

DIAMETER AND SHORTEST PATH

- Shortest path: the path between two nodes that visits the fewest intermediate nodes (path with less edges)
 - o In the graph above, A->B->C->D is shorter than A->B->C->B->D (disallowing
- Let $d(v_i, v_i)$ be the shortest-path distance between nodes i and i

Diameter: length of the longest shortest path between two vertices of the graph

Average shortest path distance

$$l_G = rac{1}{n \cdot (n-1)} \cdot \sum_{i
eq j} d(v_i, v_j)$$

DEGREE AND DEGREE DISTRIBUTION

Degree $\delta(i)$ of vertex i number of edges incident on i

Degree distribution

probability distribution of these degrees over the whole network.

