Contents

1. Entropy	2
1.1. Introduction	2
1.2. Asymptotic equipartition property	3
1.3. Fixed-rate lossless data compression	5
2. Relative entropy	6
2.1. Asymptotically optimal hypothesis testing	7
2.2. Relative entropy and optimal hypothesis testing	8
3. Properties of entropy and relative entropy	12
3.1. Joint entropy and conditional entropy	12
3.2. Properties of entropy, joint entropy and conditional entropy	13
3.3. Properties of relative entropy	15
4. Poisson approximation	18

1. Entropy

1.1. Introduction

Notation 1.1 Write $x_1^n := (x_1, ..., x_n) \in \{0, 1\}^n$ for an length n bit string.

Notation 1.2 We use P to denote a probability mass function. Write P_1^n for the joint probability mass function of a sequence of n random variables $X_1^n = (X_1, ..., X_n)$.

Definition 1.3 A random variable X has a **Bernoulli distribution**, $X \sim \text{Bern}(p)$, if for some fixed $p \in (0, 1)$,

$$X = \begin{cases} 1 \text{ with probability } p \\ 0 \text{ with probability } 1 - p \end{cases}$$

i.e. the probability mass function (PMF) of X is $P : \{0,1\} \to \mathbb{R}$, P(0) = 1 - p, P(1) = p.

Notation 1.4 Throughout, we take log to be the base-2 logarithm, log₂.

Definition 1.5 The binary entropy function $h:(0,1)\to[0,1]$ is defined as

$$h(p) := -p \log p - (1-p) \log(1-p)$$

Example 1.6 Let $x_1^n \in \{0,1\}^n$ be an n bit string which is the realisation of binary random variables (RVs) $X_1^n = (X_1, ..., X_n)$, where the X_i are independent and identically distributed (IID), with common distribution $X_i \sim \text{Bern}(p)$. Let $k = |\{i \in [n] : x_i = 1\}|$ be the number of ones in x_1^n . We have

$$\Pr(X_1^n = x_1^n) \coloneqq P^n(x_1^n) = \prod_{i=1}^n P(x_i) = p^k(1-p)^{n-k}.$$

Now by the law of large numbers, the probability of ones in a random x_1^n is $k/n \approx p$ with high probability for large n. Hence,

$$P^n(x_1^n) \approx p^{np} (1-p)^{n(1-p)} = 2^{-nh(p)}.$$

Note that this reveals an amazing fact: this approximation is independent of x_1^n , so any message we are likely to encounter has roughly the same probability $\approx 2^{-nh(p)}$ of occurring.

Remark 1.7 By the above example, we can split the set of all possible n-bit messages, $\{0,1\}^n$, into two parts: the set B_n of **typical** messages which are approximately uniformly distributed with probability $\approx 2^{-nh(p)}$ each, and the non-typical messages that occur with negligible probability. Since all but a very small amount of the probability is concentrated in B_n , we have $|B_n| \approx 2^{nh(p)}$.

Remark 1.8 Suppose an encoder and decoder both already know B_n and agree on an ordering of its elements: $B_n = \{x_1^n(1), ..., x_1^n(b)\}$, where $b = |B_n|$. Then instead of transmitting the actual message, the encoder can transmit its index $j \in [b]$, which can be described with

$$\lceil \log b \rceil = \lceil \log |B_n| \rceil \approx nh(p)$$

bits.

Remark 1.9

- The closer p is to $\frac{1}{2}$ (intuitively, the more random the messages are), the larger the entropy h(p), and the larger the number of typical strings $|B_n|$.
- Assuing we ignore non-typical strings, which have vanishingly small probability for large n, the "compression rate" of the above method is h(p), since we encode n bit strings using nh(p) strings. h(p) < 1 unless the message is uniformly distributed over all of $\{0,1\}^n$.
- So the closer p is to 0 or 1 (intuitively, the less random the messages are), the smaller the entropy h(p), so the greater the compression rate we can achieve.

1.2. Asymptotic equipartition property

Notation 1.10 We denote a finite alphabet by $A = \{a_1, ..., a_m\}$.

Notation 1.11 If $X_1, ..., X_n$ are IID RVs with values in A, with common distribution described by a PMF $P: A \to [0,1]$ (i.e. $P(x) = \Pr(X_i = x)$ for all $x \in A$), then write $X \sim P$, and we say "X has distribution P on A".

Notation 1.12 For $i \leq j$, write X_i^j for the block of random variables $(X_i,...,X_j)$, and similarly write x_i^j for the length j-i+1 string $(x_i,...,x_j) \in A^{i-j+1}$.

Notation 1.13 For IID RVs $X_1, ..., X_n$ with each $X_i \sim P$, denote their joint PMF by $P^n: A^n \to [0,1]$:

$$P^n(x_1^n) = \Pr(X_1^n = x_1^n) = \prod_{i=1}^n \Pr(X_i = x_i) = \prod_{i=1}^n P(x_i),$$

and we say that "the RVs X_1^n have the product distribution P^n ".

Definition 1.14 A sequence of RVs $(Y_n)_{n\in\mathbb{N}}$ converges in probability to an RV Y if $\forall \varepsilon > 0$,

$$\Pr(|Y_n-Y|>\varepsilon)\to 0\quad\text{as }n\to\infty.$$

Definition 1.15 Let $X \sim P$ be a discrete RV on a countable alphabet A. The **entropy** of X is

$$H(X) = H(P) \coloneqq -\sum_{x \in A} P(x) \log P(x) = \mathbb{E}[-\log P(X)].$$

Remark 1.16

- We use the convention $0 \log 0 = 0$ (this is natural due to continuity: $x \log x \to 0$ as $x \downarrow 0$, and also can be derived measure-theoretically).
- Entropy is technically a functional the probability distribution P and not of X, but we use the notation H(X) as well as H(P).
- H(X) only depends on the probabilities P(x), not on the values $x \in A$. Hence for any bijective $f: A \to A$, we have H(f(X)) = H(X).

