♦ Будет ли линейным оператором, действующим в V, каждое из

следующих отображений $A: \mathbb{V} \to \mathbb{V}$?

 \mathcal{O} $\mathbb{V}=\mathrm{M}_2(\mathbb{R}),$ то есть линейное пространство, в котором действует отображение, совпадает с линейным пространством всех матриц второго порядка с вещественными элементами. Для любой матрицы $M = \begin{pmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{pmatrix} \in M_2(\mathbb{R})$

 $\mathcal{I} \cdot A(\mathsf{M}) = \det(\mathsf{M}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, где $\det(\mathsf{M}) = m_{1,1} m_{2,2} - m_{1,2} m_{2,1}$ — опреде-

литель матрицы M; $2 \cdot A(M) = \operatorname{tr}(M) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, где $\operatorname{tr}(M) = m_{1,1} + m_{2,2} -$ след матрицы M; $2 \cdot A(M) = \operatorname{tr}(M) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, где $\operatorname{tr}(M) = m_{1,1} + m_{2,2} -$ след матрицы M;

 $3. A(M) = \operatorname{rang}(M) \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, где $\operatorname{rang}(M) - \operatorname{ранг}$ матрицы M;

 $\mathcal{L}_{i} \cdot A(\mathsf{M}) = m_{1,1} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, где $m_{1,1}$ — элемент матрицы M , стоящий в

первой строке и первом столбце; $\overline{\mathcal{F}} \cdot A(\mathsf{M}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \mathsf{M} + \mathsf{M} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix};$

6. $A(M) = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \cdot M \cdot \begin{pmatrix} 0 & 4 \\ -2 & 1 \end{pmatrix} - M;$ 4. $A(M) = \det(M) \cdot M$, где $\det(M) = m_{1,1}m_{2,2} - m_{1,2}m_{2,1}$ — определитель

 $\mathcal{G}. A(\mathsf{M}) = \begin{pmatrix} m_{2,2} & m_{2,1} \\ m_{1,2} & m_{1,1} \end{pmatrix}; \qquad \mathcal{D}. A(\mathsf{M}) = \begin{pmatrix} m_{1,1} + m_{2,2} & m_{1,2} + m_{2,1} \\ m_{2,1} - m_{1,2} & m_{2,1} \end{pmatrix}; \\
\mathcal{G}. A(\mathsf{M}) = \begin{pmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & 1 \end{pmatrix}; \qquad \mathcal{M}. A(\mathsf{M}) = (m_{1,2} + m_{2,2} - m_{2,1}) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$

$$\text{12.} \quad A(\mathsf{M}) = \begin{pmatrix} m_{1,1} m_{2,2} & m_{1,2} m_{2,1} \\ m_{2,1} m_{2,1} & m_{2,2} \end{pmatrix}; \text{13.} \ A(\mathsf{M}) = |m_{1,1}| \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

 $\mathbb{V}=\mathbf{V}_3(O),$ то есть линейное пространство, в котором действует отображение, совпадает с линейным пространством всех векторов в пространстве, начало которых находится в начале координат, и стандартными операциями сложения векторов и умножения на число. Для любого вектора $\mathbf{x} \in V_3(O)$ и некоторых фиксированных векторов

 $\mathbf{a}, \mathbf{b} \in V_3(O)$ \mathbf{g} . $A(\mathbf{x}) = \mathbf{a} \times \mathbf{x}$ (здесь $\mathbf{a} \times \mathbf{x}$ означает векторное произведение векторов

аих);

 \mathbf{Z} . $A(\mathbf{x}) = (\mathbf{abx})\mathbf{x}$ (здесь \mathbf{abx} означает смешанное произведение трех векторов, затем это число умножается на вектор х);

 \mathbf{S}). $A(\mathbf{x}) = (\mathbf{abx})(\mathbf{a} \times \mathbf{b})$ (здесь \mathbf{abx} означает смешанное произведение трех векторов, затем это число умножается на вектор, равный векторному произведению векторов а, b);

 $A(\mathbf{x}) = (\mathbf{a} + \mathbf{x}) \times \mathbf{b}$ (здесь сумма векторов \mathbf{a}, \mathbf{x} векторно умножается

на вектор b);

 \mathbf{b}). $A(\mathbf{x}) = (\mathbf{a}\mathbf{x})\mathbf{x}$ (здесь $\mathbf{a}\mathbf{x}$ означает скалярное произведение двух век-

