TOPOLOGY SPACE

Xie zejian

xiezej@gmail.com

November 19, 2020

0.1 Topology

Let Ω be as space

Definition: A class of subset \mathcal{T} of Ω is an **topology** if

- 1. \emptyset and Ω belongs to \mathcal{T} .
- 2. closed under arbitary union.
- 3. closed under finite intersection.

 (X, ρ) is a **metric space**, when ρ defined on $X \times X$ s.t. $\forall x, y, z \in X$: 1. $\rho(x, y) \geq 0$, the equality hold iff x = y. 2. $\rho(x, y) = \rho(y, x)$ 3. $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$

 ρ is called a **metric**.

Let $E = \mathbb{R}^n$, $l^2 = \sqrt{\sum_1^n (x_i - y_i)^2}$ is called **Euclidean metric**. $l^1 = \sum_1^n |x_i - y_i|$ is called **texi-cab metric** and $l^\infty = \sup\{|x_i - y_i|\}$ is called **sup norm metric**.

Let (E, d) be an metric space. $V(a, r) = \{x \in E, d(x, a) < r\}$ is r-ball with center a.

U is **open** relative to d iff $\forall x \in U, \exists r_x > 0 \ni V_d(x, r_x) \subseteq U$. Let T_d be the set of all open subsets of E, we call T_d the **topology induced by** d.

Suppose d is discrete, that is, d(x,y) = 0 iff x = y, otherwise, d(x,y) = 1. Then every subset is open and $T_d = \mathcal{P}(\Omega)$. Such T_d is called **discrete topology**.

Note $d_{l^2}(x,y) \leq d_{l^1}(x,y) \leq \sqrt{n} d_{l^2}(x,y)$ and $d_{l^2}(x,y) \leq \sqrt{n} d_{l^\infty}(x,y) \leq \sqrt{n} d_{l^2}(x,y)$, then d_{l^∞} open $\iff d_{l^2}$ open. Hence $T_{d_{l^2}} = T_{d_{l^1}} = T_{d_{l^\infty}}$.

One can change 1 in definition of metric from "iff" to "if" to get a **pseudometric**. A **quasimetric** is measure without 2. And a **ultrametric** is a metric plus

$$u(x,z) \le \max(u(x,y),u(y,z))$$

One can check that a triangle in an ultrametric must be a isosceles. The pseudometric, quasimetric, ultrametric can induce topology in a familar way.

Then We can forget metric in some way. (X,Ω) is a topological space if \mathcal{T} is a topology on E. Where E is called as **uderlying set**. The sets in \mathcal{T} are called **open**. If \mathcal{T} can be form by taking union of families in some $\mathcal{B} \subset T$, we call \mathcal{B} the **base** for the topology \mathcal{T} .

 \mathcal{B} is a base in (X, \mathcal{T}) iff $\forall U \in \mathcal{T}, \forall x \in U, \exists W \in \mathcal{B} \ni x \in W \subset U$.

Proof \Longrightarrow : Any U can be written as $U = \cup W_i$ and $x \in U \implies x \in W_i$ for some i and $W_i \in \mathcal{B}$. \Longleftarrow : For any $U \in T$, consider arbitary $x \in U$, then there exist W_x such that $x \in W_x \subset U$, thus we have $U = \cup_x W_x$.

If $\cup \mathcal{B} = E$ and $\forall W_1, W_2 \in \mathcal{B}, \forall x \in W_1 \cap W_2, \exists W \in \mathcal{B} \ni x \in W \subset W_1 \cap W_2$. Then {union of families of \mathcal{B} } is a topology and it's the unique topology with B as base.

Proof Let $T = \{\text{union of families of } \mathcal{B}\}$, then it's sufficient to show that \mathcal{T} is a topology.

Note the families can be empty, \mathcal{T} enjoy 1 and 2 clearly. To show it also satisfy 3, suppose $U_1, U_2 \in \mathcal{T}$, for any point $x \in U_1 \cap U_2$, we may find some $x \in W_1 \subset U_1$ and $X \in W_2 \subset U_2$. By hypotheseis there exist $W_x \subset W_1 \cap W_2 \subset U_1 \cap U_2$ in B. Hence we may form $U_1 \cap U_2$ by $\bigcup_x W_x$, thus $U_1 \cap U_2 \in \mathcal{T}$. We skip the discussion of if U_1 or U_2 is empty since it's trival. \blacksquare

Let S be a class of subset in X, the define $\tau(S)$ as all topology contains S. Let $T(S) = \cap \tau(S)$, then T(S) is the smallest topology contains S. We call it the topology **generated** by S.

