Neural Networks at Work

How to implement and manage a Neural Network

Ing. Zese Riccardo Ing. Bizzarri Alice alice.bizzarri@unife.it

NN Frameworks

- There are many frameworks available for working with NNs.
 - Tensorflow
 - PyTorch
 - CNTK
 - Theano
 - Caffe
 - ...

NN Frameworks

An interesting library is Keras (https://keras.io/). From the website:

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Keras

- Contains a set of classes that abstracts the underlying NN library giving a unified interface to the systems Tensorflow, CNTK, and Theano.
- In practice, you can use Keras to define a network and run it using one of the three systems above without changing anything in the code.
- Written in Python, allows users to configure complicated models directly in Python
- Uses either CPU or GPU for computation
- Uses numpy data structures and a similar command structure to scikit-learn (model.fit, model.predict, etc.)

Keras and Tensorflow

- Recently, Tensorflow adopted Keras as its official frontend to simplify the definition and the management of the code.
 - It contains keras as a submodule.
- Before version 2, users could choose whether to use the original Tensorflow interface and functions or use the Keras module
- From version 2, the actual one, Tensorflow has been redesigned to use Keras only. Old code that does not use Keras cannot be executed if a previous version of Tensorflow is not installed.

Tensorflow and PyTorch

To install Tensorflow (https://www.tensorflow.org/) simply run the command

pip install tensorflow

To install PyTorch (https://pytorch.org/) simply run the command

pip install torch

Implementing the network

Tensorflow vs PyTorch

Common concepts

- We can define both as multi concept libraries:
 - Deep Learning Libraries
 - Tensor computation libraries
 - With a strong GPU capability
- A TENSOR can be seen as:
 - A mathematical object that we can manipulate using linear algebra
 - A software object representing a data structure
- Pytorch defines a class called torch. Tensor that defines these tensor objects
 (very similar to Numpy Arrays) that can operate on a device supporting
 CUDA (Nvidia GPUs)
- Tensorflow defines a class called tensorflow. Tensor similar to Pytorch

Tensor

Scalar

Rank-0 tensor

```
import torch

a = torch.tensor(1.)
a.shape

< 2.6s

torch.Size([])</pre>
```

Vector

Rank-1 tensor

```
import torch

a = torch.tensor([1., 2., 3.])
a.shape

$\square 0.0s

torch.Size([3])
```

Matrix

Rank-2 tensor

Tensor

An RGB image is nothing more than a stack of matrices A 3D Rank-3 tensor

Pipeline

With both frameworks, the following pipeline is implemented:

- 1. Definition of the dataset
- 2. Model definition
- 3. Definition of the training cycle
- 4. Train the model
- 5. Evaluate the model

Introduction and overview


```
import tensorflow as tf
(x train, y train),(x test, y test) =
tf.keras.datasets.mnist.load data()
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
1)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
            metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```



```
import tensorflow as tf
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shap
                                         Downloads the MNIST dataset and
  tf.keras.layers.Dense(512, activat
                                        loads the dataset dividing it in training
  tf.keras.layers.Dropout(0.2),
                                                 and test sets
  tf.keras.layers.Dense(10, activati
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
             metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```



```
import tensorflow as tf
(x_train, y_train),(x_test, y_test) = tf.kera
                                                    Definition of the model
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
            metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```



```
import tensorflow as tf
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shape=(28, 28
  tf.keras.layers.Dense(512, activation=tf.nn
                                                    Definition of the optimizer, loss
  tf.keras.layers.Dropout(0.2),
                                                   function and metrics to consider.
  tf.keras.layers.Dense(10, activation=tf)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
            metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```



```
import tensorflow as tf
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.n
                                                 Training of the net. We don't have to
                                                compute loss or any other metric. The
model.compile(optimizer='adam',loss='sparse
                                                  fit method will do the work for us.
             metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```



```
import tensorflow as tf
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
            metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
                                             The test set is used to evaluate the
model.evaluate(x test, y test) ===
                                                   trained model.
```



