CS360 – Homework #1

Propositional Logic

- 1) Translate the following Propositional Logic to English sentences. Let:
 - E=Liron is eating
 - H=Liron is hungry
 - (a) $E \Rightarrow \neg H$ If Liron is eating, then Liron is not hungry
 - (b) $E \wedge \neg H$ Liron is eating and not hungry
 - (c) $\neg (H \Rightarrow \neg E)$ Liron is hungry and eating
- 2) Translate the following English sentences to Propositional Logic.
 Propositions: (R)aining, Liron is (S)ick, Liron is (H)ungry, Liron is (HA)appy,
 Liron owns a (C)at, Liron owns a (D)og
 - (a) It is raining if and only if Liron is sick $R \Leftrightarrow S$
 - (b) If Liron is sick then it is raining, and vice versa $(S \Rightarrow R) \land (R \Rightarrow S)$ (which is equivalent to $R \Leftrightarrow S$)
 - (c) It is raining is equivalent to Liron is sick $R \Leftrightarrow S$
 - (d) Liron is hungry but happy $H \wedge HA$
 - (e) Liron either owns a cat or a dog $(C \land \neg D) \lor (\neg C \land D)$
- **3)** Which of the following propositions are tautologies? Which are contradictions? Why?
 - (a) Three is a prime number.

 neither a tautology nor a contradiction
 - (b) It is raining or it is not raining. tautology

(c) It is raining (P) and it is not raining $(\neg P)$. contradiction

Example reasoning:

All rows in the truth table evaluate to false.

1 1 1 1 0 1 10 1 11 0 1			
Р	$P \wedge \neg P$		
t	f		
f	f		

- 4) Which of the following propositions are tautologies? Why?
 - (a) P not a tautology
 - (b) $P \Rightarrow P$ tautology
 - (c) $(P \Rightarrow P) \Rightarrow P$ not a tautology

Example reasoning:

Not all rows in the truth table evaluate to true.

Р	$P \Rightarrow P$	$(P \Rightarrow P) \Rightarrow P$
t	${ m t}$	t
f	${ m t}$	f

- (d) $P \Rightarrow (P \Rightarrow P)$ tautology
- 5) Which of the two following propositions are equivalent in the sense that one can always be substituted for the other one in any proposition without changing its truth value? Why?
 - (a) first proposition: $P \Rightarrow Q$ second proposition: $\neg P \lor Q$ yes

Example reasoning:

All rows in the truth table evaluate to the same truth value.

Р	Q	$P \Rightarrow Q$	$\neg P \wedge Q$
t	t	t	t
\mathbf{t}	f	f	f
f	t	t	t
f	f	${f t}$	t

- (b) first proposition: $\neg P$ second proposition: $P \Rightarrow False$ yes
- (c) first proposition: $\neg P$ second proposition: $False \Rightarrow P$
- (d) first proposition: $\neg P$ second proposition: $\neg P \lor Q$ no