Sistemas de Telecomunicações

1ª Aula

Introdução aos Sistemas de Telecomunicações

Conteúdo

- Redes Telefónicas
 - Rede Analógica
 - Rede Digital
 - Rede Celular
 - Transmissão por Satélite
- Redes de Difusão de Serviços Audiovisuais
- Redes de Dados de Computador
 - UC Redes de Computadores

Redes Telefónicas

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Introdução

- Evolução das tecnologias da informação e da comunicação:
 - aproximação crescente entre as redes públicas de telecomunicações e as redes locais de comunicação por computador
- Modelos de transmissão e comutação baseados:
 - estabelecimento prévio de conexões
 - empacotamento e identificação da origem e destino da informação na altura em que esta é gerada
- Conduz a um modelo onde a informação é:
 - > introduzida em contentores virtuais
 - > encaminhada em qualquer sistema de transporte
 - garantia da qualidade de serviço

Introdução

- Numa perspectiva funcional, podemos destinguir vários tipos de redes de comunicação, de que são exemplos as redes:
 - Telefónicas
 - Difusão de serviços audiovisuais
 - Dados de computador
- Por outro lado, nestas redes, podemos identificar subsistemas de:
 - Transporte
 - Acesso
 - Utilizador

Evolução das Redes Telefónicas

- Durante décadas, o estabelecimento de chamadas telefónicas automáticas foi assegurado pela tecnologia de comutação electromecânica, enquanto as mensagens escritas cruzavam as fronteiras de países e continentes, em redes de transmissão de caracteres alfanuméricos
- A digitalização das redes telefónicas, através da substituição das técnicas de comutação, transmissão e gestão, permitem às novas redes de comunicação, além de continuar a suportar o serviço telefónico, oferecer novos serviços

Evolução das Redes Telefónicas

- Para satisfazer a crescente diversidade de capacidades e meios, as redes de comunicação necessitam:
 - Mecanismos de Gestão e de Controlo de tráfego suficientemente flexíveis para permitir:
 - a utilização partilhada dos recursos pelos diferentes utilizadores, operadores e serviços
 - uma efectiva garantia da qualidade de serviço

Rede Analógica

- As redes telefónicas foram desenvolvidas para transmitir e comutar sinais analógicos de voz:
 - espectro limitado no intervalo de frequências entre os 400 e os 3400 Hz,
 - transmitidos em banda base até à central local, onde eram multiplexados em agregados modulados em amplitude com banda lateral única para transmissão entre os comutadores espaciais.
- Actualmente, as infraestruturas de transmissão analógica destas redes só são utilizadas praticamente para:
 - suporte do acesso (lacete local) do utilizador à central local de comutação digital
 - as linhas telefónicas analógicas poderão ser utilizadas para transmissão do sinal (analógico) de voz,
 - transmissão dos sinais digitais, convenientemente modulados na rede (ou terminal digital) do utilizador.
- A Jusante da central local todos os processos associados à transmissão e comutação recorrem a tecnologias digitais

Rede Analógica

 Duas técnicas que permitem a transmissão bidireccional da informação num único par de condutores que constitui o lacete local:

TCM - Time Compressed Multiplexing

Rede Digital

- Nas redes telefónicas digitais, o sinal analógico da voz é digitalizado:
 - palavras de 8 bits (8 símbolos binários ou octetos)
 - com uma frequência de amostragem de 8 kHz (ciclos por segundo)
 - resultando um sinal digital com uma cadência constante de 64 kbit/s (canal B).
- Os octetos de informação provenientes dos vários canais são concatenados (multiplexados), de modo a ocuparem os intervalos temporais que lhes estão reservados em tramas estruturadas, de uma forma hierárquica, onde são transmitidos

Tramas Digitais

- Nos sistemas de transmissão digital, o sinal é caracterizado por uma cadência de palavras:
 - comprimento fixo ou variável
- que tanto podem ser geradas a um ritmo:
 - constante como variável
- Estes sinais, podendo ser provenientes de um ou de vários canais multiplexados, ocupam intervalos temporais previamente reservados numa trama

Tramas Digitais

- Cada pacote de informação, proveniente de um dos vários canais afluentes, ocupa um intervalo temporal fixo e cíclico
- Existem um ou mais intervalos ocupados com uma palavra pré-definida de alinhamento da trama, para permitir identificar os diferentes canais

