# Unsupervised Machine Learning with Python

# Section 6.1: K Means Clustering Algorithm

#### K Means Clustering: What is it?

- K Means Clustering is a centroid based approach
- User specifies the number of clusters K and an initial guess for the mean (centre) of each cluster
- K Means Clustering iteratively calculates improved guesses for the means and points associated with each cluster
- K means performs a "hard" clustering each data point is assigned to exactly one cluster
- See UnsupervisedML\_Resources.pdf for links to additional resources

#### K Means Clustering: Basic Step

- (A) Start with dataset and current estimate for cluster means
- (B) For each point in dataset, determine closest cluster mean and assign point to that cluster
- (C) Recompute cluster means based on assignments in (B)

Go back to (A) and repeat process until means converge (until change in cluster means is less than a tolerance)



#### K Means Algorithm: Voronoi Diagram in 2D



- K Means splits plane into Voronoi cells
- Black dot is "mean"
- Shaded region around black dot is closer to its mean than any other mean
- Results for L2 distance measure (cells different for other distance measures)
- For K Means: Voronoi cell indicates extent of region where data point will assigned to region's mean

See https://en.wikipedia.org/wiki/Voronoi\_diagram

By Balu Ertl - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38534275

#### K Means Algorithm

- Assume M data points {X<sub>i</sub>}
- Specify number of clusters K and tolerance  $\epsilon$
- (1) Randomly choose K data points to be the initial cluster means  $\{C_k\}$
- (2) While change in cluster means is greater than  $\varepsilon$ 
  - Assign each data point X<sub>i</sub> to cluster with closest mean C<sub>k</sub>
  - Re-compute means {C<sub>k</sub>} based on latest assignment of points
  - Compute change in cluster means

• Typically, also specify a maximum number of iterations in while loop

#### K Means Algorithm: Minimizing Objective Function

- Let {X} denote the data points (drop subscript for simplicity)
- Let  $S_k$  denote the set of points in cluster k=0,...,K-1 and let  $C_k$  denote the cluster mean
- K Means tries to partition the points into K cluster so as to minimize the objective function = within cluster sum of squares of distance:

$$Objective = \sum_{k=0}^{K-1} \sum_{X \in S_k} dist(X, C_k)^2$$

### K Means Clustering: Example

- Dataset: sklearn varied\_blobs1 data set with 200 points
- Specify 3 clusters and pick initial means at random from data points
- Set stopping tolerance  $\varepsilon=10^{-5}$





#### K Means Algorithm: Complexity

- Assume: M data points in d dimensions, K clusters, I iterations
- At each iteration, need to compute distance between each data point and each cluster centre
- If we assume fixed number of iterations, then algorithm requires O(M) operations as  $M \to \infty$
- Amount of memory required is O(M) as  $M \to \infty$

#### K Means ++ for Picking Initial Cluster Means

- (1) Pick point from dataset at random as Cluster Mean 1
- (2) Loop for Cluster Means = 2, ..., K
- (a) For each data point X compute distance D(X) to nearest existing cluster mean
- (b) Pick point with largest D(X) as next cluster mean

#### Notes:

- After 1st mean, approach picks cluster means at the edges of the data set
- Typically, pick point in (b) at random with probability proportional to  $[D(x)]^2$



Copyright Satish Reddy 2021

### K Means Clustering: using K Means ++

- Dataset: sklearn varied\_blobs1 data set with 200 points
- Specify 3 clusters and pick initial means using kmeans++
- Set stopping tolerance  $\varepsilon=10^{-5}$





#### K Means++ Initialization: Notes

- Significantly fewer iterations required for convergence using kmeans++ versus random initialization
- Additional work to pick initial guesses using kmeans++ is compensated by reduction in work in main K Means algorithm

#### Determining Number of Clusters: Elbow Method

- K Means Elbow is heuristic approach for determining number of clusters
- Perform K Means for range of number of clusters and plot final objective function value
- Identify "Elbow" in plot to determine number of clusters



- Choose number of clusters K so that if number is greater than K then, objective function decreases gradually
- See Resources file for link for additional information

#### K Means Clustering: 3 versus 4 Clusters

- Dataset: sklearn varied\_blobs1 data set with 200 points
- Pick initial means at random
- Set stopping tolerance  $\varepsilon=10^{-5}$



