Sailing through AIS data with movingpandas

Ray Bell PyData Miami 2022

Outline

- What is AIS data?
- What is movingpandas?
- Whistle stop tour of geopandas
- movingpandas demo including:
 - base class
 - cleaning AIS data
 - voyage summary statistics
 - Clustering of location hot spots
 - Trajectory smoothing
- Future development of movingpandas

What is AIS data?

 Automatic tracking system on ships defined by the IMO (International Maritime Organization)

• Like ADS-B (Automatic Dependent Surveillance-Broadcast) for aircraft

tracking

https://blogs.worldbank.org/opendata/using-marine-spatial-data-inform-development-work-and-public-policies

Why do we need AIS data?

- Avoid ships colliding
- Enables ports and coastal states to manage and supervise the traffic in their waters
- Monitor activity
- Maritime security
- Economic indicators speed of trade

How to analysis AIS data?

- Streaming real-time applications/dashboards:
 - marinetraffic.com
 - vesselfinder.com
- Location filtering and cleaning
- Voyage analysis help with fuel consumption/de-carbonization
- Heat maps traffic density
- Smoothing trajectories

What is MovingPandas?

- A python library for movement data exploration and analysis
- Created in 2018 by Anita Graser
- Separated out of a QGIS plugin
- 24 contributors
- GeoPandas-contrib like
- https://github.com/anitagraser/movingpandas/discussions
 - 🖵 anitagraser / movingpandas Public

The Geo "Py" Data stack

Adapted from VanderPlas, PyCon 2017

Technical Demo

"A very exciting interactive demo of a geospatial python library presented on a cell phone at a PyData conference in Miami" — DALL-E

Technical Demo

Reality

"A bored PyData Miami conference attendee looking at static matplotlib images for geographic point data somewhere on the earth" — DALL-E

Technical demo of MovingPandas

- Whistle stop tour of GeoPandas
- Exploration of AIS data for Ever Given
- Data cleaning
- Voyage statistics
- Density maps and clustering
- Trajectory smoothing
- Other applications of MovingPandas
- Future development of MovingPandas

Read in Ever Given AIS data which is stored as a GeoParquet file (https://github.com/opengeospatial/geoparquet)

```
: import geopandas as gpd

gdf = gpd.read_parquet("ever_given_ais.parquet")
```

Whatever you can do in Pandas you can likely do in GeoPandas and more

gdf.head()

Last executed at 2022-09-21 15:47:41 in 82ms

	timestamp	created_at	heading	speed_knots	rate_of_turn	collection_type	maneuver	course	timestamp_iso	longitude	latitude	geometry
0	2018-12-07 00:11:01+00:00	2018-12-07 00:11:20.834856+00:00	128.0	21.5	-5.0	terrestrial	0.0	127.9	2018-12- 07T00:11:01.000Z	102.92997	1.53197	POINT (102.92997 1.53197)
1	2018-12-07 00:45:33+00:00	2018-12-07 07:28:16.447564+00:00	118.0	21.4	-3.0	satellite	0.0	118.7	2018-12- 07T00:45:33.000Z	103.11421	1.44149	POINT (103.11421 1.44149)

GeoPandas is Pandas + a geometry column (for Shapely geometric objects) + a CRS (Coordinate Reference System)

Call .plot() for a quick plot

```
gdf.plot()
Last executed at 2022-09-21 15:48:12 in 30.49s
<AxesSubplot: >
  60
  20 -
   0 -
 -20 -
 -40
 -60
 -80
                   25
                           50
                                   75
                                          100
                                                  125
                                                          150
```

use **contextilty** to plot with a background tile (using **xyzservices** to request a tile from an API provider: https://xyzservices.readthedocs.io/en/stable/introduction.html)

```
import contextily as cx

cx.add_basemap(gdf[0:1000].plot(color="red", figsize=(16, 16)), crs=gdf.crs)

Last executed at 2022-09-21 15:48:22 in 10.38s
```


explore() is a great tool for interactive analysis (which wraps Folium) but can be a bit sluggish on "big"
data.

