ECE 450 - Homework #14

December 3, 2019

1 ECE 450 - Homework #13

1.0.1 Package Imports

```
In [1]: import numpy as np
    import seaborn as sns
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy import signal as sig
    from control import margin, tf
    import warnings
    warnings.filterwarnings('ignore')
```

1.1 Generic function to convolve any number of equations

```
In [2]: def convolve_all(values):
    temp_conv = values[0]
    if len(values) > 1:
        for next_val in values[1:]:
        temp_conv = np.convolve(temp_conv, next_val)
    return temp_conv
```

1.2 Generic function for generating a Blackman and Half-Blackman Window

window.append(A - B * np.cos(2 * np.pi * k / N) + C * np.sin(2 * np.pi * k

```
elif k <= N / 2 and type is "high": window.append(A - B * np.cos(2 * np.pi * k / N) + C * np.sin(2 * np.pi * k else: window.append(1)
```

1.2.1 Generic function to plot the responses of a system

return window

```
In [76]: # Color list for multiple lines on each subplot
         colors = ["red", "blue", "green", "gray", "purple", "orange"]
         step_size = 0.005
         # Generic Function to create a plot
         def create_plot(x, y, xLabel=["X-Values"], yLabel=["Y-Values"],
                         title=[("Plot", )], num_rows=1, size=(18, 14), logx=False):
             plt.figure(figsize=size, dpi=300)
             for c, (x_vals, y_vals, x_labels, y_labels, titles) in enumerate(zip(x, y, xLabel
                 for c2, (y_v, t) in enumerate(zip(y_vals, titles)):
                     plt.subplot(num_rows, 1, c + 1)
                     # Add a plot to the subplot, use transparency so they can both be seen
                     plt.plot(x_vals, y_v, label=t, color=colors[c2], alpha=0.70, marker='o')
                     plt.ylabel(y_labels)
                     plt.xlabel(x_labels)
                     plt.grid(True)
                     plt.legend(loc='lower right')
                     if logx:
                         plt.xscale("log")
             plt.show()
```

1.3 Problem 9.4.A

```
Passband: f < 3000Hz, Stopband: f > 4500Hz
10% attenuation in the passband, 90% in the stopband. Minimize the number of points.
```

```
In [180]: x_t = lambda t: np.sin(2 * np.pi * 1500 * t) + np.sin(2 * np.pi * 3000 * t) + np.sin

NN = 200
N2 = int(NN / 2)
x = np.zeros(NN)
y = np.zeros(NN)

dt = 0.00001
TT = np.linspace(0, dt * (NN - 1), NN)
DF = 1/(dt*NN)
FF = np.linspace(0,DF*(NN-1),NN)
```

```
x = x_t(TT)
plt.subplot(321)
plt.plot(TT,x,'k')
plt.title('FIR_design')
plt.ylabel('x{n]')
plt.xlabel('T (sec)')
plt.grid()
X = (2/NN)*np.fft.fft(x)
plt.subplot(322)
plt.plot(FF,abs(X),'k')
plt.axis([0, 8000, 0, 1])
plt.grid()
plt.xlabel('Freq (Hz)')
# plt.savefig('x.png',dpi=300)
plt.title('X(w)')
plt.show()
alpha = 0.75
H = [1 \text{ if } n < 6 \text{ else } np.exp(-0.5 * (((n - 6) / alpha) ** 2)) for n in range(NN)]
H = [0 if n > N2 else val for n, val in enumerate(H)]
Y = np.multiply(H, X)
plt.subplot(323)
plt.plot(FF,H,'k--')
plt.plot(FF,abs(Y),'k')
plt.axis([0, 8000, -.2, 1.1])
plt.title('Y = H*X')
plt.grid()
y = (NN/2)*np.fft.ifft(Y).real
plt.subplot(324)
plt.plot(y,'k')
plt.title('y=ifft(Y)')
plt.grid()
plt.show()
h = (NN/2)*np.fft.ifft(H).real
hmax = max(h)
for n in range(NN):
    h[n] = h[n]/hmax
```

```
MM = 35
plt.subplot(325)
plt.plot(h,'k')
plt.axis([0,MM,-1,1])
plt.grid()
plt.title('h')
hh = np.zeros(2*MM+1)
for n in range(0,MM+1):
    hh[n+MM] = h[n]
for n in range(0,MM):
    hh[n] = h[NN-MM+n]
plt.subplot(326)
plt.plot(hh,'ko')
plt.axis([0 ,2*MM,-1,1.2])
plt.xticks([0,MM,int(2*MM)])
plt.title('hh is h shifted')
plt.grid()
plt.show()
hsum = sum(abs(h))
K = 2.099
w= (K/hsum)*np.convolve(hh,x)
plt.subplot(311)
plt.plot(w,'k')
plt.axis([0, 200, -2, 2])
plt.ylabel('w')
plt.title('w is hh convolved with x')
plt.grid()
plt.show()
z = np.zeros(NN)
for n in range(NN):
    z[n] = w[n+MM]
plt.subplot(311)
plt.plot(z,'k')
plt.ylabel('z')
#plt.plot(x, 'm--')
#plt.axis([0,50,-1,1])
plt.title('z is w shifted and truncated')
plt.grid()
Z = (2/NN)*np.fft.fft(z)
plt.subplot(313)
plt.plot(FF,abs(Z),'k')
```

```
plt.ylabel('|Z(w)|')
plt.axis([0, 8000, 0, 1])
plt.title('Z = fft(z)')
plt.grid()
plt.show()
```


