Analyse Élémentaire - Fonction d'une variable réel

Matéis RAGON

Sept. 2023

Définition:

- 1. Une fonction d'une variable réelle est la donnée d'un domaine $X \subset \mathbb{R}$ d'un ensemble donné $Y \subset \mathbb{R}$ et pour tout $x \in \mathbb{R}$, d'un unique $y \in \mathbb{R}$ appelé l'image de x par la fonction f.
- 2. L'image de f on dit f(x) est l'ensemble de toutes les images de $f(x) = \{f(x), x \in X\}$.
- 3. Un antécédent de $y \in Y$ par la fonction f est un élément de $x \in X$ tel que y = f(x).
- 4. L'ensemble des antécédents de y par la fonction f est noté $f^{-1}(\{y\})=\{x\in X, f(x)=y\}$

Exemple:

```
\begin{split} f[1;3] &\mapsto \mathbb{R} \\ f: x \mapsto 2x + 1 \\ &\quad \text{L'image de } f: f([1;3[) \subset [3;7[ \\ \text{Soit } y \in [3;7[, \text{ il existe un antécédent dans } [1;3[ \ 3y < 7 \\ &\iff 2y - 1 < 6 \\ &\iff 1\frac{y-1}{2} < 3 \text{ Donc ici } \frac{y-1}{2} = x. \text{ Donc } x \text{ est un antécédent de } y \text{ dans } [1;3[ \\ \text{donc } [3;7[\subset f([1;3[). \text{ L'image de } f \text{ est } [3;7[ \text{ - Les antécédents de } 4 \ (\in [3;7[) \text{ On cherche les } x \in [1;3[ \text{ tels que : } ]]) \end{split}
```

$$f(x) = 4 \iff 2x + 1 = 4 \iff 2x = 3 \iff x = \frac{3}{2}$$

De plus $\frac{3}{2} \in [1; 3[$, donc 4 a un antécédent par la fonction f qui est $\frac{3}{2}$.

Définition des fonctions usuels :

- 1. Polynômes : Soit $n \in \mathbb{N}$ et soient $a_0, ..., a_n \in \mathbb{R}$ La fonction $f : \mathbb{R} \mapsto \mathbb{R}$, $f : x \mapsto a_0 + a_1x + ... + a_nx^n$ est une fonction polynôme de degré n.
- 2. Valeur absolue:

$$|\cdot| \mathbb{R} \mapsto \mathbb{R}$$

$$x \mapsto \begin{cases} -x & si \\ x < 0 \\ x & sinon \end{cases}$$

- (a) Propriété (inégalité triangulaire) Soient $x,y\in\mathbb{R},$ on a : $\mid x+y\mid\mid x\mid+\mid y\mid\mid\overrightarrow{X}+\overrightarrow{Y}\mid\mid\overrightarrow{X}\mid+\mid\overrightarrow{Y}\mid$
- (b) Preuve : Soient $x,y\in\mathbb{R},$ $-\mid x\mid x\mid x\mid$ et $-\mid y\mid y\mid y\mid$ En somme, les inégalitées donnent : $-(\mid x\mid +\mid y\mid)x+y\mid x\mid +\mid y\mid$
- (c) A SAVOIR! $-KtK \iff |t|K$

Donc: $\iff |x+y||x|+|y|$

- 3. Racine Carré: $\sqrt{\cdot}: [0; +\infty[\to \mathbb{R} \ x \mapsto \sqrt{x} \ \text{avec} \ \sqrt{x^2} = |x| \ \text{et} \ \sqrt{x^2} = x$
- 4. Exponentielle
- 5. Logarithme néperien
- $6. \sin, \cos, \dots$

Definition: Graph d'une fonction On appelle le graph d'une fonction $X \subset \mathbb{R} \to Y \subset \mathbb{R}$ le sous-ensemble de $\mathbb{R} \times \mathbb{R}$ forme des couples $\{x, f(x)\} \in X, Y$

Définition: Injéctivité - Surjéctivité Une fonction $f: X \to Y$ est dite : - Injective si: $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \iff x_1 = x_2$

- Surjective si : $\forall y \in Y, \exists x \in X \text{ tel que } f(x) = y$
- Bijective si elle est injective **et** surjective.