CS 3653 – Discrete Mathematics for Computer Science

Assignment # 1	Due – Jan 17, 2022, 11:59pm (CST)
Chapter # 1.1 - 1.3	Max. Points # 25

SN	QUESTION	Pts
	What is the negation of each of these propositions?	
	a) Jennifer and Teja are friends.	4
1	b) There are 13 items in a baker's dozen.	X
	c) Abby sent more than 100 text messages yesterday.	0.5
	d) 121 is a perfect square.	
	Let p and q be the propositions "The election is decided" and "The votes have been	
	counted," respectively. Express each of these compound propositions as an English	
	sentence.	8
2	a) ¬p b) p∨q	X
	c) $\neg p \land q$ d) $q \rightarrow p$	0.5
	e) $\neg q \rightarrow \neg p$ f) $\neg p \rightarrow \neg q$	
	g) $p \leftrightarrow q$ h) $\neg q \lor (\neg p \land q)$	
	Let p, q, and r be the propositions	
	p: You get an A on the final exam.	
	q: You do every exercise in this book.	
	r: You get an A in this class.	
	Write these propositions using p, q, and r and logical connectives (including	
	negations).	
	a) You get an A in this class, but you do not do every exercise in this book.	
3	b) You get an A on the final, you do every exercise in this book, and you get an A in this	6
	class.	X
	c) To get an A in this class, it is necessary for you to get an A on the final.	0.5
	d) You get an A on the final, but you don't do every exercise in this book; nevertheless,	
	you get an A in this class.	
	e) Getting an A on the final and doing every exercise in this book is sufficient for getting	
	an A in this class.	
	f) You will get an A in this class if and only if you either do every exercise in this book	
	or you get an A on the final.	

Spring - 2022 Page 1 of 3

4	State the converse, contrapositive, and inverse of each of these conditional statements. a) If it snows tonight, then I will stay at home. b) I go to the beach whenever it is a sunny summer day. c) When I stay up late, it is necessary that I sleep until noon.	3 X 1
5	Construct a truth table for each of these compound propositions. a) $p \rightarrow \neg p$ b) $p \leftrightarrow \neg p$ c) $p \oplus (p \lor q)$ d) $(p \land q) \rightarrow (p \lor q)$ e) $(q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q)$ f) $(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$	6 X 0.5
	Evaluate each of these expressions.	
6	a) 1 1000 ∧ (0 1011 ∨ 1 1011) b) (0 1111 ∧ 1 0101) ∨ 0 1000 c) (0 1010 ⊕ 1 1011) ⊕ 0 1000	4 X 0.5
	d) (1 1011 v 0 1010) ∧ (1 0001 v 1 1011)	
7	Following exercise relates to inhabitants of the island of knights and knaves created by Smullyan, where knights always tell the truth and knaves always lie. You encounter two people, A and B. Determine, if possible, what A and B are if they address you in the way described below: A says "The two of us are both knights" and B says "A is a knave." If you cannot determine what these two people are, can you draw any conclusions?	
8	Find the output of each of these combinatorial circuits. a) p q r b) p q p p r	2 X 1
9	Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $((\neg p \lor \neg r) \land \neg q) \lor (\neg p \land (q \lor r))$ from input bits p, q, and r.	1

Spring - 2022 Page 2 of 3

	Show that each of these conditional statements is a tautology by using truth tables.	
	a) $(p \land q) \rightarrow p$	
	b) $p \rightarrow (p \lor q)$	6
10	c) $\neg p \rightarrow (p \rightarrow q)$	X
	d) $(p \land q) \rightarrow (p \rightarrow q)$	0.5
	$e) \neg (p \rightarrow q) \rightarrow p$	
	$f) \neg (p \rightarrow q) \rightarrow \neg q$	

Spring - 2022 Page 3 of 3