СВОБОДНЫЙ УНИВЕРСИТЕТ

Алексей Мячин

Основные определения курса в терминах универсальной конструкции

Векторные пространства (ВП) ниже предполагаются конечномерными, категория $\mathcal{V}=Vct=Vect_{\Bbbk}^{fin}$.

Базисы векторных пространств

Возьмём две категории $\mathcal{C} = Vct, \mathcal{D} = Set$ и функтор F – забывающий структуру векторного пространства $F: \mathcal{C} \to \mathcal{D}$ – от каждого ВП он оставляет множество векторов.

Построим универсальный морфизм из произвольного фиксированного множества $X \in \mathcal{D}$ для функтора F.

Для множества X образуем множество формальных (т.е. вектор – это просто запись, без вычислений и результата) конечных линейных комбинаций с коэффициентами в $\Bbbk: V_X := Span_{\Bbbk}(X)$ – это ВП с базисом ровно из векторов – элементов множества X. Т.о. в категории $\mathcal D$ определена стрелка $u: X \to F(V_X)$, которая множеству неких элементов ставит в соответствие то же множество, но уже рассматриваемое как множество векторов в базисе V_X .

<u>Утверждение</u>. Пара (u,X) имеет универсальное свойство для функтора F.

 $\overline{\text{Возьмём произвольное ВП } A'}$, тогда определено множество F(A').

Пусть есть стрелка $f:X \to F(A')$. Покажем как можно пропустить f через пару (u,X).

Для множества X построим V_X . Теперь в категории Vct можем построить линейное отображение $h:V_X\to A'$. Оно опеределено однозначно, т.к. его значения в A' уже заданы (отображением f) на базисе X. Далее с базиса оно только продолжается по линейности на V_X , а такое продолжение единственно (любой вектор V_X записывается в базисе единственным способом).

Перенеся h функтором F, получим

$$F(h)\circ u=f$$

В категории \mathcal{C}

В категории \mathcal{D}

Декартово произведение ВП

В категории \mathcal{V} , зафиксируем пару ВП V_1, V_2 . С их участием построим контравариантный функтор $F: \mathcal{V}^{op} \to Set$ с действием

- на объектах: $U \mapsto Hom(U, V_1) \times Hom(U, V_2)$, т.е. ВП U переходит в множество отображений с элементами парами стрелок $U \to V_1$ и $U \to V_2$;
- на стрелках: морфизм $l: U \to W$ переходит в морфизм в Set $Hom(W, V_1) \times Hom(W, V_2) \to Hom(U, V_1) \times Hom(U, V_2)$ (направление противоположно направлению l).

Образуем ВП $V_1 \times V_2$ – новый объект в \mathcal{V} и рассмотрим соответствующий ему объект – пару отображений в Set: $(\pi_1 \times \pi_2) \in Hom(V_1 \times V_2, V_1) \times Hom(V_1 \times V_2, V_2), \ \pi_i : V_1 \times V_2 \to V_i.$

Утверждение. Пара $(V_1 \times V_2, \pi_1 \times \pi_2)$ имеет универсальное свойство для функтора F.

Возьмём другой морфизм в Set $f: F(W) \to V_1 \times V_2$ для какого-то ВП W. Множество F(W) – это пары отображений $(f_1, f_2), f_i: W \to V_i$.

Покажем что существует единственный морфизм $Fh:F(W) o F(V_1 imes V_2)$ такой что

$$f = (\pi_1 \times \pi_2) \circ Fh \Leftrightarrow f_i = \pi_i \circ Fh$$

Такой морфизм построим для данных $(f_1, f_2) = f$ как декартову пару из этих отображений $Fh = f_1 \times f_2$ – линейно по каждому компоненту, поэтому $f_1 \times f_2$ является морфизмом $Hom(W, V_1) \times Hom(W, V_2) \to Hom(V_1 \times V_2, V_1) \times Hom(V_1 \times V_2, V_2)$ и, значит, определён в Set. Если теперь взять $\pi_i \circ Fh$, то есть просто оставить первый компонент пары, то получим то же самое отображение f_i из $Hom(V_1 \times V_2, V_1)$.

Построенная стрелка Fh также единственна, т.к. однозначно задаётся своими компонентами f_i .

Прямая сумма ВП

С фиксированными ВП V_1, V_2 можно построить двойственную конструкцию – копроизведение ВП в \mathcal{V} . Для этого обратим стрелки и возьмём ковариантный функтор $F: \mathcal{V} \to Set$ с действием $U \mapsto Hom(V_1, U) \times Hom(V_2, U)$.

