

《计算机组成原理实验》 实验报告

 专业 (班级):
 19 级计算机科学与技术 (人工智能与大数据方向)

 学生姓名:
 陈恩婷

 学号:
 19335015

学院名称: 计算机学院

时 间: 2020 年 12 月 11 日

成绩:

实 验: 单周期CPU设计与实现

一. 实验目的

- 1. 理解MIPS常用的指令系统并掌握单周期CPU的工作原理与逻辑功能实现。
- 2. 通过对单周期CPU的运行状况进行观察和分析,进一步加深理解。

二. 实验内容

1. 利用 HDL 语言,基于 Xilinx FPGA basys3 实验平台,用 Verilog HDL 语言或 VHDL 语言来编写,实现单周期CPU 的设计,这个单周期 CPU 能够完成 16 条MIPS 指令,至少包含以下指令:

支持基本的内存操作如lw, sw指令

支持基本的算术逻辑运算如add, sub, and, ori, slt, addi指令 支持基本的程序控制如beq, j指令

- 2. 掌握各个指令的相关功能并输出仿真结果进行验证,并最后在 FGPA 上实现,将 其中的 alu 运算结果在开发板数码管上显示出来。
- 3. 可拓展添加其他指令。

三. 实验原理

1. 单时钟周期 CPU

单周期 CPU 的特点是每条指令的执行只需要一个时钟周期,一条指令执行完再执行下一条指令。再这一个周期中,完成更新地址,取指,解码,执行,内存操作以及寄存器操作。由于每个时钟上升沿时更新地址,因此要在上升沿到来之前完成所有运算,而这所有的运算除可以利用一个下降沿外,只能通过组合逻辑解决。这给寄存器和存储器 RAM 的制作带来了些许难度。且因为每个时钟周期的时间长短必须统一,因此在确定时钟周期的时间长度时,要依照最长延迟的指令时间来定,这也限制了它的执行效率。

单周期 CPU 在每个 CLK 上升沿时更新 PC,并读取新的指令。此指令无论执行时间长短,都必须在下一个上升沿到来之前完成。其时序示意如图 I。

下图是一个单周期 CPU 的顶层结构实现。主要器件有程序计数器 PC、程序存储器、寄存器堆、ALU、数据存储器和控制部件等。所有的控制信号简单地说明如下:

图Ⅱ 单时钟周期 CPU 详细逻辑设计图参考

其中,控制单元(Ctrl Unit)定义如下:

- (1) JUMP: 为 1 时,选择跳转目标地址;为 0 时,选择由 Branch 选出的地址;
- (2) MemToReg: 为1时,选择存储器数据;为0时,选择ALU 输出的数据;
- (3) Branch: 为 1 时,选择转移目标地址; 为 0 时,选择 PC +4 (图中的 NextPC);
- (4) MemWrite: 为 1 时写入存储器。存储器地址由 ALU 的输出决定,写入数据为寄存器 rt 的内容;
- (5) ALUOP: ALU 控制码;
- (6) ALUSrc: ALU 操作数 B 的选择,为 1 时,选择扩展的立即数;为 0 时,选择寄存器数据;

- (7) RegWrite: 为 1 时写入寄存器堆,目的寄存器号是由 RegDst 选出的 rt 或 rd,写入数据是由 MemToReg 选出的存储器数据或 ALU 的输出结果;
- (8) ExtOp: 符号扩展。为1时,符号扩展;为0时,0扩展;
- (9) RegDst: 目的地址, 为 1 时, 选择 rd; 为 0 时, 选择 rt。

2. MIPS 指令集

本次实验共涉及三种类型的 MIPS 指令,分别为 R 型、I 型和 J 型,三种类型的 MIPS 指令格式定义如下:

- R (register) 类型的指令从寄存器堆中读取两个源操作数, 计算结果写回寄存器 堆;
- ▶ I (immediate) 类型的指令使用一个 16 位的立即数作为一个源操作数;
- ▶ J (jump) 类型的指令使用一个 26 位立即数作为跳转的目标地址 (target address);

图Ⅲ MIPS 指令集

一条指令的执行过程一般有下面的五个阶段,指令的执行过程就是这五个状态的重复 过程:

图 IV MIPS 指令集

在本次实验中,至少要完成16条指令的功能。

MIPS #	§ 31	种指	令
		1	

	1778								
助记 符	指	Ť	\$	格	i i	式	示 例	示例含义	操作及解释
BIT#	3126	2521	2016	1511	106	50			
R-类型	ор	rs	rt	rd	shamt	func			
add	000000	rs	rt	rd	00000	100000	add \$1,\$2,\$3	\$1=\$2+\$3	(rd)←(rs)+(rt); rs=\$2,rt=\$3,rd=\$1
addu	000000	rs	rt	rd	00000	100001	addu \$1,\$2,\$3	\$1=\$2+\$3	(rd)←(rs)+(rt); rs=\$2,rt=\$3,rd=\$1,无符

