Accelerated Dynamics in HMC Simulations of Lattice Field Theory

Accelerated Dynamics in HMC Simulations of Lattice Field Theory

Jack Frankland

University of Edinburgh

December 30, 2017

Accelerated Dynamics in HMC Simulations of Lattice Field Theory —Introduction

Introduction

What are we doing?

Accelerated Dynamics in HMC Simulations of Lattice Field Theory —Introduction

- What are we doing?
 - ► Calculating properties of Quantum Mechanical Systems.

- What are we doing?
 - ▶ Calculating properties of Quantum Mechanical Systems.
- How are we doing it?

- What are we doing?
 - ► Calculating properties of Quantum Mechanical Systems.
- How are we doing it?
 - Using MCMC (Markov chain Monte Carlo) methods.

- What are we doing?
 - ► Calculating properties of Quantum Mechanical Systems.
- How are we doing it?
 - Using MCMC (Markov chain Monte Carlo) methods.
- What results have we got?

Accelerated Dynamics in HMC Simulations of Lattice Field Theory

- Introduction

- What are we doing?
 - Calculating properties of Quantum Mechanical Systems.
- ▶ How are we doing it?
 - ▶ Using MCMC (Markov chain Monte Carlo) methods.
- ▶ What results have we got?
 - Successfully reproduced harmonic and enharmonic oscillator properties.

- What are we doing?
 - ► Calculating properties of Quantum Mechanical Systems.
- ▶ How are we doing it?
 - ▶ Using MCMC (Markov chain Monte Carlo) methods.
- ▶ What results have we got?
 - Successfully reproduced harmonic and enharmonic oscillator properties.
- Why are we doing it?

- What are we doing?
 - Calculating properties of Quantum Mechanical Systems.
- ▶ How are we doing it?
 - Using MCMC (Markov chain Monte Carlo) methods.
- ▶ What results have we got?
 - Successfully reproduced harmonic and enharmonic oscillator properties.
- ▶ Why are we doing it?
 - Can be used for calculations in lattice field theory.

Accelerated Dynamics in HMC Simulations of Lattice Field Theory $\cup\-$ Theory

Theory - The Path Integral

Theory - The Path Integral

Transition Amplitude

$$\langle x_b, t_b | x_a, t_a \rangle = \int_{x_a}^{x_b} \mathcal{D}x \exp\left(iS[x(t)]/\hbar\right)$$
 (1)

Theory - The Path Integral

Transition Amplitude

$$\langle x_b, t_b | x_a, t_a \rangle = \int_x^{x_b} \mathcal{D}x \exp\left(iS[x(t)]/\hbar\right)$$
 (1)

$$\int_{x_a}^{x_b} \mathcal{D}x = \lim_{N \to \infty} A_N \prod_{1}^{N-1} \int_{-\infty}^{\infty} dx_n$$
 (2)

Theory - The Path Integral

Transition Amplitude

$$\langle x_b, t_b | x_a, t_a \rangle = \int_{\pi}^{x_b} \mathcal{D}x \exp\left(iS[x(t)]/\hbar\right)$$
 (1)

$$\int_{x_a}^{x_b} \mathcal{D}x = \lim_{N \to \infty} A_N \prod_{n=1}^{N-1} \int_{-\infty}^{\infty} dx_n$$
 (2)

Minkowski Action

$$S_M = \int_{t_a}^{t_b} dt \left[\frac{1}{2} m \left(\frac{dx}{dt} \right)^2 - V(x) \right]$$

(3)

Theory - The Path Integral

URL: https:

 $//en.wikipedia.org/wiki/Path_integral_formulation\#/media/File:$

Three_paths_from_A_to_B.png.

¹The Free Encyclopedia Wikipedia. *Path Integral Formulation*. 2017.

Theory - Discrete Time Lattice

Theory - Discrete Time Lattice

Theory - Discrete Time Lattice

Discrete Action

$$S_{M} = \sum_{j=0}^{N-1} \epsilon \left[\frac{1}{2} m \left(\frac{x_{j+1} - x_{j}}{\epsilon} \right)^{2} - V\left(x_{j}\right) \right]$$
 (1)

Theory - Discrete Time Lattice

Discrete Action

$$S_{M} = \sum_{j=0}^{N-1} \epsilon \left[\frac{1}{2} m \left(\frac{x_{j+1} - x_{j}}{\epsilon} \right)^{2} - V(x_{j}) \right]$$
 (1)

Discrete Path Integral

$$\langle x_b, t_b | x_a, t_a \rangle \sim \int_{-\infty}^{\infty} \prod_{j=1}^{N-1} dx_j \exp\left(\frac{i}{\hbar} S_M \left\{ x_j \right\} \right)$$
 (2)

