

FIG. 1

1 GAGGTCCAGC TTCAGCAGTC TGGACCTGAC CTGGTGAAGC CTGGGGCTTC
 E V Q L Q Q S G P D L V K P G A S
 51 AGTGAAGATA TCCTGCAAGG CTTCTGGTTA CTCATTCACT GGCTACTACA
 V K I S C K A S G Y S F T G Y Y
 101 TGCACGGGT GAAGCAGAGC CATGAAAGA GCCTTGAGTG GATTGGACGT
 M H W V K Q S H G K S L E W I G R
 151 ATTAATCCTA ACAATGGTGT TACTCTCTAC AACAGAAAT TCAAGGACAA
 I N P N N G V T L Y N Q K F K D K
 201 GGCCATATTAA ACTGTAGACA AGTCATCCAC CACAGCCTAC ATGGAGCTCC
 A I L T V D K S S T T A Y M E L
 251 GCAGCCTGAC ATCTGAGGAC TCTGCGGTCT ATTACTGTGC AAGATCTACT
 R S L T S E D S A V Y Y C A R S T
 301 ATGATTACGA ACTATGTTAT GGACTACTGG GGTCAAGTAA CCTCAGTCAC
 M I T N Y V M D Y W G Q V T S V T
 351 CGTCTCCTCA GGTGGTGGTG GGAGCGGTGG TGGCGGCACT GGCGCGGCG
 V S S G G G G S G G G G T G G G
 401 GATCTAGTAT TGTGATGACC CAGACTCCCA CATTCTGCT TGTTTCAGCA
 G S S I V M T Q T P T F L L V S A
 451 GGAGACAGGG TTACCATAAC CTGCAAGGCC AGTCAGAGTG TGAGTAATGA
 G D R V T I T C K A S Q S V S N D
 501 TGTAGDTTGG TACCAACAGA AGCCAGGGCA GTCTCCTACA CTGCTCATAT
 V A W Y Q Q K P C Q S P T L L I
 551 CCTATACATC CAGTCGCTAC GCTGGAGTCC CTGATCGCTT CATTGGCAGT
 S Y T S S R Y A G V P D R F I G S
 601 GGATATGGGA CGGATTTCAC TTTCACCATC AGCACTTGC AGGCTGAAGA
 G Y G T D F T F T I S T L Q A E D
 651 CCTGGCAGTT TATTCTGTC AGCAAGATTA TAATTCTCCT CCGACGTTCG
 L A V Y F C Q Q D Y N S P P T F
 701 GTGGAGGCAC CAAGCTGGAA ATCAAACGG
 G G G T K L E I K R

