Ejemplo comparación de resultados predictores in sillico

Cambio de estudio KRAS c.35G>A (chr12:25245350 G/A, rs121913529 o NM_033360.4: c.35G>A)

Exón 2 e intrones adyacentes:

El cambio se encuentra en la primera línea del exón 2 (la **g** en color rojo subrayada de amarillo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice sites, direct strand	Donor splice sites, direct strand
pos 5'->3' phase strand confidence 5' exon intron 3' 79 0 + 0.00 TCATATAAAG^GTGAGTTTGT 97 1 + 0.37 GTATTAAAAG^GTACTGGTGG 303 0 + 0.65 AACAATAGAG^GTAAATCTTG	pos 5'->3' phase strand confidence 5' exon intron 3' 79 0 + 0.00 TCATATAAAG^GTGAGTTTGT 97 1 + 0.37 GTATTAAAAG^GTACTGGTGG 303 0 + 0.71 AACAATAGAG^GTAAATCTTG
Donor splice sites, complement strand	Donor splice sites, complement strand
pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 434 49 2 - 0.00 GAAACCCAAG^GTACATTTCA	pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 434 49 2 - 0.00 GAAACCCAAG^GTACATTTCA
Acceptor splice sites, direct strand	Acceptor splice sites, direct strand
pos 5'->3' phase strand confidence 5' intron exon 3' 180 1 + 0.18 TTATTATAAG^GCCTGCTGAA 338 1 + 0.19 ACTGGTGCAG^GACCATTCTT	pos 5'->3' phase strand confidence 5' intron exon 3' 180 1 + 0.21 TTATTATAAG^GCCTGCTGAA 216 1 + 0.07 CTTGTGGTAG^TTGGAGCTGA 222 1 + 0.07 GTAGTTGGAG^CTGATGGCGT
Acceptor splice sites, complement strand	338 1 + 0.18 ACTGGTGCAG^GACCATTCTT
No acceptor site predictions above threshold.	Acceptor splice sites, complement strand
	No acceptor site predictions above threshold.

Aparecen tres sitios *acceptor* nuevos (en azul) en la secuencia mutante. Tienen poca confianza, pero, si el *spliceosome* los reconociera, se produciría la pérdida de los primeros 36 o 42 nt del exón.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for wt:

on Intron	Exon	Score	End	Start
taaag gt gagttt	tataa	0.99	86	72
aaaag gt actggt	ttaaa	0.79	104	90
:agag gt aaatct	aatag	0.99	310	296

Donor site predictions for mut:

Start	End	Score	Exon Int	ron
72	86	0.99	tataaag gt	gagttt
90	104	0.79	ttaaaag gt	actggt
296	310	0.99	aatagag gt	aaatct

Acceptor site predictions for wt:

Start	End	Score	Intron	Exon
160	200	0.69	tttcattatttt	attata ag gcctgctgaaaatgactgaa
336	376	0.67	caggaccattctt	tgatac ag ataaaggtttctctgaccat

Acceptor site predictions for mut:

Start	End	Score	Intron	Exon
160	200	0.69	tttcattatttt	attata ag gcctgctgaaaatgactgaa
336	376	0.67	caggaccattctt	tgatac ag ataaaggtttctctgaccat

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	Ll distance	Ranking (L1)
agctg(g/a)tggcg	ggtggc	gatggc	28394	64%

Human Splicing Finder

No significant impact on splicing signals.

No significant impact on splicing signals.

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	12	65	tgctgaaaa	0.481644311634	0.383333333333	60	0	0	-3.0837295
wt	12	59	aaatgactg	1.10723640726	0.407407407407	54	0	0	-2.4512154
wt	12	55	gactgaata	0.297230706651	0.4 50	0	0	-2.5175	7
wt	12	49	atataaact	-1.22794910316	0.409090909091	44	0	0	-2.732024
mut	12	65	tgctgaaaa	0.481644311634	0.383333333333	60	0	0	-3.0837295
mut	12	59	aaatgactg	1.10723640726	0.407407407407	54	0	0	-2.4512154
mut	12	55	gactgaata	0.297230706651	0.4 50	0	0	-2.5175	7
mut	12	49	atataaact	-1.22794910316	0.409090909091	44	0	0	-2.732024
mut	12	28	agctgatgg	1.75725074145	0.391304347826	23	0	0	-0.23965694

Aparece un nuevo BP en la secuencia mutante, pero tiene puntuación negativa, por lo que no se tendrá en cuenta.

