

Universidad Ricardo Palma

RECTORADO PROGRAMA DE ESPECIALIZACIÓN EN CIENCIA DE DATOS

Formamos seres humanos para una cultura de paz

A nuestro recordado Maestro

Dr. Erwin Kraenau Espinal, Presidente de la Comisión de Creación de la Maestría en Ciencia de los Datos

« Un esfuerzo mas y lo que iba a ser un fracaso se convierte en un éxito; no existe el fracaso si nos esforzamos cada vez mas y mas» Marat

ENTENDIMIENTO DEL NEGOCIO :ENTENDIMIENTO DEL PROBLEMA PROPÓSITO DEL ANÁLISIS

Descubrir eventos o resultados futuros en base al conocimiento previo de los datos, utilizando para ello métodos estadísticos, matemáticos, computacionales y de base de datos, así como de la aplicación de los algoritmos de machine learning. En cualquier negocio el éxito depende de:

- ✓ Capacidad de recopilar y limpiar la información para el análisis.
- Capacidad de Identificar los patrones y tendencias de los datos en relación a lo que se desea solucionar.
- ✓ Capacidad de crear el modelo que le de valor al negocio.

ENTENDIMIENTO DEL NEGOCIO :ENTENDIMIENTO DEL PROBLEMA

ENTENDIMIENTO DEL NEGOCIO: CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN DE LA INFORMACIÓN

✓ Son datos erróneos✓ Son casos especiales que no se volverán o

Están fuera de las políticas o de las

- recopilar
- ✓ Ciclos económicos
- √ Temas regulatorios / legales

estrategias del negocio

ENTENDIMIENTO DEL NEGOCIO: DEFINICIÓN DE LA VARIABLE TARGET

Los pasos para crear una variable target de clasificación son:

- Primero: Elegir la variable(es) de interés para crear el target.
- > **Segundo**: Definir el horizonte temporal del periodo de performance o predicción.
- > **Tercero**: Determinar las clases del indicador según los cortes de la variable(es) de interés.

ENTENDIMIENTO DEL NEGOCIO: DEFINICIÓN DE LA VARIABLE TARGET

ENTENDIMIENTO DEL NEGOCIO: DEFINICIÓN Y CREACIÓN DE DRIVERS

Las variables a seleccionar para la solución del problema propuesto deben tener **sentido para el negocio**. En otras palabras al seleccionarlas se espera que estén correlacionadas con la variable de respuesta del modelo. La transformación tiene como propósito optimizar el aporte de las Xi en el modelo.

SESGO Y VARIANZA EN UN MODELO PREDICTIVO O ALGORITMO DE MACHINE LEARNING

Sesgo: Representa el bajo nivel de precisión del modelo como consecuencia de que <u>no</u> <u>se</u> <u>ajusta lo suficiente a los datos</u>.

$$\mathrm{Bias}igl[\hat{f}\left(x
ight)igr] = \mathrm{E}igl[\hat{f}\left(x
ight) - f(x)igr]iggr|$$

Varianza: Representa la volatibilidad del predictor debido a que está excesivamente ajustada a una data particular (data con la que se construyó). Así el modelo pierde su propiedad de generalización y se dice que existe sobreajuste (over-fitting)

$$\left| \operatorname{Var} \left[\hat{f} \left(x
ight)
ight] = \operatorname{E} [\hat{f} \left(x
ight)^2] - \operatorname{E} [\hat{f} \left(x
ight)]^2
ight|$$

CASO: PREDICTOR DE INGRESOS

El negocio necesita contar con un **predictor de ingresos** para ser usado en las campañas masivas. La idea es conocer prospectivamente el ingreso de los clientes potenciales del mercado para poder ofrecerles algún crédito de consumo: Revolvente y No Revolvente.

Mapping del Modelo

CASO: PREDICTOR DEINGRESOS

Estructura de la Variables

Por ejemplo, consideremos la siguiente información recopilada de 3 meses para el cliente ID=1:

Enero:

ID	Entidad Producto Linea		Deuda	Departamento	amento Provincia		TieneVivienda	TipoVivienda	TieneAuto	MarcaAuto	
1	1 Falabella Tarjeta de Crédito 6,000 2,500		Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi		
1	Interbank	Tarjeta de Crédito	4,000	500	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi
1	ВСР	Hipotecario		84,000	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi

Febrero:

ID	Entidad	Producto Linea Dec		Deuda	Departamento	Provincia	Distrito	TieneVivienda	Propiedades 1	TieneAuto	MarcaAuto
1	1 Falabella Tarjeta de Crédito 6,000 1,000		1,000	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi	
1	Interbank	Tarjeta de Crédito	de Crédito 4,000		Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi
1	BCP	BCP Hipotecario		82,000	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi

Marzo:

ID	Entidad Producto Linea		Deuda	Departamento	Provincia	Distrito	TieneVivienda	Propiedades 1	TieneAuto	MarcaAuto		
1	Falabella	Tarjeta de Crédito	6,000	800	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi	
1	Interbank	Tarjeta de Crédito	4,000	200	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi	
1	BCP	Hipotecario		80,000	Lima	Lima	Miraflores	Si	Dpto Duplex	Si	Audi	

Fuente: RCC

Fuente: RENIEC

Fuente: SUNARP

Data estructurada con variables propuestas para el Modelamiento:

ID	Linea Promedio u1m	Utilizacion de TC u1m	Nro Entidades u1m	Variacion TC u3m	Variacion Otros u3m	CreditoHipo	Residencia Cat	MarcaAuto Cat	NroPropiedades
1	5,000	10%	3	-1,000	-2,000	Si	Тор	Alta Gama	2

PROPENSION A LA FUGA DECLENTES

Algoritmo

El negocio necesita contar con un **modelo de Propensión de Fuga de clientes** para su estrategia de retención de clientes del portafolio de TC. Si el modelo logra detectar a los potenciales clientes fuga se puede crear ofertas especiales para ellos y evitar que se desvinculen del negocio.

