

Dr. rer. nat. Johannes Riesterer

Asymptotics

Für hinreichend groß Mathlib

Für einen Filter I bedeutet die Bedingung $\forall^f x \ p(x)$ dass die Menge der Elemente, für die p(x) gilt, ein Element des Filters I ist, also $\{X \mid p(x)\} \in I$.

Asymptotics^b

Landau-O-Notation (Großes O) Mathlib

Für einen filter I und funktionen g, h f = O(I)g bedeutet, dass f(n) asymptotisch nach oben durch g(n) beschränkt ist. Das heißt, es existieren Konstanten C > 0 und n_0 , sodass für alle $n \ge n_0$ gilt:

$$|f(n)| \leq C \cdot |g(n)|.$$

Beispiel

Sei $f(n) = 3n^2 + 2n + 1$, dann gilt:

$$f(n) = O(n^2),$$

da für große n der n^2 -Term dominiert.

Asymptotics

Landau-Klein-o-Notation (kleines o)

f(n) = o(g(n)) bedeutet, dass f(n) im Vergleich zu g(n) asymptotisch vernachlässigbar ist. Für jede Konstante C > 0 existiert ein n_0 , sodass für alle $n \ge n_0$ gilt:

$$|f(n)| \leq C \cdot |g(n)|.$$

Dies impliziert, dass f(n) wesentlich kleiner als g(n) wird, wenn $n \to \infty$.

Beispiel

Sei f(n) = n und $g(n) = n^2$, dann gilt:

$$f(n) = o(n^2),$$

da n wesentlich langsamer als n^2 wächst.

Asymptotics

Implikationen zwischen O- und o-Notation

- f(n) = o(g(n)) impliziert f(n) = O(g(n)), da o(g(n)) eine strengere Schranke als O(g(n)) ist.
- Umgekehrt gilt jedoch: f(n) = O(g(n)) impliziert nicht, dass f(n) = o(g(n)). Beispiel: f(n) = 2n und g(n) = n führen zu f(n) = O(n), aber $f(n) \neq o(n)$.

Zusammenfassung

$$o(g(n)) \implies O(g(n)),$$

aber nicht umgekehrt.