T(S) is unions of families of finite intersections together with Ω

$$\{\bigcup(\bigcap_{1}^{N}S_{i})\}\cup\Omega$$

A subset F is **closed** if $F^c \in \mathcal{T}$, it has parallel properties with open sets. Countable intersection of open sets is G_{σ} set and countable union of closed sets is F_{δ} set. A complement of a G_{σ} set is F_{δ} and vice versa.

A subset V is called a **neighborhood** of a if there exists a open set $U \subset V$ contains a. Then we called $V' = V - \{a\}$ **punctured(deleted)** neighborhood. A **neighborhood base** is a collection of neighborhood BN(a) s.t. for any neighborhood V of a, there exist a $W \in BN(a)$ and $W \subset V$.

A subset U is open iff it's a neighborhood for each of its points.

Proof \Longrightarrow is trival. \longleftarrow follows from $\cup_x G_x = U$ and unions of open set is still open.

This suggest a equivalent definition of finear topology:

 $T' \subset T \iff T'$ neighborhood is a T neighborhood.

Proof \Longrightarrow any open set G_x satisfy $x \in G_x \subset V$ in T' is still open in T, hence V is T neighborhood. \longleftarrow Consider any open set $G \in T'$, it's a T' neighborhood for each of its points implies it's a T neighborhood for each of its points and hence G is T open.

The **interior** of A is the union of all open sets which are included A, i.e., the largest open set included in A, we denote it A° . And the **closure** is the intersection of all closed sets which include A and thus the smallest closed set includes A, we denote it \overline{A} .

- 1. $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 3. $A \subset \overline{B} \implies \overline{A} \subset \overline{B}$
- 4. $A^{\circ} \subset B \implies A^{\circ} \subset B^{\circ}$
- 5. $\overline{A^c} = (A^{\circ})^c$
- 6. $(\overline{A})^c = (A^c)^\circ$

Proof We only prove 5, note $(A^{\circ})^c$ is closed and

$$A^{\circ} \subset A \implies (A^c) \subset (A^{\circ})^c$$

we have $\overline{A^c} \subset (A^\circ)^c$. On the other hand

$$\overline{A^c}\supset (A^\circ)^c \iff (\overline{A^c})^c\subset A^\circ \iff (\overline{A^c})^c\subset A \iff \overline{A^c}\supset A^c.\blacksquare$$

The **frontier** of A is $\partial A = \overline{A} \cap \overline{A^c} = \overline{A} \cap (A^\circ)^c = \overline{A} - A^\circ$.

$$\overline{A} = A \cup \partial A$$
 and $A^{\circ} = A - \partial A$

Proof

$$A \cup \partial A = A \cup (\overline{A} \cap \overline{A^c})$$
$$= (A \cup \overline{A}) \cap (A \cup \overline{A^c})$$
$$= (\overline{A}) \cap (A \cup (A^c)^c)$$

note $A \cup (A^{\circ})^c \supset A^{\circ} \cup (A^{\circ})^c = \Omega$, $A \cup \partial A = \overline{A} \cap \Omega = \overline{A}$. And the $A^{\circ} = A - \partial A$ follows from substituting $\overline{A} = A \cup \partial A$.

x is said to be an **interior point** of A if A is neighborhood of x.

x is said to be an **adherent point** if it's every neighborhood meets A, an ω **accumulation point** of A if every neighborhood of x contains **infinitely** many points of A and is a **condensation point** of A if every neighborhood of x contains **uncountable** many points of A.

x is a **cluster point** or **accumulation point** if every deleted neighborhood of x meets A and is **isolated point** if x is not cluster point.

x is **frontier point** if every neighborhood of x meets both A and A^c .

The points of A° are precisely all the interior points of A and \overline{A} are precisely all the adherent points.

Proof For interior points, consider I as all the interior points, it's sufficient to show that $I = A^{\circ}$

$$I \subset \bigcup_{x \in I} G_x \subset A^{\circ}$$

where G_x is the corresponding open set. On the other hand we have $A^{\circ} \subset I$ since every points in A° has A° as their neighborhood.

