Proposition de corrigé : Banque PT – Épreuve C – 2021

Préambule

- 1. Une primitive de $x\mapsto 2x$ sur $\mathbb R$ est $x\mapsto x^2$ donc, d'après le théorème de structure des solutions des équations différentielles linéaires d'ordre 1, f est une solution de $(\mathcal E)$ si et seulement si il existe $C\in\mathbb R$ tel que, pour tout $x\in\mathbb R$, $f(x)=C\mathrm{e}^{-x^2}$. Finalement, l'unique solution de $(\mathcal E)$ valant 1 en 0 est $f:x\mapsto \mathrm{e}^{-x^2}$.
- 2. Par composition, f est de classe \mathscr{C}^{∞} sur \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$\begin{cases} f'(x) = -2xe^{-x^2} \\ f''(x) = (4x^2 - 2)e^{-x^2} \\ f'''(x) = (-8x^3 + 12x)e^{-x^2} \end{cases}$$

3. Pour tout $x \in \mathbb{R}$:

$$\begin{cases} f''(x) = 4\left(x - \frac{\sqrt{2}}{2}\right)\left(x + \frac{\sqrt{2}}{2}\right)e^{-x^2} \\ f'(x) = -2xe^{-x^2} \end{cases}$$

ce qui donne les signes de f'' et f' sur \mathbb{R} . Par composition, $\lim_{t\to\infty} f=0$ et, par croissance comparée, $\lim_{t\to\infty} f'=0$. On obtient ainsi les tableaux de variations de f=|f|, f' et |f'|:

x	$-\infty$ $-\sqrt{2}/2$	0	$\sqrt{2}/2$	1	+∞
f''	- 0	+	0	_	
f'	+	Û	_	-	
f'	$\begin{array}{c c} & \sqrt{2/e} & - \\ & 0 & \end{array}$	0	$-\sqrt{2/e}$		0
f'	$\sqrt{2/e}$		$\sqrt{2/e}$		
f = f	0	1		1/e	→ 0

D'après le tableau de variations, |f| admet un maximum sur [0,1], et |f'| admet un maximum sur [0,1] et sur $\mathbb R$, et on a :

$$\max_{[0,1]} |f| = 1$$
 et $\max_{[0,1]} |f'| = \max_{\mathbb{R}} |f'| = \sqrt{\frac{2}{e}}$.

- 4. (a) Soit a < b deux réels et $f : [a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur]a,b[. Il existe un réel $c \in]a,b[$ tel que : f(b) f(a) = f'(c)(b-a).
 - (b) Soit ε un réel strictement positif. Comme f est de classe \mathscr{C}^{∞} sur \mathbb{R} , avec le théorème des accroissements finis, pour tout $(x,y) \in [0,1]^2$, il existe c compris entre x et y tel que :

$$|f(x) - f(y)| = |f'(c)||x - y| \le \sqrt{\frac{2}{e}}|x - y|$$

où l'inégalité découle de la question 3. Ainsi, en posant $\eta=\sqrt{\frac{e}{2}}\varepsilon$, on obtient bien :

$$\forall (x,y) \in [0,1]^2: |x-y| \leqslant \eta \Rightarrow |f(x)-f(y)| \leqslant \varepsilon$$

5. Montrons, par récurrence sur $n \in \mathbb{N}$, la propriété $\mathscr{P}(n)$: « il existe $H_n \in \mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}$, $f^{(n)}(x) = H_n(x) \mathrm{e}^{-x^2}$, $\deg(H_n) = n$ et $x \mapsto H_n(x)$ a la même parité que n ».

On a $f^{(0)} = f$ donc, en posant $H_0 = 1$, on a $f: x \mapsto H_0(x)e^{-x^2}$, $\deg(H_0) = 0$ et $x \mapsto H_0(x)$ est paire (c'est la fonction constante en 1). Ainsi, $\mathscr{P}(0)$ est vraie. Hérédité:

