

中华人民共和国国家军用标准

FL 0109

GJB 150. 4A-2009 代替 GJB 150.4-1986

军用装备实验室环境试验方法第4部分:低温试验

Laboratory environmental test methods for military materiel

Part 4: Low temperature test

2009-05-25 发布

2009-08-01 实施

目 次

前:	訔 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ţ
14.4		
	范围	
2	引用文件	1
3	目的和应用	1
3.1	目的	1
3.2	应用	1
	限制	
4	剪裁指南	1
4.1	选择试验方法	1
4.2	选择试验程序	2
4.3	确定试验条件	3
5	信息要求	4
5.1	试验前需要的信息	4
5.2	试验中需要的信息	4
	试验后需要的信息	
	试验要求	
6.1	试验设备····································	5
6.2	试验控制	5
6.3	试验中断	5
6.4	试件的安装与调试·················	5
7	试验过程	5
7.1	试验准备	5
	试验程序	
8	结果分析	7

•

•

前言

GJB 150《军用装备实验室环境试验方法》分为 28 个部分:

- a) 第1部分: 通用要求;
- b) 第2部分:低气压(高度)试验;
- c) 第3部分:高温试验;
- d) 第4部分:低温试验;
- e) 第5部分: 温度冲击试验;
- f) 第7部分:太阳辐射试验;
- g) 第8部分: 淋雨试验;
- h) 第9部分:湿热试验;
- i) 第 10 部分: 霉菌试验;
- j) 第 11 部分: 盐雾试验;
- k) 第 12 部分: 砂尘试验;
- 1) 第 13 部分: 爆炸性大气试验;
- m) 第 14 部分: 浸渍试验;
- n) 第 15 部分:加速度试验;
- o) 第 16 部分: 振动试验;
- p) 第 17 部分: 噪声试验;
- q) 第 18 部分: 冲击试验;
- r) 第 20 部分: 炮击振动试验;
- s) 第 21 部分: 风压试验;
- t) 第 22 部分: 积冰/冻雨试验;
- u) 第 23 部分: 倾斜和摇摆试验;
- v) 第24部分:温度-湿度-振动-高度试验;
- w) 第 25 部分:振动-噪声-温度试验;
- x) 第 26 部分:流体污染试验;
- y) 第27部分:爆炸分离冲击试验;
- z) 第 28 部分: 酸性大气试验;
- aa) 第29部分: 弹道冲击试验;
- bb) 第 30 部分: 舰船冲击试验。

本部分为 GJB 150 的第 4 部分,代替 GJB 150.4-1986《军用设备环境试验方法 低温试验》。本部分与 GJB 150.4-1986 相比,有下列主要变化:

- a) 删除了 GJB 150.4-1986 中的"试验条件",增加了确定试验方法、试验顺序、试验程序和试验 条件的剪裁指南;
- b) 增加了对试验信息的要求;
- c) 增加了拆装试验程序:
- d) 增加了预备步骤和试验前的检查步骤;
- e) 试验中断处理方法有变化;
- f) 试验条件有所变化;

- g) 增加了对试件温度响应的测量要求;
- h) 增加了试验结果分析内容;
- i) 增加了 GJB 1172 中的低温极值条件。

本部分由中国人民解放军总装备部电子信息基础部提出。

本部分起草单位:中国航空综合技术研究所。

本部分主要起草人: 吴彦灵、祝耀昌。

本部分所代替标准的历次版本发布情况为:

GJB 150.4-1986。

军用装备实验室环境试验方法第4部分: 低温试验

1 范围

本部分规定了军用装备实验室低温试验的目的与应用、剪裁指南、信息要求、试验要求、试验过程和结果分析的内容。

本部分适用于对军用装备进行低温试验。

2 引用文件

下列文件中的有关条款通过引用而成为本部分的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本部分,但提倡使用本部分的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本部分。

- GJB 150.1A-2009 军用装备实验室环境试验方法 第1部分:通用要求
- GJB 150.2A-2009 军用装备实验室环境试验方法 第2部分:低气压(高度)试验
- GJB 150.24A-2009 军用装备实验室环境试验方法 第 24 部分: 温度-湿度-振动-高度
- GJB 1172.2-1991 军用设备气候极值 地面气温
- GJB 4239 装备环境工程通用要求

