Binary Outcome Panel Data Models

230347 Advanced Microeconometrics Tilburg University

Christoph Walsh

Introduction

- ▶ Suppose the dependent variable is a binary variable: $y_{it} \in \{0,1\}$.
- We often model y_{it} as a function of a latent variable y_{it}^{\star} , where $y_{it} = \mathbb{1}\{y_{it}^{\star} > 0\}$ and $y_{it}^{\star} = \mathbf{x}_{it}' \boldsymbol{\beta} + \alpha_i + \varepsilon_{it}$.
- ► Then $\Pr(y_{it} = 1) = \Pr(y_{it}^* > 0) = \Pr(\varepsilon_{it} > -x_{it}'\beta \alpha_i) = F(x_{it}'\beta + \alpha_i)$, where the last equality holds if $dF(\cdot)$ is symmetric around zero.
- \triangleright Two popular distributions for F are the normal (probit) and logistic (logit) distributions.
- In this lecture we will study:
 - ▶ How to estimate the static fixed effects logit model.
 - How to estimate the dynamic fixed effects logit model.
 - How to estimate the random effects probit model.

Interpretation as Difference in Payoffs

▶ The latent variable y_{it}^{\star} can have the interpretation of being the difference in payoff from two different alternatives:

$$u_{it}^{0} = (\mathbf{x}_{it}^{0})' \boldsymbol{\beta} + \alpha_{i}^{0} + \varepsilon_{it}^{0}$$

$$u_{it}^{1} = (\mathbf{x}_{it}^{1})' \boldsymbol{\beta} + \alpha_{i}^{1} + \varepsilon_{it}^{1}$$

- $ightharpoonup y_{it} = 1$ iff $u_{it}^1 > u_{it}^0$ (if alternative 1 gives a higher payoff than alternative 0).
- ► Then:

$$\underbrace{u_{it}^{1}-u_{it}^{0}}_{y_{it}^{*}}=\underbrace{\left(\mathbf{x}_{it}^{1}-\mathbf{x}_{it}^{0}\right)'\boldsymbol{\beta}}_{\mathbf{x}_{b}^{\prime}\boldsymbol{\beta}}+\underbrace{\left(\alpha_{i}^{1}-\alpha_{i}^{0}\right)}_{\alpha_{i}}+\underbrace{\varepsilon_{it}^{1}-\varepsilon_{it}^{0}}_{\varepsilon_{it}}$$

- ▶ Often the alternative 0 is the "outside option" where $x_{it}^0 = 0$.
- If we assume ε_{it}^0 and ε_{it}^1 are normal, then the difference ε_{it} is also normal.
- If we assume ε_{it}^0 and ε_{it}^1 are independent Type I extreme value (Gumbel), then the difference ε_{it} is logit.

Likelihood

▶ The contribution of *i* to the likelihood for binary outcome panel data is:

$$f(\mathbf{y}_{i}|\mathbf{x}_{i},\alpha_{i},\boldsymbol{\beta}) = \prod_{t=1}^{T} \left[\underbrace{F(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta})}_{=\Pr(y_{it}=1|\mathbf{x}_{i},\alpha_{i},\boldsymbol{\beta})}\right]^{y_{it}} \left[\underbrace{1 - F(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta})}_{=\Pr(y_{it}=0|\mathbf{x}_{i},\alpha_{i},\boldsymbol{\beta})}\right]^{1-y_{it}}$$

 $\blacktriangleright \text{ If } F(x) = \frac{e^x}{1+e^x} \text{ (logit)}:$

$$f(\mathbf{y}_{i}|\mathbf{x}_{i},\alpha_{i},\boldsymbol{\beta}) = \prod_{t=1}^{T} \left(\frac{\exp\left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)}{1 + \exp\left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)}\right)^{y_{it}} \left(\frac{1}{1 + \exp\left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)}\right)^{1-y_{it}}$$

$$= \frac{\exp\left(\sum_{t=1}^{T} y_{it} \left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)\right)}{\prod_{t=1}^{T} \left[1 + \exp\left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)\right]}$$

$$= \frac{\exp\left(\alpha_{i} \sum_{t=1}^{T} y_{it}\right) \exp\left(\sum_{t=1}^{T} \left(y_{it}\mathbf{x}_{it}'\right)\boldsymbol{\beta}\right)}{\prod_{t=1}^{T} \left[1 + \exp\left(\alpha_{i} + \mathbf{x}_{it}'\boldsymbol{\beta}\right)\right]}$$

