

Imperfect	information	abounds	in	economics	(and	real life)
•					`	,

• Life is full of "noisy signals"

				/ 1 1	1.6 /
Impertect	intormation	abounds ir	n economics	land real	lite)

• Life is full of "noisy signals"

• See also: "it's better to be lucky than good"

Imperfect information abounds in economics (and real life)

• Life is full of "noisy signals"

• See also: "it's better to be lucky than good"

How do we know someone or something is "lucky" or "good"?

Imperfect information abounds in economics (and real life)

- Life is full of "noisy signals"
- See also: "it's better to be lucky than good"
- How do we know someone or something is "lucky" or "good"?
- How do we know a restaurant we visited for the first time is actually good?

Imperfect information abounds in economics (and real life)

- Life is full of "noisy signals"
- See also: "it's better to be lucky than good"
- How do we know someone or something is "lucky" or "good"?
- How do we know a restaurant we visited for the first time is actually good?
- How do we know we didn't just happen to get their best dish on a good night?

How do we estimate models where a person has imperfect information?
We've done some of this already with dynamic discrete choice models:

How do we estimate models where a person has imperfect information?
We've done some of this already with dynamic discrete choice models:

People can't see the future

How do we estimate models where a person has imperfect information?

We've done some of this already with dynamic discrete choice models:

- People can't see the future
- Instead, have expectations about their future states and preference shocks

How do we estimate models where a person has imperfect information?

We've done some of this already with dynamic discrete choice models:

- People can't see the future
- Instead, have expectations about their future states and preference shocks
- \bullet We compute individuals' expectations according to the $\mathbb E \max$ formula

How do we estimate models where a person has imperfect information?

We've done some of this already with dynamic discrete choice models:

- People can't see the future
- Instead, have expectations about their future states and preference shocks
- ullet We compute individuals' expectations according to the ${\mathbb E} \max$ formula
- \bullet For tractability, we impose a strong assumption on the distribution of ϵ

Consider a setting where an agent is trying to learn about something, call it a_i

• For simplicity, assume a_i is continuous and drawn from CDF F_a

- For simplicity, assume a_i is continuous and drawn from CDF F_a
- The agent doesn't know the exact value of a_i , but has beliefs denoted $\mathbb{E}_t[a_i]$

- For simplicity, assume a_i is continuous and drawn from CDF F_a
- ullet The agent doesn't know the exact value of a_i , but has beliefs denoted $\mathbb{E}_t[a_i]$
- He gains additional information about a_i from a noisy signal S_{it}

- For simplicity, assume a_i is continuous and drawn from CDF F_a
- ullet The agent doesn't know the exact value of a_i , but has beliefs denoted $\mathbb{E}_t[a_i]$
- He gains additional information about a_i from a noisy signal S_{it}
- That is, $S_{it} = a_i + \varepsilon_{it}$ where ε_{it} is pure noise

- For simplicity, assume a_i is continuous and drawn from CDF F_a
- ullet The agent doesn't know the exact value of a_i , but has beliefs denoted $\mathbb{E}_t[a_i]$
- He gains additional information about a_i from a noisy signal S_{it}
- That is, $S_{it} = a_i + \varepsilon_{it}$ where ε_{it} is pure noise
- The agent updates his beliefs to $\mathbb{E}_{t+1}[a_i]$ by incorporating new information in S_{it}

- For simplicity, assume a_i is continuous and drawn from CDF F_a
- ullet The agent doesn't know the exact value of a_i , but has beliefs denoted $\mathbb{E}_t[a_i]$
- He gains additional information about a_i from a noisy signal S_{it}
- That is, $S_{it} = a_i + \varepsilon_{it}$ where ε_{it} is pure noise
- ullet The agent updates his beliefs to $\mathbb{E}_{t+1}[a_i]$ by incorporating new information in S_{it}
- This process repeats itself in each period where S_{it} is received

Assume WLOG that $\mathbb{E}(a_i)=0$ and $\mathbb{E}(arepsilon_{it})=0$ for all t

Assume WLOG that $\mathbb{E}(a_i) = 0$ and $\mathbb{E}(\varepsilon_{it}) = 0$ for all t

Then we can decompose the variance of the signal S_{it}

$$egin{aligned} \mathbb{V}(\mathcal{S}_{it}) &= \mathbb{V}(a_i) + \mathbb{V}(arepsilon_{it}) \ &= \sigma_{\epsilon}^2 + \sigma_{\epsilon}^2 \end{aligned}$$

Assume WLOG that $\mathbb{E}(a_i)=0$ and $\mathbb{E}(\varepsilon_{it})=0$ for all t

Then we can decompose the variance of the signal
$$S_{it}$$

$$egin{aligned} \mathbb{V}(\mathcal{S}_{it}) &= \mathbb{V}(a_i) + \mathbb{V}(arepsilon_{it}) \ &= \sigma_a^2 + \sigma_arepsilon^2 \end{aligned}$$

The signal-to-noise ratio (SNR) is defined as

$$rac{\mathbb{V}(\mathsf{a}_i)}{\mathbb{V}(arepsilon_{it})} = rac{\sigma_\mathsf{a}^2}{\sigma_\mathsf{c}^2}$$

Assume WLOG that $\mathbb{E}(a_i) = 0$ and $\mathbb{E}(\varepsilon_{it}) = 0$ for all t

Then we can decompose the variance of the signal S_{it}

$$\mathbb{V}(S_{it}) = \mathbb{V}(a_i) + \mathbb{V}(\varepsilon_{it})$$
$$= \sigma_a^2 + \sigma_\varepsilon^2$$

The signal-to-noise ratio (SNR) is defined as

$$\frac{\mathbb{V}(a_i)}{\mathbb{V}(\varepsilon_{it})} = \frac{\sigma_a^2}{\sigma_\varepsilon^2}$$

This ratio measures the quality of the signal (bigger is better)

Another commonly used quantity is the variance ratio:

$$rac{\mathbb{V}(\mathcal{S}_{it})}{\mathbb{V}(arepsilon_{it})} = rac{\sigma_{\mathsf{a}}^2 + \sigma_arepsilon^2}{\sigma_arepsilon^2}$$

Another commonly used quantity is the variance ratio:

$$rac{\mathbb{V}(\mathcal{S}_{it})}{\mathbb{V}(arepsilon_{it})} = rac{\sigma_{\mathsf{a}}^2 + \sigma_arepsilon^2}{\sigma_arepsilon^2}$$

 $\mathbb{V}\left(arepsilon_{it}
ight)$

This is used in common formulas for updating beliefs