Lab 6 – aproksymacja trygonometryczna

Barbara Doncer

Język: Python

Procesor: Intel® Core™ i7 - 10510U

Metoda wyznaczania współczynników: sumacyjna

Funkcja została w trakcie obliczeń przeskalowana przy założeniu, że cały przedział jest jednym okresem funkcji.

1. Polecenie

Dla funkcji f(x) zadanej w zadaniu dotyczącym interpolacji wyznaczyć jej wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując aproksymację trygonometryczną.

Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji.

Oszacować błędy przybliżenia.

Graficznie zilustrować interesujące przypadki.

2. Zadana funkcja i jej wykres

$$f(x) = 20 + \frac{x^2}{2} - 20 \cdot \cos(2x)$$

$$x \in [-3\pi, 3\pi]$$

Wykres 2.1 Funkcja f(x) na zadanym przedziale

3. Wyniki aproksymacji

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku aproksymacji (zielony). Zastosowano oznaczenie:

 $n-liczba\ w$ ęzłów $m-stopień\ funkcji\ aproksymującej\ (napisany\ nad\ każdym\ wykresem)$

Tabela 3.1 Wykresy aproksymacji dla różnej liczby węzłów

4. Błędy a proksymacji

Sprawdzenie dokładności wielomianu odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone zauważalnie lepsze wyniki dla każdego n. Zastosowano oznaczenia:

$$f(x) - funkcja podana w zadaniu$$

W(x) – wyznaczony wielomian

N – ilość punktów, w których zostały obliczone błędy

$$N = 1000$$

a. Błąd kwadratowy

$$\sum_{i=1}^{N} (f(x_i) - W(x_i))^2$$

Tabela 4.1 Błąd kwadratowy dla poszczególnych przypadków

n	m	błąd kwadratowy
5	1	2,33E+05

	2	6,04E+05
7	2	6,52E+05
	3	6,52E+05
8	2	3,81E+05
	3	3,80E+05
10	3	3,52E+05
	4	3,52E+05
12	4	1,98E+05
	5	3,54E+05
14	4	1,96E+05
	6	8,05E+03
16	4	1,95E+05
	6	6,10E+03
20	7	3,90E+03
	9	3,88E+03
25	8	2,51E+03
	12	2,49E+03
30	8	1,78E+03
	14	1,73E+03
40	10	1,01E+03
	19	9,74E+02
50	15	6,33E+02
	24	6,24E+02
	•	

b. Maksymalna różnica

$$\max_{i=1,\dots,N} |f(x_i) - w(x_i)|$$

Tabela 4.2 Maksymalna różnica dla poszczególnych przypadków

n	m	maksymalna różnica
5	1	2,73E+01
	2	4,01E+01
7	2	4,34E+01
	3	4,34E+01
8	2	3,80E+01
	3	3,78E+01
10	3	3,49E+01
	4	3,70E+01
12	4	2,26E+01
	5	3,79E+01
14	4	2,21E+01
	6	5,72E+00
16	4	2,17E+01
	6	4,87E+00
20	7	4,13E+00
	9	4,39E+00
25	8	3,40E+00

	12	3,37E+00
30	8	2,91E+00
	14	2,66E+00
40	10	2,36E+00
	19	1,94E+00
50	15	1,62E+00
	24	1,57E+00

5. Porównanie efektu zwiększania liczby węzłów i stopnia funkcji bazowych Znakiem X zostały oznaczone komórki niespełniające równości $n \geq 2m+1$.

Tabela 5.1 Wyniki błędu kwadratowego dla poszczególnych przypadków

m\ n	5	10	15	20	30	40	50	75	100	150	200
2	6,04E+	2,04E+	1,98E+	1,96E+	1,95E+	1,94E+	1,94E+	1,93E+	1,93E+	1,93E+	1,93E+
	05	05	05	05	05	05	05	05	05	05	05
3	Х	3,52E+	1,96E+	1,94E+	1,93E+	1,92E+	1,92E+	1,91E+	1,91E+	1,91E+	1,91E+
	^	05	05	05	05	05	05	05	05	05	05
4	x	3,52E+	1,96E+	1,94E+	1,92E+	1,91E+	1,91E+	1,91E+	1,91E+	1,91E+	1,91E+
	^	05	05	05	05	05	05	05	05	05	05
7	Х	Х	6,99E+	3,90E+	1,82E+	1,09E+	7,53E+	4,13E+	2,93E+	2,07E+	1,76E+
	^	^	03	03	03	03	02	02	02	02	02
14	l x	Х	Х	Х	1,73E+	9,79E+	6,36E+	2,96E+	1,77E+	9,03E+	5,98E+
	^	^	^	^	03	02	02	02	02	01	01
19	Х	Х	Х	Х	Х	9,74E+	6,26E+	2,85E+	1,65E+	7,86E+	4,82E+
	^	^	^	^	^	02	02	02	02	01	01
24	Х	Х	Х	Х	Х	х	6,24E+	2,81E+	1,61E+	7,43E+	4,40E+
	^	^	^	^	^	^	02	02	02	01	01
30	Х	Х	х	х	Х	х	х	2,79E+	1,58E+	7,22E+	4,19E+
	^	^	^	^	^	^	^	02	02	01	01
37	х	Х	х	Х	Х	х	х	2,78E+	1,57E+	7,10E+	4,07E+
	^	^	^	^	^	^	^	02	02	01	01
49	Х	Х	х х	Х	Х	Х	Х	Х	1,57E+	7,02E+	3,99E+
	^	^	^	^	^	^	^	^	02	01	01
74	х	Х	Х	Х	Х	Х	Х	Х	Х	6,99E+	3,94E+
	^	^	^	^	^	^	^	^	^	01	01
99	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	3,93E+
	^	^	^	^	^	^	^	^	^	^	01

