

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Enfriameintos rapídos del modelo 2
d $\mathrm{O}(3)$

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

LICENCIATURA EN FÌSÍCA

PRESENTA:

MARCO ISRAEL RODRÍGUEZ CORNEJO

TUTOR

Wolfgang Peter Bietenholz

Este trabajo esta dedicado a mis padres, quienes me motivaron a no rendirme y me apoyaron incondicionalmente.

Agradecimientos

Agradezco al la Universidad Nacional Autónoma de México, a la Facultad de Ciencias y sus profesores, y al Instituto de Ciencias Nucleares por abrirme sus puertas y darme la oportunidad de realizar este trabajo de titulación. Agradezco a DGAPA por el apoyo a través del programa de apoyo a proyectos de investigación e innovación tecnológica. Agradezco especialmente a Dr. Wolfgang Bietenholz por guiarme pacientemente a través del largo proceso de investigación, redacción y corrección de esta tesis. Gracias por su guía y constante motivación. Agradezco a los sinodales, y a las personas que con su trabajo hace posible la culminación de este trabajo de titulación.

Resumen

En esta tesis se introduce el modelo 2d O(3), los métodos de Monte Carlo y teoría sobre fenómenos críticos. Se describe el mecanismo de Kibble-Zurek y se propone probar si es aplicable al modelo 2d O(3). Con este fin se reportan los resultados de una serie de simulaciones numéricas en equilibrio y enfriamientos rápidos usando métodos de Monte Carlo en específico el de Metropolis, y el algoritmo de Glauber, ambos con un orden de selección Lexicográfico y Aleatorio y el algoritmo multi-clúster.

En las simulaciones en equilibrio se reportan los siguientes exponentes críticos: El exponente critico dinámico z, la longitud de correlación ν , el exponente νz y el exponente $\zeta = 2d/(1+\nu z)$. En las simulaciones de enfriamientos se reporta el exponente ζ . El valor obtenido en los enfriamientos para los algoritmos de Metropolis y Glauber resulto en $\zeta = 0.53(2)$ para la carga topológica, 0.214(5) para la energía y 0.277(5) para la magnetización. Los restados discreparon con las mediciones del exponente medidas en equilibrio con los valores 2.2(5) para la carga topológica, 2.0(4)para la energía y 2.855(5) para la magnetización.

Se discute como el hecho de que el modelo 2d O(3) no se puede enfriar por debajo de la temperatura crítica podría explicar la discrepancia entre las mediciones en el equilibrio respecto a las mediciones de los enfriamientos. Finalmente se señala que a pesar de las discrepancias en los valores reportados en el equilibrio respecto a los valores de los enfriamientos, hay una relación entre la densidad de defectos topológicos remanentes y el cambio en las tasas de enfriamiento como lo propone el mecanismo de Kibble-Zurek.

Índice general

1.	Motivación al estudio de sistemas fuera del equilibrio	4
2.	Mecánica estadística e integral de trayectorias	6
	2.1. Propagador de evolución	6
	2.2. Rotación de Wick	9
3.	Modelos de espín	11
	3.1. Estructura de una retícula	11
	3.2. Modelo 2d O(3)	12
		14
		15
		16
	<u> </u>	16
4.	Fenómenos críticos	20
		20
	4.2. Parámetro de orden	22
		23
	4.4. Universalidad	
		25
5.	Mecanismo de Kibble-Zurek	27
•		27
		28
	ı	28
	1	29
6	Métodos de Monte Carlo	31
υ.	6.1. Algoritmo de Metropolis	
	6.2. Algoritmo de Glauber	
	· ·	34
		25

ÍNDICE GENERAL	3

7.	Simulaciones en equilibrio 7.1. Tiempo de autocorrelación	42			
8.	Simulación de enfriamientos 8.1. Enfriamientos rápidos	49			
9.	Resumen y conclusiones	58			
Α.	A. Distribución aleatoria de vectores en la esfera S^2				
в.	3. Algoritmo Hoshen-Kopelman				
Bi	Bibliografía				

Capítulo 1

Motivación al estudio de sistemas fuera del equilibrio

La investigación es un proceso largo y requiere gran esfuerzo. En la búsqueda de la comprensión de los fenómenos físicos, se han desarrollado y aplicado herramientas matemáticas como el cálculo, la estadística y la geometría con el fin de crear modelos teóricos para estos fenómenos. En el proceso, muchos modelos se desechan o se replantean. La forma de poner a prueba los modelos teóricos es por medio de experimentos. Siempre se busca realizar mejores experimentos y obtener mejores mediciones. Las investigaciones continúan de generación en generación, refinando la teoría como la experimentación. De esta forma, el progreso en las investigaciones se encamina en la dirección correcta.

Los estados de la materia y sus transiciones de fase son temas de gran interés en la física. Tom Kibble y Wojciech Zurek se interesaron en el estudio de las clases de universalidad el ruptura súbita de la simetría en sistemas al pasar por debajo de una temperatura crítica. Kibble propuso una relación entre la tasa de enfriamiento del universo temprano y la densidad remanente de defectos topológicos al pasar por una ruptura súbita de la simetría. Zurek aplico el mismo concepto a modelos de materia condensada como el modelo de helio en estado suprefluidico ⁴He. Propusieron que la supervivencia de defectos topológicos la pasar por una ruptura súbita de una simetría, se relaciona con la tasa de enfriamiento al que un sistema pasa por la temperatura crítica siguiendo una relación conocida como mecanismo de Kibble-Zurek.

Los enfriamientos rápidos son fenómenos fuera del equilibrio termodinámico, en estas circunstancias, los experimentos se vuelven complejos, y la teoría detrás de procesos que involucran interacciones entre un vasto número de partículas resulta demasiado intrincada. Para superar estas limitaciones, se desarrollo una serie de métodos basados en procesos estocásticos, conocidos como métodos de Monte Carlo.

Entre los años 1949 y 1952, Un equipo de científicos liderado por Nicholas Metropolis [1], trabajo en Los Álamos en el desarrollo de la bomba de hidrógeno. Su trabajo se centró en comprender la física de las interacciones entre la radiación y la materia bajo condiciones extremas, tales como explosiones, implosiones y la evolución de reacciones nucleares fuera del equilibrio. Su aporte fue posteriormente aplicado a otras áreas de investigación y con el posterior desarrollo de los ordenadores, los métodos de Monte Carlo se volvieron herramientas fundamentales en el estudio de sistemas con incontables grados de libertad.

En esta tesis, se realizan simulaciones de enfriamientos rápidos el modelo 2d O(3). También se realizan simulaciones del modelo en equilibrio. En los experimentos numéricos fuera del equilibrio se miden los defectos topológicos remanentes para diferentes tasas de enfriamiento, esperando resultados compatibles con el mecanismo de Kibble-Zurek. La guía en este proceso es el camino dejado por los investigadores en diferentes áreas de la física. El hacer un pequeño aporte en este proceso es una de las motivaciones de esta tesis.

Capítulo 2

Mecánica estadística e integral de trayectorias

En sistemas físicos que consisten en un gran número de grados de libertad, plantear y resolver las ecuaciones de movimiento para cada variable, es en la mayoría de los casos técnicamente imposible. Si queremos estudiar estos sistemas, es necesario un enfoque diferente. En mecánica estadística, se renuncia a conocer la trayectoria exacta de cada elemento. A cambio el problema se resuelve con una función de partición. La función de partición se define como una suma sobre la energía $\mathcal H$ de las posibles configuraciones σ . En un sistema que depende de la temperatura T, la función de partición es de la forma

$$Z = \sum_{\sigma} e^{-\beta \mathcal{H}[\sigma]}, \tag{2.1}$$

donde $\beta=1/k_BT$ y k_B es la constante de Boltzmann. Usando la función de partición es posible derivar funciones de estado de un sistema como la entropía, el valor esperado de la energía interna etc. Los métodos de Monte Carlo son una forma práctica de calcular numéricamente las observables derivadas la función de partición, proporcionando una opción realista para estudiar sistemas físicos fuera del equilibrio.

2.1. Propagador de evolución

Cuando Richard Feynman [2] desarrolló su propia formulación de integral de trayectorias después del trabajo previo de Dirac, se preguntó si existía un camino para conectar la mecánica estadística con la mecánica cuántica. Feynman encontró una función análoga a la función de partición para sistemas cuánticos.

En la mecánica clásica un sistema físico esta descrito por la función hamiltoniana

$$\mathcal{H} = \frac{1}{2m} \sum_{i} p_i^2 + V,\tag{2.2}$$

donde p_i es momento y Vel potencial. Para describir la evolución de una observable O, se definen los corchetes de Poisson como invariantes respecto a cualquier transformación canónica. La dinámica

de la observable se describe por la ecuación (a la derecha de la ecuación usamos los corchetes de Poisson)

$$\frac{\mathrm{d}O}{\mathrm{d}t} = \{\mathcal{H}, O\} \tag{2.3}$$

En la transición de la mecánica clásica a la mecánica cuántica, se realiza una transformación, donde las funciones definidas el espacio fase se convierten en operadores definidos en el espacio de Hilbert, y los corchetes de Poisson de dos funciones se convierten en el conmutador de dos operadores

$$\{\mathcal{H}, O\} \to -i\hbar[\hat{\mathcal{H}}, \hat{O}],$$
 (2.4)

donde $\hat{\mathcal{H}}$ y \hat{O} son operadores en el espacio de Hilbert. La dinámica del operador \hat{O} sin dependencia temporal explícita, sigue la ecuación formulada por Heisenberg

$$\frac{\mathrm{d}\hat{O}}{\mathrm{d}t} = \frac{i}{\hbar} \left[\hat{\mathcal{H}}, \hat{O} \right]. \tag{2.5}$$

La ecuación que describe la dinámica de un sistema cuántico fue introducida por Erwin Schrödinger como

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = \hat{\mathcal{H}} |\psi(t)\rangle,$$
 (2.6)

donde t es el tiempo, i es la unidad imaginaria, \hbar es la constante de Planck, $\hat{\mathcal{H}}$ es el operador hamilotonaino del sistema y $|\psi(t)\rangle$ es la función de onda en la notación de Dirac. Para pasar de la formulación de Heisenberg a la formulación de Schrödinger se aplica la transformación

$$\hat{O}(t) = e^{-it\hat{\mathcal{H}}/\hbar} \hat{O}e^{it\hat{\mathcal{H}}/\hbar}, \qquad |\psi(t)\rangle = e^{-it\hat{\mathcal{H}}/\hbar} |\psi\rangle , \qquad (2.7)$$

donde $|\psi\rangle$ es el vector de estado sin dependencia temporal en la formulación de Heisenberg y $|\psi(t)\rangle$ es la función de onda en la formulación de Schrödinger. Los valores esperados se mantienen invariantes bajo la transformación

$$\langle \psi | \hat{O}(t) | \psi \rangle = \langle \psi(t) | \hat{O} | \psi(t) \rangle. \tag{2.8}$$

Un vector de estado $|\psi(t)\rangle$ en la formulación de Schrödinger sigue la ec. 2.6. Consideremos el caso de una partícula libre en una dimensión espacial, donde $\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m}$. En el espacio de posiciones el vector de estado es $|q\rangle$ y la solución a la ecuación de Schrödinger es de la forma

$$\langle q'|\psi(t)\rangle = \int \langle q'|e^{-it\hat{\mathcal{H}}/\hbar}|q\rangle \langle q|\psi\rangle dq.$$
 (2.9)

Definimos al propagador de la ecuación de Schrödinger como

$$K(q, q'; t) = \langle q' | e^{-it\hat{\mathcal{H}}/\hbar} | q \rangle.$$
 (2.10)

El propagador describe la evolución de la función de onda desde el estado $|q\rangle$ hasta $|q'\rangle$ en tiempo t [2]. El propagador la partícula libre es de la forma

$$K(q, q'; t) = \left(\frac{m}{2\pi i\hbar t}\right)^{1/2} e^{iS(q, q'; t)/\hbar}$$
(2.11)

donde S(q, q'; t) es la acción de la trayectoria desde q a q' en tiempo t, explícitamente es de la forma

$$S(q, q'; t) = \int_0^t \frac{m}{2} \dot{q}^2 d\tau = \frac{m}{2t} (q' - q)^2.$$
 (2.12)

Sustituyendo la acción en la ec. 2.11 se obtiene

$$K(q, q'; t) = \left(\frac{m}{2\pi i\hbar t}\right)^{1/2} \exp\left[i\frac{m}{2t}(q' - q)^2\right].$$
 (2.13)

Teorema de Trotter

Sean \hat{A} y \hat{B} operadores auto-adjuntos y $\hat{A} + \hat{B}$ es auto-adjunto en la intersección de sus dominios, además \hat{A} y \hat{B} tienen cota inferior y $\tau \in \mathbb{R}$, entonces [3]

$$\mathrm{e}^{-\tau\left(\hat{A}+\hat{B}\right)} = \lim_{n\to\infty} \left(\mathrm{e}^{-\tau\hat{A}/n}\mathrm{e}^{-\tau\hat{B}/n}\right)^n.$$

En general se tiene un hamiltonaino $\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{V}$ donde $\hat{\mathcal{H}}_0 = \frac{1}{2m} \sum_i \hat{p}_i^2$. El propagador general K(q, q'; t) cumple con la ecuación de Schrödinger

$$i\hbar\frac{\partial}{\partial t}K\left(q,q';t\right) = \hat{\mathcal{H}}K\left(q,q';t\right).$$
 (2.14)

