

| Instituto Tecnológico de Costa Rica          | Práctica para Parcial I |
|----------------------------------------------|-------------------------|
| Área Académica de Ingeniería en Computadores |                         |
| Programa de Licenciatura en Ingeniería en    |                         |
| Computadores                                 |                         |
| Curso: CE-1102 Taller de Programación        |                         |
| Profesor: Lic. Ing. Fabián Zamora Ramírez    |                         |
| Semestre: I, 2018                            |                         |
|                                              |                         |

## **INDICACIONES:**

Los siguientes ejercicios requieren la construcción de un autómata finito. Para cada uno, detalle todos sus componentes: alfabeto, estados, estado inicial, estados de aceptación y función de transición (diagrama de transición y tabla de transición).

- 1. Construya una máquina que aplique la función XOR en una hilera de 1's y 0's a los últimos 2 dígitos. Debe validar que al menos vengan 2 dígitos.
- 2. Construya una máquina que sume los dígitos de una hilera de 1's y 0's e indique si el numero resultante es divisible por 3.
- 3. Construya una máquina que determine si un numero de 4 dígitos es menor o igual que 1992. Sin ceros a la izquierda.
- 4. Construya una máquina que determine si un número es fraccional.
- 5. Construya una máquina de estados finita que determine si la suma de los valores de un dado, cuando se tira N veces, es divisible por 5. El dado solo tiene valores 1,2 y 3.

Realice las siguientes operaciones en diferentes sistemas numéricos. Deme mostrar todos los pasos necesarios para llegar a la solución.

- 1.  $11000.011_{(2)} 111.101_{(2)}$
- 2.  $101112.211_{(8)} 111.101_{(8)}$
- 3.  $101112.211_{(16)} 111.101_{(16)}$
- 4.  $977.78_{(16)} 234.46_{(16)}$
- 5.  $1200.00_{(10)} 234.46_{(10)}$



- 6.  $103C4.238_{(16)} 8C9.456_{(16)}$
- 7.  $1203_{(4)} 113_{(4)}$
- 8. 1011<sub>(2)</sub> \* 101<sub>(2)</sub>
- 9. 1021(4) \* 221(4)
- 10. 231(4) \* 23(4)
- 11. 751<sub>(8)</sub> \* 122<sub>(8)</sub>
- 12. FA01<sub>(16)</sub> \* 21<sub>(16)</sub>
- 13.  $110111_{(2)} / 1011_{(2)}$
- 14. 1011111<sub>(4)</sub> / 221<sub>(4)</sub>

Realice las siguientes conversiones en diferentes sistemas numéricos. Deme mostrar todos los pasos necesarios para llegar a la solución.

- 1. 623<sub>(10)</sub> -> <sub>(4)</sub>
- 2. 0.85<sub>(10)</sub> -> <sub>(16)</sub>
- 3. 47.5<sub>(10)</sub> -> <sub>(8)</sub>
- 4. 13311.32<sub>(4)</sub> -> <sub>(16)</sub>
- 5. 2012121.122<sub>(4)</sub> -> <sub>(10)</sub>
- 6.  $1F5.F0_{(16)} \rightarrow (2)$
- 7.  $1011111_{(4)} \rightarrow (10)$
- 8. 103C4.238<sub>(16) -> (10)</sub>