Práctica 11 Electromagnetismo

Una onda incide normalmente sobre la superficie de separación entre dos dieléctricos. Mostrar que el coeficiente de reflexión R (cociente entre la potencia media reflejada y la incidente) vale

$$R = \frac{(n-1)^2}{(n+1)^2} \,, (1)$$

donde n es el índice de refracción relativo de los medios.

- Una placa dieléctrica de superficies paralelas, índice de refracción n_2 y espesor d se encuentra dentro de un medio infinito de índice de refracción n_1 . Una onda plana linealmente polarizada y monocromática, de longitud de onda λ y amplitud E_0 , incide normalmente sobre una de las superficies planas de dicha placa. Suponer que $\mu_1 = \mu_2 = 1$.
 - a) Escribir las condiciones de borde para los campos eléctrico y magnético en las superficies paralelas de la placa.
 - b) Calcular los coeficientes de transmisión T y reflexión R de la placa.
 - c) ¿Cuál debe ser la relación entre la longitud de onda y el espesor de la placa para que no haya onda reflejada?
- 71 Considerar un medio dieléctrico homogéneo con índice de refracción $n(\omega) = \sqrt{\varepsilon(\omega)}$.
 - a) Mostrar que la solución general para ondas planas en una dimensión pueden escribirse como

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \left[A(\omega) e^{ik(\omega)x} + B(\omega) e^{-ik(\omega)x} \right],$$

donde u(x,t) es una componente de \boldsymbol{E} o \boldsymbol{B} y $k(\omega) = n(\omega)\omega/c$.

- b) Considerar un paquete gaussiano, $A(\omega) = A_0 e^{-\frac{1}{2}\tau^2(\omega-\omega_0)^2}$, el cual describe una superposición de ondas de frecuencias cercanas a ω_0 . Evaluar u(0,t) (con $B(\omega) = 0$) y describir el comportamiento en función del tiempo. ¿Qué ancho 'temporal' tiene el paquete?
- c) Mostrar que el paquete se propaga con velocidad $v_g = d\omega/dk$ (velocidad de grupo). ¿Cómo evoluciona el paquete en el tiempo? Ayuda: Antes de hacer la integral en ω , expandir $k(\omega)$ hasta el orden lineal alrededor de $\omega = \omega_0$.
- Considerar un medio anisotrópico con tensor de susceptibilidad dieléctrica $\chi_{ij} = \chi \, \delta_{i3} \, \delta_{j3}$, donde el eje de simetría corresponde a la dirección \hat{z} . La magnetización es nula.
 - a) Encontrar la ecuación de ondas para el campo E en este medio.
 - b) Encontrar el índice de refracción del medio para una onda plana linealmente polarizada que se propaga en dirección \hat{x} y cuya polarización se encuentra en la dirección: i) \hat{z} ; ii) \hat{y} . Comparar las velocidades de fase obtenidas en ambos casos.
 - c) Si una onda circularmente polarizada que se propaga en el vacío en dirección \hat{x} incide normalmente en el medio estudiado. ¿Cómo varía la polarización de la onda a medida que se transmite por el medio?
- Una onda electromagnética linealmente polarizada, de frecuencia ω en el vacío, incide normalmente sobre la superficie plana de un medio de conductividad electrica σ y constante dieléctrica ε (permeabilidad magnética $\mu = 1$).
 - a) Obtener la amplitud y la fase de la onda reflejada relativas a las de la onda incidente.

Instituto Balseiro 2017

Práctica 10 Electromagnetismo

b) Analizar el caso límite de un 'buen' conductor y mostrar que el coeficiente de reflexión es

$$R \simeq 1 - \frac{2\omega}{c} \Lambda \,,$$

donde Λ es la distancia característica de penetración de los campos.

Instituto Balseiro 2017