L13 IIR数字滤波器

优点: 边缘频率准确, 可利用模拟滤波器, 结构存在反馈, 阶次更低。

缺点:相位非线性,稳定性。

计算方法

• 1.把数字滤波器指标 ω_p , ω_{st} , A_p , A_{st} 转换成模拟滤波器指标 Ω_p , Ω_s , A_p , A_{st}

$$\Omega = \omega/T$$

$$A_p = 20 log (1 - \delta_1)$$

$$A_{st} = 20 log(\delta_2)$$

- 2.转换成模拟低通滤波器指标
- 3.查表得模拟低通滤波器原型 $H_p(s)$
- 4.得到模拟滤波器 $H_a(s)$
- 5.得到数字滤波器 H(z)

冲激响应不变法

时域-对模拟滤波器的单位冲激响应进行抽样(时域特性逼近好),多值映射

步骤

• 已知模拟滤波器系统函数 $H_a(s)$ (部分分式形式)

- 拉普拉斯反变换得单位冲激响应 $h_a(t) = L^{-1}[H_a(s)]$
- 保证冲激响应不变 $h(n) = h_a(t)|_{t=nT}$
- z变换得数字滤波器 $H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}$

形式

$$H_a(s) = \sum_{k=1}^N rac{A_k}{s-s_k} o H(z) = \sum_{k=1}^N rac{A_k}{1-e^{s_k T} z^{-1}}$$

tip: 注意频谱混叠现象 $\Omega < \Omega_s/2 = \frac{\pi}{T}$,不适合高通/带阻数字滤波器

双线性变换法

变换域-单一映射

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

$$\Omega = rac{2}{T}tan(rac{\omega}{2})$$

- Butterworth滤波器原型 $H_a(s)=rac{1}{s+1}, (n=1)$
- 阶数 $n \geq rac{log_{10}(rac{10^{-0.1A_s}-1}{\epsilon^2})}{2log_{10}(V_s)}$, $V_s = rac{\Omega_{st}}{\Omega_p}$

映射关系表

类型	映射	截止频率
低通	$rac{s}{\Omega_c}$	Ω_c
高通	$rac{\Omega_c}{s}$	Ω_c

类型	映射	截止频率
带通	$rac{s^2+\Omega_l\Omega_h}{s(\Omega_h-\Omega_l)}\Omega_c$	Ω_l,Ω_h
带阻	$rac{s(\Omega_h-\Omega_l)}{s^2+\Omega_l\Omega_h}\Omega_c$	Ω_l,Ω_h