

AUG 11, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.5qpvo3rm7v4o/v1

Protocol Citation: Laís Ceschini, Luisa Maria Inácio da Silva, Gabriel Luz Wallau 2023. Reverse transcription, primer pools preparation and multiplex PCR steps for CHIKV serotype genomic sequencing . **protocols.io** https://dx.doi.org/10.17504/p rotocols.io.5qpvo3rm7v4o/v1

MANUSCRIPT CITATION:

Machado, Lais Ceschini, et al. "Genome Sequencing Reveals Coinfection by Multiple Chikungunya Virus Genotypes in a Recent Outbreak in Brazil." PLOS Neglected Tropical Diseases, edited by Fabrice Simon, vol. 13, no. 5, May 2019, p. e0007332, doi:https://doi.org/10.1371/journal.pntd.0007332.

Reverse transcription, primer pools preparation and multiplex PCR steps for CHIKV serotype genomic sequencing

Gabriel Luz

Laís Ceschini¹, Luisa Maria Inácio da Silva¹, Wallau¹

¹Entomology department, Instituto Aggeu Magalhães (IAM), FIOCRUZ

Luisa Maria Inácio da Silva

ABSTRACT

This step-by-step protocol describes the cDNA synthesis, primer pools preparation and multiplex PCR conditions with the main goal to sequence the complete genome of CHIKV serotype strains.

MATERIALS

Reverse transcription: SuperScript™ IV First-Strand Synthesis System. (200 reactions) Cat:18091200 Invitrogen

Multiplex PCR: Q5® High-Fidelity 2X Master Mix. Cat: M0492L NEB, H20 Ultre Pure, primers described in table 1.

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: Aug 10, 2023

Last Modified: Aug 11,

2023

PROTOCOL integer ID:

86340

Reverse transcription

1 Using a 2mL tube prepare the **Mix 1** described below for 96 samples:

A	В	С
Mix 1 Reverse transcription	Vol. (1x)	96 samples (+2 = 98 to keep some extra due to pipetting issues)
Random Hexamers (50µM)	1μL	98µL
dNTPs mix (10mM each)	1μL	98µL
Total	2 μL	194µL

2 Using 0,2mL PCR tubes or 96 wells plates add 11-16μL of extracted RNA from RT-PCR positive samples. Add **2μL** of **Mix 1** to the tube/well and take it to the thermocycler with the following set up:

65°C --- 5 minutes

- Take the tubes/wells to ice for 1 minute. (you can prepare a water bath with ice cubes to have a uniform temperature distribution).
- 4 Using a 2mL tube prepare Mix 2:

A	В	С
Mix 2 Reverse Transcription	Vol. (1x)	96 samples (+2 = 98 to keep some extra due to pipetting issues)
5x SSIV Buffer	4μL	392µL
100mM DTT	1μL	98µL
RNaseOUT or RNase Inhibitor	1μL	98µL
SSIV Reverse Transcriptase	1μL	98µL
Total	7μL	686µL

Add **7μL of Mix 2** to the tubes containing the **Mix 1** plus RNA and take it to the thermocycler following the set up below:

Step1:

42°C --- 50 minutes

70°C ---- 10 minutes

4°C --- Hold

6 Store the cDNA at -20°C.

Observation:. As a suggestion, to improve the final results only samples RT-PCR positive showing a Ct value of < 30 should be used for cDNA conversion and genomic amplification.

Pools of primers

7 Select two 0,6mL tubes for each pool.

- 8 Using the original 100uM primer solution eluted individually, put them together following the table below containing each primer volume.
- **9** Pool 1 will have a final volume of 469μl and pool 2 of 460μl.
- 10 In order to prepare the solution to use in the Multiplex PCR, dilute each pool 1:10. That is, 10µl of pool 1 and 90µl of ultrapure water.

