Phenomenology of exclusive rare semileptonic decays

Danny van Dyk

Universität Siegen

14th International Conference on B-Physics at Hadron Machines
April 9th 2013

 q_{e_t}

Theor. Physik 1

Program

- ullet concentrate on $ar{B} o (ar{K}\pi)_P \ell^+ \ell^-$, i.e, on the $ar{K}^*$ resonance
- ullet discuss influence of $ar{B} o (ar{K}\pi)_S \ell^+ \ell^-$ on the decay distribution

- review methods to approach theory on both sides of the narrow charmonia $(J/\psi$ and $\psi')$
- ullet constrain $\Delta B=1$ Wilson coefficients from available data on exclusive rare semileptonic and radiative decays

Effective Field Theory for $b \to s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- ullet basis of operators (physics below $\mu \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\bar{s} \Gamma_i b \right] \left[\bar{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (physics above $\mu \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

Effective Hamiltonian

$$\mathcal{H} = -\frac{4\textit{G}_{\mathrm{F}}}{\sqrt{2}} \Big[\textit{V}_{\textit{tb}} \textit{V}_{\textit{ts}}^* \sum_{\textit{i}} \mathcal{C}_{\textit{i}} \mathcal{O}_{\textit{i}} + \textit{O} \big(\textit{V}_{\textit{ub}} \textit{V}_{\textit{us}}^* \big) \Big] + \text{h.c.}$$

Effective Field Theory for $b \to s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- ullet basis of operators (physics below $\mu \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\bar{s} \Gamma_i b \right] \left[\bar{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (physics above $\mu \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

Exclusive Modes

$$ar{B}^0
ightarrow ar{K}^{(*)0} \ell^+ \ell^ B^-
ightarrow ar{K}^{(*)-} \ell^+ \ell^-$$

$$\bar{B}_s \to \phi \ell^+ \ell^-$$

$$\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-$$

$$\Lambda_b^- \to \Lambda^- \ell^+ \ell^-$$

3 / 21

Model Independent Framework

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- constrain their values from data
- confront new physics models with constraints
- complex value, two d.o.f. per $\mathcal{C}_i \Rightarrow \mathsf{BSM} \; \mathsf{CPV} \; (\mathsf{SM} : \mathsf{real} \; \mathcal{C}_i)$

Basis of Operators \mathcal{O}_i

- should include all relevant \mathcal{O}_i , otherwise constraints are biased
- should include as few \mathcal{O}_i as needed, otherwise fits are too involved
- balancing act, test statistically if choice of basis describes data well!

Basis of Operators (semileptonic)

Semileptonic Operators (SM-like: 9,10 chirality-flipped: 9',10')

$$\mathcal{O}_{9(')} = rac{lpha_{e}}{4\pi} ig[ar{s}\gamma_{\mu} P_{L(R)} big] ig[ar{\ell}\gamma^{\mu}\ellig] \hspace{0.5cm} \mathcal{O}_{10(')} = rac{lpha_{e}}{4\pi} ig[ar{s}\gamma_{\mu} P_{L(R)} big] ig[ar{\ell}\gamma^{\mu}\gamma_{5}\ellig]$$

+ strong/EM penguins as in the SM

Semileptonic Operators ((pseudo-)scalar: S('), P(') tensor: T, T5) complete the basis of $[\bar{s}\Gamma b][\bar{\ell}\Gamma \ell]$ operators

$$\mathcal{O}_{S(')} = \frac{\alpha_e}{4\pi} [\bar{s} P_{R(L)} b] [\bar{\ell}\ell]$$
 $\mathcal{O}_{P(')} = \frac{\alpha_e}{4\pi} [\bar{s} P_{R(L)} b] [\bar{\ell}\gamma_5 \ell]$

$$\mathcal{O}_{T} = \frac{\alpha_{e}}{4\pi} \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma^{\mu\nu} \ell \right] \qquad \mathcal{O}_{T5} = \frac{\alpha_{e}}{4\pi} \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma_{\alpha\beta} \ell \right] \frac{i \varepsilon^{\mu\nu\alpha\beta}}{2}$$

Basis of Operators (current-current & penguins)

Current-Current

$$\mathcal{O}_1 = \left[\bar{s}\gamma_\mu P_L T^a c\right] \left[\bar{c}\gamma^\mu P_L T^a b\right] \qquad \mathcal{O}_2 = \left[\bar{s}\gamma_\mu P_L c\right] \left[\bar{c}\gamma^\mu P_L b\right]$$

