REMARKS

A. In the Specification

Due to the number of amendments requested in the Office Action, a substitute specification, both in marked-up and clean versions, is enclosed to this paper.

The amendments to the specification include the following:

- The elements indicated with reference characters Cp and Co have been properly identified;
- The structure of the double sheet walls, and the meaning of "single-block plastic booth" have been properly explained;
- The term "molded," introduced in amended claim 1, has been provided proper antecedent basis. For the meaning of the term "molded," please also refer to the remarks in the following section;
 - Numeral 20 has been deleted from paragraph [0065] of the published application.
- Paragraph [0067] discloses that the blasting booth (indicated by reference character C in Fig. 1) is built as a single element, and the language of paragraph [0068] has been amended to indicate that each of the other enclosures of the apparatus (shown in Fig. 1 as the left-hand side piece and bottom piece S) can also be built as single elements in plastic material.

No new matter has been added.

B. In the Claims

Claims 1, 4, 7-8, and 13-21 are pending in the present application. Claims 1, 4, 7-8, and 14-21 are currently amended. Claim 13 has been canceled, and new claim 22 has been added. Thus, upon entry of the present amendment, claims 1, 4, 7-8, and 14-22 will be subject to examination.

Regarding the Rejection under 35 USC 112

The term "plant" has been replaced with "apparatus."

The term "single-block," which had been originally introduced to indicate that the blasting booth is manufactured as a single component, has been deleted, and replaced in claim 1 with the recitation: "molded as a single component." It should be noted that the term "molded" is used herein to indicate the shaping of a plastic material, rather than the injection molding process only. Proper antecedent basis for such a definition has also been introduced in the specification. The term "single-block" was and is being been used in the specification and claims in relation to the blasting booth, indicated by reference character C in Fig. 1 and described at paragraphs [0048]-[0052] of the published application.

The language in claim 1 that recited a hinged wall has been replaced by language reciting that the related wall includes an opening closeable by a hinged door. Support for this amendment can be found in the specification, e.g., at Fig. 1.

In claim 1, the recitation "one or more of the opening and the door" has also been added to indicate that either or both of the opening and the door may include a gasket. Support for this recitation can be found in the specification, e.g., at paragraph [0050].

In claim 7, the recitation "closed hollow box shaped structure" has been deleted as unnecessarily limiting. In one embodiment, described at paragraph [0051] of the published application, the structure had been described as having a double-hulled wall with edges formed by two plastic walls joining together, thereby creating a closed structure, but other embodiments may include double walls that do not join at the edges.

In claim 16, the term "sandblasting" has been deleted.

In claim 17, language has been amended to indicate that the feeding device is housed in a shell structure coupled to a side wall of the blasting booth. Support for this recitation can be found in the specification, e.g., at Fig. 1.

In claim 20, the language of the claim has been amended to indicate that the three recited elements are coupled to form a L-shaped apparatus. Support for this amendment can be found in the specification, e.g., at Fig. 1.

All claims have being further amended to remove reference characters, in accordance with typical U.S. claim format.

No new matter has been added.

Regarding the Rejections under 35 USC 103

The rejection of claims 1, 4, and 14-21, as allegedly obvious over USPN 3,300,903 to Dockery ("Dockery") in view of USPN 5,431,593 to Püschner ("Püschner"), is respectfully traversed at least for the following reasons.

Applicant notes that to determine whether a rejection under 35 USC 103 is proper, it is necessary to determine the subject matter of the claimed invention "as a whole," and to consider all the subject matter defined in the claim under consideration, not part or most of it. Loctite Corp. v. Ultraseal Ltd., 781 F.2d 861 (overruled on other ground by Nobelpharma AB v. Implant Innovations, Inc., 141 F.3d 1059 (1998)). Simply because a claimed device or process uses a known scientific principle does not, of itself, make that device or project obvious. In Re Brower, 77 F.3d 422 (Fed. Cir. 1996). Something in the prior art must suggest the desirability, and thus the obviousness, of making the combination proposed by the Examiner. Uniroyal, Inc. v. Rudkin-Wiley Corp., 837 F.2d 1044 (1998). If the prior art provides no teaching, suggestion or incentive supporting the combination proposed by the Examiner, then the rejection is in error and must be reversed. In re Bond, 910 F.2d 831 (1990). Motivation coming from Applicant's own disclosure is not sufficient. Ex parte Levengood, 28 U.S.P.Q.2d (BNA) 1300 (1993).