Soit $n \in \mathbb{N}$. On suppose $\mathscr{P}(n)$. La fonction f étant de classe \mathscr{C}^{∞} sur \mathbb{R} , $f^{(n)}$ est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$:

$$f^{(n+1)}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(H_n(x) e^{-x^2} \right) = \left(H'_n(x) - 2x H_n(x) \right) e^{-x^2} = H_{n+1}(x) e^{-x^2}$$

où on a posé $H_{n+1} = H'_n - 2XH_n$. En tant que produit et somme de polynômes et dérivée de polynôme (par hypothèse de récurrence), H_{n+1} est un polynôme à coefficients réels. De plus, $\deg(H'_n) < \deg(H_n)$ ce qui donne $\deg(H_{n+1}) = \deg(-2XH_n) = \deg(-2X) + \deg(H_n) = 1 + n$. Déterminons la parité de $g: x \mapsto H_{n+1}(x)$. On traite le cas où n est pair (le cas n impair est analogue). Par hypothèse de récurrence, $x \mapsto H_n(x)$ est paire donc $x \mapsto H'_n(x)$ est impaire ce qui donne, pour tout $x \in \mathbb{R}$:

$$g(-x) = H_{n+1}(-x) = H'_n(-x) + 2xH_n(-x) = -H'_n(-x) + 2xH_n(x) = -H_{n+1}(x) = -g(x)$$

donc g est impaire qui est bien la même parité que n+1. La propriété $\mathscr{P}(n+1)$ est vraie. Ceci achève la récurrence.

6. Soit $n \in \mathbb{N}$. Compte-tenu de la relation entre H_{n+1} et H_n et puisque $\deg(H'_n) < \deg(H_n)$, on a

$$a(H_{n+1}) = -2a(H_n).$$

Par suite, $(a(H_n))_{n\in\mathbb{N}}$ est une suite géométrique de raison -2 et de premier terme 1 (car $H_0=1$). Finalement, pour tout $n\in\mathbb{N}$, $a(H_n)=(-2)^n$.

Partie I

- 1. Soit g une fonction paire définie et continue sur \mathbb{R} . L'intégrale $\int_{-\infty}^{+\infty} g(t) \, dt$ converge si et seulement si $\int_{0}^{+\infty} g(t) \, dt$ et $\int_{0}^{+\infty} g(t) \, dt$ convergent. Or, la fonction $t \mapsto -t$ est une bijection de classe \mathscr{C}^1 de \mathbb{R}_+ dans \mathbb{R}_- strictement décroissante donc, par changement de variable, $\int_{0}^{+\infty} g(t) \, dt$ et $\int_{0}^{-\infty} -g(-t) \, dt = \int_{-\infty}^{0} g(t) \, dt$ sont de même nature. En conclusion, $\int_{-\infty}^{+\infty} g(t) \, dt$ et $\int_{0}^{+\infty} g(t) \, dt$ sont de même nature.
- 2. Soit $n \in \mathbb{N}$. La fonction $\varphi : x \mapsto x^n e^{-x^2}$ est continue sur \mathbb{R}_+ . De plus, pour tout $x \in [1, +\infty[$:

$$|\varphi(x)|\leqslant x^n\mathrm{e}^{-x}=x^n\mathrm{e}^{-x/2}\mathrm{e}^{-x/2}\mathop{=}_{x\to+\infty}o(\mathrm{e}^{-x/2})$$

où la relation de comparaison est donnée par une croissance comparée. Or, $t \mapsto e^{-t/2}$ est continue, positive et intégrable sur \mathbb{R}_+ (intégrale de référence) donc, par théorème de comparaison, φ est intégrable sur \mathbb{R}_+ . L'intégrale I_n existe. Le raisonnement est analogue pour J_n en comparant avec $t \mapsto e^{t/2}$ au voisinage de $-\infty$.

3. Avec le même changement de variable que dans la question 1, pour tout $n \in \mathbb{N}$:

$$J_n = \int_0^{+\infty} x^n e^{-x^2} dx + \int_{-\infty}^0 x^n e^{-x^2} dx$$
$$= \int_0^{+\infty} x^n e^{-x^2} dx + \int_{+\infty}^0 (-x)^n e^{-x^2} dx = (1 + (-1)^n) \int_0^{+\infty} x^n e^{-x^2} dx = (1 + (-1)^n) I_n.$$

ce qui donne, lorsque n est impair, $J_n = 0$.