									号数
sub	000000	rs	rt	rd	00000	100010	sub \$1,\$2,\$3	\$1=\$2-S3	(rd)←(rs)-(rt); rs=\$2,rt=\$3,rd=\$1
subu	000000	rs	rt	rd	00000	100011	subu \$1,\$2,\$3	\$1=\$2-S3	(rd)←(rs)-(rt); rs=\$2,rt=\$3,rd=\$1,无符 号数
and	000000	rs	rt	rd	00000	100100	and \$1,\$2,\$3	\$1=\$2&S3	(rd)←(rs)&(rt); rs=\$2,rt=\$3,rd=\$1
or	000000	rs	rt	rd	00000	100101	or \$1,\$2,\$3	\$1=\$2 \$3	(rd)←(rs) (rt); rs=\$2,rt=\$3,rd=\$1
xor	000000	rs	rt	rd	00000	100110	xor \$1,\$2,\$3	\$1=\$2^S3	(rd)←(rs)^(rt); rs=\$2,rt=\$3,rd=\$1
nor	000000	rs	rt	rd	00000	100111	nor \$1,\$2,\$3	\$1= ~(\$2 S3)	(rd)←~((rs) (rt)); rs=\$2,rt=\$3,rd=\$1
slt	000000	rs	rt	rd	00000	101010	slt \$1,\$2,\$3	if(\$2<\$3) \$1=1 else \$1=0	if (rs< rt) rd=1 else rd=0;rs=\$2,rt=\$3, rd=\$1
sltu	000000	rs	rt	rd	00000	101011	sltu \$1,\$2,\$3	if(\$2<\$3) \$1=1 else \$1=0	if (rs< rt) rd=1 else rd=0;rs==\$2,rt=\$3, rd=\$1,无符号数
sll	000000	00000	rt	rd	shamt	000000	sll \$1,\$2,10	\$1=\$2<<10	$(rd)\leftarrow(rt)<<$ shamt,rt=\$2,rd=\$1,shamt=
srl	000000	00000	rt	rd	shamt	000010	srl \$1,\$2,10	\$1=\$2>>10	(rd)←(rt)>>shamt, rt=\$2, rd=\$1, shamt=10, (逻辑右移)
sra	000000	00000	rt	rd	shamt	000011	sra \$1,\$2,10	\$1=\$2>>10	(rd)←(rt)>>shamt, rt=\$2, rd=\$1, shamt=10, (算术右移, 注意符号位 保留)
sllv	000000	rs	rt	rd	00000	000100	sllv \$1,\$2,\$3	\$1=\$2<<\$3	(rd)←(rt)<<(rs), rs=\$3,rt=\$2,rd=\$1
srlv	000000	rs	rt	rd	00000	000110	srlv \$1,\$2,\$3	\$1=\$2>>\$3	(rd)←(rt)>>(rs), rs=\$3,rt=\$2,rd=\$1, (逻 辑右移)
srav	000000	rs	rt	rd	00000	000111	srav \$1,\$2,\$3	\$1=\$2>>\$3	(rd)←(rt)>>(rs), rs=\$3,rt=\$2,rd=\$1, (算 术右移,注意符号位保留)
jr	000000	rs	00000	00000	00000	001000	jr \$31	goto \$31	(PC)←(rs)
I-类型	ор	rs	rt		immediate	e			
				immediate					
addi	001000	rs	rt		immediate	e	addi \$1,\$2,10	\$1=\$2+10	(rt)←(rs)+(sign-extend)immediate,rt=\$ 1,rs=\$2
addi	001000	rs rs	rt rt		immediate		addi \$1,\$2,10 addiu \$1,\$2,10	\$1=\$2+10 \$1=\$2+10	
						2			1,rs=\$2 (rt)←(rs)+(sign-extend)immediate,rt=\$
addiu	001001	rs	rt		immediate	2	addiu \$1,\$2,10	\$1=\$2+10	$1, rs=\$2$ (rt) \leftarrow (rs)+(sign-extend)immediate, rt= $\$$ 1, rs= $\$2$ (rt) \leftarrow (rs)&(zero-extend)immediate, rt=
addiu	001001	rs rs	rt		immediate	e e	addiu \$1,\$2,10 andi \$1,\$2,10	\$1=\$2+10 \$1=\$2&10	$1, rs = \$2$ $(rt) \leftarrow (rs) + (sign-extend) immediate, rt = \$$ $1, rs = \$2$ $(rt) \leftarrow (rs) \& (zero-extend) immediate, rt = \$1, rs = \$2$ $(rt) \leftarrow (rs) (zero-extend) immediate, rt = \$$
addiu andi ori	001001 001100 001101	rs rs	rt rt		immediate immediate	2	addiu \$1,\$2,10 andi \$1,\$2,10 ori \$1,\$2,10	\$1=\$2+10 \$1=\$2&10 \$1=\$2 10	$1, rs = \$2$ $(rt) \leftarrow (rs) + (sign-extend) immediate, rt = \$$ $1, rs = \$2$ $(rt) \leftarrow (rs) \& (zero-extend) immediate, rt = \$$ $\$1, rs = \2 $(rt) \leftarrow (rs) (zero-extend) immediate, rt = \$$ $1, rs = \$2$ $(rt) \leftarrow (rs) \land (zero-extend) immediate, rt = \$$
addiu andi ori xori	001001 001100 001101 001110	rs rs rs	rt rt rt		immediate immediate immediate	2	addiu \$1,\$2,10 andi \$1,\$2,10 ori \$1,\$2,10 xori \$1,\$2,10	\$1=\$2+10 \$1=\$2&10 \$1=\$2 10 \$1=\$2^10	1,rs=\$2 (rt)←(rs)+(sign-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)&(zero-extend)immediate,rt=\$ \$1,rs=\$2 (rt)←(rs) (zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)^(zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←immediate<<16 & 0FFFF0000H, 将 16 位立即数放到目的寄存器高 16
addiu andi ori xori	001001 001100 001101 001110 001111	rs rs rs 00000	rt rt rt rt		immediate immediate immediate immediate	2	addiu \$1,\$2,10 andi \$1,\$2,10 ori \$1,\$2,10 xori \$1,\$2,10	\$1=\$2+10 \$1=\$2&10 \$1=\$2 10 \$1=\$2^10 \$1=10*65536 \$1=Memory[1,rs=\$2 (rt)←(rs)+(sign-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)&(zero-extend)immediate,rt=\$ \$1,rs=\$2 (rt)←(rs) (zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)^(zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)^(zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←immediate<<16 & 0FFFF0000H, 将 16 位立即数放到目的寄存器高 16 位,目的寄存器的低 16 位填 0 (rt)←Memory[(rs)+(sign_extend)offset],
addiu andi ori xori lui	001001 001100 001101 001110 001111 100011	rs rs rs one of the second of	rt rt rt rt rt		immediate immediate immediate immediate	2	addiu \$1,\$2,10 andi \$1,\$2,10 ori \$1,\$2,10 xori \$1,\$2,10 lui \$1,10 lw \$1,10(\$2)	\$1=\$2+10 \$1=\$2&10 \$1=\$2 10 \$1=\$2^10 \$1=10*65536 \$1=Memory[\$2+10] Memory[1,rs=\$2 (rt)←(rs)+(sign-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)&(zero-extend)immediate,rt=\$ \$1,rs=\$2 (rt)←(rs) (zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)^(zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←(rs)^(zero-extend)immediate,rt=\$ 1,rs=\$2 (rt)←immediate<<16 & 0FFFF0000H, 将 16 位立即数放到目的寄存器高 16 位,目的寄存器的低 16 位填 0 (rt)←Memory[(rs)+(sign_extend)offset], rt=\$1,rs=\$2 Memory[(rs)+(sign_extend)offset]←(rt),

slti	001010	rs	rt	immediate	slti \$1,\$2,10	if(\$2<10) \$1=1 else \$1=0	if ((rs)<(Sign-Extend)immediate) then (rt)←1; else (rt)←0, rs=\$2, rt=\$1
sltiu	001011	rs	rt	immediate	sltiu \$1,\$2,10	if(\$2<10) \$1=1 else \$1=0	if ((rs)<(Zero-Extend)immediate) then (rt) \leftarrow 1; else (rt) \leftarrow 0, rs=\$2, rt=\$1
J-类型	ор			address			
j	000010	address			j 10000	goto 10000	(PC)←((Zero-Extend) address<<2),
							address=10000/4

