Acesso no Lacete Local

Acesso telefónico analógico

Transmissão digital no lacete local

Acesso por *modem* da banda de voz

Acesso DSL – Digital Subscriber Line

Lacete local

Características

- constituído por um par de fios balanceados
- permite a transmissão bidirecional num único suporte físico
- exige circuitos híbridos para separar os sinais de emissão e receção nos extremos
- pares torcidos: o ruído e interferências induzidos nos fios cancelam-se mutuamente

Lacete local e circuito híbrido

transformador híbrido $Z_e \approx Z_{linha}$ emissão

Circuito híbrido genérico com transformador

Valdar, A. (2017). Understanding Telecommunications Networks (2 ed). IET.

Suporte físico

Fios aéreos

utilizados no lacete local em meios rurais (a cair em desuso)

- fios nus de cobre suspensos por isoladores cerâmicos em hastes transversais no topo de postes
- grande quantidade de cobre ⇒ baixa atenuação
- grande separação entre os fios, conduzindo à rápida saturação dos postes
- manutenção elevada

Cabos de pares simétricos

- pares de cobre agrupados num cabo
- suspensos, enterrados ou enfiados em condutas
- capacidade muito diversa: tipicamente entre 6 e 2700 pares num cabo
- diâmetros mais comuns de 0,4 e 0,5 mm ⇒ atenuação relativamente elevada
- diâmetros de 0,6 a 0,9 mm utilizados em troços mais distantes de ligações longas
- distorção de amplitude elevada na banda de voz possível compensar

Princípio de operação

Configuração de acesso

- um único par de cobre (2 fios) \rightarrow interface a/b
- híbrido no assinante assegura acoplamento à linha do transmissor e do recetor

Alimentação

– central local alimenta a linha de assinante a partir de uma bateria central (-48 V)

Efeito local

potencial desadaptação do híbrido produz um eco local (sem atraso)

Acesso telefónico a dois fios

Princípio de operação

Híbrido baseado em transformador

- configuração simplificada utilizada desde os primórdios da telefonia
- montagem com um microfone simples e um altifalante, ambos sem amplificadores

Híbrido baseado em circuito resistivo

- configuração simplificada com T resistivo
- transmissor e recetor com amplificação eletrónica

Principais limitações da transmissão em pares de cobre

Limitações intrínsecas do canal

Atenuação e distorção de amplitude

atenuação (A) proporcional ao comprimento da linha (d)

$$A = \gamma . d$$
 γ – atenuação específica (dB/km)

- atenuação agrava-se com pares de menor calibre (diâmetro 0,4 mm)
- atenuação aumenta significativamente com a frequência → distorção de amplitude

$$\gamma \approx k\sqrt{f}$$
 ex: 20 dB/km @ 1 MHz

Medidas de proteção

- amplificação nos repetidores e terminações de linha
- igualização do ganho do canal
- codificação de linha ou modulação com espectro compacto, evitando altas frequências

Principais limitações da transmissão em pares de cobre

Limitações intrínsecas do canal

resposta impulsional¹ par de cobre com 2 km

olimits of the cobre com 2 com

Interferência intersimbólica

- resultam do facto da resposta impulsional do canal ser "longa"
- a decisão sobre um símbolo é afetada por resíduos dos símbolos precedentes
- aumenta com o comprimento da linha
- aumenta com o débito binário

¹ Charina et al., "ISI/ICI Comparision of DMT and Wavelet based MCM Schemes for Time-Invariant Channels", in Proc. ITG-Conference Nets and Applications, Jan. 2002.

Medidas de proteção

- igualização de fase e amplitude procurando satisfazer critério de Nyquist de interferência intersimbólica nula
 - pré-igualização na emissão
 - pós-igualização na receção
- igualização por atraso temporal dos impulsos, subtraindo ao sinal recebido com interferência intersimbólica uma réplica desta interferência

