Stabilizer Formalism

A beautiful framework with origins in quantum-error correction, now central to quantum computation.

Key Definitions

Stabilizer Gates:

• CNOT, Hadamard, Phase Gate
$$P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

- Stabilizer Circuits:
 - Quantum circuits made entirely of stabilizer gates.
- Stabilizer States:
 - States generated by a stabilizer circuit starting from $|00...0\rangle$.

Not Universal

- Warning: Set {CNOT, Hadamard, P} is not universal.
- Why is this surprising?
 - Hadamard: Creates superpositions.
 - CNOT: Acts on two qubits and enables entanglement (with Hadamard).
 - Phase Gate (P): Adds complex phases.
- Yet, the set {CNOT, Hadamard, P} is insufficient for universality.

- What can S demonstrate?
- Quantum protocols:
 - Quantum teleportation, BB84, Wiesner's quantum money.
- Quantum algorithms:
 - Deutsch-Jozsa, Bernstein-Vazirani.
- Quantum error correction:
 - Shor's 9-qubit code.

Why not universal?

- Key Limitation:
 - Operations only reach discrete states nothing in between.
- Superposition Constraints:
 - Any n-qubit superposition assigns nonzero amplitudes to strings in a set $A\subseteq\{0,1\}^n$
 - A is always:
 - An equal superposition (with phases ± 1 , $\pm i$)
 - An affine subspace of \mathbb{F}_2^n

1-Qubit Case

- Using H and P, we can only reach 6 states (ignoring global phases): $|0\rangle, |1\rangle, |+\rangle, |-\rangle, |i\rangle, |-i\rangle$
- These are the 1-qubit stabilizer states.

What About Two Qubits?

New Possibilities:

• States like
$$\frac{|00\rangle + i|11\rangle}{\sqrt{2}}$$
 are reachable.

- Patterns Persist:
 - Always equal superpositions over a power-of-2 number of strings.
- Measurement Outcomes (in $\{ |0\rangle, |1\rangle \}$ basis):
 - Always $|0\rangle$
 - Always $|1\rangle$
 - $|0\rangle$ and $|1\rangle$ with equal probabilities.

What Does This All Mean?

- Key Concept:
 - A unitary U stabilizes a pure state $|\Psi\rangle$ if $U|\Psi\rangle = |\Psi\rangle$.
 - $|\Psi\rangle$ is an eigenstate of U with eigenvalue +1.
- Important Note:
 - Global phase matters!
 - If $U|\Psi\rangle = -|\Psi\rangle$, then U does not stabilize $|\Psi\rangle$.
- Properties of Stabilizers:
 - If U and V stabilize $|\Psi\rangle$ then UV, VU, U^{-1}, V^{-1} and I (identity) also stabilize $|\Psi\rangle$.
 - The set of stabilizers forms a group under multiplication.

The Pauli Matrices

Definition: The four Pauli matrices, fundamental to quantum physics.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Error Types in Quantum Error Correction:
 - No Error: $I | 1 \rangle = | 1 \rangle$
 - Bit Flip: $X \mid 1 \rangle = \mid 0 \rangle$
 - Phase Flip: $Z|1\rangle = -|1\rangle$
 - Both (Bit & Phase Flip): $Y \mid 1 \rangle = -i \mid 0 \rangle$

Properties

- Key Identities:
 - $X^2 = Y^2 = Z^2 = I$
 - XY = iZ, YX = -iZ
 - YZ = iX, ZY = -iX
 - ZX = iY, XZ = -iY
- Connections:
 - These relations resemble the quaternions (not a coincidence!).
 - All four matrices are unitary and Hermitian.

What Does Each Pauli Matrix Stabilize?

- I: Stabilizes everything.
- -I: Stabilizes nothing (global phase matters: $-I|\Psi\rangle\neq|\Psi\rangle$)
- Specific Stabilizations:
 - X: Stabilizes $|+\rangle$, -X stabilizes $|-\rangle$.
 - Z: Stabilizes $|0\rangle$, -Z stabilizes $|1\rangle$.
 - Y: Stabilizes $|i\rangle$, -Y stabilizes $|-i\rangle$
- Conclusion: Each of the six 1-qubit stabilizer states corresponds to a Pauli matrix that stabilizes it.

