# LEAD SCORING CASE STUDY LE THANH DAT

# DATA PREPROCESSING, FEATURE SELECTION, MODEL OPTIMIZATION

#### NECESSARY LIBRARIES

- pandas, numpy
- seaborn, mathplotlib
- sklearn.metrics
- optbinning
- xgboost

import pandas as pd
from optbinning import BinningProcess

```
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train_test_split, RandomizedSearchCV
from sklearn.metrics import accuracy_score, classification_report
```

from xgboost import XGBClassifier
from sklearn.model selection import RandomizedSearchCV
from sklearn.metrics import accuracy\_score, classification\_report, roc\_curve, roc\_auc\_score
import matplotlib.pyplot as plt

#### DATA EXLORATION

- Check duplicated/missing values
- Handle outliers

#### Numeric & categorical variables

```
def choose_numeric_categorical(data):
    numeric_vars = data.select_dtypes(include=['number']).columns.tolist()
    categorical_vars = data.select_dtypes(include=['object', 'category']).columns.tolist()
    return numeric_vars, categorical_vars
numeric_vars, categorical_vars = choose_numeric_categorical(data)
```

#### Check missing values

```
missing_values_percentage = round(100 * (data.isna().sum() / len(data)), 2)
sorted_missing_values_percentage = missing_values_percentage.sort_values(ascending=False)
sorted_missing_values_percentage
```

#### Data exploration

```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
def plot numeric variable analysis(numeric columns, dataframe):
   for numeric_column in numeric_columns:
       plt.figure(figsize=(12, 6))
       print(numeric_column)
        # Calculate quartiles
       quartiles = np.percentile(dataframe[numeric_column].dropna(), [25, 50, 75, 90, 99])
       print(f'25th percentile: {quartiles[0]}')
       print(f'50th percentile: {quartiles[1]}')
       print(f'75th percentile: {quartiles[2]}')
       print(f'90th percentile: {quartiles[3]}')
       print(f'99th percentile: {quartiles[4]}')
        # Plot Violin plot
       plt.subplot(1, 2, 1)
        sns.violinplot(y=dataframe[numeric_column])
       plt.title(f'Violin Plot of {numeric column}')
       plt.ylabel(numeric_column)
        # Plot CDF (Cumulative Distribution Function)
       plt.subplot(1, 2, 2)
       sorted values = np.sort(dataframe[numeric column].dropna())
       cdf_values = np.arange(1, len(sorted_values) + 1) / len(sorted_values)
       plt.plot(sorted_values, cdf_values, marker='.', linestyle='none')
       plt.title(f'CDF of {numeric_column}')
       plt.xlabel(numeric_column)
       plt.ylabel('CDF')
       plt.tight layout()
        plt.show()
plot numeric variable analysis(numeric vars, data)
```

#### DATA EXLORATION

The images show that there are numerous NaN values across the columns. Notably,

the Page Views Per Visit column contains some outliers.

Page Views Per Visit 25th percentile: 1.0 50th percentile: 2.0 75th percentile: 3.0 90th percentile: 5.0 99th percentile: 9.0

```
missing_values_percentage = round(100 * (data.isna().sum() / len(data)), 2)
sorted_missing_values_percentage = missing_values_percentage.sort_values(ascending=False)
sorted_missing_values_percentage
```

```
Lead Quality
                                                 51.59
                                                 45.65
Asymmetrique Activity Index
Asymmetrique Profile Score
                                                 45.65
Asymmetrique Profile Index
                                                 45.65
Asymmetrique Activity Score
                                                 45.65
Tags
                                                 36.29
Lead Profile
                                                 29.32
What matters most to you in choosing a course
                                                 29.32
What is your current occupation
                                                 29.11
                                                 26.63
How did you hear about X Education
                                                 23.89
Specialization
                                                 15.56
City
                                                 15.37
Page Views Per Visit
                                                  1.48
TotalVisits
                                                  1.48
Last Activity
                                                  1.11
Lead Source
                                                  0.39
I agree to pay the amount through cheque
                                                  0.00
A free copy of Mastering The Interview
                                                  0.00
Get updates on DM Content
                                                  0.00
Update me on Supply Chain Content
                                                  0.00
Lead Origin
                                                  0.00
                                                  0.00
Receive More Updates About Our Courses
                                                  0.00
Through Recommendations
                                                  0.00
                                                  0.00
Converted
Do Not Call
                                                  0.00
                                                  0.00
                                                  0.00
```



