CLAIMS

What is claimed is:

1	1. A system for measuring retardance of a sample, comprising	
2	a sample region for receiving the sample;	
3	a source of substantially circularly polarized illumination light;	
4	illumination optics for directing the illumination light toward the sample region;	
5	analysis optics for receiving incident light from the sample region;	
6	a plurality of photodetector regions;	
7	beamsplitting optics for dividing the incident light into a plurality of sub-beams and for	
8	directing each sub-beam to a respective one of the plural photodetector regions;	
9	a plurality of elliptical polarizers disposed in the sub-beams for preferentially	
10	transmitting incident light whose polarization state lies within a distance ε of a chosen pole on a	
11	Poincare sphere; and	
12	a processor for determining retardance from intensity signals generated at the	
13	photodetector regions onto which the sub-beams are directed.	
1	2. The apparatus of claim 1, wherein the sample retardance is 50 nm or less.	
1	3. The apparatus of claim 1, wherein the sample retardance is 10 nm or less.	
1	4. The apparatus of claim 1, wherein ε is 35 degrees or less.	
. 1	5. The apparatus of claim 1, wherein ε is 20 degrees or less.	

2	beamsplitter configured to operate by partial reflection at an interface for dividing the incident		
3	light into the sub-beams.		
1	. ** 7.	The apparatus of claim 6, wherein the beamsplitter is substantially polarization	
2	neutral.		
1	8.	The apparatus of claim 6, wherein the beamsplitter is a polka-dot type.	
1:	9.	The apparatus of claim 1, further comprising an optical retarder disposed adjacen	
2	an entrance fa	ace of the beamsplitting optics for transforming the polarization state of light	
3	passing there	through.	
1	10.	The apparatus of claim 1, wherein the beamsplitting optics comprises a plurality	
2	of prism facets which divide the incident light into the sub-beams according to the area of eac		
3	facet.		
1	11.	The apparatus of claim 10, wherein the beamsplitting optics comprises a single	
2	prism with m	ultiple facets.	
1	12.	The apparatus of claim 10, wherein the beamsplitting optics comprises an	
2	assembly of a	a plurality of prisms.	
1	13	The apparatus of claim 10, wherein the elliptical polarizers are located between	
2	the sample re	egion and the beamsplitting optics.	

The apparatus of claim 1, wherein the beamsplitting optics comprise a

1

2	the sample ch	amber and the elliptical polarizers.
l	15.	The apparatus of claim 1, wherein at least one of the plural elliptical polarizers
2	comprises a li	near polarizer and at least one optical retarder.
ł	16.	The apparatus of claim 15, wherein the optical retarder is an electrically variable
2	retarder.	
l	17.	The apparatus of claim 16, wherein the electrically variable retarder is a liquid
2	crystal cell.	
1	18.	The apparatus of claim 1, wherein at least one of the plural elliptical polarizers
2	comprises a fi	xed linear polarizer and at least two retarder elements.
1	19.	The apparatus of claim 18, wherein at least one of the retarder elements is
2	electrically va	ariable.
1	20.	The apparatus of claim 18, wherein at least two of the retarder elements are
2	electrically va	ariable.
1	21.	The apparatus of claim 1, wherein the plural detector regions comprise a plurality
2	of detectors.	
1	22.	The apparatus of claim 1, wherein at least two of the plural detector regions
2	comprise diff	erent regions on a single pixilated detector.
	٠.	

The apparatus of claim 10, wherein the beamsplitting optics are located between

14..

1	24. The apparatus of claim 23, wherein the illumination light source is a flashlamp.		
1	25. The apparatus of claim 1, wherein the illumination light source is operable to emi		
2	monochromatic light.		
1	26. The apparatus of claim 25, wherein the illumination light source comprises a		
2	broadband light source and a filter.		
1	27. A system for real-time imaging of retardance of a sample, comprising		
2	a sample region for receiving the sample;		
3 .	a source of substantially circularly polarized illumination light;		
4	illumination optics for directing the illumination light toward the sample region;		
5	analysis optics for receiving incident light from the sample region;		
6	a plurality of photodetector regions;		
7	beamsplitting optics for dividing the incident light into a plurality of sub-beams and for		
8	directing each sub-beam to a respective one of the plural photodetector regions;		
9	a plurality of elliptical polarizers located in the sub-beams for preferentially transmitting		
10	incident light whose polarization state lies within a distance ϵ of a chosen pole on a Poincare		
11	sphere; and		
12	a processor for calculating retardance from intensity signals generated at the		
13	photodetector regions onto which the sub-beams are directed;		
14	wherein the sample is one of a biological cell, a tissue sample, and an oocyte.		

