Sentiment Analysis for Amazon Reviews

Milestone-2 Report

Huseyin YILMAZ

As it is submitted before "Milestone-1 report" intentionally not repeated here. Final report will cover all.

5. FEATURE ENGINEERING AND MODELING

In accordance with EDA Findings, the number classes (ratings) has been reduced. Five classes have been splitted into two group as "bad" (1, 2) and "not bad" (3, 4, 5). Therefore, analysis became a supervised binary-classification problem. We are trying to predict the ratings based on the reviews left by customers who bought patio, lawn or garden products. We used traditional machine learning algorithms and deep neural network with Keras. We implemented seven different traditional algorithms with six different methods. Algorithms:

- Logistic Regression
- Linear SVM
- Naive Bayes
- Kernel SVM
- KNN
- Random Forest
- Gradient Boosting
- XGBoost

In regards of feature engineering, review test data has been vectorized with six different methods. These bag of words methods:

- CountVectorizer
- TfldfVectorizer
- HashingVectorizer
- PCA with SMOTE Combination
- Truncated SVD with SMOTE Combination
- Word2Vec

4.1. Modeling with Count-Vectorizing

Eight different machine learning algorithms implemented with Count-Vectorizing method. Uni-gram has been used as the best parameter for ngram_range. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted

Comparison Table

				precision	recall	f1-score	support
vectorizer	model	accuracy	class				
			bad	0.411009	0.568528	0.477103	394.0
	LogReg	0.889014	not bad	0.956174	0.920347	0.937919	4030.0
			average	0.907622	0.889014	0.896879	4424.0
			bad	0.409091	0.411168	0.410127	394.0
	SVM	0.894665	not bad	0.942403	0.941935	0.942169	4030.0
			average	0.894907	0.894665	0.894786	4424.0
			bad	0.000000	0.000000	0.000000	394.0
CountVect	Kernel SVM	0.910940	not bad	0.910940	1.000000	0.953395	4030.0
			average	0.829812	0.910940	0.868486	4424.0
		0.910036	bad	0.483871	0.152284	0.231660	394.0
	Naive Bayes		not bad	0.922326	0.984119	0.952221	4030.0
			average	0.883277	0.910036	0.888048	4424.0
			bad	0.271028	0.073604	0.115768	394.0
	KNN	0.899864	not bad	0.915451	0.980645	0.946927	4030.0
			average	0.858058	0.899864	0.872904	4424.0
			bad	0.750000	0.015228	0.029851	394.0
	RForest	0.911844	not bad	0.912138	0.999504	0.953824	4030.0
			average	0.897698	0.911844	0.871536	4424.0
			bad	0.661290	0.104061	0.179825	394.0
	GBoost	0.915461	not bad	0.919074	0.994789	0.955434	4030.0
			average	0.896116	0.915461	0.886358	4424.0

Average F-1 Scores

Minor Class F-1 Scores

- With count vectorizing, logistic regression gave the best f-1 scores for both "average" and "minor class".
- Kernel SVM is the weakest algorithm with count-vectorizing.
- Besides Kernel SVM; KNN, RForest, GBoost and XGboost have remained under the mean of minor class f-1 score.

4.2. Modeling with Tfidf - Vectorizing

Eight different machine learning algorithms implemented with Tfidf-Vectorizing method. Uni-gram has been used as the best parameter for ngram_range. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted

- With count vectorizing, logistic regression gave the best f-1 scores for minor class f-1 score but failed with average f-1 score. Best average f-1 score has been received by Linear SVM.
- Kernel SVM and Naïve Bayes are the weakest algorithms with tfidf-vectorizing.
- Besides Kernel SVM and Naïve Bayes; KNN and RForest have remained under the mean of minor class f-1 score.

4.3. Modeling with Hashing-Vectorizing

Seven different machine learning algorithms implemented with Hashing-Vectorizing method. Unigram has been used as the best parameter for ngram_range. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted.

- With hashing vectorizing, logistic regression gave the best f-1 scores for minor class f-1 score but failed again with average f-1 score. Best average f-1 score has been received by Gradient Boosting.
- Naïve Bayes is the weakest algorithms with hashing-vectorizing.
- Besides Naïve Bayes; Linear SVM and RForest have remained under the mean of minor class f-1 score.

4.4. Modeling with PCA-SMOTE Combination

Seven different machine learning algorithms implemented with PCA-SMOTE combination method. Since we got the best results from, Count-vectorizing based features were used for this combination. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted.

- With count vectorizing, logistic regression gave the best f-1 scores for both "average" and "minor class".
- The weakest algorithms are KNN for average score and Kernel SVM for minor class score.
- Besides Kernel SVM; KNN, Linear SVM and Random Forest have remained under the mean of minor class f-1 score.
- Especially for the minor class, f-1 scores are poor by comparison with so far methods.

4.5. Modeling with Truncated SVD – SMOTE Combination

Seven different machine learning algorithms implemented with Truncated SVD -SMOTE combination method. Since we got the best results from, Count-vectorizing based features were used for this combination. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted.

- With Truncated SVD -SMOTE combination, Gradient Boosting gave the best f-1 scores for minor class f-1 score but failed again with average f-1 score. Best average f-1 score has been received by Linear SVM.
- All scores are poor by comparison with so far methods.

4.6. Modeling with Word2Vec

Seven different machine learning algorithms implemented with Word2Vec method. Accuracy scores and classification report results have been gathered as a comparison table. Best average f-1 scores and minor class f-1 scores of each model have been plotted.

Comparison Table							Average F-1 Scores			
				precision	recall	f1-score	support			
vectorizer	model	accuracy	class					Average F1 Score - Word2Vec		
S Word2Vec	LogReg	0.799817	bad	0.261320	0.706294	0.381492	286.0	0.8		
			not bad	0.966387	0.808774	0.880583	2986.0			
			average	0.904758	0.799817	0.836959	3272.0	06-		
	svm	0.912592	bad	0.000000	0.000000	0.000000	286.0	0.4 -		
			not bad	0.912592	1.000000	0.954298	2986.0	02-		
			average	0.832824	0.912592	0.870885	3272.0	0.84 0.87 0.87 0.88 0.87 0.87		
	Kernel SVM	0.912592	bad	0.000000	0.000000	0.000000	286.0	0.0 LogReg SVM Kernel SVM KNN RForest GBoost		
			not bad	0.912592	1.000000	0.954298	2986.0			
			average	0.832824	0.912592	0.870885	3272.0			
		0.910147	bad	0.375000	0.041958	0.075472	286.0	Minor Class F-1 Scores		
	KNN		not bad	0.915432	0.993302	0.952779	2986.0	Minority Class F1 Score - Word2Vec		
			average	0.868194	0.910147	0.876095	3272.0	0.40		
	RForest	0.912592	bad	0.000000	0.000000	0.000000	286.0	0.30		
			not bad	0.912592	1.000000	0.954298	2986.0	0.25		
			average	0.832824	0.912592	0.870885	3272.0	0.20 -		
	GBoost		bad	0.400000	0.013986	0.027027	286.0	0.10		
			not bad	0.913550	0.997991	0.953905	2986.0	0.05 - 0.38 0.0 0.0 0.08 0.0 0.03		
			average	0.868661	0.911980	0.872888	3272.0	0.00 LogReg SVM Kernel SVM KNN RForest GBoost		

- With Word2Vec, logistic regression gave the best f-1 scores for minor class f-1 score but failed again with average f-1 score. Best average f-1 score has been received by Linear KNN.
- Word2Vec gave the worst mean of minor class f-1 score .