Lab1 实验报告

一、 实验目的

- 1.学会在 Linux 下用虚拟机搭建一个小型的可以通信的网络拓扑。
- 2.熟悉系统的常用网络工具集合(指令:ifconfig/ping/route 软件:wireshark)。
- 3.学会利用 wireshark 抓包,熟悉观察和分析协议数据单元 PDU 的含义。

二、 网络拓扑配置

表:

节点名	虚拟设备名	ip	netmask
Router0	U-571	eth0: 192.168.3.1	255.255.255.0
		eth1: 192.168.4.3	255.255.255.0
Router1	U-572	eth0: 192.168.3.2	255.255.255.0
		eth1: 192.168.2.2	255.255.255.0
PC0	UT-576	192.168.4.1	255.255.255.0
PC1	UT-574	192.168.4.2	255.255.255.0
PC2	UT-575	192.168.2.1	255.255.255.0

冬 :

三、 路由规则配置:

	Router0			
设计	发往子网 VMnet2(192.168.2.0)的数据包, 将通过 Router1 的 eth0(192.168.3.2)			
~~	发送出去。			
	发往子网 VMnet3(192.168.3.0)的数据包, 将通过 Router0 的 eth0(192.168.3.1)			
	发送出去。			
	发往子网 VMnet4(192.168.4.0)的数据包, 将通过 Router0 的 eth1(192.168.4.3)			
	发送出去。			
命令	ifconfig eth0 192.168.3.1 netmask 255.255.255.0			
	ifconfig eth1 192.168.4.3 netmask 255.255.255.0			
	ip route add 192.168.2.0/24 via 192.168.3.2			
	ip route add 192.168.3.0/24 via 192.168.3.1			
	ip route add 192.168.4.0/24 via 192.168.4.3			
	echo 1 > /proc/sys/net/ipv4/ip_forward			
Router1				
设计	发往子网 VMnet2(192.168.2.0)的数据包, 将通过 Router1 的 eth1(192.168.2.2)			
	发送出去。			
	发往子网 VMnet3(192.168.3.0)的数据包, 将通过 Router1 的 eth0(192.168.3.2)			
	发送出去。			
	发往子网 VMnet4(192.168.4.0)的数据包, 将通过 Router0 的 eth0(192.168.3.1)			
	发送出去。			
命令	ifconfig eth0 192.168.3.2 netmask 255.255.255.0			
	ifconfig eth1 192.168.2.2 netmask 255.255.255.0			
	ip route add 192.168.2.0/24 via 192.168.2.2			
	ip route add 192.168.3.0/24 via 192.168.3.2			
	ip route add 192.168.4.0/24 via 192.168.3.1			
	echo 1 > /proc/sys/net/ipv4/ip_forward			
יתיו	PC0			
设计	将数据包发往子网 VMnet4(192.168.4.0) 中的路由器 Router0 的			
A.A.	eth1(192.168.4.3)			
命令	ifconfig eth0 192.168.4.1 netmask 255.255.255.0			
	route add default gw 192.168.4.3			
设计	PC1			
以川				
命令	eth1(192.168.4.3)			
nh 소,	ifconfig eth0 192.168.4.2 netmask 255.255.255.0 route add default gw 192.168.4.3			
	PC2			
设计	将数据包发往子网 VMnet2(192.168.2.0) 中的路由器 Router1 的			
~ "	eth1(192.168.2.2)			
命令	ifconfig eth0 192.168.2.1 netmask 255.255.255.0			
H12 X	route add default gw 192.168.2.2			
	1.0000 000000 911 20012001212			

四、 数据包截图及协议报文分析

①ping 系主页 cs.nju.edu.cn

从图中可以看出 ping 系主页使用的协议是 ICMP,发出 request 请求的时候,是源地址 192.168.197.131 到目的地址 202.119.32.7,信息的长度是 98。受到 reply 回复的时候,是源 地址 202.119.32.7 到目的地址 192.168.197.131,信息的长度也是 98。后面的 id 是该数据包

ICMP

98 Echo (ping) reply

id=0x0c98, seq=

192.168.197.131

的标识,sea 是发送的频率。

202.119.32.7

171 19.658175

▼ Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: 0

Checksum: 0xbce4 [correct]

Identifier (BE): 3224 (0x0c98)

Identifier (LE): 38924 (0x980c)

Sequence number (BE): 10 (0x000a)

Sequence number (LE): 2560 (0x0a00)

[Response In: 171]

```
▶ Frame 171: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
▶ Ethernet II, Src: Vmware_eb:9b:65 (00:50:56:eb:9b:65), Dst: Vmware_d8:
▶ Internet Protocol Version 4, Src: 202.119.32.7 (202.119.32.7), Dst: 19
▼ Internet Control Message Protocol
    Type: 0 (Echo (ping) reply)
    Code: 0
    Checksum: 0xc4e4 [correct]
    Identifier (BE): 3224 (0x0c98)
    Identifier (LE): 38924 (0x980c)
    Sequence number (BE): 10 (0x000a)
    Sequence number (LE): 2560 (0x0a00)
    [Response To: 170]
    [Response Time: 2.968 ms]
▶ Data (56 bytes)
```

Type 的值指示了是 request 还是 reply, request 是 8,而 reply 是 0。下面的 response in 是指向请求目的地的数据包标号 171, 相应地 response to 是指向回复目的地的数据包标号 170, 他们之间应该是成对的关系。

②浏览器打开 www.nju.edu.cn

可以看出,在浏览器中打开网页,使用的全部是 HTTP 和 TCP 协议。和 ping 系主页不同的是,这里的互相的通信并不是成对出现,两边的通信是不对等的,而且可以看出使用浏览器,数据包的发送量会增加很多。

这里选取 HTTP 协议进行分析。

```
Frame 1625: 472 bytes on wire (3776 bits), 472 bytes captured (3776 bits)
Ethernet II, Src: Vmware_d8:7c:a6 (00:0c:29:d8:7c:a6), Dst: Vmware_eb:9b:65 (00:50:56:eb:9b:65)
Internet Protocol Version 4, Src: 192.168.197.132 (192.168.197.132), Dst: 182.61.248.48 (182.61.248.48)
Transmission Control Protocol, Src Port: 49368 (49368), Dst Port: http (80), Seq: 1, Ack: 1, Len: 418
Hypertext Transfer Protocol
▶ GET /static/api/js/view/select view.js?v=14bb0f0f.js HTTP/1.1\r\n
 Host: bdimg.share.baidu.com\r\n
 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0\r\n
 Accept: */*\r\n
 Accept-Language: en-us,en;q=0.5\r\n
 Accept-Encoding: gzip, deflate\r\n
 Connection: keep-alive\r\n
 Cookie: BAIDUID=9BE2E234BD3AAC79A3A9CD339E915C23:FG=1\r\n
 If-Modified-Since: Mon, 28 Sep 2015 08:06:42 GMT\r\n
 If-None-Match: "3775481591"\r\n
 [Full request URI: http://bdimg.share.baidu.com/static/api/js/view/select view.js?v=14bb0f0f.js]
```

从协议的内容来看,HTTP 协议主要用来获取网页的 URL 中的终端(Host),代理(User-Agent),可以使用的语言和编码(Accept-Language 和 Accept-Encoding)以及其他与网页配置有关的信息。