

৯ম-১০ম শ্রেণি **রসায়ন**

আলোচ্য বিষয়

অধ্যায় ৫ – রাসায়নিক বন্ধন

অনলাইন ব্যাচ সম্পর্কিত যেকোনো জিজ্ঞাসায়,

ব্যবহারবিধি

দেখে নাও এই অধ্যায় থেকে কোথায় কোথায় প্রশ্ন এসেছে এবং সৃজনশীল ও বহুনির্বাচনীর গুরুত্ব।

🖈 কুইক টিপস

সহজে মনে রাখার এবং দ্রুত ক্যালকুলেশন করতে সহায়ক হবে।

? বহুনির্বাচনী (MCQ)

বিগত বছর গুলোতে বোর্ড, স্কুল, কলেজ এবং বিশ্ববিদ্যালয়ে আসা বহুনির্বাচনী প্রশ্ন দেখে নাও উত্তরসহ।

🡼 সৃজনশীল (CQ)

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সৃজনশীল দেখে নাও উত্তরসহ।

📒 প্র্যাকটিস

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সমস্যাগুলো প্র্যাকটিস করে নিজেকে যাচাই করে নাও।

🤛 উত্তরমালা

প্র্যাকটিস সমস্যাগুলোর উত্তরগুলো মিলিয়ে নাও।

🛨 উদাহরণ

টপিক সংক্রান্ত উদাহরণসমূহ।

💈 সূত্রের আলোচনা

সূত্রের ব্যাপারে বিস্তারিত জেনে নাও।

🦰 টাইপ ভিত্তিক সমস্যাবলী

সম্পূর্ণ অধ্যায়ের সুসজ্জিত আলোচনা।

🌶 এক নজরে...

যোজ্যতা ইলেকট্রন (Valence electron):

সংজ্ঞা: কোন মৌলের সর্বশেষ প্রধান শক্তিস্তরের মোট ইলেকট্রন সংখ্যাকে সেই মৌলের যোজনী ইলেকট্রন বা যোজ্যতা ইলেকট্রন বলে। শেষ কক্ষপথকে যোজনী শেল বলা হয়।

যোজনী ইলেকট্রন সংখ্যা হতে সহজেই কোন মৌলের যোজনী বের করা যায়।

ব্যাখা:

পটাশিয়ামের ও অক্সিজেনের ইলেকট্রন বিন্যাসে সর্বশেষ কক্ষপথে যথাক্রমে 1টি ও 6টি করে ইলেকট্রন বিদ্যমান। সুতরাং, K এর যোজ্যতা ইলেকট্রন 1টি ও অক্সিজেনের (O) এর যোজ্যতা ইলেকট্রন 6টি।

🛨 উদাহরণ

Example-1: Li, Na, O, F এর কোনটির যোজ্যতা ইলেকট্রন কত?

 $Na(11) \rightarrow 2$, ৪, $1 \Rightarrow Na$ এর যোজ্যতা ইলেকট্রন 1টি

 $O(8) \rightarrow 2$, $6 \Rightarrow 0$ এর যোজ্যতা ইলেকট্রন $6\overline{b}$

 $F(9) \rightarrow 2, 7 \Rightarrow F$ " " $7\overline{b}$

সূতরাং, কোন মৌলের সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যাই ঐ মৌলের যোজ্যতা ইলেকট্রন।

Example-2: মৌলের যোজ্যতা ইলেকট্রন

মৌল	ইলেকট্রন বিন্যাস				যোজ্যতা ইলেকট্রন
GAITI	K কক্ষ	L ক 꽈	M কক	N কক্ষ	्र ८० । सन्ध्रम
N (7)	2	5			5
P (15)	2	8	5		5
CI (17)	2	8	7		7
Ca (20)	2	8	8	2	2

যোজনী এবং যোজ্যতা

যোজনী: কোন ধাতব মৌলের সবচেয়ে বাইরের স্তরের ইলেকট্রন সংখ্যা এবং কোন অধাতব মৌলের সবচেয়ে বাইরের স্তরের বিজোড় ইলেকট্রন সংখ্যাকে যোজনী বলে।

যোজ্যতা: কোন মৌলের সবচেয়ে বাইরের স্তরের সর্বমোট ইলেকট্রন সংখ্যাকে ঐ মৌলের যোজতা বলে।

$$0(8) \qquad \Rightarrow \qquad \boxed{0} \qquad \Rightarrow 1s^2 \ 2s^2 \ 2P_x^2 \ 2P_y^1 \ 2P_z^1$$

এখানে O এর সবচেয়ে বাইরের স্তরের মোট ইলেকট্রন সংখা 6, তাই এর যোজ্যতা 6 এবং O এর সবচেয়ে বাইরের স্তরের বিজোড় ইলেকট্রন সংখ্যা ২িট, তাই এর যোজনী 2 এবং অক্সিজেন একটি অধাতু।

ব্যাখ্যা: সাধারণত মৌলের যোজনী তার যোজ্যতা ইলেকট্রন সংখ্যার সমান হয়। অথবা, ৪ হতে যোজ্যতা ইলেকট্রন সংখ্যা বাদ দিলে যে সংখ্যা থাকে তার সমান হয়। এর কারণ হচ্ছে যৌগ গঠন করার সময়ে নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করতে যে কয়টি ইলেকট্রন বর্জন-গ্রহণ বা শেয়ার করে সেই সংখ্যা ঐ মৌলের যোজনী নির্দেশ করে।

সংজ্ঞা:

- 1. কোন মৌলের একটি পরমাণু যতগুলো ঐ পরমাণু বা H পরমাণু বা Cl পরমাণুর সাথে যুক্ত হতে পারে সেই সংখ্যাই হলো ঐ মৌলের যোজনী বা যোজ্যতা। এবং H পরমাণুর যোজনী সর্বদা 1 ধরা হয়।
- 2. কোন পরমাণুর সাথে যতটি অক্সিজেন পরমাণু যুক্ত হয় তার সংখ্যার দ্বিগুণ করলে ঐ পরমাণুর যোজনী বা যোজ্যতা হয়। Note: H এর যোজনী সর্বদা 1 ধরা হয়।

Example:

- 1. HCl অণুতে, একটি H পরমাণুর সাথে 1টি Cl পরমাণু যুক্ত হয়েছে তাই ক্লোরিনের যোজনী 1।
- 2. H_2O অণুতে O এর একটি পরমাণু H এর 2 টি পরমাণুর সাথে যুক্ত হয়েছে তাই অক্সিজেনের যোজনী 2।
- 3. CaO ক্যালসিয়ামের (Ca) একটি পরমাণু একটি অক্সিজেন (O) পরমাণুর সাথে যুক্ত এবং O পরমাণুর সংখ্যা 1। এই সংখ্যাকে দিগুণ করলে হয় 2। কাজেই Ca এর যোজনী 2।
- 4. NaCl একটি Na প্রমাণু একটি Cl প্রমাণুর সাথে যুক্ত। সুতরাং, Na এর যোজনী 1।

সুপ্ত যোজনী:

কোন মৌলের একাধিক যোজনী থাকলে সেই মৌলের যোজনীকে পরিবর্তনশীল যোজনী বলে। যেমন: Fe এর পরিবর্তনশীল যোজনী 2 এবং 3।

কোন মৌলের সর্বোচ্চ যোজনী ও সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলে।

যেমন: $FeCl_2$ যৌগে Fe এর সক্রিয় যোজনী 2 কিন্তু Fe এর সর্বোচ্চ যোজনী 3 । অতএব $FeCl_2$ যৌগে Fe এর সুপ্ত যোজনী 3-2=1 ।

বিভিন্ন মৌলের যোজনী:

মৌল	যোজনী	মৌল	যোজনী	মৌল	যোজনী
Н	1	Na	1	Fe	2,3
F	1	K	1	Си	1,2
Cl	1	С	2,4	Zn	2
Br	1	Mg	2		
L	1	Al	3		

বিভিন্ন পরমাণুর যোজনী এবং যৌগ:

ধাতব পরমাণু	যোজনী	যৌগ
লিথিয়াম (Li)		LiCl
সোডিয়াম (Na)	1 1 1	NaCl
পটাসিয়াম (K)	150 HC	KCl
ক্যালসিয়াম (Ca)	2	$CaCl_2$
ম্যাগনেসিয়াম (Mg)	2	$MgCl_2$
অ্যালুমিনিয়াম (Al)	3	$AlCl_3$
জিংক (Zn)	2	$ZnCl_2$
আয়রন (Fe)	2 3	FeCl ₂ FeCl ₃
লেড (Pb)	2 3	PbCl ₂ PbCl ₄

অধাতব পরমাণু	যোজনী	যৌগ
ব্রোমিন (Br)	1	NaBr

বোরন (B)	3	BCl_3
অক্সিজেন (O)	2	H_2O

যৌগমূলক ও তাদের যোজনী:

সংজ্ঞা: একাধিক মৌলের কতিপয় পরমাণু বা আয়ন পরস্পরের সাথে মিলিত হয়ে ধনাত্মক বা ঋনাত্মক আধানবিশিষ্ট একটি পরমাণুগুচ্ছ তৈরি করে এবং একটি মৌলের আয়নের ন্যায় আচরণ করে। এ ধরনের পরমাণুগুচ্ছকে যৌগমূলক বলে।

ব্যাখ্যা: যৌগমূলক ঋনাত্মক কিংবা ধনাত্মক আধানবিশিষ্ট হতে পারে এদের আধান সংখ্যাই মূলত এদের যোজনী নির্দেশ করে।

🛨 উদাহরণ

 $(N{H_4}^+)$ - এ একটি N পরমাণুর সাথে তিনটি H পরমাণু ও একটি H^+ যুক্ত হয়ে অ্যামোনিয়াম $(N{H_4}^+)$ আয়ন নামক যৌগমূলকের সৃষ্টি করে। এর আধান সংখ্যা +1। সুতরাং, এর যোজনী এক (1)।

বিভিন্ন যৌগমূলকের নাম, সংকেত, আধান ও যোজনী: -

<u> </u>			
অধাতব পরমাণু	সংকেত	আধান	যোজনী
অ্যামোনিয়াম	$N{H_4}^+$	+1	1
কার্বনেট	CO3 ²⁻	-2	2
হাইড্রোজেন কার্বনেট	HCO ₃	-1	1
সালফেট	SO ₄ ²⁻	-2	2
হাইড্রোজেন সালফেট	HSO_4^-	-1	1
সালফাইট	SO ₃ ²⁻	-2	2
নাইট্রেট	NO ₃	-1	1
ফসফেট	PO ₄ ³⁻	-3	3

যৌগের রাসায়নিক সংকেত

সংজ্ঞা: মৌল বা যৌগমূলকের প্রতীক বা সংকেত ও তাদের সংখ্যার মাধ্যমে কোন যৌগ অণুকে প্রকাশ করাই হলো উক্ত যৌগের রাসায়নিক সংকেত।

ব্যাখ্যা: যৌগের একটি অণুতে যেসব পরমাণু থাকে তাদের প্রতীক ও সংখ্যার মাধ্যমে অণুটিকে প্রকাশ করা হয়। যেমন: H_2O হলো পানির অণুর রাসায়নিক সংকেত।

এক্ষেত্রে অণুর মধ্যে অবস্থিত মৌলের বা যৌগমূলকের সংখ্যাকে সংকেতের নিচে ডান পাশে ছোট করে লেখা হয়।

রাসায়নিক সংকেত লেখার নিয়ম:

- কোন মৌলের একটি অণুতে যতগুলো পরমাণু থাকে তার সংখ্যাকে ইংরেজীতে মৌলটির প্রতীকের ডান পাশে
 নিচে ছোট করে লেখা হয়।
- নাইট্রোজেন অণুর সংকেত N_2 । এরকম আরও H_2 , O_2 ।
- ullet ওজোন এর একটি অণুতে তিনটি অক্সিজেন পরমাণু থাকে। তাই ওজোন অণুর সংকেত O_3 ।
- কিছু মৌল অণু গঠন করেনা তাই তাদেরকে শুধু প্রতীক দিয়ে বোঝানো হয়।
 যেমন: সকল ধাতু। আয়রনকে বোঝাতে শুধু Fe লিখতে হবে। এছাড়াও Na, Ca, K ইত্যাদি।
- 2. কখনো কখনো কোন যৌগের অণু ২টি ভিন্ন মৌলের পরমাণু দিয়ে গঠিত হয়। তাদের যোজনী যদি কোনো সাধারণ সংখ্যা দ্বারা বিভাজ্য না হয় তাহলে দুটি মৌলের প্রতীক পাশাপাশি লিখে একটি মৌলের প্রতীকের পাশে অন্যটির যোজনী লিখতে হয়। যেমন: Al_2O_3 , $CaCl_2$ ।
- কোন যৌগমূলক একাধিক সংখ্যক থাকলে যৌগমূলকটিকে প্রথম বন্ধনীর মধ্যে রেখে তারপর সংখ্যা লিখতে হয়। যেমন: অ্যামোনিয়াম ফসফেট $(NH_4)_3(PO_4)$ ।
- 3. যদি দুটি মৌলের যোজনী কোন সাধারণ সংখ্যা দিয়ে বিভাজ্য হয় তাহলে যোজনীগুলো সেই সাধারণ সংখ্যা দিয়েই ভাগ দিয়ে মৌলের পাশে পূর্বের নিয়মে ভাগফলটি লিখতে হয়। যেমন: CO_2 , $FeSO_4$ ।

আণবিক সংকেত ও গাঠনিক সংকেত

আণবিক সংকেত: একটি মৌল বা যৌগের অণুতে যে যে ধরনের মৌলের পরমাণু থাকে তাদের প্রতীক এবং সেই মৌলের যতটি পরমাণু থাকে সেই সকল সংখ্যা দিয়ে প্রকাশিত সংকেতকে আণবিক সংকেত বলে।

ব্যাখ্যা: প্রোপেন (C_3H_8) এ তিনটি কার্বন (C) পরমাণু আটটি (8) হাইড্রোজেন পরমাণুর সাথে যুক্ত হয়েছে। এবং C_3H_8 গঠন করেছে। প্রোপেনের (C_3H_8) এই সংকেতকে তার আণবিক সংকেত বলে।

গাঠনিক সংকেত: একটি অণুতে মৌলের পরমাণুগুলো যেভাবে সাজানো থাকে প্রতীক এবং বন্ধনের মাধ্যমে তা প্রকাশ করাকে গাঠনিক সংকেত বলে।

ব্যাখ্যা: C_3H_8 যৌগে কার্বন পরমাণু তিনটি একে অপরের সাথে শিকল আকারে যুক্ত হয় এবং অবিশিষ্ট যোজনীগুলো হাইড্রোজেন দ্বারা পূর্ণ হয়ে প্রতিটি কার্বনের যোজনী 4 হয়।

প্রোপেনের গাঠনিক সংকেত:

পানির আণবিক সংকেত H_2O , অতএব এর গাঠনিক সংকেত:

মিথেনের আণবিক সংকেত CH_4 , অতএব এর গাঠনিক সংকেত:

Note:

এখানে কার্বন- কার্বন হাইড্রোজেনের মধ্যে অবস্থিত প্রতিটি রেখা হলো একেকটি বন্ধন। এরা সমযোজী বন্ধন। গাঠনিক সংকেতের মাধ্যমে যৌগের অণুতে কোন পরমাণু কতটি করে আছে এবং তারা একে অপরের সাথে কিভাবে যুক্ত আছে তা জানা যায়।

অষ্টক ও দুই এর নিয়ম

অষ্টক নিয়ম: প্রতিটি মৌলেই তার সর্বশেষ শক্তিস্তরে নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাসের প্রবণতা দেখায়। " অণু গঠনকালে কোন মৌল ইলেকট্রন গ্রহণ-বর্জন অথবা ভাগাভাগির মাধ্যমে তার সর্বশেষ শক্তিস্তরে ৮টি করে ইলেকট্রন ধারনের মাধ্যমে নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ করে। একেই অষ্টক নিয়ম বলা হয়।

ব্যাখ্যা:

 CH_4 অণুতে কেন্দ্রীয় পরমাণু কার্বনের সর্বশেষ শক্তিস্তরে ৪ টি ইলেকট্রন বিদ্যমান যেখানে 4 টি ইলেকট্রন কার্বনের নিজস্ব আর বাকি চারটি ইলেকট্রন হাইড্রোজেন পরমাণু থেকে আসে। এভাবে পরমাণুসমূহ তার সর্বশেষ শক্তিস্তরে ইলেকট্রন ভাগাভাগি আদান-প্রদানের মাধ্যমে ৪ টি ইলেকট্রন ধারণ করে নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভের মাধ্যমে যৌগ গঠনের পদ্ধতিকে অষ্টক নিয়ম বলে।

Note:

- i. হিলিয়াম (He) ছাড়া সকল নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাসে সর্বশেষ শক্তিস্তরে ৮টি করে ইলেকট্রন বিদ্যমান।
- ii. পর্যায় সারনির 1-20 পর্যন্ত মৌলগুলো 'অষ্টক' নিয়ম ভালোভাবে অনুসরণ করে।

অষ্টক নিয়মের কিছু ব্যাতিক্রম:

 SF_4 , PCl_5 , BF_3 , LiF উক্ত যৌগগুলো অষ্টক নিয়ম মেনে চলে না। SF_4 অষ্টক নিয়ম না মানার কারণ: -

$$\Rightarrow S(16) = 1s^2 2s^2 2p^6 3s^2 3p^4$$
$$F(9) = 1s^2 2s^2 2p^5$$

বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রন আদান-প্রদান এবং শেয়ারের মাধ্যমে পরমাণুসমূহের শেষ শক্তিস্তরে আটটি ইলেকট্রনের বিন্যাস লাভ করে। একে অষ্টক নিয়ম বলে।

 SF_4 যৌগে 1টি সালফার পরমাণু 4টি ফ্লোরিন পরমাণুর সাথে ইলেকট্রন শেয়ারের মাধ্যমে যৌগ গঠন করে। ফলে, প্রতিটি F পরমাণুর অষ্টক পূর্ণ হলেও S এর সর্বশেষ শক্তিস্তরে 10টি ইলেকট্রন পাওয়া যায়। অর্থাৎ, 'S' পরমাণু যৌগ গঠনে অষ্টক নিয়ম অনুসরণ করেনি। একে অষ্টক সম্প্রসারন বলে।

দুই এর নিয়ম:

সংজ্ঞা: নিস্ক্রিয় গ্যাসগুলোর সর্বশেষ শক্তিস্তরে যেমন ২টি বা ৮টি করে ইলেকট্রন বিদ্যমান। তেমনি অণু গঠনে কোন পরমাণুর সর্বশেষ শক্তিস্তরে এক বা একাধিক জোড়া ইলেকট্রন বিদ্যমান থাকবে, এটিই দুই এর নিয়ম।

ব্যাখ্যা: $BeCl_2$ অণুর কেন্দ্রীয় পরমাণু Be এর সর্বশেষ শক্তিস্তরে ২ জোড়া অর্থাৎ 4টি ইলেকট্রন বিদ্যমান। Cl এর সর্বশেষ শক্তিস্তরে 4 জোড়া অর্থাৎ ৪টি ইলেকট্রন বিদ্যমান এসকল পরমাণু দুই এর নিয়ম অনুসরণ করছে। অর্থাৎ, অণুতে যেকোন পরমাণুর সর্বশেষ শক্তিস্তরে এক বা একাধিক জোড়া ইলেকট্রন অবস্থান করবে।

Note:

- i. পর্যায় সারণির 1-20 পর্যন্ত মৌলসমূহ দুই এর নিয়ম ভালোভাবে অনুসরণ করে।
- ii. অষ্টক নিয়মের কিছু সীমাবদ্ধতা থাকার কারণে বিজ্ঞানীরা 'দুই' এর নিয়ম উপস্থাপন করেন।

নিন্ধ্রিয় গ্যাস ও এর স্থিতিশীলতা:

 $He(2) \rightarrow 1s^2$

 $Ne(10) \rightarrow 1s^2 2s^2 2p^6$

 $Ar(18) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$

 $Kr(36) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$

 $Xe(54) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$

 $Rn(86) \rightarrow 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^6$

নিস্ক্রিয় গ্যাসসমূহের ইলেকট্রন বিন্যাসে দেখা যায় যে,

- হিলিয়ামের সর্বশেষ শক্তিস্তরে ২টি ইলেকট্রন রয়েছে। হিলিয়ামের সর্বশেষ শক্তিস্তর পূর্ণ করতে ২টি ইলেকট্রনই প্রয়োজন, কাজেই এর ইলেকট্রন বিন্যাস স্থিতিশীল।
- অন্যান্য নিস্ক্রিয় গ্যাসের বেলায় তাদের সর্বশেষ শক্তিস্তরে ৮টি (ns^2np^6) করে ইলেকট্রন বিদ্যমান। কোনো মৌলের সর্বশেষ শক্তিস্তরে ৮টি করে ইলেকট্রন থাকলে তারা সর্বাধিক স্থিতিশীলতা অর্জন করে।
- অন্যান্য মৌল স্থিতিশীলতা অর্জনের জন্য সর্বশেষ শক্তিস্তরে দ্বিত্ব বা অষ্টক পূরণ করতে চায়। এজন্য তারা সর্বশেষ শক্তিস্তরে ইলেকট্রন গ্রহণ, আদান-প্রদান বা ভাগাভাগি করে যৌগ গঠন করে।

রাসায়নিক বন্ধন ও রাসায়নিক বন্ধন গঠনের কারণ

সংজ্ঞা: অণুতে পরমাণুসমূহ যে আকর্ষণের মাধ্যমে একে অপরের সাথে যুক্ত থাকে তাকেই রাসায়নিক বন্ধন বলে।

রাসায়নিক বন্ধন গঠনের মূল কারণ: পরমাণু গুলো সর্বশেষ শক্তিস্তরের ইলেকট্রনগুলো নিক্তিয় গ্যাসের স্থিতিশীল Η Η

ইলেকট্রন বিন্যাস (দ্বিত্ব বা অষ্টক) লাভের প্রবণতা।

যেমন: H_2 অণু গঠনকালে ২টি H পরমাণু ১টি করে ইলেকট্রন শেয়ার করে। এভাবে ইলেকট্রন আদান-প্রদান বা শেয়ারের মাধ্যমে বন্ধন গঠিত হয়।

রাসায়নিক বন্ধন গঠনের প্রয়োজন তথ্য:

- কোন মৌলের শেষ শক্তিস্তরের ইলেকট্রন বন্ধন গঠনে অংশগ্রহণ করে।
- প্রতিটি পরমাণুরই লক্ষ্য থাকে তার নিকটবর্তী নিস্ক্রিয় মৌলের ইলেকট্রন বিন্যাস লাভ করা। ii.
- iii. 1-17 পারমাণবিক সংখ্যাবিশিষ্ট মৌলসমূহ বন্ধন গঠনে খুব সহজেই দুই বা অষ্টক নিয়ম অনুসরণ করে।

ক্যাটায়ন ও অ্যানায়ন

ক্যাটায়ন: ধনাত্মক চার্জযুক্ত পরমাণুকে ক্যাটায়ন বলে।

ব্যাখ্যা: একটি আধান নিরপেক্ষ পরমাণুর বাইরের শক্তিস্তর থেকে এক বা একাধিক ইলেকট্রন সরিয়ে নিলে পরমাণুটি আর আধান নিরপেক্ষ থাকবে না। এটি সামগ্রিকভাবে ধনাত্মক আধানবিশিষ্ট আয়নে পরিণত হবে। যে সকল মৌলের শেষ শক্তিস্তরে কম সংখ্যাকে ইলেকট্রন থাকে সে সকল মৌলের ইলেকট্রন ঐ পর্যায়ের অন্যান্য

মৌলের তুলনায় নিউক্লিয়াস থেকে দূরে অবস্থানের কারণে নিউক্লিয়াসের সাথে দূর্বলভাবে আকর্ষিত হয় এবং ইলেকট্রন অপসারণ করে দুই বা অষ্টক পূর্ণ করতে চায়।

চিত্র: - লিথিয়াম ক্যাটায়ন (Li^+)

Li পরমাণু তার সর্বশেষ শক্তিস্তরের একটি ইলেকট্রন ত্যাগ করে নিস্ক্রিয় গ্যাস হিলিয়াম (He) এর ইলেকট্রন বিন্যাস অর্জনের মাধ্যমে Li ক্যাটায়ন (Li^+) গঠন করে।

অ্যানায়ন: ঋণাত্মক চার্জযুক্ত পরমাণুকে অ্যানায়ন বলে।

ব্যাখ্যা: যে সকল মৌলের শেষ শক্তিস্তরে অষ্টক অপেক্ষা সাধারণত 1, 2 বা 3 টি ইলেকট্রন কম থাকে। তারা সেই সংখ্যক ইলেকট্রন গ্রহণ করে সহজেই নিষ্ক্রিয় গ্যাসের স্থিতিশীল ইলেকট্রন বিন্যাস লাভ করে। অন্যভাবে বলা যায়। তাদের ইলেকট্রন আসক্তির মান বেশী। ইলেকট্রন গ্রহনের ফলে এদের নিউক্লিয়াসে অবস্থিত ধনাত্মক প্রোটন সংখ্যার চেয়ে ঋণাত্মক আধানবিশিষ্ট e এর সংখ্যা বেশী হয়। ফলে সামগ্রিকভাবে অধাতব পরমাণুসমূহ ঋণাত্মক আধানবিশিষ্ট হয়। এভাবে ঋণাত্মক আধানবিশিষ্ট অধাতব পরমাণুকে অ্যানায়ন বলে।

যেমন:

ক্লোরিন (Cl) পরমাণু একটি ইলেকট্রন গ্রহণ আধানবিশিষ্ট নিস্ক্রিয় গ্যাস আর্গনের (Ar) ইলেকট্রন বিন্যাস লাভের মাধ্যমে ক্লোরাইড (Cl^-) আয়ন তৈরি করে।

আয়নিক বন্ধন বা তডিৎযোজী বন্ধন

সংজ্ঞা: ইলেকট্রন আদান প্রদানের মাধ্যমে গঠিত ক্যাটায়ন ও অ্যানায়নসমূহ যে স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা যুক্ত থাকে তাকে আয়নিক বন্ধন বলে।

ব্যাখ্যা: ধাতুগুলোর আয়নিকরণ শক্তির মান অনেক কম হওয়ায় এরা অতি সহজে সর্বশেষ শক্তিস্তরের এক বা

একাধিক ইলেকট্রন ত্যাগ করে ধনাত্মক আয়ন বা ক্যাটায়নে পরিণত হয় এবং অধাতুর আয়নীকরণ শক্তির মান বেশী হওয়ায় ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়ন তথা অ্যানায়নে পরিণত হয়। এভাবে সৃষ্ট বিপরীত আধানবিশিষ্ট ক্যাটায়ন ও অ্যানায়নের মধ্যে স্থির বৈদ্যুতিক আকর্ষণ বল কাজ করে। আর এই বলের মাধ্যমে তারা একে অপরের সাথে যুক্ত থাকে। এটাই আয়নিক বন্ধন।

যেমন: MgO যৌগের আয়নিক বন্ধন -

MgO অণুতে Mg 2টি ইলেকট্রন ত্যাগ করে নিস্ক্রিয় গ্যাস Ne এর মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে 4 টি ইলেকট্রন গঠন করে Mg^{2+} এ পরিণত হয়।

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

আবার, O পরমাণু ঐ 2 টি ইলেকট্রন গ্রহণ করে নিস্ক্রিয় গ্যাস Ne এর মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে 4 টি ইলেকট্রন গঠন করে O^{2-} এ পরিণত হয়।

$$0 + 2e^- \rightarrow 0^{2-}$$

এবার Mg^{2+} এবং O^{2-} কাছাকাছি এসে আয়নিক বন্ধন গঠন করে।

ব্যাতিক্রম

13 নং গ্রুপের Al মৌলটি 1 ও 2 নম্বর গ্রুপের মৌল না হওয়া সত্ত্বেও আয়নিক বন্ধন তৈরি করে।

সমযোজী বন্ধন

সংজ্ঞা: পরমাণুর সর্বশেষ শক্তিস্তরে স্থায়ী ইলেকট্রন বিন্যাস লাভের জন্য ইলেকট্রন শেয়ারের মাধ্যমে বন্ধন গঠিত হয়, একে সমযোজী বন্ধন বলে।

ব্যাখ্যা: সমযোজী বন্ধনে পরমাণুসমূহ ইলেকট্রন শেয়ার করে, তাদের এ শেয়ারকৃত ইলেকট্রন উভয় নিউক্লিয়াসের মধ্যবর্তী স্থানে পরিভ্রমন করে এবং উভয় পরমাণু কার্যকর ভাবে নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করে শেয়ার করা ইলেকট্রন উভয় নিউক্লিয়াসের মধ্যবর্তী স্থানে পরিভ্রমন করার ফলে পরমাণু দুইটি পরস্পরে সাথে সমযোজী বন্ধন সৃষ্টি করে।

যেমন:

চিত্র: H অণুতে সমযোজী বন্ধন গঠন

H পরমাণুর ইলেকট্রন বিন্যাস হলো, $H(1) \to 1s^1$ । দুটি H পরমাণু যখন কাছাকাছি আসে উভয় পরমাণুর একটি করে ইলেকট্রন শেয়ার করে নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে। অর্থাৎ সর্বশেষ শক্তিস্তরে 2 টি ইলেকট্রন গঠন করে সমযোজী বন্ধনের মাধ্যমে যুক্ত থাকে।

আয়নিক ও সমযোজী বন্ধনের বৈশিষ্ট্য:

গলনাঙ্ক ও স্ফুটনাঙ্কে:

- আয়নিক যৌগে ধনাত্মক ও ঋণাত্মক আধান থাকে। এ আধানদ্বয় পরস্পরের সাথে দুর্বলভাবে আবদ্ধ থাকে।
- আয়নিক যৌগে এরপ অসংখ্য ধনাত্মক ও ঋণাত্মক আধান পরস্পরের কাছাকাছি থেকে ত্রিমাত্রিকভাবে
 সুবিন্যান্ত হয়ে ১ টি ক্ষটিক তৈরি করে। এতে তাদের আন্ত-আণবিক আকর্ষণ বল অনেক বেশী হয়।
- ফলে তাদেরকে একে অপরের কাছ থেকে দূরে সরাতে অনেক বেশী তাপের প্রয়োজন হয়। কাজেই তাদের গলনায় ও স্ফুটনায় বেশী।

অপরদিকে.