50

#### FEATURE SELECTION USING CORRELATION AND IV

 Pearson correlation to check multi-collinearity: from the Lead data, export to iv\_table.csv and binning\_table.csv to identify which variables have the highest IV

| •  | and s                                         | should           | be included            |          |                                                |                      |                |                 |             |              |             | '           |
|----|-----------------------------------------------|------------------|------------------------|----------|------------------------------------------------|----------------------|----------------|-----------------|-------------|--------------|-------------|-------------|
| ^  | and c                                         | riodica          | D F                    | E        | Bin                                            |                      |                | Non-event Event | Event rate  | WoE          | IV          | JS          |
| A  |                                               |                  |                        | f  -!    | Lead Origin 0 [3 0]                            | 291                  |                | 2020 89         |             | 0.351888832  | 0.046413712 | 0.005771965 |
|    | variable                                      | iv<br>0.00500040 | unique_bin top_bin     | freq_bin | Lead Origin 1 [1]                              | 390                  |                | 2484 1419       |             | 0.093298235  | 0.004544161 | 0.000567814 |
|    | Lead Origin                                   | 0.609526843      | 3 [1]                  | 3903     | Lead Origin 2 [24]                             |                      | 78 0.078192641 | 39 53           |             | -3.092773456 | 0.558568969 | 0.050879756 |
|    | Lead Source                                   | 0.658412573      | 5 [3]                  | 2295     | Lead Origin Totals                             | 739                  |                | 4543 2849       |             |              | 0.609526843 | 0.057219535 |
|    | Do Not Email                                  | 0.108353799      | 2 [0]                  | 6/94     | Lead Source 0 [18 9 19                         | 9 17 2 6 11 15] 155  | 54 0.210227273 |                 | 0.243243243 | 0.668360402  | 0.084334819 | 0.01034992  |
|    | Do Not Call                                   | 0.045745540      | 1 [0 1]                | 7392     | Lead Source 1 [1]                              | 204                  |                | 1377 67         |             | 0.250784627  | 0.016860612 | 0.002102071 |
|    | Last Activity                                 | 0.845715513      | 4 [3 13 5]             |          | Lead Source 2 [7]                              |                      | 13 0.123511905 | 569 34          |             | 0.036619245  | 0.000164915 | 2.06E-05    |
|    | Country                                       | 0.018164662      | 2 [0 36 32 30 29 28 27 | 5338     | Lead Source 3 [3]                              | 229                  |                | 1381 91         | 0.398257081 | -0.053886949 | 0.000906926 | 0.000113352 |
|    | Specialization                                | 0.384737403      | 5 [14 15 17 6 1 11]    | 2486     | Lead Source 4 [21 10 1                         | 4 13 4 0] 58         | 81 0.078598485 | 40 54           | 0.931153184 | -3.071159356 | 0.5561453   | 0.050839466 |
|    | How did you hear about X Education            | 0.478848744      | 4 [6 1 0]              | 4122     | Lead Source Totals                             | 739                  | 92 1           | 4543 2849       | 0.385416667 |              | 0.658412573 | 0.063425422 |
|    | What is your current occupation               | 1.007207474      | 3 [3 4 0 2]            | 4694     | Do Not Email 0 [1]                             | 59                   | 98 0.080898268 | 508 9           | 0.150501672 | 1.264052246  | 0.101415356 | 0.011895085 |
|    | What matters most to you in choosing a course | 0.572587389      | 2 [0 1]                | 5249     | Do Not Email 1 [0]                             | 679                  | 94 0.919101732 | 4035 2759       | 0.406093612 | -0.086481525 | 0.006938443 | 0.000867035 |
|    | Search                                        | 0                | 1 [10]                 | 7392     | Do Not Email Totals                            | 739                  | 92 1           | 4543 2849       | 0.385416667 |              | 0.108353799 | 0.01276212  |
|    | Magazine                                      | 0                | 1 [0]                  | /392     | Do Not Call 0 [0 1]                            | 739                  | 92 1           | 4543 2849       | 0.385416667 | -2.22E-16    | 0           | 0           |
|    | Newspaper Article                             | 0                | 1 [10]                 | 7392     | Do Not Call Totals                             | 739                  | 92 1           | 4543 2849       | 0.385416667 |              | 0           | 0           |
|    | X Education Forums                            | 0                | 1 [10]                 | 7392     | Last Activity 0 [16 2 9                        | 1] 137               | 75 0.186011905 | 1248 12         | 0.092363636 | 1.818490931  | 0.418491678 | 0.046118078 |
|    | Newspaper                                     | 0                | 1 [10]                 | /392     | Last Activity 1 [15 7 10                       | 0 14] 67             | 79 0.091856061 | 528 15          | 0.222385862 | 0.785196916  | 0.04964149  | 0.006050539 |
