CHEM 179 / 279 -Numerical Algorithms Applied to Computational Quantum Chemistry

Lecture 19: 3/1/2024

Outline

- Recap: Unrestricted Hartree-Fock (UHF) and bond-breaking
- How does HF chemistry compare to nature's chemistry?
- CNDO/2: An SCF method you can code yourself!

Recap: Unrestricted Hartree-Fock (UHF)

• The UHF wavefunction uses different orbitals for the α and β electrons

$$\phi_{i}^{\alpha}(\mathbf{r}) = \sum_{\mu} \omega_{\mu}(\mathbf{r}) C_{\mu i}^{\alpha} \qquad \phi_{i}^{\beta}(\mathbf{r}) = \sum_{\mu} \omega_{\mu}(\mathbf{r}) C_{\mu i}^{\beta}
\circ \qquad P_{\mu\nu}^{\alpha} = \sum_{i}^{p} C_{\mu i}^{\alpha} C_{\nu i}^{\alpha} \qquad P_{\mu\nu}^{\beta} = \sum_{i}^{q} C_{\mu i}^{\beta} C_{\nu i}^{\beta} \qquad P_{\mu\nu}^{\text{tot}} = P_{\mu\nu}^{\alpha} + P_{\mu\nu}^{\beta}$$

- Different orbitals for different spins lets us treat radicals
 - Simulating reactive chemistry requires treating these unstable radicals
 - It also enables us to correctly describe bond-breaking
- Constrained minimization of $E_{\rm UHF}$ yields two sets of SCF equations:

$$\circ \quad \mathbf{F}^{\alpha}\mathbf{C}^{\alpha} = \mathbf{S}\mathbf{C}^{\alpha}\boldsymbol{\varepsilon}^{\alpha} \qquad \qquad \mathbf{F}^{\beta}\mathbf{C}^{\beta} = \mathbf{S}\mathbf{C}^{\beta}\boldsymbol{\varepsilon}^{\beta}$$

UHF energy minimization defines the self-consistent field (SCF)

Recap: UHF is essential for bond-breaking

- RHF PES does not reach the limit of 2 H atoms!
 - Due to 50% ionic character
 - Correct answer is 100% covalent
- UHF PES reaches the correct
 limit of 2 H atoms at dissociation
 - separates from RHF at the Coulson-Fischer (CF) point
 - UHF is "spin-contaminated",
 becoming 50% singlet / 50% triplet at
 dissociation
- We use UHF when it lowers E

Hartree-Fock chemistry

- HF is the simplest "ab initio" (from 1st principles) MO theory
 - No experimental input. Only the geometry, charge, spin, and basis set.
 - o RHF and UHF together permit description of almost any potential energy surface
- How should we choose the basis set?
 - o Complete basis set (CBS) limit: approach that with a very large atomic orbital basis set
 - cc-pVQZ: Ig2f3d4p5s on C = 55 functions (at least 10 times larger than a 2s1p minimal basis)
- Can we predict structure of organic molecules? YES
 - Bond lengths: typically too short by 0.02 Å. (That's very good: I 2% error)
 - Bond angles: typically within about 2° (Also very good!)
- What about the vibrational frequencies (infrared spectra)? YES
 - Systematically about 10% too high
- What about electron densities? YES
 - Dipole moments are typically 15% too large

Hartree-Fock chemistry

- Q: Why are so many of these error trends systematic?
- A: Because bonding orbitals are occupied and antibonding orbitals are empty
 - Onsequence of the Aufbau principle and single determinant wavefunction
 - Think about mixing (configuration interaction) other (non-Aufbau) determinants to lower the energy
 - That would slightly de-occupy the occupied MOs
 - And slightly occupy the lower energy antibonding MOs
- As a consequence
 - o Bond lengths: would get longer
 - Vibrational frequencies would get lower
 - Dipole moments would get smaller
- Is everything good? NO!
 - Bond energies in error by ~ IeV per electron pair
- Isn't this a total disaster? No: 99% of true energy
 - The bond energies are always too small. More on this later.....

An SCF theory suitable for problem set 4

- While HF theory is quite useful it is too hard to implement in a problem set
 - \circ Need to code 2 new types of 1-electron integrals (KE, nuclear attraction) to make $h_{\mu
 u}$
 - \circ Need to code the analytical electron repulsion integral (ERI) tensor, $(\mu\nu \mid \lambda\sigma)$
 - Need to implement the SCF method
- We will study approximate (semi-empirical) SCF methods and you will code one!
 - An excellent reference is Beveridge and Pople "Approximate Molecular Orbital Theory"
 - I will (maybe have?) upload an electronic version to bcourses
 - o I highly recommend you read it! Better than Intro to Comp. Chem. For this purpose
- One important note about the Beveridge and Pople book!
 - O They use exponential (Slater type) orbitals rather than the Gaussians that you will use