- সমযোজী অণুসমূহের মধ্যে আন্ত আণবিক আকর্ষণ মুলত দুর্বল ভ্যান্ডারওয়ালস বলের কারণে হয়ে উঠে।
 কাজেই এতে আন্ত-আণবিক আকর্ষণ বল অনেক কম।
- এজন্য তাদেরকে সামান্য তাপ প্রয়োগ করলে এরা পরস্পরের থেকে দূরে সরে যায়। অর্থাৎ এদের গলনায় ও
 স্কুটনায় কম।

দ্রাব্যতা/দ্রবনীয়তা:

- পানিতে আয়নিক যৌগ যোগ করলে পানির অণুর ধনাত্মক প্রান্ত আয়নিক যৌগের ধনাত্মক প্রান্ত বা

 আ্যানায়নকে আকর্ষণ করে।
- কিছু ব্যাতিক্রম ছাড়া সকল আয়নিক যৌগ পানিতে দ্রবণীয়
- AgCl আয়নিক যৌগ হওয়া সত্ত্বেও তা পানিতে অদ্রবণীয় অবস্থায় থাকে।
 অপরদিকে,

- সমযোজী যৌগে আয়নিক যৌগের মত ধনাত্মক ঋণাত্মক প্রান্তের সৃষ্টি হয়না, ফলে আকর্ষণ বিকর্ষণ
 ঘটেনা।
- সমযোজী যৌগটি পানিতে আয়ন আকারে ভাঙ্গেনা, ফলে সমযোজী যৌগটি পানিতে দ্রবীভূত হয়না।
- তবে কিছু কিছু সমযোজী যৌগে আংশিক ধনাত্মক ঋণাত্মক প্রান্তের সৃষ্টি হয়় অর্থাৎ পোলারিটি দেখা যায়।
- যেমন: ইথানল (C_2H_5OH), HCl ইত্যাদি।

বিদ্যুৎ পরিবাহিতা:

আয়নিক যৌগে-

- আয়নিক যৌগ জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে।
- খাদ্য লবনে (NaCl) জলীয় দ্রবণে ধনাত্মক আয়ন হিসেবে (Na^+) ও ঋণাত্মক আয়ন হিসেবে (Cl^-) বিদ্যুৎ পরিবহন করে।
- যেহেতু জলীয় দ্রবণে আয়নিক যৌগসমূহ বিচ্ছিন্ন ধনাত্মক ও ঋণাত্মক আয়ন হিসেবে অবস্থান করে কাজেই
 সকল আয়নিক যৌগ জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে।
- ullet For example $CaCl_2$ দ্রবণে, Ca^{2+} ও Cl^- থাকে এরা বিদ্যুৎ পরিবহন করে।

সমযোজী যৌগে -

- সমযোজী যৌগসমুহে বিদ্যুৎ পরিবহন করে না।
- বিদ্যুৎ পরিবহনের জন্য প্রয়োজনীয় আধান এ যৌগে নেই।
- সমযোজী যৌগে বিচ্ছিন্ন আয়ন তৈরি হয়না ; আর দ্রবণে আয়ন না থাকলে তা কখনো বিদ্যুৎ পরিবহন করতে
 পারে না।

Note:

আয়নিক যৌগে কঠিন অবস্থায় তড়িৎ পরিবহন করে না ; শুধুমাত্র জলীয় দ্রবণে বিদ্যুৎ পরিবহন করে।

ধাতব বন্ধন

সংজ্ঞা: ধাতুর পরমাণুসমূহ যে আকর্ষণ বল দ্বারা পরস্পারের সাথে যুক্ত থাকে তাকে ধাতব বন্ধন বলে।
ব্যাখ্যা: অর্থাৎ একখণ্ড ধাতুর মধ্যে পরমাণুসমূহ যে আকর্ষণের মাধ্যমে যুক্ত থাকে সেটাই ধাতুব বন্ধন।

তামার (কপার) তার লোহার (আয়রন) তৈরি ছুরি, কাঁচি আলুমিনিয়ামের তৈরি জানালো। সোনার অলংকার
 এর মধ্যে একই ধাতুর অসংখ্য পরমাণু পরস্পরের সাথে ধাতব বন্ধনের মাধ্যমে যুক্ত থাকে।

- ধাতুতে পরমাণুসমূহ তার সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রনকে ত্যাগ করে ধনাত্মক আয়নে
 পরিণত হয়; এই ধনাত্মক আয়নকে পারমাণবিক শাঁস বলে।
- ধাতব পরমাণু কর্তৃক ত্যাগকৃত ইলেকট্রনগুলো শাঁসের মধ্যবর্তী স্থানে ঘোরাফেরা করে যাদের সঞ্চরনশীল
 ইলেকট্রন বলে।

ধাতুর বিদ্যুৎ পরিবাহিতা এবং ধাতুর তাপ পরিবাহিতা:

- এক খণ্ড ধাতব প্রান্তের এক প্রান্তকে আগুনের উপর রেখে উত্তপ্ত করলে দেখা যাবে অপর প্রান্তিটি বেশ
 তাড়াতাড়ি গরম হতে শুরু করছে, এর অর্থ ধাতুগুলো তাপ পরিবাহিতা প্রদর্শন করে।
- সঞ্চরনশীল ইলেকট্রন শক্তি গ্রহণ করে এবং তাদের গতিবেগ বেড়ে যায় এবং ইলেকট্রনগুলো অধিক
 তাপমাত্রার প্রান্ত থেকে কম তাপমাত্রার প্রান্তের দিকে স্থানান্তরিত হয়, এর ফলে ধাতুর এক প্রান্ত থেকে অপর
 প্রান্তে তাপের পরিবহন ঘটে।

জ্ঞানমূলক প্রশ্নোত্তর

প্রশ্ন-১: যোজ্যতা ইলেকট্রন কাকে বলে?

সমাধান: কোন মৌলের সর্বশেষ প্রধান শক্তিস্তরের মোট ইলেকট্রন সংখ্যাকে সেই মৌলের যোজনী ইলেকট্রন বা যোজ্যতা ইলেকট্রন বলে।

প্রশ্ন-২: প্রতীক কাকে বলে?

সমাধান: মৌলের নামের সংক্ষিপ্ত রূপকে প্রতীক বলে।

প্রশ্ন-৩: যৌগমূলক কী?

সমাধান: একাধিক মৌলের এবং আয়নের সমস্বয়ে গঠিত একটি পরমাণু গুচ্ছ যা আয়নের ন্যায় আচরণ করে তাকে যৌগমূলক বলে।

প্রশ্ন-8: রাসায়নিক বন্ধন কাকে বলে?

সমাধান: যে আকর্ষণ বলের মাধ্যমে একটি পরমাণু অন্য পরমাণুর সাথে যুক্ত হয়, তাকে রাসায়নিক বন্ধন বলে।

প্রশ্ন-৫: যোজনী সেল কাকে বলে?

সমাধান: পরমাণুর শেষ কক্ষপথকে যোজনী সেল বলে।

প্রশ্ন-৬: সুপ্ত যোজনী কাকে বলে?

সমাধান: কোন মৌলের সর্বোচ্চ যোজনী এবং সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলে।

প্রশ্ন-৭: রাসায়নিক সংকেত কী?

সমাধান: মৌল বা যৌগমূলকের প্রতীক বা সংকেত তাদের সংখ্যার মাধ্যমে কোন যৌগ অণুকে প্রকাশ করার প্রক্রিয়াকে রাসায়নিক সংকেত বলে।

প্রশ্ন-৮: আণবিক সংকেত কাকে বলে?

সমাধান: যে মৌলের প্রমাণু যতটি থাকে সেই সকল সংখ্যা দিয়ে প্রকাশিত সংকেতকে আণ্রিক সংকেত বলে।

প্রশ্ন-৯: গাঠনিক সংকেত কাকে বলে?

সমাধান: একটি অণুতে মৌলের প্রমাণুগুলো যেভাবে সাজানো থাকে প্রতীক ও বন্ধনের মাধ্যমে তা প্রকাশ করাকে গাঠনিক সংকেত বলে।

প্রশ্ন-১০: দুই এর নিয়ম কী?

সমাধান: বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রনের আদান – প্রদান কিংবা শেয়ারের মাধ্যমে পরমাণুসমূহের শেষ শক্তিস্তরে জোড়ায় জোড়ায় ইলেকট্রন বিন্যাস লাভ করাকে দুই এর নিয়ম বলে।

প্রশ্ন-১১: অষ্টক তত্ত্ব কী?

সমাধান: বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রনের আদান – প্রদান অথবা শেয়ারের মাধ্যমে পরমাণুসমূহের শেষ শক্তিস্তরে অর্থাৎ যোজ্যতা স্তরে ৪ টি ইলেকট্রন লাভ করে স্থায়ী গঠন বা নিস্ক্রিয় মৌলের ইলেকট্রন বিন্যাস অর্জন করাকে অষ্টক তত্ত্ব বলা হয়।

প্রশ্ন-১২: নিস্ক্রিয় গ্যাস কয়টি ও কি কি?

সমাধান: বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রনের আদান – প্রদান অথবা শেয়ারের মাধ্যমে পরমাণুসমূহের শেষ শক্তিস্তরে অর্থাৎ যোজ্যতা স্তরে ৪ টি ইলেকট্রন লাভ করে স্থায়ী গঠন বা নিস্ক্রিয় মৌলের ইলেকট্রন বিন্যাস অর্জন করাকে অষ্টক তত্ত্ব বলা হয়।

প্রশ্ন-১৩: ক্যাটায়ন কী?

সমাধান: ধনাত্মক চার্জযুক্ত পরমাণুকে ক্যাটায়ন বলে।

প্রশ্ন-১৪: অ্যানায়ন কী?

সমাধান: ঋণাত্মক চার্জযুক্ত প্রমাণুকে অ্যানায়ন বলে।

প্রশ্ন-১৫: আয়নিক বন্ধন বলে?

সমাধান: ইলেকট্রন আদান – প্রদানের মাধ্যমে গঠিত ক্যাটায়ন ও অ্যানায়ন সমূহ যে আকর্ষণ বল দ্বারা যুক্ত থাকে

তাকে আয়নিক বন্ধন বলে।

প্রশ্ন-১৬: সমযোজী বন্ধন কাকে বলে?

সমাধান: পরমাণুর সর্বশেষ শক্তিস্তরে স্থায়ী ইলেকট্রন বিন্যাস লাভের জন্য ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয়, তাকে সমযোজী বন্ধন বলে।

প্রশ্ন-১৭: ভ্যান্ডারওয়ালস আকর্ষণ বল কী?

সমাধান: দুটি সমযোজী অণু যখনই খুবই নিকটবর্তী হয় তখন তাদের মধ্যে যে দূর্বল আকর্ষণ বল কাজ করে তাকে ভ্যান্ডারওয়ালস আকর্ষণ বল বলে।

প্রশ্ন-১৮: সমযোজী অণু কাকে বলে?

সমাধান: সমযোজী বন্ধন বিশিষ্ট মৌলিক পদার্থের অণুকে সমযোজী অণু বলে। যেমন: N_2 ।

প্রশ্ন-১৯: সমযোজী যৌগ কাকে বলে?

সমাধান: সমযোজী বন্ধন বিশিষ্ট যৌগকে সমযোজী যৌগ বলে। যেমন: CH_4 ।

প্রশ্ন-২০: পোলার যৌগ কী?

সমাধান: যেসব সমযোজী যৌগ ধনাত্মক ও ঋণাত্মক আয়নে বিয়োজিত হয়, তারা পোলার যৌগ।

প্রশ্ন-২১: পোলারিটি কী?

সমাধান: সমযোজী যৌগের অণুতে বন্ধনে আবদ্ধ পরমাণুগুলোর তড়িৎ ধনাত্মকতার পার্থক্যের কারণে অণুতে আংশিক ধনাত্মক ও আংশিক ঋণাত্মক চার্জবিশিষ্ট প্রান্তের সৃষ্টি হয়। এই ঘটনাকে বলা হয় পোলারিটি।

প্রশ্ন-২২: মুক্তজোড় ইলেকট্রন কী?

সমাধান: যে ইলেকট্রন জোড় বন্ধন গঠনে অংশ গ্রহণ করে না সে ইলেকট্রন জোড়কে মুক্তজোড় ইলেকট্রন বলে।

প্রশ্ন-২৩: ধাতব বন্ধন কাকে বলে?

সমাধান: ধাতব পরমাণুসমূহ যে আকর্ষণ বল দ্বারা পরস্পরের সাথে আবদ্ধ থাকে ধাতব বন্ধন বলে।

প্রশ্ন-২৪: পারমাণবিক শাঁস কাকে বলে?

সমাধান: ধাতুতে পরমাণুসমূহ তার সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রনকে ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়। এই ধনাত্মক আয়নকে পারমাণবিক শাঁস বলে।

প্রশ্ন-২৫: সঞ্চরনশীল ইলেকট্রন কাকে বলে?

সমাধান: ধাতব পরমাণু কর্তৃক ত্যাগকৃত ইলেকট্রনগুলো পারমাণবিক শাঁসের মধ্যবর্তী স্থানে মুক্তভাবে ঘোরাফেরা করলে সেই ইলেকট্রনকে সঞ্চরনশীল ইলেকট্রন বলে।

অনুধাবনমূলক প্রশোত্তর

প্রশ্ন-১: HF একটি পোলার যৌগ – ব্যাখ্যা কর। [সম্মিলিত বোর্ড – '১৮]

সমাধান: HF একটি পোলার যৌগ: যে সব সমযোজী যৌগের অণুতে ধনাত্মক ও ঋণাত্মক চার্জযুক্ত প্রান্তের সৃষ্টি হয়, তাদেরকে পোলার যৌগ বলা হয়। ফ্লোরিনের তড়িৎ ঋণাত্মকতা হাইড্রোজেন অপেক্ষা বেশী। তাই H-F এর শেয়ারকৃত ইলেকট্রনযুগল F পরমাণুর দিকে বেশী আকৃষ্ট হয়। ফলে F পরমাণুতে আংশিক ঋণাত্মক প্রান্ত এবং H পরমাণুতে আংশিক ধনাত্মক প্রান্তের সৃষ্টি হয়। এ কারণে HF পোলার যৌগ।

প্রশ্ন-২; হিলিয়াম নিস্ক্রিয় গ্যাস – ব্যাখ্যা কর। [ঢাকা বোর্ড – '১৬]

সমাধান: যে সব মৌলের যোজ্যতা শক্তিস্তর প্রয়োজনীয় সংখ্যক ইলেকট্রন দ্বারা পূর্ণ থাকে এবং ফলে ইলেকট্রন আদান প্রদান বা শেয়ারের মাধ্যমে যৌগ গঠনে আগ্রহ প্রদর্শন করে না তাদের কে নিস্ক্রিয় মৌল বলে।

হিলিয়ামের ইলেকট্রন বিন্যাস $1s^2$ যা স্থিতিশীল। তাই হিলিয়াম ইলেকট্রন বিন্যাস পরিবর্তনে অনাগ্রহী অর্থাৎ ইলেকট্রন গ্রহণ বা বর্জন করে না। এর ফলে হিলিয়াম কোনো রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না। তাই বলা যায় হিলিয়াম একটি নিস্ক্রিয় গ্যাস।

প্রশ্ন-৩: ইথানল একটি পোলার যৌগ – ব্যাখ্যা কর। [ঢাকা বোর্ড – '১৬]

সমাধান: যে সমযোজী যৌগে পোলারিটি সৃষ্টি হয় তাকে পোলার সমযোজী যৌগ বলে। অর্থাৎ যে সব সমযোজী যৌগের অণুতে ধনাত্মক ও ঋণাত্মক চার্জযুক্ত প্রান্তের সৃষ্টি হয় তাদের কে পোলার যৌগ বলে। ইথানল এর রাসায়নিক সংকেত CH_3-CH_2-OH ।

 $CH_3 - \bigcup_{S+S-S-S+}^{H}$

এর আণবিক গঠন

এখানে অক্সিজেনের তড়িৎ ঋণাত্মকতা H এবং C অপেক্ষা অনেক বেশী। তাই শেয়ারকৃত বন্ধন ইলেকট্রনযুগল অক্সিজেনের দিকে চলে আসে। ফলে অক্সিজেন পরমাণুতে আংশিক ঋণাত্মক চার্জ এবং কার্বন ও হাইড্রোজেন পরমাণুতে আংশিক ধনাত্মক চার্জ সৃষ্টি হয়। এজন্য ইথানল একটি পোলার যৌগ।

প্রশ্ন-8: আয়নিক যৌগসমূহ কঠিন অবস্থায় বিদ্যুৎ পরিবহন করে না কেন? [যশোর বোর্ড – '১৭] সমাধান: আয়নিক যৌগসমূহ কঠিন অবস্থায় বিদ্যুৎ পরিবহন করে না। এক্ষেত্রে যৌগসমূহের ধনাত্মক ও ঋণাত্মক আয়নসমূহ নির্দিষ্ট স্থানে অবস্থান করে। সাধারণত কম তাপমাত্রায় আয়নিক যৌগসমূহে কঠিন অবস্থায় থাকে। ইলেকট্রন চলাচল করতে পারে না বলে এ অবস্থায় এরা বিদ্যুৎ পরিবহন করতে পারে না।

প্রশ্ন-৫: কিছু কিছু সমযোজী যৌগ পানিতে দ্রবীভূত হওয়ার কারণ ব্যাখ্যা কর। [বরিশাল বোর্ড – '১৭] সমাধান: যেসব সমযোজী যৌগের মধ্যে তড়িৎ ধনাত্মক ও ঋণাত্মক প্রান্ত বিদ্যমান তাদেরকে পোলার সমযোজী যৌগের মধ্যে বিদ্যমান মৌলসমূহের তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে এই পোলারিটি

সৃষ্টি হয়।

পোলারিটি সৃষ্টি হওয়ার কারণে কিছু কিছু সমযোজী যৌগ পানিতে দ্রবীভূত হয়। পানি একটি পোলার সমযোজী যৌগ। অন্য যেকোনো পোলার সমযোজী যৌগ যেমন: অ্যালকোহলকে পানির সাথে মিশ্রিত করলে অ্যালকোহলের ধনাত্মক প্রান্ত পানির ঋণাত্মক প্রান্ত এবং ঋণাত্মক প্রান্ত পানির ধনাত্মক প্রান্ত দ্বারা আকৃষ্ট হয়। ফলে এটি পানিতে দ্রবীভূত হয়।

প্রশ্ন-৬: 4Be ও 12Mg এর যোজনী একই কেন? ব্যাখ্যা কর।

সমাধান: Be এবং Mg উভয়ই ধাতব মৌল। ধাতব মৌলের ক্ষেত্রে সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যাকে মৌলের যোজনী বলে। Be এবং Mg এর ইলেকট্রন বিন্যাস:

$$Be(4) \rightarrow 1s^2 2s^2$$

$$Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$$

উভয় মৌলের সর্বশেষ শক্তিস্তরে ২ টি করে ইলেকট্রন বিদ্যমান। তাই উভয় মৌলের যোজনী একই অর্থাৎ ২।

প্রশ্ন-৭: 3Li ও 11Na এর যোজনী একই কেন? ব্যাখ্যা কর।

সমাধান:

$$Li(3) \rightarrow 1s^2 2s^1$$

$$Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$$

কোনো মৌলের (ধাতুর ক্ষেত্রে) সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যা ঐ মৌলের যোজনী নির্দেশ করে।

 $_3Li$ ও $_{11}Na$ এর ইলেকট্রন বিন্যাস হতে দেখা যায় এদের উভয়েরই সর্ববহিস্ত স্তরে $_1$ টি করে ইলেকট্রন $_{(e^-)}$ বিদ্যমান। এরা উভয়েই $_1$ টি ইলেকট্রন ত্যাগ করে একক ধনাত্মক চার্জ বিশিষ্ট আয়ন সৃষ্টি করতে সক্ষম তাই উভয়েরই যোজনী $_1$ । অর্থাৎ $_3Li$ ও $_{11}Na$ এর যোজনী একই।

প্রশ্ন-৮: CaCl₂ বিদ্যুৎ পরিবহন করে কেন? ব্যাখ্যা কর।

সমাধান: বিদ্যুৎ পরিবহনের পূর্বশর্ত হলো ইলেকট্রন প্রবাহ। $CaCl_2$ জলীয় দ্রবণে Ca^{2+} আয়ন এবং Cl^- আয়ন উৎপন্ন করে।

এই আয়ন সমূহ জলীয় দ্রবণে মুক্ত ভাবে চলাচল করে এবং ইলেকট্রন বাহক হিসেবে কাজ করে। তাই $CaCl_2$ গলিত অবস্থায় বিদ্যুৎ পরিবহন করে।

প্রশ্ন-৯: মৌলের যোজনী ইলেকট্রন থেকে যোজনী নির্ণয় করা সম্ভব – ব্যাখ্যা কর।

সমাধান: কোনো মৌলের পরমাণুর শেষ কক্ষপথের ইলেকট্রনকে যোজনী ইলেকট্রন বলে। মৌলের যোজনী ইলেকট্রন থেকে যোজনী নির্ণয় করা যায়। ধাতু পরমাণুগুলোর শেষ কক্ষপথে 1, 2 বা 3 টি ইলেকট্রন থাকে। তাদের যোজনী এবং যোজনী ইলেকট্রন সংখ্যা একই। আবার অধাতু পরমানুগুলোর শেষ কক্ষপথে সাধারণত 5, 6, 7 টি ইলেকট্রন থাকে। তাদের ক্ষেত্রে ৪ (আট) থেকে সে সংখ্যা বিয়োগ করে যোজনী নির্ণয় করা যায়। যাদের যোজনী ইলেকট্রন সংখ্যা 4 তাদের ক্ষেত্রে যোজনী 4।

প্রশ্ন-১০: ধাতু বিদ্যুৎ সুপরিবাহী কেন? [বরিশাল বোর্ড - '১৭]

সমাধান: ধাতব কেলাসে ধাতু পরমানুসহ একত্রে পাশাপাশি অবস্থান করে। সকল ধাতুর শেষ কক্ষপথে কমসংখ্যক ইলেকট্রন থাকে। তাই ধাতব কেলাসে এই ইলেকট্রনগুলো পরমাণুর কক্ষপথ থেকে বের হয়ে সমগ্র ধাতব খণ্ডে মুক্তভাবে চলাচল করে। ফলে বৈদ্যুতিক ক্ষেত্রের প্রভাবে বা ধাতব খণ্ডকে ব্যাটারির সাথে যুক্ত করে বর্তনী পূর্ণ করলে সহজেই বর্তনীর ঋণাত্মক প্রান্ত থেকে ইলেকট্রনসমূহ ধনাত্মক প্রান্তের দিকে চলাচল করে। আর আমরা জানি, ইলেকট্রন প্রবাহের বিপরীত দিকেই বিদ্যুৎ প্রবাহিত হয়।

প্রশ্ন-১১: সমযোজী যৌগসমূহ সাধারণত বিদ্যুৎ অপরিবাহী কেন?

সমাধান: বিদ্যুৎ পরিবহনের পূর্বশর্ত হলো ইলেকট্রন প্রবাহ। জলীয় দ্রবণে বিদ্যমান আয়নসমূহ ইলেকট্রন বাহক হিসাবে কাজ করে। সমযোজী যৌগ সমূহ জলীয় দ্রবণে অদ্রবণীয়। এদের উপাদান সমূহ আয়নে হিসাবে বিভক্ত হয় না। তাই ইলেকট্রন প্রবাহিত হয় না। এজন্য সমযোজী যৌগসমূহ বিদ্যুৎ অপরিবাহী।

প্রশ্ন-১২: ধাতব বন্ধন বলতে কি বুঝ?

সমাধান: ধাতব পরমাণু সমূহ যে আকর্ষণ বল দ্বারা পরস্পরের সাথে আবদ্ধ থাকে তাকে ধাতব বন্ধন বলে। ধাতব বন্ধনে আবদ্ধ পরমাণুগুলো অন্য কোনো মৌলের সাথে বন্ধন গঠন করে না। ধাতব পরমাণুসমূহের যোজ্যতাস্তরের ইলেকট্রনের উপর পরমাণুর নিউক্লিয়াসের আকর্ষণ বল নেই বললেই চলে। এসব ইলেকট্রন পরমাণু থেকে বেরিয়ে সমগ্র ধাতবখন্ডে মুক্ত ভাবে চলাচল করে। ইলেকট্রন হারিয়ে ধাতব পরমাণুগুলো ধাতব আয়নে পরিণত হয় এবং ধাতব বন্ধন সৃষ্টি করে।

প্রশ্ন-১৩: রাসায়নিক বন্ধন কেন গঠিত হয়?

সমাধান: প্রতিটি মৌলই তার নিকটবর্তী নিস্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করতে চায়। ফলে তারা সুস্থিতি লাভ করে। সেই লক্ষ্যে মৌল সমূহ ইলেকট্রন দান, গ্রহণ বা শেয়ার করে পরস্পর সংযুক্ত হয় এবং তাদের মধ্যে রাসায়নিক বন্ধন গঠিত হয়।

প্রশ্ন-১৪: জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য লিখ।

সমাধান: জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য নিম্নরূপ:

জারন সংখ্যা	যোজনী
১. জারণ সংখ্যা হলো এমন একটি সংখ্যা, যা দ্বারা মৌলের পরমাণুতে সৃষ্ট তড়িৎ চার্জের প্রকৃতি ও সংখ্যামান উভয়ই প্রকাশ পায়।	১. অপরদিকে কোনো মৌলের যোজনী হলো অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা।
২. জারণ সংখ্যা ধনাত্মক ও ঋণাত্মক হতে পারে।	২. যোজনী একটি পূর্ণ সংখ্যা।
৩. জারণ সংখ্যা শূন্য ও ভগ্নাংশ হতে পারে।	৩. যোজনী কখনও শূন্য ও ভগ্নাংশ হতে পারে না।

প্রশ্ন-১৫: ক্ষারধাতুসমূহের যোজনী এক কেন?

সমাধান: কোনো মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ কক্ষপথে বিজোড় ইলেকট্রন সংখ্যাই ঐ মৌলের যোজনী।
ক্ষারধাতুসমূহের প্রত্যেকের সর্বশেষ কক্ষপথে 1টি বিজোড় ইলেকট্রন বিদ্যমান। তাই ক্ষারধাতু সমূহের যোজনী
এক।

প্রশ্ন-১৬: HCl পোলার যৌগ কেন? ব্যাখ্যা কর। [সিলেট বোর্ড - '১৬]

সমাধান: যে সমযোজী যৌগে পোলারিটি সৃষ্টি হয় তাকে পোলার সমযোজী যৌগ বলে। অর্থাৎ যে সব সমযোজী যৌগের অণুতে ধনাত্মক ও ঋণাত্মক চার্জযুক্ত প্রান্তের সৃষ্টি হয় তাদেরকে পোলার যৌগ বলে। HCI যৌগে ক্লোরিনের তড়িৎ ঋণাত্মকতা H অপেক্ষা অনেক বেশী। তাই শেয়ারকৃত বন্ধন ইলেকট্রনযুগল ক্লোরিনের দিকে চলে আসে। ফলে ক্লোরিন পরমাণুতে আংশিক ঋণাত্মক চার্জ এবং হাইড্রোজেন পরমাণুতে আংশিক ধনাত্মক চার্জ সৃষ্টি হয়। এজন্য HCI একটি পোলার যৌগ।

প্রশ্ন-১৭: নিস্ক্রিয় গ্যাসসমূহের নিস্ক্রিয়তার কারণ ব্যাখ্যা কর।

সমাধান: নিস্ক্রিয় গ্যাস সমূহের শেষ কক্ষপথে ৮টি করে ইলেকট্রন বিদ্যমান (হিলিয়াম ব্যাতীত)। হিলিয়াম ২টি ইলেকট্রন দ্বারা পূর্ণ। এরূপ ইলেকট্রন বিন্যাসের ফলেই এরা অন্য কোনো পরমাণুর সাথে ইলেকট্রন গ্রহণ, বর্জন বা শেয়ারে অংশগ্রহন করতে পারে না অর্থাৎ রাসায়নিকভাবে নিস্ক্রিয় থাকে। এমনকি এরা নিজেরা নিজেদের সাথেও সংযুক্ত হয় না। এজন্য এদের নিস্ক্রিয় গ্যাস বলা হয়।

প্রশ্ন-১৮: NH₄ একটি যৌগমূলক কেন? ব্যাখ্যা কর। [যশোর বোর্ড - '১৬]

সমাধান: একাধিক মৌলের একাধিক পরমাণুর সমস্বয়ে গঠিত একটি পরমানুগুচ্ছ যা একটি আয়নের ন্যায় আচরণ করে তাকেই যৌগমূলক বলে। যৌগমূলক বিক্রিয়ায় অংশগ্রহনের সময় একটি মাত্র পরমাণুর ন্যায় আচরণ করে। NH_4^+ একটি যৌগমূলক কারণ এটি একাধিক পরমাণুর সমস্বয়ে গঠিত ধনাত্মক আধান বিশিষ্ট আয়ন। NH_4^+ রাসায়নিক বিক্রিয়ায় অংশগ্রহণের সময় একটি মাত্র পরমাণুর ন্যায় আচরণ করে।

প্রশ্ন-১৯: ম্যাগনেসিয়াম আয়নিক যৌগ গঠন করে কেন?

সমাধান: ম্যাগনেসিয়ামের ইলেকট্রন বিন্যাস নিম্নরূপ:

$$Mg(12) \rightarrow 1s^2 2s^2 2p^6 3s^2$$

ম্যাগনেসিয়াম পরমাণুর সর্ববহিস্ত কক্ষপথে ২টি ইলেকট্রন থাকায় ইলেকট্রন শেয়ার বা গ্রহণের মাধ্যমে অষ্টকপূর্ণ করতে পারে না। কিন্তু Mg পরমাণুর সর্ববহিঃস্থ কক্ষপথের ২টি ইলেকট্রন সহজেই ত্যাগ করে অষ্টক পূর্ণ করতে পারে। তাই ম্যাগনেসিয়াম কেবল আয়নিক বন্ধনের মাধ্যমে আয়নিক যৌগ গঠন করতে পারে।

প্রশ্ন-২o: বন্ধন গঠনে দুই এর নিয়ম ব্যাখ্যা কর।

সমাধান: বিভিন্ন মৌলের পরমাণুসমূহ নিজেদের মধ্যে ইলেকট্রন আদান – প্রদান বা শেয়ারের মাধ্যমে সর্বশেষ শক্তি স্তরে ২ টি ইলেকট্রনের বিন্যাস লাভ করে। একে দুই এর নিয়ম বলে। দুটি হাইড্রোজেন পরমাণু পরস্পরের মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে H_2 গঠন করে। এতে এদের শক্তিস্তরে ২টি করে ইলেকট্রন বিদ্যমান থাকে।

প্রশ্ন-২১: আয়নিক বন্ধন ও সমযোজী বন্ধনের পার্থক্য লিখ।

সমাধান: আয়নিক বন্ধন ও সমযোজী বন্ধনের পার্থক্য:

আয়নিক বন্ধন	সমযোজনী বন্ধন
১. এটি শক্তিশালী বন্ধন	১. এটি তুলনামূলক দুর্বল বন্ধন।
২. পরমাণুর মধ্যে ইলেকট্রন আদান – প্রদানের ফলে আয়নিক বন্ধন সৃষ্টি হয়।	২. পরমাণুর মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী বন্ধন সৃষ্টি হয়।
 ৩. আয়নিক বন্ধন বিশিষ্ট যৌগের গলনাক্ষ ও স্ফুটনাক্ষ বেশী। 	৩. সমযোজী বন্ধন বিশিষ্ট যৌগের গলনাঙ্ক ও স্ফুটনাঙ্ক কম।
 আয়নিক বন্ধন বিশিষ্ট যৌগ পোলার দ্রাবকে দ্রবীভূত হয়। 	 সমযোজী বন্ধন বিশিষ্ট যৌগ অপোলার দ্রাবকে দ্রবীভূত হয় না।

প্রশ্ন-২২: MgCl2 এর গলনাঙ্ক বেশী হয় কেন? ব্যাখ্যা কর।

সমাধান: স্বাভাবিক চাপে যে তাপমাত্রায় কোনো কঠিন পদার্থ তরলে পরিণত হয় সেই তাপমাত্রাকে ঐ পদার্থের গলনাস্ক বলে। $\mathrm{MgCl_2}$ একটি আয়নিক যৌগ। এই যৌগটি ইলেকট্রন আদান-প্রদানের মাধ্যমে গঠিত হয়। ক্যাটায়ন ও অ্যানায়নসমূহ স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা যৌগের অণুতে আবদ্ধ থেকে আয়নিক বন্ধন গঠন করে। $\mathrm{MgCl_2}$ যৌগের অণুতে ধনাত্মক ও ঋণাত্মক প্রান্ত থাকায় এদের আন্তঃআণবিক শক্তি অনেক বেশী। $\mathrm{MgCl_2}$ কে তরলে পরিণত করার জন্য এর অণুসমূহের আন্তঃআণবিক দূরত্ব বৃদ্ধি করতে অধিক তাপের প্রয়োজন হয়। তাই $\mathrm{MgCl_2}$ এর গলনাস্ক অনেক বেশী।

প্রশ্ল-২৩: আয়নিক যৌগের বৈশিষ্ট্য সমূহ লিখ।

সমাধান: আয়নিক যৌগের বৈশিষ্ট্য সমূহ:

- (১) আয়নিক যৌগ সমূহের গলনাঙ্ক ও স্ফুটনাঙ্ক অত্যধিক।
- (২) সাধারণ তাপমাত্রায় আয়নিক যৌগসমূহ কঠিন অবস্থায় থাকে।
- (৩) আয়নিক যৌগসমূহ পানিতে এবং অন্যান্য অজৈব পোলার দ্রাবকে দ্রবণীয়।
- (৪) আয়নিক যৌগসমূহ গলিত অবস্থায় এবং পানিতে দ্রবীভূত অবস্থায় বিদ্যুৎ পরিবহন করতে পারে।
- (৫) কঠিন অবস্থায় আয়নিক যৌগসমূহ বিদ্যুৎ পরিবহন করতে পারে না।
- (৬) আয়নিক যৌগসমূহ পানিতে ধনাত্মক ও ঋণাত্মক আয়ন উৎপন্ন করে।

প্রশ্ন-২৪: সমযোজী যৌগের বৈশিষ্ট্য সমূহ লিখ।

সমাধান: সমযোজী যৌগের বৈশিষ্ট্য সমূহ:

- (১) সাধারণত তাপমাত্রায় গ্যাস, তরল ও কঠিন এই তিনটি অবস্থায় থাকতে পারে।
- (২) গলনাঙ্ক ও স্ফুটনাঙ্ক তুলনামূলক ভাবে কম।
- (৩) পানিতে বা পোলার দ্রাবকে অদ্রবণীয় কিন্তু কিছু কৈছু জৈব দ্রাবকে/অপোলার দ্রাবকে দ্রবণীয়।
- (৪) জলীয় দ্রবণে আয়নিত হয়না বলে বিদ্যুৎ পরিবহন করে না।
- (৫) আন্তঃআণবিক শক্তি কম, তাই এরা সহজেই উদ্বায়ী।

প্রশ্ন-২৫: সমযোজী যৌগের পোলারিটি বলতে কি বুঝ?