Principais limitações da transmissão em pares de cobre

<u>Limitações intrínsecas do canal</u>

Interferências entre canais

- resulta do acoplamento eletromagnético indesejável entre meios de transmissão
- interferência próxima (NEXT *Near-End Crosstalk*) entre a emissão e a receção
 - entre um nível alto do interferente e um nível baixo do interferido
- interferência remota (FEXT Far-End Crosstalk) ao longo da linha
 - entre **níveis equivalentes** do **interferente** e **interferido**
- NEXT e FEXT → aumentam significativamente com a frequência
- NEXT > FEXT para a mesma frequência
- FEXT → aumenta com o comprimento da linha

Interferências entre canais

Principais limitações da transmissão em pares de cobre

Limitações intrínsecas do canal

Ecos

provocados pela desadaptação em circuitos híbridos → conforme vimos no slide 4

Medida de proteção para NEXT e FEXT

• sinais com espectro compacto, evitando altas frequências

Medida de proteção para NEXT e ecos

• sinais nos dois sentidos não sobrepostos no tempo ou frequência (ver adiante)

Medida de proteção para ecos

• cancelamento de eco (ver adiante)

Principais limitações da transmissão em pares de cobre

Limitações intrínsecas do canal

Interferências de radiofrequências

ocorre em **períodos** relativamente **longos**

- resultantes de serviços de radiocomunicações
- concentradas em bandas específicas
- esporadicamente muito significativas

radioamadores

Medida de proteção

técnicas avançadas de modulação (exemplo: modulação DMT¹ – ver adiante)

Interferências de radiofrequências

¹ Discrete Multi-Tone

Principais limitações da transmissão em pares de cobre

Limitações intrínsecas do canal

- sinalização em acessos analógicos (sobretudo transições da corrente de lacete)
- efeitos atmosféricos
- ruído de máquinas elétricas (fábricas, veículos)

Medida de proteção técnicas de entrelaçamento de dados e correção de erros (FEC – Forward Error Correction) fluxo fluxo bits transmissão bits formação de correção de erros entrelacamento desentrelaçamento blocos e detetados nos de blocos de blocos cálculo de FEC blocos • código FEC é transmitido em cada bloco de forma a permitir corrigir erros simples, na receção \bullet se forem entrelaçados n blocos, podem ocorrer rajadas de erros afetando n bits consecutivos • ocorre no máximo um erro por bloco que será corrigido

• desvantagem → aumenta o atraso total (latência)

Técnicas de transmissão bidirecional

<u>TCM – Time Compressed Multiplexing</u>

TDD – Time Division Duplex

- transmissão alternada de cada sentido a mais do dobro do ritmo
 - reservados tempos de espera: períodos de guarda e tempo de propagação
 - elimina o efeito dos ecos e da interferência NEXT
- requer mais do dobro da banda de cada sentido
 - aumenta a atenuação/distorção e a interferência FEXT entre canais
- eficiência reduz com o aumento da distância / tempo de propagação
 - pouco relevante na linha de assinante, por ser relativamente curta

Sistema baseado em Time Compressed Multiplexing / Ping – pong

Técnicas de transmissão bidirecional

<u>FDM – Frequency Division Multiplexing</u>

- transmissão dos dois sentidos em bandas de frequência distintas
 - reservadas frequências de guarda
 - necessário filtrar convenientemente os sentidos de transmissão
 - resolve o problema dos ecos e interferência NEXT se o filtro for eficaz
- requer mais do dobro da banda de cada sentido
 - aumenta a atenuação/distorção e a interferência FEXT entre canais

Sistema baseado em Frequency Division Multiplexing

Técnicas de transmissão bidirecional

Cancelamento de eco

- transmissão simultânea dos dois sentidos, na mesma banda
 - híbrido desadaptado introduz eco local e remoto
 - recorre-se ao cancelamento de eco com filtro digital adaptativo
 - o filtro sintetiza os sinais interferentes, removendo-os do sinal recebido (compensa os ecos local e remoto)
- mantém a banda requerida em cada sentido
 - não aumenta a atenuação/distorção e a interferência entre canais

