Algebra Lineare

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Nun	neri complessi	5
	1.1	Insiemi di numeri	5
	1.2	Numeri immaginari	6
		1.2.1 Esempi	7
	1.3	Operazioni tra i numeri complessi	7
		1.3.1 Somma	7
		1.3.2 Prodotto	8
		1.3.3 Sottrazione	8
		1.3.4 Divisione	8
	1.4	Coniugato e modulo	10
		1.4.1 Coniugato	10
		1.4.2 Modulo	10
		1.4.3 Proprietà	10
	1.5	Coordinate polari	11
	1.6	Forma trigonometrica di un numero complesso	12
	1.7	Prodotto di numeri complessi in forma trigonometrica	13
	1.8	Formula di de Moivre	13
	1.9	Definizione di radice n-esima	14
	1.10	Teorema delle radici n-esime	14
		1.10.1 Dimostrazione	14
	1.11	Radici quadrate di numeri reali negativi	15
2	Sist	emi lineari e matrici	16
	2.1	Sistemi lineari	16
	2.2	Definizione	19
	2.3	Definizione	19
	2.4	Operazioni elementari	21
	2.5	Linee in \mathbb{R}^2	22
	2.6	Metodo di eliminazione di Gauss (EG)	23
	2.7	Risoluzione di un sistema lineare	25
	2.8	Definizione di rango di una matrice	26
	2.9	Osservazione	26
3	Mat	rici e le loro operazioni	27
	3.1	Definizione di somma	27
		3.1.1 Proprietà	27
	3.2	Definizione di prodotto per uno scalare	28
		3.2.1 Proprietà	28
	3.3	Definizione di matrice trasposta	28
	3.4	Definizione di prodotto di matrici	28
		3.4.1 Proprietà	30
	3.5	Osservazione	31
	3.6	Definizione	32
	3.7	Matrici elementari	33
	3.8	Moltiplicazione con matrici elementari	35
	3.9	Definizione di matrice invertibile	36
	3.10	Inverse di matrici elementari	37
		Proposizione	38

		3.11.1 Dimostrazione	38
	3.12	Proposizione	39
		3.12.1 Dimostrazione	39
	3.5		
4		rici inverse e determinante	41
	4.1	Proposizione	42
		4.1.1 Dimostrazione	42
	4.2	Calcolo della matrice inversa	42
	4.3	Teorema delle matrici invertibili	43
		4.3.1 Dimostrazione	44
	4.4	Proposizione (Determinante di una matrice)	44
		4.4.1 Dimostrazione	44
	4.5	Definizione di determinante	45
	4.6	Regola di Sarrus	46
	4.7	Teorema di Laplace	47
	4.8	Determinante e trasposta	48
	4.9	Il principio di induzione	49
	4.10	Proposizione	50
		Teorema	52
		Corollario	53
		Corollario	53
	4 14	Formula per A^{-1}	54
	4 15	Teorema di Cramer	55
	1.10	10010IIIa di Ciamoi	00
5	Spa	zi vettoriali e sottospazi	56
	5.1	Definizione di spazio vettoriale	56
		5.1.1 Esempi	58
	5.2	Osservazioni	59
	5.3	Definizione combinazione lineare	60
	5.4	Definizione di insieme di generatori	61
		5.4.1 Esempi	62
	5.5	Definizione di sottospazio	63
		5.5.1 Esempi	64
	5.6	Definizione di sottospazio generato	66
	5.7	Definitione	67
	5.8	Definizione	68
	5.9	Proposizione	69
	0.0	5.9.1 Dimostrazione	69
	5 10	Definizione	70
		Proposizione	70
	0.11	5.11.1 Dimostrazione	70
		5.11.1 Dimostrazione	10
6	Dip	endenza e indipendenza lineare	72
	6.1	Proposizione	72
		6.1.1 Dimostrazione	72
	6.2	Definizione	73
	6.3	Teorema	73
	0.0	6.3.1 Dimostrazione	73
		6.3.2 Esempi	74
	6.4	Definizione	75
	0.4	Demination	10

	6.5	Osservazione	75
		6.5.1 Esempi	76
	6.6	Base di $C(U)$ per una matrice U in forma ridotta $\dots \dots$	77
		6.6.1 Osservazioni	77
	6.7	Proposizione	78
	6.8	Teorema	78
		6.8.1 Dimostrazione	78
	6.9	Teorema di Steinitz	79
	6.10	Corollario	79
	00	6.10.1 Dimostrazione	79
	6.11	Definizione	79
	0.11		80
	6.12	•	80
			80
	0.10	•	80
		0.19.1 Dimostrazione	00
7	Apn	olicazione lineare	81
	7.1		81
			81
			81
	7.2	T .	82
			82
	7.3	•	84
	7.4		84
	7.5		86
	7.6		87
	1.0		87
	7.7		87
	7.8		88
	1.0		88
	7.9		89
	1.9		
			90
	7 10		90
	7.10	Matrice associata a f rispetto a basi	91
8	Ran	${f go}+{f nullita}$	93
J		-	93
	0.1		93
	8.2	8.1.1 Esempi	94
	0.2	8.2.1 Dimostrazione	94
	8.3	Dimensione di C(A)	96
	0.5	8.3.1 Proposizione	96
		8.3.2 Dimostrazione	
	0 1		96
	8.4	Dimensione di N(A)	97
	0 =		98
	8.5	Procedimento per determinare basi di $C(A)$ e $N(A)$	98
	8.6	Proposizione	99
	8.7		99
		8.7.1 Dimostrazione	99

9	Aut	ovalori e autovettori	100
	9.1	Definizione	102
	9.2	Osservazione	102
	9.3	Definizione	103
	9.4	Teorema	103
	9.5	Corollario	104
	9.6	Definizione	104
	9.7	Osservazione	105
	9.8	Proposizione	107
		9.8.1 Dimostrazione $(r = 2) \dots \dots \dots \dots \dots$	107
	9.9	Definizione	110
10	•	gonalizzazione di matrici	110
	10.1	Proposizione (Proprietà delle matrici simili)	
		10.1.1 Dimostrazione	
	10.2	Teorema	112
		10.2.1 Dimostrazione	
	10.3	Corollario	113
		10.3.1 Dimostrazione	_
	10.4	Osservazione	113
	10.5	Lemma	114
		10.5.1 Dimostrazione	
	10.6	Teorema	115
		10.6.1 Dimostrazione	115
	10.7	Algoritmo per la diagonalizzazione	119
	10.8	Osservazione	120
	10.9	Teorema spettrale	120
		10.9.1 Dimostrazione (n = 2)	120
11	Basi	ortonormali	121

1 Numeri complessi

1.1 Insiemi di numeri

I numeri sono divisi in insiemi in base alle operazioni che si possono fare con essi:

• I numeri sono stati pensati per contare e per farlo è stato definito l'insieme dei numeri naturali che è definito come

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

• Per fare operazioni di sottrazione è stato definito l'insieme dei numeri interi che è definito come

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

• Per fare operazioni di divisione è stato definito l'insieme dei numeri razionali che è definito come

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

• Per fare operazioni di radice quadrata è stato definito l'insieme dei numeri reali che è definito come

$$\mathbb{R} = \{ x \mid x \in \mathbb{Q} \}$$

• Infine, per fare operazioni di radice quadrata di numeri negativi è stato definito l'insieme dei numeri complessi che è definito come

$$\mathbb{C} = \left\{ z \mid z = a + bi, \quad a, b \in \mathbb{R}, i^2 = -1 \right\}$$

Ognuno di questi insiemi è un sottoinsieme dell'insieme successivo, ovvero

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Le equazioni non risolvibili in un insieme vengono risolte in un insieme successivo, ad esempio

$$x^2 + 1 = 0$$

non ha soluzioni in \mathbb{R} , ma ha soluzioni in \mathbb{C} .

Teorema 1 (Teorema fondamentale dell'algebra)

Qualsiasi equazione di forma:

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$$

dove

$$n \in \mathbb{N}, \ a_0, a_1, \dots, a_n \in \mathbb{C}, \ a_n \neq 0$$

ed x è un incognita, ammette n soluzioni

Definizioni utili 1.1

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \quad con \quad a_n \neq 0$$

è detto polinomio di grado n con coefficienti $a_0, \ldots, a_n \in \mathbb{C}$

1.2 Numeri immaginari

Aggiungiamo ai numeri reali un "nuovo" numero i che è definito come $i^2 = -1$. Questo numero è detto: **unità immaginaria**. Per agevolare le operazioni con i numeri immaginari si definisce l'insieme dei **numeri complessi** in modo da poter moltiplicare e sommare un numero reale con un numero immaginario:

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

z = a + bi è detta forma algebrica di un numero complesso $z \in \mathbb{C}$.

$$a = \Re(z)$$
 è detta parte reale di z

 $b=\Im(z)$ è detta parte immaginaria di z

Definizioni utili 1.2

Per agevolare la scrittura, al posto di scrivere:

$$a + (-b)i$$

si scrive:

$$a-bi$$

1.2.1 Esempi

Esempio 1.1

- 3 + 2i
- $-12 + \frac{1}{2}i$
- $3-\sqrt{2}i$
- $1 + 0 \cdot i = 1 \in \mathbb{R}$

1.3 Operazioni tra i numeri complessi

1.3.1 Somma

Definizione 1.1

L'addizione tra due numeri complessi è definita come:

$$z_1 = a + bi$$
 $z_2 = c + di$ $\in \mathbb{C}$

$$z_1 + z_2 = (a+bi) + (c+di) = (a+c) + (b+d)i$$

Esempio 1.2

$$z_1 = 6 + 7i$$
 $z_2 = -12 + 1732i$

$$z_1 + z_2 = (6+7i) + (-12+1732i) = -6+1739i$$

1.3.2 Prodotto

Definizione 1.2

Il prodotto tra due numeri complessi è definito come:

$$z_1 = a + bi$$
 $z_2 = c + di$ $\in \mathbb{C}$

$$z_1 \cdot z_2 = (a+bi) \cdot (c+di) = ac + adi + bci + bdi^2$$

 $visto\ che\ i^2=-1\ si\ ha\ che\ bdi^2=-bd\ quindi$

$$z_1 \cdot z_2 = ac + adi + bci - bd = (ac - bd) + (ad + bc)i$$

Esempio 1.3

$$z_1 = 3 + 2i$$
 $z_2 = 10 - i$

$$z_1 \cdot z_2 = (3+2i) \cdot (10-i) = 30 - 3i + 20i - 2i^2 = 32 + 17i$$

1.3.3 Sottrazione

Notiamo che per ogni numero complesso $z = a + bi \in \mathbb{C}$, il numero complesso -a - bi è l'unico numero complesso tale che z + (-z) = 0. Questo numero complesso è detto **opposto** di z e si indica con -z.

Definizione 1.3

La sottrazione tra due numeri complessi è definita come:

$$z_1 = a + bi$$
 $z_2 = c + di$ $\in \mathbb{C}$

$$z_1 - z_2 = z_1 + (-z_2) = (a+bi) - (c+di) = (a-c) + (b-d)i$$

Esempio 1.4

$$z_1 = 3 + 2i \quad z_2 = 10 - i$$

$$z_1 - z_2 = (3+2i) - (10-i) = -7+3i$$

1.3.4 Divisione

Definizione 1.4

La divisione tra due numeri complessi è definita come:

$$z_1, z_2, z_2 \neq 0 \in \mathbb{C}$$

Definiamo $\frac{1}{z_2}$ come l'unico numero complesso tale che:

$$z_2 \cdot \frac{1}{z_2} = 1$$

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}$$

Sia z = a + bi $\in \mathbb{C}$ e $z \neq 0$. Supponiamo che z' = c + di sia un numero complesso tale che $z \cdot z' = 1$, cioè:

$$1 = z \cdot z' = (a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$

 $Abbiamo\ ac - bd = 1\ e\ ad + bc = 0.$

Possiamo trovare c sostituendo $d = \frac{-1-ac}{b}$ nella prima equazione:

$$c = -\frac{ad}{b} \quad d = \frac{-(1-ac)}{b} = \frac{1-ac}{b}$$

$$c = \frac{-a(\frac{-1+ac}{b})}{b} = \frac{-a(\frac{-1+ac}{b})}{b} \cdot \frac{b}{b} = \frac{-a(-1+ac)}{b^2}$$

$$cb^2 = a - a^2c$$

$$c(a^2 + b^2) = a$$

$$c = \frac{a}{a^2 + b^2}$$

Possiamo trovare d sostituendo $c = \frac{-ad}{b}$ nella seconda equazione:

$$d = \frac{-bc}{a} \quad c = \frac{-(1-bd)}{a} = \frac{1-bd}{a}$$

$$d = \frac{-b(\frac{1-bd}{a})}{a} = \frac{-b(\frac{1-bd}{a})}{a} \cdot \frac{a}{a} = \frac{-b(1-bd)}{a^2}$$

$$ad^2 = b - b^2d$$

$$d(a^2 + b^2) = b$$

$$d = \frac{b}{a^2 + b^2}$$

Quindi:

$$z' = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i = \frac{a - bi}{a^2 + b^2}$$

 $di\ conseguenza$

$$\frac{1}{z} = \frac{a - bi}{a^2 + b^2}$$

Siano $z_1 = a + bi, z_2 = c + di \neq 0 \in \mathbb{C}$. Definiamo:

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = z_1 \cdot \frac{c - di}{c^2 + d^2} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i$$

Esempio 1.5

$$\frac{1+2i}{2-i} = (1+2i)\left(\frac{2}{5} + \frac{1}{5}i\right) = \left(\frac{2}{5} - \frac{2}{5}\right) + \left(\frac{1}{5} + \frac{4}{5}\right)i = i$$

Un trucco per dividere i numeri complessi è moltiplicare per 1 la frazione:

$$(a+bi)(a-bi) = a^2 + abi - abi + b^2 = a^2 + b^2 \in \mathbb{R}$$

In questo modo si arriva ad ottenere un numero reale al denominatore facilitando la divisione.

Esempio 1.6

$$\frac{\frac{1+2i}{2-i}}{\left(\frac{1+2i}{2-i}\right)\left(\frac{2+i}{2+i}\right) = \frac{(1+2i)(2+i)}{2^2+(-1)^2} =$$

$$= \frac{(1+2i)(2+i)}{5} = \frac{2+4i+i+2i^2}{5} = \frac{2+5i-2}{5} = \frac{5i}{5} = i$$

1.4 Coniugato e modulo

1.4.1 Coniugato

Sia $z = a + bi \in \mathbb{C}$. Il numero complesso $\overline{z} = a - bi$ è detto **coniugato** di z.

1.4.2 Modulo

Il **modulo** di z è definito come:

$$|z| = \sqrt{a^2 + b^2} \quad \in \mathbb{R}$$

1.4.3 Proprietà

Siano $z_1 = a + bi, z_2 = c + di \in \mathbb{C}$

1.
$$z_1\overline{z_1} = a^2 + b^2 = |z_1|^2$$

2.
$$\overline{z_1 + z_2} = \overline{(a+c) + (b+d)i} = (a-bi) + (c-di) = \overline{z_1} + \overline{z_2}$$

$$3. \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$$

4. Se

$$z_1 \neq 0, \ \overline{\frac{1}{z_1}} = \frac{1}{\overline{z_1}}$$

Infatti:

$$\overline{z_1} \cdot \left(\overline{\frac{1}{z_1}} \right) = \left(\overline{z_1} \cdot \overline{\frac{1}{z_1}} \right) = \overline{1 + 0i} = 1 - 0i = 1$$

5. Se $z_2 \neq 0$ allora:

$$\left(\overline{\frac{z_1}{z_2}}\right) = \left(\overline{z_1} \cdot \frac{1}{z_2}\right) = \overline{z_1} \cdot \overline{\frac{1}{z_2}} = \overline{z_1} \cdot \frac{1}{\overline{z_2}} = \overline{\frac{z_1}{z_2}}$$

6. Se $z_1 \neq 0$, allora

$$\frac{1}{z_1} \stackrel{def}{=} \frac{a - bi}{a^2 + b^2} = \frac{\overline{z_1}}{|z_1|^2}$$

$$z = \frac{1+i}{2-i} = (1+i)\left(\frac{1}{2-i}\right)$$

$$\frac{1}{2-i} = \frac{2+i}{5} = \frac{2+i}{5} = \frac{2}{5} + \frac{1}{5}i$$

$$z = (1+i)\left(\frac{2}{5} + \frac{1}{5}i\right) = \left(\frac{2}{5} - \frac{1}{5}\right) + \left(\frac{2}{5} + \frac{1}{5}\right)i = \frac{1}{5} + \frac{3}{5}i$$

$$\overline{z} = \frac{1}{5} - \frac{3}{5}i$$

1.5 Coordinate polari

Per ogni numero complesso si ha una coppia di coordinate:

$$z = a + bi \in \mathbb{C}$$

 $(a, b) = (\Re(z), \Im(z)) \in \mathbb{R}^2$

Figura 1: Rappresentazione di un numero complesso

Possiamo esprimere z in coordinate polari (r, α) dove r è la lunghezza del segmento OZ, detto **raggio polare**, ed α è l'angolo compreso tra l'asse delle x e OZ in senso antiorario. α viene misurato in radianti

Forma trigonometrica di un numero complesso

1.6

Dato un $z=(r,\alpha)$ in coordinate polari, vogliamo ricavare la forma algebrica. Per fare ciò usiamo il seno e il coseno:

$$\cos(\alpha) = \frac{a}{r} \quad \sin(\alpha) = \frac{b}{r}$$

Figura 3: Forma trigonometrica di un numero complesso

Definizione 1.5

La forma trigonometrica di un numero complesso è definita come:

$$z = (r \cdot \cos(\alpha)) + (r \cdot \sin(\alpha)i) = r \cdot (\cos(\alpha) + i \cdot \sin(\alpha))$$

$$r = |z| = \sqrt{a^2 + b^2}$$

$$\alpha = \begin{cases} \frac{\pi}{2} & se \ a = 0, \ b > 0 \\ \frac{3\pi}{2} & se \ a = 0, \ b < 0 \\ non \ definito & se \ a = 0, \ b = 0 \\ \arctan\left(\frac{b}{a}\right) & se \ a > 0, \ b \geq 0 \\ \arctan\left(\frac{b}{a}\right) + 2\pi & se \ a > 0, \ b < 0 \\ \arctan\left(\frac{b}{a}\right) + \pi & se \ a < 0, \ b \ qualsiasi \end{cases}$$

Esempio 1.9

$$1 = \cos(0) + i \cdot \sin(0)$$
$$i = \cos(\frac{\pi}{2}) + i \cdot \sin(\frac{\pi}{2})$$
$$-1 = \cos(\pi) + i \cdot \sin(\pi)$$
$$-i = \cos(\frac{3\pi}{2}) + i \cdot \sin(\frac{3\pi}{2})$$

1.7 Prodotto di numeri complessi in forma trigonometrica

Definizione 1.6
$$z_1 = r\left(\cos(\alpha) + i\sin(\alpha)\right), \quad z_2 = s\left(\cos(\beta) + i\sin(\beta)\right) \in \mathbb{C}$$

$$z_1 z_2 = rs(\cos(\alpha) + i\sin(\alpha))(\cos(\beta) + i\sin(\beta)) =$$

$$= rs\left((\cos\alpha\cos(\beta) - \sin(\alpha)\sin(\beta)\right) + (\cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta))i\right) =$$

$$= rs\left(\cos(\alpha + \beta) + i\sin(\alpha + \beta)\right)$$

1.8 Formula di de Moivre

Dati
$$n \in \mathbb{N}$$
, $z = r(\cos(\alpha) + i\sin(\alpha)) \in \mathbb{C}$
$$z^n = r^n \cdot (\cos(n\alpha) + i\sin(n\alpha))$$

Esempio 1.10

$$z = \sqrt{3} + i = 2 \cdot \left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$
$$z^6 = 2^6 \cdot \left(\cos\left(\frac{\pi}{6} \cdot 6\right) + i\sin\left(\frac{\pi}{6} \cdot 6\right)\right) = 64 \cdot \left(\cos(\pi) + i\sin(\pi)\right) = -64$$

1.9 Definizione di radice n-esima

$$y \in \mathbb{C}, \quad n \in \mathbb{N}$$

Si dicono **radici n-esime** di y le soluzioni dell'equazione $x^n = y$.

1.10 Teorema delle radici n-esime

Teorema 2 Siano $y \in \mathbb{C}$ e $n \in \mathbb{N}$. Esistono precisamente n radici n-esime complesse distinte $z_0, z_1, \ldots, z_{n-1}$ di y. Se $y = r(\cos(\alpha) + i\sin(\alpha))$, allora per $k = 0, \ldots, n-1$:

$$z_k = \sqrt[n]{r} \left(\cos \left(\frac{\alpha + 2k\pi}{n} \right) + i \sin \left(\frac{\alpha + 2k\pi}{n} \right) \right)$$

Si somma $2k\pi$ per ottenere tutte le radici n-esime, siccome sin e cos sono periodiche.

1.10.1 Dimostrazione

Per la formula di de Moivre sappiamo che:

$$z_k^n = \left(\sqrt[n]{r}\right)^n (\cos \alpha + (2\pi)k + i\sin \alpha + (2\pi)k) =$$
$$= r(\cos \alpha + i\sin \alpha) = y$$

Figura 4: Circonferenza goinometrica

Figura 5: Funzione seno

Figura 6: Funzione coseno

Quindi z_0,\ldots,z_{n-1} sono soluzioni di $y=x^n$, cioè sono radici n-esime di y. Siccome il periodo di sin e cos è 2π , le radici n-esime sono tutte distinte.

1.11 Radici quadrate di numeri reali negativi

Sia $a \in \mathbb{R} \subseteq \mathbb{C}$ tale che a < 0. Esistono precisamente due radici quadrate di a in \mathbb{C} . Infatti, abbiamo:

Figura 7: Radici quadrate di numeri reali negativi

$$a = (-a)(\cos \pi + i \sin \pi)$$

Per il teorema 2:

$$z_0 = \sqrt{-a} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = i \sqrt{-a}$$
$$z_1 = \sqrt{-a} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = -i \sqrt{-a}$$

Definizioni utili 1.3

Se abbiamo un polinomio della forma:

$$ax^2 + bx + c$$
, $a, b, c \in \mathbb{R}$

Le soluzioni sono:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In \mathbb{C} esistono 2 soluzioni anche se $\Delta < 0$.

2 Sistemi lineari e matrici

2.1 Sistemi lineari

Un **sistema lineare** è un insieme di m equazioni in n incognite che può essere scritto nella forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

dove b_k , $a_{ij} \in \mathbb{C}$ oppure \mathbb{R} per $1 \leq i \leq m$, $1 \leq j \leq n$, $1 \leq k \leq m$. Se i **termini noti** sono tutti nulli il sistema è detto **omogeneo**. Una n-upla (x_1, \ldots, x_n) di numeri complessi (o reali) è una soluzione se soddisfa tutte le m equazioni.

