Correction DS5

Exercice 1. Soit M la matrice :

$$M = \begin{pmatrix} -1 & -3 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 2 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

- 1. Résoudre le système $MX = \lambda X$ d'inconnue $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ où λ est un paramètre réel.
- 2. Montrer que P est inversible et calculer son inverse.
- 3. Soit $T = P^{-1}MP$. Calculer T.
- 4. Donner l'expression de T^n en fonction de P, M et n. (La récurrence n'est pas exigée)

5. On pose
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Vérifier que

$$T = D + N$$
 et $ND = DN$

- 6. Calculer N^2
- 7. Montrer que $T^n = D^n + nND^{n-1}$.
- 8. Soit $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites vérifiant $x_0=0,y_0=1$, et $z_0=2$ et pour tout $n\in\mathbb{N}$

$$\begin{cases} x_{n+1} &= -x_n - 3y_n \\ y_{n+1} &= 2y_n \\ z_{n+1} &= 3x_n + 2y_n + 2z_n \end{cases}$$

On considère
$$U_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$$

- (a) Déterminer une relation de récurrence entre U_{n+1}, U_n et M.
- (b) En déduire à l'aide d'une récurrence l'expression de U_n en fonction de M, n et U_0 .
- (c) En déduire l'expression de x_n en fonction de n.

Correction 1.

1.

$$MX = \lambda X \Longleftrightarrow \begin{pmatrix} -x - 3y \\ 2y \\ 3x + 2y + 2z \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$$

$$\begin{cases} -x & -3y & = \lambda x \\ 2y & = \lambda y \Longleftrightarrow \begin{cases} (-1 - \lambda)x & -3y & = 0 \\ (2 - \lambda)y & = 0 \\ 3x & +2y & +(2 - \lambda)z & = 0 \end{cases}$$

En échangeant les lignes et les colonnes on peut voir que le système est déjà échelonné. $L_3 \leftarrow L_1, L_2 \leftarrow_3, L_1 \leftarrow L_2, C_3 \leftarrow C_1, C_2 \leftarrow C_3, C_1 \leftarrow C_2$

$$MX = \lambda X \Longleftrightarrow \begin{cases} (2-\lambda)z & +3x & +2y & = 0\\ (-1-\lambda)x & -3y & = 0\\ (2-\lambda)y & = 0 \end{cases}$$

Si $\lambda \notin \{-1,2\}$ alors le système est de rang 3, il est donc de Cramer et l'unique solution est

$$\mathcal{S} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Si $\lambda = -1$, le système est équivalent à

$$\begin{cases} 3z +3x +2y = 0 \\ -3y = 0 \\ 3y = 0 \end{cases} \iff \begin{cases} z = -x \\ y = 0 \end{cases}$$

Le système est de rang 2. L'ensemble des solutions est

$$\mathcal{S} = \left\{ \begin{pmatrix} x \\ 0 \\ -x \end{pmatrix}, x \in \mathbb{R} \right\}$$

Si $\lambda = 2$, le système est équivalent à

$$\begin{cases} 3x +2y = 0 \\ -3x -3y = 0 \\ 0 = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Le système est de rang 2. L'ensemble des solutions est

$$\mathcal{S} = \left\{ \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}, z \in \mathbb{R} \right\}$$

2. On considère la matrice augmentée : $\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}$

 $L_3 \leftrightarrow L_1$ donnent

$$\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right)$$

 $L_3 \leftarrow L_3 + L_2$ donne

$$\left(\begin{array}{ccc|cccc}
1 & 0 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)$$

 $L_2 \leftarrow -L_2$ donne

$$\left(\begin{array}{ccc|cccc}
1 & 0 & -1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)$$

Enfin $L_1 \leftrightarrow L_1 + L_3$ donne

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

$$P$$
 est inversible d'inverse $\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

3. Le calcul donne

$$T = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

(sur une copie, le produit intermédiaire MP serait apprécié)

4. On peut juste dire $T^n = P^{-1}M^nP$ "

Voici la preuve par récurrence, non attendue dans ce DS. On pose P(n): " $T^n = P^{-1}M^nP$ " Initialisation $T^1 = T$ et $P^{-1}M^1P = P^{-1}MP = T$ d'après la définition de T. Donc P(1) est vrai.

Hérédité On suppose qu'il existe $n \in \mathbb{N}$ tel que P(n) soit vraie. On a alors

$$(T)^{n+1} = T^n T$$

et donc par Hypothése de récurrence :

$$T^{n+1} = (P^{-1}M^n P)(P^{-1}MP)$$

$$= (P^{-1}M^n P P^{-1}MP)$$

$$= (P^{-1}M^n \operatorname{Id} MP)$$

$$= (P^{-1}M^n MP)$$

$$= (P^{-1}M^{n+1}P)$$

Conclusion P(n) est vraie pour tout n.

