

WAN

IP routing

Eric Gaillard - 2015

EPITA - MAJEURES SRS & TCOM

- Notions fondamentales
- RIP v1/v2
- OSPF
- BGP4

Routage IP

Deux types de routage

- Routage statique
- Routage dynamique

Routage statique

Configuration manuelle des tables de routage

Routage dynamique

- Apprentissage dynamique des tables de routage
- Protocole d'échange des tables de routage entre les routeurs
- Diffusion périodique et/ou sur évènement
- Interior Gateway Protocol vs exterior Gateway Protocol
- Les protocoles «Distance vector» ou «Belman-Ford
- Les protocoles « link state » ou «Short Path First »

Routage IP

- Les routeurs IP interconnectent des réseaux de nature différente ayant en commun l'usage du protocole IP
- Rappels sur les équipements d'interconnexion des réseaux Ethernet
 - Répéteur Ethernet / Ethernet
 - 1 domaine de collision
 - 1 domaine de diffusion IP
 - Pont Ethernet / Ethernet
 - 2 domaines de collision
 - 1 domaine de diffusion IP
 - Routeur Ethernet / Ethernet
 - 2 domaines de collision
 - 2 domaines de diffusion

Routage IP: les routeurs

- Interconnexion d 'au moins 2 réseaux IP
- Vérification du checksum
- Vérification du numéro de version IP
- Traitement du TOS
- Traitement des options IP
- Identification du prochain saut (next hop)
- Fragmentation éventuelle du datagramme
- Décrément du TTL

Routage IP : Exemple de table de routage

Destination	Route Mask	Next Hop	Port	Metrique	Туре	Src	Age
195.170.5.0	255.255.255.0	195.170.5.1	E3	0	Dir	Loc	113
195.170.7.0	255.255.255.0	195.170.5.2	E3	1	Rem	RIP	31
195.170.9.0	255.255.255.0	195.170 .11.2	E4	1	Rem	RIP	25
195.170.11.0	255.255.255.0	195.170.11.1	E4	0	Dir	Loc	114
115.0.0.0	255.0.0.0	195.170.11.2	E4	7	Rem	RIP	27

Routage IP : Les systèmes autonomes

- Autonomous System
- Besoin d'une discontinuité de routage dans l'Internet
 - Au début réseau unifié
 - Ensemble de routeur avec le protocole GGP (Gateway to Gateway Protocol)
 - Administration impossible et tables de routage trop conséquentes
- Domaine de routage sous la responsabilité d'une administration unique
- Architecture de routage indépendante des autres systèmes autonomes
- Un Système Autonome peut être constitué d'un ou plusieurs réseaux.
- UN routeur au sein d'un AS est appelé « Internal Gateway »
- Un AS est identifié par un numéro unique (16 Bits) attibué par le NIC.
- Les protocoles EGP et BGP utilisent les numéros de Systèmes Autonomes dans l'échange des informations de routage.

Routage IP : EGP vs IGP

Routage IP: EGP vs IGP

- Les protocoles IGP (Interior Gateway Protocol) assurent le dialogue entre deux routeurs situés à l'intérieur d'un même AS
 - Les protocoles «Distance vector» ou «Belman-Ford »
 - RIP, IGRP
 - Les protocoles « link state » ou «Short Path First »
 - OSPF, ES-IS, IS-IS
- Les protocoles de type EGP (Exterior Gateway Protocol) assurent le dialogue entre deux routeurs situés sur des AS différents
 - EGP, BGP 2, ... BGP 4
- Les routeurs au sein d'un même AS n'échangent que les tables de routage internes à l'AS, mais certains routeurs doivent dialoguer avec les routeurs EGP pour découvrir les réseaux externes à l'AS.

