Package 'mSigHdp'

June 26, 2020

2 ActivateAndBurnin

RunHdpParallel SetupAndActivate . SetupAndPosterior																					13
ndex																					16
ActivateAndBurnin	Prepare burnin.	an	hd	pSt	ate	e-cl	ass	ol	bjed	ct o	and	ru	n	the	? (Gib	bs	sa	ımį	plir	ıg

Description

Prepare an hdpState-class object and run the Gibbs sampling burnin.

Usage

```
ActivateAndBurnin(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  burnin = 4000,
  cpiter = 3,
  burnin.verbosity = 0,
  gamma.alpha = 1,
  gamma.beta = 1
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format. seedNumber An integer that is used to generate separate random seeds for the call to dp_activate, and before the call of hdp_burnin. Suggested initial value of the number of signatures, passed to dp_activate as K.guess initcc. multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard all input spectra as one tumor type. If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA" If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor type of the corresponding column in input.catalog. e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC"). verbose If TRUE then message progress information. burnin Pass to hdp_burnin burnin. cpiter Pass to hdp_burnin cpiter. burnin.verbosity Pass to hdp_burnin verbosity.

AnalyzeAndPlotretval 3

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process concentration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

gamma.beta Inverse scale parameter (rate parameter) of gamma distribution from which the

Dirichlet process concentration parameters are drawn; in this function the gamma

distributions for all Dirichlet processes are the same.

Value

A list with 2 elements:

hdplist A list representation of an hdpState-class object.

likelihood A numeric vector with the likelihood at each iteration.

AnalyzeAndPlotretval Evaluate and plot retval from CombinePosteriorChains

Description

Evaluate and plot retval from CombinePosteriorChains

Usage

```
AnalyzeAndPlotretval(
  retval,
  out.dir = NULL,
  ground.truth.sig = NULL,
  ground.truth.exp = NULL,
  verbose = TRUE,
  overwrite = TRUE,
  diagnostic.plot = TRUE)
```

Arguments

retval the output from function CombinePosteriorChains

out.dir Directory that will be created for the output; if overwrite is FALSE then abort

if out.dir already exits.

ground.truth.sig

Optional. Either a string with the path to file with ground truth signatures or and ICAMS catalog with the ground truth signatures. These are the signatures used to construct the ground truth spectra.

ground.truth.exp

Optional. Ground truth exposure matrix or path to file with ground truth exposures. If NULL skip checks that need this information.

verbose If TRUE then message progress information.

overwrite If TRUE overwrite out.dir if it exists, otherwise raise an error.

diagnostic.plot

If TRUE plot diagnostic plot. This is optional because there are cases having error

CleanChlist CleanChlist

ChainsDiagnosticPlot Diagnostic plot for a hdpSampleMulti object

Description

Diagnostic plot for a hdpSampleMulti object

Usage

ChainsDiagnosticPlot(retval, out.dir, verbose)

Arguments

Arguments	
retval	output from CombinePosteriorChains.A list with the following elements: signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors). exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors). multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was
out.dir	generated. Directory that will be created for the output; if overwrite is FALSE then abort if out.dir already exits.
verbose	If TRUE then message progress information.
CleanChlist	If the job of Gibbs sampling from MultipleSetupAndPosterior has an error caught by R, the corresponding element of chlist has class tryerror. If the job is stopped with, e.g. a segfault, the chlist element is NULL.

Description

If the job of Gibbs sampling from MultipleSetupAndPosterior has an error caught by R, the corresponding element of chlist has class try-error. If the job is stopped with, e.g. a segfault, the chlist element is NULL.

Usage

```
CleanChlist(chlist, verbose = FALSE)
```

Arguments

chlist A list of hdpSampleChain-class objects.

verbose If TRUE then message progress information.

Value

Invisibly, the clean, non-error chlist This is a list of hdpSampleChain-class objects.

CombinePosteriorChains 5

CombinePosteriorChains

Extract components and exposures from multiple posterior sample chains

Description

Extract components and exposures from multiple posterior sample chains

Usage

