

Prof. Luiz F Ferreira

Aula 4

Sumário

- Circuitos Combinacionais
- Funções e Equações Lógicas
- Operadores e Portas Lógicas
- Suficiência de Portas Lógicas

Eng04075 – Eletrônica Digital I

UFRGS Eng. Elétrica Eng04075

Prof. Luiz F Ferreira

Módulo-3

Sumário

- Circuitos Combinacionais
 - Funções e Equações Lógicas
 - Operadores e Portas Lógicas
 - Suficiência de Portas Lógicas
 - Portas Lógicas CMOS
 - Projeto (SOP & POS)
 - Simplificação, Diagramas V-K, Condições Irrelevantes

UFRGS Eng. Elétrica Eng04075

Circuitos Lógicos Binários

Prof. Luiz F Ferreira

UFRGS Eng. Elétrica Eng04075

Circuitos Lógicos Binários

Prof. Luiz F Ferreira

- A Análise e Projeto são baseados em conceitos de Álgebra Booleana (funções, teoremas, etc)
- As Portas Lógicas representam uma equação lógica

Circuitos Lógicos Binários

Prof. Luiz F Ferreira

 Na Lógica Binária as variáveis podem assumir dois (2) valores ou Níveis Lógicos

Circuitos Combinacionais Circuitos Lógicos Binários

Prof. Luiz F Ferreira

- Na Lógica Binária as variáveis podem assumir dois (2) valores ou Níveis Lógicos
- Com 'n' entradas => 2ⁿ possíveis configurações de entrada

$$S = f((A+B).C.D, ...)$$

Variáveis e operadores lógicos

Circuitos Lógicos Binários

Prof. Luiz F Ferreira

- P.Ex. Com n=4 entradas => 2⁴ = 16 possíveis configurações de entrada
- A tabela com os valores das entradas e saídas é a Tabela
 Verdade da equação ou porta lógica

Circuitos Lógicos Binários - Exemplo

Prof. Luiz F Ferreira

Tabela Verdade

В

Α

C

D

Equação	Lógica	da	Saída
3	9		

$$S = ((/A.B) + (C \oplus D))$$

S

Porta Lógica	Equação Lógica	A	В	S
Inversor S	S = /A	0		1
	3 - /A	1		0
		0	0	0
AND	C = A D	0	1	0
B S	S = A.B	1	0	0
		1	1	1
		0	0	0
A OR B OR	S = A + B	0	1	1
В		1	0	1
		1	1	1
NAND		0	0	1
A S	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
NOR		0	0	1
A B	S = /(A + B)	0	1	0
	= /A . /B	1	0	0
		1	1	0

> Operadores: NOT (/) , AND (.), OR (+) Prof. Luiz F Ferreira

Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
Vor		0	0	0
Xor	S = A ⊕ B	0	1	1
B	= /A.B + A./B	1	0	1
		1	1	0
XNor		0	0	1
A	S = /(A ⊕ B)	0	1	0
	= /A./B + A.B	1	0	0
		1	1	1

Inversor

Portas Lógicas – Chaves

Prof. Luiz F Ferreira

- Com "ch" ligada "on" - nível lógico '1' - a tensão da fonte não é aplicada no resistor de 10K e a barra fica desligada "off" - nível lógico '0'
- Com "ch" desligada "off" - nível lógico '0' a tensão da fonte é aplicada no resistor de 10k e a barra fica ligada "on" - nível lógico '1'

Porta "Inversor" ou "NOT"

Símbolo

Tabela Verdade

ch	barra
on ('1')	off ('0')
off ('0')	on ('1')

Porta Lógica	Equação Lógica	Α	В	S
Inversor S	C – /A	0		1
	S = /A	1		0
		0	0	0
A AND B S	C – A D	0	1	0
В	S = A.B	1	0	0
		1	1	1
		0	0	0
A OR S	S = A + B	0	1	1
B) 3		1	0	1
		1	1	1
NAND		0	0	1
A S	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
NOR		0	0	1
A O S	S = /(A + B)	0	1	0
سر ر ط	= /A . /B	1	0	0

> Operadores: NOT (/) , AND (.), OR (+) Prof. Luiz F Ferreira

Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
Vor		0	0	0
Xor	S = A ⊕ B	0	1	1
<u>B</u>	=/A.B + A./B	1	0	1
		1	1	0
XNor		0	0	1
A S	S = /(A ⊕ B)	0	1	0
	= /A./B + A.B	1	0	0
		1	1	1