- All summands of H(X) are non-negative, so the sum always exists and is in $[0, \infty]$, even if A is countable infinite.
- H(X) = 0 iff all summands are 0, i.e. if $P(x) \in \{0,1\}$ for all $x \in A$, i.e. X is **deterministic** (constant, so equal to a fixed $x_0 \in A$ with probability 1).

Theorem 1.17 Let $X = \{X_n : n \in \mathbb{N}\}$ be IID RVs with common distribution P on a finite alphabet A. Then

$$-\frac{1}{n}\log P^n(X_1^n)\longrightarrow H(X_1)\quad \text{in probability}\quad \text{as }n\to\infty$$

Proof (Hints). Straightforward.

Proof. We have

$$\begin{split} P^n(X_1^n) &= \prod_{i=1}^n P(X_i) \\ \Longrightarrow \frac{1}{n} \log P^n(X_1^n) &= \frac{1}{n} \sum_{i=1}^n \log P(X_i) \to \mathbb{E}[-\log P(X_1)] \quad \text{in probability} \end{split}$$

by the weak law of large numbers (WLLN) for the IID RVs $Y_i = -\log P(X_i)$.

Corollary 1.18 (Asymptotic Equipartition Property (AEP)) Let $\{X_n : n \in \mathbb{N}\}$ be IID RVs on a finite alphabet A with common distribution P and common entropy $H = H(X_i)$. Then

• (\Longrightarrow) : for all $\varepsilon > 0$, the set of **typical strings** $B_n^*(\varepsilon) \subseteq A^n$ defined by

$$B_n^*(\varepsilon)\coloneqq \left\{x_1^n\in A^n: 2^{-n(H+\varepsilon)}\leq P^n(x_1^n)\leq 2^{-n(H-\varepsilon)}\right\}$$

satisfies

$$|B_n^*(\varepsilon)| \leq 2^{n(H+\varepsilon)} \quad \forall n \in \mathbb{N}, \quad \text{and}$$
$$P^n(B_n^*(\varepsilon)) = \Pr(X_1^n \in B_n^*(\varepsilon)) \longrightarrow 1 \quad \text{as } n \to \infty$$

• (\Leftarrow): for any sequence $(B_n)_{n\in\mathbb{N}}$ of subsets of A^n , if $P(X_1^n\in B_n)\to 1$ as $n\to\infty$, then $\forall \varepsilon>0$,

$$|B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}\quad\text{eventually}$$
 i.e. $\exists N\in\mathbb{N}: \forall n\geq N,\quad |B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}.$

 $Proof\ (Hints).$

- (\Longrightarrow) : straightforward.
- (\Leftarrow): show that $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$ as $n \to \infty$.

Proof.

- (⇒):
 - Let $\varepsilon > 0$. By Theorem 1.17, we have

$$\Pr(X_1^n \notin B_n^*(\varepsilon)) = \Pr\left(\left|-\frac{1}{n}\log P^n(X_1^n) - H\right| > \varepsilon\right) \to 0 \quad \text{as } n \to \infty.$$

• By definition of $B_n^*(\varepsilon)$,

$$1 \geq P^n(B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n^*(\varepsilon)} P^n(x_1^n) \geq |B_n^*(\varepsilon)| 2^{-n(H+\varepsilon)}.$$

- (⇐=):
 - $\text{We have } P^n(B_n\cap B_n^*(\varepsilon)) = P^n(B_n) + P^n(B_n^*(\varepsilon)) P^n(B_n\cup B_n^*(\varepsilon)) \geq \\ P^n(B_n) + P^n(B_n^*(\varepsilon)) 1, \text{ so } P^n(B_n\cap B_n^*(\varepsilon)) \to 1.$
 - So $P^n(B_n \cap B_n^*(\varepsilon)) \ge 1 \varepsilon$ eventually, and so

$$\begin{split} 1-\varepsilon & \leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n) \\ & \leq |B_n \cap B_n^*(\varepsilon)| 2^{-n(H-\varepsilon)} \leq |B_n| 2^{-n(H-\varepsilon)}. \end{split}$$

Remark 1.19

- The \Longrightarrow part of AEP states that a specific object (in this case, the $B_n^*(\varepsilon)$) can achieve a certain performance, while the \Leftarrow part states that no other object of this type can significantly perform better. This is common type of result in information theory.
- Theorem 1.17 gives a mathematical interpretation of entropy: the probability of a random string X_1^n generally decays exponentially with n ($P^n(X_1^n) \approx 2^{-nH}$ with high probability for large n). The AEP gives a more "operational interpretation": the smallest set of strings that can carry almost all the probability of P^n has size $\approx 2^{nH}$.
- The AEP tells us that higher entropy means more typical strings, and so the possible values of X_1^n are more unpredictable. So we consider "high entropy" RVs to be "more random" and "less predictable".

1.3. Fixed-rate lossless data compression

Definition 1.20 A memoryless source $X = \{X_n : n \in \mathbb{N}\}$ is a sequence of IID RVs with a common PMF P on the same alphabet A.

Definition 1.21 A fixed-rate lossless compression code for a source X consists of a sequence of codebooks $\{B_n : n \in \mathbb{N}\}$, where each $B_n \subseteq A^n$ is a set of source strings of length n.

Assume the encoder and decoder share the codebooks, each of which is sorted. To send x_1^n , an encoder checks with $x_1^n \in B_n$; if so, they send the index of x_1^n in B_n , along with a flag bit 1, which requires $1 + \lceil \log |B_n| \rceil$ bits. Otherwise, they send x_1^n uncompressed, along with a flag bit 0 to indicate an "error", which requires $1 + \lceil \log |A| \rceil = 1 + \lceil n \log |A| \rceil$ bits.

