AI-BASED LOCALIZATION AND CLASSIFICATION OF SKIN DISEASE WITH ERYTHEMA

Although computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical felds such as mammography and colonography, it is not used in dermatology, wherenoninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into diferent common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufcient to use CAD in the feld of dermatology.

Computer-aided diagnosis (CAD) is a computer-based system that is used in the medical imaging feld to aid healthcare workers in their diagnoses1. CAD has become a mainstream tool in several medical felds such as mammography and colonography 1,2. However, in dermatology, although skin disease is a common disease, one in which early detection and classification is crucial for the successful treatment and recovery of patients, dermatolo gists perform most noninvasive screening tests only with the naked eye. Tis may result in avoidable diagnostic inaccuracies as a result of human error, as the detection of the disease can be easily overlooked. Furthermore, classification of a disease is difcult due to the strong similarities between common skin disease symptoms. Terefore, it would be benefcial to exploit the strengths of CAD using artifcial intelligence techniques, in order to improve the accuracy of dermatology diagnosis. Tis paper shows that CAD may be a viable option in the feld of dermatology using state-of-the-art deep learning models. Te segmentation and classification of skin diseases has been gaining attention in the feld of artifcial intel ligence because of its promising results. Two of the more prominent approaches for skin disease segmentation and classification are clustering algorithms and support vector machines (SVMs). Clustering algorithms generally have the advantage of being fexible, easy to implement, with the ability to generalize features that have a similar statistical variance. Trabelsi et al.3experimented with various clustering algorithms, such as fuzzy c-means, improved fuzzy c-means, and K-means, achieving approximately 83% true positive rates in segmenting a skin disease. Rajab et al.4 implemented an ISODATA clustering algorithm to find the optimal threshold for the segmentation of skin lesions. An inherent disadvantage of clustering a skin disease is its lack of robustness against noise. Clustering algorithms rely on the identification of a centroid that can generalize a cluster of data. Noisy data, or the presence of outliers, can significantly degrade the performance of these algorithms. Terefore, with noisy datasets, caused by images with different types of lighting, non-clustering algorithms may be preferred; however, Keke et al.5implemented an improved version of the fuzzy clustering algorithm using the RGB, HSV, and LAB color spaces to create a model that is more robust to noisy data. SVMs have gained attention for their efectiveness in high-dimensional data and their capability to decipher "...subtle patterns in noisy and complex datasets" 6. Lu et al.7 segmented erythema in the skin using the radial basis kernel function that allows SVMs to separate nonlinear hyperplanes. Sumithra et al.8 combined a linear SVM with a k-NN classifer to segment and classify fve diferent classes of skin lesions. Maglogiannis et al.9 implemented a threshold on the RGB value for segmentation and used an SVM for classifcation. Although more robust than clustering algorithms, SVMs are more reliant on the preprocessing of data for feature extraction. Without preprocessing that allows a clear definition of hyperplanes, SVMs may also underperform.

Owing to the disadvantages of these traditional approaches, convolution neural networks (CNNs) have gained popularity because of their ability to extract high-level features with minimal preprocessing 10. CNNs can expand the advantages of SVMs, such as robustness in noisy datasets without the need for optimal preprocessing, by capturing image context and extracting high-level features through down-sampling. CNNs can interpret the pixels of an image within its own image-level context, as opposed to viewing each pixel in a dataset-level context. However, although down-sampling allows CNNs to view an image in its own context, it degrades the resolution of the image. Although context is gained, the location of a target is lost through down-sampling. Tis is not a prob_lem for classification, but causes some diffculty for segmentation, as both the context and location of the target are essential for optimal performance. To solve this, up-sampling is needed, which works in a manner opposite to that of down-sampling, in the sense that it increases the resolution of the image. While down-sampling takes a matrix and decreases it to a smaller feature map, up-sampling takes a feature map and increases it to a larger matrix. By learning to accurately create a higher-resolution image, CNNs can determine the location of the targets to segment. Tus, for segmentation, we use a combination of downsampling and up-sampling, whereas for classification, we use only down-sampling. To further leverage the advantages of CNNs, skip-connections were introduced, which provided a solution to the degradation problem that occurs when CNN models become too large and complex. We implement skip-connections in both segmentation and classification models. In the segmentation model, blocks of equal feature numbers are connected between the down and up-sampling sections. In the classifcation model, these skipconnections exist in the form of inverted residual blocks. Tis allows our models to grow in complexity without any performance degradation. In this paper, we present a method to sequentially combine two separate models to solve a larger problem. In the past, skin disease models have been applied to either segmentation or classification. In this study, we sequen tially combine both models by using the output of a segmentation model as input to a classification model. In addition, although past studies of non-CNN segmentation models used innovative preprocessing methods, recent CNN developments have focused more on the architecture of the model than on the preprocessing of data. As such, we apply an innovative preprocessing method to the data of our CNN segmentation model. Te methods described above lack the ability to localize and classify multiple diseases within one image; however, we have developed a method to address this problem. Our objective is two-fold. First, we show that CAD can be used in the feld of dermatology. Second, we show that stateof-the-art models can be used with current computing power to solve a wider range of

complex problems than previously imagined. We begin by explaining the results of our experimentation, followed by a discussion of our findings, a more detailed description of our methodology, and finally, the conclusions that can be drawn from our study.

