Example 1. A polymer sample consists of 10% by weight of macromolecules of molecular weight 10,000 and 90% by weight of macromolecules with molecular weight 100,000. Calculate \overline{M}_n and \overline{M}_w .

Solution. As
$$\overline{M}_n = \frac{\sum N_i M_i}{\sum N_i} = \frac{\sum W_i}{\sum N_i}$$

where

 $W_i = \text{weight of } i^{th} \text{ constituent},$

 $N_i = \text{number of moles of } i^{th} \text{ constituent,}$

and

 $M_i = \text{molecular weight of } i^{th} \text{ constituent}$

Given $W_1 = 10$ gms. and $W_2 = 90$ gm.

$$\Sigma W_1 = W_1 + W_2 = 10 + 90 = 100 \text{ gm}.$$

Since
$$N_i = \frac{W_i}{M_i}$$

Hence $N_1 = \frac{10}{10,000}$ and $N_2 = \frac{90}{100,000}$
Now $\overline{M}_n = \frac{\sum W_i}{\sum N_i} = \frac{W_1 + W_2}{N_1 + N_2} = \frac{10 + 90}{100,000} = 5.26 \times 10^4$
Similarly, $\overline{M}_{n} = \frac{\sum N_i N_i^2}{N_1 N_1^2 + N_2 M_2^2} = \frac{N_1 M_1^2 + N_2 M_2^2}{N_1 M_1^2 + N_2 M_2^2} = \frac{N_1 M_2^2}{N_1 M_2^2 + N_2 M_2^2}$

Similarly,
$$\widetilde{M}_{iv} = \frac{\sum N_i M_i^2}{\sum N_i M_i} = \frac{N_1 M_1^2 + N_2 M_2^2}{N_1 M_1 + N_2 M_2} = \frac{N_1 M_1^2 + N_2 M_2^2}{W_1 + W_2}$$

$$= \frac{10}{10,000} \times (10,000)^{2} + \frac{90}{100,000} (100,000)^{2}$$

$$= 9.1 \times 10^{4}$$

Example 2. A polymeric mixture is prepared by mixing three polymers: A, B and C having \overline{M}_n , \overline{M}_w and weights in mixture as given below :

DAL.	The state of the s		
Polymer	M _H	M _{IV}	Wt. ia Mixture (g:ns.)
Α	1.2×10^5	4.5×10^3	200
В	5.6×10^5	8.9 × 10 ⁵	200
С	10×10^5	10×10 ⁵	100

Find \overline{M}_n and \overline{M}_w of mixture.

Solution. Since
$$(\overline{M}_n)_A = \frac{\sum W_A}{\sum N_A}$$

Hence
$$\Sigma N_A = \frac{\Sigma ! \hat{V}_A}{(\overline{M}_n)_A}$$

Thus,
$$(\overline{M}_{n})_{Mixture} = \frac{(\Sigma W)_{Mixture}}{(\Sigma N_{l})_{Mixture}} = \frac{V_{A} + V_{B} + V_{C}}{N_{A} + N_{B} + N_{C}}$$

$$= \frac{W_{A} + W_{B} + W_{C}}{(\overline{M}_{n})_{A} + (\overline{M}_{n})_{B} + (\overline{M}_{n})_{C}}$$

$$= \frac{200 + 200 + 100}{1.2 \times 10^{5} + \frac{200}{5.6 \times 10^{5}} + \frac{100}{10 \times 10^{5}}} = 2.35 \times 10^{5}$$

As
$$\overline{M}_{w} = \frac{\sum N_{i} M_{i}^{2}}{\sum N_{i} M_{i}} = \frac{\sum W_{i} N_{i}}{\sum W_{i}}$$

Hence
$$(\overline{M}_{w})_{A} = \frac{\Sigma (W_{A} N_{A})}{\Sigma W_{A}} \Rightarrow \Sigma (W_{A} N_{A}) = (\overline{M}_{w})_{A} \Sigma W_{A}$$

$$(M_{w})_{Mixture} = \frac{\Sigma (W_{A} N_{A}) + \Sigma (W_{B} N_{B}) + \Sigma (W_{C} N_{C})}{\Sigma W_{A} + \Sigma W_{B} + \Sigma W_{C}}$$

$$= \frac{(\overline{M}_{w})_{A} \Sigma W_{A} + (\overline{M}_{w})_{B} \Sigma W_{B} + (\overline{M}_{w})_{C} \Sigma W_{A}}{\Sigma (W_{A} + W_{B} + W_{C})}$$

$$= \frac{(4.5 \times 10^{5} \times 200) + (8.9 \times 10^{5} \times 200) + (10 \times 10^{5} \times 100)}{200 + 200 + 100}$$

$$= 7.36 \times 10^{5}$$

Example 3. 11 a polymer, there are 100 molecules of molecular weight 100, 200 molecules of molecular weight 1000 and 300 molecules of molecular weight 10,000. Find \overline{M}_{n} , \overline{M}_{w} and PDI.

