

Surgical compression plate and drill guide

Patent number: DE3176005D
Publication date: 1987-04-23
Inventor: KLAUE KAJ
Applicant: SYNTHES AG (CH)
Classification:
- **international:** A61B17/58
- **european:**
Application number: DE19813176005 19811120
Priority number(s): CH19800008599 19801120

Also published as:

- EP0173267 (A1)
- EP0053999 (A1)
- US4493317 (A1)
- GB2134796 (A)
- GB2134795 (A)

[more >>](#)

Abstract not available for DE3176005D

Abstract of correspondent: **US4493317**

A surgical compression plate is provided which is designed to permit the insertion of bone screws at angles up to 45 DEG . A drill guide capable of tilting to various angles, for use in connection with the novel plate is also disclosed.

Data supplied from the **esp@cenet** database - Worldwide

BEST AVAILABLE COPY

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 053 999
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81810467.1

(51) Int.Cl.³: A 61 B 17/18

(22) Anmelddatag: 20.11.81

(30) Priorität: 20.11.80 CH 8599/80

(71) Anmelder: Synthes AG Chur
Grabenstrasse 15
CH-7002 Chur(CH)

(43) Veröffentlichungstag der Anmeldung:
16.06.82 Patentblatt 82/24

(72) Erfinder: Klaue, Kaj
Hôpital d'arrondissement Sierre
CH-3960 Sierre(CH)

(84) Benannte Vertragsstaaten:
BE CH DE FR LI SE

(74) Vertreter: Brühwiler, Hans
Brühwiler & Co. Löwenstrasse 1
CH-8021 Zürich(CH)

(54) Osteosynthetische Vorrichtung und dazu passende Bohrlehre.

(57) Die Vorrichtung zur Stabilisierung des Bereiches eines Knochenbruches oder einer Osteotomie bei der Kompressions-Osteosynthese besteht aus einer zur Auflage auf den zu stabilisierenden Bereich des Knochens bestimmten Platte und zur Platte passenden, zur Fixierung der Knochenenteile bezüglich der Platte bestimmten Kugelkopfschrauben. Die Platte 12 weist mindestens ein länglich ausgebildetes Loch 10 auf, dessen längsseitige Wandungen ein gegenüber der Plattenoberfläche abgesenktes Widerlager für den Schraubekopf 17 bilden. Die längsseitigen Wandungen des Loches

sind als Gleitbahn 24 ausgebildet, in welcher der Schraubekopf 17 sich parallel zur jeweiligen Schraubenlängsachse verschieben kann. Das Loch 10 und die Schraube 16 sind so ausgebildet, dass die Schraube unter einem Neigungswinkel (β) von bis zu 45° gegenüber einer lotrecht auf die Lochlängsachse (L) stehenden Ebene (E) eingebracht werden und im Loch bei einem Neigungswinkel (β) von 45° mindestens einen Drittel des Schaftdurchmessers (d), gemessen lotrecht zur Schraubenachse (S), gleiten kann.

Fig. 2

EP 0 053 999 A1

Osteosynthetische Vorrichtung und dazu passende Bohrlehre

Die Erfindung betrifft eine Vorrichtung zur Stabilisierung des Bereiches eines Knochenbruches oder einer Osteotomie bei
5 der Kompressions-Osteosynthese, sowie eine Bohrlehre zum Bohren von Löchern in Knochenteile, welche mittels dieser Vorrichtung zu stabilisieren sind.

Der Stand der Technik der Kompressions-Osteosynthese, sowohl
10 vorrichtungsmässig als auch operationstechnisch, ist zusammenfassend in der folgenden Veröffentlichung beschrieben:

15 a) M. E. Müller, M. Allgöwer, R. Schneider und H. Willen-
egger, Manual der Osteosynthese (AO-Technik), 2. Auf-
lage, Springer-Verlag Berlin Heidelberg New York 1977

b) B. Blaudi u.a., Hel. chir. Acta 46 (1979), 177-182.

