Corrigé de l'épreuve de physique (Filière MP)

PROBLEME 1

I.4.b	$-j\frac{2\pi}{n}(F_1M)$	
o.	L'amplitude complexe de l'onde résultante s'écrit : $\underline{A} = \underline{A}_0$ e $(1 + e^{-j\phi})$.	
ì	$j\frac{2\pi}{2}(F_1M)$	
,	On acceptera l'autre écriture : $\underline{A} = \underline{A}_0 e^{j\frac{2\pi}{\lambda_0}(F_1M)} (1 + e^{j\phi})$.	0,5
•	L'intensité de la lumière s'écrit : $I = \underline{A} \underline{A}^* = 2 I_0 (1 + \cos \varphi)$; avec $\varphi = \frac{2\pi v_0}{c} \delta$.	
	I_0 est l'intensité des deux ondes parvenant de F_1 et F_2 et qui interfèrent en $M: I_0 = \underline{A_0} \underline{A_0}^*$	
I.5	Les régions d'égale intensité sont définies par : $I = Cte \Rightarrow \delta = Cte \Rightarrow x = Cte$.	0,5
	Sur l'écran (xoz), on observe alors des franges rectilignes parallèles aux fentes.	\vdash
I.6.a	$I_{\text{max}} = 4 I_0$; $I_{\text{min}} = 0 \Rightarrow C = 1$. Le contraste est donc maximum et la visibilité est très bonne.	0,5
1.6.b	Tout ceci parce qu'on a utilisé une fente source très fine qui émet une lumière monochromatique. On obtient un affaiblissement du contraste si :	\vdash
1.0.0	- l'onde émise par F n'est pas monochromatique (cohérence temporelle)	1
	- la fente F devient large (cohérence spatiale).	
; II.1		
i.	$\frac{1}{2} = e^{-\frac{(v - v_0)^2}{\alpha^2}} \Rightarrow v - v_0 = \pm \alpha \sqrt{\ln 2} \text{soit } \Delta v = 2\alpha \sqrt{\ln 2}.$	0,5
į	2	
	On décompose le spectre de la raic à profil gaussien en vibrations « monochromatiques » de fréquence v et de largeur dv. Les différentes composantes sont incohérentes : on somme alors les intensités. La contribution d'une bande (v,dv) est : dI = $2 dI_0 \left[1 + cos \left(\frac{2\pi v}{c} \delta \right) \right] = 2I_v(v) \left[1 + cos \left(\frac{2\pi v}{c} \delta \right) \right] dv$. $I = \int_0^{+\infty} dI = \int_0^{+\infty} dI \text{ ; en s'éloignant de } v_0, I_v \text{ décroît rapidement } (I_v = 0 \text{ pour v négatif}).$ $I = 2B \int_{-\infty}^{+\infty} e^{-\frac{(v-v_0)^2}{\alpha^2}} dv + 2B \int_{-\infty}^{+\infty} e^{-\frac{(v-v_0)^2}{\alpha^2}} cos \left(\frac{2\pi v}{c} \delta \right) dv \text{ . En posant } u = v - v_0, \text{ il vient :}$ $I = 2B \int_{-\infty}^{+\infty} e^{-\frac{u^2}{\alpha^2}} du + 2B \int_{-\infty}^{+\infty} e^{-\frac{u^2}{\alpha^2}} cos \left(\frac{2\pi v(u+v_0)}{c} \delta \right) du \text{ ; de la forme } I = I_1 + I_2 \text{ avec } I_1 = 2B \alpha \sqrt{\pi} \text{ et }$ $I_2 = 2B cos \left(\frac{2\pi v_0}{c} \delta \right) \int_{-\infty}^{+\infty} e^{-\frac{u^2}{\alpha^2}} cos \left(\frac{2\pi u}{c} \delta \right) du - 2B sin \left(\frac{2\pi v_0}{c} \delta \right) \int_{-\infty}^{+\infty} e^{-\frac{u^2}{\alpha^2}} sin \left(\frac{2\pi u}{c} \delta \right) du \text{ .}$ $I_2 = 2B \alpha \sqrt{\pi} cos \left(\frac{2\pi v_0}{c} \delta \right) e^{-\frac{u^2}{\alpha^2}} cos \left(\frac{2\pi v_0}{c^2} \delta \right) = 0$ On obtient finalement : $I = 2B \alpha \sqrt{\pi} \left[1 + e^{-\frac{a^2\pi^2\delta^2}{c^2}} cos \left(\frac{2\pi v_0}{c} \delta \right) \right]$ $C'\text{ est de la forme } I = \frac{I(0)}{2} \left[1 + e^{-\frac{\delta^2}{\gamma^2}} cos \left(\frac{2\pi v_0}{c} \delta \right) \right] \text{ avec } \begin{cases} I(0) = 4B\alpha \sqrt{\pi} \\ \gamma = \frac{c}{\pi \alpha} \end{cases}$	2,5

II.3.a	$ \begin{vmatrix} \eta = \frac{c}{v_0} \\ \gamma = \frac{c}{\pi \alpha} \end{vmatrix} \Rightarrow \eta \ll \gamma : \text{les variations de la fonction } f(\delta) \text{ sont très lentes par rapport à celles de } g(\delta). $	1
II.3.b	Au voisinage de $\delta=0$, on observe des franges bien contrastées ($I_{min}\approx0$). En s'éloignant de la frange centrale, l'intensité d'une frange brillante diminue alors que celle d'une frange sombre augmente. Quand δ augmente, on note une diminution du contraste (de même pour la visibilité des franges). Pour δ très 'grand', le contraste s'annule : on obtient alors un brouillage des franges et donc un éclairement uniforme.	
