Atiyah-MacDonald 可換代数入門 第 6 章演習問題解答

flag3 (@flag3833753)

2020年5月14日

概要

Atiyah-MacDonald 可換代数入門 [1] 第 6 章の演習問題の解答をまとめたものである.

6 連鎖条件

演習問題

- 1. i) 部分加群の昇鎖 $\mathrm{Ker}(u)\subseteq \mathrm{Ker}(u^2)\subseteq \cdots$ を考える. 昇鎖条件によって,この昇鎖は停留的である. すなわち,ある整数 n が存在して $\mathrm{Ker}(u^n)=\mathrm{Ker}(u^{n+1})=\cdots$ となる. u は全射より u^n は全射であるので, $x\in M$ が u(x)=0 ならば $x=u^n(y)$ となる $y\in M$ が存在して, $u^{n+1}(y)=u(x)=0$ より $y\in \mathrm{Ker}(u^{n+1})=\mathrm{Ker}(u^n)$ となり, $x=u^n(y)=0$ である. すなわち u は単射である. よって u は同型写像である.
 - ii) 部分加群の降鎖 ${\rm Im}(u)\supseteq {\rm Im}(u^2)\supseteq \cdots$ を考える。降鎖条件によって,この降鎖は停留的である。 すなわち,ある整数 n が存在して ${\rm Im}(u^n)={\rm Im}(u^{n+1})=\cdots$ となる。 $x\in M$ に対し $u^n(x)\in {\rm Im}(u^n)={\rm Im}(u^{n+1})$ より $u^n(x)=u^{n+1}(y)$ となる $y\in M$ が存在する。u は単射より u^n は単射であるので,x=u(y) である。 すなわち u は全射である。よって u は同型写像である。
- 2. N を M の部分加群とし、 Σ を N のすべての有限生成部分加群の集合とすると、命題 6.2 の証明と同様にして N は Σ の極大元で有限生成となるので、命題 6.2 より M はネーター加群となる。
- 3. 系 6.4 より $M/N_1 \oplus M/N_2$ はネーター加群であり自然な写像 $M/(N_1 \cap N_2) \to M/N_1 \oplus M/N_2$ は単射なので命題 6.3 より $M/(N_1 \cap N_2)$ はネーター加群となる。アルティン加群の場合も同様である。
- 4. x_1, \ldots, x_n を M の生成系とする. 系 6.4 より M^n はネーター A-加群であり, $a \mapsto (ax_1, \ldots, ax_n)$ に よって定義される写像 $A \to M^n$ は単射 $A/\mathfrak{a} \to M^n$ を誘導するので,命題 6.3 によって, A/\mathfrak{a} はネーター A-加群である.ゆえに, A/\mathfrak{a} はネーター A/\mathfrak{a} -加群であるので,ネーター環である. p を固定した素数とし,G を位数が p のベキであるすべての元からなる \mathbb{Q}/\mathbb{Z} の部分群とすると,G は アルティン \mathbb{Z} -加群であるが,G の零化イデアルは (0) で $\mathbb{Z}/(0)$ はアルティン環ではない.
- 5. Y を X の部分空間, $Y_1 \supseteq Y_2 \supseteq \cdots$ を Y の閉集合の降鎖とする. このとき, $\overline{Y_n}$ を Y_n の X における閉包とすると $\overline{Y_1} \supseteq \overline{Y_2} \supseteq \cdots$ は X の閉集合の降鎖であり, 降鎖条件によって, この降鎖は停留的である. すなわち, ある整数 n が存在して $\overline{Y_n} = \overline{Y_{n+1}} = \cdots$ となる. よって $Y_n = \overline{Y_n} \cap Y$ より $Y_n = Y_{n+1} = \cdots$ となるので, Y の閉集合の降鎖は停留的であり, Y はネーター空間である. $\{X_i\}_{i\in I}$ を X の開被覆とする. 集合 X_i の有限個の和集合全体の集合は, 空でないから極大元 Y をもつ. すべての $i \in I$ に対して $Y \cup X_i = Y$ であるから, Y = X となり, X は準コンパクトである.

