Exercises 5 for MA 413 – Statistics for Data Science

This sheet will cover lecture material from the lecture 14/10/2019 and later material.

- 1. Let $X_1, \ldots X_n$ be inter-arrival times with an exponential distribution with parameter θ . Use the Fisher-Neymann factorization theorem to show $T(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$ is sufficient.
- 2. Let $X_1, \ldots X_n$ be $U(\alpha, \beta)$.
 - (a) Show that $T(x_1, \ldots, x_n) = (\min x_i, \max x_i)$ is sufficient for (α, β) .
 - (b) If α is known then $T = \max x_i$ is sufficient for β .
 - (c) If β is known then $T = \min x_i$ is sufficient for α .
- 3. Let $X_1, \ldots X_n$ be $N(\mu, \sigma^2)$. Show that $(\sum X_i, \sum X_i^2)$ is sufficient. Also show (\bar{X}, s^2) is sufficient. Show that $X_1, \ldots X_n$ are sufficient.
- 4. Determine whether 1-3 are minimally sufficient.
- 5. Rewrite the binomial distribution as exponential family.
- 6. Rewrite the gamma distribution as exponential family.
- 7. Using MGFs determine the distriution of \bar{X} for a Gaussian random sample.
- 8. Using MGFs determine the distriution of \bar{X} for an Exponential random sample.