第一章 向量代数

§1 向量的线性运算

1. 如图, 已知平行六面体 $ABCD-A_1B_1C_1D_1$, $E \setminus F$ 分别是棱 $BC \setminus C_1D_1$ 的中点. 设 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AA_1} = \overrightarrow{c}$. 试用 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 表示下列 向量:

解: (1) 因为

$$\overrightarrow{BC} = \overrightarrow{AD}, \quad \overrightarrow{CC_1} = \overrightarrow{AA_1}, \quad \overrightarrow{AC_1} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CC_1},$$

所以

$$\overrightarrow{AC_1} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$
.

(2) 因为 $\overrightarrow{BD_1} = \overrightarrow{BD} + \overrightarrow{DD_1}$, 而

$$\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}, \quad \overrightarrow{DD_1} = \overrightarrow{AA_1}.$$

所以

$$\overrightarrow{BD_1} = \overrightarrow{b} - \overrightarrow{a} + \overrightarrow{c}.$$

(3)
$$\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DD_1} + \overrightarrow{D_1F}, \overrightarrow{m}$$

$$\overrightarrow{DD_1} = \overrightarrow{AA_1}, \quad \overrightarrow{D_1F} = \frac{1}{2}\overrightarrow{D_1C_1} = \frac{1}{2}\overrightarrow{AB},$$

第一章 向量代数

所以

$$\overrightarrow{AF} = \frac{1}{2}\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}.$$

$$(4) \ \overrightarrow{EF} = \overrightarrow{AF} - \overrightarrow{AE} = \overrightarrow{AF} - (\overrightarrow{AB} + \overrightarrow{BE}) = \overrightarrow{AF} - (\overrightarrow{AB} + \overrightarrow{BE}) = \overrightarrow{AF} - (\overrightarrow{AB} + \overrightarrow{BE}) = \overrightarrow{AF} - \left(\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}\right) = \frac{1}{2}\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a} - \frac{1}{2}\overrightarrow{b} = -\frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + \overrightarrow{c}.$$

2. 已知平行四边形 ABCD 的对角线为 AC 和 BD. 设 $\overrightarrow{AC}=\overrightarrow{a}$, $\overrightarrow{BD}=\overrightarrow{b}$. 求 \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{DA} .

解:如图,

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{DB} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{b}),$$

$$\overrightarrow{CD} = -\overrightarrow{AB} = -\frac{1}{2}(\overrightarrow{a} - \overrightarrow{b}),$$

$$\overrightarrow{DA} = -\overrightarrow{AD} = -(\overrightarrow{AO} + \overrightarrow{OD}) = -\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}).$$

3. 在 $\triangle ABC$ 中, 点 M,N 是 AB 边上的三等分点. 设 $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$. 求 \overrightarrow{CM} , \overrightarrow{CN} .

解:如图,因为

$$\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}, \quad \overrightarrow{AN} = \frac{2}{3}\overrightarrow{AB},$$

所以

$$\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{CA} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{CA} + \frac{1}{3}(\overrightarrow{CB} - \overrightarrow{CA}) = \frac{1}{3}\overrightarrow{b} + \frac{2}{3}\overrightarrow{a},$$

$$\overrightarrow{CN} = \overrightarrow{CA} + \overrightarrow{AN} = \overrightarrow{CA} + \frac{2}{3}\overrightarrow{AB} = \overrightarrow{CA} + \frac{2}{3}(\overrightarrow{CB} - \overrightarrow{CA}) = \frac{2}{3}\overrightarrow{b} + \frac{1}{3}\overrightarrow{a}.$$

4. 设 L,M,N 分别是 $\triangle ABC$ 的三边 BC,CA,AB 的中点. 证明三中线 向量 $\overrightarrow{AL},\overrightarrow{BM},\overrightarrow{CN}$ 可以构成一个三角形.

 $\S1$ 向量的线性运算 $\cdot 3$ ·

证明: 因为 \overrightarrow{AL} , \overrightarrow{BM} , \overrightarrow{CN} 可以构成一个三角形, 当且仅当将这三个向量之和为零向量. 由

$$\overrightarrow{AL} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}), \quad \overrightarrow{BM} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}), \quad \overrightarrow{CN} = \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB}),$$

可得: $\overrightarrow{AL} + \overrightarrow{BM} + \overrightarrow{CN} = 0$.

5. 设 $O \in \triangle ABC$ 的重心, 证明:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 0.$$

解: 如图, 设 AL,BM,CN 是 3 条中线, O 是三角形的重心. 则 $\overrightarrow{OA}=\frac{2}{3}\overrightarrow{LA}=-\frac{2}{3}\overrightarrow{AL},$ $\overrightarrow{OB}=-\frac{2}{3}\overrightarrow{BM},$ $\overrightarrow{OC}=-\frac{2}{3}\overrightarrow{CN},$ 因此由第 4 题,

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = -\frac{2}{3}(\overrightarrow{AL} + \overrightarrow{BM} + \overrightarrow{CN}) = 0.$$

6. 在四面体 O-ABC 中, 设点 G 是 $\triangle ABC$ 的重心. 用 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 来表示向量 \overrightarrow{OG} .

解: 因为 $\overrightarrow{GO} = \overrightarrow{GA} + \overrightarrow{AO}$, $\overrightarrow{GO} = \overrightarrow{GB} + \overrightarrow{BO}$, $\overrightarrow{GO} = \overrightarrow{GC} + \overrightarrow{CO}$. 而由第 5 题知 $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$. 因此

$$3\overrightarrow{GO} = \overrightarrow{AO} + \overrightarrow{BO} + \overrightarrow{CO}.$$

$$\overrightarrow{OG} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$$

7. 设 \overrightarrow{ABCDEF} 为正六边形, 求 $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$.

解: 因为 $\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{AF} = \overrightarrow{AE} + \overrightarrow{AB}$, 所以 $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3\overrightarrow{AD}$.

・4・ 第一章 向量代数

第6题图

第7题图

8. 在四边形 \overrightarrow{ABCD} 中, $\overrightarrow{AB} = \overrightarrow{a} + 2\overrightarrow{b}$, $\overrightarrow{BC} = -4\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{CD} = -5\overrightarrow{a} - 3\overrightarrow{b}$ (\overrightarrow{a} , \overrightarrow{b} 是不共线的非零向量). 证明 \overrightarrow{ABCD} 为梯形.

证明: 因为 $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = -8\overrightarrow{a} - 2\overrightarrow{b} = 2\overrightarrow{BC}$, 所以 $\overrightarrow{AD} / / \overrightarrow{BC}$. 但 $|\overrightarrow{AD}| = 2|\overrightarrow{BC}|$, 所以 ABCD 是梯形.

9. 设 A,B,C,D 是一个四面体的四个顶点, M,N 分别是边 AB,CD 的中点. 证明:

$$\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC}).$$

证明: 如图,

$$\overrightarrow{CM} = \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB}), \quad \overrightarrow{CN} = \frac{1}{2}\overrightarrow{CD},$$

所以

$$\overrightarrow{MN} = \overrightarrow{CN} - \overrightarrow{CM} = \frac{1}{2}\overrightarrow{CD} - \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC}).$$

10. 设 M 是平行四边形 ABCD 的中心, O 是任意一点. 证明:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OM}$$
.

§1 向量的线性运算 · 5 ·

证明: 如图, 因为

$$\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OC}), \quad \overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OB} + \overrightarrow{OD}),$$

所以

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OM}.$$

11. 要使下列各式成立, 向量 \overrightarrow{a} , \overrightarrow{b} 应满足什么条件?

$$(1) |\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|;$$

$$(2) |\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}| - |\overrightarrow{b}|;$$

$$(3) |\overrightarrow{a} - \overrightarrow{b}| = |\overrightarrow{a}| - |\overrightarrow{b}|;$$

$$(4) |\overrightarrow{a} - \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|.$$

$$(3) |\overrightarrow{a} - \overrightarrow{b}| = |\overrightarrow{a}| - |\overrightarrow{b}|; \qquad (4) |\overrightarrow{a} - \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|.$$

 \mathbf{M} : (1) 利用"三角形两边之和大于第三边"可知: $\overrightarrow{a}//\overrightarrow{b}$. 且要使 $|\overrightarrow{a}|$ $\overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|$ 必须: \overrightarrow{a} 与 \overrightarrow{b} 同向, 或 \overrightarrow{a} , \overrightarrow{b} 中至少有一为 0.

(2) 令 $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$, 则 $\overrightarrow{a} = \overrightarrow{c} - \overrightarrow{b}$, 原式化为: $|\overrightarrow{c} - \overrightarrow{b}| = |\overrightarrow{c}| + |\overrightarrow{b}|$. 所以 \overrightarrow{b} // \overrightarrow{c} 且反向. 由此可得: \overrightarrow{a} // \overrightarrow{b} , 反向, 且 $|\overrightarrow{a}| \ge |\overrightarrow{b}|$, 或 $\overrightarrow{b} = 0$.

(3) 令 $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$, 则 $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$, 原式化为: $|\overrightarrow{b}| + |\overrightarrow{c}| = |\overrightarrow{b} + \overrightarrow{c}|$. 由

(1) 知: $\overrightarrow{b}/\!/\overrightarrow{c}$ 且同向. 所以 $\overrightarrow{a}/\!/\overrightarrow{b}$ 且同向. 又因 $|\overrightarrow{a}-\overrightarrow{b}| \geq 0$, 所以 $|\overrightarrow{a}| \geq |\overrightarrow{b}|$, 或 $\overrightarrow{b} = 0$.

(4) 令 $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$, 则 $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$, 原式化为: $|\overrightarrow{b} + \overrightarrow{c}| = |\overrightarrow{c}| - |\overrightarrow{b}|$. 由 (2) 知: $\overrightarrow{c}/\!/\overrightarrow{b}$ 且反向, 或 $\overrightarrow{b} = 0$, 同时, $|\overrightarrow{c}| \ge |\overrightarrow{b}|$. 所以 $\overrightarrow{a}/\!/\overrightarrow{b}$ 且反向, 或 $\overrightarrow{b} = 0$ 或 $\overrightarrow{a} = 0$.

12. 证明下列不等式, 并说明等号什么时候成立.

$$(1) |\overrightarrow{b} - \overrightarrow{a}| \geqslant |\overrightarrow{a}| - |\overrightarrow{b}|; \qquad (2) |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| \le |\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}|.$$

证明: (1) 如图, 利用"三角形两边之差小于第三边"可得欲证的不等式. 等 式成立的条件可参见习题 11(3): $\overrightarrow{a}//\overrightarrow{b}$, 同向, 且 $|\overrightarrow{a}| \ge |\overrightarrow{b}|$, 或 $\overrightarrow{b} = 0$.

 $(2)\ \diamondsuit\ \overrightarrow{d}\ =\ \overrightarrow{b}\ +\ \overrightarrow{c}\ .\ \ \mathbb{M}\colon |\overrightarrow{a}\ +\ \overrightarrow{b}\ +\ \overrightarrow{c}\ |\ =\ |\overrightarrow{a}\ +\ \overrightarrow{d}\ |\ \leq\ |\overrightarrow{a}\ |\ +\ |\overrightarrow{d}\ |\ =$ $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| \le |\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}|$. 等号成立当且仅当(i) \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 互相平 行且同向, 或(ii) \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 中至少两个为 0 (也可看成 (i) 的特例).

***13.** O 为正多边形 $A_1 A_2 \cdots A_n$ 的中心. 证明:

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = 0.$$

第一章 向量代数

证明: 先考虑 n 为偶数的情形. 此时. 显然有: $\overrightarrow{OA_1} + \cdots + \overrightarrow{OA_n} = 0$. 再看 n 为奇数的情形: 我们增加一倍顶点 B_1, \cdots, B_n 使原来正 n 边形 $A_1 \cdots A_n$ 成为: $A_1B_1A_2B_2 \cdots A_{n-1}B_{n-1}A_nB_n$, 这是一个 2n 边形. 所以

$$\overrightarrow{OA_1} + \overrightarrow{OB_1} + \overrightarrow{OA_2} + \overrightarrow{OB_2} + \cdots + \overrightarrow{OA_n} + \overrightarrow{OB_n} = 0.$$

注意到 $\overrightarrow{OB_i}$ 是由 $\overrightarrow{OA_i}$ 旋转一个定角 $\frac{\pi}{n}$ 而得到, 若记:

$$\overrightarrow{p} = \overrightarrow{OA_1} + \dots + \overrightarrow{OA_n},$$

$$\overrightarrow{q} = \overrightarrow{OB_1} + \dots + \overrightarrow{OB_n},$$

那么 \overrightarrow{q} 是由 \overrightarrow{p} 旋转 $\frac{\pi}{n}$ 角而得到. 由于 $0 < \frac{\pi}{n} < \pi$, \overrightarrow{q} 与 \overrightarrow{p} 不平行, 故 $\overrightarrow{p} + \overrightarrow{q} = 0$ 当且仅当 $\overrightarrow{p} = \overrightarrow{q} = 0$.

*14. O 为正多边形 $A_1A_2\cdots A_n$ 的中心, P 是任意一点. 证明:

$$\overrightarrow{PA_1} + \overrightarrow{PA_2} + \dots + \overrightarrow{PA_n} = n\overrightarrow{PO}.$$

证明: 因为

$$\overrightarrow{PO} = \overrightarrow{PA_i} + \overrightarrow{A_iO} \quad (i = 1, 2, \cdots, n),$$

所以

 $n\overrightarrow{PO} = \overrightarrow{PA_1} + \dots + \overrightarrow{PA_n} + (\overrightarrow{A_1O} + \dots + \overrightarrow{A_nO}) = \overrightarrow{PA_1} + \dots + \overrightarrow{PA_n}$ (利用第 13 题的结论).

§ 2 向量的共线与共面

1. 已知 \overrightarrow{a} , \overrightarrow{b} 不共线, 则向量 $\overrightarrow{c}=3\overrightarrow{a}+\overrightarrow{b}$ 与 $\overrightarrow{d}=2\overrightarrow{a}-\overrightarrow{b}$ 是否线性相关?

解: 设有 k m 使: $k\overrightarrow{c} + m\overrightarrow{d} = 0$, 即

$$3k\overrightarrow{a} + k\overrightarrow{b} + 2m\overrightarrow{a} - m\overrightarrow{b} = 0$$

整理后为

$$(3k+2m)\overrightarrow{a} + (k-m)\overrightarrow{b} = 0.$$

由于 \overrightarrow{a} , \overrightarrow{b} 不共线, 故 \overrightarrow{a} , \overrightarrow{b} 线性无关, 所以

$$\begin{cases} 3k + 2m = 0 \\ k - m = 0 \end{cases}$$
 解得 $k = m = 0$,

即 \overrightarrow{c} , \overrightarrow{d} 线性无关.

2. 如果 3 个向量都能被两个向量 \overrightarrow{a} , \overrightarrow{b} 线性表示, 那么这 3 个向量一定共面.

证明: 设 $\overrightarrow{p} = c_{11}\overrightarrow{a} + c_{12}\overrightarrow{b}$, $\overrightarrow{q} = c_{21}\overrightarrow{a} + c_{22}\overrightarrow{b}$, $\overrightarrow{r} = c_{31}\overrightarrow{a} + c_{32}\overrightarrow{b}$. 则 $x_1\overrightarrow{p} + x_2\overrightarrow{q} + x_3\overrightarrow{r} = (x_1c_{11} + x_2c_{21} + x_3c_{31})\overrightarrow{a} + (x_1c_{12} + x_2c_{22} + x_3c_{32})\overrightarrow{b}$. 方程组

$$\begin{cases} c_{11}x_1 + c_{21}x_2 + c_{31}x_3 = 0\\ c_{12}x_1 + c_{22}x_2 + c_{32}x_3 = 0 \end{cases}$$

的变量个数超过方程个数,一定有一组非零解 $x_1=k_1,\,x_2=k_2,\,x_3=k_3,$ 使得

$$k_1 \overrightarrow{p} + k_2 \overrightarrow{q} + k_3 \overrightarrow{r} = (k_1 c_{11} + k_2 c_{21} + k_3 c_{31}) \overrightarrow{a} + (k_1 c_{12} + k_2 c_{22} + k_3 c_{32}) \overrightarrow{b} = 0.$$

因此 \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} 线性相关, 从而共面.

3. 证明三个向量 $k_1 \overrightarrow{a} - k_2 \overrightarrow{b}$, $k_2 \overrightarrow{b} - k_3 \overrightarrow{c}$, $k_3 \overrightarrow{c} - k_1 \overrightarrow{a}$ 共面. 证明: 由等式

$$(k_1 \overrightarrow{a} - k_2 \overrightarrow{b}) + (k_2 \overrightarrow{b} - k_3 \overrightarrow{c}) + (k_3 \overrightarrow{c} - k_1 \overrightarrow{a}) = 0,$$

可知这3个向量线性相关, 所以共面.

4. 设 $\overrightarrow{a_1} = 2\overrightarrow{b_1} + 3\overrightarrow{b_2} - \overrightarrow{b_3}$, $\overrightarrow{a_2} = \overrightarrow{b_2} - \overrightarrow{b_3}$, $\overrightarrow{a_3} = \overrightarrow{b_2} + \overrightarrow{b_3}$. 证明向量 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$ 共面的充分必要条件是 $\overrightarrow{b_1}$, $\overrightarrow{b_2}$, $\overrightarrow{b_3}$ 共面.

证明:

$$k_1\overrightarrow{a_1} + k_2\overrightarrow{a_2} + k_3\overrightarrow{a_3} = 2k_1\overrightarrow{b_1} + (3k_1 + k_2 + k_3)\overrightarrow{b_2} + (-k_1 - k_2 + k_3)\overrightarrow{b_3}.$$

从方程组

$$\begin{cases} 2k_1 = 0 \\ 3k_1 + k_2 + k_3 = 0 \\ -k_1 - k_2 + k_3 = 0 \end{cases}$$

解得 $k_1 = k_2 = k_3 = 0$. 也就是说, k_1, k_2, k_3 不全为零当且仅当 $2k_1, 3k_1 + k_2 + k_3, -k_1 - k_2 + k_3$ 不全为零. 即 $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ 线性相关当且仅当 $\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3}$ 线性相关. 从而 $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ 共面当且仅当 $\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3}$ 共面.

5. 设 D 是 $\triangle ABC$ 的边 BC 上的点, 满足 $\overrightarrow{BD} = k\overrightarrow{DC}$. 试用 $\overrightarrow{AB}, \overrightarrow{AC}$ 来表示 \overrightarrow{AD} .

第一章 向量代数

解: 因为 $\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}$, $\overrightarrow{DC} = \overrightarrow{AC} - \overrightarrow{AD}$. 代入 $\overrightarrow{BD} = k\overrightarrow{DC}$, 得 $\overrightarrow{AD} - \overrightarrow{AB} = k\overrightarrow{AC} - k\overrightarrow{AD}$, $\overrightarrow{MAD} = \frac{1}{1+k}\overrightarrow{AB} + \frac{k}{1+k}\overrightarrow{AC}$.

6. 设 AT 是 $\triangle ABC$ 中 $\angle A$ 的平分线 (与 BC 交于 T 点), 将 \overrightarrow{AT} 用 \overrightarrow{AB} , \overrightarrow{AC} 来表示.

解: 设 $\overrightarrow{BT} = k\overrightarrow{BC}$, 则 $\overrightarrow{TC} = (1-k)\overrightarrow{BC}$. 由角平分线的性质可知, $|\overrightarrow{AB}| : |\overrightarrow{AC}| = k : (1-k)$, 因此 $k = \frac{|\overrightarrow{AB}|}{|\overrightarrow{AB}| + |\overrightarrow{AC}|}$. 于是

$$\overrightarrow{AT} = \overrightarrow{AB} + \overrightarrow{BT} = \overrightarrow{AB} + k\overrightarrow{BC} = (1 - k)\overrightarrow{AB} + k\overrightarrow{AC}$$
$$= \frac{1}{|\overrightarrow{AB}| + |\overrightarrow{AC}|}(|\overrightarrow{AC}|\overrightarrow{AB} + |\overrightarrow{AB}|\overrightarrow{AC}).$$

- 7 平面上有一个三角形 $\triangle OAB$, 点 B 和 C 关于中心 A 对称, 点 D 把线 段 OB 分成 2:1, DC 和 OA 交于点 E. 设 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$.
 - (1) 试用 \overrightarrow{a} , \overrightarrow{b} 来表示 \overrightarrow{OC} 和 \overrightarrow{DC} ;
 - (2) 求比值 OE: OA.

解: (1) 因 B 和 C 关于中心 A 对称, $\overrightarrow{BC} = 2\overrightarrow{BA} = 2(\overrightarrow{a} - \overrightarrow{b})$. 又因 $\overrightarrow{OD} = \frac{2}{3}\overrightarrow{OB} = \frac{2}{3}\overrightarrow{b}$, $\overrightarrow{DB} = \frac{1}{3}\overrightarrow{OB} = \frac{1}{3}\overrightarrow{b}$, 得 $\overrightarrow{DC} = \overrightarrow{DB} + \overrightarrow{BC} = 2\overrightarrow{a} - \frac{5}{3}\overrightarrow{b}$.

(2) 设 $\overrightarrow{OE} = k\overrightarrow{OA} = k\overrightarrow{a}$, 则由 $\overrightarrow{OE} = \overrightarrow{OD} + m\overrightarrow{DC}$ 可知 $k\overrightarrow{a} = \frac{2}{3}\overrightarrow{b} + m\left(2\overrightarrow{a} - \frac{5}{3}\overrightarrow{b}\right)$. 解得 $k = \frac{4}{5}$, 因此 OE: OA = 4:5.

8. 在 $\triangle ABC$ 中, 点 M 分线段 AB 为 2:1, 点 N 分线段 AC 为 3:2. 设 CM 与 BN 的交点为 P, 直线 AP 与边 BC 交于点 Q. 试用 \overrightarrow{AB} , \overrightarrow{AC} 来表示 \overrightarrow{AP} 和 \overrightarrow{AQ} .

解: 因为 $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$, $\overrightarrow{AN} = \frac{3}{5}\overrightarrow{AC}$, 所以 $\overrightarrow{BN} = \overrightarrow{AN} - \overrightarrow{AB} = \frac{3}{5}\overrightarrow{AC} - \overrightarrow{AB}$, $\overrightarrow{CM} = \overrightarrow{AM} - \overrightarrow{AC} = \frac{2}{3}\overrightarrow{AB} - \overrightarrow{AC}$. 设 $\overrightarrow{CP} = k\overrightarrow{CM}$, $\overrightarrow{BP} = m\overrightarrow{BN}$. 则 $\overrightarrow{CP} = \overrightarrow{CB} + \overrightarrow{BP}$ 得

$$k\left(\frac{2}{3}\overrightarrow{AB} - \overrightarrow{AC}\right) = \overrightarrow{AB} - \overrightarrow{AC} + m\left(\frac{3}{5}\overrightarrow{AC} - \overrightarrow{AB}\right).$$

解出 $k=\frac{2}{3}$. 所以

$$\overrightarrow{AP} = \overrightarrow{AC} + \overrightarrow{CP} = \overrightarrow{AC} + \frac{2}{3} \left(\frac{2}{3} \overrightarrow{AB} - \overrightarrow{AC} \right) = \frac{4}{9} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}.$$

又点 Q 在 BC 及 AP 的延长线上,所以 $\overrightarrow{AQ} = \overrightarrow{lAP} = \overrightarrow{AB} + s\overrightarrow{BC}$. 即

$$l\left(\frac{4}{9}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}\right) = \overrightarrow{AB} + s(\overrightarrow{AC} - \overrightarrow{AB}).$$

解出 $l = \frac{9}{7}$, 即有 $\overrightarrow{AQ} = \frac{4}{7}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AC}$.

第9题图

9. 设 ABCD 是平行四边形, P,Q 分别是边 BC,CD 的中点. 证明 AP,AQ 与对角线 BD 相交于 E,F, 而将 BD 三等分.

证明: 设 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, 则

$$\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$
.

$$\overrightarrow{AP} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{b},$$

$$\overrightarrow{AQ} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} = \overrightarrow{b} + \frac{1}{2}\overrightarrow{a}.$$

又设

$$\overrightarrow{AE} = k\overrightarrow{AP} \quad (k > 0), \quad \overrightarrow{AF} = m\overrightarrow{AQ} \quad (m > 0),$$

则

$$\overrightarrow{AE} = k\overrightarrow{a} + \frac{k}{2}\overrightarrow{b}, \quad \overrightarrow{AF} = m\overrightarrow{b} + \frac{m}{2}\overrightarrow{a}.$$

但是

$$\overrightarrow{AE} = \overrightarrow{AB} + t\overrightarrow{BD} = \overrightarrow{a} + t(\overrightarrow{b} - \overrightarrow{a}) = (1 - t)\overrightarrow{a} + t\overrightarrow{b} \quad (t > 0).$$

所以

$$k\overrightarrow{a} + \frac{k}{2}\overrightarrow{b} = (1-t)\overrightarrow{a} + t\overrightarrow{b},$$

即:

$$(k+t-1)\overrightarrow{a} = \left(t - \frac{k}{2}\right)\overrightarrow{b},$$

由于 \overrightarrow{a} 与 \overrightarrow{b} 不平行, 所以

$$\begin{cases} k + t - 1 = 0 \\ t - \frac{k}{2} = 0 \end{cases} \quad \text{EII} \quad \begin{cases} k = \frac{2}{3} \\ t = \frac{1}{3}. \end{cases}$$

同理,由

$$\overrightarrow{AF} = \overrightarrow{AB} + s\overrightarrow{BD} = (1 - s)\overrightarrow{b} + s\overrightarrow{b} \quad (s > 0),$$

可得:

$$\begin{cases} \frac{m}{2} + s - 1 = 0 \\ s - m = 0, \end{cases} \quad \text{HI: } \begin{cases} m = \frac{2}{3} \\ s = \frac{2}{3}. \end{cases}$$

最后得到:

$$\overrightarrow{BF} = \frac{2}{3}\overrightarrow{BD}, \quad \overrightarrow{BE} = \frac{1}{3}\overrightarrow{BD},$$

说明 E, F 是线段 BD 的三等分点.

10. 设 O 是一个定点, 证明: 对于不在一直线上的 3 个点 A, B, C, 点 M 位于平面 ABC 上的充分必要条件是存在实数 k_1, k_2, k_3 , 使得

$$\overrightarrow{OM} = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC}, \quad \coprod k_1 + k_2 + k_3 = 1.$$

证明: 已知 ABC 三点不共线, 故 \overrightarrow{AB} , \overrightarrow{AC} 线性无关. 任意点 M 位于平面 ABC 上当且仅当 \overrightarrow{AM} , \overrightarrow{AB} , \overrightarrow{AC} 共面, 即: \overrightarrow{AM} , \overrightarrow{AB} , \overrightarrow{AC} 线性相关, 当且仅当存在不全为 0 的实数 m_1, m_2, m_3 , 使

$$m_1 \overrightarrow{AM} + m_2 \overrightarrow{AB} + m_3 \overrightarrow{AC} = 0,$$

当且仅当对于定点 O 有:

$$m_1(\overrightarrow{OM} - \overrightarrow{OA}) + m_2(\overrightarrow{OB} - \overrightarrow{OA}) + m_3(\overrightarrow{OC} - \overrightarrow{OA}) = 0,$$

当且仅当

$$m_1\overrightarrow{OM} = (m_1 + m_2 + m_3)\overrightarrow{OA} - m_2\overrightarrow{OB} - m_3\overrightarrow{OC}.$$

显然 $m_1 \neq 0$, 不然与 \overrightarrow{AB} , \overrightarrow{AC} 线性无关矛盾. 因此若记:

$$k_1 = \frac{1}{m_1}(m_1 + m_2 + m_3), \quad k_2 = -\frac{m_2}{m_1},$$

$$k_3 = -\frac{m_3}{m_1},$$

则

$$\overrightarrow{OM} = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC},$$

11. 设 O 是一个定点, 证明: 点 M 位于 $\triangle ABC$ 上 (包括它的边) 的充分 必要条件是存在非负实数 k_1, k_2, k_3 , 使得

$$\overrightarrow{OM} = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC}, \quad \coprod k_1 + k_2 + k_3 = 1.$$

证明: 延长 AM, 必可交 BC 于 D 点. 因此 $\overrightarrow{AM} = l\overrightarrow{AD}$, 其中 $0 \le l \le 1$. 由于 D 在线段 BC 上, 根据例 2.1, 存在实数 m_1, m_2 , 使得

$$\overrightarrow{OD} = m_1 \overrightarrow{OB} + m_2 \overrightarrow{OC}, \quad m_1 + m_2 = 1, m_1, m_2 \ge 0.$$

于是

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = (1 - l)\overrightarrow{OA} + l\overrightarrow{OD} = (1 - l)\overrightarrow{OA} + lm_1\overrightarrow{OB} + lm_2\overrightarrow{OC}.$$

$$\diamondsuit k_1 = 1 - l, \ k_2 = lm_1, \ k_3 = lm_2, \ \mathbb{D} \ \textcircled{4}$$

$$\overrightarrow{OM} = k_1\overrightarrow{OA} + k_2\overrightarrow{OB} + k_3\overrightarrow{OC}, \quad k_1 + k_2 + k_3 = 1, \ k_1, k_2, k_3 \ge 0.$$

反之, 不妨设 $k_1 \neq 1$, 解方程组

$$\begin{cases} 1-l=k_1\\ lm_1=k_2\\ lm_2=k_3 \end{cases} \qquad \overrightarrow{\text{sp}} \begin{cases} l=1-k_1,\\ m_1=\frac{k_2}{1-k_1},\\ m_2=\frac{k_3}{1-k_1}, \end{cases}$$

则有

$$m_1 + m_2 = 1$$
, $m_1, m_2 \ge 0$, $0 < l \le 1$.

令

$$\overrightarrow{OD} = m_1 \overrightarrow{OB} + m_2 \overrightarrow{OC},$$

则 D 点在线段 BC 上. 由

$$\overrightarrow{OM} = (1 - l)\overrightarrow{OA} + l\overrightarrow{OD}$$

可以得出 $\overrightarrow{AM} = l\overrightarrow{AD}$, 因此 M 在线段 AD 上, 从而在 $\triangle ABC$ 上.

12. 证明: 任意不同的三点 A, B, C 共线的充分必要条件是存在不全为零的实数 k_1, k_2, k_3 , 使得

$$0 = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC}, \quad \text{ } \exists \ k_1 + k_2 + k_3 = 0.$$

证明: ABC 共线, 当且仅当 $\overrightarrow{lAB} + \overrightarrow{mAC} = 0$ (l, m) 都不为零), 当且仅当

$$l(\overrightarrow{OB} - \overrightarrow{OA}) + m(\overrightarrow{OC} - \overrightarrow{OA}) = 0,$$

当且仅当

$$-(l+m)\overrightarrow{OA} + l\overrightarrow{OB} + m\overrightarrow{OC} = 0.$$

令 $k_1 = -(l+m)$, $k_2 = l$, $k_3 = m$, 显然它们不全为零, 且:

$$k_1\overrightarrow{OA} + k_2\overrightarrow{OB} + k_3\overrightarrow{OC} = 0, \quad k_1 + k_2 + k_3 = 0.$$

13. 证明: 任意不同的四点 A, B, C, D 共面的充分必要条件是存在四个不全为零的实数, 使得

$$0 = k_1 \overrightarrow{OA} + k_2 \overrightarrow{OB} + k_3 \overrightarrow{OC} + k_4 \overrightarrow{OD}, \quad \text{If. } k_1 + k_2 + k_3 + k_4 = 0.$$

证明: ABCD 共面当且仅当 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 线性相关, 当且仅当有不全为 零的数 l,m,n 使:

$$l\overrightarrow{AB} + m\overrightarrow{AC} + n\overrightarrow{AD} = 0.$$

当且仅当

$$l(\overrightarrow{OB}-\overrightarrow{OA})+m(\overrightarrow{OC}-\overrightarrow{OA})+n(\overrightarrow{OD}-\overrightarrow{OA})=0,$$

当且仅当

$$-(l+m+n)\overrightarrow{OA} + l\overrightarrow{OB} + m\overrightarrow{OC} + n\overrightarrow{OD} = 0.$$

记 $k_1 = -(l+m+n), k_2 = l, k_3 = m, k_4 = n,$ 显然它们不全为零, 使得

$$k_1\overrightarrow{OA} + k_2\overrightarrow{OB} + k_3\overrightarrow{OC} + k_4\overrightarrow{OD} = 0, \quad k_1 + k_2 + k_3 + k_4 = 0.$$

***14.** 用向量的方法证明契维定理: 若 $\triangle ABC$ 的三条边 AB, BC, CA 依次被分割成 $AF:FB=k_1:k_2$, $BD:DC=k_3:k_1$, $CE:EA=k_2:k_3$, 其中, $k_1,k_2.k_3$ 均为正数.则 $\triangle ABC$ 的顶点与它对边的分点的连线交于一点 M, 且对于任意一点 O 有

$$\overrightarrow{OM} = \frac{1}{k_1 + k_2 + k_3} (k_2 \overrightarrow{OA} + k_1 \overrightarrow{OB} + k_3 \overrightarrow{OC}).$$

证明:根据分点 D 与 E 的定义可得

$$\overrightarrow{BD} = \frac{k_3}{k_1 + k_3} \overrightarrow{BC}, \quad \overrightarrow{AE} = \frac{k_3}{k_2 + k_3} \overrightarrow{AC}.$$

于是

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{k_3}{k_1 + k_3} \overrightarrow{BC} = \overrightarrow{AB} + \frac{k_3}{k_1 + k_3} (\overrightarrow{AC} - \overrightarrow{AB})$$

$$= \frac{k_1}{k_1 + k_3} \overrightarrow{AB} + \frac{k_3}{k_1 + k_3} \overrightarrow{AC},$$

$$\overrightarrow{BE} = \overrightarrow{AE} - \overrightarrow{AB} = \frac{k_3}{k_2 + k_3} \overrightarrow{AC} - \overrightarrow{AB}.$$

设 AD 与 BE 交于 M, 则有

$$\overrightarrow{AM} = l\overrightarrow{AD}, \quad \overrightarrow{BM} = m\overrightarrow{BE}.$$

・14・ 第一章 向量代数

把前面得到的表达式代入以下等式: $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM}$, 得到

$$l\left(\frac{k_1}{k_1+k_3}\overrightarrow{AB} + \frac{k_3}{k_1+k_3}\overrightarrow{AC}\right) = \overrightarrow{AB} + m\left(\frac{k_3}{k_2+k_3}\overrightarrow{AC} - \overrightarrow{AB}\right).$$

由于 \overrightarrow{AB} 与 \overrightarrow{AC} 线性无关, 由上述等式得到方程组:

$$\begin{cases} \frac{lk_3}{k_1+k_3} = \frac{mk_3}{k_2+k_3} \\ \frac{lk_1}{k_1+k_3} = 1-m \end{cases} \qquad \text{解得} \begin{cases} l = \frac{k_1+k_3}{k_1+k_2+k_3} \\ m = \frac{k_2+k_3}{k_1+k_2+k_3}. \end{cases}$$

即

$$\overrightarrow{AM} = \frac{k_1 + k_3}{k_1 + k_2 + k_3} \overrightarrow{AD}.$$

又设 AD 与 CF 相交于 M', 同理可得

$$\overrightarrow{AM'} = \frac{k_1 + k_3}{k_1 + k_2 + k_3} \overrightarrow{AD},$$

即 M 与 M' 重合,因此 AD, BE, CF 交于同一点 M. 对任意点 O, 有

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{OA} + \frac{k_1 + k_3}{k_1 + k_2 + k_3} \left(\frac{k_2}{k_1 + k_3} \overrightarrow{AB} + \frac{k_3}{k_1 + k_3} \overrightarrow{AC} \right)$$

$$= \overrightarrow{OA} + \frac{k_1}{k_1 + k_2 + k_3} (\overrightarrow{OB} - \overrightarrow{OA}) + \frac{k_3}{k_1 + k_2 + k_3} (\overrightarrow{OC} - \overrightarrow{OA})$$

$$= \frac{1}{k_1 + k_2 + k_3} (k_2 \overrightarrow{OA} + k_1 \overrightarrow{OB} + k_3 \overrightarrow{OC}).$$

§3 用坐标表示向量

1. 设 P, Q 两点在标架 $[O; \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}]$ 下的坐标分别是(2, 2, 1), (-1, -1, 3). 试画出 P, Q 点的位置.

解:见附图.

§ 3 用坐标表示向量 · 15 ·

2. 对于平行四边形ABCD, 求A, D, \overrightarrow{AD} , \overrightarrow{DB} 在标架 $[C; \overrightarrow{AC}, \overrightarrow{BD}]$ 下的坐标.

解:
$$\overrightarrow{CA} = -\overrightarrow{AC} = (-1)\overrightarrow{AC} + 0\overrightarrow{BD}$$
, 点 \overrightarrow{A} 坐标为 $(-1,0)$;
$$\overrightarrow{CD} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{BD} = -\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD},$$

点 D 坐标为 $\left(-\frac{1}{2},\frac{1}{2}\right)$;

$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD},$$

 \overrightarrow{AD} 坐标为 $\left(\frac{1}{2}, \frac{1}{2}\right)$;

$$\overrightarrow{DB} = -\overrightarrow{BD} = 0\overrightarrow{AC} + (-1)\overrightarrow{BD},$$

 \overrightarrow{DB} 坐标为 (0,-1).

3. 设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的坐标分别是 (1,5,2), (0,-3,4), (-2,3,-1). 求向量 $2\overrightarrow{a}+\overrightarrow{c}$, $-3\overrightarrow{a}+2\overrightarrow{b}+4\overrightarrow{c}$ 的坐标.

解: $2\overrightarrow{a} + \overrightarrow{c} = 2(1,5,2) + (-2,3,-1) = (2,10,4) + (-2,3,-1) = (0,13,3).$

$$-3\overrightarrow{a} + 2\overrightarrow{b} + 4\overrightarrow{c} = -3(1,5,2) + 2(0,-3,4) + 4(-2,3,-1)$$

= $(-3,-15,-6) + (0,-6,8) + (-8,12,-4) = (-11,-9,-2).$

- **4.** 已知 $A \setminus B$ 两点的坐标分别为 (1, -2, 3), (4, 1, 2).
- (1) 试确定点 P 的坐标, 使点 P 分线段 AB 成定比 3:2;
- (2) 试确定点 P 的坐标, 使点 P 分线段 BA 成定比 -2:3.

解: (1) 由 $|\overrightarrow{AP}|$: $|\overrightarrow{PB}| = 3: 2$ 可得 $\overrightarrow{AP} = \frac{3}{2}\overrightarrow{PB}$. 利用例 3.1 的定比分点公式,取 $k = \frac{3}{2}$,可得 P 点坐标 $\left(\frac{14}{5}, -\frac{1}{5}, \frac{12}{5}\right)$.

- (2) 由已知条件可得 $\overrightarrow{BP}=-\frac{2}{3}\overrightarrow{PA}$, 用定比分点公式算得 P 点坐标 (10,7,0).
- **5** 已知 A(1,-1), B(-4,5), 将线段 AB 延长至 C 使 |AC|=5|AB|. 求点 C 的坐标.

解: (1) 当 $\overrightarrow{AC} = 5\overrightarrow{AB}$, 则 $\overrightarrow{AB} + \overrightarrow{BC} = 5\overrightarrow{AB}$. 因此 $\overrightarrow{AB} = \frac{1}{4}\overrightarrow{BC}$, 即 B 是 线段 AC 的比值为 $\frac{1}{4}$ 的定比分点. 所以

$$\begin{cases} x_B = \frac{1 + \frac{1}{4}x_C}{1 + \frac{1}{4}} \\ y_B = \frac{-1 + \frac{1}{4}y_C}{1 + \frac{1}{4}} \end{cases}$$
 解得: $C(-24, 29)$.

(2) 当 $\overrightarrow{AC} = -5\overrightarrow{AB}$,则 $\overrightarrow{CA} = 5\overrightarrow{AB}$.所以

$$\begin{cases} x_A = \frac{x_C + 5x_B}{1+5} \\ y_A = \frac{y_C + 5y_B}{1+5} \end{cases}$$
解得: $C(26, -31)$.

6. 已知线段 AB 被点 C(2,0,2) 和 D(5,-2,0) 三等分, 试求出这线段的两个端点 A,B 的坐标.

解: 不妨设 A, B, C, D 四点如图所示, A, B 两点的坐标分别为 (x_A, y_A, z_A) 与 (x_B, y_B, z_B) , 则 $\overrightarrow{AC} = \overrightarrow{CD}$, $\overrightarrow{CD} = \overrightarrow{DB}$. 所以

$$(x_C - x_A, y_C - y_A, z_C - z_A) = (x_D - x_C, y_D - y_C, z_D - z_C),$$

即:

$$\begin{cases} x_A = 2x_C - x_D = -1 \\ y_A = 2y_C - y_D = 2 \\ z_A = 2z_C - z_D = 4. \end{cases}$$

同理,

$$\begin{cases} x_B = 2x_D - x_C = 8 \\ y_B = 2y_D - y_C = -4 \\ z_B = 2z_D - z_C = -2. \end{cases}$$

§3 用坐标表示向量 · 17 ·

因此 A, B 两点的坐标分别为 (-1, 2, 4) 与 (8, -4, -2) (两种可能).

7. 设 A, B 两点的坐标分别为 (-6, 5, -8), (4, 0, 7), 试确定点 C, D, E, F, 使 C, D, E, F 将线段 AB 五等分.

解: 不妨设 A, B, C, D, E, F 如图. 所以

$$\overrightarrow{AC} = \frac{1}{4}\overrightarrow{CB}, \quad \overrightarrow{AD} = \frac{2}{3}\overrightarrow{DB},$$

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{EB}, \quad \overrightarrow{AF} = 4\overrightarrow{FB}.$$

利用定比分点公式算得 C 点坐标为 (-4,4,-5), D 点坐标为 (-2,3,-2), E 点坐标为 (0,2,1), F 点坐标为 (2,1,4).

8. ABCD 为平行四边形. 已知 A, B 及对角线交点的坐标分别为 (-3,1,5), (2,-3,4), (1,-1,2). 试确定点 C, D 的坐标.

解: 设对角线交点为 M, C,D 的坐标分别为 (x_C, y_C, z_C) , (x_D, y_D, z_D) . 由于 M 是 A,C 的中点, 因此

$$\begin{cases} \frac{1}{2}(-3+x_C) = 1\\ \frac{1}{2}(1+y_C) = -1\\ \frac{1}{2}(5+z_C) = 2, \end{cases}$$

解得 C 点坐标为 (5, -3, -1). 由于 M 也是 B, D 的中点, 同理可得 D 点坐标为 (0, 1, 0).

9. 证明三角形的三条中线交于一点 (重心).

证明: 设 D, E, F 分别是边 BC, CA, AB 上的中点. AD 与 BE 交于 G, AD 与 CF 交于 G'. 则

$$\overrightarrow{AG} = k\overrightarrow{AD} = k\left(\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}\right) = \frac{k}{2}\overrightarrow{AB} + \frac{k}{2}\overrightarrow{AC}.$$

若建立仿射标架 $[A; \overrightarrow{AB}, \overrightarrow{AC}]$, 则点 G 坐标为 $\left(\frac{k}{2}, \frac{k}{2}\right)$. 又

$$\overrightarrow{BG} = m\overrightarrow{BE} = m\left(\frac{1}{2}\overrightarrow{BA} + \frac{1}{2}\overrightarrow{BC}\right) = m\left[-\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB})\right]$$

第一章 向量代数

$$=\frac{m}{2}\overrightarrow{AC}-m\overrightarrow{AB},$$

所以 \overrightarrow{BG} 坐标为 $\left(-m, \frac{m}{2}\right)$. 但 $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BG}$, 所以,

$$\left(\frac{k}{2}, \frac{k}{2}\right) = (1,0) + \left(-m, \frac{m}{2}\right),$$

解方程组

· 18 ·

$$\begin{cases} \frac{k}{2} = 1 - m \\ \frac{k}{2} = \frac{m}{2} \end{cases}$$

得 $k=m=\frac{2}{3}$. 所以 G 的坐标为 $\left(\frac{1}{3},\frac{1}{3}\right)$. 同理, 可以推得 G' 的坐标为 $\left(\frac{1}{3},\frac{1}{3}\right)$. 证得 G=G'.

*10. 证明三角形的三条角平分线交于一点.

证明: 设 $\triangle ABC$ 的三条角平分线分别为 AD,BE 和 CF. 且设 AD 与 BE 交于 T 点. 令

$$\overrightarrow{AT} = k\overrightarrow{AD} = \frac{k}{|\overrightarrow{AB}| + |\overrightarrow{AC}|}(|\overrightarrow{AC}|\overrightarrow{AB} + |\overrightarrow{AB}|\overrightarrow{AC}).$$

建立仿射标架 $[A; \overrightarrow{AB}, \overrightarrow{AC}]$, 且令 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$. 则 T 点坐标是 $\left(\frac{k|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}, \frac{k|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}\right)$. 我们还知道

$$\overrightarrow{BE} = \frac{1}{|\overrightarrow{BA}| + |\overrightarrow{BC}|} (|\overrightarrow{BC}|\overrightarrow{BA} + |\overrightarrow{BA}|\overrightarrow{BC}),$$

所以

$$\overrightarrow{BT} = m\overrightarrow{BE} = \frac{m}{|\overrightarrow{a}| + |\overrightarrow{b} - \overrightarrow{a}|}(-|\overrightarrow{b} - \overrightarrow{a}|\overrightarrow{a} + |\overrightarrow{a}|(\overrightarrow{b} - \overrightarrow{a}))$$

§ 3 用坐标表示向量··19·

$$= -m\overrightarrow{a} + \frac{m|\overrightarrow{a}|}{|\overrightarrow{a}| + |\overrightarrow{b} - \overrightarrow{a}|}\overrightarrow{b}.$$

由于 $\overrightarrow{AT} = \overrightarrow{AB} + \overrightarrow{BT}$, 所以

$$\left(\frac{k|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}, \frac{k|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}\right) = (1,0) + \left(-m, \frac{m|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}-\overrightarrow{a}|}\right),$$

即:

$$\begin{cases} \frac{k|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|} = 1 - m \\ \frac{k|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|} = \frac{m|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}-\overrightarrow{a}|} \end{cases}$$

解得:

$$k = \frac{|\overrightarrow{a}| + |\overrightarrow{b}|}{|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{b}| - |\overrightarrow{a}|}.$$

又设 AD 与 CF 交于 T' 点,

$$\overrightarrow{AT'} = s\overrightarrow{AD} = \frac{s|\overrightarrow{b}|}{|\overrightarrow{a}| + |\overrightarrow{b}|} \overrightarrow{a} + \frac{s|\overrightarrow{a}|}{|\overrightarrow{a}| + |\overrightarrow{b}|} \overrightarrow{b}.$$

得
$$T'$$
 点的坐标为 $\left(\frac{s|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}, \frac{s|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}\right)$.

$$\overrightarrow{CT'} = t\overrightarrow{CF} = \frac{t}{|\overrightarrow{CA}| + |\overrightarrow{CB}|}(|\overrightarrow{CB}|\overrightarrow{CA} + |\overrightarrow{CA}|\overrightarrow{CB}) = \frac{t|\overrightarrow{b}|}{|\overrightarrow{b}| + |\overrightarrow{a} - \overrightarrow{b}|}\overrightarrow{a} - t\overrightarrow{b},$$

由 $\overrightarrow{AT'} = \overrightarrow{AC} + \overrightarrow{CT'}$, 得:

$$\left(\frac{s|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|},\frac{s|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|}\right) = (0,1) + \left(\frac{t|\overrightarrow{b}|}{|\overrightarrow{b}|+|\overrightarrow{a}-\overrightarrow{b}|},-t\right),$$

即:

$$\begin{cases} \frac{s|\overrightarrow{b}|}{|\overrightarrow{a}|+|\overrightarrow{b}|} = \frac{t|\overrightarrow{b}|}{|\overrightarrow{b}|+|\overrightarrow{a}-\overrightarrow{b}|} \\ \frac{s|\overrightarrow{a}|}{|\overrightarrow{a}|+|\overrightarrow{b}|} = 1-t \end{cases}$$

解得:

$$s = \frac{|\overrightarrow{a}| + |\overrightarrow{b}|}{|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{a} - \overrightarrow{b}|}.$$

・20・ 第一章 向量代数

由此可见 s = k, 即 T = T'.

11 在 $\triangle ABC$ 中, 点 P 由 $\overrightarrow{AP} = k\overrightarrow{AB} + mt\overrightarrow{AC}$ 所确定, 其中实数 k, m, t 满足 $k + m = 1, k \geq \frac{1}{3}, m \geq \frac{1}{3}, -1 \leq t \leq 1$. 若使 P 为 $\triangle ABC$ 的重心, 则 k, m, t 各应取什么值?

解: 建立仿射坐标系 $[A; \overrightarrow{AB}, \overrightarrow{AC}]$. 则 A(0,0), B(1,0), C(0,1), P(k,mt). 若 P 为 $\triangle ABC$ 的重心,则 $k=\frac{1}{3}$, $mt=\frac{1}{3}$. 而 k+m=1, 推知 $m=\frac{2}{3}$, 从而 $t=\frac{1}{2}$.

12. 如图, 已知平行六面体 $OABC - O_1A_1B_1C_1$ 中, 点 P 在棱 AA_1 上, 且 $\overrightarrow{AP} = 2\overrightarrow{PA_1}$, 点 S 在棱 CC_1 上, 且 $\overrightarrow{CS} = \frac{1}{2}\overrightarrow{SC_1}$, 点 Q, R 分别是棱 O_1C_1 , AB 的中点. 求证: 直线 PQ 与直线 RS 平行.

证明: 建立坐标系 $[O; \overrightarrow{OA}, \overrightarrow{OC}, \overrightarrow{OO_1}]$. 因为 $|\overrightarrow{AP}| = 2|\overrightarrow{PA_1}|$, 所以

$$\overrightarrow{AP} = 2\overrightarrow{PA_1} = \frac{2}{3}\overrightarrow{AA_1},$$

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OA} + \frac{2}{3}\overrightarrow{AA_1} = \overrightarrow{OA} + \frac{2}{3}\overrightarrow{OO_1},$$

$$\overrightarrow{OQ} = \overrightarrow{OO_1} + \overrightarrow{O_1Q} = \overrightarrow{OO_1} + \frac{1}{2}\overrightarrow{OC},$$

从而

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = -\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OO_1} + \frac{1}{2}\overrightarrow{OC}.$$

类似地,

$$\overrightarrow{OR} = \overrightarrow{OA} + \overrightarrow{AR} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{OC},$$

$$\overrightarrow{OS} = \overrightarrow{OC} + \overrightarrow{CS} = \overrightarrow{OC} + \frac{2}{3}\overrightarrow{OO_1},$$

所以

$$\overrightarrow{RS} = \overrightarrow{OS} - \overrightarrow{OR} = -\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OO_1} + \frac{1}{2}\overrightarrow{OC}.$$

§3 用坐标表示向量 · 21 ·

这样就有 $\overrightarrow{PQ} = \overrightarrow{RS}$, 于是 $\overrightarrow{PQ} / / \overrightarrow{RS}$.

13. 已知空间四边形 ABCD, 将 AB, AD, CD 及 CB 以相同比分之, 证明这四个分点构成一个平行四边形.

证明: 如图. 设分点为 E, F, G, H. 设

$$\overrightarrow{AE} = k\overrightarrow{EB} = \frac{1}{1+k}\overrightarrow{AB}, \quad \overrightarrow{AF} = k\overrightarrow{FD} = \frac{1}{1+k}\overrightarrow{AD},$$

则

$$\overrightarrow{EF} = \overrightarrow{AF} - \overrightarrow{AE} = \frac{1}{1+k}\overrightarrow{BD}.$$

类似地,由 $\overrightarrow{CH}=k\overrightarrow{CB}$ 以及 $\overrightarrow{CG}=k\overrightarrow{CD}$ 可以得到 $\overrightarrow{HG}=\frac{1}{2}\overrightarrow{BD}$. 因此 $\overrightarrow{EF}=\overrightarrow{HG}$, 证明了 \overrightarrow{EFGH} 是平行四边形.

14. 证明:四面体的四条中线交于一点 (即四面体的重心),且此交点将每一条中线分成定比为 3:1 (由顶点算起)的两部分.(注:四面体的中线即四面体的顶点到其对面的重心的连线)

证明: 建立仿射坐标系 $[V;\overrightarrow{VA},\overrightarrow{VB},\overrightarrow{VC}]$. G 点为 $\triangle ABC$ 的重心, G_1 为 $\triangle VBC$ 的重心, 由习题 1–2 的第 3 题知:

$$\overrightarrow{VG} = \frac{1}{3}(\overrightarrow{VA} + \overrightarrow{VB} + \overrightarrow{VC}) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),$$

$$\overrightarrow{AG_1} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AV}) = \frac{1}{3}(\overrightarrow{VB} - \overrightarrow{VA} + \overrightarrow{VC} - \overrightarrow{VA} - \overrightarrow{VA})$$
$$= \frac{1}{3}(-3\overrightarrow{VA} + \overrightarrow{VB} + \overrightarrow{VC}) = \left(-1, \frac{1}{3}, \frac{1}{3}\right).$$

取把中线 VG 分成 3:1 的分点 M, 即

$$\overrightarrow{VM} = \frac{3}{4}\overrightarrow{VG} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right),$$

同时,

$$\overrightarrow{VA} + \frac{3}{4}\overrightarrow{AG_1} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) = \overrightarrow{VM}.$$

所以 M 在 VG 与 AG_1 上. 同理,可证得: 若设 G_2, G_3 分别是 $\triangle VAB$ 和 $\triangle VAC$ 的重心. 则 CG_2 与 BG_3 也必交于点 M', 且 $\overrightarrow{VM'} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$, 因此 M' = M, 且交点分每一中线成定比 3:1.

. 22 . 第一章 向量代数

15. 四面体的不相交的两条棱称为对棱,每一对对棱的中点的连线称为四 面体的拟中线. 证明: 四面体的三条拟中线交于它的重心, 且此重心是每一条拟 中线的中点.

证明: 同上题建立仿射坐标系 $[V;\overrightarrow{VA},\overrightarrow{VB},\overrightarrow{VC}]$, 设 M 是四面体的重心, 则 $\overrightarrow{VM} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. 设 D, E 分别为 AB, VC 的中点. 则

$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{VB} - \frac{1}{2}\overrightarrow{VA},$$

$$\overrightarrow{VD} = \frac{1}{2}\overrightarrow{VA} + \frac{1}{2}\overrightarrow{VB} = \left(\frac{1}{2}, \frac{1}{2}, 0\right).$$

$$\overrightarrow{VE} = \frac{1}{2}\overrightarrow{VC} = \left(0, 0, \frac{1}{2}\right),$$

所以

$$\overrightarrow{ED} = \overrightarrow{VD} - \overrightarrow{VE} = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right).$$

由于

$$\overrightarrow{VE} + \frac{1}{2}\overrightarrow{ED} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) = \overrightarrow{VM},$$

说明重心 M 在 ED 上且等分 ED. 同理可证其它.

线性相关性与线性方程组

1. 计算下列 2 阶与 3 阶行列式:解: (1)
$$\begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix} = -5.$$
(2) $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = 1.$

$$\begin{vmatrix} 1 & 2 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix} = 1.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 5 \\ 2 & 3 & -3 \end{vmatrix} = -22.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 5 \\ 2 & 3 & -3 \end{vmatrix} = -22.$$

$$\begin{vmatrix} 3 & 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = 2.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 5 \\ 2 & x & y \\ y & z & x \end{vmatrix} = x^3 + y^3 + z^3 - 3xyz.$$

2. 利用 2 阶或 3 阶行列式解线性方程组

(1)
$$\begin{cases} 2x - 3y = 5, \\ 3x + 2y = 1; \end{cases}$$
 (2)
$$\begin{cases} 2x - y + 3z = 9, \\ 3x - 5y + z = -3, \\ x + 3y - 2z = -6. \end{cases}$$

解: (1)
$$x = \frac{\begin{vmatrix} 5 & -3 \\ 1 & 2 \end{vmatrix}}{\begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix}} = \frac{13}{13} = 1, y = \frac{\begin{vmatrix} 2 & 5 \\ 3 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix}} = \frac{-13}{13} = -1.$$

$$(2) \ x = \frac{\begin{vmatrix} 9 & -1 & 3 \\ -3 & -5 & 1 \\ -6 & 3 & -2 \end{vmatrix}}{\begin{vmatrix} 2 & -1 & 3 \\ 3 & -5 & 1 \\ 1 & 3 & -2 \end{vmatrix}} = \frac{-42}{49} = -\frac{6}{7}, \ y = \frac{\begin{vmatrix} 2 & 9 & 3 \\ 3 & -3 & 1 \\ 1 & -6 & -2 \end{vmatrix}}{\begin{vmatrix} 2 & -1 & 3 \\ 3 & -5 & 1 \\ 1 & 3 & -2 \end{vmatrix}} = \frac{42}{49} = \frac{4$$

$$\frac{6}{7}, z = \frac{\begin{vmatrix} 2 & -1 & 9 \\ 3 & -5 & -3 \\ 1 & 3 & -6 \end{vmatrix}}{\begin{vmatrix} 2 & -1 & 3 \\ 3 & -5 & 1 \\ 1 & 3 & -2 \end{vmatrix}} = \frac{189}{49} = \frac{27}{7}.$$

3. 设 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ 为基.

- (1) 证明: 向量 $\overrightarrow{a} = \overrightarrow{e_1} + 3\overrightarrow{e_2} \overrightarrow{e_3}$, $\overrightarrow{b} = 2\overrightarrow{e_1} 3\overrightarrow{e_2} 10\overrightarrow{e_3}$, $\overrightarrow{c} = -\overrightarrow{e_1} + 2\overrightarrow{e_2} + 6\overrightarrow{e_3}$ 线性无关;
 - (2) 求向量 $\overrightarrow{d} = 3\overrightarrow{a} 2\overrightarrow{b} + \overrightarrow{c}$ 在基 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ 下的坐标;
 - (3) 求向量 \overrightarrow{f} , 使 $-\overrightarrow{a} + 2\overrightarrow{b} 3\overrightarrow{c} + 3\overrightarrow{f} = 0$.

解: (1) 设有实数 x_1, x_2, x_3 满足线性关系式 $x_1\overrightarrow{a} + x_2\overrightarrow{b} + x_3\overrightarrow{c} = 0$, 表达

第一章 向量代数 · 24 ·

成坐标形式就是

$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 3x_1 - 3x_2 + 2x_3 = 0 \\ -x_1 - 10x_2 + 6x_3 = 0, \end{cases}$$

它的系数行列式是

$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & -3 & 2 \\ -1 & -10 & 6 \end{vmatrix} = -5 \neq 0,$$

因此这个方程组只有零解, 即 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 线性无关

 $(2) \overrightarrow{d} = 3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c} = 3(\overrightarrow{e_1} + 3\overrightarrow{e_2} - \overrightarrow{e_3}) - 2(2\overrightarrow{e_1} - 3\overrightarrow{e_2} - 10\overrightarrow{e_3}) +$ $(-\overrightarrow{e_1} + 2\overrightarrow{e_2} + 6\overrightarrow{e_3}) = -2\overrightarrow{e_1} + 17\overrightarrow{e_2} + 23\overrightarrow{e_3}, \text{ 故 } \overrightarrow{d} \text{ 的坐标是 } (-2, 17, 23).$ $(3) \overrightarrow{f} = \frac{1}{3}(\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}) = \frac{1}{3}(-6\overrightarrow{e_1} + 15\overrightarrow{e_2} + 37\overrightarrow{e_3}) = -2\overrightarrow{e_1} + 5\overrightarrow{e_2} + \frac{37}{3}\overrightarrow{e_3}.$

- **4.** 判断下列每组的三个向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 是否共面? 能否将 \overrightarrow{c} 表示成其它 两个向量的线性组合? 若能, 写出具体的表示式子.
 - (1) $\overrightarrow{a}(5,2,1)$, $\overrightarrow{b}(-1,4,2)$, $\overrightarrow{c}(-1,-1,5)$; (2) $\overrightarrow{a}(3,3,2)$, $\overrightarrow{b}(6,6,4)$, $\overrightarrow{c}(1,-1,0)$;

 - (3) $\overrightarrow{a}(1,2,-3)$, $\overrightarrow{b}(-2,-4,6)$, $\overrightarrow{c}(1,0,5)$.

解: 问题归结为求解 $x_1\overrightarrow{a} + x_2\overrightarrow{b} + x_3\overrightarrow{c} = 0$.

(1) 齐次线性方程组

$$\begin{cases} 5x_1 - x_2 - x_3 = 0 \\ 2x_1 + 4x_2 - x_3 = 0 \\ x_1 + 2x_2 + 5x_3 = 0, \end{cases}$$

其系数行列式

$$\begin{vmatrix} 5 & -1 & -1 \\ 2 & 4 & -1 \\ 1 & 2 & 5 \end{vmatrix} = 121 \neq 0,$$

方程只有零解,故原向量组不共面.

(2) 齐次线性方程组

$$\begin{cases} 3x_1 + 6x_2 + x_3 = 0 \\ 3x_1 + 6x_2 - x_3 = 0 \\ 2x_1 + 4x_2 = 0, \end{cases}$$

其系数行列式

$$\left| \begin{array}{ccc} 3 & 6 & 1 \\ 3 & 6 & -1 \\ 2 & 4 & 0 \end{array} \right| = 0,$$

方程组有非零解, 故原向量组共面. 为将 \overrightarrow{c} 表示成 \overrightarrow{a} , \overrightarrow{b} 的线性组合, 可取 $x_3=-1$ 代入, 得到方程组

$$\begin{cases} 3x_1 + 6x_2 = 1\\ 3x_1 + 6x_2 = 1\\ 2x_1 + 4x_2 = 0, \end{cases}$$

这是矛盾方程组, 因此 \overrightarrow{c} 不能表示成 \overrightarrow{a} , \overrightarrow{b} 的线性组合.

(3) 齐次线性方程组

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_1 - 4x_2 = 0 \\ -3x_1 + 6x_2 + 5x_3 = 0, \end{cases}$$

其系数行列式

$$\begin{vmatrix} 1 & -2 & 1 \\ 2 & -4 & 0 \\ -3 & 6 & 5 \end{vmatrix} = 0,$$

方程组有非零解, 故原向量组共面. 为将 \overrightarrow{c} 表示成 \overrightarrow{a} , \overrightarrow{b} 的线性组合, 可取 $x_3 = -1$ 代人, 得到方程组

$$\begin{cases} x_1 - 2x_2 = -1 \\ 2x_1 - 4x_2 = 0 \\ -3x_1 + 6x_2 = -5, \end{cases}$$

这是矛盾方程组, 因此 \overrightarrow{c} 不能表示成 \overrightarrow{a} , \overrightarrow{b} 的线性组合.

5. 设向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的坐标分别是 (1,-1,2), (2,k,1), (1,1-k,k). 问: 当 k 取什么值时, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面? 特别地, k 取什么值时, \overrightarrow{a} , \overrightarrow{c} 共线?

解:这3个向量共面的充分必要条件是其坐标的行列式等于0,即

$$\begin{vmatrix} 1 & -1 & 2 \\ 2 & k & 1 \\ 1 & 1 - k & k \end{vmatrix} = k^2 - 3k + 2 = 0.$$

因此当 k=1 或 2 时这 3 个向量共面. 要使 \overrightarrow{a} , \overrightarrow{c} 共线必须使它们的相应坐标 成比例, 即 $\frac{1}{1} = \frac{1-k}{1} = \frac{k}{2}$, 解得 k=2. 因此当 k=2 时 \overrightarrow{a} , \overrightarrow{c} 共线.

6. 设 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ 为基. 问向量 \overrightarrow{v} 能否表为向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的线性组合? 如 能,则写出表达式。

 $(1) \overrightarrow{a} = \overrightarrow{e_1} + 2\overrightarrow{e_2} + 4\overrightarrow{e_3}, \overrightarrow{b} = \overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3}, \overrightarrow{c} = \overrightarrow{e_1} + \overrightarrow{e_2} + 3\overrightarrow{e_3},$ $\overrightarrow{v} = 6\overrightarrow{e_1} + 3\overrightarrow{e_2} + 15\overrightarrow{e_3};$

 $(2) \overrightarrow{a} = \overrightarrow{e_1} + 3\overrightarrow{e_2} + 13\overrightarrow{e_3}, \overrightarrow{b} = \overrightarrow{e_1} + 2\overrightarrow{e_2} + 2\overrightarrow{e_3}, \overrightarrow{c} = -\overrightarrow{e_1} + 6\overrightarrow{e_2} + 5\overrightarrow{e_3},$

解: 设 $\overrightarrow{v} = x_1 \overrightarrow{a} + x_2 \overrightarrow{b} + x_3 \overrightarrow{c}$, 问题归结为解线性方程组.

(1) 方程组为

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ 2x_1 - x_2 + x_3 = 3 \\ 4x_1 + x_2 + 3x_3 = 15, \end{cases}$$

系数行列式
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 4 & 1 & 3 \end{vmatrix} = 0$$
,不能断定方程组是否有解。用加减消去法解 $\begin{cases} x_1 = 3 - \frac{2}{3}x_3 \\ x_2 = 3 - \frac{1}{3}x_3 \end{cases}$ 令 $x_3 = 3k$ 可以得到线性表示式 $\overrightarrow{v} = (3 - 2k)\overrightarrow{a} + (3 - 2k)\overrightarrow{b} + 2k\overrightarrow{c}$ 其中 b 为任意教

(2) 方程组为
$$\begin{cases} x_1 + x_2 - x_3 = 2\\ -2x_1 + 2x_2 + 6x_3 = 1 \end{cases}$$
 系数行列式
$$3x_1 + 2x_2 + 5x_3 = 0,$$

$$\begin{vmatrix} 1 & 1 & -1 \\ -2 & 2 & 6 \\ 3 & 2 & 5 \end{vmatrix} = 36,$$

方程组有解:

$$x_1 = \frac{ \begin{vmatrix} 2 & 1 & -1 \\ 1 & 2 & 6 \\ 0 & 2 & 5 \end{vmatrix}}{36} = -\frac{11}{36}, \quad x_2 = \frac{ \begin{vmatrix} 1 & 2 & -1 \\ -2 & 1 & 6 \\ 3 & 0 & 5 \end{vmatrix}}{36} = \frac{16}{9},$$

 $\S 5 n$ 维向量空间 $\cdot 27 \cdot$

$$x_3 = \frac{\begin{vmatrix} 1 & 1 & 2 \\ -2 & 2 & 1 \\ 3 & 2 & 0 \end{vmatrix}}{36} = -\frac{19}{36}.$$

线性表示式为 $\overrightarrow{v} = -\frac{11}{36}\overrightarrow{a} + \frac{16}{9}\overrightarrow{b} - \frac{19}{36}\overrightarrow{c}$.

7. 当 a 为何值时,下列四点共面:

$$M_1(1, a, a^2), M_2(1, -1, 1), M_3(2, 1, -2), M_4(-1, 2, 2).$$

解:根据推论 4.5,此 4 点共面的充分必要条件是

$$\begin{vmatrix} 1-1 & 2-1 & -1-1 \\ -1-a & 1-a & 2-a \\ 1-a^2 & -2-a^2 & 2-a^2 \end{vmatrix} = -7a^2 - 5a + 2 = 0,$$

解得 a = -1 或 $\frac{2}{7}$.

§ 5 n 维向量空间

- **1.** 根据 n 维向量的定义证明: 对任意 n 维向量 α , 有
- (1) $0\alpha = 0$;
- (2) $(-1)\alpha = -\alpha$;
- (3) k0 = 0 (任意数 k);
- (4) 从 $k\alpha = 0$ 推出 k = 0 或 $\alpha = 0$.

证明: 对任意的 $\alpha = (a_1, \dots, a_n)$, 则:

- (1) $0\alpha = (0a_1, \dots, 0a_n) = (0, \dots, 0) = 0.$
- $(2) (-1)\alpha = ((-1)a_1, \cdots, (-1)a_n) = (-a_1, \cdots, -a_n) = -\alpha.$
- (3) $k0 = (k0, \dots, k0) = (0, \dots, 0) = 0.$
- (4) $k\alpha = (ka_1, \dots, ka_n) = (0, \dots, 0)$. 若 $\alpha \neq 0$, 则存在 $a_i \neq 0$, 由 $ka_i = 0$ 可得 k = 0.
 - 2. 证明: 任一数域都包含有理数域.

证明: 设 K 为一个数域, 则 $1 \in K$. 所以对任意的正整数 n 有 $n = \underbrace{1 + \cdots + 1}_{n} \in K$, 并且 n 的负元 $-n \in K$. 因此 K 含有全部整数. 又因对任意

的整数 $n \neq 0$, $n \in K$, $\frac{1}{n}$ 为 n 的逆元, 则 $\frac{1}{n} \in K$, 所以对任意的有理数 $\frac{m}{n}$ (其中 m,n 是整数), 有 $\frac{m}{n} = m \times n \in K$, 故有理数域 $\mathbb{Q} \subseteq K$.

・28・ 第一章 向量代数

3. 证明: 全体形如

$$a + b\sqrt{2}, \quad a, b \in \mathbb{Q}$$

的数组成的集合构成一个数域.

证明: 把这个集合记为 K, 设 $a_1 + b_1\sqrt{2}$, $a_2 + b_2\sqrt{2} \in K$, 则

$$(a_1 + b_1\sqrt{2}) \pm (a_2 + b_2\sqrt{2}) = (a_1 \pm a_2) + (b_1 \pm b_2)\sqrt{2} \in K$$

(因为有理数的和与差仍是有理数);

$$(a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2} \in K$$

(因为有理数的和、差与乘积仍是有理数); 当 $a_2 + b_2\sqrt{2} \neq 0$ 时,

$$\frac{a_1+b_1\sqrt{2}}{a_2+b_2\sqrt{2}} = \frac{(a_1+b_1\sqrt{2})(a_2-b_2\sqrt{2})}{a_2^2-2b_2^2} = \frac{a_1a_2-2b_1b_2}{a_2^2-2b_2^2} + \frac{a_2b_1-a_1b_2}{a_2^2-2b_2^2} \in K$$

(有理数关于除法也是封闭的). 因此集合 K 关于加减乘除法都封闭, 成为一个数域.

- **4.** 设 K 为数域, V 为 K 上的 n 维向量空间. 证明: 对所有的 $k \in K$, $\alpha, \beta \in V$, 有
 - (1) $k(\alpha \beta) = k\alpha k\beta$;
 - (2) $\underbrace{\alpha + \alpha + \dots + \alpha}_{n \uparrow \uparrow} = n\alpha;$
 - (3) 若 $\alpha + \beta = \alpha + \gamma$, 则 $\beta = \gamma$

证明: 设 $\alpha = (a_1, \dots, a_n), \beta = (b_1, \dots, b_n) \ (a_i, b_i \in K).$ 则对任意的 $k \in K$,

$$(1) k(\alpha - \beta) = k(a_1 - b_1, \dots, a_n - b_n) = (k(a_1 - b_1), \dots, k(a_n - b_n)) = (ka_1 - kb_1, \dots, ka_n - kb_n) = k(a_1, \dots, a_n) - k(b_1, \dots, b_n) = k\alpha - k\beta.$$

$$(2) \underbrace{\alpha + \dots + \alpha}_{n} = \underbrace{(a_{1} + \dots + a_{1})}_{n}, \underbrace{a_{2} + \dots + a_{2}}_{n}, \dots, \underbrace{a_{n} + \dots + a_{n}}_{n}) = (na_{1}, \dots, na_{n}) = n\alpha.$$

(3) 若设 $\gamma = (c_1, \dots, c_n)$, 且 $\alpha + \beta = \alpha + \gamma$, 即: $(a_1 + b_1, \dots, a_n + b_n) = (a_1 + c_1, \dots, a_n + c_n)$, 则有 $a_i + b_i = a_i + c_i$, 即 $b_i = c_i$, 所以 $\beta = \gamma$.

§ 6 几何空间向量的内积

1. 将下列向量单位化:

(1)
$$\overrightarrow{a} = 5\overrightarrow{i} - 6\overrightarrow{j} + 3\overrightarrow{k}$$
; (2) $\overrightarrow{b} = \frac{1}{2}\overrightarrow{i} - \frac{1}{3}\overrightarrow{k}$.

解:
$$(1)$$
 $\overrightarrow{a^0} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{\sqrt{70}}{70} (5\overrightarrow{i} - 6\overrightarrow{j} + 3\overrightarrow{k}).$

$$(2) \overrightarrow{b^0} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \frac{\sqrt{13}}{13} (3\overrightarrow{i} - 2\overrightarrow{k}).$$

2. 计算下列向量的夹角:

(1)
$$\overrightarrow{a} = (1, -2, 3), \overrightarrow{b} = (2, 1, -2); (2) \overrightarrow{a} = (-2, 1, -1), \overrightarrow{b} = (1, -1, 4).$$

解:
$$(1)$$
 $|\overrightarrow{a}| = \sqrt{14}$, $|\overrightarrow{b}| = 3$, $\overrightarrow{a} \cdot \overrightarrow{b} = -6$, 所以

$$\cos\langle \overrightarrow{a}, \overrightarrow{b} \rangle = \frac{-6}{\sqrt{14} \cdot 3} = -\frac{\sqrt{14}}{7}, \quad \langle \overrightarrow{a}, \overrightarrow{b} \rangle = \pi - \arccos\frac{\sqrt{14}}{7}.$$

$$(2) |\overrightarrow{a}| = \sqrt{6}, |\overrightarrow{b}| = 3\sqrt{2}, \overrightarrow{a} \cdot \overrightarrow{b} = -7, 所以$$
$$\cos\langle \overrightarrow{a}, \overrightarrow{b} \rangle = \frac{-7}{6\sqrt{3}} = -\frac{7\sqrt{3}}{18}, \quad \langle \overrightarrow{a}, \overrightarrow{b} \rangle = \pi - \arccos \frac{7\sqrt{3}}{18}.$$

3. 求向量 \overrightarrow{a} 在 $\overrightarrow{e^0}$ 上的投影:

(1)
$$\overrightarrow{a} = (1, -1, 2), \overrightarrow{e} = (1, 1, 1);$$
 (2) $\overrightarrow{a} = (-2, 1, 3), \overrightarrow{e} = (1, 2, 0).$

解: (1)
$$\overrightarrow{e^0} = \frac{\overrightarrow{e}}{|\overrightarrow{e'}|} = \frac{\sqrt{3}}{3}(1,1,1), 则$$

$$\begin{aligned} \operatorname{pr}_{\overrightarrow{e^0}} \; \overrightarrow{a} &= (\Pi_{\overrightarrow{e^0}} \; \overrightarrow{a}) \overrightarrow{e^0} = (\overrightarrow{a} \cdot \overrightarrow{e^0}) \overrightarrow{e^0} = \frac{2\sqrt{3}}{3} \overrightarrow{e^0} \\ &= \frac{2\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{3} (1, 1, 1) = \frac{2}{3} (1, 1, 1). \end{aligned}$$

(2) 因 $\overrightarrow{a} \cdot \overrightarrow{e} = 0$, 所以 $\operatorname{pr}_{\overrightarrow{a}} \overrightarrow{a} = 0$.