Weiter ist bezüglich Vorrichtungen auf die folgenden patent-
20 schriftlichen Veröffentlichungen zu verweisen:

c) CH-PS 462 373
d) CH-PS 468 824
e) CH-PS 600 862
25 f) CH-PS 611 147
g) CH-PS 613 616
h) CH-PS 613 858

Bis jetzt wurde bei der Kompressions-Osteosynthese die Kom-
30 pressionsplatte überwiegend nach dem Zuggurtungsprinzip angewendet. Dabei wird die Platte einseitig auf den zu stabilisierenden Bereich an die auf Zug beanspruchte Seite

des Knochens angebracht und nach Vorspannung mittels Schrauben lotrecht zur Knochen- und Plattenlängsachse mit dem Knochen verschraubt; die der Platte gegenüberliegende Muskulatur sowie die physiologische Belastung schliesst durch zusätzliche dynamische Kompression den Frakturspalt (vgl. Veröffentlichung a)).

Statische, interfragmentäre Kompression kann durch einfache Zugschrauben ohne Verwendung einer Platte erreicht werden (Veröffentlichung a)).

Neuerdings wurde auch bereits vorgeschlagen, die Stabilisierung mittels Platte durch Hinzufügen einer schiefwinklig zur Knochen- und Plattenlängsachse verlaufenden, die Frakturspaltebene durchdringenden schrägen Zugschaube, deren Axialkraft eine zusätzliche interfragmentäre Kompression bewirkt, zu verbessern (vgl. Veröffentlichung b), Seite 178 und Abb. 2B).

Der Anwendung der letzterwähnten Methode waren bisher jedoch enge Grenzen gesetzt, da die Geometrie der bisher bekannten Kompressionsplatten und Schrauben nur eine ungenügende Schwenkung der Schrauben gegenüber der Querebene und in geschwenktem und voll eingeschraubtem Zustande praktisch keine Längsbewegung der Schrauben, welche über ihre ganze Länge mit Gewinde versehen waren, in den Widerlagern der Löcher der Kompressionsplatte zuliess.

Es wurde nun gefunden, dass es für eine allgemeine wirkungsvolle Anwendung von schrägen Zugschrauben, sei es als ausschliessliches oder zusätzliches Kompressionselement, notwendig ist, dass die Schrauben in den Löchern der Platte um bis zu 45° gegenüber einer Querebene zur Lochlängs-

achse schwenkbar und in der Lochlängsrichtung in geschwenktem Zustand um eine wesentliche Strecke verschiebbar sind.

Gegenstand der vorliegenden Erfindung ist demnach eine Vorrichtung zur Stabilisierung des Bereiches eines Knochenbruches oder einer Osteotomie bei der Kompressions-Osteosynthese, bestehend aus einer zur Auflage auf den zu stabilisierenden Bereich des Knochens bestimmten Platte und zur Platte passenden, zur Fixierung der Knochenteile bezüglich

5 der Platte bestimmten Kugelkopfschrauben, wobei die Platte mindestens ein länglich ausgebildetes Loch aufweist, dessen längsseitige Wandungen ein gegenüber der Plattenoberfläche abgesenktes Widerlager für den Schraubenkopf bilden, die dadurch gekennzeichnet ist, dass die längsseitigen Wan-

10 dungen der Löcher als Gleitbahn ausgebildet sind, in welcher der Schraubenkopf sich parallel zur jeweiligen Schraubenlängsachse verschieben kann, wobei das Loch und die Schraube so ausgebildet sind, dass die Schraube unter einen Neigungswinkel (β) von bis zu 45° gegenüber einer lot-

15 recht auf die Lochlängsachse (L) stehenden Ebene (E) eingebracht werden und im Loch bei einem Neigungswinkel (β) von 45° um mindestens einen Drittel des Schaftdurchmessers (d), gemessen lotrecht zur Schraubenachse (S), gleiten kann.

20

25 Bei den als schräge Zugschrauben zu verwendenden Schrauben weist der Schraubenschaft zwischen dem Schraubenkopf und em Gewindeteil ein gewindefreies zylindrisches Zwischenstück auf, dessen Durchmesser mindestens gleich gross ist, wie der Aussendurchmesser des Gewindeteils,

30 während bei den zur Fixierung der Platte am Knochen bestimmten Schrauben der Schraubenschaft auf seiner ganzen Länge mit einem Gewinde versehen ist.

dungen des Loches gebildete Widerlager mindestens teilweise entweder durch den Mantel eines Zylinders, dessen Achse zur Plattenachse parallel verläuft oder mit dieser zusammenfällt, oder aber durch zwei Ebenen definiert, die sich in einer zur Längsachse der Platte parallelen Geraden schneiden.

