Chapitre 2 Série d'exercices de TD 2021/2022

Présenté par :

H. BENKAOUHA

Bureau 222, Faculté d'Informatique, USTHB hbenkaouha@usthb.dz haroun.benkaouha@gmail.com

BENKAOUHA

Exercice 1

- Soit G = (X, E) un graphe non orienté, simple et connexe sur n sommets.
 - On note la **longueur** d'une chaîne $\mu(x, y)$ joignant x et y, $|\mu(x, y)|$.
 - L'écart entre x et y : e(x,y) est la longueur d'une plus courte chaîne joignant x et y : $e(x,y) = \min_{p(x,y) \in G} \{|p(x,y)|\};$ $p(x,y) \in G$

e(x, x) = 0.

- **Ecartement** d'un sommet x, le nombre $E(x) = \max_{y \in X} \{ e(x, y) \}$
- **Diamètre** de G, le nombre $e(G) = max \{ e(x, y) \}$
- **Rayon** de G, le nombre $r(G) = min \{E(x)\}$
- Centre de G, un sommet $s \in X$ tel que : E(s) = r(G)
- Déterminer le diamètre, le rayon et le ou les centres du graphe suivant.

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2		1
2	1	0	1	1	2	2	2
3	2	1	0		1		
4	2	1		0	1	1	
5	2	2	1	1	0		1
6		2		1		0	
7	1	2			1		0

H. BENKAOUH/

Exercice 1 - Solution

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2		1
2	1	0	1	1	2	2	2
3	2	1	0	2	1		2
4	2	1	2	0	1	1	
5	2	2	1	1	0		1
6		2		1		0	
7	1	2	2		1		0

H. BENKAOUHA

Exercice 1 - Solution

• L'écart entre toute paire de sommets :

		1	2	3	4	5	6	7
1	ı	0	1	2	2	2		1
2	2	1	0	1	1	2	2	2
3	3	2	1	0	2	1		2
4	ı	2	1	2	0	1	1	2
5	;	2	2	1	1	0		1
6	5		2		1		0	
7	,	1	2	2	2	1		0

H. BENKAOUHA

Exercice 1 - Solution

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2		1
2	1	0	1	1	2	2	2
3	2	1	0	2	1		2
4	2	1	2	0	1	1	2
5	2	2	1	1	0	2	1
6		2		1	2	0	
7	1	2	2	2	1		0

H. BENKAOUHA

Exercice 1 - Solution

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2	3	1
2	1	0	1	1	2	2	2
3	2	1	0	2	1		2
4	2	1	2	0	1	1	2
5	2	2	1	1	0	2	1
6	3	2		1	2	0	
7	1	2	2	2	1		0

H. BENKAOUHA

Exercice 1 - Solution

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2	3	1
2	1	0	1	1	2	2	2
3	2	1	0	2	1	3	2
4	2	1	2	0	1	1	2
5	2	2	1	1	0	2	1
6	3	2	3	1	2	0	
7	1	2	2	2	1		0

H. BENKAOUHA

Enseignant : H. BENKAOUHA

• L'écart entre toute paire de sommets :

	1	2	3	4	5	6	7
1	0	1	2	2	2	3	1
2	1	0	1	1	2	2	2
3	2	1	0	2	1	3	2
4	2	1	2	0	1	1	2
5	2	2	1	1	0	2	1
6	3	2	3	1	2	0	3
7	1	2	2	2	1	3	0

H. BENKAOUH/

Exercice 1 - Solution

• L'écartement d'un sommet : max ligne ou colonne

	1	2	3	4	5	6	7
1	0	1	2	2	2	3	1
2	1	0	1	1	2	2	2
3	2	1	0	2	1	3	2
4	2	1	2	0	1	1	2
5	2	2	1	1	0	2	1
6	3	2	3	1	2	0	3
7	1	2	2	2	1	3	0

E(x): 3 2 3 2 2 3 3

H. BENKAOUHA

Exercice 1 - Solution

E(x): 3 2 3 2 2

• Le diamètre

e(G) = 3

· Le rayon

r(G) = 2

· Les centres

2, 4 et 5

H. BENKAOUHA

Exercice 2

- Dans un réseau téléphonique constitué de 2*n* centraux téléphoniques
- Disposés de telle façon que chaque central est relié par une ligne téléphonique directe avec au moins n autres centraux.
- Montrez qu'il est toujours possible d'établir une liaison entre deux centraux quelconques.

