Консультация к КР.

1. Пусть $y_t^* = x_t'\beta + \varepsilon_t$, где ошибки ε_t имеют плотность распределения f(x) и

$$y_t = egin{cases} lpha_1, & ext{ если } y_t^* \leqslant lpha_1 \ y_t^*, & ext{ если } lpha_1 < y_t^* < lpha_2 \ lpha_2, & ext{ если } y_t^* \geqslant lpha_2 \end{cases}$$

- а) Найдите распределение y_t .
- б) Найдите логарифмическую функцию правдоподобия для оценивания вектора β .
- в) Найдите $(\partial Ey)/(\partial x)$.
- 2. Рассмотрим модель для панельных данных:

$$y_{it} = \beta_0 + \beta_1 x_{it} + \alpha_i + u_{it}, i = 1, ..., N, t = 1, ..., T.$$

Обозначим $\bar{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}$, $\varepsilon_{it} = \alpha_i + u_{it}$. Рассмотрим преобразованную модель:

$$y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \bar{x}_i) + (\varepsilon_{it} - \lambda \bar{\varepsilon}_i).$$

- (a) Какие модели получаются при $\lambda = 0$ и при $\lambda = 1$?
- (b) Пусть $\alpha_i \sim \text{i.i.d.} (0, \sigma_\alpha^2)$; $u_{it} \sim \text{i.i.d.} (0, \sigma_u^2)$; Cov $(\alpha_i, u_{it}) = 0$ для всех i и j. Определим

$$\lambda = 1 - \left[\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_\alpha^2} \right]^{1/2}.$$

Покажите, что $\varepsilon_{it} - \lambda \bar{\varepsilon}_i$ имеет нулевое матетматическое ожидание, постоянную дисперсию и серийная корреляция отсутствует.

3. Рассмотрим модель с фиксированными эффектами:

$$y_{it} = \alpha_i + \varepsilon_{it}, i = 1, ..., n, t = 1, ..., T.$$

Случайные ошибки предполагаются независимыми и гетероскедастичными, то есть $V(\varepsilon_{it}) = \sigma_i^2$. Панель является несбалансированной, то есть каждому *i*-му субъекту в выборке соответствуют T_i наблюдений.

- (a) Покажите, что OLS и GLS оценки α_i совпадают.
- (b) Пусть $\sigma^2 = \sum_{i=1}^N T_i \frac{\sigma_i^2}{n}, n = \sum_{i=1}^N T_i$ дисперсия взвешенной случайной ошибки. Покажите, что OLS оценка для σ^2 является смещенной. Также

покажите, что смещение исчезает, если панель сбалансированная и случайные ошибки гомоскедастичны.

Problem 1.

The data set contains data on arrests during 1986 on 2,725 men born in California in 1960 or 1961. Each man in the sample was arrested at least once prior to 1986. We are interested in explaining what determines how often these men are arrested again in 1986. The following variables are available.

narr86 # times arrested, 1986

avgsen average sentence length served for prior convictions (in months)

black =1 if black

born60 =1 if born in 1960

durat recent unemployment duration (in months)

hispan =1 if Hispanic

inc86 legal income, 1986, \$100s
penv proportion of prior convictions
ptime86 months in prison during 1986
qemp86 # quarters employed, 1986
tottime time in prison since 18 (in months)

The variable *pcnv*, the proportion of arrests prior to 1986 that led to conviction, is a proxy for the likelihood of being convicted for a crime.

The variable *avgsen* is a proxy for the severity of punishment, if convicted.

The variable *ptime86* captures the incarcerative effect of crime: if an individual is in prison, he cannot be arrested for a crime outside of prison. Labour market opportunities are captured by *qemp86*.