3 目的和应用

3.1 目的

本试验的目的在于评价在贮存、工作和拆装操作期间,低温条件对装备的安全性、完整性和性能的影响。

3.2 应用

本试验适用于评价在低温环境中使用的装备。

3.3 限制

本试验不适用于在非增压的飞机上安装并工作的装备,这类装备通常按 GJB 150.24A-2009 的规定进行试验。

4 剪裁指南

4.1 选择试验方法

4.1.1 概述

分析有关技术文件的要求,应用装备(产品)订购过程中实施 GJB 4239 得出的结果,确定装备寿命期内低温环境出现的阶段,根据下列环境效应确定是否需要进行本试验。当确定需要进行本试验,且本试验与其他环境试验使用同一试件时,还需确定本试验与其他试验的先后顺序。

4.1.2 环境效应

低温几乎对所有的基体材料都有不利的影响。对于暴露于低温环境的装备,由于低温会改变其组成材料的物理特性,因此可能会对其工作性能造成暂时或永久性的损害。所以,只要装备暴露于低于标准大气条件的温度下,就要考虑做低温试验。考虑以下典型低温环境效应,有助于确定本试验是否适用于受试装备:

a) 材料的硬化和脆化;

GJB 150. 4A-2009

- b) 在对温度瞬变的响应中,不同材料产生不同程度的收缩,以及不同零部件的膨胀率不同,引起零部件相互咬死;
- c) 由于粘度增加,润滑油的润滑作用和流动性降低;
- d) 电子器件(电阻器、电容器等)性能改变;
- e) 变压器和机电部件的性能改变;
- f) 减振架刚性增加;
- g) 固体爆炸药丸或药柱(如硝酸铵)产生裂纹;
- h) 破裂与龟裂、脆裂、冲击强度改变和强度降低;
- i) 受约束的玻璃产生静疲劳;
- i) 水的冷凝和结冰;
- k) 穿防护服的操作人员灵活性、听力和视力降低;
- 1) 燃烧率变化。

4.1.3 选择试验顺序

4.1.3.1 一般要求

见 GJB 150.1A-2009 中的 3.6。

4.1.3.2 特殊要求

确定试验顺序至少应遵循下列两条原则:

- a) 节省寿命。首先对试件施加使试件损伤最小的环境应力,以使试件能作更多的试验项目。为此, 本试验应在试验顺序的早期进行。
- b) 施加的环境应能最大限度地显示叠加效应。为此,本试验应在振动和冲击等力学环境试验之后进行。

虽然没有明确规定,但本试验可以与振动和冲击试验结合进行,以评价力学事件(即运输、装卸、冲击)对低温下的材料的影响。同时,本试验也会显著改变产品在 GJB 150.2A-2009 低气压试验时的密封性能。

4.2 选择试验程序

4. 2. 1 概述

本试验包括三个试验程序:程序 I ——贮存、程序 II ——工作和程序III——拆装操作。根据对试验数据的需求,确定适用的试验程序、试验程序组合或实施各程序的顺序。在大多数情况下,所有三个程序都要使用。

4.2.2 选择试验程序考虑的因素

选择试验程序时应考虑:

- a) 装备的用途。根据有关文件的要求,确定装备在低温环境和其他任何限制性的条件(如贮存)下应实现的功能。
- b) 自然暴露环境。
- c) 与装备的实际使用情况相符的下列试验数据:
 - 1) 部署地区预期的温度;
 - 2) 在部署地区预期的持续时间;
 - 3) 装备的技术状态。
- d) 程序的顺序。确定三个低温试验顺序时应考虑:
 - 1) 程序 II 可在程序 I /程序III之后进行。若装备在使用之前要在低温下贮存,程序 I 要在程序 II 之前进行;若要求做拆装操作试验,则程序III可在工作试验前进行;若装备不打算在低温下进行贮存或在使用前进行拆装操作,则直接进行程序 II。
 - 2) 若需要的话,拆装操作试验可在贮存试验/工作试验之后进行。

4.2.3 各程序的差别

虽然所有的程序都涉及低温,但它们在性能测试的时间选择和性质方面有根本的不同。

- a) 程序 I 用于检查贮存期间的低温对装备在贮存期间和贮存后的安全性,以及贮存后对装备的性能的影响。
- b) 程序 II 用于检查装备在低温环境下的工作情况。本部分的"工作"是指装备在人员接触最少的情况下的启动和运行。
- c)程序III用于检测操作人员穿着厚重的防寒服组装和拆卸装备时是否容易。