Definition 1.22 For each $n \in \mathbb{N}$, the **rate** of a fixed-rate code $\{B_n : n \in \mathbb{N}\}$ for a source X is

$$R_n \coloneqq \frac{1}{n}(1+\lceil \log |B_n| \rceil) \approx \frac{1}{n} \log |B_n| \quad \text{bits/symbol}.$$

Definition 1.23 For each $n \in \mathbb{N}$, the **error probability** of a fixed-rate code $\{B_n : n \in \mathbb{N}\}$ for a source X is

$$P_e^{(n)} \coloneqq \Pr(X_1^n \notin B_n).$$

Theorem 1.24 (Fixed-rate coding theorem) Let $X = \{X_n : n \in \mathbb{N}\}$ be a memoryless source with distribution P and entropy $H = H(X_i)$.

• (\Longrightarrow): $\forall \varepsilon > 0$, there is a fixed-rate code $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$ with vanishing error probability $(P_e^{(n)} \to 0 \text{ as } n \to \infty)$ and with rate

$$R_n \le H + \varepsilon + \frac{2}{n} \quad \forall n \in \mathbb{N}.$$

• (\Leftarrow): let $\{B_n : n \in \mathbb{N}\}$ be a fixed-rate with vanishing error probabilit. Then $\forall \varepsilon > 0$, its rate R_n satisfies

$$R_n > H - \varepsilon$$
 eventually.

 $Proof\ (Hints).\ (\Longrightarrow): straightforward.\ (\Longleftrightarrow): straightforward.$

Proof.

- (⇒):
 - ▶ Let $B_n^*(\varepsilon)$ be the sets of typical strings defined in AEP (<u>Corollary 1.18</u>). Then $P_e^{(n)} = 1 \Pr(X_1^n \in B_n^*) \to 0$ as $n \to \infty$ by AEP.
 - Also by AEP, $R_n = \frac{1}{n}(1 + \lceil \log |B_n^*| \rceil) \le \frac{1}{n} \log |B_n^*| + \frac{2}{n} \le H + \varepsilon + \frac{2}{n}$.
- (⇐=):
 - WLOG let $0 < \varepsilon < 1/2$. By AEP,

$$R_n \geq \frac{1}{n} \log |B_n^*| + \frac{1}{n} \geq \frac{1}{n} \log(1-\varepsilon) + H - \varepsilon + \frac{1}{n} = H - \varepsilon + \frac{1}{n} \log(2(1-\varepsilon)) > H - \varepsilon$$
 eventually.

2. Relative entropy

Definition 2.1 Suppose $x_1^n \in A^n$ are observations generated by IID RVs X_1^n and we want to decide whether $X_1^n \sim P^n$ or Q^n , for two distinct candidate PMFs P, Q on A. A **hypothesis test** is described by a **decision region** $B_n \subseteq A^n$ such that

- If $x_1^n \in B_n$, then we declare that $X_1^n \sim P^n$.
- Otherwise, if $x_1^n \notin B_n$, then we declare that $X_1^n \sim Q^n$.

Definition 2.2 The associated error probabilities for a hypothesis test are

$$\begin{split} e_1^{(n)} &= e_1^{(n)}(B_n) \coloneqq \Pr(\text{declare } P \mid \text{data} \sim Q) = Q^n(B_n) \\ e_2^{(n)} &= e_2^{(n)}(B_n) \coloneqq \Pr(\text{declare } Q \mid \text{data} \sim P) = P^n(B_n^c). \end{split}$$

Definition 2.3 The relative entropy between PMFs P and Q on the same countable alphabet A is

$$D(P \parallel Q) \coloneqq \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E} \bigg[\log \frac{P(X)}{Q(X)} \bigg], \quad \text{where } X \sim P.$$

Remark 2.4

- We use the convention that $0 \log \frac{0}{0} = 0$ (this can be avoided by defining relative entropy measure-theoretically).
- $D(P \parallel Q)$ always exists and $D(P \parallel Q) \ge 0$ with equality iff P = Q.
- Relative entropy is not symmetric: $D(P \parallel Q) \neq D(Q \parallel P)$ in general, and does not satisfy the triangle inequality.
- Despite this, it is reasonable and natural to think of $D(P \parallel Q)$ as a statistical "distance" between P and Q.

Remark 2.5 Let $X \sim P$. We have, by WLLN,

$$\begin{split} \frac{1}{n} \log \left(\frac{P^n(X_1^n)}{Q^n(X_1^n)} \right) &= \frac{1}{n} \log \prod_{i=1}^n \frac{P(X_i)}{Q(X_i)} \\ &= \frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)} \\ &\longrightarrow D(P \parallel Q) \text{ in probability} \quad \text{as } n \to \infty. \end{split}$$

So for large n, $\frac{P^n(X_1^n)}{Q^n(X_1^n)} \approx 2^{nD(P \parallel Q)}$ with high probability. Hence, the random string X_1^n is exponentially more likely under its true distribution P than under Q.

2.1. Asymptotically optimal hypothesis testing

Theorem 2.6 (Stein's Lemma) Let P,Q be PMFs on a finite alphabet A, with $D=D(P\parallel Q)\in (0,\infty)$. Let $X=\{X_n:n\in\mathbb{N}\}$ be a memoryless source on A, with either each $X_i\sim P$ or each $X_i\sim Q$.

• (\Longrightarrow): for all $\varepsilon > 0$, there is a hypothesis test with decision regions $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$ such that

$$\forall n \in \mathbb{N}, \quad e_1^{(n)}(B_n^*(\varepsilon)) \leq 2^{-n(D-\varepsilon)}$$

and $e_2^{(n)} \to 0$ as $n \to \infty$.

• (\Leftarrow): for any hypothesis test with decision regions $\{B_n:n\in\mathbb{N}\}$ such that $e_2^{(n)}(B_n)\to 0$ as $n\to\infty$, we have $\forall \varepsilon>0$,

$$e_1^{(n)}(B_n) \ge 2^{-n(D+\varepsilon+\frac{1}{n})}$$
 eventually.

Proof (Hints).

- (⇒):
 - Let $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}$. The rest is straightforward (use above remark).
- (⇐=):
 - Show that $P^n(B_n^*(\varepsilon) \cap B_n) \to 1$ as $n \to \infty$, use that $\frac{1}{2} = 2^{-n(1/n)}$.

Proof.