Esempio 2.1

Presa in considerazione la seguente tabella nutrizionale di cereali (per porzione):

	Cheerios	Quakers
Proteine (g)	4	3
Carboidrati(g)	20	18
Grassi(g)	2	5

Quante porzioni di Cheerios e Quakers dobbiamo mangiare per ottenere 9g

di proteine, 48g di carboidrati e 8g di grassi?

$$\begin{cases} 4C + 3Q = 9 & (P) \\ 20C + 18Q = 48 & (C) \\ 2C + 5Q = 8 & (G) \end{cases}$$

Per risolvere il sistema lineare:

• Moltiplichiamo le per $\frac{1}{4}$ e otteniamo un sistema lineare **equivalente** (cioè con **esattamente** le stesse soluzioni):

$$(P') \quad C + \frac{3}{4}Q = \frac{9}{4}$$

(C)
$$20C + 18Q = 48$$

$$(G) \quad 2C + 5Q = 8$$

• Calcoliamo (C) - 20(P') e (G) - 2(P') e otteniamo:

$$(P')$$
 $C + \frac{3}{4}Q = \frac{9}{4}$

$$(C')$$
 $0C + 15Q = 18$

$$(G') \quad 0C + \frac{7}{2}Q = \frac{7}{2}$$

• Moltiplichiamo (C') per $\frac{1}{3}$ e otteniamo:

$$(P')$$
 $C + \frac{3}{4}Q = \frac{9}{4}$

$$(C') \quad 0C + Q = 1$$

$$(G') \quad 0C + \frac{7}{2}Q = \frac{7}{2}$$

• Calcoliamo $(G') - \frac{7}{2}(C")$ e otteniamo:

$$(P')$$
 $C + \frac{3}{4}Q = \frac{9}{4}$

$$(C') \quad 0C + Q = 1$$

$$(G') \quad 0C + 0Q = 0$$

Otteniamo dunque che Q=1 e $C=\frac{9}{4}-\frac{3}{4}=\frac{7}{4}$

Per agevolare la risoluzione del sistema lineare si può utilizzare una matrice:

- R1 = Riga 1
- R2 = Riga 2

•
$$\mathbf{R3} = Riga \ 3$$

$$\begin{pmatrix} 4 & 3 & | & 9 \\ 20 & 18 & | & 48 \\ 2 & 5 & | & 8 \end{pmatrix}$$

$$\downarrow \frac{1}{4} \cdot R1$$

$$\begin{pmatrix} 1 & \frac{3}{4} & | & \frac{9}{4} \\ 20 & 18 & | & 48 \\ 2 & 5 & | & 8 \end{pmatrix}$$

$$\downarrow R2 - 20 \cdot R1$$

$$\downarrow R3 - 2 \cdot R1$$

$$\begin{pmatrix} 1 & \frac{3}{4} & | & \frac{9}{4} \\ 0 & 3 & | & 3 \\ 0 & \frac{7}{2} & | & \frac{7}{2} \end{pmatrix}$$

$$\downarrow \frac{1}{3} \cdot R2$$

$$\begin{pmatrix} 1 & \frac{3}{4} & | & \frac{9}{4} \\ 0 & 1 & | & 1 \\ 0 & \frac{7}{2} & | & \frac{7}{2} \end{pmatrix}$$

$$\downarrow R3 - \frac{7}{2} \cdot R2$$

$$\begin{pmatrix} 1 & \frac{3}{4} & | & \frac{9}{4} \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Otteniamo dunque che Q=1 e $C=\frac{9}{4}-\frac{3}{4}=\frac{7}{4}$

2.2 Definizione

Definizione 2.1

Siano m, n, ; < 1. Una tabella A tale che:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{m \times n}$$

di $m \times n$ elementi di \mathbb{C} disposti in m righe e n colonne si chiama una matrice di dimensione $m \times n$. Gli elementi si chiamano coefficienti (o entrate) della matrice e sono contrassegnati con un doppio indice ij dove i indica la riga e j la colonna di appartenenza.

L'insieme di tutte le matrici di dimensione $m \times n$ con entrate in \mathbb{C} si indica con $M_{m \times n}(\mathbb{C})$.

L'insieme di tutte le matrici di dimensione $m \times n$ con entrate in \mathbb{R} si indica con $M_{m \times n}(\mathbb{R})$.

Esempio 2.2

$$\begin{pmatrix} 3 & i & 2+7i \\ 0 & 1 & \pi \end{pmatrix} \in M_{2\times 3}(\mathbb{C})$$
$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) \subseteq M_{2\times 2}(\mathbb{C})$$

2.3 Definizione

Un sistema lineare di n incognite e m equazioni:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

può essere rappresentato nella forma matriciale:

$$Ax = b$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
Matrice dei coefficienti

Vettore delle incognite

Vettore dei termini noti

La matrice

$$(A \mid B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{pmatrix}$$

è detta matrice aumentata.

Esempio 2.3

$$\begin{cases} 2x_1 + 6x_2 + 3x_3 + 2x_4 = 4\\ x_1 - 2x_2 + \frac{1}{2}x_3 + \frac{9}{4}x_4 = 1\\ -x_1 + x_2 - \frac{1}{2}x_3 - x_4 = \frac{2}{5} \end{cases}$$

Scritto come matrice aumentata diventa:

$$\begin{pmatrix} 2 & 6 & 3 & 2 & | & 4 \\ 1 & -2 & \frac{1}{2} & \frac{9}{4} & | & 1 \\ -1 & 1 & -\frac{1}{2} & -1 & | & \frac{2}{5} \end{pmatrix}$$

$$\frac{1}{2}R1$$

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | & 2 \\ 1 & -2 & \frac{1}{2} & \frac{9}{4} & | & 1 \\ -1 & 1 & -\frac{1}{2} & -1 & | & \frac{2}{5} \end{pmatrix}$$

$$R2 - R1 \quad R3 + R1$$

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | & 2 \\ 0 & -5 & -1 & \frac{5}{4} & | & -1 \\ 0 & 4 & 1 & 0 & | & \frac{12}{5} \end{pmatrix}$$

$$\frac{-1}{5}R2$$

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | & 2 \\ 0 & 1 & \frac{1}{5} & -\frac{1}{4} & | & \frac{1}{5} \\ 0 & 4 & 1 & 0 & | & \frac{12}{5} \end{pmatrix}$$

$$R3 - 4R2$$

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | & 2 \\ 0 & 1 & \frac{1}{5} & -\frac{1}{4} & | & \frac{1}{5} \\ 0 & 0 & \frac{1}{5} & 1 & | & \frac{4}{5} \end{pmatrix}$$

$$5R3$$

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | & 2 \\ 0 & 1 & \frac{1}{5} & -\frac{1}{4} & | & \frac{1}{5} \\ 0 & 0 & \frac{1}{5} & 1 & | & \frac{1}{5} \end{pmatrix}$$

Si ottiene il sistema lineare equivalente:

$$\begin{cases} x_1 + 3x_2 + \frac{3}{2}x_3 + x_4 = 2\\ x_2 + \frac{1}{5}x_3 - \frac{1}{4}x_4 = \frac{1}{5}\\ x_3 + 5x_4 = 8 \end{cases}$$

Assegiamo un parametro alla variabile libera x_4 :

$$t = x_4 \quad x_4 = t$$

$$x_3 = 8 - 5t$$

$$x_2 = \frac{1}{5} - \frac{1}{5}(8 - 5t) + \frac{1}{4}t = \frac{-7}{5} + t + \frac{1}{4}t = \frac{-7}{5} + \frac{5}{4}t$$

$$x_1 = 2 - 3(\frac{-7}{5} + \frac{5}{4}t)\frac{-3}{2}(8 - 5t) - t = 2 + \frac{21}{5} - 12 - \frac{15}{4}t - \frac{15}{2}t - t = \frac{10 + 21 - 60}{5} + \frac{15 + 30}{4}t - t = \frac{-29}{5} + \frac{15}{4}t - \frac{4}{4}t = \frac{-29}{5} + \frac{11}{4}t$$

Il sistema ha infinite soluzioni, una per ogni $t \in \mathbb{C}$.

2.4 Operazioni elementari

Attraverso le seguenti operazioni sulla matrice aumenta (A|b), si ottiene un sistema equivalente di forma più semplice:

• Moltiplicare una riga (R_i) per uno scalare $\alpha \in \mathbb{C}$ non nullo:

$$\alpha R_i$$

• Sommare una riga (R_i) con un multiplo di un'altra riga (R_i) :

$$R_i + \alpha R_j$$

• Scambiare riga R_i con riga R_j :

$$R_i \leftrightarrow R_i$$

Esempio 2.4

Prendiamo il seguente sistema lineare:

$$\begin{cases} 2x_1 + 6x_2 + 3x_3 = 4\\ x_1 - 2x_2 + \frac{1}{2}x_3 = 1\\ -x_1 + x_2 - \frac{7}{10}x_3 = \frac{2}{5} \end{cases}$$

Scritto come matrice aumentata diventa:

$$\begin{pmatrix} 2 & 6 & 3 & | & 4 \\ 1 & -2 & \frac{1}{2} & | & 1 \\ -1 & 1 & -\frac{7}{10} & | & \frac{2}{5} \end{pmatrix} \stackrel{\frac{1}{2}R1}{\sim} \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 1 & -2 & \frac{1}{2} & | & 1 \\ -1 & 1 & -\frac{7}{10} & | & \frac{2}{5} \end{pmatrix}$$

$$\stackrel{R2-R1}{\sim} \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & -5 & -1 & | & -1 \\ 0 & 4 & \frac{4}{5} & | & \frac{12}{5} \end{pmatrix} \stackrel{\frac{-1}{5}R2}{\sim} \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & 1 & \frac{1}{5} & | & \frac{1}{5} \\ 0 & 4 & \frac{4}{5} & | & \frac{12}{5} \end{pmatrix}$$

$$\stackrel{R3-4R2}{\sim} \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & 1 & \frac{1}{5} & | & \frac{1}{5} \\ 0 & 0 & 0 & | & \frac{8}{5} \end{pmatrix} \stackrel{\frac{5}{8}R3}{\sim} \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & 1 & \frac{1}{5} & | & \frac{1}{5} \\ 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Otteniamo un sistema lineare equivalente:

$$\begin{cases} x_1 + 3x_2 + \frac{3}{2}x_3 = 2\\ x_2 + \frac{1}{5}x_3 = \frac{1}{5}\\ 0 = 1 \end{cases}$$

Il sistema è impossibile, non ha soluzioni.

2.5 Linee in \mathbb{R}^2

2 equazioni a 2 incognite con coefficienti in \mathbb{R} :

$$\begin{cases} a_{11}x + a_{12}y = b_1 & (I) \\ a_{21}x + a_{22}y = b_2 & \end{cases}$$

$$a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2 \in \mathbb{R}$$

Questo sistema lineare può essere rappresentato come:

$$y = \frac{-a_{11}}{a_{12}}x + \frac{b_1}{a_{12}} \quad (I)$$

$$y = \frac{-a_{21}}{a_{22}}x + \frac{b_2}{a_{22}} \quad (II)$$

Il sistema può essere rappresentato come un sistema di rette nel piano cartesiano in cui la soluzione è l'intersezione delle rette.

Figura 8: Intersezione di due rette

Può anche succedere che le rette siano parallele, in questo caso il sistema è impossibile:

Figura 9: Retta parallela

Oppure che le rette siano coincidenti, in questo caso il sistema è indeterminato, cioè con infinite soluzioni:

Figura 10: Retta coincidente

2.6 Metodo di eliminazione di Gauss (EG)

Data una matrice $M=(a_{ij})$ $1 \leq i \leq m$ $1 \leq j \leq n$ in $M_{m \times n}(\mathbb{C})$ (oppure in $M_{m \times n}(\mathbb{R})$) con righe $R1, \ldots, Rn$, eseguiamo le seguenti opreazioni elementari:

1. Scegliamo la prima colonna non nulla j di M (partendo da sinistra). Dopo aver eventualmente scambiato 2 righe di M, otteniamo una matrice della forma:

$$\begin{pmatrix} 0 & \dots & 0 & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{mj} & \dots & a_{mn} \end{pmatrix} \quad \text{con } a_{ij} \neq 0$$

Moltiplicando R1 per $\frac{1}{a_{ij}}$, si ottiene:

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{mj} & a_{mj+1} & \dots & a_{mn} \end{pmatrix}$$

Adesso, per ogni $2 \le i \le m$, eseguiamo l'operazione elementare $Ri-a_{ij}R1$. Otteniamo una matrice della forma:

2. Ripetiamo il procedimento 1. su M' per ottenere:

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & \dots & \dots & \dots & * \\ \vdots & \ddots & \vdots & 0 & \dots & 0 & 1 & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & 0 & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & M'' & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

e così via...

3. Dopo un numero finito di passi, si ottiene una matrice che si chiama matrice a scala:

cioè esiste un numero $1 \le r \le m$ tale che:

- (a) Le righe $1 \le i \le r$ non sono nulle.
- (b) Ogni riga $2 \leq i \leq m$ ha un numero di zeri iniziali superiore alla riga precedente.
- (c) le righe $r+1 \le i \le m$ sono tutte nulle.

Inoltre il primo coefficiente non nullo di ogni riga i è uguale a 1 e si chiama **pivot**. La matrice è detta **forma ridotta** di M. Le colonne che contengono pivot sono dette **dominanti**.

Esempio 2.5

Prendiamo in considerazione la matrice:

2.7 Risoluzione di un sistema lineare

Dato un sistema lineare

$$(*)$$
 $Ax = b$

con $A \in M_{m \times n}(\mathbb{C})$, $b \in M_{m \times 1}(\mathbb{C})$ procediamo con il metodo di eliminazione di Gauss sulla matrice aumentata (A|b) fino ad ottenere la forma ridotta (U|c) e un sistema lineare corrispondente

$$Ux = c$$

che è equivalente a (*). Chiamiamo **variabili dominanti** le r variabili che corrispondono alle colonne dominanti e **variabili libere** le rimanenti.

Esempio 2.6

Prendiamo in considerazione il seguente sistema lineare:

$$\begin{cases} 10x_1 + 10x_2 + 30x_3 = 2\\ 5x_3 = 4\\ -x_1 - x_2 + 6x_3 = 7 \end{cases}$$

Scritto come matrice aumentata diventa:

$$\begin{pmatrix} 10 & 10 & 30 & 2 \\ 0 & 0 & 5 & 4 \\ -1 & -1 & 6 & 7 \end{pmatrix} \stackrel{EG}{\leadsto} \begin{pmatrix} 1 & 1 & 3 & \frac{1}{5} \\ 0 & 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $x_1 \ e \ x_3 \ sono \ variabili \ dominanti \ e \ x_2 \ è \ variabile \ libera.$

Si ha uno dei seguenti casi:

1) Tutte le colonne di (U|c) tranne c sono dominanti. In questo caso il sistema ha una soluzione unica. Ad esempio:

$$\begin{pmatrix}
1 & \frac{3}{4} & \frac{9}{4} \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

 ∞) L'ultima colonna e almeno una colonna di U non sono dominanti. In tal caso il sistema ha infinite soluzioni che si ottengono assegnando parametri alle n-r variabili libere. Ad esempio:

$$\begin{pmatrix}
1 & 3 & \frac{3}{2} & 1 & 2 \\
0 & 1 & \frac{1}{5} & -\frac{1}{4} & \frac{1}{5} \\
0 & 0 & 1 & 5 & 8
\end{pmatrix}$$

0) L'ultima colonna c è dominante. In questo tal caso il sistema non ammette soluzioni. Ad esempio:

$$\begin{pmatrix}
1 & 3 & \frac{3}{2} \\
0 & 1 & \frac{1}{5} \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
2 \\
\frac{1}{5} \\
0 \\
1
\end{pmatrix}$$

Attenzione: la forma ridotta di una matrice non è unicovamente determinata, ma le colonne dominanti sono univocamente determinate.

2.8 Definizione di rango di una matrice

Definizione 2.2

Sia $A \in M_{m \times n}(\mathbb{C})$ con forma ridotta U. Il numero r di righe non nulle, pari al numero di colonne dominanti, è detto **rango** di U e si indica con rk(U).

Verrà dimostrato più avanti che ogni forma ridotta di A ha lo stesso rango, quindi definiamo il rango di A come rk(A) = rk(U). Si ha $rk(A) \leq min(m, n)$.

2.9 Osservazione

Possiamo ricavare le condizioni [1], $[\infty]$, [0] usando il rango:

Teorema 3 (Teprema di Rouchè-Capelli) Sia $A\in M_{m\times n}(\mathbb{C}),\ sia\ b\in M_{m\times 1}((C)).$

[1]
$$\Leftrightarrow rk(A) = rk(A|b) = n$$

" $rk(U) = rk(U|c)$ "

$$[\infty] \Leftrightarrow rk(A) = rk(A|b) < n$$

 $"rk(U) = rk(U|c) < n"$

$$[0] \Leftrightarrow rk(A) < rk(A|b)$$
$$"rk(U) < rk(U|c)"$$

3 Matrici e le loro operazioni

3.1 Definizione di somma

Definizione 3.1

Siano $A=(a_{ij})$ $1 \leq i \leq m$, $1 \leq j \leq n$ e $B=(b_{ij})$ $1 \leq i \leq m$, $1 \leq j \leq n$ due matrici in $M_{m \times n}(\mathbb{C})$. La **somma** di A e B e la matrice

$$A + B(a_{ij} + b_{ij}) \quad 1 \le i \le m , \ 1 \le j \le n =$$

$$= \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

in $M_{m\times n}(\mathbb{C})$

Esempio 3.1

$$\begin{pmatrix} 1 & 0 & i \\ -3 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 2 & 4 & 1 \\ 2 & -i & 1+i \end{pmatrix} = \begin{pmatrix} 3 & 4 & 1+i \\ -1 & 1-i & 5+i \end{pmatrix}$$

3.1.1 Proprietà

L'addizione di matrici è:

• Associativa, cioè:

$$A + (B + C) = (A + B) + C$$

• Commutativa, cioè:

$$A+B=B+A$$

3.2 Definizione di prodotto per uno scalare

Definizione 3.2

Data una matrice $A = (a_{ij})_{1 \leq i \leq m}$, $1 \leq j \leq n \in M_{m \times n}(\mathbb{C})$ e $\alpha \in \mathbb{C}$, il **prodotto** della matrice A per lo scalare α è la matrice:

$$\alpha A = (\alpha a_{ij})_{1 \le i \le m, \ 1 \le j \le n} \in M_{m \times n}(\mathbb{C})$$

Esempio 3.2

$$\frac{1}{2} \begin{pmatrix} 2+i & 5\\ i & 1-2i \end{pmatrix} = \begin{pmatrix} 1+\frac{1}{2}i & \frac{5}{2}\\ \frac{1}{2}i & \frac{1}{2}-i \end{pmatrix}$$

3.2.1 Proprietà

Il prodotto di una matrice per uno scalare gode delle seguenti proprietà:

• Distributiva rispetto all'addizione, cioè:

$$\alpha(A+B) = \alpha A + \alpha B$$
$$(\alpha + \beta)A = \alpha A + \beta A$$

per $A, b \in M_{m \times n}(\mathbb{C})$, $\alpha, \beta \in \mathbb{C}$

3.3 Definizione di matrice trasposta

Definizione 3.3

Accanto a una matrice $A = (a_{ij}) \in M_{m \times n}(\mathbb{C})$, consideriamo la matrice A^T ottenuta da A scambiando le righe con le colonne, è detta **trasposta** di A.

Esempio 3.3

$$A = \begin{pmatrix} 1 & i & 7 \\ \pi & \frac{1}{12} & 0 \end{pmatrix} \quad A^T = \begin{pmatrix} 1 & \pi \\ i & \frac{1}{12} \\ 7 & 0 \end{pmatrix}$$

3.4 Definizione di prodotto di matrici

• Una matrice di dimensione $m \times 1$ è detta **vettore** (colonna) e si usa la notazione $v = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} \in M_{m \times 1}(\mathbb{C}).$

Una matrice di dimensione $1 \times n$ è detta **vettore riga** e si usa la notazione $v^T = (v_1 \dots v_n) \in M_{1 \times n}(\mathbb{C}).$

Sia
$$v^T = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}$$
 un vettore riga in $M_{1 \times n}(\mathbb{C})$ e $u = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ un vet-

tore colonna in $M_{n\times 1}(\mathbb{C})$. Il **prodotto** di v^T per u è il numero complesso: $v^Tu = v_1u_1 + v_2u_2 + \ldots + v_nu_n \in \mathbb{C}$

Esempio 3.4

$$v^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \quad u = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$v^T u = 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 3 = 1 + 0 + 9 = 10$$

• Possiamo vedere una matrice $A=(a_{ij})_{1\leq i\leq m}$, $1\leq j\leq n$ come m vettori riga $Ri=(a_{i1}\ldots a_{in})_{1\leq i\leq m}$ detti **righe di** A oppure n vettori colonna Cj=

$$\begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}_{1 \le j \le n}$$
 detti colonne di A .

Siano

$$A = (a_{ij})_{1 \le i \le m, 1 \le j \le n} \in M_{m \times n}(\mathbb{C})$$

$$B = (b_{ij})_{1 \le i \le s, \ 1 \le j \le t} \in M_{n \times t}(\mathbb{C})$$

Se n = s, allora possiamo formare il prodotto di A e B:

$$AB = (c_{ij})_{1 \le i \le m, 1 \le j \le t}$$

dove

$$c_{ij} = RiCj = \begin{pmatrix} a_{i1} & \dots & a_{in} \end{pmatrix} \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_{i1}b_{1j} + \dots + a_{in}b_{nj}$$

è il prodotto della riga i di A e la colonna j di B.

Esempio 3.5

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 5 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} R1C1 & R1C2 & R1C3 \\ R2C1 & R2C2 & R2C3 \end{pmatrix} =$$
$$= \begin{pmatrix} 4 & 12 & 22 \\ 4 & 9 & 21 \end{pmatrix}$$

3.4.1 Proprietà

Il prodotto di matrici gode delle seguenti proprietà:

• Associativa, cioè:

$$A(BC) = (AB)C$$

• Distributiva rispetto all'addizione, cioè:

$$(A+B)C = AC + BC$$

Con $A, B \in M_{m \times n}(\mathbb{C})$ e $C \in M_{n \times t}(\mathbb{C})$

$$A(B+C) = AB + AC$$

In sostanza le matrici devono avere il numero di colonne uguale al numero di righe.

• Scriviamo $I_n \in M_{m \times n}(\mathbb{C})$ per la matrice:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Questa matrice viene detta matrice identità.

Per ogni matrice $M \in M_{m \times n}(\mathbb{C})$, abbiamo che:

$$M \cdot I_m = I_m \cdot M = M$$

Esempio 3.6

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Esempio 3.7

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad M \cdot I_2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = M$$

• $(AB)^T = B^T A^T$ con

$$A \in M_{m \times n}(\mathbb{C}) \quad B \in M_{n \times t}(\mathbb{C})$$

$$A^T \in M_{n \times m}(\mathbb{C}) \quad B^T \in M_{t \times n}(\mathbb{C})$$

Esempio 3.8

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 13 \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad B^{T} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 4 & 5 \end{pmatrix}$$

$$(AB)^{T} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \\ 4 & 13 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \\ 4 & 13 \end{pmatrix}$$

• Il prodotto di matrici **non** è commutativo:

$$AB \neq BA$$

Infatti:

$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$$
$$BA = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

3.5 Osservazione

Siano
$$A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m \times n}(\mathbb{C}) \in b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in M_{m \times i}(\mathbb{C}), x = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m \times n}(\mathbb{C})$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. Consideriamo $Ax = b$ in forma matriciale. Abbiamo

$$Ax = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}}_{\in M_{m \times n}(\mathbb{C})} \underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}}_{\in M_{m \times 1}(\mathbb{C})} = \underbrace{\begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}}_{\in M_{m \times 1}(\mathbb{C})}$$

che è uguale a
$$b=\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix}$$

$$\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix}=\begin{pmatrix}a_{11}x_1+\ldots+a_{1n}x_n\\&\vdots\\a_{m1}x_1+\ldots+a_{mn}x_n\end{pmatrix}$$

$$\Leftrightarrow \begin{cases}a_{11}x_1+\ldots+a_{1n}x_n=b_1\\\vdots\\a_{m1}x_1+\ldots+a_{mn}x_n=b_m\end{cases}$$

$$\begin{cases} 2x_1 + 6x_2 = 4 \\ x_1 - 2x_2 = 1 \\ -x_1 + x_2 = \frac{2}{5} \end{cases}$$

$$A = \begin{pmatrix} 2 & 6 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ 1 \\ \frac{2}{5} \end{pmatrix}$$

$$Ax = \begin{pmatrix} 2 & 6 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + 6x_2 \\ x_1 - 2x_2 \\ -x_1 + x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ \frac{2}{5} \end{pmatrix}$$

3.6 Definizione

Una matrice $A = (a_{ij})_{1 \leq i,j \leq n} \in M_{n \times n}(\mathbb{C})$ di dimensione $n \times n$ si dice **matrice** quadrata di ordine n. Gli elementi di A: a_{ii} $1 \leq i \leq n$ formano la diagonale di A.

Esempio 3.10
$$\left(\begin{array}{ccc} 0 & -10 & i \\ 7 & 8 & 0 \\ 100 & \frac{1}{2} & -i \end{array} \right)$$

Se tutti gli elementi fuorri dalla diagonale sono nulli, la matrice è detta **matrice** diagonale.

Esempio 3.11

$$\left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 8 & 0 \ 0 & 0 & -i \end{array}
ight)$$

Se tutti i coefficienti al di sotto della diagonale sono nulli, allora la matrice è detta matrice triangolare superiore.

