Number of Instances in Dataset: 699

Number of Attributes in Dataset: 9

n Fold Cross-Validation : n = 10

Classifier	Parameter1	Parameter2	Parameter3	Parameter4	Parameter5	Parameter6	Parameter7	Accuracy	Precision	Recall
Decision	criterion='entr	splitter='rando	max_features='s					0.9488	0.9608	0.9260
Tree	ору'	m'	qrt'							
Perceptr	penalty = 'l1'	alpha=0.001	max_iter=200	shuffle=True				0.9590	0.9685	0.9414
on										
Neural	hidden_layer_s	activation='tan	alpha=0.005	learning_rate=	max_iter=200	learning_rate_	solver='lbfgs'	0.9472	0.9596	0.9241
Network	izes=(8,6)	h'		'adaptive'		init=0.001				
Deep	hidden_layer_s	activation='tan	solver='lbfgs'	alpha=0.005	learning_rate=	max_iter=60	learning_rate	0.9619	0.9706	0.9461
Learning	izes=(20,16,14,	h'			'adaptive'		_init=0.001			
	10,9,8,7,6,5,4,									
	2)									
SVM	C=1.0	kernel='rbf'	max_iter=70					0.9707	0.9773	0.9588
Naïve								0.9619	0.9703	0.9402
Bayes										
Logistic	penalty='l1'	max_iter=100	solver='liblinear'	C=2				0.9693	0.9764	0.9560
Regressi										
on										
KNN	n_neighbors=2	algorithm='kd_						0.9678	0.9753	0.9538
	0	tree'								
Bagging	base_estimato	n_estimators=1	bootstrap=True					0.9678	0.9751	0.9546
	r=neuralNet	0								
Random	n_estimators=	criterion='gini'	max_features='a					0.9693	0.9763	0.9563
Forest	50		uto'							
ADA	base_estimato	n_estimators=8	learning_rate=0.	algorithm='SA				0.9663	0.9736	0.9535
Boost	r=SVM	0	001	MME'						
Gradient	loss=	learning_rate=	n_estimators=1	presort='auto'				0.9678	0.9752	0.9542
Boosting	'deviance'	0.05	00							

Data-Set Info:

Breast Cancer Wisconsin (Original) Data Set

 $http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+\%\,28 Original\%\,29$

Pre-processing of Dataset:

- 1. The Dataset contained irregular values like '?'. These were replaced with NaN values. In the Dataset considered, all the attributes are important (X1- X9).
- 2. All the instances that contained NaN or null values in any of its cells, were removed by using dropna function.
- 3. The Dataset was scaled using standardscaler function, by importing sklearn preprocessing library.
- 4. The Data obtained from the previous step was standardized using Transformation function.

Pseudo Code:

- 1. Read the data (data should be in .xls format)
- 2. Data Preprocessing as mentioned above
- 3. Create the various classifier models with the required parameters.
- 4. Create 10-fold cross validation for the data set.
- 5. Create a list of models from step 3.
- 6. For each model, predict the output and calculate the accuracy and f1-Score.

Analysis:

The processed data is fed to the Classifiers and the corresponding Models are built. 10-fold Cross Validation is performed on the dataset. The Results proved us that, then the accuracy metric, we found the Precision metric as the good evaluation metric to be used along with the Accuracy. Also, the results show the SVM Model performed well than the other Classifiers, because its one of the Complex Model and fits this Dataset perfectly. Bagging is taking time. Deep Learning performed better than Regular Neural Network, as the number of Hidden Layers increased with less number of neurons in each Hidden Layer. Naïve Bayes, Logistic Regression and K-nearest Neighbor performed similar to each other for the Dataset considered. Decision Tree, Perceptron and Neural Network performed decent, as they are Simple Models (Neural Network here has less number of Hidden

Layers, so considered as Simple). Among them, Decision Tree performed very weakly. Overall, the Complex Models performed better compared to Simple Models as the Dataset would require a highly non-linear function to fit perfectly.