CSCI 2500 — Computer Organization Fall 2023 Test 3 (December 5, 2023)

Please silence and put away all laptops, phones, watches and any other electronic devices, etc. Using any electronic devices during the test is strictly prohibited.

- 1. DO NOT OPEN THIS TEST UNTIL TOLD TO DO SO!
- 2. READ THROUGH THE ENTIRE TEST BEFORE STARTING TO WORK.
- 3. YOU ARE ALLOWED ANY PRINTED OR HANDWRITTEN MATERIALS AND NOTES. NO OTHER MATERIALS ARE ALLOWED.
- 4. ABSOLUTELY NO ELECTRONIC DEVICES ARE ALLOWED.

This test is designed to take 110 minutes; therefore, for 50% extra time, the expected time is 2 hours and 45 minutes and 100% extra time is 3 hours and 40 minutes. Questions will not be answered except when there is a glaring mistake or ambiguity in the statement of a question. Please do your best to interpret and answer each question. Document any assumptions that you had to make.

If you need extra space for your answers, you can add a page to your test booklet. Make sure this extra page is clearly labeled with your name and question number. Make a note on the title page of your test indicating that there is an extra page. When returning your test to a proctor, make sure you give them this extra page.

This test is out of 100 points but there are some extra credit questions or parts of questions.

1. (20 POINTS)

Recall "Datapath With Control" figure from the textbook and lecture slides:

Suppose the following instruction is executed in this datapath:

beq \$8, \$9, loop

where label loop refers to the instruction which is eight instructions before the given instruction (i.e., there are seven other instructions between the instruction with label loop and the given instruction). You may refer to the "MIPS Reference Data" pages at the end of this test.

Assume that data memory is all zeros and that the processor's registers have the following decimal values at the beginning of the clock cycle in which the above instruction is fetched:

r0							r8			PC
0	-2	4	44	8	-1	2	-12	-12	6	4194308

What are the values of **all inputs and outputs** of the "Registers" unit, **all data inputs and outputs** of the "ALU" unit, **all inputs and outputs** of the "Add" unit in the right part of the datapath figure, and the following control signals: "Branch", "RegDst", "Zero", "ALUSrc", "RegWrite"? If there is not enough information to determine the value of any of these signals, write "N/A" for it. If the value of any signal is "Don't care", write "X" (note that "X" is not the same as "N/A").


```
Control
Branch = 1
RegDst = X
Zero = 1
ALUSrc = 0
RegWrite = 0
Register Unit
Read Reg 1 = 8
Read Reg 2 = 9
Write Reg = X
Write Data = X
Read Data 1 = R[8] = -12
Read Data 2 = R[9] = -12
ALU
ALU 1 = -12
ALU 2 = -12
Zero (also part of control) = 1
ALU Result = 0
ALU Control = 110 (might not be required)
Right Adder
Add 1 = PC+4 = 4194312
Add 2 = -36 (-9 * 4)
Add Result = 4194276
```


2. (20 POINTS)

Recall "Datapath With Jumps Added" figure from the textbook and lecture slides:

Now, imagine that due to a memory chip malfunction, any words read from any address of the Instruction Memory always have six least significant bits (Instruction[5-0]) set to 100101.

Give a specific example of an instruction (i.e., a valid line of MIPS code) which would be affected by this malfunction and work incorrectly. Describe the exact behavior that will be observed when executing this instruction. If you believe that all instructions would still work correctly, explain why none of the instructions would be affected by the malfunction.

Instructions of the following forms are all correct:

Any R-Type instruction whose original funct value is not 0x25 (i.e. any R-Type instruction besides 'or', as it will function as expected). For full points, students should explain that an 'or' operation is performed instead of the desired operation, since funct was altered. E.g. 'add \$t0 \$t0 \$t0' is incorrectly performed as 'or \$t0 \$t0'.