Esempio 3.12

$$\begin{pmatrix} 0 & -10 & i \\ 0 & 8 & 0 \\ 0 & 0 & -i \end{pmatrix}$$

$$\begin{pmatrix} 0 & -10 & i \\ 0 & 8 & 0 \\ 0 & 0 & -i \end{pmatrix}$$

Se tutti i coefficienti al di sopra della diagonale sono nulli, allora la matrice è detta matrice triangolare inferiore.

$$\begin{pmatrix} 0 & 0 & 0 \\ 7 & 8 & 0 \\ 100 & \frac{1}{2} & -i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 7 & 8 & 0 \\ 100 & \frac{1}{2} & -i \end{pmatrix}$$

3.7 Matrici elementari

Prendiamo la matrice identità:

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Applichiamo le operazioni elementari alla matrice identità I_n per ottenere le matrici elementari che denotiamo come segue:

 \bullet E_{ij} la matrice ottenuta da I_n scambiando la riga i con la riga j

Esempio 3.14

$$n = 3 I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• $E_i(\alpha)$ ottenuta da I_n moltiplicando la riga i per lo scalare $0 \neq \alpha \in \mathbb{C}$

Esempio 3.15

$$n = 3 \quad \alpha = i + 5 \in \mathbb{C}$$

$$E_3(i+5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix}$$

• $E_{ij}(\alpha)$ ottenuta da I_n sommando la riga i con la riga j moltiplicata per lo scalare $\alpha\in\mathbb{C}$

Esempio 3.16

$$n = 3 \quad \alpha = \frac{-5}{6} \in \mathbb{C}$$

$$E_{13} = \begin{pmatrix} 1 & 0 & \frac{-5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.8 Moltiplicazione con matrici elementari

Esempio 3.17
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix}$$

$$E_{23}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 5 \\ 0 & 3 \end{pmatrix}$$

$$E_{3}(i+5)A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -i-5 & 5(i+5) \end{pmatrix}$$

$$E_{13}A = \begin{pmatrix} 1 & 0 & \frac{-5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} \frac{11}{6} & \frac{-25}{6} \\ 0 & 3 \\ -1 & 5 \end{pmatrix}$$

Osserviamo che ogni operazione elementare su una matrice $A \in M_{m \times n}(\mathbb{C})$ corrisponde alla (pre)moltiplicazione di A con la matrice elementare ottenuta da I_m effettuando la medesima operazione elementare.

Definizioni utili 3.1

$$AE_{1}(-\pi) = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} -\pi & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\pi & 0 \\ 0 & 3 \\ \pi & 5 \end{pmatrix}$$

Esempio 3.18

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix} \stackrel{EG}{\leadsto}$$

$$\stackrel{R2-3R1}{\underset{E_{21}(-3)}{\longleftrightarrow}} \underbrace{\begin{pmatrix} 1 & -1 & 0 \\ 0 & 5 & 15 \end{pmatrix}}_{\equiv E_{21}A} \underbrace{\begin{pmatrix} \frac{1}{5}R^2 \\ \frac{1}{5} \end{pmatrix}}_{E_2(\frac{1}{5})} \underbrace{\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 3 \end{pmatrix}}_{\equiv E_2(\frac{1}{5})(E_{21}(-3)A)} = U$$

Otteniamo una matrice con 2 pivot e 2 colonne dominanti. Questa matrice viene chiamata **forma ridotta di** A . Quindi il calcolo può essere anche fatto in questo modo:

$$U = E_2 \begin{pmatrix} \frac{1}{5} \end{pmatrix} (E_{21}(-3)A) =$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix} =$$

$$= \underbrace{\begin{pmatrix} 1 & 0 \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix}}_{E} \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 \\ 3 & 2 & 15 & | & 0 & 1 \end{pmatrix} \xrightarrow{R2-3R1} \begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 \\ 0 & 5 & 15 & | & -3 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5}R2} \begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 \\ 0 & 1 & 3 & | & -\frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

A sinistra della barra abbiamo la matrice U e a destra la matrice E.

3.9 Definizione di matrice invertibile

Una matrice $A \in M_{n \times n}(\mathbb{C})$ si dice **invertibile** se esiste $C \in M_{n \times n}(\mathbb{C})$ tale che:

$$CA = I_n$$
 e $AC = I_n$

In tal caso, C è detta **inversa** di A. L'inversa di A, quando esiste, è univocamente determinata e si denota con A^{-1} . Infatti, se C e C' sono due matrici inverse di A, allora:

$$C = I_n C = (C'A)C = C'(AC) = C'I_n = C'$$

Esempio 3.19

$$A = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} \quad C = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix}$$

$$AC = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$CA = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow C = A^{-1}$$

Se $A, B \in M_{m \times n}(\mathbb{C})$ sono invertibili, allora lo è anche il loro prodotto AB. Infatti l'inversa di AB è $B^{-1}A^{-1}$. Infatti:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$
 oppure
$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = (B^{-1}I_n)B = B^{-1}B = I_n$$

3.10 Inverse di matrici elementari

Le matrici elementari sono tutte invertibili con inverse:

$$E_{ij}^{-1} = E_{ij}$$

Quindi $(AB)^{-1} = B^{-1}A^{-1}$.

$$E_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_i(\alpha)^{-1} = E_i(\frac{1}{\alpha})$$

Esempio 3.21

$$E_3(i+5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix}$$

$$E_3(\frac{1}{i+5})E_3(i+5) = I_3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{1+5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{ij}(\alpha)^{-1} = E_{ij}(-\alpha)$$

Esempio 3.22

$$E_{23}(-\frac{5}{6}) = \begin{pmatrix} 1 & 0 & \frac{-5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{23}(\frac{5}{6})E_{23}(-\frac{5}{6}) = I_3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{5}{6} \end{pmatrix} \begin{pmatrix} 1 & 0 & \frac{-5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.11 Proposizione

Sia Ax = b un sistema lineare in forma matriciale, cioè $A \in M_{m \times n}(\mathbb{C})$ e $b \in M_{m \times 1}(\mathbb{C})$. Se (U|c) è una forma ridotta della matrice aumentata (A|b), allora i sistemi lineari Ax = b e Ux = c hanno le stesse soluzioni, cioè sono equivalenti.

3.11.1 Dimostrazione

Siano E_1, \ldots, E_s le matrici elementari che trasformano (A|b) nella forma ridotta (U|c). Allora:

$$(A|b) \underset{E_1}{\sim} (A'|b') \underset{E_2}{\sim} \dots \underset{E_s}{\sim} (U|c)$$

Allora abbiamo:

$$(U|c) = E_s \dots \underbrace{E_1(A|b)}_{(A'|b')}$$

Per 3.10, le matrici elementari E_1, \ldots, E_s sono invertibili. Dunque anche il prodotto $E = E_s \ldots E_1$ è invertibile con $E^{-1} = E_1^{-1} \ldots E_s^{-1}$. Abbiamo che

E(A|b)=(U|c), ovvero EA=U e Eb=c. Pertanto, se $v\in M_{n\times 1}(\mathbb{C})$ è una soluzione di Ax=b, cioè Av=b, allora:

$$Uv = (EA)v = E(Av) = Eb = c$$

Quindi v è soluzione di Ux = c.

Se $v\in M_{a\times 1})\mathbb{C}$ è soluzione di Ux=c, cio
èUv=c, allora:

$$Av = \underbrace{(E^{-1}E)}_{I_m} Av = E^{-1}(EA)v = E^{-1}(Uv) = E^{-1}c =$$

$$= E^{-1}(Eb) = \underbrace{(E^{-1}E)}_{I_m} b = b$$

Quindi v è soluzione di Ax = b \square .

3.12 Proposizione

Sono equivalenti i seguenti enunciati per $A \in M_{m \times n}(\mathbb{C})$:

- 1. Il sistema lineare Ax = b ammette soluzione per qualsiasi $b \in M_{m \times 1}(\mathbb{C})$.
- 2. Il rango rk(A) di A è pari al numero di righe di A.

3.12.1 Dimostrazione

Dimostriamo che 1. implica 2. Supponiamo (1.)

Sia U una forma ridotta di A:

Queste righe esistono se e solo se rk(U) < numero di righe di U.

Esiste una matrice invertibile E tale che U = EA (E = prodotto delle matrici

elementari dell'Eliminaizone di Gauss). Consideriamo il vettore $C = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ e

mettiamo $b = E^{-1}C$. Allora il sistema lineare Ax = b ammette una soluzione v per (1.), cioè Av = b. Allora $Uv = Eb = E(E^{-1}C) = C$ per (3.11). Per il teorema di **Rouché-Capelli**, rk(U) = rk(U|c), cioè:

$$(U|c) = \begin{pmatrix} 1 & * & \dots & * & * & \dots & * & 0 \\ 0 & 0 & \dots & 0 & 1 & \dots & * & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ * & * & \dots & * & * & \dots & * & 1 \end{pmatrix}$$

L'ultima riga non può essere nulla, altrimenti l'ultima colonna di (U|c) sarebbe una colonna dominante.

Dunque rk(A) = rk(U) = numero di righe di U = numero di righe di A.

Dimostriamo che 2. implica 1. Supponiamo (2.)

Sia $b \in M_{m \times 1}(\mathbb{C})$ e consideriamo Ax = b. Eseguendo l'Eliminazione di Gauss sulla matrice (A|b), otteniamo una forma ridotta (U|c). Siccome rk(U) = numero di righe di U, ogni riga di U contiene un pivot. Perciò rk(U) = rk(U|c) e quindi rk(A) = rk(A|b). Quindi siamo nel caso di una soluzione unica, oppure nel caso di infinite soluzioni del teorema di **Rouché-Capelli**. \square

4 Matrici inverse e determinante

Esempio 4.1

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 11 & -1 \\ -4 & -10 & -2 \end{pmatrix}$$

Eseguiamo l'Eliminazione di Gauss e calcoliamo il prodotto delle matrici elementari contemporaneamente:

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 5 & 11 & -1 & 0 & 1 & 0 \\ -4 & -10 & -2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{21}(-5)}_{E_{31}4} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & -2 & -2 & 4 & 0 & 1 \end{pmatrix}$$

$$\overset{E_{32}(2)}{\leadsto} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & 0 & -4 & -6 & 2 & 1 \end{pmatrix} \overset{E_{3}(-\frac{1}{4})}{\leadsto} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

A sinistra della barra abbiamo la matrice ridotta U , a destra abbiamo il prodotto delle matrici elementari. Cioè:

$$E_3(-\frac{1}{4})E_{32}(2)E_{31}(4)E_{21}(-5)$$

Siccome rk(U) = 3, possiamo continuare per ottenere la matrice identità:

$$(U|E) \overset{E_{23}(1)}{\leadsto} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

$$\stackrel{E_{12}(-2)}{\leadsto} \begin{pmatrix} 1 & 0 & 0 & 8 & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

A sinistra della barra abbiamo la matrice identità, a destra abbiamo la matrice $E' = E_{12}(-2)E_{23}(1)E$. Allora:

$$I_3 = E_{12}(-2)E_{23}(1)U = E_{12}(-2)E_{23}(1)E \cdot A =$$

= $E'A$

Osserviamo che:

$$AE' = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 11 & -1 \\ -4 & -10 & -2 \end{pmatrix} \begin{pmatrix} 8 & -1 & \frac{1}{2} \\ -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Dunque $A^{-1} = E'$

4.1 Proposizione

Sia $A \in M_{n \times n}(\mathbb{C})$. Allora A è invertibile se e solo se esiste una sequenza di matrici elementari E_1, \ldots, E_t tale che $I_n = (E_t \ldots E_1 A)$.

4.1.1 Dimostrazione

Supponiamo che A sia invertibile. Per ogni $b \in M_{n \times 1}(\mathbb{C})$, il vettore $A^{-1}b =: v$ è soluzione del sistema lineare Ax = b. Infatti:

$$Av = b = A(A^{-1}b) = (AA^{-1})b = I_nb = b$$

Per (3.12), abbiamo che rk(A)=n. Esiste una forma ridotta U di A tale che rk(U)=n e

$$U = \begin{pmatrix} 1 & * & \dots & * & * \\ 0 & 1 & * & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

con 1 sulla diagnoale e matrici elementari E_1, \ldots, E_t tali che $U = E_t \ldots E_1 A$. Proseguendo come nell'esempio precedente, otteniamo le matrici elementari E_{t+1}, \ldots, E_s tali che:

$$I_n = E_s \dots E_{t+1}U = E_s \dots E_{t+1}E_t \dots E_1A$$

Ora supponiamo che esistano le matrici elementari E_1, \ldots, E_s tali che:

$$I_n = E_s \dots E_1 A$$

Per 3.10, le matrici elementari sono invertibili. Dunque:

$$E_i^{-1} \dots E_s^{-1} = E_i^{-1} \dots E_s^{-1} I_n = \underbrace{E_i^{-1} \dots E_s^{-1}}_{(E_s \dots E_1)^{-1}} \underbrace{E_s \dots E_1}_{I_n} A = A$$

A è un prodotto di matrici invertibili, quindi è invertibile con $A^{-1}=Es\dots E_1$ \square

4.2 Calcolo della matrice inversa

Data una matrice invertibile $A \in M_{m \times n}(\mathbb{C})$. Usiamo le operazioni elementari per trasformare A nella matrice identità, e eseguiamo le stesse operazioni elementari su I_n per ottenere A^{-1} :

$$(A|I_n) \stackrel{E_1}{\leadsto} (A'|E') \stackrel{E_2}{\leadsto} \dots \stackrel{E_s}{\leadsto} (I_n|A^{-1})$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 5 & 6 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{31}(-5)}_{R3-5R1} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & -4 & -15 & -5 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{E_{32}(4)}_{R3+4R2} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix} \xrightarrow{E_{23}(-4)}_{R2-4R3} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 20 & -15 & -4 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix}$$

A sinistra della barra abbiamo la matrice identità I_3 , a destra abbiamo la matrice inversa A^{-1}

4.3 Teorema delle matrici invertibili

Sono equivalenti i seguenti enunciati per $A \in M_{n \times n}(\mathbb{C})$:

- (a) A è invertibile.
- (b) Esiste una sequenza di matrici elementari E_1, \ldots, E_t tale che:

$$I_n = E_t \dots E_1 A$$

- (c) rk(a) = n
- (d) Il sistema lineare Ax = b ammette una soluzione per qualsiasi vettore $b \in M_{n \times 1}(\mathbb{C})$.
- (e) Il sistema lineare $Ax = \underbrace{o}_{\text{vettore nullo}}$ ha una sola soluzione, cioè:

$$x = 0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

(f) Esiste una matrice $C \in M_{n \times n}(\mathbb{C})$ tale che:

$$CA = I_n$$

(g) Esiste una matrice $D \in M_{n \times n}(\mathbb{C})$ tale che:

$$AD = I_n$$

4.3.1 Dimostrazione

$$(b)$$

$$\downarrow \bigvee (4.2)$$

$$(g) \iff (a) \implies (f)$$

$$dim (4.1) \downarrow dim (4.1) \uparrow \qquad \qquad \downarrow \bigvee$$

$$(d)_{\overrightarrow{dim} (3.12)} (c) \iff (e)$$

Figura 11: Diagramma delle implicazioni

 $(f) \Rightarrow (e)$ Supponiamo che $\exists C \in M_{n \times n}(\mathbb{C})$ tale che $CA = I_n$. Sia $v \in M_{n \times 1}(\mathbb{C})$ una soluzione del sistema Ax = 0. Allora:

$$v = I_n v = (CA)v = C(Av) = Co = 0$$

Ad esempio:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Definizioni utili 4.1

Sia D la matrice inversa destra:

$$D = I_n D = (CA)D = C(AD) = CI_n = C$$

Osserviamo che D=C. Quindi:

$$C = D = A^{-1}$$

4.4 Proposizione (Determinante di una matrice)

Sia $A \in M_{2\times 2}(\mathbb{C})$ tale che:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Se $ad-bc\neq 0$, allora A è invertibile e $A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d & -b\\ -c & a \end{pmatrix}$ Se ad-bc=0, allora A non è invertibile.

ad - bc è detto **determinante** di A e si indica con det(A).

4.4.1 Dimostrazione

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{pmatrix} =$$

$$= \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} =$$

$$= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

Quindi A è invertibile e $A^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Se ad - bc = 0, allora:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d \\ -c \end{pmatrix} = \begin{pmatrix} ad - bc \\ cd - cd \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Quindi $\begin{pmatrix} d \\ -c \end{pmatrix}$ è soluzione al sistema Ax=0. Se $\begin{pmatrix} d \\ -c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, allora A non è invertibile per (4.3(e)).

Se
$$\begin{pmatrix} d \\ -c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, allora $d=c=0$ e:

$$A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

che ha rango < 2, quindi A non è invertibile per (4.3(c)).

4.5 Definizione di determinante

Definizione 4.1

Definiamo una funzione det : $M_{n\times n}(\mathbb{C}) \to \mathbb{C}$ detta **determinante** per

• n = 1:

$$A = (a) \quad \det(A) = a$$

•
$$n = 2$$
 (4.3):
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \det(A) = ad - bc$$

$$A = (A_{ij})_{1 \le j \le n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j})$$

dove A_{1j} è la matrice ottenuta da A cancellando la prima riga e la $colonna\ j.$

$$\det \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} = (-1)^{1+1} \cdot 1 \cdot \det \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} +$$

$$(-1)^{1+2} \cdot 2 \cdot \det \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} +$$

$$(-1)^{1+3} \cdot 3 \cdot \det \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} =$$

$$= 1(-2-1) - 2(-3-0) + 3(3-0) = -3 + 6 + 9 = 12$$

4.6 Regola di Sarrus

Definizione 4.2

Per una matrice di dimensione 3×3 si può usare la regola di Sarrus:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{31} & a_{32} \end{pmatrix}$$

 $\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$

Per la regola di Sarrus:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\det(A) = 1 \cdot 1 \cdot 0 + 2 \cdot 3 \cdot 1 + 3 \cdot 0 \cdot 2$$

$$-3\cdot 1\cdot 1 - 2\cdot 0\cdot 1 - 1\cdot 3\cdot 2 = -3$$

$$=6-3-6=-3$$

4.7 Teorema di Laplace

Definizione 4.3

Il determinante di una matrice $A = (a_{ij})$ può essere sviluppato per qualsiasi riga o colonna come segue:

• Sviluppo per la riga i

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

dove A_{ij} è la matrice ottenuta da A cancellando la riga i e la colonna j.

• Sviluppo per la colonna j

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

dove A_{ij} è la matrice ottenuta da A cancellando la riga i e la colonna j.

Il valore $(-1)^{i+j} \det(A_{ij})$ è detto **complemento algebrico** di a_{ij} . Il segno si determina secondo:

$$\begin{pmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$A = \begin{pmatrix} 1^+ & 2^- & 3^+ \\ 0^- & 1^+ & 3^- \\ 1^+ & 2^- & 0^+ \end{pmatrix}$$

• Riga 3:

$$\det(A) = 1 \cdot \det \begin{pmatrix} \cancel{1} & 2 & 3 \\ \cancel{\emptyset} & 1 & 3 \\ \cancel{1} & \cancel{2} & \cancel{\emptyset} \end{pmatrix}$$
$$-2 \cdot \det \begin{pmatrix} 0 & \cancel{1} & 3 \\ 1 & \cancel{1} & 3 \\ \cancel{1} & \cancel{2} & \cancel{\emptyset} \end{pmatrix}$$
$$= (6-3) - 2(3-0) = 3-6 = -3$$

• Colonna 3:

$$\det(A) = 3 \cdot \det \begin{pmatrix} \cancel{1} & \cancel{2} & \cancel{3} \\ 0 & 1 & \cancel{3} \\ 1 & 2 & \cancel{\emptyset} \end{pmatrix}$$
$$-3 \cdot \det \begin{pmatrix} 1 & 2 & \cancel{3} \\ \cancel{\emptyset} & \cancel{1} & \cancel{3} \\ 1 & 2 & \cancel{\emptyset} \end{pmatrix}$$
$$= 3(1-6) - 3(1-6) = -15 + 15 = 0$$

4.8 Determinante e trasposta

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
$$\det(A) = ad - bc \quad \det(A^T) = ad - cb$$
$$\downarrow \qquad \qquad \qquad \det(A) = \det(A^T)$$

Esempio 4.7 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad \det(A) = -3$ $A^{T} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$ $\det(A) \stackrel{R1}{=} 1 \cdot \det\left(\frac{1}{2} \cdot \frac{3}{0}\right) - 2 \cdot \det\left(\frac{0}{1} \cdot \frac{3}{0}\right) + 3 \cdot \det\left(\frac{0}{1} \cdot \frac{1}{2}\right) = -3$ $\det(A^{T}) \stackrel{C1}{=} 1 \cdot \det\left(\frac{1}{3} \cdot \frac{2}{0}\right) - 2 \cdot \det\left(\frac{0}{3} \cdot \frac{1}{0}\right) + 3 \cdot \det\left(\frac{0}{1} \cdot \frac{1}{2}\right) = -3$

Se
$$A = (a_{ij})_{1 \leq i,j \leq n} \in M_{n \times n}(\mathbb{C})$$
, allora:

$$\det(A) = \det(A^T)$$

4.9 Il principio di induzione

Il principio di induzione serve a dimostrare che per ogni $n \geq 1$ vale una proprietà P(n). Nel nostro caso che ogni matrice A di dimensione $n \times n$, $\det(A) = \det(A^T)$. Si procede in due passi:

• Base dell'induzione:

P(n) è vera per n=1, ovvero P(1) è vera.

• Passo induttivo:

Supponendo che p(n) sia vera; ne consegue che p(n+1) è vera.

Allora p(n) è vera per tutti gli $n \in \mathbb{N}$.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

Sviluppo per la riga 4:

$$\det(A) = 10 \cdot \det \begin{pmatrix} 1 & 2 & 3 & \cancel{4} \\ 0 & 5 & 6 & \cancel{7} \\ 0 & 0 & 8 & \cancel{9} \\ \cancel{\emptyset} & \cancel{\emptyset} & \cancel{\emptyset} & \cancel{10} \end{pmatrix}$$

Si utilizza di nuovo il teorema di Laplace per la matrice 3×3 ottenuta:

$$\stackrel{R3}{=} 10 \left(8 \cdot \det \begin{pmatrix} 1 & 2 \\ 0 & 5 \end{pmatrix} = 10 \cdot 8 \cdot (1 \cdot 5 - 0 \cdot 2) = 10 \cdot 8 \cdot 5 \cdot 1 = 400 \right)$$

4.10 Proposizione

Sia $A=(a_{ij})_{1\leq i,j\leq n}\in M_{n\times n}(\mathbb{C})$ una matrice triangolare superiore o inferiore. Allora:

$$\det(A) = a_{11}a_{22}\dots a_{nn}$$

Dimostrazione (superiore):

Per induzione su n:

- Proprietà P(n): Per $A \in M_{n \times n}(\mathbb{C})$, $\det(A) = a_{11} \dots a_{nn}$
- Base dell'induzione:

$$A = (a_{11}) \in M_{1 \times 1}(\mathbb{C})$$

 $\det(A) = a_{11}$ Per definizione

• Passo induttivo:

Supponiamo P(n)

$$A = (a_{ij}) \in M_{n+1 \times n+1}(\mathbb{C})$$

$$\det(A) \stackrel{Rn+1}{=} a_{n+1n+1} \cdot \underbrace{\det(A_{n+1n+1})}_{\text{mat. triang. sup. di dim. } n \times n} = a_{n+1n+1}(a_{nn} \dots a_{11})$$

Quindi P(n+1) è vera.

