Corrigé

par S. Boujaida

Lycée Moulay Youssef Rabat

Première partie

E un \mathbb{R} -ev de dimension 3 et u un endomorphisme de E.

On suppose que $\chi_{\mathfrak{u}}=(\lambda-X)^2(\mu-X)$ ou $\lambda,\mu\in\mathbb{R}^2$ et on pose $\nu=(\mathfrak{u}-\lambda\mathrm{id}_E)^2$ et $w = u - \mu i d_E$

1. a. Les deux endomorphismes λid_E et u commutent.

Donc $v^2 = u^2 - 2\lambda u + \lambda^2 id_F$.

1.b. Soit $x \in \operatorname{Ker} w$. $(u - \mu id_E)(x) = 0_E$ donc $u(x) = \mu x$.

On en déduit que $(\mathfrak{u}-\lambda\mathrm{id}_E)(x)=(\mu-\lambda)x$ et donc que $\nu(x)=(\mathfrak{u}-\lambda\mathrm{id}_E)^2(x)=(\mu-\lambda)^2x$.

1.c. Soit $x \in \text{Ker } v \cap \text{Ker } w$. $x \in \text{Ker } w$ donc d'après la question précédente $\nu(x)=(\mu-\lambda)^2x. \text{ Comme } \nu(x)=0_E \text{ et } \mu\neq\lambda \text{ alors } x=0_E. \text{ Ainsi } \operatorname{Ker} \nu\cap \operatorname{Ker} w=\{0_E\}.$

2. 2. a. Soit $x \in E$. $w(v(x))(x) = vw(x) = (u - \lambda id_E)^2 (u - \mu id_F)(x)$.

Or d'après le théorème de Cayley-Hamilton $\chi_{\mathfrak{u}}(\mathfrak{u}) = -(\mathfrak{u} - \lambda \mathrm{id}_{\mathsf{E}})^2(\mathfrak{u} - \mu \mathrm{id}_{\mathsf{E}}) = 0$. Donc $w(v(x)) = 0_E$, soit $v(x) \in \text{Ker } w$.

De la même façon pour tout $x \in E$, $w(x) \in \text{Ker } v$.

2.b.
$$(X - \lambda)^2 = (X - \mu)(X - 2\lambda + \mu) + \lambda^2 - \mu(2\lambda - \mu) = (X - \mu)(X - 2\lambda + \mu) + (\lambda - \mu)^2$$
.

Soit $x \in E$. En appliquant à u et ensuite à x l'égalité précédente on obtient

$$v(x) - (u - (2\lambda + \mu)id_E)w(x) = (\lambda - \mu)^2x$$

 $\nu(x) - \big(u - (2\lambda + \mu)\mathrm{id}_E\big)w(x) = (\lambda - \mu)^2x$ On pose alors $x_1 = \frac{1}{(\lambda - \mu)^2}\nu(x)$ et $x_2 = \frac{1}{(\lambda - \mu)^2}\big(u - (2\lambda + \mu)\mathrm{id}_E\big)w(x)$. de telle

façon que $x=x_1+x_2$. $\nu(x)\in {\rm Ker}\, w$ donc $x_1\in {\rm Ker}\, w$. $w(x)\in {\rm Ker}\, \nu$ et ${\rm Ker}\, \nu$ est stable par le polynôme en ν , $\mu - (2\lambda + \mu) \mathrm{id}_E = \nu - 2\lambda \mathrm{id}_E$ donc on a aussi $x_2 \in \mathrm{Ker}\,\nu$. Ainsi $x \in \operatorname{Ker} v + \operatorname{Ker} w$.

Alors $E = \operatorname{Ker} v + \operatorname{Ker} w$ et puisque on a déjà démontré que $\operatorname{Ker} v \cap \operatorname{Ker} w = \{0_F\}$, cette somme est directe.

