

Бизнис статистика

Аудиториски вежби 3 Дескриптивни статистики

↓Задача 1.

■ Во табелата се дадени вредности за бројот на изнајмени автомобили (во илјади) во последната година за неколку рента-кар компании. Да се определи мода, медијана и просек на податоците.

Компанија	Бр. на автомобили (во илјади)
Enterprise	643
Hertz	327
National/Alam	233
Avis	204
Dollar/Thrifty	167
Budget	144
Advantage	20
U-Save	12
Payless	10
ACE	9
Fox	9
Rent-A-Wreck	7
Triangle	6

Задача 1. Решение

Бр. на Компанија автомобили (во илјади) 643 Enterprise 327 Hertz National/Alam 233 204 Avis 167 Dollar/Thrifty 144 Budget Advantage 20 12 U-Save 10 **Payless** ACE 9 Fox Rent-A-Wreck Triangle

• Просек

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{643 + 327 + 233 + 204 + 167 + 144 + 20 + 12 + 10 + 9 + 9 + 7 + 6}{13}$$
$$= \frac{1791}{13} = 137.77$$

Просекот е 137.77 илјади.

- **Медијана**: бројот на податоци е непарен, па медијана е податокот во средината, т.е. на позиција 7, и таа има вредност 20 илјади.
- **Мода**: Единствениот податок кој се појавува повеќе од еднаш е бројот 9, па мода е бројот 9.

Задача 2.

Да се најде 30-тиот перцентил на следниот примерок од 8 броеви: 14, 12, 19, 23, 5, 13, 28, 17.

Решение:

Подредениот примерок е: 5, 12, 13, 14, 17, 19, 23, 28.

k = 30 (реден број на перцентилот што го бараме),

n = 8 (обем на примерокот).

$$i = \frac{k}{100} \cdot n = \frac{30}{100} \cdot 8 = 2.4$$

бидејќи i не е цел број, локацијата е цел дел од i+1=3.4, т.е. локацијата е 3.

30-тиот перцентил е вредноста 13, која се наоѓа на позиција 3.

Задача 3.

За следните подредени податоци да се определат кварталите: 106, 109, 114, 116, 121, 122, 125, 129.

Решение:

• $3a Q_1$:

$$i = \frac{25}{100} \cdot 8 = \frac{200}{100} = 2,$$

па, вредноста на Q_1 е аритметичка средина од податоците на позиција 2 и 3:

$$Q_1 = \frac{109 + 114}{2} = \frac{223}{2} = 111.5$$

Задача 3: Решение (продолж.)

- Подредени податоци:
 106, 109, 114, 116, 121, 122, 125, 129.
- Q_2 е медијана, т.е. Q_2 е аритметичка средина од податоците што се на средина:

$$Q_2 = \frac{116 + 121}{2} = \frac{237}{2} = 118.5$$

• За
$$Q_3$$
 се добива: $i = \frac{75}{100} \cdot 8 = \frac{600}{100} = 6$,

па, вредноста на Q_3 е аритметичка средина од податоците на позиција 6 и 7:

$$Q_3 = \frac{122 + 125}{2} = \frac{247}{2} = 123.5$$

За подредените податоци од Задача 3 да се одреди опсегот:

106, 109, 114, 116, 121, 122, 125, 129.

Решение:

• Опсегот е еднаков на разликата помеѓу најголемата и најмалата вредност

опсег =
$$129 - 106 = 23$$
.

Задача 5.

За подредените податоци од Задача 3 да се одреди интерквартален распон.

Решение:

Подредените податоци се:

106, 109, 114, 116, 121, 122, 125, 129.

Интерквартален распон = разлика меѓу третиот и првиот квартал

$$Q_3 - Q_1 = 123.5 - 111.5 = 12.$$

Задача 6.

Во табелата се дадени податоци за првите 15 држави во кои извозот е најголем. Да се одреди интерквартален распон на податоците.

_	Извоз
Држава	(милијарди)
India	16.3
Australia	17.9
Brazil	21.7
Belgium	23
Singapore	23.6
Taiwan	24.8
France	25.8
Netherlands	30.5
South Corea	33
Germany	44.3
United King.	45.4
Japan	58.1
China	61
Mexico	119.4
Canada	213.1

Решение:

 Прво треба да се одредат вредностите на првиот и третиот квартал:

$$Q_1$$
 = 23 (податокот на позиција 4) Q_3 = 58.1 (податокот на позиција 12)

 Интеркварталниот распон е разликата меѓу третиот и првиот квартал

$$Q_3 - Q_1 = 58.1 - 23 = 35.1.$$

Може да се толкува како среден распон (распон на средните 50% од податоците).