Per il principio di induzione, abbiamo dimostrato che P(n) vale per ogni $n \in \mathbb{N}$. La dimostrazione per A triangolare inferiore è simile. \square

$$U = \begin{pmatrix} 1 & 8 & 0 & i \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 5 - i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

La matrice è una matrice ridotta, cioè una matrice triangolare superiore con 1 sulla diagonale.

$$\det(U) = 1$$

$$U' = \begin{pmatrix} 1 & 8 & 0 & i \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\det(U') = 0$$

Esempio 4.10

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad \det(A) = -3$$

•

$$\det(E_{23}A) = \det\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\stackrel{C1}{=} 1 \cdot \det\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix}$$

$$= (6 - 0) - (6 - 3) = 6 - 6 + 3 = 3 = -\det(A)$$

•

$$\det(E_2(2)A) = \det\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 6 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\stackrel{C_2}{=} 1 \cdot \det\begin{pmatrix} 2 & 6 \\ 2 & 0 \end{pmatrix} + 1 \cdot \det\begin{pmatrix} 2 & 3 \\ 2 & 6 \end{pmatrix}$$

$$= -12 + 6 = -6 = 2 \det(A)$$

•

$$\det(E_{13}(2)A) = \det\begin{pmatrix} 3 & 6 & 3\\ 0 & 1 & 3\\ 1 & 2 & 0 \end{pmatrix}$$

$$\stackrel{C1}{=} 3 \cdot \det \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} + 1 \cdot \det \begin{pmatrix} 6 & 3 \\ 1 & 3 \end{pmatrix}$$
$$= 3(-6) + 1(18 - 3) = -3 = \det(A)$$

4.11 Teorema

Siano $A \in M_{n \times n}(\mathbb{C}), \ 1 \leq i, j \leq n, \ 0 \neq \alpha \in \mathbb{C}$. Allora:

$$\det(EA) = \begin{cases} -\det(A) & \text{se } E = E_{ij} \\ \alpha \det(A) & \text{se } E = E_i(\alpha) \\ \det(A) & \text{se } E = E_{ij}(\alpha) \end{cases}$$

Dimostrazione (n=2):

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$$
$$\det(A) = ad - bc$$

 $\det(E_{12}A) = \det\begin{pmatrix} c & d\\ a & b \end{pmatrix} = cb - ad = -\det(A)$

$$\det(E_{12}A) = \det(E_{21}A)$$

 $\det(E_1(\alpha)A) = \det\begin{pmatrix} \alpha a & \alpha b \\ c & d \end{pmatrix} = \alpha ad - \alpha bc = \alpha(ad - bc) = \alpha \det(A)$

 $\det(E_2(\alpha)A) = \det\begin{pmatrix} a & b \\ \alpha c & \alpha d \end{pmatrix} = a(\alpha d) - b(\alpha c) = \alpha(ad - bc) = \alpha \det(A)$

$$\det(E_{21}(\alpha)A) = \det\begin{pmatrix} a & b \\ c + \alpha a & d + \alpha b \end{pmatrix} = a(d + \alpha b) - b(c + \alpha a) =$$

$$ad + \alpha ab - bc - \alpha ab = ad - bc = \det(A)$$

 $\det(E_{12}(\alpha)A) = \det\begin{pmatrix} a + \alpha c & b + \alpha d \\ c & d \end{pmatrix} = (a + \alpha c)d - (b + \alpha d)c =$ $ad + \alpha cd - bc - \alpha cd = ad - bc = \det(A)$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$

Troviamo la forma ridotta della matrice:

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \xrightarrow{E_{31}(-1)} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & -3 \end{pmatrix} \xrightarrow{E_{3}(-\frac{1}{3})} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = U$$
$$\det(U) = 1$$
$$U = E_{3}(-\frac{1}{3})E_{31}(-1)A$$

$$A = E_{31}(-1)^{-1}E_3(-\frac{1}{3})^{-1}U = E_{31}(1)E_3(-3)U$$
$$\det(A) = \det(E_{31}(1)E_3(-3)U) =$$
$$\det(E_3(-3)U) = -3\det(U) = -3$$

4.12 Corollario

Se $A \in M_{n \times n}$, allora $\det(A) \neq 0$ se e solo se A è invertibile.

Dimostrazione:

Sia U una forma ridotta di A:

$$\det(A) \neq 0 \underset{4.3}{\Leftrightarrow} \det(U) \neq 0 \underset{4.10}{\Leftrightarrow} rk(U) = n \underset{4.3}{\Leftrightarrow} A$$
è invertibile

4.13 Corollario

Siano $A, B \in M_{n \times n}(\mathbb{C})$. Allora $\det(AB) = \det(A) \det(B)$

Dimostrazione:

• Caso 1:

A non è invertibile, ovvero det(A) = 0. Se AB è invertibile, allora

$$A(B(AB)^{-1}) = AB(AB)^{-1} = I_n \text{ e } B(AB)^{-1}$$

sarebbe l'inversa di A. Quindi AB non è invertibile. Allora $\det(AB)=0=\det(A)\det(B)$

• Caso 2:

A è invertibile. Per (4.1), esiste una sequenza E_1,\dots,E_t di matrici elementari tali che:

$$E_t \dots E_1 A = I_n$$

Siccome E_1, \ldots, E_t sono invertibili, possiamo considerare:

$$A = (E_1^{-1} \dots E_t^{-1}) E_t \dots E_1 A = E_1^{-1} \dots E_t^{-1} I_n = E_1^{-1} \dots E_t^{-1}$$

Dunque:

$$\begin{split} \det(AB) &= \det(E_1^{-1} \dots E_t^{-1} B) \\ &\stackrel{teo}{=} \det(E_1^{-1}) \dots \det(E_t^{-1}) \det(B) \\ &\stackrel{teo}{=} \det(E_1^{-1} \dots \det(E_t^{-1}) \det(B) \\ &= \det(A) \det(B) \end{split}$$

4.14 Formula per A^{-1}

Se $det(A) \neq 0$ allora:

$$A^{-1} = \frac{1}{\det(A)}A^*$$

dove A^* è la matrice i cui coefficienti sono i complementi algebrici di A^T e $\det(A^{-1})=\frac{1}{\det(A)}$

Esempio 4.12
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad A^{T} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$$

$$A^{*} = \begin{pmatrix} \det\begin{pmatrix} 1 & \emptyset & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det\begin{pmatrix} 1 & \emptyset & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & \det\begin{pmatrix} 1 & \emptyset & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$$

$$A^{*} = \begin{pmatrix} \det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & \det\begin{pmatrix} 1 & \emptyset & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$$

$$A^{-1} = \frac{1}{-3}\begin{pmatrix} -6 & 6 & 3 \\ 3 & -3 & -3 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -1 \\ -1 & 1 & 1 \\ \frac{1}{3} & 0 & -\frac{1}{3} \end{pmatrix}$$

$$\det(A^{-1}) = -\frac{1}{3}$$

4.15 Teorema di Cramer

Sia $A \in M_{n \times n}(\mathbb{C})$ con $\det(A) \neq 0$, sia $b \in M_{n \times n}(\mathbb{C})$. Allora il sistema lineare Ax = b possiede l'unica soluzione $p = \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}$ dove

$$p_i = \frac{\det(A_i)}{\det(A)}$$

e A_i è la matrice ottenuta da A sostituendo la colonna i con il vettore b.

Esempio 4.13
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\det(A) = -3 \quad b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} +1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 2 & 0 \end{pmatrix} \quad \det(A_1) = 1 \cdot \det\begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} = -6$$

$$A_2 = \begin{pmatrix} +1 & -1 & 3 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix} \quad \det(A_2) = -1 \cdot \det\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = 3$$

$$A_3 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix} \quad \det(A_3) = 2 \cdot \det\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = -1$$

$$p_1 = \frac{\det(A_1)}{\det(A)} = \frac{-6}{-3} = 2$$

Dunque $p = \begin{pmatrix} 2 \\ -1 \\ \frac{1}{2} \end{pmatrix}$ è l'unica soluzione del sistema lineare Ax = b

 $p_2 = \frac{\det(A_2)}{\det(A)} = \frac{3}{-3} = -1$

 $p_3 = \frac{\det(A_3)}{\det(A)} = \frac{-1}{-3} = \frac{1}{3}$

5 Spazi vettoriali e sottospazi

Esempio 5.1

Prendiamo in considerazione il piano cartesiano: \mathbb{R}^2

Ogni punto nel piano cartesiano può essere rappresentato con una coppia di valori (a,b). Possiamo identificare \mathbb{R}^2 con l'insieme

$$M_{2\times 1}(\mathbb{R}) = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Possiamo:

• Sommare i vettori:

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a+a' \\ b+b' \end{pmatrix}$$

• Moltiplicare per uno scalare $\alpha \in \mathbb{R}$

$$\alpha \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha a \\ \alpha b \end{pmatrix}$$

5.1 Definizione di spazio vettoriale

Definizione 5.1

 $Sia \mathbb{K} = \mathbb{R}$ oppure $\mathbb{K} = \mathbb{C}$. Uno **spazio vettoriale** su \mathbb{K} è un insieme non vuoto V i cui elementi sono detti **vettori** sul quale sono definite due operazioni:

1. Addizione: per $v, w \in V$ abbiamo:

$$v + w \in V$$

2. Moltiplicazione per uno scalare: per $\alpha \in \mathbb{K}$, $v \in V$ abbiamo:

$$\alpha v \in V$$

che godono delle seguenti proprietà:

- 1. Valgono le proprietà:
 - (a) Associatività:

$$(v+u) + w = v + (u+w)$$

 $per\ ogni\ v,u,w\in V$

(b) **Elemento neutro**: esiste $0_v \in V$ tale che:

$$v + 0_v = v = 0_v + v$$

 $per\ ogni\ v\in V$

(c) **Elemento inverso**: per ogni $v \in V$ esiste $w \in V$ tale che:

$$v + w = 0_v = w + v$$

 $Scriviamo \ w = -v$

(d) Commutatività:

$$v + w = w + v$$

 $per\ ogni\ v,w\in V$

2. Per ogni $v \in V$:

$$1 \cdot v = v$$

3. Per ogni $v \in V$ e $a, b \in \mathbb{K}$

$$(\alpha\beta)v = \alpha(\beta v)$$

4. Per ogni $v, w \in V$ e $\alpha \in \mathbb{K}$ valgono le seguenti **leggi distributive**:

$$\alpha(v+w) = \alpha v + \alpha w$$

$$(\alpha + \beta)v = \alpha v + \beta v$$

5.1.1 Esempi

1. $V = M_{m \times n}(\mathbb{K})$ è uno spazio vettoriale su \mathbb{K} con addizione di matrici e moltiplicazione per scalari usuale.

$$0_v = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

In particolare scriviamo:

$$\mathbb{K}^m := M_{m \times 1}(\mathbb{K})$$

$$0_{\mathbb{K}^m} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \mathbb{O}$$

2. $\mathbb{K}[x]$ l'insieme dei polinomi a coefficienti in \mathbb{K} .

$$f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$q = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

$$f + g = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$
$$\alpha f = (\alpha a_0) + (\alpha a_1)x + \dots + (\alpha a_n)x^n$$

 $\bullet~\mathbb{K}[x]$ è uno spazio vettoriale. L'elemento neutro è:

$$0_{\mathbb{K}[x]} = 0 + 0x + 0x^2 + \ldots + 0x^n$$

- $\mathbb{K}[x]$ è l'insieme di polinomi di grado $\leq n$ a coefficienti in \mathbb{K} . È uno spazio vettoriale
- 3. Le successioni sono delle liste di numeri $(a_n)_{n\in\mathbb{N}}\in\mathbb{K}$. Ad esempio:

$$(1,-1,2,3,6,i,\ldots) \in \mathbb{C}$$

formano uno spazio vettoriale S su K:

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = (a_n + b_n)_{n\in\mathbb{N}}$$

Ad esempio:

$$(1,-1,2,3,6,i,\ldots)+(1,0,1,0,1,0,\ldots)=(2,-1,3,3,7,i,\ldots)$$

La molitplicazione per uno scalare è:

$$\alpha(a_n)_{n\in\mathbb{N}} = (\alpha a_n)_{n\in\mathbb{N}}$$

Ad esempio:

$$2(1,-1,2,3,6,i,\ldots) = (2,-2,4,6,12,2i,\ldots)$$

L'insieme di successioni che soddisfano la relazione:

$$a_{k+2} - 5a_{k+1} + 3a_k = 0 \quad \forall k \in \mathbb{N}$$

Ad esempio:

$$(1,0,-3,-15,-66,\ldots)$$

è uno spazio vettoriale. L'elemento neutro è:

$$0_{\mathcal{S}} = (0, 0, 0, 0, 0, \dots)$$

4. L'insieme di funzioni $f: \mathbb{R} \to \mathbb{R}$ è uno spazio vettoriale:

$$f, g \in \mathbb{R}^{\mathbb{R}}$$

 $f + g : \mathbb{R} \to \mathbb{R}$
 $(f + g)(x) = f(x) + g(x)$

$$\alpha \in \mathbb{R},$$
 $\alpha f : \mathbb{R} \to \mathbb{R}$
 $(\alpha f)(x) = \alpha f(x)$

 $0_{\mathbb{R}^{\mathbb{R}}}$ è la funzione: $0_{\mathbb{R}^{\mathbb{R}}}(x) = 0$

5. $V = \{0_v\}$ è uno spazio vettoriale. Scriviamo $V = \{0\}$.

5.2 Osservazioni

Sia V uno spazio vettoriale. Sia $v \in V, \ \alpha \in \mathbb{K}$

a. $\alpha 0_v = 0_v$, infatti:

$$\alpha 0_v = \alpha (0_v + 0_v) = \alpha 0_v + \alpha 0_v$$

Sommando $-\alpha 0_v$ ad entrambi i membri otteniamo:

$$\alpha 0_v + (-\alpha 0_v) = (\alpha 0_v + \alpha 0_v) + (-\alpha 0_v)$$
$$0_v = \alpha 0_v + (\alpha 0_v - \alpha 0_v)$$
$$0_v = \alpha 0_v + 0_v$$
$$0_v = \alpha 0_v$$

b. $0 \cdot v = 0_v$

$$v = 1 \cdot v = (1+0)v = 1 \cdot v + 0 \cdot v = v + 0 \cdot v$$

Sommando -v ad entrambi i membri otteniamo:

$$v + (-v) = v + 0 \cdot v + (-v)$$
$$0_v = 0 \cdot v + (v + (-v))$$
$$0_v = 0 \cdot v + 0_v$$
$$0_v = 0 \cdot v$$

c. Se
$$\alpha v = 0_v$$
, allora $\alpha = 0$ oppure $v = 0_v$

$$\alpha v = 0_v$$

$$\alpha v = \alpha 0_v$$

$$\alpha v = \alpha (v - v)$$

$$\alpha v = \alpha v - \alpha v$$

$$0_v = 0_v$$

d.
$$(-\alpha)v = -(\alpha v) = \alpha(-v)$$

5.3 Definizione combinazione lineare

Sia V uno spazio vettoriale su \mathbb{K} e siano $v_1, \ldots, v_n \in V, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$. Il vettore:

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$

è detto **combinazione lineare** di v_1, \ldots, v_n con coefficienti $\alpha_1, \ldots, \alpha_n$.

Esempio 5.2

Il vettore

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{C}^3$$

è combinazione lineare di:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

con coefficienti 1, 2, 3 rispettivamente. Infatti:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Un'altra combinazione lineare è:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - i \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Esempio 5.3

 $Il\ polinomio$

$$f = 2x^2 + 4x + 3 \in \mathbb{R}[x]$$

 $\grave{e}\ combinazione\ lineare\ di:$

$$g_1 = x^2 + 2x$$
, $g_2 = x - 1$, $g_3 = \frac{1}{2}x - 1$

Infatti:

$$2g_1 + 3g_2 + (-6)g_3 = 2(x^2 + 2x) + 3(x - 1) - 6\left(\frac{1}{2}x - 1\right) = 2x^2 + 4x + 3 = f$$

5.4 Definizione di insieme di generatori

Sia V uno spazio vettoriale e siano $v_1,\ldots,v_n\in V$. Se ogni $v\in V$ è combinazione lineare di v_1,\ldots,v_n si dice che $\{v_1,\ldots,v_n\}$ è un **insieme di generatori** e V è detto **finitamente generato**.

5.4.1 Esempi

Esempio 5.4

$$\left\{e_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$$

è un insieme di generatori di $\mathbb{K}^3 = M_{3\times 1}(\mathbb{K})$ (per $\mathbb{K} = \mathbb{R}$ e $\mathbb{K} = \mathbb{C}$).

Infatti, se
$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{K}^3$$
, allora:

$$v = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Scrivendo:

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

con 1 nella i-esima posizione, otteniamo l'insime di generatori di \mathbb{K}^n : $\{e_1,\ldots,e_n\}$ Dunque \mathbb{K}^n è finitamente generato.

Esempio 5.5

$$\left\{ \begin{pmatrix} 1\\3 \end{pmatrix}, \, \begin{pmatrix} 1\\1 \end{pmatrix}, \, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

è un insieme di generatori di \mathbb{R}^2 . Infatti, se $v=\begin{pmatrix} v_1\\v_2\end{pmatrix}\in\mathbb{R}^2$ allora

$$v = (v_1, -v_2) \begin{pmatrix} 1 \\ 3 \end{pmatrix} + v_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3(v_2 - v_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} (v_1 - v_2) + v_2 \\ 3(v_1 - v_2) + v_2 + 3(v_2 - v_1) \end{pmatrix}$$

 $I\ coefficienti\ della\ combinazione\ lineare\ non\ sono\ univocamente\ determinati:$

$$\binom{2}{3} = -1 \binom{1}{3} + 3 \binom{1}{1} + 3 \binom{0}{1}$$

$$=0\begin{pmatrix}1\\3\end{pmatrix}+2\begin{pmatrix}1\\1\end{pmatrix}+1\begin{pmatrix}0\\1\end{pmatrix}$$

Esempio 5.6

Le successioni:

$$u_1 = (1, 0, -3, -15, -66, \ldots)$$

$$u_2 = (0, 1, 5, 22, 95, \ldots)$$

formano un insieme di generatori di S'. Infatti, se:

$$(a_n)_{n\in\mathbb{N}} = (a, b, 5b - 3a, 5(5b - 3a) - 3b, \ldots) \in \mathcal{S}'$$

allora

$$(a_n)_{n\in\mathbb{N}} = au_1 + bu_2$$

Esempio 5.7

Gli spazi vettoriali S, $\mathbb{K}[X]$, $\mathbb{R}^{\mathbb{R}}$ (successioni, polinomi, funzioni) **non** sono finitamente generati.

5.5 Definizione di sottospazio

Sia V uno spazio vettoriale su \mathbb{K} . Un sottoinsieme $\emptyset \neq U \subseteq V$ è detto sottospazio di V se soddisfa le proprietà:

1. per ogni $u, u' \in U$:

$$u + u' \in U$$

2. per ogni $u\in U,\,\alpha\in\mathbb{K}$:

$$\alpha u \in U$$

Osservazione:

In tal caso U è uno spazio vettoriale rispetto alle stesse operazioni +, \cdot di V.

5.5.1 Esempi

Esempio 5.8

$$\mathbb{K}_n[x] \subseteq \mathbb{K}[x]$$
 sottospazi

 $\mathcal{S}' \subseteq \mathcal{S}$ sottospazi

Esempio 5.9

 $\it Il\ sottoinsieme$

$$u = \left\{ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2 \middle| v_2 = mv_1 \right\}$$

è un sottospazio di \mathbb{R}^2 per qualsiasi $m \in \mathbb{R}$. Infatti:

1.

$$\begin{pmatrix} v \\ mv \end{pmatrix} + \begin{pmatrix} u \\ mu \end{pmatrix} = \begin{pmatrix} v+u \\ mv+mu \end{pmatrix}$$

2.

$$\alpha \begin{pmatrix} v \\ mv \end{pmatrix} = \begin{pmatrix} \alpha v \\ \alpha mv \end{pmatrix} = \begin{pmatrix} \alpha v \\ m(\alpha v) \end{pmatrix} \in U$$

Il sottoinsieme $\mathcal{L} = \left\{ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R} \middle| v_2 = mv_1 + c \right\}$ non è un sottospazio se $c \neq 0$.

Infatti:

$$\begin{pmatrix} v \\ mv + c \end{pmatrix} + \begin{pmatrix} u \\ mu + c \end{pmatrix} = \begin{pmatrix} v + u \\ mv + mu + 2c \end{pmatrix} \notin U$$

$$mv + mu + 2c \neq m(v + u) + c$$

Esempio 5.10

 $O = \{\hat{0}_v\} \subseteq V$ è un sottospazio per ogni spazio vettoriale V. Infatti

1.
$$0_v + 0_v = 0_v \in O$$

$$2. \ \alpha 0_v = 0_v \in O$$

Ogni sottospazio U di V contiene 0_v . infatti $\forall u \in U$ abbiamo che $(-1)u = -u \in U$. Quindi $0_v = u + (-u) \in U$

Esempio 5.11

 $\it Il\ sottoinsieme$

$$T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in M_{2 \times 2}(\mathbb{C}) \middle| a, b, c \in \mathbb{C} \right\}$$

è un sottospazio di $M_{2\times 2}(\mathbb{C})$. Infatti

1.

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} + \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} a+d & b+e \\ 0 & c+f \end{pmatrix} \in T$$

2.

$$\alpha \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ 0 & \alpha c \end{pmatrix} \in T$$

Esempio 5.12

$$polinomi\ di\ grado \leq n \qquad polinomi$$
 $\mathbb{K}_n[x] \qquad \subseteq \qquad \mathbb{K}[x]$
 $\mathcal{S}' \qquad \subseteq \qquad \mathcal{S}$
successioni che soddisfano una relazione \qquad succession

 $sono\ sottospazi$

5.6 Definizione di sottospazio generato

Definizione 5.2

Dati $v_1, \ldots, v_n \in V$, l'insieme

$$\langle v_1, \dots, v_n \rangle = \{\alpha_1 v_1 + \dots + \alpha_n v_n | \alpha_1, \dots, \alpha_n \in \mathbb{K}\}$$

di tutte le combinazioni lineari di v_1, \dots, v_n è un sottospazio di V. Infatti:

1.

$$\left(\sum_{i=1}^{n} \alpha_i v_i\right) + \left(\sum_{i=1}^{n} \beta_i v_i\right)$$

$$= \alpha_1 v_1 + \ldots + \alpha_n v_n + \beta_1 v_1 + \ldots + \beta_n v_n$$

$$= (\alpha_1 v_1 + \beta_1 v_1) + \ldots + (\alpha_n v_n + \beta_n v_n)$$

$$= (\alpha_1 + \beta_1) v_1 + \ldots + (\alpha_n + \beta_n) v_n$$

$$= \sum_{i=1}^{n} (\alpha_i + \beta_i) v_i \in \langle v_1, \ldots, v_n \rangle$$

2.

$$\beta\left(\sum_{i=1}^{n}\alpha_{i}v_{i}\right) = \sum_{i=1}^{n}(\beta\alpha_{i})v_{i} \in \langle v_{1}, \dots, v_{n}\rangle$$

Diciamo che $\langle v_1, \ldots, v_n \rangle$ è il sottospazio generato da v_1, \ldots, v_n .

Esempio 5.13

 $\grave{e} \ il \ sottospazio \ generato \ da \ \left\{ \begin{pmatrix} 1 \\ m \end{pmatrix} \right\}$

$$\left\langle \begin{pmatrix} 1 \\ m \end{pmatrix} \right\rangle = \left\{ \alpha \begin{pmatrix} 1 \\ m \end{pmatrix} \,\middle|\, \alpha \in \mathbb{R} \right\}$$

 \mathcal{S}' è il sottospazio di \mathcal{S} generato da u_1 e u_2 .

5.7 Definitione

Se U,W sono sottospazi di V, allora l'intersezione

$$U\cap W=\{v\in V\mid v\in U\wedge v\in W\}$$

è un sottospazio di V. In generale, l'unione

$$U \cup W = \{v \in V \mid v \in U \lor v \in W\}$$

non è un sottospazio di V.

Esempio 5.14 $V = \mathbb{R}^{2}, \quad U = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}$ $W = \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \left\{ \alpha \begin{pmatrix} 0 \\ 1 \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}$ $b \xrightarrow{a} \qquad U^{x}$ $\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \notin U \cup W$

L'insieme $U+W=\{u+w\mid u\in U,\ w\in W\}$ è un sottospazio di V, detto la somma di U e W.

 $Quindi\ U \cup W \subseteq V\ non\ soddisfa\ la\ prima\ proprietà\ dei\ sottospazi.$

NB:

 $U \cup U \subseteq U + W$ perchè

$$U = \{ u = u + 0_v \mid u \in U \}$$

$$W = \{ w = 0_v + w \mid w \in W \}$$

5.8 Definizione

Consideriamo lo spazio vettoriale \mathbb{K}^m . Sia $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m \times n}(\mathbb{K})$ Il sottospazio di \mathbb{K}^m

$$C(A) = \left\langle \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\rangle$$

generato dalle colonne di A è detto lo spazio delle colonne di A.

 $\mathbb{K} = \mathbb{R}$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} \in M_{2 \times 3}(\mathbb{R})$$

$$C(A) \subseteq \mathbb{R}^2$$

$$C(A) = \left\{ x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \end{pmatrix} \middle| x_1, x_2, x_3 \in \mathbb{R} \right\}$$

Ad esempio:

$$2\begin{pmatrix}1\\0\end{pmatrix}+(-1)\begin{pmatrix}2\\6\end{pmatrix}+3\begin{pmatrix}0\\3\end{pmatrix}=\begin{pmatrix}0\\3\end{pmatrix}\in C(A)$$

NB:

$$x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 \\ 6x_2 + 3x_3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} \in C(A) \Leftrightarrow \exists x_1, x_2, x_3 \in \mathbb{R}$$

tali che

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Il sistema lineare $Ax = \begin{pmatrix} a \\ b \end{pmatrix}$ possiede soluzione

5.9 Proposizione

Sia $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m \times n}(\mathbb{K})$ Lo spazio delle colonne C(A) consiste di tutti i vettori $b \in \mathbb{K}^m$ per i quali il sistema lineare Ax = b possiede soluzione.