Incidental Parameters Problem

- ▶ The parameters are $\left(\{\alpha_i\}_{i=1}^{i=N}, \beta\right)$
- As $N \to \infty$ while T is fixed, the number of parameters increases with N.
 - ▶ This is the incidental parameters problem.
- In the linear case, we were able to remove the α_i with either first-differences or the within transformation.
- In nonlinear cases, this transformation is not always possible.
- ▶ We could just add a dummy variable for each i, but in this setting the $\widehat{\alpha}_i$ and $\widehat{\beta}$ are not asymptotically independent.
 - ▶ As $N \to \infty$ with fixed T, the inconsistency of $\widehat{\alpha}_i$ is transmitted into $\widehat{\beta}$.
 - For example, Hsiao (2003, 7.3.1) shows that when T=2, $x_{i1}=0$ and $x_{i2}=1$, that $\widehat{\beta}_{MLE} \stackrel{p}{\to} 2\beta$.
 - **F** Furthermore, with large N estimation of $N + \dim(\beta)$ parameters is difficult.

Sufficient Statistic: Definition

- ▶ Let $X = X_1, ..., X_N$ be a random sample from a population.
- ▶ The random variable (or random vector) T(X) is a *statistic*.
 - ▶ For example $T(X) = \frac{1}{N} \sum_{i=1}^{N} X_i$, the sample mean.
- A statistic T(X) is a *sufficient statistic* for the parameter θ if the conditional distribution of the sample X given T(X) does not depend on θ .
- ► For example:
 - ightharpoonup The parameter θ that we want to estimate is the mean of X.
 - The statistic $T(X) = \frac{1}{N} \sum_{i=1}^{N} X_i$ is a sufficient statistic for θ because once the researcher knows $\frac{1}{N} \sum_{i=1}^{N} X_i$, then knowing each of the individual X_1, \ldots, X_N provides no additional information about θ .

Sufficient Statistic: A Coin Toss Example

- **Each** X_i are iid Bernoulli distributed with probability parameter θ .
- ▶ Given a random sample $X_1, ..., X_N$, we will show that $T(X) = X_1 + \cdots + X_N$ is a sufficient statistic for θ .
- ▶ Since T(X) is a sum of iid Bernoulli draws, T(X) follows a binomial (N, θ) distribution.
 - lts pmf is then $q(T(x)|\theta) = \binom{N}{k} \theta^k (1-\theta)^{N-k}$
- ▶ The pmf of the sample **X** conditional on T(X) is then (where $k = \sum_{i=1}^{N} x_i$):

$$\begin{split} \frac{p(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} &= \frac{\prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i}}{\binom{N}{k} \theta^k (1-\theta)^{N-k}} \\ &= \frac{\theta^{\sum_{i=1}^{N} x_i} (1-\theta)^{\sum_{i=1}^{N} (1-x_i)}}{\binom{N}{k} \theta^k (1-\theta)^{N-k}} \\ &= \frac{\theta^k (1-\theta)^{N-k}}{\binom{N}{k} \theta^k (1-\theta)^{N-k}} = \frac{1}{\binom{N}{k}} \quad \text{doesn't depend on } \theta! \end{split}$$

