1 Fonctions numériques. Rappels et compléments

I - Limites

Lorsque nous écrivons ∞ cela signifie que c'est valable pour $+\infty$ comme pour $-\infty$ Il existe quatre cas d'indétermination dans les opérations sur les limites :

$$<<+\infty-\infty>>;$$
 $<<\frac{\infty}{\infty}>>;$ $<<\frac{0}{0}>>;$ $<<0\times\infty>>$

Limites usuelles

$$n \in \mathbb{N}^*$$

$$-\lim_{x \to +\infty} x^n = +\infty$$

$$-\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si n pair} \\ -\infty & \text{si n impair} \end{cases}$$

$$-\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$-\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$-\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$-\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Remarque 1. Les fonctions cosinus et sinus n'ont pas de limites à l'infini.

Limite de la composée de deux fonctions

Propriété 2. Soient f et g deux fonctions, a, b et c trois réels pouvant éventuellement être $+\infty$ ou $-\infty$.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} g[f(x)] = c$

Exemple 3. Calculons
$$\lim_{x \to +\infty} \cos \left(\frac{x+1}{x^2-2} \right)$$

On a: $\lim_{x \to +\infty} \frac{x+1}{x^2-2} = 0$ et $\lim_{x \to 0} \cos x = \cos 0 = 1$ donc par composée $\lim_{x \to +\infty} \cos \left(\frac{x+1}{x^2-2} \right) = 1$

/

Comparaisons de limites

Soient f, g et h trois functions et $l \in \mathbb{R}$ et $a = +\infty$ ou $a = -\infty$.

Hypothèse 1	Hypothèse 2	Conclusion
$f \leq g$	$\lim_{x \to a} f(x) = +\infty$	$\lim_{x \to a} g(x) = +\infty$
$f \leq g$	$\lim_{x \to a} g(x) = -\infty$	$\lim_{x \to a} f(x) = -\infty$
$ f(x) - l \le g(x)$	$\lim_{x \to a} g(x) = 0$	$\lim_{x \to a} f(x) = l$
$g \le f \le h$	$\lim_{x \to a} g(x) = l \text{ et } \lim_{x \to a} h(x) = l$	$\lim_{x \to a} f(x) = l$

Remarque 4. La dernière propriété est parfois appelée « le théorème des gendarmes ».

Exemple 5. — Soit $f(x) = x + 3\cos x$.

Pour tout $x \in \mathbb{R}$: $x-3 \le f(x) \le x+3$

· On a: $x - 3 \le f(x)$ et $\lim_{x \to +\infty} x - 3 = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$ · On a: $f(x) \le x + 3$ et $\lim_{x \to -\infty} x - 3 = -\infty$ donc $\lim_{x \to -\infty} f(x) = -\infty$

- Calculons $\lim_{x \to +\infty} \frac{\sin x}{x}$.

Pour tout $x \ge 1$: $-1 \le \sin x \le 1$ En multipliant par $\frac{1}{x}$: on $a - \frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$ Or $\lim_{x \to +\infty} (-\frac{1}{x}) = \lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} \frac{\sin x}{x} = 0$

Limites et nombre dérivé

Théorème 6. Soit *f* une fonction dérivable.

Si
$$\lim_{x \to a} f'(x) = l$$
, (l réel fini ou pas) alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

Exemple 7. Calculons $\lim_{x\to 0} \frac{\sin x}{x}$ Posons $f(x) = \sin x$

On a f(0) = 0 et $f'(x) = \cos x$ $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \cos x = 1 \text{ donc } \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x} = 1$

II - Branches infinies d'une courbe

Soit une fonction numérique f et $\mathscr C$ sa courbe représentative dans un repère orthogonal du plan.

1. Asymptotes

Asymptote verticale

Elle traduit, graphiquement, le fait que la fonction f admet une limite infinie en un réel a.

Définition 8. Si $\lim_{x \to a^+} f(x) = \infty$ ou $\lim_{x \to a^-} f(x) = \infty$ ou $\lim_{x \to a} f(x) = \infty$ alors la droite d'équation x = a est une asymptote verticale à la courbe \mathscr{C} .

Asymptote horizontale

Elle traduit, graphiquement, le fait que la fonction *f* admet une limite finie à l'infini.

Définition 9. Si $si \lim_{x \to \infty} f(x) = b$ (réel) alors la droite y = b est une asymptote horizontale à la courbe \mathscr{C} en ∞ .

Exemple 10. Pour la fonction $f: x \mapsto 3 + \frac{5}{x-1}$

- la droite d'équation y = 3 est asymptote horizontale
- la droite d'équation x = 1 est asymptote verticale à la courbe de f.

Asymptote oblique

Définition 11. Soit f une fonction et Δ la droite d'équation y = ax + b. Si $\lim_{\substack{x \to \infty \\ a}} (f(x) - (ax + b)) = 0$ alors la droite d'équation y = ax + b est une asymptote oblique à la courbe de f en ∞ .

Exemple 12. Pour la fonction $f: x \mapsto x + \frac{2}{x-1}$ dont la courbe est représentée ci dessous, la droite d'équation y = x est asymptote oblique à la courbe de f.