Routage IP: Distance Vector vs Link State

Les protocoles «Distance vector» ou «Belman-Ford »

- Diffusion périodique des informations de routage à tous les routeurs voisins
- Les informations que les routeurs diffusent sont constituées
 - des adresses réseaux des réseaux IP joignables
 - du nombre de routeurs (hop) à traverser pour joindre ces réseaux IP
 - de l'adresse IP du prochain routeur à traverser
- La mise à jour des tables de routage est automatique à la réception de ces informations

Les protocoles « link state » ou «Short Path First »

- gestion de l'état des liens
- Diffusion à tous les routeurs de l'état des liens
- Chaque routeur construit une vision topologique générale du réseau
- Choix du chemin le plus court (Dijkstra)

Routage IP: Distance Vector vs Link State

- Algorithmes « distance vector » ou Belman-Ford
- Le choix du meilleur chemin se fait par le routeur en fonction de la métrique.
- Chaque routeur diffuse à ses proches voisins les routes dont il a connaissance
- Informations diffusées
 - adresse IP du réseau distant « connu »
 - adresse IP du proche routeur
 - métrique (nombre de saut pour joindre le réseau distant « connu »)
- Un routeur qui reçoit ces informations, les analyse, et met éventuellement à jour sa table de routage
 - métrique favorable
 - nouveau réseau

RIP: généralités

- Routing Information Protocol
- RIPv1: RFC1058 (obsolète) / RIPv2: RFC1387 et 1388 / RFC 1723
- Issu de l'architecture XNS de Xerox
- Utilisation première dans Arpanet vers 1969
- Implémentation par l'Université de Bekerley (routed)
- RIP est un protocole Interior Gateway Protocol de type Bellman-Ford (1957) ou distance vector
- RIP est le plus ancien des protocoles de routage dynamique
- Les paquets RIP sont diffusés toutes les 30 s avec la liste des réseaux accessibles et leur distance (hop count)

RIP v1: principe de fonctionnement

Utilise les services de UDP (port 520)

- Le processus de routage dans RIP est basé sur le comptage du nombre de saut. Les routes sont détruites pour un nombre maximal de 16 sauts.
- RIP ne tient pas compte pour le choix d'une route des débits des lignes, de la congestion sur les lignes et de la qualité du service demandé.
- A router running RIP will broadcast its entire routing table out each interface every 30 seconds.
- Adjacent routers will hear this update, add one "hop" and calculate the best path to each destination.

RIP v1: principe de fonctionnement

- Temps de convergence : environ 1 minute
- Limité à 15 nœuds entre deux extrémités (métrique maximale de 16)
- On ne transmet que les changements et pas les tables complètes
- Version classique
 - A expiration du timer
 - Routed améliore l'heuristique en choisissant le timer le moins écoulé

Triggered update

- Lors d'un changement de topologie
- Route rompue : sans nouvelle d'une route depuis 3 minutes, elle est considérée comme rompue, sa métrique devient 16
- Mise à jour : envoi d'information toutes les 30 secondes
- Timer aléatoire : les mises à jour sont espacées de 1 à 5 secondes pour éviter une congestion

RIP v1 : principe de fonctionnement

RIP v1 : principe de fonctionnement

RIP v1: reroutage sur incident

RIP v1: reroutage sur incident

RIP v1: quelques solutions aux problèmes

- Triggered update : émission non pas à expiration du timer mais dès la détection d'un problème
- Split horizon : rétention d'information :
 - In Split horizon, a route is not advertised out the interface from which it was learned.
 - A passe par B pour joindre C
 - B n'envoie jamais à A une indication de métrique plus faible que celle de A
 - Simple : mise à jour diffusée sauf vers la source de la mise à jour
 - Avec route empoisonnée : pour l'origine de l'information, on donne une métrique maximale

Split horizon with Poisoned Reverse

 Another anti-loop mechanism is called Poison Reverse. In poison reverse, routes are advertised with a hop count of 16 out the interface from which they were learned.

Hold on :

- La rupture est diffusée mais sa propre table n'est modifiée qu'à expiration d'un timer
- Réduit les boucles mais ralentit l'algorithme

RIP v1: format des messages

RIP v1: format des messages

COMMANDE

1 octet

- Type du message
- 1 : Request (pull)
- 2 : Response (push)
- 3: Trace ON
- 4: Trace OFF
- 5 : Reserved

VERSION

1 octet

- Indique la version de RIP utilisée
- 1: RIP v1
- 2: RIP v2
- Jusqu'à 25 informations (taille de paquet maximale)
- Identificateur de la famille d'adresse
 - 2 pour IP
- Adresse IP / Métrique (25 entrées possibles)

