EMD1 de Structure Machine

Durée: 2 heures

Documents non autorisés

Exercice 1: (3 points)

On dispose d'une machine où les nombres sont représentés sur 16 bits définis comme suit:

SM	Exposant		Mantisse	
15	14	10)	0

Questions:

a) Représenter les nombres suivants sur la machine

$$N1 = (13,75)_{10}$$

$$N2 = -(0.1875)_{10}$$

Remarque: l'exposant est représenté en complément à 2.

b) Calculer N1+N2, le représenter sur la machine et l'exprimer en hexadécimal.

Exercice 2: (6 points)

Analyser les circuits suivants et dites quelle est leur fonction.

a.

b.

c.

Remarque: Vous pouvez éventuellement utiliser une table de vérité afin d'identifier plus facilement la fonction du circuit.

Exercice 3: (10 points)

On désire réaliser un système de contrôle de passage de voitures sur un pont qui ne peut pas supporter plus de 10 tonnes. Le pont est doté de deux barrières A et B, une sur chaque côté.

On désigne par a et b le poids des voitures se présentant aux barrières A et B respectivement et par Pa et Pb deux variables qui indiquent la présence d'une voiture.

Les conditions de fonctionnement du système sont les suivantes :

Pa = 1 s'il y a présence d'une voiture a devant la barrière A Pb = 1 s'il y a présence d'une voiture b devant la barrière B

Si $(a+b) \le 10$ tonnes, les deux barrières A et B s'ouvrent Si (a+b) > 10 tonnes, seulement la barrière correspondant à la voiture la plus légère s'ouvre

Si $a \le b$, la barrière A s'ouvre Si a > b, la barrière B s'ouvre

Questions:

a/ Etablir la table de vérité de chacune des fonctions de sortie.

b/ Déterminer les formes canoniques disjonctives des fonctions de sortie.

c/ Réaliser les fonctions de sortie en utilisant des multiplexeurs 8 à 1 et un minimum de portes logiques.

d/ Simplifier les expressions des fonctions de sortie et les réaliser à l'aide de NANDs et des inverseurs.

BON COURAGE

Correction de l'EMD1 de Structure Machine Décembre 2002

Exercice 1:

a.

N1 =
$$(13,75)_{10}$$
 = $(1101,11)_2$ = $0,110111 \times 2^4$
Mantisse = $0,110111$
Exposant = $4 = (00100)_2$
SM = 0

N1: $0001\ 0011\ 0111\ 0000 = (1370)_{16}$

b.

$$N2 = -(0.1875)_{10} = -(0.0011)_2 = 0.11 \times 2^{-2}$$

Mantisse = 0.11
Exposant = -2 = (11101)₂ (complément a 2 de (-2))
SM = 1

N1: 1111 1011 0000 0000 = $(FB00)_{16}$

c.

$$N1 + N2 = 0,110111 \times 2^4 - 0,11 \times 2^{-2}$$

$$= 1101,11 - 0,0011 = 1101,1001 = 0,11011001 \times 2^4$$
Mantisse = 0,11011001
Exposant = 4 = (00100)₂
SM = 0

 $N1 + N2 : 0001 \ 0011 \ 0110 \ 0100 = (1364)_{16}$

Exercice 2:

A/
$$C = \overline{(\overline{A.B} \cdot \overline{A}) \cdot (\overline{A.B} \cdot \overline{B})} = \overline{A.B} \cdot A + \overline{A.B} \cdot B = A \cdot \overline{B} + \overline{A} \cdot B = A \bigcirc B$$

$$D = A \cdot B$$

$$C = A \bigcirc B = \text{Somme de A et B}$$

$$D = A \cdot B = \text{Retenue}$$

Le circuit est un demi-additionneur.

$$F = \overline{(\overline{X}_0 \cdot Y_0 + \overline{X}_0 \cdot Y_0)} \cdot (\overline{X}_1 + Y_1) = (\overline{X}_0 + \overline{Y}_0) \cdot (\overline{X}_1 + \overline{Y}_1)$$

$$F = 1 \quad \text{si} \quad X_0 = Y_0 \quad \text{et} \quad X_1 = Y_1$$

Le circuit est un comparateur indiquant l'égalité de deux nombres $(X_1 \ X_0)_2$ et $(Y_1 \ Y_0)_2$.

C/

$$X = A + B.C$$

$$Y = B \bigcirc C$$

$$Z = \overline{C}$$

A	В	С	X	Y	Z
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

 $(XYZ)_2 = (ABC)_2 + 1$, le circuit est un incrémenteur.