图 V 指令详细结构

以上即是 MIPS 指令说明。

四. 实验器材

电脑一台, Xilinx Vivado 软件一套, Basys3 板一块。

五. 实验过程与结果

1. CPU 设计的思想、方法:

该 CPU 主要由 9 个模块组成,各个子模块分别设计其特定的功能,最终利用一个总的模块进行子模块间连接,使得整个 CPU 能连贯执行指令,在仿真结果中观察设计结果,最终进行硬件下载,验证设计。其中各个模块简单功能如下:

- (1) 指令存储器模块:具备基本的读写功能,用于存放指令。
- (2) 寄存器堆模块:由 32 个 32 位的寄存器组成,提供较大的存储空间,用于存放暂存数据和指令。
- (3) 算术逻辑运算器模块: 执行加减法等算术运算,与非或等逻辑运算,以及比较移位传送等操作的功能部件,是该 CPU 的设计核心部分,存在不同的运算处理功能,是体现实验设计结果正确性的模块。
- (4) 立即数扩展模块: 执行 I 型指令时需要立即数扩展, 该模块用于 MIPS 符号扩展, 将 16 位数据扩展为 32 位数据。
- (5) 主控制模块: 用于控制各个模块之间的分工运行,产生不同数据通路的控制信号,保证指令顺序执行不发生紊乱。
- (6) ALU 控制模块: 用于生成 ALU 执行各种功能的控制信号, 使 ALU 内部运行不发生紊乱。
 - (7) 数据存储器模块,用于 LW/SW 指令数据存取。
 - (8) 取指模块:进行指令的取出及译码,同时包括程序计数器 PC 运行设计。
 - (9) 显示模块 DISPLAY 数码管显示,显示 16 位运算结果。

各模块设计

1 寄存器模块:

寄存器组是指令操作的主要对象,MIPS 处理器里一共有 32 个 32 位的寄存器,故可以声明一个包含 32 个 32 位的寄存器数组。读寄存器时需要 Rs,Rd 的地址,得到其数据。写寄存器 Rd 时需要所写地址,所写数据,同时需要写使能。以上所有操作需要在时钟和复位信号控制下操作。故寄存器组设计如下:


```
`timescale 1ns / 1ps//寄存器堆模块
module RegFile(Clk,
            Clr,
            Write_Reg,
            R_Addr_A,
            R_Addr_B,
            W_Addr,
            W_Data,
            R_Data_A,
            R_Data_B);
   parameter ADDR = 5;//寄存器编码地址位宽
   parameter NUMB = 1<<ADDR;//寄存器个数
   parameter SIZE = 32;//寄存器数据位数
   input Clk;//写入时钟信号
   input Clr;//清零信号
   input Write_Reg;//写控制信号
   input [ADDR:1]R_Addr_A;//A 端口读寄存器地址
   input [ADDR:1]R_Addr_B;//B 端口读寄存器地址
   input [ADDR:1]W_Addr;//写寄存器地址
   input [SIZE:1]W_Data;//写入数据
   output [SIZE:1]R Data A;//A端口读出数据
   output [SIZE:1]R_Data_B;//B端口读出数据
```

reg [SIZE:1]REG_Files[0:NUMB-1];//寄存器堆本体

```
integer i;//用于遍历 NUMB 个寄存器
   initial//初始化 NUMB 个寄存器,全为 0
      for(i = 0;i<NUMB;i = i+1)</pre>
          REG_Files[i] <= 0;</pre>
      always@(negedge Clk or posedge Clr)//时钟信号或清零信号上升沿
      begin
          if (Clr)//清零
             for(i = 0;i<NUMB;i = i+1)</pre>
                 REG Files[i] <= 0;</pre>
          else//不清零,测写控制,高电平则写入寄存器
          if (Write_Reg)
             REG_Files[W_Addr] <= W_Data;</pre>
       end
                //读操作没有使能或时钟信号控制,使用数据流(组合逻辑电路,要
时钟控制)
   assign R Data A = REG Files[R Addr A];
   assign R Data B = REG Files[R Addr B];
endmodule
```

2 控制器模块:

根据指令中的指令码(op)和功能码(funct)的不同组合输出相应的控制信号。


```
output reg memWrite,
         output reg branch,
         output reg ExtOp, //符号扩展方式 1: sign-extend 0: zero-extend
         output reg[3:0] aluop, // 经过 ALU 控制译码决定 ALU 功能
         output reg jmp);
   always@(opCode) begin
   // 操作码改变时改变控制信号
   case(opCode) 6'b000010: begin
   regDst = 0; aluSrc = 0; memToReg = 0;
   regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0111;
jmp = 1; ExtOp = 1;
   end // J型指令操作码: 000010, 无 ALU
   6'b000000: begin
   regDst = 1; aluSrc = 0; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0000;
jmp = 0; ExtOp = 1;
   end // R型指令操作码: 000000
   //'I'型指令操作码
   6'b000100: begin
   regDst = 0; aluSrc = 0; memToReg = 0;
   regWrite = 0; memRead = 0; memWrite = 0; branch = 1; aluop = 4'b0101;
jmp = 0; ExtOp = 1;
   end // 'beq' 指令操作码: 000100
   6'b000101: begin
   regDst = 0; aluSrc = 0; memToReg = 0;
   regWrite = 0; memRead = 0; memWrite = 0; branch = 1; aluop = 4'b0110;
jmp = 0; ExtOp = 1;
   end // 'bne' 指令操作码: 000101
   6'b000001: begin
   regDst = 0; aluSrc = 0; memToReg = 0;
   regWrite = 0; memRead = 0; memWrite = 0; branch = 1; aluop = 4'b1010;
jmp = 0; ExtOp = 1;
   end // 'bltz' 指令操作码:000001
   6'b001000: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0011;
jmp = 0; ExtOp = 1;
   end // 'addi' 指令操作码: 001000
   6'b001001: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1001;
```

```
jmp = 0; ExtOp = 1;
   end // 'addiu' 指令操作码:001001
   6'b001100: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0001;
jmp = 0; ExtOp = 0;
   end // 'andi' 指令操作码: 001100
   6'b001101: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0010;
jmp = 0; ExtOp = 0;
   end // 'ori' 指令操作码: 001101
   6'b001110: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1000;
jmp = 0; ExtOp = 0;
   end // 'xori' 指令操作码: 001110
   6'b001010: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0100;
jmp = 0; ExtOp = 1;
   end // 'slti' 指令操作码: 001010
   6'b001011: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1011;
jmp = 0; ExtOp = 1;
   end // 'sltiu' 指令操作码:001011
   6'b001111: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0111;
jmp = 0; ExtOp = 0;
   end // 'lui' 指令操作码: 001111
   6'b100011: begin
   regDst = 0; aluSrc = 1; memToReg = 1;
   regWrite = 1; memRead = 1; memWrite = 0; branch = 0; aluop = 4'b0011;
jmp = 0; ExtOp = 1;
   end // 'lw' 指令操作码: 100011
   6'b101011: begin
   regDst = 0; aluSrc = 1; memToReg = 0;
   regWrite = 0; memRead = 0; memWrite = 1; branch = 0; aluop = 4'b0011;
```

```
jmp = 0; ExtOp = 1;
end // 'sw' 指令操作码: 101011

default: begin
  regDst = 0; aluSrc = 0; memToReg = 0;
  regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 3'b0xxx;
jmp = 0; ExtOp = 0;
  end // 默认设置
  endcase end
```

endmodule

3 ALU 控制译码模块

ALU 主要执行5 种操作: 与,或,加,减,小于设置。这五种操作可以使用四位的编码表示: 0000,0001,0010,0110,0111。指令不同,则对应的ALU 运算不同,所以该模块需要根据指令来控制 ALU 进行正确的运算。

lw, sw, addi 指令均要求 ALU 执行加操作,则可分为一类, aluop编码 0011; beq 指令要求ALU 执行减操作,则分为一类,编码0101; 最后一类是 R 型指令,可以编码为 0000;但不同的R 型指令对应不同的 ALU 运算,故需要再通过指令的功能码进一步确定 ALU 的运算。

最终该模块即实现4 位操作码以及6 位功能码输出4 位ALU 控制信号码。

译码器的真值表:

ALU 功能真值表

指令	ALUop	func	ALU_Operation	功能描述
R	0000	100000	0010	Add(加)
R	0000	100010	0110	Sub(减)
R	0000	100100	0000	And (与)
R	0000	100101	0001	Or (或)
R	0000	100111	0101	Nor (或非)
R	0000	101010	0111	Slt(小于设置)
lui	0111	op=001111	1101	Lui(设置高位)
R	0000	000000	1000	SII(左移)
R	0000	000010	1001	Srl(右移)
R	0000	000011	1010	Sra(算术右移)
beq	0101	Х	0110	Rs==rt,zero=1
bne	0110	Х	0011	Rs==rt,zero=0

ori	0010	Х	0001	
xori	1000	X	0100	异或
slti	0100	Х	0111	(小于设置)
lw	0011	Х	1010	Add unsigned
SW	0011	Х	1010	Add unsigned
addiu	0011	Х	1010	Add unsigned
addi	1001	Х	0010	Add (加)

```
`timescale 1ns / 1ps
module aluctr(input [3:0] ALUOp,
             input [5:0] funct,
             output reg [3:0] ALUCtr);
   always @(ALUOp or funct) // 如果操作码或者功能码变化执行操作
       casex({ALUOp, funct}) // 拼接操作码和功能码便于下一步的判断
           10'b0011xxxxxx: ALUCtr = 4'b1010; // lw , sw , addiu
           10'b1001xxxxxx: ALUCtr = 4'b0010; // addi
           10'b0101xxxxxx: ALUCtr = 4'b0110; // beq
           10'b0110xxxxxx: ALUCtr = 4'b0011; // bne
           10'b0000100000: ALUCtr = 4'b0010; // add
           10'b0000100010: ALUCtr = 4'b0110; // sub
           10'b0000100100: ALUCtr = 4'b0000; // and
           10'b0000100101: ALUCtr = 4'b0001; // or
           10'b0000101010: ALUCtr = 4'b0111; // slt
           10'b1011xxxxxx: ALUCtr = 4'b1011; // sltiu
           10'b0000000000: ALUCtr = 4'b1000; // sll
           10'b0100xxxxxx: ALUCtr = 4'b0111; // slt
           10'b0111xxxxxx: ALUCtr = 4'b1101; // lui
           10'b0010xxxxxx: ALUCtr = 4'b0001; // ori
           10'b1010xxxxxx: ALUCtr = 4'b0111; // bltz
           10'b0001xxxxxx: ALUCtr = 4'b0000; // andi
           10'b1000xxxxxx: ALUCtr = 4'b0100; // xori
           10'b0000100111: ALUCtr = 4'b0101; // nor
           10'b0000000010: ALUCtr = 4'b1001; // srl
                                  = 4'b1111;
           default:ALUCtr
           // still available: 1010, 1100, 1110
       endcase
endmodule
```

