CS306: Introduction to IT Security Assignment Project Exam Help

https://powcoder.com Lecture 7: Public-key Cryptography

Add We Chat powcoder Instructor: Nikos Iriandopoulos

October 20, 2020

Assignment Project Exam Help

https://powcoder.com
7.0 Announcements
Add WeChat powcoder

CS306: Announcements

- HW2 did not come too much in view of next week's midterm exam
- Road ahead
 - no lecture on Asto bemanant were jeste Ewill run bled ponday schedule)
 - regular lecture on October 20
 - midterm exam on outpes://powcoder.com
 - online exam, quiz format
 accommodations to be provided as needed

 - covers all materials discussed so far: lectures 1-7, labs 1-7, HW1
 - Lab 7 will offer a general revision on most important topics
 - exact list of topics to be provided tomorrow

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction Drodoot Example	Lecture 1	-
2	ASSIGII Sep 8	ment Project Exam	Lecture 2	Lab 1
3	Sep 15 ht	ps://powcoder.com	Lecture 3	Lab 2, HW 1
4	Sep 22	Ciphers in practice I	Lecture 4	Lab 3, HW 1
5	Sep 29 A (dd Wechatepowcod	er ecture 5	Lab 4
6	Oct 6	MACs & hashing	Lecture 6	Lab 5
<u>-</u>	Oct 13	No class (Monday schedule)		Lab 6
7	Oct 20	Public-key cryptography	Lecture 7	Lab 7, HW2

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27 Assign	ment Project Exam	All materials	
9	Nov 3	Network/Web security	•	
10	Nov 10 htt	ps:df/po/wooderucon	1	
11	Nov 17	Cloud security	1	
12	Nov 24	dd WeChat powcoc	ier	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Two weeks ago

- Message authentication
 - MACs
 - Replay attack Assignment Project Exam Help
 - Constructionshttps://powcoder.com
- Cryptographic hashing
 - Hash functions Add WeChat powcoder
 - Constructions
- Demo
 - Hash functions in practice

Today

- Revision on message authentication & cryptographic hashing
 - Practical applications
 - Assignment Project Exam Help

 authenticated encryption, hash functions security strength, HMAC
- Public-key (PK) crypt bettposy/powcoder.com
 - Motivation, PK Infrastructure, PK encryption, digital signatures Add WeChat powcoder
 - Discrete log problem, DH key agreement, hybrid encryption
- Demo
 - The length-extension attack...

Assignment Project Exam Help

https://powcoderic-public-key encryption
Add WeChat powcoder

Add WeChat powcoder

Recall: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For symmetric-key message encryption/authentication

adversary Assignment Project Exam Help
 types of attacks
 trusted set-up
 secret key is distributed securely
 secret key remains secret
 trust basis
 underlying primitives are secure

acc

- PRG, PRF, hashing, ...
 - e.g., block ciphers, AES, SHA-2, etc.

On "secret key is distributed securely"

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

- "securely obtain"
 Signment Project Exam Help
 need of a secure channel
- "shared secret key" https://powcoden.goging problem to manage
 - too many keys Add WeChat powcoder

Public-key cryptography to the rescue...

On "secret key is distributed securely"

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

- "securely obtain"
 (A) strong assumption to accept
 Assignment Project Exam Help
 requires secure channel for key distribution (chicken & egg situation)

 - seems impossible for two parties having apprier trust relationship
 - not easily justifiable to hold a priori
- "shared secret key" Add WeChat powcoder (B) challenging problem to manage
 - requires too many keys, namely O(n²) keys for n parties to communicate
 - imposes too much risk to protect all such secret keys
 - entails additional complexities in dynamic settings (e.g., user revocation)

Alternative approaches?

Need to securely distribute, protect & manage many **session-based** secret keys

- (A) for secure distribution, just "make another assumption..."
 - employ "designate by nemental and ject Exam Help
 - physically protected channel (e.g., meet in a "sound-proof" room)
 employ "trusted" party
 - - entities authorized to distribute keys (psychologistribution centers (KDCs))
- (B) for secure management, just 'live with it!"

Public-key cryptography to the rescue...

