Лекция 10 Макроструктура вычислительных системах

Ефимов Александр Владимирович E-mail: alexander.v.efimov@sibguti.ru

Курс «Архитектура вычислительных систем» СибГУТИ, 2018

Модель коллектива вычислителей

Архитектура ВС основывается на структурной и функциональной имитации коллектива людейвычислителей

$$S = \langle H, A \rangle$$

H — конструкция

A – алгоритм работы коллектива вычислителей.

 $C = \{c_i\}$ — множество вычислителей c_i , i = 0, N-1

N – мощность множества C

G — описание макроструктуры коллектива вычислителей, т.е. структуры сети связей между вычислителями $c_i \in C$ (или структура коллектива)

(Макро)структура коллектива вычислителей представляется графом G, вершинам (узлам) которого сопоставлены вычислители $c_i \in C$, а ребрам — линии связи между ними

Нульмерные структуры

>Одномерные структуры

> Двумерные структуры

Увеличение размерности структуры повышает структурную надёжность ВС

> Гиперкубы (структуры в виде булевых *п*-мерных кубов)

$$n = \log_2 N$$

N — количество вершин n — число ребер, выходящих из вершины (размерность)

Максимальное расстояние (число ребер) между двумя вершинами совпадает с размерностью гиперкуба

$$N = 16, n = 4, 4D - \kappa y \delta$$

Характе- ристика	Тип структуры ВС								
	Полный граф	Линейка	Кольцо	2D- решетка	2D-тор	Гиперкуб			
Диаметр	1	N-1	[N/2]	$2(\sqrt{N}-1)$	$2[\sqrt{N}/2]$	log_2N			
Кол-во рёбер	N(N-1)/2	N-1	N	$2(N-\sqrt{N})$	2 <i>N</i>	$(N\log_2 N)/2$			

Диаметр – максимальное расстояние (число ребер) между двумя вершинами, определяемое на множестве кратчайших путей

Требования, предъявляемые к структурам ВС

✓ Простота вложения параллельного алгоритма решения сложной задачи в структуру ВС

Структура ВС должна быть адекватна достаточно широкому классу решаемых задач; настройка проблемно-ориентированных виртуальных конфигураций и реализация основных схем обмена информацией между ЭМ не должны быть связаны со значительными накладными расходами

✓ Удобство адресации элементарных машин и «переноса» подсистем в пределах ВС

Вычислительная система должна предоставлять возможность пользователям создавать параллельные программы с виртуальными адресами ЭМ. Следовательно, структура ВС должна позволять реализовать простейший «механизм» преобразования виртуальных адресов ЭМ в реальные (физические) адреса машин ВС

Требования, предъявляемые к структурам ВС

- ✓ Осуществимость принципа близкодействия и минимума задержек при межмашинных передачах информации в ВС
 - Принцип близкодействия предопределяет реализацию обменов информацией между «удалёнными» друг от друга ЭМ через промежуточные машины системы. Следовательно, в условиях ограниченности числа связей у каждой ЭМ структура должна обеспечивать минимум задержек при «транзитных» передачах информации
- ✓ Масштабируемость и большемасштабность структуры ВС Для формирования конфигураций ВС с заданной эффективностью требуется, чтобы структура обладала способностью к наращиванию и сокращению числа вершин (машин). Изменение числа ЭМ в ВС не должно приводить к коренным перекоммутациям между машинами и (или) к необходимости изменения числа связей для любых ЭМ

Требования, предъявляемые к структурам ВС

√ Коммутируемость структуры ВС

ВС должна быть приспособлена к реализации групповых межмашинных обменов информацией. Следовательно, структура ВС должна обладать способностью осуществлять заданное число одновременных непересекающихся взаимодействий между элементарными машинами

- ✓ Живучесть структуры ВС
 Важным требованием к ВС в целом является обеспечение работоспособности при отказе её компонентов или даже подсистем
- ✓ Технологичность структур ВС

Структура сети межмашинных связей ВС не должна предъявлять особых требований к элементной базе, к технологии изготовления микропроцессорных БИС. Системы должны быть восприимчивы к массовой технологии, их «вычислительное ядро» должно формироваться из массовых микропроцессорных БИС. Последнее позволит достичь приемлемых значений технико-экономических показателей ВС

Анализ путей удовлетворения перечисленным требованиям приводит к безальтернативному выбору *однородных* (или регулярных, т.е. описываемых однородными графами) структур для формирования вычислительных систем

Структурные характеристики ВС

 Диаметр структуры - максимальное расстояние, определённое на множестве кратчайших путей между парами вершин структуры ВС

$$d = \max_{i,j} \{d_{ij}\}$$

Средний диаметр структуры

$$\overline{d} = (N-1)^{-1} \sum_{l=1}^{d} l \cdot n_l$$

- d_{ij} расстояние, т.е. минимальное число рёбер, образующих путь из вершины i в вершину j ; $i,j\in\{0,1,...,N-1\}$;
- n_I число вершин, находящихся на расстоянии I от любой выделенной вершины (однородного) графа G.