TABLE 1: Primers and pool order

A	В	С	D	E
Primer	Sequence	Concentration inside of the pool *	Volume of primer within the pool	Pool
400_1_LEFT_ 1	TGACACACG TAGCCTACC AGTT	0,015uM	10ul	1
400_1_RIGHT _1	CGCATCGGG CAAACGCAG TGGTA	0,015uM	10ul	1
400_3_LEFT_ 3	GCAGACGTC GCGATATAC CAAG	0,015uM	10ul	1
400_3_RIGHT _3	CCAGCTCTT AAGTAGCAT GCGG	0,015uM	10ul	1
400_5_LEFT_ 0	GATGTGCAA GACTACCGA CACG	0,015uM	10ul	1
400_5_RIGHT _0	GACTGGGTA TCAGGCCTC TTGT	0,015uM	10ul	1
400_7_LEFT_ 4	CAAGAAGCC CAGGATGCT GAAA	0,015uM	10ul	1
400_7_RIGHT _4	GCTATGCGT ACACGTCTT CACT	0,015uM	10ul	1
400_9_LEFT_ 4	GCAGAGAGG ACAGAACAC GAGT	0,015uM	10ul	1
400_9_RIGHT _4	CTCTCTGTCT CATCACGTC GGT	0,015uM	10ul	1

A	В	С	D	E
400_11_LEFT _0	AGCAGTGCG GCTTCTTCA ATAT	0,015uM	10ul	1
400_11_RIGH T_0	TGCCTAACT GCGTAAACT CCTTT	0,015uM	10ul	1
400_13_LEFT _2	ATTAAGGAG TGGGAGGTG GAGC	0,015uM	10ul	1
400_13_RIGH T_2	TCTAGAATG GACGCTGCC TCAG	0,015uM	10ul	1
400_15_LEFT _4	GGGGAAAGA ATGGAATGG CTGG	0,015uM	10ul	1
400_15_RIGH T_4	CGTTCACTG GTTCTATCTG CGT	0,015uM	10ul	1
400_17_LEFT _0	AACTGAACG CAGCCTTTG TAGG	0,015uM	10ul	1
400_17_RIGH T_0	ACACCTGTG GAGAGGAGA GGTA	0,015uM	10ul	1
400_19_LEFT _1	CATACAGAT GCGGACCCA AGTG	0,015uM	10ul	1
400_19_RIGH T_1	GTTCAGGAG TCATGGCAT AACGG	0,015uM	10ul	1
400_21_LEFT _2	GCGCGTAAG TCCAAGGGA ATAC	0,015uM	10ul	1
400_21_RIGH T_2	GTCTCCGCT GTTTCTTGTA CGG	0,015uM	10ul	1
400_23_LEFT _1	ACTTTCGGA GACTTCCTA CCCG	0,015uM	10ul	1
400_23_RIGH T_1	ACAGCCTCT CTTTAGTCTC TGGA	0,015uM	10ul	1
400_25_LEFT _2	ACCAAATCA CCGATGAGT ATGATGC	0,015uM	10ul	1
400_25_RIGH T_2	TCGTTATCCT GATAGGGCT GGC	0,015uM	10ul	1
400_27_LEFT _4	AGGCCTAAG GTGCAGGTT ATACA	0,015uM	10ul	1
400_27_RIGH T_4	GCAGGTGAC AGCTGGAAA TCTC	0,015uM	10ul	1

