Unconventional Compute Architectures for Enabling the Roll-Out of Deep Learning

Michaela Blott Principal Engineer Oct. 2018

Background

>Xilinx

- Fabless semiconductor company
- Founded in Silicon Valley in 1984
- Today:
 - 3,500 employees
 - \$2.25B revenue
- >> Invented the FPGA

What are FPGAs?

Customizable, Programmable Hardware Architectures

- > The chameleon amongst the semiconductors...
 - >> Customizes IO interfaces, compute architectures, memory subsystems to meet the application
- > Classic use case: Nothing else works, and you want to avoid ASIC implementation
- > Recent use cases: Custom hardware architecture for performance or efficiency required

Context Machine Learning

Trends meeting Technological Reality

Mega-Trend: The Rise of the Machine (Learning Algorithm)

- > Potential to solve the unsolved problems
 - Making solar energy economical, reverse engineering the brain (Jeff Dean, Google Brain 2017)
- How can we computer architects help to enable the rollout of these algorithms?

Convolutional Neural Networks (CNNs) Why are they so popular?

- > Requires little or no domain expertise
- > NNs are a "universal approximation function"
- > If you make it big enough and train it enough
 - >> Can outperform humans on specific tasks

- > Will increasingly replace other algorithms
 - > unless for example simple rules can describe the problem
- > Solve problems previously unsolved by computers
- > And solve completely unsolved problems

Convolutional Neural Networks:

Forward Pass (Inference)

Input Image

Neural Network

Neural Network

Cat?

For ResNet50:

70 Layers

7.7 Billion operations

25.5 millions of weight

Basic arithmetic, incredible parallel but Huge Compute and Memory Requirements

Mega-Trend: Explosion of Data

- Computing shifts towards cloud computing
- > Data storage requirements explode
 - >> #users
 - >> Photos => videos
 - >> DNA!
- > Big data problem:
 - Saining intelligence out of vast amounts of unstructured data using machine learning algorithms

Technology: End of Moore's Law

Source: IBS

Technology: End of Dennard Scaling

Era of Heterogeneous Compute using Accelerators

- > Moving away from standard van Neumann architectures
- > Architectural innovation

Increasingly Heterogeneous Devices From the Xilinx World: Evolution of FPGAs to ACAPs

Towards Heterogeneous Cloud: AWS

Insight 2016: AWS adding FPGA instances

Pretty unconventional: Customized Hardware for Al DPU: Deep Learning Processing Unit

> Custom Al Silicon

> Quantum computing

> Both soft and hard DPUs

Microsoft Brainwave

Popular DPU Architecture

Even more unconventional:

Custom-Tailored Hardware Architectures (Macro-Level)

Synchronous Dataflow

- > Hardware Architecture Mimics the NN Topology
- Customized feed-forward dataflow architecture to match network topology & performance targets

Synchronous Dataflow (SDF) vs Matrix of Processing Elements (MPE)

- Higher compute and memory efficiency due to custom-tailored hardware design
- Less flexibility
- No control flow (static schedule)

- Efficiency depends on how well balanced the topology is
- Scales to arbitrary large networks
- Compute efficiency is a scheduling problem

Further unconventional at the Micro-Architecture, leveraging Floating Point to Reduced Precision Neural Networks

Reducing Precision Scales Performance & Reduces Memory

- >> Instantiate 100x more compute within the same fabric
- >> Thereby scale performance 100x

> Potential to reduce memory footprint

>> NN model can stay on-chip => no memory bottlenecks

Precision	Modelsize [MB] (ResNet50)
1b	3.2
8b	25.5
32b	102.5

Reducing Precision Inherently Saves Power

FPGA:

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static Probability ● Power reported for PL accelerated block only

ASIC:

		Relative Energy Cost
Operation:	Energy (pJ)	
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	
8b Mult	0.2	
32b Mult	3.1	
16b FP Mult	1.1	
32b FP Mult	3.7	
32b SRAM Read (8KB)	5	
32b DRAM Read	640	
		1 10 100 1000 10000

Source: Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017

Taking unconventional one step further still: Bit-Parallel vs Bit-Serial

> Parallelize across the bit precision

> FPGA: provides equivalent bit-level performance at chip-level for low precision* + flexible for runtime programmable precision

Design Space Trade-Offs

Summary

- Unconventional computing architectures emerge to help with the roll-out of deep learning
- Leveraging customized dataflow architectures and precisions, these provides dramatic performance scaling and energy efficiency benefits
- Providing new exciting trade-offs within the design space

THANK YOU!

Adaptable. Intelligent.

More information can be found at:

http://www.pynq.io/ml

