Amendments to the Claims

The listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

Claim 1 (original) A compound of formula IA

$$R^{5A} = C - X^{1} - S - X^{2} - NH - CH_{2}CH_{R^{10}}$$
 (IA)

wherein

 R^{5A} is $-X^A-R^{6A}$ or $-N(R^{7A})R^{8A}$, wherein

XA is piperidinylene or piperazinylene,

 R^{6A} is H, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkinyl, C_1 - C_4 (alkoxyalkyl), C_1 - C_4 (carboxyalkyl), a C_5 - C_7 heterocyclic group or phenyl- C_1 - C_4 alkyl;

 R^{7A} is amino- C_2 - C_4 alkyl or mono- or di- $(C_1$ - C_5 alkyl)amino- C_2 - C_5 alkyl, and

R^{8A} is H, C₁-C₄alkyl or has the meanings as given for R^{7A};

 X^1 is a divalent group of formula IA' $--(CH_{\frac{1}{2}})_{n}X^{\frac{3}{n}}(CH_{\frac{1}{2}})_{m}X^{\frac{4}{n}}N^{\frac{1}{n}}$ wherein

n is zero or 1;

X3 is CH or N:

- (a) X⁴ is a direct bond, R^{3A} and R^{4A} together are ethylene and m is 2; or
- (b) X^4 is a direct bond, R^{3A} is H, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkinyl, C_7 - C_{10} aralkyl, or C_6 - C_9 heteroaralkyl, R^{4A} is H and m is 1 or 2 or 3; or
- (c) X⁴ is -CH(R¹²)-, R^{3A} is H and R^{4A} and R¹² together are propylene and m is 1, or ethylene and m is 2;

 X^2 is a divalent group of formula IA" $\xrightarrow{\text{C(O)R}^{11}}$ wherein

X3 is CH or N; and

R¹¹ is C₁-C₄alkyl, C₃-C₆cycloalkyl or -NR^{1A}R^{2A}, wherein

R^{1A} and R^{2A} independently are C₁-C₄alkyl or, together with the N-atom to which they are attached, represent a 5 to 7 membered heterocyclic ring; and

R⁹ and R¹⁰ independently are a phenyl or pyridine ring; and salts thereof.

Claim 2 (cancelled)

Claim 3 (original) A compound of formula I

$$R^{1} \longrightarrow R^{2}$$

$$C = O$$

$$R^{5} \longrightarrow C \longrightarrow C$$

$$C \longrightarrow C$$

$$R^{1} \longrightarrow R^{2}$$

$$C \longrightarrow C$$

$$C \longrightarrow C$$

$$R^{2} \longrightarrow C$$

$$C \longrightarrow C$$

$$C \longrightarrow C$$

$$R^{2} \longrightarrow C$$

$$C \longrightarrow C$$

$$R^{3} \longrightarrow C$$

$$R^{4} \longrightarrow C$$

$$R^{4} \longrightarrow C$$

$$R^{3} \longrightarrow C$$

$$R^{4} \longrightarrow$$

wherein

R¹ and R² independently are C₁-C₄alkyl or, together with the N-atom to which they are attached, represent a 5 to 7 membered heterocyclic ring;

- (a) R³ and R⁴ together are ethylene and m is 2; or
- (b) R³ is H, C₁-C₄alkyl, C₅-C₂cycloalkyl or phenyl-C₁-C₄alkyl, R⁴ is H and m is 1 or 2 or 3;
- n is zero ro 1; and

R⁵ is -X-R⁶or -N(R⁷)R⁸, wherein

 R^6 is C_1 - C_4 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkinyl, C_1 - C_4 (alkoxyalkyl), C_1 - C_4 (carboxyalkyl), a C_5 - C_7 heterocyclic group or phenyl- C_1 - C_4 alkyl;

 R^7 is amino- C_2 - C_4 alkyl or mono- or di- $(C_1$ - C_5 alkyl)amino- C_2 - C_5 alkyl, and R^8 is H, C_1 - C_4 alkyl or has the meanings as given for R^7 ;

and salts thereof.

Claim 4 (original) A compound according to claim 1 which is {2-(2,2-diphenyl-ethylamino)-5-[4-(4-isopropyl-piperazine-1-carbonyl)-piperidine-1-sulfonyl]-phenyl}-morpholin-4-yl-methanone, or {2-(2,2-diphenyl-ethylamino)-5-[4-(4-methyl-piperazine-1-carbonyl)-piperidine-1-sulfonyl]-phenyl}-morpholin-4-yl-methanone.

