birthday attack against HMAC

- suppose there is an oracle computing $HMAC_{K}(m)$ for any given message m by using key K
- if size of HMAC_K is n, then after $2^{n/2}$ different messages we expect a collision with probability 0.5; let be m_1 and m_2 such colliding messages
- now randomly choose string x e ask oracle to compute $t = HMAC_K(m_1|x)$
 - overall we asked oracle for $2^{n/2}+1$ computations
- with "good" probability it holds $HMAC_{\kappa}(m_2|x) = t$
 - if hash function used by $\mathsf{HMAC}_{\mathcal{K}}$ is iterated by Merkle-Damgård construction (SHA-1, SHA-2, not SHA-3)
 - m_1 and m_2 should end on some block boundary
 - thus the authentication tag of $m_2 \mid x$ has been found (with good probability) without asking the oracle for a further computation