	23 6.0 1.4 18	29 4.0 1.0 16
80	F	MEAN SD SE N	25 2.6 0.91 8	25 3.6 0.96 14	26 4.4 1.2 13	33 6.1 1.4 18
750	F	MEAN SD SE N	21 4.9 1.3 15	22 4.3 1.0 17	21 5.0 1.2 19	24* 5.9 1.6 14

^{*}p<0.05 as compared to controls: Student's t-test.

TABLE 11

. RESULTS OF F16 GENERATION - FIRST MATING (F2a)

DOSE - 0 PPM (CONTROL)

1	انط		
N PUP		1 44 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.3
¥	MALE	44684464464444444444444444444444444444	44 6.5 4.6
	FEMALE	. കോധകകകുന്നുന്നുക്കുക്കുന്നുന്നുക്കുന്നു ഇത്	78
	XE	4040440004040404440	69
	ts LIVE	, ගගහ ලසසහහසස ත පහ සන ය	147 8
DAY 21	DAY	1 0000000000000000000000000000000000000	ო
ER	FEMALE	। ರಂಪರಕ್ಷದಾಭರಣದವನ್ನು ಮನಕ್ಕ	80
LITTER		1 4544444444444444	92
	FEMALE	. ๑๛๑๕८๐๐८๓๑८๑๓๓๓	130
	NEW YEAR	- 4 <u>6</u> 2774488884489999900	107
	DAY 1-4 PUPS	- 0555 644 555 455 655 655	237 12 2.5 0.58 19
8 8		1 0000-000-000-0000-0	4
EAN PUP	EMERAL	. Ի Ժ ტ ფ ტ Ի ტ ტ ტტ ტტტ ტტტ ტტტტ ტტტტ ტტტტ ტტტტ	6 90 0.79 21 0.18 19
MEAN		1 7050777070000075071	9000
	E · FEMALE	. 644769898777776998	131
Ž	NEW YEAR	, 4 <u>5</u> დ <i>ე</i> ფისენოს და განა 1450 და 1500 000 000 000 000 000 000 000 000 00	Ξ
GV	PUPS	1 0000000000000000000000000000000000000	_
DAY 0	PUPS	. 0250 84418541455 85575	241 13 2.6 0.60
u e	NUMBER	7295 7287 7289 7290 7291 7292 7293 7293	
ECMBIC	NUMBER	7296 7299 7299 7299 7300 7301 7304 7305 7306 7306 7311 7311 7311 7311 7315	TOTAL MEAN SD SE N

spups mis-soxed.

Company of the second of the second

TABLE II-E-23 (Continued)

	SEX	444 4640000000000000000000000000000000
	LIVE	888 5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8
740	DEATHS	00-1000000010-0000 4
	LTTER REDUCED MALE FEMALT	ৰ ৰব। ৰ আৰু অবৰ ৰব ল । অৰু অবৰ ত
		a 4 4 1 4 10 4 4 4 4 4 4 4 1 1 1 1 1 1 1
	E. FEHA	747 - 3E B B B B B B B B B B B B B B B B B B
	SEX	800118854785941878978 6
	LIVE	8055 - 6555547 - 6555550 - 85.0 65.0 65.0
DAY 4	DEATHS DAY 1-4	000:0000000:04000- 6
	MEAN PUP WEIGHT (G) WALE FEWALE	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	ME ME	da
	SEX MACE - FEI	72 6 78 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	1	
	PUPS	00-:000000 -00-20- /
DAY 0	LIVE	15 10 10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
	MALE NUMBER	7325 7318 7319 7320 7321 7323 7323
	wei	7326 7327 7328 7329 7339 7333 7334 7334 7336 7336 7336 7336 7337 7342 7342 7342 7342 7344 7345 7345 7345 7345 7346 7346 7347 7347 7346 7346 7346 7347 7347

RESULTS OF F1b GENERATION - FIRST MATING (F2a)

DOSE - 80 PPM

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE 11 (CONTINUED)

TABLE II-E-23 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-07

TABLE 11 (CONTINUED)

. RESULTS OF F1b GENERATION - FIRST MATING (F2a)

DOSE - 750 PPM

	UP (G) FEMALE	44444444444444444444444444444444444444	24 4.4 1.2
	METGHT (39 444 5 1 1 1 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$2.~. \$ c. c.
	FEMALE	<u> </u>	20
	SEX MATE 1	क्षक्ष (व । व क्ष्ण्णा क्षक्ष	57 50
	.		
	LIVE	8888 17 10 18787 1888	107 8
DAY 21	DEATHS DAY 5-21	00001-11010-0010000	2
	MLE		
	LITTER Reduced Male Fer	4444141101400014404	25
	i	विषयक।क।।व।विश्वालाका।विष्कृत	22
	FEMALE	7848171101070014000	92
	SEX MALE,	8000 10 1 14 18EEE 1 17770	83
	LIVE	<u> </u>	159 11 2.8 0.74
DAY 4	DEATHS DAY 1-4	00001011010000100m0	e
	PUP T (G) FEMALE	V0V01011818V01V60	6 0.95 0.25
	HEIGHT MALE FI	V0V010118180V01V000	6 0.83 14.22
	FEMALE	70272	87
	SEX	ကက္သံတ ၊ က ၊ က ၊ က က က က က က က က က က က က က က	84 7
	1		
	DEAD	0000101101000010000	0
DAY 0	LIVE	24455 - 5 - 14 - 14 - 16 - 16 - 16 - 16 - 16 - 16	162 12 2.7 0.72
	MALE NUMBER	7355 7347 7349 7350 7351 7353 7353	
	FEMALE	7356 7357 7358 7359 7360 7361 7365 7365 7367 7372 7372 7373	TOTAL MEAN SD SE N

*Pup mis-soxod.

TABLE 12

PUP OBSERVATIONS (F2a)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
0	7301	0 4	ONE MALE - HEMATOMAS BOTH HIND LIMBS. ONE MALE - FOUND DEAD.
. 80	7334 7335 7341 7342	20 4 4 21	ONE MALE - FOUND DEAD; NO VISIBLE ABNORMALITIES. ONE FEMALE - FOUND DEAD; ONE FEMALE - EMACIATED. ONE FEMALE - MORIBUND; KILLED. ONE MALE - SWOLLEN CEPHALIC REGION; NECROPSY SHOWED BRAIN WAS SMALL AND VERY SOFT, SURROUNDED BY LARGE QUANTITY OF FLUID.
750	7373	4	ONE FEMALE - FOUND DEAD.

TABLE II-E-25

TABLE 13
PUP NECROPSY OBSERVATIONS (F2a)

DOSE	FEMALE	NUMBER	OBSERVATIONS
(PPM)	NUMBER	OF PUPS	
0	7298 7299 7300 7305 7312 7314 7315	8 8 8 8 8 8	ALL PUPS APPEAR NORMAL. ALL PUPS APPEAR NORMAL.
80	7326 7332 7337 7340 7343 7345	8 8 8 5 8	ALL PUPS APPEAR NORMAL. ALL PUPS APPEAR NORMAL.
750	7357	8	ALL PUPS APPEAR NORMAL
	7359	8	ALL PUPS APPEAR NORMAL.
	7361	7	ALL PUPS APPEAR NORMAL.
	7367	7	ALL PUPS APPEAR NORMAL.
	7374	8	ALL PUPS APPEAR NORMAL.

ن	
ž	-07
:S	0734
ONEI	<u>۔</u>
8 8	z U
1110	PROJECT NO. 10734-07

TABLE 14

RESULTS OF FIL GENERATION - SECOND MATING (F2b)

	N PUP GHT (G)	455 47 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	43 7.4 5 1.7
	WE AN WE I GH	56 50 50 50 50 50 50 50 50 50 50 50 50 50	45 6.8 19.6
	FEMALE	ଦେବଟବଟବଟବଟ୍ ଜ	71
	SEX	01464446446404. C444W4	72
	LIVE PUPS	78888888888 1 887879	149 8
DAY 21	DEATHS DAY 5-2		2
	LITTER REDUCED VALE FEMALE	ऽपिट्यद्यव्ययव्यः ऽप्यः । यष्यव्यव्य	79
		Nবঅবাধাধাধাধাধাধাধাধা । কাষ্ধ্ৰধাধা	72
	FEMALE	201488088888871	142
	SEX	∪ჀႯႯჽჽႯჽႷႯႯႯჽჽჽ ႷჽႷჽჽ	. 801
	LIVE	7 9 1 8 1 1 7 4 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	250 13 2.7 0.63
DAY 4	DEATHS DAY 1-4	00000000	13
	MEAN PUP WEIGHT (G) MALE FEMALE	8 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 0.84 0.75 0.19 0.17
	FERMLE		
	l	######################################	145
	SEX		121
	DEAD PUPS	000-00000000000000000000000000000000000	m
DAY 0		8 9 9 9 9 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	263 14 2.5 0.57
	MALE	7288 7291 7291 7291 7293 7286 7286 7296 7297 7297 7297 7297 7297 7297 729	
	FEMALE	7296 7299 7299 7300 7301 7302 7303 7304 7306 7306 7306 7307 7311 7312 7313 7314 7315	TOTAL MEAN SD SE N

TABLE II-E-26 (Continued)

Indiana mangang
LITTON BIONETICS, PROJECT NO. 10734	ITTON BIONE ROJECT NO.	₹6
ROJECT	ROJECT	
		-

TABLE 14 (CONTINUED)

. RESULTS OF FID GENERATION 'ECOND MATING (F2b)

DOSE - 80 PPM

MEAN PUP SEX NEIGHT (G) HATF FEHALF MALF FEMALE	ਲ ਨਿਕਾਰਕਾਰਕਾਰਕਾਰਕਾਰਕਾਰ ਹਿਕਾਰਕਾਰਕਾਰਕਾਰਕਾਰਕਾਰ	76 73 48 46 7.2 6.6 1.7 1.7
EATHS LIVE		149 8
	000000000000000000000000000000000000000	76 3
LITTER REDUCED	प्राथयररर्वयवयववयववा ।यव	92
K E FFWAY	<u>.</u>	1 139
SEX	977 699 64 60 66 66 66 66 66 66 66 66 66 66 66 66	141
LIVE	999 999 999 999 999 999 999 999 999 99	280 15 1.9 0.43
DAY 4 DEATHS	000000000-0-100	ω 0,0
4 PUP GHT (G)		6 6 6 0.63 0.52 0.14 0.12 9
WE AN	20012200000000000000000000000000000000	<u> </u>
C FERALI		141
SEX	000 000 000 000 000 000 000 000 000 00	146
DEAD	-00-00000000000000000000000000000000000	-
DAY 0	•	286 15 1.6 0.36
MALE	7317 7318 7318 7321 7322 7322 7322 7322 7322 7319 7323 7323 7323 7323	
FEMALE	7326 7327 7328 7328 7333 7333 7335 7335 7345 7345 7345 7345	TOTAL MEAN SD SE N

Apups mis-soxed.

TABLE II-E-26 (Continued)

		. SECOND MATING (F26)	
LITTON BIONETICS, INC. PROJECT NO. 10734-07	TABLE 14 (CONTINUED)	. RESULTS OF FID GENERATION - SECOND MATING (F2b)	DOSE - 750 PPH

1	AIE		10.16
		የየየተፈመቀም የተመሰመ የተ	18.00 m
	WE I GHI	8488844 48488 8 8 8 8 8 8 8 8 8 8 8 8 8	51 6.6 16.6
	EFRACE	चिचचचचल। चचचचल। चचचच ।	~
	SEX	यक्ष्यका व्यक्षा विवाह ।।	99
	0,21		9
	L IVE PUPS	∞∞∞∞∞∞, ∞∞∞∞∞, ∞∞∞∞,	127 8
DAY 21	DEATHS DAY 5-21		-
	MALE		
	REDICEO MACE FE	44444014440144401444411	29
			99
	HE	0/00/0001400/01/000011	107
1	SEX	~ G7 4 S G S S S S S S S S S S S S S S S S S	107
			:0
	LIVE	EE545451 E4855 FEEE	27 20-05 6.03
4	143		
PAY	DE PER	00000001 000001 000021	92
	(S)	/// 0000001 0/0000001	6.00 0.06 0.16
	ME IGH	とてもののので! ののふのと! もとももの!	0.07 7.05
	EMALE		
		8 8 8 9 0 C 8 8 1 4 8 7 C 8 1 C 8 8 8 8	116
	麗	αυν 4 ανα αι Γ΄ ααν οι αν αν οι	1
	D W		
	DEAD PUPS	-00000-10000-1000001	ဖ
0			4.6
DAY 0	,,	EE54646 . 84666 . 85664 .	230 14 1.4 0.3
	MALE NUMBER	7351 7354 7355 7355 7355 7355 7355 7355 7355	
	FEMALE	7356 7357 7358 7358 7360 7360 7364 7365 7365 7365 7367 7371 7372 7373 7373 7373	M SE

Pups mis-saxed.

TABLE 15

PUP OBSERVATIONS (F2b)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
0	7303 7311	4 4	ONE FEMALE - HEMATOMA ON NOSE. ONE MALE - FOUND DEAD.
80	7327 7336	4 2	ONE MALE - FOUND DEAD. ONE MALE - FOUND DEAD.
750	7361 7374	0 4	ONE MALE - HEMATOMA ON NOSE. ONE MALE - FOUND DEAD; NO OTHERS FOUND.

TABLE II-E-28

TABLE 16
MEAN BODY WEIGHTS (G) OF F2b RATS

DOSE			WEEK			
(PPM)	SEX		4	9	11	20
0	М	MEAN SD SE N	347 31 9.7 10	455 33 10 10	495 43 14 10	560 53 17 10
80	M	MEAN SD SE N	345 23 7.2 10	465 26 8.3 10	498 30 9.6 10	559 33 10 10
750	M	MEAN SD SE N	340 35 12 9	476 40 13 9	517 36 12 9	590 54 18 9
0	F	MEAN SD SE N	217 15 3.3 20	254 22 5.0 20	267 23 5.0 20	296 22 4.8 20
80	F	MEAN SD SE N	212 20 4.4 20	251 31 6.9 20	270 27 5.9 20	299 32 7.1 20
750	F	MEAN SD SE N	220 16 3.4 21	262 25 5.4 21	270 24 5.2 21	305 23 4.9 21

TABLE II-E-29

TABLE 17
MEAN FOOD CONSUMPTION (G) IN MALE F2b RATS

DOSE (PPM)	SEX		WEEK 4	9	11	20
0	М	MEAN SD SE N	38 4.2 1.3	30 6.4 2.1 9	28 5.4 1.7 10	25 4.9 1.6 9
80	М	MEAN SD SE N	35 2.8 0.87 10	31 5.1 1.6 10	28 4.0 1.3 10	30 6.6 2.1 10
750	M	MEAN SD SE N	36 1.6 0.57 8	31 8.9 3.0 9	31 3.6 1.2 9	25 3.2 1.1 9
0	F	MEAN SD SE N	36 5.0 1.5	27 6.9 1.6 18	24 5.2 1.3 17	30 8.6 2.1 17
80	F	MEAN SD SE N	37 5.1 1.3 15	27 6.0 1.4 19	24 6.2 1.6 15	33 4.7 1.1 17
750	F	MEAN SD SE N	33 5.2 1.6 11	25 5.9 1.4 18	25 4.1 1.1 15	29 5.2 1.1 21

TABLE 18

RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

DOSE - 0 PPM (CONTROL)

	TE (C)	,		•		, E	•	י ע	88	3	ខ	3 '	9	; ;	200	? '	43	2 4	? (4	47	2.2 5.2 6.2	
	METCHT PE			•	•	100	! '	23	3 5	i C	3 2	3 1	5	2 6	;	; '	A S	£2	: 1	42	45	45 5.8 1.7	
	FEMALE		١,					~) =	- 4	- =		4	7	. 4	٠,	₹	- ◆	٠,	4	4	47	
	SEX MIE	,		,	•	۱4	• •	~	- ◀	4	4	۰,	4	- 4	. 4	٠,	٧	4		4	4	45	
	LIVE	0	•	,		ıæ		4	- &	ο α	α	,	œ	ο α	α	,	α	ο α	•	8	α ο	92 8	
DAY 21	DEATHS DAY5-21	83	•	,	•	10	,	-	0	ō) (a		· C) (_	. 0		0	0	ဗ	
	MATE																			_			
	REDUCED MALE FER	4	•		,	14	•		• •	4	4	. 1	4	4	4		4	. 4		4	4	5	
į						. •			•	•				•		•	•	•	•		_	49	
	E FEMALI	ro	•	,	1	ıo	١	e	ω	4	ď	,	4	ی د	6	٠ ،	LC:	2	•	ĸ	*	22	
	SEX	7	•	•		'n	•	-	4	00	α	۱ (7	· LC	α	,	ų	'n	•	æ	_	56	
	L I VE PUPS	12	•	•	٠ ١	7		4	12	12	~	٠ :	Ξ	=	17	: •	=	3	,	13	=	156 12 3.0 0.83	:
DAY 4	DEATHS	0	1		,	0		0	<₹	0	_	,	0	0	0	, ,	0	. 0		2	0	ဖ	
	(c) (EMILE JA	~	,	,		9	,	60	c,	7	9		9	9	9		9	ഹ		9	9	7 0.80 0.22	
	WE AN PI WE I GILT MALE	7				9		œ	r)	7	7		7	9	9		9	· Go		9	9	6.77 0.21	
	FERMLE	S				_			•	_			_		_			_			_		
1 1	SEX FACE FI	~		•		S.	•	,	4 12	7	<u>د</u>			5			9	5 10	•	9	7	1 82	
	· 31551																					8	
DAY 0	DEAD PUPS	0		•	•	0	•	0	0	0	0			0	0	,	0	0	•	۵	0	-	
	LIVE	12		•		14		4	9(75	<u></u>		=	7	17	,	=	15		35	=	162 12 3.3 0.91	
	MALE NUMBER	1539A		1540A		1541A		1542A		1543A		1544A		1545A		1546A		1537A		1538A			
	FEL. 'E NUMBER	1547A	1548A	1549A	1550A	1551 A	1552A	1553A	1554 A	1555A	1556A	1557A	1558A	1559A	1560A	1561A	1562A	1563A	1564A	1565A	1560A	TOTAL NEAN SE SE	

TABLE II-E-30 (Continued)

ITTON BIONETICS, INC.

TABLE 18 (CONTINUED)

. RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

DOSE - 80 PPM

	TERMIE	44 64 64 64 64 64 64 64 64 64 64 64 64 6	42 4.2 1.1
	A HE HE	1 · C · 4444444	46 4.7 1.2
	FEHALE	च । ल। चचचचचचचच । च । चच ८०० वच	57
	SEX	♥ ← ♥♥♥♥♥♥♥ ♥ ♥♥♥♥♥♥	5
	LIVE	に・←・ ○ 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	118
DAY 21	DEATHS DAY 5-2	0 10 1 00 00 00 1 0 1 0 0 0 0 0 0	0
	LITTER REDUCED HALE FEMALE	4 1014664444141440044	57
		4 1-1444444414141446044	19
	SEX MALE: FEMALE	840000018181818	
	XXXX	4 1 — 1 V 3 © Q 3 Ö 0 1 Q 1 Q V Q V 9 Q	66
	LIVE	G 14 1 0	167 12 4.0 0.99
DAY 4	DEATHS	010100000010100000	8
	PUP FEMALE	41710474886101086100	5 1.2 2.0.30 15
	HE IGH	4 17 1 0474450 17 1 666877	6.05 8.93
	FEMALE		93
	SEX	4 1-1 76699606 151877099	103
	DEAD PUPS	0101000000010100-000	-
DAY 0	LIVE	5 14 1 55 4 4 5 5 4 1 E 1 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	195 12 3.9 0.97
	MALE NUMBER	1568A 1570A 1571A 1572A 1573A 1573A 1575A	
	FEMALE	1577A 1577A 1579A 1579A 1561A 1561A 1585A 1585A 1589 A 1591 A 1592 A 1594 A 1595 A	TOTAL MEAN SD SE N

TABLE II-E-30 (Continued)

PROJECT NO. 10734-07	TABLE 18 (CONTINUED)

. RESULTS OF THIRD GENERATION - FIRST MATING (F3a)

DOSE - 750 PPM

1.5 7.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
MEAN PULL MEIGHT WEIGHT 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
X 4444444 44410 1 44
6
LIVE CITY B B B B B B B B B B B B B B B B B B B
DAY 21 DEATHS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.00 1. 4444444 1 4444 1 1 1 1 1 1 1 1 1 1 1
REDUCED HALL TETTER A PALE CED CED CED CED CED CED CED CED CED CE
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× 1 0 0 0 0 0 0 0 0 0
35日 200 200 200 200 200 200 200 200 200 20
117 12 13 13 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
DAY 4 DEATHS DAY 1-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AG P
212
- 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEX 100 100 100 100 100 100 100 100 100 10
FEMALE MALE LIVE DEAD PUPS PUPS PUPS PUPS PUPS PUPS PUPS PUP
06 A mt
DAY O DAY O LIVE 18 18 18 18 18 18 18 18 18 18 18 18 18
MALE NUMBER 1597A 1598A 1600A 1601A 1603A 1603A 1605A 1605A
FEMALE NUMBER 1607A 1608A 1610A 1611A 1612A 1618A 1618A 1619A 1628A 1623A 1623A 1625

mand State of Contract Contract

TABLE 19

PUP OBSERVATIONS (F3a)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
0	1547	11	THREE MALES - FOUND DEAD; TWO FEMALES - FOUND DEAD; ONE PUP CANNIBALIZED (SEX NOT DETERMINED).
		12	ONE MALE - FOUND DEAD.
80	1595	0 4	ONE FEMALE - PART OF TAIL APPARENTLY BITTEN OFF. ONE FEMALE - SHORTENED TAIL.
750	1609 1625	3 4	ONE FEMALE - FOUND DEAD. ONE MALE - FOUND DEAD.

TABLE 20

PUP NECROPSY OBSERVATIONS (F3a)

DOSE	FEMALE	NUMBER	OBSERVATIONS
(PPM)	NUMBER	OF PUPS	
0	1555A	8	ALL TISSUES APPEAR NORMAL.
	1560A	8	ALL TISSUES APPEAR NORMAL.
	1563A	8	ALL TISSUES APPEAR NORMAL.
	1566A	8	ALL TISSUES APPEAP NORMAL.
80	1577A	8	ALL TISSUES APPEAR NORMAL.
	1582A	8	ALL TISSUES APPEAR NORMAL.
	1583A	8	ALL TISSUES APPEAR NORMAL.
	1589A	8	ALL TISSUES APPEAR NORMAL.
	1594A	2	ALL TISSUES APPEAR NORMAL.
750	1609A 1613A 1619A 1624A 1625A	8 8 8 8	ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL. THREE PUPS - MOTTLED THYMUS. ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL.

PROJECT NO. 10734-07

ABLE 21

RESULTS OF F2b GENERATION - SECOND MATING (F3b)

DOSE - 0 PPM (CONTROL)

		ma
HEAN PUP Weight (329-1 - 89-34-34-34-34-34-34-34-34-34-34-34-34-34-	48 9.5 17.5
1	8	2007
FEMALE	क हा क	64
SEX	चिफाफाचचचचचच । चलचचचच । ।विफा	0,
LIVE		1,74 8
DAY 21 DEATHS DAY 5-2	000000000000000000000000000000000000000	-
ER ICED FEMALE	चिव्यालिष्ट्वेच्च। चिल	9
LITTER REDUCED WALE FE	ቀ ል የነጻ ነጻ ነ	22
FEMALE	r 42cc 0 2 a a c c c c c c c c c c c c c c c c c	E
SEX	\$	96
LIVE	80v085664 818484 140	207 12 7.46 0.60
DAY 4 DEATHS DAY 1-4	0000000-0100000-1100	₹
PUP HT (G) FEMALE	<i>@~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	6 0.64 0.15
MEJGHT (0814900901901001100	6 0.79 0.19
FEMALE	04	122
SEX	የመመቀመመም የመተመቀመቀ 1 100	93
DEAD	000-0-001 0-00001 100	4
DAY 0 LIVE PUPS	80000000000000000000000000000000000000	211 12 2.7 0.66
MALE	1538A 1546A 1546A 1544A 1543A 1541A 1541A 1539A	
FEMALE		TOTAL MEAN SD SE N

spups mis-sexed.

358

TABLE II-E-33 (Continued)

TABLE 21 (CONTINUED)

RESULTS OF F2b GENERATION - SECOND MATING (F3b)

DOSE - 80 PPM

	SE		٥.
	MEAN PU WEIGHT MALE FE	93 32 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	4. 51. 5.9.71
	ht	33733377 377 377 377 377 377 377 377 37	\$ = 4.5
	FEMAL	ፈ ፋሁስየሳፋቀልነ ልፋ∣ ል∣ ልፋ∣ ሶፋቂ ⁸ ዓ	<i>L</i> 9
	SEX	वचणाललवयव।वल।व।वच।वाच	09
	LIVE PUPS	88mmmmm − − − − − − − − − − − − − − − − 	127 B
DAY 21	DEATHS DAY 5-2	000000000000000000000000000000000000000	_
	R EO FEMALE	বৰ্লজাৰ্লৰ্ক। ৰক। বল। তাৰক	96.
	LITTER REDUCED MALE FEI	ል ቁኬඟቁඟቁቁ፣ ቁቁ፣ ቁ፣ ቁሉ፣ ለቀፋ	63
	FEMALE	ი ო ს ი ფ ს ი ე ე . ა ი	5
	SEX	27 27 27 27 27 27 29 29 29 29 29 29 29 29 29 29 29 29 29	10,
	L IVE PUPS	EEE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	206 13 2.6 0.63
DAY 4	DEATHS DAY 1-4	c oocooooooooo	C
	HT (G)		6 78,0 57,0 51
	ME AN WE 1GH ALE MALE	91010609: 911110: 911	7, 0,98 0.75
	FEMAI	99999999999999999999999999999999999999	106
	SEX	8784721 9 1 9 1 6 9 1 1 1 4 9	107
	DEAD PUPS	000-000-140-0-100-1-00	,
DAY 0	L I VE PUPS	<u></u>	206 13 7.5 0.63
	NALE NYMBER	1576 A 1575 A 1575 A 1573 A 1572 A 1571 A 1569 A 1568 A	
	FEMALE	1577A 1578A 1578A 1580A 1581A 1583A 1583A 1583A 1583A 1593A 1593A 1593A 1595A 1595A	101Al. M.AN 125 H

TABLE II-E-33 (Continued)

TABLE 21 (CONTINU:

RESULTS OF F2b GENERATION - SECOND MATING (F3b)

D0SE - 750 PPM

	5 E	\$	32	60	28	28	28	2 2	} '	46	48	40	22	, ,	33	4	45			;	*		2 0	2.4	2
	ME AN	12	3	43	63	28	28	3	; •	41	47	47	62	ļ •	35	37	53			;	2		£3. E	2.9	2
	TAME									۵.															
	SCX MALE TE	 	◂	4	4	. 60	₹	٦	,	L)	ಶ	4	4	•	4	4	4	•		•		27			
	35€	 	4	4	ঝ	4	4	4		(*)	7	•	4	٠	4	4	4	٠		•	•	2/			
	LTVC PUPS	æ	ස	&	ස	_	. α	с с) I	ω -	- ∞	7	8	,	ω	ස	- ∞			α	· ;	<u>+</u>	Ð		
DAY 21	DEATHS DAY 5-21	_	-	_						_		_	_		0	_				c		•			
i	MIT		_							_	_		•		_	_	_	•		•	•	•			
		~	<u></u>	~	~	4	4	4		♥	4	4	4	,	4	7	4	٠		43		200			
		က	~	~	4	4	•	4	•	4	4	4	7	ı	4	4	4	١		₹	ä	מ			
	LLIWIT	2	~	ဇ	_	9	ഹ	^		တ	ູນ	^	7		20	ထ	6	•		ĸ		i.			
	XXX TI	က	=	4	_	9	8	S		9	9	9	2	ı	4	7	9	٠		2	08	5			
	L.IVE PIII'S	ഹ	35	20	7	12	13	12	! •	14	=	13	12	•	74	15	15			10	185	12	5.6	0.68	<u>.</u>
DAY 4	DEATIIS DAY 1-4	C	_	c	0	.0	0	_		c.	0	0	0	,	0	0		,		0	m	,			
1	(G)	7	9	~	7	2	9	S		7	7	7	9		,	S	9			7		9	0.03	0.21 5	
1.114.41	Mr. roll	æ	_	æ	7	2	9	7		7	7	7	7		a.	င္	ي			1		7	0.83	5.21	
	IMIL	2	رى د	œ	7	~	ro.	en		ဆ	S	ආ	7		c	ണ	6			4	~				
	Srx Mir.	<u>س</u>		~	_	· æ	- &	ຂ		9	ິ	7	9		7		<u>ۃ</u> 9			9	3 98				
į	!		_																		93				
	DEAD	0	0	c	ပ	0	0	0		0	0	2	_	•	0	<u> </u>	0			0	က				
O AVO	Fûlos L'VE	ည	9	20	74	12	3	3	1	₽	=	13	15		Ξ	35	91			10	188	13	8.°°	15.72	
	MALE HUMBER Not bred	1605 A		1604 A		1603 A	1602 A		1601 A	1603 A	1500A		1599 A		1596 Դ	,	1597A		Not bred	1601A					
	FEMALE NUMBER 1607 A	160B A	1609 A	1610 A	1611 1	1612A	1613 A	1614 A	1615A	1616A	1617.4	1618A	1619A	1620A	1621A	1622A	1623 A	1624A	1625 A	1626A	TOTAL	HEALI	Sr	įz	•

and the second second

^aPups mis-sexed.

TABLE 22

PUP OBSERVATIONS (F3b)

DOSE (PPM)	FEMALE NUMBER	DAY OF LACTATION	OBSERVATIONS
0	1550A 1554A 1559A 1560A 1562A	4 4 4 4	ONE FEMALE - SCAB ON NOSE. ONE FEMALE - FOUND DEAD. ONE MALE - BENT TAIL. TWO FEMALES - CANNIBALIZED. ONE FEMALE - CANNIBALIZED.
80	1:86A 1587A	4 4	ONE FEMALE - CANNIBALIZED ONE MALE - SCAB ON NOSE.
750	1609A 1614A 1628A	4 4 4	ONE FEMALE - CANNIBALIZED. ONE FEMALE - CANNIBALIZED. ONE FEMALE - CANNIBALIZED.

