Факультет компьютерных наук Департамент программной инженерии Отчет по преддипломной практике

Программа прогнозирования нечетких временных рядов на основе Z-чисел

Место прохождения практики: ДПИ ФКН НИУ ВШЭ

Научный руководитель: Доцент департамента программной инженерии, к.т.н. Дегтярев К.Ю.

Выполнил студент группы БПИ 131 Образовательной программы 09.03.04 "Программная инженерия" Богданова А.С.

Предметная область

Прогнозирование временных рядов

- регрессионные модели
- авторегрессионные модели
- модели экспоненциального сглаживания
- модели на нейронных сетях
- · модели на нечеткой логике

• ...

Основные понятия

Под **нечетким множеством** A понимается совокупность упорядоченных пар, составленных из элементов x универсального множества X и соответствующих степеней принадлежности $\mu_A(x)$:

$$A = \{(x, \mu_A(x)) | x \in X\}$$

Основные понятия

Функция принадлежности указывает, в какой степени элемент x принадлежит нечеткому множеству A, и принимает значения в интервале [0,1]

Основные понятия

Нечеткое число – это нечеткое выпуклое нормальное множество A, определенное на множестве действительных чисел R.

Динамика курса доллара

• имеются значения функции за n периодов и нужно спрогнозировать значение в точке n + 1

Базовый подход к прогнозированию

- Построение модели прогнозирования
 - * Разбиение области значений ряда
 - * Фаззификация
 - * Построение групп логических отношений
- Этап прогнозирования

Разбиение области значений

- равные интервалы
- четкие границы
- пересечение интервалов

Рисунок 1. Непересекающиеся множества

Рисунок 2. Пересекающиеся множества

Фаззификация

Элемент нечеткого множества $(x, \mu_A(x))$,

- для множества «cold» (9, 0.2)
- для множества «warm» (9, 0.5)

Фаззификация

Элемент нечеткого множества $(x, \mu_A(x))$,

- для множества «cold» (9-62)
- для множества «warm» (9, 0.5)

Потеря информации

Уровни описания неопределенности

- Intervals
- Type-1 Membership Functions
- Type-2 Membership Functions
 - General case
 - Interval -based
- Z-numbers (2011)
- U-numbers (2016)

Z-number

Z-число – пара нечетких чисел X = (A, B), где «A» - это ограничение на значение «X», а «B» - ограничение на степень уверенности в том, что «X» принимает значение «A».

Рисунок 3. Z-число

Цель

 Создание программы, позволяющей прогнозировать нечеткие временные ряды с использованием Z-чисел, основанных на восприятии (perception-based Z-numbers)

Задачи

- Изучение основных принципов прогнозирования с помощью нечеткой логики
- Изучение предложенных подходов по работе с Z-числами
- Разработка алгоритма для работы с Z-числами, основанными на восприятии (perception-based Z-numbers)
- Разработка программы, реализующей предложенный алгоритм

Предложенный подход

Решение

- четкая кластеризация с расширением границ
- нечеткая кластеризация

Результат кластеризации

- N количество значений временного ряда
- С количество кластеров
- μ _A (x) степень принадлежности значения кластеру

Возвращаемся к представлению нечеткого временного ряда

Perception-based Z-number

perception-based Z-number = (cluster, degree of certainty)

Perception-based Z-number

perception-based Z-number = (cluster, degree of certainty)

Шкала степени уверенности

Шкала степени уверенности

матрица со степенями принадлежности кластерам

закодированная последовательность с использованием Z-чисел

Закодированная последовательность

```
x_1 = (cluster_1, degree \ of \ certainty) \dots (cluster_c, degree \ of \ certainty)
x_2 = (cluster_1, degree \ of \ certainty) \dots (cluster_c, degree \ of \ certainty)
...
x_N = (cluster_1, degree \ of \ certainty) \dots (cluster_c, degree \ of \ certainty)
```

 x_i — значение из временного ряда (i = 1...N)

N – количество элементов временного ряда

С – количество кластеров

Рисунок 4. Динамика курса доллара

Сравнение

 x_1 и x_2 принадлежат одному кластеру $cluster_A$ со степенями принадлежности 0.5 и 0.6 соответственно

$$x_1 = (cluster_A, sure)$$

$$x_2 = (cluster_A, sure)$$

Прогнозные значения

- Агрегированный результат (в виде Z-чисел)
- Дефаззификация

Параметры

- число кластеров
- число итераций
- фаззификатор
- шкала степеней уверенности
- глубина поиска
- процентное соотношение числа объектов, используемых при агрегации прогнозного значения

Горизонт прогнозирования

Рисунок 5. Визуальное представление числового временного ряда

Рисунок 6. Настройки прогнозирования

Результаты (программа)

	Процент реализации
Четкая кластеризация с расширением границ	100 %
Нечеткая кластеризация	100 %
Кодирование с использованием Z-чисел	100 %
Переопределенное сравнение элементов	60-70 %
Получение степеней схожести для групп значений	90 %
Агрегация результата	30 %
Дефаззификация	0 %

Результаты (текст работы)

	Процент выполнения
Обзор источников	90 %
Теоретические основы работы	80 %
Технологии разработки программы	10 %

Технологии и инструменты реализации

- Java 1.8
- Java FX
- Intellij Idea
- Java FX Scene Builder
- Библиотека Efficient Java Matrix Library
- git

Спасибо за внимание!