5.9.1 Dimostrazione

$$C(A) \stackrel{def}{=} \left\{ \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = v_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + v_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \middle| v_1, \dots, v_n \in \mathbb{K} \right\}$$

$$= \left\{ b \in \mathbb{K}^m \middle| \exists v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \text{ tale che } Av = b \right\}$$

5.10 Definizione

Sia $A \in M_{m \times n}(\mathbb{K})$ l'insieme

$$N(A) = \left\{ v \in \mathbb{K}^n \middle| Av = \mathbb{O} \right\} \subseteq \mathbb{K}^n$$

(dove
$$\mathbb{O} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
) è detto spazio nullo di A .

5.11 Proposizione

Lo spazio nullo N(A) di una matrice $A \in M_{m \times n}(\mathbb{K})$ è un sottospazio di \mathbb{K}^n .

5.11.1 Dimostrazione

Siano $v, u \in N(A)$, cioè $Av = \mathbb{O}$ e $Au = \mathbb{O}$ e sia $\alpha \in \mathbb{K}$. Allora

• Per la legge distributiva del prodotto di matrici:

$$A(v+u) = Av + Au = \mathbb{O} + \mathbb{O} = \mathbb{O}$$

Quindi $v + u \in N(A)$

• Per la proprietà di molitplicazione per uno scalare:

$$A(\alpha v) = \alpha A v = \alpha \mathbb{O} = \mathbb{O}$$

Quindi $\alpha v \in N(A)$

Dunque N(A) è un sottospazio. \square

Esempio 5.16

$$\mathbb{K} = \mathbb{C}, \quad A = \begin{pmatrix} i & 0 \\ 0 & 1 \\ i & -1 \end{pmatrix}, \quad N(A) \subseteq \mathbb{C}^2$$

 $N(A) = \{Soluzioni\ del\ sistema\ lineare\ Ax = 0\ \}$

Risolviamo il sistema lineare:

$$\begin{pmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ i & -1 & 0 \end{pmatrix} \xrightarrow{E_1(-i)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ i & -1 & 0 \end{pmatrix}$$

$$\overset{E_{31}(-i)}{\leadsto} \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & -1 & | & 0 \end{pmatrix} \overset{E_{23}(1)}{\leadsto} \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$\rightsquigarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \qquad Quindi\ N(A) = \left\{ \mathbb{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

Esempio 5.17

$$\mathbb{K} = \mathbb{R}, \quad A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix}, \quad N(A) \subseteq \mathbb{R}^3$$

 $Risolviamo\ il\ sistema\ lineare\ Ax=0$

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 6 & 3 & 0 \end{pmatrix} \stackrel{E_2(\frac{1}{6})}{\leadsto} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \end{pmatrix}$$

$$\leadsto \begin{cases} 1 + 2x_2 = 0 \\ x_2 + \frac{1}{2}x_3 = 0 \end{cases}$$

Siccome la matrice ha soltanto 2 colonne dominanti bisogna introdurre un parametro per la variabile libera x_3 .

$$x_3 = t, \quad t \in \mathbb{R}$$

$$\begin{cases} x_1 = -2\left(-\frac{1}{2}t\right) = t \\ x_2 = -\frac{1}{2}t \\ x_3 = t \end{cases}$$

$$Quindi\ N(A) = \left\{ \begin{pmatrix} t \\ -\frac{1}{2} \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 1 \end{pmatrix} \middle| \ t \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 1 \end{pmatrix} \right\rangle \underset{sottospazio}{\subseteq} \mathbb{R}^3$$

6 Dipendenza e indipendenza lineare

Esempio 6.1

$$\mathbb{K} = \mathbb{R}, \quad V = \mathbb{R}^2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in M_{2 \times 1}(\mathbb{R}) \right\}$$
$$\mathcal{C} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \text{ insieme di generatori}$$

Infatti, per ogni $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in V$ abbiamo che:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = (v_2 - 2) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + (v_1 - 3) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + (v_1 - \frac{3}{2}v_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{v_2}{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Non è efficiente usare l'insieme di generatori C perchè esistono almeno 2 sottoinsiemi di generatori più piccoli:

$$\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \subseteq \mathcal{C}$$

In particolare:

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{3}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

6.1 Proposizione

Se $\{v_1, \ldots, v_n\}$ è un insieme di generatori di uno spazio vettoriale V su \mathbb{K} e v_n è una combinazione lineare di v_1, \ldots, v_{n-1} , allora $\{v_1, \ldots, v_{n-1}\}$ è un insieme di generatori.

6.1.1 Dimostrazione

Siano $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{K}$ tali che:

$$v_n = \sum_{i=1}^{n-1} \alpha_i v_i$$

Per ogni $v \in V$ esistono $\beta_1, \ldots, \beta_n \in \mathbb{K}$ tali che:

$$v = \beta_1 v_1 + \ldots + \beta_{n-1} v_{n-1} + \beta_n v_n$$

$$= \beta_1 v_1 + \ldots + \beta_{n-1} v_{n-1} + \beta_n \left(\sum_{i=1}^{n-1} \alpha_i v_i \right)$$
$$= (\beta_1 + \beta_n \alpha_1) v_1 + \ldots + (\beta_{n-1} + \beta_n \alpha_{n-1}) v_{n-1}$$

Quindi $\{v_1, \ldots, v_{n-1}\}$ è un insieme di generatori. \square

6.2 Definizione

Siano $v_1, \ldots, v_n \in V$ vettori in uno spazio vettoriale V. Un insieme $\{v_1, \ldots, v_n\}$ è detto **linearmente dipendente** se almeno uno dei vettori v_1, \ldots, v_n è combinazione lineare dei rimanenti.

6.3 Teorema

Siano $v_1, \ldots, v_n \in V$. Sono equivalenti i seguenti enunciati:

- 1. $\{v_1, \ldots, v_n\}$ non è linearmente dipendente
- 2. Se

$$\sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i v_i$$

allora $\alpha_i = \beta_i$ per ogni $1 \le i \le n$

3. Se $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ sono coefficienti tali che

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0_v$$

allora
$$\alpha_1 = \alpha_2 = \ldots = 0$$

Se valgono le condizioni (1), (2) + (3), allora $\{v_1, \ldots, v_n\}$ è detto linearmente indipendente.

6.3.1 Dimostrazione

Dimostriamo che $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$, quindi:

$$\neg(1) \Rightarrow \neg(2) \Rightarrow \neg(3) \land (2) \Rightarrow (3)$$

• $[(2) \Rightarrow (3)]$ Supponiamo che:

$$\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) = \left(\sum_{i=1}^{n} \beta_{i} v_{i}\right) \Rightarrow \alpha_{i} = \beta_{i} \quad \forall i \in \{1, \dots, n\}$$

Supponiamo che:

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0_v$$

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_n$$

Quindi $\alpha_1 = \ldots = \alpha_n = 0$ per (2).

• $[\neg(2) \Rightarrow \neg(3)]$ Supponiamo che:

$$\sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i v_i$$

e $a_j \neq \beta_j$ per qualche $1 \leq j \leq n$. Quindi:

$$0_v = \sum_{i=1}^{n} \alpha_i v_i - \sum_{i=1}^{n} \beta_i v_i = \sum_{i=1}^{n} (\alpha_i - \beta_i) v_i$$

e allora:

$$v_j = \sum_{i=1}^{j-1} \frac{\beta_i - \alpha_i}{\alpha_j - \beta_j} v_i + \sum_{i=j+1}^n \frac{\beta_i - \alpha_i}{\alpha_j - \beta_j} v_i$$

Dunque $\{v_1, \ldots, v_n\}$ è linearmente dipendente

• $[\neg(1) \Rightarrow \neg(3)]$ Supponiamo che $\{v_1, \ldots, v_n\}$ sia linearmente dipendente, cioè esistono $\alpha_1, \ldots, \alpha_{j+1}, \ldots, \alpha_n \in \mathbb{K}$ tali che:

$$v_j = \sum_{i=1}^{j-1} \alpha_i v_i + \sum_{i=j+1}^{n} \alpha_i v_i$$

Allora:

$$0_v = \alpha_1 v_1 + \ldots + \alpha_{j-1} v_{j-1} + (-1)v_j + \alpha_{j+1} v_{j+1} + \ldots + \alpha_n v_n$$

Dunque (3) non è verificata. \square

6.3.2 Esempi

Esempio 6.2

$$\mathbb{K} = \mathbb{R}, \quad V = \mathbb{R}^2$$

L'insieme $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$ è linearmente indipendente. Infatti se:

$$\mathbb{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 + \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3\alpha_2 \\ 2\alpha_2 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_1 + 3\alpha_2 \\ 2\alpha_2 \end{pmatrix}$$

Quindi $\alpha_1 + 3\alpha_2 = 0$ e $2\alpha_2 = 0$. Abbiamo che $\alpha_2 = 0$ e $\alpha_1 = 0$. Quindi l'insieme è linearmente indipendente.

Esempio 6.3

Un insieme $\{v_1, v_2\} \subseteq V$ è linearmente dipendente se e solo se esiste $\alpha \in \mathbb{K}$ tale che $\alpha v_1 = v_2$ oppure $v_1 = \alpha v_2$

Esempio 6.4

Un insieme $\{v\} \subseteq V$ è linearmente dipendente se e solo se $v = 0_v$. Inoltre, per ogni $\{v_1,\ldots,v_n\}$, se $v_j=0_v$ per qualche j, allora $\{v_1,\ldots,v_n\}$ è linearmente dipendente perchè:

$$0_v = \underbrace{0 \cdot v_1}_{0_v} + \ldots + \underbrace{0 \cdot v_{j-1}}_{0_v} + \underbrace{v_j}_{0_v} + \underbrace{0 \cdot v_{j+1}}_{0_v} + \ldots + \underbrace{0 \cdot v_n}_{0_v}$$

 $e \ quindi \ abbiamo \ \neg(3)$

6.4 **Definizione**

Sia V uno spazio vettoriale su \mathbb{K} e siano $v_1,\ldots,v_n\in V$. L'insieme $\mathcal{U}=$ $\{v_1,\ldots,v_n\}$ è detto base di V se \mathcal{U} è un insieme di generatori di V e \mathcal{U} è linearmente indipendente.

6.5Osservazione

Per il Teorema 6.4 un sottoinsieme $\mathcal{U} \subseteq V$ è una base se e solo se possiamo ricostruire in un modo unico tutti i vettori di V mediante combinazioni lineari. Possiamo pensare ad una base $\mathcal{U} = \{b_1, \dots, b_n\}$ di V come ad un sistema di

Sia $v \in V$. Esiste un unico vettore $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{K}^n$ tale che $v = \alpha_1 b_1 + \ldots + \alpha_n b_n$. Scriviamo $[v]_{\mathcal{U}}$ per il vettore $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$

6.5.1 Esempi

Esempio 6.5

$$V = \mathbb{K}^n \quad \mathcal{C} = \left\{ \underbrace{\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}}_{e_1}, \underbrace{\begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}}_{e_2}, \dots, \underbrace{\begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}}_{e_n} \right\}$$

Figura 12: Base canonica di \mathbb{K}^n

Infatti, per ogni
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n$$
 abbiamo che:

$$v = v_1 e_1 + \ldots + v_n e_n$$

Supponiamo
$$\mathbb{O} = v_1 e_1 + \ldots + v_n e_n = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
, quindi:

$$v_1 = 0, \ v_2 = 0, \dots, v_n = 0$$

Esempio 6.6

$$V = \mathbb{R}^2, \quad \mathbb{K} = \mathbb{R} \quad \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$$

è una base di \mathbb{R}^2 , quindi non esiste un unica base di \mathbb{R}^2 .

6.6 Base di C(U) per una matrice U in forma ridotta

Esempio 6.7

$$U = \begin{pmatrix} 1 & 2 & 7 & 3 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$C(U) = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\rangle \subseteq \mathbb{R}^4$$

Le colonne dominanti formano una base di C(U), infatti:

• Linearmente indipendente: Siano $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tali che:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 7\alpha_2 \\ \alpha_2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \alpha_3 \\ \alpha_3 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_1 + 7\alpha_2 \\ \alpha_2 + \alpha_3 \\ \alpha_3 \\ 0 \end{pmatrix}$$

Quindi $\alpha_3 = 0$, $\alpha_2 = \alpha_2 + \alpha_3 = 0$, $\alpha_1 = \alpha_1 + 7\alpha_2 = 0$

• Insieme di generatori Proposizione 6.1:

$$\begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} = -1 \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 10 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$Quindi \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 7\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\} \ \text{\'e un insieme di generatori di } C(U).$$

6.6.1 Osservazioni

Le colonne dominanti di una matrice U in forma ridotta formano una base di C(U). Inoltre le colonne non nulle di U^T (cioè le righe non nulle di U formano una base di $C(U^T)$.

6.7 Proposizione

Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ una base di uno spazio vettoriale su \mathbb{K} .

- 1. \mathcal{B} è un insieme di generatori minimo, cio
è nessun sottoinsieme di \mathcal{B} è un insieme di generatori
- 2. \mathcal{B} è massimamente linearmente indipendente, cioè nessun insieme di vettori che contenga propriamente \mathcal{B} è linearmente indipendente.

6.8 Teorema

Sia V uno spazio vettoriale su $\mathbb K$ finitamente generato.

- Se $V \neq 0$, allora V possiede una base.
- Se V = 0, allora V non possiede una base.

6.8.1 Dimostrazione

Se $V = 0 = \{0_v\}$, allora ogni sottoinsieme non vuoto di V contiene 0_v e quindi non può essere linearmente indipendente.

Supponiamo $V \neq 0$.

Sia $\mathcal{B}_n = \{v_1, \dots, v_n\}$ un insieme di generatori. Se \mathcal{B}_n è linearmente indipendente, allora \mathcal{B}_n è una base di V. Altrimenti uno dei vettori di \mathcal{B}_n è combinazione lineare dei rimanenti. Senza perdita di generalità supponiamo che:

$$v_n = \sum_{i=1}^{n-1} \alpha_i v_i$$

Per $6.1 \mathcal{B}_{n-1} = \{v_1, \dots, v_{n-1}\}$ è un insieme di generatori. Se \mathcal{B}_{n-1} è linearmente indipendente, allora \mathcal{B}_{n-1} è una base. Altrimenti continuiamo come sopra. Proseguendo così si otterrà un sottoinsieme di \mathcal{B}_n che è una base. \square

Esempio 6.8

$$\mathbb{K} = \mathbb{R}, \quad V = \mathbb{R}^2$$

$$C_3 = \left\{ \begin{pmatrix} 0 \\ 1 \\ v_1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ v_2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ v_3 \end{pmatrix} \right\}$$

 \mathcal{C}_3 è un insieme di generatori, ma non è linearmente indipendente:

$$v_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3v_2 + 2v_1$$

Allora:

$$\mathcal{C}_2 = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$

è un insieme di generatori. Inoltre \mathcal{C}_2 è linearmente indipendente:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha_1 \end{pmatrix} + \begin{pmatrix} \alpha_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \alpha_1 \end{pmatrix}$$

Quindi $\alpha_1 = 0 = \alpha_2$. Allora C_2 è una base.

6.9 Teorema di Steinitz

Sia $\mathcal{G} = \{v_1, \dots, v_n\}$ un insieme di generatori di V e $\mathcal{L} = \{u_1, \dots, u_m\}$ un insieme linearmente indipendente. Allora $m \leq n$ ed esiste un insieme di generatori di V formato da \mathcal{L} e n-m vettori di \mathcal{G} .

6.10 Corollario

Se $\mathcal{B}_1 = \{v_1, \dots, v_n\}$ e $\mathcal{B}_2 = \{u_1, \dots, u_n\}$ sono basi di uno spazio vettoriale, allora m = n.

6.10.1 Dimostrazione

Ponendo $\mathcal{G} = \mathcal{B}_1$ e $\mathcal{L} = \mathcal{B}_2$ nel teorema di Steinitz, si ha $m \leq n$. Ponendo $\mathcal{G} = \mathcal{B}_2$ e $\mathcal{L} = \mathcal{B}_1$ si ha $n \leq m$. Quindi m = n. \square

6.11 Definizione

Sia V uno spazio vettoriale finitamente generato. Il numero di vettori che formano una base di V è detto **dimensione** di V e si indica con $dim_{\mathbb{K}}(V)$.

6.11.1 Esempi

Esempio 6.9

$$\mathbb{K} = \mathbb{C}, \quad V = \mathbb{C}$$

 $\{1\}$ è una base di V su \mathbb{C} . Dunque $dim_{\mathbb{K}}(V)=dim_{\mathbb{C}}(\mathbb{C})=1$

Esempio 6.10

$$\mathbb{K} = \mathbb{R}, \quad V = \mathbb{C}$$

 $\{1,i\}$ è una base di V su \mathbb{R} .

• (Insieme di generatori): $z \in \mathbb{C} = V$

$$z = a + bi = a(1) + b(i), \quad a, b \in \mathbb{R}.$$

• (Linearmente indipendente): $0_v \in \mathbb{C}$

$$0 = 0 + 0i$$

è l'unico modo di scrivere 0 come combinazione lineare di $\{1, i\}$.

$$\Rightarrow dim_{\mathbb{K}}(V) = dim_{\mathbb{R}}(\mathbb{C}) = 2$$

6.12 Corollario

In uno spazio vettoriale V di dimensione $dim_{\mathbb{K}}(V) = n$, si ha

- 1. Un insieme con > n vettori è linearmente dipendente.
- 2. Se n vettori sono linearmente indipendenti, allora formano una base di V.
- 3. Ogni insieme di generatori consiste di almeno n vettori

6.13 Proposizione

Sia $dim_{\mathbb{K}}(V)=n$. Allora ogni sottospazio U di V ha dimensione $dim_{\mathbb{K}}(U)\leq n$. Inoltre $dim_{\mathbb{K}}(U)=n$ se e solo se U=V

${\bf 6.13.1}\quad {\bf Dimostrazione}$

Sia $\mathcal{B} = \{u_1, \dots, u_n\}$ una base di U. Allora \mathbb{B} è linearmente indipendente in V perchè $0_v = 0_u$. Quindi possiamo completare \mathbb{B} a una base di V (usando il teorema di Steinitz). Allora $\underbrace{\#\mathcal{B}}_{dim_{\mathbb{K}}(U)} \leq \underbrace{\#\mathcal{B}'}_{dim_{\mathbb{K}}(V)}$. Abbiamo che \mathcal{B} contiene n

elementi (cio
è $\dim_{\mathbb{K}}(U)=n$) se e solo se \mathcal{B} è una base di
 V. Quindi in tal caso abbiamo:

$$U = \langle u_1, \dots, u_n \rangle = V \quad \square$$

7 Applicazione lineare

D'ora in poi, tutti gli spazi vettoriali saranno finitamente generati.

7.1 Definizione

Siano U e V spazi vettoriali su \mathbb{K} . Un'applicazione $f:U\to V$ si dice **lineare** se, per $u,u'\in U$ e $\alpha\in\mathbb{K}$ si ha:

1.
$$f(u+u') = f(u) + f(u')$$

$$2. \ f(\alpha u) = \alpha f(u)$$

7.1.1 Osservazioni

1.
$$f(0_u) = f(0 \cdot 0_u) = 0 \cdot f(0_u) = 0$$

2.
$$f(-u) = f((-1) \cdot u) = (-1) \cdot f(u) = f(u) = -f(u)$$

Per tutti gli elementi di U

7.1.2 Esempi

Esempio 7.1

$$U = \mathbb{R}_2[x] = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$
$$V = \mathbb{R}^2 = M_{2 \times 1}(\mathbb{R})$$
$$p = a_0 + a_1 x + a_2 x^2$$

$$f:U\to V$$

$$f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix} = \begin{pmatrix} a_0 + a_1 \cdot 0 + a_2 \cdot 0^2 \\ a_0 + a_1 \cdot 1 + a_2 \cdot 1^2 \end{pmatrix} = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$$

f è lineare. Infatti per ogni $p = a_0 + a_1x + a_2x^2$, $q = b_0 + b_1x + b_2x^2$

1

$$f(p+q) = ((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2) =$$

$$\begin{pmatrix} a_0 + b_0 \\ (a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) \end{pmatrix}$$

$$f(p) + f(q) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} + \begin{pmatrix} v_0 \\ b_0 + b_1 + b_2 \end{pmatrix} =$$

$$\begin{pmatrix}
a_0 + b_0 \\
(a_0 + a_1 + a_2) + (b_0 + b_1 + b_2)
\end{pmatrix}$$

$$Quindi f(p+q) = f(p) + f(q)$$

$$2. \alpha \in \mathbb{R}$$

$$f(\alpha p) = f((\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2) = (\alpha a_0 \\
\alpha a_0 + \alpha a_1 + \alpha a_2)$$

$$\alpha f(p) = \alpha \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = (\alpha a_0 \\ \alpha a_0 + \alpha a_1 + \alpha a_2)$$

$$Quindi f(\alpha p) = \alpha f(p)$$

7.2 Applicazioni lineari $\mathbb{K}^n \to \mathbb{K}^m$

Sia
$$A \in M_{m \times n}(\mathbb{K})$$
, definiamo $f_A : \mathbb{K}^n \to \mathbb{K}^m$ per ogni $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n$ $f(v) = Av$. f_A è lineare:

1.
$$f_A(v+w) = A(v+w) = Av + Aw = f_A(v) + f_A(w)$$

2.
$$f_A(\alpha v) = A(\alpha v) = \alpha(Av) = \alpha f_A(v)$$

7.2.1 Esempi

Esempio 7.2
$$A = \begin{pmatrix} 2 & i \\ 0 & 1-i \\ 1 & 0 \end{pmatrix} \in M_{3\times 2}(\mathbb{C})$$

$$f_A : \mathbb{C}^2 \to \mathbb{C}^2$$

$$f_A \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} 2 & i \\ 0 & 1-i \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x+iy \\ (1-i)y \\ x \end{pmatrix}$$

Esempio 7.3

$$f: \mathbb{K}^3 \to \mathbb{K}^2, \quad f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 2x \\ 3z - y \end{pmatrix}$$

f è lineare. Notiamo che, per ogni $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{K}^3$, abbiamo:

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = f\left(x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right)$$

$$= f\left(x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right) + f\left(y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right) + f\left(z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right)$$

$$= x f\left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right) + y f\left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right) + z f\left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right)$$

$$= x \begin{pmatrix} 2 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ -1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$= x \begin{pmatrix} 2 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ -1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Dunque $f = f_A$ dove $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 3 \end{pmatrix}$

Per ogni applicazione lineare $f: \mathbb{K}^n \to \mathbb{K}^m$ e per $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n$, abbiamo che

$$v = v_1 \underbrace{\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{e_1} + v_2 \underbrace{\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}}_{e_2} + \dots + v_n \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}}_{e_n}$$

$$f(v) = f(v_1e_1 + v_2e_2 + \dots + v_ne_n)$$

= $f(v_1e_1) + f(v_2e_2) + \dots + f(v_ne_n)$
= $v_1f(e_1) + v_2f(e_2) + \dots + v_nf(e_n)$

$$= (f(e_1) \dots f(e_n)) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$- Av$$

dove $A = (f(e_1) \dots f(e_n))$ e $\{e_1, \dots, e_n\}$ è la base canonica di \mathbb{K}^n . Allora $f = f_A$. La matrice A è detta la matrice associata a f (rispetto alla base canonica)

NB: Per una matrice $A \in M_{n \times n}(\mathbb{K})$ invertibile abbiamo $f_A : \mathbb{K}^n \to \mathbb{K}^n$ e $f_{A^{-1}} : \mathbb{K}^n \to \mathbb{K}^n$. Osserviamo:

$$f_{A^{-1}}(f_A(v)) = f_{A^{-1}}(Av) = A^{-1}(Av) = (A_{-1}A)v = I_nv = v$$
$$f_A(f_{A^{-1}}(v)) = f_A(A^{-1}v) = AA^{-1}v = I_nv = v$$

7.3 Definizione

Un'applicazione lineare $f:V\to W$ è detta **isomorfismo** se esiste $g:W\to V$ tale che g(f(v))=V per ogni $v\in V$ e f(g(w))=W per ogni $w\in W$. L'applicazione lineare g è detta **inversa di** f e si dice che V e W sono **isomorfi**. Scriviamo $f^{-1}=g$ e $V\cong W$.