সমাধান: সমযোজী যৌগের পোলারিটি: সমযোজী যৌগের শেয়ারকৃত ইলেকট্রন আকর্ষণ করার ক্ষমতাকে তড়িৎ ঋণাত্মকতা বলা হয়। যৌগের দুটি মৌলের তড়িৎ ঋণাত্মকতার পার্থক্য বেশী হলে পোলারিটি সৃষ্টি হয়। যেমন: পানির অণুতে অক্সিজেনের তড়িৎ ঋণাত্মকতা হাইড্রোজেনের চেয়ে বেশী হওয়ায় অক্সিজেনে আংশিক তড়িৎ ঋণাত্মক ও হাইড্রোজেনে আংশিক তড়িৎ ধনাত্মক প্রান্তের সৃষ্টি হয়। এ ঘটনাকে সমযোজী যৌগের পোলারিটি বলা হয়।

প্রশ্ন-২৬: H₂O তে কোন ধরণের বন্ধন বিদ্যমান? ব্যাখ্যা কর।

সমাধান: H_2O তে সমযোজী বন্ধন বিদ্যমান। কারণ H_2O তে দুইটি হাইড্রোজেন পরমাণু একটি করে ইলেকট্রন অক্সিজেনের যোজ্যতা স্তরের দুইটি ইলেকট্রনের সাথে শেয়ার করে অক্সিজেন অষ্টক ও হাইড্রোজেন দুই এর নিয়ম বা বিন্যাস লাভ করে।

প্রশ্ন-২৭: 0_2 তে কোন ধরণের বন্ধন বিদ্যমান? ব্যাখ্যা কর।

সমাধান: অক্সিজেনের পারমাণবিক সংখ্যা 8, সুতরাং এর ইলেকট্রন বিন্যাস দাড়ায় 2,6। অষ্টক পূরণের জন্য এর আরো দুইটি ইলেকট্রন দরকার। তাই অক্সিজেন অণু (O_2) তে দুইটি অক্সিজেন পরমাণু পরস্পর ২ টি করে ইলেকট্রন শেয়ার করে দুইটি সমযোজী বন্ধন গঠন করে এবং পরস্পর আবদ্ধ থাকে।

প্রশ্ন-২৮: আয়নিক যৌগের গলনাম্ক ও স্ফুটনাক্ষ বেশী কেন?

সমাধান: আয়নিক যৌগের প্রতিটি আয়ন তার চতুর্দিকে বিপরীত চার্জযুক্ত আয়ন দ্বারা পরিবেষ্টিত থাকে। এ সময় আয়ন সমূহ স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা এমন ভাবে আবদ্ধ থাকে যে, তাদেরকে পরস্পর থেকে আলাদা করতে অনেক বেশী শক্তির প্রয়োজন হয়। এ কারণেই আয়নিক যৌগের গলনাঙ্ক ও স্ফুটনাঙ্ক অনেক বেশী।

প্রশ্ন-২৯: ধাতব মৌলের বিদ্যুৎ পরিবাহিতা অত্যধিক কেন?

সমাধান: বিদ্যুৎ পরিবহনের জন্য প্রয়োজন আয়ন সমূহের স্বাধীন চলাচল। ধাতব খন্ডে ইলেকট্রন গুলো পরমাণুর কক্ষপথ থেকে বের হয়ে সমগ্র ধাতব খন্ডে মুক্তভাবে চলাচল করে। ইলেকট্রন হারিয়ে পরমাণু গুলো আয়নে পরিণত হয়। তখন ধাতব আয়ন গুলোকে এক ইলেকট্রন সাগরে নিমজ্জিত আছে বলে মনে হয়। এই বিমুক্ত ইলেকট্রনের কারণেই ধাতুসমূহের বিদ্যুৎ পরিবাহিতা অত্যধিক।

প্রশ্ন-৩০: নিষ্ক্রিয় গ্যাস সমূহের ইলেকট্রন বিন্যাস দেখাও।

সমাধান: নিস্ক্রিয় গ্যাস সমূহের ইলেকট্রন বিন্যাস:

 $He(2): 1s^2$

Ne(10): $1s^22s^2 2p^6$

Ar(18): $1s^22s^22p^63s^23p^6$

Kr(36): $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$

 $Xe(54) \colon 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6$

 $Rn(86): 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^26p^6$

প্রশ্ন-৩১: আয়নিক যৌগগুলো গলিত অবস্থায় বিদ্যুৎ পরিবহন করে- ব্যাখ্যা কর?

সমাধান: তড়িৎ পরিবহনের জন্য আয়নসমূহের চলাচল দরকার যা কঠিন অবস্থায় সম্ভব নয়। গলিত বা দ্রবীভূত অবস্থায় আয়ন গুলো চলাচল করতে পারে, ফলে আয়নিক যৌগ গুলো গলিত অবস্থায় বিদ্যুৎ পরিবহন করতে পারে।

প্রশ্ন-৩২: পানি পোলার যৌগ - ব্যাখ্যা কর? [সিলেট বোর্ড - '১৭]

সমাধান: যে সমযোজী যৌগে পোলারিটি সৃষ্টি হয় তাকে পোলার সমযোজী যৌগ বলে। অর্থাৎ যে সব সমযোজী যৌগের অণুতে ধনাত্মক ও ঋণাত্মক চার্জ যুক্ত প্রান্তের সৃষ্টি হয় তাদের কে পোলার যৌগ বলে। পানির রাসায়নিক সংকেত H_2O । এখানে অক্সিজেনের তড়িৎ ঋণাত্মকতা H অপেক্ষা অনেক বেশী। তাই শেয়ারকৃত বন্ধন ইলেকট্রনযুগল অক্সিজেনের দিকে চলে আসে। ফলে অক্সিজেন পরমাণুতে আংশিক ঋণাত্মক চার্জ এবং হাইড্রোজেন পরমাণুতে আংশিক ধনাত্মক চার্জ সৃষ্টি হয়। এজন্য পানি একটি পোলার যৌগ।

প্রশ্ন-৩৩: FeCl₃ এ Fe এর সুপ্ত যোজনী কত?

সমাধান: কোনো মৌলের সর্বোচ্চ যোজনী এবং সক্রিয় যোজনীর পার্থক্যকে ঐ মৌলের সুপ্ত যোজনী বলা হয়। ${\rm FeCl}_3$ যৌগে ${\rm Fe}$ এর সক্রিয় যোজনী ${\rm 3}$ কিন্তু ${\rm Fe}$ এর সর্বোচ্চ যোজনী ${\rm 3}$, অতএব ${\rm FeCl}_3$ যৌগে ${\rm Fe}$ এর সুপ্ত যোজনী ${\rm 3}-{\rm 3}=0$ ।

প্রশ্ন-৩8: FeCl₃ এ Fe এর সুপ্ত যোজনী কত?

সমাধান: ধনাত্মক আধান বা পজিটিভ চার্জ বিশিষ্ট আয়নকে ক্যাটায়ন বলে। পর্যায় সারণির সবচেয়ে বামের মৌল বা ধাতুগুলো তাদের সর্ববহিঃস্থ শক্তিস্তর থেকে এক বা একাধিক ইলেকট্রন ত্যাগ করে নিক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভের মাধ্যমে ক্যাটায়ন সৃষ্টি করে।

প্রশ্ন-৩৫: গ্লুকোজ তড়িৎ পরিবহন করে না কেন?

সমাধান: গ্লুকোজ একটি সমযোজী যৌগ। আর জলীয় দ্রবণে সমযোজী যৌগ আয়নিত হতে পারে না। কিন্তু তড়িৎ পরিবহনে যৌগকে আয়নিত হতে হয়। যেহেতু গ্লুকোজ আয়নিত হয় না তাই তড়িৎ পরিবহন করে না।

🥐 বহুনির্বাচনী (MCQ)

১। কোনো মৌলের সর্বশে	ণষ প্রধান শক্তিস্তরের ইলেব	চট্ৰন সংখ্যাকে কী বলা হয়	?	
(ক) যোজ্যতা ইলেকট্রন	(খ) সর্বশেষ শক্তিস্তর	(গ) শেষ কক্ষপথ	(ঘ) জারণ সংখ্যা	উত্তর: ক
২। লিথিয়ামের পারমাণবি	কৈ সংখ্যা কত?			
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: খ
৩। অক্সিজেনের পারমাণা	বিক সংখ্যা কত?			
(ক) 4	(খ) 5	(গ) 7	(ঘ) ৪	উত্তর: ঘ
৪। ফ্লোরিন মৌলের ইলে	কট্রন বিন্যাস–			
(ক) 1s ² 2s ²	(খ) $1s^22s^22p^63s^1$	(গ) $1s^22s^22p^4$	(ঘ) 1s ² 2s ² 2p ⁵	উত্তর: ঘ
৫। অক্সিজেনের শেষ শর্	ক্তস্তরে কতটি ইলেকট্রন অ	ছৈ?		
(ক) ১টি	(খ) 7টি	(গ) ৪টি	(ঘ) 9টি	উত্তর: ক
৬। সোডিয়াম মৌলের ই	লেকট্রন বিন্যাস –			
(ক) 2, 1	(খ) 2, 8, 1	(গ) 2, 6	(ঘ) 2, 7	উত্তর: খ
৭। যোজ্যতা ইলেকট্রন বে	কান শক্তি <mark>স্তরে</mark> অবস্থান করে	র?		
(ক) প্রথম	(খ) দ্বিতীয়	(গ) তৃতীয়	(ঘ) সৰ্বশেষ	উত্তর: ঘ
৮। Na মৌলের ইলেকট্র	ন বিন্যাস $1s^22s^22p^63s^1$	এর যোজ্যতা ইলেকট্রন	সংখ্যা কত?	
(ক) 1 টি	(খ) 2 টি	(গ) 3 টি	(ঘ) 4 টি	উত্তর: ক
৯। F মৌলের ইলেকট্রন	বিন্যাস $1s^22s^22p^5$ । এ ${\cal C}$	মীলের প্রধান শক্তিস্তর কয়	টি?	
(ক) ় টি	(খ) 2 টি	(গ) 3 টি	(ঘ) 4 টি	উত্তর: খ
১০। N পরমানুতে–				
i. 7 <i>n</i> , 7 <i>p</i> আছে				
ii. যোজ্যতা ইলেকট্ৰন 5	টি			
iii. ইলেকট্রন বিন্যাস: 1s	$s^2 2s^2 2p^3$			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
১১। <i>Ca</i> ² ⁺ পরমানুতে–				
i. 20p ও 18e আছে				
ii. যোজ্যতা ইলেকট্রন নে	ই			
iii. ইলেকট্রন বিন্যাস: 1s	$s^2 2s^2 2p^6 3s^2 3p^6 3d^2$			

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) іі ও ііі

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ক

নিচের ইলেকট্রন বিন্যাস থেকে ১২ ও ১৩ নং প্রশ্নের উত্তর দাও:

 $B = Ar4s^2$

১২। মৌলটির নাম কী?

(**क**) K

(খ) Ar

(গ) Ca

(ঘ) Sc

উত্তর: গ

১৩। মৌলটির-

i. পারমাণবিক সংখ্যা 20

ii. যোজ্যতা ইলেকট্রন সংখ্যা 2

iii. ইলেকট্রন বিন্যাস: $1s^22s^22p^63s^23p^63d^2$

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) іі ও ііі

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

নিচের ইলেকট্রন বিন্যাস থেকে ১৪ ও ১৫নং প্রশ্নের উত্তর দাও:

A = 2, 8, 6

১৪। মৌলটির যোজ্যতা ইলেকট্রন সংখ্যা কত?

(ক) 2

(খ) 4

(গ) 6

(ঘ) 8

উত্তর: গ

১৫। মৌলটির-

i. 4 টি শক্তিস্তর রয়েছে

ii. ইলেকট্রন বিন্যাস: $1s^22s^22p^63s^23p^4$

iii. প্রথম কক্ষপথের ইলেকট্রন দুটি প্রকৃতপক্ষে জোড় অবস্থায় থাকে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) і, іі ও ііі

উত্তর: খ

১৬। কোন মৌলটির যোজনী ইলেকট্রন বেশি?

(ক) Li

(খ) Na

(গ) 0

ঘ) F

উত্তর: ঘ

১৭। *0* এর যোজনী ইলেকট্রন কত?

(ক) 2

(খ) 4

(গ) 6

ঘ) ৪

উত্তর: গ

১৮। কোনো মৌলের অন্য মৌলের সাথে যুক্ত হওয়ার সামর্থ্যকে কী বলে?

(ক) যোজ্যতা

(খ) প্রতীক

(গ) যৌগমূলক

ঘ) সংকেত

উত্তর: ক

১৯। কোনো মৌলের যোজনী সর্বোচ্চ কত হতে পারে?

(ক) 3

(খ) 5

(গ) 7

ঘ) 9

উত্তর: গ

২০। কোনো মৌলের ই	লৈকট্ৰন বিন্যাসে সৰ্বশেষ ব	কক্ষপথে যত সংখ্যক ইলে	কট্রন থাকে তা ঐ মৌ	লর- বলে।
(ক) শক্তিস্তর	(খ) যোজনী	(গ)আয়ন	(ঘ) যৌগমূলক	উত্তর: খ
২১। অধাতব মৌলের ই	লৈকট্রন বিন্যাসের ক্ষেত্রে নি	নচের কোনটি মৌলের যোজ	ন্যতা নির্দেশ করে?	
(ক) সর্বশেষ কক্ষপথের	ইলেকট্রন সংখ্যা	(খ) সর্বশেষ কক্ষপথের (বেজোড় ইলেকট্রন সংখ্যা	
(গ) সর্বমোট শক্তিস্তর		(ঘ) পর্যায় ও গ্রুপ সংখ্যা		উত্তর: খ
২২। পরিবর্তনশীল যোজ	ল্যতা প্রদর্শন করে−			
(ক) নিম্ন পারমাণবিক স	াংখ্যাবিশিষ্ট ধাতব মৌল			
(খ) নিম্ন পারমাণবিক স	ংখ্যাবিশিষ্ট অধাতব মৌল			
(গ) উচ্চ পারমাণবিক স	াংখ্যাবিশিষ্ট অধাতব মৌল			
(ঘ) উচ্চ পারমাণবিক স	াংখ্যাবিশিষ্ট ধাতব মৌল			উত্তর: ঘ
২৩। পর্যায় সারণির কে	ান শ্রেণির মৌলসমূহের যোগ	স্তা শূন্য ধরা হয <u>়</u> ?		
(₹)]	(খ) 7	(গ) 11	(ঘ) 18	উত্তর: ঘ
২৪। কোন মৌল দুটির	যোজনী একই হবে?			
(₹) Ca,Zn	(뉙) Al, P	(গ) Si,S	(ঘ) N, Cl	উত্তর: ক
২৫। Na এর যোজনী	কিসের <mark>ওপর নির্ভ</mark> র করে?			
(ক) সর্বশেষ কক্ষপথের	ইলেকট্রনের সংখ্যার ওপর			
(খ) সর্বশেষ কক্ষপথের	সংখ্যার ওপর			
(গ) সর্বশেষ কক্ষপথের	শক্তির ওপর			
(ঘ) সর্বশেষ কক্ষপথের	আবর্তনের ওপর			উত্তর: ক
২৬। Cl এর যোজনী বি	কসের ওপর নির্ভর করে?			
(ক) সর্বশেষ কক্ষপথের	ক্রমের ওপর			
(খ) সর্বশেষ কক্ষপথের	উপস্তরের ওপর			
(গ) সর্বশেষ কক্ষপথের	বিজোড় ইলেকট্রন সংখ্যার	ওপর		
(ঘ) সর্বশেষ কক্ষপথের	ইলেকট্রনের সংখ্যার ওপর			উত্তর: ঘ
২৭। Be এর যোজনী ব	কত ?			
(ক) 1	(খ) 2	(গ) 3	(ঘ) 5	উত্তর: খ
২৮। N এর যোজনী ক	ত?			
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: গ
২৯। <i>B</i> এর যোজনী ক	ত?			
(ক) া	(খ) 2	(গ) 3	(ঘ) 5	উত্তর: গ

ii. K ও I এর যোজনী এক

৩০। কোনটির যো	জনী 5?			
(ক) N	(킥) P *	(গ) C *	(ঘ) S	উত্তর: খ
৩১। একযোজী বে	গ্ৰটি?			
(ক) Ca	(켁) C	(গ) Na	(ঘ) B	উত্তর: গ
৩২। শূন্যযোজী হে	য়ীল কোনটি?			
(ক) Ni	(খ) Ar	(গ) P	(ঘ) Al	উত্তর: খ
৩৩ । <i>K</i> এর ইলেব	কট্রন সংখ্যা 19, এর যো <u>ং</u>	জনী কত হবে?		
(ক) 3	(খ)]	(গ) 4	(ঘ) 5	উত্তর: খ
৩৪। ८∗ এর ই⊂	শকট্রন বিন্যাস কত?			
$(\overline{2}) \ 1s^2 2s^2 2p^6$		(খ) 1s ² 2s ¹ 2px	$^{1}2py^{1}$	
(গ) $1s^2 2s^2 2px^2$	$22py^12pz^1$	(ঘ) 1s ² 2s ² 2px	$^{1}2py^{1}2pz^{1}$	উত্তর: ঘ
৩৫। Na এর ইে	শকট্রন বিন্যাস কীরূপ?			
$(\overline{2}) \ 1s^2 2s^2 2p^6$		(খ) 1s ² 2s ² 2p ⁶ 3	$3s^1$	
(গ) 1s ² 2p ⁶ 3s ² 3	Sp^1	(ঘ) $1s^22s^22p^4$		উত্তর: খ
৩৬। 1s ² 2s ² 2p ⁶	$53s^13px^13py^13pz^13_d$	¹ এই ইলেকট্রন বিন্যাস <i>F</i>	০ মৌলের উত্তেজিত অব	স্থা প্রকাশ করে।
এর দারা প্রমাণিত	হয়_			
(ক) P মৌলের যে	াজ্যতা 3 ও 5	(খ) P মৌলের প	র্যায় ও গ্রুপ একই	
(গ) P একটি ধাতু		(ঘ) P আয়নিক d	যৌগ গঠন করে	উত্তর: ক
৩৭। <i>N</i> মৌলের ই	লেকট্রন বিন্যাস $1s^22s^2$	$2px^12py^12pz^1$ হলে N	এর যোজ্যতা কত?	
(ক) 1	(খ) 3	(গ) 4	(ঘ) 5	উত্তর: খ
৩৮। <i>B</i> মৌলের স	বিশেষ কক্ষপথের বিজোড়	ইলেকট্রন সংখ্যা কত?		
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর:
৩৯। _৪ ০²এর সা	ঠিক ইলেকট্রন বিন্যাস কে	ানটি?		
(ক) 1s ² 2s ² 2p ⁶		(খ) 1s ² 2s ² 2p		
(গ) 1s ² 2s ² 2p ⁶ 3	$3s^2$	(ঘ) 1s ² 2s ² 2p ⁴ 3	$3s^2$	উত্তর: ক
8o। _৪ O এর ইলে	কট্রন বিন্যাসে সর্ববহিস্থ স্ব	ধ্রে বিজোড় ইলেকট্রন সং ং	থ্যা কত?	
(ক)]	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: খ
৪১। মৌলের যোজ	নীর ক্ষেত্রে			
i. সর্ববহিস্থ স্তরের	ইলেকট্রন সংখ্যাই যোজন	ग		

(ক) i ও ii

iii. যোজনী ধনাত্মক বা ঋণাত্মক হয় নিচের কোনটি সঠিক? (গ) і ও ііі (ঘ) i, ii ও iii (ক) i ও ii (খ) ii ও iii উত্তর: ক ৪২। একই মৌলের ইলেকট্রন বিন্যাস i. $1s^22s^22p^63s^2 3px^13py^13pz^1$ ii. $1s^22s^22p^63s^13px^13py^13pz^2$ iii. $1s^22s^22p^63s^13px^13py^13pz^13d^1$ নিচের কোনটি সঠিক? (ক) i ও ii (খ) ii ଓ iii (গ) i ও iii (ঘ) i, ii ও iii উত্তর: গ ৪৩। মৌলের সর্বশেষ কক্ষপথের উপস্তরসমূহের মধ্যে ইলেকট্রন পুনর্বিন্যাসের কারনে i. বিজোড় ইলেকট্রন সংখ্যা পরিবর্তিত হয় ii. মৌলসমূহ একাধিক যোজ্যতা প্রদর্শন করে iii. P পরিবর্তনশীল যোজ্যতা দেখায় নিচের কোনটি সঠিক? (ক) i ও ii (খ) ii ଓ iii (গ) i ও iii (ঘ) i, ii ও iii উত্তর: ঘ 88। একযোজী মৌল– i. Ca & P ii. Na ও K iii. H ଓ Cl নিচের কোনটি সঠিক? (ক) i ও ii (খ) іі ও ііі (গ) і ও ііі (ঘ) i, ii ও iii উত্তর: খ নিচের ইলেকট্রন বিন্যাস থেকে ৪৫ ও ৪৬ নং প্রশ্নের উত্তর দাও: 15 প্রোটন বিশিষ্ট A মৌলের ইলেকট্রন বিন্যাস নিম্নরূপ: $1s^22s^22p^63s^2 3px^13py^13pz^1$ 8¢। A মৌলটিi. ফসফরাস যা অধাতু ii. এর নিম্ন উত্তেজিত অবস্থা: $1s^22s^22p^63s^2\ 3p_x^{\ 1}3p_y^{\ 1}3p_z^{\ 1}$ iii. এর উচ্চ উত্তেজিত অবস্থা: $1s^22s^22p^63s^13p_x^{\ 1}3p_y^{\ 1}3p_z^{\ 1}\ 3d^1$ নিচের কোনটি সঠিক?

(গ) і ও ііі

(খ) іі ও ііі

(ঘ) i, ii ও iii

উত্তর: ঘ

৪৬। A মৌলটির-

- i. যোজনী 3, 5
- ii. অষ্টক সমপ্রসারণ হয়েছে
- iii. কোনো বিজোড় ইলেকট্রন নেই

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) іі ও ііі

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ক

নিচের অনুচ্ছেদটি পড়ে ৪৭ ও ৪৮ নং প্রশ্নের উত্তর দাও:

কোনো মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ কক্ষপথে যত সংখ্যক ইলেকট্রন থাকে অথবা যত সংখ্যক বিজোড় ইলেকট্রন থাকে তাকে মৌলের যোজনী বা যোজ্যতা বলে।

৪৭। বিজোড় ইলেকট্রন সংখ্যা নিচের কোন মৌলের যোজ্যতা নির্দেশ করে?

(ক) N

(খ) Na

(গ) Mg

(ঘ) Ca

উত্তর: ক

৪৮। বাক্যগুলো লক্ষ কর:

- i. Be-এর সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যা 2
- ii. N-এর সর্বশেষ কক্ষপথের বিজোড় ইলেকট্রন সংখ্যা 3
- iii. S-পরিবর্তনশীল যোজ্যতা প্রদর্শন করে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) іі ও ііі

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

৪৯। ধনাত্মক যৌগমূলক কোনটি?

(ক) NH₄

(খ) SO₄

(গ)*CO*₃

(ঘ) PO₄

উত্তর: ক

৫০। SO_2 এবং SO_4^{2-} এর মধ্যে পার্থক্য কী?

- $(\Phi)SO_2$ একটি মৌল এবং SO_4^{2-} একটি যৌগ
- (খ) SO_2 একটি আয়ন এবং SO_4^{2-} একটি যৌগ
- (গ) SO_2 একটি যৌগ এবং SO_4^{2-} একটি যৌগমূলক

(ঘ) SO_2 একটি যৌগ এবং SO_4^{2-} একটি আয়ন

উত্তর: গ

- ৫১। রাসায়নিক বিক্রিয়ায় একটিমাত্র পরমাণু হিসেবে কে অংশগ্রহণ করে?
- (ক) যোজনী
- (খ) যৌগমূলক
- (গ) সংকেত
- (ঘ) শক্তিস্তর

উত্তর: খ

৫২। কয়টি Na^+ আয়ন একটি সালফেট আয়নে যুক্ত হয়?

(ক) 1 টি

(খ) 2 টি

(গ) 3 টি

(ঘ) 4 টি

উত্তর: খ

৫৩। একাধিক পরমাণুর সমন্বয়ে গঠিত একটি পরমাণুগুচ্ছ যা একটি আয়নের ন্যায় আচরণ করে, তাকে বলে—

(ক) মৌল

(খ) যৌগ

(গ) আয়ন

(ঘ) যৌগমূলক

উত্তর: ঘ

৫৪। যৌগমূলকসমূহে	র আধান কী প্রকাশ করে?	?			
(ক) যোজ্যতা		(খ) আয়ন	(খ) আয়ন		
(গ) পরমাণু		(ঘ) মৌলের উত্তেজি	ত অবস্থা	উত্তর: ক	
৫৫। ফসফেট যৌগস	মূহের আধান –3। এর ফে	াজ্যতা কত?			
(ক) -3	(খ) +3	(গ) ± 3	(ঘ) 3	উত্তর: ঘ	
৫৬। CO_3^{2-} যৌগমূল	কের আধান কত?				
(ক) -2	(খ) +2	(গ) 3	(ঘ) 2	উত্তর: ক	
৫৭। ধাতু M এর যো	জনী 4। উক্ত ধাতুর সাল	ফেটের ঠিক সংকেত কো	নটি?		
(ক) M_4SO_4	(খ) $M(SO_4)_4$	(গ) M_2SO_4	$(\mathfrak{A}) M(SO_4)_2$	উত্তর: ঘ	
৫৮। $Al_2(SO_4)_3$ সংব	কেতটিতে SO_4 একটি-				
(ক) আয়ন	(খ) পরমাণুগুচ্ছ	(গ) অণু	(ঘ) যৌগমূলক	উত্তর: ঘ	
৫৯। $Fe_2(SO_4)_3$ যৌ	গে Fe ও SO ₄ এর যোজ	নী কত?			
(ক) 3, 2	(খ) 6, 4	(গ) 2, 3	(ঘ) 3, 4	উত্তর: ক	
$90 \cdot NH_4Cl + Ag$	$nNO_3 = NH_4NO_3 +$	AgCl বিক্রিয়াতে ঋণাত্ম	ক যৌগমূলক কোনটি?		
(▼) NH ₄	(খ) NO ₃	(গ) Ag	(ঘ) Cl	উত্তর: খ	
৬১। SO_3 যৌগমূলক	টর যোজনী কত?				
(₹) 3	(খ) 2	(গ) 4	(ঘ) 1	উত্তর: খ	
৬২। হাইড্রোক্সিল যৌ	গমূলকের যোজনী কত?				
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: ক	
৬৩। কোনটি দ্বিযোজী	যৌগমূলক?				
(ক) NH ₄	(킥) NH ₄	(গ) SO ₃	(ঘ) PO ₄	উত্তর: গ	
৬৪। কোন যৌগমূলক	টির যোজ্যতা তিন?				
(₹) PO ₄	(খ)SO ₄	(গ) CO ₃	$(abla)NO_3$	উত্তর: ক	
৬৫। কোন যৌগমূলক	টি একযোজী?				
(▼) CO ₃	(খ)SO ₄	(গ) PO ₄	(ঘ) NO_3	উত্তর: ঘ	
৬৬। ফসফোনিয়াম হে	যীগমূলকের সংকেত কোন	টি?			
(ক) PH ₄	(킥) NH ₃	(গ) PO ₄	(ঘ) NO ₂	উত্তর: ক	
৬৭। Na_3PO_4 সংকে	তে কোন পরমাণুগুচ্ছ আয়	য়নের ন্যায় আচরণ করে?	•		
(ক) Na	(켁)P	(গ) PO_4	(ঘ) O	উত্তর: গ	

৬৮। ${\it CuSO}_4$ সংব	কেতে SO_4^{2-} এর আধান কত	?		
(ক) +]	(খ) -]	(গ) -2	(ঘ) +2	উত্তর: গ
৬৯। <i>H₂SO</i> ₄ সংয	কেতে SO_4^{2-} এর আধান কত $^{\prime}$?		
(ক) 2	(খ)]	(গ) -1	(ঘ) -2	উত্তর: ক
৭০। ঋণাত্মক আধ	গানবিশিষ্ট যৌগমূলক—			
i. <i>SO</i> ₄				
ii. NH_4 SPH_4				
iii. NO_3 ଓ NO_2				
নিচের কোনটি সরি	ঠক?			
(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: গ
৭১। যৌগমূলক 🗕				
i. একটি পরমাণুগু	ष्ट			
ii. ধনাত্মক বা ঋণ	াত্মক আধানবিশিষ্ট			
iii. একটি আয়নের	া ন্যায় আচরণ <mark>করে</mark>			
নিচের কোনটি সরি	ঠক?			
(ক) i ও ii	(খ) ii ও iii	(গ) і ও ііі	(ঘ) i, ii ও iii	উত্তর: ঘ
নিচের অনুচ্ছেদটি	পড়ে ৭২ ও ৭৩ নং প্রশ্নের উ	ত্তর দাও:		
P এর 1 টি ও H	এর 4 টি পরমাণু মিলে এক	টি পরমাণুগুচ্ছ গঠন করে	র, কিন্তু যৌগ গঠন করে ন	া। এটি একটি
একক আয়নের ম	তো আচরণ করে এবং বিপরী	তধর্মী আয়নের সঙ্গে বি	ক্রিয়া করে যৌগ গঠন করে	ī
৭২। উক্ত পরমাণু	গুচ্ছটি নিচের কোনটির সঙ্গে ব	ান্ধন গঠন করবে?		
(ক) NH ₄ +	(켁) SO ₄ ²⁻	(গ) Na ⁺	(ঘ) Cu ²⁺	উত্তর: খ
৭৩। উদ্দীপকে বৰ্ণি	র্গত পরমাণুগুচেছর H এর পরি	বৰ্তে 🔾 মিলিত হলে–		
i. ঋণাত্মক আয়ন	গঠিত হবে			
ii. ঋণাত্মক আয় ে	ার সঙ্গে মিলিত হবে			
iii. যৌগ গঠিত হ	ব			
নিচের কোনটি সরি	ঠক?			
(ক) i	(খ) i ও ii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: ক
৭৪। <i>NaCl</i> এর স	নংকেত কী প্রকাশ করে?			
(ক) যৌগে Na ও	Cl এর ধারণা	(খ) যৌগে Na ও	Cl এর পরিমাণ	
(গ) যৌগের অণুতে Na ও Cl এর অনুপাত		(ঘ) যৌগে ${\it Na}$ ও ${\it Cl}$ এর ধর্ম		উত্তর: গ