Структурные характеристики ВС

Структурная коммутируемость ВС

$$\mathcal{K}(G, s, s') = {\mathcal{K}_h(G, s, s')}, h \in {1,2,..., [N/2]}$$

- $\mathcal{K}_h(G,s,s')$ вероятность реализации в системе при заданных структуре G и коэффициентах готовности s и s' соответственно одной ЭМ и линии связи h одновременных непересекающихся межмашинных взаимодействий
 - Структурная живучесть ВС

$$\mathcal{L}(G, s, s') = {\mathcal{L}_r(G, s, s')}, \quad r \in E_2^N = {2,3,..., N}$$

 $\mathcal{L}_r(G,s,s')$ - вероятность существования подсистемы ранга r (т.е. подмножества из r работоспособных ЭМ, связность которых устанавливается через работоспособные линии связи) при заданных структуре G, коэффициентах готовности s и s' элементарной машины и линии связи соответственно

Перспективные структуры ВС

 \succ Циркулянтные структуры (D_n -графы)

```
D_n-граф или циркулянтная структура есть граф G вида:
{N; ω_1, ω_2, ..., ω_n}, в котором:
N – число вершин или порядок графа;
вершины помечены целыми числами i по модулю N, следовательно,
i \in \{0, 1, ..., N-1\};
вершина і соединена ребром (или является смежной) с вершинами
i \pm \omega_1, i \pm \omega_2, ..., i \pm \omega_n (mod N);
\{\omega_{1}, \, \omega_{2}, \, ..., \, \omega_{n} \,\} — множество целых чисел, называемых
образующими, таких, что 0 < \omega_1 < \omega_2 < ... < \omega_n < (N+1) / 2, а для чисел
N; \omega_1, \omega_2, ..., \omega_n наибольшим общим делителем является 1;
n — размерность графа;
2n — степень вершины в графе.
```

 D_2 -граф или двумерный циркулянт вида: $\{12;3,4\}$

ightharpoonup Циркулянтные структуры {N; 1, ω_2 } широко внедрены в практику вычислительных систем (матричные BC)

 D_2 -граф: $\{15;1,4\}$: а) – двумерная матрица, б) – хордовое кольцо

- ✓ Целые числа $i \in \{0, 1, 2, ..., N-1\}$, отмечающие вершины D_n -графа, называют adpecamu.
- ✓ Адресация вершин в таких структурах называется диофантовой (в честь древнегреческого математика из Александрии Диофанта, Diophantos, 3 в.).
- ✓ В циркулянтных структурах при полном переносе какой-либо подструктуры (всех вершин подструктуры на одно и то же расстояние в одном из направлений) сохраняются все её свойства и адресация вершин.
- ✓ Следовательно, при диофантовой адресации элементарных машин ВС можно простыми средствами реконфигурации осуществить виртуальную адресацию вершин-машин и, следовательно,
 - 1) создавать отказоустойчивые параллельные программы,
 - 2) реализовывать мультипрограммные режимы обработки информации,
 - 3) исключать отказавшие вершины-машины из подсистем, а значит обеспечить живучесть ВС.

Реконфигурация сводится к изменению адресов α у всех машин подсистемы

$$\alpha := [\alpha + (j-i)] \mod N, \quad \alpha \in \{0,1,...,N-1\}$$

i – номер ЭМ, исключаемой из подсистемы

j – номер машины, включаемый в подсистему

$$i, j \in \{0, 1, ..., N-1\}.$$

$\Lambda(N, v, g)$ -графы

- Структуры ВС, допускающих масштабирование (изменение числа машин)
 без коренной перекоммутации уже имеющихся межмашинных связей
- \nearrow Л(N, v, g)-граф это неориентированный однородный граф с числом и степенями вершин соответственно N и v и значением обхвата g
- Каждая вершина при v ≥ 3 входит в не менее v кратчайших простых циклов длиной g (длина кратчайшего цикл в графе называется обхватом)
- ightharpoonup При $v = 2 \Pi(N, v, g)$ -граф является простым циклом с N вершинами