FIG. 2

ATGGGCCACA CACGGAGGCA GGGAACATCA CCATCCAAGT GTCCATACCT	50
M G H T R R Q G T S P S K C P Y L	
CAATTCTTT CAGCTCTTGG TGCTGGCTGG TCTTTCTCAC TTCTGTTCAG	100
N F F Q L L V L A G L S H F C S	
GTGTTATCCA CGTGACCAAG GAAGTGAAAG AAGTGGCAAC GCTGTCCCTGT	150
G V I H V T K E V K E V A T L S C	
GGTCACAATG TTTCTGTTGA AGAGCTGGCA CAAACTCGCA TCTACTGGCA	200
G H N V S V E E L A Q T R I Y W Q	
AAAGGAGAAG AAAATGGTGC TGACTATGAT GTCTGGGGAC ATGAATATAT	250
K E K K M V L T M M S G D M N I	
GGCCCGAGTA CAAGAACCGG ACCATCTTG ATATCACTAA TAACCTCTCC	300
W P E Y K N R T I F D I T N N L S	
ATTGTGATCC TGGCTCTGCG CCCATCTGAC GAGGGCACAT ACGAGTGTGT	350
I V I L A L R P S D E G T Y E C V	
TGTTCTGAAG TATGAAAAAG ACGCTTCAA GCGGGAACAC CTGGCTGAAG	400
V L K Y E K D A F K R E H L A E	
TGACGTTATC AGTCAAAGCT GACTTCCCTA CACCTAGTAT ATCTGACTTT	450
V T L S V K A D F P T P S I S D F	
GAAATTCAA CTTCTAATAT TAGAAGGATA ATTTGCTCAA CCTCTGGAGG	500
E T P T S N I R R I I C S T S G G	
TTTCCAGAG CCTCACCTCT CCTGGTTGGA AAATGGAGAA GAATTAAATG	550
F P E P H L S W I E N G E E L N	
CCATCAACAC AACAGTTCC CAAGATCCTG AACTGAGCT CTATGCTGTT	600
A I N T T V S Q D P E T E I Y A V	
AGCAGCAAAC TGGATTCAA TATGACAACC AACCAAGCT TCATGTGTCT	650
S S K L D F N M T T N H S F M C L	
CATCAAGTAT GGACATTAA GAGTGAATCA GACCTCAAC TGGAATACAA	700
I K Y G H L R V N Q T F N W N T	
CCAAGCAAGA GCATTTCCCT GATGGAGGCG GGGGATCCGA GGTCCAGCTT	750
T K Q E H F P D G G G G S E V Q L	

CAGCAGTCTG	GACCTGACCT	GGTGAAGCCT	GGGGCTTCAG	TGAAGATATC	800											