Dockery does not disclose each and every element set forth in claim 1, and the combination of Dockery with Püschner does not obviate this deficiency.

Dockery discloses a dry abrasive honing device having a plural cyclone separator.

Dockery, Col. 1, lines 8-10, 41-44. Dockery does not discuss, neither expressly nor implicitly, having a blasting booth in which the front wall, the top wall, the bottom wall, and the side walls are molded to form a single component in plastic material. On the contrary, Dockery provides no teaching, suggestion, or motivation that would have led one skilled in the art to form the blasting booth as a single component in plastic material to resolve the problems of noise, porosity, leaks.

Application S/N 10/537,207 Reply to Office Action of 06/16/2006 Amendment Dated 10/12/2006

corrosion, weight, wear, and expensive assembly, identified by Applicant, and resolved by Applicant's invention.

Applicant further submits that some of the constructive features of *Dockery* are explicitly different from Applicant's invention. For instance, *Dockery*'s invention requires the use of a plurality of L-shaped stationary baffleplates, inverted U-shaped channels, and louvers, in contrast with Applicant's use of a filtering device coupled to a suction device and to a cartridge filter. Therefore, even in this respect *Dockery* does not anticipate or make obvious Applicant's invention when Applicant's invention is considered "as a whole."

In summary, *Dockery* provides no teaching, suggestion or motivation to amend its disclosure to generate Applicant's invention, and Applicant's invention cannot be considered obvious over *Dockery* when it is considered "as a whole." Applicant further submits that a combination of *Dockery* with *Püschner* still does not produce Applicant's invention because the teachings of *Püschner* do not obviate the deficiencies in *Dockery*.

Püschner discloses a machining device for machining precision workpieces, in particular dental workpieces, Püschner, Abstract. Like Dockery, Püschner does not address the problems of noise, porosity, leaks, corrosion, weight, wear, and expensive assembly identified and resolved in Applicant's invention. On the contrary, Püschner mentions in a passing reference at col. 12, line 31 that the device "can be made of a plastic material," without any further comments about the front wall, the rear wall, the top wall, the bottom wall, and the side walls of the blasting booth being molded as a single component in plastic material, as taught by Applicant in independent claim 1, or about the multi-hulled or sandwich construction taught in Applicant's dependent claims. This is confirmed, for example, by Fig. 2 of Püschner, which illustrates a housing made of multiple components mechanically joined together (see, e.g., the presence of a bolt shown on the left-hand side above reference numeral 62) and not a blasting booth (indicated by reference character (C) in Applicant's Fig. 1) made as a single component. To further support Applicant's contention, the Examiner is respectfully requested to consider whether the blasting booth is shown as a single component in Püschner's Fig. 2, or whether the housing illustrated in Fig. 2 of Püschner can indeed be manufactured as a single plastic component, considering the number of undercuts present in the illustrated structure.

In order to clearly distinguish Applicant's invention from the cited references, claim 1 has been amended to recite that "the front wall, the rear wall, the top wall, the bottom wall, and the side walls for the blasting booth 1 are molded to form a single component in plastic material."

Applicant further directs the Examiner's attention to the commercial success enjoyed by Applicant's invention. Applicant's invention has already been assigned by Applicant, an individual inventor, to a subsidiary of Solvay, one of the largest European multinationals, due to its novel features and the problems that Applicant's invention is able to solve.

On the basis of the amendments to claim 1 and of the remarks provided herein, Applicant respectfully requests that the rejection of claim 1 under 35 USC 103 be withdrawn. Because claims 4 and 14-21 depend on now allowable claim 1, the allowance of these claims is also respectfully requested for at least the same reasons as claim 1.

3. Regarding New Claim 22

New claim 22 is directed at the composition of the granular mixture employed as a blasting material. The recitation of new claim 22 substantially reflects the recitation of new deleted claim 13, which inappropriately depended on canceled claim 2. No new matter has been added

CONCLUSION

In view of the amendments and remarks submitted herein, Applicant submits that the present application is in condition for allowance and respectfully requests a notice to that effect.