Multi-Trama

 Numa multitrama, a sequência de palavras de alinhamento de trama podem diferir entre si no primeiro bit de cada palavra, cuja sequência forma a palavra de alinhamento de multitrama

Controlo de Tráfego

 Na fase de estabelecimento de chamadas, informação de sinalização, para controlo da comutação e encaminhamento da informação dos canais, é transportada noutros intervalos até às entidades de controlo, onde é processada de modo a assegurar a atribuição de recursos necessária ao suporte da transferência do fluxo de informação dos canais

Controlo de Tráfego

- Do ponto de vista do controlo, as tecnologias digitais começaram a ser introduzidas ainda em ambientes analógicos de comutação e transmissão
- O controlo por programa armazenado (SPC, Stored Program Control) veio permitir a introdução de mecanismos elaborados de gestão e controlo de fluxo, podendo mesmo permitir uma alocação dinâmica de recursos, em função do estado de ocupação e operacionalidade da rede

- A primeira chamada GSM foi efectuada em Helsínquia no dia 1 de Julho de 1991.
 - Esta data é usada como referência para a criação das redes celulares de 2ª Geração (2G)
- Em finais de Fevereiro de 2001 foram concedidas licenças a 61 operadores de UMTS em 16 países diferentes
 - ❖GSM (Global System for Mobile)
 - UMTS (Universal Mobile Telecommunication System)

- As redes telefónicas celulares permitem uma grande mobilidade dos utilizadores e dos terminais
 - Utilizam as infra-estruturas da rede telefónica digital
 - Sistema de difusão em espaço livre
 - Protocolos de controlo de acesso ao meio
- A arquitectura do sistema telefónico celular é semelhante à do sistema fixo
 - Difere no lacete local de acesso à rede fixa que é suportado por uma rede de transmissão de Rádio Frequência

- Nesta rede de acesso as técnicas de espalhamento espectral e de transmissão
 - recorrendo a processos aleatórios de codificação
 - DSSS Direct Sequence Spread Spectrum
 - saltos de frequência
 - FH Frequency Hopping
- Permitem:
 - assegurar privacidade da comunicação
 - gerir a partilha e atribuição de recursos em sistemas de comunicação pessoais

- Técnicas de acesso múltiplo:
 - FDMA (Frequency Division Multiple Access)
 - O espectro de frequências disponível é dividido em bandas (canais). Cada um destes canais é alocado à um utilizador no momento de realização da chamada
 - TDMA (Time Division Multiple Access)
 - Divide-se um determinado canal intervalos de tempo, em que cada utilizador ocupa um espaço de tempo específico na transmissão, o que impede problemas de interferência
 - CDMA (Code Division Multiple Access)
 - Técnica de alargamento de espectro que permite aumentar a taxa efectiva de transferência de informação através do uso de códigos que identificam conexões

- Arquitectura de uma rede celular:
 - Terminal Móvel
 - unidade de controlo
 - unidade de codificação
 - sistema transmissão de Rádio Frequência
 - Estação de Base
 - unidade de controlo
 - circuitos rádio e antenas
 - Terminais de dados
 - Centro de Comutação
 - processador central
 - comutador celular

- As estações de base formam células contíguas, com áreas de cobertura variáveis e algumas sobreposições (nas zonas de fronteira das áreas cobertas por diferentes células)
- O sistema de controlo do comutador celular é capaz de transferir, em tempo real, todo o processo de comunicação de uma para outra célula, sempre que o terminal atravesse as respectivas áreas de cobertura - Handover

- Transmissão dos sinais modulados em:
 - GMSK (Gaussian Minimum Shift Keying)
 - o espectro disponível é dividido em duas bandas
 - Uma em cada sentido de transmissão
- São utilizados dois métodos de acesso múltiplo:
 - FDMA
 - TDMA