৭৫। অ্যালুমিনিয়াম সালফে	ফটের সংকেত কোনটি?			
$(\overline{\Phi}) Al_2(SO_4)_3$	(켁) AlSO ₄	(গ) $Al_3(SO_4)_2$	(ঘ) $Al(SO_4)_2$	উত্তর: ক
৭৬। অ্যালুমিনিয়াম নাইট্রে	ট্রটের সংকেত কোনটি?			
$(\overline{\Phi}) A l_2 (NO_3)_2$	(খ)AlSO ₃	(গ) Al_2NO_3	(ঘ) $Al(NO_3)_3$	উত্তর: ঘ
৭৭। সোডিয়াম ফসফেটে	র সংকেত কোনটি?			
$(\overline{\Phi})Na_2PO_4$	(뉙) $Na_3(PO_4)_2$	(গ) Na_3PO_4	(ঘ) $Na(PO_4)_2$	উত্তর: গ
৭৮। সিলভার নাইট্রেটের	সংকেত কোনটি?			
$(\overline{\Phi}) Ag(NO_3)_2$	(খ) $Ag_2(NO_3)_3$	(গ) $AgNO_3$	(ঘ) $Ag(NO_3)_3$	উত্তর: গ
৭৯। ক্যালসিয়াম ফসফের্ট	টর সংকেত কোনটি?			
$(\overline{\Phi})$ CaPO ₄	(뉙) $Ca_2(PO_4)_3$	$(\mathfrak{A})Ca_3(PO_4)_2$	$(\mathfrak{A})Ca_3(PO_4)_3$	উত্তর: গ
৮০। প্রত্যেক মৌলের যে	মন প্রতীক থাকে তেমন প্র	ত্যেক যৌগের থাকে –		
(ক) সংকেত	(খ) আধান	(গ) যোজ্যতা	(ঘ) যৌগমূলক	উত্তর: ক
৮১। ধনাত্মক ও ঋণাত্মক	আধানবিশিষ্ট আয়ন দ্বারা	যৌগ গঠিত হলে যৌগের অ	মাধান কত হয়?	
(a) + 1	(খ) - 1	(গ) 0	(ঘ) ±1	উত্তর: গ
৮২। ধনাত্মক ও ঋণাত্মক	আয়ন দ্বারা গঠিত যৌগের	া সংকেত লেখার সময় ধন	াত্মক অংশ লেখা হয় –	
(ক) শেষে	(খ) প্রথমে	(গ) যেকোনো স্থানে	(ঘ) মাঝে	উত্তর: খ
৮৩। ধনাত্মক ও ঋণাত্মক	আয়ন দ্বারা গঠিত যৌগের	া সংকেত লেখার সময় ঋণ	গাত্মক অং শ লেখা হ য় –	
(ক) প্রথম	(খ) মাঝে	(গ) যেকোনো স্থানে	(ঘ) শেষে	উত্তর: খ
৮৪। দুটি নিরপেক্ষ পরমা	ণু দ্বারা যৌগ গঠনের সময়	সাধারণত পর্যায় সারণির	বামপাশের মৌলকে লেং	থা হয়—
(ক) প্রথম	(খ) মাঝে	(গ) যেকোনো স্থানে	(ঘ) শেষে	উত্তর: ক
৮৫। কোনটিকে সংকেত	বলা হয়?			
(ক) পারমাণবিক ভর	(খ) আণবিক ভর	(গ) আণবিক সংখ্যা	(ঘ) ভর সংখ্যা	উত্তর: খ
৮৬। $Ca(H_2PO_4)_2$ সংব	কতে পরমাণুর সংখ্যা কয়া	ठ ै?		
(季) 28	(খ) 14	(গ) 15	(ঘ) 21	উত্তর: গ
৮৭। কার্বন 4 ও সালফার	া 2 এর সমন্বয়ে যৌগের স	ণংকেত কোনটি?		
(₹) CS	(뉙) C ₂ S ₂	(গ) CS ₃	(ঘ) CS ₂	উত্তর: গ
৮৮। হাইড্রোজেন পারঅর	ক্সাইডের একটি অণুতে 2	টি হাইড্রোজেন ও 2টি অ	ক্সিজেন পরমাণু বিদ্যমা	ন। সুতরাং
হাইড্রোজেন পারঅক্সাইডে	র সংকেত হবে–			
(季) HO	(켁) 2HO	(গ)2HO ₂	(ঘ) H ₂ O ₂	উত্তর: ঘ

উত্তর: খ

উত্তর: গ

(ঘ)1:2:2

৮৯। $2H_2O$ —এর প্রকৃত অর্থ কোনটি?

- (ক)হাইড্রোজেনের 4 টি ও অক্সিজেনের 1 টি পরমাণু
- (খ) পানির 2 টি অণু এবং এতে আছে হাইড্রোজেনের 4 টি এবং অক্সিজেনের 2 টি পরমাণু
- (গ) হাইড্রোজেনের 4 টি এবং অক্সিজেনের 2 টি পরমাণু দ্বারা গঠিত পানির 1 টি অণু
- (ঘ) হাইড্রোজেনের 4 টি এবং অক্সিজেনের 1 টি পরমাণুর সমন্বয়ে গঠিত পানির 2 টি অণু উত্তর: খ ৯০। যৌগের সংকেত দ্বারা নিচের কোনটি বোঝা যায়?
- (ক) অণুতে বিদ্যমান প্রমাণুর সঠিক সংখ্যা
- (খ) অণুতে বিদ্যমান প্রমাণুসমূহের পূর্ণ সংখ্যার অনুপাত
- (গ) কেবলমাত্র উপাদান মৌলসমূহ
- (ঘ) উপাদান মৌলসমূহের যোজ্যতাস্তর
 - ৯১। $C_6H_{12}O_6$ যৌগে $C\ H$ ও O পরমাণু সংখ্যার অনুপাত-
 - (ক) 2: 1: 1 (খ) 1: 1: 2 (গ) 1: 2: 1 ৯২। N_2O_5 যৌগে N ও O পরমাণু সংখ্যার অনুপাত—
 - (ক) 2: 5 (খ) 14: 40 (গ) 5: 2 (ঘ) 4: 10 উত্তর: ক
 - ৯৩। CO_2 যৌগে C ও O নিরপেক্ষ পরমাণু দ্বারা গঠিত। এ যৌগে C প্রথমে লেখার কারন-
 - (ক) পর্যায় সারণিতে O অপেক্ষা C অধিক তড়িৎ ধনাত্মক মৌল
 - (খ) পর্যায় সারণিতে C মৌল 14 আর O মৌল 16 গ্রুপে বলে
 - (গ) পর্যায় সারণিতে O ও C একই পর্যায়ের মৌল বলে
 - (ঘ) পর্যায় সারণিতে C অপেক্ষা O পরে আবিষ্কৃত হয় বলে উত্তর: ক
 - ৯৪। NNa_3PO_4 যৌগে ধনাত্মক ও ঋণাত্মক আয়নের সংখ্যা যথাক্রমে-
 - (ক) 1 ও 3 (খ) 3 ও 1 (গ) 3 ও 4 (ঘ) 4 ও 3 উত্তর: খ

৯৫ ৷ $Al(NO_3)_3$ যৌগে মোট আধান কত?

- (ক) 1 (খ) 3 (গ) 0 (ঘ) 1 বা 3 উত্তর: গ
- ৯৬। $CuSO_4$ যৌগে ধনাত্মক আয়ন ও তার আধান হলো-
- (ক) Cu^{2^+} , -2 (খ) SO, +2 (গ) SO, -2 (ঘ) Cu^{2^+} , +2 উত্তর: ঘ
- ৯৭। যৌগের অণু গঠিত হয়–
- i. নিরপেক্ষ পরমাণু দ্বারা
- ii. আধানবিশিষ্ট আয়ন দ্বারা
- iii. যোজ্যতা ইলেকট্রন দ্বারা

(ক) i ও ii

উত্তর: ঘ

নিচের কোনটি সঠিক?

৯৮। যৌগ গঠিত হয়–

iii. একটি দ্বিধনাত্মৰ	চ আয়ন দুটি একক ঋণ <u>া</u> ত	াক আয়নের সাথে যুক্ত হে	য়	
নিচের কোনটি সঠি	ক?			
(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
৯৯। $Al(NO_3)_3$ ে	যৌগের সংকেত—			
i. <i>Al</i> ধনাত্মক আয়	ন ও NO_3 ঋণাত্মক আয়ন	দ্বারা গঠিত		
ii. NO_3 এর আধান	া ঋণাত্মক হওয়ায় শে ষে ৫	লখা হয়		
iii. ধনাত্মক আয়নে	র সংখ্যা] এবং ঋণাত্মক	আয়নের সংখ্যা 3		
নিচের কোনটি সঠি	ক?			
(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
নিচের অনুচ্ছেদটি	পড়ে ১০০ ও ১০১ নং প্রহে	ার উত্তর দাও:		
ক্লাসে রাগিবকে দুটি	ট আধানবিশিষ্ট যৌগের সং	কেত লিখতে বলা হলে সে	Na_3PO_4 \Im $Al(NO_3)_3$	লিখল।
১০০।রাগিব কী দ্বার	ৱা যৌগ গঠন করে?			
(ক) দুটি মৌল		(খ) দুটি যৌগমূলক		
(গ) ধাতু ও যৌগমূলক		(ঘ) যৌগমূলক ও	(ঘ) যৌগমূলক ও অধাতু	
১০১। উভয় যৌগের	া সংকেত <i>–</i>			
i. মোট আধান শূন্য				
ii. ধনাত্মক অংশ প্র	থেমে ও ঋণাত্মক অংশ প	র লেখা হয়		
iii. ধনাত্মক ও ঋণা	ত্মক আয়নের সংখ্যা সমান	ī		
নিচের কোনটি সঠি	ক?			
(ক) i ও ii	(খ) ii ও iii	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: ক
১০২। হিলিয়ামের	প্রথম কক্ষপথে ইলেকট্রন	সংখ্যা কত?		
(ক) ় টি	(খ) 2 টি	(গ) 3 টি	(ঘ) 4 টি	উত্তর: খ
১০৩। রেডনের পা	রমাণবিক সংখ্যা কত?			
(ক) 18	(খ) 36	(গ) 54	(ঘ) 86	উত্তর: ঘ
		27		

(খ) ii ও iii (গ) i ও iii (ঘ) i, ii ও iii

i. একটি একক ধনাত্মক আয়ন একটি একক ঋণাত্মক আয়নের সাথে যুক্ত হয়ে

ii. দুটি একক ধনাত্মক আয়ন একটি দ্বিঋণাত্মক আয়নের সাথে যুক্ত হয়ে

১০৪। আর্গনের পারমাণ	বিক সংখ্যা কত?			
(ক) 2	(খ) 10	(গ) 18	(ঘ) 86	উত্তর: গ
১০৫। হিলিয়ামের কক্ষণ	পথে কয়টি ইলেকট্রন আছে	??		
(₹) 2	(খ) 4	(গ) 5	(ঘ) 6	উত্তর: ক
১০৬। ক্রিপটনের শে ষ	কক্ষপথে কয়টি ইলেকট্ৰন	আছে?		
(季) 2	(খ) 4	(গ) 6	(ঘ) ৪	উত্তর: ঘ
১০৭। নিয়নের সর্ববহিং	ষ্ কক্ষপথে কয়টি ইলেকট•	ন আছে?		
(季) 2	(খ) ৪	(গ) 10	(ঘ) 18	উত্তর: খ
১০৮। ক্রিপটন পরমাণু	র পারমাণবিক সংখ্যা কত?			
(ক) 10	(খ) 36	(গ) 54	(ঘ) 86	উত্তর: খ
১০৯। রেডনের চতুর্থ *	াক্তিস্তরে কয়টি ইলেকট্রন জ	মাছে?		
(季) 2	(খ) ৪	(গ) 18	(ঘ) 32	উত্তর: ঘ
১১০। নিষ্ক্রিয় গ্যাসের স	ংখ্যা কতটি?			
(ক) 4	(খ) 6	(গ) 8	(ঘ) 12	উত্তর: খ
১১১। হিলিয়াম, আর্গন,	নিয়ন এদের নিষ্ক্রিয় গ্যাস	বলা হয় কেন?		
(ক) এরা সাধারণ অবস্থ	া্য় গ্যাসীয়	(খ) এরা সাধারণ অবস্থা	য় তরল	
(গ) এরা সাধারণ অবস্থ	ায় কঠিন	(ঘ) এরা রাসায়নিকভাবে	া নিজ্ঞিয়	উত্তর: ঘ
১১২। নিয়ন পরমাণুর ও	জন্য কোন চিত্ৰটি সঠিক?			
(季)	(খ)	(গ)	(ঘ)	উত্তর: ক
১১৩। ক্লোরিন পরমাণুর	ইলেকট্রন বিন্যাস 2, 8, 7	r তার নিকটস্থ আর্গন গ্যা <i>ে</i>	সর ইলেকট্রন বিন্যাস বে	গনটি?
(季) 2, 8, 7	(খ) 2, 8, 8	(গ) 2, 8	(ঘ) 2, 8, 1	উত্তর: খ
১১৪। পর্যায় সারণির 🛚 ।	৪ গ্রুপে কয়টি মৌল আছে?	•		
(ক) ৪ টি	(খ) ৫ টি	(গ) ৬ টি	(ঘ) ৮ টি	উত্তর: গ
১১৫। হিলিয়াম বাদে অ	ন্যান্য নিষ্ক্রিয় গ্যাসের সর্বব	ইস্থ স্তরে কতটি ইলেকট্রন	থাকে?	
(ক) ২ টি	(খ) ৮ টি	(গ) ১৮ টি	(ঘ) ৩২ টি	উত্তর: গ
১১৬। নিয়নের ইলেকট্র	ন বিন্যাস কোনটি?			
(季) 2, 8, 1	(খ) 2, 8	(গ) 2, 8, 7	(ঘ) 2, 8, 8	উত্তর: খ
১১৭। নিচের কোনটি প	রমাণু অবস্থাতেই থেকে যা	য়, অণু হয় না?		
(ক) Hydrogen	(খ) Oxygen	(গ) Carbon	(ঘ) Neon	উত্তর: ঘ

১১৮। এক পরমাণুক গ্যাস হচ্ছে—

(ক) অক্সিজেন	(খ) নাইট্রোজেন	(গ) হিলিয়াম	(ঘ) হাইড্রোজেন	উত্তর: গ
১১৯। কোন মৌলটি রাস	ায়নিকভাবে নিষ্ক্রিয়?			
$(\overline{\diamond}) Ar$	(킥) Na	(গ) Pb	(ঘ) N ₂	উত্তর: ক
১২০। পর্যায় সারণির 18	3 নং গ্রুপের মৌলের সাধার	রণ অবস্থা হচ্ছে–		
(ক) কঠিন	(খ) তরল	(গ) গ্যাসীয়	(ঘ)তরল ও গ্যাসীয়	উত্তর: গ
১২১। কোনটি নিষ্ক্রিয় গ্য	াস?			
(ক) হাইড্রোজেন	(খ) ক্লোরিন	(গ) আয়োডিন	(ঘ) জেনন	উত্তর: ঘ
১২২। কোনটি নিষ্ক্রিয় গ্য	স নয়?			
(ক) আর্গন	(খ) জেনন	(গ) অ্যামোনিয়া	(ঘ) ক্রিপ্টন	উত্তর: গ
১২৩। রেডন পরমাণুর ই	লৈকট্রন বিন্যাসের শক্তিস্তর	র কয়টি?		
(季) 3	(খ) 4	(গ) 6	(ঘ) ৪	উত্তর: গ
১২৪। সোডিয়ামের নিক্ট	উস্থ নিজ্জিয় গ্যাস কোনটি?			
(ক) আর্গন	(খ) হিলিয়াম	(গ) জেনন	(ঘ) নিয়ন	উত্তর: ঘ
১২৫। কোন পরমাণুর তৃ	তীয় শ <mark>ক্তিস্তরে</mark> 18টি ইলেক	কট্ৰন থাকে?		
(ক) আর্গন	(খ) হিলিয়াম	(গ) জেনন	(ঘ) নিয়ন	উত্তর: গ
১২৬। কোন নিষ্ক্রিয় গ্যার	সর পারমাণবিক সংখ্যা 54	1?		
(ক) রেডন	(খ) হিলিয়াম	(গ) জেনন	(ঘ) নিয়ন	উত্তর: ঘ
১২৭। Mg^2 $^+$ এর ইলেব	চট্ৰন বিন্যাস কোন নিষ্ক্ৰিয়	গ্যাসের অনুরূপ?		
(ক) আর্গন	(খ) হিলিয়াম	(গ) ক্রিপটন	(ঘ) নিয়ন	উত্তর: ঘ

	উৎপাদের নাম	সংকেত	প্রকৃতি
(ক)	হিলিয়াম	Не	নিজ্ঞিয়
(খ)	নিয়ন	Ne	নিষ্ক্রিয়
(গ)	আৰ্গন	Ar	নিষ্ক্রিয়
(ঘ)	ক্রিপ্টন	Kr	নিষ্ক্রিয়

১২৮। নিচের চিত্রের উৎপাদের নাম, সংকেত ও প্রকৃতি কোনটি?

উত্তর: খ

১২৯। নিদ্রিয় গ্যাসগুলোর মধ্যে কোনটির সর্ববহিস্থ স্তরে দুটি ইলেকট্রন আছে?				
(ক) নিয়ন	(খ) রেডন	(গ) হিলিয়াম	(ঘ) জেনন	উত্তর: গ
১৩০। কোনটি <i>Ar-</i> এর ই	লৈকট্ৰন বিন্যাস?			
$(\overline{2})$ $1s^2 2s^2 2p^6$		(খ) $1s^22s^22p^63s^23p^6$	$3d^{10}4s^24p^6$	
(গ) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		(घ) $1s^22s^22p^63s^23p^6$	$4s^4$	উত্তর: গ
১৩১। d অরবিটাল ইলেক	স্ট্রন দ্বারা পূর্ণ নয় কোনটির	র?		
(ক) Ar	(켁) Kr	(গ) Xe	(ঘ) Rn	উত্তর: ক
১৩২। রেডনের পঞ্চম শা	ক্তিস্তরে কয়টি ইলেকট্রন অ	াছে?		
(ক) 2টি	(খ) ৪টি	(গ) 1৪টি	(ঘ)32টি	উত্তর: গ
১৩৩। নিষ্ক্রিয় গ্যাসের ইরে	লকট্রন বিন্যাস–			
i. $1s^22s^22p^6$				
ii. $1s^22s^22p^63s^23p^6$				
iii. $1s^22s^22p^63s^23p^63$	$3d^24s^2$			
নিচের কোনটি সঠিক?				
(ক) i	(켁) ii	(গ) і ও іі	(ঘ) । ও iii	উত্তর: গ
১৩৪। নিদ্রিয় গ্যাস পর্যায়	সারণির_			
i.সর্বডানে অবস্থিত				
ii.18 গ্রুপের মৌল				
iii.চতুর্থ পর্যায়ের মৌল				
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) ii ও iii	(গ) і ও ііі	(ঘ) i, ii ও iii	উত্তর: ক
১৩৫। নিদ্ধিয় গ্যাসের ইরে	লকট্রন বিন্যাস–			
i. 2				
ii. 2, 8				
iii. 2, 8, 8				
নিচের কোনটি সঠিক?				
(ক) i	(켁) ii	(গ) і ও іі	(ঘ) i, ii ও iii	উত্তর: ঘ
নিচের ইলেকট্রন বিন্যাস	থেকে ১৩৬ ও ১৩৬নং প্রয়ে	শ্নর উত্তর দাও:		
$1s^22s^22p^63s^23p^63d^{10}4s^24p^6$				

১৩৬। মৌলটি হলো—				
(ক) হিলিয়াম	(খ) ত্রিপ্টন	(গ) নিয়ন	(ঘ) জেনন	উত্তর: খ
১৩৭। অন্য পদার্থের সং	ংস্পর্গে এলে মৌলটি—			
i. বিক্রিয়া করবে না				
ii. পরমাণু অবস্থাতেই গ	থাকবে			
iii. নতুন শক্তিস্তর যুক্ত	হবে			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) ii ও iii	(গ) і ও ііі	(ঘ) i, ii ও iii	উত্তর: ক
নিচের ইলেকট্রন বিন্যা	দ দেখে ১৩৮ ও ১৩৯নং প্র	াশ্নের উত্তর দাও:		
১৩৮। মৌলটিকে কী ব	লা হয়?			
(ক) প্রাকৃতিক গ্যাস	(খ) হ্যালোজেন গ্যাস	(গ) নিচ্জিয় গ্যাস	(ঘ) সক্রিয় গ্যাস	উত্তর: গ
১৩৯। একে নিষ্ক্রিয় গ্যা	স বলা হয়—			
i. কারো সাথে বিক্রিয়া	করে না বলে			
ii. স্থায়ী ইলেকট্ৰনিক ক	গঠামো অর্জন করে বলে			
iii. যোজ্যতাস্তর ইলেকট্র	ইন দ্বারা পূর্ <mark>ণ থাকে বলে</mark>			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) ii ও iii	(গ) і ও ііі	(ঘ) i, ii ও iii	উত্তর: ঘ
১৪০। দ্বৈত নিয়মে কো	ন গ্যাসের ইলেকট্রন বিন্যা	দ অর্জিত হয়?		
(ক) হাইড্রোজেন	(খ) নাইট্রোজেন	(গ) হিলিয়াম	(ঘ) নিয়ন	উত্তর: গ
১৪১। ক্লোরিন পরমাণু	একটি ইলেকট্রন গ্রহণ কর	লে তার ইলেকট্রন বিন্যাস	হয়—	
(ক) 2, 8, 8	(খ) 2, 8, 7	(গ) 2, 8, 18	(ঘ) 2, 8, 1	উত্তর: ক
১৪২। কোনো কোনো	মৌলের সর্ববহিস্থ কক্ষপণ্	া 5, 6 বা 7টি ইলেকেট্ৰ	ন থাকে। এরা সহজে 3	, 2 বা 1ট
ইলেকট্রন গ্রহণ করে ত	মষ্টক পূরণ করে, এদের কী	বলে?		
(ক) অধাতু	(খ) ধাতু	(গ) মৌল	(ঘ) বন্ধন	উত্তর: ক
১৪৩। কোন মৌলটি ইং	লেকট্রন বর্জন করে দ্বৈত বি	বিন্যাস লাভ করে?		
(ক) Li	(খ) Na	(গ) 0	(ঘ) F	উত্তর: ক
১৪৪। নাইট্রোজেন পর	মাণুর অষ্টক পূরণ করার জ	ন্য কয়টি ইলেকট্রন প্রয়ো	জন?	
(ক)1টি	(খ)2টি	(গ)3টি	(ঘ)4টি	উত্তর: গ
১৪৫। H_2 অণু গঠনের	সময় এটি কার ইলেকট্রন	বিন্যাস লাভ করে?		
(ক) কার্বনের	(খ) হিলিয়ামের	(গ) নিয়নের	(ঘ) অক্সিজেনের	উত্তর: খ

১৪৬। সুস্থিত আটটি ইলে	কট্রনের সেটকে কী বলে?			
(ক) অষ্টক	(খ) দ্বৈত	(গ) শেল	(ঘ) কক্ষপথ	উত্তর: ক
১৪৭। কোন মৌলটির অষ্ট	কপূৰ্ণ?			
(₹) Ca	(খ) Sc	(গ) Na	(ঘ) Ar	উত্তর: ঘ
১৪৮। কোন মৌলটি দ্বৈত	সূত্র দ্বারা পূর্ণ?			
(₹) Ne	(খ) <i>He</i>	(গ)Xe	(ঘ)Rn	উত্তর: খ
১৪৯। কোনটি অষ্টকপূর্ণ व	নয়?			
$(\overline{\Phi})Ar$	(켁) Kr	(গ) Mg	(ঘ) Ne	উত্তর: গ
১৫০। যৌগ গঠনে কোন	মৌল অষ্টক নিয়মের ব্যতি	কুম?		
(₹) Na	$(\forall)Cu$	(গ)H	(되) K	উত্তর: গ
১৫১। পরমাণুর সবচেয়ে	বাইরের কক্ষে সর্বোচ্চ কত	টি ইলেকট্রন থাকতে পারে	ī?	
(ক) 1টি	(খ) 2টি	(গ) 6টি	(ঘ) ৪টি	উত্তর: ঘ
১৫২। একটি পরমাণু কখ	ান সুস্থিত ইলেকট্রন বিন্যাস	ন লাভ করে?		
(ক) যখন যোজ্যতা ইলেক	ট্রন অপূর্ণ থাকে			
(খ) যখন বাইরের কক্ষে	ইলেকট্ <mark>ৰন সংখ্যা ৪ হ</mark> য়			
(গ) যখন d অরবিটালে ই	ইলেকট্রন প্রবেশ করে			
(ঘ) যখন ইলেকট্রনীয় মত	ত্বাদ প্রকাশ পায়			উত্তর: খ
১৫৩। আর্গন নিষ্ক্রিয় মৌল	াটির ইলেকট্রন বিন্যাস লাখ	ভ করতে Pvq		
i. <i>Cl</i>				
ii. S ⋖ Ca				
iii. Na ও Mg				
নিচের কোনটি সঠিক?				
(季) i	(খ) ii	(গ) і ও іі	(ঘ) i, ii ও iii	উত্তর: গ
১৫৪। যে আকর্ষণ বলের	মাধ্যমে একটি পরমাণু অন	্য পরমাণুর সাথে যুক্ত থারে	ক তাকে কী ব লে ?	
(ক) রাসায়নিক বন্ধন		(খ) ভ্যানডার ওয়ালস্ বল		
(গ) ইলেকট্রন আসক্তি		(ঘ) তড়িৎ ঋণাত্মকতা		উত্তর: ক
১৫৫। রাসায়নিক বন্ধন ব	লো হয়—			
(ক) যে শক্তির বলে পদার্থ	র্থসমূহ পরস্পরের সাথে যু	ক্ত থাক <u>ে</u>		
(খ) যে শক্তির বলে ধাতুস	ন্মূহ পরস্পরের সাথে যুক্ত	থাকে		

(গ) যে শক্তির বলে প্রোট	টন ও নিউট্রন পরস্পরের স	াথে যুক্ত থাকে		
(ঘ) যে শক্তির বলে অণু	তে পরমাণুগুলো পরস্পরের	সাথে যুক্ত থাকে		উত্তর: ঘ
১৫৬। সোডিয়াম এবং রে	ফ্লারিন একে অন্যের সাথে ব	বন্ধনে আবদ্ধ হয়ে কী যৌগ	তৈরি করে?	
(♠) Na ₂ F	(켁) Na + F	(গ) Na F 2	(ঘ) NaF	উত্তর: ঘ
১৫৭। Na, Ca, K, Cl, I	Mg পরমাণুসমূহের মধ্যে বে	কানগুলো বন্ধন গঠনের প <u>্</u>	র আর্গনের ইলেকট্রন বি	ন্যাস লাভ
করবে?				
$(\overline{\Phi})Na,K,Cl$	$(\forall) Ca, K, Cl$	(গ) Ca, Mg, Cl	(घ)Ca,Cl,Na	উত্তর: খ
১৫৮। মৌলের রাসায়নিব	ক বন্ধন গঠনের মূল কারণ [্]	কী?		
(ক) গতিশীলতা অৰ্জন		(খ) স্থৈতিক শক্তি লাভ		
(গ)স্থিতিশীলতা অর্জন		(ঘ)আকৰ্ষণ–বিকৰ্ষণ		
উত্তর: গ				
১৫৯। কোন পরমাণু ইরে	শকট্রন গ্রহণ করে যোজ্যতা	স্তরে অষ্টক লাভ করে?		
(ক) F	(켁) <i>Li</i>	(গ)Na	(ঘ) <i>Ca</i>	উত্তর: ক
১৬০। কোন পরমাণু ইরে	শকট্রন <mark>বর্জন করে যো</mark> জ্যতা	স্তরে অষ্টক লাভ করে?		
(ক) 0	(খ) γ F	(গ) Na	(ঘ) H	উত্তর: গ
১৬১। দুটি হাইড্রোজেন	পরমাণু 1টি করে ইলেকট্রন	শেয়ার করে গঠন করে–		
(ক) <i>H</i> ⁺ আয়ন	(খ) H পরমাণু	(গ) H ₂ অণু	(ঘ) H ⁻ আয়ন	উত্তর: গ
১৬২। রাসায়নিক বন্ধন	গঠনে অংশগ্রহণ করে–			
(ক) যোজ্যতা ইলেকট্ৰন		(খ) <i>K</i> শেলের ইলেকট্রন		
(গ) নিউক্লিয়াসের প্রোটন		(ঘ) <i>L</i> শেলের ইলেকট্রন		উত্তর: ক
১৬৩। প্রতিটি পরমাণুর	কী লক্ষ্য থাকে?			
(ক) অষ্টক নিয়ম মেনে চ	ज्यों ज्यो	(খ) নিকটবর্তী নিষ্ক্রিয় মৌ	লের ইলেকট্রন বিন্যাস	শাভ করা
(গ) ত্রয়ী নিয়ম মেনে চল	1	(ঘ) দুই-এর নিয়ম মেনে	চলা	উত্তর: খ
১৬৪। কত পারমাণবিক	সংখ্যাবিশিষ্ট মৌলসমূহ বন্ধ	ন গঠনকালে সহজেই দুই	বা অষ্টক নিয়ম মেনে চে	ল?
(ক) 1 থেকে 17	(খ) 10 থেকে 27	(গ) 5 থেকে 15	(ঘ) 12 থেকে 20	উত্তর: ক
১৬৫। তৃতীয় শক্তিস্তর স	ার্বোচ্চ কতটি ইলেকট্রন ধার	াণ করতে পারে?		
(ক) ৪টি	(খ) 1৪টি	(গ) 2৪টি	(ঘ) 38টি	উত্তর: খ
১৬৬। রাসায়নিক বন্ধন	গঠনের মূল কারন–			
i. স্থিতিশীল ইলেকট্ৰন বি	ন্যাস অর্জনের প্রবণতা			
ii. S & Ca				

iii. নতুন কিছু অর্জনের গ্র	প্রবণতা			
নিচের কোনটি সঠিক?				
(ক) i	(খ) ii	(গ) і ও іі	(ঘ) i, ii ও iii	উত্তর: ক
নিচের ইলেকট্রন বিন্যাসটি	ট লক্ষ করে ১৬৭ ও ১৬৮ ন	ং প্রশ্নের উত্তর দাও:		
$D = 1s^2 2s^2 2p^6$				
১৬৭। মৌলটিকে কী বল	া হয়?			
(ক) প্রাকৃতিক গ্যাস	(খ) কৃত্রিম গ্যাস	(গ) নিদ্ধিয় গ্যাস	(ঘ) সক্রিয় গ্যাস	উত্তর: গ
১৬৮। একে উক্ত গ্যাস ব	ালা হয় কারন—			
i. এর সর্বশেষ স্তর অষ্টক	দ্বারা পূর্ণ			
ii. এটি বিক্রিয়ায় নিজ্রিয়	থাকে			
iii. সহজেই ধাতুর সাথে	বিক্রিয়া করে			
নিচের কোনটি সঠিক?				
(ক) i	(খ) ii	(গ) iii	(ঘ) і ও іі	উত্তর: ঘ
১৬৯। ক্যাটায়ন কী?				
(ক) ধনাত্মক আয়ন		(খ) ঋণাত্মক আয়ন		
(গ) ধনাত্মক তড়িৎদ্বার		(ঘ) ঋণাত্মক তড়িৎদ্বার		উত্তর: ক
১৭০। ধনাত্মক আধানযুত	জ পরমাণুকে কী বলে?			
(ক) ধনাত্মক আয়ন	(খ) অ্যানায়ন	(গ) যোজনী	(ঘ) গ্যাস	উত্তর: ক
১৭১। চার্জযুক্ত পরমাণু ব	া পরমাণু গুচ্ছকে কী বলা	হয়?		
(ক) ইলেকট্ৰন	(খ) প্রোটন	(গ) ধাতু	(ঘ) আয়ন	উত্তর: ঘ
১৭২। ক্যাটায়ন গঠিত হয়	য় কোন ধরনের রাসায়নিক	বন্ধনে?		
(ক) সমযোজী	(খ) ধাতব	(গ) হাইড্রোজেন	(ঘ) আয়নিক	উত্তর: ঘ
১৭৩। কোনটি ক্যাটায়ন?				
(₹) <i>Na</i>	(킥) Na ⁺	(গ) Cl	(ঘ) Cl¯	উত্তর: খ
১৭৪। ম্যাগনেসিয়াম ও ৫	ক্লারিনের বিক্রিয়ায় ক্লোরিন	কী করে?		
(ক) ইলেকট্রন শেয়ার ক	রে	(খ) ইলেকট্রন গ্রহণ করে		
(গ) ইলেকট্রন ত্যাগ করে		(ঘ) ইলেকট্রন অপরিবর্তিৎ	ত থাকে	উত্তর: খ
১৭৫। ক্লোরিনের যোজ্যত	গস্তরে ইলেকট্রন সংখ্যা কর্	5?		
(ক) 6	(খ) 7	(গ) ৪	(ঘ) 9	উত্তর: খ