|    | Digital Advertisement                         | 0                | 1 [10]                 | 7392     | Last Activity 2 [3 13 5                        | ] 305                | 54 0.413149351 | 1965 1089       | 0.356581532 | 0.12361287   | 0.006217009 | 0.000776632 |
|    | Through Recommendations                       | 0                | 1 [0 1]                | 7392     | Last Activity 3 [12 8 1]                       | 7 6 11 0] 228        | 84 0.308982684 | 802 1482        | 0.648861646 | -1.080658729 | 0.371365337 | 0.044286038 |
|    | Receive More Updates About Our Courses        | 0                | 1 [0]                  | /392     | Last Activity Totals                           | 739                  | 92 1           | 4543 2849       | 0.385416667 |              | 0.845715513 | 0.097231286 |
|    | Tags                                          | 4.824129566      | 5 [16 26 20 5 18 15 1] | 2842     |                                                | 2 30 29 28 27        |                |                 |             |              |             |             |
|    | Lead Quality                                  | 2.008333608      | 5 [5 3]                | 4664     | 24 22 20                                       | 18 16 15 14          |                |                 |             |              |             |             |
|    | Update me on Supply Chain Content             | 0                | 1 [0]                  | 7392     | 19 10 13                                       | 3 6 5 4 25           |                |                 |             |              |             |             |
|    | Get updates on DM Content                     | 0                | 1 [0]                  | 7392     | Country 0 23 135                               | 533                  | 38 0.722132035 | 3387 1953       | 0.365492694 | 0.084982981  | 0.005161943 | 0.000645049 |
|    | Lead Profile                                  | 1.088576106      | 4 [4]                  | 3314     | Country 1 [33 38 2                             | 6 2 8 21 11 3 7] 205 | 54 0.277867965 | 1156 89         | 0.437195716 | -0.21406855  | 0.013002718 | 0.001622243 |
| 23 | City                                          | 0.356866941      | 5 [6 0]                | 2645     | Country Totals                                 | 739                  | 92 1           | 4543 2849       | 0.385416667 |              | 0.018164662 | 0.002267292 |
| 24 | Asymmetrique Activity Index                   | 0.0756598        | 3 [3]                  | 3355     | Specialization 0 [19]                          | 113                  | 36 0.153679654 | 1022 114        | 0.100352113 | 1.726698791  | 0.31934852  | 0.03559808  |
| 25 | Asymmetrique Profile Index                    | 0.073583573      | 3 [3]                  | 3355     | Specialization 1 [16.2.18                      |                      | 55 0.115665584 | 547 30          |             | 0.107729488  | 0.00132474  | 0.000165512 |
| 26 | I agree to pay the amount through cheque      | 0                | 1 [0]                  | 7392     | Specialization 2 [14 15 1                      |                      |                | 1445 104        |             | -0.138691999 | 0.006562851 | 0.000819699 |
| 27 | A free copy of Mastering The Interview        | 0.005845037      | 2 [0]                  | 5086     | Specialization 3 [4 7 0]                       |                      | 34 0.234577922 | 936 79          |             | -0.307112652 | 0.02274692  | 0.002832243 |
| 28 | Last Notable Activity                         | 0.661165701      | 4 [6918]               | 2931     | Specialization 4 [12 10 5                      |                      | 81 0.159767316 | 593 58          |             | -0.45815208  | 0.034754372 | 0.004306696 |
| 29 | Converted                                     | 0                | 1 (-inf, inf)          | 7392     | Specialization Totals                          | 739                  |                |                 | 0.385416667 |              | 0.384737403 | 0.04372223  |
| 30 | TotalVisits                                   | 0.081661091      | 6 [3.50, 7.50)         | 2161     | How did you hear about X Education 0 [10 5]    |                      | 61 0.238230519 | 1538 22         |             | 1.464446847  | 0.381151193 | 0.043796385 |
| 31 | Total Time Spent on Website                   | 1.065929153      | 5 [1.50, 416.50)       | 2860     | How did you hear about X Education 1 [2 4 7 9] |                      | 01 0.081304113 |                 | 0.400998336 | -0.065312433 | 0.00034931  | 4.37E-05    |
| 32 | Page Views Per Visit                          | 0.059326374      | 5 [2.04, inf)          |          | How did you hear about X Education 2 [3 8]     |                      | 08 0.122835498 | 517 39          |             | -0.187284217 | 0.004389883 | 0.000547935 |
| 33 | Asymmetrique Activity Score                   | 0.383067713      | 5 Missing              |          | How did you hear about X Education 3 [6 1 0]   | 412                  |                |                 | 0.483745754 | -0.401579631 | 0.092958359 | 0.011542341 |
| 34 | Asymmetrique Profile Score                    | 0.182606501      | 5 Missing              |          | How did you hear about X Education Totals      | 739                  |                |                 | 0.385416667 | 5520,5501    |             | 0.055930317 |