II.4	$I_{\text{max}} = \frac{I(0)}{2} (1 + g(\delta))$ $I_{\text{min}} = \frac{I(0)}{2} (1 - g(\delta))$ $\Rightarrow C = g(\delta) = e^{-\frac{\alpha^2 \pi^2 \delta^2}{c^2}}.$	1
II.5.a	Par définition, L_c est solution de : $e^{-\frac{\alpha^2\pi^2L_c^2}{c^2}} = \frac{1}{2} \implies L_c = \frac{c}{\pi\alpha}\sqrt{\ln 2}$; or $\alpha = \frac{\Delta v}{2\sqrt{\ln 2}} \implies L_c = \frac{4c}{\pi^2 k^2} = \frac{2c\ln 2}{\pi L_c}$	0,5
II.5.b	$L_c = 0.38 \text{mm}$. $O_c 14 \text{mm}$	0,5
III.1.a	$v_1 = 7,50 \ 10^{14} \ Hz$ $v_2 = 4,28 \ 10^{14} \ Hz$ $\Delta v \approx v_1 - v_2 = 3,22 \ 10^{14} \ Hz \Rightarrow L_c \approx \frac{4c}{\pi \ \Delta v} = \frac{1,2 \ \mu m}{1,2 \ \mu m}$ Le calcul fait à la question II.5.a. est relatif à un profil gaussien. Malgré que la distribution spectrale n'est pas gaussienne, on a tout de même l'ordre de grandeur de δ qu'il ne faut pas dépasser pour pouvoir observer quelque chose en lumière blanche (μ m!).	1
III.1.b	On observe en $x = 0$ une frange centrale blanche irisée, colorée sur les bords (bleu vers l'intérieur, rouge vers l'extérieur). Dès qu'on s'éloigne un peu (quelques μ m), on observe un éclairage uniforme : c'est le blanc d'ordre supérieur (du blanc dans lequel manquent des radiations).	1
III.2.a	On observe le spectre de la lumière blanche dans lequel on note la presence de bandes noires qui correspondent aux radiations éteintes. Elles constituent des cannelures : on parle de spectre cannelé.	0,5
III.2.b	Pour une radiation éteinte on a un ordre d'interférence demi-entier : $\frac{\delta(x_0)}{\lambda} = \frac{ax_0}{\lambda f_2} = p + \frac{1}{2}$. Or $0.4 \cdot 10^{-6} \le \lambda \le 0.7 \cdot 10^{-6} \Rightarrow \frac{ax_0}{0.710^{-6} f_2} - \frac{1}{2} \le p \le \frac{ax_0}{0.4 \cdot 10^{-6} f_2} - \frac{1}{2}$. Pour $x_0 = 1$ mm, on trouve : $6.64 \le p \le 12 \Rightarrow$ on observe 6 cannelures. Pour $x_0 = 3$ mm, on trouve : $20.9 \le p \le 37 \Rightarrow$ on observe 17 cannelures. On observe d'autant plus de cannelures qu'on s'éloigne de la frange centrale.	1,5
	On coperio a animie bine de eminerares da our a eresteure as va riambe esserare.	

PROBLEME 2

A.1.1	Un conducteur est dit parfait si sa conductivité γ est infinie.	
	Dans la masse du conducteur, la loi d'Ohm s'écrit : $\vec{j} = \gamma \stackrel{\rightarrow}{E} \Rightarrow$ pour avoir un courant \vec{j} fini, il faut avoir	-
	$\overrightarrow{E} = \overrightarrow{0}$ à l'intérieur du conducteur.	İ
	Pour un champ électrique nul, l'équation de Maxwell-Faraday s'écrit : $\overrightarrow{rot} \stackrel{\rightarrow}{E} = -\frac{\partial \stackrel{\rightarrow}{B}}{\partial t} = \stackrel{\rightarrow}{0}$. A l'intérieur du	
,		-,-
	conducteur le champ magnétique est indépendant du temps ; comme on s'intéresse aux champs variables	
	dans le temps (propagation d'ondes), on prendra $\overrightarrow{B} = \overrightarrow{0}$.	