Public-key (or asymmetric) cryptography

disclaimer on names private = secret

Goal: devise a cryptosystem where key setup is "more" manageable

Main idea: user-specific keys (that come in pairs)

- user U generates Augus keyn the Inthe Notice to Exam Help
 - ◆ U_{pk} is public it can safely be known by everyone (even by the adversary)
 - ◆ U_{sk} is private https://powecoder.com (even from other users)

Usage

Add WeChat powcoder

- employ public key U_{pk} for certain "public" tasks (performed by other users)
- employ private key U_{sk} for certain "sensitive" tasks (performed by user U)

Assumption

public-key infrastructure (PKI): public keys become securely available to users

From symmetric to asymmetric encryption

secret-key encryption

- main limitation
 - session-spectics size nmentice Projectote Exam Help c→decrypt→m Bob

public-key encryption https://powcoder.com

- main flexibility
 - user-specific keys

messages encrypted by receiver's PK can (only) be decrypted by receiver's SK

From symmetric to asymmetric message authentication

secret-key message authentication (or MAC) main limitation session-speckickiesnment-Project Exam public-key message authantication powcoder.com (or digital signatures) main flexibility user-specific keys "sensitive" task

(only) messages signed by sender's SK can be verified by sender's PK

Thus: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs For asymmetric-key message encryption/authentication

- Assignment Project Exam H adversary Bobsk types of attacks trusted set-up $c \rightarrow decrypt \rightarrow m$ PKI is needed Add WeChat powcoder secret keys remain secrét Alice_{PK} re trust basis underlying primitives are secure acc
 - typically, algebraic computationally-hard problems
 - e.g., discrete log, factoring, etc.

General comparison

Symmetric crypto

- key management
- key management

 less scalable & risksignment Project Regulation Regulatio Regulation Regulation Regulation Regulation Regulation Regulati
- assumptions
 - secret & authentic confittpisation owcoder confitty (PKI)
 - secure storage
- primitives
 - generic assumptions
 - more efficiently in practice

Asymmetric crypto

- assumptions
 - secure storage
- Add WeChat powcoder
 - math assumptions
 - less efficiently in practice (2-3 o.o.m.)

Public-key infrastructure (PKI)

A mechanism for securely managing, in a dynamic multi-user setting, (to be used by some public-key cryptosystem) user-specific public-key pairs

- dynamic, multi-Assignment Project Exam Help
 - the system is open to anyone; users can join & leave
- user-specific public-keyhttps://powcoder.com
- each user U in the system is assigned a <u>unique</u> key pair (U_{pk}, U_{sk})
 secure management (e.g., at the first text to purple keysoder
 - public keys are authenticated: <u>current</u> U_{pk} of user U is <u>publicly</u> known to everyone

Very challenging to realize

currently using digital certificates; ongoing research towards a better approach...

Overall: Public-key encryption & signatures

Assume a trusted set-up

public keys are securely available (PKI) & secret keys remain secret

Assignment Project Exam Help

Secret-key vs. public-key encryption

	Secret Key (Symmetric)	Public Key (Asymmetric)	
Number of keys	1 Assignment Project Ev	2 am Heln	
Key size (bits)	56-112 (DES), 128-256 (AES)	Unlimited; typically no less than 256; 1000 to 2000 currently considered desirable for most uses	
Protection of key	Must be kept see of .// powcouch.c	one key must be kept secret; the other can be freely exposed	
Best uses	Cryptographic workhorse. Sorrecy and integrity of data, bon viole data posw to blocks of data, messages and files	Key exchange, authentication,	
Key distribution	Must be out-of-band	Public key can be used to distribute other keys	
Speed	Fast	Slow, typically by a factor of up to 10,000 times slower than symmetric algorithms	

Public-key cryptography: Early history

Proposed by Diffie & Hellman

- documented in "New Directions in Cryptography" (1976)
- solution concepts of public-key encryption schemes & registral signatures
- key-distribution systems
 - Diffie-Hellman keyterge ment of the protection of the protect
 - "reduces" symmetric crypto to asymmetric crypto

Public-key encryption was del lev tenthiad appropriate proposed by James Ellis

- classified paper (1970)
- published by the British Governmental Communications Headquarters (1997)
- concept of digital signature is still originally due to Diffie & Hellman

Assignment Project Exam Help

https://powcoder.com
7.2 Public-key certificates
Add WeChat powcoder

How to set up a PKI?

- How are public keys stored? How to obtain a user's public key?
- How does Bob know or 'trust' that A_{RK} is Alice's public key?
 Assignment Project Exam Help
 How A_{PK} (a bit-string) is securely bound to an entity (user/identity)?

https://powcoder.com

public key: Bpk

secret key: B_{sk}

Achieving a PKI...

