$$T_1^2 = 4 \pi^2 \left[(J_0 + ma_1^2) / mga_1 \right],$$

 $T_2^2 = 4 \pi^2 \left[(J_0 + ma_2^2) / mga_2 \right].$

Якщо з рівнянь виключити J_0 , то отримаємо:

де $\ell = a_1 + a_2$.

$$g = 4 \pi^{2} \left[\left(a_{1}^{2} - a_{2}^{2} \right) / \left(a_{1} T_{1}^{2} - a_{2} T_{2}^{2} \right) \right]$$

$$(4.7)$$

Осі T слід вважати співпадаючими: $a_1=a_1$; $a_2=a_2$ '. Одне і те ж саме значення періоду T (за умови $T>T_{\min}$) досягається під час підвішування маятника в точках O_1 , O_2 , O_1' , O_2' .

Однак формулу (4.7) можна значно спростити. Припустимо, що нам вдалося знайти положення точок O_2 і O_1' , розташованих по різні боки від центру мас (див. рис.4.2). У такому випадку $T_1 = T_2 = T$, і формула (4.7) набирає простішого вигляду:

$$g = 4 \pi^2 \ell / T^2, \tag{4.8}$$

Усі величини, що входять до формули (4.8), можуть бути легко виміряні з великим ступенем точності. Найбільшою складністю є визначення точок підвісу, в яких періоди "прямого" і "оберненого" маятників практично співпадають (звідси назва — перекидний).

Існує багато різноманітних конструкцій перекидного маятника, одна з яких зображена на рис.4.3. На сталевому стержні закріплено дві опорні призми (Π_1 і Π_2) і тягарці (Γ_1 і Γ_2), переміщуючи які, можна у досить широких межах змінювати період. Нанесені на поверхню стержня шкали визначають положення рухомих елементів конструкції. Їх вплив на періоди T_1 і T_2 ілюструє рис.4.4. Видно, що переміщення Π_2 більше впливає на період T_2 , ніж

Рис.4.2. Залежність періоду коливань T фізичного маятника від відстані "a" між точкою підвісу й центром мас.