4. 证明: 以 A(3,-1,2), B(0,-4,2), C(-3,2,1) 为顶点的三角形是等腰三角形.

证明: $\overrightarrow{AB} = (-3, -3, 0), \ \overrightarrow{AC} = (-6, 3, -1), \ \overrightarrow{BC} = (-3, 6, -1), \ |\overrightarrow{AB}| = 3\sqrt{2}, \ |\overrightarrow{AC}| = |\overrightarrow{BC}| = \sqrt{46} \neq |\overrightarrow{AB}|, \ \text{所以} \triangle ABC$ 是等腰三角形.

5. 证明: 以 A(3,-2,1), B(7,6,9), C(9,1,-5) 为顶点的三角形是直角三角形.

证明: $\overrightarrow{AB}=(4,8,8)$, $\overrightarrow{AC}=(6,3,-6)$, $\overrightarrow{AB}\cdot\overrightarrow{AC}=12(2+2-4)=0$, 所以 $\triangle ABC$ 是直角三角形.

6. 设有三个向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 两两构成 60° 角,且知 $|\overrightarrow{a}| = 4$, $|\overrightarrow{b}| = 2$, $|\overrightarrow{c}| = 6$. 求 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ 的长度.

解: $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a}^2 + \overrightarrow{b}^2 + \overrightarrow{c}^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + 2\overrightarrow{a} \cdot \overrightarrow{c} + 2\overrightarrow{b} \cdot \overrightarrow{c} = 16 + 4 + 36 + 2(8 + 24 + 12)\cos 60^\circ = 100$. 所以 $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| = 10$.

第一章 向量代数

7. 已知 $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 2$, $\langle \overrightarrow{a}, \overrightarrow{b} \rangle = \frac{\pi}{6}$. 试求 $3\overrightarrow{a} + 2\overrightarrow{b}$ 与 $2\overrightarrow{a} - 5\overrightarrow{b}$ 的内积.

解: $(3\overrightarrow{a} + 2\overrightarrow{b}) \cdot (2\overrightarrow{a} - 5\overrightarrow{b}) = 6\overrightarrow{a}^2 - 10\overrightarrow{b}^2 - 11\overrightarrow{a} \cdot \overrightarrow{b} = 54 - 40 - 11 \times 3 \times 2 \times \frac{\sqrt{3}}{2} = 14 - 33\sqrt{3}.$

8. 在直角坐标系中, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的坐标分别是(3,5,7), (0,4,3), (-1,2,-4). 求 $3\overrightarrow{a}+4\overrightarrow{b}-5\overrightarrow{c}$ 与 $2\overrightarrow{b}+\overrightarrow{c}$ 的夹角.

解: 记

$$\overrightarrow{p} = 3\overrightarrow{a} + 4\overrightarrow{b} - 5\overrightarrow{c} = (14, 21, 53), \quad \overrightarrow{q} = 2\overrightarrow{b} + \overrightarrow{c} = (-1, 10, 2),$$

则

$$\overrightarrow{p}^2 = 3446, \quad \overrightarrow{q}^2 = 105, \quad \overrightarrow{p} \cdot \overrightarrow{q} = 302.$$

所以

$$\cos\langle \overrightarrow{p}, \overrightarrow{q} \rangle = \frac{151\sqrt{361830}}{180915}.$$

9. 求下列向量的方向余弦:

(1)
$$\overrightarrow{a} = (2, -3, -6);$$
 (2) $\overrightarrow{b} = (2, 3, -10).$

解: (1)
$$\cos \alpha = \frac{2}{7}$$
, $\cos \beta = \frac{-3}{7}$, $\cos \gamma = \frac{-6}{7}$.

(2)
$$\cos \alpha = \frac{2\sqrt{113}}{113}$$
, $\cos \beta = \frac{3\sqrt{113}}{113}$, $\cos \gamma = -\frac{10\sqrt{113}}{113}$.

10 设向量 $\vec{a} = (1, 2, 4), \vec{b} = (1, 1, 1), \vec{c} = \vec{b} - k\vec{a}$ (k 是实数).

(1) 求
$$k$$
 使 $\overrightarrow{c} \perp \overrightarrow{a}$;

(2) 求与 \overrightarrow{a} , \overrightarrow{c} 都垂直的 \overrightarrow{d} .

解: (1) 由已知,

$$\overrightarrow{c} \perp \overrightarrow{a} \iff \overrightarrow{a} \cdot \overrightarrow{c} = 0 \iff \overrightarrow{a} \cdot \overrightarrow{b} - k\overrightarrow{a}^2 = 0.$$

而 $\overrightarrow{a} \cdot \overrightarrow{b} = 7$, $\overrightarrow{a}^2 = 21$, 所以 $k = \frac{1}{3}$.

(2) \overrightarrow{d} 垂直于 \overrightarrow{a} , \overrightarrow{c} 等价于 $\overrightarrow{d} \cdot \overrightarrow{a} = \overrightarrow{d} \cdot \overrightarrow{c} = 0$, 由假设 $\overrightarrow{c} = \overrightarrow{b} - k\overrightarrow{a}$, 也等价于 $\overrightarrow{d} \cdot \overrightarrow{a} = \overrightarrow{d} \cdot \overrightarrow{b} = 0$. 设 $\overrightarrow{d} = (x, y, z)$, 得

$$\overrightarrow{d} \cdot \overrightarrow{a} = x + 2y + 4z = 0,$$

 $\overrightarrow{d} \cdot \overrightarrow{b} = x + y + z = 0.$

解得 x = 2z, y = -3z, 即 $\overrightarrow{d} = (2k, -3k, k)$ (k 是实数).

11 设 \overrightarrow{a} , \overrightarrow{b} 是两个单位向量, s, t 是两个非零实数, 使得

$$|s\overrightarrow{a} + t\overrightarrow{b}| = |t\overrightarrow{a} - s\overrightarrow{b}|$$

求 \overrightarrow{a} , \overrightarrow{b} 的夹角.

解: 由 $|s\overrightarrow{a} + t\overrightarrow{b}| = |t\overrightarrow{a} - s\overrightarrow{b}|$ 得 $(s\overrightarrow{a} + t\overrightarrow{b})^2 = (t\overrightarrow{a} - s\overrightarrow{b})^2$. 推出 $s^2 + t^2 + 2st\overrightarrow{a} \cdot \overrightarrow{b} = t^2 + s^2 - 2st\overrightarrow{a} \cdot \overrightarrow{b}$. 故 $2st\overrightarrow{a} \cdot \overrightarrow{b} = 0$. 又因 $st \neq 0$, 得 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, 夹角为 $\frac{\pi}{2}$.

12. 如图,已知长方体 $OABC-O_1A_1B_1C_1$ 中,|OA|=8,|OC|=6, $|OO_1|=1$. P 是棱 OC 上的点,且|PC|=2|OP|, M 是棱 AB 上的点,且|AM|=2|MB|, N 是棱 B_1C_1 的中点.求直线 A_1P 与直线 MN 所成的角.

解: 把向量 \overrightarrow{OA} , \overrightarrow{OC} , $\overrightarrow{OO_1}$ 的单位向量记为 \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} , 建立直角坐标系 $[O:\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}]$. 则

$$\overrightarrow{OA_1} = 8 \overrightarrow{i} + \overrightarrow{k} = (8, 0, 1);$$

$$\overrightarrow{OP} = \frac{1}{3} \overrightarrow{OC} = 2 \overrightarrow{j} = (0, 2, 0);$$

$$\overrightarrow{OM} = 8 \overrightarrow{i} + \frac{2}{3} \overrightarrow{OC} = 8 \overrightarrow{i} + 4 \overrightarrow{j} = (8, 4, 0);$$

$$\overrightarrow{ON} = \frac{1}{2} \overrightarrow{OA} + 6 \overrightarrow{j} + \overrightarrow{k} = (4, 6, 1);$$

因此

$$\overrightarrow{A_1P} = \overrightarrow{OP} - \overrightarrow{OA_1} = (-8, 2, -1);$$

$$\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM} = (-4, 2, 1).$$

所以

$$\cos\langle \overrightarrow{A_1P}, \overrightarrow{MN} \rangle = \frac{35}{\sqrt{69}\sqrt{21}} = \frac{5\sqrt{161}}{69}.$$

13. 计算正方体的对角线与它的任一个面的对角线之间的夹角.

解: 建立直角坐标系 $[A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA_1}]$, 以对角线 AC_1 来计算此题.

$$\overrightarrow{AC_1} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CC_1} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA_1} = (1, 1, 1).$$

(a) $\overrightarrow{AB_1} = \overrightarrow{AB} + \overrightarrow{BB_1} = \overrightarrow{AB} + \overrightarrow{AA_1} = (1,0,1)$, 所以 $\cos\langle \overrightarrow{AC_1}, \overrightarrow{AB_1} \rangle = \frac{2}{\sqrt{3} \cdot \sqrt{2}} = \frac{\sqrt{6}}{3}$. 由对称性, $\overrightarrow{AC_1}$ 与 $\overrightarrow{A_1C_1}$, $\overrightarrow{AD_1}$, $\overrightarrow{BC_1}$, $\overrightarrow{DC_1}$, \overrightarrow{AC} 的夹角余弦也为 $\frac{\sqrt{6}}{3}$.

(b) $\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = (-1,0,1)$, 所以 $\cos\langle \overrightarrow{AC_1}, \overrightarrow{BD} \rangle = \frac{0}{\sqrt{3} \cdot \sqrt{2}} = 0$, 即 $\langle \overrightarrow{AC_1}, \overrightarrow{BD} \rangle = \frac{\pi}{2}$. 同理. $\overrightarrow{AC_1} = \overrightarrow{B_1D}$, $\overrightarrow{DA_1}$, $\overrightarrow{CB_1}$, $\overrightarrow{BA_1}$, $\overrightarrow{CD_1}$ 的夹角也为 $\frac{\pi}{2}$.

14. 试问 $(\overrightarrow{a}\overrightarrow{b})\overrightarrow{c} = \overrightarrow{a}(\overrightarrow{b}\overrightarrow{c})$ 一定成立吗? 请给出该向量等式成立的条件.

解: 等式左端是与 \overrightarrow{c} 共线的向量, 右端是与 \overrightarrow{a} 共线的向量. 如果两端都不等于 0, 则 \overrightarrow{a} 与 \overrightarrow{c} 共线, 即存在 $k \neq 0$, 使 $\overrightarrow{a} = k\overrightarrow{c}$. 反之若 $\overrightarrow{a} = k\overrightarrow{c}$, 左 边 = $k(\overrightarrow{c} \cdot \overrightarrow{b})\overrightarrow{c} = (k\overrightarrow{c})(\overrightarrow{b} \cdot \overrightarrow{c}) =$ 右边.

若等式两边都等于 0, 则或者 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 中至少有一个零向量; 或者三个向量都不等于 0, 但 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = 0$, 即 \overrightarrow{b} 与 \overrightarrow{a} , \overrightarrow{c} 均正交.

15. 求解向量方程 $\overrightarrow{a}\overrightarrow{x} = \overrightarrow{b}\overrightarrow{x}$.

解: 因为 $(\overrightarrow{a} - \overrightarrow{b})\overrightarrow{x} = 0$, 分两种情况: (a) 若 $\overrightarrow{a} - \overrightarrow{b} \neq 0$, 则解 \overrightarrow{x} 为任 意与 $\overrightarrow{a} - \overrightarrow{b}$ 垂直的向量; (b) 若 $\overrightarrow{a} - \overrightarrow{b} = 0$, 则任意向量 \overrightarrow{x} 都是解向量.

16. 若向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面,而且 \overrightarrow{a} \overrightarrow{x} = 0, \overrightarrow{b} \overrightarrow{x} = 0, \overrightarrow{c} \overrightarrow{x} = 0. 则 \overrightarrow{x} = 0. 试证之.

证明: 因为 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面, 所以它们线性无关, 且 \overrightarrow{x} 可由它们线性表示, 即: $\overrightarrow{x} = k_1 \overrightarrow{a} + k_2 \overrightarrow{b} + k_3 \overrightarrow{c}$. 于是 $\overrightarrow{x}^2 = k_1 (\overrightarrow{a} \cdot \overrightarrow{x}) + k_2 (\overrightarrow{b} \cdot \overrightarrow{x}) + k_3 (\overrightarrow{c} \cdot \overrightarrow{x}) = 0$, 即: $\overrightarrow{x} = 0$.

17. 证明三个向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面的充分必要条件是

$$\begin{vmatrix} \overrightarrow{a} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} \overrightarrow{c} \\ \overrightarrow{b} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} \overrightarrow{c} \\ \overrightarrow{c} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \end{vmatrix} = 0.$$

证明: \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面当且仅当有不全为零的实数 k_1,k_2,k_3 使: $k_1\overrightarrow{a}+k_2\overrightarrow{b}+k_3\overrightarrow{c}=0$. 从而

$$\begin{cases} k_1 \overrightarrow{a}^2 + k_2 (\overrightarrow{a} \cdot \overrightarrow{b}) + k_3 (\overrightarrow{a} \cdot \overrightarrow{c}) = 0 \\ k_1 (\overrightarrow{b} \cdot \overrightarrow{a}) + k_2 \overrightarrow{b}^2 + k_3 (\overrightarrow{b} \cdot \overrightarrow{c}) = 0 \\ k_1 (\overrightarrow{c} \cdot \overrightarrow{a}) + k_2 (\overrightarrow{c} \cdot \overrightarrow{b}) + k_3 \overrightarrow{c}^2 = 0, \end{cases}$$

也即齐次线性方程组

$$\begin{cases} x \overrightarrow{a}^2 + y(\overrightarrow{a} \cdot \overrightarrow{b}) + z(\overrightarrow{a} \cdot \overrightarrow{c}) = 0 \\ x(\overrightarrow{b} \cdot \overrightarrow{a}) + y \overrightarrow{b}^2 + z(\overrightarrow{b} \cdot \overrightarrow{c}) = 0 \\ x(\overrightarrow{c} \cdot \overrightarrow{a}) + y(\overrightarrow{c} \cdot \overrightarrow{b}) + z \overrightarrow{c}^2 = 0 \end{cases}$$
 (*)

有非零解 $x = k_1, y = k_2, z = k_3$. 根据引理 4.1, 系数行列式

$$\begin{vmatrix} \overrightarrow{a}^2 & \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b}^2 & \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{c} \cdot \overrightarrow{a} & \overrightarrow{c} \cdot \overrightarrow{b} & \overrightarrow{c}^2 \end{vmatrix} = 0.$$

反之, 若

$$\begin{vmatrix} \overrightarrow{a}^2 & \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b}^2 & \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{c} \cdot \overrightarrow{a} & \overrightarrow{c} \cdot \overrightarrow{b} & \overrightarrow{c}^2 \end{vmatrix} = 0,$$

则 (*) 必有非零解, 设为 $x=k_1$, $y=k_2$, $z=k_3$, 令 $\overrightarrow{p}=k_1\overrightarrow{a}+k_2\overrightarrow{b}+k_3\overrightarrow{c}$, 那么. 从 (*) 知:

$$\overrightarrow{p}^2 = k_1 \overrightarrow{p} \cdot \overrightarrow{a} + k_2 \overrightarrow{p} \cdot \overrightarrow{b} + k_3 \overrightarrow{p} \cdot \overrightarrow{c} = 0,$$

即 $\overrightarrow{p} = 0$, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 线性无关, 必定共面.

18. 三角形 ABC 中, 已知 BC 边上的高为 AH. 试用 \overrightarrow{AB} , \overrightarrow{AC} 表示 \overrightarrow{AH} .

解:将 $\overrightarrow{AH} = \overrightarrow{AB} + k\overrightarrow{BC}$ 代入 $\overrightarrow{AH} \cdot \overrightarrow{BC} = 0$,得 $\overrightarrow{AB} \cdot \overrightarrow{BC} + k\overrightarrow{BC}^2 = 0$. 因此

$$k = \frac{-\overrightarrow{AB} \cdot \overrightarrow{BC}}{\overrightarrow{BC}^2},$$

得

$$\overrightarrow{AH} = \overrightarrow{AB} - \frac{(\overrightarrow{AB} \cdot \overrightarrow{BC})\overrightarrow{BC}}{\overrightarrow{BC}^2}.$$

第一章 向量代数

再用 $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$ 代入, 整理后得

$$\overrightarrow{AH} = \frac{1}{(\overrightarrow{AC} - \overrightarrow{AB})^2} [(\overrightarrow{AC} \cdot (\overrightarrow{AC} - \overrightarrow{AB}))\overrightarrow{AB} - (\overrightarrow{AB} \cdot (\overrightarrow{AC} - \overrightarrow{AB}))\overrightarrow{AC}].$$

19 在平面四边形 ABCD 中,设 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, $\overrightarrow{DA} = \overrightarrow{d}$. 那么,当 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{d} = \overrightarrow{d} \cdot \overrightarrow{a}$ 时,ABCD 是什么四边形?为什么?

解: 由于 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = 0, 所以

$$\begin{cases} \overrightarrow{a} + \overrightarrow{b} = -(\overrightarrow{c} + \overrightarrow{d}) \\ \overrightarrow{a} + \overrightarrow{d} = -(\overrightarrow{b} + \overrightarrow{c}) \end{cases}$$

即:

$$\begin{cases} \overrightarrow{a}^2 + \overrightarrow{b}^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{c}^2 + \overrightarrow{d}^2 + 2\overrightarrow{c} \cdot \overrightarrow{d} \\ \overrightarrow{a}^2 + \overrightarrow{d}^2 + 2\overrightarrow{a} \cdot \overrightarrow{d} = \overrightarrow{b}^2 + \overrightarrow{c}^2 + 2\overrightarrow{b} \cdot \overrightarrow{c} \end{cases}$$

所以 $\overrightarrow{a}^2 + \overrightarrow{b}^2 = \overrightarrow{c}^2 + \overrightarrow{d}^2$, $\overrightarrow{a}^2 + \overrightarrow{d}^2 = \overrightarrow{b}^2 + \overrightarrow{c}^2$. 推知 $\overrightarrow{a}^2 = \overrightarrow{c}^2$, $\overrightarrow{b}^2 = \overrightarrow{d}^2$. 从而 |AB| = |CD|, |BC| = |AD|, 即 ABCD 是平行四边形, 且 $\overrightarrow{a} + \overrightarrow{c} = 0$, $\overrightarrow{b} + \overrightarrow{d} = 0$. 由 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = -\overrightarrow{a} \cdot \overrightarrow{b}$ 知 $0 = \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{d} = \overrightarrow{d} \cdot \overrightarrow{a}$. 因此 ABCD 是矩形.

***20.** 设一个四边形各边之长分别是 a,b,c,d, 且其对角线互相垂直. 求证各边之长也是 a,b,c,d 的任一四边形的两条对角线也相互垂直.

证明: 如图, 有

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AD} + \overrightarrow{DC},$$

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BA} + \overrightarrow{AD}.$$

考虑以下内积:

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{BC}^2 + \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{CD};$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{BA} + \overrightarrow{AD}) = -\overrightarrow{AB}^2 + \overrightarrow{AB} \cdot \overrightarrow{AD} - \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{AD} \cdot \overrightarrow{BC};$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AD} + \overrightarrow{DC}) \cdot (\overrightarrow{BC} + \overrightarrow{CD}) = -\overrightarrow{CD}^2 + \overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{AD} \cdot \overrightarrow{CD} - \overrightarrow{BC} \cdot \overrightarrow{CD};$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AD} + \overrightarrow{DC}) \cdot (\overrightarrow{BA} + \overrightarrow{AD}) = \overrightarrow{AD}^2 - \overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{AB} \cdot \overrightarrow{CD} - \overrightarrow{AD} \cdot \overrightarrow{CD}.$$
将上述 4 式相加, 可得:

$$4\overrightarrow{AC} \cdot \overrightarrow{BD} = \overrightarrow{AD}^2 + \overrightarrow{BC}^2 - \overrightarrow{AB}^2 - \overrightarrow{CD}^2 + 2\overrightarrow{AB} \cdot \overrightarrow{CD} + 2\overrightarrow{AD} \cdot \overrightarrow{BC}$$

由

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = 0$$

可得

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} - \overrightarrow{BC}$$

由

$$(\overrightarrow{AB} + \overrightarrow{CD})^2 = (\overrightarrow{AD} - \overrightarrow{BC})^2$$

整理得

$$\overrightarrow{AD}^2 + \overrightarrow{BC}^2 - \overrightarrow{AB}^2 - \overrightarrow{CD}^2 = 2(\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AD} \cdot \overrightarrow{BC}).$$

代入上式得

$$4\overrightarrow{AC}\cdot\overrightarrow{BD}=2(\overrightarrow{AD}^2+\overrightarrow{BC}^2-\overrightarrow{AB}^2-\overrightarrow{CD}^2)=2(b^2+d^2-a^2-c^2).$$

这说明对角线垂直的充分必要条件是 $a^2+c^2=b^2+d^2$, 只与四边形的边长有关.

21 有一个三角形 $\triangle ABC$ 和一个圆. 三角形的三边之长分别是 |BC|=a, |CA|=b, |AB|=c, 圆的圆心在点 A, 半径为 r. 作圆的一条直径 PQ 使 $\overrightarrow{BP}\cdot\overrightarrow{CQ}$ 达到: (1) 最大, (2) 最小. 试分别求出 \overrightarrow{PQ} , 并用 a,b,c 及 r 分别表示这最大值和最小值.

解: 设 \overrightarrow{PQ} 为圆的一条直径, 则 $\overrightarrow{AQ} = -\overrightarrow{AP}$, $|\overrightarrow{AQ}| = |\overrightarrow{AP}| = r$. 由于 $\overrightarrow{BP} = \overrightarrow{BA} + \overrightarrow{AP}$, $\overrightarrow{CQ} = \overrightarrow{CA} + \overrightarrow{AQ}$, 得

$$\overrightarrow{BP} \cdot \overrightarrow{CQ} = (\overrightarrow{BA} + \overrightarrow{AP}) \cdot (\overrightarrow{CA} + \overrightarrow{AQ}) = \overrightarrow{BA} \cdot \overrightarrow{CA} + (\overrightarrow{CA} - \overrightarrow{BA}) \cdot \overrightarrow{AP} - r^2$$
$$= \overrightarrow{BA} \cdot \overrightarrow{CA} + \overrightarrow{CB} \cdot \overrightarrow{AP} - r^2.$$

(1) 要使 $\overrightarrow{BP} \cdot \overrightarrow{CQ}$ 达到极大当且仅当 $\overrightarrow{CB} \cdot \overrightarrow{AP}$ 达到极大,当且仅当 $\overrightarrow{AP} = k\overrightarrow{CB}, \ k > 0$;

(2) 要使 $\overrightarrow{BP}\cdot\overrightarrow{CQ}$ 达到极小当且仅当 $\overrightarrow{CB}\cdot\overrightarrow{AP}$ 达到极小,当且仅当 $\overrightarrow{AP}=-m\overrightarrow{CB},\,m>0.$

而 $|\overrightarrow{AP}| = r$, 所以 $k = m = \frac{r}{a}$, $\overrightarrow{PQ} = -2\overrightarrow{AP}$. 最后得到:

$$(1)$$
 $\overrightarrow{PQ} = -\frac{2r}{a}\overrightarrow{CB}$, 最大值为

$$cb\cos \angle BAC + ar - r^2 = \frac{b^2 + c^2 - a^2}{2} + ar - r^2;$$

$$(2) \overrightarrow{PQ} = \frac{2r}{a}\overrightarrow{CB}, 最小值为$$

$$cb\cos \angle BAC - ar - r^2 = \frac{b^2 + c^2 - a^2}{2} - ar - r^2.$$

22 设有一向量集合 $S=\{\overrightarrow{x}\mid |\overrightarrow{x}|^2+\overrightarrow{a}\cdot\overrightarrow{x}\leq 1\},\ \overrightarrow{a}$ 是一个非零向量. 证明: 对于任意 $\overrightarrow{x},\overrightarrow{y}\in S$ 及实数 $0\leq t\leq 1,\ t\overrightarrow{x}+(1-t)\overrightarrow{y}\in S$.

解:

$$|\overrightarrow{x}|^2 + \overrightarrow{a} \cdot \overrightarrow{x} \le 1 \iff \left(\overrightarrow{x} + \frac{\overrightarrow{a}}{2}\right)^2 \le 1 + \frac{\overrightarrow{a}^2}{4}.$$

若记 $r = 1 + \frac{\overrightarrow{a}^2}{4}$, 则 $\overrightarrow{x} \in S$ 当且仅当 \overrightarrow{x} 落在以 $-\frac{\overrightarrow{a}}{2}$ 为圆心, 半径为 r 的圆内 (包括圆周). 因此对 $0 \le t \le 1$ 及任意 \overrightarrow{x} , $\overrightarrow{y} \in S$, 只需验证

$$\left| t \overrightarrow{x} + (1-t) \overrightarrow{y} + \frac{\overrightarrow{a}}{2} \right| \le r = 1 + \frac{\overrightarrow{a}^2}{4}.$$

$$\begin{vmatrix} t\overrightarrow{x} + (1-t)\overrightarrow{y} + \frac{\overrightarrow{a}}{2} \end{vmatrix} = \left| t\left(\overrightarrow{x} + \frac{\overrightarrow{a}}{2} \right) + (1-t)\left(\overrightarrow{y} + \frac{\overrightarrow{a}}{2} \right) \right|$$

$$\leq t \left| \overrightarrow{x} + \frac{\overrightarrow{a}}{2} \right| + (1-t)\left| \overrightarrow{y} + \frac{\overrightarrow{a}}{2} \right| \leq tr + (1-t)r = r.$$

所以 $t\overrightarrow{x} + (1-t)\overrightarrow{y} \in S$.

*23 设四边形 $A_1A_2A_3A_4$ 为圆 C 的内接四边形, H_1, H_2, H_3, H_4 依次是 $\triangle A_2A_3A_4$, $\triangle A_3A_4A_1$, $\triangle A_4A_1A_2$, $\triangle A_1A_2A_3$ 的垂心. 求证: H_1, H_2, H_3, H_4 四点共圆. (提示: 以圆 C 的圆心为原点建立直角坐标系)

解: 以圆 C 的圆心为原点 O 建立直角坐标系. 设圆 C 的半径为 r, 则 $|OA_i|=r$. 在 $\triangle A_2A_3A_4$ 中, 令 $\overrightarrow{OH_1}=\overrightarrow{OA_2}+\overrightarrow{OA_3}+\overrightarrow{OA_4}$, 则

$$\overrightarrow{A_2H_1} \cdot \overrightarrow{A_3A_4} = (\overrightarrow{OH_1} - \overrightarrow{OA_2})(\overrightarrow{OA_4} - \overrightarrow{OA_3}) = (\overrightarrow{OA_4} + \overrightarrow{OA_3})(\overrightarrow{OA_4} - \overrightarrow{OA_3}) = 0.$$

同理, $\overrightarrow{A_3H_1} \cdot \overrightarrow{A_2A_4} = \overrightarrow{A_4H_1} \cdot \overrightarrow{A_2A_3} = 0$, 即 H_1 是 $\triangle A_2A_3A_4$ 的垂心. 其余同理. 因此有

$$\overrightarrow{OH_i} = (\overrightarrow{OA_1} + \overrightarrow{OA_2} + \overrightarrow{OA_3} + \overrightarrow{OA_4}) - \overrightarrow{OA_i}, \qquad (i = 1, 2, 3, 4)$$

令 $\overrightarrow{OH_0} = \sum_{i=1}^4 \overrightarrow{OA_i}$, 这是一个常向量,则 $|\overrightarrow{OH_i} - \overrightarrow{OH_0}| = |\overrightarrow{OA_i}| = r$. 所以 H_1, H_2, H_3, H_4 在以 H_0 为圆心、半径为 r 的圆周上.

***24** 设 0 < a < 1, 0 < b < 1. 用几何方法证明:

$$\sqrt{a^2 + b^2} + \sqrt{(1-a)^2 + b^2} + \sqrt{a^2 + (1-b)^2} + \sqrt{(1-a)^2 + (1-b)^2} \ge 2\sqrt{2}.$$

解: 建立平面直角坐标系 $[O; \overrightarrow{i}, \overrightarrow{j}]$. 取 A(0,0), B(1,0), C(1,1), D(0,1) 四个点构成一个正方形,边长为 1. 设 P(a,b), 则 P 在正方形 ABCD 之内,且 $|PA| = \sqrt{a^2 + b^2}$, $|PB| = \sqrt{(1-a)^2 + b^2}$, $|PC| = \sqrt{(1-a)^2 + (1-b)^2}$, $|PD| = \sqrt{a^2 + (1-b)^2}$. 由于 $|PA| + |PC| \ge |AC| = \sqrt{2}$, $|PB| + |PD| \ge |BD| = \sqrt{2}$, 得证.

***25** 设 P_1, P_2, \cdots, P_6 是中心在原点 O、半径为 1 的圆上相异的 6 点. 证明: 总可以在 $\overrightarrow{OP_1}, \overrightarrow{OP_2}, \cdots, \overrightarrow{OP_6}$ 中找出两个向量 $\overrightarrow{OP_i}$ 和 $\overrightarrow{OP_j}$ ($1 \le i \ne j \le 6$) 使得 $|\overrightarrow{OP_i} + \overrightarrow{OP_j}| \ge \sqrt{3}$.

解: 令 a_{ij} 表示 $\overrightarrow{OP_i}$ 与 $\overrightarrow{OP_j}$ 的夹角 ($\leq \pi$), 即 $a_{ij} = \angle P_i OP_j \neq \pi$. 设 $a_0 = \min\{a_{ij} \mid 1 \leq i \neq j \leq 6\}$, 我们先证 $0 < a_0 \leq \frac{\pi}{3}$. 不妨设从 $\overrightarrow{OP_1}$ 开始依逆时针转动时依次得到 $\overrightarrow{OP_2}, \cdots, \overrightarrow{OP_6}$, 若 $a_{12} > \frac{\pi}{3}$, $a_{23} > \frac{\pi}{3}$, ..., $a_{16} > \frac{\pi}{3}$, 将导致 $2\pi = a_{12} + \cdots + a_{61} > 6 \times \frac{\pi}{3} = 2\pi$, 矛盾. 因此不妨设 $a_{12} = \angle P_1 OP_2 \leq \frac{\pi}{3}$. 利用余弦定理便有

$$|\overrightarrow{OP_1} + \overrightarrow{OP_2}|^2 = 2 + 2\cos a_{12} \ge 2 + 1 = 3.$$

 $\mathbb{P}|\overrightarrow{OP_1} + \overrightarrow{OP_2}| \ge \sqrt{3}.$

***26** 设实数 a, b, c 满足: a + b + c = 0, $a^2 + b^2 + c^2 = 1$. 如果记 $\overrightarrow{r_i} = (x_i, y_i, z_i)$ $(i = 1, \dots, 6)$, 其中 $\{x_i, y_i, z_i\} = \{a, b, c\}$. 则必存在 $\overrightarrow{r_i} \neq \overrightarrow{r_j}$, 使 $\overrightarrow{r_i} \cdot \overrightarrow{r_j} \geq \frac{1}{2}$.

解: 设 $\overrightarrow{p} = (1,1,1)$. 则对任意 $\overrightarrow{r_i}$ $(1 \le i \le 6)$, 总有 $\overrightarrow{r_i} \cdot \overrightarrow{p} = 0$. 因此 $\overrightarrow{r_1}, \dots, \overrightarrow{r_6}$ 均与 \overrightarrow{p} 垂直,从而它们共面.再由 $|\overrightarrow{r_i}| = 1$ $(1 \le i \le 6)$,可知 $\overrightarrow{r_1}, \dots, \overrightarrow{r_6}$ 是单位圆上的 6 个相异点.由习题 25 可知,必存在相异的两个向量,设为 $\overrightarrow{r_i} \ne \overrightarrow{r_i}$,使得

$$|\overrightarrow{r_i} + \overrightarrow{r_j}| \ge \sqrt{3}.$$

两边平方之后可知 $|\overrightarrow{r_i}|^2 + |\overrightarrow{r_j}|^2 + 2(\overrightarrow{r_i} \cdot \overrightarrow{r_j}) \ge 3$, 即 $\overrightarrow{r_i} \cdot \overrightarrow{r_j} \ge \frac{1}{2}$.

・38・ 第一章 向量代数

§7 几何空间向量的外积

1. 在直角坐标系中,已知 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的坐标分别是 (1,0,1), (1,-2,0), (-1,2,1), 求 $(3\overrightarrow{a}+\overrightarrow{b})\times(\overrightarrow{b}-\overrightarrow{c})$ 的坐标.

解: $3\overrightarrow{a} + \overrightarrow{b} = (4, -2, 3), \overrightarrow{b} - \overrightarrow{c} = (2, -4, -1),$ 所以

$$(3\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{b} - \overrightarrow{c}) = \left(\begin{vmatrix} -2 & 3 \\ -4 & -1 \end{vmatrix}, - \begin{vmatrix} 4 & 3 \\ 2 & -1 \end{vmatrix}, \begin{vmatrix} 4 & -2 \\ 2 & -4 \end{vmatrix} \right)$$
$$= (14, 10, -12).$$

2. 证明 $(\overrightarrow{a} \times \overrightarrow{b})^2 \leq \overrightarrow{a}^2 \overrightarrow{b}^2$. 并说明等式何时成立.

证明: $(\overrightarrow{a} \times \overrightarrow{b})^2 = |\overrightarrow{a} \times \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \sin^2 \langle \overrightarrow{a}, \overrightarrow{b} \rangle \leq |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$, 等号成立当且仅当 $\sin \langle \overrightarrow{a}, \overrightarrow{b} \rangle = 0$. 即: $\overrightarrow{a} /\!/ \overrightarrow{b}$.

3. 已知 \overrightarrow{a} , \overrightarrow{b} 是两个互不平行的向量, 求证 $(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{a} + \overrightarrow{b}) = 2(\overrightarrow{a} \times \overrightarrow{b})$, 并说明它的几何意义.

证明: $(\overrightarrow{a}-\overrightarrow{b})\times(\overrightarrow{a}+\overrightarrow{b})=\overrightarrow{a}\times\overrightarrow{a}+\overrightarrow{a}\times\overrightarrow{b}-\overrightarrow{b}\times\overrightarrow{a}-\overrightarrow{b}\times\overrightarrow{b}=2(\overrightarrow{a}\times\overrightarrow{b})$. 几何意义: 若以 \overrightarrow{a} , \overrightarrow{b} 构成一个平行四边形的相邻两边, 则 $\overrightarrow{a}-\overrightarrow{b}$, $\overrightarrow{a}+\overrightarrow{b}$ 为此平行四边形的两对角线. 上式说明: 以对角线构成的平行四边形面积为原平行四边形面积 2 倍.

4. 求向量 \overrightarrow{c} , 使 $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$, 其中,

(1)
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}, \overrightarrow{b} = 4\overrightarrow{j} - 5\overrightarrow{k};$$

(2)
$$\overrightarrow{a} = 3\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{b} = -\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}.$$

解: 令 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$. 则 $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$. 计算得:

$$(1) \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b} = -2\overrightarrow{i} + 5\overrightarrow{j} + 4\overrightarrow{k}.$$

$$(2)$$
 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{i} + 2\overrightarrow{j} + 5\overrightarrow{k}$. (本题答案不唯一)

5. 计算由向量 \overrightarrow{a} , \overrightarrow{b} 所张成的平行四边形的面积:

(1)
$$\overrightarrow{a} = 3\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}, \overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k};$$

(2)
$$\overrightarrow{a} = -\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}, \overrightarrow{b} = 2\overrightarrow{i} - 2\overrightarrow{j}.$$

解: (1) $\overrightarrow{a} \times \overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} - 5\overrightarrow{k}$, $|\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{30}$. 所以 \overrightarrow{a} , \overrightarrow{b} 张成的平行四边形面积为 $\sqrt{30}$.

(2) $\overrightarrow{a} \times \overrightarrow{b} = 2\overrightarrow{i} + 2\overrightarrow{j} - 2\overrightarrow{k}$, $|\overrightarrow{a} \times \overrightarrow{b}| = 2\sqrt{3}$, 所以 \overrightarrow{a} , \overrightarrow{b} 张成的平行 四边形面积为 $2\sqrt{3}$.

6. 如图, 已知 $ABCD-A_1B_1C_1D_1$ 是单位正方体, P 是棱 DD_1 上任意一 个点. 线段 C_1C_2 的中点是 B_1 . 请指出下列各个向量积所确定的向量:

(1)
$$\overrightarrow{A_1P} \times \overrightarrow{A_1A}$$
; (2) $\overrightarrow{PC} \times \overrightarrow{A_1A}$; (3) $\overrightarrow{A_1C} \times \overrightarrow{A_1A}$.

解: 建立直角标架 $[A_1; \overrightarrow{A_1B_1}, \overrightarrow{A_1D_1}, \overrightarrow{A_1A}]$. 设 P 为 DD_1 上任一点. 则: $\overrightarrow{A_1P} = \overrightarrow{A_1D_1} + \overrightarrow{D_1P} = \overrightarrow{A_1D_1} + k\overrightarrow{D_1D} = \overrightarrow{A_1D_1} + k\overrightarrow{A_1A} = (0,1,k), \overrightarrow{A_1C} = (0,1,k)$ (1,1,1).

$$(1) \overrightarrow{A_1P} \times \overrightarrow{A_1A} = (0,1,k) \times (0,0,1) = (1,0,0) = \overrightarrow{A_1B_1}.$$

(1)
$$\overrightarrow{A_1P} \times \overrightarrow{A_1A} = (0,1,k) \times (0,0,1) = (1,0,0) = \overrightarrow{A_1B_1}$$
.
(2) $\overrightarrow{PC} = \overrightarrow{A_1C} - \overrightarrow{A_1P} = (1,0,1-k), \overrightarrow{PC} \times \overrightarrow{A_1A} = (1,0,1-k) \times (0,0,1) = (0,-1,0) = -\overrightarrow{A_1D_1} = \overrightarrow{D_1A_1}$.

(3)
$$\overrightarrow{A_1C} \times \overrightarrow{A_1A} = (1,1,1) \times (0,0,1) = (1,-1,0) = \overrightarrow{A_1B_1} - \overrightarrow{A_1D_1} = \overrightarrow{A_1C_2}.$$

$$(3) \overrightarrow{A_1C} \times \overrightarrow{A_1A} = (1,1,1) \times (0,0,1) = (1,-1,0) = \overrightarrow{A_1B_1} - \overrightarrow{A_1D_1} = \overrightarrow{A_1C_2}.$$
7. 设 $\overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{v} = -8\overrightarrow{i} - 5\overrightarrow{j} + 3\overrightarrow{k}$. 求 $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, 使 $\overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2}$, $\overrightarrow{v_1} \perp \overrightarrow{u}$, $\overrightarrow{v_2} / / \overrightarrow{u}$.

$$\mathbf{H}: \ \diamondsuit \overrightarrow{u^0} = \frac{\overrightarrow{u}}{|\overrightarrow{u}|} = \frac{1}{\sqrt{14}}(2, 3, -1), \ \operatorname{pr}_{\overrightarrow{u^0}} \overrightarrow{v} = (\overrightarrow{v} \cdot \overrightarrow{u^0}) \overrightarrow{u^0} = \frac{-17}{7}(2, 3, -1).$$

$$\overrightarrow{v_2} = \frac{-17}{7} (2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}), \quad \overrightarrow{v_1} = \overrightarrow{v} - \overrightarrow{v_2} = \frac{2}{7} (-11\overrightarrow{i} + 8\overrightarrow{j} + 2\overrightarrow{k}),$$

则: $\overrightarrow{v_2}//\overrightarrow{u}$, 且 $\overrightarrow{v_1} \cdot \overrightarrow{u} = 0$.

8. \overrightarrow{u} 为给定的非零向量, \overrightarrow{v} 为任一向量.

- (1) 证明: \overrightarrow{v} 可唯一分解为 $\overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2}$, 其中, $\overrightarrow{v_1} \perp \overrightarrow{u}$, $\overrightarrow{v_2} // \overrightarrow{u}$;
- (2) 具体写出 $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ 的表达式.

证明: (1) 若 \overrightarrow{v} 有两种分解法: $\overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2} = \overrightarrow{v_1}' + \overrightarrow{v_2}'$, 其中. $\overrightarrow{v_1} \perp \overrightarrow{u}$, $\overrightarrow{v_2} / / \overrightarrow{u}$, 则 $\overrightarrow{v_1} - \overrightarrow{v_1}' = \overrightarrow{v_2}' - \overrightarrow{v_2}$. 但 $(\overrightarrow{v_1} - \overrightarrow{v_1}') \cdot \overrightarrow{u} = 0$, $(\overrightarrow{v_2} - \overrightarrow{v_2}) \times \overrightarrow{u} = 0$, 所以 $\overrightarrow{v_1} - \overrightarrow{v_1} \perp \overrightarrow{u}$, $\overrightarrow{v_1} - \overrightarrow{v_1} / / \overrightarrow{u}$, $\overrightarrow{u} \neq 0$, 推出: $\overrightarrow{v_1} - \overrightarrow{v_1} = 0$, $\overrightarrow{v_2} - \overrightarrow{v_2} = 0$, $\mathbb{R} \overrightarrow{v_1} = \overrightarrow{v_1}$, $\overrightarrow{v_2} = \overrightarrow{v_2}$.

$$(2) \diamondsuit \overrightarrow{v_2} = \operatorname{pr}_{\overrightarrow{u^0}} \overrightarrow{v} = (\overrightarrow{v} \cdot \overrightarrow{u^0}) \overrightarrow{u^0} = \frac{(\overrightarrow{v} \cdot \overrightarrow{u})}{|\overrightarrow{u}|^2} \overrightarrow{u}, \ \overrightarrow{v_1} = \overrightarrow{v} - \overrightarrow{v_2}. \ \text{则}\overrightarrow{v_2} / / \overrightarrow{u},$$

$$\overrightarrow{v_1} \cdot \overrightarrow{u} = \overrightarrow{v} \cdot \overrightarrow{u} - \frac{(\overrightarrow{v} \cdot \overrightarrow{u})}{|\overrightarrow{u}|^2} \overrightarrow{u}^2 = 0, \ \text{即}\overrightarrow{v_1} \perp \overrightarrow{u}. \ \text{且知:} \ \overrightarrow{v} = \overrightarrow{v_1} + \overrightarrow{v_2}, \ \text{由} \ (1) \ \text{知}$$

这种分解是唯一的, 故表达式为

$$\begin{cases} \overrightarrow{v_2} = \frac{\overrightarrow{v} \cdot \overrightarrow{u}}{|\overrightarrow{u}|^2} \overrightarrow{u} \\ \overrightarrow{v_1} = \overrightarrow{v} - \overrightarrow{v_2}. \end{cases}$$

9. 设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 为两两不共线的向量. 证明: \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 当且仅当 \overrightarrow{a} × \overrightarrow{b} = \overrightarrow{b} × \overrightarrow{c} = \overrightarrow{c} × \overrightarrow{a} .

证明: 若 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0, 则此式与 \overrightarrow{b} 和 \overrightarrow{c} 作外积后可得 \overrightarrow{a} × \overrightarrow{b} + \overrightarrow{c} × \overrightarrow{b} = 0 以及 \overrightarrow{a} × \overrightarrow{c} + \overrightarrow{b} × \overrightarrow{c} = 0, 即 \overrightarrow{a} × \overrightarrow{b} = \overrightarrow{b} × \overrightarrow{c} = \overrightarrow{c} × \overrightarrow{a} .

反之, 设 $\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$. 由上述等式可得 $\overrightarrow{p} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b} = 0$ 以及 $\overrightarrow{p} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} = 0$. 如果 $\overrightarrow{p} \neq 0$, 则由 \overrightarrow{p} , \overrightarrow{b} 共线以及 \overrightarrow{p} , \overrightarrow{b} 共线可得 \overrightarrow{b} 与 \overrightarrow{c} 共线, 与假设矛盾.

10. 设 \overrightarrow{a} , \overrightarrow{b} 为两不共线的向量, $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{BC} = 2\overrightarrow{a} + 8\overrightarrow{b}$, $\overrightarrow{CD} = 3(\overrightarrow{a} - \overrightarrow{b})$. 证明: A, B, D 三点共线.

证明: 要证 A, B, D 三点共线, 只须证明: $\overrightarrow{AB} \times \overrightarrow{BD} = 0$ 即可. 由

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = 5\overrightarrow{a} + 5\overrightarrow{b} = 5(\overrightarrow{a} + \overrightarrow{b}) = 5\overrightarrow{AB},$$

可得 $\overrightarrow{AB} \times \overrightarrow{BD} = 0$, 即: A, B, D 三点共线.

11. 三个向量 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 满足

$$\overrightarrow{OB} \times \overrightarrow{OC} + \overrightarrow{OC} \times \overrightarrow{OA} + \overrightarrow{OA} \times \overrightarrow{OB} = 0.$$

求证: 三点 A, B, C 共线.

证明: 要证 A, B, C 共线只须证明: $\overrightarrow{AB} \times \overrightarrow{AC} = 0$. 因

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA},$$

所以

 $\overrightarrow{AB} \times \overrightarrow{AC} = (\overrightarrow{OB} - \overrightarrow{OA}) \times (\overrightarrow{OC} - \overrightarrow{OA}) = \overrightarrow{OB} \times \overrightarrow{OC} + \overrightarrow{OA} \times \overrightarrow{OB} + \overrightarrow{OC} \times \overrightarrow{OA} = 0,$ 故 A, B, C =点共线.

12. 如果 $\overrightarrow{a} = \overrightarrow{p} \times \overrightarrow{n}$, $\overrightarrow{b} = \overrightarrow{q} \times \overrightarrow{n}$, $\overrightarrow{c} = \overrightarrow{r} \times \overrightarrow{n}$, 则 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面. 试证明之.

证明: 由于 $\overrightarrow{n} \cdot \overrightarrow{a} = \overrightarrow{n} \cdot \overrightarrow{b} = \overrightarrow{n} \cdot \overrightarrow{c} = 0$, 若 $\overrightarrow{n} \neq 0$, 则 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面; 否则, 由 $\overrightarrow{n} = 0$ 可得 $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{c} = 0$, 也共面.

几何空间向量的混合积 83

1. 判断下列向量组是否共面:

$$(1) \ \overrightarrow{a} = 3 \overrightarrow{i} - 2 \overrightarrow{j} - \overrightarrow{k}, \ \overrightarrow{b} = 5 \overrightarrow{i} + 4 \overrightarrow{j} - 3 \overrightarrow{k}, \ \overrightarrow{c} = 11 \overrightarrow{i} - \overrightarrow{k};$$

$$(2) \overrightarrow{a} = -2 \overrightarrow{i} + 3 \overrightarrow{j} - \overrightarrow{k}, \overrightarrow{b} = \overrightarrow{i} - 4 \overrightarrow{j} - 2 \overrightarrow{k}, \overrightarrow{c} = \overrightarrow{i} - 5 \overrightarrow{j} + 2 \overrightarrow{k};$$

(3)
$$\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$
, $\overrightarrow{b} = 4\overrightarrow{i} - 5\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = 7\overrightarrow{i} - 5\overrightarrow{j} + 8\overrightarrow{k}$;

$$(4) \ \overrightarrow{a} = -\overrightarrow{j} + 3\overrightarrow{k}, \ \overrightarrow{b} = 2\overrightarrow{i} - 2\overrightarrow{j}, \ \overrightarrow{c} = -\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}.$$

解: (1)
$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} 3 & -2 & -1 \\ 5 & 4 & -3 \\ 11 & 0 & -1 \end{vmatrix} = 88 \neq 0$$
, 所以 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面.
(2) $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} -2 & 3 & -1 \\ 1 & -4 & -2 \\ 1 & -5 & 2 \end{vmatrix} = 25 \neq 0$, 所以 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面.

$$(2) (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} -2 & 3 & -1 \\ 1 & -4 & -2 \\ 1 & -5 & 2 \end{vmatrix} = 25 \neq 0,$$
所以 $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ 不共面.

$$(3) (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} 1 & 2 & 3 \\ 4 & -51 \\ 7 & -5 & 8 \end{vmatrix} = -40 \neq 0,$$
所以 $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ 不共面.

$$(4) (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} 0 & -1 & 3 \\ 2 & -2 & 0 \\ -1 & 2 & -3 \end{vmatrix} = 0, 所以 \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} 共面.$$

2. 计算由向量 \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} 所张成的平行六面体的体积:

$$(1) \ \overrightarrow{a} = -\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}, \ \overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}, \ \overrightarrow{c} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k};$$

(2)
$$\overrightarrow{a} = 3\overrightarrow{i} + \overrightarrow{k}$$
, $\overrightarrow{b} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 5\overrightarrow{j} - \overrightarrow{k}$;

(3)
$$\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$
, $\overrightarrow{b} = -3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j}$;

(4)
$$\overrightarrow{a} = \overrightarrow{i}$$
, $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}$; $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$.

解:
$$(1)$$
 $V = |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| = \begin{vmatrix} -1 & 1 & 2 \\ 1 & -1 & 3 \\ 2 & 1 & 1 \end{vmatrix} = 15.$

$$(2) \ V = |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| = \left| \begin{array}{ccc} 3 & 0 & 1 \\ 2 & -1 & 1 \\ 1 & 5 & -1 \end{array} \right| = |-1| = 1.$$

$$(3) \ V = |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| = \begin{vmatrix} 1 & -1 & -1 \\ -3 & -2 & 1 \\ 1 & 1 & 0 \end{vmatrix} = |-1| = 1.$$

・42・ 第一章 向量代数

$$(4)\ V = |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right| = 1.$$

- 3. 确定下列四点是否共面:
- (1) A(1,2,-1), B(0,1,5), C(-1,2,1), D(2,1,3);
- (2) A(3,-2,1), B(2,0,-1), C(-1,-4,5), D(3,-2,4);
- (3) A(1,2,-3), B(3,5,-1), C(0,-2,7), D(2,1,3);
- (4) A(1,0,1), B(0,-1,2), C(1,2,-2), D(2,0,-21).

解: 要确定 A, B, C, D 四点是否共面, 只须确定 $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ 这三个向量是否共面. 所以只须看 $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$ 是否为零.

(1)
$$\overrightarrow{AB} = (-1, -1, 6), \overrightarrow{AC} = (-2, 0, 2), \overrightarrow{AD} = (1, -1, 4),$$

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} -1 & -1 & 6 \\ -2 & 0 & 2 \\ 1 & -1 & 4 \end{vmatrix} = 0, \quad \sharp \overrightarrow{\mathbf{m}}.$$

(2)
$$\overrightarrow{AB} = (-1, 2, -2), \overrightarrow{AC} = (-4, -2, 4), \overrightarrow{AD} = (0, 0, 3),$$

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} -1 & 2 & -2 \\ -4 & -2 & 4 \\ 0 & 0 & 3 \end{vmatrix} = 30 \neq 0, \quad \text{\texttt{π\#$}}.$$

(3)
$$\overrightarrow{AB} = (2,3,2), \overrightarrow{AC} = (-1,-4,10), \overrightarrow{AD} = (1,-1,6),$$

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} 2 & 3 & 2 \\ -1 & -4 & 10 \\ 1 & -1 & 6 \end{vmatrix} = 30 \neq 0, \quad$$
不共面.

(4)
$$\overrightarrow{AB} = (-1, -1, 1), \overrightarrow{AC} = (0, 2, -3), \overrightarrow{AD} = (1, 0, -22),$$

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} -1 & -1 & 1 \\ 0 & 2 & -3 \\ 1 & 0 & -22 \end{vmatrix} = 45 \neq 0, \quad$$
不共面.

- **4.** 确定以 A, B, C, D 为顶点的四面体的体积:
- (1) A(-1,0,1), B(-2,1,4), C(1,3,-3), D(-2,-1,3);
- (2) A(2,-1,1), B(5,4,4), C(2,3,-1), D(4,1,2);
- (3) A(1,0,2), B(1,-1,0), C(2,2,-1), D(3,1,0);

(4) A(2,2,-1), B(1,2,-2), C(2,-2,1), D(1,1,1).

解: (1)
$$\overrightarrow{AB} = (-1, 1, 3), \ \overrightarrow{AC} = (2, 3, -4), \ \overrightarrow{AD} = (-1, -1, 2),$$

$$V = \frac{1}{6} |(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = \frac{1}{6} \times \begin{vmatrix} -1 & 1 & 3 \\ 2 & 3 & -4 \\ -1 & -1 & 2 \end{vmatrix} = \frac{1}{6}.$$

(2)
$$\overrightarrow{AB} = (3,5,3)$$
. $\overrightarrow{AC} = (0,4,-2)$, $\overrightarrow{AD} = (2,2,1)$,

$$V = \frac{1}{6} |(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = \frac{1}{6} \times \begin{vmatrix} 3 & 5 & 3 \\ 0 & 4 & -2 \\ 2 & 2 & 1 \end{vmatrix} = \frac{|-20|}{6} = \frac{10}{3}.$$

(3)
$$\overrightarrow{AB} = (0, -1, -2), \ \overrightarrow{AC} = (1, 2, -3), \ \overrightarrow{AD} = (2, 1, -2),$$

$$V = \frac{1}{6} |(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = \frac{1}{6} \times \begin{vmatrix} 0 & -1 & -2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{vmatrix} = \frac{10}{6} = \frac{5}{3}.$$

(4)
$$\overrightarrow{AB} = (-1, 0, -1), \ \overrightarrow{AC} = (0, -4, 2), \ \overrightarrow{AD} = (-1, -1, 2),$$

$$V = \frac{1}{6} |(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = \frac{1}{6} \times \begin{vmatrix} -1 & 0 & -1 \\ 0 & -4 & 2 \\ -1 & -1 & 2 \end{vmatrix} = \frac{5}{3}.$$

- **5.** 如图, 已知长方体 $ABCD-A_1B_1C_1D_1,\ |AB|=4,\ |AD|=|AA_1|=2.$ 求
 - (1) 点 A_1 到平面 C_1BD 的距离;
 - (2) 直线 AD_1 与平面 C_1BD 的距离.

解: 设 \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD_1}$ 的单位向量是 \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} , 建立直角坐标系 $[D; \overrightarrow{i}$, \overrightarrow{j} , \overrightarrow{k}]. 则

$$\overrightarrow{DA_1} = (2,0,2), \quad \overrightarrow{DB} = (2,4,0), \quad \overrightarrow{DC_1} = (0,4,2).$$

・44・ 第一章 向量代数

(1) 点 A_1 到平面 C_1BD 的距离

$$d = \frac{|(\overrightarrow{DA_1}, \overrightarrow{DB}, \overrightarrow{DC_1})|}{|\overrightarrow{DB} \times \overrightarrow{DC_1}|} = \frac{\begin{vmatrix} 2 & 0 & 2 \\ 2 & 4 & 0 \\ 0 & 4 & 2 \end{vmatrix}|}{|(8, -4, 8)|} = \frac{32}{12} = \frac{8}{3}.$$

(2) 因为 $AD_1//BC_1$, 所以 $AD_1//$ 平面 C_1BD . 故 AD_1 上任一点到平面 C_1BD 的距离即为 AD_1 到平面 C_1BD 的距离.

$$d = \frac{|(\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC_1})|}{|\overrightarrow{DB} \times \overrightarrow{DC_1}|} = \frac{\begin{vmatrix} 2 & 0 & 0 \\ 2 & 4 & 0 \\ 0 & 4 & 2 \end{vmatrix}}{12} = \frac{16}{12} = \frac{4}{3}.$$

6. 设 $\overrightarrow{a} = a_1 \overrightarrow{e_1} + b_1 \overrightarrow{e_2} + c_1 \overrightarrow{e_3}, \ \overrightarrow{b} = a_2 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + c_2 \overrightarrow{e_3}, \ \overrightarrow{c} = a_3 \overrightarrow{e_1} + b_3 \overrightarrow{e_2} + c_3 \overrightarrow{e_3}. 求证$

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}).$$

证明: $\overrightarrow{a} \times \overrightarrow{b} = (a_1 \overrightarrow{e_1} + b_1 \overrightarrow{e_2} + c_1 \overrightarrow{e_3}) \times (a_2 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + c_2 \overrightarrow{e_3}) = a_1 b_2 \overrightarrow{e_1} \times \overrightarrow{e_2} + a_1 c_2 \overrightarrow{e_1} \times \overrightarrow{e_3} + b_1 a_2 \overrightarrow{e_2} \times \overrightarrow{e_1} + b_1 c_2 \overrightarrow{e_2} \times \overrightarrow{e_3} + c_1 a_2 \overrightarrow{e_3} \times \overrightarrow{e_1} + c_1 b_2 \overrightarrow{e_3} \times \overrightarrow{e_2} = (a_1 b_2 - b_1 a_2) \overrightarrow{e_1} \times \overrightarrow{e_2} + (a_1 c_2 - c_1 a_2) \overrightarrow{e_1} \times \overrightarrow{e_3} + (b_1 c_2 - c_1 b_2) \overrightarrow{e_2} \times \overrightarrow{e_3},$

 $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = [(a_1b_2 - b_1a_2)\overrightarrow{e_1} \times \overrightarrow{e_2} + (a_1c_2 - c_1a_2)\overrightarrow{e_1} \times \overrightarrow{e_3} + (b_1c_2 - c_1b_2)\overrightarrow{e_2} \times \overrightarrow{e_3}] \cdot (a_3\overrightarrow{e_1} + b_3\overrightarrow{e_2} + c_3\overrightarrow{e_3}) = [(a_1b_2 - b_1a_2)c_3](\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}) - [(a_1c_2 - b_1a_2)c_3](\overrightarrow{e_1}, \overrightarrow{e_3}, \overrightarrow{e$

$$(c_1a_2)b_3](\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}) + [(b_1c_2 - c_1b_2)a_3](\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} (\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}).$$

(只要利用三阶行列式的定义便可计算得).

7. 求证: $|(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| \leq |\overrightarrow{a}||\overrightarrow{b}||\overrightarrow{c}|.$ 证明: $|(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| = |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| = \left| |\overrightarrow{a} \times \overrightarrow{b}||\overrightarrow{c}| \cos\langle \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{c}\rangle \right| \leq |\overrightarrow{a} \times \overrightarrow{b}||\overrightarrow{c}| = |\overrightarrow{a}||\overrightarrow{b}||\overrightarrow{c}|\sin\langle \overrightarrow{a}, \overrightarrow{b}\rangle \leq |\overrightarrow{a}||\overrightarrow{b}||\overrightarrow{c}|.$

8. 证明雅可比恒等式:

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = 0.$$

证明: 由命题 7.7 知:

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c},$$

$$\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} - (\overrightarrow{b} \cdot \overrightarrow{c}) \cdot \overrightarrow{a},$$

$$\overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b},$$

相加即得结论.

9. 证明: 空间中四点 A, B, C, P 共面的充分必要条件是, 它们所对应的位置向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{p} 满足

$$(\overrightarrow{p},\overrightarrow{b},\overrightarrow{c}) + (\overrightarrow{a},\overrightarrow{p},\overrightarrow{c}) + (\overrightarrow{a},\overrightarrow{b},\overrightarrow{p}) - (\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) = 0.$$

证明: A, B, C, P 共面当且仅当 $\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{PC}$ 共面. 已知

$$\overrightarrow{a} = \overrightarrow{OA}, \quad \overrightarrow{b} = \overrightarrow{OB}, \quad \overrightarrow{c} = \overrightarrow{OC}, \quad \overrightarrow{p} = \overrightarrow{OP},$$

故

$$\overrightarrow{PA} = \overrightarrow{a} - \overrightarrow{p}, \quad \overrightarrow{PB} = \overrightarrow{b} - \overrightarrow{p}, \quad \overrightarrow{PC} = \overrightarrow{c} - \overrightarrow{p}.$$

因此 \overrightarrow{PA} , \overrightarrow{PB} , \overrightarrow{PC} 共面当且仅当 $(\overrightarrow{PA},\overrightarrow{PB},\overrightarrow{PC})=0$, 当且仅当

$$(\overrightarrow{a} - \overrightarrow{p}, \overrightarrow{b} - \overrightarrow{p}, \overrightarrow{c} - \overrightarrow{p}) = 0,$$

当且仅当

$$(\overrightarrow{a}, \overrightarrow{b} - \overrightarrow{p}, \overrightarrow{c} - \overrightarrow{p}) - (\overrightarrow{p}, \overrightarrow{b} - \overrightarrow{p}, \overrightarrow{c} - \overrightarrow{p}) = 0,$$

当且仅当

$$(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) - (\overrightarrow{a},\overrightarrow{b},\overrightarrow{p}) - (\overrightarrow{a},\overrightarrow{p},\overrightarrow{c}) - (\overrightarrow{p},\overrightarrow{b},\overrightarrow{c}) = 0,$$

当且仅当

$$(\overrightarrow{p}, \overrightarrow{b}, \overrightarrow{c}) + (\overrightarrow{a}, \overrightarrow{p}, \overrightarrow{c}) + (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{p}) - (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = 0.$$

10. 证明

$$(1) \ (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}) \overrightarrow{c} - (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{d};$$

$$(2) (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}.$$

证明: (1) $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = -(\overrightarrow{c} \times \overrightarrow{d}) \times (\overrightarrow{a} \times \overrightarrow{b}) = -[\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b}) \overrightarrow{d} - \overrightarrow{d} \cdot (\overrightarrow{a} \times \overrightarrow{b}) \overrightarrow{c}] = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}) \overrightarrow{c} - (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{d}$.

・46・ 第一章 向量代数

$$(2) \underbrace{(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d})}_{(\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}}_{(\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}}_{(\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}} = (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}.$$

11. 证明对任意四个向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} 总有 $(\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d})\overrightarrow{a} + (\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{d})\overrightarrow{b} + (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d})\overrightarrow{c} + (\overrightarrow{b}, \overrightarrow{a}, \overrightarrow{c})\overrightarrow{d} = 0$. 证明: 由第 10 题结论可得

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d})\overrightarrow{c} - (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})\overrightarrow{d} = (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d})\overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d})\overrightarrow{a},$$

移项后再适当改变混合积中向量次序即可证得.

12. 证明下列向量恒等式:

$$(1) \ (\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})^2;$$

$$(2) (\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{a} \times \overrightarrow{d}) + (\overrightarrow{c} \times \overrightarrow{a}) \times (\overrightarrow{b} \times \overrightarrow{d}) + (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = -2(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{d};$$

$$(3) \ (\overrightarrow{a} - \overrightarrow{d}) \cdot (\overrightarrow{b} - \overrightarrow{c}) + (\overrightarrow{b} - \overrightarrow{d}) \cdot (\overrightarrow{c} - \overrightarrow{a}) + (\overrightarrow{c} - \overrightarrow{d}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 0;$$

$$(4) (\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c}) + (\overrightarrow{b} - \overrightarrow{d}) \times (\overrightarrow{c} - \overrightarrow{a}) + (\overrightarrow{c} - \overrightarrow{d}) \times (\overrightarrow{a} - \overrightarrow{b}) = 2(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}).$$

证明: (1) $(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}) = [(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} \times \overrightarrow{c})] \cdot (\overrightarrow{c} \times \overrightarrow{a}) = [(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{b}) \overrightarrow{a}] \cdot (\overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \cdot (\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})^2.$

$$(2) (\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{a} \times \overrightarrow{d}) = -(\overrightarrow{a} \times \overrightarrow{d}) \times (\overrightarrow{b} \times \overrightarrow{c}) = -(\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{a}) \overrightarrow{d} + (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a}, (\overrightarrow{c} \times \overrightarrow{a}) \times (\overrightarrow{b} \times \overrightarrow{d}) = -(\overrightarrow{b} \times \overrightarrow{d}) \times (\overrightarrow{c} \times \overrightarrow{a}) = -(\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b}) \overrightarrow{d} + (\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{d}) \overrightarrow{b}, (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{c}, \overrightarrow{d}, \overrightarrow{a}) \overrightarrow{b} - (\overrightarrow{c}, \overrightarrow{d}, \overrightarrow{b}) \overrightarrow{a}, \text{MFL}$$

$$(\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{a} \times \overrightarrow{d}) + (\overrightarrow{c} \times \overrightarrow{a}) \times (\overrightarrow{b} \times \overrightarrow{d}) + (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d})$$

$$= -2(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{d}.$$

$$\begin{array}{l} (3) \ (\overrightarrow{a}-\overrightarrow{d}) \cdot (\overrightarrow{b}-\overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a} \cdot \overrightarrow{c} - \overrightarrow{b} \cdot \overrightarrow{d} + \overrightarrow{c} \cdot \overrightarrow{d} \,, \\ (\overrightarrow{b}-\overrightarrow{d}) \cdot (\overrightarrow{c}-\overrightarrow{a}) = \overrightarrow{b} \cdot \overrightarrow{c} - \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{c} \cdot \overrightarrow{d} + \overrightarrow{a} \cdot \overrightarrow{d} \,, \\ (\overrightarrow{c}-\overrightarrow{d}) \cdot (\overrightarrow{a}-\overrightarrow{b}) = \overrightarrow{a} \cdot \overrightarrow{c} - \overrightarrow{b} \cdot \overrightarrow{c} - \overrightarrow{a} \cdot \overrightarrow{d} + \overrightarrow{b} \cdot \overrightarrow{d} \,, \end{array}$$

将上述等式左 右两端分别相加则:

$$(\overrightarrow{a} - \overrightarrow{d}) \cdot (\overrightarrow{b} - \overrightarrow{c}) + (\overrightarrow{b} - \overrightarrow{d}) \cdot (\overrightarrow{c} - \overrightarrow{a}) + (\overrightarrow{c} - \overrightarrow{d}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 0.$$

$$(4) \ (\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{d} - \overrightarrow{c} \times \overrightarrow{d},$$

$$(\overrightarrow{b} - \overrightarrow{d}) \times (\overrightarrow{c} - \overrightarrow{a}) = \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{d} - \overrightarrow{a} \times \overrightarrow{d},$$

$$(\overrightarrow{c} - \overrightarrow{d}) \times (\overrightarrow{a} - \overrightarrow{b}) = -\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{d} - \overrightarrow{b} \times \overrightarrow{d},$$

将上述等式左、右两端分别相加得:

$$(\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c}) + (\overrightarrow{b} - \overrightarrow{d}) \times (\overrightarrow{c} - \overrightarrow{a})(\overrightarrow{c} - \overrightarrow{d}) \times (\overrightarrow{a} - \overrightarrow{b})$$

$$= 2(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}).$$

13. 证明对于任意向量 r_i (i = 1, 2, 3, 4), 下式成立:

$$(\overrightarrow{r_1} \times \overrightarrow{r_2})(\overrightarrow{r_3} \times \overrightarrow{r_4}) + (\overrightarrow{r_1} \times \overrightarrow{r_3})(\overrightarrow{r_4} \times \overrightarrow{r_2}) + (\overrightarrow{r_1} \times \overrightarrow{r_4})(\overrightarrow{r_2} \times \overrightarrow{r_3}) = 0.$$

证明:根据定理 8.7, $(\overrightarrow{r_1} \times \overrightarrow{r_2}) \cdot (\overrightarrow{r_3} \times \overrightarrow{r_4}) = (\overrightarrow{r_1} \cdot \overrightarrow{r_3})(\overrightarrow{r_2} \cdot \overrightarrow{r_4}) - (\overrightarrow{r_1} \cdot \overrightarrow{r_4})(\overrightarrow{r_2} \cdot \overrightarrow{r_3}),$ $(\overrightarrow{r_1} \times \overrightarrow{r_3}) \cdot (\overrightarrow{r_4} \times \overrightarrow{r_2}) = (\overrightarrow{r_1} \cdot \overrightarrow{r_4})(\overrightarrow{r_2} \cdot \overrightarrow{r_3}) - (\overrightarrow{r_1} \cdot \overrightarrow{r_2})(\overrightarrow{r_3} \cdot \overrightarrow{r_4}),$ $(\overrightarrow{r_1} \times \overrightarrow{r_4}) \cdot (\overrightarrow{r_2} \times \overrightarrow{r_3}) = (\overrightarrow{r_1} \cdot \overrightarrow{r_2})(\overrightarrow{r_3} \cdot \overrightarrow{r_4}) - (\overrightarrow{r_1} \cdot \overrightarrow{r_3})(\overrightarrow{r_2} \cdot \overrightarrow{r_4}),$

将上述等式的左、右两端分别相加后得到结论.

14. 证明 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共面的充分必要条件是 \overrightarrow{b} × \overrightarrow{c} , \overrightarrow{c} × \overrightarrow{a} , \overrightarrow{a} × \overrightarrow{b} 共 面.

证明: 因为 $\overrightarrow{b} \times \overrightarrow{c}$, $\overrightarrow{c} \times \overrightarrow{a}$, $\overrightarrow{a} \times \overrightarrow{b}$ 共面当且仅当 $(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}) = 0$, 但由 12 题的 (1) 知: $(\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})^2$, 所以 $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$ 共面当且仅当 $\overrightarrow{a} \times \overrightarrow{b}$, $\overrightarrow{b} \times \overrightarrow{c}$, $\overrightarrow{c} \times \overrightarrow{a}$ 共面.

15 设 a, b, c 为非负实数,且 $a + b + c < \frac{1}{2}$. 证明由 $\overrightarrow{p} = (1 - a, 0, 0)$, $\overrightarrow{q} = (0, 1 - b, 0)$, $\overrightarrow{r} = (0, 0, 1 - c)$ 构成的平行六面体的体积大于 $\frac{1}{2}$.

 \mathbf{m} : 设此平行六面体的体积为 V, 则

$$V = |(\overrightarrow{p} \times \overrightarrow{q}) \cdot \overrightarrow{r}| = \begin{vmatrix} 1 - a & 0 & 0 \\ 0 & 1 - b & 0 \\ 0 & 0 & 1 - c \end{vmatrix} = (1 - a)(1 - b)(1 - c).$$

因为

$$(1-a)(1-b) = 1 - (a+b) + ab \ge 1 - (a+b) > 0,$$

所以

$$(1-c)(1-b)(1-a) = (1-b)(1-a) - c(1-b)(1-a) \ge 1 - a - b - c > \frac{1}{2}.$$

16 设 $\overrightarrow{a} = (x_1, y_1, z_1), \overrightarrow{b} = (x_2, y_2, z_2).$ 利用拉格朗日恒等式证明:

$$x_1x_2 + y_1y_2 + z_1z_2 \le \sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}$$
.

解: 由拉格朗日恒等式可得

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a}^2 \overrightarrow{b}^2 - (\overrightarrow{a} \cdot \overrightarrow{b})^2$$

・48・ 第一章 向量代数

而由

$$\overrightarrow{a} imes \overrightarrow{b} = \left(\left| egin{array}{c|c} y_1 & z_1 \\ y_2 & z_2 \end{array} \right|, - \left| \left| egin{array}{c|c} x_1 & z_1 \\ x_2 & z_2 \end{array} \right|, \left| \left| egin{array}{c|c} x_1 & y_1 \\ x_2 & y_2 \end{array} \right| \right)$$

算出

$$(\overrightarrow{a} \times \overrightarrow{b})^2 = (y_1 z_2 - y_2 z_1)^2 + (x_1 z_2 - x_2 z_1)^2 + (x_1 y_2 - x_2 y_1)^2,$$

$$\overrightarrow{a}^2 \overrightarrow{b}^2 = (x_1^2 + y_1^2 + z_1^2)(x_2^2 + y_2^2 + z_2^2),$$

$$(\overrightarrow{a} \cdot \overrightarrow{b})^2 = (x_1 x_2 + y_1 y_2 + z_1 z_2)^2.$$

因此有

$$(x_1x_2 + y_1y_2 + z_1z_2)^2 = (x_1^2 + y_1^2 + z_1^2)(x_2^2 + y_2^2 + z_2^2)$$
$$- [(y_1z_2 - y_2z_1)^2 + (x_1z_2 - x_2z_1)^2 + (x_1y_2 - x_2y_1)^2],$$

即有

$$x_1x_2 + y_1y_2 + z_1z_2 \le \sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}.$$
而且等号成立当且仅当 $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}.$

*§9 平面曲线的方程

1. 三角形 ABC 底边的两个端点为 B(-3,0), C(3,0). 顶点 A 在直线 7x - 5y - 35 = 0 上移动, 求三角形重心的轨迹.

 \mathbf{M} : 设重心的坐标为 (x,y), 则

$$\begin{cases} x = \frac{x_A + x_B + x_C}{3} = \frac{x_A}{3} \\ y = \frac{y_A + y_B + y_C}{3} = \frac{y_A}{3}, \end{cases} \quad \text{if } \begin{cases} x_A = 3x \\ y_A = 3y. \end{cases}$$

而 (x_A, y_A) 满足方程 7x - 5y - 35 = 0, 代入即得 21x - 15y - 35 = 0.

*§9 平面曲线的方程 · 49 ·

2. 在长为 l 的线段 AB 上有一动点 P. 在 AB 的同侧, 以 AP, PB 为边分别作等边三角形 AMP 和 BNP. 求 MN 的中点 Q 的轨迹.

解: 以 AB 的中点 O 为原点, 以 AB 为 x 轴, 建立直角坐标系 $[O; \overrightarrow{i}.\overrightarrow{j}]$. 于是

$$A\left(-\frac{l}{2},0\right), \quad B\left(\frac{l}{2},0\right), \quad P(t,0), \quad \left(-\frac{l}{2} < t < \frac{l}{2}\right).$$

则

$$M\left(\frac{t-\frac{l}{2}}{2},\frac{\sqrt{3}}{2}\left(t+\frac{l}{2}\right)\right), \quad N\left(\frac{t+\frac{l}{2}}{2},\frac{\sqrt{3}}{2}\left(\frac{l}{2}-t\right)\right).$$

所以 MN 的中点 Q 的坐标为:

$$\begin{cases} x_Q = \frac{t}{2} & \left(-\frac{l}{2} < t < \frac{l}{2} \right) \\ y_Q = \frac{\sqrt{3}}{4}l. \end{cases}$$

即 Q 点的轨迹方程为: $y = \frac{\sqrt{3}}{4}l\left(-\frac{l}{4} < x < \frac{l}{4}\right)$.

第二章 行列式

§1 映射与变换

- 1. 判别下列映射哪些是单映射, 哪些是满映射, 哪些是可逆映射?
- $(1) \ f: \mathbb{C} \longrightarrow \mathbb{R}$ $a \longmapsto |a|$
- (2) V 为几何空间, \overrightarrow{e} 为一固定的单位向量, 映射

$$\sigma: V \longrightarrow V$$

$$\overrightarrow{a} \longmapsto \sigma(\overrightarrow{a}) = \overrightarrow{a} - 2(\overrightarrow{a} \cdot \overrightarrow{e}) \overrightarrow{e}$$

- $(3) \ f: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto n+1$
- 解: (1) 非单, 非满, 不可逆.
- (2) 单,满,可逆.
- (3) 单, 非满, 不可逆.
- 2. 设 f 为集合 S 到集合 S' 的映射, g 为集合 S' 到集合 S'' 的映射, 证明:
- (1) 如果 gf 为单映射, 则 f 为单映射;
- (2) 如果为 qf 满映射, 则 q 为满映射.

证明: (1) 对任意的 $s_1, s_2 \in S$, 如 $f(s_1) = f(s_2)$, 则 $gf(s_1) = gf(s_2)$. 因 gf 是单映射,故 $s_1 = s_2$,从而 f 是单映射.

