# ME-372: Heat transfer and Metrology lab

#### Measurement of Flatness error



## Contents

| ☐ Introduction         |  |
|------------------------|--|
| <b>□</b> Objective     |  |
| ☐ Spirit level         |  |
| ☐ Procedure            |  |
| ☐ Results and analysis |  |
| ☐ Report requirements  |  |

#### Introduction

**Straightness:** A line is said to be straight over a given length if the deviation of various points on the line from two mutually perpendicular reference planes remains within stipulated limits.



Figure 1: Straightness of a line



Figure 2: Measurement of flatness error

**Flatness** is when all points of a surface lie in the same plane.

**Flatness error:** Flatness error may be defined as the minimum separation of a pair of parallel planes that will just contain all the points on the surface.

# Objective

**Aim of the experiment:** To determine the flatness error of a surface plate with the help of a sensible spirit level



Figure 3: Flat surface specimen



Figure 4: Inline diagram of surface plate

# Spirit Level

- A **spirit level**, is an instrument designed to indicate whether a surface is horizontal (level) or at some inclination
- ➤ Spirit levels had very slightly curved glass vials with constant inner diameter at each viewing point.
- These vials are incompletely filled with a liquid, usually a colored spirit or alcohol, leaving a bubble in the tube.
- ➤ Spirit level basically defines the inclination angle between two points and unit of inclination is mm/m.



Figure 5: Spirit level



Figure 6: Calculating inclination with spirit level

5

- ☐ Mark the boundary lines and generators on the surface plate (as shown in Figure 2).
- ☐ Lengths of the lines should be integer multiples of a common reading span.
- ☐ Choose a reference plane, say ABC, from which the flatness deviations of all the points will be determined.



☐ Place the spirit level on the first span A-1 and note down the deviation of point, with respect to A.



Repeat the readings for 1-2, 2-E etc. until B and calculate the cumulative value.

$$_{(A-1)} y_1 = \Delta h_1$$

$$(A-1)$$
  $y_1 = \Delta h_1$   
 $(1-2)$   $y_2 - y_1 = \Delta h_2$ 



☐ Repeat the same procedure for all the lines keeping in mind that all the readings independently for all the lines.

☐ Correct all the ends of the lines of the reference plane to zero.

Assumption: Angle  $\theta$  is very small



Correct the other lines with respect to the three points on the reference plan.





- Thus the deviations of all the points relative to the reference plane chosen are known.
- The minimum distance between a pair of parallel planes that contains all the points chosen on the surface will give the flatness error of the surface

# Calculating flatness error

**Sensitivity:** The sensitivity of a level is given as the change of angle or gradient required to move the bubble by unit distance

$$\tan \theta = 0.02 \ mm/m$$

h = height of the point on surface w.r.t a reference
 b = separation between two points in XY plane = 5 cm (given)
 x = reading value of bubble movement



$$x \tan \theta = \frac{h}{b}$$

$$h = xb \tan \theta$$

# Results and Analysis

**Question 1.** Draw a diagram for the layout of the surface plate and get the cumulative values for all the lines from the measured values provided.

**Question 2.** Show sample calculations for the corrections of each line and Prepare a table for each line as shown below.

| Corrected Heights (AB) |                       |            |                  |
|------------------------|-----------------------|------------|------------------|
| MEASURED<br>VALUES     | CUMMULATIVE<br>VALUES | CORRECTION | CORRECTED VALUES |
| 0                      |                       |            |                  |
| 3                      |                       |            |                  |
| -1                     |                       |            |                  |
| 2                      |                       |            |                  |
| 4                      |                       |            |                  |
| -3                     |                       |            |                  |
| 1                      |                       |            |                  |

# Results and Analysis

**Question 3**. Plot the corrected values in MATLAB/python or any software. The distance between the farthest points of either side from the reference plane (Z=0) can be the measure of flatness error.

**Question 4.** Plot the corrected values in MATLAB/python or any software and fit a least square plane. The distance between the farthest points of either side from the least square plane also defines the flatness error.

**Question 5.** Write conclusions and sources of error.

# Report requirement

- 1. Introduction
- 2. Objective
- 3. Procedure
- 4. Data points tabulation and plotting (experimental readings)
- 5. Data correction with respect to reference line and plotting the corrected data points
- 6. Results and conclusions
- 7. Sources of error