Esempio 7.4

Sia $f: \mathbb{K}^n \to \mathbb{K}^n$ un'applicazione lineare. Allora esiste una matrice $A \in M_{n \times n}(\mathbb{K})$ tale che $f = f_A$. L'applicazione lineare f è un isomorfismo se e solo se A è invertibile. Infatti, supponiamo che esista f^{-1} e consideriamo la matrice associata B, cioè $f^{-1} = f_B$. Allora, per ogni $v \in \mathbb{K}^n$, abbiamo:

$$(BA)v = f_B f_A(v) = f^{-1} f(v) = v$$

= $f f^{-1}(v) = f_A f_B(v) = f_A(BV) = (AB)v$

Ne segue $AB = I_n = BA$. Quindi $B = A^{-1}$

7.4 Applicazione delle coordinate

Sia $\mathcal{B} = \{b_1, \dots, b_n\}$ una base di uno spazio vettoriale V su \mathbb{K} . Per ogni $\alpha_1 b_1 + \dots + \alpha_n b_n = v \in V$ abbiamo definito il vettore:

$$[v]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

L'applicazione $C_{\mathcal{B}}: V \to \mathbb{K}^n$ definita come:

$$C_{\mathcal{B}}(v) = [v]_{\mathcal{B}}$$

è lineare ed è detta applicazione delle coordinate rispetto a \mathcal{B} . Infatti, per:

$$v = \alpha_1 b_1 + \ldots + \alpha_n b_n, \quad w = \beta_1 b_1 + \ldots + \beta_n b_n \in V$$

e $\alpha \in \mathbb{K}$, abbiamo

$$C_{\mathcal{B}}(v+w) = C_{\mathcal{B}}(\alpha_1 b_1 + \dots + \alpha_n b_n + \beta_1 b_1 + \dots + \beta_n b_n)$$

$$= C_{\mathcal{B}}((\alpha_1 + \beta_1)b_1 + \dots + (\alpha_n + \beta_n)b_n)$$

$$= \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

$$\begin{pmatrix} \alpha_1 \end{pmatrix} \qquad \begin{pmatrix} \beta_1 \end{pmatrix}$$

$$C_{\mathcal{B}}(v) + C_{\mathcal{B}}(w) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

Quindi $C_{\mathcal{B}}(v+w) = C_{\mathcal{B}}(v) + C_{\mathcal{B}}(w)$

2.

$$C_{\mathcal{B}}(\alpha v) = C_{\mathcal{B}}(\alpha(\alpha_1 b_1 + \dots + \alpha_n b_n))$$

$$= C_{\mathcal{B}}((\alpha \alpha_1) b_1 + \dots + (\alpha \alpha_n) b_n)$$

$$= \begin{pmatrix} \alpha \alpha_1 \\ \vdots \\ \alpha \alpha_n \end{pmatrix}$$

$$\alpha C_{\mathcal{B}}(v) = \alpha \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \alpha \alpha_1 \\ \vdots \\ \alpha \alpha_n \end{pmatrix}$$

Quindi $C_{\mathcal{B}}(\alpha v) = \alpha C_{\mathcal{B}}(v)$

Esempio 7.5

$$V = \mathbb{R}_2[x], \quad \mathbb{K} = \mathbb{R}$$

$$V = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$

$$\mathcal{B} = \{b_1 = 1 + x, b_2 = 1 + x^2, b_3 = x + x^2\}$$

è una base di V.

Prendiamo $v = 6 + 3x - x^2 \in V$. Poichè \mathcal{B} è una base di V, esistono $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tali che $v = \alpha_1 b_1 + \alpha_2 b_2 + \alpha_3 b_3$.

$$6 + 3x - x^{2} = \alpha_{1}(1+x) + \alpha_{2}(1+x^{2}) + \alpha_{3}(x+x^{2})$$

$$= (\alpha_{1} + \alpha_{1}x) + (\alpha_{2} + \alpha_{2}x^{2}) + (\alpha_{3}x + \alpha_{3}x^{2})$$

$$= (\alpha_{1} + \alpha_{2}) + (\alpha_{1} + \alpha_{3})x + (\alpha_{2} + \alpha_{3})x^{2}$$

Quindi:

$$\begin{cases} \alpha_1 + \alpha_2 = 6 \\ \alpha_1 + \alpha_3 = 3 \\ \alpha_2 + \alpha_3 = -1 \end{cases}$$

Risolviamo il sistema lineare usando l'Eliminazione di Gauss:

$$\begin{pmatrix} 1 & 1 & 0 & 6 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix} \sim \ldots \sim \begin{pmatrix} 1 & 1 & 0 & 6 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

Quindi:

$$6 + 3x - x^2 = v = 5b_1 + b_2 - 2b_3 = 5(1+x) + (1+x^2) - 2(x+x^2)$$

7.5 Applicazione delle coordinate $C_{\mathcal{B}}: \mathbb{K}^n \to \mathbb{K}^n$

Esempio 7.6

$$V = \mathbb{R}^2$$
, $\mathcal{B} = \{b_1 = \begin{pmatrix} -1\\2 \end{pmatrix}, b_2 = \begin{pmatrix} \frac{1}{2}\\3 \end{pmatrix}\}$ base

Per ogni $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$, esistono $\alpha_1, \alpha_2 \in \mathbb{R}$ tali che:

$$v = \alpha_1 b_1 + \alpha_2 b_2$$

$$= \alpha_1 \begin{pmatrix} -1\\2 \end{pmatrix} + \alpha_2 \begin{pmatrix} \frac{1}{2}\\3 \end{pmatrix}$$
$$= \begin{pmatrix} -\alpha_1 + \frac{1}{2}\alpha_2\\2\alpha_1 + 3\alpha_2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & \frac{1}{2}\\2 & 3 \end{pmatrix} \begin{pmatrix} \alpha_1\\\alpha_2 \end{pmatrix}$$

Quindi $C_{\mathcal{B}}(v) = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ è soluzione del sistema lineare Ax = v dove:

$$A = \begin{pmatrix} -1 & \frac{1}{2} \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} b_1 & b_2 \end{pmatrix}$$

Siccome \mathcal{B} è una base, α_1 e α_2 sono univocamente determinati e quindi Ax = v ha soluzione per ogni $v \in \mathbb{R}^2$. Per il teorema 4.2, A è invertibile e

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = A^{-1}v$$

$$Calcolando\ A^{-1}$$

$$\begin{pmatrix} -1 & \frac{1}{2} & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix} \sim \dots \sim \begin{pmatrix} 1 & 0 & \frac{3}{4} & \frac{1}{8} \\ 0 & 1 & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

Dunque, per ogni
$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$$
,

$$C_{\mathcal{B}}(v) = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = A^{-1}v =$$

$$= \begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{4}v_1 + \frac{1}{8}v_2 \\ \frac{1}{2}v_1 + \frac{1}{4}v_2 \end{pmatrix}$$

In generale, per una base $\mathcal{B} = \{b_1, \dots, b_n\}$ di \mathbb{K}^n , la matrice $A = (b_1, \dots, b_n)$ è invertibile e $C_{\mathcal{B}} = f_{A^{-1}}$. Dunque $C_{\mathcal{B}} : \mathbb{K}^n \to \mathbb{K}^n$ è un isomorfismo con inversa f_A .

7.6 Teorema

Sia V uno spazio vettoriale su \mathbb{K} con base $\mathcal{B} = \{b_1, \dots, b_n\}$. L'applicazione lineare $C_{\mathcal{B}}: V \to \mathbb{K}^n$ è un isomorfismo.

7.6.1 Dimostrazione

Definiamo $g_{\mathcal{B}}: \mathbb{K}^n \to V$,

$$g_{\mathcal{B}}\left(\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}\right) = \alpha_1 b_1 + \ldots + \alpha_n b_n$$

Mostriamo che $g_{\mathcal{B}}$ è l'inversa di $C_{\mathcal{B}}$. Infatti:

$$C_{\mathcal{B}}\left(g_{\mathcal{B}}\left(\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}\right)\right) = C_{\mathcal{B}}(\alpha_1b_1 + \ldots + \alpha_nb_n) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Per ogni $v = \alpha_1 b_1 + \ldots + \alpha_n b_n \in V$,

$$g_{\mathcal{B}}(C_{\mathcal{B}}(v)) = g_{\mathcal{B}}\left(\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}\right) = \alpha_1 b_1 + \ldots + \alpha_n b_n = v$$

Dunque $g_{\mathcal{B}} = C_{\mathcal{B}}^{-1} \quad \Box$

7.7 Osservazione

Se $f: V \to W$ è un isomorfismo e $\mathcal{B} = \{b_1, \dots, b_n\}$ è una base di V, allora $\{f(b_1), \dots, f(b_n)\}$ è una base di W. In particolare, $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$.

7.8 Corollario

Due spazi vettoriali V e W sono isomorfi se e solo se:

$$dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$$

7.8.1 Dimostrazione

Se $f: V \to W$ è un isomorfismo, allora $dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W)$

Supponiamo che V, W sono spazi vettoraili tali che:

$$dim_{\mathbb{K}}(V) = dim_{\mathbb{K}}(W) = n$$

Allora esiste una base di $V \mathcal{B} = \{b_1, \ldots, b_n\}$ e esiste una base di $W \mathcal{C} = \{c_1, \ldots, c_n\}$. Consideriamo $C_{\mathcal{B}} : V \to \mathbb{K}^n$ e $C_{\mathcal{C}} : W \to \mathbb{K}^n$. Notiamo che abbiamo:

L'applicazione lineare ha inversa:

$$C_{\mathcal{B}}^{-1} \circ C_{\mathcal{C}} : W \to V$$

dove

$$C_{\mathcal{B}}^{-1} \circ C_{\mathcal{C}}(w) = C_{\mathcal{B}}^{-1}(C_{\mathcal{C}}(w))$$

per ogni $w \in W.$ Infatti:

$$C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}} \left(C_{\mathcal{B}}^{-1} \circ C_{\mathcal{C}}(w) \right) = C_{\mathcal{C}}^{-1} \left(C_{\mathcal{B}} \left(C_{\mathcal{B}}^{-1} \left(C_{\mathcal{C}}(w) \right) \right) \right)$$
$$= C_{\mathcal{C}}^{-1} \left(C_{\mathcal{C}}(w) \right) = w$$

$$C_{\mathcal{B}}^{-1} \circ C_{\mathcal{C}} \left(C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}}(v) \right)$$

$$= C_{\mathcal{B}}^{-1} \left(C_{\mathcal{C}} \left(C_{\mathcal{C}}^{-1} \left(C_{\mathcal{B}}(v) \right) \right) \right)$$

$$= C_{\mathcal{B}}^{-1} \left(C_{\mathcal{B}}(v) \right) = v$$

Dunque V e W sono isomorfi. \square

NB: Per ogni $b_i \in \mathcal{B}$, abbiamo:

$$C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}}(b_i) = C_{\mathcal{C}}^{-1} \left(C_{\mathcal{B}}(b_i) \right)$$

$$= C_{\mathcal{C}}^{-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = C_{i}$$

$$C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}}(\mathcal{B}) = \{ C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}}(b_1), \dots, C_{\mathcal{C}}^{-1} \circ C_{\mathcal{B}}(b_n) \} \}$$
$$= \{ C_1, \dots, C_n \} = \mathcal{C}$$

7.9 Matrice del cambio di base

Esempio 7.7

$$V = \mathbb{K}^2$$

con basi:

$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \end{pmatrix} \right\}, \quad \mathcal{D} = \left\{ \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \right\}$$

Sia $v \in V$. Dati i numeri $\alpha_1, \alpha_2 \in \mathbb{K}$ tali che

$$v = \alpha_1 b_1 + \alpha_2 b_2 = \alpha_1 \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \alpha_2 \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

come possiamo determinare $\beta_1, \beta_2 \in \mathbb{K}$ tali che:

$$v = \beta_1 d_1 + \beta_2 d_2 = \beta_1 \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \beta_2 \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$
?

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = [v]_{\mathcal{D}} = C_{\mathcal{D}}(v) = C_{\mathcal{D}} (\alpha_1 b_1 + \alpha_2 b_2)$$
$$= C_{\mathcal{D}} \left(C_{\mathcal{B}}^{-1} \left(\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \right) \right)$$
$$= C_{\mathcal{D}} \circ C_{\mathcal{B}}^{-1} ([v]_{\mathcal{B}})$$

Per 7.5, $C_{\mathcal{B}} \circ C_{\mathcal{B}}^{-1} = f_C$ per una matrice C, cioè per ogni $\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \in \mathbb{K}^2$,

$$C_{\mathcal{D}} \circ C_{\mathcal{B}}^{-1} \left(\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \right) = C \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

In questo esempio, abbiamo che $C_{\mathcal{D}}: \mathbb{K}^2 \to \mathbb{K}^2$ e $C_{\mathcal{B}}^{-1}: \mathbb{K}^2 \to \mathbb{K}^2$ sono della forma:

$$C_{\mathcal{D}} = f_{A^{-1}} \quad e \quad C_{\mathcal{B}}^{-1} = f_{B}$$

dove:

$$B = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix} \quad e \quad \begin{pmatrix} \frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Allora

$$f_{A^{-1}B} = f_{A^{-1}} \circ f_B = C_{\mathcal{D}} \circ C_{\mathcal{B}}^{-1} = f_C$$

Quindi $C = A^{-1}B$. Calcolando A^{-1} :

$$\underbrace{\left(\begin{array}{c|c} \frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{1}{2} \end{array}\right)}_{A} \begin{array}{c|c} 1 & 0 \\ 0 & 1 \end{array}\right) \stackrel{EG}{\sim} \underbrace{\left(\begin{array}{c|c} 1 & 0 \\ 0 & 1 \end{array}\right)}_{I_{2}} \underbrace{\left(\begin{array}{c|c} \frac{2}{3} & -\frac{3}{4} \\ \frac{2}{3} & \frac{2}{3} \end{array}\right)}_{A^{-1}}$$

Abbiamo:

$$C = A^{-1}B = \begin{pmatrix} \frac{2}{3} & -\frac{3}{4} \\ \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{10}{3} & -4 \\ \frac{4}{3} & 0 \end{pmatrix}$$

Allora, per ogni $v \in V$, abbiamo:

$$\begin{pmatrix} \frac{10}{3} & -4\\ \frac{4}{3} & 0 \end{pmatrix} [v]_{\mathcal{B}} = [v]_{\mathcal{D}}$$

Teorema 4 Siano $\mathcal{B}\{b_1,\ldots,b_n\}$ e $\mathcal{C}=\{c_1,\ldots,c_n\}$ basi di uno spazio vettoriale V. Esiste una matrice $A_{\mathcal{B}\to\mathcal{C}}$ tale che:

$$[v]_{\mathcal{C}} = A_{\mathcal{B} \to \mathcal{C}}[v]_{\mathcal{B}}$$

Le colonne di $A_{\mathcal{B}\to\mathcal{C}}$ sono i vettori $[b_1]_{\mathcal{C}},\ldots,[b_n]_{\mathcal{C}}$. La matrice $A_{\mathcal{B}\to\mathcal{C}}$ è detta matrice del cambio di base $\mathcal{B}\to\mathcal{C}$.

7.9.1 Dimostrazione

Per 7.2, esiste una matrice A tale che $C_{\mathcal{C}}C_{\mathcal{B}}^{-1}=f_A$. Inoltre:

$$A_{\mathcal{B}\to\mathcal{C}} = A \stackrel{7.2}{=} \left(C_{\mathcal{C}} C_{\mathcal{B}}^{-1}(e_1) \dots C_{\mathcal{C}} C_{\mathcal{B}}^{-1}(e_n) \right)$$
$$= \left(C_{\mathcal{C}}(b_1) \dots C_{\mathcal{C}}(b_n) \right)$$
$$= \left([b_1]_{\mathcal{C}} \dots [b_n]_{\mathcal{C}} \right) \quad \Box$$

dove $\{e_1, \ldots, e_n\}$ è la base canonica.

7.9.2 Osservazione

L'applicazione lineare $C_{\mathcal{C}}C_{\mathcal{B}}^{-1}$ è un isomorfismo con inversa $C_{\mathcal{B}}C_{\mathcal{C}}^{-1}$. Dunque per 7.3, la matrice $A_{\mathcal{B}\to\mathcal{C}}$ è invertibile e la sua inversa è la matrice del cambio di base $A_{\mathcal{B}\to\mathcal{C}}^{-1}=A_{\mathcal{C}\to\mathcal{B}}$.

Esempio 7.8

$$V = \mathbb{R}_2[x] = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$
$$\mathcal{B} = \{1 + x, 1 + x^2, x + x^2\} \quad \mathcal{C} = \{1, x, x^2\}$$

NB:

$$C_{\mathcal{C}}(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$$

$$A_{\mathcal{B} \to \mathcal{C}} = ([b_1]_{\mathcal{C}} [b_2]_{\mathcal{C}} [b_3]_{\mathcal{C}})$$

$$= (C_{\mathcal{C}}(b_1) C_{\mathcal{C}}(b_2) C_{\mathcal{C}}(b_3))$$

$$= (C_{\mathcal{C}}(1+x) C_{\mathcal{C}}(1+x^2) C_{\mathcal{C}}(x+x^2))$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Per ogni $a_0 + a_1 x + a_2 x^2$:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} a_0 + a_1 \\ a_0 + a_2 \\ a_1 + a_2 \end{pmatrix} = [a_0 + a_1 x + a_2 x^2]_{\mathcal{C}}$$

$$a_0 + a_1 x + a_2 x^2 = (a_0 + a_1)(1+x) + (a_0 + a_2)(1+x^2) + (a_1 + a_2)(x+x^2)$$

7.10 Matrice associata a f rispetto a basi

Esempio 7.9

$$U = \mathbb{R}_2[x], \quad V = \mathbb{R}^2$$
 $f: U \to V \ tale \ che \ f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}$

Ovvero, per ogni $p = a_0 + a_1 x + a_2 x^2$,

$$f(p) = f(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} a_0 + a_1 \cdot 0 + a_2 \cdot 0 \\ a_0 + a_1 \cdot 1 + a_2 \cdot 1 \end{pmatrix} = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$$

Abbiamo:

$$C = \{1, x, x^2\}$$
 base di U

$$\mathcal{B} = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$$
base di V

$$U \xrightarrow{f} V$$

$$C_{\mathcal{C}} \downarrow \uparrow_{C_{\mathcal{C}}^{-1}} \downarrow C_{\mathcal{B}}$$

$$\mathbb{R}^{3} \xrightarrow{C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1}} \mathbb{R}^{2}$$

Per 7.2 esiste una matrice A associata a $C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1}$ rispetto alla base canonica:

$$C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1} = f_A$$

dove:

$$A = (C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1}(e_1) \quad C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1}(e_2) \quad C_{\mathcal{B}} \circ f \circ C_{\mathcal{C}}^{-1}(e_3))$$

$$= (C_{\mathcal{B}} \circ f(1) \quad C_{\mathcal{B}} \circ f(x) \quad C_{\mathcal{B}} \circ f(x^2))$$

$$= (C_{\mathcal{B}} \left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) \quad C_{\mathcal{B}} \left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) \quad C_{\mathcal{B}} \left(\begin{pmatrix} 0\\1 \end{pmatrix}\right))$$

Osserviamo

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 $per\ ogni\ p\in U,$

$$[f(p)]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} [p]_{\mathcal{C}}$$

Un esempio con $p = 3 + 2x - x^2$ f(p)?

$$[p]_{\mathcal{C}} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$$
$$[f(p)]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
$$f(p) = 4b_1 - b_2 = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4-1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Teorema 5 Siano U, V spazi vettoriali su \mathbb{K} , $f: U \to V$, $\mathcal{C} = \{c_1, \ldots, c_n\}$ base $di U, \mathcal{B} = \{b_1, \ldots, b_m\}$ base di V.

Esiste una matrice $A \in M_{m \times n}(\mathbb{K})$ tale che $A[u]_{\mathcal{C}} = [f(u)]_{\mathcal{B}}$ per ogni $u \in U$. A è detta matrice associata a f rispetto alla base \mathcal{C} di U e la base \mathcal{B} di V. Le sue colonne sono $[f(c_1)]_{\mathcal{B}}, \ldots, [f(c_n)]_{\mathcal{B}}$.

Esempio 7.10

Definiamo l'applicazione lineare $id: V \to V$ come id(v) = v per ogni $v \in V$. Allora la matrice associata a id rispetto alla base \mathcal{B} e alla base \mathcal{C} di V è la

8 Rango + nullità

8.1 Definizione

Sia $f: V \to W$ un'applicazione lineare. Allora:

$$N(f) := \{ v \in V \mid f(v) = 0_w \}$$

è un sottospazio di V, detto **spazio nullo di** f. Inoltre $Im(f) = \{f(v) \mid v \in V\}$ è un sottospazio di W detto **immagine di** f.

8.1.1 Esempi

$$A = (a_{ij})_{1 \le i \le m, 1 \le j \le n} \in M_{m \times n}(\mathbb{K})$$

$$f_A : \mathbb{K}^n \to \mathbb{K}^m$$

$$N(f_A) = \{v \in \mathbb{K}^n \mid Av = 0\} = N(A)$$

$$Im(f_A) = \{Av \in \mathbb{K}^m \mid v \in \mathbb{K}^n\} =$$

$$= \left\{ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \dots + a_{1n}v_n \\ \vdots \\ a_{m1}v_1 + \dots + a_{mn}v_n \end{pmatrix} \middle| \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n \right\}$$

$$= \left\{ \begin{pmatrix} a_{11}v_1 \\ \vdots \\ a_{m1}v_1 \end{pmatrix} + \dots + \begin{pmatrix} a_{1n}v_n \\ \vdots \\ a_{mn}v_n \end{pmatrix} =$$

$$v_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{mn} \end{pmatrix} + \dots + v_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \middle| v_1, \dots, v_n \in \mathbb{K} \right\} = C(A)$$

Esempio 8.2

(Combinazioni lineari delle colonne di A)

$$V = \mathbb{R}_2[x], \quad W = \mathbb{R}^2, \quad f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}$$
$$p = a_0 + a_1 x + a_2 x^2, \quad f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$$
$$N(f) = \{ p = a_0 + a_1 x + a_2 x^2 \mid f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$
$$= \{ p = a_0 + a_1 x + a_2 x^2 \mid a_0 = 0, a_1 + a_2 = 0 \}$$

$$Im(f) = \left\{ f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \middle| p = a_0 + a_1 x + a_2 x^2 \right\}$$
$$= \left\{ \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \middle| a_0, a_1, a_2 \in \mathbb{R} \right\}$$

Esempio 8.3

$$i: \mathbb{R}^2 \to \mathbb{R}^3$$

$$i\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix}$$

$$N(i) = \left\{\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2 \middle| i\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right\}$$

$$= \left\{\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2 \middle| v_1 = v_2 = 0\right\}$$

$$= \left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}\right\}$$

$$Im(i) = \left\{i\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix} \middle| \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2\right\}$$

$$= \left\{\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \middle| v_3 = 0\right\}$$

8.2 Teorema (nullità + rango)

Sia $f: V \to W$ un'applicazione lineare. Allora:

$$\dim_{\mathbb{K}}(V) = \dim_{\mathbb{K}}(N(f)) + \dim_{\mathbb{K}}(Im(f))$$

8.2.1 Dimostrazione

Notiamo che $N(f) \subseteq V$ è un sottospazio di V. Quindi:

$$\dim_{\mathbb{K}}(N(f)) = m \le n = \dim_{\mathbb{K}}(V)$$

per 6.11.

Sia $\{v_1,\ldots,v_m\}\subseteq N(f)\subseteq V$ una base di N(f). Per il teorema di Steinitz, possiamo completare $\{v_1,\ldots,v_m\}$ ad una base di V, cioè esiste una base $\{v_1,\ldots,v_m,v_{m+1},\ldots,v_n\}$ di V. Si può dimostrare che $\{f(v_{m+1}),\ldots,f(v_n)\}$ è una base di Im(f), cioè $dim_{\mathbb{K}}(Im(f))$ è uguale a n-m. Dunque:

$$\dim_{\mathbb{K}}(V) = n = m + (n - m) = \dim_{\mathbb{K}}(Im(f)) + \dim_{\mathbb{K}}(N(f)) \quad \Box$$

Esempio 8.4

$$f: V \to W$$

$$V = \mathbb{R}_2[x], \quad W = \mathbb{R}^2$$

Per ogni $p = a_0 + a_1x + a_2x^2$, definiamo:

$$f(p) = \binom{p(0)}{p(1)} = \binom{a_0}{a_0 + a_1 + a_2}$$

$$N(f) = \{ p = a_0 + a_1 x + a_2 x^2 \mid a_0 = 0, a_1 = -a_2 \}$$

$$= \{ ax - ax^2 \mid a \in \mathbb{R} \} \quad a = a_1$$

$$= \{ a(x - x^2) \mid a \in \mathbb{R} \}$$

$$= \langle x - x^2 \rangle$$

L'insieme $\{x-x^2\}$ è un insieme di generatori e inoltre è linearmente indipendente, cioè è una base di N(f).

