G2a Properties of Parallelograms

Drill

Find the value of each variable.

1. *x*

2. *y*

3. *Z*

18

G2a Properties of Parallelograms

Objective: Students will be able to use and apply properties of parallelograms in order to solve problems

Homework: page 395: 1-13, 15-24Quiz next class on sections 6.1-6.3 Bring graph paper for next class

What do you call an urgent message sent across a parallel network?

A parallelogram

Complete the top of <u>Just the Facts</u>. Analyze the quadrilaterals to determine which are parallelograms.

Work with your group to develop a definition of parallelogram.

A quadrilateral with two pairs of parallel sides is a **parallelogram**. To write the name of a parallelogram, you use the symbol \square .

Parallelogram ABCD $\square ABCD$ $A \longrightarrow D$

 $\overline{AB} \parallel \overline{CD}, \overline{BC} \parallel \overline{DA}$

Discovery Activity©

Theorem 6-2-1 (Properties of Parallelograms)

THEOREM	HYPOTHESIS	CONCLUSION
If a quadrilateral is a parallelogram, then its opposite sides are congruent. $(\square \to \text{opp. sides }\cong)$	$A \longrightarrow D$	$\frac{\overline{AB}}{\overline{BC}} \cong \frac{\overline{CD}}{\overline{DA}}$

	THEOREM	HYPOTHESIS	CONCLUSION
6-2-2	If a quadrilateral is a parallelogram, then its opposite angles are congruent. $(\square \to \text{opp. } \& \cong)$	A D	∠A ≅ ∠C ∠B ≅ ∠D
6-2-3	If a quadrilateral is a parallelogram, then its consecutive angles are supplementary. (□ → cons. & supp.)	A D	$m\angle A + m\angle B = 180^{\circ}$ $m\angle B + m\angle C = 180^{\circ}$ $m\angle C + m\angle D = 180^{\circ}$ $m\angle D + m\angle A = 180^{\circ}$
6-2-4	If a quadrilateral is a parallelogram, then its diagonals bisect each other. (□ → diags. bisect each other)	$A \xrightarrow{B} Z D^{C}$	$\overline{AZ} \cong \overline{CZ}$ $\overline{BZ} \cong \overline{DZ}$

Can you think of a real world example of why parallelograms and their properties are important?

NASA's Spitzer Space Telescope has captured in unprecedented detail this spiral galaxy twisted into a parallelogram-shaped structure of dust.

Strategies when solving problems

- Draw a picture if you are not given one
- •Be sure to write in all of the angle and side measurements
- •Determine the relationship between the sides, angles, or diagonals of the parallelogram that are given.
- Set up an equation and solve

Example 1A: Properties of Parallelograms

In
$$\square$$
 CDEF, DE = 74 mm, DG = 31 mm, and m \angle FCD = 42°. Find CF.

$$\overline{CF} \cong \overline{DE}$$
 $\longrightarrow opp. sides \cong$

$$CF = DE$$
 $Def. of \cong segs.$

CF = 74 mm Substitute 74 for DE.

Example 1B: Properties of Parallelograms

In
$$\square CDEF$$
, $DE = 74$ mm, $DG = 31$ mm, and m $\angle FCD = 42^{\circ}$. Find m $\angle EFC$.

$$m\angle EFC + m\angle FCD = 180^{\circ} \square \rightarrow cons. \angle s supp.$$

$$m\angle EFC + 42 = 180$$

$$m\angle EFC = 138^{\circ}$$

Substitute 42 for m∠FCD.

Subtract 42 from both sides.

Example 1C: Properties of Parallelograms

In
$$\square CDEF$$
, $DE = 74$ mm, $DG = 31$ mm, and m $\angle FCD = 42^{\circ}$. Find DF .

$$DF = 2DG$$
 \longrightarrow diags. bisect each other.

$$DF = 2(31)$$
 Substitute 31 for DG.

$$DF = 62$$
 Simplify.

Check It Out! Example 1a

In $\angle KLMN$, LM = 28 in., LN = 26 in., and m $\angle LKN = 74$ °. Find KN.

LM = KN Def. of \cong segs.

LM = 28 in. Substitute 28 for DE.

Check It Out! Example 1b

In $\triangle KLMN$, LM = 28 in., LN = 26 in., and m $\triangle LKN = 74$ °. Find m $\triangle NML$.

 $\angle NML \cong \angle LKN$

 $m\angle NML = m\angle LKN$

 $m\angle NML = 74^{\circ}$

 $\square \rightarrow opp. \angle s \cong$

Def. of $\cong \angle s$.

Substitute 74° for m∠LKN.

Def. of angles.

Check It Out! Example 1c

In $\triangle KLMN$, LM = 28 in., LN = 26 in., and $m \angle LKN = 74$ °. Find LO.

$$LN = 2LO$$
 \longrightarrow diags. bisect each other.

$$LO = 13 \text{ in.}$$
 Simplify.

Example 2A: Using Properties of Parallelograms to Find Measures

WXYZ is a parallelogram.

Find $m \angle Z$. 65

Find YZ.

$$\overline{YZ} \cong \overline{XW}$$

$$YZ = XW$$

$$8a - 4 = 6a + 10$$

$$2a = 14$$

$$a = 7$$

Def. of
$$\cong$$
 segs.

8a - 4 = 6a + 10 Substitute the given values. Subtract 6a from both sides and add 4 to both sides.

Divide both sides by 2.

$$YZ = 8a - 4 = 8(7) - 4 = 52$$

Example 2B: Using Properties of Parallelograms to Find Measures

WXYZ is a parallelogram. Find $m\angle Z$.

$$m\angle Z + m\angle W = 180^{\circ} \longrightarrow cons. \angle s \ supp.$$
 $(9b + 2) + (18b - 11) = 180$ Substitute the given value.
 $27b - 9 = 180$ Combine like terms.
 $27b = 189$ Add 9 to both sides.
 $b = 7$ Divide by 27.

$$m\angle Z = (9b + 2)^{\circ} = [9(7) + 2]^{\circ} = 65^{\circ}$$

Check It Out! Example 2b

EFGH is a parallelogram.

Find FH.

$$FJ \cong \overline{JH}$$
 \longrightarrow diags. bisect each other.
 $FJ = JH$ Def. of \cong segs.
 $4z - 9 = 2z$ Substitute.
 $2z = 9$ Simplify.
 $z = 4.5$ Divide both sides by 2.

FH = (4z - 9) + (2z) = 4(4.5) - 9 + 2(4.5) = 18

White Boards

ABCD, DC = 2 ft, BE = 4.5ft, and $m \angle BAD = 75^{\circ}$.

Find each measure:

AB	2 ft	m∠ <i>ABC</i>	105°

RS 6

m∠*S* 100°

m∠R 80°

Which quadrilateral MUST be a parallelogram?

PQRS is a parallelogram. Find x.

In quadrilateral WXYZ, $\angle W \cong \angle Y$. Which information would help to prove that WXYZ is a parallelogram?

$$FWY = XZ$$

$$HWX = XY$$

$$G \angle X \cong \angle W$$

$$\bigcirc$$
 $\angle X \cong \angle Z$

Three vertices of parallelogram GHIJ are G(0, 0), H(2, 3), and J(6, 1). What are the coordinates of I?

(8, 4)

Find the area

Find the area

$$48\sqrt{3} \approx 83.1384$$

Summary

What are the key characteristics of a parallelogram?

How do the characteristics help us solve problems?

How could we use the properties of parallelograms in our own lives?