Q	Q	S	G	P	D	L	V	K	P	G	A	S	V	K	I	S
CTGCAAGGCT	TCTGGTTACT	CATTCACTGG	CTACTACATG	CACTGGGTGA	850											
C	K	A	S	G	Y	S	F	T	G	Y	Y	M	H	W	V	
AGCAGAGCCA	TGGAAAGAGC	CTTGAGTGG	TTGGACGTAT	TAATCCTAAC	900											
K	Q	S	H	G	K	S	L	E	W	I	G	R	I	N	P	N
AATGGTGT	TA	CTCTCTACAA	CCAGAAATTC	AAGGACAAGG	CCATATTAAC	950										
N	G	V	T	L	Y	N	Q	K	F	K	D	K	A	I	L	T
TGTAGACAA	AG	TCATCCACCA	CAGCCTACAT	GGAGCTCCGC	AGCCTGACAT	1000										
V	D	K	S	S	T	T	A	Y	M	E	L	R	S	L	T	
CTGAGGACTC	TGCGGTCTAT	TACTGTGCAA	GATCTACTAT	GATTACGAAC	1050											
S	E	D	S	A	V	Y	Y	C	A	R	S	T	M	I	T	N
TATGTTATGG	ACTACTGGG	TCAAGTAACC	TCAGTCACCG	TCTCCTCAGG	1100											
Y	V	M	D	Y	W	G	Q	V	T	S	V	T	V	S	S	G
TGGTGGTGGG	AGCGGTGGT	CGGGCACTGC	CCCCGGCGGA	TCTAGTATTG	1150											
G	G	G	S	G	G	G	T	G	G	G	G	S	S	I		
TGATGACCA	GACTCCCACA	TTCCCTGCTTG	TTTCAGCAGG	AGACACCGTT	1200											
V	M	T	Q	T	P	T	F	L	L	V	S	A	G	D	R	V
ACCATAACCT	GCAAGGCCAG	TCAGAGTGTG	AGTAATGATG	TAGCTTGGTA	1250											
T	I	T	C	K	A	S	Q	S	V	S	N	D	V	A	W	Y
CCAACAGAAG	CCAGGGCACT	CTCCTACACT	GCTCATATCC	TATACATCCA	1300											
Q	Q	K	P	G	Q	S	P	T	L	L	I	S	Y	T	S	
GTCGCTACGC	TGGAGTCCT	GATCGCTTCA	TTGGCAGTGG	ATATGGGACG	1350											
S	R	Y	A	G	V	P	D	R	F	I	G	S	G	Y	G	T
GATTCACTT	TCACCATCAG	CACTTTGCAG	GCTGAAGACC	TGGCAGTTA	1400											
D	F	T	F	T	I	S	T	L	Q	A	E	D	L	A	V	Y
TTTCTGTCAG	CAAGATTATA	ATTCTCCTCC	GACGTTCGGT	GGAGGCACCA	1450											
F	C	Q	Q	D	Y	N	S	P	P	T	F	G	G	G	T	
AGCTGGAAAT	CAAATAA															
K	L	E	I	K	.											