- - Let $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}.$ Then the convergence in probability of $\frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)}$ is equivalent to $\Pr(X_1^n \notin B_n^*) = P^n(B_n^*(\varepsilon)) = e_2^{(n)} \to 0$ as $n \to \infty$, when $X_1^n \sim P^n$.

 Also, $1 \ge P^n(B_n^*) = \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge 2^{n(D-\varepsilon)} \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) = \frac{P^n(B_n^n)}{Q^n(x_1^n)} = \frac{P^n(B_n^n)}{Q^n(x_1$
 - $2^{n(D-\varepsilon)}Q^n(B_n^*(\varepsilon)).$
- - We have $e_2^{(n)}(B_n^*(\varepsilon)) = P^n(B_n^*(\varepsilon)) \to 0$ as $n \to \infty$. Suppose $e_2^{(n)}(B_n) =$ $P^n(B_n^c) \to 0$. Then $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$. So eventually,

$$\begin{split} \frac{1}{2} &\leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n) \frac{Q^n(x_1^n)}{Q^n(x_1^n)} \\ &\leq 2^{n(D+\varepsilon)} \sum_{x_1^n \in B_n} Q^n(x_1^n) \\ &= 2^{n(D+\varepsilon)} Q^n(B_n) = 2^{n(D+\varepsilon)} e_1^{(n)}(B_n) \end{split}$$

Remark 2.7

- The decision regions B_n^* are asymptotically optimal in that, among all tests that have $e_2^{(n)} \to 0$, they achieve the asymptotically smallest possible $e_1^{(n)} \approx 2^{-nD}$. However, they are not the most optimal decision regions for finite n. For finite regions, the optimal regions are given by the Neyman-Pearson Lemma.
- Assuming $D \neq 0$ is a trivial assumption, as otherwise P = Q on A, so any test would give the correct answer.
- Assuming $D < \infty$ is a reasonable assumption, as otherwise there is some $a \in A$ such that P(a) > 0 but Q(a) = 0. In that case, we check whether any such a appear in x_1^n or not.
- In Stein's Lemma, we assume one error vanishes at possibly an arbitrarily slow rate, while the other decays exponentially. This is a natural asymmetry in many applications, e.g. in diagnosing disease.
- Stein's Lemma shows why the relative entropy is a natural measure of "distance" between two distributions, as large D means a smaller error probability (one vanishes exponentially at rate D), so easier to tell apart the distributions from the data.

2.2. Relative entropy and optimal hypothesis testing

Theorem 2.8 (Neyman-Pearson Lemma) For a hypothesis test between P and Qbased on n data samples, the likelihood ratio decision regions

$$B_{\mathrm{NP}} = \left\{ x_1^n \in A^n : \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge T \right\}, \quad \text{for some threshold } T > 0,$$

are optimal in that, for any decision region $B_n\subseteq A^n$, if $e_1^{(n)}(B_n)\leq e_1^{(n)}(B_{\mathrm{NP}})$, then $e_2^{(n)}(B_n)\geq e_2^{(n)}(B_{\mathrm{NP}})$, and vice versa.

Proof (Hints). Consider the inequality

$$(P^n(x_1^n) - TQ^n(x_1^n)) \Big(\mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n) \Big) \geq 0$$

(justify why this holds).

Proof.

• Consider the obvious inequality

$$(P^n(x_1^n) - TQ^n(x_1^n)) \Big(\mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n) \Big) \geq 0$$

• Then, summing over all x_1^n ,

$$\begin{split} 0 & \leq P^n(B_{\mathrm{NP}}) - P^n(B_n) - TQ^n(B_{\mathrm{NP}}) + TQ^n(B_n) \\ & = 1 - e_2^{(n)}(B_{\mathrm{NP}}) - \left(1 - e_2^{(n)}(B_n)\right) - T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \\ & \Longrightarrow e_2^{(n)}(B_n) - e_2^{(n)}(B_{\mathrm{NP}}) \geq T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \end{split}$$

Remark 2.9 Neyman-Pearson says that if any decision region has an error as small as that of B_{NP} , then its other error must be larger than that of B_{NP} .

Notation 2.10 Let \hat{P}_n denote the empirical distribution (or **type**) induced by x_1^n on A^n (the frequency with which $a \in A$ occurs in x_1^n):

$$\forall a \in A, \quad \hat{P}_n(a) \coloneqq \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}$$

Proposition 2.11 The Neyman-Pearson decision region $B_{\rm NP}$ can be expressed in information-theoretic form as

$$B_{\mathrm{NP}} = \left\{ x_1^n \in A^n : D \Big(\hat{P}_n \parallel Q \Big) \geq D \Big(\hat{P}_n \parallel P \Big) + T' \right\}$$

where $T' = \frac{1}{n} \log T$.

Proof (Hints). Rewrite the expression $\frac{1}{n} \log \frac{P^n(x_1^n)}{Q^n(x_1^n)}$.

Proof. We have

$$\begin{split} \frac{1}{n}\log\frac{P^n(x_1^n)}{Q^n(x_1^n)} &= \frac{1}{n}\log\left(\prod_{i=1}^n\frac{P(x_i)}{Q(x_i)}\right) \\ &= \frac{1}{n}\sum_{i=1}^n\log\frac{P(x_i)}{Q(x_i)} \\ &= \frac{1}{n}\sum_{i=1}^n\sum_{a\in A}\mathbb{1}_{\{x_i=a\}}\log\frac{P(a)}{Q(a)} \\ &= \sum_{a\in A}\left(\frac{1}{n}\sum_{i=1}^n\mathbb{1}_{\{x_i=a\}}\right)\log\frac{P(a)}{Q(a)} \\ &= \sum_{a\in A}\hat{P}_n(a)\log\left(\frac{P(a)}{Q(a)}\cdot\frac{\hat{P}_n(a)}{\hat{P}_n(a)}\right) \\ &= D\left(\hat{P}_n\parallel Q\right) - D\left(\hat{P}_n\parallel P\right). \end{split}$$

Theorem 2.12 (Jensen's Inequality) Let I be an interval, $f: I \to \mathbb{R}$ be convex and X be an RV with values in I. Then

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]).$$

Moreover, if f is strictly convex, then equality holds iff X is almost surely constant.

