Finding the minimum of a benchmark numerical function:

Hill-Climbing vs Simulated Annealing

Badarau Dragos

November 12, 2021

Abstract

This paper compares two heuristic algorithms: Hill-Climbing and Simulated Annealing using 4 different functions: De Jong 1, Schwefel's, Rastrigin's, Michalewicz's to visualize the global minimum in multiple scenarios. This project aims to show that optimizing the solution is based on iteratively improving the performance of these algorithms within a reasonable amount of time and memory space.

* Introduction

This article refers to non-determination searching techniques that can be used for solving optimization problems. There will be described the Hill Climbing Best and First Improvement and Simulated Annealing algorithms and how none of these algorithms can't prove as being the best because the result depends on many factors such as time-consuming. The mathematical functions tested vary from the number of distribution of local minima to the range of values and are presented by their graphics and formulas in the next sections.

* Motivation

The goal is to compare how the 3 algorithms behave in different situations and to analyze their approximate trajectory in finding the optimal minimum as the dimension increases. The problem consists of finding the local optimum between the range of a function.

Methods

A hill-climbing algorithm is a local search algorithm that moves continuously upward (increasing) until the best solution is attained. This algorithm comes to an end when the peak is reached. Taking into consideration a set of candidates which we will establish randomly we will look for an improvement. The improvement function has two ways for the evaluation process: taking the first better neighbor of the current solution or the best neighbor of the current solution and determining if or not producing a better overall solution. Both of them start by selecting a random candidate solution which will be compared and changed if found other better solutions.

Hill Climbing Best Improvement is a local search algorithm that selects a successor of the current assignment that improves the most evaluation function (in the current case the evaluation function searches for a minimum based on the 4 mathematical functions observed).

Hill Climbing First Improvement is based on the idea that the first successor is better than the current is selected. In this case, the successor is not necessarily the best neighbor. It may be considered incomplete at some points because it usually gets stuck in a local maximum; a state that is not the optimal one. Escaping the local maxima is based on restarting the algorithm so that it is run several times with a selected initial state that keeps changing. Random restart hill-climbing performs better because the random restart is the best out of successive regular hill climbing's.

Simulated Annealing is a technique that allows downward steps to escape a local maximum. Annealing emulates the concept in metallurgy; where metals are heated to very high temperatures and then gradually cooled so their structure is frozen at a minimum energy configuration. The idea behind annealing is that at high temperatures the algorithm should jump out of a local maximum which proves efficiency in some cases. There are two conditions mandatory: the decrease of the temperature after each iteration and the halting criterion (the temperature which is settled from the start and decreases at each iteration). In the inner loop, a random neighbor of the solution is evaluated. The solution is gradually chosen such that the probability of accepting a worse solution decreases with temperature.

❖ Implementation details

Hill-Climbing:

- The solution is generated and saved in the binary format
- The number of each hill-climbing iteration is 1000
- The neighbor notion is based on the Hamming space technique

Simulated Annealing:

- The initial temperature is set to 100
- The halting condition is temperature 0.00001
- Temperature decreases by 1%
- The solution is generated and saved in the binary format

❖ DeJong Function

$$f_1(x) = \sum_{i=1}^{n} x_i^2$$
 $-5.12 \le x_i \le 5.12$

Global minimum: f(x)=0, x(i)=0, i=1:n. DeJong's function is also known as a sphere model.

DE JONGs function 1

x 10⁸

Solution 2

variable 2

variable 1

Figure 1: DeJong Function graph for n=2

Because of the function shape, the first improvement saves a lot of time by picking the neighbor faster.

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	0	0	0	0	25.315	22.3	27.85
10	0	0	0	0	165.875	162.8	171.98
30	0	0	0	0	4945.72	4720.31	5060.44

Values smaller than 10⁻⁵ were approximated to 0

• Best Improvement

Because this function has no local minima, the best improvement is slower than the first improvement.

