## SESA3029 Aerothermodynamics



Lecture 2.1
Oblique shock waves

X-15 M=3.5

# Oblique shocks are generated by turning a supersonic flow



### Analysis





Newton II for momentum normal to shock

$$\dot{m}(V_{n2} - V_{n1}) = (p_1 - p_2)A$$
 (2)

Newton II for momentum parallel to shock

$$\dot{m}\left(V_{t2} - V_{t1}\right) = 0 \tag{3}$$

Energy: 
$$T_0 = \text{const}$$
 (4)

$$\dot{m} = \rho_1 V_{n1} A = \rho_2 V_{n2} A \tag{1}$$

$$\dot{m} (V_{n2} - V_{n1}) = (p_1 - p_2) A$$

$$\dot{m}(V_{n2}-V_{n1})=(p_1-p_2)A$$

$$\dot{m}\left(V_{t2} - V_{t1}\right) = 0 \quad (3)$$

$$T_0 = \text{const}$$
 (4)

#### **Deductions:**

by the shock (V. = 1/1) The tangential flow is unaffected by the shock ( $V_{+1} = V_{+2}$ )

Equations (1), (2) and (4) are the same as for the normal shock derivation i.e. we can apply the normal shock jump relations based on  $M_{n1}$ , e.g.

$$M_{n2}^{2} = \frac{2 + (\gamma - 1)M_{n1}^{2}}{2\gamma M_{n1}^{2} - (\gamma - 1)} \quad \text{with} \quad M_{n1} = M_{1} \sin \beta$$

and then

$$M_2 = \frac{M_{n2}}{\sin(\beta - \theta)}$$

$$M_{n1} = M_1 \sin \beta$$

$$M_{n2} = M_2 \sin (\beta - \theta)$$

$$M_{t1} = M_1 \cos \beta$$

$$M_{t2} = M_2 \cos (\beta - \theta)$$

Same trig relations hold for velocity, so

$$\bigvee V_{n1} = V_{t1} \tan \beta \qquad V_{n2} = V_{t2} \tan (\beta - \theta)$$

We know  $V_{t1}=V_{t2}$ 

$$\frac{V_{n1}}{V_{n2}} = \frac{\tan \beta}{\tan (\beta - \theta)}$$

From mass conservation

$$\frac{\tan \beta}{\tan (\beta - \theta)} = \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_1^2 \sin^2 \beta}{2 + (\gamma - 1)M_1^2 \sin^2 \beta}$$

$$\frac{1}{\cot (\beta - \theta)} = \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_1^2 \sin^2 \beta}{2 + (\gamma - 1)M_1^2 \sin^2 \beta}$$

$$\frac{\tan \beta}{\tan (\beta - \theta)} = \frac{(\gamma + 1)M_1^2 \sin^2 \beta}{2 + (\gamma - 1)M_1^2 \sin^2 \beta}$$
which

Expand  $tan(\beta-\theta)$  and rearrange

$$\tan \theta = 2 \cot \beta \left[ \frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2} \right]$$

Oblique shock relation: gives turning angle  $\theta$  in terms of M<sub>1</sub> and the shock angle  $\beta$ 



### Oblique shock chart ( $\gamma$ =1.4, simplified)



• For every  $M_1$  there is a maximum turning angle  $\theta_{max}$ 



- For any  $\theta < \theta_{max}$  there are two solutions
  - High  $\beta$  (strong shock solution), Lower  $\beta$  (weak shock solution)
- At  $\theta = 0^{\circ}$  there are two solutions (e.g. for  $M_1 = 3$ )
  - $\beta$ =sin<sup>-1</sup>(1/M): Mach wave
  - β=90°: Normal shock

### Stationary sound source (M=0)



Pulse emitted at time  $t = 2\Delta t$  has now travelled  $a\Delta t$ 

### Subsonic sound source (M<1)



### Sonic sound source (M=1, V=a)



### Supersonic sound source (M>1)

