Least squares and the singular value decomposition

Ivan Markovsky

University of Southampton

Outline

- QR and SVD decompositions
- Least squares and least norm problems
- Extensions of the least squares problem
 - Recursive
 - Multiobjective

- Regularized
- Constrained

QR and SVD decompositions

Orthonormal set of vectors

Consider a finite set of vectors $\mathcal{Q} := \{q_1, \dots, q_k\} \subset \mathbb{R}^n$

- \mathscr{Q} is orthogonal $:\iff \langle q_i,q_j\rangle := q_i^\top q_j$, for all $i\neq j$
- \mathscr{Q} is normalized : $\iff ||q_i||_2^2 := \langle q_i, q_i \rangle = 1, i = 1, ..., k$
- \mathcal{Q} is orthonormal : $\iff \mathcal{Q}$ is orthogonal and normalized

with
$$Q := [q_1 \quad \cdots \quad q_k], \quad \mathscr{Q} \text{ orthonormal} \iff Q^T Q = I_k$$

Properties:

- orthonormal vectors are independent
- multiplication with Q preserves inner product and norm

$$\langle Qz, Qy \rangle = z^{\top}Q^{\top}Qy = z^{\top}y = \langle z, y \rangle$$

Orthogonal projectors

Consider orthonormal set $\mathcal{Q} := \{q_1, \dots, q_k\}$ and $\mathcal{L} := \operatorname{span}(\mathcal{Q}) \subseteq \mathbb{R}^n$.

 \mathcal{Q} is an orthonormal basis for \mathcal{L} .

With
$$Q := \begin{bmatrix} q_1 & \cdots & q_k \end{bmatrix}$$
, $Q^\top Q = I_k$, however, for $k < n$, $QQ^\top \neq I_n$.

$$\Pi_{\text{span}(\mathscr{Q})} := \mathsf{Q}\mathsf{Q}^{\top}$$
 is an orthogonal projector on $\text{span}(\mathscr{Q})$, *i.e.*,

$$\Pi_{\mathscr{L}} x = \underset{y}{\operatorname{arg\,min}} \|x - y\|_2$$
 subject to $y \in \mathscr{L}$

Properties: $\Pi = \Pi^2$, $\Pi = \Pi^{\top}$ (necessary and sufficient for Π orth. proj.)

 $\Pi^{\perp} := (I - \Pi)$ is also orthogonal projector, it projects on

 $\left(\operatorname{\mathsf{col}}\operatorname{\mathsf{span}}(\Pi)\right)^{\perp}\subseteq\mathbb{R}^{n}$ — orth. complement of the column span of Π

Orthonormal basis for \mathbb{R}^n

orthonormal set $\mathscr{Q} := \{ q_1, \dots, q_k \} \subset \mathbb{R}^n$ of k = n vectors

then $Q := \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}$ is called orthogonal and satisfies $Q^T Q = I_n$ It follows that $Q^{-1} = Q^T$ and

$$QQ^{\top} = \sum_{i=1}^{n} q_i q_i^{\top} = I_n$$

Expansion in orthonormal basis $x = QQ^Tx$

- $\tilde{\mathbf{x}} := \mathbf{Q}^{\top} \mathbf{x}$ coordinates of \mathbf{x} in the basis \mathcal{Q}
- $x = Q\tilde{x}$ reconstruct x from the coordinates a

Geometrically multiplication by Q (and Q^{T}) is rotation.

Gram-Schmidt (G-S) procedure

Given independent set $\{a_1, \ldots, a_k\} \subset \mathbb{R}^n$,

G-S produces orthonormal set $\{q_1, \ldots, q_k\} \subset \mathbb{R}^n$ such that

$$\operatorname{span}(a_1,\ldots,a_r)=\operatorname{span}(q_1,\ldots,q_r), \qquad \text{for all } r\leq k$$

G-S procedure: Let $q_1 := a_1/\|a_1\|_2$. At the *i*th step i = 2, ..., k

• orthogonalized a_i w.r.t. q_1, \ldots, q_{i-1} :

$$v_i := \underbrace{\left(I - \Pi_{\mathsf{span}(q_1,...,q_{i-1})}) a_i}_{\mathsf{projection of } a_i \mathsf{ on } \left(\mathsf{span}(q_1,...,q_{i-1})\right)^\perp}$$