Any I-Type instruction whose immediate value's 6 least significant bits are not 100101 to begin with. For full points, students should explain how the least significant 6 bits of the immediate value are altered. E.g. 'lw \$t0 0(\$t1)' is incorrectly performed as 'lw \$t0 0x25(\$t0)'

Any J-Type instruction whose jump address's 6 least significant bits are not 100101 to begin with. For full points, students should explain how the least significant 6 bits of the jump location are altered. E.g. 'j L0' is incorrectly performed as 'j L1', where L0 represents address 0x0 in instruction memory and L1 represents address 0x(25 * 4) in instruction memory.

Finally, give a specific example of an instruction (i.e., a valid line of MIPS code) which would remain unaffected by this malfunction and still work correctly. Describe the exact behavior that will be observed when executing this instruction. If you believe that not a single instruction would work correctly, explain why.

Instructions of the following forms are all correct:

Any 'or' instruction, e.g. 'or \$t0 \$t1 \$t2'. For full points, students should explain the intended behavior. In the example, the number 'R[\$t1] OR R[\$t2]' is written to the register \$t0.

Any I or J type instruction whose immediate value/jump address has 100101 as its 6 least significant bits. For full points, students should explain what the instruction does (similar to the 'or' case above), and that the mistake does not affect the instruction since the new bits are identical to the ones that should be there anyways.

3. (20 POINTS) For this question, you must show all work to receive credit! This question refers to the code given below and assumes a five-stage pipelined MIPS processor with stages denoted as IF, ID, EX, MEM, and WB. Use * to represent a bubble.

```
addi
      $a0, $s0, 12
       $s0, 4($a0)
2
 SW
      $a0, $s0, 4
 addi
       $a0, 0($a0)
       $a1, $s1, 0xf0
 ori
       $s1, 4($a1)
 lw
 addi
      $a1, $s1, 8
       $a1, 0($a1)
 SW
 add
       $a2,
            $s0, $s1
```

Note the following assumptions:

- Forwarding is not used
- Additional hardware was used to allow us to test registers, calculate the branch address, and update the PC during the ID stage
- Statically predict branches not taken

Part a: (10/20 points) Using the notation of multi-cycle pipeline diagrams that we reviewed in class, show how all instructions go through the pipeline. Your diagram must show enough cycles until the last instruction leaves the pipeline but no more than 16 cycles. To save time, you may write just the instruction number (e.g., #1) instead of the whole instruction.

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	F	D	Е	М	W											
2		*	*	F	D	Ε	М	W								
3			F	D	Е	М	W									
4				*	*	F	D	Ш	М	W						
5					F	D	Е	М	W							
6						*	*	F	D	Ε	М	W				
7							*	*	F	D	Ε	M	W			
8								*	*	F	D	Е	M	W		
9									F	D	Е	M	W			

23

Part c: (5/20 points) Which types of hazards does this code have? Clearly circle all that apply.

- (a) Structure (structural)
- (b) Control
- (c) Synchronization

- (d) Forwarding
- (e) Data
- (f) None of the above

Extra credit part d: (10 points) Re-order instructions to minimize pipeline stalls without changing the semantics of the program.

```
ori $a1, $s1, 0xf0
addi $a0, $s0, 12
Nop
lw $s1, 4($a1)
sw $s0, 4($a0)
addi $a0, $s0, 4
addi $a1, $s1, 8
add $a2, $s0, $s1
sw $a0, 0($a0)
sw $a1, 0($a1)
```


4. (20 POINTS) Given a 32-bit architecture (both address and data buses are 32 bits) with byte-addressed main memory you designed a direct-mapped primary cache that has a total of 1,024 blocks with 1 word per block.

Part a: (10/20 points) Consider the sequence of memory accesses given below and write "hit", or "miss" next to each instruction. Compute the miss rate and express it either as a percentage or as a fraction of the form m/n.

load from Oxf00d0020 store to Oxf00d0020 load from Oxf00d0021 load from Oxf00d1024 load from Oxf00d2029 load from Oxf00d0021 load from Oxf00d1024 store to Oxf00d0020

Miss rate: 3/8

1,024 blocks with 1 word per block.