RIP v1 : Envoi et réception de demande

- Généralement en broadcast sur les interfaces du nœud
- Emission
 - Démarrage : adresse 0.0.0.0 et métrique 16
 - Débogage : demande de route particulière

Réception

- Vérification des champs (version, 0 pour les champs vides et checksum)
- Envoi de toute la table ou des routes demandées

RIP v2 : généralités

- RFC 1387 / 1388
- Justifications de RIP 2 ?
 - Limitations de RIPv1
 - Apparition de IS-IS ou OSPF
- Simplification des configurations
- Overhead limité
- Utilisation du multicast pour la diffusion des tables
 - -224.0.0.9
- Authentification
- RIPv2 est compatible RIPv1

RIP v2 : format des paquets

0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7
			0 1 2 0 7 0 0 7

Commande Version	Domaine de routage				
Identificateur de famille d'adresse	Identifiant de la route				
Adresse IP					
Masque de sous-réseau					
Adresse du prochain relais					
Métrique					

RIP v2: format des paquets

- COMMANDE 1 octet
 - Identique à RIP v1
- VERSION 1 octet
 - Présent dans RIP v1
 - Version 2

DOMAINE DE ROUTAGE

 Plusieurs sous-réseaux logiques partageant leurs informations de routage ; par défaut 0

- Identificateur de famille d'adresse
 - 2 IP
 - 0xFFFF Authentification
- Identifiant de route
 - Utile aux EGP mais inutile à l'IGP Exemple : numéro d'AS
 - Ignoré et dupliqué

OSPF: pourquoi un nouveau protocole?

Limites de RIP1

- 15 « sauts » maximum
- Pas de support de VLSM
- Envoi périodique de l'ensemble de la table de routage
- Pas de sécurisation par authentification
- Les tables de routage convergent lentement
- Décision de routage basée sur le nombre de saut
- Pas de hiérarchie de routage

Conséquences

- Augmentation de la taille des AS
- Augmentation de la taille des tables de routage RIP
- Augmentation de la consommation de bande passante par RIP
- Augmentation du temps de convergence des routes
- Augmentation du nombre de changements des routes

RIP2 pallie une partie des « faiblesses » de RIP1

OSPF: généralités

- Open Shortest Path First
- OPSF Working Group
- Protocole de type IGP
- Dijkstra algorithm (link state / SPF)
- Utilise les services de IP (protocole = 89)
- Diffusion des mises à jour en multicast (224.0.0.xxx)
- Diffusion des informations de routage en cas d'événement
- Link State Advertisements
- Hiérarchie de routage à 2 niveaux
- Coûts des liaisons / Multi-chemins / répartition de charge
- Variable Length Subnet Masks / sous-réseaux répartis
- Sécurisation par authentification des paquets OSPF
- "OSPF's implementation are at the implementor's own risk"

OSPF: principe général

- Chemin de meilleur coût
 - RFC 1253 : 100 000 000 / débit du lien en Bps
 - FDDI C=1, 10BaseT C=10, E1 C=48, T1=64, 56Kbps=1785, ...
- Multi chemins
- Répartition de charge

OSPF: historique

1987 / 1988

- Le protocole IS-IS est retenu par l'ANSI pour le routage intra-domaine (environnement CLNP)
- début des travaux sur OSPF (OSPF Working Group) sur la base d'IS-IS

1989

- publication des spécifications de OSPFv1 (rfc 1131) / 1ère implémentation OSPF (UMD)
- 1ère implémentation d'OSPF par Proteon
- IS-IS est proposé comme standard ISO

• 1990 / 1991

- 1er test d'interopérabilité d'OSPF
- publication des spécifications de OSPFv2 (rfc 1247) / démonstration OSPF à Interop
- 1ère implémentation d'OSPF par Cisco

• 1992

- ajout d'OSPF à « gated » / OSPF recommandé comme IGP
- OSPF est mis en œuvre sur les réseaux au détriment d'IS-IS

1993

- Mise à jour des spécifications d'OSPFv2 (rfc 1583)
- support du multicasting (MOSPF)

1994

- ajout d'une fonction d'authentification
- Mise à jour des spécifications d'OSPFv2 (rfc 2178)

