Project Proposal

Name of the Project: Combining Labeled and Unlabeled Data with Co-Training

Team Members:

- 1. Kukkapalli Shravya 2021101051
- 2. Penumalla Aditya Pavani 2021101133

Reference Paper Link:

https://www.cs.cmu.edu/~avrim/Papers/cotrain.pdf

Introduction:

- The co-training algorithm considers the problem of using a large unlabeled sample to boost the performance of a learning algorithm when only a small set of labeled examples is available.
- Co-training assumes that
 - Features can be split into two sets
 - Each sub-feature set is sufficient to train a good classifier
 - The two sets are conditionally independent given the class.
- Consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the task of learning to classify web pages.
- For example, the description of a web page can be partitioned into
 - The words occurring on that page
 - The words occurring in hyperlinks that point to that page.
- The algorithm stated in the paper is as follows:
 - For each example webpage x, x_1 was considered to be the bag of words appearing on the web page, and x_2 was considered to be the bag of words

underlined in all links pointing to the web page from other pages in the database. Classifiers were trained separately for x_1 and for x_2 , using the naive Bayes algorithm.

- \circ Consider a set L of labeled examples and a set U of unlabeled examples.
- \circ The algorithm first creates a smaller pool U' containing u unlabeled examples. It then iterates the following procedure.
- \circ First, use L to train two distinct classifiers: h_1 and h_2 . h_1 is a naive Bayes classifier based only on the x_1 portion of the instance and h_2 is a naive Bayes classifier based only on the x_2 portion.
- \circ Second, allow each of these two classifiers to examine the unlabeled set U' and select the p examples it most confidently labels as positive and the n examples it most confidently labels negative.
- \circ Each example selected in this way is added to L, along with the label assigned by the classifier that selected it.
- \circ Finally, the pool U is replenished by drawing 2p+2n examples from U at random.

Given:

- a set L of labeled training examples
- a set U of unlabeled examples

Create a pool U' of examples by choosing u examples at random from U Loop for k iterations:

Use L to train a classifier h_1 that considers only the x_1 portion of x

Use L to train a classifier h_2 that considers only the x_2 portion of x

Allow h_1 to label p positive and n negative examples from U'

Allow h_2 to label p positive and n negative examples from U'

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U'

Deliverables:

1. Implementing the co-training algorithm mentioned above (for binary classification) to the dataset given in the paper.

- In this phase, we'll create a program that follows the Co-Training algorithm as described in the paper.
- This algorithm is designed to work with a dataset where we will be trying to classify items into one of two categories (binary classification).
- We'll apply this program to the dataset mentioned in the paper.

Data:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/data/

- This data set contains a subset of the WWW pages collected from computer science departments of various universities.
- The 1051 pages were manually classified into the following categories.
 - o Course (230)
 - Non-Course (821)
- The files are organized into a directory structure with two directories at the top level
 - Fulltext This directory contains the text on the web pages
 - Inlinks This directory contains the anchor text on the hyperlinks pointing to the page.
- Under each of the two directories, there is one directory for each class (course, non-course). These directories in turn contain the Web pages. The file name of each page corresponds to its URL, where '/' was replaced with '^'.

Data Pre-processing:

Each file in the data corresponds to an HTML file.

 First, we need to extract the text from the html files and convert it into a "bag of words".

2. Implementing the co-training algorithm for multiclass classification.

- Following the completion of the binary classification part, we'll try to extend our program to work with datasets where we have more than two categories to classify (multi-class classification).
- The dataset that we will be using for this task is mentioned below.

Data:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

- This data set contains WWW pages collected from computer science departments of various universities.
- The 8,282 pages were manually classified into the following categories:
 - Student (1641)
 - Faculty (1124)
 - Staff (137)
 - Department (182)
 - Course (930)
 - Project (504)
 - o Other (3764)
- For each class, the data set contains pages from the four universities
 - Cornell (867)
 - Texas (827)
 - Washington (1205)
 - Wisconsin (1263)

and 4,120 miscellaneous pages collected from other universities.

- The files are organized into a directory structure, one directory for each class. Each of these seven directories contains 5 subdirectories, one for each of the 4 universities and one for the miscellaneous pages. These directories in turn contain the Web pages. The file name of each page corresponds to its URL, where '/' was replaced with '^'.
- Data pre-processing can be done as mentioned above.

Train/Test Splits:

Since each university's web pages have their own idiosyncrasies, training can be
done on three of the universities plus the *misc* collection, and testing on the pages
from a fourth, held-out university.

3. Generating, creating, or finding other relevant datasets that could be used to evaluate this method.

- Here, We'll either create new datasets or locate existing ones that are relevant for evaluating the Co-Training method.
- These datasets should allow us to test how well the algorithm performs.

4. Comparing against the current methods like selftraining algorithm which uses labeled and unlabelled datasets.

 To assess the effectiveness of the Co-Training algorithm, we'll compare its performance against other semi-supervised methods like the Self-Training algorithm.

Analysis:

- Comparing the performance of co-training and the standard supervised learning.
- Comparing the performance of co-training and the other methods that use labeled and unlabelled datasets.

Deliverables for checkpoint - 1

- Implementing the co-training algorithm mentioned above (for binary classification) to the dataset given in the paper. (8th October 21st October)
- Implementing the co-training algorithm for multi-class classification. (22nd October to 30th October)

Deliverables for checkpoint - 2

- Generating, creating, or finding other relevant datasets which could be used to evaluate this method. (31st October to 11th November)
- Comparing against the current methods like self-training algorithm which uses labeled and unlabelled datasets. (12th November to 27th November)