Departamento de Engenharia Mecânica

Mecânica dos Sólidos I Parte 1

Prof. Arthur M. B. Braga

ENG 1703 – Mecânica dos Sólidos I

- Prof. Arthur M. B. Braga
 - Secretaria do DEM ou Lab de Sensores a Fibra Óptica
 - E-Mail: abraga@puc-rio.br
 - Tel: 3527-1181/3527-1019
- Aulas: 2as 07:00-09:00 Sala L238
 6as 07:00-09:00 Sala L238
- Textos
 - J. M. Gere, & B. Goodno, Mecânica dos Materiais, 7ª Ed., 2010
 - Notas de aula (cópia dos slides) e exercícios:
 http://abraga.usuarios.rdc.puc-rio.br/mecsol1/mecsol1.html
 - S. H. Crandall, N. C. Dahl, and T. J. Lardner, An Introduction to The Mechanics of Solids, 2nd ed., McGraw-Hill, 1978
 - T. J. Lardner and R. R. Archer, Introduction to Solid Mechanics, McGraw-Hill, 1994

Critério de Avaliação

Critério 6:

$$NF = \frac{G1 + G2}{2}$$

Se G1 e G2 \geq = 3,0 e NF \geq = 5,0 então MÉDIA = NF

Em outros casos o aluno faz G3:

Se G1 e G2 >= 3,0 ou G1 ou G2 < 3,0 e G3 >= 3,0, então:

$$M\acute{E}DIA = \frac{Gm + Gn}{2}$$

Gm e Gn são as duas maiores notas entre G1, G2 e G3

Se **G1** *ou* **G2** < 3,0 e **G3** < 3,0, então:

$$M\acute{E}DIA = \frac{G1 + G2 + 2 * G3}{4}$$

Data das Provas

• P1: Sexta-feira, 5 de maio

• P2: Sexta-feira, 23 de junho

• P3: Sexta-feira, 30 de junho

Capítulos e Seções do Livro Texto

Ementa

ENG 1703 - Mecânica dos Sólidos I

Carga Horária: (4,0,0) - 4 Créditos

Pré-Requisitos: ENG1200 ou ENG1700 ou MEC1140

Objetivo: Apresentar os fundamentos de **análise de tensões** na imposição das condições de equilíbrio, o estudo dos mecanismos geométricos da **deformação** e os modelos representativos do **comportamento dos materiais no projeto mecânico de componentes**.

Ementa: Tensão e deformação. Conceituação. Carregamento uniaxial. Deformação de Barras. Equilíbrio. Efeitos de temperatura. Problemas estaticamente indeterminados. Torção de peças esbeltas. Equilíbrio. Superposição. Torção de eixos com seção transversal não circular. Estado plano e tridimensional. Caracterização tensorial. Transformações-Círculo de Mohr. Processos de medição de deformações. Relações de compatibilidade geométrica e equilíbrio. Relações constitutivas. Deformações térmicas. Idealização das curvas tensão-deformação. Comportamento dos materiais pós-escoamento. Geometria das áreas. Momentos de inércia. Tensões devidas a flexão. Condições de equilíbrio. Cisalhamento e momento fletor. Bibliografia: : GERE, J.M. Mecânica dos Materiais 5a. ed; S. Paulo: Thomson Ltda, 2001; POPOV, E.P. Engineering Mechanics of Solids 2nd; New Jersey: Prentice Hall, 1998.

Mecânica dos Sólidos

Problema

Corpo sujeito a ação de esforços externos (forças, momentos, etc.)

Determinar

- Esforços internos (tensões)
- Deformações
- Deslocamentos

Solução de Problemas em Mecânica Aplicada⁽¹⁾

- 1. Selecionar o sistema de interesse
- 2. Postular as características do sistema.
 - Idealização e simplificações da situação real
- 3. Aplicar princípios de mecânica para o modelo idealizado
 - Realizar previsões
- 4. Comparar previsões com o comportamento do sistema real
 - Realizar experimentos e medições
- 5. Rever as hipóteses e procedimentos caso as previsões do modelo não reproduzam o comportamento real do sistema
- (1) Crandall, Dahl & Lardner, An Introduction to Solid Mechanics, 2nd ed., McGraw Hill, 1978

Mecânica dos Sólidos

Considerar:

