

2MIP
NASA CONTRACTOR
REPORT

CR 134325

N74-28335

(NASA-CR-134325) IMPLEMENTATION AND
EXTENSION OF THE IMPULSE TRANSFER
FUNCTION METHOD FOR FUTURE APPLICATION TO
THE SPACE SHUTTLE PROJECT.
Aerospace Corp.)

Unclass
G 3/31 42572

IMPLEMENTATION AND EXTENSION OF THE
IMPULSE TRANSFER FUNCTION METHOD FOR FUTURE
APPLICATION TO THE SPACE SHUTTLE PROJECT

Volume II - Program Description and User's Guide

By

G. Patterson

Grumman Data Systems Corporation
Bethpage, New York 11714

April 1973

NAS 9-12333

Prepared for

NASA-MANNED SPACECRAFT CENTER
Houston, Texas 77058

PRICES SUBJECT TO CHANGE

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. Department of Commerce
Springfield, VA. 22151

782

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

NASA CONTRACTOR
REPORT

I

IMPLEMENTATION AND EXTENSION OF THE
IMPULSE TRANSFER FUNCTION METHOD FOR FUTURE
APPLICATION TO THE SPACE SHUTTLE PROJECT

Volume II - Program Description and User's Guide

By

G. Patterson

Grumman Data Systems Corporation
Bethpage, New York 11714

April 1973

Prepared for

NASA-MANNED SPACECRAFT CENTER
Houston, Texas 77058

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.	Summary	1
2.	Background and Introduction	3
3.	Program Description	
	a. ITF Program; Program I	15
	b. Response Program; Program II	21
4.	User Guide	
	a. Program I	24
	b. Program II	29
5.	Conclusions & Recommendations	34
	Appendices	
	A. Fortran Listings	36
	B. Deck Setup, Sample Data and Output	59
	C. Flow Diagrams	68

1. SUMMARY

This volume of the report describes the data processing procedures and the computer programs developed to predict structural responses using the Impulse Transfer Function (ITF) method. There are three major steps in the process:

- Analog-to-digital (A-D) conversion of the test data to produce Phase I digital tapes
- Processing of the Phase I digital tapes to extract ITF's and storing them in a permanent data bank
- Predicting structural responses to a set of applied loads

The analog to digital conversion is performed by a standard package which will be described later in terms of the contents of the resulting Phase I digital tape.

Two separate computer programs have been developed to perform the digital processing:

Program I

- ITF Program - extracts ITF's and stores them in the data bank

Program II

- Response Program - predicts structural responses to a set of input forcing functions

All coding was initially done in Fortran IV for the IBM 360/75; this program was used to produce the results presented in Volume I. The data bank used was an IBM 2314 Disk Pack, with random access capability. Both programs have been modified to Fortran V for the Univac 1108, using standard 7-track tape as the data bank.

The programs were originally sized for the present problem of 36 applied impulses and 70 response channels. The tape storage version, however, allows a virtually unlimited number of responses and the number of applied impulses can be increased with only minor program revisions.

FIGURE 1
DATA PROCESSING FLOW CHART

2. BACKGROUND AND INTRODUCTION

Analog Tape

Test data was recorded on 108 KHz wideband FM analog tape at 60 ips. This tape has 14 channels, of which one is used exclusively for an IRIG-B time code, one for the 108 KHz reference, and another for the impulse. The ITF's are multiplexed, 10 to a channel, allowing a maximum of 110 ITF's per tape. For the LTA-11 testing, 70 responses were recorded on channels 2-8, the impulse on channels 1 and 12, IRIG-B on channel 14, and the 108 KHz reference on channel 13. Channels 9 and 10 were not used. Time sequencing of events as recorded on the analog tape is schematically shown on Figure 2 and described in the accompanying table.

<u>Time (Seconds)</u>	<u>Signal</u>
0 - 9	A.C. calibration signal
9 - 14	Hard zero, gauges shorted
14 - 19	D.C. calibration - 100% of full scale
19 - 24	Hard zero, gauges shorted
24.00 - 24.01	10 ms event pulse - approximately 100% full scale
24.01 - 24.200	Recorded zero, gauges in circuit
24.200 - 30.+	Impulse occurs 200 ms after event pulse and data is recorded for at least 6 seconds

Oscillograph playbacks of each ITF was made to verify the data and for later comparison with plots made of the digitized data. For the present contract, 36 impulses were applied to the vehicle; one analog tape was produced for each applied impulse. Sixty-eight active measurements per impulse were recorded for a total of 2448 ITF's.

Analog-to-Digital Conversion

Conversion of the analog tapes was performed by the LM Data Reduction Station (LDRS) using a general A-D conversion program. Seven Phase I digital tapes are produced from one analog tape, with each containing the impulse, and 10 ITF's. Conversion starts at the beginning of the D.C. calibrations and continues for at least 6 seconds. Most of the LTA-11 conversions were

FIGURE 2
ANALOG TAPE Schematic - Response Track

performed for only 3 seconds due to the storage limitation in the earlier version of the computer system. Subsequent modifications have increased storage to 6 seconds. During conversion, the impulse track is sampled at 20,000 samples/sec, and the ITF's at 5000 samples/sec. Formatting of the Phase I digital tape, which must be compatible with the ITF program (Program I), is discussed next.

Phase I Digital Tapes

Phase I digital tapes produced by the A-D conversion are standard 7 track input tapes for the ITF program. Each tape contains the time history of the impulse track identified by the load point, and ten of the 68 associated ITF's. The histories were directly digitized from the analog records starting with the D.C. calibrations and continued for 3 seconds. In order to satisfy the requirements of the ITF program the following specifications must be adhered to for the Phase I digital tape:

- It must be a 7 track binary tape containing two files of data, separated by a standard End of File mark.
- File 1 contains addressing and record size information which is not used by the ITF program. This is generated by the generalized A-D conversion program and is passed over by specifying on the I/O control cards that the second file is to be used as the input data set.
- File 2 contains the time history data written in records, each 4868 characters long. This may be interpreted as:

29,208 bits

9,736 octal digits

4,868 BCD characters

2,434 12 bit data values (4 octal digits)

- The data is most meaningfully interpreted as 12 bit words ranging from 0 to 7777 octal (4095 decimal).
- Each record represents 32 milliseconds of real time.

<u>Words (12 Bits)</u>	<u>Data</u>
1 - 34	Status and time values from IRIG-B
35 - 674	640 values of impulse track (32 ms x 20 samples/ms)
675 - 834	160 values of response 1 (32 ms x 5 samples/ms)
835 - 994	160 values of response 2
995 - 2274	160 values each of responses 3-10
2275 - 2434	Dummy values to fill out record

- Each record contains data for 10 response channels; an eleventh response channel could be accounted for but its inclusion would cause some added complexity in the numbering scheme.
- Data should start (Record 1) within \pm 3.2 seconds (100 records) of the start of the DC calibrations (i.e., no more than 100 records of zeroes at start, and at least 50 records of DC calibrations)
- There should be at least 75 records (2.4 seconds) of zeroes between DC calibrations and event pulse. Normally, with direct conversion, there is a period of 5 seconds (\sim 156 records) between DC calibrations and event pulse. In the present contract work, some conversions were performed with time jumps in this zero area. This is not considered to be a useful economy, but can be accepted by the ITF program.
- Data should be recorded continuously from the event pulse to the end of data. For the LTA-11 only 3 seconds of response was recorded, but present storage capability for the 1108 program is 6 seconds.
- During A-D conversion, the DC calibrations are used as an indication of the full range of values required. Scaling should be such that the DC calibrations fall at approximately 90% of the full digitized scale.
- No sign bit is used, hence the digital value of 0 is equivalent to -100%.

<u>Decimal</u>	<u>Octal</u>	<u>Reading</u>
0	0	-100%
2048	4000	0
4095	7777	+99.95%

- Scale factors of all measurements must be supplied to the ITF program to allow eventual conversion to engineering units.

- DC calibrations, the event pulse and the impulse are to be recorded in the positive direction during recording of the analog tape and for A-D conversion. Sign changes to account for direction of the impulse relative to the coordinate system are data input to Program II.

Program I - ITF Processing

This program extracts the ITF's from the Phase I tapes, evaluates the zero adjustment and scale factor, locates time zero, and stores the ITF's in the data bank. Plotted output of the ITF's is available for visual inspection and comparison to the oscillograph records; conventional computer printout is also available.

How the scale factors and zero adjustment are obtained is discussed next with the aid of a specific example. (See Figures B-2, -3, -4)

Consider response 1, which is gauge GA-12. It is a force gauge located on the aft interstage truss. It is calibrated prior to testing, and it is determined that its output, when passed through a Preston Filter, with gain set at 1000 and an RC of 100K, is 2.5 volts D.C. at 5360 #. The nominal range of the analog recorder is \pm 2.5 vdc. From a sample run it is observed that the output of GA-12 is low; the RC of the Preston Filter is then reset to 470K, at which value the output of GA-12 is 2.5 vdc at 1143 #. Since this output signal is satisfactory, it is duly recorded that 1143 # = 100% full scale = 2.5 vdc. This data defines the engineering units of the measurement. Following an application of an AC calibration signal to the recorder, GA-12 is in the circuit and recording at a nominal zero level for 5 seconds, then a direct input of 2.5 vdc is applied for 5 seconds, followed by 5 seconds of a "hard" zero level during which the gauge is shorted out of the circuit (see Figure 2). An event pulse of 2.5 vdc is then applied for 10 msec and the impulse and recorded response occurs 200 msec later. During the period between the event pulse and the impulse, gauge GA-12 is in the circuit and its output is being recorded. Examination of the Phase I digital tape in this section of the test shows the following (adjusting counts to the range -2048 to +2047):

<u>Test Period</u>	<u>Record</u>	<u>Reading (average)</u>
End of DC cals	250 - 300	1617 counts
Start of hard zero	310 - 350	8 counts (gauge shorted out)
Event pulse	463	513 counts
Event to impulse	464 - 468	10 counts (gauge in circuit)

From this we can surmise that:

$$1143 \# = 2.5 \text{ vdc} = 1609 \text{ counts (1617-8).}$$

It is important to note how the hard zero and applied 2.5 vdc pulse are used to obtain the scaling.

GA-12 is recorded at 10 counts, while in the circuit, prior to the application of the impulse. This reading represents 1.4 #, and is computed from the tabulated values.

$$(10 - 8) \times 1143/1609 = 1.4$$

This indicates that the strain gauge, within the supported structure, prior to impulse application is not in a wholly unloaded state. This level of 10 counts is taken as the nominal zero level of the measurement (zero adjustment). Further complications concerning oscillations of the zero level due to swaying of the test article will be discussed later. To complete these observations, following the impulse, GA-12 records oscillations which range between +183 counts and -209 counts and eventually settle down to a small range around 10 counts. These peak values represent:

$$(183 - 10) \times 1143/1609 = 123 \#$$

$$(-209 - 10) \times 1143/1609 = -155 \#$$

This procedure is also followed on the impulse track, to obtain the load time history of the impulse. In a later calculation, this data is used to compute the impulse magnitude (area under the load time history) which is eventually used to scale the impulse response to a unit impulse.

With the above discussion in mind, the processing logic of the ITF program may now be considered. Figure C-2 shows a flow diagram of the sequence of operations in which one Phase I tape, containing an impulse track and ten responses, is processed to obtain the ten ITF's. Records are processed sequentially. Note that each record contains:

- 32 milliseconds of real time
- 640 impulse track values (20 samples/ms x 32 ms)
- 160 values per ITF (5 samples/ms x 32 ms)

The programmed procedure is as follows:

1. Nine records are skipped, the tenth is read and the average values of the impulse and response tracks are calculated and saved. In reading records, counts are automatically adjusted to the range -2048 to +2047 (= 100% full scale).

2. Step 1 is repeated until a record is found where the impulse track average value exceeds 1000 counts. This is the region of DC calibration.
3. Every tenth record is averaged and the averages saved, until a record is found whose impulse track average is less than 500 counts. This is the hard zero region following DC calibration.
4. Fifty more records are passed, with every tenth being averaged and saved. The last of these is used to establish the zero level for locating the event pulse.
5. One-hundred fifty records are averaged and saved. Each is examined to locate one where the average of the impulse exceeds the zero established in step 4 by 120 counts. This locates the record containing all or most of the event pulse. This record is checked to determine that the sum of three consecutive values exceeds 2000.
6. Seven records are read, averaged and the averages saved. The last two records are saved in their entirety since they contain the impulse and start of the ITF.
7. The two records containing the impulse are examined further. Using the average of the three previous records as a relative zero, three consecutive values over 200 counts are sought to indicate the start of the impulse.
8. Time zero for the ITFs is taken as the nearest millisecond to the first 200 count value of the impulse.
9. The area of the impulse is computed using the preceding 2 milliseconds as the relative zero level.
10. With the time zero established, values from the ITF tracks are stored from the two records previously read.
11. Additional ITF records are read and the values stored until 6 seconds of response is obtained or the end of the data reached.
12. Values are stored as 1 ms averages, with every 5 points being averaged. Values are stored without adjustment to the zero level or the scale factor.
13. Scale factors for the impulse and ITF's are calculated using the average record values saved from the 20th, 30th and 40th records after the start of DC calibrations and the 10th, 20th and 30th

records after the end of DC calibrations. Engineering unit values of the impulse and ITF tracks corresponding to 2.5 vdc (100% scale) are supplied as input to the program. Coupling the engineering unit value, with the area under the pulse, the final scale factor is computed in engineering units per count for a unit pulse.

14. This scale factor is now stored in a status file along with other information such as ITF duration, impulse area, DC calibration step size, engineering units full scale value, and two zero values, one calculated from the average of the records between the event pulse and the impulse, and the other from the record averages of the ITF's.
15. Printed output includes pertinent record averages throughout the process as well as several records in their entirety.

ITF Storage

The ITF processing subroutine assumes that the ITF's are stored in temporary, direct access data files on Fastran Drum, referenced by Define File statements in Fortran V under the EXEC-8 operating system. The use of disk pack or tape for permanent storage is discussed later.

A full length ITF is 6000 values in 1 ms increments. ITF values are read from the Phase I tapes as integer values in the range of 0 to 4095. They are adjusted to the range -2048 to +2047 for ease of analysis and interpretation. Five point averages are computed; these are also in the range of -2048 to +2047. To store the 6000 values economically, they are reconverted to the range 0 to 4095, which is represented by exactly 12 bits, and packed three to a 36 bit word before storing as a 2000 word string. The file for ITF storage consists of 3600 - 200 word records. One ITF is ten records. The file holds 360 ITF's, representing ten ITF's for each of the 36 applied pulses. Ordering of the ITF's is by measurement number, i.e., ITF 1, Pulses 1-36; ITF 2, Pulses 1-36, etc. The values stored are not adjusted for the nominal zero and are not scaled to engineering units. The zero level and scale factors are stored in a second file of 10 - 216 word records. This is, in effect 360 - 6 word arrays, ordered by ITF number and loads the same as the ITF's. These six words contain floating point values of ITF duration in seconds, two zero values, the scale factor from counts to engineering units, impulse area, and the impulse scale factor. For computing economy, the ITF's are scaled in Program II when predicting responses.

Program II - Response Program

The response to a set of forcing functions is obtained through the application of the Duhamel integral, as described in Volume I. The numerical solution proceeds as follows:

- An applied load time history is read as input.
- A time interval is specified as input; its selection depends on the expected frequency content of the output.
- Total time of the response is specified as input.
- The applied force time history is interpolated to each time interval and saved as an array.
- The ITF resulting from the application of a specific impulse is read in from the data bank along with zero adjust and scaling information.
- The ITF is passed to the filtering routine as specified by the user. (Filtering is discussed in a later paragraph.)
- The filtered ITF is reduced to a set of averaged points corresponding to the time increment over the total time.
- Zero adjustment is made.
- The response is calculated from:

$$R(t_k) = C \Delta t \sum_{i=1}^k F_i h_{n+1-i}$$

where for a typical gauge reading force,

R is in lbs

Δt is in sec

F is in lbs (forcing function)

h is in counts (the ITF)

C is in lbs/lb-sec-count, (scale factor)

- This process is repeated for all other load points, with options to plot and print individual and/or summed responses.

Filtering

ITF filtering is not an integral part of the ITF method, but was introduced to eliminate spurious low frequencies in the measured ITF's arising from the LTA-11 supports. These effects are removed from the ITF's during response

processing by a filtering routine utilizing a Fast Fourier Transform technique, developed at Grumman.

