Metro Rail – Predictive Maintenance Based On Anomaly Detection

Group 21:

- Vishal Anand Gupta
- Rathil Madihalli
- Sanyam Jain
- Pritesh Singh
- Karthick Vel

Background and Objectives

Air Production Unit (APU)

- Installed on the roof of metro vehicles
- Feeds different units which perform different functions
- Failure could cause immediate removal of train for repair

- Maintenance can be of 3 types preventive, corrective and predictive
- Preventive Maintenance leads to waste of resources while corrective maintenance waits for failure to take place
- Predictive maintenance is the most optimum approach which can be used to detect anomalies and perform maintenance before the failure

- Reduce unforeseen maintenance thereby reducing the number of stops and stopping time
- Change maintenance paradigm from reactive to predictive by detecting anomalies in the data before the failure actually happens
- Reduce false alarms to make the process of maintenance more efficient and cost-effective

Data Description

Data Source

UCI Machine Learning Repository

Timeline

Feb'20 – Aug'20

Records

1,516,948

Frequency

Every 10 seconds

Data corresponds to the 8 digital and 7 analog sensors connected directly with the APU.

Periods of Failure

Failures are infrequent, but usually severe

- 1. Normal Day vs Failure Day Sensor Data
- 2. Leading to Failure Data

Normal Day v/s Failure Day Analog Signal Trends

Normal Day

Normal Day v/s Failure Day Analog Signal Trends

Normal Day

Normal Day v/s Failure Day Digital Signal Trends

Normal Day

Normal Day v/s Failure Day Digital Signal Trends

Normal Day

Normal Day v/s Failure Day Sensor Trends

Classification Approach to Failure Detection

We have labeled data, and we have to predict failure. How difficult can it be? We can use regular classification approaches for this task.

Model	Precision	Recall	F1 Score
Decision Trees	98.2%	97.9%	98.0%
Random Forest	98.5%	98.7%	98.6%
Neural Network	97.4%	91.3%	94.3%

Too good to be true!! What's the catch?

Time to Failure Approach

Process

Find aggregate values of features for each row to account history

Create Target Variable (time to failure) Split data & run regression model to predict time to failure on test set

Convert test set & prediction values to classes & calculate metrics

- 200000

- 150000

100000

50000

Results

Metric	Value
RMSE(continuous)	21867
R^2(continuous)	0.46
Accuracy	0.97
Precision	0.96
Recall	0.97
F1	0.96

Autoencoder

Sparse Autoencoder

- Regularization item is added to the cost function for penalizing the weights
- Small number of neurons are activated and trained to encode and decode

Variational Autoencoder

VAE introduces probabilistic elements into the encoding-decoding process

Anomaly Detection using Autoencoder

Note : We flag the failure period as well as a period of 24 hours before the period as anomaly to ensure that we feed absolutely clean (normal) data to the autoencoder during training

Online Learning

- Given there is a continuous flow of data, the model is expected to update itself continuously such that it is trained on all the normal data available till date
- In this particular online learning procedure, the model is **trained in a predetermined time window** and **predicts the anomalies in a subsequent test time window**.

Reconstruction Loss: SAE vs VAE & Analog vs Digital

Overall, the digital signals, lead to better reconstruction loss. SAE leads to better reconstruction for digital signals while VAE leads to better reconstruction for analog signals

Results – Iteration 1

Train – Till the first occurrence of failure | Test – Remaining data till the end of July

Results – Iteration 2

Normal

Predicted label

Train – Till April End | Test – Remaining data till the end of July

50000

Anomaly

100000

50000

Anomaly

Predicted label

Normal

Predicted label

Results — Iteration 3

Train — Till May End | Test — Remaining data till the end of July

Predicted label

Results – Iteration 4

Train – Till June End | Test – Remaining data till the end of July

Results - Summary

- Sparse Autoencoders work best on this data as indicated by almost perfect precision and recall period after period
- Data from digital sensors are more useful in predicting anomalies in comparison to analog sensors

Next Steps

Additional pieces to explore:

Given a signal, how long is the unit going to run without breaking down?

- Possible techniques:
 - LSTM initial steps
 - Transformers
 - Vanilla longer term
 - Informer temporal
 - SpaceTimeFormer spatial and temporal
 - Autoformer seasonal decomposition

Causal inference between the sensors?

- Causal forest
- Survival Analysis

Anomaly Detection using Autoencoder

- The model learns to encode and decode normal patterns, capturing the essential features
- Once the autoencoder is trained on normal data, it is used with the test data which includes both normal and abnormal data
 - Instances with reconstruction errors surpassing the threshold are considered anomalies