4. Une primitive de $x\mapsto x\mathrm{e}^{-x^2}$ est $x\mapsto -\frac{1}{2}\mathrm{e}^{-x^2}$. Cette dernière fonction tend vers 0 en $+\infty$ donc

$$I_1 = \int_0^{+\infty} x e^{-x^2} = \frac{1}{2} e^{-0^2} - \lim_{x \to +\infty} -\frac{1}{2} e^{-x^2} = \frac{1}{2}.$$

5. Soit $n \in \mathbb{N}$. Posons $u: x \mapsto x^{n+1}$ et $v: x \mapsto \frac{1}{2} \mathrm{e}^{-x^2}$. Ces deux fonctions sont de classe \mathscr{C}^1 sur \mathbb{R}_+ et, par croissance comparée, uv tend vers 0 en $+\infty$ donc, par intégration par partie pour les intégrales généralisées, $\int_0^{+\infty} uv' = -I_{n+2} \ \mathrm{et} \int_0^{+\infty} u'v \ \mathrm{sont} \ \mathrm{de} \ \mathrm{même} \ \mathrm{nature}, \ \mathrm{c'est-\grave{a}}\text{-dire} \ \mathrm{convergentes} \ \mathrm{puisque} \ I_{n+2} \ \mathrm{converge} \ \mathrm{et} \ \mathrm{on} \ \mathrm{a} \ \mathrm{l'égalit\acute{e}}:$

$$-I_{n+2} = \int_0^{+\infty} x^{n+1} \left(-x e^{-x^2}\right) dx = \int_0^{+\infty} u v' = \lim_{+\infty} u v - u(0)v(0) - \int_0^{+\infty} u' v = 0 - 0 - \int_0^{+\infty} (n+1)x^n \frac{e^{-x^2}}{2} dx$$

 $\operatorname{donc} I_{n+2} = \frac{n+1}{2} I_n.$

6. Soit k un entier naturel. Avec la relation de la question précédente, (I_n) est une suite strictement positive et, pour tout $n \in \mathbb{N}$, $I_{2(n+1)} = (2n+1)I_{2n}/2$. On a, par produits télescopiques :

$$\frac{I_{2k}}{I_0} = \prod_{i=0}^{k-1} \frac{I_{2(i+1)}}{I_{2i}} = \prod_{i=0}^{k-1} \frac{2i+1}{2} = \frac{1}{2^k} \prod_{i=1}^{k-1} (2i+1) = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2i+1) \times 2i}{2i} = \frac{1}{2^k} \frac{1}{2^{k-1}} \frac{(2k-1)!}{(k-1)!} = \frac{(2k)!}{2^k \times 2^k k!} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2i+1) \times 2i}{2^k} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2k-1)!}{(k-1)!} = \frac{(2k)!}{2^k \times 2^k k!} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2i+1) \times 2i}{2^k} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2k-1)!}{(k-1)!} = \frac{(2k)!}{2^k \times 2^k k!} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2k-1)!}{(k-1)!} = \frac{(2k)!}{2^k \times 2^k k!} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2k-1)!}{2^k k!} = \frac{1}{2^k} \prod_{i=1}^{k-1} \frac{(2k-$$

donc

$$I_{2k} = \frac{(2k)!}{2^{2k}k!}I_0 = \frac{(2k)!}{2^{2k}k!}\frac{\sqrt{\pi}}{2}$$

La relation de la question précédente donne, pour tout $n \in \mathbb{N}^*$, $I_{2n+1} = nI_{2n-1}$ donc, par récurrence immédiate :

$$I_{2k+1} = k!I_1 = \frac{k!}{2}.$$

- 7. (a) Soit P une fonction polynomiale. Cette fonction est une combinaison linéaire finie de la famille $(x \mapsto x^k)_{k \in \mathbb{N}}$.