Remarque 13. Si f s'écrit sous la forme f(x) = ax + b + g(x) et si $\lim_{x \to \infty} g(x) = l$ (réel) alors la droite y = ax + b + l est une asymptote à \mathscr{C} en ∞ .

Exemple 14. Pour la fonction $f: x \mapsto 2x + 5 - \frac{2x}{x-1}$ la droite d'équation y = 2x + 3 est

asymptote oblique à sa courbe en ∞ car $\lim_{x\to\infty} \frac{2x}{x-1} = 2$.

Position relative d'une courbe et son asymptote

Pour étudier la position relative de la courbe \mathscr{C} d'une fonction f par rapport à son asymptote Δ : y = ax + b, on étudie le signe de la différence f(x) - ax - b.

- Si f(x) ax b > 0 alors \mathscr{C} est située au-dessus de la courbe de Δ
- Si f(x) ax b < 0 alors la courbe de \mathscr{C} est située en-dessous de la courbe de Δ
- Si f(x) ax b = 0 alors la courbe de \mathscr{C} et Δ sont sécantes.

On tiendra compte de l'ensemble sur lequel on doit étudier la position relative des deux courbes.

2. Recherche de branches infinies

Lorsque $\lim f(x) = \infty$, la courbe $\mathscr C$ présente une branche infinie qu'il faut étudier.

- Si $\lim_{x\to\infty}\frac{f(x)}{x}=0$ alors la courbe $\mathscr C$ présente une branche parabolique dans la direction de l'axe des abscisses.
- Si $\lim_{x\to\infty}\frac{f(x)}{x}=\infty$ alors la courbe $\mathscr C$ présente une branche parabolique dans la direction de l'axe des ordonnées.
- Si $\lim_{x \to \infty} \frac{f(x)}{x} = a$ réel non nul alors on calcule $\lim_{x \to \infty} (f(x) ax)$ Si $\lim_{x \to \infty} (f(x) ax) = b$ (réel) alors la droite (*D*) d'équation : y = ax + b est asymptote à la
 - $\operatorname{courbe}^{x\to\infty}\mathscr{C}$.
 - Si $\lim_{x\to\infty} (f(x) ax) = \infty$ alors la courbe admet une branche parabolique de direction asymptotique la droite d'équation y = ax.

Exercice 15. On considère la fonction
$$f$$
 définie par : $f(x) = \begin{cases} \sqrt{x+4} & \text{si } x \ge 2 \\ x+3-\frac{2}{x-1} & \text{si } x < 2 \end{cases}$

- 1. Déterminer les limites aux bornes de D_f .
- 2. Etudier la nature des branches infinies de la courbe \mathscr{C} .
- 3. Etudier la position relative de \mathscr{C} par rapport à son asymptote oblique.

$$D\'{e}monstration. \qquad 1. \ f(x) \text{ existe ssi } \begin{cases} x+4\geq 0 \\ x\geq 2 \end{cases} \text{ ou } \begin{cases} x-1\neq 0 \\ x<2 \end{cases}$$

$$f(x) \text{ existe ssi } \begin{cases} x\geq -4 \\ x\geq 2 \end{cases} \text{ ou } \begin{cases} x\neq -1 \\ x<2 \end{cases}$$

$$f(x) \text{ existe ssi } x\geq 2 \text{ ou } x\in]-\infty, -1[\cup]-1, 2[$$

$$\text{donc } f(x) \text{ existe ssi } x\in]-\infty, -1[\cup]-1, 2[\cup]2, +\infty[$$

D'où
$$D_f =]-\infty$$
 , $-1[\,\cup\,]-1$, $+\infty[$

Limites aux bornes de $D_f \lim_{x \to +\infty} x + 4 = +\infty$ par composée $\lim_{x \to +\infty} \sqrt{x + 4} = +\infty$ d'où $\lim_{x \to +\infty} f(x) = -\infty$

$$\lim_{x \to -\infty} x + 3 - \frac{2}{x - 1} = \lim_{x \to -\infty} x + 3 - \lim_{x \to -\infty} \frac{2}{x - 1} = -\infty \text{ d'où } \lim_{x \to +\infty} f(x) = -\infty$$

L'étude de la limite en 1 se fait uniquement sur la restriction $x \mapsto x + 3 - \frac{2}{x-1}$

$$\begin{cases} \lim_{x \to 1^{+}} x + 3 = 4 \\ \lim_{x \to 1^{+}} -\frac{2}{x - 1} = -\infty \end{cases} \quad \text{donc } \lim_{x \to 1^{+}} f(x) = -\infty$$
$$\begin{cases} \lim_{x \to 1^{-}} x + 3 = 4 \\ \lim_{x \to 1^{-}} -\frac{2}{x - 1} = +\infty \end{cases} \quad \text{donc } \lim_{x \to 1^{-}} f(x) = +\infty$$

2. Puisque $\lim_{x \to 1^+} f(x) = -\infty$ et $\lim_{x \to 1^-} f(x) = +\infty$ donc la droite d'équation x = 1 est une asymptote verticale à la courbe de f.