- Corpo contínuo (mecânica do contínuo)
- Características das deformações (cinemática)
 - Pequenas Deformações vs. Grandes Deformações (linear vs. nãolinear)
- Características do material (modelo constitutivo)
 - Isotrópico ou anisotrópico
 - Elástico, elasto-plástico, viscoelástico, etc.
 - Linear ou não linear
- Apoios e Carregamentos
 - Deslocamentos conhecidos ou nulos em parte do contorno do corpo
 - Forças externas de corpo ou superfície, localizadas ou distribuídas

Determinação da Distribuição de Tensão no Corpo Sujeito à Ação de Forças Externas

Barras sujeitas a carregamentos axiais (Cap. 1 e 2)

Determinação da Distribuição de Tensão no Corpo Sujeito à Ação de Forças Externas

Cisalhamento (Cap. 1)

Determinação da Distribuição de Tensão no Corpo Sujeito à Ação de Forças Externas

Eixos sujeitos a carregamentos de torção (Cap. 3)

Determinação da Distribuição de Tensão no Corpo Sujeito à Ação de Forças Externas

Barras submetidas a carregamentos de flexão (Cap. 5 e 6)

Determinação da Distribuição de Tensão no Corpo Sujeito à Ação de Forças Externas

Vasos de pressão (Pressão Interna)

(Cap. 8)

Barras sujeitas a carregamentos uniaxiais

Módulo de Elasticidade (Módulo de Young)

Material	<i>E</i> , Pa (N/m²)
Aço	1.94E+11 a 2.05E+11
Alumínio	6.90E+10
Vidro	6.90E+10
Madeira	6.9E+09 a 1.38E+10
Nylon, Epóxi, etc.	2.75E+08 a 5.5E+08
Tungstênio	4.00E+11
Molibidênio	2.75E+11
Borracha	1.38E+06 a 5.5E+06
Colágeno	1.38E+06 a 1.03E+07

Crandall et al., 1978

Carregamentos e Deformações Uniaxiais Ensaio de Tração

Objetivo: Caracterização Mecânica do Material Obter constantes elásticas e resistência mecânica

Ensaio de Tração

https://www.youtube.com/watch?v=D8U4G5kcpcM

Medida de Deformação no Corpo de Prova

Extensômetro

Carregamentos e Deformações Uniaxiais Ensaio de Tração

Algumas Normas Técnicas

- **ASTM E8**:2004 Standard Test Methods for Tension Testing of Metallic Materials
- **ISO 527**:1993 Parts 1-5 *Plastics Determination of tensile properties*
- **ISO 6892**:1998 Metallic materials Tensile testing at ambient temperature
- **NBR-ISO 6892**:2002 Materiais metálicos Ensaio de tração à temperatura ambiente
- NBR 6673:1981 Produtos planos de aço Determinação das propriedades mecânicas a tração Método de ensaio

Carregamentos e Deformações Uniaxiais Ensaio de Tração

Corpo de Prova Padrão: ASTM E8

Barras Carregadas Axialmente

Relação entre Tensão e Deformação

Barras Carregadas Axialmente

Relação entre Tensão e Deformação

Fig. 2.11 Stress-strain diagram for a typical brittle material.

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002

Material Elástico Linear $(N/A < S_y)$

$$\delta = \frac{NL}{EA}$$

Exemplo: Determinar deslocamento do ponto B

Exemplo: Determinar o valor máximo de P para que as barras se mantenham no regime elástico ($\sigma = F/A < S_y$). As barras são idênticas, com seção transversal de área A.

Mecânica dos Sólidos

Problema

Corpo sujeito a ação de esforços externos (forças, momentos, etc.)

Determinar

- Esforços internos (tensões)
- Deformações
- Deslocamentos

Análise de Tensões

Objetivos:

- Definir o conceito de vetor tensão
- Mostrar que tensão é uma grandeza tensorial
- Definir e caracterizar o *estado de tensão* num ponto
- Definir tensões e direções principais
- Estados de tensão *uniaxial* (1D), *plano* (2D) e *triaxial* (3D)

Corpo em equilíbrio sujeito à ação de um conjunto de forças externas

Corpo em equilíbrio sujeito à ação de um conjunto de forças externas

Corpo em equilíbrio sujeito à ação de um conjunto de forças externas

Forças internas de ligação (forças de superfície) mantêm as duas partes do corpo em equilíbrio

Corpo em equilíbrio sujeito à ação de um conjunto de forças externas

Definição do Vetor Tensão

Vetor tensão

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$

Componente normal

(tensão normal)

$$t_n = \mathbf{t} \cdot \mathbf{n}$$

Componente tangencial

(tensão cisalhante)

$$t_{s} = |t - (t \cdot n)n|$$

As componentes do vetor tensão em um ponto dependem da direção do plano!