During performance of the present contract work, these low frequency oscillations were observed in the ITF's and several methods were considered to eliminate them. The most useful was the Fourier Filter technique which did not require visual inspection of the ITF plots and was similarly applicable to the different types of responses (forces, strains, accelerations).

Filtering is done in the response program following retrieval of the ITF's from the data bank, and prior to their use in calculating a response.

The ITF is passed to the filtering routine where the following operations are performed.

- Stored data that defines an ITF time history (maximum = 6000) are time averaged to reduce the number of values to a more workable number (typically 300). This averaging eliminates the higher frequencies, but retains the character of the low frequencies of interest here.
- The reduced number of time history points are transformed to the frequency domain.
- All Fourier coefficients above a specified cutoff frequency are zeroed, and the points transformed to the time domain. They now represent the low frequency content of the ITF as a time history.
- This low frequency time history is then interpolated back to the original sample rate and subtracted from the original ITF to obtain a new function which is considered filtered.
- When filtering, it is not necessary to zero adjust the ITF, since the process removes any biasing in the data.

Zero Adjustment

The need for accurate evaluation of the zero level of the ITF's can be recognized if it is recalled that responses are obtained by integrating the ITF's. An error in the zero level will result in a steadily growing error over the duration of the response. Three methods of zero level evaluation are available, under input control.

- When processing the ITF from Phase I tapes, the calibrated zero level, which exists between the event pulse and the time of impulse application, is determined and stored in the status file. This zero level is of short time duration and may not be sufficiently accurate.
- A second estimate of the zero level is obtained by averaging the ITF over all but the early time period. The time skipped should be equal to several periods of the lowest natural frequency of the test article. This zero level will assure that the response to a constant load does not change its gross level significantly after the first few low frequency cycles. This estimate of zero level is done in Program I and is stored in the status file.
- The third method of zero adjusting is performed automatically whenever the filtering routine is used. This routine removes all frequencies below a specified value, including the zero frequency.

Data Bank

The system was originally designed using an IBM 2314 disk pack, capable of permanently filing 2520 - 80,000 bit ITF's. Since this capacity for permanent storage does not at present exist on a direct access data device at the MSC Univac 1108 facility, the system was redesigned to use tape storage. The primary programming problem, in such a system, is to minimize the number of tape operations for efficient use of computer time. This was done by making use of a smaller direct access temporary data set on Fastran Drum. All programs, and the associated data files have been sized to a 10 response system, with provisions in each program to initialize the data files from tape, and, at the end of an operation with any set of 10 responses, to dump the files back to tape. It is necessary to work with 10 responses simultaneously because 10 responses are grouped on each Phase I tape. When executing the ITF processing program, if several Phase I tapes for the same set of 10 responses are processed sequentially, drum to tape I/O does not consume a major portion of operating time.

When executing the response program it is only necessary to load the drum from tape. Final dumping is not required, since the permanent data base is not modified. All subroutines operate on the basis of ten numbered

responses, while the main programs, which perform the loading, relate the responses to the overall numbering scheme. If large scale permanent direct access storage becomes available, either the tapes can be replaced with the permanent data set and the programs operated exactly as with the tapes, or else the temporary data sets may be increased to full size, with minor program modifications.

3a Program Description - ITF Program, Program I

Program I, the ITF Program, processes Phase I digital tapes to extract the ITF's, stores them in the data bank, and performs other data bank maintenance and utilization functions.

Figure C-1 shows a simplified flow diagram of the main program. It performs CLEAR, LOAD, DUMP, STATUS and PLOT operations on the data bank, and calls subroutine STORED, which contains the bulk of the programming, to process Phase I tapes. To understand these functions it is necessary to review how the program handles the data bank described in Section 2.

Program I references two temporary, direct access data files through define file statements.

```
DEFINE FILE 1 (10, 216, U, IU1)
```

```
DEFINE FILE 2 (3600, 200, U, IU2)
```

File 1 contains data describing the status of 360 ITF's. The ten records pertain to 10 responses. The 216 words per record are an array of (6, 36) real variables, six words for each of 36 load points.

word 1 - conversion factor, units per count, which converts the value of the stored ITF from digital counts to the engineering units associated with the particular response point

word 2 - the zero level of the ITF, derived by averaging the analog response for the period between the event pulse and in impulse

word 3 - the duration of the stored ITF in milliseconds; maximum = 6000

word 4 - the zero level of the ITF derived by averaging the ITF from 320 milliseconds to the end

word 5 - scale factor for the impulse track in pounds per count

word 6 - area of the impulse in pound-seconds

File 2 contains the 360 ITF's, ten records per 2000 word ITF. They are ordered by response point (i.e., Response 1, loads 1-36; Response 2, loads 1-36, Response 10, loads 1-36).

For a specific problem with 10 responses or less, permanent data files could be used and the processes of dumping to, and loading from tape could be dispensed with. The programs can, however, deal with an unlimited number of response points, by the use of binary tapes to store the contents of data files 1 and 2. Through use of the LOAD and DUMP operations, the contents of these files may be dumped to a binary tape or loaded from a binary tape, with no real restrictions on the number of tapes being used for a problem.

The effects of the five data bank operations are as follows.

CLEAR - The contents of files 1 and 2 are set to zero. This operation is usually performed when the first Phase I tapes for a set of responses are being processed and no LOAD operation is performed.

LOAD - Contents of a binary data bank tape are loaded into files 1 and 2. Presumably, this tape was created by a dump following an earlier run.

The second content of the binary data bank tape is:

record 1 - 100 words - an integer variable representing the tape sequence number - repeated 100 times.

record 2 - 2160 words - the entire contents of file 1.

records 3 - 362 - 2000 words each - the entire contents of file 2, but in 2000 word records rather than 200.

DUMP - Contents of files 1 and 2 are dumped to binary tape to create a new or updated data bank tape

STATUS - prints the contents of file 1

PLOT - plots or prints specified ITF's, stored in file 2.

The sequence number on the binary tapes is used to insure that the proper binary tape is mounted, since a number of them will be used for the typical job. While most of the internal logic of the program deals with ten responses, numbered 1 to 10, an overall numbering system should be employed, whereby the responses are numbered consecutively from 1 and are stored with tape number 1 containing responses 1-10, tape 2 containing 11-20, etc. Input data pertaining to response numbers always refer to the overall numbering scheme. This is converted by the program to a tape sequence number and the internal number range 1-10.

An additional storage operation was written into the program in order to transfer data between Grumman's disk pack system and MSC's tape storage system. This operation is:

LOADQQ - loads an existing BCD tape containing a number of ITF's.

The END operation causes a normal termination of the program.

Processing of Phase I Tapes

The RUN operation is used to process Phase I tapes. This function is performed primarily in subroutine STORED which also calls RITREC, READ7, AVG and UNPACK. Figure C-2 shows a flow diagram for subroutine STORED. The basic sequence of operations in processing the Phase I tape is covered in Section 2. As each record of 32 milliseconds is read, it is separated into impulse track values and 10 sets of response track values. The average value of each of these sets is determined for each record examined. Only these averaged values are used until the actual impulse is encountered and the responses start.

While examining records to locate the DC calibrations and event pulse, only the impulse track is examined since events occur simultaneously on each track. Once the record containing all or most of the event pulse is located, the impulse can be readily found. It occurs 200 ms after the event pulse and must be in the 6th or 7th record following the event pulse. The first 5 of these are read and their averages saved to use in determining zero levels. The 6th and 7th are examined to locate the impulse.

A temporary zero level for the impulse track is established using the average value of the three previous records. The impulse is located by finding three consecutive values, each exceeding the average by 200 counts. A new zero level is established to use in calculating the impulse area. It is based on the 40 values preceding the start of the impulse (2 ms). The first and last points on the impulse whose values exceed 50 are located, and a Simpson's Rule integration performed between them. If the number of intervals is even, the first interval is evaluated by the Trapezoidal Rule. One additional point on each end of the impulse is now used to calculate the areas of the end pieces.

Scale factors for the impulse and response tracks are calculated and the impulse scale factor is used to get the impulse area in lb-seconds. It should be noted that for this problem, there are 7 phase I tapes for each impulse, and that the impulse track on each of them is derived from the same analog track. Any differences between them are due to the precision of the A-D conversion, and comparison of the impulse areas can serve as a check on the A-D process.

At this point, 64 ms of data, is present in core. The starting point of the impulse is known, and this is adjusted to the nearest millisecond, to define time zero for the responses. The remaining task is to transfer data from the response tracks of the Phase I tape to the data file in which the ITF's are stored. To do this, the intermediate array IDISK is established, dimensioned to (600, 10). It holds 600 ms of ITF data for the 10 responses on the phase I tape. Records are now read into core through the use of the JREC array, converted by averaging from 5 points/ms to one point/ms and transferred to the IDISK array. The process is started by transferring the appropriate values from the two records containing the impulse. When the IDISK array is filled, it is packed down to (200, 10) since ITF's are stored as three values to a word. The 200-word columns are then stored in the appropriate records of file 2 and the process repeated. Processing continues until 6000 milliseconds of data is stored, or the data runs out. A record of the number of milliseconds of valid data is kept for inclusion in the STATUS file (File 1). When processing of the phase I tape is completed, the status items are loaded into File 1, summary output is written, the tape is rewound, and control is returned to the main program.

A summary of the subroutine calls follows.

SUBROUTINE STORED (ITAPE, IRESP, IRESPP, ITEST, FULLI, FULL, NG)

ITAPE = fortran unit number on which phase I tape is mounted

IRESP, = range of response numbers to be stored, inclusive. They

IRESPP are internal response numbers in the range 1 to 10

ITEST = a value (from 1 to 5) that controls the number of records
written as printed output

FULLI = scale factor in pounds per full scale for the impulse track
FULL = 10 item array with the scale factors in engineering units per
full scale for the 10 response tracks

NG = a counter set to zero after successful completion

SUBROUTINE RITREC (JB, IB, IC)

JB = record number

IB = 2400 word array containing the impulse and response values
from the record adjusted to the range of -2048 to +2047

IC = (160, 11) array containing the responses.

This routine prints the contents of one phase I tape record.

SUBROUTINE READ7 (JTAPE, IRECI, IREC2, IAVG, KS, NG)

JTAPE = fortran unit number

IRECI = 34 member array - not used

IREC2 = 2400 member array

IAVG = 11 by 500 array

KS = record number

NG = counter

This routine is used to read one record from the phase I tape. The actual read is performed by the MSC library routine MREAD, used to read non-standard tapes. MREAD is called in UNPACK which is called by READ7. The 640 word set of impulse values and 11 to 160 word sets of response values are loaded into IREC2.

Further processing is under control of the input, NG.

NG = 0 for no further processing

NG = 1 for impulse track only

NG = 2 for responses

NG = 3 for both

2048 is subtracted from each word to modify the range of data from (0 to 4097) to (-2048 to +2047).

Averages are performed on the impulse and responses and stored in the IAVG array according to record number.

SUBROUTINE AVG (IREC, IAVG, NG)

IREC = 2400 values of tape record

IAVG = 11 averages to be calculated

NG = same as in READ7

Averaging described in READ7 is performed.

SUBROUTINE UNPACK (IN1, IREC2, ISTAT)

IN1 = fortran unit number

IREC2 = 2400 values to be returned

ISTAT = status of read

As described in Section 2, a phase I tape record contains 2436 12 bit words. These are read by MREAD into an array of 812 - 36 bit words. The last 800 of these are unpacked, 12 bits at a time and stored in IREC2.

SUBROUTINE CRUNCH is only used to decode the special tape used to transfer ITF's to the data bank for demonstration purposes. It may be replaced with a dummy routine, or reference to it in the LOADQQ section of the main program may be deleted.

SUBROUTINE PLOT1 (IFILE, INN)

IFILE is a work area of 3000 words supplied by the main program

INN array of 8 control constants

PLOT1 reads ITF's from data file 2 and either plots them, prints them or both.

Plot arrays X and Y are completely set up, but no calls to plotting hardware are supplied.

Provision is made for calling plot initialization and plot termination routines.

3b Program Description - Response Program; Program II

Program II, calculates the structural response to a set of forcing functions. It consists of a main program, a filter routine, FILT, a fast fourier transform routine, FAST1, and a plot routine, PLOTB. Flow diagrams for the main program and the filter routine are shown in Figures C-4 and C-5.

The main program uses two data files which are identical to those used in Program I. They contain ITF's for 10 response points and 36 load points. Permanent storage of the ITF's is on the binary data bank tapes created by Program I. The appropriate tape must be read into the data files at the start of execution. In order to run program II it is necessary to have processed, for the responses desired, those load points at which forcing functions are to be applied. Other load point ITF's need not have been processed, since the data bank tape contains dummy values where none have yet been supplied, so as to keep proper sequencing of data. Input data to the program consists of a set of control cards with a function name in columns 1-6 followed by additional data.

For the first pass through the program the order of data is fixed, but additional passes can be made on one run, with some variation allowed. In addition, a set of tables of the forcing functions must be supplied.

The function names on the control cards, in normal input order are LOAD, TIME, FORCE, RESP, PLOT and CYCLE. Forcing function tables follow the force card.

Except for recycling for multiple problems, the flow of the program is straight-through, and is best described in relation to the input data.

The LOAD card specifies an I/O unit number and response numbers and results in a data bank tape being read into Files 1 and 2. All features of this operation are identical to the LOAD operation in program I.

The time card specifies the number of points, or time slices required by the analysis, and their spacing in milliseconds. The number of points should not exceed 1200 and the total time should not exceed 6000 ms.

While the ITF's are stored at 1 ms time intervals, it is not necessary to evaluate the structural responses at 1 ms intervals. Selection of the calculation interval should be based on system frequencies, hence if the highest system frequency is 50 cps (20 ms period), spacing of 4 or 5 ms will adequately represent the results. The forcing functions will be evaluated at the specified times and the ITF's averaged to that time interval before performing the Duhamel integration.

The force card is the principle heading card for the forcing functions. It is followed by a set of cards describing the forcing function time histories at each load point required by the problem. To minimize the effort in preparing data for the forcing functions, all forcing functions are described for the same time points. The time scale is described on the FORCE card as a sequence of points at a fixed time interval, followed by another set of points at a different time interval, up to 6 sets. Hence a 500 ms time scale might be specified as 20 points at 2 ms, 6 points at 10 ms and 4 points at 100 ms.

An array is established giving the time value for each point on the tabulated forcing function. The force card is followed by a number of sets of forces for each load point required. A heading card for each set specifies the load point number and a scale factor to be applied to all forces in the set. The scale factor can be used to reduce the number of digits required to specify the forces, change the sign of the force and to conveniently scale the force without modification of the entire table. The heading card of each set is followed by cards specifying the forces in pounds at the previously established times. Any number of tables may be read, with read-in of tables ending when a blank heading card is encountered. Any forces not specified will be treated as zero by the program. As each forcing function is read in, it is interpolated to a set of values corresponding to the time scale established on the time card and the resulting array is stored in a direct access data file for later use.

Following the tables, a RESP card specifies which responses are to be processed and describes the filtering which should be applied to the ITF's. A PLOT card follows, which specifies whether or not the structural responses should be plotted.

For each response to be evaluated, and for each load point, the required ITF is read from file 2 and unpacked. The ITF status array is read from file 1. If no filtering is required, the zero adjustment value is obtained from the status array. If filtering is required, the ITF is passed to the FILT subroutine which removes specified low frequencies. The filtered or unfiltered ITF is now averaged over the time intervals specified on the time card and zero adjusted. The required forcing function is used from the direct access data file, and the Duhamel integral is evaluated. Finally, scale factors for the ITF and the forcing function are applied. The result is the structural response at one response point to one forcing function. The operation is repeated for each forcing function, with each response being printed and/or plotted, and accumulated in a summed response array which eventually gives the total response at the point to all the supplied forcing functions. The summed response is printed and/or plotted.

After all specified responses have been evaluated, a CYCLE card allows the program to recycle to different places in the input sequence to perform additional operations. The forcing function tables do not have to be repeated if they are unchanged.

The filtering technique, described in Section 2, is applied in subroutine FILT. The sequence of operations closely follows that description. A feature of the filtering which needs further explanation is the apparent elimination of frequencies from the high end of the spectrum as well as the low end. As an example, consider a case of 100 points at spacing of 10 ms, for a 1 second ITF. The fast Fourier transform fits this function with frequencies range from 0 cps to 99 cps in steps of 1 cps. In order to eliminate frequencies at or below 10 cps the first 11 and the last 10 coefficients would be set to zero. The last 10 are zeroed because the apparent fitting of 90-99 cps does not really evaluate this frequency content (there is only 1 data point per cycle). It does in fact produce a fit for the low frequencies 1-10 cps through a process known as aliasing. This is a characteristic of the fast Fourier transform technique, and is taken into account by setting to zero the high order coefficients as well as the low.