TABLE II-E-35

TABLE 23

PUP NECROPSY OBSERVATIONS (F3b)

DOSE (PPM)	FEMALE NUMBER	NUMBER OF PUPS	OBSERVATIONS
0	1550A 1552A 1555A 1557A 1558A 1560A 1566A	8 8 8 8 7 8	ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL. ONE FEMALE - MOTTLED KIDNEYS. ALL TISSUES APPEAR NORMAL. ALL TISSUES APPEAR NORMAL.
80	1578A 1579A 1580A 1582A 1586A 1587A 1595A	8 8 8 8 8 5 8	ALL TISSUES APPEAR NORMAL.
750	1608A 1613A 1616A 1617A 1619A 1622A 1623A	4 8 8 8 8 8	ALL TISSUES APPEAR NORMAL.

TABLE II-E-36

TABLE 24

ADULT NECROPSY OBSERVATIONS (F2b)

DOSE (PPM)	SEX	AN IMAL NUMBER	OBSERVATIONS
0	M F	1561A	NO VISIBLE ABNORMALITIES. HARD MASS (1.5 X 1.5 CM) MAMMARY REGION, RIGHT LATERAL THORAX.
80	M F	1581A	NO VISIBLE ABNORMALITIES. MOTTLED KIDNEYS.
750	M F F	1616A 1626A	NO VISIBLE ABNORMALITIES. MOTTLED KIDNEYS. MOTTLED KIDNEYS.

SPONSOR:

Environmental Protection Department

US Army Medical Bioengineering Research and

Development Laboratory

MATERIAL:

Dicyclopentadiene (DCPD)

SUBJECT:

FINAL REPORT

Analysis of Diet Formulations LBI Project No. 10734-7

1. OBJECTIVE

The objective of this study was to analyze DCPD in animal chew with regards to stability and formulation content in diet.

2. MATERIAL AND EXPERIMENTAL DESIGN

The analysis of the dosed feed was performed by the following chromatographic method.

Scope

This method describes the analytical procedure for the determination of DCPD in dosed feed used by Litton Bionetics, Inc. (LBI) during the course of the study.

Principle

A five gram feed subsample is extracted with 20 ml of diethyl ether by shaking for 15 min in an automated shaker. The extract is clarified by centrifugation for 10 min at 1350 rpm. The extracts are analyzed with a Varian 2100 gas chromatograph equipped with flame ionization detectors.

The DCPD content is calculated from a calibration curve obtained by GLC analysis of reference solutions of DCPD in ether. Control and spiked control feed samples are analyzed concurrently to correct for possible feed background and compound recovery.

Equipment and Supplies

Graduated conical Falcon tubes, 50 ml, with positive seal caps (available from Becton, Dickinson and Company, Oxnard, CA, 93030; stock number H8292-209811).

Volumetric glassware - 1, 4, 5, and 10 ml pipettes; 50 and 100 ml flasks.

Graduated cylinder - 25 ml capacity.

Graduated glass centrifuge tubes, 15 ml, with ground glass stoppers.

Mechanical shaker.

Centrifuge.

Analytical laboratory balance (accurate to 0.01 mg).

Top-loading laboratory balance (accurate to 0.01g).

Gas-liquid chromatograph - Varian 2100, equipped with a $1.8~m\times2~mm$ I.D. glass column packed with 10% FFAP on 80/100~mesh Supelcoport, flame ionization detectors.

Diethyl ether (Burdick and Jackson).

Dicyclopentadiene.

Preparation of Standard

Prepare a stock standard solution of DCPD by dissolving 50 mg of DCPD in 50 ml of Acetone.

Take a 5 ml aliquot and dilute to 100 ml with diethyl ether in a volumetric flask. This solution has a concentration of 0.05 mg/ml.

Prepare a standard curve by injecting 1, 2 and 3 μ l of the standard solution into a Varian 2100 gas chromatograph with the following parameters:

Column temperature: 60°C Injector temperature: 225°C FID temperature: 250°C

Chart: 6 min/inch

Carrier gas flow: 40 cc/min nitrogen

Attn.: 8 x 10⁻¹¹

Procedure:

Weigh a 5 g sample of the dosed feed to the nearest $0.01~\mathrm{g}$ in a Falcon tube.

Extract the sample with 20 ml of diethyl ether by mixing for 15 min in a mechanical shaker; followed by centrifugation at 1300 rpm for 10 min.

Dilute the high-dose level (750 ppm) in a 15 ml graduated centrifuge tube by adding a 1 ml aliquot to 4 ml of diethyl ether.

Repeat above procedure using undosed animal feed of the same lot used for the preparation of the dosed feed. This extract will be used as a negative control to assure that there are no interfering peaks contributed by the feed itself.

Repeat above procedure using undosed animal feed of the same lot which has been spiked in the laboratory with DCPD at corresponding dose levels.

Quantitate the amount of DCPD in solution by comparing to the calibration curve prepared above.

Calculations

Calculate the ppm of DCPD in the dosed feed or spiked (recovery) sample as follows:

To determine mg of sample injected:

$$\frac{5g \text{ feed}}{20 \text{ ml ether}} = \frac{250 \text{ mg feed}}{1.0 \text{ ml ether}}$$

$$\frac{250 \text{ mg feed}}{1.0 \text{ ml ether}} \times \text{Dilution Factor} = \frac{(x) \text{ mg feed}}{1.0 \text{ ml ether}}$$

$$\frac{(x) \text{ mg feed}}{1.0 \text{ ml ether}} \times \frac{\mu 1 \text{ sample}}{1000} = \text{mg of feed injected}$$

Calculate the intercept and slope from standard curve as determined by linear regression correlation.

To determine ppm:

Determine method recovery from spiked samples as follows:

percent recovery =
$$\frac{ppm found \times 100}{ppm added}$$

Correct the result of the dosed feed sample for method recovery of its corresponding spiked sample.

corrected ppm =
$$\frac{\text{sample ppm x 100}}{\text{percent recovery}}$$

3. RESULTS

Stability Analysis

Samples were analyzed the day the mix was received by the analytical laboratory. This corresponded to Day I of the stability study when Day O is considered the mix date. Two aliquots of feed were removed from each diet level of samples 0433, 0434 and 0435 and stored at ambient conditions. One aliquot was stored in a closed container, while the other was stored in an open container.

The two aliquots were analyzed 9 days later (day 10) by the standard method. Results of the analysis are indicated in Table 1.

In the closed containers, the concentration dropped 27.6% for the 80 ppm level and 30.8% for the 750 ppm level.

In the open containers, after 10 days no DCPD could be detected in either high- or low-dose samples.

DCPD is a liquid which at ambient temperature tends to volatilize from the feed mixture. This may account for the results noted in the open container stability study. In the closed container the DCPD may volatilize as much as the head space in the storage container will permit. At the saturation point, an equilibrium between the vapors and liquid is achieved and the concentration of DCPD in feed remains constant. This appears to be at 70% of the theoretical concentration.

Weekly Diet Analysis

DCPD samples were analyzed on a weekly basis by the method previously described. Samples were received by the analytical laboratory and stored at ambient conditions for the first five feed mixtures. Thereafter, samples were stored in the freezer. This action was required due to the volatile nature of the compound. Results of the analysis are indicated in Table 2.

For the 80 ppm level, the average value of the course of the study was 69.3 ± 8.2 ppm. This corresponds to $86.6 \pm 10.3\%$ of the theoretical concentration.

For the 750 ppm level, the average value obtained was 693 ± 68.0 ppm, which corresponds to $92.4 \pm 9.1\%$ of the theoretical value.

The values for the rat reproduction study was, on the average, approximately 10% below the theoretical value. This fact may be attributed to the volatile nature of DCPD, and the time between mixing and analysis. During the latter part of the study, the interval between the analysis and the mixing was decreased as much as possible. An improvement in the analytical values resulted.

LITTON BIONETICS, INC. Kensington, MD 20795

SUBMITTED BY:

Analytical Chemist

REVIEWED BY:

H.J. Paulin, M.S. Analytical Chemist

E.D. Helton, Ph.D. Director, Dept. of Chemistry

368

PART II - SECTION F

THREE-MONTH SUBCHRONIC TOXICITY IN DOGS

DCPD

LBI PROJECT NO. 10734-09

SUMMARY

The test material, Dicyclopentadiene, was administered by incorporation into the diet at concentrations of 100, 300, and 1000 ppm to Beagle dogs for 13 weeks. The animals were observed daily for general condition and behavior. Clinical pathological evaluations, including analysis of the clinical chemical constituents of serum, urine and hemograms, were performed at approximately monthly intervals. Tissues from the control and high dose dogs were compared histopathologically for differences. Based on the results obtained using these criteria it was concluded that treatment produced no significant toxicity with the possible exception of minor indications of intestinal distress expressed as vomiting and soft stools among dogs of the treated groups, especially the highest dose (1000 ppm).

OBJECTIVE

The objective of this study was to evaluate and characterize the toxicity of the test material by incorporation in the diet to dogs for 13 weeks.

MATERIAL

Refer to Part II - Section A.

EXPERIMENTAL DESIGN

Thirty-four purebred beagle dogs (approximately five months of age) were received from Laboratory Research Enterprises, Inc. (LRE), Kalamazoo, Michigan, and maintained for 4 months in the Falls Church facility of the Department of Toxicology. The planned initiation of the study was delayed under the direction of the LBI Department of Safety and Health because of a possible hazard to personnel. The dogs were transferred to the Rockville facility of the Department of Toxicology and acclimated for 4 weeks. The animals were individually housed in stainless steel cages in temperature-controlled quarters under artificial illumination controlled to provide a 12-hour light cycle. Purina Dog Chow and water were provided ad libitum.

Prior to initiation of the study, all dogs were given a preliminary health screening which included clinical biochemical, hematolcycal, ophthalmological and parasitological testing. Examination showed that 17 out of 34 dogs had parasites. In 16 dogs, <u>Giardia canis</u> cysts were found. <u>Isopora</u> species oocysts were found in two dogs and <u>Trichomonas</u> species in one dog. Since the pathogenicity of the mentioned parasites was questionable, treatment was not initiated. All dogs had been immunized by LPF against distemper, hepatitis, leptospirosis and rabies prior to receipt.

Thirty-two dogs were selected for use in the study. The dogs had been identified by tattoo at LRE and were given LBI dog numbers. Dogs were randomly selected and placed into groups as noted below.

Group		of Animals	Dose
Number	Males	Females Pemales	(ppm)
1	4	4	0
2	4	4	100
3	4	4	300
4	4	4	1000

Initial clinical pathological determinations did not reveal any abnormalities. Following these determinations, two dogs (Nos. 00410 and 00428) were eliminated from the study. The remaining dogs were chosen for the study and assigned to groups as detailed in Text Table A. Date of first dose was May 10, 1978.

Dietary concentrations were selected by a representative of the sponsor. The feed and test material were mixed weekly. A premix was prepared in corn oil, manually mixed with the appropriate amount of test material and blended with the dog meal for 20 minutes in a blender. A sample of each weekly formulation was sent to the LBI Analytical Laboratory for analysis with respect to correctness of formulation.

TABLE A

· GROUP ASSIGNMENT

GROUP NUMBER	DOSE LEVEL (PPM)	SEX	L.R.E. TATTOO <u>NUMBER</u>	LBI NUMBER
1	0	M M M F F F	PK 77 DI 77 QS 77 MK 77 GZ 77 EI 77 LB 77 EZ 77	408 411 417 418 425 426 434 435
2	100	M M M F F F	LS 77 NW 77 GB 77 LI 77 FJ 77 LL 77 OH 77 IR 77	405 406 407 415 422 429 430 431
3	300	M M M F F F	MM 77 LT 77 OL 77 NY 77 OV 77 FO 77 AR 77 LO 77	404 409 412 414 421 424 427 433
4	1000	M M M F F F	MB 77 PI 77 OJ 77 KK 77 JL 77 HO 77 IT 77 FF 77	413 416 419 420 423 432 436 437

EXPERIMENTAL DESIGN (Continued)

The dogs were observed daily for general appearance, behavior, food consumption and fecal consistency. Body weights were recorded weekly on each animal. Initially and at 4, 8 and 13 weeks, blood was collected for the following pathological determinations. The dogs were fasted overnight prior to blood collection.

Hematology |

hemoglobin erythrocytes leukocytes differential count packed cell volume

Blood Chemistry

glucose
calcium
urea nitrogen
serum glutamic-pyruvic
transaminase
serum glutamic-oxaloacetic
transaminase
uric acid
potassium

alkaline phosphatase total protein albumin cholesterol lactic dehydrogenase phosphorus bilirubin sodium^a chloride^a

^aPerformed initially, only.

Urinalysis was performed on all animals initially and at 8 and 13 weeks. The dogs were fasted overnight prior to urine collection for determination of the following.

specific gravity pH color sugar albumin ketones
occult blood
bilirubin
microscopic examination of
sediment

Ophthalmologic examinations were performed initially and before termination of the study. These evaluations were conducted by James M. Clinton, V.M.D., Consulting Veterinary Ophthalmologist.

After 94 to 97 days of treatment, the dogs were killed. Each animal was weighed and subjected to a complete necropsy. Appropriate samples of each of the following organs and tissues were preserved in 10% neutral buffered formalin.

brain^a
pituitary
spinal cord
eye

stomach small intestines large intestines testes with epididymis^a

EXPERIMENTAL DESIGN (Continued)

thyroid^a
pancreas
lung
heart^a
rib junction
gallbladder
liver^a
spleen^a
kidneys^a
adrenal glands^a

prostate
ovary
uterus
bone marrow
skeletal muscle and nerve
urinary bladder
mammary gland
mesenteric lymph node
any unusual lesions

THE PROPERTY OF THE PROPERTY O

^aOrgan weights taken.

The tissues from dogs of the control and high level groups were evaluated pathologically by G.A. Parker, D.V.M.

Statistical analysis was performed using Dunnett's t-test to determine differences between treated and control means of the same sex. A probability value of <0.05 was used as a basis of statistical inference.

RESULTS

All dogs survived the entire duration of the study. The clinical signs (observations) noted during the course of the study have been compiled and presented in Appendix Table 1. Review of these data suggested no remarkable difference between treated and control dogs with the possible exception of a slightly higher frequency of vomiting and soft stools among the treated dogs, especially those of the high level (1000 ppm). These signs we a occasionally observed among the control dogs as well.

The body weights obtained during the course of the study have been tabulated in Appendix Table 2, and summarize: in Text Table B. The mean body weights of treated and control groups were similar statistically and review of the individual body weights did not suggest any progressive effect of treatment.

State Long of the state of the

The food consumption presented as daily food intake (g/day) has been tabuited in Appendix Table 3, and summarized in Text Table C. Weeks at which the food intake among the treated and control groups were statistically different were limited and were not judged to suggest a compound-related effect.

The results of the hemograms obtained initially and at 4, 8 and 13 weeks (cermination) have been summarized in Text Table D. The individual data at these intervals have been detailed in Appendix Table 4. No dose-related effect was evident.

Results of the clinical chemistry determinations obtained initially and at Weeks 4, 8 and 13 (termination) of the study have been summarized in Text Table E. The individual data for these intervals have been detailed in Appendix Table 5. Statistically significant differences between control and treated groups were minimal and were not suggestive of a meaningful compound-related effect. The apparent increase in serum glucose at the 1000 ppm level for males at termination was not judged to be of real importance inasmuch as both maie dogs on which data were available were well within normal limits.

The individual results of the urinalysis have been detailed in Appendix Table 6. Review of these data did not suggest any dose-related effects.

The individual organ weights and organ-to-body weight ratios have been detailed in Appendix Tables 7 and 8, respectively and summarized in Text Tables F and G, respectively. Review suggested a decreased thyroid size; however, statistical analysis did not indicate the difference was significant.

Analysis results of the diet formulations have been included in the Appendix. The diet proportions analyzed at means of 98, 101 and 99% of the theoretical concentrations for the 100, 300 and 1000 ppm dietary concentrations. Since the test material tended to vaporize, the actual intake may have been somewhat less than the intended dietary levels would have suggested.

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE B

MEAN BODY WEIGHTS (KG)

MALES															
(PPM)	NEEK O		WEEK 2	6	4	2	و			6	01		2		TERMINATION
CONTROL (0)	10.8	10.7	10.6	10.8	11.0	10.6	10.8	10.8	10.7	11.1	11.2	11.1	11.6	11.0	10.9
100	12.1	11.8	11.8	12.0	12.2	11.8	12.0	12.2	12.2	12.3	12.3	12.5	12.4	11.9	11.6
300	10.0	9.8	9.7	6.6	10.1	9.8	10.0	10.2	10.3	10.3	10.4	10.3	10.4	6.6	9.8
1000	10.8	10.5	10.8	10.6	10.9	10.6	10.7	10.7	10.5	10.6	10.6	10.7	10.9	10.4	10.4
FEMALES															
CONTROL (0)	8.1	7.7	7.6	7.8	7.9	7.5	9.7	7.6	7.6	7.8	8.0	7.9	8.0	7.6	7.5
100	9.0	8.8	8.8	8.8	9.0	8.6	8.9	9.0	9.0	9.3	9.5	9.1	9.3	1.6	8.8
300	8.8	8.8	8.7	8.9	9.3	9.1	0.6	9.1	9.0	9.4	9.4	9.5	9.3	8.9	8.8
1000	8.3	8.1	8.0	8.1	8.9	8.1	8.2	8.4	8.3	8.3	8.3	8.3	8.4	7.9	7.9

TABLE C

MEAN DAILY FOOD INTAKE (G)

MALES

DOSE LEVEL (PPM)	KEEK													
			-	3	2	ا و		5	6	10	=	21	13	-
CONTROL (0)	346.4	324.3	366.5	278.0	344.1	297.2	297.4	367.3	353.0	345.1	296.1	363.1	315.2	347.0
100	330.0	330.0 353.8	319.9	361.3	363.8	349.2	329.6	293.4	343.1	316.4	310.1	309.7	319.8	333
300	9.592	274.9		312.8	284.9	272.7	303.9	241.4	263.3	299.7	304.5	262.5*	301.8	272."
1000	328.9	332.6		362.9	1.172	282.2	291.8	255.4	290.7	288.5	289.0	374.2	243.1	318.1
<u>remales</u>														
CONTROL (0)	262.8	242.2	267.7	246.7	345.3	۵.	304.9	268.5	281.5	287.6	350.2	251.8	9.892	263.5
100	244.6	230.5	266.8	249.9	245.6	259.3	264.1	241.9	243.2	231.5	243.0	220.6	200.7	518 c
300	269.1	257.3	295.7	238.1	238.6	229.9	298.1	227.2	316.8	275.2	251.6	252.9		263.7
1000	223.8	219.5	246.1	288.2	222.8	232.6	252.1	241.4	229.0	1.99.7	222.7*	263.1	245.5	اد: ،

^aAll spilled food.

Description of the second

p.0.05 as compared to controls: Dunnett's t-test.

The state of the s

**

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE D

CLINICAL HEMATOLOGY - MEAN VALUES
INITIAL

(103/mm3) (106/mm3) (9m8) 9.52 6.120 14.37 11.20 6.817 15.70 9.12 6.790 15.77 10.85 6.462 15.20 10.32 7.200 16.77 10.42 6.645 16.10 9.75 6.945 16.42 8.70 6.910 16.42	MLES	THE COUNT	ERYTHROCYTE COUNT	HEMOGLOBIN	HEMATOCRIT
6.120 14.37 4 6.817 15.70 6 6.462 15.20 15.20 7.200 16.77 6.945 16.42 6.910 16.42		(10 ³ /mm ³)	(10e/mm ³)	(2mb)	(4016)
6.817 15.70 6.790 15.77 15.20 15.20 7.200 16.45 16.10 16.42 16.42 16.42 16.42 16.42 16.42		9.52	6.120	14.37	41.00
6.462 15.20 7.200 16.77 6.645 16.10 6.945 16.42 6.910 16.42		11.20	6.817	15.70	46.00
6.462 15.20 7.200 16.77 6.645 16.10 6.945 16.42 6.910 16.42		9.12	06.790	15.77	46.38
7.200 16.77 6.645 16.10 6.945 16.42 6.910 16.42		10.85	6.462	15.20	44.03
7.200 16.77 6.645 16.10 6.945 16.42 6.910 16.42					
7.200 16.11 6.645 16.10 6.945 16.42 6.910 16.42					70 38
6.645 16.10 6.945 16.42 6.910 16.42		10.32	7.200	16.7/	00.00
6.945 16.42 6.910 16.42		10.42	6.645	16.10	46.88
6.910 16.42		9.75	6.945	16.42	48.25
		8.70	6.910	16.42	48.63

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE D (CONTINUED)

CLINICAL HEMATOLOGY - MEAN VALUES

WEEK 4

MALES				
DOSE LEVEL (PPM)	LEUKOCYTE COUNT (103/mm ³)	ERYTHROCYTE COUNT (106/mm ³)	HEMOGLOBIN (gm%)	HEMATOCRIT (vol%)
0	10.45	. 930	15.42	43.75
100	10.40	7.390	15.75	45.25
300	10.62	7.240	16.00	44.13
1000	10.90	6.545	15.42	43.75
FEMALES				
0	9.22	7.447	16.47	48.25
100	10.80	7.247	16.57	46.25
300	13.07	6.847	16.15	46.75
1000	12.60	6.972	16.47	46.63

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE D (CONTINUED)

CLINICAL HEMATOLOGY - MEAN VALUES

WEEK 8

HEMATOCRIT (vol%)	42.88 46.00 44.75 44.25	45.75 44.00 44.63
HEMOGLOBIN (gm%)	13.92 15.27 14.77 14.42	15.22 14.65 16.57 14.92
ERYTHROCYTE COUNT (106/nm3)	6.077 6.845 6.460 6.687	6.585 6.530 6.877 6.440
LEUKOCYTE COUNT (103/mm³)	10.92 10.25 10.82 10.22	9.27 10.40 11.27 10.82
MALES DOSE LEVEL (PPM)	0 100 300 1000	FEMALES 0 100 300

Secretary of the second

TABLE II-F-40 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE D (CONTINUED)

CLINICAL HEMATOLOGY - MEAN VALUES

TERMINAL KILL

	HEMATOCRIT (vol%)	42.75	46.25	45.63	43.63	•		45.25	44.75	45.13	46.75
	HEMOGLOBIN (gm%)	15.25	16.30	16.00	15.05			15.92	15.97	16.05	16.20
	ERYTHROCYTE COUNT (106/mm³)	6.765	7.157	296.9	6.857	٠		7.175	6.870	7.365	6.922
	LEUKOCYTE COUNT (10 ³ /mm ³)	9.62	11.45	9.37	9.47			10.10	9.37	12.52	10.45
MALES	DOSE LEVEL (PPM)	0	100	300	1000		FEMALES	0	100	300	1000

TABI E II-F-41 CLINICAL CHEMISTRY

LITTON BIONETICS, INC. PROJECT NO. 10734-09 TABLE E

INITIAL

MALES

(L/65.1)	**	0 801	107.5	199,3		אַנוֹן	0 52		: : : : : : : : : : : : : : : : : : :
POTASSICA free:11	5.10	07.70	<u> </u>	<i>y</i>		y y	4 97		, ••
(1976) (1976)	147.3	146.3	145.0	146.3		148.0	147.0	147.9	147.3
URIC ACID (mg/dl)	0.40	0.40	0.45	0.45		0.32	0.25	0.27	0.35
SERUM GL!!TAMIC- PY:VIC TRANS- AMINASE	37.5	37.5	39.0	55.8		31.0	40.5	34.0	43.3
SERUM GLUTAMIC- OXALOACETIC TRANS- AMINASE	34.8	31.5	30.5	33.8		29.3			
S 6 0 PROTEIN, TI TOTAL AI (9/41)(1	6.25	6.32	6.55	5.95		6.20	6.02	6.20	5.92
PHOS- PHORUS (M9/41)	4.90	5.07	4.47	4.40		3,85	4.60	3.97	5.20
ALKALINE PHOS- PHATASE (mU/ml)	75.8	88.0	0.69	85.3		48.8	61.3	62.5	69.3
LACTIC DEHY- DROGENASE (mU/ml)	282.0	144.8	166.8	164.0		157.8	0.66	177.0	145.5
GLUCOSE	96.5	84.3	90.5	91.0		89.8	80.5	90.8	83.5
C!OLES- TEROL (mg/d1)	148.5	162.3	174.0	440.8		145.0	134.3	157.5	146.8
CALCIUM (mg/d1)	11.12	11.12	11.07	10.97		11.07	11.12	10.92	
ALBUMIN (9/d1)	3.80	3.77	4.20	3.82		4.05	3.42		4.02
BLOOD UREA NITROGEN (mg/dl)	13.5	15.8	11.5	12.3		٠	13.5	14.3	13.5
BILI- RUBIN, TOTAL (mg/dl)	0.07	0.05	0.07	0.07				0.10	0.07
DOSE LEVEL (PPM)	0	300	300	1000	LEMILES	0	901	300	1000

AND THE PROPERTY OF THE PROPER

TABLE II-F-41 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-09
TABLE E (CONTINUED)

WEEK 4

	URIC ACID (mg/dl)		(; ;	5.17	0.20	0.55		;	· ;	27.52	મુ. સુત	0.37
	SERUN GLUTANIC- PYRUVIC TRANS- ATIINASE	,	£.55	33.8	35.3	42. 4		÷	<u>-</u> .	٤٠.١	n Y	:. ;;
	SERUM GLUTAMIC- OXALOACETIC TRAIS- AMINASE		04.3	63.8	51.3	53.5	•	57.3	6.75	33.3	36.U	58.8
	PROTEIN, TOTAL (9/41)	6 20	22.5	77.0	6.20	5.12		6.12	£ 07	77.		6.05
	PHOS- PHORUS (mg/d1)	4 40	2 6		. .	4.12		3.67	4 02	7 7 7		7. 12
	ALKALINE PHOS- PHATASE (mU/m1)	58.0	64.8	2 5	6.10	87.5		12.5	65.3	65.5	6.00	02.0
	LACTIC DEHY- DROGENASE (mU/ml)	290.3	257.3	206 6		231.5		436.5	289.8	234.8	346.8	
	GLUCOSE (mg/d1)	0.98	83.5	84.5) :	89.0	•	83.5	84.3	83.0	77.5	
	CHOLES- TEROL (mg/d1)	135.3	164.5	149.0	•	143.5		129.3	134.3	172.3	163.3	
	CALCIUM (mg/d1)	10.82	10.92	10.77	:	10.62		10.95	11.10	10.82	11.00	
	ALBUMIN (9/d1)	3.10	3.02	2.90	!	2.8/		3.27	3.20	2.67	3.02	
	BLOOD UREA NITROGEN (mg/d1)							12.5	14.5	16.0	16.8	
	BILI- RUBIN, TOTAL (mg/d1)							0.12	0.10	0.10	0.10	
MALES	DOSE LEVEL (PPM)	C	100	300	1000	200	FEMALES	0	100	300	1000	

TABLE II-F-41 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE E (CONTINUED)

WEEK 8

MALES

URIC ACID (mg/dl)		31.0			61.7	0.03		:	21:	:,;	• ;	,
SERCY GLUTAYIC- PYRUVIC TRAHS- ATHPASE (mU/m1)		46.5	32.3	, ,,	36.3	41.5		;	. ,	30.3	32.0	3. 7. 2. 5.
SERUN GLUTANIC- OXALOACETIC TRANS- AMINASE	27.5	6.76	34.3	30 5		36.5						35.3
PROTEIN, TOTAL (9/41)	76 3	73.0	6.10	6.27	; ;	5.87		01.9	2	5.77	6.45	5.90
PHOS- PHORUS (mg/d1)	4 27	:	4.32	4.15		4.12		3.85	3	4.17	4.10	4.20
ALKALINE PHOS- PHATASE (mU/m1)	58.3		91.0	50.8		57.5		43.0	· ·	54.5	66.3	61.8
LACTIC DEHY- DROGENASE (mU/m1)	166.8		109.5	111.5		147.5		169.8		160.3	186.8	187.3
(LD/6m) (LUCOSE	88.8	0 00	0.26	97.0	,	87.3		90.0	ç	۲۶.۶	93.3	82.3
CHOLES- TEROL (mg/d1)	136.5	150 3		150.3	9 7 11	: :-		125.0	1,00,1	129.3	188.5	166.8
CALCIUM (mg/d1)	10.87	10, 85		10.80	30.40	÷.0-		10.72	22 01	77.01	10.85	10.60
ALBUMIN	3.12	3.12		3.25	707			3.20	3 07		3.55	3.15
BLOOD UREA NITROGEN (mg/dl)	15.3	16.3	,	12.5	12.0	: :		14.5	15.3)	16.8	16.8
B1L1- RUBIN, TOTAL (mg/d1)	0.07	0.05	1	0.07	0.10) :		0.10	0.10		0.05	0.12
DOSE LEVEL (PPM)	0	100	ç	300	1000		FEMALES	0	100		300	1000

mandon come significant and the second

TABLE II-F-41 (Continued)

HITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE E (CONTINUED)

TERMINAL KILL

MALES

URIC ACID (mq/dl)	0.52	0.47	0.80	7.82			0.52	9.42	9.83	۲. ۲	
SERUM GLUTANIC- PYRUVIC TRA'IS- AMINASE (mit'mi)	45.0	34, 3	33.n	, ` .			35.0	34 0	32 8	, (¿	
SERUM GLUIMHC- OXALOACETIC TRAHS- AMINASE	31.5	31.3	27.0	34.8			32.3	31.0	27.8	29.8	,
PROTEIN, TOTAL (9/41)	6.27	6.10	6.37	5.92			6.02	6.42	5.92	5.82	
P110S- P110RUS (mg/d1)	3.75	3.72	3.50	3,38			3.30	3.42	3.62	3.60	
ALKALINE PHOS- PHATASE (mV/m1)	55.0	46.3	45.3	56.5			40.8	47.0	55.3	54.0	
LACT1C OEHY- DROGEHASE (mU/m1)	238.5	263.5	8.161	229.0			249.3	272.5	278.8	256.5	
GLUCOSE (mg/dl)	74.0	74.0	82.5	87.5			78.0	74.5	76.5	74.5	
CHOLES- FERUL (mg/d1)	98.5	114.0	105.8	92.8			98.8	115.3	140.5	120.0	
CALCIUM (mg/d1)	10.97	10.65	10.82	10.67			10.87	10.75	16.82	10.85	
ALBUMIN (9/d1)	3.85	3.80	3.92	3.75			3.82	3.72	3.72	3.80	
BLOOD UREA NITROGEN (mg/d1)	16.3	16.8	16.5	15.5			15.8	16.8	18.0	17.5	
B1L!- RUBIN, TOTAL (mg/d1)	0.10	0.10	0.10	0.10			0.12	0.10	0.10	0.12	
DOSE LEVEL (PPM)	0	100	300	1000	4	remites	0	100	300	1000	

p.0.05 as compared to controls: Dunnett's t-test.

