

Ampliación de Matemáticas Variable Compleja (3)

Integración

Dada una función $f: \mathbb{C} \to \mathbb{C}$ compleja (no necesariamente analítica) y una curva Γ , definimos su **integral de línea** como:

$$\int_{\Gamma}f(z)dz=\int_{t_0}^{t_1}f(\gamma(t))\gamma'(t)dt$$

Donde $\gamma(t)$ es una parametrización cualquiera de la curva Γ . Veamos algunas propiedades importantes.

- El resultado **no depende** de la parametrización (está bien definida).
- Dado un dominio simplemente conexo D, dos puntos z_0 y z_1 de D, y dadas dos curvas Γ_1 y Γ_2 uniendo ambos puntos, ambas en D, si la función f es analítica en D, entonces la integral no depende del camino:

$$\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$$

• Si D es un dominio simplemente conexo y f es una función analítica en D, entonces la integral sobre cualquier curva cerrada de D es 0:

$$\oint_{\gamma} f(z) dz = 0 \; , orall \gamma \subset D$$

• Nota: esto permite definir una **primitiva** de f:

$$F(z)=\int_{z_0}^z f(w)dw$$

Donde la integral se realiza tomando cualquier curva que una $z_0\, \, {\rm con}\, z$

Teorema de Cauchy

Si f es una función analítica en un dominio D, γ es una circunferencia en D orientada de manera antihoraria, y z_0 es un punto cualquiera del interior de la circunferencia, entonces:

$$f(z_0)=rac{1}{2\pi i}\oint_{\gamma}rac{f(z)}{z-z_0}dz$$

 \bullet Nota: este teorema es un caso particular del teorema de los residuos.

Ceros y singularidades

Una función analítica f tiene un **cero de orden** \mathbf{m} en z_0 si:

$$f(z_0) = ... = f^{m-1}(z_0) = 0 \;, f^m(z_0) \neq 0$$

Una función analítica en todos los puntos de un entorno de z_0 salvo en z_0 se dice que tiene una **singularidad aislada** en z_0 . Las singularidades aisladas pueden ser:

• Evitable: Cuando

$$\exists \lim_{z \to z_0} f(z)$$
 y es finito

• Polo de orden m: Cuando $(z-z_0)^m f(z)$ es analítica en z_0 , pero $(z-z_0)^{m-1} f(z)$ no. En ese caso, se cumple que

$$\exists \lim_{z o z_0} f(z) = \infty$$

• Esencial: Cuando

$$\nexists \lim_{z o z_0} f(z)$$