

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Параллельные методы и алгоритмы»

Студент	Макаров Тимофей Геннадьевич				
Группа	PK6-22M				
Тип задания	Лабораторная работа				
Тема	Аналитическое исследование эффективности статической балансировки загрузки MBC				
Студент					
Преподаватель					
Опенка					

Оглавление

Оглавление	2
Цель лабораторной работы	3
Постановка задачи	3
Статическая балансировка загрузки методом равномерной декомпозиции параллелепипеда П	
Вычислительный эксперимент	. 10
Метод равномерной декомпозиции параллелепипеда	. 11
Метод равномерной декомпозиции расчётных узлов	. 11
Программная реализация	. 12
Результат работы программы	. 14
Заключение	. 17
Список использованных источников	. 18

Цель лабораторной работы

Цель выполнения лабораторной работы — изучение двух методов статической балансировки загрузки многопроцессорной вычислительной системы (MBC):

- 1) балансировка загрузки на основе геометрической схемы декомпозиции области решения;
- 2) балансировка загрузки на основе равномерной декомпозиции узлов расчетной сетки.

Постановка задачи

Пусть X — n-мерный вектор параметров задачи. Положим, что $X \in R^n$, где R^n — n-мерное арифметическое пространство. Параллелепипедом допустимых значений вектора параметров назовем не пустой параллелепипед $\Pi = \{X \mid x_i^- \leq x_i \leq x_i^+, i \in [1:n]\}$, где x_i^-, x_i^+ - заданные константы. На вектор X дополнительно наложено некоторое количество функциональных ограничений, формирующих множество $D = \{X \mid g_j(X) \geq 0, j = 1, 2, ...\}$, где $g_j(X)$ - непрерывные ограничивающие функции. На множестве $D_X = \Pi \cap D$ тем или иным способом (аналитически или алгоритмически) определена вектор-функция F(X) со значениями в пространстве R^m . Ставится задача поиска значения некоторого функционала $\Phi(F(X))$.

Положим, что приближенное решение поставленной задачи может быть найдено по следующей схеме.

- $extit{\it Шаг 1.}$ Покрываем параллелепипед Π некоторой сеткой Ω (равномерной или неравномерной, детерминированной или случайной) с узлами X_1, X_2, \dots, X_z .
- *Шаг 2.* В тех узлах сетки Ω , которые принадлежат множеству D_X , вычисляем значения вектор функции F(X).
- *Шаг 3*. На основе вычисленных значений вектор функции F(X) находим приближенное значение функционала $\Phi(F(X))$.

В виде рассмотренной схемы можно представить, например, решение задачи вычисления многомерного определенного интеграла от функции F(X) в области D_X .

Суммарное количество арифметических операций, необходимых для $o\partial hokpamhozo$ определения принадлежности вектора X множеству D_X (т.е. суммарную вычислительную сложность ограничений $x_i^- \le x_i \le x_i^+$ и ограничивающих функций $g_j(X)$), обозначим $C_g \ge 0$. Вообще говоря, величина C_g зависит от вектора X . Мы, однако, пренебрежем этой зависимостью, и будем полагать, что имеет место равенство $C_g = const$. Заметим, что до начала вычислений величина C_g , как правило, неизвестна. Однако в процессе первого же определения принадлежности некоторого узла сетки Ω множеству D_X , эту величину можно легко определить (с учетом предположения о независимости этой величины от вектора X). Поэтому будем полагать величину C_g известной.

Неизвестную вычислительную сложность вектор-функции F(X) обозначим $C_f(X)$. Подчеркнем зависимость величины C_f от вектора X. Величина $C_f(X)$ удовлетворяет, во-первых, очевидному ограничению $C_f(X) \ge 0$. Во-вторых, положим, что известно ограничение сверху на эту величину C_f^{max} , имеющее смысл ограничения на максимально допустимое время вычисления значения F(X). Вычислительную сложность $C_f(X_i)$ назовем вычислительной сложностью узла X_i , $i \in [1:Z]$.