- $6. i) \Longrightarrow iii)$ 演習問題 5 より X の部分空間はネーター空間であり、準コンパクトである.
 - iii) ⇒ ii) 明らか.
 - $ii) \Longrightarrow i)$ $X_1 \subseteq X_2 \subseteq \cdots$ を X の開集合の昇鎖とする. X_n 全体の和集合 Y は開集合なので準コンパクトであり、 $\{X_n\}_n$ は Y の開被覆であるから、Y は X_n の有限個の和集合となるので、ある整数n が存在して $Y=X_n$ となる. よって $X_n=X_{n+1}=\cdots$ となるので、この昇鎖は停留的である.
- 7. 有限個の既約な閉集合の和集合で表されない X の閉部分集合の集合を Σ とする. $\Sigma \neq \emptyset$ と仮定する と極小元 Y をもつ. Y は空ではなく,既約でもないので,Y と異なる閉集合 Y_1,Y_2 の和集合と表される.このとき,極小性により $Y_1,Y_2 \notin \Sigma$ である.したがって Σ の定義より $Y \notin \Sigma$ となり矛盾する.
- 8. $\operatorname{Spec}(A)$ の閉集合は,イデアル $\mathfrak{a} \subseteq A$ によって $V(\mathfrak{a})$ と表される。 $\operatorname{Spec}(A)$ の閉集合の降鎖 $V(\mathfrak{a}_1) \supseteq V(\mathfrak{a}_2) \supseteq \cdots$ を考える。このとき $r(\mathfrak{a}_1) \subseteq r(\mathfrak{a}_2) \subseteq \cdots$ はイデアルの昇鎖より,昇鎖条件によって,この昇鎖は停留的である。すなわち,ある整数 n が存在して $r(\mathfrak{a}_n) = r(\mathfrak{a}_{n+1}) = \cdots$ となる。よって $V(r(\mathfrak{a}_n)) = V(\mathfrak{a}_n)$ より $V(\mathfrak{a}_n) = V(\mathfrak{a}_{n+1}) = \cdots$ となるので降鎖は停留的である。 $A = k[x_1, x_2, \ldots]$ を体 k 上の可算無限個の不定元 x_n に関する多項式環とし,A のイデアル \mathfrak{a} を $\mathfrak{a} = (x_1, x_2^2, \ldots, x_n^n, \ldots)$ とする。このとき,環 $B = A/\mathfrak{a}$ は唯一つの素イデアルをもつので, $\operatorname{Spec}(B)$ はネーター空間である。一方,その素イデアルは有限生成でないので,B はネーター環ではない。
- 9. A をネーター環とする. 演習問題 8 から, $X = \operatorname{Spec}(A)$ はネーター空間であり, 演習問題 7 から, X の既約成分の集合は有限である. よって, 第 1 章, 演習問題 20 iv) より X の既約成分は A の極小素 イデアル $\mathfrak p$ を用いて $V(\mathfrak p)$ と表されることから従う.
- 10. 命題 6.2 より M は有限生成であり、 $\mathfrak{a}=\mathrm{Ann}(M)$ とすると、第 3 章、演習問題 19 v) より $\mathrm{Supp}(M)=V(\mathfrak{a})$ である. よって $\mathrm{Supp}(M)$ は $\mathrm{Spec}(A/\mathfrak{a})$ と同相であり、演習問題 4 より A/\mathfrak{a} は ネーター環であるので、演習問題 8 より $\mathrm{Supp}(M)$ はネーター空間である.
- 11. f^* : $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ が閉写像ならば f が上昇性質をもつことは第 5 章, 演習問題 10 で示した。 f が上昇性質をもつとき,X を $\operatorname{Spec}(B)$ の閉集合とすると,演習問題 5 より X はネーター空間であるので,演習問題 7 より X_i $(1 \leqslant i \leqslant n)$ を X の既約な閉集合として $X = \bigcup_{i=1}^n X_i$ とかける。 よって $f^*(X) = \bigcup_{i=1}^n f^*(X_i)$ より X を $\operatorname{Spec}(B)$ の既約な閉集合としてもよい。このとき X は素イデアル $\mathfrak{q} \subseteq B$ によって $X = V(\mathfrak{q})$ と表せる。 $\mathfrak{p} = \mathfrak{q}^c$ とおくと,第 5 章,演習問題 10 より f^* : $\operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ は全射であるので $f^*(V(\mathfrak{q})) = V(\mathfrak{p})$ となり f^* は閉写像となる。
- 12. 素イデアルの昇鎖 $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots$ を考える. $V(\mathfrak{p}_1) \supseteq V(\mathfrak{p}_2) \supseteq \cdots$ は閉集合の降鎖より,降鎖条件によって,この降鎖は停留的である. すなわち,ある整数 n が存在して $V(\mathfrak{p}_n) = V(\mathfrak{p}_{n+1}) = \cdots$ となる. よって $\mathfrak{p}_n \in V(\mathfrak{p}_n) = V(\mathfrak{p}_{n+1}) = \cdots$ より $\mathfrak{p}_n = \mathfrak{p}_{n+1} = \cdots$ となるので昇鎖は停留的である. $A = \prod_{n=0}^{\infty} \mathbb{Z}/(2)$ とし,n 以下の成分が 1,n より大きい成分が 0 である A の元を e_n とおくと,開集合の昇鎖 $X_{e_0} \subset X_{e_1} \subset \cdots$ は停留しないので $\operatorname{Spec}(A)$ はネーター空間ではない.一方,A はブール環であり,第 1 章,演習問題 11 よりすべての素イデアルは極大イデアルであるので,素イデアル全体の集合は昇鎖条件を満たす.

参考文献

- [1] M. F. Atiyah, I. G. MacDonald (著), 新妻 弘 (訳), Atiyah-MacDonald 可換代数入門, 共立出版, 2006.
- [2] Nicolas Bourbaki (著), 木下 素夫 (編・訳), ブルバキ数学原論 可換代数 1, 東京図書, 1971.