Lógica proposicional

María Emilia Descotte

7 de octubre de 2016

Repasito

- Símbolos proposicionales: p, p', p'', ... (A veces los vamos a llamar p, q, etc. o p_1, p_2 , etc.)
- Fórmulas:
 - Símbolos proposicionales
 - $\neg \varphi \operatorname{con} \varphi \operatorname{f\'{o}rmula}$
 - $-\varphi \rightarrow \psi \text{ con } \varphi \text{ y } \psi \text{ fórmulas}$
- Notación: $\varphi \lor \psi = \neg \varphi \to \psi, \ \varphi \land \psi = \neg (\varphi \to \neg \psi)$
- Valuaciones: $v: Prop \rightarrow \{0, 1\}$
- Semántica:
 - $-v \models p \text{ sii } v(p) = 1$
 - $-v \models \varphi \sin v \not\models \varphi$
 - $-v \models \varphi \rightarrow \psi \text{ sii } (v \not\models \varphi \text{ o } v \models \psi)$
- φ es contingencia si existen valuaciones v, w tales que $v \models \varphi$ y $w \not\models \varphi$

Ejercicio 1. Demostrar que si $\varphi \in Form$ y todos sus símbolos proposicionales aparecen una única vez, entonces φ es una contingencia.

Solución: Lo resolvemos por inducción estructural:

- Caso base, $\varphi = p$: Basta tomar v la valuación que manda todo a 1 y w la que manda todo a 0.
- Supongamos que vale para φ , q.v.q. vale para $\neg \varphi$: Observemos que si $\neg \varphi$ no tiene símbolos proposicionales repetidos entonces φ tampoco. Luego, por HI existen valuaciones v', w' tales que $v' \models \varphi$, $w' \not\models \varphi$. Basta tomar entonces v = w' y w = v'.
- Supongamos que vale para φ y para ψ , q.v.q. vale para $\varphi \to \psi$: Observemos que si $\varphi \to \psi$ no tiene símbolos proposicionales repetidos entonces φ y ψ tampoco. Luego, por HI existen valuaciones v_1 , w_1 , v_2 , w_2 tales que $v_1 \models \varphi$, $w_1 \not\models \varphi$, $v_2 \models \psi$, $w_2 \not\models \psi$. Como v basta tomar w_1 . Para armar un w, la idea es combinar v_1 con v_2 y podremos hacerlo porque los símbolos proposicionales donde nos interesan los valores de cada una no tienen

intersección: Definimos
$$w(x) = \begin{cases} v_1(x) & \text{si } x \text{ aparece en } \varphi \\ w_2(x) & \text{caso contrario} \end{cases}$$

Table 1: Tabla de verdad ejercicio 2

p_1	p_2	p_3	$p_3 \wedge p_1$	$p_2 \to (p_3 \land p_1)$	$ \neg (p_2 \to (p_3 \land p_1)) $
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	0

Ahora, por ejercicio 4b) de la práctica, $w \models \varphi$. Además, como $\varphi \to \psi$ no tiene símbolos repetidos, $w(x) = w_2(x)$ para todo símbolo x que aparece en ψ . Luego, por el mismo ejercicio, $w \not\models \psi$. Concluimos entonces que $w \not\models \varphi \to \psi$.

Ejercicio 2. Consideremos la fórmula $\alpha = \neg (p_2 \to (p_3 \land p_1))$. Hallar todas las valuaciones v tales que $v \models \alpha$.

Solución: Obs: Por ejercicio 4b) de la práctica, no nos importa el valor de v en los símbolos que no aparecen en α . Luego hay solamente 2^3 casos que considerar y una buena forma de organizarlos es en una tabla de verdad (ver Table 1).

Vemos rápidamente que las valuaciones que nos sirven son todas aquellas tales que $(v(p_1) = v(p_3) = 0 \text{ y } v(p_2) = 1)$, o $(v(p_1) = 0 \text{ y } v(p_2) = v(p_3) = 1)$ o $(v(p_1) = v(p_2) = 1 \text{ y } v(p_3) = 0)$.

Definiciones:

• Una función Booleana es una función $f:\{0,1\}^m \to \{0,1\}$. Si $\alpha \in Form$ con $Var(\alpha) \subset \{p_1,...,p_n\}$ con $n \leq m$, decimos que α induce f si

$$f(x_1, ..., x_m) = 1 \text{ sii } v_{x_1, ..., x_m} \models \alpha$$

$$\int x_i \quad \text{si } 1 \le i \le m$$

donde
$$v_{x_1,...,x_m}(p_i) = \begin{cases} x_i & \text{si } 1 \le i \le m \\ 0 & \text{caso contrario} \end{cases}$$

• Un conjunto de conectivos se dice *adecuado* si toda función Booleana es inducida por alguna fórmula que solo usa esos conectivos.

Ejercicio 3. Demostrar que $\{\neg, \land, \lor\}$ es adecuado.

Solución: Buscamos una fórmula α con esos conectivos tal que $f(x_1,...,x_m)=1$ sii $v_{x_1,...,x_m}\models \alpha$.