Вычислительную сложность генерации сетки Ω положим равной ZC_{Ω} , а вычислительную сложность конечномерной аппроксимации функционала $\Phi(F(X))$ - равной ζC_{Φ} , где ζ — общее количество узлов сетки Ω , принадлежащих множеству D_X . Положим, что при данных n ,m величины C_{Ω} , C_{Φ} — известные константы.

В качестве вычислительной системы рассмотрим однородную MBC с распределенной памятью, состоящую из процессоров $P_1, P_2, ..., P_N$ и host-процессора, имеющих следующие параметры:

- l длина вещественного числа в байтах;
- ullet t время выполнения одной арифметической операции с плавающей запятой;
 - t_s латентность коммуникационной сети;
- t_c время передачи байта данных между двумя соседними процессорами системы без учета времени t_s ;
 - d(N) диаметр коммуникационной сети.

В качестве меры эффективности параллельных вычислений используем ускорение

$$S_i(N) = \frac{T(1)}{T_i(N)},$$

где T(1) — время последовательного решения задачи на одном процессоре системы, $T_i(N)$ — время параллельного решения той же задачи на N процессорах, i=1,2 - номер метода балансировки. Будем рассматривать также в качестве меры эффективности параллельных вычислений асимптотическое ускорение

$$S_i^{\infty}(N) = \frac{T(1)}{T_i^{\infty}(N)},$$

где $T_i^\infty(N)$ - время параллельного решения задачи на N процессорах без учета коммуникационных расходов (когда $t_s=t_{\rm c}=0$).

Статическая балансировка загрузки методом равномерной декомпозиции параллелепипеда П

Данный метод основан на декомпозиции параллелепипеда Π на N равных подобластей и назначении каждой из этих подобластей своему процессору. Для двумерного случая этот метод иллюстрирует схема, изображенная на рисунке 1.

Рисунок 1 — Схема балансировки методом равномерной декомпозиции параллелепипеда Π .

Введём следующие обозначения:

- Ω_i множество узлов сетки Ω , покрывающих подобласть $\Pi_i, i \in [1:N];$
- $z_i \le z$ количество узлов во множестве $\Omega_i, z = \left\lceil \frac{z}{N} \right\rceil$, где символ [] означает ближайшее большее целое;
- $\zeta_i \leq z_i$ количество узлов сетки Ω_i , принадлежащий множеству D_X ;
- $X_{i,j} \in \{X_1,X_2,\dots,X_Z\}, i \in [1:N], \ j \in [1:\zeta_i]$ узлы сетки Ω_i , принадлежащие множеству D_X ;
- ζ общее количество узлов сетки Ω , принадлежащих множеству $D_X,\,\zeta=\sum_{i=1}^N\zeta_i;$

В этих обозначениях схему параллельных вычислений при решении рассматриваемой задачи с использованием балансировки загрузки методом равномерной декомпозиции параллелепипеда Π можно представить в следующем виде.

Шаг 1. Host-процессор выполняет следующие действия:

строит сетку Ω;

- плоскостями, параллельными одной из координатных плоскостей, разбивает ее узлы на множества $\Omega_i, i \in [1:N];$
 - передает процессору P_i координаты узлов множества Ω_i . *Шаг* 2. Процессор P_i выполняет следующие действия:
 - принимает от host-процессора координаты узлов множества Ω_i ;
- последовательно для всех \mathbf{z}_i узлов этого множества определяет их принадлежность множеству \mathbf{D}_X ;
- вычисляет в каждом из ζ_i узлов множества Ω_i значение векторфункции F(X);
- передает *host*-процессору ζ_i вычисленных значений и заканчивает вычисления.

Шаг 3. *Host*-процессор выполняет следующие действия:

- принимает от процессоров $P_i, i \in [1:N]$ вычисленные ими значения вектор-функции F(X);
- на основе ζ полученных значений вектор-функции F(X) вычисляет приближенное значение функционала $\Phi(F(X))$.

В соответствии с изложенной схемой балансировки загрузки методом равномерной декомпозиции параллелепипеда Π , время решения задачи на процессоре P_i можно оценить величиной

$$\tau_i = 2t_s + z_i nldt_c + \zeta mldt_c + tz_i C_g + t \sum_j C_f(X_{i,j}), j \in [1:\zeta_i],$$

где сумма $tz_iC_g+t\sum_j C_f(X_{i,j})$ представляет собой вычислительную загрузку процессора P_i , а сумма $2t_s+z_inldt_c+\zeta mldt_c$ — его коммуникационную нагрузку. Отсюда следует, что время параллельного решения всей задачи равно

$$T_1(N) = \max_{i \in [1:N]} \tau_i + tZC_{\Omega} + t\zeta C_{\Phi}.$$

Аналогично, время решения задачи на одном процессоре равно

$$T(1) = tzC_g + t\sum_{j=1}^{\zeta} C_f(X_j) + tZC_{\Omega} + t\zeta C_{\Phi}.$$
 (1)

Статическая балансировка загрузки методом равномерной декомпозиции расчетных узлов

Положим, что из числа Z узлов расчетной сетки Ω множеству D_X принадлежит ξ узлов $\widetilde{X_1},\widetilde{X_2},...,\widetilde{X_\zeta}$. Обозначим $z=\left\lceil \frac{\zeta}{N} \right\rceil$. Тогда идею рассматриваемого метода балансировки загрузки можно представить в следующем виде:

- среди всех узлов X_1, X_2, \dots, X_N сетки Ω выделяем ζ узлов $\widetilde{X_1}, \widetilde{X_2}, \dots, \widetilde{X_\zeta};$
- разбиваем узлы $\widetilde{X_1},\widetilde{X_2},\dots,\widetilde{X_\zeta}$ на N множеств $\widetilde{\Omega}_i$ $i\in[1:N]$, где множество $\widetilde{\Omega}_1$ содержит узлы $\widetilde{X_1},\widetilde{X_2},\dots,\widetilde{X_Z}$, множество $\widetilde{\Omega}_2$ узлы $\widetilde{X}_{Z+1},\widetilde{X}_{Z+2},\dots,\widetilde{X}_{2Z}$ и т.д.
- назначаем для обработки процессору $P_{\mathbf{i}}$ множеств узлов $\widetilde{\Omega}_i$ $i \in [1:N].$

Наглядно схема работы метода изображена на рисунке 2.

Рисунок 2 — Схема балансировки методом равномерной декомпозиции расчётных узлов.

Схему параллельных вычислений при балансировке загрузки методом равномерной декомпозиции расчетных узлов можно представить в следующем виде.

Шаг 1. Ноѕt-процессор выполняет следующие действия:

- строит сетку Ω ;
- среди всех узлов X_1, X_2, \dots, X_Z сетки Ω выделяет ζ узлов $\widetilde{X_1}, \widetilde{X_2}, \dots, \widetilde{X_\zeta};$
 - разбивает узлы $\widetilde{X}_1, \widetilde{X}_2, ..., \widetilde{X}_{\zeta}$ на N множеств узлов $\widetilde{\Omega}_i$ $i \in [1:N];$
 - передает процессору P_i координаты узлов множества $\widetilde{\Omega}_i$.

UIaг 2. Процессор P_i выполняет следующие действия:

- принимает от host-процессора координаты z узлов множества $\widetilde{\Omega}_i$;
- вычисляет в каждом из этих узлов значение вектор-функции F(X);
- передает *host*-процессору *z* вычисленных векторов и заканчивает вычисления.

Шаг 3. *Host*-процессор выполняет следующие действия:

- принимает от процессоров $P_i, i \in [1:N]$ вычисленные ими значения вектор-функции F(X);
- на основе ζ полученных значений вектор функций F(X) вычисляет приближённое значение функционала $\Phi(F(X))$.

Обозначим $\widetilde{X}_{i,j}$, $i \in [1:N]$, $j \in [1:z]$ — узлы сетки $\widetilde{X}_1,\widetilde{X}_2,...,\widetilde{X}_\zeta$, принадлежащие множеству $\widetilde{\Omega}_i$. Тогда при балансировке загрузки методом равномерной декомпозиции расчётных узлов время решения задачи на процессоре P_i можно оценить величиной

$$\tau_i = 2t_s + znldt_c + zmldt_c + t\sum_{i=1}^{z} C_f(\widetilde{X}_{i,j}),$$

где слагаемое $t\sum_{j=1}^{z} C_f(\widetilde{X}_{i,j})$ представляет собой вычислительную загрузку процессора P_i , а слагаемые $2t_s + znldt_c + zmldt_c$ — его коммуникационную загрузку. Таким образом, время параллельного решения всей задачи оценивается величиной

$$T_2(N) = \max_{i \in [1:N]} \tau_i + tZC_g + t\zeta C_{\Phi}.$$

Время решения задачи на одном процессоре определяется формулой (1).

Вычислительный эксперимент

Рассмотрим двумерную задачу (n=2). Параллелепипед Π в этом случае представляет собой прямоугольник $\Pi=\{X|x_i^-\leq x_i\leq x_i^+, i\in[1,2]\}$. Положим, что $x_1^-=x_2^-=0$, $x_1^+=x_2^+=1$, так что область Π является единичным квадратом (рисунок 3).

Рисунок 3 – Расчетная область задачи.

Множество D формируется с помощью одной ограничивающей функции $g_1(X) \geq 0$, т.е. $D = \{X | g_1(X) \geq 0\}$. Примем, что эта функция линейна и проходит через заданную преподавателем точку плоскости $0x_1x_2$ с координатами (0, b). Таким образом, уравнение этой функции имеет вид $x_2 = ax_1 + b$, a > 0 (при этом, очевидно, $g_1(X) = g_1(x_1, x_2) = x_2 - ax_1 - b$).

В качестве сетки Ω используем равномерную детерминированную сетку с количеством узлов по осям $0x_1$ и $0x_2$ равным 256, т.е. сетку с количеством узлов Z=256*256=65536.

Будем исходить из следующих значений параметров задачи и МВС:

- m = 100;
- l = 8;
- $t = 10 * 10^{-9}[c];$
- $t_s = 50 * 10^{-6}[c];$

- $t_c = \frac{1}{80} * 10^{-6} [c];$
- d(N) = [2sqrt(N) 1].

Пренебрежем вычислительными затратами на построение сетки Ω , на вычисление значений ограничивающей функции $g_1(X)$, а также на построение приближенного значения функционала $\Phi(F(X))$, т.е. положим $C_\Omega = 0$, $C_g = 0$, $C_{\Phi} = 0$. Примем также, что вычислительная сложность C_f вектор-функции F(X) одинакова во всей области D_X .

Метод равномерной декомпозиции параллелепипеда

В сделанных предположениях при использовании балансировки загрузки методом равномерной декомпозиции параллелепипеда Π время решения задачи на процессоре P_i можно оценить величиной

$$\tau_i = 2t_s + z_i n l dt_c + \zeta_i m l dt_c + t \zeta_i C_f, \tag{2}$$

время параллельного решения всей задачи – величиной

$$T_1(N) = \max_{i \in [1:N]} \tau_i \,, \tag{3}$$

а время решения задачи на одном процессоре – величиной

$$T(N) = t\zeta C_f. (4)$$

Асимптотическое ускорение данного метода равно

$$S_1^{\infty}(N) = \frac{Z\left(1 - \frac{a}{2}\right)}{\frac{Z}{N}\left(1 - \frac{a}{2N}\right)} = \frac{N\left(1 - \frac{a}{2}\right)}{1 - \frac{a}{2N}}.$$
 (5)

Метод равномерной декомпозиции расчётных узлов

Для данного метода время решения задачи на процессоре P_i можно оценить величиной

$$\tau_i = 2t_s + znldt_c + zmldt_c + tzC_f, \tag{6}$$

где слагаемое tzC_f представляет собой вычислительную загрузку процессора P_i , а слагаемые $2t_s + znldt_c + zmldt_c$ — его коммуникационную загрузку.

Время параллельного решения всей задачи оценивается величиной

$$T_2(N) = \tau, \tag{7}$$

а время решения задачи на одном процессоре определяется формулой (3).

Асимптотическое ускорение метода равно

$$S_2^{\infty}(N) = \frac{t\zeta C_f}{tz C_f} = \frac{\zeta}{z}.$$
 (8)

Программная реализация

Для написания программной реализации был использован язык программирования С11 и интегрированная среда разработки CLion. Код программы приведён в листинге 1.

Листинг 1. Программная реализация.

```
#include <stdio.h>
#include <math.h>
const int m = 100;
const int 1 = 8;
const double t = 10e-9;
const double t s = 50e-6;
const double t^c = 1./80. * 1e-6;
const double c omega = 0;
const double c_g = 0;
const double c fi = 0;
const double c_f 1 = 5e6;
const double c f 2 = 5e4;
const int stepsX1 = 256;
const int stepsX2 = 256;
const int Z = stepsX1 * stepsX2;
const double a = 0.5;
const double b = 0.0;
double d(int n) {
    return ceil(2 * sqrt(n) - 1);
double g(double x1, double x2) {
    return x2 - a*x1 - b;
double s1(int n, double c f) {
    double stepSizeX1 = 1./(stepsX1-1);
    double stepSizeX2 = 1./(stepsX2-1);
    int z i = Z / n;
    int blockWidth = z i / stepsX1;
    int zeta = 0;
    int maxZeta = 0;
    for (int i = 0; i < n; i++) {</pre>
        int zeta i = 0;
```

```
for (int j = 0; j < stepsX2; j++) {</pre>
             for (int k = i * blockWidth; k < (i + 1) * blockWidth; k++) {
                 if (g(k * stepSizeX1, j * stepSizeX2) >= 0) {
                      zeta i++;
                 }
             }
        zeta += zeta i;
        if (i == 0) {
            maxZeta = zeta i;
        }
    }
    double T 1 =
             \frac{1}{2} * ts +
             z i * n * 1 * d(n) * t c +
             \overline{\text{maxZeta}} * \text{m} * \text{l} * \text{d(n)} * \text{tc} +
            t * maxZeta * c f;
    double T single = t * zeta * c f;
    return T_single / T 1;
}
double s1 asimp(int n) {
   <u>return</u> n * (1. - 1. / 2) / (1 - 1. / (2 * n));
double s2(int n, double c f) {
    double stepSizeX1 = 1./(stepsX1-1);
    double stepSizeX2 = 1./(stepsX2-1);
    int zeta = 0;
    for (int i = 0; i < stepsX1; i++) { // groups</pre>
        for (int j = 0; j < stepsX2; j++) { // row
             if (g(i * stepSizeX1, j * stepSizeX2) >= 0) {
                 zeta++;
             }
        }
    }
    int z = zeta / n;
    if (zeta % n != 0) {
        z++;
    double T 2 =
            2 * t_s +
            z * n * 1 * d(n) * t_c +
             z * m * l * d(n) * t c +
             t * z * c f;
    double T single = t * zeta * c f;
    return T single / T 2;
}
double s2_asimp(int n) {
    double stepSizeX1 = 1./(stepsX1-1);
    double stepSizeX2 = 1./(stepsX2-1);
    int zeta = 0;
    for (int i = 0; i < stepsX1; i++) { // groups</pre>
        for (int j = 0; j < stepsX2; j++) { // row</pre>
             if (g(i * stepSizeX1, j * stepSizeX2) >= 0) {
                 zeta++;
             }
        }
```

```
int z = zeta / n;
    if (zeta % n != 0) {
        z++;
    return (double) zeta / z;
int main() {
    int n[6] = \{2, 4, 8, 16, 32, 64\};
    printf("S1 a=%f c f=%f\n", a, c f 1);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s1(n[i], c f 1));
    printf("\n");
    printf("S1 asimp a=1 c f=%f\n", c f 1);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s1 asimp(n[i]));
    }
    printf("\n");
    printf("S1 a=%f c_f=%f\n", a, c_f_2);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s1(n[i], c f 2));
    printf("\n");
    printf("S1 asimp a=1 c f=%f\n", c f 2);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s1 asimp(n[i]));
    printf("\n");
    printf("S2 a=%f c f=%f\n", a, c_f_1);
    for (int i = 0; i < 6; i++) {
        printf("%d %.2f\n", n[i], s2(n[i], c f 1));
    printf("\n");
    printf("S2 asimp c f=%f\n", c f 1);
    for (int i = 0; i < 6; i++) {
        printf("%d %.2f\n", n[i], s2_asimp(n[i]));
    printf("S2 a=%f c f=%f\n", a, c f 2);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s2(n[i], c_f_2));
    printf("\n");
    printf("S2 asimp c f=%f\n", c f 1);
    for (int i = 0; i < 6; i++) {</pre>
        printf("%d %.2f\n", n[i], s2 asimp(n[i]));
    return 0;
}
```