#### FEATURE SELECTION USING CORRELATION AND IV



Using heatmap visualization and remove highly correlated with low IV feature values:

Certain conditions must be applied to filter for useful variables: correlation should be less than 0.6, and if it exceeds 0.6, the variable with the lower IV should be removed. Additionally, only variables with an IV greater than 0.6 should be selected.

## MODEL PERFORMANCE SUMMARY

- Optimized Logistic Regression
  - > Accuracy: 0.86851
  - > AUC Score: 0.93027



## MODEL PERFORMANCE SUMMARY

- Baseline Logistic Regression
  - > Accuracy: 0.81818
  - > AUC Score: 0.88224



## MODEL PERFORMANCE SUMMARY

- Optimized XGBoost
  - > Accuracy: 0.88690
  - > AUC Score: 0.95726



# XGBOOST THRESHOLD OPTIMIZATION

Update threshold for accurarcy optimzation

- Highest optimal threshold: 0.649999
- Highest accuracy: 0.888528

```
D ~
        # Define the range of thresholds to evaluate
        threshold_values = np.arange(0.4, 0.9, 0.05)
        # Get the predicted probabilities from the best model
        y_test_pred_probabilities = best_xgb_model.predict_proba(x_test_data)[:, 1]
        # Initialize variables to store the best threshold and the corresponding accuracy
        optimal_threshold = 0.0
        highest_accuracy = 0.0
        # Iterate through each threshold value
        for threshold in threshold_values:
            # Apply the threshold to get binary predictions
            y_threshold_predictions = (y_test_pred_probabilities >= threshold).astype(int)
            # Calculate accuracy for the current threshold
            current_accuracy = accuracy_score(y_test_labels, y_threshold_predictions)
            # Update the best threshold if the current accuracy is higher
            if current_accuracy > highest_accuracy:
                highest_accuracy = current_accuracy
                optimal_threshold = threshold
        # Output the best threshold and corresponding accuracy
        print(f"Optimal Threshold: {optimal threshold}")
        print(f"Highest Accuracy: {highest_accuracy}")
[27]
    Optimal Threshold: 0.6499999999999999
     Highest Accuracy: 0.8885281385281385
```