Other tools can help such as datashader and xarray_ipyleaflet

```
year = 2021
month = 3
gdf[
    (gdf["timestamp"].dt.year == year) & (gdf["timestamp"].dt.month == month)
].select_dtypes(exclude="datetimetz").explore()
Last executed at 2022-09-21 22:21:49 in 1.39s
```


speed_knots 0.2

rate_of_turn -128

collection_type dynamic

maneuver 0

course 127

timestamp_iso 2021-03-29T1

longitude 32.58031

latitude 30.01753

12

The MovingPandas base class (Trajectory)

```
import movingpandas as mpd

traj = mpd.Trajectory(gdf[0:10000].set_index("timestamp"), 1)

Last executed at 2022-09-21 22:26:56 in 7.87s
```

The repr will give summary statistics

```
traj
Last executed at 2022-09-21 22:26:57 in 1.40s

Trajectory 1 (2018-12-07 00:11:01+00:00 to 2019-03-15 05:33:58+00:00) | Size: 9997 | Length: 84889948.5m
Bounds: (-10.14075, 1.05323, 123.59713, 54.03032)
LINESTRING (102.92997 1.53197, 103.11421 1.44149, 103.14129 1.42546, 103.16029 1.41217, 103.18697 1.
```

Calulate speed between points and remove spurious points

Smooth data by interpolating

```
for dt in pd.date_range(
    start=pd.Timedelta.ceil(_gdf.index.min(), freq="15min"),
    end=pd.Timedelta.floor(_gdf.index.max(), freq="15min"),
    freq="15min",
):
    pts[dt] = traj.get_position_at(dt).wkt
```


Voyage statistics

 AIS data generated as Shortest path to and from Miami, US to Bristol, UK using DTN's routing API

Voyage statistics

Split trajectory by time greater than expected in port

```
trajc = mpd.ObservationGapSplitter(traj).split(gap=timedelta(days=1))
trajc
Last executed at 2022-09-22 02:24:38 in 90ms
TrajectoryCollection with 2 trajectories
for traj in trajc:
    print(traj)
Last executed at 2022-09-22 02:24:40 in 47ms
Trajectory 1 0 (2022-09-23 12:00:00+00:00 to 2022-10-09 06:43:48+00:00) | Size: 99 | Length: 6988598.2m
Bounds: (-80.16958618164062, 25.75665283203125, -2.719085693359375, 51.50248718261719)
LINESTRING (-80.16958618164062 25.770172119140625, -80.16886901855469 25.7691650390625, -80.16438293
Trajectory 1 1 (2022-10-23 12:00:00+00:00 to 2022-11-09 12:10:44+00:00) | Size: 103 | Length: 7015720.6m
Bounds: (-80.16958618164062, 25.75665283203125, -2.719085693359375, 51.50248718261719)
LINESTRING (-2.719085693359375 51.49803161621094, -2.7212982177734375 51.496917724609375, -2.7223205
```

 This can be used to build ETA (Estimated Time of Arrival) models combined with weather data + current data + wave data

```
gdf = pd.concat(l, ignore_index=True)
traj = mpd.Trajectory(gdf.set_index("properties.eta"), 1)
trajc = mpd.ObservationGapSplitter(traj).split(gap=timedelta(days=1))
l = []
for _traj in trajc:
    l.append(_traj.get_duration())
pd.DataFrame(l)
Last executed at 2022-09-22 02:55:58 in 206ms
               0
   10 days 14:01:12
   6 days 22:52:09
```

4 5 days 09:32:43

7 days 23:41:42

8 days 20:26:34

https://github.com/anitagraser/movingpandasexamples/blob/main/2-analysis-examples/shipdata.ipynb

All ship data for Danish waters in a day


```
df['t'] = pd.to_datetime(df['Timestamp'], format='%d/%m/%Y %H:%M:%S')
traj_collection = mpd.TrajectoryCollection(df, 'MMSI', t='t', min_length=100)
traj_collection = mpd.MinTimeDeltaGeneralizer(traj_collection).generalize(tolerance=timedelta(minutes=1))
```


Finding ships passing under Älvsborgsbron bridge

We can find ships passing under the bridge based on trajectory intersections with the bridge area.

```
area_of_interest = Polygon([(11.89935, 57.69270), (11.90161, 57.68902), (11.90334, 57.68967), (11.90104, 57.69354), (11.89935, 57.69270)])
intersecting = traj_collection.get_intersecting(area_of_interest)
print(f"Found {len(intersecting)} intersections")
```

