Basics of Monodromy

Pedro Núñez

Basic Notions — University of Freiburg

14th May 2020

Table of Contents

1. Introduction

2. Galois coverings

3. Monodromy action

4. Local systems

Motivating example — A multi-valued function

Consider
$$z=re^{\theta i}\mapsto z^2=r^2e^{2\theta i}$$
 on $\mathbb C$. Local inverse on $\mathbb C^{\times}$:
$$z=re^{\theta i}\mapsto \sqrt{z}=\sqrt{r}e^{\frac{\theta}{2}i}.$$

Motivating example — A multi-valued function

Consider
$$z=re^{\theta i}\mapsto z^2=r^2e^{2\theta i}$$
 on $\mathbb C$. Local inverse on $\mathbb C^{\times}$:
$$z=re^{\theta i}\mapsto \sqrt{z}=\sqrt{r}e^{\frac{\theta}{2}i}.$$

Ambiguity: the previous expression is not well defined, as

$$re^{\theta i} = re^{(\theta + 2\pi)i} \mapsto \sqrt{r}e^{\frac{\theta}{2}i} \neq \sqrt{r}e^{(\frac{\theta}{2} + \pi)i}.$$

Motivating example — A multi-valued function

Consider $z = re^{\theta i} \mapsto z^2 = r^2 e^{2\theta i}$ on \mathbb{C} . Local inverse on \mathbb{C}^{\times} : $z = re^{\theta i} \mapsto \sqrt{z} = \sqrt{r}e^{\frac{\theta}{2}i}.$

Ambiguity: the previous expression is not well defined, as

$$re^{\theta i} = re^{(\theta + 2\pi)i} \mapsto \sqrt{r}e^{\frac{\theta}{2}i} \neq \sqrt{r}e^{(\frac{\theta}{2} + \pi)i}.$$

Let $z_0 \in \mathbb{C}^{\times}$ and pick one value for $\sqrt{z_0}$. Let $\gamma \colon [0,1] \to \mathbb{C}^{\times}$ be a path with $\gamma(0) = z_0$. Then the chosen $\sqrt{z_0}$ determines uniquely a value of $\sqrt{\gamma(t)}$ for all $t \in [0,1]$, because we want $z \mapsto \sqrt{z}$ to be continuous.

The Monodromy Theorem

Theorem 1 (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

The Monodromy Theorem

Theorem 1 (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

In particular, if we walk around a simply connected space, then the analytic continuation is single-valued everywhere.

The Monodromy Theorem

Theorem 1 (Weierstraß)

Analytic continuation along a path only depends on the path up to homotopy.

In particular, if we walk around a simply connected space, then the analytic continuation is single-valued everywhere. Hence:

"monodromy", mónos (alone, only, single) and drómos (running).

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z \mapsto \sqrt{z}$ on \mathbb{C}^{\times} .

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z\mapsto \sqrt{z}$ on \mathbb{C}^{\times} . Pick a value of \sqrt{z} at z_0 as before and let $\gamma\colon [0,1]\to \mathbb{C}^{\times}$ be a loop at z_0 , with $\gamma(0)=\gamma(1)=z_0$. Extend \sqrt{z} along γ as before.

Polydromy, a.k.a. lack of monodromy

Let's go back to our example $z\mapsto \sqrt{z}$ on \mathbb{C}^\times . Pick a value of \sqrt{z} at z_0 as before and let $\gamma\colon [0,1]\to \mathbb{C}^\times$ be a loop at z_0 , with $\gamma(0)=\gamma(1)=z_0$. Extend \sqrt{z} along γ as before.

Do we always arrive at the same value of $\sqrt{z_0}$ at the end of the loop?

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Figure: This is an example of mathematical red herring principle.

Why are we then talking about monodromy?

The Monodromy Theorem became so famous that people kept using the word "monodromy" to talk about polydromy¹.

Figure: This is an example of mathematical red herring principle.

