第 12 章课外练习题

一. 选择题

- - (A). 一定绝对收敛; (B). 一定条件收敛; (C). 一定发散; (D). 可能收敛中可能
- (D). 可能收敛也可能发散.
- 2. 函数 $f(x) = \int_{t}^{x} \frac{\sin t}{t} dt$ 在 x = 0 处的幂级数展开式为______.

(A).
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n-1)!(2n+1)} x^{2n+1} \quad (-\infty < x < +\infty);$$

(B).
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(2n-1\right)!\left(2n+1\right)} x^{2n+1} \quad \left(-\infty < x < 0, \ 0 < x < +\infty\right);$$

(C).
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(2n+1\right)!\left(2n+1\right)} x^{2n+1} \quad \left(-\infty < x < +\infty\right);$$

(D).
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!(2n+1)} x^{2n+1} \quad (-\infty < x < 0, \ 0 < x < +\infty) .$$

3. 下列级数中,属于条件收敛的是

(A).
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{n}$$
; (B). $\sum_{n=1}^{\infty} \frac{(-1)^n \dot{\mathbf{n}} \cdot \frac{\pi}{n}}{n^n}$;

(C).
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
; (D). $\sum_{n=1}^{\infty} \frac{(-1)^n}{3n+1}$.

4. 设函数 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = \begin{cases} x & -\pi \le x < 0 \\ 0 & 0 \le x < \pi \end{cases},$$

再设 f(x)的 Fourier(傅立叶)级数的和函数为 s(x),则 $s(\pi) = \mathbb{I}$

(A).
$$-\frac{\pi}{2}$$
; (B). $-\pi$; (C). 0; (D). π .

5. 设 a_n 与 b_n 符合下列_____条件,可由级数 $\sum_{n=1}^{\infty}a_n$ 发散推出级数 $\sum_{n=1}^{\infty}b_n$ 发散.

(A).
$$|a_n| \le b_n$$
; (B). $|a_n| \le |b_n|$; (C). $a_n \le |b_n|$; (D). $a_n \le b_n$.

- 6. 设 α 为常数,则级数 $\sum_{n=1}^{\infty} \left[\frac{\sin n\alpha}{n^2} \frac{1}{\sqrt{n}} \right]$
- (A). 绝对收敛. (B). 发散. (C). 条件收敛. (D). 敛散性与α取值有关.
- (A) $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$ 都收敛. (B) $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$ 都发散.
- (C) $\sum_{n=1}^{\infty} u_n$ 收敛, 而 $\sum_{n=1}^{\infty} u_n^2$ 发散. (D) $\sum_{n=1}^{\infty} u_n$ 发散, $\sum_{n=1}^{\infty} u_n^2$ 收敛.
- 8 . 设函数 $f(x) = x^2, 0 \le x < 1$, 而 $s(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x, -\infty < x < +\infty$. 其中
- $b_n = 2 \int_0^1 f(x) \sin n\pi x dx, (n = 1, 2, \dots), \quad \emptyset \ s(-\frac{1}{2})$ 等于
 - (A) $-\frac{1}{2}$, (B) $-\frac{1}{4}$, (C) $\frac{1}{4}$, (D) $\frac{1}{2}$
- 9. 设 $\sum_{n=1}^{\infty} (-1)^n a_n$ 条件收敛,则
- (A) $\sum_{n=1}^{\infty} a_n$ 收敛, (B) $\sum_{n=1}^{\infty} a_n$ 发散, (C) $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 收敛,
- (D) $\sum_{n=1}^{\infty} a_{2n}$ 和 $\sum_{n=1}^{\infty} a_{2n+1}$ 都收敛.
- 10. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则必定收敛的级数为
- (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$ (B) $\sum_{n=1}^{\infty} u_n^2$ (C) $\sum_{n=1}^{\infty} (u_{2n-1} u_{2n})$ (D) $\sum_{n=1}^{\infty} (u_n + u_{n-1})$
- 11. 若 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在x = -2处收敛,则此级数在x = -1处
- (A) 条件收敛, (B) 绝对收敛, (C) 发散, (D) 收敛性不确定.

