物理竞赛实验力电学评分标准

竞赛时间: 2017 年 10 月 29 日; 所需时间: 90 分钟

一.设计制作量程为 1000g,最小分度为 1g 的电子秤,并用其测定圆环的质量(本部分 30 分)

圆环编号

1、给出组装电子秤的电路原理图,各电源要标注数值,要标注所用电压表的量程(8分):(此处有提示卡一,用者扣8分)

评分:8分 (若使用提示卡,扣完8分)

- 1、电路图连线不正确 每个扣1分,计3分
- 2、各电源未正确标注数值,每个扣 0.6 分,计 1.8 分
- 3、各电阻未正确标注符号,每个扣 0.2 分, 计 1.2 分
- 4、未正确标注电压表量程,扣2分
- 2、 组装电子秤,简述标定其量程的步骤(8分):(此处有提示卡二,用者扣8分)
 - 1) 按原理图连接线路,电压表选择 2000mV 挡。
 - 2) 托盘上空载时,调节差动放大器调零旋钮 R7, 使万用表示数为 0。
 - 3) 托盘上放置 1000g 砝码,调节差动放大器增益调节旋钮 R6,使万用表示数为 1000mV。

4) 重复2)和3),直至托盘空载时稳定显示为0,荷重1000g时稳定显示为1000mV。

评分(8分)

- 1、未正确连线和选择万用表 扣 3 分
- 2、未正确进行调零和满量程标定,每个扣2分,计扣4分
- 3、未反复标定, 扣1分

3、 验证电子秤的线性关系,并确定其最大偏差(6分)

数据记录:

电子天平示 数 m/g	0	99	199	299	399	499	599	699	799	900	1001
砝码 m _标 /g	0	100	200	300	400	500	600	700	800	900	1000
差值△m/g	0	-1	-1	-1	-1	-1	-1	-1	-1	0	1

数据处理:

方法一:作图法

由上图计算可知,电子秤的输入输出近似于线性关系,直线斜率约为 1.00,其最大偏差为 1g。

方法二:最小二乘直线拟合

记砝码质量为x,电子秤示数为y,二者之间满足y=ax+b线性关系,则由最小二乘直线拟合可得

$$a = \frac{\overline{x} \cdot \overline{y} - xy}{\overline{x}^2 - \overline{x}^2} \approx 1.00$$

$$b = \overline{y} - a\overline{x} = -0.64g$$

$$\gamma = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{(\overline{x^2} - \overline{x}^2)(\overline{y^2} - \overline{y}^2)}} \approx 1.00$$

相关系数

拟合方程为 y=1.00x-0.64

因此电子秤的输入输出近似于线性关系,其最大偏差为 1g

评分:6分

1、数据记录2分

数据表中无物理量扣 0.2 分,

无单位扣 0.2 分,

最小分度不在个位扣 0.4 分;

数据点数没有零点和满量程点扣 0.2 分

数据点数为8或9组扣0.2分,

5-7组扣0.4分,

3-4组扣0.6分

2组扣0.8分

少于2组扣1分

2、数据处理3分

作图法:(3分)

缺坐标轴或轴上无等间距标数值扣 0.4 分,

轴上缺物理量符号扣 0.5 分,

轴上无单位扣 0.5 分,

无图名称扣 0.2 分.

数据点符号标记不明显扣 0.4 分,

数据点未合理分布在拟合的直线两侧扣 0.4 分,

从图上求直线斜率的数值不正确扣 0.4 分,

单位不正确扣 0.2 分。

用最小二乘法作线性拟合:(3分)

无拟合方程式,每个扣0.6分,计1.2分

对变量 X、Y代表的物理量没有交代清楚,各扣 0.2 分,计 0.4 分

给出拟合直线斜率的数值不正确扣 0.8 分、单位不正确扣 0.2 分,

线性相关系数公式和结果不正确,各扣0.2分,计0.4分。

使用其他方法,只要原理正确、描述详细、结果正确都给分。

3、最大偏差1分

没单位或单位不正确扣 0.4 分

4、测量圆环的质量并计算其不确定度(8分)