- (2) 对任意的 $s'' \in S''$, 因 gf 是满映射, 故存在 $s \in S$, 使 gf(s) = s'', 从 而 $s' = f(s) \in S'$, 使 g(s') = s'', 故 g 是满映射.
- **3.** 设 f 为集合 S 到集合 S' 的可逆映射, g 为集合 S' 到集合 S'' 的可逆映射, 则 gf 为集合 S 到集合 S'' 的可逆映射, 且 $(gf)^{-1}=f^{-1}g^{-1}$.

证明: 因为 f 与 g 都可逆, 所以 $f^{-1}g^{-1}$ 是集合 S'' 到 S 的一个映射, 且

$$(f^{-1}g^{-1})(gf) = f^{-1}(g^{-1}g)f = f^{-1}1_{S'}f = f^{-1}f = 1_{S},$$
$$(qf)(f^{-1}g^{-1}) = q(ff^{-1})g^{-1} = q1_{S'}g^{-1} = qg^{-1} = 1_{S''}.$$

§2 置换的奇偶性 · 51 ·

§ 2 置换的奇偶性

1. 设:

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 7 & 6 & 2 & 1 \end{pmatrix}, \qquad q = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 1 & 7 & 6 & 4 & 3 \end{pmatrix}.$$

求 pq, $p^{-1}qp$, 并把 p, q 分别表示成对换的乘积.

解:
$$pq = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 3 & 1 & 2 & 7 & 4 \end{pmatrix}$$
, $p^{-1}qp = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 1 & 3 & 2 & 6 \end{pmatrix}$, $p = (13)(34)(47)(25)(56)$, $q = (12)(25)(56)(64)(47)(73)$. (后面两个表示式不唯一).

2. 计算下列置换的逆序数,并确定其奇偶性:

 (1)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$
;
 (2) $\begin{pmatrix} 1 & 4 & 5 & 6 & 3 & 2 & 8 & 7 \\ 6 & 8 & 5 & 4 & 7 & 2 & 1 & 3 \end{pmatrix}$;

解: (1) 逆序数是 8, 4

- (2) 逆序数是 20, 偶.
- (3) 逆序数是 11, 奇.
- (4) 逆序数是 n, 奇偶性同 n 的奇偶性.
- 3. 计算下列排列的逆序数, 并确定其奇偶性:
- (1) 5317246;

(2) 384576192;

(3) 246813579;

(4) 987654321.

解: (1) 逆序数是 9, 奇.

- (2) 逆序数是 18, 偶.
- (3) 逆序数是 10, 偶.
- (4) 逆序数是 36, 偶.
- 4. 确定 *i* 及 *k*, 使
- (1) 237*i*864*k*5 成偶排列;

(2) 469k1i752 成奇排列.

解: (1) i = 1, k = 9.

- (2) i = 8, k = 3.
- 5. 计算下列排列的逆序数:

(1) $135\cdots(2n-1)(2n)(2n-2)\cdots642$;

 $(2) (2n+1)(2n)(2n-1)\cdots 321.$

解: (1) n(n-1).

(2) n(2n+1).

6. 已知置换 p 的逆序数为 a, 求 p^{-1} 的逆序数.

解: a.

7. 已知排列 $x_1x_2\cdots x_n$ 的逆序数为 a, 求 $x_nx_{n-1}\cdots x_2x_1$ 的逆序数.

解: 因为 $x_1x_2\cdots x_n$ 的逆序数 $+x_nx_{n-1}\cdots x_2x_1$ 的顺序数 $=\frac{n(n-1)}{2}$,而 $x_nx_{n-1}\cdots x_2x_1$ 的逆序数 $=x_1x_2\cdots x_n$ 的顺序数,所以 $x_nx_{n-1}\cdots x_2x_1$ 的逆序数 $=\frac{n(n-1)}{2}-a$.

*8. 证明: 对任何不超过 $\frac{n(n-1)}{2}$ 的正整数 k, 必存在逆序数为 k 的 n 阶排列.

证明: 对 k 用数学归纳法.

首先, 当 k = 1 时, $213 \cdots n$ 的逆序数为 1;

假定结论对
$$k-1$$
 成立 $\left(k \leq \frac{n(n-1)}{2}\right)$, 即存在 n 阶排列
$$i_1 i_2 \cdots i_n \tag{1}$$

其逆序数为 k-1,则必存在 j < k,使 $i_j < i_k$ (否则此排列的逆序数为 $\frac{n(n-1)}{2}$),从而在 j,k 之间必有两个相邻的编号 $j \le r < r+1 \le k$,使 $i_r < i_{r+1}$. 作排列

$$i_1 \cdots i_{r-1} i_{r+1} i_r i_{r+2} \cdots i_n$$

则此排列的逆序数 = 排列 (1) 的逆序数 +1 = k.

由归纳法原理知结论成立.

*9. 在所有 n 阶置换中, 分别有多少个逆序数为 1, 2, 3 的置换?

解:由排列与置换的关系,我们只需对排列确定相应的值即可.

当 k=1 时, 因任意逆序数为 1 的排列都可以由排列 $123\cdots n$ 交换两个相邻的数而得到, 故逆序数为 1 的排列个数等于 $P_1(n)=n-1$.

由于任一 n 阶排列都可以由 n-1 阶排列添加数 n 而得到. 故当 k=2 时, 逆序数为 2 的排列可由下述方式得到:

(a)
$$12 \cdots n-2 \ n-1 \longrightarrow 12 \cdots n-3 \ n \ n-2 \ n-1$$
;

(b)
$$i_1 i_2 \cdots i_{n-1}$$
 (逆序数 1) $\longrightarrow i_1 i_2 \cdots i_{n-2} \ n \ i_{n-1}$;

(c)
$$i_1 i_2 \cdots i_{n-1}$$
 (逆序数 2) $\longrightarrow i_1 i_2 \cdots i_{n-1} n$.

§ 3 矩阵 · 53 ·

所以逆序数为2的排列个数为

$$P_2(n) = 1 + P_1(n-1) + P_2(n-1).$$

由此可得

所以
$$P_2(n) = (n-2) + (n-1) + \dots + 2 = \frac{(n-2)(n+1)}{2}$$
.
当 $n=3$ 时, 类似于上面的讨论, 可得

$$P_3(n) = 1 + P_1(n-1) + P_2(n-1) + P_3(n-1),$$

所以

$$P_3(n) - P_3(n-1) = \frac{(n-2)(n+1)}{2}$$

由此可得 $P_3(n) = \frac{n(n^2 - 7)}{6}$.

§3 矩阵

1. 用初等行变换将下列矩阵变为上三角形矩阵:

$$\begin{pmatrix}
0 & 4 & 10 & 1 \\
4 & 8 & 18 & 7 \\
10 & 18 & 40 & 17 \\
1 & 7 & 17 & 3
\end{pmatrix};$$

$$(2) \begin{pmatrix}
3 & 2 & -1 & 2 & 0 & 1 \\
4 & 1 & 0 & -3 & 0 & 2 \\
2 & -1 & -2 & 1 & 1 & -3 \\
3 & 1 & 3 & -9 & -1 & 6 \\
3 & -1 & -5 & 7 & 2 & -7
\end{pmatrix};$$

$$\mathbf{H}: (1) \begin{pmatrix} 4 & 8 & 18 & 7 \\ 0 & 4 & 10 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{pmatrix}
3 & 2 & -1 & 2 & 0 & 1 \\
0 & -1 & 4 & -11 & -1 & 5 \\
0 & 0 & -16 & 38 & 5 & -23 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$

・54・ 第二章 行列式

2. 用初等列变换将下列矩阵变为下三角形矩阵:

$$\begin{pmatrix}
2 & 1 & -30 & 5 \\
1 & 0 & 4 & -1 \\
-3 & -2 & 10 & -11 \\
-1 & 1 & -15 & 8
\end{pmatrix};
(2)
\begin{pmatrix}
1 & -1 & 2 & 3 & 4 \\
2 & 1 & -1 & 2 & 0 \\
-1 & 2 & 1 & 1 & 3 \\
1 & 5 & -8 & -5 & -12 \\
3 & -7 & 8 & 9 & 13
\end{pmatrix}.$$

解: (1)
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 19 & 0 & 0 \\ -3 & -35 & -54 & 0 \\ -1 & -30 & 27 & 0 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
-1 & 1 & 14 & 0 & 0 \\
1 & 6 & 0 & 0 & 0 \\
3 & -4 & -14 & 0 & 0
\end{pmatrix}.$$

§ 4 行列式的定义

- 1. 确定下列行列式的项前面所带的符号:

 $(1) \ a_{31}a_{12}a_{23}a_{44}; \qquad (2) \ a_{31}a_{23}a_{14}a_{42}a_{65}a_{56}.$

解: (1) +.

(2) + .

2. 下列各项是否为五阶行列式的项 (包括符号)?

- $(1) -a_{21}a_{34}a_{15}a_{23}a_{52}; (2) +a_{32}a_{15}a_{24}a_{53}a_{41}.$
- 解: (1) 不是.
- (2) 是.
- **3.** 写出四阶行列式中所有带负号且包含因子 a_{23} 的项.

解: $-a_{11}a_{32}a_{23}a_{44}$, $-a_{31}a_{42}a_{23}a_{14}$, $-a_{41}a_{12}a_{23}a_{34}$.

4. 在 n 阶行列式中, 两条对角线上各元素的乘积分别应取什么符号?

解: +, $(-1)^{\frac{n(n-1)}{2}}$.

5. 按定义计算下列行列式:

§ 5 行列式的性质 · 55 ·

$$(1) \left| \begin{array}{cccc} 0 & 0 & 3 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 3 & 4 \end{array} \right|;$$

$$(2) \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & n-1 & \cdots & 0 & 0 \\ n & 0 & \cdots & 0 & 0 \end{vmatrix};$$

$$(3) \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-1 \\ n & 0 & 0 & \cdots & 0 & 0 \end{vmatrix}$$

$$(6) \left| \begin{array}{cccc} a & 0 & 0 & b \\ 0 & c & d & 0 \\ 0 & e & f & 0 \\ g & 0 & 0 & h \end{array} \right|;$$

解: (1) 0.

- (2) $(-1)^{\frac{n(n-1)}{2}}n!$
- $(3) (-1)^{n-1} n!$
- (4) n!.
- (5) $a^5 + x^5$.
- $(6) \ acfh + bdeg adeh bcfg.$

§ 5 行列式的性质

1. 计算下列行列式:

$$(1) \begin{vmatrix} ab & ac & ae \\ bd & -cd & ed \\ bf & cf & -ef \end{vmatrix};$$

$$(3) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix};$$

$$(4) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix};$$

· 56 · 第二章 行列式

$$(5) \begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1-b \end{vmatrix}; \qquad (6) \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ a_1 & a & a_2 & a_2 & a_2 \\ a_2 & a_2 & a & a_3 & a_3 \\ a_3 & a_3 & a_3 & a & a_4 \\ a_4 & a_4 & a_4 & a_4 & a \end{vmatrix}.$$

解: (1) 4abcdef.

- (2) 48.
- (3) 12.
- (4) 160.
- (5) a^2b^2 .
- (6) $(a-a_1)(a-a_2)(a-a_3)(a-a_4)$.
- 2. 证明下列等式:

(1)
$$\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha & \cos(2\alpha) \\ \sin^2 \beta & \cos^2 \beta & \cos(2\beta) \\ \sin^2 \gamma & \cos^2 \gamma & \cos(2\gamma) \end{vmatrix} = 0$$

2. If
$$\beta = 0$$
; $\sin^2 \alpha \cos^2 \alpha \cos(2\alpha)$ $\sin^2 \beta \cos^2 \beta \cos(2\beta)$ $\sin^2 \gamma \cos^2 \gamma \cos(2\gamma)$ $= 0$; $\sin^2 \gamma \cos^2 \gamma \cos(2\gamma)$ $= 0$; $b + c \quad c + a \quad a + b \quad b' + c' \quad c' + a' \quad a' + b' \quad a'' \quad b'' \quad c' \quad a'' \quad b'' \quad c''$;

$$(3) \begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix} = 0.$$
证明: (1) 左边 =
$$\begin{vmatrix} \sin^2 \alpha - \cos^2 \alpha & \cos^2 \alpha & \cos(2\alpha) \\ \sin^2 \beta - \cos^2 \beta & \cos^2 \beta & \cos(2\beta) \\ \sin^2 \gamma - \cos^2 \gamma & \cos^2 \gamma & \cos(2\gamma) \end{vmatrix}$$

证明: (1) 左边 =
$$\begin{vmatrix} \sin^2 \alpha - \cos^2 \alpha & \cos^2 \alpha & \cos(2\alpha) \\ \sin^2 \beta - \cos^2 \beta & \cos^2 \beta & \cos(2\beta) \\ \sin^2 \gamma - \cos^2 \gamma & \cos^2 \gamma & \cos(2\gamma) \end{vmatrix}$$

$$= \begin{vmatrix} -\cos(2\alpha) & \cos^2 \alpha & \cos(2\alpha) \\ -\cos(2\beta) & \cos^2 \beta & \cos(2\beta) \\ -\cos(2\gamma) & \cos^2 \gamma & \cos(2\gamma) \end{vmatrix} = 0.$$

$$= 2 \begin{vmatrix} a+b+c & -b & -c \\ a'+b'+c' & -b' & -c' \\ a''+b''+c'' & -b'' & -c'' \end{vmatrix} = 右边.$$

$$(3) 左边 = \begin{vmatrix} a^2 & 2a+1 & 4a+4 & 6a+9 \\ b^2 & 2b+1 & 4b+4 & 6b+9 \\ c^2 & 2c+1 & 4c+4 & 6c+9 \\ d^2 & 2d+1 & 4d+4 & 6d+9 \end{vmatrix} = \begin{vmatrix} a^2 & 2a+1 & 2 & 6 \\ b^2 & 2b+1 & 2 & 6 \\ c^2 & 2c+1 & 2 & 6 \\ d^2 & 2d+1 & 2 & 6 \end{vmatrix} = 0.$$

§6 行列式按一行(一列)展开

1. 计算行列式

$$D = \left| \begin{array}{cccc} a & 1 & 2 & 3 \\ b & -1 & 0 & 1 \\ c & 0 & 2 & 3 \\ d & 1 & -1 & -2 \end{array} \right|$$

的第一列各元素的代数余子式.

M: $A_{11} = -1$, $A_{21} = 1$, $A_{31} = 2$, $A_{41} = 2$.

2. 求行列式

$$\begin{vmatrix}
 1 & -1 & 2 \\
 3 & 2 & 1 \\
 0 & 1 & 4
 \end{vmatrix}$$

的全部元素的代数余子式.

解: $A_{11} = 7$, $A_{12} = -12$, $A_{13} = 3$, $A_{21} = 6$, $A_{22} = 4$, $A_{23} = -1$, $A_{31} = -5, A_{32} = 5, A_{33} = 5.$

3. 计算下列各行列式:

· 58 · 第二章 行列式

解: (1) 0.

- (2) -53.
- $(3) -x^3 x^2 x + 2.$
- (4) -5x + 2y + 2z + 2t
- (5) (ah bq)(cf ed).

用行列式解线性方程组的克拉默法则 ξ7

1. 用克拉默法则解下列线性方程组:

(1)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 2x_1 + x_2 + 3x_3 = 11; \end{cases}$$
 (2)
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\ x_1 + x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 5x_2 + x_3 + 2x_4 = 0, \\ x_1 + 5x_2 + 5x_3 + 2x_4 = 0; \end{cases}$$

$$\begin{cases}
3x_1 + 2x_2 + x_3 = 5, \\
2x_1 + 3x_2 + x_3 = 1, \\
2x_1 + x_2 + 3x_3 = 11;
\end{cases}$$
(2)
$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + x_2 + 2x_3 + 3x_4 = 0, \\
x_1 + 5x_2 + x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$
(3)
$$\begin{cases}
x_1 + 2x_2 + 3x_3 - 2x_4 = 6, \\
2x_1 + x_2 + 2x_3 - 3x_4 = 8, \\
3x_1 + 2x_2 - x_3 + 2x_4 = 4, \\
2x_1 + 3x_2 + 2x_3 + x_4 = 4;
\end{cases}$$
(4)
$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 2x_3 + 3x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\
x_1 + 5x_2 + 5x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\
x_1 + 3x_2 + 2x_3 + 3x_4 = 0, \\
x_1 + 3x_2 + 2x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\
x_1 + 3x_2 + 2x_3 + 2x_4 = 0;
\end{cases}$$

$$\begin{cases}
x_1 + 2x_2 + 3x_3 + 2x_4 + 2x_3 + 3x_4 + 2x_4 + 3x_3 + 2x_4 + 2x_4 + 3x_3 + 2x_4 + 2x_4 + 3x_4 + 3x_4 + 3x_4 + 2x_4 + 3x_4 + 3x_$$

 $x_3 = 3$.

- (2) |A| = -20, $|B_1| = |B_2| = |B_3| = |B_4| = 0$, $x_1 = x_2 = x_3 = x_4 = 0$.
- (3) |A| = 12, $|B_1| = 12$, $|B_2| = 24$, $|B_3| = -12$, $|B_4| = -24$, $|A_1| = 1$, $x_2 = 2$, $x_3 = -1$, $x_4 = -2$.
- $(4) |A| = -9, |B_1| = -9, |B_2| = 18, |B_3| = -27, |B_4| = -9, x_1 = 1,$
- **2.** 求一个二次多项式 $f(x) = ax^2 + bx + c$. 使 f(1) = 1. f(-1) = 9. f(2) = 3.

解: $f(x) = 2x^2 - 4x + 3$.

3. 证明齐次线性方程组

$$\begin{cases} x_1 + x_2 + \dots + x_n = 0, \\ 2x_1 + 2^2 x_2 + \dots + 2^n x_n = 0, \\ \dots \\ nx_1 + n^2 x_2 + \dots + n^n x_n = 0 \end{cases}$$

§ 8 拉普拉斯定理 · · 59 · ·

仅有零解.

证明: 因为

$$|A| = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2^2 & \cdots & 2^n \\ \vdots & \vdots & \ddots & \vdots \\ n & n^2 & \cdots & n^n \end{vmatrix} = 1!2! \cdots n! \neq 0,$$

根据推论 7.2, 原方程只有零解.

§8 拉普拉斯定理

1. 将下列行列式按拉普拉斯定理展开, 以求下列行列式的值:

解: (1) 按第 1, 2 两行展开:

・60・ 第二章 行列式

原式 =
$$\begin{vmatrix} 5 & 6 \\ 1 & 5 \end{vmatrix} \cdot \begin{vmatrix} 5 & 6 & 0 \\ 1 & 5 & 6 \\ 0 & 1 & 5 \end{vmatrix} + (-1)^7 \begin{vmatrix} 5 & 0 \\ 1 & 6 \end{vmatrix} \cdot \begin{vmatrix} 1 & 6 & 0 \\ 0 & 5 & 6 \\ 0 & 1 & 5 \end{vmatrix}$$

+ $(-1)^8 \begin{vmatrix} 6 & 0 \\ 5 & 6 \end{vmatrix} \cdot \begin{vmatrix} 0 & 6 & 0 \\ 0 & 5 & 6 \\ 0 & 1 & 5 \end{vmatrix} = 665.$

- (2) (ax by)(cz dw).
- (3) 按第 1, 2, 3 行展开:

原式 =
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 10 & 16 \end{vmatrix}$$
 $\cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = -2.$

(4) 依次按中间两行展开:

原式 =
$$(a^2 - b^2)D_{2(n-1)} = \cdots = (a^2 - b^2)^n$$
.

2. 计算下列行列式的值:

$$\begin{vmatrix}
1 & a_1 & 0 & \cdots & 0 & 0 \\
-1 & 1 - a_1 & a_2 & \cdots & 0 & 0 \\
0 & -1 & 1 - a_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 - a_{n-1} & a_n \\
0 & 0 & 0 & \cdots & -1 & 1 - a_n
\end{vmatrix};$$

$$\begin{vmatrix}
n & -1 & 0 & 0 & \cdots & 0 & 0 \\
n - 1 & x & -1 & 0 & \cdots & 0 & 0 \\
n - 2 & 0 & x & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
2 & 0 & 0 & 0 & \cdots & x & -1 \\
1 & 0 & 0 & 0 & \cdots & 0 & x
\end{vmatrix};$$

$$\begin{vmatrix}
x & a & a & \cdots & a & a
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 0 & 0 & \cdots & 0 \\
x & a & a & \cdots & a & a \\
-a & x & a & \cdots & a & a \\
-a & -a & x & \cdots & a & a \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-a & -a & -a & \cdots & -a & x
\end{vmatrix};$$

§8 拉普拉斯定理 · 61 ·

$$(4) \begin{vmatrix} x & y & y & \cdots & y & y \\ z & x & y & \cdots & y & y \\ z & z & x & \cdots & y & y \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ z & z & z & \cdots & x & y \\ z & z & z & \cdots & z & x \end{vmatrix};$$

$$(5) \begin{vmatrix} a+b & b & 0 & \cdots & 0 & 0 \\ a & a+b & b & \cdots & 0 & 0 \\ 0 & a & a+b & \cdots & 0 & 0 \\ 0 & a & a+b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a+b & b \\ 0 & 0 & 0 & \cdots & a+b & b \\ 0 & 0 & 0 & \cdots & a+b & b \\ 0 & 0 & 0 & \cdots & a+b & b \end{vmatrix}, (a \neq b);$$

$$(6) \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}.$$

解: (1) 各行加到第 1 行, 得 $D = (-1)^{n+2} \cdot (-1)^n = 1$.

(2) 自第 1 行起, 各行乘以 x 加到下一行:

$$D = (-1)^{n+1}(1 + 2x + \dots + nx^{n-1}) \cdot (-1)^{n-1} = 1 + 2x + \dots + nx^{n-1}.$$

$$(3) D_{n} = \begin{vmatrix} a & a & a & \cdots & a & a \\ -a & x & a & \cdots & a & a \\ -a & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -a & -a & -a & \cdots & -a & x \end{vmatrix}$$

$$+ \begin{vmatrix} x - a & a & a & \cdots & a & a \\ 0 & x & a & \cdots & a & a \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots \\ 0 & -a & x & \cdots & \vdots$$

・62・ 第二章 行列式

$$= \begin{vmatrix} a & a & a & \cdots & a & a \\ 0 & x & a & \cdots & a & a \\ 0 & 0 & x & \cdots & a & a \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & x \end{vmatrix} + (x-a)D_{n-1},$$

$$D_n = a(x+a)^{n-1} + (x-a)D_{n-1},$$

又,

$$D_n = D_n^{\mathrm{T}} = a(x-a)^{n-1} + (x+a)D_{n-1},$$

消去 D_{n-1} , 得

$$D_n = \frac{1}{2}[(x+a)^n + (x-a)^n].$$

(4) 类似于上题, 可得

$$D_n = z(x - y)^{n-1} + (x - z)D_{n-1}.$$

又

$$D_n = D_n^{\mathrm{T}} = y(x-z)^{n-1} + (x-y)D_{n-1}.$$

当 $y \neq z$ 时,由上两式消去 D_{n-1} ,得

$$D_n = \frac{y(x-z)^n - z(x-y)^n}{y-z}.$$

当 y=z 时, 由递推公式 $D_n=y(x-y)^{n-1}+(x-y)D_{n-1}$, 得 $D_n=(x+(n-1)y)(x-y)^{n-1}$.

(5)
$$\Leftrightarrow \Delta_0 = 1, \ \Delta_1 = a + b = \frac{a^2 - b^2}{a - b}, \ \dots, \ \Delta_n = \frac{a^{n+1} - b^{n+1}}{a - b}, \ \text{III}$$

$$(a+b)\Delta_k - ab\Delta_{k-1} = \Delta_{k+1}.$$

$$D_n = \begin{vmatrix} \Delta_1 & b\Delta_0 & 0 & \cdots & 0 & 0 \\ a & a+b & b & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a+b & b \\ 0 & 0 & 0 & \cdots & a+b \end{vmatrix}_n$$

§ 8 拉普拉斯定理 · 63 ·

$$= \begin{vmatrix} \Delta_1 & b & 0 & \cdots & 0 & 0 \\ a & a+b-\frac{ab\Delta_0}{\Delta_1} & b & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a+b & b \\$$

(6)

$$D_{n} = \begin{vmatrix} \frac{n(n+1)}{2} & 2 & 3 & \cdots & n-1 & n \\ \frac{n(n+1)}{2} & 3 & 4 & \cdots & n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{n(n+1)}{2} & n & 1 & \cdots & n-3 & n-2 \\ \frac{n(n+1)}{2} & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$$

$$= \frac{n(n+1)}{2} \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 3 & 4 & \cdots & n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$$

$$= \frac{n(n+1)}{2} \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 1 & 2 & \cdots & n-2 & n-1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & \cdots & 1 & 1-n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 - n & 1 & \cdots & 1 & 1 \end{vmatrix}$$

・64・ 第二章 行列式

$$= \frac{n(n+1)}{2} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1-n \\ 1 & 1 & \cdots & 1-n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1-n & 1 & \cdots & 1 & 1 \\ 1-n & 1 & \cdots & 1 & 1-n \\ 1 & 1 & \cdots & 1-n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & 1 \\ = (-1)^{\frac{n(n-1)}{2}} \frac{n^{n-1}(n+1)}{2}.$$

第三章 线性方程组与线性子空间

§1 用消元法解线性方程组

1. 用消元法解下列线性方程组:

$$\begin{pmatrix}
2x_1 - x_2 + x_3 + 3x_4 = -4 \\
x_1 + 3x_2 - x_3 + 4x_4 = 6 \\
2x_1 - 2x_2 + 3x_3 - x_4 = 3
\end{pmatrix}$$

$$\begin{cases}
x_1 - 2x_2 + 3x_3 - x_4 = -6 \\
x_1 + x_2 - x_3 + x_4 = 7 \\
2x_1 - x_2 + x_3 = 1 \\
x_2 + x_3 + x_4 = 3
\end{cases}$$

解: (1) $x_1 = -5$, $x_2 = 5$, $x_3 = 8$, $x_4 = 1$.

(2)
$$x_1 = 4$$
, $x_2 = 7$, $x_3 = 0$, $x_4 = -4$.

2. 分别用矩阵的初等行变换和列变换将下列矩阵化为行阶梯矩阵和列阶梯矩阵:

$$(1) \begin{pmatrix} 3 & 2 & 1 & 0 & 4 \\ 2 & 1 & 4 & 4 & -3 \\ 2 & 0 & 3 & 1 & -2 \\ 2 & 3 & -1 & 2 & 5 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 5 & 2 & 0 & 1 \\ 3 & -5 & 4 & 2 & 7 \\ 1 & -5 & 1 & 1 & 3 \\ 0 & 2 & 1 & -1 & 2 \\ 1 & -1 & 3 & -1 & 7 \end{pmatrix}.$$

3. 证明:线性方程组的第二类,第三类初等变换把线性方程组化成与它同解的线性方程组.

证明: (略)

4. 证明推论 1.4.

证明: 对矩阵 A^{T} 应用推论 1.3, 则 A^{T} 可以经过一系列初等行变换化成简 化行阶梯矩阵. 将上述变换施行于矩阵 A 的列上, 就将 A 化成简化列阶梯矩阵.

*5. 思考题:

- (1) 线性方程组的解集可以看作是空间的一个点集. 那么, 线性空间中任一点集是否一定是某个线性方程组的解集合呢? 如果是这样, 那么, 空集, 单点集 $\{(0,0,\cdots,0)\}$ 与两点集 $\{(0,0,\cdots,0),(1,1,\cdots,1)\}$ 分别是怎样的线性方程组的解集合呢? 如果不是这样, 那么, 怎样的点集才是某个线性方程组的解集合呢?
- (2) 线性方程组的初等变换把线性方程组变成同解的线性方程组. 那么, 两个同解的线性方程组是否一定可以通过初等变换互化呢?
- 解: (1) 除了空集与单点集外,线性方程组的解集合一定是无限集. 空集是矛盾方程组的解集,单点集 $\{(0,0,\cdots,0)\}$ 可以是以下方程组

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ \vdots \\ x_n = 0 \end{cases}$$

的解集. 线性方程组的解集合是一个线性流形. 解集合的性质可参看 $\S 2$, $\S 6$, $\S 7$ 的讨论.

(2) 在允许添加或删去平凡方程 "0 = 0" 的前提下, 此结论是正确的.

§ 2 线性方程组的解的情况

1. 用消元法解下列线性方程组:

$$\begin{cases}
x_1 - 2x_2 + 3x_3 - x_4 - x_5 = 2 \\
x_1 + x_2 - x_3 + x_4 - 2x_5 = 1 \\
2x_1 - x_2 + x_3 - 2x_5 = 2 \\
2x_1 + 2x_2 - 5x_3 + 2x_4 - x_5 = 5
\end{cases}$$

$$\begin{cases}
x_1 - 2x_2 + 3x_3 - x_4 - x_5 = 4 \\
x_1 + x_2 - x_3 + x_4 - 2x_5 = 1 \\
2x_1 - x_2 + x_3 - 2x_5 = 3 \\
2x_1 + 2x_2 - 5x_3 + 2x_4 - x_5 = -4
\end{cases}$$

(3)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1 \\ x_1 - 2x_2 + x_3 - x_4 = -1 \\ x_1 - 2x_2 + x_3 + 5x_4 = 5 \end{cases}$$
 (4)
$$\begin{cases} 2x_1 + x_2 + x_3 = 2 \\ x_1 + 2x_2 + x_3 = 3 \\ x_1 + x_2 + 5x_3 = -7 \\ 2x_1 + 2x_2 - 3x_3 = 12 \end{cases}$$

(5)
$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 + x_5 = 0 \\ x_1 - 4x_2 + 2x_3 - 2x_4 + 3x_5 = 0 \\ 4x_1 - 10x_2 + 5x_3 - 5x_4 + 7x_5 = 0 \\ x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 0 \end{cases}$$

解: (1) 无解.

- (2) $x_3 = 1 x_1 + 2x_2$, $x_4 = -4x_1 + 5x_2$, $x_5 = -1 x_1 + 2x_2$, x_1, x_2 为自由未知量.
 - (3) $x_1 = 2x_2 x_3$, $x_4 = 1$, x_2, x_3 为自由未知量.
 - (4) $x_1 = 1$, $x_2 = 2$, $x_3 = -2$.
 - (5) $x_1 = \frac{1}{3}x_5, x_2 = \frac{1}{6}(3x_3 3x_4 + 5x_5), x_3, x_4, x_5$ 为自由未知量.
 - **2.** 选择 λ , 使方程组

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 1 \\ x_1 + 2x_2 - x_3 + 4x_4 = 2 \\ x_1 + 7x_2 - 4x_3 + 11x_4 = \lambda \end{cases}$$

有解,并求它的一般解.

解: 仅当 $\lambda = 5$ 时有无穷多解, 其一般解为 $x_1 = \frac{1}{5}(4 - x_3 - 6x_4)$, $x_2 = \frac{1}{5}(3 + 3x_3 - 7x_4)$, x_3, x_4 为自由未知量.

3. a, b 取何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = a \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = b \end{cases}$$

有解? 在有解的情况下, 求一般解.

解: 仅当 a=0,b=2 时有解, 其一般解为 $x_1=-2+x_3+x_4+5x_5$, $x_2=3-2x_3-2x_4-6x_5$, x_3,x_4,x_5 为自由未知量.

4. 证明方程组

$$\begin{cases} x_1 - x_2 = a_1 \\ x_2 - x_3 = a_2 \\ x_3 - x_4 = a_3 \\ x_4 - x_5 = a_4 \\ x_5 - x_1 = a_5 \end{cases}$$

有解的充分必要条件是

$$a_1 + a_2 + a_3 + a_4 + a_5 = 0.$$

在有解的情况下, 求它的一般解.

证明: (\Rightarrow) 如线性方程组有解, 设 (c_1 , c_2 , c_3 , c_4 , c_5) 为其一个解, 将它代入 原方程组, 并将各式相加, 即得 $a_1 + a_2 + a_3 + a_4 + a_5 = 0$.

(秦) 如 $a_1 + a_2 + a_3 + a_4 + a_5 = 0$,则由最后一个方程得 $x_5 = x_1 + a_5$,依次代入前一个方程,得 $x_4 = a_4 + a_5 + x_1$, $x_3 = a_3 + a_4 + a_5 + x_1$, $x_2 = a_2 + a_3 + a_4 + a_5 + x_1$,将 x_2, x_3, x_4, x_5 代入第一个方程,得

$$x_1 - (a_2 + a_3 + a_4 + a_5 + x_1) = -a_2 - a_3 - a_4 - a_5 = a_1.$$

所以原方程组的一般解为

$$\begin{cases} x_2 = a_2 + a_3 + a_4 + a_5 + x_1 \\ x_3 = a_3 + a_4 + a_5 + x_1 \\ x_4 = a_4 + a_5 + x_1 \\ x_5 = a_5 + x_1 \end{cases}$$
 x_1 为自由未知量.

5. 求一多项式 $f(x) = a_0 x^3 + a_1 x^2 + a_2 x + a_3$, 使 f(1) = -3, f(-1) = -7, f(2) = -1, f(-2) = -21.

解: $f(x) = x^3 - 2x^2 + x - 3$.

6. 给出平面上 3 个点 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 共线的充分必要条件.

解: 若点 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 共线, 不妨设此直线的方程为 Ax + By + C = 0, 则

$$\begin{cases} Ax_1 + By_1 + C = 0 \\ Ax_2 + By_2 + C = 0 \\ Ax_3 + By_3 + C = 0 \end{cases}$$

⇔ 齐次线性方程组

$$\begin{cases} x_1t_1 + y_1t_2 + t_3 = 0 \\ x_2t_1 + y_2t_2 + t_3 = 0 \\ x_3t_1 + y_3t_2 + t_3 = 0 \end{cases}$$

有非零解 (A, B, C)

⇔ 其系数矩阵

$$A = \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} = 0.$$

7. 给出平面上3条不平行直线

$$a_1x + b_1y + c_1 = 0,$$

 $a_2x + b_2y + c_2 = 0,$
 $a_3x + b_3y + c_3 = 0$

共点的充分必要条件.

解: 此 3 条直线有公共点 (x_0, y_0) 的充分必要条件是相应的齐次线性方程 组

$$a_1x + b_1y + c_1z = 0,$$

 $a_2x + b_2y + c_2z = 0,$
 $a_3x + b_3y + c_3z = 0$

有非零解 $(x_0, y_0, 1)$, 当且仅当系数矩阵等于 0, 即

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

向量组的线性相关性 $\S 3$

1. $\[\psi \] \alpha_1 = (2,5,1,3), \ \alpha_2 = (10,1,5,10), \ \alpha_3 = (4,1,-1,1). \] \[\vec{x} - \vec{p} \equiv \alpha, \]$ 使 $3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha)$.

解: $\alpha = (1, 2, 3, 4)$.

2. 已知 $3\alpha + 4\beta = (2, 1, 1, 2), 2\alpha - 3\beta = (-1, 2, 3, 1).$ 求 $\alpha 与 \beta$.

解:
$$\alpha = \frac{1}{17}(2, 11, 15, 10), \ \beta = \frac{1}{17}(7, -4, -7, 1).$$

3. 把向量 β 表成向量 α_1 , α_2 , α_3 的线性组合:

(1)
$$\alpha_1 = (1, 1, 1), \ \alpha_2 = (1, 1, -1), \ \alpha_3 = (1, -1, -1), \ \beta = (1, 2, 1);$$

$$\begin{array}{l} (2) \ \alpha_1=(1,3,5), \ \alpha_2=(6,3,-2), \ \alpha_3=(3,1,0), \ \beta=(5,8,8); \\ \mathbf{\pmb{\#}} \colon \ (1) \ \beta=\alpha_1+\frac{1}{2}\alpha_2-\frac{1}{2}\alpha_3. \end{array}$$

解: (1)
$$\beta = \alpha_1 + \frac{1}{2}\alpha_2 - \frac{1}{2}\alpha_3$$
.

- (2) $\beta = 2\alpha_1 + \alpha_2 \alpha_3$.
- 4. 判别下列向量组是否线性相关:
- (1) $\alpha_1 = (1, 1, 1), \ \alpha_2 = (1, 2, 3), \ \alpha_3 = (1, 3, 6);$
- (4, 5, -14, -3);
 - (3) $\alpha_1 = (1, -1, 2, 4), \ \alpha_2 = (0, 3, 1, 2), \ \alpha_3 = (1, 7, 8, 9), \ \alpha_4 = (3, 2, 1, 2);$
- (4) $\alpha_1 = (1, 2, -1, 4), \ \alpha_2 = (9, 1, 2, -3), \ \alpha_3 = (3, 5, 0, 2), \ \alpha_4 = (3, 2, 2, 1),$ $\alpha_5 = (1, 3, 3, 2).$

解: (1) 否; (2) 是; (3) 否; (4) 是.

5. 设 a_1, a_2, \dots, a_n 是互不相同的数, 令

$$\alpha_1 = (1, a_1, a_1^2, \cdots, a_1^{n-1}),$$

证明: 任一 n 维向量都可以由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示.

证明: 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 构成的行列式

$$|A| = \begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \cdots & \cdots & \cdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (a_i - a_j) \ne 0,$$

所以 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.

又对任意的 n 维向量 β , 向量组 β , $\alpha_1, \dots, \alpha_n$ 线性相关, 从而向量 β 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示.

6. 设向量组 α_1 , α_2 , α_3 线性无关. 证明:向量组 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 也线性无关.

证明:设

$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0,$$

则

$$(k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0.$$

因为 α_1 , α_2 , α_3 线性无关, 所以

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases}$$

解得 $k_1 = k_2 = k_3 = 0$, 所以 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 线性无关.

7. 证明: $\alpha_1, \alpha_2, \cdots, \alpha_s$ (其中 $\alpha_1 \neq 0$) 线性相关的充要条件是至少有一个 α_i (1 < $i \leq s$) 可被 $\alpha_1, \alpha_2, \cdots, \alpha_{i-1}$ 线性表示.

证明: 因为 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关, 所以存在不全为零的数 k_1, \cdots, k_s , 使

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0.$$

设 k_1, k_2, \dots, k_s 中最后一个不为零的为 k_i , 则 $i \neq 1$ (否则 $\alpha_1 = 0$ 与假设矛盾), 从而 i > 1. 故

$$k_1 \alpha_1 + \dots + k_{i-1} \alpha_{i-1} = -k_i \alpha_i,$$

$$\alpha_i = -\frac{k_1}{k_i} \alpha_1 - \frac{k_2}{k_i} \alpha_2 - \dots - \frac{k_{i-1}}{k_i} \alpha_{i-1}.$$

8. 证明: 如果向量组的一个延伸组线性相关, 则此向量组也线性相关.

证明: 设向量组 (II) 为 (I) 的延伸组, 如向量组 (I) 线性无关, 则由例 3.9 知, (II) 也线性无关, 与已知矛盾, 故此向量组线性无关.

- 9. 下列论断是否成立? 对的, 加以证明; 错的, 举出反例.
- (1) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则其中每一个都可由其余向量线性表示;
- (2) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关, 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性无关, 则向量组 $\alpha_1, \alpha_2, \dots, \alpha_r, \beta_1, \beta_2, \dots, \beta_s$ 也线性无关;
- (3) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, 向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性无关, 则向量组 $\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_s + \beta_s$ 也线性无关;
- (4) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性相关, 则一定存在 r 个不等于零的数 k_1, k_2, \dots, k_r , 使

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r = 0;$$

- (5) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,则它的任何线性组合都不等于零.
- 解: (1) 错. 如 $\alpha_1=(0,0),\ \alpha_2=(1,1)$ 线性相关, 但 α_2 不可由 α_1 线性表示.
- (2) 错. 如 $\alpha_1 = (1,1)$, $\alpha_2 = (1,2)$ 线性无关, $\beta_1 = (2,2)$, $\beta_2 = (0,1)$ 线性无关, 但 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 线性相关.
- (3) 错. 如 $\alpha_1 = (1,1)$, $\alpha_2 = (0,1)$, $\beta_1 = (1,-1)$, $\beta_2 = (1,2)$ 线性无关, 但 $\alpha_1 + \beta_1 = (0,0)$, $\alpha_2 + \beta_2 = (1,3)$ 线性相关.
- (4) 错. 如 $\alpha_1 = (0,0)$, $\alpha_2 = (0,1)$ 线性相关, 但对任意的 $k_1 \neq 0, k_2 \neq 0$ 都有 $k_1\alpha_1 + k_2\alpha_2 \neq 0$.
 - (5) 错. $\alpha_1, \alpha_2, \dots, \alpha_r$ 的零线性组合就等于零.

§4 线性子空间

- **1.** 在三维几何空间 \mathbb{R}^3 中, 下列集合 W 是否构成 \mathbb{R}^3 的线性子空间?
- (1) $W = \{(a, b, c) \in \mathbb{R}^3 \mid (a, b, c) \perp (1, 1, 1)\};$
- (2) W 是终点在某直线上的全体向量所构成的集合;

§4 线性子空间 · 73 ·

(3) W 是与空间中某固定非零向量 (x_0, y_0, z_0) 的夹角等于定值的全体向量所构成的集合.

解: (1) 是; (2) 如直线过原点, 是; 否则, 不是; (3) 夹角等于 $\frac{\pi}{2}$, 是; 否则, 不是.

- **2.** 设 V 为数域 $K \perp n$ 维向量空间, 判断 V 的下列子集 W 是否构成 V 的线性子空间.
 - (1) 设 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为 V 中给定的 r 个向量,

$$W = \{ \beta \in V \mid \alpha_1, \alpha_2, \cdots, \alpha_r, \beta$$
 线性相关 \};

- (2) 设 $\alpha_1, \alpha_2, \dots, \alpha_r$ 为 V 中给定的 r 个向量, W 是V 中不能由 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表示的全体向量所构成的集合.
 - 解: (1) 是; (2) 不是.
 - **3.** 设 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为 K^n 中给定的 r 个向量, 证明:

$$W = \{(c_1, c_2, \cdots, c_r) \mid c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_r \alpha_r = 0\}$$

组成 K^r 的子空间.

证明: 显然 $W \subseteq K^r$ 且 $(0,0,\cdots,0) \in W$, 从而 W 非空. 对任意的 $(a_1,\cdots,a_r),(b_1,\cdots,b_r) \in W$ 以及 $k \in K$, 有

$$(a_1+b_1)\alpha_1+\dots+(a_r+b_r)\alpha_r = a_1\alpha_1+\dots+a_r\alpha_r+b_1\alpha_1+\dots+b_r\alpha_r = 0+0=0.$$

所以

$$(a_1, \cdots, a_r) + (b_1, \cdots, b_r) \in W.$$

 $(ka_1)\alpha_1+(ka_2)\alpha_2+\cdots+(ka_r)\alpha_r=k(a_1\alpha_1+a_2\alpha_2+\cdots+a_r\alpha_r)=k\cdot 0=0.$ 所以

$$k(a_1, \cdots, a_r) \in W$$
.

W 成为 K^r 的子空间.

- **4.** 设 $\alpha_1 = (2, 1, 11, 2), \alpha_2 = (1, 0, 4, -1), \alpha_3 = (1, 4, 16, 15), \beta_1 = (3, 1, 15, 1), \beta_2 = (1, 1, 7, 3), \gamma = (1, 6, 22, \lambda).$
 - (1) λ 取什么值时才能使 $\gamma \in L(\alpha_1, \alpha_2, \alpha_3)$;
 - (2) 验证: $L(\alpha_1, \alpha_2, \alpha_3) = L(\beta_1, \beta_2)$.

解: (1) $\gamma \in L(\alpha_1, \alpha_2, \alpha_3) \iff \gamma = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$. 得线性方程组

$$\begin{cases} 2k_1 + k_2 + k_3 = 1 \\ k_1 + 4k_3 = 6 \\ 11k_1 + 4k_2 + 16k_3 = 22 \\ 2k_1 - k_2 + 15k_3 = \lambda. \end{cases}$$

当且仅当 $\lambda = 23$ 时 (k_1, k_2, k_3) 有解 (6, -11, 0). 即当且仅当 $\lambda = 23$ 时 $\gamma \in L(\alpha_1, \alpha_2, \alpha_3)$.

- (2) 因为 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_1 \alpha_2$, 所以 $L(\beta_1, \beta_2) \subseteq L(\alpha_1, \alpha_2, \alpha_3)$. 反之, $\alpha_1 = \frac{1}{2}(\beta_1 + \beta_2)$, $\alpha_2 = \frac{1}{2}(\beta_1 \beta_2)$, $\alpha_3 = \frac{1}{2}(-3\beta_1 + 11\beta_2)$, 所以 $L(\alpha_1, \alpha_2, \alpha_3) \subseteq L(\beta_1, \beta_2)$.
- *5. 设 W_1, W_2, \dots, W_s 为 K^n 的 s 个线性子空间. $W = W_1 \cup W_2 \cup \dots \cup W_s$. 证明: W 为 K^n 的线性子空间的充分必要条件是,存在 i $(1 \le i \le s)$,使 $W = W_i$.

证明: 充分性是显然的. 下面证必要性. 对 s 用归纳法. 当 s=1 时结论显然成立. 假定结论对 s-1 成立, 考察 $W=W_1\cup W_2\cup\cdots\cup W_s$. 如果 $W\neq W_s$, 则可取 $\beta\in W\setminus W_s$. 对于任意的 $\alpha\in W_s$, 必有 $\beta+k\alpha\in W\setminus W_s$ (从 $\beta+k\alpha\in W_s$ 以及 $\alpha\in W_s$ 可以推得 $\beta\in W_s$, 矛盾). 当 $k=1,\cdots,s$ 时, s 个向量中必有两个向量属于同一个 W_i ($1\leq i\leq s-1$). 这两个向量相减后可得 $\alpha\in W_i$. 因此 $W_s\subseteq W_1\cup\cdots\cup W_{s-1}$, 于是 $W=W_1\cup\cdots\cup W_{s-1}$. 利用归纳假设,可得一个 $i,1\leq i\leq s-1$ 使得 $W=W_i$. 结论成立.

§ 5 线性子空间的基与维数

1. 设 $W=L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是一个线性子空间, 其中 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性无关, 并且 $\alpha_{r+1},\cdots,\alpha_s$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表示, 证明 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是 W 的基.

证明:由于W中的任意向量都是 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的线性组合,而 $\alpha_{r+1}, \cdots, \alpha_s$ 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示,因此W中的任意向量都可以由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示。根据命题 $5.1, \alpha_1, \alpha_2, \cdots, \alpha_r$ 是W的基.

- 2. 利用练习 1 验证:
- (1) 若 $\alpha_1 = (2,1,11,2)$, $\alpha_2 = (1,0,4,-1)$, $\alpha_3 = (1,4,16,15)$, $\alpha_4 = (2,-1,5,-6)$, $\alpha_5 = (1,6,22,23)$, 则 α_1,α_2 是 $L(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$ 的基;

- (2) 若 $\alpha_1 = (1, -4, 15, 5, -4)$, $\alpha_2 = (0, 7, 29, -8, 7)$, $\alpha_3 = (2, -1, 1, 1, -3)$, $\alpha_4 = (1, -4, 3, 5, -4)$, 则 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 $L(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的基.
- 解: (1) 因为 α_1, α_2 线性无关且 $\alpha_3 = 4\alpha_1 7\alpha_2, \ \alpha_4 = -\alpha_1 + 4\alpha_2, \ \alpha_5 = 6\alpha_1 11\alpha_2.$
 - (2) 因为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关.
- **3.** 设 W 为向量空间 V 的子空间, $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为 W 的一个基, $\beta_i = \sum_{i=1}^r a_{ij}\alpha_j, i = 1, 2, \cdots, r$.

证明: $\beta_1, \beta_2, \cdots, \beta_r$ 也是 W 的基的充分必要条件是

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} \end{vmatrix} \neq 0.$$

证明: (\Rightarrow) 由于 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关, 因此

$$k_1\beta_1 + \dots + k_r\beta_r = \sum_{j=1}^r \left(\sum_{i=1}^r k_i a_{ij}\right) \alpha_j = 0$$

当且仅当 k_1, \cdots, k_r 是以下齐次线性方程组的解

$$a_{i1}k_1 + a_{i2}k_2 + \dots + a_{ir}k_r = 0$$
 $j = 1, 2, \dots, r$.

因此要使 $\beta_1, \beta_2, \dots, \beta_r$ 也是 W 的基的充分必要条件是 $\beta_1, \beta_2, \dots, \beta_r$ 线性无关,这等价于上述齐次线性方程组只有零解,也就是它的系数行列式不等于零,即

$$\begin{vmatrix} a_{11} & a_{21} & \cdots & a_{r1} \\ a_{12} & a_{22} & \cdots & a_{r2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1r} & a_{2r} & \cdots & a_{rr} \end{vmatrix} \neq 0.$$

将上述行列式转置后得

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} \end{vmatrix} \neq 0.$$

*4. 设 V 为数域 K 上的 n 维向量空间. 证明: 对任何大于 n 的自然数 m, 一定存在由 V 的 m 个向量组成的向量组, 使其中任何 n 个向量都线性无关.

证明: 由习题 3-4.5 的结果可以知道, V 不可能表示成它的有限多个真线 性子空间的并集. 对 m > n 施行数学归纳法. 当 m = n 时结论成立. 假设已经 找到满足条件的 m-1 > n 个向量的向量组 $\alpha_1, \dots, \alpha_{m-1}$. 把其中任意 n-1的向量生成的线性子空间记为 W_i ($i=1,\dots,s$), 则因 $V\neq\bigcup W_i$, 存在向量 $\alpha_m \notin \bigcup W_i \ (i=1,\cdots,s)$. 则向量组 α_1,\cdots,α_m 也满足条件.

齐次线性方程组的解的结构

1. 求下列齐次线性方程组的基础解系:

1. 求下列齐次线性方程组的基础解系:
$$\begin{cases}
x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\
3x_1 + 2x_2 + x_3 + x_4 - x_5 = 0 \\
5x_1 + 4x_2 + 3x_3 + 3x_4 + x_5 = 0 \\
x_2 + 2x_3 + 2x_4 + 4x_5 = 0
\end{cases}$$
(2)
$$\begin{cases}
3x_1 + 2x_2 - 5x_3 + 4x_4 = 0 \\
3x_1 - x_2 + 3x_3 - 3x_4 = 0 \\
3x_1 + 5x_2 - 13x_3 + 11x_4 = 0
\end{cases}$$
(3)
$$\begin{cases}
x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\
2x_1 + 2x_2 + x_3 + x_4 - 2x_5 = 0 \\
5x_1 + 4x_2 - 3x_3 + 4x_4 + x_5 = 0 \\
x_2 + 6x_3 - x_4 - 4x_5 = 0
\end{cases}$$
(4)
$$\begin{cases}
x_1 - 2x_2 + 3x_3 - 4x_4 = 0 \\
x_2 - x_3 + x_4 = 0 \\
x_1 + 3x_2 - 3x_4 = 0 \\
x_1 - 4x_2 + 3x_3 - 2x_4 = 0
\end{cases}$$

(2)
$$\begin{cases} 3x_1 + 2x_2 - 5x_3 + 4x_4 = 0 \\ 3x_1 - x_2 + 3x_3 - 3x_4 = 0 \\ 3x_1 + 5x_2 - 13x_3 + 11x_4 = 0 \end{cases}$$

(3)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0\\ 2x_1 + 2x_2 + x_3 + x_4 - 2x_5 = 0\\ 5x_1 + 4x_2 - 3x_3 + 4x_4 + x_5 = 0\\ x_2 + 6x_3 - x_4 - 4x_5 = 0 \end{cases}$$

(4)
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 0 \\ x_2 - x_3 + x_4 = 0 \\ x_1 + 3x_2 - 3x_4 = 0 \\ x_1 - 4x_2 + 3x_3 - 2x_4 = 0 \end{cases}$$

 \mathbf{H} : (1) (1, -2, 1, 0, 0), (1, -2, 0, 1, 0), (3, -4, 0, 0, 1).

- (2) (-1, 24, 9, 0), (2, -21, 0, 9).
- (3) (-7, 7, -1, 1, 0), (-25, 28, -4, 0, 1).
- (4) (0, 1, 2, 1).

2. 证明: 如果齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

的系数矩阵 A 的行列式 |A|=0,方程组的秩是 n-1,并且矩阵 A 中 a_{kl} 的代数余子式 $A_{kl}\neq 0$,那么 $(A_{k1},A_{k2},\cdots,A_{kn})$ 是此齐次线性方程组的一个基础解系.

证明:由于

$$a_{k1}A_{k1} + a_{k2}A_{k2} + \dots + a_{kn}A_{kn} = |A| = 0,$$

 $a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0, \quad \stackrel{\text{def}}{=} i \neq k \text{ fd},$

因此 $(A_{k1}, A_{k2}, \dots, A_{kn})$ 是题设齐次线性方程组的解. 又因 $A_{kl} \neq 0$, 这是一个非零解. 由假设知道方程组的秩是 n-1, 所以此齐次线性方程组的基础解系由一个非零解构成. 因此 $(A_{k1}, A_{k2}, \dots, A_{kn})$ 是此齐次线性方程组的一个基础解系.

3. 设齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \dots + a_{n-1,n}x_n = 0 \end{cases}$$

的系数矩阵为 A, M_i 是矩阵 A 中划去第 i 列所得的 $(n-1) \times (n-1)$ 矩阵的行列式. 证明:

- (1) $(M_1, -M_2, \cdots, (-1)^{n-1}M_n)$ 是方程组的一个解;
- (2) 如果这个线性方程组的秩为 n-1, 某个 $M_i \neq 0$, 证明方程组的解全是 $(M_1, -M_2, \cdots, (-1)^{(n-1)} M_n)$ 的倍数.

证明: (1) 作齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \dots + a_{n-1,n}x_n = 0 \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

其中 $a_{n1} = a_{n2} = \cdots = a_{nn} = 0$, 则此线性方程组与原方程组同解, 且 系数矩阵等于 0. 故由上题, 最后一行的代数余子式 $(A_{n1}, A_{n2}, \cdots, A_{nn})$ 为 原方程组的解. 又 $A_{ni} = (-1)^{n+i} M_i$, 所以 $(M_1, -M_2, \cdots, (-1)^{n-1} M_n) =$ $(-1)^{n+1}(A_{n1}, A_{n2}, \cdots, A_{nn})$ 为原方程组的解.

(2) 因原方程组的秩为 n-1, 且有一个 $M_i \neq 0$. 因此原方程组的基础解系 由一个非零解向量构成. 从而非零解 $(M_1, -M_2, \cdots, (-1)^{n-1}M_n)$ 构成原线性 方程组的一个基础解系. 故原方程组的每一个解都是

$$(M_1, -M_2, \cdots, (-1)^{n-1}M_n)$$

的倍数.

非齐次线性方程组的解的结构,线性流形

1. 求下列线性方程组的全部

1. 录 下列线性方程组的全部解:
$$\begin{cases}
2x_1 - x_2 + 5x_3 + 7x_4 = 0 \\
4x_1 - 2x_2 + 7x_3 + 5x_4 = 0 \\
2x_1 - x_2 + x_3 - 5x_4 = 0 \\
2x_1 - x_2 + 6x_3 + 10x_4 = 0
\end{cases}$$
(2)
$$\begin{cases}
2x_1 + x_2 - x_3 + x_4 = 1 \\
x_1 + 2x_2 + x_3 - x_4 = 2 \\
x_1 + x_2 + 2x_3 + x_4 = 3
\end{cases}$$
(3)
$$\begin{cases}
x_1 + x_2 - 3x_4 - x_5 = 2 \\
x_1 - x_2 + 2x_3 - x_4 = 1 \\
4x_1 - 2x_2 + 6x_3 + 3x_4 - 4x_5 = 8 \\
2x_1 + 4x_2 - 2x_3 + 4x_4 - 7x_5 = 9
\end{cases}$$
(4)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4 \\
x_1 - x_2 - x_3 - 2x_4 + 5x_5 = -6 \\
x_1 + 6x_2 + 8x_3 + 5x_4 - 3x_5 = 9
\end{cases}$$
62. (4)
$$\begin{cases}
2x_1 + x_2 - x_3 + x_4 = 1 \\
x_1 + 2x_2 + x_3 - x_4 = 3
\end{cases}$$
(5)
$$\begin{cases}
x_1 + x_2 - x_3 + x_4 = 1 \\
x_1 - x_2 - x_3 + x_4 = 3
\end{cases}$$
(6)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4
\end{cases}$$
(7)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4
\end{cases}$$
(8)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4
\end{cases}$$
(9)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4
\end{cases}$$
(10)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2 \\
2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4
\end{cases}$$
(11)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(12)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(23)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(44)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(5)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(6)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(7)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(8)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(9)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(10)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(11)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(12)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(13)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(14)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(15)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(16)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2
\end{cases}$$
(17)
$$\begin{cases}
3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 + -2x_5 + 6x_3 + 6x_5 + 6x$$

(3)
$$\begin{cases} x_1 + x_2 - 3x_4 - x_5 = 2\\ x_1 - x_2 + 2x_3 - x_4 = 1\\ 4x_1 - 2x_2 + 6x_3 + 3x_4 - 4x_5 = 8\\ 2x_1 + 4x_2 - 2x_3 + 4x_4 - 7x_5 = 9 \end{cases}$$

(4)
$$\begin{cases} 3x_1 + 4x_2 + 2x_3 + x_4 + 6x_5 = -2\\ 2x_1 + 5x_2 + 5x_3 + 3x_4 + x_5 = 4\\ x_1 - x_2 - x_3 - 2x_4 + 5x_5 = -6\\ x_1 + 6x_2 + 8x_3 + 5x_4 - 3x_5 = 9 \end{cases}$$

M: (1) $k_1(4,0,-3,1) + k_2(0,-3,1) + k_3(0,-3,1) + k$

- (2) (1,0,1,0) + k(-3,3,-1,2).
- (3) $(1,0,0,0,-1) + k_1(-1,1,1,0,0) + k_2(7,5,0,2,6)$.
- (4) (1,0,0,1,-1) + k(-1,1,0,-1,0).

2. 设 $\eta_1, \eta_2, \cdots, \eta_r$ 是非齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
 (b_i 不全为 0)

的任意 r 个解, $\eta = \sum_{i=1}^{r} k_i \eta_i \ (k_i \in K, i = 1, 2, \dots, r)$. 证明: 当且仅当 $\sum_{i=1}^{r} k_i = 1$ 时, η 也是这个非齐次线性方程组的解.

证明: 设
$$\eta_i = (c_{1i}, c_{2i}, \cdots, c_{ni}) \ (i = 1, \cdots, r)$$
. 则

$$a_{j1}c_{1i} + a_{j2}c_{2i} + \dots + a_{jn}c_{ni} = b_j,$$
 $j = 1, \dots, m, i = 1, \dots, r.$

丽

$$\eta = \sum_{i=1}^{r} k_i \eta_i = \left(\sum_{i=1}^{r} k_i c_{1i}, \sum_{i=1}^{r} k_i c_{2i}, \cdots, \sum_{i=1}^{r} k_i c_{ni}\right),$$

代入非齐次线性方程组后得

$$a_{j1} \sum_{i=1}^{r} k_{i} c_{1i} + a_{j2} \sum_{i=1}^{r} k_{i} c_{2i} + \dots + a_{jn} \sum_{i=1}^{r} k_{i} c_{ni}$$

$$= \sum_{i=1}^{r} k_{i} (a_{j1} c_{1i} + a_{j2} c_{2i} + \dots + a_{jn} c_{ni})$$

$$= \left(\sum_{i=1}^{r} k_{i}\right) b_{j}, \qquad j = 1, \dots, m.$$

由于 b_j 不全为 0,因此 η 是这个非齐次线性方程组的解的充分必要条件是 $\sum\limits_{i=1}^r k_i = 1$.

3. ψ_0 是非齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
 $(b_i \text{ \mathbb{R} $\stackrel{\wedge}{=}$ $0})$

的一个解, $\eta_1, \eta_2, \dots, \eta_r$ 是它的导出组的基础解系.

证明: (1) $\gamma_0, \eta_1, \eta_2, \cdots, \eta_r$ 线性无关;

- (2) $\gamma_0, \gamma_0 + \eta_1, \gamma_0 + \eta_2, \dots, \gamma_0 + \eta_r$ 也线性无关;
- (3) 如 γ 是这个非齐次线性方程组的任意解, 则 γ , γ_0 , γ_0 + η_1 , \cdots , γ_0 + η_r 线性相关;
- (4) K^n 中向量 γ 是这个非齐次线性方程组的解的充分必要条件是存在 r+1 个数 k_i $(i=0,1,\cdots,r)$, $\sum\limits_{i=0}^r k_i=1$, 使得

$$\gamma = k_0 \gamma_0 + k_1 (\gamma_0 + \eta_1) + k_2 (\gamma_0 + \eta_2) + \dots + k_r (\gamma_0 + \eta_r).$$

证明: (1) 设

$$\alpha = k_0 \gamma_0 + k_1 \eta_1 + \dots + k_r \eta_r = 0,$$

则

$$0 = A\alpha = k_0 A \gamma_0 + \sum_{i=1}^{r} k_i A \eta_i = k_0 B.$$

所以 $k_0 = 0$, $k_1\eta_1 + \cdots + k_r\eta_r = 0$. 由于 η_1, \cdots, η_r 线性无关,可得 $k_1 = k_2 = \cdots = k_r = 0$. 因此 $\gamma_0, \eta_1, \eta_2, \cdots, \eta_r$ 线性无关.

(2) 设

$$k_0 \gamma_0 + k_1 (\gamma_0 + \eta_1) + \dots + k_r (\gamma_0 + \eta_r) = 0,$$

则

$$(k_0 + k_1 + \dots + k_r)\gamma_0 + k_1\eta_1 + \dots + k_r\eta_r = 0,$$

由 (1), γ_0 , η_1 , η_2 , \cdots , η_r 线性无关, 所以

$$k_1 = k_2 = \dots = k_r = 0,$$
 $k_0 + k_1 + \dots + k_r = 0,$

进而 $k_0 = k_1 = \cdots = k_r = 0$. 因此 $\gamma_0, \gamma_0 + \eta_1, \gamma_0 + \eta_2, \cdots, \gamma_0 + \eta_r$ 线性无关.

(3) 如 γ 是这个非齐次线性方程组的解, 则 $\gamma - \gamma_0$ 是它的导出组的解. 所以存在 $k_i \in K$, 使 $\gamma - \gamma_0 = \sum k_i \eta_i$. 于是

$$\gamma = \gamma_0 + \sum k_i \eta_i = \left(1 - \sum_{i=1}^r k_i\right) \gamma_0 + \sum_{i=1}^r k_i (\gamma_0 + \eta_i),$$

从而 γ , γ_0 , γ_0 + η_1 , \cdots , γ_0 + η_r 线性相关.

(4) (⇒) γ 为非齐次线性方程组的解,则由 (3) 的证明可得

$$\gamma = \left(1 - \sum_{i=1}^{r} k_i\right) \gamma_0 + \sum_{i=1}^{r} k_i (\gamma_0 + \eta_i),$$

从而此线性表示式的系数之和等于

$$\left(1 - \sum_{i=1}^{r} k_i\right) + \sum_{i=1}^{r} k_i = 1.$$

- (\Leftarrow) 如 $\sum_{i=0}^{r} k_i = 1$, 则由上题的结论可知 γ 是一个解.
- ***4.** 设 Y_1,Y_2 为向量空间 V 的两个线性流形,下列集合是否构成 V 的线性流形?
 - (1) $Y_1 \cap Y_2$;
 - (2) $Y_1 \cup Y_2$;
 - (3) $Y_1 + Y_2 = \{\alpha_1 + \alpha_2 \mid \alpha_1 \in Y_1, \alpha_2 \in Y_2\}.$

解: (1) 是. 设 $\alpha \in Y_1 \cap Y_2$, 则

$$Y_1 = \alpha + W_1, \qquad Y_2 = \alpha + W_2,$$

其中 W_1, W_2 为子空间,于是

$$Y_1 \cap Y_2 = \alpha + (W_1 \cap W_2),$$

可知 $Y_1 \cap Y_2$ 也是线性流形.

(2) 不一定. 如取 α, β 线性无关, 令

$$Y_1 = L(\alpha), \qquad Y_2 = L(\beta),$$

则 Y_1, Y_2 都是线性流形, 但 $\alpha + \beta \notin Y_1 \cup Y_2$.

(3) 是. 如

$$Y_1 = \alpha_1 + W_1, \qquad Y_2 = \alpha_2 + W_2,$$

其中 W_1, W_2 为子空间. 则

$$Y_1 + Y_2 = (\alpha_1 + \alpha_2) + (W_1 + W_2),$$

可知 $Y_1 + Y_2$ 也是线性流形.

*5. 设 $\alpha_0, \alpha_1, \dots, \alpha_r$ 为 V 的 r+1 个向量, 证明:

$$Y = \left\{ \sum_{i=0}^{r} k_i \alpha_i \, \middle| \, \sum_{i=0}^{r} k_i = 1, k_i \in K, i = 0, 1, \dots r \right\}$$

构成 V 的一个线性流形.

证明:设

$$\sum_{i=0}^{r} k_i \alpha_i \in Y, \qquad \sum_{i=0}^{r} k_i = 1,$$

$$\sum_{i=0}^{r} l_i \alpha_i \in Y, \qquad \sum_{i=0}^{r} l_i = 1,$$

则对任意的 $k, l \in K, k + l = 1$, 有

$$k\left(\sum_{i=0}^{r} k_i \alpha_i\right) + l\left(\sum_{i=0}^{r} l_i \alpha_i\right) = \sum_{i=0}^{r} (kk_i + ll_i)\alpha_i,$$

而

$$\sum_{i=0}^{r} kk_i + \sum_{i=0}^{r} ll_i = k \sum_{i=0}^{r} k_i + l \sum_{i=0}^{r} l_i = k + l = 1,$$

于是

$$k\left(\sum_{i=0}^{r} k_i \alpha_i\right) + l\left(\sum_{i=0}^{r} l_i \alpha_i\right) \in Y,$$

从而 Y 是线性流形.

*6. 设 Y 为向量空间 V 的一个线性流形. 证明: 存在 Y 中的 r+1 个向量 $\alpha_0,\alpha_1,\cdots,\alpha_r,$ 使

$$Y = \left\{ \sum_{i=0}^{r} k_i \alpha_i \, \middle| \, \sum_{i=0}^{r} k_i = 1, k_i \in K, i = 0, 1, \dots r \right\}.$$

证明: 设 $Y = \alpha_0 + W$, 其中 W 是子空间. 设 W 的基为 η_1, \dots, η_r , 令

$$\alpha_0 = \alpha_0, \alpha_1 = \alpha_0 + \eta_1, \cdots, \alpha_r = \alpha_0 + \eta_r,$$

则 $\alpha_i \in Y$, 且对任意的 $k_i \in K$, $\sum_{i=0}^r k_i = 1$, 有

$$\sum_{i=0}^{r} k_i \alpha_i = \sum_{i=1}^{r} k_i \alpha_0 + \sum_{i=0}^{r} k_i \eta_i \in \alpha_0 + W = Y.$$

反之, 对任意的 $\alpha = \alpha_0 + \eta \in Y = \alpha_0 + W$, 存在 k_i , 使 $\eta = \sum_{i=1}^r k_i \eta_i$, 从而

$$\alpha = \left(1 - \sum_{i=1}^{r} k_i\right) \alpha_0 + \sum_{i=1}^{r} k_i (\alpha_0 + \eta_i),$$

其中

$$\left(1 - \sum_{i=1}^{r} k_i\right) + k_1 + k_2 + \dots + k_r = 1.$$

这证明了

$$Y = \left\{ \sum_{i=0}^{r} k_i \alpha_i \, \middle| \, \sum_{i=0}^{r} k_i = 1, k_i \in K, i = 0, 1, \dots r \right\}.$$

第四章 几何空间中的平面与直线

§1 几何空间中平面的仿射性质

- 1. 在给定的仿射坐标系中, 求下列平面的一般方程和参数方程:
- (1) 过 (-1,2,0), (-2,-1,4), (3,1,-5) 三点的平面;
- (2) 过点 (3,1,2) 和 (1,0,-2), 平行于向量 $\overrightarrow{v} = (1,-2,-3)$ 的平面.

解: (1) 过 3 点的平面三点式方程是:

$$\begin{vmatrix} x+1 & -1 & 4 \\ y-2 & -3 & -1 \\ z & 4 & -5 \end{vmatrix} = 0,$$

展开后得

$$19x + 11y + 13z - 3 = 0.$$

它的参数方程为:

$$\begin{cases} x = -1 - u + 4v \\ y = 2 - 3u - v \\ z = 4u - 5v. \end{cases}$$

(2) 由已知条件, 平面通过 (3,1,2), 它的方向向量是 $\xi_1 = \overrightarrow{v} = (1,-2,-3)$ 以及 $\xi_2 = (1-3,0-1,-2-2) = (-2,-1,-4)$, 因此平面的参数方程为

$$\begin{cases} x = 3 + u - 2v \\ y = 1 - 2u - v \\ z = 2 - 3u - 4v, \end{cases}$$

平面的一般方程为

$$\begin{vmatrix} x-3 & 1 & -2 \\ y-1 & -2 & -1 \\ z-2 & -3 & -4 \end{vmatrix} = 0,$$

展开后得 x + 2y - z - 3 = 0.

- 2. 在给定的仿射坐标系中, 求下列平面的一般方程:
- (1) 过点 (1,2,-4) 和 x 轴的平面;
- (2) 过点 (2,1,2) 以及平面 Π_1 : x+y-z=0, Π_2 : 2x-3z-1=0 的交线的平面:
 - (3) 过点 (0,4,-3) 和 (1,-2,6), 且平行于 x 轴的平面;
 - (4) 过点 (3,1,-2) 且平行于平面 x-2y-2z+1=0 的平面;
 - (5) 过点 (2,0,-1),(-1,3,4) 且与 y 轴平行的平面方程.
- 解: (1) 设平面的一般方程是 Ax + By + Cz + D = 0, 因为它过 x 轴, 所以 A = D = 0; 又因它过点 (1, 2, -4), 所以 B = 2C. 故平面的方程为 2y + z = 0.
 - (2) 解线性方程组

$$\begin{cases} x+y-z=0\\ 2x-3z-1=0 \end{cases}$$

求得平面交线上的两个点 $\left(\frac{1}{2}, -\frac{1}{2}, 0\right)$ 以及 $\left(0, -\frac{1}{3}, -\frac{1}{3}\right)$. 得到所求平面的三点式方程:

$$\begin{vmatrix} x-2 & -\frac{3}{2} & -2 \\ y-1 & -\frac{3}{2} & -\frac{4}{3} \\ z-2 & -2 & -\frac{7}{3} \end{vmatrix} = 0,$$

展开后得 5x + 3y - 6z - 1 = 0.

(3) 所求平面的一个方向向量是 (1,0,0), 因此所求平面的方程为:

$$\begin{vmatrix} x & 1 & 1 \\ y - 4 & 0 & -6 \\ z + 3 & 0 & 9 \end{vmatrix} = 0,$$

展开后得 3y + 2z - 6 = 0.

- (4) 由两平面平行的性质可知, 所求平面的方程应为 x-2y-2z+D=0. 因该平面过 (3,1,-2) 点, 所以 3-2+4+D=0, 即 D=-5. 故所求方程为 x-2y-2z-5=0.
- (5) 由于该平面平行于 y 轴,因此可设它的方程为 Ax + Cz + D = 0. 把两个点的坐标代人,解方程 $\begin{cases} 2A C = D = 0 \\ -A + 4C + D = 0 \end{cases}$ 得 $\begin{cases} A = -\frac{5}{7}D \\ C = -\frac{3}{7}D \end{cases}$ 即平面

方程为 5x + 3z - 7 = 0.

3. 已知一平面通过 $P_0(x_0, y_0, z_0)$ $(z_0 \neq 0)$, 且在 x 轴和 y 轴上的截距分别 是 a 和 b, 求它的方程.

 \mathbf{m} : 设平面在 z 轴上的截距为 c, 则该平面的方程为

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

又因 P_0 点在平面上, 所以 $\frac{x_0}{a} + \frac{y_0}{b} + \frac{z_0}{c} = 1$, 得 $\frac{1}{c} = \frac{1}{z_0} \left(1 - \frac{x_0}{a} - \frac{y_0}{b} \right)$, 所以 平面方程为

$$\frac{x}{a} + \frac{y}{b} + \left(1 - \frac{x_0}{a} - \frac{y_0}{b}\right) \frac{z}{z_0} = 1.$$

4. 求过 $P_0(x_0, y_0, z_0)$, 且平行于平面 Ax + By + Cz + D = 0 的平面的方 程.

解:由两平面平行的性质可知,所求平面的方程应为 $Ax+By+Cz+D_1=$ 0. 因该平面过 P_0 点, 所以 $D_1 = -(Ax_0 + By_0 + Cz_0)$, 故所求平面方程为 $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$

5. 证明命题 1.2.

证明: 因为向量与线性流形平行定义为这个向量在线性子空间 W 内, 因 此 \overrightarrow{v} 与平面平行的充分必要条件是 $\overrightarrow{v} \in W$. 而线性子空间 W 又是由导出 方程 Ax + By + Cz = 0 定义的, 所以 $\overrightarrow{v} \in W$ 的充分必要条件是 \overrightarrow{v} 的分量 (X,Y,Z) 满足导出方程, 即 AX + BY + CZ = 0.

- **6.** 判断下列各平面的相关位置: (1) 2x + y z = 0 与 $\frac{1}{2}x + \frac{1}{4}y \frac{1}{4}z + 2 = 0$;
- (2) x 2y + z 2 = 0 = 3x + y 2z 1 = 0;
- (3) $A_1x + B_1y + C_1z + D_1 = 0$ 与 $A_2x + B_2y + C_2z + D_2 = 0$, 其中 $\left| \begin{array}{cc} A_1 & B_1 \\ A_2 & B_2 \end{array} \right| \neq 0.$

$$\frac{2}{\frac{1}{2}} = \frac{1}{\frac{1}{4}} = \frac{-1}{-\frac{1}{4}} \neq \frac{0}{2},$$

所以两平面平行.

- (2) 因为 $\frac{1}{3} \neq \frac{-2}{1}$, 所以两平面相交.
- (3) 因为 $A_1: B_1 \neq A_2: B_2$, 所以两平面相交.
- 7. 已知两个平面 Π_1 : x-2y+pz-1=0, Π_2 : 2x-4y+5z+q=0. 问当 p,q 取何值时:
 - (1) $\Pi_1 = \Pi_2$ 相交; (2) $\Pi_1 = \Pi_2 = \Pi_2$ 平行; (3) $\Pi_1 = \Pi_2 = \Pi_2$ 重合.

解: (1) 当 $\frac{1}{2} = \frac{-2}{-4} \neq \frac{p}{5}$, 即 $p \neq \frac{5}{2}$, q 取任意实数时两平面相交.

(2) 当
$$\frac{1}{2} = \frac{-2}{-4} = \frac{p}{5} \neq \frac{-1}{q}$$
 时, 即 $p = \frac{5}{2}$, $q \neq -2$ 时两平面平行.

(3)
$$\stackrel{1}{=}\frac{1}{2}=\frac{-2}{-4}=\frac{p}{5}=\frac{-1}{q}$$
 时,即 $p=\frac{5}{2}, q=-2$ 时两平面重合.