Semi-empirical MO methods

- Roughly 60 years old and still under active development and in wide use today
- Strategy: Simplify as HF theory as much as possible with semi-empirical approximations that make it more efficient without losing too much accuracy.
 - Improve on extended Huckel by using the self-consistent field
 - Should better describe electron-electron repulsions
- Two-electron integrals, $(\mu\nu \mid \lambda\sigma)$, are the most important thing to simplify
 - $0 \qquad (\mu\nu\,|\,\lambda\sigma) = \int d\mathbf{r} \int d\mathbf{r}' \omega_{\mu}(\mathbf{r}) \omega_{\nu}(\mathbf{r}) \,|\,\mathbf{r} \mathbf{r}'|^{-1} \omega_{\lambda}(\mathbf{r}') \omega_{\sigma}(\mathbf{r}')$
 - $_{\odot}$ They fall off exponentially with inter-center distance between ω_{μ} and ω_{ν} (and likewise ω_{λ} and ω_{σ}
 - And fall off only as R^{-1} with distance between $(\mu\nu)$ and $(\lambda\sigma)$

ZDO approximation

- Zero differential overlap (ZDO) approximation drastically simplifies the ERI tensor.
 - $_{\odot}$ $\,$ There is zero overlap between different AOs on the same site: $S_{\mu\nu}=\delta_{\mu\nu}$
 - $_{\odot}$ For AO's on different sites, overlap may not be zero but $S_{\mu\nu} < 1$
 - \circ Indeed $S_{\mu\nu}$ fall off exponentially with inter-center distance between ω_μ and ω_ν (& likewise ω_λ and ω_σ)
 - O Motivates the ZDO approximation for ERIs: $(\mu \nu \,|\, \lambda \sigma) \approx (\mu \mu \,|\, \lambda \lambda) \delta_{\mu\nu} \delta_{\lambda\sigma}$
- The ZDO approximation is not applied to the core hamiltonian, $h_{\mu\nu}$.
- Rotational invariance is a key requirement for a good model
 - The true energy is unchanged when the (free) molecule is rotated
 - O This will not happen if we use the "raw" ZDO approximation: $(\mu\nu \mid \lambda\sigma) \approx (\mu\mu \mid \lambda\lambda)\delta_{\mu\nu}\delta_{\lambda\sigma}$

The CNDO/2 hamiltonian: A ZDO model

- Achieve rotational invariance by modeling the retained on-site integrals as spherically symmetric quantities:
 - $\circ \quad (\mu\nu \,|\, \lambda\sigma) \approx (\mu\mu \,|\, \lambda\lambda)\delta_{\mu\nu}\delta_{\lambda\sigma}$
 - $\circ \quad (\mu \mu \,|\, \lambda \lambda) \leftarrow \gamma_{AB}$
- The ERI problem is reduced to calculating $\mathcal{O}(A^2)$ ERIs (A is number of atoms). Great! What are they?
- $\gamma_{AB} = \int d\mathbf{r} \int d\mathbf{r}' [s_A(\mathbf{r})]^2 |\mathbf{r} \mathbf{r}'|^{-1} [s_B(\mathbf{r}')]^2$
- In summary, we have kept the largest ERIs and made a rotationally invariant approximation for them.

The CNDO/2 Fock matrix

•
$$\gamma_{AB} = \int d\mathbf{r} \int d\mathbf{r}' [s_A(\mathbf{r})]^2 |\mathbf{r} - \mathbf{r}'|^{-1} [s_B(\mathbf{r}')]^2$$

- Diagonal Fock matrix elements with ZDO
 - Figure out where each term of the ab initio Hamiltonian is accounted for.....

$$f^{\alpha}_{\mu\mu} = -\frac{1}{2} \left(I_{\mu} + A_{\mu} \right) + \left[\left(p^{\text{tot}}_{AA} - Z_{A} \right) - \left(p^{\alpha}_{\mu\mu} - \frac{1}{2} \right) \right] \gamma_{AA} + \sum_{B \neq A} \left(p^{\text{tot}}_{BB} - Z_{B} \right) \gamma_{AB}$$
 Tabulated On-site On-site Off-site electrostatics Exchange electrostatics

Off-diagonal Fock matrix elements with ZDO

$$f^{\alpha}_{\mu\nu} = \frac{1}{2} \left(\beta_A + \beta_B \right) s_{\mu\nu} - p^{\alpha}_{\mu\nu} \gamma_{AB}$$
Tabulated
site-site
h+J
site-site
exchange

quantity	Н	C	N	O	F
Z · 0	7.176	14.051	19.316	25.390	32.272
$\frac{1}{2}(I_p + A_p)$		5.572	7.275	9.111	11.080
$-oldsymbol{eta}$	9	21	25	31	39