Фрагменты L(N, v, g)-графов:

a)
$$-v = 4$$
, $g = 4$; 6) $-v = 3$, $g = 6$

Анализ и синтез структур ВС

- Расчёт значений структурных показателей ВС
- Получение аналитических выражений для координат векторфункций структурной коммутируемости ВС и структурной живучести является сложной задачей, разрешимой лишь для частных случаев. Рабочий метод расчёта этих показателей статистическое моделирование
- Проблема синтеза структур заключается в поиске таких графов G*, которые бы делали реальные (физические) конфигурации ВС максимально приспособленными для программирования (виртуальных) конфигураций

Постановка задачи синтеза структур ВС

Найти структуру *G**, которая обеспечивала бы максимум координаты вектор-функции структурной живучести

$$\max_{G} \mathcal{L}_r(G, s, s') = \mathcal{L}_r(G^*) \tag{1}$$

при заданных значениях N, r, v, s, s'.

- Структура G*, для которой выполняется (1), называется оптимальной.
- Проблема синтеза оптимальных структур большемасштабных ВС относится к сложным проблемам, она практически решается при помощи статистического моделирования (методом Монте-Карло) и, следовательно, с использованием мощных вычислительных средств

Оптимальные структуры ВС

- ▶ Трудоёмкость поиска G* можно заметно снизить, если воспользоваться двумя нижеприведенными гипотезами.
- **Гипотеза 1.** Структура G^* , при которой достигается $\mathcal{L}_N(G^*)$ максимум живучести ВС, обеспечивает и $\mathcal{L}_r(G^*)$ максимум живучести подсистем ранга r < N.
- **Гипотеза 2.** Структура с минимальным (средним) диаметром относится к *G**, т.е. обладает максимальной структурной живучестью.
- Справедливость гипотез подтверждена результатами статистического моделирования структур ВС. Эти гипотезы были высказаны В.Г. Хорошевским в 1970-х годах

Оптимальные структуры ВС

- *Оптимальными* будем называть структуры *G*,* имеющие при заданных порядке *N* и степени *v* вершин минимальный диаметр.
- Создание общего алгоритма синтеза оптимальных структур является сложной задачей. Существуют алгоритмы синтеза для конкретных классов графов.
- Для целей практики созданы и пополняются каталоги оптимальных структур.

Фрагмент каталога оптимальных D_n -графов

$D_{\scriptscriptstyle n}$ -граф	N	$\omega_{_{\mathrm{l}}}$	ω_2	ω_3	ω_4	$\omega_{\scriptscriptstyle 5}$
	16	1	6			
D_{2} -граф	32	1	7			
	64	1	14			
	128	1	15			
	256	1	92			
D made	16	1	2	6		
D_3 -граф	32	1	4	10		
	50	1	8	12		
	2048	37	116	202		
		48	407	615		
		349	3 90	686		
D. Frach	16	1	2	3	4	
$D_{\!\scriptscriptstyle 4}$ -граф	32	1	2	8	13	
	64	1	4	10	17	
$D_{\scriptscriptstyle 5}$ -граф	16	1	2	3	4	5
	32	1	2	3	4	12
	50	1	3	8	16	20
	1024	22	189	253	294	431
		30	133	230	253	485
		6	317	403	425	475

Оптимальные Л(N, v, g)-графы

Оптимальные $\mathcal{J}(N, v, g)$ -графы:

a) $\mathcal{J}(8,4,4)$ -rpa ϕ , d=2, $\overline{d}=1,43$; 6) $\mathcal{J}(16,4,4)$ -rpa ϕ , d=3, $\overline{d}=1,91$

Оптимальные $\Pi(N, v, g)$ -графы

Графы $\Pi(N, v, g)$ можно описывать в виде матриц смежности. i. j, k, ..., I - элементы i-той строки матрицы смежности $\Pi(N, v, g)$ -графа, которые равны 1

$$\mathcal{J}(32,3,7)$$
-граф, $d = 5$, $\overline{d} = 2,94$

1.	2,3,4	9.	4,19,20	17.	8,12,26	25.	13,16,26
2.	1,5,6	10.	4,21,22	18.	8,19,29	26.	17,20,25
3.	1,7,8	11.	5,22,29	19.	9,18,31	27.	14,20,28
4.	1,9,10	12.	5,17,23	20.	9,26,27	28.	21, 27,32
5.	2,11,12	13.	6,24,25	21.	10,23,28	29.	11,18,32
6.	2,13,14	14.	6,15,27	22.	10,11,30	30.	15,22,31
7.	3,15,16	15.	7,14,30	23.	12,21,24	31.	19,24,30
8.	3,17,18	16.	7,25,32	24.	13,23,31	32.	16,28,29

