CORRECTION SESSION NORMALE D'ELECTRONIQUE NUMERIQUE 1 INF 152

Proposez Par : GROUPE GENIUS R

Par : Joël_yk

EXERCICE 01 :

1)Donner les intervalles de codage d'un entier naturel sur : 8 bits, 16 bits, et 32 bits.

Réponse:

```
Sur 8 bits : [0, 2^8 - 1] = [0, 255]

Sur 16 bits : [0, 2^{16} - 1] = [0, 65535]

Sur 32 bits : [0, 2^{32} - 1] = [0, 4294967295]
```

2) Pour la représentation des entiers relatifs en signe/valeur absolue, donner les intervalles de codage sur 8 bits et 16 bits.

Réponse :

```
Sur 8 bits : [-127,127] = [-2^7 - 1, 2^7 - 1]
Sur 16 bits : [-32767,32767] = [-(2^{15} - 1), 2^{15} - 1]
```

3) Pour la représentation des entiers relatifs en complément à 2, donner les intervalles de codage sur 8 bits & 16 bits.

Réponse:

```
Sur 8 bits : [-128,127] = [-2^7, 2^7 - 1]
Sur 16 bits : [-32768,32767] = [-(2^{15}), 2^{15} - 1]
```

4) Remplissez le tableau suivant (les cases manquantes (#1 à #8) en convertissant les chiffres suivants vers les formats indiqués. Ne pas tenir compte des sections ombragées. Réponse :

Binaire Naturel (8bits, 3 bits)	Binaire Complément a 2 (8bits, 3bits)	Binaire Signe (signe/valeur absolue (8bits,3bits)	Décimal	Hexadécimal
00100101,111			37,875	25,E
#1= 01001100,011	#2= 01001100,011	#3= 01001100,011	76,375	4C,6
	11011011,101	#4= 10100100,011	#5= -36,375	
	#6= 10000100,110	11111011,010	-123,25	
00101101,101	#7= 00101101,101	00101101,101	45,625	#8=2D,A

```
Explication du résultat Pour :
#1 = #2 = #3 = 0100 1100, 0110 (4C,6)
C2(11011011,101) = C1(11011011,101) + 0,001 = ?
00100100,010 + 0,001 = 00100100,011
#4 : On trouve la valeur positive en binaire en faisant le complément à 2 :
On place le bit le plus significatif à 1 pour indiquer que c'est une valeur négative
10100100,011
\#5 = -1 \times 2^7 + 1 \times 2^6 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^1 
= -128 + 64 + 16 + 8 + 2 + 1 + 0.5 + 0.125 = -36.375
Où: 1*2^5 + 1*2^2 + 1*2^2 + 1*2^3 = 32 + 4 + 0.25 + 0.125 = -36.375
#6 : La Valeur positive en binaire en enlevant le bit de signe du binaire signé :
Valeur positive = 01111011,010
Le Complément à 2 de cette valeur : C2(01111011,010) = C1(01111011,010) + 0,001 =
10000100,101 + 0,001 = 10000100,110
#7 = 00101101.101
#8 = 2D,A = > (00101101,1010)
```

EXERCICE 02:

A- Quelles sont les valeurs des nombres suivant représentés en virgule flottant en standard IEEE 754 simple précision :

Réponse:

B- Donner la valeur décimale du nombre représenté par : (44 DF A4 8A)₁₆ en standard IEEE 754.

Réponse:

```
(44 DF A4 8A)_{16} = > 1789,141
```

C- Série d'exercices :

1-Simplier les expressions suivantes :

Réponse :

```
S_1 = A.B + A.B = A \oplus B \mid S_2 = A + B = A.B \mid S_3 = A + C \mid S_4 = A.B + C + D \mid S_5 = A \mid B + C \mid S_6 = B \mid A + C \mid A + C
```

2-Calculer les compléments de \$1, \$5, \$6 et les simplifier :

Réponse :

3-Donner les équations des fonctions \$1, \$5 et \$6 en n'utilisant que des portes NAND à 2 entrées puis en n'utilisant que des portes NOR à 2 entrées. Tracer les logigrammes de \$1, \$5 et \$6, et préciser le nombre de portes nécessaires dans chaque cas et en déduire la meilleure solution.