. BENKAOUHA

Exercice 2 - solution

- Modélisation : Par un Graphe *G*=(*X*, *E*)
 - Chaque central téléphonique i représentée par un sommet i
 - − Il y a 2n centraux téléphoniques \Rightarrow Il y a 2n sommets \Rightarrow Graphe d'ordre 2n
 - Une arête {i,j} « Les centraux i et j sont reliés par une ligne directe »
 - Chaque central est relié par une ligne téléphonique directe avec au moins n autres centraux
 - $\Rightarrow \forall x \in X, d_G(x) \ge n$

H. BENKAOUHA

Exercice 2 - solution

- · Identification du problème
 - Toujours possible d'établir une liaison entre deux centraux quelconques.
 - ⇒Il y a une chaîne reliant les sommets correspondants
 - \Rightarrow *G* doit être connexe

H. BENKAOUHA

Enseignant: H. BENKAOUHA

- Identification du problème
 - Revient à montrer que
 - Si un graphe G=(X, E) d'ordre 2n tel que $\forall i$ ∈X, $d_G(x) \ge n$
 - Alors G est connexe

Exercice 2 - solution

- On démontre par l'absurde
 - On suppose qu'il existe un graphe G=(X, E) d'ordre 2n tel que $\forall i \in X$, $d_G(i) \ge n$ et G n'est pas connexe.

Exercice 2 - solution

 \Rightarrow Il y a au moins 2 *CC* dans *G*

 $\Rightarrow X=C_1\cup C_2\cup...\cup C_k \ (k\geq 2) \ \text{et} \ \forall p\neq q \ C_p\cap C_q=\varnothing \ \text{où}$ chaque C_l ($\forall 1 \le l \le k$) est une CC dans G

 $\forall x \in X, d_G(x) \ge n$ et G simple

 \Rightarrow dans une CC ($C_l \ \forall 1 \le l \le k$), nous avons au moins *n*+1 sommets, c'est-à-dire le sommet *x* et tous ses

Exercice 2 - solution

 $\Rightarrow \forall 1 \le l \le k, |C_l| \ge n+1$

 $\Rightarrow |C_1| + |C_2| + ... + |C_k| \ge k(n+1)$

Sachant que $k \ge 2$ alors $k(n+1) \ge 2(n+1) = 2n+2 > 2n$

 $\Rightarrow |C_1| + |C_2| + \dots + |C_k| > 2n = |X|$

Exercice 2 - solution

Or, nous avons:

 $\Rightarrow \forall 1 \le l \le k, |C_l| \le |X|$ et $|C_1| + |C_2| + ... + |C_k| = |X| = 2n$ $\operatorname{Car} X = C_1 \cup C_2 \cup ... \cup C_k \ (k \ge 2) \ \text{et} \ \forall p \ne q \ C_p \cap C_q = \emptyset$

Contradiction

H. BENKAOUHA

Exercice 3

- Soit G=(X, E) un graphe connexe d'ordre $n \ge 2$.
 - Montrons qu'il existe un sommet x
 - tel que :
 - le sous-graphe de ${\it G}$ engendré par le sous ensemble de sommets X-{x} est toujours connexe.

- On démontre par récurrence sur l'ordre du graphe n.
- · Cas de base:
 - − n=2 : On a 2 sommets reliés entre eux car G est connexe
 - On supprime l'un d'eux, on obtient un graphe avec un seul sommet
 - Ce genre de graphe est considéré comme connexe
 - C'est vérifié

Exercice 3 - Solution

- On démontre par récurrence sur l'ordre du graphe *n*.
- Hypothèse de récurrence :
 - On suppose que pour un graphe d'ordre $n \le p$ connexe, il existe un sommet x que si on le supprime le graphe reste connexe.
- · Pas de récurrence
 - − Démontrons pour *n=p+*1

Exercice 3 - Solution

- Il s'agit d'un graphe d'ordre p auquel on a rajouté un sommet.
- On a 2 cas, soit le graphe d'ordre p est connexe, soit le graphe d'ordre p n'est pas connexe.
- Si le graphe d'ordre p est connexe, il suffit de supprimer le sommet qu'on a rajouté.

Exercice 3 - Solution

- Si le graphe d'ordre p n'est pas connexe, alors le sommet qui a été rajouté permet de relier les différentes CC
- Dans ce cas, chaque sous graphe engendré par une CC vérifie l'hypothèse de récurrence car il est connexe et d'ordre <p
- Donc il existe un sommet qu'on eut supprimer sans déconnecter le graphe.