Exercice 3:

A/

Entrées du système :

 $P_a = 1$ s'il y a présence d'une voiture à la barrière A, 0 sinon $P_b = 1$ s'il y a présence d'une voiture à la barrière B, 0 sinon

X = 0 si $a+b \le 10$ tonnes

X = 1 si a+b > 10 tonnes

Y = 0 si $a \le b$ Y = 1 si a > b

Sorties du système :

A = 0 si la barrière A est fermée, 1 sinon

B = 0 si la barrière B est fermée, 1 sinon

Table de vérité :

P _a	P_b	X	Y	Α	В
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	X	X
0	1	1	0	0	0
0	1	1	1	X	X
1	0	0	0	X X	X X
1	0	0	1	X	X
1	0	1	0	X	X
1	0	1	1	0	0
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	0	1

B/

$$\begin{split} &A = P_a \, . \, \, \overline{P}_b \, . \, \, \overline{X} \, . \, \, \overline{Y} + \, P_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, \overline{Y} + P_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, Y + P_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, \overline{Y} \\ &B = \overline{P}_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, \overline{Y} + \, P_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, \overline{Y} + P_a \, . \, P_b \, . \, \, \overline{X} \, . \, \, \overline{Y} \\ \end{split}$$

D/

P_aP_b	00	01	11	10	
00					
01		X	X		
11 -	1	1		1	<u> </u>
10	X	X		X	
_			•	Г	_

$$A = P_{a} \cdot \overline{X} + P_{a} \cdot \overline{Y}$$

$$A = P_{a} \cdot (\overline{X} + \overline{Y})$$

$$A = \overline{P_{a} \cdot (\overline{X} + \overline{Y})} =$$

P_aP_b	00	01	11	10
00				
01	1	X	X	
11	1	1	1	
10	X	X		X

$$B = P_b \cdot X + P_b \cdot \overline{Y}$$

$$B = P_b \cdot (X + \overline{Y})$$

$$B = \overline{P_b \cdot (X + \overline{Y})} = P_b | (\overline{X}|Y)$$

EMD2 de Structure Machine 1^{ère} Année

Durée : 2 heures Documents non autorisés

Exercice 1: (4 points)

On désire concevoir un compteur synchrone décrivant le cycle suivant :

(3, 4, 5, 6, 3) à l'aide de bascules D.

Questions:

- a) Donner les équations des entrées D_i simplifiées.
- **b)** Représenter le cycle du compteur en tenant compte de tous les états y compris ceux n'appartenant pas au cycle.
- **c**) Réaliser ce compteur en utilisant un PAL séquentiel disposant de 4 entrées et de 4 sorties séquentielles.

Exercice 2: (7 points)

Soit le circuit décrit par le schéma suivant :

H est une horloge de fréquence égale à 1 KHz.

On suppose qu'à l'état initial, l'entrée E et la sortie S sont à 0.

- a. Quel est l'état initial du compteur ? Justifier votre réponse.
- b. Compléter le chronogramme suivant :

- c. Que se passe t-il lorsque l'entrée repasse de 1 à 0 ?
- d. Quelle est la durée de l'impulsion du signal de sortie S? Quelle sera la durée de l'impulsion du signal de sortie S si le signal Clr est relié à Q_2 au lieu de Q_3 ?
- e. En déduire l'équation du signal **Clr** qui nous permettrait d'obtenir une impulsion de 5ms.

Exercice 3: (4 points)

On désire réaliser un circuit qui permet de diviser la fréquence d'une horloge par 1, 2 ou 4.

Le circuit est décrit par le chronogramme et la table de fonctionnement suivante:

Le circuit possède 3 signaux de commande en entrée :

H_E : est une horloge de référence dont on souhaite diviser la fréquence.

C₁, C₀: deux bits indiquant le facteur par lequel on désire diviser la fréquence de l'horloge H_E.

<u>Remarque</u>: Compléter le chronogramme pour les 8 impulsions et réaliser ce circuit à l'aide d'un minimum de bascules D, de circuits combinatoires et d'un minimum de portes logiques.

Exercice 4: (5 points)

On désire réaliser un circuit C qui reçoit 4 bits en série et fournit en sortie 4 bits en parallèle.

Pour cela, on utilise un registre à décalage de 4 bits avec une entrée série (ES) et une commande de décalage (DEC). Les sorties parallèles du registre sont envoyées sur un bus à travers des portes (buffers) à trois états. L'information n'est libérée sur le bus que lorsque le registre est plein (après 4 décalages). Pour cela, on dispose d'une commande d'ouverture sur le bus : OUV. Pour compter les décalages, on utilise un compteur de 3 bits à cycle incomplet.

