#### Visualization Techniques

SSEP 2022 Morning Day 5

Dr. Ab Mosca (they/them)

#### Recall

- Visualizations (i.e. visual encodings) are made up of marks and channels
- We select marks and channels based on goals, data, and other principles Channels



Jacques Bertin, Semiologie Graphique (Semiology of Graphics), 1967.

#### Principle 1: Expressiveness

#### Encode all the facts and only the facts



What data is in the top chart and not in the bottom chart?

#### Principle 1: Expressiveness

#### Encode all the facts and only the facts



What data is in the top chart and not in the bottom chart?

#### Principle 1: Expressiveness

Encode all the facts and only the facts



What "extra" data is included in this visualization?

#### Principle 1: Expressiveness

Encode all the facts and **only the facts** 



What "extra facts" are included in this visualization?

#### Principle 1: Expressiveness

Encode all the facts and only the facts



What is wrong with this visualization?

https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html



Principle 1: Expressiveness

Encode all the facts and only the facts



What is wrong with this visualization?

https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html

Colors highlight *electoral votes* per state

# Principle 1: Expressiveness Encode all the facts and only the facts



https://www.nytimes.com/interac tive/2020/11/03/us/elections/result s-president.html

Principle 2: Effectiveness

Most effective channels should be used for most important data

Effectiveness = Based on a compilation of research, how well a channel supports:

- Accuracy
- Discriminability
- Separability
- Visual popout
- Grouping

Principle 2: Effectiveness

Most effective channels should be used for most important data



## Principle 3: Consistency *Use consistent axes for comparisons*





#### improved



Raina SZ, et al. (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15: 665-673.

M. Krzwinski, behind every great visualization is a design principle, 2012

## Principle 3: Consistency Order legend items according to appearance



Principle 3: Separability

Avoid visually similar encodings for independent variables





## → Visuals

#### Principle 3: Separability

Avoid visually similar encodings for independent variables

#### MOST WICKETS IN DEATH OVERS IN ODIS

**SINCE THE START OF JANUARY 2017** 



NUMBERS UPDATED TILL MAY 14, 2019

# Principle 4: Simplicity Avoid double encoding data



## Principle 4: Simplicity Navigational aids should not compete with data



Heer J, Bostock M (2010) Crowdsourcing graphical perception: using mechanical turk to assess visualization design. Proceedings of the 28th international conference on Human factors in computing systems. Atlanta, Georgia, USA: ACM. pp. 203-212.

#### Common Visualizations



#### Bar charts

- 1. Goal  $\rightarrow$  Comparison
- 2. Data Types → Categorical or Ordinal vs. Quantitative



| Rank | Major_category            | Total  | Men   | Women  | Share_<br>women | Median_<br>earnings |
|------|---------------------------|--------|-------|--------|-----------------|---------------------|
| 1    | Engineering               | 2339   | 2057  | 282    | 12%             | 110000              |
| 7    | Physical<br>Sciences      | 1792   | 832   | 960    | 54%             | 62000               |
| 19   | Computers & Mathematics   | 128319 | 99743 | 28576  | 22%             | 53000               |
| 27   | Health                    | 209394 | 21773 | 187621 | 90%             | 48000               |
| 36   | Biology & Life<br>Science | 1762   | 515   | 1247   | 71%             | 45000               |

#### Share of Women per Major Category



#### Data:

https://github.com/fivethirtyeight/data/blob/ master/college-majors/women-stem.csv



#### Line charts

- 1. Goal  $\rightarrow$  Trend
- 2. Data Types  $\rightarrow$  Ordinal or Quantitative vs. Quantitative



| Rank | Major_category            | Total  | Men   | Women  | Share_<br>women | Median_<br>earnings |
|------|---------------------------|--------|-------|--------|-----------------|---------------------|
| 1    | Engineering               | 2339   | 2057  | 282    | 12%             | 110000              |
| 7    | Physical<br>Sciences      | 1792   | 832   | 960    | 54%             | 62000               |
| 19   | Computers & Mathematics   | 128319 | 99743 | 28576  | 22%             | 53000               |
| 27   | Health                    | 209394 | 21773 | 187621 | 90%             | 48000               |
| 36   | Biology & Life<br>Science | 1762   | 515   | 1247   | 71%             | 45000               |

#### Data:

<a href="https://github.com/fivethirtyeight/data/blob/">https://github.com/fivethirtyeight/data/blob/</a> master/college-majors/women-stem.csv

#### Share of Women vs Median Earnings





- 1. Goal  $\rightarrow$  Distribution
- 2. Data Types → Ordinal or Quantitative vs. Quantitative



| Rank | Major_category            | Total  | Men   | Women  | Share_<br>women | Median_<br>earnings |
|------|---------------------------|--------|-------|--------|-----------------|---------------------|
| 1    | Engineering               | 2339   | 2057  | 282    | 12%             | 110000              |
| 7    | Physical<br>Sciences      | 1792   | 832   | 960    | 54%             | 62000               |
| 19   | Computers & Mathematics   | 128319 | 99743 | 28576  | 22%             | 53000               |
| 27   | Health                    | 209394 | 21773 | 187621 | 90%             | 48000               |
| 36   | Biology & Life<br>Science | 1762   | 515   | 1247   | 71%             | 45000               |



#### Data:

<a href="https://github.com/fivethirtyeight/data/blob/">https://github.com/fivethirtyeight/data/blob/</a> master/college-majors/women-stem.csv

# Boxplot

#### Distribution of horsepower by # Cylinders





- 1. Goal  $\rightarrow$  Distribution
- 2. Data Types → Ordinal or Categorical vs. Quantitative



| Rank | Major_category            | Total  | Men   | Women  | Share_<br>women | Median_<br>earnings |
|------|---------------------------|--------|-------|--------|-----------------|---------------------|
| 1    | Engineering               | 2339   | 2057  | 282    | 12%             | 110000              |
| 7    | Physical<br>Sciences      | 1792   | 832   | 960    | 54%             | 62000               |
| 19   | Computers & Mathematics   | 128319 | 99743 | 28576  | 22%             | 53000               |
| 27   | Health                    | 209394 | 21773 | 187621 | 90%             | 48000               |
| 36   | Biology & Life<br>Science | 1762   | 515   | 1247   | 71%             | 45000               |



#### Data:

https://github.com/fivethirtyeight/data/blob/ master/college-majors/women-stem.csv

## Common Visualizations

#### Break into groups of 2 – 3 Go to the Jamboard here: Visualization Examples

- Select one page of the Jamboard with a specific visualization to work on
- Add your names to that page so your classmates know it's taken
- Find your visualization here: <u>https://datavizproject.com/</u>
- On the Jamboard record the goal and data type(s) for that visualization
- Be prepared to share with the class
- If you finish early pick another visualization!