1. Który z poniższych wzorów na $E(T(x)^2)$, (x-całkowity wiek) jest prawdziwy przy założeniu o stałym natężeniu wymierania między wiekami całkowitymi ($\mu_{x+k+1/2}$ oznacza poziom natężenia wymierania w przedziale wiekowym (x+k, x+k+1)?

(A)
$$E(T^2) = 2\sum_{k=0}^{\infty} \left(\frac{k_k p_x \cdot q_{x+k}}{\mu_{x+k+1/2}} - \frac{k_k p_x \cdot q_{x+k}}{\mu_{x+k+1/2}^2} + \frac{k+1_k p_x}{\mu_{x+k+1/2}} \right),$$

(B)
$$E(T^{2}) = 2\sum_{k=0}^{\infty} \left(\frac{k_{k}p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}} + \frac{k_{x}p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}^{2}} - \frac{k+1_{x}p_{x}}{\mu_{x+k+1/2}} \right) ,$$

(C)
$$E(T^2) = 2\sum_{k=0}^{\infty} \left(\frac{(k+1)_k p_x \cdot q_{x+k}}{\mu_{x+k+1/2}} - \frac{k p_x \cdot q_{x+k}}{\mu_{x+k+1/2}^2} + \frac{k+1}{\mu_{x+k+1/2}} \right).$$

(C)
$$E(T^{2}) = 2\sum_{k=0}^{\infty} \left(\frac{(k+1)_{k} p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}} - \frac{k p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}^{2}} + \frac{k+1 p_{x}}{\mu_{x+k+1/2}} \right),$$
(D)
$$E(T^{2}) = 2\sum_{k=0}^{\infty} \left(\frac{(k+1)_{k} p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}} + \frac{k p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}^{2}} - \frac{k+1 p_{x}}{\mu_{x+k+1/2}} \right),$$

(E)
$$E(T^{2}) = 2\sum_{k=0}^{\infty} \left(\frac{(k+1)_{k} p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}} - \frac{{}_{k} p_{x} \cdot q_{x+k}}{\mu_{x+k+1/2}^{2}} - \frac{{}_{k+1} p_{x}}{\mu_{x+k+1/2}} \right)$$

2. Dane są:

$$A_x = 0.4307$$

$$(IA)_x = 6.4514$$

$$i = 5\%$$

$$A_{x+20} = 0.6839$$

$$(IA)_{x+20} = 4.8720$$

$$_{20} p_x = 0.4719$$

Wyznacz $(I\ddot{a})_{x:\overline{20}|}$ (podaj najbliższą wartość).

- (A) 69
- (B) 73
- (C) 77
- (D) 81

(E) 85

3. Osoba z populacji o wykładniczym rozkładzie długości życia , $\mu=0.05$, zakupuje za składkę netto w wysokości 100 000 dożywotnie ubezpieczenie rentowe, gwarantujące kontynuację wypłaty świadczeń – bez względu na status ubezpieczonego – co najmniej do momentu, w którym suma wypłat (bez oprocentowania) osiągnie 100 000. Wskaż długość gwarantowanego okresu wypłat, jeśli świadczenie rentowe jest wypłacane ze stałą intensywnością w formie renty ciągłej oraz $\delta=0.05$.

- (A) między 10 a 11 lat
- (B) między 11 a 12 lat
- C) między 12 a 13 lat
- (D) między 13 a 14 lat
- (E) między 14 a 15 lat

4. Załóżmy, że obniżce technicznej intensywności oprocentowania o $\Delta\delta$ towarzyszy taki sam wzrost natężenia wymierania w każdej kategorii wieku. Symbole nieprimowane niech oznaczają w dalszym ciągu wielkości "przed", a primowane "po" zmianie (np. $\delta' = \delta - \Delta\delta$, $\mu_x' = \mu_x + \Delta\delta$).

Dane są:

$$\overline{A}_x = 0.2$$
 , $\frac{\Delta \delta}{\delta} = 0.05$. Oblicz \overline{A}_x .

- (A) 0.20
- (B) 0.21
- (C) 0.22
- (D) 0.23

(E) 0.24

5. Rozważmy bezterminowe, ciągłe ubezpieczenie na życie dla (30) z sumą ubezpieczenia 1, opłacane za pomocą jednorazowej składki netto. Dane są:

$$\delta = 0.01$$
, $\mu_{30+t} = \frac{1}{70-t}$ dla $t < 70$.

Oblicz całkę:

$$\int_{0}^{70} e^{-2\delta t} (1 - V(t))^{2} {}_{t} p_{30} \mu_{30+t} dt$$

gdzie V(t) oznacza rezerwę składek netto po t latach. Podaj najbliższą wartość.

- (A) 0.01
- (B) 0.02
- (C) 0.03
- (D) 0.04

(E) 0.05

. . .

- 6. Rozważmy dwa produkty ubezpieczeniowe ciągłe dla (65):
 - (1) ta polisa jest zwyczajną rentą, kupioną za jednorazową składkę netto i wypłacającą z intensywnością 1 na rok aż do śmierci.
 - (2) ta polisa kupiona jest za taką samą składkę jednorazową netto; wypłaca rentę z intensywnością 0.9 na rok aż do śmierci, ale oprócz tego wypłaca uprawnionym jednorazowe świadczenie w wysokości b(t), w chwili śmierci ubezpieczonego, jeśli nastąpi w wieku 65+t.