• normalize the result: $q_i := v_i/\|v_i\|_2$

QR decomposition

G-S procedure gives as a byproduct scalars r_{ji} , $j \le i$, i = 1, ..., k, s.t.

$$a_i = (q_1^{\top} a_i) q_1 + \dots + (q_{i-1}^{\top} a_i) q_{i-1} + ||q_i||_2 q_i$$

= $r_{1i} q_1 + \dots + r_{ii} q_i$

in a matrix form G-S produces the matrix decomposition

$$\underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} q_1 & q_1 & \cdots & q_k \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{kk} \end{bmatrix}}_{B}$$

with orthonormal $Q \in \mathbb{R}^{n \times k}$ and upper triangular $R \in \mathbb{R}^{k \times k}$

If $\{a_1,\ldots,a_k\}$ are dependent, $v_i:=(I-\Pi_{\text{span}(q_1,\ldots,q_{i-1})})a_i=0$ for some i

Conversely, if $v_i = 0$ for some i, a_i is linearly dependent on $\{a_1, \dots, a_{i-1}\}$

Modified G-S procedure: when $v_i = 0$, skip to the next input vector a_{i+1} \Rightarrow R is in upper staircase form, e.g.,

Full QR

$$A = \underbrace{\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}}_{\text{orthogonal}} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \qquad \begin{array}{c} \text{colspan}(A) & = & \text{colspan}(Q_1) \\ \left(\text{colspan}(A) \right)^{\perp} & = & \text{colspan}(Q_2) \end{array}$$

Procedure for finding Q_2 :

complete A to full rank matrix, e.g., $A_{\mathrm{m}} := \begin{bmatrix} A & I \end{bmatrix}$, and apply G-S on A_{m}

Application: complete an orthonormal matrix $Q_1 \in \mathbb{R}^{n \times k}$ to an orthogonal matrix $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ (by computing the full QR of $\begin{bmatrix} Q_1 & I \end{bmatrix}$)

Singular value decomposition (SVD)

The SVD is used as both computational and analytical tool.

Any $m \times n$ matrix A of rank r has a reduced SVD

$$A = \underbrace{\begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix}}_{U_1} \underbrace{\begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}}_{\Sigma_1} \underbrace{\begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}^\top}_{V_1^\top}$$

where U_1 and V_1 are orthonormal

- $\sigma_1 \ge \cdots \ge \sigma_r$ are called singular values
- $u_1, ..., u_r$ are called left singular vectors
- v₁,..., v_r are called right singular vectors

Full SVD $A = U\Sigma V^{\top}$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and

$$\Sigma = \begin{bmatrix} r & n-r \\ \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \quad \begin{matrix} r \\ m-r \end{matrix} \qquad \text{where} \qquad \Sigma_1 = \text{diag}(\sigma_1, \dots, \sigma_r)$$

Note that the singular values of A are

$$\sigma(A) := (\sigma_1, \dots, \sigma_r, \underbrace{0, \dots, 0}_{\min(n-r, m-r)})$$

- σ_{min}(A) smallest singular value of A
- σ_{max}(A) largest singular value of A

Proof of existence of an SVD

The proof is constructive and uses induction. W.l.o.g. assume $m \ge n$.

• End of induction: vector $A \in \mathbb{R}^{m \times 1}$ has (unique) SVD

$$A = U\Sigma V^{\top}$$
, with $U := A/\|A\|_2$, $\Sigma := \|A\|_2$, $V := 1$

• Inductive step: choose $v_i \in \mathbb{R}^n$ with $||v_i||_2 = 1$ and let

$$A_i v_i =: \sigma_i u_i$$
, where $\sigma_i := ||A_i||_2$

Complete v_i and u_i to orthogonal matrices (QR decomp.)

$$V_i := \begin{bmatrix} v_i & \star \end{bmatrix}$$
 and $U_i := \begin{bmatrix} u_i & \star \end{bmatrix}$

We have that for certain $w \in \mathbb{R}^{n-1}$ and $A_{i+1} \in \mathbb{R}^{(n-1) \times (n-1)}$

$$U_i^{\top} A_i V_i = \begin{bmatrix} \sigma_i & \mathbf{w}^{\top} \\ 0 & A_{i+1} \end{bmatrix}$$

Next we show that w = 0.

