

Tianyu Du

February 23, 2020

Contents

1	Auctions	5
	1.0.1 Private Value Auctions	5
	1.1 First Price Private Value Auction	7
	1.2 Second Price Private Value Auction	8
	1.3 The General Case: k^{th} Price Private Value Auction	8
	1.4 Common Value Auction	8
	1.5 Combinatorial Auction: The VCG Mechanism	8
2	Matching Market	9
3	Appendices	11
	3.1 Appendix A: Order Statistics	11

4 CONTENTS

Chapter 1

Auctions

Definition 1.0.1. An auction is an informational environment consisting of

- (i) **Bidding format rules**: the form of the bids, which can be price only, multi-attribute, price and quantity, or quantity only;
- (ii) **Bidding process rules**: Closing/timing rules, available information, rules for bid improvements/counter-bids, closing conditions;
- (iii) Price and allocation rules: final prices, quantities, winners.

Auctions are commonly referred to as a market mechanism as well as a price discovery mechanism

Definition 1.0.2. A market mechanism uses prices to determine allocations.

Definition 1.0.3. An auction is a **private value** auction if agents' valuations do not dependent on other buyers' valuations. Otherwise, the auction is called a **interdependent** / **common value** auction.

1.0.1 Private Value Auctions

Assumption 1.0.1. In this chapter, we shall impose the following assumption on bidders' valuations:

(i) Each bidder's valuation is independently and identically distributed on some interval $[0, \omega]$ according to a distribution function F:

$$V_i \overset{i.i.d.}{\sim} F \ s.t. \ \text{supp}(F) = \mathbb{R}_+$$
 (1.0.1)

- (ii) F belongs to the common knowledge in this system;
- (iii) Bidders' valuations have finite expectations:

$$\mathbb{E}[V_i] < \infty \tag{1.0.2}$$

Assumption 1.0.2. Moreover, we assume bidders' behaviours to satisfy the following properties:

- (i) Bidders are risk neutral, they are maximizing expected profits;
- (ii) Each bidder it both willing and able to pay up to his or her value.

Definition 1.0.4. A **strategy** of a bidder is a mapping from the space of his/her valuation to a bid:

$$s: [0, \omega] \to \mathbb{R}_+ \tag{1.0.3}$$

Definition 1.0.5. An equilibrium of auction is **symmetric** if all bidders are following the same bidding strategy s.

Definition 1.0.6. A bidder is bidding sincerely / truthfully if he bids his true value.

Proposition 1.0.1. In a symmetric equilibrium of the <u>second-price</u> auction, s(v) = v is a weakly dominant strategy.

Proof. For a fixed valuation $v_i \in [0, \omega]$ of bidder i.

Let $p := \max_{j \neq i} b_j$ be highest bidding price by other bidders.

Let $\pi_i(b,p)$ denote bidder i's profit when bidding b given the highest price from other bidders to be p.

Part 1: consider another bidding $z_i < v_i$, the following cases are possible:

- (i) $v_i (bidder i losses anyway).$
- (ii) $v_i = p \implies \pi_i(v_i, p) = \pi_i(z_i, p) = 0$ (bidder *i* is indifferent).
- (iii) $v_i > p$:
 - (a) $v_i > z_i > p \implies \pi_i(v_i, p) = \pi_i(z_i, p) = v_i p;$
 - (b) $v_i > z_i = p \implies \pi_i(v_i, p) \ge \pi_i(z_i, p);$
 - (c) $v_i > p > z_i \implies \pi_i(v_i, p) > \pi_i(z_i, p)$.

Hence, bidding v_i weakly dominates bidding any value below it.

Part 2: for $z_i > v_i$, the following cases are possible:

(i)

Therefore, bidding v_i weakly dominates bidding any other values.

Proposition 1.0.2. In a symmetric equilibrium of the $\underline{\text{first-price}}$ auction, equilibrium bidding strategies are given by

$$s(v_i) = \mathbb{E}[\max_{j \neq i} v_j | v_j \le v_i]$$
(1.0.4)

which is the expected second highest valuation conditional on v_i being the highest valuation.

Proof. Let s(v) denote an equilibrium strategy.

Lemma 1.0.1. For any agent, bidding more than $s(\omega)$ can never be optimal. Bidding $b > s(\omega)$ makes this agent win for sure. In such case, bidding $b' \in (s(\omega), b)$ strictly dominates bidding b.