Sistemas de acesso de assinante

Nome	Data	Descrição	Débito	Simetria	Aplicações na rede de acesso
V.21 ••• V.92	1964 ••• 2000	<i>Modems</i> da banda de voz	300 bit/s D 56 000 bit/s A 48 000 bit/s	Simétrico Assimétrico	Comunicação de dados sobre um canal telefónico
HDSL	1990	High-speed Digital Subscriber Line	2 320 kbit/s	Simétrico	Ligações E1/T1 ponto a ponto da rede fixa Acesso a LANs, WANs
ADSL	1999	Asymmetric Digital Subscriber Line	D até 7 Mbit/s A até 800 kbit/s	l Assimétrico l	Acesso a Internet, <i>video-on-demand</i> , acesso a LANs, multimédia interativa
SHDSL	2001	Single-pair High-speed DSL	até 2 320 kbit/s	Simétrico	Ligações E1/T1 ponto a ponto da rede fixa Acesso a LANs, WANs
ADSL2+	2003	High-speed Digital Subscriber Line	D até 24 Mbit/s A até 1 Mbit/s	Assimétrico	Acesso a Internet, <i>video-on-demand</i> , acesso a LANs, multimédia interativa
VDSL2	2005	Very high-speed Digital Subs. Line	Vários modos A+D até 200 Mbit/s		As mesmas que o SHDSL As mesmas que o ADSL + HDTV

NOTA – as datas referem-se à ratificação pela UIT das respetivas recomendações, numa fase estável

Acesso por modem da banda de voz

Modems baseados na modulação de portadoras

Princípio de operação

- começaram por usar FSK e separação dos sentidos de transmissão por FDM
- evoluíram tecnologicamente nos seguintes aspetos
 - modulações QAM com número crescente de estados

 $V.34 \rightarrow 240 \text{ estados}$

- transmissão bidirecional na mesma banda com cancelamento de eco
- técnicas de correção de erro de tipo FEC (Forward Error Correction)
- limitados pelo ruído de quantização da lei A / lei μ
 - estão muito próximo da capacidade teórica do canal de voz com quantização

Teorema de Shannon
$$B \cong 3.1 \text{ kHz}$$
 $S/N \cong 36 \text{ dB}$ $C = B \log_2 (1 + S/N) = 37 \text{ kbps}$

Exemplos:

Nome	Data	Débito	Modo
V.21	1964	300 bit/s	
V.22	1968	1 200 bit/s	
V.32	1984	9 600 bit/s	Simétrico
V.32 bis	1991	14 400 bit/s	
V.34	1996	33 600 bit/s	

Acesso por modem da banda de voz

Modems baseados em PCM

Configuração

- ligação utilizador central local → um par
- ligação central local ISP → um canal digital de voz PCM a 64 kbit/s

Configuração de acesso por modem baseado em PCM

Princípio de operação

- sinal transmitido no lacete local consiste em impulsos multinível
- sentido descendente ISP \rightarrow utilizador
 - *modem* **ISP:** geração de palavras PCM (8 bits@ 8kHz)
 - central local: conversão D/A de palavras PCM em símbolos multinível
 - modem utilizador: receção de símbolos, conversão A/D e extração de dados

Acesso por modem da banda de voz

Modems baseados em PCM

Princípio de operação

- sentido ascendente utilizador \rightarrow ISP
 - modem utilizador: transmissão de símbolos multinível
 - central local: conversão A/D dos símbolos multinível em palavras PCM
 - *modem* **ISP:** receção de palavras PCM e extração dos dados
 - requer adicionalmente uma fase de treino para ajustar os níveis dos símbolos transmitidos aos níveis do D/A da central local

Exemplos:

Nome	Data		Débito	Modo	Princípio de operação
V.90	1998	D	56 000 bit/s	Assimétrico	Baseado em PCM
		A	33 600 bit/s		Baseado em portadora (idêntico a V.34)
V.92	2000	D	56 000 bit/s	Assimétrico	Doggodo em DCM
		A	48 000 bit/s		Baseado em PCM

Referências

Valdar, A. (2017). Understanding Telecommunications Networks (2 ed). IET.

