

ENPH 257 Interim Report

May 31, 2019

James Wu	92277235	
Jiayi Tang	15992639	
Gosha Maruzhenko	14649164	
Lewis Mason	52118163	

ENPH 257 Lab Draft

Figure 1: The experimental setup used to observe thermal waves through an aluminum rod and to determine coefficients related to heat transfer of that rod. A power resistor heat source was connected to a DC power supply and the temperatures were read by TMP36 ICs. The colours on the diagram relate each TMP36 to a specific curve on the following graphs.

Figure 2: (Full Waveform) Temperature of the bare rod at the five sensor locations as a function of time. The rod was heated for 1360 seconds with a power resistor and then let cool. The shaded around the data points represents the uncertainty in our data ($\pm 0.6 K$) around each data point).

ENPH 257 Lab Draft

Figure 3: (Zoom) Detail of temperature observations around the time that the power resistor was turned off. A thermal wave is observed since the four and fifth sensors are heating while the first three sensors are cooling.

Figure 4: (Model vs Observation) Numerically-modelled predictions for temperature as a function of time compared to observations. Values for K, K_c, ϵ , and P_{in} were adjusted by an algorithm to minimize the normal of the square of the differences between data points (r_n) and predictions (m_n) . In the following equation, N is the number of data points. The function to minimize is given by: $\sum_{n=1}^{N} (r_n - m_n)^2$.

ENPH 257 Lab Draft

Figure 5: (Convection Coefficient vs Emissivity) Relationship between convection coefficient and emissivity for a bare rod (orange) and a black spray-painted rod (blue). With the two trends being approximately straight lines, the difference in the y-intercepts was used to gain more accurate values of the emissivity and convection coefficient for the bare rod.

Table 1: Final Results for a Bare Aluminum Rod

Parameter	Symbol	Value	Uncertainty
Power In	P_{in} (\overline{W})	13.13	±0.4
Aluminum Specific Heat	$c_{Al} \ (J/KgK)$	900	Looked up
Source Efficiency	$\eta~(\%)$	71	±2
Convection Coefficient	$k_c (W/m^2 K)$	8.44	±1
Emissivity	$\epsilon \; (W/m^2)$	0.2	±0.2
Aluminum Thermal Conductivity	$k \ (W/mK)$	170.5	±7