1. Comencem a partir del diagrama de sòlid lliure.

(a) A partir de l'esquema de l'enunciat

$$\tan\varphi = \frac{\chi}{2\chi} \rightarrow \phi = \arctan\frac{1}{2} = 26,57^{\circ}$$

(b) Escrivim les equacions d'equilibri als eixos vertical, horitzontal i l'equació de moments (els prenem des de O)

$$F_{Ov} + T_{Bv} = mg$$
 $F_{Oh} = T_{Bh}$ $mgL = T_{Bv}2L$

d'on

$$T_{Bv} = \frac{mgX}{2X} = \frac{10 \cdot 9, 8}{2} = 49 N$$

i com que l'angle que forma el tirant és el mateix que el que forma la tensió total,

$$\sin \varphi = \frac{T_{Bv}}{T} \to T = \frac{T_{Bv}}{\sin \varphi} = \frac{49}{\sin 26, 57^{\circ}} = 109, 6 N$$

(c) En quant a les reaccions en O

$$F_{Oh} = T_{Bh} = T\cos\varphi = 109, 6\cos 26, 57^{\circ} = 98 N$$

$$F_{Ov} = mg - T_{Bv} = 10 \cdot 9, 8 - 49 = 49 N$$

(d) Aplicant la definició d'esforç

$$\sigma = \frac{F}{A} = \frac{T}{s} = \frac{109, 6}{3} = 36,53 \, MPa$$

2. Comencem a partir del diagrama de sòlid lliure,

a) Per trobar la massa de la placa fem servir la definició de densitat

$$\rho = \frac{m}{V}$$

d'on

$$m = \rho V = \rho \frac{Lb}{2}e = 8900 \frac{0, 9 \cdot 0, 6}{2} \cdot 0,008 = 19,224 \, kg$$

b) Prenent moments des del punt O

$$mg\frac{L}{3} = TL \rightarrow T = \frac{mg}{3} = \frac{19,224 \cdot 9,8}{3} = 62,8 \, N$$

c) La condició d'equilibri a l'eix vertical imposa

$$R_{Ov} + T = mg$$

llavors

$$R_{Ov} = mg - T = mg - \frac{mg}{3} = \frac{2mg}{3} = \frac{2 \cdot 19,224 \cdot 9,8}{3} = 125,6 \, N$$

És clar que no hi ha component horitzontal al punt O ja que no hi ha cap altre força horitzontal al diagrama de sòlid lliure.

d) La tensió normal σ del cable la podem calcular com

$$\sigma = \frac{F}{A} = \frac{T}{A} = \frac{62,8}{3} = 20,93 \, MPa$$

