UNIVERSIDADE FEDERAL DE ITAJUBÁ

PBLE04 – PROJETO DE MODULADOR CONFIGURÁVEL EM FPGA

PARTE 3 – FILTRAR O SINAL PWM COM FPB NO XCOS DO SCILAB

Lincoln Wallace Veloso Almeida – 2018018715 Bruno de Mello Duarte – 2016010988 Ítalo Barbosa Barros – 2018008924 Gabriel Medeiros Cardoso – 2018014574 Itajubá, 05 de outubro de 2021 Uma vez que o sinal PWM foi obtido a partir da aplicação do PCM no sinal modulante énecessário agora filtrar esse sinal com um filtro passa-baixa a fim de converter as amostras para o sinal analógico correspondente ao sinal modulante original, ou seja, a aplicação do filtro passa-baixa sobre o sinal PWM retorna ao sinal original. Essa recuperação do sinal analógico baseia-se no teorema da amostragem e para o caso do filtro passa baixa, o respeito ao teorema de Nyquist, que já foi reportadamente realizado neste trabalho.

Antes de estabelecer os parâmetros para criar a função de transferência do sinal é necessário primeiro entender o sinal PWM de entrada para esse filtro e a sua relação coma amplitude do sinal original. O modo pelo qual se projetou o sinal PWM foi o seguinte:um comparador comparava o valor absoluto de cada amostra obtida pelo PCM, um total de 800, com um contador que ia de 0 a 999. Se o valor da amostra fosse maior do que o do contador a saída PWM era igual a 1(nível lógico alto), se contrário a saída era igual a 0(nível lógico baixo). Essa escolha do valor das saídas foi feita pois corresponde a um padrão regular para um PWM, pensando em um caso real.

Entretanto, o que deve ser considerado para esse sistema é que desta forma, quando o sinal for recuperado ele terá o seu valor entre 0 e 1, ainda que a forma de onda seja mantida. Na verdade, o valor máximo do sinal recuperado, sabendo que cada amostra PCM possui 8 bits e portanto esta só pode ir até 255, terá aproximadamente o valor de:

$$\frac{valor\ m\'{a}ximo\ da\ amostra}{valor\ m\'{a}ximo\ do\ contador}*1\ = \frac{255}{999}\ =\ 0,255$$

já que a amostra com o valor de 255 só terá o valor lógico 1 no período do pwm durante uma fração de 0,255 do período deste. A mesma lógica pode ser aplicada para achar o valor mínimo do sinal recuperado. Primeirose acha o valor mínimo do vetor de amostras PCM, que dá:

Onde se obteve o mínimo valor do vetor das amostras convertidas em números decimais. Ou seja, o valor mínimo do sinal recuperado terá aproximadamente o valor de:

$$\frac{valor\ m\'{a}ximo\ da\ amostra}{valor\ m\'{a}ximo\ do\ contador}*1 = \frac{43}{999} = 0,043$$

já que a amostra com o valor de valor lógico 1 no período do pwm durante uma fração de 0,043 do período deste. Concluindo então, quando o sinal for recuperado ele terá o seu valor aproximadamente entre 0,043 e 0,255, contrastando com o sinal original onde seu máximo e mínimo são:

```
--> mmax = max(abs(m))
mmax =
4.9193602
--> mmin = min(m)
mmin =
-3.2496454
```

Ou seja, o sinal vai de aproximadamente -3,25 até 4,92.

As soluções para esse problema serão discutidas posteriormente. Já para a construção dofiltro passa baixa, será usado a função pronta do Scilab chamada de analpf() onde se passacomo parâmetros principais a ordem do filtro, o tipo dele e a frequência de corte. Como se quer recuperar o sinal modulante cujas componentes possuem respectivamente frequências de 10Hz e 20Hz, pode-se escolher como frequência de corte 50Hz que se conseguirá excluir uma ampla faixa de altas frequências e produzirá uma perda de ganhoínfima para as frequências de interesse. Quanto à ordem do filtro, escolhe-se o de segunda ordem a fim de produzir uma maior atenuação do sinal conforme se passa da frequência de corte, e do tipo butterworth que consegue produzir um bom resultado com relação à resposta transitória. Pode-se analisar o filtro de uma melhor forma visualizando o seu diagrama de Bode, do seguinte modo:

Onde pode-se ver que a magnitude em 10Hz e 20Hz é muito próxima a 0dB, ou seja, sematenuação do ganho.

