Survival Analysis with HGAT group and telomerase status

Run Jin

2/4/2022

This notebook will do the following survival analysis

- 1. Univariate analysis
- DMG H3K28 vs rest
- Telhunt score (separate into categories by 1.07)
- HGAT vs. non-HGAT for all samples
- ATRX (mut N/Y)
- ALT vs. non-ALT for all samples
- 2. Multivariate analysis
- DMG H3K28 vs rest + HGAT vs. non-HGAT + ALT vs. non-ALT + sex + ATRX (mut N/Y)
- DMG H3K28 vs rest + HGAT vs. non-HGAT + Telhunt score (categorical) + sex + ATRX (mut N/Y)
- DMG H3K28 vs rest + HGAT vs. non-HGAT + Telhunt score (continuous) + sex + ATRX (mut N/Y)

Packages and functions Read in set up script.

```
library(survival)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

library(ggplot2)
library(ggpubr)
```

Set up directories

```
root_dir <- rprojroot::find_root(rprojroot::has_dir(".git"))
analysis_dir <- file.path(root_dir, "analyses", "survival-analysis")

plots_dir <- file.path(analysis_dir, "plots")
if (!dir.exists(plots_dir)) {
    dir.create(plots_dir)
}

output_dir <- file.path(analysis_dir, "output")
if (!dir.exists(output_dir)) {
    dir.create(plots_dir)
}</pre>
```

Read in files

```
# get the meta information
meta <- readr::read_tsv(file.path(root_dir,</pre>
                          "analyses/add-histologies/output/ALT PBTA oct 2021 (including all plates)-up
 # remove existing ones to get newer data
 dplyr::select(-c("OS_days", "OS_status"))
## Rows: 900 Columns: 115
## -- Column specification -----
## Delimiter: "\t"
## chr (56): Kids_First_Biospecimen_ID_DNA, Kids_First_Biospecimen_ID_RNA, Kids...
## dbl (52): TH T/TH N, UBTF Binary, ATRX Reverse Binary, ATRX IHC Binary, ATRX...
## lgl (7): ATRX Stata, cell_line_composition, DAXX_fusion, ...34, NF...39, CC...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
# get survival information
survival_v21 <- readr::read_tsv(file.path(root_dir,</pre>
                                  "analyses/add-histologies/input-v21/pbta-histologies.tsv")) %>%
 dplyr::select("Kids_First_Participant_ID", "OS_days", "OS_status", "PFS_days") %%
 distinct()
## Rows: 2840 Columns: 38
## -- Column specification ------
## Delimiter: "\t"
## chr (33): Kids_First_Biospecimen_ID, sample_id, aliquot_id, Kids_First_Parti...
## dbl (5): OS_days, age_last_update_days, normal_fraction, tumor_fraction, tu...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

Organize data

```
# join with meta
meta <- meta %>%
  dplyr::left_join(survival_v21) %>%
  dplyr::distinct(Kids_First_Participant_ID, .keep_all = TRUE)
## Joining, by = "Kids_First_Participant_ID"
meta$PFS_days <- as.numeric(meta$PFS_days)</pre>
## Warning: NAs introduced by coercion
# recode for analysis
meta_formatted <- meta %>%
  # recode the categories -
  # DECEASED maps to a survival event status of 1, LIVING maps to a censored observation with value 0
  dplyr::mutate(OS_status_recoded = case_when(
    OS_status == "LIVING" ~ 0,
    OS_status == "DECEASED" ~1
 )) %>%
  # retain only ones with OS days
  dplyr::filter(!is.na(OS_days)) %>%
  # calculte the years
  dplyr::mutate(OS_years = OS_days / 365.25) %>%
  dplyr::mutate(PFS_years = PFS_days / 365.25) %>%
  dplyr::mutate(PFS_status = if_else(PFS_days < OS_days, 1, 0)) %>%
  # categorize by telhunt scores
  dplyr::mutate(telhunt_cat = case_when(
    `TH T/TH N` > 1.07 \sim \text{"High"},
    TH T/TH N < 1.07 \sim "Low"
  )) %>%
  # categorize by DMG, H3K28 or not
  dplyr::mutate(dmg_h3k28 = case_when(
    grepl("DMG, H3 K28", molecular_subtype) ~ "DMG",
    TRUE ~ "non-DMG"
  )) %>%
  # categorize ATRX
  dplyr::mutate(atrx_mut = case_when(
    !is.na(`ATRX Mutation`) ~ "ATRX_mut",
    TRUE ~ "non_ATRX_mut"
  )) %>%
  # rename telhunt score and CCA
  dplyr::mutate(telhunt_score = `TH T/TH N`,
                cca_telhunt = `CCA Sept 2021`)
# define as factor
meta_formatted$dmg_h3k28 <- factor(meta_formatted$dmg_h3k28, levels = c("non-DMG", "DMG"))</pre>
meta_formatted$telhunt_cat <- factor(meta_formatted$telhunt_cat, levels = c("Low", "High"))</pre>
meta_formatted$group <- factor(meta_formatted$group, levels = c("non-HGAT", "HGAT"))</pre>
meta_formatted$phenotype <- factor(meta_formatted$phenotype, levels = c("non-ALT", "ALT"))
```

