第五次作业

廖汶锋 无研 231 2023270010 2023 年 1 月 2 日

- 1. 理想 n 沟 MOSFET,已知器件参数为: L=1mm, $C_{ox}=10^{-7}$ F/cm², $V_{T}=0.6$ V,低场迁移率 $\mu=600$ cm²/(V·s),不考虑速度饱和效应和迁移率下降效应,求解以下问题:
- (1) 如果工作在饱和区,满足 $V_{GS} = 5V$, $I_{Dsat} = 4mA$,沟道宽度应为多少?
- (2) 求 $V_{GS} = 2V$, $V_{DS} = 2V$ 时的漏极电流?
- (3) 求 $V_{GS} = 4V$, $V_{DS} = 3V$ 时的漏极电流? 解答:
 - (1) 沟道宽度 $W = \frac{2LI_{Dsat}}{\mu C_{ox}(V_{GS} V_T)^2} = 6.8871mm$ 。
 - (2) 因为 $0 = V_{GD} < V_{TN}$,所以晶体管工作在饱和区,漏极电流 $I_D = I_{Dsat}|_{V_{GS}=2V} = 4 \times \left(\frac{2-0.6}{5-0.6}\right)^2 = 0.40496 mA$ 。
 - (3) 因为 $1V=V_{GD}>V_{TN}$,所以晶体管工作在饱和区,漏极电流 $I_D=\mu C_{ox}\left(\frac{w}{L}\right)(V_{GS}-V_T-0.5V_{DS})V_{DS}=2.3554mA$ 。
- 2. 根据萨方程的表达式,求解跨导 gm 和沟道电导 gd,说明提高 gm 的具体措施(提示:不同区域分别讨论)。

解答:

截止区: $g_m = g_d = 0$ 。

线性区:
$$g_m = \mu C_{ox} \left(\frac{W}{L} \right) V_{DS}$$
, $g_d = \mu C_{ox} \left(\frac{W}{L} \right) \left(V_{GS} - V_T - V_{DS} \right)$ 。

饱和区:
$$g_m = \mu C_{ox} \left(\frac{W}{I} \right) (V_{GS} - V_T)$$
, $g_d = 0$.

要提高 g_m ,首先需要保证 $V_{GS} > V_T$ 。其次可以透过提高沟道迁移率 μ 、使用 High-k 介质提高 C_{ox} 、增大宽长比 $\frac{w}{L}$ 来提高 g_m 。另一方面,如果 MOSFET 需要工作在线性区,那么可以使 V_{DS} 尽量大来提高 g_m ;如果 MOSFET 工作在饱和区中,那么可以利用提高 V_{GS} 的手段来提高 g_m 。

3. 对于实际的增强型 NMOSFET,阈值电压 V_T包括哪几部分?

解答: NMOSFET 阈值电压公式为

$$V_{T} = \frac{-Q_{SD,max} - Q_{ss}^{'}}{C_{ox}} + 2\phi_{F_{p}} + \phi_{ms} = \frac{qN_{A,P}}{C_{ox}} \sqrt{\frac{2\varepsilon_{0}\varepsilon_{r}(2\phi_{F_{p}} + V_{SB})}{qN_{A,P}}} + V_{FB} + 2\phi_{F_{p}}$$

第一部分: 栅氧化层电压,与掺杂浓度 N_A 、 相对介电常数 ε_r 、表面势 $2\phi_{Fp}$ 与 衬底电压 V_{SB} 之和的 1/2 次方成正比。

第二部分: 平带电压 V_{Fp} = ϕ_{ms} -Qss'/Cox,与功函数差成正比。

第三部分: 衬底费米势 φ_s=2φ_{Fp}, 与掺杂浓度 N_A 成对数关系。

除此以外,还包含短沟道效应、(反)窄沟道效应、离子注入等等所调整阈值电压项。