Theorem 2.13 (Log-sum Inequality) Let $a_1,...,a_n,\,b_1,...,b_n$ be non-negative constants. Then

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$$

with equality iff $\frac{a_i}{b_i} = c$ for all i, for some constant c. We use the convention that $0 \log 0 = 0 \log \frac{0}{0} = 0.$

Remark 2.14 This also holds for countably many a_i and b_i .

Proof (Hints). Use Jensen's inequality with X the RV such that $\Pr\left(X = \frac{a_i}{b_i}\right) =$ $\frac{b_i}{\sum_{j=1}^n b_j}$ for all $i \in [n]$, and a suitable f.

Proof.

Define

$$f(x) = \begin{cases} x \log x & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

f is strictly convex.

- Let $A = \sum_i a_i$, $B = \sum_i b_i$. Let X be the RV with $\Pr\left(X = \frac{a_i}{b_i}\right) = \frac{b_i}{B}$ for all $i \in [n]$. Then $\mathbb{E}[f(X)] = \sum_i \frac{b_i}{B} \frac{a_i}{b_i} \log \frac{a_i}{b_i} = \frac{1}{B} \sum_i a_i \log \frac{a_i}{b_i}$. $f(\mathbb{E}[X]) = \mathbb{E}[X] \log \mathbb{E}[X] = \sum_i \frac{a_i}{b_i} \frac{b_i}{B} \log \sum_i \frac{a_i}{b_i} \frac{b_i}{B} = \frac{A}{B} \log \frac{A}{B}$.

• So by Jensen's inequality, $\frac{A}{B} \log \frac{A}{B} \leq \frac{1}{B} \sum_{i} a_{i} \log \frac{a_{i}}{b_{i}}$.

Proposition 2.15

1. If P and Q are PMFs on the same finite alphabet A, then

$$D(P \parallel Q) > 0$$

with equality iff P = Q.

2. If $X \sim P$ on a finite alphabet A, then

$$0 \le H(X) \le \log|A|$$

with equality to 0 iff X is a constant, and equality to $\log |A|$ iff X is uniformly distributed on A.

Remark 2.16 This also holds for countably infinite A.

Proof (Hints).

- 1. Straightforward.
- 2. For $\leq \log |A|$, consider $D(P \parallel Q)$ where Q is the uniform distribution on $A \geq 0$ is straightforward.

Proof.

• By the log-sum inequality,

$$D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} \geq \left(\sum_{x \in A} P(x)\right) \log \frac{\sum_{x \in A} P(x)}{\sum_{x \in A} Q(x)} = 0$$

with equality if $\frac{P(x)}{Q(x)}$ is the same constant for all $x \in A$, i.e. P = Q.

- Let Q be the uniform distribution on A, so $H(Q) = \sum_{x \in A} \frac{1}{|A|} \log \frac{1}{1/|A|} = \log |A|$. Now $0 \le D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{1/|A|} = \log |A| H(X)$ with equality iff P = 1Q, i.e. P is uniform.
 - Each term in -H(X) is ≤ 0 , with equality iff each $P(x) \log P(x)$ is 0, i.e. P(x) =0 or 1.

Remark 2.17 If $X = \{X_n : n \in \mathbb{N}\}$ is a memoryless source with PMF P on A, then we have shown that it can be at best compressed to $\approx H(P)$ bits/symbol. This means that we can always achieve non-trivial compression, i.e. a description using $\approx H(P)$ $\log |A|$ bits/symbol, unless the source X is completely random (i.e. IID and uniformly distribute), in which case we cannot do better than simply describing each x_1^n uncompressed using $\frac{\lceil \log |A^n| \rceil}{n} \approx \log |A|$ bits/symbol.

3. Properties of entropy and relative entropy

3.1. Joint entropy and conditional entropy

Definition 3.1 Let X_1^n be an arbitrary finite collection of discrete RVs on corresponding alphabets $A_1, ..., A_n$. Note we can think of X_1^n itself a discrete RV on alphabet $A_1 \times \cdots \times A_n$. Let X_1^n have PMF P_n , then the **joint entropy** of X_1^n is

$$H(X_1^n) = H(P_n) = H(X_1,...,X_n) \coloneqq \mathbb{E}[-\log P_n(X_1^n)] = -\sum_{x_1^n \in A^n} P_n(x_1^n) \log P_n(x_1^n).$$

Example 3.2 Note that if X and Y are independent, then $P_{X,Y}(x,y) = P_X(x)P_Y(y)$, so

$$H(X,Y) = \mathbb{E} \big[-\log P_{X,Y}(X,Y) \big] = \mathbb{E} [-\log P_X(X) - \log P_Y(Y)] = H(X) + H(Y).$$

Example 3.3 Let X and Y have joint PMF given by

X Y	1	2	3	
0	1/10	1/5	1/4	11/20
1	1/5	1/20	1/5	9/20
	3/10	1/4	9/20	

Note that X and Y are not independent. We have

$$\begin{split} H(X) &= -\frac{3}{10}\log\frac{3}{10} - \frac{1}{4}\log\frac{1}{4} - \frac{9}{20}\log\frac{9}{20} \approx 1.539, \\ H(Y) &= -\frac{11}{20}\log\frac{11}{20} - \frac{9}{20}\log\frac{9}{20} \approx 0.993, \\ H(X,Y) &= -\frac{1}{10}\log\frac{1}{10} - \dots - \frac{1}{5}\log\frac{1}{5} \approx 2.441 < H(X) + H(Y). \end{split}$$

In general, if X and Y are not independent, then $P_{XY}(x,y) = P_X(x)P_{Y\mid X}(y\mid x)$, so

$$H(X,Y) = \mathbb{E}[-\log P_{XY}(x,y)] = \mathbb{E}[-\log P_X(x)] + \mathbb{E}\left[-\log P_{Y\mid X}(y\mid x)\right].$$

Definition 3.4 Let X and Y be discrete random variables with joint PMF $P_{X,Y}$, then the **conditional entropy** of Y given X is

$$H(Y\mid X) = \mathbb{E} \big[-\log P_{Y\mid X}(Y\mid X) \big] = -\sum_{x,y} P_{X,Y}(x,y) \log P_{Y\mid X}(y\mid x)$$

Note 3.5 $P_{Y|X}$ is a function of $(x,y) \in X$, and so for the expected value we multiply the log by the probability that X = x and Y = y.