Oubli de la commutativité (1pt)

$$(u - \lambda id)^{2}(x) = (u(x) - \lambda x)^{2}$$
!
(1pt+1pt)

lpt+lpt+lpt

2pt

Une application directe du lemme des noyaux permet d'aboutir plus rapidement. On reprend la démonstration du lemme ici en quelque sorte

lpt+lpt

ceci est toujours vrai : si une valeur propre est de multiplicité 1 alors le sous espace propre associé est de dimension 1

2pt

2.c. Ker $w = \text{Ker}(\mathfrak{u} - \mu i d_{\mathsf{E}}) = \mathsf{E}_{\mathfrak{u}}(\mathfrak{u})$ et μ est une valeur propre de \mathfrak{u} de multiplicité 1 donc $\dim \operatorname{Ker} w \leq 1$. $\operatorname{Ker} w$ est non nul puisque μ est une valeur propre de $\mathfrak u$ donc on a forcément $\dim \operatorname{Ker} w = 1$.

Comme Ker ν et Ker w sont supplémentaires dans E, on en déduit que dim Ker $\nu = 2$.

3. un endomorphisme est diagonalisable si et seulement si pour chaque valeur propre de u la dimension du sous espace propre qui lui est associé est égale à sa multiplicité. Dans le cas de u ceci se réalise si et seulement si dim $E_{\lambda}(u) = 2$.

lpt+lpt

 $4. \quad \operatorname{Ker}(\mathfrak{u}-\lambda \mathrm{id}_E) \subset \operatorname{Ker}(\mathfrak{u}-\lambda \mathrm{id}_E)^2 \ \, \text{soit} \, \, \mathsf{E}_{\lambda}(\mathfrak{u}) \subset \operatorname{Ker} \nu.$ u est non diagonalisable donc $\dim E_{\lambda}(u) < 2$. Puisque $\dim \operatorname{Ker} v = 2$, alors $E_{\lambda}(u)$ est un sous espace strict de $\operatorname{Ker} \nu$.

5. $e_2 \in \operatorname{Ker} \nu \setminus E_{\lambda} \text{ et } e_1 = (u - \lambda \operatorname{id}_F)(e_2).$

5.a. $(\mathfrak{u} - \lambda \mathrm{id}_{\mathsf{E}})(e_1) = (\mathfrak{u} - \lambda \mathrm{id}_{\mathsf{E}})^2(e_2)$ et $e_2 \in \mathrm{Ker}\, \nu$ donc $(\mathfrak{u} - \lambda \mathrm{id}_{\mathsf{E}})(e_1) = \mathfrak{0}_{\mathsf{E}}$ soit $u(e_1) = \lambda e_1$.

Ensuite; e_1 est un vecteur de E_{λ} et $e_2 \notin E_{\lambda}$ donc la famille (e_1,e_2) est libre. Puisque $\dim \operatorname{Ker} v = 2$ alors c'est une base de $\operatorname{Ker} v$.

2pt+2pt

2pt+2pt

5.b. (e_1, e_2) est une base de $\operatorname{Ker} v$, (e_3) est une base de $\operatorname{Ker} w$ $(\dim \operatorname{Ker} w = 1)$ donc

 (e_1, e_2, e_3) est une base de E adaptée à la somme directe $E = \operatorname{Ker} v \oplus \operatorname{Ker} w$.

Ensuite; $u(e_1) = \lambda e_1$ et $u(e_2) = e_1 + \lambda e_2$ et $u(e_3) = \mu e_3$ donc

$$\operatorname{Mat}_{(e_1,e_2,e_3)}(\mathfrak{u}) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$$

Un exemple : f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$

2pt

6.*a*. $\chi_f = -(X-1)^2(X-2)$.

2pt+lpt+lpt

6.b. $E_2(f) = \mathbb{R}.\nu_3$ avec $\nu_3 = (1, 1, 1)$ et $E_1(f) = \mathbb{R}\nu_1$ avec $\nu_1 = (1, 0, 1)$. $\dim E_1(f) + \dim E_2(f) = 2 < \dim \mathbb{R}^3$ et 1 et 2 sont les seules valeurs propres de f donc f n'est pas diagonalisable.

Si pour uns scalaire α le système $AX = \alpha X$ donne 0 pour seule solution alors α n'est pas une va. p. de A. Revoyez χ_A

lpt+lpt+lpt

6.c. $A - I = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$ et $(A - I)^2 = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$

 $rg(f - id)^2 = rg(A - I)^2 = 1$ donc dim $Ker(f - id)^2 = 2$.