 Ainsi, comme I_k est convergente pour tout entier naturel k, l'intégrale $\int_{-\infty}^{+\infty} P(x)e^{-x^2} \, \mathrm{d}x$ converge comme combinaison linéaire finie d'intégrales convergentes.
 - (b) La fonction $x \mapsto Q(x)^2 \mathrm{e}^{-x^2}$ est une fonction continue, positive et d'intégrale nulle sur $\mathbb R$ donc cette fonction est nulle sur $\mathbb R$. Comme $x\mapsto \mathrm{e}^{-x^2}$ ne s'annule pas sur $\mathbb R$, la fonction Q^2 donc la fonction Q est identiquement nulle sur $\mathbb R$.
 - (c) Soit P et Q deux fonctions polynomiales. L'application $P \times Q$ est polynomiale donc, d'après la question précédente, $\langle P, Q \rangle$ est bien défini. L'application considérée est
 - symétrique car $\langle P, Q \rangle = \langle Q, P \rangle$ puisque $P \times Q = Q \times P$;
 - linéaire à gauche par linéarité de l'intégrale :
 - positive car, comme la fonction $t \mapsto P(t)^2 e^{-t^2}$ est positive sur \mathbb{R} , $\langle P, P \rangle \geqslant 0$
 - définie-positive car, par la question précédente, si $\langle P, P \rangle = 0$ alors P est identiquement nulle.
 - (d) On a:

$$\langle H_0, H_1 \rangle = \int_{-\infty}^{+\infty} 1 \times (-2x) e^{-x^2} dx = -2J_1 = 0.$$

(e) Comme les degrés de H₀, H₁ et H₂ sont étagés, ces trois vecteurs sont linéairement indépendants donc l'espace Vect(H₀, H₁, H₂) est un sous espace vectoriel de R₂[X] de dimension 2, c'est-à-dire qu'on a l'égalité Vect(H₀, H₁, H₂) = R₂[X]. On va d'abord construire une base orthogonale (\$\widetilde{P}_0\$, \$\widetilde{P}_1\$, \$\widetilde{P}_2\$) de R₂[X] puis normer chaque vecteur de cette famille. Comme H₀ et H₁ sont orthogonaux, on pose \$\widetilde{P}_0\$ = H₀ et \$\widetilde{P}_1\$ = H₁. On cherche donc deux réels b et c tel que \$\widetilde{P}_2\$: x \(\to \xi x^2 + bx + c\) est orthogonale à H₀ et H₁. On a les équivalences :

$$\left\{ \begin{array}{lll} \langle H_0, \widetilde{P_2} \rangle &=& 0 \\ \langle H_1, \widetilde{P_2} \rangle &=& 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} J_2 + bJ_1 + cJ_0 &=& 0 \\ -2J_3 - 2bJ_2 - 2cJ_1 &=& 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} I_2 + cI_0 &=& 0 \\ 2bI_2 &=& 0 \end{array} \right.$$

donc b=0 et $c=-I_2/I_0=-1/2$ ce qui donne $\widetilde{P_2}:x\mapsto x^2-1/2$. Il reste à calculer les normes des trois fonctions construites. On a :

$$\begin{split} \|H_0\|^2 &= \|\widetilde{P}_0\|^2 = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \, \mathrm{d}x = \frac{2I_0}{\sqrt{\pi}} = 1, \\ \|H_1\|^2 &= \|\widetilde{P}_1\|^2 = \frac{1}{\sqrt{\epsilon}} \int_{-\infty}^{+\infty} 4x^2 \mathrm{e}^{-x^2} \, \mathrm{d}x = \frac{8I_2}{\sqrt{\epsilon}} = \frac{8}{\sqrt{\epsilon}} \times \frac{\sqrt{\pi}}{4} = 2 \end{split}$$

t

$$\|\widetilde{P}_1\|^2 = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (x^2 - 1/2)^2 e^{-x^2} dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} x^4 e^{-x^2} dx - \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} x^2 e^{-x^2} dx + \frac{1}{4\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^2} dx = \frac{2}{\sqrt{\pi}} \left(I_4 - I_2 + \frac{I_0}{4} \right) = \frac{2}{\sqrt{\pi}} \left(\frac{3}{4} - \frac{1}{2} + \frac{1}{4} \right) I_0 = \frac{1}{2}.$$

Ainsi, $\|\widetilde{P_0}\| = 1$, $\|\widetilde{P_1}\| = 1/\sqrt{2}$ et $\|\widetilde{P_1}\| = 1/\sqrt{2}$. En divisant $\widetilde{P_0}$, $\widetilde{P_1}$ et $\widetilde{P_2}$ par leur norme, une base orthonormée de $\mathrm{Vect}(H_0, H_1, H_2)$ est $\left(1, x \mapsto -\sqrt{2}x, x \mapsto \sqrt{2}x^2 - \frac{\sqrt{2}}{2}\right)$.