Should the Examiner require any additional information, the Examiner is invited to contact the undersigned attorney by telephone, fax or e-mail,

Dated: October 12, 2006 Respectfully submitted,

By: /Franco A. Serafini/

Franco A. Serafini Registration No. 52,207 Attorney for Applicant

Tel.: (858) 456-2898 Fax: (858) 225-3920

E-Mail: franco@patentconcepts.com

SERAFINI ASSOCIATES 7660 Fay Avenue, Suite H378 La Jolla, CA 92037

SUBSTITUTE SPECIFICATION MARKED-UP VERSION

ABRASIVE CLEANING PLANTAPPARATUS WITH SINGLE BLOCK PLASTIC BOOTH AND INTEGRATED FEEDING AND FILTERING DEVICE

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention concerns an abrasive cleaning plantapparatus by a blasting process, and, more particularly, a plantapparatus suitable for the abrasive cleaning of small and medium size object.

[0003] 2. Description of Related Art

[0004] In the prior art, the cleaning of metal and non-metal objects, especially objects with rigid surfaces on which deposits such as grease, oil and paint are deposited, is performed by means of sandblasting, which consists of projecting towards the objects, by means of pressurized air, granules of sand or of other solid material, in order to remove by abrasion all the substances that have adhered to the object to be cleaned.

[0005] Basically, a flow of pressurized air, conveyed in a Venturi tube, sucks the sand or, in general, the granular abrasive material from a tank and conveys it to a delivery nozzle from which it is discharged at high speed.

[0006] Alternatively, a pressure tank may be adopted containing the abrasive material which is then sucked from the tank and projected onto the object to be cleaned.

[0007] Some sandblasting procedures include the use of water in addition to air and the granular abrasive material, for a more efficient elimination of the particles to be removed. The operator directs the nozzle towards the object to be cleaned, thus projecting the granular abrasive material onto the surfaces of the object to be cleaned.

[0008] The sandblasters in the prior art also comprise a sandblasting booth, a vacuum suction system for the granular abrasive material, and a filtering system for the air leaving the booth

[0009] The booth consists basically of a hollow structure provided with an access door, a glass inspection window, two holes with long-sleeved gloves, and an outlet at the bottom.
The sandblasting booth is designed to accommodate the object to be cleaned and is provided with a hopper base for the outflow of the air and solid parts (particles removed and sand or granular abrasive material).

[0010] The inner portion of the booth contains the nozzle for the emission of the air and the sand or granular abrasive material.

[0011] The front wall of the sandblasting booth is provided with a glass window for checking the sandblasting process and with two gloves with sleeves, extending inside the sandblasting booth and accessible from the outside, to allow the operator to handle the sandblasting nozzle and rotate the object to be cleaned.

[0012] The feed system for the granular abrasive material is installed separately from the sandblasting booth and comprises upstream a pressurized air source and downstream at least one sandblasting nozzle housed in the sandblasting booth.

[0013] The sandblasting booth discharge hopper is connected to the suction and separation system for the fumes leaving the booth, said system being designed in such a way as to separate the solid parts (particles removed and abrasive material) from the air.

[0014] The sandblasters in the prior art have a number of disadvantages.

[0015] First, the sandblasting booths of the sandblasters in the prior art are made of bent and welded sheet metal or fiberglass.

[0016] The closed booths made of sheet metal are very noisy, as the air emitted under pressure from the sandblasting nozzle generates sound waves which are amplified by the metal walls of the sandblasting booth. Further, the sand or granular abrasive material projected onto the object to be cleaned and the metal walls of the sandblasting booth generate noise, causing the vibration of the metal walls of the sandblasting booth.

[0017] The various walls and metal and sheet metal parts are joined by welding, and the welding spots, which generally correspond to the bending corners, can be naturally porous due to the addition of filler metal during the welding process. This problem is amplified by the fact that in sheet metal welding it is not possible to add significant quantities of filler metal

[0018] Furthermore, the gaskets employed in the prior art are subject to involuntary treatment with the abrasive jet, with a consequent rapid deterioration. After a short time the booth is no longer sealed, with consequent loss of abrasive material, which is harmful for the users. This porosity or microporosity causes also a loss of material, or water in the versions with water, which can occur even after a relatively short time of use. If the construction material employed is not stainless steel, the problem could be further accelerated due to the corrosion that occurs as a result of oxidation of the above porosity points.

[0019] If aggressive chemical agents are used in the sandblasting process, for example degreasers or solvents, the metal walls and the welding lines are affected by the action of said chemical agents, which can trigger metal corrosion or oxidation.

