Listing of Claims:

1. (Currently Amended) A resistor having a resistance that can be adjusted by current being passed there through and which is formed as part of a semiconductor device comprising:

a polycrystalline silicon resistor formed of and on a layer, wherein said polysilicon resistor is formed using a doping wherein said doping has a concentration of from $\sim 6 \times 10^{19}$ cm⁻³ to $\sim [3.75]$ 1×10^{20} cm⁻³ and wherein said polycrystalline silicon resistor has at least a first and second order temperature coefficient, wherein the sign of said first and second order temperature coefficients are opposite each other; and

wherein said resistor resistance is electronically [trimmed] trimmable within a range from 60% to 30 % of original value and

further wherein said doping produces a fine grain size and an increased grain boundary density.

2. (Currently Amended) A resistor having a resistance that can be adjusted by current being passed there through and which is formed as part of a semiconductor device comprising:

a polycrystalline silicon resistor formed of on a layer, wherein said polysilicon resistor is formed using a doping wherein said doping has a concentration of less than ~3.75x10²⁰ cm⁻³ and wherein said polycrystalline silicon resistor has at least a first and second order temperature coefficient, wherein the sign of said first and second order temperature coefficients are opposite each other; and

8	wherein said resistor resistance is electronically trimmed [trimmed] trimmable within a
9	range from 60% to 30 % of original value and
10	further wherein said doping produces a fine grain size and an increased grain boundary
11	density
1	3. (Cancelled) A method of making a polysilicon resistor comprising the steps of:
2	providing a substrate,
3	depositing a polycrystalline layer on said substrate,
4	aligning and exposing a poly resistor mask,
	poly doping the polycrystalline layer,
\$ \\	forming an insulating oxide,
7	aligning and exposing the mask for the resistor,
8	depositing an inter level dielectric,
9	annealing the inter level dielectric, and
10	completing the processing using low temperature processing.
1	4. (Cancelled) A method as in Claim 3 wherein said first annealing step occurs at or
2	below 900 °C.
1	5. (Cancelled) A method as in Claim 3 wherein said formation of said insulating oxide

2

occurs at or below 950 °C.

1	6. (Cancelled) A method as in Claim 3 wherein said ion implantation to provide the
2	poly doping results in a concentration of $\sim 6 \times 10^{19}$ cm ⁻³ to $\sim 3.75 \times 10^{20}$ cm ⁻³ .
1	7. (Cancelled) A method of trimming a polysilicon resistor to a target resistance formed

using a low concentration doping comprising the steps of:

passing an electrical signal through said resistor,

measuring and increasing said passed electrical signal until the resistance of said resistor equals the target resistance.

8. (Cancelled) A method of trimming a polysilicon resistor to a target resistance formed using a low concentration doping, as in claim 7 wherein the step of passing am electrical signal is by way of a current pulse through said resistor and said method further comprises:

measuring and increasing said passed current pulse until the resistance of said resistor equals the target resistance.

9. (Cancelled) A method of trimming a polysilicon resistor to a target resistance formed using a low concentration doping as in claim 7 wherein the step of passing a current pulse through said resistor is less than 20mA.

2

3

1

2 3

9

10

5

6

Dallas2 978761 v 1, 20661.00801

formed using a low concentration doping as in claim 7 wherein the step of passing a current pulse through said resistor is done a voltage less than 16V.

10.(Cancelled) A method of trimming a polysilicon resistor to a target resistance

11. (Currently Amended) A resistor having a resistance that can be adjusted by current being passed there through and which is formed as part of a semiconductor device comprising:

a polycrystalline silicon resistor formed of on a layer, wherein said polysilicon resistor is formed using a doping wherein said doping has a concentration of greater than ~6x10¹⁹ cm⁻³ and wherein said polycrystalline silicon resistor has at least a first and second order temperature coefficient, wherein the sign of said first and second order temperature coefficients are opposite each other; and

wherein said resistor resistance is electronically trimmed [trimmed] trimmable and further wherein said doping produces a fine grain size and an increased grain boundary density.

12. (Currently Amended) A resistor having a resistance that can be adjusted by current being passed there through and which is formed as part of a semiconductor device comprising:

a polycrystalline silicon resistor formed of on a layer, wherein said polysilicon resistor is formed using a late implant doping technique and wherein said polycrystalline silicon resistor has at least a first and second order temperature coefficient, wherein the sign of said first and second order temperature coefficients are opposite each other; and

Docket No. 20661-801D1

wherein said resistor resistance is electronically trimmed [trimmed] trimmable and

further wherein said doping produces a fine grain size and an increased grain boundary

9 <u>density</u>.

3

1

2

13. (Cancelled) A method as in Claim 3 wherein said final annealing step occurs at or below 900 $^{\circ}$ C.

14. (Cancelled) A method of trimming a polysilicon resistor to a target resistance formed using a low concentration doping as in claim 7 wherein the electrical signal that is passed is less than 16V.

15. (Cancelled) A method as in claim 3 further comprising the step of forming a field oxide layer prior to the depositing of said polycrystaline layer.