Summary statistics:

	avgsen	black	born60	durat	hispan	inc86	pcnv	ptime86	qemp86	tottime
Mean	0.632	0.161	0.363	2.251	0.218	54.97	0.358	0.387	2.309	0.839
Median	0	0	0	0	0	29	0.25	0	3	0
Maximum	59.2	1	1	25	1	541	1	12	4	63.4
Minimum	0	0	0	0	0	0	0	0	0	0
Std. Dev.	3.508	0.368	0.481	4.607	0.413	66.63	0.395	1.950	1.610	4.607

Tabulation of narr86

			Cumulative	Cumulative
Value	Count	Percent	Count	Percent
0	1970	72.29	1970	72.29
1	559	20.51	2529	92.81
2	121	4.44	2650	97.25
3	42	1.54	2692	98.79
4	12	0.44	2704	99.23
5	13	0.48	2717	99.71
6	4	0.15	2721	99.85
7	1	0.04	2722	99.89
9	1	0.04	2723	99.93
10	1	0.04	2724	99.96
12	1	0.04	2725	100.00
Total	2725	100.00	2725	100.00

Three models were estimated:

Dependent Variable: NARR86>0				MODEL 1		
Method: ML - Binary Probit (Quadratic hill climbing)						
Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	-0.323473	0.057875	-5.589133	0.0000		
PCNV	-0.553008	0.071956	-7.685374	0.0000		
AVGSEN	0.003730	0.007684	0.485502	0.6273		

PTIME86	-0.081029	0.018028	-4.494518	0.0000
QEMP86	0.010286	0.024660	0.417109	0.6766
INC86	-0.004832	0.000686	-7.045535	0.0000
BLACK	0.467772	0.072006	6.496325	0.0000
HISPAN	0.288913	0.065449	4.414352	0.0000
Mean dependent var	0.277064	S.D. dependent var		0.447631
S.E. of regression	0.428541	Akaike info criterion		1.094808
Sum squared resid	498.9705	Schwarz criterion		1.112160
Log likelihood	-1483.677	Hannan–Quinn criter.		1.101080
Restr. log likelihood	-1608.184	Avg. log likelihood		-0.544468
LR statistic (7 df)	249.0143	McFadden R-squared		0.077421
Probability(LR stat)	0.000000			
Obs with Dep=0	1970	Total obs		2725
Obs with Dep=1	755			

MODEL 2

Method: ML - Ordered Logit (Quadratic hill climbing)

Included observations: 2725

Number of ordered indicator values: 11

	Coefficient	Std. Error	z-Statistic	Prob.
PCNV	-0.826305	0.121661	-6.791867	0.0000
AVGSEN	0.009250	0.012395	0.746213	0.4555
PTIME86	-0.132007	0.030301	-4.356456	0.0000
QEMP86	0.004806	0.041021	0.117167	0.9067
INC86	-0.008754	0.001267	-6.907944	0.0000
BLACK	0.797965	0.114772	6.952618	0.0000
HISPAN	0.533740	0.108032	4.940569	0.0000
	Limit	Points		
LIMIT_1:C(8)	0.518862	0.094332	5.500371	0.0000
LIMIT_2:C(9)	2.213780	0.111413	19.87008	0.0000
LIMIT_3:C(10)	3.242495	0.143630	22.57529	0.0000
LIMIT_4:C(11)	4.085995	0.193895	21.07326	0.0000
LIMIT_5:C(12)	4.544892	0.234307	19.39718	0.0000
LIMIT_6:C(13)	5.518044	0.363691	15.17233	0.0000
LIMIT_7:C(14)	6.213840	0.507219	12.25080	0.0000
LIMIT_9:C(15)	6.502190	0.583614	11.14125	0.0000
LIMIT_10:C(16)	6.908442	0.712230	9.699735	0.0000
LIMIT_12:C(17)	7.602260	1.003628	7.574779	0.0000
Akaike info criterion	1.582839	Schwarz criterion		1.619710
Log likelihood	-2139.618	Hannan–Quinn criter.		1.596166
Restr. log likelihood	-2269.057	Avg. log likelihood		-0.785181
LR statistic (7 df)	258.8775	LR index (Pseudo-R2)		0.057045
Probability(LR stat)	0.000000			

