Meccanica Classica

Esercitazione 1 – Propagazione degli Errori

Alessandro Lodi, D.Phil.

Anno Accademico 2024–2025

Indice

1	Calcolo dell'Area di un Lotto Rettangolare 1.1 Intro 1.2 Problema 1.3 Soluzione	
2	Determinazione del Volume di Scavo	3
	2.1 Intro	ે
	2.2 Problema	3
	2.3 Soluzione	3
3	Calcolo della Pendenza di un Tetto	4
	3.1 Intro	4
	3.2 Problema	4
	3.3 Soluzione	4
4	Calcolo del Carico Strutturale su una Trave	Ē
	4.1 Intro	5
	4.2 Problema	٠
	4.3 Soluzione	٠
	4.5 Soluzione	5
5	Calcolo della Differenza di Livello tra Due Punti	6
	5.1 Intro	6
	5.2 Problema	6
	5.3 Soluzione	6
6	(Avanzato) Calcolo del Modulo di Elasticità di un Materiale	7
	6.1 Intro	7
	6.2 Problema	7
	6.3 Soluzione	7
_		
7	(Avanzato) Propagazione degli Errori nella Funzione Seno	6
	7.1 Intro	Ć
	7.2 Problema	Ć
	7.3 Soluzione	Ć

1 Calcolo dell'Area di un Lotto Rettangolare

1.1 Intro

I topografi edili spesso devono determinare l'area di appezzamenti di terreno per progetti di costruzione, divisione del terreno o valutazioni immobiliari.

1.2 Problema

Un topografo misura la lunghezza (L) e la larghezza (W) di un lotto rettangolare come:

- Lunghezza, $L=50,0\,\mathrm{m}\pm0,1\,\mathrm{m}$
- Larghezza, $W = 30,0 \,\mathrm{m} \pm 0,1 \,\mathrm{m}$

Calcolare l'area (A) del lotto e determinare l'incertezza nell'area dovuta agli errori di misura nella lunghezza e nella larghezza.

1.3 Soluzione

1. Calcolo dell'Area:

$$A = L \times W = 50,0 \,\mathrm{m} \times 30,0 \,\mathrm{m} = 1500,0 \,\mathrm{m}^2$$

2. Determinazione delle Incertezze Relative:

$$\frac{\Delta L}{L} = \frac{0.1}{50.0} = 0.002 \quad (0.2\%)$$

$$\frac{\Delta W}{W} = \frac{0.1}{30.0} \approx 0.0033 \quad (0.33\%)$$

3. Propagazione delle Incertezze:

Per la moltiplicazione, le incertezze relative si sommano:

$$\frac{\Delta A}{A} = \frac{\Delta L}{L} + \frac{\Delta W}{W} = 0,002 + 0,0033 = 0,0053 \quad (0,53\%)$$

$$\Delta A = 0,0053 \times 1500, 0 \,\mathrm{m}^2 = 7,95 \,\mathrm{m}^2 \approx 8,0 \,\mathrm{m}^2$$

$$A = 1500, 0 \,\mathrm{m}^2 \pm 8, 0 \,\mathrm{m}^2$$

2 Determinazione del Volume di Scavo

2.1 Intro

Geometri e topografi calcolano volumi di scavo per le opere di fondazione. Una stima accurata permette una pianificazione di progetto efficace.

2.2 Problema

Un topografo misura la profondità (D) e l'area trasversale media (A) di un sito di scavo come:

- Profondità, $D = 10,0 \,\mathrm{m} \pm 0,2 \,\mathrm{m}$
- Area Trasversale, $A=200,0\,\mathrm{m}^2\pm5,0\,\mathrm{m}^2$

Calcolare il volume (V) dello scavo e determinare l'incertezza nel volume.

2.3 Soluzione

1. Calcolo del Volume:

$$V = A \times D = 200, 0 \,\mathrm{m}^2 \times 10, 0 \,\mathrm{m} = 2000, 0 \,\mathrm{m}^3$$

2. Determinazione delle Incertezze Relative:

$$\frac{\Delta A}{A} = \frac{5,0}{200,0} = 0,025 \quad (2,5\%)$$

$$\frac{\Delta D}{D} = \frac{0,2}{10,0} = 0,02 \quad (2\%)$$

3. Propagazione delle Incertezze:

$$\frac{\Delta V}{V} = \frac{\Delta A}{A} + \frac{\Delta D}{D} = 0,025 + 0,02 = 0,045 \quad (4,5\%)$$
$$\Delta V = 0,045 \times 2000, 0 \,\mathrm{m}^3 = 90, 0 \,\mathrm{m}^3$$

$$V = 2000, 0 \,\mathrm{m}^3 \pm 90, 0 \,\mathrm{m}^3$$

3 Calcolo della Pendenza di un Tetto

3.1 Intro

Misurazioni accurate della pendenza sono cruciali per la progettazione del tetto, la pianificazione del drenaggio e la valutazione dell'integrità strutturale.