GSM – Estrutura de Tramas

- O sinal digital de voz é codificado por um algoritmo de predição linear que apresenta um débito de 13 kbit/s
 - requer uma taxa de transmissão de 22.8 kbit/s, uma vez este sinal é protegido por um código de detecção e correcção de erros
- 8 destes sinais são multiplexados por divisão do tempo numa trama com 4.615 ms de duração
- 24 destas tramas, conjuntamente com mais 2 tramas (que suportam a transferência de informação de controlo, em canais lógicos associados), são integradas numa multitrama, com uma duração de 120 ms e um débito de 271 kbit/s

UMTS

- UMTS, Universal Mobile Telecommunications System
 - versão europeia da terceira geração (3G) dos sistemas de comunicações móveis
 - projectado com o intuito de continuar com o sucesso alcançado pelo sistema GSM de segunda geração (2G)
- A rede UMTS é composta por três entidades fundamentais:
 - CN Core Network
 - UTRAN UMTS Terrestrial Radio Access Network
 - UE User Equipment

UMTS – Core Network

- As principais funções da CN são:
 - implementar mecanismos de comutação
 - encaminhamento e transporte do tráfego de utilizador
 - manutenção das bases de dados e gestão da rede
- A sua arquitectura é uma evolução da rede GSM com suporte GPRS e pode ser dividida em dois domínios:
 - Comutação de Circuitos (CC)
 - Comutação de Pacotes (CP)
- O modo de transferência assíncrono ATM foi definido como a tecnologia de suporte de transmissão do UMTS

UMTS - UTRAN

- Permite a introdução de serviços multimédia devido à largura de banda dos seus canais rádio
 - -5 MHz em vez de 200 kHz do sistema GSM
- Utilização de CDMA como método de acesso:
 - Permite a transferência de informação com débitos até 2 Mbit/s.

UMTS – Serviços

- Os serviços orientados à ligação ou sem ligação são suportados em ligações ponto-a-ponto ou ponto-amultiponto
- Os serviços UMTS possuem diferentes classes de serviço para 4 tipos de tráfego:
 - Conversacional: voz, vídeo telefonia, vídeo jogos
 - Streaming: multimedia, video on demand, webcast
 - Interactivo: web browsing, jogos em rede, acesso a bases de dados
 - Background: email, SMS, downloading

- Após um período de estabilidade na tecnologia da transmissão por satélite, assiste-se actualmente a uma procura crescente deste tipo de transmissão para os novos serviços telemáticos
- Constitui uma prática corrente, nos mais variados operadores de telecomunicações, o recurso a satélites estacionários GEOs (Geostationary Earth Orbit) para interligar permanentemente (ponto-aponto) estações terrenas onde são concentrados vários canais provenientes dos sistemas servidos por essas estações

- A disponibilidade de acesso a sistemas de transmissão em Rádio Frequência, formados por constelações de satélites de órbita baixa (ou mesmo de orbita intermédia) com cobertura quase universal, permite:
 - integração de sistemas de comunicação fixos e móveis,
 - acesso a redes de dados (e.g. Internet)

- O Satélite que cobre a área de um utilizador retransmite o sinal para terra ou para outro satélite conforme localização do destinatário
- No estado actual da tecnologia é possível, com custos praticáveis, a utilização em grande escala de terminais móveis híbridos, que tanto podem ser interligados recorrendo estações de base fixas (terrenas) ou a redes de satélites de órbita baixa

 Integração de vários sistemas móveis de comunicação numa rede de satélites não estacionários

Redes de Difusão de Serviços Audiovisuais

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Redes de Difusão

- Ao contrário das redes telefónicas e das redes de computadores
 - geralmente a transmissão é guiada
- as redes de difusão comportavam:
 - -uma componente guiada
 - rede de transporte do sinal
 - uma componente em espaço livre
 - difusão do sinal

Redes de Difusão

- Estas redes podem suportar:
 - Distribuição de programas radiofónicos
 - Distribuição de programas televisivos
- Também podem ser utilizadas em:
 - serviços conversacionais
 - difusão de mensagens
- recorrendo a protocolos de codificação extremo-a-extremo
 - garantir confidencialidade e segurança

Redes de Televisão

- Tal como aconteceu nos sistemas telefónicos, os sistemas de televisão ainda instalados são baseados em tecnologias analógicas, mas estão a ser introduzidas novas funções suportadas por tecnologias digitais, bem como sistemas totalmente digitais
- Os novos sistemas de Televisão Digital, sendo desenvolvidos de raiz, são incompatíveis com os tradicionais sistemas analógicos, pelo que, na fase de transição, será necessário recorrer a adaptadores, para integração dos dois sistemas