	La puissance par unité de volume dissipée par effet Joule s'écrit : $\frac{dP}{d\tau} = \vec{j} \cdot \vec{E} = \frac{j^2}{\gamma}$, puisque \vec{j} est fini et	
	γ est infinie, il n'y a donc pas de dissipation d'énergie dans un conducteur parfait.	
A.1.2	Les relations de passage s'écrivent : $\begin{cases} \vec{E}_2 - \vec{E}_1 = \frac{\sigma}{\varepsilon_0} \vec{n}_{12} \\ \vec{B}_2 - \vec{B}_1 = \mu_0 \vec{j}_S \wedge \vec{n}_{12} \end{cases}$	
	On acceptera aussi les autres écritures : $\begin{cases} \vec{E}_{2T} - \vec{E}_{1T} = \vec{0} \; ; \; \vec{E}_{2N} - \vec{E}_{1N} = \frac{\sigma}{\epsilon_0} \vec{n}_{12} \\ \vec{B}_{2T} - \vec{B}_{1T} = \mu_0 \; \vec{j}_{S} \wedge \vec{n}_{12} \; ; \vec{B}_{2N} - \vec{B}_{1N} = \vec{0} \end{cases}$	0.5
	$\vec{E}_1 = -\frac{\sigma}{n}$ \vec{n}_{12}	0,5
	Si le milieu (2) est un conducteur parfait, on obtient : $\begin{cases} \vec{E}_1 = -\frac{\sigma}{\epsilon_0} \vec{n}_{12} \\ \vec{B}_1 = -\mu_0 \vec{j}_S \wedge \vec{n}_{12} \end{cases}$	
	$\vec{\mathbf{B}}_1 = -\mu_0 \vec{\mathbf{j}}_S \wedge \vec{\mathbf{n}}_{12}$	
	Si $\stackrel{\rightarrow}{n}$ désigne la normale sortante du conducteur parfait et $\stackrel{\rightarrow}{(E,B)}$ désigne le champ électromagnétique au	
	voisinage de celui-ci, on a : $\begin{cases} \overrightarrow{E} = \frac{\sigma}{\varepsilon_0} \overrightarrow{n} \\ \overrightarrow{B} = u_0 \overrightarrow{i}_S \wedge \overrightarrow{n} \end{cases}$	
	voisinage de ceiui-ci, on a :	
	$\left(\mathbf{B} = \boldsymbol{\mu}_0 \ \mathbf{j}_{\mathbf{S}} \wedge \mathbf{n}\right)$	
A.2.1	• Equation de Maxwell-Gauss : div E = 0 : le flux de E à travers une surface fermée est nul.	
	• Equation de Maxwell-Faraday: $\overrightarrow{rot} = -\frac{\partial \overrightarrow{B}}{\partial t}$: la cilculation de \overrightarrow{E} le long d'un contour fermé est	
	non nulle; c'est la loi qui est à la base du phénomène d'induction.	
	• Equation de Maxwell-Flux : $\operatorname{div} \overrightarrow{B} = 0$: le flux de \overrightarrow{B} à travers une surface fermée est nul ; \overrightarrow{B} est à	0,5
*	flux conservatif. →	
	• Equation de Maxwell-ampère : $\overrightarrow{rot} \overrightarrow{B} = \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$: la circulation de \overrightarrow{B} le long d'un contour fermé est	
	∂t égale au courant (de déplacement) traversant une surface quelconque s'appuyant sur ce contour.	
A.2.2	L'équation de propagation du champ électrique s'écrit : $\Delta \overrightarrow{E} - \frac{1}{2} \frac{\partial^2 \overrightarrow{E}}{\partial x^2} = \overrightarrow{0}$.	