Claims 5-11 (cancelled)

Claim 12 (previously presented) The compound 2-(2,2-diphenylethylamino)-5-(4-aminocarbonyl-piperidine-1-sulfonyl)-benzoic acid amide or a 2-(2,2-diphenylethylamino)-5-(aminocarbonyl-C₂-C₄alkylene-aminosulfonyl)-benzoic acid amide compound, or a salt of said compounds.

Claim 13 (previously presented) A process for preparing a compound of formula IA according to claim 1 which comprises: 1) in a first step, reacting a compound of formula IIA.

HO-C-
$$X^{1}$$
- S - X^{2} -NH- CH_{2} C $H_{R^{10}}$ (IIA)

where X¹, X², R⁹ and R¹⁰ are as defined in claim 1, with thionyl chloride and a catalytic amount of dimethylformamide to obtain the corresponding acid chloride compound; and 2) in a second step, coupling the acid chloride compound obtained in the first step by adding it to an amine to obtain the desired compound of formula IA in free base or, if desired, salt form.

Claim 14 (previously presented) A process for preparing a compound of formula I according to claim 3 which comprises: 1) in a first step, reacting a compound of formula II

$$\begin{array}{c|c}
R^{1} - N \\
C = 0
\end{array}$$

$$\begin{array}{c|c}
R^{2} \\
C = 0
\end{array}$$

$$\begin{array}{c|c}
C + CH_{2} - CH_$$

where R¹, R², R³, R⁴, m and n are as defined in claim 3, with thionyl chloride and a catalytic amount of dimethylformamide to obtain the corresponding acid chloride compound; and 2) in a second step, coupling the acid chloride compound obtained in the first step by adding it to an amine to obtain the desired compound of formula I in free base or, if desired, salt form.

Claim 15 (cancelled)

Claim 16 (previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof.

Claim 17 (previously presented) A compound having the formula

$$R^{5A}$$
 C $-X^{1}$ S $-X^{2}$ NH $-CH_{2}$ CH_{10} R^{10}

wherein

 R^{5A} is $-X^A-R^{6A}$ or $-N(R^{7A})R^{8A}$, wherein

X^A is piperidinylene or piperazinylene,

 R^{6A} is H, C₁-C₄alkyl, C₃-C₄alkenyl, C₃-C₄alkinyl, C₁-C₄(alkoxyalkyl), C₁-C₄(carboxyalkyl), a C₅-C₇heterocyclic group or phenyl- C₁-C₄alkyl;

 R^{7A} is amino- C_2 - C_4 alkyl or mono- or di- $(C_1$ - C_5 alkyl)amino- C_2 - C_5 alkyl, and R^{8A} is H, C_1 - C_4 alkyl or has the meanings as given for R^{7A} :

 X^1 is a divalent group of formula IA' $-(CH_2)_n X^3 - (CH_2)_m X^4 - N - Wherein R^{3A}$

n is zero or 1;

X³ is CH or N:

(a) X⁴ is a direct bond, R^{3A} and R^{4A} together are ethylene and m is 2; or

- (b) X⁴ is a direct bond, R³A is H, C₁-C₄alkyl, which may be unsubstituted or substituted by halogen, C₃-C₆cycloalkyl or aryl, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkinyl, C₁-C₁₀aralkyl, which may be unsubstituted or substituted by halogen, methoxy, nitro or C₁-C₄alkyl which may be unsubstituted or substituted by halogen, or C₆-Cȝheteroaralkyl, which may be unsubstituted or substituted by C₁-C₄alkyl, R⁴A is H and m is 1 or 2 or 3; or
- (c) X⁴ is -CH(R¹²)-, R^{3A} is H and R^{4A} and R¹² together are propylene and m is 1, or ethylene and m is 2;

$$X^2$$
 is a divalent group of formula IA" X^3 wherein

X³ is CH or N; and

R¹¹ is C₁-C₄alkyl, C₃-C₆cycloalkyl or -NR^{1A}R^{2A}, wherein
R^{1A} and R^{2A} independently are C₁-C₄alkyl or, together with the N-atom to which they are attached, represent a 5 to 7 membered heterocyclic ring; and

R⁹ and R¹⁰ independently are a phenyl or pyridine ring, both of which may be unsubstituted or substituted by one or more halogen atoms; and salts thereof.

Claim 18 (new) A method of treating a condition which is responsive to the antagonism of bradykinin activity selected from the group consisting of pain, inflammatory diseases, inflammatory disorders, edema, spasms and septic shock comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound according to Claim 3, or a pharmaceutically acceptable salt thereof.