Proof of existence of an SVD

$$\begin{split} \sigma_{i}^{2} &= \|A_{i}\|_{2}^{2} = \|U_{i}^{\top}A_{i}V_{i}\|_{2}^{2} \\ &= \max_{v} \frac{\|A_{i}v\|_{2}^{2}}{\|v\|_{2}^{2}} \\ &\geq \frac{\|A_{i}\begin{bmatrix}\sigma_{i}\\w\end{bmatrix}\|_{2}^{2}}{\|\begin{bmatrix}\sigma_{i}\\w\end{bmatrix}\|_{2}^{2}} \\ &= \frac{1}{\sigma_{i}^{2} + w^{\top}w} \left\| \begin{bmatrix}\sigma_{i}^{2} + w^{\top}w\\A_{i+1}w\end{bmatrix} \right\|_{2}^{2} \\ &\geq \frac{1}{\sigma_{i}^{2} + w^{\top}w} (\sigma_{i}^{2} + w^{\top}w)^{2} = \sigma_{i}^{2} + w^{\top}w \end{split}$$

The inequality $\sigma_i^2 \ge \sigma_i^2 + w^\top w$ can be true only when w = 0.

Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

$$\begin{bmatrix}
1.00 & 1.50 \\
0 & 1.00
\end{bmatrix} = \begin{bmatrix}
0.89 & -0.45 \\
0.45 & 0.89
\end{bmatrix} \begin{bmatrix}
2.00 & 0 \\
0 & 0.50
\end{bmatrix} \begin{bmatrix}
0.45 & -0.89 \\
0.89 & 0.45
\end{bmatrix}$$

$$\downarrow 0$$

Low-rank approximation

Given

- a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and
- an integer r, 0 < r < n,

find

$$\widehat{A} := \arg\min_{\widehat{A}} \|A - \widehat{A}\| \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r$$

Interpretation:

 \widehat{A}^* is optimal rank-*r* approximation of *A* w.r.t. the norm $\|\cdot\|$, *e.g.*,

$$||A||_F^2 := \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$
 or $||A||_2 := \max_x \frac{||Ax||_2}{||x||_2}$

Solution via SVD

$$\widehat{A}^* := \arg\min_{\widehat{A}} \|A - \widehat{A}\|_{\mathrm{F}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r \tag{LRA}$$

Theorem Let $A = U\Sigma V^{\top}$ be the SVD of A and define

$$U =: \begin{bmatrix} r & r-n & & r & r-n \\ U_1 & U_2 \end{bmatrix} \quad n \quad \Sigma =: \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \quad \begin{matrix} r & \\ r-n \end{matrix} \quad \text{and} \quad V =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} \quad n$$

A solution to (LRA) is

$$\widehat{A}^* = U_1 \Sigma_1 V_1^{\top}$$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$.

Proof of the low-rank approximation theorem

Let \widehat{A}^* be solution to (LRA) and let $\widehat{A}^* := U^* \Sigma^* (V^*)^\top$ be an SVD of \widehat{A}^* .

$$\|A - \widehat{A}^*\|_F = \|\underbrace{(\textit{\textbf{U}}^*)^\top A \textit{\textbf{V}}^*}_{\textit{\textbf{B}}} - \Sigma^*\|_F \quad \implies \quad \Sigma^* \text{ is an opt. approx. of } \textit{\textbf{B}}$$

Partition $B=:\begin{bmatrix}B_{11}&B_{12}\\B_{21}&B_{22}\end{bmatrix}$ conformably with $\Sigma^*=:\begin{bmatrix}\Sigma_1^*&0\\0&0\end{bmatrix}$ and observe that

$$\mathrm{rank}(\left[\begin{smallmatrix} \Sigma_1^* & B_{12} \\ 0 & 0 \end{smallmatrix} \right]) \leq r \quad \text{and} \quad B_{12} \neq 0 \implies \left\| B - \left[\begin{smallmatrix} \Sigma_1^* & B_{12} \\ 0 & 0 \end{smallmatrix} \right] \right\|_F < \left\| B - \left[\begin{smallmatrix} \Sigma_1^* & 0 \\ 0 & 0 \end{smallmatrix} \right] \right\|_F$$