Si $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in \mathbb{R}^3$ alors

$$(f-id)^2(x) = 0 \iff \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff x_1 + x_2 - x_3 = 0$$

 $\operatorname{Ker}(f-id)^2$ est donc le plan de \mathbb{R}^3 d'équation cartésienne $x_1+x_2-x_3=0$.

6.d. On pose $e_2 = (1, -1, 0)$ et $e_1 = (f - \lambda id)(e_2)$ (avec ici $\lambda = 1$, par analogie avec les notations de la question (5)).

lpt+lpt

i) Le calcul donne $e_1 = (-2, 0, -2)$ et on a $E_1(f) = \mathbb{R}e_1$. Un vecteur propre de f avec le deuxième coordonnée valant 1 ne peut être colinéaire à e_1 , il est donc associé à la valeur propre 2.

Le calcul permet de prendre $e_3 = (1, 1, 1)$.

La famille (e_1, e_2, e_3) correspond à la description donnée à la famille de la question (5.b), c'est donc une base de \mathbb{R}^3 .

ii) Toujours d'après (5.b)

$$B = Mat_{(e_1, e_2, e_3)}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

. La formule de passage donne ensuite $A=PBP^{-1}$ où $P=\begin{pmatrix} -2&1&1\\0&-1&1\\-2&0&1 \end{pmatrix}$

iii) B est diagonale par blocs, pour tout $n \in \mathbb{N}$,

lpt+lpt+lpt+lpt

lpt+lpt+lpt

$$B^{n} = \begin{pmatrix} \boxed{C^{n}} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \text{ où } C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $C=I_2+N$ avec $N^2=0$.donc selon la formule du binôme, pour tout $n\geqslant 2$, puisque I_2 et N commutent, $C^n=I_2+nN=\left(\begin{smallmatrix} 1&n\\0&1\end{smallmatrix}\right)$. expression encore valable pour n=0 et n=1. Ainsi

$$B^{n} = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix}$$

Ensuite $A^n = PB^nP^{-1}$, (on laisse de coté le calcul définitif de A^n pour l'instant).

7. 7. a. Considérons la norme |.| de $\mathcal{M}_3(\mathbb{R})$ subordonnée à la norme euclidienne canonique $\|.\|$ de \mathbb{R}^3 . Pour tout $k \in \mathbb{N}$

2pt

$$\|\frac{1}{k!}M^k\| \leqslant \frac{\|M\|^k}{k!}$$

La série réelle $\sum \frac{|M|^k}{k!}$ converge car la série entière $\sum \frac{\chi^k}{k!}$ a un rayon de convergence infini (ou utiliser le critère de d'Alembert) donc la série $\sum \frac{1}{k!} M^k$ à termes dans $\mathcal{M}_3(\mathbb{R})$ est absolument convergente. Elle est donc convergente.

7.b. Vu l'expression donnée pour B^k dans (6.d.iii). on a

Application de D'Alembert à la série
$$\sum (1/k!)M^k$$
 elle même. C'est quoi le quotient de deux matrices?

2pt+2pt

$$\exp(B) = \begin{pmatrix} \sum_{n=0}^{+\infty} \frac{1}{n!} & \sum_{n=0}^{+\infty} \frac{n}{n!} & 0\\ 0 & \sum_{n=0}^{+\infty} \frac{1}{n!} & 0\\ 0 & 0 & \sum_{n=0}^{+\infty} \frac{2^n}{n!} \end{pmatrix} = \begin{pmatrix} e & e & 0\\ 0 & e & 0\\ 0 & 0 & e^2 \end{pmatrix}$$

en notant que $\sum_{n=0}^{+\infty} \sqrt[n]{n!} = \sum_{n=1}^{+\infty} \sqrt[n]{n!} = \exp'(1) = e$.

Justifions maintenant que $\exp(A) = P \exp(B)P^{-1}$:

Soit
$$n \in \mathbb{N}$$
, $\sum_{k=0}^{n} \frac{1}{k!} A^k = P\left(\sum_{k=0}^{n} \frac{1}{k!} B^k\right) P^{-1}$.