Partie II

- 1. $\forall x \in \mathbb{R}, t \mapsto e^{-x^2t^2}$ est continue sur [1;2], donc la fonction F est bien définie De plus $\forall x \in \mathbb{R}, F(-x) = -x \int_1^2 e^{-(-x)^2t^2} dt = -x \int_1^2 e^{-x^2t^2} dt = -F(x)$. La fonction F est donc impaire
- 2. Soit $x \in \mathbb{R}$. On effectue le changement de variable u = xt, donc du = xdt (changement de variable dans l'intégrale d'une fonction continue sur un segment), ce qui donne $F(x) = \int_{-\infty}^{2} e^{-(xt)^2} x dt = \int_{-\infty}^{2x} e^{-u^2} du$.
- 3. On pose, $\forall x \in \mathbb{R}, H(x) = \int_0^x e^{-u^2} du$.

 D'après le théorème fondament al du calcul intégral, la fonction H est de classe C^1 sur \mathbb{R} et $\forall x \in \mathbb{R}, H'(x) = e^{-x^2}$.

 Or d'après la relation de Chasles : $\forall x \in \mathbb{R}, F(x) = \int_0^{2x} e^{-u^2} du \int_0^x e^{-u^2} du = H(2x) H(x)$.

 Par composition et différence, on peut donc affirmer que F est de classe C^1 sur \mathbb{R} , et :

$$\forall x \in \mathbb{R}, F'(x) = 2H'(2x) - H(x) = 2e^{-4x^2} - e^{-x^2}$$

4. On reprend les notations de la question précédente : si $x \in \mathbb{R}$, F(x) = H(2x) - H(x)Or $H(x) = \int_0^x e^{-u^2} du$ tend vers $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$ lorsque x tend vers $+\infty$.

Par composition de limite, H(2x) tend vers $\frac{\sqrt{\pi}}{2}$ lorsque x tend vers $+\infty$. Finalement, F(x) tend vers 0 lorsque x tend vers $+\infty$.

5. On s'intéresse à la somme partielle $S_n = \sum_{k=0}^n F(2^k)$ (définie pour tout entier naturel n)

On a alors, en utilisant l'expression de F obtenue à la question 2. :

$$S_n = \sum_{k=0}^n \int_{2^k}^{2^{k+1}} e^{-u^2} du = \int_{1}^{2^{n+1}} e^{-u^2} du \text{ grâce à la relation de Chasles.}$$

Or
$$\int_1^{2^{n+1}} e^{-u^2} du = \int_0^{2^{n+1}} e^{-u^2} du - \int_0^1 e^{-u^2} du$$
 tend vers $\frac{\sqrt{\pi}}{2} - \int_0^1 e^{-u^2} du$ lorsque n tend vers $+\infty$. La somme partielle S_n admet donc une limite finie lorsque n tend vers $+\infty$, ce qui signifie que la série de terme

La somme partiene S_n admet donc une minte mine forsque n tend vers $+\infty$, de qui signine que la serie de général $F(2^n)$ converge.

- 6. (a) Nous avons déjà montré à la question 3. que $\forall x \in \mathbb{R}, F'(x) = 2e^{-4x^2} e^{-x^2}$
 - (b) On a les équivalences suivantes, pour tout réel x:

$$\begin{split} F'(x) &= 0 \Leftrightarrow 2e^{-4x^2} = e^{-x^2} \\ &\Leftrightarrow \ln(2) + (-4x^2) = -x^2 \\ &\Leftrightarrow 3x^2 = \ln(2) \\ &\Leftrightarrow x^2 = \frac{\ln(2)}{3} \\ &\Leftrightarrow x = \sqrt{\frac{\ln(2)}{3}} \text{ ou } x = -\sqrt{\frac{\ln(2)}{3}} \end{split}$$