Dependent Variable: NARR86							
Method: ML/QML - Poisson Count (Quadratic hill climbing)							
Variable	Coefficient	Std. Error	z-Statistic	Prob.			
С	-0.616217	0.063618	-9.686227	0.0000			
PCNV	-0.401797	0.084783	-4.739146	0.0000			
AVGSEN	0.005603	0.007437	0.753388	0.4512			
PTIME86	-0.093507	0.020314	-4.603135	0.0000			
QEMP86	-0.037305	0.028907	-1.290529	0.1969			
INC86	-0.008127	0.001037	-7.833997	0.0000			
BLACK	0.661036	0.073871	8.948584	0.0000			
HISPAN	0.501855	0.073884	6.792448	0.0000			
R–squared	0.075108	Mean dependent var		0.404404			

Adjusted R-squared	0.072725	S.D. dependent var	0.859077
S.E. of regression	0.827249	Akaike info criterion	1.657495
Sum squared resid	1859.353	Schwarz criterion	1.674846
Log likelihood	-2250.337	Hannan–Quinn criter.	1.663767
Restr. log likelihood	-2441.921	Avg. log likelihood	-0.825812
LR statistic (7 df)	383.1683	LR index (Pseudo–R2)	0.078456
Probability(LR stat)	0.000000		

- (a) (6 points) Use each of three models to estimate probability to be unarrested, P0, in 1986 for the two men, with values of the variables: avgsen = 0, inc86 = 50, pcnv = 0.1, ptime86 = 0, qemp86 = 3, one of which is white and another is black.
- **(b) (6 points)** Use each of three models to estimate marginal effect of income, $\frac{\partial P0}{\partial inc86}$ for the black man in 1).
- (c) (4 points) Comment the models results. Which variables affect the crime (number of arrests)? Discuss some findings that you think are interesting.
- (d) (4 points) Discuss shortly limitations and advantages of these models. Which model(s) is more appropriate to that problem in your opinion?

Problem 2.

По панели 78 российских регионов за 9 лет оценивается три спецификации модели для миграции в зависимости от лагов следующих переменных: человеческого капитала (L1x1), уровня безработицы (L1x2), логарифма среднедушевого дохода (L1x3), численности студентов на душу населения (L1student_pc), коэффициента Джини (L1gini), доли молодого населения (L1young), доли пожилого населения (L1old). В модели также учен временной эффект в виде набора дамми переменных на года (year7-year10).

Прокомментируйте, какая модель:

- сквозная (pooled) регрессия;
- модель с фиксированными эффектами;
- модель со случайными эффектами

должна быть выбрана в данном случае. В своих рассуждениях приводите в подтверждение результаты соответствующих тестов, в каждом из тестов опишите основную и альтернативную гипотезы. Ниже приведены результаты оценивания моделей сквозной регрессии, с индивидуальными эффектами — фиксированными и случайными — а также результаты тестов на выбор спецификации модели.