La suite $\left(\sum_{k=0}^n (1/k!) B^k\right)_n$ converge vers $\exp(B)$ et l'application $M \longmapsto PMP^{-1}$ est continue car elle est linéaire et $\mathcal{M}_3(\mathbb{R})$ est de dimension finie, donc la suite $\left(\sum_{k=0}^n (1/k!) A^k\right)_n$ converge vers $P \exp(B) P^{-1}$.

Comme $\left(\sum_{k=0}^n (1/k!)A^k\right)_n$ converge vers $\exp(A)$, on obtient le résultat voulu par unicité de la limite d'une suite.

Calculons alors $\exp(A)$. Pour cela on commence par calculer P^{-1}

$$P^{-1} = \left(\begin{array}{ccc} 1/2 & 1/2 & -1\\ 1 & 0 & -1\\ 1 & 1 & -1 \end{array}\right)$$

et ensuite

$$\exp(A) = \begin{pmatrix} -2e + e^2 & -e + e^2 & 3e - e^2 \\ -e + e^2 & e^2 & e - e^2 \\ -3e + e^2 & -e + e^2 & 4e - e^2 \end{pmatrix}$$

Deuxième partie

lpt

$$\text{En posant } M = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} \text{, on a } \begin{cases} a_{n+1} &=& \alpha_1 a_n & + & \beta_1 b_n & + & \gamma_1 c_n \\ b_{n+1} &=& \alpha_2 a_n & + & \beta_2 b_n & + & \gamma_2 c_n \\ c_{n+1} &=& \alpha_3 a_n & + & \beta_3 b_n & + & \gamma_3 c_n \end{cases}$$

lpt+lpt

2. Si V est un vecteur propre de ^tM associé à la valeur propre λ alors

$$v_{n+1} = {}^{t}X_{n+1}V = {}^{t}X_{n}{}^{t}MV = \lambda^{t}X_{n}V = \lambda v_{n}$$

donc $(v_n)_n$ est une suite géométrique de raison λ .

L'application propose une approche intéressante pour la résolution d'une relation de récurrence **3. Application** : $(a_n)_n$, $(b_n)_n$ et $(c_n)_n$ des suites réelles que $(a_0,b_0,c_0)=(1,0,0)$ et

$$\begin{cases} a_{n+1} = 4a_n - 15b_n + 3c_n \\ b_{n+1} = a_n - 4b_n + c_n \\ c_{n+1} = 2a_n - 10b_n + 3c_n \end{cases}$$
 (S)

lpt+lpt

3.a.
$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $M = \begin{pmatrix} 4 & -15 & 3 \\ 1 & -4 & 1 \\ 2 & -10 & 3 \end{pmatrix}$.

2pt+lpt

3.b. $\chi_{^tM} = \chi_M = -(X-1)^3$, 1 est donc la seule valeur propre de tM . Le sous espace propre associé est le plan de E d'équation cartésienne dans la base canonique : 3x + y + 2z = 0.

3pt

3.*c***.** On prend

$$V_1 = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$$
 et $V_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$

Les deux suite $(v_n^1)_n$ et $(v_n^2)_n$ vérifient alors les relations $v_{n+1}^1 = v_n^1$ et $v_{n+1}^2 = v_n^2$ pour tout $n \in \mathbb{N}$. Elles sont donc constantes.

Comme $v_0^1={}^tX_0V_1=1$ et $v_0^2={}^tX_0V_2=0$, alors pour tout $n\in\mathbb{N}$, $v_n^1={}^tX_nV_1=1$ et $v_n^2={}^tX_nV_2=0$. Ce qui donne pour tout $n\in\mathbb{N}$

Question très rarement abordée

$$\begin{cases} a_n - 3b_n = 1 \\ -2b_n + c_n = 0 \end{cases}$$

ou encore $a_n=1+3b_n$ et $c_n=2b_n$ et en reportant dans la deuxième équation du système de récurrence (\mathcal{S}) , on obtient $b_{n+1}=a_n-4b_n+c_n=b_n+1$. $(b_n)_n$ est donc une suite arithmétique de raison 1. Alors pour tout $n\in\mathbb{N}$, $b_n=b_0+n=n$, et par suite $a_n=3n+1$ et $c_n=2n$.