(c) On a les équivalences suivantes, pour tout réel x:

$$\begin{split} F'(x) > 0 &\Leftrightarrow 2e^{-4x^2} > e^{-x^2} \\ &\Leftrightarrow \ln(2) + (-4x^2) > -x^2 \\ &\Leftrightarrow 3x^2 < \ln(2) \\ &\Leftrightarrow x^2 < \frac{\ln(2)}{3} \\ &\Leftrightarrow -\sqrt{\frac{\ln(2)}{3}} < x < \sqrt{\frac{\ln(2)}{3}} \end{split}$$

On a donc le tableau de variations suivant : (on a noté $\alpha = F\left(\sqrt{\frac{\ln(2)}{3}}\right)$, et on rappelle que F est impaire)

x	$-\infty$	$-\sqrt{\frac{\ln(2)}{3}}$	$\sqrt{\frac{\ln(2)}{3}}$	$+\infty$
F'(x)	_	0	+ 0	_
F(x)	0	\rightarrow $-\alpha$	α _	0

7. Soit un réel x strictement positif fixé. On a les implications suivantes (on utilise entre autres la croissance de la fonction exponentielle et la propriété dite de croissance de l'intégrale):

$$1 \le t \le 2 \Rightarrow -4 \le -t^2 \le -1 \Rightarrow -4x^2 \le -x^2 t^2 \le -x^2 \Rightarrow e^{-4x^2} \le e^{-x^2 t^2} \le e^{-x^2}$$
$$\Rightarrow \int_1^2 e^{-4x^2} dt \le \int_1^2 e^{-x^2 t^2} dt \le \int_1^2 e^{-x^2} dt \Rightarrow e^{-4x^2} \le \int_1^2 e^{-x^2 t^2} dt \le e^{-x^2} \Rightarrow x e^{-4x^2} \le F(x) \le x e^{-x^2}$$

8. On donne une allure de la courbe représentative de F sans échelle précise :

- (a) Nous avons vu que la fonction F est de classe C¹ sur ℝ, donc en particulier elle est continue sur ℝ. D'après le théorème fondamental du calcul intégral, elle admet donc des primitives sur ℝ.
 - (b) La fonction F est positive sur \mathbb{R}^+ (car $\int_1^2 e^{-x^2t^2} dt \ge 0$ par positivité de l'intégrale). La fonction G (qui est telle que G' = F par définition), est donc **croissante** sur \mathbb{R}^+ . On peut donc affirmer que G admet une limite dans $\mathbb{R} \cup \{+\infty\}$ en $+\infty$.
 - (c) On note donc ℓ_G la limite de G en $+\infty$. Il s'agit dans cette question de montrer que ℓ_G est un réel et d'encadrer ce réel.

Remarquons que par définition, G est l'unique primitive de F qui s'annule en 0, ce qui se traduit par :

$$\forall x \in \mathbb{R}, G(x) = \int_0^x F(t)dt$$

Or d'après la question 7.,
$$\forall t>0$$
, $te^{-4t^2}\leq F(t)\leq te^{-t^2}$ Par croissance de l'intégrale, on a alors : $\forall x>0$, $\int_0^x te^{-4t^2}dt\leq G(x)\leq \int_0^x te^{-t^2}dt$ donc : $\left[-\frac{1}{8}e^{-4t^2}\right]_0^x\leq G(x)\leq \left[-\frac{1}{2}e^{-t^2}\right]_0^x$, et enfin : $\frac{1}{8}-\frac{1}{8}e^{-4x^2}\leq G(x)\leq \frac{1}{2}-\frac{1}{2}e^{-x^2}\leq \frac{1}{2}$ Dans un premier temps on peut affirmer que $\ell_G\in\mathbb{R}$ car G est majorée par $\frac{1}{2}$ sur $]0;+\infty[$ D'autre part, par passage à la limite dans l'encadrement obtenu, on a donc $\frac{1}{8}\leq \ell_G\leq \frac{1}{2}$.