1024 indices, 10 bits for index, 2 bits needed for byte offset

load from 0xf00d0020 miss store to 0xf00d0020 hit * load from 0xf00d0021 hit load from 0xf00d1024 miss load from 0xf00d2029 miss load from 0xf00d0021 hit * load from 0xf00d1024 hit * store to 0xf00d0020 hit *

miss rate: 3/8

Part b: (4/20 points) For this cache configuration and the specific sequence of instructions given, indicate a single change that would lead to fewer misses (or write "None" if nothing could be done to decrease misses). Assume you cannot increase the total size of your cache (i.e., the total number of bits the cache occupies on the die). Be specific in describing the parameters of this change.

The main change would be to increase the size of each block to attempt to allow loading in one address to also load in some of the others that are later called. However, due to the large distance between different addresses, it is impossible to increase this block size without also changing the size of the cache miss.

Part c: (3/20 points) In the list of instructions above, use asterisks ("*") to mark at least two instructions that exhibit temporal locality. If there are none, clearly circle the statement below:

There are no instructions in the list above which exhibit temporal locality.

Shown above (multiple examples exist)

Part d: (3/20 points) In the list of instructions above, use hash signs ("#") to mark at least two instructions that exhibit spatial locality. If there are none, clearly circle the statement below:

No instructions

There are no instructions in the list above which exhibit spatial locality.

Extra credit part e: (5 points) Repeat the task from part (a) of this question but now with the 4-way set-associative primary cache that has a total of 1,024 blocks with 1 word per block and that uses LRU replacement policy.

load from 0xf00d0020 4 Way associative - 1024 / 4 = 256 indicies store to 0xf00d0020 load from 0xf00d0020 miss load from 0xf00d0021 store to 0xf00d0020 hit load from 0xf00d1024 load from 0xf00d0021 hit load from 0xf00d2029 load from 0xf00d1024 miss load from 0xf00d0021 load from 0xf00d2029 miss load from 0xf00d1024 load from 0xf00d0021 hit store to 0xf00d0020 load from 0xf00d1024 hit store to 0xf00d0020 hit miss rate: 3/8 3/8

Miss rate:

Miss rate:

Extra credit part f: (5 points) Repeat the task from part (a) of this question but now with the fully set-associative primary cache that has a total of 1,024 blocks with 1 word per block and that uses FIFO replacement policy.

load from 0xf00d0020 Fully associative - one index store to 0xf00d0020 load from 0xf00d0020 miss load from 0xf00d0021 store to 0xf00d0020 hit load from 0xf00d1024 load from 0xf00d0021 hit load from 0xf00d2029 load from 0xf00d1024 miss load from 0xf00d0021 load from 0xf00d2029 miss load from 0xf00d1024 load from 0xf00d0021 hit store to 0xf00d0020 load from 0xf00d1024 hit store to 0xf00d0020 hit 3/8 miss rate: 3/8

Extra credit part g: (3 points) Discuss how miss rate is different for different cache configurations that you designed above and why. How would miss rate change for a different set of memory access instructions?

Due to the large size of the cache compared to the low size of the number of instructions, the miss rate for all 3 cache designs is the same. In order to have a different miss rate in the different cache designs, you would need more addresses accessed, for example having 5 words with the same index accessed for the 4 associative cache.

5. Extra credit (15 POINTS) Consider a scenario in which die size constraints limited CPU designers to only 64 Kib (i.e., 65,536 bits, not bytes) of space left for the on-chip cache. Suppose that you want the cache to be write-through, write on allocate, 4-way set-associative (SA) with a 2-word block size (and the machine word size is 16 bits).

Draw the graphical representation of your cache using the same notation that we discussed in class. Show how memory addresses are broken down into offset, index, and tag bits, and the size of each field. Be sure to account for all required fields, not just the block data. Assume main memory is byte-addressed. The screen shot below is just a reminder on the notation, it is not the actual answer to this question (it is not even a 4-way SA cache). You need to give your answer in the space provided below the screen shot.