RESULT AND DISCUSSION:

Figure 1 shows the schematic fow of our study. We started with the original image. We preprocessed this image by decomposing it into its hemoglobin and melanin constituents. Tese images were then input to the U-Net to generate the segmented output. We drew contours around each cluster and used a convex hull algorithm to draw rectangles around these clusters and crop them as individual images. Tese cropped images were used as input to the EfcientNet, which generated a prediction along with the confdence rate. Table 1 shows the results of the test data for segmentation on our Dermnet dataset. Te K-means clustering algorithm showed sub-optimal performance, owing to its limitations with noisy data. Te SVM method showed a significant improvement in performance, that was attributed to the advantages of using SVMs to extract infor_mation from decomposition, rather than clustering algorithms. Even without the extra information, the U-Net trained without decomposition outperformed the previous two methods in terms of sensitivity. Te U-Net model was also trained with decomposition and showed the highest sensitivity rate. In our results, we focused on the sensitivity metric because our objective was to assess the viability of using CAD with skin images. Although our U-Net model was not as good as the SVM model in terms of the specificity rate, it showed the best sensitivity rate, thus satisfying the objective of our study. In addition, we included the Dice coefcient and Hausdorf distance to demonstrate the performance of our methods with greater transparency. Our method showed clear improvements considering these alternative metrics. A major contributing factor7to the underperformance of other methods is that performance of the SVM algorithm deteriorated when the images contained differences in lighting and shade. Te K-means clustering method3 was also afected by the lighting and shade in the images. As our data had a significant mix of shade and lighting, the CNN was able to generalize the data better by learning to use the context of the image. In any classification problem, it is important to set the baseline performance. We set our baseline to be the accuracy rate of the data without segmentation. Te original image was input into the EfcientNet without going through the U-Net to determine the baseline accuracy rate. We compared this to the accuracy rate of the model trained to classify segmented images. Figure 2 shows the accuracy rates for the classification of our Dermnet dataset. We observed similar accuracy in the baseline model with and without contextual segmentation. Te performance did not decrease when compared with the baseline. Tus, as we gained knowledge of the location of the disease without degrading the performance, we may say that the classification model was successfully

TABLE1:

Method	Sensitivity	Specificity	Dice Coef	Hausdorff distance
K-means method	0.6148	0.6324	0.5165	10.487
SVM method	0.8200	0.8100	0.7123	8.138
U-Net method without decomposition	0.8953	0.7205	0.7215	8.153
U-Net method with decomposition	0.9589	0.7682	0.8126	7.165

Performance metrics for segmentation with dermnet images.

TOP-N ACCURACY METRIC

TABLE2:

Method	AUC	Specificity	Sensitivity	F1-score
Without segmentation	0.8207	0.9642	0.4748	0.4092
Contextual segmentation	0.8104	0.9652	0.4185	0.3876
Refined contextual segmentation	0.8802	0.9513	0.6141	0.6079

Performance matrics for classification with dermnet images.

NOT SEGMENTED & SEGMENTED:

TABLE3:

Method	Sensitivity	Specificity	Dice Coef	Hausdorff distance
ISIC2016				•
K-means method	0.5422	0.8249	0.5439	9.960
SVM method	0.7229	0.8602	0.6939	8.243
U-Net method without decomposition	0.9708	0.9175	0.9060	5.085
U-Net method with decomposition	0.9562	0.9422	0.9198	4.764
ISIC2017	.,		•	1.
K-means method	0.5709	0.7734	0.4926	10.567
SVM method	0.7650	0.7576	0.5967	9.388
U-Net method without decomposition	0.8971	0.8969	0.8188	5.392
U-Net method with decomposition	0.9043	0.9076	0.8199	5.338
HAM 10,000				•
K-means method	0.5500	0.9300	0.6381	6.807
SVM method	0.7256	0.8389	0.6674	8.381
U-Net method without decomposition	0.9542	0.9530	0.9121	4.683
U-Net method with decomposition	0.9569	0.9504	0.9166	4.621

Performance metrics for segmentation with dermatoscopic datasets.

TABLE4:

Method	AUC	Specificity	Sensitivity	F1-score	
ISIC2016					
Without segmentation	0.765	0.726	0.860	0.864	
Contextual segmentation	0.719	0.641	0.826	0.833	
Refined contextual segmentation	0.727	0.698	0.844	0.845	
ISIC2017					
Without segmentation	0.790	0.741	0.761	0.740	
Contextual segmentation	0.750	0.744	0.726	0.723	
Refined contextual segmentation	0.774	0.785	0.766	0.762	
HAM 10,000				1	
Without segmentation	0.891	0.933	0.866	0.871	
Contextual segmentation	0.831	0.884	0.825	0.810	
Refined contextual segmentation	0.871	0.919	0.873	0.866	

Performance metrics for classification with dermatoscopic datasets.

