$$0 \qquad 9 \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

f(n) and g(n) havesame rate of gowth

b)
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \lim$$

f(n) and g(n) have the some rate of growth

$$\int_{N-2\infty}^{\infty} \frac{f(n)}{g(n)} \qquad \lim_{n\to\infty} \frac{\log(n)}{\log(n^2)}$$

$$\lim_{n\to\infty} \frac{\ln(x)}{\ln(x^2)} \qquad \lim_{n\to\infty} \frac{(1)\ln(x)}{(2)\ln(x)} = \frac{1}{2}$$

f(n) and g(n) have the same refe

a) $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{2^n}{2^{2n}}$ $\lim_{n \to \infty} \frac{1}{g(n)} = \lim_{n \to \infty} \frac{1}{a^n} = 0$ $g(n) = \lim_{n \to \infty} \frac{1}{g(n)} = 0$

e) $\lim_{n\to\infty} \frac{f(n)}{g(n)} \lim_{n\to\infty} \frac{5n}{4n^{\frac{3}{2}}}$

 $\frac{3}{4}\lim_{n\to\infty}\frac{1}{n^{2}} = \frac{5}{4}(0) = 0$

g(n) grows faster than f(n)

CENTER CONTROL CONTROL

...

(2) a)
$$F(n) = (n+1)^3$$

 $g(n) = (n^3)^3$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \qquad \lim_{n\to\infty} \frac{(n+1)^3}{n^3}$$

$$\frac{1}{n-700}$$
 $\frac{(1)}{(1)}$ $\frac{n^3+3n^2+3n+4}{(1)}$ = $\frac{1}{1}$ = 1

b)
$$f(n) = 2^{n+1}$$
 $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \lim_{n \to \infty} \frac{2^{n+1}}{2^n} \lim_{n \to \infty} \frac{2^{n+1}}{2^n} = \frac{2}{n} = 2$$

c)
$$f(n) = n \quad g(n) = n \log n$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\lim_{n\to\infty}\frac{n}{n\log n}=\lim_{n\to\infty}\frac{1}{\log n}=0$$

d)
$$f(n) = n^2$$
 $g(n) = n$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ $\lim_{n \to \infty} \frac{n^2}{n} \stackrel{LH}{=} \lim_{n \to \infty} \frac{2n}{1} = \infty$
 n^2 grows faster than n thus

$$n^2$$
 grows faster than n + hus
$$n^2 = w(n)$$

e)
$$f(n) = n^{3} \log n$$
 $g(n) = n^{3}$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ $\lim_{n \to \infty} \frac{n^{3} \log n}{n^{3}} = \lim_{n \to \infty} \frac{6 \log n}{6}$

etectet. Cect, of ect

いっていいい

$$\lim_{n\to\infty}\frac{\log(n)}{1}=\infty$$

- (3) a) The statement 5=5+ i will be executed in times, thus, O(n).
 - b) The statement p = p * i willbe executed an times. Using
 rule 3 climinating the coefficient, it is O(n)
 - the statement p=p** i will be executed no times, thus $O(n^2)$
 - the outside loop is run 2n times, and the inside loop is run up to 2n times, using rule 2 Tr (n) x T2(n) = 0 (f(n) x g(n)) and climinating the coefficient, it is $O(n^2)$
 - e) the outside loop is run no times and the inside loop is run up no times, using rule a it is $O(n^4)$