SM: $C_1 \simeq -0.3$, $C_2 \simeq 1$

Penguins (photonic:
$$7(')$$
 gluonic: $8(')$ $\bar{q}q$: 3-6)

$$\begin{split} \mathcal{O}_{7(')} &= \left[\bar{s} \sigma_{\mu\nu} P_{R(L)} b \right] F^{\mu\nu} & \mathcal{O}_{8(')} &= \left[\bar{s} \sigma_{\mu\nu} P_{R(L)} b \right] G^{\mu\nu} \\ \mathcal{O}_{3} &= \left[\bar{s} \gamma_{\mu} P_{L} b \right] \left[\bar{q} \gamma^{\mu} q \right] & \mathcal{O}_{4} &= \left[\bar{s} \gamma_{\mu} T^{a} P_{L} b \right] \left[\bar{q} \gamma^{\mu} T^{a} q \right] \\ \mathcal{O}_{5} &= \left[\bar{s} \gamma_{\mu\nu\rho} P_{L} b \right] \left[\bar{q} \gamma^{\mu\nu\rho} q \right] & \mathcal{O}_{6} &= \left[\bar{s} \gamma_{\mu\nu\rho} T^{a} P_{L} b \right] \left[\bar{q} \gamma^{\mu\nu\rho} T^{a} q \right] \end{split}$$

 $\mathcal{O}_{8(\prime)} = \left[\bar{s} \sigma_{\mu\nu} P_{R(L)} b \right] G^{\mu\nu}$

$$\gamma_{\mu\nu\rho} \equiv \gamma_{\mu}\gamma_{\nu}\gamma_{\rho}$$

- $\mathcal{O}_{7(1)}$ dominant when dilepton system is almost lightlike
- QED Penguins usually not included
- QCD Penguins (\mathcal{O}_{3-6}) usually as in the SM, small Wilson coefficients

Kinematics of $\bar{B} \to \bar{K}\pi\ell^+\ell^-$ (similar: $\bar{B}_s \to K^+K^-\ell^+\ell^-$)

Kinematic Variables

$$\begin{aligned} 4m_{\ell}^2 &\leq q^2 \leq (M_B - M_{K^*})^2 \\ -1 &\leq \cos \theta_{\ell} \leq 1 \\ -1 &\leq \cos \theta_{K^*} \leq 1 \\ 0 &\leq \phi \leq 2\pi \\ \big[(M_K + M_{\pi})^2 &\leq k^2 \leq (M_B - \sqrt{q^2})^2 \big] \end{aligned}$$

On-shell and S-Wave

- one usually assumes on-shell decay of P-wave K^* ($\sim \sin \theta_{K^*}, \cos \theta_{K^*}$)
- for high precision: consider width of K^* , and J=0 (S-wave) ($\sim \theta_{K^*}$) $K\pi$ -final-state from K_0^* and non-resonant background

Kinematics of $\bar{B} \to \bar{K}\pi\ell^+\ell^-$ (similar: $\bar{B}_s \to K^+K^-\ell^+\ell^-$)

Kinematic Variables

$$-1 \le \cos heta_\ell \le 1 \ -1 \le \cos heta_{K^*} \le 1 \ 0 \le \phi \le 2\pi$$

 $4m_{\ell}^2 \le q^2 \le (M_B - M_{K^*})^2$

$$[(M_K + M_\pi)^2 \le k^2 \le (M_B - \sqrt{q^2})^2]$$

Large vs. Low Recoil (for illustration)

D. van Dyk (U. Siegen)

egen) Pheno of $\bar{B} o K^* \ell^+ \ell^-$

09.04.2013 6 / 21

Differential Decay Rate for pure P-wave state

$$\begin{split} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{K^{*}}\mathrm{d}\phi} &\sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} \\ &+ (J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} \\ &+ (J_{3}\cos2\phi + J_{9}\sin2\phi)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} \\ &+ (J_{4}\sin2\theta_{K^{*}} \\ &+ (J_{5}\sin2\theta_{K^{*}} \\ &+ (J_{5}\sin2\theta_{K^{*}} \\ &+ (J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}})\cos\theta_{\ell} \\ &+ (J_{7}\sin2\theta_{K^{*}} \\ &+ (J_{8}\sin2\theta_{K^{*}} \\ &+ (J_{8}\sin2$$