Задача 7.

Во следната табела дадени се резултатите за примерок од шест најголеми сметководствени фирми и број на партнери поврзани со нив. Да се пресмета дисперзија и стандардна девијација на примерокот.

	Број на
Фирма	партнери
Deloitte & Touche	2654
Ernst & Young	2108
PricewaterhouseCooper	
S	2069
KPMG	1664
RSM McGladrey	720
Grant Thornton	309

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right)$$

 \overline{x} = аритметичка средина на примерокот

n = големина на примерок

 $x_i = i$ -та вредност на примерокот

Задача 7: Решение

- Прво треба да се пресмета просекот: $\bar{x} = \frac{9524}{6} = 1587.33$
- Во последната колона на следната табела, дадени се вредностите на $(x_i \bar{x})^2$
- Во последната редица дадени се сумите на двете колони.

Фирма	X_i	$(x_i - \overline{x})^2$
Deloitte &Touche	2654	1137785
Ernst & Young	2108	271097.2
PricewaterhouseCoopers	2069	232006
KPMG	1664	5878.29
RSM McGladrey	720	752261.3
Grant Thornton	309	1634128
Вкупно:	9524	4033155.33

• Дисперзија

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1} = \frac{1}{5} \cdot 4033155.33 = 806631.07$$

• Стандардна девијација

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}} = \sqrt{s^2} = \sqrt{806631.1} = 898.13$$

Задача 7. Решение (втор начин)

Друг начин за да се пресмета дисперзија е според втората

формула:

Фирма	\mathcal{X}_{i}	x_i^2
Deloitte		
&Touche	2654	7043716
Ernst & Young	2108	4443664
Pricewaterhous		
eCoopers	2069	4280761
KPMG	1664	2768896
RSM		
McGladrey	720	518400
Grant Thornton	309	95481
\sum	9524	19150918

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right)$$

- За ова формула, во табелата ги внесуваме вредностите на x_i^2
- За дисперзијата се добива:

$$s^{2} = \frac{1}{6-1}(19150918 - 15117762.67) =$$
$$= \frac{1}{5}4033155.33 = 806631.07$$

Задача 8.

Да претпоставиме дека за последните 5 недели цените за акции А се 57, 68, 64, 71 и 62, а за акции В цените се 12,17, 8, 15 и 13.

Да се споредат коефициентите на варирање на цените за двете акции.

Решение:

- Акции А:
 - Просечна цена = 64.40 ден.
 - Стандардна девијација = 5.41 ден.
- Акции В:
 - Просечна цена = 13 ден.
 - Стандардна девијација = 3.39 ден.

Задача 8: Решение (продолжение)

- Коефициент на варирање:
 - Акции А:

$$CV = \frac{s}{\overline{x}} = \left(\frac{5.41 \text{ ден}}{64.4 \text{ ден}}\right) 100\% = 8.4\%$$

Акции В:

$$CV = \frac{s}{\overline{x}} = \left(\frac{3.39 \text{ ден}}{13 \text{ ден}}\right) 100\% = 26.08\%$$

 Коефициентот на варирање е поголем за акциите В.

Задача 9.

За цените на акциите од Задача 8 да се определи коефициентот на корелација.

A: 57, 68, 64, 71, 62; B: 12,17, 8, 15, 13.

Решение:

За коефициентот на корелација се добива,

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_X \cdot s_Y}$$

$$= \frac{(57 - 64.4)(12 - 13) + (68 - 64.4)(17 - 13) + \dots + (62 - 64.4)(13 - 13)}{4 \cdot 5.41 \cdot 3.39} = 0.504$$

Задача 9. (продолж.)

Втор начин: за пресметување на *r* може да ја користиме формулата од десната страна. За таа цел во табелата се дадени меѓурезултати.

