

PDEs

 A <u>differential equation</u> (DE) is any equation that contains a derivative.

e.g.
$$\frac{du}{dx} = x^2 \sec(3u)$$

 A <u>partial differential equation</u> (PDE) contains derivatives with respect to different variables.

e.g.
$$\frac{\partial u}{\partial x} - 4 \frac{\partial^2 u}{\partial x^2} = x^2 + 3y$$

For short, we like to use subscripts for our derivatives.

e.g.
$$u_x - 4u_{yy} = x^2 + 3y$$

 PDEs are very useful in image processing, as we will see over the next few weeks. Today we are going to focus on one important PDE: The Heat Equation.

The 1D Heat Equation

 Suppose we watch heat dissipate through a metal bar of length L.

Let u(x,t) be the temperature of the bar at position x and time t. The heat dissipates according to the PDE:

$$u_t = \frac{\partial}{\partial x} (K \ u_x)$$
Thermal diffusivity (conductivity)

Boundary Conditions

- We have to specify <u>boundary conditions</u> (BCs) at the ends of the bar x=0 and x=L.
- <u>Dirichlet BCs</u> would <u>clamp</u> the ends of the bar at a <u>specific</u> temperature:

$$u(0,t) = a, \qquad u(L,t) = b$$

Periodic BCs would assume the left and right ends are the same:

$$u(0,t) = u(L,t)$$

Neumann BCs assume the ends are insulated, so the change over time is zero:

$$u_t(0,t) = u_t(L,t) = 0$$

If the conductivity K is a constant throughout the bar, we can pull it out of the derivative.

$$u_t = \frac{\partial}{\partial x}(K u_x) = K \frac{\partial}{\partial x}(u_x) = K u_{xx}$$

 We refer to this an isotropic diffusion, since the heat flows evenly at all points along the bar.

$$u_t = K u_{rr}$$

 For example, if the bar was made out of the same material throughout we would expect K to be a constant.

M

Anisotropic Heat Diffusion

- If K(x) changes throughout the bar, then heat will flow unevenly and we call this anisotropic diffusion.
- Since K is no longer a constant, now we cannot pull the function K out of the derivative.

$$u_t = \frac{\partial}{\partial x} (K u_x)$$

 For example, if the bar was made out of different materials we would expect the conductivity to change along the bar.

Divergence

■ The <u>divergence</u> operator $\nabla \cdot$ is defined by summing the partial derivatives of <u>respective components</u>:

$$\vec{v} = \langle v_1, v_2 \rangle \quad \Rightarrow \quad \nabla \cdot \vec{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}$$

■ Ex Let $\overrightarrow{w} = \langle x^2y, 3x\cos(4y) \rangle$. Compute the divergence of \overrightarrow{w} .

The 2D Heat Equation

 Suppose we keep track of the temperature on a hot plate on some rectangular domain Ω: u(x,v,t).

 The Heat Equation extends to 2D by taking the divergence of K times the gradient.

Isotropic 2D Heat Equation

 If K is a constant, we can pull it out of the derivatives to get a much simpler PDE.

$$\begin{aligned} u_t &= \nabla \cdot (K \nabla u) \\ &= K \nabla \cdot (\nabla u) \\ &= K \left[\frac{\partial}{\partial x} u_x + \frac{\partial}{\partial y} u_y \right] \\ &= K \left[u_{xx} + u_{yy} \right] \end{aligned}$$

- Recall we defined the Laplacian operator $\Delta u = u_{xx} + u_{yy}$.
- So the Isotropic Heat Equation is

Spatial Discretization

 Last week, we discussed how to approximate spatial derivatives using finite differences.

$$u_x \approx \frac{u(x+1,y)-u(x-1,y)}{2} \qquad u_y \approx \frac{u(x,y+1)-u(x,y-1)}{2} \\ u_{xx} \approx u(x+1,y) - 2u(x,y) + u(x-1,y) \\ u_{yy} \approx u(x,y+1) - 2u(x,y) + u(x,y-1)$$

Note this is where the Neumann BCs come in!
$$\frac{\partial u}{\partial x} = 0$$

- So we can use this idea to approximate u_{xx} and u_{yy} in the right-hand side our PDE. $u_t = K \big[u_{xx} + u_{yy} \big]$
- But what about the left-hand side?

Temporal Discretization

 We can also discretize our temporal (time) derivative based on some small time step Δt. If we take a backward difference in t we get:

$$u_t(x, y, t + \Delta t) \approx \frac{u(x, y, t + \Delta t) - u(x, y, t)}{\Delta t}$$

• We will evolve the temperature over time. Let $u^n(x, y)$ denote the n-th iteration at time $t = n \Delta t$.

