

School of Mechanical Engineering

Course Code: BME01T1001

Course Name: Engineering Graphics and Introduction to Digital Fabrication

Projection of Points

Prerequisite/Recapitulations

- Basics of Engineering Graphics
- Drawing, Sketching

Objectives

To acquire knowledge about:

- ☐ Introduction to Projection
- ☐ Different views and Notation
- ☐ Convention used in drawing
- ☐ Point
- ☐ Projection of Point in different plane

adopted w.e.f. 1981.

First Angle vs. Third Angle Projection

	1ST ANGLE OF PROJECTION		3RD ANGLE OF PROJECTION
>	The object is kept in the 1st	>	The object is assumed to
	quadrant.		keep in 3 rd quadrant.
\triangleright	The object lies in between the	>	The plane of projection lies
	observer & the Plane of		between the observer and
	projection		the object.
\triangleright	The plane of projection is	>	The plane of projection is
	assumed to be Non-		assumed to be transparent
	transparent	>	In this method, when the
\triangleright	In this method, when the		views are drawn in th <mark>eir</mark>
	views are drawn in their		relative position, the plan
	relative position, the plan		comes above the elevation or
	comes below the FV/elevation		TV is drawn above the FV.
	or the TV drawn below the FV.	>	The left side view is drawn to
\triangleright	The left side view is drawn to		the left side of the FV.
	the right side of the FV.	>	The right side view is drawn
\triangleright	The right side view is drawn to		to the right side Of the FV.
	the left side of the FV.	>	This method of projection is
>	This method of projection is		used In U.S.A & other
	used In European Countries &		countries
	bureau of Indian standard is		

Different Views & Notations

Direction of rotation of the HP

Convention:
Horizontal plane is always rotated clockwise

Convention

- Top views are represented by only small letters e.g. a
- Their front views are conventionally represented by small letters with dashes e.g. a'
- Profile or side views are represented by small letters with double dashes e.g. a"

OBJECT P	OINT A	LINE AB	
IT'S TOP VIEW	а	a b	
IT'S FRONT VIEW	a'	a'b'	
IT'S SIDE VIEW	a"	a" b"	

Convention

 The line of intersection of HP and VP is denoted as XY.

 The line of intersection of VP and PP is denoted as X1Y1

Convention

Projectors and the lines of the intersection of planes of projections are shown as thin lines.

Point

Define its position with respect to the coordinates. With respect to the VP, HP, & PP

Projection of a Point

Point in different quadrants

Projection of a Point in first quadrant

Exercise

PROBLEM NO.01:-

Q.) A point B is 45 mm below HP and 60 mm behind VP. Draw the projections of the point.

Practice Question

PROBLEM NO.02:-

- Q.) Draw the projections of the following points on a common reference line (x y)
- 1) Point A on HP and 45 mm in front of VP.
- 2) Point B in VP and 50 mm above HP.
- 3) Point C 45 mm below HP and 20 mm behind VP.
- 4) Point D 30 mm above HP and 50 mm behind VP.
- 5) Point E 40 mm below HP and 60 mm in front of VP.
- 6) Point F on HP and in VP

Summary

A point is defined as a geometrical element that has no dimension. In engineering drawing the point is represented as a very small circle or a dot.

Or, a point is represents a location in space or on a drawing & has no width, height or depth.

A point is simple & simple entity denoted by capital alphabets (A, B, C... Z) Its front view is denoted by a' Its top view is denoted by a

GALGOTIAS

Questions

- What are the notations used in denoting the projection of point?
- A point A is 20 mm above HP and 30 mm in front of VP. Draw its projections
- A point D is 20 mm below HP and 30 mm in front of VP. Draw its projections.
- Draw the projections of the following points on the same ground line, keeping the distance between projectors equal to 25 mm. (i) Point A, 20 mm above HP, 25 mm behind VP; (ii) Point B, 25 mm below HP, 20 mm behind VP; (iii) Point C, 20 mm below HP, 30 mm in front of VP; (iv) Point D, 20 mm above HP, 25 mm in front of VP; (v) Point E, on HP, 25 mm behind VP; (vi) Point F, on VP, 30 mm above HP

References

- Engineering Drawing by N. D. Bhatt and V. M. Panchal
- Engineering Graphics by K. C. John
- **ONPTEL**

Thank You