Interaction-Free Measurement: The Foundation of Quantum Computing

KALEEN SHRESTHA

I think I can safely say that nobody understands quantum mechanics.

Dr. RICHARD P. FEYNMAN

Quantum mechanics is weird, and so bear with me, sometimes this can confuse me as well!

Some Motivation

- Quantum computers
 - ► Exponential -> Polynomial Time
 - ▶ Intractable -> Tractable
 - ► Huge help in science, many possibilities for new discoveries

Quantum
Mechanics: The
Particle-Wave
Duality Nature
Phenomenon

PROOF VIA THE DOUBLE-SLIT EXPERIMENT

Classical Calculation of Probability

However,

THE GRAPH LOOKS A BIT DIFFERENT...

Interference pattern

Wave Behavior

Interaction – Free Measurements

ELITZUR-VAIDMAN THOUGHT EXPERIMENT

Mach-Zehnder interferometer

- ► S = source of light (photons)
- ▶ D1,D2 = detectors
- ▶ B1,B2 = beam splitters
- \blacktriangleright M1,M2 = mirrors
- ► Tuned so only D2 receives light

Mach-Zehnder interferometer

- ▶ Photosensitive grains
 - Some are live, some are "duds"
 - ▶ Live = 100% absorptive
 - ▶ Dud = 100% transparent
- If live grains are struck by a photon, they are damaged
- Problem: how to tell which are live without damaging them?

Relation to computing

- Qubit Quantum Logical Bit
 - 1 and 0 at the same time (superposition)
- Direct measurement will change the state of the qubit
- Scheme needed to utilize qubits

References

- Automatic Quantum Computer Programming: A Genetic Programming Approach by Lee Spector
- ► The Foundations of Quantum Mechanics: From Photons to Quantum Computers by Reinhold Blümel
- Quantum Computer Science: An Introduction by N. David Mermin
- Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert R. Hibbs

Questions?

Some terms and specifics

Probability Amplitude

- Wave Amplitudes are represented by complex numbers
- $P(x) = | \phi | \wedge 2$
- $\phi = \phi 1 + \phi 2$
- $P1(x) = | \phi 1 | \wedge 2$
- $P2(x) = | \phi 2 | \wedge 2$