- Os primeiros sistemas de televisão eram Monocromáticos
 - o sinal de imagem era composto apenas por um sinal de Luminância (Fotometria)
- A codificação do sinal TV foi fortemente condicionada por:
 - características e limitações das câmaras de aquisição de imagem
 - Receptores baseados em Tubo de Raios Catódicos (CRT, Cathode Ray Tube)

- Os sistemas Policromáticos resultaram da integração do sinal de Crominância (Colorimetria) na banda do sinal de Luminância, de modo a garantir a plena compatibilidade entre os dois sistemas
 - Um receptor a cores deverá descodificar um sinal Monocromático, do mesmo modo que um receptor a preto e branco deverá descodificar um sinal Policromático

- Existem vários sistemas analógicos de codificação de imagem
 - os mais utilizados na Europa, consideram uma imagem composta por 625 linhas
 - geradas a uma cadência de 25 imagens/s
 - apresentadas por entrelaçamento de quadros alternados => duplica virtualmente a cadência para 50 imagens/s
 - constituídos, respectivamente, pelas linhas pares e pelas impares

- Os Sistemas Televisão Policromática mais utilizados são o NTSC (EUA), o PAL (Alemanha) e Secam (França)
- No domínio da frequência, o sinal de televisão apresenta uma largura de banda de cerca de 5 MHz
- O sinal de Luminância X_y , tem uma largura de banda de 4,2 MHz, sendo composto, numa matriz, por combinação linear dos 3 sinais de Cor:
 - $-X_r$ Vermelho
 - $-X_a$ Verde
 - $-X_b$ Azul
- Assim:
 - $X_y = 0.30X_r + 0.59X_g + 0.11X_b$

- O sinal composto, no sistema PAL, resulta da modulação em amplitude com banda vestigial (VSB) do sinal de imagem e da modulação em frequência do sinal de som
- Tradicionalmente, as redes de difusão de sinais de televisão caracterizam-se pela unidireccionalidade do canal, desenvolvendo-se as suas topologias em árvores hierarquizadas.
 - Na base da hierarquia, os emissores de sinal em Rádio Frequência (RF) garantem a cobertura dos aglomerados habitacionais (muitas vezes esparsos) de dimensões variadas e muito dependentes das características geográficas, onde estão localizados os utilizadores

- Foram atribuídas 4 bandas do espaço hertziano à difusão de sinais de televisão em espaço aberto:
 - a banda I, que ocupa a faixa dos 41 aos 68 MHz
 - a banda III, que ocupa a faixa dos 162 aos 230 MHz
 - a banda IV, que ocupa a faixa dos 470 aos 582 MHz
 - a banda V, que ocupa a faixa dos 582 aos 960 MHz
- O sinal de televisão requer uma grande capacidade de transmissão, as ligações ponto-a-ponto entre os ramos da árvore da rede de distribuição são, tipicamente, guiadas em espaço livre em feixes Hertzianos (Micro-ondas), ao longo de dezenas ou centenas de quilómetros

- Outras vezes, recorre-se e satélites estacionários para interligar (permanente ou esporadicamente) duas ou mais estações terrenas, que podem distar, entre si, milhares de quilómetros
- Com o aumento da capacidade de transmissão instalada, proporcionada pela introdução generalizada de cabos de fibra óptica, nas áreas residenciais e nos corredores de interligação dos centros urbanos, a distribuição do sinal televisivo passou a ser possível e praticável em circuito fechado (e.g. TV por Cabo)

- O desenvolvimento de normas para a digitalização, compressão e apresentação do sinal de vídeo e de áudio bem como a interacção com outros sistemas de informação, proporcionaram a exploração comercial de novos serviços audiovisuais, nomeadamente a difusão de vídeo, quer em terra
 - DVB-T, Digital Video Broadcasting Terrestrial
- quer por satélite
 - DVB-S, Digital Video Broadcasting Satellite

