Уравнения, нерешени относно производната

Текстовете са от: Т. Генчев, Обикновени диференциални уравнения, Университетско издателство "Св. Кл.имент Охридски", София, 1991 г.

Да.разгледаме уравнението

(1)
$$F(x, y, y') = 0,$$

където F е функция на три независими променливи x, y, z, дефинирана и непрекъсната в някаква област от \mathbf{R}^3 и, разбира се, подчинена на някои допълнителни предположения, които ще уточним в хода на изложението. Естествено е да се опитаме да сведем уравнението (1) към едно или няколко уравнения от вида

$$(2) y'=f(x, y),$$

които подробно изследвахме в първа глава. Оказа се, че при подходящи предположения това може да се постигне с помоща та на теоремата за неявните функции. Точките, около които такова свеждане не е възможно, са най-интересните и обикно вено-именно тяхното изследване води до истинско разбиране на природата на уравненията.

Да предположим, че функцията $(x, y, z) \longrightarrow F(x, y, z)$ е дефинирана и непрекъсната в цилиндъра $D = Q \times (c, d)$, където Q е област в \mathbb{R}^2 , и нейните частни производни $\frac{\partial F}{\partial y}$ и $\frac{\partial F}{\partial z}$ съществуват и са непрекъснати в D.

Дефиниция 1. Точката $(x_0, y_0) \in Q$ ще наричаме обикновена за уравнението

(1)
$$F(x, y, y') = 0,$$

когато са изпълнени следните изисквания:

- а) уравнението $F(x_0, y_0, z) = 0$ притежава краен брой различни решения $z = b_k, k = 1, 2, ..., m$;
- б) във всяка от точките $(x_0, y_0, b_k), k = 1, 2, ..., m$, имаме $\frac{\partial F}{\partial x}(x_0, y_0, b_k) \neq 0$.

Дефиниция 2. Ще казваме, че точката $(x_0, y_0) \in Q$ е особена за (1), когато уравнението $F(x_0, y_0, z) = 0$ има поне еднорешение z = b такова, че $\frac{\partial F}{\partial z}(x_0, y_0, b) = 0$?

Забележка 1. Очевидно е, че в общия случай в Q съществуват точки, които не са нито обикновени, нито особени за (1). Такива са например точките $(x_0; y_0)$, за които $F(x_0, y_0, z) = 0$ няма решение относно z.

Сега вече можем да докажем основния резултат в този по раграф, който гласи, че ако (x_0, y_0) е обикновена точка за (1) задачата на Коши

(9)
$$F(x, y, y') = 0, \quad y(x_0) = y_0$$

се разпада на краен брой задачи на Коши от вида

(10)
$$y' = f(x, y), \quad y(x_0) = y_0.$$

Теорема за редукция. Нека F и $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial z}$ са непрекъснати в цилиндъра $D=Q\times(c,d)$ и точката $(x_0,y_0)\in Q$ е обикновена за уравнението F(x,y,y')=0. В такъв случай в достатъчно малка околност $U\subset Q$ на (x_0,y_0) съществуват краен брой непрекъснати функции f_1,f_2,\ldots,f_m с непрекъснати производни $\frac{\partial f_k}{\partial y}$, $k=1,2,\ldots,m$, такива, че всяко решение на задачата на Коши

(9)
$$F(x, y, y') = 0, \quad y(x_0) = y_0$$

е решение на точно една от задачите

(10)
$$y' = f_k(x, y), \quad y(x_0) = y_0, \quad k = 1, 2, ..., m,$$

за x, достатъчно близко до x_0 . Обратно, всяко от решенията $y_1(x), y_2(x), \ldots, y_m(x)$ на задачите (10) удовлетворява и (9) в достатъчно малка околност на x_0 .

 \mathcal{I} оказателство. Понеже точката (x_0, y_0) е обикновена, уравнението $F(x_0, y_0, z) = 0$ притежава краен брой решения $z = b_k, \ k = 1, 2, \ldots, m$, които удовлетворяват условията

$$\frac{\partial F}{\partial z}(x_0, y_0, b_k) \neq 0, \qquad k = 1, 2, \ldots, m.$$

Прилагайки теоремата за неявните функции около точката (x_0, y_0, b_k) при фиксирано k, намираме функция $f_k(x, y)$, $f_k(x_0, y_0) = b_k$, дефинирана в достатъчно малка околност $U_k \subset Q$ на (x_0, y_0) , за която $F(x, y, f_k(x, y)) \equiv 0$ в U_k и освен това $f_k \in C(U_k)$, $\frac{\partial f_k}{\partial y} \in C(U_k)$. Като дадем на k стойности от 1 до m и положим $U \stackrel{\text{def}}{=} \bigcap_{k=1}^m U_k$, получаваме функциите f_1, f_2, \ldots, f_m , които са ни необходими, за да можем да образуваме диференциалните уравнения

$$y' = f_k(x, y), \qquad k = 1, 2, ..., m, \qquad (x, y) \in U.$$

Нека сега φ е решение на (9), дефинирано в някаква доста тъчно малка околност Δ на точката x_0 . Трябва да докажем, че удовлетворява точно една от задачите (10).