 Then we can write our discretization a little more simply as:

$$\iota_t^{n+1} \approx \frac{u^{n+1} - u^n}{\Delta t}$$

Discretization of the PDF

So our PDE

$$u_t = K[u_{rr} + u_{vv}]$$

is discretized as

$$\frac{u^{n+1}-u^n}{\Lambda t}=K[u_{xx}^n+u_{yy}^n]$$

where the spatial derivatives are approximated as $v^n = v^n(v + 1, v) - 2v^n(v, v) + v(v + 1, v)$

$$u_{xx}^n = u^n(x+1,y) - 2u^n(x,y) + u(x-1,y)$$

$$u_{yy}^n = u^n(x,y+1) - 2u^n(x,y) + u(x,y-1)$$

PDE Iteration

■ We want to evolve the equation over time:

$$\frac{u^{n+1} - u^n}{\Delta t} = K \left[u_{xx}^n + u_{yy}^n \right]$$

If we solve for u^{n+1} we get: $u^{n+1} = u^n + K \Delta t \left[u_{xx}^n + u_{yy}^n \right]$

This tells us how to update our u(x,y,t) at each iteration.

Forward Fuler

 Suppose we are given an initial temperature distribution f(x,y).

$$u(x, y, 0) = f(x, y)$$

• We set our initial guess for u=f and evolve it over time.

(Initialize: $u^0 = f$)

Update: $u^{n+1} = u^n + K \Delta t \left[u_{rr}^n + u_{rr}^n \right]$

- We stop the process when we reach some stopping time
 Tor when u(x,y) no longer seems to be changing.
- This process is known as explicit Forward Euler evolution. It is the simplest way to solve the Heat Equation numerically.

Coding Isotropic Diffusion (See code on the couse page)

Let's code this!

Initialize: $u^0 = f$ Update: $u^{n+1} = u^n + K \Delta t \left[u_{xx}^n + u_{yy}^n \right]$

- Write a Matlab function that takes a 2D matrix f as input and evolves the Heat Equation.
- Let's use the parameters:

Conductivity K = 1 Stopping time T=20 Time step $\Delta t = 0.1$ (*Try playing with this value*.)

Stability

We say a numerical algorithm is <u>stable</u> if the <u>iterates uⁿ</u> stay bounded.

 $\lim_{n\to\infty} u^n(x,y) < C \quad \text{for some constant } C$

- To make the algorithm fast, we want to make the time step Δt as large as possible.
- But if Δt, then this is no longer a valid approximation of the derivative and the algorithm becomes unstable.
- Von Neumann analysis of the 2D Heat Equation shows Forward Euler is stable as long as

Isotropic Diffusion

- Isotropic heat diffusion looks just like blurring the image with a Gaussian filter.
- In fact, the Gaussian blurred image is a solution of the Heat Equation.

solution of the Heat Equation.

$$u(x, y, t) = G_t * f(x, y)$$

Blurring is a nice way to smooth the image and get rid of noise. But we don't want to blur the edges of an image.

Anisotropic Diffusion

- So maybe our conductivity value should change throughout the image.
- Ideally we want K(x,y) to be an "edge-stopping" function:
 K(x,y) = 1 in flat regions

K(x,y) = 0 on edges

■ Then the diffusion will stop at the edges of the image.

 $u_t = \nabla \cdot (K \nabla u)$

Anisotropic Diffusion

- (Perona-Malik, 1990) had the idea to use anisotropic diffusion where the K value is tied to the gradient.
- Recall the norm of the gradient is zero in flat regions and large at edges. **Edge-Stopping Functions**

Coding Anisotropic Diffusion

We evolve the PDF.

$$u_t = \nabla \cdot (K\nabla u) = \frac{\partial}{\partial x}(Ku_x) + \frac{\partial}{\partial y}(Ku_y)$$

So our basic algorithm is:

Initialize:
$$u^0 = f$$

Update: $u^{n+1} = u^n + \Delta t \left[\frac{\partial}{\partial x} (K u_x^n) + \frac{\partial}{\partial x} (K u_x^n) \right]$

- Recall we derived the formula for u_{xx} by doing a forward then a backward difference: $u_{xx} \approx D_x^-(D_x^+u)$.
- Now we first calculate the matrix K, multiply this times D⁺_vu, and then take a backward difference of the product:

$$\frac{\partial}{\partial x}(Ku_x) \approx D_x^-(KD_x^+u)$$

Isotropic vs. Anisotropic Isotropic $u_t = \Delta u$ (K = 1)

t=5

t=20

Medical Imaging

 In medical imaging, anisotropic diffusion may help define shapes and objects.

Color Diffusion

 To process a color image, we just run the diffusion on each of the 3 RGB bands.

Anisotropic diffusion turns photos into cartoons!