```
meta_formatted$atrx_mut <- factor(meta_formatted$atrx_mut, levels = c("non_ATRX_mut", "ATRX_mut"))

# define as numberic

meta_formatted$telhunt_score <- as.numeric(meta_formatted$telhunt_score)

meta_formatted_hgat <- meta_formatted %>%

dplyr::filter(group == "HGAT")
```

A Run for all samples

Log Rank analysis

Generate output for categorical files

```
for(ind_var in c("dmg_h3k28", "telhunt_cat", "group", "atrx_mut", "phenotype")){
  # define model
  model <- paste0("survival::Surv(time = OS_years, event = OS_status_recoded) ~ ", ind_var)
  # depending on which variables are used, data used will be different
  data_used <- meta_formatted</pre>
  # run survival analysis
  fit <- survival::survdiff(formula(model),</pre>
                             data = data_used)
  # Obtain p value for Chi-Squared stat
  fit$p.value <- pchisq(fit$chisq, df = length(fit$n) - 1, lower = FALSE)
  # save the output
  saveRDS(fit, file.path(output_dir, paste0("log_rank_survival_per_", ind_var, ".RDS")))
  # generate plots fit
  fit_plot <- survfit(formula(model), data = data_used)</pre>
  # output the plot
  plot_logrank <- survminer::ggsurvplot(fit_plot,</pre>
                                         data=data_used,
                                         xlim = c(0, 14),
                                         break.time.by = 1,
                                         pval = TRUE,
                                         conf.int = TRUE,
                                         risk.table = TRUE, # Add risk table
                                         linetype = "strata", # Change line type by groups
                                         surv.median.line = "hv", # Specify median survival
                                         ggtheme = theme_bw())
  print(plot_logrank)
  # Make this plot a combined plot
  surv_plot_logrank <- cowplot::plot_grid(plot_logrank[[1]],</pre>
                                           plot_logrank[[2]],
                                           nrow = 2,
```


Multivariate analysis

Multivariate analysis - DMG H3K28 vs rest + HGAT vs. non-HGAT + ALT vs. non-ALT + sex + ATRX (mut N/Y) - DMG H3K28 vs rest + HGAT vs. non-HGAT + Telhunt score (categorical) + sex + ATRX (mut N/Y) - DMG H3K28 vs rest + HGAT vs. non-HGAT + Telhunt score (continuous) + sex + ATRX (mut N/Y)

```
table <- broom::tidy(fit)

# Save the table data in a TSV

readr::write_tsv(table, file.path(output_dir, paste0("cox_reg_results_per_", ind_var, ".tsv")))

print(table)