Ex.: Barra Tracionada

As componentes do vetor tensão em um ponto dependem da direção do plano!

Ex.: Barra Tracionada

As componentes do vetor tensão em um ponto dependem da direção do plano!

Ex.: Barra Tracionada

Equilíbrio é satisfeito quando:

$$F + \int t \, dA = 0$$

As componentes do vetor tensão em um ponto dependem da direção do plano!

Ex.: Barra Tracionada

Assumindo que o vetor tensão, *t*, é uniforme ao longo da seção transversal da barra:

$$F = -Fi$$

$$A = \int dA = \frac{bh}{\sin \alpha} \implies t = \left(\frac{F}{bh}\sin \alpha\right)i \qquad \begin{cases} t_n = \frac{F}{bh}\sin^2 \alpha \\ t_s = \frac{F}{bh}\sin \alpha\cos \alpha \end{cases}$$

O Estado de Tensão no Ponto

O equilíbrio do tetraedro requer:

$$\boldsymbol{t}^{(n)}A_n + \boldsymbol{t}_x A_x + \boldsymbol{t}_y A_y + \boldsymbol{t}_z A_z = 0$$

onde A_x , A_v e A_z são as áreas de suas faces.

Definindo-se

$$n = n_x \mathbf{i} + n_y \mathbf{j} + n_z \mathbf{k}$$

$$t^{(n)} = t_x^{(n)} \mathbf{i} + t_y^{(n)} \mathbf{j} + t_z^{(n)} \mathbf{k}$$

$$t_x = -\sigma_{xx} \mathbf{i} - \sigma_{xy} \mathbf{j} - \sigma_{xz} \mathbf{k}$$

$$t_y = -\sigma_{yx} \mathbf{i} - \sigma_{yy} \mathbf{j} - \sigma_{yz} \mathbf{k}$$

$$t_z = -\sigma_{zx} \mathbf{i} - \sigma_{zy} \mathbf{j} - \sigma_{zz} \mathbf{k}$$

Decomposição do *vetor tensão* em componentes nas direções dos eixos Cartesianos

Pode-se mostrar que

$$n_x = \sin \phi \cos \theta$$
, $n_y = \sin \phi \sin \theta$, e $n_z = \cos \phi$

$$A_x = A_n n_x$$
, $A_y = A_n n_y$, e $A_z = A_n n_z$

Substituindo-se estes resultados na equação de equilíbrio, obtém-se:

$$t_{x}^{(n)} = \sigma_{xx} n_{x} + \sigma_{xy} n_{y} + \sigma_{xz} n_{z}$$

$$t_{y}^{(n)} = \sigma_{yx} n_{x} + \sigma_{yy} n_{y} + \sigma_{yz} n_{z}$$

$$t_z^{(n)} = \sigma_{zx} n_x + \sigma_{zy} n_y + \sigma_{zz} n_z$$

Este resultado também pode ser escrito na forma matricial:

Ou, em notação mais concisa, nas formas:

$${t^{(n)}} = {\sigma}{n}$$
 ou $t^{(n)} = {\sigma}n$

- Tensão é uma grandeza tensorial: $[\sigma]$, ou σ , é chamado o **tensor** de **tensões**
- Uma vez conhecidas as nove componentes do *tensor de tensões*, pode-se determinar o vetor tensão atuando sobre qualquer plano que passa pelo ponto.
- Pode-se mostrar que o tensor de tensões é simétrico, ou seja, $\sigma_{xy} = \sigma_{yx}$, $\sigma_{xz} = \sigma_{zx}$, e $\sigma_{yz} = \sigma_{zy}$. Logo, $[\sigma]$ possui apenas seis componentes independentes!
- Pode-se mostrar que a simetria do tensor de tensões é necessária para que o balanço de momentos em torno do ponto (balanço da quantidade de movimento angular) seja satisfeito.

