Python en Químioinformática

curso

"Introducción a la Quimioinformática"

Bárbara I. Díaz Eufracio

Python (generalidades)

Python y Servidores web quimioinformáticos

Python y aprendizaje automático

Outline

Programar

Escribir código que la computadora entienda.

```
self.ile
self.ingerprint
self.logdupe
self.file
self.file
self.file
def from_settings(cls.setting)
debug = settings.gets
debug = settings.gets
return cls(job.dir(setting))
fp = self.request
if pp in self.fingerprints
return True
self.fingerprints.add(fp)
if self.file:
self.file.write(fp * classification)
def request_fingerprint(self.request)
return request_fingerprint(request)
```

Código:

un texto escrito en lenguaje formal que utilizamos para interactuar con las máquinas.

Programar

Escribir código que la computadora entienda. Utilizando un lenguaje formal y respetando la sintaxis del lenguaje de programación empleado.

Python

- Interpretado
- Tipado dinámico
- Fuertemente tipado
- Orientado o objetos

Objetos

una entidad que agrupa un

estado y una funcionalidad relacionada

Se definen a través de variables llamadas **atributos**

se moldea a través de funciones

docs.python.org

Python y Servidores web quimioinformáticos

Discipline that employs equations, models and computational techniques.

Apply chemical tools to solve chemical problems.

Chemoinformatics

Developed at industry to handle databases and chemical structure representations.

Gasteiger J. The central role of chemoinformatics. Chemometr Intell Lab Syst **2006**, 82:200–209

Chemoinformatic

Disciplina que conjunta la ciencia de la computación y la química para resolver problemas

Varnek, A.; Baskin, I. I. Mol. Inform. **2011**, 30, 20–32.

Servidores Web

El objetivo es:

Promover la disponibilidad de herramientas e información de acceso libre para la investigación.

Aumento en el número de servidores web

¿Todos podemos desarrollar herramientas web?

Web Servers

Ventajas

Desventajas

Open source.

Gratuitos.

"Black Boxes"

Usuarios sin conocimiento de programación.

Habilidades de programación y desarrollo.

Herramientas

Python

R

Frameworks

django

Shiny

Cheminformatics toolkits

Open Babel

Chemistry Development Kit (CDK)

Herramientas

Databases

SQL

Bases de Datos

- Información específica
- Public

PubChem

Extensive records of **compounds**, bioactivity, assays and targets.

pubchem.ncbi.nlm.nih.gov

DrugBank

a curated **pharmaceutical knowledge base.**

drugbank.com

ZINC15

Free database of **commercially-available** compounds.

zinc-docking.org

ChEMBL

1.1 million **Protein - Ligand** complexes.

www.ebi.ac.uk/chembl

Prieto-Martínez, F. D.; López-López, E.; Eurídice Juárez-Mercado, K.; Medina-Franco, J. L. In *In silico drug design*; Elsevier, **2019**; pp. 19–44.

D-TOOLS

www.difacquim.com/d-databases

D-DATABASE (D-DB)

Curated high quality data on target annotations of small molecules.

Epigenomics chemical database

54 dianas epigenéticas.

Biofacquim

Productos naturales caracterizados en México.

Chemoinformatic Tools

Chemical space

PCA physicochemical properties

Diversity

Tanimoto similarity

PUMA⁽¹⁾

Analyze
structure-activi
ty
relationships of
compound data
sets.

Activity
Landscape
Plotter (2)

Represent in low dimensions the diversity of chemical libraries. Simultaneously multiple molecular representations.

Consensus
Diversity Plots⁽³⁾

www.difacquim.com/d-tools/

- (1)González-Medina, M.; Medina-Franco, J. L. Platform for Unified Molecular Analysis: PUMA. J. Chem. Inf. Model. **2017**, 57 (8), 1735–1740.
- (2) González-Medina, M.; Méndez-Lucio, O.; Medina-Franco, J. L. J. Chem. Inf. Model. 2017, 57, 397.
- (3) González-Medina, M.; Prieto-Martínez, F. D.; Owen, J. R.; Medina-Franco, J. L. Consensus Diversity Plots: A Global Diversity Analysis of Chemical Libraries. J. Cheminform. **2016**, 8, 63.

Chemoinformatic Tools

This website allows you to estimate the bioactivity profile of a small molecule over a panel of 55 human epigenetic targets.

Epigenetic Target Profiler

Peptide libraries
numeration with different
topologyes
Diversity Analysis
Chemical Space
Visualization (PCA y
tTSNE)

Peptide Builder

www.difacquim.com/d-tools/

How much python is needed to learn django?

Variables, Basic Data Types, Operators Control Flow: Loops, Conditionals, Comprehensions Basic Boolean Expressions Conditionals Loops Comprehensions Functions, Arguments Classes Packages, modules, pip Exception handling

Other Skills Besides Python

Basic Command Line Skills Css, Html Client-Server Model, Frontend vs. Backend Code Basics of Http

Is It Possible to Learn Django Without Knowing Python?

Is It Worth The Effort?

Why is important write code?

Resolve a particularly task

Generate a tool te resolve a similar task in the future (Automatation)

Why is important document my code?