so that $B_{12}=0$. Similarly $B_{21}=0$. Observe also that

$$\mathrm{rank}(\left[\begin{smallmatrix} B_{11} & 0 \\ 0 & 0 \end{smallmatrix} \right]) \leq r \quad \text{and} \quad B_{11} \neq \Sigma_1^* \implies \left\| B - \left[\begin{smallmatrix} B_{11} & 0 \\ 0 & 0 \end{smallmatrix} \right] \right\|_{\mathrm{F}} < \left\| B - \left[\begin{smallmatrix} \Sigma_1^* & 0 \\ 0 & 0 \end{smallmatrix} \right] \right\|_{\mathrm{F}}$$

so that
$$B_{11} = \Sigma_1^*$$
. Therefore, $B = \begin{bmatrix} \Sigma_1^* & 0 \\ 0 & B_{22} \end{bmatrix}$.

Proof of the low-rank approximation theorem

Let $B_{22} = U_{22}\Sigma_{22}V_{22}^{\top}$ be the SVD of B_{22} . Then the matrix

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_{22}^{\top} \end{bmatrix} \mathbf{B} \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_{22} \end{bmatrix} = \begin{bmatrix} \Sigma_1^* & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{bmatrix}$$

has optimal rank-r approximation $\Sigma^* = \left[\begin{smallmatrix} \Sigma_1^* & 0 \\ 0 & 0 \end{smallmatrix} \right]$, so that

$$\min(\text{diag}(\Sigma_1^*)) > \max(\text{diag}(\textit{U}_{22}))$$

Therefore

$$A = U^* \begin{bmatrix} I & 0 \\ 0 & U_{22} \end{bmatrix} \begin{bmatrix} \Sigma_1^* & 0 \\ 0 & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & U_{22}^\top \end{bmatrix} (V^*)^\top$$

is an SVD of A.

Proof of the low-rank approximation theorem

SVD of A:

$$\boldsymbol{A} = \boldsymbol{U}^* \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{U}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1^* & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{U}_{22}^\top \end{bmatrix} (\boldsymbol{V}^*)^\top$$

Then, if $\sigma_r > \sigma_{r+1}$, the rank-*r* SVD truncation

$$\widehat{A}^* = U^* \begin{bmatrix} \Sigma_1^* & 0 \\ 0 & 0 \end{bmatrix} (V^*)^\top = U^* \begin{bmatrix} I & 0 \\ 0 & U_{22} \end{bmatrix} \begin{bmatrix} \Sigma_1^* & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & U_{22} \top \end{bmatrix} (V^*)^\top$$

is unique and \hat{A}^* is the unique solution of (LRA).

Note that \widehat{A}^* is simultaneously optimal in any unitarily invariant norm.

Numerical rank

$$\sqrt{\sum_{i=r+1}^n \sigma_i^2} = \min_{\widehat{A}} \|A - \widehat{A}\|_{\mathrm{F}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r$$

and

$$\sigma_{r+1} = \min_{\widehat{A}} \|A - \widehat{A}\|_2 \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r$$

are measures of the distance of A to the manifold of rank-r matrices

In particular, $\sigma_{min}(A)$ is the distance of A to rank deficiency.

 $rank(A, \varepsilon) := \#$ of singular values $> \varepsilon$ is called numerical rank of A

Note that $rank(A, \varepsilon)$ depends on an a priori given tolerance ε .

Pseudo-inverse $A^+ := V_1 \Sigma_1^{-1} U_1^{\top} \in \mathbb{R}^{n \times m}$

$$\begin{aligned} \operatorname{rank}(A) &= n = m & \Longrightarrow & A^+ &= A^{-1} \\ \operatorname{rank}(A) &= n & \Longrightarrow & A^+ &= (A^\top A)^{-1} A^\top \\ \operatorname{rank}(A) &= m & \Longrightarrow & A^+ &= A^\top (AA^\top)^{-1} \end{aligned}$$

In general, A^+y is the least squares, least norm solution of Ax = y

Note that the pseudo-inverse depends on the rank of A. In practice the numerical rank rank(A, ε) is used.

The SVD, using numerical rank and pseudo-inverse, is the most reliable way of solving Ax = y.

It should be used in cases when A is ill-conditioned.

Condition number $\kappa(A) := \sigma_{\max}(A)/\sigma_{\min}(A)$

Geometrically $\kappa(A)$ is the eccentricity of the hyperellipsoid

 $\kappa(A)$ measures the sensitivity of A^+y to perturbations in y and A

For large $\kappa(A)$ (above a few 1000) A is called ill-conditioned.

