TP558 - Tópicos avançados em Machine Learning: *Melhoria da Qualidade de Mamografias:* EDSR vs Interpolação

Eylen Jhuliana Mercado Ontiveros eylen.ontiveros@gmail.com

Descrição do problema e hipótese

- O câncer de mama é a primeira causa de morte por câncer em mulheres no Brasil (INCA, 2022)
- Mamografias são a ferramenta mais eficaz para a detecção
- Portanto, ter uma alta resolução nas imagens mamográficas é essencial.

Figura 1. Taxas de mortalidade por câncer de mama, ajustadas por idade pela população mundial, por 100 mil mulheres. Brasil e Regiões, 2000 a 2021

Descricao do problema e hipótese

- Mamografias requerem a exposição á radiação ionizante
- A exposição repetida á radicação pode aumentar o risco de câncer secundário e outros efeitos adversos por serem radiossensíveis.
- Embora na maioria dos casos os benefícios da detecção precoce do câncer de mama superem esse risco.

Descrição do problema e hipótese

- A redução da dose de radiação em mamografias sem comprometer a qualidade da imagem.
- As imagens de baixa dose tendem a ter uma resolução inferior e maior ruído, o que pode dificultar a detecção precisa de anomalias
- Super-resolução baseada em aprendizado profundo emergiu como uma técnica promissora para melhorar a qualidade das imagens médicas

Metodologia

Dataset

- MIAS (Mammographic Image Analysis Society)
- Contem 322 imagens mamográficas
- Resolução de 1024x1024 pixels
- Este conjunto de dados inclui diferentes tipos de densidades mamarias

Preparação dos Dados

- Imagens foram normalizadas
- Convertidas para escala de cinza
- Resolução de 1024x1024 pixels
- Foram reduzidas em tamanho utilizando a interpolação bilinear
- Adicionado ruído gaussiano com um desvio padrao de 0.03

Modelo EDSR

- A arquitetura EDSR é composta por uma série de blocos residuais, cada um dos quais processa a imagem de entrada e aprende a reconstruir uma versão de alta resolução dela.
- Esses blocos são projetados para capturar e preservar os detalhes finos da imagem.
- Ele usa conexões de salto locais e globais para facilitar o aprendizado e realiza o dimensionamento no final da rede, permitindo que imagens de alta resolução de diferentes fatores de dimensionamento sejam reconstruídas em um único modelo.
- Para este estudo, utilizou-se a versao prétreinada com um fator de escalonamento de 2x e 4x

Figure 3: The architecture of the proposed single-scale SR network (EDSR).

Modelo EDSR

- 1) Pre-processamento: As imagens de baixa resolução são normalizadas e convertidas para formato tensorial compatível com TensorFlow.
- 2) Super-Resolução : As imagens pre-processadas são pasadas atraves do modelo EDSR para gerar versoes de alta resolução.
- 3) Pos-processamento: As imagens de alta resolução geradas são convertidas de volta para o formato de imagem e desnormalizadas para visualização

Análise dos resultados obtidos

WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Imagen 3 - PSNR: 11.28, SSIM: 0.7332

TABLE I: Valores PSNR y SSIM sim ruído para diferentes modelos

2*Modelo	Sin Ruido x2		Sin Ruido x4	
	PSNR	SSIM	PSNR	SSIM
EDSR	10.92	0.7385	9.78	0.6336
Nearest	45	0.9876	40.67	0.9694
Cubic	43.5	0.988	39.24	0.9767
Lanczos4	45.02	0.9893	39.33	0.9712
Linear	44.83	0.9903	39.33	0.9767

TABLE II: Valores PSNR y SSIM com ruído 0.03 para diferentes modelos

2*Modelo	Ruido 0.03 x2		Ruido 0.03 x4	
	PSNR	SSIM	PSNR	SSIM
EDSR	9.78	0.6339	9.66	0.5506
Nearest	32.8	0.5785	30.85	0.6012
Cubic	34.3	0.6001	32.17	0.6298
Lanczos4	34.02	0.5801	31.96	0.6091
Linear	34.97	0.653	32.67	0.6703

Conclusões

- Este estudo avaliou a eficacia do modelo EDSR em relação aos metodos de interpolação convencionais para a super-resolução de imagens mamográficas, com e sem a presença de ruído Gaussiano.
- Os resultados indicam que, embora os métodos de interpolação convencionais superem o modelo EDSR em imagens sem ruído, o modelo EDSR apresenta maior robustez e resiliencia em condiçoes de ruído.
- Concluindo, enquanto os metodos de interpolação convencionais podem ser adequados para tarefas simples de dimensionamento de imagens, o EDSR oferece uma solução mais robusta e eficiente para imagens de super-resolução em ambientes ruidosos, abrindo novas possibilidades para melhorar a qualidade das imagens mamograficas e, em ultima análise, contribuindo para a redução da dose de radiação em procedimentos de imagens medicas

Direções para trabalhos futuros

- Para explorar totalmente os recursos da EDSR, é necessário um treinamento extensivo com grandes volumes de dados de alta qualidade. O presente estudo fornece uma visão preliminar do desempenho do modelo, e pesquisas futuras devem se concentrar no treinamento e na otimização da EDSR com conjuntos de dados maiores e mais variados
- Treinamento de modelos específicos para mamografia, integrando técnicas de redução de ruído e avaliando conjuntos de dados maiores e mais diversificados. Ele também poderia ser usado como uma ferramenta de processamento em visualizadores DICOM para melhorar o diagnostico, entre muitas outras aplicações.

