Implementing Machine Learning

John D. Lee and Linda Ng Boyle 4/23/2018

General Types of Supervised Learning

- Regression (predict a continuous variable) with "wine quality" dataset
- Classification (predict category membership) with "breast cancer" dataset
- Classification (predict category membership) with "wine quality" dataset: Good and bad wine

Kaggle Data Repository (https://www.kaggle.com)

- Kaggle hosts machine learning competitions, data, and advice
- Wisconsin Cancer Diagnosis Data https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
- · Wine Quality Data https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

caret Package for Machine Learning

http://topepo.github.io/caret/index.html

- Provides an integrated set of functions to support machine learning
- Provides uniform interfacce to over 200 algorithms (e.g., random forest, support vector machines)
- Makes training and testing many types of models very easy
- Incorporates sensible defaults that often work well

Simplified Machine Learning Process

- Partition data into training and test sets
- Pre-process data and select features
- Tune models with cross validation
- Estimate variable importance
- · Assess predictions and model performance with test data
- Compare model performance

Read and Visualize Data

```
wine.df = read csv("winequality-red.csv")
skim(wine.df) %>% kable()
## Skim summary statistics
  n obs: 1599
## n variables: 12
##
## Variable type: integer
##
## variable missing complete n mean sd p0 p25 p50 p75
## -----
                   1599 1599 5.64 0.81 3 5 6
## quality 0
##
## Variable type: numeric
##
                                                          p6/39
## variable
                     missing
                             complete n
                                                   sd
                                                                 pί
                                            mean
```

Read and Visualize Data

Define Class Variable

Partition Data into Training and Testing

- Proportions of class variable–good and bad wine–should be similar
- Proportions of class variables should be similar in test and training data
- "createDataPartition" Creates partitions that maintains the class distribution

Partition Data into Training and Testing

```
inTrain <- createDataPartition(wine.df$goodwine, p = 3/4, list = FALSE)

trainDescr <- wine.df[inTrain, -12] # All but class variable

testDescr <- wine.df[-inTrain, -12]

trainClass <- wine.df$goodwine[inTrain]

testClass <- wine.df$goodwine[-inTrain]</pre>
```

Partition Data into Training and Testing

```
prop.table(table(wine.df$goodwine)) %>% round(3)*100
##
   bad good
## 46.5 53.5
prop.table(table(trainClass)) %>% round(3)*100
## trainClass
   bad good
## 46.5 53.5
prop.table(table(testClass)) %>% round(3)*100
```

Pre-process data: Filter poor predictors

- -Eliminate highly correlated variables
- -Eliminate variables with not variabilty

Pre-process data: Normalization

- -"preProcess" also supports other proprocessing methods, such as PCA and ICA
- -"center" subtracts mean
- -"scale" normalizes based on standard deviation

```
xTrans = preProcess(trainDescr, method = c("center", "scale"))
trainScaled = predict(xTrans, trainDescr)
testScaled = predict(xTrans, testDescr)
```

Pre-process data: Normalization

Define training parameters

- Select cross validation method–10-fold repeated cross validation is common
- Define hyperparameter selection method–grid search is the simplest approach
- Define summary measures
- · "trainControl" specifies all these parameters in a single statement

Cross validation

- Used to select best combination of predictors and model parameters
- Estimates model performance (e.g., AUC or r-square) for each candidate model
- Uses a random subset of the training data to train the model and a withheld subset to test

"trainControl" statement specifies model training

Select Models to Train

- Over 200 different models from 50 categories (e.g., Linear regression, boosting, bagging, cost sensitive learning)
- List of models: http://caret.r-forge.r-project.org/modelList.html
- "train" statement can train any of them
- Here we select three: logistic regression support vector machine – xgboost, a boosted random forest that performs well in many situations

Train models and tune hyper parameters with "train"

- Specify class and predictor variables
- Specify one of the over 200 methods
- Specify the metric, such as ROC
- Include the train control specified earlier

Train models and tune hyper parameters: Logistic regression

- Logistic regression has no tuning parameters
- 10-fold repeateed (3 times) cross-validation occurs once
- Produces a total of 30 instances of model fitting and testing
- Cross validation provides a nearly unbiased estimate of the performance of the model on the held out data

Train models and tune hyper parameters: Logistic regression

```
glm.fit = train(trainScaled, trainClass,
    method='glm', metric = "ROC",
    trControl = train.control)
```

