2022년 데이터 분석 청년 인재양성 데이터 분석 전문교육과정

데이터로 같이, 가치 있게(With Value)! 데이턴십 해커톤 제 5회

서울시 자치구별 노인빈곤 정책 개선을 위한 다차원적 노인빈곤지수 개발

분석 결과보고서

참여조: 서울1지역 14조

참여자: 채정연(조장),이지호

이한빈,정승기,최보미,

함승완

씨에스리 컨소시엄

Copyright ⓒ CSLEE Consortium CSLEE Consortium의 사전 승인 없이 본 내용의 전부 또는 일부에 대한 복사. 배포, 사용을 금합니다. 2022년 데이터 분석 청년인재양성 - 실무형프로젝트

목 차

결과보고서

1. 분석 개요 ····· p.1
1.1. 분석 배경 및 개요 p.1 1.2. 분석 목적 및 방향 p.3 1.3. 분석 결과 활용 방안 p.3
2. 분석 데이터p.4
2.1. 분석 데이터 목록
3. 분석 프로세스 p.20 3.1. 분석 프로세스 p.20 3.2. 분석 내용 및 방법 p.21
4. 분석 결과 ······p.37
5. 활용 방안 ······p.39
5.1. 문제점 개선 방안 ·····p.39 5.2. 업무 활용 방안 ·····p.41
6. 참고자료(Reference) ······ p.44
7. 부록p.45

1. 분석 개요

1.1. 분석 배경 및 개요

1) 분석 배경 및 개요

- □ 대한민국은 21년 기준 43.4% OECD 국가 중 노인빈곤율 1위 국가.
- □ 고령자의 수 증가 및 저출산 현상으로 인하여 부양자 수가 감소, 이에 따른 대비책이 필요함.
- □ 현재 노인빈곤율은 소득 지표만 반영되고 있으므로, 소득 외의 노인 인구 의 삶을 측정할 수 있는 다차원적인 빈곤 지표가 필요함
- □ 복지 사각지대에 놓인 노인 빈곤 문제를 해결하기 위한 정책의 효과성을 달성하기 위한 새로운 노인 빈곤 지표의 필요성 존재.

▲ 21년도 기준 OECD 국가 중 대한민국 노인지표 현황¹⁾

▲ 생산가능인구가 부담하는 예측 총부양비2)

1.2. 분석 목적 및 방향

1) 분석 목적

- □ 빅데이터 기반으로 소득 이외에 삶 전반적 영역에 대한 종합적인 서울시 노인 빈곤 지수의 시각화를 목적으로 함.
- □ 최종적으로는 자치구별 빈곤 노인에 대한 적극적 행정 제공에 관한 의사 결정과 예산 활용 효율화 및 안심 고령친화도시를 달성하고자 하며, 다음 과 같은 세 가지 방향으로 분석함.

2) 분석 방향

가) 서울시 빅데이터를 이용한 주요 요인 도출

- 서울시 노인빈곤율의 원인을 분석한 선행 연구를 참고하여 일자리, 복지, 인구학적 특성, 연금, 만족도 및 행복도 총 5개의 테이블 선정
- 각 테이블의 Y변수가 될 서울시의 자치구별 일자리 충분도, 복지의료시설 개수, 주거복지현황, 재가노인복지시설수, 기타복지시설수, 독거노인수, 기초생활수급자수 데이터 수집
- 소득을 제외한 자치구별 노인 빈곤 원인에 관한 학술적 논문과 서울시, 통계청 등 정부기관에서 공개한 공공빅데이터로 요인 조사
- 조사한 요인들과 수집한 각 테이블별 Y변수 데이터로 상관분석을 시도하 여 가중치를 계산해 주요 인자 도출

나) 다차원적 노인빈곤 지수 개발

- 상기 도출한 요인들로 다차원적 노인빈곤 지수를 산출하여 서울시에 상용 화할 수 있는 다차원 노인 빈곤 지표를 개발함. 이를 통해 적극적 행정이 가능하도록 업무 지원
- 소득이 아닌 다양한 관점에서의 종합적이고, 다차원적인 노인빈곤율 지도 시각화 및 신규 복지 대상 판단
- 상관분석을 이용해 각 테이블별 변수 간 상관계수를 토대로 상관계수의 합을 기준으로 하여 상대적 크기를 가중치로 도출
- 가중치 적용하여 자치구별 최종 노인빈곤율 시각화

^{1) &}quot;Old-age income poverty," Pensions at a Glance 2021: OECD and G20 Indicators | OECD iLibrary (oecd-ilibrary.org), accessed Aug 15, 2022

²⁾ 손해용 김도년, 인구 감소로 배꼽 커진 '총부양비'…"2060년 1인당 부채 2억7500만원", 중앙일보,

- 다) 3개년 지수 추이 적용한 시계열 분석
- 노인 빈곤 관련 3개년(19', 20', 21') 데이터를 시계열적으로 분석하여 서울시 노인빈곤지수 시계열 추이를 확인

○ 3개년 간의 추이를 통해 빈곤취약지역 현황 파악 및 정책 선별적 운영이 가능한 지역 선정 가능

1.3. 분석 결과 활용 방안

- □ (범용성) 일자리, 복지, 연금, 만족도, 인구학적 특성 등을 반영한 서울시 노인 빈곤지수를 개발한 뒤 이를 시각화하여 행정구별 지도로 제작.
- □ (범용성) 행정구별로 수치화한 지도를 통해 노인빈곤지수 상위권 지역과 하위권 지역을 파악 가능
- □ (활용성) 노인빈곤취약 지역을 도출하고 취약 지역을 중심으로 관련 복지정책 강화 가능
- □ (기대효과) 노인빈곤취약 지역 대상으로 노인 빈곤과 관련된 안전, 사회참여, 일 자리 등 사회적 맞춤형 돌봄 서비스 정책 등을 선별적 운영 가능
- □ (기대효과) 노인 인식 개선을 위한 정책 홍보 및 시민 사회적 인식 및 성숙도 제고

[모의분석]

2. 분석 데이터

2.1 분석 데이터 목록

구분	분석 데이터	기간	제공기관
	일자리 충분도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
일자리	취업률(취업자 수/구직자 수. 파생변수) (구인구직취업현황 데이터에서 서울시 구별 65 세 이상 취업건수, 구직건수 데이터에서 추출)	2019 - 2021	EIS 고용행정통계 (https://eis.work.go.kr/eisps/mai n/index.do)
일시더	취업자 수 (구인구직취업현황 데이터에서 서울시 구별 65 세 이상 취업건수 데이터에서 추출)	2019 - 2021	EIS 고용행정통계 (https://eis.work.go.kr/eisps/mai n/index.do)
	구인난(구직자 수 - 취업자 수, 파생변수) (구인구직취업현황 데이터에서 서울시 구별 65 세 이상 취업건수, 구직건수 데이터에서 추출)	2019 - 2021	EIS 고용행정통계 (https://eis.work.go.kr/eisps/mai n/index.do)
	서울시 행정구별 의료시설 수 (서울시 노인 의료복지 시설 목록.csv)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 노인주거복지 시설 수 (서울시 노인주거복지 시설 목록.csv)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 재가노인 복지시설 수 (서울시 재가노인복지시설 목록.csv)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
복지	서울시 구별 노인사회복지시설 수 (서울시 노인 기타 사회복지시설 목록.csv)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 장기요양기관 전문인력 수 (시·군·구별 장기요양기관 전문인력 현황.csv)	2019 - 2020	KOSIS 국가통계포털 (https://kosis.kr/index/index.do)
	서울시 구별 의료기관 수 (서울시 구별 의료기관 통계.csv)	2019 - 2020	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 노인 교실 수 (서울시 노인교실 정보.csv)	2022	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
인구	서울시 구별 독거노인 수 (서울시 성별/구별 독거노인 현황.csv)	2019 - 2020	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
학적 특성	서울시 구별 65세 이상 내국인 수 (서울시 구별 고령자 현황.csv)	2019 - 2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)

		ı	
	서울시 구별 65세 이상 여성 내국인 수 (서울시 구별 고령자 현황.csv)	2019 - 2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 노령화지수 (서울시 구별 부양비 및 노령화지수 통계.csv)	2019 - 2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 가구당 가구원 수 (서울 서베이 도시정책지표 조사 정보)	2019 - 2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 국민기초생활보장 수급자 중 65세 이상 인구수 (서울시 국민기초생활 보장 연령별/구별 수급자 통계.csv)	2019 - 2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
연금	서울시 구별 기초연금 수급자 수 (서울특별시 노인 기초연금 수급 현황.csv)	2021	공공데이터포털 (https://www.data.go.kr/index.do)
20	서울시 구별 기초연금 수급자 수 (서울시 기초연금 수급자 현황 통계.csv)	2019 - 2020	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	서울시 구별 주택연금 발급 건수 (한국주택금융공사_주택연금 서울 발급 건중 구 별 현황.csv)	2020	공공데이터포털 (https://www.data.go.kr/index.do)
	60세 이상 소득 만족도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	60세 이상 여가활동 만족도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
만족도	60세 이상 일자리 만족도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	60세 이상 삶의 만족도, 행복도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)
	60세 이상 주거환경 만족도 (서울서베이 도시정책지표조사 정보(2021년) 데 이터에서 전처리)	2021	서울 열린 데이터 광장 (https://data.seoul.go.kr/)

2.2 데이터 상세 설명

1) 일자리 지수

- □ 일자리 충분도[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 일자리 충분도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, BQ6: 일자리 충분도)

1	GU	BQ6
2	110	3
3	110	4
4	110	3
5	110	2
6	110	3
7	110	3
8	110	4
9	110	4
10	110	4

- □ 취업률(취업자 수/구직자 수) 파생변수
- EIS 고용행정통계 사이트에 저장된 구인구직취업현황 데이터 중 서울시 구별 65세 이상 취업건수, 구직건수 데이터에서 추출한 파생변수 데이터.