- 12. 设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 3, 则幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$ 的必定收敛的区间为
- (A) (-2, 4) (B) [-2, 4] (C) (-3, 3) (D) (-4, 2)

二. 填空题

- 1. 级数 $\sum_{n=1}^{\infty} (-1)^n \left(1 \cos \frac{\alpha}{n}\right)$ (α 为常数) 的敛散性为_____.
- 2. 若 a > 0, b > 0, 则级数 $\sum_{n=1}^{\infty} \frac{(a+1)(2a+1)\cdots(na+1)}{(b+1)(2b+1)\cdots(nb+1)}$ 在 ______ 时发散.
- 3. 设幂级数 $\sum_{n=0}^{\infty}a_{n}x^{n}$ 的收敛半径为 R_{1} , 幂级数 $\sum_{n=0}^{\infty}b_{n}x^{n}$ 的收敛半径为 R_{2} , 且
- $0 < R_1 < R_2 < +\infty$,则幂级数 $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ 的收敛半径为______.
- 4. 设 $f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 + x^2 & 0 \le x < \pi \end{cases}$, 且以 2π 为周期,则 f(x) 的傅里叶级数在点 $x = \pi$ 处收敛于
- 5. p-级数 $\sum_{n}^{\infty} \frac{1}{n^p}$ 在p满足______条件下收敛.
- 6. 数项级数 $\sum_{n=1}^{\infty} \frac{1}{a^n}$ 在a满足_______条件下收敛.
- 三. 判断下列级数的敛散性:

1.
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+2)} \sin \frac{1}{n}$$

1.
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+2)} \sin \frac{1}{n}; \qquad 2. \sum_{n=1}^{\infty} \frac{1}{(a+n-1)(a+n)(a+n+1)} (a \neq 0);$$

3.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$
;

4.
$$\sum_{n=1}^{\infty} \frac{n^2}{(n+1/n)^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

5.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!};$$
 6.
$$\sum_{n=1}^{\infty} \frac{1}{n!} (\sqrt{1+n} - \sqrt{n-1})$$

- **四.** 试将函数 $f(x) = \int_{0}^{x} e^{-t^2} dt$ 展成 x 的幂级数(要求写出该幂级数的一般项并指出其收敛域).
- 五. 求幂级数 $\sum_{n=1}^{\infty} n! \frac{x^n}{n^n}$ 的收敛域(端点情形要讨论).
- 六. 利用 $\frac{d}{dx} \left(\frac{\cos x 1}{x} \right)$ 的幂级数展开式,求级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2n-1}{(2n)!} \left(\frac{\pi}{2} \right)^{2n}$ 的和.
- 七. (1). 将 $f(x) = x \arctan x \ln \sqrt{1 + x^2}$ 展开为 x 的幂级数;
 - (2). 指出该幂级数的收敛域;
 - (3). 求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n-1)}$ 的和.
- 八. 把函数 f(x) = $\begin{cases} x & 0 < x \le 1 \\ 2 x & 1 < x < 2 \end{cases}$ 分别展成正弦函数和余弦函数。

九. 把函数
$$f(x) = \begin{cases} -\frac{\pi}{2} & -\pi \le x < \frac{-\pi}{2} \\ x & \frac{-\pi}{2} \le x < \frac{\pi}{2} \end{cases}$$
 展成付氏级数。
$$\frac{\pi}{2} \le x < \pi$$

- 十. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n2^n} x^{n-1}$ 的收敛域,并求其和函数.
- 十一. 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 f(0) = 0, f'(0) = 0,

证明级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 绝对收敛.

- 十二. 1. 将 $f(x) = 2 + x + \arctan x$ 展开成关于 x 的幂级数,指出收敛区间.
 - 2. 判别级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{1}{n}$ 的敛散性.