Inteligência Artificial

Thiago Henrique Leite da Silva, RA: 139920

AULA9: Exercício teórico aprendizado supervisionado

1) (0,2) Aplique o KNN com K = 3 para classificar o 11o elemento da tabela. Considere a distância Euclidiana e Manhattan, compare e há diferença entre elas.

	A1	A2	Classe		
1	0.5	1	2		
2	2.9	1.9	2		
3	1.2	3.1	2		
4	0.8	4.7	2		
5	2.7	5.4			
6	8.1	4.7	1		
7	8.3	6.6	1		
8	6.3	6.7	1		
9	8	9.1	1		
10	5.4	8.4	1		
11	5	7	?		

Para resolver este item, implementei um algoritmo Knn em Java que seguirá anexo a atividade no Classroom. O algoritmo recebe como parâmetros um conjunto de elementos para treino, sendo fornecidos por meio de dois arrays de atributos double e um array de inteiros com a classe do respectivo elemento.

Feito isso, temos como treinar nosso algoritmo de duas formas, com a distância de manhattan e com a distância euclidiana:

```
public Double euclideanDistance(int i, double a, double b) {
    return Math.pow(attributeA1[i] - a, 2) + Math.pow(attributeA2[i] - b, 2);
}

public Double manhattanDistance(int i, double a, double b) {
    return Math.abs(attributeA1[i] - a) + Math.abs(attributeA2[i] - b);
}
```

Terminado o treino, inserimos os atributos do elemento que queremos descobrir a classe. O resultado obtido foi o seguinte:

```
cterminated > KnnAlgorithm (1) [Java Application] / usr/lib/jvm/jre1
Isira os atributos do elemento que deseja classificar:
Atributo A1: 5
Atributo A2: 7
Treinando algoritmo com distância euclideana:
Espécie: 1 >> {1=2, 2=1}
Treinando algoritmo com distância de manhattan:
Espécie: 1 >> {1=3, 2=0}
```

O hash retornado é da seguinte forma:

{classe => quantidade de ocorrências desta classe no vetor com as K menores distâncias}

Portanto, ambos os treinos nos forneceram o mesmo resultado, a diferença foi que com a distância de Manhattan, as três menores distâncias foram da Classe 1, enquanto com a distância euclidiana, tivemos dois elementos da Classe 1 e um elemento da Classe 2, dando a impressão que a distância de manhattan tem mais certeza de seu palpite. Porém, por se tratar de um teste particular, não nos diz muita coisa.

2) (0,2) Aplique o algoritmo de Bayes no problema a seguir:

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Bi	rth Can F	ly Live in Wa	ater Have Legs	Class
yes	no	yes	no	???

	Give Birth		Can Fly			Live in Water			
	mammals	non		mammals	non		mammals	non	
yes	6	1	yes	1	3	yes	2	3	
no	1	11	no	6	10	no	5	6	
						sometimes	0	4	
yes	6/7	12/13	yes	1/7	3/13	yes	2/7	3/13	
no	1/7	1/13	no	6/7	10/13	no	5/7	6/13	
						sometimes	0/7	4/13	

yes no	Have Legs mammals 5 2	non 4 9	Class mammals 7	non 13
yes no	5/7 2/7	4/13 9/13	7/20	13/20

Obs. O denominador foi omitido pois é sempre igual.

P(mammals| give birth, can fly, live in water, have legs)

P(mammals | yes, no, yes, no) = (6/7*6/7*2/7*2/7*7/20) = 0.0209912

P(non-mammals | yes, no, yes, no) = (12/13*10/13*3/13*9/13*13/20) = 0.0737369

Logo, o animal com as características fornecidas pode ser classificado, pelo algoritmo de Bayes, como não mamífero.

- 3) (0,2) Execute árvores de decisão:
 - a) a AND b
 - b) a XOR b
 - c) (a AND b) OR (b AND c)
- 4) (0,2) Calcular a medida de entropia para os dados abaixo:

-	C1	0		C1	1	C1	2	C1	3
	C2	6		C2	5	C2	4	C2	3
	E=?		E=	=?	E:	=?	E=	?	

5) (0,2) Pesquise as principais diferenças entre os algoritmos de árvores de decisão: Hunt, ID3, C4.5, J4.8, C5.0, CART, Random-Forest.