Stabilizer Groups - Basics

- Definition: Given an n-qubit pure state $|\Psi\rangle$, its stabilizer group is:
 - The group of all tensor products of Pauli matrices that stabilize $|\Psi\rangle$.
- Properties:
 - Forms a group since:
 - Pauli matrices are closed under multiplication.
 - Stabilization of $|\Psi\rangle$ is closed under group operations.
 - Abelian: Stabilizer groups are always commutative.
- Examples:
 - Stabilizer group of $|0\rangle$: $\{I, Z\}$
 - Stabilizer group of $|+\rangle$: $\{I,X\}$
 - Stabilizer group of $|0\rangle \otimes |+\rangle$: $\{II,IX,ZI,ZX\}$ (Omitting \otimes for simplicity)

Stabilizer Group - Bell State Example

Stabilizer Group of Bell State
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
:

- XX: Stabilizes the state (symmetry under X-flip).
- -YY: Similarly stabilizes the state.
- ZZ: Obtained by component-wise multiplication: $XX \cdot (-YY) = -(iZ)(iZ) = ZZ$
- Result: The stabilizer group is $\{II, XX, -YY, ZZ\}$

• For
$$\frac{|00\rangle - |11\rangle}{\sqrt{2}}$$
, stabilizer group is $\{II, -XX, YY, ZZ\}$

Characterization of Stabilizer States

- Fact: For n-qubit states, the stabilizer states are exactly those with a stabilizer group of size 2^n .
- Examples:
 - 1-qubit stabilizer states: Stabilizer group has 2 elements.
 - 2-qubit stabilizer states: Stabilizer group has 4 elements.
- Significance: This offers a structural characterization of stabilizer states:
 - Independent of stabilizer circuits.
 - Reflects the invariant preserved by stabilizer circuits.

Generating Sets for Stabilizer Groups

- Key Question: How can we succinctly specify the stabilizer group G of an n -qubit stabilizer state (size 2^n)?
- Answer: The stabilizer group G is always generated by n elements, which are \pm tensor products of Pauli matrices.
 - To specify *G*, it suffices to provide *n* such generators.
- Example: Stabilizer group of the Bell pair $\{II, XX, -YY, ZZ\}$
 - Generating set 1: $\{XX, ZZ\}$
 - Generating set 2: $\{XX, -YY\}$

Storage Efficiency of Stabilizer Formalism

- Storing a Generating Set:
 - Each generator requires 2n + 1 bits:
 - 2 bits for each of the *n* Pauli matrices.
 - 1 bit for the ± sign.
 - Total storage for n generators: $n(2n + 1) = 2n^2 + n = O(n^2)$
- Comparison:
 - Storing the full amplitude vector or stabilizer group: $\sim 2^n$ bits.
 - Exponential savings achieved using stabilizer formalism.
- Conclusion: This efficiency demonstrates the power of the stabilizer formalism in quantum computation.

The Gottesman-Knill Theorem

- Theorem: There is a polynomial-time classical algorithm to simulate any stabilizer circuit acting on an initial stabilizer state (e.g., $|00...0\rangle$).
- Capabilities:
 - Compute probabilities of measurement outcomes.
 - Simulate measurement outcomes using random bits.
- Implication:
 - Positive: Efficient simulation of stabilizer circuits.
 - Negative: Stabilizer circuits alone cannot provide superpolynomial quantum speedups.
- How It Works:
 - Track the stabilizer group's generators.
 - Update the generators for each gate (CNOT, Hadamard, Phase) or measurement.

The Gottesman-Knill Algorithm

- Initial Stabilizer Representation: For $|00...0\rangle$:
 - Stabilizer group includes II...I, implied by default.
 - Generating set: ZIII...I, IZII...I, IIZI...I, ..., IIII...Z
- Tableau Representation
 - Use two $n \times n$ binary matrices:
 - X Matrix: Tracks X or Y
 - Z Matrix: Tracks Z or Y

Gate Operations in Tableau Representation

- Rules for Gate Updates:
- Hadamard Gate (H) on i-th qubit:
 - Swap the i-th column of the X and Z matrices.
- Phase Gate (P) on i-th qubit:
 - XOR i-th column of the X matrix into the Z matrix.
- CNOT Gate:
 - Control *i*, target *j*:
 - XOR i-th column of X into j-th column of X.
 - XOR j-th column of Z into i-th column of Z.

Measurements and Observations

- Measurement in $\{ |0\rangle, |1\rangle \}$ Basis:
 - Determinate outcome if i-th column of the X matrix is all 0's.
- Why?
 - Columns indicate commutation relationships; all 0's in X implies only Z acts, ensuring definite outcomes.
- Efficiency:
 - Tracks stabilizers efficiently.
 - Skips signs unless the specific outcome is needed.

Rank of the X Matrix and Basis States

- Fact: For a stabilizer state, the number of basis states with nonzero amplitudes is 2^k , where k is the rank of the X matrix.
- Example 1: If $\operatorname{rank}(X) = 0$, only a single basis state (e.g., $|0000\rangle$) has a nonzero amplitude.
- Example 2...