Partiendo de la forma estándar del propagador se tiene

$$K(q, q'; t) = \left\langle q' \middle| e^{-i\hbar t (\hat{\mathcal{H}}_0 + \hat{V})} \middle| q \right\rangle.$$
 (2.15)

Aplicando el teorema de Trotter se obtiene

$$K\left(q, q'; t\right) = \lim_{n \to \infty} \left\langle q' \middle| \left(e^{-i\hbar t \hat{\mathcal{H}}_0/n} e^{-i\hbar t \hat{V}/n} \right)^n \middle| q \right\rangle. \tag{2.16}$$

Las trayectorias se participan en n intervalos donde $q_0 = q$ y $q_n = q'$ y el conjunto de variables $\{q_1, \ldots, q_n\}$ abarca las posibles trayectorias de la partícula libre de q a q'

$$K(q, q'; t) = \lim_{n \to \infty} \int \prod_{j=0}^{n-1} \left\langle q_{j+1} \middle| e^{-i\hbar t \hat{\mathcal{H}}_0/n} e^{-i\hbar t \hat{V}/n} \middle| q_j \right\rangle dq_1 \dots dq_{n-1}.$$
 (2.17)

El beneficio de realizar la partición de las trayectorias es que ahora en cada factor del producto se tiene hamitoniano de una partícula libre. Aplicando la ec. (2.11) a la ec. (2.17) se obtiene

$$K(q, q'; t) = \lim_{n \to \infty} \int \left(\frac{m}{2\pi i a}\right)^{n/2} \times \exp\left\{ia \sum_{j=0}^{n-1} \left[\frac{m}{2} \left(\frac{q_{j+1} - q_j}{a}\right)^2 - V(q_j)\right]\right\} dq_1 \dots dq_{n-1},$$

$$(2.18)$$

Figura 2.1: En esta imagen, se muestra una trayectoria que parte de q en el tiempo 0 hasta q' en el tiempo t en n pasos temporales de tamaño a. La función de partición es la suma sobre las posibles trayectorias que van de q hasta q' en el tiempo t.

donde a=t/n y $\hbar=1.$ Observamos que la suma corresponde a la integral de Riemann de la acción en el límite

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} a \left[\frac{m}{2} \left(\frac{q_{j+1} - q_j}{a} \right)^2 - V(q_j) \right] = \int_0^t \left[\frac{m}{2} \left(\frac{\mathrm{d}q}{\mathrm{d}t'} \right) - V(q(t')) \right] \mathrm{d}t'. \tag{2.19}$$

El propagador se puede expresar como la suma infinita

$$K(q, q'; t) = \sum_{\sigma \in \Omega} e^{-itS[\sigma]}, \qquad (2.20)$$

donde σ corresponde a una trayectoria en Ω , y este es el conjunto de todas las posibles trayectorias que inician en q y terminan en q' en el tiempo t. Al igual que la función de partición es una suma sobre configuraciones, el propagador es una suma sobre trayectorias, el propagador es igual a la función de partición salvo por la unidad imaginaria i que aparece en el exponente.

2.2. Rotación de Wick

Comparando el propagador de evolución ec. (2.20) con la función de partición ec. (2.1), se vuelve más clara la relación entre la mecánica cuántica y la física estadística. Antes se menciono que hay una diferencia importante. La unidad imaginaria presente en el propagador de evolución, no aparece en la función de partición, mientras que aparece una relación entre la temperatura y la constante de Planck $\hbar \to k_B T$.

La unidad imaginaria se puede evitar al cambiar el eje temporal en el espacio hiperbólico descrito por la métrica de Minkowski por un eje imaginario en el espacio-tiempo. El tensor métrico del espacio

de Minkowski es de la forma

$$g_M = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \tag{2.21}$$

donde el elemento -1 corresponde a la coordenada temporal. Usando el tensor métrico se obtiene la métrica del espacio de Minkowski

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}, (2.22)$$

Guido Wick propuso la transformación al espacio euclidiano, cambiando el eje real de la coordenada temporal por un eje imaginario resultando en el tensor euclidiano

$$g_E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{2.23}$$

Usando el tensor métrico se obtiene la métrica del espacio euclidiano

$$ds^{2} = dt_{E}^{2} + dx^{2} + dy^{2} + dz^{2}.$$
 (2.24)

Por conveniencia pasemos la ec. (2.20) del espacio de Minkowski al espacio de euclidiano, tenemos que hacer el cambio $t_E = it$, donde t es el tiempo en el espacio de Minkowski y t_E en el espacio euclidiano.

La forma del propagador en el espacio de Minkowski es equivalente a la función de partición definida en mecánica estadística, la forma discreta del propagador es

$$K(q, q'; t_E) = \lim_{n \to \infty} \int \left(\frac{m}{2\pi a}\right)^{n/2} \times \exp\left\{a \sum_{j=0}^{n-1} \left[\frac{m}{2} \left(\frac{q_{j+1} - q_j}{a}\right)^2 + V(q_j)\right]\right\} dq_1 \dots dq_{n-1},$$

$$(2.25)$$

donde $\beta = t/n$, en el límite cuando $n \to \infty$

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \beta \left[\frac{m}{2} \left(\frac{q_{j+1} - q_j}{\beta} \right)^2 + V(q_j) \right] = \int_0^{t_E} \left[\frac{m}{2} \left(\frac{\mathrm{d}q}{\mathrm{d}\tau} \right) + V(q(\tau)) \right] \mathrm{d}\tau \,. \tag{2.26}$$

El equivalente a la función de partición es

$$K(q, q'; t_E) = \sum_{\sigma \in \Omega} e^{-\beta S[\sigma]}, \qquad (2.27)$$

donde Ω es el conjunto de todas las posibles trayectorias de q a q' en el tiempo t y la función de partición es tal que $|q\rangle = |q'\rangle$ [4, 5]. De aquí en adelante simplificaremos la notación referiremos al tiempo euclidiano t_E como t.

Capítulo 3

Modelos de espín

Definición: Espín clásico en los modelos O(n).

En el contexto de un modelo O(n), un espín clásico es un vector unitario definido en un espacio abstracto de dimensión n. Es decir, corresponde a un punto de la esfera \mathcal{S}^{n-1} .

Las propiedades macroscópicas de una amplia gama de materiales pueden describirse mediante modelos de espines. En estos modelos, propiedades como la energía, la magnetización y en ciertos modelos la carga topológica son observables y pueden medirse a partir de las configuraciones de espines.

3.1. Estructura de una retícula

Definición: Retícula.

Definimos una retícula como un subgrupo discreto del espacio continuo \mathbb{R}^d que es isomorfo al espacio discreto de \mathbb{Z}^d , donde d es el número de dimensiones.

Los modelos de retícula son ampliamente usados para describir efectos colectivos. En la mayoría de los casos se usan retículas compuestas por repeticiones de estructuras geométricas simples como en los cristales. En dos dimensiones se tienen estructuras cuadradas, triangulares o hexagonales. Una retícula una formada por hipercubos de dimensión d, se define como el conjunto de sitios en el espacio de dimensión d cuyas posiciones son coordenadas enteras

$$\mathscr{R}^d = \left\{ x \in \mathbb{R}^d | x = (x_1 \dots, x_d) \land x_i \in \mathbb{Z} \forall i \right\}. \tag{3.1}$$

En simulaciones de Monte Carlo no es posible computar en retículas infinitas, por lo que la retícula se limita a un trozo finito de tamaño L^d . De esta constricción se obtiene la retícula finita de dimensión d y donde cada lado tiene longitud L, se describe como

$$\mathscr{R}_{L}^{d} = \left\{ x \in \mathscr{R}^{d} | 0 < x_{i} \le L, i \in \{1, \dots, d\} \right\}.$$
(3.2)

Figura 3.1: En dos dimensiones, la topología de una retícula finita cuadrada con condiciones de frontera periódicas es un toroide bidimensional.

Una retícula cortada pierde la simetría de translación discreta en los límites de la estructura. Para recuperar la simetría, se establecen condiciones de frontera periódicas definiendo la retícula con estructura toroidal

$$\mathscr{T}_{L}^{d} = \left\{ x \in \mathscr{R}_{L}^{d} | x_{i} = x_{i} + nL, i \in \{1, \dots, L\}, n \in \mathbb{Z} \right\}.$$
(3.3)

En cada sito $x \in \mathscr{T}_L^d$ hay 2d sitios ubicados a una unidad de distancia (dos por cada dimensión). El resto de sitios se ubican a una distancia mayor, por lo que a esos 2d sitios son los vecinos más cercanos a x.

3.2. Modelo 2d O(3)

Antes que nada, es importante definir una notación clara y simple para referir los sitios y los espines. Un sitio está dado por su posición en la retícula: En dos dimensiones se representa por pares de coordenadas $x = (x_1, x_2)$ donde $x_1, x_2 \in (1, ..., L)$. Un espín \vec{s}_x de dimensión 3 restringido a las esfera \mathcal{S}^2 se define por sus tres coordenadas cartesianas

$$\vec{s}_x = (\sin \theta_x \cos \phi_x, \sin \theta_x \sin \phi_x, \cos \theta_x), \tag{3.4}$$

donde $\theta_x \in [0, \pi)$, $\phi_x \in [0, 2\pi)$ y x indica el sitio en la retícula que ocupa el espín. La notación para dar explícitamente las coordenadas de espín es $\vec{s}_x = \left(s_x^{(1)}, s_x^{(2)}, s_x^{(3)}\right)$. La orientación de un espín se puede describir de manera equivalente con sus coordenadas esféricas (θ_x, ϕ_x) usando la ec. (3.4).

El modelo 2d O(3) consiste en un arreglo de espines clásicos en S^2 acomodados en los sitios de una retícula $x \in \mathcal{F}_L^2$. Cada espín es una fuente de magnetización e interactúa con el resto de espines directamente o indirectamente siguiendo un acoplamiento. Típicamente el impacto de un espín decae exponencialmente con la distancia. Por argumentos referentes a la clase de universalidad que se discuten el el capítulo 4.4 optaremos por despreciar esas interacciones.

En el modelo 2d O(3) una configuración [s] es el conjunto de orientaciones de los espines en la retícula en el mismo instante t. Ejemplos son, las configuraciones en las que todos los espines apuntan a la misma dirección o la configuración en la que todos los espines apuntan en direcciones

Figura 3.2: Representación de un espín clásico \vec{s} en en el modelo O(3). Cada espín es representado por vector en la esfera S^2 y su estado está dado por sus coordenadas.

perpendiculares a sus vecinos. Cualquier combinación de orientaciones de espines es una configuración. Dada una configuración [s], la energía del sistema depende de los acoplamientos espín a espín y se describe por la función hamiltoniana

$$\mathcal{H}[s] = -J \sum_{\langle x,y \rangle} \vec{s}_x \cdot \vec{s}_y, \tag{3.5}$$

donde J es una constante de acoplamiento y $\langle x,y\rangle$ son los espines vecinos más cercanos. Si todos los espines son paralelos, la suma sobre el producto escalar se maximiza, el resultado es que la configuración uniforme tiene la menor energía permitida por el modelo, siendo $\mathcal{H}=-JVd$ donde $V=L^d$ es el volumen de la retícula.

