ELD Lab 7 Exploring ARM Processor

Objective

- Run simple programs on ARM Cortex A9 processor of Zynq SoC
- Homework: Implement 2x2 matrix multiplication on ARM Processor

Theory

Zynq SoC

9 Independent PS-to-PL Interface ~100Gbps of Bandwidth

Zynq PS-PL Interface

Interface Name	Interface Description	Master	Slave
M_AXI_GP0	General Purpose (AXI_GP)	PS	PL
M_AXI_GP1	General Purpose (AXI_GF)	PS	PL
S_AXI_GP0	Conoral Burnoso (AVI CD)	PL	PS
S_AXI_GP1	General Purpose (AXI_GP)	PL	PS
S_AXI_ACP	Accelerator Coherency Port, cache-coherent transaction (ACP)	PL	PS
S_AXI_HP0	High Performance ports (AXI_HP) with	PL	PS
S_AXI_HP1	read/write FIFOs and two dedicated	PL	PS
S_AXI_HP2	memory ports on DDR controller and a path to the OCM. The AXI_HP	PL	PS
S_AXI_HP3	interfaces are known also as AFI.	PL	PS

9 Independent PS-to-PL Interface ~100Gbps of Bandwidth

Lab

Vivado: Empty Project

- Use either Zedboard or Zybo
- Create block diagram and add Zyng IP

Zynq IP Configuration

- Click on Run Block Automation and Select OK
- Remove following ports by configuring the Zynq IP: GP Master Interface

Zynq IP Configuration

 Remove following ports by configuring the Zynq IP: Ethernet0, USB0, SD0, TTC0, GPIO MIO

Zynq IP Configuration

 Remove following ports by configuring the Zynq IP: Fabric Clock and reset

Export the Data and Launch SDK

- Create HDL Wrapper and Generate Output Products
- File -> Export Hardware
- File -> Launch SDK

SDK

Create New Application
 Project and select Hello World

Application Code

Update the code

```
#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
int main()
   init_platform();
   print("Hello World\n\r");
    int x=4;
    int n=200;
   int t=2;
   float res1=x/t;
   float res2=(2*log(n))/t;
   float res3=sqrt(res2);
   float result=res1+res3;
   printf("The expression x/t + sqrt(2*ln(n)/t is being calculated\n");
   printf("x/t resulted in %f\n",res1);
   printf("2*ln(n)/t resulted in %f\n",res2);
   printf("sqrt(2*ln(n)/t resulted in %f\n",res3);
   printf("The final result of x/t + sqrt(2*ln(n)/t) in %f\n", result);
   cleanup_platform();
    return 0;
```

Application Code

Add Math library in SDK

Resource
 Builders
 C/C++ Build
 Build Variables
 Environment
 Logging
 Settings
 Tool Chain Editor
 C/C++ General
 Project References
 Run/Debug Settings

Application Code

Update the system.mss stdin and stdout

Board Support Package Settings

Control various settings of your Board Support Package.

Configuration for OS: standalone						
Name	Value	Default	Туре	Description		
hypervisor_guest	false	false	boolean	Enable hypervisor guest support		
lockstep_mode_debug	false	false	boolean	Enable debug logic in non-JTAG		
sleep_timer	none	none	peripheral	This parameter is used to select s		
stdin	ps7_coresight_comp_0	none	peripheral	stdin peripheral		
stdout	ps7_coresight_comp_0	none	peripheral	stdout peripheral		
ttc_select_cntr	2	2	enum	Selects the counter to be used in		
zynqmp_fsbl_bsp	false	false	boolean	Disable or Enable Optimization f		
> microblaze_exceptions	false	false	boolean	Enable MicroBlaze Exceptions		
> enable_sw_intrusive_profiling	false	false	boolean	Enable S/W Intrusive Profiling or		

Remote Access

Click on Debug

• In XSCT Console, type jtagterminal to open the terminal

Run the application

Output

```
C:\Xilinx\SDK\2019.1\bin\unw X
JTAG-based Hyperterminal.
Connected to JTAG-based Hyperterminal over TCP port : 57031
(using socket : sock680)
Help:
Terminal requirements :
  (i) Processor's STDOUT is redirected to the ARM DCC/MDM UART
  (ii) Processor's STDIN is redirected to the ARM DCC/MDM UART.
       Then, text input from this console will be sent to DCC/MDM's UART port.
  NOTE: This is a line-buffered console and you have to press "Enter"
        to send a string of characters to DCC/MDM.
Hello World
The expression x/t + sqrt(2*ln(n)/t is being calculated
x/t resulted in 2.000000
2*ln(n)/t resulted in 5.298317
sqrt(2*ln(n)/t resulted in 2.301807
The final result of x/t + sqrt(2*ln(n)/t) in 4.301807
```