R Studio를 이용한데이터 분석

전주환

INDEX

One Sample T-test(단일표본 T검정)
Independent Sample T-test(독립표본 T검정)
Paired Sample T-test(대응표본 T검정)
One-way Anova(일원 분산분석)
Repeated Measures Anova(반복측정 분산분석)

서울시의 월별 미세먼지 수치가 (WHO기준) 보통(40) 수준에 달하는지 검사하고자 한다.

서울 열린 데이터 광장 - 서울시 대기오염 통계 2015.01 ~ 2019.12 (단위: μg/m²/년)

데이터 불러오기

```
> # csv 파일 불러오기

> ddata = read.csv('미세먼지.csv', header = T, na.strings = '.')

> # 전처리(날짜 데이터 제거)

> ddata = ddata[,2]

> str(ddata)

int [1:60] 49 84 71 45 45 35 30 34 28 44 ...
```

기본 통계치 확인

```
> # 기본 통계 확인
> library(psych)
> describe(ddata)
   vars n mean   sd median trimmed   mad min max range skew kurtosis
x1   1 60 43.7 14.15   43.5   43 14.08 20 84 64 0.42 -0.21
x1 1.83
```

통계분석(t-test)

Boxplot, Histogram을 통한 데이터 분석

통계 분석 결과 그래프

- **1.** 표본의 15~ 19년도 미세먼지 농도의 월별 평균은 40~50정도임을 알 수 있다.
- 2. 표본에서 미세먼지 농도의 월별 평균 이 40이상인 달이 많은 것을 알 수 있다.
- **3.** WHO기준 보통 수준인 미세먼지 농도 $40\mu g/m^2$ 의 신뢰구간 밖에 표본 집단의 평균이 포함되어 있음.
- **4.** P값(0.02371)이 0.05보다 작으므로 WHO기준 미세먼지 농도 보통 수준보다 좋지 않다는 연구가설을 채택.

결론

15~19 년도 서울시의 대기오염 정도 는 통계적으로 WHO기준 미세먼지 보 통(40 μg/m³) 수준보다 좋지 않다고 볼 수 있다.

2020년 12월 강남구의 유동인구 차이를 성별로 검사하고자 한다.

SKT 데이터 허브 – 서울시 유동인구 데이터 2020, 12

데이터 불러오기

```
> # 불러오기
> fp <- read.csv('fp202012.csv', header = T, na.strings = '.')
> # 전처리
> fp$성별 <- factor(fp$성별, levels = c(1, 2), labels = c('남성', '여성'))
> str(fp)
'data.frame': 62 obs. of 2 variables:
$ 성별 : Factor w/ 2 levels "남성","여성": 1 1 1 1 1 1 1 1 1 1 ...
$ 유동인구수: int 7379190 7359180 7310400 7257340 5773890 5361690 7275850 7227400 7187060 7185450 ...
```

기본 통계치 확인

```
> describeBy(유통인구수, 정털, mat = T)
item group1 vars n mean sd median trimmed mac
X11 1 남성 1 31 6605180 94845.3 7047700 6682002 310812.3
X12 2 여성 1 31 6940110 17330.9 7301530 7011442 304348.1
min max range skew kurtosis
X11 5156950 7379190 2222240 -0.8211900 -1.148466 142758.4
X12 5587790 7656920 2069130 -0.8315933 -1.052090 128836.4
```

등분산 검정(var.test)

```
> var.test(유동인구수 ~ 성별, fp)

F test to compare two variances

2
data: 유동인구수 by 성별

F = 1.2278, num df = 30, denom df = 30 p-value = 0.5776 alternative hypothesis: true ratio of Variances is not equal to 1
95 percent confidence interval:
0.5920102 2.5463796
```

T검정(t.test)

```
Two Sample t-test

data: 유동인구수 by 설렬

t = -1.7417, df = 60 p-value = 0.08668 palternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
-719585.03 49724.39
```

Boxplot, Histogram을 통한 데이터 분석

통계 분석 결과 그래프

- = C(1:3)
- **1**. 12월의 강남구의 유동인구 수는 여성이 남성보다 높다는 것을 알 수 있다.
- **2.** 등분산 검정 결과 p값이 0.5776으로 0.05 보다 높아 등분산임을 알 수 있다.
- 3. t검정을 한 결과 p값이 0.08668로 0.05보다 크므로 남녀별 유동인구 수의 차이는 없다는 귀무가설을 택함.

결론

2020년 12월 한달 간 남녀별 유동인 구 수는 통계적으로 유의한 차이가 없 었으며, 같은 비율로 이동하였다는 것 을 알 수 있다. 2019년 12월의 강남역 승하차 인원수와 2020년 12월의 강남역 지하철 승하차 인원수가 다른지 검사 하고자 한다.

서울 열린 데이터 광장 - 서울시 지하철 호선별 역별 승하차 인원 정보 2019.12,2020.12

데이터 불러오기

```
> # 불러오기

> sw <- read.csv('swdata_pst.csv', header = T, na.strings = '.')

> str(sw)

'data.frame': 31 obs. of 2 variables:

$ x201912: int 102073 210942 215884 216803 224464 244040 187587 103797 209880 217355 ...

$ x202012: int 141760 138849 136637 145035 81997 43695 136959 126968 123615 123527 ...
```

기본 통계치 확인

통계분석(t-test)

Boxplot, Histogram을 통한 데이터 분석

통계 분석 결과 그래프

- **1.** 2019년 12월에 비해 2020년 12월의 강남역 지하철 이용객이 급감하였음을 알 수 있다.
- **2.** 지하철 이용객 수의 차이 정도를 상자 그림으로 알 수 있다.
- **3.** 2020년 12월
- **4.** 다른 집단에서의 시간에 따른 평균 차이 검정이므.