Otra forma de escribir el hamitoniano de interacción del modelo es mediante una suma doble, se expresa como

$$\mathcal{H}[s] = -\frac{J}{2} \sum_{x_1} \sum_{x_2} \vec{s}_{x_1, x_2} \cdot (\vec{s}_{x_1+1, x_2} + \vec{s}_{x_1, x_2+1} + \vec{s}_{x_1-1, x_2} + \vec{s}_{x_1, x_2-1}). \tag{3.6}$$

La ec. (3.5) se puede simplificar considerando las condiciones de frontera. Si se intercambia y se recorren los índices en el tercer termino de la ec. (3.6), se tiene

$$\sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1,x_2} \cdot \vec{s}_{x_1-1,x_2} = \sum_{x_2=1}^{L} \sum_{x_1=0}^{L-1} \vec{s}_{x_1+1,x_2} \cdot \vec{s}_{x_1,x_2}.$$
 (3.7)

Separando el primer y el último elemento de la suma sobre x_1 , se tiene

$$\sum_{x_{2}=1}^{L} \sum_{x_{1}=0}^{L-1} \vec{s}_{x_{1}+1,x_{2}} \cdot \vec{s}_{x_{1},x_{2}} = \sum_{x_{2}=1}^{L} \left(\vec{s}_{1,x_{2}} \cdot \vec{s}_{0,x_{2}} - \vec{s}_{L+1,x_{2}} \cdot \vec{s}_{L,x_{2}} + \sum_{x_{1}=1}^{L} \vec{s}_{x_{1}+1,x_{2}} \cdot \vec{s}_{x_{1},x_{2}} \right).$$
(3.8)

Por las condiciones de frontera $\vec{s}_{1,x_2} = \vec{s}_{L+1,x_2}$ y $\vec{s}_{0,x_2} = \vec{s}_{L,x_2}$, entonces

$$\vec{s}_{1,x_2} \cdot \vec{s}_{0,x_2} - \vec{s}_{L+1,x_2} \cdot \vec{s}_{L,x_2} = 0. \tag{3.9}$$

Resultando en la identidad

$$\sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1,x_2} \cdot \vec{s}_{x_1-1,x_2} = \sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1,x_2} \cdot \vec{s}_{x_1+1,x_2}.$$
 (3.10)

De forma análoga hay una simplificación para el cuarto termino de la ec. (3.6)

$$\sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1, x_2} \cdot \vec{s}_{x_1, x_2-1} = \sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1, x_2} \cdot \vec{s}_{x_1, x_2+1}. \tag{3.11}$$

Remplazando los términos (3.10), (3.11) en la ec. (3.6) y simplificando términos se llega a la forma compacta del hamiltoniano

$$\mathcal{H}[s] = -J \sum_{x_1=1}^{L} \sum_{x_2=1}^{L} \vec{s}_{x_1,x_2} \cdot (\vec{s}_{x_1+1,x_2} + \vec{s}_{x_1,x_2+1}). \tag{3.12}$$

La suma recorre todos los sitios en la retícula, por cada sitio, se considera el producto escalar con espín en el sitio a la derecha y arriba en la retícula. Se define $\hat{1}=(1,0)$ y $\hat{2}=(0,1)$ y se normaliza el acoplamiento haciendo J=1. El hamitoniano resultante es de la forma

$$\mathcal{H}[s] = -\sum_{x} \vec{s}_{x} \cdot (\vec{s}_{x+\hat{1}} + \vec{s}_{x+\hat{2}})$$
 (3.13)

Es conveniente ubicar la energía mínima en el valor cero. Si se tiene una configuración uniforme en una retícula de V sitios, la energía de la configuración es $\mathcal{H}[s]_{\min} = -2V$, el mínimo se recorre sumando el hamiltoniano con un factor 2V. Por simplicidad de la notación de aquí en adelante llamaremos a esta energía desplazada simplemente como \mathcal{H} , donde

$$\mathcal{H}[s] = -\sum_{x} \vec{s}_{x} \cdot (\vec{s}_{x+\hat{1}} + \vec{s}_{x+\hat{2}}) + 2V. \tag{3.14}$$

3.3. Observables

Describir las propiedades macroscópicas de un material, requiere de observables medibles como, la energía \mathcal{H} , la magnetización M, etc. Si una observable, como la energía se divide por el volumen V del sistema, se convierte en una densidad asintóticamente estable, a estas observables se les conoce como variables intensivas.

Hay otro tipo de cantidades como la presión P, la temperatura T, el campo magnético \vec{B} , etc. Estas variables caracterizan el ambiente en el que el sistema está inmerso. En la mayoría de los sistemas, las variables mecánicas están bien definidas solo cuando el valor de estas variables se fija.

Desde un punto de vista microscópico, las variables mecánicas dependen de la configuración del sistema. A lo largo de un intervalo temporal, se espera que un sistema físico pase por múltiples configuraciones. Cuando se perturba un sistema en equilibrio, las variables mecánicas del sistema

cambian. El tiempo que el sistema tarda en alcanzar nuevamente el equilibrio termodinámico es conocido como tiempo de relajación.

Definición: Cadena de Markov.

Una cadena de Markov es un proceso estocástico discreto en el que la probabilidad de un evento depende únicamente del evento anterior.

En simulaciones numéricas se busca calcular el promedio de un observable en un sistema en equilibrio termodinámico por un intervalo temporal suficientemente amplio como para reducir las fluctuaciones por debajo de un umbral de error. Una configuración es un evento en el sentido estadístico. Para formar una cadena de Markov a partir de un conjunto de configuraciones, cada configuración se asocia a un parametro conocido como tiempo de Markov t_i , el cual establece una posición de la configuración en la cadena de Markov. El valor esperado de la observable es el promedio de los valores obtenidos.

3.3.1. Energía

La energía de una configuración en el modelo 2d O(3) depende de las direcciones de los espines. Consideremos en una configuración [s] a la que se aplica una rotación por un ángulo ϕ en la misma dirección a todos los espines. La transformación mantiene las diferencias relativas entre espines, por lo tanto, la nueva configuración [s'] está asociada a la misma energía que la configuración [s]. En general en los modelos O(n) la energía es invariante a transformaciones del grupo O(n), característica que le da nombre a este conjunto de modelos.

Consideremos un sistema en equilibrio termodinámico donde se hace un registro de la energía en los instantes (t_1, \ldots, t_N) . El conjunto de configuraciones forma una cadena de Markov, por lo tanto la energía promedio se estima como el valor esperado

$$\langle \mathcal{H} \rangle_{\text{aprox}} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{H}_i.$$
 (3.15)

La energía real asociada a ese estado es el promedio aproximado más la incertidumbre asociada

$$\langle \mathcal{H} \rangle \simeq \langle \mathcal{H} \rangle_{\text{aprox}} \pm \text{error}(\mathcal{H}).$$
 (3.16)

La incertidumbre se estima como

$$\operatorname{error}(\mathcal{H}) = \frac{\operatorname{std}(\mathcal{H})}{\sqrt{N}},\tag{3.17}$$

donde $\operatorname{std}(\mathcal{H})$ es la desviación estándar de la energía de las configuraciones. Para una medición en un proceso estocástico hay una probabilidad del $68.27\,\%$ de encontrarse a menos de una desviación estándar de la media de la distribución. Conforme aumenta el número de mediciones aumenta, el error converge a cero y el estimador de la energía converge al valor real

$$\lim_{N \to \infty} \operatorname{error}(\mathcal{H}) = \frac{\operatorname{std}(\mathcal{H})}{\sqrt{N}}.$$
(3.18)

Al ser una propiedad extensiva, la energía depende del volumen. Para comparar resultados en retículas de diferentes tamaños, la densidad de energía se define como el valor esperado de la energía dividida por el volumen

$$\langle h \rangle = \frac{\langle \mathcal{H} \rangle}{V}.\tag{3.19}$$

3.3.2. Magnetización

En el modelo 2d O(3), la temperatura es un parámetro que añade ruido (fluctuaciones que cambian las direcciones de los espines). La magnetización M es un escalar que depende de la alineación de los espines, se define como

$$M = \frac{1}{V} \left| \sum_{x} \vec{s}_{x} \right|. \tag{3.20}$$

La magnetización máxima se alcanza en una configuración de espines alineados

$$M_{\text{max}} = \frac{1}{V} \left| \sum_{x} \vec{s}_{x} \right| = \frac{1}{V} |V\vec{s}| = 1.$$
 (3.21)

Al igual que se plateo con la energía, consideremos un sistema en equilibrio termodinámico donde se hace un registro de la magnetización en los instantes (t_1, \ldots, t_N) . Se puede medir la magnetización aproximada calculando el promedio de las magnetizaciones en la cadena de Markov. El promedio aproximado de la magnetización es

$$\langle M \rangle_{\text{aprox}} = \frac{1}{N} \sum_{i=1}^{N} M_i.$$
 (3.22)

El valor real de la magnetización es el valor aproximado más su incertidumbre asociada incertidumbre asociada

$$\langle M \rangle \simeq \langle M \rangle_{\text{aprox}} \pm \text{error}(M).$$
 (3.23)

Como la magnetización ya es una variable intensiva no hace falta definir una densidad de magnetización para comparar resultados con retículas de diferentes volúmenes.

3.3.3. Carga topológica

El índice de una curva cerrada en un plano al rededor de un punto, es un número entero que describe el número de vueltas orientadas que la curva da alrededor del punto y es invariante a transformaciones continuas de la curva cerrada. De forma análoga, en el modelo 2d O(3) La carga topológica mide las vueltas de una superficie alrededor de la esfera S^2 . En el modelo hay dos simetrías importantes: la primera es la inviariancia de la energía interna por la rotación de espines con el grupo O(3). La segunda es la invariancia bajo transformaciones conformes del espacio. En el segundo caso, las condiciones de frontera garantizan la invariante topológica [6-8]

$$Q[s] = \frac{1}{8\pi} \int \varepsilon_{\mu\nu} \vec{s}(x) \cdot (\partial_{\mu} \vec{s}(x) \times \partial_{\nu} \vec{s}(x)) d^{2}x \in \mathbb{Z}, \tag{3.24}$$

donde $\varepsilon_{\mu\nu}$ es el tensor totalmente antisimétrico. Bernard Berg y Martin Lüscher [6] introdujeron la definición geométrica de carga topológica reticular para estudiar la susceptibilidad topológica del modelo 2d O(3). Para definir la carga topológica de una configuración, se usa un acercamiento geométrico: La retícula se divide en plaquetas formadas por cuatro espines, esto a su vez se subdividen en dos triángulos, alternando la orientación de la diagonal que divide cada cuadrado para replicar la isotropía discreta en el modelo de espines.

Sean $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ y Ω el ángulo solido generado por $\vec{a}, \vec{b}, \vec{c}$ [9, 10]

$$\tan\left(\frac{\Omega}{2}\right) = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{1 + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}}.$$
(3.25)

En la figura 3.3 las plaquetas se dividen en triángulos 1, 2. Para los triángulos 1, los espines $\vec{s}_1, \vec{s}_2, \vec{s}_3$ definen las esquinas de un triángulo esférico en S^2 . Se definen las variables para los triángulos tipo 1

$$X_1 = 1 + \vec{s}_1 \cdot \vec{s}_2 + \vec{s}_2 \cdot \vec{s}_3 + \vec{s}_3 \cdot \vec{s}_1,$$

$$Y_1 = \vec{s}_1 \cdot (\vec{s}_2 \times \vec{s}_3).$$
(3.26)

Al ser una esfera unitaria, el área del triángulo esférico es el ángulo solido generado por los espines, defiendo el número complejo $Z_1 = X_1 + iY_1$, aplicando la formula para obtener el área del triangulo esférico, se obtiene

$$\Omega_1 = 2\arg(Z_1),\tag{3.27}$$

donde la función arg devuelve la fase del número complejo Z_1 . Luego para los triángulos tipo 2 se definen las variables

$$X_2 = 1 + \vec{s}_4 \cdot \vec{s}_3 + \vec{s}_3 \cdot \vec{s}_2 + \vec{s}_2 \cdot \vec{s}_4,$$

$$Y_2 = \vec{s}_4 \cdot (\vec{s}_3 \times \vec{s}_2),$$
(3.28)

resultando en una área

$$\Omega_2 = 2\arg(Z_2). \tag{3.29}$$

Sumando el área para cada par de triángulos, se obtiene

$$A_x = \Omega_1 + \Omega_2. \tag{3.30}$$

Figura 3.3: Orientaciones de los triángulos formados en la retícula. Cada plaqueta se puede dividir en dos triángulos con diagonales descendentes o ascendentes.

Figura 3.4: Descomposición de la retícula cuadrada bidimensional en triángulos, alternado la dirección de la diagonal. Esta descomposición se usa para medir la carga topológica. Se puede apreciar como el cambio en la orientación de la diagonal evita una dirección preferencial.

La carga topológica se define como

$$Q[s] = \frac{1}{4\pi} \sum_{x} A_x \in \mathbb{Z}. \tag{3.31}$$

La energía es invariante al cambio de signo de todos los espines de una configuración, por lo que las configuraciones tienen la misma importancia estadística independientemente del signo de la carga topológica, resultando en el valor esperado

$$\langle Q \rangle = 0, \tag{3.32}$$

por lo que medir los defectos topológicos requiere de otra cantidad que no se anule con el promedio estadístico. Se generaliza

$$Z(\theta) = \int \exp\left(-\mathcal{H}[s]/T - iQ[s]\theta\right) D\vec{s}, \tag{3.33}$$

donde $D\vec{s}$ indica una integral sobre todas las posibles configuraciones [s] (esto es similar a la integral de trayectorias descrita en el capitulo (2)). La carga topológica se define como

$$i\frac{\partial}{\partial \theta}Z(\theta) = \langle Q \rangle,$$
 (3.34)

Si $\theta=0$ entonces $\langle Q \rangle=0$ como se tiene en la definición geométrica. La energía libre de Helmholtz es

$$\mathcal{F}(\theta) = -T \ln Z(\theta), \tag{3.35}$$

A partir de la función de estado la susceptibilidad topológica χ_t se define como

$$\chi_t = -\frac{1}{V} \frac{\partial^2}{\partial \theta^2} \mathcal{F}(\theta) = \frac{1}{V} \langle Q^2 \rangle - \langle Q \rangle^2, \qquad (3.36)$$

tomando $\theta = 0$ se obtiene

$$\chi_t = \frac{1}{V} \left\langle Q^2 \right\rangle. \tag{3.37}$$

En una cadena de Markov formada por la carga topológica de un conjunto de configuraciones, se calcula el valor aproximado del cuadrado de la carga topológica como

$$\left\langle Q^2 \right\rangle_{\text{aprox}} = \frac{1}{N} \sum_{i=1}^N Q_i^2. \tag{3.38}$$

El valor real de la susceptibilidad topológica es

$$\chi_t \simeq \frac{1}{V} \left[\left\langle Q^2 \right\rangle_{\text{aprox}} \pm \text{error}(Q^2) \right].$$
(3.39)

La susceptibilidad topológica es asintóticamente estable por lo que también se puede comparar resultados en retículas de diferentes volúmenes

Capítulo 4

Fenómenos críticos

4.1. Transiciones de fase

Una transición de fase ocurre cuando hay una discontinuidad en la energía libre o en una de sus derivadas con un parametro externo. Ejemplos son:

- 1. El cambio de estado líquido a solido de un fluido.
- 2. El cambio del estado paramagnético al ferromagnético en un imán.