- Em estúdio já são largamente utilizados sistemas digitais de captura e processamento de imagens, sons e outras informações
- Na rede de difusão a compatibilidade dos formatos com os receptores CRT obriga à reconversão analógica do sinal
- A adopção pelos fabricantes de normas internacionais está a conduzir à proliferação de receptores (domésticos) de televisão digital de Alta Definição (HDTV, High Definition Television)

- Os Sistemas de Televisão Digital com canal de retorno
 - para transmissão de informação de controlo
- proporcionam capacidade de interacção com o utilizador
 - que deixa de ser apenas espectador
- tornando possível, por exemplo, a escolha do programa a visualizar
 - VoD Video on Demand

- A integração da televisão digital nas redes dos operadores do serviço telefónico
 - tal como já acontece com a Televisão por Cabo
- será facilitada uma vez que as normas digitais prevêem a possibilidade de instalação de linhas assimétricas na interface do utilizador
- De acordo com as normas ADSL (Asymmetric Digital Subscriber Line), a capacidade instalada para recepção pode ser muito maior do que a da emissão, ou o contrário, permitindo ao utilizador, ou ao prestador de serviços, racionalizar os meios disponíveis e adaptá-los aos serviços que servirão de suporte

Redes de Áudio Difusão de Áudio Esteriofónico

- Tal como nos sistemas de televisão
 - a integração da cor garantiu perfeita compatibilidade com o sistema a preto e branco
- Nos sistemas de difusão e de recepção de sinais de áudio a introdução do sistema Esteriofónico teve em consideração a compatibilidade com o sistema nativo
 - Um receptor Esteriofónico descodifica um sinal Mono, do mesmo modo que um receptor Monofónico descodifica um sinal Estéreo.

Difusão de Áudio Esteriofónico

Na emissão, existe uma matriz que gera dois sinais X₁
e X₂ (com uma largura de banda de 15 kHz) que
resultam da soma e da subtracção, respectivamente,
de dois sinais mono canal

$$-S_d(t)$$
 – direito

$$-S_e(t)$$
 – esquerdo

Assim:

$$-X_1 = S_d(t) + S_e(t)$$

$$-X_2 = S_d(t) - S_e(t)$$

Difusão de Áudio Esteriofónico

- O sinal Esteriofónico é composto pelo sinal X_1 em banda base, por uma portadora (Piloto) de 19 kHz e pelo sinal X_2 modulado em amplitude sem portadora com uma frequência de 38 kHz (duas vezes a frequência piloto)
- Um receptor Mono descodifica, de um sinal esteriofónico $X_1 = S_d(t) + S_e(t)$ apenas a soma dos dois canais emitidos

Difusão de Áudio Esteriofónico

 Em banda base o sinal Áudio Monofónico (mono canal) ocupa uma banda de 15 kHz

Áudio Digital

- Por outro lado, um receptor Estéreo de um sinal Monofónico $(X_2 = 0)$ descodifica (e transpõe para os dois canais) o canal $S_d = S_e$ emitido
- Do mesmo modo, se um sinal Esteriofónico for composto apenas por um canal mono ($S_e = 0$), o receptor descodifica ($X_1 = X_2 = S_d$) e transpõe para os dois canais o canal emitido
- A difusão de sinais de áudio esteriofónico poderá ser efectuada em espaço aberto
 - recorrendo a modulações em frequência
 - com portadoras de cerca de 100MHz
 - identificam cada sinal multiplexado na banda de transmissão (88-106 MHz)

Áudio Digital

- Conceptualmente, as redes de difusão de sinais de áudio não diferem significativamente das redes de televisão. Por isso, as perspectivas de evolução destes sistemas parecem ser também semelhantes
- No entanto, ao contrário da tendência da televisão, a difusão de programas de áudio em espaço livre, poderá consolidar-se, uma vez que muitos dos seus destinatários são móveis ou estão localizados a (muito) grande distância
- Para o primeiro caso, refira-se os espectadores em viagem, nomeadamente em automóvel, que, com introdução do RDS24, dispõem da capacidade de sintonia automática, ao longo do percurso, da estação seleccionada
- Para o segundo, refiram-se as comunidades emigrantes que mercê da difusão directa por satélite, por retransmissão terrena, ou pela Internet, dispõem remotamente do mesmo serviço que os destinatários convencionais, nos países de origem

