UNIVERSIDAD DE GRANADA.

ESCUELA TECNICA SUPERIOR DE INGENIERIAS INFORMATICA Y DE TELECOMUNICACIÓN.

Departamento de Arquitectura y Tecnología de Computadores.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES.

TEMA 3. SISTEMAS COMBINACIONALES. GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO

1º GRADO EN INGENIERÍA INFORMÁTICA.

TEMA 3°. SISTEMAS COMBINACIONALES.

GUÍA DE AYUDA PARA EL APRENDIZAJE AUTÓNOMO.

3.1.- PARTE TEÓRICA: El estudiante deberá:

- a) Descargar de la plataforma docente y leer detenidamente el material del Tema 3º ubicado en el fichero 03.-TEMA_3_TOC_SISTEMAS_COMBINACIONALES.PDF.
- b) Visualizar en los enlaces de más abajo dos videoclases referentes al Tema 3º de la asignatura:
 - Tema 3. Clase 1. https://drive.google.com/open?id=1LYnJsHz1OUzPIDzAcr6vlaYK1XLKCTeb Tema 3. Clase 2. https://drive.google.com/open?id=1WJY2ZxF5grFL4WfDU2vcmlVtuPiZXT7O

3.2.- PARTE DE EJERCICIOS:

- 1. Las acciones de una compañía están repartidas en poder de cuatro accionistas de la siguiente forma: A, 12%; B, 23%; C, 30%; D, 35%. Las decisiones se toman por mayoría y cada uno de los accionistas tiene un botón particular de la mesa de juntas que se utiliza para las votaciones. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que indique si se aprueban las propuestas presentadas por la junta de accionistas.
 - a) Tabla de Verdad que modela el problema y mapa de Karnaugh para la simplificación: se entiende que f = 1 significa que se aprueba la moción presentada a votación y f = 0 en otro caso.

ABCD	% VOTOS	f
0000	0 %	0
0001	35 %	0
0010	30 %	0
0011	65%	1
0100	23%	0
0101	58%	1
0110	53%	1
0111	88%	1
1000	12%	0
1001	47%	000
1010	42%	
1011	77%	1
1100	35%	0
1101	70%	1
1110	65%	1
1111	100%	1

b) Expresión mínima AND/OR y NAND/NAND de la función de conmutación: todos los implicantes primos obtenidos en paso anterior son esenciales, por tanto, la expresión mínima de la función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND será:

$$\mathsf{f}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}) = (\mathsf{B}\cdot\mathsf{C}) + (\mathsf{B}\cdot\mathsf{D}) + (\mathsf{C}\cdot\mathsf{D}) = \overline{(\mathsf{B}\cdot\mathsf{C}) + (\mathsf{B}\cdot\mathsf{D}) + (\mathsf{C}\cdot\mathsf{D})} = \overline{(\mathsf{B}\cdot\mathsf{C})\cdot\overline{(\mathsf{B}\cdot\mathsf{D})}\cdot\overline{(\mathsf{C}\cdot\mathsf{D})}}$$

c) Esquema del circuito mínimo que implementa la función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND:

d) (Addenda) Realice la función f utilizando un multiplexor de 8 a 1 (3 entradas de control) y multiplexores de 2 a 1 (1 entrada de control).

Se reagrupa la tabla de verdad de la función de conmutación:

ABCD	% VOTOS	f	Valor parcial
0000	0 %	0	f(000D) = 0
0001	35 %	0	1(000D) = 0
0010	30 %	0	f(001D) = D
0011	65%	1	1(0010) - 0
0100	23%	0	f(010D) = D
0101	58%	1	1(0100) - 0
0110	53%	1	f(011D) = 1
0111	88%	1	1(0110) = 1
1000	12%	0	f(100D) = 0
1001	47%	0	1(100D) = 0
1010	42%	0	f(101D) = D
1011	77%	1	1(1010) = 0
1100	35%	0	f(110D) = D
1101	70%	1	1(1100) = 0
1110	65%	1	f(111D) = 1
1111	100%	1	1(1110) - 1

Este último esquema sirve como ejemplo de la implementación de un multiplexor de 8 a 1 (3 entradas de control) con multiplexores 2 a 1 (1 entrada de control).