১৭৬। <i>Cl</i> স্থিতিশীল হতে	কয়টি ইলেকট্রন প্রয়োজন	?		
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: ক
১৭৭। পরমাণু এক বা এ	কাধিক ইলেকট্রন ত্যাগ ক	রে কিসে পরিণত হয়?		
(ক) অ্যানোডে	(খ) আয়নে	(গ) ক্যাটায়নে	(ঘ) অ্যানায়নে	উত্তর: গ
১৭৮। কীভাবে <i>Na</i> নিয়ে	নর ইলেকট্রন বিন্যাস লাভ	করে?		
(ক) 1টি ইলেকট্রন গ্রহণ	করে	(খ) 2টি ইলেকট্রন ত্যাগ	করে	
(গ) 2টি ইলেকট্রন গ্রহণ	করে	(ঘ) 1টি ইলেকট্রন ত্যাগ	করে	উত্তর: ঘ
১৭৯। কীভাবে <i>Cl</i> আর্গনে	ার ইলেকট্রন বিন্যাস লাভ	করে?		
(ক) 1টি ইলেকট্রন গ্রহণ	করে	(খ) 2টি ইলেকট্রন ত্যাগ	করে	
(গ) 2টি ইলেকট্রন গ্রহণ	করে	(ঘ) 1টি ইলেকট্রন ত্যাগ	করে	উত্তর: ক
১৮০। পরমাণু এক বা এ	কাধিক ইলেকট্ৰন গ্ৰহণ কৰ	রে কিসে পরিণত হয়?		
(ক) ক্যাটায়নে	(খ) অ্যানায়নে	(গ) অ্যানোডে	(ঘ) ক্যাথোডে	উত্তর: খ
১৮১। ইলেকট্রন গ্রহণ ক	রে X ও বর্জন করে Y পর	মোণু। X ও Y কী ধরনের	পরমাণু?	
$(\overline{\Phi}) X = ধাতু, Y = অধা$	<u> </u>	(খ) $X = $ আধাতু, $Y = $ আ	য়ন	
$(\mathfrak{I}) X = \mathfrak{I}$ তু, $Y = $ আয়	ন	(ঘ) X = অধাতু, Y = ধাতু	₹	উত্তর: ক
১৮২। অ্যানায়ন গঠন কর	তে পারে পর্যায় সারণির বে	কান গ্রুপের মৌল?		
(ক) গ্ৰুপ 16 ও 17		(খ) গ্ৰুপ 1 ও 3		
(গ) গ্ৰুপ 6 ও 7		(ঘ) গ্ৰুপ 1 ও 18		উত্তর: ক
১৮৩। ক্যাটায়ন গঠন কর	তে পারে পর্যায় সারণির বে	কান গ্রুপের মৌল?		
(ক) গ্ৰুপ 16 ও 17		(খ) গ্ৰুপ 1 ও 2		
(গ) গ্ৰুপ 6 ও 7		(ঘ) গ্ৰুপ 9 ও 10		উত্তর: খ
১৮৪। Na এর ইলেকট্রন	বিন্যাস 2, 8, 1 আর <i>Na</i>	় ⁺ এর ইলেকট্রন বিন্যাস–		
(क) 2, 8, 1	(খ) 2, 8	(গ) 2, 8, 8	(ঘ) 2, 8, 2	উত্তর: খ
১৮৫। ${\it Cl}^{-}$ এর ইলেকট্রন	বিন্যাস_			
(क) 2, 8	(খ) 2, 8, 7	(গ) 2, 8, 8	(ঘ) 2, 8, 2	উত্তর: গ
১৮৬। সোডিয়াম 1টি ইর	লকট্রন ত্যাগ করে নিয়নের	র ইলেকট্রন বিন্যাস লাভ	করে আর ক্লোরিন 1টি	ইলেকট্ৰন
গ্রহণ করে কোন নিষ্ক্রিয়	গ্যাসের ইলেকট্রন বিন্যাস	শাভ করে?		
(ক) নিয়ন	(খ) জেনন	(গ) হিলিয়াম	(ঘ) আৰ্গন	উত্তর: ঘ

(ক) i ও ii

১৮৭। ক্যাটায়নের উদাহরন i. Na^+ , K^+ ii. $Mg^{++}Ca^{++}$ iii. Cl^{-} , Br^{-} নিচের কোনটি সঠিক? (ক) i (খ) i ও ii (গ) i ও iii (ঘ) і, іі ও ііі উত্তর: খ ১৮৮। অ্যানায়নের উদাহরন i. Na^+ , K^+ ii. Cl^{-} , Br^{-} iii. 0^{-2} , S^{-2} নিচের কোনটি সঠিক? (ক) i (ঘ) ii ও iii (খ) i ও ii (গ) i ও iii উত্তর: ঘ ১৮৯। ক্লোরিন আর্গনের ইলেকট্রন বিন্যাস লাভ করে i. এর শেষ শক্তিস্তরে 1টি ইলেকট্রন গ্রহণের দারা ii. ঋণাত্মক আধানযুক্ত ক্লোরাইড আয়ন গঠনের দারা iii. 2, 8, 8 ইলেকট্রন বিন্যাস অর্জনের দ্বারা নিচের কোনটি সঠিক? (ঘ) i, ii ও iii (গ) ii ও iii (ক) i ও ii (খ) i ও iii উত্তর: ঘ নিচের অনুচ্ছেদটি পড় এবং ১৯০ ও ১৯১ নং প্রশ্নের উত্তর দাও: ধনাত্মক চার্জযুক্ত পরমাণুকে ক্যাটায়ন বলে আর ঋণাত্মক চার্জযুক্ত পরমাণুকে অ্যানায়ন বলে। ১৯০। Na এর ইলেকট্রন বিন্যাস 2, 8, 1। এটি সর্বশেষ শক্তিন্তর থেকে 1টি ইলেকট্রন ত্যাগ করে নিয়নের ইলেকট্রন বিন্যাস লাভ করতে চায়। এতে পরমাণুটি পরিণত হয়— (ক) ক্যাটায়নে (ঘ) যৌগমূলকে (খ) অ্যানায়নে (গ) অ্যানায়নে উত্তর: ক ১৯১। অ্যানায়ন গঠন করে i. F & O ii. Na ଓ Mg iii. Cl ଓ S নিচের কোনটি সঠিক?

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: খ

(খ) i ও iii

নিচের অনুচ্ছেদটি পড় এবং ১৯২ ও ১৯৩ নং প্রশ্নের উত্তর দাও:

NaCl যৌগ তৈরির সময় Na পরমাণু 1টি ইলেকট্রন ত্যাগ করে Na^+ এ পরিণত হয়। আর Cl পরমাণু ত্যাগকৃত ঐ 1টি ইলেকট্রন গ্রহণ করে Cl^- এ পরিণত হয়।

১৯২। এখানে কী ধরনের বন্ধন সৃষ্টি হয়?

- (ক) আয়নিক (খ) সমযোজী
 - (গ) ধাতব
- (ঘ) হাইড্রোজেন

উত্তর: ক

১৯৩। Cl পরমাণু ইলেকট্রন গ্রহণ করে—

- i. অ্যানায়নে পরিণত হয়
- ii. যোজ্যতাস্তর পূর্ণ করে
- iii. আর্গনের ইলেকট্রন বিন্যাস লাভ করে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

১৯৪। Ca^{2} + এর ইলেকট্রন বিন্যাস কোনটি?

- (খ) 2, 8, 8
- (গ) 2, 8, 8, 2
- (ঘ) 2, 8, 18, 2

উত্তর: খ

১৯৫। কোনটি আয়নিক যৌগ?

- (**₹**) MgO
- (খ) NH3
- (গ) CH4
- (ঘ) H₂O

উত্তর: ক

১৯৬। কোনটি আয়নিক যৌগ?

- $(\overline{\Phi})AlCl_3$
- (খ)PCl2
- (গ)H2S

(ঘ)NH₂

উত্তর: ক

১৯৬। কোনটি আয়নিক যৌগ?

- (ক)*CHI*
- (খ)H₂O
- (গ) NaCl
- (ঘ) CH₄

উত্তর: গ

১৯৭। সোডিয়ামের একটি ইলেকট্রন ত্যাগ করলে কী হয়?

- (ক) ধনাত্মক আধানযুক্ত Na+ আয়নের উৎপত্তি হয়
- (খ) ঋণাত্মক আধানযুক্ত Na- আয়নের উৎপত্তি হয়
- (গ)নিরপেক্ষ আয়নে পরিণত হয়

(ঘ) নিরপেক্ষ আয়নে পরিণত হয় না

উত্তর: ক

১৯৭। ক্লোরিনের সর্বশেষ কক্ষপথে কয়টি ইলেকট্রন আছে?

- (ক) 2 টি
- (খ) 7 টি
- (গ)৪ টি
- (ঘ) 18 টি

উত্তর: খ

১৯৭। সোডিয়াম ধাতুর শেষ কক্ষপথে কয়টি ইলেকট্রন আছে?

- (ক) 1 টি
- (খ) 3 টি
- (গ)4 টি
- টি (ঘ) 5

উত্তর: ক

২০১। ম্যাগনেসিয়াম পরমাণু কয়টি ইলেকট্রন ত্যাগ করে?

(ক) 2 টি

(খ) 3 টি

(গ) 5 টি

(ঘ) 6 টি

উত্তর: ক

২০২। সোডিয়াম পরমাণুর ক্ষেত্রে কোন চিত্রটি সঠিক?

উত্তর: ক

২০৩। যৌগ গঠনের সময় ক্যালসিয়ামের চার্জ হবে–

 $(\overline{\Phi}) + 1$

(খ) -1

(গ) +2

(ঘ) -2

উত্তর: গ

২০৪। ধাতব ও অধাতব পরমাণুসমূহ আবদ্ধ থাকে—

(ক) যোজ্যতা দ্বারা

(খ) সমযোজী বন্ধন দ্বারা

(গ) আয়নিক বন্ধন দারা

(ঘ) আয়ন দ্বারা

উত্তর: গ

২০৫। ম্যাগনেসিয়ামের পারমাণবিক সংখ্যা কত?

(ক) 10

(খ) 12

(গ) 24

(ঘ) 36

উত্তর: খ

২০৬। ম্যাগনেসিয়াম 2টি ইলেকট্রন ত্যাগ করলে কী হয়?

(ক) Mg^2 $^+$ আয়নের সৃষ্টি হয়

(খ) Mg^+ আয়নের সৃষ্টি হয়

(গ) Mg^{-2} আয়নের সৃষ্টি হয়

(ঘ) Mg পরমাণুর সৃষ্টি হয়

উত্তর: ক

২০৭। $Ca + Cl_2 \rightarrow CaCl_2$ বিক্রিয়ায় কোন ধরনের যৌগ উৎপন্ন হবে?

(ক) সমযোজী যৌগ (খ) আয়নিক যৌগ

(গ) এসিড

(ঘ) ক্ষারক

উত্তর: খ

২০৮। $2Na + Cl_2 \rightarrow 2NaCl$ বিক্রিয়ায় কোনটি ঘটবে?

(ক) সোডিয়াম ও ক্লোরিন আয়নিক বন্ধন দ্বারা যুক্ত হবে

(খ) সোডিয়াম ও ক্লোরিন সমযোজী বন্ধন দ্বারা যুক্ত হবে

(গ) প্রতিটি Na প্রমাণু 2টি করে ইলেকট্রন ত্যাগ করবে

(ঘ) প্রতিটি CI পরমাণু 2টি করে ইলেকট্রন গ্রহণ করবে

উত্তর: ক

২০৯। কোনটি একযোজী ক্যাটায়ন?

(ক)

(খ)

(গ)

(ঘ)

উত্তর: গ

২০৭। উপরের বিক্রিয়ার উৎপাদের নাম, সংকেত ও প্রকৃতি কোনটি?

	উৎপাদের নাম	সংকেত	প্রকৃতি
(ক)	আৰ্গন	Ar	নিজ্ঞিয়
(খ)	নিয়ন	Ne	সক্রিয়
(গ)	নাইট্রোজেন	N	মৌল
(ঘ)	ক্লোরিন	Cl	সক্রিয়

(ঘ)	ক্লোরিন	Cl	সক্রিয়	
				উত্তর: ক
২১১ । <i>LiF</i>	কী ধরনের যৌগ?			
(ক) আয়নিক	ক (খ) সমযোজী	(গ) ধাতব	(ঘ) তেজস্ক্রিয়	উত্তর: ক
২১২। লিথি	য়াম পরমাণুর ক্যাটায়ন কোনটি?			
(ক) Li	(뉙) Li ⁺	(গ) Li ^{+ +}	(ঘ) Li ³⁻	উত্তর: খ
২১৩। ইলে	কট্রন ত্যাগ করে ক্যাটায়ন সৃষ্টিকারী মৌল	টির প্রকৃতি কোনটি?		
(ক) ধাতু	(খ) অধাতু	(গ) অপধাতু	(ঘ) নিজ্ৰিয়	উত্তর: খ
২১৪। আর্য়া	নক ও সমযোজী উভয় যৌগ গঠন করে ৫	কোনটি?		
(₹) Na	(뉙) Al	(গ) K	(ঘ) Mg	উত্তর: খ
২১৫। কোন	৷ ধাতুটি তিনটি ইলেকট্রন ত্যাগ করে আয়	য়নিক যৌগ গঠন করে?		
(<u>₹</u>) B	(খ) Al	(গ) Ga	(ঘ) Na	উত্তর: খ
২১৫। কোন	৷ ধাতুটি তিনটি ইলেকট্রন ত্যাগ করে আয়	য়নিক যৌগ গঠন করে?		
(<u>₹</u>) B	(খ) Al	(গ) Ga	(ঘ) Na	উত্তর: খ
২১৬। কার্ব	ন আয়নিক যৌগ গঠন করে না কেন?			
(ক) যোজ্য	চা ইলেকট্ৰন পূৰ্ণ			
(খ) ইলেকট্ৰ	ন্ন দান বা গ্ৰহণে অধিক শক্তি প্ৰয়োজন			
(গ) বন্ধন ভ	গঙতে অল্প শক্তি প্রয়োজন			
(ঘ) স্বাভাবি	ক অবস্থায় তরল			উত্তর: খ
২১৭। গ্রুপ-	-2 এর মৌল <i>X</i> এবং গ্রুপ-16 এর মৌল	Y এর মধ্যে গঠিত যৌগ ৫	কানটি?	
(ক) <i>XY</i>	(₹) <i>XY</i> ₂	(গ)X ₂ Y	$(ঘ)X_3Y$	উত্তর: ক

ii. $CaCl_2$

২১৮। ধাতু ও অধাতুর ম	মধ্যে রাসায়নিক বিক্রিয়ার য	নলে যে যৌগ গঠিত হয় ত	াকে কী বলে?	
(ক) অজৈব যৌগ	(খ) জৈব যৌগ	(গ) আয়নিক যৌগ	(ঘ) সমযোজী যৌগ	উত্তর: গ
২১৯। একটি মৌল <i>k</i>	ে এর বহিঃস্তরের ইলেব	চট্রনীয় কাঠামো নিম্নরূপ	হলে K_2O কী ধরনে	র যৌগ?
$K \dots 3s^2 3p^6 4s^1$	এবং $0 \dots 2s^2 2p^4$			
(ক) আয়নিক	(খ) সমযোজী	(গ) ধাতব	(ঘ) সন্নিবেশ	উত্তর: ক
২২০। উপরের মৌলদ্বয়ে	কী বন্ধন দ্বারা যৌগ গঠিত	হবে?		
(ক) আয়নিক	(খ) সমযোজী	(গ) ধাতব	(ঘ) সন্নিবেশ	উত্তর: ক
২২১। ইলেকট্রন আদান-	প্রদানের মাধ্যমে ক্যাটায়ন 🔻	ও অ্যানায়ন কী ধরনের বয়	ন সৃষ্টি করে?	
(ক) ধাতব	(খ) সমযোজী	(গ) সন্নিবেশ সমযোজী	(ঘ) আয়নিক	উত্তর: ঘ
২২২। LiF যৌগে Li G	যাজ্যতা স্তরে 1টি ইলেকট্র	ইন বর্জন করে He-এর	স্থায়ী বিন্যাস লাভ করে	, আর <i>F</i>
যোজ্যতা স্তরে 1টি ইলেব	চট্রন গ্রহণ করে কোন নি দ্রি	ন্য় গ্যাসের স্থায়ী বিন্যাস ল	ভ করে?	
(ক) He	(켁) Ar	(গ) Kr	(ঘ) Ne	উত্তর: ঘ
২২৩। আয়নিক বন্ধন স	াাধারণত পর্যায় সারণির গ্রু	প 1 ও 2 এর সাথে গ্রু	প - এর মধ্যে ঘটে থাকে	। এখানে
শূন্যস্থানে কী বসবে?				
(ক) 4 ও 5	(খ) ৪ ও ୨	(গ) 16 ও 17	(ঘ)12 ও 13	উত্তর: গ
২২৪। Na ও <i>Cl</i> মিলে N	acl গঠনকালে—			
i. <i>Na</i> ইলেকট্ৰন বৰ্জন ব	ে র			
ii. <i>Cl</i> ইলেকট্ৰন গ্ৰহণ ক	রে			
iii. উভয়েই আয়নিক বন্ধ	নে গঠন করে			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
২২৫। ক্লোরিনের ইলেক্ট	ট্রন বিন্যাস–			
i. 2, 8, 7				
ii. $1s^2 2s^2 2p^6 3s^2 3p$	6			
iii. উভয়েই আয়নিক বন্ধ	নে গঠন করে			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: খ
২২৬। আয়নিক যৌগ হ	লা			
i. <i>M,gO</i>				

iii. NH_3

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ক

২২৭। Mg^2 ⁺ এর ইলেকট্রন বিন্যাস—

i. 2, 8

ii. 2, 8, 2

iii. Ne এর বিন্যাস

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: খ

২২৮। NaCl আয়নিক বন্ধন গঠনকালে—

i. Na ক্যাটায়নে ও Cl অ্যানায়নে পরিণত হয়

ii. ধাতু ইলেকট্রন গ্রহণ করে, অধাতু ইলেকট্রন বর্জন করে

iii. পর্যায় সারণির ৩য় পর্যায়ে গ্রুপ 1 এর সাথে গ্রুপ 17 বন্ধনে আবদ্ধ হয়

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (뉙) i ଓ iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: খ

২২৯। LiF যৌগ গঠন প্রক্রিয়ায়—

i. Li ইলেকট্রন ত্যাগ করে Li^+ -এ পরিণত হয়

ii. F ইলেকট্রন গ্রহণ করে F⁻-এ পরিণত হয়

iii. Li পরমাণু He-এর এবং F পরমাণু Ar এর ইলেকট্রন বিন্যাস অর্জন করে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

নিচের চিত্রটি লক্ষ করে ২৩০ ও ২৩১ নং প্রশ্নের উত্তর দাও:

২৩০। চিত্রে কোন মৌলের ইলেকট্রন বিন্যাস দেখানো হয়েছে?

- (ক) সোডিয়াম
- (খ) ম্যাগনেসিয়াম
- (গ) ক্যালসিয়াম
- (ঘ) অ্যালমিনিয়াম

উত্তর: ক

২২৭। চিত্রের মৌলটি যৌগ গঠনের সময় –

- i. গ্রুপ 16 ও 17-এর অধাতুকে বেছে নেয়
- ii. আয়নিক বন্ধনে আবদ্ধ হয়
- iii. সন্নিবেশ সমযোজী যৌগ গঠন করে

নিচের কোনটি সঠিক?

(ক) i

(খ) ii (গ) i ও ii

(ঘ) i, ii ও iii

উত্তর: গ

উপরের চিত্রটি ব্যবহার করে ২৪৭-২৪৯ নং প্রশ্নের উত্তর দাও:

২৩২। উৎপন্ন যৌগে কোন ধরনের বন্ধন সৃষ্টি হয়েছে?

(ক) ধাতব বন্ধন

(খ) আয়নিক বন্ধন

(গ) আয়নিক বন্ধন

(ঘ) সন্নিবেশ সমযোজী বন্ধন

উত্তর: খ

২৩৩। উৎপন্ন Z যৌগটির নাম কী?

 $(\overline{\Phi})$ $MgCl_2$

(খ) CaCl₂

(গ) NaCl

(ঘ) FeCl₂

উত্তর: গ

২৩৩। X = C, Y = H হলে বিক্রিয়ার ফলে উৎপন্ন যৌগের বন্ধন প্রকৃতি কী হবে?

(ক) সন্নিবেশ সমযোজী (খ) আয়নিক

(গ) সমযোজী

(ঘ) ধাতব

উত্তর: গ

নিচের চিত্র থেকে ২৩৫ ও ২৩৬নং প্রশ্নের উত্তর দাও:

উপরের চিত্রটি ব্যবহার করে ২৪৭-২৪৯ নং প্রশ্নের উত্তর দাও:

২৩৫। কোন ধরনের বন্ধন দ্বারা যৌগ গঠিত হবে?

(ক) আয়নিক বন্ধন

(খ) সমযোজী বন্ধন

(গ) ধাতব বন্ধন

(ঘ) হাইড্রোজেন বন্ধন

উত্তর: ক

২৩৬। চিত্রের মৌলদ্বয় দ্বারা গঠিত যৌগ—

- i. $MgCl_2$
- ii. ক্যাটায়ন Mg^{+2}
- iii. অ্যানায়ন Cl-

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

নিচের তথ্য থেকে ২৩৭ ও ২৩৮ নং প্রশ্নের উত্তর দাও:

X ও Y এর পারমাণবিক সংখ্যা যথাক্রমে 20 ও 8

২৩৭। X ও Y মিলে কোন যৌগ উৎপন্ন করবে?

- $(\overline{\Phi})CaCl_2$
- (খ)NaCl
- (গ)CaO
- (ঘ)MgO

উত্তর: গ

২৩৮। X ও Y দ্বারা উৎপন্ন যৌগটি —

- i. আয়নিক বন্ধন দ্বারা গঠিত হবে
- ii. X মৌল Ar —এর এবং Y মৌল Ne-এর ইলেকট্রন বিন্যাস অর্জন করবে
- iii. স্থির বৈদ্যুতিক আকর্ষণ বল দ্বারা পরস্পর আবদ্ধ থাকবে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

নিচের চিত্র থেকে ২৩৯ ও ২৪০ নং প্রশ্নের উত্তর দাও:

২৩৯। উৎপাদিত যৌগ কোনটি?

- $(\overline{\Phi}) MgCl_2$
- (켁) MgO
- (গ) NaCl
- (ঘ) MgFe₂

উত্তর: খ

২৩৮। উৎপন্ন যৌগ—

- i. আয়নিক বন্ধন দ্বারা গঠিত হবে
- ii. অষ্টক নিয়ম অনুসরণ করে
- iii. ধাতুর সাথে অধাতুর সংযোগে ঘটে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

নিচের ইলেকট্রন বিন্যাসদ্বয় লক্ষ করে ২৪১ ও ২৪২নং প্রশ্নের উত্তর দাও:

 $Y = 1s^2 2s^2 2p^6 3s^1$

২৪১। Y মৌলটির নাম কী?

(<u>₹</u>)Ca

(খ)Ma

(গ) Na

(ঘ)Al

উত্তর: গ

২৪২। X ও Y দ্বারা গঠিত যৌগ—

i. আয়নিক বন্ধন দ্বারা গঠিত হবে

ii. অষ্টক নিয়ম অনুসরণ করে

iii. যৌগটি NaCl

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

নিচের চিত্র থেকে ২৪৩ ও ২৪৪ নং প্রশ্নের উত্তর দাও:

২৪৩। চিত্রের মৌলটির ল্যাটিন নাম-

(ক) ক্যালসিয়াম

(খ) ন্যাট্রিয়াম

(গ) ফেরাস

(ঘ) প্লাম্বাম

উত্তর: খ

২৪৪। মৌলটি সাধারণত যে ধরনের যৌগ গঠন করে—

i. ধাতব

ii. আয়নিক

iii. সমযোজী

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ক

২৪৫। PCl_5 যৌগে মুক্তজোড় ইলেকট্রন কয়টি?

(ক) 0

(খ) 1

(গ) 2

(ঘ) 3

উত্তর: ক

২৪৬। সমযোজী যৌগ কোনটি?

(ক) NaCl

(খ) AlCl₃

(গ) PCl₃

(ঘ) $MgCl_2$

উত্তর: গ

২৪৭। পানির একটি অণুতে অক্সিজেনের বন্ধন জোড় ইলেকট্রন কয়টি আছে?

