MAT 340 Differential Equations

Peter Schaefer

Spring 2024

Contents

1	Introduction	2
	First-order Ordinary Differential Equations	3
	2.1 Separable Equations	3
	2.2 Linear Equations	3

1 Introduction

2 First-order Ordinary Differential Equations

A first-order ordinary differential equation takes the form

$$\frac{dy}{dx} = f(x, y), \qquad x \in I$$

2.1 Separable Equations

Assume f(x,y) be separable, meaning that

$$f(x,y) = g(x) \cdot h(y)$$

for some g and h. Then,

$$\frac{dy}{dx} = g(x)h(x)$$
$$\frac{dy}{h(y)} = g(x)dx$$
$$\int \frac{dy}{h(y)} = \int g(x)dx$$

Letting $H(y) = \int \frac{dy}{h(y)}$ and $G(x) = \int g(x)dx$, the solution to the first-order ODE is then

$$H(y) = G(x) + C$$

Example

from pg. 46, #8

$$\frac{dy}{dx} = \frac{1}{xy^3} = \frac{1}{x} \cdot \frac{1}{y^3}$$
$$\int y^3 dy = \int \frac{dx}{x}$$
$$\frac{y^4}{4} + C_1 = \ln|x| + C_2$$
$$y^4 = 4\ln|x| + K$$

2.2 Linear Equations

A linear first-order equation is an equation that can be expressed in the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x),$$

where $a_1(x), a_0(x)$, and b(x) depend only on the independent variable x, not on y. If $a_0(x)$ is identically zero, then the above equation reduces to

$$a_1(x)\frac{dy}{dx} = b(x)$$
 (assume $a_0(x) = 0$)
$$y(x) = \int \frac{b(x)}{a_0(x)} dx + C$$
 (as long as $a_1(x) \neq 0$)