Tangent Flows of Kähler Metric Flows

Max Hallgren

Cornell University

April 2022

Outline

- Ricci Flows and Metric Flows
- Stratification of Singular Sets
- 3 Improved Splitting for Kähler Metric Flows
- 4 Isometric Actions on Singular Solitons

Ricci Flow

Definition

A smooth, 1-parameter family of Riemannian metrics $(g_t)_{t \in [0,T)}$ on a closed manifold M^n satisfies Ricci flow if

$$\partial_t g_t = -2Rc(g_t),$$

where $Rc(g_t)$ is the Ricci curvature.

Ricci flow was first used by Richard Hamilton in 1982, to prove that every 3-dim Riemannian manifold with positive Ricci curvature is a space form.

Basic Facts About Ricci Flow

 (PDE Classification) Ricci flow is a second-order nonlinear weakly parabolic system. In harmonic coordinates,

$$\partial_t g_{t,ij} = -2Rc(g_t)_{ij} = \Delta g_{t,ij} + Q_{ij}(g_t, Dg_t).$$

- (Short-time existence/uniqueness) For any smooth Riemannian metric g on M, there is a unique solution $(M^n,(g_t)_{t\in[0,T)})$ of Ricci flow with $g_0=g$.
- (Holonomy is Preserved) If g_0 is Kähler with complex structure J, then (M, g_t, J) is Kähler. (Recall (M, g, J) is Kähler if $J^2 = -I$, g(JX, JY) = g(X, Y) for all $X, Y \in \mathfrak{X}(M)$, and $\nabla J = 0$)

Shrinking Ricci Solitons

Definition

A shrinking gradient Ricci soliton (M^n, g, f) is a Riemannian manifold with $f \in C^{\infty}(M)$ satisfying

$$Rc + \nabla^2 f = \frac{1}{2}g.$$

• If $\partial_t \varphi_t(x) = \frac{1}{1-t} \nabla f(\varphi_t(x))$, then

$$g(t) = (1-t)\varphi_t^*g$$

solves the Ricci flow.

- Frequently model finite-time singularities of Ricci flow.
- Examples: Einstein manifolds, shrinking cylinder, FIK soliton.
- If (M, g, J) is Kähler, then $\mathcal{L}_{\nabla f} J = 0$.

Conjugate Heat Kernels

Definition (Conjugate heat kernel)

The conjugate heat equation is

$$\Box^* u := (-\partial_t - \Delta + R)u = 0.$$

The conjugate heat kernel based at (x,t) is the function $(y,s)\mapsto K(x,t;y,s)$ satisfying $\lim_{s\nearrow t}K(x,t;\cdot,s)=\delta_x$ and $\square_{y,s}^*K(x,t;y,s)=0$. Then $d\nu_{x,t;s}=K(x,t;\cdot,s)dg_s$ is a probability measure for each s< t.

Definition

The pointed Nash entropy based at (x, t) at the scale r is

$$\mathcal{N}_{x,t}(r^2) := \int_M f_{x,t}(\cdot,t-r^2) d\nu_{x,t;t-r^2} - \frac{n}{2},$$

where
$$K(x, t; y, s) = (4\pi(t - s))^{-\frac{n}{2}} e^{-f_{x,t}(y,s)}$$

Metric Flows

Definition (Bamler 2020)

A metric flow is a set \mathcal{X} with a time function $\mathfrak{t}: \mathcal{X} \to \mathbb{R}$ whose time slices $\mathcal{X}_t := \mathfrak{t}^{-1}(t)$ are equipped with metrics d_t , and for $x \in \mathcal{X}_t$, s < t, there are probability measures $\nu_{x,t;s}$ on \mathcal{X}_s such that for $t_1 < t_2 < t_3$, $x \in \mathcal{X}_{t_3}$, and $A \subseteq \mathcal{X}_{t_1}$, we have

$$\nu_{x;t_1}(A) = \int_{\mathcal{X}_{t_2}} \nu_{y;t_2}(A) d\nu_{x;t_2}(y).$$

Smooth Case: $\mathcal{X} = M \times I$, \mathfrak{t} the projection, $d_t = d_{g_t}$,

$$d\nu_{x,t;s} = K(x,t;\cdot,s)dg_s.$$

Definition (Kleiner-Lott 2014)

A Ricci flow spacetime $(\mathcal{R},\mathfrak{t},g,\partial_\mathfrak{t})$ is an (n+1)-manifold \mathcal{R} , a smooth function \mathfrak{t} , a vector field $\partial_\mathfrak{t}$ on \mathcal{R} with $\partial_\mathfrak{t}\mathfrak{t}=1$ and

$$\mathcal{L}_{\partial_{t}}g = -2Rc(g).$$

\mathbb{F} -Convergence

Definition (Wasserstein Distance)

For measures μ, ν on a metric space (X, d), the Wasserstein distance is

$$d_{W_1}(\mu,\nu) := \inf_{\pi} \int_{X \times X} d(x,y) d\pi(x,y),$$

where the infimum is taken over all couplings π of (μ, ν) .