数据记录:(参考)

次数	1	2	3	4	5	6	7	81	9	10
圆环质量 m/g	618	619	620	619	619	620	620	620	619	619

数据处理:

$$\overline{m} = \frac{1}{10} \sum_{i=1}^{10} m_i = 619g$$

标准不确定度:

$$\sigma_{A}(\overline{m}) = \sqrt{\frac{\sum_{n=1}^{10} (m_{i} - \overline{m})^{2}}{n(n-1)}} = 0.3g$$

综合不确定度:

$$\sigma(\bar{L}) = \sqrt{0.3^2 + \frac{1^2}{3}} = 1g$$

$$m = (619 \pm 1)g$$

若考虑数字万用表的仪器误差,则:

$$\Delta_{\text{K}} = 0.5\% \times 619 + 2 = 5.1g$$

$$\sigma(\overline{L}) = \sqrt{0.3^2 + \frac{1^2}{3} + \frac{5.1^2}{3}} = 3g$$

 $m = (619 \pm 3)g$

评分:

1、数据记录(2分)

数据表中无物理量扣 0.2 分,

无单位扣 0.2 分,

最小分度不在个位扣 0.4 分:

数据数目大于4组小于6组扣0.2分,小于4组扣0.4分

2、数据处理(5分)

A 类不确定度和极限最大偏差引起的 B 类不确定度错误,各扣 1 分,计 2 分;

数字万用表仪器误差引起的不确定度错误,扣 0.4 分;

综合不确定度错误,扣0.6分;

结果:与附1的标准值相比,偏差大于2g,扣1.2分;大于1g扣0.4分,小于等于1g给2分;

不确定度有效数字多于 2 位扣 0.4 分(不重复扣分)

没有单位或单位不正确扣 0.4 分(不重复扣分)

3、结果表示(1分)

无不确定度或单位,各扣0.4分

无完整表达式,扣1分

二.利用扭摆测定金属丝的切变模量(30分)

- 1、给出测定金属丝切变模量的实验原理和计算公式
 - 1、测定金属丝切变模量的实验原理(12分):(此处有提示卡三,用者扣12分)

设未放置圆环时,扭摆刚性金属支架对中心轴线的转动惯量为 I_1 ,扭摆转动周期为 T_1 ,金属丝的扭转系数为

$$D = \frac{4\pi^2}{T_1^2} I_1 \tag{1}$$

设圆环的转动惯量为 I_2 ,则放置圆环后,组合体对中心轴线的转动惯量为 I_1+I_2 ,若扭摆转动周期为 I_2 ,则金属丝的扭转系数为

$$D = \frac{4\pi^2}{T_2^2} (I_1 + I_2)$$
 (2)

(1) 和(2)联立得

$$D = \frac{4\pi^2}{T_2^2 - T_1^2} I_2 \tag{3}$$

质量为 M ,外直径为 d ,内直径为 d 内 的圆环绕轴(钢丝)的转动惯量为

$$I_2 = M(\frac{d_{\Re}^2 + d_{|\Lambda|}^2}{8}) \tag{4}$$

对长度为 L 、直径为 $^{\circ}$ 的悬线,其切变模量 G 为

$$G = \frac{32L}{\pi\phi^4}D\tag{5}$$

联立(3)(4)(5)可得

$$G = \frac{16\pi LM (d_{5h}^2 + d_{pl}^2)}{\phi^4 (T_2^2 - T_1^2)}$$
 (6)

评分:

公式(3) 8分

公式(6) 4分

各物理量 (D、 T_1 、 T_2 、 I_1 、 I_2 、M、L、 $d_{\mathfrak{H}}$ 、 $d_{\mathfrak{H}}$ 、 $\boldsymbol{\varphi}$) 说明不清楚,每个扣 0.2 分

2、数据记录 (6分: (参考)