Vorzugsweise sind die Ränder der Löcher auf der vom Knochen abgewandten Seite der Platte gegenüber der äussersten Begrenzung des das Widerlager bildenden Teils der Wandungen mindestens an der frakturfernen Stirnseite des Loches noch nach aussen versetzt, d.h. die Löcher sind nach aussen derart erweitert, dass die Erweiterung einen Teil eines Trichters bildet. Vorzugsweise ist dies auch auf der am Knochen anliegenden Seite der Platte gegenüber der lichten Lochweite, insbesondere an der fraktturnahen Stirnseite des Loches, der Fall, d.h. auch dort sind die Löcher nach aussen derart erweitert, dass die Erweiterung einen Teil eines Trichters bildet.

Weiterhin betrifft die Erfindung eine Bohrlehre zu Bohren von schiefwinklig zur Knochenlängsachse verlaufenden Löchern in mittels einer erfindungsgemässen Vorrichtung zu stabilisierende Knochenteile; diese ist dadurch gekennzeichnet, dass sie eine zur Führung des Bohrers bestimmte, in einem kalottenartig ausgebildeten Lager exzentrisch angeordnete Bohrbüchse aufweist, welches kalottenartige Lager dazu bestimmt ist, beim Bohren in der Gleitbahn der Löcher zu ruhen, wobei mindestens der in einer Schnittebene quer zur Lochlängsachse liegende Radius des kalottenartigen Lagers gleich dem Kugelradius der Kugelköpfe der Schrauben ist.

Dabei kann die Bohrlehre so ausgebildet sein, dass das kalottenartige Lager Kugelform aufweist und dazu bestimmt ist, beim Bohren in der Gleitbahn der Löcher am fraktturnahen Ende des Loches anzuliegen, wobei sein

5 Radius gleich dem Kugelradius der Kugelköpfe der Schrauben ist.

Zweckmässigerweise ist jedoch nur der in einer Schnittebene quer zur Lochlängsachse liegende Radius des
10 kalottenartigen Lagers gleich dem Kugelradius der Kugelköpfe der Schrauben, während der in einer die Lochlängsachse mitumfassenden Schnittebene liegende Radius grösser als der Kugelradius der Kugelköpfe der Schrauben ist.

15 Beispielsweise Ausführungsformen der Erfindung sowie der Stand der Technik werden nachstehend anhand der Zeichnung näher erläutert. Es stellen dar:

20 Fig. 0 einen Längsschnitt durch eine mittels einer dynamischen Kompressionsplatte gemäss dem Stand der Technik fixierten Fraktur;

25 Fig. 1 eine schematische Darstellung der bei Anwendung des Prinzips der schrägen Kompressions schraube mit der erfindungsgemässen Vorrichtung entstehenden Kräfte und Momente;

30 Fig. 2 einen Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung in appliziertem Zustand an einer mehrfragmentären Fraktur;

Fig. 3 einen Querschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung, bei welcher die Löcher auf der vom Knochen abgewandten Seite der Platte gegenüber dem das Widerlager bildenden Teil der Wandungen nach aussen versetzt sind;

5

Fig. 4 einen Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung während der Herstellung durch Fräsen eines Loches mittels eines Kugelfräisers;

10

Fig. 5 einen Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung während des Ausfrässens einer trichterförmigen Erweiterung;

15

Fig. 6 einen Längsschnitt durch eine erste Ausführungsform der erfindungsgemässen Bohrlehre;

20

Fig. 7 einen Längsschnitt durch eine erfindungsgemäss Vorrichtung mit der in Fig. 6 dargestellten Bohrlehre in Applikationslage;

25 Fig. 8 und 9 eine zweite Ausführungsform einer erfindungsgemässen Bohrlehre in Längs- bzw. Querschnitt;

30 und

Fig. 10 die zeichnerische Darstellung der Zusammenhänge zwischen den Abmessungen der Bohrlehre, der Löcher und der Schrauben.