1996 / 1998

IS-IS et OSPF utilisés par lesgrans ISP

• 1999 / 2001

Extensions à OSPF

OSPF: origine des travaux

- Travaux de Bolt, Beranek, and Newman sur le Landmark packetswitching développé dans les années 70 sur la base d'un algorithme de type SPF
- Travaux de recherche du Dr. Perlman sur le routage par diffusion
- Travaux du BBNen 1986 sur les aires de routage
- Travaux OSI sur le protocole de routage Intermediate System-to-Intermediate System (IS-IS)

OSPF: Routage de type link-state

- Chaque routeur garde la trace de son propre état
- Chaque routeur envoie et reçoit des paquets Hello pour connaître ses voisins
- Chaque construit des LSP (Link-State Packet) avec ses informations locales
- Tous les routeurs diffusent (flooding) en multicast leur LSA (Link State Advertisement)
- Avec les LSP reçus, chaque routeur construit sa base de données d'information (LSPDB)
- Tous les routeurs ont la même LSPDB qui est indépendante de la table de routage
- Les LSPs sont transmis lorsqu'un changement survient
- Un rafraichissement périodique de la base est réalisé
- Chaque routeur construit sa topologie du réseau avec l'algorithme SPFde Dijkstra
 - la topologie est établie sous la forme dite de Shortest-Path Tree
 - chaque routeur est la racine du SPT
 - boucles impossibles
- A partir de la topologie SPT la table de routage (Routing Information Table) est construite

OSPF: algorithme Shortest Path de Dijkstra

- Begin.
- ∀ v∈ V,
 - add v to set U,
 - initialize Distance(v) = cost(s, v)
- Distance(s) = 0; Remove s from U.
- while U is not empty do
 - v → any member of G with minimum distance.
 - Remove v from U.
 - For each neighbor w of v, do
 - if member(w, U)
 - distance(w) = min(distance(w), cost(w, v) + distance(v));
- Stop.

- Construction des LSP
- R1: R4-2/R5-2/R2-5/R2-5
- R2: R1-5/R1-5/R3-2/R5-12/R6-12
- R3: R2 2 / R7 4
- R4: R1 2 / R8 8
- R5: R1 2 / R2 12 / R6 3 / R9 7 / R5 3
- R6: R2-12/R7-5/R10-2/R9-3/R5-3
- R7: R3 4 / R10 4 / R6 -5
- R8: R4 8 / R5 3 / R9 4 / R9 3
- R9: R8-4/R8-3/R5-7/R6-3
- R10: R9-5/R9-5/R6-2/R7-4

• Table des routeurs adjacents pour R9

		Neighbor	Inte	Interface	
	Cost				
•		R8	serial0	3	
•		R8	serial1	4	
•		R5	serial2	7	
•		R6	serial3	3	
•		R10	serial4	5	
•		R10	serial5	5	

Candidats

- R5 C=7 via S2
- R6 C=3 √ia Sβ
- R8 C=3 via S0
- R10 C=5 via \$4 ou \$5

Chemins calculés

- R9

Candidats

- R5 C=6 via S0
- R6 C=3 via S3
- R10 C=5 via S4 ou S5
- R4 C=11 via S0

Chemins calculés

- R9

- R8 C=3 via S0

Inconnus

R1 R2 R3 R7

R8

Candidats

- R2 C=15 via S3
- R4 C=11 via S0
- R5 C=6 via S0 ou S3
- R7 C=8 via S3
- R10 C=5 via S3 ou S4 ou S5

Chemins calculés

- R9
- R6 C=3 via S3
- R8 C=3 via S0

R6

Inconnus

R1 R3

R∮nconnus

- R1 R2 R3 R4 R7

Candidats

- R2 C=15 via S3
- R4 C=11 via S0
- R5 C=6 via S0 ou S3
- R7 C=8 via S3

Chemins calculés

- R9
- R6 C=3 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

Inconnus

- R1 R3 R10

Candidats

- R1 C=8 via S0 ou S3
- R2 C=15 via S3
- R4 C=11 via S0
- R7 C=8 via S3

Chemins calculés

- R9
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

Inconnus

- R3 R5

Candidats

- R1 C=8 via S0 ou S3
- R2 C=15 via S3
- R4 C=11 via S0
- R3 C=12 via S3

Chemins calculés

- R9
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R7 C=8 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

