TÍN HIỆU VÀ HỆ THỐNG CHƯƠNG 3: Phép biến đổi Laplace

TS. Jingxian Wu

wuj@uark.edu

Nội Dung Chính

- · Mở Đầu
- Biến đổi Laplace
- Các tính chất của biến đổi Laplace
- Phép biến đổi Laplace ngược
- Các ứng dụng của biến đổi Laplace

Mở Đầu

• Tại sao lại cần phép biến đổi Laplace?

- Phân tích trong miền tần số với biến đổi Fourier rất hữu dụng trọng việc nghiên cứu về tín hiệu và hệ thống LTI.
 - * Tích chập trong miền thời gian => Phép nhân trong miền tần số
- Vấn đề: Nhiều tín hiệu không có biến đổi Fourier $x(t)=\exp(at)u(t)$, a>0 x(t)=tu(t)
- Biến đổi Laplace có thể giải quyết vấn đề này
 - * Nó tồn tại cho hầu hết tín hiệu thông thường
 - * Tuân theo các tính chất tương tự như biến đổi Fourier
- * Nó không mang bất kỳ ý nghĩa vật lý nào, chỉ là công cụ toán học tạo điều kiện cho việc phân tích
 - -Biến đổi Fourier cho ta cách biểu diễn tín hiệu trên miền tần số

Nội Dung Chính

- · Mở đầu
- Biến đổi Laplace
- Các tính chất của biến đổi Laplace
- Phép biến đổi Laplace ngược
- Các ứng dụng của biến đổi Laplace

Biến đổi Laplace hai phía:

$$X_B(s) = \int_{-\infty}^{+\infty} x(t) \exp(-st) dt,$$

$$s = \sigma + j\omega$$

- $-s = \sigma + j\omega$ là một giá trị phức
- -s cũng thường được gọi là tần số phức
- -Ký hiệu:

$$X_B(s) = L[x(t)]$$

$$x(t) \leftrightarrow X_{R}(s)$$

- Miền thời gian và miền phức S
- -x(t): là hàm của thời gian $t \to x(t)$ được gọi là tín hiệu trên miền thời gian
- $-X_B$ (s) : là một hàm của s $\to X_B$ (s) được gọi là tín hiệu trên miền s Miền s cũng được gọi là miền tần số phức

BIÉN ĐỔI LAPLACE

• Miền thời gian và miền s:

- x(t): là hàm của thời gian $t \to x(t)$ được gọi là tín hiệu trên miền thời gian
- $-X_B(s)$: là một hàm của $s \rightarrow X_B(s)$ được gọi là tín hiệu trên miền s
 - *Miền s cũng được gọi là miền tần số phức
- Bằng cách chuyển đổi tín hiệu từ miền thời gian sang miền s, chúng ta có thể đơn giản hóa rất nhiều việc phân tích hệ thống LTI.
- Phân tích hệ thống trên miền s:
- 1. Chuyển đổi các tín hiệu trên miền thời gian sang miền s bằng biến đổi Laplace.
 - 2. Thực hiện biểu diễn việc phân tích hệ thống miền s
 - 3. Chuyển kết quả trên miền s về miền thời gian

• Ví dụ:

-Tìm biến đổi Laplace hai phía của: x(t)=exp(-at)u(t)

• Miền hội tụ:

- -Phạm vi của s mà biến đổi Laplace của tín hiệu hội tụ
- -Biến đổi Laplace luôn chứa 2 thành phần:
 - *Biểu thức toán học của biến đổi Laplace
 - *Miền hội tụ

• Ví dụ:

-Tìm biến đổi Laplace hai phía của: x(t)=exp(-at)u(t)

• Ví dụ

- Tìm biến đổi Laplace hai phía của:

$$x(t)=3\exp(-2t)u(t)+4\exp(t)u(-t)$$

BIÉN ĐỔI LAPLACE: BIÉN ĐỔI LAPLACE MỘT PHÍA

• Biến đổi Laplace một phía:

$$X(s) = \int_{0^{-}}^{+\infty} x(t) \exp(-st) dt$$

- 0^- : Giá trị của x(t) tại t=0 được xem xét
 - Hữu ích khi xử lí tín hiệu nhân quả hoặc hệ thống nhân quả *Tín hiệu nhân quả :x(t)=0,t<0.
 - *Hệ thống nhân quả :h(t)=0,t<0.
- Chúng ta sẽ gọi đơn giản biến đổi Laplace một phía là biến đổi Laplace.