Puisque la restriction de f sur $]-\infty$, 2[s'écrit sous la forme $x \mapsto x+3-\frac{2}{r-1}$ et que

 $\lim_{x \to -\infty} \frac{2}{x-1} = 0 \text{ donc la droite } \Delta \text{ d'équation } y = x+3 \text{ est une asymptote oblique à la courbe de } f.$

D'autre part $\lim_{x \to +\infty} f(x) = +\infty$ doc \mathscr{C}_f présente une branche infinie en $+\infty$.

Calculons $\lim_{x \to +\infty} \frac{f(x)}{x}$

$$\lim_{x \to +\infty} \frac{\sqrt{x+3}}{x} = \lim_{x \to +\infty} \frac{x+3}{x\sqrt{x+3}} = \lim_{x \to +\infty} \frac{x+3}{x} \times \lim_{x \to +\infty} \frac{1}{\sqrt{x+3}} = 1 \times 0 = 0 \text{ d'où } \mathscr{C}_f \text{ admet un}$$
branche parabolique d'axe (Ox).

3. Etudions la position relative de Δ et \mathscr{C}_f .

Pour cela étudions le signe de $f(x) - (x+3) = -\frac{2}{x-1}$ pour x < 2

X	$-\infty$	1	2
signe de $-\frac{2}{x-1}$	+		_

Sur $]-\infty$, $1[-\frac{2}{x-1}>0$ donc \mathscr{C}_f est au dessus de Δ .

Sur $]-\infty$, $1[-\frac{2}{x-1}<0$ donc \mathscr{C}_f est au dessous de Δ .

III - Continuité

Continuité en un réel

Définition 16. Une fonction f est continue en un réel a ssi $a \in D_f$ et $\lim_{x \to a} f(x) = f(a)$.

Exemple 17. Soit
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{x-1} & \text{si } x \neq 1 \\ \frac{1}{2} & \text{si } x = 1 \end{cases}$$

Etudions la continuité de f en 1.

Pour $x \neq 1$, f(x) existe si et seulement, si $x \geq 0$ et $x - 1 \neq 0$

si et seulement, si $x \ge 0$ et $x \ne 1$

si et seulement, si $x \in [0, 1[\cup]1, +\infty[$

Or $f(1) = \frac{1}{2}$ d'où f(x) existe si et seulement, si $x \in [0, +\infty[$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

donc $\lim_{x \to 1} f(x) = f(1) = \frac{1}{2}$ d'où f est continue en 1.

Continuité à droite = continuité à gauche

Propriété 18. f est continue en a si et seulement, si $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.

Prolongement par continuité

Définition 19. Soit f une fonction **non** définie en a et l un nombre réel tel que $\lim_{x \to a} f(x) = l$. On appelle **prolongement par continuité** de f en a, la fonction g définie par :

$$g(x) = \begin{cases} f(x) & \text{si } x \neq a \\ l & \text{si } x = a \end{cases}$$

NB: La fonction g est définie et continue en a.

Exemple 20. Montrons que la fonction $f: x \mapsto \frac{x^2 - x - 2}{x - 2}$ est prolongeable par continuité en 2 et trouvons son prolongement par continuité.

Réponse:

f(x) existe si et seulement, si $x \neq 2$.

 $\lim_{\substack{x\to 2\\ \text{en }2.}} \frac{x^2-x-2}{x-2} = \lim_{\substack{x\to 2}} \frac{(x-2)(x+1)}{x-2} = \lim_{\substack{x\to 2}} (x+1) = 3 \text{ finie donc } f \text{ est prolongeable par continuité}$

Son prolongement par continuité en 2 est la fonction g définie par :

$$g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si} \quad x \neq 2\\ 3 & \text{si} \quad x = 2 \end{cases}$$

IV - Dérivabilité

Dérivabilité en un réel

Définition 21. Soit f une fonction définie sur un intervalle I et $a \in I$. f est dérivable en a s'il existe un nombre réel l tel que $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$ l est le **nombre dérivé** de f en a. On le note f'(a).

Autre formulation de la définition

On fait le changement de variable suivant h = x - a

f est dérivable en a s'il existe un nombre réel l tel que $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}=l$

Exemple 22. Soit
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{x-1} & \text{si } x \neq 1 \\ \frac{1}{2} & \text{si } x = 1 \end{cases}$$
 Etudions la dérivabilité de f en 1.

Réponse:

On avait trouvé que $D_f = [0, +\infty]$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{\sqrt{x} - 1}{x - 1} - \frac{1}{2}}{x - 1} = \lim_{x \to 1} \frac{2\sqrt{x} - (x + 1)}{2(x - 1)^2} = \lim_{x \to 1} \frac{-x^2 + 2x - 1}{2(x - 1)^2(2\sqrt{x} + x + 1)} = \lim_{x \to 1} \frac{-1}{2(2\sqrt{x}$$

Donc f est dérivable en 1 et de nombre dérivé $f'(1) = -\frac{1}{8}$.

Propriété

Propriété 23. Si f est dérivable en a, alors f est continue en a.

Attention : La réciproque de cette propriété est fausse.

La fonction $x \mapsto |x|$ est continue en 0 mais elle n'est pas dérivable en 0.