8. 已知点 A(3,10,-5) 和平面 Π : 7x-4y-z-1=0. 求 z 轴上的点 B 的坐标, 使 AB 平行于 Π .

解: 设 B 点的坐标为 (0,0,k), 则 $\overrightarrow{AB} = (-3,-10,k+5)$. 根据命题 8.2, \overrightarrow{AB} 的分量必须满足 7(-3)-4(-10)-(k+5)=0, 即 k=14. 故 B 点的坐标为 (0,0,14).

9 坐标满足方程 $(ax + by + cz + d)^2 - (px + qy + rz + s)^2 = 0$ 的点的轨迹.

解:
$$(ax + by + cz + d)^2 - (px + qy + rz + s)^2 = 0$$
 当且仅当

$$((a-p)x + (b-q)y + (c-r)z + (d-s))((a+p)x + (b+q)y + (c+r)z + (d+s)) = 0.$$

所以点的轨迹为

$$(a-p)x + (b-q)y + (c-r)z + (d-s) = 0$$
 (*)

$$(a+p)x + (b+q)y + (c+r)z + (d+s) = 0 (**)$$

当 $(a,b,c,d) = \pm(p,q,r,s)$ 时, 轨迹为全空间; 当 (a,b,c) = (p,q,r), $d \neq s$ 时, 轨迹是平面 (**); 当 (a,b,c) = -(p,q,r), $d \neq -s$ 时, 轨迹是平面 (*); 其余情形轨迹是平面 (*) 与 (**) 的并.

10. 证明三个平面

$$a_1x + b_1y + c_1z + d_1 = 0,$$

 $a_2x + b_2y + c_2z + d_2 = 0,$
 $k(a_1x + b_1y + c_1z) + l(a_2x + b_2y + c_2z) + m = 0$

当 $m \neq kd_1 + ld_2$ 时, 没有公共点.

证明: 三个平面有公共点当且仅当线性方程组

$$\begin{cases} a_1x + b_1y + c_1z = -d_1 \\ a_2x + b_2y + c_2z = -d_2 \\ k(a_1x + b_1y + c_1z) + l(a_2x + b_2y + c_2z) = -m \end{cases}$$

有解. 对这个方程组作初等变换, 从第 3 个方程减去第 1 个方程的 k 倍和第 2 个方程的 l 倍后得到 $0 = kd_1 + ld_2 - m$, 当 $m \neq kd_1 + ld_2$ 时, 这是个矛盾方程, 因此没有公共点.

*11. 证明任何一个经过相交的两平面

$$\Pi_1: A_1x + B_1y + C_1z + D_1 = 0,$$

$$\Pi_2: A_2x + B_2y + C_2z + D_2 = 0$$

的相交直线 L 的平面方程能写成

$$\alpha(A_1x + B_1y + C_1z + D_1) + \beta(A_2x + B_2y + C_2z + D_2) = 0,$$

其中, α , β 是不全为零的实数.

证明: L 中的点的坐标满足 Π_1 与 Π_2 的方程, 从而也满足方程 $\alpha(A_1x + B_1y + C_1z + D_1) + \beta(A_2x + B_2y + C_2z + D_2) = 0$, 因此 L 在此平面上.

反之, 如果平面 Π' 通过直线 L, 我们可在 Π' 上取一个不含于 L 的点 $M(x_0,y_0,z_0)$. 令

$$\alpha_0 = A_2 x_0 + B_2 y_0 + C_2 z_0 + D_2, \ \beta_0 = A_1 x_0 + B_1 y_0 + C_1 z_0 + D_1,$$

由于 $M \not\in L$, 所以 α_0 , $beta_0$ 不全为 0. M_0 的坐标显然满足以下方程:

$$\alpha_0(A_1x + B_1y + C_1z + D_1) - \beta_0(A_2x + B_2y + C_2z + D_2) = 0,$$

由前面的讨论知上述方程确定的平面一定通过交线 L, 由通过一条直线及线外一点的平面的唯一性, 可见上述方程定义的平面就是 Π' .

12. 设平面 $\Pi: Ax + By + Cz + D = 0$ 与连接两点 $M_1(x_1, y_1, z_1)$ 与 $M_2(x_2, y_2, z_2)$ 的直线相交于点 M, 而且 $\overrightarrow{M_1M} = k\overrightarrow{MM_2}$. 证明:

$$k = -\frac{Ax_1 + By_1 + Cz_1 + D}{Ax_2 + By_2 + Cz_2 + D}.$$

证明: 设点 M 的坐标是 (x_0, y_0, z_0) , 则由定比分点公式知

$$\begin{cases} x_0 = \frac{x_1 + kx_2}{1+k} \\ y_0 = \frac{y_1 + ky_2}{1+k} \\ z_0 = \frac{z_1 + kz_2}{1+k} \end{cases}$$
 $(k \neq -1).$

但由于 $M_0 \in \Pi$, 所以

$$A\frac{x_1 + kx_2}{1+k} + B\frac{y_1 + ky_2}{1+k} + C\frac{z_1 + kz_2}{1+k} + D = 0,$$

化简后即得

$$k = -\frac{Ax_1 + By_1 + Cz_1 + D}{Ax_2 + By_2 + Cz_2 + D}.$$

*13. 一平面与空间四边形 ABCD 的边 AB,BC,CD,DA 分别交于 P,Q,R,S,则

$$\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA} = 1.$$

试证之.

证明: 如图, 我们以 B 点为原点, 以 $\overrightarrow{e_1} = \overrightarrow{BP}$, $\overrightarrow{e_2} = \overrightarrow{BQ}$, $\overrightarrow{e_3} = \overrightarrow{BD}$ 为基向量构作—个仿射坐标系 $[B;\overrightarrow{BP},\overrightarrow{BQ},\overrightarrow{BD}]$. 令

$$\overrightarrow{QC} = a\overrightarrow{BQ}, \ \overrightarrow{CR} = b\overrightarrow{RD}, \ \overrightarrow{DS} = c\overrightarrow{SA}, \ \overrightarrow{PA} = d\overrightarrow{BP}.$$

设

$$\overrightarrow{BR} = k\overrightarrow{BQ} + l\overrightarrow{BD} = k\overrightarrow{e_2} + l\overrightarrow{e_3}, \quad \overrightarrow{BS} = m\overrightarrow{BP} + n\overrightarrow{BD} = m\overrightarrow{e_1} + n\overrightarrow{e_3},$$

则

$$\overrightarrow{CR} = \overrightarrow{BR} - \overrightarrow{BC} = (k - 1 - a)\overrightarrow{e_2} + l\overrightarrow{e_3},$$

$$\overrightarrow{RD} = \overrightarrow{BD} - \overrightarrow{BR} = -k\overrightarrow{e_2} + (1 - l)\overrightarrow{e_3}.$$

由 $\overrightarrow{CR} = \overrightarrow{bRD}$ 可得:

$$\begin{cases} k-1-a=-bk \\ l=b(1-l), \end{cases} \quad \text{for } \begin{cases} a=\frac{k+l-1}{1-l} \\ b=\frac{l}{1-l}. \end{cases}$$

又因

$$\overrightarrow{DS} = \overrightarrow{BS} - \overrightarrow{BD} = m\overrightarrow{e_1} + (n-1)\overrightarrow{e_3},$$

$$\overrightarrow{SA} = \overrightarrow{BA} - \overrightarrow{BS} = (1 + d - m)\overrightarrow{e_1} - n\overrightarrow{e_3}$$

由 $\overrightarrow{DS} = c\overrightarrow{SA}$ 可得:

$$\begin{cases} m=c(1+d-m) \\ n-1=-cn, \end{cases} \qquad \text{for } \begin{cases} c=\frac{1-n}{n} \\ d=\frac{m+n-1}{1-n}. \end{cases}$$

所以

$$\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA} = \frac{dbc}{a} = \frac{l(m+n-1)}{n(k+l-1)}.$$
 (*)

又,

$$\overrightarrow{QR} = \overrightarrow{BR} - \overrightarrow{BQ} = (k-1)\overrightarrow{e_2} + l\overrightarrow{e_3},$$

$$\overrightarrow{QP} = \overrightarrow{BP} - \overrightarrow{BQ} = \overrightarrow{e_1} - \overrightarrow{e_2},$$

$$\overrightarrow{QS} = \overrightarrow{BS} - \overrightarrow{BQ} = m\overrightarrow{e_1} - \overrightarrow{e_2} + n\overrightarrow{e_3}.$$

因为这3个向量共面,所以

$$\begin{vmatrix} 0 & 1 & m \\ k-1 & -1 & -1 \\ l & 0 & n \end{vmatrix} = l(m-1) - n(k-1) = 0.$$

从而

$$l(m+n-1) = ln + l(m-1) = ln + n(k-1) = n(k+l-1).$$

将上式代入(*)即得:

$$\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA} = 1.$$

14 画出以下平面的直观图:

(1)
$$2x + 4y + 3z - 12 = 0$$
; (2) $4x + 3y + 12z = 0$;

(3)
$$2x - 5y - 10 = 0;$$
 (4) $3y - 2z - 6 = 0;$

(5)
$$4x + 3y = 0;$$
 (6) $y = -3.$

解:

§ 2 几何空间中平面的度量性质

1. 试求通过点 A(1,1,1) 与 B(1,0,2) 且垂直于平面 x+2y-z-6=0 的平面方程.

解: 设所求平面的法向量为 $\nu = (A, B, C)$, 则 $\nu \perp \overrightarrow{AB}$, ν 也与平面 x + 2y - z - 6 = 0 的法向量垂直. 因此有方程组

$$\begin{cases} 0 \cdot A + (-1)B + C = 0 \\ A + 2B - C = 0. \end{cases}$$

解得 A:B:C=1:-1:-1. 可得点法式方程 (x-1)-(y-1)-(z-1)=0, 即 x-y-z+1=0.

2. 平面 Π 过 3 个点 $M_1(3,-1,5)$, $M_2(4,-1,1)$ 和 $M_3(2,0,2)$. 求平面 Π 的一个法向量, 并求出 Π 的方程.

解: 平面 Π 的一个法向量可取为 $\nu = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = (4,7,1)$. 可得点法式方程 4(x-2) + 7y + (z-2) = 0, 即 4x + 7y + z - 10 = 0.

3. 平面 Π 过点 $M_0(2,3,1)$,且和两平面 Π_1 : x + 3y - z + 3 = 0, Π_2 : 2x + y - 2z + 1 = 0 都垂直,求 Π 的方程.

解: 利用例 4.5 知平面的方程为

$$\begin{vmatrix} x-2 & y-3 & z-1 \\ 1 & 3 & -1 \\ 2 & 1 & -2 \end{vmatrix} = -5x - 5z + 15 = 0,$$

化简得 x + z - 3 = 0.

4. 平面 Π 在 x,y,z 轴上的截距分别是 $-1,\frac{3}{2},3$, 求自原点指向平面的单位法向量的方向余弦.

解: 利用平面的截距式方程得到该平面的方程:

$$\frac{x}{-1} + \frac{y}{\frac{3}{2}} + \frac{z}{3} = 1.$$

化简后得 -3x + 2y + z - 3 = 0. 它的法向量可取为 $\pm (-3,2,1)$. 因为点 $P_0(-1,0,0)$ 在此平面上,而 $\overrightarrow{OP_0}$ 与本题所要求的法向量之间的夹角应该小于 $\frac{\pi}{2}$,即内积大于 0. 故应取法向量为 (-3,2,1). 它的方向余弦为

$$\left(-\frac{3\sqrt{14}}{14}, \frac{\sqrt{14}}{7}, \frac{\sqrt{14}}{14}\right).$$

5. 求过 z 轴且与平面 $2x + y - \sqrt{5}z - 7 = 0$ 成 60° 角的平面 Π 的方程.

解: 过 z 轴的平面的法向量应为 $\nu=(A,B,0)$. 它应与已知平面成 60° 角,所以 $\frac{2A+B}{\sqrt{A^2+B^2}\sqrt{10}}=\pm\frac{1}{2}$. 推得 3A=B 或 A=-3B. 故平面方程为 x+3y=0 或 3x-y=0.

6. 已知平面 Π : 4x - 4y - 2z + 3 = 0. 点 P 与平面 Π 的距离为 2, 求点 P 的轨迹.

解: 设满足条件的点为 P(x,y,z), 则有

$$\frac{|4x - 4y - 2z + 3|}{6} = 2,$$

推得 $4x - 4y - 2z + 3 = \pm 12$. 即点 P 的轨迹是两个平行平面:

$$4x - 4y - 2z - 9 = 0$$
 $4x - 4y - 2z + 15 = 0$.

7. 已知两个平面由下式确定, 求它们的交角, 并确定点 (0,0,1) 所在的两面角的大小:

$$(x+2y+4z-3)(-3x+y-z-1) = 0.$$

解: 两平面的法向量分别为 (1,2,4) 与 (-3,1,-1). 则交角 θ 满足 $\cos\theta=\pm\frac{-5}{\sqrt{21}\sqrt{11}}=\pm\frac{5\sqrt{231}}{231}$,所以 $\theta=\arccos\frac{5\sqrt{231}}{231}$ 或 $\pi-\arccos\frac{5\sqrt{231}}{231}$.

为确定点 (0,0,1) 所在的两面角,计算此点关于两个平面的离差分别为 $\frac{1}{\sqrt{21}}$ 与 $\frac{-2}{\sqrt{11}}$,由于它们异号,因此所求两面角的大小为 $\pi - \arccos \frac{5\sqrt{231}}{231}$.

- 8. 在直角坐标系下, 求下列点到平面的距离.
- (2) 点 (-1,0,5), 平面 x-3y+5z-2=0.

解: (1)
$$d = \frac{|4-1+16-12|}{\sqrt{21}} = \frac{\sqrt{21}}{3}$$
.

(2)
$$d = \frac{|-1+25-2|}{\sqrt{35}} = \frac{22\sqrt{35}}{35}$$
.

9. 设有两平行平面 2x - 3y + 6z + 2 = 0 与 4x - 6y + 12z - 3 = 0. 问: 原点 O 位于空间的哪一部分?

解: 只要计算原点 O 关于两个平面的离差. $\delta_1 = \frac{2}{\sqrt{2^2 + 3^2 + 6^2}} > 0$, $\delta_2 = \frac{-3}{\sqrt{4^2 + 6^2 + 12^2}} < 0$, 所以 O 在两个平面之间.

10. 在直角坐标系中,设 $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2)$ 都不在平面 Π : Ax + By + Cz + D = 0 上,且 $M_1 \neq M_2$. 证明: M_1 与 M_2 在平面 Π 的同侧 当且仅当 $F_1 = Ax_1 + By_1 + Cz_1 + D$ 与 $F_2 = Ax_2 + By_2 + Cz_2 + D$ 同号.

解: M_i 位于 Π 的同侧当且仅当它们到 Π 的离差同号. 而离差等于 F_i 与 F_i 同号. 因此 M_i 位于 Π 的同侧当且仅当 F_1 与 F_2 同号.

- **11.** 在直角坐标系中, $\triangle ABC$ 的 3 个顶点分别是 A(0,1,0), B(2,-1,1), C(1,1,1). 求与 $\triangle ABC$ 所在平面平行但与之相距为 2 的平面方程.
- 解: 首先易得 $\triangle ABC$ 所在平面的方程为 Π : 2x+y-2z-1=0. 取 M(a,b,c) 使 M 到 Π 的距离为 2. 即 $\frac{2a+b-2c-1}{3}=\pm 2$, 得 2a+b-2c=7 或 2a+b-2c=-5. 所以过 M 且与 Π 平行的平面与 Π 相距为 2. 因此所求 平面的方程为 2x+y-2z-7=0 和 2x+y-2z+5=0.
- **12.** 设两个平行平面为 $\Pi_1 : Ax + By + Cz + D_1 = 0$ 和 $\Pi_1 : Ax + By + Cz + D_2 = 0$ ($D_1 \neq D_2$). 求与它们平行且将 Π_1 与 Π_2 的距离三等分的平面.
- 解: 分别在 Π_1 和 Π_2 上各取一点 $M_1(x_1,y_1,z_1)$ 及 $M_2(x_2,y_2,z_2)$. 设线 段 M_1M_2 的 2 个三等分点为 M'(x',y',z'), M''(x'',y'',z''),则分别通过 M' 或 M'' 且与已知平面平行的平面即为所求. 由假设, $\overrightarrow{M_1M'}=\frac{1}{3}\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M''}=\frac{2}{3}\overrightarrow{M_1M_2}$. 即

$$3(x'-x_1,y'-y_1,z'-z_1)=(x_2-x_1,y_2-y_1,z_2-z_1),$$

$$3(x'' - x_1, y'' - y_1, z'' - z_1) = 2(x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

于是

$$3(A(x'-x_1)+B(y'-y_1)+C(z'-z_1)) = A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1),$$

$$3(A(x''-x_1)+B(y''-y_1)+C(z''-z_1)) = 2(A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1)).$$
利用平面方程,可得

$$3(Ax' + By' + Cz') + 3D_1 = -D_2 + D_1,$$

$$3(Ax'' + By'' + Cz'') + 3D_1 = 2(-D_2 + D_1).$$

因此过 M' 的平行平面方程是

$$Ax + By + Cz + \frac{1}{3}(2D_1 + D_2) = 0.$$

因此过 M" 的平行平面方程是

$$Ax + By + Cz + \frac{1}{3}(D_1 + 2D_2) = 0.$$

13. 设有两个平行平面 $\Pi_1: Ax + By + Cz + D_1 = 0$ 和 $\Pi_1: Ax + By + Cz + D_2 = 0$ ($D_1 \neq D_2$). 点 $S(x_0, y_0, z_0)$ 不在 Π_1 与 Π_2 上. 过 S 作一条直线

分别与 Π_1, Π_2 交于 $M_1(x_1, y_1, z_1)$ 及 $M_2(x_2, y_2, z_2)$. 求 λ 使 $\overrightarrow{SM_1} = \lambda \overrightarrow{M_1 M_2}$, 并分析 λ 的符号.

解:由

$$(x_1 - x_0, y_1 - y_0, z_1 - z_0) = \lambda(x_2 - x_1, y_2 - y_1, z_2 - z_1),$$

可得

 $A(x_1-x_0)+B(y_1-y_0)+C(z_1-z_0)=\lambda(A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1)),$ 代人平面方程后,

$$-D_1 - (Ax_0 + By_0 + Cz_0) = \lambda(-D_2 + D_1).$$

解得

$$\lambda = \frac{Ax_0 + By_0 + Cz_0 + D_1}{D_1 - D_2}.$$

再分析 λ 的符号. 设 S 关于 Π_1,Π_2 的离差为 $\delta_{S,\Pi_1},\delta_{S,\Pi_2}$, 则由离差的定义可知 $|\delta_{S,\Pi_1}|,|\delta_{S,\Pi_2}|$ 表示 S 到 Π_1,Π_2 的距离.

- (1) 若 δ_{S,Π_1} 与 δ_{S,Π_2} 同号,且 $|\delta_{S,\Pi_1}| < |\delta_{S,\Pi_2}|$,则 M_1 在线段 SM_2 上,此 时 $\lambda > 0$.
- (2) 若 δ_{S,Π_1} 与 δ_{S,Π_2} 同号,且 $|\delta_{S,\Pi_1}| > |\delta_{S,\Pi_2}|$,则 M_1 在线段 SM_2 外,此 时 $\lambda < 0$.
 - (3) 若 δ_{S,Π_1} 与 δ_{S,Π_2} 异号, 则 S 在线段 M_1M_2 上, 此时 $\lambda < 0$.
 - **14.** 在直角坐标系中, 设平面 Π_i 的方程为

$$A_i x + B_i y + C_i z + D_i = 0, \quad i = 1, 2.$$

且这两平面相交. 求它们交成的两面角的角平分面的方程.

解: 点 P(x,y,z) 在 Π_1 与 Π_2 的某个两面角的角平分面上当且仅当该点到这两个平面的距离相等. 因此点 P 应满足方程

$$\frac{|A_1x + B_1y + C_1z + D_1|}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \frac{|A_2x + B_2y + C_2z + D_2|}{\sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

所以角平分面的方程为

$$\frac{A_1x+B_1y+C_1z+D_1}{\sqrt{A_1^2+B_1^2+C_1^2}}=\pm\frac{A_2x+B_2y+C_2z+D_2}{\sqrt{A_2^2+B_2^2+C_2^2}}.$$

15. 求到两个给定平面

$$\Pi_i: A_i x + B_i y + C_i z + D_i = 0, \quad i = 1, 2,$$

的距离为定比 k 的点的轨迹方程.

解: 设两个给定平面的方程为

$$\Pi_i: A_i x + B_i y + C_i z + D_i = 0, \qquad i = 1, 2.$$

设 P(x,y,z) 点到 Π_1 与 Π_2 的距离之比为 k, 则有

$$\frac{|A_1x+B_1y+C_1z+D_1|}{\sqrt{A_1^2+B_1^2+C_1^2}}=k\frac{|A_2x+B_2y+C_2z+D_2|}{\sqrt{A_2^2+B_2^2+C_2^2}}.$$

因此 *P* 点的轨迹方程为

$$\frac{A_1x + B_1y + C_1z + D_1}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \pm k \frac{A_2x + B_2y + C_2z + D_2}{\sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

16. 在直角坐标系下, 已知平面 Π 的方程为 Ax + By + Cz + D = 0, 求 Π 关于 xOy 平面的对称面 Π' 的方程和关于坐标原点的对称面 Π'' 的方程.

解: 设点 $P'(x', y', z') \in \Pi'$, 则 P' 关于 xOy 平面的对称点是 (x', y', -z'), 该点应在平面 Π 上, 故有 Ax' + By' - Cz' + D = 0, 所以 Π' 的方程为 Ax + By - Cz + D = 0.

同理, 设点 $P''(x'', y'', z'') \in \Pi''$, 则 P'' 关于原点的对称点是 (-x'', -y'',-z''), 该点应在平面 Π 上, 故有 -Ax'' - By'' - Cz'' + D = 0, 所以 Π'' 的方 程为 Ax + By + Cz - D = 0.

几何空间中直线的仿射性质 ξ3

- 1. 在给定的仿射坐标系中, 求下列直线的方程:
- (1) 过点 P(3,1,-1) 且平行于向量 $\overrightarrow{v}(4,7,-8)$;
- (2) 过点 $P_0(-3,0,1)$ 和 $P_1(2,5,1)$;
- (3) 已知三角形的三个顶点是 $A_i(x_i, y_i, z_i)$ (i = 1, 2, 3), 求三条中线的方 程.

解: (1)
$$\frac{x-3}{4} = \frac{y-1}{7} = \frac{z+1}{-8}$$
.

(2) 用两点式方程可得
$$\frac{x+3}{5} = \frac{y}{5} = \frac{z-1}{0}$$
.

(3) $\frac{x-x_i}{x_i - \frac{x_{i+1} + x_{i+2}}{2}} = \frac{y-y_i}{y_i - \frac{y_{i+1} + y_{i+2}}{2}} = \frac{z-z_i}{z_i - \frac{z_{i+1} + z_{i+2}}{2}}$, 当 $i+1$,

2. 在直角坐标系中, 求过点 P(1,6,3) 且平行于平面 3x + y - 2z - 5 = 0的直线的方程.

解: 设直线的方向向量为 $\xi=(A,B,C)$, 则 ξ 与平面 3x+y-2z-5=0 平行, 故 3A+B-2C=0, 而直线方程为 $\frac{x-1}{A}=\frac{y-6}{B}=\frac{z-3}{C}$.

3. 求过点
$$A(0,-2,1)$$
 且平行于直线
$$\begin{cases} x + 6y - 4z + 2 = 0 \\ x + y + z - 3 = 0 \end{cases}$$
 的直线方

程.

解: 先将直线方程化为标准方程 $\frac{x-2}{2} = \frac{y}{-1} = \frac{z-1}{-1}$, 其方向向量为 $\xi(2,-1,-1)$, 故所求直线方程为 $\frac{x}{2} = \frac{y+2}{-1} = \frac{z-1}{-1}$.

4. 求直线 $L: \frac{x}{3} = \frac{y-2}{-2} = \frac{z+4}{2}$ 与平面 $\Pi: 2x-3y+2z-2=0$ 的 交点坐标.

解: 把直线写成参数方程:

$$\begin{cases} x = 3t \\ y = 2 - 2t \\ z = -4 + 2t. \end{cases}$$

然后代入平面方程得

$$2(3t) - 3(2-2t) + 2(-4+2t) - 2 = 0,$$

解得 t = 1, 所以交点为 (3, 0, -2).

5. 求过点 A(3,1,2) 及直线 $L: \frac{x}{1} = \frac{y}{-2} = \frac{z+2}{-3}$ 的平面的方程.

解: 直线上有一点 (0,0,-2), 因此平面的方向向量是 $\xi_1 = (1,-2,-3)$, $\xi_2 = (-3, -1, -4)$. 故平面方程为

$$\begin{vmatrix} x-3 & 1 & -3 \\ y-1 & -2 & -1 \\ z-2 & -3 & -4 \end{vmatrix} = 0,$$

计算得 5x + 13y - 7z - 14 = 0.

6. 已知直线 $L: \frac{x-1}{m} = \frac{y-a}{-2} = \frac{z+2}{3}$, 平面 $\Pi: x-2y-4z+1=0$. 问当 a, m 取什么值时

(2) L 平行于 Π ; (3) L 在 Π 内. (1) L 与 Ⅱ 相交:

解: (1) 直线的方向向量是 $\mathcal{E} = (m, -2, 3)$, 若 $L 与 \Pi$ 相交, 则 \mathcal{E} 不与 Π 平 行, 故 $m+4-12 \neq 0$, 即 $m \neq 8$, a 是任意实数.

(2) ξ 必须与 Π 平行, 即 m=8, 同时 L 上的点 (1,a,-2) 不在 Π 上, 即 $1 - 2a + 8 + 1 \neq 0, a \neq 5.$

(3) m = 8, a = 5.

7. 求通过点 (2,2,2) 且与两直线

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 $\pi \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$

都相交的直线的方程.

解: 设所求直线的方向向量是 $\xi = (X, Y, Z)$. 已知第一条直线上的点 $M_1(0,0,0)$, 方向向量 $\mathcal{E}_1=(1,2,3)$. 第二条直线上的点 $M_2(1,2,3)$, 方向向量 $\xi_2 = (2,1,4)$. 为使所求直线与第一条直线相交, 必须使

$$\begin{vmatrix} 2 & 1 & X \\ 2 & 2 & Y \\ 2 & 3 & Z \end{vmatrix} = 2X - 4Y + 2Z = 0.$$

同理, 为使所求直线与第二条直线相交, 必须使

$$\begin{vmatrix} 1 & 2 & X \\ 0 & 1 & Y \\ -1 & 4 & Z \end{vmatrix} = X - 6Y + Z = 0.$$

解此线性方程组得 X:Y:Z=1:0:-1. 因此所求直线的方程是

$$\frac{x-2}{1} = \frac{y-2}{0} = \frac{z-2}{-1}.$$

8. 将下列直线的一般式方程化成标准方程.
$$(1) \begin{cases} 2x - 3y + 4z - 12 = 0 \\ x + 4y - 2z - 10 = 0; \end{cases} (2) \begin{cases} 3x + 2y - 4z - 5 = 0 \\ 6x - y - 2z - 4 = 0; \end{cases}$$
 (3)
$$\begin{cases} 3x - y + 2 = 0 \\ 4y + 3z + 1 = 0. \end{cases}$$

$$\left(\left| \begin{array}{cc|c} -3 & 4 \\ 4 & -2 \end{array} \right|, - \left| \begin{array}{cc|c} 2 & 4 \\ 1 & -2 \end{array} \right|, \left| \begin{array}{cc|c} 2 & -3 \\ 1 & 4 \end{array} \right| \right) = (-10, 8, 11).$$

为求直线上的点, 解原线性方程组, 得到一个解 (8,0,-1). 因此直线的标准方 程是

$$\frac{x-8}{-10} = \frac{y}{8} = \frac{z+1}{11}.$$

(2) 此直线的方向向量是

$$\left(\left| \begin{array}{cc|c} 2 & -4 \\ -1 & -2 \end{array} \right|, -\left| \begin{array}{cc|c} 3 & -4 \\ 6 & -2 \end{array} \right|, \left| \begin{array}{cc|c} 3 & 2 \\ 6 & -1 \end{array} \right| \right) = (-8, -18, -15).$$

为求直线上的点,解原线性方程组,得到一个解 $\left(\frac{1}{3},0,-1\right)$. 因此直线的标准 方程是

$$\frac{x - \frac{1}{3}}{8} = \frac{y}{18} = \frac{z + 1}{15}.$$

(3) 此直线的方向向量是

$$\left(\left| \begin{array}{cc|c} -1 & 0 \\ 4 & 3 \end{array} \right|, - \left| \begin{array}{cc|c} 3 & 0 \\ 0 & 3 \end{array} \right|, \left| \begin{array}{cc|c} 3 & -1 \\ 0 & 4 \end{array} \right| \right) = (-3, -9, 12).$$

此向量可化简为(1,3,-4). 为求直线上的点,解原线性方程组,得到一个解 (0,2,-3). 因此直线的标准方程是

$$\frac{x}{1} = \frac{y-2}{3} = \frac{z+3}{-4}.$$

9. 求直线与平面的交点. (1)
$$\frac{x+1}{-2} = \frac{y+1}{3} = \frac{z-3}{4}$$
 与 $3x + 2y + z = 0$;

(2)
$$\begin{cases} 2x + 3y + z - 1 = 0 \\ x + 2y - z + 2 = 0 \end{cases} \Rightarrow xOy \text{ \vec{Y} and }$$

解: (1) 把直线写成参数

$$\begin{cases} x = -1 - 2t \\ y = -1 + 3t \\ z = 3 + 4t. \end{cases}$$

然后代入平面方程得

$$3(-1-2t) + 2(-1+3t) + (3+4t) = 0,$$

解得 $t = \frac{1}{2}$, 所以交点为 $\left(-2, \frac{1}{2}, 5\right)$.

(2) 交点的坐标是
$$(x,y,0)$$
, 解方程组
$$\begin{cases} 2x+3y-1=0\\ x+2y+2=0 \end{cases}$$
 得 $x=8$, $y=-5$. 故交点为 $(8,-5,0)$.

10. 求出过点 $P_0(x_0, y_0, z_0)$ 并且与相交平面

$$\Pi_i : A_i x + B_i y + C_i z + D_i = 0, \quad i = 1, 2$$

都平行的直线的方程.

 \mathbf{M} : 根据命题 9.1, 平面 Π_1 与 Π_2 的交线的方向向量是

$$\left(\left|\begin{array}{cc|c}B_1 & C_1\\B_2 & C_2\end{array}\right|, -\left|\begin{array}{cc|c}A_1 & C_1\\A_2 & C_2\end{array}\right|, \left|\begin{array}{cc|c}A_1 & B_1\\A_2 & B_2\end{array}\right|\right).$$

因所求直线必须与交线平行, 因此这也是所求直线的方向向量. 故所求直线的方程为

$$\frac{x - x_0}{\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}} = \frac{y - y_0}{\begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}.$$

11. 直线方程

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

的系数应满足什么条件才能使该直线落在 xOz 坐标平面内.

解: 平面 xOz 的方程是 y=0, 因此直线落在平面 xOz 内的充分必要条件是方程组

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \\ y = 0 \end{cases}$$

有无穷解. 而上述方程组与

$$\begin{cases} A_1 x + C_1 z + D_1 = 0 \\ A_2 x + C_2 z + D_2 = 0 \\ y = 0 \end{cases}$$
 (*)

同解. 而方程组(*)有无穷多解的充分必要条件是前两个方程的系数成比例,即

$$\frac{A_1}{A_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} \neq \frac{B_1}{B_2},$$

最后一个不等式是直线方程的必要条件.

几何空间中直线的度量性质 ξ4

1. 判断下列直线与平面的位置关系. 如果相交, 则求它们的交点与夹角.

(1) 直线
$$\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+2}{5}$$
 与平面 $4x + 3y - z + 3 = 0$;

(2) 直线
$$\begin{cases} x = 1 - 2t \\ y = 2 - 4t \\ z = -1 + 5t \end{cases}$$
 与平面 $x + 2y + 2z - 7 = 0$;
$$\begin{cases} x - y + z = 5 \\ x + y - z = -1 \end{cases}$$
 与平面 $2x + y + z - 5 = 0$.

(3) 直线
$$\begin{cases} x - y + z = 5 \\ x + y - z = -1 \end{cases}$$
 与平面 $2x + y + z - 5 = 0$.

解: (1) 直线的方向向量是 $\xi = (2, -1, 5)$, 平面的法向量是 $\nu = (4, 3, -1)$. 因为 $(\xi, \nu) = 0$, 直线上的点 (1, -3, -2) 又满足平面方程, 所以直线在平面内.

- (2) 直线的方向向量是 $\xi = (-2, -4, 5)$, 平面的法向量是 $\nu = (1, 2, 2)$. 因 为 $(\xi,\nu)=0$, 直线上的点 (1,2,-1) 不满足平面方程, 所以直线与平面平行.
- (3) 直线的标准方程是 $\frac{x-2}{\Omega} = \frac{y+3}{2} = \frac{z}{2}$, 与平面方程联立后求得交点 (2,-1,2). 直线的方向向量是 $\xi = (0,2,2)$, 平面的法向量是 $\nu = (2,1,1)$, 设直 线与平面的交角为 θ , 则 $\sin \theta = \frac{4}{4\sqrt{2}} = \frac{\sqrt{3}}{3}$, 所以夹角 $\theta = \arcsin \frac{\sqrt{3}}{3}$.
 - **2.** 求过点 A(3,-1,1) 且与平面 $\Pi: x+y+z=1$ 垂直的直线方程.

解:因所求直线与平面垂直,直线的方向向量是 $\xi = (1,1,1)$.故直线方程

3. 判断下列直线间的关系, 并求它们的夹角. 对于相交的直线并求交点:

(1)
$$L_1: \frac{x+1}{4} = \frac{y-3}{2} = \frac{z-1}{3}, L_2: \frac{x-5}{1} = \frac{y+1}{3} = \frac{z+1}{2};$$

(2)
$$L_1: \frac{x+1}{4} = \frac{y-1}{2} = \frac{z-2}{3}, L_2: \frac{x+2}{6} = \frac{y+3}{10} = \frac{z}{7}.$$

解: (1) 根据第三章命题 9.2, 行列式

$$\Delta = \begin{vmatrix} 6 & 4 & 1 \\ -4 & 2 & 3 \\ -2 & 3 & 2 \end{vmatrix} = -30 \neq 0,$$

所以两直线异面. 设夹角为 θ , 则 $\cos \theta = \frac{16}{\sqrt{29}\sqrt{14}} = \frac{8\sqrt{406}}{203}$, 故 $\theta =$ $\arccos \frac{8\sqrt{406}}{202}$.

(2) 行列式

$$\Delta = \left| \begin{array}{ccc} 1 & 4 & 6 \\ 4 & 2 & 10 \\ 2 & 3 & 7 \end{array} \right| = 0,$$

所以两直线共面,又因它们的方向向量不平行,故两直线相交. 设夹角为 θ ,则 $\cos \theta = \frac{13\sqrt{5365}}{1073}$,故 $\theta = \arccos \frac{13\sqrt{5365}}{1073}$. 解联立方程,求得交点为 $\left(1,2,\frac{7}{2}\right)$.

4. 已知直线 L 的方程是 $\begin{cases} x+y+z-4=0 \\ 2x-y-z+1=0 \end{cases}$ 求点 A(3,2,-1) 到 L 的距离.

解: 直线的方向向量是 $\xi = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}, - \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \end{pmatrix} = (0,3,-3), 且点 (1,2,1) 在直线上, 故点$ *A*到直线的距离为

$$d = \frac{|(2,0,-2) \times (0,1,-1)|}{\sqrt{2}} = \sqrt{6}.$$

5. 试证直线

$$L_1: \begin{cases} x = 3 + 3t \\ y = t \\ z = 1 \end{cases}$$
 与 $L_2: \begin{cases} x = -1 + u \\ y = 2 \\ z = u \end{cases}$ (其中 t, u 是参数)

是异面直线, 并求它们的公垂线和两直线间的距离,

解: 直线 L_1 通过点 $M_1(3,0,1)$, 方向向量是 $\xi_1=(3,1,0)$. 直线 L_2 通过 点 $M_2(-1,2,0)$, 方向向量是 $\xi_2=(1,0,1)$. 因此

$$\xi_1 \times \xi_2 = (1, -3, -1).$$

于是 L_1 与 L_2 的距离是

$$d = \frac{|(\overrightarrow{M_1 M_2}, \xi_1 \times \xi_2)|}{|\xi_1 \times \xi_2|} = \frac{9}{\sqrt{11}} = \frac{9\sqrt{11}}{11}.$$

由 $M_1, \xi_1, \xi_1 \times \xi_2$ 确定的平面 Π_1 的方程是

$$\begin{vmatrix} x-3 & 3 & 1 \\ y & 1 & -3 \\ z-1 & 0 & -1 \end{vmatrix} = -x + 3y - 10z + 13 = 0.$$

由 $M_2, \xi_2, \xi_1 \times \xi_2$ 确定的平面 Π_2 的方程是

$$\begin{vmatrix} x+1 & 1 & 1 \\ y-2 & 0 & -3 \\ z & 1 & -1 \end{vmatrix} = 3x + 2y - 3z - 1 = 0.$$

简化后可得公垂线方程为

$$\begin{cases} x - 3y + 10z - 13 = 0\\ 3x + 2y - 3z - 1 = 0. \end{cases}$$

6. 已知直线 L: $\begin{cases} x-y-4z+12=0\\ 2x+y-2z+3=0 \end{cases}$ 及定点 $P_0(2,0,-1)$. 求 P_0 关于 L 的对称点.

解: 我们通过考虑点关于平面 $\Pi_1: x-y-4z+12=0$ 及 $\Pi_2: 2x+y-2z+3=0$ 的离差来确定 P_0 关于 L 的对称点 P_0' . $P_0(2,0,-1)$ 关于 Π_1 的离差 $\delta_1=\frac{18}{\sqrt{18}}=\sqrt{18},$ 关于 Π_2 的离差 $\delta_2=\frac{9}{3}=3$. 所以对称点 $P_0'(x',y',z')$ 关于 Π_1 的离差 $\delta_1'=\frac{x'-y'-4z'+12}{\sqrt{18}}=-\delta_1=-\sqrt{18},$ 关于 Π_2 的离差 $\delta_2'=\frac{2x'+y'-2z'+3}{3}=-\delta_2=-3$. 因此

$$\begin{cases} x - y - 4z + 12 = -18 \\ 2x + y - 2z + 3 = -9, \end{cases} \quad \mathbb{R} \begin{cases} x - y - 4z = -30 \\ 2x + y - 2z = -12. \end{cases}$$
 (*)

又因为 $\overrightarrow{P_0P_0'}$ 应与直线 L垂直, 即

$$\begin{vmatrix} x' - 2 & 1 & 2 \\ y' & -1 & 1 \\ z' + 1 & -4 & -2 \end{vmatrix} = 6x' - 6y' + 3z' - 9 = 0, \tag{**}$$

联立此 3 个方程解得: x' = 0, y' = 2, z' = 7. 即对称点的坐标为 (0,2,7).

7. 直线过点 (2, -3, 5) 且与三条坐标轴的正向交成等角, 求点 P(1, -2, 3) 到此直线的距离.

解: 显然直线方程为

$$\frac{x+2}{1} = \frac{y+3}{1} = \frac{z-5}{1}$$
.

所以点 P(1,-2,3) 到这条直线的距离为

$$d = \frac{|(1, -1, 2) \times (1, 1, 1)|}{\sqrt{3}} = \frac{\sqrt{42}}{3}.$$

8. 求通过两直线
$$\frac{x-1}{-1} = \frac{y}{8} = \frac{z-5}{-3}$$
 和

$$\begin{cases} x = 3 + 4t \\ y = 21 + 5t \\ z = -11 - 10t \end{cases}$$

的交点, 且与这两直线都垂直的直线方程.

解: 因该直线与已知两直线都垂直, 而已知直线的方向分别为 $\xi_1 = (-1, 8, -3)$, $\xi_2 = (4, 5, -10)$. 故所求直线的方向向量为 $\xi = \xi_1 \times \xi_2 = (-65, -22, -37)$. 这两条直线的交点可求得为 (-1, 16, -1). 故所求直线的方程为

$$\frac{x+1}{65} = \frac{y-16}{22} = \frac{z+1}{37}.$$

9. 求在平面 2x + 3y + 4z - 9 = 0 上经过点 (1,1,1) 且与 xOy 平面交成 最大角的直线.

解: 设所求直线的方向向量为 $\xi=(A,B,C)$. 因直线在平面 $\Pi:\ 2x+3y+4z-9=0$ 上, 所以 2A+3B+4C=0. xOy 平面的方程为 z=0, 我们在几何中已经知道,当且仅当平面上的直线与两个平面的交线垂直时,这条直线与另一平面的交角达到极大. 而这两个平面的交线的方向向量是 $(2,3,4)\times(0,0,1)=(3,-2,0)$, 因此 ξ 与 (3,-2,0) 垂直,即 3A-2B=0. 解 得 $A=\frac{2}{3}B$, $C=-\frac{13}{12}B$. 故所求直线的方程为

$$\frac{x-1}{8} = \frac{y-1}{12} = \frac{z-1}{-13}.$$

10. 求下列两直线间的距离,如两直线有共垂线,求出它们的公垂线的方程.

(1)
$$\begin{cases} 2x + 2y - z - 10 = 0 \\ x - y - z - 22 = 0, \end{cases} \quad = \frac{x + 7}{3} = \frac{y - 5}{-1} = \frac{z - 9}{4};$$

(2)
$$\begin{cases} x = 3t - 5 \\ y = 2t - 5 \\ z = -2t + 1, \end{cases} = \begin{cases} x - y + z + 5 = 0 \\ x + 2y - z - 14 = 0. \end{cases}$$

解: (1) 第一条直线化成标准方程为

$$\frac{x-6}{3} = \frac{y+6}{-1} = \frac{z+10}{4},$$

因此两直线平行. 距离为

$$d = \frac{|(13, -11, -19) \times (3, -1, 4)|}{\sqrt{26}} = \frac{\sqrt{16250}}{\sqrt{26}} = 25.$$

(2) 直线 L_1 通过点 $M_1(-5,-5,1)$, 方向向量是 $\xi_1=(3,2,-2)$. 直线 L_2 通过点 $M_2(4,1,-8)$, 方向向量是 $\xi_2=(-1,2,3)$. 因此

$$\xi_1 \times \xi_2 = (10, -7, 8).$$

于是 L_1 与 L_2 的距离是

$$d = \frac{|(\overrightarrow{M_1 M_2}, \xi_1 \times \xi_2)|}{|\xi_1 \times \xi_2|} = \frac{24}{\sqrt{213}} = \frac{24\sqrt{213}}{213}.$$

由 $M_1, \xi_1, \xi_1 \times \xi_2$ 确定的平面 Π_1 的方程是

$$\begin{vmatrix} x+5 & 3 & 10 \\ y+5 & 2 & -7 \\ z-1 & -2 & 8 \end{vmatrix} = 2x - 44y - 41z - 169 = 0.$$

由 $M_2, \xi_2, \xi_1 \times \xi_2$ 确定的平面 Π_2 的方程是

$$\begin{vmatrix} x-4 & -1 & 10 \\ y-1 & 2 & -7 \\ z+8 & 3 & 8 \end{vmatrix} = 37x + 38y - 13z - 290 = 0.$$

简化后可得公垂线方程为

$$\begin{cases} 2x - 44y - 41z - 169 = 0\\ 37x + 38y - 13z - 290 = 0. \end{cases}$$

11. 已知一点 P(a,b,c) ($abc \neq 0$). 过 P 点向各个坐标面作垂线, 垂足分别为 L,M,N, 求证: OP 与各个面 OMN,ONL,OLM 的交角相等.

证明: 根据假设, 垂足分别为 L(a,b,0), M(a,0,c), N(0,b,c). 则面 OMN 的法向量可取为 $\nu_1 = \overrightarrow{OM} \times \overrightarrow{ON} = (-bc, -ac, ab)$, 类似地, 面 OLM 的法向

量可取为 $\nu_2 = (bc, -ac, -ab)$,面 ONL 的法向量可取为 $\nu_3 = (-bc, ac, -ab)$. 而 $\overrightarrow{OP} = (a, b, c)$,由于

$$\overrightarrow{OP} \cdot \nu_1 = \overrightarrow{OP} \cdot \nu_2 = \overrightarrow{OP} \cdot \nu_3 = -abc,$$

可知 OP 与这 3 个面的交角相等.

12. 已知两条异面直线 L_1 和 L_2 . 求证连接 L_1 上任一点和 L_2 上任一点的 线段的中点轨迹是公垂线段的垂直平分面.

证明: 适当选择坐标系可使 L_1 为 x 轴, 方程为 $\begin{cases} y=0 \\ z=0, \end{cases}$

$$\begin{cases} kx - y = 0 \\ z = a, \end{cases} (ak \neq 0).$$
 设 $P_1(x_1, 0, 0)$ 为 L_1 上任意一个点, $P_2(x_2, kx_2, a)$

是 L_2 上任意点,则 P_1P_2 的中点坐标为 $\left(\frac{x_1+x_2}{2},\frac{kx_2}{2},\frac{a}{2}\right)$. 即此轨迹满足参数方程

$$\begin{cases} x = \frac{1}{2}u + \frac{1}{2}v \\ y = \frac{k}{2}u \\ z = \frac{a}{2}, \end{cases}$$
 u, v 为参数.

显然是平面 $z=\frac{a}{2}$. 这也是两条异面直线的公垂线段的垂直平分面.

13. 已知直线 *L* 通过点 (1,1,0) 且与直线

$$L_1: \frac{x-1}{4} = \frac{y}{-2} = \frac{z}{1}, \quad L_2: \frac{x}{4} = \frac{y+3}{-3} = \frac{z-1}{-2}$$

垂直, 求直线 L 在各个坐标面上的射影的方程.

解: 因为 L 与 L_1 , L_2 都垂直,所以可取 L 的方向向量为 $\xi = (4, -2, 1) \times (4, -3, -2) = (7, 12, -4)$,则 L 的方程为

$$\frac{x-1}{7} = \frac{y-1}{12} = \frac{z}{-4}.$$

它在 xOy 平面 z=0 上的投影方程为 $\frac{x-1}{7}=\frac{y-1}{12}=\frac{z}{0}$, 在 yOz 平面 x=0 上的投影方程为 $\frac{x}{0}=\frac{y-1}{12}=\frac{z}{-4}$, 在 xOz 平面 y=0 上的投影方程为 $\frac{x-1}{7}=\frac{y}{0}=\frac{z}{-4}$.

*§ 5 平面束 · 107 ·

14. 求过点 (2, -3, -1) 且与直线

$$\frac{x-1}{-2} = \frac{y+1}{-1} = \frac{z}{1}$$

垂直相交的直线.

解:设所求直线的方向向量为 $\xi = (A, B, C)$,因它必须与已知直线垂直,

故有
$$-2A-B+C=0$$
. 再写出所求直线的参数方程
$$\begin{cases} x=2+At\\ y=-3+Bt\\ z=-1+Ct, \end{cases}$$

已知直线的方程,得

$$\frac{1+At}{-2} = \frac{-2+Bt}{-1} = \frac{-1+Ct}{1}.$$

由上式可得 (3A-B+5C)t=0. 由于 t=0 显然不是解, 而两直线相交说明 t 一定有解, 因此 3A-B+5C=0. 最后解得 A:B:C=4:-13:-5. 从而 直线方程为

$$\frac{x-2}{4} = \frac{y+3}{-13} = \frac{z+1}{-5}.$$

*§5 平面束

- **1.** 求通过平面 4x y + 3z 1 = 0 和 x + 5y z + 2 = 0 的交线且满足下列条件之一的平面:
 - (1) 通过原点;

- (2) 与 y 轴平行;
- (3) 通过 (0,0,1) 点;
- (4) 与 xOy 平面的交线平行于方向 (4,5,0).

解: (1) 所求方程为

$$k(4x - y + 3z - 1) + m(x + 5y - z + 2) = 0,$$

用 (0,0,0) 代入得 k=2m. 所以平面方程为

$$9x + 3y + 5z = 0$$
.

(2) 所求方程为

$$k(4x - y + 3z - 1) + m(x + 5y - z + 2) = 0,$$

y 轴的方向向量是 $\xi = (0,1,0)$, 平面与 ξ 平行的条件是 -k + 5m = 0, 即 k = 5m. 所以平面方程为

$$21x + 14z - 3 = 0.$$

(3) 所求方程为

$$k(4x - y + 3z - 1) + m(x + 5y - z + 2) = 0,$$

用 (0,0,1) 代入得 2k+m=0, 即 m=-2k. 所以平面方程为

$$2x - 11y + 5z - 5 = 0.$$

(4) 所求方程为

$$k(4x - y + 3z - 1) + m(x + 5y - z + 2) = 0,$$

此平面与向量 (4,5,0) 平行的条件是 4(4k+m)+5(-k+5m)=0, 即 11k=-29m. 所以平面方程为

$$-105x + 84y - 98z + 51 = 0.$$

- **2.** 求与平面 x 2y z + 2 = 0 平行且在 x 轴上的截距为 4 的平面.
- 解:根据平行平面束性质,所求平面的方程为 x-2y-z+D=0. 化为截距式:

$$\frac{x}{-D} + \frac{y}{\frac{D}{2}} + \frac{z}{D} = 1.$$

可见 D = -4. 故所求方程为 x - 2y - z - 4 = 0.

3. 直线方程

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

的系数应满足什么条件才能使该直线落在 xOu 平面内

解: 过已知直线的平面束的方程为

$$k(A_1x + B_1y + C_1z + D_1) + m(A_2x + B_2y + C_2z + D_2) = 0.$$

平面 z=0 应该在此平面束内, 所以有以下关系式:

$$\begin{cases} kA_1 + mA_2 = 0 \\ kB_1 + mB_2 = 0 \\ kC_1 + mC_2 \neq 0 \\ kD_1 + mD_2 = 0. \end{cases}$$

*§ 5 平面束 · 109 ·

结论是

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{D_1}{D_2} \neq \frac{C_1}{C_2}.$$

4. 与不共面的直线

$$L_1: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

和直线

$$L_2: \begin{cases} A_3x + B_3y + C_3z + D_3 = 0\\ A_4x + B_4y + C_4z + D_4 = 0 \end{cases}$$

都相交的直线 L 的方程为

$$\begin{cases} k(A_1x + B_1y + C_1z + D_1) + m(A_2x + B_2y + C_2z + D_2) = 0\\ k'(A_3x + B_3y + C_3z + D_3) + m'(A_4x + B_4y + C_4z + D_4) = 0, \end{cases}$$

其中, k, m 是不全为零的实数, k', m' 也是不全为零的实数.

解: 由相交直线 $L 与 L_1$ 确定的平面方程一定有以下形式:

$$k(A_1x + B_1y + C_1z + D_1) + m(A_2x + B_2y + C_2z + D_2) = 0,$$

其中 k, m 不同时为 0. 同理, 由 L 与 L_2 确定的平面方程为

$$k'(A_3x + B_3y + C_3z + D_3) + m'(A_4x + B_4y + C_4z + D_4) = 0,$$

其中 k', m' 不同时为 0. 由于 L_1 , L_2 不共面, 上述两个平面不重合, 它们的交线 就是 L.

第五章 矩阵的秩与矩阵的运算

§1 向量组的秩

- **1.** 对下列向量组, 将 α_1 扩充成向量组的一个极大无关组:
- (1) $\alpha_1 = (1, -1, 2, 4), \ \alpha_2 = (0, 3, 1, 2), \ \alpha_3 = (3, 0, 7, 14), \ \alpha_4 = (1, -1, 2, 0),$ $\alpha_5 = (2, 1, 5, 6);$
- (2) $\alpha_1 = (1, -1, 0, 1, 1), \ \alpha_2 = (2, 1, 3, -1, 0), \ \alpha_3 = (3, 0, 3, 0, 1), \ \alpha_4 = (1, -1, 1, -1, 1), \ \alpha_5 = (-1, -5, -6, 5, 3), \ \alpha_6 = (2, 1, 2, 1, 0).$

解: (1) $\alpha_1, \alpha_2, \alpha_4$.

- (2) $\alpha_1, \alpha_2, \alpha_4$.
- **2.** 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为 $r, \alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ 是它的一个部分组. 证明: 如果 $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ 线性表示,则 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ 是 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的一个极大线性无关组.

证明: 作为向量组的部分组, $\alpha_{i_1}, \cdots, \alpha_{i_r}$ 当然可以被 $\alpha_1, \cdots, \alpha_s$ 线性表示. 因此这两个向量组等价, 从而有相同的秩 r. 于是由命题 1.9 可知向量组 $\alpha_{i_1}, \cdots, \alpha_{i_r}$ 线性无关. 由推论 1.8 可知它是极大线性无关组.

3. 已知两个向量组有相同的秩,且其中一个可以被另一个线性表示.证明:这两个向量组等价.

证明: 设向量组 (I) 可被向量组 (II) 线性表示, 它们生成的线性子空间分别记为 L_1, L_2 . 则 $L_1 \subseteq L_2$. 又因它们有相同的秩, 因此它们生成的线性子空间有相同的维数, 从而 $L_1 = L_2$, 即 (I) 与 (II) 等价.

4. 设 $\alpha_1, \alpha_2, \dots, \alpha_t = \alpha_1, \alpha_2, \dots, \alpha_t, \alpha_{t+1}, \alpha_{t+2}, \dots, \alpha_s$ 有相同的秩. 证 明: $\alpha_1, \alpha_2, \dots, \alpha_t = \alpha_1, \alpha_2, \dots, \alpha_s$ 等价.

证明: 根据假设, 有

$$L(\alpha_1, \dots, \alpha_t) \subseteq L(\alpha_1, \dots, \alpha_t, \alpha_{t+1}, \dots, \alpha_s),$$

又因这两个向量组有相同的秩,因此它们张成的线性子空间有相同的维数,从 而相等. 再利用命题 1.1, 可知这两个向量组线性等价. §1 向量组的秩 · 111 ·

5. 证明:

$$rank\{\alpha_1, \cdots, \alpha_s, \beta_1, \cdots, \beta_t\} \leq rank\{\alpha_1, \cdots, \alpha_s\} + rank\{\beta_1, \cdots, \beta_t\}.$$

证明:设 $\alpha_{i_1},\cdots,\alpha_{i_{r_1}}$ 是 α_1,\cdots,α_s 的一个极大线性无关组, $\beta_{j_1},\cdots,\beta_{j_{r_2}}$ 是 β_1,\cdots,β_t 的一个极大线性无关组, 则

$$\{\alpha_1, \cdots, \alpha_s, \beta_1, \cdots, \beta_t\}$$
 线性等价于 $\{\alpha_{i_1}, \cdots, \alpha_{i_{r_1}}, \beta_{j_1}, \cdots, \beta_{j_{r_2}}\}$

所以

$$\begin{aligned} & \operatorname{rank}\{\alpha_1,\cdots,\alpha_s,\beta_1,\cdots,\beta_t\} = \operatorname{rank}\{\alpha_{i_1},\cdots,\alpha_{i_{r_1}},\beta_{j_1},\cdots,\beta_{j_{r_2}}\} \\ & \leq r_1 + r_2 = \operatorname{rank}\{\alpha_1,\cdots,\alpha_s\} + \operatorname{rank}\{\beta_1,\cdots,\beta_t\}. \end{aligned}$$

6. 设向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_s\}$, $\{\beta_1, \beta_2, \cdots, \beta_t\}$, $\{\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t\}$ 的秩分别是 r_1, r_2, r_3 . 证明:

$$\max\{r_1, r_2\} \le r_3 \le r_1 + r_2.$$

证明:由于向量组 $\{\alpha_1, \dots, \alpha_s\}$, $\{\beta_1, \dots, \beta_t\}$ 都可由向量组 $\{\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t\}$ 线性表示,故

$$r_1 \leq r_3, \qquad r_2 \leq r_3,$$

从而

$$\max\{r_1, r_2\} \le r_3.$$

 $r_3 \le r_1 + r_2$ 就是练习 5 的结论.

7. 设向量组 $\{\alpha_1, \alpha_2, \cdots, \alpha_s\}$, $\{\beta_1, \beta_2, \cdots, \beta_s\}$, $\{\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_s + \beta_s\}$ 的秩分别是 r_1, r_2, r_3 . 证明: $r_3 \leq r_1 + r_2$.

证明: 因为 $\{\alpha_1 + \beta_1, \cdots, \alpha_s + \beta_s\}$ 可由 $\{\alpha_1, \cdots, \alpha_s, \beta_1, \cdots, \beta_s\}$ 线性表示, 因此它的秩

$$r_3 \le \operatorname{rank}\{\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_s\}$$

 $\le \operatorname{rank}\{\alpha_1, \dots, \alpha_s\} + \operatorname{rank}\{\beta_1, \dots, \beta_s\} = r_1 + r_2.$

8. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的秩为 $r,\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_m}$ 为它的一个部分组. 证明:

$$rank\{\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_m}\} \ge r + m - s.$$

证明:设 $\alpha_{i_1},\cdots,\alpha_{i_m}$ 的秩等于 t,则它的一个极大无关组 $\alpha_{j_1},\cdots,\alpha_{j_t}$ 是 α_1,\cdots,α_s 的线性无关组,它可被扩充为 α_1,\cdots,α_s 的一个极大线性无关组,而这些扩充的向量不可能是 $\alpha_{i_1},\cdots,\alpha_{i_m}$ 的向量,否则与极大无关组矛盾。而 α_1,\cdots,α_s 中共有 s-m 个不属于 $\alpha_{i_1},\cdots,\alpha_{i_m}$ 的向量,其中选出 r-t 个不同的向量添加到 $\alpha_{j_1},\cdots,\alpha_{j_t}$ 以生成 α_1,\cdots,α_s 的一个极大线性无关组,从而

$$r - t < s - m$$

移项得

$$rank\{\alpha_{i_1}, \cdots, \alpha_{i_m}\} = t \ge r + m - s.$$

9. 设向量 β 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示,但不能由 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}$ 线性表示。证明:向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}, \beta$ 等价.

证明: 由假设, 存在 $a_1, \dots, a_s \in K$ 使得

$$\beta = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_s \alpha_s.$$

如果 $a_s=0$, 则 β 可以被 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1}$ 线性表示,与假设矛盾,因此 $a_s\neq 0$. 于是

$$\alpha_s = \frac{1}{a_s}\beta - \frac{a_1}{a_s}\alpha_1 - \dots - \frac{a_{s-1}}{a_s}\alpha_{s-1},$$

即 α_s 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1},\beta$ 线性表示. 从而向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 可被 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1},\beta$ 线性表示. 另一方面, 根据假设, 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1},\beta$ 可以被向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示, 因此这两个向量组等价.

***10.** (**替换定理**) 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, 且可由向量组 $\beta_1, \beta_2, \dots, \beta_t$ 线性表示. 证明: 存在 $\beta_1, \beta_2, \dots, \beta_t$ 的一个置换 $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_t}$, 使向量组 $\alpha_1, \alpha_2, \dots, \alpha_r, \beta_{i_{r+1}}, \beta_{i_{r+2}}, \dots, \beta_{i_t}$ 与向量组 $\beta_1, \beta_2, \dots, \beta_t$ 等价 $(r = 1, \dots, s)$.

证明: 因为 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, 且可由向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示, 故 $s \leq t$.

下面用归纳法证明替换定理.

(i) 设s = 1.

因为 α_1 可由 β_1, \dots, β_t 线性表示, 故存在 $a_i \in K$ 使得 $\alpha_1 = \sum_{i=1}^t a_i \beta_i$. 而 α_1 线性无关, 即 $\alpha_1 \neq 0$, 所以 a_1, \dots, a_t 不全为零. 必有 $a_l \neq 0$ ($1 \leq l \leq t$). 则

$$\beta_l = \frac{1}{a_l} \alpha_1 - \sum_{\substack{i=1\\i \neq l}}^t \frac{a_i}{a_l} \beta_i,$$

§ 2 矩阵的秩 · 113 ·

因此向量组 $\alpha_1, \beta_1, \dots, \beta_{l-1}, \beta_{l+1}, \dots, \beta_t$ 与向量组 $\beta_1, \beta_2, \dots, \beta_t$ 等价.

令 $\beta_{i_1} = \beta_l$, $\beta_{i_2} = \beta_1$, ..., $\beta_{i_l} = \beta_{l-1}$, $\beta_{i_{l+1}} = \beta_{l+1}$, ..., $\beta_{i_t} = \beta_t$, 即得结论.

(ii) 假定结论对 s-1 成立. 考察 s 个线性无关的向量 $\alpha_1,\alpha_2,\cdots,\alpha_s$.

因 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}$ 线性无关, 由归纳假设, 存在 β_1, \cdots, β_t 的一个置换 $\beta_{j_1}, \cdots, \beta_{j_t}$, 使

$$\{\alpha_1, \cdots, \alpha_r, \beta_{j_{r+1}}, \cdots, \beta_{j_t}\} \cong \{\beta_1, \cdots, \beta_t\} \quad (r = 1, \cdots, s - 1).$$

又 α_s 可由 β_1, \dots, β_t 线性表示, 所以 α_s 可以由 $\alpha_1, \dots, \alpha_{s-1}, \beta_{j_s}, \dots, \beta_{j_t}$ 线性表示. 故存在 $k_i, l_k \in K$, $i = 1, \dots, s-1$, $k = s, \dots, t$, 使得

$$\alpha_s = \sum_{i=1}^{s-1} k_i \alpha_i + \sum_{k=s}^t l_k \beta_{j_k}.$$

由于 $\alpha_1, \dots, \alpha_s$ 线性无关, 故 l_s, \dots, l_t 不全为零. 设第一个不为零的是 l_h , 则 $h \geq s$. 从而 β_{j_h} 可以由 $\alpha_1, \dots, \alpha_s, \beta_{j_{h+1}}, \dots, \beta_{j_t}$ 线性表示. 令 $\beta_{i_s} = \beta_{j_h}$, $\beta_{i_1} = \beta_{j_1}, \dots, \beta_{i_{s-1}} = \beta_{j_{s-1}}, \beta_{i_{s+1}} = \beta_{j_{s+1}}, \dots, \beta_{i_t} = \beta_{j_t}$, 则

$$\{\alpha_1, \cdots, \alpha_s, \beta_{i_{s+1}}, \cdots, \beta_{i_t}\} \cong \{\beta_1, \cdots, \beta_t\}.$$

由归纳法原理可知结论成立.

§2 矩阵的秩

1. 求下列矩阵的秩:

$$(1) \begin{pmatrix} 1 & 4 & 10 & 0 \\ 3 & 2 & 4 & 2 \\ 4 & 1 & 1 & 3 \\ 2 & 3 & 7 & 1 \end{pmatrix}$$

$$(2) \begin{pmatrix} 2 & 1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 1 & -1 & 1 & -5 \\ 2 & 0 & 8 & -2 \end{pmatrix}$$

$$(3) \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 3 \end{pmatrix}$$

$$(4) \begin{pmatrix} 2 & 0 & 3 & 1 & -1 \\ 1 & 2 & 1 & 2 & 1 \\ 3 & -2 & 5 & 0 & -3 \\ -1 & 1 & 0 & 2 & 3 \end{pmatrix}$$

解: (1) 2; (2) 2; (3) 4; (4) 3.

2. 求下列向量组的秩与极大线性无关组:

(1)
$$\alpha_1 = (3, 2, -1, -3, -2), \ \alpha_2 = (2, -1, 3, 1, -3), \ \alpha_3 = (1, -4, 7, 5, 4),$$

 $\alpha_4 = (1, -7, 11, 9, 5);$

(2)
$$\alpha_1 = (1, -1, 1, 1, 1), \ \alpha_2 = (1, 1, -1, 1, 1), \ \alpha_3 = (1, 1, 1, -1, 1), \ \alpha_4 = (1, 1, 1, 1, -1), \ \alpha_5 = (1, 1, 1, 1, 1);$$

(3)
$$\alpha_1 = (2, -1, 3, -2, 4), \ \alpha_2 = (4, -2, 5, 1, 7), \ \alpha_3 = (2, -1, 1, 8, 2), \ \alpha_4 = (2, -1, 2, 3, 3);$$

(4)
$$\alpha_1 = (1,3,3,5)$$
, $\alpha_2 = (3,2,-5,1)$, $\alpha_3 = (2,3,0,4)$, $\alpha_4 = (5,4,-7,1)$, $\alpha_5 = (3,5,1,7)$.

解: (1) 秩 4, α_1 , α_2 , α_3 , α_4 .

- (2) 秩 5, α_1 , α_2 , α_3 , α_4 , α_5 .
- (3) 秩 2, α_1 , α_2 .
- (4) 秩 3, $\alpha_1, \alpha_2, \alpha_4$.
- **3** 求向量组 $\alpha_1 = (-3, 1, 1, 1), \alpha_2 = (1, -3, 1, 1), \alpha_3 = (1, 1, -3, 1), \alpha_4 = (1, 1, 1, -3)$ 的所有极大线性无关组.

解:任意3个向量都构成极大线性无关组.

4. 求下列向量组所张成的子空间的基与维数:

(1)
$$\alpha_1 = (4, -5, 2, 6), \alpha_2 = (2, 1, 3, 2), \alpha_3 = (2, -6, -1, 4), \alpha_4 = (2, 13, 5, -6);$$

(2)
$$\alpha_1 = (1, 0, 0, 1, -1), \ \alpha_2 = (0, 1, 0, 2, 1), \ \alpha_3 = (0, 0, 1, -1, -2), \ \alpha_4 = (1, 1, 1, 2, -2).$$

解: (1) 维数 3, 基 $\alpha_1, \alpha_2, \alpha_4$.

- (2) 维数 3, 基 $\alpha_1, \alpha_2, \alpha_3$.
- 5 录下别矩阵的科:

$$(1) \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \vdots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix}; \quad (2) \begin{pmatrix} 1 & a & a & \cdots & a & a \\ a & 1 & a & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & a & a & \cdots & a & 1 \end{pmatrix}.$$

解: (1) 因为此矩阵的任意两行都线性相关,因此秩 ≤ 1 . 而此矩阵的 秩等于 0 的充分必要条件是所有的 $a_ib_j=0$. 如 $(a_1,\cdots,a_n)\neq 0$,则必有 $(b_1,\cdots,b_n)=0$,如 $(b_1,\cdots,b_n)\neq 0$,则必有 $(a_1,\cdots,a_n)=0$. 因此当 $(a_1,\cdots,a_n)=0$ 或 $(b_1,\cdots,b_n)=0$ 时,秩为 0,否则,秩为 1.

- (2) 当 a=1 时, 秩为 1; 当 $a=\frac{1}{1-n}$ 时, 秩为 n-1 (n>1); 其余情形, 秩为 n.
 - 6. 设

$$W = \{(a_1, \dots, a_r, 0, \dots, 0) \mid a_i \in K, i = 1, \dots, r\} \subseteq K^m$$

§ 2 矩阵的秩 · 115 ·

证明: $\dim W = r$.

证明: 设 $\alpha_1=(1,0,\cdots,0,\cdots,0),\ \ldots,\ \alpha_r=(0,0,\cdots,1,0,\cdots,0),\ 则$ $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性无关,且对任意的 $\alpha=(a_1,\cdots,a_r,0,\cdots,0)\in W,$ 有 $\alpha=a_1\alpha_1+\cdots+a_r\alpha_r,$ 所以 dim W=r.

7. 设 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关, $\beta_j = \sum_{i=1}^r a_{ij} \alpha_i \ (j=1,\dots,s)$, 令 $A=(a_{ij})$. 证明:

$$\operatorname{rank}\{\beta_1,\beta_2,\cdots,\beta_s\}=\operatorname{rank}A.$$

证明: (i) 设 $\beta_{j_1}, \cdots, \beta_{j_t}$ 是 β_1, \cdots, β_s 的一个极大线性无关组. 考察 A 的列向量组 $\gamma_1, \cdots, \gamma_s$. 则

$$(\beta_{j_1} \cdots \beta_{j_t}) = (\alpha_1 \cdots \alpha_r)(\gamma_{j_1} \cdots \gamma_{j_t}).$$

如果 $\sum_{i=1}^{t} k_i \gamma_{j_i} = 0$,则

$$(\beta_{j_1} \cdots \beta_{j_t}) \begin{pmatrix} k_1 \\ \vdots \\ k_t \end{pmatrix} = (\alpha_1 \cdots \alpha_r)(\gamma_{j_1} \cdots \gamma_{j_t}) \begin{pmatrix} k_1 \\ \vdots \\ k_t \end{pmatrix} = 0,$$

即 $\sum_{i=1}^{t} k_i \beta_{j_i} = 0$,由于 $\beta_{j_1}, \dots, \beta_{j_t}$ 线性无关,因此 $k_1 = \dots = k_t = 0$,即 $\gamma_{j_1}, \dots, \gamma_{j_t}$ 线性无关.所以

$$rank(A) \ge t = rank\{\beta_1, \cdots, \beta_s\}.$$

(ii) 设 $\gamma_{j_1}, \cdots, \gamma_{j_t}$ 是 A 的列向量组的极大线性无关组,则由 $\sum\limits_{i=1}^t k_i\beta_{j_i}=0$ 可得

$$(\alpha_1 \cdots \alpha_r)(\gamma_{j_1} \cdots \gamma_{j_t}) \begin{pmatrix} k_1 \\ \vdots \\ k_t \end{pmatrix} = (\beta_{j_1} \cdots \beta_{j_t}) \begin{pmatrix} k_1 \\ \vdots \\ k_t \end{pmatrix} = 0,$$

由于 $\alpha_1, \cdots, \alpha_r$ 线性无关, 必须有

$$(\gamma_{j_1} \cdots \gamma_{j_t}) \begin{pmatrix} k_1 \\ \vdots \\ k_t \end{pmatrix} = 0,$$

由 $\gamma_{j_1}, \dots, \gamma_{j_t}$ 的线性无关性可得 $k_1 = \dots = k_t = 0$, 即 $\beta_{j_1}, \dots, \beta_{j_t}$ 线性无关, 因而

$$rank\{\beta_1, \cdots, \beta_s\} \ge t = rank(A).$$

最终得到

$$rank\{\beta_1, \cdots, \beta_s\} = rank(A).$$

8. 设 $A \in M_{m,n}(K)$. 已知 A 的第 i_1, i_2, \dots, i_r 行组成 A 的行向量组的极大线性无关组, A 的第 j_1, j_2, \dots, j_r 列组成 A 的列向量组的极大线性无关组.证明:

$$\begin{vmatrix} a_{i_1,j_1} & a_{i_1,j_2} & \cdots & a_{i_1,j_r} \\ a_{i_2,j_1} & a_{i_2,j_2} & \cdots & a_{i_2,j_r} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i_r,j_1} & a_{i_r,j_2} & \cdots & a_{i_r,j_r} \end{vmatrix} \neq 0.$$

证明: 适当交换矩阵的行与列, 可设矩阵的前r 行与前r 列分别为矩阵的行向量组与列向量组的极大线性无关组. 从而矩阵可经初等行变换化为

$$B = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r,1} & a_{r,2} & \cdots & a_{r,n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

因矩阵的初等行变换不改变矩阵的列向量的线性关系, 故矩阵 B 的前 r 列仍为 B 的列向量组的极大线性无关组. 从而 B 可经初等列变换化为

$$C = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,r} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{r,1} & a_{r,2} & \cdots & a_{r,r} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

因为 rank(C) = rank(B) = r, 所以

$$\begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,r} \\ \dots & \dots & \dots \\ a_{r,1} & a_{r,2} & \cdots & a_{r,r} \end{vmatrix} \neq 0.$$

用矩阵的秩判断线性方程组解的情况 ξ3

1. λ 取何值时, 方程组

$$\begin{cases} (\lambda + 3)x_1 + & x_2 + & 2x_3 = \lambda \\ \lambda x_1 + (\lambda - 1)x_2 + & x_3 = 2\lambda \\ 3(\lambda + 1)x_1 + & \lambda x_2 + (\lambda + 3)x_3 = 3\lambda \end{cases}$$

有解? 在有解的情况下, 求出一般解.

解: 系数行列式等于 $\lambda^2(\lambda-1)$. 当 $\lambda \neq 0, 1$ 时, 方程组有唯一解:

$$\begin{cases} x_1 = \frac{\lambda - 3}{\lambda - 1} \\ x_2 = \frac{\lambda + 3}{\lambda - 1} \\ x_3 = \frac{3 - \lambda}{\lambda - 1}, \end{cases}$$

当 $\lambda = 0$ 时, 一般解为: $x_1 = -x_3$, $x_2 = x_3$, x_3 是自由未知量; 当 $\lambda = 1$ 时,原方程组无解.

2. a, b 取何值时, 方程组

$$\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$$

有解? 在有解的情况下, 求出一般解.

解: (a) 当 $a \neq 1$ 且 $b \neq 0$ 时, 方程组有唯一解:

$$\begin{cases} x_1 = \frac{2b-1}{b(a-1)} \\ x_2 = \frac{1}{b} \\ x_3 = \frac{2ab-4b+1}{b(a-1)}; \end{cases}$$

- (b) 当 b = 0 时, 或当 a = 1, $b \neq \frac{1}{2}$ 时, 原方程组无解; (c) 当 a = 1, $b = \frac{1}{2}$ 时, 一般解为: $x_1 = 2 x_3$, $x_2 = 2$, x_3 是自由未知量.
- 3. 讨论下列含参量线性方程组的解的情况, 并求解

(1)
$$\begin{cases} ax_1 + bx_2 + x_3 = 1 \\ x_1 + abx_2 + x_3 = b \\ x_1 + bx_2 + ax_3 = 1; \end{cases}$$
(2)
$$\begin{cases} (\lambda + 3)x_1 + x_2 + 2x_3 = \lambda \\ \lambda x_1 + (\lambda - 1)x_2 + x_3 = 2\lambda \\ 3(\lambda + 1)x_1 + \lambda x_2 + (\lambda + 3)x_3 = 5; \end{cases}$$
(3)
$$\begin{cases} ax_1 + bx_2 + 2x_3 = 1 \\ ax_1 + (2b - 1)x_2 + 3x_3 = 1 \\ ax_1 + bx_2 + (b + 3)x_3 = 2b - 1. \end{cases}$$

解: (1) 当 $b(a-1)(a+2) \neq 0$ 时有解:

$$x_1 = \frac{a-b}{(a-1)(a+2)}, \quad x_2 = \frac{ab+b-2}{b(a-1)(a+2)}, \quad x_3 = \frac{a-b}{(a-1)(a+2)};$$

当 a = b = -2 时, 有解 $x_1 = x_3 = -1 - 2x_2$;

当 a = b = 1 时, 有解 $x_1 = 1 - x_2 - x_3$;

其余情形无解:

(2) 当
$$\lambda \neq 0$$
, $\lambda \neq 1$ 时有解: $x_1 = \frac{\lambda^2 + 4\lambda - 15}{\lambda^2}$, $x_2 = \frac{\lambda^2 + \lambda + 15}{\lambda^2}$, $x_3 = \frac{-4\lambda^2 + \lambda + 15}{\lambda^2}$; 当 $\lambda = 1$ 时有解: $x_1 = 2 - x_3$, $x_2 = -7 + 2x_3$;

当 $\lambda = 0$ 时无解:

(3) 当
$$a \neq 0$$
, $b \neq \pm 1$ 时有解: $x_1 = \frac{5-b}{a(b+1)}$, $x_2 = \frac{-2}{b+1}$, $x_3 = \frac{2(b-1)}{b+1}$; 当 $b = 1$ 时有解: $x_2 = 1 - ax_1$, $x_3 = 0$; 当 $a = 0$, $b = 5$ 时有解: $x_2 = -\frac{1}{3}$, $x_3 = \frac{4}{3}$, x_1 为任意数; 其余情形无解.