 $J_i \equiv J_i(q^2)$: 12 angular observables

Differential Decay Rate for mixed P- and S-wave state

$$\begin{split} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{K^{*}}\mathrm{d}\phi} &\sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} + J_{1i}\cos\theta_{K^{*}} \\ &+ \left(J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} + J_{2i}\cos\theta_{K^{*}}\right)\cos2\theta_{\ell} \\ &+ \left(J_{3}\cos2\phi + J_{9}\sin2\phi\right)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} \\ &+ \left(J_{4}\sin2\theta_{K^{*}} + J_{4i}\cos\theta_{K^{*}}\right)\sin2\theta_{\ell}\cos\phi \\ &+ \left(J_{5}\sin2\theta_{K^{*}} + J_{5i}\cos\theta_{K^{*}}\right)\sin\theta_{\ell}\cos\phi \\ &+ \left(J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}}\right)\cos\theta_{\ell} \\ &+ \left(J_{7}\sin2\theta_{K^{*}} + J_{7i}\cos\theta_{K^{*}}\right)\sin\theta_{\ell}\sin\phi \\ &+ \left(J_{8}\sin2\theta_{K^{*}} + J_{8i}\cos\theta_{K^{*}}\right)\sin2\theta_{\ell}\sin\phi \,, \end{split}$$

 $J_i \equiv J_i(q^2, k^2)$: 12 angular observables, no further needed [Bobeth/Hiller/DvD '12]

Conclusion: remove S-wave in exp. analysis

- angular analysis [Egede/Blake/Shires '12]
- side-band analysis (for $J_{1s,1c,2s,2c}$) [Bobeth/Hiller/DvD '12]

Building Blocks of the Angular Observables (I)

Form Factors (P-Wave)

• hadronic matrix elements $\langle \bar{K^*}|\bar{s}\Gamma b|\bar{B}\rangle$ parametrized through 7 form factors:

$$\langle \bar{K}^* | \bar{s} \gamma^{\mu} b | \bar{B} \rangle \sim V \quad \langle \bar{K}^* | \bar{s} \gamma^{\mu} \gamma_5 b | \bar{B} \rangle \sim A_{0,1,2} \quad \langle \bar{K}^* | \bar{s} \sigma^{\mu\nu} b | \bar{B} \rangle \sim T_{1,2,3}$$

- form factors largest source of theory uncertainty amplitude $\sim 10\% 15\% \Rightarrow$ observables: $\sim 20\% 50\%$
 - ▶ available from Light Cone Sum Rules [Ball/Zwicky '04, Khodjamirian et al. '11]
 - ► Lattice QCD: work in progress [e.g. Liu et al. '11, Wingate '11]
 - extract ratios from low recoil data

 $[{\sf Hambrock/Hiller~'12,~Beaujean/Bobeth/DvD/Wacker~'12}]$

blue band:

form factor uncertainty

Building Blocks of the Angular Observables (II)

Transversity amplitudes A_i

- SM-like + chirality flipped: essentially four amplitudes $A_{\perp,\parallel,0,t}$ [Krüger/Matias '05]
- ullet $\mathcal{O}_{S(')}$ give rise to A_S , $\mathcal{O}_{P(')}$ absorbed by A_t [Altmannshofer et al. '08]
- $\mathcal{O}_{T(5)}$ give rise to 6 new amplitudes A_{ab} , $(ab)=(0t),(\parallel\perp),(0\perp),(t\perp),(0\parallel),(t\parallel)$ [Bobeth/Hiller/DvD '12]
- altogether: 11 complex-valued amplitudes

Angular Observables

• J_i functionals of $A_S, A_a, A_{ab}, a, b = t, 0, ||, \perp$ e.g.

$$J_3(q^2) = \frac{3\beta_\ell}{4} \big[|A_\perp|^2 - |A_\parallel|^2 + 16 \big(|A_{t\parallel}|^2 + |A_{0\parallel}|^2 - |A_{t\perp}|^2 - |A_{0\perp}|^2 \big) \big]$$

 β_{ℓ} : lepton velocity in dilepton rest frame

$$m_\ell^2/q^2 \to 0 \Rightarrow \beta_\ell \to 1$$

"Standard" Observables

considerable theory uncertainty due to form factors

Batch #1, to be extracted from CP average

$$\langle \Gamma \rangle = \langle 2J_{1s} + J_{1c} - \frac{2}{3}J_{2s} - \frac{1}{3}J_{2}c \rangle \qquad \langle A_{\rm FB} \rangle = \frac{\langle 2J_{6s} + J_{6c} \rangle}{2\langle \Gamma \rangle}$$

$$\langle F_L \rangle = \frac{\langle 3J_{1c} - J_{2}c \rangle}{\langle 3\Gamma \rangle} \qquad \langle F_T \rangle = \frac{\langle 6J_{1s} - 2J_{2s} \rangle}{\langle 3\Gamma \rangle}$$

 Γ : decay width A_{FB} : forward-backward asymm. $F_L=1-F_T$: long./trans. pol.