Lemma 1.0.2. For any agent, s(0) = 0. Bidding any positive number would cause negative payoff with positive probability, and therefore, leads to a negative expected profit.

Lemma 1.0.3. Because s is monotonically increasing, therefore,

$$\max_{j \neq i} s(v_j) = s(\max_{j \neq i} v_j) \tag{1.0.5}$$

Let p denote the highest price among all other N-1 bidders and let $F^{(N-1)}(x)$ denote the distribution of p.

The expected profit of bidder i by bidding an arbitrary $b \in \mathbb{R}_+$ is

$$\pi_i(b, v_i) = P(b > p)(v_i - s(v_i)) + P(b = p)(v_i - s(v_i)) + P(b < p)0$$
(1.0.6)

Note that $b > p = s(\max_{j \neq i} v_j)$ if and only if $s^{-1}(b) > \max_{j \neq i} v_j$. It follows

$$P(b > p) = P(\max_{j \neq i} v_j < s^{-1}(b)) = F^{(N-1)}(s^{-1}(b))$$
(1.0.7)

Therefore,

$$\pi_i(b, v_i) = F^{(N-1)}(s^{-1}(b))(v_i - b) \tag{1.0.8}$$

The first order condition implies

$$\frac{\partial \pi_i}{\partial b} \pi_i(b, v_i) = \frac{\partial \pi_i}{\partial b} F^{N-1}(s^{-1}(b)) v_i - F^{N-1}(s^{-1}(b)) b \tag{1.0.9}$$

$$= f^{(N-1)}(s^{-1}(b))\frac{v_i - b}{s'(v_i)} - F^{(N-1)}(s^{-1}(b)) = 0$$
(1.0.10)

For a symmetric equilibrium, all other bidders are following the same strategy s so that $s(v_i) = b$, therefore,

$$f^{(N-1)}(s^{-1}(b))\frac{v_i - b}{s'(v_i)} - F^{(N-1)}(s^{-1}(b)) = 0$$
(1.0.11)

$$\implies f^{(N-1)}(s^{-1}(b))(v_i - b) - F^{(N-1)}(s^{-1}(b))s'(v_i) = 0$$
(1.0.12)

$$\implies f^{(N-1)}(s^{-1}(b))v_i = F^{(N-1)}(s^{-1}(b))s'(v_i) + f^{(N-1)}(s^{-1}(b))s(v_i)$$
(1.0.13)

$$\implies f^{(N-1)}(v_i)v_i = \frac{d}{dv_i} \left[F^{(N-1)}(v_i)s(v_i) \right]$$
 (1.0.14)

$$\implies \int_0^{v_i} f^{(N-1)}(y)y \ dy = F^{(N-1)}(v_i)s(v_i) - F^{(N-1)}(0)s(0) \tag{1.0.15}$$

$$\implies F^{(N-1)}(v_i)s(v_i) = \int_0^{v_i} f^{(N-1)}(y)y \ dy \tag{1.0.16}$$

$$\implies s(v_i) = \frac{1}{F^{(N-1)}(v_i)} \int_0^{v_i} f^{(N-1)}(y)y \ dy \tag{1.0.17}$$

$$\implies s(v_i) = \mathbb{E}\left[\max_{j \neq i} v_j \middle| \max_{j \neq i} v_j < v_i\right]$$
 (1.0.18)

1.1 First Price Private Value Auction

Problem Setup Let N denote the set of bidders, |N| = n. For each bidder $i \in N$, his valuation of the auctioned item v_i follows some distribution F. Further assume that

Probability of Winning Let $W(b, v_i)$ denote the event that player i, who has valuation v_i , wins by bidding $b \in \mathbb{R}_+$.

- 1.2 Second Price Private Value Auction
- 1.3 The General Case: k^{th} Price Private Value Auction
- 1.4 Common Value Auction
- 1.5 Combinatorial Auction: The VCG Mechanism

Chapter 2

Matching Market

Chapter 3

Appendices

3.1 Appendix A: Order Statistics

Definition 3.1.1. Let (X_1, \dots, X_n) be n random variables on the probability space (Ω, \mathcal{F}, P) , further assume they are iid following distribution function $F(\cdot)$. For each $\omega \in \Omega$, realizations of above random variables can be sorted as

$$X_{(n)}(\omega) \le X_{(n-1)}(\omega) \le \dots \le X_{(1)}(\omega) \tag{3.1.1}$$

For each ω , the random variable $X_{n:k}$ is defined such that $X_{n:k}(\omega)$ equals the k-th largest value, $X_{(k)}(\omega)$.