3.2 Problema

Un topografo misura la corsa orizzontale (R) e la salita verticale (S) di un tetto come:

- Corsa, $R = 8,0 \,\mathrm{m} \pm 0,05 \,\mathrm{m}$
- Salita, $S = 2,0 \,\mathrm{m} \pm 0,02 \,\mathrm{m}$

Calcolare la pendenza (m) del tetto (definita come salita divisa per corsa) e determinare l'incertezza nella pendenza.

3.3 Soluzione

1. Calcolo della Pendenza:

$$m = \frac{S}{R} = \frac{2,0 \text{ m}}{8,0 \text{ m}} = 0,25$$

2. Determinazione delle Incertezze Relative:

$$\frac{\Delta S}{S} = \frac{0.02}{2.0} = 0.01 \quad (1\%)$$

$$\frac{\Delta R}{R} = \frac{0.05}{8.0} = 0.00625 \quad (0.625\%)$$

3. Propagazione delle Incertezze: Per la divisione, le incertezze relative si sommano:

$$\frac{\Delta m}{m} = \frac{\Delta S}{S} + \frac{\Delta R}{R} = 0,01 + 0,00625 = 0,01625 \quad (1,625\%)$$

$$\Delta m = 0,01625 \times 0,25 = 0,00406 \approx 0,004$$

$$m = 0,25 \pm 0,004$$

4 Calcolo del Carico Strutturale su una Trave

4.1 Intro

Determinare il carico sugli elementi strutturali garantisce la sicurezza e la conformità ai codici edilizi.

4.2 Problema

Un topografo calcola il carico totale (F) su una trave misurando la sua lunghezza (L) e il carico per unità di lunghezza (w) come:

- Lunghezza, $L = 6.0 \,\mathrm{m} \pm 0.01 \,\mathrm{m}$
- Carico per Unità di Lunghezza, $w = 500, 0 \,\mathrm{N/m} \pm 5, 0 \,\mathrm{N/m}$

Calcolare il carico totale sulla trave e determinare l'incertezza nel carico.

4.3 Soluzione

1. Calcolo del Carico Totale:

$$F = w \times L = 500, 0 \,\text{N/m} \times 6, 0 \,\text{m} = 3000, 0 \,\text{N}$$

2. Determinazione delle Incertezze Relative:

$$\frac{\Delta w}{w} = \frac{5,0}{500,0} = 0.01 \quad (1\%)$$

$$\frac{\Delta L}{L} = \frac{0.01}{6.0} \approx 0.00167 \quad (0.167\%)$$

3. Propagazione delle Incertezze:

$$\frac{\Delta F}{F} = \frac{\Delta w}{w} + \frac{\Delta L}{L} = 0,01 + 0,00167 = 0,01167 \quad (1,167\%)$$
$$\Delta F = 0,01167 \times 3000, 0 \text{ N} = 35,0 \text{ N}$$

$$F = 3000, 0 \,\mathrm{N} \pm 35, 0 \,\mathrm{N}$$

5 Calcolo della Differenza di Livello tra Due Punti

5.1 Intro

I topografi edili spesso devono calcolare la differenza di livello tra due punti per la progettazione di sistemi di drenaggio, terrazze o strutture portanti.

5.2 Problema

Un topografo misura l'elevazione di due punti $(E_1 \ e \ E_2)$ su un sito di costruzione come:

- Elevazione del Punto 1, $E_1 = 120, 0 \,\mathrm{m} \pm 0, 2 \,\mathrm{m}$
- \bullet Elevazione del Punto 2, $E_2=115,0\,\mathrm{m}\pm0,3\,\mathrm{m}$

Calcolare la differenza di livello (ΔE) tra i due punti e determinare l'incertezza nella differenza.

5.3 Soluzione

1. Calcolo della Differenza di Livello:

$$\Delta E = E_1 - E_2 = 120,0 \,\mathrm{m} - 115,0 \,\mathrm{m} = 5,0 \,\mathrm{m}$$

2. Determinazione delle Incertezze Assolute:

$$\Delta(\Delta E) = \Delta E_1 + \Delta E_2 = 0, 2 \,\mathrm{m} + 0, 3 \,\mathrm{m} = 0, 5 \,\mathrm{m}$$

$$\Delta E = 5,0\,\mathrm{m} \pm 0,5\,\mathrm{m}$$

6 (Avanzato) Calcolo del Modulo di Elasticità di un Materiale

6.1 Intro

Il modulo di elasticità è fondamentale per valutare la resistenza e la deformabilità dei materiali utilizzati nelle costruzioni. I topografi possono collaborare con ingegneri per determinare le proprietà meccaniche dei materiali in loco.

