Food Instance Segmentation

Food Nutrient Analysis

Instance Segmentation

• Detecting instances of objects and demarcating their boundaries

Grading

		Points
Annotation		15
Code submission	code	15
	model	10
Report	model introduction	15
	how you train model	15
	training results	15
Test results		15

Data

- Training data
 - 455 images

Category	# instance
staple food	442
main course	434
side dish	394
vegetable	708
total	1978

- Validation data
 - 93 images

Category	# instance
staple food	89
main course	87
side dish	82
vegetable	146
total	404

Download link: https://drive.google.com/file/d/1p5EL-gYd6KKggaHMS4GOXR_DligvcjTl/view?usp=share_link

Process

ANNOTATION

MODEL CONSTRUCTION

ANNOTATION FORMAT TRANSFORM

MODEL TRAINING

EVALUATION

1. Install labelme

Installation

There are options:

- Platform agnostic installation: Anaconda
- Platform specific installation: Ubuntu, macOS, Windows
- Pre-build binaries from the release section

2. Open image directory

3. Change output directory

4. Click "Create Polygons" and mark along the food contour

5. After marking, set the label of the food

6. If tray is empty, skip it

 For more label information, please refer to: https://github.com/huang0819/food-segmentation#label

Model Construction

- Select instance segmentation model
 - EVA, GitHub
 - Mask DINO, GitHub
 - Swin Transformer V2, GitHub
 - •

Annotation Format Transform

- Check the format specified by your model
- In this tutorial, we used COCO dataset format

```
ROOT
 -- version: "4.5.13"
 --- flags: [Object]

<u>+</u> shapes: [Array]

 --- imagePath: "..\\img\\2022!
 imageData: "/9j/4AAQSkZJ
 - imageHeight: 480
 imageWidth: 640
 20221123174818_357_0.json
 20221123174858_265_0.json
```

Model Training

Sample code: Mask R-CNN

- More model structures: <u>https://github.com/facebookresearch/detectron2/blob/main/MOD</u> EL_ZOO.md
- Do not use test data during model training

Evaluation

- Use the trained model to predict test data and generate reports
- Evaluation sample code:

https://gist.github.com/huang0819/3f6bf5b8d0f0ad5c8954c9d0c

e559f02

```
Average Precision
                   (AP) @[ IoU=0.50:0.95
                                                         maxDets=100 ] = 0.719
                                           area=
                                                   all
Average Precision
                   (AP) @[ IoU=0.50
                                                         maxDets=100 ] = 0.859
                                           area=
Average Precision
                   (AP) @[ IoU=0.75
                                                         maxDets=100 ] = 0.820
                                          area=
                                                   all
Average Precision
                   (AP) @[ IoU=0.50:0.95 |
                                          area= small
                                                         maxDets=100 ] = 0.252
Average Precision
                   (AP) @[ IoU=0.50:0.95 |
                                          area=medium
                                                         maxDets=100 ] = 0.484
Average Precision
                   (AP) @[ IoU=0.50:0.95 |
                                          area= large
                                                         maxDets=100 ] = 0.784
Average Recall
                   (AR) @[ IoU=0.50:0.95 |
                                                   all
                                                         maxDets = 1 = 0.706
                                          area=
                                                         maxDets= 10 ] = 0.763
Average Recall
                   (AR) @[ IoU=0.50:0.95 |
                                                   all
                                           area=
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                                   all
                                                         maxDets=100 ] = 0.763
                                           area=
                                                         maxDets=100 ] = 0.250
                   (AR) @[ IoU=0.50:0.95
Average Recall
                                           area= small
Average Recall
                   (AR) @[ IoU=0.50:0.95 |
                                           area=medium
                                                         maxDets=100 ] = 0.524
                                                         maxDets=100 ] = 0.825
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area= large
```

Any questions?