4 ALU 运算器模块

ALU 的逻辑框图如图所示。

```
ALUCtr[3:0]
    Input1[31:0] .
                       ■ aluRes[31:0]
    Input2[31:0]
          □ ・・・・ → nb が □
      在图中各信号的功能:
      input1: 操作数, 32位, 输入;
   ♦ input2: 操作数, 32 位, 输入;
   ♦ ALUCtr: 4 位操作码,输入;
   ♦ aluRes: 运算结果, 32 位, 输出;
      zero: 零标志, 1位; 当运算结果为0时, 该位为1, 否则为0;
`timescale 1ns / 1ps
module alu(input [4:0] shamt,
          input [31:0] input1,
          input [31:0] input2,
          input [3:0] aluCtr,
          output reg[31:0] aluRes,
          output reg ZF,
          output reg CF,OF,
          output reg Branch_ctr );
always@(*) // 运算数或控制码变化时操作
begin
case(aluCtr)
4'b0000: // and
begin
    aluRes = input1 & input2; if (aluRes == 0) ZF = 1; else ZF = 0;
   OF = 0; CF = 0; Branch_ctr = 0;
4'b0001: // or
begin
    aluRes = input1 | input2; if (aluRes == 0) ZF = 1; else ZF = 0;
   OF = 0; CF = 0; Branch_ctr = 0;
4'b0010: // 加 addi add
begin
    {CF,aluRes} = $signed(input1) + $signed(input2); if (aluRes == 0)
   ZF = 1; else ZF = 0;
   OF
               = input1[31]^input2[31]^aluRes[31]^CF;//溢出标志公式
    Branch_ctr = 0;
```

end

end

```
end
4'b1010: // 加 addiu lw sw
begin
   {CF,aluRes} = input1 + input2; if (aluRes == 0) ZF = 1; else ZF = 0;
  OF = 0;//溢出标志公式
   Branch_ctr = 0;
end
4'b0110: // 减 sub
begin
    {CF,aluRes} = input1 - input2; if (aluRes == 0)
    ZF = 1; else ZF = 0;
    OF = input1[31]^input2[31]^aluRes[31]^CF;//溢出标志公式
    if ( aluRes == 0 ) Branch ctr = 1; else Branch ctr = 0;
end
4'b0101: // 或非 nor
begin
    aluRes = ~(input1 | input2); if (aluRes == 0) ZF = 1;
    else ZF = 0;
    OF = 0; CF = 0;
    Branch_ctr = 0;
end
4'b0111: // 小于设置 slt
begin
    if ($signed(input1)<$signed(input2)) aluRes = 1;</pre>
    //($signed(a) < $signed(b));</pre>
    else aluRes = 0; if (aluRes == 0) ZF = 1; else ZF = 0;
    if ( aluRes == 0 ) Branch_ctr = 0; else Branch_ctr = 1;
    OF = 0; CF = 0;
end
4'b1011: // 小于设置 sltiu
begin
    if ($signed(input1)<input2) aluRes = 1;</pre>
    //($signed(a) < $signed(b));</pre>
    else aluRes = 0; if (aluRes == 0) ZF = 1; else ZF = 0;
    if ( aluRes == 0 ) Branch_ctr = 0; else Branch_ctr = 1;
    OF = 0; CF = 0;
end
```

aluRes = input2<<shamt; if (aluRes == 0) ZF = 1; else ZF = 0;

4'b1000://sll

OF = 0; CF = 0; Branch_ctr = 0;

begin

end

```
4'b1001://srl
begin
   aluRes = input2>>shamt; if (aluRes == 0) ZF = 1; else ZF = 0;
   OF = 0; CF = 0; Branch_ctr = 0;
end
4'b0011://bne
begin
   aluRes = input1-input2;
   if (aluRes == 0) ZF = 0; //这里的 zero 是指不为 0, 不相等
   else ZF = 1;
   if ( aluRes == 0 ) Branch_ctr = 0; else Branch_ctr = 1;
   OF = 0; CF = 0;
end
4'b0100://xor
begin
 aluRes = (~input1&input2)|(input1&~input2); if (aluRes == 0) ZF = 1;
 else ZF = 0;
 OF = 0; CF = 0; Branch_ctr = 0;
end
4'b1101://lui
begin
   aluRes = {input2[15:0],16'b0000 0000 0000 0000};
   OF = 0; CF = 0; ZF = 0; Branch_ctr = 0;
end
default:
begin
   aluRes = 0; ZF = 0; OF = 0; ZF = 0; Branch_ctr = 0;
end
endcase
end
endmodule
5 符号扩展模块
`timescale 1ns / 1ps
module signext(input [15:0] inst, // 输入 16 位
             input ExtOp,
             output [31:0] data); // 输出 32 位
   // 根据符号位补充符号
   // 如果符号位为 1,则补充 16 个 1,即 16 h ffff
   // 如果符号位为 0 , 则补充 16 个 0
   assign data = inst[15:15]&ExtOp?{16'hffff,inst}:{16'h0000,inst};
endmodule
```

6 指令存储器模块。

该模块有 4 位地址输入和 32 位数据输出,首先将 16 种类型的 16 条指令写入存储单元中, 然后根据 4 位地址输入选择相应的单元指令内容,将数据写入到输出变量中。地址输入数据、存储单元编号与指令的对应规则如下表所示:

由于我们的主要目的是对所设计的控制器进行测试,故可以不使用 IP 核设计指令存储器,直接使用通用代码实现。

```
reg [31:0] regs [0:255]; // 寄存器组
```

根据输入,读取相应单元的的值输出,对相应存储单元进行写操作。

7 数据存储器 (LW,SW)

8 数码管显示模块

七段译码显示的内容是 16 位的,而 ALU 的运算结果是 32 位的,将运算结果分为高十六位和低十六位,分别传进七段译码模块;在顶层模块可用一个开关,来选择是显示高 16 位还是低 16 位;

assign disp_num = (SW[2] == 1)? data[31:16]:display_content[15:0]; sm_wei 选择哪一个数码管亮, sm_duan 选择数码管的哪一段亮, sm_wei 变换的速度 是 1 秒 1000 次, 使人眼看起来数码管是同时显示数值的。

```
`timescale 1ns / 1ps
module display(clk,
              data,
              sm_wei,
              sm_duan);
   input clk;
   input [15:0] data;
   output [3:0] sm_wei;
   output [6:0] sm_duan;
   //分频
   integer clk_cnt;
   reg clk_400Hz;
   always @(posedge clk)
       if (clk_cnt == 32'd100000)
   begin clk_cnt <= 1'b0; clk_400Hz <= ~clk_400Hz;</pre>
   end else clk_cnt <= clk_cnt + 1'b1;</pre>
   //位控制
   reg [3:0]wei_ctrl = 4'b1110;
   always @(posedge clk_400Hz)
   wei_ctrl <= {wei_ctrl[2:0],wei_ctrl[3]}; //位控制
   reg [3:0]duan_ctrl;
   always @(wei_ctrl or data)
       case(wei_ctrl)
           4'b1110:duan_ctrl = data[3:0];
```

```
4'b1101:duan_ctrl = data[7:4];
          4'b1011:duan ctrl = data[11:8];
          4'b0111:duan ctrl = data[15:12];
          default:duan_ctrl = 4'hf;
       endcase
   //解码模块
   reg [6:0]duan;
   always @(duan_ctrl)
      case(duan_ctrl)
          4'h0:duan
                        = 7'b100_0000;//0
          4'h1:duan
                      = 7'b111 1001;//1
          4'h2:duan
                      = 7'b010_0100;//2
          4'h3:duan
                      = 7'b011_0000;//3
          4'h4:duan
                       = 7'b001 1001;//4
          4'h5:duan
                       = 7'b001 0010; //5
          4'h6:duan
                       = 7'b000 0010; //6
          4'h7:duan
                      = 7'b111_1000;//7
          4'h8:duan
                      = 7'b000 0000;//8
          4'h9:duan
                      = 7'b001 0000;//9
          4'ha:duan
                       = 7'b000_1000;//a
          4'hb:duan
                      = 7'b000_0011;//b
          4'hc:duan
                       = 7'b100_0110;//c
          4'hd:duan
                       = 7'b010_0001;//d
          4'he:duan
                      = 7'b000 0110;//e
          4'hf:duan
                       = 7'b000_1110;//f
          // 4'hf:duan = 7'b111_1111;//不显示
          default : duan = 7'b100_0000;//0
      endcase
   //----
   assign sm_wei = wei_ctrl;
   assign sm_duan = duan;
endmodule
9 PC 模块
`timescale 1ns / 1ps
module NPC(
   input reset,
   input Branch, Jump, Clk,
   input Branch_ctr, //for blez
   input halt,
   input [31:0] extimm,
   input [25:0] target,
   inout [31:0] PC
);
```

```
wire [31:0] tmp1,tmp2,tmp3,tmp4,nextPC;
   wire tmp;
   wire [31:0]NPC;
    assign tmp=Branch&Branch ctr;
    assign tmp1=(halt)?PC:PC+4;
    assign tmp2=(extimm<<2)+PC+4;</pre>
    assign tmp3=(tmp)?tmp2:tmp1;
   assign tmp4={PC[31:28],target, {2{1'b0}}};
    assign nextPC=(Jump)?tmp4:tmp3;
   PCCount pcc( nextPC, Clk, NPC);
   assign PC = (reset)? 0:NPC;
endmodule
`timescale 1ns / 1ps
module PCCount(
   input[31:0] nextPC,
    input Clk,
   output[31:0] NPC
);
   reg[31:0] PC;
   always @(negedge Clk)
   begin
       PC<=nextPC;</pre>
   end
   assign NPC = PC;
endmodule
```

10 主模块

TOP 文件,组装各个模块

顶层模块需要将前面的多个模块实例化后,通过导线以及多路复用器将各部件链接起来。顶层模块需要输入时钟和复位信号,然后首先读取 IM_unit 的机器指令,然后通过各个模块执行。

完成顶层模块后就可以进行仿真来验证自己的基础指令功能或额外添加功能是否正确, 所以在这里我输出了大量信号量和中间值来观察,以免在出现错误时可以及时观察对应值的 结果是否符合预期,便于发现错误。

```
`timescale 1ns / 1ps
module top(
    input clkin,
    input clk_system,
    input reset,
    input [2:0] SW, //开关
    output [6:0] sm_duan,//段码
```

```
output [3:0] sm_wei,//哪个数码管
output [31:0] aluRes,
output [31:0] instruction,
output [31:0] PC,
output branch, jmp,
output [31:0] expand,
output ZF,
output OF,
output Branch_ctr,
//output [31:0] tmp1,tmp2,tmp3,tmp4,nextPC,
output [4:0] shamt,
output [31:0] input1,
output [31:0] input2,
output [3:0] aluCtr
//output [31:0] memreaddata
//output [15:0] disp num
);
wire halt = (instruction == 32'b1111111000000000000000000000000000)? 1:0;
NPC NPC(
   .reset(reset),
   .Branch(branch),
   .Jump(jmp),
   .Clk(clkin),
   .Branch_ctr(Branch_ctr),
   .halt(halt),
   .extimm(expand),
   .target(instruction[25:0]),
   .PC(PC)
);
// 例化指令存储器
IM_unit IM(
   .clk(clkin),
   .Addr(PC[9:2]),
   .instruction(instruction)
);
// CPU 控制信号线
wire reg_dst, alu_src, memtoreg, regwrite;
wire memread, memwrite, ExtOp;
wire [3:0] aluop;
//wire branch, jmp;
// 实例化控制器模块
ctr mainctr(
   .opCode(instruction[31:26]),
```

```
.regDst(reg_dst),
       .aluSrc(alu src),
       .memToReg(memtoreg),
       .regWrite(regwrite),
       .memRead(memread),
       .memWrite(memwrite),
       .branch(branch),
       .ExtOp(ExtOp),
       .aluop(aluop),
       .jmp(jmp)
   );
   // 寄存器信号线
   wire[4:0] regWriteAddr;
   wire[31:0] regWriteData;
   wire[31:0] RsData, RtData;
   assign regWriteAddr = reg_dst ? instruction[15:11] : instruction[20:16];
   //写寄存器的目标寄存器来自rt或rd
   assign regWriteData = memtoreg ? memreaddata : aluRes;
   //写入寄存器的数据来自ALU或数据寄存器
   // ...... 实例化寄存器模块
   RegFile regfile(
       //Clk, Clr, Write_Reg, R_Addr_A, R_Addr_B, W_Addr, W_Data, R_Data_A,
R_Data_B
       .Clk(!clkin),
       .Clr(reset),
       .R Addr A(instruction[25:21]),
       .R_Addr_B(instruction[20:16]),
       .W_Addr(regWriteAddr),
       .W Data(regWriteData),
       .Write_Reg(regwrite),
       .R_Data_A(RsData),
       .R_Data_B(RtData)
   );
   // 实例化 ALU 控制模块
   aluctr aluctr1(
       .ALUOp(aluop),
       .funct(instruction[5:0]),
       .ALUCtr(aluCtr)
   );
   //实例化符号扩展模块
   signext
signext(.inst(instruction[15:0]),.ExtOp(ExtOp), .data(expand));
   assign shamt=instruction[10:6];
```

```
assign input2 = alu_src ? expand : RtData;
   assign input1 = RsData;
   //ALU的第二个操作数来自寄存器堆输出或指令低16位的符号扩展
   alu alu(
      .shamt(shamt),
      .input1(RsData),//写入alu的第一个操作数必是Rs
      .input2(input2),
      .aluCtr(aluCtr),
      .ZF(ZF),
      .OF(OF),
      .CF(CF),
      .aluRes(aluRes),
      .Branch_ctr(Branch_ctr)
   );
   //数据存储器
   wire[31:0] memreaddata;
   //实例化数据存储器
   DM_unit dm(
      .clk(clkin),
      .Wr(memwrite),
      .reset(reset),
      .DMAdr(aluRes),
      .wd(RtData),
      .rd(memreaddata)
   );
   //控制数码管显示
   wire [31:0] display_content;
   wire [15:0] disp_num;
   //显示内容选择
   assign display_content = (SW[1:0] == 2'b00)? instruction:
                    (SW[1:0] == 2'b01)? PC:
                    (SW[1:0] == 2'b10)? aluRes: memreaddata;
   //高低16位选择
   assign disp_num = (SW[2] == 1)? display_content[31:16]:
   display_content[15:0];
   //数码管输出显示
   display
Smg(.clk(clk_system), .sm_wei(sm_wei),.data(disp_num ),.sm_duan(sm_duan
));
```

endmodule

11 CPU_Basys模块

top 模块的简化,用来烧到Basys3电路板上。

```
`timescale 1ns / 1ps
module CPU_Basys(
   input clkin,
   input clk_system,
   input reset,
                          //开关
   input [2:0] SW,
   output [6:0] sm_duan,//段码
   output [3:0] sm_wei//哪个数码管
   //output [15:0] disp_num,
   //output [31:0] PC
   );
   top top(
       .clkin(clkin),
       .clk_system(clk_system),
       .reset(reset),
       .SW(SW),
       .sm_duan(sm_duan),
       .sm_wei(sm_wei)
   );
endmodule
```

2 验证 CPU 正确性

利用 Vivado 软件的行为仿真功能,我验证了所设计的所有指令的功能及其正确性。以下为 仿真的波形截图及分析。

1 Addiu 指令

如图所示, PC = 0x000000000, 指令为 0x24010008, 即 addiu \$1,\$0,8。

从图中可见 input1 = 0 (\$0 已 被初始化为 0), input2 为立即数 8, 无符号数相加后 aluRes = 8, 溢出标志 OF = 0。

2 ori 指令

如图所示, PC = 0x00000004, 指令为 0x34020002,即 ori \$2,\$0,2

由图可知, input1 = 0 (寄存器已 初始化), input2 = 2 (立即数), 逐位或操作后 aluRes = 2。

3 add 指令

如图所示, PC = 0x00000008, 指令为 0x00411820,即 add \$3, \$2,\$1。

input1 = \$2 = 2 (前面的指令已 更新), input2 = \$1 = 8, 相加后 aluRes = 10 = 0xa

4 sub 指令

如图所示, PC = 0x0000000C, 指令为 0x00622822, 即 sub \$5,\$3,\$2。

input1 = \$3 = 0xa input2 = \$2 = 2 aluRes = 8

5 and 指令

如图所示, PC = 0x00000010, 指令为 0x00a22024, 即 and \$4,\$5,\$2。

input1 = \$5 = 8 input2 = \$2 = 2 按位与操作, aluRes = 0

ALU 运算结果为零, ZF = 1

Name Value 30 да , | , , , 40 да , | , , , 50 да ¹l clkin 🍱 reset 00000010 ₹ PC[31:0] 00000010 0000... 00a22024 instruction[31:0] 00<mark>a22024</mark> 00622822 0082 00000000 ■ aluRes[31:0] 0000000 0001 00411820 u branch 0 🎚 jmp 00002024 ■ expand[31:0] 00002024 00002822 0000 ₩ ZF ₩ OF 0 □ Branch_ctr ➡ shamt[4:0] 00 80000000 ₩ input1[31:0] 00<mark>000008</mark> 0000000a 00000002 **input2[31:0]** 00000002 Natural aluCtr[3:0] 0

6 or 指令

如图所示, PC = 0x00000014, 指令为 0x00824025,即 or \$8,\$4,\$2。

input1 = \$4= 0 input2 = \$2 = 2 按位或操作, aluRes = 2

ALU 运算结果不为零, ZF = 0

7 slti 指令

如图所示, PC = 0x00000020, 指令为 0x28460004,即 slti \$6,\$2,4。

input1 = \$2 = 2 input2 = 4 判断 input1 是否小于 input2, aluRes = 1 (input1<input2)

8 sll 指令

如图所示, PC = 0x00000018, 指令为 0x00084040, 即 sll \$8,\$8,1。

input1 = \$8 = 2 input2 = 1 按位左移操作, aluRes = 4

ALU 运算结果不为零, ZF = 0

9 bne 指令

如图所示, PC = 0x0000001C, 指令为 0x1501fffe,即 bne \$8,\$1,-2。

input1 = \$8 = 4 input2 = \$1 = 8 判断是否相等, aluRes = 1 (不相 等)