FIG. 2_{CONT'D}

FIG. 3a

FIG. 3b

1 ATGGGACTGA GTAACATTCT CTTTGTGATG GCCTTCCTGC TCTCTGGTGC
 M G L S N I L F V M A F L L S G A

 51 TGCTCCTCTG AAGATTCAAG CTTATTCAA TGAGACTGCA GACCTGCCAT
 A P L K I Q A Y F N E T A D L P

 101 GCCAATTGCG AAACCTCTCAA AACCAAAGCC TGAGTGAGCT AGTAGTATTT
 C Q F A N S Q N Q S L S E L V V F

 151 TGGCAGGACC AGGAAAACCTT GGTTCTGAAT GAGGTATACT TAGGCAAAGA
 W Q D Q E N L V L N E V Y L G K E

 201 GAAATTGAC AGTGTTCATT CCAAGTATAT GGGCCGCACA AGTTTGATT
 K F D S V H S K Y M G R T S F D

 251 CGGACAGTTG GACCCTGAGA CTTCACAAATC TTCAGATCAA GGACAAGGGC
 S D S W T L R L H N L Q I K D K G

 301 TTGTATCAAT GTATCATCCA TCACAAAAAG CCCACAGGAA TGATTGCGAT
 L Y Q C I I H H K K P T G M I R I

 351 CCACCAGATG AATTCTGAAC TGTCAGTGCT TGCTAACTTC AGTCAACCTG
 H Q M N S E L S V L A N F S Q P

 401 AAATAGTACC AATTCTAAT ATAACAGAAA ATGTGTACAT AAATTGACC
 E I V P I S N I T E N V Y I N L T

 451 TGCTCATCTA TACACGGTTA CCCAGAACCT AAGAAGATGA GTGTTTGCT
 C S S I H G Y P E P K K M S V L L

 501 AAGAACCAAG AATTCAACTA TCGAGTATGA TGGTATTATG CAGAAATCTC
 R T K N S T I E Y D G I M Q K S

 551 AAGATAATGT CACAGAACTG TACGACGTTT CCATCAGCTT GTCTGTTCA
 Q D N V T E L Y D V S I S L S V S

 601 TTCCCTGATG TTACGAGCAA TATGACCATC TTCTGTATTG TGGAAACTGA
 F P D V T S N M T I F C I L E T D

 651 CAACACCCGG CTTTTATCTT CACCTTTCTC TATAGAGCTT GAGGACCCCTC
 K T R L L S S P F S I E L E D P

 701 AGCCTCCCCC AGACCACATT CCTGGAGGCG GGGGATCC
 Q P P P D H I P G G G G S

FIG. 4

FIG. 5

atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagttcc atgtccaagg 60
 ctcattttc tctttgtct gctgattcgt ctccacaag tgccttcaga tggatgatgaa 120
 caactgtcca agtcagtgaa agataaggta ttgcgtcctt gccgttacaa ctctccgcat 180
 gaagatgagt ctgaagaccc aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240
 attgtggaa aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact 300
 acctactctc ttatcatcct gggcctggc ctttcagacc ggggcacata cagctgtgtc 360
 gttcaaaaaga aggaaaqaqq aacqtatqaa gttaaacact tggcttttagt aaagtgtgtcc 420
 atcaaaggctg acttctctac ccccaacata actgagtctg gaaacccatc tgcagacact 480
 aaaaggatta cctgctttgc ttccgggggt ttcccaaaggc ctcgccttc ttgggtggaa 540
 aatggaaagag aattacctgg catcaatacg acaatttccc agatccctga atctgaatgg 600
 tacccattta gtagccaaact agatttcaat acgacttgc accacacccat taagtgtctc 660
 attaaatatg gagatgctca cgtgtcagag gacttcaccc tggaaaaacc cccagaagac 720
 cctcctgata gcaagcccg ggggtggggg agcgggtggg gccgcgtgg cggccggcgg 780
 actagtgggg tccagcttca gcaagtctgg cctgacccctgg tgaagccctgg ggcttcagtg 840
 gcaaggcttc tggttactca ttcaactggc actacatgca ctgggtgaag 900
 cagagccatg gaaagggcct tgagtggtt ggcgttata atccataacaa tgggttact 960
 ctctacaacc agaaaattcaa ggacaaggcc atattaaactg tagacaagtc atccaccaca 1020
 gcctacatgg agctccgcag cctgacatct gaggactctg cggcttattt ctqtqcaaaa 1080
 tctactatga ttacgaacta tggttatggc tactggggc aagtaacttc agtcaccgtc 1140
 tcttcagggtg gtgggtgggg cgggtggggc ggcactggc gccgcggatc tagtattgtg 1200
 atgaccctaga ctcccacatt cctgcttgc ttcaaggagg acagggttac cataacctgc 1260
 aaggccatgc agagtggtgag taatgtatgtt gcttggttacc aacagaaggc agggcgttct 1320
 cctacactgc tcatatccata tacatccatg cgtcaatgt gaggccctga tgcgttccatt 1380
 ggcgtggat atgggacggc tttcaacttc accatcagca ctttgcaggc tgaagacccctg 1440
 gcaatgttatt tctgtcagca agattataat tctccctccga cgttccgtgg aggccaccaag 1500
 ctggaaatca aacggtaa 1518

