W(n) for Binary Search

Let say array of size 15 has following elements:

Elements	1	2	3	4	5	6	7	8	9	 15
\downarrow		\downarrow								
pass	4	3	4	2	4	3	4	1		

For the lower half:

Pass(es)	Elements
1	1
2	1
3	2
4	4

For a complete array:

Pass	Total element	Array Size (n)
1	$1x1 = 1 = 2^0$	20
2	$1x2 = 2 = 2^1$	$2^0 + 2^1$
3	$2x3 = 4 = 2^2$	$2^0 + 2^1 + 2^2$
4	$4x2 = 8 = 2^3$	$2^0 + 2^1 + 2^2 + 2^3$
i	2^{i-1}	$2^0 + 2^1 + \dots + 2^{i-1} = 2^i - 1$

$$2^{i} - 1 = n$$
$$\log_{2}(2^{i}) = n + 1$$
$$i = \log_{2}(n + 1)$$

Test some values:

Array Size (n)	$i = \log_2(n+1) = W(n)$
7	3
15	4
1023	10
1048576	20
15	4
<mark>16</mark>	<mark>4.0875</mark>
<mark>19</mark>	<mark>4.3219</mark>
<mark>29</mark>	<mark>4.9069</mark>
31	5

Let's test some values again:

Array Size (n)	$i = \log_2(n+1) = W(n)$	$i = \lceil \log_2(n+1) \rceil = W(n)$
7	3	3
15	4	4
1023	10	10
1048575	20	20
15	4	4
<mark>16</mark>	<mark>4.0875</mark>	<mark>5</mark>
<mark>19</mark>	<mark>4.3219</mark>	<mark>5</mark>
<mark>29</mark>	<mark>4.9069</mark>	<u>5</u>
31	5	5

For simplicity we can use $i = \log_2(n)$.