Standardised and reproducible analysis of mass spectrometry-based single-cell proteomics data Slides available at:

Laurent Gatto, Christophe Vanderaa

CBIO, de Duve Institute, UCLouvain

18 August 2020

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

MS-SCP: Mass spectrometry-based single-cell proteomics MS-SCP consist of shotgun proteomics at single-cell level

- SCoPE2 quantifies thousands of proteins x thousands single-cells
- ► Full protocole available
- ► Full analysis script available

BUT

Lack of standardized analysis software

Provide a suite of software package dedicated to MS-SCP that fulfill:

- User-friendly
- Computationaly efficient
- Modularity: integrate other software packages
- Promote reproducibility
- Platform-independent
- Free of charge

R/Bioconductor is an ideal environment

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

scpdata: distributes published MS-SCP datasets (e.g. SCoPE2 dataset) scp: provides functionality for manipulating the MS-SCP data structure

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

SingleCellExperiment: provides dedicated framework for single-cell data analysis.

Available on Bioconductor.

SingleCellExperiment

QFeatures: data framework dedicated to manipulate and process MS-based quantitative data. Submitted to Bioconductor.

Load data scp package

Load the SCoPE2 dataset called specht2019v2

```
1 library(scpdata)
2 data("specht2019v2")
```

Dataset overview

1 show(specht2019v2)

```
An instance of class QFeatures containing 179 assays:

[1] 190222S_LCA9_X_FP94AA: SingleCellExperiment with 2823 rows and 11 col...

[2] 190222S_LCA9_X_FP94AB: SingleCellExperiment with 4297 rows and 11 col...

[3] 190222S_LCA9_X_FP94AC: SingleCellExperiment with 4956 rows and 11 col...

[177] 191110S_LCB7_X_APNOV16plex2_Set_9: SingleCellExperiment with 4626 r...

[178] peptides: SingleCellExperiment with 9208 rows and 1018 columns

[179] proteins: SingleCellExperiment with 2772 rows and 1018 columns
```

(test slide: to discuss)

The sample metadata can be retrieved in the colData

1 colData(specht2019v2)

DataFrame with 2517 rows and 6 columns	Set	Channel	SampleType	lcbatch	
sortday digest			ryr-		
				<character></character>	<character></character>
190222S_LCA9_X_FP94AA_RI1	190222S_LC	RI1	Carrier	LCA9	
s8 N 190222S_LCA9_X_FP94AA_RI2	1902228_LC	RI2	Reference	LCA9	
s8 N	1902225_L0	RIZ	Welelence	LUAS	
190222S_LCA9_X_FP94AA_RI3	190222S_LC	RI3	Unused	LCA9	
s8 N					
190222S_LCA9_X_FP94AA_RI4	190222S_LC	RI4	Macrophage	LCA9	
s8 N 190222S_LCA9_X_FP94AA_RI5	1902228_LC	RIS	Macrophage	LCA9	
88 N	1302220_60	1610	nacrophage	LOND	
191110S_LCB7_X_APNOV16plex2_Set_9_RI12	191110S_LC	RI12	Macrophage	LCB7	
191110S_LCB7_X_APNOV16plex2_Set_9_RI13	191110S TC	BT13	Macrophage	LCB7	
s9 U	1311100_00	10110	nacrophage	LODI	
191110S_LCB7_X_APNOV16plex2_Set_9_RI14	191110S_LC	RI14	Macrophage	LCB7	
s9 U					
191110S_LCB7_X_APNOV16plex2_Set_9_RI15	191110S_LC	RI15	Monocyte	LCB7	
191110S_LCB7_X_APNOV16plex2_Set_9_RI16	1011100 10	DT16	Macrophage	LCB7	
s9 U	1911105_LC	KIID	nacropnage	LUBI	

The sample metadata can be retrieved in the colData

```
colData(specht2019v2)
```

- Batch name
- Channel name
- Sample info: sample type, treatment, ...
- ▶ Batch info: chromatographic batch, digestion batch, ...

The sample metadata can be retrieved in the colData

```
1 colData(specht2019v2)
```

- Batch name
- Channel name
- Sample info: sample type, treatment, ...
- Batch info: chromatographic batch, digestion batch, ...

The feature metadata can be retrieved in the rowData, but assay specific

```
1 rowData(specht2019v2[[1]])
```

- ▶ PSM level: reverse hit, PEP, m/z value, charge, ...
- Peptide level: sequence, length, modification, mass, ...
- ▶ Protein level: name, sequence, gene name, ...