Exercice 4

• Est-il possible de tracer les figures suivantes sans lever le crayon (et sans passer deux fois sur le même trait !...) ? Pourquoi ?

H. BENKAOUHA

Exercice 4 - Solution

- · Modélisation
 - On représente chacune des 5 figures par un graphe $G_i=(X_i, E_i)$ tel que i=1 à 5
 - Chaque point extrémité d'un trait est représenté par
 - Chaque trait ou segment de trait reliant 2 points d'extrémités est représenté par une arête.

- · Identification du problème
 - Tracer une figure sans lever le crayon : parcourir tout le graphe (toutes les arêtes) en passant d'une arête à une autre qui lui est adjacente.
 - C'est-à-dire tracer une chaîne qui passe par toutes les arêtes du graphe.

AOUHA

Exercice 4 - Solution

- · Identification du problème
 - Sans passer deux fois sur le même trait ⇒ Ne pas passer par la même arête plus d'une fois ⇒ Chaîne simple
 - Chaîne simple qui passe par toutes les arêtes ⇒
 Chaîne Eulérienne
 - Le problème revient à vérifier pour chacun des graphes G_i s'il admet une chaîne Eulérienne.

H. BENKAOUHA

Exercice 4 - Solution

- Résolution
 - Selon le théorème d'Euler, G_i doit être connexe (à des sommets isolés près) et doit avoir 0 ou 2 sommets de degrés impairs.

2 3 4

- $-d_{G}(1), d_{G}(3), d_{G}(4), d_{G}(6)$ sont pairs et $d_{G}(2), d_{G}(5)$ sont impairs
- \Rightarrow 2 sommets de degrés impairs \Rightarrow Possible

. BENKAOUHA

Exercice 4 - Solution

- $-d_G(1), d_G(2), d_G(3), d_G(4)$ sont impairs
- ⇒Plus de 2 sommets de degrés impairs
- \Rightarrow Impossible

BENKAOUHA 34

Exercice 4 - Solution

- $-\,d_{G}(3),\,d_{G}(4)$, $d_{G}(5)$ sont pairs et $d_{G}(1),\,d_{G}(2)$ sont impairs
- ⇒2 sommets de degrés impairs
- ⇒ Possible

H. BENKAOUHA

Exercice 4 - Solution

- $-d_G(1), d_G(5), d_G(7), d_G(8)$ sont impairs
- ⇒Plus de 2 sommets de degrés impairs
- ⇒ Impossible

- $-d_{G}(2)$, $d_{G}(7)$ sont impairs et les autres sont tous pairs
- ⇒2 sommets de degrés impairs
- ⇒ Possible

Exercice 4 - Solution

- · Remarque:
 - Les points d'intersection entre deux ou plusieurs traits, peut-on les prendre comme sommets? Si oui, qu'est ce qui va changer?
 - Oui, on peut les prendre comme sommets
 - Ça ne change rien à ce problème, car leurs degrés seront pairs.

H. BENKAOUHA

Exercice 5

- Soit *G* un graphe non eulérien.
- Est-il toujours possible de rendre *G* eulérien en lui rajoutant une ou plusieurs arêtes?

Exercice 5 - Solution

- Oui, il est possible de rendre *G* eulérien en lui rajoutant une ou plusieurs arêtes comme suit :
- S'assurer que tous les degrés deviennent pairs car un graphe est Eulérien Ssi il admet un cycle Eulérien.
- Pour toute paire de sommets de degrés impairs on les relie avec une arête.
- C'est-à-dire si on a k (qui est pair) sommets de degrés impairs, on va rajouter k/2 arêtes.

Exercice 5 - Solution

```
i← 1
Répéter
    Tant Que (i\leqN) et (d<sub>G</sub>(i) pair)
      Faire
                 i← i+1 Fait
    Si (i<N) Alors
        x \leftarrow i
         i← i+1
        Tant Que (i\leqN) et (d<sub>G</sub>(i) pair)
                      i← i+1 Fait
           Faire
         y \leftarrow i; i \leftarrow i+1
        Créer arête({x,y})
    fSi
Jusqu'à (i=N);
                        H. BENKAOUHA
```

Exercice 6

Soit le graphe orienté G=(X,U) représenté dans le tableau ci-dessous par le dictionnaire des prédécesseurs :

x	1	2	3	4	5	6	7	8
Prédécesseurs de x	3, 7	4, 6	5	1	1	7, 8	5	2

- 1. Donner la matrice d'adjacence M du graphe G. Représenter sous forme de listes LS et PS.
- 2. *G* est-il connexe. Justifier.
- 3. G admet-il un parcours Eulerien? Pourquoi?
- 4. Donner la matrice de fermeture transitive du graphe *G*. G admet-il un circuit?
- 5. Trouver les cfc de G. Donner le graphe réduit.