4a User's Guide - Program I

The ITF processing program performs seven functions in addition to processing Phase I tapes. Each operation is controlled by a single input card, containing the function name and additional information when required. The functions, which are explained in the Program Description, are CLEAR, LOAD, DUMP, STATUS, LOADQQ, PLOT and END. Phase I processing is evoked by the function RUN and requires an additional data card. Tape unit logical numbers are under control of the input and should conform to the EXEC-8 control cards for the run.

Input Data

Each operation is evoked by a single function card (2nd card required for RUN), with the following format.

Function Card - format (A6, 10I4)

col 1-6	- function name, left adjusted
col 7-10	- INN(1)
col 43-46	- INN(10) appropriate integer data as described below

CLEAR - no values of INN required.

All data files are cleared.

Usually performed before creating original data tape of a series.

LOAD - INN(1) fortran unit number of data bank tape to be loaded.

INN(2) number of first response on data bank tape (normally 1, 11, 21, 31, etc.) This is used to check tape sequence number.

DUMP - INN(1) fortran unit number of tape to which files will be dumped.

INN(2) number of first response of the 10 to be dumped (1, 11, 21, etc.). This is used to determine the sequence number.

STATUS - INN(1) number of first response in a sequence, whose status is to be printed.

INN(2) number of last response in sequence. It is assumed that appropriate responses are loaded in files.

LOADGQ - INN(1) fortran unit number of tape to be loaded. This is a special tape for transferring data from the Grumman data bank to the MSC program.

PLOT - INN(1), INN(2), INN(3), INN(4)

Routine prints or plots ITF for responses INN(1) through INN(2) for loads (impulses) INN(3) through INN(4)

INN(5) spacing for prints or plots in milliseconds

INN(6) number of points to be printed or plotted

INN(7) = 1 plot only

= 2 print only

= 3 plot and print

INN(8) = 1 open plot routine for this set of plots

= 2 close plot routine after these plots

= 3 open and close plot routine

This is used to initialize or terminate plot tapes as required by system. They are not opened or closed automatically by routine since several PLOT calls may be made on any one run.

END - no values of INN required - terminates run.

RUN - INN(1) fortran unit number of Phase I tape to be processed.

INN(2) load (impulse) number

INN(3) number of first response to be processed

INN(4) number of last response (inclusive) to be processed

INN(5) = 0 minimum number of records

: printed in output

= 5 maximum number printed

RUN card must be followed by a single data card containing the full scale calibration values for the ten responses being processed, and the impulse track format (11E7.0)

col 1-7 impulse calibration (lbs at full scale)

```
    col 8-14    response 1 cal. (units at full scale)
    |
    |
    col 71-77  response 10 cal.
```

Sample Data Setup

Figure B-1 shows a data sequence in which the primary operations are to process two Phase I tapes for the responses 1-10 for impulses 5 and 6.

The exact operations are:

- 1 Load responses 1-10 from data bank tape mounted as unit 10. This has been created on a previous run.
- 2 Print status of responses 1-10.
- 3 Process Phase I tape on unit 11. It is an impulse 5 data tape - responses 1-10. Calibration data card follows.
- 4 Process Phase I tape on unit 12 - impulse 6, responses 1-10. Calibration data card follows.
- 5 Print and plot the stored responses 1-10, impulses 5-6.
- 6 Print status of responses 1-10.
- 7 Dump files to unit 20 to create an updated data bank tape with impulses 5-6, responses 1-10 added or corrected.
- 8 End run with normal termination.

Sample Deck Setup

A deck setup for the preceding data processing operations is shown in Figure B-1.

- 1 Fastrand assignment for temporary file 1, 2 tracks.
- 2 Fastrand assignment for temporary file 2, 7 positions.
- 3 Data bank tape on unit 10 XXX = tape label
- 4 Phase I tape on unit 11 XXX = tape label
- 5 Position to file 2
- 6 Phase I tape on unit 12 XXX = tape label
- 7 Position to file 2
- 8 New tape on unit 20, to be saved
- 9 Fortran program ITFL and subroutines with appropriate FOR cards

10 Map cards

11 XQT, data and FIN

This setup does not include any control cards for plotting.

Output Data

Primary printed output from the program consists of full listings of some records from the Phase I tapes, a summary of the average values of a member of records, listing of a tape status and printed ITF's.

Phase I Tape Records

Figure B-2 shows a 3 page list of a record from a Phase I tape. The record covers 32 milliseconds, indicated on extreme left. The impulse track has 20 samples per millisecond and the responses have 5 samples/ms. Responses are always numbered 1 to 10 regardless of true response numbers associated with the tape. The numbers displayed are in counts which range from -2048 to +2047. Some notable features of the record shown are:

1. The impulse appears during the 26th ms of the impulse track and can be estimated roughly to .2 count-seconds 1.6 lb-seconds based on a calibration of approximately 12,500 lbs = 1600 counts.
2. Response 11 is a dummy.
3. Response 8 shows an oscillation of 16 ms period (60 cps), probably the result of electrical interference. It is removable by filtering but makes the estimated zero unreliable. Status output for this response shows a larger discrepancy between the zero derived from pre-impulse records and the zero obtained by ITF averaging than is normal.
4. 43 numbers at the bottom are 32 - 1 ms averages for the impulse track, one 32 ms impulse average and 10 - 32 ms averages for the responses.

A summary of record averages at the end of processing a tape shows the average value in counts of selected records for the impulse and 10 response tracks (Figure B-3).

Output from the STATUS operation presents the six items in the status file for the impulses and responses requested. The six items are:

1. Conversion factor - engineering units/count.
2. Zero adjustment - derived from region between event pulse and impulse.
3. Duration of stored response in milliseconds.
4. Zero adjustment - derived from record average of response, omitting first 10 seconds (320 ms).
5. Impulse scale factor - lbs/count.
6. Impulse area in lb-seconds.

Printed output from the PLOT operation is in zero adjusted counts as shown in Figure B-4 according to specifications on the PLOT function card.

Plots

Actual calls to plotter software have been omitted since plot routines under EXEC-8 were not wholly operational at time of programming. Furthermore, final layout of plotted output cannot be properly determined until a specific application is undertaken. These plots are considered to be intermediate output, for checking purposes, and are best designed to match oscillograph playbacks of the original analog tapes. The arrays required for plotting are set up in the PLOT1 routine and correspond to the printed output.

4b User's Guide - Program II

The response program computes the structural response to a set of forcing functions, applied at one or more load points. The data required to produce one response consists of the time histories of the forcing functions and the set of ITF's relating the load points to the response point. Output from the program is printed or plotted structural response time histories.

Input Data

1. LOAD card FF, IU, IR1, IR2 (A4, 2X, 3I4)
 - col 1-4 FF - 'LOAD' (literal)
 - 7-10 IU - tape unit on which data bank tape containing ITF's is mounted
 - 11-14 IR1 - first ITF number on data bank tape
 - 15-18 IR2 - last ITF number on tape (IR2 = IR1 + 9)
2. TIME card FF, NPTS, NMS (A4, 2X, 2I4)
 - col 1-4 FF - 'TIME' (literal)
 - 7-10 NPTS - number of points to be calculated in the resulting time histories
 - 11-14 NMS - spacing, in milliseconds of the response points

NPTS = 25,0, NMS = 2 results in a time history of 500 ms - 250 points, every 2 ms.
3. FORCE card FF, (MT(I), DT(I), I = 1, 6) (A5, 5X, 6(I5, F5.0))
 - This card establishes the time scale for the set of forcing functions which will follow. It assumes a set of values will be given at a fixed time increment, a second set at another time increment, and so forth, up to six sets if required (e.g., 50 points at 2 ms, 10 points at 10 ms, 1 point at 100 ms).
 - col 1-5 'FORCE' (literal)
 - 11-15 MT(1) number of points in first set
 - 16-20 DT(1) increment in ms of first set
 - 21-25 MT(2) number of points in second set

26-30 DT(2) increment in ms of second set

76-70 DT(6) increment in ms of 6th set

If MT(1) = 0, no forces are read

4. Forcing Function Tables

A set of force time histories for each forcing function must be supplied. The time scale for the forces is supplied by the FORCE card. The number of values required is equal to the sum of MT(I) on the force card. Forcing functions may be supplied for any or all of the load points for the problem. Those not supplied will be treated as zero. The table for each forcing function consists of one heading card followed by the required number of forces, 16 to a card. (If MT(1) from the FORCE card is zero, no tables are read.)

a. Heading Card IL, SCL (I2, F8.0)

Col 1-2 IL load point number

3-10 SCL scale factor to be applied to all forces in table.

This may be used to change the sign of the force, or reduce the number of digits required in the tables (do not omit).

b. Force cards (FEMP(I), I = 1, MTT) (16 F5.0)

As many values of the force table as specified by the FORCE card, 16 to a card in 16 F5.0 format. Force is in lbs.

$$MTT = \sum_{I=1}^6 MT(I)$$

c. End of tables card

A blank card is required at the end of the tables to terminate the table read-in.

5. RESP card FF, IRA, IRB, IZFIL, FREQ (A6, 3I4, E12.0)

This card specifies which responses are to be calculated and how they are to be filtered.

col 1-4 FF - 'RESP' (literal)
 7-10 IRA - number of first response in sequence to be calculated
 11-14 IRB - number of last response in sequence to be calculated
 15-18 IZFIL - 1 do not filter; use zero adjustment calculated from
 time before the impulse
 2 do not filter; use zero adjustment calculated from
 ITF record averages
 3 use Fourier Filter
 19-30 FREQ - when Fourier Filter is used, eliminate all frequencies
 below FREQ in cycles/sec.

6. PLOT card FF, NPL (A4, 2X, I4)

col 1-4 FF - 'PLOT' (literal)
 7-10 NPL - 0 no plots
 1 plot total response
 2 plot individual response to each load as well as
 total response

7. CYCLE card FF, NCY (A4, 2X, I4)

After the PLOT card is read, the set of responses specified on the RESP card are evaluated and the results printed. The program may now be made to recycle to a point in the input stream to read data for a new set of cases with a minimum of data repetition.

col 1-5 FF - 'CYCLE' (literal)

- 10 NCY 1 return to beginning of data LOAD card
- 2 return to TIME card
- 3 return to FORCE card
- 4 return to first force header
- 5 return to RESP card
- 6 terminate program

If the program recycles to the LOAD or TIME card, and the forcing functions are the same as for the previous run, setting MT(1) = 0 on the FORCE card will by-pass reading of the forcing functions and use the values from the previous case.

Sample Deck and Data Setup

Figures B-5, -6 show a sample deck setup with data.

1. Fastrand temporary data file assignments for Files 1, 2 and 3.
2. Binary data bank tape containing ITF's for response points 1 through 10.
3. Fortran decks
4. Map cards
5. Load card specifying fortran unit 11, responses 1 through 10 (see item 2).
6. Time card specifying the responses are to be calculated as 200 points every 2 milliseconds, for a 400 ms duration.
7. Force card specifying that the forcing function values are given at 2 ms intervals for 63 values (126 ms) with a final point at 1126 ms.
8. Forcing functions for 24 load points. Each set contains 64 values (see item 7). Scale factors for all 24 are unity, with sign changes to account for coordinate system definition.
Forces are in lbs.
9. Blank card to terminate table reading.
10. RESP card specifying responses 1 through 4, to be run with Fourier Filtering, eliminating frequencies below 5.2 cycles/sec.
11. Plot card specifies omit plots.
12. Cycle card specifies terminate run.

Deck setup does not include control cards for plotting.

Output

Output from the program consists of tables of the forcing functions, interpolated to the time interval specified on the TIME card, and listings of both the responses to each individual forcing function and the summed response to the entire set of forcing functions. The units of the responses correspond to the units originally specified by the engineering units calibration values supplied in Program I when converting the Phase I tapes.

Plotting

As in Program I, a plotting program is provided which does not contain actual calls to the plotting software. Arguments supplied to the skeleton routine are: IR, IL, MPT, NMS, Y.

IR = response number

IL = load number

MPT = number of points provided

NMS = spacing of points in milliseconds

Y = array contain MPT values of the response in appropriate engineering units - corresponds to the printed output.

5. CONCLUSIONS & RECOMMENDATIONS

Both the ITF program and Response program operate with a reasonable degree of efficiency in their present form (i.e., tape data base), provided the operations are sequenced to avoid excessive loading from and dumping to tape. This limitation could be removed by the use of a direct access storage device as the permanent data bank, as is the case for the Grumman system.

While the program handles an unlimited number of response points, the number of load points is presently set to 36. This number can be easily increased by changing the DEFINE FILE statements, appropriate DIMENSION statements and the counter, NI, at the start of each program.

APPENDICES

```

FOR,IS ITF1,ITF1
IMPULSE TRANSFER FUNCTION - ITF PROGRAM 1
TO PROCESS PHASE 1 DIGITAL TAPES AND STORE ITF'S
MAIN PROGRAM
COMMON IIN,IOUT,NR,NI,ILOAD
IFILE DIMENSIONED TO 6*NT (MINIMUM OF 3000)
DIMENSION IFILE(3000)
INTEGER FUNC,FUNCX
DIMENSION FULL(10)
DIMENSION STAT(6,36)
DIMENSION INN(10),FUNC(10)
DIMENSION NTEST(8)
DATA FUNC /'CLEAR ','LOAD ','DUMP ','RUN ','STATUS',
1 'LOADQQ','PLOT ','DUMMY ','DUMMY ','END '/
900 FORMAT(A6,10I4)
901 FORMAT(///' FUNCTION CARD - ',A6,10I4)
902 FORMAT(///' CLEAR FUNCTION COMPLETE')
903 FORMAT(///' FILES LOADED FROM UNIT',I4,' RESPONSES',I3,'-',I3)
904 FORMAT(///' FUNCTION NOT IDENTIFIED')
905 FORMAT(///' FILES DUMPED TO UNIT',I4,' RESPONSES',I3,'-',I3)
906 FORMAT(1E7.0)
907 FORMAT(1H1/' RESPONSE NO.',I4//)
908 FORMAT(I4,6F12.4)
909 FORMAT(///' ERROR IN INTEGER FIELDS',4I4)
910 FORMAT(1H1/' EXECUTE PROGRAM I - ITF PROCESSING')
911 FORMAT(///' ERROR, TAPE MOUNTED IS IS FOR SET',I4)
912 FORMAT(///' TERMINATE RUN')
913 FORMAT(216F10.6)
914 FORMAT(3000I6)
915 FORMAT(///' PLOTTED IMPULSES',I4,'-',I3,' RESPONSES',I4,'-',I3)
ICV(I)=(I-1)/NR+1
CALL MFC(NTEST)
SET I/O DEVICES
IIN=5
IOUT=6
SET FILE SIZE
NUMBER OF RECORDS IN FILES=NT
FILE 1 NR RECORDS OF 6*NI WORDS
FILE 2 10*NR*NI RECORDS OF 200 WORDS
DEFINE FILE 1(10,216,U,IU1)
DEFINE FILE 2(3600,200,U,IU2)
NR IS NO. OF RESPONSES PER TAPE
NI IS NO. OF IMPULSES IN SYSTEM
NR=10
NI=36
NT=NR*NI
NTI=6*NI
NTT=6*NT
NTTT=10*NT
IZ=0
WRITE(IOUT,910)
READ FUNCTION CARD
1 READ(IIN,900) FUNCX,INN
WRITE(IOUT,901) FUNCX,INN
CHECK FUNCTION
DO 4 IFUNC=1,10