Proposition 3.6 For discrete RVs X and Y, we have

$$H(Y \mid X) = H(X, Y) - H(X).$$

Proof (Hints). Straightforward.

Proof. Note that $P_{Y\mid X}(y\mid x)=\Pr(Y=y\mid X=x)=\frac{\mathbb{P}(Y=y,X=x)}{\mathbb{P}(X=x)}=P_{X,Y}(x,y)P_X(x)$. Hence

$$\begin{split} H(X,Y) &= \mathbb{E} \big[-\log P_{X,Y}(X,Y) \big] \\ &= \mathbb{E} \big[-\log P_X(X) - \log P_{Y\mid X}(Y\mid X) \big] \\ &= \mathbb{E} [-\log P_X(X)] + \mathbb{E} \big[-\log P_{Y\mid X}(Y\mid X) \big]. \end{split}$$

3.2. Properties of entropy, joint entropy and conditional entropy

Proposition 3.7 (Chain Rule for Entropy) Let X_1^n be a collection of discrete RVs. Then

$$H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}).$$

In particular, if the X_1^n are independent, then

$$H(X_1^n) = \sum_{i=1}^n H(X_i).$$

Proof (Hints). By induction.

Proof. We can write

$$\begin{split} P_{X_1^n}(x_1^n) &= P_{X_1}(x_1) P_{X_2 \mid X_1}(x_2 \mid x_1) \cdots P_{X_n \mid X_1, \dots, x_{n-1}}(x_n \mid x_1, \dots, x_{n-1}) \\ &= \prod_{i=1}^n P_{X_i \mid X_1^{i-1}}\big(x_i \mid x_1^{i-1}\big). \end{split}$$

Then the result follows by inductively using the above proposition.

Proposition 3.8 (Conditioning Reduces Entropy) For discrete RVs X and Y,

$$H(Y \mid X) \le H(Y)$$

with equality iff X and Y are independent.

Proof (Hints). Express $H(Y) - H(Y \mid X)$ as a relative entropy.

Proof. We have

$$\begin{split} H(Y) - H(Y \mid X) &= \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}\left[-\log P_{Y \mid X}(Y \mid X)\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)}{P_Y(Y)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)P_X(X)}{P_Y(Y)P_X(X)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right] \\ &= D\big(P_{X,Y} \parallel P_X P_Y\big). \end{split}$$

This is non-negative iff $P_{X,Y} = P_X P_Y$, i.e. X and Y are independent.

Definition 3.9 Discrete RVs X and Z are conditionally independent given Y if:

- $P_{X,Z \mid Y}(x,z \mid y) = P_{X \mid Y}(x \mid y)P_{Z \mid Y}(z \mid y),$
- or equivalently, $P_{X \mid Z,Y}(x \mid z, y) = P_{X \mid Y}(x \mid y)$,
- or equivalently, $P_{Z \mid X,Y}(z \mid x, y) = P_{Z \mid Y}(z \mid y)$.

We denote this by writing X - Y - Z and we say that X, Y, Z form a Markov chain. Note that X - Y - Z is equivalent to Z - Y - X, but not to X - Z - Y.

Example 3.10 For any function g on Y, we have X - Y - g(Y).

Corollary 3.11 $H(X_1^n) \leq \sum_{i=1}^n H(X_i)$ with equality iff all X_1^n are independent.

Proof. $H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}) \le \sum_{i=1}^n H(X_i)$ by the chain rule and conditioning reducing entropy.

Remark 3.12 We can write

$$\begin{split} H(Y\mid X) &= -\sum_{x,y} \left(P_{X,Y}(x,y)\right) \log P_{Y\mid X}(y\mid x) \\ &= \sum_{x} P_{X}(x) \left(-\sum_{y} P_{Y\mid X}(y\mid x) \log P_{Y\mid X}(y\mid x)\right) \\ &=: \sum_{x} P_{X}(x) H(Y\mid X=x) \end{split}$$

Note $H(Y \mid X = x)$ is **not** a conditional entropy, and in particular, we do not always have $H(Y \mid X = x) \leq H(Y)$. Since $0 \leq H(Y \mid X = x) \leq \log |A_Y|$, we have $0 \leq H(Y \mid X) \leq \log |A_Y|$ with equality to 0 iff Y is a function of X (i.e. $H(Y \mid X = x) = 0$ for all x).

Proposition 3.13 (Data Processing Inequality for Entropy) Let X be discrete RV on alphabet A and f be function on A. Then

- 1. H(f(X)|X) = 0.
- 2. $H(f(X)) \leq H(X)$ with equality iff f is injective.

Proof (Hints). Use that $x \mapsto (x, f(x))$ is injective and the chain rule.

Proof. We have already shown the "if" direction of 2. We have H(X) = H(X, f(X)) = H(f(X)|X) + H(X), since $x \mapsto (x, f(x))$ is injective. Also, $H(X) = H(X, f(X)) = H(X \mid f(X)) + H(f(X)) \geq H(f(X))$. So $H(X) \geq H(f(X))$ with equality iff $H(X \mid f(X)) = 0$, i.e. X is a deterministic function of f(X), i.e. f is invertible.

Proposition 3.14 (Properties of Conditional Entropy) For discrete RVs X, Y, Z:

- Chain rule: $H(X, Z \mid Y) = H(X \mid Y) + H(Z \mid X, Y)$.
- Subadditivity: $H(X, Z \mid Y) \leq H(X \mid Y) + H(Z \mid Y)$ with equality iff X and Z are conditionally independent given Y.
- Conditioning reduces entropy: $H(X \mid Y, Z) \leq H(X \mid Y)$ with equality iff X and Z are conditionally independent given Y.

