6.5 Kuvan mekanismia käytetään siirrettäessä laatikoita tasolta A tasolle B. Mekanismia ohjataan hydraulisesti siten, että kulma θ muuttuu ajan t kuluessa funktion $\theta(t) = \frac{\pi}{6}(1 - \cos\frac{\pi t}{2})$ mukaisesti, jossa ajan yksikkö on sekunti ja $0 \le \theta \le \frac{\pi}{3}$. Määritä niveleen D kohdistuva voima, kun a) $\theta = 0^+$, $t = 0^+$ ja b) $\theta = \frac{\pi}{6}$, t = 1 s. Laatikon ja nostotason yhteinen massa on 200 kg ja massakeskiö G. Nostovarsien massaa ei oteta huomioon.

Ratkaisu:

$$\theta = \frac{\pi}{6}(1 - \cos\frac{\pi t}{2})$$
 \Rightarrow $\dot{\theta} = \frac{\pi^2}{12}\sin\frac{\pi t}{2}$ \Rightarrow $\ddot{\theta} = \frac{\pi^3}{24}\cos\frac{\pi t}{2}$

a)
$$\theta = 0^+$$
, $t = 0^+$ \Rightarrow $\theta = 0$ $\dot{\theta} = 0$ $\ddot{\theta} = \frac{\pi^3}{24} = 1,292 \frac{1}{s^2}$

Kyseessä on käyräviivainen translaatio, jossa laatikon pisteiden liikeradat ovat r-säteisiä ympyröitä, jossa r = CD = 1,2m. Laatikon painovoima on $mg = 200 \text{ kg} \cdot 9,81 \frac{m}{s^2} = 1962 \text{ N}$.

Massakeskiön G kiihtyvyyskomponentit ovat

$$a_{Gn} = r\dot{\theta}^2$$
 $a_{Gt} = r\ddot{\theta}$

Liikeyhtälöt

$$\leftarrow$$
 F_t = 200 kg·1,2m·1,292 $\frac{1}{s^2}$ = 310 N

$$\leftarrow F_{t} = 200 \text{ kg} \cdot 1,2 \text{ m} \cdot 1,292 \frac{1}{\text{s}^{2}} = 310 \text{ N}$$

$$\leftarrow F_{t} = 200 \text{ kg} \cdot 1,2 \text{ m} \cdot 1,292 \frac{1}{\text{s}^{2}} = 310 \text{ N}$$

$$\leftarrow F_{t} = 200 \text{ kg} \cdot 1,2 \text{ m} \cdot 1,292 \frac{1}{\text{s}^{2}} = 310 \text{ N}$$

$$\leftarrow F_{t} = 200 \text{ kg} \cdot 1,2 \text{ m} \cdot 1,292 \frac{1}{\text{s}^{2}} = 310 \text{ N}$$

$$\leftarrow F_{t} = 200 \text{ kg} \cdot 1,2 \text{ m} \cdot 1,292 \frac{1}{\text{s}^{2}} = 310 \text{ N}$$

$$\rightarrow F_{n} = 248 \text{ N}$$

$$\uparrow D_{n} - 1962 \text{ N} + 248 \text{ N} = 0 \Rightarrow D_{n} = 1714 \text{ N}$$

$$\uparrow \quad D_n - 1962N + 248N = 0 \quad \Rightarrow \qquad \boxed{D_n = 1714 N}$$

b)
$$\theta = \frac{\pi}{6}$$
, $t = 1s$ \Rightarrow $\theta = 30^{\circ}$ $\dot{\theta} = \frac{\pi^2}{12} = 0.822 \frac{1}{s}$ $\ddot{\theta} = 0$

✓
$$1962 \text{N} \cdot \sin 30^{\circ} + \text{F}_{\text{t}} = 0 \implies \text{F}_{\text{t}} = -981 \text{ N}$$

$$D_n + F_n - 1962 \text{N} \cdot \cos 30^\circ = -200 \text{kg} \cdot 1,2 \text{m} \cdot 0,822^2 \frac{1}{\text{s}^2}$$

$$\Rightarrow D_n + F_n = 1537 \text{ N} \qquad (1)$$

$$\Rightarrow$$
 0,280 · F_n - 0,240 · D_n = -702,094 N (2)

(1)&(2)
$$\Rightarrow$$
 $F_n = -641 \text{ N}$ $D_n = 2178 \text{ N}$

$$D_n = 2178 \text{ N}$$