Package 'compas'

October 12, 2022

Title Conformational Manipulations of Protein Atomic Structures

Type Package

Version 0.1.1
Date 2022-01-08
Author Samuel W.K. Wong, Dylan Shi, Megan Hazlett, Jasmine Cheng
Maintainer Samuel W.K. Wong <samuel.wong@uwaterloo.ca></samuel.wong@uwaterloo.ca>
Description Manipulate and analyze 3-D structural geometry of Protein Data Bank (PDB) files.
License GPL-3
Imports Rcpp (>= 0.12.18), bio3d
LinkingTo Rcpp, RcppEigen
RoxygenNote 6.1.1
LazyData true
Depends R (>= 3.2.0)
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-09 00:02:41 UTC
R topics documented:
atomdeps
calCo
calscco
dfireE
nat879
pdbrmsd
pred879
torsion
Index 9

2 atomtype

atomdeps

Atom parameters and definitions for side chains

Description

List of the atom dependencies and typical bond parameters in protein structures for side chains of the 20 standard amino acid types.

Usage

atomdeps

Format

A list for the 20 amino acid types, each having the attributes

- "tangle": Dihedral angle defined by atoms A-B-C-D as described below. NA's represent the free side chain dihedral angles *chi* for that amino acid.
- "names": The component atoms of the amino acid side chain. Represents atom D in the dihedral.
- "matx": The names of atoms A,B,C in the dihedral, with rows corresponding to the atoms in "names".
- "bangle": Planar bond angle formed between B-C-D
- "blength": Bond length between C-D

References

Engh, Richard A., and Robert Huber. "Accurate bond and angle parameters for X-ray protein structure refinement." *Acta Crystallographica* Section A 47.4 (1991): 392-400.

atomtype

Atom Type Table

Description

Table listing the 167 standard atom types in protein structures (amino acid type and atom identifier pairs). Hydrogen atoms are not considered.

Usage

atomtype

Format

A two-column data frame, with "resid" providing the 3-letter amino acid abbreviation and "atomid" providing the component atoms of each amino acid.

calCo 3

Source

PDB ATOM entry: http://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM

calCo

Calculate Cartesian coordinates for 1-4 bonded atoms

Description

Consider atoms A-B-C-D forming a dihedral. Given coordinates for atoms A,B,C of the dihedral, the dihedral angle, bond angle, and bond length, calculate the Cartesian coordinates of atom D in the dihedral.

Usage

```
calCo(prev_atoms, length, bAngle, tAngle)
```

Arguments

prev_atoms	a 3x3 matrix of coordinates for atoms A-B-C in dihedral, listed by row
length	bond length between atoms C-D in dihedral
bAngle	planar bond angle between atoms B-C-D (in degrees)
tAngle	dihedral angle formed by atoms A-B-C-D (in degrees)

Value

Returns the vector of coordinates for the fourth atom in the dihedral

Examples

```
prevAtoms <- matrix(c(50.051, 37.144, -4.723,
50.044, 36.248, -3.559,
51.296, 35.369, -3.476), nrow=3, ncol=3, byrow=TRUE)
calCo(prevAtoms, length=1.33, bAngle=116.8, tAngle=-25.3)</pre>
```

4 dfireE

C 2	00	200
(.a	.50	:CC

Calculate Cartesian coordinates of side chains

Description

Rotates the free side chain dihedral angles of an amino acid to the specified values. Calculates the updated Cartesian coordinates of all the atoms of that amino acid side chain.

Usage

```
calscco(pdb, resno, chi)
```

Arguments

pdb A PDB object

resno The residue number of the amino acid side chain to rotate

chi A vector of dihedral angles (in degrees), with length matching the number of free

side chain dihedral angles for that amino acid type. See atomdeps for definitions.

Details

Calls calCo successively for each atom in the amino acid side chain, using the bond parameters defined in atomdeps.

Value

Returns a PDB object with updated coordinates of side chain atoms in "resno".