```
import tensorflow as tf
(x train, y train) (x test v test) = tf keras datasets maist.load data()
                As you can see the number of lines and operations is reduced to the
model = tf.ke
  tf.keras.la
                 minimum, making the definition and use of models a simple task.
  tf.keras.la
                          We will see each of these parts in detail.
  tf.keras.la
  tf.keras.layers.Dense civation=ti.nn.soitmax)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
             metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
model.evaluate(x test, y test)
```


TensorFlow - Output

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 — • **Os** Ous/step Epoch 1/5 1875/1875 -**- 22s** 10ms/step - accuracy: 0.8436 - loss: 8.5909 Epoch 2/5 1875/1875 -**- 16s** 8ms/step - accuracy: 0.9048 - loss: 0.4297 Epoch 3/5 1875/1875 -**- 16s** 8ms/step - accuracy: 0.9104 - loss: 0.4110 Epoch 4/5 1875/1875 **— - 16s** 9ms/step - accuracy: 0.9163 - loss: 0.3868 Epoch 5/5 1875/1875 -**- 16s** 8ms/step - accuracy: 0.9245 - loss: 0.3479 313/313 **- 2s** 5ms/step - accuracy: 0.9260 - loss: 0.3047 [0.277653306722641, 0.9340999722480774]

Typical Command Structure in Tensorflow

- 1. Build the structure of your network.
- 2. Compile the model, specifying your loss function, metrics, and optimizer (which includes the learning rate).
- 3. Fit the model on your training data (specifying batch size, number of epochs)
- 4. Predict on new data
- 5. Evaluate your results

Building the model in TensorFLow

- Tensorflow provides two approaches for building the structure of your model:
 - Sequential Model: it allows a linear stack of layers simpler and more convenient if the model has this form
 - Functional API: more detailed and complex, but it allows more complicated architectures
- We saw the Sequential Model.

Sequential Model VS Functional API

Add some slide to compere it

Introduction and overview

Pytorch

Libreria di machine learning open-source sviluppata inizialmente da Meta Al (Facebook)

Attualmente parte di Linux Foundation

E' una delle più note e usate libreria di sviluppo di sistemi di machine e deep learning alla pari di TensorFlow (Google)

Tra i più noti progetti sviluppati in Pytorch c'è l'autopilot di Tesla

La libreria è scritta in Python

Perché Pytorch?

Paper Implementations grouped by framework

Repository Creation Date

Rif.

Pipeline

With both frameworks, the following pipeline is implemented:

- 1. Definition of the dataset
- 2. Model definition
- 3. Definition of the training cycle
- 4. Train the model
- 5. Evaluate the model

Definition of the dataset

- 1. Loading data
- 2. (optional) split for training, validation and testing
- 3. Dataloader creation to cycle through the dataset

Loading data (basic)

Lettura dei dati (advanced)

- A class is created that inherits from the Dataset class of torch
- In the constructor you put all paths, data lists, default transformations, etc.
- There must always be 2 methods:
 - __len__: Serves to get the size of the dataset
 - __getitem__: Used to actually get the data from the dataset to be used in the training phase

```
class SegmentDataLoader(Dataset):
   def __init__(self, root1, root2, root3, mask_folder, img_size, transform):
        self.img folderC = root1
        self.img folderM01 = root2
        self.img folderM02 = root3
       self.mask folder = mask folder
       self.transform = transform
       self.img size = img size
       transform2 = transforms.Compose([
           transforms.Resize((self.img size, self.img size)),
           transforms.ToTensor(),
           transforms.Grayscale()
       self.transform2 = transform2
       self.folders, self.images = [], []
       self.imagesC = os.listdir(self.img folderC)
        self.imagesM01 = os.listdir(self.img folderM01)
        self.imagesM02 = os.listdir(self.img_folderM02)
        self.labels = os.listdir(self.mask folder)
   def len (self):
       return len(self.imagesC)
   def __getitem__(self, index):
        imgC = os.path.join(self.img folderC, self.imagesC[index])
        imgM01 = os.path.join(self.img_folderM01, self.imagesM01[index])
        imgM02 = os.path.join(self.img folderM02, self.imagesM02[index])
       label = os.path.join(self.mask_folder, self.labels[index])
       img_c = self.transform(Image.open(imgC).convert("RGB"))
       img m1 = self.transform(Image.open(imgM01).convert("RGB"))
       img_m2 = self.transform(Image.open(imgM02).convert("RGB"))
       label t = self.transform2(Image.open(label).convert("RGB"))
       return {'c': img_c, 'm1': img_m1, 'm2': img_m2, 'label': label_t]
```


Creation of Dataloader

- The Dataloader is a torch class that allows you to have a dataset loaded and used in an iterable way
- It allows you to do various things with the read data:
 - Batch data
 - Shuffling
 - Parallel loading of data
 - Data augmentation

Model definition (basic)

Network structure in the class constructor

Network forward pass

```
class FirstCNN(torch.nn.Module):
    def __init__(self, num_classes):
        super(FirstCNN, self).__init__()
        self.conv1 = torch.nn.Conv2d(in_channels=3, out_channels=32)
        self.conv2 = torch.nn.Conv2d(in channels=32, out channels=64)
        self.conv3 = torch.nn.Conv2d(in channels=64, out channels=128)
        self.conv4 = torch.nn.Conv2d(in_channels=..., out_channels=...)
        self.fullyC = torch.nn.Linear(..., num classes)
        self.activation
   def forward(self, input_data):
        x = self.conv1(input data)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        output = self.fullyC(x)
        return output
```


Model definition (advanced)

Training loop definition

- 1. Instantiate the model
- 2. Move it to the GPU
- 3. Instantiate the optimiser
- 4. Loss definition
- 5. For looping on data

Training loop definition