FIG. 6

Leader / 5T4 scFv / IgG DNA and deduced protein sequence

CTCGAGCCACCATGGATGGAGCTGTATCATCCTCTTGGTAGAACAGCTACAGGTGTCCACTCCGAGGTCCAGCTG
 M G W S C I I L F L V A T A T G V H S E V Q L
 CAGCAGTCTGGACCTGACCTGGTAAGGCTGGGCTTCAGTGAAGATATCCTGCAAGGCTCTGGTTACTCATTCACTGG
 Q Q S G P D L V K P G A S V K I S C K A S G Y S F T
 CTACTACATGCACTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGACGTATTAATCTAACATGGTGT
 G Y Y M H W V K Q S H G K S L E W I G R I N P N N G V
 CTCTCTACAAACCAGAATTCAAGGACAAGGCCATTAACTGTAGACAAGTCATCCACCACAGCCTACATGGAGCTCCGC
 T L Y N Q K F K D K A I L T V D K S S T T A Y M E L R
 AGCCTGACATCTGAGGACTCTGCGGTCTTAACTGTGCAAGATCTACTATGATTACGAACTATGTTATGGACTACTGGGG
 S L T S E D S A V Y Y C A R S T M I T N Y V M D Y W
 TCAAGTAACITLAGTCACCGCTCTTCAGGTGGTGGAGGGGGTGGTGGCGGCACTGGCGCCGGGATCTAGTATTG
 G Q V T S V T V S S G G G G S G G G G T G G G G S S I
 TGATGACCCAGACTCCACATTCCTGCTTGTGAGCAGGAGACAGGGTTACCATAACCTGCAAGGCCAGTCAGAGTGTG
 V M T Q T P T F L L V S A G D R V T T T C K A S Q S V
 AGTAATGATGATGCTGGTACCAACAGAACAGCCAGGGCAGTCCTCTACACTGCTCATATCCTATACATCCAGTCGCTACGC
 S N D V A W Y Q Q K P G Q S P T L L I S Y T S S R Y
 TCCACTCCCTGATCGCTTCATGGCAGTGGATATGGGACGGATTACTTCACCATCAGGACTTGCAGGCTGAGAACCC
 A G V P D R F I G S G Y G T D F T F T I S T L Q A E D
 TGGCAGTTATTCCTGTCAGCAAGATTATAATTCTCTCCGACGGTTCGGTGGAGGCACCAAGCTTGAAATCAAACGGGCC
 L A V Y F C Q Q D Y N S P P T F G G G G T K L E I K R A
 TCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCCTCTCCAGGACACCTCTGGGGCACAGCGGCCCTGGCTGCCT
 S T K G P S V F P L A P S S K S T S G G T A A L G C
 GGTCAGGACTACTTCCCCGACCCGGTGAAGGGTGTGGAAACTCAGGGGGCTGACCCAGGGCGTCCAGGCTTGGCACCCAG
 L V K D Y F P E P V T V S W N S G A L T S G V H T F P
 CTGTCCTACAGTCTCAGGACTCTACTCCCTCAGGAGCTGGTGACCGTGGCCCTCCAGCAGCTTGGCACCCAGACCTAC
 A V L Q S S G L Y S L S S V V T V P S S S L G T Q T Y
 ATCTGCAAGCTGAATCACAAGGCCAGCAACACCAAGGTGGACAAGAAAAGTTGAGCCAAATCTTGTGACAAAACAC
 I C N V N H K P S N T K V D K K V E P K S C D K T H
 ATGCCACCGTCCCCAGCACCTGAACTCTGGGGGAGCGTCAGTCCTCTCTTCCCCCAAACCCAAAGGACACCCCTCA
 T C P P C P A P E L L G G P S V F L F P P K P K D T L
 TGATCTCCGGACCCCTGAGGTGACATGCGTGGTGGACGTGAGCCACGAAGACCCCTGAGGTCAAGTTCAACTGGTAC
 M I S R T P E V T C V V V D V S H E D F E V K F N W Y
 GTGGACGGCGTGGAGGTGATTAATGCCAGAACAAAGCCGGAGGGAGCAGTACACAGCACGTACCGTGGTCAAGGT
 V D G V E V H N A K T K P R E E Q Y N S T Y R V V S
 CCTCACCGTCTGCAACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAGGTCTCAACAAAGCCCTCCAGCCCCA
 V L T V L H Q D W L N G K E Y F C K V S N K A L P A P
 TCGAGAAAACATCTCCAAAGGCCAAAGGGCACCCCGAGAACACAGGTGTACACCCCTGCCCAATCCGGGATGAGCTG
 I E K T I S K A K G Q P R E P Q V Y T L P P S R D E M
 ACCAAGAACCCAGGTGAGCCTGACCTGGCTCAAAGGCTCTATCCAGGCACATGCCGTGGAGTGGAGAGCAATGG
 T K N Q V S L T C L V K G F Y P S D I A V E W E S N
 GCAGCCGGAGAACAACTACAAGGCCACCCCTCCCGTGCTGGACTCCGACGGCTCTCTCTCTATAGCAAGCTCACCG
 G Q P E N N Y K T T P P V L D S D G S F R L Y S K L T
 TGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAGGCTCTGCACAAACCACTACACGCAG
 V D K S R W Q G N V F S C S V M H E A L H N H Y T Q
 AAGAGGCTCTTCTGTGULCCGGGTAATGACTCGAG
 K S L S L S P G K .