6.2 Problema

Un ingegnere misura la deformazione (ϵ) di un campione di acciaio sotto una forza (F) e la lunghezza originale (L) come:

- Deformazione, $\epsilon = 0,002 \pm 0,0001$
- Forza, $F = 1000, 0 \text{ N} \pm 10, 0 \text{ N}$
- Lunghezza Originale, $L=2,0\,\mathrm{m}\pm0,01\,\mathrm{m}$

Il modulo di elasticità (E) è dato dalla formula:

$$E = \frac{F \cdot L}{A \cdot \epsilon}$$

dove A è l'area della sezione trasversale del campione, costante con $A=0,005\,\mathrm{m}^2\pm0,0001\,\mathrm{m}^2$. Calcolare il modulo di elasticità (E) e determinare l'incertezza nel valore calcolato, considerando sia esponenti positivi che negativi nella formula.

6.3 Soluzione

1. Calcolo del Modulo di Elasticità:

$$E = \frac{F \cdot L}{A \cdot \epsilon} = \frac{1000, 0 \text{ N} \times 2, 0 \text{ m}}{0,005 \text{ m}^2 \times 0,002} = \frac{2000, 0}{0,00001} = 200,000,000 \text{ Pa} = 200 \text{ GPa}$$

2. Determinazione delle Incertezze Relative: La formula del modulo di elasticità è:

$$E = \frac{F \cdot L}{A \cdot \epsilon}$$

Per la propagazione degli errori, consideriamo le relazioni:

$$\frac{\Delta E}{E} = \frac{\Delta F}{F} + \frac{\Delta L}{L} + \frac{\Delta A}{A} + \frac{\Delta \epsilon}{\epsilon}$$

Calcoliamo le incertezze relative:

$$\frac{\Delta F}{F} = \frac{10,0}{1000,0} = 0,01 \quad (1\%)$$

$$\frac{\Delta L}{L} = \frac{0.01}{2.0} = 0.005 \quad (0.5\%)$$

$$\frac{\Delta A}{A} = \frac{0,0001}{0,005} = 0,02 \quad (2\%)$$

$$\frac{\Delta\epsilon}{\epsilon} = \frac{0,0001}{0,002} = 0,05 \quad (5\%)$$

Sommando le incertezze relative:

$$\frac{\Delta E}{E} = 0.01 + 0.005 + 0.02 + 0.05 = 0.085 \quad (8.5\%)$$

3. Calcolo dell'Incertezza Assoluta:

$$\Delta E = 0,085 \times 200\,\mathrm{GPa} = 17\,\mathrm{GPa}$$

$$E = 200 \, \mathrm{GPa} \pm 17 \, \mathrm{GPa}$$

7 (Avanzato) Propagazione degli Errori nella Funzione Seno

7.1 Intro

Nel settore della topografia edilizia, è comune utilizzare funzioni trigonometriche per calcolare componenti di vettori, angoli di inclinazione e altre grandezze geometriche.

Come vedremo in esercizi futuri, le componenti delle forze possono essere scomposte utilizzando il seno e il coseno degli angoli di inclinazione. Ad esempio, una forza \vec{F} inclinata di un angolo θ rispetto all'orizzontale avrà una componente verticale

$$F_v = |\vec{F}| \cdot \sin(\theta).$$

Un altro esempio riguarda la determinazione della pendenza. Se si conosce la differenza di altezza (h) e la distanza orizzontale (d), il seno dell'angolo può essere calcolato come:

$$\sin(\theta) = \frac{h}{\sqrt{h^2 + d^2}}.$$

7.2 Problema

Un topografo misura l'angolo di inclinazione (θ) di una collina rispetto all'orizzontale utilizzando un inclinometro. Supponiamo che:

$$\theta = 30^{\circ} + 1^{\circ}$$

Calcolare il seno dell'angolo e determinare l'incertezza associata.

7.3 Soluzione

1. Calcolo del Seno dell'Angolo:

$$\sin(\theta) = \sin(30^\circ) = 0, 5$$

2. Determinazione dell'Incertezza:

Metodo: Utilizziamo la derivata del seno rispetto all'angolo per approssimare l'incertezza.

Derivata di $sin(\theta)$:

$$\frac{d(\sin(\theta))}{d\theta} = \cos(\theta)$$

Valore della Derivata a $\theta = 30^{\circ}$:

$$\cos(30^{\circ}) \approx 0.8660$$

Incertezza nel Seno:

$$\Delta \sin(\theta) \approx \cos(\theta) \cdot \Delta \theta = 0.8660 \times 1^{\circ}$$

Poiché gli angoli sono in gradi, dobbiamo convertirli in radianti:

$$1^{\circ} = \frac{\pi}{180} \operatorname{rad} \approx 0,01745 \operatorname{rad}$$

$$\Delta \sin(\theta) \approx 0,8660 \times 0,01745 \approx 0,0151$$

3. Risultato Finale:

$$\sin(\theta) = 0,5 \pm 0,015$$

Interpretazione: Il seno dell'angolo di inclinazione è 0,5 con un'incertezza di $\pm 0,015$. Questo significa che il vero valore di $\sin(\theta)$ potrebbe variare tra 0,485 e 0,515, influenzando le misurazioni e i calcoli successivi basati su questo valore.