4. 利用线性方程组的理论证明: 如果直线

$$L_1: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

与直线

$$L_2: \begin{cases} A_3x + B_3y + C_3z + D_3 = 0 \\ A_4x + B_4y + C_4z + D_4 = 0 \end{cases}$$

相交,那么

$$\begin{vmatrix} A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \\ C_1 & C_2 & C_3 & C_4 \\ D_1 & D_2 & D_3 & D_4 \end{vmatrix} = 0.$$

 \mathbf{M} : 根据例 3.3 的解, 如果 L_1 与 L_2 相交, 那么线性方程组

$$\begin{cases} A_1x + B_1y + C_1z = -D_1 \\ A_2x + B_2y + C_2z = -D_2 \\ A_3x + B_3y + C_3z = -D_3 \\ A_4x + B_4y + C_4z = -D_4 \end{cases}$$

有唯一解,从而 ${\rm rank}(A)={\rm rank}(\tilde{A})=3$,这里 A 与 \tilde{A} 分别是上述方程组的系数矩阵与增广矩阵.因此行列式 $|\tilde{A}|=0$,

$$\begin{vmatrix} A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \\ C_1 & C_2 & C_3 & C_4 \\ D_1 & D_2 & D_3 & D_4 \end{vmatrix} = - \begin{vmatrix} A_1 & B_1 & C_1 & -D_1 \\ A_2 & B_2 & C_2 & -D_2 \\ A_3 & B_3 & C_3 & -D_3 \\ A_4 & B_4 & C_4 & -D_4 \end{vmatrix} = 0.$$

- **5.** 求三个平面 $A_i x + B_i y + C_i z + D_i = 0$ (i = 1, 2, 3) 分别满足下列关系的充要条件.
 - (1) 有一个公共点;

(2) 有一条公共直线;

(3) 三个平面平行:

(4) 三个平面构成三棱柱.

解:考察非齐次线性方程组

$$\begin{cases} A_1x + B_1y + C_1z = -D_1 \\ A_2x + B_2y + C_2z = -D_2 \\ A_3x + B_3y + C_3z = -D_3 \end{cases}$$
 (*)

它的系数矩阵与增广矩阵分别记为 A 与 \tilde{A} .

- (1) 三个平面有一个公共点 \iff 方程组 (*) 有唯一解 \iff rank(A) = rank (\tilde{A}) = 3 \iff $|A| \neq 0$.
- (2) 三个平面有一条公共直线 \iff 方程组 (*) 有解, 而且 (*) 的导出方程组的基础解系只含一个向量 \iff $\operatorname{rank}(A) = \operatorname{rank}(\tilde{A}) = 2$.

$$(3) 三个平面平行 \iff \frac{A_i}{A_j} = \frac{B_i}{B_j} = \frac{C_i}{C_j} \neq \frac{D_i}{D_j} \quad 1 \leq i < j \leq 3.$$

(4) 三个平面构成三棱柱 \iff 方程组 (*) 无解, 而 (*) 的导出方程组的基础解系含一个向量 \iff $\operatorname{rank}(A)=2,\ \operatorname{rank}(\tilde{A})=3,\ \operatorname{而且}A$ 中任意两行都不成比例.

§4 线性映射及其矩阵

- 1. 判别下列哪些映射为线性映射?
- (1) 在向量空间 V 中, $\mathcal{A}(\xi) = \alpha$, 其中 α 为固定向量;

(2)
$$\mathcal{A}: K^2 \longrightarrow K^3$$

 $(x,y) \longmapsto (-1,2,3)$
(3) $\mathcal{A}: K^3 \longrightarrow K^3$

$$(x_1, x_2, x_3) \longmapsto (2x_1 + x_2 - x_3, -x_2 + x_3, x_1 + 2x_2 - x_3)$$
(4) $A: K^3 \longrightarrow K^2$

$$(4) \mathcal{A}: K^3 \longrightarrow K^2$$
$$(x, y, z) \longmapsto (x^2 + y^2 - z, xy)$$

- (5) $\mathcal{A}(\S\varepsilon_{\infty} + \dagger \varepsilon_{\epsilon} + \sharp \varepsilon_{\ni}) = (\S + \dagger)\varepsilon_{\infty} + (\S \dagger + \sharp)\varepsilon_{\epsilon} + (\dagger \sharp)\varepsilon_{\ni}$, 其中 $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ 为线性空间 V 的基;
 - (6) 几何空间 \mathbb{R}^2 中, \mathcal{R} 为平面按逆时针方向绕原点旋转 45° 的变换.
 - **解**: (1) 如 $\alpha = 0$, 是; 如 $\alpha \neq 0$, 不是.
 - (2) 不是.
 - (3) 是.
 - (4) 不是.
 - (5) 是.
 - (6) 是.
- **2.** 对于上题中的线性映射, 求出它们在相应基下的矩阵 (如未指明基, 则取自然基).

解: $(1) \alpha = 0$ 时为零矩阵.

$$(3) \begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 2 & -1 \end{pmatrix}.$$

$$(5) \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

$$(6) \begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix}.$$

§4 线性映射及其矩阵 · 121 ·

3. 设 \mathcal{A} 为向量空间 V_1 到向量空间 V_2 的线性映射, $\alpha_1, \alpha_2, \cdots, \alpha_m \in V_1$, $\mathcal{A}(\alpha_i) = \beta_i$, $i = 1, 2, \cdots, m$. 证明: 如果 $\beta_1, \beta_2, \cdots, \beta_m$ 线性无关,则 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 也线性无关.

证明: 设 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$, 则

$$\mathscr{A}(k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m) = 0$$

$$\Rightarrow k_1\mathscr{A}(\alpha_1) + k_2\mathscr{A}(\alpha_2) + \dots + k_m\mathscr{A}(\alpha_m) = 0$$

$$\Rightarrow k_1\beta_1 + k_2\beta_2 + \dots + k_m\beta_m = 0,$$

由于 $\beta_1,\beta_2,\cdots,\beta_m$ 线性无关,可得 $k_1=k_2=\cdots=k_m=0$,从而 α_1,α_2,\cdots , α_m 线性无关.

4. 下面图中的 (1)–(7) 都是图 (0) 经过整系数矩阵的线性变换而得到的.图 (0) 中标出了原点 O 及基向量 η_1, η_2 . 试通过确定基向量在图 (1)–(7) 中的象以及它们关于 η_1, η_2 的坐标 (均为整数) 以写出相应线性变换的矩阵.

$$(4) \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$(5) \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

$$(6) \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}.$$

$$(7) \begin{pmatrix} 0 & 1 \\ -2 & -1 \end{pmatrix}.$$

5. 有一个边长为 1 的立方体的每个表面都贴上了相同的浮雕马的平面图. 广告设计师决定采用第三章 §8 所述的斜二测投影画出它的立体图 (如附图). 他发现只要对正面的图形作两个线性变换就能得到顶面和侧面的两个图形 (为什么?). 如果把每个侧面的左下角取为原点,请写出顶面和右侧面的图形对应的变换矩阵.

解: 顶面:
$$\begin{pmatrix} 1 & \frac{\sqrt{2}}{4} \\ 0 & \frac{\sqrt{2}}{4} \end{pmatrix}$$
, 右侧面: $\begin{pmatrix} \frac{\sqrt{2}}{4} & 0 \\ \frac{\sqrt{2}}{4} & 1 \end{pmatrix}$.

§5 线性映射及矩阵的运算

1. 计算下列矩阵的运算结果:

$$(1) \ A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 2 & 0 \end{pmatrix};$$

(2)
$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}, B = \begin{pmatrix} c & b & a \\ a & c & b \\ b & a & c \end{pmatrix};$$

 \vec{x} AB, AB - BA, $(A - B)^2$.

M: (1)
$$AB = \begin{pmatrix} 4 & 7 & 0 \\ 4 & 4 & 1 \\ 3 & 6 & -1 \end{pmatrix}$$
, $AB - BA = \begin{pmatrix} 3 & 4 & -2 \\ 2 & 5 & -2 \\ -2 & 3 & -8 \end{pmatrix}$, $(A+B)^2 = \begin{pmatrix} 3 & 4 & -2 \\ 2 & 5 & -2 \\ -2 & 3 & -8 \end{pmatrix}$

$$\left(\begin{array}{ccc} 6 & 0 & 8 \\ 1 & 8 & 4 \\ 3 & 2 & 6 \end{array}\right).$$

(2)
$$AB = \begin{pmatrix} ac + ba + cb & ac + ba + cb & a^2 + b^2 + c^2 \\ ac + ba + cb & a^2 + b^2 + c^2 & ac + ba + cb \\ a^2 + b^2 + c^2 & ac + ba + cb & ac + ba + cb \end{pmatrix},$$

$$AB - BA = \begin{pmatrix} (b-c)(a-b) & -(a-c)(a-b) & (a-b)^2 \\ -(a-c)(a-b) & (a-b)^2 & (b-c)(a-b) \\ (a-b)^2 & (b-c)(a-b) & -(a-c)(a-b) \end{pmatrix},$$

$$(A+B)^2 = \begin{pmatrix} (a-c)(a+b-2c) & 0 & -(a-c)(a+b-2c) \\ -(a-b)(a+b-2c) & 0 & (a-b)(a+b-2c) \\ -(b-c)(a+b-2c) & 0 & (b-c)(a+b-2c) \end{pmatrix}.$$

2. 计算:

$$(1) \left(\begin{array}{ccc} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{array}\right)^2;$$

$$(2) \left(\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{array} \right)^{3};$$

$$(3) \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)^5$$

$$(4) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^n;$$

$$(5) \left(\begin{array}{ccc} a & b & c \end{array}\right) \left(\begin{array}{c} a \\ b \\ c \end{array}\right);$$

$$(6) \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a & b & c \end{pmatrix};$$

$$(7) \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}^n;$$

(8)
$$(\lambda E_n + A)^n$$
, $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$.

解:
$$(1)$$
 $\begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix}$.

$$(2) \begin{pmatrix} -3 & -2 & 5 \\ 3 & 0 & -2 \\ -2 & 3 & -3 \end{pmatrix}.$$

$$(3) \left(\begin{array}{cc} 3 & 5 \\ 5 & 8 \end{array}\right).$$

$$(4) \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}.$$

$$(5) (a^2 + b^2 + c^2).$$

(6)
$$\begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}.$$

(7)
$$\begin{pmatrix} \lambda^n & n\lambda^{n-1} & \frac{n(n-1)}{2}\lambda^{n-2} \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}.$$

(8)
$$\lambda^n \left(E - \frac{1}{n} A \right) + \frac{1}{n} (\lambda + n)^n A$$
.

3. 计算矩阵多项式, 设

(1)
$$f(\lambda) = \lambda^3 - 3\lambda^2 - 2$$
, $A = \begin{pmatrix} 3 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$;

(2)
$$f(\lambda) = \lambda^3 - 2\lambda^2 + \lambda - 1$$
, $A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

解: (1)
$$\begin{pmatrix} 12 & 2 & 4 \\ 11 & 3 & 3 \\ -1 & 1 & 1 \end{pmatrix}.$$

$$(2) \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 2 \end{array} \right).$$

4. 如果 AB = BA, 称矩阵 A = B 可交换. 设

(1)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$
; (2) $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$;

$$(3) \ A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right).$$

求所有与
$$\hat{A}$$
可交换的矩阵. **解**: (1) $\begin{pmatrix} a & 0 \\ b & a+b \end{pmatrix}$.

$$(2) \begin{pmatrix} a & b & 0 \\ b & a & 0 \\ c & c & a+b-c \end{pmatrix}.$$

$$(3) \left(\begin{array}{ccc} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{array} \right).$$

5. 设

$$A = \operatorname{diag}(a_1, a_2, \dots, a_n), \quad \sharp p \ a_i \neq a_j, \forall i \neq j.$$

证明:与 A 可交换的矩阵只能是对角矩阵.

证明: 设 $B = (b_{ij})$ 与 A 可交换, 则

$$a_i b_{ij} = b_{ij} a_j, \qquad i, j = 1, \cdots, n.$$

于是

$$(a_i - a_j)b_{ij} = 0, \qquad i, j = 1, \cdots, n.$$

但当 $i \neq j$ 时有 $a_i \neq a_i$, 所以对于 $i \neq j$ 有 $b_{ij} = 0$, 即

$$B = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix}.$$

*6. 证明: 与所有矩阵可交换的矩阵只能是标量矩阵.

证明: 显然标量矩阵与所有矩阵可交换. 设 B 与所有矩阵可交换, 则由上题知 $B = \operatorname{diag}(b_1, \dots, b_n)$. 又对任意的 $i \neq j$ 有 $BE_{ij} = E_{ij}B$, 因此对 $i \neq j$ 有 $b_i = b_j$, 即 $b_1 = b_2 = \dots = b_n = b$, 所以 $B = bE_n$.

*7. 证明: 不存在矩阵 A, B,使 $AB - BA = E_n$.

证明:
$$AB - BA$$
 的对角线元素之和 $= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik} b_{ki} \right) - \sum_{i=1}^{n} \left(\sum_{k=1}^{n} b_{ik} a_{ki} \right)$

=0, 而 E_n 的对角线元素之和 =n, 可见 $AB-BA \neq E_n$.

8. 设
$$A = B + E$$
. 证明: $A^2 = 2A$ 当且仅当 $B^2 = E$.

证明:
$$(\Rightarrow)$$
 $B^2 = (A - E)^2 = A^2 - 2A + E = E$.

$$(\Leftarrow) A^2 = (B+E)^2 = B^2 + 2B + E = 2(B+E) = 2A.$$

9. 已知数域 K 上的两个方阵 A 与 B 可交换. 证明:

(1)
$$(A+B)^2 = A^2 + 2AB + B^2$$
;

(2)
$$(A+B)(A-B) = A^2 - B^2$$
;

(3)
$$(A+B)^n = \sum_{k=0}^n C_n^k A^k B^{n-k}$$
.

证明: 略.

10. 证明: 上(下)三角形矩阵的乘积还是上(下)三角形矩阵.

证明: 设 $A=(a_{ij})$ 与 $B=(b_{ij})$ 都是上三角形矩阵, 即对 i>j 有 $a_{ij}=0$ 以及 $b_{ij}=0$. 于是当 i>j 时有

$$\sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj}$$
$$= \sum_{k=1}^{i-1} 0 \cdot b_{kj} + \sum_{k=i}^{n} a_{ik} \cdot 0 = 0,$$

因此 AB 是上三角形矩阵. 对于下三角形矩阵也可以类似地证明.

11. 求出平方为零的所有二阶方阵。

解: 设
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $A^2 = 0$. 如果 $b_{12} = 0$, 则

$$A^{2} = \begin{pmatrix} a_{11}^{2} & (a_{11} + a_{22})a_{12} \\ 0 & a_{22}^{2} \end{pmatrix} = 0,$$

于是
$$a_{11} = a_{22} = 0$$
, $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$.

再设 $a_{12} = b \neq 0$, $a_{11} = a$, 由于 0 < rank(A) = 1 < 2, 则有 $A = \begin{pmatrix} a & ka \\ b & kb \end{pmatrix}$. 于是

$$A^{2} = \begin{pmatrix} a(a+kb) & ka(a+kb) \\ b(a+kb) & kb(a+kb) \end{pmatrix} = 0.$$

由于 $b \neq 0$, 可得 a + kb = 0, $k = -\frac{a}{b}$. 因此矩阵 A 的可能形式是

$$\left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right) \stackrel{\mathbf{gd}}{=} \left(\begin{array}{cc} a & -\frac{a^2}{b} \\ b & -a \end{array}\right).$$

*12. 设 A 为 $m \times n$ 矩阵, 证明: 存在 $n \times s$ 非零矩阵 B, 使 AB = 0 的充分必要条件是 rank A < n.

证明: (\Rightarrow) 设有非零矩阵 B 使得 AB = 0, 则 B 的列向量都是齐次线性方程组 AX = 0 的解,而且其中有非零解.因此 $\operatorname{rank} A < n$.

(⇐) 设 $\operatorname{rank} A < n$, 则齐次线性方程组 AX = 0 有非零解

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \neq 0.$$

令

$$B = \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & \cdots & 0 \end{pmatrix}_{n \times s} \neq 0,$$

则 AB=0.

*13. 设 A, B 分别为 $m \times n$ 与 $n \times s$ 矩阵. 证明: 如果 AB = 0, 则

$$\operatorname{rank} A + \operatorname{rank} B \leq n$$
.

证明: B 的列向量都是齐次线性方程组 AX = 0 的解, 而这个齐次线性方程组的解空间最多含有 n - rank A 个线性无关的向量, 从而

$$\operatorname{rank} B \leq n - \operatorname{rank} A$$
,

移项得 $\operatorname{rank} A + \operatorname{rank} B \leq n$.

- ***14.** 设 A 为 $n \times r$ 矩阵, B 为 $r \times s$ 矩阵, rank B = r. 证明:
- (1) 如果 AB = 0, 则 A = 0;
- (2) 如果 AB = B, 则 A = E.

证明: (1) 由上题, $\operatorname{rank} A + \operatorname{rank} B \leq r$, 由 $\operatorname{rank} B = r$ 可得 $\operatorname{rank} A = 0$, 从而 A = 0.

- (2) 因为 (A E)B = 0, 由 (1) 得 A E = 0, A = E.
- **15.** 设 A 为 $m \times n$ 矩阵. 证明: 如果对所有的 n 维向量 $X = (x_1 \ x_2 \ \cdots \ x_n)^{\mathrm{T}}$ 都有 AX = 0, 则 A = 0.

证明: 由假设知单位矩阵的列向量也是 AX = 0 的解, 因此 A = AE = 0.

§ 6 矩阵乘积的行列式与矩阵的逆

1. 计算下列矩阵的逆矩阵:

$$(1) \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(5) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(6) \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(7) \begin{pmatrix} -\frac{1}{5} \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}.$$

$$(1) \begin{pmatrix} -\frac{1}{5} \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}.$$

$$(2) \begin{pmatrix} -7 & 5 \\ 3 & -2 \end{pmatrix}.$$

$$(3) \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$(4) \frac{1}{3} \begin{pmatrix} -1 & -2 & 1 \\ -1 & 1 & 1 \\ 5 & 4 & -2 \end{pmatrix}.$$

$$(5) \frac{1}{3} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

$$(2) \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix};$$

$$(4) \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix};$$

$$(6) \begin{pmatrix} 4 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 2 \end{pmatrix}.$$

$$(6) \frac{1}{3} \begin{pmatrix} 3 & 3 & -6 \\ -4 & -6 & 11 \\ -1 & 0 & 2 \end{pmatrix}.$$

2. 求下列矩阵的伴随矩阵:
$$(1) \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix};$$

$$(3) \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 2 & -3 \end{pmatrix}; \qquad (4) \begin{pmatrix} -2 & 3 & 4 \\ 0 & -1 & 2 \\ 3 & -2 & 1 \end{pmatrix}.$$

$$\mathbf{MF}: (1) \begin{pmatrix} -4 & -1 & 7 \\ 8 & -1 & -5 \\ -4 & 5 & 1 \end{pmatrix}.$$

$$(2) \begin{pmatrix} 0 & -5 & 5 \\ 3 & 4 & 2 \\ -6 & -3 & 6 \end{pmatrix}.$$

$$(3) \begin{pmatrix} 0 & -5 & 5 \\ 3 & 4 & 2 \\ -6 & -3 & 6 \end{pmatrix}.$$

$$(4) \begin{pmatrix} 3 & -11 & 10 \\ 4 & -4 & 4 \end{pmatrix}.$$

$$(4) \begin{pmatrix} 3 & -11 & 10 \\ 6 & -14 & 4 \\ 3 & 5 & 2 \end{pmatrix}.$$

3. 设 $A \in M_n(K)$. 证明: 如果存在常数项非零的多项式 f(x), 使 f(A) = 0, 则 A 可逆.

证明: 设
$$f(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m, a_m \neq 0$$
, 使

$$f(A) = a_0 A^m + a_1 A^{m-1} + \dots + a_{m-1} A + a_m E = 0,$$

则

$$A\left(-\frac{a_0}{a_m}A^{m-1} - \frac{a_1}{a_m}A^{m-2} - \dots - \frac{a_{m-1}}{a_m}E\right) = E,$$

因此 A 可逆.

4. 设 $B^3 = 0$. 证明: E - B 可逆, 并求 E - B 的逆.

证明: 因为 $(E-B)(E+B+B^2)=E-B^3=E$, 所以 E-B 可逆, 且 $(E-B)^{-1}=E+B+B^2$.

证明: 由矩阵方程组

$$\begin{cases} B = A^2 + 2A - E \\ AB = 2A^2 - A + 2E \\ A^2B = -A^2 + 2A + 4E \end{cases}$$

通过加减消去法使等式右边只含 E, 可得 $(5A^2 + 4A - 3E)B = 31E$, 因此

$$B^{-1} = \frac{1}{31}(5A^2 + 4A - 3E).$$

6. 设 $A^2 = A$, 证明: E + A 可逆, 并求 $(E + A)^{-1}$.

证明: 设 B=E+A, 则 A=B-E, 因此 $(B-E)^2=B-E$, $B^2-3B=-2E$, B(3E-B)=2E. 因此 $B^{-1}=\frac{1}{2}(3E-B)=\frac{1}{2}(3E-E+A)=E-\frac{1}{2}A$.

7. 设 $A, B \in M_n(K)$, 证明: 如果 $AB = kE_n \ (\bar{k} \neq 0)$, 则 $BA = kE_n$.

证明: 由 $AB = kE_n \ (k \neq 0)$ 可得 $A^{-1} = \frac{1}{k}B$, $B = kA^{-1}$. 因此 $BA = kA^{-1}A = kE$.

8. 证明: (1) 上(下) 三角形矩阵的伴随矩阵还是上(下) 三角形矩阵;

(2) 可逆的上(下)三角形矩阵的逆矩阵还是上(下)三角形矩阵.

证明: (1) 设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

则当 j > i 时, a_{ij} 的余子式 M_{ij} 还是上三角形的, 且 M_{ij} 的 (i,i) 元素 = A 的 (i+1,i) 元素 = 0, 所以 $M_{ij} = 0$ (j > i). 从而当 j > i 时有 $A_{ij} = 0$. 因此伴随矩阵 A^* 是上三角形矩阵,类似可证下三角形的情形,

随矩阵 A^* 是上三角形矩阵. 类似可证下三角形的情形. (2) 如 A 可逆, 则 $A^{-1} = \frac{1}{|A|} A^*$ 仍为三角形矩阵.

9. 证明: 对任何 n 阶方阵 A, 必存在 $\lambda_0 \in K$, 使得 $\lambda_0 E_n - A$ 是可逆阵. 证明: 因为 $|\lambda E - A|$ 是首项系数为 1 的 n 次多项式,而 n 次多项式在 K 上最多有 n 个根,故必存在 $\lambda_0 \in K$ 使得 $|\lambda_0 E - A| \neq 0$. 从而 $\lambda_0 E - A$ 可逆.

10. 设
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
. 求多项式 $f(x)$, 使 $f(A) = A^*$.
解: $A^* = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} - 4 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = A - 4 \left[\frac{1}{2} (A - E) \right] = E - A$, 所以 $f(x) = -x + 2$.

§ 7 矩阵的分块 · 131 ·

11. 证明: 对所有的 $A \in M_2(K)$, 存在 $f(\lambda) = a\lambda + b$, 使 $f(A) = A^*$. 证明: 设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 则 $A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, 所以 $A + A^* = (a+d)E$, $A^* = -A + (a+d)E$. 故 $f(\lambda) = -\lambda + (a+d)$.

*12. $\ \ \mathcal{U} \ A \in M_n(K), \ \text{iii}:$

$$\operatorname{rank} A^* = \begin{cases} n, & \operatorname{rank} A = n \\ 1, & \operatorname{rank} A = n - 1 \\ 0, & \operatorname{rank} A < n - 1 \end{cases}$$

证明: (i) 当 $\operatorname{rank} A = n$ 时, A 可逆, $|A| \neq 0$. 而 $AA^* = |A|E$, 故 A^* 也 可逆, 从而 $\operatorname{rank} A^* = n$.

- (ii) 当 rank A < n-1 时, A 的 n-1 阶子式都等于 0, 因此 $A_{ij} = 0$, $A^* = 0$, 所以 rank $A^* = 0$.
- (iii) 当 $\operatorname{rank} A = n 1$ 时, A 至少有一个 n 1 阶子式不等于 0, 所以 $A^* \neq 0$. 说明 $\operatorname{rank} A^* \geq 1$. 另一方面有 $AA^* = |A|E = 0$, 所以 $\operatorname{rank} A + \operatorname{rank} A^* \leq n$. 由于 $\operatorname{rank} A = n 1$, 可得 $\operatorname{rank} A^* \leq 1$. 因此 $\operatorname{rank} A^* = 1$.
 - *13. $\ \ \mathcal{U} \ A \in M_n(K) \ (n > 2), \ \ \mathcal{U} \ \mathcal{U} = \mathbb{C}_n(K)$
 - $(1) (A^*)^* = |A|^{n-2}A;$
 - (2) $|A^*| = |A|^{n-1}$.

证明: 当 rank A=n 时, $AA^*=|A|E$, 所以 $|A||A^*|=|A|^n$, $|A^*|=|A|^{n-1}$. 于是 $A^*(A^*)^*=|A^*|E=|A|^{n-1}E$. 由 $A^{-1}=\frac{1}{|A|}A^*$ 可得 $A^*=|A|A^{-1}$, 故 $(A^*)^*=|A|^{n-1}(A^*)^{-1}=|A|^{n-2}A$.

当 rank A = n - 1 时, rank $A^* = 1$, 所以 $(A^*)^* = 0 = |A|^{n-2}A$, $|A^*| = 0 = |A|^{n-1}$.

当 $\operatorname{rank} A < n-1$ 时, $A^* = 0$, 上述等式也成立.

§7 矩阵的分块

1. 设 *A*, *B* 为两个同阶矩阵. 证明:

$$\operatorname{rank}(A+B) \leq \operatorname{rank}(A \mid B) \leq \operatorname{rank} A + \operatorname{rank} B.$$

证明: 设 A 的列向量组为 $\alpha_1, \dots, \alpha_n$, B 的列向量组为 β_1, \dots, β_n , 则 A+B 的列向量组为 $\alpha_1+\beta_1, \dots, \alpha_n+\beta_n$, $(A\mid B)$ 的列向量组为 $\alpha_1, \dots, \alpha_n, \beta_1$,

 \dots, β_n , 从而由习题 5–1.7,

$$\operatorname{rank}(A+B) = \operatorname{rank}\{\alpha_1 + \beta_1, \cdots, \alpha_n + \beta_n\}$$

$$\leq \operatorname{rank}\{\alpha_1, \cdots, \alpha_n, \beta_1, \cdots, \beta_n\} = \operatorname{rank}(A \mid B)$$

$$\leq \operatorname{rank}\{\alpha_1, \cdots, \alpha_n\} + \operatorname{rank}\{\beta_1, \cdots, \beta_n\}$$

$$= \operatorname{rank} A + \operatorname{rank} B.$$

2. 设

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & -3 \\ 3 & 2 & 1 & 2 \end{pmatrix},$$

求 A^{-1} .

解: 设

$$A^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

$$AA^{-1} = \begin{pmatrix} 0 & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} E_2 & 0 \\ 0 & E_2 \end{pmatrix}.$$

所以

$$B_{21} = A_{12}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix},$$

$$B_{22} = 0, \quad (因 A_{12} 可逆)$$

$$B_{12} = A_{21}^{-1} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix},$$

$$B_{11} = -A_{21}^{-1} A_{22} B_{21} = \begin{pmatrix} -1 & 9 \\ 1 & -14 \end{pmatrix}.$$

§7 矩阵的分块 · 133 ·

因此

$$A^{-1} = \begin{pmatrix} -1 & 9 & 2 & -1 \\ 1 & -14 & -3 & 2 \\ \hline 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

3. 设 A 为可逆的 n 阶方阵,

$$D = \left(\begin{array}{c|c} 0 & A \\ \hline a & 0 \end{array}\right), \quad a \neq 0,$$

求 D^{-1} .

M:
$$D^{-1} = \begin{pmatrix} 0 & a^{-1} \\ A^{-1} & 0 \end{pmatrix}$$
.

4. 设 A_i 为 r_i 阶可逆方阵 $(i = 1, 2, \dots, s)$,

$$A = \begin{pmatrix} 0 & & & A_1 \\ & & A_2 & \\ & \ddots & & \\ A_s & & 0 \end{pmatrix}$$

求 A^{-1} .

解:
$$A^{-1} = \begin{pmatrix} 0 & & A_s^{-1} \\ & & A_{s-1}^{-1} \\ & \ddots & \\ A_1^{-1} & & 0 \end{pmatrix}$$
.

5. 设 E_i 为 r_i $(i = 1, 2, \dots, s)$ 阶单位矩阵, 而

$$A = \begin{pmatrix} a_1 E_1 & & & 0 \\ & a_2 E_2 & & \\ & & \ddots & \\ 0 & & & a_s E_s \end{pmatrix}, \quad a_i \neq a_j, \ i \neq j,$$

证明:与 A 可交换的矩阵只能是分块对角矩阵.

证明: 设分块矩阵 $B=(B_{ij})$ 与 A 可交换, 而且 B 的分块方式与 A 相同. 则由 AB=BA 得

$$a_i B_{ij} = B_{ij} a_j, \qquad i, j = 1, \cdots, s.$$

于是

$$(a_i - a_j)B_{ij} = 0, i, j = 1, \dots, s.$$

但当 $i \neq j$ 时有 $a_i \neq a_j$, 所以对于 $i \neq j$ 有 $B_{ij} = 0$, 即

$$B = \begin{pmatrix} B_{11} & 0 & \cdots & 0 \\ 0 & B_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{ss} \end{pmatrix}.$$

6. 设

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ a_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_n & 0 \end{pmatrix} \quad a_i \neq 0, \ i = 0, 1, 2, \cdots n,$$

求 A^{-1} .

$$\mathbf{M}: A^{-1} = \begin{pmatrix} 0 & a_1^{-1} & 0 & \cdots & 0 \\ 0 & 0 & a_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n^{-1} \\ a_n^{-1} & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

7. 设矩阵 $A_{m\times s}$, $B_{t\times n}$ 的秩分别为 r_A , r_B , C 为任意的 $m\times n$ 矩阵, 而

$$D = \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array}\right)$$

证明: 矩阵 D 的秩 $r_D \ge r_A + r_B$.

证明: 设 A 的行向量组的极大线性无关组为 $\alpha_{i_1},\cdots,\alpha_{i_{r_A}},$ B 的行向量组的极大线性无关组为 $\beta_{j_1},\cdots,\beta_{j_{r_R}}.$ 则

$$\gamma_1 = (\alpha_{i_1}, \underbrace{*\cdots *}_n), \gamma_2 = (\alpha_{i_2}, \underbrace{*\cdots *}_n), \cdots, \gamma_{r_A} = (\alpha_{i_{r_A}}, \underbrace{*\cdots *}_n)$$

线性无关.

$$\delta_1 = (\underbrace{0 \cdots 0}_{s}, \beta_{j_1}), \delta_2 = (\underbrace{0 \cdots 0}_{s}, \beta_{j_2}), \cdots, \delta_{r_B} = (\underbrace{0 \cdots 0}_{s}, \beta_{j_{r_B}})$$

线性无关. 显然

$$\gamma_1, \gamma_2, \cdots, \gamma_{r_A}, \delta_1, \delta_2, \cdots, \delta_{r_B},$$

§7 矩阵的分块 · 135 ·

线性无关, 所以

$$r_D \ge \{\gamma_1, \gamma_2, \cdots, \gamma_{r_A}, \delta_1, \delta_2, \cdots, \delta_{r_B}\} = r_A + r_B.$$

8. 设 A 为 $m \times n$ 矩阵. 证明: rank A = 1 的充分必要条件是存在 m 维非零向量 $\alpha = (a_1, a_2, \dots, a_m)$ 与 n 维非零向量 $\beta = (b_1, b_2, \dots, b_n)$,使 $A = \alpha^{T}\beta$.

证明: (⇒) 设 $\operatorname{rank}(A)=1,$ 则 A 必有一行 (设为 $\beta=(b_1,\cdots,b_n)$) 不等于 0, 而其余各行都是这一行的倍数,从而

$$A = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_mb_1 & a_mb_2 & \cdots & a_mb_n \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} (b_1 \ b_2 \ \cdots \ b_n) = \alpha^{\mathrm{T}}\beta.$$

(秦) 设 α, β 是两个非零向量, 则必有某个 $a_i \neq 0$, $b_j \neq 0$, 从而 $a_i b_j \neq 0$, 使得 $A = \alpha^{\mathrm{T}} \beta = (a_i b_j) \neq 0$. 于是

$$1 \le \operatorname{rank}(A) \le \min\{\operatorname{rank}(\alpha), \operatorname{rank}(\beta)\} = 1.$$

*9. 设 A 为二阶方阵. 证明: 如果 $A^k = 0$, 则 $A^2 = 0$.

证明: 由 $A^k=0$ 可得 |A|=0. 故 ${\rm rank}\,A\leq 1$. 如果 ${\rm rank}\,A=0$,则 A=0,结论显然成立. 如果 ${\rm rank}\,A=1$,则

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \cdots b_n), \qquad (因版 4-5.12)$$

$$A^2 = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \cdots b_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \cdots b_n) = \sum_{i=1}^n a_i b_i A,$$

$$A^k = \left(\sum_{i=1}^n a_i b_i\right)^{k-1} A = 0.$$

由于 $A \neq 0$, $\sum_{i=1}^{n} a_i b_i = 0$. 所以 $A^2 = 0$.

***10.** 设 A, B 为两个 n 阶方阵, 证明: 矩阵方程 AX = B 有解的充分必要条件是 $\mathrm{rank}\,A = \mathrm{rank}(A\mid B)$.

证明: (\Rightarrow) 设矩阵方程 AX = B 有解 X = C, 则 AC = B. 从而 B 的列向量组可由 A 的列向量组线性表示, 所以

$$rank(A \mid B) = rank A.$$

(秦) 如果 $\operatorname{rank}(A \mid B) = \operatorname{rank} A$,则 B 的列向量组可由 A 的列向量组线性表示,即存在 $(c_{1j}, \dots, c_{nj})^{\mathrm{T}}$ 使得

$$A\begin{pmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{pmatrix} = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}, \quad j = 1, \dots, n.$$

令

$$C = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix},$$

则 AC = B.

***11.** 设 A, B 为两个 n 阶方阵, 证明: 齐次线性方程组 AX = 0 与齐次线性方程组 BAX = 0 同解的充分必要条件是 rank A = rank BA.

证明: 首先, AX=0 的解都是 BAX=0 的解, 从而 BAX=0 的基础解系至少含有 $n-\mathrm{rank}\,A$ 个解. 又因为 $\mathrm{rank}\,A=\mathrm{rank}\,BA$,所以 BAX=0 的基础解系恰含有 $n-\mathrm{rank}\,A$ 个解. 故 AX=0 的基础解系也是 BAX=0 的基础解系. 因此 AX=0 与 BAX=0 同解.

反之, 如果 AX = 0 与 BAX = 0 同解, 则它们的基础解系含有相同个数的解. 因此 $n - \operatorname{rank} A = n - \operatorname{rank} BA$, $\operatorname{rank} A = \operatorname{rank} BA$.

§8 初等矩阵

1. 用初等变换求下列矩阵的逆矩阵:

§ 8 初等矩阵 · 137 ·

M: (1)
$$\frac{1}{3}$$
 $\begin{pmatrix} 0 & 2 & -1 \\ 0 & -1 & 2 \\ 3 & -4 & 5 \end{pmatrix}$.

$$(2) \frac{1}{6} \begin{pmatrix} 2 & -1 & 3 \\ 2 & -4 & 0 \\ 2 & -7 & 3 \end{pmatrix}.$$

$$(3) \begin{pmatrix} 1 & -2 & 2 & -2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- $(4) \frac{1}{4}A.$
- 2. 解下列矩阵方程:

$$(1) \left(\begin{array}{cc} 2 & -3 \\ -2 & 4 \end{array}\right) X = \left(\begin{array}{cc} 4 & 3 \\ 2 & 2 \end{array}\right);$$

$$(2) \ X \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & -1 \end{array} \right) = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 1 & -1 & 0 \end{array} \right);$$

$$(3) \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{pmatrix}.$$

解: (1)
$$X = \begin{pmatrix} 2 & -3 \\ -2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & 9 \\ 6 & 5 \end{pmatrix}.$$

$$(2) \ X = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} 4 & -2 & -2 \\ 2 & 1 & -5 \\ 2 & -3 & -1 \end{pmatrix}.$$

或

$$\begin{pmatrix}
1 & 1 & 1 \\
-1 & 2 & 1 \\
\hline
1 & 0 & -1 \\
\hline
1 & 0 & 1 \\
-1 & 1 & 2 \\
1 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 0 & 1 \\
-2 & 1 & 1 \\
\hline
2 & 1 & -1 \\
\hline
0 & -1 & 1 \\
-3 & -1 & 2 \\
1 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 0 & 1 \\
-1 & 0 & 0 \\
\hline
1 & 2 & 0 \\
\hline
0 & -1 & 1 \\
-\frac{3}{2} - \frac{5}{2} \frac{1}{2} \\
\frac{1}{2} - \frac{1}{2} \frac{1}{2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
\hline
-\frac{1}{2} - \frac{1}{2} 1 \\
\frac{1}{4} - \frac{5}{4} \frac{1}{2} \\
-\frac{3}{4} - \frac{1}{4} \frac{1}{2}
\end{pmatrix}.$$

$$(3) \ X = \begin{pmatrix} 1 & -1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 \end{pmatrix}.$$

3. 用多种方法求

的逆矩阵.

解: 仅介绍两种解法:

(i) 因为
$$AA = 4E$$
, 所以 $A^{-1} = \frac{1}{4}A$.

(ii) 分块:
$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $A_1^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} A_1$.
$$\begin{pmatrix} A_1 & A_1 & E & 0 \\ A_1 & -A_1 & 0 & E \end{pmatrix} \rightarrow \begin{pmatrix} A_1 & A_1 & E & 0 \\ 0 & -2A_1 & -E & E \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} A_1 & 0 & \frac{1}{2}E & \frac{1}{2}E \\ 0 & -2A_1 & -E & E \end{pmatrix} \rightarrow \begin{pmatrix} E & 0 & \frac{1}{2}A_1^{-1} & \frac{1}{2}A_1^{-1} \\ 0 & E & \frac{1}{2}A_1^{-1} & -\frac{1}{2}A_1^{-1} \end{pmatrix}.$$

§ 8 初等矩阵 · 139 ·

$$A^{-1} = \frac{1}{2} \begin{pmatrix} A_1^{-1} & A_1^{-1} \\ A_1^{-1} & -A_1^{-1} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} A_1 & A_1 \\ A_1 & -A_1 \end{pmatrix} = \frac{1}{4} A.$$

*4. 设 $A, B, C, D \in M_n(K), |A| \neq 0, AC = CA$. 证明:

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |AD - CB|.$$

证明: 因 $|A| \neq 0$, 故 A 可逆. 而

$$\left(\begin{array}{cc} E & 0 \\ -CA^{-1} & E \end{array} \right) \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} A & B \\ 0 & D - CA^{-1}B \end{array} \right),$$

所以

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B \\ 0 & D - CA^{-1}B \end{vmatrix} = |A||D - CA^{-1}B|$$
$$= |AD - ACA^{-1}B| = |AD - CB|.$$

***5.** 设 $A, B \in M_n(\mathbb{C})$, 证明:

$$\begin{vmatrix} A & B \\ -B & A \end{vmatrix} = |A - iB||A + iB|.$$

(其中 i 为虚数单位, $i^2 = -1$.)

证明: 因为

$$\left(\begin{array}{cc} E & \mathrm{i}E \\ 0 & E \end{array} \right) \left(\begin{array}{cc} A & B \\ -B & A \end{array} \right) \left(\begin{array}{cc} E & -\mathrm{i}E \\ 0 & E \end{array} \right) = \left(\begin{array}{cc} A - \mathrm{i}B & 0 \\ -B & A + \mathrm{i}B \end{array} \right).$$

所以

$$\begin{vmatrix} A & B \\ -B & A \end{vmatrix} = |A - iB||A + iB|.$$

- ***6.** 设 $A \in M_{m,r}(K)$. 证明:
- (1) A为列满秩矩阵的充分必要条件是存在可逆矩阵 $P \in M_m(K)$, 使 $A = P \begin{pmatrix} E_r \\ 0 \end{pmatrix}$;
- (2) A 为列满秩矩阵的充分必要条件是存在行满秩矩阵 $B \in M_{r,m}(K)$, 使 $BA = E_r$.

证明: (1) 因 A 列满秩, A 的典范形为 $\begin{pmatrix} E_r \\ 0 \end{pmatrix}$. 从而存在可逆矩阵 $P_1,Q_1,$

使

$$A = P_1 \left(\begin{array}{c} E_r \\ 0 \end{array} \right) Q_1.$$

令

$$P = P_1 \left(\begin{array}{cc} Q_1 & 0 \\ 0 & E_{m-r} \end{array} \right),$$

则

$$A = P_1 \left(\begin{array}{c} E_r \\ 0 \end{array} \right) Q_1 = P_1 \left(\begin{array}{c} Q_1 \\ 0 \end{array} \right) = P_1 \left(\begin{array}{cc} Q_1 & 0 \\ 0 & E_{m-r} \end{array} \right) \left(\begin{array}{c} E_r \\ 0 \end{array} \right) = P \left(\begin{array}{c} E_r \\ 0 \end{array} \right).$$

这就证明了必要性, 而充分性是显然的.

(2) 充分性是显然的, 再证必要性.

由 (1) 知, 存在可逆矩阵 P, 使 $A = P \begin{pmatrix} E_r \\ 0 \end{pmatrix}$. 则

$$P^{-1}A = \left(\begin{array}{c} E_r \\ 0 \end{array}\right),$$

今

$$P^{-1} = \left(\begin{array}{c} B \\ B_1 \end{array}\right) ,$$

则 B 行满秩, 且 $BA = E_r$.

*7. 对于行满秩矩阵, 叙述并证明类似的结论.

解: (1) A为行满秩矩阵的充分必要条件是存在可逆矩阵 $Q \in M_m(K)$, 使 $A = (E_r \ 0)Q$.

(2) A 为行满秩矩阵的充分必要条件是存在列满秩矩阵 $B \in M_{m,r}(K)$, 使 $AB = E_r$.

(证明略)

8. 设 $m \times n$ 矩阵 A 的秩为 r. 证明: 存在列满秩矩阵 P 和行满秩矩阵 Q, 使 A = PQ.

证明: 存在可逆矩阵 P_1, Q_1 , 使

$$A = P_1 \left(\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right) Q_1.$$

§ 8 初等矩阵 · 141 ·

令

$$P = P_1 \begin{pmatrix} E_r \\ 0 \end{pmatrix}, \qquad Q = (E_r \ 0)Q_1,$$

则 P 列满秩, Q 行满秩, 且

$$A = P_1 \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} Q_1 = P_1 \begin{pmatrix} E_r \\ 0 \end{pmatrix} (E_r \ 0) Q_1 = PQ.$$

*9. 设 A, B 分别为 $n \times m$ 与 $m \times n$ $(n \ge m)$ 矩阵, $\lambda \ne 0$. 证明:

$$|\lambda E_n - AB| = \lambda^{n-m} |\lambda E_m - BA|.$$

证明: 由于

$$\begin{pmatrix} E_n & -A \\ 0 & E_m \end{pmatrix} \begin{pmatrix} \lambda E_n & A \\ B & E_m \end{pmatrix} = \begin{pmatrix} \lambda E_n - AB & 0 \\ B & E_m \end{pmatrix},$$

$$\begin{pmatrix} E_n & 0 \\ -B & E_m \end{pmatrix} \begin{pmatrix} E_n & A \\ B & \lambda E_m \end{pmatrix} = \begin{pmatrix} E_n & A \\ 0 & \lambda E_m - BA \end{pmatrix},$$

所以

$$|\lambda E_n - AB| = \begin{vmatrix} \lambda E_n & A \\ B & E_m \end{vmatrix},$$
$$|\lambda E_m - BA| = \begin{vmatrix} E_n & A \\ B & \lambda E_m \end{vmatrix}.$$

而

$$\lambda^{m}|\lambda E_{n} - AB| = \lambda^{m} \begin{vmatrix} \lambda E_{n} & A \\ B & E_{m} \end{vmatrix} = \begin{vmatrix} \lambda E_{n} & A \\ \lambda B & \lambda E_{m} \end{vmatrix}$$
$$= \lambda^{n} \begin{vmatrix} E_{n} & A \\ B & \lambda E_{m} \end{vmatrix} = \lambda^{n}|\lambda E_{m} - BA|.$$

因此

$$|\lambda E_n - AB| = \lambda^{n-m} |\lambda E_m - BA|.$$

*10. 设 A, B 分别为 $s \times n$ 与 $n \times m$ 矩阵, 证明:

$$rank(AB) \ge rank(A) + rank(B) - n.$$

证明:
$$\begin{pmatrix} AB & 0 \\ 0 & E_n \end{pmatrix} \rightarrow \begin{pmatrix} AB & -A \\ 0 & E_n \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -A \\ B & E_n \end{pmatrix}$$
. 所以
$$\operatorname{rank}(AB) + n = \operatorname{rank}\begin{pmatrix} AB & 0 \\ 0 & E_n \end{pmatrix} = \operatorname{rank}\begin{pmatrix} 0 & -A \\ B & E_n \end{pmatrix}$$
$$= \operatorname{rank}\begin{pmatrix} 0 & A \\ B & E_n \end{pmatrix} \geq \operatorname{rank} A + \operatorname{rank} B, \quad (4-7.7)$$

因此 $\operatorname{rank}(AB) \ge \operatorname{rank}(A) + \operatorname{rank}(B) - n$.

***11.** 设 A, B, C 分别为 $s \times n$, $n \times m$ 与 $m \times t$ 矩阵, 证明:

$$\operatorname{rank}(ABC) \ge \operatorname{rank}(AB) + \operatorname{rank}(BC) - \operatorname{rank}B.$$

证明:
$$\begin{pmatrix} ABC & 0 \\ 0 & B \end{pmatrix} \rightarrow \begin{pmatrix} ABC & AB \\ 0 & B \end{pmatrix}$$
 $\rightarrow \begin{pmatrix} 0 & AB \\ -BC & B \end{pmatrix} \rightarrow \begin{pmatrix} 0 & AB \\ BC & B \end{pmatrix}$.

所以

$$\operatorname{rank}(ABC) + \operatorname{rank}B \ge \operatorname{rank}(AB) + \operatorname{rank}(BC),$$

 $\operatorname{rank}(ABC) \ge \operatorname{rank}(AB) + \operatorname{rank}(BC) - \operatorname{rank}B.$

***12.** 设 $A \in M_n(K)$, 证明:

$$A^2 = E_n \Leftrightarrow \operatorname{rank}(A - E_n) + \operatorname{rank}(A + E_n) = n.$$

证明:
$$\left(\begin{array}{c|c} 0 & A+E_n \\ \hline A-E_n & 0 \end{array} \right) \rightarrow \left(\begin{array}{c|c} A+E_n & A+E_n \\ \hline A-E_n & 0 \end{array} \right)$$

$$\rightarrow \left(\begin{array}{c|c} 2E_n & A+E_n \\ \hline A-E_n & 0 \end{array} \right) \rightarrow \left(\begin{array}{c|c} 2E_n & A+E_n \\ \hline 0 & \frac{1}{2}(A^2-E_n) \end{array} \right),$$

所以

$$\operatorname{rank}(A - E_n) + \operatorname{rank}(A + E_n) = n + \operatorname{rank}(A^2 - E_n).$$
$$\operatorname{rank}(A - E_n) + \operatorname{rank}(A + E_n) = n \iff \operatorname{rank}(A^2 - E_n) = 0 \iff A^2 = E_n.$$

*13. $\ \ \mathcal{U} \ A \in M_n(K), \ \text{证明}:$

$$A^2 = A \Leftrightarrow \operatorname{rank}(A) + \operatorname{rank}(A - E_n) = n.$$

证明:
$$\left(\begin{array}{c|c} A & 0 \\ \hline 0 & A - E_n \end{array} \right) \rightarrow \left(\begin{array}{c|c} A & -E_n \\ \hline 0 & A - E_n \end{array} \right)$$

$$\rightarrow \left(\begin{array}{c|c} 0 & -E_n \\ \hline A^2 - A & A - E_n \end{array} \right) \rightarrow \left(\begin{array}{c|c} 0 & E_n \\ \hline A^2 - A & 0 \end{array} \right).$$

所以

$$\operatorname{rank} A + \operatorname{rank}(A - E_n) = n + \operatorname{rank}(A^2 - A).$$
$$\operatorname{rank}(A) + \operatorname{rank}(A - E_n) = n \Leftrightarrow A^2 = A.$$

*14. 设 $A \in M_n(K)$ 是可逆矩阵, X, Y 为 n 维列向量, 证明:

$$\left| \begin{array}{cc} A & Y \\ X^{\mathrm{T}} & 0 \end{array} \right| = -X^{\mathrm{T}} A^* Y.$$

证明:

$$\begin{pmatrix} A & Y \\ X^{\mathrm{T}} & 0 \end{pmatrix} \rightarrow \begin{pmatrix} A & Y \\ 0 & -X^{\mathrm{T}}A^{-1}Y \end{pmatrix},$$

$$\therefore \begin{vmatrix} A & Y \\ X^{\mathrm{T}} & 0 \end{vmatrix} = |A|| - X^{\mathrm{T}}A^{-1}Y| = -X^{\mathrm{T}}|A|A^{-1}Y = -X^{\mathrm{T}}A^{*}Y.$$

*§9 线性映射的象空间与核空间

1. 设 \mathscr{A} 为向量空间 V_1 到 V_2 的线性映射, \mathscr{A} 在自然基下的矩阵是

$$A = \begin{pmatrix} -1 & 0 & 2 & 1 & 3 \\ 2 & -3 & -1 & 1 & -4 \\ 1 & -3 & 1 & 2 & -1 \\ -1 & 1 & 1 & 0 & 2 \end{pmatrix}.$$

- (1) 求 Ø 的核与象的维数与基;
- (2) 分别将 \mathscr{A} 的核与象的基扩充为 V_1 与 V_2 的基.

解: (1) 因为 $\operatorname{rank} A = 3$, 因此象空间的维数为 3. A 的列向量组的极大线性无关组构成象空间的基:

$$\mathscr{A}(\varepsilon_1) = (-1, 2, 1, -1), \mathscr{A}(\varepsilon_2) = (0, -3, -3, 1), \mathscr{A}(\varepsilon_5) = (3, -4, -1, 2).$$

核的维数 = 5 - 3 = 2, AX = 0 的基础解系构成核空间的基:

$$\xi_1 = (2, 1, 1, 0, 0), \xi_2 = (1, 1, 0, 1, 0).$$

(2) $ξ_1, ξ_2$ 可扩充为 V_1 的基:

$$\xi_1, \xi_2, \varepsilon_3, \varepsilon_4, \varepsilon_5.$$

 $\mathscr{A}(\varepsilon_1), \mathscr{A}(\varepsilon_2), \mathscr{A}(\varepsilon_5)$ 可以扩充为 V_2 的基:

$$\mathscr{A}(\varepsilon_1), \mathscr{A}(\varepsilon_2), \mathscr{A}(\varepsilon_5), (1,0,0,0).$$

2. 设 \mathscr{A} 为 K^3 的线性变换, 使

$$\mathscr{A}(x,y,z) = (x+y-z, x+y+z, x+y-2z).$$

- (1) 求 ⋈ 的零化度与秩;
- (2) 求 ৶ 的核与象空间.

解: (1) 零化度 = 1, 秩 = 2.

- (2) $\delta = L((1, -1, 0)), \$ = L((1, 1, 1), (-1, 1, -2)).
- **3.** 设 W_1 , W_2 为 V 的两个子空间, 且 dim W_1 + dim W_2 = n. 证明: 存在 线性变换 \mathscr{A} , 使 Ker $\mathscr{A} = W_1$, Im $\mathscr{A} = W_2$.

证明: 设 W_1 的基为 $\alpha_1, \dots, \alpha_r, W_2$ 的基为 $\beta_1, \dots, \beta_{n-r}$. 将 W_1 的基扩充为 V 的基: $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_n$. 对任意的 $\alpha = \sum_{i=1}^n a_i \alpha_i \in V$,定义

$$\mathscr{A}(\alpha) = \sum_{i=1}^{n-r} a_{r+i} \beta_i,$$

则 \mathscr{A} 是 V 的线性变换, 且 Ker $\mathscr{A} = W_1$, Im $\mathscr{A} = W_2$.

4. 设 \mathscr{A} 为 n 维向量空间的线性变换, V_1 , V_2 为 V 两个线性子空间. 证明: 如果 $\operatorname{Ker} \mathscr{A} = V_1 \cap V_2$, 则存在线性变换 \mathscr{A}_1 , \mathscr{A}_2 , 使 $V_1 \subseteq \operatorname{Ker} \mathscr{A}_1$, $V_2 \subseteq \operatorname{Ker} \mathscr{A}_2$, 且 $\mathscr{A} = \mathscr{A}_1 + \mathscr{A}_2$.

证明:设 $\gamma_1, \dots, \gamma_r$ 为 $V_1 \cap V_2$ 的基,将它扩充为 V_1 的基: $\gamma_1, \dots, \gamma_r, \alpha_1, \dots, \alpha_t$,扩充为 V_2 的基: $\gamma_1, \dots, \gamma_r, \beta_1, \dots, \beta_s$.则由维数公式知 $\gamma_1, \dots, \gamma_r, \alpha_1, \dots, \alpha_t, \beta_1, \dots, \beta_s$ 为 $V_1 + V_2$ 的基.再把它扩充为V的基:

$$\gamma_1, \dots, \gamma_r, \alpha_1, \dots, \alpha_t, \beta_1, \dots, \beta_s, \eta_1, \dots, \eta_u, \qquad (r+t+s+u=n).$$

分别定义线性变换如下:

$$\mathscr{A}_1(\gamma_i) = 0, \quad \mathscr{A}_1(\alpha_i) = 0, \quad \mathscr{A}_1(\beta_i) = \mathscr{A}(\beta_i), \quad \mathscr{A}_1(\eta_i) = \mathscr{A}(\eta_i),$$

$$\mathscr{A}_2(\gamma_i) = 0, \quad \mathscr{A}_2(\alpha_i) = \mathscr{A}(\alpha_i), \quad \mathscr{A}_2(\beta_i) = 0, \quad \mathscr{A}_2(\eta_i) = 0.$$

则易证 $V_1 \subseteq \text{Ker } \mathcal{A}_1, V_2 \subseteq \text{Ker } \mathcal{A}_2, \ \mathbb{L} \mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2.$

5. 设 \mathscr{A} , \mathscr{B} 为 n 维向量空间 V 的两个线性变换, 且 $\mathscr{A}^2 = \mathscr{A}$, $\mathscr{B}^2 = \mathscr{B}$. 证明:

- (1) $\operatorname{Im} \mathscr{A} = \operatorname{Im} \mathscr{B} \Leftrightarrow \mathscr{A} \mathscr{B} = \mathscr{B}, \mathscr{B} \mathscr{A} = \mathscr{A};$
- (2) $\operatorname{Ker} \mathscr{A} = \operatorname{Ker} \mathscr{B} \Leftrightarrow \mathscr{A} \mathscr{B} = \mathscr{A}, \mathscr{B} \mathscr{A} = \mathscr{B}.$

证明: (1) (\Rightarrow) 对任意的 $\alpha \in V$ 存在 $\beta \in V$, 使得 $\mathscr{A}(\alpha) = \mathscr{B}(\beta)$. 所以

$$\mathscr{A}(\alpha) = \mathscr{B}(\beta) = \mathscr{B}^2(\beta) = \mathscr{B}(\mathscr{B}(\beta)) = \mathscr{B}\mathscr{A}(\alpha).$$

即 $\mathscr{A} = \mathscr{B} \mathscr{A}$. 同理可证 $\mathscr{B} = \mathscr{A} \mathscr{B}$.

- (\Leftarrow) $\mathscr{B}(V)=\mathscr{AB}(V)\subseteq\mathscr{A}(V),$ $\mathscr{A}(V)=\mathscr{BA}(V)\subseteq\mathscr{B}(V),$ 所以 $\mathrm{Im}\,\mathscr{A}=\mathrm{Im}\,\mathscr{B}.$
 - (2) (\Rightarrow) 对任意的 $\alpha \in V$, 由于

$$\mathscr{B}[(\mathscr{B} - \mathscr{E})(\alpha)] = \mathscr{B}^2(\alpha) - \mathscr{B}(\alpha) = \mathscr{B}(\alpha) - \mathscr{B}(\alpha) = 0,$$

所以 $\mathscr{A}[(\mathscr{B}-\mathscr{E})(\alpha)]=0$. 于是 $\mathscr{AB}(\alpha)=\mathscr{A}(\alpha),\,\,\mathscr{AB}=\mathscr{A}.$ 同理可证 $\mathscr{BA}=\mathscr{B}.$

(⇐) 对任意的 $\alpha \in \operatorname{Ker} \mathcal{B}$ 有

$$\mathscr{A}(\alpha) = \mathscr{A}\mathscr{B}(\alpha) = \mathscr{A}(0) = 0,$$

所以 $\operatorname{Ker} \mathscr{B} \subseteq \operatorname{Ker} \mathscr{A}$. 同理可证 $\operatorname{Ker} \mathscr{A} \subseteq \operatorname{Ker} \mathscr{B}$. 因此 $\operatorname{Ker} \mathscr{A} = \operatorname{Ker} \mathscr{B}$.

第六章 线性空间与欧几里得空间

§1 线性空间及其同构

- 1. 按通常数的加法与乘法,下列集合是否构成实数域 ℝ 上的线性空间?
- (1) 整数集 \mathbb{Z} : (2) 有理数集 \mathbb{O} : (3) 实数集 \mathbb{R} : (4) 复数集 \mathbb{C} .

解: (1) 与 (2) 都不是实数域 \mathbb{R} 上的线性空间, 因为标量乘法不封闭. (3)和(4)都是 \mathbb{R} 上的线性空间.

2. 若 K 为复数域 \mathbb{C} , 问以实数为元素的一切 $n \times n$ 矩阵的集合对矩阵的 加法与标量乘法是否构成 K 上的线性空间? 为什么?

解: 否, 关于标量乘法不封闭.

- 3. 检验下列集合对于所给的运算是否构成实数域上的线性空间:
- (1) 全体实对称 (反称, 上三角形) 矩阵, 对于矩阵的加法与标量乘法;
- (2) 次数等于 n (n > 1) 的实系数多项式全体, 对于多项式的加法与乘法;
- (3) 平面上全体向量, 对于向量的加法与如下定义的标量乘法:

$$k\alpha = \alpha$$
:

(4) 全体正实数 ℝ+, 加法和标量乘法定义为:

$$a \oplus b = ab, \tag{6.1}$$

$$k \circ a = a^k. \tag{6.2}$$

解: (1) 是; (2) 否, 零多项式不在集合中; (3) 否, 因为 当 $\alpha \neq 0$ 时, $0\alpha \neq 0$; (4) 是.

4. 计算上题中所出现的线性空间的维数和基.

解: (1) 实对称: $\frac{n(n+1)}{2}$ 维, 基 $\{E_{ij} + E_{ji} \mid i \leq j\}$;

反称: $\frac{n(n-1)}{2}$ 维, 基 $\{E_{ij} - E_{ji} \mid i < j\}$;

上三角形: $\frac{n(n+1)}{2}$ 维, 基 $\{E_{ij} \mid i \leq j\}$.

- (4) 1 维, 任何不等于 1 的正实数都可作为基.
- 5. 证明: 全体以零为极限的实数列

$$S = \left\{ \{a_n\} = (a_1, a_2, a_3, \dots, a_n, \dots) \mid a_i \in \mathbb{R}, \lim_{n \to \infty} a_n = 0 \right\}$$

按如下定义的加法与标量乘法:

$${a_n} + {b_n} = {a_n + b_n};$$

 $k{a_n} = {ka_n}$

构成实数域 ℝ上的一个无限维线性空间.

证明: 验证线性空间略. 为说明它是无限维的, 对任意的正整数 n, 有一个收敛于 0 的数列: $\alpha_n = \{0, \dots, 0, 1($ 第 n 项 $), 0, 0, \dots \}$. 于是对于任意大的 n, 总有 n 个向量 $\alpha_1, \dots, \alpha_n$ 线性无关.

6. 设

$$P = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in \mathbb{C} \right\}.$$

- (1) 证明: P 按矩阵的加法与标量乘法构成实数域 \mathbb{R} 上的一个线性空间;
- (2) 求 P 的维数与基.

解: (1) 略. (2)
$$\dim_{\mathbb{R}} P = 4$$
, 基为: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} i \\ 0 \end{pmatrix}$.

7. 设 \mathbb{R} 为实数域在它自身上的线性空间, \mathbb{R}^+ 为第 3 题 (4) 中的向量空间. 作出同构映射以证明: \mathbb{R} 与 \mathbb{R}^+ 同构.

证明: 令

$$\varphi: \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$r \longmapsto 2^r$$

则(a) φ 是映射;

- (b) φ 是单的: 因为 $2^{r_1} = 2^{r_2} \iff r_1 = r_2$;
- (c) φ 是满的: 因为对任意的 $a\in\mathbb{R}^+,\ a=2^{\log_2 a}$. 而 $\log_2 a\in\mathbb{R},$ 于是 $\varphi(\log_2 a)=2^{\log_2 a}=a;$
 - (d) φ 保持运算:

$$\varphi(r_1 + r_2) = 2^{r_1 + r_2} = 2^{r_1} 2^{r_2} = 2^{r_1} \oplus 2^{r_2} = \varphi(r_1) \oplus \varphi(r_2);$$
$$\varphi(kr_1) = 2^{kr_1} = (2^{r_1})^k = k \circ 2^{r_1} = k \circ \varphi(r_1).$$

所以 φ 是同构.

*8. 设F为全体形如

$$(x_1, x_2, x_3, \cdots, x_n, \cdots), \qquad x_n = x_{n-1} + x_{n-2}, \quad n \ge 3$$

的实数列所组成的集合, 其加法与标量乘法的定义如第5题.

- (1) 证明: F 构成 \mathbb{R} 上的一个二维线性空间;
- (2) 给出 F 的一个由等比数列所组成的基;
- (3) 求斐波那契 (Fibonacci) 数列

$$(0, 1, 1, 2, 3, 5, 8, \cdots)$$

的通项公式.

证明: (1) F 为 \mathbb{R} 上线性空间的证明略. 下面求 F 的维数.

考察数列 $\alpha_1=(0,1,1,2,3,5,\cdots)$ 与 $\alpha_2=(1,1,2,3,5,\cdots)$,显然 $\alpha_1,\alpha_2\in F$.

- (a) 设 $k_1\alpha_1+k_2\alpha_2=0$, 则 $(k_2,k_1+k_2,k_1+2k_2,2k_1+3k_2,\cdots)=0$, 所 以 $k_2=0$, 从而 $k_1=0$. 这说明 α_1,α_2 线性无关.
 - (b) 对任意的

$$\beta = (a_1, a_2, a_3, \dots, a_n, \dots), \qquad a_n = a_{n-1} + a_{n-2}, \quad n \ge 3$$

考察

$$\gamma = (a_2 - a_1)\alpha_1 + a_1\alpha_2 - \beta \in F,$$

则 $\gamma = (0,0,x_3,x_4,\cdots)$. 因为 $\gamma \in F$, 所以 $x_3 = 0 + 0 = 0$, $x_4 = x_3 + 0 = 0$, 由归纳法可知 $\gamma = 0$. 这就证明了 $\beta = (a_2 - a_1)\alpha_1 + a_1\alpha_2$. 因此 α_1,α_2 构成 F 的基, dim F = 2.

(2) 设有等比数列

$$(a, aq, aq^2, \cdots) \in F$$
,

则对 $n \ge 2$ 有 $aq^n = aq^{n-1} + aq^{n-2}$,从而 $q^2 = q + 1$,得到 $q = \frac{1 \pm \sqrt{5}}{2}$. 易知

$$\eta_1 = \left(1, \frac{1+\sqrt{5}}{2}, \left(\frac{1+\sqrt{5}}{2}\right)^2, \cdots\right) \in F,$$

$$\eta_2 = \left(1, \frac{1-\sqrt{5}}{2}, \left(\frac{1-\sqrt{5}}{2}\right)^2, \cdots\right) \in F.$$

又 η_1, η_2 线性无关, 而 dim F = 2, 所以 η_1, η_2 构成 F 的基.

(3) 斐波那契数列

$$\varphi = (0, 1, 1, 2, 3, 5, 8, \cdots) \in F,$$

因此存在 $c_1, c_2 \in \mathbb{R}$, 使

$$\varphi = c_1 \eta_1 + c_2 \eta_2.$$

从而

$$\begin{cases} 0 = c_1 + c_2 \\ 1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2} \end{cases}$$

解得

$$c_1 = \frac{\sqrt{5}}{5}, \qquad c_2 = -\frac{\sqrt{5}}{5},$$

由此可得斐波那契数列得通项公式是

$$D_n = \frac{\sqrt{5}}{5} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n-1} \right].$$

*9. 所谓 n 阶**魔阵**, 是指其各行各列以及主对角和次对角元素之和都相等的 n 阶方阵, 如

$$\begin{pmatrix}
6 & 1 & 8 \\
7 & 5 & 3 \\
2 & 9 & 4
\end{pmatrix}$$

就是一个三阶魔阵.

- (1) 证明: 实数域上全体 n 阶魔阵的集合 M_n 按矩阵的加法与标量乘法构成 \mathbb{R} 上的一个线性空间;
 - (2) 求 M_3 的维数.

解: (2) 3 维, 基为:

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

§ 2 线性子空间的和与直和

1. 设 W_1 , W_2 是线性空间 V 的子空间, 证明以下三个论断是等价的:

(1) $W_1 \subseteq W_2$;

(2) $W_1 \cap W_2 = W_1$;

(3) $W_1 + W_2 = W_2$.

证明: $(1) \Leftrightarrow (2)$ 以及 $(1) \Rightarrow (3)$ 都是显然的.

- $(3) \Rightarrow (1)$: $W_1 + W_2 = W_2 \Rightarrow W_1 \subseteq W_1 + W_2 = W_2$.
- **2.** 求由向量 α_i 生成的子空间和由向量 β_i 生成的子空间的交与和的基与维数.

$$\begin{array}{ll}
(1) \begin{cases} \alpha_1 = (1, 3, 1, -1) \\ \alpha_2 = (1, 0, 1, 2); \end{cases} & \begin{cases} \beta_1 = (3, -1, -3, -5) \\ \beta_2 = (5, -2, -3, -4); \end{cases} \\
(2) \begin{cases} \alpha_1 = (1, 0, 1, 0) \\ \alpha_2 = (1, 1, 0, 1); \end{cases} & \begin{cases} \beta_1 = (0, 1, 0.1) \\ \beta_2 = (0, 1, 1, 0); \end{cases} \\
(3) \begin{cases} \alpha_1 = (1, 0, 2, 0,) \\ \alpha_2 = (2, 0, 1, 1) \\ \alpha_3 = (1, 0, -1, 1); \end{cases} & \begin{cases} \beta_1 = (3, 3, 1, -2) \\ \beta_2 = (1, 3, 0, -3). \end{cases}
\end{aligned}$$

解: 把由向量 α_i 生成的子空间和由向量 β_i 生成的子空间分别记为 W_1, W_2 .

(1) $\dim(W_1 + W_2) = 3$, $\dim W_1 \cap W_2 = 1$,

 $W_1 + W_2$ 的基: $\alpha_1, \alpha_2, \beta_1$,

$$W_1 \cap W_2$$
 的基: $(3, -2, 3, 8)$ $\left(= \frac{1}{3}(-2\alpha_1 + 11\alpha_2) = -4\beta_1 + 3\beta_2 \right)$;

(2) $\dim(W_1 + W_2) = 4$, $\dim W_1 \cap W_2 = 0$,

 $W_1 + W_2$ 的基: $\alpha_1, \alpha_2, \beta_1, \beta_2$;

(3) $\dim(W_1 + W_2) = 3$, $\dim W_1 \cap W_2 = 1$,

 $W_1 + W_2$ 的基: $\alpha_1, \alpha_2, \beta_1$,

 $W_1 \cap W_2$ 的基: $(2,0,1,1) (= \alpha_2 = \beta_1 - \beta_2)$.

3. 设 W, W_1 , W_2 都是向量空间 V 的子空间, 且

$$W_1 \subseteq W_2$$
, $W \cap W_1 = W \cap W_2$, $W + W_1 = W + W_2$.

证明: $W_1 = W_2$.

证明: $\dim W + \dim W_1 = \dim(W + W_1) + \dim(W \cap W_1)$, $\dim W + \dim W_2 = \dim(W + W_2) + \dim(W \cap W_2)$,

所以上式右端相等. 可得 $\dim W_1 = \dim W_2$. 又因 $W_1 \subseteq W_2$, 所以 $W_1 = W_2$.

4. 设 V_1 , V_2 是 n 维线性空间 V 的两个子空间, 并且满足

$$\dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1,$$

证明: $V_1 \subseteq V_2$ 或 $V_2 \subseteq V_1$.

证明: 因为 $\dim(V_1 \cap V_2) \leq \dim V_1 \leq \dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1$, 两个等号中必有一个成立. 如果左边等号成立,则因 $V_1 \cap V_2 \subseteq V_1$,可得 $V_1 \cap V_2 = V_1$,从而 $V_1 \subseteq V_2$.如果右边等号成立,则因 $V_1 \subseteq V_1 + V_2$,可得 $V_1 = V_1 + V_2$,从而 $V_2 \subseteq V_1$.

5. 设 $V = K^4$, $\alpha_1 = (1, 2, 1, 2)$, $\alpha_2 = (2, 1, 2, 1)$, $W = L(\alpha_1, \alpha_2)$. 求子空间 W 在 V 中的一个补空间.

解: 设 $\alpha_3 = (0,0,1,0)$, $\alpha_4 = (0,0,0,1)$, 则因 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关, 所以 L((0,0,1,0),(0,0,0,1)) 是 W 在 V 中的一个补空间.

6. 证明: 每一个 n 维线性空间都是 n 个一维子空间的直和.

证明: 设 V 为 n 维线性空间, $\alpha_1, \dots, \alpha_n$ 是 V 的基. 令 $W_i = L(\alpha_i)$, 则 $V = W_1 + W_2 + \dots + W_n$. 又, $n = \dim V = \sum_{i=1}^n \dim W_i$, 所以

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_n$$
.

7. 证明: n 维线性空间 V 的每一个真子空间都是若干个 n-1 维子空间的交.

证明: 设 W 是 V 的真子空间, 则 $r=\dim W<\dim V=n$. 取 W 的一个 基 α_1,\cdots,α_r , 将其扩充成 V 的基 α_1,\cdots,α_n . 取如下的 n-r 个 n-1 维线性子空间

$$V_j = L(\alpha_1, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_n), \quad j = r+1, \dots, n.$$

则因

$$\beta = \sum_{i=1}^{n} a_i \alpha_i \in V_j \iff a_j = 0,$$

$$\beta = \sum_{i=1}^{n} a_i \alpha_i \in \bigcap_{j=r+1}^{n} V_j \iff a_{r+1} = \dots = a_n = 0 \iff \beta \in W.$$

8. 设 V_1 与 V_2 分别是齐次线性方程组

$$x_1 + x_2 + \dots + x_n = 0$$
 $= x_1 = x_2 = \dots = x_n$

的解空间.

证明: $K^n = V_1 \oplus V_2$.

证明: (a) 对任意的 $\alpha = (a_1, \dots, a_n) \in K^n$, 令

$$\beta = \left(a_1 - \frac{1}{n} \sum_{i=1}^n a_i, a_2 - \frac{1}{n} \sum_{i=1}^n a_i, \dots, a_n - \frac{1}{n} \sum_{i=1}^n a_i \right),$$

$$\gamma = \left(\frac{1}{n} \sum_{i=1}^n a_i, \frac{1}{n} \sum_{i=1}^n a_i, \dots, \frac{1}{n} \sum_{i=1}^n a_i \right),$$

则 $\beta \in V_1$, $\gamma \in V_2$, 且 $\alpha = \beta + \gamma$. 所以 $K^n = V_1 + V_2$.

(b) 如果 $\alpha = (a_1, \dots, a_n) \in V_1 \cap V_2$, 则

$$\sum_{i=1}^{n} a_i = 0, \qquad a_1 = a_2 = \dots = a_n$$

解得 $a_1 = a_2 = \cdots = a_n = 0$, 即 $\alpha = 0$. 所以 $V_1 \cap V_2 = 0$.

综上可得 $K^n = V_1 \oplus V_2$.

证明: $M_n(K) = W_1 \oplus W_2$.

证明: (a) 对任意的 n 阶矩阵 $A \in M_n(K)$, 有

$$A = \frac{1}{2}(A + A^{\mathrm{T}}) + \frac{1}{2}(A - A^{\mathrm{T}}),$$

而 $\frac{1}{2}(A+A^{\mathrm{T}}) \in W_1$, $\frac{1}{2}(A-A^{\mathrm{T}}) \in W_2$, 所以 $M_n(K) = W_1 + W_2$. (b) 设 $A \in W_1 \cap W_2$, 则

$$-A = A^{\mathrm{T}} = A,$$

由 2A = 0 可得 A = 0. 所以 $W_1 \cap W_2 = 0$.

最终得到 $M_n(K) = W_1 \oplus W_2$.

10. 设 $A \in M_n(K)$ 且 $A^2 = A$, 令

$$V_1 = \{X \in K^n \mid AX = 0\}, \quad V_2 = \{X \in K^n \mid AX = X\}.$$

证明: $K^n = V_1 \oplus V_2$.

证明: (a) 设 $\alpha \in K^n$, 则 $\alpha = (\alpha - A\alpha) + A\alpha$. 而

$$A(\alpha - A\alpha) = A\alpha - A^2\alpha = A\alpha - A\alpha = 0$$
, MU $\alpha - A\alpha \in V_1$,

$$A(A\alpha) = A^2\alpha = A\alpha$$
, 所以 $A\alpha \in V_2$,

从而 $K^n = V_1 + V_2$.

