None

Null

$1^{\rm er}$ mars 2024

Table des matières

1	TD:	3	1
	1.1	Exercice 1	1
	1.2	Exercice 2	1

1 TD3

1.1 Exercice 1

- 1. Si on a Safe(\mathcal{T}) = \mathcal{T} , alors $\mathcal{T} = \{ \sigma_{\lceil i \mid} \mid \sigma \in \mathcal{T} \} \cup \{ \sigma \in \mathbb{S}^{\alpha} \mid \forall i \in \mathbb{N}, \sigma_{\lceil i \in \mathcal{T}} \}$. En particulier, $\forall i, \sigma_{\lceil i \in \mathcal{T}} \Rightarrow \sigma \in \mathcal{T}$. Par contraposée, $\sigma \notin \mathcal{T} \Longrightarrow \exists i, \sigma_{\lceil i \notin \mathcal{T}}$. Réciproquement, si $\sigma \notin \mathcal{T} \Rightarrow \exists i, \sigma_{\lceil i \notin \mathcal{T}}$. Par extensivité, $\mathcal{T} \subseteq \operatorname{Safe}(\mathcal{T})$. De plus, si $\sigma \in \operatorname{Safe}(\mathcal{T})$. Supposons d'abord σ fini. Alors il existe π tel que $\sigma \cdot \pi \in \mathcal{T}$. Soit i, on pose $\pi_i = \sigma_i \upharpoonright \cdot \pi$. On a $\sigma_{\lceil i \lor} \cdot \pi_i = \sigma \cdot \pi \in \mathcal{T}$. Donc par $1, \sigma \in \mathcal{T}$.
- 2. **Intersection** Oui, puique $\sigma \notin p_k \Rightarrow \exists i, \sigma_{\lceil i} \notin p_k$ pour $k \in 0, 1$. En particulier, $\sigma \notin p_0 \cap p_1 \Rightarrow \exists i, \sigma_{\lceil i} \notin p_0 \cap p_1$. Ceci reste vrai pour une intersection dénombrable.
 - Union On a $\operatorname{PCl}(X \cup Y) = \operatorname{PCl}(X) \cup \operatorname{PCl}(Y)$. Par ailleurs, $\operatorname{Lim}(X \cup Y) = X \cup Y \cup \{\alpha \in \mathbb{S}^{\alpha} \mid \forall i \in \mathbb{N}, \sigma_{\lceil i} \in X \cup Y\}$. Dans le cas où $X = \operatorname{PCl}(A)$ et $Y = \operatorname{PCl}(B)$, on peut séparer cette union.
 - Ça ne marche pas pour une union dénombrable : on prend p_j la propriété "on s'arrête en j étapes", et $\cup p_j$ est la propriété "Le programme termine", qui n'est pas une propriété de sûreté.
- 3. De gauche à dretoi c'est bon. Si $\mathcal{S} \cap \mathbb{S}^* \subseteq \mathcal{T} \cap \mathbb{S}^*$, alors
- 4. On a $PCl(\mathcal{T}) = \mathbb{S}^*$ si et seulement si $\forall \sigma \in \mathbb{S}^*, \exists \sigma', \sigma \cdot \sigma' \in \mathcal{T}$.
- 5. On prend \mathbb{S}^* et \mathbb{S}^{ω} . Et bah l'union ni l'intersection ça marche.

1.2 Exercice 2

1. $S^* \cap (\text{No runtime errors } \cap \text{ la valeur de retour est un indice pour lequel il y a un zéro})$