Tabela 5.2 Wyniki maksymalnej różnicy dla poszczególnych przypadków

m\n	5	10	15	20	30	40	50	75	100	150	200
2	4,01E+	2,42E+	2,30E+	2,24E+	2,19E+	2,16E+	2,14E+	2,13E+	2,14E+	2,16E+	2,16E+
	01	01	01	01	01	01	01	01	01	01	01
3	V	3,49E+	2,30E+	2,24E+	2,18E+	2,16E+	2,14E+	2,12E+	2,11E+	2,10E+	2,10E+
	^	01	01	01	01	01	01	01	01	01	01
4	Х	3,70E+	2,19E+	2,14E+	2,11E+	2,09E+	2,08E+	2,06E+	2,05E+	2,05E+	2,04E+
	^	01	01	01	01	01	01	01	01	01	01
7	Х	Х	5,78E+	4,13E+	3,26E+	3,16E+	3,05E+	2,88E+	2,77E+	2,66E+	2,60E+
	^	^	00	00	00	00	00	00	00	00	00
14	Х	Х	Х	Х	2,66E+	1,97E+	1,73E+	1,66E+	1,58E+	1,49E+	1,44E+
	^	^	^	^	00	00	00	00	00	00	00

19	Х	V	Х	Х	V	1,94E+	1,54E+	1,28E+	1,24E+	1,16E+	1,11E+
	Χ	Х	Χ	Χ	Х	00	00	00	00	00	00
24	Х	Х	Х	Х	Х	Х	1,57E+	1,04E+	1,02E+	9,60E-	9,16E-
	^	^	^	^	^	^	00	00	00	01	01
30	Х	Х	Х	Х	(x	Х	Х	9,88E-	8,33E-	7,99E-	7,63E-
	^	^	^	^	^	^	^	01	01	01	01
37	Х	Х	Х	Х	Х	Х	Х	1,01E+	7,55E-	6,69E-	6,42E-
	^	^	^	^	^	^	^	00	01	01	01
49	Х	Х	Х	Х	Х	Х	V	х	7,49E-	5,16E-	5,07E-
	^	^	^	^	^	^	^		01	01	01
74	Х	Х	Х	Х	Х	Х	Х	Х	Х	4,91E-	3,67E-
	۸	Α	۸	Α	^	X	×	^	^	01	01
99	Х	Х	Х	Х	Х	Х	Х	Х	Х	V	3,65E-
	۸	^	^	^	^	^	^	X	^	Х	01

6. Porównanie wyników aproksymacji wielomianami algebraicznymi i trygonometrycznej

Tabela 6.1 Porównanie wyników błędów

n	m	błąd kwadratowy – wielomiany algebraiczne	błąd kwadratowy - trygonometryczna	maksymalna różnica – wielomiany algebraiczne	maksymalna różnica - trygonometryczna
5	2	2,41E+05	6,04E+05	2,85E+01	4,01E+01
7	3	5,99E+05	6,52E+05	4,00E+01	4,34E+01
10	4	2,14E+05	3,52E+05	2,76E+01	3,70E+01
20	9	1,73E+05	3,88E+03	2,25E+01	4,39E+00
50	24	2,51E+03	6,24E+02	1,57E+01	1,57E+00
100	49	4,48E+03	1,57E+02	2,67E+01	7,49E-01
200	99	1,77E+03	3,93E+01	1,62E+01	3,65E-01

7. Wnioski końcowe

- błędy aproksymacji zmniejszają się wraz ze wzrostem ilości węzłów
- we wszystkich badanych przypadkach wraz ze wzrostem stopnia funkcji aproksymującej rośnie dokładność przybliżenia funkcji (zmniejsza się błąd kwadratowy) – oczywiście do pewnej ilości węzłów, przy której błąd zaczyna utrzymywać się na pewnym poziomie
- na końcówkach przedziałów często występują duże wychylenia, dlatego trudno zauważyć
 jakąś tendencję, jeśli chodzi o zmiany maksymalnej różnicy
- aproksymacja trygonometryczna daje lepsze efekty niż aproksymacja wielomianami algebraicznymi (przy dużej liczbie węzłów)