(b) 设 $\alpha \in V_1 \cap V_2$, 则因 $\alpha \in V_1$, 有 $A\alpha = 0$, 由 $\alpha \in V_2$, 有 $A\alpha = \alpha$. 于 是 $\alpha = 0$, 即 $V_1 \cap V_2 = 0$.

因此 $K^n = V_1 \oplus V_2$.

***11.** 设 $K^n = V_1 \oplus V_2$, 其中 V_1 , V_2 为 K^n 的两个非平凡的子空间.

证明: 一定存在唯一的幂等矩阵 (即 $A^2 = A$ 的矩阵) $A \in M_n(K)$, 使

$$V_1 = \{X \in K^n \mid AX = 0\}, \quad V_2 = \{X \in K^n \mid AX = X\}.$$

证明: 取 V_1 的一个基 $\alpha_1, \dots, \alpha_r$ 以及 V_2 的一个基 $\alpha_{r+1}, \dots, \alpha_n$. 则 $\alpha_1, \dots, \alpha_n$ 是 K^n 的基. 定义 K^n 上的线性变换 \mathscr{A} 为:

$$\mathscr{A}(\alpha_i) = \begin{cases} 0, & 1 \le i \le r \\ \alpha_i, & r+1 \le i \le n \end{cases}$$

把线性变换 \mathscr{A} 在 K^n 的自然基下的矩阵记为 A. 由 \mathscr{A} 的定义可得 $\mathscr{A}^2 = \mathscr{A}$,相应地有 $A^2 = A$.

对任意的
$$X \in K^n$$
, 有 $X = \sum_{i=1}^n a_i \alpha_i$. 则

$$AX = \mathscr{A}\left(\sum_{i=1}^{n} a_i \alpha_i\right) = \sum_{i=1}^{n} a_i \mathscr{A}(\alpha_i) = \sum_{i=r+1}^{n} a_i \alpha_i.$$

因此

$$AX = 0 \iff \sum_{i=r+1}^{n} a_i \alpha_i = 0 \iff a_i = 0 \forall r+1 \le i \le n \iff X \in V_1,$$

$$AX = X \iff \sum_{i=r+1}^n a_i \alpha_i = \sum_{i=1}^n a_i \alpha_i \iff a_i = 0 \forall 1 \leq i \leq r \iff X \in V_2.$$

所以 A 是满足条件的幂等矩阵.

再证唯一性: 如果 $B \in M_n(K)$, 使得

$$BX = 0 \quad \forall X \in V_1, \qquad BX = X \quad \forall X \in V_2,$$

则因 $K^n = V_1 \oplus V_2$, 可得

$$(A-B)X = 0, \quad \forall X \in K^n.$$

所以 A - B = 0, 从而 A = B.

*12. 设 $A \in M_n(K)$, E 为 n 阶单位方阵. 令

$$V_1 = \{X \in K^n \mid (A - E)X = 0\}, V_2 = \{X \in K^n \mid (A + E)X = 0\}.$$

证明: $K^n = V_1 \oplus V_2 \iff A^2 = E$.

证明: (⇒) $K^n = V_1 \oplus V_2 \implies n = \dim V_1 + \dim V_2 \implies n = (n - \operatorname{rank}(A - E)) + (n - \operatorname{rank}(A + E)) \implies n = \operatorname{rank}(A - E) + \operatorname{rank}(A + E) \implies A^2 = E$ (习题 5–8.12).

(⇐) 对任意的 $\alpha \in K^n$,

$$\alpha = \frac{1}{2}(A+E)\alpha - \frac{1}{2}(A-E)\alpha.$$

因为

$$(A - E) \left[\frac{1}{2} (A + E) \alpha \right] = \frac{1}{2} (A^2 - E) \alpha = 0,$$

所以 $\frac{1}{2}(A+E)\alpha \in V_1$. 又因

$$(A+E)\left[-\frac{1}{2}(A-E)\alpha\right] = -\frac{1}{2}(A^2-E)\alpha = 0,$$

所以 $-\frac{1}{2}(A-E)\alpha \in V_2$.

因此 $K^n = V_1 + V_2$.

当 $\alpha \in V_1 \cap V_2$ 时又有

$$\alpha = \frac{1}{2}(A+E)\alpha - \frac{1}{2}(A-E)\alpha = 0 + 0 = 0,$$

因此 $V_1 \cap V_2 = 0$. 从而 $K^n = V_1 \oplus V_2$.

§ 3 欧几里得空间

1. 在线性空间 \mathbb{R}^2 中, 对任意两个向量 $\alpha = (a_1, a_2), \beta = (b_1, b_2), 定义$

$$(\alpha, \beta) = 5a_1b_1 + 2a_1b_2 + 2a_2b_1 + a_2b_2.$$

§ 3 欧几里得空间 · 155 · .

验证在此定义下 №2 构成一个欧几里得空间.

证明: 略.

2. 在线性空间 $M_n(\mathbb{R})$ 中, 定义

$$f(A, B) = \operatorname{Tr}(A^{\mathrm{T}}B) \quad \forall A, B \in M_n(\mathbb{R}).$$

(说明: 方阵 A 的迹 Tr(A) 就是方阵的对角线元素之和) 试问: f 是否 $M_n(\mathbb{R})$ 的一个内积?

解: 是. 设 $A = (a_{ij}), B = (b_{ij}), 则$

(a)
$$f(A, B) = \text{Tr}(A^{T}B) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ki} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ki} = f(B, A).$$

(b) $f(A + B, C) = \text{Tr}((A + B)^{T}C) = \text{Tr}(A^{T}C + B^{T}C) = \text{Tr}(A^{T}C) + B^{T}C$

- (b) $f(A+B,C) = \text{Tr}((A+B)^{\mathrm{T}}C) = \text{Tr}(A^{\mathrm{T}}C+B^{\mathrm{T}}C) = \text{Tr}(A^{\mathrm{T}}C) + \text{Tr}(B^{\mathrm{T}}C) = f(A,C) + f(B,C).$
 - (c) $f(kA, B) = \text{Tr}((kA)^T B) = \text{Tr}(kA^T B) = k \text{Tr}(A^T B) = k f(A, B).$

(d)
$$f(A, A) = \text{Tr}(A^{T}A) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ki}^{2} \ge 0$$
, $\exists A = 1$

$$f(A, A) = 0 \iff a_{ki} = 0, \quad k, i = 1, \dots, n \iff A = 0.$$

所以 $f \in M_n(\mathbb{R})$ 的一个内积.

3. 设

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{pmatrix}.$$

规定

$$(X,Y) = X^{\mathrm{T}}AY \quad \forall X, Y \in \mathbb{R}^n.$$

- (1) 证明: \mathbb{R}^n 关于此定义构成一个欧几里得空间;
- (2) 求向量 ε_1 =(1,0,···,0), ε_2 =(0,1,0,···,0),···, ε_n =(0,0,···,0,1) 的度量矩阵.
 - (3) 具体写出这个空间的柯西-布涅柯夫斯基不等式.

解: (1) 略.

- (2) 度量矩阵为 A.
- (3) 设 $\alpha = (a_1, \dots, a_n), \beta = (b_1, \dots, b_n), 则$

$$\left| \sum_{k=1}^{n} k a_k b_k \right| \le \sqrt{\sum_{k=1}^{n} k a_k^2} \times \sqrt{\sum_{k=1}^{n} k b_k^2}.$$

4. 设 C 是一个 n 阶实可逆矩阵. 在 \mathbb{R}^n 中, 对任意两个列向量 X, Y, 规 定

$$(X,Y) = X^{\mathrm{T}}C^{\mathrm{T}}CY$$

证明: \mathbb{R}^n 关于此定义构成一个欧几里得空间.

证明: 略.

5. 在标准欧几里得空间内计算给定向量的内积, 并求它们之间的夹角:

(1)
$$\alpha = (1, 1, 1, 1), \beta = (-1, 2, 4, 3);$$

(2)
$$\alpha = \left(\frac{1}{2}, -1, \frac{1}{3}, \frac{1}{6}\right), \beta = (3, -1, 2, 2);$$

(3)
$$\alpha = (3, -1, 1, -1), \beta = (-2, 2, -2, 2);$$

(4)
$$\alpha = (-1, 1, -1, 2, 1), \beta = (3, 1, -1, 0, 1).$$

解: (1)
$$(\alpha, \beta) = 8$$
, $\langle \alpha, \beta \rangle = \arccos \frac{2\sqrt{30}}{15}$.

(2)
$$(\alpha, \beta) = \frac{7}{2}, \langle \alpha, \beta \rangle = \arccos \frac{7}{10}.$$

(3)
$$(\alpha, \beta) = -12, \langle \alpha, \beta \rangle = \frac{5\pi}{6}.$$

(4)
$$(\alpha, \beta) = 0, \langle \alpha, \beta \rangle = \frac{\pi}{2}.$$

6. 设 $x^2 + y^2 + z^2 = 1$, $(x, y, z \in \mathbb{R})$, 试利用柯西–布涅柯夫斯基不等式求

$$\frac{x^2}{1-x^2} + \frac{y^2}{1-y^2} + \frac{z^2}{1-z^2}$$

的最小值.

解: 原式 = $-3 + \frac{1}{1-x^2} + \frac{1}{1-y^2} + \frac{1}{1-z^2}$. 而由柯西–布涅柯夫斯基不等式,

$$\sqrt{\left(\frac{1}{\sqrt{1-x^2}}\right)^2 + \left(\frac{1}{\sqrt{1-y^2}}\right)^2 + \left(\frac{1}{\sqrt{1-z^2}}\right)^2} \cdot \sqrt{(\sqrt{1-x^2})^2 + (\sqrt{1-y^2})^2 + (\sqrt{1-y^2})^2} \\
\ge \left(\frac{1}{\sqrt{1-x^2}}, \frac{1}{\sqrt{1-y^2}}, \frac{1}{\sqrt{1-z^2}}\right) \begin{pmatrix} \sqrt{1-x^2} \\ \sqrt{1-y^2} \\ \sqrt{1-y^2} \end{pmatrix} = 3,$$

即

$$\sqrt{\frac{1}{1-x^2} + \frac{1}{1-y^2} + \frac{1}{1-z^2}} \cdot \sqrt{2} \ge 3,$$

§3 欧几里得空间 \cdot 157 \cdot

所以

$$\frac{1}{1-x^2} + \frac{1}{1-y^2} + \frac{1}{1-z^2} \ge \frac{9}{2}.$$

$$\frac{x^2}{1-x^2} + \frac{y^2}{1-y^2} + \frac{z^2}{1-z^2} \ge -3 + \frac{9}{2} = \frac{3}{2}.$$

又当 $x=y=z=\frac{\sqrt{3}}{3}$ 时上式取等号. 故原式的最小值为 $\frac{3}{2}$. **7.** 设 $a,b,c,x,y,z\in\mathbb{R}$,若 $a^2+b^2+c^2=25,$ $x^2+y^2+z^2=36,$ ax+by+cz=30. 试利用柯西-布涅柯夫斯基不等式求 $\frac{a+b+c}{x+y+z}$ 的值.

解: 由柯西-布涅柯夫斯基不等式,

$$30 = ax + by + cz = (a \ b \ c) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\leq \sqrt{a^2 + b^2 + c^2} \cdot \sqrt{x^2 + y^2 + z^2} = 30.$$

因等号成立时, (a,b,c) 与 (x,y,z) 成比例. 设 (a,b,c)=t(x,y,z), 代入得

$$30 = t(x^2 + y^2 + z^2) = 36t,$$

解出 $t = \frac{5}{6}$. 从而 $\frac{a+b+c}{x+y+z} = \frac{5}{6}$.

8. 在标准欧几里得空间 \mathbb{R}^3 中, 求基 $\alpha_1 = (1,0,1), \; \alpha_2 = (1,1,0), \; \alpha_3 = (1,0,1), \; \alpha_3 = (1,0,1), \; \alpha_4 = (1,0,1), \; \alpha_5 = (1,0,1), \; \alpha_6 = (1,0,1), \; \alpha_{10} =$ (0,1,1) 的度量矩阵.

$$\mathbf{m}: A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

9. 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是三维欧几里得空间 V 的一个规范正交基. 证明: $\alpha_1 = \frac{1}{3}(2\varepsilon_1 + 2\varepsilon_2 - \varepsilon_3), \ \alpha_2 = \frac{1}{3}(2\varepsilon_1 - \varepsilon_2 + 2\varepsilon_3), \ \alpha_3 = \frac{1}{3}(\varepsilon_1 - 2\varepsilon_2 - \varepsilon_3)$ $2\varepsilon_3$) 也是 V 的一个规范正交

证明: 直接验证可知, $\alpha_1, \alpha_2, \alpha_3$ 都是单位向量, 且两两正交. 故它们是 V的单位正交向量组. 又因 $\dim V = 3$, 它们构成 V 的规范正交基.

10. 将标准欧几里得空间 \mathbb{R}^4 的基 α_1 =(1,1,0,0), α_2 =(1,0,1,0), α_3 = (-1,0,0,1), $\alpha_4 = (1,1,1,-1)$ 化为规范正交基.

解:
$$\frac{\sqrt{2}}{2}(1,1,0,0), \frac{\sqrt{6}}{6}(1,-1,2,0), \frac{\sqrt{3}}{6}(-1,1,1,3), \frac{1}{2}(-1,1,1,-1).$$

$$\begin{cases} x_1 - x_2 + x_3 + 3x_4 - x_5 = 0 \\ x_1 + 2x_2 - x_3 + 2x_5 = 0 \end{cases}$$

的解空间 (作为标准欧几里得空间 № 的子空间) 的一个规范正交基.

解: 该齐次线性方程组的一个基础解系为

$$\alpha_1 = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

正交化得:

$$\begin{pmatrix} -1 \\ 2 \\ 3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{12}{7} \\ \frac{3}{7} \\ -\frac{6}{7} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{5}{17} \\ -\frac{23}{34} \\ \frac{6}{17} \\ \frac{3}{34} \\ 1 \end{pmatrix}.$$

单位化后得规范正交基:

$$\frac{\sqrt{14}}{14}(-1,2,3,0,0), \frac{\sqrt{238}}{238}(-12,3,-6,7,0), \frac{\sqrt{1938}}{1938}(-10,-23,12,3,34).$$

12. 证明: 在欧几里得空间 V 中, 基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是规范正交基的充分必要条件是: 对 V 的任意向量 $\alpha = a_1\varepsilon_1 + a_2\varepsilon_2 + \cdots + a_n\varepsilon_n$, 总有

$$(\alpha, \varepsilon_i) = a_i \qquad (i = 1, 2, \cdots, n).$$

证明: (\Rightarrow) 如 $\varepsilon_1, \dots, \varepsilon_n$ 是规范正交基, 则对任意的 $\alpha = \sum a_i \varepsilon_i$, 有

$$(\alpha, \varepsilon_i) = \left(\sum_{j=1}^n a_j \varepsilon_j, \varepsilon_i\right) = \sum_{j=1}^n a_j(\varepsilon_j, \varepsilon_i) = a_i.$$

(\Leftarrow) 如对任意的 $\alpha = \sum a_i \varepsilon_i$, 有

$$(\alpha, \varepsilon_i) = a_i,$$

则 $\varepsilon_j = \sum_{k=1}^n a_k \varepsilon_k$, 其中 $a_k = \delta_{kj}$. 因此

$$(\varepsilon_j, \varepsilon_i) = a_i = \delta_{ij}.$$

从而 $\varepsilon_1, \dots, \varepsilon_n$ 是规范正交基.

§ 3 欧几里得空间 · 159 · .

13. 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是欧几里得空间 V 的 m 个向量, 称矩阵

$$G(\alpha_1, \alpha_2, \cdots, \alpha_m) = \begin{pmatrix} (\alpha_1, \alpha_1) & (\alpha_1, \alpha_2) & \cdots & (\alpha_1, \alpha_m) \\ (\alpha_2, \alpha_1) & (\alpha_2, \alpha_2) & \cdots & (\alpha_2, \alpha_m) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\alpha_m, \alpha_1) & (\alpha_m, \alpha_2) & \cdots & (\alpha_m, \alpha_m) \end{pmatrix}$$

为向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的格拉姆 (Gram) 矩阵.

证明: $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关当且仅当 $|G(\alpha_1, \alpha_2, \cdots, \alpha_m)| \neq 0$.

证明: 设有线性关系式

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_m\alpha_m = 0.$$

把这个等式分别与 $\alpha_1, \dots, \alpha_m$ 作内积, 可以得到变量 x_1, \dots, x_m 的一个齐次 线性方程组:

$$\begin{cases} (\alpha_1, \alpha_1)x_1 + (\alpha_1, \alpha_2)x_2 + \dots + (\alpha_1, \alpha_m)x_m = 0 \\ (\alpha_2, \alpha_1)x_1 + (\alpha_2, \alpha_2)x_2 + \dots + (\alpha_2, \alpha_m)x_m = 0 \\ \dots \\ (\alpha_m, \alpha_1)x_1 + (\alpha_m, \alpha_2)x_2 + \dots + (\alpha_m, \alpha_m)x_m = 0 \end{cases}$$

其系数矩阵就是格拉姆矩阵 $G(\alpha_1, \dots, \alpha_m)$. 再利用齐次线性方程组有非零解的充分必要条件可得:

$$|G(\alpha_1, \alpha_2, \dots, \alpha_m)| \neq 0 \iff$$
 齐次线性方程组只有零解 $x_1 = \dots = x_m = 0$
 $\iff \alpha_1, \dots, \alpha_m$ 线性无关.

14. 通过对图中平面内正方形以及几何空间内立方体的观察, 归纳出它们的顶点坐标的特征, 从而推导出 n 维空间的立方体的顶点个数公式. 再计算 4 维空间中的立方体有多少个 3 维的侧面, 多少个 2 维的侧面与 1 维的棱? 这个 4 维立方体有多少种不同长度的对角线? 试求它们的长度以及与棱的夹角. 你能否把这些结果推广到 n 维空间的情形?

第 14 题图

 \mathbf{m} : n 维空间的立方体中, m 维子立方体有 $2^{n-m}C_n^m$ 个.

当 m=0 时为顶点个数 = 2^n ;

当 m = 1 时为棱数 = $2^{n-1}n$:

当 m=2 时为面数 = $2^{n-3}n(n-1)$; ...

其不同长度的对角线有 n-1 种, 长度分别为 $\sqrt{2},\sqrt{3},\cdots,\sqrt{n}$.

长度为 \sqrt{k} 的对角线与棱的夹角为 $\frac{\pi}{2}$ 或 $\arccos \frac{1}{\sqrt{k}}$.

§ 4 欧几里得空间中的正交补空间与正交投影

- **1.** 在标准欧几里得空间 \mathbb{R}^4 中, 求向量 β 在由向量 α_1 , α_2 , α_3 生成的子空间 W 上的正交投影. 设
- (1) $\alpha_1=(2,2,-3,1), \ \alpha_2=(-2,1,-2,3), \ \alpha_3=(1,2,-3,2), \ \beta=(1,1,-2,1);$
- (2) $\alpha_1 = (-1, 2, -1, 1), \ \alpha_2 = (2, -1, 1, 0), \ \alpha_3 = (0, 1, -1, 2), \ \beta = (1, 2, -1, 0).$

解: (1) 设 $\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + \beta_2$, 其中 $\beta_2 = \beta - x_1\alpha_1 - x_2\alpha_2 - x_3\alpha_3 \in W^{\perp}$. 由等式 $(\beta_2, \alpha_i) = 0$, i = 1, 2, 3, 可以导出以下齐次线性方程组:

$$\begin{cases} 18x_1 + 7x_2 + 17x_3 = 11 \\ 7x_1 + 18x_2 + 12x_3 = 6 \\ 17x_1 + 12x_2 + 18x_3 = 11 \end{cases}$$

解得 $(x_1, x_2, x_3) = \left(\frac{1}{2}, \frac{1}{12}, \frac{1}{12}\right)$, 因此 β 在 W 上的正交投影为:

$$\frac{1}{2}\alpha_1 + \frac{1}{12}\alpha_2 + \frac{1}{12}\alpha_3 = \left(\frac{11}{12}, \frac{5}{4}, -\frac{23}{12}, \frac{11}{12}\right).$$

(2)
$$\left(\frac{1}{2}, 2, 0, \frac{1}{2}\right)$$
.

2. 设 $A \in M_n(\mathbb{R})$, $B \in \mathbb{R}^n$. 证明: 实系数线性方程组 AX = B 有解的充分必要条件是 B 与方程组 $A^TX = 0$ 的解空间正交.

证明: (⇒) 若 AX = B 有解, 则有 $C = (c_1 \ c_2 \ \cdots \ c_n)^T$ 使得 B = AC. 于是对 $A^TX = 0$ 的任意解 $D = (d_1 \ d_2 \ \cdots \ d_n)^T$, 有

$$D^{\mathrm{T}}B = D^{\mathrm{T}}AC = (A^{\mathrm{T}}D)^{\mathrm{T}}C = 0,$$

所以 $B 与 A^{T}X = 0$ 的解空间正交.

- (秦) 设 $A^{\mathrm{T}}X=0$ 的解空间为 W_1 , A 的列向量组张成的子空间为 W_2 . 则 $W_1 \perp W_2$. 又因 $\dim W_1=n-\mathrm{rank}\,A=n-\dim W_2$, 所以 $V=W_1\oplus W_2$. 从 而 $W_2=W_1^{\perp}$. 已知 $B\perp W_1$, 可得 $B\in W_2$, 即 B 可由 A 的列向量组线性表示,于是存在 $C\in\mathbb{R}^n$ 使得 B=AC.
- **3.** 设 V_1 , V_2 是欧几里得空间 V 的两个子空间, 且 V_1 的维数小于 V_2 的维数. 证明: V_2 中必有一非零向量正交于 V_1 中所有向量.

证明: 由命题 6.2, $V = V_1 \oplus V_1^{\perp}$, $\dim V_1^{\perp} = n - \dim V_1$.

$$\dim(V_2 \cap V_1^{\perp}) = \dim V_2 + \dim V_1^{\perp} - \dim(V_2 + V_1^{\perp})$$

$$\geq n - \dim V_1 + \dim V_2 - n$$

$$= \dim V_2 - \dim V_1 > 1.$$

所以 $V_2 \cap V_1^{\perp} \neq 0$, 存在非零向量 $\alpha \in V_2 \cap V_1^{\perp}$, 即 $\alpha \in V_2$, $\alpha \perp V_1$.

4. 设 U 为 n 维欧几里得空间 V 的子空间. 证明: $(U^{\perp})^{\perp} = U$.

证明: 因为 U 的向量都与 U^{\perp} 正交, 因此 $U \subseteq (U^{\perp})^{\perp}$. 又因

$$\dim(U^{\perp})^{\perp} = n - \dim U^{\perp} = n - (n - \dim U) = \dim U,$$

因此 $U = (U^{\perp})^{\perp}$.

- **5.** 设 V_1 , V_2 为 n 维欧几里得空间 V 的两个子空间, 证明:
- (1) $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$;
- (2) $(V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}$.

证明: (1) 若 $\alpha \in (V_1 + V_2)^{\perp}$, 则 $\alpha \perp V_1$ 且 $\alpha \perp V_2$, 从而 $\alpha \in V_1^{\perp} \cap V_2^{\perp}$. 所以 $(V_1 + V_2)^{\perp} \subseteq V_1^{\perp} \cap V_2^{\perp}$.

如果 $\alpha \in V_1^{\perp} \cap V_2^{\perp}$,则 $\alpha \perp V_1$ 且 $\alpha \perp V_2$, $\alpha \perp V_1 + V_2$,所以 $\alpha \in (V_1 + V_2)^{\perp}$. 这说明 $V_1^{\perp} \cap V_2^{\perp} \subseteq (V_1 + V_2)^{\perp}$.

综上即有 $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$.

$$(2) (V_1 \cap V_2)^{\perp} = \left[(V_1^{\perp})^{\perp} \cap (V_2^{\perp})^{\perp} \right]^{\perp} = \left[\left(V_1^{\perp} + V_2^{\perp} \right)^{\perp} \right]^{\perp} = V_1^{\perp} + V_2^{\perp}.$$

*6. 设 W 为欧几里得空间 V 的子空间, α 是 V 的一个向量. 定义 α 到 W 的距离

$$d(\alpha, W) = |\alpha - \alpha'|,$$

其中, α' 为 α 在 W 上的正交投影.

证明: 如果 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 为 W 的基, 则

$$d(\alpha, W) = \sqrt{\frac{|G(\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha)|}{|G(\alpha_1, \alpha_2, \cdots, \alpha_m)|}}.$$

这里的 $G(\cdots)$ 是向量组的格拉姆矩阵 (见习题 6-3.13).

证明: 设
$$\alpha' = \sum_{i=1}^m x_i \alpha_i$$
. 从

$$(\alpha - \alpha', \alpha_j) = \left(\alpha - \sum_{i=1}^m x_i \alpha_i, \alpha_j\right) = 0, \quad j = 1, \dots, m,$$

可得

$$\begin{pmatrix} (\alpha, \alpha_1) \\ \vdots \\ (\alpha, \alpha_m) \end{pmatrix} = G(\alpha_1, \cdots, \alpha_m) \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix},$$

由于 $\alpha_1, \dots, \alpha_m$ 线性无关,所以 $G = G(\alpha_1, \dots, \alpha_m)$ 可逆 (参见练习 5–3.10). 因此

$$\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = G^{-1} \begin{pmatrix} (\alpha, \alpha_1) \\ \vdots \\ (\alpha, \alpha_m) \end{pmatrix}.$$

$$\alpha' = (\alpha_1 \cdots \alpha_m) \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = (\alpha_1 \cdots \alpha_m) G^{-1} \begin{pmatrix} (\alpha, \alpha_1) \\ \vdots \\ (\alpha, \alpha_m) \end{pmatrix}.$$

所以

$$d(\alpha, W)^{2} = (\alpha - \alpha', \alpha - \alpha')$$

$$= \begin{pmatrix} \alpha - (\alpha_{1} \cdots \alpha_{m})G^{-1} & (\alpha, \alpha_{1}) \\ \vdots \\ (\alpha, \alpha_{m}) \end{pmatrix}, \alpha - (\alpha_{1} \cdots \alpha_{m})G^{-1} & \vdots \\ (\alpha, \alpha_{m}) \end{pmatrix}$$

$$= (\alpha, \alpha) - 2((\alpha, \alpha_{1}) \cdots (\alpha, \alpha_{m}))G^{-1} \begin{pmatrix} (\alpha, \alpha_{1}) \\ \vdots \\ (\alpha, \alpha_{m}) \end{pmatrix}$$

$$+ ((\alpha, \alpha_{1}) \cdots (\alpha, \alpha_{m}))G^{-T}GG^{-1} \begin{pmatrix} (\alpha, \alpha_{1}) \\ \vdots \\ (\alpha, \alpha_{m}) \end{pmatrix}$$

$$= (\alpha, \alpha) - ((\alpha, \alpha_{1}) \cdots (\alpha, \alpha_{m}))G^{-1} \begin{pmatrix} (\alpha, \alpha_{1}) \\ \vdots \\ (\alpha, \alpha_{m}) \end{pmatrix}$$

$$= \frac{1}{|G|} \left[(\alpha, \alpha)|G| - ((\alpha, \alpha_1) \cdots (\alpha, \alpha_m))G^* \begin{pmatrix} (\alpha, \alpha_1) \\ \vdots \\ (\alpha, \alpha_m) \end{pmatrix} \right]$$

$$= \frac{1}{|G|} \begin{vmatrix} (\alpha_1, \alpha_1) & \cdots & (\alpha_1, \alpha_m) & (\alpha_1, \alpha) \\ (\alpha_2, \alpha_1) & \cdots & (\alpha_2, \alpha_m) & (\alpha_2, \alpha) \\ \vdots & \ddots & \vdots & \vdots \\ (\alpha, \alpha_1) & \cdots & (\alpha, \alpha_m) & (\alpha, \alpha) \end{vmatrix}$$

$$= \frac{|G(\alpha_1, \dots, \alpha_m, \alpha)|}{|G|}.$$

$$\therefore d(\alpha, W) = \sqrt{\frac{|G(\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha)|}{|G(\alpha_1, \alpha_2, \cdots, \alpha_m)|}}.$$

7. 设 V_1, V_2 为欧几里得空间 V 的两个子空间, $x,y \in V$. 线性流形 $L_1 = x + V_1, L_2 = y + V_2$ 之间的距离定义为

$$d(L_1, L_2) = \min |\alpha - \beta|, \quad \forall \alpha \in L_1, \ \beta \in L_2.$$

证明: $d(L_1, L_2) = d(x - y, V_1 + V_2)$.

证明: 由 $V = (V_1 + V_2) \oplus (V_1 + V_2)^{\perp}$, 可得 $x - y = \beta_1 - \alpha_1 + \delta$, 其中 $\alpha_1 \in V_1$, $\beta_1 \in V_2$, $\delta \in (V_1 + V_2)^{\perp}$. 于是

$$d(x - y, V_1 + V_2) = |\delta| = |(x + \alpha_1) - (y + \beta_1)| \ge d(L_1, L_2).$$

反之, 对任意的 $\alpha = x + \alpha_1 \in L_1$, $\beta = y + \beta_1 \in L_2$, 令

$$\alpha - \beta = (x - y) + (\alpha_1 - \beta_1) = \gamma + \delta,$$

其中 $\gamma \in V_1 + V_2$, $\delta \in (V_1 + V_2)^{\perp}$. 则

$$x - y = (\gamma - \alpha_1 + \beta_1) + \delta.$$

于是

$$|\alpha - \beta|^2 = |\gamma + \delta|^2 = |\gamma|^2 + |\delta|^2 \ge |\delta|^2 = d(x - y, V_1 + V_2)^2.$$

$$(其中 |\gamma + \delta|^2 = |\gamma|^2 + |\delta|^2$$
 是因为 $\gamma \perp \delta$.) 所以

$$d(L_1, L_2) = \min |\alpha - \beta| \ge d(x - y, V_1 + V_2).$$

最终可得 $d(L_1, L_2) = d(x - y, V_1 + V_2)$.

8. 求两个平面 $L_1 = x + L(\alpha_1, \alpha_2)$ 与 $L_2 = y + L(\beta_1, \beta_2)$ 之间的距离, 其中

$$\alpha_1 = (1, -2, 0, -3), \quad \alpha_2 = (2, -2, 1, 2), \quad x = (4, 5, 3, 2);$$

 $\beta_1 = (1, 0, 1, 1), \quad \beta_2 = (1, -2, 0, -1), \quad y = (1, -2, 1, -3).$

解:
$$W = L(\alpha_1, \alpha_2) + L(\beta_1, \beta_2) = L(\alpha_1, \alpha_2, \beta_1)$$
. 所以

$$d(L_1, L_2) = d(x - y, W) = \sqrt{\frac{|G(\alpha_1, \alpha_2, \beta_1, (x - y))|}{|G(\alpha_1, \alpha_2, \beta_1)|}} = \sqrt{\frac{324}{36}} = 3.$$

9. 求下列方程的最小二乘解:

$$\begin{cases} 3.4x - 1.6y = 1\\ 3.3x - 1.7y = 1\\ 3.2x - 1.5y = 1\\ 2.6x - 1.1y = 1. \end{cases}$$

解:
$$A = \begin{pmatrix} 3.4 & -1.6 \\ 3.3 & -1.7 \\ 3.2 & -1.5 \\ 2.6 & -1.1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

则最小二乘解 (x,y) 为线性方程 $A^{T}AX = A^{T}B$ 的解. 解这个方程, 得

$$\begin{cases} x \approx 0.69 \\ y \approx 0.78 \end{cases}$$

§5 正交变换与正交矩阵

- **1.** 在几何空间中取直角标架 $[O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}]$. $\mathscr{A}, \mathscr{B}, \mathscr{C}$ 分别表示空间按右手系绕 x, y, z 轴旋转 45° 的正交变换.
 - (1) 以坐标的形式写出 $\mathscr{A}, \mathscr{B}, \mathscr{C}$ 的表达式;
 - (2) 求 $\mathscr{A}, \mathscr{B}, \mathscr{C}$ 在基 $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ 下的矩阵;
 - (3) 求 \mathscr{AB} , \mathscr{BA} , \mathscr{ABC} , $\mathscr{A} + \mathscr{B}$, $\mathscr{A}^4 \mathscr{B}^4$ 在基 \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} 下的矩阵;
 - (4) 证明: $\mathscr{A}^8 = \mathscr{B}^8 = \mathscr{C}^8 = \mathscr{E}$, 这里 \mathscr{E} 表示恒同映射.

解: (1)
$$\mathscr{A}(x,y,z) = \left(x, \frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}z, \frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}z\right),$$

$$\begin{split} \mathscr{B}(x,y,z) &= \left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}z, y, -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}z\right), \\ \mathscr{C}(x,y,z) &= \left(\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y, z\right). \\ (2) \ A &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, \\ B &= \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}, C &= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ (3) \ AB &= \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}, BA &= \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, ABC &= \\ \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2} \\ \frac{1}{2} + \frac{\sqrt{2}}{4} & \frac{1}{2} - \frac{\sqrt{2}}{4} & -\frac{1}{2} \\ \frac{1}{2} - \frac{\sqrt{2}}{4} & \frac{1}{2} + \frac{\sqrt{2}}{4} & \frac{1}{2} \end{pmatrix}, A + B &= \begin{pmatrix} 1 + \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 + \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \sqrt{2} \end{pmatrix}, \\ A^4B^4 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \end{split}$$

(4) 略.

2. 设 $A=(a_{ij})\in M_n(\mathbb{R})$ 为正交矩阵, 且 |A|=1.

证明: $a_{ij} = A_{ij}$, 其中 A_{ij} 为 a_{ij} 的代数余子式.

证明: 因为 |A| = 1, 所以 $AA^* = E$, 从而

$$A^* = A^{-1} = A^{\mathrm{T}},$$

两边比较后可得

$$a_{ij} = A_{ij}, \qquad i, j = 1, \cdots, n.$$

3. 设 \mathscr{A} 是欧几里得空间 V 的一个变换.

证明: 如果 \mathscr{A} 保持内积不变, 即对所有的 $\alpha, \beta \in V$, $(\mathscr{A}\alpha, \mathscr{A}\beta) = (\alpha, \beta)$, 那么它一定是线性的, 因而是正交变换.

证明: 对任意的 $\alpha, \beta \in V$, 有

$$(\mathscr{A}(\alpha+\beta)-\mathscr{A}\alpha-\mathscr{A}\beta,\mathscr{A}(\alpha+\beta)-\mathscr{A}\alpha-\mathscr{A}\beta)$$

$$=(\mathscr{A}(\alpha+\beta),\mathscr{A}(\alpha+\beta))-2(\mathscr{A}(\alpha+\beta),\mathscr{A}\alpha)-2(\mathscr{A}(\alpha+\beta),\mathscr{A}\beta)$$

$$+(\mathscr{A}\alpha,\mathscr{A}\alpha)+2(\mathscr{A}\alpha,\mathscr{A}\beta)+(\mathscr{A}\beta,\mathscr{A}\beta)$$

$$=(\alpha+\beta,\alpha+\beta)-2(\alpha+\beta,\alpha)-2(\alpha+\beta,\beta)+(\alpha,\alpha)+2(\alpha,\beta)+(\beta,\beta)$$

$$=((\alpha+\beta)-\alpha-\beta,(\alpha+\beta)-\alpha-\beta)=0.$$

所以 $\mathcal{A}(\alpha + \beta) = \mathcal{A}\alpha + \mathcal{A}\beta$.

类似地,

$$(\mathscr{A}(k\alpha) - k\mathscr{A}\alpha, \mathscr{A}(k\alpha) - k\mathscr{A}\alpha)$$

$$= (\mathscr{A}(k\alpha), \mathscr{A}(k\alpha)) - 2k(\mathscr{A}(k\alpha), \mathscr{A}\alpha) + k^2(\mathscr{A}\alpha, \mathscr{A}\alpha)$$

$$= (k\alpha, k\alpha) - 2k(k\alpha, \alpha) + k^2(\alpha, \alpha) = 0.$$

所以 $\mathcal{A}(k\alpha) = k\mathcal{A}\alpha$.

因此 《 是线性变换.

4. 设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 与 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是欧几里得空间的两个规范正交基. 证明: 存在正交变换 \mathscr{A} , 使

$$\mathscr{A}(\varepsilon_i) = \alpha_i \quad (i = 1, 2, \cdots, n).$$

证明:由于 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是线性空间的基,因此满足题设条件的线性变换 \mathscr{A} 一定存在.对于任意的两个向量 $\alpha = \sum_{i=1}^n a_i \varepsilon_i, \ \beta = \sum_{i=1}^n b_i \varepsilon_i, \ f \mathscr{A}(\alpha) = \sum_{i=1}^n a_i \mathscr{A}(\varepsilon_i) = \sum_{i=1}^n a_i \alpha_i, \ \mathscr{A}(\beta) = \sum_{i=1}^n b_i \alpha_i, \ \mathrm{But}$

$$(\mathscr{A}(\alpha), \mathscr{A}(\beta)) = \left(\sum_{i=1}^{n} a_i \alpha_i, \sum_{i=1}^{n} b_i \alpha_i\right) = \sum_{i=1}^{n} a_i b_i = (\alpha, \beta).$$

所以 ≠ 是正交变换.

5. 求下列正交方阵的欧拉角:

$$(1) \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix};$$

$$(3) \begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{4} & -\frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$$

解: (1) $\theta = 0$, $\phi + \psi = \frac{5\pi}{3}$;

(2)
$$\theta = \frac{\pi}{2}, \ \phi = \frac{\pi}{2}, \ \psi = \frac{\pi}{2};$$

(3) 由 $r_{33} = \cos \theta = 0$, $\theta \in [0, \pi]$, 可得 $\theta = \frac{\pi}{2}$. 再由 $r_{31} = \sin \psi = \frac{\sqrt{3}}{2}$ 以及 $r_{32} = \cos \psi = -\frac{1}{2}$ 可得 $\psi = \frac{2\pi}{3}$. 最后由 $r_{13} = \sin \phi = \frac{\sqrt{2}}{2}$ 以及 $r_{23} = -\cos \phi = \frac{\sqrt{2}}{2}$ 可得 $\phi = \frac{3\pi}{4}$.

*6. 设点 P 的坐标为 (1,1,0), 求绕轴 \overrightarrow{OP} 按右手方向旋转 $\frac{\pi}{6}$ 的正交变换.

解:参看例 7.5. 旋转轴的单位向量是 $\xi = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$. 令 $\eta = \xi - \overrightarrow{k} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -1\right)$. 沿 η 方向的镜射记为 \mathscr{S} , 由于

$$\begin{cases} \mathscr{S}(\overrightarrow{i}) = \overrightarrow{i} - 2\frac{(\overrightarrow{i}, \eta)}{(\eta, \eta)} \eta = \frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j} + \frac{\sqrt{2}}{2}\overrightarrow{k} \\ \mathscr{S}(\overrightarrow{j}) = \overrightarrow{j} - 2\frac{(\overrightarrow{j}, \eta)}{(\eta, \eta)} \eta = -\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j} + \frac{\sqrt{2}}{2}\overrightarrow{k} \\ \mathscr{S}(\overrightarrow{k}) = \overrightarrow{k} - 2\frac{(\overrightarrow{k}, \eta)}{(\eta, \eta)} \eta = \frac{\sqrt{2}}{2}\overrightarrow{i} + \frac{\sqrt{2}}{2}\overrightarrow{j} \end{cases}$$

因此 $\mathscr S$ 在基 \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} 下的矩阵为

$$S = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}.$$

另一方面旋转 $\mathcal{R}_{\vec{k},-\frac{\pi}{2}}$ 的矩阵是

$$R = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

最后得到所求正交变换的矩阵为

$$SRS = \begin{pmatrix} \frac{\sqrt{3}}{4} + \frac{1}{2} & -\frac{\sqrt{3}}{4} + \frac{1}{2} & \frac{\sqrt{2}}{4} \\ -\frac{\sqrt{3}}{4} + \frac{1}{2} & \frac{\sqrt{3}}{4} + \frac{1}{2} & -\frac{\sqrt{2}}{4} \\ -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

*7. 求正交变换

$$\mathscr{A}(X) = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2}\\ \frac{1}{2} & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix} X$$

的旋转轴与旋转角.

解: 求旋转轴相当于求 AX = X 的解向量 $X \in \mathbb{R}^3$. 解得旋转轴的方向向量是 $\xi = (\sqrt{2} + 1, 1, \sqrt{2} - 1)$. 为求旋转角, 取一个与 ξ 正交的向量 $\alpha = (1, -2, -1)$, 则旋转角 $\theta = \langle \alpha, \mathscr{A}(\alpha) \rangle$.

$$\cos \theta = \frac{(\alpha, \mathscr{A}(\alpha))}{|\alpha|^2} = -\frac{3}{4}.$$

又因混合积

$$(\xi, \alpha, \mathscr{A}(\alpha)) = -\frac{21}{2} < 0,$$

所以旋转角 $\theta = \pi + \arccos \frac{3}{4}$.

第七章 几何空间的常见曲面

§1 立体图与投影

1. 试分别用正等测投影及正二等测投影画出边长等于 2, 3, 4 的长方体以及正四面体.

解:

§ 2 空间曲面与曲线的方程

- 1. 分别就下列条件求球面方程:
- (1) 一直径的两端点为 A(2,-3,5) 和 B(4,1,-3);
- (2) 球心在直线 $\frac{x-4}{2} = \frac{y+8}{-4} = \frac{z-2}{1}$ 上,且过点 (2, -3, 6) 和 (6, 3, -2);
- (3) 过点 (-1,2,5), 且与 3 个坐标平面相切;
- (4) 过点 $(\sqrt{2}, \sqrt{2}, 2)$, 且包含圆: $\begin{cases} x^2 + y^2 = 4, \\ z = 0. \end{cases}$

解: (1) 球心坐标
$$C\left(\frac{2+4}{2}, \frac{-3+1}{2}, \frac{5-3}{2}\right) = (3, -1, 1),$$
 半径
$$R = \sqrt{(3-2)^2 + (-1+3)^2 + (1-5)^2} = \sqrt{21},$$

所以球面方程为 $(x-3)^2 + (y+1)^2 + (z-1)^2 = 21$.

(2) 因球心在已知直线上, 故它的坐标应为 (4+2t, -8-4t, 2+t). 又因点 (2, -3, 6) 和 (6, 3, -2) 在球面上, 所以它们到球心的距离相等, 即

$$(4+2t-2)^2 + (-8-4t+3)^2 + (2+t-6)^2 = (4+2t-6)^2 + (-8-4t-3)^2 + (2+t+2)^2$$

解得 t = -2, 从而球心坐标是 (0,0,0), 且半径等于 7. 球面方程为 $x^2 + y^2 + z^2 = 49$.

(3) 球心与点 (-1,2,5) 在同一卦限内, 因此可设它的坐标为 (-a,a,a), 则 球面方程为

$$(x+a)^2 + (y-a)^2 + (z-a)^2 = a^2.$$

将 (-1,2,5) 的坐标代入, 得 $a^2 - 8a + 15 = 0$, 解得 a = 5 或 3. 即球面方程为

$$(x+5)^2 + (y-5)^2 + (z-5)^2 = 25$$
 以及 $(x+3)^2 + (y-3)^2 + (z-3)^2 = 9$.

- (4) 已知圆位于坐标平面 xOy 上, 圆心是原点, 因此球心一定在 z 轴上. 设球心坐标为 (0,0,t), 则 $4+t^2=2+2+(2-t)^2$, 解得 t=1. 所以球面方程为 $x^2+y^2+(z-1)^2=5$.
 - 2. 求下列圆的圆心及半径:

(1)
$$\begin{cases} x^2 + y^2 + z^2 = 4, \\ x + y + z - 3 = 0; \end{cases}$$
(2)
$$\begin{cases} x^2 + y^2 + z^2 = 5, \\ x^2 + y^2 + z^2 + x + 2y + 3z - 7 = 0. \end{cases}$$

解: (1) 所给的圆可以看成是第一个方程所确定的球面与第二个方程确定 的平面的交线, 而球心是原点, 所以圆心应在原点向这个平面所作的垂线的垂

的平面的父孩,则承心是办点,从这点之上, 足上. 此垂线的方向向量是 (1,1,1),故垂线方程为 $\begin{cases} x=t, \\ y=t, \\ z=t. \end{cases}$

交点是 (1,1,1), 此即球心. 根据勾股定理, 球的半径为 $\sqrt{4-3}=1$.

(2) 第二个方程减去第一个方程后可得 x + 2y + 3z - 2 = 0. 利用与 (1) 类

似的方法,可知圆心就是此方程所确定的平面与直线 $\begin{cases} x=t,\\ y=2t, & \text{的交点.} \text{ } \mathbf{k} \\ z=3t \end{cases}$

得圆心坐标为 $\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$. 半径 $\sqrt{5 - \frac{2}{7}} = \frac{\sqrt{231}}{7}$.

3. 求证:

$$\begin{cases} x = a \cos^2 t, \\ y = a \sin^2 t, \\ z = a\sqrt{2} \sin t \cos t, \end{cases} \quad 0 \le t < \pi \ (a > 0)$$

表示一圆. 求此圆的圆心和半径.

解: 此曲线上的任意一点 (x,y,z) 满足方程 $x^2 + y^2 + z^2 = a^2$ 以及 x + y - a = 0. 故曲线是球面与平面的交线 (圆):

$$\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y - a = 0, \end{cases}$$

或其一部分. 为证此曲线确是圆,设 (x,y,z) 是圆上任意一点,于是 y=a-x, $x^2+(a-x)^2+z^2=a^2$. 后式可化为 $2\left(x-\frac{a}{2}\right)^2+z^2=\frac{a^2}{2}$. 因此存在 $0\leq\theta<2\pi$ 使得

$$\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos\theta = a\cos^2\frac{\theta}{2}, \\ z = \frac{\sqrt{2}a}{2}\sin\theta = \sqrt{2}a\sin\frac{\theta}{2}\cos\frac{\theta}{2}, \end{cases}$$

从而 $y = a - x = a \sin^2 \frac{\theta}{2}$. 令 $t = \frac{\theta}{2}$, 就能得到题设的参数方程, 说明满足圆方程的点都是题设曲线上的点, 因此已知曲线确是圆.

其圆心应是直线
$$\begin{cases} x=t,\\ y=t, & \text{与平面 } x+y-a=0 \text{ 的交点, } \mathbb{P}\left(\frac{a}{2},\frac{a}{2},0\right),\\ z=0 \end{cases}$$
 半径则为 $\sqrt{a^2-\frac{a^2}{4}-\frac{a^2}{4}}=\frac{\sqrt{2}}{2}a.$

4. 求证: 两个球面

$$S_i: x^2 + y^2 + z^2 + A_i x + B_i y + C_i z + D_i = 0, \quad (i = 1, 2),$$

交线圆所在平面为

$$(A_1 - A_2)x + (B_1 - B_2)y + (C_1 - C_2)z + (D_1 - D_2) = 0.$$

证明: 任取两个球面的交线圆上的 3 个不同点 $M_j(a_j,b_j,c_j)$ (j=1,2,3). 则

$$\begin{cases} a_j^2 + b_j^2 + c_j^2 + A_1 a_j + B_1 b_j + C_1 c_j + D_1 = 0, \\ a_j^2 + b_j^2 + c_j^2 + A_2 a_j + B_2 b_j + C_2 c_j + D_2 = 0, \end{cases}$$
 $(j = 1, 2, 3).$

将两式相减得

$$(A_1 - A_2)a_i + (B_1 - B_2)b_i + (C_1 - C_2)c_i + (D_1 - D_2) = 0, \quad (j = 1, 2, 3).$$

这说明圆上的 3 个点 M_1, M_2, M_3 都在平面

$$(A_1 - A_2)x + (B_1 - B_2)y + (C_1 - C_2)z + (D_1 - D_2) = 0$$

上, 因此整个圆也在此平面上.

*5. 已知两球面:

$$S_i: x^2 + y^2 + z^2 + 2U_i x + 2V_i y + 2W_i z + d_i = 0, \quad (i = 1, 2)$$

求证这两球面正交 (在交点处的切平面垂直) 的条件是:

$$2(U_1U_2 + V_1V_2 + W_1W_2) = d_1 + d_2.$$

证明: 设点 $M(x_0, y_0, z_0)$ 为两个球面的任意一个交点,则过 M 点的切平面的法向量就是过这个点的球半径.用配方法不难看出这两个球面的球心是 $(-U_i, -V_i, -W_i)$ (i = 1, 2).因此球半径的方向向量是 $(x_0+U_i, y_0+V_i, z_0+W_i)$ (i = 1, 2).这两个球面正交等价于这两个球半径正交,即

$$(x_0 + U_1)(x_0 + U_2) + (y_0 + V_1)(y_0 + V_2) + (z_0 + W_1)(z_0 + W_2) = 0,$$

展开得

$$x_0^2 + y_0^2 + z_0^2 + (U_1 + U_2)x_0 + (V_1 + V_2)y_0 + (W_1 + W_2)z_0 + U_1U_2 + V_1V_2 + W_1W_2 = 0.$$

由于 M 在球面的交线上,因此它的坐标同时满足两个球面的方程,将此两个方程相加后除以 2 可得

$$x_0^2 + y_0^2 + z_0^2 + (U_1 + U_2)x_0 + (V_1 + V_2)y_0 + (W_1 + W_2)z_0 + \frac{d_1 + d_2}{2} = 0.$$

代入前面等式后即得

$$2(U_1U_2 + V_1V_2 + W_1W_2) = d_1 + d_2.$$

这个条件是充分且必要的.

*6. 求证两圆

$$S_1:$$

$$\begin{cases} x^2+y^2=4, \\ z=0 \end{cases} \Rightarrow S_2:$$

$$\begin{cases} x^2+y^2+z^2-2x-2y-2=0, \\ x+y+z=1 \end{cases}$$

在同一球面上.

证明: 通过 S_1 的球面的球心一定在 z 轴上 (参见习题 1(4)), 因此其坐标

为 (0,0,a). 再求 S_2 的圆心. 它是直线 $\begin{cases} x=1+t, \\ y=1+t, \end{cases}$ 与平面 x+y+z=1 的 z=t 交点 $\left(\frac{2}{3},\frac{2}{3},-\frac{1}{3}\right)$. 而球心与圆心的连线应该与平面 z+y+z=1 的法向量平行,即 z=1 z=(2,0,0) 在 S_1 上, 从而在球面上, 求得球半径等于 $\sqrt{2^2+1^2}=\sqrt{5}$. 因此 S_1 在 球面

$$x^2 + y^2 + (z+1)^2 = 5$$

上. 此方程减去方程 x+y+z=1 的 2 倍后得到

$$x^2 + y^2 + z^2 - 2x - 2y - 2 = 0,$$

说明此球面与平面 x + y + z = 1 的交线就是 S_2 . 因此 S_1 与 S_2 在同一个球面 上.

*7. 证明: 过圆:

$$\begin{cases} S = x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0, & (u^2 + v^2 + w^2 - d > 0), \\ E = Ax + By + Cz + D = 0, & (A^2 + B^2 + C^2 \neq 0) \end{cases}$$

的球面族方程可表示为: $S + 2\lambda E = 0$ (λ 为参数).

证明: 对于参数 λ . 若方程 $S + 2\lambda E = 0$ 确实表示一个球面, 则圆 $\begin{cases} S = 0, \\ E = 0 \end{cases}$ 一定在此球面上.

对任意一个过圆
$$\begin{cases} S=0, \\ E=0 \end{cases}$$
 的球面
$$x^2+y^2+z^2+2px+2qy+2tz+r=0,$$

已知圆应在两个球的交线

$$\begin{cases} x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0, \\ x^2 + y^2 + z^2 + 2px + 2qy + 2tz + r = 0 \end{cases}$$

上. 由第4题知, 此圆应在平面

$$(p-u)x + (q-v)y + (t-w)z + \frac{r-d}{2} = 0$$

上. 但 E=0 也过此圆, 因此两个平面重合, 即存在实数 λ 使得

$$p - u = \lambda A$$
, $q - v = \lambda B$, $t - w = \lambda C$, $\frac{r - d}{2} = \lambda D$.

解出 p,q,t,r, 代入球面方程即得

$$x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d + 2\lambda(Ax + By + Cz + D) = 0.$$

&3 旋转曲面

(1) 直线
$$\frac{x}{2} = \frac{y}{1} = \frac{z-1}{0}$$
 绕直线 $x = y = z$ 旋转;

(2) 直线
$$\frac{\overline{x-1}}{1} = \frac{y}{-3} = \frac{z}{3}$$
 绕 z 轴旋转;

(3) 抛物线
$$\begin{cases} y^2 = 2px, \\ z = 0 \end{cases}$$
 绕它的准线旋转

(3) 抛物线
$$\begin{cases} y^2 = 2px, \\ z = 0 \end{cases}$$
 绕它的准线旋转;
$$z = 0$$
 (4) 曲线
$$\begin{cases} x^2 = y, \\ x + z = 0 \end{cases}$$
 绕直线 $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$ 旋转.

解: (1) 显然原点 O 在旋转轴上, 且轴的方向向量是 $\xi = (1,1,1)$. 参照 (3.1), 可以得到方程组

$$\begin{cases} (x - x') + (y - y') + (z - z') = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \\ \frac{x'}{2} = \frac{y'}{1} = \frac{z' - 1}{0}, \end{cases}$$

§3 旋转曲面 · 7 ·

在方程组中消去参数 x', y', z' 后可得

$$x^{2} + y^{2} + z^{2} - 1 = \frac{5}{9}(x + y + z - 1)^{2},$$

因此所求旋转曲面的方程为

$$2(x^{2} + y^{2} + z^{2}) - 5(xy + xz + yz) + 5(x + y + z) - 7 = 0.$$

(2) 显然原点 O 在旋转轴上,且轴的方向向量是 $\xi=(0,0,1)$. 同上题,可以得到方程组

$$\begin{cases} z - z' = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \\ \frac{x' - 1}{1} = \frac{y'}{-3} = \frac{z'}{3}, \end{cases}$$

因此 z' = z, y' = -z, $x' = 1 + \frac{z}{3}$, 代入方程组消去参数 x', y', z' 后可得

$$x^{2} + y^{2} + z^{2} = \left(1 + \frac{z}{3}\right)^{2} + z^{2} + z^{2},$$

因此所求旋转曲面的方程为

$$9x^2 + 9y^2 - 10z^2 - 6z - 9 = 0.$$

(3) 抛物线的准线的一般方程为 $\begin{cases} x = -\frac{p}{2}, \\ z = 0, \end{cases}$ 则其标准方程为

$$\frac{x + \frac{p}{2}}{0} = \frac{y}{1} = \frac{z}{0}.$$

取轴上的一点 $(x_0, y_0, z_0) = \left(-\frac{p}{2}, 0, 0\right)$, 就可导出以下方程组

$$\begin{cases} y - y' = 0, \\ \left(x + \frac{p}{2}\right)^2 + y^2 + z^2 = \left(x' + \frac{p}{2}\right)^2 + y'^2 + z'^2, \\ y'^2 = 2px', \\ z' = 0. \end{cases}$$

从方程组消去参数 x', y', z', 就能得到旋转曲面的方程

$$y^4 - 4p^2x^2 + 2p^2y^2 - 4p^2z^2 - 4p^3x = 0.$$

(4) 显然原点 O 在旋转轴上, 因此可得方程组:

$$\begin{cases} (x - x') + 2(y - y') + (z - z') = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \\ x'^2 = y', \\ x' + z' = 0. \end{cases}$$

从方程组消去参数 x', y', z', 就能得到旋转曲面的方程

$$3x^2 + 3z^2 - 4xy - 2xz - 4yz - 4x - 8y - 4z = 0.$$

2. 根据 k, l 的不同取值 (零或非零) 讨论直线

$$L: \ \frac{x}{1} = \frac{y}{k} = \frac{z-l}{0}$$

绕 x 轴旋转所成曲面 S 是何种曲面.

解: 分以下几种情形讨论.

- (i) k = l = 0 时, L 的方程成为 $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$, L 就是 x 轴, 因此绕 x 轴旋转仍然是 x 轴本身;
 - (ii) $k=0, l \neq 0$ 时, L 的方程为 $\begin{cases} z=l, \\ y=0, \end{cases}$ L 是坐标平面 xOz 上的曲线,

根据例 3.1 的讨论, xOz 坐标平面上的曲线绕 x 轴旋转得到的旋转曲面的方程可以用 $\sqrt{y^2+z^2}$ 代换方程中的 z 而得到, 因此旋转曲线的方程为 $y^2+z^2=l^2$, 是一个圆柱面:

(iii) $k \neq 0$, l = 0 时, L 的方程是 $\begin{cases} y = kx, \\ z = 0, \end{cases}$ L 是坐标平面 xOy 上的 z = 0, z =

曲线, 同理, 旋转曲面的方程可以用 $\sqrt{y^2 + z^2}$ 代换方程中的 y 而得到, 即为 $y^2 + z^2 = k^2 x^2$, 这是圆锥面;

(iv) $k \neq 0$, $l \neq 0$ 时, 因原点在旋转轴上, 可得以下方程组

$$\begin{cases} x - x' = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \\ \frac{x'}{1} = \frac{y'}{k} = \frac{z' - l}{0}, \end{cases}$$

消去参数后得到曲面方程

$$\frac{y^2 + z^2}{l^2} - \frac{k^2 x^2}{l^2} = 1,$$

§3 旋转曲面 · 9 ·

这是单叶双曲面.

3. 证明: 到定直线及定直线上一定点的距离平方和是常数的动点轨迹是一旋转曲面.

证明: 设定直线为 z 轴, 定点为原点 O. 设 P(x,y,z) 是满足条件的点, 则 P 的坐标满足以下方程:

$$(x^2 + y^2) + (x^2 + y^2 + z^2) = k^2,$$

显然这是曲线

$$\begin{cases} 2x^2 + z^2 - k^2 = 0, \\ y = 0 \end{cases}$$

绕 z 轴旋转而得的旋转曲面方程.

4. 求证:

$$\begin{cases} x = a(\cos u + \cos v), \\ y = a(\sin u + \sin v), \\ z = b(u - v) \end{cases}$$

是旋转曲面, 这里 $a,b \neq 0$ 且 a,b 是常数.

证明: 因为

$$x^{2} + y^{2} = a^{2} + 2a^{2}(\cos u \cos v + \sin u \sin v) = a^{2} + 2a^{2}\cos(u - v)$$
$$= a^{2} + 2a^{2}\cos\frac{z}{b},$$

显然它是曲线

$$\begin{cases} x^2 = a^2 + 2a^2 \cos \frac{z}{b}, \\ y = 0 \end{cases}$$

绕 z 轴旋转而得.

5. 求曲线
$$\begin{cases} x=z^2, \\ x^2+y^2=1 \end{cases}$$
 绕直线
$$\begin{cases} x=2t, \\ y=0, \\ z=3t \end{cases}$$
 旋转生成的旋转曲面的方

程.

解: 旋转轴通过原点 O, 因此可得方程组

$$\begin{cases} 2(x - x') + 3(z - z') = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \\ x' = z'^2, \\ x'^2 + y'^2 = 1. \end{cases}$$

消去参数后可得旋转曲面方程

$$2x + 3z + 2 - 2x^2 - 2y^2 - 2z^2 = \pm 3\sqrt{x^2 + y^2 + z^2 - 1}$$
.

6. 证明曲面 $F(x,y,z)=(x^2+y^2+z^2)^2-16(x^2+z^2)=0$ 是一个旋转曲面.

证明: 这是曲线

$$\begin{cases} (x^2 + y^2)^2 - 16x^2 = 0, \\ z = 0 \end{cases}$$

绕 y 轴旋转而得到的曲面.

*7. 求证: $yz + zx + xy = a^2$ 是旋转曲面, 且求旋转轴.

证明: 因为

$$(x^2 + y^2 + z^2) + 2(yz + zx + xy) - (x^2 + y^2 + z^2) = 2a^2$$

可得

$$(x + y + z)^2 - (x^2 + y^2 + z^2) = 2a^2.$$

对任意实数 $p(|p| > \sqrt{2}|a|)$, 曲线

$$\begin{cases} x^2 + y^2 + z^2 = p^2 - 2a^2, \\ x + y + z - p = 0 \end{cases}$$

是一个圆, 圆心在直线 x = y = z 上, 因此这是一个旋转曲面, 旋转轴是 x = y = z.

也可以使曲线

$$\begin{cases} yz + zx + xy = a^2, \\ 2x - y - z = 0 \end{cases}$$

绕直线 x = y = z 旋转而得到曲面 $yz + zx + xy = a^2$.

§4 柱面与柱面坐标 · 11 ·

§ 4 柱面与柱面坐标

1. 已知柱面准线方程为

$$\begin{cases} x^2 + y^2 + z^2 = 4, \\ x^2 + (y - 3)^2 + z^2 = 4, \end{cases}$$

母线方向为 1:1:(-1), 试求其方程.

解: 任取点 M(x',y',z') 在准线上, P(x,y,z) 为柱面过 M 的母线上的点,则有

$$\begin{cases} x = x' + u, \\ y = y' + u, \\ z = z' - u, \\ x'^2 + y'^2 + z'^2 = 4, \\ x'^2 + (y' - 3)^2 + z'^2 = 4, \end{cases}$$

解得

$$\begin{cases} x' = x - y + y', \\ z' = z + y - y', \\ y' = \frac{3}{2}, \end{cases}$$

推出柱面方程

$$(2x - 2y + 3)^{2} + (2z + 2y - 3)^{2} = 7.$$

2. 已知柱面准线方程为

$$\begin{cases} y = x^2 + z^2, \\ y = 2z, \end{cases}$$

母线垂直于准线所在平面, 试求此柱面方程.

解: 因为母线垂直于准线所在平面 y-2z=0, 所以母线方向为 (0,1,-2). 与上题类似, 可得方程组

$$\begin{cases} x = x', \\ y = y' + u, \\ z = z' - 2u, \\ y' = x'^2 + z'^2, \\ y' = 2z', \end{cases}$$

解得

$$\begin{cases} x' = x, \\ y' = \frac{2}{5}(2y + z), \\ z' = \frac{1}{5}(2y + z), \end{cases}$$

推出柱面方程

$$\frac{2}{5}(2y+z) = x^2 + \frac{1}{25}(2y+z)^2,$$

展开后得

$$25x^2 + 4y^2 + z^2 + 4yz - 20y - 10z = 0.$$

3. 求曲线

$$\begin{cases} x^2 + 2y^2 + z^2 = 1, \\ x^2 + z^2 = y \end{cases}$$

对 xOy 平面的射影柱面方程.

解: 母线的方向向量是 (0,0,1). 可得方程组

$$\begin{cases} x = x', \\ y = y', \\ z = z' + u, \\ x'^2 + 2y'^2 + z'^2 = 1, \\ x'^2 + z'^2 = y', \end{cases}$$

解得

$$\begin{cases} x' = x, \\ y' = y, \\ 2y'^2 + y' - 1 = 0, \end{cases}$$

由于 y = -1 不合题意, 因此柱面方程为

$$y = \frac{1}{2}, \qquad \left(-\frac{\sqrt{2}}{2} \le x \le \frac{\sqrt{2}}{2}\right).$$

另解:将曲线方程组的第一个方程减去第二个方程,可得 $2y^2 - y - 1 = 0$. 这是母线与 z 轴平行的柱面,而且通过已知曲线,即为所求的射影柱面.

4. 试说明下列方程所表示的曲面是柱面:

(1)
$$(x+y)(y+z) = a^2$$
; (2) $(x+y)(y+z) = x+2y+z$;

§4 柱面与柱面坐标 · 13 ·

(3)
$$y^2 + 2yz + z^2 = 1 - x^2$$
; (4) $(x + y + z)^2 = (x - y - z)^2$.
解: (1) 因为直线
$$\begin{cases} x + y = a, \\ y + z = a \end{cases}$$
 在此曲面上,它的方向为 $1: (-1): 1$. 且 点 $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$ 在此直线上.而平面 $x - y + z - \frac{a}{2} = 0$ 与曲面 $(x + y)(y + z) = a^2$ 的交线为
$$\begin{cases} (x + y)(y + z) = a^2, \\ x - y + z = \frac{a}{2}. \end{cases}$$

$$\begin{cases} (x+y)(y+z) = a^2 \\ x-y+z = \frac{a}{2}. \end{cases}$$

我们以这条曲线为准线,以1:(-1):1为母线方向,可求得方程组

$$\begin{cases} x = x' + u, \\ y = y' - u, \\ z = z' + u, \\ (x' + y')(y' + z') = a^2, \\ x' - y' + z' = \frac{a}{2}, \end{cases}$$

消去参数后,得到柱面方程 $(x+y)(y+z)=a^2$,所以原来的曲面是柱面.

(注: 以下几个小题我们将先确定母线方向, 然后证明通过曲面上任意一点 的与母线方向平行的直线都在曲面上, 用这样的方法来证明曲面是柱面.)

(2) 因为
$$(x+y)(y+z) = (x+y) + (y+z)$$
, 所以直线
$$\begin{cases} x+y=0, \\ y+z=0 \end{cases}$$
 在

此曲面上, 其方向向量是 (1,-1,1).

设 M(x', y', z') 是曲面上的任意点, P(x, y, z) 是过 M 的直线

$$\frac{x - x'}{1} = \frac{y - y'}{-1} = \frac{z - z'}{1}$$

上的一点, 我们要验证 P 在曲面上. 为此, 解得

$$\begin{cases} x + y = x' + y', \\ y + z = y' + z', \end{cases}$$

因此

$$(x+y)(y+z) = (x'+y')(y'+z') = x'+2y'+z') = (x+y)+(y+z) = x+2y+z,$$
即 P 点的坐标满足曲面方程, 说明整条直线都在曲面上, 因此曲面是柱面.

(3) 方程 $y^2 + 2yz + z^2 = 1 - x^2$ 可以化为 $x^2 + (y+z)^2 = 1$, 所以直线 $\begin{cases} x = 1, & \text{在此曲面上, 它的方向向量是 } (0, -1, 1). \\ y + z = 0 & \text{设 } M(x', y', z') \text{ 是曲面上的任意点, } P(x, y, z) \text{ 是过 } M \text{ 的直线} \end{cases}$

$$\frac{x - x'}{0} = \frac{y - y'}{-1} = \frac{z - z'}{1}$$

上的一点, 我们要验证 P 在曲面上. 为此, 解得

$$\begin{cases} x = x', \\ y + z = y' + z', \end{cases}$$

因此

$$x^{2} + (y+z)^{2} = x'^{2} + (y'+z')^{2} = 1,$$

即 P 点的坐标满足曲面方程, 说明整条直线都在曲面上, 因此曲面是柱面.

(4) 显然直线
$$\begin{cases} x+y+z=0, \\ x-y-z=0 \end{cases}$$
 在此曲面上,它的方向向量是 $(0,1,-1)$.

设 M(x', y', z') 是曲面上的任意点, P(x, y, z) 是过 M 的直线

$$\frac{x-x'}{0} = \frac{y-y'}{1} = \frac{z-z'}{-1}$$

上的一点, 我们要验证 P 在曲面上. 为此, 解得

$$\begin{cases} x = x', \\ y + z = y' + z', \end{cases}$$

因此

$$(x+y+z)^2 - (x-y-z)^2 = (x'+y'+z')^2 - (x'-y'-z')^2 = 0,$$

即 P 点的坐标满足曲面方程,说明整条直线都在曲面上,因此曲面是柱面.

5. 已知圆柱面的轴方程为:

$$\frac{x}{1} = \frac{y-1}{-2} = \frac{z+1}{-2},$$

点 (1,-2,1) 在此圆柱面上, 求此圆柱面的方程.

§4 柱面与柱面坐标 · 15 ·

解: 因为点 (1,-2,1) 到轴 $\frac{x}{1} = \frac{y-1}{-2} = \frac{z+1}{-2}$ 的距离即为纬圆的半径,所以此半径为

$$r = \frac{|(1, -3, 2) \times (1, -2, -2)|}{\sqrt{1 + 4 + 4}} = \frac{\sqrt{117}}{3}.$$

任取此圆柱面上的一点 P(x,y,z), P 到轴的距离也为 r, 因此有

$$\frac{|(x,y-1,z+1)\times(1,-2,-2)|}{3} = \frac{\sqrt{117}}{3},$$

整理后可得圆柱面方程

$$8x^2 + 5y^2 + 5z^2 + 4xy + 4xz - 8yz - 18y + 18z - 99 = 0.$$

(注: 此题也可用过 (1,-2,1) 点的直母线绕轴旋转而得到此曲面方程, 也可以用求出一个纬圆作准线来求出此柱面方程.)

6. 设柱面的准线为 $\begin{cases} x = y^2 + z^2, \\ x = 2z, \end{cases}$ 母线垂直于准线所在的平面, 求这

柱面的方程.

解: 因为准线在平面 x=2z 上, 所以母线的方向向量是 (1,0,-2). 由此可得方程组

$$\begin{cases} x = x' + u, \\ y = y', \\ z = z' - 2u, \\ x' = y'^2 + z'^2, \\ x' = 2z', \end{cases}$$

消去参数后可得柱面方程:

$$4x^2 + 25y^2 + z^2 + 4xz - 20x - 10z = 0.$$

7. 求半径为 4, 轴线方程是 x = 2y = -z 的圆柱面方程.

解: 所求圆柱面就是到轴线的距离等于 4 的点的轨迹. 因此圆柱面上的点 P(x,y,z) 满足以下方程

$$\frac{\left|\left(x,y,z\right)\times\left(1,\frac{1}{2},-1\right)\right|}{\sqrt{2+\frac{1}{4}}}=4,$$

化简后得

$$5x^2 + 8y^2 + 5z^2 + 8xz + 4yz - 4xy = 144.$$

8. 求与 x 轴及平面 y = k 等距离的点的轨迹方程.

解: 设动点为 P(x,y,z), 则由条件知

$$y^2 + z^2 = (y - k)^2,$$

即为

$$z^2 + 2ky - k^2 = 0.$$

85 锥面

(1) 准线:
$$\begin{cases} ax^2 + by^2 = 1, \\ z = 0, \end{cases}$$
 顶点 (x_0, y_0, z_0)

(2) 准线:
$$\begin{cases} f(x,y) = 0, \\ z = k \ (\neq 0), \end{cases}$$
 顶点 $(0,0,0)$;

1. 求锥面方程:
(1) 准线:
$$\begin{cases} ax^2 + by^2 = 1, & \text{顶点 } (x_0, y_0, z_0); \\ z = 0, & \text{顶点 } (x_0, y_0, z_0); \end{cases}$$
(2) 准线:
$$\begin{cases} f(x, y) = 0, & \text{顶点 } (0, 0, 0); \\ z = k \ (\neq 0), & \text{顶点 } (0, 0, 0); \end{cases}$$
(3) 准线:
$$\begin{cases} x^2 + y^2 + (z - 5)^2 = 9, & \text{顶点 } (0, 0, 0). \\ y = 2, & \text{ 顶点 } (0, 0, 0). \end{cases}$$
62. (1) 对于准线上的点 $M(x', y', z')$ 设 $P(x, y, z)$ 是

解: (1) 对于准线上的点 M(x', y', z'), 设 P(x, y, z) 是过 M 的直母线上的 点,则有以下方程组

$$\begin{cases} x' = x_0 + (x - x_0)u, \\ y' = y_0 + (y - y_0)u, \\ z' = z_0 + (z - z_0)u, \\ ax'^2 + by'^2 = 1, \\ z' = 0, \end{cases}$$

消去参数 x', y', z', u 后可得锥面方程:

$$a(z_0x - x_0z)^2 + b(z_0y - y_0z)^2 - (z - z_0)^2 = 0.$$

§5 锥面 ・17・

(2) 类似地有以下方程组

$$\begin{cases} x' = xu, \\ y' = yu, \\ z' = zu, \\ f(x', y') = 0, \\ z' = k, \end{cases}$$

消去参数后可得锥面方程:

$$f\left(k\frac{x}{z}, k\frac{y}{z}\right) = 0.$$

(3) 有以下方程组

$$\begin{cases} x' = xu, \\ y' = yu, \\ z' = zu, \\ x'^2 + y'^2 + (z' - 5)^2 = 0, \\ y' = 2, \end{cases}$$

消去参数后可得锥面方程:

$$x^2 + 5y^2 + z^2 - 5yz = 0.$$

2. 求以点 P(5,0,0) 为顶点,以曲线 $\begin{cases} x^2 + 2y^2 = 1, \\ x + 2y - z = 0 \end{cases}$ 为准线的锥面方

解: 有以下方程组

程.

$$\begin{cases} x' = 5 + (x - 5)u, \\ y' = yu, \\ z' = zu, \\ x'^2 + 2y'^2 = 1, \\ x' + 2y' - z' = 0, \end{cases}$$

消去参数后可得锥面方程:

$$x^{2} - 146y^{2} - 24z^{2} + 4xy - 2xz + 96yz - 10x - 20y + 10z + 25 = 0.$$

3. 求以原点为顶点,以 $\begin{cases} x^2 - 2z + 1 = 0, \\ y - z + 1 = 0 \end{cases}$ 为准线的锥面方程.

解: 有以下方程组

$$\begin{cases} x' = xu, \\ y' = yu, \\ z' = zu, \\ x'^2 - 2z' + 1 = 0, \\ y' - z' + 1 = 0, \end{cases}$$

消去参数后可得锥面方程:

$$x^2 + y^2 - z^2 = 0.$$

4. 已知圆锥面的顶点为 (1,2,3), 轴垂直于平面 2x + 2y - z + 1 = 0, 母线与轴的夹角为 30° , 求该圆锥面的方程.

解: 设 P(x,y,z) 是锥面上的一个点, 那么过 P 点的母线的方向向量是

$$\xi = (x - 1, y - 2, z - 3).$$

而圆锥的轴的方向向量就是平面的法向量

$$\nu = (2, 2, -1).$$

根据题意有

$$\frac{(\xi,\nu)}{|\xi||\nu|} = \pm \cos 30^{\circ},$$

即

$$\frac{2(x-1)+2(y-2)-(z-3)}{\sqrt{(x-1)^2+(y-2)^2+(z-3)^2}\sqrt{4+4+1}}=\pm\frac{\sqrt{3}}{2}.$$

化简整理后即得所求圆锥面的方程为

$$11(x-1)^{2} + 11(y-2)^{2} + 23(z-3)^{2} - 32(x-1)(y-2) + 16(x-1)(z-3) + 16(y-2)(z-3) = 0.$$

或

$$11x^2 + 11y^2 + 23z^2 - 32xy + 16xz + 16yz - 6x - 60y - 186z + 342 = 0.$$

§5 锥面 · 19 ·

5. 过 x 轴和 y 轴分别作动平面, 使它们保持定交角 α . 试求它们的交线产生的曲面方程, 并指出是什么曲面.