• Matrice d'adjacence :

	1	2	3	4	5	6	7	8
1	0	0	0	1	1	0	0	0
2	0	0	0	0	0	0	0	1
3	1	0	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0
5	0	0	1	0	0	0	1	0
6	0	1	0	0	0	0	0	0
7	1	0	0	0	0	1	0	0
8	0	0	0	0	0	1	0	0

Remarque : Attention, liste prédécesseurs et non successeurs

BENKAOUHA

Exercice 6 - Solution

- Connexité:
 - Algorithme de connexité :

Sommet de départ : 1

C={1}

On rajoute les voisins de 1

 $V(1)={3,4,5,7}$

C={1, 3, 4, 5, 7}. On marque le sommet 1.

. BENKAOUHA

Exercice 6 - Solution

 $C=\{1, 3, 4, 5, 7\}$

On choisit un sommet non marqué de C: 7

On rajoute les voisins de 7

 $V(7)=\{1, 5, 6\}$

C={1, 3, 4, 5, 6, 7}. On marque le sommet 7.

H. BENKAOUHA

Exercice 6 - Solution

C={**1**, 3, 4, 5, 6, **7**}

On choisit un sommet non marqué de C:6

On rajoute les voisins de 6

 $V(6)=\{2,7,8\}$

C={1, 2, 3, 4, 5, 6, 7, 8}. On marque le sommet 6.

 $C=X \Rightarrow$ Fin Algo.

G est connexe.

H. BENKAOUHA

Exercice 6 - Solution

• On vérifie si G admet un parcours Eulérien :

- Calculons les degrés :

	1	2	3	4	5	6	7	8	d _G ⁺
1	0	0	0	1	1	0	0	0	2
2	0	0	0	0	0	0	0	1	1
3	1	0	0	0	0	0	0	0	1
4	0	1	0	0	0	0	0	0	1
5	0	0	1	0	0	0	1	0	2
6	0	1	0	0	0	0	0	0	1
7	1	0	0	0	0	1	0	0	2
8	0	0	0	0	0	1	0	0	1
d _G -	2	2	1	1	1	2	1	1	

- $d_G(2)=1+2=3$
- $d_G(5)=2+1=3$
- $d_G(6)=1+2=3$
- Plus de deux (2) sommets de degrés impairs
- \Rightarrow G n'admet pas de chaine Eulérienne
- \Rightarrow *G* n'admet aucun parcours Eulérien

H. BENKAOUHA

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1				1	1			
2								1
3	1			1	1			
4		1						
5			1				1	
6		1						
7	1			1	1	1		
8						1		

H. BENKAOUHA

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1				1	1			
2								1
3	1			1	1			
4		1						1
5			1				1	
6		1						1
7	1			1	1	1		
8						1		

H. BENKAOUHA

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1				1	1			
2								1
3	1			1	1			
4		1						1
5	1		1	1	1		1	
6		1						1
7	1			1	1	1		
8						1		

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1		1		1	1			1
2								1
3	1	1		1	1			1
4		1						1
5	1	1	1	1	1		1	1
6		1						1
7	1	1		1	1	1		1
8						1		

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1	1	1	1	1	1		1	1
2								1
3	1	1	1	1	1		1	1
4		1						1
5	1	1	1	1	1		1	1
6		1						1
7	1	1	1	1	1	1	1	1
8						1		
		•						

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1	1	1	1	1	1		1	1
2								1
3	1	1	1	1	1		1	1
4		1						1
5	1	1	1	1	1		1	1
6		1						1
7	1	1	1	1	1	1	1	1
8		1				1		1

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2								1
3	1	1	1	1	1	1	1	1
4		1						1
5	1	1	1	1	1	1	1	1
6		1						1
7	1	1	1	1	1	1	1	1
8		1				1		1

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2		1				1		1
3	1	1	1	1	1	1	1	1
4		1				1		1
5	1	1	1	1	1	1	1	1
6		1				1		1
7	1	1	1	1	1	1	1	1
8		1				1		1

Exercice 6 - Solution

- Matrice de fermeture transitive :
 - Algorithme de Warshall

	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2	0	1	0	0	0	1	0	1
3	1	1	1	1	1	1	1	1
4	0	1	0	0	0	1	0	1
5	1	1	1	1	1	1	1	1
6	0	1	0	0	0	1	0	1
7	1	1	1	1	1	1	1	1
8	0	1	0	0	0	1	0	1

- Oui, G admet un circuit car il y a des 1 sur la diagonale.

