Grafo dual

El **grafo dual** G^* de un grafo plano G es el grafo plano cuyos vértices corresponden a las caras de G. Las aristas de G^* corresponden a las aristas de G de la siguiente manera: si $e \in E(G)$ con una cara X en un lado y una cara Y en otro lado, entonces los extremos de la arista dual $e^* \in E(G^*)$ son los vértices $X, Y \in V(G^*)$ que representan las caras X, Y de G.

$$G \cong (G^*)^*$$

Teorema (Euler)

Si G es un grafo conexo plano con n vértices, e aristas y f caras, entonces

$$n - e + f = 2$$

Nota

- $|E(G^*)| = |E(G)|$
- $|V(G^*)| = |F(G)| \checkmark$
- $|F(G^*)| = |V(G)|$ si G es conexo.
- G^* es conexo.
- G* es plano.
- El grado de un vértice $x \in V(G^*)$ es igual a la longitud de la frontera X en G.
- Si e es una arista de corte en G entonces e* es un bucle en G*.
- · G conexo n-e+f=2 en G

$$n^* = f$$
 $e^* = e$ $\longrightarrow f^* = n$

Coloración de grafos

k-coloreado

Un **k**-coloreado de un grafo G es una función (de etiquetado) $f: V(G) \mapsto S$, donde |S| = k.

- Las etiquetas de S son los "colores".
- Los vértices del mismo color forman una clase de color.

k-coloreado propio

Un k-coloreado es **propio** si vértices adyacentes tienen etiquetas diferentes:

$$(\forall u, v \in V(G))(u \leftrightarrow v \to f(u) \neq f(v))$$

Grafo k-coloreable

Un grafo es k-coloreable si tiene un k-coloreado propio.

Número cromático

El **número cromático** $\chi(G)$ es el menor valor de k tal que G es k-coloreable.

Grafo k-cromático

Un grafo es k-cromático si $\chi(G) = k$. Un k-coloreado propio de un grafo k-cromático es un coloreado óptimo.

$$\cdot \chi_n(K_n) = n$$

$$\chi((A) = 2 \rightarrow \chi(C_{2n}) = 2$$

$$\cdot \gamma (C_{2n+1}) = 3$$

Nota

Dos grafos no isomorfos podrían tener duales isomorfos:

