The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. One approach popular for requirements analysis is Use Case analysis. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. It is very difficult to determine what are the most popular modern programming languages. However, readability is more than just programming style. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. However, readability is more than just programming style. Ideally, the programming language best suited for the task at hand will be selected. Computer programmers are those who write computer software. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists.

Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Computer programmers are those who write computer software. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less guickly.