1	(지역별)시군구	구직건수(월	취업건수(월)	구인난	취업률
2	서울특별시 종로구	482	175	307	0.363071
3	서울특별시 중구	589	171	418	0.290323
4	서울특별시 용산구	929	215	714	0.231432
5	서울특별 <mark>시</mark> 성동구	1,636	534	1102	0.326406
6	서울특별시 광진구	2,120	708	1412	0.333962
7	서울특별시 동대문구	1,795	753	1042	0.419499
8	서울특별시 중랑구	2,929	1,184	1745	0.404234
9	서울특별시 <mark>성</mark> 북구	2,091	1,091	1000	0.52176
10	서울특별시 강북구	1,731	497	1234	0.287117

□ 취업자 수

- EIS 고용행정통계 사이트에 저장된 구인구직취업현황 데이터 중 서울시 구별 65세 이상 취업건수 데이터.

1	(지역별)시군구	구직건수(월	취업건수(월)	구인난	취업률
2	서울특별시 종로구	482	175	307	0.363071
3	서울특별시 중구	589	171	418	0.290323
4	서울특별시 용산구	929	215	714	0.231432
5	서울특별시 성동구	1,636	534	1102	0.326406
6	서울특별시 광진구	2,120	708	1412	0.333962
7	서울특별시 동대문구	1,795	753	1042	0.419499
8	서울특별시 중랑구	2,929	1,184	1745	0.404234
9	서울특별시 <mark>성</mark> 북구	2,091	1,091	1000	0.52176
10	서울특별시 강북구	1,731	497	1234	0.287117

- □ 구인난(구직자 수 취업자 수) 파생변수
- EIS 고용행정통계 사이트에 저장된 구인구직취업현황 데이터 중 서울시 구별 65세 이상 취업건수, 구직건수 데이터에서 추출한 파생변수 데이터.

1	(지역별)시군구	구직건수(월	취업건수(월)	구인난	취업률
2	서울특별시 종로구	482	175	307	0.363071
3	서울특별시 중구	589	171	418	0.290323
4	서울특별시 용산구	929	215	714	0.231432
5	서울특별 <mark>시</mark> 성동구	1,636	534	1102	0.326406
6	서울특별시 광진구	2,120	708	1412	0.333962
7	서울특별시 동대문구	1,795	753	1042	0.419499
8	서울특별시 중랑구	2,929	1,184	1745	0.404234
9	서울특별시 <mark>성</mark> 북구	2,091	1,091	1000	0.52176
10	서울특별시 강북구	1,731	497	1234	0.287117

2) 복지 지수

- □ 서울시 노인 의료복지 시설 목록[.csv]
- 서울 열린 데이터 광장에서 다운받은 서울시 구별 단위 노인 의료복지 시설 목록이 저장된 데이터.

1	시설명	시설코드	시설종류문시설종류산자치구(시)	시설장명	시군구코드시군구명	시설주소
2	서울꽃동너	A0001	(노인) 노인노인의료복자치구	최은숙	1.13E+09 중랑구	서울특별시 중랑구 신내로 194
3	청운노인도	A0003	(노인) 노인노인의료복자치구	이종후	1.11E+09 종로구	서울특별시 종로구 비봉길 76 (구기동)
4	천사노인요	A0007	(노인) 노인노인의료복자치구	김샛별	1.15E+09 강서구	서울특별시 강서구 강서로45다길 30-22
5	서울특별시	A0016	(노인) 노인노인의료복자치구	한철수	1.16E+09 영등포구	경기도 군포시 고산로 589
6	노인요양선	A0099	(노인) 노인노인의료복자치구	이희법	1.15E+09 금천구	서울특별시 금천구 금하로 596-0
7	동명노인복	A0100	(노인) 노인노인의료복자치구	김병한	1.16E+09 관악구	서울특별시 관악구 봉천로23라길 15(봉천동)
8	영기노인도	A0131	(노인) 노인노인의료복자치구	김원제	1.14E+09 노원구	서울특별시 노원구 동일로248길 30 (상계동)
9	은천노인요	A0343	(노인) 노인노인의료복자치구	박애자	1.12E+09 동대문구	서울특별시 동대문구 장한로27가길 66 (장안동)
10	동작실버선	A0347	(노인) 노인노인의료복자치구	이재희	1.16E+09 동작구	서울특별시 동작구 노량진로32길 53 (본동)

- □ 서울시 노인주거복지 시설 목록[.csv]
- 서울 열린 데이터 광장에서 다운받은 서울시 구별 단위 노인주거복지 시설 목록이 저장된 데이터.

1	시설명	시설코드	시설종류명시설종류상자치구(시) 시설장명	시군구코드시군구명	시설주소
2	청운양로원	A0002	(노인) 양로노인주거복자치구	이종명	1.11E+09 종로구	서울특별시 종로구 비봉길 76 (구기동)
3	홍파양로원	A0004	(노인) 양로노인주거복자치구	김우리	1.14E+09 노원구	서울특별시 노원구 동일로248길 30 (상계동)
4	혜명양로원	A0019	(노인) 양로노인주거복자치구	채명석	1.15E+09 금천구	서울특별시 금천구 금하로29길 36(시흥동)
5	시립고덕임	A0098	(노인) 양로노인주거복자치구	박기아	1.17E+09 강동구	서울특별시 강동구 고덕로 199(고덕동)
6	서울성모원	A2156	(노인) 양로노인주거복자치구	오양식	1.16E+09 영등포구	서울특별시 영등포구 대림로12가길 7-1
7	성우회	A2218	(노인) 양로노인주거복자치구	남상미	1.14E+09 은평구	서울특별시 은평구 통일로92길 13 (불광동)
8	서울시니0	A3022	(노인) 노인노인주거복자치구	김영채	1.15E+09 강서구	서울특별시 강서구 공항대로 315 (등촌동)
9	섭리의집	A3167	(노인) 양로노인주거복자치구	박정희	1.15E+09 금천구	서울특별시 금천구 시흥대로40길 111-5섭리의집

- □ 서울시 재가노인복지시설 목록[.csv]
- 서울 열린 데이터 광장에서 다운받은 서울시 구별 단위 재가노인복지시설 목록이 저장된 데이터.

1	시설명	시설코드	시설종류명	시설종류성	자치구(시)	시설장명	시군구코드	시군구명	시설주소					
2	참사랑데0	A0166	(노인) 재기	재가노인복	자치구	최신영	1.17E+09	송파구	서울특별시	송파구 마침	천로 89			
3	우리사랑지	A0564	(노인) 재기	재가노인복	자치구	정춘선	1.12E+09	동대문구	서울특별시	동대문구 취	취경로12길	83(휘경동))	
4	동대문실바/	A0638	(노인) 재기	재가노인복	자치구	이동수	1.1E+09	서울특별시	서울특별시	동대문구 9	약령시로5	일 223층 동	대문실버더	이케어센터
5	한국씨니0	A0681	(노인) 재기	재가노인복	자치구	반명규	1.16E+09	동작구	서울특별시	동작구 상모	도로30길 8	2층		
6	목동종합시/	A0707	(노인) 재기	재가노인복	자치구	유영덕	1.15E+09	양천구	서울특별시	양천구 목등	동중앙북로	8길 104목등	동종합사회	복지관 2층
7	효림재가노	A0738	(노인) 재기	재가노인복	자치구	김동숙	1.14E+09	서대문구	서울특별시	서대문구 경	경기대로9	62-01-38		
8	용산재가노	A0773	(노인) 재기	재가노인복	자치구	권용자	1.12E+09	용산구	서울특별시	용산구 한경	강대로 43길	13 대우이	이빌 7123	(한강로동)
9	길음노인복/	A0789	(노인) 재기	재가노인복	자치구	장민균	1.13E+09	성북구	서울특별시	성북구 삼양	양로2길 55	(길음동)		
10	남산실버복	A0839	(노인) 재기	재가노인복	자치구	박창남	1.11E+09	중구	서울특별시	중구 동호로	로5길 189	(신당동)		

- □ 서울시 노인 기타 사회복지시설 목록[.csv]
- 서울 열린 데이터 광장에서 다운받은 서울시 구별 단위 노인 기타 사회복 지시설 목록이 저장된 데이터.