BIÉN ĐỔI LAPLACE: BIÉN ĐỔI LAPLACE MỘT PHÍA

• Ví dụ: Tìm biến đổi Laplace một phía của các tín hiệu sau.

1.
$$x(t) = A$$

2.
$$x(t)=\delta(t)$$

BIÉN ĐỔI LAPLACE: BIÉN ĐỔI LAPLACE MỘT PHÍA

• Ví dụ:

3.
$$x(t) = \exp(j2t)$$

4.
$$x(t) = cos(2t)$$

5.
$$x(t) = \sin(2t)$$

Signal	Transform	ROC
1. u(t)	$\frac{1}{s}$	Re{s}>0
2. u(t) — u(t-a)	$\frac{1 - \exp[-at]}{s}$	<u>Re{s</u> }>0
3. $\delta(t)$	1	For all x
4. $\delta(t-a)$	exp[-at]	For all x
5. <i>t</i> ⁿ u(t)	$\frac{n!}{s^{n+1}}$, $n = 1, 2,$	Re{s} >0
6. exp[-at]u(t)	$\frac{1}{s+a}$	Re{s} > -a
7. <i>t</i> ^{<i>n</i>} exp[-at]u(t)	$\frac{n!}{(s+a)^{n+1}}$	Re{s} > -a
8. $\cos \omega_0 t \ u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re{s} >0

Signal	Transform	ROC
9. $\sin \omega_0 t u(t)$	$\frac{\omega}{s^2 + \omega_0^2}$	Re{s} >0
10. $\cos^2 \omega_0 t u(t)$	$\frac{s^2 + 2\omega_0^2}{s(s^2 + 4\omega_0^2)}$	Re{s} >0
11. $\sin^2 \omega_0 t u(t)$	$\frac{n!}{(s+a)^{n+1}}$	Re{s} >0
12 . $\exp[-at] \cos \omega_0 t \ u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re{s} > -a
13 . $\exp[-at] \sin \omega_0 t u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	Re{s} > -a
14 . t cos $\omega_0 t u(t)$	$\frac{x^2 - \omega_0^2}{(x^2 + \omega_0^2)^2}$	Re{s} >0
15 . t sin $\omega_0 t u(t)$	$\frac{2\omega_0 s}{(x^2 + \omega_0^2)^2}$	Re{s} >0

NỘI DUNG CHÍNH

- · Mở đầu
- Biến đổi Laplace
- Các tính chất của biến đổi Laplace
- Phép biến đổi Laplace ngược
- Các ứng dụng của biến đổi Laplace

CÁC TÍNH CHẤT: TUYẾN TÍNH

• Tính tuyến tính:

- Nếu $x_1(t) \leftrightarrow X_1(s)$ $x_2(t) \leftrightarrow X_2(s)$
- Khi đó:

$$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s)$$

Miền hội tụ là giao giữa các miền hội tụ của hai tín hiệu gốc

• Ví dụ:

-Hãy tìm biến đổi Laplace của [A+Bexp(-bt)]u(t)

CÁC TÍNH CHẤT: DỊCH THỜI GIAN

Dịch thời gian

- Nếu $x(t) \leftrightarrow X(s)$ và $t_0 > 0$
- Khi đó:

$$x(t-t_0)u(t-t_0) \leftrightarrow X(s)exp(-st_0)$$

Miền hội tụ không thay đổi

CÁC TÍNH CHẤT: DỊCH TRÊN MIỀN S

• DICH trên miền s

- Nếu $x(t) \leftrightarrow X(s)$

 $Re(s) > \sigma$

- Khi đó

 $Re(s) > \sigma + Re(s_0)$

$$y(t)=x(t)exp(s_0t)\leftrightarrow X(s-s_0)$$

• Ví dụ:

-Hãy tìm biến đổi Laplace của $x(t) = A \exp(-\alpha t)\cos(\omega_0 t)u(t)$

CÁC TÍNH CHẤT: CO GIÃN THỜI GIAN

• CO giãn thời gian:

- Nếu
$$x(t) \leftrightarrow X(s)$$

 $Re\{s\} > \sigma_1$

- Khi đó

$$x(at) \leftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right)$$

 $Re\{s\}>a \sigma_1$

• Ví dụ:

- Hãy tìm biến đổi Laplace của x(t)=u(at)

CÁC TÍNH CHẤT: ĐẠO HÀM TRÊN MIỀN THỜI GIAN

- Đạo hàm trên miền thời gian :
 - Nếu g(t) ↔ G(s)
 - Khi đó:

$$\frac{dg(t)}{dt} \leftrightarrow sG(s) - g(0^{-})$$

$$\frac{d^{2}g(t)}{dt^{2}} \leftrightarrow s^{2}G(s) - sg(0^{-}) - g'(0^{-})$$

$$\frac{d^{n}g(t)}{dt^{n}} \leftrightarrow s^{n}G(s) - s^{n-1}g(0^{-}) - \dots - sg^{n-2}(0^{-}) - g^{n-1}(0^{-})$$

- · Ví dụ:
 - -Hãy tìm biến đổi Laplace của $g(t)=(\sin^2 \omega t)u(t), g(0)=0$

CÁC TÍNH CHẤT: ĐẠO HÀM TRÊN MIỀN THỜI GIAN

• Ví dụ:

- Hãy sử dụng biến đổi Laplace để giải phương trình vi phân:

$$y''(t)+3y'(t)+2y(t)=0$$
, $y(0)=3$ $y'(0)=1$

CÁC TÍNH CHẤT: ĐẠO HÀM TRÊN MIỀN S

• Đạo hàm trên miền s:

-Nếu
$$x(t)$$
 ↔ $X(s)$

-Khi đó

$$(-t)^n x(t) \longleftrightarrow \frac{d^n X(s)}{ds^n}$$

• Ví dụ:

-Hãy tìm biến đổi Laplace của tⁿu(t)

• Tích chập:

- Nếu $x(t) \leftrightarrow X(s)$ $h(t) \leftrightarrow H(s)$
- Khi đó x(t)⊗h(t)↔X(s)H(s)
 Miền hội tụ của X(s)H(s) là giao của các miền hội tụ của X(s) và H(s)

CÁC TÍNH CHẤT: TÍCH PHÂN TRÊN MIỀN THỜI GIAN

• Tích phân trên miền thời gian

-Nếu
$$x(t)$$
↔ $X(s)$

$$\int_{0}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{s} X(s)$$

- Ví dụ
 - Hãy tìm biến đổi Laplace của r(t)=tu(t)

• Ví dụ: Tìm tích chập

$$rect\left(\frac{t-a}{2a}\right) \otimes rect\left(\frac{t-a}{2a}\right)$$

• Ví dụ:

Đối với một hệ LTI, đầu vào là $x(t)=\exp(-2t)u(t)$, và đầu ra của hệ thống là $y(t)=[\exp(-t)+\exp(-2t)-\exp(-3t)]u(t)$

Hãy tìm đáp ứng xung của hệ thống

• Ví dụ:

-Hãy tìm biến đổi Laplace của đáp ứng xung của hệ thống LTI được biểu diễn bởi phương trình vi phân sau

$$2y''(t)-3y'(t)+y(t)=3x'(t)+x(t)$$

Giả thiết hệ thống ban đầu ở trạng thái nghỉ $(y^n(0)=x^n(0)=0)$

CÁC TÍNH CHẤT: ĐIỀU CHẾ

• Điều chế:

$$-N\acute{e}u$$
 $x(t)\leftrightarrow X(s)$

- Khi đớ
$$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2} \left[X(s+j\omega_0) + X(s-j\omega_0) \right]$$
$$x(t)\sin(\omega_0 t) \leftrightarrow \frac{j}{2} \left[X(s+j\omega_0) + X(s-j\omega_0) \right]$$