Com o sinal PWM e a função do filtro em mãos já é possível reconstruir o sinal através do Xcos do Scilab, onde é necessário utilizar o comando struct no console para passar os valores de cada amostra do sinal pwm e do vetor temporal para o bloco from workspace do xcos. Após isso, basta organizar os blocos junto com o clock e o osciloscópio para medir o sinal resultante. Isso é feito da seguinte forma:

```
--> pwm = struct('time',t','values',PWM');
```


Onde pode se comparar com a onda original, dada por:

Percebe-se que de fato, tirando os primeiros momentos de estabilização, a onda recuperada possui a mesma forma da onda original, mas como já explicado anteriormente, uma menor amplitude. Os valores máximo e mínimos podem ser conferidos, dando um zoom na onda reconstruída:

Onde percebe-se que o valor máximo é em volta de 0,255 e o mínimo muito próximo de 0,043, justamente os valores calculados anteriormente para a aplicação de pwm com o contador indo de 0 a 999 e saída de 0 ou 1. Além disso, percebe-se também que a onda reconstruída, quando é dado um zoom maior, não possui um aspecto linear "limpo", mas um aspecto senoidal, resultante dos métodos aplicados para a sua criação.

Comprovado então o funcionamento do filtro, pode-se partir então para resolver o problema da redução da amplitude do sinal recuperado, onde para se chegar ao valor correto na reconstrução do sinal será necessário aplicar um ganho juntamente com o filtro passa baixa. Esse ganho será nada mais do que um multiplicador, isto é, um controlador proporcional.

Esse ganho simplesmente multiplicará o valor de saída das amostras do pwm por um fator x, da seguinte forma, com o exemplo do maior e menor valor das amostras:

$$\begin{cases} 0,255 * x = y \\ 0,043 * x = z \end{cases}$$

Essas multiplicações resultam em y e z, constantes maiores do que 0 que por sua vez serãoos valores que serão aplicados no filtro passa-baixa.

Para o caso original realizado anteriormente, esse ganho era simplesmente 1, resultando que y e z fossem respectivamente iguais a 0,255 e 0,043.

Bom, uma abordagem inicial poderia ser definir o valor de y como o máximo valor do sinal modulante, igual a 4,919 e daí calcular o fator x. Fazendo isso, chega-se a:

$$x = \frac{4,919}{0.255} = 19,29$$

Entretanto, utilizando esse fator para a segunda equação do sistema, obtém-se:

$$0.043 * 19.29 = 0.83$$

que é muito diferente do valor mínimo da onda modulante, igual a -3,25. O problema pelo qual fará essa abordagem nunca funcionar é que é impossível fazer o valor mínimo resultante ser negativo, igual o valor mínimo da onda modulante, pois o ganho à priori deve ser positivo. Isso indica que, para recuperar exatamente o sinal original, além de aplicar um ganho na saída PWM das amostras, serátambém necessário aplicar um offset na onda resultante, a fim de subtrair desta um valora ser determinado com o objetivo de fazer que a onda também possua valores negativos da mesma forma que a original, situação que não era possível na primeira abordagem visto que a saída do pwm é limitada de 0 a 1, e para as amostras utilizadas, possui um mínimo de 0,043.

Para corrigir esse problema, a diferença entre o valor máximo e mínimo da onda resultante deverá ser igual ao da onda original, dada por: 4,919 - (-3,25) = 8,169. Assim, poderá ser aplicado o offset exatamente para os pontos que se desejam. Desta forma, o sistema de equações atualizado é dado por:

$$\begin{cases} 0.255 * x = y(1) \\ 0.043 * x = z(2) \\ v - z = 8.169 \end{cases}$$