• Inconnus R7

Candidats

- R2 C=13 via s0 ou S3
- R3 C=12 via S3
- R4 C=10 via S0 ou S3

Chemins calculés

- R9
- R1 C=8 via S0 ou S3
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R7 C=8 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

• InconnusR1

Candidats

- R2 C=13 via s0 ou S3
- R3 C=12 via S3

Chemins calculés

- R9
- R1 C=8 via S0 ou S3
- R4 C=10 via S0 ou S3
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R7 C=8 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

Inconnus R4

Candidats

R2 C=13 via s0 ou S3

Chemins calculés

- R9
- R1 C=8 via S0 ou S3
- R3 C=12 via S3
- R4 C=10 via S0 ou S3
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R7 C=8 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

• InconnusR3

Candidats

Chemins calculés

- R9
- R1 C=8 via S0 ou S3
- R2 C=13 via s0 ou S3
- R3 C=12 via S3
- R4 C=10 via S0 ou S3
- R5 C=6 via S0 ou S3
- R6 C=3 via S3
- R7 C=8 via S3
- R8 C=3 via S0
- R10 C=5 via S3 ou S4 ou S5

• InconnusR2

OSPF: aires de routage

- Une aire de routage OSPF est constituée par un groupe contigue de machines et de réseaux
- La topologie à l'intérieur d'une aire est invisible de l'extérieur
- Diminution du trafic de routage
- Backbone area
 - obligatoire
 - aire 0
 - toutes les autres aires doivent avoir une connexion physique ou logique avec
 l'aire backbone
 - chaque aire envoie ses informations de routage à l'aire backbone qui rediffusent l'information
- Transit area
- XXX.XXX.XXX.XXX
- Stub area
- Not-So-stubby-area

OSPF: aires de routage

Stub Areas

- Pas de diffusion des annonces externes à partir des Stub Areas et vers les Stub Areas
- Création de Stub Areas quand la majeure partie de la base de données d'information est constituée d'annonces de routes externes
- réduction de la taille des base de données
- utilisation de route par défaut à la place des routes externes
- Pas de lien virtuel au sein d'une Stub Area
- Aucun ASBR dans une Stub Area

Not-So-Stubby Areas

- Diffusion des routes externes à l'intérieur de l'aire
- Les routes externes provenant d'autres aires ne rentrent pas dans les NSSA
- ASBR possible dans nue NSSA

OSPF: aires de routage

OSPF: typologie des routeurs

OSPF: typologie des routes

OSPF: routeurs voisins

OSPF: routeurs voisins

- Autant d'ensemble de routeurs voisins que de liens physiques ayans des adresses IP différentes
- Les interfaces des routeurs voisins appartiennent au même réseau ou sous-réseau IP
- Scénarios possibles
 - R1 R4 / R2 R3 / R2 R5 / R3 R5 / R4 R5 / R5 R6 / R5 R8 / R4 R6 / R4 R7 / R6 R7 / R6 R8 / R7 R8 / R7 R9 / R10 R9 / R8 R11 R12
 - ou
 - R1 R4 / R2 R3 R5 / R4 R5 R6 R7 R8 / R7 R9 / R10 R9 / R8 R11 R12
 - ou
 - **–** ...
- Authentification
- Protocole Hello

Raccordement d'une aire qui n'a pas d'attachement physique avec l'aire backbone

- création d'un lien logique avec l'aire backbone
- entre deux ABR attachés à une même aire et dont l'un des deux est attachés
 l'aire backbone

Assurer la continuité de l'aire backbone

- aire backbone répartie
- lien logique entre deux parties de l'aire backbone
- utilisation d'une aire de transit

OSPF: lien virtuel

OSPF: lien virtuel

OSPF: sous-réseaux répartis

OSPF: typologie des messages

- HELLO: Type 1
 - Identification des voisins
 - Election du DR dans le cas des réseaux multiaccès.
 - Recherche du DR
 - "I'm alive"

DATABASE DESCRIPTION: Type 2

 Envoi d'information permettant au routeur d'identifier les informations manquantes ou obsolètes

