험계획과 응용

제12강(10장)

지분계획과분할구계획

이번 시간

- 10.1 교차실험과 지분실험
- 10.2 이단지분계획
- 10.3 삼단지분계획

실험계획자응용

제12강(10장)

지분계획과분할구계획

다음 시간

- 10.4 분할구계획
- 10.5 이단분할구계획

제12강 지분계획과 분할구계획

10.1 교차실험과 지분실험

10.1 교차실험과 지분실험

■ 교차실험

어떤 요인의 각 수준마다 나타나는 또 다른 요인의 수준들이 모두 같은 실험

<합금강도데이터>

주조시간	10 ₩	20 H	20 H
기압	10분	20분 	30분
100 -	1.1	1.3	1.2
100도	1.2	1.1	1.0
200도	1.3	1.3	1.4
200 <u>年</u>	1.4	1.5	1.2
200 🗆	1.8	2.1	2.2
300도	2.0	2.0	1.9

〈丑 10−2〉

10.1 교차실험과 지분실험

■ 지분실험 (계층적 실험)

어떤 요인의 각 수준마다 나타나는 또 다른 요인의 수준들이 모두 다른 실험

<표 10-1> 지분실험계획의 예 (단위: mg)

강		1			2			3	
취수지	1	2	3	1	2	3	1	2	3
ᆸᇫᇗᆉ	1.1	1.3	1.2	1.3	1.3	1.4	1.8	2.1	2.2
불소함량	1.2	1.1	1.0	1.4	1.5	1.2	2.0	2.0	1.9

<표 10-3> 지분실험의 또 다른 표시법

강		1			2			3	
취수지	1	2	3	4	5	6	7	8	9
ᆸᆺᇰᆸᆉ	1.1	1.3	1.2	1.3	1.3	1.4	1.8	2.1	2.2
불소함량	1.2	1.1	1.0	1.4	1.5	1.2	2.0	2.0	1.9

10.1 교차실험과 지분실험

<표 10-2> 교차 실험계획의 예

	요인 1			
요인 2	1	2	3	
1	1.1	1.3	1.2	
1	1.2	1.1	1.0	
2	1.3	1.3	1.4	
2	1.4	1.5	1.2	
2	1.8	2.1	2.2	
3	2.0	2.0	1.9	

▶ 요인 1 = 주조시간 요인 2 = 기압 스 그는 그는 그는 그는 전보통계학과 **백재욱** 교수

제12강 지분계획과 분할구계획

10.2 이단지분계획

■ 모형

$$x_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \varepsilon_{k(ij)}$$

 $i = 1, 2, ..., a; \quad j = 1, 2, ..., b; \quad k = 1, 2, ..., n$

- 균형지분계획(balanced nested design)임
- 상호작용효과(interaction effect)를 나타내는 항이 없음

■ 제곱합의 분할

$$SS_{T} = SS_{A} + SS_{B(A)} + SS_{E} \qquad (10.2)$$

$$SS_{T} = \sum_{i} \sum_{j} \sum_{k} (x_{ijk} - \overline{x})^{2} \qquad (10.3)$$

$$SS_{A} = \sum_{i} \sum_{j} \sum_{k} (\overline{x}_{i..} - \overline{x})^{2} \qquad (10.4)$$

$$SS_{B(A)} = \sum_{i} \sum_{j} \sum_{k} (\overline{x}_{ij.} - \overline{x}_{i..})^{2} \qquad (10.5)$$

$$SS_{E} = \sum_{i} \sum_{j} \sum_{k} (x_{ijk} - \overline{x}_{ij.})^{2} \qquad (10.6)$$

■ 자유도의 분할

$$abn-1 = (a-1) + a(b-1) + ab(n-1)$$
 (10.7)
$$\Phi_T = \Phi_A + \Phi_{B(A)} + \Phi_E$$

<표 10-4> 이단지분계획에 대한 분산분석표

변인	제곱합	자유도	평균제곱
A	SS_A	a-1	MS_A
B(A)	$SS_{B(A)}$	a(b - 1)	$MS_{B(A)}$
E	SS_E	ab(n-1)	MS_E
T	SS_T	abn-1	

■ 여러 가지 모형

① 고정효과 모형(A: 고정, B(A): 고정)

가정:
$$\alpha_i$$
, $\beta_{j(i)}$ 는 상수, $\sum_i \alpha_i = \sum_j \beta_{j(i)} = 0$, $\epsilon_{ijk} \sim N(0, \sigma^2)$ ····· (10.8)

② 랜덤효과 모형(A: 랜덤, B(A): 랜덤)