次数	1	2	3	4	5	6	7	8	9	10
L/mm	210.5	211.0	210.5	210.5	210.5	210.5	210.5	210.5	210.5	211.0
φ/mm	0.306	0.307	0.307	0.311	0.307	0.308	0.308	0.308	0.307	0.309
d 外/mm	113.50	113.70	113.18	113.26	113.32	113.06	113.32	113.32	113.20	113.06
d 内/mm	84.28	84.20	84.36	84.30	84.22	84.82	84.74	84.82	84.80	84.42
40T ₁ /s	64.53	64.53	64.37	64.41	64.56					
20T ₂ /s	104.00	104.07	103.66	103.90	103.69					

螺旋测微计零位误差 φ0: -0.192mm

评分:

未考虑螺旋测微计的零位误差扣 0.5 分;

数据表中无物理量扣 0.2 分,无单位扣 0.2 分

数据的有效数字错误,每个量扣0.1分

T1 和 T2 的数目分别为 8-39 次和 6-11 次, 各扣 0.5 分;

T1和T2的数目分别少于8次和6次,各扣1分;

金属丝直径、圆环内外直径的数据组数小于6组各扣0.2分,小于4组各扣0.4分

(3) 计算测量结果,估算其不确定度。(6分)

$$\overline{L} = \frac{1}{10} \sum_{i=1}^{10} L_i = 210.6 mm$$
 悬线长 L:

圆环外径:
$$\overline{d_{\%}} = 113.29mm$$

3、 圆环内径:
$$\overline{d_{\rm p}} = 84.50mm$$

$$\overline{\varphi} = (\frac{1}{10} \sum_{i=1}^{10} \varphi_i) - (-0.192) = 0.500 mm$$

$$\sigma_{A}(\overline{\varphi}) = 0.0005mm$$

$$\sigma(\overline{\varphi_{\text{sh}}}) = \sqrt{\sigma_A(\overline{\varphi})^2 + \frac{0.005^2}{3}} = 0.003 \, mm$$

5、 周期 T1:
$$\overline{T_1} = \frac{\sum T_1}{40 \times 5} = 1.61s$$

、周期 T2:
$$\overline{T_2} = \frac{\sum T_2}{20 \times 5} = 5.19s$$

7、 切变模量

$$G = \frac{16\pi LM (d_{2h}^2 + d_{2h}^2)}{\varphi^4 (T_2^2 - T_1^2)} = \frac{16\times 3.14\times 210.6\times 10^{-3}\times 0.619\times \left(113.29^2 + 84.50^2\right)\times 10^{-6}}{0.500^4\times 10^{-12}\times (5.19^2 - 1.61^2)} = 8.60\times 10^{10} Nm^{-2}$$

直径对测量结果影响最大,可根据直径估算G的不确定度

$$\Delta G = \overline{G} \times \frac{\Delta G}{G} \approx \overline{G} \times (4 \frac{\sigma_{\varphi}}{\varphi}) = 8.60 \times 4 \times \frac{0.003}{0.500} = 0.21 \times 10^{10} \,\mathrm{Nm}^{-2}$$

$$G = (8.60 \pm 0.21) \times 10^{10} Nm^{-2}$$

评分

G的数值 7分

G 的标准值为 8.53×10¹⁰Nm⁻²,与标准值相比

偏差绝对值大于 0.20×10¹⁰Nm⁻²、小于等于 0.25×10¹⁰Nm⁻²,扣 2 分

偏差绝对值大于 0.25×10¹⁰Nm⁻²,扣 4 分

2、直径不确定度计算, 2分

只考虑 A 类不确定度或 B 类不确定度扣 1分

不确定度有效数字多于 2 位扣 0.4 分

无单位或单位错误扣 0.4 分

3、G的不确定度 2分

未利用直径估算 G 的不确定度 扣 1 分

4、G表达式正确 1分

无不确定度或单位,各扣0.4分

无完整表达式,扣1分

附 1: 电子天平测圆环质量数据

编号	标准质量(g)	编号	标准质量(g)	编号	标准质量(g)
1	618	21	618	41	620
2	622	22	620	42	618
3	621	23	618	43	619
4	617	24	621	44	620
5	619	25	617	45	619
6	621	26	618	46	618
7	618	27	618	47	621
8	619	28	620	48	619
9	618	29	619	49	619
10	621	30	620	50	619
11	618	31	621	51	614
12	618	32	621	52	619
13	618	33	619	53	620
14	620	34	619	54	621
15	622	35	621	55	622