Theorem 3.15 (Fano's Inequality) Let X and Y be RVs on respective alphabets A and B. Suppose we are interested in the RV X but only are allowed to observe the possibly correlated RV Y. Consider the estimate $\widehat{X} = f(Y)$, with probability of error $P_e := \Pr(\widehat{X} \neq X)$. Then

$$H(X\mid Y) \leq h(P_e) + P_e \log(|A|-1),$$

where h is the binary entropy function.

Proof (Hints). Consider an "error" Bernoulli RV E which depends on X and Y. Use the chain rule in two directions on $H(X, E \mid Y)$. Merge these and split up into the cases when E = 0 and E = 1 (using)

Proof. Let E be the binary RV taking value 1 when there is an error (i.e. $\widehat{X} \neq X$), and taking value 0 otherwise. So $E \sim \text{Bern}(P_e)$ and $H(E) = h(P_e)$. Then

$$H(X, E \mid Y) = H(X \mid Y) + H(E \mid X, Y) = H(X \mid Y)$$

since E is function of (X,Y). Using the chain rule in the other direction,

$$H(X,E\mid Y) = H(E\mid Y) + H(X\mid E,Y) \leq H(E) + E(X\mid E,Y).$$

Now

$$\begin{split} H(X\mid Y) - h(P_e) & \leq H(X\mid E, Y) \\ & = P_e H(X\mid E=1, Y) + (1-P_e) H(X\mid E=0, Y) \end{split}$$

When E=0, given Y, we can determine X=f(Y) as a function of Y, so $H(X \mid E=0,Y)=0$. When E=1, given Y, we know X doesn't take value f(Y), so there are |A|-1 possible values that it takes, so $H(X \mid E=1,Y) \leq \log(|A|-1)$.

3.3. Properties of relative entropy

Theorem 3.16 (Data Processing Inequality for Relative Entropy) Let $X \sim P_X$ and $X' \sim Q_X$ be RVs on the same alphabet A, and $f: A \to B$ be an arbitrary function. Let $P_{f(X)}$ and $Q_{f(X)}$ be the PMFs of f(X) and f(X') respectively. Then

$$D(P_{f(X)} \parallel Q_{f(X)}) \le D(P_X \parallel Q_X).$$

Proof (Hints). Use that $P_{f(X)}(y) = \sum_{x \in f^{-1}(\{y\})} P_X(x)$.

Proof. For each $y \in B$, let $A_y = \{x \in A : f(x) = y\} = f^{-1}(\{y\})$. Then

$$\begin{split} D\Big(P_{f(X)} \parallel Q_{f(X)}\Big) &= \sum_{y \in B} P_{f(X)}(y) \log \frac{P_{f(X)}(y)}{Q_{f(X)}(y)} \\ &= \sum_{y \in B} \left(\sum_{x \in A_y} P_X(x)\right) \log \frac{\sum_{x \in A_y} P_X(x)}{\sum_{x \in A_y} Q_X(x)} \\ &\leq \sum_{y \in B} \sum_{x \in A_y} P_X(x) \log \frac{P_X(x)}{Q_X(x)} \quad \text{by log-sum inequality} \\ &= \sum_{x \in A} P_X(x) \log \frac{P_X(x)}{Q_X(x)} = D(P_X \parallel Q_X). \end{split}$$

Remark 3.17 The data processing inequality for relative entropy shows that we cannot make two distributions more "distinguishable" by first "processing" the data (by applying f).

Definition 3.18 The total variation distance between PMFs P and Q on the same alphabet A is

$$||P - Q||_{\text{TV}} = \sum_{x \in A} |P(x) - Q(x)|.$$

Remark 3.19 Let $B = \{x \in A : P(x) > Q(x)\}$, then

$$\begin{split} \|P - Q\|_{\text{TV}} &= \sum_{x \in A} |P(x) - Q(x)| \\ &= \sum_{x \in B} (P(x) - Q(x)) + \sum_{x \in B^c} (Q(x) - P(x)) \\ &= P(B) - Q(B) + Q(B^c) - P(B^c) \\ &= P(B) - Q(B) + (1 - Q(B)) + (1 - P(B)) \\ &= 2(P(B) - Q(B)). \end{split}$$

Notation 3.20 Write

$$D_e(P \parallel Q) = (\ln 2) P(D \parallel Q) = \sum_{x \in A} P(x) \log_e \frac{P(x)}{Q(x)}$$

and more generally, write

$$D_c(P \parallel Q) = (\log_c 2) P(D \parallel Q) = \sum_{x \in A} P(x) \log_c \frac{P(x)}{Q(x)}.$$

Theorem 3.21 (Pinsker's Inequality) Let P and Q be PMFs on the same alphabet A. Then

$$\|P-Q\|_{\mathrm{TV}}^2 \leq (2\ln 2)D(P \parallel Q) = 2D_e(P \parallel Q).$$

Proof (Hints).

- First prove for case that P and Q are PMFs of $\operatorname{Bern}(p)$ and $\operatorname{Bern}(q)$ (explain why we can assume $q \leq p$ WLOG), by definining $\Delta(p,q) = 2D_e(P \parallel Q) \|P Q\|_{\operatorname{TV}}^2$, and showing that $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$.
- Then show for general PMFs by using data processing, where $f = \mathbb{1}_B$ for $B = \{x \in A : P(x) > Q(x)\}.$

П

Proof. First, assume that P and Q are the PMFs of the distributions Bern(p) and Bern(q) for some $0 \le q \le p \le 1$ ($q \le p$ WLOG since we can simultaneously interchange both P with 1 - P and Q with 1 - Q if necessary). Let

$$\Delta(p,q) = (2\ln 2)D(P \parallel Q) - \|P - Q\|_{\mathrm{TV}}^2 = 2p\ln\frac{p}{q} + 2(1-p)\ln\frac{1-p}{1-q} - (2(p-q))^2.$$

Since $\Delta(p,p) = 0$ for all p, it suffices to show that $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$. Indeed,

$$\frac{\partial \Delta(p,q)}{\partial q} = -2\frac{p}{q} + 2\frac{1-p}{1-q} + 8(p-q) = 2(q-p) \left(\frac{1}{q(1-q)} - 4\right) \leq 0$$

since $q(1-q) \leq \frac{1}{4}$ for all $q \in [0, 1]$.