```
model = FirstCNN(num classes=10) ←
model = model.cuda() ←
optimizer = torch.optim.Adam(model.parameters(), lr=learning rate) ←
CE_loss = torch.nn.CrossEntropyLoss() <--</pre>
for epoch in range(num_epochs): ←
    model.train() 
    for batch in train dataloader:
        img = batch[0].cuda()
        labels = batch[1].cuda()
        # forward pass
        output = model(img)
        loss = CE loss(img, labels)
        # backpropagation
        optimizer.zero grad()
        loss.backward()
        optimizer.step()
```

- 1. Instantiate the model
- 2. Move it to the GPU
- 3. Instantiate the optimiser
- 4. Loss definition
- 5. For looping on epochs
 - 1. Network in training mode
 - 2. Move the data to the GPU
 - 3. Pass the batch through the network
 - 4. Calculate loss
 - 5. I reset the gradients to zero so they don't accumulate (so they are calculated correctly on each iteration)
 - 6. I calculate the gradients
 - 7. I update the weights

PyTorch

```
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
```

Downloads the MNIST dataset and loads the dataset dividing it in training and test sets

```
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root="./data", train=True,
transform=transform, download=True)
test_dataset = datasets.MNIST(root="./data", train=False,
transform=transform, download=True)
```

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)


```
class NeuralNet(nn.Module):
    def init (self):
        super(NeuralNet, self). init ()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28 * 28, 512)
        self.dropout = nn.Dropout(0.2)
        self.fc2 = nn.Linear(512, 10)
    def forward(self, x):
        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.fc2(x)
        return F.log softmax(x, dim=1)
```

Definition of the model


```
# Initialize model, loss function, and optimizer
model = NeuralNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```

Definition of the optimizer, loss function and metrics to consider and print.

Definition of the training loop.

```
# Training loop
def train(model, train_loader, criterion, optimizer, epochs=5):
    model.train()
    for epoch in range(epochs):
        for images, labels in train_loader:
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
```


Definition of the evaluation loop.

```
# Evaluation loop
def evaluate(model, test loader):
   model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test loader:
            outputs = model(images)
            , predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
   print(f"Accuracy: {100 * correct / total:.2f}%")
```



```
# Training loop
def train (model, train loader, validation loader, criterion,
optimizer, epochs=5):
    model.train()
    for epoch in range (epochs):
        for images, labels in train_loader:
             optimizer.zero grad()
             outputs = model(images)
             loss = criterion(outputs, labels)
             loss.backward()
                                                    We can use also evaluate function in
             optimizer.step()
                                                       definition of the training loop.
        print(f"Epoch {epoch+1}, Loss: {loss.icem()....,
        evaluate (model, validation loader)
```


Training of the net.

```
# Train and evaluate
train(model, train_loader, criterion, optimizer, epochs=5)
evaluate(model, test_loader)
```

The test set is used to evaluate the trained model.

PyTorch – Output

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz

100%| 28.9k/28.9k [00:00<00:00, 2.07MB/s]

Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz

100% | 1.65M/1.65M [00:00<00:00, 14.5MB/s]

Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz

Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz

100% | 4.54k/4.54k [00:00<00:00, 1.65 MB/s]

Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw

Epoch 1, Loss: 0.1447

Epoch 2, Loss: 0.0435

Epoch 3, Loss: 0.1497

Epoch 4, Loss: 0.0357

Epoch 5, Loss: 0.2335

Accuracy: 97.19%

Typical Command Structure in PyTorch

- 1. Create a new class for your network.
 - Initialize the layers in the contructor (__init__)
 - 2. Define how the layers are connected in method forward
- 2. Specify the loss function, metrics, and optimizer (which includes the learning rate).
- 3. Define the methods for training and evaluating your model
- 4. Fit the model on your training data (specifying batch size, number of epochs)
- 5. Predict on new data evaluating your results

Network Design

Let's go to

https://colab.research.google.com/drive/1QyNIHgW44Z9Usj7J3sdKaypVrFzohG6T notebook to see how we can define a neural network.

First, import the Sequential function and initialize your model object:

```
from keras.models import Sequential
model = Sequential()
```


Then we add layers to the model one by one.

```
# For the first layer, specify the input dimension
model.add(Dense(units=4, input_dim=3))

# Specify an activation function
model.add(Activation(sigmoid'))

# For subsequent layers, the input dimension is # presumed from the
previous layer
model.add(Dense(units=4))
model.add(Activation(sigmoid'))
model.add(Dense(units=3))
model.add(Activation('softmax'))
```


Train a NN

Re-open the notebook

https://colab.research.google.com/drive/1QyNIHgW44Z9Usj7J3sdK

aypVrFzohG6T and go to section Train and evaluate

Tensorflow Training

- One note about how training / test loss are calculated in Tensorflow.
- You may see that training loss is higher than test loss in Tensorflow models.
- This behavior stems from difference in procedure on how Tensorflow calculates training loss vs test loss
 - Training loss is averaged over many batches in an epoch, whereas test loss is based on the final parameters of that epoch and consequently may turn out to be lower.

Tensorflow in details

Let's see an example:

https://colab.research.google.com/drive/1gSKvOoyQISKghL0-QV2woII2kcf6FcPp