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

	x	у	$x_i - \overline{x}$	$-\left[y_i - \overline{y}\right]$	$\left[\left(x_{i}-\overline{x}\right)\left(y_{i}-\overline{y}\right)\right]$	$(x_i - \overline{x})^2$	$\left[\left(y_{i}-\overline{y}\right)^{2}\right]$
	57	12	-7.40	-1.00	7.4	54.76	1
	68	17	3.60	4.00	14.4	12.96	16
	64	8	-0.40	-5.00	2	0.16	25
	71	15	6.60	2.00	13.2	43.56	4
	62	13	-2.40	0.00	0	5.76	0
Σ	322	65			37	117.2	46
просек	64.4	13					

$$\sqrt{117.2 \cdot 46} = \sqrt{5391.2} = 73.42$$
. Ottyka $r = \frac{37}{73.42} = 0.504$

Задача 10.

За неколку случајно избрани семејства добиени се податоци за дневната потрошувачка на млеко (во литри) и бројот на членови на семејството

Број на членови (х)	2	4	3	6	3	4	3	4
Потрошувачка на млеко (у)	1	3	1	4	2	2	2	3

Да се оцени дали постои линеарна зависност помеѓу бројот на членови во семејството и потрошувачката на млеко.

Задача 10: Решение

x_k	y_k	$x_k y_k$	x_k^2	y_k^2
2	1	2	4	1
4	3	12	16	9
3	1	3	9	1
6	4	24	36	16
3	2	6	9	4
4	2	8	16	4
3	2	6	9	4
4	3	12	16	9
29	18	73	115	48

$$\overline{x} = \frac{29}{8} = 3.625 \quad \overline{y} = \frac{18}{8} = 2.25$$

$$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right) = \frac{1}{7} (115 - 8 \cdot 3.625^2) = 1.41, \quad s_X = \sqrt{s_X^2} = 1.19$$

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n y_i^2 - \overline{y}^2 \right) = \frac{1}{7} \left(48 - 8 \cdot 2.25^2 \right) = 1.07, \quad s_Y = \sqrt{s_Y^2} = 1.035$$

$$s_{XY} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^n x_i y_i - n \cdot \overline{x} \cdot \overline{y} = \frac{73 - 8 \cdot 3.625 \cdot 2.25}{100} = 7.75$$

Бидејќи r е блиску до 1 следува дека постои силна позит. лин. зависност.

$$r = \frac{ss_{XY}}{(n-1)s_X s_Y} = \frac{7.75}{7 \cdot 1.19 \cdot 1.035} = 0.8989 \approx 0.90$$

Бизнис статистика

Пресметување на просек и дисперзија за групирани податоци

Задача 11.

За примерок од 28 избрани ученици дадени се податоци за бројот на браќа и сестри во семејството на секој ученик: 1,0,0,2,1,1,4,1,2,0,1,1,2,1,0,1,3,1,2,0,1,2,0,1,0,2,5,1.

Да се пресмета просек и дисперзија на податоците.

Решение: Прво се групираат податоците.

Бр. на браќа и сестри (<i>m_i</i>)	Честота (f _i)
0	7
1	12
2	6
3	1
4	1
5	1
Вкупно	28

$$\overline{x} = \frac{0.7 + 1.12 + 2.6 + 3.1 + 4.1 + 5.1}{28} = 1.2857$$

$$s^{2} = \frac{1}{28 - 1} (7 \cdot (0 - 1.2857)^{2} + 12 \cdot (1 - 1.2857)^{2} + 6 \cdot (2 - 1.2857)^{2} + 1 \cdot (3 - 1.2857)^{2} + 1 \cdot (4 - 1.2857)^{2} + 1 \cdot (5 - 1.2857)^{2}) = 1.4709 \approx 1.47.$$

Задача 11. Решение (табела)

Детална табела за решение на Зад.11, со меѓурезултати:

	m_i	f_i	$m_i \cdot f_i$	$\left(m_i - x^{-1}\right)^2$	$f_i\left(m_i-\overline{x}\right)^2$
	0	7	0	1.653024	11.57117143
	1	12	12	0.081624	0.97949388
	2	6	12	0.510224	3.06134694
	3	1	3	2.938824	2.93882449
	4	1	4	7.367424	7.36742449
	5	1	5	13.79602	13.79602449
Σ		28	36		39.71428572
\overline{x}			1.285714		
s^2					1.470899471

Задача 12.

Податоците за телесната маса (тежината) на ученици од едно училиште се групирани во интервали во следната табела. Да се пресмета просек и дисперзија на примерокот.

