对抗训练在 NLP 中的应用实验报告

1. 背景

GAN 之父 Ian Goodfellow 在 15 年的 ICLR^[1]第一次提出了对抗训练这个概念, 简而言之, 就是在原始输入样本上加一个扰动, 得到对抗样本后, 用其进行训练, 提升模型的训练效果。 为将其迁移到 NLP 任务中, Goodfellow 在 17 年的 ICLR^[2]中提出了可以在连续的 embedding 上做扰动。本报告在文本分类模型 TextCNN^[3]的基础上实现了 FGSM^[1]、PGD^[4]和 Free^[5]这几种对抗训练的方法, 并比较和分析实验结果。

2. 常用的对抗训练的方法

• FGSM (Fast Gradient Sign Method)^[1]

FGSM 是 Goodfellow 提出的对抗训练时方法,假设当前输入的梯度为:

$$g = \Delta_x L(x, y; \theta)$$

那么扰动值和对抗样本定义为: $\delta = \epsilon * sign(g)$, $\tilde{a} = x + \delta$ 。可以理解为将输入样本向着梯度的方向增加,这样得到的对抗样本就能造成损失的增加,从而促进模型更进一步的学习。

• PGD (Projected Gradient Descent)[4]

PGD 可以看作是对于 FGSM 或者 FGM 的近一步改进, FGSM 直接通过ε参数只经过了一步算出了扰动值,这样得到的扰动可能不是最优的。PGD 进行了改进,多迭代几次,慢慢找到最优的扰动值,具体的迭代公式:

$$\delta_{t+1} = \alpha * \frac{g_t}{\|g_t\|_2}$$
, α 为迭代的步长,且// δ_t // $_2 \le \epsilon$

• Free (Free Adversarial Training)^[5]

从 FGSM 到 PGD, 主要是优化对抗扰动的计算,虽然取得了更好的效果,但计算量也一步步增加。对于每个样本,FGSM 或 FGM 都是两次前后向的计算,一次是原始样本 x 的,另一次是对抗样本 $x + \delta$ 的。而 PGD 则计算了 K + 1次,消耗了更多的计算资源。因此 Free 在 PGD 的基础上进行了训练速度的优化。

Free 的思想是在对每个样本 x 连续重复 M次训练,更新方式上和 FGSM 比较像,不过在计算 δ 时时复用了上一步的梯度,又和 PGD 一样,整体训练的 epoch 相当于乘以了 M。 δ 的更新公式为:

$$\delta_{t+1} = \delta_t + \varepsilon * sign(g)$$

3. 对抗训练实验和效果分析

• 实验设置

TextCNN 的代码来源于 github 项目 Chinese-Text-Classification-Pytorch。

对抗训练的代码来源于 github 项目: TextCNN-Adversarial-Training-in-NLP。

训练数据集来源于上述 TextCNN 作者从 <u>THUCNews</u> 中抽取了 20 万条新闻标题,一共 10 个类别,每类 2 万条,文本长度在 20 到 30 之间

• 机器配置

GPU: 16G V100,

其他: 16 核 CPU, 128G 内存

• 实验结果

指标数据:

方法	acc	micro-precison	micro-recall	micro-f1	
Baseline	89.18%	0.8924	0.8918	0.8919	
FGSM	90.87%	0.9089	0.9087	0.9086	
PGD	89.81%	0.8989	0.8981	0.8982	
Free	88.07%	0.8817	0.8807	0.8808	

性能数据:

方法	训练时间	stop epoch	每个 epoch 时间	Test loss	参数配置
Baseline	1分23秒	3	27 秒	0.34	
FGSM	5分11秒	6	51 秒	0.3	$\varepsilon = 0.1$
PGD	5分12秒	4	1分18秒	0.33	$\varepsilon = 0.1, K = 3, \alpha$
					= 0.1
Free	3分51秒	3	1分57秒	0.39	$\varepsilon = 0.1, M = 3$

注: (1)各方法的参数配置见 models, (2)上述详细的实验指标见 log

• 数据分析

- ✓ 从实验指标看,FGSM 方法的指标是最好的,有一个可能的解释是 TextCNN 模型结构太简单了,太复杂的方法反而不会带来提升
- ✓ PGD 方法因为训练速度比较慢,而且可以调的参数比较多,因此没有尝试太多组 参数,多尝试几组应该还会有收益
- ✓ Free 方法由于每个样本需要连续的更新 M 次,所以整体的 epoch 是最多的,但是效果却是最差的。除了上述第一条原因外,Free 也有自己的缺点,Free 每次的扰动都是根据前一次样本的梯度计算出来的,对于当前样本不一定是最优的

• 后续展望

- ✓ 这几种对抗训练的方法还不少参数可以调,后续时间充分可以进一步调整,上述结果已经初步证明了对抗训练在 NLP 中的效果;模型本身也有一些参数需要配合对抗训练去调整的,比如学习率、dropout等
- ✓ 后续可以把 TextCNN 换成 Bert 等复杂的模型,增大模型的复杂度,让模型有更多的空间可以学习
- ✓ 以上几种方法有各自的缺点,后续可以尝试其他类 PGD 的改进方法,比如 FreeLB、YOPO、SMART 等方法

4. 参考

- [1] Explaining and Harnessing Adversarial Examples
- [2] Adversarial Training Methods for Semi-Supervised Text Classification
- [3] Convolutional Neural Networks for Sentence Classification
- [4] Towards Deep Learning Models Resistant to Adversarial Attacks
- [5] Adversarial Training for Free!