Sufficient Statistic for α_i , T=2 Case

- We will show that $c = \sum_{t=1}^{T} y_{it}$ is a sufficient statistic for α_i in the fixed effects logit model, showing for T = 2 first.
- For c=0 and c=2:

$$\Pr(y_{i1} + y_{i2} = 0) = \Pr(y_{i1} = 0, y_{i2} = 0) = \frac{1}{\left[1 + e^{\alpha_i + x'_{i1}\beta}\right] \left[1 + e^{\alpha_i + x'_{i2}\beta}\right]}$$

$$\Pr(y_{i1} + y_{i2} = 2) = \Pr(y_{i1} = 1, y_{i2} = 1) = \frac{e^{\alpha_i + x'_{i1}\beta} \times e^{\alpha_i + x'_{i2}\beta}}{\left[1 + e^{\alpha_i + x'_{i1}\beta}\right] \left[1 + e^{\alpha_i + x'_{i2}\beta}\right]}$$

For c=1:

$$\begin{aligned} \Pr\left(y_{i1} + y_{i2} = 1\right) &= \Pr\left(y_{i1} = 0, y_{i2} = 1\right) + \Pr\left(y_{i1} = 1, y_{i2} = 0\right) \\ &= \frac{e^{\alpha_i + x'_{i1}\beta} + e^{\alpha_i + x'_{i2}\beta}}{\left[1 + e^{\alpha_i + x'_{i2}\beta}\right] \left[1 + e^{\alpha_i + x'_{i2}\beta}\right]} \end{aligned}$$

T=2 Case Continued

- ▶ If c = 0 or c = 2, then the conditional likelihood is always 1 (and thus doesn't depend on α_i):
 - If $y_{i1} + y_{i2} = 0$, then $Pr(y_{i1} = 0, y_{i2} = 0 | y_{i1} + y_{i2} = 0) = 1$
 - If $y_{i1} + y_{i2} = 2$, then $Pr(y_{i1} = 1, y_{i2} = 1 | y_{i1} + y_{i2} = 2) = 1$
- ▶ If c = 1:

$$\begin{split} & \text{Pr}\left(y_{i1}, y_{i2} | y_{i1} + y_{i2} = 1\right) \\ & = \frac{\text{Pr}\left(y_{i1}, y_{i2}\right)}{\text{Pr}\left(y_{i1} + y_{i2} = 1\right)} \\ & = \frac{\left[e^{y_{i1}\left(\alpha_{i} + x_{i1}'\beta\right)} \times e^{y_{i2}\left(\alpha_{i} + x_{i2}'\beta\right)}\right] / \left[1 + e^{\alpha_{i} + x_{i1}'\beta}\right] \left[1 + e^{\alpha_{i} + x_{i2}'\beta}\right]}{\left[e^{\alpha_{i} + x_{i1}'\beta} + e^{\alpha_{i} + x_{i2}'\beta}\right] / \left[1 + e^{\alpha_{i} + x_{i1}'\beta}\right] \left[1 + e^{\alpha_{i} + x_{i2}'\beta}\right]} \\ & = \frac{e^{y_{i1}\alpha_{i} + y_{i2}\alpha_{i}} \times e^{y_{i1}x_{i1}'\beta + y_{i2}x_{i2}'\beta}}{e^{\alpha_{i} + x_{i1}'\beta} + e^{\alpha_{i} + x_{i2}'\beta}} \\ & = \frac{e^{y_{i1}x_{i1}'\beta + y_{i2}x_{i2}'\beta}}{e^{x_{i1}'\beta} + e^{x_{i2}'\beta}} \quad \text{doesn't depend on } \alpha_{i}! \end{split}$$

T=2 Case: Estimation

- ▶ Conditioning on $y_{i1} + y_{i2}$ means the conditional likelihood no longer depends on α_i .
- ightharpoonup We would then estimate β using:

$$\widehat{eta} = rg \max_{oldsymbol{eta}} \ \sum_{i=1}^N \log \left(rac{e^{y_{i1} x_{i1}' eta + y_{i2} x_{i2}' eta}}{e^{x_{i1}' eta} + e^{x_{i2}' eta}}
ight)$$

Note that whenever $y_{i1} + y_{i2} = 0$ or = 2, the log-likelihood is zero for any value of β , so identification only comes from individuals where $y_{i1} + y_{i2} = 1$.