Gromov-Wasserstein distance: When measures do not live on the same metric space, take infimum of the Wasserstein distance over all isometric embeddings into a common metric space.

 \mathbb{F} -Convergence: A sequence $(M_i,(g_t^i)_{t\in I^i},(\nu_t^i)_{t\in I^i})$ of Ricci flows with reference conjugate heat flows \mathbb{F} -converges to a metric flow $(\mathcal{X},(\nu_t^\infty)_{t\in I^\infty})$ if the time slices converge in the Gromov-Wasserstein distance at almost-every time.

Tangent Flows

Let $(M^n, (g_t)_{t \in [0,T)})$ be a closed Ricci flow with conjugate heat flow $\nu_{x,T;t} := \lim_{t_i \nearrow T} \nu_{x,t_i;t}$ based at the singular time.

Theorem (Bamler, 2020)

If $\tau_i \setminus 0$, $g_t^i := \tau_i^{-1} g_{T+\tau_i t}$, $\nu_t^i := \nu_{\mathsf{x},T;T+\tau_i t}$, then we have \mathbb{F} -convergence

$$(M,(g_t^i)_{t\in[-\tau_iT,0)},(\nu_t^i)_{t\in[-\tau_iT,0)})\to (\mathcal{X},(\mu_t)_{t<0}),$$

where \mathcal{X} is a metric flow corresponding to a singular shrinking soliton (X,d,\mathcal{R},g,f) with singularities of codimension 4, and

$$d\mu_t = (4\pi\tau)^{-\frac{n}{2}}e^{-f}dg_t.$$

Convergence is smooth on the regular set R.

If $(M, (g_t)_{t \in [0,T)})$ is Kähler, then (\mathcal{R}, g, f) is a Kähler-Ricci soliton. Also, $d_t|(\mathcal{R}_t \times \mathcal{R}_t)$ is the length metric of (\mathcal{R}_t, d_{g_t}) . For any $x \in \mathcal{X}$, any tangent flow at x is a singular shrinking Ricci soliton.

Tangent Flows

Structure Theory of Metric Flows

Theorem (Bamler 2020)

Given Ricci flows $(M_j, (g_{j,t})_{t\in [-T_j,0]}, (\nu_{x_j,0;t})_{t\in [-T_j,0]})$ with $\mathcal{N}_{x_j,0}(1) \geq -Y$, a subsequence \mathbb{F} -converges to some metric flow pair $(\mathcal{X}, (\nu_{x_\infty;t})_{t\in [-T_\infty,0]})$ over $[-T_\infty,0]$. Also, $\mathcal{X}=\mathcal{R}\sqcup\mathcal{S}$, where \mathcal{R} has the structure of a smooth Ricci flow spacetime, and \mathcal{S} has P^* -parabolic dimension $\leq (n-2)$.

The tangent flow of any point $x \in \mathcal{X}$ is a singular shrinking soliton, and there is a stratification

$$S^0 \subseteq S^1 \subseteq \cdots \subseteq S^{(n+2)-4} = S$$
,

where for any point $x \in \mathcal{X} \setminus \mathcal{S}^k$, some tangent flow \mathcal{X}' based at x satisfies one of the following:

- (i) $\mathcal{X}' \cong \mathcal{X}'' \times \mathbb{R}^{k+1}$ for some singular soliton \mathcal{X}'' ,
- (ii) $\mathcal{X}' \cong \mathcal{X}'' \times \mathbb{R}^{k-1}$ for some (static) metric cone \mathcal{X}'' .

The P^* -parabolic dimension of S^k is $\leq k$.

Quantitative Strata of Ricci Flows

Let $(M^n, (g_t)_{t \in [-T,0]}$ be a Ricci flow with $T \ge \epsilon^{-1}$.

Definition (Bamler 2020)

A point $(x_0,0)$ is strongly $(k,\epsilon,1)$ -symmetric if there exists $y: M \times [-\epsilon^{-1}, -\epsilon] \to \mathbb{R}^k$ such that:

- $\bullet (\partial_t \Delta) y_j = 0,$
- $\int_{-\epsilon^{-1}}^{-\epsilon} \int_{M} |\langle \nabla y_i, \nabla y_j \rangle \delta_{ij}| d\nu_{x_0,0;t} dt \le \epsilon$.