How can we maintain the invariant that at all times

- any given user U is assigned a unique public-private key pair; and
- any other user kan ignument project Exam Help
 - secret keys can be lost, stolen or they should be revoked https://powcoder.com

entails binding users/identities to public keys

Recall

- PK cryptosystems come with a weelghrith now wick is de le User the leger the leger to le leger to leger to
 - on input a security-strength parameter, it outputs a random valid key pair for U
- public keys can be made publicly available
 - e.g., sent by email, published on web page, added into a public directory, etc.

Distribution of public keys

Public announcement

users distribute public keys to recipients or broadcast to community at large

Publicly available Airsignment Project Exam Help

• can obtain greater security by registering keys with a public directory

Both approaches have problems and pre-Winerable to forgeries

Add WeChat powcoder

Do you trust your public key?

- Impostor claims to be a true party
 - true party has a public and private key
 - impostor also Assignment Project Exam Help
- Impostor sends impostor's own public key to the verifier
 - says, "This is the true party weblickey" powcoder
 - this is the critical step in the deception

Certificates: Trustable identities & public keys

Certificate

- a public key & an identity bound together
- in a document signed by a certificate authority Exam Help

Certificate authority (Ch)ttps://powcoder.com

- an authority that users trust to securely bind identity to public keys
 Add WeChat powcoder
 CA verifies identities before generating certificates for these identities

 - secure binding via digital signatures
 - ◆ ASSUMPTION: The authority's PK CA_{PK} is authentic

Public-key certificates in practice

Current (imperfect) practice for achieving trustable identities & public keys

- everybody trusts a Certificate Authority (CA)
 - everybody knows picaramosost that of the total the total responding secret key CAsk
- a certificate binds identities to public keys in a CA-signed statement
 - e.g., Alice obtains a significate of the scale ment Alice's public key is 1032xD"
- users query CA for public keys of intended recipients or signers

 Add WeChat powcoder

 e.g., when Bob wants to send an encrypted message to Alice
 - - he first obtains & verifies a certificate of Alice's public key
 - e.g., when Alice wants to verify the latest software update by Company
 - she first obtains & verifies a certificate of Company's public key

Example

a certificate is a public key and an identity bound together and signed by a certificate authority (CA)

Document containing the public key and identity for Mario Rossi

Name: Mario
Surname: Rossi
Surname: Rossi
Project Exam Help

Mario Rossi's public key

Add WeChat powcoder

a certificate authority is an **authority** that users **trust** to accurately verify identities before generating certificates that bind those identities to keys

Mario Rossi's Certificate

document signed by CA

Certificate hierarchy

Single CA certifying every public key is impractical Instead, use trusted signericinate Projectics xam Help

- root CA signs certificates for intermediate CAs,
 they sign certificates for lower-level CAs, etc.
 - certificate "chain of Audd WeChat powcoder
 - sig_{Symantec}("Stevens", PK_{Stevens})
 - sig_{UMD}("faculty", PK_{faculty})
 - sig_{faculty}("Nikos", PK_{Nikos})

Example 1: Certificate signing & hierarchy

To create Diana's certificate: To create Delwyn's certificate: Diana creates and delivers to Edward: Delwyn creates and delivers to Diana: Name: Diana Name: Delwyn Position: Division Manager Position: Dept Manager Public key: 17EF83CA ... Public key: 3AB3882C .. Edward adds: Name: Diana hash value Name: Delwyn hash value Position: Division Manager 128C4 Position: Dept Manager 48CFA Public kev: 17EF83GA Public key: 3AB3882C ... Edward signs with his private key: Diana signs with her private key: hash value Name: Diana Name: Delwvn hash value Position: Division Manager Position: Dept Manager 48CFA Public key: 17EF83C Which is Diana's certificate. And appends her certificate: Name: Delwyn hash value Position: Dept Manager 48CFA Public key: 3AB3882C ... Name: Diana hash value 128C4 Position: Division Manager Public key: 17EF83CA ...

Which is Delwyn's certificate.

Example 2

What bad things can happen if the root CA system is compromised?

Secure communication over the Internet

What cryptographic keys are used to protect communication?