торов, затем это число умножается на вектор \mathbf{x});

 $\boldsymbol{\beta}$). $A(\mathbf{x}) = (\mathbf{a}\mathbf{x}\mathbf{x})\mathbf{x} + \mathbf{x} \times \mathbf{b}$ (здесь $\mathbf{a}\mathbf{x}\mathbf{x}$ означает смешанное произведение трех векторов, затем это число умножается на вектор ${f x}$ и прибавляется к векторному произведению векторов b, x);

 \mathscr{Z}). $A(\mathbf{x}) = |\mathbf{x}|\mathbf{x}$ (здесь $|\mathbf{x}|$ означает длину вектора, затем это число

yмножается на вектор x);

 \mathbf{X}). $A(\mathbf{x}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{x}$ (здесь $(\mathbf{a} \times \mathbf{b}) \times \mathbf{x}$ означает двойное векторное произведение трех векторов);

 \mathcal{G}). $A(\mathbf{x}) = 2\mathbf{x} + \mathbf{b} \times \mathbf{x}$ (здесь $\mathbf{b} \times \mathbf{x}$ означает векторное произведению векторов);

 $A(\mathbf{x}) = (\mathbf{a}\mathbf{x})\mathbf{b}$ (здесь $\mathbf{a}\mathbf{x}$ означает скалярное произведение двух векторов, затем это число умножается на вектор b);

 \mathcal{U} . Ортогональное проектирование пространства на прямую x=y=z(плоскость x + y + z = 0);

12). Ортогональное проектирование пространства на ось Ox (Oy, Oz);13). Зеркальное отражение относительно плоскости $Oxy\ (Oxz,\ Oyz);$ относительно оси $Ox~(Oy,\,Oz)$; относительно начала координат.

 \mathbb{Z} \mathbb{Z}

13. $(4f)(x) = x^2 f(x)$ Jagane 2

 π . Пусть A и B — операторы поворота плоскости на углы $\pi/6$ и $\pi/4$ соответственно. Найти а) -A; б) A+B; в) AB; г) A-B; д) 2A; е) A^2 .

Д. Пусть P — оператор проектирования плоскости (проектирования любого вектора плоскости) на ось Ox параллельно оси Oy, Q — оператор проектирования плоскости на ось Oy параллельно оси Ox. Найти а) I-P; б) I-Q; в) 2P+Q; г) -P-Q; д) f(P), где $f(x)=2x^3+x^2-4x+1$; е) f(Q), где $f(x)=2x^6-x^3-x^2$.

3). Найти а) A+B; б) -2A; в) AB; г) BA; д) B^2 ; е) A^3 для дифференциальных операторов A и B, действующих в пространстве $\mathbb{C}[x]_3$ всех многочленов степени не больше 3 по формулам: і) Af=f''+f', Bf=2f'''-f'+f; іі) Af=f''+2f, $(Bf)(x)=f'''(x)+x^2f''(x)-f(x)$. Для операторов, действующих в \mathbb{R}^3 , найти а) A+B; б) 3A; в) AB; г) BA; д) A^2 ; е) B^3 , если і) $A\mathbf{x}=(x_1+x_3;x_1-x_2+2x_3;x_1-x_2)$, $B\mathbf{x}=(x_1+x_2-x_3;x_1+2x_2+2x_3;x_1+x_2)$, $\mathbf{x}=(x_1;x_2;x_3)$.

 \oint . Для операторов, действующих в \mathbb{R}^2 , найти а) A - B; б) 2A + 3B; в) AB; г) BA; д) A^2 ; е) B^3 , если $A\mathbf{x} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \mathbf{x}$, $B\mathbf{x} = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \mathbf{x}$, $\mathbf{x} = (x_1; x_2).$

 Пусть P — оператор проектирования плоскости (проектирования любого вектора плоскости) на прямую с уравнением x-2y=0 параллельно прямой с уравнением $2x-y=0,\,Q$ — оператор проектирования плоскости на прямую с уравнением 2x-y=0 параллельно прямой с уравнением x - 2y = 0. Найти операторы: а) P + Q; б) PQ; в) Q + 2P;

r) $P^4Q^3 + Q^5P^6$; μ) $-P^2 - Q^5$; e) I - P.