Distribution Function Let $x \in X(\Omega)$, then

$$X_{n:k} \le x \iff (\text{no } X_i > x) \bigcup (\text{exactly 1 } X_i > x) \bigcup \cdots \bigcup (\text{exactly } k - 1 \ X_i > x)$$
 (3.1.2)

$$\iff (X_i \le x \ \forall i) \bigcup (\text{exactly } n-1 \ X_i \le x) \bigcup \cdots \bigcup (\text{exactly } n-k+1 \ X_i \le x) \tag{3.1.3}$$

$$\iff \bigcup_{j=n-k+1}^{n} \text{(exactly } j \ X_i \le x)$$
(3.1.4)

Note that events in the union are mutually exclusive, therefore,

$$F_{n:k}(x) = P(X_{n:k} \le x) = \sum_{j=n-k+1}^{n} P(\text{exactly } j | X_i \le x)$$
 (3.1.5)

$$= \sum_{j=n-k+1}^{n} {n \choose j} F(x)^{j} (1 - F(x))^{n-j}$$
 (3.1.6)

(3.1.17)

Density Function

$$\begin{split} f_{n:k}(x) &= \frac{d}{dx} F_{n:k}(x) &= \frac{d}{dx} F_{n:k}(x) & (3.1.7) \\ &= \frac{d}{dx} \sum_{j=n-k+1}^{n} \binom{n}{j} F(x)^{j} (1-F(x))^{n-j} & (3.1.8) \\ &= \frac{d}{dx} \sum_{j=n-k+1}^{n} \frac{n!}{j!(n-j)!} F(x)^{j} (1-F(x))^{n-j} & (3.1.9) \\ &= \sum_{j=n-k+1}^{n} \left[\frac{n!}{j!(n-j)!} j F(x)^{j-1} (1-F(x))^{n-j} - \frac{n!}{j!(n-j)!} (n-j) F(x)^{j} (1-F(x))^{n-j-1} \right] f(x) \\ &= \sum_{j=n-k+1}^{n} \frac{n!}{j!(n-j)!} j F(x)^{j-1} (1-F(x))^{n-j} f(x) - \sum_{j=n-k+1}^{n-1} \frac{n!}{j!(n-j)!} (n-j) F(x)^{j} (1-F(x))^{n-j-1} f(x) \\ &= \sum_{j=n-k+1}^{n} \frac{n!}{(j-1)!(n-j)!} F(x)^{j-1} (1-F(x))^{n-j} f(x) - \sum_{j=n-k+1}^{n-1} \frac{n!}{j!(n-j-1)!} F(x)^{j} (1-F(x))^{n-j-1} f(x) \\ &= \frac{n!}{(n-k)!(k-1)!} F(x)^{n-k} (1-F(x))^{k-1} f(x) & (3.1.13) \\ &+ \sum_{j=n-k+2}^{n} \frac{n!}{(j-1)!(n-j)!} F(x)^{j} (1-F(x))^{n-j} f(x) \\ &= \frac{n!}{(n-k)!(k-1)!} F(x)^{n-k} (1-F(x))^{k-1} f(x) & (3.1.14) \\ &+ \sum_{j=n-k+2}^{n} \frac{n!}{(j-1)!(n-j)!} F(x)^{j-1} (1-F(x))^{n-j} f(x) \\ &= \frac{n!}{(n-k)!(k-1)!} F(x)^{n-k} (1-F(x))^{k-1} f(x) & (substitute \ j=i-1) \\ &= \frac{n!}{(n-k)!(k-1)!} F(x)^{n-k} (1-F(x))^{k-1} f(x) & (3.1.15) \\ &= n \frac{(n-1)!}{(n-k)!(k-1)!} F(x)^{n-k} (1-F(x))^{k-1} f(x) & (3.1.16) \\ \end{split}$$

 $= n \binom{n-1}{k-1} F(x)^{n-k} (1 - F(x))^{k-1} f(x)$