PRESERVAÇÃO DE SUCO DE UVA POR ALTA PRESSÃO ISOSTÁTICA

Larissa Da Fré¹, Luciano Lucchetta¹, Alexandre da Trindade Alfaro¹, Fabiane Picinin de Castro Cislaghi¹, Tahis Regina Baú^{1,2}

¹Programa de Pós-Graduação Multicampi em Tecnologia de Alimentos (PPGTAL-FB/LD),
Universidade Tecnológica Federal do Paraná, Brasil.; ²Instituto Federal de Santa Catarina, São
Miguel do Oeste – SC. E-mail: larissa.2024@alunos.utfpr.edu.br

A alta pressão isostática pode reduzir significativamente a contagem de microrganismos deteriorantes e patogênicos em suco de uva, sem promover alterações significativas nas principais características físico-químicas da bebida.

INTRODUÇÃO

Os sucos de uva são bastante populares na mesa do brasileiro devido às suas características sensoriais e nutricionais. A produção nacional registrou um aumento de 7,8% entre os anos de 2022 e 2023, totalizando 38.216.760,58 litros (AZEVEDO, 2023). Este produto, ainda que seja naturalmente composto por vários tipos de ácidos e compostos antimicrobianos, pode ser suscetível a alterações microbiológicas. Assim, é importante o emprego de tecnologias de processamento que reduzam a carga microbiana, visando garantir a sua durabilidade e a segurança do consumidor.

Os consumidores cada vez mais buscam por alimentos frescos, uma vez que associam estas características a maiores benefícios funcionais e nutricionais. Neste contexto, tecnologias alternativas ao tratamento térmico para redução da carga microbiana podem ser interessantes, visando manter as características sensoriais do produto. A alta pressão isostática (*High Pressure Processing* - HPP) é uma tecnologia não térmica, cuja utilização iniciou no final do século XIX (Hite, 1899), e vem sendo cada vez mais utilizada pela indústria de alimentos para garantir a segurança e prolongar a vida útil de uma ampla variedade de produtos, incluindo carnes, peixes, sucos de frutas e produtos vegetais.

Considerando o potencial de uso de HPP na indústria processadora de sucos, o objetivo deste trabalho é apresentar os principais resultados de estudos com aplicação de HPP em sucos de uva, demonstrando seu potencial de redução da carga microbiana e manutenção das características físico-químicas destas bebidas.

ALTA PRESSÃO ISOSTÁTICA EM SUCOS DE UVA

Princípio do método

O equipamento responsável pela aplicação de HPP consiste em uma câmara de tratamento, dentro da qual são acondicionados os alimentos embalados a vácuo em um filme ou em garrafa flexível. Posteriormente, a câmara é preenchida de líquido (geralmente água em temperatura ambiente ou préresfriada), que é responsável por transferir a pressão de modo simultâneo e uniforme em todos os pontos do alimento. Comercialmente estão disponíveis equipamentos para uso de HPP em alimentos não embalados, entretanto, a forma mais comum na indústria de alimentos é aplicação em produtos embalados em recipientes apropriados e flexíveis (Figura 1). Durante o processo, a alta pressão faz com que ocorra o aquecimento adiabático, promovendo aumento de cerca de 3°C da temperatura da água a cada 100 MPa aplicado. Considerando que no processamento industrial geralmente é empregado 600 MPa, é esperado um pequeno aumento na temperatura dos alimentos durante a aplicação da HPP (Morales *et al.*, 2019). Por fim, ocorre uma despressurização gradual e os alimentos são retirados, estando prontos para comercialização.

Figura 1. Esquema geral da aplicação de HPP em sucos de frutas.

Fonte: Autoria própria (2024).

Visando atingir a finalidade do processo, podem ser regulados a temperatura, tempo e pressão durante o tratamento. Estes parâmetros precisam considerar as características intrínsecas do alimento, possíveis impactos nas suas propriedades tecnológicas e limitações do equipamento utilizado. A alta pressão pode afetar ligações químicas dos componentes alimentares, causar desnaturação enzimática e alterações irreversíveis da membrana celular de microrganismos.

Aplicação em sucos de uva

Ainda que os efeitos da aplicação de HPP em sucos de frutas sejam variáveis em função das características do substrato e dos parâmetros de processamento, este método tem sido promissor por inativar microrganismos vegetativos e patogênicos e desnaturar enzimas que podem deteriorar sucos durante o armazenamento. O uso em suco de uva tem sido efetivo na redução de contaminantes

microbiológicos, especialmente de patogênicos como *Escherichia coli* O157:H7, *Salmonella enterica* e *Listeria monocytogenes* (Quadro 1) (Petrus; Churey e Worobo, 2019; Cheng *et al.*, 2023). Além disso, até o momento não há indícios de que ocorram alterações físico-químicas e no teor de compostos bioativos destes produtos. A HPP não requer o uso de calor, entretanto, o uso combinado com tratamento térmico ou com tecnologias como o campo elétrico pulsado pode ser uma estratégia para aumentar a eficiência do processo. O pré-tratamento com campo elétrico pulsado, antes da aplicação de HPP, pode facilitar a extração de compostos bioativos devido a eletroporação da membrana celular, promovendo aumento no teor de compostos fenólicos totais, antocianinas e demais compostos com atividade antioxidante (Li; Padilla-Zakour, 2024).

Quadro 1. Estudos sobre a aplicação de HPP em sucos de uva.

