TUTORIAL-1

EE 101: Basic Electronics

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

(First two questions (1 and 2) are the **Pre-Tutorial Assignment problems** to be solved in the space provided.)

Name:	Roll No.	Tutorial Group:
1: Determine the voltage V_D	that must be applied across a diode ha	ving reverse saturation current $I_s = 0.01$
μA at 25 0 C, to establish a die	ode current $I_D = 10 \mathrm{mA}$.	
If the temperature of the dio	de now changes to 30°C, by what per	centage should the diode voltage $V_{\scriptscriptstyle D}$ be
changed to maintain I_D at 10	0 mA ?	
(Assume ideality factor $n=2$))	

2-a: Use Kirchhoff's Voltage Law to calculate the magnitude and polarity of the voltage across resistor R4 in this resistor network:

2-b: Use Kirchhoff's Current Law to calculate the magnitudes and directions of currents through all resistors in this circuit.

3: In the circuit shown below, calculate the voltages V1 and V2 and the currents I1, I2 and I3. Assume the forward voltage drop across the diodes to be 0.7 volts.

4-a: For the circuit shown below, what is the maximum value of the source voltage V_S for which the voltage across the load resistance R_L can be maintained at 5.6V?

4-b: If the Zener diode is such that a minimum current of 1 mA is required for the Zener action to take place, what is the minimum source voltage V_S that can be used?

5: Using nodal analysis, compute voltage across the 6Ω resistor.

6: Using nodal analysis, find v_x and i_x in the circuit.

