Tarea 2

La presentación vence el 20 de marzo.

- 1. Escriba la ventaja y desventaja de metodo de interpolación de (a) lagrange; (b) newton; (2) polinomio ortonormal; (c) polinomio de orden superior; (e) curva hermite y (f) curva spline.
- 2. Hallar la calidad de la interpolación de la función sin(x) mediante un polinomio de grado 7 en el interval [0,1].
- 3. Hallar la calidad de la interpolación de la function $(1+x^2)^{-2}$
- 4. Realice aproximación $\int_{a}^{b} f(x)dx$ utilizando las aproximaciones polinomiales en P₂, P₃ y P₄ mediante de las reglas de Simpson, de Simpson 3/8 y de Milne.
- 5. ¿Con qué grado de exactitude podemos calcular $\sqrt{117}$ mediante interpolación polinómica para la función $y=\sqrt{x}$ si elegimos los puntos $x_0=100, x_1=121, x_2=144$? ¿Y si se eligen $x_0=100, x_1=110, x_2=120$?
- 6. Calcular $\sqrt{117}$ con ocho puntos eligidos de forma que sean las raíces del polinomio de Tchebychev en el interval [100, 200] . ¿Y si se eligen los ocho puntos de la distribución uniforme. Graficar entre [100, 200] con estos ocho ountos en ambos casos.
- 7. Clasifique cada una de las siguientes matrices como bien condicionadas o no condicionadas

(a)
$$\begin{bmatrix} 10^{10} & 0 \\ 0 & 10^{-10} \end{bmatrix}$$
 (b) $\begin{bmatrix} 10^{10} & 0 \\ 0 & 10^{10} \end{bmatrix}$ (c) $\begin{bmatrix} 10^{-10} & 0 \\ 0 & 10^{-10} \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

8. Demuestra que la siguiente matriz es singular.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$

Si b = [2 4 6]^T, ¿cuántas soluciones tiene en el Sistema?

9. En el siguiente sistema lineal, Ax = b donde,

$$A = \begin{bmatrix} 0.913 & 0.659 \\ 0.457 & 0.330 \end{bmatrix}, b = \begin{bmatrix} 0.254 \\ 0.127 \end{bmatrix}$$

¿Cuál de las siguientes soluciones aproximadas es la mejor solución?

$$(A) \begin{bmatrix} -0.0827 \\ 0.5 \end{bmatrix} \qquad (B) \begin{bmatrix} 0.999 \\ -1.001 \end{bmatrix}$$

- 10. (a) Interpolar la función $f(x) = cos(\pi x)$ en los nodos $x_1 = 0$ y $x_2 = 1$ con el polinomio de Hermite cúbico H(x). Encuentre el error absoluto de H(1/2) y H'(1/2).
- (b) Una función S(x) definida en el intervalo [a, b] es un spline de orden m si S(x) y sus todos derivados hasta el orden m -1 son continuos $(S(x) \in C^{m-1}[a,b])$ y el porción de S(x) en cada de los subintervalos $[x_k, x_{k+1}]$ es un polinomio de orden m (k=1,2,...,n-1 y $a=x_1 < x_2 < ... < x_n = b$). Cuántas condiciones de frontera son necesarias para especificar la spline de orden m que se interpola f(x) en los nodos $x_1, x_2, ..., x_n$?