Batch #2, CP (a)symmetries [Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

$$\langle A_i \rangle \sim rac{\langle J_i - \overline{J_i}
angle}{\langle \Gamma + \overline{\Gamma}
angle} \hspace{1cm} \langle S_i
angle \sim rac{\langle J_i + \overline{J_i}
angle}{\langle \Gamma + \overline{\Gamma}
angle}$$

overline: CP conjugated mode, also: mixing-induced CP asymm in $B_s o \phi \ell^+ \ell^-$

$$\langle X \rangle \equiv \int \mathrm{d}q^2 \, X(q^2)$$

Pollution due to Charm Resonances

Narrow Resonances: J/ψ and $\psi(2s)$

- ullet experiments veto q^2 -region of narrow charmonia J/ψ and $\psi(2s)$
- however: resonance affects observables outside the veto!

Approach by Theorists: Divide and Conquer

- treat region below J/ψ (aka *large recoil*) differently than above $\psi(2s)$
- design combinations of J_i which have reduced theory uncertainty in only one kinematic region

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - ▶ Light Cone Distribution Amplitudes (LCDAs)
 - ▶ form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Light Cone Sum Rules (LCSR)

- calculate $\langle \bar{c}c \rangle$, $\langle \bar{c}cG \rangle$ on the light cone for $q^2 \ll 4m_c^2$
- achieves resummation of soft gluon effects
- ullet use analycity of amplitude to relate results to $q^2 < M_{\psi'}^2$
- uses many of the same inputs as QCDF+SCET
- includes parts of QCDF+SCET results

[Khodjamirian/Mannel/Pivovarov/Wang '11]

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - ► Light Cone Distribution Amplitudes (LCDAs)
 - ▶ form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Combination of QCDF+SCET and LCSR Results

- not yet!
 - ▶ no studies yet to find impact on optimized observables at large recoil!
 - ▶ LCSR results are not included in following discussion

Large Recoil (II)

SM + chirality flipped

transversity amplitudes factorize up to power supressed terms

$$A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$$

 $\xi_{\perp,\parallel}$: soft form factors

 $X_i^{L,R}$: combinations of Wilson coefficients

[Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence

[Krüger/Matias '05, Egede et al. '08 & '10]

$$A_T^{(2)} = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2} \sim J_3 \qquad A_T^{(3)} = \frac{|A_0^L A_\parallel^{L*} + A_0^{R*} A_\parallel^{R}|}{\sqrt{|A_0|^2 |A_\parallel|^2}} \sim J_4, J_7$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^R|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_\perp^L A_\parallel^{R*} + A_\perp^{R*} A_\parallel^L|}{|A_\perp|^2 + |A_\parallel|^2}$$

Large Recoil (II)

SM + chirality flipped

transversity amplitudes factorize up to power supressed terms

$$A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$$

 $\xi_{\perp,\parallel}$: soft form factors

 $X_i^{L,R}$: combinations of Wilson coefficients

[Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Further Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence [Becirevic/Schneider '11]

$$A_T^{
m (re)} \propto rac{J_{6s}}{J_{2s}}$$

$$A_T^{(\mathrm{im})} \propto \frac{J_9}{J_{2s}}$$

Low Recoil

SM basis [Bobeth/Hiller/DvD '10] + chirality flipped [Bobeth/Hiller/DvD '12]

transversity amplitudes factorize

$$A_{\perp,\parallel,0}^{L,R} \sim C_{\pm}^{L,R} \times f_{\perp,\parallel,0} + O(\frac{\alpha_s \Lambda}{m_b}, \frac{\mathcal{C}_7 \Lambda}{\mathcal{C}_9 m_b}) \quad \text{SM:} \quad C_+^{L,R} = C_-^{L,R}$$

 f_i : helicity form factors $C_{\pm}^{L,R}$: combinations of Wilson coeff.

4 combinations of Wilson coefficients enter observables:

$$ho_1^{\pm} \sim |C_{\pm}^R|^2 + |C_{\pm}^L|^2$$

$$\operatorname{Re}\left(\rho_2\right) \sim \operatorname{Re}\left(C_{+}^R C_{-}^{R*} - C_{-}^L C_{+}^{L*}\right) \quad \text{and } \operatorname{Re}\left(\cdot\right) \leftrightarrow \operatorname{Im}\left(\cdot\right)$$

Tensor operators [Bobeth/Hiller/DvD '12]

• 6 new transversity amplitudes, still factorize!

$$A_{ab} \sim \mathcal{C}_{T(T5)} imes f_{\perp,\parallel,0} + O(\frac{\Lambda}{m_b})$$

