C.3 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure C-5** with the actual timing values shown on table Table C-4. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

C.3.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

Table C-4 Expanded Bus Timing Characteristics (5V Range)

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		25.0	MHz
2	Р	Cycle time	t _{cyc}	40			ns
3	D	Pulse width, E low	PW _{EL}	19			ns
4	D	Pulse width, E high ¹	PW _{EH}	19			ns
5	D	Address delay time	t _{AD}			8	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	11			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	13			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			7	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ⁽¹⁾ (PW _{EH} -t _{DDW})	t _{DSW}	12			ns
15	D	Address access time ⁽¹⁾ (t _{cyc} -t _{AD} -t _{DSR})	t _{ACCA}	19			ns
16	D	E high access time ⁽¹⁾ (PW _{EH} -t _{DSR})	t _{ACCE}	6			ns
17	D	Read/write delay time	t _{RWD}			7	ns
18	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	14			ns
19	D	Read/write hold time	t _{RWH}	2			ns
20	D	Low strobe delay time	t _{LSD}			7	ns
21	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	14			ns
22	D	Low strobe hold time	t _{LSH}	2			ns
23	D	NOACC strobe delay time	t _{NOD}			7	ns
24	D	NOACC valid time to E rise (PW _{EL} -t _{LSD})	t _{NOV}	14			ns
25	D	NOACC hold time	t _{NOH}	2			ns
26	D	IPIPO[1:0] delay time	t _{P0D}	2		7	ns
27	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{POV}	11			ns
28	D	IPIPO[1:0] delay time ⁽¹⁾ (PW _{EH} -t _{P1V})	t _{P1D}	2		25	ns
29	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

NOTES:

^{1.} Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

Table C-5 Expanded Bus Timing Characteristics (3.3V Range)

Conditions are VDDX=3.3V+/-10%, Junction Temperature -40°C to +140°C, C_{LOAD} = 50pF

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Frequency of operation (E-clock)	f _o	0		16.0	MHz
2	D	Cycle time	t _{cyc}	62.5			ns
3	D	Pulse width, E low	PW _{EL}	30			ns
4	D	Pulse width, E high ¹	PW _{EH}	30			ns
5	D	Address delay time	t _{AD}			16	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	16			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	15			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			15	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ⁽¹⁾ (PW _{EH} -t _{DDW})	t _{DSW}	15			ns
15	D	Address access time ⁽¹⁾	t _{ACCA}	29			ns
16	D	E high access time ⁽¹⁾ (PW _{EH} -t _{DSR})	t _{ACCE}	15			ns
17	D	Read/write delay time	t _{RWD}			14	ns
18	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	16			ns
19	D	Read/write hold time	t _{RWH}	2			ns
20	D	Low strobe delay time	t _{LSD}			14	ns
21	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	16			ns
22	D	Low strobe hold time	t _{LSH}	2			ns
23	D	NOACC strobe delay time	t _{NOD}			14	ns
24	D	NOACC valid time to E rise (PW _{EL} -t _{LSD})	t _{NOV}	16			ns
25	D	NOACC hold time	t _{NOH}	2			ns
26	D	IPIPO[1:0] delay time	t _{P0D}	2		14	ns
27	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{POV}	16			ns
28	D	IPIPO[1:0] delay time ⁽¹⁾	t _{P1D}	2		25	ns
29	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

NOTES:

1. Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.