Representação Gráfica do Estado de Tensão no Ponto (Paralelepípedo Fundamental)

Equilíbrio

$$\frac{\partial \boldsymbol{\sigma}_{xx}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{xy}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial z} = 0$$

$$\frac{\partial \boldsymbol{\sigma}_{xy}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{yy}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{yz}}{\partial z} = 0$$

$$\frac{\partial \boldsymbol{\sigma}_{xz}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{yz}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{zz}}{\partial z} = 0$$

Tensões Principais Aplicação: Critérios de Falha

Dado o estado de tensão num ponto, os planos principais são definidos como aqueles planos onde a componente tangencial (cisalhante) do vetor tensão é nula

A equação abaixo relaciona o vetor tensão atuando sobre um plano definido pela norman n com o tensor de tensões:

$$t^{(n)} = \sigma n$$

ou, em forma matricial:

$$\left\{t^{(n)}\right\} = \left[\sigma\right]\left\{n\right\}$$

Deseja-se determinar os planos definidos pelas suas normais n, tais que os vetores tensão atuando sobre eles têm a forma: $t^{(n)} = \lambda n$

Substituindo-se esta expressão na equação da tela anterior, obtém-se: $\sigma n = \lambda n$

ou em forma matricial:

$$[\sigma]{n} = \lambda{n}$$

Portanto, a determinação dos planos principais fica reduzida à solução de um problema de autovalores:

$$\sigma n = \lambda n$$

- Os autovetores do tensor de tensão definem os planos (direções) principais.
- Os autovalores do tensor de tensão, λ, são as tensões principais.

Tensões Principais Aplicação: Critérios de Falha

Exemplo: Considere o estado de tensão dado pelo tensor:

$$[\sigma] = \begin{vmatrix} 50 & 10 & 0 \\ 10 & 50 & 0 \\ 0 & 0 & 50 \end{vmatrix}$$
 (em MPa)

As componentes do tensor referem-se a uma base Cartesiana. Seus autovalores são obtidos resolvendo-se a equação:

$$\det \begin{bmatrix} 50 - \lambda & 10 & 0 \\ 10 & 50 - \lambda & 0 \\ 0 & 0 & 50 - \lambda \end{bmatrix} = 0$$

Expandindo-se este determinante, obtém-se a equação:

$$(\lambda^2 - 100\lambda + 2400)(50 - \lambda) = 0$$

Cujas raízes são:

$$\lambda_1 = 60 \text{ MPa}, \quad \lambda_2 = 50 \text{ MPa}, \text{ e} \quad \lambda_3 = 40 \text{ MPa}$$

Mostra-se ainda que as direções (planos) principais são definidas pelos autovetores (unitários e ortogonais)

$$n_1 = \frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}j, n_2 = k, e n_3 = \frac{\sqrt{2}}{2}i - \frac{\sqrt{2}}{2}j$$

Estado Uniaxial de Tensão

Estado Plano de Tensão

Departamento de Engenharia Mecânica

Mecânica dos Sólidos I Parte 2

Prof. Arthur M. B. Braga

Mecânica dos Sólidos I – Parte II

- Barras carregadas axialmente (Cap. 1 e 2)
- Cisalhamento (Cap. 1)

Mecânica dos Sólidos

Problema

Corpo sujeito a ação de esforços externos (forças, momentos, etc.)

Determinar

- Esforços internos (tensões)
- Deformações
- Deslocamentos

Análise de Tensões

Objetivos:

- Definir o conceito de vetor tensão
- Mostrar que tensão é uma grandeza tensorial
- Definir e caracterizar o estado de tensão num ponto
- Definir tensões e direções principais
- Estados de tensão *uniaxial* (1D), *plano* (2D) e *triaxial* (3D)

Corpo em equilíbrio sujeito à ação de um conjunto de forças externas

Representação Gráfica do Estado de Tensão no Ponto (Paralelepípedo Fundamental)

Equilíbrio

$$\frac{\partial \boldsymbol{\sigma}_{xx}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{xy}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial z} = 0$$

$$\frac{\partial \boldsymbol{\sigma}_{xy}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{yy}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{yz}}{\partial z} = 0$$

$$\frac{\partial \boldsymbol{\sigma}_{xz}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{yz}}{\partial y} + \frac{\partial \boldsymbol{\sigma}_{zz}}{\partial z} = 0$$