Constitution of the Consti

THE PROPERTY OF THE PROPERTY O

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE F

MEAN ORGAN WEIGHTS

ဟ	l
نت	I
록	١

LS TESTES	20.2657	20.9540	19.1445	18.6860
ADRENALS	1.1417	1.0752		1.0907
KIDNEYS	61.7987	60.2855	53.7365	55.9045
SPLEEN	77.7282	95.4977	89.5575	97.5097
LIVER	322.0172	302.9150	272.0825	285.9540
HEART	86.8325	88.0802	82.3457	81.0655
THYROID	0.8747	0.7730	0.6197	0.6477
BRAIN	78.5747	89.0372	84.9087	79.2218
BODY WEIGHT	10875.0	11625.0	9825.0	10400.0
DOSE LEVEL (PPM)	0	100	300	1000

EMALES

OVARIES	0.4472	1.4387	1.4852	0.7730
ADRENALS	0.8745	0.7627	0.8057	0.7745
KIDNEYS	39.0597	40.9972	42.5392	41.4102
SPLEEN	80.7205	76.5630	91.7350	91.6745
LIVER	217.1627	255.7722	252,3592	218.2760
HEART	67.6255	68.8920	64.5087	65.9787
THYROID	0.4940	0.6957	0.6425	0.6137
BRAIN	75.4695	79.3445	78.2765	72.4573
BODY WEIGHT	7550.0	8800.0	8850.0	7925.0
DOSE LEVEL (PPM)	0	100	300	1000

* p<0.05 as compared to controls: Dunnett's t-test.

The state of the s

The State of the second of the

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE G

MEAN ORGAN WEIGHT - BODY WEIGHT PERCENTAGES

S	
щ	
=	

DOSE LEVEL (PPM)	BRAIN	THYROID	HEART	LIVER	SPLEEN	KIDNEYS	ADRENALS	TESTES
0	0.7653	0.0095	0.8167	2.9828	0.7667	0.5799	0.0113	0.1949
100	0.7668	0.0067	0.7593	2.6139	0.8220	0.5196	0.0093	0.1813
300	0.8699	0.0062	0.8358	.2.7619	0.9207	0.5484	0.0117	0.1945
1000	0.7642	0.0062	0.7803	2.7655	0.9378	0.5395	0.0107	0.1815
FEMALES								
DOSE LEVEL (PPM)	BRAIN	THYROID	HEART	LIVER	SPLEEN	KIDNEYS	ADRENALS	OVARIES
0	1,0051	0.0065	0.9050	2.8928	1.0571	0.5148	0.0117	0.0061
100	0.9063	0.0079	0.7837	2.9104	0.8690	0.4668	0.0088	0.0164
300	0.9038	0.0074	0.7400	2.8789	1.0678	0.4887	0.0092	0.0155
1000	0.9190	0.0078	0.8359	2.7519	1.1658	0.5257	0.0098	0.0099

A Commence of the Commence of

RESULTS (Continued)

The reports of the consulting veterinary ophthalmologist have been included in the Appendix. The judgment of the ophthalmologist was that the compound produced no ocular changes in the dogs.

The pathological evaluation of tissues from dogs of the high dose and control groups has been included in the Appendix. This evaluation did not suggest any compound-related effect.

CONCLUSION

The test material, Dicyclopentadiene, was administered by incorporation into the diet at concentrations of 100, 300 and 1000 ppm to beagle dogs for 13 weeks. The animals were observed daily for general condition and behavior. Clinical pathological evaluations, including analysis of the clinical chemical constituents of serum, urine and hemograms, were performed at approximately monthly intervals. Tissues from the control and high dose dogs were histopathologically evaluated. Based on the results obtained using these criteria, it was concluded that treatment produced no significant toxicity with the possible exception of minor indications of intestinal distress expressed as vomiting and soft stools among dogs of the treated groups, especially the highest dose (1000 ppm).

Submitted by:

E. Ross Hart, Ph.D.

Study Director
Department of Toxicology

Department of Toxicology

Reviewed by:

Director

TABLE II-F-44

THE TOTAL TO

TABLE 1

```
7117 JACOL 117
5. NUTCT NUMBER - 1073409
1488 : 34/12/77
                          4-1-4
                                           HUSERVATIONS : LIALINIES
                                           CHMMENTS
                                                                        *****
   THE OFFICE WOOLD/SEX HISTORIA
                                   ******
                  ' ALE
                           00417
                                   STAT STOUL
 0.1 5 W. V.
                                   STUDE LIBERTY
                           20414
                                   SEFT STOOL
     100 221
                                   SHET STIPL
                           01421
                                   SCAT STELL
                  FEMALE
                                   VOMITED-SEMISOLID
                           00427
                  1: :L =
                           J2410
                                   MU FEED
                                   SOFT STOOL
                                   N 1 F 110
                           ***
                                   SUPT STOCK
                                   N + F00)
                           *****
                                   WEIGHT LOSS-MARKED
                           ****
                                   FF?
                                   SCET STOOL
                           ****
                                   WITH RED DISCHARGE
                           00419
                                   SCOT STOLL
                                   SCHI STORL
                           30423
                                   SIFT STUDE
                                   VOALTED-SIMISOLID
                                   SIFT STOLL
                                   ALTH NUCUS
                           ***
                                   VOTITED-ISS MISCULO
                  FEAALE
                           00423
                                   SUFF STOOL
                           00432
                                   SUFT STULL
                                   CIJUSINBERGETIMOV
                                   UNCERNTUM: LEAR-FURE, COST
 503 102 334
                   ا يارا
                           30405
                            . . . .
                                   FORT PAGS
                                   VOMITED-LI. HU
                           00415
                                   ESTIMS
     333 + 24
                  FEYALE
                           0.1433
                                   EST:US
                                   ESTRUS
                                   731433
                                   E 37 / 13
                                   EST J3
                           117413
                                    the to In stable
     1007 120
                   126 -
                                   MUTUS IT STOIL
                                   V011150-L12110
                            10419
```

THE PROPERTY OF THE PROPERTY O

1117 15 11 57371 COR COMING STOLE VOMITED-LIGHTY VOMITED-SIATSOLID AUGUS CHATTING STOCK

9,420

TO STORE OF THIS PRIVATION FOR HIT

TABLE 1 (CONTINUED)

```
. . . . .
                                          DASERVATIONS : OUALIFIER
                         JE " 1 12
1. ** 1 36 36 130/5+x *
                                  ##### OCIVENTS
                         NU 48 5 3
                  FE 1765
                          01432
                                  $191 STAGE
                  " 41 E
333 BESTELL
                                  FECES-HUDDED
                          37411
                                  STOOL LIGHT
                           34417
                                  RED GOLDA
                           ****
                                  49% IS I'M STOOL
                                  FERALF
                           10424
     Inc pps
                                  CIUCII-CETIESV
                  WALT
                           20405
                                  YFLLIA MUCUS
                           水水水水水
                           90415
                                  VITTED-SEMIS LID
                          00424
                                  #-073-900010
     373 224
                  FEMALE
                                  ESTRUS
                           3)427
                           0.7433
                                  EST US
                                  MICUS IN STEAL
                                  rstrus.
                                  MUMUS II STUDE
                                  VINITED-LIGHT)
     ייחב בייבו
                  11A1 5
                           00416
                                  190 IS IN STUDE
                                  FIGEOM-PAGES
                                  ARD MUCUS
                           ***
                                  กลัดกระหนึ่งเป็น
                                  FECES-MUCCIE
                                  VITED-SE HISTLID
                                  SCOL FEE
                           本本本本字
                                  136 1S IN STONE
                           22419
                                  FFC-S-MUCKES
                                  AUCIS I ATTHS STUDE
                           10420
                                   11095 COATE STOOL
                                  AUDIS IN STEAL
                                  VI HITTO-SEMISHLID
                                  FITH MICUS
                           なおなおみ
                                  PECES-AUCCI.
                                  VOVITED-SEMISPLIO
                                  FECES-MUCCIU
                                  VUCHS IN STREET
                  FEIMLE
                           11)434
                                  SOFT STULL
                                  18685-7000ID
                                  YTHE "Y WITH WEL
                           ****
                                  STOOL LIBITS
  34 6 15/17/06
                  4 V. I
                           35417
                                  r )
                           * * * * 4: 4.
                                  STANCE LIGHTS
                                  400 15 1NO EN
                           软件条件块
                                  ACMITS THE LIGHT OF
                                  246.00%
                           * ** * * 4
     1, 01.
                           33+97
                                  V MITCO-35 HSOLID
                                  751-5-4 10 NIN
```

AND THE THE PARTY OF THE PROPERTY OF THE PROPE

TOXICOLOGY COSESVATION REPORT

TABLE 1 (CONTINUED)

√ E5⊀	. •	1	AMIMAL		CBSERVATION!	5 :	QUALIFIER
3,2.	- DOSE GROW	P/SEX ≉ i	NUMBER	****	COMMENTS		
			00415	FECES-	MUCDIO		
		EEMAL F		FECES-			
	300 884	CALF		FESES-	MUCOIC		
	5 5 61.1		-	FHCES-	MUCDIT		
			00412	rECES-	·MUCOT:)		
		FEMALE	00421	FECES-	GEGOUM		
			20+24	VOMITE	D-SEMISOLID		
			00427	ESTRUS	5		
			00433	FECES-	MUCCID		
					-MUCUI)		
	1000 PPM	MALE	07416	SUFT S			
					ED-SEMISOLIO		
				SOFT			
					-MUCOID		
					-MUCCID		
					-400010		
			***	YELLOV			
					-MUCDID		
	•			SOFT	LIGUIT		
				SOFT			
				SUFT			
					-4000E		
		CCINE	00432	SOFT			
		FEMALE	00452	SOFT			
			00436		S SHED)ING		
			., 3 . 3 ,		S SHEDDING		
				ESTRJ			
205	CONT (C)	MALE			LIGUIO		
			****	RED	CC	0.1	CUT
		EENALE			SS : LATERAL-	- K 1	Oni
				FOREA SCFT			
	100 PPM	MALE	03407		ED-SEMISOLIO		
			00415		-MUCGID		
			00415	SCET			
		FEAALE	20422		-MUCDIO		
		P C 14C II	20422	FECES	חורסטיי–		
			20431	FECES	-MUCGIO		
	300 000	1AL E	00412	- -	-4700ID		
	3, 22	FENALE			ED-LIGHID		
		, 12	***				
			J:0433		-MUCUIP		
				VOMIT	FO-SEMISOLI)		
	1000 224	14L 5	20416		G1000M=		
	****		****	8EJ 7	MD ASERUM		

Single of the contraction of the

TOXICHLOGY DESERVATION REPORT

%5EK %%. ** 0(\$c \$£60₽	/SEX ~	AN IMAL PB 6F UM	जी के 18 जर क	UBSERVATIONS : COMMENTS	UALIFIER	"以 六本 文汉前家政政政家来审
		± ÷ · · · · · · · · ·		AITH RED		
		001.00	SOFT S FECES-	GIBOUM		
	FEMALE		SOFT S FECES-			
	r = 1 & C r	20423				
			SOFT S			
				MUCOID		•
			SOFT S			
		00434	SOFT S ESTPUS			
			FECES-			•
				D- SEMISOLIO		-
205 CONTROL	MALE	00411	STOOL			
		***		MICOID		
		00417	SOFT S	WITH RED TOOL		
	FEMALE	22434	SOFT S			•
		20435		ひード [づけ] ン		•
		****	PHLEGH			
100 by4	1AL E	00415	FECES-			•
		****	SEVER 1	PE:118		
				LIMB-HIND, RIGHT		
		***	SEVER 4			
				LIA8-HIMO*FEEL		
	SEMALS	J0422	SEVERA SOFT S			
300 224	E EN 7FE	00424	SUFT S			
307.		00427	SOFT S			
		00433		D-SEMISPLID		
		****	MUCUS	0 1 10 11 3		
1336 DEM	MAL E	30413 ****		0-F100ID		
			FECES-			
			SOFT S			
				אחר זו טחא		
				LIQUID		
		****		YUCTI) 		
		4-2-41-44	SOFT S			
				0-F17010		
		***	2HLEGA			
			FECES-			
		U 1423	SCET S	100%		

のでは、「日本のでは、「日

TOXIC LOGY COSERVATION REPORT

486K 10. ++ 1086 9KC4		ANI.AAL NUMBER	
	FEAALE	70432	FECES-MUCOID VOMITED-SEMISHED SCFI STOOL
OOT CONTROL	ሣ ል፤ ፑ	07417 *****	SOFT STOCK SOFT STOCK SOFT STOCK DARK RED VOMITED-LIQUID YELLOW
		00418	SOFT STOOL FECES-MOSOLO VIUGIL-COTIMOV
	FFMALE		PHLEGM SOFT STOOL SOFT STOOL
			SOFT STOOL ARSCESS : LIMB-FORE, RIGHT
100 PPN	1AL E		WITH SEVERAL SCABS FECES-MUCCIC
100 664	TAC I.	00409	FECES MUCDID FECES DISCOLORED
			MUCUS IN STOOL
		00415	FECES-MUCDID LOCAL HAIR LOSS: LIMB-HIND, RIGHT LOCAL HAIR LOSS: LIMB-HIND, LEFT SMALL SCAB(<10M): PENIS
			SEVERAL
	FEMALE		VCMITED-SEMISOLIO
		00431	SCRI STOOL FECES-MUCCIS
300 P2M	AVF		YELLOW MUCUS FECES-MUCUID
207 111	FEMALE		SOFT STOOL
			SUFT STOOL FECES-MUCOID
			FECES-MUCATO
1000 664	AVEE		STOOL LIQUID FECES-MUCOID
		****	YELLOW WITH RED SOFT STOCK FECES-MUCCID STOOK LIQUID FECES-MUCCID SOFT STOOK FECES-MUCCID
		* * * * *	WITH MED SPOTS SOFT STOOL

TOXIC LEGY OPSERVATION PEPOPT

VESK NO. ## DOSE GR		ANIMAL MUMBER	COSERVATIONS : QUALIFIER **********
		00420	FECES-MUCHID SUFT STOCK SOFT STOOK

	FEMALE		
			STOPL LIQUID
			FECES-MUCGIO
		30436	ESTRUS
			LOCAL HAIR LOSS : DORSAL
		***	EXCESS SHEDDING
DOR CONTROL	MALE	00468	
			BLOUD SUBMITTED FUR CHE4 AND HEMOGRAM
		00411	
			MARDOMAN GRA MAHO SOTTIMBUS COCUS
		30417	
		00418	MARCOMEH CVA MEHO AND HENDENS
		07418	FECES-MUCGIO UNINE SUBMITTED FOR ANALYSIS
			BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
	FE44LE	00425	UPINE SUBMITTED FOR ANALYSIS
			MARROMAH GRA FAHO SOA CETTIMBUZ CODJU
		00426	
			BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
		00434	MEDIUM ABSCESS(1-5CM) : LIMB-FORF, RIGHT

			BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
***		00435	
100 984	MALE	00405	URINE SUBMITTED FOR ANALYSIS
		13434	BLOCO SURMITTED FOR CHEM GONDHENCE SURING SON SON SON SON SURING SURING SURING SON
		00406	RLOOD SUBMITTED FOR CHEM AND HEMOGRAM
		00407	
		00415	
		****	SEVERAL
			SHALL SCAB(<1CM) : LINE-HIND, RIGHT
		***	SEVEP AL
			SAALL SCAS(<1CA) : LIMS-HIND, LEFT
		** # # " " "	SEVER AL
			RECOD SUBMITTED FOR CHEM AND HEMORAM
	F EM 21, d		BLOUD SUBMITTED FOR CHEA AND HEMOGRAM
		00429	URINE SUBMITTED FOR ANALYSIS BLOOD SUBMITTED FOR CHEZ AND HEMOGRAM
		01430	
		00431	
		00101	URIVE SUBMITTED FOR ANALYSIS
			BLOOP SUBMITTED FOR CHAM AND HEMCGRAM

TUXICOLOGY GBSERVATION PEPORT

₩ 55% NO. ** DOSE GROJP/SEX *	AM I MAL NO MBER	OBSERVATIONS: QUALIFIER ************************************
30) 2PM 44LE	0)404	FECES-MUCOID SOFT STOOL
		STEPI. LIQUID
		OPINE SUBMITTED FOR ANALYSIS
	22439	BLUDD SUBMITTED FOR CHEM AND HEMOGRAM URINE SUBMITTED FOR ANALYSIS
	77,409	BUCGO SUBMITTED FOR CHEM AND HEMUGRAM
	00412	
	00414	BLOOD SURMITTED FOR CHEM AND HEMOGRAM
FEMALE	00421	FECES-MUCDID
		URINE SUBMITTED FOR AMALYSIS
	00/2/	BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
	99424	SOFT STOPL FECES-MUCCID
		SOFT STOOL
		SOFT STOOL
		FECES-MUCDID
		SOFT STOOL
		FECES-MUÇOID
		SCET STOOL
	0.14.27	BLOOD SUBMITTED FOR CHEM AND HEMOGRAM BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
		FECES-MUCCIO
	V 9 . 7 2	JEINE SUBMITTED FOR AMALYSIS
		BLOCO SUBJECTED FOR CHEM AND HEMOGRAM
ECON MAR CCOL	00413	
		MARROMAH DNA MEHO FOR CETTIMBUS COOR
	30416.	SOFT STOOL
		SCET STOOL
		VONITEO-LIQUID
		STOCK LIQUID
		FECES-MUCOID
	****	WITH RED STREAKS
		SCET STOOL
		SOFT STOUL FFSES-MUCOID
		URINE SUBMITTED FOR ANALYSIS
		BLGGD SUBMITTED FOR CHEM AND HEMOGRAM
	20419	
	00420	
		SOFT STOOL SOFT STOOL
		PLOCO SUBMITTED FOR CHEM AND HEMOGRAM
FEVALE	00423	
		CIUCIJ-CETIMOV
	***	PHLEGM

TOXIC LOGY OBSERVATION REPORT

EEK NO: ** DUSE GROU	10/SEX *	AN I MAL NUMBER	PRINCIPLES ************************************
		00432	URINE SUBMITTED FOR ANALYSIS BLUOD SUBMITTED FOR CHEM AND HEMOGRAM SOFT STOOL SOFT STOOL FECES-MUCDID SOFT STOOL FECES-MUCDID SOFT STOOL FECES-MUCDID SOFT STOOL FECES-MUCDID
		0.0 (0)	BLOOD SUBMITTED FOR CHEM AND HEMOGRAM
		00436	SECOD SUBMITTED FOR CHEM AND HEMOGRAM EXCESS SHEDDING
		00437	URINE SUBMITTED FOR ANALYSIS BLOUD SUBMITTED FOR CHEM AND HEMOGRAM
JUSTACO ECC	MALE	20411	URINE SUBMITTED FOR AMALYSIS
		00417	RLOCD SUBMITTED FOR CHEM AND HEMOGRAM URINE SUBMITTED FOR ANALYSIS
		00411	PLOOD SUBMITTED FOR CHEM AND HEMOGRAM SUFT STOOL FECES-MUCOID
	FEMALE	20434	FECES-MUCDIO - URINE SUBMITTED FOR ANALYSIS
	· · ·		MARDOMEH GRA MEHO ROTTIMBUS CODUE GLODUM-ESES : CIMD-FORE, THOIS LADDE THOIS, EMMI-EMMIS : COSO THAT
		***	LESION : LIMS-FORE,RIGAT - 50M,RED
		00435	
100 Pen	1AL E	00406	MARROMAH GKA KAHO KOT CETTIMAUZ CODIB LOOTZ TEOZ
			SCFT STUCL
		00407	UPINE SUBMITTED FOR AMALYSIS BLOCD SUBMITTED FOR CHEM AND HEMOGRAM SOFT STOOL
		00415	URINE SUBMITTED FOR AMALYSIS BLGCD SUBMITTED FOR CHEM AND HEMOGRAM SOFT STOOL
		***	L MUAL HAIR LOSS : LIMB-HIMD, RIGHT INNER THIGH
		* * * * *	LOCAL HAIR LOSS: LIAB-HIND, LEFT
			PENILE DISCHARGE
		A.A.S.#7	GREENISH FAPILLOMA: PENIS
		****	LEFT SIDE

TEXICALOGY OBSERVATION REPORT

WEEK WEEK	AMIMAL ~ NUMBER	OPSERVATIONS : QUALIFIER **** COMMENTS ************************************
		LESION : PENIS LESION : LIMB-HIND, RIGHT INMER THIGH LESION : LIMB-HIND, LEFT
	* * * * *	INNER THIGH
4 5 7 A		BLUDD SUBMITTED FOR CHEM AND HEMOGRAM SWELLING
		MAMMARY GLANDS Urine Submitted for Analysis
	20430	BLOOD SUBMITTED FOR CHEM AND HEMOGRAM VOMITED-LIQUID
		PHLEGM
300 PPM HALF		SOFT STOCK FECES-MUCDID
		SOFT STOOL
	30412	URINE SUBMITTED FOR AMALYSIS BLOOD SUBMITTED FOR CHEM AND HEMOGRAM FECES-MUCTID VOMITED-LIQUID
•		PHLEGM FECES-MUCCIO
	00414	PLOND SUBMITTED FOR CHEM AND HEMOGRAM
FEMA		SOFT STOOL URIJE SUBMITTED FOR ANALYSIS
	90424	PRIME SUBMITTED FOR AMACISTS BLOOD SUBMITTED FOR CHEM AND HEMCGRAM
	00427	URINE SUBMITTED FOR ANALYSIS
		REDGO SUBMITTED FOR CHEM AND HEMOGRAM FECES-MUCHIO VOMITED-LIQUID
	****	PHLEG 4 SWELLING

	00433	FFCES-MUCCIO SOFT STOCL SWELLING
	***	MA 11ARY GLANDS
1000 PPM MALI	3)414	FECES-MUCCIO FECES-MUCCIO

	00419	URIVE SUBMITTED FOR AMALYSIS BLUUD SUBMITTED FOR CHEM AND MEMOGRAM LESIGN : LIMB-HINO+FIGHT

	20429	URINE SUBMITTED FOR ANALYSIS BLOOD SUBMITTED FOR CHEM AND HEMOGRAM

TOXICOLOGY CASERVATION PEPPET

MEEK	ANTMAL	OBSERVATIONS: QUALIFIER ************************************
F E.4AL F	90432	SOFT STOOL STOOL LIQUID FFCES-MUCDID UPINE SUBMITTED FOR ANALYSIS BLOOD SUBMITTED FOR CHEM AND HEMOGRAM SOFT STOOL SOFT STOOL STOOL LIQUID SOFT STOOL SOFT STOOL SOFT STOOL
	00436	URINE SUBMITTED FOR ANALYSIS BLUOD SUBMITTED FOR CHEM AND HEMOGRAM FECES-MUCCIO EXCESS SHEDDING
	00437	
OTO CONTROL MALE	J0403	HECES-MUCCIO FECES-MUCCIO
	00417	SOFT STUDE FECES-MUCDID SOFT STORE
	00419	PENILF DISCHARGE
	é non min	Wa thirt is a second of the se
FEMALE	00425	FECES-MUCDIO
		VCAITED-LIGUID
	****	VOMITED-LIQUID
		PHIEGM
	0)434	
	***	LESION : LIMB-FORE RIGHT
	ofer of the site site site	CLEAMED WASENSIDE
•	4.4.4.4.4.	LESTON : LIMB-FORE, RIGHT
	***	CLEANED MAREBOXIDE
		LESION : LIMB-FORE, RIGHT
	****	CLEANED WYPEROXIDE
		LESION : LIME-FORE, RIGHT

		LESION SONE DIAME
		LESION : LIMB-FORE,RIGHT CLEANED W/PERDXIDE
		ACMILEU-FIJAID
		PhLEGM
אפר נכן אוב או	00407	
1.3 11 1-46		SOFT STOCK
		VCAILED-F1901D
	* * * * *	PHLEGN

enter tentral de la company de la compand

TOXICOLOGY OBSERVATION REPORT

TABLE 1 (CONTINUED)

```
ORSERVATIONS : JUALIFIER
                         ANIVAL
WEEK
                                                                    *****
4.". ** DOSE GRUUP/SEX * NUMBER
                                 **** CC.11ENTS
                                 CIUQII-DETIROV
                          ***
                                 PHLEGH
                                 SOFT STOOL
                                 GIUCII-DETIMOV
                          ****
                                PHLEGM
                          00415
                                 PENILE DISCHARGE
                                CLEAMED W/PERCXIDE
                          ***
                                 PENILE DISCHAPGE
                          ***
                                 CLEANED W/PEROXIDE
                                 PENTLE DISCHARGE
                                 CLEANED W/PERCXIDE
                          ***
                                 PENILE DISCHARGE
                                 CLEANED WIPEKOXIDE
                                 SOFT STOOL
                                 PENILE DISCHARGE
                                 BCIXORBANED WYPERDXIDE
                          ***
                                  SHELL ING
                  FEMALE
                          00422
                                 MAMMARY GLANDS
                          ****
                                  SMELLING
                                 MAMMARY GLANDS
                          ネナヤヤネ
                                  SWELL ING
                                  MARIMARY GLANDS
                          * * * * *
                                  STELLING
                                  MANMARY GLANDS
                          *** **
                                  SOFT STOOL
                                  SWELL ING
                                  44 144RY
                          ***
                                  SWELL ING
                          ****
                                  MAMJARY GLANDS
                                  SWELL ING
                          20429
                                  MAYMARY GLANDS
                          ****
                                  SMELLING
                                  MATTARY GLAMOS
                          ****
                                  FECES-MUCCID
                          00430
                                  OTHERT-LIGHTO
                          ***
                                  PHLEGM
                                  SUFT STUCK
                          00431
                                  FECES-MUCDIO
                                  FECES-MUCDID
                  AAL E
                                  FECES-MUCGIO
                          00404
      307 25W
                                  CIUPIJ JOOTS
                                  FECES-MUCTID
                                  WATED SPOTS
                           大水水水水
                                  FECES-MUGDID
                                  CIUCIA-GETIMOV
                                  PHLEGY
                           ****
```

九九十 · 在美国

SOFT STOOL

00424

FEMALE

TOXICOLOGY OBSERVATION REPORT

MEEK MO. ** DOSE GROUP/GE	ANIMAL EX * MUMBER		CUSPRVATIONS COMMENTS	: JUALIFIER	*****
		SWELLI	NG LY GLANDS		
	20 At 40 At 30	SWELLI			
	* ***		Y GLAMOS		,
	***	S VELLI	RY GLANDS		
		SWELLI			
	****	MAAMAR			
	والعراقة ودريان بالويان	SVELLI	ING RY GLANDS		•
	40 40 40 40 40	SWELL			
			RY GLANDS		
		SWELL			
	e waxx	-	KY GLANES LIQUID		
			-MUCOID		
		SWELL			
	****	SUELL	RY GLANDS		
	x ** * *		RY GLANDS		
		SWFLL	180		
	* 4 * * *		RY GLANDS		
	***	VU™III PHLES'	M M		
		SWELL			
	* * * * *		RY GLANDS		
	***	SWELL	ING Ry GLANDS		
		SWELL			
	***	•	RY GLANDS		
1000 PP4 MA	LF 00416				
		SUFT	- VUCOOUM - NOOTS		
		SOFT			
		SOFT			
	00420		-MUCDID		
	05425		ED-F13719		
	****	1			
		-	STOOL Clubleca		
	÷1 m = *				
ŧ Ē	MALE 00423	FECES	CICSUM-		
	やなななな		RED STREAKS FD-LIQUID		
	****	-			
	02432		STOOL		

a mente contraction and application of the second of the s

THE STATE OF THE PROPERTY OF T

TOXICOLOGY OBSERVATION REPORT

TABLE 1 (CONTINUED)

オモモス ANIMAL DESERVATIONS : QUALIFIER AC. ** DUSE GROUP/SEX * NUMBER **** COMMENTS SOFT STUCK FECES-MUCDIO SOFT STOOL FEGES-YUCGIO W/RED SPOTS **** SOFT STOOL FECES-MUCCIO SOFT STOOL FECES-MUCDIO SOFT STOOL 00435 VCMITED-LIQUID **** PHLEGM 00437 VOWITED-FIGUIO *** PHLEGM SUFT STOCK 00408 STOOL LIQUID OLI CONTROL MALE 00411 SUFT STOCK 00417 CIJCRIMES-CETIMOV SOFT STOOL CIUÇIJ JOUTS STOCE LIQUID 00419 PENILE DISCHARGE **** OLGANED WYSEROXIDE PENILE DISCHARGE 水水水水水 CLEANED W/PERCXIDE PENILE DISCHARGE **** CLEANED W/PEROXIDE VOMITED-SEMISOLID FEMALE 00425 ACALLED-FISHIO **** PHLEGY EYE ARNORMAL : EYE-RIGHT よけまま体 960 EYE ABNORMAL : EYE-LEFT **** RED EYE ASMOPMAL : EYE-RIGHT *** RED SOFT STOCK SOFT STACE STALL LIGHTS SOFT STUDE SOFT STOOL 00426 00434 LESION : LIMB-FORE, RIGHT ULEANED MYPERCKIDE マロマガジ SCFT STOCK SUFT STOCK

1.3.19.31.