# printout the plot
forest_coxph <- survminer::ggforest(fit, data = data_used)
print(forest_coxph)
}</pre>
```

## #	A tibble: 7 x 5				
##	term	${\tt estimate}$	std.error	${\tt statistic}$	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	dmg_h3k28DMG	1.17	0.282	4.14	3.43e- 5
## 2	groupHGAT	1.91	0.221	8.65	5.08e-18
## 3	telhunt_catHigh	-0.668	0.243	-2.74	6.06e- 3
## 4	reported_genderMale	0.163	0.185	0.882	3.78e- 1
## 5	reported_genderNot Reported	0.310	0.336	0.921	3.57e- 1
## 6	reported_genderUnknown	0.184	0.384	0.478	6.33e- 1
## 7	atrx_mutATRX_mut	0.656	0.320	2.05	4.01e- 2

A tibble: 7 x 5

##		term	estimate	std.error	${\tt statistic}$	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	dmg_h3k28DMG	1.09	0.282	3.86	1.13e- 4
##	2	groupHGAT	1.98	0.229	8.64	5.86e-18
##	3	telhunt_score	-0.241	0.127	-1.90	5.68e- 2
##	4	reported_genderMale	0.190	0.185	1.03	3.03e- 1
##	5	reported_genderNot Reported	0.323	0.333	0.969	3.32e- 1
##	6	reported_genderUnknown	0.195	0.386	0.506	6.13e- 1
##	7	atrx_mutATRX_mut	0.362	0.284	1.27	2.03e- 1

##	#	A tibble: 6 x 5				
##		term	${\tt estimate}$	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	dmg_h3k28DMG	1.36	0.328	4.15	3.38e- 5
##	2	groupHGAT	1.65	0.262	6.30	3.04e-10
##	3	phenotypeALT	0.452	0.320	1.41	1.58e- 1
##	4	reported_genderMale	0.185	0.201	0.920	3.57e- 1
##	5	${\tt reported_genderUnknown}$	0.159	0.442	0.360	7.19e- 1
##	6	atrx_mutATRX_mut	0.142	0.364	0.390	6.96e- 1

B run for HGAT only

Univariate analysis

```
# output the plot
  plot_logrank <- survminer::ggsurvplot(fit_plot,</pre>
                                         data=data_used,
                                         xlim = c(0, 14),
                                         break.time.by = 1,
                                         pval = TRUE,
                                          conf.int = TRUE,
                                         risk.table = TRUE, # Add risk table
                                         linetype = "strata", # Change line type by groups
                                         surv.median.line = "hv", # Specify median survival
                                         ggtheme = theme_bw())
  print(plot_logrank)
  # Make this plot a combined plot
  surv_plot_logrank <- cowplot::plot_grid(plot_logrank[[1]],</pre>
                                           plot_logrank[[2]],
                                           nrow = 2,
                                           rel_heights = c(2.5, 1))
  # Save the plot
  cowplot::save_plot(filename = file.path(plots_dir,
                                           pasteO("logrank_survival_by_", ind_var, "_os_only_hgat.png"))
                     plot = surv_plot_logrank)
}
```


Multivariate analysis

Multivariate analysis for HGAT samples only - DMG H3K28 vs rest + ALT vs. non-ALT + sex + ATRX (mut N/Y) - DMG H3K28 vs rest + Telhunt score (categorical) + sex + ATRX (mut N/Y) - DMG H3K28 vs rest + Telhunt score (continuous) + sex + ATRX (mut N/Y)

```
# Save the table data in a TSV
readr::write_tsv(table, file.path(output_dir, paste0("cox_reg_results_per_", ind_var, "_os_only_hgat."
print(table)