LINK STATE REQUEST: Type 3

Demande d'information pour mise à jour de la base de données d'information

LINK STATE UPDATE: Type 4

Réponse à un message de type Link State Request

LINK STATE ACK: Type 5

Acquittement transmis après réception d'un message Link State Update

OSPF : format de l 'entête des messages

VERSION	TYPE	MESSAGE LENGTH			
SOURCE ROUTER IP ADDRESS					
AREA ID					
CHECKSUM		AUTHENTICATION TYPE			
AUTHENICATION DATA 8 BYTES					

OSPF: format des paquets

VERSION

Version du protocole

Type

- 1 Hello
- 2 Database description (topologie)
- 3 Link Status Request
- 4 Link Status Update
- 5 Link Status Acknowledgement

SOURCE IP ADDRESS

Adresse IP de l'émetteur

AREA ID

Identification de l'aire

AUTHENTICATION TYPE

- 0 pas d 'authentification
- 1 Authentification existante

AUTHENTICATION

Network Mask

Masque de sous-réseau du réseau concerné

DEAD TIMER

après expiration de ce délai, le voisin est considéré comme inopérant

HELLO INTER

Intervalle de temps entre deux messages Hello

GWAY PRIO

- Numéro interne fixant la priorité du routeur
- Utilisé pour l'élection du BDR

DR et BDR

Identification du DR et du BDR selon l'émetteur.

NEIGHBOR IP ADDRESS

Adresses IP de tous les voisins qui ont récemment émis des messages Hello

OSPF: format des LSAs

OSPF : RFC de réference (1/2)

• RFC 1131	OSPF specification
• RFC 1245	OSPF Protocol Analysis
• RFC 1246	Experience with the OSPF Protocol
• RFC 1247	OSPF Version 2
• RFC 1248	OSPF Version 2 Management Information Base
• RFC 1252	OSPF Version 2 Management Information Base
• RFC 1253	OSPF Version 2 Management Information Base
• RFC 1364	BGP OSPF Interaction
• RFC 1370	Applicability Statement for OSPF
• RFC 1403	BGP OSPF Interaction
• RFC 1583	OSPF Version 2
• RFC 1584	Multicast extensions to OPSF
• RFC 1585	MOSPF: analysis and experience
• RFC 1586	Guidelines for Running OSPF Over Frame Relay
Networks	EPITA 2015 - WAN - IP Routing

OSPF : RFC de réference (2/2)

RFC 1587	The OSPF NSSA Option
• RFC 1745	BGP4/IDRP for IP - OSPF interaction
• RFC 1765	OSPF Database Overflow
• RFC 1793	Extending OSPF to Support Demand Circuits
• RFC 1850	OSPF Version 2 Management Information Base
• RFC 2154	OSPF with digital signatures
• RFC 2178	OSPF Version 2
• RFC 2328	OSPF Version 2
• RFC 2329	OSPF Standardization Report
• RFC 2370	The OSPF Opaque LSA Option
• RFC 2740	OSPF for IPv6
• RFC 2676	QoS Routing Mechanisms and OSPF Extensions
• RFC 2844	OSPF over ATM and Proxy PAR
• RFC 3137	OSPF Stub Router Advertisement

OSPF: comparaison RIPv1, RIPv2 et OSPF

	RIPv1	RIPv2	OSPF
Algorithme	Distance Vector	Distance Vector	Link State
Mise à jour	Broadcast	Multicast	Multicast
Authentification	Non	Oui	Oui
Multi Chemins	Non	Non	Oui
Convergence	Lente	Rapide	Rapide
Support des sous- réseaux	Non	Oui	Oui
Hiérarchisation	Non	Non	Oui
Facilité d'administration	Facile	Facile	Complexe

BGP 4 : généralités

- Border Gateway Protocol
- RFC 1771
- Utilise les services de TCP (port 179)
- Protocole de routage de type Path Vector
- Successeur de EGP
- Les routeurs frontières à l'intérieur d'un AS doivent s'échanger les informations qu'ils ont apprises
- iBGP
 - BGP interne
 - Echange dans un AS
 - Maillage logique entre les routeurs
- eBGP
 - BGP externe
 - échange entre AS
- Un message iBGP reçu par un routeur frontière n'est transmis qu'à un routeur d'un autre AS
- BGP standard de facto des protocoles EGP utilisés sur Internet
- Gère le CIDR