ALU 运算结果为零,ZF = 1 Branch_ctr = 1 branch = 1 条件跳转到 PC= 0x0000018

10 beq 指令

如图所示, PC = 0x0000002C, 指令为 0x10e1fffe,即 beq \$7,\$1,-2。

input1 = \$7 = 8 input2 = \$1 = 2 判断 input1 是否等于 input2, aluRes = 1 (input1==input2)

branch = 1 Branch_ctr = 1 跳转到 0x00000028

11 sw 指令

如图所示, PC = 0x00000030, 指 令为 0xac220004, 即 sw \$2, 4(\$1)。

input1 = \$1 = 8 input2 = 4 aluRes = input1 + inpu2 = 0x0000000c

12 lw 指令

如图所示, PC = 0x00000034, 指 令为 0x8c290004, 即 sw \$2, 4(\$1)。

input1 = \$1 = 8
input2 = 4
aluRes = input1 + inpu2 =
0x0000000c

从数据存储器 0x0c 地址读出数据, memreaddata = 2

13 bltz 指令

如图所示, PC = 0x00000040, 指令为 0x0540fffe, 即 bltz \$10,-2。

input1 = 0 input2 = \$10 = -1 aluCtr = 0b0111 判断 input2 是否小于 0, aluRes = 1 (input1<0)

branch = 1 Branch_ctr = 1 跳转到 0x0000003c

14 andi 指令

如图所示, PC = 0x00000044, 指 令为 0x304b0002,即 andi \$11, \$2, 2。

input1 = \$2 = 2 input2 = 2 aluCtr = 0b0000 按位与操作, aluRes = 2

15 xori 指令

如图所示, PC = 0x00000048, 指 令为 0x38210001,即 xori \$1,\$1, 1。

input1 = \$1 = 8 input2 = 1 aluCtr = 0b0100 按位或操作, aluRes = 9

16 sltiu 指令

如图所示, PC = 0x0000004c, 指 令为 0x2c420002,即 sltiu \$2,\$2, 2。

input1 = \$2 = 2 input2 = 2 aluCtr = 0b1011 小于置 1 操作, aluRes = 0

17 nor 指令

如图所示, PC = 0x00000050, 指 令为 0x00611827, 即 nor \$3, \$3, \$1。

input1 = \$3 = 0xa input2 = \$1 = 9 aluCtr = 0b0101

按位或非操作, aluRes = 0xfffffff4

18 srl 指令

如图所示, PC = 0x00000054, 指 令为 0x00084082, 即 srl \$8, \$8, 2。

input2 = \$8 = 8 shamt = 2 aluCtr = 0b1001

右移 (2位) 操作, aluRes = 2

19 lui 指令

如图所示, PC = 0x00000058, 指令为 0x3c040001, 即 lui \$4, 1。

input2 = 1 aluCtr = 0b1101

lui 操作, aluRes = 0x00010000

20 j指令

如图所示, PC = 0x0000005C, 指 令为 0x08000019, 即 j 0x00000064。

jmp = 1 跳转到地址 0x00000064

21 halt 指令

如图所示, PC = 0x00000064, 指 令为 0xFC000000, 即 j 0x00000064。

jmp = 1 跳转到地址 0x00000064,并将 PC 停住。

3 实现

以下为仿真结果分析中的第 1-5 条指令在电路板上的实现结果,对其分析可参考仿真结果分析。

1 第1条指令

instruction[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

aluRes[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

2 第2条指令

instruction[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

aluRes[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

3 第3条指令

instruction[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

aluRes[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

4 第 4 条指令

instruction[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

aluRes[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

5 第5条指令

instruction[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

aluRes[31:0]: 下面左图为高 16 位的十六进制表示,右图为低 16 位。

六、实验心得

1 实验中遇到的问题及解决方法

a. 运行仿真时无法看见波形

在Vivado自行探索一段时间后找到解决方法:转到objects窗口。选中想要显示的信号,右键选择Show in Wave Window,即可在波形图中显示此信号。

b. 仿真运行ctrsim时有些信号出现了红色

解决方案:返回检查前面的步骤,发现opCode[5:0]的输入值不在代码定义的范围内,修改后运行成功了。

c. Vivado 自带的 Block Memory Generator 8.4 生成的 ROM 读出数据时会慢一个时钟

查阅资料发现,Block Memory总是会延时一个时钟,这不是设计中的错误。 本人最终决定使用verilog定义寄存器堆的方式实现指令寄存器,以避免延迟 (具体代码可见IM_Unit模块)。

参考链接:

参考链接:

https://forums.xilinx.com/t5/Simulation-and-Verification/ROM-del ay-on-simulation-Block-memory-generator-8-4/td-p/1182685

- d. [Synth 8-439] module ··· not found 运行综合时出现此错误。检查之前的步骤,发现top模块对其余模块进行例化时 命名没有统一。修改后运行成功。
- e. [Place 30-415] I/O Placement failed due to over utilization 在实现 (implementation) 一步遇到这一错误。查阅资料发现是设计中使用了过多端口导致的。在top模块之上再增加了一个CPU_Basys模块,精简top模块之中的输入输出端口用于烧板 (保留top中的端口用于仿真)

https://forums.xilinx.com/t5/Implementation/Place-30-415-IO-Placement-failed-due-to-overutilization/td-p/1073764

f. Error: [Place 30-574] Poor placement for routing between an I/O pin and BUFG

在place_design一步遇到这一错误。检查之前的步骤并查阅资料发现是将CPU时钟端口设为了板子上的手动输入的端口,而不是系统默认的时钟导致的。因

为实验需要,根据链接中的指引修改了约束文件的代码:

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets clkin_IBUF] 再次运行实现,却出现了如下错误:

CRITICAL WARNING: [Common 17-55] 'set_property' expects at least one object

再次检查并查阅资料,发现根据生成的电路图,clkin_IBUF应为clk_in,修改后运行成功。

参考链接:

https://www.xilinx.com/support/answers/64452.html

https://www.xilinx.com/support/answers/56169.html

2 体会和建议

本次实验中,我系统地复习了单周期CPU的设计思想与方法,体会到了前人的智慧与努力。同时我也锻炼了排查和解决问题,并且分析实验结果的能力,学会了如何与他人沟通,向他人请教等等。

设计单周期CPU还让我体会到了细节的重要性。尽管通常我们都是因为一些小的 地方出现的问题而导致实验难以推进,但究其原因很多也是在大的方向上没有设计 好,例如各个模块之间的关系与分工等等。一旦大体的结构设计清晰,中途进行大 改的可能性就会降低,细节处的问题很多也就迎刃而解了。

非常感谢老师不厌其烦地回答我在实验中遇到的问题,希望老师能在我们开始设计实现前讲解更多的设计CPU的方法与经验,包括常见的错误和相应的 debug 的技巧等等,这样有助于我们在设计与调试过程中更有效率,快速找到自己的不足之处。