- Caso I: Si $f(x_1,...,x_m)=0$ para todo $(x_1,...,x_m)\in\{0,1\}^m$. En ese caso tomamos $\alpha=p\wedge \neg p$.
- Caso II: Supongamos que existe $(x_1,...,x_m) \in \{0,1\}^m$ tal que $f(x_1,...,x_m) = 1$. Consideremos $E_f = \{(e_1^1,...,e_m^1),...,(e_1^k,...,e_m^k)\}$ el conjunto de las m-uplas donde f da 1.

Queremos α tal que para todo i=1,...,k, $v_{e_1^i,...,e_m^i}\models \alpha$ y para el resto de las m-tuplas no. Vamos a armar para i=1,...,k, β_i tales que $v_{e_1^i,...,e_m^i}\models \beta_i$ y para el resto de las m-tuplas

no y luego tomaremos el \vee de esas fórmulas: Sea $\gamma_j^i = \begin{cases} p_j & \text{si } e_j^i = 1 \\ \neg p_j & \text{caso contrario} \end{cases}$ Tomamos $\beta_i = \bigwedge_{j=1}^m \gamma_j^i$ y $\alpha = \bigvee_{j=1}^k \beta_i$.

Ejercicio 4. Demostrar que $\{\rightarrow, \land\}$ no es adecuado.

Solución: Debemos ver que hay alguna función Booleana que no podemos inducir con estos conectivos. Veamos, por inducción estructural, que cualquier fórmula α que solo use estos conectivos induce una función f_{α} tal que $f_{\alpha}(1) = 1$:

- Caso base, $\alpha = p$: $f_{\alpha}(1) = 1$ pues $v_1 \models \alpha$.
- Supongamos que vale para α y para β : $f_{\alpha \to \beta}(1) = 1$ sii $v_1 \models \alpha \to \beta$ sii $(v_1 \not\models \alpha \text{ o } v_1 \models \beta)$ sii $(f_{\alpha}(1) = 0 \text{ o } f_{\beta}(1) = 1)$. Como vale lo segundo por HI, se tiene lo que queríamos.
- Supongamos que vale para α y para β : $f_{\alpha \wedge \beta}(1) = 1$ sii $v_1 \models \alpha \wedge \beta$ sii $(v_1 \models \alpha \text{ y } v_1 \models \beta)$ sii $(f_{\alpha}(1) = 1 \text{ y } f_{\beta}(1) = 1)$. Como esto vale por HI, se tiene lo que queríamos.

Luego, por ejemplo no puede inducirse la función $f:\{0,1\} \to \{0,1\}$ constante 0 y por lo tanto el conjunto no es adecuado.

Observación: Una vez que uno tiene algún conjunto adecuado (o no adecuado) de conectivos, para probar que otros conjuntos son adecuados (o no), puede reducirlos a estos:

- Si A es adecuado y para toda fórmula α con conectivos de A existe una fórmula β con conectivos de B tal que para toda valuación v, $v \models \alpha$ sii $v \models \beta$ (esto se prueba por inducción estructural), entonces B también es adecuado.
- Si A no es adecuado y para toda fórmula α con conectivos de B existe una fórmula β con conectivos de A tal que para toda valuación v, $v \models \alpha$ sii $v \models \beta$ (esto se prueba por inducción estructural), entonces B tampoco es adecuado.

Consecuencia semántica y conjunto satisfacible: Sean $\Gamma \subset Form$, $\varphi \in Form$.

- $\Gamma \models \varphi$ (se lee φ es consecuencia semántica de Γ) si para toda valuación v tal que $v \models \Gamma$, se tiene que $v \models \varphi$.
- Γ es satisfacible si existe una valuación v tal que $v \models \Gamma$.
- $Con(\Gamma) = \{ \varphi \mid \Gamma \models \varphi \}.$

Ejercicio 5. a. Demostrar que $Con(\emptyset) = \{ \varphi \mid \varphi \text{ es tautología} \}.$

b. Un conjunto de fórmulas Γ se dice independiente si para toda $\varphi \in \Gamma$, $\varphi \notin Con(\Gamma \setminus \{\varphi\})$. Sea Γ un conjunto de fórmulas independiente. Demostrar que para todo $\Gamma_0 \subset \Gamma$ finito, $\{\bigwedge_{\varphi \in \Gamma_0} \varphi\}$ es independiente.

Solución:

- a. Es inmediato de la definición.
- b. Primero observemos que lo que hay que demostrar es que $\bigwedge_{\varphi \in \Gamma_0} \varphi \notin Con(\emptyset)$. Por el ítem a), esto equivale a mostrar que esa fórmula no es una tautología, i.e. que existe una valuación v tal que $v \not\models \varphi$ para alguna $\varphi \in \Gamma_0$. Razonaremos por el absurdo: Supongamos que para toda valuación v, $v \models \varphi$ para toda $\varphi \in \Gamma_0$. Entonces todas las fórmulas de Γ_0 son tautologías y por lo tanto están en las consecuencias semánticas de cualquier conjunto, en particular $\varphi \in Con(\Gamma \setminus \{\varphi\})$ para toda $\varphi \in \Gamma_0$. Pero esto es absurdo porque Γ era independiente. Luego se tiene lo que queríamos.