Least squares and least norm

Least squares

- consider an overdetermined system of linear equations Ax = y
- problem: given $A \in \mathbb{R}^{m \times n}$, m > n and $y \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$
- for "most" A and y, there is no solution x
- Least squares approximation:
 choose x that minimizes 2-norm of the residual (eqn. error)

$$e(x) := y - Ax$$

a minimizing x is called a least squares approximate solution

$$\widehat{\mathbf{x}}_{\mathrm{ls}} := \arg\min_{\mathbf{x}} \| \underbrace{\mathbf{y} - \mathbf{A}\mathbf{x}}_{\mathbf{e}(\mathbf{x})} \|_2$$

Geometric interpretation: project y onto the image of A

 $(\widehat{y}_{ls}:=A\widehat{x}_{ls} \text{ is the projection})$ $e_{ls}:=\widehat{y}_{ls}-A\widehat{x}_{ls}$

$$A\widehat{\mathbf{x}}_{ls} = \widehat{\mathbf{y}}_{ls} \quad \iff \quad \begin{bmatrix} A & \widehat{\mathbf{y}}_{ls} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{x}}_{ls} \\ -1 \end{bmatrix} = 0$$

$$\iff \quad \begin{bmatrix} a_i & \widehat{\mathbf{y}}_{ls,i} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{x}}_{ls} \\ -1 \end{bmatrix} = 0, \quad \text{for } i = 1, \dots, m$$

$$(a_i \text{ is the } i \text{th row of } A)$$

- $(a_i, \widehat{y}_{ls,i})$, for all i, lies on the subspace perpendicular to $(\widehat{x}_{ls}, -1)$
- "data point" $(a_i, y_i) = (a_i, \widehat{y}_{ls,i}) + (0, e_{ls,i})$
- the approximation error $(0, e_{ls,i})$ is the vertical distance from (a_i, y_i) to the subspace

Another geometric interpretation of the LS approximation:

Notes

Assuming $m \ge n = \text{rank}(A)$, *i.e.*, A is full column rank,

$$\widehat{\mathbf{x}}_{ls} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{y}$$

is the unique least squares approximate solution.

- \hat{x}_{ls} is a linear function of y
- If A is square $\widehat{x}_{ls} = A^{-1}y$
- \hat{x}_{ls} is an exact solution if Ax = y has an exact solution
- $\widehat{y}_{ls} := A\widehat{x}_{ls} = A(A^{\top}A)^{-1}A^{\top}y$ is a least squares approximation of y

Projector onto the span of A

The $m \times m$ matrix

$$\Pi_{\mathsf{colspan}(A)} := A(A^{\top}A)^{-1}A^{\top}$$

is the orthogonal projector onto $\mathcal{L} := \operatorname{colspan}(A)$.

The columns of A are an arbitrary basis for \mathcal{L} .

If the columns of Q form an orthonormal basis for $\mathscr L$

$$\Pi_{\mathsf{colspan}(\mathsf{Q})} := \mathsf{Q}\mathsf{Q}^{\top}$$

Orthogonality principle

The least squares residual vector

$$e_{ls} := y - A\widehat{x}_{ls} = \underbrace{\left(I_m - A(A^\top A)^{-1}A^\top\right)}_{\Pi_{(\text{colspan}(A))^\perp}} y$$

is orthogonal to colspan(A)

$$\langle \mathbf{e}_{ls}, A\widehat{\mathbf{x}}_{ls} \rangle = \mathbf{y}^{\top} (I_m - A(A^{\top}A)^{-1}A^{\top}) A\widehat{\mathbf{x}}_{ls} = \mathbf{0}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n$$

Least squares via QR decomposition

Let A = QR be the QR decomposition of A.

$$(A^{\top}A)^{-1}A^{\top} = (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top}$$

= $(R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top} = R^{-1}Q^{\top}$

so that

$$\widehat{x}_{ls} = R^{-1} Q^{\top} y$$
 and $\widehat{y}_{ls} := A x_{ls} = Q Q^{\top} y$

Let $A =: [a_1 \cdots a_n]$ and consider the sequence of LS problems

$$A^i x^i = y$$
, where $A^i := \begin{bmatrix} a_1 & \cdots & a_i \end{bmatrix}$, for $i = 1, \dots, n$

Define R_i as the leading $i \times i$ submatrix of R and $Q_i := [q_1 \quad \cdots \quad q_i]$.

$$\widehat{\mathbf{x}}_{\mathrm{ls}}^{i} = \mathbf{R}_{i}^{-1} \, \mathbf{Q}_{i}^{\top} \mathbf{y}$$

Least norm solution

Consider an underdetermined system Ax = y, with full rank $A \in \mathbb{R}^{m \times n}$.