5. On a
$$T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et

$$DN = \left(\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = ND$$

- 6. $N^2 = 0_3$
- 7. Solution 1 : On peut appliquer le binome de Newton à T=D+N car D et N commutent. On a alors

$$T^n = \sum_{k=0}^n \binom{n}{k} N^k D^{n-k}$$

Comme pour tout $k \geq 2$, $N^2 = 0$ il reste dans cette somme seulement les termes k = 0 et k = 1. On obtient donc

$$T^{n} = \binom{n}{0} N^{0} D^{n-0} + \binom{n}{1} N^{1} D^{n-1}$$
$$= D^{n} + nND^{n-1}$$

Solution 2:

On pose P(n): $T^n = D^n + nD^{n-1}N$

— <u>Initialisation</u> $T^1 = T$ et $D^1 + 1D^0N = D^1 + \operatorname{Id} N = D + N = T$ d'après la définition de D, N. Donc P(1) est vrai.

— <u>Hérédité</u> On suppose qu'il existe $n \in \mathbb{N}$ tel que P(n) soit vraie. On a alors

$$(T)^{n+1} = T^n T$$

et donc par Hypothése de récurrence :

$$T^{n+1} = (D^n + nD^{n-1}N)(D+N)$$

= $D^nD + nD^{n-1}ND + D^nN + nD^{n-1}N^2$

Comme ND = DN on a $D^{n-1}ND = D^{n-1}DN = D^{n}N$, on a par ailleurs $N^2 = 0$ donc

$$T^{n+1} = D^{n+1} + D^n N + nD^n N$$
$$= D^{n+1} + (n+1)D^{(n+1)-1} N$$

Ainsi la propriété est héréditaire.

- <u>Conclusion</u> P(n) est vraie pour tout n. Clairement la solution 1 est plus rapide.
- 8. Le système donne la relation suivante
 - (a) (attention au sens entre M et U_n)

$$U_{n+1} = MU_n$$

(b) Faire la récurrence pour montrer

$$U_n = M^n U_0$$

(c) On a donc
$$U_n = \begin{pmatrix} 2^n & 2^n - 1 & 0 \\ 0 & 1 & 0 \\ -2^n + 1 & -2^n + 1 + n & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 On obtient
$$x_n = 2^{n+1} - 1$$

Une copie a montrée que $(x_n)_{n\in\mathbb{N}}$ est une SRL2, ca marche aussi.

Exercice 2. Soit $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$. On désigne par I_2 la matrice identité d'ordre 2.

1. Montrer qu'il existe $(a_2, b_2) \in \mathbb{R}^2$ tel que

$$A^2 = a_2 A + b_2 I_2$$

- 2. La matrice A est-elle inversible? Si oui, donner son inverse.
- 3. Démontrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout entier $n:A^n=a_nA+b_nI_2$. Donner les relations de récurrence vérifiées par ces deux suites.
- 4. Que vaut a_0, b_0, a_1, b_1 ?
- 5. Montrer que pour tout $n \in \mathbb{N}$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

6. En déduire l'expression de a_n et de b_n en fonction de n puis celle de A^n en fonction de n, A et I_2 .

Correction 2. Soit

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}.$$

On désigne par I_2 la matrice identité d'ordre 2.

1. Expression de A^2 sous la forme $A^2 = a_2A + b_2I_2$: Calculons A^2 :

$$A^2 = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \times 1 + (-1) \times 2 & 1 \times (-1) + (-1) \times 4 \\ 2 \times 1 + 4 \times 2 & 2 \times (-1) + 4 \times 4 \end{pmatrix} = \begin{pmatrix} -1 & -5 \\ 10 & 14 \end{pmatrix}.$$

Nous cherchons a_2, b_2 tels que :

$$A^2 = a_2 A + b_2 I_2.$$

En identifiant les coefficients, on trouve :

$$a_2 = 5, \quad b_2 = -6.$$

On a donc
$$A^2 = 5A - 6I_2$$
.

2. Solution 1 On a donc $A(\frac{-1}{6}(A - 5I_2)) = I_2$

La matrice A est inversible et son inverse est $A^{-1} = \frac{-1}{6}(A - 5I_2)$

Solution 2 A est inversible si $det(A) \neq 0$:

$$\det(A) = (1 \times 4) - (-1 \times 2) = 4 + 2 = 6 \neq 0.$$

Donc A est inversible, et son inverse est :

$$A^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}.$$

La matrice A est inversible et son inverse est $A^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$.