4.3 确定试验条件

4.3.1 概述

选定本试验和相应程序后,还应根据有关文件的规定和为该程序提供的信息,选定该程序所用的试验条件和试验技术。确定试验条件时应考虑 4.3.2~4.3.4 的内容。

4.3.2 气候条件

最好根据有关文件选择具体的试验温度。若没有这方面的信息,则应根据装备要使用的区域以及其他因素来确定试验温度。虽然低温环境通常是周期性变化的,但许多情况下使用恒定低温进行试验是可以接受的。只有那些在设计评估时认为暴露于低温变化环境很重要的情况下,才适合选用低温循环试验。低温循环试验的低温条件应根据有关文件确定。以下分别为在特定地区(气候类型)使用、世界范围内贮存和使用的装备以及在世界范围内长期贮存(两年或两年以上)的装备选择试验温度提供了指南:

- a) 特定地区使用的装备。当装备仅用于特定地区时,表1可用来确定试验温度。表1中所示的空气温度极值,是以该气候地区(极冷地区除外,极冷地区是根据20%的出现概率来确定的)所包括的地理位置内最冷的地点、在最冷的月份内出现该温度值的小时数为1%的频度为基础的。表1中所示数值代表温度日循环的范围。在本试验中,通常仅考虑每一范围的最低值。
- b) 世界范围内贮存和使用的装备。当装备将在世界范围内贮存或工作时,温度的选择不但要考虑极端低温,还要考虑该极端低温出现的频度。若不考虑出现的频度,可能会造成过试验条件。这里频度是在世界范围内最极端的地区、最极端的月份的总的小时数的百分比,也称为时间风险率。在这种比例相应的小时数内,出现的最低温度将等于或低于给定的试验低温温度。大多数情况下采用 20%的频度;为满足特定应用和试验要求,也可选择其他值(见表 2)。
- c) 世界范围内长期贮存和使用的装备。若装备在没有遮盖或保护的情况下长期(以年计)贮存于温度极低的地区(例如西伯利亚东北部或格陵兰岛中心的"冷极"),则装备经受很低的温度(接近-65℃)的机会会增大。在如此极端低温下的长期暴露可能影响诸如弹药、生命保障装备等的安全性。因此,应选这一温度作为试验温度。

类型	地理位置	温度	
人主		自然环境空气,℃	诱发环境,℃
微冷 (C0)	主要受海洋影响的西欧海岸区、澳大利亚东南部、新西兰的低洼地	-6~-19	-10~-21
基本冷 (C1)	欧洲大部分地区;美国北部边界区;加拿大南部;高纬度海岸区(如阿拉斯加南部海岸);低纬度区的高原地带	-21~-31	-25~-33
冷 (C2)	加拿大北部、阿拉斯加(其内陆除外);格陵兰岛("冷极"除外);斯堪的纳维亚北部;北亚(某些地区);高海拔地区(南北半球);阿尔卑斯山;喜马拉雅山;安第斯山	-37~-46	-37~-46
极冷 (C3)	阿拉斯加内陆;尤卡(加拿大);北方岛的内陆;格陵兰冰帽; 北亚	-51	-51

表 1 低温环境循环范围摘要

中国的低温极值。		世界范围的低温极值	
低温	出现概率	低温	出现概率
-41.3℃	20%	-51°C	20%
-44.1℃	10%	−54°C	10%
-46.1℃	5%	−57°C	5%
-48.8℃	1%	−61°C	1%

表 2 低温极值出现概率

4.3.3 暴露持续时间

低温暴露持续时间影响装备安全性、完整性和性能,可根据装备自身材料、结构特性和使用情况进行选择:

- a) 非危险性或与安全性无关(非生命保障型)的装备。该类装备(处于非工作状态)中的大多数(可能有机塑料除外),在低温下达到温度稳定后,将不会出现性能退化现象。若没有其他合适的时间,试件温度稳定后,贮存时间可取 4h。
- b) 含爆炸物、弹药、有机塑料等产品的装备。这些装备中的这类产品在温度稳定后性能可能还会继续恶化,因此需要对它们进行长时间的低温试验。在试件温度稳定后,最少要进行 72h 的贮存试验,因为这是此类产品典型的低温暴露持续时间。
- c) 含限位玻璃等产品的装备。需要安装或限定在特定位置的玻璃、陶瓷和玻璃类产品安装或限定在其特定位置的装备(如光学系统、激光系统和电子系统),往往会由于这类产品出现静疲劳而使装备损坏。因此,或许需要更长的低温试验时间才能诱发出这一现象。若没有其他参考数据,推荐使用 24h 的暴露时间。