SOFT STOCK

TOXICALOGY CASERVATION FERCET

TABLE 1 (CONTINUED)

```
OBSERVATIONS : WUALIFIER
                         ANT JAL
                                                                    *********
NO. HE DOSE GROUP/SEX " MUMBER
                                 ***** COMMENTS
                                 SCFT STOOL
                          00420
                                 SCET STOUL
                                 STOPE LIQUID
                                 STOOL LIQUID
                                 STOOL LIGUID
                                 STOOL LIQUID
                                 STOOL LIQUID
                                 SOFT STOOL
                 FEMALE 00423
                                 CIUPI 1-CETIMOV
                          ****
                                 PHLEGY
                                 SOFT STOCK
                          00432
                                 STOUL LIQUID
                                 CIUCIL ROOTS
                                 FECES-MUCHID
                                 SOFT STUCK
                                 STOOL LIQUID
                                 STOUL LIQUID
                                 SUFT STOOL
                                 CIUGII JOCTS
                                 APPEARS SKINGY
                                SOFT STOOL
                          77436
                                 SCET STOOL
                                 SOFT STOOL
                                 SHALL MASS(CICH) : LIMB-HIND+LEFT
                          ****
                                 CLEANED W/ PEROXIDE
                                 SOFT STOOL
                          00437
                                 VOMITED-SEATSOLID
                                 STOUL LIQUID
                                 FECES-MUCCIO
                                 WIRED SPOTS
                          ***
                                 STOOL LIQUID
                                 SUFT STOOL
                                 SOFT STOCK
                                 SOFT STOOL
                                 SOFT STOOL
 013 CONTROL
                  MALE
                          30408
                                 CIUCIL-CETIMOV
                          ****
                                 PHLESM
                          90411
                                 FECES-MUCDIO
                          00417
                                 SHET STUDE
                                 VOWITED-LIQUID
                          *****
                                 PHILEGM
                                 APPEARS SKINNY
                                  SOFT STOOL
                                  APPEARS SKINNY
                                  SOFT STOOL
                                  APPEARS SKINNY
```

TOXICOLIGY OBSERVATION REPORT

TABLE 1 (CONTINUED)

WETK NO. ** DOSE GROU	P∕SEX *	ANIMAL NUMBER	0(*******	SSFKVATIONS DMHEMTS	: QUALIFIER	*********
				LIMB-FORE,	EI GHT	
123 224			CLEAMED /			
199 564	AVE	00405	SOFT STO			
			FECES-MUC			
			COVERING VOMITED-L			
			PHLEGM	.17013		
			SOFT STOR	19		
		****	STOOL SOF			
			SOFT STOC			
			STOOL LI			
		00415	PENILE DI			
			CLEANED .			
			SCFT STUC			
			FECES-490			
		****	w/RED STP			
			PENILE DI			
		****	CLEANED N			
			SOFT STOP			
		**********	PENILE DI			
		*****	CLEAMED W			
		***	CLEANED N			
		,	PENILE DI			
		* * * * *	CLEAMED W			
			PAPILLOMA			
		****	LEFT SIDE			
			LESION :	LIABS-HIND		
		***		SRT THIGHS		
				3(<1C4) : P	EHIS	
			SEVERAL			
	FEAALE	00422	SOFT STOO			
			FECES-MUC			
			SGET STOO		*	
		***	MAMMARY G	: VENTRAL-M	10	
			VOMITED-S			
			ESTRUS	7. "15"/LTD		
			SOFT STON	i		
			STOCK LIN			
			SUFT STOO	Ĺ		
		00431	FECES-MUC	210		
300 224	1 1 L F	20+24	FECES-MUC	CIO		
			SOFT STOO	-		
			SUFT STOD			
		20/25	FECES-MUC			
		ეე4ეი	VUMITED-L	["1]]		

THE PROPERTY OF THE PROPERTY O

PHLEGY

THAIRDLOGY CASERVATION REPORT

TABLE 1 (CONTINUED)

```
OBSERVATIONS : QUALIFIER
                         AL IMAL
WEEK
NO. ## DOSE GROUP/SEX # MUMPIER
                                         CCAMENIS
                                  PENILE DISCHARGE
                                  CLEANED W/PEROXIDE
                                  PETITLE DISCHARGE
                                  CLF4VED W/PEROXIDE
                           ****
                                  CIUCID-CETIFON
                           00412
                                  PHLEG "
                           * * * * *
                                  STUCL LIWUID
                          00421
                                  SOFT STOOL
                  FEMALE
                                  FFCES-MUCCIO
                                  LIQUID MUCUS IN STOD
                           ***
                                  CIURIA-CETIMOV
                           00424
                           * * * * *
                                  PHLFGA
                                  FECES-MUCCID
                           00427
                                  STOOL LIQUID
                                  STUCL W/MUCUS
                           ***
                                  STOCK LIQUID
                           00433
                                  FECES-MUCCIO
                                   SWELL ING
                                  MAMMARY GLANDS
                           ネポポポギ
                                   SWELLING : VENTRAL-MID
                                   SCVAJD YPAMMAN
                           * ***
                                   SWELLING : VENTRAL-MID
                                   MAJMARY GLANDS
                           ****
                                   SHELLING : VENTRAL-MID
                                   MAMMARY GLANDS
                           ***
                                   SWELLING : VENTRAL-MID
                                   RCMANARY GLAMAM
                           ***
                                   SWELLING : VENTRAL-MID
                                   MANMARY GLAUDS
                           ******
                                   SWELLING : VENTRAL-MID
                                   MINMARY GLANDS
                           ***
                                   SOFT STOOL
                   MALE
                           00413
      1993 PPM
                                   PENILE DISCHAPGE
                                   CLEANED W/PEPOXIDE
                            ネポポポホ
                                   STOOL LIQUID
                            00416
                                   FECES-MUCDIO
                                   SOFT STOCK
                                   SOFT STOOL
                                   PENILE DISCHARGE
                                   CLEANED WIREBUXIDE
                            チャナン
                                   FEGES-MUCCID
                            00419
                                   SOFT STOOL
                                   LOCAL HAIR LOSS : LIM3-HIMD, KIGHT
                                   INMER THIGH
                            * * * * * *
                                   PAPILLOMA : PENIS
                                   LEFT SIDE
                            ***
                                   LESIGH : LIVE-HIND, KIGHT
```

THE PROPERTY OF THE PROPERTY O

The section of the se

S MALL / SEVERAL

.

TOXIONLOGY ORSERVATION REPORT

TABLE 1 (CONTINUED)

```
GASERVATIONS : QUALIFIER
                         ANIMAL
                                                                     ****
NO. ** DOSE GROUP/SEY # MILIBER
                                  ****
                                         COMMENTS
                          00420
                                  FECES-MUCDIO
                                  SOFT STOOL
                                  FECES-MUCDID
                          * * * * *
                                  IN SOFT STOCK
                                  CIUDII-CETIMOV
                          ****
                                  PHLEGA
                                  SCFT STUCL
                                  SCFT STOOL
                                  COVERED WIMUCUS
                          ****
                                  STOOL LIQUID
                          ****
                                  W/MHCUS
                                  SOFT STOUL
                  FFMALF
                                  SCFT STOOL
                          00423
                                  SOFT STOOL
                          00432
                                  SOFT STOCK
                                  SOFT STOCK
                                  SOFT STOOL
                                  SOFT STOOL
                                  STOOL LIQUID
                                  SUFT STOOL
                          00437
                                  SOFT STUCK
                                  SOFT STOOL
                                  SOFT STOCK
                                  SCFT STOOL
                                  SUFT STOOL
                                  SOFT STOOL
                                  SOFT STOCK
 012 CONTROL
                  MALE
                          00408
                                  VOMITED-LIQUID
                          ****
                                  PHLEGM
                                  SCFT STOOL
                          00411
                                  STOOL LIQUID
                          00417
                                  CIUDIA APOTE
                                  STOLL LIQUID
                                  SOFT STOOL
                                  SCFT STCOL
                                  FECES-AUCGIO
                                  SOFT STOUL
                                  APPEARS SKINNY
                                  SHIFT STOOL
                          00413
                  FEMALE
                          20425
                                  STOOL LIQUID
                           00426
                                  CIUPIT-CETIFOA
                           ****
                                  PHLEGY
                                  SOFT STOOL
                           00434
                                  LOCAL HAIR LOSS : LIMB-FORE, FIGHT
                                  SOFT STOOL
                                  LESICH : LIMO-FORE, RIGHT
```

THE PARTY OF THE P

The state of the s

TOXICOLOGY TESTAVATION REPORT

WEEK Min. ** DOSE GRUUP/SE	X * .NINGES	DESERVATIONS : QUALIFIER **	************
LC) PPM MAL		VOMITED-LIQUI)	
	***	PHLEGM	•
		SOFT STOOL SOFT STOOL	
		PAPILLUMA : NOSE: ABOVE	
	39406	SIOUR FLORID	
	3.7403	VCMITED-SEMISOLIO	
		VO-LITED-SEAISOLIO	
		SOFT STOOL	
	00407	SWELLING : LIMB-HIND, LEFT	
	***	ON FOOT	•
		LESION : LIMB-HIND, LEFT	
		CLEANED WALEHOXIDE	` .
	00415	SOFT STOOL	
		FEGES-MUCGIO	
	4.	PENILE DISCHARGE	
	****	CLEANED MYPEROXIDE STOOL LIQUID	•
		STOOL LIQUID	
		LOCAL HAIR LOSS : PENIS	٠.
		LOCAL HAIR LOSS : LIMB-HIND, RIGHT	
	***	VENTRAL SIDE	
		LOCAL HAIR LOSS : LIMB-HIND, LEFT	
	***	VENTRAL SIDE	
		PENILE DISCHARGE	
		SUFT STOOL	
		PAPILLOMA : PENIS	
		LEFT AND RIGHT SIDES	
FEA		SWELLING : VENTRAL-MID	
	***	MAMMARY GLANDS	
		SOFT STOOL SWELLING: VENTRAL-MID	•
	يد پد يد په يد	MAMMARY GLANDS	•
	مله دي ديد دل مل	SUELLING : VENTRAL-MID	
	***	MANMARY GLANDS	
		SHELLING : VENTRAL-MID	
	* * * * *		
		SWELLING : VENTRAL-MID	
	* = = = = = = = = = = = = = = = = = = =	MAMMARY GLANDS	
		SWELLING : VENTRAL-410	
	****	- · · · • • · · · · · · · · · · · · · ·	
		SHELLING : VENTEAL-MID	
	****		. •
	0 1429		
	10420	SOFT STOCK STOCK LIQUID	• •
	30430	2105 F1401)	w 4
		J (L L L V / L V	* •

BENEFIT OF THE PROPERTY OF THE

TOXICOLOGY OPSERVATION LEPORT

TABLE 1 (CONTINUED)

```
OBSERVATIONS : QUALIFIER
. FEK
                         ANIMAL
                                                                    *****
MC. " > DOSE GROUP/SEX # NUMBER
                                 ***** COMMENTS
                                 FECES-MUCDID
                                 SCFT STOOL
                                 SCFT STUDL
                          00431
                                 SOFT STOOL
     300 PPM
                 MALE
                          10404
                                 VOMITED-SEMISOLID
                                 STOUL LIQUID
                                 FECES-MUCCIO
                                 PENILE DISCHARGE
                          00409
                                 CLEANED W/PEROXIDE
                          ****
                                 SCET STOOL
                                 SCFT STOCL
                                 PENILE DISCHARGE
                                 SOFT STOOL
                                 SOFT STOOL
                          C3412
                                 STOOL LIQUID
                                 SOFT STOCK
                 FEMALE
                          20421
                                 SOFT STOCK
                                 SCARPED TISSUE : EAR-LEFT: INSIDE
                                 OM FLAP-KED AREA-1.5
                          ****
                          22424
                                 SOFT STOOL
                                 SOFT STUGL
                                 SEFF STOOL
                                 FECES-MUCCIO
                          00427
                                 SUFT STOCK
                                 VOMITED-SEMISOLID
                                 SHELLING : VENTRAL-MID
                          00433
                          ****
                                 MAMMARY GLATIOS
                                 SWELLING : VENTRAL-MID
                          ****
                                 MAMIARY GLANDS
                                 SOFT STOCK
                                 SUFT STOOL
                                 CIUÇIL-GETIMOV
                                 PHLEGM
                                 SCFT STOCK
                                 SOFT STOOL
     1000 PPM
                 MALE
                          00413
                                  STOOL LIQUID
                                 STET STOOL
                          20416
                                 FECES-MUCDIO
                                  SOFT STOOL
                                  STOCK LIQUID
                                  STOPL LIQUID
                                  SCET STOOL
                                 STOOL LIQUID
                          7 )419
                                  FECES-MUCCIO
                                  FECES-"UCOID
                                 LOCAL HAIR LOSS : LIMB-HIND+RIGHT
                          ****
                                 INMER THIGH
```

THE LANGE THE PARTY OF THE PART

TOXICALAGY CHISERVATION REPORT

TABLE 1 (CONTINUED)

```
CASERVATIONS : WUALIFIER
4 EEK
                         JAMIMAL
NO. ## DOSE GROUP/SEX # NUMBER
                                        COMMENTS
                                                                    ****
                                 ***
                                 SOFT STOOL
                                 APPEARS SKINNY
                                 SOFT STOOL
                                 APPEARS SKINNY
                                 SOFT STOOL
                                 APPEARS SKINNY
                                 SOFT STOOL
                                 SOFT STOOL
                 FEMALE
                          00425
                                 SOFT STOOL
                                 SOFT STOOL
                          00426
                                 SOFT STOCE
                                 SOFT STOOL
                          00434
                                 SOFT STOOL
     100 PPM
                 MALE
                          00405
                                 SOFT STOOL
                                 SOFT STOCK
                                 SOFT STOOL
                                 SOFT STOOL
                                 SCET STOOL
                                 SCFT STOOL
                                 SOFT STOOL
                          00496
                                 FECES-MUCDID
                          00407
                                 LESION : LIAB-HIND, LEFT
                                 CLEANED W/PEROXIDE
                          ****
                                 SOFT STUCL
                                 SOFT STOOL
                                 GIUCII-CETIMOV
                          ****
                                 PHLEGM
                          00415
                                 STOOL LIQUED
                                 FECES-MUCOID
                                 SOFT STOCK
                                 SIFT STOOL
                                 SUFT STUCE
                                 SWELLING : VENTRAL-MID
                 FEMALE
                          00422
                                 MAMIARY GLANDS
                          *** **
                                 SWELLING : VENTRAL-MID
                                 SOFT STOOL
                                 SWELLING : VENTRAL-MID
                          ****
                                 MAMMARY GLANDS
                                 SOFT STOOL
                                 SWELLING : VEMTRAL-MID
                                 SWELL ING : VENTRAL-MID
                                 RCKAJO YSAKKA
                          ****
                                 SWELLING : VENTRAL-MID
                                 MAMAAKY GLANDS
                                 SWELLING : VENTRAL-41D
                                 MAMMARY GLAMDS
                          ***
```

The state of the state of

SCFT STOOL

TOXIC: LOGY CASERVATION REPORT

WEEK NO. TH DOSE GRAD	, 1 × ×5219	AN IMAL MUMERA	OBSERVATIONS : QUALIFIER ****** COMMENTS **	****
		J0430	SCET STOCK SOET STOCK STOCK LIQUID VOMITED-SEMISOLID SCET STOCK STOCK LIQUID STOCK LIQUID	
309 PPM	MALE	00404 00409	SOFT STOCE STOOL LIQUID SOFT STOCE SOFT STOCE SOFT STOCE	
		00412	SOFT STOCK STOCK LIYUTO	
		00414	SOFT STOOL SCET STOOL VUAITED-SEMISOLID	
	FEMALE	00421	SOFT STOOL SOFT STOOL SOFT STOOL	
		00424	SOFT STOOL SOFT STOOL SOFT STOOL	
		00433	STOOL LIQUID SOFT STOOL FECES-MUCOID SOFT STOOL	
1000 PPM	MALE	00416	SOFT STOOL SOFT STOOL SOFT STOOL	
		00420	SOFT STOCK SUFT STOCK SOFT STOCK SOFT STOCK SOFT STOCK SOFT STOCK	
		****	VOMITED-LIQUID PHLEGM SOFT STOCK	
	⊏ € 4VΓ €	00423 00432	SOFT STOOL SOFT STOOL APPEARS SKINNY STOOL LIQUID APPEARS SKINNY STOOL LIQUID HECES-MUCOID	

TOXICOLOGY UNSERVATION REPORT

TABLE 1 (CONTINUED)

C3SERVATIONS : QUALIFIER WEEK ANIMAL NO. ** DOSE GROUP/SEX * NUMBER ***** COMMENTS APPEARS SKINNY STOOL LIQUID FECES-MUCDID APPEARS SKINNY STOOL LIQUID APPEARS SKINNY STEEL LIQUID APPEARS SKINNY STOOL LIQUID SKINNY 0.0436 SOFT STOOL SOFT STOOL 00437 SOFT STOOL CIUPIL LOOTS SOFT STUCL FFCFS-4UCOID *** LIQUID MUCUS SUFT STOOL SOFT STOOL MALE 00403 014 CONTROL VOMITED-LIQUID PHLEGM VSMITED-LIQUID *** PHL #GM TERMINAL KILL 99411 TEPMINAL KILL 20417 SOFT STOOL SKINNY SOFT STOCK SKINNY SHFT STOOL VOMITED-LIQUID **** PHLEGM SCFT STUGL SKINNY APPEARANCE STOOL LIDUID SKINNY TERMINAL KILL TERMINAL KILL 0.3413 SOFT STOOL FE11LE 00425 SCET STOOL SUFT STOOL SOFT STOOL SOFT STOOL TERMINAL KILL TERMINAL KILL SOFT STOOL

TOYICHLOGY COSERVATION REPORT

TABLE 1 (CONTINUED)

1755K 180. ** DOSE GROUP/SEX *	AMIMAL NUMBER	OBSERVATIONS: QUALIFIER ***** COMMENTS	****
	00426	SUFT STOOL	
	00434	TFRMINAL KILL SUFT STOOL	
100 PPM MALE		SOFT STOOL	
		SUFT STOOL	
		SOFT STOOL	
		SOFT STOOL SOFT STOOL	
		TERMINAL KILL	
		TERMINAL KILL	
	00406	SOFT STOCK	
		SCFT STOCK STCCL LIQUID	
		TERMINAL KILL	
	00407	SGFT STOOL	
		FECES-MUCTIO	
ECHNE		SUFT STOOL SWELLING : VENTRAL-MID	
E E M VL E		MANMARY GLANDS	
		SWELLING : VENTRAL-MID	
	****	MA 4MARY GLANDS	
	ملا يې ملد د د د	SWELLING : VENTRAL-MID MAMMARY GLANDS	
		SOFT STOOL	
		SHELLING : VENTRAL-MID	
	*****	MAMMARY GLANDS	
		SOFT STOOL SKELLING : VENTRAL-MID	

		TERMINAL KILL	
		SOFT STOOL	
	44444.	SWELLING : VENTRAL-MID	
	***** 00429	MAMMARY GLARDS VOMITED-SEMISOLID	
	00427	SCET STOOL	
		SOFT STOCK	
		TERMINAL KILL	
	00430	SCHT STOOL SUFT STOOL	
	30433	TEDMINAL KILL	
	00431	SOFT STUCK	
	03/0	TERMINAL KILL TERMINAL KILL	
300 P24 MALE	03404	TERMINAL KILL STOOL LIQUID	
	00409	SOFT STOOL	
		SOFT STOOL	
		SOFT STOCK	

TOXICOLOUY OBSERVATION REPORT

MO. ** DOSE GROUP/SEX	₩ 11198 EB W 1.174 F	CBSERVATIONS : DUALIFIEF ***** COMMENTS
FE'1NL	00412 00414 00421 00424	SCFT STOOL
	00433	STOOL LIQUID TERMINAL KILL SOFT STOOL SOFT STOOL SOFT STOOL FECES-MUCCID
BJAN MAS OCOL	00413 *****	VOMITED-LIQUID PHLEGM
	****	PHLEGH PHLEGH TERMINAL KILL
	00416	SOFT STOOL STOOL LIQUID SUFT STOOL TEPMINAL KILL
·	09419 00420	FECES-MUCDID SOFT STOOL SOFT STOOL VOMITED-SEMISDLID SOFT STOOL
FEVA	LE 00423	SOFT STOOL SOFT STOOL
	* * * * * *	VOMITED-LIQUIO PHLEGM STOOL LIQUID SOFT STOOL TEPMINAL KILL
	00432	STOOL LIQUI) SKINNY STOCK LIQUID SKINNY STOCK LIQUID SKINNY APPEARANCE STOCK LIQUID SKINNY APPEARANCE STOCK LIQUID SKINNY APPEARANCE

TUXICULUSY ORSERVATION PEPGRT

TABLE 1 (CONTINUED)

40. **	703F	GRCUP/	SEX -	VALARES	*******	CHSERVATIONS :	GUALIFIER	******
					TEG 41%	AL KILL		
					STOOL	LIQUID		
					SKINNY	APPEARANCE		
				00436	VCHITE	O-SEMISOLID		
					RED SP	JCOTS NI STO		
					TERMIN	AL KILL		
				00437	STOJL	FIGUID		
					STOOL	FIBUID		
					SOFT S	TOOL		
					SOFT S	TOBL		
					TERAIN	AL KILL		
015 CG	NTP.31	. F	EMALE	00434	TERMIN	AL KILL		
				00435	TERMIN	AL KILL		
13	7 201	k k	AL E	00407	TERMIN	AL KILL		
				09415	TERMIN	AL KILL		
30	0 061	1 F	EMALE	0 3427	TERMIN	AL KILL		
				00433	TERAIN	AL KILL		

JULY DARIMSET

TERMINAL KILL

		₹									
		TERMINAT	*	15.8	D .	7.6		4	6.01	E .	1.1
		6 /8	E 7	15-5	9.0	m (•	11.0	9.0	1.5
		8/2	12	16.0	10°2	0.0		4	11.6	3.0	1:5
		1/26	=	15.5	10.1	~ 6	6	4	11.1	5.9	1.5
		61/1	9	15.4	10.0	9.6	9.8	4	11.2	2-8	1.4
		7/12	0	15.3	6.6	6.3	6.6	*	1:1	2.8	1.4
		2 //	80	14.5	9 . 8	9.5	8.9	4	10-1	2.6	1.3
		6/28	~	14.4	6.6	9.5	4.6	*	10.8	2.4	1.2
		6/21	9	14.3	9.6	4.6	9.5	4	10.8	2.4	1.2
		6/14	S	13.6	9.8	4.6	4.6	4	10.6	2.1	
		1 /9	•	14.1	10.4	10.2	9.5	4	11.0	2.1	1.0
	CONTROL	5/31		14.0	9.8	9.6	9.8	4	10.8	2-1	1:1
A 00SE: C	16 (197	, ~	13.5	9.5	9.1	4.1	4	10.6	67		
3409 NO: 301 S: INC.	t	DATES OF TESTING (197)	:-	13.6	9.7	8.6	9.6	4	10.7	0	1.0 1.0 1.0
NO. 107 GROUP IONETIC	1 HALES	ATES OF		13.6	8,0	10.0	9.6	4	e - C	7	0
PROJECT NO. 1073409 COMPUTER GROUP NO: 301A LITTON BIONETICS, INC.	GROUP 1	ANHL D	•	804	117	417	418	3 107140			S. C.

TABLE II-F-45 (Continued)

	TERMINATION 14- 14- 8.3 7.6 7.9 6.4 7.5
	8/ 113 113 113 113 113 113 113 113 113 11
	8/ 2 112 112 8:6 6:6 8:4 00.0
	2/12 118 118 100 100 100 100 100 100 100 100
	200 000 000 000 000 000 000 000 000 000
	7/12 8 9 9 8 7 6 9 9 10 0 10 0
	7/ 8 8 8 9 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	6/28 8.3 17.6 1.9 6.1 0.1 0.3
	6/21 1.56 7.9 6.6 6.0 7.0
	41.75 4.05 4.00 4.00 7.00 7.00
	7 4 8 8 8 4 7 1 8 8 8 9 7 1 8 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 9 9
CUNTROL	81 5/31 3 3 1.9 6.5 6.9 7.9 0.1
••	NG (1978) 5/24 5/24 5/2 8-1 7-7 6-7 6-7 6-7 6-8
73409 NO: 30 CS• 1NC TA ES	FD ESTE 5/17 1.0 1.0 1.0 6.9 6.9 6.9 6.9
HOJECT NU. 1073409 COMPUTER GROUP NO: 301 LITTON BIONETICS, INC. 100Y WEIGHT DATA SROUP I FEMALES	0,CONTINU 5/10 5/10 8.6 8.1 7.0 4 4 0.4
PRUJECT NU. 10/3409 COMPUTER GROUP NO: 3018 LITTON BIONETICS, INC. BODY WEIGHT DATA GROUP I FEMALES	TABLE 2 (CONTINUE) 5 / 24 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /

and the state of t

下のなる者、人民のでくれ、と、といれば我の教育教育教育の大学の教育なるなるとなっています。

	8				
	TERMINA 14 12.0	10.9 10.9	•	0.1 0.7	n 0
	13 13 11-8	9.01	•	11.9	0
	8/ 2 12 12.6		7	12.4	9.0
	7/26 11 12-7	13.6	6-11 *	12.5	7. 0
	100	13.4	11.9	12-3	4-0
	7/12	13.4	11.8	12.3	4.0
	2,8	12.9	11.7	12.2	0.3
	6/28	13.4	11.7	12.2	0
	12/9	2-11-12	9.11	12.0	0
	41/9	12.7	11.7	11.8	
	1 /9	12.7	5.11	12-2	0.3
H44 001	5/31 3/31	13.0	11.7	12.0	0.4
C DOSE: 100	1G (1978) 5/24	12.6	4.11	11.8	0.0
3409 NO: 301 S. INC.	D) TESTIN 5/17	11.7	11.5	4,11.8	0.0
GROUP GROUP 10NET IC GHT DAT MALES	ATES OF 5/10	12.4 12.8	11.6	4.12.1	0.0
PROJECT NO. 10/34U9 COMPUTER GROUP NO. 301C LITTON BIONETICS. INC. BODY WEIGHT DATA GROUP 2 MALES	TABLE 2 ANNL NO.	405	407	SAMPLE	S.D.

	NATION				
	TERMI 14	 	7.8	4 8	000
	8/ 9 13	8.0 9.0	9°3	4 6	000
	8/ 2 12	1.0	10.8 8.8	i*	0.0
	7/26 11	e . c	0 0 0 0	40	0.0
	01/1	3 6	10.1	40	0.3
	7/12	1.6	10-2	4 0	0.3
	2 / 5 8	9 0	10.0	4.0	000
	6/28	0 0	1001	4	00
	6/21	9.0	6.0	4 ° 0	00
	6/14	w -	4.0	4	900
	1 /9	6.7	10.0	· •	
00 PPM	5/31	2.8	6.6		000
10 • 00SE: 100	NG (1978) 5/24 5	8.5	0 0 8	47	000
3409 NG: 301 S: INC. A	(CONTINUED) DATES OF TESTING (1) 5/10 5/17 5/24	B. 7	, , , , , , , , , , , , , , , , , , ,		n ~ •
GROUP GROUP IONETIC SHT DAT	CONTINUE ATES OF 5/10	0.6	200	· ·	0 0 0
	TABLE2 (624	SAMPLE	MEAN S.D.

Signal Sur

washing and who was down and

A CONTRACTOR OF THE PROPERTY O

TERMINATION 14 10-8 9-4 9-4 10-4 10-4
8/9 10.4 9.2 9.1 10.8 9.9 0.9
8/ 2 12 11-1 10-0 10-0 11-5 10-4 10-4
7/26 11 10.9 9.8 9.2 11.5 10.3
7/19 10.9 9-8 9-5 11.4 10.4 0.9
7/12 9-6 9-6 111-3 10-8 0-6
1/5 10.4 9.54 9.54 11.2 10.8 0.8
6/28 10.9 9.5 9.5 9.4 11.1 10.2 0.9
6/21 6 10.7 9.7 9.0 10.7 6.0 0.8
6/14 5 10.0 9.7 8.9 10.5 0.7
6/ 7 4-10-9 4-7-9-1 10-6 4 10-1
300 PPH 5/31 5/31 10.3 9.4 9.2 10.9 4.9
5409 NG: 301 S. INC. A MED 5/17 1 10.4 9.5 9.6 9.6 9.6 0.7
40. 1073 GRUUP 1 GRUUP 1 GHT DAT MALES ATES OF 5/10 0 10.6 9.2 10.7 10.0 10.0
PROJECT NO. 1073409 COMPUTER GROUP NO. 301E LITTON BIONETICS. 1NC. BODY WEIGHT DATA BODY WEIGHT DATA BODY WEIGHT OATS GROUP 3 MALES CONTINUED 1

A CONTROL OF A CON

· 17 wo 100met 19時代代 政治政策を受けられる state and 1844 に 1 to execute as to

	NATION			
	TERMIN 14	200	9.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	8/9 13	0 0 0	**	8.9 1.3 0.7
	8/ 2 12	9.0	0.0	4 6 4 0 6 4 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6
	7/26	0.01 0.01	10.4	4.00 0.4.00
	7/19 10	8.7	10.3	40-00
	7/12	11.0 8.7	10.3	4610
	2/5 8	6.8 6.9	9.5	9.0
	6/28	10.8 8.4	7.6 9.8	1.40
	6/21	10.6 8.3	7.5 9.6	4.0
	6/14	10.4 8.5	7.6 9.8	4.0 1.3 6.0
	1 /9	20.6	7.6 10.1	4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
300 PPM	8) 5/31 3	10.4 8.6	9.5	6.8 1.2
11F DOSE:	NG (197 5/24 2	10.1	9.3	1.37
73409 NO: 30 CS, INC. IA ES	F YEST 1 5/17	10.5	9.3	100
NO. 107 I GROUP STONETIC GHT DAI I FEMALI	5/10 5/10	10.6	4.3 6.9	4 8 4 C
PRDJECT NO. 1073409 COMPUTER GROUP NO: 301F LITTON BIONETICS, INC. BODY WEIGHT DATA GROUP 3 FEMALES DIABLE 2 (CONTINUED)	ANML (421	427	SAMPLE 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

THE PROPERTY OF THE PROPERTY O

The state of the s

		HINATION			*	40	•	4 1	~ m
		TER	1	<u>.</u>	÷	99	*	01	•
		8/9	13	10.3	9.8	10.6	*	**°°	0.0
		8/ 2	12	6-01	9.01	11.1	*	6.0	0.1
		7/26	= ;	9.0	7.01	10.3	•	10.7	0.3
		1/19	٥ :		7.0	11.2	*	9°01	0.3
		7/12	• 6	9 6	2 0	0.0	4	0.0	0.1
		5 //	» c	9		11.2	4.0	0	0.3
		6/28	, v		-	::	*	9.0	0.3
		12/9	0 0			11.5	4 5	8.0	7. 0
		\$1/9	10,0	9-7	10.7	11.7	40	0	••
:	E L	1 /9	10.5	9.6	111	12.3	4 0	1:1	0.5
	3	5/31	6.6	6 6	111	11.5	40	8.0	4.0
916	NG (197	5/24 5	10.6	10.2	10.9	11.4	10.8	0.5	e. 0
73409 ND: 30 CS. INC	ED) F TESTI	5/17	9.01			10.9	4 10.5	0.5	0.2
PROJECT NO. 1073409 COMPUTER GROUP NO: 301 LITTON BIONETICS. INC. BROUP HEIGHT DATA	(CONTINU DATES G	5/10 0	10.9	10.0	11.0	11.4	10.8	9.0	n 0
PROJECT NO. 1073409 COMPUTER GROUP NO: 301G LITTON BIONETICS. INC. GROUP & MAIG	TABLE 2 (CONTINUED) ANNL DATES OF TESTING (19	NO.	413	416	419	450	SAMPLE MEAN	S.D.	3.6.