Solution.
$$\overline{M}_n = \frac{\sum N_i M_i}{\sum N_i} = \frac{N_1 M_1 + N_2 M_2 + N_2 M_3}{N_1 + N_2 + N_3}$$

$$= \frac{100 \times 100 + 200 \times 1000 + 300 \times 10,000}{100' + 200 + 300}$$

$$= \frac{3.21 \times 10^6}{600} = 5.35 \times 10^3$$

$$\overline{M}_w = \frac{\sum N_i M_i^2}{\sum N_i M_i} = \frac{100 \times (100)^2 + 200 \times (10^{-10^2} + 300 \times (10,000)^2}{100 \times 100 + 200 \times 1000 + 300 \times 10,000}$$

$$= 9.4 \times 10^3$$
PDI = $\frac{\overline{M}_w}{\overline{M}_n} = 1.757$

Example 4. 42 gm of propene was polymerized by radical polymerization process and DP was found to be 1000. Calculate the number of molecules of PP produced.

Solution. As \overline{DP} of $\overline{PP} = \frac{\text{Numbers of Propene molecules}}{\text{Number of PP molecules formed}}$

Hence, number of PP molecules formed

$$= \frac{15 \text{ Jumber of propene molecules}}{\overline{DP} \text{ of PP}}$$

$$= \frac{42 \text{ gm} \times (6.023 \times 10^{23} \text{ molecules}/42 \text{ gn}_{1})}{1000 \text{ (}}$$

$$= 6.023 \times 10^{20} \text{ molecules}$$

Example 5. The \overline{M}_n of a polystyrene is 10^5 gm/mol. Find its \overline{DP}_n .

Solution. Since
$$\overline{DP}_n = \frac{\overline{M}_n}{M_0}$$

(M₀) is
$$12 \times 8 + 1 \times 8 = 104$$

Hence $\overline{DP}_{n} = \frac{\overline{M}_{n}}{M_{0}} = \frac{10^{8}}{104} = 9615.4$

Example 6. Find \overline{M}_{w} for PP given its degree of polymerization as 10,000.

Solution. Since
$$\overline{DP}_{w} = \frac{\overline{M}_{w}}{\overline{M}_{0}}$$

$$\therefore \qquad \overline{M}_{w} = /\overline{DP}_{w} \times \overline{M}_{0}$$

where DP_{te} = Degree of Polymerization = 10,000 (given)

And
$$M_0 = \text{Molecular weight of repeat unit of PP}$$

$$= -\left(-CH_2 - CH_2\right) = 12 \times 3 + 6 \times 1 = 42$$

$$CH_3$$

Hence,
$$\overline{M}_{w} = 10,000 \times 42$$

$$\Rightarrow \overline{M}_{w} = 42 \times 10^{4} \text{ gm/mol}$$

Example 7. Calculate the numb. wernge and weight average molecular masses of polypropylene polymer with the following composition:

CH₃

(a)
$$[-CH_2-CH_-]_{400}$$
 is 25 %;

CH₃

(b) $[-CH_2-CH_-]_{800}$ is 35 % and

CH₃

(c) $[-CH_2-CH_-]_{600}$ is 40 %. Given that Atomic mass of $C=12$ and $H=1$.

[VTU, I^{st}/II^{nd} Sem, B.E., Aug./Sept., 2000]

Solution. Molecular mass of (a) =
$$[(12 \times 3) + (6 \times 1)] \times 400 \implies M_1 = 16800$$

Molecular mass of (b) = $[(12 \times 3) + (6 \times 1)] \times 800 \implies M_2 = 33600$
Molecular mass of (c) = $[(12 \times 3) + (6 \times 1)] \times 600 \implies M_3 = 25200$
As $n_1 = 25$, $n_2 = 35$ and $n_3 = 40$

Thus
$$\overline{M}_n = \frac{n_1 M_1 + n_2 M_{12} + n_3 M_3}{n_1 + n_2 + n_3}$$