```
CombinePosteriorChains(
  clean.chlist,
  input.catalog,
  multi.types,
  verbose = TRUE,
  cos.merge = 0.9,
  min.sample = 1
)
```

Arguments

clean.chlist It collects the output of multiple independent hdp_posterior calls.

input.catalog Input spectra catalog as a matrix or in ICAMS format.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard

all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be

"SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC").

verbose If TRUE then message progress information.

cos.merge The cosine similarity threshold for merging raw clusters from the posterior sam-

pling chains into "components" i.e. signatures; passed to hdp_extract_components.

min.sample A "component" (i.e. signature) must have at least this many samples; passed to

hdp_extract_components.

Value

Invisibly, a list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

ActivateandBurnin.	ExtendBurnin	Extend Burn in iteration for a list representation of an hdpState-class object. This list is an output from hdp_burnin or ActivateandBurnin.
--------------------	--------------	--

Description

Extend Burn in iteration for a list representation of an hdpState-class object. This list is an output from hdp_burnin or ActivateandBurnin.

Usage

```
ExtendBurnin(hdplist, seedNumber = 1, burnin = 4000, cpiter = 3, verbosity = 0)
```

Arguments

hdplist A list representation of an hdpState-class object

seedNumber A random seed for setting the environment of hdp_burnin.

burnin Pass to hdp_posterior burnin.

cpiter Pass to hdp_posterior cpiter.

verbosity Pass to hdp_posterior verbosity.

Value

A list with hdp object after burn-in iteration and likelihood of iteration

GenerateAverageCluster

Generate average pattern of clusters of each posterior chain from combined list of multiple posterior sample chains

Description

Generate average pattern of clusters of each posterior chain from combined list of multiple posterior sample chains

Usage

GenerateAverageCluster(clean.chlist)

Arguments

clean.chlist A list of multiple (or one) posterior sample chains.

Generateppindex 7

Value

A list of matrices containing the average pattern of clusters within each posterior chain and a list of matrices containing the sum of each cluster in each posterior chain

Generate prindex Generate index for a HDP structure and num.tumor.types for other functions

Description

Generate index for a HDP structure and num.tumor.types for other functions

Usage

```
Generateppindex(multi.types, input.catalog)
```

Arguments

multi.types

A logical scalar or a character vector. If FALSE, The HDP analysis will regard all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC").

input.catalog Input spectra catalog as a matrix or in ICAMS format.

 ${\tt MultipleSetupAndPosterior}$

Activate hierarchical Dirichlet processes and run posterior sampling in parallel.

Description

Activate hierarchical Dirichlet processes and run posterior sampling in parallel.

Usage

```
MultipleSetupAndPosterior(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
```

```
post.space = 50,
post.cpiter = 3,
post.verbosity = 0,
CPU.cores = 1,
num.child.process = 4,
gamma.alpha = 1,
gamma.beta = 1
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

seedNumber A random seeds passed to dp_activate.

K.guess Suggested initial value of the number of signatures, passed to dp_activate as

initcc.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard

all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be

"SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC").

 $\label{eq:continuous} \mbox{ If TRUE then message progress information.}$

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

post.space Pass to hdp_posterior space.

post.cpiter Pass to hdp_posterior cpiter.

post.verbosity Pass to hdp_posterior verbosity.

CPU. cores Number of CPUs to use; there is no point in making this larger than num. child. process.

num.child.process

Number of posterior sampling chains; can set to 1 for testing.

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process con-

centration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

gamma.beta Inverse scale parameter (rate parameter) of gamma distribution from which the

Dirichlet process concentration parameters are drawn; in this function the gamma

distributions for all Dirichlet processes are the same.

Value

Invisibly, the clean chlist (output of CleanChlist). This is a list of hdpSampleChain-class objects.

ParallelPosteriorafterBurnin

ParallelPosteriorafterBurnin

Generate an HDP Gibbs sampling chain from a spectra catalog.

Description

Generate an HDP Gibbs sampling chain from a spectra catalog.