General Case

- Let $\mathcal{B}_c = \left\{ \mathbf{d}_i : \mathbf{d}_i \in \left\{0, 1\right\}^T, \sum_{t=1}^T d_t = c \right\}$, the set of every possible sequence of T zeros or ones such that $\sum_{t=1}^T d_{it} = c$.
- \triangleright For example, if T=3, then:

$$\begin{array}{ll} \mathcal{B}_0 = \left\{ \left(0,0,0\right)\right\} & \mathcal{B}_1 = \left\{ \left(1,0,0\right), \left(0,1,0\right), \left(0,0,1\right)\right\} \\ \mathcal{B}_2 = \left\{ \left(1,1,0\right), \left(1,0,1\right), \left(0,1,1\right)\right\} & \mathcal{B}_3 = \left\{ \left(1,1,1\right)\right\} \end{array}$$

► Then:

$$\Pr\left(\sum_{t=1}^{T} y_{it} = c \middle| \mathbf{x}_{i}, \alpha_{i}, \boldsymbol{\beta}\right) = \sum_{d_{i} \in \mathcal{B}_{c}} \Pr\left(\mathbf{d}_{i} \middle| \mathbf{x}_{i}, \alpha_{i}, \boldsymbol{\beta}\right)$$

$$= \sum_{d_{i} \in \mathcal{B}_{c}} \frac{\exp\left(\alpha_{i} \sum_{t=1}^{T} d_{it}\right) \exp\left(\sum_{t=1}^{T} \left(d_{it} \mathbf{x}_{it}^{\prime}\right) \boldsymbol{\beta}\right)}{\prod_{t=1}^{T} \left[1 + \exp\left(\alpha_{i} + \mathbf{x}_{it}^{\prime} \boldsymbol{\beta}\right)\right]}$$

Sufficient Statistic for α_i

$$f\left(\mathbf{y}_{i} \middle| \sum_{t=1}^{T} y_{it} = c\right) = \frac{\Pr\left(\mathbf{y}_{i}, \sum_{t=1}^{T} y_{it} = c\right)}{\Pr\left(\sum_{t=1}^{T} y_{it} = c\right)}$$

$$= \frac{\Pr\left(\mathbf{y}_{i}\right)}{\Pr\left(\sum_{t=1}^{T} y_{it} = c\right)}$$

$$= \frac{e^{\alpha_{i} \sum_{t=1}^{T} y_{it}} e^{\left(\sum_{t=1}^{T} y_{it} x_{it}'\right) \beta} / \prod_{t=1}^{T} \left(1 + e^{\alpha_{i} + x_{it}' \beta}\right)}{\sum_{d_{i} \in \mathcal{B}_{c}} e^{\alpha_{i} \sum_{t=1}^{T} d_{it}} e^{\left(\sum_{t=1}^{T} d_{it} x_{it}'\right) \beta} / \prod_{t=1}^{T} \left(1 + e^{\alpha_{i} + x_{it}' \beta}\right)}$$

$$= \frac{\exp\left(\left(\sum_{t=1}^{T} y_{it} x_{it}'\right) \beta\right)}{\sum_{d_{i} \in \mathcal{B}_{c}} \exp\left(\left(\sum_{t=1}^{T} d_{it} x_{it}'\right) \beta\right)}$$

• $f\left(\mathbf{y}_{i} \middle| \sum_{t=1}^{T} y_{it} = c\right)$ does not depend on α_{i} , so $\sum_{t=1}^{T} y_{it}$ is a sufficient statistic for α_{i} .

Problems with this Approach

- ▶ If either $\sum_{t=1}^{T} y_{it} = 0$ or $\sum_{t=1}^{T} y_{it} = T$ for any i, then those observations will drop out.
- \triangleright For small T, the number of alternatives is manageable:
 - ▶ If T = 3, then $\{1, 1, 0\}$, $\{1, 0, 1\}$ or $\{0, 1, 1\}$ are possible sequences such that $\sum_{t=1}^{T} y_{it} = 2$.
- ▶ With T = 10 and $\sum_{t=1}^{T} y_{it} = 5$, there are $\frac{10!}{5!5!} = 252$ possible alternatives.