Exercise 0

This is the second red herring that appeared in this talk so far. Can you spot the first one?

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The goal of this talk is to generalize this situation as follows:

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The goal of this talk is to generalize this situation as follows:

• As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The goal of this talk is to generalize this situation as follows:

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.

The Monodromy Theorem implies that $\pi_1(\mathbb{C}^{\times}, z_0)$ acts on the different possible values of $\sqrt{z_0}$.

The goal of this talk is to generalize this situation as follows:

- As we move z in \mathbb{C}^{\times} , the possible values of \sqrt{z} form a nice **covering space** of \mathbb{C}^{\times} .
- If $p: Y \to X$ is a nice covering space, then $\pi_1(X, x)$ acts naturally on $p^{-1}(x)$. This is the **monodromy action**.
- If the fibres of p carry a natural vector space structure, we will
 be able to use the tools of representation theory to study
 polydromy.

Table of Contents

1. Introduction

2. Galois coverings

3. Monodromy action

4. Local systems

Let X be a topological space.

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

• A map $p \colon Y \to X$ has property \mathbf{P} locally on X if every point $x \in X$ has an open neighbourhood $x \in U \subseteq X$ such that \mathbf{P} is true for $p|_{p^{-1}(U)} \colon p^{-1}(U) \to U$.

Let *X* be a topological space.

The category of *spaces over X* has for objects (continuous) maps *p*: *Y* → *X* and for morphisms commutative triangles

- A map $p \colon Y \to X$ has property \mathbf{P} locally on X if every point $x \in X$ has an open neighbourhood $x \in U \subseteq X$ such that \mathbf{P} is true for $p|_{p^{-1}(U)} \colon p^{-1}(U) \to U$.
- p: Y → X is a covering space if locally on X it is isomorphic to a projection X × F → X for some discrete space F.

Maps into covering spaces

Figure: The set $\{z \in Z \mid f(z) = g(z)\}$ is open and closed, so if Z is connected and f and g agree on a single point, then they agree in all of Z.

Maps into covering spaces

Figure: The set $\{z \in Z \mid f(z) = g(z)\}$ is open and closed, so if Z is connected and f and g agree on a single point, then they agree in all of Z.

In particular, if $p: Y \to X$ is a connected cover and $\phi \in \operatorname{Aut}(Y \mid X)$ fixes a point, then $\phi = \operatorname{id}_Y$.

Galois coverings

A connected cover $p: Y \to X$ is called *Galois* if $X = Aut(Y \mid X) \backslash Y$;

Galois coverings

A connected cover $p: Y \to X$ is called *Galois* if $X = \operatorname{Aut}(Y \mid X) \setminus Y$; equivalently, if $\operatorname{Aut}(Y \mid X)$ acts transitively on each fibre.

Galois coverings

A connected cover $p: Y \to X$ is called *Galois* if $X = \operatorname{Aut}(Y \mid X) \setminus Y$; equivalently, if $\operatorname{Aut}(Y \mid X)$ acts transitively on each fibre.

Theorem 2

Let $p: Y \to X$ be a Galois cover. Then there is a bijection

{ Subgroups
$$H\subseteq \operatorname{Aut}(Y\mid X)$$
 } \longleftrightarrow { Intermediate covers $q\colon Z\to X$ }
$$H \longmapsto (H\backslash Y\to X)$$

$$\operatorname{Aut}(Y\mid Z) \longleftrightarrow (Z\to X)$$

Moreover, $q: Z \to X$ is Galois if and only if $H \subseteq \operatorname{Aut}(Y \mid X)$ is a normal subgroup, in which case we have

$$\operatorname{Aut}(Z \mid X) = G/H.$$

Table of Contents

1. Introduction

2. Galois coverings

3. Monodromy action

4. Local systems

Monodromy action

Table of Contents

1. Introduction

- 2. Galois coverings
- 3. Monodromy action

4. Local systems

Local systems