Intellectual Property, Technology Transfer and Global Development

Challenges in Implementing the Triple Helix in the Developing World

March 11, 2016

UNH Law School, Concord NH

Dr. Ashley J. Stevens

President

Focus IP Group, LLC

Lecturer
School of Management
Boston University

Some International Teaching/Strategic Assignments

- Téthys, Egypt
- □ G-TEC, Japan
- Research Norway
- Department of Biotechnology, India
- UTEN, Portugal
- IC2, Colombia
- SARIMA, S. Africa
- AUTM-CORFO, Chile
- KFUPM, Saudi Arabia
- Umm Al-Qura University, Saudi Arabia
- Slovak Center for Scientific and Technical Information
- Thailand Center of Excellence in Life Sciences
- NUS (Suzhou) Research Institute, China

Issues I've Identified in Developing Countries

- Innovation is everywhere
- Universities lack scale in many countries
- Technology transfer's awful business model
- The Triple Helix model isn't understood
- Companies don't look domestically for innovation
- Licensing experience isn't a major part of commerce
- Risk capital isn't available
- Legal structures may not be suitable
- Local expertise grows from the ground up
- Keeping the local stars local

Innovation is Everywhere

- The current generation is highly entrepreneurial
 - Globally
- Great project ideas everywhere
 - Chile
 - Colombia
 - Egypt
 - Portugal
- Business development skills can be taught
 - □ IC²
 - □ SRI
- Someone has to pay for this

Universities Lack Scale in Research

- First priority for universities is undergraduate tuition
 - Graduate programs much smaller
 - Doctoral programs often even smaller
 - Best and brightest go overseas for graduate training
 - Will they come back?

Example – Chile

- AUTM-CORFO strategic partnership
 - Phase 1 Training
 - Phase 2 Strategic planning
 - 7 AUTM Experts hired
 - □ 6 U.S., 1 U.K.
 - □ 14 universities, I National Lab
 - Benchmarking
 - AUTM Survey
 - Purchased additional survey questionnaire
 - 5 year Strategic Plan
 - □ I year Operating Plan
 - Phase 3 Six additional smaller universities
 - Really, really small
 - □ 1 had a research budget of \$900k and didn't offer Ph.D.'s!

Benchmarking

- Chile:
 - Low level of intellectual property creation in Chile
 - ~600 patents per year
 - □ Individuals receive more patents than companies
 - Relatively low level of academic research compared with US
 - □ If Chile was a single university, would rank 103rd in US (Tulane)
 - □ Largest, Concepcion, would rank 156th (Whitehead Institute)
 - Inventions are related to research funding
 - More research → more inventions

Benchmarking

- Chile:
 - But Chile more productive than US, Canada and Europe
 - □ 1 invention/\$1.1 million
 - □ US 1 invention/\$2.8 million
 - Canada 1 invention/\$3.0 million
 - □ Europe 1 invention/\$3.6 million
 - 4% licensing success rate
 - Same as US pre-Bayh-Dole
 - Government owned and licensed IP
 - Expenditures on patents 3x license income

Benchmarking

- These results expected for a country just starting to create a technology transfer ecosystem
 - Denmark 2000
 - Japan 1999-2004
- Scale issue meant the right solution for Chile was
 - 2-3 individual TTO's
 - Regional entities for the rest
- Not what government wanted
 - Prior attempt had failed
 - But it wasn't regional
 - Santiago + Valparaiso
 - Included the universities which could justify their own TTO

Technology Transfer – a Horrible Business Model

- Hire and pay staff
 - Must be comfortable operating in the fog of uncertainty of early stage technologies
- Train them to change the culture of professors/scientists
 - Start to identify useful inventions coming from their research
- Pay for patent applications on the inventions they eventually disclose
- Market the inventions
 - Inventions typically 4 years old when licensed
- Eventually license 25% of the inventions
 - Write off the investment in the rest
- Wait while the licensees develop the inventions into products to sell
 - Some technologies don't work or aren't cost effective
- Finally start to receive royalties on the successful inventions
- □ Give away 75-100% of the income
- Wait for the patents to expire

Implications

- Years till self supporting
 - In U.S. in 2006:
 - 52% of institutions spent more than they brought in
 - Only 16% of institutions kept enough money to cover operating costs
- This isn't about making money
 - It's about the economy
 - Government support will be essential
 - For many years

The Triple Helix Model Isn't Understood

- In many emerging economies, Government sees universities solely in workforce development terms
 - Not as sources of
 - Innovation
 - Entrepreneurship
 - Economic development
 - Hence low funding of research
- University leadership doesn't understand their role in an innovation ecosystem
 - Decision making is highly centralized
 - Loathe to delegate commercial decisions to TTO
 - Slows process
 - Results in "academic" decisions
 - Risk averse