- ▶ Suppose we have $y_{it} = 1 \{ \rho y_{it-1} + x'_{it}\beta + \alpha_i + \varepsilon_{it} > 0 \}$
- \triangleright ε_{it} is iid logistic, independent over time, and independent of x_i, α_i, y_{i1} .

$$\Pr(y_{i1} = 1 | \mathbf{x}_i, \alpha_i) = p_1(\mathbf{x}_i, \alpha_i)$$

$$\Pr(y_{it} = 1 | \mathbf{x}_i, \alpha_i, y_{i1}, \dots, y_{it-1}) = \frac{\exp(\rho y_{it-1} + \mathbf{x}_{it}'\boldsymbol{\beta} + \alpha_i)}{1 + \exp(\rho y_{it-1} + \mathbf{x}_{it}'\boldsymbol{\beta} + \alpha_i)}$$

- \triangleright y_{i1} is observed, but x_{i1} need not be.
- $ightharpoonup p_1(\cdot)$ does not need to be specified.
- ▶ To illustrate we will consider only the T = 4 case.

Define the events:

$$A = \{y_{i1} = d_1, y_{i2} = 0, y_{i3} = 1, y_{i4} = d_4\}$$

$$B = \{y_{i1} = d_1, y_{i2} = 1, y_{i3} = 0, y_{i4} = d_4\}$$

where d_1 and d_4 can each be either 0 or 1. Then:

$$\Pr(A|\mathbf{x}_{i},\alpha_{i}) = \left[p_{1}\left(\mathbf{x}_{i},\alpha_{i}\right)\right]^{d_{1}}\left[1-p_{1}\left(\mathbf{x}_{i},\alpha_{i}\right)\right]^{1-d_{1}} \times \frac{1}{1+\exp\left(\rho d_{1}+\mathbf{x}_{i2}'\boldsymbol{\beta}+\alpha_{i}\right)} \times \frac{\exp\left(\mathbf{x}_{i3}'\boldsymbol{\beta}\right)\exp\left(\alpha_{i}\right)}{1+\exp\left(\mathbf{x}_{i3}'\boldsymbol{\beta}+\alpha_{i}\right)} \times \frac{\exp\left(\rho d_{4}\right)\exp\left(d_{4}\mathbf{x}_{i4}'\boldsymbol{\beta}\right)\exp\left(d_{4}\alpha_{i}\right)}{1+\exp\left(\rho+\mathbf{x}_{i4}'\boldsymbol{\beta}+\alpha_{i}\right)}$$

$$\Pr(B|\mathbf{x}_{i},\alpha_{i}) = [p_{1}(\mathbf{x}_{i},\alpha_{i})]^{d_{1}} [1 - p_{1}(\mathbf{x}_{i},\alpha_{i})]^{1-d_{1}} \times \frac{\exp(\rho d_{1} + \mathbf{x}'_{i2}\beta) \exp(\alpha_{i})}{1 + \exp(\rho d_{1} + \mathbf{x}'_{i2}\beta + \alpha_{i})} \times \frac{1}{1 + \exp(\rho + \mathbf{x}'_{i3}\beta + \alpha_{i})} \times \frac{\exp(d_{4}\mathbf{x}'_{i4}\beta) \exp(d_{4}\alpha_{i})}{1 + \exp(\mathbf{x}'_{i4}\beta + \alpha_{i})}$$

► The probability of *A* given *A* or *B*:

$$\Pr(A|\mathbf{x}_i, \alpha_i, A \cup B) = \frac{\Pr(A \cap (A \cup B)|\mathbf{x}_i, \alpha_i)}{\Pr(A \cup B|\mathbf{x}_i, \alpha_i)} = \frac{\Pr(A|\mathbf{x}_i, \alpha_i)}{\Pr(A|\mathbf{x}_i, \alpha_i) + \Pr(B|\mathbf{x}_i, \alpha_i)}$$

and similarly for $Pr(B|x_i, \alpha_i, A \cup B)$

▶ $Pr(A|\mathbf{x}_i, \alpha_i, A \cup B)$ is then (purple, blue, orange, maroon terms cancel):