Usage

```
ParallelPosteriorafterBurnin(
  retval,
  seedNumber = 1,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
  post.verbosity = 0,
  num.child.process = 2,
  CPU.cores = 2
)
```

Arguments

retval	$A\ list\ object\ containing\ hdplist\ after\ burn-in\ iteration\ and\ likelihood\ from\ Burnin\ Iteration.$			
seedNumber	Pass to hdp_posterior			
verbose	If TRUE then message progress information.			
post.burnin	Pass to hdp_posterior burnin. This can be set to a small number			
post.n	Pass to hdp_posterior n.			
post.space	Pass to hdp_posterior space.			
post.cpiter	Pass to hdp_posterior cpiter.			
post.verbosity	Pass to hdp_posterior verbosity.			
num.child.process				
	Number of posterior sampling chains; can set to 1 for testing.			
CPU.cores	Number of CPUs to use; there is no point in making this larger than num.child.process.			

Value

Invisibly, an hdpSampleChain-class object as returned from hdp_posterior.

10 PrepInit

PrepInit	Initialize hdp object Allocate process index for hdp initialization. Prepare for hdp_init

Description

Initialize hdp object Allocate process index for hdp initialization. Prepare for hdp_init

Usage

```
PrepInit(
  multi.types,
  input.catalog,
  verbose,
  K.guess,
  gamma.alpha = 1,
  gamma.beta = 1
)
```

Arguments

multi.types

A logical scalar or a character vector. If FALSE, The HDP analysis will regard all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC").

input.catalog Input spectra catalog as a matrix or in ICAMS format.

verbose If TRUE then message progress information.

K.guess Suggested initial value of the number of signatures, passed to dp_activate as

initcc.

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process con-

centration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

gamma.beta Inverse scale parameter (rate parameter) of gamma distribution from which the

Dirichlet process concentration parameters are drawn; in this function the gamma

distributions for all Dirichlet processes are the same.

RunHdpParallel 11

RunHdpParallel	Extract mutational signatures and optionally compare them to existing
	signatures and exposures.

Description

Extract mutational signatures and optionally compare them to existing signatures and exposures.

Usage

```
RunHdpParallel(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
  post.verbosity = 0,
  CPU.cores = 1,
  num.child.process = 4,
  cos.merge = 0.9,
  min.sample = 1,
  ground.truth.sig = NULL,
  ground.truth.exp = NULL,
  overwrite = TRUE,
  out.dir = NULL,
  gamma.alpha = 1,
  gamma.beta = 1
```

Arguments

input.catalog	Input spectra catalog as a matrix or in ICAMS format.
seedNumber	A random seeds passed to dp_activate.
K.guess	Suggested initial value of the number of signatures, passed to dp_activate as initcc.
multi.types	A logical scalar or a character vector. If FALSE, The HDP analysis will regard all input spectra as one tumor type.
	If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be "SA.Syn.Ovary-AdenoCA"
	If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor type of the corresponding column in input.catalog.
	e.g. c("SA.Syn.Ovary-AdenoCA","SA.Syn.Kidney-RCC").
verbose	If TRUE then message progress information.

12 RunHdpParallel

Pass to hdp_posterior burnin.

Pass to hdp_posterior n. post.n Pass to hdp_posterior space. post.space Pass to hdp_posterior cpiter. post.cpiter post.verbosity Pass to hdp_posterior verbosity. CPU.cores Number of CPUs to use; there is no point in making this larger than num.child.process. num.child.process Number of posterior sampling chains; can set to 1 for testing. The cosine similarity threshold for merging raw clusters from the posterior samcos.merge pling chains into "components" i.e. signatures; passed to hdp_extract_components. min.sample A "component" (i.e. signature) must have at least this many samples; passed to hdp_extract_components. ground.truth.sig Optional. Either a string with the path to file with ground truth signatures or and ICAMS catalog with the ground truth signatures. These are the signatures used to

ground.truth.exp

post.burnin

Optional. Ground truth exposure matrix or path to file with ground truth expo-

sures. If NULL skip checks that need this information.

overwrite If TRUE overwrite out.dir if it exists, otherwise raise an error.

out.dir Directory that will be created for the output; if overwrite is FALSE then abort

if out.dir already exits.

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process con-

centration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

construct the ground truth spectra.

gamma.beta Inverse scale parameter (rate parameter) of gamma distribution from which the

Dirichlet process concentration parameters are drawn; in this function the gamma

distributions for all Dirichlet processes are the same.