1	시설명 시설코드	시설종류당시설종류성	장치구(시)	시설장명	시군구코드시군구명	시설주소
2	어르신상든F03699	(노인) 어르노인기타	자치구	김경미	1.11E+09 종로구	서울특별시 종로구 삼일대로 467 (경운동)
3	관악시니0G1044	(노인) 노인노인기타	자치구	조종현	1.16E+09 관악구	서울특별시 관악구 남부순환로247다길60 (봉천동)
4	중랑리베더G2641	(노인) 노인노인기타	자치구	이근배	1.13E+09 중랑구	서울특별시 중랑구 동일로 608 503호 (면목동)
5	굿피플데0 G4857	(노인) 장기노인기타	자치구	임을란	1.16E+09 관악구	서울특별시 관악구 난곡로 299 4층 (신림동)
6	새생명노인I0413	(노인) 장기 노인기타	자치구	유현목	1.16E+09 영등포구	서울특별시 영등포구 대림로35나길 20-1 (대림동 1층)
7	영락노인복J0767	(노인) 장기노인기타	자치구	박지향	1.11E+09 종로구	서울특별시 종로구 통일로 156 (교남동)
8	숭일재가노J4119	(노인) 장기노인기타	자치구	황종구	1.11E+09 종로구	서울특별시 종로구 종로 381-12층호 (숭인동)
9	장안종합시J4748	(노인) 장기 노인기타	자치구	전명구	1.12E+09 동대문구	서울특별시 동대문구 한천로18길 48장안종합사회복지관 2층
10	백운재가노M2058	(노인) 장기노인기타	자치구	손병주	1.14E+09 서대문구	서울특별시 서대문구 연희로156203호

- □ 시·군·구별 장기요양기관 전문인력 현황[.csv]
- KOSIS 국가통계포털에서 다운받은 데이터로 서울시 구별 단위로 장기요양 기관에 배치된 전문인력 수가 저장된 데이터를 전처리함.

1	자치구별	장기요양기	관 전문인력 수
2	종로구	902	
3	중구	875	
4	용산구	1727	
5	성동구	2204	
6	광진구	3257	
7	동대문구	3558	
8	중랑구	4517	
9	성북구	4816	
10	강북구	3829	

- □ 서울시 구별 의료기관 통계[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 구별 단위 의료기관 수가 저장된 데이터.

1	자치구별	종합병원	병원	의원
2	종로구	4	2	197
3	중구	2	4	240
4	용산구	1	2	140
5	성동구	1	5	219
6	광진구	2	5	269
7	동대문구	4	13	256
8	중랑구	3	13	244
9	성북구	1	6	256
10	강북구	1	10	223

- □ 서울시 노인교실 정보[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 구별 단위 노인교실 목록이 저장된 데이터를 교실 수로 전처리한 데이터.

1	자치구별	총시설수
2	종로구	10
3	중구	3
4	용산구	20
5	성동구	12
6	광진구	8
7	동대문구	16
8	중랑구	11
9	성북구	6
10	강북구	17

3) 인구학적 특성 지수

- □ 서울시 성별/구별 독거노인 현황[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 성별/구별 단위 독 거노인 수가 저장된 데이터를 성별 합산하여 전처리한 데이터.

1	자치구별	날짜	독거노인수
2	강남구	2019	12358
3	강남구	2020	13592
4	강동구	2019	13191
5	강동구	2020	14571
6	강북구	2019	15501
7	강북구	2020	17086
8	강서구	2019	19498
9	강서구	2020	20897
10	관악구	2019	18725

- □ 서울시 구별 고령자 현황[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 구별 고령자 수가 저장된 데이터에서 65세 이상 내국인 수를 추출함.

1	자치구별	날짜	고령자수
2	강남구	2019	70896
3	강남구	2020	74959
4	강남구	2021	78078
5	강동구	2019	63341
6	강동구	2020	69903
7	강동구	2021	73943
8	강북구	2019	60474
9	강북구	2020	63313
10	강북구	2021	64218

- □ 서울시 구별 고령자 현황[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 구별 고령자 수가 저장된 데이터에서 65세 이상 여성 내국인 수만을 추출함.

1	자치구별	날짜	여성인구수
2	종로구	2019	15269
3	중구	2019	12893
4	용산구	2019	22150
5	성동구	2019	24696
6	광진구	2019	26432
7	동대문구	2019	32854
8	중랑구	2019	35978
9	성북구	2019	40270
10	강북구	2019	34493

- □ 서울시 구별 부양비 및 노령화지수 통계[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 서울시 구별 노령화지수만 을 추출함.

1	자치구별	날짜	노령화지수
2	강남구	2019	106.1
3	강남구	2020	113.6
4	강남구	2021	120.9
5	강동구	2019	126.6
6	강동구	2020	128.9
7	강동구	2021	136
8	강북구	2019	217.2
9	강북구	2020	244.3
10	강북구	2021	267.4

- □ 서울시 구별 가구당 가구원 수[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 가구원 수를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, FAM1: 평균 가구원 수)

1	GU	FAM1
2	강남구	2.494186
3	강동구	2.604905
4	강북구	2.635135
5	강서구	2.595186
6	관악구	2.453052
7	광진구	2.491857
8	구로구	2.510811
9	금천구	2.562025
10	노원구	2.660494

4) 연금 지수

- □ 서울시 국민기초생활 보장 연령별/구별 수급자 통계[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 65세 이상 인구 데이터만 추출하여 구별 단위로 전처리한 데이터.

1		2021	기초생활보장 수급자 수
2	종로구		2253
3	중구		2753
4	용산구		3408
5	성동구		4193
6	광 <mark>진</mark> 구		4178
7	동대문구	Ì	6761
8	중랑구		9736
9	성북구		6353
10	강북구		8502

- □ 서울특별시 노인 기초연금 수급 현황[.csv]
- 공공데이터포털에서 다운받은 데이터로 2021년 65세 이상 노인인구 중 기 초연금 수급자 수가 저장된 데이터.

1	자치구	65세이상.	기초연금 =	미수급자 =	수급률
2	종로구	27181	13538	13643	49.81
3	중구	23478	13520	9958	57.59
4	용산구	37975	16070	21905	42.32
5	성동구	45210	23025	22185	50.93
6	광진구	50348	25883	24465	51.41
7	동대문구	60905	36893	24012	60.57
8	중랑구	69945	48307	21638	69.06
9	성북구	73130	44067	29063	60.26
10	강북구	63183	46139	17044	73.02

- □ 서울시 기초연금 수급자 현황 통계[.csv]
- 서울 열린 데이터 광장에서 다운받은 데이터로 2019 ~ 2020년에 조사된 65세 이상 노인인구 중 기초연급 수급자 수만을 추출함.

1	행정구별	2019기초연금수급자	2020기초연금수급자
2	종로구	12810	13404
3	중구	12318	13173
4	용산구	15621	16089
5	성동구	22262	22794
6	광진구	23694	25221
7	동대문구	34675	36248
8	중랑구	43710	47035
9	성북구	42101	43947
10	강북구	42843	45245

- □ 한국주택금융공사_주택연금 서울 발급건수 구별 현황[.csv]
- 공공데이터포털에서 다운받은 데이터로 2020년 서울시 구별 단위로 조사 된 주택연금 발급건수를 추출한 데이터.

1	구분	공급건 건수
2	강북구	743
3	광진구	541
4	노원구	2329
5	도봉구	1563
6	동대문구	1034
7	마포구	735
8	서대문구	787
9	성동구	724
10	성북구	1279

5) 만족도 지수

- □ 60세 이상 소득 만족도[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 소득 만족도, 생계유지 어려움 경험 정도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, BQ2: 소득 만족도, BQ3: 생계유지 어려움 경험 정도)

1	GU	BQ2	BQ3
2	110	4	1
3	110	4	3
4	110	4	1
5	110	6	2
6	110	4	1
7	110	4	2
8	110	2	1
9	110	6	1
10	110	4	1

- □ 60세 이상 여가활동 만족도[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 여가활동 만족도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, AQ11_1: 여가활동 만족도_문화여가시설, AQ15: 여가활동 만족도_전반적인 여가활동)

1	GU	AQ11_1	AQ15
2	110	3	1
3	110	4	2
4	110	4	3
5	110	3	3
6	110	4	3
7	110	4	3
8	110	4	2
9	110	4	3
10	110	4	4

- □ 60세 이상 일자리 만족도[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 일자리 만족도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, BQ7: 지난 1주일간 근로 여부, BQ7A: 일을 하지 않은 이유, BQ7B_1: 일자리 만족도_하는 일, BQ7B_2: 일자리 만족도_임금/가구소득, BQ7B_3: 일자리 만족도_근로시간, BQ7B_4: 일자리 만족도_근무환경, BQ7B_5: 일자리 만족도_전반적 만족도)

1	GU	BQ7	BQ7A	BQ7B_1	BQ7B_2	BQ7B_3	BQ7B_4	BQ7B_5
2	110	1		3	3	4	3	3
3	110	1		4	3	4	3	4
4	110	1		3	4	. 3	3	3
5	110	2	4					
6	110	1		3	4	3	3	3
7	110	1		4	3	4	4	3
8	110	1		4	4	3	3	3
9	110	2	4					
10	110	1		4	4	4	4	4