Mодель 1.
. reg net_mig_all L1* year2007-year2010

. reg net_mig_	_all Ll* year2	00/-year20)10			
Source	l SS	df	MS		Number of obs	
Residual	+	689 37.	.9261485		F(12, 689) Prob > F R-squared Adj R-squared	= 0.0000 = 0.4361
	46341.4324				Root MSE	
net_mig_all	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
L1x2 L1x3 L1x4 L1student_pc L1gini L1young L1old year2007 year2008 year2009 year2010	-1.679025 6.087226 2.756517	.7732123 1.488182 1.136344 .0195059 11.55797 .1590198 .1046239 .8082426 .8146773 .8457649 .9235795	-2.17 4.09 2.43 6.23 -1.05 7.96 16.47 -0.00 -1.80 -1.96 -3.77	0.030 0.000 0.016 0.000 0.292 0.000 0.000 0.999 0.072 0.050 0.000	184685 -3.19716 3.165311 .5254044 .0832542 -34.88487 .954335 1.517222 -1.587926 -3.06784 -3.322463 -5.291105 -73.13325	.1598504 10.50128 1.578778 1.928061 1.585902 .1312557 0012914
. xtreg net_mig_all L1* year2007-year2010, fe Fixed-effects (within) regression Number of obs = 702						
Group variable	e: region			Number	of groups =	78
	= 0.2129 n = 0.4225 L = 0.3924			Obs pe	r group: min = avg = max =	9.0
corr(u_i, Xb)	= 0.2382			F(12,6 Prob >	12) = F =	13.79 0.0000
net_mig_all			. t		[95% Conf.	Interval]
L1x4 L1student_pc L1gini L1young L1old year2007 year2008 year2010conssigma_u	-1.695126 7.313121 4.384781 .0735784 -30.41007 1.366945 1.335605 .4974565 6770634 6682617 -2.148101 -49.47221	.0311219 12.19753 .2380267 .2752427 .423644 .5033005 .5620948 .6736989 8.73733	-2.71 4.97 8.45 2.36 -2.49 5.74 4.85 1.17 -1.35 -1.19 -3.19 -5.66	0.235 0.002 0.000	3345157 -1.665469 -1.77213 -3.471143 -66.631	.3113422 .4356069
F test that all	ll u_i=0:	F(77, 612)	= 38.7	7 4	Prob >	F = 0.0000

[.] est store fe

Модель 3.

. $xtreg net_mig_all L1* year2007-year2010$, re

Random-effects GLS regression Group variable: region R-sq: within = 0.2104 between = 0.4562 overall = 0.4258 Random effects u_i ~ Gaussian corr(u_i, X) = 0 (assumed)					of obs = of groups = avg = max = chi2(12) = chi2 = avg = max = chi2 = ch	78 9 9.0 9
net_mig_all	Coef.	Std. Err.	z 	P> z	[95% Conf.	Interval]
	0512574 -1.698741 6.720255 4.308914 .085199 -24.92428 1.28032 1.641813 .2547917 -1.077568 -1.145741 -2.738704 -56.10931		-1.16 -2.82 4.95 8.33 3.33 -2.21 6.60 10.16 0.64 -2.43 -2.36 -4.85 -7.48	0.245 0.005 0.000 0.000 0.001 0.027 0.000 0.523 0.015 0.018 0.000	1376134 -2.879282 4.057763 3.294882 .0350915 -47.05735 .8999912 1.324941 5263292 -1.94779 -2.096548 -3.845201 -70.81188	5181995
sigma_u sigma_e rho	2.6959466	(fraction	of variar	nce due t	co u_i)	

. est store re

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects net_mig_all[region,t] = Xb + u[region] + e[region,t]

Estimated results:

	 	Var	sd =	sqrt(Var)
net_mig~l	6	6.10761	8.	.130658
е	7	.268128	2.	. 695947
u	3	2.40961	5.	692944

Test: Var(u) = 0 chi2(1) = 1808.88 Prob > chi2 = 0.0000

. hausman fe re

	Coeff:	icients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	l fe	re	Difference	S.E.
L1x1	0600761	0512574	0088187	.0137937
L1x2	-1.695126	-1.698741	.0036144	.1644702
L1x3	7.313121	6.720255	.5928663	.5624094
L1x4	4.384781	4.308914	.0758666	.0387748
L1student_pc	.0735784	.085199	0116206	.0177475
Llgini	-30.41007	-24.92428	-5.485783	4.610537
L1young	1.366945	1.28032	.0866249	.1378465
Llold	1.335605	1.641813	3062076	.2227568
year2007	.4974565	.2547917	.2426649	.1436711
year2008	6770634	-1.077568	.4005049	.2370156
year2009	6682617	-1.145741	.4774796	.2839276
year2010	-2.148101	-2.738704	.5906032	.3676327

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic