5. Análisis de circuitos en régimen sinusoidal permanente

5.1 a) Expresar la tensión $v(t)=8\cos{(7t+15^\circ)}$ en forma de seno. b) Convertir la corriente $i(t)=-10\sin{(3t-85^\circ)}$ a forma coseno con amplitud positiva

Sol: a) $v(t) = 8 \sin(7t + 105^{\circ})$, b) $i(t) = 10\cos(3t + 5^{\circ})$ de G-286, G. Ing. Tec. Tel. unican.es

5.2 Dadas las tensiones $v_1(t)=20\sin(\omega t+60^\circ)$ y $v_2(t)=60\sin(\omega t-10^\circ)$, determinar el ángulo de desfase entre ambas. ¿Cuál está retrasada?

Sol: $v_{1(t)}=20\cos(\omega t-30^\circ)$, $desfase~20^\circ, v_1~retrasada~respecto~v_2$ de G-286, G. Ing. Tec. Tel. unican.es

5.3 Transformar las siguientes sinusoides en fasores: a) $v(t) = -10\cos(4t + 75^{\circ})$ y b) $i(t) = 5\sin(20t - 10^{\circ})$.

Sol: a) $V = 10e^{-j105^{\circ}}$, b) $V = 5e^{-j100^{\circ}}$ de G-286, G. Ing. Tec. Tel. unican.es

5.4 Obtener las sinusoides correspondientes a los siguientes fasores: a) $V_1=60e^{j15^\circ}$, $\omega=1$ b) $V_2=6+8j$, $\omega=40$, c) $I_1=2$, $8e^{-j\pi\over 3}$, $\omega=377$ y d) $I_2=-0.5-j1.2$, $\omega=10^3$.

5.5 La corriente que entra en una red lineal vale $4\cos(\omega t + 20^\circ)A$ y la salida de tensión $10\cos(\omega t + 110^\circ)V$. Determinar la impedancia asociada.

 $\textit{Sol:}\ Z = j2\text{,}5\Omega$ de G-286, G. Ing. Tec. Tel. unican.es

5.6 Determinar la tensión V_0

Sol: $7e^{-j45^{\circ}}$ de G-286, G. Ing. Tec. Tel. unican.es

5.7 Determinar la tensión $v_0(t)$

5.8 Determinar la corriente I_0

Sol: 4A de G-286, G. Ing. Tec. Tel. unican.es

5.9 Determinar V_0 aplicando análisis nodal

Sol: 24V de G-286, G. Ing. Tec. Tel. unican.es

5.10 Calcular la corriente i(t)

Sol: $i(t) = 10 \cos(t) A$ de G-286, G. Ing. Tec. Tel. unican.es

5.11 Calcular la corriente i(t) empleando análisis de nudos

 $\mbox{\it Sol:} \ i_1(t) = 0 \ A$ de G-286, G. Ing. Tec. Tel. unican.es

5.12 Obtener V aplicando análisis de nudos

Sol: $V=124e^{-j154^{\circ}}V$ de G-286, G. Ing. Tec. Tel. unican.es

5.13 Determinar I_0 empleando análisis de mallas:

Sol: ${\rm I}_0=6.1e^{j144,4^{\circ}}\,{\rm A}$ de G-286, G. Ing. Tec. Tel. unican.es

5.14 Aplicar el principio de superposición para determinar i(t) en el circuito de la figura.

Sol: $i(t) = 791 \cos(10t + 21^{o}) + 299 \sin(4t + 176^{o}) mA$ de G-286, G. Ing. Tec. Tel. unican.es

5.15 Aplicar superposición de fuentes para calcular v_0 .

Sol: $v_0(t) = 3,6cos(105t - 40,6^o) V$ de G-286, G. Ing. Tec. Tel. unican.es

5.16 Obtener el equivalente Thevenin respecto de los terminales indicados

5.17 Calcular la impedancia equivalente del circuito

Sol: $-6 + j38 \Omega$ de G-286, G. Ing. Tec. Tel. unican.es

5.18 Determinar el equivalente Norton circuito entre los terminales indicados

Sol: $i_N=5.7\cos(200t+75^{\varrho})$ A, $Z_N=1k\Omega$ de G-286, G. Ing. Tec. Tel. unican.es

5.19 Calcular la potencia instantánea y media, sabiendo que $v(t)=160\cos(50t)\,V$ e $i(t)=-20\sin(20t-30^\circ)\,A$

Sol:
$$p(t) = 800 + 1600 \cos(100t + 60^{\circ}) \text{ W}$$

de G-286, G. Ing. Tec. Tel. unican.es

5.20 Determinar la potencia media en cada elemento del circuito

Sol: Energía suminstrada: 2.647 W de G-286, G. Ing. Tec. Tel. unican.es

5.21 Determinar la potencia media disipada por la resistencia de 10 Ω .

Sol: 160W de G-286, G. Ing. Tec. Tel. unican.es

5.22 Cuál es el valor de la impedancia de carga para que la potencia transferida a la carga sea máxima. ¿Cuánto vale esa potencia? $i_S(t) = 5\cos(40t) A$.

Sol: $Z_L = 8 + j0.3 \Omega$ $y P_{max} = 35 mW$ de G-286, G. Ing. Tec. Tel. unican.es