The monodomain model 1

The monodomain equations are given by

$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{F}(\mathbf{s}, v), \qquad \mathbf{x} \in H, \tag{1}$$

$$\frac{\partial v}{\partial t} + I_{ion}(v, \mathbf{s}) = \nabla \cdot (\mathbf{M} \nabla v) + I_s, \qquad \mathbf{x} \in H,$$

$$\mathbf{n} \cdot (\mathbf{M} \nabla v) = 0, \qquad \mathbf{x} \in \delta H,$$
(2)

$$\mathbf{n} \cdot (\mathbf{M}\nabla v) = 0, \qquad \mathbf{x} \in \delta H, \tag{3}$$

with $v(\mathbf{x},t)$ the transmembrane potential (in mV), H the domain, δH the boundary of H, \mathbf{n} the outward pointing normal of the boundary, and with I_s the prescribed input current (in mV/ms) and I_{ion} the ionic current across the membrane (in mV/ms), both scaled by the cell membrane capacitance (in $\mu F/(mm^2)$). Equation (1) is a system of ODE's that models the membrane dynamics. There exist many different cell membrane dynamics models with varying degrees of complexity that can be used to specify I_{ion} , $\mathbf{F}(\mathbf{s}, v)$ and the state variables $\mathbf{s}(\mathbf{x},t)$, see the CellML repository¹ for an overview of different types of models.

Finally, M is a conductivity tensor (in mm²/ms), that satisfies

$$\mathbf{M} = \frac{\lambda}{1+\lambda} \mathbf{M}_i,\tag{4}$$

with $\mathbf{M}_e = \lambda \mathbf{M}_i$. Here, \mathbf{M}_e and \mathbf{M}_i are the extracellular and intracellular conductivities (in mm²/ms), divided by the product of the membrane capacitance (in $\mu F/(mm^2)$) and the cell membrane area-to-volume ratio (in 1/mm). By assuming that there exists a λ such that $\mathbf{M}_e = \lambda \mathbf{M}_i$ the monodomain equations can be derived from the more complicated bidomain equations [3].

$\mathbf{2}$ ${f A}$ basic test case

For our test case, we take a square of 10 mm \times 10 mm as our domain H. We will use the Grandi cell model to model the membrane kinetics [1]. We solve our test case with the splittingsolver module from the cbcbeat Python package² with the default parameter values and default initial conditions for v and s. The splittingsolver solves the monodomain PDE system and its coupled cell membrame dynamics ODE system separately, using the operator splitting scheme as described in [3]. We take $\sigma_l = 0.255$ and $\sigma_t =$

¹models.cellml.org/electrophysiology

²bitbucket.org/meg/cbcbeat

Figure 1: Heat maps of u of our basic test case at (a) t = 5 ms, (b) t = 15 ms, (c) t = 25 ms and (d) t = 35 ms.

0.0775, where σ_l and σ_t are the longitudinal and tangential conductivity values respectively. We apply a stimulus of 25 mV/ms over 1 mm² in the centre of the square. In Figure 1, we show a heat map of u at t = 15, 20 and 30 ms.

3 The inverse problem

It is possible to obtain measurements $u_{\rm obs}$ of the transmembrane potential and measurements $c_{\rm obs}$ of the intracellular calcium concentration c over the whole domain H at discrete points in time, where the calcium concentration c is one of the 38 state variables s of the Grandi cell model. With those measurements, we can estimate the value of the parameters in our model, using an adjoint-based approach.³ Here, as an example, we will try to estimate the values of the GNa parameter from the Grandi cell model. We can formulate

³See, for example, [2] for an introductory text in adjoint-based optimization methods.

this problem as an optimisation problem: find GNa, such that the functional

$$\mathcal{J}(v, c, GNa) = \frac{1}{N} \sum_{i=1}^{N} ||v - v_{\text{obs}}(t_i)||_{L^2(H)}^2 + ||c - c_{\text{obs}}(t_i)||_{L^2(H)}^2,$$
 (5)

is minimized, subject to the requirements that v, c and GNa satisfy the state system of equations (1)-(3) and initial conditions $v(\mathbf{x}, 0) = v_0(\mathbf{x})$ and $\mathbf{s}(\mathbf{x}, 0) = \mathbf{s}_0(\mathbf{x})$. Here, N are the number of measurements in time and t_i , i = 1, ... N the respective moments in time. To find a minimum for our functional \mathcal{J} , we will need to determine its total derivative with respect to the optimization parameter Gna. We use the

References

- [1] Grandi, Pasqualini, Puglisi, & Bers. (2009). A Novel Computational Model of the Human Ventricular Action Potential and Ca transient. *Biophysical Journal*, 96(3), 664a-665a.
- [2] Gunzburger, M. (2003). Perspectives in flow control and optimization (Advances in design and control). Philadelphia, Pa.: SIAM.
- [3] Sundnes, J., Nielsen, B., Mardal, K., Cai, X., Lines, G., & Tveito, A. (2006). On the Computational Complexity of the Bidomain and the Monodomain Models of Electrophysiology. *Annals of Biomedical Engineering*, 34(7), 1088-1097.