Wiadomo ponadto, że rezerwy składek netto są identyczne dla obu produktów, dla każdego $t \ge 0$.

Dane sq:
$$\delta = 0.05$$
, $\mu_{65+t} = \frac{1}{35-t}$. Oblicz $b(15)$.

- (A) 2
- (B)
 - 3
- (C)
- 4
- (D) 5
- (E)

6

7. W 25-letnim ubezpieczeniu na życie i dożycie dla (40), z sumą ubezpieczenia 100 000 zł, świadczenie śmiertelne jest płatne na koniec roku śmierci. Roczna składka 3 370 zł, płatna na początku roku przez cały okres ubezpieczenia, ma następującą strukturę:

składka netto	76.55%
narzuty na koszty początkowe	5.45%
narzuty na koszty inkasa składki	10.00%
narzuty na koszty administracyjne	8.00%

Po 15 latach, na wniosek ubezpieczonego, zmieniono ubezpieczenie na bezskładkowe z terminem o 5 lat krótszym. Po zmianie warunków ubezpieczenia roczne koszty administracyjne, ponoszone na początku roku, nie ulegają zmianie. Podaj nową sumę ubezpieczenia (wskaż najbliższą wartość). Dane są:

$$A_{55:\overline{5}|} = 0.79073$$
 $A_{55:\overline{10}|} = 0.64432$ $i = 5\%$

- (A) 46 420 (B) 50 150 (C) 53 880 (D) 57 610
- (E) 59 340

8. Rozważmy ubezpieczenie ciągłe dla (x) wypłacające $c_j(t)$, jeśli jako pierwsza zajdzie szkoda nr j (j=1,2).

Wiadomo, że wartość oczekiwana świadczenia, obliczona w chwili wypłaty (tzn. w chwili zajścia pierwszej szkody), nie zależy od t, i stale wynosi 1.

Dane są: V(10)=0.4, $\mu_{x+10}=0.03$.

Oblicz $\pi^r(10)$.

- (A) 0.012
- (B) 0.015
- (C) 0.018
- (D) 0.021

(E) 0.024

9. Renta dożywotnia dla pary małżeńskiej (x), (y) wypłaca 1000 zł rocznie na początku roku, gdy żyją obydwoje, 600 zł gdy jedno z nich. Renta ma 10-letni okres gwarantowanych wypłat: w okresie gwarancji, gdy obydwoje nie żyją, wypłaca 500 zł.

Podaj jednorazową składkę netto za to ubezpieczenie (wskaż najbliższą warość). Dane są:

$$\ddot{a}_{x} = 9.3150$$
 $\ddot{a}_{x:\overline{10}|} = 6.8628$ $i = 5\%$ $\ddot{a}_{y} = 12.7304$ $\ddot{a}_{y:\overline{10}|} = 7.7268$ $\ddot{a}_{x:y} = 8.3654$ $\ddot{a}_{x:y:\overline{10}|} = 6.5736$

- (A) 11 000 (B) 11 300 (C) 11 600 (D) 11 900
- (E) 12 200

10. Rozpatrujemy uprawnienia inwalidzkie kohorty 40-letnich uczestników planu emerytalnego, wszyscy urodzeni 1 stycznia, wszyscy z 10-letnim stażem uczestnictwa, wszyscy są aktywni, czyli nikt nie jest inwalidą. Formuła rocznego wymiaru świadczenia inwalidzkiego:

$$R_{30+t} = 0.03 \cdot [t] \cdot (AS)_{30+t}$$
 $10 \le t \le 30$

gdzie [t] jest częścią całkowitą t oraz $(AS)_x$ jest rocznym wynagrodzeniem osoby w wieku x lat. Płace zmieniają się raz w roku, na początku roku. Tuż po podwyżce $(AS)_{40}=20\ 000$.

Wartość jednostkowej renty inwalidzkiej na moment przejścia na rentę opisuje funkcja

$$\overline{a}_{30+t}^{(i)} = 25 - \frac{t}{2}$$
, $10 \le t \le 30$.

W kohorcie 40-latków roczne ubytki inwalidzkie stanowią 1/3 całkowitych ubytków z planu, czyli

$$3 \cdot q_{40}^{(i)} = q_{40}^{(\tau)} = 0.006$$
.

Aktualna wartość świadczeń inwalidzkich aktywnego uczestnika $apv(INV)_{40}=2500$, po sprowadzeniu na środek roku wartości świadczeń tych, którzy w danym roku przechodzą na rentę inwalidzką. Wyznacz w analogiczny sposób $apv(INV)_{41}$ przy i=5%.

- (A) 2 388
- (B) 2 391
- (C) 2 394

- (D) 2 397
- (E) 2 400

10

XX Egzamin dla Aktuariuszy z 2 czerwca 2001 r.

Matematyka ubezpieczeń życiowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko:	KLUCZ	ODPOV	VIEDZI.	 	
Pesel					

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	Е	
3	С	
4	Е	
5	В	
6	A	
7	С	
8	C	
9	С	
10	D	

.

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.