Homework 7

MATH 123 - Fall 2018

Tufts University, Department of Mathematics Due: November 1, 2018

Question 1

Consider the cube in $C_r^D = [-r/2, r/2]^D \subset \mathbb{R}^D$ in D-dimensions. Let $\operatorname{vol}_D(A)$ denote the volume of a set A in \mathbb{R}^D , i.e. $\operatorname{vol}_D(A) = \int_A dx_1 \dots dx_n$.

- (a) Prove using integration that $\operatorname{vol}_D(C^D_r)$ is r^D .
- (b) For $\epsilon > 0$, let $A_{\epsilon,r}^D = \{x \in C_r^D \mid x \notin C_{r-\epsilon}^D\}$. Calculate $\frac{\operatorname{vol}_D(A_{\epsilon,r}^D)}{\operatorname{vol}_D(C_r^D)}$.
- (c) Use (b) to argue that "most" of the volume of a high dimensional cube is near the boundary.

QUESTION 2

Download the dataset "kNN_ClassifierSyntheticData.mat". Randomly select 100 different points in the dataset, and run a kNN-classifier for kNN = $\{1, 10, 50, 100, 500, 900\}$. How does performance change with the change in kNN?

QUESTION 3

Consider the Salinas A dataset, which may be found at http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. Randomly select 100 different pixels in the image, and run a kNN-classifier for kNN = $\{1, 10, 50, 100\}$. How does performance change with kNN?

QUESTION 4

Let $w \in \mathbb{R}^{d \times 1}$.

- (a) Show that $\{x \in \mathbb{R}^{d \times 1} \mid w^T x = 0\}$ is a (d-1)-dimensional linear subspace of \mathbb{R}^d if $w \neq 0$.
- (b) Let $b \in \mathbb{R}$. Is it necessarily the case that $\{x \in \mathbb{R}^{d \times 1} \mid w^T x = b\}$ is a (d-1)-dimensional linear subspace of \mathbb{R}^d ? Prove or given a counterexample.