- □ 60세 이상 삶의 만족도, 행복도[.csv]
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)'데이터로 60세 이상 인구를 대상으로 삶의 만족도, 행복도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU:구코드, BQ1_1: 최근 전반적인 삶의 만족도, BQ1_2: 현재 살고 있는 지역에 대한 전반적인 생활 만족도, BQ1_3: 전날 행복도, BQ1_4: 전날 걱정 정도)

1	GU	BQ1_1	BQ1_2	BQ1_3	BQ1_4
2	110	7	6	7	7
3	110	6	5	7	6
4	110	7	6	7	6
5	110	8	7	6	7
6	110	7	6	7	6
7	110	7	6	7	7
8	110	5	4	6	5
9	110	7	6	7	6
10	110	7	8	6	7

- □ 60세 이상 주거환경 만족되.csv
- 서울 열린 데이터 광장에서 다운받은 '서울서베이 도시정책지표조사 정보 (2021년)' 데이터로 60세 이상 인구를 대상으로 주거환경 만족도를 설문조사한 데이터를 구별 단위로 합치는 전처리 과정을 거친 데이터. (GU: 구코드, BQ4_1: 주거환경 만족도_주택, BQ4_2: 주거환경 만족도_기반시설, BQ4_3: 주거환경 만족도_주거지역 내 주차장 이용)

1	GU	BQ4_1	BQ4_2	BQ4_3
2	110	3	3	3
3	110	4	4	3
4	110	3	2	2
5	110	3	3	2
6	110	3	3	2
7	110	4	3	3
8	110	3	3	4
9	110	4	4	3
10	110	4	3	3

2.3 데이터 정제 방안

1) 일자리

- □ 종속변수인 일자리 만족도를 구 코드별로 집계하여 구역별 일자리 충분도 의 평균으로 둠.
- □ 구 코드는 로우데이터 설명대로 해당 자치구로 변환하여 알아보기 쉽도록 설정함.
- □ 데이터에 ',' 표시가 되어 있는 부분은 정규표현식을 이용하여 제거 후 수 치형 데이터로 변환.
- □ 취업건수와 구직건수를 나누어 '노인취업률'이라는 파생변수 생성.

2) 복지

- □ '2020_의료기관(구별)' 데이터에서 종합병원 수와 병원, 의원 수를 합하여 '의료기관수'라는 파생변수 생성.
- □ 데이터들을 자치구 기준으로 join하여 분석하기 쉬운 데이터 형태로 만듦.
- □ 군집분석을 하기 전 데이터 값 표준화

3) 인구학적 특성

- □ 구 코드는 로우데이터 설명대로 해당 자치구로 변환하여 알아보기 쉽도록 설정함.
- □ 가구원 수를 구 코드로 그룹별 집계해 구역별 가구원 수의 평균으로 둠.
- □ '독거노인 수' 컬럼 값에 ',' 표시가 되어 있는 부분은 정규표현식을 이용 하여 제거 후 수치형 데이터로 변환.

4) 만족도

- □ 같은 범주 내에서 변수들 간의 상관관계가 높은 경우 차원 축소를 통해 하나 혹은 두 개의 변수만 추출함.
- □ 차원축소 후 남은 데이터들을 병합한 후에 구 코드를 그룹별 집계하여 구 역별 만족도의 평균으로 둠.
- □ 구 코드는 로우데이터 설명대로 해당 자치구로 변환하여 알아보기 쉽도록 설정함.

5) 연금

□ 변수 변경 및 데이터 통합.

3. 분석 프로세스

3.1. 분석 프로세스

1) 데이터 수집

- □ 노인빈곤지수를 도출하기 위한 여러 가지 활용데이터 사용.
 - 60세 이상 인구 사회조사
- 21년도 노인 구직건수
- 기초연금 노인 수급자 수
- 서울시 사회복지시설 현황
- 21년도 노령화지수
- 21년도 여성노인 인구수
- □ EDA 탐색 중 워드클라우드를 통한 단어 빈도 산출 및 문제점 현황 파악.

2) 노인빈곤지수 정의

- □ 노인빈곤지수 정의를 위한 만족도, 일자리, 연금, 인구학적 특성, 복지 5 가지의 도메인 설정.
- □ 도메인별 세부 요인변수를 선정함.

3) 분석 방법

- □ 상관분석
- □ 회귀분석
- □ 클러스터링분석

4) 분석 결과 활용

- □ 데이터 시각화 결과물을 통한 지도 제작
- □ 노인빈곤지수 및 지도를 통한 정책 활용 방안

3.2 분석 내용 및 방법

1) 요약

- □ 노인빈곤지수 도메인별 지수 산출식 + (분석 방법 : 상관분석, pca 등)
- (1) 만족도 지표 = 0.269BQ7B_5 0.239BQ4_2 + 0.341AQ11_1 + 0.223 AQ15 - 0.127BQ3
- 분석 방법 : ① PCA ② 회귀분석
- (2) 일자리 지표 = -1.68구직건수 + 3.08취업건수 10구인난 9.6노인취 업률
- 분석 방법 : 상관분석
- (3) 연금 지표 = 0.542기초연금수급자수 + 0.458주택연금건수
- 분석 방법 : 상관분석
- (4) 인구학적 특성 지표 = 0.4내국인노인수 + 0.412여성노인수 + 0.187가구 원수평균
- 분석 방법 : 상관분석
- (5) 복지 지표 = 노인복지시설이 잘 갖춰진 구역은 1, 갖춰지지 않은 구역 은 0
- 분석 방법 : 군집분석
- □ 전체 지수 산출식
- = 만족도 지표 + 일자리 지표 + 연금 지표 + 인구학적 특성 지표 + 복지 지표
- □ 산출 지수를 통해 QGIS로 서울시 행정구별 지도 시각화

2) EDA 탐색

- □ 노인빈곤율을 키워드로 네이버 뉴스 기사 약 10,000만개를 크롤링 후 단어 의 빈도를 워드클라우드로 시각화
- □ 복지와 일자리, 소득의 단어 빈도순으로 나타남
- □ 노인빈곤율이 복지, 일자리, 소득과 연관이 있다는 것을 파악 가능
- □ 노인빈곤지수는 복지, 일자리, 만족도, 연금, 인구학적 특성으로 요인을 정하여 지수를 계산하기로 정의함.

3) 노인빈곤지수 도메인별 지수 산출

- □ 만족도 지수 계산 방법
- * 만족도 지표 = 0.269BQ7B_5 0.239BQ4_2 + 0.341AQ11_1 + 0.223AO15 0.127BO3
- □ 산출 방법 : 삶의 만족도, 소득, 여가활동, 일자리, 주거환경 5개의 범주로 나누어 범주당 하나 혹은 두 개의 변수를 추출함.

(1) 삶의 만족도

① 주성분과 SCREE PLOT을 통해 해당 변수들을 얼마나 축소할 수 있는지 알 아보기

- * BQ_1,BQ_2,BQ_3 변수들이 서로 강한 양의 상관관계를 가짐을 확인 가능.
- * 차원축소를 이용하여 이 3개의 변수를 축소함.

- ② 주성분과 SCREE PLOT을 통해 해당 변수들을 얼마나 축소할 수 있는지 알아보기
 - * 통계학 논문과 서적을 참고하면 보통 주성분의 개수는 총 분산비율(Cum Ratio)이 70%~90% 범위일 때 결정 됨. 해당 주성분표를 참고하여 principal component 1일 때 Cum Ratio는 0.806으로 범위에 속하게 되므로 주성분 개수를 하나로 결정할 수 있음.

			PCA explained	variance	PCA explained	variance_ratio	₩
principal	component	1		2.419922		0.806552	
principal	component	2		0.337828		0.112597	
principal	component	3		0.242580		0.080851	

principal component 1 0.806552 principal component 2 0.919149 principal component 3 1.000000 ③ 주성분표와 SCREE PLOT을 참고하여 BIPLOT 그래프를 그려 주성분과 가장 연관이 있는 변수를 확인하고 해당 변수를 추출.

	GU	BQ1_1	BQ7B_3	BQ7B_5	BQ4_2	AQ11_1	AQ15	BQ2	BQ3
0	110	7	4.0	3.0	3	3	1	4.0	1.0
1	110	6	4.0	4.0	4	4	2	4.0	3.0
2	110	7	3.0	3.0	2	4	3	4.0	1.0
3	110	8	NaN	NaN	3	3	3	6.0	2.0
4	110	7	3.0	3.0	3	4	3	4.0	1.0
***	1500	1949	566	803	320	1440	936	522	220
9094	290	7	NaN	NaN	4	4	2	2.0	1.0
9095	305	5	4.0	4.0	3	4	4	4.0	3.0
9096	410	8	NaN	NaN	5	3	4	5.0	1.0
9097	410	7	NaN	NaN	5	3	4	4.0	1.0
9098	350	6	4.0	4.0	4	3	4	3.0	2.0

9099 rows × 9 columns

- * 나머지 4개의 범주에 대해서도 위와 같은 방법을 사용하여 하나 혹은 두 개의 변수를 추출함.
- * 만족도 지표에 사용할 구별 데이터 프레임은 위와 같음. 또한 각 변수들의 설명은 다음과 같음.
- BQ1_1 : 최근 전반적인 삶의 만족도(0부터 10까지, 0.전혀 만족하지 않는다 10.매우 만족한다)
- → BQ2 : 소득 만족도(10점 환산 = (x-1)/4*10)

- → BQ3 : 생계유지 어려움 경험 정도(10점 환산 = (x-1)/3*10)
- ▶ BQ4_2 : 주거환경 만족도_기반시설(10점 환산 = (x-1)/4*10)
- ▶ BQ7B_3 : 일자리 만족도_근로시간(10점 환산 = (x-1)/4*10, BQ7 1만 해당)
- ▶ BQ7B_5 : 일자리 만족도_전반적 만족도(10점 환산 = (x-1)/4*10, BQ7 1만 해당)
- AQ11_1 : 여가활동 만족도_문화여가시설(10점 환산 = (x-1)/4*10)4
- AO15 : 여가활동 만족도_전반적인 여가활동(10점 환산 = (x-1)/4*10)

④ 다시 만들어진 데이터프레임을 GU(자치구 코드)별로 평균으로 집계한 뒤, 변수들 간의 상관성 확인

- * 전반적으로 모든 변수는 서로 상관관계가 있음을 파악 가능
- * 만족도 변수들을 모두 포괄하는 BQ1_1(최근 전반적인 삶의 만족도)변수를 종속변수로 하여 회귀분석을 실시함.