#### K Means Clustering: Notes

- User must specify number of clusters (can use elbow approach)
- User specifies distance measure (L2 is used in this course)
- No guarantee that the objective function is minimized typically will find local minimum
- Final cluster means and assignments depend on initial guesses
- K Means does not do well for non-convex clusters





Non-convex: line between points "not within cluster"

Convex: line between points "within cluster"

#### K Means Clustering: Notes

K Means is an excellent starting point for clustering:

- Easy to implement and fast O(M) operations as  $M \to \infty$
- Can use K Means ++ to choose initial means
- Can use Elbow Method to determine number of clusters K
- Can handle large numbers of dimensions

# Unsupervised Machine Learning with Python

# Section 6.2: K Means Code Design

#### K Means Code Design

- This section contains information about design of the K Means code
- Design is based on algorithm described in Section 6.1 and makes use of numpy functionality
- Stop video here, if you would like to do code design yourself

#### K Means Code Design

- (1) Derive kmeans class from clustering\_base class
- (2) Key to implementation is Distance Squared Matrix
- (3) Create K Means versions of plot\_cluster and plot\_cluster\_animation to be able to plot evolution of cluster means

### Distance Squared Matrix

Consider example with 5 data points and 2 clusters

- dist2[i,j] = distance squared between mean i and point j
- Example:

$$dist2 = \begin{bmatrix} 1.1 & 5.4 & 4.3 & 0.5 & 1.4 \\ 2.1 & 0.9 & 0.7 & 3.5 & 4.4 \end{bmatrix} \longleftarrow \begin{array}{l} \text{Distance squared between data points and M0} \\ \text{Distance squared between data points and M1} \end{array}$$

### Computing Cluster Assignment

Start with dist2 matrix:

$$dist2 = \begin{bmatrix} 1.1 \\ 2.1 \end{bmatrix} \begin{bmatrix} 5.4 \\ 0.9 \end{bmatrix} \begin{bmatrix} 4.3 \\ 0.7 \end{bmatrix} \begin{bmatrix} 0.5 \\ 3.5 \end{bmatrix} \begin{bmatrix} 4.4 \\ 1.4 \end{bmatrix} \longleftarrow \text{ Distance squared between data points and M1}$$

#### Cluster assignment

- Point is assigned to cluster with closest mean
  - For each data point determine row index of dist2 with smallest entry (numpy argmin)
- Cluster Assignment =  $\begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}$





### Objective Function

Start with dist2 matrix:

$$dist2 = \begin{bmatrix} 1.1 \\ 2.1 \end{bmatrix} \begin{bmatrix} 5.4 \\ 0.9 \end{bmatrix} \begin{bmatrix} 4.3 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 3.5 \end{bmatrix} \begin{bmatrix} 4.4 \\ 1.4 \end{bmatrix} \longleftarrow \text{ Distance squared between data points and M1}$$

**Objective Function** 

• Let 
$$S_k$$
 denote cluster k=0,...,K-1 and let  $C_k$  denote mean 
$$Objective = \sum_{k=0}^{K-1} \sum_{X \in S_k} dist(X, C_k)^2$$

- Equivalent to sum of distance squared to closest mean
- Distance squared to closest mean: 1.1
  - Use numpy min function
- Sum is 4.6

#### **Updating Cluster Means**

Data

$$X = \begin{bmatrix} 1 & 2 & -1 & -2 & 3 \\ 3 & 4 & -4 & -5 & 6 \\ 5 & 6 & -7 & -8 & 9 \end{bmatrix}$$

Original

- Cluster assignment:  $Assignment = [0 \ 1 \ 1 \ 0 \ 1]$
- Update cluster means using assignments
  - use numpy mean in column direction

$$M0 = mean(X[col = 0,3]) = mean \begin{bmatrix} 1 & -2 \\ 3 & -5 \\ 5 & -8 \end{bmatrix} = \begin{bmatrix} -0.5 \\ -1 \\ -1.5 \end{bmatrix}$$

$$M1 = mean(X[col = 1,2,4]) = mean\begin{bmatrix} 2 & -1 & 3 \\ 4 & -4 & 6 \\ 6 & 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1.33 \\ 2 \\ 2.66 \end{bmatrix}$$

