Part II Exam Cheatsheets: Statistics and Machine Learning

Eric Ordoñez

April 2025

1 Multivariate statistics

Calculus: For a function $f: \mathbb{R}^d \to \mathbb{R}$, the gradient of f is

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right)$$

The *Hessian* of f is the $d \times d$ matrix

$$(H_f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad 1 \leq i, j \leq d$$

f is convex (concave) if H_f is positive (negative) semi-definite. Strict convexity/concavity follows from strict definiteness.

Let $f: \mathbb{R}^d \to \mathbb{R}^k$. The gradient of f is the $d \times k$ matrix

$$(\nabla f)_{ij} = \frac{\partial f_j}{\partial x_i}$$

whose transpose is called the $Jacobian\ J_f.$

Convergence: A sequence of multivariate r.v.s (X_n) in \mathbb{R}^d converges in probability to X if $X_n^{(k)} \stackrel{\mathbb{P}}{\longrightarrow} X^{(k)}$ for all $k \in [d]$.

Covariance: Given a random variable $X = (X^{(1)}, X^{(2)}, \dots, X^{(d)})$, the covariance matrix of X is defined $(\Sigma_X)_{ij} = \text{Cov}(X^{(i)}, X^{(j)})$.

Let $\mu = \mathbb{E}[X]$ be the entry-wise mean of X. The covariance matrix is equivalently defined $\Sigma_X = \mathbb{E}[(X - \mu)(X - \mu)^{\top}]$.

Properties of multivariate covariance: $\Sigma_{AX+B} = \Sigma_{AX} = A\Sigma_X A^{\top}$

Gaussian distribution: The *d*-dimensional Gaussian distribution of X is completely specified by its mean $\mathbb{E}[X] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])$ and covariance matrix Σ . If Σ is invertible, then

$$f(x) = \frac{1}{\sqrt{(2\pi)^d \det{(\Sigma)}}} \exp{\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right)}$$

Central limit theorem: A sequence (T_n) of r.v.s in \mathbb{R}^d converges in distribution to a random vector $T \in \mathbb{R}^d$ if $v^\top T_n \stackrel{\mathrm{d}}{\longrightarrow} v^\top T$ for all $v \in \mathbb{R}^d$.

Delta method: Let (T_n) be a sequence of random vectors such that $\sqrt{n}(T_n - \theta) \stackrel{\mathrm{d}}{\longrightarrow} T$. If $g : \mathbb{R}^d \to \mathbb{R}^k$ is continuously differentiable at θ , then

$$\sqrt{n}\left(g(T_n) - g(\theta)\right) \overset{\mathrm{d}}{\longrightarrow} \nabla g(\theta)^\top T = J_a T$$

2 Linear regression

2.1 Assumptions

Suppose that $\{(X_i,Y_i)\}_{i\in[n]}$ are sampled i.i.d. from an unknown joint distribution on X and Y. The regression function of Y with respect to X is $\mu(x)=\mathbb{E}\left[Y|X=x\right]$. Linear regression assumes that μ is linear in x.

From here on, assume that $Y \in \mathbb{R}$. In the univariate case $X \in \mathbb{R}$, the theoretical linear regression of Y on X is the line $Y = a^* + b^*X$, where

$$b^* = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var} X}, \quad a^* = -b^* \operatorname{\mathbb{E}}[X]$$

minimize the square loss $\sum_{i=1}^{n} |Y_i - aX_i - b|^2$.

Assume $\operatorname{Var} X \neq 0$; otherwise, there is no line that predicts Y given X with probability 1, regardless of their distribution.

Ordinary least squares estimator: Generalizing the setup to $\mu(X) = X\beta^*$, we have $\hat{\beta} = \operatorname{argmin}_{\beta} \|Y - X\beta\|^2$.

Noise: A r.v. ϵ that satisfies $Y = a^* + b^*X + \epsilon$ with $\mathbb{E}\left[\epsilon\right] = 0$ and $\operatorname{Cov}\left(X, \epsilon\right) = 0$. In the multivariate case, $\epsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ for some known or unknown value of $\sigma^2 > 0$.

2.2 Properties of the OLS estimator

- Under the above assumptions, $\hat{\beta}$ is also the MLE.
- Distribution: $\hat{\beta} \sim \mathcal{N}(\beta^*, \sigma^2(X^\top X)^{-1})$

• Quadratic risk: $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 \operatorname{tr}\left(\left(X^\top X\right)^{-1}\right)$

• Prediction error: $\mathbb{E}\left[\|Y - X\hat{\beta}\|_2^2\right] = \sigma^2(n-p)$

• An unbiased estimator of σ^2 is $\hat{\sigma}^2 = ||Y - X\hat{\beta}||_2^2/(n-p)$.

• $(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p}$

Note that we can always perform linear regression and obtain an OLS estimate, no matter the true underlying distribution!