CÁC TÍNH CHẤT: ĐIỀU CHẾ

- Ví dụ:
 - Hãy tìm biến đổi Laplace của $x(t)=\exp(-at)\sin(\omega_0 t)u(t)$

CÁC TÍNH CHẤT: ĐỊNH LÝ GIÁ TRỊ ĐẦU

• Định lý giá trị đầu:

- Nếu tín hiệu x(t) khả vi vô hạn trên khoảng xung quanh $x(0^+)$ thì :

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

s= ∞ phải thuộc miền hội tụ ~

-Diễn biến của x(t) với giá trị t nhỏ được xác định bởi diễn biến của X(s) với giá trị s lớn .

CÁC TÍNH CHẤT: ĐỊNH LÝ GIÁ TRỊ ĐẦU

• Ví dụ:

Biến đổi Laplace của
$$x(t)$$
 là: $X(s) = \frac{cs+d}{(s-a)(s-b)}$

Hãy tìm giá trị của $x(0^+)$

TÍNH CHẤT: ĐỊNH LÝ GIÁ TRỊ CUỐI

• Định lý giá trị cuối :

-Nếu
$$x(t)$$
 ↔ $X(s)$

- Khi đó
$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$$
, s=0 phải thuộc miền hội tụ

· Ví dụ:

-Đầu vào x(t)=Au(t) được đưa tới một hệ thống với hàm truyền

như sau
$$H(s) = \frac{c}{s(s+b)+c}$$
, hãy tìm giá trị của $\lim_{t\to\infty} y(t)$

TÍNH CHẤT

1. Linearity	$\sum_{n=1}^{N} \alpha_n x_n(t)$	$\sum_{n=1}^{N} \alpha_n X_n(s)$
2. Time shift	$x(t-t_0)u(t-t_0)$	$X(s) \exp(-st_0)$
3. Frequency shift	$\exp(s_0t)x(t)$	$X(s-s_0)$
4. Time scaling	$x(\alpha t), \alpha > 0$	$1/\alpha X(s/\alpha)$
5. Differentiation	dx(t)/dt	$s X(s) - x(0^-)$
6. Integration	$\int_{0^{-}}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$
7. Multiplication by t	tx(t)	$-\frac{dX(s)}{ds}$
8. Modulation	$x(t)\cos\omega_0 t$	$\frac{1}{2}\left[X(s-j\omega_0)+X(s+j\omega_0)\right]$
	$x(t) \sin \omega_0 t$	$\frac{1}{2j}\left[X(s-j\omega_0)-X(s+j\omega_0)\right]$
9. Convolution	x(t) * h(t)	X(s)H(s)
10. Initial value	x(0 ⁺)	$\lim_{s\to\infty} sX(s)$
		- 1 A A B T A

 $\lim_{s\to 0} s X(s)$

 $\lim_{t\to\infty} x(t)$

11. Final value

NỘI DUNG CHÍNH

- · Mở đầu
- Biến đổi Laplace
- Các tính chất của biến đổi Laplace
- Phép biến đổi Laplace ngược
- Các ứng dụng của biến đổi Laplace

PHÉP BIÊN ĐỔI LAPLACE NGƯỢC

• Phép biến đổi Laplace ngược:

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$

- Để tính được tích phân trên cần dùng đến tích phân đường trên mặt phẳng phức \to Khó

• Trường hợp đặc biệt của phép biến đối Laplac ngược:

-Trong nhiều trường hợp, biến đổi Laplace có thể biểu diễn bởi hàm phân thức của s:

$$X(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

-Các bước tìm phép biến đối ngược:

- 1.Khai triển X(s) thành tổng các phân thức tối giản ARKANSAS 2 Tìm phán biến để:
 - 2. Tìm phép biến đổi ngược thông qua bảng biến đổi Laplace

PHÉP BIẾN ĐỔI LAPLACE NGƯỢC

• Nhắc lại: Khai triển thành phân thức tối giản khi các nghiệm đa thức là các nghiệm phân biệt:

$$X(s) = \frac{A}{s - a_1} + \frac{B}{s - a_2} + \frac{C}{s - a_3}$$

$$A = (s - a_1)X(s)|_{s=a_1} \qquad B = (s - a_2)X(s)|_{s=a_2} \qquad C = (s - a_3)X(s)|_{s=a_3}$$