FIG. 7

tcggagccac	catgggatgg	agctgttatca	tcctcttctt	ggtagcaaca	gctacaggta	60
tccactccga	ggtccagctg	cagcagtctg	gacctgacct	ggtaagacct	ggggcttcag	120
tgaagatata	ctgcaaggct	tctgggtact	cattcaactgg	ctactacatg	cactgggtga	180
agcagagcca	ttgaaagacg	cttggatggaa	ttggacylal	laalcclaac	aatgggttta	240
ctctctcaa	ccagaatttc	aagggacaagg	ccatataaac	tgtagacaag	tcatccacca	300
cagctccat	ggagctccgc	agcctgacat	ctggaggactc	tgccgtctat	tactgtgcac	360
gatctactat	gattacgaac	tatgttatgg	actactgggg	tcaagtaact	tcagtcaccc	420
tctcttcagg	ttggatgggg	agccgtgggt	ggggcactgg	cgccggccgg	tctagtattt	480
tgtatgaccca	gactcccaaca	ttctgtcttg	tttcagcagg	agacagggtt	accataaacct	540
gcaaggccag	tcagagtgt	agtaatgtat	tagcttggta	ccaaacagaag	ccagggcagt	600
ctctcttacact	gctcatatcc	tatacatcc	qtcqtcatcgc	tggagtccct	gatcgcctca	660
ttggcagtttgg	atatggacg	gatttcactt	tcacccatcg	cactttgcag	gtgaaagacc	720
tggcagtttgg	tttctgtcag	caagattata	attctcttcc	gacgttcgtt	ggaggccaca	780
agctgttaat	caaaccggcc	tccacacaga	gcccatccgt	cttcccccttgc	accgcgtct	840
gcaaaaaacat	tcccttcaat	gcccacccctcg	tgactctgggg	ctgcctggcc	acgggtact	900
tcccccggagcc	gggtatgggt	acctgggaca	caggctccct	caacgggaca	actatgacct	960
taccagccac	caccctcaacg	ctctctgttgc	actatggccac	catcagcttgc	ctgaccgtct	1020
cgggtgcgttgc	ggccaaacgac	atgttcaccc	ggcggttggc	acacacttcca	tegttccacac	1080
aaulyygluya	caaaacaaaaac	ttcagcgttgc	gttccaggga	cttcacccccc	cccacccgttgc	1140
agatcttaca	gtcggttctgc	gacggccggcg	ggcacttccc	cccgaccatc	cagcttcgttgc	1200
gcctcgcttc	tgggtacacc	ccagggacta	tcaacatcac	ctggctggag	gacggccagg	1260
tcatggacgt	ggacttgtcc	accggctcta	ccacgcagga	gggtgagctg	gcctccacac	1320
aaagcgtacgt	caccctcagc	cagaaggact	ggctgtcaga	ccgcacccatc	acctggccagg	1380
tcacccatata	aggtcacacc	tttgaggaca	gcaccaagaa	gtgtgcagat	tccaaacccga	1440
gagggtgttag	cgccttactca	agccggccca	ggcccttgcga	cctgttccatc	cgcaagtcgc	1500
ccacgatcac	ctgtctgttgc	gtggacrrtgg	rarrccagca	ggggaccctg	aaectgaccc	1560
ggtcccccggcc	cagtggggaa	cctgttgcac	actccacccag	aaaggaggag	aagcagcgc	1620
atggcacgtt	aaccgtcagc	tccacccctgc	cggtgggcac	ccgagactgg	atcgagggggg	1680
agaccttacca	gtgcagggtg	accacccccc	acctgcccac	ggcccttcatc	cggtccacgc	1740
ccaagaccag	ggggccgggt	gtgtccccgg	aaaglulalyl	yllylycacy	ccyggaglygc	1800
cggggagccgc	ggacaaggcc	acccttcgcct	gtctgtatcca	qaacttcatc	cttgaggaca	1860
tctctgtgtca	gtggctgcac	aacggagggtc	agctcccccgg	ccggccggcac	agcagacgc	1920
agccccggcc	gaccaaggcc	tccggcttct	tcgttcttcag	ccggcttgcag	gtgaccagg	1980
ccgaatggga	gcagaaagat	gaggtcatct	gccgtgcagt	ccatgaggca	gcgagccct	2040
cacagaccgt	ccagcgacgc	gtgtctgtaa	atccccggtaa	atgagacgc		2090

