DEVELOPMENT PHASE PART 2

PUBLIC TRANSPORT EFFICIENCY ANALYSIS

Date	31-10-2023
Project Name	Public Transport Efficiency Analysis

Table of Content:

- *Introduction
- *Data Cleaning and preprocessing
- *Visualization
- *Advanced data analysis
- *Visualization using IBM cognos
- *Conclusion

1.Introduction

In the phase of this project, we continue our exploration of data analysis, diving deeper into the realm of public transport efficiency, In this phase, we shift our focus to public transport efficiency analysis, employing visualization techniques and predictive modeling to extract meaningful information and make data-driven decisions.

2.Data Preprocessing

Just as in the previous phase, data preprocessing remains a critical and essential step in our journey towards understanding and optimizing public transport efficiency. Data preprocessing can be described as "the collection and manipulation of data components to produce meaningful information." In this phase, we are dedicated to refining and enhancing the quality of our data, paving the way for more accurate predictions and insights

3. Data cleaning and preprocessing:

import pandas as pd

Load your dataset
data = pd.read_csv(' Indrajithdataset.CSV')

Data cleaning and preprocessing steps (e.g., handling missing values, data type conversions, etc.)

Example: Convert 'WeekBeginning' column to datetime
data['WeekBeginning'] = pd.to_datetime(data['WeekBeginning'], format='%d-%m%Y %H:%M')

More data cleaning and preprocessing steps can be added here
data.head(25)

	TripID	RouteID	StopID	StopName	Week	Beginning N	lo.Of.E	Boardings
1	23631	100	14144	177 Cross l	Rd	2013-06-30	1	
2	23632	100	14132	175 Cross l	Rd	2013-06-30	1	
3	23633	100	12266	Zone A Arndale Interchan	ige	2013-06-30	2	
4	23633	100	14147	178 Cross l	Rd	2013-06-30	1	
5	23634	100	13907	9A Marion l	Rd	2013-06-30	1	
6	23634	100	14132	175 Cross l	Rd	2013-06-30	1	
7	23634	100	13335	9A Holbrooks l	Rd	2013-06-30	1	
8	23634	100	13875	9 Marion l	Rd	2013-06-30	1	
9	23634	100	13045	206 Holbrooks l	Rd	2013-06-30	1	
10	23635	100	13335	9A Holbrooks l	Rd	2013-06-30	1	
11	23635	100	13383	8A Marion l	Rd	2013-06-30	1	
12	23635	100	13586	8D Marion l	Rd	2013-06-30	2	
13	23635	100	12726	23 Findon l	Rd	2013-06-30	1	
14	23635	100	13813	8K Marion l	Rd	2013-06-30	1	
15	23635	100	14062	20 Cross l	Rd	2013-06-30	1	
16	23636	100	12780	22A Crittenden l	Rd	2013-06-30	1	
17	23636	100	13383	8A Marion l	Rd	2013-06-30	1	
18	23636	100	14154	180 Cross I	Rd	2013-06-30	2	
19	23636	100	13524	8C Marion 1	Rd	2013-06-30	3	
20	23636	100	14122	173 Cross I	Rd	2013-06-30	1	
21	23636	100	13813	8K Marion l	Rd	2013-06-30	1	
22	23637	100	14156	181 Cross l	Rd	2013-06-30	1	
23	23637	100	14154	180 Cross l	Rd	2013-06-30	1	
24	23637	100	13335	9A Holbrooks l	Rd	2013-06-30	3	

3. Visualization

```
Line Chart - Weekly Boarding Trends
```

```
# Convert WeekBeginning to datetime and extract week number
data['WeekBeginning']=pd.to_datetime(data['WeekBeginning'])
data['WeekNumber'] = data['WeekBeginning'].dt. isocalendar().week

# Group data by WeekNumber and sum the NumberOfBoardings weekly_boardings
= data.groupby('WeekNumber')['NumberOfBoardings'].sum()

# PLotting
plt.figure(figsize=(10, 6))
plt.plot(weekly_boardings.index, weekly_boardings.values, marker='o', color='green')
plt.title('Weekly Boarding Trends')
plt.xlabel('Week Number') plt.ylabel('Total
Number of Boardings') plt.grid(True)
plt.tight_layout() plt.show()
```


Bar Chart - Number of Boardings per StopName

import matplotlib.pyplot as plt

```
# Group data by StopName and sum the NumberOfBoardings
boarding_counts = data.groupby('StopName')['NumberOfBoardings'].sum()
# Plotting
plt.figure(figsize=(12, 6))
```

```
boarding_counts.sort_values(ascending=False).head(10).plot(kind='bar', color='skyblue')
plt.title('Top 10 Stops by Total Number of Boardings')
plt.xlabel('Stop Name')
plt.ylabel('Number of Boardings')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


3.1. Advanced data analysis

Aggregating Boarding Counts by RouteID

import pandas as pd

Group by RouteID and sum the NumberOfBoardings
boarding_by_route = data.groupby('RouteID')['NumberOfBoardings'].sum()

Display the result print(boarding_by_route)

RouteID	
117	312470
118	319790
140	83064
141	331118
142	79091
147	169540
148	5190
150	318672
168	296199
169	13397