3 new combinations of Wilson coefficients

$$ho_1^T \sim |\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \quad \operatorname{Re}\left(\rho_2^T\right) \sim \operatorname{Re}\left(\mathcal{C}_T \mathcal{C}_{T5}^*\right) \quad \text{and } \operatorname{Re}\left(\cdot\right) \leftrightarrow \operatorname{Im}\left(\cdot\right)$$

Optimized Observables at Low Recoil

"Form Factor Free" Observables

- optimized for low recoil: $H_T^{(1,2,3,4,5)}$ [Bobeth/Hiller/DvD '10 & '12]
- $H_T^{(1)}$: probes low-recoil framework before new physics
- $H_T^{(2,3,4,5)}$: access to combination of Wilson coefficients

$$\rho_2/\sqrt{\rho_1^+\rho_1^-} \qquad \underset{\mathsf{SM \ basis}}{\longrightarrow} \qquad \frac{\mathcal{C}_9\mathcal{C}_{10}}{|\mathcal{C}_9|^2 + |\mathcal{C}_{10}|^2}$$

up to $O(\frac{\alpha_s \Lambda}{m_b}, \frac{C_7 \Lambda}{C_9 m_b})$ corrections, complementary to large recoil

"Short-Distance Free" Observables

- form factor ratios, relevant for comparison with lattice
- SM: all ratios f_i/f_i available, chirality-flipped: only f_0/f_{\parallel}

CP Asymmetries at Low Recoil

Optimized CP Asymmetries (SM-like and chirality-flipped basis)

$$a_{\text{CP}}^{(1,\pm)} = \frac{\rho_{1}^{\pm} - \bar{\rho}_{1}^{\pm}}{\rho_{1}^{\pm} + \bar{\rho}_{1}^{\pm}} \xrightarrow{\text{SM basis}} A_{\text{CP}} \qquad a_{\text{CP}}^{(2,\pm)} = \frac{\frac{\rho_{2}^{\pm}}{\rho_{1}^{\pm}} - \frac{\rho_{2}^{2}}{\bar{\rho}_{1}^{\pm}}}{\frac{\rho_{2}}{\rho_{1}^{\pm}} + \frac{\bar{\rho}_{2}^{2}}{\bar{\rho}_{1}^{\pm}}} \xrightarrow{\text{SM basis}} A_{\text{CP,FB}}$$

$$a_{\text{CP}}^{(3)} = \frac{\text{Re}\left(\rho_{2} - \bar{\rho}_{2}\right)}{\sqrt{\left(\rho_{1}^{+} + \bar{\rho}_{1}^{+}\right)\left(\rho_{1}^{-} + \bar{\rho}_{1}^{-}\right)}} \sim H_{T}^{(2,3)} \qquad a_{\text{CP}}^{(4)} = \frac{\text{Im}\left(\rho_{2} - \bar{\rho}_{2}\right)}{\sqrt{\left(\rho_{1}^{+} + \bar{\rho}_{1}^{+}\right)\left(\rho_{1}^{-} + \bar{\rho}_{1}^{-}\right)}} \sim H_{T}^{(4,5)}$$

driven by strong phase Im (Y)

$$\operatorname{Im}(Y) = \operatorname{Im}\left(Y_9 + \frac{2m_b M_B}{q^2} Y_7\right) \qquad Y_i \equiv \mathcal{C}_i^{\operatorname{eff}} - \mathcal{C}_i$$

low recoil OPE predicts $\operatorname{Im}(Y) \simeq 0.2$ for $q^2 \geq 14 \operatorname{GeV}^2$

• also: $A_{\rm im}/A_{\rm FB} = J_9/J_{6s} = {\rm Im}\left(\rho_2\right)/{\rm Re}\left(\rho_2\right)$ both $A_{\rm im}$ and $A_{\rm FB}$ measured, but error on ratio not known

Probing BSM Physics at Low Recoil

Results [Bobeth/Hiller/DvD '12]

- $H_T^{2,3}$ probe $|\mathcal{C}_9/\mathcal{C}_{10}|$ better than A_{FB}
- $a_{\mathrm{CP}}^{(4)}$ probes $\mathrm{Im}\left(\mathcal{C}_{10'}\right)$ better than other CP asymm.

$$\left\langle a_{\mathrm{CP}}^{(4)}
ight
angle \simeq \left(-0.240 \pm 0.005
ight) \mathsf{Im} \left(\mathcal{C}_{10'}
ight)$$