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	0	0	0	0	43.025	41.23	47.22
10	0	0	0	0	383.201	367.823	373.731
30	0	0	0	0	9436.78	9370.25	9746.33

Values smaller than 10^{-5} were approximated to 0

• Simulated Annealing

Simulated Annealing doesn't get to the local minima because the result is obtained approximately at the temperature stability point.

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	0.00005	0.00005	0.00001	0.00024	9.9395	9.573	12.292
10	0.0005	0.00269	0.0002	0.0076	32.2395	31.891	35.747
30	6.4686	2.83332	1.98403	14.3654	214.055	209.55	224.59

Values smaller than 10⁻⁵ were approximated to 0

✓ Remarks

Taking into consideration the result, the fact that this function has no local minima implies that Hill Climbing First Improvement is the fastest solution and it matches the best results on each case.

❖ Schwefel's function

$$f_7(x) = \sum_{i=1}^{n} -x_i \cdot \sin\left(\sqrt{|x_i|}\right) -500 \le x_i \le 500$$
global minimum:
$$f(x) = -n.418.9829; x(i) = 420.9687, i = 1:n.$$

Figure 2: Schwefel's graph for n=2

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	-2094.6	18.6512	-2094.91	-2026.34	54.323	51.134	61.615
10	-3917.965	71.955	-4076.2	-3748.93	404.1695	388.6	429.581
30	-10754.75	347.8381	-11075.6	-10005.2	11496.6	10168.2	13253.3

• Best Improvement

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	-2094.81	0.0879	-2094.91	-2094.6	103.51	90.021	109.302
10	-4036.63	39.325	-4091.53	-3921.84	826.7645	730.627	862.864
30	-11364.2	270.63	-11525.3	-11296.5	21117.01	200005.3	22843.3

• Simulated Annealing

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	-1606.715	179.61	-1907.79	-1150.34	14.885	14.253	16.427
10	-3274.41	259.92	-3783.27	-2825.12	50.35	48.274	54.486
30	-8630.26	1200.93	-9244.47	-6434.79	393.783	381.414	429.239

✓ Remarks

The fact that Schwefel's function has a lot of local minimas makes it hard for the algorithms to find the solution in a reasonable amount of time.

❖ Rastrigin's function

$$f_6(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i)) - 5.12 \le x_i \le 5.12$$
global minimum:
$$f(x) = 0; \ x(i) = 0, \ i = 1:n.$$

Global minimum at [0 0]

Figure 3: Rastrigin's function for n=2

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	0.99496	0.55344	0	1.98992	22.234	21.852	25.255
10	6.09019	1.05404	4.46159	8.17415	170.9445	163.361	176.389
30	35.69325	1.81602	32.626	39.6173	4250.575	4217.45	4263.3

• Best Improvement

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	0	0.4854	0	0.9	39.689	38.543	41.144
10	4.46916	1.10244	2.23585	5.4616	295.139	286.763	316.014
30	27.6618	2.8946	22.0258	30.811	7693.25	7504.24	7893.21

• Simulated Annealing

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	8.39012	6.4308	2.98494	25.4764	9.669	9.603	10.283
10	24.9224	9.9394	11.963	40.9022	34.162	32.189	35.449
30	109.188	23.793	65.8894	130.343	242.47	239.572	245.285

✓ Remarks

Simulated Annealing still proves to be faster at higher dimensions but it has poorer results compared to the Hill Climbing techniques.

❖ Michalewicz's function

$$f_{12}(x) = -\sum_{i=1}^{n} \sin(x_i) \cdot \left(\sin\left(\frac{i \cdot x_i^2}{\pi}\right) \right)^{2m} \qquad i = 1: n, m = 10, 0 \le x_i \le \pi$$

global minimum:

$$f(x)=-4.687 (n=5); x(i)=???, i=1:n.$$

$$f(x)=-9.66 (n=10); x(i)=???, i=1:n.$$

Size	Mean	σ	Min	Max	Avg Time(s)	Min Time(s)	Max Time(s)
5	-4.6706	0.00171	-4.68765	-4.68199	21.907	20.735	22.869
10	-9.23116	0.08205	-9.43877	-9.15703	150.690	144.312	160.413
30	-26.0472	0.27051	-26.5291	-25.8651	3573.67	3437.17	3706.83