El primer ejemplo es una transición de fase de primer orden. En el diagrama de la imagen 4.1, las líneas punteadas delimitan las regiones en las que el fluido es estable. El fluido puede existir en estado sólido, líquido o gaseoso, en función de la presión y la temperatura. La variación de las variables en una región estable no cambia el estado del fluido. En cambio, cruzar las fronteras implica un salto en la densidad y el calor específico, como consecuencia de una discontinuidad de primer orden en la energía libre.

Una transición de fase de segundo orden implica una discontinuidad en la segunda derivada de la energía libre [11]. A temperatura T=0, no hay fluctuaciones y el sistema alcanza en el equilibrio una configuración de energía mínima. En el intervalo de baja temperatura $T \in (0, T_c)$, se forman clústeres de espines alineados. El vector de magnetización de cada clúster apunta en una dirección diferente. En este intervalo de temperatura hay baja simetría inducida por la estructura de diferentes regiones de espines alineados.

Por encima de la temperatura crítica, es mayor el número de espines apuntando en direcciones aleatorias. La intensidad de las fluctuaciones evita la formación de clústeres de tamaño considerable con espines alineados, por consecuencia predomina el ruido termodinámico.

En la teoría de transiciones de fase de Davidovich Landau [12], una transición de fase en un cambio de una fase ordenada a una desordenada. La fase ordenada es invariante a un grupo de transformaciones. La fase desordenada es invariante a un subgrupo del grupo original de transformaciones. Las propiedades físicas de un material cambian bruscamente.

Figura 4.1: Se muestra un diagrama de fase típico de un fluido y se delimitan las fronteras entre tres estados: Solido, liquido y gaseoso. Cuando se pasa por una frontera en el diagrama, hay una transición de fase que percibe como un cambio visible a nivel macroscópico. La curva de evaporación termina en una temperatura crítica T_c donde la transición de fase es de segundo orden. Las lineas azules indican transiciones de primer grado.

Figura 4.2: Se muestra la primera y segunda derivada de la energía libre \mathcal{F} . Hay una discontinuidad en la segunda derivada por lo que se trata de una transición de fase de segundo orden.

Figura 4.3: Diagrama de fase de un ferromagneto: Por debajo de la temperatura crítica T_c , el sistema adquiere una estado de magnetización espontánea M(T)>0.

4.2. Parámetro de orden

Un parámetro de orden es una cantidad que caracteriza el estado de un sistema físico respecto a una transición de fase. Por ejemplo, la magnetización es un parámetro de orden para un ferromagneto que pase del estado diamagnético al paramagnético. Los parámetros de orden se pueden derivar de la función de partición del sistema.

La relación entre la termodinámica y la física estadística viene determinada por la energía libre de Helmholtz \mathcal{F} en el colectivo canónico

$$\mathcal{F} = -k_B T \ln Z,\tag{4.1}$$

donde Z es la función de partición, T es la temperatura y k_B es la constante de Boltzmann. La función hamiltoniana de un sistema de espines es de la forma

$$\mathcal{H}[s] = -J \sum_{\langle xy \rangle} \vec{s}_x \cdot \vec{s}_y - \vec{B} \cdot \sum_x \vec{s}_x, \tag{4.2}$$

donde J una constante de acoplamiento y \vec{B} el campo magnético. Por simplicidad fijaremos J=1. Definiendo

$$H[s] = -\sum_{\langle xy\rangle} \vec{s}_x \cdot \vec{s}_y, \quad M[s] = -\vec{B} \cdot \sum_x \vec{s}_x, \tag{4.3}$$

la función de partición es

$$Z = \sum_{s} e^{-(H[s] + M[s])/k_B T}.$$
(4.4)

El valor esperado de la magnetización $\langle M \rangle$ es la derivada de la energía libre $\mathcal F$ respecto a la magnitud del campo magnético $B = \left| \vec{B} \right|$

$$\langle M \rangle = -\frac{\partial \mathcal{F}}{\partial B} = \frac{1}{Z} \sum_{s} M[s] e^{-(H[s] + M[s])/k_B T}.$$
 (4.5)

La susceptibilidad magnética χ_m es la derivada del valor esperado de la magnetización $\langle M \rangle$ respecto a B

$$\chi_{m} = \frac{1}{V} \frac{\partial \langle M \rangle}{\partial B}$$

$$= -\frac{1}{V} \frac{1}{k_{B}T} \left(\frac{1}{Z} \sum_{s} M[s]^{2} e^{-(H[s] + M[s])/k_{B}T} \right) + \frac{1}{V} \frac{1}{k_{B}T} \left(\frac{1}{Z} \sum_{s} M[s] e^{-(H[s] + M[s])/k_{B}T} \right)^{2}$$

$$= \frac{1}{V} \frac{1}{k_{B}T} \left(\langle M \rangle^{2} - \langle M^{2} \rangle \right). \tag{4.6}$$

La energía promedio se define como

$$\langle \mathcal{H} \rangle = -\frac{\partial \ln Z}{\partial \beta} = \frac{1}{Z} \sum_{s} \mathcal{H}[s] e^{-\beta \mathcal{H}[s]},$$
 (4.7)

donde $\beta=1/k_BT$. El calor específico c_V es la derivada de la energía media $\langle \mathcal{H} \rangle$ respecto a la temperatura T

$$c_{V} = \frac{1}{V} \frac{\partial \langle \mathcal{H} \rangle}{\partial T}$$

$$= -\frac{1}{V} \frac{1}{k_{B}T^{2}} \frac{1}{Z} \sum_{s} \mathcal{H}[s]^{2} e^{-\mathcal{H}[s]/k_{B}T} + \frac{1}{V} \frac{1}{k_{B}T^{2}} \left(\frac{1}{Z} \sum_{s} \mathcal{H}[s] e^{-\mathcal{H}[s]/k_{B}T} \right)$$

$$= \frac{1}{V} \frac{1}{k_{B}T^{2}} \left(\langle \mathcal{H} \rangle^{2} - \langle \mathcal{H}^{2} \rangle \right). \tag{4.8}$$

4.3. Función de correlación

En estadística la correlación mide como una variable es afectada por los cambios en otra variable. Esta relación entre variables no implica necesariamente una relación causal entre las variables, aunque si una variable depende de otra, habrá una alta correlación entre variables. El nombre de la función que mide la correlación entre variables e función de correlación. En física estadística se usa la función de correlación para medir la dependencia temporal o espacial entre variables.

La escala natural de un sistema está determinada por la longitud de correlación ξ . En los modelos de espín la función de correlación mide que tan fuertemente se afectan dos espines $\vec{s}_x, \vec{s}_y \in \mathcal{S}^2$. En el modelo 2d O(3) la función de correlación conectada se define como

$$\langle \vec{s}_x \cdot \vec{s}_y \rangle_c = \langle \vec{s}_x \cdot \vec{s}_y \rangle - \langle \vec{s}_x \rangle \cdot \langle \vec{s}_y \rangle. \tag{4.9}$$

En la práctica, para determinar la longitud de correlación en un volumen $L \times L$ se mapean los espines a una linea

$$\vec{\sigma}_i = \frac{1}{L} \sum_{k=1}^{L} \vec{s}_{i,k},$$

$$\langle \vec{\sigma}_i \cdot \vec{\sigma}_1 \rangle_c = A \cosh\left(\frac{i - L/2}{\xi}\right), \tag{4.10}$$

donde ξ es la longitud de correlación. Conforme T se acerca a la temperatura crítica T_c desde arriba, la divergencia de ξ define el exponente crítico ν

$$\xi \propto (T - T_c)^{-\nu} \,,\tag{4.11}$$

En el modelo 2d O(3) con temperatura crítica $T_c=0$, si la temperatura es cercana a T=0, la formula se simplifica

$$\xi \propto T^{-\nu}.\tag{4.12}$$

(a) Escala lineal. La función de correlación conectada se ajusta a la ec. (4.10).

(b) Escala logarítmica. Cerca de las fronteras, la correlación decae exponencialmente formando dos rectas.

Figura 4.4: Función de correlación conectada. Los resultados se obtuvieron en simulaciones de Monte Carlo desarrolladas en el capitulo 6. Los parámetros son: temperatura T=1, tamaño de retícula 32×32 .

4.4. Universalidad

El concepto de clases de universalidad fue señalado primeramente por Leo Kadanoff en 1966 [13]. Se encontró empíricamente una clasificación de sistemas críticos en lo que se definió como clases de universalidad. Posteriormente en 1970 Enrico Fermi se baso en el trabajo de Griffiths, Jasnow y otros investigadores. Estudiaron datos experimentales de diversos materiales cerca de sus respectivos puntos críticos, y se encontró que los datos de los diversos sistemas son descritos por la misma función de escalamiento. El aparente comportamiento universal motivo a buscar una respuesta para la siguiente cuestión.

¿Que características de las interacciones microscópicas son importantes para determinar puntos críticos, exponentes críticos y funciones de escalamiento y que características son irrelevantes?

Debido al enorme número de elementos que interactúan en un modelo microscópico realista, no es posible hacer predicciones exactas sobre todas las cantidades relevantes. En general la clase de universalidad, y por lo tanto los valores de los exponentes críticos no dependen de la estructura local. Aunque las interacciones son a nivel local, los exponentes críticos dependen solo de la dimensión espacial y las simetrías del parámetro de orden.

El modelo 2d O(3) presenta libertad asintótica y sectores topológicos bien definidos. Una pregunta crucial respecto su susceptibilidad topológica, es si es un valor finito en el limite al continuo. Conforme la longitud de correlación aumenta el parametro de escala L/ξ normalizando la susceptibilidad como

$$\chi_t = \frac{\langle Q^2 \rangle}{L^2} \tag{4.13}$$

El consenso respecto a esta pregunta indica que la susceptibilidad topología diverge cuando la longitud de correlación diverge en diferentes sistemas con la misma clase de universalidad.

4.5. Escalamiento

La hipótesis de escalamiento fue desarrollada independientemente por varios investigadores, entre ellos Kadanoff en 1967 [13]. Existe una gran cantidad de sistemas físicos en diferentes escalas. En sistemas con la misma clase de universalidad, se pueden encontrar transformaciones que relacionan un sistema con otro a una escala diferente. Consideremos el potencial de Gibbs

$$G(H,T) = G(H,\epsilon), \tag{4.14}$$

donde $\epsilon = (T - T_c)/T_c$ es la temperatura reducida. Cerca de un punto crítico existen exponentes a_H y a_T tales que se cumple la ecuación

$$G(\lambda^{a_H} H, \lambda^{a_T} \epsilon) = \lambda G(H, \epsilon), \tag{4.15}$$

donde $\lambda \in \mathbb{R}^+$ es un factor de escala. Algunos exponentes críticos relacionadas a las variables termodinámicas de un magneto se definen de la manera siguiente: La magnetización se relaciona con la temperatura por el exponente criticó \mathcal{B}

$$M = -\frac{\partial \mathcal{F}}{\partial B}\Big|_{B=0} \propto (T_c - T)^{\mathcal{B}}, \quad \text{si} \quad T \lesssim T_c.$$
 (4.16)

La susceptibilidad magnética se relaciona con la temperatura por el exponente criticó γ

$$\chi_T = \frac{\partial M}{\partial B}\Big|_{B=0} \propto |T - T|^{\gamma}, \quad \text{si} \quad T \approx T_c.$$
(4.17)

El calor específico se relaciona con la temperatura por el exponente criticó α

$$c_V = -T \frac{\partial^2 \mathcal{F}}{\partial T^2} \propto (T - T_c)^{-\alpha},$$
 (4.18)

La longitud de correlación se relaciona con la temperatura por el exponente criticó ν

$$\xi \propto |T - T_c|^{-\nu}.\tag{4.19}$$

Una de las leyes de escalamiento relaciona los exponentes críticos de las variables termodinámicas siguiendo la ecuación

$$\alpha + 2\mathcal{B} + \gamma = 2. \tag{4.20}$$

Capítulo 5

Mecanismo de Kibble-Zurek

5.1. Ruptura espontánea de simetría

Antes de ahondar en el concepto de ruptura espontánea de una simetría, hay que definir a que nos referimos por simetría. Hay dos tipos de simetrías que pueden existir en un sistema físico. El primer tipo es la simetría que surge de la acción hamiltoniana del sistema. El teorema de Noether dicta que la dinámica de un sistema físico puede ser descrita en términos de leyes de conservación, tales como la conservación de energía, o la conservación de momento angular. Una de las ideas mas profundas de la física es que una cantidad conservada se fundamenta en la simetrías de una ley fundamental. Por ejemplo, la invariancia de translación se manifiesta cuando las ecuaciones de movimiento so las mismas en cualquier parte del espacio. Esta invariancia implica la conservación del momento. El segundo tipo es una simetría de estado, se refiere a las simetrías que surgen en las soluciones a una ecuación de movimiento o los estados de un sistema físico.