Propriété: Dérivabilité à droite - dérivabilité à gauche

Propriété 24. f est dérivable en a si et seulement, si :

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = l \quad \text{r\'eel}$$

$$f_d^{'}(a) = f_g^{'}(a)$$

Le nombre dérivé de f à droite en a = Le nombre dérivé de f à gauche en a

Notation 25. Les notations $f'_d(a)$ et $f'_g(a)$ s'utilisent que lorsque la limite du taux de variation est un réel.

Cas de non dérivabilité

- · Si $\lim_{x \to a} \frac{f(x) f(a)}{x a} = +\infty$ ou $-\infty$ alors f n'est pas dérivable en a. · Si $f'_d(a) \neq f'_g(a)$ alors f n'est pas dérivable en a.

Interprétation graphique de la dérivabilité

1. Si f est dérivable en a alors sa courbe $\mathscr C$ admet au point d'abscisse a c-à-d le point A(a, f(a))une **tangente** de coefficient directeur (ou pente) f'(a) d'équation : y = f'(a)(x-a) + f(a). NB

f'(a) = 0 si et seulement si \mathscr{C} admet au point d'abscisse a une tangente horizontale d'équation y = f(a).

Dans ce cas, le point A(a, f(a)) est soit un **extremum** (maximum ou minimum) soit un point d'inflexion.

- 2. Si f est dérivable à droite et à gauche de a telle que $f'_d(a) \neq f'_g(a)$ alors $\mathscr C$ admet au point A(a, f(a)) deux demi-tangentes de pentes respectives $f'_d(a)$ et $f'_g(a)$: le point A est un point anguleux.
- 3. Détaillons les cas de l'infini.

Si $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = +\infty$ alors la courbe de f admet au point $A(a, f(a))$ une demi-tangente	Si $\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = +\infty$ alors la courbe de f admet au point $A(a, f(a))$ une demi-tangente
verticale dirigée vers le haut.	verticale dirigée vers le bas.
Si $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = -\infty$ alors la courbe de f admet au point $A(a, f(a))$ une demi-tangente	Si $\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = -\infty$ alors la courbe de f admet au point $A(a, f(a))$ une demi-tangente
verticale dirigée vers le bas.	verticale dirigée vers le haut.

4. Si $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = +\infty$ et $\lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} = -\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales dirigées vers le haut d'équation x = a. A est un point de rebroussement.

- 5. Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = -\infty$ et $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = +\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales dirigées vers le bas d'équation x = a. A est un point de rebroussement.
- 6. Si $\lim_{x \to a^+} \frac{f(x) f(a)}{x a} = +\infty$ et $\lim_{x \to a^-} \frac{f(x) f(a)}{x a} = +\infty$ alors la courbe de f admet au point A(a, f(a)) deux demi-tangentes verticales de même équation x = a l'une dirigée vers le haut et l'autre vers le bas. A est un point d'inflexion.
- 7. Si $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a} = +\infty$ et $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a} = -\infty$ alors la courbe de f admet au point A(a,f(a)) deux demi-tangentes verticales de même équation x=a l'une dirigée vers le haut et l'autre vers le bas. A est un point d'inflexion à tangente verticale.

V - Continuité et dérivabilité sur un intervalle

Définition 26. — f est continue (resp. dérivable) sur l'intervalle I si elle est continue (resp. dérivable) en tout réel $x \in I$.

La fonction qui à tout réel x de I associe le nombre dérivé de f en x s'appelle fonction dérivée ou dérivée de f et est notée f': x → f'(x).
L'ensemble des réels x pour lesquels f'(x) existe est appelé ensemble ou domaine de dérivabilité de f : c'est le domaine de définition de f'.

Rappelons ci-dessous les fonctions dérivées de certaines fonctions usuelles.

Fonction f définie par :	Dérivable sur	Fonction dérivée $f'(x)$
f(x) = k, avec k réel	R	0
$f(x) = x^n \text{ avec } n \in \mathbb{Q}$	R	nx^{n-1}
$f(x) = \frac{1}{x}$	\mathbb{R}_+^* ou \mathbb{R}^*	$-\frac{1}{x^2}$
$f(x) = \sqrt{x}$	R ₊ *	$\frac{1}{2\sqrt{x}}$
$f(x) = \cos x$	R	$-\sin x$
$f(x) = \sin x$	R	cosx
$f(x) = \tan x$	$\left \begin{array}{c} (2k-1)\frac{\pi}{2}, (2k+1)\frac{\pi}{2} \left[, k \in \mathbb{Z} \right] \end{array} \right $	$1 + \tan^2 x \text{ ou } \frac{1}{\cos^2 x}$

Propriété 27. Soient f et g deux fonctions continues (resp. dérivables) sur un intervalle I.

- les fonctions f + g et fg sont continues (resp. dérivables) sur I.
- Si de plus $g \neq 0$ sur I alors les fonctions $\frac{1}{g}$ et $\frac{f}{g}$ sont continues (resp. dérivables) sur I.

Cas particuliers

- Les fonctions polynômes sont continues et dérivables sur \mathbb{R} .
- Les fonctions rationnelles sont continues et dérivables sur tout intervalle de leur ensemble de définition.

- Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont continues et dérivables sur \mathbb{R} .
- La fonction $x \mapsto \tan x$ est continue et dérivable sur tout intervalle du type $\left| (2k-1)\frac{\pi}{2}, (2k+1)\frac{\pi}{2} \right|$, $k \in \mathbb{Z}$.

Image d'un intervalle par une fonction continue

Nous admettons le théorème suivant.

Théorème 28. Si f est une fonction *continue* sur un intervalle I alors f(I) est un intervalle .

Cas particuliers

Le tableau suivant donne les images de quelques intervalles simples par une fonction **continue et strictement monotone** . a et b peuvent être éventuellement $+\infty$ ou $-\infty$.

totaletement monotone. Wet b peavent one eventuement 100 ou 00.							
	f(I)						
<i>I</i> intervalle	f continue et strictement croissante	f continue et strictement décroissante					
	$\operatorname{sur} I$	sur I					
[<i>a</i> , <i>b</i>]	[f(a),f(b)]	[f(b), f(a)]					
[a, b[$f(a)$, $\lim_{x\to b^-} f(x)$	$\lim_{x \to b^{-}} f(x), f(a)$					
]a, b]	$\lim_{x \to a^+} f(x), f(b)$	$f(b), \lim_{x \to a^+} f(x)$					
]a, b[$\lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)$	$\lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)$					

Continuité et dérivabilité de la composée de deux fonctions

Propriété 29. · Si f est continue sur l'intervalle I et g continue sur l'intervalle f(I) alors la fonction $g \circ f$ est continue sur I.

· Si f est dérivable sur l'intervalle I et g dérivable sur l'intervalle f(I) alors la fonction $g \circ f$ est dérivable sur I et pour tout $x \in I$, on a :

$$(g \circ f(x))' = f'(x) \times g'[f(x)]$$

Exemple 30. Soit $h(x) = \cos \frac{1}{x}$. Calculons h'(x). On a $D_h =]-\infty$, $0[\cup]0$, $+\infty[$

Attention : Avant de dériver une fonction, il est recommandé de justifier sa dérivabilité même si la question ne le précise pas.

La fonction rationnelle $x \mapsto \frac{1}{x}$ est définie sur \mathbb{R}^* donc dérivable sur chacun des intervalles $]-\infty$, [0] et [0], [0].

La fonction $x \mapsto \cos x$ est dérivable sur \mathbb{R} ; en particulier sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$

D' où par composée h est dérivable sur chacun des intervalles] $-\infty$, 0[et]0 , $+\infty$ [.

Pour tout $x \neq 0$: $h'(x) = \frac{1}{x^2} \sin \frac{1}{x}$

Conséquence 31. · Si f est dérivable (resp. continue) sur I et g dérivable sur \mathbb{R} alors $g \circ f$ est dérivable (resp. continue) sur I.

- · Si f est **continue et positive** sur I alors \sqrt{f} est continue sur I.
- · Si f est **dérivable et strictement positive** sur I alors \sqrt{f} est dérivable sur I.

Formules de dérivations

Soient u et v deux fonctions dérivables, $r \in \mathbb{Z}^*$ et $k \in \mathbb{R}$

Fonction	ku	u + v	uv	$\frac{u}{v}$	$\frac{1}{\nu}$	\sqrt{u}	u^r
Dérivée	ku'	u' + v'	u'v + v'u	$\frac{u'v-v'u}{v^2}$	$-\frac{v'}{v^2}$	$\frac{u'}{2\sqrt{u}}$	$ru'u^{r-1}$

$v \circ u$	sin u	cos u	tan u
$u' \times (v' \circ u)$	$u'\cos u$	$-u'\sin u$	$\frac{u'}{\cos^2 u}$

Exercice 32. Soit
$$f(x) = \frac{(x+1)\sqrt{x-2}}{x-1}$$
.

- 1. Etudier la continuité de f sur son D_f .
- 2. Etudier la dérivabilité de f sur son D_f .
- 3. Calculer f'(x).

Démonstration. 1. f(x) existe si et seulement, si $x \ge 2$ et $x \ne 1$ donc $D_f = [2, +\infty[$

1^{re} méthode

La fonction $x \mapsto \frac{x+1}{x-1}$ est une fonction rationnelle définie sur $[2, +\infty[$

La fonction $x \mapsto x-2$ est continue et positive sur $[2, +\infty[$ donc la fonction $x \mapsto \sqrt{x-2}$ est continue sur $[2, +\infty[$ par composée.

On en déduit que f est continue sur D_f comme produit et composée de fonctions continues.

2^{re} méthode

La fonction $x \mapsto x + 1$ est continue sur $[2, +\infty[$,

La fonction $x \mapsto x - 1$ est continue et non nulle sur $[2, +\infty]$,

La fonction $x \mapsto x - 2$ est continue et positive sur $[2, +\infty[$ donc la fonction $x \mapsto \sqrt{x - 2}$ est continue sur $[2, +\infty[$ par composée.

On en déduit que f est continue sur D_f comme produit, quotient et composée de fonctions continues.

2. 1^{re} méthode

La fonction $x\mapsto \frac{x+1}{x-1}$ est une fonction rationnelle définie sur $[2,+\infty[$ donc dérivable sur $[2,+\infty[$

La fonction $x \mapsto x - 2$ est dérivable et strictement positive sur]2, $+\infty$ [donc la fonction $x \mapsto \sqrt{x-2}$ est dérivable sur]2, $+\infty$ [. par composée.