3. Soit P(n) la propriété de récurrence : " $\exists (a_n, b_n) \in \mathbb{R}^2$, $A^n = a_n A + b_n I_2$ " Initialisation : P(0) est vraie avec $a_0 = 0$ et $b_0 = 1$

Hérdité : Soit $n \in \mathbb{N}$ tel que P(n) soit vraie. On a donc :

$$A^n = a_n A + b_n I_2$$

Soit en multipliant par A:

$$A^{n+1} = a_n A^2 + b_n A$$

Or $A^2 = 5A - 6I_2$ (Q1) donc

$$A^{n+1} = a_n(5A - 6I_2) + b_n A$$

et donc:

$$A^{n+1} = (5a_n + b_n)A - 6a_n I_2$$

Ainsi P(n+1) est vraie avec $a_{n+1} = 5a_n + b_n$ et $b_{n+1} = -6a_n$

Conclusion : P(n) est vraie pour tout $n \in \mathbb{N}$ et

$$a_{n+1} = 5a_n + b_n \text{ et } b_{n+1} = -6a_n$$

4. Valeurs initiales:

$$A^0 = I_2 \Rightarrow a_0 = 0, \quad b_0 = 1.$$

$$A^1 = A \Rightarrow a_1 = 1, \quad b_1 = 0.$$

On obtient
$$a_0 = 0, b_0 = 1, a_1 = 1, b_1 = 0.$$

5. Relation de récurrence : On a prouvé que (a_n) vérifie :

$$a_{n+1} = 5a_n + b_n$$
. et $b_{n+1} = -6a_n$

Donc

$$a_{n+2} = 5a_{n+1} + b_{n+1}.$$

D'où

$$a_{n+2} = 5a_{n+1} - 6a_n$$

6. Expression explicite de a_n et b_n : L'équation caractéristique associée à la récurrence est :

$$x^2 - 5x + 6 = 0.$$

Elle admet les racines $x_1 = 2$ et $x_2 = 3$, donc :

$$a_n = \alpha 2^n + \beta 3^n.$$

En utilisant $a_0 = 0$ et $a_1 = 1$, on trouve :

$$\alpha + \beta = 0$$
, $2\alpha + 3\beta = 1$.

Résolvant ce système, on obtient $\alpha=-1,\,\beta=1,\,\mathrm{donc}$:

$$a_n = 3^n - 2^n.$$

On en déduit que

$$b_n = -6(3^{n-1} - 2^{n-1})$$

Les expressions sont
$$a_n = 3^n - 2^n$$
 et $b_n = -2 \times 3^n + 3 \times 2^n$.

7. Expression de A^n en fonction de n, A et I_3 :

$$A^{n} = (3^{n} - 2^{n})A + (-2 \times 3^{n} + 3 \times 2^{n})I_{2}.$$

Exercice 3. Soit $n \in \mathbb{N}^*$. Soit $M_n(\mathbb{R})$ l'ensemble des matrices carrés de tailles n. Soit

- \mathcal{A}_n le sous-ensemble de $M_n(\mathbb{R})$ tel que tous les coefficients des matrices soit dans $\{0,1\}$.
- Soit $k \in [0, n]$ et $\mathcal{A}_n(k)$ le sous-ensemble de $\mathcal{A}_n(k)$ tel que chaque ligne contient exactement k fois l'entier 1.
- 1. Combien y-a-t-il de coefficients dans une matrice de $M_n(\mathbb{R})$?
- 2. Donner le cardinal de A_n en fonction de n.
- 3. Que vaut $A_n(0)$ et $A_n(n)$?
- 4. Donner toutes les matrices de $A_2(1)$.
- 5. Justifier que $Card(A_n(1)) = n^n$.
- 6. Donner le cardinal de $A_n(k)$ en fonction de k et n.

Correction 3. Soit $n \in \mathbb{N}^*$. Soit $M_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n. Définissons :

- \mathcal{A}_n , le sous-ensemble de $M_n(\mathbb{R})$ tel que tous les coefficients des matrices soient dans $\{0,1\}$.
- Pour $k \in [0, n]$, $\mathcal{A}_n(k)$ est le sous-ensemble de \mathcal{A}_n tel que chaque ligne contient exactement k fois l'entier 1.
- 1. Nombre de coefficients dans une matrice de $M_n(\mathbb{R})$: Une matrice $n \times n$ contient :

$$n^2$$

coefficients.

Une matrice de
$$M_n(\mathbb{R})$$
 possède n^2 coefficients.