Analysis workflow

1. Load data

PSM data

```
[1] 190222S_LCA9_X_FP94AA: SingleCellExperiment with 2823 rows and 11 columns
[2] 190222S_LCA9_X_FP94AB: SingleCellExperiment with 4297 rows and 11 columns
[3] 190222S_LCA9_X_FP94AC: SingleCellExperiment with 4956 rows and 11 columns
[177] 191110S_LCB7_X_APNOV16plex2_SetE_9: SingleCellExperiment with 4626 rows and 16 columns
```

Analysis workflow

1. Load data

PSM data

```
[1] 190222S_LCA9_X_FP94AA: SingleCellExperiment with 2823 rows and 11 columns
[2] 190222S_LCA9_X_FP94AB: SingleCellExperiment with 4977 rows and 11 columns
[3] 190222S_LCA9_X_FP94AC: SingleCellExperiment with 4956 rows and 11 columns
...
[177] 191110S_LCB7_X_APNOV16plex2_Set_9: SingleCellExperiment with 4626 rows and 16 columns
```

- 2. PSM filtering
- 3. Expression channel by reference channel division
- 4. PSM to peptides aggregating
- 5. Single cells filtering based on median CV
- 6. Normalization
- 7. Removal of highly missing peptides
- 8. Log-transformation

Peptide data

[178] peptides: SingleCellExperiment with 9208 rows and 1018 columns

Load data

PSM data

```
[1] 190222S_LCA9_X_FP94AA: SingleCellExperiment with 2823 rows and 11 columns

[2] 190222S_LCA9_X_FP94AB: SingleCellExperiment with 4297 rows and 11 columns

[3] 190222S_LCA9_X_FP94AC: SingleCellExperiment with 4956 rows and 11 columns

...
[177] 191110S_LCB7_X_APNOV16plex2_Set_9: SingleCellExperiment with 4626 rows and 16 columns
```

- PSM filtering
- 3. Expression channel by reference channel division
- 4. PSM to peptides aggregating
- 5. Single cells filtering based on median CV
- 6. Normalization
- 7. Removal of highly missing peptides
- 8. Log-transformation

Peptide data

[178] peptides: SingleCellExperiment with 9208 rows and 1018 columns

- 9. Peptides to proteins aggregation
- 10. Normalization
- 11. Imputation
- 12. Batch correction

Peptide data

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

Filter out features based on the feature metadata

Example: filter out reverse hits. The filter is applied to the Reverse field in the feature metadata

QC metrics (1)

Interesting metrics for MS-SCP quality control:

- ► Sample to carrier ratio: ratio of the carrier channel intensity signal over the sample channel intensity
- ▶ Peptide FDR¹: expected rate of wrongly assigned features to a given peptide
- ► Cell median CV²: reliability of the protein quantification summarized over each cell.

Example:

Source code in scp

¹false discovery rate

²coefficient of variation

QC metrics (2)

QC metrics are stored in the data set for plotting or subsetting

Feature aggregation includes 2 steps:

- Combine the quantiative data from multiple features to a single aggregated features
- ► Store the relationship between the parent features and the aggregated features

Example: aggregate peptides to proteins

 ${\color{red}0}$'s can be either **biological** or **technical** zero. They are better relaced by ${\color{red}NA}$'s.

Features containing too many missing data (e.g. >= 99 %) should be removed

Common data transformation can easily be applied:

- Normalization
- ► Log-transformation
- Imputation

Example: log₂-transformation:

Some custom function can be applied to the data set too. Example: batch correction using sva::ComBat. First, extract the data to correct

```
1 sce <- specht2019v2[["proteins"]]</pre>
```

Build the correction matrix and apply the ComBat algorithm

Add the corrected protein to the dataset and keep feature relationships

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

Peptides

Benchmark of the peptide data 66+05 46+05 28+05 10-17 10-17 10-10 10-05 10-05

Proteins

Replicate figures from SCoPE2 (1)

Replication results

Replicate figures from SCoPE2 (2)

Replication results

Missingness

Replication results

Outline

Introduction

Data framework

scp package

scp showcase

Replication results

- scp package suite provides a standardized environment for performing MS-SCP data analysis
- Flexibly reproduce existing analyses from different groups or protocoles (multiplex vs label free)

Advantages:

- ► Allow automation of the analysis
- Facilitate new computational developments
- Promotes reproducibility
- Increases field visibility
- Include other modalities: scRNA-Seq, ATAC-Seq, etc

Resources Conclusion

Packages

- ▶ scp: GitHub repository UClouvain-CBIO/scp
- scpdata: coming soon
- ► QFeatures: GitHub repository rformassspectrometry/QFeatures
- ► SingleCellExperiment : Bioconductor

SCoPE2 reproduction vignette

Available at...

Slides and source code

Available at...

Acknowledgements