assignment 10 (own)

March 8, 2022

1 Bivariate analysis using Pearson correlation and scatter plot of a combination of 2 columns on Melbourne dataset

For the remaining excersices where numerical columns are needed, I will use the Melbourne Housing Market dataset

Housing Market dataset
https://www.kaggle.com/anthonypino/melbourne-housing-market?select=MELBOURNE_HOUSE_PRICES_LI

Some Key Details

Suburb: Suburb

Address: Address

Rooms: Number of rooms

Price: Price in Australian dollars

Method:

S - property sold;

SP - property sold prior;

PI - property passed in;

PN - sold prior not disclosed;

SN - sold not disclosed;

NB - no bid:

VB - vendor bid;

W - withdrawn prior to auction;

SA - sold after auction;

SS - sold after auction price not disclosed.

N/A - price or highest bid not available.

Type:

br - bedroom(s);

h - house, cottage, villa, semi, terrace;

u - unit, duplex;

t - townhouse:

dev site - development site;

o res - other residential.

SellerG: Real Estate Agent

Distance: Distance from CBD (Central Business District) in Kilometres

Date: Date sold

Regionname: General Region (West, North West, North, North east ...etc)

Property count: Number of properties that exist in the suburb.

Bedroom2 : Scraped # of Bedrooms (from different source)

Bathroom: Number of Bathrooms

Car: Number of carspots

Landsize: Land Size in Metres

BuildingArea: Building Size in Metres

YearBuilt: Year the house was built

CouncilArea: Governing council for the area

Lattitude: Self explanitory Longtitude: Self explanitory

```
[2]: import pandas as pd import seaborn as sns
```

```
[3]: df = pd.read_csv('melbourne_housing_prices.csv', sep=',')
    df.head()
```

[3]:	Suburb	Address	Rooms Type	Price Method	SellerG \
0	Abbotsford	49 Lithgow St	3 h	1490000.0 S	Jellis
1	Abbotsford	59A Turner St	3 h	1220000.0 S	Marshall
2	Abbotsford	119B Yarra St	3 h	1420000.0 S	Nelson
3	Aberfeldie	68 Vida St	3 h	1515000.0 S	Barry
4	Airnort West	92 Clydesdale Rd	2 h	670000 0 S	Nelson

	Date	Postcode	Regionname	Propertycount	Distance \
0	1/04/2017	3067	Northern Metropolitan	4019	3.0
1	1/04/2017	3067	Northern Metropolitan	4019	3.0
2	1/04/2017	3067	Northern Metropolitan	4019	3.0
3	1/04/2017	3040	Western Metropolitan	1543	7.5
4	1/04/2017	3042	Western Metropolitan	3464	10.4

CouncilArea

- O Yarra City Council
- 1 Yarra City Council
- 2 Yarra City Council
- 3 Moonee Valley City Council
- 4 Moonee Valley City Council

```
[9]: | houseCorrelations = df.corr(method='pearson')
```

C:\Users\Stijn\AppData\Local\Temp/ipykernel_13424/2374652365.py:2:
FutureWarning: this method is deprecated in favour of
`Styler.format(precision=..)`
 houseCorrelations.style.background_gradient(cmap='coolwarm',
axis=None).set_precision(2)

[9]: <pandas.io.formats.style.Styler at 0x27f52100670>

I expected distance to the business district and price to correlate negatively, I did expect a stronger correlation

```
[5]: correlation = df[['Price','Distance']]
    correlation.corr()
```

[5]: Price Distance
Price 1.000000 -0.253668
Distance -0.253668 1.000000

```
[7]: df.plot(kind='scatter', x='Distance',y='Price')
```

[7]: <AxesSubplot:xlabel='Distance', ylabel='Price'>

The scatter plot shows the negative correlation very well.