 \clubsuit). Пусть P_x — оператор ортогонального проектирования пространства (проектирования любого вектора пространства)на ось Ox, P_y — на ось Oy, P_z — на ось Oz. Пусть P_{xy} — оператор ортогонального проектирования пространства (проектирования любого вектора пространства)на плоскость $Oxy,\,P_{xz}$ — на плоскость $Oxz,\,P_{yz}$ — на плоскость Oyz. Найти операторы: а) P_x+P_y ; б) P_zP_{yz} ; в) $P_x+P_y+P_z$; г) $I-P_x$; д) P_y+P_{xz} ;

e) $P_{xy} + P_{xz}$; \times) $P_{xy} + P_{xz} + P_{yz}$; \times) $P_{xy} + P_{xz} + P$ 8. a) AB, δ) $A^{2}+B$, δ) $A^{2}-B^{2}$, z) BA^{2} , g) $(A-B)^{2}$, e) $B-A+B^{2}$ 9. a) \$2, 8) \$2-B \$6 \ B4 2 \ \$4B^2 g) BA e) B(2A-B)

10. a) B² 5)24+3B²B)B+42)B-24² $g) B^3 e) A(B-4)$

11. Cu 6.

12. Cell. 7.

13. CM, 5,

Показать, что каждое из следующих отображений, действующих в линейном пространстве \mathbb{R}^3 , является линейным оператором, найти в линеином пространеть (1,0,0), $e_2=(0,1,0),\ e_3=(0,0,1)$ и его определитель. Отображение задано по формуле: для любого вектора $\mathbf{x} = (x_1; x_2; x_3) \in \mathbb{R}^3$

A). $A\mathbf{x} = (-3x_1 + 3x_2 - 2x_3; x_1 + 2x_2 - x_3; -x_1 - 3x_2 + 2x_3);$ B). $A\mathbf{x} = (-2x_2 - x_3; 3x_1 + 2x_2 + 3x_3; x_1 + 2x_2 + 2x_3);$

. Показать, что каждое из следующих отображений, действующих в линейном пространстве $\mathbb{R}[x]_2$, является линейным оператором, найти его матрицу в базисе $\mathbf{e}_0 = 1, \ \mathbf{e}_1 = x, \ \mathbf{e}_2 = x^2$ и его определитель. Отображение задано по формуле: для любого многочлена $f \in \mathbb{R}[x]_2$

3). Af = -3f'' + 3f'; 4). $(Af)(x) = f(-2) + f(2)x + f(3)x^2;$ 5. (Af)(x) = f(x+2) + f(0)x + f'(x); 6). (Af)(x) = f(x) + f(2)x + f'(x); 7. (Af)(x) = f(x+2) + f(-3)x + f'(x); 8. (Af)(x) = f(x+2) + f(-3)x + f'(x);

. Показать, что каждое из следующих отображений, действующих в линейном пространстве $M_2(\mathbb{R})$, является линейным оператором, найти его матрицу в базисе $\mathbf{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,

 ${f e}_4 = \left(egin{array}{c} 0 & 0 \\ 0 & 1 \end{array}
ight)$ и его определитель. Отображение задано по формуле: для

любой матрицы
$$X \in M_2(\mathbb{R})$$
9). $AX = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix} X + X \begin{pmatrix} 3 & 3 \\ -2 & -3 \end{pmatrix}$; **У**О $AX = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix} X \begin{pmatrix} 3 & 3 \\ -2 & -3 \end{pmatrix} + 2X$;

19. $AX = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} X + X \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$; **19**. $AX = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} X \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} - 2X$;

19. $AX = \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} X \begin{pmatrix} 3 & 1 \\ -2 & -1 \end{pmatrix} + X$.

Zagarie 4.

Линейный оператор A в базисе e имеет матрицу A_e . Найти матрицу A_u линейного оператора A в базисе u.

Линейный оператор A в базисе $\mathbf{f}_1(x)=1, \ \mathbf{f}_2(x)=x, \ \mathbf{f}_3(x)=x^2$ имеет матрицу A_f . Найти матрицу A_g линейного оператора A в базисе $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3$

$$\begin{array}{l} \textbf{3.} & \textbf{3.}$$

. Линейный оператор A в базисе e имеет матрицу A_e . Найти матрицу A_u линейного оператора A в базисе u, если известно разложение векторов базиса e в линейные комбинации по базису u.