Troisième partie

f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice

$$A = \begin{pmatrix} -2 & 5 & 2 \\ -1 & 4 & 2 \\ 2 & -10 & -5 \end{pmatrix}$$

1. a. Le calcul donne : $\chi_f = -(X+1)^3$. -1 est la seule valeur propre de f

lpt+lpt

2pt+lpt

1. *b*. Le sous espace propre de f associé à la valeur propre -1 de f est le plan de \mathbb{R}^3 d'équation cartésienne : -x + 5y + 2z = 0. Il est de dimension 2.

lpt

1.c. -1 est la seule valeur propre de f et $\dim E_{-1}(f) < \dim \mathbb{R}^3$ donc f n'est pas diagonalisable.

1. On pose $u_1 = e_1$, $u_2 = (f + id)(u_1)$, et $u_3 = 2e_1 + e_3$

i) Un calcul matriciel donne:

lpt+lpt

- $f(u_3) = -2e_1 + e_3 = -u_3$.
- $u_2 = (f + id)(e_1) = (-1, -1, 2)$ et ensuite $f(u_2) = -u_2$.

 \mathfrak{u}_2 et \mathfrak{u}_3 sont bien dans $\mathsf{E}_{-1}(\mathsf{f})$.

ii) Le déterminant du système de vecteurs (u_1, u_2, u_3) dans la base canonique de \mathbb{R}^3 est

lpt

$$\begin{vmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{vmatrix} = -1 \neq 0$$

La famille $\mathcal{B}_1=(\mathfrak{u}_1,\mathfrak{u}_2,\mathfrak{u}_3)$ est donc libre. C'est une base de \mathbb{R}^3 .

2. a. $f(u_1) = -u_1 + u_2$, $f(u_2) = -u_2$ et $f(u_3) = -u_3$ donc la matrice de f dans la base \mathcal{B}_1 est :

2pt

$$B = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.b. $P = \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} 1 & -5 & -2 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$.

2.*c***.** $A = PBP^{-1}$

La méthode de réduction de Gauss-Jordan serait bien indiquée ici (lpt+2pt)

3. On pose I = I + B.

lpt

3.*a***.** $J^2 = 0$

3.b. B = (-I + J) et les matrices I et J commutent donc selon la formule du binôme de Newton, pour tout $k \ge 2$

Ne pas développer $(I + B)^2$, calculer plutôt I + B puis élever au carré. (1pt)

 $B^{k} = \sum_{k=1}^{k} C_{k}^{p} (-1)^{k-p} J^{p}$

2pt

 $J^2=0$ donc seuls les termes d'indice p=0 et p=1 subsistent dans cette dernière somme : $B^{k} = (-1)^{k}I + k(-1)^{k-1}J = (-1)^{k}(I - kJ)$

Cette expression est encore valable pour k = 0 et pour k = 1.

3.c. Soit $k \in \mathbb{N}$. $A^k = PB^kP^{-1} = (-1)^kP(I-kJ)P^{-1} = (-1)^k(I-kPJP^{-1})$. Ensuite

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} A^k = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} I - \sum_{k=0}^{+\infty} (-1)^k \frac{k}{k!} PJP^{-1}$$

On n'a pas eu besoin du calcul

de P⁻¹, par contre on a pu exprimer exp(A) comme un polynôme en A, chose qui est théoriquement toujours vraie.

$$\sum_{k=0}^{+\infty} (-1)^k \frac{k}{k!} = -\sum_{k=1}^{+\infty} \frac{k}{k!} (-1)^{k-1} = -\exp'(-1) = -\mathrm{e}^{-1}$$

L'expression de A^k pour k = 1 donne $PJP^{-1} = A + I$.