Exercice 6 - Solution

- · Les CFCs:
 - $-C_1={4}$ car 0 sur la diagonale
 - Lignes identiques (sauf 4):

 $Lg_1=\{1,3,5,7\}$

 $Lg_2=\{2, 6, 8\}$

- Colonnes identiques (sauf 4):

 $Cl_1=\{2, 6, 8\}$

 $Cl_2=\{1,3,5,7\}$

 $-C_2=\{1, 3, 5, 7\}$ et $C_3=\{2, 6, 8\}$

· Le graphe réduit :

Exercice 7

- On considère des dominos dont les faces sont numérotées 1, 2, 3, 4 ou 5.
- 1. En excluant les dominos doubles, de combien de dominos dispose-t-on ?
- Montrez que l'on peut arranger ces dominos de façon à former une boucle fermée (en utilisant la règle habituelle de contact entre les dominos).
- 3. Pourquoi n'est-il pas nécessaire de considérer les dominos doubles ?
- 4. Si l'on prend maintenant des dominos dont les faces sont numérotées de 1 à *n*, est-il possible de les arranger de façon à former une boucle fermée ?

IKAOUHA

Exercice 7 - Solution

- · Modélisation:
 - Graphe non orienté G=(X, E) d'ordre n et de taille m
 - Chaque face (chaque numéro) i par un sommet i
 - Chaque domino (pièce) qui est constitué de deux faces (i et j) par une arête {i, j}
 - -n=5

H. BENKAOUHA

Exercice 7 - Solution

- 1. Nombre de dominos
 - Correspond au nombre d'arêtes dans le graphe
 - Pas de dominos doubles ⇒Pas de boucles
 - Chaque pièce est unique (combinaison unique de deux numéros) ⇒Pas d'arêtes parallèles
 - \Rightarrow *G* est simple
 - Dans un jeu de dominos, nous avons toutes les combinaisons de faces possibles
 - Tous les sommets sont reliés entre eux
 - \Rightarrow *G* est complet

DUHA

Exercice 7 - Solution

- 1. Nombre de dominos
 - G simple et complet, $\forall i \in x, d_G(x) = n-1$
 - $\Rightarrow n(n-1) = 2m$
 - $\Rightarrow m = n(n-1)/2$
 - $\Rightarrow m=5(5-1)/2$
 - $\Rightarrow m=10$
 - ⇒ Il y a 10 dominos

NKAOUHA

Exercice 7 - Solution

- 2. On montrez que l'on peut arranger ces dominos de façon à former une boucle fermée.
 - Règle de contact des dominos : contacter 2 dominos à travers les faces ayant le même numéro.
 - 2 arêtes adjacentes ⇒ former une chaîne
 - Les arranger en boucle fermée ⇒chaîne fermée
 - Vu qu'on utilise chaque domino une seule fois ⇒
 Chaque arête est utilisée une seule fois dans la chaîne ⇒ Chaîne fermée et simple ⇒cycle
 - Utiliser tous les dominos ⇒ cycle Eulérien

H. BENKAOUHA

IKAOUHA

- 2. On montrez que l'on peut arranger ces dominos de façon à former une boucle fermée.
 - Revient à montrer que G admet un cycle Eulérien
 - Chaque sommet est degré n-1 = 5-1 = 4
 - Tous les sommets sont degrés pairs ⇒ Pas de sommets de degrés impairs, de plus le graphe est connexe (car il est complet) \Rightarrow *G* admet une chaîne Eulérienne selon le théorème d'Euler et cette chaîne est un cycle (0 sommets de degrés impairs).

Exercice 7 - Solution

- 3. Pourquoi n'est-il pas nécessaire de considérer les dominos doubles?
 - Les dominos doubles sont représentés par des boucles.
 - Une boucle fait augmenter le degré d'un sommet de 2, ce qui ne change pas la parité de son degré.
 - De ce fait, le nombre de sommets de degrés impairs ne change pas.