Global Analyis of Exclusive Decays

Global Analyis of Exclusive Decays

- following results from [Beaujean/Bobeth/DvD/Wacker '12]
- see also further analyses [Altmannshofer/Straub '12, Descotes-Genon et al. '12]

Available Data for Exclusive Processes

$\bar{B} \to \bar{K}^* \ell^+ \ell^-$	$\mathcal{B}, A_{\mathrm{FB}}, \mathcal{S}_3, A_T^{(2)}, A_I$	BaBar,Belle,CDF, <mark>LHCb</mark>
$\bar{B} \to \bar{K}\ell^+\ell^-$	$\mathcal{B}, A_{\mathrm{FB}}, \mathcal{F}_{H}, A_{I}$	BaBar,Belle,CDF,LHCb
$ar{B} ightarrow ar{K}^* \gamma$	$\mathcal{B}, \mathcal{S}_{\mathcal{K}^*\gamma}$	CLEO,BaBar,Belle
$\bar{B}_s \to \mu^+ \mu^-$	upper bound on ${\cal B}$	LHCb

blue observables: used in following analysis orange:new data available since analysis

Global Analysis of Exclusive $b \to s\{\ell^+\ell^-, \gamma\}$

95% credibility regions: Two Solutions

all regions include $B \to K^* \gamma$ inputs brown incl. $B \to K \ell^+ \ell^-$ (high + low) blue incl. $B \to K^* \ell^+ \ell^-$ (low) light red all data $+ B_s \rightarrow \mu^+ \mu^-$ (dark red 68%)

green incl. $B \to K^* \ell^+ \ell^-$ (high) ♦ SM value

What We Also Learn from Data

dotted: prior [Khodjamirian et al. '11] dashed: posterior w/ $B \to K \ell^+ \ell^-$ data solid: posterior w/ all data

$B \rightarrow K$ form factor: f_+

- $B \to K \ell^+ \ell^-$ data and prior agree well
- $B \to K^* \ell^+ \ell^-$ data has strong impact on posterior

What We Also Learn from Data

$$V(q^2)
ightarrow \zeta_V V(q^2)$$
, similar for $A_{1,2}$ ζ_i : common gauss prior

 V, A_1, A_2 : [Ball/Zwicky '04]-results

$$B \to K^* \ell^+ \ell^-$$

- ullet prior/posterior agree well for ζ_{A_1}
- ullet considerable shifts in posterior ($\sim 10\%$) for ζ_V and $\zeta_{A_2}!$
- agrees with findings by [Hambrock/Hiller '12]

Conclusion/Further Works

Conclusion

- systematic framework for exclusive $b o s \ell^+ \ell^-$ at large and low recoil
- rich phenomenology of $\bar{B} \to \bar{K}^*(\to K\pi)\ell^+\ell^-$
 - ▶ large recoil: rich spectrum of observables, good (B)SM sensitivity
 - ▶ low recoil: framework/OPE can be probed
 - ▶ low recoil: (B)SM sensitivity complementary to large recoil, very small theory uncertainty
- data also allows inference of hadronic quantities
- looking forward to LHCb analyses and the prospects of Belle II

Omissions due to Time Constraints

- very large recoil: $4m_e^2 \le q^2 \le 1 \text{GeV}^2$ [Camalich/Jäger '12]
- symmetry relations between transversity amplitudes, how to build basis of observables [Descotes-Genon et al. '13]

Backup Slides

$$i\int \mathrm{d}^4x \mathrm{e}^{iqx} \langle \bar{K}^* | T\{\mathcal{O}_i(0), j_\mu^{\mathrm{e.m.}}(x)\} | \bar{B} \rangle = \sum_{j,k} \mathcal{C}_{i,j,k} (q^2/m_b^2, \mu) \langle \mathcal{O}_j^{(k)} \rangle_\mu$$

Operators

k=3 form factors, α_s corrections known, absorbed into effective Wilson coefficients $\mathcal{C}_{7,9} \to \mathcal{C}_{7,9}^{\mathrm{eff}}$

k = 4 absent

 $k=5~\Lambda^2/m_b^2\sim 2\%$ corrections, first new had. matrix elements explicitly: <1% for $q^2=15{\rm GeV}^2$ [Beylich/Buchalla/Feldmann]

k=6 first isospin breaking correction, Λ^3/m_h^3 suppressed

Details on Calculation of Angular Observables

Helicity Decomposition

Use polarization vectors η (of K^*) and ε (of $\ell^+\ell^-$ state)

$$g_{\mu\nu} = \sum_{n,m} g_{nm} \varepsilon_{\mu}^{\dagger}(n) \varepsilon_{\nu}(m)$$
 $n, m = t, 0, +, -g_{\mu\nu} + rac{k_{\mu}k_{\nu}}{k^2} = \sum_{n} \delta_{mn} \eta_{\mu}^{\dagger}(n) \eta_{\nu}(m)$ $n, m = 0, +, -$