- ⑤ 다중공선성 확인을 위한 분산팽창지수(VIF) 체크
 - 각각 컬럼의 VIF 지수가 10 이상일 경우 다중공선성이 있는 것으로 판단.
 - 전진선택법, 후진제거법, 단계적 선택법 등을 활용한 변수제거 및 회귀분석
 - 모든 변수의 VIF 지수가 10 미만이므로 변수를 제거하지 않고 회귀분석 진행 가능

⑥ 회귀분석 진행

	컬럼	VIF				
0	BQ7B_3	5.088320	OLS Regression Res	ults		
1	BQ7B_5	4.161858	Dep. Variable:	BQ1_1	R-squared:	0.844
	DO 4 2	4.070000	Model:	OLS	Adj. R-squared:	0.780
2	BQ4_2	4.273822	Method:	Least Squares	F-statistic:	13.13
3	AQ11 1	5.494028	Date:	Tue, 09 Aug 2022	Prob (F-statistic):	9.62e-06
81	SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDR	WELCHEL SERVICE	Time:	01:03:28	Log-Likelihood:	17.446
4	AQ15	1.847286	No. Observations:	25	AIC:	-18.89
5	BQ2	1 939306	Df Residuals:	17	BIC:	-9.140
	DQL	1.000000	Df Model:	7		
6	BQ3	1.678778	Covariance Type:	nonrobust		
			2.11			

- 회귀분석 유의성 검정에서 F통계량의 p-value가 유의수준 0.05보다 작으므로 유의한 회귀식
- R-squared는 수정결정계수가 0.78 > 회귀모형이 약 78%의 설명력을 가 짐.

	coe	f std err	t	P> t	[0.025	0.975]
Intercept	2.9687	1.655	1.793	0.091	-0.524	6.461
BQ7B_3	-1.0119	0.547	-1.849	0.082	-2.166	0.143
BQ7B_5	1.4989	0.534	2.809	0.012	0.373	2.625
BQ4_2	-1.3344	0.495	-2.694	0.015	-2.379	-0.289
AQ11_1	1.9023	0.516	3.690	0.002	0.815	2.990
AQ15	1.2439	0.399	3.116	0.006	0.402	2.086
BQ2	-0.5250	0.267	-1.965	0.066	-1.089	0.039
BQ3	-0.7057	0.213	-3.308	0.004	-1.156	-0.256
Om	nibus:	0.344	Durbin-\	Vatson:	1.873	
Prob(Omr	nibus):	0.842 J	arque-Be	ra (JB):	0.505	
	Skew:	0.096	Pr	ob(JB):	0.777	
Ku	rtosis:	2.331	Co	nd. No.	505.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

▲ 유의수준 0.05 하에서 BQ1_1에 영향을 주는 변수는 BQ3, BQ4_2, BQ7B_5, AQ11_1, AQ15인 것으로 나타남.

▲ 회귀모형의 4가지 가정을 실시한 결과, 4가지 가정 모두 따르는 것으로 나타남.

② 회귀계수를 이용하여 각 변수에 가중치를 부여하고 지수식 산출

회귀계수를 이용한 가중치 산정식

$$W_i = \beta_i / \sum_{i=1}^5 \beta_i$$
 (각 변수의 회귀계수 / 회귀계수의 합)

- * 유의한 변수가 BQ3, BQ4_2, BQ7B_5, AQ11_1, AQ15 총 5개이므로 이 변수을 가중치 산정식에 대입하여 지수식을 산출.
- * 만족도 지표 = 0.269BQ7B_5 0.239BQ4_2 + 0.341AQ11_1 + 0.223AQ15 0.127BQ3
- ⑧ 위의 지수식에 변수 값을 대입하여 최종 만족도 지수를 만듬

(2) 일자리 지표 = -1.68구직건수 + 3.08취업건수 - 10구인난 + 9.6노인취업률

① 각 변수들 간 상관관계 그래프를 그려 상관성을 확인

② 상관계수를 이용하여 가중치를 산정함

상관계수를 이용한 가중치 산정

$$W_i = r_i / \sum_{i=1}^5 r_i$$
 (각 변수의 상관계수/상관계수의 합)

- * 유의한 변수가 구직건수, 취업건수, 구인난, 노인취업률 총 4개이므로 변수들을 가중치 산정식에 대입하여 지수 산정.
- * 일자리 지표 = -1.68구직건수 + 3.08취업건수 10구인난 + 9.6노인취업률
- ③ 위의 지수식에 변수값을 대입하여 일자리 지수를 만들고 구역별 지수 간 편차를 줄이기 위해 표준화시켜 최종 지수를 만듬.

(3) 연금 지표 = 0.542기초연금수급자수 + 0.458주택연금건수

① 각 변수들 간 상관관계 그래프를 그리고 pearson상관분석을 실시하여 상관 성을 확인

기초생활보장수급자수 와 기초연금수급자수 의 상관계수 : 0.895511279291151 기초생활보장수급자수 와 기초연금수급자수 의 pvalue : 1.4901838931859892e-09

기초생활보장수급자수 와 기초생활보장수급자수 의 상관계수 : 1.0 기초생활보장수급자수 와 기초생활보장수급자수 의 pvalue : 0.0

기초생활보장수급자수 와 주택연금건수 의 상관계수 : 0.7562152492737015 기초생활보장수급자수 와 주택연금건수 의 pvalue : 1.2266390592159472e-05

- * 기초생활보장수급자 요인변수들의 상관분석 결과 모든 변수가 유의함.
- ② 상관계수를 이용하여 가중치를 산정함 상관계수를 이용한 가중치 산정식

$$W_i = r_i / \sum_{i=1}^{5} r_i$$
 (각 변수의 상관계수/상관계수의 합

* 유의한 변수가 기초연금수급자수, 주택연금건수 총 2개이므로 이 변수들을

가중치 산정식에 대입하여 지수식을 만듬.

- * 연금 지표 = 0.542기초연금수급자수 + 0.458주택연금건수
- (4) 인구학적 특성 지표 = 0.4내국인노인수 + 0.412여성노인수 + 0.187가구원수평균

① 각 변수들 간 상관관계 그래프를 그리고 pearson상관분석을 실시하여 상관 성을 확인

- * 유의수준 0.05에서 독거노인 수와의 상관성이 존재하는 변수는 내국인 노인 수, 여성노인 수.
- * 유의수준 0.1에서 독거노인 수와 가구원수 평균의 상관성 또한 유의함.

② 상관계수를 이용하여 가중치를 산정함

상관계수를 이용한 가중치 산정식

 $W_i = r_i / \sum_{i=1}^{5} r_i$ (각 변수의 상관계수/상관계수의 합)

- * 유의한 변수 내국인 노인 수, 여성노인 수, 가구원수 평균 총 3개.
- * 인구학적 특성 지표 = 0.4내국인노인수 + 0.412여성노인수 + 0.187가구원 수평균
- ③ 위의 지수식에 변수 값을 대입하여 연금 지수를 만들고 구역별 지수 간 편차를 줄이기 위해 표준화시켜 최종 지수 산출.
- (5) 복지 지표 = 노인복지시설이 잘 갖춰진 구역은 1, 갖춰지지 않은 구역은 0.5

① 각 변수들 간 상관관계 그래프를 그리고 pearson상관분석을 실시하여 상관 성을 확인

의료기관수 와 노인의료복지시설수 의 상관계수 : -0.21565156655635823 의료기관수 와 노인의료복지시설수 의 pvalue : 0.3005285150912958

의료기관수 와 노인주거복지시설수 의 상관계수 : 0.2296546898757453 의료기관수 와 노인주거복지시설수 의 pvalue : 0.2694507828054387

의료기관수 와 노인교실수 의 상관계수: 0.259962251250485 의료기관수 와 노인교실수 의 pvalue: 0.20948681396442484

의료기관수 와 재가노인복지시설수 의 상관계수: 0.009466648018636156 의료기관수 와 재가노인복지시설수 의 pvalue: 0.9641784071610059

의료기관수 와 장기요양기관 전문인력 수 의 상관계수 : 0.27349246992884846 의료기관수 와 장기요양기관 전문인력 수 의 pvalue : 0.18588831373269843

- * 상관분석 결과 모든 변수에서 상관성이 존재하지 않음.
- * 따라서 클러스터링 분석 진행

② 계층적 군집분석 연결법 비교

* 덴드로그램을 이용한 군집 결과 와드 연결법이 다른 연결법에 비해 군집이 가장 고르게 분포되었다고 판단하였음.