```

Figure A-1

IF(FUNCX.EQ.FUNC(IFUNC)) GO TO 6	THR00520
4 CONTINUE	THR00530
ILLEGAL FUNCTION	THR00540
WRITE(IOUT,904)	THR00550
GO TO 1000	THR00560
PERFORM FUNCTION	THR00570
6 GO TO (100,200,300,400,500,600,700,800,950,1000),IFUNC	THR00580
CLEAR BOTH FILES	THR00590
100 CONTINUE	THR00600
DO 7 J=1,10	
7 WRITE(1'J)(IZ,I=1,NTI)	
DO 102 J=1,NTTT	
102 WRITE(2'J)(IZ,I=1,200)	THR00640
WRITE(IOUT,902)	THR00650
GO TO 1	THR00660
LOAD BOTH FILES FROM TAPE	
200 CONTINUE	THR00670
IN1=INN(1)	THR00680
IN2=INN(2)	THR00690
IN3=IN2+9	THR00700
CHECK TAPE SEQUENCE NUMBER	THR00710
ICODE=ICV(IN2)	THR00720
REWIND IN1	THR00730
READ(IN1) (ICOD,I=1,100)	
IF(ICODE.EQ.ICOD) GO TO 201	THR00750
WRITE(IOUT,911) ICOD	THR00760
REWIND IN1	THR00770
GO TO 1000	THR00780
201 READ(IN1)(IFILE(I),I=1,NTT)	
DO 203 J=1,10	
I1=NTI*(J-1)+1	
I2=I1+NTI-1	
203 WRITE(1'J)(IFILE(I),I=I1,I2)	THR00810
DO 202 J=1,NTTT,10	THR00820
READ(IN1) (IFILE(I),I=1,2000)	
DO 202 JJ=1,10	
LL=200*JJ	
L=LL-199	
JJJ=JJ+J-1	
202 WRITE(2'JJJ)(IFILE(K),K=L,LL)	
REWIND IN1	THR00840
WRITE(IOUT,903) IN1,IN2,IN3	THR00850
GO TO 1	THR00860
DUMP BOTH FILES TO TAPE	THR00870
300 CONTINUE	THR00880
IN1=INN(1)	THR00890
IN2=INN(2)	THR00900
IN3=IN2+9	THR00910
REWIND IN1	THR00920
WRITE TAPE SEQUENCE NUMBER	THR00930
ICODE=ICV(IN2)	THR00940
WRITE(IN1) (ICOD,I=1,100)	THR00950
DO 301 I=1,10	
L=I*NTI	
K=L-NTI+1	
301 READ(I'I)(IFILE(J),J=K,L)	

Figure A-1 (Cont'd)

```

WRITE(IN1)(IFILE(I),I=1,NTT)                               THR00980
DO 302 J=1,NTT,10
DO 303 JJ=1,10
LL=200*JJ
L=L-199
JJ=JJ+J-1
303 READ(2'JJJ)(IFILE(K),K=L,LL)                         THR01000
302 WRITE(IN1)(IFILE(I),I=1,2000)                          THR01010
REWIND IN1
WRITE(IOUT,905) IN1,IN2,IN3                                THR01020
GO TO 1
PROCESS A PHASE 1 TAPE AND STORE IN FILES
400 CONTINUE
ITAPE=INN(1)                                              THR01040
ILOAD=INN(2)                                              THR01050
IRESP=INN(3)
IRESPP=INN(4)
ITEST=INN(5)
IRX=IRESP-((IRESP-1)/NR)*NR
IRXX=IRX+IRESPP-IRESP
IF(INN(2).LT.1.OR.INN(2).GT.NI) GO TO 440
READ(IIN,906) FULLI,FULL
CALL STORED(ITAPE,IRX,IRXX,ITEST,FULLI,FULL,NG)        THR01150
GO TO 1
440 WRITE(IOUT,909) (INN(I),I=1,4)                         THR01170
GO TO 1
PRINT STATUS OF TAPE
500 CONTINUE
IN1=INN(1)                                              THR01210
IN2=INN(2)                                              THR01220
DO 510 IR=IN1,IN2                                         THR01230
IRX=IR-((IR-1)/NR)*NR                                     THR01240
WRITE(IOUT,907) IR                                         THR01250
READ(1'IRX)((STAT(I,J),I=1,6),J=1,NI)
DO 506 IMP=1,NI                                           THR01270
506 WRITE(IOUT,908) IMP,(STAT(I,IMP),I=1,6)               THR01280
510 CONTINUE
GO TO 1
LOAD FILES FROM GRUMMAN BCD TAPE
600 CONTINUE
IN1=INN(1)                                              THR01310
CALL MRWND(IN1)                                           THR01320
DO 610 I=1,10                                            THR01330
CALL MREAD(IN1,1,IFILE,360,NTEST,MRD)
611 CONTINUE
IF(NTEST(6).EQ.1) GO TO 611
CALL CRUNCH(IFILE,360)
WRITE(6,930)(IFILE(J),J=1,360)
930 FORMAT(1H1/10(1X,012))
DO 613 K=1,36
KK=10*K-9
DECODE(612,IFILE(KK))(STAT(J,K),J=1,6)
612 FORMAT(6F10.6)
613 CONTINUE
DO 710 IFIX=1,36
710 STAT(3,IFIX)=3000.

```

Figure A-1 (Cont'd)

```

IF(I,NE,3) GO TO 610
STAT(2,17)=-102.333
STAT(4,17)=-104.99
STAT(3,3)=2904.
STAT(3,13)=2191.
STAT(3,18)=2631.
STAT(3,19)=2531.
STAT(3,35)=2931.
610 WRITE(1'I) STAT
DO 640 I=1,NT
  IF=10*I-9
  CALL MREAD(IN1,1,IFILE,3000,NTEST,MRD)
614 CONTINUE
  IF(NTEST(6).EQ.1) GO TO 614
  CALL CRUNCH(IFILE,3000)
  DO 620 J=1,3000
    DECODE(616,IFILE(J)) LX
616 FORMAT(I6)
620 IFILE(J)=LX
  DO 622 J=501,3000
622 IFILE(J)=(IFILE(J)+2)/5
  DO 624 J=1,3000
624 IFILE(J)=IFILE(J)+2048
  PACK 3000 ITEMS INTO 1000 WORDS
  DO 626 J=1,1000
    K=3*K-2
    FLD(0,12,IFILE(J))=IFILE(K)
    FLD(12,12,IFILE(J))=IFILE(K+1)
    FLD(24,12,IFILE(J))=IFILE(K+2)
626 CONTINUE
  DO 640 K=1,5
    IFF=IF+K-1
    J1=1+(K-1)*200
    J2=J1+199
640 WRITE(2'IFF)(IFILE(J),J=J1,J2)
  CALL MRWND(IN1)
  GO TO 1
  PLOT ITF'S
700 CONTINUE
  CALL PLOT1(IFILE,INN)
  IF(INN(7).EQ.1.OR.INN(7).EQ.3)
    1WRITE(IOUT,915) (INN(I),I=1,4)
  GO TO 1
  DUMMY
800 CONTINUE
  GO TO 1
  DUMMY
950 CONTINUE
  GO TO 1
C TERMINATE RUN
1000 CONTINUE
  WRITE(IOUT,912)
  STOP
  END

```

THR01390

THR01480

THR01490

THR01500

THR01530

THR01540

THR01550

THR01560

THR01570

THR01580

THR01590

THR01600

THR01610

THR01620

THR01630

THR01640

Figure A-1 (Cont'd)

```

FOR,IS STORED,STORED
SUBROUTINE STORED(ITAPE,IRESP,IRESPP,ITEST,FULLI,FULL,NG) FOU00010
  DEFINE FILE 1(10,216,U,IU1) FOU00020
  DEFINE FILE 2(3600,200,U,IU2) FOU00030
COMMON IIN,IOUT,NR,NI,ILOAD,IRESPG
DIMENSION ISAVE(10),ZERO(10),ZEROX(10),IREC22(1280) FOU00050
DIMENSION STATUS(6,36) FOU00060
DIMENSION IAVG(11,500),FULL(10),NREC(500) FOU00070
DIMENSION IREC1(34),IREC2(2400),IDISK(600,10),JREC(160,10) FOU00080
EQUIVALENCE (JREC(1,1),IREC2(641)),(IREC22(1),IAVG(1,381)) FOU00090
100 FORMAT(34A2,12(100A2,100A2)) FOU00100
102 FORMAT(10E12.4) FOU00120
FOU00130

1 CONTINUE FOU00140
  IRESPG=IRESP
  KAVGXX=0 FOU00150
  IPH=1 FOU00160
  IREC=0 FOU00170
  KS=0 FOU00180
  KFAIL=0 FOU00190
FOU00200

PASS 9 RECORDS - READ AND AVERAGE THE TENTH FOU00210
10 DO 12 I=1,9 FOU00220
  NG=0 FOU00230
  CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG) FOU00240
  IF(NG.EQ.1) GO TO 99 FOU00250
12 CONTINUE FOU00260
  KS=KS+1 FOU00270
  IREC=IREC+10 FOU00280
  NG=3 FOU00290
  CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG) FOU00300
  IF(NG.EQ.1) GO TO 99 FOU00310
  NREC(KS)=IREC FOU00320
  IF(ITEST.GT.4) CALL RITREC(IREC,IREC2,IREC2(641))
  GO TO(20,30,40),IPH FOU00330
FOU00340
FOU00350

LOOKING FOR DC CALS
20 IF(KS.LT.31) GO TO 21 FOU00360
: 300 RECORDS AND NO DC CALS FOU00370
: KFAIL=1 FOU00380
: GO TO 99 FOU00390
21 IF(KS.GT.3)KAVGXX=(IAVG(1,KS-2)+IAVG(1,KS-3))/2 FOU00400
: IF(IAVG(1,KS).LT.1000+KAVGXX) GO TO 10 FOU00410
: IF(ITEST.GT.3) FOU00420
: 1CALL RITREC(IREC,IREC2,IREC2(641)) FOU00430
: IRECX=IREC FOU00440
: KSX=KS FOU00450
: IPH=2 FOU00460
: GO TO 10 FOU00470
FOU00480

: LOOKING FOR END OF DC CALS FOU00490
30 KVAG=KAVGXX+500, FOU00500
: IF(IAVG(1,KS).LT.KVAG.AND.IAVG(1,KS-1).LT.KVAG) GO TO 34 FOU00510

```

Figure A-1 (Cont'd)

IF(KS.LT.KSX+20) GO TO 10	FOU00520	
OVER 6 SECONDS OF DC CALS	FOU00530	
KFAIL=2	FOU00540	
GO TO 99	FOU00550	
34 IRECY=IREC	FOU00560	
KSY=KS=1	FOU00570	
IPH=3	FOU00580	
GO TO 10	FOU00590	
 C IN ZERO AREA	FOU00600	
SKIP 50 RECORDS	FOU00610	
40 IF(KS-KSY.NE.5) GO TO 10	FOU00620	
 C SEARCH 150 RECORDS FOR EVENT PULSE	FOU00630	
KAVG=IAVG(1,KS)+120	FOU00640	
50 DO 52 I=1,150	FOU00650	
KS=KS+1	FOU00660	
IREC=IREC+1	FOU00670	
NREC(KS)=IREC	FOU00680	
NG=3	FOU00690	
CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG)	FOU00700	
IF(NG.EQ.1) GO TO 99	FOU00710	
IF(IAVG(1,KS).GT.KAVG) GO TO 54	FOU00720	
52 CONTINUE	FOU00730	
FAIL TO FIND EVENT PULSE	FOU00740	
KFAIL=3	FOU00750	
GO TO 99	FOU00760	
 FOUND EVENT PULSE RECORD	FOU00770	
54 CONTINUE	FOU00780	
IRECZ=IREC	FOU00790	
KS2=KS	 C READ 6 RECORDS AND SAVE LAST IN ENTIRETY IN IDISK ARRAY	FOU00800
DO 60 I=1,6	FOU00810	
IREC=IREC+1	FOU00820	
NG=3	FOU00830	
KS=KS+1	FOU00840	
CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG)	FOU00850	
IF(NG.EQ.1) GO TO 99	FOU00860	
NREC(KS)=IREC	FOU00870	
60 CONTINUE	FOU00880	
IF(IITEST.GT.0)	FOU00890	
ICALL RITREC(IREC,IREC2,IREC2(641))	FOU00900	
DO 61 I=1,640	FOU00910	
61 IREC22(I)=IREC2(I)	FOU00920	
DO 62 J=1,10	FOU00930	
DO 62 I=1,160	FOU00940	
62 IDISK(I+200,J)=JREC(I,J)	FOU00950	
 C READ AND SAVE ANOTHER RECORD	FOU00960	
IREC=IREC+1	FOU00970	
KS=KS+1	FOU00980	
	FOU00990	
	FOU01000	
	FOU01010	
	FOU01020	
	FOU01030	
	FOU01040	

Figure A-1 (Cont'd)

```

KSF=KS FOU01050
NG=3 FOU01060
CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG) FOU01070
IF(NG.EQ.1) GO TO 99 FOU01080
IF(ITEST.GT.0) FOU01090
1CALL RITREC(IREC,IREC2,IREC2(641)) FOU01100
NREC(KS)=IREC FOU01110
DO 63 I=1,640 FOU01120
63 IREC22(I+640)=IREC2(I) FOU01130
DO 64 J=1,10 FOU01140
DO 64 I=1,160 FOU01150
64 IDISK(I+360,J)=JREC(I,J) FOU01160
FOU01170
C SEARCH 2 SAVED RECORDS FOR IMPULSE FOU01180
IAVGX=(IAVG(1,KS-2)+IAVG(1,KS-3)+IAVG(1,KS-4))/3. FOU01190
DO 65 I=3,1250 FOU01200
IF(IREC22(I).GT.IAVGX+200..AND.IREC22(I-1).GT.IAVGX+200..AND. FOU01210
1 IREC22(I-2).GT.IAVGX+200.) GO TO 66 FOU01220
65 CONTINUE FOU01230
C IMPULSE NOT FOUND FOU01240
KFAIL=4 FOU01250
GO TO 99 FOU01260
C FOUND IMPULSE I = THIRD ITEM OVER 200 FOU01280
COMPUTE AREA OF IMPULSE FOU01300
C GET LOCAL ZERO FOR IMPULSE AREA CALCULATION FOU01320
66 J=I-2 FOU01330
XIASH=0. FOU01340
K=J+45 FOU01350
IF(K.LT.1) GO TO 99 FOU01360
KK=J-6 FOU01370
DO 67 L=K,KK FOU01380
67 XIASH=XIASH+IREC22(L) FOU01390
XIASH=XIASH/40. FOU01400
IA=XIASH+SIGN(.5,XIASH) FOU01410
FIND FIRST AND LAST POINT 50 OVER AVERAGE FOU01420
68 IF(IREC22(J-1).LT.IA+50) GO TO 70 FOU01430
J=J-1 FOU01440
GO TO 68 FOU01450
70 IF(IREC22(I+1).LT.IA+50) GO TO 71 FOU01460
I=I+1 FOU01470
GO TO 70 FOU01480
71 JSTRT=J FOU01490
C CALCULATE AREA OF END PIECES FOU01500
AREA=.000025*((IREC22(J)-XIASH)**2/(IREC22(J)-IREC22(J-1))+ FOU01510
1 (IREC22(I)-XIASH)**2/(IREC22(I)-IREC22(I+1))) FOU01520
IPTS=I-J+1 FOU01530
IF((IPTS/2)*2-IPTS.NE.0) GO TO 74 FOU01540
FOU01550
INSURE AN ODD NUMBER OF POINTS FOR SIMPSON RULE FOU01560
FOU01570