X.509 certificates

Defines framework for authentication services

- defines that public keys stored as certificates in a public directory
- certificates are issued and signed by a CA Exam Help

Used by numerous applications//Sowcoder.com

Example: see certificates accepted by your browser Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com
7.3 Hybrid encryption
Add WeChat powcoder

Secret-key cryptography is "reduced" to public-key

PK encryption can be used "on-the-fly" to securely distribute session keys

Main idea: Leverage PK encryption to securely distribute session keys

- sender generates a fresh session-specific secret key k and learns receiver's public key R_{pk}
- session key k is sent to receiver encrypted under key R https://powcoder.com
- session key k is employed to run symmetric-key crypto

Hybrid encryption

"Reduces" secret-key crypto to public-key crypto

better performance than block-based public-key CPA-encryption

Assignment Project Exam Help

main idea

apply PK encryption of plants of

Hybrid encryption using the KEM/DEM approach

"Reduces" secret-key crypto to public-key crypto

- CPA-secure if KEM is CPA-secure and Enc' EAV-secure
- CCA-secure if KEM and Enc' are CCA-secure

Assignment Project Exam Help

https://powcoder.com Discrete Log problem & its
Add WeChat payptications

The discrete logarithm problem

Setting

- if p be an odd prime, then $G = (Z_p^*, \cdot)$ is a cyclic group of order p 1
 - ◆ Z_p* = {1, 2, 3, A. ssiggemeent Projection Exxam Help
 - for i = 0, 1, 2, ..., p-2, the process $g^i \mod p$ produces all elements in Z_p^*
 - for any x in the group, we have that g mod p = x, for some integer k
 - k is called the discrete logarithm (or log) of x (mod p) er

Example

- (Z_{17}^*, \cdot) is a cyclic group G with order 16, 3 is the generator of G and $3^{16} = 1 \mod 17$
- let k = 4, $3^4 = 13 \mod 17$ (which is easy to compute)
- the inverse problem: if $3^k = 13 \mod 17$, what is k? what about large p?

Computational assumption

Discrete-log setting

- cyclic G = (Z_p^*, \cdot) of order p 1 generated by g, prime p of length t (|p|=t) Assignment Project Exam Help Problem
- given G, g, p and x in Z*, compute the discrete log k of x (mod p)
 tttps://powcoder.com
 we know that x = g^k mod p for some unique k in {0, 1, ..., p-2}... but

Discrete log assumption Add WeChat powcoder

- for groups of specific structure, solving the discrete log problem is infeasible
- any efficient algorithm finds discrete logs negligibly often (prob = $2^{-t/2}$)

Brute force attack

cleverly enumerate and check O(2^{t/2}) solutions

ElGamal encryption

Assumes discrete-log setting (cyclic G = (Z_p^*, \cdot) = <g>, prime p, message space Z_p) Gen

- secret key: random number x & Z* Project Ex an grand p, along w/ G, g, p Enc
- pick a fresh <u>random</u> $r = \frac{7}{100} \cdot \frac{7}{100} \cdot$

Add WeChat powcoder Dec

where $c_1^x = g^{xr}$ • $Dec_{SK}(c_1,c_2) = c_2 (1/c_1^x) \mod p$

Security is based on Computational Diffie-Hellman (CDH) assumption

given (g, g^a,g^b) it is hard to compute g^{ab}

A signature scheme can be also derived based on above discussion

Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line

- instead of meeting in person in a secret place, they want to use the insecure line...
- * KA scheme: they rupackeiven and the contributed p shared key K
- correctness: K_A = K_B
- security: no PPT adversary httpisen/pawwww.datshortom a trully random one

Key agreement: Game-based security definition

- scheme $\Pi(1^n)$ runs to generate $K = K_A = K_B$ and transcript T; random bit b is chosen
- adversary \mathcal{A} is given T and k_b ; if b = 1, then $k_b = K$, else k_b is random (both n-bit long)
- A outputs bit b' a Adswirg in ment Project Exam Help
- ◆ then: П is secure if no PPT A wins non-negligibly often https://powcoder.com

(B) b is randomly chosen

44

The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line

- DH KA scheme Π
 - discrete log settings igniphie where reject plantament in telp

Security

- discrete log assumption is necessary but not sufficient
- decisional DH assumption
 - given g, g^a and g^a, g^a is computationally indistinguishable from uniform

https://powcoder.com

Add WeChat powcoder

Authenticated Diffie-Hellman