FIG. 8

atggcttgc	attgtcagtt	gatgcaggat	acaccactcc	tcaagttcc	atgtccaagg	60
ctcattctc	tctttgtct	gctgattcg	ctttcacaag	tgtcttcaga	tgttgatgaa	120
caactgtcca	agtcaagtaa	agataaggta	ttgctgcctt	gccgttacaa	ctctccgcat	180
gaagatgagt	ctgaagaccg	aatctactgg	caaaaacatg	acaaaagtgg	gctgtctgtc	240
attgctggg	aactaaaagt	gtggcccgag	tataagaacc	ggactttata	tgacaacact	300
acctactctc	ttatcatctc	gggctctggc	ctttcagacc	ggggcacata	cagctgtgtc	360
gttcaaaaaa	ggggaaaggagg	aaatgtatgaa	gtttaaacaat	tggcttttagt	aaatgtgtcc	420
atcaaaagctg	acttctctac	ccccaaacata	actgagttctg	gaaaccatc	tgcaagacact	480
aaaaggatg	cctgcttgc	ttccgggggt	ttcccaaagg	ctcgcttctc	ttgggtggaa	540
aatggaaagag	aattacactgg	catcaatacg	acaatttccc	aggatctga	atctgaattt	600
tacaccat	gtagccaact	agatttcaal	alayalucyld	acccacccauai	laagtgtctc	660
attaaatatg	gagatgtctc	cgtgtcagag	gacttccactt	ggggaaaacc	cccaagaagac	720
cctctgtata	gcaaggcccg	gggtgttggg	agcgggtggg	gcccggcagtgg	cggccggccgaa	780
actagaata	gtgactctga	atgtccccctg	ttccacatgt	gttactgtct	ccatgtatgg	840
gtgtgcattgt	atatttgaagc	atggacaag	tatgcatgca	actgtgttgt	tggctacatc	9000
ggggagcgt	gtcagttaccg	agacctgaag	tggtgggaac	tgcgc		945

FIG. 9
CT26-neo Transfectants

FIG. 10
CT26-h5T4 Transfectants

FIG. 11
B16-h5T4 Tumour Growth

FIG. 12
B16-neo Tumour Growth

FIG. 13

FIG. 14

FIG. 15

A9.5T4

FIG. 16

FIG. 17

FIG. 18
pONY8.1SM

FIG. 19
FUSION PROTEIN CONSTRUCTS IN pONY 8.1 SM

FIG. 20

pKLink – the $(\text{Gly}_4\text{Ser})_3$ linker in pBluescript II SK (pBS II)

Age I	Age I	Age I	Age I
<u>XbaI</u>	<u>SpeI</u>	<u>BamHI</u>	<u>SmaI</u>
<u>PBS II</u>	<u>CTAGTACCGGTGGTGGGAA</u>	<u>GCCTGGGGACTGGCGGGCG</u>	<u>→</u>
	<u>ATGGCCACACCAACCCCTCG</u>	<u>CACACGCCGTCACGCCGCTAG</u>	
	<u>G G G S G G G G S G G G S</u>	<u>PBS II</u>	

FIG. 21

An scFv and leader sequence in pBSII

FIG. 22**FIG. 23**

FIG. 24

FIG. 25

FUSION PROTEIN CONSTRUCTS IN pAdApt

A. B7-5T4scFv

B. L-5T4scFv

FIG. 26

Canine 5T4 Coding Sequence

ATGCCTGGGGGGTGCCTCGGGGCCCCGCGCCGGGACGGCGGTTGCGGCTGGCGGGCTGGCGCTGGTGCCTGGG 80
 M P G G C S R G P A A G D G R L R L A R L A L V L L