Subtraindo a equação (1) pela (2), tem-se que:

$$0.255x - 0.043x = y - z = 8.169$$

$$\Rightarrow$$
 0,212 $x = 8,169 \Rightarrow x = 38,53$

E eventualmente:

$$y = 0.255 * 38.53 = 9.825$$

$$z = 0.043 * 38.53 = 1.65$$

Indicando que os valores máximo e mínimo da onda resultante serão de 9,825 e 1,657 respectivamente. Para calcular o offset a ser aplicado, basta pegar um ponto da onda original e subtraí-lo do ponto equivalente na onda resultante. Fazendo isso para o ponto mínimo da onda modulante, tem-se que:

$$m_{min} - z = offset \Rightarrow offset = -3,25 - 1,657 = -4,907$$

Isso poderia ser feito com qualquer ponto escolhido da onda original, que deveria dar o mesmo valor de offset. Repetindo o procedimento agora com o valor máximo da onda modulante, tem-se que:

$$m_{max} - y = offset \Rightarrow offset = -4,919 - 9,825 = -4,906$$

Ou seja, valores iguais (a diferença mínima se dá devido a aproximações nos cálculos e arredondamentos).

Desta forma, o controlador proporcional colocado no sistema terá um ganho de 38,53 e se aplicará um offset de -4,906 na onda resultante.

A nova simulação no Xcos fica da seguinte forma então:

Que pode ser novamente comparada com a onda original, dada por:

Onde pode se ver uma clara correspondência entre uma e outra, que pode ser ainda maisconfirmada conferindo os pontos de máximo e mínimo da onda recuperada, dados por:

Onde pode-se ver que o valor máximo da onda recuperada é de aproximadamente 4,935 e o mínimo é de -3,263, ou seja, valores muito próximos daqueles da onda modulante original. O erro produzido, na cada de 0,015, é resultante das aproximações realizadas nos cálculos dos fatores do ganho e do offset, além também do erro existente no filtro.

Com isso, pode-se confirmar a eficácia do sistema em recuperar o sinal original através da aplicação de um filtro passa-baixa no sinal de saída do pwm juntamente com um controlador proporcional e um offset.

No entanto, é necessário calcular o valor das componentes para fazer o filtro passabaixae escolher valores comerciais para estes. Deve-se fazer o mesmo para o cálculo do circuitode ampop para fazer o ganho proporcional. O projeto começa definindo o filtro passa-baixa de segunda ordem do tipo Butterworth dado pelo seguinte circuito:

A função de transferência no domínio da frequência é:

$$H(s) = \frac{(2\pi fc)^2}{s^2 + 2\pi fcQs + (2\pi fc)^2}$$

Onde fc é a frequência de corte, escolhida como 50Hz e Q é o fator de qualidade que determina o formato de resposta do filtro e é igual a 0,707 para o tipo Butterworth. Desta forma, tem-se que:

$$H(s) = \frac{(2\pi50)^2}{s^2 + \frac{2\pi50}{0.707}s + (2\pi50)^2} = \frac{98.696,044}{s^2 + 444,355s + 98.696,044}$$

Ou seja, a função é praticamente idêntica a aquela obtida utilizando o comando analpf()do Scilab.

Além disso, a frequência de corte f_c do filtro é dada por:

$$fc = \frac{1}{2\pi\sqrt{R1R2C1C2}}$$

Fazendo $R_1 = R_2$ e $C_2 = 2C_1$, tem-se que:

$$f_c = \frac{1}{2\pi\sqrt{2R1C1}} = 50 \implies R_1C_1 = \frac{1}{2\pi\sqrt{2 * 50}} = 0,002251s$$

Escolhendo C_1 com o valor comercial de 150nF segue que:

$$R_1 = \frac{0,002251}{150 * 10^{-9}} = 15.006,66\Omega$$

Cujo valor comercial mais próximo é de 15 k Ω , logo $C_1 = 150nF$ e consequentemente: $C_2 = 2C_1 = 300nF$, que é um valor comercial. Desta forma tem-se que:

$$R_1 = 15k\Omega$$

$$R_2 = 15k\Omega$$

$$C_1 = 150nF$$

$$C_2 = 300nF$$

O fator de qualidade Q do filtro é dado por:

$$Q = \frac{1}{2\pi f_c C_1 (R1 + R2)} = \frac{1}{2\pi 50 * 150 * 10^{-9} (30000)} = 0,7073$$