#### **Updated**



### kmeans class: Principal Variables

| Variable           | Туре                       | Description                                                                                                                                                                                                                                                                                                                                |  |
|--------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| self.time_fit      | float                      | Time for clustering                                                                                                                                                                                                                                                                                                                        |  |
| self.objectivesave | list                       | Value of the objective function for each iteration<br>Example with 3 iterations: [525, 425, 310]                                                                                                                                                                                                                                           |  |
| self.X             | 2d numpy array             | Dataset Number of rows = number of dimensions for data Number of cols = number of data points  Example: 2 dimensions and 5 data points: $\begin{bmatrix} 1 & 1.1 & 0.8 & 0.6 & 0.6 \\ 0.9 & 1.0 & 0.7 & 0.5 & 0.5 \end{bmatrix}$                                                                                                           |  |
| self.clustersave   | list of 1d numpy<br>arrays | self.clustersave[i][j] is cluster assignment for iteration i, data point j Example: for 3 iterations: $[[-1  -1  -1  -1], [0  1  1  0  1], [0  0  1  0  1]]$                                                                                                                                                                               |  |
| self.meansave      | list of list of means      | Cluster means: meansave[i][j] is the mean for iteration i and cluster j Example with 3 iterations and 2 means $ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 3\\3 \end{bmatrix}, \begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 4\\3 \end{bmatrix} ] $ |  |
| dist2              | 2d numpy array             | dist2[i,j] is distance squared between mean i and data point j<br>Example with 2 means and 5 data points: $\begin{bmatrix} 1.1 & 5.4 & 4.3 & 0.5 & 1.4 \\ 2.1 & 0.9 & 0.7 & 3.5 & 4.4 \end{bmatrix}$                                                                                                                                       |  |

### kmeans class – Key Methods

| Method                        | Input                                                                    | Description                                                                                                                                                      |
|-------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| init                          | ncluster (integer) initialization (string)                               | Constructor for the class – input the number of clusters and initialization method ("random" or "kmeans++")                                                      |
| initialize_algorithm          |                                                                          | Initialize self.clustersave, self.objectivesave, and self.meansave Return: nothing                                                                               |
| fit                           | X (2d numpy array) max_iter (integer) tolerance(float) verbose (boolean) | Performs K means algorithm until distance between current and previous means is less than tolerance for maximum of max_iter iterations.  Return: nothing         |
| compute_distance2             | list_mean (list numpy column vectors)                                    | Compute distance squared between each data point and each mean in list_mean Return: dist2 (2d numpy array) See: UnsupervisedML/Examples/Section03/Distance.ipynb |
| update_cluster_<br>assignment | dist2 (2d numpy array)                                                   | Compute the cluster assignments based on info in dist2<br>Return: nothing (update self.clustersave)                                                              |

### kmeans class – Key Methods

| Method                 | Input                                                         | Description                                                                                                                                                                                                      |
|------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| update_objective       | dist2 (2d numpy array)                                        | Compute latest value of objective function Return: nothing (append to self.objectivsave)                                                                                                                         |
| update_mean            |                                                               | Compute means based on current cluster assignments Return: nothing (append to self.meansave)                                                                                                                     |
| compute_diff_mean      |                                                               | Determine maximum distance between current and previous estimate for means Return: maximum difference in means                                                                                                   |
| plot_cluster           | level (integer) title,xlabel,ylabel (strings)                 | Plot the clusters and the means for specified level (iteration) Return: nothing See UnsupervisedML/Exercises/Section02/Exercise_2.4.2.ipynb                                                                      |
| plot_cluster_animation | level (integer) interval (float) title,xlabel,ylabel(strings) | Create animation showing data points and evolution of cluster assignments and means for iterations up to specified level (iteration) Return: nothing See UnsupervisedML/Exercises/Section02/Exercise_2.4.2.ipynb |

# Unsupervised Machine Learning with Python

## Section 6.3: K Means Clustering Code Walkthrough

### K Means Clustering: Code Walkthrough

#### Code located at:

UnsupervisedML/Code/Programs

| Files to Review    | Description                   |
|--------------------|-------------------------------|
| clustering_base.py | Base class for clustering     |
| kmeans.py          | Class for K Means clustering  |
| driver_kmeans.py   | Driver for K Means clustering |

#### Course Resources at:

https://github.com/satishchandrareddy/UnsupervisedML/

• Stop video if you would like to implement code yourself first