HIGH-TEMPERATURE CYCLIC OXIDATION DATA

OCTOBER 1989

•

NASA Technical Memorandum 101468

High-Temperature Cyclic Oxidation Data

Turbine Alloys, Part 2

Charles A. Barrett and Ralph G. Garlick Lewis Research Center Cleveland, Ohio

October 1989

Contents

	Page
Summary	1
T	1
All Composition	1
Comments on the Data	1
References	2
Table I.—Nominal Alloy Composition for High-Temperature Turbine Alloys	3
Cyclic Oxidation Data Alloy 625	4
Alloy 625	6
Alloy 718	10
Astroloy	14
B-1900	29
B-1900 + Hf	37
IN-100	
IN-713LC	54
IN-738	84
TAT 700	0-
TNI 020	120
MAD M 200	134
MAD M 200 Uf	142
374B 34 311	102
34AD 34 346	170
34AD 34 347	1/4
34AD 34 431	170
STAGE PRINT STA	200
NT:	200
NTV 100	210
D=4.41	. 222
D = 1 90	. 224
B / 100	231
D / 105	. 234
D 150 CV	. 444
MACE OA	. 252
mpsi h	. 303
MD33/ 1000	. 313
TT 500	. 217
U-700	. 323
U-710	. 395
U-710 U-720	. 399
U-720	. 407
Waspaloy	. 435
WAZ-20	439
MAR-M-509	445
WI-52	. 454

Summary

This volume is the second part in a series of cyclic oxidation handbooks presenting cyclic oxidation data tested at NASA Lewis Research Center. It contains specific-weight-change-versus-time data and x-ray diffraction results derived from high-temperature cyclic tests for the remainder of high-temperature, high-strength nickel-base γ/γ' and cobalt-base turbine alloys tested at Lewis. Part 1 of the series is available as NASA Technical Memorandum 83665 (Rev. 1989).

Introduction

The specific-weight-change-versus-time data and plots and associated x-ray data complete the presentation of the cyclic oxidation data for high-temperature nickel- and cobalt-base turbine alloys tested at NASA Lewis Research Center. The scope of this oxidation testing program is detailed in reference 1. The initial body of data for this class of alloys was presented in reference 2. The test rigs and method of deriving the specific-weight-change-versus-time data for the alloy test samples are also described in this reference. These gravimetric data are presented both in graphical and tabular form. X-ray diffraction analysis of the retained oxide scale as well as the accumulated scale spall performed after selected exposure times are also presented in tabular form.

The data are presented for 36 alloys listed in alphabetical order. There are 33 Ni-base alloys followed by 3 Co-base alloys. These alloys and their compositions are listed in table I. The hierarchical order sequence in the report for each alloy is from high to low temperature in degrees Celsius and from long to short cycle time, with the majority of test cycles (i.e., standard cycle) being 1.0 hr with a minimum of 20 min between cycles at ambient temperature. The samples were removed and weighed at as close to a standard schedule as possible (i.e., 1, 15, 30, 45, 60, 75, 90, 100, 115 hr, and so on). The cast alloys are listed before the hot-worked alloys. Under the cast heading, the conventionally cast alloys are listed before the directionally solidified. The number in the upper right corner is an internal NASA number giving the alloy code and run number (see ref. 1).

Alloy Composition

The compositions of the 33 Ni-base and 3 Co-base alloys tested are listed in table I. In general, these are cast alloys, although a few such as Waspaloy, René 41, and U-520 are hot-worked wrought alloys. U-700 was used in many cases as a standard involving both cast and wrought forms. IN-738 also included one hot-worked alloy although it is usually a cast alloy. The comments column indicates whether more than one heat and/or vendors were involved. The cast alloys were generally in the as-cast condition. The alloy compositions listed are within 10 percent of actual heat or sample chemistries except where noted.

Comments on the Data

In general, the specific-weight-change-versus-time cyclic oxidation data follow paralinear behavior; that is, the specific-weight-change values increase with time to a maximum, with roughly parabolic kinetics, and then reverse and drop in a linear manner with time. By regression analysis the data can be fitted to the model

$$\Delta W/A = k_1^{1/2} t_1^{1/2} - k_2 t \pm \sigma \tag{1}$$

where $\Delta W/A$ is specific weight change, t is time, $k_1^{1/2}$ is an oxide growth constant analogous to the parabolic growth constant derived in isothermal oxidation $k_p^{1/2}$, and k_2 is a linear oxide spalling constant. This is a useful first-approximation model, particularly for these types of alloys, since an attack parameter defined as

$$K_a = (k_1^{1/2} + 10 \ k_2) \tag{2}$$

can be used to rank the cyclic oxidation resistance of the alloy. Over 90 percent of the data in this handbook can be fitted to equation (1) with an R^2 of 90 percent or greater. (R^2 is the coefficient of determination, defined as the percent of variation explained by the regression fit.) The remainder of the alloys can be fitted more directly to

$$\Delta W/A = -k_2 t \pm \sigma \tag{3}$$

ì

$$K_a = 20 k_2 \tag{4}$$

These K_a values, together with the $k_1^{\prime\prime}$ and/or k_2 values, have been discussed in detail in references 1 and 3 to 10. K_a values have been shown to correlate well with either metal loss due to conversion to oxide or thickness change as the alloy metal is depleted. K_a also has the advantage that it is relatively insensitive to the length of test as long as the oxidation mechanism does not change. Mechanism change usually means that a less protective scale becomes rate controlling, which leads to "breakaway," or catastrophic, failure.

A simpler method of evaluation is to compare specific weight change at a given time, say 100 or 200 hr. This is a very rough ranking method unless the spalling rate is relatively high. In general, the more negative the $\Delta W/A$ value at any given time, the poorer the cycle oxidation resistance.

Variability of the data is also a consideration in cyclic oxidation testing. This was discussed previously for this type of test in reference 11.

Large differences in specific-weight-change values for a given alloy for replicate test samples correlate with the variations of oxide(s) detected by x-ray diffraction. These effects have been discussed in detail in references 6, 9, 10, and 12. In the x-ray diffraction results under the designation "spinel," a_0 values of 8.05 to 8.15 Å refer to aluminate spinel, whereas a_0 values of 8.20 to 8.35 Å denote chromite spinel.

References

 Barrett, C.A.; and Lowell C.E.: High Temperature Cyclic Oxidation Furnace Testing at NASA Lewis Research Center. J. Test. Eval., vol. 10, no. 6, Nov. 1982, pp. 273-278.

- Barrett, C.A.; Garlick, R.G.; and Lowell, C.E.: High Temperature Cyclic Oxidation Data, Volume 1—Turbine Alloys. NASA TM-83665, 1984.
- Barrett, C.A.; and Lowell, C.E.: Resistance of Nickel-Chromium-Aluminum Alloys to Cyclic Oxidation at 1100 and 1200 °C. NASA TN D-8255, 1976.
- Barrett, C.A.; and Lowell, C.E.: The Cyclic Oxidation Resistance of Cobalt-Chromium-Aluminum Alloys at 1100 and 1200 °C and a Comparison with the Nickel-Chromium-Aluminum Alloy System. Oxid. Met., vol. 12, no. 4, 1978, pp. 293-311.
- Barrett, C.A.; Khan, A.S.; and Lowell, C.E.: The Effect of Zirconium on the Cyclic Oxidation of NiCrAl Alloys. J. Electrochem. Soc., vol. 128, no. 1, Jan. 1981, pp 25-32.
- Lowell, C.E.; Smialik, J.L.; and Barrett, C.A.: Cyclic Oxidation of Superalloys. High Temperature Corrosion, NACE-6, National Association of Corrosion Engineers, Houston, TX, 1983, pp. 219-226.
- Barrett, C.A.; Miner. R.V.; and Hull, D.R.: The Effects of Cr, Al, Ti, Mo, W, Ta, and Cb on the Cyclic Oxidation Behavior of Cast Ni-Base Superalloys at 1100 and 1150 °C. Oxid. Met., vol. 20, no. 5/6, 1983, pp. 255-278.
- Stephens, J.R.; and Barrett, C.A.: Oxidation and Corrosion Resistance of Candidate Stirling Engine Heater-Head-Tube Alloys. NASA TM-83609, DOE/NASA/51040-53, 1984.
- Barrett, C.A.: The Effects of Cr, Co, Al, Mo, and Ta on the Cyclic Oxidation Behavior of a Prototype Cast Ni-Base Superalloy Based on a 2⁵ Composite Statistically Designed Experiment. NASA TM-83784, 1984.
- Barrett, C.A.: The Effect of Variations of Cobalt Content on the Cyclic Oxidation Resistance of Selected Ni-Base Superalloys, NASA TM-87297, 1986.
- Barrett, C.A.; and Lowell, C.E.: Comparison of Isothermal and Cyclic Oxidation Behavior of Twenty-Five Commercial Sheet Alloys at 1150 °C, Oxid. Met., vol. 9, no. 4, 1975, pp. 307-355.
- Barrett, C.A.; Johnston, J.R.; and Sanders, W.A.: Static and Dynamic Cyclic Oxidation of 12 Nickel-, Cobalt-, and Iron-Base High-Temperature Alloys. Oxid. Met., vol. 12, no. 4, Aug. 1978, pp. 343-377.

TABLE I.—NOMINAL ALLOY COMPOSITION FOR HIGH-TEMPERATURE TURBINE ALLOYS

Comments		Q - To 1 3 65		_	Similar to U-700		_		_		- 46; includes one hot-worked alloy	with ~0 Cb		_	1	_	-2		- With 0.1 wt % Cu	_		40 With 0 5 wt % Reb. 23	, car % C.o		!	-			1.50 44	- With 3.0 wt % Re and 2.2 wt% V	a2	1.00			a7: includes three bar stock alloys;		· ·					Will O C 11/18	with 2.0 wt % re	
	H	_	-			i	-	-	-	<u> </u>	-		75	: 	ļ —-		1.5	-	-	1.5				-	1	<u> </u>	!	_	_	 	-	_	 -	- i				- 			i 	- 	i 	
	Zr		}		90:0	č	2	9 1	S.	91.	1	:	9	2 5	2 :	Ξ; 	 50.	.05	10:	8		_		<u>3</u> 	-	_	_		.05	-	1.0	.12	_			.	- -	3			CI.	— ئخ	-	-
	В			0.00	.03	015	310	C10.	.015	010	010	?	8	3 6	10.	cio.	.015	.015	10	8	10	<u> </u>	70.	510.	}	<u>5</u>	015	.015	20.	-	8	.015	-00	.005	2	 3	.012	8	 5 §	₹ —	-	-		¦ —
	Ŋ	1	 S	Ş	8	: -	: •	-	18	S	17	:	į	17.	cI.	.15	.15	.15	8	16	21.	CI ;	ST:	91.	<u>z</u>	8.	-17	-	.10		.125	-05	8	Š	3 8	<u>}</u>	10	? -	5 8	8 :	<u>-</u> -	8	.45	8
	Ta		See Comments	See Comments			ĵ.	4.3			37.1	6/:1		3.9	1.5				2.0	0.0	0.0		0.6					3.8	3.8	0.9	8.0	0.9					1					3.5		
Composition, wt %	ච		See Comments	See Comments			0.1	-:		0,0	0.7				1.0	2.7	1.0	2.7	i			2.0	.ن							1	2 6		. .									(2.0	
Сошро	*	1	1			5.	-:	-:	ļ		;	0.7		3.9	2.0	12.5	11.5	•	3	9	0.01	3,00	5.8	1	-	-	-	7.0	7.0	2 6	4.0		2	2	<u>-</u>	-	-	C: 1	1.2	-	1	7.0	11.0	7.5
	₩		9.0	3.05	30.3	2.6	0.0	0.9	3.0	, ,	4. U	1.75		5.0	}	ì	ļ	2 5	7.7	`	٥	2.0	2.0	3.5	18.0	10.0	4.0	2.0	0 0	-	2 5	, ,	2.5	3	0.0	4.5			_		18.5			
	ä		0.7	0	` '	3.3	1.0	1:0	4.5	; `	. ب	3.4		4.2	3.6	2.0					_		1.0	4.0		3.1						i	• •	_	3.0			_	_	3 3.0		- .2	-	-
	¥		_	4	_	4.	0.9	6.0		, ,	ń	3.4		<u>m</u>	2.0	5.0	_	2 4		_		8 4.3	1 5.4		_	_	_		0 4						_	0 4.3		_		.5 1.3	6.5		0.	25.5
	5	;	22.5	100	13.0	15.0	8.0	8.0	10.0	2 :	12.0	16.0		12.7	22.0	0 6			9.0	=	8.2	15.8	6.1	14.6	< 10	19.0	14.0	0	0.0	0.0	۰ ۱	0.0	o. 6	13.0	19.0	15.0		18.0	18.0	19.5	-	23.5		
	క	3	ļ	_		15.0	10.0	10.0	15.0	0.01	1	8.5		0.6	19.0	10.0	0.01	0.01	0.01	11	10.0	9.5	7.5	14.0		11 0	5 0	10.0	10.0	10.0	0.21	;	8.0	9. —	12.0	18.5		15.0	15.0	13.5	-	Balance	_	_
	ï		Rolonce	Commission		_										_			_			_		_	_			_	_		_				_		_		_		→	10.0	}	10.5
Alloy	·		\$07 t. 4	Alloy 023	Alloy 718	Astroloy	B-1900	4H + 0001 G	D-1500 + 111	IN-100	IN-713LC	IN-738		70Z-N1	TN 030	W 700	MAK-M-200	MAR-M-200 + Hf	MAR-M-211	MAR-M-246	MAR-M-247	MAR-M-421	NACA_TPW_VIA	Nimonic 115	Millionine 113	Dari 41	Kelle 41	Kene 80	Rene 120	Rene 125	R-150-SX	TAZ-8A	TRW-R	TRW-1800	U-520	U-700		U-710	11-720	Wasnalov	WA7-20	MAD M-500	WI-S?	76-14

*Represents number of vendors and/or different heats tested. A modified form of VIA was tested where 0.5 Re was replaced with an additional 0.5 Hf. $c_{\rm U-700}$ alloys had Co levels of 14.5 to 19.0 wt %.

02-13-001-351-4	STATIC AIR
GAHHA/GAHHA PRIME ALLOYS	1100°C 1.00hr CYCLES 500.00hr TEST 2.313mm THICK 5
COMMERCIAL HOT HORKED	

X-RAY DIFFRACTION DATA

ALLOY 625

NI BASE

SPALL	200 %	COLLECTED SPALL	SPINEL B. B. 30A.	0-2	TRICRUTILE). 4(110)>3.30A.	80%,0
SURFACE	200 % .	STANDARD SURFACE	SPINEL. B. B. 30A.	0:2	TRICRUTILE), d(110)>3.30A.	W 0 W 1

FACE CENTERED CUBIC HATRIX

14 000	COLLECTED SPALL	0 - 2	SPINEL, sp. 8.30A.	TRICRUTILE), 4(110)>3.30A.	K 0 % L J
.4 000	STANDARD SURFACE	SPINEL	0-2	.04.50	TRICRUTILE), 4(110) >3.30A.

FACE CENTERED CUBIC MATRIX

MI BASE

ALLOY 718

1150 C

1.00hr CYCLES

X-RAY DIFFRACTION DATA

STANDARD SURFACE SURFACE 200 % 0

SPINEL. BB 80A.

C r 2 0 3

TRICRUTILE), 6(110) 53.30A.

SPINEL. COLLECTED SPALL 0 7

200 1

SPALL

TRICRUTILE), 4(110)>3.30

C r 2 0 3

FACE CENTERED CUBIC HATRIX

STATIC AIR

2.320ss THICK

500.00hr TEST 1.00hr CYCLES 1100°C ALLOY 718

X-RAY DIFFRACTION DATA

TRICRUTILE), d(110) > 3.30 A. SPINEL. . . B. 30A. COLLECTED SPALL Craos 200 hr 0 -z SPALL TRICRUTILE), d(110) 53.30A. SPINEL, .0 . B. 30A. STANDARD SURFACE Crzos SURFACE 200 hr 0 -z

FACE CENTERED CUBIC MATRIX

TRI(RUTILE), 4(110) > 3.30 A. SPINEL: .. B. 30A. COLLECTED SPALL 5.00 hr 0 -Z SPINEL, . . . 8.35A. STANDARD SURFACE C r 2 0 3 500 hr 0 - z

FACE CENTERED CUBIC MATRIX TRICRUTILE), d (110) > 3.30 A.

C r 2 0 3

		-
02-13-003-472-3	1150°C 1.00hr CYCLES 100.00hr TEST 2.302mm THICK STATIC AIR	
- 20	THICK	
	2.302==	
	TEST	
S	100.001	
ED GAMMA/GAMMA PRIME ALLOYS	CYCLES	
/GAMMA P	1.00%	
HORKED GAMMA	1150°C	
F 0 H		
COMMERCIAL		

ASTROLOY

K-RAY DIFFRACTION DATA

	SPALL
	COLLECTED SPALL
	*O & L U
TREESUTILE); 6(110)53.30A.	0-2
TRI(RUTILE),4(110)53.30A.	TRI(RUTILE), d(110) 53.30A.

FACE CENTERED CUBIC MATRIX

UNKNOWN LINES. & VALUES 3.45A.

3.47A.

.4 00	COLLECTED SPALL	0 - 2	SPINEL B. B. BOA		
	ONY	SPINEL BARB.3	0 (+) - 1 ×	0 %	3

FACE CENTERED CUBIC MATRIX

3 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	STATIC AIR
	1100°C 1.00hr CYCLES 200.00hr TEST 2.301em THICK STATIC AIR
	7 E S T
SS ≻	200.004
ED GAMHA/GAMMA PRIME ALLOYS	ONT CYCLES
1 A / G A M P	3.
¥ 4 0 7	1100°C
HOT	
CONHERCIAL	

ASTROLOY	1100°C 1.00hr CYCLES 200.00 x-ray diffraction data
SURFACE 1 hr STANDARD SURFACE Creos Tri(Rutile), d(110) £3.30A.	SPALL 1. N. N.O. SIGNIFICANT SPALL OBSERVED

. 4	
STANDARD SURFACE	COLLECTED SPALL
0-1	0 - 1
SPINEL, B. B. BOA.	SPINEL B. B. 30
٠.	Creos
CMI.Co.Follog	SPINEL. ag-8.10
A 1 . 0 .	

FACE CENTERED CUBIC NATRIX

. A 0 E . 8 - 0 .

.

