TFE4152 - Lecture 4

MOSFET's

Source

Goal for today

- Symbols
- Current characteristics
- Operating regions
- The square-law model
- Channel length modulation
- The small signal model (low frequency)
- Bulk Effect

Metal-Oxide-Semiconductor (MOS) Transistors

NMOS conduct for positive gate-to-source voltage

PMOS conduct for negative gate-to-source voltage

Carsten Wulff 2021

3

Drain Source Current (I_{DS})

dicex/sim/spice/NCHIO

Large signal model

$$I_{DS}=f(V_{GS},V_{DS},\dots)$$

Gate Source Voltage (V_{GS})

dicex/sim/spice/vgate.cir:

```
.include ../../lib/SUN_TRIO_GF130N.spi
.include ../../models/ptm 130.spi
vdrain
       D 0 dc 1
       G 0 dc 0.5
vgate
       B 0
vbulk
             dc
                 0
       S 0
             dc
                 0
vcur
X1 D G S B NCHIO
.dc vgate 0 1.8 0.01
.plot I(vcur)
```

dicex/lib/SUN_TRIO_GF13N.spi:

```
.SUBCKT NCHIO D G S B
M1 D G S B nmos w=1.08u l=0.6u
.ENDS
```

dicex/models/ptm_130.spi

```
.model nmos nmos level = 21
                                            paramchk= 1
+version = 4.0
                      binunit = 1
                                                                  mobmod = 0
+capmod = 2
                      igcmod = 1
                                            igbmod = 1
                                                                  geomod = 1
                                            rbodymod= 1
+diomod = 1
                      rdsmod = 0
                                                                  rgatemod= 1
+permod = 1
                      acngsmod= 0
                                            trngsmod= 0
        = 27
                      toxe = 2.25e-9
                                                 = 1.6e-9
                                                                         = 2.25e-9
+tnom
                                            toxp
                                                                  toxm
                      epsrox = 3.9
       = 0.65e-9
                                            wint = 5e-009
                                                                  lint
                                                                         = 10.5e-009
+dtox
...(about 60 more lines)
```

Gate-source voltage

Param	Voltage [V]
V _G s	0 to 1.8
V _{DS}	1.0
Vs	0
V _B	0

Inversion level

Define $V_{eff} \equiv V_{GS} - V_{tn}$, where V_{tn} is the "threshold voltage"

Veff	Inversion level
< 0	weak inversion or subthreshold
0	moderate inversion
> 100 mV	strong inversion

Weak inversion

The drain current is low, but not zero, when $V_{eff} << 0$

$$I_{DS}pprox I_{D0}rac{W}{L}e^{V_{eff}/nV_T} ext{ if } V_{DS}>3V_T$$

Moderate inversion

Stay away from moderate inversion for analog design.

If you can't, then trust the model

Strong inversion

$$I_{DS} = \mu_n C_{ox} rac{W}{L} egin{cases} V_{eff} V_{DS} & ext{if } V_{DS} << V_{eff} \ V_{eff} V_{DS} - V_{DS}^2/2 & ext{if } V_{DS} < V_{eff} \ rac{10^{-4}}{10^{-5}} & ext{if } V_{DS} > V_{eff} \ rac{1}{2} V_{eff}^2 & ext{if } V_{DS} > V_{eff} \end{cases}$$

The threshold voltage (V_{tn}) is defined as $p_p = n_{ch}$

Gate Source Capacitance (C_{GS})

$C_{GS} ext{ for } V_{DS} = 0, V_S = 0$

In strong inversion

$$C_{GS} = WLC_{ox}$$

where

$$C_{ox} = rac{K_{ox}\epsilon_0}{t_{ox}}$$

$$Q_{ch} = WLC_{ox}V_{eff}$$

Drain Source Voltage (V_{DS})

Drain-source voltage

Param	Voltage [V]
V _G S	0.5
VDS	0 to 1.8
Vs	0
VB	0

Strong inversion

$$I_{DS} = \mu_n C_{ox} rac{W}{L} egin{cases} V_{eff} V_{DS} & ext{if } V_{DS} << V_{eff} \ V_{eff} V_{DS} - V_{DS}^2/2 & ext{if } V_{DS} < V_{eff} \ rac{1}{2} V_{eff}^2 & ext{if } V_{DS} > V_{eff} \end{cases}$$

Head simulation

Channel length modulation

$$I_{DS} = \mu_n C_{ox} rac{W}{L} egin{dcases} V_{eff} V_{DS} & ext{if } V_{DS} << V_{eff} \ V_{DS} - V_{DS}^2/2 & ext{if } V_{DS} < V_{eff} \ rac{1}{2} V_{eff}^2 [1 + \lambda (V_{DS} - V_{eff})] & ext{if } V_{DS} > V_{eff} \end{cases}$$

$$\lambda = rac{k_{ds}}{2L\sqrt{V_{DS}-V_{eff}+\Phi_0}}$$
 , where $k_{ds} = \sqrt{rac{2K_s\epsilon_0}{qN_A}}$

Thanks!