3 Linear classifiers

3.1 Perceptron algorithm

Data is *linearly separable* if there exists a hyperplane that can perfectly classify the data. The perceptron algorithm is guaranteed to work for linearly separable data, but it will never converge if the data is not separable.

$$\begin{split} \text{initialize } \theta &= 0 \text{, } \theta_0 = 0 \\ \text{for } i &= 1, \dots, T \\ \text{if } y^{(i)}(\theta x^{(i)} + \theta_0) \leq 0 \\ \theta &= \theta + y^{(i)} x^{(i)} \\ \theta_0 &= \theta_0 + y^{(i)} \end{split}$$

Run the algorithm T times or as many times needed for convergence, i.e., the perceptron makes no more misclassifications.

3.2 Maximum margin classifiers

A decision boundary is a hyperplane $\theta x + \theta_0 = 0$ with margin equal to $1/\|\theta\|$. Define agreement by $z = y(\theta x + \theta_0)$. Hinge loss is defined

$$\operatorname{Loss}_h(z) = \begin{cases} 0 & \text{if } z \ge 1\\ 1 - z & \text{if } z < 1 \end{cases}$$

Regularization seeks a balance between separation (overfitting) and margin maximization (generalizability) by minimizing

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n \operatorname{Loss}\left(z^{(i)}; \theta, \theta_0\right) + \frac{\lambda}{2} \|\theta\|^2$$

where $\lambda > 0$ is a hyperparameter.

3.3 Kernels

Let $\Phi: \mathbb{R}^d \to \mathbb{R}^p$ be a feature mapping where $p \gg d$. A kernel function is a function $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that $K(x, x') = \Phi(x) \cdot \Phi(x')$.

Composition rules:

- K(x, x') = 1 is a kernel.
- Let $f: \mathbb{R}^d \to \mathbb{R}$ and K be a kernel. Then f(x)K(x,x')f(x') is also a kernel.
- If K_1, K_2 are kernels, then so are $K_1 + K_2$ and K_1K_2 .

Kernel perceptron: Data that is not linearly separable in one space might be in a higher-dimension feature space. In the perceptron algorithm, recall that $\theta = \sum_{j=1}^{n} \alpha_j y^{(j)} \Phi(x^{(j)})$, where α_j is the number of times the perceptron has misclassified $y^{(j)}$. Alter these two things for the kernel perceptron algorithm:

- The condition to check is $y^{(i)} \sum_{j=1}^n \alpha_j y^{(j)} K(x^j, x^i) \leq 0$.
- The update rule is $\alpha_i = \alpha_i + 1$.

4 Gradient descent

4.1 Newton's method of minimization

Let f be a convex analytical function and w_0 the initial guess for its minimizer. Newton's method updates our guess according to the law

$$w_{t+1} = w_t - \left(H_f(w_t)\right)^{-1} \nabla f(w_t).$$

This will not work for all convex loss functions because a positive semi-definite Hessian is not necessarily invertible!

4.2 Quadratic minimization

Fix a step size $\alpha > 0$ and approximate the Hessian by $H_f(w_t) \approx \alpha^{-1}I$. Applying the same logic from Newton's method, gradient descent updates w_t according to the law

$$w_{t+1} = w_t - \alpha \nabla f(w_t).$$

Step size is a hyperparameter, and choosing the right step size to achieve convergence is an important part of calibrating a model.

4.3 Stochastic gradient descent

Take the loss of \boldsymbol{w}_t averaged over N uniformly chosen data points:

$$f(w_t) \approx \frac{1}{N} \sum_{i=1}^{N} f_i(w_t).$$

Use this to estimate the gradient and update w_t like in regular gradient descent:

$$w_{t+1} = w_t - \frac{\alpha}{N} \sum_{i=1}^N \nabla f_i(w_t).$$

5 Unsupervised learning

5.1 Clustering

Clustering attempts to partition a set $\left\{x^{(i)}\right\}_{i\in[n]}$ of feature vectors in \mathbb{R}^d into K distinct clusters. It outputs a K-partition of the n indices and a representative of each set in the partition.

Define a measure of homogeneity within cluster assignments and compare the measure across clustering scenarios. We want to minimize the total cost of a scenario, $\operatorname{Cost}(C_1,\dots,C_K) = \sum_{i=1}^K \operatorname{Cost}(C_j)$, with some ways here to define cost:

- Greatest distance between any two points in a cluster, i.e., diameter.
- Average distance between points inside a cluster.
- Sum of the distances between the representative and all other points in a cluster.

K-means algorithm: Given the number K of clusters to label:

 $\label{eq:continuous_select} \begin{aligned} \text{randomly select } z_1, \dots, z_K \\ \text{iterate} \end{aligned}$

assign each $\boldsymbol{x}^{(i)}$ to the closest \boldsymbol{z}_i such that

$$\operatorname{Cost}\left(z_{1}, \ldots, z_{K}\right) = \sum_{i=1}^{n} \min_{j \in [K]} \left\|x^{(i)} - z_{j}\right\|^{2}.$$

given C_1,\dots,C_K , find the best representatives z_1,\dots,z_K

$$z_j = \operatorname*{argmin}_z \sum_{i \in C_j} \left\| x^{(i)} - z \right\|^2.$$

 z_j is the centroid of the *j*-th cluster (this means z_j need not be one of the points!). Each update of z_j depends only upon points in C_j , thus the algorithm's output is sensitive to its random initialization. Complexity: $\mathcal{O}(ndK)$.