 $(x_0,0)$ is $(\epsilon,1)$ -selfsimilar if, writing $d\nu_{x_0,0;t}=(4\pi\tau)^{-\frac{n}{2}}e^{-f}dg_t$, we have:

- $\int_{-\epsilon^{-1}}^{-\epsilon} \tau \int_{M} \left| Rc + \nabla^{2} f \frac{1}{2\tau} g \right|^{2} d\nu_{x_{0},0;t} dt \leq \epsilon$,
- $\sup_{t \in [-\epsilon^{-1}, -\epsilon]} \int_M \left| \tau(R + 2\Delta f |\nabla f|^2) + f n W \right| d\nu_{x_0, 0; t} \le \epsilon$,
- $\inf_{M\times[-\epsilon^{-1},-\epsilon]}R\geq -\epsilon$.

 y_i are approximate component functions of a splitting $M' \times \mathbb{R}^k$. f is approximately the potential function of a shrinking gradient Ricci soliton

Quantitative Strata of Ricci Flows

Let \mathcal{X} be a metric flow which is an \mathbb{F} -limit of noncollapsed smooth flows $(M_i, (g_{i,t})_{t \in [-T_i,0]})$.

Definition

 $x \in \mathcal{X}$ is weakly (k, ϵ, r) -symmetric if there are $(x_i, t_i) \in M_i \times [-T_i, 0]$ converging to x which are $(\epsilon, 1)$ -selfsimilar, and either:

- (i) (k, ϵ, r) -split,
- (ii) $(k-2, \epsilon, r)$ -split and (ϵ, r) -static.

The quantitative stratum $\mathcal{S}^{\epsilon,k}_{r_1,r_2}$ is the set of $x \in \mathcal{X}$ which are not (k,ϵ,r) -symmetric for any $r \in [r_1,r_2]$.

- $\mathcal{S}_{r_1,r_2}^{\epsilon,k}$ are generally nonempty even for smooth Riemannian manifolds.
- Bamler used $\mathcal{S}_{t_1,t_2}^{\epsilon,k}$ and ϵ -regularity to get L^p estimates for Rm.
- $S^k = \bigcup_{\epsilon>0} \bigcap_{r\in(0,\epsilon)} S^{\epsilon,k}_{r,\epsilon}$.

Improved Splitting of Kähler Metric Flows

Let \mathcal{X} be a metric flow which is an \mathbb{F} -limit of smooth Kähler-Ricci flows $(M_i, (g_{i,t})_{t \in [-T_i,0]})$ with $\mathcal{N}_{x,t}(1) \geq -Y$.

Theorem (H.-Jian 2022)

- $(i) \mathcal{S}^{2k+1} = \mathcal{S}^{2k}.$
- (ii) $\mathcal{S}_{r_1,r_2}^{\epsilon,2k+1} \subseteq \mathcal{S}_{r_1,r_2}^{\delta,2k}$, where $\delta = \delta(Y,\epsilon)$.

What needs to be shown: If a singular soliton (almost) splits \mathbb{R}^{2k+1} , then it (almost) splits \mathbb{R}^{2k+2} .

Corollary (H.-Jian 2022)

The P^* -parabolic dimension of S^{2k+1} is at most 2k. If \mathcal{X} is a metric soliton, then the usual (via Gromov-Hausdorff tangent cones) stratum S^{2k+1} has Minkowski dimension at most 2k.

Idea of the Proof of Improved Splitting

Consider a gradient Kähler-Ricci soliton (M, g, J, f) which splits $\mathbb R$ via $y: M \to \mathbb R$. Then

$$z := 2\langle \nabla f, J \nabla y \rangle$$

satisfies

$$\nabla z = 2\langle \nabla^2 f, J \nabla y \rangle = J \nabla y - 2Rc(J \nabla y) = J \nabla y.$$

If ∇z is complete, the flows of $\nabla y, \nabla z$ restricted to $(y,z)^{-1}(0,0)$ give a Riemannian splitting $M \cong M' \times \mathbb{R}^2$.

Main technical difficulty: ∇z need not (a priori) be complete. **Our approach:** Construct z on closed Ricci flows, where y is an almost-splitting map.

New technical difficulty: ∇z is not sufficiently regular for almost-splitting maps (f does not satisfy a heat-type equation).

Strong Almost-Soliton Potentials

Let $(M^n, (g_t)_{t \in [-T,0]})$ be a Ricci flow with $T \ge \epsilon^{-1}$.