Оптимальный Л(32, 4, 6)-граф; d = 4, $\overline{d} = 2,36$

 $\mathcal{J}(32,4,6)$ -rpa ϕ , d = 4, $\overline{d} = 2,36$

12. 4,20,24,29 1. 2,3,4,5 23. 9,13,29,32 2. 1,6,7,8 13. 4,23,27,28 24. 12,25,26,31 14. 4,21,22,32 25. 9,15,24,30 3. 1,9,10,11 4. 1,12,13,14 15. 5,21,25,27 26. 7,10,17,24 16. 5,6,28,29 5. 1,15,16,17 27. 10,13,15,22 6. 2,16,18,22 17. 5,18,19,26 13,16,30,31 18. 6,17,31,32 29. 7,12,16,23 7. 2,21,26,29 8. 2,19,30,32 19. 8,9,17,20 30. 8,10,25,28 9. 3,19,23,25 20. 11,12,19,22 31. 11,18,24,28 10. 3,26,27,30 21. 7,11,14,15 32. 8,14,18,23

22. 6,14,20,27

11. 3,20,21,31

Сравнительный анализ структур ВС

$N=2^{\nu}$	Гиперкубы		Циркулянты			$\mathcal{J}(N,v,g)$ -графы			
	v = d	\overline{d}	v	d	\overline{d}	v	g	d	\overline{d}
64	6	3.0	6	4	2.5	6	6	3	2.29
256	8	4.0	8	4	3.3	8	6	3	2.7
512	9	4.5	8	5	4.02	9	6	3	2.81
1024	10	5.0	10	5	4.04	10	6	4	3.01
2048	11	5.5	10	6	4.70	11	6	4	3.47
4096	12	6.0	12	6	4.68	12	6	4	3.57
8192	13	6.5	12	6	5.34	13	6	4	3.78
16384	14	7.0	14	6	5.38	14	6	4	3.83
32768	15	7.5	14	7	6.09	15	6	4	3.89
65536	16	8.0	16	7	6.12	16	6	5	4.06
131072	17	8.5	16	8	6.73	17	6	5	4.39
262144	18	9.0	18	8	6.75	18	6	5	4.62
1048576	20	10.0	20	8	7.41	20	6	5	4.85
16777216	24	12.0	24	10	8.76	24	6	6	5.56
268435456	28	14.0	28	11	10.15	28	6	6	5.94

Сравнительный анализ структур ВС

Рис. 7.6 Зависимость диаметра структуры ВС от числа вершин;

— – гиперкуб, — – D_n -граф, — – $\mathcal{J}(N, v.g)$ -граф

Сравнительный анализ структур ВС

- \triangleright D_n -графы при одинаковых (или даже меньших на единицу) степенях имеют диаметры, которые меньше чем в 3 раза по сравнению с диаметром гиперкубов
- $\triangleright D_n$ -графы обладают меньшими средними диаметрами по сравнению с гиперкубам
- Рассматриваемые показатели для $\Pi(N, v, g)$ -графов при g > 4 самые лучшие: так диаметры для оптимальных $\Pi(N, v, g)$ -графов оцениваются величиной 0,21 $\log_2 N$, в то время как в гиперкубах $\log_2 N$
- ▶ Л(N, v, g)-графы характеризуются логарифмической зависимостью диаметров от количества N вершин при фиксированной степени вершин

В вычислительных системах, использующих D_n - и $\Lambda(N, v, g)$ -графы, время межмашинных (межпроцессорных) обменов информацией значительно меньше по сравнению с временем гиперкубических ВС

 D_n - и $\Lambda(N, v, g)$ -графы более перспективны для формирования сетей межмашинных (межпроцессорных) связей в ВС, чем гиперкубы

Литература

Хорошевский В.Г. Архитектура вычислительных систем.

Учебное пособие. – М.: МГТУ им. Н.Э. Баумана, 2005; 2-е издание, 2008.

Хорошевский В.Г. Инженерные анализ функционирования вычислительных машин и систем. – М.: "Радио и связь", 1987.