Theory - Connecting to Statistical Mechanics

Wick Rotation

$$\tau = it \tag{3}$$

Wick Rotation

$$\tau = it \tag{3}$$

$$a = i\epsilon \tag{4}$$

Wick Rotation

$$\tau = it \tag{3}$$

$$a = i\epsilon \tag{4}$$

Discrete Euclidean Action

$$S_M = i \sum_{j=0}^{N-1} a \left[\frac{1}{2} m \left(\frac{x_{j+1} - x_j}{a} \right)^2 + V(x_j) \right] := i S_E$$
 (5)

Discrete Euclidean Action

$$S_{M} = i \sum_{j=0}^{N-1} a \left[\frac{1}{2} m \left(\frac{x_{j+1} - x_{j}}{a} \right)^{2} + V(x_{j}) \right] := i S_{E}$$
 (3)

Discrete Euclidean Path Integral

$$\langle x_b, t_b | x_a, t_a \rangle \sim \int_{-\infty}^{\infty} \prod_{j=1}^{N-1} dx_j \exp\left(-\frac{1}{\hbar} S_E \left\{x_j\right\}\right)$$
 (4)

Discrete Euclidean Path Integral

$$\langle x_b, t_b | x_a, t_a \rangle \sim \int_{-\infty}^{\infty} \prod_{j=1}^{N-1} dx_j \exp\left(-\frac{1}{\hbar} S_E \{x_j\}\right)$$
 (3)

Partition Function

$$Z \sim \int_{-\infty}^{+\infty} \prod_{i=1}^{N-1} dx_i \exp\left(-\beta H\left(\{x_i\}\right)\right) \tag{4}$$

Accelerated Dynamics in HMC Simulations of Lattice Field Theory $\cup Numerics$

Numerics - Monte Carlo

Numerics - Monte Carlo

Monte Carlo Estimate

$$\bar{A} = \frac{1}{M} \sum_{\nu=1}^{M} A(\boldsymbol{x}_{\nu}) \tag{5}$$

Numerics - Monte Carlo

Monte Carlo Estimate

$$\bar{A} = \frac{1}{M} \sum_{\nu=1}^{M} A(\boldsymbol{x}_{\nu})$$
 (5)

Boltzmann Distribution

$$p(\boldsymbol{x}_{\nu}) \mathcal{D} \boldsymbol{x} = \frac{\exp(-S(\boldsymbol{x}_{\nu})) \mathcal{D} \boldsymbol{x}}{\int \mathcal{D} \boldsymbol{x} \exp(-S(\boldsymbol{x}))}$$
(6)

Numerics - Hybrid Monte Carlo Algorithm

Fictitious Momenta

$$p_i, i = 0 \dots N - 1 \tag{7}$$

Fictitious Momenta

$$p_i, i = 0 \dots N - 1 \tag{7}$$

HMC Hamiltonian

$$H_{hmc} := \sum_{i=0}^{N-1} \frac{p_i^2}{2m} + S(\{x_i\})$$
 (8)

HMC Algorithm

0. Provide configuration $\{q_i\}$.

- 0. Provide configuration $\{q_i\}$.
- 1. Generate $\{p_i\}$ from $\mathcal{N}\left(0,1\right)$.

- **0**. Provide configuration $\{q_i\}$.
- 1. Generate $\{p_i\}$ from $\mathcal{N}(0,1)$.
- 2. Evolve $(\{q_i\}, \{p_i\})$ using Hamilton's equations to a final state $(\{q_i^*\}, \{p_i^*\})$

- 0. Provide configuration $\{q_i\}$.
- 1. Generate $\{p_i\}$ from $\mathcal{N}(0,1)$.
- 2. Evolve $(\left\{q_i\right\},\left\{p_i\right\})$ using Hamilton's equations to a final state $(\left\{q_i^*\right\},\left\{p_i^*\right\})$
- 3. Accept configuration $\{q_i^*\}$ with probability $\min\left[1,\exp\left(-H_{HMC}\left(\left\{q_i^*\right\},\left\{p_i^*\right\}\right) + H_{HMC}\left(\left\{q_i\right\},\left\{p_i\right\}\right)\right)\right]$ (Metropolis update).

- 0. Provide configuration $\{q_i\}$.
- 1. Generate $\{p_i\}$ from $\mathcal{N}(0,1)$.
- 2. Evolve $(\left\{q_i\right\},\left\{p_i\right\})$ using Hamilton's equations to a final state $(\left\{q_i^*\right\},\left\{p_i^*\right\})$
- 3. Accept configuration $\{q_i^*\}$ with probability $\min\left[1,\exp\left(-H_{HMC}\left(\left\{q_i^*\right\},\left\{p_i^*\right\}\right)+H_{HMC}\left(\left\{q_i\right\},\left\{p_i\right\}\right)\right)\right]$ (Metropolis update).
- 4. Return to step 1.

