MPSTME NMIMS- B.Tech. CSBS Year IV sem VII IT Workshop/MATLAB:-Lab Assignment 01

NOTE:

- Explore MATLAB Desktop environment before starting these experiments.
- All the variables provided are case sensitive.

1.	Launch MATLAB, create list of following variables in command window:		
	a) m=10, n=25, p=43		
	b) $A=m^2$, $B=n^3$, $C=(A+B)*p$		
	c) t=0.1, f=0.5, a=5, x=	$=a*sin(2\pi ft)$	
	d) y=mx+C		
	e) $k=(t^2+1)(t^2-1)$		
2.	(a) From Question1 make a new variable 'v', overwriting part (c), i.e., $x=a*sin(2\pi ft)$		
	by adding $cosh(t)$		
	(b) Create variable ' r ', store value to it to find the area of circle:		
		$A=\pi r^2$	
	where 'r' is the radius find the maximum num [Hint: store value of 'r	of circle. Further, using the built inber of character in "A". 'as 10]	n function namelengthmax,
3.	Explore the solve command using MATLAB help and find the solution for the problem given:		
	X + 1 = 2, find	х.	
4.	Complete the table using help command:		
	Command name	Purpose	
	whos		
	clear		
	pwd		
	diary		
		1	1

5.	Given theta = 145 dgrees. A vector can be represented by its rectangular coordinates x and			
	y or by its polar coordinates r and theta. Theta is measured in radians. The relationship			
	between them is given by the equations:			
	x = r * cos (theta)			
	y = r * sin (theta)			
	Assign values for the polar coordinates to variables r and theta. Then, using these values,			
	assign the corresponding rectangular coordinates to variables <i>x</i> and <i>y</i> .			
6.	The combined resistance R _r of three resistors R1, R2, and R3 in parallel is given by			
	1			
	K =			

$$R_{\rm r} = \frac{1}{\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}}$$

Create variables for the three resistors and store values in each, and then calculate the combined resistance. (Hint: consider $R1=50\Omega$, $R2=25\Omega$ and $R3=60\Omega$)