Transversity Amplitudes (SM-like and chirality flipped)

- introduce helicity amplitudes $H_{ab}=\eta_{\mu}^{\dagger}(a)\mathcal{M}^{\mu\nu}\varepsilon_{
 u}^{\dagger}(b)$
- four non-vanishing amplitudes: $H_{\pm\pm}, H_{00}, H_{0t}$
- switch to transversity basis:

$$\sqrt{2}A_{\perp,\parallel} = H_{++} \mp H_{--}$$
 $A_0 = H_0$ $A_t = H_{0t}$

ullet extended opterator basis o more amplitudes

24 / 21

Details on Calculation of Angular Observables

(Pseudo)Scalar Operators

- introduce additional form factor
- \Rightarrow breaks form factor free ratios involving $J_{1c,2c}$
- ullet only $\Delta_{S,P} \equiv \mathcal{C}_{S,P} \mathcal{C}_{S',P'}$ enter
- ullet $\mathcal{O}_{S(')}$ give rise to A_S , $\mathcal{O}_{P(')}$ absorbed by A_t [Altmannshofer et al. '08]

Tensor Operators

 $\bullet \ \mathcal{O}_{\mathcal{T}(5)} \text{ give rise to } \textit{6 new amplitudes } \textit{A}_{ab}, \ \textit{(ab)} = (0t), (\parallel \perp), (0 \perp), (t \perp), (0 \parallel), (t \parallel)$

$$H_{abc}=\eta_{\mu}^{\dagger}(a)\mathcal{M}^{\mu
u
ho}arepsilon_{
u}^{\dagger}(b)arepsilon_{
ho}^{\dagger}(c)$$

$$A_{0\perp} \sim H_{+0+} + H_{-0-}$$

$$A_{t\perp} \sim H_{-t-} - H_{+t+}$$

$$A_{\parallel\perp}\sim H_{0-+}$$

$$A_{0\parallel} \sim H_{+0+} - H_{-0-}$$

$$A_{t\parallel} \sim H_{-t-} + H_{+t+}$$

$$A_{t0} \sim H_{0t0}$$

all other H_{abc} vanish [Bobeth/Hiller/DvD '12]

q^2 Spectrum of the Branching Ratio $\mathcal{B} = \tau_B \Gamma$

$\bar{q}q$ Pollution

- 4-quark operators like $\mathcal{O}_{1c,2c}$ induce $b \to s\bar{c}c(\to \ell^+\ell^-)$ via loops
- hadronically $B \to K^*J/\psi(\to \ell^+\ell^-)$ or higher charmonia
- ullet experiment: cut narrow resonances $J/\psi \equiv \psi(1S)$ and $\psi' = \psi(2S)$
- ullet theory: handle non-resonant quark loops/broad resonances > 2S

q^2 Spectrum of the Branching Ratio $\mathcal{B}= au_B\Gamma$

Large Recoil $E_{K^*} \sim m_b$ QCDF,SCET

- expand in $1/m_b$, $1/E_{K^*}$, α_s
- ullet symmetry: $7 \rightarrow 2$ form factors

[Beneke/Feldmann/Seidel '01 & '04]

[Egede et al. '08 & '10]

Low Recoil $q^2 \sim m_b^2$ OPE,HQET

- expand in $1/m_b$, $1/\sqrt{q^2}$, α_s
- symmetry: $7 \rightarrow 4$ form factors

[Grinstein/Pirjol '04], [Beylich/Buchalla/Feldmann '11] [Bobeth/Hiller/DvD '10 & '11]