In Fig. 0 ist ein Längsschnitt durch eine mittels einer dynamischen Kompressionsplatte fixierte Fraktur dargestellt. Diese Darstellung entspricht dem Stand der Technik. Die Kompressionsplatte 1 liegt mindestens angenähert bündig auf dem Knochen 5 auf, weist mindestens zwei Löcher (3) auf (nur eins dargestellt) und ist dort mittels einer Kugelkopfschraube 2 am Knochen 5 fixiert. Letztere stösst am Lochrand 4 an, was beim Einschrauben zum Abdrücken des Kopfes der Kugelkopfschraube 2, d.h. Verschiebung der Schraube in Richtung der Platten und Knochenlängsachse und des darunterliegenden Knochens, in Frakturrichtung führt. Das Fixieren der Kompressionsplatte 1 bewirkt die Entstehung von entgegengesetzt gerichteten Kräfte A und B an der Bruchstelle 6, 7. Dabei ist die Kraft B, welche die Bruchstelle 7 an der der Kompressionsplatte 1 abgewandten Seite auseinanderzieht, unerwünscht. Es wurde schon versucht, durch verschiedene Massnahmen die Kraft B entgegenzuwirken oder sie zu eliminieren, beispielsweise durch Biegen der Kompressionsplatte 1 (Literatur b)).

Fig. 1 zeigt dagegen die ebenfalls entgegengesetzt gerichteten Kräfte C, D, die bei Anwendung der erfindungsgemäßen Vorrichtung entstehen. Die mit mehr als einem Loch 10 (nur eins dargestellt) versehene Platte 12 liegt wieder mindestens angenähert bündig auf den Knochen 14 auf. Die Schraube 16 weist zwischen Schraubenkopf 17 und Gewinde 19 einen gewindefreien Teil 18 auf und ist schräg in den Knochen 14 eingesetzt, und zwar derart, dass sie mit einer lotrecht auf die Lochlängsachse stehenden Ebene E einen Neigungswinkel β von 45° bildet. Die Schraube 16 ist in zwei Stel-

lungen 21 und 22 dargestellt, welch letztere sie durch Gleiten in der Gleitbahn 24 einnehmen kann. Durch das Drehen der Schraube 16 entsteht eine Hebelwirkung, durch welche die Schraubenachse um den Winkel γ gedreht wird. Die Hebelwirkung ist derart, wie wenn die Kräfte in den Punkten 26, 5 28 angreifen würden und 27 der Stützpunkt des Hebels wäre. Auf die Bruchstelle 30 des Knochens 14 wirken die Kräfte C, D, welche im Gegensatz zur Fig. 0 die Bruchstücke an allen Stellen zusammendrücken.

10 In Fig. 2 wird ein Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung in appliziertem Zustand an einer mehrfragmentären Fraktur 14 dargestellt. Die mit mehreren Löchern 10 versehene Platte 12 liegt wieder mindestens angenähert bündig auf den Knochen 14 auf, welcher mehrere Frakturen 30 aufweist.

Die drei Schrauben 32, 33, 34 weisen zwischen Schraubenkopf 17 und Gewinde 19 einen gewindefreien Teil 18 auf. Die Schrauben 32, 33, 34 sind schräg eingesetzt, und zwar 15 derart, dass sie mit einer lotrecht auf die Lochlängsachse stehenden Ebene E einen Neigungswinkel β bilden, welcher für die Schrauben 32, 33, 34 verschieden gross und vom Verlauf der Bruchstelle 30 abhängig ist. Die Schrauben 32, 33, 20 34 können in der jeweiligen Gleitbahn 24 gleiten. Bei den Schrauben 36, 37 handelt es sich um nicht erfindungsgemässen 25 Plattenfixationsschrauben, deren Achsen lotrecht zur Lochlängsachse stehen. Sie dienen nur zur Befestigung der Platte 12 am Knochen 14. Währenddem die Anzahl der schräg eingesetzten Schrauben 32, 33, 34 von Art und Anzahl der Bruchstellen abhängig ist, werden vorzugsweise mindestens zwei 30 Plattenfixationsschrauben, vorzugsweise an den beiden Längsenden der Platte 12, eingesetzt.

Die Schrauben können entweder mit einem solchen Gewinde versehen sein, welches das Vorschneiden der Gewinde im Bohrloch erforderlich macht oder auch selbstschneidende Gewinde aufweisen, welche in das gewindefreie Bohrloch 5 eingeschraubt werden.

In Fig. 3 ist ein Querschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung, bei welcher die Ränder 10 der Löcher 10 auf der vom Knochen 14 abgewandten Seite 10 der Platte 12 gegenüber dem das Widerlager 23 bildenden Teil der Wandungen leicht nach aussen versetzt sind.