удовлетворява точно сам.

По условие $F(x, \varphi(x), \varphi'(x)) = 0$ за $x \in \Delta$ и в частност $F(x_0, y_0, \varphi'(x_0)) = 0$, защото $\varphi(x_0) = y_0$. Този резултат по казва, че $\varphi'(x_0)$ съвпада с някое от числата b_1, b_2, \ldots, b_m . Нека $\varphi'(x_0) = b_s$. Естествено е да се опитаме да докажем, че φ удовлетворява именно s-тата задача на Коши

$$y'=f_s(x, y), \qquad y(x_0)=y_0.$$

За да стигнем до това заключение, да въведем пилиндричната околност $W=K\times\{|z-b_s|<\varepsilon\},\ K=\{(x,y)\in R^2,\ (x-z_0)^2+(y-y_0)^2<\delta^2\},$ на точката (x_0,y_0,b_s) , която е толкова малка, че от $(x,y,z)\in W$ да следва $\frac{\partial F}{\partial z}(x,y,z)\neq 0$ и кръгът \overline{K} : $(x-x_0)^2+(y-y_0)^2\leq \delta^2$ да се съдържа в U. Такова W очевидно съществува, защото $\frac{\partial F}{\partial z}(x_0,y_0,b_s)\neq 0$ и $\frac{\partial F}{\partial z}$ е непрекъсната. След като избрахме W, да вземем толкова малко положително $\eta,\eta<\delta$, че интервалът $\Delta_1:|x-x_0|<\eta$ да се съдържа в Δ и от $x\in\Delta_1$ да следва, че $(x,\varphi(x),\varphi'(x))\in W$, $(x,\varphi(x),f_s(x,\varphi(x))\in W$. (Това може да се постигне, защото $\varphi'(x_0)=b_s,\varphi(x_0)=y_0$, а функциите f_s,φ и φ' са непрекъснати.) След тази подготовка да разгледаме тъждествата

(11)
$$F(x, \varphi(x), \varphi'(x)) = 0, \qquad x \in \Delta_1 \subset \Delta,$$

(12)
$$F(x, y, f_s(x, y)) = 0, (x, y) \in K.$$

Като положим $y=\varphi(x), x\in\Delta_1$, в (12), получаваме

(13)
$$F(x, \varphi(x), f_s(x, \varphi(x))) \equiv 0, \qquad x \in \Delta_1.$$

Накрая изваждаме (13) от (11) и с помощта на теоремата 38 крайните нараствания за $x \in \Delta_1$ намираме

(14)
$$0 = F(x, \varphi(x), \varphi'(x)) - F(x, \varphi(x), f_s(x, \varphi(x)))$$
$$= \frac{\partial F}{\partial z}(x, \varphi(x), \xi(x))[\varphi'(x) - f_s(x, \varphi(x))],$$

където $\xi(x)$ е число между $\varphi'(x)$ и $f_s(x, \varphi(x))$.

Фиг. 10

Полученото тъждество решава въпроса. Наистина, понеже за $x \in \Delta_1$ точките $P_1 = (x, \varphi(x), \varphi'(x))$ и $P_2 = (x, \varphi(x), f_s(x, \varphi(x)))$ се съдържат в цилиндъра W, то и точката $R = (x, \varphi(x), \xi(x)) \in W$ (фиг. 10). Следователно $\frac{\partial F}{\partial z}(x, \varphi(x), \xi(x)) \neq 0$ и (14) ни дава

$$\varphi'(x) = f_s(x, \varphi(x))$$

за $x \in \Delta_1$, с което най-трудната част от доказателството е завършена. Остава да докажем, че всяко от решенията $y_1(x), \ldots, y_m(x)$ на задачите (10) удовлетворява и (9) в достатъчно малка околност на x_0 . За тази цел да разгле-

даме к-тата задача на Коши

(15)
$$y' = f_k(x, y), \quad y(x_0) = y_0$$

при фиксирано k. Според теоремата за съществуване и единственост $\left(f_k \ u \ \frac{\partial f_k}{\partial y} \right)$ са непрекъснати в U (15) притежава единствено решение $y=y_k(x)$, дефинирано поне в достатъчно малка околност $\Delta_2: |x-x_0| < h$ на точката x_0 . Намалявайки h, ако това е необходимо, можем да си осигурим и включването $(x,\ y_k(x)) \in U$ за $x \in \Delta_2$. Като поставим $y=y_k(x),\ x \in \Delta_2$, в тъждеството $F(x,\ y,\ f_k(x,\ y))=0,\ (x,\ y)\in U$, получаваме

$$F(x, y_k(x), f_k(x, y_k(x))) = 0,$$

т.е. $F(x, y_k(x), y_k'(x)) = 0$, за $x \in \Delta_2$, защото y_k е решение на (15).