Make code usuful for other programmers

Some Dayli tasks on chemoinformatic performance with python:

- Descriptor calculation
- Diversity analysis
- Statistical Analysis
- Exploratory data analysis
- ML model development
- Data visualization
 - Chemical Space exploration
 - Descriptor Analysis
 - Trajectory analysis (MD)

Request response lifecycle in Django

slido

Herramientas utiles para desarrollar servidores web

Python y aprendizaje automático

¿Cómo se relacionan?

Machine learning (ML)

(Aprendizaje automático)

"Computing Machinery and Intelligence"

- prueba de Turing
- concepto clave para sentar las bases de Al

Nuevo paradigma de programación

Reglas Datos

Programación clásica

Respuestas

Un sistema de

"aprendizaje

automático" es

Datos Respuestas Machine Learning

Reglas

entrenado en lugar de programado

¿Qué necesitamos para entrenar modelos de ML?

¿Cómo funciona el ML?

Transformar los datos de entrada en resultados (outputs) significativos

Ejemplo de algunos datos

Cambio de coordenaras

Herramientas que facilitan implementación de ML

Democratización de ML

- Hardware
- Bases de datos
- Librerias que permiten implementar algoritmos

- Simplicity
- Scalability
- Versatility and reusability

Se necesita un nivel intermedio de conocimientos de programación en python para entrenar modelos de ML

Librerías de python para Al

ML

scikit-learn.org

DL

Clasificación de los sistemas de ML

Aprendizaje Supervisedo

Etiquetas y dianas son conocidas

- Regresión
- Clasificación

Aprendizaje Supervisedo

Una vez entrenado, el modelo **predice las etiquetas**.

Etiquetas no conocidas

- Clustering
- Visualization and dimensionality reduction

NO

Association rule learning

Unsupervised learning algorithms (1) Clustering Expectation Maximization Hierarchical Cluster Analysis **K-Means**

Unsupervised
learning algorithms
(2)
Visualization and

Visualization and dimensionality reduction

t-SNE, t-distributed Stochastic Neighbor Embedding

PCA, Principal Component Analysis

LLA, Locally-Linear Embedding

Diferentes

algoritmos de ML

para diferentes

datos

¿Cómo elegir el algoritmo adecuado?

Depende

- ¿Qué estamos buscando?
- ¿Qué información tenemos a nuestra disposición?

ML Roadmap

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Métricas

Diferentes algoritmos para diferentes respuestas

¿Las métricas de evaluación son iguales para todos los algoritmos?

No

Métricas

Regresión

Clasificasión

- Mean Absolute Error
- Mean Squared Error
- R2 Score

- Accuracy Score
- Recall
- Confusion Matrix
- F1

The increase of publication and study cases that employ machine learning to chemical analysis confirms the utility of this tool.

Machine learning in chemoinformatics

Efforts

- Industry
- Academia

Lo, Y.-C.; Rensi, S. E.; Torng, W.; Altman, R. B. Drug Discov. Today **2018**, 23, 1538–1546.

Machine learning in chemoinformatics and drug discovery

Use pattern recognition algorithms to discern mathematical relationships between empirical observations of small molecules and extrapolate them to predict chemical, biological and physical properties of novel compounds.

Lo, Y.-C.; Rensi, S. E.; Torng, W.; Altman, R. B. Drug Discov. Today **2018**, 23, 1538–1546.

QSAR and QSPR (One of the primary ML applications)

- Powerful tool on Drug Discovery
 - Biological Activity
 - ADME descriptors
 - Toxicity descriptors
 - Interactions

Necesary tools:

- Advanced chemoinformatics and machine learning techniques capable of modeling nonlinear datasets
- Big Data, and ML algorithms

QSAR, quantitative structure activity relationships

QSPR quantitative structure-property relationships

ML and Molecular Dinamics (MD)

MD simulations are an important tool for describing the evolution of a chemical system with time.

ML techniques can help to overcome computational limitations by providing access to

- potential energies
- forces
- molecular properties modeled directly after an accurate electronic structure reference

At only a fraction of the original computational cost.

Gastegger M., Marquetand P. (2020) Molecular Dynamics with Neural Network Potentials. In: Schütt K., Chmiela S., von Lilienfeld O., Tkatchenko A., Tsuda K., Müller KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_12

QSAR Worlflow

Molecular Descriptors

Constitutional
Electronic
Geometrical
Hydrophobic
Lipophilicity
Solubility
Steric
Quantum Chemical
Topological

Data Pre-Processing

Normalization Standardization Feature Selection Outlier Detection

Statistical Evaluation

R R² Q² MSE RMSE

Multivariate Analysis

Multiple Linear Regression Self-Organizing Map Principal Component Analysis Partial Least Squares Neural Network Support Vector Machine

Casos de éxito (1)

CYP1A2 inhibitor

Si o No

Máquina de Soporte Vectorial

AUC 0.90

Water Solubility

Valor Contínuo

Regresión líneal

Accuracy

SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. (2017) 7:42717.

Take home message

 Python permite resolver y automatizar un gran número de tareas en quimioinformática.

 En los últimos años el número de servidores y sus funcionalidades ha incrementado.

 El empleo de algoritmos de aprendizaje automático se ha consolidado como una herramienta importante en el diseño de fármacos y la quimioinformática.

Material disponible en:

https://github.com/BarbaraDiazE/PythonEnQuimioinformatica

Contact:

dieb@comunidad.unam.mx

@bdiazeufracio