- 10. (a) D'après le cours, pour tout réel x on a : $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$
 - (b) Pour cette question on va utiliser l'expression : $\forall x \in \mathbb{R}, F(x) = \int_{x}^{2x} e^{-u^{2}} du$ Or $\forall u \in \mathbb{R}, e^{-u^{2}} = \sum_{n=0}^{+\infty} (-1)^{n} \frac{u^{2n}}{n!}$

Par intégration terme à terme d'une série entière, on a alors

$$\begin{aligned} \forall x \in \mathbb{R}, F(x) &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_x^{2x} u^{2n} du \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \left[\frac{u^{2n+1}}{2n+1} \right]_x^{2x} \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \left(\frac{2^{2n+1}x^{2n+1}}{2n+1} - \frac{x^{2n+1}}{2n+1} \right) \\ &\operatorname{donc}: \forall x \in \mathbb{R}, F(x) &= \sum_{n=0}^{+\infty} \frac{(-1)^n (2^{2n+1}-1)}{n!(2n+1)} x^{2n+1} \end{aligned}$$

Comme cette dernière égalité est valable pour tout réel x, le rayon de convergence de cette série est donc $+\infty$.

Partie III

- 1. Soit x un réel, soit n un entier naturel, que nous considérerons non nul puisque l'énoncé ne définit $R_{n,k}(x)$ que dans le cas où n est non nul (oubli dans l'énoncé de la question?). Nous devons calculer $\sum_{k=0}^n kR_{n,k}(x) = \sum_{k=0}^n k\binom{n}{k}x^k(1-x)^{n-k}$.
 - Si $x \in]0;1[$, on reconnaît qu'il s'agit de l'espérance d'une variable aléatoire qui suit une loi binomiale de paramètres (n,x), donc d'après le cours $\sum_{k=0}^{n} kR_{n,k}(x) = nx$.

— Si x ∉]0; 1[, nous allons passer par un calcul algébrique (qui est d'ailleurs valable pour tout réel x)

$$\begin{split} \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k} &= \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k} & car \ le \ terme \ est \ nul \ si \ k = 0 \\ &= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} x^k (1-x)^{n-k} \\ &= n \sum_{p=0}^{n-1} \binom{n-1}{p} x^{p+1} (1-x)^{n-1-p} & on \ a \ pos\'{e} \ p = k-1 \\ &= n x \sum_{p=0}^{n-1} \binom{n-1}{p} x^p (1-x)^{n-1-p} \\ &= n x (x+(1-x))^{n-1} \\ &= n x \end{split}$$

où la dernière ligne vient de la formule du binôme de Newton. Finalement on a bien:

$$\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, \sum_{k=0}^n kR_{n,k}(x) = nx.$$

- 2. D'après le cours, S_n suit une loi binomiale de paramètres (n,p), et $E(S_n)=np$.
- 3. (a) D'après la formule du transfert, on peut écrire :

$$E\left(\frac{S_n}{n}\right) = \sum_{k=0}^n f\left(\frac{k}{n}\right) P(S_n = k) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

On a donc bien : $E\left(\frac{S_n}{n}\right) = B_n(f)(p)$

(b) Loi faible des grands nombres : Soit une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$ in dépendantes et de même loi. On note p l'espérance commune à toutes ces variables aléatoires, et pour tout n de \mathbb{N}^* , on pose $S_n = \sum_i X_k$. On a alors:

$$\forall \eta > 0, P\left(\left|\frac{S_n}{n} - p\right| \ge \eta\right) \underset{n \to +\infty}{\longrightarrow} 0$$

Dans ce problème, nous sommes exactement dans le contexte d'application de ce théorème (la loi commune

aux variables aléatoires X_n étant la loi de Bernoulli de paramètre p).

Fixons $\epsilon > 0$. Pour tout $\eta > 0$, par définition de la limite, à partir d'un certain rang tous les termes de la suite seront inférieurs ou égaux à ϵ . Autrement dit

$$\forall \eta > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, P\left(\left|\frac{S_n}{n} - p\right| \geq \eta\right) \leq \epsilon$$

(c) Soit $\eta > 0$. Pour tout entier naturel k on a $\left| \frac{k}{n} - p \right| \le \eta$ ou bien $\left| \frac{k}{n} - p \right| > \eta$. Autrement dit $\left\{k \in \mathbb{N}, \left|\frac{k}{n} - p\right| \le \eta\right\} \cup \left\{k \in \mathbb{N}, \left|\frac{k}{n} - p\right| > \eta\right\} = \mathbb{N}$