Train models and tune hyper parameters: Support vector machine

- Linear support vector machines have a single tuning parameter—
- · C (Cost)
- C=1000 "hard margin" tends to be sensitive to individual data points and is prone to over fitting

Train models and tune hyper parameters: Support vector machine

```
grid = expand.grid(C = c(05, .1, .2, .5, 1, 2))
svm.fit = train(trainScaled, trainClass,
 method = "svmLinear", metric = "ROC",
 tuneGrid = grid, # Overrides tuneLength
 tuneLength = 2, # Number of levels of each
 trControl = train.control, scaled = TRUE)
## Warning: Setting row names on a tibble is deprecated.
## Warning: Setting row names on a tibble is deprecated.
## Warning: Setting row names on a tibble is deprecated.
## Warning: Setting row names on a tibble is deprecated.
```

Train models and tune hyper parameters: Support vector machine

Train models and tune hyper parameters: xgboost tuning parameters

- nrounds (# Boosting Iterations)
- max_depth (Max Tree Depth)
- eta (Shrinkage)
- gamma (Minimum Loss Reduction)
- colsample_bytree (Subsample Ratio of Columns)
- min_child_weight (Minimum Sum of Instance Weight)
- subsample (Subsample Percentage)

Train models and tune hyper parameters: xgboost

- tuneLength = 3 produces
- nrounds (# Boosting Iterations) (50 100 150)
- max_depth (Max Tree Depth) (1, 2, 3)
- eta (Shrinkage) (.3, .4)
- gamma (Minimum Loss Reduction) (0)
- colsample_bytree (Subsample Ratio of Columns) (.6, .8)
- min_child_weight (Minimum Sum of Instance Weight) (1)

Train models and tune hyper parameters: xgboost

```
xgb.fit <- train(trainScaled, trainClass,
  method = "xgbTree", metric = "ROC",
  tuneLength = 3, # Depends on number of parameters in algorithm
  trControl = train.control, scaled = TRUE)</pre>
```

Train models and tune hyper parameters: xgboost

Assess performance: Confusion matrix (glm)

```
glm.pred = predict(glm.fit, testScaled)
confusionMatrix(glm.pred, testClass)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction bad good
##
         bad 132
                    60
##
         good 54 153
##
##
                  Accuracy: 0.7143
##
                    95% CI: (0.6672, 0.7581)
##
       No Information Rate: 0.5338
```

Assess performance: Confusion matrix (svm)

```
svm.pred = predict(svm.fit, testScaled)
confusionMatrix(svm.pred, testClass)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction bad good
##
         bad 127
                    59
##
         good 59 154
##
##
                  Accuracy: 0.7043
##
                    95% CI: (0.6568, 0.7486)
##
       No Information Rate: 0.5338
```

Assess performance: Confusion matrix (xgb)

```
xqb.pred = predict(xqb.fit, testScaled)
confusionMatrix(xgb.pred, testClass)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction bad good
##
        bad 162
                  32
##
         good 24 181
##
##
                 Accuracy : 0.8596
##
                    95% CI: (0.8216, 0.8922)
##
       No Information Rate: 0.5338
```

Compare models

```
mod.resamps = resamples(list(glm = glm.fit, svm = svm.fit, xgb = xgb.fit))
#summary(mod.resamps)
model.diff = diff(mod.resamps, metric = "ROC")
#summary(model.diff)

#parallelplot(mod.resamps, metric = "ROC")
# xyplot(mod.resamps, what = "BlandAltman")
bwplot(mod.resamps, metric="ROC")
```

Assess performance (xgb): ROC plot

Prediction of good and bad wines

Extreme gradient boosting predictions (xgboost)

xgboost predictions

Prediction of good and bad wines

Extreme gradient boosting predictions (xgboost)

Assess variable importance

An understandable model: Fast and frugal decision trees

```
## Parsed with column specification:
## cols(
##
    `fixed acidity` = col double(),
##
    `volatile acidity` = col double(),
##
    `citric acid` = col double(),
##
    `residual sugar` = col double(),
##
    chlorides = col double(),
##
    `free sulfur dioxide` = col double(),
##
    `total sulfur dioxide` = col double(),
##
    density = col double(),
##
    pH = col double(),
##
    sulphates = col double(),
##
    alcohol = col double(),
##
    quality = col integer()
```

Fast and frugal decision tree

Understandable (fft) and the sophisticated (xgb) models

Regression: Similar process different performance metrics

RMSE

MAE