As evident in the FFT(Z), the undesireable frequencies are attenuated to an acceptable amount, and this was accomplished with 35 points.

1.4 Problem 9.4.B

Passband: 3000 < f < 4500Hz, and Stopband: f < 1500Hz, f > 6000HzNo more than 10% attenuation in the passband, 90% attenuation in the stopband.

```
TT = np.linspace(0,dt*(NN-1),NN)
DF = 1/(dt*NN)
FF = np.linspace(0,DF*(NN-1),NN)
x = x_t(TT)
plt.subplot(321)
plt.plot(TT,x,'k')
plt.title('FIR_design')
plt.ylabel('x{n]')
plt.xlabel('T (sec)')
plt.grid()
X = (2/NN)*np.fft.fft(x)
plt.subplot(322)
plt.plot(FF,abs(X),'k')
plt.axis([0,8000,0,1])
plt.grid()
plt.xlabel('Freq (Hz)')
plt.title('X(w)')
plt.show()
H = np.zeros(NN)
nc = int(3875/DF) #100
sigma = 10 #10
for n in range(0,N2):
    H[n] = np.exp(-0.5*((n-nc)/sigma)**2))
Y = X
for n in range(0,NN):
    Y[n] = H[n] *X[n]
plt.subplot(323)
plt.plot(FF,H,'k--')
plt.plot(FF,abs(Y),'k')
plt.axis([0,8000,-.2,1.1])
plt.title('Y = H*X')
plt.grid()
y = (NN/2)*np.fft.ifft(Y).real
plt.subplot(324)
plt.plot(y,'k')
plt.title('y=ifft(Y)')
plt.grid()
plt.show()
```

```
h = (NN/2)*np.fft.ifft(H).real
hmax = max(h)
for n in range(NN):
    h[n] = h[n]/hmax
MM = 50 \#13
plt.subplot(325)
plt.plot(h,'k')
plt.axis([0,MM,-1,1])
plt.grid()
plt.title('h')
# Shift h to hh
""" The shifted filter is 2*MM + 1 points long. """
hh = np.zeros(2*MM+1)
for n in range(0,MM+1):
    hh[n+MM] = h[n]
for n in range(0,MM):
    hh[n] = h[NN-MM+n]
plt.subplot(326)
plt.plot(hh,'ko')
plt.axis([0 ,2*MM,-1,1.2])
plt.xticks([0,MM,int(2*MM)])
plt.title('hh is h shifted')
plt.grid()
plt.show()
# convolve hh with x
hsum = sum(abs(h))
K = 1.55
            # Band pass, 1.35
w= (K/hsum)*np.convolve(hh,x)
plt.subplot(311)
plt.plot(w,'k')
plt.axis([0,233,-2,2])
plt.ylabel('w')
plt.title('w is hh convolved with x')
plt.grid()
plt.show()
# Trim the ends and take the FT.
```

```
z = np.zeros(NN)
for n in range(NN):
    z[n] = w[n+MM]
plt.subplot(311)
plt.plot(z,'k')
plt.ylabel('z')
plt.title('z is w shifted and truncated')
plt.grid()
Z = (2/NN)*np.fft.fft(z)
plt.subplot(313)
plt.plot(FF,abs(Z),'k')
plt.ylabel('|Z(w)|')
plt.axis([0,8000,0,1.])
plt.title('Z = fft(z)')
plt.grid()
plt.show()
```


As evident in the FFT(Z), the passband frequencies are passed with an acceptable amount of attenuation while rejecting the stopband signals. This was accomplished with 50 samples, which

is relatively high as the passband is quite wide, and the rejection criteria for the stopband is quite restrictive. Sampling less (around 30) attenuates the passband too much.