Tarea 2

Trinidad Hernández Norma Verónica Vilchis Domínguez Miguel Alonso

1. Ejercicios

1. Demostrar si las siguientes funciones son $\theta(n^2)$

Nota 1. Sea f(n) una función por definición si $f(n) \in \theta(g(n))$ implica que $\exists c_1, c_2 \in \mathbb{N}$ y $\exists n_0 \in \mathbb{N}$ tales que $0 \le c_1 * g(n) \le f(n) \le c_2 * g(n)$.

a) $60n^2 + 5n + 1$

Por demostrar que $60n^2 + 5n + 1 \in \theta(n^2)$. Por la **Nota 1** implica mostrar las constantes tales que la función queda acotada por n^2 al multiplicarla por dichas constantes. Es decir:

$$c_1 * n^2 \le 60n^2 + 5n + 1 \le c_2 * n^2 \tag{1}$$

Sii

$$c_1 \le 60 + \frac{5}{n} + \frac{1}{n^2} \le c_2$$

Se propone $n_0=10,\,c_1=59,\,c_2=70$ Por lo que

$$59 \le 60 + \frac{5}{10} + \frac{1}{100} = \frac{6051}{100} \le 70$$

Con lo que se sigue cumpliendo la desigualdad. Para finalizar la demostración basta con mostrar que la desigualdad se sigue cumpliendo para $n > n_0$ con $n \in \mathbb{N}$.

En efecto, para hacer una buena aproximación de lo que ocurre con n grandes, tomamos el $\lim_{n\to\infty}$. Es decir:

$$lim_{n\to\infty}(60 + \frac{5}{n} + \frac{1}{n^2})$$

$$= lim_{n\to\infty}60 + lim_{n\to\infty}\frac{5}{n} + lim_{n\to\infty}\frac{1}{n^2}$$

$$= 60 + 0 + 0$$

Con lo que, se sigue cumpliendo la desigualdad (1)

Figura 1: Gráfica que muestra la comparación entre las funciones

b) $2n^2 - 16n + 35$

Siguendo un procedimiento parecido al inciso a, lo que haremos para mostrar que $2n^2 - 16n + 35 \in \theta(n^2)$ será utilizar la definición que se dio en la **Nota 1**, por lo que:

$$c_1 * n^2 \le 2n^2 - 16n + 35 \le c_2 * n^2 \tag{2}$$

Sii

$$c_1 \le 2 - \frac{16}{n} + \frac{35}{n^2} \le c_2$$

Se propone $n_0 = 16$, $c_1 = 1$ y $c_2 = 3$ obteniendo:x

$$1 \le 2 - \frac{16}{10} + \frac{35}{256} = \frac{281}{256} \le 3$$

Tomando el límite cuando n tiende a infinito, para mostrar que la desigualdad se cumple para $n_0 < n \in \mathbb{N}$

$$lim_{n\to\infty} 2 - \frac{16}{n} + \frac{35}{n^2}$$

$$= lim_{n\to\infty} 2 - lim_{n\to\infty} \frac{16}{n} + lim_{n\to\infty} \frac{35}{n^2}$$

$$= 2 - 0 + 0$$

Con lo que se conserva la desigualdad (2)

Figura 2: Gráfica que muestra la comparación entre las funciones

c) $3n^2 + 2 * n \ln n$ Por demostrar que $3n^2 + 2 * n \ln n \in \theta(n^2)$, en efecto:

$$c_1 * n^2 \le 3n^2 + 2 * n \ln n \le c_2 * n^2$$
 (3)

Sii

$$c_1 \le 3 + \frac{2 * ln n}{n} \le c_2$$

Si proponemos $n_0 = 128$, $c_1 = 2$ y $c_2 = 4$ obtenemos:

$$2 \le 3 + \frac{2 * \ln 128}{128} = 3 + \frac{7}{64} = \frac{199}{64} \le 4$$

Para demostrar que la desigualdad (3) se cumple para $n_0 < n \in \mathbb{N}$ tomamos $\lim_{n \to \infty}$:

$$\lim_{n \to \infty} 3 + \frac{2 * \ln n}{n}$$
$$= 3 + \lim_{n \to \infty} \frac{2 * \ln n}{n}$$

Con lo que la desigualdad (3) se conserva.

Figura 3: Gráfica que muestra la comparación entre las funciones

- d) 2+4+6+...+2n
- e) For i = 1 to n
 - . For j = 1toi
 - . For x = 1toi
 - x = x + 1