```
170
      143076
171
        91911
100
       328740
100B
         8250
100C
       11828
100K
         6364
100N
         6419
        13277
100P
100S
          260
        39114
101
115
        15460
117
       67637
142
       287270
144
      183253
144G
       15814
147
      136496
       105953
150
150B
        55517
150P
         8147
155
        98191
157
      307301
157X
       81745
162
        92171
167
       237238
167C
        32195
         30858
168
Name: NumberOfBoardings, dtype: int64
# Group by StopID and calculate the average number of boardings
avg_boardings_per_stop = data.groupby('StopID')['NumberOfBoardings'].mean()
# Display the result
```

print(avg_boardings_per_stop)

StopID

10817 10818	2.776013 2.333333
10843	2.257143
10877	2.326316
10879	1.400000
•••	
18408	1.875000
18409	2.714286
18410	1.500000
18411	1.156250
18493	9.122678

Name: NumberOfBoardings, Length: 969, dtype: float64

Finding Stops with Highest Weekly Boarding Counts

```
data['WeekBeginning']=pd.to_datetime(data['WeekBeginning'])
data['WeekNumber'] = data['WeekBeginning'].dt.isocalendar().week
# Group by StopName and WeekNumber, then sum the NumberOfBoardings
weekly_boarding_counts = data.groupby(['StopName', 'WeekNumber'])['NumberOfBoardings'].sum()
# Find stops with the highest weekly boarding counts
stops_with_highest_boardings = weekly_boarding_counts.groupby('StopName').idxmax()
# Display the result
print(stops_with_highest_boardings)
StopName
1 Anzac Hwy
                               (1 Anzac Hwy, 26)
                              (1 Fullarton Rd, 8)
1 Fullarton Rd
                              (1 George St, 27)
1 George St
                               (1 Glen Osmond Rd, 33)
1 Glen Osmond Rd
                              (1 Henley Beach Rd, 26)
1 Henley Beach Rd
Zone B Registry Rd Flinders Un (Zone B Registry Rd Flinders Un, 11)
Zone B West Lakes Interchange (Zone B West Lakes Interchange, 26)
Zone C Moseley St
                              (Zone C Moseley St, 26)
Zone D Arndale Interchange
                              (Zone D Arndale Interchange, 38)
Zone D Port Adelaide Interchan (Zone D Port Adelaide Interchan, 26)
Name: NumberOfBoardings, Length: 583, dtype: object
Analyzing Trends Over Time (Weekly/Monthly)
# Convert WeekBeginning to datetime and extract week and
month
data['WeekBeginning'] = pd.to_datetime(data['WeekBeginning'])
data['WeekNumber'] = data['WeekBeginning'].dt.week
data['Month'] = data['WeekBeginning'].dt.month
# Group by WeekNumber and Month, then sum the NumberOfBoardings
weekly_boarding_trends = data.groupby(['WeekNumber', 'Month'])['NumberOfBoardings'].sum()
# Display the result
print(weekly boarding trends)
```

Convert WeekBeginning to datetime and extract week number

WeekNumb	oer Month		
1	1	59791	
2	1	55026	
3	1	67844	
4	1	62204	
5	2	87621	
6	2	79964	
7	2	86610	
8	2	91046	
9	3	98500	
10	3	66953	
11	3	94828	
12	3	95643	
13	3	94406	
14	4	92959	
15	4	62636	
16	4	51434	
17	4	88624	
18 19	5 5	90852 92782	
20	5	92762	
21	5	89378	
22	6	91608	
23	6	73602	
24	6	83086	
25	6	76725	
26	6	161049	
27	7	121795	
28	7	70588	
29	7	85288	
30	7	94344	
31	8	95061	
32 33	8 8	93992 92247	
34	8	95341	
35	9	94762	
36	9	93643	
37	9	94053	
38	9	89866	
39	9	67959	
40	10	65428	
41	10	87246	
42	10	87703	
43	10	86839	
4 4	11	84346	
45	11 11	82642 81556	
46 47	11	80333	
4 7	12	80176	
49	12	75652	
50	12	66079	
51	12	37207	
52	12	41587	
Namo · Na	imborOfDoo	rdings dtime:	in

Name: NumberOfBoardings, dtype: int64

VISUALIZATION USING IBM COGNOS

4.Conclusion:

In this project, we have continued our journey in the pursuit of comprehensive data analysis by creating visualizations and constructing a predictive model. Leveraging the capabilities of visualization libraries such as Matplotlib and Seaborn, we have unveiled insights through histograms, scatter plots, and correlation matrices. Additionally, we have delved into the realm of predictive modeling, where we have applied data-driven techniques to gain a better understanding of public transport efficiency Analysis.