T read = 5.12 s + 4.17 ms + 0.005 s

6. (20 POINTS) Recall a computer architecture that we reviewed in class where all instructions have at most one argument, and "LOAD" instruction loads the value into the accumulator register. For the instruction shown, what value is loaded into the accumulator ("AC") for each addressing mode? For indexed addressing mode, assume "R1" to be the register that holds the offset. Remember that it is a 16-bit architecture, so all values are 16 bits and integer values can be signed. Fill in the table directly in the figure below:

L1 Cache Access Time = Access Time for L1 Cache = 1 cycle (given CPI = 1 and clock rate = 2.5GHz)

Therefore, L1 Cache Access Time = 1 / (2.5 GHz) = 0.4 ns

Average Memory Access Time (L1-only system):

Average Access Time = L1 Cache Access Time + L1 Cache Miss Rate * L1 Cache Miss Penalty

Average Access Time (L1-only) = 0.4 ns + 0.02 * 100 ns = 0.4 ns + 2 ns = 2.4 ns

Three-Level Cache System:

Average Access Time (three-level cache system) = L1 Cache Access Time + L1 Miss Rate * (L2 Cache Access Time + L2 Miss Rate * (L3 Cache Access Time + L3 Miss Rate * Main Memory Access Time))

Substituting the values:

Average Access Time (three-level cache system) = 0.4 ns + 0.02 * (6 ns + 0.01 * (10 ns + 0.005 * 100 ns)) = 0.5221 ns

Speedup = Average Access Time (L1-only system) / Average Access Time (three-level cache system)

Speedup = 2.4 / 0.5221 ns ~ 4.60

This page is left blank for scratch work. You may show your work but do not put your solutions here.

I

1

MIPS Reference Data

(1)

CORE INSTRUCTI	ON SE				OPCODE			
NAME, MNEMO	NIC	FOR- MAT			/ FUNCT (Hex)			
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	$0/20_{\text{hex}}$			
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}			
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}			
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]	(-)	0 / 21 _{hex}			
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}			
And Immediate	andi	Ι	R[rt] = R[rs] & ZeroExtImm		c _{hex}			
Branch On Equal beq		I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}			
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}			
Jump	j	J	PC=JumpAddr	(5)	2_{hex}			
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}			
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}			
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}			
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}			
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}			
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}			
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	11071			
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}			
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}			
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}			
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}			
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}			
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}			
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$			
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$			
Shift Right Logical	srl	R	$R[rd] = R[rt] \gg shamt$		$0 / 02_{hex}$			
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}			
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}			
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}			
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$			
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}			
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$			
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{lb'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic								

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	2
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