# printout the plot
forest_coxph <- survminer::ggforest(fit, data = data_used)
print(forest_coxph)
}</pre>
```

```
## # A tibble: 6 x 5
##
     term
                                  estimate std.error statistic
                                                                 p.value
     <chr>>
                                               <dbl>
                                                         <dbl>
                                                                   <dbl>
## 1 dmg_h3k28DMG
                                               0.293
                                                       3.97
                                                               0.0000724
                                  1.16
## 2 telhunt_catHigh
                                  -0.468
                                               0.332 -1.41
                                                               0.160
## 3 reported_genderMale
                                  0.00129
                                               0.296
                                                       0.00437 0.997
## 4 reported_genderNot Reported 0.203
                                               0.352
                                                       0.578
                                                               0.563
## 5 reported_genderUnknown
                                               0.753 -0.0846 0.933
                                  -0.0638
## 6 atrx_mutATRX_mut
                                  0.441
                                               0.370
                                                       1.19
                                                               0.233
```


## 1	dmg_h3k28DMG	1.12	0.293	3.82 0.000136
## 2	telhunt_score	-0.0554	0.122	-0.455 0.649
## 3	reported_genderMale	0.0382	0.296	0.129 0.897
## 4	reported_genderNot Reported	0.219	0.350	0.626 0.531
## 5	reported_genderUnknown	-0.173	0.755	-0.229 0.819
## 6	atrx mutATRX mut	0.158	0.297	0.534 0.594

##	#	A tibble: 5 x 5				
##		term	${\tt estimate}$	std.error	${\tt statistic}$	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	dmg_h3k28DMG	1.32	0.349	3.78	0.000160
##	2	phenotypeALT	0.276	0.373	0.739	0.460
##	3	reported_genderMale	0.0527	0.332	0.159	0.874
##	4	${\tt reported_genderUnknown}$	0.0189	0.767	0.0246	0.980
##	5	atrx mutATRX mut	0.0946	0.420	0.225	0.822

C run for HGAT only but use PFS

```
for(ind_var in c("dmg_h3k28", "telhunt_cat", "atrx_mut", "phenotype")){
  # define model
  model <- paste0("survival::Surv(time = PFS_years, event = PFS_status) ~ ", ind_var)</pre>
  # depending on which variables are used, data used will be different
  data_used <- meta_formatted_hgat</pre>
  # run survival analysis
  fit <- survival::survdiff(formula(model),</pre>
                             data = data_used)
  # Obtain p value for Chi-Squared stat
  fit$p.value <- pchisq(fit$chisq, df = length(fit$n) - 1, lower = FALSE)</pre>
  # save the output
  saveRDS(fit, file.path(output_dir, paste0("log_rank_survival_per_", ind_var, "_pfs_only_hgat.RDS")))
  # generate plots fit
  fit_plot <- survfit(formula(model), data = data_used)</pre>
  # output the plot
  plot_logrank <- survminer::ggsurvplot(fit_plot,</pre>
```

```
data=data_used,
                                         xlim = c(0, 14),
                                         break.time.by = 1,
                                         pval = TRUE,
                                         conf.int = TRUE,
                                         risk.table = TRUE, # Add risk table
                                         linetype = "strata", # Change line type by groups
                                         surv.median.line = "hv", # Specify median survival
                                         ggtheme = theme_bw())
  print(plot_logrank)
  # Make this plot a combined plot
  surv_plot_logrank <- cowplot::plot_grid(plot_logrank[[1]],</pre>
                                           plot_logrank[[2]],
                                           nrow = 2,
                                           rel_heights = c(2.5, 1))
  # Save the plot
  cowplot::save_plot(filename = file.path(plots_dir,
                                           pasteO("logrank_survival_by_", ind_var, "_pfs_only_hgat.png")
                     plot = surv_plot_logrank)
}
```


Multivariate analysis

```
# define multi-variates that we are using for analyzing survival
list_of_variates <- c("dmg_h3k28+telhunt_cat+reported_gender+atrx_mut",</pre>
                       "dmg_h3k28+telhunt_score+reported_gender+atrx_mut",
                       "dmg_h3k28+phenotype+reported_gender+atrx_mut")
# define model
for (ind_var in list_of_variates){
 model <- paste0("survival::Surv(time = PFS_years, event = PFS_status) ~ ", ind_var)</pre>
  # depending on which variables are used, data used will be different
  data_used <- meta_formatted_hgat</pre>
  fit <- survival::coxph(</pre>
        formula(model),
        data = data_used
  # generate output
  table <- broom::tidy(fit)</pre>
  # Save the table data in a TSV
  readr::write_tsv(table, file.path(output_dir, paste0("cox_reg_results_per_", ind_var, "_pfs_only_hgat
```

```
print(table)