On en déduit que f est dérivable sur]2 , $+\infty$ [comme produit et composée de fonctions dérivables.

2^{re} méthode

La fonction $x \mapsto x + 1$ est dérivable sur $[2, +\infty[$

La fonction $x \mapsto x - 1$ est dérivable et non nulle sur sur]2, $+\infty$ [

La fonction $x \mapsto x - 2$ est dérivable et strictement positive sur]2, $+\infty$ [donc la fonction $x \mapsto \sqrt{x-2}$ est dérivable sur]2, $+\infty$ [par composée.

On en déduit que f est dérivable sur]2 , $+\infty$ [comme produit, quotient et composée de fonctions dérivables.

3.
$$\forall x > 2, f'(x) = \frac{-2}{(x-1)^2} \times \sqrt{x-2} + \frac{1}{2\sqrt{x-2}} \times \frac{x+1}{x-1}$$

Soit $f'(x) = \frac{x^2 - 4x + 7}{2(x-1)^2 \sqrt{x-2}}$

Dérivée et sens de variations

Théorème 33. Soit f une fonction dérivable sur un intervalle I.

- f est strictement croissante sur I si et seulement si : $\forall x \in I$, $f'(x) \ge 0$ et f' ne s'annule qu'en un nombre fini de points de I.
- f est strictement décroissante sur I si et seulement si : $\forall x \in I$, $f'(x) \le 0$ et f' ne s'annule qu'en un nombre fini de points de I.
- f est croissante sur I si et seulement si : $\forall x \in I, f'(x) \ge 0$.
- f est décroissante sur I si et seulement si : $\forall x \in I$, $f'(x) \le 0$.

Signe d'une fonction à partir de ses variations

Les cas classiques:

$$\begin{array}{c|cccc} x & & & \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & \searrow & + \min & \diagup \end{array}$$

Si f(x) admet un minimum positif sur I alors f est positive sur I.

$$\begin{array}{c|cccc} x & & & \\ \hline f'(x) & + & 0 & - \\ \hline f(x) & \nearrow & \max & \searrow \end{array}$$

/

Si f(x) admet un maximum négatif sur I alors f est négative sur I.

\boldsymbol{x}	α	
f'(x)	_	_
f(x)	\ 0	

f(x) est positif si $x \le \alpha$.

f(x) est négatif si $x \ge \alpha$.

$$\begin{array}{c|cccc} x & \alpha & \\ \hline f'(x) & + & + \\ \hline f(x) & \nearrow & 0 & \nearrow \end{array}$$

f(x) est négatif si $x \le \alpha$.

f(x) est positif si $x \ge \alpha$.

Dérivées successives

Définition 34. Soit f une fonction dérivable sur I, sa fonction dérivée f' est appelée fonction dérivée première et est notée $f^{(1)}$.

Si f' est dérivable sur I, on dit que f est deux fois dérivable alors dans ce cas la fonction dérivée de f' c'est à dire (f')' est appelée *fonction dérivée seconde* de f et est notée f'' ou $f^{(2)}$.

Si f'' est à son tour dérivable sur I, alors sa fonction dérivée est appelée fonction dérivée troisième de f et est notée f''' ou $f^{(3)}$.

Par itération si la dérivée n-ième de f existe, on la note $f^{(n)}$.

Exemple 35.
$$f(x) = x \sin x$$
 $f'(x) = \sin x + x \cos x$, $f''(x) = 2 \cos x + x \sin x$, $f^{(3)}(x) = -3 \sin x + x \cos x$, etc.

Remarque 36. $\cdot f^{(n)}$ est aussi appelée dérivée d'ordre n de f.

· En **Physique** $f', f'', \dots, f^{(n)}$ sont notées respectivement $\frac{df}{dx}, \frac{d^2f}{dx^2}, \dots, \frac{d^nf}{dv^n}$.

Notion de différentielle

Une petite variation Δx de la variable x provoque une petite variation $\Delta y = f(x + \Delta x) - f(x)$ des images.

Lorsque Δx est voisin de 0, on assimile $dx = \Delta x$ et on peut écrire : $\frac{dy}{dx} = f'(x)$ ou dy = f'(x)dx ou $dy = f'(x)\Delta x$.

Exemple 37. Pour la fonction $y = 2x^2 - x$ avec x = 1 et $\Delta x = 0,01$ Vérifier que la différentielle dy = 0,03 et l'accroissement $\Delta y = 0,0302$

Position d'une courbe par rapport à sa tangente

Nous admettons le résultat suivant :

Si f est une fonction deux fois dérivable sur I et si f'' est négative sur I, alors la courbe $\mathscr C$ de f est en dessous de toutes ses tangentes. On dit que $\mathscr C$ est **concave.**

Si f est une fonction deux fois dérivable sur I et si f'' est positive sur I, alors la courbe $\mathscr C$ de f est en dessus de toutes ses tangentes. On dit que $\mathscr C$ est **convexe.**

Point d'inflexion

Définition 38. On dit que la courbe de f admet un point d'inflexion d'abscisse x_0 si la courbe y traverse sa tangente.