```

Figure A-1 (Cont'd)

```

J=J+1 FOU01580
AREA=.000025*(IREC22(J)+IREC22(J-1)-2.*XIASH) +AREA FOU01590
C PERFORM SIMPSON INTEGRATION FOU01600
74 ISUM=IREC22(J)+IREC22(I) FOU01610
75 J1=J+1 FOU01620
I1=I-1 FOU01630
IF(I1.LT.J1) GO TO 99 FOU01640
DO 76 K=J1,I1,2 FOU01650
76 ISUM=ISUM+4*IREC22(K) FOU01660
J1=J1+1 FOU01670
I1=I1-1 FOU01680
IF(I1.LT.J1) GO TO 78 FOU01690
DO 77 K=J1,I1,2 FOU01700
77 ISUM=ISUM+2*IREC22(K) FOU01710
78 AREA=AREA+.00005/3.*ISUM-.00005*(I-J) *XIASH FOU01720
FOU01730
C COMPUTE CALIBRATION VALUES FOU01740
IF(KSY-KSX.GT.4) GO TO 79 FOU01750
NOT ENOUGH DC CAL RECORDS FOU01760
KFAIL=5 FOU01770
GO TO 99 FOU01780
79 FULLI=3.*FULLI / (IAVG(1,KSX+2)+IAVG(1,KSX+3)+IAVG(1,KSX+4)) FOU01790
1 -IAVG(1,KSY+1) -IAVG(1,KSY+2) -IAVG(1,KSY+3)) FOU01800
FOU01810
C AREA IN POUND-SECONDS FOU01820
AREA1=AREA*FULLI FOU01830
DO 42 I=2,11 FOU01840
J=I-1 FOU01850
42 FULL(J)=3.*FULL(J) / (IAVG(I,KSY-3)+IAVG(I,KSY-4)+IAVG(I,KSY-5)) FOU01860
1 -IAVG(I,KSY+1) -IAVG(I,KSY+2) -IAVG(I,KSY+3))/AREA1 FOU01870
FOU01880
C IT IS NOW NECESSARY TO FILL THE IDISK ARRAY TEN TIMES AND WRITE FOU01890
IT INTO FILE 2 TO COMPLETE STORAGE OF RESPONSES FOU01900
FOU01910
C 2 RECORDS (64MS) ARE SAVED IN IDISK ARRAY FOU01920
STORE THE LAST KNUM MILLISECONDS OF THESE VALUES FOU01930
FOU01940
C KNUM=(1290-JSTRT)/20 FOU01950
K=316-5*KNUM FOU01960
DO 228 I=1,KNUM FOU01970
K=K+5 FOU01980
DO 228 J=1,10 FOU01990
C AVERAGE 5 POINTS TO GET 1 MILLISECOND DATA FOU02000
228 IDISK(I,J)=(IDISK(K+200,J)+IDISK(K+201,J)+IDISK(K+202,J)+ FOU02010
1 IDISK(K+203,J)+IDISK(K+204,J)+2)/5 FOU02020
FOU02030
NSET=1 FOU02040
I=KNUM FOU02050
K=156 FOU02060
DUR=6000. FOU02070
GO TO 211 FOU02080
209 DO 210 J=1,10 FOU02090
210 IDISK(I,J)=(JREC(K,J)+JREC(K+1,J)+JREC(K+2,J)+JREC(K+3,J)+ FOU02100
1 JREC(K+4,J)+2)/5

```

Figure A-1 (Cont'd)

```

211 IF(K.NE.156) GO TO 212 FOU02110
  K=-4 FOU02120
  KS=KS+1 FOU02130
  IREC=IREC+1 FOU02140
  NG=2 FOU02150
  CALL READ7(ITAPE,IREC1,IREC2,IAVG,KS,NG) FOU02160
  NREC(KS)=IREC FOU02170
  IF(NG.NE.1) GO TO 212 FOU02180
  EARLY END TO DATA FOU02190
  DUR=600*(NSET-1)+I FOU02200
  II=I+1 FOU02210
  IF(II.GT.600) GO TO 220 FOU02220
  KSM=KS-1 FOU02230
  DO 213 I=II,600 FOU02240
  DO 213 J=1,10 FOU02250
  FILL OUT RECORD WITH AVERAGE OF LAST RECORD FOU02260
213 IDISK(I,J)=IAVG(J+1,KSM) FOU02270
  NSET=10 FOU02280
  GO TO 220 FOU02290
212 K=K+5 FOU02300
  IF(I.EQ.600) GO TO 220 FOU02310
  I=I+1 FOU02320
  GO TO 209 FOU02330
C   PACK 600 WORDS INTO 200 FOU02340
220 L=1 FOU02350
  M1=4096*4096 FOU02360
  DO 222 LL=1,200 FOU02370
  DO 221 J=1,10 FOU02380
221 IDISK(LL,J)=(IDISK(L,J)+2048)*M1+(IDISK(L+1,J)+2048)*4096+ FOU02400
  I (IDISK(L+2,J)+2048) FOU02410
222 L=L+3 FOU02420
  JJ=0 FOU02430
C   STORE IN FILE 2 FOU02440
  DO 242 J=IRESP,IRESPP FOU02450
  JJ=JJ+1 FOU02460
  IFILE=360*(J-1)+10*(ILOAD-1)+NSET FOU02470
242 WRITE(2'IFILE)(IDISK(I,JJ),I=1,200) FOU02480
  I=1 FOU02490
  NSET=NSET+1 FOU02500
  IF(NSET.EQ.11) GO TO 345 FOU02510
  GO TO 209 FOU02520
345 WRITE(IOUT,107) AREAI,DUR FOU02530
  107 FORMAT(///' IMPULSE AREA IN LB-SEC=',F10.6/ FOU02540
  1 ' DURATION OF RESPONSE IN SECONDS=',F7.0) FOU02550
  FOU02560
C   CALCULATE ZERO FROM REGION AFTER EVENT PULSE FOU02570
  DO 350 I=1,10 FOU02580
  L=I+1 FOU02590
350 ZERO(I)=(IAVG(L,KSZ+2)+IAVG(L,KSZ+3)+IAVG(L,KSZ+4)+IAVG(L,KSZ+5)) FOU02600
  1 /4. FOU02610
  FOU02620
C   CALCULATE ALTERNATE ZERO FROM AVERAGE OF ENTIRE ITF EXCEPT FOU02630

```

Figure A-1 (Cont'd)

C LAST RECORD AND FIRST 320 MILLISECONDS	FOU02640
KSFF=KSF+10	FOU02650
KSL=KS-1	FOU02660
DO 354 I=1,10	
ZEROX(I)=0.	FOU02680
DO 352 K=KSFF,KSL	FOU02690
352 ZEROX(I)=ZEROX(I)+IAVG(I+1,K)	FOU02700
354 ZEROX(I)=ZEROX(I)/(KSL-KSFF+1)	
C UPDATE STATUS FILE	FOU02710
I=0	FOU02720
DO 360 J=IRESP,IRESPP	FOU02730
I=I+1	FOU02740
READ(1'J) STATUS	FOU02750
STATUS(1,ILOAD)=FULL(I)	FOU02760
STATUS(2,ILOAD)=ZERO(I)	FOU02770
STATUS(3,ILOAD)=DUR	FOU02780
STATUS(4,ILOAD)=ZEROX(I)	FOU02790
STATUS(5,ILOAD)=FULLI	FOU02800
STATUS(6,ILOAD)=AREAI	FOU02810
360 WRITE(1'J) STATUS	FOU02820
99 CONTINUE	FOU02830
CALL MRWND(ITAPE)	FOU02840
WRITE(IOUT,101)(J,J=1,9)	
101 FORMAT(///' SUMMARY OF RECORD AVERAGES'//' REC. IMP ',	
1 9(' R',I1),' R10'//)	
J1=KSX-4	FOU02880
J2=KSY+4	FOU02890
WRITE(IOUT,108)(NREC(J),(IAVG(I,J),I=1,11),J=J1,J2)	FOU02
J1=KSZ-2	
J2=KSZ+6	
WRITE(IOUT,108)(NREC(J),(IAVG(I,J),I=1,11),J=J1,J2)	
J1=KS-4	FOU02940
J2=KS	FOU02950
WRITE(IOUT,108)(NREC(J),(IAVG(I,J),I=1,11),J=J1,J2)	
108 FORMAT(12I6)	FOU02970
RETURN	FOU02980
END	FOU02990

Figure A-1 (Cont'd)

```

*FOR,IS RITREC,RITREC
SUBROUTINE RITREC(JB,IB,IC) FIV0002
COMMON IIN,IOUT,NR,NI,LOAD,IRESP
DIMENSION ICSUM(11),IBSUM(32) FIV0005
DIMENSION IC(160,11),IB(2400) FIV0006
100 FORMAT('1RECORD NO.',I4,10X,'LOAD NO.',I3,BX,'RESP. NO.',I3 FIV0007
     1 //40X,'IMPULSE TRACK',60X,'RESPONSE NO. 1') FIV0008
101 FORMAT(I3,2X,20I5,2X,5I5) FIV0009
102 FORMAT(1H0 , 1X,5(5X,'RESPONSE NO.',I3,6X)) FIV0010
103 FORMAT(I3,5I5,4(1X,5I5)) FIV0011
104 FORMAT(1H1 , 1X,5(5X,'RESPONSE NO.',I3,6X)) FIV0012
105 FORMAT(1X,16I5/1X,16I5/I6,I10,10I5) FIV0013
DO 9 I=1,11 FIV0014
  ICSUM(I)=0 FIV0015
  DO 8 J=1,160 FIV0016
  8 ICSUM(I)=ICSUM(I)+IC(J,I) FIV0017
  9 ICSUM(I)=ICSUM(I)/160.+.5 FIV0018
  WRITE(IOUT,100) JB,LOAD,IRESP FIV0019
  DO 4 I=1,32 FIV0020
  IBSUM(I)=0 FIV0021
  J1=20*I-19 FIV0022
  J2=J1+19 FIV0023
  DO 12 J=J1,J2 FIV0024
  12 IBSUM(I)=IBSUM(I)+IB(J) FIV0025
  IBSUM(I)=IBSUM(I)/20.+.5 FIV0026
  J3=5*I-4 FIV0027
  J4=J3+4 FIV0028
  4 WRITE(IOUT,101) I,((IB(J),J=J1,J2),(IC(J,1),J=J3,J4)) FIV0029
  WRITE(IOUT,102) (K,K=2,6) FIV0030
  DO 5 I=1,16 FIV0031
  J1=5*I-4 FIV0032
  J2=J1+4 FIV0033
  5 WRITE(IOUT,103) I,((IC(J,K),J=J1,J2),K=2,6) FIV0034
  WRITE(IOUT,104)(K,K=2,6) FIV0035
  DO 7 I=17,32 FIV0036
  J1=5*I-4 FIV0037
  J2=J1+4 FIV0038
  7 WRITE(IOUT,103) I,((IC(J,K),J=J1,J2),K=2,6) FIV0039
  WRITE(IOUT,102)(K,K=7,11) FIV0040
  DO 6 I=1,32 FIV0041
  J1=5*I-4 FIV0042
  J2=J1+4 FIV0043
  6 WRITE(IOUT,103) I,((IC(J,K),J=J1,J2),K=7,11) FIV0044
  ICSUM(11)=0 FIV0045
  DO 11 I=1,32 FIV0046
  11 ICSUM(11)=ICSUM(11)+IBSUM(I) FIV0047
  ICSUM(11)=ICSUM(11)/32.+.5 FIV0048
  WRITE(IOUT,105) IBSUM,ICSUM(11),(ICSUM(J),J=1,10) FIV0049
  RETURN FIV0050
END FIV0051

```

Figure A-1 (Cont'd)

```

*FOR,IS READ7,READ7          FIV0052C
SUBROUTINE READ7(JTAPE,IREC1,IREC2,IAVG,KS,NG)          FIV0052C
COMMON IIN,IOUT          FIV0054C
DIMENSION IAVG(11,1)          FIV0054C
DIMENSION IREC1(34),IREC2(2400)          FIV0055C
100 FORMAT(34A2,12(100A2,100A2))          FIV0056C
101 FORMAT(' READ ERROR ON UNIT',I3,' KS=',I3,' PREVIOUS RECORD USED')FIV0057C
102 FORMAT('END OF TAPE, KS=',I3)          FIV0058C
90 CALL UNPACK(JTAPE,IREC2,ISTAT)
IF(ISTAT.EQ.-2) GO TO 110
IF(ISTAT.EQ.-1) GO TO 120
93 IF(NG.EQ.0) RETURN          FIV0065C
C   CONVERT           IMPULSE NG=1          RESPONSES NG=2          BOTH NG=3          FIV0066C
      IF(NG.EQ.2) GO TO 11          FIV0067C
      DO 10 I=1,640          FIV0068C
10  IREC2(I)=IREC2(I)-2048          FIV0069C
      IF(NG.EQ.1) GO TO 13          FIV0070C
11  DO 12 I=641,2400          FIV0071C
12  IREC2(I)=IREC2(I)-2048          FIV0072C
13  CONTINUE          FIV0073C
105 CALL AVG(IREC2,IAVG(1,KS),NG)          FIV0074C
      NG=0          FIV0075C
      RETURN          FIV0076C
110 NG=1          FIV0077C
      WRITE(IOUT,102) KS
      RETURN          FIV0079C
120 WRITE(IOUT,101) JTAPE,KS          FIV0081C
      IF(NG.EQ.0) RETURN
      IF(KS.LT.2) GO TO 122
      DO 121 I=1,11          FIV0083C
121 IAVG(I,KS)=IAVG(I,KS-1)          FIV0084C
      GO TO 124          FIV0085C
122 DO 123 I=1,11          FIV0086C
123 IAVG(I,KS)=0.          FIV0087C
124 NG=0          FIV0088C
      DO 125 I=1,2400          FIV0089C
125 IREC2(I)=0          FIV0090C
      RETURN          FIV0091C
      END          FIV0092C

```

Figure A-1 (Cont'd)

***FOR,IS AVG,AVG**

```

SUBROUTINE AVG(IREC,IAVG,NG) FIV00950
DIMENSION IAVG(11) FIV00960
DIMENSION IREC(2400) FIV00970
ISUM=0 FIV00980
DO 1 I=1,11 FIV00990
 1 IAVG(I)=0 FIV01000
C AVERAGE IMPULSE NG=1 RESPONSES NG=2 BOTH NG=3 FIV01010
  IF(NG.EQ.2) GO TO 3 FIV01020
 5 DO 2 I=1,640 FIV01030
 2 ISUM=ISUM+IREC(I) FIV01040
  ISUM=ISUM/640.+.5 FIV01050
  IAVG(1)=ISUM FIV01060
  IF(NG.EQ.1) RETURN FIV01070
 3 DO 6 J=2,11 FIV01080
  ISUM=0 FIV01090
  K=641+(J-2)*160 FIV01100
  L=K+159 FIV01110
  DO 4 I=K,L FIV01120
 4 ISUM=ISUM+IREC(I) FIV01130
 6 IAVG(J)=ISUM/160.+.5 FIV01140
  RETURN FIV01150
END FIV01160

```

***FOR,IS UNPACK,UNPACK**

```

SUBROUTINE UNPACK(IN1,IREC2,ISTAT)
DIMENSION IREC2(2400),N(8),DUM(812)
CALL MFC(N)
CALL MREAD(IN1,1,DUM,812,N,M)
3 CONTINUE
  IF(N(6).EQ.1)GO TO 3
  ISTAT = N(6)
  IREC2(1)=FLD(12,12,DUM(12))
  IREC2(2)=FLD(24,12,DUM(12))
  IREC2(2400)=FLD(0,12,DUM(812))
  DO 2 K=13,811
    J=3*K-36
    IREC2(J)=FLD(0,12,DUM(K))
    IREC2(J+1)=FLD(12,12,DUM(K))
  2 IREC2(J+2)=FLD(24,12,DUM(K))
  RETURN
END

```

Figure A-1 (Cont'd)

```

*FOR,IS PLOT1,PLOT1
SUBROUTINE PLOT1(IFILE,INN)
COMMON IIN,IOUT,NR,NI
DIMENSION STAT(6,36)
DIMENSION X(301),Y(301),IFILE(1),INN(8)
IR1=INN(1)
IR2=INN(2)
IL1=INN(3)
IL2=INN(4)
MS=INN(5)
NPT=INN(6)
IPR=INN(7)
IOPEN=INN(8)
C IF(IOPEN.EQ.1.OR.IOPEN.EQ.3) CALL OPEN PLOT ROUTINE
XL=10.
YL=2.
X(1)=0.
Y(1)=0.
WRITE(IOUT,100)
100 FORMAT(///' PLOT PACKAGE EXECUTING')
1 NPTS=MS/NPT
IF(NPTS.LE.300) GO TO 2
NPT=NPT+1
GO TO 1
2 DX=XL/NPTS
DO 3 I=1,NPTS
3 X(I+1)=DX*I
MS=NPT*NPTS
DO 200 IL=IL1,IL2
DO 200 IR=IR1,IR2
IRX=IR-((IR-1)/NR)*NR
READ(1'IRX)((STAT(I,J),I=1,6),J=1,NI)
CON=STAT(1,IL)
ZERO=STAT(2,IL)
IF=(IRX-1)*10*NI+10*(IL-1)
DO 6 J=1,10
LL=200*J
L=LL-199
IF((3*L-3).GT.MS) GO TO 7