Fig. 4 zeigt einen Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung während der Herstellung 15 durch Fräsen eines Loches 10 mit einem Kugelfräser 42. Der Mittelpunkt 44 des Kopfes des Kugelfräisers 42 bewegt sich während des Fräsvorganges entlang der Strecke X. Vorteilhaft werden diese Löcher durch computergesteuerte Kugelfräser hergestellt.

20 In Fig. 5 ist ein Längsschnitt durch eine Ausführungsform der erfindungsgemässen Vorrichtung dargestellt. Es handelt sich um das Ausfräsen der trichterförmigen Erweiterung 46 des Loches 10 auf der dem Knochen 14 zugewandten Seite der 25 Platte 12.

Die erfindungsgemäße Vorrichtung weist gegenüber dem bekannten Stand der Technik verschiedene Vorteile auf.

Wie in Fig. 0 gezeigt, wird die transkortikale Frakturspalte mit einer Vorrichtung gemäss dem Stand der Technik auseinandergezogen. Durch die schräge Lage der Schraube in der erfindungsgemäßen Vorrichtung wird eine doppelte Kompression möglich, da durch die Hebelarmwirkung, welche bei Fig. 1 dargelegt wird, nicht nur wie gemäss dem Stand der Technik die ciskortikale Frakturpalte sondern auch die transkortikale Frakturpalte zusammengedrückt wird. Entsprechend sind bei der Verwendung der erfindungsgemäßen Vorrichtung keine zusätzlichen Massnahmen, wie Biegen der Platte, zum Schliessen der transkortikalen Frakturpalte erforderlich.

Beim Anbringen einer Kompressionsplatte gemäss dem Stand der Technik ist der Spannweg, d.h. die Länge der Strecke, entlang welcher die Schraube samt dem von ihr gefassten Knochen teil in Richtung Fraktur geschoben wird, schon zum voraus festgelegt. Demgegenüber kann die Kompression mit der erfindungsgemäßen Vorrichtung während des Einbringens der Schraube, infolge der Gleitmöglichkeit in der Gleitbahn, den vorherrschenden Umständen angepasst werden, da nicht

die ganze mögliche Lochlänge ausgenutzt werden muss.

Der Kopf der Schraube der erfindungsgemässen Vorrichtung wird bei der Verwendung nicht plastisch abgeknickt, d.h.

5 der am Kopf der Schraube anschliessende Teil des Schraubenschaftes wird infolge Drehung der Schraubenachse um den Winkel γ nicht in wesentlichem Ausmassen plastisch verbogen.

Bei Fixierung der Frakturen mittels einer Platte sollte

10 letztere möglichst schmal und dünn sein, da unter der Platte eine Auflösung der Kortikalis sogenannte Spongiosierung stattfindet. Dieses Phänomen wird auch als Stressprotection bezeichnet, wobei vermutet wird, dass es infolge Schutz des darunterliegenden Knochenbereiches gegen äussere Beanspruchung zustande kommt. Die Platte der erfindungsgemässen Vorrichtung kann sehr dünn und schmal gestaltet werden,

15 da infolge der transfragmentären Lage der Schraube die mechanische Belastung der Platte geringer wird. Bei Vorrichtungen gemäss dem Stand der Technik entsprach die Toleranz bezüglich der exzentrischen Schraubenlage im Plattenloch der Plattendicke. Da gemäss der Erfindung die Schraube in Richtung der Plattenachse und in geschwenkter Lage gleitbar und schwenkbar ist, kann eine fast beliebig dünne Platte eingesetzt werden, weil die Dickentoleranz der Platte nicht

20 25 ausgenutzt werden muss.

Obwohl in den Figuren nur Röhrenknochen dargestellt sind, kann die erfindungsgemässen Vorrichtung selbstverständlich auch zur Stabilisierung des Bruchbereiches in anderen Knochen eingesetzt werden.

Fig. 6 zeigt einen Längsschnitt durch eine erfindungsge-
mässen Bohrlehre, bei welcher das Lager 48 kugelförmig
ausgebildet ist. Dieses weist den Radius r auf und ist
bezüglich des Kugelmittelpunktes 54 exzentrisch mit der
5 Bohrbüchse 52 verbunden. Letztere weist einen als
Halterung dienenden Griff 58 auf.