	200 1
STANDARD SURFACE	COLLECTE
(M1,Co.Fo)110m	0 - 1
20213	SPINEL.
A 1 g 0 3	
0-2	
SPINEL	
TRICRUTILE), e(110)53.30A.	
SPIEEL,	

D SPALL

FACE CENTERED CUBIC NATRIX

	02-04-601-107-5 S 100.00% TEST 2.710** THICK STATIC AIR		
COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	1150°C 1.00%r CYCLES	X-RAY DIFFRACTION DATA	SPALL 100 hr COLLECTED SPALL N10 TRI(RUTILE),4(110)53.30A. TRI(RUTILE),4(110)53.30A. SPINEL, 80-8.10A.
COMMERCIAL CASI			JRFACE 100 hr 17 ANDARD SURFACE 17] (RUTILE), 4(110) £3.30A. A 1 = 0 x SPINEL, 0 = 8.15A. N10
HOVE - Z	8-1900		SURFACE 100 AT STANDARD 173 CRUTIL A B O K N I O

M: BASE

8-1900

N. BASE

	2.333mm THICK STATIC AIR			
T GAHHA/GAHHA PRIME ALLOYS	1100°C 1.00hr CYCLES 200.00hr TEST	X-RAY DIFFRACTION DATA	SPALL 200 hr COLLECTED SPALL NIO TRICRUTILE), 4(110) 53.30A. SPINEL, 80 8 8.10A. UNKNOWN LINES, 4 VALUES 3.10A.	3.57A.
• NI BASE COMMERCIAL CAST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SURFACE 200 Kr STANDARD SURFACE SPINEL, 40 8.10A. A! 203 TRI(RUTILE), 4(110) 53.30A. FACE CENTERED CUBIC MATRIX	

82-64-881-471-3	1000°C 1.08hr CYCLES 508.00hr TEST 2.338mm THICK STATIC AIR
	T E S
	500.000
A/GANNA PRINE ALLOYS	BAr CYCLES
€ = =	
6 A M M A / 6 A M M A	J. 000 I
CAST	
COMMERCIAL	

1-12-6

X-RAY DIFFRACTION DATA

	SPALL		
STAKOABO SURFACE	CHARLE CART CART SPALL DESCRIP	SPALL	
TRICRUTILES, d(110) 43.30A,			
SPINEL, set 0. 10A.			
	9		
STANDARD SURFACE	SUSSELLA GO TIPOU LA VOLUE A V	1 1 4 9 5	
****			2 × × × × × × × × × × × × × × × × × × ×
SP1861			
TRICRUTILES, 4(110)53.30A.			
20.2			

NO SIGNIFICANT SPALL OBSERVED NO SIGNIFICANT SPALL OBSERVED 500 FACE CENTERED CUBIC MATRIX TRICRUTILE), d(110) 43.30A. SPINEL, ag. 8.10A. STANDARD SURFACE STANDARD SURFACE

200

FACE CENTERED CUBIC HATRIX

TRI (RUTILE), 4(110) 53.30A.

SPINEL, ... B. B. 10A.

500 11

02-04-002-328-3	2.330 . THICK STATIC AIR	
ST GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00hr CYCLES 200.00hr TEST X-RAY DIFFRACTION DATA	SPALL 200 hr PROBABLE CROSS-SPALL SPINEL, *0.*8.35A. C.O A!ZTIOS TRI(RUTILE).4(110)53.30A.
NI BASE COMMERCIAL CAST GAMM B-1900+Hf		SURFACE ZOO hr STANDARD SURFACE SPINEL, *a*8.05A. A!goz TRI(RUTILE),4(110)53.30A. Hfoz

E 60 A S.E.	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	
8-1800+Hf	1100°C 1.00hr CYCLES	1100°C 1.00hr CYCLES 200.00hr TEST 2.315mm THICK STATIC AIR

DIFFRACTION DATA

LL OBSERVED

.400.1	X-RAY D	L br Significant Spa	
ပ စ -		- O N	. 40%
		TANDARD SURFACE A 2 0 3 Cr 2 0 3	
		STANDAND ALROS TRICKLI	SPINE

FACE CENTERED CUBIC MATRIX

SPINEL,

COLLECTED SPALL SPINEL, B. B. 25A. N10 TRI(RUTILE), 4(110)53.30A.	SPIZEL. B. B. B. B. C. C. B.	COLLECTED SPALL SPINEL. ************************************
STANDARD SURFACE Alzos SPINEL, D.B. B. 10A.	FACE CENTERED CUBIC HATRIX	STANDARD SURFACE SPINEL

NI BASE COMMERCIA	COMMERCIAL CAST GAMMA/GAMMA	A/GAMMA PRIME ALLOTS						
IN-100	1150 C	1.00hr CYCLES	100.00hr TEST	1651	2.625mm THICK	THICK	STATIC AIR	<u>.</u>
		X-RAY DIFFRACTION DATA	N DATA					
SURFACE 100 %r STANDARD SURFACE SPINEL. *** 8.25A. Crgos	SPALL 100 hr COLLECTED SPALL N10 SPINEL, 88-80A.	SPALL 8 8 2 0 A .						

_
•
0
~
*
t
M
0
0
1
_
*
0
1
N
0

STATIC AIR

COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS

N: BASE

1.00hr CYCLES 1150°C

45.00hr TEST. 2.256mm THICK

X-RAY DIFFRACTION DATA

SPALL

COLLECTED SPALL

-0

SPINEL 8 . 25 A.

FACE CENTERED CUBIC MATRIX

TRI(RUTILE), 4(110) 53.30A.

(NI, Co. Fe) TIOB

STANDARD SURFACE

SURFACE -

STANDARD SURFACE 4.55

SPINEL, . B . 8.25A.

CM1.C.F.STIOR

NICH. H.)O. TYPE P SPINEL, ...B.25A.

COLLECTED SPALL

0 -z

12 01

TRICRUTILE), 4(110) 43.30A. NICH. H. D. TYPE 2 SPINEL, . . . 8.15A.

UNKNOWN LINES, & VALUES

FACE CENTERED CUBIC HATRIX

41

u 4 9	COMMERCIAL CAST GAMMA	GAHHA/GAHHA	A/GAMMA PRIME ALLOYS				0 - 0	* - * 1 * - 0 * 0 - * 0 - 2 0	
		1150 C	1.00hr CYCLES	60.00hr	T E S T	60.00hr 1EST 2.314mm THICK	1 C K	STATIC AIR	
			X-RAY DIFFRACTION DATA	4 F 4 0					
t. 4 0 1.		SPALL							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		60 11							
		COLLECTED SPALL	SPALL						
	. ≪ 	0 - 2							
	0. 1 0. 1 >	SPINEL.	SPINEL,						
*		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S HAYE S TABLE S						

0 S - I M - 1 0 0

NI BASE

SPINEL, BESESA.

X-RAY DIFFRACTION DATA

PROBABLE CROSS-SPALL 2000 0 -Z SPALL SPINEL, ...B. 15A. STANDARD SURFACE SURFACE 200 %

TRI(RUTILE), 4(110) 53.30A.

SPINEL. ... 8. 8.30A.

(NI,C.,F.)TIO3

SPINEL, ... 8. - 8.25A.

COMMERCIAL CAST GAMMA/GAMMA	GAMMA PRIME ALLOYS		- 20	1-691-600-10-20
0011	1.00hr CYCLES 200.00hr TEST 2.316mm THICK	200.00hr 1EST	2.316mm THICK	STATIC AIR

X-RAY DIFFRACTION DATA

SURFACE

SURFACE

1 hr

STANDARD SURFACE

(N1.Ce.Fe)T103

SPINEL. *0=8.25A.

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110) 53.30A.

FACE CENTERED CUBIC HATRIX

STANDARD SURFACE PROBABLE CROSS-SPALL SPINEL, se.8.10A. NIO SPINEL, se.8.25A. TRICRUTILE).4(110)>3.30A.

FACE CENTERED CUBIC HATRIX

47

ALLOYS
PRIME
GAMMA/GAMMA
L CAST
OMMERCIA
Ü

	IC AIR
	5 T A T
	1 H I C K
	2.171=
	TEST
	100.001
	1.00% CYCLES 100.00% TEST 2.171== THICK STATIC AIR
	1.00%
	1150.0
1 × 20 F	1 N - 7 1 3 C
z	-

X-RAY DIFFRACTION DATA

と と に に に に に に に に に に に に に に に に に に	SPALL
STANDARD SURFACE	COLLECTED SPALL
SPINEL, . B. B. IDA.	808
TRI(RUTILE), 4(110) 53.30A.	TRICRUTILE), d(1:10)53.3
6 7 8 0 3	
A & 0 3	

UNKNOWN LINES. d VALUES 3.40A. FACE CENTERED CUBIC HATRIX

14 00 I	COLLECTED SPALL	0 - 2	TRICRUTILE), d(110) 53.30A.	SPINEL . B. B. B.A.	SP:NEL
	D SURFACE	SPINEL B. B. 10A.	•	TRI(RUTILE),4(110)53.30A.	
. 4 001	STANDARD	SPINEL.	A 1 . 0 .	TRICRUT	

FACE CENTERED CUBIC MATRIX

C . . 0 3

٥	
n	
•	•
D	m
	•
-	z
E	_

.	1150°C 1.00hr CYCLES 100.00hr TEST 2.321mm THICK	. 321ss THICK
	X-RAY DIFFRACTION DATA	
7 A C. F.		
O PT.	COLLECTED SPALL	
TINET. SO COOK.	SPIMEL, sp. 8.30A. Tricrutile, 4(1)0)53.30A.	
RICRUTILE), 4(110) 53.30A. RI, C., F. 1102	Crgos (Ri.Co.Fo) tios	
II (M. M.) O. TYPE 2	SECENT A VALUE OF SECENT A VALUE OF SECENT A VALUE OF SECENT OF SECUT O	

2.91A.

ALLOTS
PRIME
HA/GAMHA
ST GAM
CIAL CA
CONNER

	1150°C 1.00hr CYCLES 100.00hr TEST 2.294mm THICK STATIC AIR	X-RAY DIFFRACTION DATA	SPALL		
38 4 60 L Z	1 N - 7 3 B		ia () 4 ia (a) 7 ia (a)	i i	

			V O	V 0
			8 . 8 3	5 3 . 3
			25(011)9	4 (.110)
	FACE			•
	SUS		116)	1116)
	DARD	£ 0	TRICRUTILE)	⊃
•	STAND	, s	T R I	TRICR
	S			

Cr. 03 TRI (RUTILE), d(110) 53.30A.

COLLECTED SPALL

FACE CENTERED CUBIC MATRIX

•		
CHANDARD	SURFACE	
		0.7
) - E	4	SPINEL.
SPINEL		1
.0.13		
	. WOR . WO	TRICRUTI
 NICH. H.O	10, TYPE 1	
TOTAL ST. 12.	F. 110.	

LE), 4(110)53.30A.

.) TIO3

. 6 - 8 . 3 0 A . 0, TYPE 1

SPALL

1150 C IN-738(JET SHAPES) X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED TRICRUTILED, 4(110)43.30A. STANDARD SURFACE SURFACE -

SPALL

FACE CENTERED CUBIC MATRIX

TRITRUTILED, 4(110) £3.30A. RICH. H.) O. TYPE, 2 SPINEL. .. -. - B. - BSA COLLECTED SPALL 1001 0 -z SPINEL. ...B. 25A. STANDARD SURFACE (MI, Co. Fo) TIOR 0 -

FACE CENTERED CUBIC MATRIX

TRICRUTILES, delins 58.80A.

COSAM IN-738-8.C.

1.00hr CYCLES 100.00hr TEST 1150 C

X-RAY DIFFRACTION DATA

TRI(RUTILE), 4 (110) 53.30A. SPINEL, ... B. 25A. COLLECTED SPALL C r 2 0 3 100 1 --SPALL TRICRUTILE), d(110) 53.30A. SPINEL, ag=8.25A. STANDARD SURFACE (NI.Co.FolTIOg C . . 0 3 SURFACE 100

NI BASE COMMERCIAL CAST	L CAST GAMMA/GAMMA PRIME ALLOYS	0 - 8 0 .	02-04-005-324-1
IN-738	1100°C 1.00hr CYCLES 200.0	200.00hr TEST 2.330mm THICK	STATIC AIR
	X-RAY DIFERACTION DATA		
. ∩ ∧ 	SPALL		
14 00 N	200 %		
STANDARD SURFACE	COLLECTED SPALL		
0 - 2	0-2		
SPINEL . B . B . B . B . B	SPINEL BO BO NOA.		
Crr.O. # 1			
(X Co. fo. 100	•		
	A . 8 0 s		
UNKNOWN LINES, 4 VALUES			
. < 000 00 . N	UNKNOHM LINES, 4 VALUES		
	. 400.5		

C . 2 0 3

200 hr

0 -z

N. BASE

1N-738

8-694-500-40-20	1100°C 1.00hr CYCLES 200.00hr TEST 2.326mm THICK STATIC AIR
	200.00hr TEST
1MA/GAMMA PRIME ALLOYS	1.00hr CYCLES
GAHHA/GAHHA	1100.0
COMMERCIAL CAST GAMMA	

NI BASE	COMMERCIAL	CAST	GAMAA/GAMMA	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS
1N-738			1100.0	1.00hr CYCLES 200.0
				X-RAY DIFFRACTION DATA
SURFACE			SPALL	
1 br STANDARD SURFACE	7 V V V V V V V V V V V V V V V V V V V		NO SIGNIFI	1 hr no significant spall observed
Cr203 TR1(RUTIL	Cr203 TRICRUTILE 3.4(110)53.30A.	•		

FACE CENTERED CUBIC MATRIX

FACE CENTERED CUBIC MATRIX

200 hr Collected Spall Nio	SPINEL, *0.88.25A. TRI(RUTILE), 4(110) 53.80A. NI(H, M*) 04, TYPE 1
SOD BE Standard Surface Mid	Creos Spinel,

FACE CENTERED CUBIC MATRIX

AIROB

COMMERCIAL CAST GAMMA/GAM!	GAHHA/GAHHA	GAMMA PRIME ALLOYS		- 20	
G	1100°C	1.00hr CYCLES 200.00hr TEST 2.271mm THICK	200.00br TEST	2.271mm THICK	STATIC AIR

DATA

COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00hr CYCLES 200	X-RAY DIFFRACTION D	SPALL 1 br NO SIGNIFICANT SPALL DBSERVED
COMMERCIAL	SHAPES)		RFACE 1 hr TANDARD SURFACE Creos TRICRUTILE), 4(110) 53.30A.
Z G A S E	IN-738 (JET SHAPES)		SURFACE 1 hr STANDARD SURFACE Creos TRICRUTILE),4(1)

SPINEL, ... B. B. 3.0 A. COLLECTED SPALL 100 0 -TRI (RUTILE) . 4 (110) 53.30A. NICH. Ne JO, TYPE 2 NICH. Me JO, TYPE 1 SPINEL, B. B. 25A. STANDARD SURFACE C . . 0 3 1001 0 -E

FACE CENTERED CUBIC HATRIX

FACE CENTERED CUBIC MATRIX

.4 002	14 00 <i>2</i>
STANDARD SURFACE	COLLECTED SPALL
SPINEL, P. B. BOA.	0 - 2
	SPINEL B. B. 30
	NICH. HOJO, TYPE
	NICH. H. DO, TYPE
TRICRUTILE), d(110)53.30A.	CNI.C.,F.JTIOR
NICK. M. DO. TYPE &	# O # L U

8 . 3 0 A . TYPE 1 TYPE 2

4-679-40-054-679-4	STATIC AIR
0 2 -	2.270mm THICK
	200.00hr 7EST
HA/GAHHA PRIME ALLOYS	1.00hr CYCLES 200.00hr TEST 2.270mm THICK STATIC AIR
H 6 A H	0.0011
COMMERCIAL CAS	A P F S)

NI BASE

X-RAY DIFFRACTION DATA	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
IN-738(JET STATES)	SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE),4(110)53.30A.

FACE CENTERED CUBIC MATRIX

.4 00.	COLLECTED SPALL	O - Z	SPINEL, B. 30A.	ZrOz		
r 4 00 1	-	SPINEL. B. B. BOA.	0-2	2 r 0 g	C 1 2 0 3	SPINEL B. 10A.

FACE CENTERED CUBIC MATRIX

200 br Probable cross-spall	0 - 12		NICE, NO DAY TYPE 1	NICE, SOLOS, TYPE P		
	MIANDAND VONTANTE	SPINEL B. 30A.	-	NICH, H. D. TYPE 2	80 81.0	(NI,C. F.) TIOS

N)
ı
Œ
7
9
1
*
6
0
ł
*
0
a
0

2.262.m. THICK

200.00hr TEST

ALLOYS	
PRIME	
GAMMA/GAMMA	
CAST	
COMMERCIAL	

1.00hr CYCLES 1100.0 IN-738(JET SHAPES) BASE _ Z

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED - I SPALL TRICRUTILE), d(110) 53.30A. STANDARD SURFACE SURFACE -

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110) 43.30A. SPINEL . . . B. 30A. COLLECTED SPALL 1001 0 -z TRICRUTILES, d(110) 53.30A. SPINEL STANDARD SURFACE 100 1

FACE CENTERED CUBIC MATRIX

SPINEL. ... B. B. 30A. NICH. H. 10.04 TYPE R NICH. H. D. TYPE 1 STANDARD SURFACE (NI.C.,F.)TIO3 200 % . 0 - K

PROBABLE CROSS-SPALL

200

0 -Z

IN-788(JET STAPES)	1100°C 1.00hr CYCLES 200.00hr TEST	2.274ee THICK STATIC AI
	X-RAY DIFFRACTION DATA	
SCRIACE		
STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED	
Cr _e g ₃ Tri(RUTILE),4(110)53.30A		
FACE CENTERED CUBIC MA'	XIELYI	
	600	
STANDARD SURFACE	COLLECTED SPALL	
SPINEL B. B. WOA.	0-2	
0-2	SPINEL,	
	MICH. Meyof TYPE 1	
MICH. H.) O. TYPE &		
77 (ATTENDED) 400.000	. 40	
FACE CENTERED CUBIC HATRIX	X &	
L & 00 N		
STANDARD SURFACE	PROBABLE CROSS-SPALL	
0.2	0-2	
SPIZEL . B. G. UDA.	STATES AND STATES	
NICH.Me.)O. TYPE 1	T .0 (. M . H) I	
NICH. NO. 1 YEE R	A MARK POCET TOTAL	
80 M		
CNI.CO.Fellog		

	BASE	CONHERCIAL CAST GAMM	SAHHA/GAHHA	JAMMA/GAMMA PRIME ALLOYS	-	D - 2 0	6-089-160-10-20
ž	-738(JET	IX-748 CRT STAPES)	1100 C	1.00hr CYCLES	200.00hr 1EST	1100°C 1.00hr CYCLES 200.00hr TEST 2.272mm THICK STATIC AIR	STATIC AIR

X-RAY DIFFRACTION DATA

	SPALL		
STANDARD SURFACE	NO SIGNIFICANT SPALL	SPALL	OBSERVED
# O # 1			
TRICRUTILE), 4(110) 43.30A.			
XINTER OF BOOK OF BOOK OF STREET			

100 1

MICH. Me 10, TYPE 2 SPINEL, NICH, Me 10, TYPE 1 COLLECTED SPALL 0 : TRICRUTILE), 4(110) 53.38A. NICH. He) O. TYPE 1 MICH, Me 1'0, TYPE 2 SPINEL. STANDARD SURFACE INI.C. Feltios - Z

FACE CENTERED CUBIC MATRIK

PROBABLE CROSS-SPALL MICH. Helo, TYPE 2 SPINEL. .. . B. B. 35A. MICH. Ne JO, TYPE 1 MICH. Me JO, TYPE 2 SPIMEL. ... B. B. 30A. NICH. Helo, TYPE 1 STANDARD SURFACE (NI.C.F.) TIOS C . . 0 3 200

FACE CENTERED CUBIC MATRIX

79

NI BASE COMMERCIAL HOT	KORKED GAMMA/GAMMA PRIME ALLUTS	
COSAH IN-738-8.C.	1100°C 1.00hr CYCLES 20p.00hr TEST	2.293mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA	
20 C	S + L L	
L #		
STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED	
80%10		
TRI(RUTILE), d(110)53.30A.		
FACE CENTERED CUBIC MATRIX		
STATE SUBSTACE	COLLECTED SPALL	
	0-1	
SPINEL B. C. S. A.	SPINEL, so so DAA.	
	KO M L	
TRI(RUTILE),4(110)53.30A.	TRI(RUTILE),4(110)53.30A. SPINEL, se.8.10A.	
FACE CENTERED CUBIC MATRIX		
000		
	COLLECTED SPALL	
0-2	0.2	
SPINEL, *B. 85A.	S . 8 . 0	
RO N L U	TRI(RUTILE), 4(110) SW. WOA.	
(NI.Co.Foltions	SPINEL,	
TR1(RUTILE), 6(110)53.30A.	Creos (NI.Co.Fe)TIOs	

m
ı
3
-
8
•
9
M
0
1
М
_
à
•

2.296ss THICK

COMMERCIAL HOT HORKED GAMMA/GAMMA PRIME ALLOYS

500,00hr TEST 1.00hr CYCLES 10000

COSAM IN-738-8.C.

RI BASE

X-RAY DIFFRACTION DATA

SPALL

STANDARD SURFACE SURFACE

NO SIGNIFICANT SPALL OBSERVED

TRICRUTILE), #(110) 53.30A. TRICRUTILED, 4 (110) 53.30A.

FACE CENTERED CUBIC MATRIX

STANDARD SURFACE 100 hr

TRICRUTILES, d (110) 53.30A. C . 2 0 3

.12 Cr -. 78 TI-1.74 0

NO SIGNIFICANT SPALL OBSERVED

1001

FACE CENTERED CUBIC MATRIX

200 11

TRI (RUTILE), 4 (110) 53.30A. STANDARD SURFACE

.12 Cr -. 78 Ti-1.74 0

TRICRUTILES, d (110) 53.30A. COLLECTED SPALL Crg03 0 -Z

200 hr

FACE CENTERED CUBIC MATRIX

STANDARD SURFACE 500 11

SPINEL. . . . B. 30A. C . . 0 3

TRICRUTILE), dillo) 43.30A. 0 -E

SPINEL. . . . B. 30A.

C . . O .

0 -z

COLLECTED SPALL

500.81

TRICRUTILE), 4(110)53.30A. NICH. M. 10. TYPE 1

2.316mm THICK

100.00hr TEST

N
0
-
1
z
-

CYCLES	
1.00%	,
1150°C	

X-RAY DIFFRACTION DATA

COLLECTED SPALL 1001 0 -z SPALL STANDARD SURFACE SURFACE 1001 --

TRICRUTILE), 4(110)53.30A. SPINEL, (MI.Co.Felllog Cr. 203

TRI(RUTILE), 4(110)53.30A.

C . . 0 3

NICH. N. D. O. TYPE 1 SPINEL . . B. B. MOA.

MICH. Me 10, TYPE 1

FACE CENTERED CUBIC HATRIX

85

SURFACE

0 - #

NI BASE

NI BASE

X-RAY DIFFRACTION DATA

TRI (RUTILE), 4 (1110) 53.30 A. NICH, He JO, TYPE 1 NICH.H.)O, TYPE 2 SPINEL, so *8.30A. COLLECTED SPALL 100 0 -Z SPALL TRICRUTILE), d(110) 43.30A. NICH.Me)O. TYPE 1 STANDARD SURFACE (N1, C. F.) T103 SURFACE 100 1

BASE	COMMERCIAL CAS	T GAMMA	/GAMMA PRIME ALLOYS			0 2 - 1	02-04-006-425-4
N.		1150°C	1.00hr CYCLES	100.00hr TEST 2.172== THICK	T 2.172==		STATIC AIR
			X-RAY DIFFRACTION DATA	N DATA			

FACE CENTERED CUBIC MATRIX

TRICRUTILES, d(110) 53.30A.

SPINEL. . B. 8.3DA. NI(W.M.) O. TYPE 1

TRI(RUTILE), 4(110)53.30A.

N I O

SPINEL: .. B-8.25A.

NICH. Me JO, TYPE 1

(NI.Co.Folting

COLLECTED SPALL

STANDARD SURFACE

SURFACE 100 br

1 N - 7 9

. z

0 -2

100 %

SPALL

N: BASE

1 M - 792

100.00%r TEST 2.20%mm THICK 1.00%r CYCLES 1150 C

X-RAY DIFFRACTION DATA

SPALL

100

STANDARD SURFACE

COLLECTED SPALL 0 .

SPINEL. ... 30A.

TRI (RUTILE), d(110) 53.30A. NICH. Helby TYPE 1 TRI (RUTILE), 4(110)53.30A.

MICH. H. JO. TYPE 1

SPINEL.

C r 2 0 3

0 -E

(N1.C..F.) T102

NI BASE COMMERCIAL CAST GAMMA/	AST GAHHA/GAMHA PRIME ALLOYS		- 2 0	02-04-000-450-5
1 N - 792	1150°C 1.00hr CYCLES	100.00hr TEST	T 2.280ss THICK	STATIC AIR
	X-RAY DIFFRACTION	N DATA		
SURFACE 100 br STANDARD SURFACE SPINEL, a ₀ =8.30A. NIO Creos (NI,Ce.Fe)TIOs TRICRUTILE),4(110) ≤3.30A. NI(W.Me)O ₄ TYPE 1	SPALL 100 hr COLLECTED SPALL N10 SPINEL, *0,*8.25A. TRI(RUTILE),4(110)53.30A. N1(M,M*)0, TYPE 1 Cr203		,	
FACE CENTERED CUBIC MATRIX				

SURFACE 100 1

0 - x

NI BASE

1M-792

-
O
_
`
•
I
I
<
-
ဖ
_
-
S
<
•
Ü
•
_
•
-
-
C
_
Œ
w
I
I
0
Ç

NI BASE

1.00hr CYCLES	
1150°C	

CTION DATA

# C	X-RAY DIFFRACTION
	u =
STANDARD SURFACE	COLLECTED SPALL
TRICRUTILE), 4(110) 53.30A.	Creon
C - 0 M	TRI (RUTILE), 4 (110) 53.30A.

FACE CENTERED CUBIC MATRIX

100 hr Collected Spall Mig	SPINEL. = 0 = 8.30A. N:(W.M.) 04 TYPE 1 TRI(RUTILE). 4(110) 53.30A.	(N - , C - , T -) T 1 D M
100 hr Standard Surface	C C C O W C C C C C C C C C C C C C C C	TRICRUTILE), #(110) £3.30A.

FACE CENTERED CUBIC MATRIX

NI BASE

X-RAY DIFFRACTION DATA

TRICRUTILE), #(110) 43.30A. NICH, Me) O. TYPE 1 COLLECTED SPALL 100 hr 0 -z SPALL TRICRUTILE), d (110) 53.30A. NICH.Me)O4 TYPE 1 SPINEL. . . . 8.25A. STANDARD SURFACE SURFACE 100 1 N.1.0

FACE CENTERED CUBIC MATRIX

SPINEL.

(NI, C. F.) TIO3

SPINEL, . . . 8.10A. (N1, C. F.) T103

TRI (RUTILE), 4 (110) 53.30A.

(MI,Colfelling

TRICRUTILE), d(110) 53.30A.

MICH. HeJO, TYPE 1 SPINEL.

(NI,Co.fo)TIOs

C r 2 0 3

SPINEL.

SURFACE . 4 001

N: BASE

NICH, Helo, TYPE 1

FACE CENTERED CUBIC HATRIX

I BASE COMMERCIAL CA	COMMERCIAL CAST GAMMA/GAMMA PRIME	ME ALLOYS				0 - 2 0	02-04-007-310-2	
N - 782	1100,011	1.00hr CYCLES	200.00hr TEST	TEST	2.302mm THICK	TH I CK	STATIC AIR	
	* * * * * * * * * * * * * * * * * * *	X-RAY DIFFRACTION DATA	A - A - A -					
SURFACE								
	COLLECTED SPALL	ن د						
SPINEL, and BODA.	NICE.H. D.	TYPE 1						
TRI(RUTILE), 4(110)53.30A.	SPINEL, .0 +8.25A.	25A.						
NICH, Me) O, TYPE 1	TRICRUTILE), d(110) 53.30A.	(110)53.30A.						
C - R O W O W C - N C -	UNKNOHN LINES.	. 4 VALUES						
	2.73A.							
FACE CENTERED CUBIC HATRIX	. 69. A							

	CAST GAMMA/GAMMA PRIME ALLOYS
i :	
IN-792	1100°C 1.00% CYCLES 200.00% TEST 2.306. THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURTACE	SPALL
200 %	14 00N
STANDARD SURFACE.	COLLECTED SPALL
0.3	0-2
SPINEL, . B. 30A.	SPINEL
TRI (RUTILE), 4 (110) 53.30 K.	NICH, Helo, TYPE 1
SPINEL	TRI(RUTILE), 4(110):53.30A.
	NICE, ISO, TYPE &
CMI, Ce, Faltida	C a C a
FACE CENTERED CUBIC MATRIX	URKNOHN LINES. & VALUES
	. 4
	2.76A.

X - GASE	COMMERCIAL CAST GAMMA	GAMMA/GAMMA	/GAMMA PRIME ALLOYS		0 2 -	02-04-006-411-6
1 2 - 7 9 2		0.0011	1.00hr CYCLES	200.00hr TEST	2.316mm TH3CK	STATIC AIR
			X-RAY DIFFRACTION	N DATA		
SURFACE		SPALL				
200 11		200 hr				
STANDARD SURFACE	CE	COLLECTED SPALL	SPALL			
0 - 2		O - Z				
SPINEL, . B. 8.25A.	25A.	SPINEL.	INEL, so B. 30 A.			
(NI.C.F.)TIO	#	N C E . H O L N	(H, Ho)O4 TYPE 1			
6 - 0 3	•	TRICRUTIL	1 (RUTILE), 4 (110) 53.30A.			
TRICRUTILE), d(110) 53.30A.	(110)53.30A.	C r 2 0 3				
H O B						
FACE CENTERED CUBIC	CUBIC HATRIX					

COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00hr CYCLES 100.00hr TEST 2.318mm THICK STATIC AIR	X-RAY DIFFRACTION DATA	SPALL 100 hr 100 hr TANDARD SURFACE N10 SPINEL, e ₀ =8.30A. TRI(RUTILE), d(110) £3.30A. TRI(RUTILE), d(110) £3.30A. TRI(RUTILE), d(110) £3.30A. Creos (N1,Ce,Fe)TIOs Creos	CENTERED CUBIC MATRIX UNKNOWN LINES. d VALUES 4.67A. 2.68A.	
N : 89 A S EF	1 N - 7 9 2		SURFACE 100 hr STANDARD SURFACE N10 SPINEL, ep=8.30 Cr203 TRICRUTILE), e(1)	FACE CENTERED (

STATIC AIR

2.308== TH1CK

NI BASE

1N-792

1100 C

200.00hr TEST 1.00hr CYCLES

X-RAY DIFFRACTION DATA

TRI (RUTILE), 4(110) 53.30A. SPINEL. .. B. B. 25A. SPINEL. MBA. COLLECTED SPALL -. 0 . 3 SPALL TRI (RUTILE) . 4 (110) 53.30A. TRICRUTILE), 4 (110) > 3.30 A. STANDARD SURFACE SURFACE -

FACE CENTERED CUBIC MATRIX

SPINEL. COLLECTED SPALL 100 . . STANDARD SURFACE 100

TRICRUTILE), 4(110) 43.38A. TRICRUTILE), 4-(118) 53.30A. SPINEL. SPINEL. 30A.

TRICRUTILE), 4(1:10) 43.30A

NICH. He JO. TYPE 1

FACE CENTERED CUBIC MATRIX

SPINEL. STANDARD SURFACE 200 1

TR1(RUT1LE), 4(118)53.38A.

(N1.C..F.) T103

COLLECTED SPALL

TRICRUTILE), 4(1101)3.30A SPINEL. SSA.

RICH. He SO, TYPE 1

FACE CENTERED CUBIC NATRIX

125

	SOUTH TEST 2.312mm THICK	STATIC AIR
1N-792		
	X-RAY DIFFRACTION DATA	
2 7 7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	SPALL	
L. #		
STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED	
M C N L U		
TRICRUTILE), d(110) 53.30A.		
TRICRUTILE), 4(110)53.30A.		
FACE CENTERED CUBIC HATRIX		
STANDARD SURFACE	COLLECTED SPALL	
	0-2	
SPINEL,OA.	SPINEL,	
TRICRUTILE), #(110) £3.30A.	TRICRUTILE), 4(110)53.30A.	
SPINEL, ag #8.25A.		
n 0 a 1 4		
FACE CENTERED CUBIC MATRIX		
	COLLECTED SPALL	
	0-2	
SPINEL, 8.25A.	SPINEL, so 25A.	
NICH, M. D. TYPE 1	ICH, Me 104 TYPE	
80 % 1.0		
TRICRUTILE), 4(110)53.30A.		

W ≪ M	COMMERCIAL CAST GAHMA/GA	CAST	GAMMA/GAMMA	PRIME ALLOYS					02-04-031-328-3	
			. 1 50 .	1.00hr CYCLES	100.00hr TEST	T E S T	2.310. THICK	1 H 1 C K	STATIC AIR(SMP)	۵
				X-RAY DIFFRACTION	A T A O M C	•				
CRFACE - DO Pr			SPALL 100 hr							
	1 C E		COLLECTED	SPALL						
. O & L J			•	. 40 E . 80 4 0 e						
SPINEL, *0 *8.30A. TRI(RUTILE), 4(110) £3.30A.	.30A. d(110) 53.3 0A		TRICRUTIL	TRICRUTILE), 4(110)53.						
			SPINEL,	L						
	LINES, 4 VALUES									
2.91A.										
FACE CENTERED CUBIC MATRIX	D CUBIC MATE	×								

w
I
_
Œ
۰
_
•
ĸ
I
•
O
-
•
I
E
<
ø

S
•
ပ
_
ف
⋖
_
Ü
œ
ш
E
-
Σ
0
ũ

(3) (3) (3) (4)	1100°C	1.00hr CYCLES 200.001
		X-RAY DIFFRACTION DATA
SURFACE 200 hr STANDARD SURFACE NIO SPINEL, eg = B.30A. Cr ₂ O ₃ TRI(RUTILE), d(110) ≤ 3.30A.	SPALL 200 hr COLLECTED SPALL NIO SPINEL. "6"8.30A. Cr203 TRICRUTILE).4(110 SPINEL. "6"8.05A.	ALL 00 hr 01-LECTED SPALL N10 SPINEL, ************************************

FACE CENTERED CUBIC MATRIX

HAR-H-200

1150°C

X-RAY DIFFRACTION DATA

TRICRUTILE), d(110) 53.30A. NICH.H.)O, TYPE 1 SPINEL, 40 - B. 25A. COLLECTED SPALL 101 SPALL TRI(RUTILE), d(110153.30A. NICH, Me JO, TYPE I SPINEL. SPINEL, BO"8.10A. STANDARD SURFACE SURFACE 4.5

FACE CENTERED CUBIC MATRIX

TRI (RUTILE), 4 (110) \$3.30 A. NICH. He JO. TYPE 1 SPINEL, so B. 25A. COLLECTED SPALL 100 1 TRI (RUTILE), d(110) 53.30A. MICH.Me.DO, TYPE 1 SPINEL, ... B. B. 25A. STANDARD SURFACE 100 %

SPINEL. . . . B. 10A.

FACE CENTERED CUBIC MATRIX

133

MAR-M-200

BASE

X-RAY DIFFRACTION DATA

TRICRUTILE), d(E10) \$3.30A. NICH, He JO. TYPE 1 SPINEL, se B.25A. COLLECTED SPALL 45 0 --SPALL SPINEL. .. B. 10A. NICH. H.) O. TYPE 1 SPINEL, STANDARD SURFACE SURFACE --

FACE CENTERED CUBIC MATRIX

TRI (RUTILE), 4 (118) 53.30A.

NICH. Helo, TYPE 1 STANDARD SURFACE 100

SPINEL.

TRICRUTILE), d(110) £3.30 A.

SPINEL, ABRB.25A.

COLLECTED SPALL 100 hr

NICH. Me JO, TYPE 1 . O. H

TRICRUTILE), 4(110) 43.30A. SPINEL. ... B. B. 25A.

FACE CENTERED CUBIC MATRIX

HAR-H-208

AMMA/6AMP	
CAST 6	
COMMERCIAL	
BASE	

X-RAY DIFFRACTION DATA

SPALL 100 hr	COLLECTED SPALL Nto	SPINEL B. B. 25A.	TRICRUTILE), a(110) 53.30 A	
SURFACE 100 bt	STANDARD SURFACE	2	SPINEL, e. 8.25A. TRI(RUT:LE),4(110)53.30A.	

×
-
₹ E
0
6
<u>ت</u>
E D
E
×
CE
ACE

. U		200
A. 1 10) 54. WDA.	L# 00·N	
A. 10) 5 W. WOA.	STANDARD SURFACE	COLLECTED SPACE
- W O E - E 5 C	6.3	0-2
. 43.30A.	. VO	_
43.30A.		SPINEL B. B. 25A.
	TRI(RUTILE), 4(110) 53.30A.	TRICRUTILE), 4(110)53.30A.

HAR-R-200

BASE

-z

100 SURFACE

200 hr

0 -z

UNKNOWN LINES. & VALUES

2.05A.

MAR-H-200+Hf

X-RAY DIFFRACTION DATA

TRI (RUTILE), 4(110) 53.30A. SPINEL, BORB.25A. NICH. He JO, TYPE 1 COLLECTED SPALL 101 0 -z SPALL SPINEL: SPINEL: NICH. H.)O. TYPE 1 STANDARD SURFACE SURFACE 101 0 -z

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110) 53.30A.

H f O R

TRICRUTILE: 4 (1110) 53.30 A. NICH. Ne JO, TYPE 3 SPINEL. COLLECTED SPALL 100 0 -z SPINEL. . . . B. 25A. NICH.MeJO, TYPE 1 STANDARD SURFACE 100 0 -z

FACE CENTERED CUBIC MATRIX

HION

NI BASE

1.00hr CYCLES 1150 C MAR-M-200+Hf

X-RAY DIFFRACTION DATA

SPALL

TRICRUTILE), 4(110)53.30A. NICH. H. 10. TYPE 1 SPINEL, ...B. 25A. COLLECTED SPALL 4 10 4 HIOR 0 - x TRICRUTILE), d (110) 43.30A. SPINEL. SPINEL, NICH. Me.) O. TYPE 1 STANDARD SURFACE SURFACE 10 1 -0

FACE CENTERED CUBIC MATRIX

TRI (RUTILE) . 4 (110) 53.30 A. MICH.Me.JO. TYPE 1 SPINEL, ... B. 8.25A. COLLECTED SPALL 100 % 0 -z TRICRUTILE), 4(110) 43.30A. SPINEL. ... B. B. 10A. SPINEL, BB-8-25A. NICH, Me JO, TYPE 1 STANDARD SURFACE H 1 0 & 100 1 0 -z

• BASE	COMMERCIAL CAST	GAMMA/GAMMA PRIME ALLOYS
DS-HAR-M-200+H	. I.	1150°C 1.00hr CYCLES 100.00hr TEST 2.284mm TH1CK STATIC AIR
		K-RAY DIFFRACTION DATA
SURFACE 45 MT NION NICH,M.) O. TYP SPINEL. BO. 8.1 TRICRUTILE), 4. STANDARD SURFACE NICH,M.) O. TYP STANDARD SURFACE NICH,M.) O. TYP STANDARD SURFACE TRICRUTILE.	TANDARD SURFACE TANDARD SURFACE NIO NICH.M. O. TYPE 1 SPINEL. * O. * B. 10A. SPINEL. * O. * B. 25A. TRICRUTILE), 4(110) & 3.30A. HOO TANDARD SURFACE NICH.M. M. O. * TYPE 1 NICH.M. O. * TYPE 1	# 5 br COLLECTED SPALL MICH.Ne.) 04 TYPE 1 SPINEL. = -8 -8 -8 5 A . TRICRUTILE) . 4 (110) 43 .30 A . H
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CENTERED CUBIC MATRIX	a o c

STATIC AIR

2.302 .. THICK

100.00%r TEST

R. BASE

1.00hr CYCLES 1150°C

X-RAY DIFFRACTION DATA

TRICRUTILE), detito) 53.30A. NICH, M. D. TYPE 1 SPINEL. . . . 8.25A. COLLECTED SPALL . . . 0 ~ SPALL TRI (RUTILE), d(110) 53.30A. NICH.M.)O. TYPE 1 SPINEL. SPINEL, . . . B. 25 A. STANDARD SURFACE DS-HAR-H-200+Hf SURFACE 101 0 -z

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110) 43.30A. NICH, Ne JO, TYPE 1 SPINEL . . B. 25A. COLLECTED SPALL 1001 0 -Z TRI(RUTILE), 4(110) 53.30A. SPINEL, . . B. 25A. NICH. N. O. O. TYPE 1 STANDARD SURFACE 100 hr 0 -z

-z

02-04-000-381-3	THICK STATIC AIR			
GAHHA/GAHHA PRIME ALLOYS	1100°C 1.00hr CYCLES 200.00hr TEST 2.322mm T	X-RAY DIFFRACTION DATA	SPALL 100 hr COLLECTED SPALL NIO NICH, He) 0, TYPE 1 SPINEL, age 8.25A. TRICRUTILE), 4(110) 43.30A.	COLLECTED SPALL NIO NION NI(H.M.) O, TYPE 1 SPINEL, ag=8.25A. TRI(RUTILE), d(110) 53.30A. HTOZ UNKNOWN LINES, d VALUES 2.05%.
N: BASE COMMERCIAL CAST	œ.		SURFACE 100 br STANDARD SURFACE RIO SPINEL, BOBSWOA.	STANDARD SURFACE NIO NI(H, H.) O, TYPE 1 SPINEL: B B B B A SPINEL: B B B B B A TRICRUTILE), 4(110) 53.30A. FACE CENTERED CUBIC MATRIX

STATIC AIR

200.00hr TEST 2.268mm THICK

N: BASE

1100°C 1.00hr CYCLES

X-RAY DIFFRACTION DATA

H f O g

200 hr Collected Spall Nio Nich.m.) 0, TYPE 1

SPINEL, *0.8.25A. Tricrutile), 4(110) 53.30A.

H T O &

FACE CENTERED CUBIC HATRIX

155

TRICRUTILE), d(110) 53.30A.

SPINEL, .0 = 8.10 A. SPINEL, .0 = 8.25 A.

NICH. Me JO, TYPE 1

STANDARD SURFACE

0

200 %

DS-MAR-M-200+Hf

NI BASE

⋖
O
<
I
Ī
₹
O
-
S
⋖
U
_
4
⋖
-
⋖
-
C 1 A
ERCIA
HERCIA
HHERCIA
OHMERCIA
HHERCIA
OHMERCIA
OHMERCIA

	⋖ `
	-
	<
	0
	-
	-
	Z
	0
	-
	-
	ပ
	<
	Œ
	-
	4
	_
	۵
	>
	<
	Œ
	-
	×
•	
•	
,	

SPALL 100 br	COLLECTED SPACE	AUGUST OF TARES	TRI(RUTILE), 4(110) 43.30A.	a, 0 1
SURFACE	100 hr Standard Surface		SPINEL, *6=8.10A. TRI(RUTILE),4(110)53.30A.	CAL, Co. Febtios

	COLLECTED SPALL
J 8 . 25 A .	Z-(X-20)C4 - Tr .
NICE, SO. O. TYPE 1	TRICRUTILE), 4(1,10) 53.30A.
SPINEL, ************************************	

₩ 90 	COMMERCIAL CAST GAHMA/	GAHHA/GAHHA	GAMMA PRIME ALLOYS				0 2 - 0	02-04-010-310-5
DS-MAR-M-200+Hf		1100.0	1.00hr CYCLES	200.00hr TEST	TEST	2.324mm THICK	1 H I C K	STATIC AIR
			X-RAY DIFFRACTION	ON DATA				
SURFACE 200 hr STANDARD SURFACE NICH.Ne.)O _b TYPE 1 SPINEL. a ₀ =8.25A. TRICRUTILE), 4(110) 53.30A.	CE 10A. 25A. (110) 53.30A.	SPALL 200 hr COLEECTED SPALL NIO NION HO OF TYPE 1 SPINEL 0 = 8.25A - TRICRUTILE) 4(1)0	CTED SPALL .M.) O. TYPE.1 EL. m. 8.25Å. RUTILE), d(110) 53.30Å.					
FACE CENTERED	FACE CENTERED CUBIC MATRIX							

100

SURFACE

BASE

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED 1100.0 SPALL TRICRUTILE), d(110) 43.30A. STANDARD SURFACE HAR-H-211 C r 2 0 3 AILOS SURFACE -

FACE CENTERED CUBIC HATRIX

TRICRUTILE), d(110) 43.30A. NICH. H. D. TYPE 1 SPINEL, . . . B. 25A. SPINEL. COLLECTED.SPALL 1001 0 -Z TRICRUTILE), 4(110)53.30A. SPINEL, *6.8.10A. STANDARD SURFACE AIROS 100 1

Cr. 203 FACE CENTERED CUBIC MATRIX

SPINEL, . . . B. 25A. NICH. Me)O, TYPE 1 COLLECTED SPALL 200 1 0 -z TRICRUTILE), 4(110) 53.30A. SPINEL, ... B. 10A. STANDARD SURFACE A 1 2 0 3 208 67

(N1.C.F.) TIO3

FACE CENTERED CUBIC HATRIX

167

	COMMERCIAL CA	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	PRIME ALLOYS		0 0	02-04-011-479-1
_		1100.0	1.00hr CYCLES	200.00hr 1EST	7 2.258ss THICK	STATIC AIR
			X-RAY DIFFRACTION DATA	N DATA		
SURFACE		SPALL				
I hr Standard surface	· ·	NO SIGNIFIC	1 hr no significant spall observed	. E D		
SPINEL,B. 25A.	₽5 A .					

MAR-M-211

NI BASE

FACE CENTERED CUBIC MATRIX

CNI.Ce.Felliou Spinel. sg 8.15A.

AIROS

Cr₂03 Tri(RUTILE),4(110)£3.30A.

14 001	COLLECTED SPALL	0 - 2	SPINEL, age8.30A.	2002	6,803	TRI(RUTILE), 4(110) \$3.30A.	200 11	COLLECTED SPALL	0-2	SPINEL, BO 8 25A.	TRICRUTILE), 4(110)53.30A.	
	STANDARD SURFACE	SPINEL. B. B. 10A.		TRICRUTILE), d(110) 53.30A.		FACE CENTERED CUBIC MATRIX		STANDARD SURFACE	NO 1 20 1 10 10 10 10 10 10 10 10 10 10 10 10		- G	TRI (RUTILE), 4(110)53.30A.

H A R - H - 2 4 6

NI BASE

SURFACE

100 1

SPALL

TRICRUTILE), 4(11.0) 53.30A. SPINEL. . . . 8.05A. SPINEL, COLLECTED SPALL 0 -2 TRI (RUTILE) . 4 (1110) 53.30 A. SPINEL. . . . 8.25A. STANDARD SURFACE C . 2 0 3 AIROB 100 hr . 0 2

STATIC AIR

1.00hr CYCLES 200.00hr TEST. 2.249mm THICK 1100 C

X-RAY DIFFRACTION DATA

M A R - M - 2 4 6

NI BASE

SPALL

SURFACE 200 %

COLLECTED SPALL 200 %

SPINEL. . . . B. 30A.

SPINEL, *0 *8.10A. STANDARD SURFACE

0 -2

TRICRUTILE), 4(110) 53.30A.

TRICRUTILE), 4(110)53.30A.

C r 2 0 3

FACE CENTERED CUBIC MATRIX

173

STATIC AIR

2.300 .. THICK

100.00hr TEST

N. BASE

1.00hr CYCLES 1150 C

X-RAY DIFFRACTION DATA COSAM MAR-M-247-9.76C+

NO SIGNIFICANT SPALL OBSERVED

_

TRI (RUTILE), d(1,10) 53.30A. SPINEL. ...B. 20A. NICH, He JO, TYPE 1 STANDARD SURFACE

SURFACE

Crg03 H f 0 2 FACE CENTERED CUBIC MATRIX

SPINEL. STANDARD SURFACE 100 %

TRICRUTILE) . 4 4110) > 3 . 30 A . SPINEL . . . B. 25A.

TRICRUTILE), d(110)>3.30A.

HOPH

SPINEL. 10A. SPINEL. ...B.25A.

COLLECTED SPALL

0 -z

100

C r 2 0 3 # 0 F H AIROR FACE CENTERED CUBIC MATRIX

175

0 -z

EXPERIMENTAL C	CAST GAMMA/GAMMA PRIME ALLOYS	08-656-1
SAM MAR-H-247-9	1150°C 1.00hr CYCLES 100.00hr TEST 2.294mm THICK STATIC	62 4 0
	X-RAY DIFFRACTION DATA	
SURFACE 1 hr Standard Surface Tricrutile), d(110)53.30A. Hfo _e	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED	
FAC'E CENTERED CUBIC MATRIX		
STANDARD SURFACE SPINEL, 40 = 8.10A. A 203 TRICRUTILE),4(110)53.30A. Hf02	COLLECTED SPALL NIO SPINEL, BO-8.25A. TRI(RUTILE), 4(110) 43.30A.	

BASE	COMMERCIAL CAST GAMMA/	CAST	GAHHA/GAHHA	A/GAMMA PRIME ALLOYS				0 - 2 0	02-04-044-020-5
H-247 (JET SHAPES)	HAPESI		1150 C	150°C 1.00hr CYCLES 100.00hr TEST 2.292mm THICK	100.00hr TE	51 2.	. 282 mm T+		STATIC AIR

MAR-H-247(JET SHAPES)	1150°C 1.00hr CYCLES 100.00
	X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos Tricrutile), 4(110) 53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED

FACE CENTERED CUBIC MATRIX
100 hr
STANDARD SURFACE COLLECT
NIO

TRICRUTILE), 4(110) 53.30A. SPINEL. . . . B. 10A. (N1.C.F.) T103 COLLECTED SPALL 0 - x CrgO3 Spinel, eg = 8.10 A. (NI.C.,F.) TIO3 # 0 L H 0

100

SURFACE -

M- BASE

N BASE

X-RAY DIFFRACTION DATA

SPALL

NO SIGNIFICANT SPALL OBSERVED -TRICRUTILE), dilio) 53.30A. STANDARD SURFACE SURFACE

SPINEL, *0 * 8.25A. C r 2 0 3

HIOP

FACE CENTERED CUBIC MATRIX

100 STANDARD SURFACE 1 0.0 1

SPINEL, ...B. 20A. COLLECTED SPALL SPINEL. B. 10A.

TRICRUTILE), d(110) 43.30A. SPINEL, 0 - z

C r 2 0 3

HOPH

FACE CENTERED CUBIC MATRIX

TRICRUTILE), #(110) 53.30A. SPINEL . . . B. 30A. COLLECTED SPALL 200 % 0 -z TRICRUTILE), 4(110) 53.30A.

SPINEL.

AIROS

HON

0 -Z

STANDARD SURFACE

200 1

SPINEL. . . B. 10A.

FACE CENTERED CUBIC MATRIX

NICH. HeJO, TYPE 1

TRICRUTILE), 4(1)10)53.30A.

STATIC AIR

2.292ss THICK

200.00%r 1EST

EXPERIMENTAL CAST GAMMA/GAMMA PRIME ALLOYS

X-RAY DIFFRACTION DATA

1.80hr CYCLES

1100 C

COSAM MAR-M-247-9.76C.

N. BASE

NO SIGNIFICANT SPALL OBSERVED -SPALL TRI (RUTILE), 4 (110) 53.30A. STANDARD SURFACE SURFACE

FACE CENTERED CUBIC MATRIX

TRICRUTILE). 4(110)53.30A. NICH, Me 10, TYPE 1 SPINEL. . . B. B. 05A. SPINEL, ... 8.20A. COLLECTED SPALL 100 1 0 .. TRI (RUTILE), 4 (110) 43.30A. SPINEL. . . . B. 10A. STANDARD SURFACE AIROS 100 %

FACE CENTERED CUBIC MATRIX

TRICRUTILES, 4 (110) 53.30A. NICH. H.) O. TYPE 1 SPINEL . . B. B. 25A. COLLECTED SPALL 2000 . . TRICRUTILE), 4 (110) 53.30A. SPINEL, \$0 - 8.25A. SPINEL. STANDARD SURFACE M 0 0 M 0 - Z

FACE CENTERED CUBIC MATRIX

187

S T BASE	COMMERCIAL CAST GAMMA	GAMMA/GAMMA	I/GAMMA PRIME ALLOYS		0 2 -	02-04-052-657-3
MAR-H-247 (DURADYNE)	ADYNE	1100.0	1.00hr CYCLES	200:00%* TEST 2.324mm THICK	P. WP4ss THICK	STATIC AIR
			X-RAY DIFFRACTION DATA	ATAU NO		
# U # U # U # U # U		SPALL				

NO SIGNIFICANT SPALL OBSERVED TRICRUTILE), 4(110) 43.30A. SPINEL. .. B. B. 10A. STANDARD SURFACE C r 2 0 3 A ! 2 0 3 SURFACE -H 1 0 g

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110) 53.30A, SPINEL, .. B. 20A. NICH.MOJO, TYPE 1 COLLECTED SPALL 100 % 0 -1 TRI(RUTILE), 4(110)43.30A. NICH. Helo, TYPE 1 SPINEL, B. B. 10A. STANDARD SURFACE C . . 0 3 1.00

FACE CENTERED CUBIC MATRIX

TRICRUTILE . . 4 (110) 53.30A. NICH, Me JO, TYPE 1 SPINEL, ... B. B. 25A. SPINEL. COLLECTED SPALL 200 % 0 7 TRICRUTILE), 4(110)53.30A. SPINEL STANDARD SURFACE AIROS 200 11 H 0 0 R

٠	N: BASE EXPERIMENTAL	CAST GAMMA/GAMMA PRIME ALLOYS
	COSAM MAR-M-247-9.76C.	1000°C 1.00hr CYCLES 1000.00hr TEST 2.296mm TH1CK STATIC AIR
		X-RAY DIFFRACTION DATA
	SURFACE	SPALL
	STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED
	* O + I	
	FACE CENTERED CUBIC MATRIX	
	100 hr Standard surface	100 hr no significant spalt observed
	M O 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Mf0z TRI(RUTILE),4(116)53.30A. SPINEL, 0-8.25A.	
	FACE CENTERED CUBIC HATRIX	
193	200 hf Standard surface	200 hr no significant spall observed
	A L 2 0 3 SPINEL: B P. 10 A.	
	H 1 OR TILE), 4 (110) 53.30A. (N), Co. Fe) T 103	
	FACE CENTERED CUBIC HATRIX	
	STANDARD SURFACE	NO SIGNIFICANT SPALL OBGERVED
	# f O P	
	Creos Face Centered Cubic Hatrix	
	STANDARD SURFACE	1000 hr Collected SPAll Nio
	™ O & - ▼	

COSAH HAR-H-247-9.76C. NI BASE

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED SPALL TRI (RUTILE) . 4 (110) 53.30A. STANDARD SURFACE A 1 2 0 3 C. FOB SURFACE HIOR

NO SIGNIFICANT SPALL OBSERVED

> TRICRUTILES, 4 (110153.30A. TRI (RUTILE), d(110)>3.30A. SPINEL. ... B. 30A. STANDARD SURFACE AIRDS 100 %

FACE CENTERED CUBIC MATRIX

NO SIGNIFICANT SPALL OBSERVED 14 002 TRICRUTILE), 4(1)0)53.30A. STANDARD SURFACE A 1 2 0 3 200 11

FACE CENTERED CUBIC MATRIX

SPINEL, B. B. 15A.

195

SPINEL.

X-RAY DIFFRACTION DATA

NASA-TRH-VI-A

NI BASE

SPALL

TRICRUTILE), 4 (110) 53.30A. STANDARD SURFACE SURFACE

NO SIGNIFICANT SPALL OBSERVED

-

SPINEL. . . B. 15A.

FACE CENTERED CUBIC MATRIX

COLLECTED SPALL 10.0 1 0 = #

TRICRUTILE), d(110) 53.30A.

SPINEL, . . . 8. 20A.

FACE CENTERED CUBIC MATRIX

2 r 0 g H C O R

TRICRUTILE), d(110) 43.30A.

SPINEL. . . B. 10A.

STANDARD SURFACE

100 %

1.00hr CYCLES 1150 C

TRM-V1-A-HOD.

BASE

-z

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED -SPALL TRICRUTILE), d(110)53.30A. STANDARD SURFACE SURFACE --

SPINEL. . . . B. 10A.

H 0 P

COLLECTED SPALL 100 1 0 -z STANDARD SURFACE 1001

TRICRUTILES, 4(110) 53.30A. SPINEL, *0 = 8.10 A.

TRI (RUTILE), 4 (110) 43.30A.

SPINEL, sp = 8.10A. SPINEL.

A | 2 0 3

SPINEL.

BASE COMMERCIAL CAST	I GAMMA/GAMMA PRIME ALLOYS	02-04-050-658-6
- V 1 - A - M 0 D .	1100°C 1.00hr CYCLES 200.00hr TEST 2.326mm	THICK STATIC AIR
	X-RAY DIFFRACTION DATA	
IRFACE 1 br 17andard Surface Alega Tricrotile), d(110) 53.30A.	SPALL 1 Pr NQ SIGNIFICANT SPALL OBSERVED	
FACE CENTERED CUBIC HATRIX		
STANDARD SURFACE SPINEL, session. Tricrutile),4(110)53.30A. Algos	COLLECTED SPALL Algos SPINEL	
FACE CENTERED CUBIC HATRIX		
STANDARD SURFACE SPINEL, BERENIDA. TRICRUTILE), 4(110)53.30A. A1208	PROBABLE CROSS-SPALL NIO TRICRUTILE), d(110) 53. NOA. SPINEL, age 30A.	
FACE CENTERED CUBIC MATRIX		

N: BASE COMMERCIAL HOT	HORKED GAMMA/GAMMA PRIME ALLOYS	02-13-033-663-6
COSAM NIMONIC-115-15.C.	1150°C 1.00hr CYCLES 100.00hr TEST 2.249mm THICK STA	STATIC AIR
	X-RAY DIFFRACTION DATA	
SURFACE 1 hr STANDARD SURFACE Creos SPINEL, ag=8.20A. TRI(RUTILE), 4(110)53.30A. (NI, Co. Fo) Tiog	SPALL COLLECTED SPALL Creos (NI.Co.Fe)Tios SPINEL, eo.*8.20A. TRICRUTILE),4(110)53.30A.	
100 hr STANDARD SURFACE A g 0.3 SPINEL.	100 hr Probable cross-spall Mio Spinel, *** 8.25A.	

T BASE COMMERCIAL HOT	HORKED GAMMA/GAMMA PRIME ALLOYS
05AM NIMONIC-115-15.C.	1100°C 1.00hr CYCLES 200.00hr TEST 2.221mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE 1 Nr STANDARD SURFACE Cra0s TRI(RUTILE), 4(110) 53.30A.	SPALL 1 br 1 br NO SIGNIFICANT SPALL OBSERVED
SPINEL,	
STANDARD SURFACE SPINEL, so B.10A. Algos Tricrutile), 4(110) 53.30A.	COLLECTED SPALL N.O. SPINEL, BG B 25A. (NI,Ce,Fe)TID3 SPINEL, BG 8.10A.
M 4	Creos Tricrutile), 4(110) 43.30 A.
STANDARD SURFACE SPINEL, B. B. 10A. Algos TRI(RUTILE), 4(110) 53.30A. FACE CENTERED CUBIC MATRIX	COLLECTED SPALL NIO SPINEL, *** *** *** *** *** *** *** *** *** *
	CZI, Ce. Feltion

» NI BASE COMMERCIAL HOT WORKED	GAMMA/GAMMA PRIME ALLOYS 02-13-033-675	7
COSAM NIMONIC-115-15.C+	1000°C 1.00hr CYCLES 500.00hr TEST 2.225mm THICK STATIC A	# T 4
	X-RAY DIFFRACTION DATA	
M	SPALL	
STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED	
Creus TrickUtile), d(110)53.30A. Algos		
FACE CENTERED CUBIC MATRIX		
100 kr Standard Surface	100 hr no significant spall observed	
(N1, Ce, Fe) T103 TRICRUTILE), 4 (110) 53.30A. SPINEL, e. 80.25A.		
FACE CENTERED CUBIC MATRIX		
-4 002		
STANDARD SURFACE (N1, Ce, Fe) TIOR		
SPINEL, . B. B. 25A. TRI (RUTILE), 4(110) 43.30A.	SPINEL, Do D. D. P. P	
×	Creob Tricretile), 4(110)53.30A. Spinel, be 8.10A.	
MIANDAND SCATER		
SPINEL BEEN SOF	SPINEL,	
A LE CH SPINEL BERGOA. HOLVELTITY A CRUDY MOA.	7 2 0 3 A 1 C R C T 1 C	
	SPINEL	
FACE CENTERED CUBIC MATRIX		

BASE COMMERCIAL HOT	HORKED GAMMA/GAMMA PRIME ALLOYS	- 20	-13-033-675-5
SAM NIMONIC-115-15.C.	1000°C 1.00hr CYCLES 500.00hr TEST 2.233mm	THICK	STATIC AIR
	X-RAY DIFFRACTION DATA		
C. R. P. C. F.	SPALL		
STANDARD SURFACE	1 hr no significant spall observed		
Cre0s TRI(RUTILE), 4(110) 53.30A.			
FACE CENTERED CUBIC NATRIX			
100 br Standard Surface Yerrentiif) 44,118) 43,304.	100 br Mosignificant Spall Observed		
SPINEL			
N O N O N O N O N O N O N O N O N O N O			
FACE CENTERED CUBIC MATRIX			
4 9	L 4 00 N		
STANDARD SURFACE TRICRUTLE, 4(110)43.30A.	COLLECTED SPALL (N1,Co.Fo)TiOx		
	CODINCIE		
CNI, Co. Fe 1 T 1 Ou Spinkl, og 18. 25A.	CTROW NIO WAS TROUGHT OF TRUCK		
FACE CENTERED CUBIC MATRIX			
000000000000000000000000000000000000000			
STANDARD SURFACE	COLLECTED SPALL		
	SPINEL		
(K), (Co. Fo.) 7108	Crros (NI.Co.Fo)TiOs		
FACE CENTERED CUBIC MATRIX	TRI(RUTILE), 6 (110) 53.30A.		

2.50A.

MI BASE C	COMMERCIAL HOT WORKED GAMMA/GAMMA PRIME ALLOYS	- 20	02-13-006-100-5
RESE 41	1150°C 1.00%r CYCLES 100.00%r TEST 0.778mm THICK	B THICK	STATIC AIR
	X-RAT DIFFRACTION DATA		
SURFACE	SPALL		
001			
STANDARD SURFACE	COLLECTED SPALL		
0 - 1	OIN		
. 0 . 0	SPIZEL,		
) 	SPINEL		

FACE CENTERED CUBIC HATRIX

5-001-052-04-052-108-3	TEST 1.750mm THICK STATIC AIR				
PRIME ALLOYS	1.00hr CYCLES 100.00hr TEST 1.750mm THICK	X-RAY DIFFRACTION DATA			SPALL
COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	0.0811		SPALL	1001	COLLECTED SPALL
N BASE COM	20 ES		SURFACE	100	STANDARD SURFACE

TRICRUTILE), d(1110) 43.30A. TRICRUTILE), d(1110) 43.30A.

FACE CENTERED CUBIC MATRIX

. .

C C 2 0 M

- X	COMMERCIAL CAST	GARRA/GARRA PRIME ALLOYS
RENE-BOLJET SHAPES)	ES.)	1150°C 1.00hr CYCLES 100.00hr TEST 2.267mm THICK STATIC AIR
		X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos Tri(Rutile), 4(1)0)53.30A.	CE (130) 53.30A. CUBIC MATRIX	SPALL 1
STANDARD SURFACE SPINEL, ee B.25A. Creos TRICRUTILE), d(110) 53.30A. N10	CE 25A. (110)53.30A. PER	COLLECTED SPALL NIO SPINEL. 08 00.25A. NICH.NO.0, TYPE 2
FACE CENTERED CUBIC	CUBIC MATRIX	

NI BASE COMMERCIAL CAST	T GAMMA/GAMMA PRIME ALLOYS
RENE-BO(JET SHAPES)	-
	X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE),4(110)53.30A.	SPALL 1 tr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIG MATRIX	
STANDARD SURFACE NIO SPINEL, *** 8.25A. Cr. 203 TRI(RUTILE), 4(110) 53.30A.	COLLECTED SPALL NIO SPINEL
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE NIO SPINEL, BB 830A. Creos TRI(RUTILE), 4(110)53.30A.	COLLECTED SPALL N.10 SPINEL, ep eq. 30A. N.1(M.M.) o, TYPE 1 Creok (M., Ce.fe) to 8

	#			
GAMMA/GAMMA PRIME ALLOYS	1150°C 1.00hr CYCLES 100.00hr TEST 0.795mm THICK X-RAY DIFFRACTION DATA	SPALL 100 hr Collected Spall Nio	TRI(RUTILE), d(110)>3,30A. TRI(RUTILE), d(110) 43,30A. TRI(RUTILE), d(110) 43,30A.	UNKNOWN LINES, 4 VALUES 2.89A. 2.95A. 1.75A.
NI BASE COMMERCIAL CAST	RENE 120	SURFACE 100 hr Standard Surface Tricrutile),4(110)53.30A.	FACE CENTERED CUBIC MATRIX	

FACE CENTERED CUBIC MATRIX

STANDARD SURFACE

STANDARD SURFACE

N10

SPINEL, ag=8.25A.

SPINEL, ag=8.10A.

TRICRUTILE), d(110) 53.30A.

TRICRUTILE), d(110) 53.30A.

SPINEL, ag=8.30A.

Crg 03

Hf0a

200 %

SPALL

SURFACE

RENE 125

NI BASE

FACE CENTERED CUBIC MATRIX

239

22 M	1100°C 1.00hr CYCLES 200.00
	X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos Trichtie), 4(110) 53.30A. Hroe Trichtie), 4(110) 53.30A.	SPALL 1 N

			·	
COLLECTED SPALL NIO NIO SPINEL			COLLECTED SPALL N.O. SPINEL,	
100 hr Standard Surface Spinel, eg"8.10A. Tricrutile),4(110)53.30A.	A - W O B I - O C C C C C C C C C C C C C C C C C C	FACE CENTERED CUBIC MATRIX	STANDARD SURFACE SPINEL, 40=8.10A. TRICRUTILE),4(110)53.30A.	0-7

100 6

FACE CENTERED CUBIC MATRIX

FACE CENTERED CUBIC HATRIX

(N1, C. F.) TIOS

H 1 0 2 . .

TRICRUTILE), d(110) 43.30A.

SPINEL.

100 hr

COSAM SX-R-150-12.CO

NI BASE

NO SIGNIFICANT SPALL		100 hr probable cross-spall nio spinel, • p-8.25A.
SURFACE 1 hr STANDARD SURFACE SPINEL. *0 = 8.10A. A! 203 TRICRUTILE).4(110)53.30A.	FACE CENTERED CUBIC MATRIX	100 hr Standard Surface Algos Spinel, bo = 8.10A. Tri(Rutile), 4(110) £3.30A.

	SPALL		
200	COLLECTED	0 - 2	

COLLECTED SPALL 500 0 -z TRI(RUTILE), 4(110)>3.30A. SPINEL, 8.25A. SPINEL. STANDARD SURFACE 500 hr

FACE CENTERED CUBIC MATRIX

TRI (RUTILE), 4(110)>3.30A.

SPINEL.

STANDARD SURFACE

200 hr

TRICRUTILE), 4(110)>3.30A. SPINEL B. 10A.

FACE CENTERED CUBIC MATRIX

FACE CENTERED CUBIC MATRIX

٥
ı
7
ø
ED.
₩
-
m
_
C
0

STATIC AIR

	1 H I C K
	2.286
	TEST
ın ≽-	500.00%
PRIME ALLO	TCYCLES
COMMERCIAL HOT WORKED GAMMA/GAMMA PRIME ALLOYS	
MORKED G	
<u>-</u> 0 ₩	
COMMERCIAL	
& A 77	

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED 1.00hr CYCLES 10001 -SPALL TRI(RUTILE), 4(110) 43.30A. SPINEL, ... 8. 25A. SPINEL, COSAM SX-R-150-12.CO STANDARD SURFACE SURFACE **z**

NO SIGNIFICANT SPALL OBSERVED 100

> TRICRUTILES, d(FIB) 53.30A. SPINEL. . . B. B. 28A. STANDARD SURFACE A 1 & 0 3

FACE CENTERED CUBIC MATRIX

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110)>3.30A. NICH. He JO, TYPE 1 STANDARD SURFACE 200 %

TRI (RUTILE), 4(110)>3.30A.

NICH. He JO, TYPE'S

COLLECTED SPALL

0 -

200 %

SPINEL, *B = 8.10A.

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 6(110)>3.30A. NICH. He JO. TYPE 1 STANDARD SURFACE 500 hr

FACE CENTERED CUBIC MATRIX

TRICRUTILE), 4(110)>3.30A. SPINEL, ...B.10A. COLLECTED SPALL

500 hr

NICH. Melo, TYPE 1

RIBASE

0 -R

N BASE	COMMERCIAL CAST GAMMA/GAMMA	GAMMA PRIME ALLOYS			02-04-018-452-8
T A Z - B A	0.0511	1.00hr CYCLES 100.00hr TEST 2.322mm THICK	100.00%r TEST	2 322 . THIC	STATIC AIR

X-RAY DIFFRACTION DATA

TRICRUTILE), 4(110)>3.30A. NICH. M. 10, TYPE 1. SPINEL: .0 .8.25A. COLLECTED SPALL 100 1 0 -Z SPALL TRICRUTILE), 4(110)>3.30A. NICH.M. DO, TYPE 1 SPINEL, . . . B. 30A. STANDARD SURFACE SURFACE 100 1 0 -N

FACE CENTERED CUBIC MATRIX

260

N BASE	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	GAHMA/GAHMA I	PRINE ALLOYS			8-524-610-40-20
T A Z - 8 A		1150°C	1.00hr CYCLES	100.00hr 7EST	P. P. S.	K STATIC AIR
		r	X-RAY DIFFRACTION	A + A O		
SURFACE		SPALL				
1001		100				
STANDARD SURFACE) C E	COLLECTED SPALL	, ארר			
0 - 2		0 -				
TRICRUTILE), 4(110)>3.30A.	(110)>3.30A.	TRICRUTILE	TRICRUTILE), d(110)>3.30A.			
SPINEL. BB-25A.	25A.	NICH. H.)O. TYPE	TYPE 1			
N: (H.H.) O, TYPE	PE 1	SPINEL 8. 25A.	8.25A.			
FACE CENTERED	FACE CENTERED CUBIC MATRIX					

N: BASE

TA2-8A	1150°C 1.00hr CYCLES 100.00hr TEST 2.304mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE	1 - V & U
14 001	
STANDARD SURFACE	COLLECTED SPALL
SPINEL B. B. B. A.	0-2
TRI(RUTILE), 4(110)>3.30A.	TRI(RUTILE), 4(110)>3.30A.
0-2	SPINEL
	NICH. Me.) O. TYPE 1
FACE CENTERED CUBIC MATRIX	

N - 69 A S.E.	COMMERCIAL CAST GAMMA/		GAMMA PRIME ALLOYS				0 - 20	8-824-610-40-20
T A Z - 0 A		1.50°C	1.00hr CYCLES	100.00kr TEST	TEST	N.W. W.	1 H I C K	STATIC AIR
			X-RAY DIFFRACTION DATA	ON DATA				
SURFACE		SPALL						
		1001						
STANDARD SURFACE	FACE	COLLECTED SPALL	SPALL	:				
SPINEL		0 - 2						
0 7		TRICRUTIL	RUTILE) . 4(110) > 3 . 30 A .					
TRICRUTILES	TRICRUTILES, 4(1)0)>3.30A.	SPINEL8.10A.	1 G A .					
MICH. H.) O. TYPE 1	TYPE 1	NICH.Ne.D. TYPE :	TYPE 1					
	FACE CENTERED CUBIC HATRIX							

- Z	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	GAHHA/GAHHA	PRIME ALLOYS				0 - 2 0	02-04-018-428-6
TAZ-8A	·	1 1 50 C	1.00hr CYCLES	100.00hr 7EST		2.310. THICK	1 H I C K	STATIC AIR
			X-RAY DIFFRACTION DATA	M DATA	٠			
SURFACE		SPALL						
1001		1001						
STANDARD SURFACE	SURFACE	COLLECTED SPALL	PALL					
SPINEL.	SPINEL,							
0 - 2		TRICRUTILE	TRICRUTILE), 4 (110) > 3.30A.					
TRICRUTI	TRICRUTILE), d(110)>3.30A.	SPINEL	NEL8.10A.					
C.E. H N	NI(H,Me)O, TYPE 1	NO CH. H. O.	H.H.)O, TYPE 1					
FACE CEN	FACE CENTERED CUBIC MATRIX							

•	
NI BASE COMMERCIAL CAS	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS
TAZ-8A	1150°C 1.00hr CYCLES 100.00hr TEST 2.302mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE	SPALL
r # 00 r	- T 00 I
STANDARD SURFACE	COLLECTED SPALL
0-2	0-2
SPINEL	SPINEL,8.25A.
TRI (RUTILE), 4(110) >3.30A.	N (H, Me) O, TYPE 1
	TRICRUTILE), d(110) 53.30A.
FACE CENTERED CUBIC MATRIX	

•	
N: BASE COMMERCIAL CAST GAMMA/	1ST GAMMA/GAMMA PRIME ALLOYS 02-04-019-431-6
TAZ-8A	1150°C 1.00hr CYCLES 100.00hr TEST 2.296mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE	SPALL
- 4 OO -	L4 00 -
STANDARD SURFACE	COLLECTED SPALL
SPINEL,	0-2
TRI(RUTILE),4(110)>3.30A.	SPINEL,
0-2	MICH. Melo, TYPE B
	TRICAUTICE).40.W2'.011).121.
FACE CENTERED CUBIC MATRIX	

NI BASE COMMERCIAL CAST GAMM	IST GAMMA/GAMMA PRIME ALLOYS
[A Z - 8 A	1150°C 1.00hr CYCLES 100.00hr TEST 2.302mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE	SPALL
14 001	.4 00-
STANDARD SURFACE	COLLECTED SPALL
SPINEL,	0-1
0 - 3	TRI(RUTILE), d(110)>3.30A.
TRI(RUTILE), 4(110)>3.30A.	SPIREL,
SPINEL, so #8.30A.	NICH, Halo, TYPE 1
	NOJZEC

FACE CENTERED CUBIC HATRIX

9-2Eh-610-h0-20	2.302mm THICK STATIC AIR		
4MA/GAMMA PRIME ALLOYS	1150°C 1.00hr CYCLES 100.00hr TEST 2.3	X-RAY DIFFRACTION DATA	PALL 100 br COLLECTED SPALL N.O SPINEL. a. B. 30A. TRICRUTILE). 4(110)>3.30A. Gre 03
NI BASE COMMERCIAL CAST GAM	TAZ-8A		SURFACE 100 br STANDARD SURFACE SPINEL, ag = 8.10A. N.O TRI(RUTILE), d(1118) > 3.30A. TRISPINEL ag = 8.30A. TRISPINEL ag = 8.30A. Cr203

T A Z - 8 A

X-RAY DIFFRACTION DATA

SPALL		COLLECTED SPALL		0-2	TRI (RUTILE), 4 (110) 53.30A.		
SURFACE	L.4	STANDARD SURFACE	TRICRUTILE), 4(110) 53.30A.	SPINEL,	0-1	* O # - Y	.0

FACE CENTERED CUBIC NATRIX

.4 00-	14 001
STANDARD SURFACE	COLLECTED SPALL
SPINEL,	0-2
TRI (RUTILE), d(110)>3.30A.	SPINEL, 8.30A.
Airos	TRICRUTILE), 4(110)>
0:1	
SPINEL, . B. B. 25A.	

3.30A.

FACE CENTERED CUBIC MATRIX

C . . O . Z r 0 g

NI BASE

	-EC+-810-40-20
< n 1 1 1 1 1 1 1 1 1	1100°C 1.00hr CYCLES 200.00hr TEST 2.260mm THICK STATIC AIR
SURFACE 1 hr Standard surface	
TRI(RUTILE), 4(110)53.30A. Creos Algos	
FACE CENTERED CUBIC HATRIX	
100 br	.4 00 2
M O N - 4	COLLECTED SPALL N.O.
TRI(RUTILE), d(110) > W. MOA.	TRI(RUTILE), 4(110)53.30A.
× 0 ×	
FACE CENTERED CUBIC MATRIX	UNINEE'
STANDARD SURFACE SPINEL	
1 1 2	N-12 FIL. se se . Pus. A.
M O O O O O O O O O O O O O O O O O O O	
2102	

NI BASE

TAZ-BA

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED 4 . . SPALL TRICRUTILE), d(110) 53.30A. SPINEL, so B. 25A. STANDARD SURFACE AIROS C r 2 0 3 SURFACE -

FACE CENTERED CUBIC HATRIX

2 r 0 g

0 --

PROBABLE CROSS-SPALL SPINEL, . . . B. 30A. SPINEL. 100 0 -Z TRI (RUTILE), d(110)>3.30A. SPINEL, ag . B. 10A. STANDARD SURFACE 100 hr 2 r 0 g 0 -2

FACE CENTERED CUBIC MATRIX

C . . 0 3

AIROS

TRIFRUTILE), #(110)>3.30A. PROBABLE CROSS-SPALL SPINEL, RO.B. 35A. 200 hr TRICRUTILE), d(110) > 3.30 A. SPINEL . . . B. 10A. STANDARD SURFACE 200 AIROS 0 -z

FACE CENTERED CUBIC MATRIX

C r 2 0 3

2 r 0 g

TAZ-8A		
	1100°C 1.00hr CYCLES 200.00hr TEST 2.314mm THICK	STATIC
	X-RAY DIFFRACTION DATA	•
SURFACE		
- 4 -		
STANDARD SURFACE	S	
TRI (RUTILE), d(110) 58.30A.		
SPINEL		
80%10		
0-2		
A ! R O B		
FACE CENTERED CUBIC HATRIX		
STARBARD SURFACE	. (
	TREMPER CROSS-SPALL	
TRICRUTILES, 4 (110) > W. MOA.		
SPIREL . B. C. WOA.	· •	
TRI (RUTILE), 4(110) 53.30A.		
e e	(RUTILE),	
STANDAND SURFACE	. 4	
0-2	1	
SPINEL B. 10A.		
TRICRUTILE), 4(110) > 3.38A.		
C T R O B	_	

BASE

-Z

N - BASE

N. BASE

TREIR

	Mistrato 10 10 10 10 10 10 10 10 10 10 10 10 10		
	TEST		
	100.00hr TEST	ON DATA	
MMA/GAMMA PRIME ALLOYS	1.00hr CYCLES	X-RAY DIFFRACTION DATA	PALL -8.25A.
T GAHMA/GAHMA	1150°C		SPALL 1 hr COLLECTED SPALL N10 SPINEL. * 0 * 8.25A.
COMMERCIAL CAST GAP			TANDARD SURFACE TRICRUTILE).4(110)53.30A. SPINEL, *0.*8.10A. SPINEL, *0.*8.25A.
- X - X - X - X	E - I		SURFACE 1 br STANDARD SURFACE TRICRUTILE).4(110 SPINEL. *0 * 8.10A.

FACE CENTERED CUBIC MATRIX

C r 2 0 3

H 1 0 &

TRICRUTILE), 4(110)>3.30A. SPINEL, . . . 8.25A. SPINEL, *B . 8.1.0A. COLLECTED SPALL 100 hr 0 -Z TRICRUTILE), d(110) 53,30A. SPINEL. . . . B. 10A. STANDARD SURFACE A 1 & 0 3 100 % H COR

FACE CENTERED CUBIC MATRIX

•	
NI BASE COMMERCIAL CAST	ST GAMMA/GAMMA PRIME ALLOYS
£ 1 3 £ 1	1100°C 1.00hr CYCLES 200.00hr TEST 2.335mm TH1CK STATIC APP
	X-RAY DIFFRACTION DATA
SURFACE Roo by	1 1 4 a.v.
STANDARD SURFACE Spinel, * . * 8.10A.	COLLECTED SPALL
A1203 TRI(RUTILE), 4(110) 53.30A. Hf02	SPINEL, Belg. WOA. TRITRILED, 6(110) 5W. WOA. SPINEL, B. B. OUA.
FACE CENTERED CUBIC MATRIX	A1 R O B
	UNKNOWN LINES, 4 VALUES

NI BASE COMMERCIAL C	
£ - 3£ - 5	1100°C 1.00hr CYCLES 200.00hr TEST 2.339mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURTACE	SPALL
STANDARD SURFACE	NO SIGNIFICANT SPALL OBSERVED
C'ROB C'ROB TRICRUTILE).4(110)'53.30A.	
SPINEL. B.	
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE SPINEL: = 0 = 80.10A.	PALL
TRICRUTILE), #(110)53.30A. Hfo _e	SPINEL, 60 * 8.25A,
M G 0 - ✓	Z 0
FACE CENTERED CUBIC HATRIX	¥
STANDAD SURF	
	COLLECTED SPALL
TRI(RUTILE),4(110)53.30A. Hfor	8 . 1 0

. NI BASE

NI BASE COMMERCIAL CAST	ST GAMMA/GAMMA PRIME ALLOYS
£ - 12 E -	1 C A 1
	X-RAY DIFFRACTION DATA
M O 4 T & D S	
	NO SIGNIFICANT SPALL OBSERVED.
10 N L U	
FACE CENTERED CUBIC HATRIX	
.4	
STANDARD SURFACE	NO SIGNIFICANT SPALL DESERVED
SPIRE SECONDA.	
Z + O ×	
STREET OF STREET	
STANDARD SURFACE	NO SIGRITICANT SPALL DRAFF
MAINEL, POR 10A.	
TRICRUTILE), 4(110)58,30A.	
FACE CENTERED CUBIC MATRIX	
STANDARD SCREACE	NO SIGNIFICANT SPALL OBSERVED
SP1MEL, a = 80.10A.	
1 1 0 4	
FACE CENTERED CUBIC MATRIX	

	1150°C 1.00%r CYCLES 100.00%r TEST 2.805mm TM1CK
	X-RAY DIFFRACTION DATA
SUBFACE 1 br STANDARD SUBFACE Algos Wio TRI(RUTILE), 4(110) 53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
STANDARD SURFACE SPINEL, eg = 8.10A. Algos NICH.He) 04 TYPE 3 N20	COLLECTED SPALL NIO SPINEL, BBBORDA. NICH, NO. 14PE 1 SPINEL, BBBORDA.

		0 - 0 0 0 - 0 + 0 - + 0 - + 0 - + 0 -
1771	1100°C 1.00hr CYCLES 200.00hr TEST 2.	2.307mm THICK STATIC ALR
	X-RAY DIFFRACTION DATA	
SURTACE	SPALL	
STANDARD SURFACE Alroa	1 hr no significant spall observed	
FACE CENTERED CUBIC MATRIX		
	0000	
STANDARD SURFACE	SECOND SURFACE PHASE	
SPINEL,	0.2	
	SPINEL, A. B. SSA.	
NICH, Me JOy TYPE 1		
TRI(RUTILE),4(110)53.30A. Aleos	FACE CENTERED CUBIC MATRIX	
FACE CENTERED CUBIC MATRIX		
	1.4 0.0 N	
STANDARD SURFACE	PROBABLE CROSS-SPALL	
SPINEL, B. B. B. A.		
. H . H	TRICRUTILE), &(110) 53.30A.	
0-2		
A - 2 0 x		
TRICRUTILE), 4(110) 43.30A.		

U - 5 2 0

a.
<
I
I
₹
0
~
⋖
I
Ξ
<
6
_
Ω
ш
¥
Œ
0
Ξ
3
-
0
I
_
-4
<
_
C
Œ
I
E
5
Ų

1.00%r CYCLES

X-RAY DIFFRACTION DATA

SPALL	200 hr	COLLECTED SPALL	0 2	SPINEL, s. 8.30A.	NICK, Me DO TYPE &	80813	UNKNOHN LINES, & VALUES R. B.1A.
SURFACE	74 000	STANDARD SURFACE	SPINEL	0 - 2	Crgos	ALCE. HOOD TYPE N	FACE CENTERED CUBIC HAIRIX

COLLECTED SPALL 500 br 0 ~ Z

SPINEL, . . . 8.30A. C r 2 0 3

FACE CENTERED CUBIC HATRIX

C r 2 0 3

0 -

SPINEL, ... 85 . 35A. STANDARD SURFACE

0-7-0

	SACTIVE ALLONG THE ALLONGS
U-700 CAST(SHP-1)	1150°C 1.00hr CYCLES 100.00hr TEST 2.31408 THICK STATIC AIR
	X-RAY DIFFRACTION DATA
30 4 T 8 J 8	11488
STANDARD SURFACE Creos Tricrutile), 4(110)53.30A.	COLLECTED SPALL
. 4 00 1	
STANDARD SURFACE NIO	COLLECTED SPALL
SPINEL, B. 30A.	. VOM. 89 a . JUNILOS
A!203 SPINEL	(N) (Co. Fe) 110.
Creox	SPINEL . B. 8 . 10 A
(N1.Ce.Fe) TION	TRICRUTILE), 4(110)54.30A.
TRICRUTILEY, 4(110) SW. WDA.	

FACE CENTERED CUBIC HATRIX

COSAM U-700-17.0C.	IISO C 1.00hr CYCLES 100.00hr TEST 2.414mm THICK	STATIC AIR
	X - R A Y DIFFRACTION DATA	
SURFACE.	SPALL	
STANDARD SURFACE	COLLECTED SPALL	
	61,03	
TRI (RUTILE), #(118) 53.30A.	SPINEL,	
TRICRUTILE), 4(110)>3.30A.	TRICRUTILE), e(110) SB. BOA.	
	UNKNOWN LINES, & VALUES	
	. O. S.	
	. < 00	
STANDARD SURFACE	COLLECTED SPALL	
0-1	0 2	
SPINEL B. B. MON.	SPINEL	
*O * L U		
NICH. H.O. TYPE R		
SPIREL		

B A S E	COMMERCIAL		CAST GAMMA/GAMMA PR	PRIME ALLOYS			- A-		-
700 CAST(SHP-1)			1150°C	1.00hr CYCLES	100.00hr 7EST	2.306mm THICK	THICK	STATIC AL	
			×	X-RAY DIFFRACTION DATA	. DATA				
STANDARD SURFACE Creos TRICRUTILE), 4(110) SW. WOA. SPINEL, a.e. S. WOA. FACE CEMTERED CUBIC MATRI TANDARD SURFACE MIO SPINEL, a.e. B. ESA. Creos (NI.O. Fr. Creos NIONICO. Fr.) TIDS SPINEL, a.e. B. ESA.	M	×	SPALL COLLECTED SPALL Creos SPINEL, se = 0.85A. TRICRUTILE).AC110 100 hr COLLECTED SPALL N10 SPINEL, se = 25A. SPINEL, se = 10A.	N - 4 - 4 -					
FACE CREATED CE		,							

X-RAY DIFFRACTION DATA

SPALL

SURFACE

U - 700

TRF(RUTILE), d(110) 53.30A. COLLECTED SPALL C r 2 0 3 -TRICRUTILE), d(110) £3.30A. STANDARD SURFACE

FACE CENTERED CUBIC NATRIX

COLLECTED SPALL 100 hr SPINEL, ... B. 10A. STANDARD SURFACE 100 1

SPINEL. 8.30A. . .

C r 2 0 3

SPINEL

(NI.Co.Fo)TIOR

C r 2 0 3

FACE CENTERED CUBIC MATRIX

334

TRI (RUTILE), d(110) 53.30A.

	COMMERCIAL CAST	GAHMA/GAMMA PRIME ALLOYS
U - 7 0 0		1150°C 1.00hr CYCLES 100.00hr TEST 2.309mm THICK STATIC AIR
		X-RAY DIFFRACTION DATA
SURFACE		SPALL
٠. -		
STANDARD SURFACE	i ii	COLLECTED SPALL
Cr _e O ₃ Tricrutile),4(110)53.30A.	(110) £3.30A.	Creox Spinel, as en. 255A.
FACE CENTERED CUBIC	CUBIC HATRIX	
STANDARD SURFACE	w c	_ 4
o z		
SPINEL, .0.8.30A.	3 D A .	SPINEL
N O N L U		20 % LO
		(NI,Ce.Fe)TiO3
FACE CENTERED CUBIC MATRIX	CUBIC MATRIX	TRICRUTTERS ACTIONAL MONTH

A BASE EXPERITERIAL	CAST GAMMA/GAMMA PRIME ALLOYS
COSAM U-700-17.0C.	1150°C 1.00hr CYCLES 100.00hr TEST 2.273mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE	SPALL
STANDARD SURFACE	COLLECTED SPALL
60 20 20	E O N L U
TRI(RUTILE), 4(110) £3.30A.	TRICRUTILE), 4(110) 53.30A.
SPINEL: BORGA.	
FACE CENTERED CUBIC HATRIX	
STANDAND SURFACE	COLLECTED SPALL
0-1	0-2
SPINEL	SPINEL,
Creos	NICH. HOUGH TYPE &
NICH, Mejo, TYPE &	
SPINEL, BOBOLOA.	
TALE CENTERED COMIC NAIRIN	

- Z	EXPERIMENTAL CAST GAMMA/GAMMA	CAST GA	1HA/6AHH	A PRIME	PRIME ALLOYS				- 2	02-08-081-654-6
M-55 (UDIMET-700)		-	J. 0 S I	7 4 0 0 . 1	CYCLES	100.00hr 7EST	r TEST	2.286	1 H I C K	STATIC AIR
				K-RAY D	X-RAY DIFFRACTION	M DATA				
SURFACE 1 hr STANDARD SURFACE Cr20s TRI(RUTILE),4(110)53.30A.	CE (110) 43.30A. CUBIC HATRIX	S S S S S S S S S S S S S S S S S S S	6 6 8 1 5 1 C 8 N 1	2 P P L	.L OBSERVED	Q				
STANDARD SURFACE NIO SPINEL	. e. W W		COLLECTED SP N TO N TO	SPALL • • • • • · · · · · · · · · · · · · · ·						

S 100.00hr TEST 2.215mm THICK STATIC AIR DATA		
HORKED GAMA/GAMMA PRIME ALLOY 1150 C 1 OOMS CYCLES X-RAY DIFFRACTION	SPALL COLLECTED SPALL Creos Trickutile),4()10)53.30A.	COLLECTED SPALL NIO SPINEL,
NI BASE. COMMERCIAL HOTU-700(R.H.)	SURFACE 1 hr STANDARD SURFACE Creos Trickutile, 4(110) 43.00A.	FACE CENTERED CUBIC MATRIX 100 br STANDARD SURFACE NIO SPINEL, B. B. 25A. Creos NI(M.M.) D. TYPE 2

	X-RAY DIFFRACTION DATA
	S ALL 200 hr Collected spain
SPINEL. *8=8.10A. A'20% TRI(RUTILE),4(110)53.30A.	_
CENTERED CUBIC HATRIX	UNKNOWN LINES, & VALUES 3.09A. R.44A.