$$\frac{\exp(x_{i3}'\beta)}{\frac{1+\exp(x_{i3}'\beta+\alpha_i)}{1+\exp(\rho+x_{i4}'\beta+\alpha_i)}}\frac{\exp(\rho d_4)}{1+\exp(\rho+x_{i4}'\beta+\alpha_i)}}{\frac{\exp(x_{i3}'\beta)}{1+\exp(\rho+x_{i4}'\beta+\alpha_i)}}\frac{1}{1+\exp(\rho+x_{i4}'\beta+\alpha_i)}}\frac{1}{1+\exp(\rho+x_{i4}'\beta+\alpha_i)}$$

▶ Unless $\mathbf{x}_{i3} = \mathbf{x}_{i4} \ \forall i$, $\Pr(A|\mathbf{x}_i, \alpha_i, A \cup B)$ and $\Pr(B|\mathbf{x}_i, \alpha_i, A \cup B)$ will depend on α_i .

For the subsample where $x_{i3} = x_{i4}$, the green and red terms in the probabilities $Pr(A|x_i,\alpha_i)$ and $Pr(B|x_i,\alpha_i)$ will cancel. So:

$$Pr(A|\mathbf{x}_{i}, \alpha_{i}, A \cup B, \mathbf{x}_{i3} = \mathbf{x}_{i4}) = \frac{Pr(A|\mathbf{x}_{i}, \alpha_{i})}{Pr(A|\mathbf{x}_{i}, \alpha_{i}) + Pr(B|\mathbf{x}_{i}, \alpha_{i})}$$
$$= \frac{exp(\rho d_{4} + \mathbf{x}_{i3}'\beta)}{exp(\rho d_{4} + \mathbf{x}_{i3}'\beta) + exp(\rho d_{1} + \mathbf{x}_{i2}'\beta)}$$

Rearranging terms:

$$\Pr(A|\mathbf{x}_{i}, \alpha_{i}, A \cup B, \mathbf{x}_{i3} = \mathbf{x}_{i4}) = \frac{1}{1 + \exp((\mathbf{x}_{i2} - \mathbf{x}_{i3})'\beta + \rho(d_{1} - d_{4}))}$$

$$\Pr(B|\mathbf{x}_{i}, \alpha_{i}, A \cup B, \mathbf{x}_{i3} = \mathbf{x}_{i4}) = \frac{\exp((\mathbf{x}_{i2} - \mathbf{x}_{i3})'\beta + \rho(d_{1} - d_{4}))}{1 + \exp((\mathbf{x}_{i2} - \mathbf{x}_{i3})'\beta + \rho(d_{1} - d_{4}))}$$

Maximum Likelihood Estimation

The log likelihood function is then:

$$\sum_{i=1}^{N} \mathbb{1} \left\{ y_{i2} + y_{i3} = 1 \right\} \mathbb{1} \left\{ x_{i3} - x_{i4} = \mathbf{0} \right\} \log \left(\frac{\exp \left(y_{i2} \left[(x_{i2} - x_{i3})' \beta + \rho \left(y_{i1} - y_{i4} \right) \right] \right)}{1 + \exp \left((x_{i2} - x_{i3})' \beta + \rho \left(y_{i1} - y_{i4} \right) \right)} \right)$$

- $x_{i3} = x_{i4}$ may not occur in the data. This is very likely if a variable is continuous.
- Honoré and Kyriazidou (2000) provide a kernel smoothing method with weights that depend on $x_{i3} x_{i4}$, giving more weight to "closer" observations:

Probit Random Effects: Introduction

Consider again the binary dependent variable model:

$$y_{it} = \mathbb{1}\left\{\mathbf{x}_{it}'\boldsymbol{\beta} + \alpha_i + \varepsilon_{it} > 0\right\}$$
 $i = 1, ..., N$ $t = 1, ..., T$

- ▶ Instead of logit-distributed errors, we assume $\varepsilon_{it} \stackrel{iid}{\sim} \mathcal{N}(0,1)$.
- In the probit model, it is not possible to remove α_i with a (quasi-)differencing transformation or conditioning on a sufficient statistic.
- ▶ Instead, we will assume the α_i are random effects.
- We will assume the random effects follow a distribution that is known up to a parameter vector.

Likelihood

The likelihood for observation i is:

$$\begin{aligned} \mathsf{Pr}\left(\mathbf{\textit{y}}_{i}|\mathbf{\textit{x}}_{i},\boldsymbol{\beta},\alpha_{i}\right) &= \prod_{t=1}^{T} \mathsf{Pr}\left(\mathbf{\textit{y}}_{it}|\mathbf{\textit{x}}_{it},\boldsymbol{\beta},\alpha_{i}\right) \\ &= \prod_{t=1}^{T} \left[\Phi\left(\mathbf{\textit{x}}_{it}'\boldsymbol{\beta}+\alpha_{i}\right)\right]^{\mathbf{\textit{y}}_{it}} \left[1-\Phi\left(\mathbf{\textit{x}}_{it}'\boldsymbol{\beta}+\alpha_{i}\right)\right]^{1-\mathbf{\textit{y}}_{it}} \\ &= \prod_{t=1}^{T} \Phi\left(\left[2\mathbf{\textit{y}}_{it}-1\right]\left[\mathbf{\textit{x}}_{it}'\boldsymbol{\beta}+\alpha_{i}\right]\right) \end{aligned}$$

where:

- Φ is the cdf of the normal density
- ▶ The 4th equality uses $1 \Phi(z) = \Phi(-z)$.

Integrating Out

- \triangleright Suppose two random variables X and Y are jointly distributed with a pdf $f_{X,Y}$.
- ▶ The marginal pdf of X is (where \mathcal{Y} is the support of Y):

$$f_X(x) = \int_{\mathcal{Y}} f_{X,Y}(x,y) dy = \int_{\mathcal{Y}} f_{X|Y}(x|y) f_Y(y) dy$$

Normally-Distributed Random Effects

If α_i has a density $f_{\alpha}(\alpha_i, \theta_{\alpha})$ with parameters θ_{α} , we can integrate out the random effect:

$$\Pr(\mathbf{y}_i|\mathbf{x}_i,\boldsymbol{\beta},\boldsymbol{\theta}_{\alpha}) = \int_{-\infty}^{\infty} \Pr(\mathbf{y}_i|\mathbf{x}_i,\boldsymbol{\beta},\alpha_i) f_{\alpha}(\alpha_i,\boldsymbol{\theta}_{\alpha}) d\alpha_i$$

Using this in our likelihood:

$$L_{i}(\boldsymbol{\beta},\boldsymbol{\theta}_{\alpha}) = \int_{-\infty}^{\infty} \prod_{t=1}^{I} \Phi\left(\left[2y_{it}-1\right]\left[\boldsymbol{x}_{it}'\boldsymbol{\beta}+\alpha_{i}\right]\right) f_{\alpha}\left(\alpha_{i},\boldsymbol{\theta}_{\alpha}\right) d\alpha_{i}$$

If we specify $\alpha_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\alpha}^2\right)$, then $f_{\alpha}\left(\alpha_i, \boldsymbol{\theta}_{\alpha}\right) = \left(\sqrt{2\pi\sigma_{\alpha}^2}\right)^{-1} \exp\left(-\frac{\alpha_i^2}{2\sigma_{\alpha}^2}\right)$, so:

$$L_{i}\left(\boldsymbol{\beta},\sigma_{\alpha}^{2}\right) = \int_{-\infty}^{\infty} \prod_{t=1}^{T} \Phi\left(\left[2y_{it}-1\right]\left[\mathbf{x}_{it}'\boldsymbol{\beta}+\alpha_{i}\right]\right) \frac{e^{-\frac{\alpha_{i}^{2}}{2\sigma_{\alpha}^{2}}}}{\sqrt{2\pi\sigma_{\alpha}^{2}}} d\alpha_{i}$$

Gauss-Hermite Quadrature

- ▶ There is no closed form solution for this integral.
- ▶ We need to approximate it numerically.
- Gauss-Hermite quadrature can approximate integrals of the following kind:

$$\int_{-\infty}^{\infty} f(x) e^{-x^2} dx \approx \sum_{h=1}^{H} w_h f(z_h)$$

- We evaluate the function inside the integral for different nodes z_h and take a weighted average, with weights w_h .
- ▶ Given *H* evaluation points, we can obtain the nodes and weights from tables.

