Università degli Studi di Trieste

Modelli di Ottimizzazione

15 maggio 2015

Si vogliono allineare alcuni volumi di larghezze e altezze diverse e note in una libreria composta da vari scaffali. La larghezza della libreria è pari a 26. L'altezza di ogni scaffale invece non è fissata, ma può essere scelta in modo che sia sufficiente a contenere tutti i libri che si vogliono mettere nello scaffale. Più lo scaffale è alto e più costa. Si vogliono minimizzare i costi di costruzione della libreria, cioè l'altezza complessiva degli scaffali.

Libri	Larghezza	Altezza
1	10	2
2	22	10
3	20	10
4	5	10
5	8	8
6	7	12
7	15	18
8	11	9
9	9	15
10	10	13
11	7	8
12	9	7
13	12	7
14	5	10
15	6	5

Il tempo di risoluzione di questo problema dipende in maniera significativa dal numero di scaffali a disposizione.

- A) Si risolva prima il problema con il numero massimo di scaffali che è ragionevole considerare (lo si determina in maniera intuitiva). S'indichi il tempo che è stato necessario per raggiungere la soluzione ottima. Se dopo 60 secondi tale soluzione ottima non è stata ottenuta, si indichi il gap, il best bound e la migliore soluzione ottenuta fino a quel momento
- B) Si risolva il problema con il numero minimo di scaffali che è necessario considerare, determinando tale numero con un opportuno problema di ottimizzazione.

Il punto A e il punto B siano risolti in due file .mos distinti.

Al punto B potrebbe essere necessario utilizzare la funzione 'floor(r:real):integer' che restituisce la parte intera inferiore del numero reale 'r'.