머신러닝과 빅데이터분석(R)

11주차 나이브베이즈

박길식 교수

학습 목표

- **텡** 베이즈 이론을 설명할 수 있다.
- 베이즈 이론을 기반으로 베이지안 필터기를 만들 수 있다.

학습 목차

- 1 베이즈의 이해
- 2 베이즈 실습

CHAPTER

베이즈의이해

베이즈 추정(Bayesian Estimation)

추론 대상의 사전 확률과 추가적인 정보를 기반으로 해당 대상의 사후 확률을 추론하는 통계적 방법

101 예시

- ◎ 협력업체로부터 납품받은 기계의 성능을 평가 하는 경우
 - 납품받은 몇 개의 부품을 무작위로 뽑아 이 표본에서 얻어진 정보만으로 모수(협력업체로부터 납품받은 기계 전체)의 성능을 해야 함
 - 하지만 과거 납품 시 성능검사기록이나 비슷한 부품의 성능 자료,이 부품의 물리적 특성에 관한 지식 등을 통해 이 부품의 사전 정보를 얻을 수 있음
 - 이런 경우 단순히 표본을 통해 모수를 추정하기보다는 표본 정보와사전 정보를 함께 사용하여 모수를 추정하는 것이 보다 바람직함

Whether	Play	
Sunny	No	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Rainy	Yes	
Rainy	No	
Overcast	Yes	
Sunny	No	
Sunny	Yes	
Rainy	Yes	
Sunny	Yes	
Overcast	Yes	
Overcast	Yes	
Rainy	No	

Frequency Table

Whether	No	Yes
Overcast		4
Sunny	2	3
Rainy	3	2
Total	5	9

Likelihood Table 1

Whether	No	Yes		
Overcast		4	= 4/14	0.29
Sunny	2	3	=5/14	0.36
Rainy	3	2	=5/14	0.36
Total	5	9		
	=5/14	=9/14		
	0.36	0.64		

Likelihood Table 2

Whether	No	Yes	Posterior Probaility for No	Posterior Probaility for Yes
Overcast		4	0/5=0	4/9=0.44
Sunny	2	3	2/5=0.4	3/9=0.33
Rainy	3	2	3/5=0.6	2/9=0.22
Total	5	9		

🚔 날씨가 overcast일 때 경기를 할 확률

$$P(h|D) = \frac{P(D|h)P(h|D)}{P(D)}$$

P(Yes|Overcast) = P(Overcast|Yes) P(Yes) / P(Overcast)

🥞 날씨가 overcast일 때 경기를 할 확률

Likelihood Table 1

Whether	No	Yes		
Overcast		4	= 4/14	0.29
Sunny	2	3	=5/14	0.36
Rainy	3	2	=5/14	0.36
Total	5	9		
	=5/14	=9/14		
	0.36	0.64		

Likelihood Table 2

Whether	No	Yes	Posterior Probaility for No	Posterior Probaility for Yes
Overcast		4	0/5=0	4/9=0.44
Sunny	2	3	2/5=0.4	3/9=0.33
Rainy	3	2	3/5=0.6	2/9=0.22
Total	5	9		

1 사전 확률

- P(Overcast) = 4/14 = 0.29
- P(Yes) = 9/14 = 0.64

2 사후 확률

$$-$$
 P(Overcast|Yes) = 4/9 = 0.44

-「01 베이즈 추정

- 🥞 날씨가 overcast일 때 경기를 할 확률
 - 3 베이즈 정리 공식에 대입
 - P(Yes|Overcast) = P(Overcast|Yes) P(Yes) / P(Overcast) = 0.44 * 0.64 / 0.29 = 0.98

날씨가 Overcast일 때 축구를 할 확률 → 0.98

🥞 날씨가 overcast일 때 경기를 하지 않을 확률

$$P(h|D) = \frac{P(D|h)P(h|D)}{P(D)}$$

P(No|Overcast) = P(Overcast|No) P(No) / P(Overcast)

-「01」베이즈 추정

🥞 날씨가 overcast일 때 경기를 하지 않을 확률

Likelihood Table 1

Whether	No	Yes		
Overcast		4	= 4/14	0.29
Sunny	2	3	=5/14	0.36
Rainy	3	2	=5/14	0.36
Total	5	9		
	=5/14	=9/14		
	0.36	0.64		

Likelihood Table 2

Whether	No	Yes	Posterior Probaility for No	Posterior Probaility for Yes
Overcast		4	0/5=0	4/9=0.44
Sunny	2	3	2/5=0.4	3/9=0.33
Rainy	3	2	3/5=0.6	2/9=0.22
Total	5	9		

1 사전 확률

- P(Overcast) = 4/14 = 0.29
- P(No) = 5/14 = 0.36

2 사후 확률

$$-$$
 P(Overcast|No) = 0/5 = 0

-「01 베이즈 추정

- 🥌 날씨가 overcast일 때 경기를 하지 않을 확률
 - 3 베이즈 정리 공식에 대입
 - P(No|Overcast) = P(Overcast|No) P(No) / P(Overcast) = 0 * 0.36 / 0.29 = 0

날씨가 Overcast일 때 축구를 할 확률 P(Yes|Overcast) = 0.98, P(No|Overcast) = 0

- 날씨가 Overcast일 때 축구를 하는 확률은 0.98, 축구를 하지 않을 확률은 0
- 두 확률을 비교한 뒤 더 높은 확률의 Label로 분류