• Ví dụ:

Hãy tìm biến đổi Laplace ngược của

$$X(s) = \frac{2s+1}{s^3 + 3s^2 - 4s}$$

PHÉP BIẾN ĐỔI LAPLACE NGƯỢC

• Ví dụ:

-Hãy tìm biến đổi Laplace ngược:

$$X(s) = \frac{2s^2}{s^2 + 3s + 2}$$

*Nếu đa thức tử có bậc cao hơn hoặc bằng bậc của đa thức mẫu, ta cần sắp xếp lại sao cho bậc của đa thức mẫu cao hơn.

PHÉP BIẾN ĐỔI LAPLACE NGƯỢC

• Nhắc lại: Khai triển thành phân thức tối giản khi đa thức mẫu có nghiệm bội hai (nghiệm kép):

$$X(s) = \frac{1}{(s-a)^{2}(s-b)} = \frac{A_{2}}{(s-a)^{2}} + \frac{A_{1}}{s-a} + \frac{B}{s-b}$$

$$A_2 = (s-a)^2 X(s)|_{s=a}$$
 $A_1 = \frac{d}{ds} [(s-a)^2 X(s)]|_{s=a}$ $B = (s-b)X(s)|_{s=b}$

PHÉP BIẾN ĐỔI LAPLACE NGƯỢC

• Đa thức mẫu có nghiệm bội N

$$X(s) = \frac{1}{(s-a)^{N}(s-b)} = \frac{A_1}{s-a} + \frac{A_2}{(s-a)^{2}} + \dots + \frac{A_N}{(s-a)^{N}} + \frac{B}{s-b}$$

$$A_{k} = \frac{1}{(N-k)!} \frac{d^{N-k}}{ds^{N-k}} [(s-a)^{N} X(s)]|_{s=a}$$
 $k = 1, ..., N$

$$B = (s - b)X(s)\big|_{s=b}$$

NỘI DUNG CHÍNH

- · Mỏ đầu
- Biến đổi Laplace
- Các ính chất của biến đổi Laplace
- Phép biến đổi Laplace ngược
- Các ứng dụng của biến đổi Laplace

• Hệ thống LTI:

-Phương trình hệ thống: phương trình vi phân biểu diễn mối quan hệ giữa đầu ra và đầu vào của hệ thống

$$y^{N}(t) + a_{N-1}y^{N-1}(t) + \dots + a_{1}y^{1}(t) + a_{0}y(t) = \sum_{m=0}^{M} b_{m}x^{m}(t)$$

$$y^{N}(t) + \sum_{n=0}^{N-1} a_{n} y^{n}(t) = \sum_{m=0}^{M} b_{m} x^{m}(t)$$

- Biểu diễn trên miền s:

$$[s^{N} + \sum_{n=0}^{N-1} a_{n} s^{n}] Y(s) = [\sum_{m=0}^{M} b_{m} s^{m}] X(s)$$

- Hàm truyền:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{m=0}^{M} b_m s^m}{s^n + \sum_{n=0}^{N-1} a_n s^n}$$

• Sơ đồ mô phỏng (Dạng chuẩn thứ nhất)

• Ví dụ:

Hãy biểu diễn cách thực hiện hệ thống ở dang chuẩn thứ nhất với hàm truyền sau :

$$H(s) = \frac{s^2 - 3s + 2}{s^3 + 6s^2 + 11s + 6}$$

ỨNG DỤNG: GHÉP NỐI HỆ THỐNG

· Ghép nối hệ thống:

$$H(S) = H_1(s) + H_2(s)$$

- Nối tiếp:

$$X(s)$$
 $H_1(s)$ $Y_1(s)$ $H_2(s)$ $Y_2(s)$

$$H(S) = H_1(s)H_2(s)$$

• Ví dụ:

-Hãy biểu diễn hệ thống dưới đây thành dạng nối tiếp của các hệ thống con :

$$H(s) = \frac{s^2 - 3s + 2}{s^3 + 6s^2 + 11s + 6}$$

· Ví dụ:

-Hãy tìm hàm truyền của hệ thống:

• Điểm cực và điểm không:

$$H(s) = \frac{(s - z_M)(s - z_{M-1})...(s - z_1)}{(s - p_N)(s - p_{N-1})...(s - p_1)}$$

- Các điểm không: z_1 , z_2 ,... z_M
- Các điểm cực: p₁ ,p₂ ,...p_N

• Nhắc lại : Ôn định BIBO

-Đầu vào bị chặn luôn dẫn đến việc đầu ra cũng bị chặn

$$\int_{-\infty}^{+\infty} |h(t)| dt < \infty$$

• Vị trí các điểm cực của H(s) trong miền s xác định được nếu hệ thống có ổn định BIBO hay không:

$$H(s) = \frac{A_1}{s - s_1} + \frac{A_2}{(s - s_2)^m} + \dots + \frac{A_N}{s - s_N}$$

-Các điểm cực đơn: Bậc của các cực là 1

-Các điểm cực bội : các cực có bậc cao hơn

• Trường hợp 1: Các điểm cực đơn nằm ở nửa bên trái mặt phẳng phức s

$$\frac{1}{(s-\sigma_k)^2 + \omega_k^2} = \frac{1}{(s-\sigma_k + j\omega_k)(s-\sigma_k - j\omega_k)}, \sigma_k < 0$$

$$p_1 = \sigma_k - j\omega_k$$

$$p_2 = \sigma_k + j\omega_k$$

$$h_k(t) = \frac{1}{\omega_k} \exp(\sigma_k t) \sin(\omega_k t) u(t)$$

$$\int_{-\infty}^{+\infty} |h_k(t)| dt =$$

Nếu tất cả các điểm cực của hệ thống nằm ở nửa mặt phẳng bên trái thì hệ là ổn định.

Trường hợp 2: các điểm cực đơn nằm ở nửa bên phải mặt phẳng
s:

$$\frac{1}{(s-\sigma_k)^2 + \omega_k^2} = \frac{1}{(s-\sigma_k + j\omega_k)(s-\sigma_k - j\omega_k)}, \sigma_k < 0$$

$$p_1 = \sigma_k + j\omega_k$$

$$p_2 = \sigma_k - j\omega_k$$

$$h_k(t) = \frac{1}{\omega_k} \exp(\sigma_k t) \sin(\omega_k t) u(t)$$

Nếu có ít nhất một điểm cực của hệ thống thuộc nửa mặt phẳng bên phải thì hệ sẽ không ổn định

• Trường họp 3 : Các điểm cực đơn nằm trên trục ảo

$$\frac{1}{(s-\sigma_k)^2+\omega_k^2} = \frac{1}{(s-\sigma_k+j\omega_k)(s-\sigma_k-j\omega_k)}, \sigma_k = 0$$

$$h_k(t) = \frac{1}{\omega_k} \exp(\sigma_k t) \sin(\omega_k t) u(t)$$

Nếu các điểm cực của hệ thống nằm trên trục ảo, hệ là không ổn định

• Trường hợp 4 : Các điểm bội nằm ở nửa bên trái mặt phẳng s

$$h_k(t) = \frac{1}{\omega_k} t^m \exp(\sigma_k t) \sin(\omega_k t) u(t), \sigma_k < 0$$
 Ôn định

• Trường hợp 5: Các điểm cực nằm ở nửa bên phải mặt phẳng s:

$$h_k(t) = \frac{1}{\omega_k} t^m \exp(\sigma_k t) \sin(\omega_k t) u(t), \sigma_k > 0$$
 Không ổn định

• Trường hợp 6: Các điểm cực nằm ở trên trục ảo

$$h_k(t) = \frac{1}{\omega_k} t^m \sin(\omega_k t) u(t)$$
Không ổn
định

• Ví dụ:

- Kiểm tra tính ổn định của hệ sau:

$$H(s) = \frac{3s+2}{s^2+6s+13}$$