/ FMT /FT / FUNCT NAME, MNEMONIC MAT OPERATION (Hex) Branch On FP True bclt FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--Branch On FP False bc1f FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]0/--/-1a Divide div $\label{eq:divu} \text{divu} \quad R \quad Lo=R[rs]/R[rt]; \\ Hi=R[rs]\%R[rt]$ (6) 0/--/--/1b Divide Unsigned FP Add Single add.s FR F[fd] = F[fs] + F[ft]11/10/--/0 FP Add 11/11/--/0 Double {F[ft],F[ft+1]} FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft])? 1:0 11/10/--/y c.x.d* FR FPcond = $(\{F[fs],F[fs+1]\})$ op FP Compare 11/11/--/y $\{F[ft],F[ft+1]\})?1:0$ Double * (x is eq, lt, or le) (op is ==, <, or <=) (y is 32, 3c, or 3e)FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10/--/3 $\label{eq:divdef} \text{div.d } FR \quad \{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} \; / \;$ FP Divide 11/11/--/3 Double $\{F[ft],F[ft+1]\}$ FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft]11/10/--/2 $\texttt{mul.d.} \ FR \ \{F[fd], F[\bar{fd+1}]\} = \{F[fs], F[fs+1]\} \ *$ FP Multiply 11/11/--/2 Double $\{F[ft],F[ft+1]\}$ FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/--/1 $\texttt{sub.d.} \ FR \ \{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} - \{F[fs], F[fs+1]\} - \{F[fd], F[fd], F[fd+1]\} - \{F[fd], F[fd], F[fd+1]\} - \{F[fd], F[fd], F[fd],$ FP Subtract 11/11/--/1 Double {F[ft],F[ft+1]} (2) 31/--/--Load FP Single lwc1 I F[rt]=M[R[rs]+SignExtImm] Load FP F[rt]=M[R[rs]+SignExtImm]; (2) 35/--/-ldc1 I Double F[rt+1]=M[R[rs]+SignExtImm+4] 0 /--/--/10 Move From Hi $\texttt{mfhi} \quad R \quad R[rd] = Hi$ Move From Lo mflo. R R[rd] = Lo0 /--/--/12 Move From Control mfc0 R R[rd] = CR[rs]10 /0/--/0 Multiply $\quad \text{mult} \quad R$ ${Hi,Lo} = R[rs] * R[rt]$ 0/--/-18 (6) 0/--/--/19 ${Hi,Lo} = R[rs] * R[rt]$ Multiply Unsigned multu R Shift Right Arith. R[rd] = R[rt] >>> shamt0/--/-3 R sra M[R[rs]+SignExtImm] = F[rt]Store FP Single (2) 39/--/-swc1 Ι M[R[rs]+SignExtImm] = F[rt];Store FP (2)

(2) OPCODE

3d/--/--

FLOATING-POINT INSTRUCTION FORMATS

sdc1

ARITHMETIC CORE INSTRUCTION SET

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	15		0

M[R[rs]+SignExtImm+4] = F[rt+1]

PSEUDOINSTRUCTION SET

Double

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1 2-3		Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

