1. Time complexity of the module rithm(n) is polynomial. For every iteration carried out by the loop of rithm(n), algo(i) gets executed i times. Therefore, the time complexity is:

$$\frac{n}{2} \times n = \frac{n^2}{2}$$

2.

Exponential	10	100	1000
2 ⁿ⁺¹	2048	2.535e+30	1.072e+301

Factorial	10	100	1000
n!	3628800	9.333e+157	4.024e+2567

Polynomial	10	100	1000
(n-1) ³	729	970299	997002999
n ²	100	10000	1000000
n²/(2n+1)	4.762	49.751	499.75
n ^{1/2}	3.162	10	31.623

Linear	10	100	1000
n(n+1)/2	55	5050	500500
3n	30	300	3000

Logarithmic	10	100	1000
nlog₂n	33.219	664.386	9965.784
log ₂ n ²	6.644	13.288	19.932
log ₂ (log ₂ n)	1.732	2.732	3.317
log ₁₀ n	1	2	3

3.

- a) The complexity of an algorithm is the algorithm's **running time**, and is usually calculated using the worst-case time complexity of the algorithm. The complexity of a problem refers to the **efficiency** for which a problem can be solved, and is typically calculated based on the lower bound of any algorithm that solves said problem.
- b) One of the possible solutions is to always visit the nearest neighboring city. First, choose a random city and then look for the closest unvisited city and go there. When all cities are visited, return to the starting city.
- c) The time spent travelling between each city is also another factor affecting the time complexity.

4.

Fermat's theorem on sums of two squares: If any prime number n is of the form 4k+1, then n can be written as x^2+y^2 for some x, $y \in I$. This means if n is of the form 4k+3, then $x^2+y^2=N$ doesn't have any solution. Algorithm: Let n = 4k+1. Find $a^2 \equiv -1 \pmod{n}$. Apply the Euclidean algorithm with n and a. The first two remainders that are less than the square root of p are x and y. Complexity: Polynomial. Currently, the smallest complexity of one of the solutions is $O(n^2)$.

Source: https://doi.org/10.2307/2323912

```
def SubsetsSum(arr, n, v, sum):
if (sum == 0):
    for value in v:
        print(value, end=" ")
    print()
    return
if (n == 0):
    return
SubsetsSum(arr, n - 1, v, sum)
v1 = [] + v
v1.append(arr[n - 1])
SubsetsSum(arr, n - 1, v1, sum - arr[n - 1])
```

Time complexity: Exponential (O(2ⁿ)).