	L'équation de propagation du champ magnétique s'écrit : $\Delta \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = \vec{0}$. $\sqrt{\epsilon_0 \mu_0}$ = 3.10 ⁸ ms ⁻¹	0,5

D T 4		T
B.I.1	Dans le vide qui règne entre les deux plans conducteurs, le champ électrique de l'onde considérée qui s'écrit en représentation complexe : $\overrightarrow{E}(M,t) = f(x)$ e $\overset{i(\omega t - k_g z)}{U} \vec{U}_y$, vérifie l'équation de propagation : $\Delta \overrightarrow{E} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = \overrightarrow{0}$. On en déduit l'équation différentielle vérifiée par la fonction $f(x)$: $\frac{d^2 f(x)}{dx^2} + \left(\frac{\omega^2}{c^2} - k_g^2\right) f(x) = 0$.	0,5
B.L.2	Le champ électrique est suivant u_y , il est donc tangent aux plans conducteurs $\mathcal{P}(x=d/2)$ et $\mathcal{P}'(x=-d/2)$. La continuité de la composante tangentielle du champ permet d'écrire : $E(x=d/2)=E(x=-d/2)=0$, soit $f(x=d/2)=f(x=-d/2)=0$. ② • Si $\frac{\omega^2}{c^2}-k_g^2<0$, la solution de ① est en exponentielle et ne permet de satisfaire l'équation ②. • Si $\frac{\omega^2}{c^2}-k_g^2>0$, la solution de ① peut s'écrire sous la forme : $f(x)=A_i\cos(\alpha x)+A_p\sin(\alpha x)$, avec $\alpha=\sqrt{\frac{\omega^2}{c^2}-k_g^2}$.③	1
B.I.3	$f(d/2) = A_i \cos(\alpha d/2) + A_p \sin(\alpha d/2) = 0 \textcircled{f}$ $f(-d/2) = A_i \cos(\alpha d/2) - A_p \sin(\alpha d/2) = 0 \textcircled{g}$ $\textcircled{f}(-d/2) = A_i \cos(\alpha d/2) - A_p \sin(\alpha d/2) = 0 \textcircled{g}$ $\textcircled{f}(-d/2) = A_i \cos(\alpha d/2) - A_p \sin(\alpha d/2) = 0 \textcircled{g}$ $\textcircled{f}(-d/2) = A_i \cos(\alpha d/2) - A_p \sin(\alpha d/2) = 0 \textcircled{g} \text{how and } A_i \neq 0, \text{ on doit avoir } \alpha d = (2m+1)\pi \text{ avec } m \in \mathbb{Z}.$ En remplaçant α dans \textcircled{g} ou \textcircled{g} , on obtient $A_p = 0 \Rightarrow f(x) = A_i \cos(2m+1)\frac{\pi x}{d}$. $\textcircled{f}(-d/2) = A_p \sin(\alpha d/2) = 0 \textcircled{g}(-d/2) = 0 $	1
B.I.4	D'après la question (B-I-3), on a $\alpha = \frac{n\pi}{d}$ et la relation ③ s'écrit alors : $k_g^2 = \frac{\omega^2}{c^2} - \left(\frac{n\pi}{d}\right)^2 \Rightarrow$ $k_g^2 = \frac{\omega^2}{c^2} \left[1 - \frac{1}{\omega^2} \left(\frac{n\pi c}{d}\right)^2\right]$ soit $k_g = \frac{\omega}{c} \sqrt{1 - \frac{1}{\omega^2} \left(\frac{n\pi c}{d}\right)^2}$. Le vide limité par les deux plans devient dispersif car k_g n'est pas une fonction linéaire de ω (la vitesse de phase v_{ϕ} est une fonction de la pulsation ω).	0,5
B.I.5	Pour qu'il y ait propagation le l'onde entre les deux plans k_g^2 doit être positif $\Rightarrow \omega > \omega_{cn} = \frac{n\pi c}{d}$; ω_{cn} est appelée pulsation de coupure ; comme k_g , elle dépend de ω .	0,5

			_
B.I.6	Pour $A_i = A_p = E_0$, les amplitudes des trois premiers modes s'écrivent, en fonction de x :		
	$E_{01} = E_0 \cos \frac{\pi x}{d}$; $E_{02} = E_0 \sin \frac{2\pi x}{d}$; $E_{03} = E_0 \cos \frac{3\pi x}{d}$.		
	$\frac{E_{01}-E_0\cos\frac{\pi}{d}}{d}$, $\frac{E_{02}-E_0\sin\frac{\pi}{d}}{d}$, $\frac{E_{03}-E_0\cos\frac{\pi}{d}}{d}$.		