(ক) 1

(খ) 2

(গ) 3

(ঘ) 4

উত্তর: খ

২৪৮। সমযোজী যৌগের	অনুতে_			
(ক) ধনাত্মক প্রান্ত থাকে		(খ) ভ্যান্ডার ওয়ালস আ	কৰ্ষণ শক্তি থাকে	
(গ) ঋণাত্মক প্রান্ত থাকে		(ঘ) আন্তঃআণবিক শক্তি	বেশি থাকে	উত্তর: খ
২৪৯। ভ্যানডার ওয়ালস	শক্তি দ্বারা আবদ্ধ থাকে নি	চের কোনটি?		
(ক) H ₂ O	(খ) NaCl	(গ) MgO	(ঘ) $MgCl_2$	উত্তর: খ
২৫০। সমযোজী বন্ধন সূ	্ষ্টির সময় নাইট্রোজেন পর	মাণুর কতগুলো ইলেকট্রন	অংশ নেয়?	
(ক) ২ টি	(খ) ৩ টি	(গ) ৪ টি	(ঘ) ৫ টি	উত্তর: খ
২৫১। কোন যৌগটি সম	যোজী যৌগ?			
(ক) MgO	(খ) NaI	(গ) NH ₃	(ঘ) CaS	উত্তর: গ
২৫২। একটি বস্তু সাধ	ারণ তাপমাত্রায় তরল পদ	নার্থ, তবে বিদ্যুৎ পরিবাই	<u> নয়; এতে কোন ধরে</u>	নর বন্ধন
বিদ্যমান?				
(ক) সমযোজী	(খ) আয়নিক	(গ) ধাতব	(ঘ) সিগমা বন্ধন	উত্তর: ক
২৫৩। সমযোজী বন্ধন স্	্ষ্টির সময় ক্লোরিনের কতটি	ট পরমাণু অংশ নেয়?		
(ক) 1 টি	(খ) 2 টি (গ) 3 বি	ট (ঘ) 4 বি	ট	উত্তর: ক
২৫৪। কোন মৌলটি শুধু	মাত্ৰ সমযোজী যৌগ গঠন ব	করে?		
(ক) সোডিয়াম	(খ) ম্যাগনেসিয়াম	(গ) অক্সিজেন	(ঘ) কাৰ্বন	উত্তর: ঘ
২৫৪। কোন অধাতুটি বি	দ্যুৎ পরিবহন করে?			
(ক) 0	(킥) N	(গ) C	(ঘ) P	উত্তর: গ
২৫৫। <i>HCl</i> অণুতে বন্ধন	া জোড় ইলেকট্রন সংখ্যা ক	ত?		
(ক)]	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: ক
২৫৬। <i>HCl</i> অণুতে বন্ধন	ৰ জোড় ইলেকট্ৰৰ সংখ্যা ক	ত?		
(ক)]	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: ক
২৫৭। মিথেন অণুতে মুজ	জ জোড় ইলেকট্ৰন ক ত টি?			
(ক) 0	(খ) 2	(গ) 4	(ঘ) 6	উত্তর: ক
২৫৮। কোন সমযোজী যৌগের অণু কম তাপমাত্রায় তরল অবস্থায় থাকে?				
(ক) <i>CO</i> ₂	(킥) NH ₃	(গ) C ₂ H ₅ OH	(ঘ) I ₂	উত্তর: গ
২৫৯। হাইড্রোজেন নিষ্ক্রি	য় গ্যাসের কোন বিন্যাস লা	ভ করে?		
(ক) দুই-এর	(খ) ষষ্টক	(গ) অষ্টক	(ঘ) অষ্টাদশক	উত্তর: ক
২৬০। PH_3 বন্ধন গঠনে	র পর প্রতিটি অণুতে কতা	ট মুক্ত জোড় ইলেকট্রন র	য়ছে?	
(ক) 0	(খ)]	(গ) 2	(ঘ) 3	উত্তর: ক

২৬১। সমযোজী বন্ধ	ন সৃষ্টি হয় কাদের মধ্যে?			
(ক) ধাতু ও অধাতুর	মধ্যে	(খ) অধাতু ও অধাতুর ম	াধ্যে	
(গ) ধাতু ও ধাতুর মধ্যে		(ঘ) ধাতু ও উপধাতুর ম	ধ্যে	উত্তর: খ
২৬২। সমযোজী বন্ধ	নের শেয়ারকৃত ইলেকট্রন জো	ড়কে কী বলা হয়?		
(ক) বন্ধন ইলেকট্রন		(খ) সমযোজী ইলেকট্ৰন		
(গ) বন্ধন জোড় ইলে	াকট্রন	(ঘ) মুক্ত জোড় ইলেকট্র-	4	উত্তর: গ
২৬৩। অ্যামোনিয়াম	অণু গঠনে নাইট্রোজেনের কত	টি মুক্ত জোড় ইলেকট্রন ত	গছৈ?	
(ক) ় টি	(খ) 2 টি	(গ) 3টি	(ঘ) 4 টি	উত্তর: ক
২৬৪। ফ্লোরিন ও অ	ক্সিজেন মিলে কোন যৌগটি উ	ৎপন্ন হবে?		
(ক) FO	(켁) F ₂ O	(গ) FO ₂	(ঘ) F_2O_7	উত্তর: খ
২৬৫। <i>HCl</i> অণুতে	কীরূপ বন্ধন রয়েছে?			
(ক) সমযোজী	(খ) আয়নিক	(গ) সন্নিবেশ	(ঘ)ধাতব	উত্তর: ক
২৬৬। পানির একটি	ব্ব অণুতে কয়টি মুক্তজোড় ইলে	কট্ৰন আছে?		
(ক)]	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: ক
২৬৭। কার্বনের যোগ	স্যতাস্তরে ইলেকট্রন সংখ্যা কত	??		
(ক) 3	(খ) 4	(গ) 5	(ঘ) 6	উত্তর: খ
২৬৮। নাইট্রোজেনে	র যোজ্যতাস্তরে ইলেকট্রন সংখ	্যা কত?		
(ক) 4	(খ) 5	(গ) 6	(ঘ) 7	উত্তর: খ
২৬৯। একটি অক্সি	জন কতটি হাইড্রোজেনের সারে	থ ইলেকট্রন শেয়ার করে ⁴	পানির অণু গঠন করে?	
(ক) 1 টি	(খ) 2 টি	(গ) 3 টি	(ঘ) 4 টি	উত্তর: খ
২৭০। একটি অক্সি	জন অণুতে দুটি অক্সিজেন পর	মাণু কোন বন্ধনের মাধ্যমে	আবদ্ধ থাকে?	
(ক) আয়নিক	(খ) ধাতব	(গ) সমযোজী	(ঘ) সন্নিবেশ	উত্তর: গ
২৭১। সমযোজী যৌ	গের অণুসমূহ কী বিশেষ শক্তি	দ্বারা পরস্পরের প্রতি আব্	চৃষ্ট থাকে?	
(ক) ভ্যানডার ওয়াল	স শক্তি	(খ) আন্তঃআণবিক শক্তি		
(গ) স্থির বৈদ্যুতিক	ণক্তি	(ঘ) চৌম্বকীয় শক্তি		উত্তর: ক
২৭২। অধাতু ইলেক	ট্রন গ্রহণ করে কোন ধরনের	বন্ধনে?		
(ক) আয়নিক বন্ধনে		(খ) সমযোজী বন্ধনে		
(গ) ধাতব বন্ধনে		(ঘ) হাইড্রোজেন বন্ধনে		উত্তর: ক
২৭৩। সমযোজী বন্ধ	নে শেয়ারকৃত ইলেকট্রনকে অ	াকর্ষণ করার ক্ষমতাকে কী	বলে?	
(ক) আয়নীকরণ শব্দি	জ (খ) ইলেকট্রন আসক্তি	(গ) ল্যাটিস শক্তি	(ঘ) তড়িৎ ঋণাত্মকতা	উত্তর: ঘ

 $(\overline{\Phi})NaNO_3$

(뉙)*HF*

২৭৪। অধাতু-অধাতুর মধ্যকার বন্ধন কোনটি? (ক) আয়নিক (খ) সমযোজী (ঘ) হাইড্রোজেন (গ) ধাতব উত্তর: খ ২৭৫। কোন মৌলটির ক্ষেত্রে ইলেকট্রন ত্যাগ করা সহজ? (ক) Na (খ) C উত্তর: ক (গ) 0 (ঘ) F ২৭৬। কঠিন সমযোজী যৌগ কোনটি? (খ) H₂O উত্তর: ঘ (ক) *CO*2 (গ) C₂H₅OH (ঘ) I₂ ২৭৭। কোনটির মধ্যে ভ্যানডার ওয়ালস আকর্ষণ শক্তি নেই বললেই চলে? $(\overline{\Phi})C_2H_5OH$ (খ) |ু $(\mathfrak{I})S_{\mathfrak{Q}}$ (ঘ)*CH*₄ উত্তর: ঘ ২৭৮। কতিপয় মৌলের ইলেকট্রন বিন্যাস হলো: W(2,6), X(2,8), Y(2,8,1), Z(2,8,7) কোন প্রমাণু যুগল সমযোজী যৌগ গঠন করবে? (ক) W-"এর দৃটি প্রমাণু" (খ) X-এর দুটি পরমাণু (গ) W এবং X এর একটি করে পরমাণু (ঘ) Y এবং Z এর একটি করে পরমাণু উত্তর: ক ২৭৯। কার্বন পরমাণুতে কয়টি বন্ধন জোড ইলেকট্রন থাকে? (খ) 2 টি (গ) 3 টি (ক)] টি (ঘ) 4 টি উত্তর: ঘ ২৮০। ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয় তাকে বলে। (ক) সমযোজী বন্ধন (খ) আয়নিক বন্ধন (গ) ধাতব বন্ধন (ঘ) সন্নিবেশ বন্ধন উত্তর: ক ২৮১। বন্ধন জোড় ইলেকট্রন কাকে বলে? (ক) যে ইলেকট্রনগুলো বন্ধনে অংশগ্রহণ করে (খ) যে ইলেকট্রনগুলো মুক্ত অবস্থায় থাকে (গ) যে ইলেকট্রনগুলো বন্ধনে অংশগ্রহণ করে না (ঘ) যে ইলেকট্রনগুলো সর্বশেষ কক্ষপথে থাকে উত্তর: ক ২৮২। কোনটি শুধুমাত্র সমযোজী বন্ধন গঠন করে? (ক) Na (খ) Cl উত্তর: গ (গ) C (ঘ) Mg ২৮৩। কোনটি সমযোজী বন্ধন দ্বারা গঠিত হয় না? উত্তর: ঘ (ক)*CH*₄ (খ)NH₂ (গ) CO2 (ঘ) NaCl ২৮৪। কোন সমযোজী যৌগের অণু গ্যাসীয় অবস্থায় একক অণু হিসেবে ঘুরে বেড়ায়? উত্তর: ঘ $(\overline{\Phi}) H_2 O$ (∜) C₂H₅OH (গ)I₂ (ঘ)NH_২ ২৮৫। কোনটি সমযোজী যৌগ?

(গ) KOH

(ঘ) NH₄Cl

উত্তর: খ

২৮৬। কোনটি সমযোজী বন্ধন দ্বারা গঠিত হয় না?

	উৎপাদের নাম	সংকেত	বন্ধন
(ক)	কার্বন মনোক্সাইড	СО	সমযোজী
(খ)	কার্বন ডাইঅক্সাইড	CO ₂	সমযোজী
(গ)	মিথেন	CH_4	সমযোজী
(ঘ)	অ্যামোনিয়া	NH_3	সমযোজী

উত্তর: খ

২৮৭। অধাতু-অধাতু বন্ধন গঠন করার ক্ষেত্রে কী ঘটে?

- (ক) ইলেকট্রন গ্রহণ ও বর্জনের দ্বারা নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ করে
- (খ) ইলেকট্রন ওভারলেপিং দ্বারা নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ করে
- (গ) ইলেকট্রন আদান-প্রদান দ্বারা নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ করে
- (ঘ) ইলেকট্রন শেয়ার দ্বারা নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস লাভ হয়

উত্তর: ঘ

২৮৮। যখন একটি হাইড্রোজেন প্রমাণু অপর একটি হাইড্রোজেন প্রমাণুর সাথে যুক্ত হয় তখন কী ঘটে?

- (ক) পরমাণুদ্বয় পরস্পর ইলেকট্রন শেয়ার করে হিলিয়ামের স্থায়ী বিন্যাস লাভ করে
- (খ) পরমাণুদ্বয় পরস্পর ইলেকট্রন শেয়ার করে নিয়নের বিন্যাস লাভ করে
- (গ) পরমাণুদ্বয় পরস্পর ইলেকট্রন গ্রহণ ও বর্জন করে নিয়নের স্থায়ী বিন্যাস লাভ করে
- (ঘ) পরমাণুদ্বয় ইলেকট্রন গ্রহণ ও বর্জন করে নিয়নের স্থায়ী বিন্যাস লাভ করে

উত্তর: ক

২৮৯। সমযোজী বন্ধনে গঠিত মৌলিক অণুকে বলে সমযোজী অণু আর যৌগকে বলে

(ক) সমযোজী বন্ধন

(খ) সমযোজী যৌগ

(গ) ইলেকট্রন বন্ধন

(ঘ) ইলেকট্রনিক যৌগ

উত্তর: খ

২৯০। Cl (ক্লোরিন) Na (সোডিয়াম) এর কাছ থেকে ইলেকট্রন গ্রহণ করে কিন্তু H (হাইড্রোজেন) এর কাছ থেকে ইলেকট্রন গ্রহণ করে না কেন?

- (ক) দুই-এর নীতি অনুসারে H ইলেকট্রন দিতে পারে না বলে
- (খ) Cl ধাতর পরমাণু বলে
- (গ) H, Cl এর সাথে বন্ধন গঠন করে না বলে
- (ঘ) Cl অষ্টক ও H দুই-এর নীতি মেনে চলে বলে

উত্তর: ক

(ক) i ও ii

(খ) i ও iii

২৯১। O_2 এবং CO_2 উভয়েই সমযোজী। এদের মধ্যে পার্থক্য কী? (Φ) O_2 পরমাণু, CO_2 অণু (খ) ${\it O}_{2}$ এ ধাতু-অধাতু বন্ধন কিন্তু ${\it CO}_{2}-{\it G}$ ধাতু-অধাতু বন্ধন (গ) O_2 মৌল কিন্তু CO_2 যৌগ (ঘ) O_2 গ্যাসীয় কিন্তু CO_2 কঠিন উত্তর: গ ২৯২। সমযোজী বন্ধন গঠিত হয় i. দুটি অধাতব পরমাণুর মধ্যে ii. এক বা একাধিক ইলেকট্রন যুগল সৃষ্টি হয়ে iii. ইলেকট্রন গ্রহণ বা বর্জন করে নিচের কোনটি সঠিক? (ক) i ও ii (ঘ) i, ii ও iii (খ) i ও iii (গ) ii ও iii উত্তর: ক ২৯৩। সমযোজী বন্ধন গঠিত হয় i. একই মৌলের পরমাণুর মধ্যে ii. ধাতু ও অধাতুর মধ্যে iii. নিকটবর্তী তড়িৎ ঋণাত্মক মানসম্পন্ন মৌলের মধ্যে নিচের কোনটি সঠিক? (ক) i ও ii (খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii উত্তর: খ ২৯৪। CH_4 যৌগটির বন্ধনের ক্ষেত্রে i. একটি ধাতু ও একটি অধাতু পরমাণুর মধ্যে বন্ধন গঠিত হয় ii. যোজ্যতা স্তরে C-এর 4টি ইলেকট্রন বন্ধন গঠনে অংশ নেয় iii. 4টি H পরমাণু 4টি ইলেকট্রন শেয়ার করে নিচের কোনটি সঠিক? (ক) i ও ii (뉙) i ଓ iii (গ) ii ও iii (ঘ) i, ii ও iii উত্তর: গ ২৯৫ \cdot $_1X + _1X \rightarrow$ বিক্রিয়াটিতে i. ইলেকট্রনের শেয়ার ঘটেছে ii. ভ্যানডার ওয়ালস বল বিদ্যমান iii. ইলেকট্রন যুগল সৃষ্টি হয়েছে নিচের কোনটি সঠিক?

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

২৯৬। ₁0₂ অনুতে–

- i. সমযোজী বন্ধন বিদ্যমান
- ii. দুটি O পরমাণু 2টি ইলেকট্রন শেয়ার করে
- iii. দ্বিবন্ধন দেখা যায়

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ঘ

নিচের উদ্দীপকটি লক্ষ কর এবং ২৯৭ ও ২৯৮ নং প্রশ্নের উত্তর দাও:

A,B,C,D চারটি মৌলের পারমাণবিক সংখ্যা যথাক্রমে 5,9,16,19। ২৯৭।মৌলগুলো দ্বারা গঠিত যৌগের মধ্যে অকটেট নিয়মের ব্যতিক্রম-

- i. *AB*₃
- ii. *CB*₆
- iii. D_2C

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ଓ iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ক

২৯৮। B, C, D মৌলগুলোর মধ্যে—

i.C মৌলটি আয়নিক ও সমযোজী উভয় বন্ধন গঠন করে

ii. B মৌলটি আয়নিক ও সমযোজী উভয় বন্ধন গঠন করে

iii. D মৌলটি আয়নিক ও সমযোজী উভয় বন্ধন গঠন করে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

উত্তর: ক

নিচের চিত্রটি লক্ষ কর এবং ২৯৯ ও ৩০০নং প্রশ্নের উত্তর দাও:

২৯৯। উৎপাদিত যৌগের সংকেত কী?

- (**क**) CO₂
- (খ) HCl
- (গ) H₂O
- (ঘ) MgO

উত্তর: গ

৩০০। চিত্রের যৌগটি–

- i. গ্যাসীয় অবস্থায় একক অণু হিসেবে ঘুরে বেড়ায়
- ii. সমান সংখ্যক বন্ধন জোড় ও মুক্ত জোড় ইলেকট্রন বিশিষ্ট
- iii. অষ্টক ও দুই-এর নীতি মেনে গঠিত হয়েছে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: গ

নিচের চিত্র দেখে ৩০১ ও ৩০২নং প্রশ্নের উত্তর দাও:

৩০১। উৎপাদিত যৌগের নাম—

(**₹**)Mg0

(খ)H₂O

(গ) СО2

(ঘ)*CH*4

উত্তর: গ

৩০২। চিত্রে-

- i. সমযোজী বন্ধন গঠিত হয়েছে
- ii. 4টি বন্ধন জোড় ইলেকট্রন সৃষ্টি হয়েছে
- iii. নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জিত হয়েছে নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) і ও ііі

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

নিচের চিত্র থেকে ৩০৩ ও ৩০৪নং প্রশ্নের উত্তর দাও:

৩০৩। উৎপাদিত যৌগের নাম–

(ক) H₂O

(খ) NH₃

(গ) NaCl

(ঘ)*CO*2

উত্তর: খ

৩০৪। উৎপাদিত যৌগ–

- i. সমযোজী বন্ধন গঠিত হয়েছে
- ii. এতে 3 টি বন্ধন জোড় এবং 1 টি মুক্ত জোড় ইলেকট্রন আছে
- iii. একক অণু হিসেবে ঘুরে বেড়ায়

নিচের কোনটি সঠিক? (খ) i ও iii (季) i (গ) і ও ііі (ঘ) i, ii ও iii উত্তর: ঘ নিচের চিত্র দেখে ৩০৫ ও ৩০৬ নং প্রশ্নের উত্তর দাও: $H_2 + S_2 \Longrightarrow$ ৩০৫। উৎপাদিত যৌগের নাম– $(\overline{\Phi}) H_2 O$ (₹)*H*₂*S* (ঘ) HCl উত্তর: খ (গ)HBr ৩০৬। উৎপাদিত যৌগ– i. সমযোজী বন্ধন দ্বারা গঠিত হয় ii. ২টি বন্ধন জোড় ইলেকট্রন আছে iii. উভয় পরমাণু সমানভাবে ইলেকট্রন শেয়ার করে নিচের কোনটি সঠিক? (ক) i ও ii (খ) i ଓ iii (গ) ii ও iii (ঘ) i, ii ও iii উত্তর: ঘ ৩০৭। $C_{12}H_{22}O_{11}$ নিচের কোনটির আণবিক সংকেত? (ক) চিনি (খ) গ্লুকোজ (গ) ল্যাকটোজ (ঘ) ফ্রক্টোজ উত্তর: ক ৩০৮। চিনি সমযোজী যৌগ হওয়া সত্ত্বেও পানিতে দ্রবীভূত হয়, কারন– (ক) বেশি আন্তঃআণবিক শক্তি (খ) ভ্যানডার ওয়ালস্ শক্তি (গ) পোলারিটি সৃষ্টি (ঘ) সঞ্চারণশীল ইলেকট্রন সৃষ্টি উত্তর: গ ৩০৯। Al_2O_3 এর ভৌত অবস্থা কত তাপমাত্রা পর্যন্ত অপরিবর্তিত থাকে? (क) 1500°C (খ) 1265°C (গ) 1600°C (ঘ) 1700°C উত্তর: ক ৩১০। সমযোজী বন্ধন বিশিষ্ট যৌগকে কী বলে? (খ) আয়নিক যৌগ (গ) মৌলিক যৌগ (ক) সমযোজী যৌগ (ঘ) ধাতব যৌগ উত্তর: ক ৩১১। জৈব দ্রাবকে দ্রবণীয় কোনটি? উত্তর: ঘ (ক) Na (খ) $MgCl_2$ (গ) K (ঘ) CCl₄ ৩১২। নিচের কোনটি পানিতে দ্রবীভূত হবে? $(\overline{\Phi})CCl_4$ (খ)*CH*₄ (গ)02 (ঘ)CaCl₂ উত্তর: ঘ ৩১৩। সমযোজী যৌগসমূহের গলনাংক ও স্ফুটনাংক— (খ) নিম্ন (ক) উচ্চ (গ) মাঝামাঝি (ঘ) খুব উচ্চ উত্তর: খ

৩১৪। মিথেনের স্ফুটনাংক কত?

(₹) −183°C

৩১৫। পোলার যৌগ বলে যাদের—

(ক) ধনাত্মক আধান আছে		(খ) ঋণাত্মক আধান আছে		
(গ) ধনাত্মক ও ঋণাত্মৰ	ক আধানযুক্ত প্রা <mark>ন্ত আছে</mark>	(ঘ) কোনো প্রকার আধান	া নেই	উত্তর: গ
৩১৬। একটি যৌগ ব	কঠিন অবস্থায় বিদ্যুৎ পরিব	বাহী নয়, কিন্তু তরল অ	বস্থায় ও দ্রবণে বিদ্যুৎ	পরিবাহী।
এতে কোন ধরনের বয়	ন বিদ্যমান?			
(ক) সমযোজী	(খ) আয়নিক	(গ) ধাতব	(ঘ) সন্নিবেশ	উত্তর: খ
৩১৭। আয়নিক যৌগের	া আন্তঃআণবিক শ ক্তি বেশি	কেন?		
(ক) এতে ধনাত্মক ও খ	ঋণাত্মক প্রান্ত থাকে বলে			
(খ) এতে ধাতব-অধাত	ব পরমাণু থাকে বলে			
(গ) এতে পর্যায় সারণি	র বাম ও ডানপাশের মৌল ং	থাকে বলে		
(ঘ) এতে ভ্যানডার ওয়	ালস্ আকর্ষণ শক্তি বিদ্যমান	থাকে বলে		উত্তর: ক
৩১৮। কোনটির পোলা	রিটি ধর্ম আছে?			
(ক) NaCl	(খ) KCl	(গ) $CaCl_2$	(ঘ) H ₂ O	উত্তর: ঘ
৩১৯। চিনির আণবিক	সংকেত কো <mark>নটি?</mark>			
$(\overline{\Phi})C_6H_{12}O_6$	(켁) $C_{12}H_{22}O_{11}$	(গ) $C_5H_{10}O_5$	(ঘ)C₂H₅OH	উত্তর: খ
৩২০। অধিক তাপমাত্র	ায় চিনির বর্ণআ পরিবর্তন হ	ওয়াকে কী বলে?		
(ক) ক্যালোমেল	(খ) ক্যারামেল	(গ) কেরোসান	(ঘ) গলন	উত্তর: খ
৩২১। সমযোজী যৌগের অণুসমূহের মধ্যে দুর্বল ভ্যানডার ওয়ালস আকর্ষণশক্তি বিদ্যমান থাকে কেন?				
(ক) যৌগের অণুসমূহের	া গঠন দুৰ্বল বলে			
(খ) যৌগের অণুসমূহে	ধনাত্মক ও ঋণাত্মক প্রান্ত থ	কায়		
(গ) যৌগের অণুসমূহ বি	নরপেক্ষ থাকায়			
(ঘ) যৌগের অণুসমূহ ধ	াতিব ও অধাতব পরমাণু থাব	কায়		উত্তর: গ
৩২২। আয়নিক যৌগের	ব গলনাংক ও স্ফুটনাংকের <i>হ</i>	াকৃতি কীরূপ?		
(ক) গলনাংক ও স্ফুটনা	ংক কম	(খ) গলনাংক ও স্ফুটনাংব	ত্য অত্য ধিক	
(গ) গলনাংক বেশি কিং	ষ্ট্ৰ স্ফুটনাংক কম	(ঘ) গলনাংক কম কিন্তু ৰ	কুটনাংক বেশি	উত্তর: খ
৩২৩। সমযোজী বন্ধনে শেয়ারকৃত ইলেকট্রন নিজের দিকে আকর্ষণ করার ক্ষমতাকে কী বলে?				
(ক) তড়িৎ ধনাত্মকতা	(খ) তড়িৎ ঋণাত্মকতা	(গ) তড়িৎ নিরপেক্ষতা	(ঘ) পোলারিটি	উত্তর: খ
৩২৩। নিচের কোন যেঁ	গিটি পানিতে অদ্রবণীয়?			
(ক) NaCl	(켁) $C_6H_{12}O_6$	(গ) $BaCl_2$	(ঘ) $MgCl_2$	উত্তর: খ

৩২৫। দুটি মৌলের মধ্যে	তড়িৎ ঋণাত্মকতার পার্থক	ন্য থাকলে তাদের শে য়ারকৃ	ত ইলেকট্ৰনগুলো কীভাবে	ৰ থাকবে?
(ক) সমান দূরত্বে থাকবে		(খ) অধিক তড়িৎ ঋণাত্মকের কাছে থাকবে		
(গ) কম ঋণাত্মকের নিকটে থাকবে		(ঘ) অধিক ধনাত্মকের নি	কটে থাকবে	উত্তর: খ
৩২৬। দুটি মৌলে তড়িৎ	ঋণাত্মকতার পার্থক্য থাক	ল যৌগটির বৈশিষ্ট্য কীরূপ	হবে?	
(ক) আয়নিক	(খ) ধাতব প্রকৃতির	(গ) পোলার	(ঘ) সমযোজী	উত্তর: গ
৩২৭। কোনটি পোলার স	মযোজী যৌগ?			
(ক) Cl ₂	(켁) H ₂	(গ) CH ₄	(ঘ) H ₂ O	উত্তর: ঘ
৩২৮। কোনটি আয়নিক।	যৌগ?			
(ক) ন্যাপথালিন	(খ) আটা	(গ) তুঁতে	(ঘ) তেল	উত্তর: গ
৩২৯। গ্রাফাইট কেন বিদু	তুৎ পরিবহন করে?			
(ক) কার্বনের অন্যতম রূগ	শভেদ বলে	(খ) ইলেকট্রন মুক্তভাবে চ	লাচল করতে পারে বলে	
(গ) অন্য মৌলের সাথে ৫	কলাস গঠন করে বলে	(ঘ) সমযোজী বন্ধনে আব	দ্ধ থাকে বলে	উত্তর: খ
৩৩০। পানি সমযোজী যেঁ	ীগ হওয়া সত্ত্বেও এতে কে	ন আয়নিক যৌগ দ্ৰবীভূত	হয়?	
(ক) যৌগটি অধাতু-অধাতু	দ্বারা <mark>গঠিত বলে</mark>	(খ) যৌগটির তড়িৎ ঋণা	য়কতা বৈশিষ্ট্য আছে বলে	
(গ) যৌগটির অণু পোলার	বলে	(ঘ) যৌগটি দুর্বল বন্ধনে ত	আবদ্ধ থাকে বলে	উত্তর: গ
৩৩১। $H_2 O$ সমযোজী যে	ীগ কিন্তু NaCl আয়নিক d	যৌগ কেন?		
(ক) তড়িৎ ঋণাত্মকতার গ	পার্থক্যের কারণে	(খ) ইলেকট্রন আসক্তি সৃ	ষ্টর কারণে	
(গ) উচ্চ আয়নীকরণ শত্তি	হর কারণে	(ঘ) তড়িৎ বিভবের পার্থনে	ক্যর কারণে	উত্তর: ক
৩৩২। কোনটির গলনাংক	ও স্ফুটনাংক অনেক বেশি	?		
(ক) NaCl	(켁) H ₂ O	(গ) NH ₃	(ঘ) CH ₄	উত্তর: ক
৩৩৩। চিনির স্ফুটনাংক বি	নর্ণয় করা বেশ কঠিন কেন	?		
(ক) কারণ এটি সমযোজী	যৌগ			
(খ) কারণ এতে ধনাত্মক	ও ঋণাত্মক প্রান্ত আছে			
(গ) কারণ গলনের পরই	এটি বাদামি থেকে কালো	রং ধারণ করে		
(ঘ) কারণ এর পোলারিটি	ধৰ্ম আছে			উত্তর: গ
৩৩৪। সমযোজী যৌগের	পরমাণুতে তড়িৎ ঋণাত্মক	তার পার্থক্য হলে কী সৃষ্টি	হয়?	
(ক) পোলারিটি	(খ) কেলাস	(গ) দ্রাব্যতা	(ঘ) পরিবাহিতা	উত্তর: ক
৩৩৫। ম্যাগনেসিয়ার সংব	কত কোনটি?			
(ক) $MgCl_2$	(켁) MgSO ₄	(গ) MgO	(ঘ) $Mg(OH)2$	উত্তর: গ

৩৩৬। কোনটি সমযোজী যৌগ? (গ) তুঁতে (ক) কাপড় কাচা সোডা (খ) লবণ (ঘ) ময়দা উত্তর: ঘ ৩৩৭। আয়নিক যৌগের গলনাংক উচ্চ কেন? (ক) এরা দানাদার বা ক্ষটিক অবস্থায় থাকে বলে (খ) আয়নসমূহের আকর্ষণ শক্তি বেশি বলে (ঘ) পরমাণু আধানযুক্ত থাকে বলে (গ) বিপরীত আধানযুক্ত আয়নের উপস্থিতি উত্তর: গ ৩৩৮। কোন যৌগটি দ্রবণে বা গলিত অবস্থায় বিদ্যুৎ পরিবহন করে? (ক) NaCl (ঘ) C₆H₁₄ (খ) CH₁ (গ) I₂ উত্তর: ক ৩৩৯। আয়নিক যৌগ কঠিন অবস্থায় বিদ্যুৎ পরিবহন করে না কেন? (ক) কঠিন অবস্থায় আয়ন সৃষ্টি হয় (খ) মুক্ত ইলেকট্রনের অনুপস্থিতির জন্য (গ) কঠিন অবস্থায় নিউক্লিয়াস চলতে পারে না (ঘ) কঠিন অবস্থায় আয়নসমূহ চলাচল করে উত্তর: খ ৩৪০। আণবিক ভরের সাথে সমযোজী যৌগের গলনাংক ও স্ফুটনাংকের সম্পর্ক কীরূপ? (ক) আণবিক ভর কমলে গলনাংক ও স্ফুটনাংক বাড়ে (খ) আণবিক ভর বাড়লে গলনাংক ও স্ফুটনাংক কমে (গ) আণবিক ভর বাড়লে গলনাংক ও স্ফুটনাংক বাড়ে (ঘ) আণবিক ভরের সাথে গলনাংক ও ক্ষুটনাংকের কোনো সম্পর্ক নেই উত্তর: গ ৩৪১। NaCl উচ্চ গলনাংক বিশিষ্ট কেন? (ক) আন্তঃআণবিক দূরত্ব অনেক বেশি (খ) বিপরীত আয়নসমূহের মধ্যে আকর্ষণ উচ্চ (গ) ভ্যানডার ওয়ালস বল বিদ্যমান (ঘ) ধাতব বন্ধন বিদ্যমান উত্তর: খ ৩৪২। চিনি কী ধরনের যৌগ? (ক) জৈব যৌগ (খ) পোলার সমযোজী যৌগ (গ) আয়নিক যৌগ (ঘ) সন্নিবেশ সমযোজী যৌগ উত্তর: খ ৩৪৩। দ্রবীভূত অবস্থায় বিদ্যুৎ পরিবহন করে কোনটি? (<u></u>**क**) *CH*₄ (খ) NaCl (ঘ) NH₂ উত্তর: খ ৩৪৪। গ্রাফাইটে প্রতিটি কার্বন পরমাণুর কয়টি মুক্ত ইলেকট্রন থাকে? (ক) 0 (খ) 1 (গ) 2 উত্তর: খ (ঘ) 3 ৩৪৫। হীরকে প্রতিটি কার্বন পরমাণু কয়টি কার্বন পরমাণুর সাথে সমযোজী বন্ধন গঠন করে? (গ) 3 (ক) 1 (খ) 2 (ঘ) 4 উত্তর: ঘ ৩৪৬। দুর্বল ভ্যানডার ওয়ালস্ শক্তি দ্বারা আকৃষ্ট থাকে কোনটি? (ক) আয়নিক যৌগ (গ) যৌগমূলক (খ) সমযোজী যৌগ (ঘ) ধাতব যৌগ উত্তর: খ

৩৪৭। সমযোজী যৌগকে বাষ্পে পরিণত করার সময় কোন বন্ধন ছিন্ন হয়? (ক) আয়নিক বন্ধন (খ) ভ্যানডার ওয়ালস বন্ধন (গ) তড়িৎযোজী বন্ধন (ঘ) পোলার বন্ধন উত্তর: খ ৩৪৮। স্ফটিক কেলাস আছে – (ক) আয়নিক যৌগের (খ) সমযোজী যৌগের (গ) ধাতব যৌগের (ঘ) অধাতব যৌগের উত্তর: খ ৩৪৯। আয়নিক যৌগের বৈশিষ্ট্য কোনটি? (ক) নিম্ন গলনাংক বিশিষ্ট (খ) এরা সকলেই পানিতে দ্রবণীয় (গ) এরা বিদ্যুৎ অপরিবাহী (ঘ) এরা জলীয় দ্রবণে আয়নিত হয় না উত্তর: খ ৩৫০। চিনি পানিতে দ্রবীভূত হয় কেন? (খ) চিনির পোলারিটি ধর্ম আছে (ক) চিনি জৈব যৌগ (গ) চিনি আয়নিক যৌগ (ঘ) চিনি অপোলার সমযোজী যৌগ উত্তর: খ ৩৫১। সমযোজী যৌগসমূহের মধ্যে ধনাত্মক ও ঋণাত্মক আয়ন থাকে না বলে— (ক) সমযোজী যৌগসমূহ বিদ্যুৎ পরিবাহী হয় (খ) সমযোজী যৌগসমূহ তরল হয় (গ) সমযোজী যৌগসমূহ কঠিন হয় (ঘ) সমযোজী যৌগসমূহ বিদ্যুৎ অপরিবাহী হয় উত্তর: ঘ ৩৫২। কোন যৌগের স্ফটিক কেলাস আছে? (ঘ) C_2H_5OH (ক) NaCl উত্তর: গ (খ) CH₄ (গ) SiO₂ ৩৫৩। কেলাস অবস্থায় সমযোজী যৌগসমূহ— (খ) নিম্ন গলনাংক ও স্ফুটনাংকবিশিষ্ট (ক) উচ্চ গলনাংক ও স্ফুটনাংকবিশিষ্ট (ঘ) নিম্ন গলনাংক ও উচ্চ স্ফুটনাংকবিশিষ্ট (গ) উচ্চ গলনাংক ও নিম্ন স্ফুটনাংকবিশিষ্ট উত্তর: ক ৩৫৪। কোন যৌগটি পোলার ধরনের? (খ) বেনজিন (ক) পেট্রোল (গ) অ্যালকোহল (ঘ) ইথার উত্তর: গ ৩৫৫। আয়নিক যৌগের আন্তঃআণবিক শক্তি বেশি হয় কেন? (খ) গলনাংক ও স্ফুটনাংক উচ্চ হওয়ায় (ক) ধনাত্মক ও ঋণাত্মক প্রান্ত থাকায় (ঘ) গ্রুপ া ও 16 এর মধ্যে আকর্ষিত হওয়ায় (গ) গলনাংক ও স্ফুটনাংক উচ্চ হওয়ায় উত্তর: ক ৩৫৬। বালি, হীরক ও গ্রাফাইট সমযোজী যৌগ হওয়া সত্ত্বেও উচ্চ গলনাংক ও স্ফুটনাংক বিশিষ্ট কেন? (ক) বিদ্যুৎ পরিবহন করতে পারে বলে (খ) তড়িৎ ঋণাত্মকতার পার্থক্য আছে বলে (গ) অণুর আকার অত্যধিক জটিল বলে (ঘ) ক্ষটিক বা কেলাস অবস্থায় থাকে বলে উত্তর: ঘ ৩৫৭। আয়নিক যৌগ সম্মন্ধে নিচের কোন বাক্যটি সঠিক? (ক) সমযোজী যৌগের চেয়ে আয়নিক যৌগের গলনাংক অধিক (খ) কঠিন আয়নিক যৌগ বিদ্যুৎ পরিবাহী

(গ) আয়নিক যৌগ সাধার	রণত অ্যালকোহলে দ্রবণীয়			
(ঘ) ইলেকট্রন দান ও গ্রঃ	হণের মাধ্যমে আয়নিক যৌ	গ সৃষ্টি হয় না		উত্তর: ক
৩৫৮। HCl যৌগে–				
i. <i>Cl</i> পরমাণু অধিক তর্তি	<u> </u>			
ii. ধনাত্মক ও ঋণাত্মক ও	প্রান্তের সৃষ্টি হয়			
iii. H পরমাণু অধিক তর্তি	<u> </u>			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: ক
৩৫৯। পানির অনুতে–				
i. পোলারিটি আছে				
ii. দুই জোড়া মুক্ত ইলেক	ন্ট্ৰন আছে			
iii. বিদ্যুৎ পরিবাহিতা আ	ছে			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
৩৬০। হীরক বিদ্যুৎ অপা	রিবাহী_			
i. মুক্ত ইলেকট্রন নেই ব	লে			
ii. কার্বন প্রমাণু চারটি	কার্বন পরমাণুর সাথে যুক্ত	হয়ে বন্ধন গঠন করে বলে		
iii. কার্বনের অন্যতম রূপ	ভিদ বলে			
নিচের কোনটি সঠিক?				
(ক) i	(খ) ii	(গ) і ও іі	(ঘ) i, ii ও iii	উত্তর: গ
৩৬১। আয়নিক যৌগ–				
i. উচ্চ গলনাংক ও স্ফুটন	নাংক বিশিষ্ট			
ii. পানিতে দ্ৰবীভূত হয়				
iii. গলিত ও দ্রবীভূত অব	বস্থা য় বিদ্যুৎ পরিবহন করে			
নিচের কোনটি সঠিক?				
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
৩৬২। সমযোজী যৌগের	_			
i. গলনাংক ও স্ফুটনাংক	উচ্চ			
ii. পানিতে দ্রবণীয়তা নেই	इ			
iii. বিদ্যুৎ পরিবাহিতা নে	₹			

(ক) i ও ii

না।

উত্তর: গ

(ঘ) i, ii ও iii

নিচের কোনটি সঠিক?