TABLE II-F-45 (Continued)

					TION									
					TERMINA	14	7.6	7.4	7.9	8.8	•	7.9	9.0	6
					5 /8	13	7.3	7.4	8.0	8.9	4	1.9	0.0	4
					8/2	32	8.0	7.9	8.1	9.8	4	8.4	6.0	5
					7/26	11	7.9	7.9	8.0	9.6	4	8.3	8°0	7.0
					61/1	10	7.8	7.8	8-2	4.6	4	8.3	0.8	0.4
					7/12	o	8.0	7.9	8.3	9.5	•	8.3	9.0	0.3
					5 /1	80	7.5	7.8	8.8	9.0	4	H. 3	1.0	4.0
					6/28	7	7.9	1.9	8.5	9.5	4	8.4	9.0	0.3
					17/9	•	7.7	1.6	8.4	9.0	4	8.4	0.7	0
					41/9	ş	7.4	7.6	8.2	9.2	4	A. L	9. 9	4.0
		¥			_						4			
		1000 PPH		8)	5/31	m	7.7	7.8	4.9	B.9	•	9 . 1	9.0	6.0
Ę.		DOSE:		NG (197	5/54	~	7.5	7.8	7.9	8.9		A.O	9.0	· 0
13409 ND: 30 CS. INC	IA	ES	(n:	F TEST 1	2/1/5		7.6	1.9	8.0	я . в	7	 	4.6	٥٠،
NG. 10 R GROUP Blune T I	IGHT DA	4 FEMAL	(CONTINUE	DATES O	9/10	0	7.8	8.0	8.4	9.0	4	6.9	. · ·	.0.3
PRIJICI NI. 10/3409 COMPUTER GRIUP NO: 301H LITTON HIUNETICS, INC.	JUJY WE	GROUP	TABLE 2	ANAL	0N		423	432	436	437	SAMPLE	MEAN	5.0.	S.F.

	4444	(r)
	8/ 9 13 368.3 261.1 285.9 345.3	315.2 50.0 25.0
	8/ 2 12 388-1 - 360-4 340-8	3 363.1 23.8 13.7
	7/26 1: - - 251-3 340-9	296.1 63.4 44.8
	7/19 10 395.1 - 314.9	345-1 43-7 25-2
	7/12 9 447.6 	353.0 104.9 60.6
	17 5 179.7 133.5	
	6/28 7 - 4 - 300.4 3	
	6/21 6 6 - - 3 - 3 - 297.2 2	
	6/14 6 5 - - 171.4 116.8 28	••
IKCL	(1) (1)	
CCNTKG	289.0 289.0 266.9	278-0 15-6 11-0
01A Carams Grams Oose:	5/31 5/31 3 433.7 289.5 376.3	366.5 12.6 41.9
73409 NO: 34 CS. IN	0F TESTING (1978) 5/24 5/31 6/ 2 3 337.3 433.7 290.6 289.5 289 345.6 376.3 266	3 324.5 29.6 17.1
NO. 10 1 GRUUP 310NET 1 30D INT)ATES O 5/17 1 382.3 - 310.8	346.4 356.4 20.7
PEGJECT NO. 1073409 CCMPUTER GROUP NO: 301A LITTON BIONETICS. INC. DAILY FOOD INTAKE IN GRAMS GROUP 1 MALES DOSE: C	ANML E NO. 408 3 411 411	

8/16 14 11.1 302.2 350.4 32.2 324.2 47.0 47.0

ا بەخەر ئەرىخاردىن A STATE OF THE STA

TABLE II-F-46 (Continued)

		1073409											
COMPU	TER GRUL	UP NU: 1	\$018										
11110	N SICNE	TICS. IN	٠. د.										
DAILY	F0.00 14	NTAKE SA	FUND INTAKE IN GRAMS										
GROUP	1 FEY	ALES	005	CONTROL	=								
TABLE3	(CONTIN	VUED)			·								
ANHL	DATES	OF TEST	11NG (19	783									
NG.	5/17	NG. 5/17 5/24 5/3	5/17 5/24 5/31 6/	2 /9	6/14	6/21	6/28	3/2	7/17	2/19	7/12	6	,
		7	m	4	د م	9	7	` a			2	, ·	
425	348.2	i	1		3.908	Àres (٠,	36.2	•	2	11	71	5
456	226.6	241.1	283.7	264.6		1			900	0.002	ı	1	297
434	262.0	271.6	320.2	283	6 767		706	, , ,	3000	8-1/7	:	259.0	288.
727	214 4		0 0		7.4.7	•	100	366.5	328.5	324.1	350.2	299.1	ł
•		0.002	133.0	6.161	306.4		•	215.5	216.0	1	,	197.2	220-5
SAMPLE	*	-	~	•	•	0	-	~	•	•	•		,
MCAN	262.H	247.7	1.197	246-7	165.3	; c	404	2,026	100	n	-	•	~
	7 (14	1 67				•		200	C - 102	201.02	320.5	251.8	268.6
		7.	7.70	46.5	**	0.0	0.0	25.7	5. 5. 5.	31.7	0.0	715	42.0
	200	S - S -	35.9	28.0	3.9.5	0.0	0.0	32.1	34.8	18.3	0	20.4	,
									;	,,,	>	•	7 * 1 7

^dAll spilled food.

THE PROPERTY OF THE PROPERTY O

and the same of th

TABLE II-F-46 (Continued)

#60a . 20.50

COMPOT	PROJECT NO. 10 COMPOTER CROSS		210											
DAILY	F000 1A	AK	CKAMS											,
GACIUP TABLE 3	CONTIN	<u>.</u>	001:3500	100 PPM	I									
ANAL	DATES	UF TEST	1NG 119	783										
•CN	5/13	5154	5/31	1 /9	51/9	17/9	6/28	5 /2	71/1	61/2	7126	6/9	9 / 0	71/8
	~	7	m	4	.v	9	7	· œ	6	0	-		`	3
405	411.4	387.9	t	ı	,	ı	•	' 1	383.8	326.0	357. A	365.7	756	217
404	309.1	i	,	,	414-4	312.5	361.5	265.3	338.6	314.0	4 000	200		
403	304.4	355.6	302,3	361.3	313.2	386.0	348.5	8.07E	,		•	1		
415	327.1	317.9 337.6 -	337.6	1	,	1	278.8	265.0	306.8	308.2	271.9	258.5	225.5	311.0
SAMPLE	4	m	~		7	7	.**		~	~		•		•
1EAN			319.9	361.3	363.8	349.2	329.6	293.4	163.1	3.416	101	2007	•	* *
5.0.			25.0	0.0	11.6	52.0	44.5	48.4	3H. 7		7 . 7 . 7		0 * 6 7 6	2750
S.E.	54.9	20.2	17.6	0.0	20.0	36.8	25.1	7 R 7	22.3	2.2	25.2			87.68
								1	,		,		-	

want de la company

TABLE II-F-46 (Continued)

	8/16 14	210-6	257.8	253.7	156.1	•	516.5	23.7
	9/ 9	180.5	1	251.0	170.5	e i	1.007	25.3
;	8/ 2	203.4	270.1	236.6	172.4	4	9.077	21.1
;	1/26	218.4	279.9	205.5	268.2	3	24.3.0	18.3
	7/19 10	161.5	239.0	249.7	275.7	4.	C 157	24-6
	7.7.2 9	198.4	268-3	277.1	1.627	4	7.67.	18.2
	\$ }}	213.9	291.8	220.1	ı	e -	6 1 4 7	25.0
	87/9 1	246.4	272.5	283.9	253.6	4	1 7. 2	8.6
	6/21 6	215.6	304.5	267.6	249.3	4.0	17.1	19.5
	\$1/o	201.1	305.4	252.2	219.6	4 470	47.5	23.8
	` , ò	207.3	1	277.5	264.9	\$ 070	31.4	71.6
ວບິ 🖫	3 2	•	285.6	287.6	255.8	4 4 4	24.1	12.0
071409 P NIS 301 1CS 1NC 1AKE IN C LES UED)	2/24	501.9	ı	253.4	236.1	3.40.5	7.97	15.1
HOLLI MG. 10/14099 INPUTER CROUP ND: 111 ON BEOM TECS. 1 ALLY FOUD INTAKE 1 ROUP 2 FEMALES FAMLES FAMLES FAMLES FAMLES FAMLES FAMLES FAMLES FAMLES FAMLES	176	213.4				4 497	29.4	14.7
COMPUTER CROUP ND: 34 LITTON BIONTIES, INC DALLY FOUD INTAKE IN GROUP 2 FEMALES TABLE 3 (CONTINUED)	• Q	422	459	430	431	SAMPLE	\$.0.	S. £.

TABLE II-F-46 (Continued)

				•	91/1	14	119.6	10.1		,	7.4.		*	172.8	9-2	8-1		
							5-3	"		_	•	r		~				
					æ		292.7	270		337	306	,		301.9				
					8/ 5	12	298.9	271.2		188°5	291.6		4	262.5	50.8	25.4		
					1/26	=	313.9	284.2		t	315.4		m	304.5	17.6	2.0	•	
					61/2	01	323.8	ŧ		!	27.5.7	•	~	1.662	34.0	34.0	3	
					7/12	J	275.3	ŧ		251.3	1		~	263.3	17.6	120	2	
					2 /2	30	267.4	227.9		228.9	,		•	441.4	34.5			
					6/28	^	32H.4	258.1	•	325.2	104.1	•	÷	303.9	32.4	2 41	7.07	
					6/21	•	306.6	280.5		77.70	•		~	212.7	44.8	34.	0 • 6 7	
		£			6/14	٠,	244.1	3.11.2	1	7711-2	2.11.	¥ 004	4	284.9	42.0		6113	
		300 PPM		781	7 /9	4	135.1	3 605	2000	1	0 000		.~	112.1	15.3		1::	
•	GRAMS	00SE:		ING 119	5/31	, co	274.6	40.5	0	244.6	1 07 1	232.5	3	2.11.6	40-0		70.0	
	TAKE IN G	'n	E0)	OF 1EST	5/24		266.0	24.0		248.6			J	214.9	25.4		17.6	
	N1 000-	3 MALE	(CONTINU	DATES	5/11)		216.5		23.50	7342.5	1	ı	•	765.6	67.2		34.8	
	DAILY	GROUP	TABLE 3	ANML	CN		707		70.0	(1)		ב ביפסר ב ביפים	SAMPLE	AF AN	.0.2		S . f.	

*p<0.05 as compared to controls: Dunnett's t-test.

THE THE PARTY OF T

TABLE II-F-46 (Continued)

8/16 14 303-9 273-1 214-1	3 263.7 45.7 26.4
8/9 13 226.8 292.4 211.7	3 260-3 42-8 24-1
8/ 2 12 307-8 246-6 204-4	30.0
7/26 11 270.6 278.7 205.6	3 251.6 40.1 23.2
7/19 10 275.2 -	273.2
1/12 9 316.8 -	116.8 0.0 0.0
7/ 5 8 2777-6 247-8 156-3	3.27.2 63.2 36.5
6/28 7 318-7 305-5 224-7	4.2.246.1 51.4 25.1
6 6 219.1 201.9	, , , , , , , , , , , , , , , , , , ,
H 6/14 5 314.3 205.8	2 38.6 66.6 37.4
300 PPH 78) 6/7 6/7 245-1 231-1	2 33.1 9.9 7.0
011 CGRAMS DOSE: 300 1NG (1978) 5/31 6, 35.37 - 289.0 24,	4 7.05.7 54.9 31.7
175409 165 106 165 106 165 106 165 106 165 165 165 165	4.757. 41.0 11.0
ER GRUUP BIONET I BIONET I BOOD EN I 3 FEMAL GOTINU 6/17 6/17 1 1 1 23.2.3	; 764.1 53.6 30.9
LITTON BIONETICS, INC. LITTON BIONETICS, INC. DAILY FUOD INTAKE IN GRAMS GROUP 3 FEMALES 421 5/24 5/31 6 421 - 273.5 353.7 424 - 273.3 276.9 289.0 2427 433 330.5 - 244.5 2 433 330.5	. AMP1 1 34 AM 5 - D -

TABLE II-F-46 (Continued)

						8/16	7.	292.3	282.2	7 055	358.1		* 0	1.016	A	
						6 /8	13	224.5	261.6			ć	1 546	26.3	18.4	•
						8/ 2	12	<u> </u>	341.7		4.06.8	,	274.2	46.0	32.5	
						1/26	77	294-3	306.3	2002	354.5		289.0	64.3	32.1	
						61/1	01	321-0	271.5	272.9	;	ď	288.5	24.2	16.3)
						71/1	3	130.1	323.3	248.6	260.6	4	7-062	42.0	21.0)
						۲ ۲	90	1	260.0	250.8	,	·	255.4	6.5	4.6	
						0/5B	~	1	274.8	308.7	, f	^	291.8	24.0	17.0	
						12/9	3	324.2	242.3	280.1	1	"	282.2	41.0	23.7	
			704			6/14	s	1.777	266.6	324.5	1	۳,	271.1	51.4	29.7	
			0001		18.	1 /9	•	375.4	,	267.2	442.1	ŀ	362.9	88.0	51.2	
=	INC.	CHAMS	: 1500		NG (12)	16/4	m	201.3	264.1	293.1	411.9	4	292.8	88.2	44.1	
:	2,	7		ED)	11 11 57 1	, 124	~	301.8	402.3	243.6	•	m	332.6	60.5	34.9	
2022	I LICINE 1	0.00 EN1	4 MALES	(CONTINU	0411.5 (NO. 5717		,	1	317.9	339.8	2	128.9	15.4	10.9	
	LITTON	DALLY	GROUP	TABLE 3	ANMI	NO.		413	416	615	420	SAMPLE	MEAN	S.D.	S.F.	

TABLE II-F-46 (Continued)

8/16 14 14 307.5 0-0 177.0 251.5	184.0 133.8 66.9
8/ 9 13 - 262.1 228.8	245.5 23.5 16.7
8/ 2 12 - - 248-7 277-5	2 263.1 20.4 14.4
7/26 11 236.3 - 181.8	3 222.7 36.2 20.9
7/19 10 188.6 - 157.9 252.5	3 199.7 48.2 27.9
7/12 9 253.8 - 200.9 232.4	3 229.0 26.6 15.4
7/ 5 8 - - 204.4 218.4	241.4 32.5 23.0
6/28 7 260.1 - - 244.1	252.1 11.3 8.0
6/21 6 - 220.3 244.8	232.6 17.4 12.3
6/14 6/14 5 199.1 195.1 274.2	3 222-8 44-6 25-7
1000 PPM 78) 6/ 7 6/ 7 232.4 1: 359.2 1	3 288.2 64.8 37.4
CKAMS CKAMS DIOSE: 1NG (19 5/31 3 288-4 202.0 247.9	3 246.1 43.2 25.0
10.5400 10.54100 10.5	2 219.5 20.2 14.3
LITTION MINET LOTS 10'S SOLIN LITTION MINET LES, INC. LITTION MINET LES, INC. DAILY FOND INTAKE IN CRAMS GROUP & FEMALES NOSE: 100C TABLE 3 (CONTINUE) ANAL DATES OF TLSTING (1978) ANAL S/17 5/24 5/31 6/ ANAL S/17 5/24 5/31 6/ A23 273.4 - 288.4 232. 432 13.4 - 288.4 232. 435 181.3 205.2 202.0 359. 437 216.9 233.8 247.9 273.	223.8 46.4 26.8
P1 1.311 CT CLIMP UTE L 1 TT 10N OAILY P GROUP TABLE 3 ANAL NO. 423 432 435 437	SAMPLE MEAN S.D. S.F.

"p<0.05 as compared to controls: Dunnett's t-test.

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 4

CLINICAL HEMATOLOGY

KEY

WBC	= Leukocyte Count	103/mm3
RBC	= Erythrocyte Count	106/mm ³
HGB	= Hemoglobin	g%
HCT	= Hematocrit	vol %
BN	<pre>= Band Neutrophils</pre>	%
SG	= Segmented Neutrophils	%
LY	= Lymphocytes	%
MO	= Monocytes	%
E0	= Eosinophils	%
BS	= Basophils	%
OT	= Other	
R	= Repeat value	
S	= Repeat attempted without success, fi	rst value taken

CLINICAL HEMATOLOGIES FOR P-1073409

TABLE 4 INDIVIDUAL ANIMAL HEMATGLUGIES-MALES INTERVAL OF STUDY* INITIAL

10	• • • •		• • • •		• • • •	
es.	• • • •		• • • •		• • • •	
94 SG LY MO CU 85 OT	v • • -				• • • •	
Ç			72		~~~·	
7	66 65 67 70 70 70 70		2000		5 8 5 4 5 4 5 5 5 7	
5.5	27 14 13 58		32.25 25.25		24 64 61	
₹	••••		••••		•••	
нст	44.0 42.0 38.5 43.0	41.48 1.20	46.5 47.0 40.0	00°94 0°94 0°94	40.0 64.5 48.5 44.5	46.35 1.34
HG 8	8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.37	15.4	15.70	16.8 15.1 16.9	15.71 3.64 4
RBC	6.03 6.03 6.22 6.20	6.120 0.052 4	6.94 6.79 6.42 7.12	6.817 0.149	7.38 6.98 6.59 6.59	6.790 0.252 4
79M	6.01 1.00 1.00	9.52 0.28 4	15.4 10.7 8.6 10.1	11.20	7.7 7.6 19.2 11.0	9.12 0.87
ANI MAL ND	408 411 417	HEAN SE N	405 405 407 415	464N 86 8	404 409 415	MEAN S.F.
DOSE GROUP	CONTRUL		100 PPH		300 PPM	

TABLE II-F-47 (Continued)

õ	
P-1073409	
~	
2	
7	
خ	
Ę	
ES.	
=	
ŏ	
7	
HEMATOL OGIES	
₹.	
Ē	
Ξ	
ب	
<	
CLINICAL	
_	
ی	

	CGIES-HALES	
TABLE 4 (CONTINUED)	INDIVIDUAL ANIMAL HEMATOLUGIES-HALES	INTERVAL OF STUDY INITIAL

DOSE

מו 20 רא אר דט מא מו	. 58 50 2 2 2 55 34 3 8 44 55 1 1 11	
нст	44.0 44.5 47.0 45.0	44.63 1.03
нсв	14.7 15.1 15.3 15.7	15.20
к0С	5.61 6.53 0.90	6.462 0.295
WBC	11.8 12.0 9.9 9.7	10.85 0.61
C.	413 416 419 420	MEAN SE N
GROUP	1000 PPH	

The state of the s

TABLE II-F-47 (Continued)

CLINICAL HEMATOLOGIES FOR P-1073409

TABLE 4 (CONTINUED) INDIVIDUAL ANIMAL HEMATOLUGIES-FEMALES INTERVAL UF STUDY= INITIAL

DN SG LY MU EU BS GT	1 19 00		. 60 36 2 1 1 31 59 3 1		. 22 76 . 2 19 . 35 63 2 19 . 56 62 1 1 4 . 55 55 3 7	
HC1	50.5 74.0 74.0 50.0	49.38 2.30 4	44.5 44.5 47.5	46.44 1.55 4	44. 34.0 0.00 0.00	48.25 1.05 4
HGB	17.0 18.2 14.9 17.0	16.77 0.69 4	15.4 17.8 14.9 16.3	16.10 0.64 4	16.5 13.0 16.3	10.42
RaC	7.90 7.23 6.76 6.91	7.200	7.36 6.81 6.14 6.27	6.645 0.279 4	6.92 6.59 7.39 6.08	6.945 0.166 4
NBC	10.1 7.7 14.9 8.6	10.32	10.7 10.6 11.2 9.2	10.42 0.43 4	11. 2.0. 3.0. 1.0.	47.4 0.50 4
ANI MAL ND	425 426 434 434	HEAN Se	422 429 430 431	MEAN SC	421 424 427 433	JEAN SE N
DOSE GROUP	CONTROL		Wdd 001		300 PPM	

THE PROPERTY SERVICES AND ADDRESS OF THE PROPERTY OF THE PROPE

The state of the s

TABLE II-F-47 (Continued)

CLINICAL HEMATOLOGIES FOR P-1073409

TABLE 4 (CONTINUED) INDIVIDUAL ANIMAL HEMATOLCGIES-FEMALES INTERVAL OF STUDY= INITIAL

מא צפ דג שכ רח מצ מנ	34 60 . c 66 30 2 2 16 33 65 1 1 13 15 43 1	
HC T	46.5 47.5 44.0 51.5	48.03 1.09
нбы	15.9 16.2 10.4	16.42 0.28
RBC	6.89 6.64 0.48	6.910 0.254 4
WBC	0.01 8.7 9.8 4.8	8.70 0.47 4
AN I MAL	423 432 436 437	4EAN Se N
DOSE GROUP	1000 ррн	

TABLE II-F-47 (Continued)

CLINICAL HFMATOLOGIES FCK P-1073409

	ANIMAL HEMATOLCGIFS-141 FS	WEEK 4
TABLE 4 (CONTINUED)	INPIVIDUAL ANIMAL	INTERVAL OF STUDY=

84 SG LY MO ED BS OF	. 41 44 6 9 57 41 . 2 45 51 2 2 54 40 1 5		. 63 36 · 1 · · . 26 72 · · 2 · · . 42 47 6 5 · · · 48 44 3 4 1 · ·		. 28 60 2	
HC T	42.5 45.0 41.0 46.5 P.	43.75 1.23 4	45.0 45.0 46.0 45.0	45.25 0.25 4	45.0 44.0 44.5 43.0	44.13 0.43 4
нба	15.1 15.1 16.1 10.1 10.1	15.42 0.25	# # # # # # # # # # # # # # # # # # #	15.75 0.32 4	15.9 15.8 16.6	15.00 0.70 4
۳ ن	7.03 6.27 7.15 7.27 F	6.930 0.225 4	6.72 6.84 7.37	7.350 0.384 4	6.87 6.83 6.91 7.45	7.240 0.484 4
M-9C	10.6 10.6 10.7 11.9 A	30.45 0.66 4	12.0 8.1 9.9 11.6	10.40 0.89 4	9.00 10.00 13.00 13.00	10.62 1.15
ANI MAL NO	408 411 417 418	4EAN Se	405 406 415	4EAN S 7	715 717 718	MEAN SC N
DOSE GROUP	CONTFOL		100 PP4		300 PP4	

C.
0
4
3400
~
0
- 1
7
ä
C
ű.
ES
w
=
×
MATOL OGI
=
Ξ
2
3
Ξ
Ξ
_
_
4
ICAL
-
z
-
-

	INDIVIDUAL ANIMAL HEMATOLCGIES-MALFS	5× 4
	7.4	3
TARLE 4 (CONTINUED)	ANIMAL	INTERVAL OF STUDY= WFEK 4
800	۲	ť
LE 4	IVIOU	FRVAL
TAR	S S	Z

BP: SG LY NO EO 65 OT	2 62 36 7 13 · · · 56 31 2 11 · · · 19 78 1 2 · · · 3 62 57 2 1 · · · ·	
HCT	45.0 46.0 9 43.0 41.0	43.75 1.11
1168	20 m 40 m	15.42 0.31
RBC	6.40 6.42 6.18	6.545 0.219
) HBC	133 133 9 • 6 9 • 6	10.90 0.87
ANI MAL NG	413 416 419 420	MEAS S.F.
DOSE GROUP	1000 PPM	

TABLE II-F-47 (Continued)

CLINICAL HEMATOL OGIES FOR P-1073409

TABLE 4 (CONTINUED) INDIVIDUAL AVI'IAL HEYAIDLC';IES-FE'IALES INTERVAL OF STUDY= WEFK 4

	→ ₩ • •		• • • •		• 01 01 •	
10			• • • •		• • • •	
185 (• •				- · · ·	
٦. ا	~ v ~ ~		4 · m		4 R 4 R 10	
5	F 01 • 4		12 6 6 2		• 9 4	
SG LY MO	33 60 33		20 54 34 52		45 25 46	
SG.	55 28 65		4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		51 66 67 47	
1181	.n		() • m •		- O - •	
HCT	49.0 49.0 45.0 50.0	48.25 1.11 4	44.0 52.0 45.0 44.0	46.25 1.93 4	50.0 47.0 49.0 42.0	46.75 1.70 4
HGB	15.0	16.47 0.45	11 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16.57 0.78 4	17.8 10.0 15.6	16.15 0.57
RBC	8.36 6.58 7.15 7.30	7.447 0.311 4	6.81 7.62 7.23 7.33	7.247 0.168 4	7.47 6.84 6.80	6.847 0.244
HRC	6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.22 0.19	11.6 11.0 9.7 10.5	10.80 0.40 4.40	12.6 11.5 12.9	13.07 0.80
ANIMAI. No	4526 434 434 435	HEAN SF	422 425 430 431	464N Se N	421 424 427 433	MEAN SP
DOSE GROUP	CONTROL		400 PP4		hdd 00E	

CLINICAL HEMATULCGIES FOR P-1073409

	INDIVIDUAL ANIMAL HEMATOLOGIES-FFMALES	. WEEK 4
TABLE 4 (CONTINUED)	INDIVIDUAL ANIMAL	INTERVAL OF STUDY=

	• • • • •	
5	• • • •	
BS		
E 0	• 4 4 4	
č	24000	
SG LY 40 E0 BS UT	71 23 35 67	
S S	255	
16	• • • • •	
		m w ታ
HC T	44 46 46 46 50	46.63 0.85
HGB	16.2 15.8 16.2	16.47
P 8C	6.96 6.85 7.10	6.972 0.051
MB C	9.22 118.0 7.111	12.60
ANI MAL NO	433 432 436 434 434	MEAN Së
DOSE GROUP	1000 PPM	

のでは、一般のでは、一般のでは、これのでは、

CLIMICAL HEMATULOGIES FOR P-1073499

IANCE 4 (CONTINUED) INDIVIDUAL ANIMAL HEMATOLCUIES-MALLS INTERVAL OF STUDY= WEEK 8

	• • • •		 • • •		•- • •	
5	• • • •		• • • •		• • • •	
= S	• • •••		• • • •		• • • •	
MU F.O. P.S.	10 2 9 9 2 2		277		m8~-	
ž	•= 4 = =		~ m m 4			
۲	43 29 26 16		25 30 38		67 33 30 30	
(3	41 68 52 66		55 53 50 50		58 58 63	
2	* * * **		• - 2 -		N · · ·	
			•			
10.1	46.0 P 44.5 38.0 43.0	47.88 1.74 4	45.0 44.0 48.0	46.00 0.91 4	48.0 48.0 7.0 6.8 0.0 7.0 0.0	44.75 0.25 4
HGB	14.5 F 12.0 14.0	09.0 09.0	15.2 16.0 17.4	15.27 0.34 4	14.6 R 15.0 S 14.1	14.77 0.28
k BC	5.46 P 5.48 5.47 6.50	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.07 7.19 5.93 7.19	6.845 0.306 4	7.26 P 6.67 S 5.07 5.84	6.460 0.31°
MBC	11.3 k 10.7 6.5 15.2	7. 1 1. 1	13.6 8.5 9.0 9.9	10.25	9.9 F 9.1 S 10.3	10.82
NU MAL	403 411 417 417 418	S E	405 406 407 415	AE San San S	405 415 415 415	MEAN SE N
DOSE GROUP	CCNTROL		100 РРН		300 pp4	

The state of the s

The state of the s

	S	
	-741E	
	ANIMAL HEMATOLCGIES-HALES	
	MATOL	NFEK 8
a	IA'L HE	
STINCE STINCE	ANI.	OF STUDY=
TABLE 4 (CONTINUED	INDIVIDUAL	3 7 47
TABLE	SONI	INTERVAL

5	• • • •	
35	- n - ·	
E-0	9 10 1 22 9 8 4 4	
č	\$ ~ \$ \$	
SG LY MO ED HS	30 37 19 25	
SG	4 th 4 th	
N.C	r, • • •	
нст	44.0 44.0 45.0 43.0	44.25 0.63
HC.B	14.3 14.3 14.2 14.2	14.42
ני על	6.44 6.64 7.14 6.50	6.687 0.155
D SH	12.0 12.2 12.2 1.5	10.22
ANI MAI ND	413 416 420	HEAN
00SF GRCUP	1000 PPH	

TABLE II-F-47 (Continued)

S FOP 1-1-17340°	MATUL.GI.S-FEMALFS FEK B
CLIMICAL HEWATOLCHIES FOR F-1073405	TABLE 4 (CONTINUED) INDIVIOUAL ANIMAL HEMATOLOGICS-FEMALES INTEFVAL OF STUGY= HEEK B