Théorème 39. Si f est deux fois dérivable sur un intervalle ouvert I contenant x_0 et si f'' s'annule en changeant de signe en x_0 alors le point de la courbe d'abscisse x_0 est un **un point** d'inflexion.

Exemple 40. Reprenons l'exemple précédent $f: x \mapsto x^3 - 3x^2$

f est dérivable sur $\mathbb R$ car fonction polynôme.

On a
$$f'(x) = 6x^2 - 6x$$
 et $f''(x) = 6x - 6$

$$f''(x) = 0 \iff x = 1$$

X	$-\infty$	1	+∞
signe de $f''(x)$	+	0	_

D'après le tableau de signes, f'' s'annule en 1 en changeant de signe; donc le point (1, -2) est un point d'inflexion de la courbe.

Inégalité des accroissements finis

Nous admettons le théorème de l'inégalité des accroissements finis et nous donnons ici les deux formes.

Première forme

Soit f une fonction dérivable sur un intervalle I. On suppose qu'il existe deux réels m et M tels que : $m \le f'(x) \le M$ pour tout $x \in I$.

Alors pour tous a et b de I (b < a) on a : $m(b-a) \le f(b) - f(a) \le M(b-a)$

Deuxième forme

Soit f une fonction dérivable sur un intervalle I. On suppose qu'il existe un réel M tel que : $|f'(x)| \le M$ pour tout $x \in I$.

Alors pour tous a et b de I on a : $|f(b) - f(a)| \le M|b - a|$

Exercice 41. Soit
$$f$$
 la fonction définie sur $\left[0, \frac{\pi}{4}\right]$ par $f(x) = \sin x$
Démontrer que $\forall x \in \left[0, \frac{\pi}{4}\right]$ on a : $\frac{\sqrt{2}}{2}x \le \sin x \le x$

Démonstration. La fonction
$$f$$
 est dérivable sur $I = \left[0, \frac{\pi}{4}\right]$ et $\forall \in I$ on a : $f'(x) = \cos x$ Or $\forall x \in \left[0, \frac{\pi}{4}\right]$ on a $\frac{\sqrt{2}}{2} \le \cos x \le 1$ donc pour $a = 0$ et $b = x \in I$, le T.I.A.F donne : $-1 \times \frac{\sqrt{2}}{2}(x - 0) \le \sin x - \sin 0 \le 1 \times (x - 0)$ d'où $\frac{\sqrt{2}}{2}x \le \sin x \le x$. □

VI - Théorème des valeurs intermédiaires

Théorème 42 (T.V.I). Soit f une fonction **continue** sur un intervalle [a, b]. Pour tout nombre réel β compris entre f(a) et f(b), il existe **au moins** un réel $\alpha \in [a, b]$ tel que $f(\alpha) = \beta$.

Conséquence 1

Si f une fonction **continue et strictement monotone** sur l'intervalle [a, b] alors pour tout nombre réel β compris entre f(a) et f(b), il existe **un unique** un réel $\alpha \in [a, b]$ tel que $f(\alpha) = \beta$.

Conséquence 2

a, b, c et d désignent soit des réels, soit $+\infty$, soit $-\infty$.

Soit f une fonction **continue et strictement monotone** sur l'intervalle]a, b[telle que :

$$\lim_{x \to a} f(x) = c \quad \text{et} \quad \lim_{x \to b} f(x) = d$$

Alors pour tout nombre réel β compris entre c et d, l'équation $f(x) = \beta$ admet une solution unique $\alpha \in]a$, b[.

Exercice 43. Soit f la fonction définie par $f(x) = x^3 + x + 1$.

- 1. Etudier les variations de f.
- 2. Montrer que l'équation f(x) = 0 admet une seule solution α dans \mathbb{R} . En déduire que $\alpha \in]-1$, 0[
- 3. Déterminer un encadrement de α d'amplitude 0,01.

Démonstration. 1. f est définie, continue et dérivable sur \mathbb{R} .

$$f'(x) = 3x^2 + 1 > 0 \ \forall x \in \mathbb{R}$$
 Donc f est strictement croissante sur \mathbb{R}

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 + x + 1 = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 + x + 1 = \lim_{x \to -\infty} x^3 = -\infty$$

x	$-\infty$		+∞
f'(x)		+	
f(x)	$-\infty$	/	$+\infty$

2. f est continue et strictement croissante sur \mathbb{R} à valeurs dans sur \mathbb{R} . Or $0 \in \mathbb{R}$ donc d'après la conséquence du T.V.I il existe un unique réel α tel que $f(\alpha) = 0$.

De plus
$$f(-1)f(0) = -1 \times 1 < 0$$
 donc

$$f(-1) < 0 < f(0)$$

$$\Leftrightarrow f(-1) < f(\alpha) < f(0)$$

 $\Leftrightarrow -1 < \alpha < 0$ car f est strictement croissante.

- 3. Encadrement de α d'amplitude 0,01 par la méthode du balayage .
 - · Recherchons d'abord un encadrement de α par deux décimaux consécutifs d'ordre 1. Calculons de proche en proche les images par f des nombres décimaux d'ordre 1 de l'intervalle [-1, 0[jusqu'à ce qu'on observe un changement de signe.

