WORKING WITH DATA

Karin Lagesen wetinst.no

Overview

- Available computational resources
- Working with computer clusters
- Figuring out what to do
- Getting help

Size of data can become very big

Abel computer cluster

www.sigma2.no

Sigma2

- The Norwegian metacenter for computational science
- Goal: provide a modern national High Performance Computing infrastructure
- Offers HPC services to Norwegian universities, colleges, research institutes and industry
- Funded by RCN, UiO, NTNU, UiB and UiT
- Gain resources by applying for them

Sigma2 services

- High Performance Computing NOTUR
 - Offers CPU hours on five different clusters at UiB, UiT, NTNU, Iceland Univ, and UiO (Abel)
 - Access to useful software
 - Advanced user support
 - Training
- Data Storage NORSTORE
 - Project data storage
 - Research data archive
 - Sensitive data storage

Accessing NOTUR resources

- UiO users have by default access to Abel
 - Access with normal UiO login id
 - Access to UiO CPU hours ~10% of cluster
 - Additionally: access to freebee.abel.uio.no
 - Freebee can be used for testing purposes
- Larger scale UiO users and all others can apply to NOTUR for access

NO SENSITIVE (HUMAN) HTS DATA ON ABEL!

NORSTORE – data storage

- National infrastructure for management, curation and long-term archiving of digital scientific data
- Can get storage that can be used for both
 - Active computing /projects
 - Sensitive data
 - Archival storage
- Also, long-time archive storage with possibility for publishing research data

Norstore data storage

Applying for access

- Application deadline Feb/Aug
 - Same application form for storage and CPUs
- Application includes project description, describing what the resources will be used for
- Applications evaluated on scientific merit
- New users/projects given priority
- Main applicant must hold permanent position
- Small projects often given resources at once

https://www.metacenter.no/mas/application/project/current/new/

One application form for both NOTUR and NORSTORE

Using a compute cluster

- Large computer clusters often have queue systems
- Queue systems feed compute jobs to the computer, ensuring that it is optimally used
- Queue system used is named Slurm

Slurm and the compute cluster

Specifying slurm scheduled job

- Need to specify:
 - Estimated time
 - Queue to run in
 - # nodes
 - # cores (cpus)
 - Amount of memory
 - Program(s) to run
- Specifications saved in Slurm job script
- Use command sbatch to submit job to slurm

Do some work: cd \$SCRATCH YourCommands

Example slurm script

```
#!/bin/bash
# Job name:
#SBATCH --job-name=YourJobname
#
# Project:
#SBATCH --account=YourProject
# Wall clock limit:
#SBATCH --time=hh:mm:ss
# Number of cpus/cores
#SBATCH -ntasks=#of cpus
# Max memory usage:
#SBATCH --mem-per-cpu=Size
## Set up job environment
source /cluster/bin/jobsetup
## Copy input files to the work directory:
cp MyInputFile $SCRATCH
## Make sure the results are copied back to the submit directory:
chkfile MyResultFile
```


Directory created in /work with job id – directory alias is \$SCRATCH. All files local to that job are saved there. Should copy job input there to begin with

Using cluster resources

- To use more than 1 CPUs:
 - Need to ask for # CPUs in slurm script
 - --ntasks # CPUs requested
 - Need to specify # CPUs in command to program
 - e.g. fastqc –t #cpus
 - Note: make sure --ntasks corresponds to # cpus used
- Note: can often run out of memory
 - Per node (16 cpus) 61.5 Gb of RAM
 - Job will be killed if it uses more than allocated
 - May have to give task upper limit of memory, esp common with java programs

Useful commands

- sbatch <my_slurm_script>: put script in queue
- squeue –u <username>: list all jobs in queue for a specific user
- scancel <job id>: cancel job
- scancel –u <username>: cancel all jobs for user
- cost: how much of the allocation is used
- dusage: how much storage is used

Help on Abel and Slurm

www.uio.no/tjenester/it/forskning/beregning/abel/

Bioinformatics software on abel

- Lots of software available
- Different people need different kinds of software
- Solved this by packaging SW in modules
- > 400 modules available
- Useful commands:
 - module avail: lists all available modules
 - module load modulename: loads that module
 - module list: shows all currently loaded modules
- Use in slurm script: include module load in script

Modules...