La ruptura espontánea de una simetría, es una reducción de simetrías al pasar por debajo de la energía del estado vació, por lo general al pasar por debajo de una temperatura crítica T_c . Algunos ejemplos son:

- Cuando el agua se congela, la simetría rotacional se rompe por la elección de una orientación en los cristales de hielo.
- En el universo temprano, la ruptura espontánea de la simetría SU(2) al pasar por debajo de la energía de vacío. La ruptura puede haber conducido a la formación de defectos topológicos como monopolos cuasipuntuales, cuerdas cósmicas lineales o paredes de dominio planares.
- En el helio ⁴He en estado superfluidico, la condensación de Bose-Einstein ocurre alrededor de 2K. Hay una ruptura espontánea de la simetría al pasar por debajo de la temperatura critica T_c conduciendo a la posible formación vórtices puntuales y lineas de flujo lineales.

Basándose en el concepto de ruptura de simetría Kibble introdujo la idea de fluctuaciones primordiales. En un sistema que pasa continuamente por una ruptura de simetría, un parametro de orden difiere en las regiones no correlaciones. Formando regiones asiladas conocidas como dominios. Dependiendo del sistema estos dominios son defectos tipos de defectos topológicos; pueden ser vórtices, cuerdas cósmicas, monopolos magnéticos etc.

En el ejemplo del universo temprano, los defectos topológicos remanentes son objetos inherentemente estables que pueden proporcionar pistas observacionales sobre cómo era el sistema en el momento en que se formaron.

5.2. Acoplamientos de largo alcance

La esencia del mecanismo de Kibble-Zurek está en la aleatoriedad en la ruptura de la simetría de dominios en un sistema. El tamaño de los dominios está determinado por el tiempo de relajación τ y la longitud de correlación ξ . La ley de escalamiento describe la relación entre los defectos topológicos remanentes respecto a la tasa de enfriamiento en un sistema que pasa por la temperatura crítica. En estas transiciones, la clase de universalidad está determinada por propiedades fundamentales como la simetría de un parámetro de orden, el rango de interacciones o la dimensionalidad por lo que es de gran interés clasificar los diferentes modelos en sus respectivas clases de universalidad [14].

Las interacciones de los componentes microscópicos de un sistema se afectan según un potencial de interacción V(r), donde r es la distancia entre los componentes. Comúnmente se le llama interacción de largo rango si sigue la ley de potencia

$$V(r) \propto r^{-\alpha},$$
 (5.1)

donde α es un exponente que describe el decaimiento de las interacciones. En un sistema con intreacciones

5.3. Evolución del universo temprano

Consideremos el universo temprano en expansión. En el sector electrodébil del ME, la temperatura crítica es del orden $\sqrt{G_F}$, donde G_F es la constante de Fermi. Siguiendo dicha suposición, el universo paso por una ruptura de simetría en $10^{-12}s$. Kibble propuso que esta ruptura de simetría dio lugar a la formación de defectos topológicos en el universo temprano.

Consideremos un campo multi-escalar $\phi \in \mathbb{R}^n$ con un lagrangiano invariante bajo el grupo ortogonal O(n),

$$\mathcal{L} = \frac{1}{2} D_{\mu} \vec{\phi} D_{\mu} \vec{\phi} - \frac{1}{8} g^{2} \left(\phi^{2} - \eta^{2} \right)^{2} + \frac{1}{8} \text{Tr} \left(B_{\mu\nu} B^{\mu\nu} \right)$$

$$D_{\mu} \vec{\phi} = \left(\partial_{\mu} - q B_{\mu} \right) \vec{\phi}$$

$$B_{\mu\nu} = D_{\mu} B_{\nu} - D_{\nu} B_{\mu} + q \left[B_{\mu}, B_{\nu} \right].$$
(5.2)

donde g,q son constantes de acoplamiento. A temperatura T=0 hay una ruptura espontánea de O(n) la simetría a O(n-1), por lo que la variedad del estado de menor energía es la esfera \mathcal{S}^{n-2}

Para T cerca de la temperatura crítica, aparecen fluctuaciones fuertes en el campo $\vec{\phi}$, por debajo de la temperatura crítica, el valor esperado corresponde a algún punto en \mathcal{S}^{n-2} .

Ningún punto de la esfera tiene preferencia, y la elección es independiente entre las diferentes regiones del espacio. Por lo tanto, se espera la formación de dominios con distinto valor esperado de $\vec{\phi}$, variando entre regiones de una manera más o menos aleatoria. Al llegar al equilibrio, muchas de estas variaciones dejarán de fluctuar, acercando el valor esperado de los diferentes dominios al valor constante $\langle \vec{\phi} \rangle$. La cuestión es, si luego del enfriamiento del universo, las fronteras entre dominios pueden formar defectos topológicos.

Una posibilidad es que el universo podría tener una carga q_{t_0} asociada al campo $\vec{\phi}$. impidiendo el surgimiento de estructuras de dominio. Consideremos en cambio que el universo permite la formación de dominios. El tamaño de estos dominios está determinado por la longitud de correlación [15]

$$\xi^{-1} \approx g^2 T. \tag{5.3}$$

Es interesante revisar las posibles configuraciones geométricas de estos dominios. Las transiciones de fase de ruptura de simetría en el universo temprano podrían haber formado estructuras topológicamente estables. Las cuerdas cósmicas son defectos topológicos unidimensionales que resultan de la ruptura de la simetría O(n).

Un problema que surgió al intentar hacer predicciones sobre las cuerdas cósmicas fue su estimación. Una elección aleatoria de fases debería conducir a una maraña aleatoria de cuerdas, caracterizada por una escala de longitud típica ξ .

Desafortunadamente todavía no se han detectado cuerdas cósmicas. Las observaciones realizadas por COBE y más recientemente por WMAP [16] de la pequeña anisotropía en el fondo cósmico de microondas revelan una escala de distancia preferencial que las cuerdas cósmicas no pueden explicar. Afortunadamente, existen análogos de cuerdas cósmicas en muchos sistemas de materia condensada, incluidos las líneas de vórtice en superfluidos [17-19].

5.4. Experimentos con materia condensada

En 1985, W. Zurek, en Los Álamos, sugirió que las ideas sobre cómo calcular ξ podrían probarse aplicándolas al problema de la formación de defectos en una transición de fase de baja temperatura, en particular la transición de un fluido normal a un superfluido en helio ⁴He líquido. Zurek mostró que en una transición de segundo orden, se puede obtener una relación de ley de potencia entre ξ y $\tau_{\rm cool}$. La tasa de enfriamiento $\tau_{\rm cool}$ se define de modo que la tasa de cambio lineal de temperatura en el punto crítico sea $dT/dt = -T_c/\tau_{\rm cool}$ y el exponente critico ζ se define se pueda calcular en términos de índices críticos y se define como

$$\zeta = \frac{d\nu}{1 + \nu z},\tag{5.4}$$

donde ν y z son exponentes críticos y d es la dimensión espacial. La longitud de correlación ξ se relaciona con la tasa de enfriamiento siguiendo la expresión

$$\xi \propto \tau_{\rm cool}^{-\zeta}$$
. (5.5)

Pasando por un súbito decaimiento de presión, la fase de la función de onda en el condensado de helio $^4{\rm He}$ es análoga a la ruptura de simetría del campo de multi-escalar $\vec{\phi} \in \mathbb{R}^2$. Para un superfluido de $^4{\rm He}$ que pasa por una ruptura de simetría. Existe un análogo a las cuerdas cósmicas presentes en el modelo del universo temprano llamadas lineas de vórtice. Cerca de la transición de fase , el potencial es de la forma

$$V = \alpha |\psi(\vec{r})|^2 + \frac{1}{2}\beta |\psi(\vec{r})|^4, \qquad (5.6)$$

donde $\alpha' = \alpha(T - T_c)$ y α, β son las exponentes críticos relacionadas al calor específico . Por debajo de la temperatura crítica, tras la ruptura de la simetría en el superfluido α es un coeficiente negativo y el potencial V tiene la forma de sombrero.

El parámetro de orden de un superfluido, puede pensarse como la función de onda del condensado de Bose. La fución de onda es de la forma

$$\psi = |\psi|e^{i\theta} \tag{5.7}$$

donde θ es una fase relacionada a la velocidad del fluido. En este sistema se pueden formar líneas de vórtices cuando el parámetro de orden es un valor complejo. El resultado da lugar una situación análoga al modelo cosmológico. Pasando por debajo de la temperatura crítica T_c . Una fracción considerable de los átomos de ⁴He ocupa un sólo estado cuántico. Entonces ψ es proporcional a la función de onda de ese estado, y $|\psi|^2$ representa la densidad de la fracción superfluida. En este caso, una cuerda, o cualquiera de sus defectos análogos, es un tubo delgado alrededor del cual la fase de ψ cambia en 2π [18, 20, 21].

Capítulo 6

Métodos de Monte Carlo

El método de Monte Carlo introducido por Metropolis y colaboradores [1] La esencia de los métodos de Monte Carlo es evaluar numéricamente las sumas o integrales multidimensionales intratables analíticamente. Se basa en la idea de muestreo de importancia. Consiste en generar una muestra con entradas que corresponden a la probabilidad del sistema. La probabilidad de selección se multiplica por una función con mayor densidad en aquellas regiones del espacio de fases de mayor contribución a las integrales.

Una cadena de Markov se representa por una matriz de W con entradas $W_{i,j}$ $i,j\in\mathbb{N}$ que satisfacen la condición

$$\sum_{j} W_{i,j} = 1. {(6.1)}$$

Cada valor $W_{i,j}$ representa la probabilidad de que un sistema en la configuración $[s]_i$ pase a la configuración $[s]_i$ en una unidad de tiempo discreta conocida como paso de Markov.

Consideremos la cadena de Markov dada por t_i donde $i \in \{1, ..., N\}$ y $O[s]_i$ es el valor de la observable en el instante t_i . El promedio aproximado de una observable O en el intervalo temporal medido es

$$\langle O \rangle_{\text{aprox}} = \frac{1}{N} \sum_{i=1}^{N} O[s]_i,$$
 (6.2)

donde $[s]_i$ es la configuración del sistema en el instante t_i . La desviación estándar de esta suma de valores medios

$$\operatorname{std}(O) = \sqrt{\frac{1}{N-1} \left(\sum_{i=1}^{N} O[s]_i^2 - N \langle O \rangle_{\operatorname{aplrox}}^2 \right)}, \tag{6.3}$$

y el error estándar se define por la ecuación

$$\operatorname{error}(O) = \frac{\operatorname{std}(O)}{\sqrt{N}}.$$
(6.4)

Si cada medición es estadísticamente independiente, conduce al valor esperado de la observable y su error estándar definido por la ecuación

$$\langle O \rangle \simeq \langle O \rangle_{\text{aprox}} \pm \text{error}(O).$$
 (6.5)

La distribución de probabilidad es gaussiana con centro en $\langle O \rangle_{\rm aprox}$ y un intervalo del 68 %.

Definición: Variable aleatoria.

Una variable aleatoria X es el valor resultante de una selección aleatoria en el conjunto de los posibles resultados de un evento.

Un proceso estocástico es una secuencia de eventos aleatorios. Consideremos un evento aleatorio con N posibles resultados $\{x_1, \ldots, x_N\}$: La probabilidad de que el sistema se encuentre en una configuración determinada con energía \mathcal{H} es proporcional al factor de Boltzmann

$$P[s] = \frac{e^{-\beta \mathcal{H}[s]}}{Z},\tag{6.6}$$

donde $\beta = 1/T$, y Z es la función de partición.

Definicion: Balance Detallado.

Sea $\{s_i\}$ una cadena de Markov con probabilidad de transición estacionaria. La cadena de Markov es reversible respecto a la distribución de probabilidad p si cumple la ecuación de balance detallado

$$p[s \to s']p[s] = p[s' \to s]p[s'], \tag{6.7}$$

dónde p[s] es la probabilidad de la configuración [s] y $p[s \to s']$ es la probabilidad de la transición de la configuración [s] a [s'], de igual manera p[s'] es la probabilidad de la configuración [s'] y $p[s' \to s]$ es la probabilidad de la transición de la configuración [s] a [s'] [22].

6.1. Algoritmo de Metropolis

Metropolis es un algoritmo de actualización local. Es decir, generar una nueva configuración requiere de aplicar una probabilidad de transición individualmente a cada elemento de la configuración. Consideremos el modelo de espines 2d O(3), definido en la retícula con condiciones de frontera periódicas \mathcal{T}_L^2 . La energía de una configuración se define por la ec. (3.14).

■ El algoritmo de actualización actúa sobre cada espín $\vec{s}_x \in [s]$ y sus vecinos más cercanos. Se propone un cambio aleatorio en el estado del espín \vec{s}_x que resulta en una configuración [s']. Si el cambio propuesto se acepta o se rechaza, depende de la probabilidad de aceptación. La diferencia en la energía de las configuraciones es

$$\Delta \mathcal{H} = \mathcal{H}[s'] - \mathcal{H}[s]. \tag{6.8}$$

Se define la probabilidad de aceptación en función de la diferencia de energía entre configuraciones como

$$p[s \to s'] = \begin{cases} e^{-\beta \Delta \mathcal{H}} & \text{si} & \Delta \mathcal{H} \ge 0\\ 1 & \text{si} & \Delta \mathcal{H} < 0. \end{cases}$$
 (6.9)

Si la energía de la configuración disminuye con el cambio, la probabilidad de aceptaciones 1, y se acepta de inmediato.

