Cognome e nome:	, nato il//19	Matricola		
	ATIVE PER LA COMPILAZIONE DEGI			
	ATIVE PER LA COMPILAZIONE DEGI ta copia) SOLO i fogli ricevuti, che dovranno essere <u>TUTTI</u>			
	rivere SUL PRESENTE STAMPATO e su tutti gli altri fogli,			
	ibile, separando ed intitolando opportunamente le varie par	rti dell'elaborato, senza mai impiegare il		
<u>RIPORTARLI SU QUESTO STAMPATO NE</u>	aborato, le formule analitiche risolutive ed risultati numeri ELLE APPOSITE CASELLE (formula a sinistra, valore num e con segni diagonali a tutta pagina quelli della brutta copic	nerico con unità di misura a destra).		
	NSIONE DEL TESTO È PARTE INTEGRANTE DELLA PR			
Problema 1. Un cabinet per apparece profondità) contiene al suo interno complessivamente dalla rete elettrica superiori a 85°C. Le pareti del cabinet	chiature elettroniche con dimensioni 0.55 m x 1 apparecchiature elettroniche che, in condizior una potenza pari a 970 W e che non possono sono costituite tutte da lamiere in materiale platetto il portello frontale, che è costituito da una	1.60 m x 0.50 m (base x altezza x ni di carico massimo, assorbono o essere sottoposte a temperature astico rigido con spessore 3 mm e		
mm e conduttività termica 0.9 W/(m-	°C). La parete inferiore del cabinet poggia dire	ettamente sul pavimento, la parete		
	l coefficiente di scambio termico vale 12 W/(n			
pareti e 10 W/(m ² .°C) sulle superfici e	sterne. L'ambiente in cui il cabinet è installato	presenta temperatura compresa tra		
20° C e 30° C. Assumendo per l'aria ρ =	1.15 kg/m ³ e c_p =1007 J/(kg·°C) costanti, determin	nare:		
a) la massima temperatura che si può raggiungere nell'aria all'interno del cabinet, non ventilato e perfettamente sigillato; b) la minima portata d'aria con cui è necessario ventilare il cabinet, in m³/min, per fare sì che al suo interno non si superi				
la massima temperatura tollerata dall'el	-	si che ai suo interno non si superi		
a) massima temperatura nel	ett onet.			
cabinet non ventilato				
b) minima portata di				
ventilazione, in m³/min	L			
<u>Soluzione</u>	(2000, 2000) 2000			
$T_{\text{estenna_max}} = \max(T_{\text{ambiente_min}}, T_{\text{ambiente}})$				
	$r_{ofondita} = 0.55 \cdot 0.50 + 1.60 \cdot 0.50 = 1.875 \text{ m}^2$ o assumere termicamente isolati)			
	(2.003) (2.003) (2.003) (2.003) (2.003) (2.003) (2.003) (2.003) (2.003) (2.003) (2.003)) 1031°C/W		
	- 0	9.1031 C/W		
$A_{\text{portello}} = L_{\text{base}} \cdot L_{\text{altezza}} = 0.55 \cdot 1.60 = 0.880 \text{ m}^2$ $P_{\text{portello}} = (1/12 + 0.004/0.0 + 1/10)/0.880 = 0.21349C/W$				
$R_{portello} = (1/h_{interno} + s_{portello} / \lambda_{portello} + 1/h_{esterno}) / A_{portello} = (1/12 + 0.004/0.9 + 1/10) / 0.880 = 0.2134°C/W$ $La \ resistenza \ termica \ R \ tra \ interno \ ed \ esterno \ vale \ (approccio \ tutto \ parallelo)$ $R = 1/(1/0.1031 + 1/0.2134) = 0.0695°C/W (approccio \ tutto \ parallelo)$				
oppure (approccio serie-par				
$A_{\text{totale}} = A_{\text{pareti}} + A_{\text{portello}} = 1.875 + 0.880 = 2.755 \text{ m}^2$				
	$_{\text{tello}})/s_{\text{portello}}+(\lambda_{\text{pareti}}\cdot A_{\text{pareti}})/s_{\text{pareti}}]+1/(h_{\text{esterno}}\cdot A_{\text{total pareti}})$	$_{\text{otale}}) = 0.0691$ °C/W		
Il cabinet sigillato è un sister	ma chiuso. La massima temperatura interna	dell'aria è:		
	$30+0.0695\cdot970 = 97.4^{\circ}C$ (> $T_{ammissibile} = 85$ ema aperto ad una corrente in ingresso ed un			
$T_{ingresso} = T_{esterna_max} = 30^{\circ}C$				
$T_{uscita} = T_{ammissibile} = 85^{\circ}C$				
	zionarie e trascurando la potenza meccanica	a scambiata dai dispositivi di		
	lotta) e gli effetti cinetici e potenziali, si ha:			
$Q_{elettrica} = \dot{m} \cdot (h_{uscita} - h_{ingresso}) \cong \rho_{aria}$	$V \cdot c_{p_aria} \cdot (T_{uscita} - T_{ingresso})$			
e, quindi,				
$\dot{V} = \dot{Q}_{elettrica}/[\rho_{aria} \cdot c_{p_aria} \cdot (T_{uscita} - T_{ingresso})] = 970/[1.15 \cdot 1007 \cdot (85 - 30)] = 0.0152 \text{ m}^3/\text{s} = \textbf{0.914 m}^3/\text{min}$				
Si sono trascurati, in favore di sicurezza, gli scambi termici attraverso le pareti del cabinet. Volendone				
tenere conto, si può assumere una temperatura interna media pari alla media tra ingresso ed uscita.				
$T_{\text{interna_media}} = (T_{\text{ingresso}} + T_{\text{uscita}})/2 = (3$				
$\dot{Q}_{trasmessa} = R \cdot (T_{interna_media} - T_{esterna_ma})$	$_{\text{lx}}$) = 0.0695·(57.5–30°C) = 396 W			

