Critères de Dantzig

A partir de la forme standard du P.L, on exprime la solution au sommet à l'origine

- Critère 1. Pour déterminer la colonne qui doit entrer dans la base (entrante), on choisit celle qui comporte le $c_i > 0$ le plus grand de la fonction économique.
- Critère 2. Pour déterminer la colonne qui doit sortir de la base, on choisit celle d'indice l tel que b_k/a_{ke} soit le plus petit(l=k).

Exemple: Max

$$Z = 0 + 3x_1 + x_2 + 2x_3$$

SC

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

Mécanisme Pivot

Le PIVOT reçoit en entrée n-uplet (N, B, A, b, c, v, I, e) une forme standard et retourne n-uplet $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$ d'une nouvelle forme standard. Il utilise une variable entrante x_e d'indice e et une variable sortante x_l d'indice I.

Calcule les coefficients de nouvelle variable de base x_e

$$\hat{b}_e = b_I/a_{Ie} \; (a_{Ie}>0)$$

Pour tout $j\in N-\{e\}$ faire $\hat{a}_{ej} = a_{Ij}/a_{Ie}$
 $\hat{a}_{eI} = 1/a_{Ie}$

Calcule les coefficients des contraintes restantes (rectangle)

Pour tout
$$i \in B - \{I\}$$
 faire $\hat{b}_i = b_i - a_{ie}\hat{b}_e$
Pour tout $j \in N - \{e\}$ faire $\hat{a}_{ij} = a_{ij} - a_{ie}\hat{a}_{ej}$
 $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$

Khalil Ibrahimi (EST, Kénitra)

Mécanisme Pivot

Calcule la fonction objectif

$$\hat{v} = v + c_e \hat{b}_e$$

Pour tout $j \in N - \{e\}$ faire $\hat{c}_j = c_j - c_e \hat{a}_{ej}$
 $\hat{c}_l = -c_e \hat{a}_{el}$

Mise à jour d'ensemble de nouvelles variables de base/hors-base

$$\hat{N} = N - \{e\} \cup \{I\} \text{ et } \hat{B} = B - \{I\} \cup \{e\}$$

Retourne la nouvelle forme standard $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Lemme

Considérons l'appel à $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v}) = PIVOT(N, B, A, b, c, v, l, e)$ dans lequel la valeur du pivot $a_{le} \neq 0$. Soit \bar{x} la solution de base après l'appel, alors $\bar{x}_i = 0$ pour tout $j \in \hat{N}$, $\bar{x}_e = \hat{b}_e = b_I/a_{Ie}$, $\bar{x}_i = \hat{b}_i = b_i - a_{ie}\hat{b}_e$ pour tout $i \in \hat{B} - \{e\}$

Algorithme simplexe

Initialisation

(N, B, A, b, c, v) = initialise-simplexe (A, b, c)

Simplexe

Tant que $j \in \mathbb{N}$ vérifie $c_i > 0$

faire choisir un indice $e \in N$ tel que $c_e > 0$ (le plus grand)

pour tout indice $i \in B$

faire is $a_{ie} > 0$ alors $\delta_i = b_i/a_{ie}$

sinon $\delta_i = \infty$

choisir un indice $l \in B$ qui minimise δ_i

si $\delta_i = \infty$

alors retourner non borné

sinon (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, I, e)

Fin de tant que

Pour i allant de 1 à n, faire si $i \in B$, alors $\bar{x}_i = b_i$, sinon $\bar{x}_i = 0$ retourner $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)$ la solution optimale.