LADR Done Right

johnsmith0x3f

August 30, 2024

Contents

1	Vector Spaces			
		\mathbf{R}^n and \mathbf{C}^n		
	1.B	Definition of Vector Space	2	
	1.C	Subspaces	2	
2	Inner Product Spaces			
	2.A	Inner Products and Norms	3	
	2.B	Orthonormal Bases	4	

Chapter 1

Vector Spaces

- 1.A \mathbf{R}^n and \mathbf{C}^n
- 1.B Definition of Vector Space
- 1.C Subspaces

Exercise 12 Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. Suppose U and W are subspaces of V, such that $U \cup W$ is also a subspace and neither is contained in the other. In other words, $U \not\subset W$ and $W \not\subset U$. Let $u \in U - W$ and $w \in W - U$. Since $U \cup W$ is a subspace of V, we have $u + w \in U \cup W$. However,

$$u+w \in U \Rightarrow w = (u+w) - u \in U,$$

 $u+w \in W \Rightarrow u = (u+w) - w \in W,$

which implies that u + w is in neither U nor W, a contradiction.

Chapter 2

Inner Product Spaces

2.A Inner Products and Norms

Exercise 5 Suppose $T \in \mathcal{L}(V)$ is such that $||Tv|| \le ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Proof. Suppose *V* is finite-dimensional. For all $u \in \text{null}(T - \sqrt{2}I)$, we have $Tu = \sqrt{2}u$, and hence $||Tu|| = ||\sqrt{2}u|| = \sqrt{2}||u||$. Since $||tv|| \le ||v||$, this implies that u = 0.

Exercise 6 Suppose $u, v \in \mathcal{L}(V)$. Prove that $\langle u, v \rangle = 0$ if and only if

$$||u|| \leq ||u + av||$$

for all $a \in \mathbf{F}$.

Solution. If $\langle u, v \rangle = 0$, then

$$||u + av||^2 - ||u||^2 = ||av||^2 \ge 0.$$

by the Pythagorean Theorem.

If $||u|| \le ||u + av||$ for all $a \in \mathbb{F}$, then

$$0 \leqslant \|u + av\|^2 - \|u\|^2 = \overline{a}\langle u, v \rangle + a\overline{\langle u, v \rangle} + |a|^2 \|v\|^2.$$

Letting $a = -\frac{\langle u, v \rangle}{\|v\|^2}$ yields $\langle u, v \rangle = 0$.

Exercise 8 Suppose $u, v \in V$ and ||u|| = ||v|| = 1 and $\langle u, v \rangle = 1$. Prove that u = v.

4

Proof. Note that

$$||u-v||^2 = \langle u-v, u-v \rangle = ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2 = 0.$$

Hence u - v = 0 by definiteness.

Exercise 11 Prove that

$$16 \leqslant (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

for all positive numbers a, b, c, d.

Proof. By Exercise 6.17(a), we have

$$16 = \left| \sqrt{a \cdot \frac{1}{a}} + \sqrt{b \cdot \frac{1}{b}} + \sqrt{c \cdot \frac{1}{c}} + \sqrt{d \cdot \frac{1}{d}} \right|^2$$
$$\leq (a+b+c+d) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right).$$

Exercise 12 Prove that

$$(x_1 + x_2 + \dots + x_n)^2 \le n(x_1^2 + x_2^2 + \dots + x_n^2)$$

for all positive integers n and all real numbers x_1, \ldots, x_n .

Proof. In Exercise 6.17(a), let $y_1 = y_2 = \cdots = y_n = 1$.

Exercise 17 Prove or disprove: there is an inner product on ${\bf R}^2$ such that the associated norm is given by

$$||(x,y)|| = \max\{x,y\}$$

for all $(x, y) \in \mathbf{R}^2$.

Counterexample. Let u = (0,1), v = (1,0). Then 6.22 fails.

2.B Orthonormal Bases

Exercise F ind a polynomial $q \in \mathcal{P}_2(\mathbf{R})$ such that

$$p\left(\frac{1}{2}\right) = \int_0^1 p(x)q(x) \, \mathrm{d}x$$

for every $p \in \mathcal{P}_2(\mathbf{R})$.

Solution. Let $\varphi(p)=p\left(\frac{1}{2}\right)$ and $\langle p,q\rangle=\int_0^1 p(x)q(x)\,\mathrm{d}x$. Then with the orthonormal basis found in Exercise 5 and the formula in 6.43, we can find that

$$q(x) = -15x^2 + 15x - \frac{3}{2}.$$