Exercice 7 - Solution

- 4. Si l'on prend maintenant des dominos dont les faces sont numérotées de 1 à *n*, est-il possible de les arranger de façon à former une boucle fermée?
 - Chaque sommet est de degré n-1
 - Il faut que n-1 soit pair
 - C'à.d. n–1=2k où k est un entier ≥0
 - $\Rightarrow n=2k+1$
 - \Rightarrow *n* doit être impair
 - ⇒ Le plus grand numéro des faces doit être impair

Exercice 8

- Soit un tournoi de volley-ball regroupant *n* clubs.
 - Chaque club affronte un autre exactement une (1) seule fois.
 - On veut représenter à travers un graphe les résultats de ce tournoi.
 - Sachez qu'en volley-ball il n'y a pas de score d'égalité.
- 1. Modéliser (sans dessiner) le problème. Puis dessiner un exemple de graphe pour le cas de cinq (5) clubs.
- 2. Est-il possible de trouver une situation où le club C_1 a gagné contre C_2 et C_2 a battu C_3 et ainsi de suite jusqu'à C_{n-1} a gagné contre C_n ? Justifier. (C_i est un club quelconque)
- 3. Dans quels cas, peut-on avoir la même situation et de plus C_n a gagné contre C_1 .

Exercice 8 - Solution

- 1. Modéliser (sans dessiner) le problème.
 - Par un graphe orienté G=(X, U)
 - Chaque sommet représente un club
 - Chaque arc (i, j) représente le résultat du match entre les clubs i et j : i « a gagné contre » j.
 - Le graphe est complet car tous les clubs s'affrontent entre eux.
 - Le graphe est simple car tous les clubs s'affrontent une seule fois (pas d'arêtes parallèles) et un club ne peut pas affronter lui-même (pas de boucles).

H. BENKAOUHA

Exercice 8 - Solution

1. Dessiner un exemple de graphe pour le cas de cinq (5) clubs.

- Est-il possible de trouver une situation où le club C₁ a gagné contre C₂ et C₂ a battu C₃ et ainsi de suite jusqu'à C_{n-1} a gagné contre C_n? Justifier. (C_i est un club quelconque)
- · Ceci revient à avoir des arcs :
 - (1, 2), (2, 3) ... (n-1, n)

AOUHA

Exercice 8 - Solution

- En d'autres termes avoir un chemin dans G
 - ~ j=1 2 3 ... n-1 n : élémentaire de longueur n-1
 (passant par tous les sommets) ⇒ Chemin
 Hamiltonien
 - On sait que G est un graphe simple et complet d'ordre n ⇒ G est un tournoi T_n.
 - On sait que tout tournoi admet un chemin Hamiltonien
 - \Rightarrow C'est possible

H. BENKAOUHA

OUHA 74

Exercice 8 - Solution

- 3. Dans quels cas, peut-on avoir la même situation et de plus C_n a gagné contre C_1 .
- Cette situation correspond à un circuit Hamiltonien dans *G*
- On sait qu'un tournoi T_n fortement connexe admet un circuit Hamiltonien.
- Il faut que le graphe associé soit formtement connexe

NKAOUHA

Exercice 9

 Démontrer que si deux sommets x et y ∈ à une même composante fortement connexe C, alors tout chemin de x à y est entièrement inclus dans C.

ENKAOUHA 7

Exercice 9 - Solution

- On démontre par l'absurde
- On suppose qu'on a un graphe G qui admet au moins 2 CFCs C et C'
- $x \operatorname{et} y \in C \operatorname{et} z \in C'$
- Tel qu'on a un chemin de x vers y qui passe par z
- γ = x ... z ... y
- $\Rightarrow x\alpha z...(1)$ et $z\alpha y...(2)$
- x et y dans la même CFC
- $\Rightarrow x \alpha y...(3)$ et $y \alpha x...(4)$

H. BENKAOUHA

Exercice 9 - Solution

- *x*\alpha z...(1)
- $z\alpha y...(2)$
- $x \alpha y ... (3)$
- $y \propto x...(4)$
- De (2) et (4) et par transitivité $\Rightarrow z c x ... (5)$
- De 1 et 5, on a z dans la même CFC que x
- $\Rightarrow z \in C$ et sachant que $z \in C'$
- $\Rightarrow z \in C \cap C' \Rightarrow C \cap C' \neq \phi$
- \Rightarrow Contradiction

H. BENKAOUF