2. Cardinal de A_n en fonction de n: Chaque coefficient d'une matrice de A_n peut prendre deux valeurs (0 ou 1), donc :

$$\operatorname{Card}(\mathcal{A}_n) = 2^{n^2}.$$

Le cardinal de
$$\mathcal{A}_n$$
 est 2^{n^2} .

- 3. Valeurs de $A_n(0)$ et $A_n(n)$:
 - $\mathcal{A}_n(0)$ est l'ensemble contenant uniquement la matrice nulle, donc :

$$\mathcal{A}_n(0) = \left\{ \mathbf{0}_n = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \right\}.$$

— $\mathcal{A}_n(n)$ est l'ensemble contenant uniquement la matrice remplie de 1, donc :

$$\mathcal{A}_n(n) = \left\{ \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \right\}.$$

4. Matrice de $A_2(1)$: Les matrices de $A_2(1)$ sont celles où chaque ligne contient exactement un seul 1:

$$\mathcal{A}_2(1) = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

5. **Justification de Card** $(A_n(1)) = n^n$: Dans chaque ligne de la matrice, il y a n choix pour la position du 1 (le reste étant 0). Comme il y a n lignes indépendantes, on a :

$$\operatorname{Card}(\mathcal{A}_n(1)) = n^n$$
.

Le cardinal de
$$\mathcal{A}_n(1)$$
 est n^n .

6. Cardinal de $A_n(k)$ en fonction de k et n: Dans chaque ligne, on choisit k positions parmi n pour mettre un 1, soit $\binom{n}{k}$ choix. Comme il y a n lignes, on a :

$$\operatorname{Card}(\mathcal{A}_n(k)) = \left(\binom{n}{k}\right)^n.$$

Le cardinal de
$$\mathcal{A}_n(k)$$
 est $\binom{n}{k}^n$.

Exercice 4. On dispose d'une urne contenant 2 boule bleues, 3 boules rouges et 4 boules vertes. On suppose que toutes les boules sont distinguables (numérotées par exemple).

On tire trois boules simultanément

- 1. Combien y-a-t-il de tirages possibles?
- 2. Combien y-a-t-il de tirages qui amènent exactement une boule rouge?
- 3. Combien y-a-t-il de tirages qui amènent trois boules de la même couleur?
- 4. Combien y-a-t-il de tirages qui amènent des boules de trois couleurs?

Soit $n \in \mathbb{N}^*$. On suppose maintenant que l'on dispose d'un ensemble $\{C_1, ..., C_n\}$ de n couleurs. et d'une urne contenant 1 boule de couleur C_1 , deux boules de couleur C_2 et ainsi de suite, avec i boules de couleur C_i , jusqu'à n boules de couleur C_n .

On fait deux tirages successifs avec remises :

- 5. Exprimer N le nombre de boules dans l'urne en fonction de n. Puis donner en fonction de N le nombre de tirages possibles?
- 6. Combien de tirages amènent au premier tirage une boule de couleur C_i et une boule d'une autre couleur au second tirage? (on donnera la réponse en fonction de N et i)

On rappelle que $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

7. Montrer que le nombre de tirages qui amènent deux boules de couleurs différentes vaut :

$$\frac{N(n-1)(3n+2)}{6}$$

Correction 4.

- 1. Il y a $\binom{9}{3}$ tirages possibles. (sans ordre et sans répétition)
- 2. $\binom{3}{1}\binom{6}{2}$ (1 boule parmi les 3 rouges, 2 boules parmi les 6 restantes)
- 3. $\binom{3}{3} + \binom{4}{3}$ (soit 3 boules rouges, soit 3 boules vertes)
- 4. $\binom{2}{1}\binom{3}{1}\binom{4}{1}(1)$ boule parmi les 3 rouges, 1 boule parmi les 2 bleues et 1 boule parmi les 4 vertes)
- 5. $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \left(\frac{n(n+1)}{2}\right)^2$
- 6. $i \times \left(\frac{n(n+1)}{2} i\right)$ (i possiblités pour le premier tirage, et (N-i) pour le deuxième)

7.

$$\sum_{i=1}^{n} i \times \left(\frac{n(n+1)}{2} - i\right) = \sum_{i=1}^{n} i \left(\frac{n(n+1)}{2}\right) - \sum_{i=1}^{n} i^{2}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2} - \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)(3n(n+1) - 2(2n+1))}{12}$$

$$= \frac{n(n+1)}{6}(3n^{2} - n - 2)$$

Exercice 5. Les fonctions suivantes admettent-elles un prolongement par continuité aux bornes finies de leur domaine de définition?