(খ) i ও iii

নিচের অনুচ্ছেদটি পড় এবং ৩৬৩-৩৬৪নং প্রশ্নের উত্তর দাও:

(গ) ii ও iii

A মৌলটি পর্যায় সারণির ১৪নং গ্রুপে অবস্থিত। এর দুইটি রূপভেদ B ও $C \cdot B-$ তে কোন মুক্ত ইলেকট্রন থাকে

৩৬৩। A মৌলটি ৫	কোন ধরনের বন্ধন গঠন ব	ন্রে?		
(ক) সমযোজী	(খ) আয়নিক	(গ) ধাতব	(ঘ) হাইড্রোজেন	উত্তর: ক
৩৬৪। ${\it Cl}_2$ ও ${\it A}$ —	বিক্রিয়ার উৎপন্ন যৌগ?			
i. অপোলার দ্রাববে	ফ দ্রবণীয় উৎপন্ন যৌগ			
ii. নিম্ন গলনাঙ্ক ও	স্ফুটনাংক বিশিষ্ট			
iii. সমযোজী যৌগ				
নিচের কোনটি সঠি	ক?			
(ক) i	(খ) і ও іі	(গ) i ও iii	(ঘ) i, ii ও iii	উত্তর: ঘ
৩৬৫। <i>B</i> মৌলটি ব	কী?			
(ক) গ্রাফাইট	(খ) হীরক	(গ) কাৰ্বন	(ঘ) সালফার	উত্তর: ক
নিচের অনুচ্ছেদটি	পড় এবং ৩৬৬ ও ৩৬৭নং	প্রশ্নের উত্তর দাও:		
করিম পরীক্ষাগারে	X ও Y যৌগের গল	নাংক ও স্ফুটনাংক নির্ণয়	। করল। <i>X</i> যৌগটি উচ্চ	গলনাংক ও
স্ফুটনাংকবিশিষ্ট। বি	চন্তু Y এর গলনাংক ও স্ফুট	টনাংক অনেক কম।		
৩৬৬। <i>X</i> যৌগের	প্রকৃতি কী?			
(ক) আয়নিক	(খ) সমযোজী	(গ) ধাতব	(ঘ) অধাতব	উত্তর: ক
৩৬৭। তড়িৎ ঋণাৰ	য়ক Y যৌগের প্রভাবে–			
i. আংশিক ধনাত্মক	পান্ত ও আংশিক ঋণাত্মক	থান্তের সৃষ্টি হয়		
ii. পোলার সমযোর্জ	নী যৌগ গঠিত হয়			
iii. বিদ্যুৎ পরিবহন	করে			
নিচের কোনটি সঠি	ক?			
(ক) i	(খ) і ও іі	(গ) і ও ііі	(ঘ) i, ii ও iii	উত্তর: খ
নিচের যৌগগুলো ল	শক্ষ কর এবং ৩৬৮ও ৩৬১	oনং প্রশ্নের উত্তর দাও:		
(ক) NaCl	(뉙) H ₂ O	(গ) Al_2O_3	(ঘ) MgO	
৩৬৮। নিচের সম	যাজী যৌগ-			
(ক) NaCl	(뉙) H ₂ O	(গ) Al_2O_3	(ঘ) MgO	উত্তর: খ
		67		

৩৬৯। খ যৌগটিতে –

- i. পোলারটি সৃষ্টি হয়
- ii. চিনি ও অ্যালকোহল দ্রবীভূত হয়
- iii. স্ফটিক কেলাস আছে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ক

নিচের চিত্রটি থেকে ৩৭০ ও ৩৭১ নং প্রশ্নের উত্তর দাও:

৩৭০। চিত্রে $\delta + \Im \delta$ – দ্বারা অণুর কোন ধর্ম প্রকাশ পায়?

- (ক) অপোলার
- (খ) পোলার
- (গ) দ্রবণীয়তা
- (ঘ) বিদ্যুৎ পরিবাহিতা উত্তর: খ

৩৭১। চিত্রের অণুতে H ও O প্রমাণুর তড়িৎ ঋণাত্মকতার মানের ক্ষেত্রে কোনটি সঠিক?

- $(\overline{\Phi}) H > 0$
- (খ) H < O (গ) O > H
- (되) 0 < H

উত্তর: গ

নিচের চিত্রদ্বয় লক্ষ কর এবং ৩৭২ ও ৩৭৩ নং প্রশ্নের উত্তর দাও:

৩৭২। চিত্রের দ্বারা কিসের পরীক্ষা নির্ণয় করা হচ্ছে?

(ক) কেলাস গঠন পরীক্ষা

- (খ) দ্রবণের বিদ্যুৎ পরিবাহিতা নির্ণয়
- (গ) পোলারিটির উপস্থিতি নির্ণয়

(ঘ) তড়িৎ ঋণাত্মকতার পরীক্ষা

উত্তর: খ

৩৭৩। ২নং পাত্রের দ্রবণ বিদ্যুৎ পরিবহন করে না কেন?

- i দ্রবণটি অপোলার বলে
- ii. দ্রবণে বিদ্যুৎ পরিবহন করে না বলে
- iii. মুক্ত ইলেকট্রন নেই বলে

নিচের কোনটি সঠিক?

(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i, ii ও iii	উত্তর: খ
৩৭৪। ধাতুসমূহ বিদ্যুৎ	ং পরিবাহিতা, নমনীয়তা, স	ঘাতসহতা ইত্যাদি বৈশিষ্ট্য	অর্জন করে কোনটির কার	:ণ?
(ক) ইলেকট্রনের আস	ক্তি	(খ) ইলেকট্রনের বর্জ	<u>,</u>	
(গ) সঞ্চরণশীল ইলেব	<u> চট্</u> রন	(ঘ) ইলেকট্রন গ্রহণ		উত্তর: গ
৩৭৫। ধাতুর ক্ষেত্রে ৫	কান বাক্যটি সঠিক?			
(ক) ধাতুর ভেতরে প	রমাণুসমূহ আয়নিক বন্ধনে	া আবদ্ধ থাকে		
(খ) ধাতুর ভেতরে পর	মাণুসমূহ সমযোজী বন্ধনে	ৰ আবদ্ধ থাকে		
(গ) ধাতুর ধনাত্মক অ	াধানসমূহ বন্ধনের সৃষ্টি ক	রে		
(ঘ) বিমুক্ত ইলেকট্রনে	র সাগরে ধনাত্মক আধান	সমূহ নিমজ্জিত থাকে		উত্তর: ঘ
৩৭৬। ধাতুসমূহ ভালে	াা বিদ্যুৎ পরিবাহী কেন?			
(ক) ধাতুসমূহ পর্যায়	নারণির বামপাশের মৌল [্]	বলে		
(খ) ধাতুতে ধনাত্মক জ	আধানবিশিষ্ট আয়ন থাকে	বলে		
(গ) ধাতুতে বিমুক্ত ইয়ে	লকট্রন থা <mark>কার</mark> কারণে			
(ঘ) ধাতুসমূহ আয়নিব	যৌগ গঠন করে বলে			উত্তর: গ
৩৭৭। ধাতব বন্ধন সৃ	ষ্টর মূল কারন–			
(ক) ইলেকট্রন আদান	-প্রদান	(খ) ইলেকট্রন শেয়ার		
(গ) মুক্ত ইলেকট্রন		(ঘ) নিউক্লিয়ার বিক্রি	য়া	উত্তর: গ
৩৭৮। লোহা কঠিন অ	বেস্থাতেও বিদ্যুৎ পরিবহন	করে কেন?		
(ক) আয়নিক বন্ধনের	জন্য	(খ) সমযোজী বন্ধনে	র জন্য	
(গ) ধাতব বন্ধনের জ	न्	(ঘ) সন্নিবেশ সমযোগ	গী বন্ধনের জন্য	উত্তর: গ
৩৭৯। ধাতুর মধ্যকার	বন্ধনকে বলে—			
(ক) আয়নিক বন্ধন	(খ) ধাতব বন্ধন	(গ) সমযোজী বন্ধন	(ঘ) অধাতব বন্ধন	উত্তর: খ
৩৮০। কোনটি ধাতব	বন্ধনের উদাহরণ?			
(ক) সোডিয়াম ক্লোরাই	উড	(খ) কপার তার		
(গ) আয়োডিন		(ঘ) কার্বন টেট্রাক্লোর	াইড	উত্তর: খ
৩৮১। ধাতব কেলাসে	মুক্তভাবে চলাফেরা করে	কোনটি?		
(ক) ইলেকট্রন	(খ) প্রোটন	(গ) প্রোটন	(ঘ) মেসন	উত্তর: ক
৩৮২। ইলেকট্রন সাগ	রের অস্তিত্ব আছে কোন ধ	রেনের বন্ধনে?		
(ক) আয়নিক	(খ) সমযোজী	(গ) ধাতব	(ঘ) হাইড্রোজেন	উত্তর: গ

(ক) i ও ii

(খ) i ও iii

৩৮৩। সঞ্চরণশীল ইলেকট্রন পাওয়া যায় কোনটিতে? (ক) NaCl (খ) Cu তার (ঘ) $MgCl_2$ (গ) HCl উত্তর: খ ৩৮৪। বিদ্যুৎ পরিবহন করে কোনটি? (ক) রাবার ব্যান্ড (খ) কাচদণ্ড (গ)কাঠের টুকরা (ঘ)কপার তার উত্তর: ঘ ৩৮৫। ইলেকট্রনসমূহ পাশাপাশি অবস্থান করে কোন ধরনের বন্ধনে? (খ) সমযোজী (গ) আয়নিক (ক) ধাতব (ঘ) হাইড্রোজেন উত্তর: ক ৩৮৬। কপার তার কোনটির জন্য বিদ্যুৎ সুপরিবাহী? (ঘ) আয়নিক যৌগ (খ) ধনাত্মক আধান (ক) মুক্ত ইলেকট্রন (গ) কঠিন উত্তর: ক ৩৮৭। একখণ্ড সোডিয়াম ধাতুতে কী ঘটে? (ক) ইলেকট্রন পরমাণুর সর্ববহিস্থ কক্ষপথ থেকে বের হয়ে সমগ্র ধাতব খণ্ডে মুক্তভাবে চলাচল করে (খ) পরমাণুসমূহ ইলেকট্রন শেয়ার করে ত্রিমাত্রিক জালকে অবস্থান করে (গ) ইলেকট্রন বর্জন করে অষ্টক পূরণের মাধ্যমে বন্ধন তৈরি করে (ঘ) ধাতব পরমাণুসমূহের মধ্যে আয়নিক বন্ধন সৃষ্টি হয় উত্তর: ক ৩৮৮। ধাতব পরমাণুসমূহ যে আকর্ষণ বল দ্বারা পরস্পরের সাথে আবদ্ধ থাকে তাকে কী বলে? (খ) হাইড্রোজেন বন্ধন (গ) সমযোজী বন্ধন (ঘ) ধাতব বন্ধন (ক) আয়নিক বন্ধন উত্তর: ঘ ৩৮৯। ধাতব বন্ধনের ক্ষে<u>ত্রে</u> i. মুক্ত ইলেকট্রন থাকে ii. আয়নগুলো ত্রিমাত্রিক জালকে অবস্থান করে iii. বিদ্যুৎ পরিবাহিতা, নমনীয়তা, ঘাতসহতা প্রভৃতি বৈশিষ্ট্যের সৃষ্টি হয় নিচের কোনটি সঠিক? (খ) i ও iii (ক) i ও ii (ঘ) i, ii ও iii (গ) ii ও iii উত্তর: ঘ ৩৯০। একখণ্ড সোডিয়াম ধাতুতে– i. ইলেকট্রনসমূহ মুক্তভাবে চলাচল করতে পারে ii. বিমুক্ত ইলেকট্রন কোনো নির্দিষ্ট পরমাণুর অধীনে থাকে না iii. আয়নসমূহ ইলেকট্রন সাগরে নিমজ্জিত থাকে নিচের কোনটি সঠিক?

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

🦏 সৃজনশীল (CQ)

প্রশ্ন নং: ১।

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

X, Y এবং Z এ তিনটি মৌলের পারমাণবিক সংখ্যা যথাক্রমে 9, 19 এবং 16।

- ক) নিঃসরণ কী?
- খ) প্রোপেন ও বিউটেন এর মধ্যে কোনটির ব্যাপনের হার বেশি এবং কেন?
- গ) X ও Y, X ও Z এবং Y ও Z মৌল জোড় তিনটির মধ্যে কী কী ধরনের বন্ধন গঠিত হয়? বন্ধনগুলোর গঠন দেখাও।
- ঘ) উদ্দীপকের মৌলগুলো দ্বারা গঠিত যৌগগুলোর তুলনামূলক পোলারিটি, গলনাঙ্ক, তড়িৎ পরিবাহিতা ও পানিতে দ্রাব্যতা ব্যাখ্যা কর।

সমাধান:

- ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- খ) প্রোপেন ও বিউটেনের মধ্যে প্রোপেনের ব্যাপনের হার বেশি।

কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় বস্তুর স্বতঃস্কৃত ও সমভাবে পরিব্যাপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে। যে বস্তুর ঘনত্ব বা আণবিক ভর যত কম তার ব্যাপন হার তত বেশি। প্রোপেন (C_3H_8) ও বিউটেন (C_4H_{10}) যথাক্রমে 3 ও 4 কার্বনবিশিষ্ট হাইড্রোকার্বন এবং এদের আণবিক ভর যথাক্রমে 44 ও 58। যেহেতু বিউটেনের আণবিক ভর বেশি কাজেই এর ব্যাপনের হার কম এবং প্রোপেনের আণবিক ভর কম বলে এর ব্যাপন হার বেশি।

গ) X ও Y মৌলদ্বয় যথাক্রমে ফ্লোরিন (F) ও পটাসিয়াম (K)। এদের মধ্যে আয়নিক বন্ধন গঠিত হয়। $_9F$ $(1s^22s^22p^5)$ + e^- = F $(1s^22s^22p^6)$ $_{19}K$ $(1s^22s^22p^63s^23p^64s^1)$ - e^- = K $^+$ $(1s^22s^22p^63s^23p^6)$ K $^+$ F^- = KF

X ও Z মৌলদ্বয় যথাক্রমে ফ্লোরিন ও সালফার। এদের মধ্যে সমযোজী বন্ধন গঠিত হয়। SF_6 যৌগ গঠনকালে S পরমাণুর বহিস্থ স্তরে 12টি ইলেকট্রন অর্জিত হয়। অর্থাৎ, অষ্টক সমপ্রসারণ ঘটে। একইভাবে, S পরমাণু অষ্টক সমপ্রসারণের মাধ্যমে SF_2 ও SF_4 যৌগ গঠন করে।

S এর চারিদিকে	S এর চারিদিকে	S এর চারিদিকে
৪ টি ইলেকট্রন	10 টি ইলেকট্রন	12 টি ইলেকট্রন

X ও Y মৌলদ্বয় যথাক্রমে K ও S। এদের মধ্যে সর্ববহিস্থ স্তরের ইলেকট্রন আদান-প্রদানের মাধ্যমে আয়নিক বন্ধন গঠিত হয়।

$$_{19}K (1s^22s^22p^63s^23p^64s^1) - e^- = K^+ (1s^22s^22p^63s^23p^6)$$

 $_{16}S (1s^22s^22p^63s^23p^4) + 2e^- = S^2^- (1s^22s^22p^63s^23p^6)$

- ছ) উদ্দীপকের মৌলগুলো দ্বারা সৃষ্ট যৌগগুলো হলো KF; SF_2 , SF_4 , SF_6 ; K_2S । নিচে যৌগগুলোর তুলনামূলক পোলারিটি, গলনাঙ্ক, তড়িৎ পরিবাহিতা ও পানিতে দ্রাব্যতা ব্যাখ্যা করা হলো:
- 1. পোলারিটি: KF যৌগটির মৌলগুলোর তড়িৎ ঋণাত্মকতার মানের পার্থক্য অত্যন্ত বেশি, তাই যৌগটি পোলার। একই কারণে K_2S যৌগটিও পোলার। অন্যদিকে, S এবং F এর তড়িৎ ঋণাত্মকতার মান প্রায় কাছাকাছি হওয়ায় SF_2 , SF_4 , SF_6 যৌগসমূহ অপোলার।
- 2. গলনাংক: KF এবং K_2S আয়নিক যৌগদ্বয়ের গলনাংক বেশি। অন্যদিকে, সমযোজী যৌগ SF_6 এর গলনাঙ্ক অত্যন্ত কম।
- 3. তড়িৎ পরিবাহিতা: KF এবং K_2S তড়িৎ পরিবাহী। কারণ যৌগদ্বয় আয়ন দ্বারা গঠিত। অন্যদিকে, SF_2 , SF_4 , SF_6 যৌগসমূহ আয়ন দ্বারা গঠিত না হওয়ায় তড়িৎ পরিবাহী নয়।
- 4. পানিতে দ্রাব্যতা: KF এবং K_2S যৌগদ্বয় আয়নিক হওয়ায় পোলার দ্রাবক যেমন পানিতে দ্রবণীয়। অন্যদিকে SF_2, SF_4, SF_6 যৌগসমূহ সমযোজী বলে পানিতে দ্রবীভূত হয় না, কিন্তু জৈব দ্রাবকে দ্রবণীয়।

প্রশ্ন নং: ২।

নিচের পর্যায় সারণির ছকটি লক্ষ কর এবং প্রশ্নগুলোর উত্তর দাও:

- (i) $Na + Cl_2 \rightarrow NaCl$; (ii) $N_2 + 3H_2 \rightarrow 2NH_3$
- ক) অ্যারোমেটিক হাইড্রোকার্বন কাকে বলে?
- খ) মোল কাকে বলে? 20 গ্রাম অক্সিজেনে কতটি পরমাণু আছে নির্ণয় কর।
- গ) উদ্দীপকের (ii) নং বিক্রিয়ার উৎপাদ যে বন্ধন দ্বারা গঠিত তার গঠন প্রক্রিয়া আলোচনা কর।
- ঘ) উদ্দীপকের (i) নং বিক্রিয়ার ১ম বিক্রিয়ক এবং উৎপাদ এর কোনটি কঠিন অবস্থায় বিদ্যুৎ পরিবহন করে এবং কোনটি করে না কেন?

সমাধান:

- ক) যেসব হাইড্রোকার্বনে এক বা একাধিক বেনজিন চক্র বিদ্যমান থাকে, সেগুলোকে অ্যারোমেটিক হাইড্রোকার্বন বলে।
- খ) গ্রামে প্রকাশিত আণবিক ভরকে মোল বলে। আমরা জানি, 16g অক্সিজেনে পরমাণু আছে 6.02×10^{23} টি

∴ 1g " "
$$\frac{6.02 \times 10^{23}}{16}$$
 $\frac{1}{16}$ $\frac{1}{16}$ ∴ 20g " " $\frac{6.02 \times 10^{23} \times 20}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$

গ) উদ্দীপকের (ii) নং বিক্রিয়ায় উৎপাদ হলো অ্যামোনিয়া যা সমযোজী বন্ধন দ্বারা গঠিত। এতে একটি নাইট্রোজেন পরমাণু তিনটি হাইড্রোজেন পরমাণুর সাথে বন্ধন তৈরি করে।

একটি নাইট্রোজেন পরমাণুর সর্ববহিস্থ স্তরে থাকে 5টি ইলেকট্রন। অপরদিকে, একটি হাইড্রোজেন পরমাণুর সর্ববহিস্থ স্তরে থাকে 1টি ইলেকট্রন। কাজেই তিনটি হাইড্রোজেন পরমাণু, একটি নাইট্রোজেন পরমাণুর সাথে ইলেকট্রন শেয়ার করে। এতে নাইট্রোজেনের সর্ববহিস্থ স্তরে ৪টি ইলেকট্রন তথা নিদ্ধিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জিত হয়। অপরদিকে, প্রতিটি হাইড্রোজেন পরমাণু সর্ববহিস্থ স্তরে 2টি ইলেকট্রন, তথা নিদ্ধিয় গ্যাস হিলিয়ামের ইলেকট্রন বিন্যাস অর্জন করে। এরপরও নাইট্রোজেনের সর্ববহিস্থ স্তরে দুটি ইলেকট্রন বন্ধন ছাড়াই অবস্থান করে, কিন্তু বহিস্থ স্তরে অস্টক পূর্ণ হয়ে যাওয়ার কারণে আর বিক্রিয়া হয় না, অর্থাৎ অ্যামোনিয়া অণু সুস্থিত হয়।

ष) উদ্দীপকের (i) নং বিক্রিয়ার ১ম বিক্রিয়ক হলো সোডিয়াম, যা একটি ধাতু। অপরদিকে, উৎপাদ হলো সোডিয়াম ক্লোরাইড, যা একটি লবণ তথা নিরপেক্ষ একটি যৌগ।

আমরা জানি, সোডিয়ামসহ অন্যান্য ধাতুর ক্ষেত্রে মুক্ত ইলেকট্রন থাকে। ধাতুর পরমাণুসমূহ মুক্ত অবস্থায় থাকে না, বরং পরস্পরের সাথে আকর্ষণের মাধ্যমে যুক্ত হয়ে খণ্ড আকারে থাকে। এসব মুক্ত ইলেকট্রন একটি পরমাণুর অধীনে থাকে না, বরং তা পরমাণুর ইলেকট্রন শক্তিস্তর থেকে বের হয়ে সমগ্র ধাতুখণ্ডে চলাচল করে। এ মুক্ত ইলেকট্রন যেহেতু এক জায়গা থেকে আরেক জায়গায় চলাচল করতে পারে এবং ইলেকট্রনের চলাচল মানেই বিদ্যুৎ প্রবাহ, কাজেই ধাতু তথা সোডিয়াম কঠিন অবস্থায় বিদ্যুৎ পরিবহন করতে পারে।

কিন্তু সোডিয়াম ক্লোরাইডের ক্ষেত্রে, সোডিয়ামের সর্ববহিস্থ স্তরে থাকে একটি ইলেকট্রন, যা সে ত্যাগ করে

ধনাত্মক আয়নে পরিণত হয়। ক্লোরিনের সর্ববহিস্থ স্তরে থাকে সাতটি ইলেকট্রন যার সাথে আরেকটি ইলেকট্রন যুক্ত হলে অষ্টক পূর্ণ হয়। সুতরাং সোডিয়ামের ত্যাগকৃত ইলেকট্রন গ্রহণ করে ক্লোরিন ঋণাত্মক আয়নে পরিণত হয় এবং উভয়ের মধ্যে আয়নিক বন্ধন গঠনের মাধ্যমে সোডিয়াম ক্লোরাইড যৌগ গঠিত হয়। কঠিন অবস্থায় এই দান এবং গ্রহণকৃত ইলেকট্রনগুলো মুক্ত অবস্থায় থাকে না বলে সোডিয়াম ক্লোরাইড কঠিন অবস্থায় বিদ্যুৎ পরিবহন করতে পারেনা। কিন্তু দ্রবীভূত অবস্থায় যৌগটি আবার আয়নে বিভক্ত হয় বলে বিদ্যুৎ পরিবহন করতে পারে।

সুতরাং, (i) নং বিক্রিয়ার বিক্রিয়কে মুক্ত ইলেকট্রন থাকায় কঠিন অবস্থায় বিদ্যুৎ পরিবহন করতে পারে, কিন্তু উৎপাদ তা পারে না।

প্রশ্ন নং: ৩।

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

- ক) 'ক' চিত্রের মৌলটির নাম কী?
- খ) 'ক' চিত্রের মৌলটির সঙ্গে পারমাণবিক সংখ্যা 17 বিশিষ্ট মৌলটি কোন ধরনের বন্ধন গঠন করে? ব্যাখ্যা কর।
- গ) 'ক' চিত্রের মৌলের সঙ্গে 'খ' চিত্রের মৌলের বন্ধন গঠন প্রক্রিয়া ডায়াগ্রামের সাহায্যে দেখাও।
- ঘ) 'খ' চিত্রের মৌলটির সঙ্গে পারমাণবিক সংখ্যা 14 বিশিষ্ট মৌলটি যে ধরনের বন্ধন গঠন করে তার প্রকৃতি বিশ্লেষণ কর।

সমাধান:

- **ক)** 'ক' চিত্রের মৌলটির নাম কার্বন।
- খ) 'ক' চিত্রের মৌলটির সঙ্গে পারমাণবিক সংখ্যা 17 বিশিষ্ট মৌলটি সমযোজী বন্ধন গঠন করে। 'ক' হলো C এবং 17 পারমাণবিক সংখ্যার মৌলটি হলো Cl। উভয়েই অধাতু এবং CCl_4 যৌগ গঠন করে। কার্বন পরমাণুর বহিঃস্তরে 4টি ইলেকট্রন রয়েছে যা 4টি ক্লোরিন পরমাণুর সাথে শেয়ার করে কার্বন টেট্রাক্লোরাইড

নামক সমযোজী যৌগ গঠিত হয়।

গ) উদ্দীপকে উল্লিখিত 'ক' চিত্রের মৌলটি হলো কার্বন এবং 'খ' চিত্রের মৌলটি হলো অক্সিজেন।

কার্বন এবং অক্সিজেন এর স্বমন্বয়ে কার্বন ডাইঅক্সাইড উৎপন্ন হয়। কার্বন ডাইঅক্সাইডের একটি অণু যা দুটি অক্সিজেন ও একটি কার্বন

পরমাণু নিয়ে গঠিত। কার্বনের পারমাণবিক সংখ্যা 6 এর ইলেকট্রন বিন্যাস 2, 4 এবং অক্সিজেনের পারমাণবিক সংখ্যা ৪ এর ইলেকট্রন বিন্যাস 2, 6।

প্রতিটি কার্বন প্রমাণুর বহিস্থ স্তরের চারটি ইলেকট্রন দুটি অক্সিজেন প্রমাণুর প্রতিটিতে দুটি করে ইলেকট্রন শেয়ারে অংশ নেয় এবং CO_2 এর অণু গঠন করে।

$$0 = C = 0$$

O=C=Oচিত্র: ${\it CO}_2$ এর বন্ধন গঠন

ঘ) উদ্দীপকে উল্লিখিত 'খ' চিত্রের মৌলটি হলো অক্সিজেন এবং 14 পারমাণবিক সংখ্যা বিশিষ্ট মৌলটি হলো সিলিকন।

সিলিকন এবং অক্সিজেন সমযোজী বন্ধনে আবদ্ধ হয়ে সিলিকন ডাইঅক্সাইড (SiO₂) গঠন করে।

সিলিকন পরমাণুর বহিস্কস্তরে চারটি ইলেকট্রন এবং অক্সিজেন পরমাণুর বহিস্কস্তরে ছয়টি ইলেকট্রন রয়েছে। প্রতিটি সিলিকন প্রমাণু বহিস্থন্তরের চারটি ইলেকট্রন দুটি অক্সিজেন প্রমাণুর বহিস্থন্তরের চারটি বিজোড় ইলেকট্রনের সাথে শেয়ার করে সমযোজী বন্ধন গঠন করে।

চিত্র: SiO_2 অণুর গঠন

কিন্তু সিলিকন ডাইঅক্সাইড এর অণুসমূহ ক্ষটিক কেলাস গঠন করে। প্রতিটি সিলিকন পরমাণু অপর চারটি অক্সিজেন পরমাণুর সাথে এবং প্রতিটি অক্সিজেন পরমাণু অপর দুটি সিলিকন পরমাণুর সাথে সমযোজী বন্ধনে আবদ্ধ হয়ে বিরাট কেলাসাকার অণু তৈরি করে।

চিত্র: বালির (SiO₂) কেলাস

সুতরাং, SiO_2 এর এই বিশাল কেলাস আকৃতির যৌগটি হলো কঠিন পদার্থ। অর্থাৎ, 'খ' চিত্রের মৌলটির সঙ্গে পারমাণবিক সংখ্যা 14 বিশিষ্ট মৌলটি যে যৌগ গঠন করে সেটি মূলত কঠিন পদার্থ।