Now, assume P and Q are general PMFs and let $B = \{x \in A : P(x) > Q(x)\}$ and $f = \mathbb{1}_B$. Define the RVs $X \sim P$ and $X' \sim Q$, and let P_f and Q_f be the respective PMFs of the RVs f(X) and f(X'). Note that $f(X) \sim \operatorname{Bern}(p)$, $f(X') \sim \operatorname{Bern}(q)$ where p = P(B) and q = Q(B). Then

$$\begin{split} 2D_e(P \parallel Q) &\geq 2D_e \big(P_f \parallel Q_f\big) & \text{by data-processing} \\ &\geq \big\|P_f - Q_f\big\|_{\text{TV}}^2 & \text{by above} \\ &= (2(p-q))^2 \\ &= (2(P(B) - Q(B)))^2 \\ &= \|P - Q\|_{\text{TV}}^2. \end{split}$$

Theorem 3.22 (Convexity of Relative Entropy) The relative entropy $D(P \parallel Q)$ is jointly convex in P, Q: for all PMFs P, P', Q, Q' on the same alphabet and for all $0 < \lambda < 1$,

$$D(\lambda P + (1 - \lambda)P' \parallel \lambda Q + (1 - \lambda)Q') \le \lambda D(P \parallel Q) + (1 - \lambda)D(P' \parallel Q').$$

Proof. Exercise. \Box

Corollary 3.23 (Concavity of Entropy) The entropy of H(P) is a concave function on all PMFs P on a finite alphabet.

Proof (Hints). Use convexity of relative entropy of P and a suitable distribution. \square

Proof. Let P be a PMF on finite alphabet A and U be the uniform PMF on A. Then by convexity of relative entropy, $D(P \parallel U) = \sum_{x \in A} p(x) \log \frac{P(x)}{1/|A|} = \log m - H(P)$ is convex in P, so H(P) is concave in P.

4. Poisson approximation

Theorem 4.1 Let $X_1,...,X_n$ be IID RVs with each $X_i \sim \operatorname{Bern}(\lambda/n)$, let $S_n = X_1 + \cdots + X_n$. Then $P_{S_n} \to \operatorname{Pois}(\lambda)$ in distribution as $n \to \infty$, i.e. $\forall k \in \mathbb{N}$,

$$\Pr(S_n = k) \to e^{-\lambda} \frac{\lambda^k}{n!}$$
 as $n \to \infty$

Remark 4.2 Using information theory, we can derive stronger and more general statements than the one above.

Theorem 4.3 Let $X_1,...,X_n$ be (not necessarily independent) RVs with each $X_i \sim \text{Bern}(p_i)$. Let $S_n = \sum_{i=1}^n X_i$ and $\lambda = \sum_{i=1}^n p_i = \mathbb{E}[S_n]$. Then

$$D_e\Big(P_{S_n} \parallel \operatorname{Pois}(\lambda)\Big) \leq \sum_{i=1}^n p_i^2 + \Bigg(\sum_{i=1}^n H(X_i) - H(X_1^n)\Bigg).$$

Proof. Let $Z_i = \operatorname{Pois}(p_i)$ for each $i \in [n]$ be independent Poisson RVs so that $T_n = \sum_{i=1}^n Z_i \sim \operatorname{Pois}(\lambda)$. Then

$$\begin{split} D_e\Big(P_{S_n} \parallel \operatorname{Pois}(\lambda)\Big) &= D_e\Big(P_{S_n} \parallel P_{T_n}\Big) \\ &\leq D_e\Big(P_{X_1^n} \parallel P_{Z_1^n}\Big) \quad \text{by data-processing} \\ &= \sum_{x_1^n \in A^n} P_{X_1^n}(x_1^n) \ln \left(\frac{P_{X_1^n}(x_1^n)}{P_{Z_1^n}(z_1^n)} \cdot \frac{\prod_{i=1}^n P_{X_i}(z_i)}{\prod_{i=1}^n P_{X_i}(z_i)}\right) \\ &= \sum_{x_1^n \in A^n} P_{X_1^n}(x_i) \ln \left(\prod_{i=1}^n \frac{P_{X_i}(x_i)}{P_{Z_i}(x_i)}\right) + \sum_{x_1^n \in A^n} P_{X_1^n}(x_1^n) \ln \frac{1}{\prod_{i=1}^n P_{X_i}(x_i)} - H_e(X_1^n) \\ &= \sum_{i=1}^n D_e\Big(P_{X_i} \parallel P_{Z_i}\Big) + \sum_{i=1}^n H_e(X_i) - H_e(X_1^n) \end{split}$$

Now note that $D_e\Big(P_{X_i} \parallel P_{Z_i}\Big) = D_e(\operatorname{Bern}(p_i) \parallel \operatorname{Pois}(p_i))$

Corollary 4.4 Let $X_1,...,X_n$ be independent, with each $X_i \sim \text{Bern}(p_i)$. Then

$$D_e \Big(P_{S_n} \parallel \operatorname{Pois}(\lambda) \Big) \leq \sum_{i=1}^n p_i^2$$

and it is known that $P_{S_n} \to \operatorname{Pois}(\lambda)$ iff $\sum_{i=1}^n p_i^2 \to 0.$

 $\textbf{Example 4.5} \ \ \text{If each} \ p_i = \tfrac{\lambda}{n}, \ \text{then} \ D_e\Big(P_{\mathrm{Bin}(n,\lambda/n)} \parallel \mathrm{Pois}(\lambda)\Big) \leq \lambda^2/n.$