Completiamo $\{x-x^2\}$ a una base di $V=\mathbb{R}_2[x]$

$$\{x-x^2,1,x\}\subseteq V$$

Dimostriamo che

$$\mathcal{B} = \left\{ f(1), f(x) \right\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

 $\label{eq:energy} \grave{e}\ una\ base\ di\ Im(f) = \bigg\{ \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \, \Big|\ a_0, a_1, a_2 \in \mathbb{R} \bigg\}.$

• Linearmente indipendente: Siano $\alpha, \beta \in \mathbb{R}$ tali che:

$$\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \alpha \\ \alpha \end{pmatrix} + \begin{pmatrix} 0 \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \alpha \\ \alpha + \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Quindi $\alpha = 0$ e $\beta = \alpha + \beta = 0$.

• Insieme di generatori di Im() : Per ogni $\begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \in Im(f)$, abbiamo:

$$\begin{pmatrix} a_0 \\ a_0+a_1+a_2 \end{pmatrix} = a_0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (a_1+a_2) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Quindi \mathcal{B} è un insieme di generatori.

8.3 Dimensione di C(A)

Esempio 8.5

$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix} \quad C(A) = \left\langle \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ \frac{2}{3} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle \subseteq \mathbb{R}^3$$

Troviamo la forma ridotta di A:

$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix} \overset{E_{1}(\frac{1}{3})}{\sim} \begin{pmatrix} 1 & \frac{2}{3} & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix} \overset{E_{21}(1)}{\sim} \begin{pmatrix} 1 & \frac{2}{3} & 0 \\ 0 & \frac{3}{3} & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\overset{E_{21}(\frac{3}{2})}{\sim} \begin{pmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix} = U$$

In 6.6 abbiamo visto che le colonne dominanti $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} \frac{2}{3} \\ 1 \\ 0 \end{pmatrix}$ formano una

base di C(U) e $dim_{\mathbb{K}}(C(U)) = 2$. Il problema è che $C(U) \neq C(A)$, in particolare:

$$\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \notin C(U)$$

$$\left(\alpha \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \beta \begin{pmatrix} \frac{2}{3}\\1\\0 \end{pmatrix} = \begin{pmatrix} 3\\-1\\1 \end{pmatrix} \rightsquigarrow \begin{cases} \alpha + \frac{2}{3}\beta = 3\\\beta = -1\\0 = 1 \end{cases} \right)$$

il sistema lineare non ha soluzione

8.3.1 Proposizione

Sia $A \in M_{m \times n}(\mathbb{K})$ e sia $U \in M_{m \times n}(\mathbb{K})$ una forma ridotta di A. Allora lo spazio delle colonne C(A) e lo spazio delle colonne C(U) sono isomorfi e quindi hanno la stessa dimensione:

$$dim_{\mathbb{K}}(C(A)) = dim_{\mathbb{K}}(C(U)) = rk(U)$$

8.3.2 Dimostrazione

Sia $E \in M_{m \times m}(\mathbb{K})$ la matrice invertibile tale che U = EA e $A = E^{-1}U$. Consideriamo l'applicazione lineare

$$f: \mathbb{K}^m \to \mathbb{K}^m, \quad f_E(v) = Ev$$

con inversa $f_E^{-1}:\mathbb{K}^m\to\mathbb{K}^m\ f_E^{-1}(v)=f_{E^{-1}}(v)=E^{-1}v$

$$\mathbb{K}^{n} \xrightarrow{f_{E}} \mathbb{K}^{m}$$

$$\subseteq \uparrow \qquad \uparrow_{E-1} \qquad \uparrow \subseteq$$

$$C(A) \xrightarrow{f_{E-1}} C(U)$$

Vogliamo dimostrare che per ogni $v \in C(A)$, abbiamo $f_E(v)$ è un elemento di C(U) e, per $w \in C(U)$ abbiamo $f_{E^{-1}}(w) \in C(A)$. Infatti, $C(A) = \langle a_1, \ldots, a_n \rangle$ dove $A = \begin{pmatrix} a_1 & \ldots & a_n \end{pmatrix}$ e $C(U) = \langle u_1, \ldots, u_n \rangle$ dove $U = \begin{pmatrix} u_1 & \ldots & u_n \end{pmatrix}$. Inoltre $\begin{pmatrix} u_1 & \ldots & u_n \end{pmatrix} = U = EA = E\begin{pmatrix} a_1 & \ldots & a_n \end{pmatrix} = \begin{pmatrix} Ea_1 & \ldots & Ea_n \end{pmatrix}$ e quindi $Ea_1 = u_1, \ldots, Ea_n = u_n$. Abbiamo $\begin{pmatrix} a_1 & \ldots & a_n \end{pmatrix} = A = E^{-1}U = \begin{pmatrix} E^{-1}u_1 & \ldots & E^{-1}u_n \end{pmatrix}$ e quindi $a_1 = E^{-1}u_1, \ldots, a_n = E^{-1}u_n$. Dunque, per ogni $v = \sum_{i=1}^n \alpha_i a_i \in C(A)$, abbiamo che:

$$f_E(v) = f_E\left(\sum_{i=1}^n \alpha_i a_i\right) = \sum_{i=1}^n \alpha_i f_E(a_i) = \sum_{i=1}^n \alpha_i E a_i = \sum_{i=1}^n \alpha_i u_i \in C(U)$$

e, per ogni $w = \sum_{i=1}^{n} \beta_i u_i \in C(U)$, abbiamo che:

$$f_{E^{-1}}(w) = \sum_{i=1}^{n} \beta_i(E^{-1}u_i) = \sum_{i=1}^{n} \beta_i a_i \in C(A)$$

Quindi abbiamo un'applicazione lineare $f_E:C(A)\to C(U)$ con inversa $f_{E^{-1}}:C(U)\to C(A)$. Dunque f_E è un isomorfismo e

$$dim_{\mathbb{K}}(C(A)) \stackrel{7.7}{=} dim_{\mathbb{K}}(C(U)) = rk(U)$$

Esempio 8.6

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} \frac{2}{3}\\1\\0 \end{pmatrix} \right\} \text{ è una base di } C(U)$$

quindi

$$\left\{ f_{E^{-1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, f_{E^{-1}} \begin{pmatrix} \frac{2}{3} \\ 1 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ \frac{2}{3} \end{pmatrix} \right\} \\
C_1(A) \quad C_2(A) \right\}$$

è una base di C(A) per 7.7.

In generale, le colonne di A che corrispondono alle colonne dominanti di U formano una base di C(A).

8.4 Dimensione di N(A)

Sia $A \in M_{m \times n}(\mathbb{K})$. Per il teorema nullità + rango, abbiamo:

$$n = dim_{\mathbb{K}}(\mathbb{K}^n) = dim_{\mathbb{K}}(f_A) + dim_{\mathbb{K}}(Im(f_A)) =$$
$$= dim_{\mathbb{K}}(N(A)) + dim_{\mathbb{K}}(C(A)) = dim_{\mathbb{K}}(N(A)) + rk(A)$$

8.4.1 Corollario

Sia $A \in M_{m \times n}(\mathbb{K})$. Allora

$$dim_{\mathbb{K}}(N(A)) = n - rk(A)$$

8.5 Procedimento per determinare basi di C(A) e N(A)

Sia $A \in M_{m \times n}(\mathbb{K})$ con r = rk(A) e d = n - r = n - rk(A)

- 1. Per determinare una base di C(A):
 - $\bullet\,$ Trovare una forma ridotta U di A
 - \bullet Le colonne di A che corrispondono alle colonne dominanti di U formano una base di C(A)
- 2. Per determinare una base di N(A):
 - Risolvere il sistema lineare omogeneo Ax=0 assegnando parametri t_1,\ldots,t_d alle d variabili libere e ricavando le rimanenti variabili tramite "sostituzione all'indietro"
 - Per $1 \le i \le d$ si ottiene una soluzione u_i di Ax = 0 assegnando il valore 1 al parametro t_i e 0 ai rimanenti parametri.
 - Così facendo otteniamo $\{u_i,\ldots,u_d\}$ un insieme linearmente indipendente.
 - Dunque $\{u_i, \ldots, u_d\}$ è una base di N(A).

Esempio 8.7

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix} \xrightarrow{E_{31}(-2)} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{E_{31}(-1)} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U$$

Le colonne $\begin{pmatrix} 1\\0\\2 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\5 \end{pmatrix}$ formano una base

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\5 \end{pmatrix} \right\}$$

di C(A). Allora $\dim_{\mathbb{K}}(N(A))=4-rk(A)=4-2=2$. Risolviamo il sistema lineare $Ax=\mathbb{O}$:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + x_3 + 2x_4 = 0 \end{cases}$$

98

variabili libere:

$$x_3 = t_1 \quad x_4 = t_2$$

$$\begin{cases} x_1 = -2x_2 - 3x_3 = -2(-t_1 - 2t_2) - 3t_1 = -t_1 + 4t_2 \\ x_2 = -x_3 - 2x_4 = -t_1 - 2t_2 \\ x_3 = t_1 \\ x_4 = t_2 \end{cases}$$

soluzioni:

$$\begin{pmatrix} -t_1 + 4t_2 \\ -t_1 - 2t_2 \\ t_1 \\ t_2 \end{pmatrix} = \begin{pmatrix} -t_1 \\ -t_1 \\ t_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 4t_2 \\ -2t_20 \\ t_2 \end{pmatrix} = t_1 \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 4 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

$$L'insieme \left\{ \begin{pmatrix} -1\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\-2\\0\\1 \end{pmatrix} \right\} \ \grave{e} \ una \ base \ di \ N(A).$$

8.6 Proposizione

Sia $f:V\to W$ un'applicazione lineare tra spazi vettoriali V,W. Se A è la matrice associata a f rispetto a una base \mathcal{B} di V e una base \mathcal{D} di W, allora:

$$dim_{\mathbb{K}}(Im(f)) = rk(A)$$

Di conseguenza

$$dim_{\mathbb{K}}(N(f)) = dim_{\mathbb{K}}(V) - rk(A)$$

La dimensione $dim_{\mathbb{K}}(Im(f))$ è detta rango di f e scriviamo rk(f). La dimensione $dim_{\mathbb{K}}(N(f))$ è detta nullità di f.

8.7 Teorema

Siano $A \in M_{m \times n}(\mathbb{K})$, $b \in \mathbb{K}^m$. Se $p \in \mathbb{K}^n$ è una soluzione di Ax = b, allora l'insieme di tutte le soluzioni di Ax = b è

$$L = \{ p + u \mid u \in N(A) \}$$

8.7.1 Dimostrazione

Se v = p + u con $u \in N(A)$, allora

$$Av = A(p + u) = Ap + Au = Ap + 0 = b$$

Quindi v è una soluzione di Ax=b. Viceversa, se v è una soluzione di Ax=b, allora Av=b=Ap. Quindi

$$\mathbb{O} = Av - Ap = A(v - p) \quad \text{e} \quad \underbrace{v - p}_{=u} \in N(A)$$

Dunque $v = (v - p) + p = u + p \in L$ \square

Esempio 8.8

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix}$$

$$N(A) = \left\{ t_1 \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 4 \\ -2 \\ 0 \\ 1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}$$

$$b = \begin{pmatrix} 4 \\ 6 \\ 16 \end{pmatrix}$$

 $Consideriamo\ Ax = b$

$$\begin{pmatrix} 1 & 2 & 3 & 0 & | & 4 \\ 0 & 1 & 1 & 2 & | & 6 \\ 2 & 5 & 7 & 2 & | & 16 \end{pmatrix} \stackrel{EG}{\sim} \begin{pmatrix} 1 & 2 & 3 & 0 & | & 6 \\ 0 & 1 & 2 & 2 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} = U$$

$$\sim \begin{cases} x_1 + 2x_2 + 3x_3 = 6 \\ x_2 + x_3 + 2x_4 = 4 \end{cases}$$

Ponendo le variabili libere uguali a θ : $x_3 = x_4 = 0$. Troviamo una soluzione particolare:

$$p = \begin{pmatrix} -2\\4\\0\\0 \end{pmatrix}$$

Dunque l'insieme di soluzioni di Ax = b è:

$$L = \left\{ \begin{pmatrix} -2\\4\\0\\0 \end{pmatrix} + t_1 \begin{pmatrix} -1\\-1\\1\\0 \end{pmatrix} + t_2 \begin{pmatrix} 4\\-2\\0\\1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}$$

9 Autovalori e autovettori

$$f:\mathbb{K}^m\to\mathbb{K}^m$$

$$\exists A\in M_{m\times m}(\mathbb{K})\quad \text{take che }f=f_A$$

Esempi:

Consideriamo un'applicazione lineare $f_A: \mathbb{R}^2 \to \mathbb{R}^2$ per una matrice $A \in M_{2\times 2}(\mathbb{R})$.

Esempio 9.1

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, \alpha \in \mathbb{R}$$

Allora:

$$f_A\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} =$$
$$= \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \end{pmatrix} = \alpha \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Esempio 9.2

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \alpha \neq \beta \in \mathbb{R}$$

Allora:

$$f_A\left(\begin{pmatrix}v_1\\v_2\end{pmatrix}\right) = \begin{pmatrix}\alpha & 0\\0 & \beta\end{pmatrix}\begin{pmatrix}v_1\\v_2\end{pmatrix} = \begin{pmatrix}\alpha v_1\\\beta v_2\end{pmatrix}$$

$$f_A\left(\begin{pmatrix}v_1\\0\end{pmatrix}\right) = \begin{pmatrix}\alpha & 0\\0 & \beta\end{pmatrix}\begin{pmatrix}v_1\\0\end{pmatrix} = \begin{pmatrix}\alpha v_1\\0\end{pmatrix} = \alpha\begin{pmatrix}v_1\\0\end{pmatrix}$$

$$f_A\left(\begin{pmatrix}0\\v_2\end{pmatrix}\right) = \begin{pmatrix}\alpha & 0\\0 & \beta\end{pmatrix}\begin{pmatrix}0\\v_2\end{pmatrix} = \begin{pmatrix}0\\\beta v_2\end{pmatrix} = \beta\begin{pmatrix}0\\v_2\end{pmatrix}$$

Esempio 9.3

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$

Allora:

$$f_A\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 3v_1 - 2v_2 \\ v_1 \end{pmatrix}$$

Per ogni $\begin{pmatrix} t \\ t \end{pmatrix} \in \mathbb{R}^2, \ t \in \mathbb{R}, \ abbiamo \ che:$

$$f_A\left(\begin{pmatrix} t \\ t \end{pmatrix}\right) = \begin{pmatrix} 3t - 2t \\ t \end{pmatrix} = \begin{pmatrix} t \\ t \end{pmatrix} = 1 \begin{pmatrix} t \\ t \end{pmatrix}$$

$$f_A\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) \stackrel{?}{=} \alpha \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Per ogni
$$\binom{2t}{t} \in \mathbb{R}^2$$
, $t \in \mathbb{R}$, abbiamo che:

$$f_A\left(\begin{pmatrix} 2t \\ t \end{pmatrix}\right) = \begin{pmatrix} 6t - 2t \\ 2t \end{pmatrix} = \begin{pmatrix} 4t \\ 2t \end{pmatrix} = 2\begin{pmatrix} 2t \\ t \end{pmatrix}$$

9.1**Definizione**

Sia $A \in M_{n \times n}(\mathbb{K})$. Uno scalare $\lambda \in \mathbb{K}$ è detto **autovalore** di A se esiste un vettore $\mathbb{O} \neq v \in \mathbb{K}^n$ tale che $Av = \lambda v$. In tal caso v è detto **autovettore** di Arispetto all'autovalore λ .

N.B: Se $v = \mathbb{O}$, si ha sempre:

$$Av = A\mathbb{O} = \mathbb{O} = \lambda \mathbb{O} = \lambda v$$
 per qualsiasi λ

Quindi è essenziale considerare $v \neq 0$ nella definizione, cioè soltanto i vettori non nulli possono essere autovettori.

Esempio 9.4
$$\lambda_1 = 1$$
 e $\lambda_2 = 2$ sono autovalori di $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$. Ogni vettore della

forma $v_1 = \begin{pmatrix} t \\ t \end{pmatrix}$ per $t \neq 0$ è autovettore di A rispetto a $\lambda_1 = 1$.

Ogni vettore di forma $v_2 = {2t \choose t}$ per $t \neq 0$ è autovettore di A rispetto a $\lambda_2 = 2.$

9.2Osservazione

Sia $A \in M_{n \times n}(\mathbb{K}), \ v \neq 0 \text{ in } \mathbb{K}^n.$

1. v è un autovettore di A rispetto a $\lambda \in \mathbb{K}$ se e solo se:

 $\iff v$ è soluzione del sistema lineare $(A - \lambda I_n)x = \mathbb{O}$

2. $\lambda \in \mathbb{K}$ è autovalore di A se e solo se:

 \iff il sistema lineare $(A - \lambda I_n)x = \mathbb{O}$ ha una soluzione diversa da \mathbb{O} .

$$\iff$$
 $(A - \lambda I_n)$ non è invertibile.

$$\iff det(A - \lambda I_n) = 0.$$

Esempio 9.5

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \ \lambda \in \mathbb{K}$$

$$A - \lambda I_2 = \begin{pmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{pmatrix}$$

$$det(A - \lambda I_2) = det \begin{pmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{pmatrix} =$$

$$= (3 - \lambda)(-\lambda) - (1)(-2) = -3\lambda + \lambda^2 + 2 =$$

$$= \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$$

 λ è autovalore di A se e solo se:

$$\iff (\lambda - 1)(\lambda - 2) = 0$$

$$\iff \lambda = 1 \ o \ \lambda = 2$$

9.3 Definizione

Data una matrice $A \in M_{n \times n}(\mathbb{K})$, il polinomio di grado n:

$$p_A = det(A - \lambda I_n) \in \mathbb{K}[\lambda]$$

è detto polinomio caratteristico.

Esempio 9.6

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$p_A = det(A - \lambda I_2) = det \begin{pmatrix} -\lambda & -1\\ 1 & -\lambda \end{pmatrix} =$$
$$= (-\lambda)^2 + 1 = \lambda^2 + 1$$

Quindi A non possiede autovalori reali, però A ha autovalori complessi $\lambda_1=i$ e $\lambda_2=-i$.

9.4 Teorema

Sia $A \in M_{n \times n}(\mathbb{K})$

- 1. Gli autovalori di A sono esattamente gli zeri del polinomio caratteristico p_A .
- 2. Gli autovettori relativi a un autovalore λ sono esattamente le soluzioni non nulle del sistema lineare $(A \lambda I_n)x = \mathbb{O}$, ovvero gli elementi non nulli di $N(A \lambda I_n)$. Chiamiamo $N(A \lambda I_n)$ l'autospazio di λ e scriviamo $E_A(\lambda) = N(A \lambda I_n)$.

9.5 Corollario

Ogni matrice $A \in M_{n \times n}(\mathbb{K})$ ha al massimo n autovalori. Ogni matrice $A \in M_{n \times n}(\mathbb{C})$ possiede n autovalori in \mathbb{C} (non necessariamente distinti) per il teorema fondamentale dell'algebra (1.3).

$$p_A = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}$$

9.6 Definizione

Sia $\lambda \in \mathbb{K}$ un autovalore di $A \in M_{n \times n}(\mathbb{K})$.

1. Si dice molteplicità algebrica di λ la molteplicità m_λ di λ come uno zero di $p_A,$ cioè se:

$$p_A = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}$$

allora la molteplicità algebrica di λ_i è m_i per ogni $1 \leq i \leq r$.

2. Si dice molteplicità geometrica di λ la dimensione di $E_A(\lambda)$.

Esempio 9.7

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$$

• Autovalori di A

$$p_A = \det(A - \lambda I_2) = \det\begin{pmatrix} 5 - \lambda & -2\\ 4 & -1 - \lambda \end{pmatrix} = (5 - \lambda)(-1 - \lambda) + 8 =$$
$$= \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1)$$

Gli autovalori di A sono $\lambda_1 = 3$ e $\lambda_2 = 1$.

• Molteplicità algebrica

$$m_1 = 1, \quad m_2 = 1$$

• Molteplicità geometrica

$$E_A(\lambda) = N(A - \lambda I_2) =$$

$$= \left\{ v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{C} \mid \begin{pmatrix} 5 - \lambda & -2 \\ 4 & -1 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$E_A(3) = N\left(\begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} \right) = \left\{ v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \mid \begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$\alpha_1 = \dim_{\mathbb{K}}(E_A(3)) = 2 - rk \begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 \\ 4 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

$$\alpha_1 = 2 - rk \begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} = 2 - 1 = 1$$

$$E_A(1) = N \begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix}$$

$$\alpha_2 = dim_{\mathbb{K}}(E_A(1)) = 2 - rk \begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$$

$$\alpha_2 = 2 - rk \begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix} = 2 - 1 = 1$$

9.7 Osservazione

Siano v_1, \ldots, v_r autovettori di una matrice $A \in M_{n \times n}(\mathbb{K})$ rispetto a $\lambda_1, \ldots, \lambda_r$. Supponiamo che $\mathcal{B} = \{v_1, \ldots, v_r\}$ è linearmente indipendente.

NB: $U = \langle v_1, \dots, v_r \rangle \subseteq \mathbb{K}^n$ dove $\langle v_1, \dots, v_r \rangle$ indica:

$$\left\{ \sum_{i=1}^{r} \alpha_i v_i \mid \alpha_i \in \mathbb{K} \right\}$$

è una base di U.

Sia $v = \alpha_1 v_1 + \ldots + \alpha_r v_r \in U$. Allora:

$$Av = A(\alpha_1 v_1 + \dots + \alpha_r v_r) =$$

$$= \alpha_1(Av_1) + \dots + \alpha_r(Av_r) =$$

$$= \alpha_1(\lambda_1 v_1) + \dots + \alpha_r(\lambda_r v_r) =$$

$$= (\alpha_1 \lambda_1) v_1 + \dots + (\alpha_r \lambda_r) v_r \in U$$

Abbiamo che $f_A:U\to U$ è un applicazione lineare. Allora:

$$[f_A(v)]_{\mathcal{B}} = [Av]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 \alpha_1 \\ \vdots \\ \lambda_r \alpha_r \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_r \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_r \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_r \end{bmatrix} [v]_{\mathcal{B}}$$

Quindi: $D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_r \end{bmatrix}$ è la matrice associata a f_A rispetto a $\mathcal B$ nel dominio

e nel codominio per il teorema 7.10. In particolare, se n=r, allora $\mathcal B$ è una base di $\mathbb K^n$ e abbiamo

$$\mathbb{K}^n \xrightarrow{f_A} \mathbb{K}^n$$

$$C_{\mathcal{B}} \downarrow \qquad \downarrow C_{\mathcal{B}}$$

$$\mathbb{K}^n \xrightarrow{f_D} \mathbb{K}^n$$

Che equivale a:

$$v = \sum_{i=1}^{n} \alpha_{1} v_{1} \longrightarrow Av$$

$$\downarrow$$

$$\begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \longrightarrow \begin{bmatrix} Av \end{bmatrix}_{\mathcal{B}}$$

$$D[v]_{\mathcal{B}}$$

quindi $f_D = C_{\mathcal{B}} f_A C_{\mathcal{B}}^{-1}$. Abbiamo $C_{\mathcal{B}}^{-1} = f_B$ dove $(v_1, \dots, v_n) = B$ per 7.5 e $C_{\mathcal{B}} = (C_{\mathcal{B}}^{-1})^{-1} = f_B^{-1} = F_{B^{-1}}$. Allora $f_D = f_{B^{-1}} f_A f_B = f_{B^{-1}AB}$ e $D = B^{-1}AB$.

Esempio 9.8

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$$

Questa matrice ha autovalori:

$$\lambda_1 = 3, \quad \lambda_2 = 1$$

Gli autovettori rispetto a $\lambda_1 = 3$:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} t, \ t \neq 0$$

Gli autovettori rispetto a $\lambda_2 = 1$:

$$\binom{1}{2}s, \ s \neq 0$$

Quindi $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è una base di \mathbb{R}^2 formata da autovettori di A.

Dunque

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

abbiamo $D = B^{-1}AB$. Calcoliamo:

$$(I_n|B^{-1}) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

9.8 Proposizione

Sia $A \in M_{n \times n}(\mathbb{K})$. Se v_1, \ldots, v_r sono autovettori di A che corrispondono a r autovalori distinti $\lambda_1, \ldots, \lambda_r$, allora $\{v_1, \ldots, v_r\}$ è linearmente indipendente. In particolare, se abbiamo n autovalori distinti, allora esiste una base di \mathbb{K}^n formata da autovettori.

9.8.1 Dimostrazione (r = 2)

 $\{v_1, v_2\}$ è linearmente indipendente $\iff v_1$ non è combinazione lineare di v_2 (cioè v_1 non è multiplo di v_2). Mostriamo che non è possibile trovare $\alpha \in \mathbb{K}$ tale che $\alpha v_2 = v_1$.

