Machine Learning: An Applied Econometric Approach

Jann Spiess

based on work with Sendhil Mullainathan

in collaboration with Susan Athey and Niall Keleher

2. The Secret Sauce of Machine Learning

Structure of first chapter of webinar

1. Introduction

- 2. The Secret Sauce of Machine Learning
- 3. Prediction vs Estimation

Prediction problem set-up

Given:

- Training data set $(y_1, x_1), ..., (y_n, x_n)$ (assume iid)
 - Usually called "regression" when y continuous, "classification" when y discrete
- Loss function $\ell(\hat{y}, y)$

Econometrics		ML
у	Outcome variable	Label
X	Covariate	Feature

Goal:

• Prediction function \hat{f} with low average loss ("risk") $L(\hat{f}) = E_{(y,x)} [\ell(\hat{f}(x),y)]$ where (y,x) distributed same as training

Squared-error loss for regression

"Regression": Continuous outcome, $y \in \mathbb{R}$

Squared-error loss:
$$L(\hat{f}) = E(\hat{f}(x) - y)^2$$

 $(\ell(\hat{y}, y) = (\hat{y} - y)^2)$

- Predict log house price y of a new home from its characteristics x based on survey data from homes with same distribution (Mullainathan and Spiess, 2017)
- Predict log consumption y for a new household x based on data on similar households (Adelman et al.)

Loss measures for classification

Standard regression solution

Goal: small $E(\hat{f}(x) - y)^2$

E.g. use linear functions $\hat{f}(x) = \hat{\beta}' x = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_j$

• From training data, pick the β that provides best insample fit:

$$\min_{\widehat{\beta}} E(y - \widehat{\beta}'x)^2 \rightarrow \min_{\widehat{\beta}} \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{\beta}'x_i)^2$$

- Which optimality properties does OLS have?
- Is this optimal for prediction?

Bias-variance decomposition

- Loss at new point $y = \beta' x + \epsilon$ ($E[\epsilon | x] = 0$): $(\hat{y} - y)^2 = (\hat{\beta}' x - \beta' x - \epsilon)^2$
- Average over draws of training sample (and ϵ):

$$E_{T,\epsilon}[(\hat{y} - y)^{2}] = E_{T}[(\hat{\beta}'x - \beta'x)^{2}] + E_{\epsilon}[\epsilon^{2}]$$

$$= \left((E_{T}[\hat{\beta}] - \beta)'x \right)^{2} + x'V_{T}(\hat{\beta})x + V_{\epsilon}(\epsilon|x)$$
bias
approximation
variance irreducible noise
overfit

• Important framing within econometrics, stats

Approximation-overfit trade-off

Approximation-overfit trade-off

Approximation—overfit trade-off

As model becomes more complex:

- 1. Fit true function better (approximation)
- 2. Fit noise better (overfit)

Hence:

- 1. Flexible functional forms
- 2. Limit expressiveness (regularization)

Regularization for linear regression

Rather than OLS

$$\min_{\widehat{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{\beta}' x_i)^2$$

Fit constrained problem

$$\min_{\widehat{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}' x_i)^2 \text{ s.t. } \|\hat{\beta}\| \le c$$
$$\|\hat{\beta}\|_0 = \sum_{j=1}^{k} 1_{\widehat{\beta}_j \neq 0} \qquad \|\hat{\beta}\|_1 = \sum_{j=1}^{k} |\hat{\beta}_j| \qquad \|\hat{\beta}\|_2^2 = \sum_{j=1}^{k} \hat{\beta}_j^2$$

- Throughout, assume $\hat{\beta}' = [\hat{\beta}_0 | \hat{\beta}_1, ..., \hat{\beta}_k)$
- Normalize! not penalized

LASSO regression

$$\min_{\hat{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}' x_i)^2 + \lambda \sum_{j=1}^{k} |\hat{\beta}_j|$$

- Selects and shrinks
- "Capitalist" in doubt give all to one
- Produces sparse solutions

LASSO regression

Ridge regression

$$\min_{\hat{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}' x_i)^2 + \lambda \sum_{j=1}^{k} \hat{\beta}_j^2$$

- Shrink towards zero, but never quite
- "Socialist" in doubt distribute to multiple
- Can be interpreted as Bayesian posterior

Regularization for linear regression

LASSO	Ridge	Elastic Net
Shrinks coefficients to 0 Good for variable selection	Makes coefficients smaller	Tradeoff between variable selection and small coefficients
$ \theta _1 \leqslant 1$	$ \theta _2 \leqslant 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
$\lambda \in \mathbb{R}$ $\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}$ $\lambda \in \mathbb{R}$	$egin{aligned} + \lambda \Big[(1-lpha) heta _1 + lpha heta _2^2 \Big] \ \lambda \in \mathbb{R}, lpha \in [0,1] \end{aligned}$

Structure of supervised learners

- A function class
- A regularizer
- An optimization algorithm that gets us there