Fig. 7 zeigt einen Längsschnitt durch die Platte 12 der
erfindungsgemässen Vorrichtung mit der anglegten Bohr-
lehre nach Fig. 6. Das kugelförmige Lager 48 mit dem
Radius r liegt in der Gleitbahn am frakturnahmen Ende
50 des Loches 10. Die zur Führung des Bohrers bestimmte
Bohrbüchse 52 ist bezüglich des Kugelmittelpunktes 53
exzentrisch mit dem kugelförmigen Lager 48 verbunden.
15 Der Griff 58 ist an der Bohrbüchse 52 befestigt und
dient als Halterung für die Bohrlehre.

Fig. 8 und 9 zeigen eine zweite, bevorzugte Ausführungs-
form einer erfindungsgemässen Bohrlehre, und zwar Fig.
20 8 im Längsschnitt entlang der Linie VIII-VIII in Fig. 9
und in Verbindung mit einer erfindungsgemässen Platte
12, Fig. 9 für sich allein im Querschnitt nach der
Linie IX-IX in Fig. 8.

25 Diese Bohrlehre weist ein kalottenartiges Lager 59 auf,
in welches die Bohrbüchse 62 zur Führung des Bohrers
exzentrisch eingelassen ist. Der in einer Schnittebene
quer zur Lochlängsachse L liegende Radius r des kalotten-
artigen Lagers 59 (Fig. 9) ist gleich dem Kugelradius
30 der Kugelköpfe der Schrauben, während der in einer die
Lochlängsachse L mitumfassenden Schnittebene VIII-VIII
liegende Radius R des kalottenartigen Lagers 59 (Fig.
8) grösser als der Kugelradius der Kugelköpfe der
Schrauben ist.

Die kongruenten Kontaktstellen zwischen Plattenloch 10 und Bohrlehre sind mit 65, 66 und 67 bezeichnet. Mit zunehmendem Radius R liegt schliesslich das kalottenartige Lager 59 auf der Gleitbahn 24 nicht mehr auf

5 sondern nur noch an den stirnseitigen Lochenden, so dass die Kontaktstelle 66 verschwindet und nur noch eine Zweipunktlagerung an den Kontaktstellen 65 und 67 stattfindet.

10 Durch diese Ausgestaltung der Bohrlehre wird zunächst einmal ihre optimale Zentrierung im Plattenloch 10 und in Richtung der Lochlängsachse L erreicht.

Bei einem Neigungswinkel β von weniger als 45° , gemessen

15 zwischen E und S, kommt der Schraubenkopf 17 beim Eindrehen der Schraube 16 auf die durch die längsseitigen Wandungen des Plattenloches 10 gebildete Gleitbahn 24, jedoch nie auf die schmaleitige Plattenkante zu liegen (Fig. 1). Dadurch wird eine besonders wirksame Kompres-

20 sion erreicht.

Bei einem Neigungswinkel β von 45° kommt der Schrauben-

25 kopf 17 beim Eindrehen der Schraube 16 direkt auf den Anfang der Gleitbahn 24 zu liegen. Die Kraft, die zwischen Schraube 16 und Platte 12 dabei übertragen wird, ist bei diesem extremen Winkelverhältnis am grössten und darf jedenfalls für eine wirksame Kom-

pression genügen.

30 Bei senkrechter Stellung, d.h. bei einem Neigungswinkel β von 0° , kann die Bohrlehre auch als normale exzentrische Bohrlehre für die zum Stand der Technik gehörende Kompressions-Osteosynthese nach Fig. 0 eingesetzt werden.

Der Fuss der Bohrlehre kann mit Arretierungen versehen sein (in der Zeichnung nicht dargestellt), welche die Festlegung eines bestimmten Neigungswinkels β zwischen 0 und 45° erleichtert und auch eine leichte Seiten-
schwenkung ermöglichen.

Die der Ausführungsform der erfindungsgemässen Bohrlehre nach Fig. 8 und 9 zugrundeliegenden Zusammenhänge zwischen den beiden Radien r und R des kalottenartigen Lagers, dem parallel zur Lochlängachse gemessenen Gleitweg W der Schraube im Loch und dem Neigungswinkel β sind aus Fig. 10 ersichtlich.

Die kongruenten Kontaktstellen sind gleich wie in Fig. 8 mit 65, 66 und 67 bezeichnet. Die Zentren der Schraubenköpfe bei Extremlagen der Schrauben auf der Gleitbahn 24 sind mit C und D bezeichnet. Der Abstand der Punkte C und D entspricht dem horizontalen Gleitweg W .