				- 0,6	-0,5	-0,4	-0,3	-0,2	-0,1
f(x)	-	-	-	+					

On obtient $-0.7 < \alpha < -0.6$

· Recherchons ensuite un encadrement de α par deux décimaux consécutifs d'ordre 2. Calculons de proche en proche les images par f des nombres décimaux d'ordre 2 de l'intervalle]-0,7, -0,6[jusqu'à ce qu'on observe un changement de signe.

X	-0,69	-0,68	-0,67	- 0,66	-0,65	-0,64	-0,63	-0,62	-0,61
f(x)	-	+							

On obtient $-0,69 < \alpha < -0,68$

Conséquence 3

Si f est **continue et strictement monotone** sur l'intervalle [a, b] et si f(a)f(b) < 0Alors l'équation f(x) = 0 admet une unique solution $\alpha \in [a, b]$.

Remarque 44. Pour montrer que l'équation f(x) = x admet une unique solution dans l'intervalle I; on pose g(x) = f(x) - x et on applique le T.V.I à la fonction g sur l'intervalle I.

Exemple 45. Montrons que l'équation $\cos x = x$ admet une unique solution α telle que $\frac{\pi}{6} \le \alpha \le \frac{\pi}{4}$. *Réponse*

Remarquons que $\cos x = x \Leftrightarrow \cos x - x = 0$

Posons la fonction $f(x) = \cos x - x$ pour $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.

f est dérivable sur $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ comme somme de deux fonctions dérivables.

Pour $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$, $f'(x) = -\sin x - 1 < 0$; donc f est strictement décroissante.

De plus
$$f(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} - \frac{\pi}{6} > 0$$
 et $f(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\pi}{4} < 0$.

Donc f est continue et strictement décroissante sur l'intervalle $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

et $f(\frac{\pi}{6})f(\frac{\pi}{4}) < 0$ d'où l'équation f(x) = 0 admet une unique solution $\alpha \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.

Fonction réciproque d'une fonction continue et strictement monotone

Théorème 46 (Théorème de la bijection). Soit f une fonction continue et strictement monotone sur l'intervalle I; alors f réalise une bijection de I vers l'intervalle f(I).

En plus sa bijection réciproque f^{-1} est continue et strictement monotone sur l'intervalle f(I) et a le même sens de variation que f.

Les courbes représentatives de f et f^{-1} , dans un repère orthonormé sont symétriques par rapport à la droite d'équation y = x (la première bissectrice du repère).

· Si de plus f est dérivable sur I et f' ne s'annule pas sur I alors f^{-1} dérivable sur f(I) et

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad \forall y \in f(I)$$

Remarque 47. Posons f(a) = b

Si f est dérivable en a et $f'(a) \neq 0$ alors f^{-1} est dérivable en b et $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Attention

Si f est dérivable en a et f'(a) = 0 ou n'existe pas alors f^{-1} n'est pas dérivable en b.

Exercice 48. Soit f la fonction définie par $f(x) = 4x^2 + 4x + 2$.

- 1. Etablir le tableau de variations de f.
- 2. (a) Soit g la restriction de f à l'intervalle $\left[-\frac{1}{2}, +\infty\right[$. Montrer que g réalise une bijection de $\left[-\frac{1}{2}, +\infty\right[$ vers un intervalle J à préciser.
 - (b) Justifier que g^{-1} est dérivable en 2 puis calculer $(g^{-1})'(2)$.

Démonstration. 1. f est définie, continue et dérivable sur \mathbb{R} .

$$f'(x) = 8x + 4 \ \forall x \in \mathbb{R}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4x^2 + 4x + 2 = \lim_{x \to +\infty} 4x^2 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 4x^2 + 4x + 2 = \lim_{x \to -\infty} 4x^2 = +\infty$$

x	$-\infty$		$-\frac{1}{2}$		+∞
f'(x)		-	0	+	
f(x)	$+\infty$	/	1	1	+∞

- 2. (a) g est continue et strictement croissante sur $\left[-\frac{1}{2}, +\infty\right[$ donc réalise une bijection $\left[-\frac{1}{2}, +\infty\right[$ de vers $g(\left[-\frac{1}{2}, +\infty\right[)\right])$ Or $g(\left[-\frac{1}{2}, +\infty\right[)] = \left[g(-\frac{1}{2}), \lim_{x \to +\infty} g(x)\right] = [1, +\infty[$ D'où $\underline{J} = [1, +\infty[$
 - (b) Pour répondre à cette question, il faut calculer l'antécédent de 2 par g. $g(x) = 2 \Leftrightarrow 4x^2 + 4x + 2 = 2 \Leftrightarrow 4x^2 + 4x = 0 \Leftrightarrow x = 0 \text{ ou } x = -1$ Le seul antécédent dans $\left[-\frac{1}{2}, +\infty\right]$ est 0.
 Or g est dérivable en 0 et $g'(0) = f'(0) = 4 \neq 0$ donc g^{-1} est dérivable en 2. On a $(g^{-1})'(2) = \frac{1}{g'(0)} = \frac{1}{4}$.