K-medioids algorithm: Proceed the same way as in the *K*-means algorithm, but ensure $\{z_1,\ldots,z_K\}\subseteq \{x^{(1)},\ldots,x^{(n)}\}$. Complexity: $\mathcal{O}\left(n^2dK\right)$.

5.2 Mixture models

A Gaussian mixture model (GMM) is defined by the following parameters, collectively called θ :

- *K* mixture components;
- A d-dimensional Gaussian $\mathcal{N}\left(\mu^{(j)}, \sigma_i^2\right)$ for every $j \in [K]$;
- Mixture weights p_1, \dots, p_K .

The likelihood of a point x in a GMM is

$$p(x \,|\: \theta) = \sum_{j=1}^{K} p_{j} \mathcal{N}\left(\mu^{(j)}, \sigma_{j}^{2}\right)(x)$$

Expectation maximization algorithm: The EM algorithm finds a locally optimum solution $\hat{\theta}$ to the GMM likelihood maximization problem.

• **E step:** Find the posterior probability that point $x^{(i)}$ was generated by cluster j, for each $i \in [n]$ and $j \in [K]$:

$$p(j \,|\, i) = \frac{p_j \mathcal{N}\left(\mu^{(j)}, \sigma_j^2 I\right)(x^{(i)})}{p(x^{(i)} \,|\, \theta)}$$

• M step: Maximize a proxy function $\hat{\ell}$ of the log-likelihood over θ :

$$\hat{\ell}\left(x^{(1)}, \dots, x^{(n)} \mid \theta\right) = \sum_{i=1}^{n} \sum_{j=1}^{K} p(j \mid i) \log \left(\frac{p(x^{(i)}, x^{(i)} \text{ generated by cluster } j \mid \theta)}{p(j \mid i)}\right)$$

Solve the first-order conditions of the M step for $\hat{\theta}$:

$$\begin{split} \widehat{\mu^{(j)}} &= \frac{\sum_{i=1}^{n} p(j \, | \, i) x^{(i)}}{\sum_{i=1}^{n} p(j \, | \, i)} \\ \widehat{p_j} &= \frac{1}{n} \sum_{i=1}^{n} p(j \, | \, i) \\ \widehat{\sigma_j^2} &= \frac{\sum_{i=1}^{n} p(j \, | \, i) \|x^{(i)} - \widehat{\mu^{(j)}}\|^2}{d \sum_{i=1}^{n} p(j \, | \, i)} \end{split}$$

Repeat until there is no change in the likelihood.

6 Reinforcement learning

6.1 Markov decision processes

A Markov decision process is a collection $\langle S, A, T, R \rangle$, where:

- S and A are the state and action spaces, respectively;
- T(s, a, s') is the transition probability of ending in state s' by taking action a from state s;
- R(s, a, s') is the state-specific reward for taking action a.

All transition probabilities are memoryless: $\mathbb{P}\left(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0\right) = \mathbb{P}\left(s_{t+1} \mid s_t\right)$.

Optimal behavior maximizes the expectation of a utility function U that measures accumulated rewards. Suppose rewards depend only upon the current state. Then we maximize:

- Finite horizon: The sum of rewards after acting for a fixed number of steps n:
- $\begin{array}{l} U(s_0,s_1,\ldots,s_n)=\sum_{k=0}^n R(s_k). \\ \bullet \ \ \textit{Infinite horizon:} \ \ \text{The infinite sum of rewards that are exponentially discounted} \end{array}$ by a factor γ : $U(s_0, s_1, \dots, s_n) = \sum_{k=0}^{\infty} \gamma^k R(s_k)$.

6.2 Policy and value functions

Policy: A function $\pi: S \to A$ that assigns an action $\pi(s)$ for any state s.

Optimal policy: A policy π^* that maximizes expected utility.

Value function: The expected reward $V^*(s)$ from acting optimally at state s.

Q-function: The expected reward $Q^*(s,a)$ from starting at state s, taking action a, then acting optimally afterwards.

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$

Bellman equation: $V^*(s) = \max_a Q^*(s, a)$

6.3 Iteration

Value function iteration: Updated value of state s after acting optimally for k steps

$$V_{k+1}^*(s) = \max_{a} \left\{ \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V_k^*(s') \right) \right\}$$

Complexity: $\mathcal{O}\left(\left|S\right|^2|A|\right)$

Q-value iteration: Updated Q-value of the state-action pair (s, a) for the k-th step

$$Q_{k+1}^*(s,a) = \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a') \right)$$

An ϵ -greedy algorithm is a training algorithm that randomly samples a new action with probability ϵ or chooses the best currently available option with probability $1-\epsilon$. ϵ should eventually decay during training.