③ 군집분석 간 실루엣 계수 비교

• AgglomerativeClustering (계층적 군집분석)

▸ K-means 군집분석

* K-means Clustering 방법에서 군집 개수가 3일 때 실루엣 계수가 0.263 으로 가장 높았으므로 군집을 3개로 두고 K-means 방법으로 군집분석 수행 ④ K-means Clustering 후 산점도 행렬을 통한 군집의 특성 검토

컨 군	집		1번	군집		2번	군집	
	행정구별	cluster		행정구별	cluster			
5	광진구	0	1	강동구	1		40-1-00	cluster
			2	강북구	1		해저그벼	
7	금천구	0	3	강서구	1		W OT E	
11	동작구	0	4	관악구	1		0015	
12	마포구	0	6	구로구	1	6		
13	서대문구	0	8	노원구	1	_		
14	서초구	0	9	도봉구	1			
15	성동구	0	10	통대문구	1	٨	71117	^
16	성북구	0	17	송파구	1	U	간단구	/
20	용산구	0	18	양천구	1		0 0	_
			19	영등포구	1		2500 10	
22	종로구	0	21	은평구	-1			
23	중구	О	24	중랑구	1			

- * 모든 변수에서 1,2번 군집의 점들이 오른쪽 위에 위치, 0번 군집은 왼쪽 아래에 위치함.
- * 1,2번 군집이 0번 군집에 비해 복지시설이 잘 갖추어져 있음.
- * 1,2번 군집에는 복지지수를 1점으로 산정, 0번 군집에는 0점으로 산정

- 4) 노인빈곤지수 총 지수 산출 및 분석 결과
 - □ 노인빈곤지수 = 만족도 지표 + 일자리 지표 + 연금 지표 + 인구학적 특성 지표 + 복지 지표
 - □ 노인빈곤지수 계산결과 Top 5
 - * 노인빈곤지수가 높을수록 노인빈곤격차가 높음

GU	지수
강남구	35.757438
영등포구	25.929004
서초구	20.550135
송파구	19.781479
중구	18.348967

- □ 노인빈곤지수 계산 결과 Low 5
- * 노인빈곤지수가 낮을수록 노인빈곤격차가 낮음

GU	지수
도봉구	-20.819935
동작구	-21.318542
마포구	-23.355785
양천구	-35.085427
노원구	-36.644282

4. 분석 결과

- □ QGIS를 활용하여 분석 결과를 시각화함
 - * 노인빈곤지수가 높을수록 진하게, 낮을수록 연하게 색을 분류하여 시각화함
- □ 강남구, 서초구의 두 행정구역이 노인빈곤지수가 매우 높게 나타났음을 파악 가능.

- * 해당 행정구역에 대한 노인빈곤의 원인 파악 및 맞춤형 복지 정책 선별 운영할 필요성 존재.
- □ 추가적으로 3개년(19',20',21') 노인빈곤지수 데이터를 시계열 분석한 결과, 각 행정구별로 노인빈곤윸의 추이 파악 가능

- ▲ 2019년 노인빈곤지수 적용 결과 ▲ 2020년 노인빈곤지수 적용 결과 ▲ 2021년 노인빈곤지수 적용 결과
 - □ 강동구, 강북구, 금천구, 영등포구, 용산구, 성동구, 중구에서 노인빈곤율이 최 근 3년간 상승하는 추이를 보임
 - * 해당 행정구들에 대한 노인빈곤 관련 선제적인 예방 대응책이 필요함.
 - □ 금천구의 경우 최근 3년간 노인빈곤율이 급상승하고 있음
 - * 금천구를 집중적으로 노인 빈곤 예방에 힘쓸 필요가 있음

▲ 연도별 빈곤지수 추이

5. 활용 방안

5.1. 문제점 개선 방안

- 1) 개요에서 제시한 문제점 해결 방향
 - □ 현재 노인빈곤율은 소득 지표만 반영되고 있으므로, 소득 외의 노인 인구 의 삶을 측정할 수 있는 다차원적인 빈곤 지표가 필요함.
 - * 현재 OECD의 노인빈곤율 산정방식은 월 소득을 기준으로 계산되었고, 이런 방식의 계산은 정확한 노인 빈곤의 척도를 보여주는 데 한계가 있음. 실제로 한국 노인들의 자가 보유율은 74.8%로 한국 노인 10명 중 7명은 부 동산을 소유함.
 - * 이러한 점을 고려해본다면 근로 소득은 없지만 수억의 부동산을 소유하고 있는 노인을 예시로 생각해본다면 OECD가 계산한 노인빈곤율은 실제 노인빈곤실태를 파악하는 데 한계가 존재.
 - * 따라서, 다양한 빈곤의 원인을 찾아 삶의 질을 반영할 수 있는 변수들을 데이터로 저장함.
 - * 각각 일자리 지수, 복지 지수, 인구학적 특성 지수, 연금 지수, 만족도 지수를 설정하여 기존의 소득 중심의 노인빈곤율을 보완할 수 있는 다차원적 노인빈곤지표를 산출함.

1	시군구	일자리지수	복지지수	인구학적 특성지수	연금지수	만족도지수
2	강남구	-37.94024	1	0.530660625	-1.03181	1.683953
3	강동구	-8.211881	1	0.529293543	0.271399	1.481157
4	강북구	-3.667455	1	0.196116141	0.316524	1.785926
5	강서구	11.7427	1	1.349343392	1.535597	1.54082
6	관악구	10.53573	1	0.516078778	0.506321	1.626316
7	광진구	-1.517743	0	-0.624674019	-0.71369	1.600577
8	구로구	-5.394932	1	0.251305177	0.589835	1.470217
9	금천구	-7.660442	0	-1.000373585	-0.80511	1.523511
10	노원구	30.33337	1	1.329015954	2.375644	1.606251
11	도봉구	17.34329	1	-0.041211493	0.96423	1.553626
12	동대문구	6.318531	1	-0.098144667	0.22613	1.58062
13	동작구	19.89745	0	-0.128662054	0.051541	1.498208
14	마포구	22.74199	0	-0.534289668	-0.438	1.586085
15	서대문구	4.724287	0	-0.320181843	-0.20043	1.656217

16	서초구	-21.00662	0	0.078952997	-1.25316	1.63069
17	성동구	-9.409657	0	-0.587532099	-0.64939	1.648158
18	성북구	14.51865	0	0.520937899 0.76294		1.577193
19	송파구	-24.47732	1	1.843936901	0.217179	1.634723
20	양천구	32.45258	1	-0.07860049	0.249072	1.462379
21	영등포구	-27.94516	1	-0.210349151 -0.25979		1.486296
22	용산구	-16.57134	0	-1.035624109	-1.36359	1.528717
23	은평구	10.6275	1	1.193952304	1.070564	1.541263
24	종로구	-8.841855	0	-1.787932931	-1.48518	1.630672
25	중구	-16.21021	0	-2.228630781	-1.52953	1.6194
26	중랑구	7.618764	1	0.336613178	0.592705	1.542483

- □ 복지 사각지대에 놓인 노인 빈곤 문제를 해결하기 위한 정책의 효과성을 달성하기 위한 새로운 노인 빈곤 지표의 필요성 존재.
- * 기존 OECD가 계산한 노인빈곤율을 보완하기 위해 위 지수를 토대로 하여 새로운 노인 빈곤 지표를 산출. 지표를 산출하는데 있어서 소득, 부동산자산과 같은 데이터는 존재하지 않거나 데이터가 구별 단위로 구분되어있는 것이 아닌 전국단위로 존재하는 등 반영하는데 어려움이 있었음.

하지만, 다양한 삶의 질을 반영할 수 있는 여러 요소들을 반영하여 빈곤의 원인으로 볼 수 있는 여러 요소들을 활용하여 새로운 지표를 산출했다는 점 에서 의의가 있음.

