Assignment 1 Stormckey

Problem 1

Part 1:

Property
$$p ::= \varepsilon$$
 | np | sp | sp | Numerical Property $np ::= = n$ | $> n$ | $< n$ | $np \wedge np$ | $np \vee np$ | $np \vee np$ | (np) | String Property $sp ::= = s$ | $sp \vee sp$ | Schema $\tau ::= \text{number}\langle np \rangle$ | $\text{number}\langle \varepsilon \rangle$ | $\text{string}\langle sp \rangle$ | $\text{string}\langle \varepsilon \rangle$ | bool | $[\tau^*]$ | $\{(s:\tau)^*\}$

Part 2:

Problem 2

Part 1:

$$\frac{s' \in s}{(.s'a, \{(s, j)^*\}) \mapsto (a, j_{s'})} \text{ (E-ACCESS)} \qquad \frac{i \in \{0 \dots |j| - 1\}}{([i]a, [j^*]) \mapsto (a, j_i)} \text{ (E-INDEX)}$$

$$\frac{\forall i = 1 \dots |[\{s, j\}^*]| - 1, s' \in s_i}{(|.s'a, [\{s, j\}^*]) \mapsto [j_{i, s'}]} \text{ (E-MAP-ACCESS)}$$

$$\frac{\forall l = 1 \dots |[[j^*]^*]| - 1, i \in 0, \dots, |j_l| - 1}{(|[i]a, [[j^*]^*]) \mapsto [j_{l, i}^*]} \text{ (E-MAP-INDEX)}$$

Part 2:

$$\frac{s' \in s, a \sim \tau_{j_{s'}}}{s'a \sim \{(s,j)^*\}} \text{ (V-Access)} \qquad \frac{i \in \{0 \dots |j|-1\}, a \sim \tau_{j_i}}{[i]a \sim [j^*]} \text{ (V-Index)}$$

$$\frac{\forall i = 1 \dots |[\{s,j\}^*]| - 1, s' \in s_i, a \sim \tau_{j_{i,s'}}}{s'a \sim [\{s,j\}^*]} \text{ (V-Map-Access)}$$

$$\frac{\forall l = 1 \dots |[[j^*]^*]| - 1, i \in 0, \dots, |j_l| - 1, a \sim \tau_{j_{l,i}}}{|[i]a \sim [[j^*]^*]} \text{ (V-Map-Index)}$$

Accessor safety: for all a, j, τ , if $a \sim \tau$ and $j \sim \tau$, then there exists a j' such that $(a, j) \stackrel{*}{\mapsto} \varepsilon, j'$.

Proof. Induction on the steps of derivation:

(1 step derivation)

trivial by case analysis of a.

(k step derivation, k > 1)

take 1 step like we did above then use the k-1 hypothesis.