Lecture 1: From RF to Vital Signals

Dina Katabi

Extracting Breathing and Heart Rate from RF Signals

Ubiquitous Health & Comfort Monitoring

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

Personal Health

Baby Sleep

Elderly Health

Adapt Lighting and Music to Mood

But: today's technologies for monitoring vital signs are cumbersome

Breath Monitoring

Heart Rate Monitoring

Not suitable for elderly & babies

Can we monitor breathing and heart rate from a distance?

Vital-Radio

 Technology that monitors breathing and heart rate remotely with 97% accuracy

Can monitor multiple users simultaneously

Operates through walls and can cover multiple rooms

<u>Idea:</u> Use wireless reflections off the human body

Idea: Use wireless reflections off the human body

Chest Motion chiangesedistance
Wireless wave has a phase: Φ = 2π
Heartbeats alswave age this tance

Let's zoom in on these signals

What happens when a person moves

his limb?

What happens when a person moves his limb?

What happens with multiple users in the environment?

Reflections from different objects collide

Problem: Phase becomes meaningless!

<u>Idea:</u> Wireless positioning can be used to locate various devices

Solution: Use wireless positioning as a filter to isolate reflections from different positions

Solution: Use wireless positioning as a filter to isolate reflections from different positions

Solution: Use wireless positioning as a filter to isolate reflections from different positions

Putting It Together

Step 1: Transmit a wireless signal and capture its reflections

Step 2: Isolate reflections from different objects based on their positions

Step 3: Zoom in on each object's reflection to obtain phase variations due to vital signs

Through-wall breath monitoring of multiple users

Through-wall breath monitoring of multiple users

Vital-Radio Implementation

- Wireless positioning device to transmits and receives wireless signals
 - 10,000x lower power than cellphones
 - 1 transmit & 1 receive antenna

Signal is analyzed in software to extract vital signs

Vital-Radio Implementation

Vital-Radio Evaluation

Baseline:

 FDA-approved breathing and heart rate monitor Chest Strap

Experiments:

- 200 experiments
- 14 participants
- 1 million measurements

Accuracy vs. Orientation

User is 4m from device, with different orientations

Accuracy for Multi-User Scenario

Multiple users sit at different distances

Accuracy for Tracking Heart Rate

Measure user's heart rate after exercising

Vital-Radio accurately tracks changes in vital signs

Vital-Radio Limitations

- Minimum separation between users: 1-2m
- Monitoring range: 8m
- Collects measurements when users are quasi-static

Related Work

- Wearables
 - Require direct contact with user's body
- Vision-based techniques [SIGGRAPH'12, CVPR'13]
 - Require user to face device and line-of-sight
- Wireless-based techniques [MTT'04, MTT'09.

Vital-Radio operates through walls and monitors the vital signs of multiple users simultaneously in natural settings

Baby Monitoring

Learning Sleep Stages from Radio Signals

Background

Awake REM Light Deep

Time

Understanding Diseases with Sleep Stages

But, monitoring sleep stages is difficult ...

done in hospital with many electrodes on the body

Sleep Lab

Sleep Lab

Can we do it in bedroom without any electrodes?

RF-Based Sleep Staging

Contributions

- Predict sleep stages from radio signals without contact
- Conditional adversary for domain adaptation
- User study and dataset of 100 night of sleep

Background on RF Sensing

RF signals reflect off body and change with physiological signals

Our objective: High accuracy on par with sleep lab, but in one's bedroom and without electrodes on the body

Key Challenge

RF reflections are highly dependent on the measurement conditions and the individuals.

Need to remove such extraneous information!

Multi-Source Domain Adaptation

domain = measurement condition + individual

Source domain A

Source domain B

Target domain C

Multi-Source Domain Adaptation

domain = measurement condition + individual

Problem: Discriminator removes both extraneous and useful information

Conditional Adversary

Role of Adversary

Does it work?

It Works

Theorem (informal): Given enough capacity, the encoder at equilibrium discards all extraneous information specific to domains, while retaining the relevant information for the predictive task.

Evaluation

- 25 different bedrooms and 100 nights
- Ground-truth: FDA-approved EEG-based sleep profiler provides sleep stage labels
- ~90k 30-sencond pairs of RF measurements and corresponding sleep stages

Accuracy

Accuracy of sleep lab Inter-rater agreement: 83% Our accuracy 79.8%

(Tested on new subjects not in training, i.e., new domains)

Labelling sleep stages is subjective

Previous solutions: 64%

Comparison with Past Work

Average and Cohen's Kappa

Approach	Accuracy	κ
Tataraidze et al. (2016b)	0.635	0.49
Zaffaroni et al. (2014)	0.641	0.45
Ours	0.798	0.70

Representative Example Acc = 80%

Ground-truth using EEG

Awake REM Light Deep

Our Prediction

Awake REM Light Deep

Time

Accuracy for Different Subjects (Domains)

Conclusion

Learning sleep stages from wireless signals

Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture

Mingmin Zhao ICML 2017

Shichao Yue Dina Katabi Tommi Jaakkola Matt Bianchi