- 3. Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que opere con dos datos de dos bits, $A = a_1 a_0$ y $B = b_1 b_0$, y realice la función Z = 2*A*B.
 - a) Tabla de Verdad que modela el problema: Los datos A y B son datos de dos bits (se suponen números enteros positivos sin signo) cuyos valores están comprendidos entre 0 y 3. Por tanto, el producto aritmético de A*B estará comprendido entre un mínimo de 0 (cuando A = B = 0; $a_1a_0 = b_1b_0 = 00$) y un máximo de 9 (cuando A = B = 3; $a_1a_0 = b_1b_0 = 11$). Consecuentemente, el producto aritmético de 2*A*B estará comprendido entre un mínimo de 0 (cuando A = B = 0; $a_1a_0 = b_1b_0 = 00$) y un máximo de 18 (cuando A = B = 3; $a_1a_0 = b_1b_0 = 11$) y el resultado será siempre un número par. Por tanto, como el valor máximo del resultado puede llegar a ser 18)₁₀ = 10010)₂, el máximo número de bits que requiere el resultado es 5 bits (Z = z_4 z_3 z_2 z_1 z_0)

a ₁ a ₀	$b_1 b_0$	2*A*B DECIMAL	Z_4	Z ₃	Z ₂	Z ₁	z ₀
0 0	0 0	0	0	0	0	0	0
0 0	0 1	0	0	0	0	0	0
0 0	10	0	0	0	0	0	0
0 0	11	0	0	0	0	0	0
0 1	0 0	0	0	0	0	0	0
0 1	0 1	2	0	0	0	1	0
0 1	10	4	0	0	1	0	0
0 1	11	6	0	0	1	1	0
10	0 0	0	0	0	0	0	0
10	0 1	4	0	0	1	0	0
10	10	8	0	1	0	0	0
10	11	12	0	1	1	0	0
11	0 0	0	0	0	0	0	0
11	0 1	6	0	0	1	1	0
11	10	12	0	1	1	0	0
11	11	18	1	0	0	1	0

```
Z_4 = \Sigma m (15)

Z_3 = \Sigma m (10, 11, 14)

Z_2 = \Sigma m (6, 7, 9, 11, 13, 14)

Z_1 = \Sigma m (5, 7, 13, 15)

Z_0 = 0
```

Nótese que z_0 = 0 siempre, dado que el resultado es un número entero positivo par.

b) Mapas de Karnaugh para la simplificación:

c) Expresiones mínimas AND/OR y NAND/NAND de las funciones de conmutación: todos los implicantes primos de todas las funciones obtenidos en paso anterior son esenciales, por tanto, la expresión mínima de cada función en la forma AND/OR (Suma de Productos o forma mínima disyuntiva) y su alternativa NAND/NAND será:

$$z_{4} = a_{1} \cdot a_{0} \cdot b_{1} \cdot b_{0} = \overline{a_{1} \cdot a_{0} \cdot b_{1} \cdot b_{0}}$$

$$z_{3} = (a_{1} \cdot \overline{a_{0}} \cdot b_{1}) + (a_{1} \cdot b_{1} \cdot \overline{b_{0}}) = \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) + (\overline{a_{1} \cdot b_{1} \cdot \overline{b_{0}}})} = \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}})}}$$

$$z_{2} = (\underline{a_{1} \cdot \overline{b_{1}} \cdot b_{0}}) + (\underline{a_{1} \cdot \overline{a_{0}} \cdot b_{0}}) + (\overline{a_{1}} \cdot \underline{a_{0}} \cdot b_{1}) + (\underline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) = \overline{(\overline{a_{1} \cdot \overline{b_{1}} \cdot b_{0}}) + (\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{0}}) + (\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}})}} = \overline{(\overline{a_{1} \cdot \overline{b_{1}} \cdot b_{0}}) \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{0}})} \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}}) \cdot \overline{(\overline{a_{1} \cdot \overline{a_{0}} \cdot b_{1}})}}} = \overline{a_{0} \cdot b_{0}}$$

$$z_{1} = a_{0} \cdot b_{0} = \overline{a_{0} \cdot \overline{b_{0}}}$$

$$z_{2} = 0$$

d) Circuitos mínimos resultantes:

5. Analice el circuito de la figura y obtenga la tabla de verdad de la función de conmutación resultante.

Tabla de verdad de f:

АВС	mi	$n_1 = \overline{A} + \overline{B} + \overline{C}$	n ₂ = B + C	$f = n_1 \cdot n_2$
000	0	1	0	0
0 0 1	1	1	1	1
010	2	1	1	1
0 1 1	3	1	1	1
100	4	1	0	0
101	5	1	1	1
110	6	1	1	1
111	7	0	1	0

7. Considere el circuito de la siguiente figura:

- a) Represente la función Z que realiza el circuito en un mapa-K.
 - a.1) Expresión algebraica de la función z:

$$z = n_5 \cdot n_6 = (n_3 + n_4) \cdot (x_4 + \overline{x}_2) = \left[(\overline{x}_2 \cdot x_1) + (x_3 \cdot x_2) \right] \cdot (x_4 + \overline{x}_2) = \left[(\overline{x}_2 \cdot x_1) \cdot (x_4 + \overline{x}_2) \right] + \left[(x_3 \cdot x_2) \cdot (x_4 + \overline{x}_2) \right] =$$

$$= \left[(x_4 \cdot \overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot \overline{x}_2 \cdot x_1) \right] + \left[(x_4 \cdot x_3 \cdot x_2) + (x_3 \cdot x_2 \cdot \overline{x}_2) \right] = (x_4 \cdot \overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2) =$$

$$= \left[(x_4 + 1) \cdot (\overline{x}_2 \cdot x_1) \right] + (x_4 \cdot x_3 \cdot x_2) = (\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2) = (\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2) = (\overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot x_2) = (\overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot x_2) = (\overline{x}_2 \cdot x_2) = (\overline{x}_2 \cdot x_1) + (\overline{x}_2 \cdot x_2) = (\overline{x}_2 \cdot x_2$$

a.2) Tabla de verdad y mapa de Karnaugh de la función z:

X ₄	X 3	X ₂	X ₁	Z
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0 0 0 0	0	1	0 1	0
0 0 0	1	1 0 0	0 1	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1 1	0	0	0	0
1		0	1 0	1
1	0	1		0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0 1 0 0 0 1 0 0 0 1 1 1 1
1	1	1	0	1
1	1	1	1	1

- b) Diseñe un circuito combinacional mínimo en forma AND/OR y NAND/NAND que realice la misma función z.
 - b.1) Minimización de la función z usando su mapa de Karnaugh:

Ver el mapa de Karnaugh de más arriba. Se forman dos cubos con los unos de la función y ambos dan lugar a dos implicantes primos que son esenciales.

b.2) Expresión mínima AND/OR (Suma de Productos o forma mínima disyuntiva) y NAND/NAND de la función z:

$$z = (\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2) = \overline{(\overline{x}_2 \cdot x_1) + (x_4 \cdot x_3 \cdot x_2)} = \overline{(\overline{x}_2 \cdot x_1) \cdot (\overline{x}_4 \cdot x_3 \cdot x_2)}$$

b.3) Circuitos mínimos AND/OR y NAND/NAND de la función z:

c) Complete el siguiente diagrama de tiempos, teniendo en cuenta el retardo de propagación (en nanosegundos) indicado para cada puerta.

20. Implemente un multiplexor 8-a-1 a partir de 2 multiplexores 4-a-1 y un multiplexor 2-a-1 y con multiplexores 2 a 1.

21. Implemente un demultiplexor 1-a-8 a partir de 2 demultiplexores 1-a-4 y un demultiplexor 1-a-2 y con demultiplexores de 1 a 2.

22. Obtenga la tabla de verdad y el mapa de Karnaugh de la función que realiza el circuito de la Figura.

XZW	m	f_0	f_1	$f=f_0+f_1$
000	0	0	0	0
001	1	1	0	1
010	2	1	0	1
011	3	1	1	1
100	4 5	0	0	0
101	5	0	0	0
110	6	1	1	1
111	7	0	1	1

- a) Minimice dicha función en la forma AND/OR
- b) Implementela utilizando un multiplexor de 8 a 1 (3 variables de control).
- c) Impleméntela utilizando un multiplexor de 4 a 1 (2 variables de control).
- d) Impleméntela utilizando multiplexores de 2 a 1 (1 variable de control).

