Mass, Momentum and Energy Transfer in Energy Systems

-NUCL 551-

M. Ishii

Sept.16th, 2014

1. Closure of Equation Systems

Balance equations (Mass Momentum & Energy) not sufficient to close the math system

Unknowns: Mass
$$\rho, \vec{v}$$
 Momentum p, τ, \vec{g} 8
Energy u, \vec{q}, \dot{q} 3

- 1) The balance equation should be supplemented by various constitutive relations
- 2) The constitutive relations should
 - Model material responses observed in experiments
 - Not to violate any physical laws
 - Have reasonably simple mathematical form
 - Fit to certain practical idealizations

- 2. Second Law of Thermodynamics
 - Most Important Physical Law outside of Conservation Equations
 - Existence of Entropy s• Temperature T
 - 2nd Law for all materials and processes

$$\frac{d}{dt} \int_{V_m} \rho s dV + \iint_{S_m} \frac{\vec{q}}{T_{\downarrow}} \cdot n dS - \int_{V_m} \frac{\dot{q}}{T_{\downarrow}} dV \ge 0$$

Entropy flux Entropy source

 V_m ; fixed mass volume

Use Reynolds Transport Theorem

$$\left[\frac{\partial}{\partial t} \rho s + \nabla \cdot (\rho s \vec{v}) + \nabla \cdot \left(\frac{\dot{q}}{T} \right) - \frac{\dot{q}}{T} \equiv \Delta \ge 0 \right] \tag{1}$$

 Δ ; entropy production

= ; reversible system

>; irreversible system

- In this form the physical meaning is not clear because the relation between s, T and other variables are not given yet. (Constitutive relations are not given yet).
- Entropy Inequality——> Restriction on Constitutive Laws
- Formulation of Constitutive Relation

General guidelines

Entropy Inequality
Determinism
Frame Indifference
Local Action

- ✓ Present state can be determined from the past history
- ✓ Material response independent of observer
- ✓ Material responses locally affected (no long range interactions)
- 2nd Law Restrictions (Practically)

Heat should not flow against the temperature gradient.

Frictional force acts against the motion.

3. Type of Constitutive Relations

Equation of State
$$\rho, s, u, p, T$$

Mechanical Constitutive Equation τ, \vec{g}

Thermal Constitutive Equation \vec{q}, \dot{q}

By introducing T, $s \longrightarrow 10$ unknowns

$$\begin{array}{c}
\rho, \vec{v} \\
p, \tau, \vec{g} \\
u, \vec{q}, \dot{q}
\end{array} + T, s \qquad \Longrightarrow (10)$$

$$\begin{cases}
3 \text{ Balance Equations} \\
7 \text{ Relations}
\end{cases}$$

$$\begin{cases}
\tau, \vec{g} \\
\vec{q}, \dot{q} \\
s(u, \rho)
\end{cases}$$

Thermodynamic Definition of T and p

4. Equation of State

Fundamental Equation of State
 (for thermodynamically homogeneous material)

$$u = u(s, \rho) \tag{2}$$

$$T \equiv \frac{\partial u}{\partial s} \bigg|_{\rho} \qquad ; \text{ temperature} \qquad (3)$$

$$p = -\frac{\partial u}{\partial \left(\frac{1}{\rho}\right)} \quad ; \text{ thermoldynamic pressure} \tag{4}$$

Thus
$$du = Tds - pd \begin{pmatrix} 1/\rho \end{pmatrix}$$

$$g = u - Ts + \frac{p}{\rho} = g(T, p)$$

$$i = u + \frac{p}{\rho} = i(s, p)$$

Helmholtz free energy

$$f = u - Ts = f(T, p) \text{ or } f(s, \rho)$$

- Anyone of them ———>fundamental equation of state
- Legendre transformation \longrightarrow Change of variable to its 1st derivative
- Practical Form of Equation of State

Use of 1st order derivatives

Replace 1 Fundamental Equation of State by Caloric Equation of State (Equivalent)

$$p = p(\rho, T)$$
 Thermal Equation of State

(6)

$$u = u(\rho, T)$$
 Caloric Equation of State

• Example

a) Incompressible fluid

$$\rho$$
 = constant $u = u(T)$

b) Ideal gas

$$p = RT\rho$$

$$u = u(T)$$

- 5. Mechanical Constitutive Relation (Chapter 1)
 - a) Inviscid Fluid

$$\tau = 0$$

b) Linearly Viscous Fluid

$$\frac{F}{A} = \mu \frac{V}{Y}$$

$$\tau_{yx} = -\mu \frac{dv_x}{dy}$$

$$\mu; \text{ viscosity}$$

$$v_x; x\text{-direction velocity}$$

 $\begin{array}{c}
v=0\\
Y\\
V=V\\
\text{force } F
\end{array}$

x component shear stress acting on y direction surface

I. | Force ~ Velocity Gradient (Linear)

Newton's Law of Viscosity

II. $y \approx 0$ fluid acquires a certain amount of x-momentum

 $y \approx \delta$ This fluid impacts some of its momentum to the adjacent layer

Hence x-direction momentum is transmitted through the fluid in the y-

direction

 τ_{yx} ; viscous flux of x-momentum in the y-direction viscous momentum flux; in the direction of negative velocity gradient (momentum goes from high to low velocity region)

Velocity gradient; driving force for viscous momentum transport

Note: Similarity between

> viscous force (Newton's Law)

$$\tau_{yx} = -\mu \frac{dv_x}{dy}$$

> heat flux (Fourier Law)

$$q_{y} = -k \frac{dT}{dy}$$

$$q_y = -k \frac{dT}{dt}$$

$$J_{ky} = -\rho D_k \frac{dw_k}{dy}$$

$$v_x$$
; velocity

 μ ; viscosity

T; temperature

k; thermal conductivity

 w_{k} ; mass fraction

D; diffusion coefficient

All these are linear constitutive laws

Very accurately model physics in most materials

Flux	heat flux	vis. momentum flux	mass flux
Driving head	temp. grad.	vel. grad.	mass fraction grad.

• Generalization; Linearly Viscous Fluid of Navier-Stokes

$$\tau = -\mu \left[\nabla \vec{v} + (\nabla \vec{v})^{+} \right] + \left(\frac{2}{3} \mu - \mu' \right) (\nabla \cdot \vec{v}) I$$

$$\mu'; \text{ bulk viscosity}$$
Compressible effect

• However for most application, Newton's viscosity law is sufficient(in 3-D form)

$$\tau = -\mu \left[\nabla \vec{v} + (\nabla \vec{v})^{+} \right]$$
Stress Tensor is Symmetric

No need of angular momentum equation

c) Body Force Field $\vec{g} = \text{constant}$ (Newtonian gravitational field)

Electrostatic more complicated Electromagnetic magneto hydrodynamics gas dynamics plasma physics