TABLE5:

Top-level categories				
1. Acne and Rosacea	7. Eczema	13. Psoriasis		
2. Actinic keratosis	8. Exanthems	14. Scabies		
3. Atopic dermatitis	9. Fungal infections	15. Systemic disease		
4. Bullous disease	10. Herpes	16. Úrticaria		
5. Cellulitis	11. Light chain disease	17. Vasculitis		
Contact dermatitis	12. Lupus erythematosus	18. Viral infections		

Categories for classification.

TABLE6:

	Number of data						
Dataset: Dermnet	Segmentation			Classification			
Class	Train	Test	Total	Train	Test	Total	
Acne and Rosacea	4	2	6	746	131	877	
Actinic keratosis	4	2	6	1193	181	1374	
Atopic dermatitis	3	2	5	642	120	762	
Bullous disease	3	2	5	393	92	485	
Cellulitis	3	2	5	223	73	296	
Contact dermatitis	3	2	5	231	74	305	
Eczema	4	3	7	1667	234	1901	
Exanthems	3	2	5	354	87	441	
Fungal infections	4	3	7	1601	227	1828	
Herpes	3	2	5	397	94	491	
Light chain disease	3	2	5	538	117	655	
Lupus erythematosus	3	2	5	371	90	461	
Psoriasis	4	3	7	2044	275	2319	
Scabies	3	2	5	448	98	546	
Systemic disease	3	2	5	633	119	752	
Urticaria	3	2	5	138	63	201	
Vasculitis	3	2	5	411	94	505	
Viral infections	4	3	7	1443	209	1652	
Total	60	40	100	13,473	2378	15,851	

Distribution of data in dermnet dataset.

TABLE7:

	Number of data				
Class	Train	Test	Total		
Dataset: ISIC 2016			Set		
Benign	727	303	1030		
Malignant	173	75	248		
Total	900	378	1278		
Dataset: ISIC 2017					
Benign	1372	393	1843		
Melanoma	374	117	386		
Seborrheic keratosis	254	90	521		
Total	2000	600	2750		
Dataset: HAM 10000		:-			
Actinic keratosis	164	163	327		
Basal cell carcinoma	257	257	514		
Benign	549	550	1099		
Dermatofibroma	58	57	115		
Melanoma	556	557	1113		
Melanocytic nevi	3352	3353	6705		
Vascular lesion	71	71	142		
Total	5007	5008	10,015		

Distribution of data in dermatoscopic datasets.

Algorithm 1 AnalyzeSkin
1: procedure SEGMENT(x)
2: $h, m = DECOMPOSE(x)$
3: mask = U-NET([x, h, m]) 4: CLASSIFY(mask)
5: end procedure
6: procedure CLASSIFY(mask)
7: clusters = FINDCLUSTERS(mask)
8: for cluster in clusters do
9: cluster = FIXRATIO(cluster)
10: cluster = RESIZE(cluster)
11: class = EFFICIENTNET(cluster) 12. top_prediction = GETHIGHESTCONFIDENCE(class)
12: print(top_prediction)
13: end for
14: end procedure

b. Hemoglobin Image

c. Melanin Image

SEGMENTATION:

TABLE8:

Model	Top-1 accuracy (%)	Training time per epoch (s)
EfficientNet-B0	39.71	187.965
EfficientNet-B1	43.15	250.170
EfficientNet-B2	44,46	255.180
EfficientNet-B3	43.30	309.375
EfficientNet-B4	45.77	392.925
EfficientNet-B5	45.54	522.975
EfficientNet-B6	45.83	643.965
EfficientNet-B7	47.54	942.720

ETHICS DECLARATIONS:

This study was exempted from the approval by the Institutional Review Board of Seoul National University Boramae Medical Center (No. 07-2020-148). The informed consent was waived by the Insti_tutional Review Board of Seoul National University Boramae Medical Center because patient records Information was anonymized and deidentifed prior to analysis. All experiments were performed in accordance with the relevant guidelines and regulations.

CONCLUSION:

We have shown that even without a large dataset and high-quality images, it is possible to achieve sufcient accuracy rates. In addition, we have shown that current state-of-the-art CNN models can outperform models created by previous research, through proper data preprocessing, self-supervised learning, transfer learning, and special CNN architecture techniques. Furthermore, with accurate segmentation, we gain knowledge of the location of the disease, which is useful in the preprocessing of data used in classification, as it allows the CNN model to focus on the area of interest. Lastly, unlike previous studies, our method provides a solution to classify multiple diseases within a single image. With higher quality and a larger quantity of data, it will be viable to use state-of-the-art models to enable the use of CAD in the feld of dermatology.