1. Matrix Algebra Review

Define matrices **A**, **B**, and **C** as follows:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ -1 & 2 & 0 & -2 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & -1 \\ 3 & 0 \\ 2 & 1 \\ 0 & -2 \end{bmatrix}, \ \text{and} \ \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- (a) Calculate A', the transpose of A.
- (b) Calculate A' + B.
- (c) Calculate **AB**, the matrix product of **A** and **B**.
- (d) Calculate BA. Is AB = BA?
- (e) Is the matrix **AB** singular? Why or why not? (Invertible means nonsingular; see the Wikipedia page for invertible matrices for a review.)
- (f) Calculate the trace of **AB**.
- (g) Write (AB)' in another form algebraically: remove the parentheses.
- (h) Calculate $(\mathbf{AB})^{-1}$.
- (i) Write \mathbf{I}_2 , the 2×2 identity matrix.
- (j) What is I_2A ? Why?
- (k) Describe geometrically the space spanned by \mathbf{C} . That is, the space spanned by the two column vectors in the matrix \mathbf{C} . Assume we're working in three-dimensional space defined by axes xyz.
- (l) Calculate the projection matrix for \mathbf{C} . That is, what is the matrix that projects a vector in x, y, z space onto the x, y plane?
- (m) Project the vector $\mathbf{d} = \begin{bmatrix} 2 & 2 \end{bmatrix}'$ onto the space spanned by \mathbf{C} .
- (n) Describe geometrically what you did in the previous step.
- (o) Are the vectors \mathbf{d} and $\mathbf{f} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}'$ orthogonal? Why or why not? (Talk about a dot product in your answer.)
- (p) Calculate the dot product $\mathbf{1} \cdot \mathbf{1}$, where the vector $\mathbf{1} = [1 \ 1 \ \dots 1]'$ is of length n.
- (q) Calculate the dot product $\mathbf{1} \cdot \mathbf{x}$, where $\mathbf{1}$ is defined as above and $\mathbf{x} = [x_1 \ x_2 \ \dots x_n]'$.
- (r) Calculate the dot product $\mathbf{x} \cdot \mathbf{x}$, where \mathbf{x} is defined as above.
- (s) Describe geometrically what the first eigenvector (sorted in order from highest eigenvalue to lowest) would tell you about the vector space.

2. Calculus Review

Define

$$f(x,y) = 3x^2 + 2xy^2 - y$$

(a) Calculate $\frac{\partial}{\partial x} f(x, y)$.

(b) Calculate $\frac{\partial}{\partial y} f(x, y)$.

3. Log Review

- (a) Calculate $\log(e)$. (Note that statisticians usually write "log" instead of "ln" when they mean \log base e.)
- (b) Rewrite $\log\left(\frac{x}{y}\right)$ in terms of a difference.
- (c) Rewrite $\log(x^n)$ in terms of a product.
- (d) Solve $\log(x) = y$ for x.

4. Statistics and Linear Regression Review

After regressing eight patients' weights (in kg) on their height (in cm), a doctor found the following output.

Coefficient	Estimate	Std. Error	t-value	Pr(> t)
Intercept	-129.1667	24.3610	-5.302	0.001826
Height	1.1667	0.1521	????	0.000257

- (a) Write down the least squares regression line using $\hat{y} = \text{predicted weight and } x = \text{height}$.
- (b) What weight does the model predict for someone who is 160 cm tall?
- (c) Interpret the slope of the line in the context of the model.
- (d) Interpret the standard error of the slope in the context of the model.
- (e) Calculate the t-statistic for testing whether the slope is statistically significant.
- (f) Are height and weight linearly associated? Explain. (Assume assumptions are met.)
- (g) A journal might report that height is a *significant* predictor of weight. Explain what this means in context, as if to someone with no statistical background.
- (h) Calculate a 95% confidence interval for the slope.
- (i) Interpret your interval above in context.