BGP 4 : généralités

BGP 4 : généralités

Mode connecté

- Utilise les service de TCP
- Analogue à des échanges point à point

Avantages

- Fiable
- Simplifie le protocole
- Permet une mise à jour incrémentale

Inconvénients

- Sensible aux congestions
- Nécessite un message sonde
- Moins précis que UDP pour l'état d'un lien

BGP4: architecture de routage

BGP4: architecture de routage

BGP 4 : format des messages

- BGP 4 utilisent principalement 4 types de messages
 - OPEN
 - UPDATE
 - NOTIFICATION
 - KEEPALIVE
- La taille minimum des messages est de 19 octets
- La taille maximum des messages est de 4096 octets

BGP 4 : format des messages

BGP 4: format des messages

- Système de délimitation pour distinguer les messages
- Champ marqueur pour resynchroniser, authentifier
- Champ longueur entre 19 (entête seul) et 4096 octets
- Champ type :
 - 1 pour une ouverture
 - 2 pour une mise à jour
 - 3 pour une notification
 - 4 pour un sondage

BGP 4: les message OPEN (1/2)

BGP 4: les message OPEN (2/2)

- Envoyé après connexion TCP
- Négociation des paramètres de l'association
- Mon Système Autonome : champ indiquant le système autonome émetteur
- Temps de garde en seconde
- Identifiant BGP : adresse IP de l'émetteur (toujours la même)
- Champ Option pouvant contenir des paramètres d'authentification

BGP 4 : Le message UPDATE (1/3)

BGP 4: Le message UPDATE (2/3)

- Network Layer Reachability Information (NLRI)
- Le message est composé de trois parties :
 - les routes à retirer
 - les attributs
 - les nouvelles routes
- Drapeau pour classer les attributs suivant plusieurs critères :
 - le bit O indique si l'attribut est optionnel
 - le bit T indique si l'attribut est transitif
 - le bit P indique si l'attribut est partiel
 - le bit EL indique si le champ longueur sera sur 2 octets au lieu d'un seul

BGP 4 : Le message UPDATE (3/3)

Drapeau	Code	Attribut	RFC
Bien connu Obligatoire	1	ORIGIN	
Bien connu Obligatoire	2	AS_PATH	
Bien connu Obligatoire	3	NEXT_HOP	1771
Optionnel Non transitif	4	MULTI_EXT_DISCR	1771
Bien connu Facultatif	5	LOCAL_PREF	
Bien connu Facultatif	6	ATOMIC_AGGREGATE	
Optionnel Transitif	7	AGGREGATOR	
Optionnel Transitif	8	COMMUNITY	1997
Optionnel Non transitif	9	ORIGINATOR_ID	1966
Optionnel Non transitif	10	CLUSTER_LIST	1966
	11	DPA	expérimental
Optionnel Non transitif	12	ADVERTISER	1863
Optionnel Non transitif	13	RCID_PATH/CLUSTER_ID	1863

BGP 4: les messages NOTIFICATION (1/3)

BGP 4: les messages NOTIFICATION (2/3)

- Envoyé lors de messages erronés ou lorsque le temps de garde expire
- Message de notification est envoyé au partenaire
- Connexion fermée après son émission
- Code et sous code afin de définir la raison de l'envoi du message de notification

BGP 4 : les messages NOTIFICATION (3/3)

C o d e	Sous-code			
1 Erreur dans l'en-tête		_		
I .	1	Connexion non synchronisée		
I .	2	Longueur de message erronée		
	3	Type de message erroné		
2 Erreur d'ouverture				
I .	1	Numéro de version non supporté		
I .	2	M auvais num éro d'A S		
	3	Identifiant BGP incorrect		
	4	Paramètre option non supporté		
I .	5	E chec d'authentification		
	6	Temps de garde inacceptable		
3 Erreur de mise à jour				
I .	1	Liste d'attribut incorrect		
I .	2	Attribut bien connu non reconnu		
I .	3	Attribut bien connu manquant		
	4	Erreur dans le drapeau		
	5	Longueur attribut erroné		
	6	Attribut ORIGIN invalide		
	7	Boucle dans le chemin d'AS		
	8	Attribut NEXT_HOP invalide		
	9	Erreur dans attribut optionnel		
	10	C ham p réseau invalide		
	11	AS_PATH mal form é		
4 Temps de garde écoulé				
5 Erreur dans l'automate				
6 Arrêt				

