

Stablo

Razmotrite **stablo** koje se sastoji od N **čvorova**, označenih brojevima od 0 do N-1. Čvor 0 se naziva **korijen**. Svaki čvor, osim korijena, ima jednog **roditelja**. Za svaki i, gdje je $1 \le i < N$, roditelj čvora i je čvor P[i], gdje P[i] < i. Takođe pretpostavljamo da je P[0] = -1.

Za bilo koji čvor i ($0 \le i < N$), **podstablo** od i je skup sljedećih čvorova:

- *i*, i
- bilo koji čvor čiji je roditelj *i*, i
- bilo koji čvor čiji je roditelj od roditelja i, i
- bilo koji čvor čiji je roditelj od roditelja od roditelja i, i
- itd.

Slika ispod prikazuje primjer stabla koje se sastoji od N=6 čvorova. Svaka strelica povezuje čvor sa njegovim roditeljem, osim korijena, koji nema roditelja. Podstablo čvora 2 sadrži čvorove 2,3,4 i 5. Podstablo čvora 0 sadrži svih 6 čvorova stabla, a podstablo čvora 4 sadrži samo čvor 4.

Svaki čvor ima dodijeljenu nenegativnu cjelobrojnu **težinu**. Težinu čvora i ($0 \le i < N$) označavamo sa W[i].

Vaš zadatak je da napišete program koji će odgovoriti na Q upita, svaki specifikovan parom pozitivnih cijelih brojeva (L,R). Odgovor na upit treba biti izračunat na sljedeći način.

Razmotrite dodjeljivanje cijelog broja, koji se naziva **koeficijent**, svakom čvoru stabla. Takva dodjela je opisana nizom $C[0],\ldots,C[N-1]$, gdje je C[i] ($0\leq i< N$) koeficijent dodijeljen čvoru i. Nazovimo ovaj niz **nizom koeficijenata**. Napominjemo da elementi niza koeficijenata mogu biti negativni, 0, ili pozitivni.

Za upit (L,R), niz koeficijenata se naziva **važećim** ako za svaki čvor i ($0 \le i < N$) vrijedi sljedeći uslov: suma koeficijenata čvorova u podstablu čvora i nije manja od L i nije veća od R.

Za dati niz koeficijenata $C[0],\ldots,C[N-1]$, **trošak** čvora i je $|C[i]|\cdot W[i]$, gdje |C[i]| označava apsolutnu vrijednost C[i]. Konačno, **ukupni trošak** je suma troškova svih čvorova. Vaš zadatak je izračunati, za svaki upit, minimalni **ukupni trošak** koji se može postići pomoću nekog važećeg niza koeficijenata.

Može se pokazati da za svaki upit postoji barem jedan važeći niz koeficijenata.

Detalji Implementacije

Trebate implementirati sljedeće dvije procedure:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: nizovi cijelih brojeva dužine N koji specifikuju roditelje i težine.
- Ova procedura se poziva tačno jednom na početku interakcije između grejdera i vašeg programa u svakom testnom slučaju.

```
long long query(int L, int R)
```

- *L*, *R*: cijeli brojevi koji opisuju upit.
- ullet Ova procedura se poziva Q puta nakon poziva init u svakom testnom slučaju.
- Ova procedura treba vratiti odgovor na dati upit.

Ograničenja

- $1 \le N \le 200,000$
- $1 \le Q \le 100,000$
- P[0] = -1
- $ullet 0 \leq P[i] < i$ za svaki i takav da $1 \leq i < N$
- $0 \leq W[i] \leq 1,000,000$ za svaki i takav da $0 \leq i < N$
- $1 \le L \le R \le 1,000,000$ u svakom upitu

Podzadaci

Podzadatak	Bodovi	Dodatna ograničenja	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ for each i such that $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ for each i such that $0 \leq i < N$	
5	11	$W[i] \leq 1$ for each i such that $0 \leq i < N$	
6	22	L=1	
7	19	Nema dodatnih ograničenja.	

Primjeri

Razmotri sljedeće pozive:

Stablo se sastoji od 3 čvora, korijena i njegova 2 djeteta. Svi čvorovi imaju težinu 1.

U ovom upitu L=R=1, što znači da suma koeficijenata u svakom podstablu mora biti jednaka 1. Razmotrite niz koeficijenata [-1,1,1]. Stablo i odgovarajući koeficijenti (u zasjenčenim pravougaonicima) prikazani su ispod.

Za svaki čvor i ($0 \le i < 3$), suma koeficijenata svih čvorova u podstablu od i je jednaka 1. Dakle, ovaj niz koeficijenata je važeći. Ukupni trošak se računa na sljedeći način:

Čvor	Težina	Koeficijent	Trošak
0	1	-1	$ -1 \cdot 1=1$
1	1	1	1 ·1 = 1
2	1	1	$ 1 \cdot 1 = 1$

Stoga, ukupni trošak je 3. Ovo je jedini važeći niz koeficijenata, stoga ovaj poziv treba vratiti 3.

```
query(1, 2)
```

Minimalni ukupni trošak za ovaj upit je 2, a postiže se kada je niz koeficijenata [0,1,1].

Grejder

Format ulaza:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

Gdje su L[j] i R[j] (za $0 \le j < Q$) ulazni argumenti u j-tom pozivu funkcije query.

Napomena: Drugi red ulaza sadrži **samo** N-1 **cijelih brojeva**, jer GREJDER ne čita vrijednost P[0].

Format izlaza:

```
A[0]
A[1]
...
A[Q-1]
```

Gdje je A[j] (za $0 \le j < Q$) vrijednost koju vraća j-ti poziv funkcije query.