西条 - オキシダント予測の分析 (Linear Regression)

Model Parameters: Prefecture code: 38 Station code: 38206050 Station name: 西条 Target item: Ox(ppm) Number of data points in the train set: 13685 Number of data points in the test set: 5866 Forecast horizon (hours): 24 Model: LinearRegression (multi-output) Elapsed time: 0 min 2 sec Number of used features: 140 Features: NO(ppm), NO2(ppm), U, V, Ox(ppm)_lag1 Ox(ppm)_lag2, Ox(ppm)_lag3, Ox(ppm)_lag4, Ox(ppm)_lag5, Ox(ppm)_lag6 Ox(ppm)_lag7, Ox(ppm)_lag8, Ox(ppm)_lag9, Ox(ppm)_lag10, Ox(ppm)_lag11 Ox(ppm)_lag12, Ox(ppm)_lag13, Ox(ppm)_lag14, Ox(ppm)_lag15, Ox(ppm)_lag16 Ox(ppm)_lag17, Ox(ppm)_lag18, Ox(ppm)_lag19, Ox(ppm)_lag20, Ox(ppm)_lag21 Ox(ppm)_lag22, Ox(ppm)_lag23, NO(ppm)_lag1, NO(ppm)_lag2, NO(ppm)_lag3 NO(ppm)_lag4, NO(ppm)_lag5, NO(ppm)_lag6, NO(ppm)_lag7, NO(ppm)_lag8 NO(ppm)_lag9, NO(ppm)_lag10, NO(ppm)_lag11, NO(ppm)_lag12, NO(ppm)_lag13 NO(ppm) lag14, NO(ppm) lag15, NO(ppm) lag16, NO(ppm) lag17, NO(ppm) lag18 NO(ppm)_lag19, NO(ppm)_lag20, NO(ppm)_lag21, NO(ppm)_lag22, NO(ppm)_lag23 NO2(ppm)_lag1, NO2(ppm)_lag2, NO2(ppm)_lag3, NO2(ppm)_lag4, NO2(ppm)_lag5 NO2(ppm)_lag6, NO2(ppm)_lag7, NO2(ppm)_lag8, NO2(ppm)_lag9, NO2(ppm)_lag10 NO2(ppm)_lag11, NO2(ppm)_lag12, NO2(ppm)_lag13, NO2(ppm)_lag14, NO2(ppm)_lag15 NO2(ppm)_lag16, NO2(ppm)_lag17, NO2(ppm)_lag18, NO2(ppm)_lag19, NO2(ppm)_lag20 NO2(ppm)_lag21, NO2(ppm)_lag22, NO2(ppm)_lag23, U_lag1, U_lag2 U_lag3, U_lag4, U_lag5, U_lag6, U_lag7 U_lag8, U_lag9, U_lag10, U_lag11, U_lag12 U_lag13, U_lag14, U_lag15, U_lag16, U_lag17
U_lag13, U_lag14, U_lag15, U_lag16, U_lag17
U_lag18, U_lag19, U_lag20, U_lag21, U_lag22
U_lag23, V_lag1, V_lag2, V_lag3, V_lag4
V_lag5, V_lag6, V_lag7, V_lag8, V_lag9
V_lag10, V_lag11, V_lag12, V_lag13, V_lag14
V_lag15, V_lag16, V_lag17, V_lag18, V_lag19
V_lag20, V_lag21, V_lag22, V_lag23, Ox(ppm)_roll_mean_3 Ox(ppm)_roll_std_6, NO(ppm)_roll_mean_3, NO(ppm)_roll_std_6, NO2(ppm)_roll_mean_3, NO2(ppm)_roll_std_6 $U_roll_mean_3, \ U_roll_std_6, \ V_roll_mean_3, \ V_roll_std_6, \ Ox(ppm)_diff_1$ Ox(ppm)_diff_2, Ox(ppm)_diff_3, NO(ppm)_diff_3, NO2(ppm)_diff_3, U_diff_3 V_diff_3, hour_sin, hour_cos, dayofweek, is_weekend Metrics per Forecast Step: Ox(ppm)_t+01 - R²: 0.8701, MAE: 0.0042, RMSE: 0.0057 Ox(ppm)_t+02 - R²: 0.7959, MAE: 0.0054, RMSE: 0.0071 Ox(ppm) t+03 - R²: 0.7304, MAE: 0.0063, RMSE: 0.0082 Ox(ppm)_t+04 - R²: 0.6736, MAE: 0.0069, RMSE: 0.0090 Ox(ppm) t+05 - R²: 0.6279, MAE: 0.0074, RMSE: 0.0096 Ox(ppm) t+06 - R²: 0.5924, MAE: 0.0077, RMSE: 0.0101 Ox(ppm)_t+07 - R²: 0.5646, MAE: 0.0080, RMSE: 0.0104 Ox(ppm) t+08 - R²: 0.5448, MAE: 0.0081, RMSE: 0.0106 Ox(ppm)_t+09 - R²: 0.5310, MAE: 0.0082, RMSE: 0.0108 Ox(ppm)_t+10 - R²: 0.5194, MAE: 0.0083, RMSE: 0.0109 Ox(ppm)_t+11 - R²: 0.5099, MAE: 0.0084, RMSE: 0.0110 Ox(ppm)_t+12 - R²: 0.5023, MAE: 0.0084, RMSE: 0.0111 Ox(ppm) t+13 - R²: 0.4966, MAE: 0.0085, RMSE: 0.0112 Ox(ppm)_t+14 - R²: 0.4915, MAE: 0.0085, RMSE: 0.0112 Ox(ppm)_t+15 - R²: 0.4878, MAE: 0.0085, RMSE: 0.0113 Ox(ppm)_t+16 - R²: 0.4837, MAE: 0.0086, RMSE: 0.0113 Ox(ppm)_t+17 - R2: 0.4790, MAE: 0.0086, RMSE: 0.0114 Ox(ppm)_t+18 - R²: 0.4746, MAE: 0.0087, RMSE: 0.0114 Ox(ppm)_t+19 - R²: 0.4706, MAE: 0.0087, RMSE: 0.0115 Ox(ppm) t+20 - R²: 0.4677, MAE: 0.0087, RMSE: 0.0115 Ox(ppm)_t+21 - R²: 0.4657, MAE: 0.0087, RMSE: 0.0115 Ox(ppm)_t+22 - R²: 0.4644, MAE: 0.0088, RMSE: 0.0116 Ox(ppm)_t+23 - R²: 0.4621, MAE: 0.0088, RMSE: 0.0116 Ox(ppm)_t+24 - R²: 0.4544, MAE: 0.0088, RMSE: 0.0117