Mapping del Modelo

 $x_1, x_2, ...,$ Esquema ,t-3,t-2,t-1temporal: Clientes de TC al corte del mes "Y" Nivel del modelo A nivel de (Unidad Muestral) Producto (ID) El cliente se retiró dentro de los 6 meses de Variable de seguimiento: Fuga El cliente está con el negocio más Respuesta (Y) de 6 meses: No Fuga Data de Clientes existentes del portafolio TC estudio RFM de las **Transacciones** Línea de crédito y/o Tipos de Utilización Score de **Covariables** Riesgo **SVM Naive Bayes** Tree Logit Bagging

Boosting

KNN

CASO: PROPENSION DE FUGA DE CLIENTES

Estructura de la Variables

Por ejemplo, consideremos la siguiente información recopilada de 6meses de seguimiento para el cliente ID=1:

Enero:	ID	Linea	Saldo	Monto Trxs	Nro Trxs	Score			
	1	2,000	200	100	5	600			
Febrero:	ID	Linea	Deuda	Monto Trxs	Nro Trxs	Score			
	1	2,000	100	80	2	600			
Marzo:	ID	Linea	Deuda	Monto Trxs	Nro Trxs	Score			
	1	2,000	100	25	1	550			
A11. 7.	ID	Linea	Saldo	Monto Trxs	Nro Trxs	Score			
Abril:	1	2,000	10	0	0	500			
Mayo:	ID	Linea	Deuda	Monto Trxs	Nro Trxs	Score			
	1	2,000	0	0	0	500			
Junio:	ID	Linea	Deuda	Monto Trxs	Nro Trxs	Score			
Julio.	1	2,000	0	0	0	350			
	1	Linea y	Saldo	Transa	Score de				
		de TC nes Riesge							

Data estructurada con variables propuestas para el Modelamiento:

ID	Variación Score	Recencia (Mensual)	Frecuencia (Mensual)	Monto (Mensual)	Utilización 6m	Utilización Actual
1	-41.6%	2	2.6	68.3	10.0%	0.0%

CASO: FRAUDETRANSACCIONAL

El negocio necesita contar con un **modelo de Fraude Transaccional** para fortalecer su estrategia de prevención y detección del fraude por transacciones de las tarjetas de crédito.

CASO: FRAUDE TRANSACCIONAL

Sabado 7 pm

Estructura de la Variables

Tiempo	ID_trx	Comercio	Grupo	Monto
Lunes 9 am	1	METRO	Supermercados	60
Lunes 11 am	2	INKAFARMA	Farmacias	40
Martes 3 pm	3	INTERNACIONAL	Clinicas	80
Miercoles 9 am	4	METRO	Supermercados	100
Miercoles 12 pm	5	METRO	Supermercados	30
Miercoles 8 pm	7	WONG	Supermercados	70
Jueves 8 am	8	INTERNACIONAL	Clinicas	120

TOTTUS

2. Reconocimiento de los patrones previos de consumo en 3 niveles:

A nivel de Comercio:

Comercio	Grupo		Frecuencia (dias)	Monto (dias)	Tiempo medio entre compras (dias)
METRO	Supermercados	3.29	1.5	95	1.06
WONG	Supermercados	2.96	1	70	0
INKAFARMA	Farmacias	5.33	1	40	0
INTERNACIONAL	Clinicas	2.45	1	100	1.7

A nivel de Grupo:

Grupo	Recencia (dias)	Frecuencia (dias)	Monto (dias)	Tiempo medio entre compras (dias)
Supermercados	2.96	2	130	0.79
Farmacias	4.17	1	40	0
Clinicas	2.45	1	100	1.7

A nivel de Cliente:

Recencia	Frecuencia	Monto	Tiempo medio entre compras (dias)
(dias)	(dias)	(dias)	
2.45	1.75	125	0.49

3. Así tenemos un registro para la data de entrenamiento:

Supermercados

1000

	Fl	lag Prir	nera C	ompra	R	Recenc	ia 📗	Frec	cuencia	X	Мо	nto			comp	ras
ID Trx	Monto Trx	Comercio	Grupo	Cliente	Comercio	Grupo	Cliente	Comercio	Grupo	Cliente	Comercio	Grupo	Cliente	Comercio	Grupo	Cliente
9	1000	Si	No	No	7	2.96	2.45	0	2	1.75	0	130	125		0.79	0.48

Métricas de Validación de los Predictores

Modelos de Clasificación:

ACCURACY

Métrica: Área bajo la curva COR

Curva generada por las distribuciones acumuladas de los eventos de éxito y fracaso del modelo.

Cuanto más alejado este la curva de la recta diagonal, el desempeño del modelo es mejor, por ello es de interés conocer el **área** bajo la curva (AUC).

Umbrales:

- AUC<60% -> Malo
- 60%<AUC<70% -> Medio
- 70%<AUC<80% -> Bueno
- 80%<AUC<90% -> Muy bueno
- · AUC>90% -> Sospechoso

VARIANZA

Métrica: Índice de estabilidad poblacional (PSI)

El objetivo es confirmar que la predicción es estable en el tiempo. Consiste en comparar 2 distribuciones entre si:

 Distribución de la muestra de desarrollo:

Benchmark (Lo esperado)

Distribución en el periodo actual.

 $PSI = \sum (DistActual - DistEsperado)*$ Ln(DistActual / DistEsperado)

Umbrales:

- <10%:Buena estabilidad,</p>
- **10%- 25%**:Pequeño cambio
- >25%:Cambio significante