# printout the plot
forest_coxph <- survminer::ggforest(fit, data = data_used)
print(forest_coxph)
}</pre>
```

```
## # A tibble: 5 x 5
##
     term
                             estimate std.error statistic p.value
##
     <chr>
                                <dbl>
                                          <dbl>
                                                     <dbl>
                                                             <dbl>
                                0.353
                                          0.327
                                                     1.08
                                                             0.281
## 1 dmg_h3k28DMG
## 2 telhunt_catHigh
                                0.155
                                          0.394
                                                    0.393
                                                             0.695
## 3 reported_genderMale
                               -0.159
                                          0.311
                                                   -0.513
                                                             0.608
## 4 reported_genderUnknown
                                                   -1.07
                               -1.14
                                          1.07
                                                             0.286
## 5 atrx_mutATRX_mut
                                0.615
                                          0.417
                                                    1.48
                                                             0.140
```



```
## # A tibble: 5 x 5
##
     term
                             estimate std.error statistic p.value
##
     <chr>>
                                <dbl>
                                          <dbl>
                                                    <dbl>
                                                            <dbl>
## 1 dmg_h3k28DMG
                                0.397
                                          0.325
                                                    1.22
                                                            0.223
## 2 telhunt_score
                                0.137
                                          0.102
                                                    1.34
                                                            0.180
## 3 reported_genderMale
                              -0.219
                                          0.314
                                                   -0.696 0.487
## 4 reported genderUnknown
                              -1.27
                                          1.06
                                                   -1.20
                                                           0.232
## 5 atrx_mutATRX_mut
                                          0.338
                                                           0.0606
                                0.635
                                                    1.88
```


##	#	A tibble: 5 x 5				
##		term	${\tt estimate}$	${\tt std.error}$	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	dmg_h3k28DMG	0.632	0.353	1.79	0.0731
##	2	phenotypeALT	0.526	0.384	1.37	0.171
##	3	reported_genderMale	-0.441	0.333	-1.32	0.185
##	4	reported_genderUnknown	-1.20	1.05	-1.15	0.251
##	5	atrx mutATRX mut	0.214	0.389	0.551	0.582

Run without ATRX mutants

```
meta_formatted_hgat_non_atrx <- meta_formatted_hgat %>%
  dplyr::filter(atrx_mut == "non_ATRX_mut")
for(ind_var in c("telhunt_cat", "phenotype")){
  # define model
  model <- paste0("survival::Surv(time = PFS_years, event = PFS_status) ~ ", ind_var)</pre>
  # depending on which variables are used, data used will be different
  data_used <- meta_formatted_hgat_non_atrx</pre>
  # run survival analysis
  fit <- survival::survdiff(formula(model),</pre>
                             data = data_used)
  # Obtain p value for Chi-Squared stat
  fit$p.value <- pchisq(fit$chisq, df = length(fit$n) - 1, lower = FALSE)
  # save the output
  saveRDS(fit, file.path(output_dir, paste0("log_rank_survival_per_", ind_var, "_pfs_only_hgat_non_atrx
  # generate plots fit
  fit_plot <- survfit(formula(model), data = data_used)</pre>
```

```
# output the plot
  plot_logrank <- survminer::ggsurvplot(fit_plot,</pre>
                                         data=data_used,
                                         xlim = c(0, 14),
                                         break.time.by = 1,
                                         pval = TRUE,
                                         conf.int = TRUE,
                                         risk.table = TRUE, # Add risk table
                                         linetype = "strata", # Change line type by groups
                                         surv.median.line = "hv", # Specify median survival
                                         ggtheme = theme_bw())
  print(plot_logrank)
  # Make this plot a combined plot
  surv_plot_logrank <- cowplot::plot_grid(plot_logrank[[1]],</pre>
                                           plot_logrank[[2]],
                                           nrow = 2,
                                           rel_heights = c(2.5, 1))
  # Save the plot
  cowplot::save_plot(filename = file.path(plots_dir,
                                           paste0("logrank_survival_by_", ind_var, "_pfs_only_hgat_non_a
                     plot = surv_plot_logrank)
}
```