Results - Harmonic Oscillator Expectation Values

Value	Measured	Discrete Theory ¹	Continuum Theory
$\langle x \rangle$	0.00015(20)	0	0

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Value	Measured	Discrete Theory ¹	Continuum Theory
$\langle x \rangle$	0.00015(20)	0	0
$\langle x^2 \rangle$	0.44723(14)	0.4472135955	0.5

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Value	Measured	Discrete Theory ¹	Continuum Theory
$\langle x \rangle$	0.00015(20)	0	0
$\langle x^2 \rangle$	0.44723(14)	0.4472135955	0.5
E_0	0.44723(14)	0.4472135955	0.5

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Value	Measured	Discrete Theory ¹	Continuum Theory
$\langle x \rangle$	0.00015(20)	0	0
$\langle x^2 \rangle$	0.44723(14)	0.4472135955	0.5
E_0	0.44723(14)	0.4472135955	0.5
E_1	0.9679(90)	FILL	1

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Results - Harmonic Oscillator Wave Function

Discrete Wave Function¹

$$\psi_{disc.}(x) = \left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{1}{2}\omega x^2\right)$$
(7)

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Discrete Wave Function¹

$$\psi_{disc.}(x) = \left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{1}{2}\omega x^2\right) \tag{7}$$

$$\omega^2 = \mu^2 \left(1 + \frac{a^2 \mu^2}{4} \right) \tag{8}$$

¹M Creutz and B Freedman. "A statistical approach to quantum mechanics". In: *Annals of Physics* 132.2 (1981), pp. 427–462. DOI: 10.1016/0003-4916(81)90074-9.

Continuous Wave Function

$$\psi_{cont.}(x) = \left(\frac{\mu}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{1}{2}\mu x^2\right) \tag{7}$$

Results - Harmonic Oscillator Typical Trajectory

Results - Harmonic Oscillator Typical Trajectory

Value	Measured	Reference Values ¹
$\langle x \rangle$	FILL	0

¹R. Blankenbecler, T. Degrand, and R. L. Sugar. "Moment method for eigenvalues and expectation values". In: *Physical Review D* 21.4 (1980), pp. 1055–1061. DOI: 10.1103/physrevd.21.1055.

Value	Measured	Reference Values ¹
$\langle x \rangle$	FILL	0
$\langle x^2 \rangle$	FILL	FILL

¹R. Blankenbecler, T. Degrand, and R. L. Sugar. "Moment method for eigenvalues and expectation values". In: *Physical Review D* 21.4 (1980), pp. 1055–1061. DOI: 10.1103/physrevd.21.1055.

Value	Measured	Reference Values ¹
$\langle x \rangle$	FILL	0
$\langle x^2 \rangle$	FILL	FILL
E_0	FILL	FILL

¹R. Blankenbecler, T. Degrand, and R. L. Sugar. "Moment method for eigenvalues and expectation values". In: *Physical Review D* 21.4 (1980), pp. 1055–1061. DOI: 10.1103/physrevd.21.1055.

Value	Measured	Reference Values ¹
$\langle x \rangle$	FILL	0
$\langle x^2 \rangle$	FILL	FILL
E_0	FILL	FILL
E_1	FILL	FILL

¹R. Blankenbecler, T. Degrand, and R. L. Sugar. "Moment method for eigenvalues and expectation values". In: *Physical Review D* 21.4 (1980), pp. 1055–1061. DOI: 10.1103/physrevd.21.1055.

Results - Anharmonic Oscillator Wave Function

Results - Anharmonic Oscillator Typical Trajectory

Results - Anharmonic Oscillator Typical Trajectory

Results - Isolated Modes Wave Function

Results - Isolated Modes Wave Function

Conclusion

▶ Did it work?

- ▶ Did it work?
 - ► Successfully reproduced known values using HMC method.

- ▶ Did it work?
 - ▶ Successfully reproduced known values using HMC method.
- ▶ What next?

- ▶ Did it work?
 - ▶ Successfully reproduced known values using HMC method.
- ▶ What next?
 - Introduce "tempering" into the dynamics to sample from isolated modes.

- ▶ Did it work?
 - ▶ Successfully reproduced known values using HMC method.
- ▶ What next?
 - Introduce "tempering" into the dynamics to sample from isolated modes.
- Applications of tempering?

- ▶ Did it work?
 - Successfully reproduced known values using HMC method.
- ▶ What next?
 - Introduce "tempering" into the dynamics to sample from isolated modes.
- Applications of tempering?
 - Potentially applicable to lattice field theory where computation time is far more costly.