CADD ASSIGNMENT

Sachin S : PES1UG24EC809
Prajwal G S Basavaraj:
PES1UG23EC216

- **1. Problem Statement:** To Design and implement Binary to Gray code Using Xilinx Vivado and FPGA Board.
- 2. **Idea About your Problem:** This project focuses on converting a 4-bit binary input into a 4-bit Gray code output using an FPGA. The goal is to design a digital system that implements the Binary-to-Gray code conversion logic efficiently and outputs the results in real-time. The output can be displayed using LEDs or sent to other external interfaces for further processing.
- 3. Block Diagram:

4. Binary to Gray Code Truth Table:

Decimal numbers	Binary code	Gray code	
0	0000	0000	
1.	0001	0001	
2	0010	0011	
3	0011	0010	
4	0100	0110	
5	0101	0111	
6	0110	0101	
7	0111	0100	
8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	

5. Circuit Diagram:

Binary to Gray Code Converter

6. D.sv:

```
module TopModule (
  input logic [3:0] binary,  // 4-bit binary input
  output logic [3:0] seg  // 4-bit Gray code output
);

// Binary to Gray code conversion logic
  always_comb begin
    seg[3] = binary[3];
    seg[2] = binary[3] ^ binary[2];
    seg[1] = binary[2] ^ binary[1];
    seg[0] = binary[1] ^ binary[0];
  end
endmodule
```

7. Tb.sv:

```
`timescale 1ns / 1ps
module TopModule tb;
  logic [3:0] binary; // 4-bit binary input for testing
  wire [3:0] seg; // 4-bit Gray code output
  // Instantiate the TopModule
  TopModule uut (
     .binary(binary),
     .seg(seg)
  );
  initial begin
     $monitor("Time=%0t | Binary=%b | seg=%b", $time, binary, seg);
     // Test a sequence of binary inputs
     binary = 4'b0000; #10;
     binary = 4'b0001; #10;
     binary = 4'b0010; #10;
     binary = 4'b0011; #10;
```

binary = 4'b0100; #10; binary = 4'b0101; #10; binary = 4'b0110; #10; binary = 4'b0111; #10; binary = 4'b1000; #10; binary = 4'b1001; #10; binary = 4'b1011; #10; binary = 4'b1100; #10; binary = 4'b1101; #10; binary = 4'b1111; #10; binary = 4'b1111; #10;

endmodule

8. RTL schematic:

9. Run Simulation:

10. Synthesis Schematic:

11. Utilization Report:

Name	۸1	Slice LUTs (20800)	Bonded IOB (106)
TopModule		2	8

12. XDC File:

```
1 set property IOSTANDARD LVCMOS33 [get ports {binary[3]}]
 2 | set property IOSTANDARD LVCMOS33 [get ports {binary[2]}]
 3 set property IOSTANDARD LVCMOS33 [get ports {binary[1]}]
 4 | set property IOSTANDARD LVCMOS33 [get ports {binary[0]}]
5 set property IOSTANDARD LVCMOS33 [get ports {seg[3]}]
6 | set property IOSTANDARD LVCMOS33 [get ports {seg[2]}]
7 set property IOSTANDARD LVCMOS33 [get ports {seg[1]}]
8 set property IOSTANDARD LVCMOS33 [get ports {seg[0]}]
9 | set property PACKAGE_PIN R2 [get ports {binary[3]}]
10 | set property PACKAGE_PIN T1 [get ports {binary[2]}]
12 set property PACKAGE_PIN W2 [get_ports {binary[0]}]
13
14
15
16 | set property PACKAGE PIN Pl [get ports {seg[2]}]
17 set property PACKAGE_PIN L1 [get ports {seg[3]}]
18 | set property PACKAGE_PIN N3 [get ports {seg[1]}]
19
20
21 | set property PACKAGE_PIN P3 [get ports {seg[0]}]
```

13. Conclusion:- To Design and implement Binary to Gray code Using Xilinx Vivado and FPGA Board is implemented and verified successfully.