Poverty targeting

Indicator		Value	Points	Sco
How many members does the household have?		A. Five or more	0	
		B. Four	6	
		C. Three	11	
		D. Two	17	
		E. One	20	
2. Do any household members ages 5 to 18 go to private school or private pre-school?		A. No	0	
		B. Yes	5	
		C. No members ages 5 to 18	7	
3. How many years of schooling has the female head/spouse completed?		A. Three or less	0	
		B. Four to eleven	2	
		C. Twelve or more	8	
		D. No female head/spouse	8	
4. How many househo	ld members work as employees with a	A. None	0	
	ct, as civil servants for the government, or	B. One	4	
in the military	?	C. Two or more	13	
•	ation, how many household members are m	21. 110110	0	
administrators, professionals in the arts and sciences, mic technicians, or clerks?		-level B. One or more	8	
6. How many rooms d	oes the residence have?	A. One to four	0	
		B. Five	2	
		C. Six	5	
		D. Seven	7	
		E. Eight or more	11	
7. How does the household B. Simple hole, or directly into river, lal dispose of C. Septic tank not connected to public s			0	
		ke, or ocean	2	
		ewage/rainwater system	3	
sewage?	D. Septic tank connected to public sewa		4	
	E. Direct connection to public sewage/r	ainwater system	5	
8. Does the household have a refrigerator?		A. No	0	
		B. Yes, with one door	5	
		C. Yes, with two doors	10	
9. Does the household have a washing machine?		A. No	0	
		B. Yes	7	
10. Does the household have a cellular or land-line telephone?		A. None	0	
		B. Cellular but not land-line	5	
		C. Land-line but not cellular	6	
		D. Both	11	

Reference point: OLS

Fitted vs actual values in sample

Regression trees

OLS vs tree

How to find optimal tree?

Structure of supervised learners

- A function class
- A regularizer
- An optimization algorithm that gets us there

Choosing regularization parameter

Choosing regularization parameter

- Hold-out: create out-of-sample in-sample
- Cross-validation: create repeated hold-outs

Choosing regularization parameter

- Hold-out: create out-of-sample in-sample
- Cross-validation: create repeated hold-outs

Hence:

- 1. Flexible functional forms
- 2. Limit expressiveness (regularization)
- 3. Learn how much to regularize (tuning)

Structure of ML exercise

ML basics recap

- 1. Flexible functional forms
- 2. Limit expressiveness (regularization)
- 3. Learn how much to regularize (tuning)
- Important researcher choices:
 - Loss function
 - Data management/splitting
 - Feature representation
 - Function class and regularizer

From LASSO to neural nets

Function class	Regularizer
Linear	LASSO, ridge, elastic net
Decision/regression trees	Depth, leaves, leaf size, info gain
Random forest	Trees, variables per tree, sample sizes, complexity
Nearest neighbors	Number of neighbors
Kernel regression	Bandwidth
Splines	Number of knots, order
Neural nets	Layers, sizes, connectivity, drop-out, early stopping

Regularizing neural nets

Model combination: ensembles

$$\hat{f}(x) = w_1 \, \hat{f}_1(x) + \dots + w_K \, \hat{f}_K(x)$$

- Can combine across different model classes
- How to choose weights?

Model combination: bagging / random forest

Random forest

Boosting / boosted trees

Iteratively fit a simple tree

Bayesian regularization

- Bayesian methods shrink towards a prior
- Powerful way of constructing regularized predictions,
 e.g. ridge regression, Bayesian trees

ML basics recap

- 1. Flexible functional forms
- 2. Limit expressiveness (regularization)
- 3. Learn how much to regularize (tuning)
- Important researcher choices:
 - Loss function
 - Data management/splitting
 - Feature representation
 - Function class and regularizer

Implementation: R

```
cv_folds <- vfold_cv(house_train, v = 5)

rf_grid <- grid_regular(
   mtry(range = c(10, 100)),
   min_n(range = c(4, 20)),
   levels = 5
)

tune_rf_res <- tune_grid(
   tune_wf,
   resamples = cv_folds,
   grid = rf_grid
)</pre>
```


So what is new?

Statistics and econometrics

- Dominance of regularization: James and Stein (1961)
- Random forests: Breiman (2001)
- Non- and semiparametrics, sieve estimation

But still, something has happened

- Data
- Computation
- Functional forms that work
- Prediction focus that turns it into engineering competition
- Some new theoretical insights and developments, e.g. double descent, deep learning

ML basics recap

- 1. Flexible functional forms
- 2. Limit expressiveness (regularization)
- 3. Learn how much to regularize (tuning)
- What do these features imply for the properties of \hat{f} ?
- And how can we therefore use \hat{f} in applied work?

Structure of first chapter of webinar

1. Introduction

- 2. The Secret Sauce of Machine Learning
- 3. Prediction vs Estimation