Домашно №1 по Дискретни Структури на специалност Компютърни Науки, 2 поток, зимен семестър 2024/2025г.,

изготвено на 4 ноември 2024 г.

краен срок за предаване: 11 ноември, понеделник, преди 24 часа

Задача	1	2	3	4	Макс.
получени точки					
от максимално	35	15	15	35	100

Задача 1: Ако $x,y \in \mathbb{R}$ и x < y, отвореният интервал (x,y) по дефиниция е следното множество: $\{a \in \mathbb{R} \mid x < a < y\}$. Нека $n \in \mathbb{N}^+ \setminus \{1\}$ и нека са дадени отворени интервали $(x_1,y_1), (x_2,y_2), \ldots, (x_n,y_n)$, като $x_i < y_i$ за $1 \le i \le n$. Нека $(x_i,y_i) \cap (x_j,y_j) \ne \emptyset$, за $1 \le i < j \le n$.

Докажете по индукция, че $\bigcap_{i=1}^{n} (x_i, y_i) \neq \emptyset$.

Задача 2: Нека $p,\ q,\ r,\ s,\ t,\ x,\ y$ и z са прости съждения. Разгледайте следното съставно съждение:

$$p \rightarrow (q \rightarrow (r \rightarrow (s \rightarrow (t \rightarrow (x \rightarrow (y \rightarrow (z \rightarrow p))))))))$$

Какво е това съждение: тавтология, условност или противоречие? Обосновете добре отговорите си.

Задача 3: Нека S е опорното множество в тази задача. Допуснете, че S е крайно и непразно. Нека $\Pi(S) = \left\{X \in 2^{2^S} \,|\, X$ е разбиване на $S\right\}$. За всеки $X,Y \in \Pi(S)$ казваме, че X рафинира Y, ако

$$\forall A \in X \ \exists B \in Y : A \subseteq B.$$

Дефинираме релацията $\sqsubseteq_S \subseteq \Pi(S) \times \Pi(S)$ така

 $\forall X, Y \in \mathbf{\Pi}(S) : X \sqsubseteq_S Y$ тстк X рафинира Y.

- 10 т. Докажете, че \sqsubseteq_S е релация на частична наредба.

Задача 4: Нека S е крайно множество. Нека |S|=n. Нека p(n) е броят на разбиванията на S. Докажете с комбинаторни разсъждения, че

$$p(0) = 1$$

$$p(n+1) = \sum_{k=0}^n \binom{n}{k} p(k)$$
, за $n \geq 0$