Probabilità e Statistica (Informatica) 2021/22	Nome:
Prova scritta	Cognome:
7 febbraio 2022	Matricola:

Esercizio 1. Sia X una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$. Nei seguenti tre casi si determinino media e varianza di X (se esistono in \mathbb{R}):

- (i) X è assolutamente continua con densità data da $f_X(x) \doteq \frac{1}{2} \cdot \mathbf{1}_{[-4,-3)}(x) + \frac{1}{2} \cdot \mathbf{1}_{[3,4)}(x), x \in \mathbb{R};$
- (ii) X ha funzione di ripartizione F_X data da $F_X(x) \doteq \sin(x) \cdot \mathbf{1}_{[0,\pi/2)}(x) + \mathbf{1}_{[\pi/2,\infty)}(x), x \in \mathbb{R};$
- (iii) $X = \exp(Z)$ per una variabile aleatoria Z uniforme continua su (0,2).

Esercizio 2. Sia $(X_i)_{i\in\mathbb{N}}$ una successione definita su $(\Omega, \mathcal{F}, \mathbf{P})$ di variabili aleatorie *indipendenti ed identicamente distribuite* con comune distribuzione esponenziale di parametro $\lambda > 0$. Per $n \in \mathbb{N}$, poniamo

$$M_n(\omega) \doteq \min_{i \in \{1, \dots, n\}} X_i(\omega), \quad \omega \in \Omega.$$

Indichiamo con F_n la funzione di ripartizione di M_n . Nota: F_1 coincide con la funzione di ripartizione della distribuzione esponenziale di parametro λ .

- (i) Per $x \in \mathbb{R}$, $n \in \mathbb{N}$, si esprima $\mathbf{P}(X_1 > x, \dots, X_n > x)$ in termini di F_1 .
- (ii) Si calcoli F_n per ogni $n \in \mathbb{N}$.
- (iii) Si mostri che, per $x \in \mathbb{R} \setminus \{0\}$, $F_n(x) \to \mathbf{1}_{[0,\infty)}(x)$ per $n \to \infty$, e si concluda che $(M_n)_{n \in \mathbb{N}}$ converge in distribuzione.

Esercizio 3. Siano $X_1, X_2, \ldots, X_{800}$ variabili aleatorie indipendenti ed identicamente distribuite su $(\Omega, \mathcal{F}, \mathbf{P})$ con comune distribuzione di Bernoulli di parametro 1/400. Poniamo

$$S(\omega) \doteq \sum_{i=1}^{800} X_i(\omega), \ \omega \in \Omega, \quad N \doteq \min \{ n \in \mathbb{N} : \mathbf{P}(S \le n) \ge 0.99 \}.$$

Sia dia una stima per N in tre modi diversi, usando

- a) la disuguaglianza di Chebyshev;
- b) l'approssimazione normale;
- c) l'approssimazione di Poisson (legge dei piccoli numeri).

Esercizio 4. Per $N \in \mathbb{N}$, poniamo $\Omega_N \doteq \{1, \dots, N\}$, e indichiamo con \mathbf{P}_N la distribuzione uniforme discreta su Ω_N . Si trovino $N \in \mathbb{N}$ e una variabile aleatoria Y definita su (Ω_N, \mathbf{P}_N) tali che

$$\mathbf{P}_{N}(Y=1) = 0.12,$$
 $\mathbf{P}_{N}(Y=0) = 0.88.$