A	В	С	D	E
400_29_LEFT _0	CGATGAATT GATGGCAGC CAGA	0,015uM	10ul	1
400_29_RIGH T_0	GCAAAGGTG GCCATGGAC ATTA	0,015uM	10ul	1
400_31_LEFT _1	TTCTACAATA GGAGGTACC AGCCT	0,015uM	10ul	1
400_31_RIGH T_1	TTCATGCAC ATTCTCTCTC TGCG	0,015uM	10ul	1
400_33_LEFT _3	GATACCCGT GCACATGAA GTCC	0,015uM	10ul	1
400_33_RIGH T_3	TTTTTCGTAG CAGCAGGGT GTG	0,015uM	10ul	1
400_35_LEFT _0	CCACAAGAC CGTACCTAG CTCA	0,015uM	10ul	1
400_35_RIGH T_0	TGGTGAAAT GGGTGCGTA CATG	0,015uM	10ul	1
400_37_LEFT _3	AATGTCACA ACAGTCCGG CAAT	0,015uM	10ul	1
400_37_RIGH T_3	TTGGGTGGT CAGGATACA GCAA	0,015uM	10ul	1
400_39_LEFT _1	GGCCACCCG CATGAGATA ATTC	0,015uM	10ul	1
400_39_RIGH T_1	ATAGGACAA TCAGGGCTG CCAG	0,015uM	10ul	1
400_41_LEFT _0	CTTGGAACC AACGCTATC GCTT	0,015uM	10ul	1
400_41_RIGH T_0	AGCAGCCAC AGTGATATT ATTTCCT	0,015uM	10ul	1
400_43_LEFT _0	ACCAGGACA ATTTGGCGA CATC	0,015uM	10ul	1
400_43_RIGH T_0	ATACCTCAC ACGACATGT CCGT	0,015uM	10ul	1
400_45_LEFT _3	CTACACAAG TACACTGTG CAGCC	0,015uM	10ul	1
400_45_RIGH T_3	TGTTATTCAG GGGTTGTTC AGCC	0,015uM	10ul	1

A	В	С	D	E
400_2_LEFT_ 0	CCAGCAAGG AGGATGATG TCGGAC	0,015uM	10ul	2
400_2_RIGHT _0	TGTGTCGAA CCCTACCCA GTAC	0,015uM	10ul	2
400_4_LEFT_ 0	TGTTCTCAGT AGGGTCAAC GCT	0,015uM	10ul	2
400_4_RIGHT _0	GGATGCCGG TCATTTGATC ACA	0,015uM	10ul	2
400_6_LEFT_ 1	TGAGAAGCT TTTGGGGGT CAGA	0,015uM	10ul	2
400_6_RIGHT _1	ACATCTTCCT GTGCTGCCT GTA	0,015uM	10ul	2
400_8_LEFT_ 0	ACTTTCCCC GCAGACCGT ATTA	0,015uM	10ul	2
400_8_RIGHT _0	CAGCTTCTT CCTTCTTGC AGCA	0,015uM	10ul	2
400_10_LEFT _0	ACCTGGTGA CTAGCGGAA AGAA	0,015uM	10ul	2
400_10_RIGH T_0	GACGACACA ATGGCAGTC ACAG	0,015uM	10ul	2
400_12_LEFT _0	GAGGGTGGG TTAAACAAC TGCA	0,015uM	10ul	2
400_12_RIGH T_0	TTATCCCCG CTGTTTCGA GGAT	0,015uM	10ul	2
400_14_LEFT _1	ACGCGGATA ACCACTGGG ATAA	0,015uM	10ul	2
400_14_RIGH T_1	TTATAGCCG CTAACCAGG AGCA	0,015uM	10ul	2
400_16_LEFT _0	AGGTGACTC ACTGAGACT GCTC	0,015uM	10ul	2
400_16_RIGH T_0	ATCGTTCTTC GCGATGTCC ATG	0,015uM	10ul	2
400_18_LEFT _2	GGACCAAAC TTCTCAAATT ACACGGA	0,015uM	10ul	2
400_18_RIGH T_2	CCAAACTAC TGTCAGGGT GCAC	0,015uM	10ul	2