• Best Improvement

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	-4.68753	0.00151	-4.68766	-4.68297	38.641	37.317	39.515
10	-9.40084	0.06715	-9.60708	-9.27461	272.634	260.449	287.492
30	-26.5894	0.18572	-27.1866	-26.0415	6431.25	6222.04	6397.65

• Simulated Annealing

Size	Mean	σ	Min	Max	Avg	Min	Max
					Time(s)	Time(s)	Time(s)
5	-3.97830	0.307938	-4.47661	-3.51984	9.409	9.367	9.699
10	-7.67361	0.46761	-8.86977	-7.53411	31.8915	31.292	33.78
30	-19.1731	1.78141	-22.7272	-17.8916	235.499	235.272	243.125

***** Overall Comparison over the results

Algorithm result dimension 5						
Function	HC First	HC BEST	SA			
De Jong	0	0	0.00005			
Schwefel	-2094.6	-2094.81	-1606.715			
Rastrigin	0.9946	0	8.39012			
Michalewicz	-4.68796	-4.68754	-3.987305			

Algorithm result dimension 10						
Function	HC First HC BEST		SA			
De Jong	0	0	0.0005			
Schwefel	-3917.965	-4036.63	-3274.41			
Rastrigin	6.09019	4.46916	24.9224			
Michalewicz	-9.23116	-9.40084	-7.67361			

Algorithm result dimension 30						
Function	HC First	HC BEST	SA			
De Jong	De Jong 0		6.4686			
Schwefel	-10754.75	-11364.2	-8630.26			
Rastrigin	35.69325	27.6618	109.188			
Michalewicz	-26.0472	-26.5894	-19.1731			

This is the MEDIAN values' evolution compared to the dimensions

Discussion over the results

The problem of finding the minimum of a function concludes that the result is based on the iteration values and the dimensional input. Taking into consideration the differences between the approached functions, the distribution of local minima has a big impact over the overall results because it influenced the neighbor generation method. Observing the precision and time, allocating more time for a large number of iterations produces a closer outcome to the optimal minimum results. The Hill Climbing method proved to be slower but more precise using

1000 iterations, the most important aspect being the fact that the neighbors were chosen based on the most important bit at the time. Best Improvement Hill Climbing returns the best values with the most time spent in comparation with First Improvement Hill Climbing which gives decent results in half the time spent for Best Improvement algorithm. As things stand, Simulated Annealing approximates faster resulting in weaker outcome, the halting-criterion, termination condition and initial temperature being the decisive aspects of the method.

***** Conclusion

This report points to the performance of the Hill Climbing and Simulated Annealing algorithms. In the context of 4 different numerical functions, there were significant differences and interpretations based on the time scaling, closeness to the minimum of each function, and the dimensions used. There were used two instances of the Hill Climbing: First and Best Improvement and a Simulated Annealing with a linear cooling time. The Best Improvement Hill Climbing proved to be the most time-consuming with better overall results than First Improvement Hill Climbing while the Simulated Annealing algorithm needs less time to approximate a result.

* Bibliography

- Implementation of the genetic algorithm https://profs.info.uaic.ro/~eugennc/teaching/ga/
- The graphs and functions used
 http://www.geatbx.com/docu/fcnindex-01.html#P140_6155
- Additional informations about hill-climbing <u>https://www.section.io/engineering-</u> education/understanding-hill-climbing-in-ai/
- Comparison between simulated annealing and hill climbing https://academicjournals.org/article/article1379672838_Patrick.pdf
- General aspects about the algorithms
 https://www.youtube.com/watch?v=FyyVbuLZav8&t=278s
 https://www.youtube.com/watch?v=eBmU1ONJ-os&t=109s
 https://www.youtube.com/watch?v=oSdPmxRCWws
- The convertor used https://www.ilovepdf.com/word_to_pdf