- Si la energía de la configuración aumenta, esta se acepta con una probabilidad $e^{-\beta\Delta\mathcal{H}}$. Si $\beta \to 0$, entonces la probabilidad de aceptación para las configuraciones que aumentan la energía se acerca a 1, resultando en más ruido térmico.
- Por otro lado, si $\beta \to \infty$ la probabilidad de aceptación de las configuraciones que aumentan la energía tiende a cero.

A menor temperatura menos fluctuaciones, implicando que el sistema se acerca a configuraciones de energía cercanas al mínimo.

La prueba de aceptación se repite para cada espín del volumen. El orden de selección puede ser lexicográfico, en la que los espines se eligen siendo un orden basado en las posiciones de la retícula, o aleatorio, donde los espines se eligen al azar. Un barrido de actualización corresponde a una unidad de tiempo discreto de Markov para el algoritmo Metropolis e implica que se ha aplicado la probabilidad de aceptación a un número de espines igual al total V de espines en el volumen. En el modelo 2d O(3), la diferencia de energía en términos de los espines $\vec{s}_x \in \mathcal{S}^2$ es

$$\Delta \mathcal{H} = \mathcal{H}[s'] - \mathcal{H}[s] = (\vec{s}_x - \vec{s}_x') \cdot (\vec{s}_{x+\hat{1}} + \vec{s}_{x-\hat{1}} + \vec{s}_{x+\hat{2}} + \vec{s}_{x-\hat{2}}). \tag{6.10}$$

6.2. Algoritmo de Glauber

El algoritmo de Glauber [23] es al igual que el algoritmo Metropolis de actualización local. La diferencia es la probabilidad de aceptación. La propuesta es construir una función que cumpla con la ecuación de balance detallado

$$p[s \to s']p[s] = p[s' \to s]p[s']. \tag{6.11}$$

Se propone la probabilidad de aceptación de algoritmo de Glauber como

$$p[s \to s'] = \frac{e^{-\beta \Delta \mathcal{H}}}{1 + e^{-\beta \Delta \mathcal{H}}}$$

$$= \frac{e^{-\beta \Delta \mathcal{H}}}{1 + e^{-\beta \Delta \mathcal{H}}} \frac{e^{\beta \Delta \mathcal{H}}}{e^{\beta \Delta \mathcal{H}}}$$

$$= \frac{e^{\beta \Delta \mathcal{H}}}{1 + e^{\beta \Delta \mathcal{H}}} e^{-\beta \Delta \mathcal{H}}$$

$$= p[s' \to s]e^{-\beta \Delta \mathcal{H}}.$$
(6.12)

La propuesta cumple la ec. (6.11) que ahora toma la forma

$$p[s \to s'] = \frac{e^{-\beta \Delta \mathcal{H}}}{1 + e^{-\beta \Delta \mathcal{H}}}.$$
 (6.13)

De manera similar al algoritmo de Metropolis dada una configuración [s], para cada elemento en el volumen se propone un cambio aleatorio que resulta en una configuración [s'].

- Si $\beta\Delta\mathcal{H}\to 0$, entonces la probabilidad de aceptación se aproxima a 1/2.
- Si $\beta\Delta\mathcal{H}\to\infty$ entonces $e^{-\beta\Delta\mathcal{H}}\to 0$ y la probabilidad de aceptación se aproxima a 0.
- Si la energía de la configuración disminuye $\beta\Delta\mathcal{H} \to -\infty$, entonces la probabilidad de aceptación tiende a 1.

6.3. Algoritmo clúster

Calcular la diferencia de energía entre configuraciones implica realizar pocos cálculos, por lo que los algoritmos de actualización local son eficientes lejos de la temperatura crítica. El problema con la temperatura crítica en los algoritmos de actualización locales se hace notar cerca de la temperatura crítica, donde disminuye drásticamente el número de cambios que se aceptan. Por consecuencia, el tiempo de relajación del sistema aumenta. A este fenómeno se le conoce como desaceleración crítica.

Definición: Clúster.

Un clúster es un subconjunto de espines de una configuración que comparten un vínculo directo o indirecto.

Para estudiar sistemas en equilibrio cerca de la temperatura crítica hay una opción más conveniente. Se trata de aplicar un algoritmo que actualice clústeres de espines en vez de espines individues [24, 25].

El algoritmo clúster sugerido por R. Swendsen y J. Wang, se basa en la observación de que la función de partición se puede escribir como una suma sobre un conjunto distribuciones [25, 26].

Consiste en generar clústeres y cambiar la configuración de cada subconjunto de espines a la vez. Una de las principales ventajas del algoritmo clúster es que suprime la desaceleración crítica característica de los algoritmos de actualización local.

Un clúster puede estar formado por un único espín si no hay vínculos con sus vecinos, o puede estar formado por todos los espines de la configuración, caso más probable cerca de la temperatura crítica

Se propone un vector aleatorio $\vec{w} \in S^2$, se elige un espín \vec{s}_x y se calcula la reflexión de \vec{s}_x respecto al plano normal a \vec{w} aplicando la transformación

$$\vec{s}_x' = \vec{s}_x - 2\left(\vec{w} \cdot \vec{s}_x\right) \vec{w}. \tag{6.14}$$

Para probar el vínculo entre dos espines vecinos \vec{s}_x, \vec{s}_y , se calcula la diferencia en al energía de las configuraciones

$$\Delta \mathcal{H}_{x,y} = \vec{s}_x \cdot \vec{s}_y - \vec{s}_x' \cdot \vec{s}_y. \tag{6.15}$$

Se determinar si el espín \vec{s}_x está enlazado con sus espines vecinos más cercano, dada la probabilidad de vínculo

$$p_{\text{vinculo}} = \begin{cases} 1 - e^{-\beta \Delta \mathcal{H}_{x,y}} & \text{si} & \Delta \mathcal{H}_{x,y} \ge 0\\ 0 & \text{si} & \Delta \mathcal{H}_{x,y} < 0. \end{cases}$$
(6.16)

Se calcula la probabilidad de vínculo, con lo que se decide si los espines están enlazados.

Una forma de realizar el proceso de identificación de clústeres es usar el algoritmo de Hoshen-Kopelman que se describe en el apéndice B.

En la variante single-clúster se forma un único clúster alrededor de un espín aleatorio, y se cambia el estado de todos sus espines la vez aplicando transformación dada por la ec. (6.14). En la variante multi-cluster se forman todos los clústeres posibles. Una vez formados, se decide si se aplica la transformación con probabilidad $p_{\rm giro}=1/2$, valor que minimiza el tiempo de relajación del sistema al mantener más menos la mitad de los clústeres y cambiar la configuración de la otra mitad de los clústeres.

6.4. Tiempo de autocorrelación

La evolución de un sistema se caracteriza por el tiempo de autocorrelación, que mide la velocidad a la que un sistema pasa a un estado estadísticamente independiente. En general, la dinámica desacelera considerablemente cerca de un punto crítico. La desaceleración crítica es una barrera inevitable, ya que en la realidad se dispone de un tiempo de cómputo finito, por lo que es de gran interés entender cómo cambia el tiempo de autocorrelación para las diferentes observables del sistema. Consideremos una observable A y A_t el valor de A en el instante t. Definimos la auto-correlación como

$$C_{AA}(t) = \langle A_s A_{s+t} \rangle - \langle A \rangle^2. \tag{6.17}$$

Si la cadena de Markov cumple la condición de balance detallado, típicamente se tiene que

$$C_{AA}(t) = Ce^{-t/\tau_{\text{exp}}}. (6.18)$$

donde $\tau_{\rm exp}$ es el tiempo de auto-correlación exponencial. Una definición alternativa es el tiempo de auto-correlación integrado

$$\tau_{\text{int}} = \frac{1}{2} + \sum_{t=1}^{n} \frac{C_{AA}(t)}{C_{AA}(0)},$$
(6.19)

donde n es el número de términos que se añaden a la suma antes del corte. Se elije n tal que, el tiempo de autocorrelación oscile al rededor de una constante $\tau_{\rm int}$ a partir de t=n. El error depende de las oscilaciones del tiempo de autocorrelación al rededor de $\tau_{\rm int}$ y es de la forma

$$\delta \tau_{\rm inr} = \sqrt{\frac{2\tau_{\rm int}}{n} C_{AA}(0)}.$$
 (6.20)

El tiempo de auto-correlación depende del algoritmo de Monte Carlo particular que se use y en general cerca de un punto crítico diverge según la ecuación

$$\tau \propto \xi^{-\nu z} \tag{6.21}$$

donde z es el exponente crítico dinámico [27].

Figura 6.1: Evolución de la autocorrelación de la magnetización en 100 barridos de actualización para el algoritmo de Metropolis lexicográfico a temperatura T=0.9 en una retícula de tamaño L=64.

Capítulo 7

Simulaciones en equilibrio

En esta sección se reportan mediciones de las diferentes observables que se han descrito en los capítulos anteriores, en simulaciones del modelo 2d O(3). Para ello, se ha escrito un programa en Fortran con rutinas de generación de configuraciones y su actualización en función de la temperatura para cada uno de los algoritmos descritos. Algunos términos básicos son:

- Hot-start. Es una configuración inicial de espines aleatorios.
- Cold-start. Es una configuración inicial de espines alineados.
- Actualización. Una actualización es un cambio, o una propuesta de cambio de una configuración.
- Barrido de actualizaciones. Un barrido es la actualización de $V = L \times L$ espines seleccionados en orden lexicográfico, aleatorio o por su pertenecía a un clúster.

El programa que se encarga de las simulaciones sigue los siguientes pasos:

- 1. Se genera una configuración en equilibrio termodinámico a temperatura T.
- 2. Se actualiza la configuración.
- 3. Se miden las observables.
- 4. Si el número de mediciones en menor al número requerido, se regresa al paso 2.

Como se ve en la Figura 7.1, las observables de un sistema fluctúan entre mediciones. Por lo que un resultado se calcula a partir del promedio de un número de mediciones suficientemente grande para alcanzar la precisión deseada.

7.1. Tiempo de autocorrelación

Se calculó el tiempo de autocorrelación en equilibrio térmico para las temperaturas $T \in \{0.7, 0.8, 0.9, 1.0\}$ en una retícula de tamaño $L \times L$ donde L = 64. En todos los experimentos numéricos se partió de una configuración inicial hot-start. Se realizaron 10^4 barridos de actualización del algoritmo multi-clúster, asegurando una configuración completamente termalizada.

Figura 7.1: Termalización de un sistema 2d O(3) desde las configuraciones hot-start y cold-start a temperatura T=1, L=64. El eje vertical muestra la densidad energetica $\langle h \rangle = \langle \mathcal{H} \rangle / V$. La trayectoria cold-start, parte de un estado de energía mínima en el que todos los espines están alineados. La trayectoria hot-start, parte de una configuración aleatoria. En unos 100 barridos de actualización, ambas trayectorias oscilan alrededor de una energía del sistema termalizadó.

En el caso de la carga topológica, el tiempo de autocorrelación del algoritmo multi-clúster no puede medirse debido a la eficiencia con la que el algoritmo alcanza la configuración de equilibrio. En el caso de los algoritmos de actualización local, se nota la desaceleración crítica cerca de la temperatura T=0. La cual es fuerte para os algoritmos locales en comparacion al algoritmo clúster. Los tiempos de autocorrelación se calcularon por ajuste a la función exponencial y por integración, ambos resultados fueron consistentes para $T\in\{0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0\}$. Finalmente, se ajustó el tiempo de autocorrelación τ en función de la temperatura siguiendo la ecuación

$$\tau \propto T^{-\nu z}.\tag{7.1}$$

Figura 7.2: Tiempo de autocorrelación de la carga topológica en función de la temperatura en una retícula de longitud $L=64,~V=L\times L$. Los tiempos de autocorrelación $\tau_{\rm int}$ y $\tau_{\rm exp}$ se definen en las ec. (6.19) y (6.18).

Figura 7.3: Tiempo de autocorrelación en función de la temperatura en una retícula de tamaño $L=64,\,V=L\times L.$

Figura 7.4: Tiempo de autocorrelación de la magnetización en función de la temperatura en una retícula de tamaño $L=64,\,V=L\times L.$

Algoritmo	Q	\mathcal{H}	M
Metropolis lexicográfico	2.3(3)	3.96(6)	5.7(2)
Metropolis aleatorio	2.2(3)	3.43(4)	5.4(5)
Glauber lexicográfico	2.5(2)	4.0(1)	5.1(1)
Glauber aleatorio	2.4(3)	3.1(2)	5.1(2)

Tabla 7.1: Exponente crítico νz para el tiempo de autocorrelación. Se toma el promedio entre el exponente para el tiempo de autocorrelación integrado y el ajustado.

En la tabla (??) se puede ver la similitud entre exponentes para el algoritmo de Mertopolis. Para

la carga topológica se tienen los valores 2.3(3) y 2.2(3). Para el algoritmo Glauber otros exponentes son 2.5(2) y 2.5(3). Para la energía y la magnetización, la discrepancia es mayor.

Los resultados de tiempo del autocorrelación integrada y por ajuste discrepan fuertemente a muy baja temperatura. Se mantienen cercanas en el rango de temperaturas $T \in [0.7, 1]$, a mayor temperatura el valor mínimo 1/2 asociado a la definición integrada causa una discrepancia en los valores. El algoritmo multi-cluster termalizó las configuraciones en un soló barrido de actualización en el rango de temperaturas usado por lo que no se pudo determinar un exponente νz .