	♠ ^E on/E ₀		
٠	n=1 0.5	1	
	-d/2 -0.4 -0.7 0.2 0.4 d/2		
B.I.7	• vitesse de phase : $v_{\varphi} = \frac{\omega}{k_g} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{cn}}{c}\right)^2}} > c$.		1
	ν (ω)	0,5	
	• vitesse de groupe : $v_g = \frac{d\omega}{dk_g} = c\sqrt{1 - \left(\frac{\omega_{cn}}{\omega}\right)^2} < c$.	1	
B.I.8	to this to the second to the state of the st		7
	 On remarque que v_φ > c alors que v_g < c. La vitesse de groupe est la vitesse d'un paquet (groupe) d'onde, elle est inférieure à la vitesse de la lumière : c'est la vitesse de propagation de l'énergie. La vitesse de phase ne représente pas la vitesse de déplacement d'une quantité matérielle, c'est la vitesse des plans équiphases. En effet si on écrit que la phase de l'onde est une constante (ωt-k_gz = cte), on obtient dz/dt = ω/k_g = v_φ. 	0,5	
B.I.9	Pour le mode fondamental, le champ électrique s'écrit : $\overrightarrow{\underline{E}}(M,t) = E_0 \cos\left(\frac{\pi x}{d}\right) e^{i(\omega t - k_g z)} \overrightarrow{u}_y$.		1
	Pour le mode fondamentai, le champ électrique s'ecrit : $\underline{\underline{E}}(W,t) = \underline{E}_0$ cos $\begin{pmatrix} 1 \\ d \end{pmatrix}$		
	L'onde considérée n'est pas plane, pour déterminer $\overrightarrow{\underline{B}}$ à partir de $\overrightarrow{\underline{E}}$, on utilise l'équation de Maxwell-		١
	$\partial \partial E k_{\sigma} (\pi x)$		
	Faraday: $rot \stackrel{\rightarrow}{\underline{E}} = -\frac{\partial \stackrel{\rightarrow}{\underline{B}}}{\partial t} = -i\omega \stackrel{\rightarrow}{\underline{B}}$, avec $rot \stackrel{\rightarrow}{\underline{E}} = \begin{vmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{vmatrix} - \frac{\partial E}{\partial z} \begin{vmatrix} \underline{B}_{x} = -\frac{k_{g}}{\omega} E_{0} \cos(\frac{\pi x}{d}) \\ \underline{B}_{y} = 0 \\ \underline{B}_{z} = -i \frac{\pi}{\omega d} E_{0} \sin(\frac{\pi x}{d}) \end{vmatrix}$. $e^{i(\omega t - k_{g}z)}$.		
	$\partial x = \partial x$	1	
	En représentation réelle, on obtient : $\overrightarrow{B} = \begin{vmatrix} B_x = -\frac{k_g}{\omega} E_0 \cos(\frac{\pi x}{d}) \cos(\omega t - k_g z) \\ B_y = 0 \end{vmatrix}$		
	En représentation réelle, on obtient : $B = \begin{bmatrix} B_y = 0 \\ B_z = \frac{\pi}{\omega d} E_0 \sin\left(\frac{\pi x}{d}\right) \sin\left(\omega t - k_g z\right) \end{bmatrix}$		
	Le champ magnétique possède donc deux composantes non nulles : B_x perpendiculaire à la direction de propagation (ou transversale) et B_z suivant la direction de propagation (ou longitudinale). Le champ magnétique n'est pas transversal alors que le champ électrique est transversal \Rightarrow l'onde est donc (TE).		

B.II.1	En tout point du guide, le champ électrique est suivant $u_y : \vec{\underline{E}} = \vec{\underline{E}} u_y$. Au voisinage des deux	
	conducteurs, $\vec{E} = \frac{\sigma}{\epsilon_0} \vec{n}$ où \vec{n} est la normale qui sort du métal. Or \vec{n} (d/2) = $-\vec{u}_x$ et \vec{n} (-d/2) = $\vec{u}_x \Rightarrow$	
4	$\underline{\sigma} = \varepsilon_0 \stackrel{\longrightarrow}{E} \cdot \vec{n} = 0 \Rightarrow \sigma = 0$; il n'y a pas de charges surfaciques sur les plans $\mathcal{P}(x = d/2)$ et	
-1	donc pas de forces électriques.	
B.II.2	D'après la question A-1-2) on a $\overrightarrow{B} = \mu_0 \overrightarrow{j}_S \wedge \overrightarrow{n} \Rightarrow \overrightarrow{j}_S (x = d/2) = \frac{1}{\mu_0} \overrightarrow{n} (x = d/2) \wedge \overrightarrow{B} (x = d/2)$.	
	Or $\overrightarrow{n}(x = d/2) = -\overrightarrow{u}_x \Rightarrow \overrightarrow{\underline{j}}_s(x = d/2) = \frac{1}{\mu_0} \overrightarrow{\underline{B}}(x = d/2) \wedge \overrightarrow{u}_x = \frac{1}{\mu_0} \underline{\underline{B}}_z(x = d/2) \overrightarrow{u}_y$.	
	Sur le plan $\mathcal{P}(x=d/2)$ apparaît donc un courant de densité $\dot{\underline{j}}_s = -i \frac{\pi}{\mu_0 \omega d} E_0 e^{i(\omega t - k_g z)} \dot{\underline{u}}_y$, soit en	0,5
	représentation réelle $\vec{j}_s = \frac{\pi}{\mu_0 \omega d} E_0 \sin(\omega t - k_g z) \vec{u}_y$.	
