

FIG. 1 - PRODUCT CYCLE

Figure 2 – Quadratic Acceleration

FIG. 3 - Correlation between Accelerated and Field Use Time Scales

Aunt V	U	In	it	A
--------	---	----	----	---

	CSS	HSS	RT	, Vib	CE
HALT 1 First Failure (time to failure in minutes)	120	81	14	53	55.5
HALT 2 First Failure (time to failure in minutes)	91.5	90.5	63	83.5	87
\hat{R}_i (see eq.4)	0.58	1.25	20.25	2.48	2.46
\hat{R}_i^* (see eq. 5)	54	.22	3.01	0.91	0.90

 \overline{R}^{\star} (see eq. 6)

0.90

 \overline{R}

BOM MTBF

298462

MTBF for Redesigned Unit

734221

(see eq. 12)

90% Confidence Limits for R

(see eq.11)

Lower Limit

0.17

Upper Limit

35.1

F 16. 4

_ over constant for the	RESERVED TO THE PARTY OF THE PA			22 2 3 3 3 3 3		
Unit B	css	нѕѕ	RT	Vib	CE	
HALT 1 First Failure (time to	73.5	83	89	50	11	
failure in minutes)						
HALT 2 First Failure (time to	121.5	83	13.5	110	13.5	
failure in minutes)						
\hat{R}_i (see eq.4)	2.73	`.00	ე.02	4.84	1.51	
\hat{R}_{i}^{*} (see eq. 5)	1.01	0.00	-3.77	1.58	0.41	

 \overline{R}^{\star} (see eq. 6)

-0.16

 \overline{R}

BOM MTBF

232000

MTBF for Redesigned Unit

199520

(see eq. 12)

90% Confidence Limits for R

(see eq.11)

F16.5

Lower Limit

Upper Limit

0.06 12.23

Unit C	css	HSS	RT	Vib	CE	
HALT 1 First Failure (time to	89	72	33	73	49	
failure in minutes)						
HALT 2 First Failure (time to	112	78	100	63.5	19.83	
failure in minutes)						
$\hat{R}_{_{i}}$ (see eq.4)	1.58	1.17	9.18	0.76	0.16	
$\hat{oldsymbol{R}}^{ullet}_i$ (see eq. 5)	0.46	0.16	2.22	-0.28	-1.81	

 \overline{R}^{\star} (see eq. 6)

0.15

 \overline{R}

BOM MTBF

363300

MTBF for Redesigned Unit

421428

(see eq. 12)

90% Confidence Limits for R

F1G. 6

(see eq.11)

Lower Limit

0.08

Upper Limit

16.61