প্রশ্ন নং: 8।

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

যৌগের সংকেত দ্বারা যৌগের অণুতে পরমাণু বা আয়নের অনুপাত প্রকাশ করে। যৌগমূলক হচ্ছে একাধিক মৌলের একাধিক পরমাণুর স্বমন্বয়ে গঠিত একটি পরমাণুগুচ্ছ যা একটি আয়নের ন্যায় আচরণ করে।

- ক) 'একটি ধনাত্মক যৌগমূলকের নাম **লে**খ।
- খ) Al একটি ত্রিযোজী ধাতু। এর সালফেট এবং ফসফেটের সংকেত লেখ।
- গ) পাঠ্যপুস্তকের আলোকে দশটি যৌগের সংকেত লিখে যৌগমূলক চিহ্নিত করে উদ্দীপকের বক্তব্য ব্যাখ্যা কর।
- ঘ) পাঠ্যপুস্তকের আলোকে উদ্দীপকে বর্ণিত যৌগ এবং যৌগমূলকের মধ্যে সম্পর্ক স্থাপন কর।

সমাধান:

- ক) একটি ধনাত্মক যৌগমূলকের নাম অ্যামোনিয়াম NH।
- খ) অ্যালুমিনিয়াম একটি ত্রিযোজী ধাতু। এর সালফেটের সংকেত $Al_2(SO_4)_3$ এবং ফসফেটের সংকেত $AlPO_4$ ।

গ)

ক্র. নং	যৌগের নাম	যৌগের সংকেত	যৌগমূলক		
1.	ম্যাগনেসিয়াম কার্বনেট	$MgCO_3$	СО		
2.	সোডিয়াম সালফেট	Na_2SO_4	SO		
3.	ক্যালসিয়াম ফসফেট	$Ca_3(PO_4)_2$	PO		
4.	সিলভার নাইট্রেট	$AgNO_3$	NO		
5.	পটাসিয়াম হাইড্রোক্সাইড	КОН	OH-		
6.	ফসফোনিয়াম সালফাইট	(PH ₄) ₂ SO ₃	SO SO		
7.	অ্যামোনিয়াম হাইড্রোক্সাইড	NH_4OH	OH-		
8.	অ্যালুমিনিয়াম নাইট্রাইট	Al(NO ₂) ₃	NO		
9.	লিথিয়াম কার্বোনেট	Li ₂ CO ₃	СО		
10.	সোডিয়াম ফসফেট	Na_3PO_4	PO		

ছক থেকে দেখা যাচ্ছে যে, যৌগসমূহের সংকেতে উপাদান মৌল ও পরমাণুসমূহের যোজনী দ্বারা তাদের অনুপাত প্রকাশিত হয়েছে। কিন্তু উপাদান যৌগমূলকসমূহ একাধিক পরমাণুর স্বমন্বয় হলেও তারা কোনো যৌগের মতো নয়। তারা একটি একক পরমাণু বা আয়নের মতো অন্য মৌল বা যৌগমূলকের সাথে মিলিত হয়ে বন্ধনে আবদ্ধ হয়ে যৌগ গঠন করেছে। অতএব, উদ্দীপকের বক্তব্য বিশ্লেষণ করতে প্রদত্ত ছকটি যথার্থ।

ষ) উদ্দীপকে বর্ণিত যৌগ হলো দুই বা ততোধিক পরমাণুর স্বমন্বয়ে গঠিত সম্পূর্ণ ভিন্নধর্মবিশিষ্ট পদার্থ যা স্বাধীনভাবে অবস্থান করে। অপরদিকে, যৌগমূলক হলো এমন একটি গ্রুপ যা একটি মাত্র পরমাণুর ন্যায় আচরণ করে। যৌগসমূহ সাধারণত চার্জ নিরপেক্ষ হলেও যৌগমূলকগুলো ধনাত্মক বা ঋণাত্মক চার্জ পরিবহন করে। যৌগের সংকেতে মৌল এবং যৌগমূলকের যোজনী ব্যবহৃত হয় কিন্তু সার্বিকভাবে যৌগের কোনো যোজনী থাকে না। কিন্তু যৌগমূলকের যোজনী থাকে। যৌগ এবং যৌগমূলক উভয়ই একাধিক পরমাণুগুচ্ছ হওয়া সত্ত্বেও যৌগ স্বাধীনভাবে অবস্থান করে কিন্তু যৌগমূলক সক্রিয়ভাবে যৌগ গঠনে অংশ নেয়।
সুতরাং, যৌগমূলকগুলো যৌগের অংশ হলেও যৌগ যৌগমূলকের অংশ হতে পারে না।

যৌগসমূহ রাসায়নিক বিক্রিয়ায় পরিবর্তিত হয়ে নতুন যৌগে পরিবর্তিত হয়। পক্ষান্তরে, যৌগমূলকসমূহ

রাসায়নিক বিক্রিয়ায় বিক্রিয়ক এবং উৎপাদ উভয় যৌগের ক্ষেত্রে সমান থাকে।

সংশ্লিষ্ট রাসায়নিক বিক্রিয়াগুলো নিম্নরূপ-

$$NH_4Cl + AgNO_3 \rightarrow AgCl + NH_4NO_3$$

 $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$

প্রশ্ন নং: ৫। চিত্রটি দেখ এবং প্রশ্নগুলোর উত্তর দাও:

মৌল	পর্যায়	গ্ৰুপ			
А	4	1A			

- ক) কার্বন পার্টিক্যাল কাকে বলে?
- খ) পানির অণুর আকৃতি কৌণিক কিন্তু কার্বন ডাইঅক্সাইড অণুর আকৃতি সরলরৈখিক কেন?
- গ) 'মৌলের সক্রিয়তা ও নিষ্ক্রিয়তা নির্ধারণে ইলেকট্রন বিন্যাসের ভূমিকা আলোচনা কর।
- ঘ) উল্লিখিত মৌলটির ইলেকট্রন বিন্যাসে স্থারাভাবিক নিয়মের ব্যতিক্রম ঘটে কেন?

সমাধান:

- ক) কার্বনের ক্ষুদ্র ক্ষুদ্র কণাকে কার্বন পার্টিক্যাল বলে।
- খ) পানির অণুতে অক্সিজেনে পরমাণুর চারদিকে হাইড্রোজেন-অক্সিজেন বন্ধন সৃষ্টিকারী দুই জোড়া বন্ধন জোড় ইলেকট্রন এবং দুটি মুক্ত জোড় ইলেকট্রন আছে। এই চার জোড়া ইলেকট্রন অক্সিজেন পরমাণুর চারদিকে চতুস্তলকীয়ভাবে অবস্থান নেয়। দুটি মুক্তজোড় ইলেকট্রন বন্ধন সৃষ্টি করছে না বিধায় এদের বিকর্ষণে পানির অণুর আকৃতি কৌণিক।

কিন্তু CO_2 এ কার্বন ও অক্সিজেন পরমাণুদ্বয়ের প্রতিটি পরস্পরের সাথে দ্বিবন্ধন দ্বারা যুক্ত। ফলে কার্বন পরমাণুর চারদিকে দুই জোড়া ইলেকট্রন বিদ্যমান। তাই এই অণুর আকৃতি সরলরৈখিক।

গ) মৌলের সক্রিয়তা ও নিচ্ছিয়তা নির্ধারণে ইলেকট্রন বিন্যাসের ভূমিকা অনস্বীকার্য। ইলেকট্রন বিন্যাসের উপর ভিত্তি করে নির্ধারিত হয় কোনো মৌল কতটা সক্রিয় বা নিচ্ছিয়। উদাহরণস্বরূপ Na এর ক্ষেত্রে দেখা যায় এর সর্ববহিস্থ স্তরে 1টি ইলেকট্রন বিদ্যমান থাকে। কারণ এর ইলেকট্রন বিন্যাস 2, 8, 1 সে কারণে ইহা গ্রুপ 1 এর সদস্য এবং Na তার সর্ববহিস্থ স্তরের ইলেকট্রনটি সহজেই ত্যাগ করে নিচ্ছিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করতে পারে। সুতরাং গ্রুপ 1 এর মৌলগুলো অধিক তড়িৎ ধনাত্মক মৌল,

আবার Cl পরমাণুর ক্ষেত্রে দেখা যায় এর সর্ববহিস্থ স্তরে 7টি ইলেকট্রন বিদ্যমান। কারণ Cl পরমাণু 17 নং গ্রুপে অবস্থিত এবং ইহা অষ্টক পূর্ণ করার জন্য 1টি ইলেকট্রন গ্রহণ করে, তাই গ্রুপ 17 এর মৌলগুলো অধিক তিড়িং ঋণাত্মক মৌল।

গ্রুপ-18 বা শূন্য গ্রুপের মৌল অর্থাৎ নিষ্ক্রিয় গ্যাসসমূহের ইলেকট্রন বিন্যাস থেকে দেখা যায় এরা ইলেকট্রন দ্বারা পূর্ণ থাকে। অর্থাৎ এদের সর্ববহিস্থ স্তরে ২টি বা ৮টি ইলেকট্রন থাকে। যার ফলে এই মৌলগুলো রাসায়নিকভাবে নিষ্ক্রিয় অবস্থায় থাকে।

তাই বলা যায়, মৌলের সক্রিয়তা ও নিষ্ক্রিয়তা নির্ধারণে ইলেকট্রন বিন্যাস জরুরি।

ছ) উদ্দীপকের মৌলটি হলো পটাসিয়াম $(K^{\overline{Q}})$ । এর ইলেকট্রন বিন্যাস-

 $_{19}K$ $1s^22s^22p^63s^23p^63d^{\circ}4s^1$

অর্থাৎ $2n^2$ সূত্রানুযায়ী K এর ৩য় স্তরে 9টি ইলেকট্রন থাকার কথা ছিল। কিন্তু তা না হয়ে ৩য় স্তরে ৪টি এবং চতুর্থ স্তরে 1টি ইলেকট্রন বিদ্যমান থাকে।

কারণ, নিম্ন উপশক্তিন্তরে ইলেকট্রন আগে প্রবেশ করে তারপর পর্যায়ক্রমে উচ্চ উপশক্তিন্তরে ইলেকট্রন প্রবেশ করে। এক্ষেত্রে 3d ও 4s উপন্তরের মধ্যে 3d উপন্তরের শক্তি 4s উপন্তরের শক্তি অপেক্ষা বেশি। তাই K এর 19 তম ইলেকট্রনটি উচ্চ শক্তির উপন্তর 3d তে না গিয়ে নিম্ন উপন্তর 4s-এ গমন করে।

উপরিউক্ত কারণেই উল্লিখিত মৌলটির ইলেকট্রন বিন্যাসে স্বাভাবিক নিয়মের ব্যতিক্রম ঘটে।

প্রশ্ন নং: ७।

চিত্রটি দেখ এবং প্রশ্নগুলোর উত্তর দাও:

কপার, অ্যালুমিনিয়াম, সিলভার, ক্লোরিন, অ্যামোনিয়াম, ফসফেট, হাইড্রোক্সাইড ইত্যাদি মৌল এবং যৌগমূলকের নাম।

- ক) ক্যারামেল কাকে বলে?
- খ) পানি একটি সমযোজী যৌগ হলেও আয়নিক যৌগসমূহ এতে দ্রবীভূত হয় কেন?
- গ) উদ্দীপকের মৌলগুলোর মধ্যে কোনটি ধনাত্মক যৌগমূলকের সাথে যৌগ গঠন করবে তার কারণ ব্যাখ্যা কর।
- ঘ) উদ্দীপকে উল্লিখিত ১ম, ২য়, ৪র্থ ও ৫ম মৌল বা যৌগমূলকের স্বমন্বয়ে গঠিত যৌগসমূহের সংকেত থেকে ঋণাত্মক বা ধনাত্মক মৌল বা মূলকের অবস্থান যৌগের কোন পাশে হবে তা পর্যালোচনা কর।

সমাধান:

क) ििनत भलानत भत वामाि थारक काला तह धात्र कतारक कातारम वरल।

খ) পোলারিটির কারণে আয়নিক যৌগসমূহ সমযোজী যৌগ পানিতে দ্রবীভূত হয়।

আমরা জানি, পানি (H_2O) একটি পোলার সমযোজী যৌগ। এর H ও O মৌল দুটির মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য থাকার কারণে অক্সিজেনে আংশিক ঋণাত্মক ও হাইড্রোজেনে আংশিক ধনাত্মক প্রান্তের সৃষ্টি হয়। আবার আয়নিক যৌগেও ধনাত্মক ও ঋণাত্মক প্রান্ত থাকে। আয়নিক যৌগের ধনাত্মক প্রান্ত পানির ঋণাত্মক অক্সিজেন প্রান্ত দ্বারা আকর্ষিত হয় এবং আয়নিক যৌগের ঋণাত্মক প্রান্ত পানির ধনাত্মক হাইড্রোজেন প্রান্ত দ্বারা আকর্ষিত হয়। এ কারণেই আয়নিক যৌগসমূহ সমযোজী যৌগ পানিতে দ্রবীভূত হয়।

গ) উদ্দীপকের মৌলগুলোর মধ্যে ক্লোরিন (Cl), ধনাত্মক যৌগমূলক অ্যামোনিয়াম (NH) এর সাথে বিক্রিয়া করে অ্যামোনিয়াম ক্লোরাইড $(NH_{{\scriptscriptstyle \Delta}}Cl)$ যৌগ গঠন করবে।

ক্লোরিনের পারমাণবিক সংখ্যা 17। এর ইলেকট্রন বিন্যাস Cl(17) 2, 8, 7 অর্থাৎ নিকটস্থ নিদ্ধিয় গ্যাস Ar (18) এর ইলেকট্রন বিন্যাস 2,8,8 এর মতো স্থিতিশীল ইলেকট্রন বিন্যাস অর্জনের জন্য তার একটি ইলেকট্রন প্রয়োজন হয়। তাই সে যখন বিক্রিয়ায় অংশগ্রহণ করে তখন একটি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়। একযোজী বলে তার আয়ন হয় ক্লোরাইড আয়ন (Cl^-) । এই আয়ন পরবর্তীতে ধনাত্মক যৌগমূলক $[NH_4]^+$ এর সাথে বিক্রিয়া করে অ্যামোনিয়াম ক্লোরাইড যৌগ গঠন করে। অর্থাৎ $NH_4^+ + Cl^- \to NH_4Cl$.

- **ঘ)** উদ্দীপকে উল্লিখিত ১ম, ২য়, ৪র্থ ও ৫ম মৌল বা মূলকের প্রতীক ও সংকেত হচ্ছে Cu, Al, Cl ও NH_4 । এরা নিজেদের সাথে মিলিত হয়ে তিনটি যৌগ উৎপন্ন করে।
- i. $CuCl_2$ ii. $AlCl_3$ iii. NH_4Cl সাধারণত যৌগ গঠনের সময় ধাতব অংশটি একটি অধাতব অংশ বা অধাতুর ন্যায় ক্রিয়াশীল একটি যৌগমূলকের সাথে যুক্ত হয়। ধাতব পরমাণুগুলো ইলেকট্রন দান করে ধনাত্মক আয়নে এবং অধাতব পরমাণুগুলো ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়। আর, এই ধনাত্মক এবং ঋণাত্মক অংশ নিয়েই যৌগ গঠিত হয়। সাধারণত যৌগের নামে ধনাত্মক অংশ বামদিকে এবং ঋণাত্মক অংশ ডানদিকে লেখা হয়।
- $cucl_2$ এর ক্ষেত্রে cu মৌল ধনাত্মক অংশ গঠন করে এবং cl মৌল ঋণাত্মক অংশ গঠন করে। তাই যৌগের সংকেতে cu বামদিকে এবং cl ডানদিকে অবস্থান করে।
- ii. $AlCl_3$ এর ক্ষেত্রে Al ধনাত্মক অংশ এবং Cl ঋণাত্মক অংশ গঠন করে বলে Al মৌলটি যৌগের বামদিকে এবং Cl মৌলটি ডান্দিকে অবস্থান করবে।
- iii. অনুরূপভাবে, NH_4Cl -এ ধনাত্মক NH_4^{-1} প্রথমে এবং ঋণাত্মক Cl^- শেষে অবস্থান করে।

প্রশ্ন নং: १।

চিত্রটি দেখ এবং প্রশ্নগুলোর উত্তর দাও:

পৃথিবীর কোনো দেশের খনিতে পাওয়া যাচ্ছে গ্রাফাইট, কোনো স্থানে হীরক। অথচ এগুলো একই মৌলের রূপভেদ।

- ক) কার্বনের রূপভেদ কী কী?
- খ) হীরক ও গ্রাফাইট দুটি একই মৌলের রূপভেদ হলেও এদের মধ্যে বিদ্যুৎ পরিবাহিতার পার্থক্য থাকে কেন?
- গ) রূপভেদগুলোর কোনটি বিদ্যুৎ পরিবহন করে এবং কেন?
- ঘ) উদ্দীপকের পদার্থ দুটির মধ্যে কোনটি তাপ পরিবাহী এবং মসৃণকারক ব্যাখ্যা কর।

সমাধান:

- **ক)** গ্রাফাইট এবং হীরক কার্বনের দুটি রূপভেদ।
- খ) বন্ধন গঠনের পার্থক্যের কারণে হীরক ও গ্রাফাইটের মধ্যে বিদ্যুৎ পরিবাহিতার পার্থক্য থাকে। কারণ, হীরক ও গ্রাফাইট উভয়ই একই মৌল কার্বনের রূপভেদ। কিন্তু এদের অণুর মধ্যে পরমাণুসমূহের বন্ধন গঠনের পার্থক্য রয়েছে। আমরা জানি, বিদ্যুৎ পরিবহনের জন্য ইলেকট্রনের চলাচল প্রয়োজন। অতএব, হীরক বিদ্যুৎ পরিবহন করতে পারে না। পক্ষান্তরে, গ্রাফাইটে কার্বন পরমাণুর একটি যোজন ইলেকট্রন মুক্ত অবস্থায় থাকে বলে এটি বিদ্যুৎ পরিবহন করতে পারে।
- গ) রূপভেদগুলোর মধ্যে গ্রাফাইট বিদ্যুৎ পরিবহন করে।
- গ্রাফাইটে কার্বন পরমাণুসমূহ সমতলীয় স্তর আকারে সজ্জিত। প্রতিটি কার্বন পরমাণু অপর তিনটি কার্বন পরমাণুর সাথে সমযোজী বন্ধনে যুক্ত থাকে।

এভাবে অসংখ্য কার্বন পরমাণু যুক্ত হয়ে জালের মতো একটি সমতলীয় স্তর সৃষ্টি করে। এসব C-C বন্ধন সৃষ্টির পরও প্রতিটি কার্বন পরমাণুতে একটি অসংকরিত $2p_z^1$ অরবিটাল অব্যবহৃত থেকে যায়, যেখানে একটি অযুগ্ম ইলেকট্রন থাকে। এ অরবিটালসমূহ পরস্পরের সাথে যুক্ত হয়ে এমন অবস্থার সৃষ্টি করে যাতে তাদের ইলেকট্রনগুলো সমগ্র জালিতে অর্থাৎ অণুতে সঞ্চরণ করতে পারে। এ সঞ্চরণশীল ইলেকট্রনের কারণেই গ্রাফাইট তড়িৎ পরিবহন করে।

घ) উদ্দীপকের পদার্থ দুটির মধ্যে হীরক তাপ পরিবাহী এবং মসৃণকারক।

হীরকের প্রতিটি কার্বন পরমাণু একটি চতুস্তলকের চারটি কোণের দিকে প্রসারিত, যার কেন্দ্রস্থলে কার্বন পরমাণুটি অবস্থিত। যেহেতু প্রতিটি কার্বন পরমাণুর সব যোজ্যতা ইলেকট্রন অপর চারটি কার্বন পরমাণুর সাথে

বন্ধন সৃষ্টিতে ব্যবহৃত হয় অর্থাৎ এতে কোনো মুক্ত বা সঞ্চরণশীল ইলেকট্রন থাকে না, সেজন্য হীরক বিদ্যুৎ অপরিবাহী। তবে ইলেকট্রন স্তরে স্পন্দনের সাহায্যে এর তাপ পরিবহন ঘটে। তাই হীরক তাপ পরিবাহী। হীরক দিয়ে কাচ কাটা হয়। কালো রঙের একরকম হীরক আছে, একে কার্বনেডো বলা হয়। পাথর ও হীরক পালিশ বা মসৃণ করতে এ কার্বনেডো ব্যবহার করা হয়। এজন্য একে মসৃণকারকও বলা হয়।

প্রশ্ন নং: ৮। রসায়ন পরীক্ষাগারে শিক্ষার্থীরা একটি পাত্রে বরফকে তাপ দিলে নিম্নরূপ উপাত্ত পেল:

তাপমাত্রা (°C)	– 10	0	0	0	25	50	75	100	100	120
সময় (মিনিট)	0	2	4	6	8	10	12	14	16	18

ক) নিঃসরণ কী?

- খ) মরিচা সৃষ্টি কী ধরনের পরিবর্তন ব্যাখ্যা কর।
- গ) ছক কাগজে প্রদন্ত উপাত্তের একটি চিত্র অঙ্কন করে 2—6 মিনিট এবং 14—16 মিনিট তাপমাত্রা অপরিবর্তিত থাকার কারণ ব্যাখ্যা কর।
- ঘ) বন্ধন জোড় ও মুক্ত জোড় ইলেকট্রন উল্লেখ করে উদ্দীপকের যৌগটির চিত্র অঙ্কন কর এবং মুক্ত জোড় ইলেকট্রনের ভর নির্ণয় কর।

সমাধান:

- ক) সরু ছিদ্রপথে কোনো গ্যাসের অণুসমূহের উচ্চচাপ থেকে নিম্নচাপ অঞ্চলে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ বলে।
- খ) মরিচা সৃষ্টি একটি রাসায়নিক পরিবর্তন।

বিশুদ্ধ লোহা জলীয় বাষ্পের উপস্থিতিতে বায়ুর অক্সিজেনের সাথে রাসায়নিক বিক্রিয়ার মাধ্যমে লোহার অক্সাইড নামক সম্পূর্ণ নতুন পদার্থে পরিণত হয় যা মরিচা নামে পরিচিত। মরিচার ধর্ম লোহা, অক্সিজেন ও পানি হতে সম্পূর্ণ ভিন্ন। সুতরাং, লোহার উপর মরিচা পড়া একটি রাসায়নিক পরিবর্তন।

গ) উদ্দীপকের উপাত্তগুলো নিয়ে বরফের তাপরেখা অঙ্কন করা হলো:

অঙ্কিত লেখচিত্রটিতে A — B পর্যন্ত তাপমাত্রার পরিবর্তন হলো, কিন্তু B — C পর্যন্ত হলো না। আবার, C — D পর্যন্ত তাপমাত্রার পরিবর্তন হলো, কিন্তু D — E পর্যন্ত হলো না। E — F পর্যন্ত তাপমাত্রা আবার বাড়তে থাকল। অর্থাৎ উপাত্ত থেকে অংকিত লেখচিত্র থেকে দেখা যায় (B — C) 2 — 6 মিনিট এবং (D — E) 14 — 16 মিনিট পর্যন্ত তাপমাত্রার কোনো পরিবর্তন হয় না। কারণ, পদার্থ যখন ভৌত অবস্থা পরিবর্তন করে তখন তাপের প্রয়োজন হয়। তাই বাইরে থেকে যখন কোনো বস্তুকে উত্তপ্ত করা হয় তখন সংশ্লিষ্ট বস্তু তার ভৌত অবস্থা পরিবর্তনে তাপ গ্রহণ করে থাকে। আর তাই এ সময় তাপমাত্রা স্থির থাকে। ভৌত অবস্থা পরিবর্তনে ব্যবহৃত এ তাপকে সুপ্ততাপ বলা হয়।

চিত্রে সময়ের সাথে তাপমাত্রার পরিবর্তন (বৃদ্ধি) দেখানো হয়েছে। অর্থাৎ তাপমাত্রা বাড়ার সাথে পদার্থের ভৌত অবস্থারও পরিবর্তন হচ্ছে। B — C বরাবর তাপমাত্রা স্থির থাকার অর্থ হলো B বিন্দুতে বস্তু গলতে শুরু করেছে এবং BC বরাবর গলন সমাপ্ত হয়। অনুরূপভাবে, D — E বরাবর বস্তু তরল অবস্থা হতে বাষ্পীয় অবস্থায় রূপান্তর ঘটেছে। তাই উভয় অবস্থায় তাপমাত্রা স্থির রয়েছে।

ষ) উদ্দীপকের যৌগটি হলো পানি $({
m H_2O})$ । নিচে ${
m H_2O}$ অণুতে বিদ্যমান বন্ধন জোড় ও মুক্ত জোড় ইলেকট্রন উল্লেখ করে ${
m H_2O}$ এর চিত্র অঙ্কন করা হলো:

যৌগ গঠনে একটি পরমাণুর বহিস্থ স্তরের যে ইলেক্ট্রন জোড় বন্ধন গঠনে অংশগ্রহণ করে না, তাদেরকে মুক্ত জোড় ইলেকট্রন বলে। আবার, একটি পরমাণুর বহিস্থ স্তরে যে অযুগ্ম ইলেকট্রন অন্য পরমাণুর অযুগ্ম ইলেকট্রনের সাথে শেয়ারের মাধ্যমে যে ইলেকট্রন জোড় সৃষ্টি করে তাকে বন্ধন জোড় ইলেকট্রন বলে।

Н2О অণুতে বিদ্যমান О ও Н এর ইলেকট্রন বিদ্যমান-

$$_{8}O \rightarrow 1s^{2}2s^{2}2p_{x}^{2}2p_{y}^{1}2p_{z}^{1}$$

 $_{1}H \rightarrow 1s^{1}$

 H_2O অণুতে O পরমাণু তার সর্ববহিস্থ স্তরের দুটি অযুগ্ম ইলেকট্রন দ্বারা 2টি H পরমাণুর সাথে বন্ধন গঠন করে। অর্থাৎ দুটি বন্ধন জোড় ইলেকট্রন বন্ধনে অংশ নেয় না। এরা H_2O অণুতে মুক্ত জোড় ইলেকট্রন হিসেবে বিদ্যমান থাকে। ফলে নিম্নোক্তভাবে H_2O অণু গঠিত হয়।

চিত্র: H₂O অণুতে বিদ্যমান মুক্ত জোড় ইলেকট্রন

মুক্ত জোড় ইলেকট্রনের ভর নির্ণয়: পানি (H_2O) অণুতে 2 জোড়া মুক্ত জোড় ইলেকট্রন বিদ্যমান থাকে। আমরা জানি,

প্রশ্ন নং: ৯।

নিচে দুটি পরমাণুর ইলেকট্রন বিন্যাস দেখানো হলো:

$$X_{15} Y_{17}$$

- ক) ক্যাটায়ন কী?
- খ) আয়নিক যৌগের গলনাংক ও ক্ষুটনাংক বেশি কেন?
- গ) ইলেকট্রন বিন্যাসের মাধ্যমে X ও Y পরমাণুদ্বয়ের যৌগ গঠন প্রক্রিয়া দেখাও।
- ঘ) Y পরমাণুর সর্বশেষ কক্ষপথে একটি ইলেকট্রন বেশি থাকলে তা X পরমাণুর সাথে কোন বন্ধনে আবদ্ধ হতো? তোমার উত্তরের পক্ষে যুক্তি দেখাও।

সমাধান:

- **ক)** ধনাত্মক চার্জযুক্ত পরমাণুকে ক্যাটায়ন বলে। যেমন: Na⁺, Ca²⁺ ইত্যাদি।
- খ) আয়নিক যৌগের অণুতে ধনাত্মক ও ঋণাত্মক প্রান্ত থাকায় গলনাংক ও স্কুটনাংক বেশি হয়।

আয়নিক যৌগের প্রতিটি আয়ন তার চতুর্দিকে বিপরীত চার্জযুক্ত আয়ন দ্বারা বেষ্টিত থাকে। এ সময় আয়নসমূহ উচ্চ আন্তঃআণবিক বল দ্বারা এমনভাবে আবদ্ধ থাকে যে, তাদের পরস্পর থেকে আলাদা করতে অনেক বেশি শক্তির প্রয়োজন হয়। এ স্থির বৈদ্যুতিক আকর্ষণ বলের কারণেই আয়নিক যৌগের গলনাংক ও স্ফুটনাংক অনেক বেশি।

গ) X পরমাণুর ইলেকট্রন বিন্যাস 2, 8, 5 অর্থাৎ বহিস্থ কক্ষপথে অষ্টক পূরণের জন্য এর আরও তিনটি ইলেকট্রন প্রয়োজন। অন্যদিকে, Y পরমাণুর ইলেকট্রন বিন্যাস 2, 8, 7 অর্থাৎ Y পরমাণুর বহিস্থ কক্ষপথের অষ্টক পূর্ণতার জন্য একটি ইলেকট্রন প্রয়োজন। এখন, X ও Y পরমাণুর মধ্যে পরস্পর যৌগ গঠন প্রক্রিয়ায় রাসায়নিক বন্ধন গঠন করার জন্য পরস্পরের অষ্টকপূর্ণ করা প্রয়োজন। এজন্য, একটি X পরমাণু তার তিনটি ইলেকট্রন যথাক্রমে তিনটি Y পরমাণুর একটি ইলেকট্রনের সঙ্গে শেয়ার করে এবং সমযোজী বন্ধন গঠনের মাধ্যমে XY্ব অণু গঠন করে।

ঘ) Y পরমাণুর সর্বশেষ কক্ষপথে একটি ইলেকট্রন বেশি থাকলে তা X পরমাণুর সাথে কোনো বন্ধনেই আবদ্ধ হতো না।

উদ্দীপকের চিত্রে দেখা যাচ্ছে, X পরমাণুর সর্ববহিস্থ কক্ষপথে 5টি ইলেকট্রন আছে। অর্থাৎ, অষ্টক পূরণের জন্য এটি আরও তিনটি ইলেকট্রন গ্রহণ করে আয়নিক বন্ধন গঠন করতে পারে। আবার যেকোনো পরমাণুর সাথে তিনটি ইলেকট্রন শেয়ার করে সমযোজী বন্ধন গঠন করতে পারে। অর্থাৎ X এর কোনো পরমাণুর সাথেই বন্ধন গঠন করতে কোনো বাধা নেই।

অপরদিকে, Y পরমাণুর সর্ববহিস্থ কক্ষপথে 7টি ইলেকট্রন আছে। অর্থাৎ নিকটস্থ নিচ্ছিয় গ্যাসের Ar (18): 2, 8, 8 ইলেকট্রন বিন্যাস অর্জন করতে এটি সহজেই অন্য যে কোনো মৌল থেকে একটি ইলেকট্রন গ্রহণ করে Y⁺ আয়নে পরিণত হয়ে আয়নিক বন্ধনে আবদ্ধ হতে পারে।

যদি উদ্দীপকে প্রদত্ত পরমাণুর সর্ববহিস্থ কক্ষপথে 1টি ইলেকট্রন বেশি থাকে, তাহলে তার অষ্টকপূর্ণ হবে। অর্থাৎ, তা স্থিতিশীলতা অর্জন করবে। সেক্ষেত্রে Y একটি নিষ্ক্রিয় মৌল বলে বিবেচ্য হবে। অতএব, এটি শুধু X পরমাণু নয়, অন্য কোনো পরমাণুর সাথে এমনকি নিজেরাও নিজেদের মধ্যে কোনো বন্ধনে আবদ্ধ হবে না। -

1 MINUTE SCHOOL