16	619	36	621	56	620
17	621	37	618	57	618
18	621	38	620	58	621
19	621	39	622	59	622
20	619	40	620	60	621

物理竞赛实验光学评分标准

竞赛时间: _2017_年_10_月_29_日;所需时间: _90_分钟

成绩评定表

一. 光源波长的测量(本部分30分)

1、(16分)垂直入射测光源波长的测量

(1) 根据夫琅和费衍射理论,画出平行光垂直入射光栅时的测量光路图并写出光栅方程和方程 中各个量的物理意义?(4分)

光路图:

评分: 2分

平行光管、光栅、望远镜、衍射级数和衍射角度的标注各 0.4 分

光栅方程:

 $d\sin\varphi_k = k\lambda$ (1)

k: 衍射级数 (k=0、 ± 1); φ_k : 第 k 级衍射光的衍射角; d:光栅常数; λ :入射光的波长

评分: 2分

方程和各个字母的说明各 0.4 分

(2) 在分光计上进行测量时,分光计和光栅的调节要求是什么?(4分)

分光计的调节要求是:平行光管产生平行光;望远镜接受平行光;平行光管和望远镜的光轴都垂直仪器转轴,光 栅平面与平行光管光轴垂直;光栅的刻痕与仪器转轴平行。

评分: 4分, 每点各1分

(3) 测量光源的光谱波长,列表记录、处理数据并计算光源波长。(8分)

数据记录:(参考)

级数		H	级		I级				
谱线	黄	黄 1		黄 2		黄 1		t 2	
游标	游标 1	游标 2							
φ左(负级)	239°45′	59°45′	239°42′	59°41′	215°27′	35°25′	215°26′	35°22′	
φ右(正级)	149°43′	329°40′	149°48′	329°43′	174°02′	353°58′	174°03′	353°59′	
2 φ = φ 左-φ 右	90°02′	90°05′	89°54′	89°58′	41°25′	41°27′	41°23′	41°23′	
2 ϕ	90°	03′	3′ 89°!		41°26′		41°23′		
λ(nm)	589	589.51		588.91		589.58		3.90	

数据处理:(参考)

将衍射角 φ 代入(1)式得

光源黄 1 的波长: $\lambda = \left(d\sin \varphi_1 + \frac{d\sin \varphi_2}{2} \right) / 2 = 589.55 \, nm$

光源黄 2 的波长: $\lambda = \left(d\sin \varphi_1 + \frac{d\sin \varphi_2}{2} \right) / 2 = 588.90 \, nm$

评分:8分

1、数据记录2分

考试时学生不一定测两级光谱,只要数据正确,只有一级或只有二级都可;

若只测一条黄光,扣0.5分;

若只测 正级或负级和零级扣 0.5 分;

最小分度不在分位扣 0.4 分;

2、数据处理6分

标准值:

II级:黄 1 的 2ϕ 值为 $90^{\circ}04'$,波长 589.61nm;黄 2 的 2ϕ 值为 $89^{\circ}57'$,波长 589.00nm;

I级:黄 1 的 2 $_{0}$ 值为 41°26′、波长 589.58nm;黄 2 的 2 $_{0}$ 值为 41°23′、波长 588.90nm。

评分标准:

1) 黄1

2φ的误差绝对值: 小于等于 3′ 2分

大于3'小于等于5' 1分

超出上述范围 0分

波长: II级: 589.34~589.86nm 1分

589.17~590.03nm 0.5 分

或:

I级: 588.90~590.26nm 1分

588.44~590.71nm 0.5 分

超出上述范围 0分

2) 黄2

2φ 的误差绝对值: 小于等于 3′ 2 分

大于3'小于等于5' 1分

超出上述范围 0分

波长: II级: 588.74~589.26nm 1分

588.56~589.43nm 0.5分

或:

I级: 588.22~589.58nm 1分

587.76~~590.03nm 0.5分

超出上述范围 0分

注:

波长要和 2φ 对应,详见附表正入射;

若只测正级或负级和零级数据处理扣 0.5 分:

若波长计算错误扣 0.2 分;

波长有效数字不是 4-5 位扣 0.2 分:

无单位或单位错误扣 0.4 分。

2、(14分)斜入射测光源波长的测量

(1)根据夫琅和费衍射理论,平行光斜入射时的光栅方程和方程中各个量的物理意义是什么?方程中的角度如何测量?(2分):

光栅方程和方程中各个量的物理意义:

 $d \left(\sin \theta + \sin \varphi_k \right) = k \lambda \dot{c}$ (2)

为入射角; 衍射角;当入射光线和衍射光线在光栅法线的同侧时, 取"+",异侧时 取"-"; λ :入射光的波 θ φ_{k} 为

长; k: 衍射级数 (k=0、±1.....); ¬

评分: 1分

方程 0.5 分; 方程中各个物理量的意义各 0.1 分

方程中角度的测量:

入射角 θ 指的是入射光线和光栅法线之间的夹角;衍射角 ϕ_k 指的是第k级衍射光与光栅法线之间的夹角;光栅反射的绿色"+"和目镜纵叉丝重合时为光栅法线的角位置;0级光谱和目镜纵叉丝重合时为入射光线的角位置;再测各级衍射光和目镜纵叉丝重合时的角位置;测出三者角位置即可测得 θ 和 ϕ_k 。

评分: 1分.5点各0.2分

(2)在平行光斜入射时,衍射光方向与入射光方向之间的夹角称为偏向角,以符号 α 表示,有 $\alpha = \theta + \varphi$,其中 θ 、 φ 分别为光栅的入射角和衍射角。改变入射角使光栅进入斜入射状态,观察衍射光 随转角的变化规律,能否找到一个特殊角度 α ,只要测出此角度 α 就能计算出光源波长?写出观察规律、测量光路图、计算公式、测量数据和计算结果。(12 分)

(此处有提示卡一,用者扣8分)

观察规律:

改变光栅的入射角,衍射光随入射角的改变而移动,这个过程中会出现衍射光线有一个转折现象。即入射角改变到某一位置再继续改变时,视场内衍射光不再沿原来方向移动,而开始向相反方向移动,即有一个最小偏向角 α_{min} 。偏向角与入射角和衍射角有关系,最小偏向角是极限角度,找到特殊角度 α_{min} 加出此角度 α_{min} 能计算出光源波长。

评分: 2分

- 1、正确对转折现象进行描述 1 分:
- 2、由转折现象提出现象对应的极值偏向角1分

图 2

评分: 2分

平行光管、光栅、望远镜和衍射级数的标注各 0.2 分,三个角度的标注各 0.4 分

计算公式:

提示:由斜入射公式d ($\sin\theta + \sin\varphi$) = $k\lambda \stackrel{!}{\iota}$ 可得:

2dsin[(θ+φ)/2]cos[(θ-φ)/2]=kλ ,当 $\theta=\phi$ 时,cos 值最大为 1,因而偏向角 α 最小,以符号 α 表示,有

$$\theta = \phi = \frac{\alpha_m}{2}$$
 ,斜入射公式为

$$2 dsin (\alpha_m/2) = k\lambda (k=0, 1, 2, ...)$$
 (3)

其中α_m为第 k 级衍射光的最小偏向角。

评分: 2分

推导过程 1 分;公式 1 分, k 的范围错误或没说明扣 0.5 分;

数据记录: (参考)