Beyond the SM

Relations at Low Recoil

Scenario	$ H_T^{(1)} =1$	$H_T^{(2)} = H_T^{(3)}$	$H_T^{(4)} = H_T^{(5)}$	$J_7 = 0$	$J_{8,9} = 0$
SM	✓	✓	(√)	✓	✓
$SM \otimes S,P$	✓	$rac{ extit{m}_{\ell}}{Q} Re \left(\mathcal{C}_{-}^{\mathrm{L,R}} \Delta_{S}^{*} ight)$	(√)	$rac{ extit{m}_{\ell}}{Q} \; ext{Im} \left(\mathcal{C}_{+}^{ ext{L,R}} \Delta_{\mathcal{S}}^{*} ight)$	\checkmark
SM \otimes T, T5	$\frac{\Lambda^2}{Q^2}\rho_1^T$	$\frac{\textit{m}_{\ell}}{\textit{Q}} \; Re \left(\rho_2^{ \textit{T}} \right)$	$\frac{\Lambda}{Q}\operatorname{Im}\left(\rho_2^T\right)$	$\frac{m_\ell}{Q} \operatorname{Im} \left(\mathcal{C}_i \mathcal{C}_{T5}^* \right)$	$\mathrm{Im}\left(\rho_2^T\right)$
$SM \otimes SM'$	✓	\checkmark	\checkmark	\checkmark	$\operatorname{Im}\left(ho_{2} ight)$
all	$\frac{\Lambda^2}{Q^2} \rho_1^T$	$Re\left(\mathcal{C}_{T5}\Delta_{S}^{*} ight)$	$\frac{\Lambda}{Q}\operatorname{Im}\left(\rho_2^{(T)}\right)$	${\sf Im}({\cal C}_{{\cal T}5}\Delta_S^*)$	$\operatorname{Im}\left(\rho_2^{(T)}\right)$

Probing the Low Recoil OPE

- deviations form $H_T^{(2)} = H_T^{(3)}$, $J_7 = 0$ signal OPE breaking
- deviations from $J_{8,9} = 0$ signal of NP (CPV right-handed current, tensors)

Beyond the SM

Status of Optimized Observables

Scenario	$H_T^{(1)}$	$H_T^{(2)}$	$H_{T}^{(3)}$	$H_T^{(4)}$	$H_T^{(5)}$
SM	✓	✓	✓	_	
$SM \otimes S$, P	✓	A_0	\checkmark	_	_
SM \otimes T, T5	✓	\checkmark	\checkmark	\checkmark	\checkmark
$SM \otimes SM'$	✓	\checkmark	\checkmark	\checkmark	\checkmark
all	✓	A_0	✓	\checkmark	✓

- vanishes in that scenario
- \checkmark form factor free up to m_{ℓ}/Q
- A_0 factorization broken by terms $\propto A_0$

$B \to K\ell^+\ell^-$ at Low Recoil

Observables

- \mathcal{B}^K , A_{FB}^K , F_H^K (flat term)
- F_H^K sensitive to (pseudo)scalar ops. complementary to $B \to K^* \ell^+ \ell^-$ and $B_s \to \ell^+ \ell^-$
- correlations between $B \to K^*\ell^+\ell^- \leftrightarrow B \to K\ell^+\ell^-$, common SD factors ρ_1^+ , ρ_1^T

Constraints

 $|\mathcal{C}_{T,T5}| \le 0.55 \ (0.70) \ @ 68\% \ (95\%) \ CL$

Y at Low Recoil

Global Analysis of Exclusive $b \to s\{\ell^+\ell^-, \gamma\}$

Check stability for different choices of priors:

color: normal priors (dark: 68%, light: 95%)

lines: wide priors (solid: 68%, dashed: 95%)

diamond: SM, cross: MAP

 $[{\sf Beaujean/Bobeth/DvD/Wacker~'12}]$

Global Analysis of Exclusive $b \to s\{\ell^+\ell^-, \gamma\}$

	\mathcal{C}_7	\mathcal{C}_9	\mathcal{C}_{10}
68%	$[-0.34, -0.23] \cup [0.35, 0.45]$	$[-5.2, -4.0] \cup [3.1, 4.4]$	$[-4.4, -3.4] \cup [3.3, 4.3]$
95%	$[-0.41, -0.19] \cup [0.31, 0.52]$	$[-5.9, -3.5] \cup [2.6, 5.2]$	$[-4.8, -2.8] \cup [2.7, 4.7]$
max	−0.28 ∪ 0.40	−4.56 ∪ 3.64	$-3.92 \cup 3.86$
68%	$[-0.39, -0.19] \cup [0.30, 0.48]$	$[-5.6, -3.8] \cup [2.9, 5.1]$	$[-4.0, -2.5] \cup [2.6, 3.9]$
95%	$[-0.53, -0.13] \cup [0.24, 0.61]$	$[-6.7, -3.1] \cup [2.2, 6.2]$	$[-4.7, -1.9] \cup [2.0, 4.6]$
max	−0.30 ∪ 0.38	−4.64 ∪ 3.84	−3.24 ∪ 3.30

upper: normal priors, lower: wide priors

What We Learn

- very good agreement with the SM!
- ullet of 59 exper. inputs, only one pull $> 2\sigma!$ ($\mathcal{B}[B o K^*\ell^+\ell^-]_{>16}$ Belle)