Resolución:

Tabla de Verdad y Mapa de Karnaugh de la función: Se va a obtener primero la expresión algebraica de la función de conmutación resultante f.

En el multiplexor superior (M₀) se genera una función f₀:

$$f_0 = (\overline{x \cdot z \cdot w}) + (\overline{x \cdot z \cdot 1}) + (\overline{x \cdot z \cdot 0}) + (\overline{x \cdot z \cdot w}) = (\overline{x \cdot z \cdot w}) + (\overline{x \cdot z}) + (\overline{x \cdot z}) + (\overline{x \cdot z \cdot w})$$

En el multiplexor inferior (M₁) se genera una función f₁:

$$f_1 = (\overline{x} \cdot \overline{z} \cdot x) + (\overline{x} \cdot z \cdot w) + (x \cdot \overline{z} \cdot z) + (x \cdot z \cdot 1) = (\overline{x} \cdot z \cdot w) + (x \cdot z)$$

Por tanto como f = $f_0 + f_1 = (\overline{x} \cdot \overline{z} \cdot w) + (\overline{x} \cdot z) + (\overline{x} \cdot z \cdot \overline{w}) + (\overline{x} \cdot z \cdot w) + (\overline{x} \cdot z)$

Por tanto, la tabla de verdad y mapa de Karnaugh de la función resultante f es:

XZW	f
000	0
001	1
010	1
011	1
100	0
101	0
110	1
111	1
	000 001 010 011 100 101 110

00	01	11	10
00	11	13	12
04	05	17	16
	f		
	00	0 ₀ 1 ₁	0 ₀ 1 ₁ 1 ₃

a) Minimice dicha función en la forma AND/OR

zw				
x \	00	01	11	10
0	00	\bigcirc 1	12	12
1	04	05	17	16

$$f = (x \cdot w) + z$$

b) Impleméntela utilizando un multiplexor de 8 a 1 (3 variables de control).

c) Impleméntela utilizando un multiplexor de 4 a 1 (2 variables de control).

XZW	f	Valor
		parcial
000 001	0	$f_0(00w) = w$
010 011	1	$f_0(01w) = 1$
100 101	0	$f_0(10w) = 0$
110 111	1	$f_0(11w) = 1$

d) Impleméntela utilizando multiplexores de 2 a 1 (1 variable de control).

Hay dos formas de hacerlo: sin reducción del número de multiplexores (izquierda) o con reducción del número de multiplexores (derecha), empleando la tabla de valores parciales del apartado c).

- 30. Diseñe un conversor de un dato binario de 3 bits a un visualizador de 7 segmentos utilizando una memoria ROM de tamaño adecuado. Dibuje tanto la estructura de la ROM como su implementación interna.
- a) Tabla de Verdad que modela el problema:

xyz	N°	а	b	С	d	е	f	g	VIS.
000	0	1	1	1	1	1	1	0	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
001	1	0	1	1	0	0	0	0	dot 9 1
010	2	1	1	0	1	1	0	1	dot 9
011	3	1	1	1	1	0	0	1	dot 9
100	4	0	1	1	0	0	1	1	dot 9
101	5	1	0	1	1	0	1	1	dot 9
110	6	1	0	1	1	1	1	1	dot 9
111	7	1	1	1	0	0	0	0	dot g

Visualizador de 7 Segmentos

Funciones:

a $(x,y,z) = \Sigma m (0, 2, 3, 5, 6, 7)$

b $(x,y,z) = \Sigma m (0, 1, 2, 3, 4, 7)$

 $c(x,y,z) = \Sigma m(0, 1, 3, 4, 5, 6, 7)$

 $d(x,y,z) = \Sigma m(0, 2, 3, 5, 6)$

 $e(x,y,z) = \Sigma m(0, 2, 6)$

 $f(x,y,z) = \Sigma m (0, 4, 5, 6)$

 $g(x,y,z) = \Sigma m (2, 3, 4, 5, 6)$

NO hay que minimizar las funciones. Se implementa en el plano AND los 8 minterms de las 3 variables y se hace la OR de los mínterms correspondientes para cada función.

b) Circuito de la memoria ROM: Tamaño 3·2³·7 (3 entradas, 8 términos producto AND minterms y 7 salidas) con entrada de habilitación E.

