Mathematical Foundations of AI (Aug'24-Dec'24)

Problem Sheet

- 1. Prove or disprove the following.
 - (a) $Lt_{x\to 0} \frac{\tan 2x}{\sin x} = 2$. (Hint: $Lt_{x\to 0} \frac{\sin x}{x} = 1$.)
 - (b) $Lt_{x\to 0} \frac{\sin 5x \sin 3x}{x} = 2.$
 - (c) $Lt_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2} = \frac{1}{2}$.
- 2. Let f(x) be defined as $f(x) = 2\cos x$ if $x \le c$ and $f(x) = ax^2 + b$ if x > c. a, b, c are constants. Given b and c, find all values of a for which f(x) is continuous at x = c.
- 3. Consider $f(x) = \sin(x^{-1})$ for $x \neq 0$ and f(0) = a. Determine (if any) the value of a such that $f(x) \to A$ (for some A) as $x \to 0$. Justify your answer.
- 4. Consider $f(x) = [x^{-1}]$ for $x \neq 0$. [t] denotes the greatest integer less than or equal to t. For example, [2.5] = 2 and [-3.5] = -4. Can you define f(0) so that f is continuous at 0.
- 5. Let f and g be functions defined as f(x) = 1 if $|x| \le 2$ and f(x) = 0 if |x| > 2, and $g(x) = 2 x^2$ if $|x| \le 3$ and g(x) = 2 if |x| > 3. Determine a formula for computing h(x) = f(g(x)). For what values of x is h continuous?
- 6. Let f(x) be defined by $f(x) = x^2$ if $x \le c$ and $f(x) = ax^3 + b$ if x > c where a, b, c are constants. Find values of a and b (in terms of c) such that f'(c) exists.
- 7. Solve Exercise (6.) for f(x) where $f(x) = |x|^{-1}$ if |x| > c and $f(x) = a + bx^2$ if $|x| \le c$.
- 8. A reservoir has the shape of a right-circular cone. The altitude is 20 feet, and the radius is 8 feet. Water is poured into the reservoir at a constant rate of 5 cubic feet per minute. How fast is the water level rising when the depth of the water is 5 feet if (a) the vertex of the cone is up? and (b) the vertex of the cone is down?

- 9. Prove that among all rectangles of a given area, square has the smallest perimeter.
- 10. A farmer has L feet of fencing to enclose a rectangular pasture adjacent to a long stone wall. What dimensions give the maximum area of the pasture?
- 11. Find the rectangle of the largest area that can be inscribed in a semicircle, the lower base being on the diameter.
- 12. Given n real numbers x_1, \ldots, x_n , prove that the sum $\sum_{i=1}^n (x a_i)^2$ is the smallest when x is the arithmetic mean of a_1, \ldots, a_n .
- 13. Let 0 < a < b be given. We want to approximate an unknown $x \in [a, b]$ by another number $t \in [a, b]$ so that the maximum relative error $M(t) = \max_{x \in [a,b]} \frac{|t-x|}{x}$ is as small as possible. Prove that M(t) is achieved at either x = a or x = b, for each t. Prove that the smallest value of M(t) is achieved by the harmonic mean of a and b, that is, for t satisfying $\frac{1}{t} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$.
- 14. Determine the Taylor series expansion for f(x) around x = 0 for each of the following definitions of f(x).
 - (a) $f(x) = a^x$, a > 0, for all x.
 - (b) $f(x) = \frac{1}{2-x}$ for |x| < 2.
 - (c) $f(x) = \log \sqrt{\frac{1+x}{1-x}}$ for |x| < 1.
- 15. For each of the following scalar functions, determine the set of points (x, y) or (x, y, z) at which (i) f is defined and (ii) f is continuous.
 - (a) $f(x, y, z) = \log_e(x^2 + y^2 + z^2)$ for $(x, y, z) \neq (0, 0, 0)$; f(0, 0, 0) = 1.
 - (b) $f(x,y) = \frac{x+y}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (c) $f(x,y) = \frac{x}{\sqrt{x^2+y^2}}$.
- 16. For $(x,y) \neq (0,0)$, define $f(x,y) = \frac{x^3 y^3}{x^2 + y^2}$. Is it possible to define f(0,0) so as to make f continuous at (0,0).

- 17. Define $v(r,t) = t^n \cdot e^{-r^2/(4t)}$. Find a value of the constant n such that v satisfies the following equation $\frac{\partial v}{\partial t} = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right)$.
- 18. Find the gradient vector at each point at which it exists for the scalar function given by the following definitions.
 - (a) $f(x, y, z) = \log_e(x^2 + 2y^2 3z^2)$.
 - (b) $f(x, y, z) = x^{y^z}$.
- 19. Find the directional derivatives for each of the following scalar functions for the points and directions given:
 - (a) $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at (1, 1, 0) in the direction of (1, -1, 2).
 - (b) $f(x, y, z) = \left(\frac{x}{y}\right)^z$ at (1, 1, 1) in the direction of (2, 1, -1).
- 20. For each of the following definitions of f(x, y), x = X(t) and y = Y(t), define F(t) = f(X(t), Y(t)) and compute F'(t) and F''(t).
 - (a) $f(x,y) = x^2 + y^2$, X(t) = t and $Y(t) = t^2$.
 - (b) $f(x,y) = e^{xy}\cos(xy^2)$, $X(t) = \cos t$, $Y(t) = \sin t$.