7.2. Longitud de correlación

Se realizó una serie de experimentos numéricos para determinar características generales del modelo 2d O(3). En particular, se calculó la longitud de correlación en retículas de tamaño $L \times L$ donde $L \in \{32,64,128\}$ para las temperaturas $T \in \{0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2\}$. En todos los casos, se partió de una configuración hot-start y se termalizó durante 10^4 actualizaciones del algoritmo multi-clúster. Se ajustaron las longitudes de correlación respecto a la temperatura a la relación

$$\xi \propto T^{-\nu}.\tag{7.2}$$

Cada uno de los exponentes críticos medidos está registrado en la tabla 7.2.

Figura 7.5: Longitud de correlación en función de la temperatura para las retículas de tamaño $L \in \{32, 64, 128\}$, algoritmo multi-clúster. A diferencoa del timpo de autocorrelación τ . Los valores ξ tienen que coincidir para todos los algoritmos.

Figura 7.6: Exponente crítico ν para los algoritmos Metropolis y Glauber en las variantes lexicográfica y aleatoria. dada una retícula de tamaño L. Los resultados son esencialmente consistentes en dos barras de error a excepción del algoritmo de Glauber aleatorio con longitud de retícula L=128.

L	Metropolis lexicográfico	Metropolis aleatorio	Glauber lexicográfico	Glauber aleatorio	Multi-clúster	Promedio global
32	4.5(7)	4.3(4)	4.6(6)	4.1(4)	4.4(5)	4.4(5)
64	4.7(6)	4.6(9)	4.0(3)	3.7(4)	4.5(7)	4.5(6)
128	4.8(6)	4.5(4)	4.4(4)	3.8(2)	4.6(6)	4.4(4)

Tabla 7.2: Exponente crítico ν obtenido en las retículas de tamaño $L \times L$ dónde $L \in \{32, 64, 128\}$.

Los efectos de volumen finito son más fuertes en temperaturas menores a T=0.7, por tanto, se consideraron las temperaturas posteriores para el ajuste. Promediando los exponentes críticos para

L=128 se tiene $\nu=4.4(4)$. El exponente crítico real se define en la extrapolación termodinámica $L\to\infty$.

7.3. Exponente crítico dinámico

El exponente crítico dinámico z se obtuvo a partir de las longitudes de correlación y los tiempos de autocorrelación para las temperaturas $T \in \{0.7, 0.8, 0.9, 1.0\}$ en una retícula de tamaño $L \times L$ donde L = 64. El exponente crítico se calculo siguiendo la relación

$$\tau \propto \xi^z$$
. (7.3)

Figura 7.7: Tiempo de autocorrelación de la carga topológica en función de la longitud de correlación en una retícula de tamaño L=64.

Figura 7.8: Tiempo de autocorrelación de la energía en función de la longitud de correlación en una retícula de tamaño L=64.

Figura 7.9: Tiempo de autocorrelación de la magnetización en función de la longitud de correlación en una retícula de tamaño L=64.

Algoritmo	χ	\mathcal{H}	M
Metropolis lexicográfico	0.71(2)	0.69(1)	0.5(2)
Metropolis aleatorio	0.8(1)	1.1(7)	0.6(5)
Glauber lexicográfico	0.60(3)	0.9(1)	0.49(2)
Glauber aleatorio	0.56(1)	0.8(1)	0.43(2)

Tabla 7.3: Exponente crítico dinámico z para la carga topológica Q, la energía $\mathcal H$ y la magnetización M.

	χ	\mathcal{H}	M
Algoritmos locales	2.2(5)	2.0(4)	2.855(5)

Tabla 7.4: Promedio de los valores calculados para el exponente crítico ζ en el mecanismo de Kibble-Zurek, exceptuando el algoritmo de Metropolis aleatorio para la energía y la magnetización. Las observables son: la susceptibilidad topológica, la energía y la magnetización.

Se calculó el valor del exponente del mecanismo de Kibble-Zurek siguiendo la ecuación

$$\zeta = \frac{2\nu}{1 + \nu z},\tag{7.4}$$

usando los exponentes críticos de las tablas 7.2 y 7.3. Finalmente se obtuvieron los resultados promedio expresados en la tabla 7.4. El exponente crítico de autocorrelación no pudo medirse para el algoritmo multi-clúster, tampoco fue posible calcular el exponente crítico dinámico.

Capítulo 8

Simulación de enfriamientos

Un enfriamiento rápido, se da cuando un sistema pasa de una temperatura inicial T_i a una temperatura final T_f en un tiempo t tal que el sistema sale del equilibrio térmico. La simulación de un enfriamiento se realiza cambiando la temperatura del sistema entre cada barrido de actualizaciones. El decremento de la temperatura entre cada barrido define la velocidad del enfriamiento de acuerdo a la formula

$$v_{\rm cool} = \frac{T_i - T_f}{\tau_{\rm cool}}. (8.1)$$

La variable τ_{cool} es la tasa de cambio de temperatura o tasa de enfriamiento y corresponde al número de pasos para llegar desde la temperatura inicial T_i hasta la temperatura final T_f . Conforme avanza el tiempo de Markov en el rango $t \in [0, \tau_{\text{cool}}]$, la temperatura cambia siguiendo la ecuación

$$T(t) = T_i - v_{\text{cool}}t. \tag{8.2}$$

Una simulación de enfriamiento consta de los siguientes pasos:

- 1. Se genera una configuración en equilibrio termodinámico a temperatura T.
- 2. Se actualiza la configuración a temperatura T(t)
- 3. Se miden las observables y se aumenta el tiempo de Markov de t a t+1.
- 4. Si $T > T_f$, se regresa al paso 2.

Como se hace en las simulaciones en equilibrio, un valor esperado se aproxima de promediar un número de mediciones suficientemente grande para alcanzar la precisión estadística deseada. Se realiza un número N de enfrenamientos y se obtiene un promedio de las mediciones en el mismo instante t. En cada enfriamiento se mide una trayectoria para cada observable en función del tiempo de Markov o de manera equivalente en función de la temperatura.

8.1. Enfriamientos rápidos

En esta sección se investiga si en un modelo donde la temperatura crítica es $T_c=0$ se cumple la ley de escalamiento

$$\chi_t \propto \tau_{\text{cool}}^{-\zeta},$$
(8.3)

realizando enfriamientos que se acercan pero no pueden cruzar la temperatura crítica.

Se realizaron 10^5 enfriamientos desde la temperatura $T_i = 4$ hasta $T_f = 0$, usando las tasas de cambio de temperatura $\tau_{\text{cool}} \in \{8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$. En cada experimento numérico se midió la susceptibilidad topológica, la energía y la magnetización.

Figura 8.1: Evolución de los enfriamientos de la susceptibilidad topológica χ_t respecto a la temperatura T, para diferentes tasas de cambio de temperatura $\tau_{\text{cool}} \in \{8, 10, 16\}$.

Figura 8.2: Evolución de los enfriamientos de la magnetización $\langle M \rangle$ respecto a la temperatura T, para diferentes tasas de cambio de temperatura $\tau_{\rm cool} \in \{8, 10, 16\}$.

Figura 8.3: Evolución de los enfriamientos de la susceptibilidad topológica χ_t respecto a al tiempo de Markov t en unidades de barridos. En las diferentes tasas de cambio de temperatura $\tau_{\text{cool}} \in \{8, 10, 16\}$.

Figura 8.4: Susceptibilidad topológica final χ_{t_f} respecto a la tasa de cambio de temperatura $\tau_{\rm cool}$.

Figura 8.5: Evolución de los enfriamientos de la densidad de energía $\langle \mathcal{H} \rangle$ al tiempo de Markov t en unidades de barridos. En los diferentes velocidades de enfriamiento $\tau_{\rm cool} \in \{8, 10, 16\}$.

Figura 8.6: Densidad de energía final $\langle h \rangle_f$ respecto a la tasa de cambio de temperatura $\tau_{\rm cool}$.

Figura 8.7: Evolución de los enfriamientos de la magnetización $\langle M \rangle$ al tiempo de Markov t en unidades de barridos. En los diferentes tasas de cambio de temperatura $\tau_{\text{cool}} \in \{4,6,8\}$.

Figura 8.8: Magnetización final $\langle M \rangle_f$ respecto a la tasa de cambio de temperatura $\tau_{\rm cool}.$

Algoritmo	Q	\mathcal{H}	M
Metropolis lexicográfico	0.54(1)	0.221(5)	0.282(7)
Metropolis aleatorio	0.55(2)	0.217(5)	0.284(5)
Glauber lexicográfico	0.51(1)	0.211(5)	0.267(4)
Glauber aleatorio	0.51(2)	0.209(6)	0.274(5)
multi-clúster	1.10(6)	0.28(1)	0.630(5)

Tabla 8.1: Exponentes críticos ζ respecto a la susceptibilidad topológica, la energía y la magnetización para los diferentes algoritmos.

En la tabla 8.1 se observa que el exponente crítico ζ es menor para los algoritmos de actualización local. La comparación es difícil ya que hay diferentes tipos de barrido, pero el exponente es esencialmente consistente para los algoritmos locales.

Capítulo 9

Resumen y conclusiones

Se realizaron simulaciones del modelo 2d O(3), usando los siguientes algoritmos:

- Metropolis lexicográfico
- Metropolis aleatorio
- Glauber lexicográfico
- Glauber aleatorio
- multi-cluster

En las simulaciones en equilibrio, se midió la longitud de correlación y el exponente crítico dinámico, para las observables de susceptibilidad topológica, energía y magnetización. Luego se simuló un sistema con diferentes velocidades de enfriamiento. Se midió numéricamente múltiples cantidades:

- La carga topológica y su susceptibilidad.
- La energía.
- La magnetización.

Cada cantidad se expresa en función de las diferentes tasas de enfriamiento $\tau_{\rm cool}$. Los resultados para la susceptibilidad topológica llevaron a una ley de escalamiento con exponente $\zeta=0.53(2)$ para los algoritmos de actualización locales y $\zeta=1.10(6)$ para el algoritmo multi-cluster. Se calculó el exponente $\zeta=2.2(5)$ indirectamente usando la ec. (7.4).

Para la energía, los exponentes obtenidos resultaron en $\zeta=0.214(5)$ para los algoritmos de actualización locales y $\zeta=0.28(1)$ para el algoritmo multi-cluster. Se calculó el exponente $\zeta=2.0(4)$ indirectamente.

Para la magnetización, los exponentes obtenidos resultaron en $\zeta=0.277(5)$ para los algoritmos de actualización locales y $\zeta=0.630(5)$ para el algoritmo multi-cluster. Se calculó el exponente $\zeta=2.855(5)$ indirectamente.

Los exponentes críticos ζ obtenidos indirectamente resultaron en todos los casos en valores mayores a los exponentes obtenidos en los ajustes.

		Q	\mathcal{H}	M
Enfriamientos	Algoritmos locales	0.53(2)	0.214(5)	0.277(5)
	Muti-clúster	1.10(6)	0.28(1)	0.630(5)
Equilibrio	Algoritmos locales	2.2(5)	2.0(4)	2.855(5)

Tabla 9.1: Valores de los exponentes críticos ζ medidos en los enfriamientos y en el equilibrio.

El mecanismo de Kibble-Zurek se plantea en sistemas donde ocurre una ruptura de la simetría por cruzar la temperatura crítica T_c . En los experimentos numéricos realizados, no se cruzó una temperatura crítica debido a que esta corresponde al valor $T_c = 0$.

Por otro lado, al aproximar el sistema a temperatura cero, se observa una desaceleración crítica menor para la susceptibilidad topológica. Esto podría ser la razón por la cual el valor de ζ calculado en el ajuste es más cercano para la susceptibilidad topológica.

Aunque el modelo 2d O(3) no pasa por la temperatura crítica en los enfriamientos, fue posible ajustar una ley de escalamiento para las observables de susceptibilidad topológica, energía y magnetización. Para los algoritmos de actualización locales, la ley de escalamiento conduce a exponentes críticos ζ compatibles respecto a la misma observable. Sin embargo, difieren para diferentes observables. Por lo anteriormente dicho los algoritmos locales parecen más apropiados para los enfriamientos.

En el caso del algoritmo multi-cluster no fue posible medir un exponente crítico dinámico por la efectividad de termalización del algoritmo. La dinámica del algoritmo multi-clúster es fundamentalmente diferente a los algoritmos de actualización locales, resulta en la supervivencia de más defectos topológicos. No fue posible calcular el exponente crítico dinámico para el algoritmo multi-cluster, por lo que no se pudo confirmar una compatibilidad entre los resultados obtenidos en equilibrio y los enfriamientos. Sin embargo, sí fue posible medir el exponente crítico ζ resultando en una ley de escalamiento para enfriamientos en el rango de temperaturas (4,0) y con tazas de enfriamiento $\tau_{\rm cool} \in \{8,9,10,11,12,13,14,15,16,17,18\}$.

Apéndice A

Distribución aleatoria de vectores en la esfera S^2

Uno de los principales retos para usar los métodos de Monte Carlo en la simulación del modelo 2d O(3) es la generación de vectores aleatorios uniformemente distribuidos en la esfera S^2 .