Dabei gelten die Beziehungen:

$$R = r + \left[\cos \frac{\beta}{2} \cdot z \right] \quad (1)$$

und

$$z = \frac{W}{2} \cdot \frac{1}{\sin \frac{\beta}{2}} \quad (2)$$

Daraus ergibt sich der Zusammenhang zwischen den oben erwähnten Grössen:

$$R = r + \left[\frac{W}{2} \cdot \operatorname{ctg} \frac{\beta}{2} \right] .$$

Patentansprüche

1. Vorrichtung zur Stabilisierung des Bereiches eines Knochenbruches oder einer Osteotomie bei der Kompressions-Osteosynthese, bestehend aus einer zur Auflage auf den zu stabilisierenden Bereich des Knochens (14) bestimmten Platte (12) und zur Platte (12) passenden, zur Fixierung der Knochenteile bezüglich der Platte (12) bestimmten Kugelkopfschrauben (16; 32-37), wobei die Platte (12) mindestens ein länglich ausgebildetes Loch (10) aufweist, dessen längsseitige Wandungen ein gegenüber der Plattenoberfläche abgesenktes Widerlager (23) für den Schraubenkopf (17) bilden, dadurch gekennzeichnet, dass die längsseitigen Wandungen des Loches (10) als Gleitbahn (24) ausgebildet sind, in welcher der Schraubenkopf (17) sich parallel zur jeweiligen Schraubenlängsachse (S) verschieben kann, wobei das Loch (10) und die Schraube (16; 32-37) so ausgebildet sind, dass die Schraube (16; 32-37) unter einem Neigungswinkel (β) von bis zu 45° gegenüber einer lotrecht auf die Lochlängsachse (L) stehenden Ebene (E) eingebracht werden und im Loch (10) bei einem Neigungswinkel (β) von 45° um mindestens einen Drittelpart des Schaftdurchmessers (d), gemessen lotrecht zur Schraubenlängsachse (S), gleiten kann (Fig. 1, 2).

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass bei mindestens einem Teil der Schrauben (16; 32-37) der Schraubenschaft zwischen dem Schraubenkopf (17) und dem Gewindeteil (19) ein gewindefreies zylindrisches Zwischenstück (18) aufweist, dessen Durchmesser (d) mindestens gleich gross ist, wie der Aussendurchmesser des Gewindeteils (19) (Fig. 1).

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass bei mindestens einem Teil der Schrauben (16; 32-37) der Schraubenschaft auf seiner ganzen Länge mit einem Gewinde (19) versehen ist.

5

4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das durch die längsseitigen Wandungen des Loches (10) gebildete Widerlager (23) mindestens teilweise durch den Mantel eines Zylinders definiert wird, dessen Achse zur Lochlängsachse (L) parallel verläuft (Fig. 3, 4).

10 5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das durch die längsseitigen Wandungen des Loches (10) gebildete Widerlager (23) mindestens teilweise durch zwei Ebenen (40) definiert wird, die sich in einer zur Lochlängsachse (L) parallelen Geraden schneiden (Fig. 3).

15 20 6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Längsachse (L) des Loches (10) oder die Längsachsen mindestens eines Teils der Löcher parallel zur Längsachse der Platte (12) verlaufen (Fig. 1).

25 7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Längsachse des Loches oder die Längsachsen mindestens eines Teils der Löcher schiefwinklig zur Längsachse der Platte verlaufen.

30 8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Längsachse des Loches oder die Längsachsen mindestens eines Teils der Löcher rechtwinklig zur Längsachse der Platte verlaufen.

9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ränder (40) der Löcher (10) mindestens teilweise auf der vom Knochen (14) abgewandten Seite der Platte (12) gegenüber dem das Widerlager (23) bildenden

5 Teil der Wandungen nach aussen versetzt sind (Fig. 2, 3).

10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ränder (46) der Löcher (10) auf der am Knochen

10 anliegenden Seite der Platte (12) gegenüber der lichten Lochweite über mindestens einen Teil des Lochumfanges nach aussen versetzt sind (Fig. 5).