P값이 0.05보다 작으므로 2019년과 2020 년의 강남역 이용객 수는 차이가 있다.

결론

2020년 12월은 2019년 12월에 비해 강남역 이용객 수가 줄었음을 알 수 있다. P값이 0.05보다 작기 때문에 연 구가설을 채택.

2~50대의 연령별 가해 사고 건수에 차이가 있는지 검사해 보고자 한다.

공공 데이터 포털-도로교통공단_가해운전자 연령층별 월별 교통사고 통계

데이터 불러오기

```
> # 둘러오기
> df <- read.csv('연령별사고건수.csv', header = T, na.strings = '.')
> # 전처리
> df$가해자연령층 <- factor(df$가해자연령층, levels = c('21-30세', '31-40
세', '41-50세'), labels = c('21-30', '31-40', '41-50'))
> str(df)
'data.frame': 36 obs. of 3 variables:
$ 가해자연령층: Factor w/ 3 levels "21-30","31-40",..: 1 1 1 1 1 1 1 1
1 ...
$ 월 : int 1 2 3 4 5 6 7 8 9 10 ...
$ 사고건수 : int 2200 2101 2202 2354 2509 2448 2481 2523 2441 2513
```

기본 통계치 확인

```
> describeBy(사고건수, 가해자연령층, mat = T)
item group1 vars n mean sd median trimmed mad
X11 1 21-30 1 12
2393.917
145.6106 2454.0 2410.3 84.5082
X12 2 31-40 1 12
2801.500
109.0017 2834.5 2811.2 97.1103
X13 3 41-50 1 12
3517.000
169.0352 3507.0 3521.0 137.8818
min max range skew kurtosis se
X11 2101 2523 422 -0.8623609 -0.9639654
X12 2585 2921 336 -0.6523137 -1.1083409
X13 3171 3823 652 -0.3546004 -0.3104110
X14.79627
```

Boxplot, Histogram을 통한 데이터 분석

2~50대의 연령별 가해 사고 건수에 차이가 있는지 검사해 보고자 한다.

공공 데이터 포털- 도로교통공단 가해운전자 연령층별 월별 교통사고 통계

등분산 검정(Bartlett.test, LeveneTest)

```
# 등세분기
bartlett.test(사고건수 ~ 가해자연령층, df)
        Bartlett test of homogeneity of variances
data: 사고건수 bv 가해자연령층
Bartlett's K-squared = 1.981, df = 2, p-value = 0.3714
Levene's Test for nomogeneity of Variance (center = median)

Df F value Pr(>F)
      2 0.2999 0.7429
```

ANOVA 분석

```
owa_result <- aov(사고건수 ~ 가해자연령층, df)
  summary(owa_result)
            Df Sum Sq Mean Sq F value Pr(>F)
           2 7757522 3878761 188.7 <2e-16
Residuals
            33 678224
가해자연령층 ***
Residuals
Signif. codes:
 "***' 0.001 "**' 0.01 "*' 0.05 ".' 0.1 " ' 1
```

통계 분석 결과 그래프

사후검정(Duncan /Scheffe/TukeyHSD)

▶ (표본의 수가 다르면 Scheffe Test)

결론

ANOVA 분석에서 p값이 2e-16 으로 0.05보다 작으므로 21~50 대의 연령별 사고 건수가 같을 것 이라는 귀무가설을 기각하고, 연 령대 별로 차이가 있다는 연구가 설을 채택한다.

2019년 12월, 2020년 7월, 2020년 12월의 강남역 지하철 승하차 인원수가 다른지 검사 하고자 한다.

서울 열린 데이터 광장 - 서울시 지하철 호선별 역별 승하차 인원 정보 2019.12, 2020.06, 2020.12

기본 통계치 확인

Boxplot을 통한 데이터 분석

2019년 12월, 2020년 7월, 2020년 12월의 강남역 지하철 승하차 인원수가 다른지 검사 하고자 한다.

서울 열린 데이터 광장 - 서울시 지하철 호선별 역별 승하차 인원 정보 2019.12, 2020.06, 2020.12

ANOVA 분석

```
> Summary(rma.result)

Df Sum Sq Mean Sq F value Pr(>F)

날짜 2 1.666e+11 8.328e+10 44.45

Residuals 90 1.686e+11 1.874e+09

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

사후 검정 (TukeyHSD)

```
summary(tukey_result)
        Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = 이용객수 ~ 날짜, data = sw)
Linear Hypotheses:
                        Estimate Std. Error t value Pr(>|t|
20년7월 - 19년12월 == 0
                         -38412
                                    10994 -3.494 0.00211
20년12월 - 19년12월 == 0 -102591
                                          -9.331 < 1e-04
20년12월 - 20년7월 == 0
                         -64179
20년7월 - 19년12월 == 0 **
20년12월 - 19년12월 == 0 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Adjusted p values reported -- single-step method)
```

통계 분석 결과 그래프(Tukeyplot)

■ 결론

2019년 12월, 2020년 6월, 2021년 12월의 강남역 지하철 이용객 수는 차이가 없다는 귀무가설을 기각하고 차이가 있다는 연구가설을 채택한다.

사후 검정(TukeyHSD) 결과 19년 12월, 20년 7월, 20년 12월 시간이 갈수록 승하 차 인원수가 줄어든 것을 확인할 수 있다.