```

Figure A-1 (Cont'd)

```
IFF=IF+J
6 READ(2,IFF)(IFILE(K),K=L,LL)
7 NPTSS=NPTS+1
DO 40 I=1,NPTS
  IP=I+1
  Y(IP)=0.
  DO 10 J=1,NPT
    K=(I-1)*NPT+J
    KW=(K-1)/3+1
    KP=IABS(K-(KW-1)*3-1)*12
    10 Y(IP)=Y(IP)+FLD(KP,12,IFILE(KW))
    40 Y(IP)=Y(IP)/NPT-2048.-ZERO
    IF(IPR.EQ.2) GO TO 60
C PLOT X VS Y   NPTSS VALUES
C X IS IN INCHES  RANGE 0 TO 10 INCHES IS TIME FROM 0 TO MS MILLISECONDS
C Y IS IN COUNTS  FROM -2048 TO +2048
C CON IS MEASUREMENT UNITS PER POUND SECONDS PER COUNT
  IF(IPR.EQ.1) GO TO 200
  60 WRITE(IOUT,902) IR,IL,NPTS,NPT,NPT
  902 FORMAT(1H1/' RESPONSE',I3,' LOAD',I3,10X,I4,' POINTS: STARTING',
  1 ' AT',I3,' MS, SPACED EVERY',I3,' MS IN COUNTS, ZERO ADJUSTED')
  WRITE(IOUT,903)(Y(I),I=2,NPTSS)
  903 FORMAT(///(1H0,10F10.1))
  200 CONTINUE
C IF(IOPEN.GT.1) CALL CLOSE PLOT ROUTINE
RETURN
END
```

Figure A-1 (Cont'd)

```

*FOR,IS RESP,RESP
  DEFINE FILE 1(10,216,U,IU1)
  DEFINE FILE 2(3600,200,U,IU2)
  DEFINE FILE 3(36,1200,U,IU3)
  COMMON IIN,IOUT,NR,NI,ILOAD
  INTEGER F,FF
  DIMENSION IFILE(6000),ITF(1200),YITF(1200)
  DIMENSION F(6),RESP(1201),SC(36),MT(6),DT(6),TEMP(1201)
  DIMENSION FEMP(1200),JTEMP(1200),F1(1200),FOR(1200)
  DIMENSION SUM(1201),STAT(6,36),IFILL(200,10)
  EQUIVALENCE (IFILL(1,1),IFILE(4001))
  EQUIVALENCE (IFILE(1),TEMP(1)),(IFILE(1201),FEMP(1))
  EQUIVALENCE (IFILE(2401),JTEMP(1)),(IFILE(3601),F1(1))
  EQUIVALENCE (IFILE(4801),FOR(1))
  DATA F/ILOAD ',',TIME ',',FORCE ',',RESP ',',PLOT ',',CYCLE '/'
  901 FORMAT(A6,3I4)
  902 FORMAT('' NO LOAD CARD - QUIT')
  903 FORMAT('' ERROR - RESPONSES ON TAPES',2I4)
  904 FORMAT('' ERROR - MOUNTED TAPE',I4,' NEED TAPE',I4)
  905 FORMAT('' RESPONSES',I4,' TO',I4,' LOADED FROM UNIT',I3)
  906 FORMAT('' USING FILES WITHOUT LOADING FROM TAPE')
  907 FORMAT('' ERROR, UNIT=',I4)
  908 FORMAT('' NO TIME CARD - QUIT')
  909 FORMAT('' SET TO RUN',I5,' POINTS AT',I3,' MS')
    1      ' TOTAL TIME=',I5,' MS')
  910 FORMAT('' SOMETHING WRONG THERE - QUIT')
  911 FORMAT(A6,4X,6(I5,F5.0))
  912 FORMAT('' NO FORCE CARD - QUIT')
  913 FORMAT('' USE PREVIOUS FORCES')
  914 FORMAT('' TOO MANY VALUES IN FORCE TABLE - QUIT')
  915 FORMAT(I2,F8.0)
  916 FORMAT('' ERROR IL .GT. NI - QUIT')
  917 FORMAT(16F5.0)
  918 FORMAT(A6,3I4,E12.0)
  919 FORMAT('' ERROR IN RUN CARD - IRA,IRB=',2I4,' QUIT')
  9190 FORMAT('' SET TO PROCESS RESPONSES',I4,' TO',I4)
  920 FORMAT('' INCORRECT FILTER INFO - QUIT')
  921 FORMAT('' USE CALIBRATED ZERO')
  922 FORMAT('' USE AVERAGED ZERO')
  923 FORMAT('' USE FILTER TO KILL FREQUENCIES BELOW',F6.1,' CPS')
  925 FORMAT(1H1,'RESPONSE',I3,' LOAD',I3,' EVERY',I4,' MS'//)
    1      (10E13.4/))
  926 FORMAT(1H1,'SUM OF ABOVE RESPONSES'//(10E13.4/))
  927 FORMAT(A6,5I4,F10.0)
  928 FORMAT('' RECYCLE TO POINT',I3)
  929 FORMAT(1H1,'FORCING FUNCTION',I3,' EVERY',I3,' MS, STARTING AT',
    1 I3,' MS'//(10E13.4))
  930 FORMAT('' ERROR IN PLOT CARD')
    IIN=5
    IOUT=6

```

Figure A-2

```

NR=10
NI=36
NT=NR*NI
NTI=6*NT
NTT=10*NT
NTI=6*NI
CALL PLOTA
C READ LOAD CARD
1 CONTINUE
READ(IIN,901) FF,IU,IR1,IR2
IF(FF.EQ.F(1)) GO TO 10
WRITE(IOUT,902)
GO TO 99
10 IF(IU.EQ.0) GO TO 34
IF(IU.GT.6.AND.IU.LT.100) GO TO 12
WRITE(IOUT,907) IU
GO TO 99
12 REWIND IU
ICD1=(IR1-1)/NR+1
ICD2=(IR2-1)/NR+1
IF(ICD1.EQ.ICD2) GO TO 20
WRITE(IOUT,903) ICD1,ICD2
GO TO 99
20 READ(IU) (ICD,I=1,100)
IF(ICD.EQ.ICD1) GO TO 30
REWIND IU
WRITE(IOUT,904) ICD,ICD1
GO TO 99
30 READ(IU)(IFILE(I),I=1,NTT)
DO 31 I=1,10
J2=I*NTI
J1=J2-NTI+1
31 WRITE(1'I)(IFILE(J),J=J1,J2)
DO 32 J=1,NTT,10
READ(IU)((IFILL(K,L),K=1,200),L=1,10)
DO 32 L=1,10
JJ=J+L-1
32 WRITE(2'JJ)(IFILL(K,L),K=1,200)
REWIND IU
IRX=ICD*NR-9
IRY=IRX+9
WRITE(IOUT,905) IRX,IRY,IU
GO TO 36
34 WRITE(IOUT,906)
C READ TIME CARD
36 READ(IIN,901) FF,NPTS,NMS
IF(FF.EQ.F(2)) GO TO 40
WRITE(IOUT,908)
GO TO 99
40 MTIME=NPTS*NMS

```

Figure A-2 (Cont'd)

```

      WRITE(IOUT,909) NPTS,NMS,MTIME
      IF(NPTS.GT.1.AND.NPTS.LT.1201.AND.MTIME.LT.6001) GO TO 44
      WRITE(IOUT,910)
      GO TO 99
C   SET UP FORCING FUNCTIONS
C   READ FORCE CARD
  44 READ(IIN,911) FF,(MT(I),DT(I),I=1,6)
      IF(FF.EQ.F(3)) GO TO 50
      WRITE(IOUT,912)
      GO TO 99
  50 IF(MT(1).GT.0) GO TO 52
      WRITE(IOUT,913)
      GO TO 70
  52 NSET=MT(1)
      MTT=NSET
      DO 2 I=1,NI
  2 SC(I)=0.
      DO 54 I=1,MTT
  54 TEMP(I)=I*DT(1)
      DO 56 J=2,6
      IF(MT(J).LT.1) GO TO 60
      MTJ=MT(J)
      MTT=MTT+MTJ
      IF(MTT.GT.1200) GO TO 58
      DO 56 I=1,MTJ
      NSET=NSET+1
  56 TEMP(NSET)=TEMP(NSET-1)+DT(J)
      GO TO 60
  58 WRITE(IOUT,914)
      GO TO 99
C   INTERPOLATE TIMES
  60 DO 604 I=1,NPTS
      IS=I
      TG=I*NMS
      IF(TG.GT.TEMP(1)) GO TO 606
      JTEMP(I)=1
  604 F1(I)=TG/TEMP(1)
      GO TO 612
  606 J=2
      DO 610 I=IS,NPTS
      TG=I*NMS
  607 IF(TG.LE.TEMP(J)) GO TO 608
      J=J+1
      GO TO 607
  608 JTEMP(I)=J
      F1(I)=(TG-TEMP(J-1))/(TEMP(J)-TEMP(J-1))
  610 CONTINUE
  612 CONTINUE
  61 READ(IIN,915) IL,SCL
      IF(IL.LT.1) GO TO 70

```

Figure A-2 (Cont'd)

```

SC(IL)=SCL
IF(IL.LE.NI) GO TO 62
WRITE(IOUT,916)
GO TO 99
62 READ(IIN,917)(FEMP(I),I=1,MTT)
DO 66 I=1,NPTS
J=JTEMP(I)
FOR(I)=FEMP(J)*F1(I)
IF(J.EQ.1) GO TO 66
FOR(I)=FOR(I)+FEMP(J-1)*(1,-F1(I))
66 CONTINUE
WRITE(3'IL)(FOR(I),I=1,NPTS)
WRITE(IOUT,929) IL,NMS,NMS,(FOR(I),I=1,NPTS)
GO TO 61
70 CONTINUE
C FINISHED READING, INTERPOLATING AND STORING FORCES
C READ RESP CARD
71 CONTINUE
READ(IIN,918) FF,IRA,IRB,IZFIL,FREQ
IF(FF.NE.F(4)) GO TO 99
IF(IRA.GE.IRX.AND.IRB.LE.IRY.AND.IRA.LE.IRB) GO TO 72
WRITE(IOUT,919) IRA,IRB
GO TO 99
72 WRITE(IOUT,9190) IRA,IRB
IF(IZFIL.GT.0.AND.IZFIL.LT.4) GO TO 74
WRITE(IOUT,920)
GO TO 99
74 GO TO (76,78,80),IZFIL
76 WRITE(IOUT,921)
GO TO 82
78 WRITE(IOUT,922)
GO TO 82
80 WRITE(IOUT,923) FREQ
82 CONTINUE
C READ PLOT PRINT CARD
83 READ(IIN,927) FF,NPL
IF(FF.EQ.F(5)) GO TO 84
WRITE(IOUT,930)
GO TO 99
84 CONTINUE
DO 800 IR=IRA,IRB
DO 110 I=1,NPTS
110 SUM(I)=0.
SUM(NPTS+1)=0.
IRZ=IR-((IR-1)/NR)*NR
READ(1'IRZ) STAT
DO 700 IL=1,NI
IF(SC(IL).EQ.0.) GO TO 700
IF=((IRZ-1)*NI+(IL-1))*10
DO 120 I=1,10

```

Figure A-2 (Cont'd)

```

IFF=IFF+1
120 READ(21IFF)(IFILL(J+I),J=1,200)
    MPAC=STAT(3,IL)+.1
    IF(IFZFL.EQ.3) GO TO 122
    IF(MTIME.LT.MPAC) MPAC=MTIME
122 J=0
    DO 124 I=1,MPAC
        K=4001+(I-1)/3
        IFILE(I)=FLD(J,12,IFILE(K))-2048
        J=J+12
        IF(J.EQ.36) J=0
124 CONTINUE
    GO TO (130,131,150),IZFIL
130 ZER=STAT(2,IL)*NMS
    GO TO 132
131 ZER=STAT(4,IL)*NMS
132 MPTS=NPTS
    IF(MPAC.LT.MTIME) MPTS=MPAC/NMS
    GO TO 133
150 CONTINUE
    MPTS=NPTS
    IF(MPAC.LT.MTIME) MPTS=MPAC/NMS
    NEED=MPTS*NMS
    CALL FILT(IFILE,MPAC,NEED,FREQ)
    ZER=0.
133 CONTINUE
    DO 140 I=1,MPTS
        ITF(I)=0
    DO 138 J=1,NMS
        K=(I-1)*NMS+J
138 ITF(I)=ITF(I)+IFILE(K)
    140 YITF(I)=ITF(I)-ZER
    400 CONTINUE
    READ(31IL)(FOR(I),I=1,MPTS)
    MPTSS=MPTS+1
    DO 402 I=1,MPTSS
        402 RESP(I)=0.
        DO 404 I=1,MPTS
            JM=MPTSS-I
            DO 404 J=1,JM
                JP=J+I
            404 RESP(JP)=RESP(JP)+FOR(I)*YITF(J)
            SCALE=STAT(1,IL)*.001*SC(IL)
            DO 406 I=1,MPTSS
                RESP(I)=RESP(I)*SCALE
406 SUM(I)=SUM(I)+RESP(I)
    WRITE(IOUT,925) IR,IL,NMS,(RESP(I),I=2,MPTSS)
    IF(NPL.EQ.2) CALL PLOTB(IR,IL,MPTSS,NMS,RESP)
700 CONTINUE
    WRITE(IOUT,926)(SUM(I),I=2,MPTSS)

```

Figure A-2 (Cont'd)

```
IF(NPL.GE.1) CALL PLOTB(IR,IL,MPTSS,NMS,SUM)
800 CONTINUE
C READ RECYCLE CARD
READ(IIN,927) FF,NCY
IF(FF.NE.F(6)) GO TO 99
WRITE(OUT,928)
GO TO (1,36,44,61,71,99),NCY
99 CONTINUE
CALL PLOTC
STOP
END
```

```
*FOR,IS PLOTB,PLOTB
SUBROUTINE PLOTB(IR,IL,MPT,NMS,Y)
DIMENSION Y(1)
C PLOT ROUTINE HERE
RETURN
ENTRY PLOTA
C PLOT INITIALIZATION HERE
RETURN
ENTRY PLOTC
C PLOT TERMINATION HERE
RETURN
END
```

Figure A-2 (Cont'd)

```

*FOR,IS FILT,FILT
SUBROUTINE FILT(IFILE,NPTS,NEED,FREQ)
DIMENSION IFILE(1),X(2,300),Y(2,300),W(2,300),Z(2,600)
FREQ=ABS(FREQ)
NMS=1
1 MPT=NPTS/NMS
IF(MPT.LT.300) GO TO 2
NMS=NMS+1
GO TO 1
2 NPT=MPT*NMS
DF=1000./NPT
NKILL=2.01+FREQ/DF
MKILL=MPT+2-NKILL
IF(FREQ.GT.-1.) GO TO 4
NMS=20
MPT=125
KILL=FREQ/.4+.01
NKILL=KILL+2
MKILL=125-KILL
4 CONTINUE
DO 3 I=1,300
3 X(2,I)=0.
K=1
DO 6 I=1,MPT
X(1,I)=0.
DO 6 J=1,NMS
X(1,I)=X(1,I)+IFILE(K)
6 K=K+1
DO 16 I=1,MPT
16 X(1,I)=X(1,I)/NMS
CALL FAST1(X,Y,MPT,Z,W+1)
DO 7 I=NKILL,MKILL
Y(1,I)=0.
7 Y(2,I)=0.
CALL FAST1(Y,X,MPT,Z,W+1)
DO 8 I=1,MPT
8 X(1,I)=X(1,I)/MPT
DO 12 I=1,NEED
P=I-1
P=P/NMS+1.
I1=P
FF=P-I1
F=1.-FF
12 IFILE(I)=IFILE(I)-(F*X(1,I1)+FF*X(1,I1+1))
RETURN
END