				• • • • • •	
• • • •		• • • •		• • • •	
• 17 19 •		• • • •		444	
0 4 5 4		∞ ∿n•		2000	
E/ 10 4		6 8 10		m 03 05 EE	
24 12 23 24		34 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		34 25 25 25	
64 81 61 93		4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		55 9 55 55 55 55 55 55 55 55 55 55 55 55	
• • • •				• • • •	
44.0 50.0 41.0 48.0	45 • 15 2 • 02 4	40.5 46.0 47.5 42.0	44.00 1.65	50.0 47.5 47.0 48.0	48.13 0.65
14.6 15.6 13.9	15.22 0.60	15.9 16.9 14.0	14.65 0.44 4	17.0 16.3 16.6 16.4	16.57
40 25 C	, 5 F° , 191	. 22 . 05 . 14	.530 .265 4	26. 08. 26.	6.877 0.103
-				3 F 9 9	¢ο
11.9 10.5 7.3 7.4	9.27 1.15 4	7.6 10.6 10.7 12.7	10.40 1.05	13.3 10.0 8.4	11.27
4444 2004 2004 2004 2004 2004 2004 2004	A A S S S	422 429 430 431	NFAU SE N	421 424 427 433	MEAN
CONTROL		наа оот		300 MIN	
	425 11.9 2.54 14.6 44.0 . 64.24 2 9 . 42e 10.5 7.10 15.4 50.0 . 81.12.1 3 3 434 7.3 6.25 13.9 41.0 . 61.23 9 5 2 435 7.4 6.35 15.8 48.0 . 5.2 24 4 14 .	425 11.0	425 11.0	425 11.0	425 11.0

	. HEMATOL COLFS-1 FYALF	
ED)	MAL HEMATOL	L OF STUDY= WEEK 8
HELE 4 CONTINU	INDIVIDUAL ANIMAL	INTIRVAL OF ST
-	i	Ξ

2	• • • •
10 St 1.7 40 GO HS 01	m • • •
23	8874
<u>ح</u> ح	
-	2002
2	1 50 1 61 1 61 1 81
=	
HCT	35.0 46.0 77.5 50.0 44.63 2.30
	66 11 59 86 57
RGB	12.9 14.6 15.1 17.1 17.0 0.00
. RC	6.04 6.04 6.5.97 7.72 7.72 7.72
MBC	111.2 13.7 5.4 9.0 9.0 10.82
ANT MAL	423 432 436 436 437 437 85 85
DOS E GROUP	Hdd 6001

A STATE OF THE PROPERTY OF THE

TABLE II-F-47 (Continued)

CLINICAL HEMATOLOGICS FOR P-1073409

TABLE 4 (CONTINUED) INDIVIOUAL ANIMA! HEMATCLUGIFS-MALES INTERVAL UF STUDY= TERMINAL KILL

DOSE GROUP	ANI MAI ND	MBC	Ĵна	991	нст	S :45	SG LY MO	¥		21 UZ	5	
CONTFCL	408 411 417	10.9 8.6 8.1 10.9	7.43 6.71 5.87 7.05	16.3 16.3 15.9 6.9	44.0 46.0 37.0 44.0	• • W 4 W 4 D 1	54 35 47 37 64 29 57 31		400E	• • • •	•= • •	• • • •
	MEAN SE M	9.62 0.74	6.765 0.333 4	15.25 0.80	42.75 1.47 4							
100 PP4	405 406 437 415	13.7 8.8 8.8 11.8	7.36 7.72 7.03 6.52	16.6 17.2 15.7	67.0 69.0 65.0 65.0	0 0 • v ~ v v o	71 12 57 30 39 49 65 75		2 9 8 3 1 3 10 3	• • •	• • • •	• • • •
	45 85 87 8	11.45	7.157 0.755.0	16.30 0.27 4	46.25 1.11 4							
300 004	404 404 415 415	8.0 9.0 7.5	6.80 7.24 7.30 6.53	14.8 16.7 17.4	43.5 47.0 49.0 43.0	• • · · ·	63 27 46 46 52 41 79 20	N	4	• • • •	==	• • • •
	4EAN ST	0.37 1.10	790-7 731-0 74	16.00 0.63	45.63 1.43 4							

water the state of
TABLE II-F-47 (Continued)

Ξ
3
=
-
<u>-</u>
ž
v
<u> </u>
IL MATOL
_
NICAL
2

	INDIVIDUAL AMINAL HEMATOLOGIES-MALLS	L OF STUDY = TERMINAL KILL
4 (CONTINUED)	A-11HAL	STUNY
(CQ	DUAL	IAL NF
TABLE 4	INDIV	INTERVAL

54 34 4 8 . 12 5 59 72 1 6 . 75 6 63 28 1 7 1 . 1	
34 4 8 75 1 6 28 1 75 7 2 75	
34 4 8 75 1 6 28 1 75 7 2 75	
25 25 75 75 75 75 75 75 75 75 75 75 75 75 75	
25 25 75 75 75 75 75 75 75 75 75 75 75 75 75	
• (• •	
44.5 46.5 45.0 45.0	43.63 0.60 4
14.5 15.6 14.8	16.05
7.12 7.27 6.56 6.39	6.857 0.705 4
11.6 9.5 8.1 8.7	0.47
413 416 419 420	XFAN S'Y
1000 PPM	
	413 11.6 7.12 14.5 416 9.5 7.27 15.1 419 8.1 6.56 15.8 420 8.7 6.39 14.8

TABLE II-F-47 (Continued)

CLINICAL HEMATHLOSIFS FOF P-1373439

	SITE	
	31-8-150 001FS-1E	t Kill
	HEMATOL	- TFRMINA
NTINUED)	ANIMAL	F STUNY
ABLE 4 (CONTINUED)	NDIVIDUAL ANIMAL HEMATOLOGIES-LESALES	HITERVAL OF STURY: TERMINAL KILL

14 SG LY 46 EO AS 11	1 53 36 5 5 1 1 63 20 4 12 1		2 36 56 · 10 · 17 · 67 28 3 · 11 · 11 · 11 · 11 · 11 · 11 · 11 ·		2 63 28 2 4 · · · · · · · · · · · · · · · · · ·	
110.1	44.0 48.0 40.0 49.1	75, 25 2,05 4	37.0 6.5.0 50.0 57.0	44.75 2.73 4	6.84 6.0 6.1.6 6.0	45.13 1.13
ษยา	15.4 17.0 14.1 17.2	15.92 0.73	13.6 16.0 17.4	15.51 29.00 4	17.0 16.1 14.9 16.2	14.05 0.43
Ju g	6.49 7.22 7.76	7.175 0.213	6.13 6.25 6.25 6.37	6.470 0.4°1	8.52 6.71 6.20 8.03	7.365 0.545
WRC	100.0 100.0 100.0 100.0	01.40 37.0 4	11 10 10 10 10 10 10 10 10 10 10 10 10 1	9.37 0.90 0.	14.0 11.8 8.1	12.52
ANI 4AL NO	425 426 436 435	MCAN St R	422 429 430 431	4864 18 14	4444 11416 1146 1146 1146	HFAN SE
DOSE GROUP	CONTROL		100 PPH		300 PPM	

10 SR CT 48 TO 88 CI	6 49 38 4 9 6 5 67 31 11 1 6 6 5 30 3 5 6 6 6 6 7 5 6 7 5 6 7 6 7 6 7 6 7 6 7	
HC T		46.75 3.12
нсв	22 24 24 24 24 24 24 24 24 24 24 24 24 2	16.20
A B.C.	7.05 6.77 5.87 6.90	6.922 0.430
WBC	10.6 9.5.0 9.5.0	10.45 0.76
ANI NAL NO	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	м ғ ар Se R
DUSE GROUP	1000 PPM	

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 5

CLINICAL CHEMISTRY

KEY

BILI	= Bilirubin, total	mg/dl
BUN	= Blood Urea Nitrogen	mg/dl
ALB	= Albumin	g/dl
CA	= Calcium	mg/dl
CHOL	= Cholesterol	mg/dl
GLCS	= Glucose	mg/dl
LDH	= Lactic Dehydrogenase	mU/ml
SAP	= Alkaline Phosphatase	mU/m1
PHOS	= Phosphorus	mg/dl
PROT	= Protein, total	g/dl
SGOT	= Serum Glutamic-oxaloacetic Transaminase	mU/ml
SGPT	= Serum Glutamic-pyruvic Transaminase	mU/m1
URIC	= Uric Acid	mg/dl
NA	= Sodium	meg/1
K	= Potassium	meg/1
CL	= Chloride	meg/1

= Test not performed

= Repeat value = Repeat attempted without success, first value taken

= p<0.05 as compared to controls: Dunnett's t-test

CLINICAL CHEMISTRIES FOR P-1073409

* /

TABLE 5 INDIVIDUAL ANIMAL CHEMISTRIES-FEMALES INTERVAL OF STUDY= INITIAL

כר	108 110 105 111	105.5	108 108 108 108	108.0 0.0	107 109 110 F 108	108.5
×	444 9 m m m	5.62 0.12	4454 4458 7458	4.92 0.27 4	4444 4 = 4 = 6 7 = 7	4.65
N A	147 148 149 148	148.0 0.4	146 146 148 R	147.0 0.6 4	148 148 147 g 145	147.0
URIC	0000	0.32	0.2 0.3 8	0.25	00.0 0.2 1.8	0.27
S GP T	22 44 7	31.0 10.0	44 30 430 430 4	40 4	33 8 33 8	34.0
SG01	28 23 27	29.3 1.3	26 28 37 R 34	31.3 2.6	39 31 27 R	30.5
PROT	9999	6.20 0.14	5.0 6.1 6.1 8	6.02 0.08 4	6.0 6.0 5.4 R	6.20
РНОЅ	4m4m	3.85 0.35 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.60 0.11	# 4 # # •	3.97 0.11
SAP	62 61 34 38	48.8 7.4 4	68 68 63 63	61. 5.2 4	61 69 47 R 73	62.5
нол	96 204 166 165	157.8 22.5	56 55 175 R 110	99.0 28.4	160 152 250 ƙ 146	177.0
ercs	70 88 85 116	89.6 9.6 4.	73 66 101 3 82	80.5 7.5	100 78 85 R 100	90.8 5.5
ТОНО	145 155 135 145	145.0	140 138 134 P 125	134.3 3.3	185 136 153 R 156	157.5
CA	11.1 11.3 11.0 10.9	11.07	111.1 111.0 111.4 R	11.12 0.09	111.3 110.5 111.2 R	10.92 0.19
At B	m 4 m 4	4.05 0.25 4	######################################	3.42 0.15 4	ልመ 44 ዓ መ መ ቀ 64 መ መ ቀ 64	3.77 0.34 4
8 0 8	34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13.3	200 200 200 200 200 200 200 200 200 200	13.5	20 12 10 R 15	14.3
1 118	00000	0.10	0.1 0.1 0.1 R	0.00 0.00 4	000. 000. 11. 8	0.10 0.00 4
ANI MAL NO	455 434 434 434	X a. X	422 429 430 431	A E A A A A A A A A A A A A A A A A A A	421 424 427 433	MEAN SE N
OOSE GROUP	CONTROL		100 PPM		300 PPM	

A death and a second and a second as a

TABLE II-F-48 (Continued)

CEINICAL CONTIGUES ON TAXABLE	TABLE 5 (CONTINUED) INDIVIDUAL ANIMAL CHEMISTRIES-FEMALES INTERVAL OF STUDY* INITIAL
3	£5 .
-	1 K 1
5	MIS
3	5. E.
-	TABLE 5 (CONTINUED) INDIVIDUAL ANIMAL CHEMISTR INTERVAL OF STUDY* INITIAL
	ANI
5	NO. TA
٠ د	S (
	0 LE
3	F 2 2

DUSE

น	112 108 110 109	109.8
¥	₩₩4₩ ₩0₩0	4.97
K 3	1445	147.3
UR I C	0000	0.35
SGPT	32 38 53 50	43.3
1098	40 34 27 26	31.8
PROT	\$0.00 \$0.00 \$0.00	5.92
PHOS	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.20
SAP	59 70 84 64	69.3
грн	280 142 110 50	145.5
SOTO	101 69 92 72	83.5
сног	171 133 126 157	146.8
C A	11.7	10.95
AL B	4.6 3.6 3.6	4.02
ยนห	20 12 10	13.5
вте	0.0	0.07
ANI MAL ND	423 432 434 437	HEAN SE
onse Group	1000 PPM	

CLINICAL CHEMISTRIES FOP P-1073409

	CHEMISTRIES-MALES	INITIAL
TABLE 5 (CONTINUED)	VA I MAL	INTERVAL OF STUDY= 1

ູເ	108 8 105 109 R 112	108.5	106 108 108 R 110	106.0 0.8 4	106 108 106	107.5
×	N N N A N M M A K K		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		444 444 446 446 446 446 446 446 446 446	
4	145 R 147 R 150	147.3 5.10 1.0 0.17 4 4	147 147 147 R	146.3 4.70 0.8 0.17	143 143 146	145.0 4.82 0.5 0.05 4 4
URIC	0000 4400 8 8	37.5 0.40 6.3 0.04	0000 4444 8	37.5 0.40 4.3 0.00 4 4	0000 4400	39.0 0.45 2.7 0.03
SGPT	40 R 255 31 R 54	37.5 6.3	33.0 4.0 4.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	37.5	38 44 35	39.0
SGOT	37 R 34 R	34.A	31 33 36 36	31.5 2.1 4	31 30 32 29	30.5 0.6
PROT	ავია ⊶აია ∝ ი ო	6.25 0.30	5 6 6 4 5 6 4 8 8 8	6.32 0.21	6.9	6.55 0.12
PHOS	νου. α α	4.90 0.20 4	2,4,0,0 2,4,0,0 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	5.07 0.16	4400 4000	4.47 0.36 4
SAP	94 R 62 66 R 81	75.8 7.3	162 63 62 R 65	88.0 24.7	67 69 79	3.7
НОЛ	cr or	282.0 89.8	240 93 164 8 82	80 4	188 123 262 94	166.8 37.3
5279	97 R 90 97 R 102	96.2 2.5 4	91 87 87 R	84°9 4°5 4°5	101 72 92 97	90.5
נאטו	136 R 151 164 R 163	148.5 5.7	148 184 172 R 145	162.3 9.4 4	180 . 144 193 179	174.0
C A	10.8 R 11.6 10.7 R 11.4	11.12	11.6 11.7 10.8 R 10.6	11.12	11.4 10.7 11.2	11.07
AL B	6464 6464 8 8	3.80 0.41 4	44mm 0-m	3.77	4.3.3	4.20 0.33
BUN	100 R 14 R 14 R	13.5 1.3	118 118 113 R	15.8 1.3	11007	11.5
9111	0.0 0.0 0.1 0.1 8	0.07	.0000 0.11 0.13	0.05 0.03 4	0000	0.07
ANI MAL NO	408 411 417 418	MCAR SE N	405 405 417 418	N III N	404 409 412 414	MEAN SE
DOSE GROUP	CONTROL		100 pp4		300 PPM	

TABLE 5 (CONTINUED)
INDIVIDUAL ANIMAL CHEMISTRIFS-MALES
INTERVAL OF STUDY* INITIAL

ರ	108 109 107 113 R	109.3
×	4.4.5 0.0.0 0.0.0	146.3 4.75 0.6 0.13 4
NA NA	148 148 146 146	146.
URIC	0.5 0.6 0.4 0.3 R	0.45
SGPT	34 53 60 76 R	55.8 8.7 4.
\$601	22 32 32 8	33.8 2.7 4
PROT	νν.φ.φ. ο ν.φ. ο ν.φ. α ν.φ. κ.	5.95 0.10
PHUS	44.0 4.1 8 R	4.40 0.20
SAP	145 52 77 67 R	85.3 20.6 4
LDH	68 174 244 170 F	164.0 36.2
SOTO	81 100 91 92 R	91.0 7.9 4
כאטר	144 120 150 149 R	140.8
C.A.	10.7 11.0 11.2	10.97 0.10
AL B		3.82 0.31
ดบด	111 14 14 14	12.3
8111	0.0 0.0 1.0 1.0	0.07
ANEMAL	413 416 419 420	AEAN S m n
DOSE	1000 ррм	

TABLE II-F-48 (Continued)

CLINICAL CHFMISTRIES FOR P-1073409
TABLE 5 (CONTINUED)
INDIVIDUAL ANIMAL CHEMISTRIES-HALTS
INTERVAL OF STUDY# WEFK 4

CONTROL

DOSE GROUP

URIC	4275	0.30	0000	0.17	0000	0.20
SGPT	34 34 34	38.5	3224	33.8 3.6	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35.3
SGNT	72 40 39 66	54.3 8.6 4	45 32 106 72	63.8 16.4	9 1 9 4 0	51.3 9.8 4
PROT	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6.20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.22 0.18	6.2 5.6 6.9	6.20
РИОЅ	44.4	6.40 0.19	444E	4.20 0.22 4	0 4 = 1 4 4 4 4	4.30 0.16
SAP	83 57 37	58.0 9.5 4	105 45 55 54	64.8 13.6	56 56 76	61.5 4.9 4
гон	123 463 332 243	290.3 71.8	351 205 174 299	257.3 41.0	279 284 134 129	206.5
grcs	89 78 87 90	86.0	81 81 92 80	83.5 2.8 4	81 86 82 89	84.5 1.8
CHOL	131 155 121 134	135.3 7.1	152 176 187 143	164.5	156 121 154 165	0.641 9.6 9.6
CA	10.5 11.6 10.4 10.8	10.82	11.1111.3	10.92	10.5 10.6 10.8 11.2	10.77 0.15
AL B	23.25	3.10	3.00	3.02	2.6 3.2 3.1	2.90
808N	50 51 10 10 10 10 10 10 10 10 10 10 10 10 10	15.5	19 15 17	16.5	13 16 16 16	15.3 0.8 4
1118	0000	0.10	0.0	0.07	0000	0.10
ANI MAL Nej	408 411 417	HCAN Se N	405 406 407 415	yean Se N	404 409 412 414	MEAN SP
					_	

100 PPM

300 PPM

was a state of the same of the

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIES FIR P-1073409	TABLE S (CONTINUED) INDIVIOUAL ANIMAL CHEMISTRIES-MALES INTERNAL OF STUDY: WEEK A
FOR	TABLE S (CONTINUED) INDIVIDUAL ANIMAL CHEMIST INTERVAL OF STIDS
RIES	CHE CHE
H IS I	TABLE S (CONTINUED) INDIVIDUAL ANIMAL
3	CONT AL A
NICAL	LE 5 1V 101
נו	TAB

URIC	000 000 000 000	0.55 0.13
SGPT	36 45 65 65	42.3
3601	67 51 56 56	53.5
PROT	6.5.9	6.12
РНОЅ	3.8	4.12
SAP	137 92 56 65	87.5 18.2
ron	247 95 286 298	231.5
61.05	88 98 99 90	89.0
CHOL	157 137 132	143.5
۲	10.4 10.7 10.8	10.62
AL B	3.0	2.87
BUN	71 12 18	15.3
811.1	0000	0.00
ANÍ MAL NO	413 416 419 620	MFAN SE
ndsf Group	1000 рри	

and the state of t

THE PROPERTY OF THE PROPERTY O

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIES FUR P-1073409

S-FEMALES	
CHEMISTRIES—FEMALES	MFFK 4
	JF STUNY=
TABLE 5 (CONTINUED)	INTERVAL OF STUDY = WFFK 4

SGPT URIC	28 0.4 37 0.3 32 0.1 39 0.0	34.0 0.20 2.5 0.39 4 4	31 0.4 27 0.0 34 0.4 33 0.4	31.3 0.22 1.5 0.10	40 0.3 24 0.5 27 0.5	42.5 0.40
SGOT	64 64 64 64	57.3 5.1	8 4 8 W	الأستد	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56.0
PROT	8.00 8.00 8.00	6-12 0-10	00 00 00 0 0 0 00 0 0 0 00 0 0 0 00	5.97 0.18	3 6 9 9 0 9 0 9 0	6.17
PHOS	4000	3.67	7 N N O	4.02 0.31 4	8 8 8 4 9 4 4	4.10
SAP	55 32 31	45.5 6.4 4	88 4 20 33 11	65.3 11.0	44 44 85 85	65.5
НОЛ	164 124 975 483	436.5 196.7 4	11.7 371. 316 355	289.8 58.7	320 127 261 231	234.8
ercs	84 81 88 88	83.5 1.7	86 75 83	84.3 3.7	7.9 88 85	83.0
CHUL	138 127 114 138	129.3 5.7	128 165 131 113	134.3 11.0	197 146 183 163	172.3
V C	11.0 10.9 11.0	10.95 0.03	10.9	11.10 0.08	11.0 10.7 11.1	10.82
AL 8	3.5 3.2	3.27	33.2	3.20 0.11 4	2.9 3.1 1.4	2.67
BUN	13	12.5 0.3	011818	14.5 2.3 4	26 11 14	16.0
8111	0.1 0.2 0.1 0.1	0.12	0000	0.10	0000	0.10
ANI MAL. NO	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MEAN Se	422 429 430 431	HEAN Se N	421 424 427 433	MFAN
DOSE GROUP	CONTROL		100 PPM		300 PPM	

TABLE II-F-48 (Continued)

CL!NICAL CHEMISTRIES FOR P-1073409

UR IC	0000 4.000	
SGP T	38	
5601	45 72 68 50	58.8 6.6
PROT	******	6.05
PHUS	4 ~ B G	4.12 0.26
SAP	54 72 70	0.69 4.8
гон	473 222 213 479	
GLUS	80 76 82 72	77.5
CHUL	231 112 134 176	163.3
٧	11.7 10.2 10.7	11.00
ALB.	23.2 23.2 20.2	3.02
8UN	22 - 12 - 22 - 22 - 22 - 22 - 22 - 22 -	16.8 3.0
0171	0000	0.00
ANÍ MAL NO	423 432 437	MOAN ST.
OOSE GROUP	NA4 0001	

CLINICAL CHEMISTRIES FUR P-1073409

TABLE 5 (CONTINUED) INDIVIDUAL ANIVAL CHEMISTRIES-MALES INTFRVAL OF STUDY= WFFK 8

PRO1 5601 5671		6.4 25 46	6.4 25 46 7 6.27 37.5 46.5 5 0.30 6.1 12.6 4 4	6.4 25 46.5 7 6.27 37.5 46.5 5 0.30 6.1 12.6 4 4 4 6.2 35 41 6.2 35 41 6.1 29 33 5.1 36 29	6.4 25 46.5 7 6.27 37.5 46.5 5 0.30 6.1 12.6 4 4 4 4 6.2 35 41 6.1 29 33 6.1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.4 25 46.5 6.27 37.5 46.5 6.30 6.1 12.6 6.4 37 26 6.6 37 26 6.1 29 33 6.1 29 33 6.1 34.3 32.3 1 0.15 1.8 3.3 4 4 5 6.5 43 45 6.5 43 45 6.9 28 30 26 6.9 28 39 28
	4.1 6.6 4.1 6.7 4.3 5.4		4.27 6.27 0.15 0.30			
	65 59 59 59		4			
H07	97 227 56	166.8	4	139 170 111 258		
CLCS	99 93 93	88.8				
CHOL	131 152 120 143	136.5	ŧ	123 166 173 139	123 1166 1139 1150-3	123 166 173 139 150.3 11.7 168 168
C A	11.1	10.87	r	10.8 11.6 10.5 10.5	10.8 10.5 10.5 10.8 10.85	10.8 10.5 10.5 10.85 0.26 0.26 10.9
A. B	3.5 3.5 3.5 3.5 3.5	3.12	•	040	3.0 3.1 3.1 0.0 0.0	3 40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
BUN	11 11 11	15.3	•			
811.1	0000	0.07	r	0000	0.00	0.00 0.
ANI MAL NO	408 411 417	MEAN Se	z	405 406 407-	405 406 406 407- 415 MFAN SE SE	405 406 406 407- 415 8E 8E 8A 405 418
OUSE GROUP	CONTRUL			Hdd 001	wdd 001	Wdd 008

NOTE THE TOTAL T

and the second of the second o

CLINICAL CHEMISTRICS FOR P-1073409

· was and said

TABLE 5 (CONTINUED) INDIVIDUAL AVIMAL CHEMISTRIES-MALES INTERVAL OF STUDY= WERK 8

UR IC	0000	0.02
1 498	23 36 72	4.0 0.5
SGOT	33.00 4.33.00 4.33.00	36.5
rROT	5.0 6.0 6.0	5.87
PHOS	₩444 * • • • ₩ ₩ 4	4.12 0.23
SAP	110 28 49 43	57.5 18.0
гон	138 170 132 150	147.5
979	. 6 88 86 86 48	87.3 1.5
СНОГ	130 93 123 113	114.8
CA.	10.2 10.7 10.6 10.3	10.45
ALB	3.52	3.07
ROB	222	12.0
811.1	0000	0.10
ANT MAL ND	413 416 419 420	MEAN SE
DOSE GROUP	1000 PPH	

make a state who is arrest that the

18 - d. Johan da, collection of Medical medical artificial processing and appropriate and artificial desirations of

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIES FOR P-1073409

TABLE 5 (CONTINUED)
INDIVIDUAL ANIMAL CHEMISTRIES-FEMALES
INTERVAL OF STUDY= WEEK 8

CONTROL

URIC	0.0	0.12	0.2 1.2 0.1	0.42	0.00	0.27
\$6PT	23 27 38	31.8	31 28 35 27	30.3	2 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	32.8 2.8
SGOT	384	35.0 1.3	23 39 37 26	31.3	38 32 R 32 R	35.8 2.6
PR01	5.1 6.8 5.8	6.13 0.25 4	5.0 5.0 8.0 8.0	5.17 0.13 4	0 0 0 0 0 w w 4 x	6.45 0.06 4
PHOS	3.8 3.5 4.1	3.85 0.13 4		4-17 0-14	3.8 3.7 4.7 R	4.10 0.23
SAP	54 23 24	43.0 8.8 4	58 348 54	54.8 8.40 4.4	58 63 68 R	66.3 8
LOH	92 161 206 220	169.8 28.8	131 173 204 133	160°3 17°5	137 153 328 R 129	186.8 47.3
6LCS	81 99 105 75	90.0 7.1	80 76 75 86	79.3 2.5	93 99 93 5	93°3
СНОГ	116 144 111 129	125.0	147 165 99 106	129.3 15.9	200 145 189 R 220	188.5 15.9
CA	10.8 10.6 10.6	10.72 0.15	10.7 10.9 10.7 10.6	10.72 0.06 4	11.0 10.8 10.8	10.85 0.05
AL B	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.20 0.08	8833 8600 8600 8600	3.07	% 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.55 0.30
RUN	17 12 13	14.5	13 17 16	15.3	23 11.2 11.4 11.8 11.8	16.8 2.4 4.5
9171	00000	0.10 0.00 4	0000	0.00	0.0 0.1 0.1 8	0.05
ANI MAL NO	425 436 435	HEAN SF	422 429 430 431	MFAN Sl N	421 427 433	MEAN SE

THE PARTY OF THE P

CO. With the Control of the Control

100 PPM

300 PPM

TABLE II-F-48 (Continued)

CLINICAL CHEWISTRIFS FOR P-1073409

TABLES (CONTINUED) INDIVIDUAL ANIWAL CHEMISTRIES-FEMALES INTERVAL OF STUDY= WFFK 8

UR IC	0.00	0.25
SGPT	25 30 22 36	28.3 3.1
\$601	40 28 32	35°3 3°1
PROT	\$ W W Q	5.90
PHUS	44 W 4	4.20
SAP	70 62 54 61	61.8 3.3
LDH	237 263 123 126	
פרכצ	93 80 72	82.3
CKOL	248 102 137 180	166.8
V	11.1 9.7 10.2 11.4	10.60
AL B	3.2 3.5 3.5	3.15
BUN	23 113 17	16.8 2.3
8111	0000	0.12
ANI MAL ND	423 432 436	JEAN SE
	_	

1000 PPM

DOSE GROUP

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIES FOR P-1073409

TABLE 5 (CONTINUED) INDIVIDUAL ANIMAL CHEMISTRIES-MALES 'NTERVAL OF STUDY= TERMINAL KILL

URIC	0.0 0.5 0.0 0.0	0.52 0.05 4	4.000	0.07	0.5	0-80
SGPT	\$ 7 7 4 4 5 7 4 4 5 7 4 4 5 7 4 4 5 7 4 4 7 7 8 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	42.0 6.1	39 30 31	34.3	31 31 23	33.0
SGOT	30 31 54 24	31.5 3.5 4	29 29 31 36	31.3	31 24 24	27.0
PROT	6 % & & & & & & & & & & & & & & & & & &	6.27 0.34 4	6.0 5.0 5.0 5.0	6.10 0.26 4	6.5	6.37 0.18
PHUS	~	3.75	3.4 3.4 3.2	3.72 0.25 4	# 4 2 W 4 0 C S	3.50
SAP	64 65 65	55.0 6.4 4	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.0 6.0	51 53 53	45.3
гон	125 243 411 175	238.5 62.4	259 243 215 337	263.5 26.1	161 230 263 113	191.8 33.8
GLCS	A	74.0 3.0	4. 4 A A A	74.0	86 79 • A	82.5 3.5
CHOL	103 103 81 108	98.5 6.0 4	105 122 125 125 104	114.0	116 96 102 103	105.8
CA	10.8 11.9 10.2	10.97 0.35	10.7 11.2 10.6 10.1	10.65	10.6 10.8 11.1	10.82 0.10
AL B	~ 6 M 4	3.85 0.23 4	3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	3.80 0.21 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3.92 n.28
BUN	12 20 20 13	16.3 2.2 4	100	16.8 1.1	18 19 17	16.5
91718	0000	0.10	0000	0.10	0000	0.10
ANI HAL NO	408 411 417 418	MEAN SE N	405 406 407 415	MFAN SG N	404 409 412 412	MFAN SE N
OOSE GROUP	C ONTROL		MG9 001		300 PPN	

THE CONTROL OF THE PROPERTY OF

4 34 34

TABLE II-F-48 (Continued)

Section 1

TABLE 5 (CONTINUED) INDIVIDUAL ANIMAL CHEMISTRIES-MALES INTERVAL OF STUDY= TERMINAL KILL CLINICAL CHEMISTRIES FOR P-1073409

URIC	0.9	0.82
SGPT	63 63 63	49.3
\$601	30 39 41	3.1
PROT	W 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.92
PHOS	9.0 9.0 9.5	3.38
SAP	81 50 55	56.5
гон	268 184 226 238	229.0
9719	88 87 87 87	87.5
CHOL	105 75 90 101	92.8
8	10.0 10.8 11.0	10.67
ALB	4.4.9	3.75
NO.	16 17 14 15	15.5
1118	0000	0.10
ANS HAL ND	413 416 419 420	MEAN
DOSE GROUP	1000 ррм	

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIFS FOR P-1073409

TABLE 5 (CONTINUED) INDIVIDUAL ANIMAL CHEMISTRIES-FEMALES INTERVAL OF STUDY= TERMINAL KILL

UR IC	0000	0.52	0.0 0.0 0.0 0.0	0.42	1.2	0.82
SGPT	37 37 31 31	35.0 3.9	28 23 25 35	34.0	35 35 39 39	32.8 3.0
SGOT	3.5 3.5 3.2	32.3	27 32 44 21	31.0	38 21 17 35	27.8 5.2
PROT	2.4.0 2.4.0	6.02 0.13	0.00 0.00 1.00	6.42 0.17	 	5.92 0.16
PHOS	2000 2000 2000 2000	3.30	2.00 2.00 2.00	3.42 0.19	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.62
SAP	31 31	40.8 6.6 4	49 80 26 33	47.0 12.0	45 49 66	55.3 4.9
гон	322 239 225 211	249.3	241 240 434 175	272.5 56.0	364 200 236 315	278.8 37.2
5319	. A 75 81	78.0 3.0	70 A A	4.4 2.4	80 • A 73 A	76.5 3.5
CHOL	102 110 78 105	98.8 7.1	129 154 82 96	115.3 16.2	157 114 159 132	140.5 10.8
CA	10.8 11.0 10.9 10.8	10.87 0.05	11.0 10.4 10.9	10.75 0.13	10.8 10.5 10.9	10.87
VI B	44mm 6 6.44	3.82 0.25 4	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.72	44.0 4.0 4.0	3.72
BUN	15 13 16 16	15.8	81 91 19 10	16.8	25 112 20	18.0
1118	0.1 0.2 0.1 0.1	0.02 0.02	0000	0.10	0000	0.10
ANI HAL	4556 434 434	AEAN SE S	422 429 430 431	AFAN Sf N	421 424 427 433	MEAN SF

Hdd 001

CONTROL

DOSE GROUP 300 PPM

TABLE II-F-48 (Continued)

CLINICAL CHEMISTRIES FOR P-1073409

TABLE 5 (CONTINUED)
INDIVIDUAL ANIMAL CHEMISTRIES-FFMALFS
INTERVAL OF STUDY= TERMIMAL KILL

URIC	0.6	
SGPT	29 32 38	29.5
SGOT	39 29 19	29.8
PROT	6 5 5 5 C	5.82
SUHUS	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.60
SAP	ል ለ ሊ የ ወ ራ ላ የረ	54.0
FOH	340 241 171 274	256.5 35.2
5019	81 6. 8 8	6.5
CHOL	120 86 138 136	120.0
۷	11.4	10.85
AL B	4.04 4.00 4.00	
BUN	24 15 15 15	17.5
811.1	2-0000	0.12
AN! MAL NO	4432 4432 4432	4EAN SE
DGSE GROUP	1000 ррм	

्री निर्मात होता के स्वापन के स्वापन के स्वापन के स्वापन के स्वापन के अन्य के स्वापन के स्वापन के स्वापन के स् इस स्वापन के स्वापन

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 6

KEY TO URINALYSIS

Color:

Y = Yellow Str = Straw Amb = Amber Br = Brown Or = Orange Ply = Pale Yellow PlOr = Pale Orange None = Colorless

Appearance:

Cldy = Cloudy

S1 Cldy = Slightly Cloudy

i.

