

Congratulations! You passed!

▼ There's a wide variety of horses

Grade Latest Submission received 85.71% Grade 85.71%

To pass 80% or higher

Go to next item

Using Image Generator, how do you label images?	1/1 point	
It's based on the directory the image is contained in		
TensorFlow figures it out from the contents		
It's based on the file name		
O You have to manually do it		
Ocrrect That's right! The directory of the image is the label.		
2. What method on the Image Generator is used to normalize the image?	1/1 point	
○ Rescale_image		
onormalize_image		
normalize		
rescale		
 Correct You've got it! This is the correct method for normalizing images. 		
3. How did we specify the training size for the images?	1/1 point	
The target_size parameter on the validation generator		
The training_size parameter on the validation generator		
The target_size parameter on the training generator		
The training_size parameter on the training generator		
⊘ Correct		
Exactly! target_size specifies the image training size		
4. When we specify the input_shape to be (300, 300, 3), what does that mean?	1/1 point	
There will be 300 horses and 300 humans, loaded in batches of 3		
There will be 300 images, each size 300, loaded in batches of 3		
Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers		
Every Image will be 300x300 pixels, with 3 bytes to define color		
○ Correct Nailed it! input_shape specifies image resolution.		
5. If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1/1 point	
You're overfitting on your training data		
O You're overfitting on your validation data		
O No risk, that's a great result		
O You're underfitting on your validation data		
○ Correct		
Great job! The analysis corresponds too closely to the training data, and may therefore fail to fit additional		
data.		
6. Convolutional Neural Networks are better for classifying images like horses and humans because:	1/1 point	

 Correct Way to go! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction. 	
✓ There's a wide variety of humans	
Correct You've got it! CNNs are better in this case as they are independent from prior knowledge and human intervention in feature extraction.	
☑ In these images, the features may be in different parts of the frame	
 Correct Correct! The receptive fields of different neurons partially overlap such that they cover the entire visual field. 	
7. After reducing the size of the images, the training results were different. Why?	0 / 1 point
There was more condensed information in the images	0/1 point
The training was faster	
There was less information in the images	
We removed some convolutions to handle the smaller images	
Incorrect Not quite. Reducing the size doesn't condense information.	