#### Faculdade de Engenharia da Universidade do Porto



# Modelo conceptual de um casino

1.ª submissão do projeto

Duarte Souto Assunção up202208319@up.pt

Guilherme Duarte Matos up202208755@up.pt

João Vítor Ferreira up202208393@up.pt

# Índice

| 1. Descrição do domínio                     | 1 |
|---------------------------------------------|---|
| 2. Modelo conceptual                        | 3 |
| 2.1. Solução inicial                        | 3 |
| 2.2. Melhoria com base em ferramentas de IA | 4 |
| 2.3. Solução final                          | 5 |
| 3. Contribuição de cada membro do grupo     | e |

### 1. Descrição do domínio

Para analisar os lucros e os gastos de um casino, de modo a prevenir fraude, cria-se uma base de dados que armazena, por jogo do casino, os gastos e ganhos de cada jogador envolvido em cada partida de jogo. Neste casino existem três jogos de interesse:

- Póquer;
- BlackJack;
- Slot Machine.
- Um jogo de póquer, tem que ser jogado numa mesa de póquer. Numa partida de póquer jogam entre 2 a 8 jogadores em que cada jogador faz uma ou várias apostas, todas estas maiores do que a mínima estipulada pela mesa. Antes do jogo acabar, todas as apostas estão juntas na mesa. No final do jogo, o casino lucra uma comissão do valor na mesa, comissão essa que irá variar de mesa para mesa. O vencedor irá ficar com o valor restante e os perdedores perderão o valor que apostaram. É possível que haja mais do que um vencedor com lucros diferentes entre eles.
- Um jogo de BlackJack é jogado numa mesa própria, e mesmo que possa ter vários jogadores sentados numa dada mesa, uma partida apenas contempla a interação entre um único jogador e a mesa. No início do jogo, o jogador, então, faz uma aposta, que tem que ser maior do que a aposta mínima exigida para aquela mesa. Serão contabilizadas as pontuações do jogador e da casa. Para vencer, é necessário que a sua pontuação seja maior do que a do casino, mas não maior do que 21. Caso um jogador ganhe, recebe de volta o seu dinheiro a dobrar, mas caso perca, o casino lucra o dinheiro apostado. Quando o jogador ganha com 21 pontos, recebe um extra 50% (esta informação é supérflua à base de dados).
- Os giros e as apostas nas Slot Machines de jogador único são claras. Para cada giro, o jogador insere na máquina o preço exigido pelo equipamento. Cada máquina pode ter um preço diferente, porém este é fixo. A seguir, a máquina sorteará símbolos para os 3 slots existentes e caso calhe uma boa combinação, o jogador ganhará um prémio (varia desde zero até ao prémio máximo estabelecido em cada máquina). Se fracassar, perderá a quantia paga, logo, o casino ficará com o lucro. Obviamente, só um jogador por vez é que pode interagir com a máquina.
- No casino, cada jogador terá um NIF, um nome, e um total de fichas adquiridas. Sempre que queira trocar dinheiro por fichas e vice-versa, será armazenada a data, hora e a quantia dessa troca. Cada jogador pode jogar várias partidas, sendo que para uma dessas partidas é registado quantas fichas o jogador ganhou ou perdeu, bem como a data e a hora. Também pode comprar serviços (bebidas, aperitivos, pedido ao concierge, p.e.), sendo armazenados a data, a hora, o preço e o tipo de tal serviço.

 Como já foi referido anteriormente, alguns jogos são jogados de maneira diferente dependendo do equipamento em que são jogados. Por exemplo, a comissão do casino e a aposta mínima varia de mesa para mesa no Póquer, o preço de um giro e o prémio máximo nas Slot Machines varia de máquina para máquina e em BlackJack a aposta que o jogador faz tem que ser maior ou igual ao mínimo estabelecido para aquela mesa.

## 2. Modelo conceptual

#### 2.1. Solução inicial



#### 2.2. Melhoria com base em ferramentas de IA

Inicialmente, foi pedido à inteligência artificial que criasse um diagrama do zero com a descrição fornecida, mas tal diagrama foi desprezado, devido à enorme quantidade de erros. Sendo assim, foi pedido em vez para sugerir melhorias à solução inicial com base na descrição do domínio. O *ChatGPT*, a inteligência artificial da *OpenAI*, foi a ferramenta escolhida. Ao dar a descrição e o diagrama inicial em texto, este foi o diagrama dado, tal como ilustrado na Figura 2.



Figura 2. Diagrama UML melhorado por inteligência artificial (Diagrama gerado usando *PlantUML*)

Resumidamente, estas foram algumas das alterações feitas pela inteligência artificial:

- "Jogador" está associado à generalização "Partida" em vez de cada uma das especificações;
- "tipoServico" é um atributo em vez de uma classe de associação entre "Jogador" e "Compra";
- As associações entre as especificações de "Equipamento" e de "Partida" são composições em vez de agregações;
- Os nomes das associações são agora mais descritivos e com uma linguagem mais natural;

Esta ferramenta mostra ser muito útil para gerar novas ideias, nomeadamente a nomenclatura das associações, porém falha em tópicos mais complexos e em reter informação, já que o diagrama da Figura 2 tem graves erros, como um "Ganho" não estar associado a uma "Partida" e a classe "DinheiroPorFichas" não estar associado a um "Jogador", por exemplo.

#### 2.3. Solução final

Após revisão das melhorias sugeridas pela inteligência artificial, a solução final terá composições em vez de agregações, já que uma partida não pode existir sem um equipamento, e as associações com o nome "Paga" e "Destino" serão "Realiza' renomeadas para "Recebe". já que torna а interpretação do diagrama mais fluida.

Apesar disto, "TipoServico" continuará a ser uma classe de associação, já que o número de serviços que o casino oferece são limitados e os seus respetivos nomes são conhecidos, e, portanto, é uma boa ideia restringir a base de dados desta forma.



Figura 3. Diagrama UML da solução final

## 3. Contribuição de cada membro do grupo

Para a elaboração da descrição da base de dados, cada um de nós foi responsável por procurar informações sobre como cada jogo funcionava e escrever a descrição. O Guilherme escreveu o restante da descrição. Quanto ao desenho do diagrama UML, foram feitas várias reuniões entre os três elementos, em que cada um dava a opinião e ideias sobre como deveria estar estruturado o diagrama (participação igual). O João ficou encarregado de transcrever o esquema do rascunho em papel para um software (StarUML) que permitia a elaboração de um desenho mais rigoroso. O Duarte pediu à IA que elaborasse um diagrama do zero, mas, após várias tentativas e correções, o João optou por apenas pedir à IA que fizesse uma melhoria ao diagrama já existente.

Cada um teve uma participação ativa e relevante na elaboração do trabalho.