- 31. Dadas las siguientes funciones de conmutación, en las que "x₀" representa la variable menos significativa:
 - $f_0(x_2, x_1, x_0) = \sum m(0, 3, 5, 6, 7)$

 - $f_1(x_2, x_1, x_0) = \sum m(1, 2, 5)$ $f_2(x_2, x_1, x_0) = \sum m(0, 2, 4, 6, 7)$
 - a) Implemente dichas funciones mediante una memoria ROM de tamaño adecuado. ¿Cuál es el tamaño de dicha memoria ROM? Dibuje explícitamente la estructura interna de la ROM (plano AND y plano OR programado con las conexiones adecuadas para implementar dichas funciones).

Las tablas de verdad de las tres funciones son:

$X_2 X_1 X_0$	f_0	f ₁	f ₂
000	1	0	1
0 0 1	0	1	0
010	0	1	1
011	1	0	0
100	0	0	1
101	1	1	0
010	1	0	1
011	1	0	1

Circuito de la memoria ROM: Tamaño 3·2³·3 (3 entradas, 8 términos producto AND minterms y 3 salidas) con entrada de habilitación E.

b) Implemente dichas funciones con tres multiplexores de 4 a 1 (uno para cada función). En las entradas de control se aplican las variables x_2, x_1 . Teniendo en cuenta que se dispone de la variable x_0 y de su complemento como entradas, dibuje los multiplexores indicando en sus entradas los valores posibles de: {0, 1, x_0 ó complemento de x_0 }. Dentro del símbolo del multiplexor se deben especificar las entradas en decimal de las combinaciones de (x_2, x_1) para las que se selecciona cada entrada.

Se reagrupan las tablas de verdad de las funciones de conmutación:

$X_2 X_1 X_0$	f_0	Valor
		parcial
000	1	f (00)
0 0 1	0	$f_0(00x_0) = x_0$
010	0	f (01x) = x
011	1	$f_0(01x_0) = x_0$
100	0	$f_0(10x_0) = x_0$
101	1	$I_0(IUX_0) - X_0$
010	1	f (11v) = 1
011	1	$f_0(11x_0) = 1$

$X_2 X_1 X_0$	f_1	Valor
		parcial
000	0	f (00y) = y
0 0 1	1	$f_1(00x_0) = x_0$
010	1	$f_1(01x_0) = x_0$
0 1 1	0	
100	0	$f_1(10x_0) = x_0$
101	1	$I_1(IUX_0) - X$
010	0	f (11v) = 0
011	0	$f_1(11x_0) = 0$

$X_2 X_1 X_0$	f_2	Valor	
		parcial	
000	1	f (00:)	
0 0 1	0	$f_2(00x_0) = x_0$	
010	1	f (04:) =	
011	0	$f_2(01x_0) = x_0$	
100	1	f (40)	
101	0	$f_2(10x_0) = x_0$	
010	1	f (11v) = 1	
011	1	$f_2(11x_0) = 1$	

32. Determine las salidas de los siguientes circuitos combinacionales para los valores de las entradas que se indican en cada uno de ellos. La señal E es la de habilitación.

Realice los ejercicios siguientes:

- Ejercicios de la relación de problemas del Tema 3º ubicado en el fichero 03.-TEMA_3_TOC_SISTEMAS_COMBINACIONALES_PROBLEMAS.PDF.
 Ejercicios del Tema 5º del libro [PRI06]: Prieto, A., Lloris, A., Torres, J. C.. Introducción a la
- Ejercicios del Tema 5º del libro [PRI06]: Prieto, A., Lloris, A., Torres, J. C.. Introducción a la Informática, 4ª Edición, McGraw-Hill, 2006.