Definition (H.-Jian 2022)

A strong $(\epsilon, 1)$ -soliton potential based at $(x_0, 0)$ is a function $h \in C^{\infty}(M \times [-\epsilon^{-1}, -\epsilon])$ such that if $W := \mathcal{N}_{x_0, t_0}(1)$, then:

•
$$(\partial_t - \Delta)(4\tau(h-W)) = -2n$$
,

•
$$\int_{-\epsilon^{-1}}^{-\epsilon} \tau \int_{M} \left| Rc + \nabla^{2} h - \frac{1}{2\tau} g \right|^{2} d\nu_{x_{0},0;t} dt \leq \epsilon$$
,

•
$$\sup_{t \in [-\epsilon^{-1}, -\epsilon]} \int_M \left| \tau(R + 2\Delta h - |\nabla h|^2) + h - n - W \right| d\nu_{x_0, 0; t} \le \epsilon$$

•
$$\int_{-\epsilon^{-1}}^{-\epsilon} \int_{M} \left| \tau(R + |\nabla h|^2) + (h - n) \right| d\nu_{x_0,0;t} dt \le \epsilon$$
.

Most of the above are satisfied by f in almost-selfsimilar regions, where $d\nu_{x_0,0;t}=(4\pi\tau)^{-\frac{n}{2}}e^{-f}dg_t$.

Existence of Strong Almost-Soliton Potentials

Proposition (H.-Jian 2022)

If $\delta \leq \overline{\delta}(\epsilon, Y)$, then any $(\delta, 1)$ -selfsimilar point admits a strong $(\epsilon, 1)$ -potential function h with

$$\sup_{t\in[-\epsilon^{-1},-\epsilon]}\int_{M}|f-h|^{2}d\nu_{t}+\int_{-\epsilon^{-1}}^{-\epsilon}\int_{M}|\nabla(f-h)|^{2}d\nu_{t}dt\leq\epsilon.$$

Rough idea of the proof: $4\tau(h-W)$ is defined by solving

$$\begin{cases} (\partial_t - \Delta)(4\tau(h - W)) &= -2n \\ h(\cdot, t^*) &= f(\cdot, t^*) \end{cases}.$$

Estimates for f imply h remains close to f.

Key Identity: (Heat eq version of Perleman's differential Harnack)

$$\left(\partial_t - \Delta\right) \left(\tau \left(\tau (R + 2\Delta h - |\nabla h|^2) + h - n\right)\right) = 2\tau^2 \left|Rc + \nabla^2 h - \frac{1}{2\tau}g\right|^2.$$

Constructing new Almost-Splitting Functions

Proposition (H.-Jian 2022)

If $y: M \times [-\delta^{-1}, -\delta] \to \mathbb{R}$ is a $(1, \delta, 1)$ -splitting map, h is strong $(\delta, 1)$ -soliton potential, and

$$z:=\frac{1}{2}\langle \nabla 4\tau(h-W),J\nabla y\rangle,$$

then (y, z) is a $(2, \epsilon, 1)$ -splitting map.

Aspects of the proof: z almost solves the heat equation:

$$\Box z = 2\tau \langle \nabla^2 h, \nabla (J \nabla y) \rangle \approx 0$$

$$\langle \nabla y, \nabla z \rangle \approx 2\tau \left(\frac{1}{2}g - Rc\right) (J\nabla y, \nabla y) = 0.$$

The hard part is showing that $|\nabla z|^2 \approx 1$ in the L^1 sense, since it is not clear that $Rc(\nabla y, \nabla y) \approx 0$ in the L^2 sense.

Natural Isometric Action on Singular Kähler-Ricci Solitons

If (M,g,J,f) is a Kähler-Ricci soliton, and $\omega:=g(J\cdot,\cdot)$, then $\mathcal{L}_{J\nabla f}\omega=0$ and $\mathcal{L}_{J\nabla f}J=0$, so $\mathcal{L}_{J\nabla f}g=0$. If $J\nabla f$ is complete, get an isometric torus action.

Theorem (H.-Jian 2022)

limit.

If $\mathcal X$ is a metric flow which is an $\mathbb F$ -limit of Kähler-Ricci flows, then any time slice (X,d) admits an isometric action whose restriction to the regular set is given by the flow of $J\nabla f$.

Recurring technical difficulty: $J\nabla f$ need not be complete. **Recurring solution:** Approximate by smooth, closed Kähler-Ricci flows (f will be approximated by strong almost-soliton potentials). Show the heat kernel satisfies approximate infinitesimal symmetry, and pass to the

The Static Case

Theorem (H.-Jian 2022)

If in addition $\mathcal X$ is static (hence a metric cone), then the action is locally free away from the vertex.

Proof sketch: If $X = C(\Sigma)$ and $z \in \Sigma$ is fixed by the action, then the induced action on a tangent cone based at z preserves distance to the vertex, but is also induced by a splitting.

Ricci Flows and Metric Flows Stratification of Singular Sets Improved Splitting for Kähler Metric Flows Isometric Actions on Singular Solitons

Thank you for your attention.