Отчет по лабораторной работе №1

Операционные системы

Мориссала Донзо НКАбд-01-24

Содержание

Цель работы	1
выполнение лабораторной работы	1
Выполнение дополнительного задания	8
Ответы на контрольные вопросы	10
Выводы	11

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (CPU0).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела.

Выполнение лабораторной работы

Я выполняю лабораторную работу на домашнем оборудовании, поэтому создаю новую виртуальную машину в VirtualBox, выбираю имя, местоположение и образ ISO, устанавливать будем операционную систему Rocku DVD (рис. 1).

Окно создания виртуальной машины

Выставляю основной памяти размер 2048 Мб, выбираю 3 процессора, чтобы ничего не висло (рис. 2).

Окно выбора основных характеристик для гостевой ОС

Выделаю 15 Гб памяти на виртуальном жестком диске (рис. 3).

Окно выбора объема памяти

Соглашаюсь с проставленными настройками (рис. 4).

Итоговые настройки

Начинается загрузка операционной системы (рис. 5).

Загруза операционной системы Rocky

Выбираю язык установки (рис. 6).

Выбор языка установки

В обзоре установки будем проверять все настройки и менять на нужные (рис. 7).

Окно настроек

Язык раскладки должен быть русский, английский и Францусский (рис. 8).

Выбор раскладки

Часовой пояс поменяла на московское время (рис. 9).

Изменение часового пояса

Установила пароль для администратора (рис. 10).

Настройка аккаунта root

Для пользователя так же сделала пароль и сделала этого пользователя администратором (рис. 11).

Настройка пользователя

Проверяю сеть, указываю имя узла в соответствии с соглашением об именовании (рис. 12).

Выбор сети

Начало установки (рис. 13).

Установка

После установки при запуске операционной системы появляется окно выбора пользователя (рис. 14).

Окно входа в операционную систему

Выполнение дополнительного задания

Открываю терминал, в нем прописываю dmesg | less (рис. 15).

```
morissaladonzo@vbox:~$ dmesg | less
```

Окно терминала

Версия ядра 5.14.0-362.8.1.el9_3.x86_64 (рис. 16).

```
morissaladonzo@vbox:~sudo dmesg | grep -i "Linux version" [sudo] Mot de passe de morissaladonzo: [ 0.000000] Linux version 6.8.5-301.fc40.x86_64 (mockbuild@0bc 0cc78c12e4762acf61c209bd02e96) (gcc (GCC) 14.0.1 20240328 (Red Hat 14.0.1-0), GNU ld version 2.41-34.fc40) #1 SMP PREEMPT_DYNAMIC Thu Apr 11 20:00:10 UTC 2024
```

Версия ядра

Частота процессора 2918.044 МГц (рис. 17).

```
morissaladonzo@vbox:~$ sudo dmesg | grep -i "MHz"

[ 0.000009] tsc: Detected 2918.404 MHz processor

[ 3.646203] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:

27:7b:54:06
```

Частота процессора

Модель процессора Intel Core i7-8550U (рис. 18).

```
morissaladonzo@vbox:~$ sudo dmesg | grep -i "CPUO"
morissaladonzo@vbox:~$ sudo dmesg | grep -i "CPUO"
```

Модель процессора

Доступно 260860 Кб из 2096696 Кб (рис. 19).

```
morissaladonzo@vbox:~$ sudo dmesg | grep -i "Memory"
     0.003187] ACPI: Reserving FACP table me
                                              ory at [mem 0xdfff00
f0-0xdfff01e3]
     0.003189] ACPI: Reserving DSDT table memory at [mem 0xdfff06
10-0xdfff29621
     0.003189] ACPI: Reserving FACS table memory at [mem 0xdfff02
00-0xdfff023f]
     0.003190] ACPI: Reserving FACS table memory at [mem 0xdfff02
00-0xdfff023f]
     0.003190] ACPI: Reserving APIC table memory at [mem 0xdfff02
40-0xdfff029b]
    0.003191] ACPI: Reserving SSDT table memory at [mem 0xdfff02
a0-0xdfff060b]
     0.003463] Early memory node ranges
     0.086169] PM: hibernation: Registered nosave memory: [mem 0x
00000000-0x00000fff]
     0.086171] PM: hibernation: Registered nosave memory: [mem 0x
0009f000-0x0009ffff]
     0.086171] PM: hibernation: Registered nosave memory: [mem 0x
000a0000-0x000effff]
```

Объем доступной оперативной памяти

Обнаруженный гипервизор типа KVM (рис. 20).

```
morissaladonzo@vbox:~$ sudo dmesg | grep -i "hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 3.309816] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
morissaladonzo@vbox:~$
```

Тип обнаруженного гипервизора

sudo fdish -l показывает тип файловой системы, типа Linux, Linux LVM (рис. 21).

```
morissaladonzo@vbox:~$ sudo fdisk -l
Disk /dev/sda: 15 GiB, 16106127360 bytes, 31457280 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 75B8ABD3-006A-4407-89FA-CAE2813F427B
            Start
                      End Sectors Size Type
            2048 4095 2048 1M BIOS boot
/dev/sda1
           4096 2101247 2097152 1G Linux extended boot
/dev/sda2
/dev/sda3 2101248 31455231 29353984 14G Linux filesystem
Disk /dev/zram0: 3,82 GiB, 4100980736 bytes, 1001216 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
morissaladonzo@vbox:~$
```

Тип файловой системы

Далее показана последовательно монтирования файловых систем (рис. 22).

```
### Comparison of the System Action of Sy
```

Последовательность монтирования файловых систем

Ответы на контрольные вопросы

1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские

буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию - одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).

- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.
- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

Выводы

Я приобрел практические навыки установки операционной системы на виртуальную машину, настройки ми- нимально необходимых для дальнейшей работы сервисов.