가정:
$$a_i \sim N(0, \sigma_A^2)$$
, $\beta_{j(i)} \sim N(0, \sigma_{B(A)}^2)$, $\epsilon_{ijk} \sim N(0, \sigma^2)$ …… (10.10)

■ 여러 가지 모형(계속)

③ 혼합효과 모형(A: 고정, B(A): 랜덤)

가정:
$$a_i$$
는 상수, $\sum_i a_i = 0$, $\beta_{j(i)} \sim N(0, \sigma_{B(A)}^2)$, $\epsilon_{ijk} \sim N(0, \sigma^2)$ ……(10.13)

■ 여러 가지 모형(계속)

<표 10-5> 이단지분계획에 대한 *E(MS)*

E(MS)	A 고정	A 랜덤	A 고정
	B(A) 고정	B(A) 랜덤	B(A) 랜덤
$E(M\!S_{\!A})$	$\sigma^2 + \frac{bn\sum_{i}^{a}\alpha_i^2}{a-1}$	$\sigma^2 + n\sigma^2_{B(A)} + bn\sigma^2_A$	$\sigma^2 + n\sigma_{B(A)}^2 + \frac{bn\sum_{i=1}^{a}a_i^2}{a-1}$
$E(\mathit{MS}_{\mathit{B}(A)})$	$\sigma^2 + \frac{n\sum_{i}^{a}\sum_{j}^{b}\beta_{j(i)}^2}{a(b-1)}$	$\sigma^2 + n\sigma^2_{B(A)}$	$\sigma^2 + n\sigma^2_{B(A)}$
$E(M\!S_{\!E})$	σ^2	σ^2	σ ²

예 10.1 약 투여 후 혈중 콜레스트롤 농축도 잼 세 가지 약은 시판되는 수십 종의 약 중에서 랜덤하게 선택 각 약을 만드는 제약회사도 여러 군데에서 두 군데씩 랜덤하게 선택

<표 10-6> 혈중 콜레스테롤 농축도

약	1	약	2	약	3
제약회사 A	제약회사 Q	제약회사 D	제약회사 B	제약회사 L	제약회사 S
102	103	108	109	104	105
104	104	110	108	106	107

풀이

$$x_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \varepsilon_{ijk} \ (i = 1,2,3; \ j = 1,2; \ k = 1,2)...$$
 (10.16)
 $\alpha_i \sim N(0, \sigma^2_A), \ \beta_{j(i)} \sim N(0, \sigma^2_{B(A)}), \ \varepsilon_{ijk} \sim N(0, \sigma^2)...$ (10.17)

 H_0 : $\sigma^2_A = 0 \Leftrightarrow 콜레스테롤 농축도에 약 간 차이는 없다.(10.18)$

 H_0 : $\sigma^2_{B(A)} = 0 \Leftrightarrow 콜레스테롤 농축도에 제약회사 간 차이는 없다.(10.19)$

<표 10-7> 콜레스테롤 데이터에 대한 분산분석표

요인	제골함	자유도	평군제곱	F_0
	61.167	2	30.583	61.167**
B(A): 제약회사(약)	1.500	3	0.500	0.333
e: 오차	9.000	6	1.500	
T: 총	71.667	11		

풀이(계속)

61.167 >> F(2, 3; 0.05) = 9.55

→ 유의수준 5%에서 콜레스테롤 농축도에 약간 차이가 있다.

0.333 < F(3,6;0.05) = 4.76

→ 콜레스테롤 농축도에 제약회사 간 차이가 있다고 할 수 없다.

10.2 이단지분계획 R 실습

```
nong = c(102, 104, 103, 104, 108, 110, 109, 108, 104, 106, 105, 107)
```

med = c(1,1,1,1,2,2,2,2,3,3,3,3)

comp = c(1,1,2,2,1,1,2,2,1,1,2,2)

ex10.1data = data.frame(med, comp, nong)

ex10.1data\$med=factor(ex10.1data\$med, levels=c(1, 2, 3), labels=c("med1", "med2", "med3"))

ex10.1data\$comp=factor(ex10.1data\$comp, levels=c(1, 2), labels=c("comp1","comp2"))

attach(ex10.1data)

summary(aov(nong ~ med*comp, data=ex10.1data)) # 교차실험인 경우

<u>summary(aov(nong ~ med+ med/comp, data=ex10.1data))</u> # med와 comp가 모두 고정요인인 지분실험의 경우

<u>summary(aov(nong ~ med+Error(med/comp), data=ex10.1data))</u> # med와 comp가 모두 랜덤요인인 지분실험의 경우

R 실습

Error: med

Df Sum Sq Mean Sq

med 2 61.17 30.58

Error: med:comp

Df Sum Sq Mean Sq F value Pr(F)

