The Genetic Code

An amazing story in four simple letters

Highlights

- Introduction
- Codon
- Properties of the Genetic Code
- Reading Frame
- Degenerate Code
- Cracking the Genetic Code
- Wobble Hypothesis

Genes as Protein Blueprints

Spelling with DNA

How can such a simple molecule contain the information for such a complex molecule?

DNA is a sequence of letters

Simple alphabets: A, T, G & C

How many different words can be spelt????

Depends upon the length of the word

Number of bases in a Codon

4 bases code for 20 amino acids. How?

• 1 base per aa

Brenner 1960

Proposes a triplet code on theoretical grounds

Triplet of nucleotides = Codon

Number of bases in a Codon

64 possible codons for 20 amino acids

What about the 44 extras???

Some amino acids coded for by more than one codon - DEGENERATE CODE

Properties of the Genetic Code

- Linear Code
- Triplet Code triplet is referred to as codon

Properties of the Genetic Code

Contd.

Non- overlapping Code

Triplet codons do not overlap

Each nucleotide is part of only one codon

Open Reading Frame

- Sequence of codons from start to stop
- No punctuation in the genetic code
- example: THE BIG FAT DOG ATE THE EGG
- The spaces have no physical significance; only to indicate the reading frame

An mRNA can be read in 3 different reading frames

How many possible reading frames on a double stranded DNA molecule?

6 reading frames in double stranded DNA

- Insertions or deletions of 1, 2, 4, 5 etc cause a severe loss of function resulting from a change in the reading frame.
- But insertions or deletions of 3, 6, 9 etc have little effect on the phenotype, because the reading frame is not affected for most of the mRNA.

The Genetic Code - Triplet Code

_		-							
S	_	-	_	n	М	0	++	-	r
	כי	Ŀ	U	11	u		Lι	c	

		U	С	Α	G		
U		UUU Phenyl- alanine	UCU	UAU Tyrosine	UGU Cysteine	U	
	UUA UUG Leucine	UCA UCG Serine	UAA Stop codon Stop codon	UGA Stop codon UGG Tryptophan	A G		
letter	CUU CUC Leucine	CCU CCC Proline	CAU Histidine	CGU CGC	U C		
	CUA CUG	CCA CCG	CAA CAG Glutamine	CGA CGG	A G		
First		AUU AUC Isoleucine	ACU ACC Theodoles	AAU Asparagine	AGU Serine	U C	
	•	AUA Methionine initiation codon	ACA ACG	AAA AAG Lysine	AGA AGG Arginine	A G	
5 (5) (5) 2 (5) (5)		GUU GUC Valine	GCU GCC Alanine	GAU Aspartic GAC acid	GGU GGC Chains	U C	
	G	GUA GUG	GCA GCG	GAA GAG Glutamic acid	GGA GGG	A G	

Directional: always read 5'- 3'

Each triplet of bases codes one amino acid

Degenerate: many amino acids have more than one codon

Degeneracy of the code is not uniform

Example, leucine and serine have six codons

glycine and alanine have four, etc

methionine and tryptophan have single codons.