Réponse:

$$S_1 = A.B + A.B = A + B + A + B$$
 | $S_5 = A.\overline{B}.C = \overline{A} + B + \overline{C}$ | $S_6 = \overline{B}.\overline{A}.C = B + A + \overline{C}$

Précisions du	NAND à 2 entrées	NOR à 2 entrées
nombres de Portes		
S ₁	5	5
\$ ₅	4	4
S ₆	5	3

PROBLEME

Partie A: Résolution du Problème Logique

1. Définition des entrées-sorties :

Réponse :

```
On a: Deux entrées x, y et deux sorties A et B x=0 si a+b <= 7 tonnes x=1 si a+b >= 7 tonnes y=0 si a>b y=1 si a<=b
```

2.Table de vérité :

x	у	A	В
0	0	1	1
0	1	1	1
1	0	0	1
1	1	1	0

3 Equation Logique : Nb →On utilise la deuxième forme normale (puisqu'on n'en a qu'un seul max terme pour les deux sorties):

$$A = \overline{x} + y \mid B = \overline{x} + \overline{y}$$

<u>4 Schéma Logique avec des Portes NAND:</u> Nb →On utilise le Théorème de De Morgan.

Partie B:

➤ <u>Demi-SOUSTRACTEUR</u>

1)Table de vérité:

Ai	Bi	Di	Ri
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

2) Donner Les équations de sortie :

$$Di = Ai \oplus Bi \mid Ri = \overline{Ai}.Bi$$

3) Etablir le schéma Logique :

> Soustracteur Complet

1)Table de vérité de Di & Ri

Ri+1	Ai	Bi	Di	Ri
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

2) Table de Karnaugh + équations simplifiées de Di et Ri :

	Pour Di				Pour Ri	
Ri+1	0	1	GROUPE	Ri+1	0	1
AiBi				AiBi		
00	0	1	GENIUS	00	0	1
01	1	0		01	1	1
11	0	1	REPETITION	11	0	1
10	1	0		10	0	0

$$Di = (Ai \oplus Bi) \oplus Ri-1$$

 $Ri = \overline{Ai}$. Bi + Ri-1 ($\overline{Ai \oplus Bi}$)

3) Schéma du Soustracteur Complet :

4) Réalisation d'un soustracteur binaire Complet selon 02 modes :

4-a Avec 02 demi-SOUSTRACTEURS:

Pour le faire : Il faut Retrancher Ai de Bi (du 1er demi-soustracteur) , Puis retrancher Ri-1 de la différence obtenue. Hehe (;) un schéma pour comprendre cela :

4-b Avec 01 demi-SOUSTRACTEURS & 01 demi-Additionneurs :

Bah Pour le faire : Additionner Bi et Ri-1 avec un demi-additionneur (DA) (cette opération peut évidemment engendrer une retenue) Puis on retranche le résultat obtenu de Ai. Hehe (;) un schéma pour comprendre cela :

> Additionneur-Soustracteur :

1) Réalisons Ce circuit :

a) Table de vérité :

С	Е	S
0	0	0
0	1	1
1	0	1
1	1	0

b) Equations: $S = C \oplus E$

c) schéma:

2) Réalisons ce circuit conventionnelle :

Explication:

Pour calculer la différence A - B de deux nombre signés A et B, on utilise un circuit qui calcule d'abord l'opposé -B de B puis effectue la somme de A avec -B grâce à un Additionneur. Le calcul de -B est réalisé en prenant la négation de B bit à bit puis en Ajoutant 1 au résultat obtenu. Ce dernier 1 est en fait ajouté directement à la somme de A et -B en l'injectant comme retenue C0 à l'additionneur. Le circuit ci-dessous effectue une somme ou une différence suivant la valeur de la commande CMD. Si Cmd vaut 0, le circuit calcule la somme A + B. Si, au contraire, Cmd vaut 1, le circuit calcule la différence A - B. En effet, chacune des portes xor effectue la négation ou non d'une entrée Bi suivant la valeur de CMD.

Contact WhatsApp : +237 658395978 | Réaliser Par Joël_yk