RESTRICCIONES DE INTEGRIDAD

1. RESTRICCIÓN GENERAL

La única restricción de integridad que se puede indicar es que un atributo no puede ser NULL. Se ponen escribiendo NOT NULL después del atributo

2. CASOS ESPECÍFICOS

- <u>Dominios</u>: Se puede definir una restricción para el dominio mediante una clausula CHECK, que especifica una condición que se debe cumplir.
- <u>Claves primarias:</u> Se puede definir mediante una clausula que se coloca como **PRIMARY KEY** (k1, k2, ...).
- Claves candidato: Se puede definir con una cláusula UNIQUE (k1, k2, ...).
- <u>Claves externas:</u> Se puede definir con una cláusula FOREIGN KEY (a1, a2, ...) REFERENCES tablaReferenciada [(k1, k2, ...)].

DISEÑO DE BASES DE DATOS RELACIONALES

- **<u>Descomposición:</u>** Dividir el esquema en dos o en más esquemas más simples.
- Clave y Dependencia funcional: Son restricciones de la BD que exigen que las relaciones cumplan determinadas propiedades. Las relaciones que las cumplen son legales.
 - <u>Clave:</u> Es un conjunto de atributos que identifica de manera unívoca toda una tupla.
 - **Dependencia funcional:** Permite expresar restricciones que identifica de manera unívoca a determinados atributos. Permiten expresar restricciones que no se puede con superclaves.

TEORIA DE DEPENDENCIAS FUNCIONALES

- Reglas de inferencia de Armstrong:
 - **1.** Regla de la reflexividad: genera las dependencias triviales x->y x.
 - 2. Regla de la aumetatividad: x->y, wx->wy
 - 3. Regla de la transitividad: x->y, y->z, x->z
- Reglas derivadas de los axiomas de Armstrong:
 - 4. Regla de la unión: x->y, x->yz, x->z
 - 5. Regla de la descomposición: x->yz, x->z, x->y
 - 6. Regla de la pseudotransitividad: x->y, wy->z, wx->z
- <u>Cierre de un conjunto de atributos</u>: Dado un conjunto de atributos, qué otros atributos puedo alcanzar.
- **Recubrimiento canónico:** conjunto equivalente más pequeño posible.
- Atributo ajeno: aquel que es trivial.

Ej.: $F = \{AB \rightarrow CD, A \rightarrow B, C \rightarrow D\}$, sobran D y B ya que $A \rightarrow B$ y $C \rightarrow D$.

DESCOMPOSICION MEDIANTE DEPENDENCIAS FUNCIONALES

- Normalizar: eliminar la redundancia.
- **Descomposición de producto,** propiedades:
 - Sin pérdida de información: los atributos comunes han de ser clave o bien de R1 o R2.
 - Conservación de dependencias: hace referencia a un asunto de rendimiento, a la hora de comprobar el cumplimiento de las dependencias.