1	GU	2019	2020	2021	14	마포구	-9.42102	-0.91748	-23.3558
2	강남구	36.66554	38.45312	35.75744	15	서대문구	-0.03675	1.673468	-5.85989
3	강동구	4.165193	4.872788	4.930031	16	서초구	26.14648	25.58843	20.55014
4	강북구	-12.6648	-4.50758	0.368889	17	성동구	5.482792	5.824827	8.998425
5	강서구	-12.8688	-14.6644	-17.1685	18	성북구	-29.8555	-25.839	-17.3797
6	관악구	-6. <mark>215</mark> 53	-10.9671	-14.1845	19	송파구	24.57385	23.78797	19.78148
7	광진구	5.228109	-3.19156	1.25553	20	양천구	-11.9701	-15.7318	-35.0854
8	구로구	4.708489	5.925631	2.083575	21	영등포구	18.55813	24.01481	25.929
9	금천구	-31.9318	-21.8879	7.942414	22	용산구	12.81784	9.681524	17.44183
10	노원구	-39.9028	-51.4399	-36.6443	23	은평구	-8.41452	-12.1501	-15.4333
11	도봉구	-15.628	-23.0507	-20.8199	24	종로구	10.85877	11.60471	10.48429
12	동대문구	-12.1829	-10.5077	-9.02714	25	중구	16.38271	12.77187	18.34897
13	동작구	-21.4604	-14.9094	-21.3185	26	중랑구	-6.53028	-7.9299	-11.0906

5.2. 업무 활용 방안

- 1) 노인빈곤지도를 통한 행정구별 노인 빈곤 현황 파악 및 참고자료로 활용 가능
 - □ (범용성) 노인빈곤지수를 서울시 행정구별로 적용한 분석 결과를 서울시 지도로 제작하여 행정지표로 사용 예정.
 - □ (활용성) 빈곤 취약 행정구역 3순위를 파악 및 해당 구 대상으로 선정하여 노인돌봄서비스 정책 강화 가능.
 - □ (활용성) 3개년 데이터 추이 분석 결과, 노인빈곤지수가 증가하고 있는 행정구 9개 지역에 대한 예방정책 시행 가능.
 - □ (정책 효율성) 안전지원 / 사회참여 / 노인일자리 / 생활교육 및 개별 맞 춤형 특화 서비스 정책 선별 운영 가능.
 - □ (기대효과) 노인빈곤지수를 KPI로 선정하여 서울시 노인빈곤지수 평균 2.13에서 1.13으로 감소하는 것을 목표함.

▲ 노인빈곤지도 사용 예시

2) 노인 빈곤 및 복지 관련 정책 홍보를 통한 시민 인식 개선

2022년 데이터 분석 청년인재양성 - 실무형프로젝트

- □ (활용성) SNS 업로드용 카드뉴스, 인포그래픽 등의 컨텐츠 제작을 통해 노인 빈곤 관련 정책 홍보
- □ (효과성) 정책 홍보 등을 통해 노인 빈곤 개념에 대한 사회적 친숙도 개선
- □ (효과성) 노인 빈곤 및 관련 복지정책에 대한 시민의 사회적 인식 제고

	구분별(2)	2021					
구분별(1)		종합 평균	사회적 약자에 대한 시민의 주관적 태도				
イモ宣(1)	구군일(2)	소계	장애이에 대한 민 식	가난에 대한 인식	노인사회복지 인 식		
서울시	소계	5,67	6,16	5,39	5.0		

* 사회적 약자에 대한 시민의 인식 중 가난과 노인사회복지 인식이 종합 평균보다 각각 0.48, 0.61의 상대적으로 낮은 수준 차이를 보이고 있음

10대	2021	종합 평균	소계	5,60
		사회적 약자에 대한 시민의 주관적 태도	장매아메 대한 민식	6.08
			가난에 대한 인식	5,36
			노인사회복지 인식	5.04
			여성제도 개선 민식	5.93
20대	2021	종합 평균	소계	5,64
		사회적 약자에 대한 시민의 주관적 태도	장매아메 대한 민식	6,14
			가난에 대한 인식	5,42
			노민사회복지 인식	4,85
			여성제도 개선 민식	6,15

- * 그 중 10대, 20대의 노인사회복지 인식이 종합 평균 대비 낮은 수준의 추이를 보이고 있음
 - □ (기대효과) 카드뉴스, 인포그래픽 등의 홍보 시각화 제작물들은 시민들에 게 다소 생소할 수 있는 노인 빈곤의 개념에 대한 인식과 친숙도를 향상.
 - ▶ 노인 정책에 익숙하지 않은 1020대 연령층들이 자주 사용하는 인터넷 매체, SNS 등을 이용한 홍보 컨텐츠들을 통해 노인 빈곤 및 서울시 관련 정책에 관한 홍보를 실시함.

▲ 노인 빈곤 관련 SNS용 홍보물(예시)

6. 참고자료(Reference)

OECD iLibrary, Pensions at a Glance 2021, https://www.oecd-ilibrary.org/sites/d76e4fad-en/index.html?itemId=/content/component/d76e4fad-en, 2022

이유리, [자산관리 대중화 시대] "늘어난 수명…생애주기별 투자·관리로 노후 대비", 농민신문, 2022.05.02., https://www.nongmin.com/news/NEWS/ECO/FNC/35493 2/view

손해용 & 김도년, 인구 감소로 배꼽 커진 '총부양비'…"2060년 1인당 부채 2억7500만 원", 중앙일보, 2019.03.28., https://www.joongang.co.kr/article/23424985#home

한국경제연구원, 한국, 연평균 저출산·고령화 속도 OECD 37개국 중 가장 빨라, http://www.keri.org/web/www/news_02?p_p_id=EXT_BBS&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_EXT_BBS_struts_action=%2Fext%2Fbbs%2Fview_m essage&_EXT_BBS_messageId=356141, 2022

장민, 우리나라의 노인빈곤율 현황과 시사점, KIF금융분석리포트, 2019(16), 한국금융 연구원, 2019, 1-65.

윤석명 외, 다양한 노인빈곤지표 산정에 관한 연구, 한국보건사회연구원, 2017, 3-9.

김수영 & 박병현, 한국 노인의 다차원적 빈곤 유형과 사회보장에 관한 연구, 사회복지 정책, 45(4), 한국사회복지정책학회, 2018, 1-30.

최균 외, 차원계수방식에 의한 다차원적 빈곤 측정, 한국사회복지학, 63(1), 한국사회 복지학회, 2011, 85-111

이상준 외, 가중치 산출방법에 따른 고객만족도지수의 비교, 디지털융복합연구, 11(12), 한국디지털정책학회, 2013, 201-211.

[부록]

1. 사례조사 정리

남재현, 노인빈곤과 노후소득보장체계 비교연구: 캐나다와 미국의 사례를 중심으로, 한국사회정책, 28(2), 한국사회정책학회, 2021, 53-87.

전영상. "우리나라 고령사회의 노인복지정책 발전방향에 대한 연구." 국내석사학위논문 한남대학교 행정복지대학원, 2013. 대전, 20~34p

Josephine Cumbo, Rise in UK state pension age has doubled poverty rates a mong 65-year-olds, says think-tank, FINANCIAL TIMES, 2022.6.20 https://www.ft.com/content/0466980f-8d92-425c-9930-8014a1c85da6 (영국 노인빈곤)

Gill Plimmer, Nearly one-fifth of UK pensioners live in poverty, FINANCIAL TIMES 2021 6 28

https://www.ft.com/content/b475a0e8-6829-461f-af70-170268d23580 (영국 노인빈곤)

송보라, 외국의 노인복지 제도 비교를 통한 우리나라 노인복지 발전방안 연구, 가천대 사회복지학과, 2017, 30~67p http://www.riss.kr/search/detail/DetailView.do?p_mat_type=be54d9b8bc7cdb09&control_no=3cd884ee5e00ff91ffe0bdc3ef48d419&outLink=K

(노인복지)

김정근, "외로움을 덜어드립니다"…신종 해외 노인 돌봄 비즈, 중앙일보, 2019.11.30 https://www.joongang.co.kr/article/23645657#home (노인돌봄서비스)

신나희, [한국인의 시선으로 본 독일] 남 일 같지 않은 독일의 노인 빈곤, 녹색전환연 구소 ,2019.12.19

http://igt.or.kr/index.php?document_srl=67387&mid=abroad (노인민곤칼럼)