	Sur le plan $\mathcal{P}'(x = -d/2)$, pour lequel $n (-d/2) = -n (d/2) = u_x$ et $B (-d/2) = -B (d/2)$, apparaît donc la	
	même densité de courant $\Rightarrow \vec{j}'_s = \vec{j}_s = \frac{\pi}{\mu_0 \omega d} E_0 \sin(\omega t - k_g z) \vec{u}_y$.	2
B.II.3	Du point M infiniment voisin de la surface de \mathcal{P} , l'élément dS de normale unitaire $\vec{n} = -\vec{u}_x$, apparaît	
	comme une nappe de courant infinie de densité \vec{j}_s . Cette nappe crée en M le champ magnétique \vec{B}_{ds} .	1
	$\vec{\underline{B}}_{ds} = \frac{1}{2}\mu_0 \vec{\underline{j}}_S \wedge \vec{n} = \frac{1}{2}\mu_0 \vec{\underline{j}}_S \wedge \left(-\vec{u}_x\right) = \frac{1}{2}\mu_0 \vec{\underline{j}}_S \vec{u}_z = \frac{1}{2}\underline{\underline{B}}_z (x = d/2)\vec{u}_z.$	1
(#):	Soit alors: $\vec{\underline{B}}_{ds} = -i \frac{\pi}{2\omega d} E_0 e^{i(\omega t - k_g z)} \vec{\underline{u}}_z$.	
B.II.4	Le champ magnétique qui agit sur l'élément de surface dS est le champ magnétique de l'onde considérée	
	au niveau $x = d/2$ diminué du champ $\underline{\underline{B}}_{ds}$ créé par dS.	
	Le champ magnétique qui agit sur dS est donc : $\frac{1}{2} \overrightarrow{B}(x = d/2) = -i \frac{\pi}{2\omega d} E_0 e^{i(\omega t - k_g z)} \overrightarrow{u}_z$.	
	La force magnétique qui agit sur dS est alors : $d \stackrel{\rightarrow}{f}_m = \stackrel{\rightarrow}{j}_s \wedge \frac{1}{2} \stackrel{\rightarrow}{B} (x = d/2)$; en prenant les expressions	1
	réelles de \overrightarrow{j}_s et \overrightarrow{B} , on trouve : $\overrightarrow{df}_m = \frac{1}{\mu_0} dS B_z (x = d/2) \overrightarrow{u}_y \wedge \frac{1}{2} B_z (x = d/2) \overrightarrow{u}_z$.	
	$\overrightarrow{df}_{m} = \frac{1}{2\mu_{0}} B_{z}^{2} (x = d/2) dS \overrightarrow{u}_{x} = \frac{1}{2\mu_{0}} \left[\frac{\pi E_{0}}{\omega d} sin(\omega t - k_{g}z) \right]^{2} dS \overrightarrow{u}_{x}.$	
B.II.5.a	d f m est dirigée du vide vers le conducteur P normalement à celui-ci.	
	L'onde exerce donc sur \mathcal{P} une pression de radiation $\Pi = \frac{\left\ \mathbf{d} \stackrel{\rightarrow}{\mathbf{f}}_{m} \right\ }{dS} = \frac{1}{2\mu_{0}} \left[\frac{\pi E_{0}}{\omega d} sin(\omega t - k_{g}z) \right]^{2}$.	0,5
	Sa moyenne dans le temps est : $\langle \Pi \rangle = \frac{1}{4\mu_0} \left(\frac{\pi}{\omega d}\right)^2 E_0^2 = \frac{1}{4\mu_0 c^2} \left(\frac{\pi c}{\omega d}\right)^2 E_0^2 = \frac{\epsilon_0 E_0^2}{4} \left(\frac{\omega_{c1}}{\omega}\right)^2.$	

B.II.5.b	$\vec{j}_s = \vec{j'}_s$ et \vec{B} (x = -d/2) = \vec{B} (x = d/2) \Rightarrow la force d $\vec{f'}_m$ qui agit sur un élément dS' du plan \mathcal{P} ' est donc le symétrique de d \vec{f}_m par apport au plan (yoz); d $\vec{f'}_m = -d\vec{f}_m$, cette force est dirigée du vide vers le	0,5
	conducteur \mathcal{P}' et engendre la pression $\Pi' = \Pi$.	-
B.III.1.a	Le vecteur de Poynting s'écrit : $\overrightarrow{R} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} = \frac{\overrightarrow{E} \vec{u}_y \wedge \left(\overrightarrow{B}_x \vec{u}_x + \overrightarrow{B}_z \vec{u}_z \right)}{\mu_0} = \frac{1}{\mu_0} \begin{vmatrix} \overrightarrow{R}_x = \overrightarrow{E} \overrightarrow{B}_z \\ \overrightarrow{R}_y = 0 \\ \overrightarrow{R}_z = -\overrightarrow{E} \overrightarrow{B}_x \end{vmatrix}$	3
	$\overrightarrow{R} = \frac{1}{\mu_0} \begin{vmatrix} R_x = \frac{\pi}{\mu_0 \omega d} E_0^2 \cos\left(\frac{\pi x}{d}\right) \sin\left(\frac{\pi x}{d}\right) \cos\left(\omega t - k_g z\right) \sin\left(\omega t - k_g z\right) \\ R_y = 0 \\ R_z = \frac{k_g}{\mu_0 \omega} E_0^2 \cos^2\left(\frac{\pi x}{d}\right) \cos^2\left(\omega t - k_g z\right) \end{vmatrix}$	1
	Soit sa moyenne dans le temps : $\langle \overrightarrow{R} \rangle = \frac{k_g}{2\mu_0 \omega} E_0^2 \cos^2 \left(\frac{\pi x}{d}\right)^{-1} u_z$.	