× 1 10 17 · (> 3									
级数		1	级		II 级				
谱线	黄	黄1		黄2		₹1	黄 2		
游标	游标1	游标 2	游标1	游标 2	游标1	游标 2	游标1	游标 2	
φ ш	204°59′	24°55′	204°38′	24°33′	215°22′	35°18′	215°39′	35°34′	
φλ	184°37′	4°31′	184°17′	4°11′	173°56′	353°52′	174°15′	354°11′	
$\alpha_m = \phi \text{ш} - \phi \text{х} $	20°22′	20°24′	20°21′	20°22′	41°26′	41°26′	41°24′	41°23′	
α_m	20°.	23′	20°22′		41°26′		41°23′		

λ(nm) 589.81 589.33 589.58 588.90

数据处理:(参考)

将 αm 代入(3)式得黄 1 的波长: $\lambda = (2 \operatorname{dsin} (\frac{\alpha_{1m}}{2}) + \operatorname{dsin} (\frac{\alpha_{2m}}{2})) / 2 = 589.70 \operatorname{nm}$

黄 2 的波长: $\lambda = (2 dsin (\frac{\alpha_{1m}}{2}) + dsin (\frac{\alpha_{2m}}{2})) / 2 = 589.12 nm$

评分:6分

1、数据记录2分

不一定测两级光谱,只要数据正确只有一级或只有二级都可通过:

若只测一条黄光,扣0.5分;

同级黄1和黄2的入射角位置相同扣0.4分:

最小分度不在分位扣 0.4 分;

说明:使用提示卡一,观察规律、光路图、计算公式和数据记录得分为0分。

2、数据处理4分

标准值:

II级: 黄 1 的 $\alpha_{\rm m}$ 值为 41°26′,波长 589.58nm;

黄 2 的 α_m 值为 41°23′, 波长 588.90nm;

I级: 黄1的 $\alpha_{\rm m}$ 值为 $20^{\circ}23'$,波长589.81nm; 黄 2 的 $\alpha_{\rm m}$ 值为 20°21′, 波长 588.85nm。

评分标准:

1)黄1

Qm的误差绝对值: 小于等于 3′ 1分

大于 3'小于等于 5' 0.5 分

超出上述范围 0分

波长: II级: 588.90~590.26 nm 1分

588.44~590.71nm 0.5分

或:

I级: 588.37~591.24nm 1分

587.42~592.19nm 0.5 分

超出上述范围 0分

2)黄2

α_m的误差绝对值: 小于等于 3′ 1分

大于 3'小于等于 5' 0.5 分

超出上述范围 0分

波长: II级: 588.22~589.58nm 1分

587.76~590.03nm 0.5分

或:

I级: 587.42~590.28nm 1分

586.46~591.24nm 0.5分

超出上述范围 0分

波长要和 α_m 对应,详见附表斜入射;

若同级黄1和黄2的入射角位置相同的,扣0.4分;

波长计算错误扣 0.2 分;

波长有效数字不是 4-5 位扣 0.2 分:

无单位或单位错误扣 0.4 分。

注意:以垂直入射计算的光源波长(取光源谱线的均值),进行未知溶液折射率的测量.

二.测量未知溶液的折射率(30分)

1、(4分)说明如何区分平板玻璃和平凸玻璃?并判断出平凸玻璃的凸面,用玻璃侧面的字母

A、B表示;

(1)说明区分平板玻璃和平凸玻璃的方法;(2分)

只有平凸玻璃的凸面和平板玻璃的平面紧贴,才会有明暗相间的圆环。把两块玻璃的两个面贴在一起用眼睛直接或通过显微镜观察,如果没有圆环,更换两紧贴面的其中一个面,直至观察到明暗相间的圆环,则两个面中有一个面为凸面;转换上面玻璃的另一面后再贴在一起观察,如果仍有圆环,则上面玻璃为平板玻璃,下面玻璃为平凸玻璃且其上面为凸面,否则上面玻璃为平凸玻璃且翻转后的上面为凸面,下面玻璃为平板玻璃。

评分: 2分

(2)判断出平凸玻璃的凸面,用玻璃侧面的字母A、B表示。(2分)