(d) Soit $\epsilon > 0$. Pour tout entier naturel n, on a alors

$$\begin{split} |f(p)-B_n(f)(p)| &= \left|f(p)-E\left(\frac{S_n}{n}\right)\right| &\qquad \qquad d'apr\`es \ la \ question \ 3.a. \\ &= \left|f(p)-\sum_{k=0}^n f\left(\frac{k}{n}\right)P(S_n=k)\right| \\ &= \left|f(p)\sum_{k=0}^n P(S_n=k)-\sum_{k=0}^n f\left(\frac{k}{n}\right)P(S_n=k)\right| &\qquad car \ \sum_{k=0}^n P(S_n=k) = 1 \\ &= \left|\sum_{k=0}^n \left(f(p)-f\left(\frac{k}{n}\right)\right)P(S_n=k)\right| \\ &\leq \sum_{k=0}^n \left|f(p)-f\left(\frac{k}{n}\right)\right|P(S_n=k) &\qquad d'apr\`es \ l'in\'egalit\'e \ triangulaire \end{split}$$

D'après la question 4.b. du préambule, $\exists \eta > 0 \text{ tel que } \forall (x,y) \in [0;1]^2, |x-y| \leq \eta \Rightarrow |f(x) - f(y)| \leq \epsilon$ On considère donc un tel η et on va couper la somme précédente en deux parties, suivant si $\left|\frac{k}{n}-p\right|\leq\eta$ ou bien $\left|\frac{k}{n}-p\right|>\eta$. On a donc:

$$|f(p) - B_n(f)(p)| \le \sum_{\substack{k=0 \\ |\frac{k}{n} - p| \le n}}^{n} \left| f(p) - f\left(\frac{k}{n}\right) \right| P(S_n = k) + \sum_{\substack{k=0 \\ |\frac{k}{n} - p| > n}}^{n} \left| f(p) - f\left(\frac{k}{n}\right) \right| P(S_n = k)$$

Majorons chacun des deux termes à part :

$$\sum_{\substack{k=0\\ \left\lfloor\frac{k}{n}-p\right\rfloor\leq n}}^n \left|f(p)-f\left(\frac{k}{n}\right)\right| P(S_n=k) \leq \sum_{\substack{k=0\\ \left\lfloor\frac{k}{n}-p\right\rfloor\leq n}}^n \epsilon P(S_n=k) \leq \epsilon \sum_{k=0}^n P(S_n=k) \leq \epsilon \sum_{k=0}^n P(S_n=k) = \epsilon$$

— Pour le deuxième terme, on utilise tout d'abord l'inégalité triangulaire et le fait que la fonction f soit

$$\left| f(p) - f\left(\frac{k}{n}\right) \right| \le f(p) + f\left(\frac{k}{n}\right) \le 1 + 1 = 2.$$
On a donc:

comprise entre 0 et 1 pour affirmer :
$$\left| f(p) - f\left(\frac{k}{n}\right) \right| \leq f(p) + f\left(\frac{k}{n}\right) \leq 1 + 1 = 2.$$
 On a donc :
$$\sum_{\substack{k=0 \\ \left|\frac{k}{n} - p\right| > \eta}} \left| f(p) - f\left(\frac{k}{n}\right) \right| P(S_n = k) \leq 2 \sum_{\substack{k=0 \\ \left|\frac{k}{n} - p\right| > \eta}}^n P(S_n = k) = 2P\left(\left|\frac{S_n}{n} - p\right| > \eta\right) \leq 2P\left(\left|\frac{S_n}{n} - p\right| \geq \eta\right)$$

Or d'après la question 3.b., $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, P\left(\left|\frac{S_n}{r} - p\right| \geq \eta\right) \leq \epsilon$

Donc
$$\exists n_0 \in \mathbb{N}, \forall n \ge n_0, \sum_{\substack{k=0 \\ \left|\frac{k}{n}-p\right| > \eta}}^{n} \left| f(p) - f\left(\frac{k}{n}\right) \right| P(S_n = k) \le 2\epsilon$$

Finalement, en rassemblant les majorations des deux termes, on a :

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0, |f(p) - B_n(f)(p)| \leq 3\epsilon$$

Cette affirmation étant vraie pour tout $\epsilon > 0$, on en déduit, par définition de la limite, que

$$B_n(f)(p) \underset{n \to +\infty}{\longrightarrow} f(p)$$