```

Figure A-2 (Cont'd)

```

*FOR IS FAST1 FAST1
SUBROUTINE FAST1(X,Y,N,Z,W,S)                                     TWO02260
C   FAST FOURIER TRANSFORM OF COMPLEX DATA BY DAVID IVES, GRUMMAN    TWO02270
C   X.....N INPUT VALUES (COMPLEX)                                     TWO02280
C   Y.....N OUTPUT VALUES (COMPLEX)                                    TWO02290
C   N.....NUMBER OF VALUES                                         TWO02300
C   Z....DUMMY STORAGE OF LENGTH 2N (COMPLEX)                         TWO02310
C   W....DUMMY STORAGE OF LENGTH N (COMPLEX)                           TWO02320
C   S....SIGN CONTROLLING DIRECTION OF TRANSFORM                     TWO02330
C   THIS PRODUCES 'OUTPUT Y' FROM 'INPUT X', WHERE                   TWO02340
*****TW002350
      K=N                                         TWO02360
      Y(J)=SUM X(K)*EXP(SIGNS(1.,S)*I*2*PI*(J-1)*(K-1)/N)        TWO02370
      K=1                                         TWO02380
*****TW002390
      WITH I=SQRT(-1), S=+1. OR S=-1., AND PI=3.14159.....           TWO02400
C   COMPLEX NUMBERS ARE HANDLED IN FORTRAN 4 CONVENTION, NAMELY THE TWO02410
C   REAL AND IMAGINARY PARTS ARE STORED IN ALTERNATE CELLS, STARTING TWO02420
C   WITH THE REAL PART OF X(1) IN THE FIRST LOCATION, ETC.            TWO02430
DIMENSION X(1),Z(1),W(1),Y(1)                                     TWO02440
MOD(J,K)=J-(J/K)*K                                              TWO02450
DO 1 I=1,N                                                       TWO02460
  W(2*I-1)=COS((6.28318530717959/N)*(I-1))                      TWO02470
  W(2*I)= SIGN(1.,S)*SIN((6.28318530717959/N)*(I-1))          TWO02480
  Z(2*I-1)=X(2*I-1)                                              TWO02490
1 Z(2*I)=X(2*I)                                                 TWO02500
  ID=N                                         TWO02510
  DO 4 J=1,N                                                       TWO02520
    IF(ID-1) 5,5,15                                              TWO02530
15 CONTINUE                                                       TWO02540
  DO 2 IX=2,ID                                              TWO02550
    IF(MOD(ID,IX)) 3,3,2                                         TWO02560
2 CONTINUE                                                       TWO02570
3 ID=ID/IX                                              TWO02580
  IS=N/ID                                              TWO02590
  DO 4 L1=1,IS                                              TWO02600
  DO 4 L=1,ID                                              TWO02610
    JM=(MOD(L+(L1-1)*ID*IX,N)+MOD(J+1,2)*N)*2                TWO02620
    JP=(L+(L1-1)*ID+MOD(J,2)*N)*2                            TWO02630
    Z(JP-1)=Z(JM-1)                                            TWO02640
    Z(JP)=Z(JM)                                                 TWO02650
    DO 4 IH=2,IX                                              TWO02660
    IG=(MOD((L1-1)*ID*(IH-1),N)+1)*2                         TWO02670
    IU=JM+(IH-1)*ID*2                                         TWO02680
    Z(JP-1)=Z(JP-1)+Z(IU-1)*W(IG-1)-Z(IU)*W(IG)             TWO02690
4 Z(JP)=Z(JP)+Z(IU)*W(IG-1)+Z(IU-1)*W(IG)                  TWO02700
5 DO 6 I=1,N                                              TWO02710
  K= 2*(MOD(J+1,2)*N+I)-1                                     TWO02730
  Y(2*I-1)=Z(K)                                              TWO02740
  K=K+1                                         TWO02750
6 Y(2*I)=Z(K)                                              TWO02760
  RETURN
END

```

Figure A-2 (Cont'd)

* (RUN CARD)

```
*ASG,T 1,F2/2//4
*ASG,T 2,F2/7/POS/7
*ASG,TB 10,8C,A06515
*ASG,TB 11,8C,TAPES
*MOVE 11.,1
*ASG,TB 12,8C,TAPE6
*MOVE 12.,1
*ASG,TB 20,8C,SCRATCH
```

----- FORTRAN DECKS -----

*MAP,I .MAP,.PROG

SEG TOP*

IN ITF1

LIB MSC*LOCALIB

*XQT .PROG

LOAD 10 1 10

STATUS 1 10

RUN 11 5 1 10 5

12500.	1143.	639.	1243.	624.	1092.	1110.	653.	640.	179.	179.
--------	-------	------	-------	------	-------	-------	------	------	------	------

RUN 12 6 1 10 5

12500.	1343.	750.	1460.	733.	1284.	1305.	767.	752.	210.	210.
--------	-------	------	-------	------	-------	-------	------	------	------	------

PLOT 1 10 5 6 500 4 2 0

STATUS 1 10

DUMP 20 1 10

END

*PMD,E

*FIN

* = 7/8 PUNCH

Figure B-1

Program I - Deck Setup and Data

RECORD NO. 969

LOAD NO. 6

RESP. NO. 1

IMPULSE TRACK

RESPONSE NO. 1

1	18	11	14	17	16	14	13	15	17	17	16	20	20	18	17	19	21	22	20	19	8	10	7	6	9	
2	-19	-22	-22	-20	-20	-21	-18	-16	-16	-16	-17	-16	-18	-19	-19	-22	-22	-21	-18	-16	-12	-14	-7	-4	-5	
3	18	20	19	17	19	22	23	21	19	19	21	21	19	16	14	14	15	15	15	15	5	3	5	9	10	
4	-16	-16	-15	-14	-14	-16	-15	-14	-14	-15	-16	-18	-17	-18	-20	-22	-20	-15	-12	-15	-9	-8	-7	-6	-4	
5	22	19	15	13	11	12	13	13	16	18	16	15	18	17	14	13	15	18	20	22	8	10	12	12	13	
6	-21	-17	-13	-14	-18	-18	-17	-16	-16	-17	-21	-22	-19	-17	-16	-17	-19	-20	-21	-20	-13	-14	-13	-11	-10	
7	17	18	17	14	15	18	19	18	21	20	21	17	16	17	16	15	18	21	23	22	9	7	5	4	3	
8	-18	-17	-17	-14	-16	-20	-22	-21	-18	-14	-16	-17	-18	-18	-17	-18	-20	-18	-14	-12	-3	-3	-4	-7	-1	
9	13	15	17	18	20	21	19	17	19	22	20	17	15	17	19	20	19	16	16	15	10	9	8	7	7	
10	-16	-14	-15	-16	-16	-13	-14	-15	-15	-14	-16	-15	-13	-14	-18	-18	-18	-14	-13	-14	-12	-6	-6	-9	-12	-12
11	18	17	17	16	15	16	17	14	11	14	17	17	17	17	16	17	17	18	18	17	11	10	9	12	17	
12	-18	-18	-18	-15	-13	-12	-14	-14	-14	-15	-14	-14	-15	-15	-14	-14	-14	-14	-14	-14	-19	-15	-10	5	-7	
13	14	14	15	16	15	13	13	13	11	10	11	11	10	11	13	13	13	14	14	14	14	19	18	16	17	
14	-17	-15	-14	-14	-13	-13	-16	-16	-14	-12	-12	-11	-11	-13	-12	-12	-15	-14	-12	-11	-12	-17	-15	10	-7	-5
15	11	13	17	16	12	9	9	9	12	12	10	6	5	6	9	12	14	15	13	11	5	4	4	6	9	
16	-10	-10	-8	-9	-13	-14	-11	-8	-9	-12	-13	-8	-7	-9	-13	-13	-10	-10	-10	-11	-12	-11	-8	-6	-7	
17	12	9	3	7	8	10	8	6	6	7	9	10	9	7	7	7	7	6	5	3	10	12	12	10	10	
18	-5	-6	-7	-7	-7	-7	-6	-6	-5	-5	-5	-4	-7	-8	-5	-3	-3	-3	-5	-4	-14	-17	-16	-12	-10	
19	3	5	5	6	8	9	8	6	7	8	10	10	8	7	10	10	9	6	3	4	10	11	11	12	11	
20	-6	-8	-3	-7	-5	-4	-5	-7	-7	-7	-9	-8	-7	-9	-5	-2	-0	-1	-4	-7	-9	-5	-4	-4	-5	
21	7	9	8	7	6	4	3	3	3	6	7	8	7	5	7	7	5	5	7	6	7	8	8	6	3	
22	7	6	7	8	8	7	6	7	7	7	8	9	9	8	6	7	8	5	7	9	4	8	13	14	14	
23	9	8	9	8	9	9	7	7	8	9	7	7	7	7	8	7	5	5	5	5	13	14	13	12	11	
24	-6	-8	-9	-8	-8	-9	-10	-8	-5	-5	-7	-6	-7	-8	-7	-6	-2	-3	-6	-7	-11	-11	-9	-8	-8	
25	6	6	7	6	6	5	5	4	3	2	3	5	6	6	7	8	8	9	6	4	10	12	13	13	10	
26	-2	-3	-4	-4	-4	-5	-5	-5	-3	-2	-7	-80	-352	-678	-857	-844	-692	-447	-102	-9	-9	-9	-9	-9	-9	
27	-39	-24	4	49	53	15	-16	-13	13	16	2	-11	-16	-19	-20	-19	-18	-15	-12	-5	9	10	10	10	7	
28	-5	0	-11	-16	-15	-14	-8	0	1	-4	-3	-12	-17	-17	-16	-13	-5	5	6	-4	6	8	15	-19	-16	
29	-15	-20	-19	-14	-2	18	19	3	-12	-16	-16	-13	0	14	4	-13	-20	-18	-14	-8	10	8	16	27	31	
30	0	-2	-7	-10	-10	-10	-7	-1	-2	-2	-7	-14	-9	-3	-6	-8	-12	-9	-6	-2	26	18	16	-19	-21	
31	4	-3	-10	-14	-14	-9	0	6	-1	-11	-14	-9	2	6	-4	-14	-12	6	3	21	13	-4	-24	-35	-35	
32	-5	-11	-8	-5	-3	2	0	-4	-9	-6	-4	-2	-1	-4	-5	-3	-1	-2	-5	-32	-21	-16	-15	-12		

RESPONSE 40, 2

RESPONSE NO.

RESPONSE NO.

~~RESPONSE NO~~

RESPONSE NO.

1	24	21	17	15	13	12	10	4	0	2	2	2	3	4	2	15	15	14	12	11	0	0	2	7	15
2	14	18	21	22	16	9	13	9	-3	-1	-2	-5	-2	-1	-2	9	8	10	11	11	19	12	1	-4	-1
3	10	9	10	10	13	3	6	9	11	9	2	0	-2	-4	-3	10	8	6	9	11	2	1	5	11	11
4	15	16	15	14	9	5	0	-1	-2	-3	-2	-1	-3	-1	-3	10	6	6	8	10	8	7	1	-2	
5	10	11	9	8	9	-1	4	11	15	11	2	-1	-3	-1	2	10	11	13	14	15	-2	1	3	3	5
6	11	14	13	15	14	4	0	-1	-3	-5	-1	-2	-5	-3	-1	15	12	10	10	11	8	10	9	6	3
7	13	13	12	12	12	4	2	4	7	8	4	3	-1	-2	-3	12	13	11	9	11	2	3	2	-2	-2
8	13	11	10	8	8	5	1	-1	0	5	-2	-2	-3	-3	-1	13	11	5	3	9	0	0	-3	11	17
9	9	12	18	17	11	11	14	13	6	0	3	6	5	1	-2	16	17	13	11	11	13	4	-1	-2	-3
10	10	-6	19	14	17	-3	2	-10	-14	-12	-3	0	-4	-6	-3	12	13	12	11	11	-6	-2	-6	11	11
11	17	11	9	12	14	4	-6	-8	2	17	0	-3	-1	3	6	14	13	11	10	10	7	3	2	5	9
12	15	14	15	11	12	22	13	-1	-1	-7	-5	0	-5	-8	-6	12	13	11	7	6	6	2	0	0	6
13	12	12	13	13	12	5	17	18	13	7	-1	2	4	4	4	8	13	15	14	13	13	14	10	7	7
14	10	-11	13	14	14	5	7	9	6	1	5	5	-4	-1	-1	14	17	16	11	10	8	8	7	5	3
15	12	11	9	11	11	0	1	2	1	1	-1	0	0	0	0	11	12	12	11	10	2	2	7	11	10
16	12	12	13	15	14	3	4	9	8	-10	-1	-2	-1	-2	-9	8	7	6	5	5	1	1	-4	-2	

Figure B-2
Program I - Record Output

RESPONSE NO. 2		RESPONSE NO. 3		RESPONSE NO. 4		RESPONSE NO. 5		RESPONSE NO. 6	
17	17	15	13	-15	16	-11	-13	10	6
18	15	12	12	17	16	-1	-1	2	8
19	15	13	12	-11	11	15	-12	6	-1
20	12	12	10	8	9	0	6	9	10
21	7	9	11	-12	-12	-4	-4	-1	-1
22	13	10	9	9	5	7	7	6	5
23	12	12	12	12	11	-5	-9	10	-9
24	11	10	9	9	8	2	3	5	6
25	7	8	7	12	-14	-4	-1	-2	14
26	14	11	9	8	7	13	4	-1	1
27	10	10	10	10	-10	-5	-5	6	-8
28	12	13	12	12	11	4	1	2	6
29	9	11	15	16	-16	-6	-3	-1	-3
30	13	12	6	3	-4	15	18	15	11
31	-18	-28	-39	-40	-38	-10	-10	-8	-11
32	-33	-29	-39	-30	-52	14	17	17	15
RESPONSE NO. 7		RESPONSE NO. 8		RESPONSE NO. 9		RESPONSE NO. 10		RESPONSE NO. 11	
1	11	14	17	17	-15	192	204	218	237
2	11	8	7	10	15	274	277	272	268
3	-19	18	14	8	-5	281	294	300	292
4	5	10	18	23	23	249	231	222	213
5	-18	13	10	-8	-10	183	143	145	127
6	12	14	14	13	88	66	47	31	20
7	13	13	15	15	10	-2	-7	-20	-38
8	13	13	15	17	15	-61	-92	-128	-166
9	10	3	1	5	-14	-217	-225	-230	-236
10	20	21	14	4	-1	-263	-285	-306	-315
11	4	14	22	19	-7	-303	-299	-307	-318
12	-2	-3	7	19	22	-314	-295	-273	-257
13	17	6	-3	-5	0	-238	-213	-177	-141
14	7	12	14	13	13	-106	-103	-100	-90
15	12	12	12	12	10	-62	-51	-41	-32
16	8	9	7	7	8	-9	5	23	47
17	8	8	7	7	9	114	146	172	190
18	13	18	22	19	12	219	235	252	263
19	5	2	4	13	20	276	269	275	287
20	23	20	13	7	4	300	290	270	250
21	5	9	16	21	23	-229	-226	-217	-195
22	21	17	15	14	15	137	118	105	94
23	-15	14	13	12	13	-58	-40	-24	-13
24	14	14	14	13	11	-4	-17	-35	-56
25	9	6	3	1	5	-114	-148	-183	-214
26	11	18	22	18	11	-240	-237	-237	-249
27	2	-1	3	11	-17	-299	-320	-323	-312
28	16	8	1	1	7	-300	-311	-325	-325
29	13	12	2	-7	-13	-273	-245	-228	-223
30	-9	1	10	15	13	-205	-175	-139	-107
31	11	11	14	20	26	-92	-98	-100	-94
32	29	33	35	36	37	-61	-43	-26	-10
33	19	18	-17	-16	-18	-18	-17	-18	-15
34	8	5	7	6	6	7	7	6	209
35	9	9	6	6	3	-11	-4	-12	-19

Figure B-2 (Cont'd)