B.III.1.b	Le champ électrique $\overrightarrow{\underline{E}}(M,t) = E_0 \cos\left(\frac{\pi x}{d}\right) e^{i\left(\omega t - k_g z\right)} \overrightarrow{u}_y$ est celui d'une onde qui progresse suivant	0,5
	l'axe (oz). Puisque le transport d'énergie se fait suivant la direction de propagation, $\langle R \rangle = R_z u_z$ est prévisible.	
B.III.2	La puissance moyenne traversant une section Σ du guide s'écrit : $P_m = \langle P \rangle = \iint_{\Sigma} \langle \overrightarrow{R} \rangle d\Sigma$, avec $d\Sigma = dxdy$.	
	$P_{m} = \int_{0}^{l} \int_{-d/2}^{d/2} \frac{1}{2} \left(\frac{k_{g}}{\mu_{0} \omega} E_{0}^{2} \cos^{2} \left(\frac{\pi x}{d} \right) \right) . dxdy = \frac{k_{g}}{2\mu_{0} \omega} E_{0}^{2} l \int_{-d/2}^{d/2} \frac{1}{2} \left(1 + \cos \left(\frac{2\pi x}{d} \right) \right) . dx = \frac{1}{4} \frac{E_{0}^{2} k_{g}}{\mu_{0} \omega} l d .$	0,5
10	$P_{\rm m} = \frac{1}{4} \frac{E_0^2 k_{\rm g}}{\mu_0 \omega} \Sigma$, avec $\Sigma = l d$.	
B.III.3.a	La densité volumique d'énergie électromagnétique s'écrit : $u = u_e + u_m = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2\mu_0} B^2$.	
	$u_{e} = \frac{1}{2} \varepsilon_{0} E_{0}^{2} \cos^{2} \left(\frac{\pi x}{d} \right) \cos^{2} \left(\omega t - k_{g} z \right)$	1
	$u_{m} = \frac{1}{2\mu_{0}} \frac{E_{0}^{2}}{\omega^{2}} \left[k_{g}^{2} \cos^{2} \left(\frac{\pi x}{d} \right) \cos^{2} \left(\omega t - k_{g} z \right) + \frac{\pi^{2}}{d^{2}} \sin^{2} \left(\frac{\pi x}{d} \right) \sin^{2} \left(\omega t - k_{g} z \right) \right]$	
B.III.3.b	La densité volumique moyenne d'énergie électromagnétique est : $\langle u \rangle = \langle u_e \rangle + \langle u_m \rangle$.	
	$\langle u \rangle = \frac{1}{4} \varepsilon_0 E_0^2 \cos^2 \left(\frac{\pi x}{d} \right) + \frac{E_0^2}{4\mu_0 c^2} \left[\frac{c^2 k_g^2}{\omega^2} \cos^2 \left(\frac{\pi x}{d} \right) + \frac{1}{\omega^2} \left(\frac{\pi c}{d} \right)^2 \sin^2 \left(\frac{\pi x}{d} \right) \right].$	
	Sachant que $\omega_{c1}^2 = \left(\frac{\pi c}{d}\right)^2$ et $\frac{c^2 k_g^2}{\omega^2} = 1 - \left(\frac{\omega_{c1}}{\omega}\right)^2$, on obtient :	1
	$\langle \mathbf{u} \rangle = \frac{1}{4} \varepsilon_0 E_0^2 \left[\cos^2 \left(\frac{\pi x}{d} \right) - \frac{1}{2} \left(\frac{\omega_{cl}}{\omega} \right)^2 \cos \left(\frac{2\pi x}{d} \right) \right]; \text{ soit encore } \langle \mathbf{u} \rangle = \frac{\varepsilon_0 E_0^2}{4} \left[1 + \left(1 - \frac{\omega_{cl}^2}{\omega^2} \right) \cos \left(\frac{2\pi x}{d} \right) \right].$,

B.111.4	Dans le volume élémentaire $d\tau = dxdydz$, l'énergie électromagnétique moyenne est donnée par : $\delta^3 W_m = \langle u \rangle d\tau = \langle u \rangle dxdydz$. L'énergie moyenne contenue dans la tranche d'épaisseur dz et de section Σ	
	est donc : $\delta W_m = dz \iint_{\Sigma} \langle u \rangle dxdy = dz \frac{\epsilon_0 E_0^2}{4} \int_0^l dy \int_{-d/2}^{d/2} \left[1 + \left(1 - \frac{\omega_{c1}^2}{\omega^2} \right) cos \left(\frac{2\pi x}{d} \right) \right] dx$.	0,5
	On obtient alors: $\delta W_m = \frac{\epsilon_0 E_0^2}{4} \Sigma dz$; avec $\Sigma = l d$.	
