The Effects of Marijuana Legalization on Crime and Other Drug Usage in Seattle

Benjamin Gaiser and Jeremy Russell

2 December 2016

The Effects of Marijuana Legalization on Crime and Other Drug Usage in Seattle

Critics claim that **legalization** leads to an **increase in marijuana and other drug use**, "increases crime, diminishes traffic safety, harms public health, and lowers teen educational achievement."

Table of Contents

- **▶** Introduction
- ► Research Question
- ► Policy Relevance
- Analysis
- Conclusion

Introduction

Explain our way to the topic and how we coped with it

Research Question

- Does legalization of cannabis lead to an increase in crime?
- we look at different levels of crime (Alcohol, Burglary/Theft, Marijuana, Narcotics, Other Drug Related, Property, and Violent Crime)
- due to data restraints we have focused on Seattle instead of WA
- ▶ H0: X -> Y as an equation

Policy Relevance

- Cato paper
- elections
- Rand paper
- cost of drug on war / change of perceptions (cultural shift)

Analysis - Descriptive Statistics (I)

business is booming in WA and Sales and Tax Revenues are increasing (in "Analysis.R" you can find the growth pattern)

Excise Tax Sales

Analysis - Descriptive Statistics (II)

 explain the map -> concentration of crime in one area. it seems that retailers not associated with crime

Analysis - Descriptive Statistics (III)

- ▶ January 2014 -> looks like coding has been different -> but later no statistically significant difference
- ▶ Development varies for each category -> thus natural logarithm (i.e. percentage change month-to-month) -> see next slide

Analysis - Descriptive Statistics (IV)

we can see property, burglary and other drug relate crime to change substantially

Months

Analysis - Inferential Statistics (I)

Violent crime

- t-test = differences in mean -> significant for all but alcohol related crime
- different picture depending on the crime rate

Development of Crime per 1000 citizens

Analysis - Inferential Statistics (II)

Table 1: Analysis of Crime

	Dependent variable:		
	log(CrimePerThousand)		
	(1)	(2)	
Established Constant	1.14*** (0.01) -2.71*** (0.003)	0.59*** (0.01) -2.86*** (0.003)	
Observations R^2 Adjusted R^2	228,574 0.11 0.11	198,674 0.03 0.03	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Analysis - Inferential Statistics (III)

Table 2: Analysis of Crime

	Dependent variable:	
	log(CrimePerThousand)	
	(1)	(2)
Established	1.47*** (0.01)	0.31*** (0.01)
share_poverty	0.01*** (0.0004)	0.03*** (0.0004)
AgeCatMore than average Adults	0.16*** (0.01)	-0.04***(0.01)
RaceCatMore than average Whites	1.00*** (0.01)	0.76*** (0.01)
Constant	-3.54***(0.01)	-4.08***(0.01)
Observations	228,574	132,958
R^2	0.19	0.05
Adjusted R ²	0.19	0.05
Note:	*p<0.1; **p<0.05; ***p<0.01	

Conclusion (I)

- ▶ Model 1 and 3 are non-matched regressions
- ▶ Model 2 and 4 are matched regressions
- We can see that there is a significant relationship between the establishment and the crime development but once we match similar districts, this drops substantially
- ▶ additionally, the R² becomes much lower also highlighting that the variance explained by the establishment is rather low
- ▶ an explanation for this could be that crime is spatially concentrated and auto-correlated with previous crime levels
- ► Retailers might choose not to start up near crime areas (i.e. self-selection bias)

Conclusion (II)

- Once accounted for GEOID: the point estimation are smaller -> GEOID important
- ▶ Once accounted for Month: the point estimation are higher -> maybe due to the geoid issue (time-trend not as important than spatial?)
- Will not do propensity score matching -> too computationally powerful

Annex (I)

common support problem with the univariate regression

Annex (II)