Albumin:

0 = Negative + = Positive ± = Trace 1+ = 30 mg 2+ = 100 mg 3+ = 300 mg

4+ = 100 mg or greater

Other:

- or 0 = None seen or Negative ± = Trace, Rare, Occasional 1+ = Slight, Small, Little 2+ = Moderate, Frequent

3+ = Severe, Heavy, Large, Many

4+ = Maximal

Microscopic

Examination:

HPF = High power field

Crystals:

UA = Uric Acid

TP = Triple Phosphate CaOx = Calcium Oxalate

Other:

Yst = Yeast

Mu = Mucous Threads

Sp = Sperm

HA = Hippuric Acid

ABLE II-F-49

ĭ.	ş
ICS.	10734-09
10NE	٠ چ
TTON B	PROJECT
=	PR

	S
TABLE 6	URINALYSIS

INITIAL	MALES

TUCOUS THREADS				
- P:	±			+1 ds
쓁	:, Sp	±	· ÷	I. S
OTHER	· £ · £	· 8 · ·	H H + 1	£
	÷			.
2]	₽		₹	TP 2+ TP 1+
CRYSTALS	TP 2+ TP 2+ UA 2+	45 44 17 14 1 14	##### #####	TP 3+ UM 1+, UM ±
BACT CI			d T T T	
	****	+ * * * +	£ † ‡ ‡ ‡	± + + + + + + + + + + + + + + + + + + +
AMORPH	± - ± ±	±±	± + + ±	±± +±
EPITH	±	* * * * .	+ + + + +	\$ \$ \$ \$ \$
CASTS				
BC C				1-0
HBC	0-5		.041	2-0
	0010	1111	00+1	C 1 1 1
OCCULT BLOOD	0000	0000	0000	0000
BILI- RUBIN	++++	÷± +0	±+00	5 + t 0
CE- TONES				
r-ı	0000	0000	0000	0000
GLU- COSE	0000	0000	0000	0000
AL- BUMIN	00±#	*000	± ± + ±	5 0 + 0 + 0
핆	7776	8887	8869	7 6 6
EC.	017 040 045 045	045 030 007	1.075 1.035 >1.045	045 045 030 010
22.69		<u>۲</u> . ۲		44
EAR-	>>>>	***		>>>>
APP	Haz Cld	2222 4452	Hazy C1dy Turbíd Hazy	20 # C
COLOR	⊀ Amb Amb	Amb Y Y Str	Amb Amb Amb	A~ * *
ANIMAL	408 411 417 418	405 406 407 415	404 409 412 4 14	413 416 420
DOSE LEVEL (PPM)	0	100	300	100,

TABLE II-F-49 (Continued)

					79.7 76.7		1 1 1 1		3 1 1 1
					95	2		0-1	1 1 0 1
					MBC	2-8 0-1 0-1		5.5.	0-1
					OCCULT BLOOD	0000	0000	000 *	++ + 00
					BIL 1- RUBIN	0000	0000	000 m	0000
					KE- TONES	0000	0000	0000	0000
					GLU- COSF	0000	0000	0000	0000
					AL- BUMIN	±000	+1 +1 © +1	00±±	+1 +1 ++
					픱	7 8 7	7 8 9 7	9 7 9 9	L L 8 6
					SPEC.	1.035 1.030 1.017 >1.045	>1.045 1.010 >1.045 1.025	1.040 1.045 >1.045	1.018 1.035 1.044 1.030
					APPEAR- ANCE	Cldy Hazy Hazy Cldy	Hazy Cldy Cl ₂ y	Hazy C1dy Hazy C1dy	Hazy Cldy Hazy Cldy
1NC. 4-09	ED)				COLOR	Amb Amb Amb	γ γ A mb	Y Y Amb Amb	¥ Amb ⊀
LITTON BIONETICS, INC. PROJECT NO. 10734-09	TABLE 6 (CONTINUED)	SIS			ANIMAL	425 426 434 435	422 429 430 431	421 424 427 433	423 432 436 437
LITTON 1 PROJECT	TABLE 6	URINALYSIS	INITIAL	FEMALES	DOSE LEVEL (PPM)	0	100	300	1000

Ha 2+ Ha 2+ Ha -

####

and the state of t

TABLE II-F-49 (Continued)

LITTON BIONETICS, INC. FROJECT NO. 10734-59
TABLE 6 (CONTINUED)

URINALYSIS WEEK 8

MUCOUS				•	1	•	1 1 1	
OTHER	1 1		· is	•				٠. د د د د د د د د د د د د د د د د د د د
BACT CRYSTALS	TP 2+	<u> </u>	15 4 15 4 15 4 15 4 15 4 15 4 15 4 15 4	•	TP 4+ TP 1+	4	1 TP 4+	
AMORPH B/		+ +			* * *		* * +	
EPITH AM		- +1	, , *	·	6-8 - 2+	+1		
CASTS E						•		- vo
RBC						•		
HBC HBC			ני		25-3 25-3			91-9
OCCULT BLOOD W			000	.0	000		00	00
BJLJ- RUBIN	± ± ± ±	00 (**c		ە÷د	0	÷0	00
KE- Tones	00	co (000	0	000	. 0	00	. 0
GLU- COSE	00	00	000	00	000	0	00	00
AL- BUMIN	+±±	00	* * c	00	o±c	. 0	± 0	D +1
품	65	6 9	000	ע פע	~ ≈ ∘	- ∞	60	9 ~
SPEC.	1.024	1.045	0.030	1.062	1.022	1.014	1.032	1.050
APPEAR-	CI dy CI dy	Hazy C1 dy	, 100 100	Turbid	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Hazy	01 61 61 64	Turbid Hazy
80 103	> >	str Y	> > 6	Br Br	>>	- >-	>- ∼	y tr
ANIMAL	425	434 435	405 406	45/	464 469	414	413 416	419 420
MALES DOSE LEVEL	o		100		300		1000	

A CONTRACT OF THE PROPERTY OF

TABLE II-F-49 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 6 (CONTINUED)

URINALYSIS

WEEK 8

MUCOUS				, ,	1 1	1 1			•
OTHER	:	sp 1.	- Š 1						
	-1	# 15 # 15 # 15 # 15 # 15 # 15 # 15 # 15		4	1P 3+ + TP 4+	4+ TP 4+ - TP 1+	<u> </u>	4+ TP 1+ 2+ TP ±	
a nagony		+ + ·		+1 *1	•	4 10		2+ 2	
_				8-9		-0	. ,	1 10	÷ .
24040	CHSIS								, ,
ģ	힐		1 1						
_			3-5	6-12	. ,				
10000 10000	aronn ar	00	, 0	00		00	00	00	00
-1118	KUSIN	±0	o ‡	00	0 4	+ 0	οŧ	5 0 0	o Å
Κ. -		00	00	00	00	00	00	00	00
GLU-	8	00	00	00	00	00	00	00	00
Æ	MOM	ಸ 0	+1 +1	o±	- o t	±°.	o.±	÷0	o #
:	티	6 9	9 6	დ ≪	2 20 60	66	α σ	66	9
SPEC.	GRAV.	1.016	1.045	1.647	1.062	1.047	1.037	1.021	1.040
APPEAR-	ANCE	C1dy Hazy	Turbid	Hazy	Hazy Cldy	C1 dy Hazy	Hazy Cldy	Hazy Hazy	Hazy C1dv
						y Str			
ANIMAL	NUMBER	408	418	422	430 431	421	427 433	423 432	416 437
FEMALES DOSE LEVEL	E E	0		100		300		1000	

TABLE II-F-49 (Continued)

LITTON BIONETICS, INC. PROJECT NG. 10734-09

TABLE 6 (CONTINUED)

URINALYSIS

WEEK 13 MALES

THPEADS	,		.,	÷ + + 1
ÖŢIIŢ	1111		() t i	Sp 2+
BACT CRYSTALS	2+ TP + TP	24 TP :	2+ TP ± 2+ TP 1+ - TP ± - TP 1+	- TP 1+ 3+ TP 2+ TP 1+
AMORPH	****	± 4.# #	* * * *	***
EPITH		1 1	1 1 1 1	
CASTS				
RBC				1 1 1 1
2	1 (1)	-		0-3
OCCULT BLOOD	0000	0000	0000	0000
BIL I- RUBIN	0000	0000	0000	0000
KE- TONES	0000	0000	0000	coco
GLU- COSE	0000	0000	0000	0000
AL- BUMIN	0000	0000	0000	0000
됩	თ თ თ თ	ထတ္တ	0000	8~~6
SPEC.	1.024 1.012 1.019 1.038	1.019 1.018 1.023 1.019	1 028 1.053 1.058 1.058	1.030 1.032 1.040 1.027
APPEAR- ANCE	Hazy Hazy Turbid Turbid	Hazy Hazy Turbid Turbid	Turbid Turbid Turbid Turbid	Hazy Hazy Turbid Turbid
COLOR	>>>¤	>>>	str Str Str	Str Str Y
ANIMAL	425 426 434 435	405 406 407 415	404 409 412 414	413 419 420
DOSE LEVEL (PPM)	0	100	300	1000

TABLE II-F-49 (Continued)

PROJECT NO. 10734-09
TABLE 6 (CONTINUED)

URINALYSIS WEEK 13 FEMALES

OTHER	· Š			
BACT CRYS***		7 17 17 17 17 17 17 17 17 17 17 17 17 17	2	2+ TP 1+ 2+ TP 1+ 2+ TP + 3+ TP +
AMORPH	****	****	****	±355 ±355
EPITH		9-0		:
CASTS	1111	1 1 1 1		
RBC			1111	
7.BC	, , , ,	0-1 9-3		. 0 -3
OCCULT BLOOD	0000	0000	4C O O	0000
BILI- RUBIN	0000	0000	0000	0000
KE- TONES	0000	0000	0000	0000
ere-	0000	0000	0000	0000
AL- BUMIN	00+0	+1000	+1000	4000
핆	တ ထ ထ တ	တတ္ထတ္	თთ თ <i>თ</i>	0000
SPEC.	1.011 1.041 1.037 1.008	1.026 1.055 1.032 1.034	1.027 1.098 1.098	1.034
APPEAR- ANCE	Hazy Hazy Turbid Hazy	Turbid Turbid Turbid Turbid	Turbid Turbid Turbid Turbid	Cldy Hazy Hazy
COLOR	Str Str Y	str Y	8r Str	× str
			421 424 427 433	
DOSE LEVEL (PPM)		100	300	1000

MUCOUS THREADS

TABLE II-F-50

TABLE 7 PROJECT NO. 1073409
GRGAN WEIGHTS IN MALE DOGS (GRAMS)
DOSE - 0 PPM
GROUP - 1
TERMINAL KILL

ANIMAL NUPBER	BOUY WEIGHT	BRAIN	THYROLO	HE ART	LIVER	SPLEEN	KIDNEYS	ADRE'LS	TESTES
0498	15800.0	77.2990	0.02	112.2280	448.8350	74.6140	81.7960	1.1300	23.1770
0411	9800.0	80.9100	1.0340	71.3123	301.4543	58.4590	49.0490	0.7170	15.8160
0417	9200.0	76.6100	0.6700	85.3400	207.0000	73.5400	57.5000	0.8200	19.3100
0418 .	8700.6	79.4800	0.9200	77.9500	270.7800	104.3000	59.8500	1.9000	22.7600
N	4	4	3	4	4	4	4	4	4
MEAN	10875.0	78.5747	0.8747		322.0172	77.7282	61.7987	1.1417	20.2657
S.D.	3314.0	1.9800	0.1862	17.8108	85.9413	19.1886	14.0193	C-5351	3.4356
S.E.	1657.0	0.9900	0.1075	8.9054	42.9707	9.5943	7.0096	0.2676	1.7178

^aLeft thyroid not located.

Los consoliciones de la los desposiciones de la company
TABLE 7 (CONTINUED)

PREJECT NC. 1073409

CNGAN WEIGHTS IN MALE DOGS (GRAMS)

DUSE - 100 PPM

GACUP - 2

TEMMINAL KILL

•	•								
ANIMAL NUMBER		HIASE	THYRCIC	HEART	LIVER	SPLEEN	KIONEYS	ADRE*LS	TESTES
0405	12000.0	79.2890	0.6820	87.8710	327.2300	87.3910	61.4320	0.9310	19.2260
0406	12400.0	100.3700	0.6900	91.4000	289.9700	100.7200	63-4200	1-1700	20-4700
3407	10930.0	86.6800	0.3100	91.9100	335.9300	06-1100	67.2000	1.3900	24-1400
0415	11230.0	89.8100	0.9100	81-1400	258.5300	127.7700	49.0900	0.8100	19.9800
N	4	4	4	4	4	4	4	4	4
MEAN	11625.0	89.0372*	0.7730	83.0302	302.9150	95.4977	60.2855	1.0752	20.9540
S.D.	694-6	6.7400	0.1085	4.9632	35.5702	25.8078	7.8377	C-2577	2-1848
S.E.	347.3	4.3743	0.0542	2.4816	17.8391	12-9039	3.9189	C-1268	1.0924

p<0.05 as compared to controls: Dunnett's t-test.

TABLE 7 (CONTINUED)

PHOJECT NO. 1073409

GROAM WEIGHTS IN MALE DOGS (GRAMS)

DOSE - 300 PPM

GROUP - 3

TERMINAL KILL

4.1-4F		BKAIN	ЭЛОЯУНТ	HEART	LIVEK	SPLEEN	KIDNEYS	ADRE*LS	TESTES
0424	10800.0	79.9230	0.8040	90.3060	318.4690	92.5170	49.3060	0-8760	18.3230
0499	9430.0	82.2420	0.3350	76.7530	250.7610	87.2330	57.9380	0.4100	15.7750
0412	670C.C	84.18CO	0.5000	68.9300	233.9900	96.8500	45.3700	1.8500	17.0000
9414	10405.0	93.2900	0.8400	93.4000	285.1100	81.6300	62.3300	1-3500	25-4800
N	4	4	:	4	4	4	4	4	4
AE AN	9825.0	84.9087	0.6147	82.3457	272.0825	89.5575	53.7365	1.1215	19.1445
S.D.	953.5	5.8522	0.2435	11.4997	37.5309	6.5076	7.7598	0.6190	4-3499
.S.E.	476.8	2.9261	0.1218	5.7498	18.7685	3.2938	3.8849	0.3095	2.1750

TABLE 7 (CONTINUED)

PROJECT NG. 1073439

DRGAN WEIGHTS 1% MALE DOGS (GRAMS)

DOSE - 1000 PPM

GRUUP - 4

TERMINAL KILL

ANIMAL		BRAIN	THYRCID	HEART	LIVER	SPLEEN	KIONEYS	ADRE*LS	TESTES
0419 0416 0413 0+20	10606.0 9400.0 12703.0 10900.0	77.5800 79.3500 77.4270 82.5300	0.8290 0.4130 0.7713 0.5999	75.67C0 95.9420	270.6290 305.8500 292.5060 274.6400	87.4800 132.3990	48.6000 56.6200 63.3780 55.0200	1.0400 1.6500 0.9330 0.7400	14.3700 22.3000 21.6440 16.4300
HEAN S.D. S.E.	4 10400.0 678.2 339.1	4 79.2218 2.3719 1.1859	4 0.6477 0.1868 C.0934	4 81.0655 10.0689 5.0444		23.2396	55.9045 6.0691 3.0346	4 1.0907 0.3930 0.1965	4 18.6860 3.8956 1.9478

and the state of t

TABLE 7 (CONTINUED)

PROJECT NO. 1973499

PROJECT NO. 1973499

PROJECT NO. 1973409

PROJECT N

ANIMAL NUMMER	BE13HT	SRAIN	CIJFYHT	HEART	LIVER	SPLEEN	KIDNEYS	ADRE*LS	GVARIES
0425	8306.0	76.0000	0.5500	65.0220	229.5410	96.0820	41.0390	0.9580	0.1490
3426	7606.0	c4.0300	0.5800	65.2500	224-8403	88-1400	44.7900	0.4800	0.5300
0434	7900.0	73.1700	0.5300	71.3600	210.8000	86.1300	42.0700	0.6400	0.5500
0435	0400.0	68-6700	0.3100	69.3700	203.3700	52.5300	28.3400	0.9200	0.5600
N	4	4	4	4	4	4	4	4	4
MEAY	7550.0	75.4695	0.4940	67.5255	217.1627	83.7205	39.0597	0.8745	0.4472
5.0.	816.5	6.4574	0.1244	3.2097	12.1843	19.2786	7.3196	0.1583	0.1992
S.E.	404.3	3.2267	0-0622	1.6548	6.0921	9.6393	3.6598	0.0791	0.0996

TABLE 7 (CONTINUED)

PROJECT NO. 1073409

ORGAN MEIGHTS IN FEMALE DOGS (GRAMS)

DOSE - 100 PPM

GROUP - 2

TERMINAL KILL

ANIMAL NUMBER	BODY WEIGHT	BRAIN	THYROID	·HEART	LIVER	SPLEEN	KIDNEYS	ADRE*LS	OVARIES
	45.000	Dansii	**********		****	31 61.211	***************************************		
0422	8700.0	70.9690	0.5450	68.4280	227.3220	63.3320	35.0820	0.8030	1.1070
0429	9600-0	84.7690	0.6980	75.1000	303.8470	90.0000	42.2570	0. 1880	1.3080
0430	9100-0	79.7000	1.0000	69.3300	241.8500	81.7900	47.5600	1.2100	2.0400
0431	7800.0	81-9400	0.5400	62.7100	250.0700	71.1300	39.0900	0.8500	1.3000
N	4	4		4		4	4	4	4
MEAN	8800.0	79-3445	9-6957	•	255. 7722	76.5630	40-9972	0.7627	1.4387
S-D-	761.6	5.9564	0.2157	5.0716	33.4013	11.7253	5-2689	0.4241	0.4115
S.F.	380.8	2.9782	0-1078	2.535A	16-7007	5.8627	2-6345	0-2121	0.2057

TABLE 7 (CONTINUED)

SALUELT AUG. 1577407

-- 104 ATTUMES TO FERALE DOGS (GRAMS)

-- 104 PPM

-- 105 TERMINATE TO STANKE TO STA

	. Buda Miliant	or Ali.	THYFUID	nEAr T	LIVER	SPLEEN	KIUNEYS	AJné1E5	CVANIES
J+21	122.2	77.2000	J.7510	72.5000	307.5573	32.4.11	43.237.	J.9030	3.0510
2424	7500.0		0.7233	71.3500	245-5230	110.3433	43.4430	0.7000	0.0100
2427	7322.0		3.5303	54.0.00	223.1330	53.9333	34.3000	0.690C	3.9330
U+33	9450.0	84.41.0	6.4730	65.1200	229.3300	93.3000	39.2100	0.6700	0.7500
	4	4	4	4	4	•	4	4	4
154		76.2765	4.0425			il.735J		J-8J57	1.4852
5.3.	103400	4. 72.00	0.12>5	5.5097	35.4713	13.5750	4.2027	0.0964	1.4490
3.		2.1200	3.3629	4.4340	19.2357	6.7643	2.1315	C-0+92	J.1249

TABLE 7 (CONTINUED)
PROJECT NG. 1073409
ORGAN MEIGHTS IN FEMALE DGGS (GRAMS)
DOSE - 1000 PPM
GROUP - 4
TERMINAL KILL

ANIMAL Number	BCDY WEIGHT	BRAIN	THYRULD	HEART	LIVER	SPLEEN	KIONEYS	ADRE*LS	GVARIES
0432	7400.0	75.6790	0.9490	81.2840	213.0240	136-4550	46.2180	1.0210	0.5970
0436	7900.0	0.Qb	0.5000	53-6200	199.5000	77-0900	39.2500	0.9800	1.0200
0437	8800.0	72.4700	0.5700	72.9500	254.5200	95.7400	41.0700	0.7800	0.5300
-0423	7600.0	69.2230	0.4360	56-0610	206.0600	57-4130	39.1030	0.3170	0.9450
N	4	3	4	4	4	4	4	4	4
MEAN	7925.0	72.4573	0.6137	65.9787	218.2760	91.6745	41-4102	0.7745	0.7730
S.D.	618.5	3. 2280	0.2301	13.3410	24.7856	33.7065	3.3277	0.3227	0.2454
5.E.	309.2	1-8637	0.1151	6.6705	12.3928	16-8532	1.6638	0.1613	0.1227

 $^{^{\}mathrm{b}}\mathrm{Weight}$ not taken.

TABLE II-F-51

TABLE 8

PROJECT NO. 1073409

ORGAN WEIGHT-BODY WEIGHT PERCENTAGES IN MALE DOGS

DOSE - 0 PPM

GROUP - 1

TERMINAL KILL

ANIMAL				LIVEK	SPLEEN	KIONEYS	ADRE+LS	162163
NUMBER	BRAIN	THYROLD	HEART		0.4722	0.5177	0.0072	0.1467 0.1614
0408 0411 0417	0.4892 0.8256 0.8327	0.0 0.010 0.0073	0.7103 0.7328 0.9276	2.8407 3.0761 2.9022 3.1124	0.5965 0.7993 1.1988	0.5005	C.0073 O.0089 O.0218	0.2099
0419 N	0.9136	3	0.8960 4 0.8167	4 2.9828	0.7667			0.1949 0.0520
S-D-	0.7653 C.1883 O.0942	0.0019	0.1110 0.0555	0.1319 0.0659	0.3181		075	0.0260

^aLeft thyroid not located.

TABLE 8 (CONTINUED)

PROJECT ACC 107040° FRACENTAGES IN TALE 0000 OCSE - 100 PPY GALUP - 2 TEL 11.01 KILL

41.17AL NU45ER	prali.	THYFCLU	HEART	LIVER	SPLEEV	KIDNEYS	AJKE*LS	TESTES
0405 0405 0407 0415	0.6007 0.6354 0.7552 0.3919	0.0057 J.0056 0.0074 6.0051	0.7323 0.7371 0.8432 0.7245	2.7209 2.3365 3.3819 2.3083	0.7263 0.5123 0.5563 1.1408	0.5119 0.5115 0.0165 0.4363	0.0078 0.0094 0.0128 0.0072	0.1602 C.1651 C.2215 O.1784
N MEAN S.). S.F.	4 0.7600 0.3710 0.3155	4 0.3667 3.9613 6.0636	4 0.7593 3.0567 3.0281	4 2.6137 3.3656 3.1025	6.8223 0.2257 0.1144	4 0.5196 0.0733 0.0367	4 0.0093 0.0025 0.0012	4 0.1813 C.0279 U.0139

TABLE 8 (CONTINUED)

DEF JEGT NO. 1073409

UNGAN - PROTEST OY WEIGHT MENCENTAGES IN MALE BUGGERS - 300 PMM
GROWN - THE STORE STORE

THE STORE STORE

AILII AL FILLIA	of Alic	InyrCID	nEAFT	L I V	SPLEEN	2YBP01A	ADKE'LS	TESTES
04-54	3. 7400	0.0074	0.9361	2.9443	0.3556	0.4566	0.0091	0.1697
0427	0.57-9	0.0036	3. 5155	2.6677	0.9280	0.5164	0.0044	0.1078
5412	0.747.	0.0057	C. 7423	2.6895	1.1132	0.5215	0.3213	0.1954
1414	0.8570	J.0081	J. 3981	2.7414	L.7349	6.5993	0.0130	0.2450
٠.	4	4	4	4	4	4	4	4
ME AIN	0.9655-	J-0062	0.8358	2.7614	C.9207	0.5+3+	0.0117	0-1945
S.).	0.05.	0.0020	0.6452	0.1234	0.1413	J.073	0.0073	0.0360
5.E.	0.0475	0.0010	3.0226	0.0642	J-0705	0.0369	0.0036	0.0180

TO SERVICE SER

9.5

TABLE 8 (CONTINUED)

PROJECT NO. 1070407
PROJ. METONT-3007 NETONT PERCENTAGES IN MILE COUNTY SEE - 1000 PD / 3700 - 4
TERMINAL KILL

47.174L	3641::	THYTEI	hEA-T	LIVES	SPLeë!.	۲۱۶.٬E۸۲	4025165	restes
0419 0416 0413 0420	0.731° 0.8441 0.7234 0.7572	5.0077 J.7644 J.0072 G.3054	C. 6940 C. 6950 C. 6961 C. 7207	2.5530 3.2537 2.7337 2.5215	0.2067 3.9304 1.2374 7.7763	0.4595 0.6023 0.5923 0.5046	0.0095 0.0176 0.0067 0.0058	0.1350 0.2372 0.2023 0.1507
452% 3.7.	2.7042 3.0552	4 0.0962 0.0016	4 0.7803 0.0900 0.0450	4 2.7655 3.3347 0.1695	4 J. 437 C. 21J5 J. 1053	4 0.5395 0.0695 0.0348	0.0107 J.3647 0.0024	4 0.1815 0.0465 0.0234

TABLE 8 (CONTINUED)

7- JT T % 107340 ;
6- JT T % 107340 ;
6- JT T % 1041-303Y WEIGHT PERCENTAGES TO FEMALE DUGS
15- C FPM
6- JOS - 1
Treff AL NILL

1 -1 -1 L	3, 418	THYFCLO	1-E4-T	LIVE	SPLEEN	KIDNEYS	ADRE!LS	CVAFIES
0423 0424 0434 0435	0.9153 1.1057 0.5262 1.0730	0.0067 0.0076 0.0067 0.0048	C. 7434 J. 8536 C. 9395 1. 3633	2.7609 2.9544 4.5684 3.1777	1.1576 1.1597 1.0903 3.820s	0.+944 0.5±93 6.5325 6.4420	0.0115 0.0129 0.0081 0.0144	0.0018 0.0070 0.0070 0.0087
MEA. S.D. S.E.	4 1.3351 0.3982 3.3491	4 0.0(65 0.0012 0.0006	4 0.7057 0.1204 2.6003	4 2.9923 3.2249 3.1124	4 1.3571 0.1005 2.0534	4 0.5148 0.0018 0.0309	3.0117 0.0027 0.0013	4 0.0061 0.0030 0.0015

TABLE 8 (CONTINUED)

PROJECT NO. 1073409

ORGAN WEIGHT-BODY WEIGHT PERCENTAGES IN FEMALE DOCS

DOSE - 100 PPM

GROUP - 2

TERMINAL KILL

ANIHAL NUMBER	BKAIN	THYRCIO	HEART	LIVER	SPLEEN	K IUNEYS	ADRE'LS	OVARIES
0422	0.8157	0.0063	0.7865	2.6129	0.7280	0,4032	0.0092	0.0127
0429	0.8830	0.0073	0.7823	3.1651	0.9375	0.4402	0.0020	0.0136
0430	0.8758	0.0110	0.7619	2.6577	0.8988	0.5226	0.0133	0.0224
0431	1.0505	0.0069	0.8040	3.2060	0.9119	0.5012	0.0109	0.0167
N	4	4	4	4	4	4	4	4
MEAN	0.9063	0.0079	0.7837	2.9104	0.8690	0.4668	0.0088	0-0164
5.0.	0.1008	0.0021	0.0173	0.3187	0.0954	0.0549	0.0049	0-0044
S.E.	0.0504	0.0611	0.0086	0.1593	0.0477	0.0275	0.0024	0.0022

TABLE 8 (CONTINUED) JOURNAL OF THE STATE OF THE PROCESS OF THE STATE
43.1 13t , 30 ft .	SFAI'.	THYSULT	nevel	Liven	SPLEC.	<10%EY5	AJAK*LS	EVANIES
3421 3424 3421 3421	0.7100 0.9907 1.0507 0.493	3.3066 0.3332 3.8096 3.6353	0.6675 0.9147 2.7347 0.6340	2.8710 3.1977 3.050) 2.43,7	0.7563 1.4145 1.1353 0.9426	0.4423 0.5565 0.5364 0.4171	0.0353 0.0097 6.0095 0.0093	0.3335 3.3376 0.3127 0.3080
#E46 \$.0.	0.901s 0.1437	0.0074 0.0019	3.7433 0.12+1 3.2023	2.5759 5.3314 3.1557	4 1.0570 0.2735 0.1309	0.4587 0.3693 0.3345	4 0.0392 0.0360 0.0363	4 0.0155 0.0122 0.0061

TABLE 8 (CRITINUED)

PROJECT NO. 1073409

ORGAN MEIGHT-BOJY MEIGHT PERCENTAGES IN FEMALE DOGS

DOSE - 1000 PPM

GROUP - 4

TERMINAL KILL

ANI HAL Number	BRAIN	DICRYHT	HEART	FIAEK	SPLEEN	KIDNEYS	ADRE'LS	OVARIES
0432 0436 0437 0423	1.0227 0.0 b 0.8235 0.9108	0.0128 0.0063 0.0065 0.0057	1.0984 0.6787 0.8290 0.7376	2.8787 2.5253 2.8923 2.7113	1.8440 0.9758 1.0880 0.7554	0.6246 0.4968 0.4667 0.5145	0.0138 0.0124 0.0089 0.0042	0.0081 0.0129 0.0060 0.0124
N MEAN S.D. S.E.	3 0.9190 0.0998 0.0576	0.0078 0.0033 0.0017	4 0.8359 0.1856 0.0928	4 2.7519 0.1720 0.0860	4 1-1658 0-4728 0-2364	4 0.5257 0.0688 0.0344	4 0.0098 0.0043 0.0021	0.0099 0.0034 0.0017

Weight not taken.