La commande RAZ du circuit C est une commande asynchrone. Elle survient avant l'arrivée du premier bit.

- 1. Déterminer le cycle que doit décrire le compteur pour contrôler les décalages.
- 2. Etablir les équations des commandes 'DEC' et 'OUV'.
- 3. Donner le schéma du circuit en utilisant le compteur et le registre à décalage décrits cidessus.
- 4. Donner le contenu du registre à décalage à chaque top d'horloge :

Période	Action	Q0	Q1	Q2	Q3
T0	RAZ				
T1	ES = 0				
T2	ES = 1				
Т3	ES = 0				
T4	ES = 1				

BON COURAGE

Durée : 2 heures Tous Documents interdits

Rédiger les Parties I et II sur des feuilles séparées

PARTIE I

Exercice 1: (4 pts);

Soit une mémoire RAM de 4Kilo*4 représentée par le schéma suivant :

Questions:

- a. Quel est le rôle des broches R/W (L/E) et CS sur un circuit « Mémoire »?
- b. De combien de bits est constituée la donnée stockée dans cette mémoire ?
- c. De quelle capacité est cette mémoire (en Kbits puis Koctes) ?
- d. Comment sélectionne-t-on l'adresse d'une donnée ?
- e. Quel doit être l'état du signal VMA (Valid Memory Access) et l'état des lignes A12 à A15 pour sélectionner cette mémoire ?
- f. Donner la plage d'adresse (en Hexadécimal) utilisée par cette mémoire.

Exercice 2: (4 pts)

a./ Faire l'étude et le schéma d'une mémoire de 4 méga x 16 bits organisée en deux (2) modules entrelacés avec un degré d'entrelacement D = 2 (l'entrelacement se fait à l'intérieur de chaque module). Cette mémoire est réalisée à base de circuits de 1 méga x 8 bits.

Remarque: faire le schéma d'un seul module et soignez sa présentation.

b./ Déterminer le domaine (en **Hexadécimal**) des adresses pour chacun des modules. Justifier votre réponse.

PARTIE II

Exercice 3: (2 pts)

Dérouler sur la machine MIASM vue en cours, l'instruction suivante :

Exercice 4: (5 pts)

Ecrire le programme MIASM implanté à l'adresse Hexa (100)₁₆ en mémoire qui permet de calculer le reste de la division entière (fonction Modulo) de A par B qui seront lues (**A et B entiers positifs**).

Vous pouvez utiliser la formule suivante :

$$A \text{ Mod } B = A - B * (A \text{ DIV } B)$$

Remarques:

- On supposera que nous disposons des instructions suivantes:

DIV Adr qui permet : Acc ← (Acc) DIV (Adr) avec DIV division entière

- MPM Adr qui permet : Acc ← (Acc) * (Adr) multiplication entière
- Le résultat de la multiplication et de la division tient sur un mot mémoire
- A et B sont des entiers positifs (prévoir les tests lors de la lecture de ces deux nombres).

Exercice 5: (5 pts)

Ecrire le programme MIASM implanté à l'adresse Hexa (100)₁₆ prenant en entrée <u>deux nombres</u> <u>positifs A et B</u>, et calculant puis affichant le PGCD de ces deux nombres. Le PGCD sera calculé avec l'algorithme itératif d'Euclide donné comme suit :

Remarques:

- On supposera que nous disposons des instructions suivantes:

MOD Adr qui permet : Acc ← (Acc) MOD (Adr) avec MOD : Modulo

Bon Courage

Examen de Remplacement de Structure Machine 11

Durée: 2 heures

Tous documents interdits

Exercice 1: (3 points)

Codez en binaire, en signe et valeur absolue, et en complément à deux les nombres décimaux suivants (sur 8 bits):

$$+15$$
, et -122

Exercice2:(4 points)

Rappeler les principes d'un demi-additionneur et d'un additionneur complet. Déduire de ces principes un circuit logique qui implémente le complément à deux sur n bits.

Exercice3:(6 points)

Réaliser un multiplicateur de deux nombres X (3 bits) et Y (3 bits). Le résultat de la multiplication est sur 6 bits. Pour cela, utiliser un additionneur de deux nombres sur 6 bits chacun, d'un registre à décalage (6 bits), de bascules D et de portes logiques.

Remarque : le schéma doit comporter un minimum de portes logiques.

Exercice4: (7 points)

Ecrire le programme MIASM qui permet de construire un mot à l'adresse RESULT à partir d'une table de 4 mots implantée en mémoire à l'Adresse TAB.

TAB (X'100')	1			
		2		
			3	
				4
RESULT	1	2	3	4

Bon Courage