BGP 4 : les messages KEEPALIVE

- Envoyé pour que le temps de garde n'expire pas
- Si les mises à jour ne sont pas assez fréquentes alors on envoie un message sonde
- En général 1/3 du temps de garde
- En-tête avec champ type à 4

0	15	16	23	24	31
— Marker					
Length		Туре			

BGP 4 : Le regroupement en confédération

- RFC 1965
- Réduction du maillage
- Une confédération
 - ensemble de sous AS privés dans un AS
- Dans un sous AS privé, les routeurs dialoguent en iBGP
- Les sous AS dialoguent entre eux à l'aide d'eBGP
- Lorsqu'un message sort de la confédération, les numéros d'AS privés sont retirés de la liste

BGP 4 : Les réflecteurs de route

- RFC 1966
- L'astuce est de lever la restriction de transfert d'iBGP à certains routeurs et d'ajouter quelques contrôles
- Les réflecteurs de routes sont chargés de transférer l'information aux routeurs clients
- Le réflecteur et ses clients forment un cluster
- CLUSTER_ID identifie le cluster
- ORIGINATOR_ID identifie l'initiateur du message
- Ces attributs permettent d'éviter les boucles

BGP 4: les attributs

- Transitif ou non transitif
- 13 attributs
- Obligatoires ou optionnels
 - 1 ORIGIN
 - 2 AS_PATH
 - 3 NEXT_HOP
 - 4 MULTI_EXT_DISCR
 - 5 LOCAL_PREF
 - 6 ATOMIC_AGGREGATE
 - 7 AGGREGATOR
 - 8 COMMUNITY
 - 9 ORIGINATOR_ID
 - 10 CLUSTER_LIST
 - 11 DPA
 - 12 ADVERTISER
 - 13 RCID_PATH/CLUSTER_ID
 EPITA 2015 WAN IP Routing

BGP 4: attribut LOCAL_PREF

- Permet de choisir entre plusieurs liens externes le point de sortie de l'AS
- Transmis dans les messages UPDATE
 - Code = 5
 - Entier sur 4 octets
- Attribut non transmis en dehors de l'AS
 - Transmission de l'attribut en iBGP seulement
 - Le point de sortie correspond à la valeur de LOCAL_PREF la plus élevée
- Activation optionnelle
- Application
 - Choix d'une liaison plus performante
 - Choix d'un contrat opérateur plus intéressant selon le type de trafic
 - Choix d'un lien de secour

BGP4: attribut LOCAL_PREF

BGP4: attribut LOCAL_PREF

BGP4: attribut LOCAL_PREF

BGP4: Les règles de sélection des routes

- Poids mis sur une route par l'administrateur selon provenance ou AS traversé
- Le plus grand degré de préférence LOCAL_PREF
- Le chemin d'AS le plus court
- ORIGIN : l'annonce d'un IGP mieux que d'un EGP mieux que d'un inconnu
- MED avec la métrique la plus faible quand dans le même AS ou métrique IGP vers le routeur du NEXT_HOP
- Annonce Internet mieux qu'eBGP mieux qu'iBGP
- Le routeur ayant le plus petit identifiant

BGP 4 : Inconvénients

- Annonces de routes élevées
- Demande beaucoup de mémoire et de ressource CPU
- Constat d'instabilité des routeurs
 - Phénomènes d'oscillation (annonce et retrait de routes)
- Remèdes:
 - attente avant mise à jour
 - système de pénalité

BGP 4 : Les successeurs de BGP-4

Multiprotocol Border Gateway Protocol (MBGP) (RFC 2283)

- Extension à d'autres protocoles (IPX, IPv6...)
- 14 : MP_REACH_NLRI, 15 : MP_UNREACH_NLRI
- Permet également de faire du multipoint

InterDomain Routing Protocol (IDRP)

- Pour l'environnent IPv6
- Vecteur distance mais chemin de bout en bout
- Définit une politique de routage entre AS
- Paquets IP spécifiques avec numéro 45 dans l'entête