Program I - Record Output

RECORD NO. 470

LOAD NO. 6

RESP. NO. 1

IMPULSE TRACK

1	-1	-6	-6	-5	-2	-2	-5	-7	-6	-4	-2	+1	-1	-5	-9	-10	-4	1	1	-3	-6	-3	-8	-13	-10	
2	-7	+9	-3	2	-4	-2	-4	-7	-5	1	1	-3	-10	-11	-5	3	-3	-3	-10	-11	-6	-12	-29	-40	-35	
3	-7	1	2	-1	-5	-7	-7	-4	-3	-4	-7	-9	-7	-3	-2	-4	-6	-6	-7	-6	-21	-14	-23	-35	-34	
4	-4	-5	-4	-6	-6	-5	-4	-5	-5	-4	-5	-5	-4	-6	-6	-6	-7	-8	-7	-21	-15	-23	-36	-48		
5	-4	-4	-6	-9	-8	-2	0	-1	-5	-7	-8	-6	-1	0	-3	-11	-14	-9	-1	0	-59	-72	-82	-83	-77	
6	-4	-7	-6	-6	-5	-4	-6	-5	-5	-6	-5	-3	-3	-7	-9	-7	-5	-4	-6	-75	-85	-101	-115	-123		
7	-6	-6	-7	-7	-6	-3	-1	-2	-2	-4	-6	-3	-2	-2	-5	-7	-3	0	0	-127	-135	-154	-179	-200		
8	-2	-5	-5	-4	0	-2	-4	-5	-5	-3	-3	-5	-6	-3	-1	-2	-2	-4	-8	-209	-205	-198	-194	-198		
9	-8	-4	-2	-3	-4	-5	-3	-1	0	-2	-6	-6	-2	-1	-1	-3	-5	-2	-1	-3	-200	-200	-196	-192	-193	
10	-6	-5	-3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-196	-197	-186	-174	-169	
11	4	2	1	3	2	-2	-1	1	2	2	3	5	5	2	1	2	2	3	4	4	-172	-176	-174	-170	-168	
12	3	-1	-2	-1	-3	-6	4	2	-4	5	5	-2	2	-2	0	0	0	0	0	0	-171	-180	-187	-187	-182	
13	-1	1	3	2	1	1	0	3	3	3	2	1	2	4	4	4	4	6	4	4	-182	-187	-194	-195	-195	
14	2	2	0	0	-2	-3	-2	-2	-3	-6	-8	-6	-2	-1	-5	-7	-6	-3	-2	1	-194	-189	-184	-181	-179	
15	3	5	5	3	2	3	3	2	3	3	5	5	5	8	7	5	5	7	6	4	5	-172	-164	-155	-152	-153
16	5	5	0	9	-10	-11	-10	-5	-4	-4	-6	-6	-7	-5	-3	-3	-4	-3	-3	4	-156	-161	-167	-174	-179	
17	6	7	6	7	5	6	4	4	4	3	3	4	6	4	4	5	4	4	3	5	-182	-180	-177	-172	-166	
18	6	5	5	4	4	4	-3	3	7	7	7	5	5	7	7	5	5	5	-6	-160	-149	-131	-108	-87		
19	7	6	6	5	5	6	5	3	3	3	3	3	3	3	3	3	5	6	8	8	-71	-56	-35	-11	8	
20	6	4	2	0	2	5	5	4	4	3	3	3	4	5	7	11	12	9	7	7	22	38	58	78	92	
21	6	5	4	4	5	5	6	6	6	6	5	4	7	7	7	7	7	7	5	4	100	103	104	106	107	
22	2	3	4	5	6	7	7	7	5	4	4	5	5	6	8	8	8	8	6	5	4	106	106	112	122	130
23	4	5	6	7	6	6	4	3	5	4	3	6	10	9	10	11	8	6	7	7	135	141	149	161	171	
24	8	9	9	7	6	6	4	3	3	7	8	9	9	7	5	5	7	5	4	3	-174	-171	-172	-178	-183	
25	6	9	10	8	4	2	2	4	6	5	4	4	4	3	2	3	4	6	8	7	181	176	173	171	169	
26	6	6	6	4	4	5	5	5	6	8	9	7	5	2	-1	-1	2	2	3	3	-163	-159	-159	-160	-156	
27	5	5	3	2	5	5	5	6	7	3	1	-1	1	5	7	6	5	4	3	5	150	147	146	144	139	
28	6	5	4	1	1	2	4	4	4	4	4	4	3	4	5	6	7	6	4	4	139	145	153	156	152	
29	4	1	0	0	2	3	4	4	6	5	5	3	5	7	6	4	3	3	3	1	144	139	138	135	127	
30	1	0	-3	6	5	7	6	4	4	3	1	2	1	1	4	4	4	4	3	3	119	117	114	110	106	
31	4	3	4	4	2	0	-1	-1	0	1	0	2	1	1	0	0	1	1	1	-1	99	89	86	90	97	
32	-1	-1	-2	-2	0	2	0	-2	-1	1	3	5	7	6	5	3	2	1	0	1	99	96	96	79	75	

RESPONSE NO. 1

Figure B-2 (Cont'd)

IMPULSE AREA IN LB-SEC = 1.644965
 DURATION OF RESPONSE IN SECONDS = .3302.

SUMMARY OF RECORD AVERAGES

REC.	IMP.	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
120	10	9	14	7	2	10	2	10	15	22	27
130	9	10	13	7	1	13	5	9	16	23	25
140	13	11	13	5	1	9	4	11	15	23	26
150	7	11	13	6	1	11	2	9	14	22	27
160	1586	1616	1583	1614	1617	1596	1764	1601	1615	1793	1802
170	1586	1617	1583	1614	1617	1596	1764	1601	1615	1793	1802
180	1585	1617	1583	1614	1617	1595	1766	1601	1615	1793	1802
190	1586	1617	1583	1614	1617	1595	1767	1601	1615	1793	1802
200	1587	1617	1583	1614	1617	1596	1768	1601	1615	1793	1802
210	1586	1617	1583	1614	1617	1595	1767	1601	1615	1793	1802
220	1587	1617	1583	1614	1617	1595	1767	1601	1615	1794	1802
230	1586	1617	1583	1614	1617	1594	1768	1601	1615	1793	1802
240	1586	1617	1583	1614	1617	1595	1768	1601	1615	1793	1802
250	1587	1617	1583	1614	1617	1595	1766	1602	1615	1793	1803
260	1586	1617	1583	1614	1617	1595	1766	1602	1615	1793	1802
270	1586	1617	1583	1614	1617	1594	1767	1601	1615	1794	1802
280	1587	1617	1583	1614	1617	1595	1769	1601	1616	1794	1802
290	1587	1617	1583	1614	1617	1594	1769	1602	1615	1794	1802
300	1586	1617	1583	1614	1617	1595	1771	1602	1616	1794	1803
310	13	8	9	8	6	14	17	11	9	18	12
320	13	8	9	8	6	14	16	10	9	18	11
330	9	8	9	8	6	14	16	10	9	18	11
340	14	8	9	8	6	14	18	10	9	18	11
350	8	8	10	8	6	13	16	10	9	18	11
461	14	7	9	8	6	14	20	10	9	17	10
462	12	7	9	7	6	13	20	10	8	18	10
463	487	513	490	503	461	499	491	467	439	495	519
464	14	6	-18	6	0	2	3	10	-15	21	22
465	10	9	1	6	1	10	4	11	-19	21	26
466	8	11	11	7	2	10	7	9	-24	23	27
467	14	9	16	6	0	11	7	9	-26	22	25
468	9	10	16	7	-1	12	6	10	-23	22	25
469	15	9	9	6	3	11	4	12	-19	22	25
569	0	9	16	7	-1	12	5	9	-19	22	25
570	0	12	7	5	8	13	5	7	15	22	24
571	0	10	16	7	0	11	3	7	16	21	26
572	0	9	18	7	-2	12	5	7	16	21	27
573	0	0	0	0	0	0	0	0	0	0	0

FUNCTION CARD - STATUS 1 10 0 0 0 0 0 0 0 0 0 0

Figure B-3
 Program I - Record Summary

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916<br

* (RUN CARD)
*ASGDT 1,F2/2//4
*ASGDT 2,F2/7/POS/7
*ASGDT 3,F2/30//30
*ASGDTB 11,BC,A06515

----- FORTRAN DECKS -----

*MAP,I,MAP,,PROG
SEG TOP*
IN RESP
LIB MSC*LOCALIB
*XQT,PROG

----- DATA DECK -----

*PMD
*FIN

* = 7/8 PUNCH

Figure B-5
Program II - Deck Setup

LOAD	11	1	10														
TIME	200	2.															
FORCE	63	2.	1: 1000														
	2	-1.															
	6	20	25	25	59	234	645	1056	1189	1100	920	698	813	1113	1430	1610	
	1789	2044	2375	2690	2963	3109	3178	3261	3355	3524	3756	3925	3921	3886	3899	3914	
	3898	3887	3896	3891	3876	3896	3908	3892	3909	3918	3928	3895	3880	3884	3894	3904	
	3917	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	
	3.	1.															
	0	0	0	0	54	235	567	992	1037	1013	1025	1048	1094	1206	1341	1517	
	1750	2091	2354	2435	2513	2603	2701	2814	2926	2987	3067	3183	3243	3264	3274	3289	
	3281	3248	3222	3207	3248	3259	3235	3168	3185	3202	3210	3224	3225	3221	3203	3231	
	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	3235	
	4.	-1.															
	0	0	0	0	-7	-70	-243	-876	-1271	-1312	-1224	-1262	-1339	-1483	-1678	-1795	
	-1920	-2081	-2293	-2455	-2563	-2624	-2703	-2831	-2976	-3167	-3350	-3454	-3361	-3315	-3360	-3423	
	-3442	-3403	-3336	-3217	-3267	-3292	-3294	-3290	-3270	-3265	-3268	-3269	-3251	-3234	-3230	-3238	
	-3243	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	-3244	
	5.	1.															
	0	0	0	0	0	-32	-224	-746	-1085	-1319	-1369	-1209	-1164	-1280	-1524	-1824	
	-2049	-2210	-2302	-2497	-2773	-3038	-3193	-3210	-3324	-3504	-3674	-3709	-3602	-3513	-3588	-3614	
	-3626	-3633	-3634	-3634	-3611	-3628	-3645	-3631	-3629	-3625	-3608	-3595	-3624	-3637	-3606	-3581	
	-3580	-3587	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	-3589	
	8.	1.															
	0	0	0	0	-94	-298	-779	-1161	-1299	-1332	-1263	-1155	-1270	-1537	-1813	-2069	
	-2214	-2316	-2494	-2766	-2999	-3167	-3281	-3317	-3432	-3548	-3621	-3572	-3483	-3457	-3448	-3462	
	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	
	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	-3464	
	9.	1.															
	0	0	0	0	48	218	484	838	1080	1130	1176	1230	1176	1250	1386	1571	
	1823	2123	2432	2717	2828	2885	2940	3137	3282	3422	3340	3296	3438	3416	3370	3361	
	3242	3394	3479	3424	3393	3368	3348	3381	3385	3385	3385	3385	3385	3385	3385	3385	
	3369	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	3385	
	10.	1.															
	0	0	0	0	30	283	834	1272	1039	943	1170	1422	1415	1418	1538	1659	
	1879	2319	2605	2605	2578	2679	2866	3039	3211	3353	3473	3629	3564	3471	3534	3560	
	3560	3556	3543	3576	3575	3581	3569	3556	3565	3575	3555	3537	3549	3538	3560	3552	
	3546	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	3545	
	11.	1.															
	1671	4937	7213	9045	7664	5202	4472	4691	6050	7506	7758	7210	7295	7908	8558	8559	
	8690	8880	8992	9107	9750	9967	9918	10077	10766	11350	11150	11188	11104	710970	109091	10757	
	10781	11090	11081	11057	11079	11053	11010	10647	11087	11107	11123	11125	11110	11101	11016	11095	110682
	10665	10730	11075	11091	10759	11075	11075	11075	11075	11075	11075	11075	11075	11075	11075	11075	
	12.	1.															
	166	1271	4277	6339	7737	7732	6044	5151	5374	6585	8255	8897	8135	7961	8504	9094	
	9324	9624	9865	10108	10360	10569	10837	11294	11528	11145	71130	11128	71114	11311	11566	11177	11811651
	1143	3111	113111	110611	11121	11113	1383	11146	11151	11438	11152	11166	11127	11172	11181	11165	111911378
	1132	2211	1131	191131	191131	191131	191131	191131	191131	191131	191131	191131	191131	191131	191131	191131	
	13.	1.															
	367	2955	6370	7997	7999	6662	4957	4990	6883	8338	8068	6831	7028	8305	9893	9854	
	8457	8145	8693	9925	10372	10286	10050	10102	10129	10108	10136	11155	11117	9711	11503	11124	
	1124	7110	9731	11024	11134	8115	5451	11562	11147	41114	28115	22115	93111539	111333	11122	711123	1111303
	1157	11117	81117	20011	120011	120011	120011	120011	120011	120011	120011	120011	120011	120011	120011	120011	
	14.	1.															
	660	3905	7051	8381	8121	6555	5149	4792	6078	7502	8640	8289	7467	7727	9024	9393	
	9395	9432	9507	972110200	10414	10654	11123	91142	91135	81116	31109	8711140	11131	11131	11131	111274	

Figure B-6
Program II - Data Deck

1128411419114951149511495114951149511495114951149511495114951149511495

109 3476 814710691 9357 7709 6220 6612 961710650 9076 7502 8079 93461031310558

9628 9253 982711414120061140610081101191175212569123151140411378118071208011923

11611113601136811808118621142410913109931141311413111921103411029111341119111115

110481099510980109801098010980109801098010980109801098010980109801098010980

20 1.

257 1275 3901 906710490 9970 7788 5810 7431 98121112010336 9385 8866 8980 9717

1075111254112711152111631133811760122381254412394118651132711495119691219412188

12016117721163511873120471195011649115761172711862119361187411748117211176411775

117231162211585115851158511585115851158511585115851158511585115851158511585

21 1.

1088 4353 909310810 9930 7881 5924 6394 8402 981410325 9645 8322 7729 7984 9295

988010088102631082511136108701036010251114811862119331138011036108951105011527

11797117781154011245109921091011059112961132411199110541101211090112011131711291

11016108771085010850108501085010850108501085010850108501085010850108501085010850

22 1.

558 2791 6812 997810348 8733 6245 5379 74921018910738 9587 8690 8402 8552 9174

101491039010106 9999103331071711048114211162611477110101056710583110021155611718

11241108191076611078113001126111008109141093211014111591128311065109231093211060

11295113341134511345113451134511345113451134511345113451134511345113451134511345

24 1.

0 0 0 0 -26 -183 -360 -534-1003-1239-1288-1253-1238-1279-1311-1363

-1548-1789-2045-2268-2442-2542-2601-2676-2864-3060-3238-3416-3465-3426-3444-3503

-3555-3590-3608-3578-3584-3598-3611-3605-3575-3556-3542-3544-3552-3534-3517-3514

-3528-3540-3544-3544-3544-3544-3544-3544-3544-3544-3544-3544-3544-3544-3544-3544

25 -1.

-2 -18 -24 -20 245 692 1088 1298 1307 1224 1164 1209 1334 1545 1777 2012

2207 2409 2708 2904 3087 3217 3272 3298 3331 3364 3406 3451 3415 3371 3410 3465

3456 3492 3561 3540 3454 3419 3422 3425 3414 3398 3418 3474 3537 3582 3584 3505

3431 3404 3400 3400 3400 3400 3400 3400 3400 3400 3400 3400 3400 3400 3400

26 -1.

3 -14 -12 -122 -465 -898-1219-1398-1427-1343-1215-1278-1486-1716-1911-2051

-2241-2451-2587-2636-2724-2837-2961-3127-3289-3346-3301-3262-3287-3301-3311-3270

-3229-3202-3196-3217-3227-3234-3241-3275-3235-3208-3180-3174-3159-3150-3117-3105

-3127-3095-3079-3079-3079-3079-3079-3079-3079-3079-3079-3079-3079-3079

29 -1.

0 0 0 0 -7 -79 -297 -865-1259-1376-1298-1265-1349-1336-1853-2093

-2306-2487-2642-2812-2906-2979-3164-3396-3483-3539-3529-3502-3352-3261-3328-3350

-3393-3433-3459-3451-3408-3389-3403-3400-3395-3394-3392-3372-3398-3398-3396-3412

-3411-3378-3364-3364-3364-3364-3364-3364-3364-3364-3364-3364-3364-3364-3364

35 1.

-3 -4 -4 -4 59 337 968 1262 1310 1256 1220 1158 1304 1508 1734 1945

2147 2295 2504 2697 2758 2824 2911 2970 3147 3280 3290 3155 3180 3143 3198 3232

3247 3145 3050 3129 3187 3195 3243 3278 3189 3153 3147 3159 3131 3098 3091 3064

3047 3055 3060 3060 3060 3060 3060 3060 3060 3060 3060 3060 3060 3060 3060

36 -1.

0 0 0 0 6 65 269 912 1277 1418 1408 1298 1213 1328 1563 1815

1967 2161 2387 2662 2908 3074 3231 3336 3432 3655 3771 3700 3668 3659 3620 3606

3633 3689 3752 3805 3832 3821 3766 3728 3799 3774 3718 3812 3809 3788 3801 3868

3787 3785 3795 3795 3795 3795 3795 3795 3795 3795 3795 3795 3795 3795 3795

RESP 1 4 3 5.2

PLOT 0

CYCLE 6

Figure B-6 (Cont'd)

FIGURE C-1
PROGRAM I - MAIN PROGRAM

FIGURE C-2
PROGRAM I - SUBROUTINE STORED

FIGURE C-2 (CONT'D)
PROGRAM I - SUBROUTINE STORED

FIGURE G-3
PROGRAM I - SUBROUTINE READ7

FIGURE C-4
PROGRAM II - MAIN PROGRAM

FIGURE C-4 (CONT'D)
PROGRAM II - MAIN PROGRAM

FIGURE C-5
PROGRAM II - SUBROUTINE FILT