 CTGGGTCTCCTCGTCCTCGCTCACCTCTGGCGCCCTCCGCGCCGCTCCACGTCGCCGCCCTCCGCCGGCTCGCGGTCCG 160
 G W V S S S S L T S W A P S A A A S T S P P A S A A S

 CCCCGCCCGCTGCCGGCCAGTGGCCCCAGCCTGCGAGTGCTCGGAGGCGCGCACGGTCAAGTGCCTTAACCGC 240
 A P P P L P G Q C P Q P C E C S E A A R T V K C V N R

 AACCTGACCGAGGTGCCCGGGACCTGCCCTACGTGCCAACCTCTTCCTCACGGCAACCAGCTGGCGGTGCTGCC 320
 N L T E V P A D L P F Y V R N L F L T G N Q L A V L

 CCCCGCCCTTCGCCCGGCCGCTGGCCGAGCTGGCCGCGCTCAACCTGAGCGGCAGCAGCCCTGCAGGGAGGTGT 400
 P P G A F A R R P P L A E L A A L N L S G S S L R E V

 GCGCCGGCCCTCGAGCACCTGCCAGCCTGCGCCAGCTGACCTCAGCCACAACCGCTGGCAACCTCAGGCCCTTC 480
 C A G A F E H L P S L R Q L D L S H N P L G N L S A F

 GCCTTCGCCGGCAGCGACGCCAGGCCCTCGGGGCCCCAGCCCCCTGGTGGAGCTGATGCTGAACCACATCGTCCCCCGA 560
 A F A G S D A S R S G P S P L V E L M L N H I V P P

 CGACCGGGCGAGAACCGGAGCTTCAGGGCATGGTGGCGCTGCCCTCCGAGCGGGCCGCGCTCGCGGCTGCAGT 640
 D D R R Q N R S F E G M V A A A L R A G R A L R G L Q

 GCCTGGAGCTGGCCGGCAACCGCTTCCCTACTTGCTCGCACGCTGGCCAGCTACCCGGCTCCGGCACCTGGAC 720
 C L E L A G N R F L Y L P R D V L A Q L P G L R H L D

 CTGCGCACAAACTCCCTGGTGAGCCTCACCTACGTGTCTTCCGCAACCTGACGCACTGGAGAGCCTCCACCTGGAGGA 800
 L R N N S L V S L T Y V S F R N L T H L E S L H L E

 CAACGCCCTCAAGTCCTTCACAACGCCACCCCTGGCGAGCTGCAGAGCCTGCCACGTCGGGCTTCCCTGGACAACA 880
 D N A L K V L H N A T L A E L Q S L P H V R V F L D N

 ACCCTGGGTCTGCATGGTACATGGCAGACATGGTGGCTGGCTCAAGGAGACAGAGGTGGTGGCCGGCAAAGCCGG 960
 N P W V C D C H M A D M V A W L K E T E V V P G K A G

 CTCACCTGTGCATTCCGGAGAAAATGAGGAATCGGGCCCTTGGAACTCAACAGCTCCACCTGGACTGTGACCTAT 1040
 L T C A F P E K M R N R A L L E L N S S H L D C D P

 CCTCCCTCCATCCCTGCAGACTTCTTATGTCTCTTAGGTATTGCTTAGGCGATAGGGCGCATCTTCCCTACTGGTTT 1120
 I L P P S L Q T S Y V F L G I V L A L I G A I F L L V

 TGTATTGAAACGCAAGGGATAAAGAAGTGGATGCATAACATCAGAGATGCCCTGCAGGGATCACATGGAAGGTATCAC 1200
 L Y L N R K G I K K W M H N I R D A C R D H M E G Y H

 TACAGATAACGAAATCAATGCAGACCCAGGTTAACAAACCTCAGTCCAAATTGGATGTCTGA 1263
 Y R Y E I N A D P R L T N L S S N S D V .