B.III.5	On désigne par \overrightarrow{v}_e la vitesse avec laquelle se propage l'énergie dans le guide : $\overrightarrow{v}_e = \overrightarrow{v}_e$ \overrightarrow{u}_z .	
-	L'énergie moyenne traversant une section $(z + dz)$ du guide pendant dt est : P_m dt = $\frac{1}{4} \frac{E_0^2 k_g}{\mu_0 \omega} \Sigma dt$	
	(cf.B.III.2). Cette énergie était contenue dans la tranche d'épaisseur $dz = v_e$ dt et de section Σ , elle est	
	égale à : $\frac{\varepsilon_0 E_0^2}{4} \Sigma v_e dt$, (cf.B.III.5).	1
	En égalisant ces deux expressions on trouve : $\frac{\epsilon_0 E_0^2}{4} \Sigma v_e dt = \frac{1}{4} \frac{E_0^2 k_g}{\mu_0 \omega} \Sigma dt \implies v_e = \frac{1}{\mu_0 \epsilon_0} \frac{k_g}{\omega}$, or	
	$\frac{k_g}{\omega} = \frac{1}{v_{\phi}} \implies v_e = \frac{c^2}{v_{\phi}}. \text{ On sait d\'ej\`a que } v_g = \frac{c^2}{v_{\phi}} \text{ (cf.B.I.7), donc on a : } v_e = v_g \implies l\text{\'energie se propage}$	
	à la vitesse de groupe.	
B.IV.1	Dans l'ionosphère, la relation de dispersion s'écrit : $k^2 = \frac{\omega^2}{c^2} \left(1 - \frac{\omega_p^2}{\omega^2} \right)$ avec $\omega_p = \sqrt{\frac{n e^2}{m \epsilon_0}}$.	0,5
	Une onde de pulsation ω se propage dans l'ionosphère quand k^2 est positif $(k^2>0)$, donc pour $\omega>\omega_p$.	0,5
	Le domaine de fréquences \mathcal{D}_1 correspond à $v > v_p = \frac{1}{2\pi} \sqrt{\frac{n e^2}{m \epsilon_0}} \approx 9 \text{ MHz}.$	
B.IV.2	Pour $v < 9$ MHz, $k^2 < 0$: l'onde ne se propage pas dans l'ionosphère : c'est le domaine de fréquences \mathcal{D}_2 . On suppose alors que l'ionosphère se comporte comme une surface réfléchissante dans le domaine \mathcal{D}_2 .	
	Or $\frac{h}{R_T} = \frac{100}{6400} \approx 1.6 \cdot 10^{-2} \implies la limite basse de l'ionosphère et la surface de la terre peuvent être$	0,5
	assimilées aux plans \mathcal{P} et \mathcal{P} ' de notre guide pour une onde de fréquence appartenant au domaine \mathcal{D}_2 et	-,
	on alors $d \approx h$ et $v_0 \approx v_{c1} = \frac{\omega_{c1}}{2\pi} \approx \frac{c}{2h} \Rightarrow v_0 \approx \frac{c}{2h} = 1.5 \text{ kHz}$.	
	Conclusion : une onde de fréquence comprise entre 1,5 kHz et 9 MHz peut être guidée.	
	· · · · · · · · · · · · · · · · · · ·	
B.IV.3	Les fréquences des ondes de la bande FM (v entre 88 MHz et 108 MHz) appartiennent au domaine \mathcal{D}_1 : ces ondes ne se réfléchissent pas sur l'ionosphère et ne peuvent pas donc atteindre des régions loitaines sur la terre à partir des stations d'émission. Par contre les ondes de la bande AM, ayant des fréquences entre 1,5 kHz et 9 MHz, sont guidées entre la terre et l'ionosphère (par réflexions multiples) et peuvent atteindre des endroits lointains sur la terre à partir des stations d'émission. Conclusion: l'émission radio sur la bande FM est faite pour une réception locale alors que l'émission sur	1

