

 (currently amended) A device for enveloping inserts in an envelope, comprising:

at least one feeder for supplying first and second articles (1, 1', 1", 57);

means for transporting the first and second articles received from the at least one feeder in a transport direction, wherein the means for transporting are and arranged downstream of the at least one feeder;

wherein the means for transporting comprises an erecting unit that erects the first article from a horizontal position into an upright position and transports the first article in the upright position in the transport direction:

a first adhesive station (15) comprising at least one applicator unit (16, 17) and configured to apply an adhesive onto the first article (1') provided for forming an envelope, wherein the envelope is produced from the first article (1') without waste;

wherein the at least one applicator unit (16, 17) is stationary during application of the adhesive onto the first article (11).

- 2. (currently amended) The device according to claim 1, wherein the at least one applicator unit (16, 17) is arranged in the area of an edge (21, 22) of the first article (1'), which edge (21, 22) extends in a transport direction of the means for transporting.
- 3. (currently amended) The device according to claim 1, wherein the first adhesive station (45) has two applicator units (16, 17).
- 4. (currently amended) The device according to claim 3, wherein the two applicator units (16, 17) are arranged in the area of the edges (21, 22) of the first article (1), which edges (21, 22) extend in a transport direction of the means for transporting.
- 5. (currently amended) The device according to claim 1, further comprising a second adhesive station (37), wherein the first and second adhesive stations (115, 37) are arranged angularly to one another relative to a transport direction of the first article (1").
- 6. (currently amended) The device according to claim 5, further comprising an wherein the erecting unit (27) is positioned between the first and second

- 2 -

- 7. (currently amended) The device according to claim 6, further comprising an insert folding device (51) configured to fold the second articles (1", 57) to inserts, wherein the first adhesive station (15) is arranged upstream of the insert folding device (51) in a transport direction of the first article (1").
- 8. (currently amended) The device according to claim 6, wherein the first and second adhesive stations (15, 37) are configured to apply a hot-setting adhesive.
- 9. (currently amended) The device according to claim 7, wherein the inserts folded in the insert folding device (51) are transported on an insert transport path, wherein the transport path of the first article (1') is a branch path of the insert transport path, wherein the first and second adhesive stations (15, 37) are positioned in the branch path.
- 10. (currently amended) The device according to claim 7, wherein the first and second adhesive stations (15, 37) in the transport direction of the first article (1') are arranged downstream of the insert folding device (51).
- 11. (currently amended) The device according to claim 10, wherein the first and second adhesive stations (15, 37) are configured to apply a cold-setting adhesive.
- 12. (currently amended) The device according to claim 7, wherein the means for transporting comprise at least one vacuum drum (8, 81) and a stop (6, 80) correlated with the at least one vacuum drum (6, 80), wherein the at least one vacuum drum (8, 81) transports the first and second articles in a direction toward the stop (6, 80).
- 13. (currently amended) The device according to claim 12, wherein the at least one vacuum drum (8, 81) is connected to a vacuum source.
- 14. (currently amended) The device according to claim 13, wherein the at least one vacuum drum (8, 81) has a peripheral surface provided with through openings (9).
- 15. (currently amended) The device according to claim 12, wherein the at least one vacuum drum (8, 81) has a peripheral surface provided with a friction coating.

- 3 -

s.

16/01/2004 15:55

- The device according to claim 16, wherein the at 17. (currently amended) least one sensor (34) is configured to switch vacuum from the at least one vacuum drum (8, 81) to a transport device (82, 93) of the means for transporting.
- The device according to claim 17, wherein the (currently amended) transport device (02, 93) has a conveying direction (33, 99) oriented perpendicularly to a conveying direction (32, 97) of the at least one vacuum drum (6,81).
- (currently amended) The device according to claim 17, wherein the 19. transport device is comprised of at least one vacuum belt (82).
- (currently amended) The device according to claim 19, wherein the at 20. least one vacuum belt (82) is an endless circulating belt.
- (currently amended) The device according to claim 19, wherein the at 21. least one vacuum belt (82) is provided with openings (26).
- The device according to claim 19, wherein the at. 22. (currently amended) least one vacuum belt (82) is connected to a vacuum source.
- The device according to claim 1, further (currently amended) 23. comprising at least one deflection unit (93) configured to change a transport direction of the first and second articles, wherein the deflection unit has at least one roller pair with rollers driven in opposite directions, wherein the rollers each have a flattened side, wherein, in an initial position of the rollers, the flattened sides are facing one another and delimit a free space, wherein the first and second articles are fed into the free space in a feed direction parallel to an axis of rotation of the rollers and are subsequently transported in a direction perpendicular to the axes of the rollers by rotating the rollers.
 - 24. (canceled)
 - 25. (canceled)
 - 26. (canceled)
 - The device according to claim 23 26, wherein the 27. (currently amended)

-4-

s.

- The device according to claim 23 25, wherein the 28. (currently amended) axes of rotation (100) of the rollers (94) are positioned perpendicularly to a stop (6) for the first and second articles (1', 1", 57).
 - 29. (canceled)
- The device according to claim 1, further 30. (currently amended) comprising at least one folding unit (67, 86) having at least one folding element (70, 71; 87, 88) which is adjustable transverse to a transport direction of the first and second articles.
- The device according to claim 30, wherein the at ... (currently amended) 31. least one folding element (70, 71; 87, 88) is a roller rotatable about an axis extending in the transport direction of the first and second articles (11, 11, 57).
- 32. (currently amended) The device according to claim 30, wherein the at least one folding element (70, 71; 87, 88) is arranged above a transport path for the first and second articles.
- 33. (currently amended) The device according to claim 30, wherein the at least one folding unit (67,86) in the transport direction of the first and second articles (44, 4", 57) has two of the folding elements (70, 71; 87, 88) positioned sequentially behind one another.
- 34. (currently amended) The device according to claim 33, wherein the two folding elements (70, 71; 87, 88) are adjustable independently from one another transversely to the transport direction of the first and second articles (1', 1", 57).
- The device according to claim 30, wherein the at (currently amended) least one folding element (70, 71; 87, 88) in the transport direction of the first and second articles (1, 1", 57) is positioned behind erecting means (68, 69; 89) arranged in a movement path of laterally projecting flaps (65, 66; 79) of the first article (11).
- The device according to claim 35, wherein the 36. (currently amended) erecting means (68, 69; 89) are wing-shaped.
 - (currently amended) The device according to claim 35, wherein the 37.

-5-

erecting means (68, 69; 89) extend counter to the transport direction of the first and second articles (1'; 1", 57) at a slant outwardly.

- 38. (currently amended) The device according to claim 35, wherein the erecting means (68,69; 89) are upright.
- 39. (currently amended) The device according to claim 1, further comprising an insert folding device (51) configured to fold the second articles (1", 57) to inserts, wherein the insert folding device (51) has two folding rollers (52, 53).
- 40. (currently amended) The device according to claim 39, wherein the insert folding device (51) has a folding blade (106) arranged upstream of the two folding rollers (52, 53).
- 41. (currently amended) The device according to claim 40, wherein the folding blade (106) is adjustable in the direction toward a roller gap between the two folding rollers (52, 53).
- 42. (currently amended) The device according to claim 40, wherein the second articles (1", 57) to be enveloped are supplied on the folding blade (106).
- 43. (currently amended) The device according to claim 39, wherein the second articles to be enveloped (1", 57) and the first articles (1') forming the envelope are supplied transversely relative to one another to the insert folding device (51).
- 44. (currently amended) The device according to claim 39, wherein the insert folding device (51) has a stop (102) for the first article (1') forming the envelope.