PMath 450 Assignment #4 due Wednesday July 8, 2015

- 1. Notation: $\ell^{\infty} = \{(x_n)_{n=1}^{\infty} : ||(x_n)||_{\infty} = \sup |x_n| < \infty\}; c_0 = \{(x_n) : x_n \to 0 \text{ as } n \to \infty\}.$
 - (a) Show that c_0 is a closed subspace of ℓ^{∞} .
 - (b) Prove that c_0 is separable, but ℓ^{∞} is not.
- 2. Suppose H is a Hilbert space and that $x_n \to x$ and $y_n \to y$ in H. Show that

$$\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$$

- 3. Consider C[0,1] with the inner product $\langle f,g \rangle = \int_0^1 f\overline{g}$. Show that the subset $A = \{f \in C[0,1] : \|f\|_{\infty} < 1\}$ is not open in C[0,1] with respect to the norm coming from the inner product.
- 4. Let H be a separable Hilbert space and $S \subseteq H$. Let

$$S^{\perp} = \{x \in H : \langle x, s \rangle = 0 \text{ for every } s \in S\}$$

- (a) Show that S^{\perp} and $\overline{span(S)}$ are closed subspaces of H.
- (b) Show that $S^{\perp} \cap \overline{span(S)} = (0)$
- (c)Prove that every subset of H is separable.
- (d) Prove that $H = S^{\perp} \oplus \overline{span(S)}$ meaning that given any $x \in H$, there is a unique choice of $y \in S^{\perp}$ and $z \in \overline{span(S)}$ such that x = y + z.