AND

+Vcc

Ch1

Ch2

Portas Lógicas – Chaves

Prof. Luiz F Ferreira

Somente quando "ch1" E "ch2" estão ligadas "on" ('1') a tensão da fonte é aplicada no resistor e a barra fica ligada "on" ('1')

Porta "E" ou "AND"

ch1

Tabela Verdade

	0	15 611 1 61
off ('0')	off ('0')	off ('0')
off ('0')	on ('1')	off ('0')
on ('1')	off ('0')	off ('0')
on ('1')	on ('1')	on ('1')

ch2

barra

Porta Lógica	Equação Lógica	Α	В	S
Inversor S	S - /A	0		1
	S = /A	1		0
		0	0	0
A AND B S	S = A.B	0	1	0
В	3 = A.D	1	0	0
		1	1	1
		0	0	0
A OR	S = A + B	0	1	1
A S		1	0	1
		1	1	1
NAND		0	0	1
A B	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
NOR		0	0	1
A Do-S	S = /(A + B)	0	1	0
	= /A . /B	1	0	0
		1	1	0

> Operadores: NOT (/) , AND (.), OR (+) Prof. Luiz F Ferreira

Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
Vor		0	0	0
Xor	S = A ⊕ B	0	1	1
<u>B</u>	=/A.B + A./B	1	0	1
		1	1	0
XNor		0	0	1
A S	S = /(A ⊕ B)	0	1	0
	= /A./B + A.B	1	0	0
		1	1	1

Portas Lógicas – Chaves

Prof. Luiz F Ferreira

- Sempre que "ch1"OU "ch2" estãoligadas "on" ('1')
- a tensão da fonte é aplicada no resistor e a barra fica ligada "on" ('1')
- Porta "OU" ou "OR"

+Vcc Ch1 Ch2 1 10k __ 0

Símbolo

Tabela Verdade

ch1	ch2	barra
off ('0')	off ('0')	off ('0')
off ('0')	on ('1')	on ('1')
on ('1')	off ('0')	on ('1')
on ('1')	on ('1')	on ('1')

Porta Lógica	Equação Lógica	Α	В	S
Inversor S	C - /A	0		1
	S = /A	1		0
		0	0	0
A AND B S	S = A.B	0	1	0
В	3 – A.D	1	0	0
		1	1	1
		0	0	0
A OR	S = A + B	0	1	1
A S		1	0	1
		1	1	1
NAND		0	0	1
A S	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
NOR		0	0	1
A Do-S	S = /(A + B)	0	1	0
	= /A . /B	1	0	0
		1	1	0

> Operadores: NOT (/) , AND (.), OR (+) Prof. Luiz F Ferreira

 Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
. Xor		0	0	0
A A	S = A ⊕ B	0	1	1
<u>B</u>	= /A.B + A./B	1	0	1
		1	1	0
XNor		0	0	1
A S	S = /(A 🕀 B)	0	1	0
	=/A./B + A.B	1	0	0
		1	1	1

NAND

₽

Portas Lógicas – Chaves

Prof. Luiz F Ferreira

- Somente quando "ch1" E "ch2" estão ligadas "on" ('1') a tensão da fonte não é aplicada no resistor e a barra fica desligada "off" ('0')
- Porta "não E" ou "NAND"

+Vcc 1 Ch1 10k ___ 0

Símbolo

ch1	ch2	barra
off ('0')	off ('0')	off ('1')
off ('0')	on ('1')	off ('1')
on ('1')	off ('0')	off ('1')

Tabela Verdade

Porta Lógica	Equação Lógica	Α	В	S
Inversor S	S = /A	0		1
	3-/A	1		0
		0	0	0
A AND B S	S = A.B	0	1	0
В	3 – A.D	1	0	0
		1	1	1
A OR B	S = A + B	0	0	0
		0	1	1
		1	0	1
		1	1	1
NAND		0	0	1
B S	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
A NOR B S		0	0	1
	S = /(A + B)	0	1	0
	= /A . /B	1	0	0
		1	1	0

- > Operadores: NOT (/) , AND (.), OR (+)
- Prof. Luiz F Ferreira
- Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
. Xor		0	0	0
A AOI S	S = A ⊕ B	0	1	1
<u>B</u>	=/A.B + A./B	1	0	1
		1	1	0
XNor		0	0	1
	S = /(A ⊕ B)	0	1	0
	=/A./B + A.B	1	0	0
		1	1	1

NOR

→

+Vcc

10k ____0

Portas Lógicas – Chaves

Prof. Luiz F Ferreira

- Sempre que "ch1" OU "ch2" estão ligadas "on" ('1')
- a tensão da fonte não é aplicada no resistor e a barra fica desligada "off" ('0')
- Porta "não OU" ou "NOR"