[0020] Closed metal booths also require skilled labor for the welding of the various internal and external supports for connecting the various parts to the structure, such as the hinges for the loading door, the brackets for the door locks, the supports for the delivery means, etc.

[0021] The objects placed inside the closed booths and turned on their various sides for cleaning may also be inadvertently pushed against the metal walls, which can be surface damaged, deformed or seriously damaged.

[0022] Further, closed booths made of metal are very heavy due to the construction material used, with consequent problems of transportation, installation and subsequent handling.

[0023] Closed booths made of fiberglass partly dampen the noise and can absorb occasional shocks, but are also affected by the abrasive action of the sand or abrasive material in granules, consequently wearing out and producing and accumulating glass dust in the hopper, in the outlet and in the filtering system.

[0024] In addition to the above problems strictly relating to closed booths, there are other disadvantages concerning the entire sandblasting system.

[0025] The various parts of the current sandblasters (sandblasting booth, suction system for sand or granular abrasive material and filtering system) constitute independent elements interconnected by ducts, pipes and cables. All these separate parts require space for installation and maintenance; furthermore the various pipes, ducts and cables hinder the transit and work of the operator.

[0026] If the operator is required to modify the sandblaster operating parameters, for example, pressure, quantity of sand or granular abrasive material, or amount of water or other liquids, he must interrupt the sandblasting operation, in order to access the suction system and make the necessary modifications.

BRIEF SUMMARY OF THE INVENTION

[0027] One aim of the present invention is to provide a cleaning plantapparatus with a blasting booth that can optimally withstand shocks and wear.

- [0028] A further aim of the present invention is to produce a cleaning plantapparatus with blasting booth walls whose structure and materials are suitable for soundproofing the inside from the outside of the blasting booth.
- [0029] A further aim of the present invention is to improve the operator's working conditions from the environmental point of view, reducing noise and polluting emissions.
- [0030] A further aim of the present invention is to provide a cleaning plantapparatus resistant to chemical agents.
- [0031] A further aim of the present invention is to provide a cleaning plantapparatus with various parts combined in one single body, or in any case assembled as one single body.
- [0032] A further aim of the present invention is to provide a cleaning plantapparatus using sodium bicarbonate, mixtures thereof and/or similar means as cleaning material.
- [0033] A further aim of the present invention is to provide a cleaning plantapparatus with controls for adjusting and mixing pressurized air, for feeding abrasive or granular cleaning material, and for adding water or liquids, said controls being located beside the operator's position or in any case being easily and immediately accessible by the operator.
- [0034] A further aim of the present invention is to provide a prefabricated cleaning system requiring less labor and less time for its manufacture and assembly.
- [0035] A further aim of the present invention is to provide a cleaning plantapparatus weighing less than the plantapparatus in the prior art.
- [0036] The present invention concerns a new cleaning plantapparatus with blasting booth consisting of <u>plastic walls formed by a single plastic sheet</u>, or by two plastic sheets <u>substantially parallel to each other that may be joined at the edgesand/or box-type plastic walls</u>.
- [0037] The present invention further concerns a new cleaning plantapparatus with blasting booth comprising one single continuous element, i.e. a single-block.
- [0038] The present invention further concerns a new cleaning plantapparatus using sodium bicarbonate, mixtures thereof, or similar means as a cleaning material.
- [0039] The present invention further concerns a new cleaning plantapparatus with a device for feeding the granular abrasive material that is incorporated in the structure of the cleaning plantapparatus.
- [0040] The present invention further concerns a new cleaning plantapparatus with air and waste water filtering device incorporated in the structure of the cleaning plantapparatus.

BRIFF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS.

- [0041] The attached drawings are intended to facilitate the description of the invention and illustrate one embodiment of the invention. Said drawings are not intended to restrict the nature of the inventive concept.
- [0042] Figure 1 shows an exploded view of the various component parts, illustrated separately, of the abrasive cleaning plantapparatus which comprises at least one blasting booth (C), a base or support (S) for the blasting booth (C), a feeding device (A) for the abrasive material in granules and a filtering device (F).
- [0043] Figure 2 shows a vertical cross section of the abrasive cleaning plantapparatus of
- Fig. 1.

 [0044] Figure 3 shows another vertical cross section of the abrasive cleaning blentapparatus of Fig. 1.
- 100451 Figure 4 shows an exploded view of a variant of the embodiment of Fig. 1.

