Mecânica Estatística

Descrição estatística de sistemas físicos Ensembles de Gibbs

Prof. Márcio Sampaio Gomes Filho

Observação

- Esses slides são um complemento à aula ministrada em sala;
- Explicações/desenvolvimentos serão feitas no quadro.
- Caso não tenha assistido à aula em sala, fique atento, pois o conteúdo completo não está disponível apenas nos slides.

Informação

Página do curso: https://marciosampaio.github.io/ mec-estatistica-2025.3.html

Entropia

Visão macroscópica

- Formulada por Rudolf Clausius (1850's)
 - Máquinas térmicas de Carnot (1824)
 - Definição da entropia como uma função de estado.
 - Segunda lei da termodinâmica \longmapsto Variação de entropia $(\Delta S \ge 0)$

Contextualização

$S = k_B \ln W$

O primeiro postulado da mecânica estatística de equilíbrio estabelece que todos os estados microscópicos de um sistema fechado, como energia fixa, são igualmente prováveis, definindo o ensemble microcânonico.

O segundo postulado é a definição de entropia S, dada pelo logaritmo do número de microestados acessíveis ao sistema:

$$S(E, V, N) = k_B \ln W(E, V, N), \tag{1}$$

onde $k_B = 1,38 \times 10^{-23} \text{J/K}$ é a constante de Boltzmann.

W(E, V, N): número de microestados acessíveis (mutiplicidade) para um dado macroestado.

Interpretação estatística da entropia

- Exemplo (analogia): Lançamento de dados
- Microestado: uma possível configuração dos dados.
- Macroestado: a soma do número dos dados.

Interpretação estatística da entropia

Dois dados

❖ Apenas 1 microestado leva ao macroestado "2"

Dois dados

❖ 6 microestados diferentes levam ao macroestado "7"

Dois dados

Macroestado	2	3	4	5	6	7	8	9	10	11	12
Número de Microestados	1	2	3	4	5	6	5	4	3	2	1

- ❖ Microestados Ordenados → Baixa probabilidade
- \diamond Microestados Desordenados \mapsto Alta probabilidade

"Em qualquer sistema termodinâmico, o estado macroscópico mais provável é aquele com o maior número de estados microscópicos correspondentes, que é também o estado macroscópico com a maior entropia".

$$S = k_B \ln W$$

,

Variação de entropia:

$$\Delta S = S_{\text{final}} - S_{\text{inicial}} = k_B \ln W_{\text{final}} - k_B \ln W_{\text{inicial}} = k_B \ln \left(\frac{W_{\text{final}}}{W_{\text{inicial}}} \right).$$

Equilíbrio termodinâmico

- ❖ Adiábatica \mapsto diatérmica: $E_1 + E_2 = E_0$ (constante)
- Fixa \mapsto móvel: $V_1 + V_2 = V_0$ (constante)
- ❖ Impermeável \mapsto permeável: $N_1 + N_2 = N_0$ (constante)

• Aulas passadas: $dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dN$

Equilíbrio térmico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial E_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial E_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial E_2} = 0$$

$$\,\longmapsto\, T_1=T_2.$$

• Aulas passadas: $dS = \frac{1}{\tau} dE + \frac{P}{\tau} dV - \frac{\mu}{\tau} dN$

Equilíbrio térmico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial E_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial E_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial E_2} = 0$$

$$\longmapsto T_1 = T_2$$
.

Equilíbrio mecânico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial V_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial V_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial V_2} = 0$$

$$\longmapsto \frac{P_1}{T_1} = \frac{P_2}{T_2}.$$

• Aulas passadas: $dS = \frac{1}{\tau} dE + \frac{P}{\tau} dV - \frac{\mu}{\tau} dN$

Equilíbrio térmico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial E_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial E_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial E_2} = 0$$

$$\longmapsto T_1 = T_2$$
.

Equilíbrio mecânico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial V_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial V_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial V_2} = 0$$

$$\longmapsto \frac{P_1}{T_1} = \frac{P_2}{T_2}.$$

Equilíbrio químico

$$\frac{\partial \ln P(E_1, V_1, N_1)}{\partial N_1} = \frac{\partial \ln W_1(E_1, V_1, N_1)}{\partial N_1} - \frac{\partial \ln W_2(E_2, V_2, N_2)}{\partial N_2} = 0$$

... ...