Residuals 3 1.5 0.5

Error: Within

Df Sum Sq Mean Sq F value Pr(F)

Residuals 6 9 1.5

<표 10-5>의 랜덤모형에서 a=3, b=2, n=2를 대입하면

$$\sigma^2$$
, $\sigma^2_{\mathcal{B}(A)}$, σ^2_A ?

$$(10.22) \rightarrow \widehat{\sigma^2} = 1.500 \dots (10.23)$$

$$(10.21) \rightarrow \widehat{\sigma^2} + 2 \widehat{\sigma^2}_{B(A)} = MS_{B(A)}....(10.24)$$

$$\widehat{\sigma^2}_{B(A)} = \frac{MS_{B(A)} - MS_E}{2} = \frac{0.5000 - 1.5000}{2} = -0.5000 < 0 \dots (10.25)$$

$$\Rightarrow \sigma^2_{B(A)} = 0$$
 으로 놓음

$$(10.20) \rightarrow \widehat{\sigma^2} + 2 \widehat{\sigma^2}_{B(A)} + 4 \widehat{\sigma^2}_A = MS_A \dots (10.27)$$

$$\widehat{\sigma^2_A} = \frac{MS_A - MS_E - 2\widehat{\sigma^2_{B(A)}}}{4} = \frac{30.583 - 1.500 - 2 \times 0.000}{4} = 7.271 \dots (10.28)$$

스 그는 그는 그는 그는 전보통계학과 **백재욱** 교수

제12강 지분계획과 분할구계획

10.3 삼단지분계획

[그림 10-1] 삼단지분계획

예 많은 트럭이 들어옴! 트럭 안에 큰 박스 많음! 큰 박스 안에 작은 박스 많음! 트럭 간, 큰 박스 간, 그리고 작은 박스 간 차이가 있을까?

모형

$$x_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \gamma_{k(ij)} + \varepsilon_{l(ijk)} \dots (10.32)$$

(i = 1,2,...,a; j = 1,2,...,b; k = 1,2,...,c; l = 1,2,...,n)

■ 제곱합의 분할

$$SS_{T} = SS_{A} + SS_{B(A)} + SS_{C(AB)} + SS_{E} \qquad (10.33)$$

$$SS_{T} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (x_{ijkl} - \overline{x})^{2} \qquad (10.34)$$

$$SS_{A} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\overline{x}_{i...} - \overline{x})^{2} \qquad (10.35)$$

$$SS_{B(A)} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\overline{x}_{ij..} - \overline{x}_{i...})^{2} \qquad (10.36)$$

$$SS_{C(AB)} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (\overline{x}_{ijk.} - \overline{x}_{ij..})^{2} \qquad (10.37)$$

$$SS_{E} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (x_{ijkl} - \overline{x}_{ijk.})^{2} \qquad (10.38)$$

■ 자유도의 분할

$$abcn-1 = (a-1) + a(b-1) + ab(c-1) + abc(n-1) + abc(n-1) + \phi_{E}$$

$$\phi_{T} = \phi_{A} + \phi_{B(A)} + \phi_{C(AB)} + \phi_{E}$$
(10.39)

<표 10-8> 삼단지분계획에 대한 분산분석표(랜덤효과모형)

변인	제곱합	자유도	평균제곱	\mathbf{F}_0
_4	SS_A	a-1	MS_A	$MS_A/MS_{B(A)}$
B(A)	$SS_{B(A)}$	a(b-1)	$MS_{B(A)}$	$MS_{B(A)}/MS_{C(AB)}$
C(AB)	$SS_{C(AB)}$	ab(c−1)	$MS_{\mathcal{O}(AB)}$	$MS_{C(AB)}/MS_{E}$
$_$	SS_{E}	a <u>bc</u> (n−1)	$MS_{\!E}$	
T	SS_T	abcn-1		

예 A, B, C 모두 변량인자이다. $\widehat{\sigma^2}_{\mathcal{C}(AB)}$ 값은 얼마인가?

요인	SS	df
\boldsymbol{A}	91	1
B(A)	68	6
C(AB)	24	
e	8	16
T		31

풀이 A, B, C가 각각 수준수가 l,m,n이고 r회 반복측정이 이루어진 경우 $E\left(MS_{C(AB)}\right) = \sigma^2 + r\sigma_{C(AB)}^2$ 이고, $E(MS_E) = \sigma^2$ 이므로

$$\widehat{\sigma^2_{C(AB)}} = \frac{MS_{C(AB)} - MS_E}{r} = \frac{3 - 0.5}{2} = 1.25 \text{ OIC}.$$

다음 시간 안내

제13강(10장)

지분계획과 분할구계획