Tensões Principais Aplicação: Critérios de Falha

Estado Uniaxial de Tensão

Estado Plano de Tensão

Cisalhamento (Cap. 1)

Eixos sujeitos a carregamentos de torção (Cap. 3)

Barras submetidas a carregamentos de flexão (Cap. 5 e 6)

Vasos de pressão (Pressão Interna)

(Cap. 8)

Estado plano de tensões (Cap. 8)

Hipóteses

- Esforços internos (tensões)
 uniformemente distribuídos
 ao longo do corpo
- Pequenas deformações
- Material linear elástico

Relação entre deformação e deslocamento (variação de comprimento da barra)

$$\boldsymbol{\varepsilon} = \frac{\boldsymbol{\delta}}{L}$$

$$F \stackrel{L+\boldsymbol{\delta}}{\longleftarrow} P$$

Relação entre Tensão e Deformação

Ensaio de Tração

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002

Relação entre Tensão e Deformação

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002

Relação entre Tensão e Deformação

Fig. 2.11 Stress-strain diagram for a typical brittle material.

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002

Relação entre Tensão e Deformação

Relação entre Tensão e Deformação

- Pequenas Deformações
- Regime Elástico: $\sigma = E \varepsilon$

$$\left. \begin{array}{l} \boldsymbol{\sigma} = F/A \\ \boldsymbol{\varepsilon} = \boldsymbol{\delta}/L \end{array} \right\} \Longrightarrow \boldsymbol{\delta} = \frac{FL}{EA}$$

Exercício

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002 Determine os deslocamentos verticais dos pontos *B*, *D* e *E*.

- A barra rígida *BDE* é suspensa pelas duas barras flexíveis *AB* e *CD*.
- A barra AB é fabricada de alumínio (E = 70 GPa) e a área de sua seção transversal é de 500 mm²
- A barra CD é fabricada de aço (E = 200 GPa) e a área de sua seção transversal é de 600 mm²

- Forças P e P' são aplicadas transversalmente ao componente AB
- Esforços internos atuando no plano da seção *C* são chamados *forças de cisalhamento*
- Vetores tensão atuando ao longo do plano C têm apenas componentes cisalhantes (tangenciais)
- A tensão cisalhante deve variar ao longo da seção. Seu valor é nulo nas superfícies superior e inferior e o valor máximo ocorre no centro da seção.
- A tensão cisalhante média ao longo da seção é

$$| au_{\text{m\'edia}} = P/A$$

onde A é a área da seção transversal C

Tensão e Deformação Cisalhante

Figuras reproduzidas de: Beer, Johnston & DeWolf, *Mechanics of Materials*, 4th ed., McGraw-Hill, 2002

Tensão e Deformação Cisalhante

$$\tau = P/A$$

$$\tau = G\gamma$$

G é o Módulo de Cisalhamento

Tensão e Deformação Cisalhante

- Pequenas deformações
- Resposta linear elástica

$$\tau = G \gamma$$

Exemplos

Punção

Exemplos: Conexões parafusadas

Exemplos

Junta Sobreposta Simples

Exemplos

Junta Sobreposta Simples

Exemplos

Junta Sobreposta Simples (ruptura por cisalhamento)

Exemplos

Junta Sobreposta Simples (ruptura por cisalhamento)

Exemplos

Junta Sobreposta Simples (ruptura por cisalhamento)

Exemplos

Exemplos

Junta Sobreposta Dupla

Exemplos

Junta Sobreposta Dupla

Exemplos

Junta Sobreposta Dupla (ruptura por cisalhamento)

Exemplos

Junta Sobreposta Dupla (ruptura por cisalhamento)

Exemplos

Exemplos

Exemplos

Exemplos

Exemplos

Exemplos

Problema

Determine o valor máximo admissível para a força *P* considerando:

- − Pinos em *B*, *C* e *D* têm 10 mm de diâmetro
- A tensão normal, compressiva ou trativa, em BD e CD não deve ultrapassar 100 MPa (em valor absoluto)
- A máxima tensão cisalhante admissível nos pinos é 150 MPa

Figuras reproduzidas de: Lardner & Archer, *Mechanics of Solids – An Introduction*, McGraw-Hill, 1994