Следствие 1. Ако точката (x_0, y_0) е обикновена и уравнението $F(x_0, y_0, z) = 0$ има m решения $z = b_k, k = 1, 2, \ldots, m$, то задачата (9) има точно m различни решения, които в (x_0, y_0) имат различни допирателни.

Наистина решенията $y_1(x), \ldots, y_m(x)$ на задачите (10) са различни. защото

$$y_k'(x_0) = f_k(x_0, y_0) = b_k$$
 и $b_{\nu} \neq b_{\mu}$ за $\nu \neq .\mu$.

Други решения не съществуват, понеже всяко решение на (9) е решение и на някоя от задачите (10).

Уравнение на Клеро

Уравнението

$$(1) y = xy' + f(y')$$

носи името на френския математик Клеро

Ше изследваме (1) при предположението, че f е дефинирана и има непрекъсната втора производна в някакъв интервал [a, b] и нещо повече, за всяко $t \in [a, b]$ е в сила неравенството f''(t) < 0. (Случаят f'' > 0 се изследва съвсем аналогично.)

Дефиниция. Едно решение на уравнението F(x, y, y') = 0 се нарича *особено решение*, ако неговата графика се състои само от особени точки.

Да положим F(x, y, z) = y - xz - f(z), където на първо време $(x, y, z) \in \mathbb{R}^2 \times (a, b)^*$, и да потърсим особените точки на (1). Според дефиницията една точка (x_0, y_0) е особена, ако съществува поне едно z, за което $F(x_0, y_0, z) = 0$, $F_z'(x_0, y_0, z) = 0$. В нашия случай тези уравнения имат вида

(2)
$$y_0 = x_0 z + f(z), x_0 = -f'(z), \qquad a < z < b.$$

Ясно е, че когато z описва (a, b), точката (x_0, y_0) с координати, дефинирани чрез (2), ще опише гладката крива

(3)
$$L: \begin{array}{l} y = -f'(z)z + f(z), \\ x = -f'(z), \end{array} \qquad a < z < b,$$

която се състои само от особени точки за (1).

Не е трудно да се провери, че L, която фактически е дефинирана и в затворения интервал [a, b], удовлетворява (1). Следователно за a < z < b тя ще бъде особено решение.

диференцирайки второто равенство на системата (3), намираме $x'_z = -f''(z) > 0$, $a \le z \le b$, и заключаваме, че функцията -f' е обратима. Следователно съотношението x = -f'(z) е равносилно със z = z(x), където $z \longrightarrow z(x)$ е дефинирана и диференцируема** в [-f'(a), -f'(b)]. Като заместим z = z(x) в (3), получаваме декартовото представяне

(4)
$$L: y = -f'(z(x))z(x) + f(z(x)), x \in [-f'(a), -f'(b)],$$

на същата крива. За да докажем, че L удовлетворява (1), да пресметнем y'. Диференцирайки (4), намираме

(5)
$$y'(x) = -f''(z(x))z'z - f'(z(x))z' + f'(z(x))z'$$
$$= -f''(z(x))z'(x)z(x) = z(x),$$

защото от тъждеството x = -f'(z(x)) веднага следва -f''(z(x))z'(x) = 1.

И така оказа се, че y'(x) = z(x). Сега вече непосредственото заместване в уравнението показва, че функцията (4) наистина го удовлетворява. Нещо повече, в сила е равенството

$$y''(x) = z'(x) = -\frac{1}{f''(z(x))} > 0, \quad x \in [-f'(a), -f'(b)],$$

т.е. кривата L е изпъкнала.

Лема 1. Каквато и да бъде точката $(x_0, y_0) \in \mathbb{R}^2$, уравнението

(6)
$$F(x_0, y_0, z) = 0$$

има най-много две решения спрямо г.

Доказателство. Да допуснем, че (6) има поне три решения — $z_1 < z_2 < z_3$. От равенството

(7)
$$y_0 = x_0 z_i + f(z_i), \qquad i = 1, 2, 3,$$

намираме непосредствено

$$-x_0=\frac{f(z_2)-f(z_1)}{z_2-z_1}, \qquad -x_0=\frac{f(z_3)-f(z_2)}{z_3-z_2},$$

откъдето с помощта на теоремата за крайните нараствания получаваме

(8)
$$-x_0 = f'(\xi_1), z_1 < \xi_1 < z_2, -x_0 = f'(\xi_2), z_2 < \xi_2 < z_3.$$

На свой ред от (8) следва равенството

$$0 = f'(\xi_2) - f'(\xi_1) = f''(\eta)(\xi_2 - \xi_1), \qquad \xi_1 < \eta < \xi_2,$$

което е невъзможно, защото по предположение f'' < 0 в целия интервал [a, b].

Полученото противоречие доказва лемата.

Следствие. Всяка точка $(x_0, y_0) \overline{\in} L$, за която уравнението $F(x_0, y_0, z) = 0$ има поне едно решение спрямо z, е обикновена.

Пример. $y = xy' - (y')^2$