Companies Don't Look Domestically for Innovation

- Industrial leaders in developing countries frequently look overseas for innovation and new technology
 - U.S.
 - Europe
- Don't look at local technology suppliers
 - Particularly not local start-ups
 - □ E.g., Chile / Mining
 - Swiss and German engineering companies supply innovation
 - Universities are active in these areas
 - Maybe some testing done at universities

Licensing Isn't a Major Part of Commerce

- Commerce in developing countries is product focused, not IPfocused
- So, not much expertise in licensing and transferring IP
 - Even in the commercial sector
 - Let alone the academic sector
- □ LES only has 32 national and regional societies
 - Those in emerging economies / regions often have little activity
 - Members often all lawyers
 - Few corporate members
 - No academic members
 - □ E.g., LES Chile
 - Established 2007
 - 30 members
 - No activities currently planned

Risk Capital Isn't Available

- Angel investment usually limited to market-ready projects
 - Not useful for technology development
 - □ E.g., in incubator in Talca, Chile
 - Companies were raising \$10,000 \$50,000 per round
 - Only one company raised \$100,000
 - □ That was the only one that had taken off
- No equivalents of SBIR / STTR programs
- Limited VC funds
- Philanthropic sources scarce
 - Generally limited to basic and clinical research
 - Not risk reduction

Risk Capital Isn't Available

- Even resource rich countries have issues
 - Early stages of innovation need very small amounts of money
 - Get's lost in the rounding
 - How funding is managed is critical
 - Skills may not be available
 - Resource-based economies don't have to deal with market risk
 - Extract it and there's a global market waiting
 - □ It's all about engineering risk
 - □ Different from technical risk of early stage technologies

The Issue is Exits

- The only reason someone invests in a company is in the hope of selling that investment at a profit
 - Not interested in dividends
 - The higher the risk, the higher the profit they want
 - VC's won't invest unless they can see a 10x return
 - Only expect to make that much on 1-2 out of 10 investments
 - Only two routes to exit
 - □ M&A
 - IPO
 - M&A
 - Often companies look overseas for innovation, not domestically
 - IPO
 - Emerging companies have weak capital markets
 - Particularly for development stage companies
 - □ NASDAQ an option for a very, very few.

Expertise Grows from the Ground up

- The people who run incubators are critical
 - They know where the local sources of risk finance are
 - They're the de facto local entrepreneurship business schools
 - They've seen what works and what doesn't work in that country
 - □ They know the local companies that are receptive to innovation
 - They can plug into international organizations
 - NBIA
 - IASP
 - AURP
 - AUTM

Keeping the Local Stars Local

- Best and brightest often go overseas for graduate school
 - Frequently want to stay and not return
 - Better professional opportunities
 - Entrepreneurial opportunities
 - Critical to get them to come back
 - Bring back what they've learned

Some Solutions

- Fellowships
- Joint projects
- Strategic partnerships
- Seeding Labs
- Forming a local tech transfer organization
- International training

Fellowships

- Tech transfer people come and work in a U.S. / European TTO for 3-6 months
 - Needs some sort of sponsorship for living expenses and travel
 - □ Typical cost ~\$20,000 for a six month fellowship
 - Universities want some overhead support
 - □ \$5,000-6,000 for a six month fellowship
- Effective
 - Forms lasting bonds and networks
 - Big exposure to best practices
- Opportunity to form ex-pat networks

Joint Projects

- Long term research collaborations
 - Tech transfer component
 - E.g., MIT with:
 - Cambridge U.K.
 - King Fahd University of Petroleum and Minerals, Saudi Arabia
 - Skoltech Institute of Technology, Russia
 - Requires massive government support

Strategic Partnerships

- E.g., AUTM CORFO
 - Requires the Government to "get" the Triple Helix model
 - And be prepared to fund it
 - Programs are expensive
 - **-** \$500,000

Seeding Labs

Forming a Tech Transfer Association

- Brings together like-minded people
 - Should be practitioner driven and run
 - Not commercial or government
 - Government support helpful / essential
- Forms a locus for interaction with government
 - Policy gap analysis / policy development
- Point of contact for international interactions
 - ATTP
- Successful models
 - SARIMA
 - FORTEC
 - USIMP

International Training

- Lot of experienced people available to provide training
 - Low cost
 - □ ~\$5,000-10,000 for a week's course
- Important to develop local resources
 - Transition over a 3-5 year period
- Need to tailor to local conditions and laws
 - What works in Cambridge or Palo Alto won't work in developing countries

Thank you for listening.

Questions?

astevens@fipgllc.com