	02-04-043-487	-
700 CAST(SEP-1)	1100°C 1.00hr CYCLES 200.00hr TEST 2.310mm TH1CK STATIC A	A A
	X-RAY DIFFRACTION DATA	
JRFACE 1 hr 5tandard Surface Cr <u>r</u> o _b Tri(Rutile),4(110)53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED	
TANDARD SURFACE SPINEL, BB.B.10A. M10 (NI,CB.Fe)TIOB. Aleob TRICRUTILE), 4(110)53.30A. FACE CENTERED CUBIC MATRIX 00 hr TANDARD SURFACE SPINEL, BB.10A. Aleob TRICRUTILE), 4(110)53.30A.	PROBABLE CROSS-SPALL SPINEL. B. B. BOA. Creos (N.C. F.) TIO. PROBABLE CROSS-SPALL NIO SPINEL. B. B. B. BSA. Creos	
FACE CENTERED CUBIC HATRIX		

COSAM U-700-17.0C.	1100°C 1.00hr CYCLES 200.00hr TEST 2.414mm THICK STA	STATIC AIR
	X-RAY DIFFRACTION DATA	
SURFACE 1 hr STANDARD SURFACE Creox TRICRUTILE),4(110)53.30A.	SPALL 1 br NO SIGNIFICANT SPALL DESERVED	
STANDARD SURFACE SPINEL, age 8.30A. MIQ (MI,Ce,Fe)Tiog Creos TRICRUTILE),4(110)43.30A.	COLLECTED SPALL SPINEL, serB. MOA. R.O. C. 203 (NI. Co. Yo) TION	
FACE CENTERED CUBIC MATRIX		
MANDARD SCRING MANDAR	~	
	SPINEL. BEENUSA. CTROM (NI.CO.TEO)	

	1100°C 1.00hr CYCLES 200.00hr TEST 2.312mm·THICK . S	STATIC AIR
	X-RAY DIFFRACTION DATA	
SURFACE	5P A L L	
STANDARD SURFACE	COLLECTED SPALL	
Creos	_	
TRICRUTILE), d(110)53.30A.		
FACE CENTERED CUBIC MATRIX		
100 hr		
STANDARD SURFACE	COLLECTED SPACE	
SPINEL	0-7	
A 1 & D &	SPINEL	
FACE CENTERED CUBIC MATRIX		
,		
STANDARD SURFACE Spinel, e. 8.10A.	PROBABLE CROSS-SPALL	
•		

•	CASI CANDA/GANDA PRIME ALLOYS
U-700	1100°C 1.00hr CYCLES 200.00hr TEST 2.320mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE 1 br STANDARD SURFACE	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
TRICRUTILES, d(110) SW. NOA. SPINEL,	
FACE CENTERED CUBIC MATRIX	
STANDAND SCRTACE	COLLECTED SPALL
NO N W	SPINEL
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE SPINEL, see 10A. A 12 03 TRI(RUTILE), d(110) 53.30A.	COLLECTED SPALL MIO SPINEL. ng-8.25A.

U-700 CAST(SMP-1)	1100°C 1.00hr CYCLES 200.00hr TEST 2.312mm THICK STATIC AIR
SC 77 A C F	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
STANDARD SURFACE	v
10 m	
TRICRUTILE) . ((110) 53. 30A.	
FACE CENTERED CUBIC HATRIX	
4 00	
STANDARD SURFACE	
SPINEL. B. B. B. LOA.	
A ! & O B	SPIXEL
0 7	SPINEL, B. B. B. C.A.
(NI,C.F.) TIOS	
TRICRUTILE), ACITO) SB. BOA.	
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE	PROBABLE CROSS-SPALL
SPIREL, so B. 10A.	0-2
A ! & O &	SPIXEL, BABBINDA.
(NI.Co.Follion	
TRICRUTILE), 4 (110) 53.30A.	
SPINEL, a B. 25A.	

- X	COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	GAMMA/GAMMA	PRIME ALLOYS			M-0-9-8-0-50-0
U-786 CASTIDURADYNE-13	DYNE-1)	1 100.0	1.00hr CYCLES	. C 1.00hr CYCLES 200.00hr TEST 2.302mm THICK	2.302mm TI	ICK STATIC ALB

N. BASE

_
<u> </u>
A 7
6
u
_
Z
0
-
Ą.
<u>.</u>
=
٥
_
⋖
Œ
4
×

OBSERVED

STAL RD SURFACE NO				LL LO Year X	STALL NO STEN	SURFACE 1 tr STANDARD SURFACE Cr203 TR1(RUTILE), 4(1)10)53.300
-----------------------	--	--	--	--------------	------------------	--

×
-
~
-
<
E
-
u
-
2
u
_
0
ш
•
•
-
Z
Ü
_
w
_
A C.

	-4 00 n
STANDARD SURFACE	COLLECTED SPALL
SPIREL	0-2
A 1 2 0 3	
TRICRUTILET, 46110153.30A.	SPINE . B. C.
	MICH. HOLO. TYPE N
FACE CENTERED CUBIC:NATRIX	
STANDARD SURFACE	
SPINEL . B. W. 10A.	
A - & O &	
TRICRUTILE), d(110) £3.30A.	
(M1.Co.fo)TIO3	
0-1	
5 P. C. P. P. C. P. P. C. P. C. P. P	
SPINEL, sees. ROA.	

FACE CENTERED CUBIC HATRIX

1100°C 1.00h+ CYCLES 200.00h+ TEST 2.416mm THICK STATIC AIR
1 H I C K
2.416.
TEST
200.008
Saloko in
0 0 . 1
11.00°C
00-17.00.

N: BASE

1100°C 1.00hr CYCLES 200.000 X-RAY DIFFRACTION DAFA 1 hr COLLECTED SPALL	COSAM U-700-17.DC. SURFACE STAMDARD SURFACE CT.OS
	TRICRUTILES, 4(110) SB. BOA.
Cr. 9 0 x	
LECTED SPALL	
·	
X-RAY DIFFRACTION DATA	
1.00hr CYCLES	COSAM U-708-17.8C.

×	
CMAT	
C C B 1	
CENTERED	
FACE	

UNKNOWN LINES. 4 VALUES

AIROS

3.32A.

 COLLECTED SPALL	0-2	SPINEL	SPINEL . B. B. 10A.	(N1.Co.Fo)1103		TRICRUTILED, 4(110) 53. MOA.
 STANDARD SURFACE	0-2	SPINEL B. B. B. B. A.	(N1.Co.Fo)T103	SPENEL. BOTON.	*0*10	TRICRUTILE), 4(110)53.30A.

FACE CENTERED CUBIC HATRIX

	COLLECTED SPACE						
L4 00 N	STANDARD SURFACE	0-2	SPINEL SORS. PSA.	(M1,Ce,Fe)T'103	, KO % L U	TRI (RUTILE) . 4 (110) 53.30A.	SPINEL

FACE CENTERED CUBIC MATRIX

	4 St 9 - 10 1 - 8 0 - 2 0
COSAM U-700-17.0C.	1100°C 1.00hr CYCLES 200.00hr TEST 2.280mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
M C M C M C M C M C M C M C M C M C M C	SPALL
STANDARD SURFACE Creox	NO SIGNIFICANT SPALL OBSERVED
SPINEL, so = 8.25A. TRI(RUTILE), d(110) 53.30A. A 1203	
FACE CENTERED CUBIC HATRIX	
IOO BT STANDARD SURFACE N.O.	COLLECTED SPALL SPINEL B. 25A
SPINEL. BOB. 10A. SPINEL. BOB. 10A. (NI.Co.Fe.) T.O.	10 1203 1761. 0 = 8.10A.
TRICRUTILE), d(110) 53.30A.	TRI(RUTILE), 4(110)53.30A.
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE SPINEL, B. B. WOA.	COLLECTED SPALL NIO SPINEL, 10"8.25A.

M-55(UDIMET-700)	1100°C 1.00hr CYCLES 200.00hr TEST 2.242mm THICK STATIC AIM
	X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE),4(110)53.30A. SPINEL, ************************************	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE NIO SPINEL, see B. PBA. Creos SPINEL, see B. 10A.	COLLECTED SPALL NIO SPINEL. ** ** ** ** ** ** ** ** ** ** ** ** **

		- B / G - S + D - + D - > D
U-700 CAST(SMP-1)	1100°C 1.00hr CYCLES 200.00hr TEST 2.0	-2080 THICK STATIC AI
	X-RAY DIFFRACTION DATA	
SURFACE		
STANDARD SURFACE	NO SIGNIFICANI MPA-IS OB PROPERTY OF THE STATE OF THE STA	
80%10		
TRICRUTILE), 4(110) 53.30A.		
FACE CENTERED CUBIC MATRIX		
	4 6 6	
STANDARD SURFACE	· 02	
SPINEL, SORB.10A.	0 - 2	
K 0 % - V		
(NI.Ce.Fe)TIO3		
TRICRUTILE), 4(110)53.30A.		
N 0 41 L		
FACE CENTERED CUBIC MATRIX		
. 4 00 8		
STANDARD SURFACE		
SPINEL B. B. 10A.		
0.2		
TRI (RUTILE), d(110) £3.30A.		
(N1.Ce.Fe) 1108		
CIROR		
NI (H, He) O, TYPE B		
STRING		
A		
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

2-6/9-840-40-20	1100°C 1.00% CYCLES 200.00% TEST 2.290% THICK STATIC AIR
0	1 H I C K
	2.290
	TEST
	200.008
HMA/GAMMA PRIME ALLOYS	
GAHHA/BAHHA PI	1100.0
COMMERCIAL CAST BANNA	-10
- X	U-700 CAST(SHP-1)

NI BASE

ON DATA

	X-RAY DIFFRACTION D
SURFACE	\$ P A L L
STANDARD SURFACE	THE STATE OF THE S
*O*LU	
TRICRUTILE), 4(110) 43 30A	

FACE CENTERED CUBIC HATRIX

 PROBABLE CROSS-SPALL	0-2	SPIREL, BASE NOA.		NICH, Helo, TYPE.2
STANDARD SURFACE	-	*O*	(WI,CA.FE)TIOB	TRICRUTILE), 4(110)53.30A.

FACE CENTERED CUBIC HATRIX

	-
	OOR
STANDARD SURFACE	•
SPINEL	
0-1	(
TRICRUTILE), 4(110) 53, 30A.	. A 10 to
(N1, C., F.) T10.	
-	

FACE CENTERED CUBIC HATRIX

SPINEL, se . 35A.

HICH, Helo, TYPE 1

A 1 & 0 3

89 A Sr Fr	COMMERCIAL CAST	GAMMA/GAMMA PRIME ALLOYS	43-680-1
700 CAST(SMP-1)		1100°C 1.00hr CYCLES 200.00hr TEST 2.290 mm THICK STATIC	•••
		X-RAY DIFFRACTION DATA	
URFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE), d(110) 53.30	110) 53.30A. CUBIC MATRIX	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED	
STANDARD SURFACE SPINEL. *0.*8.10A. SPINEL. *0.*8.30A. (NI, Ce. Fe) Tio3 NIO TRI(RUTILE), *(110) & 3	E 0 A . 0 A	PROBABLE CROSS-SPALL RIO SPINEL: 0 - 0 - 0 - 30 A.	
STANDARD SURFACE SPINEL, set 8.10A. NIO TRICRUTILE), 4(110) 5 W. WO (NI, Ce. Fe) TIOB Creob NI(W.Me) Oc. TYPE & SPINEL, set 8. WOA. NI(W.Me) Oc. TYPE ? A'ROW NI(W.Me) Oc. TYPE ?	0 A	PROBABLE CROSS-SPALL N-10 SP-NEL- 0 B.35A.	

	COMMERCIAL CAST GAMMA/	6 A M M A / G A M H A	A/GAMMA PRIME ALLOYS			0	8 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
U-700 CAST(SHP-1)	-	1100.0	C 1.00hr CYCLES 200.00hr TEST 2.292mm THICK	200.00hr TEST	. 282.		N
			X-RAY DIFFRACTION DATA	N DATA			

N . BASE

SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED		PROBABLE CROSS-SPALL MIO SPINEL
SURFACE 1 hr STANDARD SURFACE Creos Tricrutile),4(110) & 3.30A.	FACE CENTERED CUBIC HATRIX	STANDARD SURFACE SPINEL, sele.10A. SPINEL, sele.10A. MID (MI.Co.Fo)TIOB TRICRUTIEE, delio) 58.80A.

TRICRUTILE), d(110) 58.80A. PROBABLE CROSS-SPALL (N1.C.F.) TIO3 200 11 C . . 0 3 ----TRICRUTILES, ACTIOSES, 30A. SPINEL, MICH, Ne JO, TYPE & STANDARD SURFACE (N1.C..F.) TIOS

FACE CENTERED CUBIC MATRIX

SPINEL, 35A.

C r & 0 3

NICH. He JO, TYPE 1

FACE CENTERED CUBIC NATRIK

200 %

1001

200

N. S.A.

C r 2 0 3

SURFACE -

N. BASE

A I 2 0 3

2 . 0 .

COSAM U-70.8-17.8C.(HIP)	1100°C 1.00hr CYCLES 200.00hr TEST 2.325mm THICK STATIC
	X-RAY DIFFRACTION DATA
SURFACE 1 br STAMDARD SURFACE Creob TRI(RUTILE), 4(110) £3.30A.	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE SPINEL. ************************************	COLLECTED SPALL NIO SPINEL. 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02-13-017-655-4	Dam THICK STATIC AIR
	. 2. 2.
COMMERCIAL HOT WORKED GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00hr CYCLES 200.00hr TEST 2.250mm THICK STATIC AIR
N BASE	U-700(R.M.)

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL OBSERVED SPALL TR! (RUTILE), 4 (110) 53.30A. SPINEL, FO = 8.25A. STANDARD SURFACE SURFACE -

SPINEL. . . B. B. 25A. NICH, Me 104 TYPE 2 COLLECTED SPALL 100 % • • FACE CENTERED CUBIC HATRIX SPINEL, A. B. 25A. STANDARD SURFACE CMI.C. F. TIOS

100

0 ~

FACE CENTERED CUBIC MATRIX

TRICRUTILE), d(110) 43.30A.

NICH, He JO, TYPE P.

Cr. 203

N . GASE	COMMERCIAL CAST	GARHA/GAHHA PRIME ALLOYS
U-700 CAST(SMP-1)		1000°C 1.00hr CYCLES 500.00hr TEST 2.360mm THICK STATIC AIR
		X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos Tricrotile), 4(1)	RFACE 1 hr TANDARD SURFACE Creos Trickutile), d(110) 53.30A.	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC	CUBIC HATRIX	
20p hr Standard Surface Creoz .12 Cr78 Ti-1.7% O TRI(RUTILE),4(110)53.30A	1.74 0	COLLECTED SPALL SPINEL. ************************************
FACE CENTERED	CUBIC HATRIX	
STANDARD SURFACE SPINEL	CUBIC MATRIX	COLLECTED SPALL NIO SPINEL. eg. B. PSA. Creos (NI.Co.Fo)TIOS TRICRUTILE).4(110)53.30A. SPINEL. eg. B. 10A.

NI BASE EXPERIMENTAL CAST	IT GAMMA/GAM	ST GAMMA/GAMMA PRIME ALLOYS			1 4 M 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COSAM U-700-17.0C.	1000.0	1000°C 1.00hr CYCLES 500.00hr TEST ,2.418mm THICK STATIC AI	500.00%1 TEST	2 4 18 mm THICK	STATICAL

NI BASE

X-RAY DIFFRACTION DATA

STANDARD SURFACE NO SIGNIFICANT SPALL OBSERVED Creoz	# P P P P P P P P P P P P P P P P P P P	JAAC
	STANDARD SURFACE	
	NO N. J	

FACE CENTERED CUBIC HATRIX

 COLLECTED SPALL	•	
 2 C	SPINEL	1-

CBIC BIRK	SOO BY COLLECTED SPALL N10 A. SPINEL. B. B. 25A. Cre03
FACE CENTERED CUBIC	STANDARD SURFACE NIO SPINEL, *** SSA. Creos TRICRUTILE), 4(110) 53.30A

FACE CENTERED CUBIC HATRIX

200 %

1000

NI BASE

SURFACE -

	1 - GM M - O 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
	760°C 1.00hr CYCLES 1000.00hr TEST 2.308mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE 1 PF STANDARD SURFACE C1203	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creox Tri(Rutile),4(110)53.30A.	IDD hr Probable cross-Spall Nio
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creos Tri(Rutile),4(119)53.30A.	RO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creos Tricrutile), a (110) & W. 30A, Spinel,	SOD hr Collected SPALL
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE Creos Tri(Rutile),4(110)53.30A.	1000 br no significant Spall observed

E SE E E	EXPERIMENTAL C	CAST GAMMA PRIME ALLOYS
COSAM U-700-17.0C.		750°C 1.00mr CYCLES 1000.00hr TEST 2.422mm THICK STATIG AIR
		X-RAY DIFFRACTION DATA
SCRTACE STACE STACE SCRTACE		SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CU	CUBIC HATRIX	
STANDARD SURFACE		180 br No Significant Spall Observed
FACE CENTERED CUBIC	BIE HATRIX	
EDO BE STANDARD SURFACE Creos TRI(RUTILE), d(110) & B. BOA.	. 4 0 M	NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC	BIC HATRIX	
S T A M D O O O O O O O O O O O O O O O O O O		SOO AF COLLECTED SPALL Nio
FACE CENTERED CUBIC	BIC HATRIX	
STANDARD SCRIACE		COLLECTED SPALL

SPINEL,

FACE CENTERED CUBIC HATRIX

TRICRUTILE), 4(110) 58.30A.

C . . 0 3

•		
R . BASE	COMMERCIAL CAST GANNA/GANNA PRIME ALLOYS	8-188-820 40-20
UDI#ET-710	1150°C 1.00hr CYCLES 100.00hr TEST	2.329ss THIC
	X-RAY DIFFRACTION DATA	
SUBFACE 100 hr STANDARD SURFACE SPINEL, 00 00 WOA.	SPALL 100 br 100 br COLLECTED SPALL B.30A. N10	

FACE CENTERED CUBIC HATRIX

TRICRUTILE), 4(110) 53.30A.

(M1.C..F.)T103

C r & 0 3 . .