Tabela Verdade

ch1	ch2	barra			
off ('0')	off ('0')	off ('1')			
off ('0')	on ('1')	on ('0')			
on ('1')	off ('0')	on ('0')			
on ('1')	on ('1')	on ('0')			

Porta Lógica	Equação Lógica	A	В	S
Inversor S	C - /A	0		1
	S = /A	1		0
		0	0	0
AND	S = A.B	0	1	0
A S		1	0	0
		1	1	1
A OR S	S = A + B	0	0	0
		0	1	1
		1	0	1
		1	1	1
NAND		0	0	1
A NONS	S = /(A.B)	0	1	1
	= /A + /B	1	0	1
		1	1	0
NOR A B		0	0	1
	S = /(A + B)	0	1	0
	= /A . /B	1	0	0
		1	1	0

- > Operadores: NOT (/) , AND (.), OR (+)
- Prof. Luiz F Ferreira
- Portas Lógicas: Inversor, AND, OR, NAND, NOR, XOR e XNOR

Porta Lógica	Equação Lógica	A	В	S
		0	0	0
Xor	S = A ⊕ B = /A.B + A./B	0	1	1
<u>B</u>		1	0	1
		1	1	0
XNor		0	0	1
	S = /(A ⊕ B)	0	1	0
	=/A./B + A.B	1	0	0
		1	1	1

Identidades

$$0.A = 0$$
 $0 + A = A$
 $1.A = A$ $1 + A = 1$
 $A.A = A$ $A + A = A$
 $A./A = 0$ $A + /A = 1$

Vizinhança Lógica

$$A.B + A./B = A$$

 $(A + B).(A + /B) = A$

> Teoremas de Morgan

/(A.B.C....) = (/A + /B + /C + ...)

Leis Comutativas

$$(A + B) = (B + A)$$

$$(A.B) = (B.A)$$

Leis Associaticas

$$A + B + C = (A + B) + C = A + (B + C)$$

$$A.B.C = (A.B).C = A.(B.C)$$

Leis Distributivas

$$A.(B + C) = A.B + A.C$$

$$A + (B.C) = (A + B).(A + C)$$

Equivalências

Prof. Luiz F Ferreira

$$/(A.A) <=> /A$$
 $/(A.1) <=> /A$
 $/(A.$

Equivalências

Equivalências

Prof. Luiz F Ferreira

Equivalências

Prof. Luiz F Ferreira

A.B.C <=> (A.B).C

/(A + B + C) <=> /(/(A+B)) + C)

/(A.B.C) <=> /(/(/(A.B)).C)

 $(A + B + C) \le (A + B) + C$

Identidades

$$0.A = 0$$
 $0 + A = A$
 $1.A = A$ $1 + A = 1$
 $A.A = A$ $A + A = A$
 $A./A = 0$ $A + /A = 1$

Vizinhança Lógica

$$A.B + A./B = A$$

 $(A + B).(A + /B) = A$

Teoremas de Morgan

/(A.B.C....) = (/A + /B + /C + ...)

Leis Comutativas

$$(A + B) = (B + A)$$

$$(A.B) = (B.A)$$

Leis Associaticas

$$A + B + C = (A + B) + C = A + (B + C)$$

$$A.B.C = (A.B).C = A.(B.C)$$

Leis Distributivas

$$A.(B + C) = A.B + A.C$$

$$A + (B.C) = (A + B).(A + C)$$

Suficiência de Portas

UFRGS Eng. Elétrica Eng04075

Equivalências

Prof. Luiz F Ferreira

$$A.B + C.D <=> /(/(A.B)./(C.D))$$

Suficiência NAND

$$(A + B).(C + D) \le /(/(A + B) + /(C + D))$$

Suficiência NOR

Portas Lógicas - Montagens -

Pinagem dos Cls 7400 e 4011

Prof. Luiz F Ferreira

Diagrama Esquemático e Pinagem Xor c/ Nands - CI 7400

Portas Lógicas - Montagens -

Portas Lógicas - Montagens -

UFRGS Eng. Elétrica Eng04075

Protoboard Real Xor c/ 4 Nands – CI 7400

Nome do aluno com Turma e No. de ordem na chamada

Fonte de Alimentação +5V (1A)

> Micro Chaves c/ Resistores para as Entradas

Prof. Luiz F Ferreira

> Leds c/ Resistores na(s) Saída(s)