Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Метод разбиения категориальных данных на основе агломеративного подхода иерархической кластеризации

Студент: Ковалец Кирилл Эдуардович ИУ7-83Б

Научный руководитель: Новик Наталья Владимировна

Актуальность

Недостаток иерархической кластеризации:

• попарное объединение обособленных равноудаленных кластеров.

Устранение этого недостатка позволит:

- улучшить компактность кластеров;
- улучшить разделенность групп.

Цель и задачи

Цель работы: разработка метода разбиения категориальных данных на основе агломеративного подхода иерархической кластеризации.

Задачи:

- провести аналитический обзор известных методов кластеризации данных;
- формализировать поставленную задачу;
- выбрать меры расстояний и критерии связи кластеров;
- разработать гибридный метод разбиения данных;
- разработать алгоритмы и структуру ПО;
- провести исследования разработанного метода.

Выбор метода разбиения для уточнения элементов в кластерах

Метод	Числовые признаки	Категориальные признаки	Тип алгоритма	Входные данные	Выходные данные
Иерархический	+	+	Иерархический	Матрица несходства	Бинарное дерево кластеров
К-средних	+	_	Центроидный	Массив объектов, число кластеров	Кластеры с центрами и номерами объектов
К-режимов	_	+	Центроидный	Массив объектов, число кластеров	Кластеры с центрами и номерами объектов
К-прототипов	+	+	Центроидный	Массив объектов, число кластеров	Кластеры с центрами и номерами объектов
С-средних	+	_	Центроидный	Массив объектов, число кластеров	Центры кластеров, матрица принадлежности
DBSCAN	+	+	На основе плотности	Матрица несходства, радиус, кол-во соседей	Набор кластеров и точки, не вошедшие ни в одну группу
МПД	+	+	На основе графов	Матрица несходства, пороговое значение расстояний	Древовидная структура кластеров

Метод разбиения на основе иерархической кластеризации

Выбор критерия связи кластеров

Критерий связи	Расстояние между двумя кластерами
Одиночная связь	кратчайшее расстояние между двумя точками в каждом кластере
Полная связь	самое длинное расстояние между двумя точками в каждом кластере
Средняя связь	среднее расстояние между каждой точкой в одном кластере до каждой точки в другом кластере

Сравнение мер расстояний

- К1 возможность находить расстояние между числовыми данными;
- К2 возможность находить расстояние между категориальными данными.

Мера расстояния	К1	К2
Евклидово расстояние	+	_
Квадрат Евклидово расстояние	+	_
Расстояние городских кварталов	+	_
Расстояние Чебышева	+	_
Расстояние Минковского	+	_
Степенное расстояние	+	_
Расстояние Хэмминга	_	+
Расстояние Говера	+	+

Вычисление расстояния Говера

Для двух векторов $\vec{x_i} = (x_{i1}, x_{i2}, \dots, x_{ip})$ и $\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jp})$ формула расстояния Говера:

$$d(\vec{x_i}, \vec{x_j}) = rac{\sum_{k=1}^p s_{ijk}}{p},$$
 где p — количество признаков в векторах; s_{ijk} — оценка сходства двух признаков.

• для числовых переменных:

$$s_{ijk} = rac{|x_{ik} - x_{jk}|}{R_k}, \;\;$$
 где R_k — диапазон значений признака k ; $x_{ik}, \, x_{jk}$ — значения k -ых признаков векторов $\vec{x_i}, \, \vec{x_j}$ соответственно.

• для категориальных переменных:

$$s_{ijk} = egin{cases} 0, & ext{если } x_{ik} = x_{jk}; \ 1, & ext{иначе.} \end{cases}$$

Гибридный метод кластеризации

Нахождение матрицы несходства

Иерархическая часть гибридного метода

Центроидная часть гибридного метода

Результаты разбиения для 30 кластеров

Метод К-прототипов

Гибридный метод

Результаты разбиения для 60 кластеров

Метод К-прототипов

Гибридный метод

Оценка качества кластеризации (метод локтя)

• Показывает среднее расстояние между объектами внутри групп.

Оценка качества кластеризации (метод оценки силуэтов)

• Показывает, насколько близко каждая точка внутри одной группы расположена к точкам ближайшего соседнего кластера.

Заключение

В ходе выполнения работы были выполнены все поставленные задачи:

- проведен аналитический обзор известных методов кластеризации данных;
- формализирована поставленная задача;
- выбраны меры расстояний и критерии связи кластеров;
- разработан гибридный метод разбиения данных;
- разработаны алгоритмы и структура ПО;
- проведены исследования разработанного метода.

Направление дальнейшего развития

- Разработать алгоритмы управления кластеризацией в зависимости от особенностей исходных структур.
- Добавить возможность выбора метода вычисления расстояний в матрице несходства.