The set of solutions is

$$\{x \in \mathbb{R}^n \mid Ax = y\} = \{x_p + z \mid z \in \mathsf{null}(A)\}$$

where x_p is a particular solution, *i.e.*, $Ax_p = y$.

Least norm problem

$$x_{\text{ln}} := \arg\min_{x} \|x\|_2$$
 subject to $Ax = y$

Geometric interpretation:

- x_{ln} is the projection of 0 onto the solution set
- orthogonality principle x_{In} ⊥ null(A)

Derivation of the solution: Lagrange multipliers

Consider the least norm problem with A full rank

$$\min_{x} ||x||_2^2$$
 subject to $Ax = y$

introduce Lagrange multipliers $\lambda \in \mathbb{R}^m$

$$L(\mathbf{x}, \lambda) = \mathbf{x} \mathbf{x}^\top + \lambda^\top (\mathbf{A} \mathbf{x} - \mathbf{y})$$

the optimality conditions are

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{x} + \mathbf{A}^{\top} \lambda = 0$$
$$\nabla_{\lambda} L(\mathbf{x}, \lambda) = \mathbf{A}\mathbf{x} - \mathbf{y} = 0$$

from the first condition $x = -A^{T}\lambda/2$, substituting into the second

$$\lambda = -2(AA^{\top})^{-1}y \implies \mathbf{x}_{ln} = \mathbf{A}^{\top}(AA^{\top})^{-1}y$$

Solution via QR decomposition

Let $A^{\top} = QR$ be the QR decomposition of A^{\top} .

$$A^\top (AA^\top)^{-1} = QR(R^\top Q^\top QR)^{-1} = Q(R^\top)^{-1}$$

is a right inverse of A. Then

$$x_{\text{ln}} = Q(R^{\top})^{-1}y$$

Extensions

Weighted least squares

Given a positive definite matrix $W \in \mathbb{R}^{m \times m}$, define wighted 2-norm

$$\|e\|_{W}^{2} := e^{\top} We$$

Weighted least squares approximation problem

$$\widehat{x}_{W,\mathrm{ls}} := \arg\min_{x} \|y - Ax\|_{W}$$

The orthogonality principle holds by defining the inner product as

$$\langle e, y \rangle_W := e^\top W y$$

and

$$\widehat{\mathbf{x}}_{W.1s} = (\mathbf{A}^{\top} \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{W} \mathbf{y}$$

Recursive least squares

Let a_i^{\top} be the *i*th row of A

$$A = \begin{bmatrix} - & a_1^\top & - \\ & \vdots \\ - & a_m^\top & - \end{bmatrix}$$

with this notation, $||y - Ax||_2^2 = \sum_{i=1}^m (y_i - a_i^\top x)^2$ and

$$\widehat{\mathbf{x}}_{\mathrm{ls}} = \widehat{\mathbf{x}}_{\mathrm{ls}}(m) := \left(\sum_{i=1}^{m} a_i a_i^{\top}\right)^{-1} \sum_{i=1}^{m} a_i y_i$$

- (a_i, y_i) correspond to a measurement
- often the measurements (a_i, y_i) come sequentially (e.g., in time)

Recursive computation of
$$\widehat{\mathbf{x}}_{ls}(m) = \left(\sum_{i=1}^{m} a_i a_i^{\top}\right)^{-1} \sum_{i=1}^{m} a_i y_i$$

- $P(0) = 0 \in \mathbb{R}^{n \times n}, \ q(0) = 0 \in \mathbb{R}^n$
- For m = 0, 1, ...
- $P(m+1) := P(m) + a_{m+1} a_{m+1}^{\top}, q(m+1) := q(m) + a_{m+1} y_{m+1}.$
- If P(m) is invertible, $x_{ls}(m) = P^{-1}(m)q(m)$.