$$f(x) = \frac{x \ln(x^2)}{\ln(x+1)}$$
$$g(x) = \frac{\sqrt{1-x^2}-1}{e^x-1}$$
$$h(x) = \sin(x)\cos(\ln(x))$$

Correction 5. Étude de f(x)

La fonction f est définie pour $D_f =]-\infty, 0[\cup]0, +\infty[$. Étudions les limites aux bornes :

- Limite en $0: \lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$ (taux d'accroissement) et $\lim_{x\to 0} \ln(x) = -\infty$ donc

$$\lim_{x \to 0} f(x) = -\infty$$

f n'est pas prolongeable par continuité en 0

- Limite en -1: $\lim_{x\to -1} \frac{1}{\ln(x+1)} = 0$ (taux d'accroissement) et $\lim_{x\to -1} x \ln(x^2) = 0$ donc

$$\lim_{x \to -1} f(x) = 0$$

f est prolongeable par continuité en 0

Étude de g(x)

La fonction g est définie pour $D_g = [-1,0[\cup]0,1]$. Étudions les limites aux bornes :

- Limite en 0: On a d'une part

$$g(x) = \frac{1 - x^2 - 1}{(e^x - 1)(\sqrt{1 - x^2} + 1)} = \frac{x^2}{(e^x - 1)(\sqrt{1 - x^2} + 1)}$$

d'autre part

$$\lim_{x \to 0} \frac{\ln(e^x - 1)}{x} = 1$$

(taux d'accroissement) Donc

$$\lim_{x \to 0} g(x) = 0$$

g est prolongeable par continuité en 0

Étude de h(x)

La fonction g est définie pour $D_h =]0, +\infty[$. Étudions les limites aux bornes : - Limite en 0 : Pour tout $x \in \mathbb{R}$, $\cos(x) \in [-1, 1]$ donc pour tout x > 0,

$$\cos(\ln(x) \in [-1, 1]$$

Ainsi

$$-|\sin(x)| \le h(x) \le |\sin(x)|$$

Or $\lim_{x\to 0} \sin(x) = 0$ donc par le théorème d'encadrement

$$\lim_{x \to 0} h(x) = 0$$

h est prolongeable par continuité en 0

Exercice 6. Soit |x| la partie entière de $x \in \mathbb{R}$.

1. Rappeler l'inégalité qui permet de définir |x|.

Soit (E) l'équation : $|x^2 + x| = 2$

- 2. $\sqrt{3}-1$ est il solution de (E)?
- 3. Montrer que (E) est équivalente à deux inégalités que l'on résoudra.
- 4. Donner les solutions de (E).

Correction 6. Soit |x| la partie entière de $x \in \mathbb{R}$.

1. Rappel de l'inégalité définissant la partie entière : Pour tout $x \in \mathbb{R}$, la partie entière |x| est définie par l'inégalité :

$$|x| \le x < |x| + 1$$

2. Vérification de $\sqrt{3}-1$ comme solution de (E) : L'équation donnée est :

$$|x^2 + x| = 2$$

Calculons pour $x = \sqrt{3} - 1$:

$$x^{2} + x = (\sqrt{3} - 1)^{2} + (\sqrt{3} - 1)$$

$$= (3 - 2\sqrt{3} + 1) + \sqrt{3} - 1$$

$$= 3 - 2\sqrt{3} + \sqrt{3}$$

$$= 3 - \sqrt{3} < 2 \operatorname{car} \sqrt{3} > 1$$

Donc,

$$\lfloor 3 - \sqrt{3} \rfloor \neq 2$$

 $\sqrt{3} - 1$ n'est pas solution de (E)

3. Réécriture de l'équation sous forme d'inégalités : L'équation $\lfloor x^2 + x \rfloor = 2$ est équivalente à :

$$2 < x^2 + x < 3$$

Ce qui donne le système d'inéquations :

$$x^2 + x - 2 > 0$$

$$x^2 + x - 3 < 0$$

4. Résolution du système :

— Résolvons
$$x^2 + x - 2 \ge 0$$
:

$$(x+2)(x-1) \ge 0 \iff x \in]-\infty, -2] \cup [1, +\infty[$$

— Résolvons
$$x^2 + x - 3 < 0$$
:

$$x \in \left[\frac{-1 - \sqrt{13}}{2}, \frac{-1 + \sqrt{13}}{2}\right]$$

Or
$$\frac{-1-\sqrt{13}}{2} < -2$$
 et $\frac{-1+\sqrt{13}}{2} > 1$

$$S =]\frac{-1-\sqrt{13}}{2}, -2] \cup [-1, \frac{-1+\sqrt{13}}{2}]$$