Matrix of a Linear Transformation

- 1. Assume that T is a linear transformation. Find the standard matrix of T.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$. $T(e_1) = (1,4)$, $T(e_2) = (-2,9)$, and $T(e_3) = (3,-8)$, where e_1 , e_2 , and e_3 are the columns of the 3×3 identity matrix.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a vertical shear transformation that maps e_1 into $e_1 3e_2$, but leaves e_2 unchanged.
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates points about the origin through $3\pi/4$ radians, clockwise.
 - (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$ contracts points by a factor of $\frac{1}{2}$ $(T(x) = \frac{1}{2}x)$.
 - (e) $T(x_1, x_2, x_3, x_4) = 3x_1 + 4x_3 2x_4$
- 2. Fill in the missing entries of the matrix, assuming that the equation holds for all values of the variables.

$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 4x_2 \\ x_1 - x_3 \\ -x_2 + 3x_3 \end{bmatrix}$$

- 3. Determine if the specified linear transformation is (a) one-to-one and (b) onto.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects points about the x-axis.

(b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ that projects points onto the y-axis.

(c) $T: \mathbb{R}^3 \to \mathbb{R}$ that sends (x, y, z) to x + y + z.

(d) $T: \mathbb{R} \to \mathbb{R}^3$ that sends t to (t, 2t, 3t).

4. If a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between m and n? If T is one-to-one, what can you say about m and n?