Homework 5 Solution

1. Show how to implement a JK flip-flop with a D flip-flop.

J	K	Q	Q+	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

D = Q'J + QK'

2. Show how to implement a D flip-flop with a T flip-flop.

D Q	Q+	Т
0 0	0	0
0 1	0	1
1 0	1	1
1 1	1	0

3. Show how to implement a JK flip-flop with a T flip-flop.

J	K	Q	Q+	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

4. Design a modulo-6 counter, which counts 0,1,2,3,4,5,0,1,..... The counter counts the clock pulses if its enable input,w, is equal to 1. Use D flip flops in your circuit. If the circuit ever finds itself in an unused state (6 or 7), it should transition to state 0 with the next clock trigger to avoid being stuck in an unused state. Use a formal design procedure.

Drawing the state table for the given modulo 6 counter.

	Present state		Input	Next state		
Q2	Q1	Q0	W	Q2+	Q1+	Q0+
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	0	0	0

For D flip-flops, the input into the flip-flops is the same as the next state that are shown in the table. (D2=Q2+, D1 = Q1+, D0 = Q0+).

Now drawing 4-variable K maps for D flip flop inputs D2, D1 and D0 we get the following result (K-maps not shown):

$$D2 = Q2Q1'Q0' + Q2Q1'W' + Q2'Q1Q0W$$

$$D1 = Q2'Q1Q0' + Q2'Q1W' + Q2'Q1'Q0W$$

$$D0 = Q2'Q0'W + Q1'Q0'W + Q2'Q0W' + Q1'Q0W'.$$

The above equations completely define the required circuit.

- 5. Consider the design of a 4-bit BCD counter that counts in the following way: 0000, 0001, 0010, 0011,...., 1001 and back to 0000.
 - A) Draw the state diagram and next state table.

Present Stage	Next Stage	D Flip Flop Input
A B C D	A+ B+ C+ D+	Da Db Dc Dd
0 0 0 0	0 0 0 1	0 0 0 1
0 0 0 1	0 0 1 0	0 0 1 0
0 0 1 0	0 0 1 1	0 0 1 1
0 0 1 1	0 1 0 0	0 1 0 0
0 1 0 0	0 1 0 1	0 1 0 1
0 1 0 1	0 1 1 0	0 1 1 0
0 1 1 0	0 1 1 1	0 1 1 1
0 1 1 1	1 0 0 0	1 0 0 0
1 0 0 0	1 0 0 1	1 0 0 1
1 0 0 1	0 0 0 0	0 0 0 0

B) Implement the counter using D flip-flops.

Da = AD' + BCD

$$Db = BC' + B'CD + BD'$$

$$Dc = CD' + A'C'D$$

$$Dd = D'$$

6. The 4-bit Johnson counter advances thru the sequence: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001 and repeat.

A) Implement this counter using D flip-flops.

Present Stage	Next Stage	D Flip Flop Input
A B C D	A+ B+ C+ D+	Da Db Dc Dd
0 0 0 0	1 0 0 0	1 0 0 0
1 0 0 0	1 1 0 0	1 1 0 0
1 1 0 0	1 1 1 0	1 1 1 0
1 1 1 0	1 1 1 1	1 1 1 1
1 1 1 1	0 1 1 1	0 1 1 1
0 1 1 1	0 0 1 1	0 0 1 1
0 0 1 1	0 0 0 1	0 0 0 1
0 0 0 1	0 0 0 0	0 0 0 0

\mathbf{r}		\mathbf{r}
1 10		
174	_	1,

∠ CD				
AB	00	01	11	10
00	0	0	0	Х
01	Χ	Χ	0	Х
11	1	X	1	1
10	1	Χ	Χ	Χ
!			•	

D 1		
1)h	· —	Λ
1 /1	, —	$\overline{}$

∠ CD				
AB	00	01	11	10
00	0	0	0	Х
01	X	Χ	i	X
11	1	Χ	1	1
10	0	Х	Х	Х

$$Dc = B$$

B) Implement this counter using T flip-flops.

Present Stage	Next Stage	T Flip Flop Input
АВСЪ	A+ B+ C+ D+	Ta Tb Tc Td
0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1	1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0	1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

∠ CD				
AB	00	01	11	10
00	0	0	0	Χ
01	Χ	Χ	1	Χ
11	0	Χ	0	0
10	1	Χ	Χ	Χ

$$Tb = A'B + AB'$$

√ CD				
AB	00	01	11	10
00	0	0	0	Χ
01	Χ	X	1	Х
11	1	Χ	1	1
	0	Х	V	V
10	U	^	^	^

$$Tc = BC' + B'C$$

$$Td = C'D + CD'$$