FACE CENTERED CUBIC MATRIX

02-13-020-654-3	2.306mm THICK STATIC AIR
L HOT HORKED GAMMA/GAMMA PRIME ALLOYS	1150°C 1.00hr CYCLES 100.00hr TEST 2.306mm THICK STATIC AIR
N: BASE COMMERCIAL HO	COSAM U-720-14.7C.

COSAM U-720-14.7C.	1150°C 1.00hr CYCLES 100.00
	X-RAY DIFFRACTION DATA
SURFACE	SPALL
	.4.
STANDARD SURFACE	COLLECTED SPALL
Creox	C
TRICRUTILE), d (110) 53.30A.	TRICRUTILE), a (110) SB. MOA.
SPINEL, so so to	

SPINEL, STANDARD SURFACE C . . 0 3 100 1 TRICRUTILE), 4(110)>3.30A. SPINEL, BO. B. 30A. NICH.Me. O. TYPE 2 (NT.Co.FolTIOS STANDARD SURFACE C . . 0 3 0 -

FACE CENTERED CUBIC HATRIX

100 1

NICH. H.) O. TYPE 2

FACE CENTERED CUBIC MATRIX

PRIME ALLOYS 02-13-020-674-6	r CYCLES 500.00hr TEST 2.377mm THICK STATIC AIR	DIFFRACTION DATA	SPALL OBSERVED				
HORKED GAMMA/GAMMA	1000°C 1.00hr	X - R A Y	SPALL I br NO SIGNIFICANT S		NO SIGNIFICANT SA	COLLECTED SPALL NIO SPINEL, semmer 355. Creom Trickutile), doing 53.	500 hr COLLECTED SPALL N.O SP.NEL
NI BASE CONNERCIAL HOT	COSAM U-720-14.7C.		SURFACE STANDARD SURFACE Creos TRICRUTILE), 4(110) 53.30A.	FACE CENTERED CUBIC MATRIX	STANDARD SURFACE Craos TRI(RUTILE), d(110) & 3.30A12 Cr78 Ti-1.74 O FACE CENTERED CUBIC MATRIX	STANDARD SURFACE SPINEL, ***B** 35A. A10 Creos TRICRUTILE), 4(110) 5W. 30A.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FACE CENTERED CUBIC HATRIX

N: BASE COMMERCIAL HOT	HORKED GAMMA/GAMMA PRIME ALLOYS
CDSAM U-720-14.7C.	1000°C 1.00hr CYCLES 500.00hr TEST 2.288mm THICK STATIC A12
SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE), d(110) 53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
TACE CENTERED CUBIC MATRIX 100 hr STANDARD SURFACE Creog TRI(RUTILE),4(110)53.30A. SPINEL, *0 = 8.25A.	NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE Creos SPINEL, agenesesa. TRICRUTILE), d(110) 53. WOA. FACE CENTERED CUBIC HATRIX	COLLECTED SPALL MYO SPINEL, 30-8.25A. Cr203 TRICRUTILE).4(110)53.30A. (M1.Co.Fo)7103 SPINEL, 40-8.10A.
STANDARD SCRTACE ALO (NI.Ce.Te.) TIOS CTROS NPINEL, es es es	SOO BY COLLECTED STALL SPINEL, BO BO. 25A.

COSAN MASSPALOY-14 ATA	9 / E
	1150 C 1.00hr CYCLES 100.00hr TEST 2.292mm THICK STATIC AIR X-RAY DIFFRACTION DATA
SURFACE 1 hr STAND'ARD SURFACE Creos TRI(RUTILE).4(110)>3.30A.	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDAND SURTACE NIC NOT NEL: 00 00 00 00 00 00 00 00 00 00 00 00 00	COLLECTED SPALL NIO SPINEL. 00 B 30 A. C'ROS NI(N.H0)O, TYPE Z

FACE CENTERED CUBIC MATRIX

	N-D-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	1150°C 1.00hr CYCLES 100.00hr TEST 2.290wm THICK STATIC AIR
	K-RAY DIFFRACTION DATA
STANDARD SURFACE SPINEL, **=**********************************	NO SIGNIFICANT SPALL OBSERVED
STANDARD SURFACE	
STITEL STENDS.	SPINEL

	2.284## THIC	
HOT WORKED GAMMA/GAMMA PRIME ALLOYS	1150°C 1.00hr CYCLES 100.00hr TEST	SPALL 1 hr COLLECTED SPALL SPINEL
* BASE COMMERCIAL HOT WORKE	HASPALOY	SCRFACE 1 Fr STANDARD SURFACE SPINEL, seed. uda. (N:.Ce.fe) 1:08

FACE CENTERED CUBIC HATRIX

SPINEL 3.0A.

COLLECTED SPALL NIO

100 %

FACE CENTERED CUBIC MATRIX

SPINEL, ... SOA. Creos

STANDARD SURFACE

10.01

- B A S E	COMMERCIAL HOT	HORKED GANHA/GANHA PRIME ALLOYS
COSAM MASPALOY-14.5C+	• U so · m	
SURFACE 1 hr STANDARD SURFACE Creos 12 Cr78 TI-1.74 O. TRI(RUTILE),4(110)53.30A	CE -1.74 0. (110)53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC	CUBIC HATRIX	
STANDARD SURFACE Craos .12 cr78 Ti-1.74 O MIO TRI(RUTILE).4(110)53.30A.	CE -1.74 O (110) 53.30A.	COLLECTED SPALL NIO SPINELg. B.25A.
FACE CENTERED CUBIC	CUBIC HATRIX	

N B A S E

⊒ S ¥ 82 E	COMMERCIAL HOT	T HORKED GAMMA/GAMMA PRIME ALLOYS	
OSAM WASPALOY-13.5C.	. U. C.	1150°C 1.00hr CYCLES 100.00hr TEST 2.298mm THICK STATIC	STATIC AIR
		X-RAY DIFFRACTION DATA	
SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE).4(110)53	I br 1 br 1 andard surface creos 1ri(rutile), 4(110) 53.30A. Face centered cubic matrix	SPALL COLLECTED SPALL NIO TRI(RUTILE),4(1)0)53.30A. SPINEL, 40.8.20A.	
STANDARD SCRTACE NIO SCRTACE CT 203 C	SU R A C E B B B B B B B B B B B B B B B B B B	COLLECTED SPALL NIO SPINEL, so so WDA. Grada	

COMMERCIAL MOT MORKED GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00hr CYCLES 200.00hr TEST 2.280** THICK STATIC AIR	X-RAY DIFFRACTION DATA	SPALL 200 hr COLLECTED SPALL N10 SPINEL, a. 8.30A.
BASE	HASPALOY		SURFACE 200 br STANDARD SURFACE NIO SPINEL, 08-8-35A.
z	₩ <		S ON O

NIBASE

418

FACE CENTERED CUBIC HATRIX

	•	
COSAM MASPALOY-13.5C.	1100°C 1.00hr CYCLES 200.00hr TEST 2.320mm THICK	STATIC A1
	X-RAY DIFFRACTION DATA	
SURFACE 1 br STANDARD SURFACE Creos Tri(Rutile), 4(110) 53.80A.	SPALL 1 hr NO SIGNIFICANT SPALL OBSERVED	
STANDARD SURFACE	188 hr Collected Spall Creos	
UNKNOWN LINES, d VALUES 3.17A.	STATE OF MOV.	
W. DBA. W. DBA. FACE CENTERED CUBIC SATRIX	UNKNOHM LIMES, & VALUES W.15A. W.WIA.	
STANDARD SURFACE Creos Tri(Rutile), d(110) 43.30A.	PROBABLE CROSS-SPALL X-10 SPINEL B B B W 5 A C C R 5 B C C C C C C C C C C C C C C C C C C	

- X	COMMERCIAL HOT	HORKED GAMMA PRIME ALLOYS
HASPALOY		1100°C 1.00hr CYCLES 200.00hr TEST 2.304mm THICK STATIC A18
SURFACE 1 hr STANDARD SURF Creos TRICRUTILE),	RFACE 1 hr TANDARD SURFACE Cr ₂ 0 ₃ Tri(Rutile),4(110)53.30A.	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED	O CUBIC HATRIX	
100 br Standard Surface C'ros	A C E	100 hr Collected Spall Mio
FACE CENTERED	D CUBIC MATRIX	SPINEL. BETW. 25A. CTRON ATOR
STANDARD SURFACE Creos Nio TRI(RUTILE),4(110 SPINEL	TANDARD SURFACE Creos Nio Tri(Rutile), d(110) 53.30A.	COLLECTED SPALL NIO SPINEL. ************************************
FACE CENTERED	D CUBIC MATRIX	

- Z

	02-13-058-481-6
COSAM MASTALOY-18.0C.	1100°C 1.00h/ CYCLES 200.00hr TEST 2.300mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE 1 hr STANDARD SURFACE Creos 12 Cr78 T1-1.74 O TRICRUTILE),4(110)53.30A.	SPALL 1 h F NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creos .12 cr78 TI-1.7% O	100 hr Collected Spall Creds
FACE CENTERED CUBIC NATRIX	
STANDARD SURFACE Creos TRICRUTILE).4(110)53.30A. .12 Cr78 Ti-1.74 0	COLLECTED SPALL MICO SPINEL. ** - B. 35A. C7203

8 A S.E.	COMMERCIAL HOT	HORKED GAMMA/GAMMA PRIME ALLOYS
SAM MASPALOY-14.5C.	• US • M	1100°C 1.00hr CYCLES 200.00hr TEST 2.28500 THICK STATIC AIR
		X-RAY DIEFRACTION DATA
URFACE 1 br STANDARD SURFACE Creos TRICRUTILE).4(110)43.30A	C F . W . W . W . W . W . W . W . W . W .	SPALL 1 br NO SIGNIFICANT SPALL OBSERVED
FACE CENTERED	CUBIC HATRIX	
STANDARD SURFACE Creos .12 Cr70 Ti-1.74 FACE CENTERED CUBI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PROBABLE CROSS-SPALL NIO Creos SPINEL
STANDARD SURFACE Creos SPINEL	≼ ພ છ ∵ અ	COLLECTED STALL NIO
FACE CENTERED	0 8 10 X 12 X	UMKROMM LINES. d VALUES P. Bra.

	0 1 2 1 3 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PRIME ALLOYS	
MORKED GAMMA/GAMMA PRIME ALLOYS	•
OMMERCIAL HOT HORK	•
H 0 J	, m

STATIC AIR

CLES 500.00hr TEST 2.322mm THICK
TEST
500.004
1.00ar CYCLES
. 00 . 1
1000
COSAM MASPALOY-13.5C.

TOO C TOOMS CYCLES 500.00Ms	X-RAY DIFFRACTION DATA	SPALL 1 hr no significant spall observed
		SURFACE 1 hr STANDARD SURFACE Creos TRI(RUTILE), d(110) £3.30A.

FACE CENTERED CUBIC MATRIX

200 hr Collected Spall Nio	SPINEL, eg = 8.30A. TRI(RUTILE),e(110)£W.MOA.	SOO NT COLLECTED SPALL NIO Spinel, age 30A. C'203
STANDARD SURFACE Cr ₂ 03 Tri(Rutile),4(110)53.30A.	FACE CENTERED CUBIC HATRIX	STANDAND SURTACE STINEL. B.

FACE CENTERED CUBIC MATRIX

02-13-029-480-6	STATIC AIR
02-13	2.327es THICK
S	SBO. DON' TEST
IKED GAMMA/GAMMA PRIME ALLOYS	1000°C 1.00%r CYELES 580.00%r TEST 2.327em THICK STATIC AIR
T WORKED GAMMA	1000°
SE COMMERCIAL HOT MORKET	1 HASPALOY-13.5Ce
	COSAM

X-RAY DIFFRACTION DATA

NO SIGNIFICANT SPALL DBSERVED SPALL TRICRUTILE), 4(110) 53.30A. STANDARD SURFACE SURFACE

TRICRUTILE), d(110)>3.30A. COLLECTED SPALL C r 2 0 3 100 0 -FACE CENTERED CUBIC HATRIX TRICRUTILE), ((110)>3.30A. STANDARD SURFACE 100 hr C r & 0 3

FACE CENTERED CUBIC MATRIX

200 hr

Greck Spinel, sees. 30A. COLLECTED SPALL ---TRICRUTILE), 4(110) 53.30A. SPINEL. 30A. STANDARD SURFACE

FACE CENTERED CUBIC HATRIX

430

200 hr

C r 2 0 3

	1000 C 1.00hr CYCLES 500.00hr TEST 2.31888 THICK	STATIC AIR
	X-RAY DIFFRACTION DATA	
SURFACE	Q. C.	
STANDARD SURFACE		
TRI(RUTILE), d(110) £3.30A.		
FACE CENTERED CUBIC MATRIX		
. 4		
STANDARD SURFACE	_	
Creom		
FACE CENTERED CUBIC MATRIX		
L4 00 N		
STANDARD SURFACE	COLLECTED SFALL	
RO N L		
	SPINEL. SO "BOA.	
TACE CENTENED CUBIC MATSIX	NO NI CO	
STANDARD SURFACE		
0-2		
SPINEL, sere. 25A.		
(NI, Ca, Fe) TIOS		
, O a	•	

NI BASE COMMERCIAL HOT	T HORKED GAMMA/GAMMA PRIME ALLOYS
COSAM WASPALOY "13.5C.	760°C 1.00hr CYCLES 1000.00hr TEST 2.306mm THICK STATIC AIR
	X-RAY DIFFRACTION DATA
SURFACE T br	SPALL
STANDARD SURFACE C'203	COLLECTED SPALL SPINEL
FACE CENTERED CUBIC MATRIX	•
STANDARD SURFACE Creos Tricrutile), 4(110) 53.30A.	PROBABLE CROSS-SPALL
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creos Tricrutile, aciie) su boa.	ROSIGNIFICANT SPALL OBSERVED
FACE CENTERED CUBIC HATRIX	
STANDARD SURFACE Creos Tri(Rutile), 4(110) 58.80A.	SOO BY COLLECTED SPALL
FACE CENTERED CUBIC MATRIX	
STANDARD SURFACE Creos Tri(Rutile), e(110)53.30A.	1909 br Collected Spall Spinel, a. B. Esa.
FACE CENTERED CUBIC HATRIX	

10 + 2 · · · · · · · · · · · · · · · · · ·	100.00hr TEST 2.326sm THICK STATIC AIR	* 0 A T A	
COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	1150°C 1.00hr CYCLES	X-RAY DIFFRACTION DATA	SPALL 100 hr PROBABLE CROSS-SPALL N:0 N:0 N:(W.M.)0, TYPE 1 SPINEL: 0.80.25A.
MI BASE COMMERCIA	DS-MAZ-20		SURFACE 100 br STANDARD SURFACE NIO NI(H.He)O _k TYPE 1

	2.324mm THICK STATIC AIR			
COMMERCIAL CAST GAMMA/GAMMA PRIME ALLOYS	1100°C 1.00%r CYCLES 200,00%r TEST	X-RAY DIFFRACTION DATA	SPALL 200 hr COLLECTED SPALL NIO NIO NI(H.M.) 0, TYPE 1	UNKNOHN LIMES. 4 VALUES 3.64A.
NI BASE COMMERCIAL CA	DS-MAZ-20		SURFACE ZOO hr STANDARD SURFACE NIO NI(H.He)O, TYPE 1 SPINEL	FACE CENTERED CUBIC MATRIX

#AR-M-509 ***********************************	C+ BASE CAST (7)	CAST (TURBINE) ALLOYS						
SPALL 100 hr COLLECTED S L B.30A. C.O. SPINEL	00 C C C C C C C C C C C C C C C C C C	1 1 5 0			. 00hr TE	80 80 80 80 80 80 80 80 80 80 80 80 80 8	1 H I C K	03 02 - 0 03 - 32 34 - 45 STATIC A STATIC
80 SURTACE			X-RAY DIFFR	ACTION DAT				
	SURFACE 100 hr STANDARD SURFACE SPINEL	SPALL COCLEC COLLEC N SP I N	TED SPALL L, B.30A. H.) O, TYPE 1					

C. BASE

100 % SURFACE

C. BASE

H 1 - 52

447

C. BASE

56-1H

0 • 0

FACE CENTERED CUBIC MATRIX

H I - 52

H 1 - 5 2

C . . 0 3

100 %

0 0

C. BASE

0 * - X

0 * - X

Space Administration 1. Report No.	2. Government Accession No.	3 Recipient's Catalan No.
NASA TM-101468	E. GOVERNMENT ACCESSION NO.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
High-Temperature Cyclic Oxid	lation Data	October 1989
Turbine Alloys, Part 2		6. Performing Organization Code
7. Author(s)		Performing Organization Report No.
Charles A. Barrett and Ralph (G. Garlick	E-4263
		10. Work Unit No.
9. Performing Organization Name and A		505-63-01
		11. Contract or Grant No.
National Aeronautics and Space Lewis Research Center	e Administration	
Cleveland, Ohio 44135-3191		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Addres	SS	Technical Memorandum
National Aeronautics and Space		
Washington, D.C. 20546-000		14. Sponsoring Agency Code
5. Supplementary Notes		
High-Temperature Cyclic Oxida Carl E. Lowell, is available as	ation Data, Turbine Alloys, Part 1, by Ch NASA TM-83665 (Rev. 1989).	
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center.	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature of	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature and cobalt-base turbine alloys to	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem	presenting cyclic oxidation data tested at time data and x-ray diffraction results
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature and cobalt-base turbine alloys to	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem ested at Lewis.	presenting cyclic oxidation data tested at time data and x-ray diffraction results perature, high-strength nickel base γ/γ'
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature and cobalt-base turbine alloys to an account of the company of the	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem ested at Lewis. 18. Distribution S Unclassi	presenting cyclic oxidation data tested at time data and x-ray diffraction results perature, high-strength nickel base γ/γ'
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature and cobalt-base turbine alloys to	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem ested at Lewis. 18. Distribution S Unclassi	presenting cyclic oxidation data tested at time data and x-ray diffraction results perature, high-strength nickel base γ/γ'
High-Temperature Cyclic Oxida Carl E. Lowell, is available as 6. Abstract This volume is the second part NASA Lewis Research Center. derived from high-temperature and cobalt-base turbine alloys to an account of the company of the	in a series of cyclic oxidation handbooks It contains specific-weight-change versus cyclic tests for the remainder of high-tem ested at Lewis. 18. Distribution S Unclassi	presenting cyclic oxidation data tested at time data and x-ray diffraction results perature, high-strength nickel base γ/γ'

	,

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Official Business Penalty for Private Use \$300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Feer Pard National Aeronautics, and Space Administration NACA 451