Un punto en la esfera S^2 se puede escribir como

$$\vec{s} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta), \tag{A.1}$$

donde $\theta \in [0, \pi]$ y $\phi \in [0, 2\pi)$ son ángulos aleatorios.

Un primer intento para generar puntos aleatorios y uniformemente distribuidos es directamente una distribución aleatoria y uniforme de ángulos $\theta_r \in [0, \pi]$ y $\phi_r \in [0, 2\pi)$. Sin embargo, si se generan puntos aleatorios de esta manera y se representan sobre una esfera, se observa que la distribución de los vectores es más densa en los polos.

Consideremos ahora una distribución f de vectores aleatorios \vec{s} uniformemente distribuidos sobre la superficie de la esfera. Para que se cumpla la condición de uniformidad, la densidad de probabilidad debe ser constante, con valor $1/4\pi$. Entonces la integral de la densidad de probabilidad sobre el área de la esfera es

$$\frac{1}{4\pi} \int_{\mathcal{S}} d\vec{r} = 1. \tag{A.2}$$

En coordenadas esféricas se tiene

$$\frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \sin\theta d\theta d\phi = \left(\frac{1}{2\pi} \int_0^{2\pi} d\phi\right) \left(\frac{1}{2} \int_0^{\pi} \sin\theta d\theta\right) = 1. \tag{A.3}$$

Se separa la distribución de probabilidad de vectores en la esfera, en dos distribuciones de probabilidad U, V para las variables aleatorias θ, ϕ definidas como

$$U(\theta) = \frac{1}{2} \int_0^{\theta} \sin \theta' d\theta' = \frac{1}{2} (1 - \cos \theta), \qquad V(\phi) = \frac{1}{2\pi} \int_0^{\phi} d\phi' = \frac{\phi}{2\pi}, \tag{A.4}$$

se definen variables aleatorias u, v tales que su función de distribución son las variables aleatorias θ, ϕ .

(a) Distribución aleatoria y uniforme de las variables u, v. (b) Transformación de las variables u, v a las variables θ, ϕ .

Figura A.1: En la figura (a) se tiene una distribución de puntos homogénea y aleatoria, la distribución se mapea a la distribución de la figura (b) en las variables θ , ϕ , se obtiene es una distribución es la que genera vectores aleatorios y uniformemente distribuidos en la esfera.

$$\theta = \arccos(1 - 2u), \qquad \phi = 2\pi v,$$
(A.5)

donde $u, v \in (0, 1)$.

Recapitulando los pasos para generar un vector aleatorio en la esfera son los siguientes:

- 1. Se generan dos números aleatorios $u_r, v_r \in [0, 1]$.
- 2. Se calculan las variables $\theta_r = \arccos(1-2u_r), \quad \phi_r = 2\pi v_r.$
- 3. Se calculan las componentes cartesianas y se define el vector

$$\vec{s_r} = (\sin \theta_r \cos \phi_r, \sin \theta_r \sin \phi_r, \cos \theta_r). \tag{A.6}$$

Dada una esfera S^2 y un vector \vec{s}_0 , el siguiente objetivo es generar una distribución de vectores aleatoria y uniformemente distribuida en una región circular R de la esfera S^2 con centro en \vec{s}_0 .

Se define como la región de la esfera es con centro en \vec{s}_0 tal que la distancia esférica máxima entre \vec{s}_0 y cualquier vector de la distribución es $\alpha_{\text{max}} = \arccos(1 - 2u_{\text{max}})$.

$$R = \left\{ \vec{s} \in \mathcal{S}^2 | d(\vec{s}, \vec{s}_0) \le \alpha_{\text{max}} \right\},\tag{A.7}$$

donde $d(\vec{s}, \vec{s}_0)$ es la distancia esférica entre \vec{s} y \vec{s}_0 . El valor u_{max} ajusta el área de la esfera que se cubre, si $u_{\text{max}} = 1$ entonces $\alpha = \pi$ y la región que se cubre es la totalidad de la esfera.

Pasos para generar un vector aleatorio en R:

1. Se genera un vector aleatorio \vec{r} en la esfera completa. Los vectores \vec{s}_0 y \vec{r} fijan un círculo máximo sobre la esfera con una orientación aleatoria.

2. Se calcula un vector ortonormal al plano formado por $\vec{s_0}$ y \vec{r} siguiendo la ecuación

$$\vec{k} = \frac{\vec{s}_0 \times \vec{r}}{\|\vec{s}_0 \times \vec{r}\|}.$$
(A.8)

1. Se define el nuevo vector como una rotación de \vec{s}_0 respecto \vec{k} por un ángulo $\alpha_r \in (0, \alpha_{\max})$. El vector aleatorio \vec{s}_r respecto al vector de referencia \vec{s}_0 es de la forma

$$\vec{s}_r = \vec{s}_0 \cos \alpha_r + (\vec{k} \times \vec{s}_0) \sin \alpha_r. \tag{A.9}$$

La ventaja de generar vectores en un cono sobre la esfera con esta fórmula es que el número de cálculos es menor, que los que se harían al generar vectores en un cono sobre el eje z y aplicar una rotación, disminuyendo considerablemente el tiempo de cómputo cuando se generan millones de vectores aleatorios.

Figura A.2: Rotación de un espín \vec{s} respecto al eje de rotación \vec{k} en dirección \vec{r} . El espín resultante cae dentro del cono delimitado por α_{max}

Apéndice B

Algoritmo Hoshen-Kopelman

El algoritmo de Hoshen-Kopelman fue introducido por Joseph Hoshen y Raoul Kopelman en 1976 [28]. El algoritmo de Hoshen-Kopelman describe cómo etiquetar los sitios de la retícula en sus respectivos clústeres a partir de una función de vínculo. Es considerablemente más eficiente que otros métodos de formación de clústeres. A diferencia de algoritmos en los que el número de cálculos crece cuadráticamente con el volumen. En el caso de Hoshen-Kopelman dicho crecimiento es lineal.

La definición de clúster que consideraremos en este apartado es la mencionada en el capitulo 9 de esta tesis. Consideremos una red reticular con una configuración de sitios. Un vínculo directo puede ocurrir entre dos sitios vecinos, mientras que un vínculo indirecto se da entre sitios que no son vecinos, pero que están conectados a un sitio común.

Para empezar, se realiza una clasificación de los vínculos en donde cada sitio x indica los vínculos directos. Por ejemplo, en una retícula cuadrada hay cuatro vecinos más cercanos. Para cada vecino un 1 indica un vínculo directo, mientras que un 0 indica que no hay vínculo. La función de vínculo $p(x_1, x_2)$ da la probabilidad de vínculo entre los sitios x_1 y x_2 .

Una vez determinados todos los vínculos, se realizan los siguientes pasos:

- 1. Se selecciona un sitio x y se comprueban sus vínculos directos.
 - a) Si no hay vínculos directos, se etiqueta al sitio con un identificador α correspondiente a un clúster de un elemento y se regresa al paso 1.
 - b) Si hay vínculos directos, se pasa al pasa al siguiente sitio.
- 2. Se comprueban los vínculos directos de los sitios vecinos. Todos los espines enlazados en la comprobación se etiquetan con un identificador α_i correspondiente a un clúster.
- Se repinten los pasos anteriores etiquetando cada sitio de la retícula en sus respectivos clústeres.
- 4. En el proceso de formación de cústeres, habrá casos en los que a un sitio le corresponden dos o más etiquetas $\alpha_1, \ldots, \alpha_n$, ya que hay un vínculo indirecto entre clústeres. Los clústeres correspondientes se fusionan en uno y se les asigna la etiqueta α_1 . Este tipo de vínculo implica la posibilidad de que dos clústeres inicialmente distintos se unan mediante una conexión entre elementos que pertenecen a cada uno de ellos.

Una forma de optimizar la generación de cústeres individuales es la ampliación por capas. Es importante diferenciar entre sitios en el interior de un clúster, sitios en la frontera de un clúster y sitios en el interior.

- Un sitio está en el interior de un clúster si todos sus vecinos más cercanos pertenecen al mismo clúster.
- Un sitio está en la frontera si alguno de sus vecinos más cercanos no pertenece al clúster.
- Un sitio está en el exterior si ninguno de sus vecinos más cercanos pertenece al cluster.

Se parte de un clúster individual y se va extendiendo la frontera en cada paso hasta alcanzar el tamaño máximo del clúster, transformando los sitios de la frontera en sitios en el interior.

Para evitar que un clúster se extienda indebidamente por el cálculo múltiple de una probabilidad de vínculo, solo se calculará una vez un vínculo entre un espín con el clúster. Esto se logra etiquetando los espines ya probados con una etiqueta.

El proceso es el siguiente:

- 1. Se selecciona un sitio aleatorio x y se comprueban los vínculos directos.
- 2. Todos los espines enlazados en la comprobación se etiquetan con un identificador α_i correspondiente a un clúster.
- 3. Se identifican los sitios localizados en la frontera y se comprueban sus vínculos directos.
 - a) Si hay vínculos directos adicionales, se regresa al paso 2.
 - b) Si no hay vínculos directos adicionales, se termina la comprobación.

Este método es especialmente útil en la formación de un clúster.

La aplicación de este método al los algoritmos multi-clúster y single-cluster, permite ahorrar una gran cantidad de cálculos, por lo que el poder de cómputo pude usarse en aumentar la estadística de los experimentos y reducir los tiempos de cálculo; sin duda, es un beneficio que vale la pena a cambio de un poco de programación extra.

Bibliografía

- [1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller y E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys., 21, 1087-1092, 1953.
- [2] R. P. Feynman, "Space-Time Approach to Non-Relativistic Quantum Mechanics," Rev. Mod. Phys., 20, 367-387, 1948.
- [3] H. F. Trotter, "On the product of semi-groups of operators," *Proceedings of the American Mathematical Society*, 10, 545-551, 1959.
- [4] M. Creutz y B. Freedman, "A statistical approach to quantum mechanics," Ann. Phys., 132, 427-462, 1981.
- [5] A. Wipf, "Statistical approach to quantum field theory: an introduction," Springer, 2013.
- [6] B. Berg y M. Lüscher, "Definition and statistical distributions of a topological number in the lattice O(3) σ-model," Nucl. Phys., 190, 412-424, 1981.
- [7] W. Bietenholz, U. Gerber, M. Pepe y U.-J. Wiese, "Topological lattice actions," J. High Energy Phys., 2010, 20, 2010.
- [8] W. Bietenholz, P. De Forcrand, U. Gerber, H. Mejía-Díaz e I. O. Sandoval, "Topological susceptibility of the 2D O(3) model under gradient flow," *Phys. Rev.*, 98, 114501, 2018.
- [9] F. Eriksson, "On the Measure of Solid Angles," Math. Mag., 63, 184-187, 1990.
- [10] I. Todhunter, "Spherical Trigonometry," Macmillan And Company, 1925.
- [11] J. M. Yeomans, "Statistical mechanics of phase transitions," Oxford University Press, 1992.
- [12] D. Landau, "On the theory of phase transitions," Zh. Eksp. Teor. Fiz., 7, 19-32, 1937.
- [13] L. P. Kadanoff, "Scaling laws for ising models near T c," Phys. Phys. Fiz., 2, 263-272, 1966.
- [14] S.-Z. Lin et al., "Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics," *Nat. Phys.*, 10, 970-977, 2014.
- [15] T. W. B. Kibble, "Topology of cosmic domains and strings," J. Phys. A, 9, 1387-1398, 1976.
- [16] R. Ciuca y O. F. Hernández, "Information theoretic bounds on cosmic string detection in CMB maps with noise," *Mon. Not. R. Astron. Soc.*, 492, 1329-1334, 2020.
- [17] T. Kibble, "Phase-transition dynamics in the lab and the universe," Phys. Today, 60, 47-52, 2007.
- 18] W. H. Zurek, "Cosmological experiments in superfluid helium?" Nat., 317, 505-508, 1985.
- [19] T. Kibble, "Some implications of a cosmological phase transition," Phys. Rep., 67, 183-199, 1980.

BIBLIOGRAFÍA 66

[20] J. M. Kosterlitz y D. J. Thouless, "Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory)," J. Phys. Condens. Matter, 5, 124-126, 1972.

- [21] J. M. Kosterlitz, "Nobel Lecture: Topological defects and phase transitions," Rev. Mod. Phys., 89, 4, 2017.
- [22] K. B. Athreya, H. Doss y J. Sethuraman, "On the convergence of the Markov chain simulation method," Ann. Stat., 24, 69-100, 1996.
- [23] R. J. Glauber, "Time-Dependent Statistics of the Ising Model," J. Math. Phys., 4, 294-307, 1963.
- [24] K. Binder y D. W. Heermann, "Monte Carlo Simulation in Statistical Physics," Springer, 1988.
- [25] R. H. Swendsen y J.-S. Wang, "Nonuniversal critical dynamics in Monte Carlo simulations," Phys. Rev. Lett., 58, 86-88, 1987.
- [26] U. Wolff, "Collective Monte Carlo Updating for Spin Systems," Phys. Rev. Lett., 62, 361-364, 1989.
- [27] F. Niedermayer, "General Cluster Updating Method for Monte Carlo Simulations," *Phys. Rev. Lett.*, 61, 2026-2029, 1988.
- [28] J. Hoshen y R. Kopelman, "Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm," *Phys. Rev. B*, 14, 3438-3445, 1976.