Longevity as a choice? The Grossman model

Economic Demography
Econ/Demog c175
Prof. Goldstein
Spring 2017
Week 13, Lecture B

Inequality in health and longevity

- People who earn more live longer
- People with more education live longer
- Higher "status" groups live longer (race and ethnicity)

Some exceptions

- Women in developed countries?
- Rural/urban divide in historical times?

Earnings

Chart 3. Cohort life expectancy at age 65 (and 95 percent confidence intervals) for male Social Security-covered workers, by selected birth years and earnings group

SOURCE: Author's calculations using a matched 2001 Continuous Work History Sample.

NOTE: Confidence intervals for 1912, 1917, and 1922 are so small that they are not visible on the chart.

Education

- Study of compulsory school laws (Lleras-Muney 2005) finds for those born in 1925
- + 1 year of education \rightarrow
 - +1.7 years of life expectancy (!)

Race in the U.S.

Figure 1. Life expectancy at birth, by race and sex: United States, 1970-2009

Note: Black-White differences = 40 years of progress

Causal connections

(Why is socio-economic status linked to longevity?)

- Resource effect
- Education & efficient producer hypothesis
- Stress and hierarchies
- 3rd factors that influence both:
 - time preferences ("life fast, die young"?)
 - endowments (genes and environment)
- Reverse causality
 - Sick can't work

An economic model of health choice?

- U(H, Z)
 - -H = stock of health
 - -Z = other things (consumption)
- Purchase of more H means less Z → standard consumer choice?
- Grossman's insight
 - H a consumption good providing present utility
 - H also an *investment good* enhancing future productivity

Time constraints (revisited)

•
$$T_{Total} = T_{Working} + T_{Z} + T_{Health} + T_{Sick}$$

Products of time

$$\begin{array}{ccc} T_{Z} & \rightarrow & Z \\ T_{H} & \rightarrow & H \\ T_{W}(\$) & \rightarrow & Z \& H \\ T_{S} & \rightarrow & 0 \text{ (nothing)} \end{array}$$

Health → time

- Increased $H \rightarrow$ less time sick (investment)
- Decreasing marginal returns. First increase in H helps more than later increases

A feedback loop

```
Purchases of H (with $ or T_H) \Rightarrow increase available time (T_Z + T_W + T_H = T - T_{sick}) \Rightarrow more purchases of H \Rightarrow more increases in time \Rightarrow ....
```

What is equilibrium? Do we spend our whole day jogging?

Optimal choice

Equilibrium H* when

marginal cost of more H
exactly equals
marginal benefit of more H

• If marginal benefit is higher than marginal cost than makes sense to purchase more, and vice versa.

Marginal Benefits of more H

- We have downward sloping marginal benefit
 - decreasing returns in immediate utilityU(H, holding Z constant)
 - decreasing returns as an investment in future time (T_{sick} curve)

Marginal Benefits of more H

- We have downward sloping marginal benefit
 - decreasing returns in immediate utility
 U(H, holding Z constant)
 - decreasing returns as an investment in future time $(T_{sick} \text{ curve})$

Stock of health = H

Note: MB is change in life time utility per change in H

Marginal cost of H

- Two components:
 - opportunity cost forgoing alternative investment with return rate, r
 - depreciation of H, γ
- Total marginal cost: $r + \gamma$

Picturing equilibrium

- Equilibrium because, if $H_0 < H^*$ choice will be to increase H a
- What if $H_0 > H^*$?
- (Malthus, except it is consumer not the "eco-demo system" determining dynamics.)

Some applications of the Grossman model

- Education
- Age
- Income

Education, increasing rate of return on investments in health

- Idea is per unit of time (or \$), more educated benefit more
- Better health consumers: obey doctors, adhere to treatments, can choose more effective behavior
- (But educ also increase income, so other pathways)

Age

- Idea is because health deteriorates faster with age, depreciation rate will rise
- → Older people may spend more on health but their optimum stock is lower
- Death is rational? Eventually depreciation rate is so high, better to just enjoy last bit of life, spend everything on Z?

Income and substitution effects?

- Income effect
 Wage increase provides more resources, so can afford more H (& Z)
- BUT higher wage also increases price of $T_H \rightarrow$ substitution effect.

(Example: Stars who have "no time" to take care of themselves, too busy consuming)

Conclusions from Grossman's model

- We've only done a brief intro but ...
- We see that it provides a formal model of individual health investment choices
- Can offer insights into
 - why rich are healthier than poor
 - why education has such a large effect on health
 - why we age
 - why we die

One very last chapter: Some thoughts on *theory* and *data*

- New approach this year, theory + computing and working with data
- Can ask, why should we do both theory and data?
- Why are models useful (if we already have data)?
- Why are data useful (if we already have a model)?

Utility of models

- Formal models allow *precise*communication of our assumptions and our thinking
 - Malthus's prose → Lee's graphs
 - Health decisions → Grossman model
 - Income and substitution effects
 - Effect of immigrants on native wages

— ...

Utility of models (cont)

- Formal model → clearer thinking (whether right or wrong)
- Can surprise us (substitution effects, optimal matching, Malthusian trap, ...)
- If you disagree, can point out precisely where (Labor demand curve has little slope?)

Utility of models (3)

- Very efficient way to produce insight: With pencil, paper, and a brain → new ideas, new ways of seeing the world
- BUT dangers
 - don't map the real world (assumptions don't hold, mechanisms left out, false operationalization)
 - take over our thinking ("econ101-ism")

The uses of Data

• Stylized facts tell us what questions are worth asking

A reality-check on theories

- BUT their are challenges:
 - drawing conclusions about the world from data
 - coherence of our conclusions

Ending where we began, with Malthus

- Malthusian theory told us what to look for; the data told us when it broke down. A perfect union of theory and data?
- Theory, data and you