MIPS (1) MIPS (2) MIPS (5:0) (5:0) (5:0) (5:0) (5:0) (6:0)	OPCOD	ES. BASI	CONVER	SIC	ON. A	SCII	SYMB	OLS		9	
				Ė	- ,				ъ .	Hexa-	ASCII
(31:26) (5:0) (5:0) (5:0) (5:0) (6:0) (6:0) (6:0) (7				Bi	nary	Dec1-			Deci-		
(i) sil sady 00 0000 0 0 NUL 64 40 @ subby 00 00001 1 1 SOH 65 41 A						mal			mal		
Sub.f 00 0001				00	0000	0			64		
Set	. /			00	0001	1	1	SOH	65	41	
Deep	j	srl		00	0010	2	2	STX	66	42	В
Debig	jal	sra	div.f	00	0011	3	3	ETX	67	43	C
Diez Srav movf 00 0110 6	beq	sllv	sqrt.f	00	0100						D
bgtz	bne		abs f								
addi											
Saltia Move With the property Saltia Move With the property With the pro	_		neg.f								
Sitiu movz											
Stiu		-									
Second Syscall Found.wf 00 1100 12 C FF 76 4c L											
ori xori break ceil.w.f trunc.w.f 00 1101 13 d CR 77 4d M und syne floor.w.f 00 1111 15 f SI 79 4f O (2) mthi 01 0000 16 10 DLE 80 50 P mflo mcov.f 01 0010 17 11 DC1 81 51 Q mflo mcov.f 01 0010 18 12 DC2 82 52 R mlo mcov.f 01 0010 20 14 DC4 84 54 T 01 0110 22 16 SYN 86 56 V mult 01 1010 22 16 SYN 86 58 X mult 01 1010 25 19 EM 89 59 Y divu 01 1011 27 1b ESC 91 5b [<tr< td=""><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>			1 1								
Note											
101		DIEGK									
(2) mthi mthi movz, f 01 0000 16 10 DLE 80 50 P 01 0010 mthi mthi movz, f 01 0010 17 11 DC1 81 51 Q mthi mthi movn, f 01 0011 19 13 DC2 82 52 R T 01 0010 20 14 DC4 84 54 T 01 01010 12 15 NAK 85 55 U 01 01010 22 16 SYN 86 56 V 01 0110 22 16 SYN 86 56 V 01 0111 23 17 ETB 87 57 W 01 0110 25 19 EM 89 59 Y 01 0100 25 19 EM 89 59 Y 01 01010 25 19 EM 89 59 Y 01 01010 28 1c FS 92 5c \ 01 1100 28 1c FS 92 5c \ 01 1101 29 1d GS 93 5d] 01 1110 30 1e RS 94 5e \ 01 1111 31 1f US 95 5f		eunc									
(2)	101		11001.w.j								
mflo movn,f 01 0010	(2)										
Mathematics	(-)		movz.f								
01 0100											
Multure Mult		-	,								
Mult											
mult 01 1000 24 18 CAN 88 58 X div 01 1010 25 19 EM 89 59 Y divu 01 1010 26 1a SUB 90 5a Z 01 1101 27 1b ESC 91 5b [01 1101 29 1d GS 93 5d] 01 1110 29 1d GS 93 5d] 01 1111 31 1f US 95 5f _ 1b add cvt.sf 10 0000 32 20 Space 96 60 * 1b add cvt.sf 10 0001 33 21 97 61 a 1w subu 10 0010 33 21 97 61 a 1bu and cvt.sf 10 0100 36 24 \$ 10 62				01	0110	22	16		86	56	V
Multu div 01 1001 25 19 EM 89 59 Y 01 1010 26 1a SUB 90 5a Z 2 2 2 2 2 2 2 2 2				01	0111		17	ETB	87		
div divu		mult		01	1000	24	18	CAN	88		X
Description		multu					19				
01 1100											
10 11 10 29 1d GS 93 5d 1 01 11 10 30 10 RS 94 5c ^ 2 11 11 11 11 11 11 1		divu									[
1110 30 1e RS 94 5e \$\hat{\lambda}{\color{\chickness}} \begin{array}{c ccccccccccccccccccccccccccccccccccc											/
Description]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											^
10 10 10 10 10 10 10 10											
lwl sub 10 0010 34 22 " 98 62 b lw subu 10 0011 35 23 # 99 63 c lbu and cvt.w.f 10 0100 36 24 \$ 100 64 d lhu or 10 0110 37 25 % 101 65 e lwr xor 10 0110 38 26 & 102 66 f sb 10 1000 40 28 (104 68 h sw1 slt 10 1000 40 28 (104 68 h sw1 slt 10 1010 41 29) 105 69 i sw1 slt 10 1011 43 2b + 106 6a j sw1 slt 10 1011 43 2b - 107 6b k											
lw subu lo 0010 35 23 # 99 63 c lbu and cvt.w.f 10 0100 36 24 \$ 100 64 d lhu or 10 0101 37 25 % 101 65 e lwr xor 10 0110 38 26 & 102 66 f g sb 10 1010 40 28 (104 68 h sw sltu 10 1010 42 2a * 106 6a h sw sltu 10 1010 42 2a * 106 6a h sw sltu 10 1100 44 2c , 108 6c 1 swr 10 1110 45 2d - 109 6d m swr 10 1110 46 2e . 110 6e n			cvt.d.J					!			
1bu											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
lwr xor 10 0110 38 26 & 102 66 f sb 10 0111 39 27 ' 103 67 g sb 10 1000 40 28 (104 68 h sw1 slt 10 1010 41 29) 105 69 i sw1 slt 10 1010 42 2a * 106 6a j sw1 slt 10 1011 43 2b + 107 6b k swr 10 1100 44 2c , 108 6c 1 swr 10 1101 45 2d - 109 6d m swr 10 1101 45 2d - 109 6d m swr c.ff 11 0000 48 30 0 112 70 p lwc1 tgeu c.seff 11 0010 <td></td> <td></td> <td>CVL.W.J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			CVL.W.J								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Sb	TWI							,			
sh slt 10 1001 41 29) 105 69 i swl slt 10 1010 42 2a * 106 6a j sw sltu 10 1011 43 2b + 107 6b k 10 1100 44 2c , 108 6c 1 10 1101 45 2d - 109 6d m swr 10 1101 45 2d - 109 6d m cache 10 1111 47 2f / 111 6e n 1wc1 tge c.f.f 11 0000 48 30 0 112 70 p 1wc2 tlt c.eq.f 11 0010 50 32 2 114 72 r r r r r r r r r r r r r r r	sb	1101						(
swl slt 10 1010 42 2a * 106 6a j sw sltu 10 1011 43 2b + 107 6b k 10 1100 44 2c , 108 6c 1 swr 10 1110 45 2d - 109 6d m swr 10 1110 46 2e . 110 6e n cache 11 1111 47 2f / 111 6e n 11 tge c.f.f 11 0000 48 30 0 112 70 p 1wc1 tgeu c.unf 11 0010 50 32 2 114 72 r pref tltu c.uef 11 0010 50 32 2 114 72 r pref tltu c.uef 11 0010 53 35 5 117											
sw sltu 10 1011 43 2b + 107 6b k swr 10 1100 44 2c , 108 6c 1 swr 10 1110 45 2d - 109 6d m swr 10 1110 45 2d - 109 6d m 10 111 46 2e . 110 6e n 11 tge c.ff 11 0000 48 30 0 112 70 p lwc1 tge c.uff 11 0010 50 32 2 114 72 r p r		slt						*			
swr 10 1101 45 2d - 109 6d m cache 10 1110 46 2e . 110 6e n 11 tge c.ff 11 0000 48 30 0 112 70 p lwc1 tgeu c.unf 11 0001 49 31 1 113 71 q lwc2 tlt c.eqf 11 0010 50 32 2 114 72 r pref tltu c.ueqf 11 0010 50 32 2 114 72 r r pref tltu c.ueqf 11 0010 52 34 4 116 74 t t ldc1 c.ultf 11 010 53 35 5 117 75 u dc2 tne c.sef 11 0110 54 36 6 118 76 v swc1 c.sef	sw	sltu				43	2b	+	107		
Swr						44		,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2d	_			m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	swr									6e	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 3 -									p
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pref										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		teq									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1ac2	Lne									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWCZ							:			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sdc1										}
c.ngt.f 11 1111 63 3f ? 127 7f DEL											~
27.1329 12.222											DEL
	(1) opcod	de(31:26) =									