Examples

```
## Position 10 of nat879 is ASP with 2 side chain dihedrals chi1 and chi2
nat879$atom[nat879$atom$resno==10,]
pdbn <- calscco(nat879,10,c(60.0,-80.0))
pdbn$atom[pdbn$atom$resno==10,]</pre>
```

dfireE

DFIRE Energy Evaluation for Protein Conformations

Description

Calculates the energy of a protein conformation using the DFIRE potential.

Usage

```
dfireE(pdb)
```

nat879 5

Arguments

pdb

A PDB object, read using read.pdb.

Value

Returns the DFIRE energy.

References

Zhou, Hongyi, and Yaoqi Zhou. "Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction." *Protein science* 11.11 (2002): 2714-2726.

Examples

dfireE(nat879)

nat879

Sample Protein Conformation 1

Description

A sample protein conformation in PDB format. Excerpted from the native structure of CASP12 target 879, residues 5-24

Usage

nat879

Format

A PDB object, read using read.pdb

Source

CASP12 data archive on Prediction Center: http://predictioncenter.org/download_area/CASP12/targets/casp12.targets_T0.releaseDec022016.tgz

6 pdbrmsd

pdbrmsd	Root Mean Squared Deviation (RMSD) of Two Protein Conformations

Description

RMSD calculation between the atoms of two PDB objects.

Usage

```
pdbrmsd(pdb1, pdb2, start, end, type='all', optimal=FALSE)
```

Arguments

pdb1	PDB object containing reference coordinates of atoms in protein conformation.
pdb2	PDB object containing coordinates of atoms in protein conformation to compare with pdb1.
start	The starting residue position for the RMSD calculation. If not supplied, defaults to first residue of chain.
end	The ending residue position for the RMSD calculation. If not supplied, defaults to final residue of chain.
type	Specifies atoms to be included in the calculation. Can be 'all', 'CA' (CA atoms only), or 'backbone' (CA, N, C, O).
optimal	Apply optimal rotation and superposition? As described in https://cnx.org/contents/HV-RsdwL@23/Molecular-Distance-Measures

Details

Similar to rmsd, but with implementation in C++.

Value

Returns a list with calculated RMSD value and the optimal rotation matrix.

Examples

```
pdbrmsd(nat879, pred879, start=10, end=20, 'all', optimal=TRUE)
```

pred879 7

			_	_
n	-	8t	7	a
D		ıo	,	7

Sample Protein Conformation 2

Description

A sample protein conformation in PDB format. Excerpted from a structure prediction of CASP12 target 879, residues 5-24

Usage

pred879

Format

A PDB object, read using read.pdb

Source

CASP12 data archive on Prediction Center: http://predictioncenter.org/download_area/CASP12/targets/casp12.targets_TR.releaseDec022016.tgz

torsion

Calculate dihedral angle formed by four atoms

Description

For Cartesian coordinates of atoms A-B-C-D, calculate the dihedral angle formed by viewing down the B-C axis.

Usage

```
torsion(a, b, c, d)
```

Arguments

length 3 vector of coordinates of atom A	a
length 3 vector of coordinates of atom B	b
length 3 vector of coordinates of atom C	С
length 3 vector of coordinates of atom D	d

Details

Similar to torsion.xyz, but with implementation in C++.

8 torsion

Value

Returns the dihedral angle (in degrees between -180 and 180).

Examples

```
torsion(c(50.051, 37.144, -4.723), c(50.044, 36.248, -3.559), c(51.296, 35.369, -3.476), c(51.930,35.119,-4.618))
```

Index

```
\ast datasets
    atomdeps, 2
    atomtype, 2
    nat879, 5
    pred879, 7
atomdeps, 2, 4
atomtype, 2
calCo, 3, 4
calscco, 4
dfireE, 4
nat879, 5
pdbrmsd, 6
pred879, 7
\mathsf{read.pdb}, 5, 7
rmsd, 6
torsion, 7
torsion.xyz, 7
```