多元函数(二元函数)的概念

定义在平面集合 D上的二元函数的一般形式为

$$z = f(x, y), (x, y) \in D \subset \mathbb{R}^2$$

其中 D为函数的定义域

定义在平面集合 D上的二元函数的一般形式为

 $z = f(x, y), (x, y) \in D \subset \mathbb{R}^2$

其中 D为函数的定义域

函数 z = f(x, y) 的几何图形为一张空间曲面

注: 要区分空间曲面与二元函数的概念

如球面是曲面但不是二元函数的图形

上(下)半球面才是一个二元函数的图形

点 $M_0(x_0,y_0)$ 的 δ 邻域是指集合

$$U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \}.$$

点 $M_0(x_0,y_0)$ 的 δ 邻域 是指集合

$$U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \},$$
或写成 $U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | |\overline{MM_0}| < \delta \}$

其中 $|\overline{MM_0}|$ 表示点 $M_0(x_0,y_0)$ 和点 M(x,y)的距离,有时也写成 $\rho(M,M_0)$ 或 $dist(M,M_0)$.

点 $M_0(x_0,y_0)$ 的 δ 邻域是指集合

$$U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \}.$$

或写成 $U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | |\overline{MM_0}| < \delta\}$

其中 $|\overline{MM_0}|$ 表示点 $M_0(x_0,y_0)$ 和点 M(x,y)的距离,有时也写成 $\rho(M,M_0)$ 或 $dist(M,M_0)$.

点 $M_0(x_0,y_0)$ 的 δ 空心邻域是指集合

$$\mathring{U}_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \}$$

点 $M_0(x_0,y_0)$ 的 δ 邻域 是指集合

$$U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \},$$
或写成 $U_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | |\overline{MM_0}| < \delta \}$

其中 $|\overline{MM_0}|$ 表示点 $M_0(x_0,y_0)$ 和点 M(x,y)的距离,有时也写成 $\rho(M,M_0)$ 或 $dist(M,M_0)$.

点 $M_0(x_0,y_0)$ 的 δ 空心邻域 是指集合

$$\mathring{U}_{\delta}(M_0) \triangleq \{(x,y) \in \mathbb{R}^2 | 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \}$$

 $U_{\delta}(M_0)$ 是以 M_0 为心的开圆盘, $U_{\delta}(M_0)$ 是空心的开圆盘.

点 M_0 是集合E的外点 $\exists \ \delta > 0 \ s.t. \ U_{\delta}(M_0) \cap E = \emptyset$.

点 M_0 是集合E的外点 $\exists \ \delta > 0 \ s.t. \ U_{\delta}(M_0) \cap E = \emptyset$.

点 M_0 是集合E的边界点:

点 M_0 不是集合E的内点,且 $\forall \ \delta > 0 (\delta < \delta_0) \ s.t. \ U_{\delta}(M_0) \cap E \neq \emptyset$.

点 M_0 是集合E的外点 $\exists \ \delta > 0 \ s.t. \ U_{\delta}(M_0) \cap E = \emptyset$.

点 M_0 是集合E的边界点:

点 M_0 不是集合E的内点,且 $\forall \delta > 0(\delta < \delta_0)$ s.t. $U_{\delta}(M_0) \cap E \neq \emptyset$.

E是开集: E中的所有点都是内点.

例如 $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$

点 M_0 是集合E的外点 $\exists \ \delta > 0 \ s.t. \ U_{\delta}(M_0) \cap E = \emptyset$.

点 M_0 是集合E的边界点:

点 M_0 不是集合E的内点,且 $\forall \delta > 0(\delta < \delta_0)$ s.t. $U_{\delta}(M_0) \cap E \neq \emptyset$.

E是开集: E中的所有点都是内点.

E是闭集 E的所有边界点都属于E.

例如 $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

若平面集合 D中任何两点都能用集合内的曲线联接,则称 D 为连通集.

若平面集合 D中任何两点都能用集合内的曲线联接,则称 D 为连通集.

有界集: 能用一个半径有限的圆盘覆盖的集合.

若平面集合 D中任何两点都能用集合内的曲线联接,则称 D 为连通集.

有界集: 能用一个半径有限的圆盘覆盖的集合.

无界集: 不能用一个半径有限的圆盘覆盖的集合.

若平面集合 D中任何两点都能用集合内的曲线联接,则称 D 为连通集.

有界集: 能用一个半径有限的圆盘覆盖的集合.

无界集: 不能用一个半径有限的圆盘覆盖的集合.

区域: 连通的非空的开集称为区域.

二元函数示例

$$z=x^2+y^2$$
 (抛物面) 定义域是 \mathbb{R}^2

$$z=1-x-y$$
 表示平面 $(x+y+z=1)$

定义域为 \mathbb{R}^2

 $z=x^2-y^2$ 表示马鞍面 定义域为 \mathbb{R}^2

 $z = \sqrt{1 - x^2 - y^2}$ 表示上半球面

定义域为闭圆盘 $\{(x,y)|x^2+y^2\leq 1\}$

$$z=\frac{1}{\sqrt{1-x^2-y^2}}$$

定义域为开圆盘 $\{(x,y)|x^2+y^2<1\}$

二元函数的等高线的概念

等高线是空间曲面的一种平面表示法,反映空间曲面的形态.

二元函数的等高线的概念

等高线是空间曲面的一种平面表示法,反映空间曲面的形态.

满足
$$f(x,y) = c$$
 (c 为常数)的 xoy 平面上的曲线
$$\begin{cases} f(x,y) = c \\ z = 0 \end{cases}$$

称为函数 z = f(x,y) 的高度为 c 的**等高线**,或称为**等值线**. 通常简写为 f(x,y) = c .

常用的还有等位线, 等温线, 等压线等.

$z=x^2-y^2$ 的等高线为 $x^2-y^2=c$

$$z=x^2+y^2$$
 的等高线为 $x^2+y^2=c, (c\geq 0)$

z = 1 - x - y 的等高线为 1 - x - y = c

 $z = \sqrt{1 - x^2 - y^2}$ 的等高线为 $1 - x^2 - y^2 = c$, $(0 \le c \le 1)$

$$z=\frac{1}{\sqrt{1-x^2-y^2}}$$
的等高线为 $\frac{1}{\sqrt{1-x^2-y^2}}=c, (c\geq 1)$

$$z=rac{y^2}{2}-rac{x^2}{2}+rac{x^4}{4}$$
 的等高线为 $rac{y^2}{2}-rac{x^2}{2}+rac{x^4}{4}=c$

$$z = (x^2 - 1)^2 + (y^2 - 1)^2$$

$$z = [(x-1)^2 + y^2] * [(x+\frac{1}{2})^2 + (y-\frac{\sqrt{3}}{2})^2] * [(x+\frac{1}{2})^2 + (y+\frac{\sqrt{3}}{2})^2]$$

三元函数有等值面

如空间中的等温面, 电场中的等势面, 压力场中的等压面等等

四元函数有等值体