解: 设过 x 轴的动平面为 $A_1y + B_1z = 0$, 过 y 轴的动平面为 $A_2x + B_2z = 0$. 它们保持定角 α , 则

$$\frac{B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} = \cos \alpha.$$

它们的交线过原点 O, 而且交线的方向向量

$$\xi = (0, A_1, B_1) \times (A_2, 0, B_2) = (A_1 B_2, A_2 B_1, -A_1 A_2),$$

因此交线上的点 P(x,y,z) 满足

$$\begin{cases} x = tA_1B_2, \\ y = tA_2B_1, \\ z = -tA_1A_2, \end{cases}$$

解得

$$\begin{cases} A_1^2 + B_1^2 = \frac{1}{t^2 A_2^2} y^2 + z^2, \\ A_2^2 + B_2^2 = \frac{1}{t^2 A_1^2} x^2 + z^2, \\ (B_1 B_2)^2 = \frac{x^2 y^2}{t^2 z^2}. \end{cases}$$

由 $\cos^2 \alpha (A_1^2 + B_1^2)(A_2^2 + B_2^2) = (B_1 B_2)^2$ 可推出曲面方程 $\cos^2 \alpha (x^2 y^2 + x^2 z^2 + y^2 z^2 + z^4) = x^2 y^2$, 是一个锥面.

6. 求顶点为 (5,0,0) 且与球面 $x^2 + y^2 + z^2 = 9$ 相切的圆锥面方程.

解: 由相切的性质可知此圆锥面的半顶角 θ 满足 $\cos \theta = \frac{4}{5}$, x 轴是圆锥面的轴, 因此轴的方向向量是 (1,0,0). 所以此圆锥面的方程为

$$\frac{|(x-5,y,z)\cdot(1,0,0)|}{\sqrt{(x-5)^2+y^2+z^2}} = \frac{4}{5},$$

化简为

$$9(x-5)^2 - 16(y^2 + z^2) = 0.$$

7. 证明: 过原点且切于球面

$$x^{2} + y^{2} + z^{2} + 2ax + 2by + 2cz + d = 0,$$
 $(0 < d < a^{2} + b^{2} + c^{2})$

的直线所生成的圆锥面方程为

$$d(x^2 + y^2 + z^2) = (ax + by + cz)^2.$$

证明: 已知球面的球心为 (-a, -b, -c),所以圆锥面的轴的方向向量是 (a, b, c). 从球心到原点的距离是 $\sqrt{a^2 + b^2 + c^2}$,球半径等于 $\sqrt{a^2 + b^2 + c^2} - d$,因此过原点的切线之长等于 \sqrt{d} ,由此可得 $\cos \theta = \sqrt{\frac{d}{a^2 + b^2 + c^2}}$,其中 θ 是圆锥面的半顶角. 所以所求圆锥面的方程为

$$\frac{|ax+by+cz|}{\sqrt{x^2+y^2+z^2}\sqrt{a^2+b^2+c^2}} = \sqrt{\frac{d}{a^2+b^2+c^2}},$$

化简后得

$$d(x^{2} + y^{2} + z^{2}) = (ax + by + cz)^{2}.$$

*8. 证明 ayz+bzx+cxy=0 表示锥面. 若平面 x+y+z=0 与该锥面 交于一对直线, 设其交角为 θ , 且 a+b+c=0, 则 $\theta=\frac{\pi}{2}$.

证明: 因为曲面 ayz + bzx + cxy = 0 是关于 x, y, z 的二次齐次方程, 所以是以原点 O 为顶点的锥面. 而平面 x + y + z = 0 也过原点, 所以两交线均落在曲面 ayz + b(-y-z)z + c(-y-z)y = 0 和 a(-x-z)z + bxz + c(-x-z)x = 0上, 且过原点.

由第一个方程化简得

$$cy^{2} - (a - b - c)yz + bz^{2} = 0 (*)$$

由第二个方程化简得

$$cx^{2} - (b - a - c)xz + az^{2} = 0 (**)$$

分别在两相交直线上各取一点 (x',y',z') 和 (x'',y'',z''),则此两点的坐标当然 也满足 (*) 和 (**). 从它们满足 (*) 可得:

$$cy'^2 - (a-b-c)y'z' + bz'^2 = 0$$
 $= cy''^2 - (a-b-c)y''z'' + bz''^2 = 0$

利用根与系数关系, 可得 $y'y'' = \frac{b}{c}z'z''$. 同理, 由于它们也满足 (**), 可得 $x'x'' = \frac{a}{c}z'z''$.

c因此两直线的夹角 θ 满足

$$\cos \theta = \frac{x'x'' + y'y'' + z'z''}{\sqrt{x''^2 + y''^2 + z''^2}\sqrt{x'''^2 + y''^2 + z''^2}}$$

§ 6 二次曲面 · 21 ·

$$= \frac{a+b+c}{c\sqrt{x'^2+y'^2+z'^2}\sqrt{x''^2+y''^2+z''^2}} = 0,$$

 $\mathbb{P} \theta = \frac{\pi}{2}.$

*9. 证明: $\sqrt{x} + \sqrt{y} - \sqrt{z} = 0$ 表示一个半顶角 θ 为 $\arccos \frac{\sqrt{6}}{3}$ 的圆锥面. 证明: 原方程的变量取值范围应满足 $x \geq 0, y \geq 0, z \geq 0$. 原方程经 2 次平方后成为

$$2(x^2 + y^2 + z^2) - (x + y + z)^2 = 0,$$

显然是个锥面,而且它与原方程在 $x \ge 0$, $y \ge 0$, $z \ge 0$ 这一区域内是同解的.因此原曲面是锥面 (当然以原点为顶点,且只有一个方向).

考虑过原点的2条直线:

$$L: \frac{x}{1} = \frac{y}{1} = \frac{z}{1}, \qquad L': \frac{x}{m} = \frac{y}{n} = \frac{z}{s},$$

直线 L' 绕直线 L 旋转得到圆锥面的方程为

$$\begin{cases} x' = mt, \\ y' = nt, \\ z' = st, \\ (x - x') + (y - y') + (z - z') = 0, \\ x^2 + y^2 + z^2 = x'^2 + y'^2 + z'^2, \end{cases}$$

消去参数 x', y', z', t 后得到

$$x^{2} + y^{2} + z^{2} = \frac{m^{2} + n^{2} + s^{2}}{(m+n+s)^{2}} (x+y+z)^{2}.$$

当 $\frac{m^2+n^2+s^2}{(m+n+s)^2}=\frac{1}{2}$ 时,这个圆锥面的方程与已知锥面的方程同解. 而圆锥面的半顶角 θ 就是 L' 与 L 的夹角,即

$$\cos \theta = \frac{(1,1,1) \cdot (m,n,s)}{\sqrt{m^2 + n^2 + s^2}\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}.$$

§6 二次曲面

1. 已知椭球面的对称轴与坐标轴重合, 且通过椭圆

$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} = 1\\ z = 0 \end{cases}$$

和点 $A(1,2,-\sqrt{11})$, 求椭球面方程.

解: 显然此椭球面的方程为

$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{c^2} = 1,$$

以点 A 的坐标代入, 解得 c=6, 所以椭球面的方程为

$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{36} = 1.$$

2. 已知顶点为原点,对称面为 xOy 面和 zOx 面,且过点 $A\left(\frac{1}{2}, -1, 2\right)$ 和 $B\left(\frac{5}{2}, 3, -2\right)$. 求椭圆抛物面的方程.

解: 此椭圆抛物面的方程应为

$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 2x,$$

再以 A,B 点的坐标代入, 解得 $b=\sqrt{2},\,c=2\sqrt{2},\,$ 因此所求椭圆抛物面的方程为

$$\frac{y^2}{2} + \frac{z^2}{8} = 2x.$$

3. 求一个二次曲面的方程, 使这个二次曲面通过两条抛物线

解: 这个二次曲面可能是椭圆抛物面或双曲抛物面,根据已知条件,它的方程具有以下形式:

$$\frac{x^2}{a} + \frac{z^2}{b} = 2y,$$

以 z=0 代入, 求得 a=3, 以 x=0 代入, 求得 b=-2, 因此这是双曲抛曲面, 其方程为

$$\frac{x^2}{3} - \frac{z^2}{2} = 2y.$$

4. 当 k 取各种实数值时, 方程

$$(k-3)x^2 + y^2 = (k+3)z$$

§ 6 二次曲面 · 23 ·

表示什么曲面?

解: 当 k < -3 或 -3 < x < 3 时, 方程表示双曲抛物面; 当 k = -3 时, 方程表示两个相交平面; 当 k = 3 时, 方程表示抛物柱面; 当 k > 3 时, 方程表示椭圆抛物面.

5. 已知椭圆抛物面 $Ax^2 + By^2 = 2z$ 通过圆

$$\begin{cases} x^2 + y^2 + z^2 = 2x + 2z, \\ x = z, \end{cases}$$

试求其方程.

解: 圆方程可以同解变形为

$$\begin{cases} 2x^2 + y^2 = 4z, \\ x = z, \end{cases}$$

而原曲面被平面 x = z 截得的曲线是

$$\begin{cases} Ax^2 + By^2 = 2z, \\ x = z. \end{cases}$$

比较后即得 $A=1, B=\frac{1}{2}$, 因此椭圆抛物面的方程为

$$x^2 + \frac{y^2}{2} = 2z.$$

6. 已知椭圆抛物面 $x^2 + \frac{y^2}{2} = 2z$ 和平面 x = kz 的交线是一个圆. 试求此圆的半径.

解: 此交线也可表示为

$$\begin{cases} \left(x - \frac{1}{k}\right)^2 + \frac{y^2}{2} = \frac{1}{k^2}, \\ x = kz. \end{cases}$$

这里第一个方程是交线到 xOy 平面的投影柱面,它是一个椭圆柱面,其对称轴是直线 $\begin{cases} x=rac{1}{k}, \\ y=0. \end{cases}$ 这条直线与平面 x=kz 的交点 $\left(rac{1}{k},0,rac{1}{k^2}
ight)$ 就是交线圆的

圆心. 现在我们又可将交线的方程同解变形为

$$\begin{cases} \left(x - \frac{1}{k}\right)^2 + y^2 + k^2 \left(z - \frac{1}{k^2}\right)^2 = \frac{2}{k^2}, \\ x = kz. \end{cases}$$

从这个方程组可以看出,要使交线成为一个以 $\left(\frac{1}{k},0,\frac{1}{k^2}\right)$ 为圆心的圆,必须且 只须 $k^2 = 1$. 这时圆的半径等于 $\sqrt{2}$.

7. 试验证椭圆抛物面与双曲抛物面的参数方程可分别写为

$$\begin{cases} x = a(u+v), \\ y = b(u-v), \\ z = u^2 + v^2 \end{cases} \qquad \Rightarrow \begin{cases} x = a(u+v), \\ y = b(u-v), \\ z = 2uv, \end{cases}$$
 (u, v) 为参数).

证明: 椭圆抛物面的方程是 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$, 作变量替换

$$\begin{cases} x = a(u+v), \\ y = b(u-v), \end{cases}$$

不难看出这个变换是可逆的、代入方程后可得 $z = u^2 + v^2$. 由于曲面上的点被 x,y 的值唯一确定, 因此也被 u,v 唯一确定. 说明这确是曲面的参数方程. 类似 地可以得到双曲抛物面的参数方程.

8. 已知一抛物线
$$\begin{cases} x^2 = 2z, \\ y = 0 \end{cases}$$
 平行移动, 且顶点在抛物线
$$\begin{cases} y^2 = -4z, \\ x = 0 \end{cases}$$

8. 已知一抛物线
$$\begin{cases} x^2 = 2z, \\ y = 0 \end{cases}$$
 平行移动,且顶点在抛物线 $\begin{cases} y^2 = -4z, \\ x = 0 \end{cases}$ 上,试求其轨迹方程. 解:因为抛物线 $\begin{cases} y^2 = -4z, \\ x = 0 \end{cases}$ 在 yOz 平面上,设抛物线 $\begin{cases} x^2 = 2z, \\ y = 0 \end{cases}$ 平行移动之后扫出的曲面为 S . 任取其上一点 (X,Y,Z) ,则平面 $y = Y$ 与曲面

S 的截口应与抛物线 $\begin{cases} x^2 = 2z, \\ y = 0 \end{cases}$ 相似,只是顶点在 $\left(0, Y, -\frac{Y^2}{4}\right)$ 处. 因此 点 (X,Y,Z) 应该满足方程

$$X^2 = 2\left(Z - \left(-\frac{Y^2}{4}\right)\right),\,$$

即 $X^2 - \frac{Y^2}{2} = 2Z$, 所以轨迹方程为 $x^2 - \frac{y^2}{2} = 2z$, 是双曲抛物面.

证明: 设有直线

$$\begin{cases} x = x_0 + lt, \\ y = y_0 + mt, \\ z = z_0 + nt, \end{cases}$$

§7 直纹面 · 25 ·

它要落在椭圆抛物面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ 上当且仅当 $\frac{(x_0 + lt)^2}{a^2} + \frac{(y_0 + mt)^2}{b^2} = 2(z_0 + nt) \tag{*}$

对任意的 t 成立,但上式是关于 t 的二次方程,且 t^2 的系数是 $\frac{l^2}{a^2} + \frac{m^2}{b^2}$,若它不等于 0,则 (*) 式不可能对任意的 t 成立,故只有 l=m=0,这时 t 的一次项系数为 n,也只能是 0,不可能.

§7 直纹面

1. 求双曲抛物面 $x^2-y^2=z$ 上过点 (1,-1,0) 的两条直母线方程以及它们的交角 α .

解: 设其两族直母线为

$$\begin{cases} x+y=\mu, \\ \mu x - \mu y = z \end{cases} \quad \text{ fill } \begin{cases} x-y=\nu, \\ \nu x + \nu y = z, \end{cases}$$

它们通过点 (1,-1,0), 所以 $\mu=0$, $\nu=2$, 推得直母线方程为

$$\frac{x}{1} = \frac{y}{-1} = \frac{z}{0}$$
 π $\frac{x-1}{1} = \frac{y+1}{1} = \frac{z}{4}$

交角满足 $\cos \alpha = 0$, 即 $\alpha = \frac{\pi}{2}$.

2. 证明: 双曲抛物面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z \ (a \neq b)$ 上的互相正交的直母线的交点的轨迹是一条双曲线.

证明:由于同族的任意两条直母线总是异面直线,没有交点,因此只需考虑异族的直母线.不妨设

相互垂直, 两直线的方向向量分别为 $\left(-\frac{1}{b}, \frac{1}{a}, -\frac{2\mu}{ab}\right)$ 和 $\left(\frac{1}{b}, \frac{1}{a}, \frac{2\nu}{ab}\right)$, 因它们垂直, 所以 $4\mu\nu=a^2-b^2$.

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 4\mu\nu = a^2 - b^2, \\ z = 2\mu\nu = \frac{a^2 - b^2}{2}, \end{cases}$$

当 $\mu = \nu$ 时, 交点满足

$$\begin{cases} x = 2a\mu, \\ z = 2\mu^2, \\ y = 0. \end{cases}$$

不论哪一种情形, 都说明交点在双曲线

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = a^2 - b^2, \\ z = \frac{a^2 - b^2}{2}, \end{cases} \quad \Rightarrow \quad \begin{cases} x^2 = 2a^2z, \\ z = 0, \end{cases}$$

上.

3. 试证:

$$2x^2 + y^2 - z^2 + 3xy + xz - 6z = 0$$

是直纹面, 并求出其上过点 M(1,1,1) 的直母线方程.

解: 原方程可化为

$$(x+y+z)(2x+y-z) = 6z,$$

则其直母线方程为

$$\begin{cases} \lambda(x+y+z) = 6z, \\ 2x+y-z = \lambda \end{cases} \quad \overrightarrow{\mathbb{R}} \quad \begin{cases} \mu(2x+y-z) = 6z, \\ x+y+z = \mu, \end{cases}$$

其中 λ, μ 为参数. 又因不论 λ, μ 取何值, 总有

$$\operatorname{rank}\left(\begin{array}{ccc} \lambda & \lambda & \lambda - 6 \\ 2 & 1 & -1 \end{array}\right) = 2, \qquad \operatorname{rank}\left(\begin{array}{ccc} 2\mu & \mu & 6 - \mu \\ 1 & 1 & 1 \end{array}\right) = 2,$$

说明它们确实表示两个直线族. 所以曲面是直纹面.

考虑过点 (1,1,1) 的直母线. 将坐标代入母线方程, 可得 $\lambda=2,\,\mu=3$. 因此两条直母线为

$$\begin{cases} x + y - 2z = 0, \\ 2x + y - z - 2 = 0 \end{cases}$$

$$\begin{cases} 2x + y - 3z = 0, \\ x + y + z - 3 = 0. \end{cases}$$

4. 求与三直线

$$L_1: \begin{cases} y-1=0, \\ x+2z=0, \end{cases}$$
 $L_2: \begin{cases} y-z=0, \\ x-2=0, \end{cases}$ $L_3: \frac{x}{2} = \frac{y+1}{0} = \frac{z}{1}$

§7 直纹面 · 27 ·

相交的动直线产生的曲面方程.

解: 设动直线与 L_1, L_3 的交点为 (-2u, 1, u) 与 (2v, -1, v) (其中 u, v 为参数), 所以动直线的方程为

$$\frac{x+2u}{2(u+v)} = \frac{y-1}{-2} = \frac{z-u}{v-u}.$$
 (*)

它应与直线 L_2 相交. 由于点 (2,0,0) 在 L_2 上,且 L_2 的方向向量为 (0,1,1),因 此根据直线相交的条件,必须

$$\begin{vmatrix} 0 & 2(u+v) & -2(1+u) \\ 1 & -2 & 1 \\ 1 & v-u & u \end{vmatrix} = 0,$$

解得 uv = -1. 而从 (*) 式可以得到

$$\begin{cases} u = \frac{2z - x}{2(1+y)}, \\ v = \frac{-x - 2z}{2(y-1)}. \end{cases}$$

因此动直线所扫过的曲面方程为

$$\frac{x^2}{4} + y^2 - z^2 = 1.$$

5. 证明命题 7.3.

证明: 设单叶双曲面的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. 它的两条异族直母线为

$$\begin{cases} \mu_0 \left(\frac{x}{a} + \frac{z}{c} \right) + \nu_0 \left(1 + \frac{y}{b} \right) = 0, \\ \mu_0 \left(1 - \frac{y}{b} \right) + \nu_0 \left(\frac{x}{a} - \frac{z}{c} \right) = 0 \end{cases} \qquad \not \mathbb{R} \begin{cases} \mu_1 \left(\frac{x}{a} + \frac{z}{c} \right) + \nu_1 \left(1 - \frac{y}{b} \right) = 0, \\ \mu_1 \left(1 + \frac{y}{b} \right) + \nu_1 \left(\frac{x}{a} - \frac{z}{c} \right) = 0. \end{cases}$$

改写成一般方程

$$\begin{cases} \frac{\mu_0}{a}x + \frac{\nu_0}{b}y + \frac{\mu_0}{c}z + \nu_0 = 0, \\ \frac{\nu_0}{a}x - \frac{\mu_0}{b}y - \frac{\nu_0}{c}z + \mu_0 = 0 \end{cases} \not \stackrel{R}{\nearrow} \begin{cases} \frac{\mu_1}{a}x - \frac{\nu_1}{b}y + \frac{\mu_1}{c}z + \nu_1 = 0, \\ \frac{\nu_1}{a}x + \frac{\mu_1}{b}y - \frac{\nu_1}{c}z + \mu_1 = 0. \end{cases}$$

利用第四章 §3 未尾关于用一般方程表示的两条直线的相关位置的结论, 由于上述联立线性方程组的增广矩阵的行列式

$$\begin{vmatrix} \frac{\mu_0}{g} & \frac{\nu_0}{b} & \frac{\mu_0}{c} & -\nu_0 \\ \frac{g_0}{a} & -\frac{\mu_0}{b} & -\frac{\nu_0}{c} & -\mu_0 \\ \frac{g_1}{a} & -\frac{g_1}{b} & \frac{g_1}{c} & -\nu_1 \\ \frac{g_1}{a} & \frac{g_1}{b} & -\frac{g_1}{c} & -\mu_1 \end{vmatrix} = 0,$$

说明增广矩阵的秩 < 4, 因此这两条直母线一定共面. 设双曲抛物面的方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$. 它的两条异族直母线为

$$\begin{cases} \left(\frac{x}{a} + \frac{y}{b}\right) + 2\mu = 0, \\ \mu\left(\frac{x}{a} - \frac{y}{b}\right) + z = 0 \end{cases} \not \not b \begin{cases} \nu\left(\frac{x}{a} + \frac{y}{b}\right) + z = 0, \\ \left(\frac{x}{a} - \frac{y}{b}\right) + 2\nu = 0. \end{cases}$$

由上述 4 个方程联立得到的线性方程组的增广矩阵为

$$\tilde{A} = \begin{pmatrix} \frac{1}{a} & \frac{1}{b} & 0 & -2\mu \\ \frac{\mu}{a} & -\frac{\mu}{b} & 1 & 0 \\ \frac{\nu}{a} & \frac{\nu}{b} & 1 & 0 \\ \frac{1}{a} & -\frac{1}{b} & 0 & -2\nu \end{pmatrix},$$

计算得 $|\tilde{A}| = 0$, 说明 rank $\tilde{A} < 4$. 另一方面不难看出 rank $A = 3 = \operatorname{rank} \tilde{A}$, 说明这两条直母线相交.

6. 证明命题 7.4.

证明: 设单叶双曲面的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. 它的两条同族直母线为

$$\begin{cases} \mu_0 \left(\frac{x}{a} + \frac{z}{c}\right) + \nu_0 \left(1 + \frac{y}{b}\right) = 0, \\ \mu_0 \left(1 - \frac{y}{b}\right) + \nu_0 \left(\frac{x}{a} - \frac{z}{c}\right) = 0 \end{cases} \not \not b \begin{cases} \mu_1 \left(\frac{x}{a} + \frac{z}{c}\right) + \nu_1 \left(1 + \frac{y}{b}\right) = 0, \\ \mu_1 \left(1 - \frac{y}{b}\right) + \nu_1 \left(\frac{x}{a} - \frac{z}{c}\right) = 0. \end{cases}$$

由上述 4 个方程联立得到的线性方程组的增广矩阵的行列式为

$$\begin{vmatrix} \frac{\mu_0}{a} & \frac{\nu_0}{b} & \frac{\mu_0}{c} & -\nu_0 \\ \frac{\mu_0}{a} & -\frac{\mu_0}{b} & -\frac{\nu_0}{c} & -\mu_0 \\ \frac{\mu_1}{a} & \frac{\nu_1}{b} & \frac{\mu_1}{c} & -\nu_1 \\ \frac{\mu_1}{a} & -\frac{\mu_1}{b} & -\frac{\nu_1}{c} & -\mu_1 \end{vmatrix} = \frac{4(\mu_0\nu_1 - \nu_0\mu_1)^2}{abc}.$$

当这两条直母线不重合时, 一定有 $\mu_0: \nu_0 \neq \mu_1: \nu_1$, 因此增广矩阵的秩等于 4, 这两条直线异面.

设双曲抛物面的方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$. 它的两条同族直母线为

$$\begin{cases} \left(\frac{x}{a} + \frac{y}{b}\right) + 2\mu_0 = 0, \\ \mu_0 \left(\frac{x}{a} - \frac{y}{b}\right) + z = 0 \end{cases} \not \not b \begin{cases} \left(\frac{x}{a} + \frac{y}{b}\right) + 2\mu_1 = 0, \\ \mu_1 \left(\frac{x}{a} - \frac{y}{b}\right) + z = 0, \end{cases}$$

§7 直纹面 · 29 ·

由上述 4 个方程联立得到的线性方程组的增广矩阵的行列式为

$$\begin{vmatrix} \frac{1}{a} & \frac{1}{b} & 0 & -2\mu_0 \\ \frac{\mu_0}{a} & -\frac{\mu_0}{b} & 1 & 0 \\ \frac{1}{a} & \frac{1}{b} & 0 & -2\mu_1 \\ \frac{\mu_1}{a} & -\frac{\mu_1}{b} & 1 & 0 \end{vmatrix} = \frac{4(\mu_0 - \mu_1)^2}{ab}.$$

当 $\mu_0 \neq \mu_1$ 时, 增广矩阵的行列式不等于, 因此它的秩等于 4. 说明这两条直母线异面.

对于双曲抛物面的一族直母线

$$\begin{cases} \left(\frac{x}{a} + \frac{y}{b}\right) + 2\mu = 0, \\ \mu\left(\frac{x}{a} - \frac{y}{b}\right) + z = 0, \end{cases}$$

它的方向向量为 $\left(\frac{1}{a}, \frac{1}{b}, 0\right) \times \left(\frac{\mu}{a}, -\frac{\mu}{b}, 1\right) = \left(\frac{1}{b}, -\frac{1}{a}, -\frac{2\mu}{ab}\right)$, 所以这族直线都平行于平面 bx + ay = 0.

同理可知, 另一族直母线

$$\begin{cases} \nu\left(\frac{x}{a} + \frac{y}{b}\right) + z = 0, \\ \left(\frac{x}{a} - \frac{y}{b}\right) + 2\nu = 0 \end{cases}$$

都平行于平面 bx - ay = 0.

*7. 求单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ $(c^2 < a^2 + b^2)$ 上的互相垂直的直母线的交点轨迹.

解: 显然, 相互垂直的直母线必不同族. 设为

$$\begin{cases} \omega\left(\frac{x}{a} + \frac{z}{c}\right) = \mu\left(1 + \frac{y}{b}\right), \\ \mu\left(\frac{x}{a} - \frac{z}{c}\right) = \omega\left(1 - \frac{y}{b}\right) \end{cases}$$
 $\forall \Pi$
$$\begin{cases} \theta\left(\frac{x}{a} + \frac{z}{c}\right) = \nu\left(1 - \frac{y}{b}\right), \\ \nu\left(\frac{x}{a} - \frac{z}{c}\right) = \theta\left(1 + \frac{y}{b}\right), \end{cases}$$

其中, ω , μ 不同时为零, θ , ν 也不同时为零. 这两条直线的方向分别为 $\left(\frac{\mu^2-\omega^2}{bc},\frac{2\mu\omega}{ac},\frac{\mu^2+\omega^2}{ab}\right)$ 和 $\left(\frac{\theta^2-\nu^2}{bc},\frac{2\nu\theta}{ac},-\frac{\nu^2+\theta^2}{ab}\right)$. 因它们垂直, 就

$$\frac{(\mu^2 - \omega^2)(\theta^2 - \nu^2)}{b^2 c^2} + \frac{4\mu\omega\nu\theta}{a^2 c^2} - \frac{(\mu^2 + \omega^2)(\nu^2 + \theta^2)}{a^2 b^2} = 0.$$

化简后得

$$a^{2}(\omega\theta + \mu\nu)^{2} + b^{2}(\mu\theta - \omega\nu)^{2} + c^{2}(\mu\nu - \omega\theta)^{2} = (a^{2} + b^{2} - c^{2})(\mu\theta + \omega\nu)^{2}.$$

再从方程组解得交点为

$$\begin{cases} x = \frac{\mu\nu + \omega\theta}{\mu\theta + \omega\nu}a, \\ y = \frac{\omega\nu - \mu\theta}{\mu\theta + \omega\nu}b, \\ z = \frac{\mu\nu - \omega\theta}{\mu\theta + \omega\nu}c. \end{cases}$$

可知 $x^2 + y^2 + z^2 = a^2 + b^2 - c^2$. 故交点轨迹为

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \\ x^2 + y^2 + z^2 = a^2 + b^2 - c^2. \end{cases}$$

§8 曲面的交线与曲面围成的区域

- **1.** 写出球面 $x^2 + y^2 + z^2 = R^2$ 与
- (1) 柱面 $x^2 + y^2 = a^2 (R > a > 0);$
- (2) 锥面 $x^2 + y^2 = z^2 \tan^2 \theta \ (0 < \theta < \pi)$

交线的参数方程

解: (1)
$$\begin{cases} x = a\cos\theta, \\ y = a\sin\theta, \\ z = \sqrt{R^2 - a^2}, \end{cases}$$
 (0 \le \theta < 2\pi) 和
$$\begin{cases} x = a\cos\theta, \\ y = a\sin\theta, \\ z = -\sqrt{R^2 - a^2}, \end{cases}$$
 (0 \le \text{

 $\theta < 2\pi$):

(2)
$$\begin{cases} x = R \sin \theta \cos \varphi, \\ y = R \sin \theta \sin \varphi, \\ z = R \cos \theta, \end{cases}$$
 (0 \le \varphi < 2\pi) \fm \big| \bigg\{ x = R \sin \theta \cos \varphi, \quad (0 \le \varphi < 2\pi) \fm \big| \bigg\{ z = R \sin \theta \sin \varphi, \quad (0 \le \varphi \le \varphi, \quad (0 \le \varphi) \fm \bigg\{ z = R \cos \theta, \quad \quad \quad \text{ (0 \le \varphi)} \quad \qq \quad \quad

 $\varphi < 2\pi$).

2. 试确定 m 为何值时平面 x+mz-1=0 与单叶双曲面 $x^2+y^2-z^2=1$ 相交成: (1) 椭圆; (2) 双曲线.

 \mathbf{m} : 当 m=0 时交线是一对相交直线

$$\begin{cases} y^2 - z^2 = 0, \\ x = 1. \end{cases}$$

因此设 $m \neq 0$, 此时交线为

$$\begin{cases} x^2 + y^2 - \frac{1}{m^2} (1 - x)^2 = 1, \\ x + mz = 1, \end{cases}$$

可化简为

$$\begin{cases} \frac{x^2}{m^4} + \frac{y^2}{m^2} = 1, \\ \frac{m^4}{(m^2 - 1)^2} + \frac{m^2}{m^2 - 1} \end{cases}$$

$$x + mz = 1.$$

因此, 当 |m| > 1 时, 交线是椭圆; 当 |m| < 1 且 $m \neq 0$ 时, 交线是双曲线.

3. 画出下列曲面所围成的空间体的图形:

(1)
$$x = 0$$
, $y = 0$, $z = 0$, $x + 2y + z = 1$;

解: 这是一个四面体.

(2) y = 0, z = 0, 3x + y = 6, 3x + 2y = 12, x + y + z = 6;

解:四面体被一个柱面截得的立体.

(3) z = xy, x + y = 1, z = 0;

解:三棱柱被双曲抛物面截得的立体.

(4) x = 0, y = 0, x + y = 1, $y^2 + z^2 = 1$;

解:三棱柱被圆柱横截而得的立体.

(5) $z = x^2 + y^2$, $z = \sqrt{x^2 + y^2}$;

解: 旋转抛物面被圆锥截得的空间体.

第 3 题 (6)

第3题(5)

(6)
$$x^2 + y^2 = az$$
, $z = 2a - \sqrt{x^2 + y^2}$ $(a > 0)$.

解:下面半个是旋转抛物面,上面半个是圆锥面.

4. 画出下列空间体的图形:

(1)
$$\Omega = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1 - x, 0 \le z \le x + y\};$$

解: 以原点为顶点的一个四棱锥.

(2) $\Omega = \{(x, y, z) \mid 0 \le x \le y \le \sqrt{3}x, 0 \le z \le 1 - x^2 - y^2\};$

解: 旋转抛物面在第一卦限内被两个相交平面截出的立体.

(3)
$$\Omega = \{(x, y, z) \mid x^2 + y^2 + (z - a)^2 \le a^2, x^2 + y^2 \le z^2\};$$

解:下面半个是圆锥面,上面半个是球面.

(4)
$$\Omega = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le x^2 + y^2\};$$

解:四棱柱被双曲抛物面截得的立体.

(5)
$$\Omega = \{(x, y, z) \mid 0 \le x, 0 \le y, \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1, 0 \le z \le xy\};$$

解: 椭圆柱面在第一卦限内被双曲抛物面截得的立体.

(6)
$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le r^2, x^2 + y^2 + z^2 \le 2rz\};$$

解: 两个有相同半径的球面相截而得的立体.

(7)
$$\Omega = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le \sqrt{1 - x^2}, \sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2}\};$$

解: 四分之一圆锥被球面截得的立体.

- 5. 求下列各空间体在 3 个坐标平面上的投影边界的方程:
- (1) Ω 由 x = 1, x = 2, z = 0, y = x 及 z = y 所围成;

解: Ω 是以原点为顶点的三棱台. Ω 在 xOy 平面上的投影边界由 4 条线段构成:

$$\begin{cases} x = 1 \\ z = 0, \end{cases} (0 \le y \le 1), \quad \begin{cases} x = 2 \\ z = 0, \end{cases} (0 \le y \le 2),$$
$$\begin{cases} y = 0 \\ z = 0, \end{cases} (1 \le x \le 2), \quad \begin{cases} x = y \\ z = 0, \end{cases} (1 \le x \le 2).$$

 Ω 在 xOz 平面上的投影边界由 4 条线段构成:

$$\begin{cases} x = 1 \\ y = 0, \end{cases} (0 \le z \le 1), \quad \begin{cases} x = 2 \\ y = 0, \end{cases} (0 \le z \le 2),$$

$$\begin{cases} z = 0 \\ y = 0, \end{cases} (1 \le x \le 2), \quad \begin{cases} x = z \\ y = 0, \end{cases} (1 \le x \le 2).$$

 Ω 在 yOz 平面上的投影边界由 3 条线段构成:

$$\begin{cases} z = 0 \\ x = 0, \end{cases} (0 \le y \le 2), \quad \begin{cases} y = 2 \\ x = 0, \end{cases} (0 \le z \le 2), \quad \begin{cases} z = y \\ x = 0, \end{cases} (1 \le z \le 2).$$

(2) Ω 由 $y = \sqrt{x}$, y = 0, z = 0, $x + z = \frac{\pi}{2}$ 所围成;

解: Ω 是抛物柱面被三棱柱横截而得. Ω 在 xOy 平面上的投影边界由 2 条 直线段和—条抛物线段构成:

$$\begin{cases} y = 0 \\ z = 0, \end{cases} \begin{cases} x = \frac{\pi}{2} \\ z = 0, \end{cases} \begin{cases} x = y^2 \end{cases} 0 \le x \le \frac{\pi}{2}, \\ z = 0, \end{cases} 0 \le y \le \frac{\sqrt{2\pi}}{2}.$$

 Ω 在 xOz 平面上的投影边界由 3 条线段构成:

$$\begin{cases} x = 0 \\ y = 0, \end{cases} \begin{cases} z = 0 \\ y = 0, \end{cases} \begin{cases} x + z = \frac{\pi}{2} \\ y = 0, \end{cases} 0 \le x \le \frac{\pi}{2},$$

 Ω 在 yOz 平面上的投影边界由 2 条直线段和一条抛物线段构成:

$$\begin{cases} y = 0 \\ x = 0, \end{cases} \begin{cases} z = 0 \\ x = 0, \end{cases} \begin{cases} y = \sqrt{\frac{\pi}{2} - z} \end{cases} \quad 0 \le z \le \frac{\pi}{2}, \\ x = 0, \end{cases} \quad 0 \le y \le \frac{\sqrt{2\pi}}{2}.$$

(3) Ω 由 $x^2+y^2-2z=0$, $x^2+y^2-2x=0$ 和 z=0 所围成; 解: Ω 是由旋转抛物面、圆柱面以及坐标平面 z=0 所围成的.

 Ω 在 xOy 平面上的投影边界是一个圆:

$$\begin{cases} (x-1)^2 + y^2 = 1, \\ z = 0. \end{cases}$$

 Ω 在 xOz 平面上的投影边界由 3 条直线段构成:

$$\begin{cases} z = 0 \\ y = 0, \end{cases} \begin{cases} x = 2 \\ y = 0, \end{cases} \begin{cases} x = z \\ y = 0, \end{cases} 0 \le x \le 2,$$

 Ω 在 yOz 平面上的投影边界由 3 条直线段和一个半圆构成:

$$\begin{cases} y = -1 \\ x = 0, \end{cases} (0 \le z \le 1), \quad \begin{cases} y = 1 \\ x = 0, \end{cases} (0 \le z \le 1),$$

$$\begin{cases} z = 0 \\ x = 0, \end{cases} (-1 \le y \le 1), \quad \begin{cases} z = 1 + \sqrt{1 - y^2} \\ x = 0, \end{cases} (-1 \le y \le 1).$$

(4) $\Omega = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1 - x, 0 \le z \le 4xy\};$

 \mathbf{m} : Ω 是三棱柱被双曲抛物面相截而得. Ω 在 xOy 平面上的投影边界由 3 条直线段构成:

$$\begin{cases} y = 0 \\ z = 0, \end{cases} \begin{cases} x = 0 \\ z = 0, \end{cases} \begin{cases} x + y = 1 \\ z = 0, \end{cases} 0 \le x \le 1, \\ z = 0, \end{cases} 0 \le y \le 1.$$

 Ω 在 xOz 平面上的投影边界由 1 条直线段一条抛物线段构成:

$$\begin{cases} z = 0 \\ y = 0, \end{cases} \begin{cases} z = 4x(1-x) \\ y = 0, \end{cases} 0 \le x \le 1.$$

 Ω 在 yOz 平面上的投影边界也由 1 条直线段一条抛物线段构成:

$$\begin{cases} z = 0 \\ x = 0, \end{cases} \begin{cases} z = 4y(1 - y) \\ x = 0, \end{cases} 0 \le y \le 1.$$

第5题(5)

(5)
$$\Omega = \{(x, y, z) \mid 0 \le x \le 4, 0 \le y \le 4 - x, 0 \le z \le \frac{1}{4}(x^2 + y^2 + 1)\};$$

 \mathbf{M} : Ω 是三棱柱被双曲抛物面相截而得. Ω 在 xOy 平面上的投影边界由 3 条直线段构成:

$$\begin{cases} y = 0 \\ z = 0, \end{cases} \begin{cases} x = 0 \\ z = 0, \end{cases} \begin{cases} x + y = 4 \\ z = 0, \end{cases} 0 \le x \le 4,$$

 Ω 在 xOz 平面上的投影边界由 3 条直线段一条抛物线段构成:

$$\begin{cases} x = 0 \\ y = 0, \end{cases} \left(0 \le z \le \frac{17}{4} \right), \quad \begin{cases} x = 4 \\ y = 0, \end{cases} \left(0 \le z \le \frac{17}{4} \right),$$

$$\begin{cases} z = 0 \\ y = 0, \end{cases} (0 \le x \le 4), \quad \begin{cases} 4z = 2x^2 - 8x + 17 \\ y = 0, \end{cases} (0 \le x \le 4).$$

 Ω 在 yOz 平面上的投影边界由 3 条直线段一条抛物线段构成:

$$\begin{cases} y = 0 \\ x = 0, \end{cases} \left(0 \le z \le \frac{17}{4} \right), \quad \begin{cases} y = 4 \\ x = 0, \end{cases} \left(0 \le z \le \frac{17}{4} \right), \\ \begin{cases} z = 0 \\ x = 0, \end{cases} (0 \le y \le 4), \quad \begin{cases} 4z = 2y^2 - 8y + 17 \\ x = 0, \end{cases} (0 \le y \le 4). \end{cases}$$

第八章 线性变换

§1 线性空间的基变换与坐标变换

1. 设 V 为 n 维线性空间, $\eta_1, \eta_2, \cdots, \eta_n$ 为 V 的一个基.

$$\alpha_1 = \eta_1 + \eta_2 + \dots + \eta_n, \ \alpha_2 = \eta_2 + \dots + \eta_n, \ \dots, \ \alpha_n = \eta_n$$

- (1) 证明: $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为 V 的一个基;
- (2) 求由基 $\eta_1, \eta_2, \dots, \eta_n$ 到基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的过渡矩阵;
- (3) 设 α 在基 $\eta_1, \eta_2, \dots, \eta_n$ 下的坐标为 (a_1, a_2, \dots, a_n) , 求 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标.

解: (1), (2) 因为

$$(\alpha_1, \alpha_2, \cdots, \alpha_n) = (\eta_1, \eta_2, \cdots, \eta_n) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

设

$$T = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

则 T 可逆, 从而 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V 的基, 且由基 $\eta_1, \eta_2, \dots, \eta_n$ 到基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的过渡矩阵为 T.

(3) 设

$$\alpha = (\eta_1, \eta_2, \cdots, \eta_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix},$$

则

$$\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n) A^{-1} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix},$$

所以 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标为 $(a_1, a_2 - a_1, a_3 - a_2, \dots, a_n - a_{n-1})$.

2. 在 K^4 中, 求由基 $\xi_1, \xi_2, \xi_3, \xi_4$ 到基 $\eta_1, \eta_2, \eta_3, \eta_4$ 的过渡矩阵, 并求向量 α 在指定基下的坐标.

$$\begin{split} &(1)\ \xi_1=(1,0,0,0), \xi_2=(0,1,0,0), \xi_3=(0,0,1,0), \xi_4=(0,0,0,1);\\ &\eta_1=(2,1,-1,1), \eta_2=(0,-1,1,0), \eta_3=(-1,-1,2,1), \eta_4=(2,1,1,3);\\ &\alpha=(x_1,x_2,x_3,x_4)\ \ \mbox{\'et}\ \eta_1,\eta_2,\eta_3,\eta_4\ \mbox{\citil{Figures}}\ \mbox{\hbox{od}}\ \mbox{\'et}\ \mbox{\citil{Figures}}\ \mbox$$

(2)
$$\xi_1$$
=(1,2,-1,0), ξ_2 =(1,-1,1,1), ξ_3 =(-1,2,1,1), ξ_4 =(-1,-1,0,1);
 η_1 = (2,1,0,1), η_2 = (0,1,2,2), η_3 = (-3,-1,-1,1), η_4 = (1,3,1,2);
 α = (1,0,0,0) 在 ξ_1 , ξ_2 , ξ_3 , ξ_4 下的坐标;

(3)
$$\xi_1$$
=(1,1,1,1), ξ_2 =(1,1,-1,-1), ξ_3 =(1,-1,1,-1), ξ_4 =(1,-1,-1,1); η_1 = (1,1,0,1), η_2 = (2,1,2,1), η_3 = (1,1,1,0), η_4 = (0,1,-1,-1); α = (1,0,0,-1) 在 η_1 , η_2 , η_3 , η_4 下的坐标.

$$\mathbf{M}: \ (1) \ T = \left(\begin{array}{cccc} 2 & 0 & -1 & 2 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right),$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = T^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & -5 & -5 & 4 \\ 2 & 0 & 2 & -2 \\ -2 & -4 & -4 & 4 \\ 1 & 3 & 3 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -x_1 - 5x_2 - 5x_3 + 4x_4 \\ 2x_1 + 2x_3 - 2x_4 \\ -2x_1 - 4x_2 - 4x_3 + 4x_4 \\ x_1 + 3x_2 + 3x_3 - 2x_4 \end{pmatrix}.$$

$$(2) \ T = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{pmatrix}, \ \alpha \ \text{\texttt{\textbf{a}}} \ \texttt{\texttt{\textbf{x}}} \ \xi_1, \xi_2, \xi_3, \xi_4 \ \text{\texttt{\textbf{F}}} \ \text{\texttt{\textbf{o}}} \ \text{\texttt{\textbf{w}}} \ \text{\texttt{\textbf{x}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{y}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{A}}} \ \text{\texttt{\textbf{T}}} \ \text{\texttt{\textbf{o}}} \ \text{\texttt{\textbf{w}}} \ \text{\texttt{\textbf{x}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{A}}} \ \text{\texttt{\textbf{T}}} \ \text{\texttt{\textbf{o}}} \ \text{\texttt{\textbf{w}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{A}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\texttt{\textbf{b}}} \ \text{\texttt{\textbf{a}}} \ \text{\textbf{\textbf{a}}} \ \text{\texttt{\textbf{a}}} \ \text{\textbf{\textbf{a}}} \ \text{$$

・40・ 第八章 线性变换

$$(3) T = \frac{1}{4} \begin{pmatrix} 3 & 6 & 3 & -1 \\ 1 & 0 & 1 & 3 \\ -1 & 2 & 1 & -1 \\ 1 & 0 & -1 & -1 \end{pmatrix}, \xi \pm \bar{x} + \bar{y}_1, \eta_2, \eta_3, \eta_4 \text{ Fine which } \begin{pmatrix} -2 \\ 4 \\ -5 \\ 3 \end{pmatrix}.$$

3. 继上题 (2), 求一向量, 它在基 $\xi_1, \xi_2, \xi_3, \xi_4$ 下的坐标是在基 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的坐标的 2 倍.

解: (0,4,2,6).

4. 设 $K[x]_n$ 表示系数在数域 K 中次数小于 n 的多项式组成的线性空间.

$$f_i(x) = (x - a_1) \cdots (x - a_{i-1})(x - a_{i+1}) \cdots (x - a_n), \quad i = 1, \cdots, n,$$

其中 $a_i \in K$ $(i = 1, 2, \dots, n)$ 为互不相同的数.

- (1) 证明: $f_1(x), f_2(x), \dots, f_n(x)$ 组成 $K[x]_n$ 的一个基;
- (2) 取 a_1, a_2, \dots, a_n 为全体 n 次单位根 $1, \varepsilon_1, \dots, \varepsilon_{n-1}$, 求由基 $1, x, x^2, \dots, x^{n-1}$ 到基 $f_1(x), f_2(x), \dots, f_n(x)$ 的过渡矩阵.

解: (1) 只要证 $f_1(x), f_2(x), \cdots, f_n(x)$ 线性无关即可. 设

$$k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x) = 0,$$

分别以 $x = a_i$ 代入上式, 得

$$k_i f_i(a_i) = 0.$$

因为 $f_i(a_i) \neq 0$, 所以 $k_i = 0$, $i = 1, 2, \dots, n$. 故 $f_1(x), f_2(x), \dots, f_n(x)$ 线性 无关. 又因 $\dim K[x]_n = n$, 可知 $f_1(x), f_2(x), \dots, f_n(x)$ 为 $K[x]_n$ 的基.

(2) 设全部 n 次单位根是 $1, \varepsilon_1, \cdots, \varepsilon_{n-1}$. 则

$$f_i(x) = \frac{x^n - 1}{x - \varepsilon_i} = \frac{x^n - \varepsilon_i^n}{x - \varepsilon_i} = x^{n-1} + \varepsilon_i x^{n-2} + \varepsilon_i^2 x^{n-3} + \dots + \varepsilon_i^{n-1},$$

故所求过渡矩阵为

$$\begin{pmatrix} 1 & \varepsilon_1^{n-1} & \cdots & \varepsilon_{n-1}^{n-1} \\ 1 & \varepsilon_1^{n-2} & \cdots & \varepsilon_{n-1}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

5. 定义整系数多项式

$$\langle x \rangle^0 = 1, \langle x \rangle = x, \langle x \rangle^k = x(x-1)(x-2)\cdots(x-k+1), \quad k > 1$$

(1) 求 $K[x]_5$ 中由基 $1, \langle x \rangle, \langle x \rangle^2, \langle x \rangle^3, \langle x \rangle^4$ 到基 $1, x, x^2, x^3, x^4$ 的过渡矩阵;

(2) 求 $K[x]_5$ 中多项式 $f(x) = 1 + x + x^2 + x^3 + x^4$ 在基 $1, \langle x \rangle, \langle x \rangle^2, \langle x \rangle^3, \langle x \rangle^4$ 下的坐标;

*(3) 证明:
$$\sum_{x=0}^{n} \langle x \rangle^k = \frac{1}{k+1} \langle n+1 \rangle^{k+1};$$

*(4) 由此导出数列 $D_n = \sum_{k=0}^{n} k^4$ 的通项公式.

解: (1)
$$1 = 1$$

$$x = \langle x \rangle$$

$$x^2 = 0 + x + x(x - 1) = 0 + \langle x \rangle + \langle x \rangle^2$$

$$x^3 = x + 3x(x - 1) + x(x - 1)(x - 2) = \langle x \rangle + 3\langle x \rangle^2 + \langle x \rangle^3$$

$$x^4 = \langle x \rangle + 7\langle x \rangle^2 + 6\langle x \rangle^3 + \langle x \rangle^4$$

故所求过渡矩阵为

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

(2) (1,4,11,7,1).

(3) 易知
$$\langle x+1\rangle^{k+1} - \langle x\rangle^{k+1} = (k+1)\langle x\rangle^k$$
. 所以

$$\sum_{x=0}^{n} \langle x \rangle^{k} = \frac{1}{k+1} \sum_{x=0}^{n} [\langle x+1 \rangle^{k+1} - \langle x \rangle^{k+1}]$$

$$= \frac{1}{k+1} \left[\sum_{x=1}^{n+1} \langle x \rangle^{k+1} - \sum_{x=0}^{n} \langle x \rangle^{k+1} \right]$$

$$= \frac{1}{k+1} (\langle n+1 \rangle^{k+1} - \langle 0 \rangle^{k+1})$$

$$= \frac{1}{k+1} \langle n+1 \rangle^{k+1}.$$

(4) 因为
$$x^4 = \langle x \rangle + 7\langle x \rangle^2 + 6\langle x \rangle^3 + \langle x \rangle^4$$
, 所以

$$D_n = \sum_{x=0}^n x^4 = \sum_{x=0}^n (\langle x \rangle + 7\langle x \rangle^2 + 6\langle x \rangle^3 + \langle x \rangle^4)$$

= $\frac{1}{2} \langle n+1 \rangle^2 + \frac{7}{3} \langle n+1 \rangle^3 + \frac{6}{4} \langle n+1 \rangle^4 + \frac{1}{5} \langle n+1 \rangle^5$
= $\frac{1}{30} n(n+1)(2n+1)(3n^2 + 3n - 1).$

§2 基变换对线性变换矩阵的影响

1. 给定 K^3 的两个基:

$$\xi_1 = (1, 1, -1), \quad \eta_1 = (1, -1, 2),$$

 $\xi_2 = (1, 0, -1), \quad \eta_2 = (2, -1, 2),$
 $\xi_3 = (1, 1, 1), \quad \eta_3 = (-2, 1, 1).$

设 \mathscr{A} 为 K^3 的线性变换, 使:

$$\mathscr{A}\xi_i = \eta_i \quad i = 1, 2, 3.$$

- (1) 求由基 ξ_1, ξ_2, ξ_3 到基 η_1, η_2, η_3 的过渡矩阵;
- (2) 求 \mathscr{A} 在基 ξ_1, ξ_2, ξ_3 下的矩阵;
- (3) 求 \mathscr{A} 在基 η_1, η_2, η_3 下的矩阵;
- (4) 设 $\alpha = (2, -1, 3)$, 分别求 $\mathcal{A} \alpha$ 在基 ξ_1, ξ_2, ξ_3 与基 η_1, η_2, η_3 下的坐标.

解: 设 K^3 标准基为 $\varepsilon_1=(1,0,0),\ \varepsilon_2=(0,1,0),\ \varepsilon_3=(0,0,1),\ \diamondsuit$

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & -2 \\ -1 & -1 & 1 \\ 2 & 2 & 1 \end{pmatrix},$$

则有

$$(\xi_1, \xi_2, \xi_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)B, \qquad (\eta_1, \eta_2, \eta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)C.$$

(1) 由于 $(\eta_1, \eta_2, \eta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)C = (\xi_1, \xi_2, \xi_3)B^{-1}C$, 故由基 ξ_1, ξ_2, ξ_3 到基 η_1, η_2, η_3 的过渡矩阵为

$$T = B^{-1}C = \begin{pmatrix} -\frac{5}{2} & -3 & \frac{3}{2} \\ 2 & 3 & -3 \\ \frac{3}{2} & 2 & -\frac{1}{2} \end{pmatrix}.$$

(2) 由于 $(\mathscr{A}(\xi_1), \mathscr{A}(\xi_2), \mathscr{A}(\xi_3)) = (\eta_1, \eta_2, \eta_3) = (\xi_1, \xi_2, \xi_3)B^{-1}C$, 故 \mathscr{A} 在基 ξ_1, ξ_2, ξ_3 下的矩阵为

$$A = B^{-1}C = \begin{pmatrix} -\frac{5}{2} & -3 & \frac{3}{2} \\ 2 & 3 & -3 \\ \frac{3}{2} & 2 & -\frac{1}{2} \end{pmatrix}.$$

(3) 设 \mathscr{A} 在基 η_1, η_2, η_3 下的矩阵为 A', 则

$$A' = T^{-1}AT = (B^{-1}C)^{-1}(B^{-1}C)(B^{-1}C) = B^{-1}C = \begin{pmatrix} -\frac{5}{2} & -3 & \frac{3}{2} \\ 2 & 3 & -3 \\ \frac{3}{2} & 2 & -\frac{1}{2} \end{pmatrix}.$$

(4) α 在基 ξ_1, ξ_2, ξ_3 与基 η_1, η_2, η_3 下的坐标分别为

$$B^{-1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = C^{-1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix},$$

因此 $\mathcal{A}\alpha$ 在基 ξ_1, ξ_2, ξ_3 下的坐标为

$$AB^{-1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 7 \\ -11 \\ -1 \end{pmatrix},$$

 $\mathscr{A}\alpha$ 在基 η_1, η_2, η_3 下的坐标为

$$A'C^{-1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -7 \\ 6 \\ 5 \end{pmatrix}.$$

2. 设 $A \sim C$, $B \sim D$, 证明:

$$\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) \sim \left(\begin{array}{cc} C & 0 \\ 0 & D \end{array}\right).$$

证明: 存在可逆矩阵 T_1, T_2 , 使得

$$T_1^{-1}AT_1 = C, T_2^{-1}BT_2 = D,$$

因此
$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
 可逆, 且

$$T^{-1}\left(\begin{array}{cc}A&0\\0&B\end{array}\right)T=\left(\begin{array}{cc}T_1^{-1}AT_1&0\\0&T_2^{-1}BT_2\end{array}\right)=\left(\begin{array}{cc}C&0\\0&D\end{array}\right).$$

所以

$$\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) \sim \left(\begin{array}{cc} C & 0 \\ 0 & D \end{array}\right).$$

・44・ 第八章 线性变换

3. 设 A 可逆, 证明: AB 与 BA 相似.

证明: 由于 $A^{-1}(AB)A = BA$, 故 $AB \sim BA$.

4. 设 A 可逆, 且 $A \sim B$, 证明: B 也可逆, 且 $A^{-1} \sim B^{-1}$.

证明:由于T, A皆可逆,所以B可逆,且

$$B^{-1} = (T^{-1}AT)^{-1} = T^{-1}A^{-1}T.$$

故 $A^{-1} \sim B^{-1}$.

5. 设 $A \sim B$, 证明: $A^{T} \sim B^{T}$.

证明: 存在可逆矩阵 T,使得 $T^{-1}AT=B$. 故 $B^{\mathrm{T}}=(T^{-1}AT)^{\mathrm{T}}=T^{\mathrm{T}}A^{\mathrm{T}}T^{-\mathrm{T}}$.

6. 设 $A \sim B$, $f(x) \in K[x]$, 证明: $f(A) \sim f(B)$.

证明: 存在可逆矩阵 T, 使得 $T^{-1}AT = B$. 故

$$T^{-1}(f(A))T = f(T^{-1}AT) = f(B).$$

7. 证明:

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \sim \begin{pmatrix} \lambda_{i_1} & & & \\ & \lambda_{i_2} & & \\ & & \ddots & \\ & & & \lambda_{i_n} \end{pmatrix},$$

其中 (i_1, i_2, \dots, i_n) 是 $(1, 2, \dots, n)$ 的一个排列.

证明: 设 V 是 n 维线性空间, $\varepsilon_1,\cdots,\varepsilon_n$ 是 V 的基. \mathscr{A} 为 V 的线性变换, 定义为

$$\mathscr{A}\varepsilon_i = \lambda_i \varepsilon_i$$

则 \mathscr{A} 在基 $\varepsilon_1, \dots, \varepsilon_n$ 下的矩阵为

$$A = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

由于 (i_1, i_2, \dots, i_n) 是 $(1, 2, \dots, n)$ 的一个排列,因此 $\varepsilon_{i_1}, \dots, \varepsilon_{i_n}$ 仍为 V 的基,而

$$\mathscr{A}\varepsilon_{i_j}=\lambda_{i_j}\varepsilon_{i_j}, \qquad j=1,\cdots,n.$$

故 \mathscr{A} 在基 $\varepsilon_{i_1}, \cdots, \varepsilon_{i_n}$ 下的矩阵为

$$B = \begin{pmatrix} \lambda_{i_1} & & & \\ & \lambda_{i_2} & & \\ & & \ddots & \\ & & & \lambda_{i_n} \end{pmatrix},$$

从而 $A \sim B$.

8. 设 $x, y, z \in K$, 令

$$A = \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix}, \ B = \begin{pmatrix} z & x & y \\ x & y & z \\ y & z & x \end{pmatrix}, \ C = \begin{pmatrix} y & z & x \\ z & x & y \\ x & y & z \end{pmatrix}.$$

证明: A, B, C 彼此相似.

证明: 取置换矩阵

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad Q = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

则 P,Q 皆可逆, 且

$$P^{-1}AP = C, \qquad Q^{-1}AQ = B,$$

所以 $A \sim B$, $A \sim C$. 由相似关系的传递性, 可得 $B \sim C$.

*9. 证明:

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}_{n} \sim \begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

证明: 设 V 是 n 维线性空间, $\varepsilon_1, \cdots, \varepsilon_n$ 是 V 的基. \mathscr{A} 为 V 的线性变换, 定义为

$$\mathscr{A}\varepsilon_i = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n, \qquad i = 1, 2, \dots, n.$$

则 \mathscr{A} 在基 $\varepsilon_1, \dots, \varepsilon_n$ 下的矩阵为

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}_n.$$

・46・ 第八章 线性变换

又易知

$$\alpha_1 = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n, \quad \alpha_2 = \varepsilon_1 - \varepsilon_2, \dots, \alpha_n = \varepsilon_1 - \varepsilon_n$$

仍为 V 的基, 且 \mathscr{A} 在基 $\alpha_1, \dots, \alpha_n$ 下的矩阵为

$$B = \begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

从而 $A \sim B$.

§3 线性变换的特征值与特征向量

1. 求复数域上线性空间 V 的线性变换 $\mathscr A$ 的特征值与特征向量, 设 $\mathscr A$ 在 V 的一个基下的矩阵是:

$$(1) A = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}; \qquad (2) A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} (a \neq 0);$$

$$(3) A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}; \qquad (4) A = \begin{pmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix};$$

$$(5) A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \qquad (6) A = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & -3 & 1 \end{pmatrix};$$

$$(7) A = \begin{pmatrix} 4 & 3 & 0 \\ -3 & -2 & 0 \\ 2 & -6 & 2 \end{pmatrix}.$$

解:数字表示特征值,紧接在后的向量就是相应的一个特征向量.

- (1) 7, (1,1); -2, (5,-4).
- (2) ai, (1,i); -ai, (i,1).
- (3) 2, k(1,1,0,0) + l(1,0,1,0) + m(1,0,0,1); -2, (-1,1,1,1).
- (4) 2, (-2,1,0); $1+\sqrt{3}$, $(-3,1,-2+\sqrt{3})$; $1-\sqrt{3}$, $(-3,1,-2-\sqrt{3})$.
- (5) 1, k(1,0,1) + l(0,1,0); -1, (-1,0,1).
- (6) -3, (1,1,1); (1,1,-4).

(7) 2, (0,0,1); 1, (-1,1,8).

2. 证明: 欧几里得空间的正交变换的特征值 (如有的话) 只能是 ±1.

证明: 设 α 是属于正交变换 \mathcal{A} 的特征值 λ_0 的特征向量, 则

$$0 \neq (\alpha, \alpha) = (\mathcal{A}\alpha, \mathcal{A}\alpha) = \lambda_0^2(\alpha, \alpha),$$

因此 $\lambda_0^2 = 1$, $\lambda_0 = \pm 1$.

3. 证明: 幂零矩阵 (某个方幂等于零的矩阵) 的特征值全为零.

证明: 设 α 是属于幂零矩阵 A 的特征值 λ_0 的特征向量, 则 $A\alpha=\lambda_0\alpha$. 由于

$$0 = A^k \alpha = \lambda_0^k \alpha,$$

可得 $\lambda_0^k = 0$, $\lambda_0 = 0$.

4. 设 $A=(a_1,a_2,\cdots,a_n)\in\mathbb{R}^n$ $(a_i$ 不全为零), 求矩阵 $A^{\mathrm{T}}A$ 的特征值与特征向量.

解: 设 $a_i \neq 0$. 特征值 0 对应的特征向量是

$$\alpha_j = (0, \dots, 0, a_i, \dots, -a_j, 0, \dots, 0), (j=1, \dots, i-1, i+1, \dots, n)$$

的线性组合. 特征值 $\sum_{j=1}^{n} a_j^2$ 的特征向量是 (a_1, \dots, a_n) .

5. 设 $A \in M_n(K)$. 证明: 存在 K 上的一个次数不超过 n^2 的多项式 f(x), 使 f(A) = 0.

证明: 因为 $M_n(K)$ 是 $K \perp n^2$ 维线性空间, 故 $E, A, A^2, \dots, A^{n^2-1}, A^{n^2}$ 线性相关. 于是存在不全为零的 $a_i \in K, i = 1, \dots, n^2$ 使得

$$a_0E + a_1A + \dots + a_{n^2-1}A^{n^2-1} + a_{n^2}A^{n^2} = 0.$$

令

$$f(x) = a_{n^2}x^{n^2} + a_{n^2-1}x^{n^2-1} + \dots + a_1x + a_0,$$

则 f(A) = 0.

*6. 设 $A = (a_{ij}) \in M_n(K)$, 子式

$$\begin{vmatrix} a_{i_{1}i_{1}} & a_{i_{1}i_{2}} & \cdots & a_{i_{1}i_{k}} \\ a_{i_{2}i_{1}} & a_{i_{2}i_{2}} & \cdots & a_{i_{2}i_{k}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_{k}i_{1}} & a_{i_{k}i_{2}} & \cdots & a_{i_{k}i_{k}} \end{vmatrix}, \quad (1 \leqslant i_{1} < i_{2} < \cdots < i_{k} \leqslant n),$$

・48・ 第八章 线性变换

称为 A 的一个 k 阶主子式. 令特征多项式

$$\chi_A(\lambda) = |\lambda E - A| = \lambda^n - a_1 \lambda^{n-1} + \dots + (-1)^{n-1} a_{n-1} \lambda + (-1)^n a_n.$$

证明: a_k 等于 A 的全部 k 阶主子式之和.

证明: 把 $|\lambda E - A|$ 的每列

$$\begin{pmatrix} -a_{1j} \\ -a_{2j} \\ \vdots \\ \lambda - a_{jj} \\ \vdots \\ -a_{nj} \end{pmatrix}$$

都拆成两列:

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ \lambda \\ 0 \\ \vdots \\ 0 \end{pmatrix} \stackrel{\sqsubseteq_{\overline{j}}}{=} \begin{pmatrix} -a_{1j} \\ -a_{2j} \\ \vdots \\ -a_{jj} \\ \vdots \\ -a_{nj} \end{pmatrix}$$

则行列式 $|\lambda E - A|$ 可分解为 2^n 个 n 阶行列式之和, 其中每个行列式的列都是上述两种形式之一.

设 A_k 为任一含有 $k \cap \lambda$ 的子行列式, 其 λ 处于 j_1, \dots, j_k 列, 将 A_k 按这 k 列展开, 得

$$A_k = \lambda^k \cdot (-1)^{n-k} D_{n-k},$$

其中 D_{n-k} 为在 A 中划去第 j_1, \dots, j_k 列、第 j_1, \dots, j_k 行而得到的 n-k 阶 主子式. 当这 $k \cap \lambda$ 取遍 n 阶行列式中所有可能的 $k \cap \Delta$ 下。 所有 C_n^k 个主子式. 从而 $\chi_A(\lambda)$ 中 λ^{n-k} 的系数等于 $(-1)^k$ 乘以 A 的所有 k 阶 主子式之和. 因此 a_k 为 A 的所有 k 阶主子式之和.

*7. 证明: *AB* 与 *BA* 有相同的特征值.

证明: 根据习题 5-8 的第 4 题, 当 $|A| \neq 0$, AC = CA 时, 有

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |AD - CB|.$$

因此

$$\left| \begin{array}{cc} \lambda E & B \\ A & E \end{array} \right| = |\lambda E - AB|.$$

又因

$$\left(\begin{array}{cc} 0 & E \\ E & 0 \end{array}\right) \left(\begin{array}{cc} \lambda E & B \\ A & E \end{array}\right) \left(\begin{array}{cc} 0 & E \\ E & 0 \end{array}\right) = \left(\begin{array}{cc} E & A \\ B & \lambda E \end{array}\right),$$

两边取行列式, 即得

$$\begin{vmatrix} E & A \\ B & \lambda E \end{vmatrix} = |\lambda E - BA| = \begin{vmatrix} \lambda E & B \\ A & E \end{vmatrix} = |\lambda E - AB|.$$

因此 AB 与 BA 有相同的特征多项式, 从而有相同的特征值.

*8. 设 $A \in M_n(\mathbb{C})$. 证明: 存在可逆矩阵 $T \in GL(n,\mathbb{C})$, 使 $T^{-1}AT$ 为上三角矩阵.

证明: 对 n 用数学归纳法. 当 n=1 时结论自然成立. 现设结论对 n-1 阶矩阵成立.

设 λ_1 是 A 的一个特征值,相应的特征向量是 $\alpha_1 \in \mathbb{C}^n$. 把 α_1 扩充成 \mathbb{C}^n 的基 $\alpha_1, \alpha_2, \dots, \alpha_n$. 令 $T_1 = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 则 T_1 可逆,且

$$AT_1 = T_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix}, \quad \mathbb{H} \quad T_1^{-1}AT_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix},$$

其中 $A_1 \in M_{n-1}(\mathbb{C})$. 由归纳假设, 存在可逆矩阵 $T_2 \in M_{n-1}(\mathbb{C})$, 使得

$$T_2^{-1}A_1T_2 = \begin{pmatrix} \lambda_2 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

*9. 设 $A \in M_n(\mathbb{C})$, f(x) 为一复系数多项式. 证明: 如果 A 的全部特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 f(A) 的全部特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$.

・50・ 第八章 线性变换

证明: 由习题 8, 存在可逆矩阵 T, 使

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & * & \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix},$$

这里 $\lambda_1, \dots, \lambda_n$ 是 A 的全部特征值. 从而

$$T^{-1}f(A)T = f(T^{-1}AT) = f\left(\begin{pmatrix} \lambda_1 & * & * \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}\right)$$
$$= \begin{pmatrix} f(\lambda_1) & * & \\ & f(\lambda_2) & & \\ & & \ddots & \\ 0 & & & f(\lambda_n) \end{pmatrix}.$$

所以 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$ 为 f(A) 的全部特征值.

§4 可对角化线性变换

1. 习题 8-3 第一题中的矩阵, 哪些是可以对角化的? 在可对角化的情况下, 求出相应的过渡矩阵和对角矩阵.

解: (1)
$$T = \begin{pmatrix} 1 & 5 \\ 1 & -4 \end{pmatrix}$$
, $T^{-1}AT = \text{diag}(7, -2)$.

(2) $T = \begin{pmatrix} 1 & \mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$, $T^{-1}AT = \text{diag}(a\mathbf{i}, -a\mathbf{i})$.

(3) $T = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $T^{-1}AT = \text{diag}(-2, 2, 2, 2)$.

(4) $T = \begin{pmatrix} -2 & -3 & -3 \\ 1 & 1 & 1 \\ 0 & -2 + \sqrt{3} & -2 - \sqrt{3} \end{pmatrix}$, $T^{-1}AT = \text{diag}(2, 1 + \sqrt{3}, 1 - \sqrt{3})$.

(5)
$$T = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $T^{-1}AT = \operatorname{diag}(-1, 1, 1)$.

(6), (7) 不可对角化.

2. 在 $K[x]_n$ 中, 求微分变换 \mathscr{D} :

$$\mathscr{D}(f(x)) = f'(x)$$

的特征多项式, 并证明: ② 在任何一个基下的矩阵都不可能是对角矩阵.

解: 取 $K[x]_n$ 的基 $1, x, x^2, \dots, x^{n-1}$. 则 \mathcal{D} 在这个基下的矩阵是

$$D = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

从而 \mathcal{D} 的特征多项式为 $\chi_D(\lambda) = \lambda^n$. 如果 \mathcal{D} 可对角化, 则存在可逆矩阵 T 使得 $T^{-1}AT = 0$, 即 D = 0, 而 \mathcal{D} 不是零变换, 矛盾.

3. 设 \mathscr{A} 为数域 $K \perp n$ 维线性空间 V 的线性变换, 满足 $\mathscr{A}^2 = \mathscr{A}$. 求 \mathscr{A} 的特征值, 并证明 \mathscr{A} 可对角化.

证明:设

$$V_1 = \{ \mathscr{A} \alpha \mid \alpha \in V \}, \qquad V_2 = \{ \alpha - \mathscr{A} \alpha \mid \alpha \in V \}.$$

则对任意的 $\alpha \in V$, 有 $\alpha = \mathcal{A}\alpha + (\alpha - \mathcal{A}\alpha)$, 因此

$$V = V_1 + V_2$$
.

若 $\alpha \in V_1 \cap V_2$, 则

$$\alpha = \mathcal{A}\beta = \gamma - \mathcal{A}\gamma, \qquad \beta, \gamma \in V.$$

于是

$$\mathscr{A}\alpha = \mathscr{A}^2\beta = \mathscr{A}\beta = \alpha,\tag{*}$$

$$\mathscr{A}\alpha = \mathscr{A}\gamma - \mathscr{A}^2\gamma = \mathscr{A}\gamma - \mathscr{A}\gamma = 0. \tag{**}$$

所以 $\alpha = \mathcal{A}\alpha = 0$, 即 $V_1 \cap V_2 = 0$. 这样就证明了

$$V = V_1 \oplus V_2$$
.

・52・ 第八章 线性变换

对于 V_1 中的向量 α , 有 (*) 式成立, 说明 V_1 是属于特征值 1 的特征子空间. 类似地由 (**) 式可得 V_2 是属于特征值 0 的特征子空间. 根据推论 4.5, \mathscr{A} 可对角化. \mathscr{A} 的特征值为 0, 1.

(注: 也可利用习题 9 的方法加以证明)

4. 设

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right).$$

- (1) 先将矩阵 A 对角化, 再求 A^n ;
- *(2) 利用上述结果, 求斐波那契数列 (参见第六章练习 6-1.8) 的通项公式.

解: (1) A 的特征值为 $\frac{1\pm\sqrt{5}}{2}$, 相应的特征向量为

$$\left(\begin{array}{c} \frac{1+\sqrt{5}}{2} \\ 1 \end{array}\right), \qquad \left(\begin{array}{c} \frac{1-\sqrt{5}}{2} \\ 1 \end{array}\right).$$

令

$$T = \left(\begin{array}{cc} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{array}\right),$$

则

$$T^{-1}AT = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}.$$

从而

$$\begin{split} A^{n} &= T \left(\begin{array}{c} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} & 0 \\ 0 & \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \end{array} \right) T^{-1} \\ &= \frac{1}{\sqrt{5}} \left(\begin{array}{c} \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} & 0 \\ 0 & \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \end{array} \right) \\ &\cdot \left(\begin{array}{c} 1 & -\frac{1 - \sqrt{5}}{2} \\ -1 & \frac{1 + \sqrt{5}}{2} \end{array} \right) = \frac{\sqrt{5}}{5} \left(\begin{array}{c} \alpha^{n+1} - \beta^{n+1} & \alpha^{n} - \beta^{n} \\ \alpha^{n} - \beta^{n} & \alpha^{n-1} - \beta^{n-1} \end{array} \right), \end{split}$$

其中
$$\alpha = \frac{1+\sqrt{5}}{2}$$
, $\beta = \frac{1-\sqrt{5}}{2}$.

$$\alpha_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \cdots, \alpha_n = \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix},$$

其中 a_i 是第 i 个斐波那契数. 则

$$\alpha_n = A^n \alpha_0.$$

所以

$$\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = A^n \alpha_0 = \frac{\sqrt{5}}{5} \begin{pmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha^n - \beta^n \\ \alpha^n - \beta^n & \alpha^{n-1} - \beta^{n-1} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

算得

$$a_n = \frac{\sqrt{5}}{5}(\alpha^n - \beta^n) = \frac{\sqrt{5}}{5} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

- **5.** 设 $A = (a_{ij})$ 为 n 阶上三角矩阵. 证明:
- (1) 若 $a_{ii} \neq a_{jj}$ ($i \neq j$), 则 A 可对角化;
- (2) 若 $a_{11}=a_{22}=\cdots=a_{nn},$ 且至少有一个 $a_{ij}\neq 0$ $(i\neq j),$ 则 A 不可对角化.

证明: (1) 由于 A 是上三角矩阵, 故 $a_{11}, a_{22}, \dots, a_{nn}$ 为 A 的 n 个特征值. 若当 $i \neq j$ 时 $a_{ii} \neq a_{ji}$, 则 A 有 n 个不同的特征值, 从而 A 可对角化.

(2) (反证) 已知 A 的特征值为 $\lambda_0 = a_{11} = \cdots = a_{nn}$, 如 A 可对角化, 则存在可逆矩阵 T, 使得

$$T^{-1}AT = \operatorname{diag}(\lambda_0, \cdots, \lambda_0).$$

于是

$$A = T \begin{pmatrix} \lambda_0 & & \\ & \ddots & \\ & & \lambda_0 \end{pmatrix} T^{-1} = \begin{pmatrix} \lambda_0 & & \\ & \ddots & \\ & & \lambda_0 \end{pmatrix}.$$

即 A 为纯量阵, 与假设矛盾.

6. 设有分块对角矩阵

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_s \end{pmatrix}.$$

证明: A 可对角化的充分必要条件是每个 A, 皆可对角化.

证明: 充分性是显然的. 下证必要性.

设 A 可对角化,则存在可逆矩阵 T,使得

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

于是

$$AT = T \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

令

$$T = \begin{pmatrix} T_1 \\ T_2 \\ \vdots \\ T_s \end{pmatrix},$$

其中 T_i 的行数等于 A_i 的阶数 r_i . 则

$$A_iT_i=T_i\left(egin{array}{cccc} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array}
ight).$$

这说明 T_i 的非零列向量都是 A_i 的特征向量. 又因 T 可逆, 故 T 的行向量线性 无关, 因而 T_i 的行向量也线性无关. 于是 $\operatorname{rank} T_i = A_i$ 的阶数, T_i 的列秩也等于 A_i 的阶数. 因此 A_i 有 T_i 个线性无关的特征向量, 说明 A_i 皆可对角化.

7. 设 λ_1 , λ_2 是线性变换 \mathscr{A} 的两个不同的特征值, ε_1 , ε_2 分别是 \mathscr{A} 的属于特征值 λ_1 , λ_2 的特征向量. 证明: $\varepsilon_1 + \varepsilon_2$ 不是 \mathscr{A} 的特征向量.

证明: (反证) 如果 $\varepsilon_1 + \varepsilon_2$ 是 \mathscr{A} 的属于某个特征值 λ_0 的特征向量, 则

$$\mathscr{A}(\varepsilon_1 + \varepsilon_2) = \lambda_0(\varepsilon_1 + \varepsilon_2).$$

又 $\mathscr{A}(\varepsilon_1 + \varepsilon_2) = \mathscr{A}\varepsilon_1 + \mathscr{A}\varepsilon_2 = \lambda_1\varepsilon_1 + \lambda_2\varepsilon_2$, 所以

$$(\lambda_1 - \lambda_0)\varepsilon_1 + (\lambda_2 - \lambda_0)\varepsilon_2 = 0.$$

由 $\lambda_1 \neq \lambda_2$ 可得 $\varepsilon_1, \varepsilon_2$ 线性无关, 因此

$$\lambda_1 - \lambda_0 = 0, \qquad \lambda_2 - \lambda_0 = 0,$$

得到 $\lambda_1 = \lambda_0 = \lambda_2$, 矛盾.