Matriz	Parâmetros utilizados	Principais achados	Referência
Uva Tinta	Pressão: 600 MPa Tempo: 3 min Temperatura: 5°C	Redução de quase 2 log de bactérias mesófilas aeróbias e de bolores e leveduras. O pré-tratamento com campo elétrico pulsado conferiu maior conteúdo fenólico, teor de antocianinas e atividade antioxidante no suco. Os resultados do uso de HPP foi similar ao da amostra controle para estes parâmetros.	Li; Padilla- Zakour (2024).
	Pressão: 400 MPa Tempo: 2 min	Redução de pelo menos 5 log de Escherichia coli 0157:H7, Salmonella enterica e Listeria monocytogenes.	Petrus; Churey; Worobo (2019).
Uva branca	Pressão: 600 Mpa Tempo: 3 min Temperatura: 20 a 38°C	Reduziu significativamente as contagens de bactérias aeróbias, coliformes e leveduras e bolores. No vigésimo dia de armazenamento, o suco tratado com HPP não apresentou diferenças significativas em comparação com o suco fresco em termos de propriedades físico-químicas, como acidez titulável, pH e sólidos solúveis, e reteve menos de 50% das atividades de PPO e POD.	Chang <i>et al</i> . (2017).
	Pressão: 550 MPa Tempo: 1 min Temperatura: 5 °C Outras condições: pH ajustado para 4,0, 4,5 e 5,0, com diferentes ácidos.	Redução superior a 5 log de Escherichia coli O157:H7, Salmonella entérica e inativação total de Listeria monocytogenes imediatamente após aplicação. A eficácia do HPP mostrou ser dependendo do pH do produto e do patógeno.	Cheng et al. (2023).

Fonte: Autoria própria (2024).

O uso de HPP em sucos de uva pode estabilizar o teor de compostos bioativos e atividade antioxidante (Li; Padilla-Zakour, 2024), obtendo bebidas com benefícios significativos para a saúde. Apesar de ser uma tecnologia cujo uso está em ascensão, seu elevado custo, demanda de espaço, modo de operação em lote e disponibilidade de embalagens estão entre os principais limitadores para sua

expansão na indústria de alimentos. Para que seu uso atenda a finalidade pretendida, é necessário avaliar previamente as condições de processamento que assegurem a estabilidade microbiológica, sem alterações significativas nas propriedades nutritivas, físico-químicas, funcionais e sensoriais dos sucos de uva.

CONSIDERAÇÕES FINAIS

A alta pressão isostática (HPP) surge como uma tecnologia promissora para a preservação de sucos de uva, atendendo à demanda dos consumidores por alimentos frescos e nutritivos. Este método não térmico mostrou-se eficaz na redução da carga microbiana, inativando patógenos como *Escherichia coli, Salmonella enterica* e *Listeria monocytogenes*, sem comprometer as características físico-químicas e bioativas dos sucos. Além disso, a combinação com outras tecnologias, como o campo elétrico pulsado, pode potencializar a extração de compostos fenólicos, elevando o teor de antocianinas e a atividade antioxidante.

Deve-se considerar que apesar de ser uma tecnologia promissora, as atuais condições de aplicação ainda apresentam custos elevados, necessidade de espaço e operações em lote, além da exigência de embalagens específicas. Portanto, é crucial avaliar cuidadosamente as condições de processamento para garantir a estabilidade microbiológica e manter as propriedades nutricionais e sensoriais desejadas.

Desse modo, considerando o crescimento da produção nacional de sucos de uva, a aplicação da HPP poderá contribuir significativamente para a segurança e qualidade desses produtos, beneficiando tanto a indústria quanto os consumidores.

REFERÊNCIAS

AZEVEDO, G. Suco de uva e espumantes têm aumento de produção na safra 2023. Disponível em:

https://www.canalrural.com.br/nacional/rio-grande-do-sul/suco-de-uva-e-espumantes-registram-aumento-na-safra-2023/. Acesso em: 07 jun. 2024.

CHANG, Yin-Hsuan *et al.* Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice. **Journal of the Science of Food and Agriculture**, v. 97, n. 10, p. 3166-3172, 2017.

CHENG, R. M.; USAGA, J.; WOROBO, R. W. Foodborne pathogen inactivation in fruit juices utilizing commercial scale high-pressure processing: Effects of acidulants and pH. **Food Science and Technology International**, p. 10820132231219525, 2023.

HITE, B. H. The effect of pressure in the preservation of milk: a preliminary report. West Virginia **Agricultural and Forestry Experiment Station Bulletins**. 58. pp. 15-35, 1899.

LI, Y.; PADILLA-ZAKOUR, O.I. Evaluation of pulsed electric field and high-pressure processing on the overall quality of refrigerated Concord grape juice. LWT- Food Science and Technology, v. 198, p. 116002, 2024.

MORALES, DE.L.P.M.; WELTI-CHANES, J.; MARTÍN-BELLOSO, O. Novel technologies to improve food safety and quality. **Current Opinion in Food Science**, v. 30, p. 1-7, 2019.

PETRUS, R.; CHUREY, J.; WOROBO, R. Searching for high pressure processing parameters for *Escherichia coli* O157: H7, *Salmonella enterica* and *Listeria monocytogenes* reduction in Concord grape juice. **British Food Journal**, v. 122, n. 1, p. 170-180, 2020.