Инт.	Фрек.	средна точка
[21,23)	6	22
[23, 25)	22	24
[25, 27)	23	26
[27, 29)	28	28
[29, 31)	13	30
[31, 33]	8	32
вкупно	100	

Задача 12: Решение

Инт.	Фрек.	средна точка
[21,23)	6	22
[23, 25)	22	24
[25, 27)	23	26
[27, 29)	28	28
[29, 31)	13	30
[31, 33]	8	32
вкупно	100	

$$\overline{x} = \frac{6 \cdot 22 + 22 \cdot 24 + 23 \cdot 26 + 28 \cdot 28 + 13 \cdot 30 + 8 \cdot 32}{100} =$$

$$= 26.88$$

$$s^{2} = \frac{1}{100 - 1} (6 \cdot (22 - 26.88)^{2} + 22 \cdot (24 - 26.88)^{2} +$$

$$+ 23 \cdot (26 - 26.88)^{2} + 28 \cdot (28 - 26.88)^{2} +$$

$$+ 13 \cdot (30 - 26.88)^{2} + 8 \cdot (32 - 26.88)^{2}) =$$

$$= 7.22$$

Задача 13.

Се разгледува дискретното статистичко обележје – број на точки при фрлање на коцка. Ако експериментот се изведува 50 пати и притоа се добиени следните реализации:

1, 3, 1, 6, 2, 6, 4, 6, 3, 3, 4, 3, 1, 4, 4, 1, 4, 5, 3, 5, 4, 1, 1, 1, 5, 4, 3, 2, 1, 4, 6, 4, 3, 2, 2, 2, 3, 6, 1, 2, 2, 3, 5, 3, 1, 3, 6, 2, 4, 1.

Да се определи: просек, дисперзија, стандардна девијација, медијана и распон на примерокот.

Задача 13: решение

m_i	f_i	$m_i f_i$	m_i^2	$m_i^2 f_i$
1	11	11	1	11
2	8	16	4	32
3	11	33	9	99
4	10	40	16	160
5	4	20	25	100
6	6	36	36	216
Σ	50	156		618

Просек:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{r} m_i f_i = \frac{1}{50} \cdot 156 = 3.12$$

Дисперзија:

$$s^{2} = \frac{\sum_{i=1}^{r} m_{i}^{2} f_{i} - n\overline{x}^{2}}{n-1} = \frac{618 - 50 \cdot 3.12^{2}}{49} = 2.68$$

- Стандардна девијација: $s = \sqrt{s^2} = 1.64$
- Медијана: Бидејќи n = 50 е парен број, медијаната е средна вредност на 25-тиот и 26тиот податок во подредениот примерок

$$(x_{(25)} + x_{(26)})/2 = (3+3)/2 = 3.$$

Распонот (или интервал на расејување):

$$6 - 1 = 5$$
.

Задача 14.

Во табелата дадени се податоци за пратки од кикирики од извозник на САД во пет канадски градови.

Град	Кикирики (илјади вреќи)	
Монтреал	64	
Отава	15	
Торонто	285	
Ванкувер	228	
Винипег	45	

- а) Да се пресмета просечниот број на испратени вреќи кикирики.
- б) Да претпоставиме дека профитот од продажбата на илјада вреќи од кикириките во

соодветните градови се: 15.00\$, 13.50\$, 15.50\$, 12.00\$ и 14.00\$, соодветно. Да се определи просечната добивка (профит) во градовите.

Задача 14: Решение

а)
$$\bar{x} = \frac{64+15+285+228+45}{5} = 127.4$$
 илјади вреќи

Во просек, секој од канадските градови добил 127.4 илјади вреќи кикирики од оваа американска компанија.

б) Просечната добивка во градовите (од илјада вреќи) нема да биде (15+13.5+15.5+12+14) / 5, затоа што градовите не добиле еднакви количини кикирики.

Ако сакаме да ја најдеме просечната добивка (од илјада вреќи) за сите пратки кикирики од овој извозник на САД во Канада треба да пресметаме тежински просек.

$$\overline{x}_{w} = \frac{64(15\$) + 15(13.5\$) + 285(15.5\$) + 228(12\$) + 45(14\$)}{64 + 15 + 285 + 228 + 45} = 14.04\$$$
 профит (од илјада вреќи)