Acesso no Lacete Local

Acesso telefónico analógico

Transmissão digital no lacete local

Acesso por *modem* da banda de voz

Acesso DSL – Digital Subscriber Line

Digital Subscriber Line − xDSL <

família de técnicas adequadas a diversas aplicações

Características gerais

HDSL \rightarrow *High-speed Digital Subscriber Line*

- cancelamento de eco adaptativo e funcionamento em banda base
- transmissão sobre 2 ou 3 pares (mais recentemente 1 par HDSL2)

SHDSL → Single-pair High-speed Digital Subscriber Line

ITU Rec. G.991.2

evolução de HDSL para sistemas multisserviço e multidébito

 $ADSL \rightarrow Asymmetric \ Digital \ Subscriber \ Line$

- modulações sofisticadas, permitindo débitos elevados, sobretudo o descendente
- transmissão sobre 1 par

ADSL2

ITU Rec. G.992.3/4

desenvolvimentos mais recentes →

ADSL2+

ITU Rec. G.992.5

 $VDSL \rightarrow Very\ high-speed\ Digital\ Subscriber\ Line$

prolongamento dos sistemas ADSL/SHDSL para maiores débitos de linha

número de pares alcance

débito binário

simetria

cada tecnologia estabelece um compromisso entre vários objetivos

Características gerais

Objetivo geral da tecnologia HDSL

- serviço equivalente a ligações simétricas G.703 E1/T1
- cobertura sem repetidores para a maioria de assinantes

Sistema americano (1 544 kbit/s)

- sistema original em 2 ligações a 784 kbit/s em 2 pares
- evoluiu para um sistema com uma única ligação a 1578 kbit/s num par (HDSL2)

Sistema europeu (2 048 kbit/s)

- tecnologia original americana reutilizável na Europa com mais 1 par
- sistemas atuais permitem 2 pares, ou mesmo 1 par, com alcances aceitáveis

Débito HDSL	Número de pares	Débito por par	Alcance (d=0,5 mm)
2.049.1-1-4/a	2	1 168 kbit/s	4,3 km
2 048 kbit/s	1	2 320 kbit/s	3,0 km

Princípio de operação

Transmissão em múltiplos pares

- fluxo total de bits em cada sentido é distribuído por cada um dos pares de cobre
- a comunicação é bidirecional em cada par
- reduz-se assim a banda ocupada em cada par

Sistema básico de transmissão HDSL sobre 2 pares

Princípio de operação

Codificação de linha

– codificação multinível 2B1Q ←

Isolamento dos sentidos de transmissão

− cancelamento de eco adaptativo efetuado em cada par

tecnologias já utilizadas na RDIS

Interferências entre pares da mesma ligação

- NEXT significativo nas duas extremidades
- pode igualmente ser compensado por cancelamento de eco adaptativo

Interferências entre pares de ligações diferentes

- NEXT significativo nas duas extremidades
- não pode ser compensado por cancelamento de eco
- limita o alcance em sistemas HDSL

Princípio de operação

Ocupação espetral

- − espectro 2B1Q relativamente eficiente
- bastante mais compacto do que HDB3
- ocupação diminui com o aumento do número de pares

Banda ocupada por HDSL (2 pares) em comparação com sistema G.703 de 2 Mbit/s

SHDSL – Single-pair High-speed Digital Subscriber Line

Características gerais

Objetivo geral da tecnologia SHDSL

substitui progressivamente os sistemas HDSL

- acesso por um **único par de cobre** existente no lacete local
- melhoria das técnicas utilizadas em HDSL no sentido de permitir maior alcance
- suporte de modos circuito, ATM e pacote

débito configurável de acordo com os requisitos do utilizador

- aumenta o alcance para débitos mais baixos
- permite custos mais baixos para o utilizador
- possibilidade de utilizar dois pares ou repetidores para aumentar o alcance

Débito (*)	Alcance (d=0,5 mm)
2 320 kbit/s	3,4 km
192 kbit/s	9,0 km

(*) definida opção sobre 2 pares com o dobro do débito

SHDSL – Single-pair High-speed Digital Subscriber Line

Características gerais

Canais suportados

- modo circuito **TDM** ($p \times 64$ kbit/s), modo ATM e modo pacote
- várias combinações de modos de transporte e serviços
- possibilidade de partilha de banda entre modos

Combinações de modos de transporte e serviços (exemplos)

SHDSL – Single-pair High-speed Digital Subscriber Line

Princípio de operação

Modulação

- 8-ASK com codificação Trellis (conhecida pelo acrónimo TC PAM-8)
- débito ajustável entre 192 e 2320 kbit/s em saltos de 8 kbit/s
- espectro compacto compatível com outras tecnologias DSL