Ainsi $\exp(A) = e^{-1}I + e^{-1}(A + I) = e^{-1}(2I + A)$, ou encore

$$\exp(A) = \begin{pmatrix} 0 & 5e^{-1} & 2e^{-1} \\ -e^{-1} & 6e^{-1} & 2e^{-1} \\ 2e^{-1} & -10e^{-1} & -3e^{-1} \end{pmatrix}$$

4. On considère le système différentiel

$$\begin{cases} u'(t) &= -2u(t) + 5v(t) + 2w(t) \\ v'(t) &= -u(t) + 4v(t) + 2w(t) \\ w'(t) &= 2u(t) - 10v(t) - 5w(t) \end{cases}$$
 (S)

4.a. Il est clair que le système (S) est équivalent à l'équation différentielle linéaire autonome du premier ordre

$$\varphi'(t) = f(\varphi(t)) \tag{E}$$

si on pose $\varphi(t) = (u(t), v(t), w(t))$

Là aussi le sujet évite d'utiliser les résultats tout prêts du cours et adopte une approche élémentaire

4.b. On écrit $\varphi(t) = x(t)u_1 + y(t)u_2 + z(t)u_3$.

N.B: x, y et z sont les applications composantes de ϕ dans la base (u_1, u_2, u_3) . Si ϕ est de classe \mathcal{C}^1 , elles le sont aussi.

Pour tout $t \in \mathbb{R}$.

$$\begin{split} \phi'(t) &= f\bigg(x(t)u_1 + y(t)u_2 + z(t)u_3\bigg) = x(t)f(u_1) + y(t)f(u_2) + z(t)f(u_3) \\ &= x(t)(-u_1 + u_2) - y(t)u_2 - z(t)u_3 = -x(t)u_1 + (x(t) - y(t))u_2 - z(t)u_3 \end{split}$$

D'autre part $\phi'(t) = x'(t)u_1 + y'(t)u_2 + z'(t)$, donc en identifiant les coordonnées dans la base (u_1, u_2, u_3) on obtient le système différentiel

$$\begin{cases} x'(t) &= -x(t) \\ y'(t) &= x(t) - y(t) \\ z'(t) &= -z(t) \end{cases}$$
 (S')

lpt+lpt+lpt

4.c.
$$\begin{pmatrix} x(0) \\ y(0) \\ z(0) \end{pmatrix} = P^{-1} \begin{pmatrix} u(0) \\ v(0) \\ w(0) \end{pmatrix} = P^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}.$$

Donc x(0) = -2, y(0) = 0 et z(0) = 1.

lpt+2pt+lpt

4.d. x'(t) = -x(t) donc ile existe $\alpha \in \mathbb{R}$ tel que $x(t) = \alpha e^{-t}$. x(0) = -2 donne ensuite $\alpha = -2$. Ainsi $x(t) = -2e^{-t}$. De même $z(t) = e^{-t}$.

Pour $y:y'(t)+y(t)=x(t)=-2e^{-t}$. La résolution de cette dernière équation prouve qu'il existe une constante k telle que $y(t)=(-2t+k)e^{-t}$ et comme y(0)=0 alors k=0. Ainsi l'unique solution du système différentiel (S') vérifiant la condition initiale x(0)=-2,y(0)=0 et z(0)=1 est donnée par

$$\begin{cases} x(t) &= -2e^{-t} \\ y(t) &= -2te^{-t} \\ z(t) &= e^{-t} \end{cases}$$

2pt+2pt

4.e. Matriciellement

$$\begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix} = P \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} -2\mathrm{e}^{-t} \\ -2\mathrm{t}\mathrm{e}^{-t} \\ \mathrm{e}^{-t} \end{pmatrix} = \mathrm{e}^{-t} \begin{pmatrix} 2t \\ 2t \\ 1 - 4t \end{pmatrix}$$

Soit

$$\begin{cases} u(t) &= 2te^{-t} \\ v(t) &= 2te^{-t} \\ w(t) &= (1-4t)e^{-t} \end{cases}$$

Ensuite; on pose $U(t) = \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix}$. D'après le cours l'unique solution du système

différentiel U'(t)=AU(t) vérifiant la condition $U(0)=\left(\begin{smallmatrix}0\\0\\1\end{smallmatrix}\right)$ est donnée par

$$U(t) = e^{tA}U(0) = e^{tA}\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

L'unique solution du problème de Cauchy $X'(t) = AX(t) \text{ et } X(t_0) = X_0$ est la fonction X définie par $X(t) = \mathrm{e}^{(t-t_0)A} X_0$