векторов базиса
$$e$$
 в линейные комбинации по базис e $e_1 = u_1 + u_2 - u_3;$ $e_2 = u_1 + 2u_2 - u_3;$ $e_3 = 2u_2 + u_3;$ $e_1 = u_1 - u_2 - u_3;$ $e_2 = 2u_1 - u_2 - u_3;$ $e_3 = 2u_1 - u_2 - u_3;$ $e_4 = u_1 - u_2 - u_3;$ $e_5 = 2u_1 - u_2 - u_3;$ $e_7 = 2u_1 - u_2 - u_3;$ $e_8 = 2u_1 - u_2 - u_3;$ $e_9 = 2u_1 - u_2 - u_3$

$$\begin{array}{c} \textbf{12.} \\ A_e = \begin{pmatrix} -1 & 2 & 1 \\ 1 & -3 & -2 \\ 3 & 1 & 0 \end{pmatrix}; & \begin{array}{c} \mathbf{e}_1 = \mathbf{u}_1 + 2\mathbf{u}_2 - 2\mathbf{u}_3; \\ \mathbf{e}_2 = \mathbf{u}_2 - \mathbf{u}_3; \\ \mathbf{e}_3 = 2\mathbf{u}_1 + 2\mathbf{u}_2 - \mathbf{u}_3; \\ \mathbf{e}_3 = 2\mathbf{u}_1 + 2\mathbf{u}_2 - \mathbf{u}_3; \\ \mathbf{e}_1 = \mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_3; \\ \mathbf{e}_1 = \mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_3; \\ \mathbf{e}_2 = \mathbf{u}_2 - 2\mathbf{u}_3; \\ \mathbf{e}_3 = -\mathbf{u}_1 + 2\mathbf{u}_2 - 2\mathbf{u}_3; \end{array}$$

Zagare 5

Найти ранг, базисы ядра и образа линейного оператора A, действующего в линейном пространстве \mathbb{R}^4 по правилу $A\mathbf{x} = \mathsf{M}\mathbf{x}$, где матрица M определена ниже.

рица М определена ниже.

Д.
$$M = \begin{pmatrix} 2 & 0 & 1 & 1 \\ -2 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 2 & 2 \end{pmatrix}$$
.

 $M = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$.

 $M = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$.

 $M = \begin{pmatrix} 3 & -3 & 3 & -3 \\ 0 & 0 & 2 & 0 \\ -1 & 1 & 3 & 1 \\ -3 & 3 & 1 & 3 \end{pmatrix}$.

Найдите ранг, базисы ядра и образа линейного оператора $A:M_2(\mathbb{R}) \to M_2(\mathbb{R})$ такого, что для любой матрицы $X \in M_2(\mathbb{R})$

М₂(
$$\mathbb{R}$$
) \to M₂(\mathbb{R}) такого, что для любой матрицы $X \in M_2(\mathbb{R})$
5. $AX = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix} X + X \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$.

6. $AX = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} X + X \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}$.

7. $AX = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix} X + X \begin{pmatrix} 0 & -3 \\ 0 & 1 \end{pmatrix}$.

8. $AX = \begin{pmatrix} -2 & -3 \\ 2 & 3 \end{pmatrix} X + X \begin{pmatrix} -1 & 0 \\ 1 & 3 \end{pmatrix}$.

Найдите ранг, базисы ядра и образа линейного оператора $A: \mathbb{C}[x]_3 \to \mathbb{C}[x]_3$, действующего в линейном пространстве $\mathbb{C}[x]_3$ всех многочленов степени не выше 3 с комплексными коэффициентами по правилу

BUJY **G**).
$$(Af)(x) = (-3+2x^3)f'''(x) + (3+3x-x^2)f''(x) + (-1-x)f'(x) + f(x)$$
. **30**. $(Af)(x) = (2x+2x^2)f'''(x) - 2(1+x)f''(x)$. **41** $(Af)(x) = (1+x^2)f'''(x) - (2+x-x^2)f''(x) - (1+3x)f'(x) + 3f(x)$. **43**. $(Af)(x) = f'''(x) + (-2x+x^2)f''(x) + (2-3x)f'(x) + 3f(x)$. **43**. $(Af)(x) = (-2x^2+2x^3)f'''(x) - 2x^2f''(x)$.