Áudio Digital

 Por outro lado, a transmissão de programas de difusão de áudio digital nas redes públicas digitais não obriga a constrangimentos que mereçam referência, dada a especificidade deste meio de comunicação que se traduz por requerer, tipicamente, uma capacidade transmissão, centenas de vezes menor que a do sinal de televisão, embora maior que a requerida para transmissão da voz (telefone)

Redes de Dados de Computador

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Redes de Computadores

- As redes de dados digitais surgiram para interligar terminais e computadores:
 - Foram desenvolvidos vários protocolos para transmissão de sinais caracterizados por:
 - períodos de actividade, onde se requer uma capacidade de transmissão relativamente elevada durante um intervalo temporal relativamente curto, interrompidos por períodos de inactividade mais ou menos longos
 - transmissão em "bursts"

Redes de Computadores

- Este tipo de tráfego, recomenda uma atribuição partilhada no tempo, por vários utilizadores ou chamadas, do mesmo canal de transmissão e de outros recursos da rede
- Nos períodos de actividade, a informação a transmitir é formatada em pacotes de comprimento fixo ou variável que são numerados e marcados com os endereços do remetente e do destinatário, ou referenciados ao canal virtual a que diz respeito a informação
- No terminal emissor e em cada nó da rede, os pacotes são armazenados para serem transmitidos quando existirem recursos disponíveis

Redes de Computadores

- O modelo de referência para a interconexão de sistemas abertos (OSI) descreve os processos de comunicação segundo uma hierarquia de sete camadas com funções específicas:
 - a camada física constitui o nível mais baixo na hierarquia do modelo OSI
 - as camada de ligação e a de rede, são definidas localmente, isto é, na interface de utilizador da rede
 - as quatro camadas seguintes têm significado extremo-a-extremo e são dependentes do serviço transportado

Interligação de Redes de Computadores

- Desenvolvidos os protocolos para as várias camadas do modelo OSI
- Definidas as interfaces de acesso ao meio de transmissão (bem como a sincronização dos processos entre utilizadores e os mecanismos de gestão)
 - Foram surgindo vários tipos de redes de computadores, das quais se destacam:
 - Redes Locais (LAN),
 - Redes Metropolitanas (MAN),
 - Redes (virtuais) de comutação de pacotes (e.g. Redes X.25, Frame Relay).
 - suportadas fisicamente por meios de transmissão próprios, que poderão estar interligados remotamente, através de redes telefónicas

Redes de dados - Principais Especificações

IEEE - Série 802	
802.1	Panorâmica Geral da Série 802
802.2	Controlo da Ligação Física
802.3	CSMA/CD
802.4	Token Bus
802.5	Token Ring
802.6	Redes Metropolitanas (MAN)
802.7	MANs de Banda Larga
802.8	Fibra Óptica
802.9	Integração de Redes Locais (LAN)
802.10	Segurança em LANs
802.11	LANs sem Fios
802.15	Redes de Área Pessoal (PAN)
802.16	MANs sem Fios

Comutação de Pacotes / Circuitos

- Nas redes orientadas à comutação de pacotes (Locais e Metropolitanas, X.25, Internet, etc), a qualidade de serviço é muito variável com o volume de tráfego
 - os mecanismos de controlo de fluxo comportam uma componente reactiva que permite a detecção e a correcção de alguns erros de transmissão,
 - retransmissão de pacotes (em caso de perda ou duplicação), além do controlo do débito de geração na fonte em função dos atrasos provocados por sobrecarga dos nós da rede
- Pelo contrário, nas redes orientadas à comutação de circuitos, como a RDIS, a transmissão de dados é efectuada com qualidade de serviço (i.e. probabilidade de perda e variação do atraso) constante
 - o controlo de tráfego comporta apenas uma componente preventiva, associada à atribuição de recursos no estabelecimento das conexões

Bibliografia

- Dunlop e Smith, "Telecommunication Engineering", Van Nostrand,
 - ISBN: 978-0748740444
- Carlson, A. Bruce, "Communication Systems", McGraw-Hill, 4 edition, 2001
 - ISBN: 978-0070111271
- Data and Computer Communications, 10/E, William Stallings, Prentice Hall, ©2014
 - ISBN: 978-0133506488