2. 주제설계를 위한 마인드맵

3. 분석 상세코드 등

```
#변수 公型계수 히트램
corrdata1=corrdata[['FAM1', 'FAM15', 'S00_3', 'AA01', 'B01_1', 'B01_2', 'B01_3', 'B01_4']]
corl=corrdata1.corr(method='spearman')

def corhmap(cor):
    mask=np.zeros_like(cor, dtype=np.bool)
    mask[np.triu_lndlces_from(mask)]=True

figure, ax=plt.subplots()
    figure.set_size_inches(20,10)
    sns.heatmap(cor,mask=mask,vmin=-1, vmax=1, square=True, annot=True)
    plt.show()
corhmap(cor)
```

```
#주성문문석
from sklearn decomposition import PCA
from sklearn.preprocessing import StandardScaler
std=StandardScaler().fit_transform(pcadata1)
pca=PCA()
pca.fit_transform(std)
 compname="principal component"
variance=pd.DataFrame(pca.explained_variance_,index=[compname+" "+str(i) for i in range(1,pcadata1.shape[1]+1)],
                     columns=["PCA explained variance"])
varratio=pd.DataFrame(pca.explained_variance_ratio_,index=[compname+" "+str(i) for i in range(1,pcadata1.shape[i]+i)],
                     columns=["PCA explained variance ratio"]
cumratio=pd.DataFrame(pca.explained_variance_ratio_.cumsum(),index=[compname+" "+str(i) for i in range(1,pcadata1.shape[1]+1)]
                      columns=["Cum Ratio"])
pcasum=pd.concat([variance,varratio,cumratio],axis=1)
print(pcasum)
plt.figure(figsize=(20,10))
plt.rc('font'.size=20)
plt.plot(pca.explained_variance_,'o-',color='red')
plt.title("Scree Plot"
plt.axhline(v=1,linewidth=2,color='blue')
pit.axvline(x=pcasum[pcasum['Cum Ratio']<=0.85].shape[0])
print("적절한 주성분 개수 : ",pcasum[pcasum['Cum Ratio']<=0.85].shape[0],"개")
#Binlot
from pca import pca
model=pca(n_components=2)
model fit transform(std)
fig.ax=model.biplot(n feat=1.legend=False)
```

```
#회귀분석 vif
from statsmodels.formula.api import ols
from statsmodels.stats.outliers_influence import variance_inflation_factor
model=ols('BQ1 1~BQ7B 3+BQ7B 5+BQ4 2+AQ11 1+AQ15+BQ2+BQ3',satisgroupdata)
res=model.fit()
pd.DataFrame({'컬럼': column, 'VIF': variance inflation factor(model.exog, i)}
            for i. column in enumerate(model.exog names)
            if column != 'Intercept')
model=ols('BQ1 1~BQ7B 3+BQ7B 5+BQ4 2+AQ11 1+AQ15+BQ2+BQ3',satisgroupdata).fit()
model.summarv()
#회귀분석 4가지 가정
#선형성
font location = 'C:/Windows/Fonts/malgun.ttf'
font name = font manager.FontProperties(fname=font location).get name()
rc('font', family=font name)
fitted=model.predict()
residual = satisgroupdata['BQ1 1']-fitted
sns.regplot(fitted, residual, lowess=True, line kws={'color':'red'})
plt.plot([fitted.min(),fitted.max()], [0,0], '--', color='grey')
#정규성
import scipy.stats
sr = scipy.stats.zscore(residual)
(x, y) = scipy.stats.probplot(sr)
sns.scatterplot(x.v)
plt.plot([-3,3],[-3,3],'--',color='grey')
#동분산성
import numby as np
sns.regplot(fitted, np.sqrt(np.abs(sr)),lowess=True, line_kws={'color':'red'})
```

```
#구코드 변화
def GU(x):
   div=''
   if x==110: div='종로구'
   elif x==140: div='좆구'
   elif x==170: div='용산구'
   elif x==200: div='성동구'
   elif x==215: div='광진구'
   elif x==230: div='동대문구'
   elif x==260: div='중랑구'
   elif x==290: div='성북구'
   elif x==305: div='강북구'
   elif x==320: div='도봉구'
   elif x==350: div='노원구'
   elif x==380: div='은평구'
   elif x==410: div='서대문구'
   elif x==440: div='마포구'
   elif x==470: div='양천구'
   elif x==500: div='강서구'
   elif x==530: div='구로구'
   elif x==545: div='금천구'
   elif x==560: div='영등포구'
   elif x==590: div='동작구'
   elif x==620: div='관악구'
   elif x==650: div='서초구'
   elif x==680: div='강남구'
   elif x==710: div='송파구'
   else: div='강동구'
   return div
data1['GU']=data1['GU'].apply(lambda x: GU(x))
```

```
#구직,취업,구인난 건수 콤마 제거
import re
for i in range(len(data3)):
    data3['구직건수'][i]=re.sub(',','',data3['구직건수'][i])
    data3['취업건수'][i]=re.sub(',','',data3['취업건수'][i])
    data3['구인난'][i]=re.sub(',','',data3['구인난'][i])
data3['취업건수']=data3['취업건수'].astype(int)
data3['구직건수']=data3['구직건수'].astype(int)
data3['구인난']=data3['구인난'].astype(int)
data3['노인취업률']=data3['취업건수']/data3['구직건수']
```

```
#상관계수, pearson 상관문석
font location = 'C:/Windows/Fonts/MALGUNSL.TTF'
font name = font manager.FontProperties(fname=font location).get name()
rc('font',family=font_name)
def corhmap(cor):
   mask=np.zeros_like(cor, dtype=np.bool)
   mask[np.triu indices from(mask)]=True
   figure, ax=plt.subplots()
   figure.set_size_inches(20,10)
   sns.heatmap(cor, mask=mask,vmin=-1, vmax=1, square=True, annot=True)
   plt.show()
from scipy.stats import pearsonr
for i in data4.columns:
   for i in data4.columns:
       stat.pvalue=pearsonr(data4[i].data4[i])
       print(i,'와 ',j,'의 상관계수 :',stat )
       print(i,'와 ',j,'의 pvalue :',pvalue )
       print('\n')
```

#계층적 군집분석(연결법 비교) from scipy.cluster.hierarchy import dendrogram, linkage from matplotlib import pyplot as plt from sklearn.preprocessing import StandardScaler from matplotlib import font_manager,rc import seahorn as sos font location = 'C:/Windows/Fonts/MALGUNSL.TTF' font_name = font_manager.FontProperties(fname=font_location).get_name() rc('font',family=font_name) std=StandardScaler() scalerdata=pd.DataFrame(std.fit_transform(df),columns=df.columns,index=df.index) linkage_list=['single','complete','average','centroid','ward'] fig,axes=plt.subplots(nrows=len(linkage_list),ncols=1,figsize=(16,35)) for i in range(len(linkage list)): linked=linkage(scalerdata,method=linkage_list[i]) dn=dendrogram(linked, orientation='top',labels=scalerdata.index,distance_sort='descending',show_leaf_counts=True,ax=axes[i]) axes[i].title.set_text(linkage_list[i]) axes[i].title.set_size(30) plt.show()

```
#군집 평가지표 실루엣 계수 구하기
from sklearn.cluster import AgglomerativeClustering
def visualize silhouette(cluster lists, X features):
   from sklearn.cluster import KMeans
   from sklearn.metrics import silhouette_samples, silhouette_score
   import matplotlib.pyplot as plt
   import matplotlib.cm as cm
   import math
   # 입력값으로 클러스터링 갯수들을 리스트로 받아서, 각 갯수별로 클러스터링을 적용하고 실루엣 개수를 구함
   n cols = len(cluster lists)
   # plt.subplots()으로 리스트에 기재된 클러스터링 수만큼의 sub figures를 가지는 axs 생성
   fig, axs = plt.subplots(figsize=(4*n_cols, 4), nrows=1, ncols=n_cols)
```

```
# 리스트에 기재된 클러스틴링 갯수들을 차례로 iteration 수현하면서 실루엔 개수 시각하
for ind. n cluster in enumerate(cluster lists):
   # KMeans 클러스터링 수행하고, 실루엣 스코어와 개별 데이터의 실루엣 값 계사.
   clusterer = AgglomerativeClustering(n clusters = n cluster, linkage='ward')
   cluster labels = clusterer.fit predict(X features)
   sil avg = silhouette score(X features, cluster labels)
   sil_values = silhouette_samples(X_features, cluster_labels)
   v lower = 10
   axs[ind].set_title('Number of Cluster : '+ str(n_cluster)+'\"n' \"
                    'Silhouette Score : ' + str(round(sil avg.3)) )
   axs[ind].set_xlabel("The silhouette coefficient values")
   axs[ind].set vlabel("Cluster label")
   axs[ind].set xlim([-0.1, 1])
   axs[ind].set vlim([0. len(X features) + (n cluster + 1) * 10])
   axs[ind].set vticks([]) # Clear the vaxis labels / ticks
   axs[ind].set xticks([0, 0.2, 0.4, 0.6, 0.8, 1])
```

```
# 클러스터링 갯수별로 fill betweenx( )형태의 막대 그래프 표현.
       for i in range(n cluster):
           ith_cluster_sil_values = sil_values[cluster_labels==i]
          ith_cluster_sil_values.sort()
          size_cluster_i = ith_cluster_sil_values.shape[0]
          y_upper = y_lower + size_cluster_i
          color = cm.nipy spectral(float(i) / n cluster)
           axs[ind].fill betweenx(np.arange(y lower, y upper), 0, ith cluster sil values, #
                             facecolor=color, edgecolor=color, alpha=0.7)
           axs[ind].text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
          y lower = y upper + 10
       axs[ind].axvline(x=sil_avg, color="red", linestyle="--")
#Clustering 을 위한 4개의 클러스터 중심의 500개 2차원 테이터 셋 생성
# cluster 개수를 2개, 3개, 4개, 5개 일때의 클러스터별 실루엣 계수 평균값을 시각화
visualize silhouette([ 2, 3, 4, 5], scalerdata)
```

```
|#KMeans Clustering 통한 군집 생성 후 산정도행렬
from sklearn.cluster import KMeans
kmean=KMeans(n_clusters=3,random_state=0)
label=kmean.fit predict(scalerdata)
scalerdata['cluster']=label
display(scalerdata[['행정구별','cluster']][scalerdata['cluster']==0])
display(scalerdata[['행정구별','cluster']][scalerdata['cluster']==1])
display(scalerdata[['행정구별','cluster']][scalerdata['cluster']==2])
font location = 'C:/Windows/Fonts/MALGUNSL.TTF'
font_name = font_manager.FontProperties(fname=font_location).get_name()
rc('font',family=font name)
sns.pairplot(scalerdata,hue='cluster',palette='Set1')
```