Found 20 intersections

```
bridge_traj = intersecting.trajectories[0]
bridge_traj.hvplot(title=f'Trajectory {bridge_traj.id}', frame_width=700, frame_height=500, line_width=5.0, c='NavStatus', cmap='Dark2')
```


Identifying trip origins and destinations

Since AIS records with a speed over ground (SOG) value of zero have been removed from the dataset, we can use the <code>ObservationGapSplitter()</code> class to split the continuous observations into individual trips:

```
trips = mpd.ObservationGapSplitter(passenger).split(gap=timedelta(minutes=5))
trips.hvplot(title='Passenger ferry trips', line_width=2, frame_width=700, frame_height=500)
```


Next, let's get the trip origins:

```
origins = trips.get_start_locations()
origins.hvplot(title='Trip origins by ship type', c='Name', geo=True, tiles='OSM', frame_width=700, frame_height=500)
```


 Density based clusters with ball tree and haversine distance can describe regional patterns of ship activity

```
db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(matrix))
cluster_labels = db.labels_
num_clusters = len(set(cluster_labels))
clusters = pd.Series([matrix[cluster labels == n] for n in range(num clusters)])
origins['cluster'] = cluster_labels
def get_centermost_point(cluster):
    centroid = (MultiPoint(cluster).centroid.x, MultiPoint(cluster).centroid.y)
    centermost_point = min(cluster, key=lambda point: great_circle(point, centroid).m)
    return Point(tuple(centermost_point)[1], tuple(centermost_point)[0])
centermost points = clusters.map(get_centermost_point)
origins.hvplot(title='Clustered origins', c='cluster', geo=True, tiles='OSM', cmap='glasbey_dark', frame_width=700, frame_height=500)
                                                Clustered origins
                                           57.7
                                           57.69
                                                                                                            Kungsla
                                           57.68
                                                                                                        Högsbohöjd,
                                           57.6
                                                                                        Påvelund
                                                                                                       Ruddalen
                                           57.66
                                                                                                    Västra Frölunda
                                                                                    Bratthammar
                                           57.65
                                                                                                 @ OpenStreetMap contributors
                                                    11.8
                                                             11.82
                                                                       11.84
                                                                                 11.86
                                                                                          11.88
                                                                                                             11.92
```

```
( trips.hvplot(title='Origin clusters by speed', color='gray', line_width=1, frame_width=700, frame_height=500) *
   GeoDataFrame(summary, crs=4326).hvplot(c='sog', size=np.sqrt(dim('n'))*3, geo=True, cmap='RdYlGn')
```



```
traj = split.trajectories[2]

cleaned = traj.copy()
cleaned.add_speed(overwrite=True)
for i in range(0,10):
    cleaned = mpd.OutlierCleaner(cleaned).clean({'speed': 1})

smoothed = mpd.KalmanSmootherCV(cleaned).smooth(process_noise_std=0.1, measurement_noise_std=10)

(traj.hvplot(title='Original Trajectory', **kwargs) +
    cleaned.hvplot(title='Cleaned Trajectory', **kwargs) +
    smoothed.hvplot(title='Cleaned & Smoothed Trajectory', **kwargs))
```


What's next for MovingPandas

- dask-movingpandas which uses dask-geopandas for big data
- Cast Trajectory to a TrajectoryCollection for Trajectory operations (similar to xarray Dataset and DataArray handling)
- Improved html repr
- Improved documentation
- Deployed dashboard(s) e.g. streamlit cloud...
- Share learnings/development between other trajectory libraries (CuSpatial, scikit-mobility)
- 555

Summary

- What is AIS data? Ship location data
- What is movingpandas? A libraries for trajectory data
- Whistle stop tour of geopandas which moving pandas is build upon
- movingpandas demo including:
 - base class
 - cleaning AIS data removing spurious points
 - voyage summary statistics by splitting trajectories
 - Clustering of location hot spots using end points with sklearn.cluster.DBSCAN
 - Trajectory smoothing using stonesoup
- Future development of movingpandas get involved!