Example Nodes and Weights with H = 20

```
library(ggplot2)
library(statmod)
ghq <- data.frame(gauss.quad(20, kind = "hermite"))
ggplot(ghq, aes(nodes, weights)) + geom_line() + geom_point() +
    theme_minimal()</pre>
```


Change of Variables

- ▶ We need to transform the integral in $L_i(\beta, \sigma_\alpha^2)$ to the form $\int_{-\infty}^{\infty} f(x) e^{-x^2} dx$.
- ▶ Let $r_i = \frac{\alpha_i}{\sqrt{2\sigma_\alpha^2}}$ so $\alpha_i = \sqrt{2\sigma_\alpha^2}r_i$ and $d\alpha_i = \sqrt{2\sigma_\alpha^2}dr_i$.
- ▶ Performing the change of variables:

$$\begin{split} L_{i}\left(\boldsymbol{\beta}, \sigma_{\alpha}^{2}\right) &= \int_{-\infty}^{\infty} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\mathbf{x}_{it}'\boldsymbol{\beta} + \alpha_{i}\right]\right) \frac{e^{-\frac{\alpha_{i}^{2}}{2\sigma_{\alpha}^{2}}}}{\sqrt{2\pi\sigma_{\alpha}^{2}}} d\alpha_{i} \\ &= \int_{-\infty}^{\infty} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\mathbf{x}_{it}'\boldsymbol{\beta} + \sqrt{2\sigma_{\alpha}^{2}}r_{i}\right]\right) \frac{e^{-\frac{\left(\sqrt{2\sigma_{\alpha}^{2}}r_{i}\right)^{2}}{2\sigma_{\alpha}^{2}}}}{\sqrt{2\pi\sigma_{\alpha}^{2}}} \sqrt{2\sigma_{\alpha}^{2}} dr_{i} \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\mathbf{x}_{it}'\boldsymbol{\beta} + \sqrt{2\sigma_{\alpha}^{2}}r_{i}\right]\right) e^{-r_{i}^{2}} dr_{i} \end{split}$$

Approximating the likelihood

With weights w_h and nodes z_h , we can approximate the integral with:

$$L_{i}\left(\boldsymbol{\beta}, \sigma_{\alpha}^{2}\right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\boldsymbol{x}_{it}'\boldsymbol{\beta} + \sqrt{2\sigma_{\alpha}^{2}}r_{i}\right]\right) e^{-r_{i}^{2}} dr_{i}$$

$$\approx \frac{1}{\sqrt{\pi}} \sum_{h=1}^{H} w_{h} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\boldsymbol{x}_{it}'\boldsymbol{\beta} + \sqrt{2\sigma_{\alpha}^{2}}z_{h}\right]\right)$$

This leads to the maximum likelihood estimator:

$$\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}_{\alpha}^{2}\right) = \operatorname*{arg\,max}_{\boldsymbol{\beta}, \sigma_{\alpha}^{2}} \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{\pi}} \sum_{h=1}^{H} w_{h} \prod_{t=1}^{T} \Phi\left(\left[2y_{it} - 1\right] \left[\boldsymbol{x}_{it}^{\prime} \boldsymbol{\beta} + \sqrt{2\sigma_{\alpha}^{2}} \boldsymbol{z}_{h}\right]\right)\right)$$

Suggested Reading and References

Suggested Reading:

- ► Baltagi, 11.1-11.4
- Cameron and Trivedi, 23.4
- ▶ Wooldridge, 15.8
- ► Hsiao, 7

References:

HONORÉ, B. E. AND E. KYRIAZIDOU (2000): "Panel data discrete choice models with lagged dependent variables," *Econometrica*, 68, 839–874.