[karinlag@titan ~]\$ module avail

------ /usr/share/Modules/modulefiles --------- /usr/share/Modules/modulefiles module-git module-info modules null use.own dot ------/cluster/etc/modulefiles --------------------/cluster/etc/modulefiles ncview/2.1.2(default) prottest/3.2(default) 454apps/1.1.03.24 gaussian/g09b01 gaussian/g09c01 454apps/2.0.01.02 netcdf/4.2.1.1(default) pypar/2.1.5(default) gaussian/g09d01(default) python2/2.7.3(default) netcdf.gnu/4.2.1.1(default) 454apps/2.3 netcdf.intel/4.2.1.1(default) python2/2.7.6 454apps/2.5.3 acc/4.7.2454apps/2.6 qcc/4.8.0netcdf.pgi/4.2.1.1(default) python3/3.2.3(default) 454apps/2.7 qcc/4.8.2python3/3.4.0 newbler/1.1.03.24 newbler/2.0.01.02 giime/1.5.0(default) 454apps/2.8(default) qcc/4.9.0qcc/4.9.1qiime/1.8.0 454apps/2.9 newbler/2.3 gdal/1.9.1(default) newbler/2.5.3 quast/2.3 (default) 454apps/3.0 abyss/1.3.4(default) geneid/1.4.4(default) newbler/2.6 R/2.15.2genemark-es/2.3e R/2.15.2.shlib adf/2010.02b newbler/2.7 adf/2012.01b genemarks/19032014 newbler/2.8 R/3.0.2.shlibgeos/3.3.5(default) adf/2013.01(default) newbler/2.9 R/3.0.3ghc/7.4.2(default) R/3.0.3.profmemadf/2014.01 newbler/3.0(default) gmap/2013-09-30adf gpu/2014.01 nfuse/0.2.1(default) R/3.0.3.shlib allpathslq/48777 (default) gmap/2013-11-27 (default) nltk/2.0.1(default)R/3.1.0gnu parallel/20131022(default) notur/0.1(default) amber/12(default) R/3.1.0.profmemgnuplot/4.6.0(default) novocraft/V3.02.05(default) amos/3.1.0 (default) R/3.1.0.shlib ampliconnoise/1.25(default) gnuplot/4.6.3 ocaml/4.00.0 (default) R/3.1.1 (default) ampliconnoise/1.29 graphviz/2.28.0(default) octave/3.6.3(default) R/3.1.1.qnuaragorn/1.2.36(default) grib api/1.12.3 open64/5.0(default) R/3.1.1.profmemasrem1/2.00ah gsl/1.15(default) openifs/38r1v04 R/3.1.1.shlib

How to figure out how to do things

- Read papers that do what you want to do repeat their methods on your data
- Signup and use:
 - seqanswers.com
 - biostars.org
- Find blogs from people who do what you do
- Read tutorials/manuals on the software you use
- Find email lists to software

Twitter can also be very helpful

seganswers.com

biostars.org

Reading blogs

Reading blogs

Default behavior

By default, intersect reports the intervals that represent overlaps between your two files. To demonstrate, let's identify all of the CpG islands that overlap exons.

http://quinlanlab.org/tutorials/cshl2013/bedtools.html

Find tutorials and manuals for sw

What to do if you get an error?

- Try with a different data set often good to try with a smaller, well-known data set
- Change version of program if another one are available
- Google is your friend google error message
- Check seganswers and biostars
- Look at the webpage for the software is your error mentioned?
- Check email list for software is error mentioned?
- Write to software authors and/or sw email list, have they seen this before?
- Also if on Abel/TSD: email the helpdesk

What to include in an error report

- (0) What is my environment?
 - 1. What did I do?
- 2. What result did I expect?
 - 3. What result did I get?
 - (4) Why is this incorrect?

Error report - translated

- (Shortly) explain purpose of analysis
- Name of program, incl. version
- Full command line, incl. all options
- Copy-paste of error from start of program
- For USIT: include file system location

 Goal: help person should be able to recreate the bug, without having to ask you more questions

Finding your way

- Many ways to the same goal
 - But: which one is "right"?
- Top trick: keep your biological question in mind
 - Software often designed to solve one particular biological problem
 - Keep your biological expectations in mind if result breaks with that, stop and rethink
- Figure out expectations by using a "known" entity
 - either a small data set or
 - data set you already know the biological answer for

The bioinformatical process

- Working with bioinformatics is experimental work
- Not all software are appropriate for
 - Your biological problem
 - Your data
- Need to experiment to find the right combination of software for your problem
- Bioinformatics is an iterative process:
 - Try program on data
 - Evaluate result
 - Decide if results are appropriate

Redo several times

Log your work

- Bioinformatics is an iterative process
 - May not remember what solution you ended up with, or for that matter, why
- Keep a log with:
 - Today's date
 - What you are doing
 - Program version
 - Commandline
 - A little bit of output
 - Evaluation of output

Questions?