

SITUATION

Deux droites de l'espace peuvent avoir trois types d'intersection : une droite (si elles sont confondues), un point (si elles sont sécantes) ou l'ensemble vide (si elles sont parallèles ou non-coplanaires).

ÉNONCÉ

Déterminer l'intersection de D et de Δ avec :

Etape 1

Donner une représentation paramétrique de chaque droite

Si elles ne sont pas déjà données, on détermine une représentation paramétrique de chacune des deux droites. Sinon, on les rappelle.

APPLICATION

lci, les représentations paramétriques sont données :

$$D: egin{cases} x=1+t \ y=2-t$$
 , $t\in \mathbb{R}$ $z=3t$

$$egin{aligned} z = 3t \ & x = 2 - t' \ & y = 1 + 3t' \; ext{,} \; t' \in \mathbb{R} \ & z = -1 + t' \end{aligned}$$

Etape 2

Écrire le système

L'intersection des deux droites correspond au système suivant, d'inconnues t et t':

APPLICATION

Afin de déterminer l'intersection des deux droites, on doit donc résoudre le système suivant :

$$egin{cases} 1+t=2-t' \ 2-t=1+3t' \ 3t=-1+t' \end{cases}$$

Etape 3

Résoudre le système

On résout le système afin de déterminer s'il admet un couple (t;t') solution. Pour cela, on résout d'abord un sous-système formé par deux lignes, puis on vérifie que le couple trouvé est solution de la dernière ligne.

APPLICATION

On résout d'abord le système formé par les deux premières lignes :

$$\left\{ egin{aligned} 1+t=2-t' \ & \ 2-t=1+3t' \ & \ 3t=-1+t' \end{aligned}
ight.$$

On additionne les deux premières lignes :

$$\Leftrightarrow egin{cases} 1+t=2-t' \ 3=3+2t' \ 3t=-1+t' \ \Leftrightarrow egin{cases} 1+t=2-t' \ t'=0 \ 3t=-1+t' \end{cases}$$

$$\Leftrightarrow egin{cases} t=1 \ t'=0 \ 3t=-1+t' \end{cases}$$

En remplaçant ces valeurs de t et t' dans la troisième équation, on obtient :

$$egin{cases} t=1 \ t'=0 \ 3=-1 \end{cases}$$

Etape 4

Conclure

Trois cas se présentent :

- ullet On obtient un système impossible (avec une égalité du type 1=0). Dans ce cas l'intersection est vide et les droites ne sont pas sécantes.
- On obtient un système avec une infinité de solutions. Dans ce cas, les deux droites sont confondues.
- ullet On obtient un couple solution $(t_0;t_0')$. Dans ce cas, les deux droites sont sécantes en un point M de

APPLICATION

La dernière ligne est impossible, ce système n'a pas de solution.

Cela signifie que les droites ont une intersection vide. Les droites D et Δ ne sont pas sécantes.