Результат работы программы

С помощью разработанной программы для заданных величин a, b, C_f были вычислены ускорения $S_1(N)$ для метода равномерной декомпозиции расчетной области и $S_2(N)$ для метода равномерной декомпозиции расчетных

узлов при N=2, 4, 8, 16, 32, 64. В таблице 1 представлены результаты вычислений оценки эффективности используемых методов балансировки загрузки при разном количестве процессоров N и разных значениях вычислительной сложности C_f , а также асимптотические ускорения методов $S_1^\infty(N)$ и $S_2^\infty(N)$ при a=1,b=0.

Таблица 1. Результаты работы программы

	$S_1(I)$	N)	$S_2(N)$		$S_1^{\infty}(N)$	$S_2^{\infty}(N)$
C_f	0.5 * 10 ⁷	5 * 10 ⁴	$0.5 * 10^7$	5 * 10 ⁴	$\rightarrow \infty$	→ ⊗
2	1.71	1.65	2.00	1.92	1.33	2.00
4	3.20	3.01	2.00	3.77	2.29	4.00
8	6.19	5.59	7.99	7.22	4.27	8.00
16	12.17	10.48	15.97	13.76	8.26	16.00
32	24.12	18.74	31.91	24.80	16.25	32.00
64	47.95	32.28	63.69	42.89	32.25	64.00

Из результатов, записанных в таблице 1, можно сделать вывод, что метод равномерной декомпозиции узлов более эффективен.

На рисунках 4 и 5 графически представлены зависимости S(N)=N , $S_2(N)$, $S_2(N)$ для $C_f=0.5\cdot 10^7$ и $C_f=5\cdot 10^4$.

Рисунок 4 – Графики оценки первого метода балансировки нагрузки.

Рисунок 5 – Графики оценки второго метода балансировки нагрузки.

Заключение

В процессе выполнения лабораторной работы были изучены два метода статической балансировки загрузки многопроцессорной вычислительной системы:

- балансировка загрузки на основе геометрической схемы декомпозиции области решения;
- балансировка загрузки на основе равномерной декомпозиции узлов расчетной сетки.

Был проведён сравнительный анализ эффективности методов при варьировании количества используемых процессоров N и вычислительной сложности C_f вектор-функции F(X) . Полученные результаты свидетельствуют о том, что метод равномерной декомпозиции расчётных узлов имеет большую эффективность. Увеличение вычислительной сложности C_f приводит к увеличению эффективности обоих методов.

Список использованных источников

- 1. Карпенко А.П., Федорук Е.В. Параллельные вычисления. Учебнометодическое пособие к лабораторным работам по курсу «Параллельные вычисления». М.: НУК ИУ МГТУ им. Н.Э. Баумана, 2010. 72 с.
- 2. Карпенко, А.П. Параллельные вычисления: учебное пособие [Электронный ресурс] / А.П.Карпенко // (http://bigor.bmstu.ru/?cnt/?doc=Parallel/base.cou).