SPONSOR: U.S. Army Medical Bioengineering R&D Laboratory

MATERIAL: Dicyclopentadiene (DCPD)

SUBJECT: CHEMISTRY REPORT

Analysis of Diet Formulations LBI Project No. 10734-09

OBJECTIVE

The objective of this study was to analyze DCPD in animal chow with regard to stability and formulation content in diet.

MATERIALS

This method describes the analytical procedure for the determination of DCPD in dosed feed used by LBI during the course of the study. A 5 g feed subsample is extracted with 20 ml of diethyl ether by shaking for 15 minutes in an automated shaker. The extract is clarified by centrifugation for 10 minutes at 1350 rpm. The extracts are analyzed with a Varian 2100 gas chromatograph equipped with flame ionization detectors. The DCPD content is calculated from a calibration curve obtained by GLC analysis of reference solutions of DCPD in ether. Control and spiked control feed samples are analyzed concurrently to correct for possible feed background and compound recovery.

The following equipment and supplies were used.

- a. Graduated conical Falcon tubes, 50 ml, with positive seal caps (available from Becton, Dickinson and Company, Oxnard, CA, 93030; stock number H8292-209811).
- b. Volumetric glassware 1, 4, 5 and 10 ml pipettes; 50 and 100 ml flasks.
- c. Graduated cylinder 25 ml capacity.
- d. Graduated glass centrifuge tubes, 15 ml, with ground glass stoppers.
- e. Mechanical shaker.
- f. Centrifuge.
- g. Analytical laboratory balance (accurate to 0.01 mg).
- h. Top-loading laboratory balance (accurate to 0.01 g).

MATERIALS (Continued) 2.

- Gas-liquid chromatograph Varian 2100, equipped with a 1.8 m x 2 mm I.D. glass column packed with 10% FFAP on 80/100 mesh Supelcoport, flame ionization detectors.
- j. Diethyl ether (Burdick and Jackson).
- k. Dicyclopentadiene.

3. EXPERIMENTAL DESIGN

A stock standard solution of DCPD is prepared by dissolving 50 mg of DCPD in 50 ml of acetone. Take a 5 ml aliquot and dilute to 100 ml with diethyl ether in a volumetric flask. This solution has a concentration of 0.05 mg/ml. Prepare a standard curve by injecting 1, 2 and 3 H1 of the standard solution into a Varian 2100 gas chromatograph with the following parameters:

Column temperature: 60°C 225°C Injector temperature: FID temperature: 250°C

Chart: 6 min/inch

40 cc/min nitrogen 8 x 10⁻¹¹ Carrier gas flow:

Attn.:

Then weigh a 5 g sample of the dosed feed to the nearest 0.01 g in a Falcon tube. Extract the sample with 20 ml of diethyl ether by mixing for 15 minutes in a mechanical shaker, followed by centrifugation at 1300 rpm for 10 minutes. Dilute the high dose level (750 ppm) in a 15 ml graduated centrifuge tube by adding a 1 ml aliquot to 4 ml of diethyl ether. Repeat this procedure using undosed animal feed of the same lot used for the preparation of the dosed feed. This extract will be used as a negative control to assure that there are no interfering peaks contributed by the feed itself. Repeat this procedure using undosed animal feed of the same lot which has been spiked in the laboratory with DCPD at corresponding dose levels.

Quantitate the amount of DCPD in solution by comparing to the calibration curve previously prepared.

Calculate the ppm of DCPD in the dosed feed or spiked (recovery) sample as follows:

To determine mg of sample injected:

 $\frac{5 \text{ g feed}}{20 \text{ ml ether}} = \frac{250 \text{ mg feed}}{1.0 \text{ ml ether}}$

 $\frac{250 \text{ mg feed}}{1.0 \text{ ml ether}}$ x Dilution Factor = $\frac{(x) \text{ mg feed}}{1.0 \text{ ml ether}}$

3. EXPERIMENTAL DESIGN (Continued)

Dilution Factor = 1 for 80 ppm level = 0.2 for 750 ppm level

(x) mg feed
$$\times \frac{\mu \, l \, sample}{1.0 \, ml} = mg$$
 of feed injected

Calculate the intercept and slope from standard curve as determined by linear regression correlation.

peak response (peak height) - intercept slope = ng of DCPD injected

To determine ppm:

Determine method of recovery from spiked samples as follows:

percent recovery =
$$\frac{ppm found \times 100}{ppm added}$$

Correct the result of the dosed feed sample for method recovery of its corresponding spiked sample.

corrected ppm =
$$\frac{\text{sample ppm x } 100}{\text{percent recovery}}$$

4. RESULTS

DCPD samples were analyzed on a weekly basis by the method previously described. Samples were received by the analytical laboratory and frozen until day of analysis. This action was required due to the volatile nature of the compound. Results of the analysis are indicated in Table 1.

For the 100 ppm level, the average value obtained was 97.7 ± 7.2 ppm, which corresponds to $97.7\pm7.2\%$ of the theoretical value. For the 300 ppm level, the average value obtained was 303 ± 15 ppm, which corresponds to $101\pm0.5\%$ of the theoretical value. For the 1000 ppm level, the average value obtained was 991 ± 55 ppm, which is equivalent to $99.1\pm5.5\%$ of the theoretical value.

Submitted by:

January 13. Date

J.D. Mitchell

Analytical Chemist

Reviewed by:

Jerry M. Fitzgerald, Ph.D.

3/9/80 Date

Head, Analytical

Chemistry Section

Approved by:

ames Liverman, Ph.D.

Date

Acting Director

Department of Chemistry

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 1
WEEKLY DCPD FEED ANALYSIS

MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	DOSAGE (PPM)	ANALYSIS VALUE (PPM) ^a
05/10/78	05/12/78	R0034K78 R0035K78 R0036K78 R0037K78	0 100 300 1000	0 90.1 303 946
05/18/78	05/19/78	R003/R78 R0049K78 R0050K78 R0051K78 R0052K78	0 100 300 1000	0 96.1 304 996
05/25/78	05/26/78	R0062K78 R0063K78 R0064K78 R0065K78	0 100 300 1000	0 94.7 303 919
06/01/78	06/02/78	R0072K78 R0073K78 R0074K78 R0075K78	0 100 300 1000	0 106 280 931
06/08/78	06/11/78	R0089K78 R0090K78 R0091K78	0 100 300 1000	0 107 325 1011
06/14/78	06/19/78	R0092K78 R0097K78 R0098K78 R0099K78 R0100K78	0 100 300 1000	0 98.4 321 992
06/21/78	06/28/78	R0117K78 R0118K78 R0119K78 R0120K78	0 100 300 1000	0 93.4 281 1037
06/28/78	07/05/78	R0136K78 R0137K78 R0138K78 R0139K78	0 100 300 1000	0 103 296 996
07/05/78	07/08/78	R0150K78 R0151K78 R0152K78 R0153K78	0 100 300 1000	0 105•2 285 1019

 $^{^{\}mbox{\scriptsize a}}$ All values have been corrected for respective method recovery, run simultaneously with analysis.

TABLE II-F-52 (Continued)

LITTON BIONETICS, INC. PROJECT NO. 10734-09

TABLE 1 (CONTINUED)

WEEKLY DCPD FEED ANALYSIS

MIX DATE	ANALYSIS DATE	SAMPLE NUMBER	DOSAGE (PPM)	ANALYSIS VALUE (PPM) ^a
07/12/78	07/16/78	R0180K78	0	0
5,7,12 7,1	•	R0181K78	100	101
		R0182K78	300	314
		R0183K78	1000	915
07/19/78	07/24/78	R0189K78	0	. 0
07713770	0.72.770	R0190K78	100	92.6
		R0191K78	300	279
		R0192K78	1000	952
07/26/78	07/28/78	R0223K78	0	0
07720770	0,,20,,0	R0224K78	100	100
		R0225K78	300	309
		R0226K78	1000	1061
08/02/78	08/04/78	R0263K78	0	0
00/02/10	00/01/70	R0264K78	100	107
		R0265K78	300	320
		R0266K78	1000	1095
08/09/78	08/13/78	R0323K78	0	0
00/03/70	00/10/70	R0324K78	100	82.2
		R0325K78	300	300
		R0326K78	1000	945

 $^{^{\}rm a}$ All values have been corrected for respective method recovery, run simultaneously with analysis.

JAMES M. CLINTON, V. M. D. 300 BROOKMEAD DRIVE CHERRY HILL, NEW JERSEY 08034

> AMEA CODE 609 TELEPHONE 429-7798

Litton Bionetic Inc. Project 10734-09 Robert P. Beliles, Ph.D. Elliot Gordon, Ph.D. 9 January 1978

OPHTHALMOSCOPIC SUMMARY

Both eyes of 34 Beagle dogs were examined by focal illumination, indirect ophthalmoscopy and, when indicated, slit-lamp microscopy. Mydriasis was produced with 1% tropicamide (Mydriacyl 1%, Alcon, expir. date July, 1979). The examination was conducted in a darkened room 229, and darkness maintained until the following day. The dogs examined were eartag numbered as follows:

Male dog	Female dog
GB77	LL77
N¥77	0077
LS77	EZ77
LT77	JL77
KK77	L077
LI77	H077
OL77	PF77
MK7?	FJ77
PI77	AS77
MM77	EI 77
FF77	AR77
DI77	IT 77
OJ77	OH77
Q\$77	IR 77
NY77	GL77
PK77	F077
MB77	LB77

Female dog JL77 has a bilateral epiphora, mainly in the left eye, and female dog H077 has a slight mucinous exudate in each ventral conjunctival sac. Such findings occasionally precede abnormalities in the precorneal tear film. Both eyes of these two dogs are normal now, however. The findings are not likely to be of major significance in a 90 day study, but because of the known association between the ocular discharge and subsequent changes in the precorneal tear film, I would recommend that if dogs JL77 and H077 are used, they not be used in the high dose group. The remaining 32 dogs are ophthalmoscopically normal and clinically visual.

ames M. Clinton

JAMES M. CLINTON, V. M. D. 300 BROOKMEAD DRIVE CHERRY HILL, NEW JERSEY 08034

ARKA CODE 609 TELEPHONE 429-7788

Litton Bionetics Inc.
Project 10734-09
Robert P. Beliles, Ph. D.
D. Djurickovic, D.V.M.

11 August 1978

FINAL OPHTHALMOSCOPIC SUMMARY

Both eyes of 16 male and 16 female adult Beagle dogs were examined by focal illumination, indirect ophthalmoscopy and, when indicated, slit-lamp microscopy. Hydri axis was produced with 15 tro-icamide (15 Mydriacyl, Alcon, lot ZJC, Oct. 1979) and the eyes examined in a darkened room. Dr. Djurickovic participated fully in the examinations.

The following dogs were ophthelmoscopically normal:

434. 417, 418, 408, 425, 426, 429, 431,407, 419, 420, 412, 414, 436, 424, 427, 406. 415, 433, 409, 437, 423, 416,404, 421, 411 and 435.

Ocular abmossalities were found in the following dogs:

Dog	Sex	Observations
422	F	Left eye: ghost wessels emanating from the limbus, 9 to 2 o'clock
432	F	Right eye: cluster of punctate superficial corneal opacities
405	F	Left eye: cluster of superficial punctate opacities forming a band in the central cornea
430	F	Left eye: Occasional ghost vessels in temporal quadrant of cornea
413	M	Right eye: cluster of superficial punctate paracentral corneal opacities.

COMMENTS

Both eyes of all 32 dogs are visual. The ghost vessels in 422 and 430 indicate a prior but now inactive keratitis. The ghost vessels are permanent and should be detectable histologically. The superficial corneal opacities may be sequelae to corneal trauma and should gradually disappear. The lesions observed in the five dogs described above are minor.

At this juncture, I do not believe that the compound being evaluated according to this protocol produces ocular changes in dogs.

James M. Clinton, V.M.D.

James W. Elinton

SUBJECT:

FINAL PATHOLOGY REPORT

Mammalian Toxicological Evaluation of DIMP and DCPD

LBI Project No. 10734-09

This report summarizes histopathologic findings in a total of sixteen dogs. Four each males and females, were given 1000 ppm of DCPD in the diet for 3 months. Eight similar dogs served as controls. Tissues collected at necropsy were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5-6 microns and stained with hematoxylin and eosin by standard methods. The following tissues were examined histopathologically: unusual lesions, brain, spinal cord, pituitary gland, sciatic nerve, kidneys, adrenal glands, liver, spleen, pancreas, lung, heart, stomach, small intestine, colon, cecum, mesenteric lymph node, gallbladder, urinary bladder, skin and mammary gland, skeletal muscle, thyroid, testes with epididymis or ovary, prostate or uterus, eye, rib junction and sternum. At least one of the latter two specimens contained bone marrow.

There were few lesions in this group of dogs and none were considered to be related to administration of the compound. Several dogs in both the high dose and control groups had small inflammatory foci in the lungs. Some of these lesions were associated with aspirated foreign material (probably dry food). One dog had an intact, apparently viable nematode in the lung, and there was a minimal inflammatory reaction associated with the parasite. In the majority of the dogs it was not possible to determine the precise cause of the inflammatory lesions in the lungs.

A few dogs in both groups had small cysts in the pituitary glands. These cysts, considered to be cystic Rathke's pouch remnants, are quite common in dogs and are of no clinical significance.

One female in the high dose group had chronic active inflammation of the kidney, renal pelvis and urinary bladder. Such pyelonephritis and cystitis are relatively common spontaneous lesions in dogs and usually are produced by various bacterial pathogens in the lower urinary tract.

Mild hydrocephalus was noted when the brain of one high dose female was trimmed for embedding. This relatively common spontaneous condition often is of unknown etiology, as in the present case. It appears most commonly in young dogs such as those used in this study.

All other lesions were insignificant incidental findings or part of spontaneous disease complexes of dogs. This study indicates that DCPD administered at 1000 ppm in the diet for 3 months produces no discernible histopathologic lesions in dogs.

SUBMITTED BY:

George A. Parker, D.V.M. Veterinary Pathologist

A. Parker, D.V.M.

REVIEWED BY:

Dichard H. Cardy, D.V.M.

Director

Department of Pathology

2)AN 79 Date

LITTON BIONETICS, INC. PROJECT NO. 10734-09	ETICS, INC. 10734-09			•	
TABLE 1			•	i	
INCIDENCE	INCIDENCE OF HISTOLOGIC FINDINGS		:	and the state of t	1
GROUP NUTBE SEX NUMBER OF A	GROUP NUTBER SEX NUTBER OF ANITALS EXALINED	GROUP 1 IMLES	GROUP 4 MALES	GROUP 1 FEMALES 4	GROUP FEIAL
BRAIN Bydrocephalus Mineralizatio	riol	***	****	* 1	***
PITUITARY GLAND Cyst(s)	GLAND	* * 1	44*	3**	4*
KIDNEYS Fibrosis, Inflauma	DNEYS Fibrosis, interstitlai Inflammation, nonsuppurative	***	* 1 1	*	4
L IVER Eos inoph	VER Eosinophilic leukocyte infiltrate	* -	***	44	4
LUNGS Inflamma Granulom Parasiti	NGS Inflammation, interstitial Granuloma, mineralized Parasitism, nematodiasis	4 811	4 1	* m 1	441~
HEAR F Lymphocy	.ARf Lymphocytic inflammatory infiltrate	*	♣ , •	* t	क्य ।
SIMLL INTÉSTINE Eosinophilic	ALL INTESTINE Eosinophilic leukocyte infiltrate	* 1	** L	* * .	<u>44.</u> 1 ¹
NESENTERIC Eosinoph	MESENTERIC LYMPN NODE Eosinophilic leukocyte infiltrate	₹	* -	* 1.	41
URINARY BLADDER Hemorrhage, a Inflammatfon, Hyperplasia, i	INARY BLADDER Hemorrhage, acute Inflammatfon, nonsuppurative Hyperplasia, mucosal	* 4 1 1 1	* 111	₩ ♥ 1 1 1	4

TABLE 1 (continued) GROUP NUMBER SEX HUMBER OF AMIMALS EXAMINED THYROIDS Cystic remnant, ultimobranchial duct	4 S *	E .	GROUP 1 FEVALES 4	GRÖUP 1 GRÖUP 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PARÀTHYROIDS (NOT TAKEN ROUTINELY)		ſ	:	- -

Harrison I

LEGEND TO SUMMARY OF HISTOLOGIC FINDINGS

- = negative finding in a designated tissue or organ; tissue examined.
- + = positive finding (ungraded lesion) encountered in a designated tissue or organ.
- NP = glandular tissue not present in plane of section.
- NR = tissue not received for trimming.
 - 1 = positive finding graded "minimal".
 - 2 = positive finding graded "mild".
 - 3 = positive finding graded "moderate".

TĂBLE 2

SURIMRY OF HISTOLOGIC FINDINGS		•
GROUP NUMBER SEX	GROUP 1 GROUP 4 FEMALES FEMALES FEL 426 434 435 423 432 408 411 417 418 413 416 419 420 425 426 434 435 423 432	GROUP 4 Femles 12 436 436
ANIMAL HUIBER		•
broin Hydrocephalus Mineralization, periarteriolar, focal	lar, focal	1
SP111AL CORD		1 +
PITUITARY GLAND Cyst(s)	*** *** *** *** *** *** *** *** *** **	
SCIATIC HERVE		,
KIDNEYS Fibrosis, interstitial, radial Inflammation, nonsuppurative	dial	· ·
ADREMAL GLAMDS		. •
LIVER Eosinophilic leukocyte infiltrate,	iltrate,	
		, ,
SPLEEN		, t

· .

LUNGS Inflammation, interstitial, multifocal Inflammation, interstitial, focal Granuloma, mineralized Parasitism, nematodiasis

PANCREAS

La Contraction

EV.

TABLE 2 (continued)									!! !!	,
GROUP NUMBER SEX ANIMAL NUMBER 408	GROUP 1 HALES 411 417	418	413	GROUP 4 MALES 416 419.	420	GRO FEN. 425 426	GROUP 1 Fenales 26 434 435	423	GROUP 4 FEMALES 432 436	436
Lymphocytic inflammatory infiltrate, focal, branch of coronary artery	.2									
			'			1	,		1	•
		• •	t	1 .		1		•	•	. !
	1		,			1			· · · · · · · · · · · · · · · · · · ·	. !
CECUM				1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•	٠.
MESENTERIC LYMPH NDDE Eosinophilic leukocyte infiltrate, focal	; -		1		1				;	. 1
GALLBLADDER	· · :	•	• •	1	ı	·	•		•	1
URINARY BLADDER Hemorrhage, acute, multifocal Inflammation, nonsuppurative, multifocal Mucosal hyperplasia		1.	ı	1	· · · · · · · · · · · · · · · · · · ·	t :	•		1	•
MANNARY AND SKIN	ď	,	氧		dN			•		•
- MUSCLE	•	,	ı	1	1	•,	•		1, •	1
THYROIDS Cystic remmant, uitimobranchiai duct	NR .		1		ı	•			+	,

=

EYE .

OVARIES

RIB JUNCTION

STERNUM

PARATHYROID (NOT TAKEN ROUTINELY)
Cystic remnant, ultimobranchial duct

ij

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 408 PM NUMBER: 78/6108

DOSAGE: 0 ppm GROUP NUMBER: 1

DATE OF DEATH: 8/15/78 SPECIES: Dog

DEATH: Terminal sacrifice SEX: Male

METHOD OF KILL: Somlethol

GROSS FINDINGS:

Lungs - pleural adhesions, left side.

Thyroids - left thyroid not located; was not in typical location.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, multifocal, minimal.

MISSING TISSUES:

Thyroids - not received for trimming.

Mammary and skin - glandular tissue not present in plane of section.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	411	PM NUMBER:	78/6109	
OOSAGE:	0 ppm	GROUP NUMBER:	1	_
DATE OF DEATH: _	8/15/78	SPECIES:	Dog	_
DEATH:	Terminal sacrifice	SEX:	Male	_
METHOD OF KILL:	Somlethol		,	_

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, focal, minimal.

Mesenteric lymph node - eosinophilic leukocyte infiltrate, focal, minimal.

The same of the same of the same of the same of the same of the same of the same of the same of the same of the

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 417 PM NUMBER: 78/6110

DOSAGE: 0 ppm GROUP NUMBER: 1

DATE OF DEATH: 8/16/78 SPECIES: Dog

DEATH: Terminal sacrifice SEX: Male

METHOD OF KILL: Somlethol

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Liver - eosinophilic leukocyte infiltrate, focal, minimal.

Heart - lymphocytic inflammatory infiltrate, focal, mild, branch of coronary artery.

Mille The William Sales and the sales and

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	418	PM NUMBER:	78/6111
DOSAGE:	O ppm	GROUP NUMBER:	1
DATE OF DEATH:	8/16/78	SPECIES:	Dog
DEATH:	Terminal sacrifice	SEX:	Male
METHOD OF KILL:	Somlethol		

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:
All tissues essentially normal.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	413	PM NUMBER:	78/6116	
DOSAGE:	1000 ppm	GROUP NUMBER:	4	
DATE OF DEATH:	8/15/78	SPECIES:	Dog	
DEATH:	Terminal sacrifice	SEX:	Male	
METHOD OF KILL:	Somlethol			

GROSS FINDINGS:

Mesenteric lymph node - minute white nodules along nodes; also reddened.

MICROSCOPIC FINDINGS:

Mesenteric lymph node - essentially normal; white nodules noted in mesenteric lymph nodes at necropsy probably were germinal centers.

MISSING TISSUES:

Mammary and skin - glandular tissue not present in plane of section.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	416	PM NUMBER:	78/6117
DOSAGE:	1000 ppm	GROUP NUMBER:	4
DATE OF DEATH:	8/16/78	SPECIES:	Dog
DEATH:	Terminal sacrifice	SEX:	Male
METHOD OF KILL:	Somlethol		

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, focal, mild.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 419 PM NUMBER: 78/6118

DOSAGE: 1000 ppm GROUP NUMBER: 4

DATE OF DEATH: 8/17/78 SPECIES: Dog

DEATH: Terminal sacrifice SEX: Male

METHOD OF KILL: Somlethol

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Pituitary gland - cyst.

Mesenteric lymph node - eosinophilic leukocyte infiltrate, focal, minimal.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	420	PM NUMBER:	78/6119	
DOSAGE:	1000 ppm .	GROUP NUMBER:	4	
DATE OF DEATH: _	8/17/78	SPECIES:	Dog	
OEATH:	Terminal sacrifice	SEX:	Male	
METHOD OF KILL:	Somlethol			

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Pituitary gland - cysts. Lungs - granuloma, mineralized, minimal. Small intestine - eosinophilic leukocyte infiltrate, focal, minimal.

MISSING TISSUES:

Mammary and skin - glandular tissue not present in plane of section.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

425 ANIMAL NUMBER: DOSAGE: ____ 0 ppm DATE OF DEATH: 8/15/78 Terminal sacrifice DEATH: METHOD OF KILL: Somlethol

78/6112 PM NUMBER: GROUP NUMBER: _ Dog SPECIES: ____ Female SEX:

GROSS FINDINGS:

Mesenteric lymph node - reddened.

MICROSCOPIC FINDINGS:

Pituitary gland - cyst. Mesenteric lymph node - essentially normal.

511

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	426	PM NUMBER:	78/6113	
DOSAGE:	0 ppm	GROUP NUMBER:	1	
DATE OF DEATH:	8/16/78	SPECIES:	Dog	
DEATH:	Terminal sacrifice	SEX:	Female	
METHOD OF KILL:	Somlethol			

GROSS FINDINGS:

Mesenteric lymph node - reddened.

MICROSCOPIC FINDINGS:

Pituitary gland - cyst. Lungs - inflammation, interstitial, multifocal, mild, associated with foreign material.

Comment - the mesenteric lymph node was histologically normal.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: 434 PM NUMBER: 78/6114

DOSAGE: 0 ppm GROUP NUMBER: 1

DATE OF DEATH: 8/17/78 SPECIES: Dog

DEATH: Terminal sacrifice SEX: Female

METHOD OF KILL: Somlethol

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Pituitary gland - cyst. Lungs - inflammation, interstitial, multifocal, minimal.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	435	PM NUMBER:	78/6115	_
DOSAGE:	0 ppm	GROUP NUMBER:	1	_
DATE OF DEATH: _	8/17/78	SPECIES:	Dog	
DEATH:	Terminal sacrifice	SEX:	Female	_
METHOD OF KILL:	Somlethol			

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, multifocal, mild.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER:	423	PM NUMBER:	78/6120	
DOSAGE:	1000 ppm	GROUP NUMBER:	4	
DATE OF DEATH:	8/15/78	SPECIES:	Dog	
DEATH:	Terminal sacrifice	SEX:	Female	
METHOD OF KILL:	Somlethol			,

GROSS FINDINGS:

Kidneys - both appear scarry.

Urinary bladder - numerous small red spots about lmm in measurement.

MICROSCOPIC FINDINGS:

Brain - hydrocephalus, mild; mineralization, periarteriolar, focal, minimal.

Kidneys - fibrosis, interstitial, radial, moderate, bilateral, cortex and medulla; inflammation, nonsuppurative, moderate, bilateral, papilla and pelvis.

Lungs - inflammation, interstitial, multifocal, mild, associated with foreign material.

Urinary bladder - hemorrhage, acute, multifocal, mild; inflammation, nonsuppurative, multifocal, mild; with mild mucosal hyperplasia.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	432	PM NUMBER:	78/6121	
DOSAGE:	1000 ppm	GROUP NUMBER:	4	
DATE OF DEATH: _	8/15/78	SPECIES:	Dog	
DEATH:	Terminal sacrifice	SEX:	Female	
METHOD OF KILL:	Som1etho1			

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, multifocal, mild. Thyroids - cystic ultimobranchial duct remnant.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	436	PM NUMBER:	78/6122
DOSAGE:	1000 ppm	GROUP NUMBER:	4
DATE OF DEATH: _	8/16/78	SPECIES:	Dog
DEATH:	Terminal sacrifice	SEX:	Female
METHOD OF KILL:	Somlethol		•

GROSS FINDINGS:

Pituitary gland - small cyst. Uterus - mild mucometra.

MICROSCOPIC FINDINGS:

Pituitary gland - cyst.

Uterus - no lesion recognized; the slight increase in uterine fluid noted at necropsy was due to normal cyclic secretory activity.

INDIVIDUAL ANIMAL PATHOLOGY EVALUATION

ANIMAL NUMBER: _	437	PM NUMBER:	78/6123	_
DOSAGE:	1000 ppm	GROUP NUMBER:	4	
DATE OF DEATH: _	8/16/78	SPECIES:	Dog	_
DEATH:	Terminal sacrifice	SEX:	Female	_
METHOD OF KILL:	Somlethol			

GROSS FINDINGS:

All tissues appear normal.

MICROSCOPIC FINDINGS:

Lungs - inflammation, interstitial, multifocal, mild. Parathyroids - cystic ultimobranchial duct remnant.

APPENDIX

Distribution List

25 Copies Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBG Fort Detrick, Frederick, MD 21701 4 Copies HGDA (SGRD-AJ) Fort Detrick Frederick, MD 21701 12 Copies Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, Virginia 22314 1 Copy Dean School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, Maryland 20014 1 Copy Superintendent Academy of Health Sciences, US Army ATTN: AHS-COM Fort Sam Houston, Texas 78234 1 Copy Librarian US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBD-A Fort Detrick Frederick, MD 21701