Ou seja, conseguiu-se um fator de qualidade quase ideal com os valores selecionados. A nova função de transferência é dada por:

$$H(s) = \frac{1}{1 + C_1 (R_1 + R_2)s + C_1 C_2 R_1 R_2 s^2} = \frac{1}{0,000010125 s^2 + 0,0045s + 1}$$

$$=\frac{98.765,43}{s^2+444.45s+98.765.43}$$

Agora é necessário projetar o controlador proporcional cujo ganho deve ser de 38,53. Ele pode ser feito a partir de dois ampops inversores em série, onde o ganho é dado pela fórmula de:

$$v_{0=} - \frac{R_2}{R_1} v_i$$

onde observa-se que o sinal de saída possui polaridade inversa em relação ao sinal de entrada e por isso o nome de inversor. O primeiro ampop inversor serve apenas para fazer a polaridade do sinal de saída igual à da entrada, onde escolhe desta forma R2 = R1. Já o segundo é onde aplica-se o ganho de fato. O esquemático desse circuito é dado por:

Para o primeiro, o ganho deve ser igual a -1, logo escolhe-se $R2 = R1 = 10k\Omega$, que é um valor comercial.

Já para o segundo, o ganho deve ser de -38,53. Escolhendo $R4 = 62k\Omega$ tem-se que:

$$\frac{v_o}{v_i(\text{primeiro amp op})} = -38,53 = -\frac{R_4}{R_3} \Rightarrow R_3 = \frac{62k}{38,53} = 1,61k\Omega$$

Cujo valor comercial mais próximo é de $1,6k\Omega$.

Desta forma:

$$v_o(t) = -\frac{62k}{1,6k} (primeiro\ amp\ op) = -38,53 * (-v_i(t))$$

$$v_o(t) = 38,53v_i(t)$$

Ou seja, para o circuito controlador proporcional, tem-se os seguintes componentes:

$$\begin{cases} R_1 = R_2 = 10k\Omega \\ R_3 = 1,6k\Omega \\ R_4 = 62k\Omega \end{cases}$$

Por fim, para o offset basta aplicar uma tensão de -4,906V em série com a onda resultante do filtro. Isso pode ser feito realizando um circuito divisor de tensão, alimentado por uma fonte de -10 V e composto por resistências de 39 $k\Omega$, 10 $k\Omega$ e 51 $k\Omega$ em série, onde a saída do sinal é dada depois da resistência de 39 $k\Omega$ e 10 $k\Omega$ e antes da de 51 $k\Omega$. Com isso, a tensão de offset é igual a:

$$V_{offset} = \frac{-10(39k + 10k)}{(39k + 10k + 51k)} = -4,9V$$

Ou seja, para o circuito de offset, tem-se os seguintes componentes, com uma fonte de tensão de -10 V de alimentação:

$$R_1 = 10k\Omega$$

$$R_2 = 39k\Omega$$

$$R_3 = 51k\Omega$$

Os valores tabelados comerciais para os resistores e comerciais foram abstraídos dasseguintes tabelas:

Resistores Comerciais

1.0ohm	1.1ohm	1.2ohm	1.3ohm
		1.8ohm	
2.20hm	2.40hm	2.7ohm	3.0ohm
3.3ohm	3.6ohm	3.9ohm	4.3ohm
4.7ohm	5.1ohm	5.60hm	6.20hm
6.8ohm	7.5ohm	8.2ohm	9.1ohm

Para obter os demais valores basta multiplicar por: 10, 10², 10³, 10⁴, 10⁵, 10⁶,

Capacitores Comerciais

1.0F	1.1F	1.2F	1.3F
1.5F	1.6F	1.8F	2.0F
2.2F	2.4F	2.7F	3.0F
3.3F	3.6F	3.9F	4.3F
4.7F	5.1F	5.6F	6.2F
6.8F	7.5F	8.2F	9.1F

Para obter os demais valores multiplique pelos seus submultiplos: mili, micro, nano e pico.

Do site:

 $\underline{http://www3.eletronica.org/dicas-e-hacks/valores-comerciais-de-resistores-capacitores-indutores-e-fusive \underline{indutores-e-fusive \underline{ind$

Por fim, pode-se aplicar esses valores novos de acordo com os componentes escolhidos everificar se a resposta continua a mesma através da simulação pelo xcos. Fazendo isso, tem-se que:

Onde percebe-se que o sinal recuperado é de fato muito próximo ao sinal original, com valores de máximo e mínimo de 4,9 e -3,27 respectivamente, além de manter o formato da onda.