DETAILED DESCRIPTION OF THE INVENTION

- [0046] The detailed description of an embodiment of the invention is provided herein. It is to be understood, however, that the present invention may be embodied in various forms, Therefore, the specific details disclosed herein are not to be interpreted as limiting, but rather as a representative basis for teaching one skilled in the art how to employ the present invention in virtually any detailed system, structure, and manner.
- [0047] Turning first to Fig. 1, there is shown a first embodiment of the invention comprising a blasting booth (C), a support (S) for the blasting booth (C), a feeding device (A) for the abrasive or cleaning material in granules, and a filtering device (F).
- [0048] The blasting booth (C) is formed as a single-block, that is, is shaped as a single continuous element, and comprises a plurality of walls (Cp) designed to enclose an area adequate to contain the objects to be cleaned, in addition to permitting their rotation and movement, so that cleaning can be performed on all the surfaces and sides of the objects to be cleaned. When a plastic material is employed, walls (Cp) are molded together as a single component. The term "molded" is used herein to indicate the shaping of a plastic material, rather than to indicate the injection molding process only.
- [0049] A <u>wall door</u> (Co) of the blasting booth (C), preferably <u>situated along</u> a vertical side wall, is hinged to the <u>otheran opening on one of the</u> walls (Cp) to form a door, thus

permitting access to the inside of said blasting booth (C) to position or withdraw the objects to be cleaned. The door (Co) may be as large as to replace one of the walls (Cp).

[0050] The Such opening wall (Cp) and/or the edge of the blasting booth (C) in contact with said opening wall (Cp) the door (Co) are provided with gaskets designed to ensure a hermetic scal-of-said opening wall (Cp).

[0051] The fixed-walls (Cp) and the opening walldoor (Co) of the blasting booth (C) emprise may be formed by one or two plastic sheets. When two plastic sheets are employed, such sheets may be substantially generically-parallel to each other and forming a basically elosed and hollow-boxmay be joined at the edges. The plastic used to produce the walls (Cp; Go) and the door (Co) of the blasting booth (C) is preferably polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), ABS, a reinforced plastic, other similar materials or mixtures, and or derivatives of the same.

[0052] One of the walls (Cp) of the blasting booth (C), preferably the front wall (Ca), features an inspection window (Cf) and two holes (Cm) positioned side by side. The inspection window (Cf) consists of an opening in the wall (Ca) provided with a transparent material, such as a transparent glass, and is designed to allow the operator to observe the inside of the blasting booth (C). The two holes positioned side by side (Cm) are provided with two long gloves made of a flexible plastic material and facing the inner portion of the blasting booth (C), in order to enable the operator to manipulate the objects inside the blasting booth (C) without coming into direct contact with such objects and at the same time preventing the outflow of air and suspended particles (sodium bicarbonate, salts in general, granules of abrasive material, and removed particles) that may be present inside the blasting booth (C). A recess (C1) is provided at the ton for a light fixture.

[0053] The lower wall of the blasting booth (C), i.e. the bottom wall (Ct), is hopper-shaped in order to collect and convey all the free particles (granules of abrasive material and removed particles) present inside the blasting booth (C) towards an outlet duct (Ce). The delivery means with a nozzle (L) for the emission of an air jet and of the granular abrasive material are connected to the feeding device (A) and are also housed inside the blasting booth (C). These delivery means with nozzle (L) are connected to the feeding device (A) by means of a suitable hose (La).

[0054] The blasting booth (C) constructed as described above is sustained by an adequate support (S), generally consisting of a box-shaped base, open at the top (Ss) to accommodate the hopper-shaped bottom (Cf) of the blasting booth, and provided with an opening (Sf) on

the side wall facing the filtering device (F) for the connection of the outlet pipe (Ce) of the blasting booth (C) hopper (Cf) to the filtering device (F) and/or damp parts separator.

[0055] Turning now to Fig. 2, it can be seen that the feeding device (A) comprises a shell structure (Al), whose size and profile are such as to be laterally coupled with the blasting booth (C), and houses at least one tank (As) for the granular abrasive material and a device for sucking the granular abrasive material from the tank (As) and mixing it with compressed air and/or water.

[0056] The feeding device (A) is provided on its upper front wall with the controls and instruments (Ac) for controlling the operation of the feeding device (A) itself.