 $\dot{V} = (\dot{Q}_{elettrica} - \dot{Q}_{trasmessa}) / [\rho_{aria} \cdot c_{p_aria} \cdot (T_{uscita} - T_{ingresso})] = (970 - 396) / [1.15 \cdot 1007 \cdot (85 - 30)] = \textbf{0.541 m}^3 / \textbf{min}$ Ovviamente, quella calcolata è la portata minima, che porta a lavorare in condizioni limite. Quella da adottare effettivamente dovrà essere superiore.

Problema 2. Un impianto di conversione dell'energia basato su un ciclo Rankine ideale senza surriscaldamento, in cui il fluido di lavoro è acqua, deve erogare una potenza netta pari a 200 kW. Siano 25 kPa la pressione nel condensatore e 70 bar la pressione in caldaia. Nella pompa entra liquido saturo, nella turbina entra vapore saturo secco. Determinare:

- a) rendimento termico del ciclo
- b) portata in massa del fluido di lavoro
- c) potenza termica da fornire

in caldaia Descrivere le varie fasi del processo, rappresentarlo graficamente, individuarlo qualitativamente sul diagramma T-s ed indicare le ipotesi di lavoro formulate.

Soluzione L'architettura del sistema ed il ciclo a cui viene sottoposto il fluido di lavoro sono rappresentati di seguito.

$$p_1 = p_{condensatore} = 25 \text{ kPa} = 25 \cdot 10^3 \text{ Pa}$$

$$T_1 = T_{\text{sat@p1}} \equiv T_2$$

$$h_1 = h_{l_sat@p1} = 271.93 \text{ kJ/kg} = 271.93 \cdot 10^3 \text{ J/kg}$$
 (da tabella)

$$p_2 = p_{caldaia} = 70 \text{ bar} = 70 \cdot 10^5 \text{ Pa}$$

$$h_2 = h_{l_sat@T2} + v_{l_sat@T2} \cdot (p_2 - p_1) \equiv h_1 + v_{l_sat@p1} \cdot (p_2 - p_1) = 271930 + (1.020 \cdot 10^{-3}) \cdot (70 \cdot 10^5 - 25 \cdot 10^3) = 279.05 \cdot 10^3 \text{ J/kg}$$

$$p_3 = p_{caldaia} = 70 \text{ bar} = 70.10^5 \text{ Pa}$$

$$h_3 = h_{v_sat@p3} = 2772.1 \text{ kJ/kg} = 2772.1 \cdot 10^3 \text{ J/kg}$$
 (da tabella)

$$s_3 = s_{v_sat@p3} = 5.8133 \text{ kJ/(kg} \cdot \text{K)} \quad \textit{(da tabella)}$$

$$s_4 = s_3 = 5.8133 \text{ kJ/(kg·K)}$$
 (processo adiabatico e reversibile \Rightarrow processo isoentropico)

$$p_4 = p_{condensatore} = 25 \text{ kPa} = 25 \cdot 10^3 \text{ Pa}$$

Poiché
$$s_4 = s_{1_sat@p4} + x_4 \cdot (s_{v_sat@p4} - s_{1_sat@p4})$$
 si ha che

$$x_4 = (s_4 - s_{l_sat@p4})/(s_{v_sat@p4} - s_{l_sat@p4}) = (5.8133 - 0.8931)/(7.8314 - 0.8931) = 0.709 = 70.9\%$$