Se $v_1 = \alpha v_2$, allora:

$$\lambda_1 v_1 = A v_1 = A(\alpha v_2) = \alpha(A v_2) = \alpha(\lambda_2 v_2)$$

Quindi:

$$\alpha \lambda_2 v_2 = \lambda_1 v_2 = \lambda_1 (\alpha v_2) = \alpha \lambda_1 v_2$$

cioè:

$$\phi = \alpha \lambda_2 v_2 - \alpha \lambda_1 v_2 = \alpha (\lambda_2 - \lambda_1) v_2 = \mathbb{O}$$

Perciò $v_2 \neq \mathbb{O}$ (definizione di autovettore) e $\lambda_2 \neq \lambda_1$ (quindi $\lambda_2 - \lambda_1 \neq 0$), concludiamo che $\alpha = 0$. Ma è impossibile che $v_1 = \mathbb{O}$ perchè v_1 è autovettore. Dunque non esiste un tale scalare α . \square

Esempio 9.9

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R})$$

Vogliamo calcolare:

1. Autovalori di A

Calcoliamo $p_A = det(A - \lambda I_3)$ il polinomio caratteristico della matrice A. Le radici di p_A sono gli autovalori di A.

$$p_A = det(A - \lambda I_3) = det \begin{pmatrix} -\lambda & 1 & 1\\ 1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{pmatrix}$$

Utilizzo la regola di sarrus:

$$\begin{pmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \\ 1 & 1 \end{pmatrix}$$

$$det(A - \lambda I_3) = (-\lambda)^3 + 1 + 1 - (-\lambda) - (-\lambda) - (-\lambda) =$$

= $-\lambda^3 + 3\lambda + 2$

Osserviamo che $\lambda_1 = 2$ è una radice di p_A . Dividiamo per $\lambda - 2$:

Allora le radici di $-\lambda^2 - 2\lambda - 1$ sono:

$$\frac{-(-2) \pm \sqrt{(-2)^2 - 4(-1)(-1)}}{2(-1)} = \frac{2 \pm \sqrt{0}}{-2} = -1$$

Quindi $p_A = -(\lambda - 2)(\lambda + 1)^2$ e gli autovalori sono:

$$\lambda_1 = 2, \quad \lambda_2 = -1$$

2. Molteplicità algebriche

Sono gli esponenti dei fattori del polinomio caratteristico.

$$m_1 = 1, \quad m_2 = 2$$

3. Molteplicità geometriche e basi di $E_A(\lambda_i)$

È la dimensione dell'autospazio $E_A(\lambda_i)$.

$$d_1 = dim_{\mathbb{R}}(E_A(2)), \quad d_2 = dim_{\mathbb{R}}(E_A(-1))$$

$$E_A(\lambda_i) = N(A - \lambda_i I_3)$$

$$E_A(2) = N\left(\begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}\right) d_1 = 3 - rk\left(\begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}\right)$$

$$E_A(-1) = N\left(\begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}\right) d_2 = 3 - rk\left(\begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}\right)$$

$$\begin{pmatrix} -2 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{3} & -\frac{1}{3}\\ 1 & 1 & 1 \end{pmatrix}$$

$$A - \lambda_1 I_3 = \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & -\frac{3}{2} & \frac{3}{2}\\ 0 & \frac{3}{2} & -\frac{3}{2} \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & 1 & -1\\ 0 & \frac{3}{2} & -\frac{3}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}$$

$$rk(A - \lambda_1 I_3) = 2$$
 Quindi $d_1 = 3 - 2 = 1$

$$A - \lambda_2 I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $rk(A - \lambda_2 I_3) = 1$ Quindi $d_2 = 3 - 1 = 2$.

Calcoliamo una base per $E_A(2) = N \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ usando il

metodo (vedi capitolo 8) per il calcolo di basi di spazi nulli, possiamo calcolare una base di $E_A(2)$:

Risolviamo il sistema lineare che corrisponde alla forma ridotta di

$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

$$\begin{cases} x_1 - \frac{1}{2}x_2 - \frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \\ x_3 = t \end{cases} \longrightarrow \begin{cases} x_1 = \frac{1}{2}t + \frac{1}{2}t = t \\ x_2 = t \\ x_3 = t \end{cases}$$

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\} \ \dot{e} \ una \ base \ di \ N \left(\begin{pmatrix} -2 & 1 & 1\\1 & -2 & 1\\1 & 1 & -2 \end{pmatrix} \right)$$

Calcoliamo una base
$$E_A(-1) = N \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 = t \\ x_3 = s \end{cases} \leadsto \begin{cases} x_1 = -t - s \\ x_2 = t \\ x_3 = s \end{cases}$$

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\} \text{ è una base di } N \left(\begin{pmatrix} 1&1&1\\1&1&1\\1&1&1 \end{pmatrix} \right)$$

Osserviamo che

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

è una base di \mathbb{R}^3 . Infatti, \mathcal{B} è linearmente indipendente se e solo se

$$B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

ha rango 3, cioè se e solo se $det(B) \neq 0$.

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \to rk(B) = 3$$

Quindi \mathcal{B} è linearmente indipendente. Siccome \mathcal{B} contiene 3 vettori, allora \mathcal{B} è una base di \mathbb{R}^3 .

Per 9.7, la matrice diagonale:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

e la matrice invertibile:

$$B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

tali che:

$$D = B^{-1}AB \ e \ BDB^{-1} = \overbrace{BB^{-1}}^{I_3} A \overbrace{B^{-1}B}^{I_3} = A$$

9.9 Definizione

1. Due matrici $A, B \in M_{n \times n}(\mathbb{K})$ sono **simili** se esiste una matrice invertibile $S \in M_{n \times n}(\mathbb{K})$ tale che:

$$B = S^{-1}AS$$

2. Se $A \in M_{n \times n}(\mathbb{K})$ è simile a una matrice diagonale, allora A è diagonalizzabile su \mathbb{K} .

10 Diagonalizzazione di matrici

10.1 Proposizione (Proprietà delle matrici simili)

Siano $A, B \in M_{n \times n}(\mathbb{K})$ due matrici simili, cioè esiste una matrice invertibile S tale che $B = S^{-1}AS$.

1.
$$det(A) = det(B)$$
 e $P_A = P_B$

2. A e B hanno gli stessi autovalori.

3.
$$A^m = SB^mS^{-1}$$

4. Se
$$B = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$
 è diagonale, allora $det(A) = \lambda_1 \dots \lambda_n$ e

$$A^m = S \begin{pmatrix} \lambda_1^m & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n^m \end{pmatrix} S^{-1}$$

10.1.1 Dimostrazione

1.
$$B = S^{-1}AS$$

$$\begin{split} \det(B) &= \det(S^{-1}AS) \\ \det(B) &\stackrel{4.13}{=} \det(S^{-1}) \det(A) \det(S) \\ \det(B) &= \det(S^{-1}) \det(S) \det(A) \\ \det(B) &\stackrel{4.14}{=} \frac{1}{\det(S)} \det(S) \det(A) \\ \det(B) &= \det(A) \end{split}$$

Analogamente si vede $P_A = P_B$

2. Gli autovalori di una matrice sono le radici del polinomio caratteristico. Quindi segue da 1. che gli autovalori coincidono.

$$A = I_n A I_n = (SS^{-1}) A (SS^{-1})$$
$$= S(S^{-1}AS) S^{-1}$$
$$= SBS^{-1}$$

$$A^{m} = \underbrace{(SBS^{-1})(SBS^{-1})\dots(SBS^{-1})(SBS^{-1})}_{m \text{ volte}}$$

$$= SB\underbrace{(S^{-1}S)}_{I_{n}}B\underbrace{(S^{-1}S)}_{I_{n}}\dots\underbrace{(S^{-1}S)}_{I_{n}}B\underbrace{(S^{-1}S)}_{I_{n}}BS^{-1}$$

$$= SB^{m}S^{-1}$$

4.
$$det(A) = det(B) = \lambda_1 \dots \lambda_n$$

Osserviamo

$$B^{m} = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{pmatrix} \cdots \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1^m & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n^m \end{pmatrix}$$

Quindi

$$A \stackrel{2:}{=} SB^{m}S^{-1} = S \begin{pmatrix} \lambda_{1}^{m} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}^{m} \end{pmatrix} S^{-1}$$

Esempio 10.1

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad A = SDS^{-1}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad S = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad S^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
is usely calculate A^6

 $Si\ vuole\ calcolare\ A^6$

10.2 Teorema

Una matrice $A \in M_{n \times n}(\mathbb{K})$ è diagonalizzabile se e solo se esiste una base di \mathbb{K}^n formata da autovettori di A.

10.2.1 Dimostrazione

 \Leftarrow Se esiste una base di autovettori, allora abbiamo dimostrato in 9.7 che A è diagonalizzabile.

 \Rightarrow Supponiamo che $A=PDP^{-1}$ dove P è una matrice invertibile e D è una matrice diagonale.

$$P = (v_1 \dots v_n)$$
 dove v_1, \dots, v_n le colonne di P

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$

Allora:

$$AP = (PDP^{-1})P = (PD)\underbrace{(P^{-1}P)}_{I_n} = PD$$

$$AP = A (v_1 \dots v_n) = (Av_1 \dots Av_n)$$

$$AP = PD = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{pmatrix}$$

Quindi:

$$Av_1 = \lambda_1 v_1, \dots, Av_n = \lambda_n v_n$$

Siccome $v_i \neq \mathbb{O}$ per ogni $1 \leq i \leq n$ perchè la matrice è invertibile. Dunque v_1, \ldots, v_n sono autovettori di A rispetto agli autovalori $\lambda_1, \ldots, \lambda_n$.

Siccome P è invertibile, il rango di P è uguale a n (per il teorema delle matrici invertibili). Per 8.3, le colonne di P sono linearmente indipendenti. Per 6.12 $\mathcal{B} = \{v_1, \dots, v_n\}$ è un insieme di generatori, cioè \mathcal{B} è una base. \square

Esempio 10.2

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$$

A ha autovalori $\lambda_1 = 3, \lambda_2 = 1$

$$\begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} = A = \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}}_{P^{-1}}$$

10.3 Corollario

Se $A \in M_{n \times n}(\mathbb{K})$ possiede n autovalori distinti, allora A è diagonalizzabile.

10.3.1 Dimostrazione

10.2 + 9.8 + 6.12

10.4 Osservazione

Esempio 10.3

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

è diagonalizzabile, ma gli autovalori sono $\lambda_1=2, \lambda_2=1$ (la molteplicità algebrica di λ_2 è uguale a $m_2=2$)

La condizione di 10.3 è sufficiente ma non è necessaria

Esempio 10.4

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$P_m = \det(M - \lambda I_2) = \det \begin{pmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2$$

Autovalore: $\lambda_1 = 1$. $m_1 = 2$.

$$E_{M}(\lambda_{1}) = E_{M}(1) = N\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) =$$

$$= \left\{ \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \in \mathbb{R}^{2} \middle| \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}}_{\left(v_{2}\right)} \right\} =$$

$$= \left\{ \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \in \mathbb{R} \middle| v_{2} = 0 \right\} =$$

$$= \left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} \in \mathbb{R} \middle| t \in \mathbb{R} \right\} =$$

$$= \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$$

$$d_{1} = 1$$

Gli insiemi di autovettori linearmente indipendenti $\left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} \right\}$, $t \neq 0$.

Quindi non esiste una base di \mathbb{R}^2 formata da autovettori di M perchè ogni base di \mathbb{R}^2 contiene 2 vettori. Per 10.2, la matrice M non è diagonalizzabile

10.5 Lemma

Sia $A \in M_{n \times n}(\mathbb{C})$ con autovalori distinti $\lambda_1, \ldots, \lambda_r$ con molteplicità algebriche m_1, \ldots, m_r e molteplicità geometriche d_1, \ldots, d_r .

1.
$$m_1 + m_2 + \ldots + m_r = n$$

2. $1 \le d_i \le m_i$ per ogni $1 \le i \le r$.

10.5.1 Dimostrazione

1.

$$P_A = \underbrace{\det(A - \lambda I_n)}_{\text{grado } n} = \underbrace{(\lambda - \lambda_r)^{m_1} \dots (\lambda - \lambda_r)^{m_r}}_{\text{grado } m_1 + \dots + m_r}$$

Quindi

$$n = m_1 + \ldots + m_r$$
 \square

10.6 Teorema

Sia $A \in M_{n \times n}(\mathbb{C})$ con autovalori distinti $\lambda_1, \ldots, \lambda_r$ molteplicità algebriche m_1, \ldots, m_r e molteplicità geometriche d_1, \ldots, d_r .

I seguenti enunciati sono equivalenti:

- 1. A è diagonalizzabile.
- 2. $d_1 + \ldots + d_r = n$
- 3. $m_i = d_i$ per ogni $1 \le i \le r$

10.6.1 Dimostrazione

 $(1) \Rightarrow (2)$ Supponiamo che A è diagonalizzabile. Per 10.2, esiste una base \mathcal{B} di \mathbb{K}^n formata da autovettori di A.

Figura 13: Autospazi come sottospazi di \mathbb{K}^n

NB:

$$E_A(\lambda_i) = N(A - \lambda_i I_n) = \{\text{autovettori di } A \text{ rispetto a } \lambda_i\} \cup \{\mathbb{O}\} \subseteq \mathbb{K}^n$$

Sia $t_i=\#(\mathcal{B}\cap E_A(\lambda_i))=$ numero di elementi di \mathcal{B} contenuti in $E_A(\lambda_i)$ per ogni $1\leq i\leq r$. Allora:

$$t_i \le d_i = dim_{\mathbb{C}}(E_A(\lambda_i))$$

perchè gli elementi di \mathcal{B} sono linearmente indipendenti. Inoltre:

$$n = t_1 + \ldots + t_r \le d_1 + \ldots + d_r \le m_1 + \ldots + m_r = n$$

Dunque:

$$n = d_1 + \ldots + d_r$$

 $(2) \Rightarrow (3)$ Supponiamo (2), cioè:

$$d_1 + \ldots + d_r = n = m_1 + \ldots + m_r$$

Siccome $1 \le d_i \le m_i$ per ogni $1 \le i \le r$, concludiamo che:

$$d_i = m_i$$

(3) \Rightarrow (1) Supponiamo che $m_i = d_i$ per ogni $1 \leq i \leq r$, scegliamo una base $\mathcal{B}_i = \{v_1, \ldots, v_{d_i}\}$ di $E_A(\lambda_i)$. Mostreremo che:

$$\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_r$$
è una base di \mathbb{C}^n

perchè ${\mathcal B}$ contiene esattamente

$$d_1 + \ldots + d_r = m_1 + \ldots + m_r = n$$

elementi, basta verificare l'indipendenza lineare.

Figura 14: Autospazi come sottospazi di \mathbb{K}^n

Siano $\alpha_i, \ldots, \alpha_{id_i} \in \mathbb{C}$ per ogni $1 \leq i \leq r$ tali che

$$\mathbb{O} = \underbrace{\alpha_{11}v_{11} + \ldots + \alpha_{1d_1}v_{1d_1}}_{w_1 \in E_A(\lambda_1)} + \ldots + \underbrace{\alpha_{r1}v_{r1} + \ldots + \alpha_{rd_r}v_{rd_r}}_{w_r \in E_A(\lambda_r)}$$

Vogliamo dimostrare che $\alpha_{ij}=0$ per ogni $1\leq i\leq r$ e $1\leq j\leq d_i$.

Definiamo $w_i = \alpha_{i1}v_{i1} + \ldots + \alpha_{id_i}v_{id_i}$ per ogni $1 \leq i \leq r$ e notiamo che $w_i \in E_A(\lambda_i)$. Quindi w_i è un autovettore di A rispetto a λ_i oppure $w_i = \mathbb{O}$. Quindi

$$\mathbb{O} = w_1 + \ldots + w_r$$

è una combinazione lineare di autovettori rispetto ad autovalori distinti, oppure vettori nulli. Per 9.8, autovettori rispetto ad autovalori distinti sono linearmente indipendenti. Dunque:

$$w_1 = w_2 = \ldots = w_r = \mathbb{O}$$

Allora, per ogni $1 \leq i \leq r,$ abbiamo

$$\mathbb{O} = w_i = \alpha_{i1}v_{i1} + \ldots + \alpha_{id_i}v_{id_i}$$

Poichè $\mathcal{B}_i = \{v_{i1}, \dots, v_{id_i}\}$ è una base, concludiamo che:

$$\alpha_{i1} = \ldots = \alpha_{id_i} = 0$$

Dunque $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_r$ è linearmente indipendente con n elementi e quindi è una base di \mathbb{C}^n . \square

Esempio 10.5

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$$

Gli autovalori di A sono le radici del polinomio caratteristico

$$P_A = \det(A - \lambda I_2) =$$

$$= \det\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}\right) =$$

$$= \det\begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix} =$$

$$= (-\lambda)^2 - (-1) =$$

$$= \lambda^2 + 1 = (\lambda - i)(\lambda + i)$$

• Autovalori:

$$\lambda_1 = i, \ \lambda_2 = -i$$

• Molteplicità algebrica:

$$m_1 = m_2 = 1$$

• Molteplicità geometrica:

$$d_i = dim_{\mathbb{C}}(E_A(\lambda_i))$$

Per il lemma 10.5:

$$1 \le d_1 \le m_1 = 1 \Rightarrow d_1 = 1$$

$$1 \le d_2 \le m_2 = 1 \Rightarrow d_2 = 1$$

Allora $m_1 = d_1 \ e \ m_2 = d_2$, quindi $A \ e \ diagonalizzabile$.

Abbiamo:

$$D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

la matrice diagonale formata dagli autovalori di A sulla diagonale. Nella dimostrazione abbiamo visto che $P = \begin{pmatrix} v_1 & v_2 \end{pmatrix}$ dove $\mathcal{B} = \{v_1, v_2\}$ è una base di \mathbb{C}^2 formata da autovettori e $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ dove \mathcal{B}_i è una base di $E_A(\lambda_i)$.

Calcoliamo \mathcal{B}_1 e \mathcal{B}_2 :

$$\begin{split} E_A(i) &= N \left(\begin{pmatrix} 0-i & -1 \\ 1 & 0-i \end{pmatrix} \right) = \\ &= N \left(\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \right) \end{split}$$

Risolviamo il sistema:

$$\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \overset{E_{12}}{\sim} \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix} \overset{E_{21}(i)}{\sim} \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 - ix_2 = 0 \\ x_2 = t \end{cases} \xrightarrow{\sim} \begin{cases} x_1 = it \\ x_2 = t \end{cases}$$

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix} \right\} \ \grave{e} \ una \ base \ di \ E_A(i)$$

$$E_A(-i) = N\left(\begin{pmatrix} 0+i & -1\\ 1 & 0+i \end{pmatrix}\right) =$$
$$= N\left(\begin{pmatrix} i & -1\\ 1 & i \end{pmatrix}\right)$$

Risolviamo il sistema:

$$\begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \stackrel{E_{12}}{\sim} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \stackrel{E_{21}(-i)}{\sim} \begin{pmatrix} 1 & i \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 + ix_2 = 0 \\ x_2 = t \end{cases} \xrightarrow{\sim} \begin{cases} x_1 = -it \\ x_2 = t \end{cases}$$

$$\mathcal{B}_{2} = \left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$$

$$Dunque:$$

$$\mathcal{B} = \mathcal{B}_{1} \cup \mathcal{B}_{2} = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$$

$$P = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad P = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}^{-1}$$

$$Calcoliamo \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}^{-1}:$$

$$\begin{pmatrix} i & -i & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \stackrel{E_{12}}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ i & -i & 1 & 0 \end{pmatrix} \stackrel{E_{21}(-i)}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -2i & 1 & -i \end{pmatrix}$$

$$\stackrel{E_{2}(\frac{1}{2}i)}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2}i & \frac{1}{2} \end{pmatrix} \stackrel{E_{12}(-1)}{\sim} \begin{pmatrix} 1 & 0 & -\frac{1}{2}i & \frac{1}{2} \\ 0 & 1 & \frac{1}{2}i & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} -\frac{i}{2} & \frac{1}{2} \\ \frac{i}{2} & \frac{1}{2} \end{pmatrix}$$

10.7 Algoritmo per la diagonalizzazione

Data una matrice quadrata $A \in M_{n \times n}(\mathbb{C})$:

1. Calcoliamo il polinomio caratteristico $P_A = det(A - \lambda I_n)$ e determiniamo gli zeri distinti $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ con molteplicità algebriche m_1, \ldots, m_r , ovvero:

$$P_A = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_r}$$

2. Per ciascuno $1 \leq i \leq r$ calcoliamo la molteplicità geometrica:

$$d_{i} = dim_{\mathbb{C}} \underbrace{(E_{A}(\lambda_{i}))}_{N(A-\lambda_{i}I_{n})} = n - rk(A - \lambda_{i}I_{n})$$

- 3. Verifichiamo se $m_i = d_i$ per ogni $1 \le i \le r$ (oppure se $d_1 + \ldots + d_r = n$)
- 4. In caso positivo determiniamo una base di $E_A(\lambda_i)=N(A-\lambda_iI_n)$ (usando 8.5) per ogni $1\leq i\leq r$
- 5. L'unione delle basi da luogo a una base $\mathcal{B} = \{v_1, \dots, v_n\}$ di \mathbb{C}^n composta da autovettori di A
- 6. Ponendo $P = (v_1 \dots v_n)$ e D la matrice diagonale:

sulla cui diagonale abbiamo gli autovalori $\lambda_1,\dots,\lambda_r$ con le loro molteplicità

- 7. Calcoliamo P^{-1} usando 4.2 oppure 4.14
- 8. Otteniamo

$$D = P^{-1}AP \quad A = PDP^{-1}$$

10.8 Osservazione

Sia A una matrice su \mathbb{R} . Se A è diagonalizzabile su \mathbb{C} e gli autovalori sono tutti reali, allora A è diagonalizzabile di \mathbb{R} . Infatti, in tal caso le matrici $(A - \lambda_i I_n)$ sono tutte matrici su \mathbb{R} e possiamo risolvere i sistemi lineari $(A - \lambda_i I_n)x = 0$ su \mathbb{R} , ottenendo una base di \mathbb{R}^n composta da autovettori di A e $P, D \in M_{n \times n}(\mathbb{R})$

10.9 Teorema spettrale

Sia $A \in M_{n \times n}(\mathbb{R})$ una matrice simmetrica, cioè $A = A^T$, ad esempio

$$A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$$

Allora tutti gli autovalori di A sono reali e A è diagonalizzabile su \mathbb{R} .

10.9.1 Dimostrazione (n = 2)

Sia $A=\begin{pmatrix} a & c \\ c & b \end{pmatrix}$ una matrice simmetrica su \mathbb{R} . Se c=0, allora A è diagonale. Supponiamo $c\neq 0$. Allora:

$$P_A = \det \begin{pmatrix} a - \lambda & c \\ c & b - \lambda \end{pmatrix} = (a - \lambda)(b - \lambda) - c^2 = \lambda^2 - (a + b)\lambda + (ab - c^2)$$

Le radici di P_A sono:

$$\lambda_1 = \frac{(a+b) + \sqrt{\Delta}}{2}$$

$$\lambda_2 = \frac{(a+b) - \sqrt{\Delta}}{2}$$

dove

$$\Delta = (-(a+b))^2 - 4(ab - c^2) =$$

$$= a^2 + 2ab + b^2 - 4ab + 4c^2 =$$

$$= (a-b)^2 + 4c^2 \ge 0$$

Dunque $\lambda_1, \lambda_2 \in \mathbb{R}$ e quindi A è diagonalizzabile su \mathbb{R} per 10.8. \square

11 Basi ortonormali

Esempio 11.1

$$V = \mathbb{R}^2$$

Quando si ha lo spazio \mathbb{R}^2 si può considerare lo spazio sul piano cartesiano:

Ora consideriamo una base, quella più semplice è la base canonica:

$$\mathcal{B}_{can} = \left\{ b_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

La base canonica corrisponde ai versori del piano bidimensionale e ogni vettore corrisponde a una coppia di numeri reali (v_1, v_2) che rappresentano i coefficienti della combinazione lineare $v = v_1b_1 + v_2b_2$.

La particolarità della base canonica è che i suoi elementi sono ortogonali, cioè l'angolo tra i due vettori è di 90°.

 $Un'altra\ base\ con\ questa\ proprietà\ \grave{e}:$

$$\mathcal{B}_2 = \left\{ b_1 = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

Un altro esempio è la base:

$$\mathcal{B}_3 = \left\{ b_1 = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}, b_2 = \begin{pmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{pmatrix} \right\}$$