Variant Effect Predictor tool

ENST00000557334.5:c.35G>A	12:25245350- T 25245350	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000256078.10 protein_coding	2/6	225	35	12	G/D	GGT/GAT rs1219135 COSV554 COSV554 COSV554	497369, 497419.
ENST00000557334.5:c.35G>A	12:25245350- T 25245350	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000311936.8 protein_coding	2/5	225	35	12	G/D	GGT/GAT rs1219135 COSV554 COSV554 COSV554	529, 197369, 197419, 197479
ENST00000557334.5:c.35G>A	12:25245350- T 25245350	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000556131.1 protein_coding	2/3	212	35	12	G/D	GGT/GAT rs1219135 COSV554 COSV554 COSV554	497369, 497419,
ENST00000557334.5:c.35G>A	12:25245350- T 25245350	missense_variant	KRAS	ENSG00000133703 Transcript	ENST00000557334.5 protein_coding	2/3	232	35	12	G/D	GGT/GAT rs1219135 COSV554 COSV554 COSV554	<u>497369,</u> 497419,

ESEfinder

Se observan 4 resultados con puntuaciones positivas en WT:

198 (-285)	GAATATAAACTTGTGGTAGTTGGAGCTGGT	3.32010	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT -18.66980	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT	3.09350	198 (-285) GAATATAAACTTGTGGTAGTTGGAGCTGGT -20.92360
211	TGGTAGTTGGAGCTGGTGGCGTAGGCAAGA	1.32130	211 (-272) TGGTAGTTGGAGCTGGTGGCGTAGGCAAGA -10.04130	211 (-272) TGGTAGTTGGAGCTGGTGGCGTAGGCAAGA	1.20920	211 (-272) TGGTAGTTGGAGCTGGTGGCGTAGGCAAGA -11.43830
216 (-267)	GTTGGAGCTGGTGGCGTAGGCAAGAGTGCC	1.20390	216 (-267) GTTGGAGCTGGTGGCGTAGGCAAGAGTGCC -32.95400	216 GTTGGAGCTGGTGGCGTAGGCAAGAGTGCC	1.06100	216 (-267) GTTGGAGCTGGTGGCGTAGGCAAGAGTGCC -31.65020
220 (-263)	GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA	4.48380	220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA -0.89750	220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA	4.30110	220 (-263) GAGCTGGTGGCGTAGGCAAGAGTGCCTTGA -0.94060

Se comparan las puntuaciones con las de la secuencia mutante:

198 (-285)	GAATATAAACTTGTGGTAGTTGGAGCTCGT	3.39360	198 (-285)	GAATATAAACTTGTGGTAGTTGGAGCTCGT	-18.77210	198 (-285)	GAATATAAACTTGTGGTAGTTGGAGCTCGT	3.17450	19 (-285	GAATATAAACTTGTGGTAGTTGGAGCTCGT	-21.04820
211 (-272)	TGGTAGTTGGAGCTCGTGGCGTAGGCAAGA	-3.54770	211 (-272)	TGGTAGTTGGAGCTCGTGGCGTAGGCAAGA	-20.32670	211 (-272)	TGGTAGTTGGAGCTCGTGGCGTAGGCAAGA	-3.61290	211 (-272)	TGGTAGTTGGAGCTCGTGGCGTAGGCAAGA	-21.62670
216 (-267)	GTTGGAGCTCGTGGCGTAGGCAAGAGTGCC	1.20460	216 (-267)	GTTGGAGCTCGTGGCGTAGGCAAGAGTGCC	-30.52140	216 (-267)	GTTGGAGCTCGTGGCGTAGGCAAGAGTGCC	1.01780	21(GTTGGAGCTCGTGGCGTAGGCAAGAGTGCC	-29.08920
220 (-263)	GAGCTCGTGGCGTAGGCAAGAGTGCCTTGA	4.60100	22 (-263	GAGCTCGTGGCGTAGGCAAGAGTGCCTTGA	0.44220	22 (-263	O GAGCTCGTGGCGTAGGCAAGAGTGCCTTG:	A 4.40170	22 (-263	GAGCTCGTGGCGTAGGCAAGAGTGCCTTG	GA 0.39760