(2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if $\text{fmt}(25:21) == 16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $\text{fmt}(25:21) == 17_{\text{ten}} (11_{\text{hex}}) f = d$ (double)

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Compu

IEEE 754 FLOATING-POINT STANDARD

(3)

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

DATA ALIGNMENT

Double Word										
	Wo	rd		Word						
Halfw	Halfword		word	Halt	fword	Half	word			
Byte Byte		Byte Byte Byte I		Byte	Byte	Byte				

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

PHON CONTROL RE	315 1 ER5: CAUS	E AN	DSIAIUS	
В	Interrupt		Exception	
D	Mask		Code	
31	15	8	6	2
	Pending		U	ΕI
	Interrupt		M	LE
	1.6	0	1	1 0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

_	VOLI III	JI4 00	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
	0 Int		Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL	Address Error Exception		RI	Reserved Instruction
		Aull	(load or instruction fetch)		KI	Exception
	5	AdES	Address Error Exception	11	CpU	Coprocessor
	3 AuEs		(store)	11	СрС	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDE	Instruction Fetch	12	Ov	Exception
	7	DBE	Bus Error on	13	Tr	Trap
		DBL	Load or Store	13		1
	8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

I	SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
ı	10^{3}	Kilo-	K	2 ¹⁰	Kibi-	Ki
I	10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi
I	10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
ı	10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
I	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
	10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
и	10^{21}	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
I	10^{24}	Yotta-	Y	280	Yobi-	Yi