The apparatus of claim 1, wherein the illumination light source is a pulsed lamp.

1, 1

1	28.	The apparatus of claim 27, wherein the sample is an oocyte.
1	29.	The apparatus of claim 27, wherein the beamsplitting optics comprise a
2	beamsplitter	configured to operate by partial reflection at an interface to divide the incident light
3	into the sub-	peams.
1	30.	The apparatus of 27, wherein the beamsplitting optics comprise a plurality of
2	prism facets	which divide the incident light into the sub-beams according to the area of each
3	facet.	
1	31.	The apparatus of claim 29, further comprising a waveplate located between the
2	sample regio	n and the beamsplitting optics.
1	32.	The apparatus of claim 30, wherein the plural elliptical polarizers are located
2	between the	sample region and the beamsplitting optics.
1	33.	The apparatus of claim 30, wherein the plural prism facets comprise a single
2	prism with n	nultiple facets.
1	34.	The apparatus of claim 30, wherein the plural prism facets comprise an assembly
2	of a multipli	city of prisms.
1	35.	A system for measurement of polarization, comprising
2	an in	cident beam of light to be measured
3	a mu	ltiplicity of photodetector regions;

1

4 a beamsplitter for splitting the incident light into plural sub-beams and for directing each 5 of the plural sub-beams toward a different one of the multiple photodetector regions, said 6 beamsplitter comprising a single multifaceted optical element; 7 a plurality of analyzer polarizers for preferentially transmitting incident light in a 8 specified polarization state; and 9 calculation means for determining polarization state from signal levels generated at the 10 plural photodetector regions onto which the plural sub-beams are directed. 1 36. The system of claim 35, wherein the plural analyzer polarizers preferentially 2 transmit incident light in preferential incident polarization states corresponding to states within a 3 distance ε of a selected pole on a Poincare sphere. 1 37. The system of claim 36, wherein ε is 35 degrees or less. 38. The system of claim 36, wherein ε is 20 degrees or less. 1 39. 1 The system of claim 35, wherein at least one of the plural analyzer polarizers preferentially transmits incident light that is substantially circularly polarized and at least another 2 3 of the plural analyzer polarizers transmits light that is substantially linearly polarized. 40. A method for imaging retardance of a sample in real-time, compriseing the steps 1 2 of: illuminating the sample with light that is substantially circularly polarized; 3 receiving light that has interacted with the sample; 4

dividing the received light into N sub-beams, where $N \ge 2$;

5

6 disposing elliptical polarizers in the N sub-beams, corresponding to states within a 7 distance ε of a pole on a Poincare sphere; analyzing a polarization state of each of the N sub-beams with the elliptical polarizers; 8 9 forming an image of the sample with each sub-beam; measuring intensity at a plurality of points in the image at each of the N sub-beams; and 10 11 calculating the sample retardance based on the N image intensity measurements. 41. The method of claim 40, further comprising the step of calculating a principal 1 2 slow axis of the sample at a plurality of points. 42. The method of claim 40, further comprising the step of taking a background measurement with no sample present. 2 The method of claim 40, wherein N is 5. 43. 1 44. The method of claim 40, wherein N is 4. 1 The method of claim 44, wherein one of the elliptical polarizers preferentially 45. 1 2 transmits received light that is substantially circular in polarization state. The method of claim 44, wherein none of the elliptical polarizers preferentially 46. 1 transmit received light that is substantially circular in polarization state. 2 47. The method of claim 40, wherein N is 3. 48. The method of claim 40, wherein N is 2. 1

1	49	The method of claim 40, wherein at least one of the elliptical polarizers is
2	electrically va	riable.
1	50.	The method of claim 42, further comprising the step of storing background data
2	derived from	the background measurement.
1	51.	The method of claim 50, further comprising the step of correcting the calculation
2	of retardance	using the stored background data.
1	52.	The method of claim 40, further comprising the step of taking calibration images
2	to compensate	e for variations between optical responses of the N sub-beams.
1	53.	The method of claim 52, further comprising the step of correcting the image
2	intensity meas	surements using the calibration images.
1	54.	The method of claim 52, wherein one of the polarization of the illumination light
2	and the prefer	rential polarization state of at least one of the polarizers is altered between the
3	calibration me	easurement and the sample measurement.
1	55. T	he apparatus of claim 27, further comprising a display unit for providing an image
2	of the sample	retardance.
1	56 T	he apparatus of claim 55, wherein the display comprises a head-up display

- 1 57. The apparatus of claim 57, wherein the sample is viewable with a microscope and
- 2 wherein the image of sample retardance provided by the display comprises an image viewed
- 3 from within the eyepiece of the microscope.