Lo más probable es que se esté perdiendo un sitio donor, lo que no tendrá mucho efecto en el splicing.

En cuanto a los ESE, se producen algunas alteraciones que pueden estar afectando al *splicing:*

219	219	219	219
(-264) GGAGCTC -4.98070	(-264) GGAGCTC -3.65153	(-264) GGAGCTCG 0.36938	(-264) GGAGCTC -3.32797
220	220	220	220
(-263) GAGCTCG -2.05624	GAGCTCG -2.17882	GAGCTCGT -1.55618	GAGCTCG -1.60679
221	221	221	221
(-262) AGCTCGT 0.83257	AGCTCGT 0.67513	AGCTCGTG 3.55344	AGCTCGT -4.44566
222	222	222	222
(-261) GCTCGTG -3.46816	GCTCGTG -2.83859	(-261) GCTCGTGG -1.10005	GCTCGTG -1.80432
223	223	223	223
(-260) CTCGTGG -0.69252	(-260) CTCGTGG 1.00274	(-260) CTCGTGGC -5.17740	CTCGTGG 1.29005
224	224	224	224
(-259) TCGTGGC -3.59471	(-259) TCGTGGC -2.05833	(-259) TCGTGGCG -2.62991	(-259) TCGTGGC -2.06622
225	225	225	225
(-258) CGTGGCG -2.98536	(-258) CGTGGCG -0.38008	(-258) CGTGGCGT -4.32178	(-258) CGTGGCG -0.48562
219 (-264) GGAGCTG -3.50084	219 (-264) GGAGCTG -2.66251	219 (-264) (-264)	219 (-264) (-264)
220	220	220	220
(-263) GAGCTGA 1.24828	(-263) GAGCTGA -0.09615	(-263) GAGCTGAT -1.17460	(-263) GAGCTGA -3.68291
221	221	221	221
(-262) AGCTGAT -2.34928	(-262) AGCTGAT -1.31245	AGCTGATG 2.29427	(-262) AGCTGAT -5.83107
222	222	222	222
(-261) GCTGATG -7.30280	(-261) GCTGATG -5.85893	(-261) GCTGATGG -3.37293	(-261) GCTGATG -0.97408
223	223	223	223
(-260) CTGATGG 1.96982	(-260) CTGATGG 2.34123	(-260) CTGATGGC -7.48497	(-260) CTGATGG 1.23211
224	224	224	224
(-259) TGATGGC -4.38026	(-259) TGATGGC -2.46382	(-259) TGATGGCG 0.70306	(-259) TGATGGC -0.27897
225	225	225	225
(-258) GATGGCG -4.11545	GATGGCG -3.57650	(-258) GATGGCGT -2.65412	GATGGCG -4.07843
226	226	226	226
(-257) ATGGCGT -0.54667	(-257) ATGGCGT -0.49481	(-257) ATGGCGTA -2.31901	(-257) ATGGCGT -3.48910

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	0	4	3	33	510.6662	16	-23.7770	8	15	44	500.3453	49	58.2806	56	116	0.48
mut	0	3	2	31	476.2297	15	-23.0149	7	16	43	485.6831	50	58.8533	51	116	0.44

Allele wt has a higher chance of exon skipping than allele mut.

HOT-SKIP