4.3.4 试件的技术状态

试件的技术状态是决定其受温度影响程度的重要因素。因此,试验时应采用装备在贮存或使用期间预期的技术状态。至少应考虑以下技术状态:

- a) 装在运输/贮存容器内或运输箱内;
- b) 有保护或无保护状态;
- c) 正常使用状态;
- d) 为特殊用途改装后的状态。

5 信息要求

5.1 试验前需要的信息

5.1.1 一般信息

见 GJB 150.1A-2009 中的 3.8。

5.1.2 特殊信息

试验温度、需要的防护服种类和其他信息。

5.1.3 温度传感器位置

用于测量温度响应和温度稳定的温度传感器的位置(说明在试件的哪个部件、哪个组件/结构上)。

5.2 试验中需要的信息

- 一般信息见 GJB 150.1A-2009 中的 3.11, 特殊信息如下:
- a) 试验箱的温度-时间记录;
- b) 装拆操作中使用的防护服。

5.3 试验后需要的信息

- 一般信息见 GJB 150.1A-2009 中的 3.14, 特殊信息如下:
- a) 每一次性能检测所需要的时间;
- b) 试件和试验箱的温度-时间数据:
- c) 组装和拆卸试件时用的防护服和专用设备:
- d) 进行拆装操作时必要的操作人员的人体测量数据。

6 试验要求

6.1 试验设备

- 6.1.1 所需要的设备包括试验箱(室)和能够保持和监控(见GJB 150.1A-2009中的 3.18)试件周围空气所需的低温条件的辅助仪器。
- 6.1.2 除装备的平台环境已证明使用其他速度是合理的,并且要防止在试件中产生与实际不符的热传递外,试件附近的风速不应超过 1.7m/s。

6.2 试验控制

6.2.1 温度

除技术文件中另有规定外,若除试件工作以外的其他任何动作(例如打开箱门)会引起试件温度产生显著的变化(大于2℃),则在继续试验前应使试件温度重新稳定在规定值。若 15min 时间内不能完成工作性能检测,则在继续检测前应使试件温度重新稳定。

6.2.2 温度变化速率

除另有规定外,为防止温度冲击的效应,应控制温度变化速率不超过3℃/min。

6.2.3 温度测量

在试件内或试件上安装温度传感器,以测量温度稳定数据。

6.2.4 温度记录

若需要,应连续记录试验箱和试件的温度。

6.3 试验中断

- 一般要求见 GJB 150.1A-2009 中的 3.12, 特殊要求如下:
- a) 欠试验中断。对于使试验温度向周围环境温度变化并超出允差范围的试验中断,应对试件进行 全面的物理检查和工作性能检测(若可能的话)。若没有发现问题,则使试件重新稳定在试验温 度,并从中断点开始继续试验。由于未遇到极端条件,出现任何问题均应认为是试件本身的问 题。中断期间温度超出允差的时间不记入总的试验时间。
- b) 过试验中断。对于使试件暴露于比产品规范要求的更为严酷的条件下的试验中断,在继续试验 之前应对试件进行全面的物理检查和工作性能检测(若可能的话)。当存在安全问题时(如弹 药),尤其需要这样做。若发现有问题,最好的办法是结束此次试验,用新的试件重新做,否 则在后续试验期间试件失效时,由于出现过过试验条件可认为试验结果无效;若没有发现问题, 则恢复中断前的试验条件继续试验。试验中断期间的时间记入总的试验时间。

6.4 试件的安装与调试

见 GJB 150.1A-2009 中的 3.9。

7 试验过程

7.1 试验准备

7.1.1 试验前准备

试验开始前,根据有关文件确定试验程序、试件技术状态、循环数、持续时间、试件贮存/工作环 境参数量值等。

GJB 150. 4A-2009

7.1.2 初始检测

试验前所有试件均需在标准大气条件下进行检测,以取得基线数据。检测按以下步骤进行(大的试件可能需要改变步骤顺序):