For interior points, suppose $x \in \overline{A}$ but is not an adherent point, then there is a open G contains x and $G \cap A = \emptyset$. Hence $A \subset G^c$, note G^c is closed and thus $G^c \supset \overline{A}$, which is contradict to $x \in \overline{A}$. On the other hand, suppose x is adherent but not in \overline{A} . Then \overline{A}^c is a neghborhood of A and disjoint to \overline{A} , a contradiction. \blacksquare .

By above theorem, we have

 ∂A is precisely points of frontier.

Proof By definition, point of frontier is both adherent point of A and A^c and thus all the points of frontier are

$$\overline{A} \cap \overline{A^c} = \partial A$$

For any subset X, define $\alpha(X) = (\overline{A})^{\circ}$, then

- 1. $X \subset Y \implies \alpha(X) \subset \alpha(Y)$
- 2. If X is open, $X \subset \alpha(X)$
- 3. $\alpha(\alpha(X)) = \alpha(X)$
- 4. If X and Y are disjoint open then $\alpha(X)$ and $\alpha(Y)$ are also.

If $\alpha(X) = X$, X is said to be **regular open**

Proof 2 follows from $X \subset \overline{X} \implies X \subset \alpha(X)$.

To establish 3, we show that A° is regular open when A is closed and \overline{A} is regular open when A is open. When A is closed, $\partial A \subset A$, then

$$\overline{A^{\circ}} = (A - \partial A) \cup \partial A = A \implies \alpha(A^{\circ}) = A^{\circ}$$

Hence $\alpha(X) = (\overline{A})^{\circ}$ is regular open since \overline{A} is closed.

For **4**, suppose there is $x \in \alpha(X) \cap \alpha(Y)$, then

$$\alpha(X) \cap \alpha(Y) = (\overline{X} \cap \overline{Y})^{\circ} \subset \overline{X} \cap \overline{Y}$$

hence x is adherent to both X and Y, note X is neighborhood of x and X meets Y by definition, a contradiction.

Finite intesection of regular open sets is regular open

Proof Let $(G_i)_{i \in I}$ be a finite family of regular open sets. We have

$$\bigcap_{i \in I} G_i \subset \alpha(\bigcap_{i \in I} G_i) \subset \alpha(G_i) = G_i$$

holds for all G_i , hence $\alpha(\bigcap_{i\in I}G_i)\subset\bigcap_{i\in I}G_i$, then the claim follows.

- 1. $\partial(\overline{A}) \subset \partial A$ and $\partial(A^{\circ}) \subset \partial A$
- 2. $\partial (A \cup B) \subset \partial A \cup \partial B$

Proof:

2: Suppose $x \in \partial(A \cup B)$, then any neighborhood N meet $A \cup B$ and $A^c \cap B^c$. W.L.O.G, we assume N meet A, since N also meet A^c , $x \in \partial A \subset \partial A \cup \partial B$.

A is said dense if $\overline{A} = \Omega$ and nowhere dense if $(\overline{A})^{\circ} = \emptyset$ (\mathbb{Q} is dense in \mathbb{R} while \mathbb{Z} is nowhere dense.) A is said to be meagre or set of the first category if it's countable union of nowhere dense. Sets which are not meagre is set of the second category set.

Space (Ω, \mathcal{T}) is **first countable** if every point of Ω has countable neighborhood base and is **second countable** if \mathcal{T} has countable base. The space is said **separable** if Ω has a countable dense subset.

Second countable space is separable

Proof Suppose $\mathcal{B}=(B_i)_{i\in I}$ is a countable base, by axiom of choice, we may take x_i in I, let $X=\{x_i\}_{i\in I}\subset\Omega$. Then we show that X is dense. For any $x\in\Omega$, it's neighborhood must contain some open G which is unions of \mathcal{B} and thus contains at least one element in X, that is, G meet X. Hence $\overline{X}=\Omega$.

Second countable space is first countable

Suppose $\mathcal{B}=(B_i)_{i\in I}$ is a countable base, for each point $x\in\Omega$, one may take all the sets in \mathcal{B} which contains x as a neighborhood base. To verify it's neighborhood base, if there is a neighborhood N of x, then there is a open G contains x. By the definition of base, G is the union of sets of \mathcal{B} and those sets must at least one contains x and these sets is subset to G.