<u>Утверждение</u>. Пара $(V_1 \oplus V_2, f_1 \oplus f_2)$ – универсальный элемент функтора F. Т.е. для любой пары морфизмов ВП как элемента $Hom(V_1, U) \times Hom(V_2, U)$

$$V_1 \stackrel{f_1}{\longrightarrow} W \stackrel{f_2}{\longleftarrow} V_2$$

есть единственный морфизм векторных пространств

$$h:V_1\oplus V_2 o W:=egin{cases} f_1,& ext{если }v\in V_1;\ f_2,& ext{если }v\in V_2, \end{cases}$$

такой что Fh замыкает диаграмму (точнее обе её части):

$$Fh \circ \iota_1 = f_1 \quad Fh \circ \iota_2 = f_2$$

Если существуют какие-то стрелки f_1, f_2 , то они однозначно задают морфизм Fh. С точностью до изоморфизма, коммутирующего со стрелками ι_1, ι_2 диаграмма единственна, т.е. в категории $\mathcal V$ произведение $V_1 \times V_2 = V_1 \oplus V_2$.

Тензорное произведение

В категории Vct возьмём два объекта U,V и рассмотрим функтор $F:Vct \to Set$, такой что (на объектах) любому ВП W ставится в соответствие множество Bilin(U,V;W) всех билинейных отображений $U\times V \to W$, т.е. линейных по обоим аргументам в отдельности f(su,v)=f(u,sv)=sf(u,v).

Пусть $s \in \mathbb{k}$, $f: U \times V \to W$ — линейное отображение ВП. Тогда для (прямого) декартового произведения ВП $U \times V$ есть 3 разных вектора:

$$f(su, v)$$
 $f(u, sv)$ $f(su, sv)$

Аналогично, если проверять аддитивность.

Построим тензорное произведение ВП $U \otimes V$ с помощью билинейного отображения – проекции на фактор-пространство $U \otimes V = U \times V/Ident$: векторы отображаются в класс эквивалентности $u \otimes v$, который содержит оба вектора выше и ещё два вектора для аддитивности.

Формально, выберем базис $\{(u_i, v_j) =: e_{u_i, v_j} | 1 \le i \le \dim U, 1 \le j \le \dim V \}$, порождающий $U \times V$. Рассмотрим линейную оболочку

$$Ident := \langle e_{su_i,v_j} - se_{u_i,v_j}, e_{u_i,sv_j} - se_{u_i,v_j}, e_{u_i+u',v_j} - e_{u_i,v_j} - e_{u',v_j}, e_{u_i,v_j+v'} - e_{u_i,v_j} - e_{v',v_j}, \\ \forall s \in \mathbb{k}, \ u' \in U, \ v' \in V \rangle$$

и профакторизуем по ней

$$U \otimes V = U \times V/Ident$$

Т.о. на отдельных векторах (тензорное произведение векторов) оно вынуждено быть билинейным:

$$\tau:(u,v)\mapsto u\otimes v$$

<u>Утверждение</u>. Пара $(U \otimes V, \tau)$ – универсальный элемент для функтора $F = Bilin(U, V; \cdot)$ Возьмём произвольное билинейное отображение $f: U \times V \to W$, пропустим её через объект $U \otimes V$ с помощью единственной для данного f стрелки h_f . При том h_f линейно на $U \otimes V$:

В композиции $h_f \circ \tau$ линейное отображение применяется к билинейному, поэтому итоговое отображение будет билинейным: $h_f(\tau(u,sv)) = h_f(s\tau(u,v)) = sh_f(\tau(u,v))$.

Любой вектор пространства $U\otimes V$ есть линейная комбинация разложимых тензоров $u\otimes v$ для каких-то $u\in U,v\in V$. Поэтому h_f определяется своими значениями на $u\otimes v$, каждый из которых содержится в образе τ .

Теперь, по данному билинейному f определяем значения линейного h_f на разложимых тензорах: $h_f(u \otimes v) = f(u,v)$. Получаем, что f и $h_f \circ \tau$ совпадают как билинейные отображения.

Тензорная алгебра

Всякая алгебра над полем **k** является векторным пространством над тем же полем. Строим тензорную алгебру:

$$T^{0}(V) = \mathbb{k}, \ T^{1}(V) = V, \ \dots \ T^{n}(V) = V^{\otimes n}$$

Отображение $i_V:V=T^1(V) o T(V)$ – каноническое вложение.

<u>Утверждение</u>. Для любой алгебры A и любого линейного отображения $f:V\to A$ существует единственный гомоморфизм алгебр $h:T(V)\to A$ такой, что $h\circ i_V=f$.

Пара сопряжённых функторов

Свободные структуры – группы, алгебры и модули над кольцом