- a) 对试件进行全面的目视检查,特别注意如铸件棱角一类的应力区。记录检查结果。
- b) 若要测定试件温度,根据要求在试件内或试件上安装温度传感器。
- c) 按 GJB 150.1A-2009 中 3.9.1 要求的技术状态准备试件,将试件装入试验箱,使之在标准大气条件下达到温度稳定。
- d) 按技术文件对试件进行工作性能检测,并记录检测结果。若试件工作正常,则按技术文件的规 定进行试验。

7.2 试验程序

程序 I 的步骤如下:

- a) 使试件处于贮存技术状态;
- b) 将试验箱内空气温度调节到技术文件中规定的低温贮存温度;
- c) 试件温度稳定后,按技术文件中规定的持续时间保持此贮存温度;
- d) 对试件进行目视检查,并将检查结果与试验前的数据进行比较,记录检查结果;
- e) 若要求进行低温工作试验,则接着进行 7.2.2 c),否则进行 f);
- f) 将试验箱内空气温度调节到标准大气条件下的温度,并保持此温度直到试件达到温度稳定;
- g) 对试件进行全面的目视检查,并记录检查结果;
- h) 需要时,对试件进行工作性能检测,并记录检查结果;
- i) 将这些数据与试验前的数据进行比较。

7.2.2 程序 [] ——工作

程序Ⅱ的步骤如下:

- a) 试件装入试验箱后,调节试验箱内空气温度到技术文件中规定的低温工作温度,在试件达到温度稳定后保持此温度至少 2h;
- b) 在试验箱条件允许的情况下,对试件进行全面的目视检查,记录检查结果;
- c) 按技术文件对试件进行工作性能检测,记录检测结果;
- d) 若要求在低温下进行拆装操作试验,则接着进行 7.2.3 d), 否则接着进行 e);
- e) 将试验箱内的空气温度调节到标准大气条件下的温度,保持此温度直到试件达到温度稳定;
- f) 对试件进行全面的目视检查,记录检查结果;
- g) 需要时,进行工作性能检测,记录检测结果,并与 7.1.2 d) 中得到的数据进行比较。

7. 2. 3 程序III——拆装操作

程序III的步骤如下:

- a) 试件装入试验箱后,将试验箱内空气温度调节到技术文件规定的低温工作温度,在试件温度稳定后,保持此温度 2h。
- b) 保持低温工作温度的同时,按 d)中的选择方案使试件处于其正常工作技术状态。
- c) 使温度恢复到 a) 中的温度。
- d) 根据所使用的试验箱种类的不同,选择适用的操作方法:
 - 使用步入式试验室时,操作人员就像他们在低温作战状态下那样穿戴和装备好,并象在战场上那样拆卸试件,再将试件用正常的运输/贮存容器、运输箱,或其他模式和技术状态重新包装。
 - 2) 使用小试验箱时,按 1)进行,不同的只是拆卸和包装作业时,操作人员就象在自然环境中要求的那样带上厚手套,手从试验箱检测孔或打开的箱门伸入试验箱内。按拆装操作试

验的要求进行组装或拆卸,每次限时 15min,两次操作之间应恢复上面 a)中的温度。注:打开试验箱门除了会使试件逐渐升温外,还会使试件上结霜。

- e) 若要求试件在低温下进行工作试验,则重复 b),然后接着进行 7.2.2 a),否则进行 f)。
- f) 对试件进行全面的目视检查,记录检查结果,以便与试验前的数据进行比较。
- g) 将试验箱内空气温度调节到标准大气条件下的温度,保持此温度直到试件达到温度稳定。
- h) 对试件进行全面的目视检查,记录检查结果。
- i) 需要时,对试件进行工作性能检测,记录检测结果,并与7.1.2 d)中得到的数据进行比较。

8 结果分析

除 GJB 150.1A-2009 中 3.17 提供的指南外,下列信息也有助于评价试验结果。任何与试件故障相关的数据,都可以用来进行是否满足产品规范的要求的试验分析,同时考虑下列相关信息:

- a) 低温暴露后,在低试验温度下进行非破坏性试验/检查的结果;
- b) 低温条件下允许的工作性能的下降;
- c) 使用专用成套工具或特定的冷气候程序的必要性;
- d) 润滑不当的证据以及在规定环境条件下使用润滑剂的证明;
- e) 对内燃机启动故障,使用的燃料和防冻剂是否合适及有关的证据;
- f) 动力源的状况和适用性。