[0057] During operation, the feeding device (A) is connected to a pressurized air line and a pressurized water line, and operates by sucking the abrasive material from the tank (As) and conveying it via the hose (La) to the delivery means with nozzle (L) housed in the blasting booth (C).

[0058] Alternatively, a tank containing the pressurized abrasive material can be provided, from which the material flows out at an adjustable speed.

[0059] The feeding device (A) is dimensioned to be laterally coupled with the blasting booth (C), so that the controls and instruments (Ac) for controlling said feeding device (A) are beside the inspection window (Cf) and the two holes (Cm) in the blasting booth (C).

[0060] Turning now to Fig. 3, there is shown the filtering device (F), which comprises a shell structure (Fi) whose size and profile are such as to be coupled with the blasting booth (C) on one side, and to be coupled at the rear with the feeding device (A), inside which there are a suction device (Fa) and a cartridge filter(s) (Fc) provided with a cleaning duct (Fk).

[0061] Further, the filtering device (F) is dimensioned to be coupled with the support (S) of the blasting booth (C) and with the side opening (Sf) of the support (S).

[0062] The shell structure (Fi) of the filtering device (F) is provided at one side with a hole or opening (Ff) suitable for being coupled with said support (S), so that the outlet pipe (Ce) of the blasting booth (C) hopper (Ct) runs into the filtering device (F).

[0063] The blasting booth (C) with the support (S), the feeding device (A) and the filtering device (F) are designed to couple and connect reciprocally, forming one single element which can be split into its various parts for transportation, movement and handling.

[0064] The new cleaning plantapparatus with single-block plastic booth and integrated feeding and filtering devices constructed as described above offers numerous advantages.

[0065] The above described embodiment has very compact dimensions, since the blasting booth (C), the feeding device (A), the filtering device (F) 20 and the dust and/or waste water outlet separator are integrated within a single area without affecting functionality.

[0066] The construction material and shape of the walls (Cp) of the blasting booth (C) do not produce the soundbox effect normally generated in blasting booths in the prior art, reducing the overall noise level of the plantapparatus.

[0067] The plastic material used is not porous and is not subject to corrosion or oxidation. Because the blasting booth (C) is built in one single element, there are no joints with possibility of breakage and outflow of material.

[0068] Because the blasting booth (C), and also the support (S) and the shell structures (Al, Fi) of the feeding device (A) and/or filtering device (F), can each be produced in-as one single plastic body, manual operations and labor for the assembly and fixing of the various parts are considerably reduced.

[0069] The molding manufacturing process of the plastic material provides greater precision in the repeatability of the pieces than in the prior art, avoiding the risk of human error.

[0070] All of the above features, therefore, provide for reduced assembly times and consequently overall production costs.

[0071] The use of plastic material for the production of various parts of the new cleaning plantapparatus also limits the weight of the plantapparatus as a whole, with consequent advantages for transportation and the possibility of removing and relocating the plantapparatus at any time with no need to use special equipment. The use of plastic material for the production of various parts of the cleaning plantapparatus in the present embodiment, and in particular for the blasting booth (C), provides for increased resistance of the various parts and in particular of the blasting booth (C) itself to shocks.

[0072] Further, the cleaning plantapparatus according to the present embodiment is not subject to corrosion and/or oxidation caused by any chemical substances used in the cleaning process, as the blasting booth (C) and the various conduits, if made of plastic, do not oxide but instead withstand corrosion.

[0073] As shown in Fig. 4, the base (S) and the shell structures (Pi) and (Al) may be made in one single element provided with side and/or upper openings for fitting the above described pieces of equipment.

[0074] Therefore, with reference to the above description and the attached drawing, the following claims are put forth.

ABSTRACT

[0075] An abrasive cleaning plantapparatus comprising a single-block plastic blasting booth (\Leftrightarrow) having a front wall, a rear wall, a top wall, a bottom wall, and side walls, wherein at least a portion of one of the side walls is openable by rotation on a hinge connecting the single-block blasting booth with the openable side wall portiondefines an opening closeable by a door, thereby providing access inside the single-block blasting booth, and wherein one or more gaskets create a hermetic seal between the single-block blasting booth and the openable side wall portion, the one or more gaskets being provided on one or more of the single-block blasting booth and of the openable side wall portionopening and the door. The abrasive cleaning material may comprise sodium bicarbonate or a granular mixture thereof containing sodium bicarbonate.