```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]: df = pd.read_csv(r'C:\Users\309962\Desktop\VehicleTraffic.csv', parse_dates=[0],

Vehicles Average Speed (mph) Accidents

In [3]: # Measurements taken at different times
 df

Out[3]:

TimeStamp			
2018-12-04 13:00:00	95.0	38.0	0.0
2018-12-04 14:00:00	90.0	32.0	1.0
2018-12-04 15:00:00	98.0	30.0	1.0
2018-12-04 16:00:00	98.0	26.0	3.0
2018-12-04 17:00:00	NaN	NaN	NaN
2018-12-04 18:00:00	NaN	NaN	NaN
2018-12-04 19:00:00	84.0	35.0	2.0
2018-12-04 20:00:00	82.0	40.0	0.0
2018-12-04 21:00:00	77.0	45.0	0.0
2018-12-04 22:00:00	93.0	45.0	1.0

In [4]: # Remove NaN values
df.dropna()

Out[4]:

	Vehicles	Average Speed (mph)	Accidents
TimeStamp			
2018-12-04 13:00:00	95.0	38.0	0.0
2018-12-04 14:00:00	90.0	32.0	1.0
2018-12-04 15:00:00	98.0	30.0	1.0
2018-12-04 16:00:00	98.0	26.0	3.0
2018-12-04 19:00:00	84.0	35.0	2.0
2018-12-04 20:00:00	82.0	40.0	0.0
2018-12-04 21:00:00	77.0	45.0	0.0
2018-12-04 22:00:00	93.0	45.0	1.0

```
In [5]: # Mean values of numeric columns
    df.mean()
```

Out[5]: Vehicles 89.625
Average Speed (mph) 36.375
Accidents 1.000
dtype: float64

In [6]: # Let's visualize vehicles data
How does missing data show up?
plt.figure(figsize=(10,3))
plt.title('Vehicles')
plt.plot(df['Vehicles'], label='target')
plt.xticks(fontsize=14, rotation=45)
plt.legend()
plt.grid()


```
In [7]: # Replace missing values with zero

plt.figure(figsize=(10,3))
plt.title('Replace NaN with Zero')
plt.plot(df['Vehicles'], label='target')

# fillna to replace NaNs with provided value
vehicles = df['Vehicles'].fillna(0)

plt.plot(vehicles,ls='-.',alpha=0.8,label='zeroed')
plt.xticks(fontsize=14, rotation=45)
plt.legend()
plt.grid()
```



```
In [8]: # Replace missing values with mean value for that attribute
    plt.figure(figsize=(10,3))
    plt.title('Replace NaN with Mean')
    plt.plot(df['Vehicles'], label='target')

# fillna to replace NaNs with provided value
    vehicles = df['Vehicles'].fillna(df['Vehicles'].mean())

plt.plot(vehicles,ls='-.',alpha=0.8,label='mean')
    plt.xticks(fontsize=14, rotation=45)
    plt.legend()
    plt.grid()
```



```
In [9]: # Replace missing values with interpolated value for that attribute
    plt.figure(figsize=(10,3))
    plt.title('Replace NaN with Interpolation')
    plt.plot(df['Vehicles'], label='target')

    vehicles = df['Vehicles'].interpolate()

    plt.plot(vehicles,ls='-.',alpha=0.8,label='mean')
    plt.xticks(fontsize=14, rotation=45)
    plt.legend()
    plt.grid()
```


In [10]: vehicles

```
Out[10]: TimeStamp
         2018-12-04 13:00:00
                                 95.000000
         2018-12-04 14:00:00
                                 90.000000
         2018-12-04 15:00:00
                                 98.000000
         2018-12-04 16:00:00
                                 98.000000
         2018-12-04 17:00:00
                                 93.333333
         2018-12-04 18:00:00
                                 88.666667
                                 84.000000
         2018-12-04 19:00:00
         2018-12-04 20:00:00
                                 82.000000
         2018-12-04 21:00:00
                                 77.000000
                                 93.000000
         2018-12-04 22:00:00
         Name: Vehicles, dtype: float64
```

```
In [11]: # Replace missing values with previous valid value for that attribute
   plt.figure(figsize=(10,3))
   plt.title('Replace NaN with Forward Fill')
   plt.plot(df['Vehicles'], label='target')

   vehicles = df['Vehicles'].fillna(method='ffill')

   plt.plot(vehicles,ls='-.',alpha=0.8,label='forward fill')
   plt.xticks(fontsize=14, rotation=45)
   plt.legend()
   plt.grid()
```



```
In [12]:
         vehicles
Out[12]: TimeStamp
         2018-12-04 13:00:00
                                 95.0
         2018-12-04 14:00:00
                                 90.0
         2018-12-04 15:00:00
                                 98.0
         2018-12-04 16:00:00
                                 98.0
         2018-12-04 17:00:00
                                 98.0
         2018-12-04 18:00:00
                                 98.0
         2018-12-04 19:00:00
                                 84.0
         2018-12-04 20:00:00
                                 82.0
         2018-12-04 21:00:00
                                 77.0
         2018-12-04 22:00:00
                                 93.0
         Name: Vehicles, dtype: float64
```

```
In [13]: # Replace missing values with next valid value for that attribute
    plt.figure(figsize=(10,3))
    plt.title('Replace NaN with Backward Fill')
    plt.plot(df['Vehicles'], label='target')

    vehicles = df['Vehicles'].fillna(method='bfill')

    plt.plot(vehicles,ls='-.',alpha=0.8,label='back fill')
    plt.xticks(fontsize=14, rotation=45)
    plt.legend()
    plt.grid()
```



```
In [14]: vehicles
```

```
Out[14]: TimeStamp
         2018-12-04 13:00:00
                                 95.0
         2018-12-04 14:00:00
                                 90.0
         2018-12-04 15:00:00
                                 98.0
         2018-12-04 16:00:00
                                 98.0
         2018-12-04 17:00:00
                                 84.0
         2018-12-04 18:00:00
                                 84.0
         2018-12-04 19:00:00
                                 84.0
         2018-12-04 20:00:00
                                 82.0
         2018-12-04 21:00:00
                                 77.0
         2018-12-04 22:00:00
                                 93.0
         Name: Vehicles, dtype: float64
```

In [15]: df

Out[15]:

TimeStamp			
2018-12-04 13:00:00	95.0	38.0	0.0
2018-12-04 14:00:00	90.0	32.0	1.0
2018-12-04 15:00:00	98.0	30.0	1.0
2018-12-04 16:00:00	98.0	26.0	3.0
2018-12-04 17:00:00	NaN	NaN	NaN
2018-12-04 18:00:00	NaN	NaN	NaN
2018-12-04 19:00:00	84.0	35.0	2.0
2018-12-04 20:00:00	82.0	40.0	0.0
2018-12-04 21:00:00	77.0	45.0	0.0
2018-12-04 22:00:00	93.0	45.0	1.0

Vehicles Average Speed (mph) Accidents

In []:		