Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language

Robotics and AR at Google

Постановка задачи

Создать следующий фреймворк:

- несколько предобученных моделей
- данные разной модальности
- без дополнительного обучения (zero-shot composed)
- выход единый текст-описание

Цвета:

- текст
- визуальная информация
- 3BYK

1.1. Image Captioning

I am an intelligent image captioning bot. This image is a {img_type}. There {num_people}. I think this photo was taken at a {place1}, {place2}, or {place3}. I think there might be a {object1}, {object2}, {object3},... in this {img_type}. A creative short caption I can generate to describe this image is:

SM (ours): This image shows an inviting dining space with plenty of natural light.

ClipCap: A wooden table sitting in front of a window.

caption =
$$f_{\text{VLM}}^3(f_{\text{LM}}^2(f_{\text{VLM}}^1(\text{image})))$$

- 1. VLM object detection: place, image type, number of people...
- 2. Top-k results \rightarrow LM prompt
- 3. LM for text completion (+ noise for diverse) \rightarrow n candidate captions
- 4. VLM ranking → highest scoring caption

1.1. Image Captioning – результаты

SM (ours): This image shows an inviting dining space with plenty of natural light.

ClipCap: A wooden table sitting in front of a window.

SM (ours): People gather under a blossoming cherry tree, enjoying the beauty of nature together.

ClipCap: Students enjoying the cherry blossoms.

SM (ours): At the outdoor market, you can find everything from plantains to Japanese bananas.

ClipCap: A bunch of bananas sitting on top of a table.

1.1. Image Captioning – результаты на MS COCO

Method	BLEU-4	METEOR	CIDEr	SPICE	ROUGE-L
*ClipCap [45]	40.7	30.4	152.4	25.2	60.9
†MAGIC [61]	11.4	16.4	56.2	11.3	39.0
ZeroCap [62]	0.0	8.8	18.0	5.6	18.3
SMs 0-shot (ours) SMs 3-shot (ours)	6.9 18.3	15.0 18.8	44.5 76.3	10.1 14.8	34.1 43.7

^{*}finetuned on full training set with image-text pairs.

[†]finetuned on unpaired training set, zero-shot on image-text pairs.

1.2. Video-to-Text Retrieval – демонстрация

Zero-Shot
Socratic
Video-to-Text
Retrieval

1.2. Video-to-Text Retrieval

- Берем готовый VTR-фреймворк 2021 года (Portillo-Quintero et al):
 - VLM features of all video frames per video → average
 - Text features of captions
 - One-to-many NN matching
- Добавляем к нему:
 - ASR (e.g. Google Cloud speech-to-text API)
 - Суммаризуем полученный транскрипт с помощью GPT-3
- Итоговый matching score =
 CLIP(caption) · CLIP(video) ×
 RoBERTa(caption) · RoBERTa(GPT-3(prompt, Speech2Text(audio)))

I am an intelligent video captioning bot.' I hear a person saying: "{transcript}". Q: What's a short video caption for this video? A: In this video,

1.2. Video-to-Text Retrieval – результаты

		MSR-VTT Full				
Category	Method	R@1↑	R@5↑	R@10↑	MdR↓	Audio
Finetuned	JEMC [70]	12.5	32.1	42.4	16.0	yes
	Collab. Experts [55]	15.6	40.9	55.2	8.3	yes
	CLIP2Video [71]	54.6	82.1	90.8	1.0	no
Zero-shot	CLIP via [67]	40.3	69.7	79.2	2.0	no
	SMs (ours)	44.7	71.2	80.0	2.0	yes

comparing on whole MSR-VTT dataset (new Zero-Shot SOTA)

	Long-transcript subset of MSR-VTT Full					
	R@1↑	R@5↑	R@10↑	MdR↓		
CLIP via [67] SMs (ours)	41.5 54.9	69.6 74.0	77.4 79.9	2.0 1.0		

comparing on long-transcript subset (substantial increase)

2.1. Egocentric perception

Задачи рамках восприятия от первого лица:

- суммаризация контента / поиск по видео
- ответы на вопросы в свободной форме
- предсказание будущих действий

2.1. Egocentric perception

Как это работает?

- идея: видео → текст
- ключевые моменты / фреймы (например, по исходному запросу)
- их текстовое описание (аналогично 1-му разделу)
- рекурсивно суммаризуем
- получаем текстовое описание событий ролика

01:45 PM: Places: porch. Objects: package, porch, door. Activities: receiving. I was receiving a package.

03:24 PM: Places: kitchen. Objects: human hand, sink, human arm. Activities: washing dishes. I was washing dishes in a kitchen.

07:20 PM: Places: living room. Objects: netflix, television, shelf.

Activities: watching netflix. I was watching netflix.

Question: When did I last wash my hands?

Long answer: I last washed my hands at 3:24 PM. This is because I was washing dishes in a kitchen.

2.1. Egocentric perception – демонстрация

2.2. Multimodal Assistive Dialogue

- GPT-3
- Query for visual information from user
 → web crawler
- VLM runs visual search → retrieve a related frame

```
Alice: Step: In a medium bowl, beat the egg whites until frothy.
Bob: how many eggs.
Alice: 3 egg whites, room temperature
Bob: whats room temperature.
Alice: Room temperature is around 70 degrees Fahrenheit.
Bob: what do you mean by medium bowl.
Alice: A medium bowl is a bowl that is big enough to fit the ingredients for this
recipe and that is comfortable to mix in.
Bob: exactly how big should that be.
Alice: (image) A medium bowl is a bowl that is big enough to fit the ingredients for
this recipe and that is comfortable to mix in.
(a) video search {recipe video} with "A medium bowl is a bowl that is..."
Bob: ok assume im done whats next.
Alice: Step: Keep beating and slowly add the sugar until stiff peaks form.
Bob: whats stiff peaks.
Alice: Stiff peaks are when the egg whites stand up in peaks that do not fall over.
Bob: can you show me what that looks like.
Alice: (image) Stiff peaks are when the egg whites stand up in peaks that do not fall
over.
(b) video search {recipe video} with "Stiff peaks are when the egg whites..."
Bob: do i need to add water.
Alice: No, you do not need to add water.
```

2.3. Robot Perception & Planning

```
objects = ["green block", "blue block", "yellow block", "green
bowl", "blue bowl", "yellow bowl"]
# move all the blocks to different corners.
Step 1. robot.pick_and_place("green block", "top left corner")
Step 2. robot.pick_and_place("blue block", "top right corner")
Step 3. robot.pick_and_place("yellow block", "bottom left corner")
# now move the blue block to the middle.
Step 1. robot.pick_and_place("blue block", "middle")
# stack the blocks on top of each other.
Step 1. robot.pick_and_place("yellow block", "blue block")
Step 2. robot.pick_and_place("green block", "yellow block")
# wait actually undo that last step.
Step 1. robot.pick_and_place("green block", "top left corner")
# put the yellow block in the bowl you think it best fits.
Step 1. robot.pick_and_place("yellow block", "yellow bowl")
# ok now sort the remaining blocks in the same way.
Step 1. robot.pick_and_place("blue block", "blue bowl")
Step 2. robot.pick_and_place("green block", "green bowl")
```


- VLM (object detection) → description of the objects in the scene
- 2. Description as context → LM as a multi-step planner
- 3. Individual steps → pretrained language-conditioned robot policy

2.3. Robot Perception & Planning – демонстрация

Спасибо за внимание!