平凸玻璃的侧面字母标号: B ↓

(在标号右侧画出箭头符号,以箭头指向表示平凸玻璃的凸面,例如√D 表示 D 玻璃的下面为凸面 \

评分: 2分

2、(8分)写出测量未知溶液折射率的原理和公式、光路图,说明公式中各个量的物理意义;(此处有提示卡二,用者扣8分)

光路图:

原理和公式:

设平凸透镜凸面的球面半径为 R,第 k 级暗纹的半径为 r ,而该环纹处对应的介质膜(折射率为 r)厚度为 e 。则由牛顿环等厚干涉条件可得到干涉暗纹条件:

$$2n'e+\lambda/2=(2k+1)\lambda/2$$
 (k=0,1,2,3,...) (4)

k为暗纹级数

图 3 中几何关系看出:

$$R^2 = r^2 + (R - e)^2 = r^2 + R^2 - 2 \operatorname{Re} + e^2$$
 (5)

因 R>>e ,上式的 e^2 项可忽略,因此得:

$$e=r^2/2R$$

将 e 值代入干涉暗纹条件化简得:

$$n'r^2 = k\lambda R$$
 (6)

中心暗环的级数用 m₀表示,半径用直径代替,上式为:

$$n'D_{m^2} = 4\lambda R(m+m_0) \tag{7}$$

由上式可以推导出未知溶液折射率的公式为:

$$n_{\pm} = n' = 4 \lambda R \quad (m - n \dot{c} \frac{\dot{c}}{|D_m^2 - D_n^2|}$$
 (8)

说明公式中各个量的物理意义:

 n_{*} :未知溶液折射率;R:平凸透镜凸面的球面半径;m、n:相对中心暗斑的暗环级数; $\frac{D_{2}}{m^{2}}$ 、 $\frac{D_{2}}{n^{2}}$ 分别是第 m 级与第 n 级暗环的直径的平方: λ :光源波长。

评分:8分

- 1、正确画出光路图 2分(暗纹的半径为r、环纹处对应的介质膜(折射率为 n')、介质膜对应厚度为e、光线的方向、R 未标出各扣 0.2 分)
- 2、原理和公式(公式(4)、(5)、(6)、(7)或者(8))4分

(4个公式和原理各1分)

图 4

- 3、说明2分(各0.4分)
- 4、使用提示卡二不得分
- 3、(4分)画出实际测量时各仪器的光路示意图;(即光源、读数显微镜、各个光学元件之间的光路示意图);

评分:4分

需要标出各个仪器和元件名称,位置和元件名称各 0.8 分(载物台包含在读数显微镜里)

4、(6分)若空气的折射率 n_0 =1.0003,测量平凸玻璃凸面的球面半径,列表记录实验数据并处理数据;

数据记录:(参考)

i	1	2	3	4	5	6	7	
m	16	15	14	13	12	11	10	
D左 (mm)	21.68 2	21.55 3	21.419	21.27 3	21.129	20.98 7	20.82	20.65
D右 (mm)	13.47 5	13.60 9	13.74 9	13.88 2	14.02 6	14.173	14.32 8	14.49
D (mm)	8.207	7.944	7.670	7.391	7.103	6.814	6.496	6.156
D _m ² (m	67.35	63.11	58.83	54.63	50.45	46.43	42.20	37.90

评分:2分

- 1、测量级数>10级满分、9级扣0.2分、8级扣0.4分、7级扣0.6分、6级扣0.8分、5级扣1分、4级或小于4级扣1.2分
- 2、数据有效数字错误扣 0.4 分
- 3、无单位或单位错误扣 0.4 分

数据处理:

逐差法:

i	10	9	8	7	6	5	平均值
D _{i+6} ² - D _i ² (mm ²	25.16	25.21	25.10	25.2 0	25.0 4	25.2 5	25.16

$$R = \frac{n_0 (D_{m^2} - D_{n^2})}{4 \lambda (m-n)} = 1779.7 \text{mm}$$

最小二乘法:

公式(7)中,设 x=m,y= Dm2

i	1	2	3	4	5	6	7	8
m	16	15	14	13	12	11	10	9
m²	256	225	196	169	144	121	100	81
D _m ² (m	67.35	63.11	58.8 3	54.6 3	50.4 5	46.4 3	42.2 0	37.9 0
mD _m ² (mm ²)	1077.7	946. 6	823. 6	710.1	605. 4	510.7	422. 0	341.1

$$\frac{4 \lambda R}{n_0} = \frac{\overline{x} * \overline{y} - \overline{x} \overline{y}}{(\overline{x})^2 - \overline{x}^2}$$
R=1780mm

评分: 4分

1、测量值在标准值 1791mm

标准值		1791mm	
分	±28 mm	1763 ~1819 mm	
分	±56 mm	1735 ~1762 mm 1820 ~1847 m	nm
分	±84 mm	1707 ~1734mm 1848 ~1875 m	ım
		甘心	

- 2、公式错误扣 0.4 分
- 3、有效数字为 4-5 位, 否则扣 0.4 分
- 4、数量级与单位不符或无单位扣 0.4 分
- 5、(8分)测量未知溶液的折射率,列表记录实验数据,处理

数据和结果。

数据记录:(参考)

ᄍᄱᅛᅑ	. (多"	- /						
i	1	2	3	4	5	6	7	8
m	16	15	14	13	12	11	10	9
D左	29.24	29.12	29.01	28.89	28.76	28.62	28.49	28.34
(mm)	6	3	9	6	3	9	3	4
D右	22.27	22.39	22.50	22.62	22.75	22.89	23.03	23.17
(mm)	4	1	9	9	9	2	2	4
D (mm	6.972	6.732	6.510	6.267	6.004	5.737	5.461	5.170
D _m ² (m	48.61	45.32	42.38	39.28	36.05	32.91	29.82	26.73
m ²)								

评分:2分

- 1、测量级数>10级满分、9级扣0.2分、8级扣0.4分、7级扣0.6分、6级扣0.8分、5级扣1分、4级或小于4级扣1.2分
- 2、数据有效数字错误扣 0.4 分
- 3、无单位或单位错误扣 0.4 分

数据处理:

逐差法:

./4 .							
i	10	9	8	7	6	5	平均 值
D _{i+6} ² - D _i ² (mm ²	18.79	18.59	18.75	18.79	18.58	18.70	18.70

结合上表
$$n_{\pm} = n^{2} = 4\lambda R$$
 ($m-n$ に $\frac{c}{(D_{m}^{2}-D_{n}^{2})} = 1.346$

或者比较法
$$n_{\pm} = \frac{(D_m^2 - D_n^2)_0^2}{(D_m^2 - D_n^2)_{\pm}^2} n_0 = \frac{25.16}{18.70} *1.0003 = 1.346$$

最小二乘法:公式(7)中,设 x=m,y= Dm2

i	1	2	3	4	5	6	7	8		
m	16	15	14	13	12	11	10	9		
m²	256	225	196	169	144	121	100	81	6	64
D _m ² (m	48.61	45.3 2	42.3 8	39.2 8	36.0 5	32.91	29.8	26.7 3	2	3.6
mD _m ² (mm ²)	777.7	679. 8	593. 3	510.6	432. 6	362. 0	298. 2	240. 6	18	9.0

则:

$$\frac{4\lambda R}{n'} = \frac{\overline{x} * \overline{y} - \overline{x} \overline{y}}{(\overline{x})^2 - \overline{x}^2}$$

$$n_{\pm} = n' = 1.346$$

评分:6分

1、测量值在标准值 1.356

标准值		1.356	
分 ±	0.014	1.342~1.370	
分 ±	0.027	1.329~1.341	1.371~1.383
分 ±	0.041	1.315~1.328	1.384~1.397
		其它	

- 2、 公式错误扣 0.4 分,
- 3、 有效数字取 4 位,否则扣 0.4 分
- 4、 加单位扣 0.4 分