11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekenn-

15 zeichnet, dass die Ränder der Löcher auf der am Knochen anliegenden Seite der Platte (12) mindestens auf der fraktturnahen Stirnseite des Loches (10) und/oder auf der vom Knochen abgewandten Seite der Platte (12) an der frakturfernen Stirnseite des Loches gegenüber der

20 lichten Lochweite nach aussen versetzt sind.

12. Bohrlehre zum Bohren von schiefwinklig zur Knochen- längsachse verlaufenden Löchern in mittels einer Vor- richtung nach einem oder mehreren der Ansprüche 1 bis

25 10 zu stabilisierende Knochenteile, dadurch gekennzeich-

net, dass sie eine zur Führung des Bohrers bestimmte, in einem kalottenartigen Lager (48, 59) exzentrisch angeordnete Bohrbüchse (52, 62) aufweist, welches kalotten- artige Lager (48, 59) dazu bestimmt ist, beim Bohren in

30 den Löchern (10) der Platte (12) zu ruhen, wobei minde- stens der in einer Schnittebene quer zur Lochlängsachse (L) liegende Radius (r) des kalottenartigen Lagers (48, 59) gleich dem Kugelradius der Kugelköpfe (17) der Schrauben (16; 32-37) ist (Fig. 7-10).

13. Bohrlehre nach Anspruch 12, dadurch gekennzeichnet, dass das kalottenartige Lager Kugelform (48) aufweist und dazu bestimmt ist, beim Bohren in der Gleitbahn (24) der Löcher (10) der Platte (12) am frakturnahen Ende des Loches (10), wobei sein Radius (r) gleich dem Kugelradius der Kugelköpfe (17) der Schrauben (16; 32-37) ist (Fig. 7).

14. Bohrlehre nach Anspruch 12, dadurch gekennzeichnet, dass der in einer Schnittebene (IX-IX) quer zur Lochlängsachse (L) liegende Radius (r) des kalottenartigen Lagers (59) gleich dem Kugelradius der Kugelköpfe (17) der Schrauben (16; 32-37) ist, während der in einer die Lochlängsachse (L) mitumfassenden Schnittebene (VIII-VIII) liegende Radius (R) grösser als der Kugelradius der Kugelköpfe (17) der Schrauben (16; 32-37) ist (Fig. 8, 9).

15. Bohrlehre nach Anspruch 12 und 14, dadurch gekennzeichnet, dass die beiden Radien (r, R) des kalottenartigen Lagers (59), der Gleitweg (W) der Schraube (16) im Loch (10) und der Neigungswinkel (β) der Schraube (16) durch die folgende Gleichung miteinander verknüpft sind:

$$R = r + \left[\frac{W}{2} \cdot \operatorname{ctg} \frac{\beta}{2} \right]$$

0053999

1/9

Fig. 0

0053999

2/9

Fig. 1

Fig. 2

0053999

4/9

Fig. 3

0053999

5/9

Fig. 4

Fig. 5

0053999

6/9

Fig. 6

0053999

7/9

0053999

0053999

Fig. 10

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. Cl.)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	
A/P/ E	<u>FR - A - 2 480 106 (WENK)</u> * Seite 4, Zeile 37 - Seite 5, Zeile 20; Seite 9, Zeile 24 - Seite 10, Zeile 8; Figuren 1,2,8 *	1,3,6, 12	A 61 B 17/18
A	<u>US - A - 3 779 240 (KONDO)</u> * Spalte 3, Zeile 46 - Spalte 4, Zeile 18; Figuren 5,10 *	1,3,6	
A	<u>FR - A - 1 505 513 (BENOIST & GIRARD)</u> * Seite 1, Spalte 2, Zeile 29 - Seite 2, Spalte 2, Zeile 2; Figuren 1-8 *	1,2,3, 6	A 61 B
A	<u>CH - A - 566 767 (SYNTHES AG)</u> * Spalte 1, Zeilen 38-51; Figuren 1,2 *	1,6,8	
A	<u>DE - A - 2 340 880 (SYNTHES)</u> * Seite 9, Zeilen 9-13; Figuren 1,3,6,7 *	1,6,7	KATEGORIE DER GENANNTEN DOKUMENTE
			X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde lie- gende Theorien oder Grund- sätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen ange- führtes Dokument &: Mitglied der gleichen Patent- familie, übereinstimmendes Dokument
	Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.		
Recherchenort	Abschlußdatum der Recherche	Prüfer	
Den Haag	12 Februar 1982	RARTLEMP	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)