Notes:

- In each step, the algorithm requires inversion of an $n \times n$ matrix
- P(m) invertible $\implies P(m')$ invertible, for all m' > m

Rank-1 update formula

$$(P+aa^{\top})^{-1} = P^{-1} - \frac{1}{1+a^{\top}P^{-1}a}(P^{-1}a)(P^{-1}a)^{\top}$$

Notes:

- gives an $O(n^2)$ method for computing $P^{-1}(m+1)$ from $P^{-1}(m)$
- standard methods based on dense LU, QR, or SVD for computing $P^{-1}(m+1)$ require $O(n^3)$ operations

Multiobjective least squares

least squares minimizes the cost function $J_1(x) := ||y - Ax||_2^2$.

Consider a second cost function $J_2(x) := ||z - Bx||_2^2$,

which we want to minimize together with J_1 .

Usually the criteria $\min_{x} J_1(x)$ and $\min_{x} J_2(x)$ are competing.

Common example: $J_2(x) := ||x||_2^2$ — minimize J_1 with small x

feasible objectives:

$$\{(\alpha,\beta)\in\mathbb{R}^2\mid\exists\;x\in\mathbb{R}^n\;\text{subject to}\;J_1(x)=\alpha,\;J_2(x)=\beta\;\}$$

- · optimal trade-off curve: boundary of the feasible objectives
- the corresponding x is called Pareto optimal

Set of Pareto optimal solutions

For any $\mu \ge 0$, $\hat{x}(\mu) = \operatorname{argmin}_{x} J_{1}(x) + \mu J_{2}(x)$ is Pareto optimal.

By varying $\mu \in [0, \infty)$, $\hat{x}(\mu)$ sweeps all Pareto optimal solutions

Regularized least squares

Tychonov regularization

$$\widehat{\mathbf{x}}_{\mathsf{tych}}(\mu) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \mu \|\mathbf{x}\|_2^2$$

the solution

$$\widehat{\mathbf{x}}_{\mathsf{tych}}(\boldsymbol{\mu}) = (\mathbf{A}^{\top}\mathbf{A} + \boldsymbol{\mu}\mathbf{I}_{\!n})^{-1}\mathbf{A}^{\top}\mathbf{y}$$

exists for any $\mu > 0$, independent on size and rank of A.

Trade-off between

- fitting accuracy $J_1(x) = ||y Ax||_2$, and
- solution size $J_2(x) = ||x||_2$.

Quadratically constrained least squares

Consider again the biobjective LS problem $\min_{x} J_1(x)$ and $J_2(x)$

Scalarization approach:

$$\widehat{\mathbf{x}}_{\mathsf{tych}}(\mu) = \underset{\mathbf{x}}{\mathsf{arg}} \min_{\mathbf{x}} \ \mathbf{J}_1(\mathbf{x}) + \mu \mathbf{J}_2(\mathbf{x})$$

where μ is trade-off parameter

Constrained optimization approach:

$$\widehat{\mathbf{x}}_{\text{constr}}(\gamma) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \ J_1(\mathbf{x}) \quad \text{subject to} \quad J_2(\mathbf{x}) \leq \gamma$$

where γ is upper bound on the J_2 objective

Regularized least squares

Tychonov regularization corresponds to the scalarization approach for

- fitting accuracy $J_1(x) = ||y Ax||_2$, and
- solution size $J_2(x) = ||x||_2$.

The constrained optimization approach leads in this case to

$$\widehat{\mathbf{x}}_{\text{constr}}(\gamma) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \quad \text{subject to} \quad \|\mathbf{x}\|_2^2 \leq \gamma^2$$

least squares minimization over the ball $\mathcal{U}_{\gamma^2} := \{x \mid ||x||_2^2 \leq \gamma^2\}.$

The solution to the latter problem involves scalar nonlinear equation.

Secular equation

If
$$\|A^+y\|_2^2 \le \gamma^2$$
, then $\widehat{x}_{\text{constr}}(\gamma) = \|A^+y\|_2^2$.

If $\|A^+y\|_2^2 > \gamma^2$, then it can be shown that $\widehat{x}_{\text{constr}}(\gamma) \in \mathscr{U}_{\gamma^2}$.