A	В	С	D	E
400_20_LEFT _4	CAGAAATGC CCGGTGGAT GATG	0,015uM	10ul	2
400_20_RIGH T_4	ATCGGCGCT TAGATCAAA CTGAC	0,015uM	10ul	2
400_22_LEFT _0	GAGGGAGAA ACCTGACCG TGAT	0,015uM	10ul	2
400_22_RIGH T_0	AGTCATAAC TCGTCGTCC GTGT	0,015uM	10ul	2
400_24_LEFT _4	CACGGCCAA TAGAAGCAG GTATC	0,015uM	10ul	2
400_24_RIGH T_4	TTGACGGAT TGAATGTCG CTCG	0,015uM	10ul	2
400_26_LEFT _0	ACCCACTTT GGACTCAGC AGTA	0,015uM	10ul	2
400_26_RIGH T_0	AGGACGGCG TTCAATCTCC TAA	0,015uM	10ul	2
400_28_LEFT _0	CCAGGATGA TTCACTTGC GCTT	0,015uM	10ul	2
400_28_RIGH T_0	GGAGCTTTC TGGGATACA ACTGC	0,015uM	10ul	2
400_30_LEFT _1	GATGGCAAC GAACAGGGC TAAT	0,015uM	10ul	2
400_30_RIGH T_1	GGTCTGGGT CTGATGACT TGGA	0,015uM	10ul	2
400_32_LEFT _3	CCCCCAAAA AGAAACCGG TTCA	0,015uM	10ul	2
400_32_RIGH T_3	GAGTACTGT ACTGCTCCG TGGT	0,015uM	10ul	2
400_34_LEFT _0	CGTCACGAA AATCACCCC TGAG	0,015uM	10ul	2
400_34_RIGH T_0	TCTGTCGCTT CGTTTCTGAT GC	0,015uM	10ul	2
400_36_LEFT _0	CCGTGCACG ATTACTGGA ACAA	0,015uM	10ul	2
400_36_RIGH T_0	CACAATTGC ACTTGTACC GCAC	0,015uM	10ul	2

A	В	С	D	E
400_38_LEFT _1	TCCTCTGGC AAATGTGAC ATGC	0,015uM	10ul	2
400_38_RIGH T_1	CACCCACCA TCGACAGGA GTAT	0,015uM	10ul	2
400_40_LEFT _1	TATACCTGT GGAACGAGC AGCA	0,015uM	10ul	2
400_40_RIGH T_1	TGTACCGCA GCATTTCAC GTAC	0,015uM	10ul	2
400_42_LEFT _4	TCAGCATAC AGGGCTCAT ACCG	0,015uM	10ul	2
400_42_RIGH T_4	GACGGTCTC TGCAGTACC AGTT	0,015uM	10ul	2
400_44_LEFT _0	ATCTCCATC GACATACCG GACG	0,015uM	10ul	2
400_44_RIGH T_0	TGTGACGCC GGGTAATTG ACTA	0,015uM	10ul	2
400_46_LEFT _1	TCCCTAAAG AGACACACC GCAT	0,015uM	10ul	2
400_46_RIGH T_1	TCTTAGCTAT ATATGGTGT GTCTCTTAG GG	0,015uM	10ul	2

^{*}approximate concentration of each primer in the 25µl PCR reaction.

Note: The primers were designed using the https://primalscheme.com based on the KP164576, KP164571, KP164572, KP164568, KP164570 and KP164569 reference genomes (Machado, 2019).

Multiplex PCR

Prepare the **Mix 1** for a Multiplex PCR for each **Pool 1 and Pool** 2 using a Falcon tube of 15mL (~96 amostras) or a 2mL tube.

A	В	С	D
Mix 1 Multiplex PCR	Vol. Pool 1 (1x)	Vol. Pool 2 (1x)	96 samples (+2) (pool1 ou pool2)

A	В	С	D
Q5 Master Mix High fidelity 2X	12,5 µl	12,5 µl	1.225 µl
Pool primers (Pool1 or Pool2) /Use concentration	1,7 μΙ	1,7 μΙ	166,6 µl
Ultra Pure Water	8,3 µl	8,3 µl	813,3 µl
Total	22,5µl	22,5µl	2205µl

12 Add **2,5µl of cDNA** (totalling 5µl) in 22,5µl of the pool1 and pool2 reaction and take it to the thermocycler following the conditions bellow:

Step1:

98°C --- 30 seconds

Step2: (45 cycles)

98°C --- 15 seconds

58°C --- 30 seconds

72°C ---- 5 minutes

Step3:

72°C --- 2 minutes

Hold 4°C