Value

Invisibly, a list with the following elements:

signature The extracted signature profiles as a matrix; rows are mutation types, columns are samples (e.g. tumors).

exposure The inferred exposures as a matrix of mutation counts; rows are signatures, columns are samples (e.g. tumors).

multi.chains A hdpSampleMulti-class object. This object has the method chains which returns a list of hdpSampleChain-class objects. Each of these sample chains objects has a method final_hdpState (actually the methods seems to be just hdp) that returns the hdpState from which it was generated.

SetupAndActivate 13

 ${\sf SetupAndActivate}$

Generate an HDP Gibbs sampling chain from a spectra catalog.

Description

Generate an HDP Gibbs sampling chain from a spectra catalog.

Usage

```
SetupAndActivate(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  gamma.alpha = 1,
  gamma.beta = 1
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

seedNumber A random seeds passed to dp_activate.

K.guess Suggested initial value of the number of signatures, passed to dp_activate as

initcc.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard

all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be

"SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA", "SA.Syn.Kidney-RCC").

verbose If TRUE then message progress information.

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process con-

centration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

gamma.beta Inverse scale parameter (rate parameter) of gamma distribution from which the

Dirichlet process concentration parameters are drawn; in this function the gamma

distributions for all Dirichlet processes are the same.

Value

Invisibly, an hdpState-class object as returned from dp_activate.

14 SetupAndPosterior

SetupAndPosterior

Generate an HDP Gibbs sampling chain from a spectra catalog.

Description

Generate an HDP Gibbs sampling chain from a spectra catalog.

Usage

```
SetupAndPosterior(
  input.catalog,
  seedNumber = 1,
  K.guess,
  multi.types = FALSE,
  verbose = TRUE,
  post.burnin = 4000,
  post.n = 50,
  post.space = 50,
  post.cpiter = 3,
  post.verbosity = 0,
  gamma.alpha = 1,
  gamma.beta = 1
)
```

Arguments

input.catalog Input spectra catalog as a matrix or in ICAMS format.

seedNumber A random seeds passed to dp_activate.

K. guess Suggested initial value of the number of signatures, passed to dp_activate as

initcc.

multi.types A logical scalar or a character vector. If FALSE, The HDP analysis will regard

all input spectra as one tumor type.

If TRUE, the HDP analysis will infer tumor types based on the string before "::" in their names. e.g. tumor type for "SA.Syn.Ovary-AdenoCA::S.500" would be

"SA.Syn.Ovary-AdenoCA"

If multi.types is a character vector, then it should be of the same length as the number of columns in input.catalog, and each value is the name of the tumor

type of the corresponding column in input.catalog.

e.g. c("SA.Syn.Ovary-AdenoCA","SA.Syn.Kidney-RCC").

verbose If TRUE then message progress information.

post.burnin Pass to hdp_posterior burnin.

post.n Pass to hdp_posterior n.

post.space Pass to hdp_posterior space.

post.cpiter Pass to hdp_posterior cpiter.

post.verbosity Pass to hdp_posterior verbosity.

gamma.alpha Shape parameter of gamma distribution from which the Dirichlet process con-

centration parameters are drawn; in this function the gamma distributions for all

Dirichlet processes are the same.

SetupAndPosterior 15

gamma.beta

Inverse scale parameter (rate parameter) of gamma distribution from which the Dirichlet process concentration parameters are drawn; in this function the gamma distributions for all Dirichlet processes are the same.

Value

Invisibly, an hdpSampleChain-class object as returned from hdp_posterior.

Index

```
ActivateAndBurnin, 2
{\tt AnalyzeAndPlotretval}, {\tt 3}
chains, 4, 6, 12
ChainsDiagnosticPlot, 4
CleanChlist, 4
CombinePosteriorChains, 5
dp_activate, 2, 8, 10, 11, 13, 14
ExtendBurnin, 6
final_hdpState, 4, 6, 12
{\tt GenerateAverageCluster}, {\tt 6}
{\tt Generateppindex}, \textcolor{red}{7}
hdp_burnin, 2, 6
hdp_extract_components, 5, 12
hdp_init, 10
hdp_posterior, 6, 8, 9, 12, 14, 15
hdpState-class, 2, 6
ICAMS, 2, 3, 5, 7, 8, 10–14
MultipleSetupAndPosterior, 7
ParallelPosteriorafterBurnin, 9
PrepInit, 10
RunHdpParallel, 11
SetupAndActivate, 13
SetupAndPosterior, 14
```