Espectro de SHDSL (exemplo a 768 kbit/s)

Características gerais

Objetivo geral da tecnologia ADSL

- utiliza a linha telefónica existente: um único par
- acrescenta um *modem* "sempre ligado" para serviços multimédia
- suporta o transporte de dados em modo circuito ($p \times 32 \text{ kbit/s}$) e modo pacote
- cobertura sem repetidores para a maioria de assinantes

Canais suportados

- um canal duplex para telefonia ou RDIS
- um canal ascendente de média velocidade
- um canal descendente de alta velocidade

transmissão assimétrica

Canal ADSL	Capacidade	Alcance
Telefonia	Analógico	
RDIS	160 kbit/s	2 – 6 km
Ascendente (A)	16 - 800 kbit/s	(<i>d</i> =0,5mm)
Descendente (D)	1,5 - 9 Mbit/s	

Siste	emas correntes	Débito	
G.992.1	ADSL Full-rate	A 0,640 Mbit/s D 6,144 Mbit/s	
G.992.2	ADSL Lite (splitterless)	A 0,512 Mbit/s D 1,536 Mbit/s	

Princípio de operação

Tecnologia de modulação → DMT (*Discrete Multi-Tone*)

- maximiza o débito de transmissão de acordo com as características da linha
- opera de forma adaptativa

Isolamento dos sentidos de transmissão

- FDM
- cancelamento de eco

Interferências

- FEXT no canal descendente limita o alcance
- problema de NEXT com acessos RDIS e HDSL

ocorre com frequências elevadas / banda extensa

exige coordenação de disponibilização de ligações

Controlo de erros

utiliza técnicas de entrelaçamento de dados e correção de erros (FEC)

Princípio de operação

Ocupação espetral $f_{max} = 1$ 104 kHz $f_{max} = 1$ 104 kHz $f_{max} = 552$ kHz

ADSL baseado em FDM

- elimina NEXT
- ocorre FEXT numa banda extensa
- limita a capacidade
- ocorre NEXT nas baixas frequências
- ocorre FEXT numa banda extensa
- permite maior capacidade

(b) acesso ADSL + RDIS

ADSL baseado em cancelamento de eco (CE)

Princípio de operação

Modulação DMT – Discrete Multi-Tone

- − a banda entre 0 e 1,1 MHz é dividida em 256 canais (4,3125 kHz de banda cada)
- em cada intervalo de 250 μs, os bits a transmitir são segmentados pelos 256 canais
- em cada canal os bits são transmitidos em sub-portadoras moduladas em QAM
- no recetor as sub-portadoras são recebidas e os bits recuperados e agregados

Princípio de operação

Modulação DMT – Discrete Multi-Tone

- modulação QAM é dinamicamente adaptada à relação S/N em cada sub-canal
- constelação suporta entre 2 e 15 bits (no limite, a portadora é suprimida)
- débito total sofre incrementos / decrementos de 32 kbit/s (granularidade)
- aproxima-se o sistema da capacidade teórica do canal

Capacidade adaptativa da modulação DMT às características do canal

Princípio de operação

Diagrama-blocos da instalação ADSL no assinante

Princípio de operação

Sistema básico ADSL

Alternativa simplificada da instalação ADSL no assinante

Princípio de operação

Diagrama-blocos da instalação ADSL na central

Características gerais da tecnologia ADSL2

Débito versus alcance

- aumento do débito em linhas curtas (<1,5 km)
 - mínimo de 800 kbit/s + 8 Mbit/s descendente
 - tipicamente 1 Mbit/s ascendente + 12 Mbit/s descendente
- aumento do débito em linhas longas (ex: $200 \rightarrow 250 \text{ kbit/s } @ 6 \text{ km}$)

Alcance de ADSL2 (débito descendente)

