

The Versatile Transceiver Towards Production Readiness

Csaba Soos on behalf of Manoel Barros Marin, Stéphane Détraz, Lauri Olanterä, Christophe Sigaud, Sarah Storey, Jan Troska, François Vasey, Paschalis Vichoudis

CERN PH-ESE-BE

Outline

- Introduction
- VTRx and VTTx prototypes
 - Test results
- Towards production
 - Strategy
 - Production testing
- Something new
- Summary

Versatile Link Project

- Optical layer linking front-end to back-end up to 150 m distant.
- Bi-directional @ 5 Gbps
- Two Point-to-point solutions
 - 850 nm Multimode
 - 1310 nm Single-mode
- Front-end pluggable module
- Rad-hard front-end

- Joint Project Proposal submitted to ATLAS
 & CMS upgrade steering groups in 2007
 and endorsed in 2008
- Project Kick-off: April 2008
 - Phase I: Proof of Concept (18mo)
 - Phase II: Feasibility Study (18mo)
 - (Consolidation)
 - Phase III: Pre-prodn. readiness (18mo)

Fully Functional Prototypes

Variant	Laser Driver	TOSA	ROSA	Picture
Single-mode VTRx	GBLD v4	Edge Emitter Laser	InGaAs GBTIA v1	CERN PH/ESE
Multi-mode VTRx	GBLD v4	850 nm VCSEL	GaAs GBTIA v1	454 454
Multi-mode VTTx	GBLD v4	850 nm VCSEL	-	

Single-mode VTRx

Parameter	rameter Normalization		V4	
OMA	OMA/300uW		1.34	
Eye Height	Eye Height/(0.6*OMA)	1.30	1.45	
ER	ER/3	1.13	1.03	
1/T _r	(1/T _r)/(1/70ps)	0.86	1.55	
1/T _f	(1/T _f)/(1/70ps)	0.77	1.34	
1/T _j	(1/T _j)/(1/0.25UI)	0.98	1.88	
1/D _j	(1/D _j)/(1/0.12UI)	0.86	2.28	
Note: Bit rate = 4.8 Gh/s III = 208 ns				

Multi-mode VTRx

Parameter	Normalization	V3	V4	
OMA	OMA/300uW	2.55	1.97	
Eye Height	Eye Height/(0.6*OMA)	1.35	1.47	
ER	ER/3	2.25	1.60	
1/T _r	(1/T _r)/(1/70ps)	1.63	1.11	
1/T _f	(1/T _f)/(1/70ps)	0.87	1.10	
1/T _j	(1/T _j)/(1/0.25UI)	1.18	2.36	
1/D _j	(1/D _j)/(1/0.12UI)	0.90	4.17	
Note: Bit rate = 4.8 Gb/s, UI = 208 ps				

Multi-mode VTTx

Parameter Normalization		Ch1	Ch2	
OMA	OMA/300uW	1.83	1.95	
Eye Height	Eye Height/(0.6*OMA)	1.48	1.44	
ER	ER/3	1.41	1.82	
1/T _r	(1/T _r)/(1/70ps)	1.10	1.12	
1/T _f	(1/T _f)/(1/70ps)	1.06	1.04	
1/T _j	(1/T _j)/(1/0.25UI)	2.32	2.13	
1/D _j	(1/D _j)/(1/0.12UI)	4.04	4.44	
Note: Bit rate = 4.8 Gb/s, UI = 208 ps				

Towards Production

- Next steps
 - Propose purchasing strategy for LHCb, CMS HCAL, CMS Pix phl, ATLAS SmWh and ATLAS LArg upgrade
 - Quantities: 7750 VTTx, 1150 MM VTRx, 200 SM VTRx, 3000 SM TOSA
 - Cost estimates (CHF): VTTx 149, MM VTRx 199, SM VTRx 249
 - Firm prices by mid 2013
- Procurement procedure with tentative schedule
- Quality assurance
 - Qualification (all components)
 - Lot acceptance/validation (all components)
 - Production testing (all manufactured modules)
- Test procedures for the above are being prepared

Production Test Procedure

- Verify that manufactured modules meet the Versatile Link Specifications, Part 2.1 (EDMS 1140665)
 - Static: Light-current curve (LI)
 - Dynamic: Transmit Optical Eye (TP2), Receive Electrical Eye (TP4), Receiver sensitivity (BER)
- Test cycle should be optimized
 - No changes in electrical/optical connections between cycles
 - Target bit error rate of 10⁻¹⁰ instead of 10⁻¹²
 - Measuring transmitter while receiver sensitivity is measured
- Test automation and report generation
 - Results to be stored in a database

Instrument-based Test System

FPGA-based Test System

Small Footprint VTRx

the Versatile Link project

SF-VTRx Prototype

Summary

- Versatile Link moves to pre-production readiness phase
- Fully functional VTRx and VTTx prototypes have been manufactured and tested
 - Specifications are met
- Test procedure is being established
 - Test setup is being discussed
- New VTRx form factor has been introduced: SF-VTRx
 - Further size reduction might be needed
 - That will be difficult to achieve using standard LC TOSA/ROSA parts
 - More aggressive packaging options will be investigated

Test system

Scope:

EYE

Scope:

EYE

DUT

DUT

- Bench-top instrument, or
- FPGA-based (e.g. GLIB)
- Precision clock source
- **High-speed oscilloscope**
 - Sampling scope with optical head
 - Real-time scope with reference receiver
- Variable Optical Attenuator (VOA)
- Optical Power Meter (PM)
- High-speed analog switch
- **Optical switch**

Clock source

ED: **BER**

Clock

source

PG

ED: **BER**

LC TOSA/ROSA Clip

Customized commercial solution