$$h_4 = h_{l_sat@p4} + x_4 \cdot (h_{v_sat@p4} - h_{l_sat@p4}) = 271.93 \cdot 10^3 + 0.709 \cdot (2618.2 \cdot 10^3 - 271.93 \cdot 10^3) = 1935.8 \cdot 10^3 \text{ J/kg}$$

$$\ell_{\text{espansione}} = -(h_4 - h_3) = h_3 - h_4 = 2772.1 \cdot 10^3 - 1935.8 \cdot 10^3 = 836.3 \cdot 10^3 \text{ J/kg}$$

$$|\ell|_{\text{pompa}} = h_2 - h_1 = 279.05 \cdot 10^3 - 271.93 \cdot 10^3 = 7.1 \cdot 10^3 \text{ J/kg}$$

$$\ell_{\text{netto}} = \ell_{\text{espansione}} - \ell_{\text{pompa}} = 836.4 \cdot 10^3 - 7.1 \cdot 10^3 = 829 \cdot 10^3 \text{ J/kg}$$

$$q_{caldaia} = h_3 - h_2 = 2772.1 \cdot 10^3 - 279.05 \cdot 10^3 = 2493 \cdot 10^3 \text{ J/kg}$$

$$\eta = \ell_{\text{netto}}/q_{\text{caldaia}} = 829 \cdot 10^3 / 2493 \cdot 10^3 = 0.333 = 33.3\%$$

$$\dot{m} = \dot{L}_{netta} / \ell_{netto} = 200 \cdot 10^3 / 829 \cdot 10^3 = 0.241 \text{ kg/s}$$

$$\dot{Q}_{caldaia} = \dot{m} \cdot q_{caldaia} = 0.241 \cdot 2493 \cdot 10^3 = 601 \cdot 10^3 \text{ W} = 601 \text{ kW}$$

Cognome e nome:	, nato il//19	., Matricola	
Problema 3. Un wafer di tellururo d	i bismuto (disco con diametro 152.4 mm e sp	pessore 1.59 mm), inizialmente a	
temperatura 27°C, è riscaldato mediant	e una portata di argon a 130°C che ne lambiso	ce l'intera superficie e ne porta la	
temperatura a 110°C in 33 s. Determinar	re il valore medio del coefficiente di scambio ter	rmico sulla superficie del wafer.	
a) coefficiente di scambio			
termico convettivo			
Per il tellururo di bismuto si assumano i seguenti valori delle proprietà termofisiche: ρ=7530 kg/m³, c=544 J/(kg·°C),			
$\lambda=1.5 \text{ W/(m}\cdot^{\circ}\text{C}).$			
<u>Soluzione</u>			
$V_{\text{wafer}} = \pi \cdot (D/2)^2 \cdot H = \pi \cdot (0.1524/2)^2 \cdot 0.002$	$159 = 29.0 \cdot 10^{-6} \mathrm{m}^3 (volume)$		
$A_{\text{wafer}} = 2 \cdot \pi \cdot (D/2)^2 + \pi \cdot D \cdot H = 2 \cdot \pi \cdot (0.1524/2)^2 + \pi \cdot 0.1524 \cdot 0.00159 = 0.0372 \text{ m}^2 $ (superficie esterna)			
$L_c = V_{wafer} / A_{wafer} = 0.000778 \text{ m} = 0.778 \text{ m}$	mm (lunghezza caratteristica)		
Essendo $-t/t_c = ln[(T_t-T_{argon})/($	(T_0-T_{argon})] si ha che		
$t_c = -t/\ln[(T_t - T_{argon})/(T_0 - T_{argon})] = -33/\ln t$	č		
Essendo $t_c = \rho \cdot c \cdot L_c / h$ si ha	che		
$h = \rho \cdot c \cdot L_c / t_c = 7530 \cdot 544 \cdot 0.000778 / 20.1 = 0.00078 / 20.1 = 0.00078 / $	$= 158 \text{ W/(m}^2 \cdot ^{\circ}\text{C})$		
Occorre infine verificare che il i	metodo sia applicabile, controllando il valore d	el numero di Biot.	
Bi = $h \cdot L_c / \lambda = 158 \cdot 0.000778 / 1.5 = $ 0.082	$(<0.1 \Rightarrow OK)$		

Trattare SINTETICAMENTE, a parole e con le necessarie formule, diagrammi o equazioni, le tematiche indicate di seguito, riportando tutte le trattazioni relative, in forma chiara e leggibile, <u>sul retro del presente stampato</u>. PARTI RIPORTATE ALTROVE NON SARANNO VALUTATE!

- Secondo Principio: enunciati; reversibilità ed irreversibilità
- Funzionamento teorico di un impianto frigorifero a compressore Emissività di una superficie