The Lagrangian of

minimize_x
$$||y - Ax||_2^2$$
 subject to $||x||_2^2 = \gamma^2$

is $||y - Ax||_2^2 + \mu(||x||_2^2 - \gamma^2)$, where μ is a Lagrange multiplier.

Necessary and sufficient optimality condition is

$$\mathbf{x}_{\mathsf{tych}}^{\top}(\mu)\mathbf{x}_{\mathsf{tych}}(\mu) = \gamma^2, \quad \mathsf{where} \quad \mathbf{x}_{\mathsf{tych}}(\mu) := (A^{\top}A + \mu I)^{-1}\mathbf{y}$$

The nonlinear equation in μ

$$\mathbf{y}^{\top}(\mathbf{A}^{\top}\mathbf{A} + \mu \mathbf{I})^{-2}\mathbf{y} = \gamma^{2}$$

is called secular equation. It has unique positive solution because $\|x_{\mathsf{tych}}(\mu)\|$ is monotonically decreasing on the interval $\mu \in [0,\infty)$ and by assumption $\|x_{\mathsf{tych}}(0)\|_2^2 > \gamma^2$.

Total least squares (TLS)

The LS method minimizes 2-norm of the equation error e(x) := y - Ax.

$$\min_{x,e} \|e\|_2$$
 subject to $Ax = y - e$

alternatively the equation error e can be viewed as a correction on y.

The TLS method is motivated by the asymmetry of the LS method:

both A and y are given data, but only y is corrected.

TLS problem:
$$\min_{x,\Delta A,\Delta y} \| [\Delta A \ \Delta y] \|_{F}$$
 subject to $(A + \Delta A)x = y + \Delta y$

- ΔA correction on A, Δy correction on y
- Frobenius matrix norm: $\|C\|_{\mathrm{F}} := \sqrt{\sum_{i=1}^m \sum_{j=1}^n c_{ij}^2}$, where $C \in \mathbb{R}^{m \times n}$

Geometric interpretation of the TLS criterion

In the case n = 1, the problem of solving approximately Ax = y is

$$\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} x = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \qquad x \in \mathbb{R}$$

Geometric interpretation:

fit a line $\mathcal{L}(x)$ passing through 0 to the points $(a_1,y_1),\dots,(a_m,y_m)$

- LS minimizes sum of squared vertical distances from (a_i, y_i) to $\mathcal{L}(x)$
- TLS minimizes sum of squared orthogonal distances from (a_i, y_i) to L(x)

Solution of the TLS problem

Let $\begin{bmatrix} A & y \end{bmatrix} = U\Sigma V^{\top}$ be the SVD of the data matrix $\begin{bmatrix} A & y \end{bmatrix}$ and

$$\Sigma = \text{diag}(\sigma_1, \dots, \sigma_{n+1}), \quad \textit{U} = \begin{bmatrix} \textit{u}_1 & \cdots & \textit{u}_{n+1} \end{bmatrix}, \quad \textit{V} = \begin{bmatrix} \textit{v}_1 & \cdots & \textit{v}_{n+1} \end{bmatrix}.$$

A TLS solution of Ax = y exists iff $v_{n+1,n+1} \neq 0$ (last element of v_{n+1}) and is unique iff $\sigma_n \neq \sigma_{n+1}$.

In the case when a TLS solution exists and is unique, it is given by

$$\widehat{\mathbf{x}}_{\text{tls}} = -\frac{1}{\mathbf{v}_{n+1,n+1}} \begin{bmatrix} \mathbf{v}_{1,n+1} \\ \vdots \\ \mathbf{v}_{n,n+1} \end{bmatrix}$$

and the corresponding TLS corrections are $[\Delta A_{\text{tls}} \ \Delta y_{\text{tls}}] = -\sigma_{n+1} u_{n+1} v_{n+1}^{\top}$ (Corollary of the low-rank approximation theorem, see page 17.)

References

 S. Boyd. EE263: Introduction to linear dynamical systems.

- 2. G. Golub and C. Van Loan. *Matrix Computations*. Johns Hopkins, 1996.
- L. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.
- B. Vanluyten, J. C. Willems, and B. De Moor. Model reduction of systems with symmetries. In *Proc. of the CDC*, pages 826–831, 2005.
- I. Markovsky and S. Van Huffel
 Overview of total least squares methods
 Signal Processing, 87, pages 2283–2302, 2007