ADSL2 / ADSL2+

Evolução da tecnologia ADSL2 em relação a ADSL

Maior débito em função do alcance

- maior eficiência de modulação
 - 8-15 bits por portadora com codificação Trellis
 - modo de 1 bit por portadora em situações de S/N baixo (linhas longas)
- overhead programável de 4-32 kbit/s (ADSL → overhead fixo de 32 kbit/s)
- codificação FEC mais eficiente → proteção adaptável conforme o nível de S/N
- inicialização otimizada → maximiza os bits por sub-portadora
- reconfiguração dinâmica melhorada
 - realocação de bits entre sub-portadoras
 - controlo de amplitude das sub-portadoras
 - reconfiguração do débito

adapta-se a variações da linha

ADSL2 / ADSL2+

Evolução da tecnologia ADSL2 em relação a ADSL

Melhoria do diagnóstico da linha

- medição de parâmetros nas duas extremidades
- disponibiliza a atenuação, ruído, interferências

Modo de inicialização rápida

reduz inicialização de mais de 10 segundos para menos de 3 segundos

Modos de baixa potência

- reduz a potência em modos de *stand-by*/adormecido

Aumento do débito ascendente (opções)

- utilização da banda de voz para dados (modo totalmente digital)
- "naked" DSL

- aumenta em 256 kbit/s o débito ascendente
- − separação das bandas ascendente/descendente passa de 138 para 276 kHz

Anexo M

- eleva o débito ascendente de 1 para 3,5 Mbit/s
- alternativas relevantes para aplicações empresariais

ADSL2 / ADSL2 +

Evolução da tecnologia ADSL2 em relação a ADSL

Capacidade multicanal

- possibilidade de definir até 4 canais com diferentes qualidade de serviço
- aplicações de voz → canais com menor proteção contra erros (menor latência)
- aplicações de dados → canais com maior proteção contra erros (maior latência)

Suporte multisserviço

- disponibiliza canais de 64 kbit/s para aplicações de circuitos
- permite o transporte direto de serviços baseados em pacotes (ex: Ethernet, IP)

Agregação de linhas

- pode operar com dois (ou mais) pares simétricos
- multiplica os débitos disponibilizados

ADSL2 / ADSL2+

Características gerais da tecnologia ADSL2+

Aumento da capacidade

- duplica a banda do canal descendente
- aumenta significativamente o débito descendente em linhas curtas

Ocupação espetral de ADSL2+

Alcance de ADSL2 e ADSL2+

Características gerais

Objetivo geral da tecnologia VDSL

- permite **débitos muito altos** num **único par**, sobretudo em **linhas curtas**
- solução adequada para configurações FTTC e FTTB
- modos de operação
 - assimétrico → expande as aplicações de ADSL
 - simétrico → expande as aplicações de SHDSL
- versões ratificadas pela UIT
 - versão inicial \rightarrow VDSL G.993.1 (2004)

pouco tempo de vida útil

• versão atual \rightarrow VDSL2 G.993.2 (2005)

Exemplos de configurações de VDSL2

Modo	Débito ascendente	Débito descendente	Alcance
Assimétrico	30 Mbit/s	55 Mbit/s	500 m
Simétrico	100 Mbit/s	100 Mbit/s	300 m

Características gerais

Ocupação espetral

- suporta o acesso analógico telefónico (POTS) ou RDIS como em ADSL
- aumento significativo da banda para 12 MHz (VDSL) / 30 MHz (VDSL2)

Ocupação espetral de VDSL em comparação com ADSL

Características gerais

Débito versus alcance

Débito total de VDSL em função da distância

Características gerais da tecnologia VDSL2

Funcionalidades baseadas em ADSL2+

- modulação DMT
- disponibiliza diversos perfis de qualidade de serviço
- suporta os modos circuito TDM e pacote
- possibilita a agregação de linhas para aumento da capacidade

Perfis

- definidos múltiplos perfis em termos de potência transmitida e débitos suportados
- modems devem suportar pelo menos um perfil

Compatibilidade com ADSL

modems VDSL2 retro compatíveis com ADSL

Utilizadores de serviços baseados em DSL

Diferentes tecnologias DSL e suas aplicações

Configurações de acesso de utilizador

Acesso de um utilizador individual (ADSL)

Configurações de acesso de utilizador

Rede de acesso

Rede de acesso DSL com interligação a outras redes

Referências

Valdar, A. (2017). Understanding Telecommunications Networks (2 ed). IET.

Recomendações UIT referidas ao longo dos slides