8. 证明: 如果线性变换 🗹 以每个非零向量作为它的特征向量, 则 🗹 为标量乘积变换.

证明: 设对某个非零向量 α 有 $\mathscr{A}\alpha = k\alpha$, 对另一个非零向量 β , 有 $\mathscr{A}\beta = m\beta$. 如果 $k \neq m$, 则根据习题 7 的结论, $\alpha + \beta$ 不是 \mathscr{A} 的特征向量. 如果 $\alpha + \beta = 0$, 则有 $\mathscr{A}\beta = -\mathscr{A}\alpha = -k\alpha = k\beta$, 与 $k \neq m$ 矛盾. 因此 $\alpha + \beta$ 是 非零向量, 与题设矛盾.

*9. 设 $A \in M_n(K)$, 证明: 如果 $\operatorname{rank} A + \operatorname{rank} (A - E) = n$, 则 A 可对角化.

证明: 由习题 5–8.13 知, $\operatorname{rank} A + \operatorname{rank} (A - E) = n$ 的充分必要条件是 $A^2 = A$. 即对 A 的任一列向量 α 有 $A\alpha = \alpha$. 又 A(A - E) = 0, 故对 A - E 的任一列向量 β 有 $A\beta = 0$.

设 A 的列向量组的极大无关组为 $\alpha_1, \dots, \alpha_r, A-E$ 的极大无关列向量组 为 $\beta_1, \dots, \beta_{n-r}$ (因为 $\operatorname{rank} A + \operatorname{rank} (A-E) = n$). 下证 $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_{n-r}$ 线性无关.

设有

$$\sum_{i=1}^{r} k_i \alpha_i + \sum_{j=1}^{n-r} m_j \beta_j = 0.$$

则

$$\sum_{i=1}^{r} k_i A \alpha_i + \sum_{i=1}^{n-r} m_j A \beta_j = \sum_{i=1}^{r} k_i A \alpha_i = \sum_{i=1}^{r} k_i \alpha_i = 0.$$

于是 $k_1 = \cdots = k_r = 0$, 进而 $m_1 = \cdots = m_{n-r} = 0$. 所以 $\alpha_1, \cdots, \alpha_r, \beta_1, \cdots$, β_{n-r} 线性无关.

$$AT = A(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_{n-r}) = (\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_{n-r}) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

即

$$AT = T \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix},$$

从而

$$T^{-1}AT = \left(\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right).$$

*10. 设 $A \in M_n(K)$, 证明: 如果 rank(A + E) + rank(A - E) = n, 则 A 可对角化.

证明: 与上题类似, 略.

***11.** 设 $A, B \in M_n(K)$, 且 AB = BA. 证明: 如果 A, B 都可对角化, 则存在可逆矩阵 $T \in M_n(K)$, 使 $T^{-1}AT$ 与 $T^{-1}BT$ 同为对角矩阵.

证明: 设 A 的不同特征值为 $\lambda_1, \lambda_2, \dots, \lambda_s$, 其中 λ_i 的重数为 r_i . 由于 A 可对角化, 存在可逆矩阵 T, 使

$$T^{-1}AT = A_1 = \begin{pmatrix} \lambda_1 E_{r_1} & & \\ & \ddots & \\ & & \lambda_s E_{r_s} \end{pmatrix}.$$

 $\Leftrightarrow B_1 = T^{-1}BT, \ \ MA_1B_1 = B_1A_1.$

令 $B_1 = (B_{ij})$, 其分块方式与 A_1 相同, 则由 $A_1B_1 = B_1A_1$ 得

$$\lambda_i B_{ij} = B_{ij} \lambda_j$$

于是当 $i \neq j$ 时有 $B_{ij} = 0$, 即

$$B_{1} = \begin{pmatrix} B_{11} & & & \\ & B_{22} & & \\ & & \ddots & \\ & & & B_{ss} \end{pmatrix}.$$

又因 B 可对角化, B_1 也可对角化, 从而由上题知每个 B_{ii} 都可对角化. 即存在可逆矩阵 $S_i \in M_{r_i}(K)$ 使

$$S_i^{-1}B_{ii}S_i = \begin{pmatrix} \lambda_{i_1} & & \\ & \ddots & \\ & & \lambda_{i_{r_i}} \end{pmatrix}.$$

\$

$$T = T_1 \left(\begin{array}{ccc} S_1 & & \\ & \ddots & \\ & & S_s \end{array} \right),$$

则T可逆,且

$$T^{-1}AT = \begin{pmatrix} S_1^{-1} & & & \\ & \ddots & & \\ & & S_s^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 E_{r_1} & & & \\ & \ddots & & \\ & & \lambda_s E_{r_s} \end{pmatrix} \begin{pmatrix} S_1 & & \\ & \ddots & \\ & & \lambda_s E_{r_s} \end{pmatrix},$$

$$T^{-1}BT = \begin{pmatrix} S_1^{-1} & & & \\ & \ddots & & \\ & & S_s^{-1} \end{pmatrix} \begin{pmatrix} B_{11} & & & \\ & \ddots & & \\ & & B_{ss} \end{pmatrix} \begin{pmatrix} S_1 & & \\ & \ddots & \\ & & S_s \end{pmatrix}$$

$$= \begin{pmatrix} S_1^{-1}B_{11}S_1 & & & \\ & \ddots & & \\ & & S_s^{-1}B_{ss}S_s \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{11} & & & & \\ & \lambda_{1r_1} & & & \\ & & & \lambda_{sr_s} \end{pmatrix}$$

同为对角形.

§ 5 线性变换的不变子空间

1. 设 🗷 是线性空间 V 的线性变换, 已知 $\mathscr A$ 在基 $\eta_1,\eta_2,\cdots,\eta_n$ 下的矩阵 是

$$A = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}.$$

・58・ 第八章 线性变换

求 Ø 的所有不变子空间.

解: 设 W 是 \mathscr{A} 的一个非零不变子空间. 首先证明: W 必包含某个基向量 η_i .

设

$$0 \neq \alpha = a_k \eta_k + \dots + a_n \eta_n \in W, \qquad a_k \neq 0.$$

則 $\mathscr{A}^{k-1}\alpha = a_k \eta_1 \in W, \, \eta_1 \in W.$

再设 η_k 是包含于 W 中的下标最大的基向量, 则

$$\eta_{k-1} = \mathscr{A}\eta_k, \eta_{k-2} = \mathscr{A}^2\eta_k, \cdots, \eta_1 = \mathscr{A}^{k-1}\eta_k \in W.$$

下面证

$$W = L(\eta_1, \cdots, \eta_k).$$

用反证法. 如有 $\alpha \in W$, 但 $\alpha \notin L(\eta_1, \dots, \eta_k)$, 则

$$\alpha = a_1 \eta_1 + \dots + a_m \eta_m, \quad \sharp \Phi a_m \neq 0, m > k.$$

于是

$$a_{m-k}\eta_1 + \dots + a_{m-1}\eta_k + a_m\eta_{k+1} = \mathscr{A}^{m-k-1}\alpha \in W.$$

又因 $a_{m-k}\eta_1 + \cdots + a_{m-1}\eta_k \in W, \ a_m \neq 0$, 可得 $\eta_{k+1} \in W$, 矛盾. 因此 \mathscr{A} 的 所有不变子空间为零子空间以及 $L(\eta_1, \cdots, \eta_k), \ k = 1, \cdots, n$.

2. 设 🖋 为欧几里得空间的正交变换, 证明: 🗷 的不变子空间的正交补也 是 🗷 的不变子空间.

证明: 设 W 是 \varnothing 的不变子空间, 则 $\varnothing(W)\subseteq W$. 由于正交变换必可逆, 因此 $\varnothing(W)=W$.

对于任意的 $\beta \in W^{\perp}$, $\alpha \in W$, 必存在 $\gamma \in W$ 使 $\alpha = \mathcal{A}\gamma$. 于是

$$(\mathscr{A}\beta,\alpha)=(\mathscr{A}\beta,\mathscr{A}\gamma)=(\beta,\gamma)=0.$$

这说明 $\beta \in W^{\perp}$, 故 W^{\perp} 是 \mathscr{A} 的不变子空间.

3. 设 \mathscr{A} 是线性空间 V 的线性变换, W 为 \mathscr{A} 的不变子空间. 证明: $\mathscr{A}(W)$ 还是 \mathscr{A} 的不变子空间.

证明: 由于 W 是 \mathscr{A} 的不变子空间, $\mathscr{A}(W) \subseteq W$, 因此 $\mathscr{A}(\mathscr{A}(W)) \subseteq \mathscr{A}(W)$, 说明 $\mathscr{A}(W)$ 也是 \mathscr{A} 的不变子空间.

- **4.** 设 V 是复数域上的 n 维线性空间, \mathscr{A} , \mathscr{B} 是 V 的线性变换, 且 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A}$. 证明:
 - (1) 如果 λ 是 \mathscr{A} 的一个特征值, 那么, V_{λ} 是 \mathscr{B} 的不变子空间;

(2) 🖈 , 🗷 至少有一个公共的特征向量.

证明: (1) 对任意的 $\alpha \in V_{\lambda}$,

$$\mathscr{A}(\mathscr{B}\alpha) = \mathscr{B}(\mathscr{A}\alpha) = \mathscr{B}(\lambda\alpha) = \lambda\mathscr{B}\alpha.$$

因此 $\mathcal{B}\alpha \in V_{\lambda}$, 说明 V_{λ} 也是 \mathcal{B} 的不变子空间.

(2) 由上知, V_{λ} 是 \mathscr{B} 的不变子空间, 从而 $\mathscr{B}|_{V_{\lambda}}$ 是 V_{λ} 上的线性变换. 于是 $\mathscr{B}|_{V_{\lambda}}$ 有特征值 μ 以及相应的特征向量 $\beta \in V_{\lambda}$, 使

$$\mathscr{B}\beta = \mathscr{B}|_{V_{\lambda}}(\beta) = \mu\beta.$$

又因 $\beta \in V_{\lambda}$, $\mathcal{A}\beta = \lambda\beta$. 所以 β 是 \mathcal{A} 与 \mathcal{B} 的公共特征向量.

第九章 线性空间上的函数

§1 线性函数与双线性函数

1. 设 V 是区间 [-1,1] 上全体连续实函数所组成的线性空间. 证明:

$$\psi: V \longrightarrow \mathbb{R}$$

$$f(x) \longmapsto \int_{-1}^{1} f(x) dx$$

是 V 上的一个线性函数.

证明: 显然 ψ 是 V 到 $\mathbb R$ 的一个映射. 且对任意的 $f(x), g(x) \in V, k \in \mathbb R$, 有

$$\psi(f(x) + g(x)) = \int_{-1}^{1} (f(x) + g(x)) dx = \int_{-1}^{1} f(x) dx + \int_{-1}^{1} g(x) dx$$
$$= \psi(f(x)) + \psi(g(x)),$$

$$\psi(kf(x)) = \int_{-1}^{1} kf(x) dx = k \int_{-1}^{1} f(x) dx = k \psi(f(x)).$$

所以 ψ 是 V 上的一个线性函数.

2. 设 V 是数域 K 上的一个 3 维线性空间, η_1, η_2, η_3 是它的一个基, f 是 V 上的一个线性函数, 且

$$f(\eta_1 - 2\eta_2 + \eta_3) = 2$$
, $f(\eta_1 + \eta_3) = 2$, $f(-\eta_1 + \eta_2 + \eta_3) = -1$.

 $\Re f(x_1\eta_1 + x_2\eta_2 + x_3\eta_3).$

解: 令

$$\begin{cases} \alpha_1 = \eta_1 - 2\eta_2 + \eta_3 \\ \alpha_2 = \eta_1 + \eta_3 \\ \alpha_3 = -\eta_1 + \eta_2 + \eta_3 \end{cases}$$

则 $(\alpha_1, \alpha_2, \alpha_3) = (\eta_1, \eta_2, \eta_3)A$, 其中

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

则 $(\eta_1, \eta_2, \eta_3) = (\alpha_1, \alpha_2, \alpha_3)A^{-1}$, 所以

$$f(x_1\eta_1 + x_2\eta_2 + x_3\eta_3) = (f(\eta_1), f(\eta_2), f(\eta_3)) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (f(\alpha_1), f(\alpha_2), f(\alpha_3))A^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (2, 2, -1) \cdot \frac{1}{4} \begin{pmatrix} -1 & -2 & 1 \\ 3 & 2 & 1 \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{3}{2}x_1 + \frac{1}{2}x_3.$$

3. $V \otimes \eta_1, \eta_2, \eta_3$ 同上题. 试求一线性函数 g, 使

$$g(3\eta_1 + \eta_2) = 2$$
, $g(\eta_2 - \eta_3) = 1$, $g(2\eta_1 + \eta_3) = 2$.

解: 设

$$g(\eta_1) = a, \quad g(\eta_2) = b, \quad g(\eta_3) = c,$$

则由已知得

$$\begin{cases} 3a+b=2\\ b-c=1\\ 2a+c=2. \end{cases}$$

解得 a = -1, b = 5, c = 4. 从而所求的线性函数为

$$g(x_1\eta_1 + x_2\eta_2 + x_3\eta_3) = -x_1 + 5x_2 + 4x_3.$$

4. 设 V 是数域 K 上的 n 维线性空间, η_1, \dots, η_n 是它的一个基, a_1, \dots, a_n 是 K 中任意 n 个数. 证明: 存在 V 上唯一的线性函数 f, 使

$$f(\eta_i) = a_i, \quad i = 1, \dots, n.$$

证明: (存在性) 设 $\alpha = x_1 \eta_1 + x_2 \eta_2 + \cdots + x_n \eta_n \in V$. 令

$$f: V \longrightarrow K$$

 $\alpha \longmapsto f(\alpha) = \sum_{i=1}^{n} a_i x_i$

容易证明 f 是 V 上线性函数, 且满足所需条件.

(唯一性) 设g为V的线性函数, 使

$$g(\eta_i) = a_i, \qquad i = 1, \cdots, n.$$

则对任意的 $\alpha = x_1\eta_1 + x_2\eta_2 + \cdots + x_n\eta_n \in V$ 有

$$g(\alpha) = \sum_{i=1}^{n} x_i g(\eta_i) = \sum_{i=1}^{n} x_i a_i = f(\alpha).$$

这就证明了唯一性.

5. 设 $V = K^3$, $\alpha = (x_1, x_2, x_3)$, $\beta = (y_1, y_2, y_3)$, 判断下列二元函数 f 是 否为 V 上的双线性函数:

- (1) $f(\alpha, \beta) = 2x_1y_1 + x_1y_2 3x_2y_1 + x_2y_2;$
- (2) $f(\alpha, \beta) = (x_1 y_2)^2 + x_2 y_1;$
- (3) $f(\alpha, \beta) = c, \quad c \in K;$
- (4) $f(\alpha, \beta) = (2x_1 + x_2 3x_3)(y_1 y_2 + y_3).$

解: (1) 是.

- (2) 否.
- (3) 当 $c \neq 0$ 时, 否; 当 c = 0 时, 是.
- (4) 是.
- **6.** 设 f 为 n 维线性空间 V 上的双线性函数, 令

$$W_1 = \{ \alpha \in V \mid f(\alpha, \beta) = 0, \forall \beta \in V \},$$

$$W_2 = \{ \alpha \in V \mid f(\beta, \alpha) = 0, \forall \beta \in V \}.$$

证明: W_1 与 W_2 都是 V 的线性子空间, 且 $\dim W_1 = \dim W_2$.

证明: (1) 由于对任意的 $\beta \in V$ 有 $f(0,\beta) = 0$, 因此 $0 \in W_1$, W_1 非空. 又对任意的 $\alpha_1, \alpha_2 \in W_1$, $k \in K$ 以及任意的 $\beta \in V$ 有

$$f(\alpha_1 + \alpha_2, \beta) = f(\alpha_1, \beta) + f(\alpha_2, \beta) = 0,$$

$$f(k\alpha_1, \beta) = kf(\alpha_1, \beta) = 0,$$

因此

$$\alpha_1 + \alpha_2 \in W_1, \quad k\alpha_1 \in W_1.$$

所以 W_1 是 V 的线性子空间. 同理可证 W_2 也是 V 的线性子空间.

(2) 设 η_1, \dots, η_n 为 V 的基, f 在基 η_1, \dots, η_n 下的度量矩阵为 B. 则对任意的向量

$$\alpha = (x_1 \cdots x_n) \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix}, \qquad \beta = (y_1 \cdots y_n) \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix},$$

$$f(\alpha, \beta) = (x_1 \cdots x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

从而

$$\alpha = \sum_{i=1}^{n} x_i \eta_i \in W_1 \iff (x_1 \cdots x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = 0 \quad \forall (y_1, \cdots, y_n) \in W_1$$

 $K^n \iff (x_1 \cdots x_n)B = 0 \iff (x_1 \cdots x_n)$ 为齐次线性方程组 XB = 0 的解.

所以 $\dim W_1 =$ 齐次线性方程组 XB = 0 的解空间的维数 $= n - \operatorname{rank} B$. 同理可证 $\dim W_2 = n - \operatorname{rank} B$, 所以 $\dim W_1 = \dim W_2$.

7. 设 f 为 K^n 上的一个二元函数, 证明: f 为 K^n 上的双线性函数的充分 必要条件是存在矩阵 $A \in M_n(K)$, 使

$$f(X,Y) = X^{\mathrm{T}}AY, \quad X,Y \in K^n.$$

证明: (⇒) 设 f 为 K^n 上双线性函数, 取 f 的度量矩阵 A, 则 $A \in M_n(K)$, 且

$$f(X,Y) = X^{\mathrm{T}}AY, \quad \forall X, Y \in K^n.$$

(⇐) 如二元函数满足

$$f(X,Y) = X^{\mathrm{T}}AY, \quad \forall X, Y \in K^n,$$

则 f 显然是 K^n 上双线性函数.

8. 对于第5题中的双线性函数, 试求相应的度量矩阵.

解:
$$(1)$$
 $\begin{pmatrix} 2 & 1 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

(3) 当 c = 0 时, 度量矩阵 = 0.

$$(4) \left(\begin{array}{rrr} 2 & -2 & 2 \\ 1 & -1 & 1 \\ -3 & 3 & -3 \end{array} \right).$$

9. 设 $V = K^4$, 如下定义 V 的二元函数 f:

$$f(\alpha, \beta) = x_1 y_1 + x_2 y_2 - x_3 y_3 - x_4 y_4,$$

其中

$$\alpha = (x_1, x_2, x_3, x_4), \quad \beta = (y_1, y_2, y_3, y_4).$$

- (1) 证明: $f \in V$ 上的一个双线性函数;
- (2) 求 f 在基

$$\eta_1 = (2, 1, -1, 1), \quad \eta_2 = (0, 2, 1, 0),$$

$$\eta_3 = (1, 1, -2, 1), \quad \eta_4 = (0, 0, 1, 2)$$

下的度量矩阵;

- (3) 找出一个满足 $f(\alpha, \alpha) = 0$ 的向量 $\alpha \neq 0$.
- 解: (1) 代入验证即可. 证略.
- (2) 我们有

$$(\eta_1 \ \eta_2 \ \eta_3 \ \eta_4) = (\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3 \ \varepsilon_4) \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ -1 & 1 & -2 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

而 f 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的度量矩阵为

$$\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix},$$

因此 f 在基 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的度量矩阵为

$$\begin{pmatrix} 2 & 1 & -1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & -2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ & 1 \\ & & -1 \\ & & & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ -1 & 1 & -2 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 3 & 0 & -1 \\ 3 & 3 & 4 & -1 \\ 0 & 4 & -3 & 0 \\ -1 & -1 & 0 & -5 \end{pmatrix}.$$

$$f(\alpha, \beta) = 3x_1y_2 - 5x_2y_1 + x_3y_4 - 4x_4y_3.$$

(1) 求 f 在基

$$\eta_1 = (2, 1, -1, 1), \quad \eta_2 = (1, 2, 1, -1),
\eta_3 = (-1, 1, 2, 1), \quad \eta_4 = (1, -1, 1, 2)$$

下的度量矩阵;

(2) 另取 V 的基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$:

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4) = (\eta_1, \eta_2, \eta_3, \eta_4)T,$$

其中

求 f 在 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的度量矩阵.

解: (1) 把 f 在自然基下的度量矩阵记为 B, 把由自然基到基 $\eta_1, \eta_2, \eta_3, \eta_4$ 的过渡矩阵记为 A, 则

$$B = \begin{pmatrix} 0 & 3 & 0 & 0 \\ -5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -4 & 0 \end{pmatrix}, \qquad A = \begin{pmatrix} 2 & 1 & -1 & 1 \\ 1 & 2 & 1 & -1 \\ -1 & -1 & 2 & 1 \\ 1 & -1 & 1 & 2 \end{pmatrix},$$

于是 f 在基 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的度量矩阵为

$$C = A^{\mathrm{T}}BA = \begin{pmatrix} -1 & 4 & 2 & -17 \\ -20 & -1 & 22 & -7 \\ -7 & -17 & -4 & -2 \\ 22 & 2 & -17 & -4 \end{pmatrix}.$$

(2) f 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的度量矩阵为

$$D = T^{\mathrm{T}}CT = \begin{pmatrix} -45 & 9 & 39 & -27\\ 9 & -45 & 9 & -117\\ -39 & -9 & 5 & 3\\ 27 & 117 & 3 & 45 \end{pmatrix}.$$

11. 设 $f \in \mathbb{R}$ 维线性空间 V 上的双线性函数, 证明: f 非退化的充分必要条件是: 从

$$f(\alpha, \beta) = 0$$
, 对所有的 $\alpha \in V$,

可以推出 $\beta = 0$.

证明: (⇒) 令

$$W_1 = \{ \alpha \in V \mid f(\alpha, \beta) = 0, \forall \beta \in V \},\$$

$$W_2 = \{ \alpha \in V \mid f(\beta, \alpha) = 0, \forall \beta \in V \}.$$

如 f 非退化,则由定义 1.3 及 W_1 的定义知 $W_1=0$,从而由习题 6 得 $W_2=0$. 因此由 $f(\alpha,\beta)=0 \forall \alpha \in V$ 可以推出 $\alpha=0$.

- (\Leftarrow) 如 $f(\alpha, \beta) = 0 \quad \forall \alpha \in V$ 可以推出 $\alpha = 0$, 则 $W_2 = 0$, 同理可得 $W_1 = 0$, 则由定义 1.3 及 W_1 的定义知 f 非退化.
 - 12. 设 $A \in M_m(K)$, $V = M_{m,n}(K)$. 定义 V 上的二元函数 f 如下:

$$f(X,Y) = \operatorname{Tr}(X^{\mathrm{T}}AY), \quad X,Y \in V.$$

- (1) 证明: $f \in V$ 上的一个双线性函数;
- (2) 求 f 在基 $E_{11}, E_{12}, \dots, E_{1n}, \dots, E_{m1}, \dots, E_{mn}$ 下的度量矩阵;
- (3) 在什么条件下, f 是非退化的.

解: (1) 设 $X = (x_{ij})_{m \times n}$, $Y = (y_{ij})_{m \times n}$, $A = (a_{ij})_m$, 则

$$f(X,Y) = \sum_{i=1}^{n} \sum_{l=1}^{m} \sum_{k=1}^{m} x_{li} a_{lk} y_{ki},$$

§ 2 对称双线性函数 · 67 ·

从而知 f 是双线性的.

(2) 由于 $f(E_{st}, E_{uv}) = \delta_{tv} a_{su}$, 因此 f 在基 $E_{11}, E_{12}, \dots, E_{1n}, \dots, E_{m1}$, \dots, E_{mn} 下的度量矩阵为

$$B = \begin{pmatrix} a_{11}E & \cdots & a_{1m}E \\ \vdots & \ddots & \vdots \\ a_{m1}E & \cdots & a_{mm}E \end{pmatrix},$$

其中 $E \in n$ 阶单位方阵.

- (3) 由于 $|B|=|A|^n$, 所以 f 非退化 \iff $|B|\neq 0 \iff |A|\neq 0$. 即 f 非退化的充分必要条件是 A 是可逆矩阵.
 - 13. 证明: $M_n(K)$ 上的双线性函数

$$f(A,B) = \operatorname{Tr} AB, \quad A,B \in M_n(K)$$

是非退化的.

证明: 设 $A = (a_{ij}) \in M_n(K)$. 如果

$$f(A, B) = \operatorname{Tr} AB = 0 \quad \forall B \in M_n(K)$$

则 $f(A, E_{ij}) = 0 \ \forall i, j = 1, \cdots, n.$ 而

$$f(A, E_{ij}) = \operatorname{Tr} A E_{ij} = a_{ji},$$

所以 $a_{ji}=0$ 对 $i,j=1,\cdots,n$, 即 A=0. 因此 f 非退化.

另证: 因为

$$f(A, B) = \operatorname{Tr} AB = \operatorname{Tr}((A^{\mathsf{T}})^{\mathsf{T}}B) = \operatorname{Tr}((A^{\mathsf{T}})^{\mathsf{T}}EB),$$

由习题 12(3) 可知 f 非退化.

§ 2 对称双线性函数

1. 设 f 是线性空间 V 上的双线性函数, W 是 V 的真子空间.

证明: 对 $\xi \notin W$, 必有非零向量 $\eta \in W + L(\xi)$, 使对所有的 $\alpha \in W$, 都有 $f(\eta, \alpha) = 0$.

证明: 如 W=0, 则结论显然成立. 现设 $W\neq 0$. 设 $\alpha_1, \dots, \alpha_s$ 为 W 的基, 则因 $\xi \notin W$, $\xi, \alpha_1, \dots, \alpha_s$ 线性无关. 考察线性方程组

$$\begin{cases} x_0 f(\xi, \alpha_1) + x_1 f(\alpha_1, \alpha_1) + \dots + x_s f(\alpha_s, \alpha_1) = 0 \\ x_0 f(\xi, \alpha_2) + x_1 f(\alpha_1, \alpha_2) + \dots + x_s f(\alpha_s, \alpha_2) = 0 \\ \dots \\ x_0 f(\xi, \alpha_s) + x_1 f(\alpha_1, \alpha_s) + \dots + x_s f(\alpha_s, \alpha_s) = 0 \end{cases}$$
(*)

此齐次线性方程组的方程个数 s 小于未知量个数 s+1, 故 (*) 有非零解 (a_0,a_1,\cdots,a_s) . 令

$$\eta = a_0 \xi + a_1 \alpha_1 + \dots + a_s \alpha_s,$$

则 $\eta \in W + L(\xi)$, 且 $\eta \neq 0$ (因 $\xi, \alpha_1, \cdots, \alpha_s$ 线性无关, 且 a_0, a_1, \cdots, a_s 不全 为零). 且由 (*) 知

$$f(\eta, \alpha_i) = 0, \qquad i = 1, 2, \dots, s.$$

又因 $\alpha_1, \dots, \alpha_s$ 为 W 的基, 故对任意的 $\alpha \in W$ 都有 $f(\eta, \alpha) = 0$.

2. V 与 f 同上题, $W \ne V$ 的线性子空间, 令

$$W^{\perp} = \{ \alpha \in V \mid f(\alpha, \beta) = 0, \forall \beta \in W \}.$$

证明: (1) W^{\perp} 是 V 的线性子空间;

(2) 如果 $W \cap W^{\perp} = \{0\}$, 则 $V = W \oplus W^{\perp}$.

证明: (1)由 $f(0,\beta)=0$ $\forall \beta \in W,$ 可得 $0 \in W^{\perp},$ 因此 W^{\perp} 非空.

对任意的 $\alpha_1, \alpha_2 \in W^{\perp}, k \in K, 则 \forall \beta \in W,$ 有

$$f(\alpha_1 + \alpha_2, \beta) = f(\alpha_1, \beta) + f(\alpha_2, \beta) = 0,$$

$$f(k\alpha_1,\beta) = kf(\alpha_1,\beta) = 0,$$

因此 $\alpha_1 + \alpha_2 \in W^{\perp}, k\alpha_1 \in W^{\perp},$ 故 W^{\perp} 是 V 的线性子空间.

(2) 对任意的 $\xi \notin W$, 由上题所证,存在 $\eta \neq 0 \in W + L(\xi)$, 使得 $f(\eta,\alpha) = 0 \ \forall \alpha \in W$, 即 $\eta \in W^{\perp}$. 记 $\eta = \alpha + a\xi$,则因 $W \cap W^{\perp} = 0$,必有 $a \neq 0$. 所以

$$\xi = a^{-1}\eta - a^{-1}\alpha \in W^{\perp} + W.$$

证得 $V \subseteq W^{\perp} + W$.

3. 求可逆矩阵 T, 使 $T^{T}AT$ 为对角形. 其中 A 为下列矩阵:

§ 2 对称双线性函数 · 69 ·

$$(1) \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 5 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix};$$

$$(3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix};$$

解: (1) 取
$$T = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $T^{T}AT = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(2) 取
$$T = \begin{pmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
, 则 $T^{T}AT = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(3)
$$\mathfrak{R} T = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & -1 \end{pmatrix}, \, \mathfrak{M} T^{\mathsf{T}} A T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

(4)
$$\mathfrak{R} T = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \, \mathfrak{M} T^{\mathsf{T}} A T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4. 证明:

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \stackrel{\sqsubseteq_{\overline{j}}}{=} \begin{pmatrix} \lambda_{i_1} & & & \\ & \lambda_{i_2} & & \\ & & \ddots & \\ & & & \lambda_{i_n} \end{pmatrix}$$

相合, 其中 i_1, \dots, i_n 是 $1, \dots, n$ 的一个排列.

证明: 考察 n 维线性空间 V. 设 f 为 V 上的对称双线性函数, 它在基 η_1, \dots, η_n 下的度量矩阵为

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

易知 $\eta_{i_1}, \dots, \eta_{i_n}$ 仍是 V 的基, 且 f 在 $\eta_{i_1}, \dots, \eta_{i_n}$ 下的度量矩阵为

$$\left(egin{array}{cccc} \lambda_{i_1} & & & & \\ & \lambda_{i_2} & & & \\ & & \ddots & & \\ & & & \lambda_{i_n} \end{array}
ight),$$

因此这两个矩阵相合.

5. 证明: 秩等于 r 的对称矩阵可以表为 r 个秩等于 1 的对称矩阵之和. **证明**: 设 A 是秩为 r 的对称矩阵,则存在可逆矩阵 T,使得

$$T^{\mathsf{T}}AT = \begin{pmatrix} a_1 & & & & & \\ & \ddots & & & & \\ & & a_r & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}, \qquad a_i \neq 0.$$

令

则 A_i 也是对称矩阵, rank $A_i = 1$ 且 $A = A_1 + A_2 + \cdots + A_r$.

6. 设 A 为实矩阵, 证明: $A^{T}A$ 与 A 的秩相等.

证明: 易知, $A^{T}A$ 是实对称矩阵. 考察实数域上的齐次线性方程组

$$A^{\mathrm{T}}AX = 0 \tag{1}$$

与

$$AX = 0. (2)$$

显然 (2) 的解都是 (1) 的解.

§2 对称双线性函数 · 71 ·

设 $X \in \mathbb{R}^n$ 为 (1) 的一个解. 令

$$Y = AX = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

则

$$Y^{\mathrm{T}}Y = X^{\mathrm{T}}A^{\mathrm{T}}AX = 0,$$

从而

$$y_1^2 + y_2^2 + \dots + y_n^2 = 0.$$

由于 y_i 均为实数, 因此 $y_1 = y_2 = \cdots = y_n = 0$, Y = 0, 即

$$AX = 0.$$

从而(1)的解也都是(2)的解.(1)与(2)同解.由齐次线性方程组解的性质知

$$\operatorname{rank} A^{\mathrm{T}} A = \operatorname{rank} A.$$

7. 设 A 为正定矩阵, 证明: A^{-1} 与 A^* 都是正定矩阵.

证明: 易知 A^{-1} 与 A^* 都是实对称矩阵. 且 $A^* = |A| \cdot A^{-1}$. 因 A 正定, 存 在可逆实矩阵 C 使 $C^{\mathrm{T}}C = A$. 从而 $A^{-1} = C^{-\mathrm{T}}C^{-1}$ 也正定. 由 |A| > 0 可知 $A^* = |A| \cdot A^{-1}$ 也正定.

8. 证明任意一个方阵都可唯一表为一个对称矩阵和一个反称矩阵之和. 证明: 设 A 是一个方阵,则 $B = \frac{1}{2}(A + A^{\mathrm{T}})$ 是一个对称矩阵,C = $\frac{1}{2}(A-A^{\mathrm{T}})$ 是一个反称矩阵, 而且 A=B+C. 这就证明了分解的存在性. 再 证唯一性. 如果还有分解 $A = B_1 + C_1$, 其中 B_1 是对称矩阵, C_1 是反称矩阵. 与前式相减后可得 $B - B_1 = C_1 - C$. 等式左边是对称矩阵, 右边是反称矩阵, 因而是零矩阵, 即 $B = B_1$, $C = C_1$.

9. 证明: 任意一个双线性函数都可唯一表为一个对称双线性函数和一个 反称双线性函数之和.

证明: (1) 设 $f(\alpha, \beta)$ 是一个双线性函数, 易知

$$g(\alpha, \beta) = \frac{1}{2} [f(\alpha, \beta) + f(\beta, \alpha)]$$

是对称双线性函数,

$$h(\alpha, \beta) = \frac{1}{2} [f(\alpha, \beta) - f(\beta, \alpha)]$$

为反称双线性函数,且

$$f(\alpha, \beta) = g(\alpha, \beta) + h(\alpha, \beta).$$

(2) 又设

$$f(\alpha, \beta) = g'(\alpha, \beta) + h'(\alpha, \beta),$$

其中 $g'(\alpha, \beta)$ 是对称双线性函数, $h'(\alpha, \beta)$ 是反称双线性函数, 则

$$f(\beta, \alpha) = g'(\beta, \alpha) + h'(\beta, \alpha) = g'(\alpha, \beta) - h'(\alpha, \beta).$$

从而

$$\begin{split} g'(\alpha,\beta) &= \frac{1}{2}[f(\alpha,\beta) + f(\beta,\alpha)] = g(\alpha,\beta), \\ h'(\alpha,\beta) &= \frac{1}{2}[f(\alpha,\beta) - f(\beta,\alpha)] = h(\alpha,\beta). \end{split}$$

- **10.** 设 *A* 为实对称矩阵, 证明:
- (1) 当实数 λ 充分大之后, $\lambda E + A$ 是正定的;
- (2) A 半正定当且仅当对任何的 $\lambda > 0$, $\lambda E + A$ 都正定.

证明: (1) 考察 $A(\lambda) = \lambda E + A$, 它的 r 阶顺序主子式

$$D_r(\lambda) = |\lambda E_r + A_r| = \lambda^r + a_1 \lambda^{r-1} + \dots + a_r.$$

所以当 λ 充分大时,有 $D_r(\lambda) > 0$, $r = 1, \dots, n$. 从而当 λ 充分大时, $\lambda E + A$ 正定.

(2) (\Rightarrow) 若 A 半正定,则对任意的 $X \neq 0 \in \mathbb{R}^n$, $X^TAX \geq 0$.从而对任意的 $\lambda > 0$ 有

$$X^{\mathrm{T}}(\lambda E + A)X = \lambda X^{\mathrm{T}}X + X^{\mathrm{T}}AX > 0.$$

故 $\lambda E + A$ 正定.

(⇐) 对任意的 $\lambda > 0$ 及 $X \neq 0 \in \mathbb{R}^n$, 有

$$X^{\mathrm{T}}(\lambda E + A)X = \lambda X^{\mathrm{T}}X + X^{\mathrm{T}}AX > 0,$$

从而 $X^TAX > 0$. 故 A 半正定.

*11. 证明: 双线性函数 f 具有正交对称性的充分必要条件是 f 为对称或反称双线性函数.

证明: 充分性是显然的. 下面证必要性.

(1) 如对任意的 $\alpha \in V$ 都有 $f(\alpha, \alpha) = 0$, 则对任意的 $\alpha, \beta \in V$,

$$0 = f(\alpha + \beta, \alpha + \beta) = f(\alpha, \alpha) + f(\alpha, \beta) + f(\beta, \beta) + f(\beta, \beta) = f(\alpha, \beta) + f(\beta, \alpha).$$

 $\S 2$ 对称双线性函数 $\cdot 73$ \cdot

因此 $f(\alpha, \beta) = -f(\beta, \alpha)$, f 是反称双线性函数.

(2) 如果存在 $\gamma \in V$ 使 $f(\gamma, \gamma) \neq 0$. 则对任意的 $\alpha \in V$, 由于

$$f\left(\alpha - \frac{f(\alpha, \gamma)}{f(\gamma, \gamma)}\gamma, \gamma\right) = f(\alpha, \gamma) - f(\alpha, \gamma) = 0,$$

所以 $f\left(\gamma, \alpha - \frac{f(\alpha, \gamma)}{f(\gamma, \gamma)}\gamma\right) = 0$. 因此

$$f(\alpha, \gamma) = f(\gamma, \alpha). \tag{*}$$

对于任意的 $\alpha, \beta \in V$, 以下再分两种情况讨论:

(a) 如果 $f(\alpha, \gamma) \neq 0$, 则

$$f\left(\alpha, \beta - \frac{f(\alpha, \beta)}{f(\alpha, \gamma)}\gamma\right) = f(\alpha, \beta) - f(\alpha, \beta) = 0,$$

因此
$$f\left(\beta - \frac{f(\alpha, \beta)}{f(\alpha, \gamma)}\gamma, \alpha\right) = 0$$
, 从而

$$0 = f(\beta, \alpha) - \frac{f(\alpha, \beta)}{f(\alpha, \gamma)} f(\gamma, \alpha)$$
$$= f(\beta, \alpha) - \frac{f(\alpha, \beta)}{f(\alpha, \gamma)} f(\alpha, \gamma) \quad \text{iff } (*)$$
$$= f(\beta, \alpha) - f(\alpha, \beta),$$

 $\mathbb{P} f(\alpha, \beta) = f(\beta, \alpha).$

(b) 如果
$$f(\alpha, \gamma) = 0$$
, 则

$$f\left(\alpha + \gamma, \beta - \frac{f(\alpha, \beta) + f(\gamma, \beta)}{f(\gamma, \gamma)}\gamma\right) = f(\alpha, \beta) + f(\gamma, \beta) - f(\alpha, \beta) - f(\gamma, \beta) = 0,$$

因此
$$f\left(\beta - \frac{f(\alpha, \beta) + f(\gamma, \beta)}{f(\gamma, \gamma)}\gamma, \alpha + \gamma\right) = 0$$
. 从而

$$f(\beta, \alpha) + f(\beta, \gamma) - f(\alpha, \beta) - f(\gamma, \beta) = 0.$$

由 (*) 知 $f(\beta, \gamma) = f(\gamma, \beta)$, 因此 $f(\alpha, \beta) = f(\beta, \alpha)$.

由(a)和(b)可得f为对称双线性函数.

- ***12.** 设 V 是复数域上的线性空间, 其维数 $n \ge 2$, f 是 V 上的一个对称双线性函数. 证明:
 - (1) V 中有非零向量 ξ, 使 f(ξ,ξ) = 0;

(2) 当 f 是非退化时, 必有线性无关的向量 ξ, η , 满足:

$$f(\xi, \eta) = 1,$$

 $f(\xi, \xi) = f(\eta, \eta) = 0.$

证明: (1) 由于 dim $V \ge 2$. 任取 V 的两个线性无关的向量 α, β . 如果 $f(\alpha, \alpha) = 0$, 则 $\xi = \alpha$ 即为所求. 现设 $f(\alpha, \alpha) \ne 0$. 则 2 次方程

$$t^{2}f(\alpha,\alpha) + 2tf(\alpha,\beta) + f(\beta,\beta) = 0 \tag{*}$$

在复数范围内有解. 设 $t_0 \in \mathbb{C}$ 是 t 的一个解. 令

$$\xi = t_0 \alpha + \beta$$
,

则 $\xi \neq 0$ (因 α , β 线性无关), 且

$$f(\xi,\xi) = t_0^2 f(\alpha,\alpha) + 2t_0 f(\alpha,\beta) + f(\beta,\beta) = 0.$$

从而 $\xi = t_0 \alpha + \beta$ 即为所求.

(2) 由 (1) 所证, 存在 $\xi \neq 0 \in V$ 使 $f(\xi,\xi)=0$. 又因 f 非退化, 故存在 $\alpha \in V$ 使 $f(\xi,\alpha) \neq 0$.

(a) 如
$$f(\alpha, \alpha) = 0$$
, 则令 $\eta = \frac{1}{f(\xi, \alpha)} \alpha$, 即有

$$f(\xi, \xi) = f(\eta, \eta) = 0,$$
 $f(\xi, \eta) = 1.$

(b) 如 $f(\alpha, \alpha) \neq 0$, 则取

$$\eta = \frac{1}{f(\alpha, \xi)} \alpha - \frac{f(\alpha, \alpha)}{2(f(\alpha, \xi))^2} \xi,$$

直接验证可知 $f(\eta, \eta) = 0$, $f(\xi, \eta) = 1$, 而 ξ, η 的线性无关性是显然的. 故 ξ, η 即为所求.

***13.** 证明: 如果线性空间 V 上的对称双线性函数 f 能分解为两个线性函数之积:

$$f(\alpha, \beta) = f_1(\alpha)f_2(\beta), \quad \forall \alpha, \beta \in V,$$

则存在非零数 λ 及线性函数 g, 使

$$f(\alpha, \beta) = \lambda g(\alpha)g(\beta).$$

§ 2 对称双线性函数 · 75 ·

证明: 如果 f=0, 则结论当然成立. 现设 $f\neq 0$. 因此存在 $\alpha_0,\beta_0\in V$, 使 得 $f(\alpha_0,\beta_0)\neq 0$. 定义

$$g: V \longrightarrow K$$

 $\gamma \longmapsto f(\alpha_0, \gamma)$

则 g 为 V 上线性函数, 且 $g \neq 0$. 对任意的 $\beta \in V$,

$$g(\beta) = f(\alpha_0, \beta) = f_1(\alpha_0) f_2(\beta)$$

$$g(\beta) = f(\alpha_0, \beta) = f(\beta, \alpha_0) = f_1(\beta) f_2(\alpha_0)$$

显然 $f_1(\alpha_0) \neq 0$, $f_2(\alpha_0) \neq 0$ (否则 $g \neq 0$). 由此知,

$$f_1(\beta) = \frac{1}{f_2(\alpha_0)} g(\beta)$$

$$f_2(\beta) = \frac{1}{f_1(\alpha_0)} g(\beta)$$

$$\forall \beta \in V.$$

$$f(\alpha, \beta) = f_1(\alpha)f_2(\beta) = \frac{1}{f_2(\alpha_0)}g(\alpha) \cdot \frac{1}{f_1(\alpha_0)}g(\beta) = \lambda g(\alpha)g(\beta).$$

14. 设 A 为半正定矩阵, 证明: A 也是半正定矩阵.

证明: 如果 rank A = n, 则 A 是正定矩阵, 习题 7 已证明了 A^* 正定. 如果 rank $A \le n - 2$, 则 $A^* = 0$, 从而 A^* 半正定. 最后考虑 rank A = n - 1 的情形. 此时 rank $A^* = 1$, 从而 A^* 的阶数 ≥ 2 的主子式都是 0, 而 A^* 的 1 阶主子式 $= A_{ii}$ $(i = 1, \dots, n) = A$ 的 a_{ii} 的代数余子式 $(i = 1, \dots, n) = A$ 的 a_{ii} 的余子式 $(i = 1, \dots, n) = A$ 的 n - 1 阶主子式 ≥ 0 (因 A 半正定). 所以 A^* 半正定.

*15. 证明定理 2.12.

证明: $(1) \Rightarrow (2)$ 设 A 半正定,则存在可逆实矩阵 T,使

$$T^{\mathrm{T}}AT = \begin{pmatrix} a_1 & & & & & & \\ & \ddots & & & & & \\ & & a_r & & & & \\ & & & 0 & & & \\ & & & \ddots & & \\ & & & & 0 \end{pmatrix}, \qquad a_i \neq 0.$$

由于 A 半正定, $T^{T}AT$ 也半正定, 故 $a_i > 0$. 所以 A 的正惯性指数 $p = r = \operatorname{rank} A$;

 $(2) \Rightarrow (3)$ 由假设, 存在可逆实矩阵 T_1 , 使

令

$$T_{2} = \begin{pmatrix} \frac{1}{\sqrt{A_{1}}} & & & & & \\ & \ddots & & & & \\ & & \frac{1}{\sqrt{A_{r}}} & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}, \qquad T = T_{1}T_{2},$$

则

$$T^{\mathrm{T}}AT = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & 0 & & & \\ & & & \ddots & & \\ & & & & 0 \end{pmatrix} = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

 $(3) \Rightarrow (4)$ 由假设, 存在可逆实矩阵 T, 使

$$T^{\mathrm{T}}AT = \left(\begin{array}{cc} E_r & 0\\ 0 & 0 \end{array}\right).$$

$$S = \left(\begin{array}{cc} E_r & 0\\ 0 & 0 \end{array}\right) T,$$

§2 对称双线性函数 · 77 ·

则

$$A = S^{\mathrm{T}}S$$

 $(4) \Rightarrow (1)$ 对任意的 $X \neq 0 \in \mathbb{R}^n$, 令 Y = SX, 则 $Y \in \mathbb{R}^n$. 所以

$$X^{\mathrm{T}}AX = X^{\mathrm{T}}S^{\mathrm{T}}SX = Y^{\mathrm{T}}Y \ge 0,$$

A 半正定.

 $(1)\Rightarrow (5)$ 设 $B_k=A(i_1,\cdots,i_k;i_1,\cdots,i_k)$ 是 A 的一个主子式. 则对任意的

$$X_k = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} \in \mathbb{R}^k,$$

可以作一个列向量 $X \in \mathbb{R}^n$, 使得它的第 i_j 列的元素等于 x_j , 而其余元素均等于 0. 则

$$0 \le X^{\mathrm{T}} A X = X_k^{\mathrm{T}} B_k X_k,$$

因此 B_r 是半正定的. 根据 (4), 可得半正定矩阵的行列式非负, 即 $|B_k| \ge 0$.

 $(5) \Rightarrow (1)$ 对于任意的正实数 $\lambda > 0$, 考察 $\lambda E + A$ 的 k 阶主子阵 $\lambda E_k + A_k$. 这个子矩阵的行列式为

$$f_k(\lambda) = |\lambda E_k + A_k| = \lambda^k + a_1 \lambda^{k-1} + \dots + a_k.$$

则根据习题 7–3.8, $(-1)^i a_i$ 等于 $-A_k$ 的全部 i 阶主子式之和. 而 $-A_k$ 的每个 i 阶主子式等于 A_k 的相应 i 阶主子式的 $(-1)^i$ 倍. 因此 a_i 等于 A_k 的所有 i 阶主子式之和, 由假设, $a_i \geq 0$. 从而

$$f_k(\lambda) > 0 \quad \forall \lambda > 0, \ i = 1, \dots, k.$$

根据定理 2.11, $\lambda E + A (\lambda > 0)$ 是正定矩阵.

任取 $X \neq 0 \in \mathbb{R}^n$, 据正定性, λ 的一次式

$$g(\lambda) = X^{\mathrm{T}}(\lambda E + A)X = \lambda X^{\mathrm{T}}X + X^{\mathrm{T}}AX > 0, \quad \forall \lambda > 0.$$

因此 $X^{T}AX \geq 0$ (否则当 λ 充分小时会有 $g(\lambda) < 0$), 从而 A 半正定.

- *16. 主对角线上全是 1 的上三角形矩阵称为幂幺上三角形矩阵.
- (1) 设 A 是一个对称矩阵, T 为幂幺上三角形矩阵, 证明: $T^{T}AT$ 与 A 的对应顺序主子式有相同的值:

(2) 如果对称矩阵的顺序主子式全不为零,则存在一幂幺上三角形矩阵 T,使 $T^{\mathrm{T}}AT$ 为对角形.

证明: (1) 设 A_r 为 A 的 r 阶顺序主子式 $(1 \le r \le n)$,

$$A = \left(\begin{array}{cc} A_r & * \\ * & * \end{array}\right).$$

设 T 为幂幺上三角形矩阵,

$$T = \begin{pmatrix} T_{11} & * \\ 0 & T_{22} \end{pmatrix}, \qquad \sharp r = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_r$$

则

$$T^{\mathrm{T}}AT = \begin{pmatrix} T_{11}^{\mathrm{T}} & 0 \\ * & T_{22}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} A_r & * \\ * & * \end{pmatrix} \begin{pmatrix} T_{11} & * \\ 0 & T_{22} \end{pmatrix} = \begin{pmatrix} T_{11}^{\mathrm{T}}A_rT_{11} & * \\ * & * \end{pmatrix}.$$

从而 $T^{T}AT$ 的 r 阶顺序主子式等于 (注意到 $|T_{11}|=1$)

$$|T_{11}^{\mathrm{T}}AT_{11}| = |T_{11}^{\mathrm{T}}||A||T_{11}| = |A_r|.$$

(2) 对 A 的阶数用归纳法. 取

$$T_{1} = \begin{pmatrix} E_{n-1} & -A_{n-1}^{-1}B \\ 0 & 1 \end{pmatrix}, \qquad A_{n-1} = A(1, \dots, n-1; 1, \dots, n-1),$$

$$B = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{n-1,n} \end{pmatrix}.$$

这是幂幺上三角形矩阵. 则

$$\begin{split} T_1^{\mathrm{T}} A T_1 &= \left(\begin{array}{cc} E & 0 \\ -B^{\mathrm{T}} A_{n-1}^{-1} & 1 \end{array} \right) \left(\begin{array}{cc} A_{n-1} & B \\ B^{\mathrm{T}} & a_{nn} \end{array} \right) \left(\begin{array}{cc} E & -A_{n-1}^{-1} B \\ 0 & 1 \end{array} \right) \\ &= \left(\begin{array}{cc} A_{n-1} & 0 \\ 0 & b_n \end{array} \right), \end{split}$$

其中 $b_n = a_{nn} - B^T A_{n-1} B$. 由于 A 的顺序主子式全不为 0, 故 A_{n-1} 的顺序主子式全不为 0, 由归纳假设, 存在 n-1 阶幂幺上三角形矩阵 T_2 使

$$T_2^{\mathrm{T}}A_{n-1}T_2 = \left(egin{array}{ccc} b_1 & & & \\ & \ddots & & \\ & & b_{n-1} \end{array}
ight).$$

§ 3 二次型 · 79 ·

�

$$T = T_1 \left(\begin{array}{cc} T_2 & 0 \\ 0 & 1 \end{array} \right),$$

则 T 为幂幺上三角形矩阵, 且

$$T^{\mathrm{T}}AT = \begin{pmatrix} b_1 & & \\ & \ddots & \\ & & b_n \end{pmatrix}.$$

§3 二次型

1. 用非退化线性替换化下列二次型为平方和:

(1)
$$x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$
;

(2)
$$4x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 3x_2x_3$$
;

(3)
$$x_1x_2 + x_1x_3 + x_2x_3$$
;

(4)
$$2x_1^2 + 18x_2^2 + 8x_3^2 - 12x_1x_2 + 8x_1x_3 - 27x_2x_3$$
;

(5)
$$x_1^2 - 2x_1x_2 + 2x_1x_3 - 2x_1x_4 + x_2^2 + 2x_2x_3 - 4x_2x_4 + x_3^2 - 2x_4^2$$
;

(6)
$$x_1^2 + x_1 x_2 + x_2 x_4$$
.

解: (1) $x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3 = (x_1 + x_2 - 2x_3)^2 + (2x_2 + x_3)^2 - (3x_3)^2$. 令

$$\begin{cases} y_1 = x_1 + x_2 - 2x_3 \\ y_2 = 2x_2 + x_3 \\ y_3 = 3x_3 \end{cases} \quad \text{ID} \quad \begin{cases} x_1 = y_1 - \frac{1}{2}y_2 + \frac{5}{6}y_3 \\ x_2 = \frac{1}{2}y_2 - \frac{1}{6}y_3 \\ x_3 = \frac{1}{3}y_3 \end{cases}$$

有

$$f(x_1, x_2, x_3) = y_1^2 + y_2^2 - y_3^2.$$

$$(2) \ \ \mathbb{R} \vec{x} = (2x_1 - x_2 + x_3)^2 + \left(\frac{x_2 - x_3}{2}\right)^2 - \left(\frac{x_2 + x_3}{2}\right)^2. \ \ \diamondsuit$$

$$\begin{cases} y_1 = 2x_1 - x_2 + x_3 \\ y_2 = \frac{x_2 - x_3}{2} \\ y_3 = \frac{x_2 + x_3}{2} \end{cases} \qquad \qquad \mathbb{P} \qquad \begin{cases} x_1 = \frac{1}{2}y_1 + y_2 \\ x_2 = y_2 + y_3 \\ x_3 = -y_2 + y_3 \end{cases}$$

则

$$f(x_1, x_2, x_3) = y_1^2 + y_2^2 - y_3^2.$$

(3) 令

$$\begin{cases} x_1 = y_1 - y_2 - y_3 \\ x_2 = y_1 + y_2 - y_3 \\ x_3 = y_3 \end{cases}$$

有

$$f(x_1, x_2, x_3) = y_1^2 - y_2^2 - y_3^2.$$

$$(4) \ \mathbb{R}\vec{x} = 2(x_1 - 3x_2 + 2x_3)^2 + \left(\frac{3x_2 - x_3}{2}\right)^2 - \left(\frac{3x_2 + x_3}{2}\right)^2. \ \diamondsuit$$

$$\begin{cases} y_1 = x_1 - 3x_2 + 2x_3 \\ y_2 = \frac{3x_2 - x_3}{2} \\ y_3 = \frac{3x_2 + x_3}{2} \end{cases} \qquad \mathbb{P} \quad \begin{cases} x_1 = y_1 + 3y_2 - y_3 \\ x_2 = \frac{1}{3}y_2 + \frac{1}{3}y_3 \\ x_3 = -y_2 + y_3 \end{cases}$$

则

$$f(x_1, x_2, x_3) = 2y_1^2 + y_2^2 - y_3^2.$$

(5) 令

$$\begin{cases} x_1 = y_1 - y_3 - y_4 \\ x_2 = \frac{1}{2}y_2 - \frac{1}{2}y_3 - \frac{1}{2}y_4 \\ x_3 = \frac{1}{2}y_2 + \frac{1}{2}y_3 + \frac{3}{2}y_4 \\ x_4 = y_4 \end{cases}$$

则有

$$f(x_1, x_2, x_3, x_4) = y_1^2 + y_2^2 - y_3^2.$$

$$(6) \ \mathbb{R}\vec{x} = x_1^2 + \left(\frac{x_2 + x_1 + x_4}{2}\right)^2 - \left(\frac{x_2 - x_1 - x_4}{2}\right)^2. \ \diamondsuit$$

$$\begin{cases} y_1 = x_1 \\ y_2 = \frac{x_2 + x_1 + x_4}{2} \\ y_3 = \frac{x_2 - x_1 - x_4}{2} \\ y_4 = x_3 \end{cases} \quad \text{ID} \quad \begin{cases} x_1 = y_1 \\ x_2 = y_2 + y_3 \\ x_3 = y_4 \\ x_4 = -y_1 + y_2 - y_3 \end{cases}$$

§ 3 二次型 · 81 ·

则

$$f(x_1, x_2, x_3, x_4) = y_1^2 + y_2^2 - y_3^2$$

2. λ 取何值时, 下列二次型是正定的:

(1)
$$5x_1^2 + x_2^2 + \lambda x_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
;

(2)
$$2x_1^2 + x_2^2 + 3x_3^2 + 2\lambda x_1 x_2 + 2x_1 x_3$$
;

(3)
$$2x_1^2 + 2x_2^2 + x_3^2 + 2\lambda x_1 x_2 + 6x_1 x_3 + 2x_2 x_3$$
.

解: (1)
$$A = \begin{pmatrix} 5 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & \lambda \end{pmatrix}$$
,它的顺序主子式 $D_1 = 5 > 0$, $D_2 = 1 > 0$

 $0, D_3 = \lambda - 2$. 所以当 $\lambda > 2$ 时原二次型正定.

(2) 二次型矩阵的顺序主子式 $D_1 = 2 > 0$, $D_2 = 2 - \lambda^2$, $D_3 = 5 - 3\lambda^2$.

由
$$D_2 > 0$$
, 得 $|\lambda| < \sqrt{2}$;

由
$$D_3 > 0$$
,得 $|\lambda| < \sqrt{\frac{5}{3}}$.

所以当
$$-\frac{\sqrt{15}}{3} < \lambda < \frac{\sqrt{15}}{3}$$
 时原二次型正定.

(3) 二次型矩阵的顺序主子式 $D_1 = 2$, $D_2 = 4 - \lambda^2$, $D_3 = -\lambda^2 + 6\lambda - 16 = -(\lambda - 3)^2 - 7 < 0$, 故不论 λ 取何实数都不能使此二次型正定.

3. 下列二次型是否正定或半正定:

(1)
$$\sum_{i=1}^{n} x_i^2 + \sum_{1 \le i < j \le n} x_i x_j;$$
 (2) $\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n-1} x_i x_{i+1};$

(3)
$$n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2$$
.

解: (1) 二次型矩阵
$$A = \begin{pmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{pmatrix}$$
, 它的顺序主子式

$$D_r = |A_r| = \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix}_r = \frac{1}{2^r}(r+1) > 0, \qquad r = 1, \dots, n.$$

故原二次型正定.

(2) 原式
$$f = \frac{1}{2}x_1^2 + \frac{1}{2}(x_1 + x_2)^2 + \frac{1}{2}(x_2 + x_3)^2 + \dots + \frac{1}{2}(x_{n-1} + x_n)^2 + \frac{1}{2}x_n^2 \ge 0$$
. 因此 $f = 0 \iff x_1 = 0, x_1 + x_2 = 0, x_2 + x_3 = 0, \dots, x_{n-1} + x_n = 0, x_n = 0 \iff x_1 = x_2 = \dots = x_n = 0$. 故原二次型正定.

(3) 原式 =
$$(-1)$$
 $\sum_{i=1}^{n} x_i^2 - 2 \sum_{1 \le i, j \le n} x_i x_j = \sum_{1 \le i, j \le n} (x_i - x_j)^2 \ge 0$. 取 $x_1 = x_2 = \cdots = x_n \ne 0$ 可使此二次型取零值. 因此原二次型半正定.

4. 设 A, B, C 为三角形的三个内角, 证明: 对任意实数 x, y, z 有

$$x^2 + y^2 + z^2 \geqslant 2xy\cos A + 2xz\cos B + 2yz\cos C.$$

证明: 考察二次型 $f(x,y,z) = x^2 + y^2 + z^2 - 2xy\cos A - 2xz\cos B - 2yz\cos C$.

f(x, y, z)

$$= (x - y\cos A - z\cos B)^{2} + y^{2}\sin^{2} A + z^{2}\sin^{2} B - 2yz\cos A\cos B - 2yz\cos C$$

$$= (x - y\cos A - z\cos B)^{2} + y^{2}\sin^{2} A + z^{2}\sin^{2} B - 2yz\sin A\sin B$$

$$= (x - y\cos A - z\cos B)^{2} + (y\sin A - z\sin B)^{2}.$$

从而 f 半正定, 由此知结论成立.

5. 证明: 若
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j \ (a_{ij} = a_{ji})$$
 是正定二次型, 则

$$f(y_1, y_2, \dots, y_n) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & y_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & y_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & y_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix}$$

是负定二次型.

证明: 已知
$$\begin{pmatrix} E & 0 \\ -Y^{\mathrm{T}}A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & Y \\ Y^{\mathrm{T}} & 0 \end{pmatrix} = \begin{pmatrix} A & Y \\ 0 & -Y^{\mathrm{T}}A^{-1}Y \end{pmatrix}$$
. 所以
$$f(y_1, \cdots, y_n) = \begin{vmatrix} A & Y \\ Y^{\mathrm{T}} & 0 \end{vmatrix} = \begin{vmatrix} A & Y \\ 0 & -Y^{\mathrm{T}}A^{-1}Y \end{vmatrix}$$
$$= |A|(-Y^{\mathrm{T}}A^{-1}Y) = Y^{\mathrm{T}}(-A^*)Y.$$

由 A 正定可得 A^* 正定,于是 $-A^*$ 负定. 因此 $f(y_1, \dots, y_n) = Y^{\mathrm{T}}(-A^*)Y$ 是 负定二次型.

§ 3 二次型 · 83 ·

*6. 设有实系数二次函数

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n 2b_i x_i + c, \qquad a_{ij} = a_{ji}.$$

�

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad D = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\ b_1 & b_2 & \cdots & b_n & c \end{pmatrix}.$$

(1) 证明: 当 A 负定时, f 有最大值, 且 $f_{\text{max}} = \frac{|D|}{|A|}$;

(2) 设 A 负定, 试确定当 x_1, \dots, x_n 为何值时, f 取得最大值.

解: (1) 取

$$T = \begin{pmatrix} E_n & -A^{-1}B \\ 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix},$$

令

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \\ y_{n+1} \end{pmatrix} = T^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix}, \tag{*}$$

易知 $y_{n+1} = 1$. 则

$$f(x_1, \dots, x_n) = (x_1 \dots x_n 1) D \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$
$$= (y_1 \dots y_n 1) T^{\mathsf{T}} D T \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ 1 \end{pmatrix}$$

$$= (y_1 \cdots y_n 1) \begin{pmatrix} A & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ 1 \end{pmatrix}$$
$$= Y^{\mathrm{T}} A Y + d$$

由于 A 负定, 故对任意的 $Y \in \mathbb{R}^n$ 有 $Y^{T}AY \leq 0$, 所以 $f \leq d$. 可见 f 有极大值 d, 且当 Y = 0 时 f 取极大值. 这里

$$d = \frac{|A|d}{|A|} = \frac{|T^{\mathrm{T}}DT|}{|A|} = \frac{|D|}{|A|}.$$

(2) 由 (*),

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix} = T \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} E_n & -A^{-1}B \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ 1 \end{pmatrix},$$

得 $X = Y - A^{-1}B$. 当 Y = 0 时 $X = -A^{-1}B$, 即当

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = -A^{-1} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

时, f 取最大值.

7. 某工厂生产 A 种产品 x (百) 个和 B 种产品 y (百) 个的总成本函数为:

$$C(x,y) = x^2 + 2xy + y^2 + 100 \, (\overline{\pi}\overline{\pi}).$$

甲乙两种产品的需求函数为:

$$x = 26 - p_A, \quad y = 10 - \frac{1}{4}p_B,$$

其中 p_A, p_B 为产品相应的售价 (万元/百个). 求利润最大时产品的数量和利润.

解: 据题意, 利润函数为

$$p(x,y) = xp_a + yp_b - C(x,y)$$

= $x(26 - x) + y(40 - 4y) - C(x,y)$

$$= -2x^2 - 2xy - 5y^2 + 26x + 40y - 100.$$

本题就是求二次函数的最大值. 设

$$A = \begin{pmatrix} -2 & -1 \\ -1 & -5 \end{pmatrix}, \quad D = \begin{pmatrix} -2 & -1 & 13 \\ -1 & -5 & 20 \\ 13 & 20 & -100 \end{pmatrix}, \quad B = \begin{pmatrix} 13 \\ 20 \end{pmatrix}.$$

这里 A 是负定矩阵. 根据习题 7, 当

$$\begin{pmatrix} x \\ y \end{pmatrix} = -A^{-1}B = -A^{-1}\begin{pmatrix} 13 \\ 20 \end{pmatrix} = -\frac{1}{9}\begin{pmatrix} -5 & 1 \\ 1 & -2 \end{pmatrix}\begin{pmatrix} 13 \\ 20 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

时, 利润最大, 且最大利润为

$$p_{\max} = \frac{|D|}{|A|} = 25$$
 万元.

故当两种产品分别售出500个与300个时,可获最大利润25万元.

§ 4 对称变换及其典范形

1. 求正交矩阵 T, 使 $T^{-1}AT$ 为对角形, 设 A 为下列矩阵:

2. 设 A 为一个 n 阶实矩阵, 且 $|A| \neq 0$. 证明: A 可分解成

$$A = QT$$

其中 Q 是正交矩阵, T 是上三角形矩阵.

证明: 取 n 维欧几里得空间 V, 设 η_1, \dots, η_n 是它的一个规范正交基. 令

$$(\alpha_1, \cdots, \alpha_n) = (\eta_1, \cdots, \eta_n) A \tag{*}$$

由于 $|A| \neq 0$, A 可逆, 因此 $\alpha_1, \dots, \alpha_n$ 是 V 的基. 应用格拉姆–施密特正交化方法, 可得 V 的一个规范正交基 β_1, \dots, β_n . 令

$$(\alpha_1, \cdots, \alpha_n) = (\beta_1, \cdots, \beta_n)T,$$

由第六章定理 3.4 的证明可知, T 为上三角形矩阵. 令

$$(\beta_1, \cdots, \beta_n) = (\eta_1, \cdots, \eta_n)Q,$$

则 Q 为正交矩阵. 且

$$(\alpha_1, \cdots, \alpha_n) = (\beta_1, \cdots, \beta_n)T = (\eta_1, \cdots, \eta_n)QT$$

与 (*) 比较, 得 A = QT.

3. 设 A 为一个 n 阶正定矩阵, 证明: 存在上三角形矩阵 T, 使

$$A = T^{\mathrm{T}}T.$$

证明: 由 A 正定可知存在可逆实矩阵 B 使得 $A = B^{T}B$. 由上题, 存在正 交矩阵 Q 与上三角形矩阵 T, 使得

$$B = QT$$
.

从而

$$A = B^{\mathrm{T}}B = T^{\mathrm{T}}Q^{\mathrm{T}}QT = T^{\mathrm{T}}T.$$

4. 设 A 为实对称矩阵, 证明: A 正定 (半正定) 的充分必要条件是 A 的特征值全大于 (大于等于) 零.

证明: 存在正交矩阵 T, 使得

$$T^{-1}AT = T^{\mathrm{T}}AT = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的全部特征值. 于是 A 正定 (半正定) $\iff T^TAT$ 正定 (半正定) $\iff \lambda_i > 0$ ($\lambda_i \ge 0$), $i = 1, \dots, n$.

5. 证明: 两个实对称矩阵相似的充分必要条件是它们有相同的特征多项式.

证明: 必要性显然. 下证充分性. 设实对称矩阵 A, B 有相同的特征多项式, 从而它们有相同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$. 于是存在正交矩阵 T 与 Q, 使得

$$T^{-1}AT = T^{T}AT = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

$$\begin{pmatrix} \lambda_1 & & & \\ & & \lambda_2 & & \\ & & & \lambda_2 & & \\ \end{pmatrix}$$

$$Q^{-1}BQ = Q^{\mathsf{T}}BQ = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

显然 A 与 B 相似.

6. 设 A 为 n 阶实矩阵, 证明: 存在正交矩阵 T, 使 $T^{-1}AT$ 为三角形矩阵 的充分必要条件是 A 的特征值全是实数.

证明: (\Rightarrow) 设有正交矩阵 T 使

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & & * \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix},$$

则 $\lambda_1, \dots, \lambda_n$ 恰为 A 的 n 个特征值. 由于 A, T 均为实矩阵, $T^{-1}AT$ 也是实矩阵, 故特征值 $\lambda_1, \dots, \lambda_n$ 都是实数.

(\Leftarrow) 对 n 用归纳法. n=1 时结论显然成立. 现在假设结论对 n-1 阶满足条件的实矩阵成立. 考察 n 阶实矩阵 A.

设 V 为 n 维欧几里得空间, η_1, \dots, η_n 为 V 的规范正交基. 令 $\mathscr{A} \in \operatorname{End}(V)$, 使得

$$(\mathscr{A}\eta_1,\cdots,\mathscr{A}\eta_n)=(\eta_1,\cdots,\eta_n)A.$$

设 $\lambda_1 \in \mathbb{R}$ 为 🗹 的任意特征值, 则 λ_1 也是 🗹 的特征值. 令 α_1 为 🗹 的属于特征值 λ_1 的单位特征向量, 则 α_1 可扩充为 V 的规范正交基 $\alpha_1, \alpha_2, \dots, \alpha_n$. 令

$$(\mathscr{A}\alpha_1, \cdots, \mathscr{A}\alpha_n) = (\alpha_1, \cdots, \alpha_n) \begin{pmatrix} \lambda_1 & * \\ 0 & \\ \vdots & A_1 \\ 0 \end{pmatrix},$$

$$(\alpha_1, \cdots, \alpha_n) = (\eta_1, \cdots, \eta_n)T_1,$$

则 T_1 为正交矩阵, 且

$$\begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix} = T_1^{-1} A T_1.$$

易知 A_1 为 n-1 阶实矩阵, 且其特征值全是 A 的特征值, 从而也都是实数. 由归纳假设, 存在正交矩阵 T_2 , 使

$$T_2^{-1}A_1T_2 = \begin{pmatrix} \lambda_2 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

令

$$T = T_1 \begin{pmatrix} 1 & 0 \\ 0 & T_2 \end{pmatrix},$$

则 T 为正交矩阵, 且

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & & * \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix},$$

由归纳法原理知结论成立.

7. 证明: 特征值全是实数的正交阵必是对称矩阵.

证明:设A为特征值全是实数的正交阵,由上题,存在正交矩阵T,使

$$T^{\mathrm{T}}AT = T^{-1}AT = D$$

为上三角形阵. 又因为 D 是正交阵, 故 $D^{-1} = D^{\mathrm{T}}$ 也是上三角形矩阵, 但它又是下三角形阵, 故 D 是对角阵. 从而 D 为对称矩阵. 故

$$A = TDT^{\mathrm{T}}$$

也为对称矩阵.

*8. 设 A, B 是两个 n 阶实对称矩阵, 且 B 正定, 证明: 存在可逆矩阵 T, 使

$$T^{\mathrm{T}}AT = T^{\mathrm{T}}BT$$

同时为对角形.

证明: 由于 B 正定, 因此存在可逆矩阵 S 使得

$$S^{\mathrm{T}}BS = E.$$

而 $S^{\mathrm{T}}AS$ 仍为实对称矩阵, 故存在正交矩阵 Q 使 $D=Q^{\mathrm{T}}(S^{\mathrm{T}}AS)Q$ 为对角阵. 令 T=SQ, 则 T 可逆, 且

$$T^{\mathrm{T}}AT = D, \qquad T^{\mathrm{T}}BT = E,$$

均为对角阵.

*9. 设 A 为正定矩阵, 证明: 存在正定矩阵 B, 使 $B^2 = A$.

证明: 存在正交阵 T, 使

$$A = T^{-1} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} T = T^{\mathsf{T}} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} T.$$

因为 A 正定, 故 $\lambda_i > 0$. 令

$$B = T^{\mathrm{T}} \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \sqrt{\lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_n} \end{pmatrix} T,$$

则 B 正定, 且

$$B^2 = A$$
.

***10.** 设 $A = (a_{ij})$ 与 $B = (b_{ij})$ 都是 n 阶正定 (半正定) 矩阵, 令 $C = (a_{ij}b_{ij})$, 证明: C 也是正定 (半正定) 矩阵.

证明: 存在实矩阵 P, 使

$$P^{\mathrm{T}}P = B.$$

记 $P=(p_{ij}),$ 则

$$b_{ij} = \sum_{k=1}^{n} p_{ki} p_{kj}.$$

于是对任意的 $X = (x_i) \in \mathbb{R}^n$,

$$X^{\mathrm{T}}CX = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij} x_{i} x_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{n} p_{ki} p_{kj} \right) x_{i} x_{j}$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} (p_{ki} x_{i}) (p_{kj} x_{j}) \right).$$

由于 A 正定 (半正定), 所以

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(p_{ki}x_i)(p_{kj}x_j) \ge 0,$$

从而 $X^{\mathrm{T}}CX \geq 0$, 故 C 半正定. 又若 A 与 B 皆正定, 则 P 可逆. 令 $X^{\mathrm{T}}CX \geq 0$, 则

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(p_{ki}x_i)(p_{kj}x_j) = 0,$$

而 A 正定, 故

$$p_{k1}x_1 = p_{k2}x_2 = \dots = p_{kn}x_n = 0, \qquad k = 1, 2, \dots, n.$$

又因 P 可逆, P 的任何一列上的元素不可能全为零. 若

$$p_{i_i j} \neq 0, \qquad j = 1, 2, \cdots, n,$$

则 $x_j=0,\,j=1,2,\cdots,n$. 故由 $X^{\mathrm T}CX=0$ 可推出 X=0, 从而 C 正定.

*§5 反称双线性函数

1. 证明: 实反称矩阵的特征值全是零或纯虚数.

证明: 设 A 为实反称矩阵, λ 是 A 的一个特征值. 易知 $-\lambda^2$ 是 $-A^2$ 的一个特征值. 而 $-A^2 = A^{\mathrm{T}}A$, 故 $-A^2$ 半正定, 可知 $-\lambda^2 \leq 0$ (习题 9–4.4), 从而 λ 为零或纯虚数.

2. 证明: 如果 A 是一个实反称矩阵, 则 $B = (E - A)(E + A)^{-1}$ 是一个正交矩阵.

证明: 由上题知, E + A 可逆, 从而

$$B^{T}B = [(E - A)(E + A)^{-1}]^{T}[(E - A)(E + A)^{-1}]$$

$$= (E - A)^{-1}(E + A)(E - A)(E + A)^{-1}$$

$$= (E - A)^{-1}(E - A)(E + A)(E + A)^{-1} = E,$$

故 B 是正交矩阵.

*3. 设 $f \in \mathbb{R}$ 维欧几里得空间 V 的非零反称双线性函数. 证明: 存在非零向量 $\alpha, \beta \in V$ 及 a > 0, 使得对任意的 $\xi \in V$ 有

$$f(\alpha,\xi) = a(\beta,\xi), \quad f(\beta,\xi) = -a(\alpha,\xi).$$

证明: 设 η_1, \dots, η_n 是 V 的一个规范正交基, f 在此基下的度量矩阵为 A, 则 A 为实反称矩阵, 且对任意的 $\xi = \sum_{i=1}^n x_i \eta_i, \eta = \sum_{i=1}^n y_i \eta_i$, 有

$$f(\xi, \eta) = X^{\mathrm{T}} A Y.$$

因 A 是实反称矩阵, 故 $A^{T}A$ 为半正定矩阵. 而 $f \neq 0$, 故 $A \neq 0$, 从而 $A^{T}A \neq 0$, 所以 $A^{T}A$ 有非零特征值. 任取 $A^{T}A$ 的一个非零特征值 λ , 则 $\lambda > 0$. 令 $a = \sqrt{\lambda}$. 设

$$\left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right)$$

为 $A^{T}A$ 的属于特征值 λ 的特征向量, 设

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = -\frac{1}{a}A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

令

$$\alpha = \sum_{i=1}^{n} a_i \eta_i, \qquad \beta = \sum_{i=1}^{n} b_i \eta_i,$$

则 $\alpha \neq 0$.下证 α, β, a 满足要求.

对任意的
$$\xi = \sum_{i=1}^{n} x_i \eta_i$$
, 有

$$f(\alpha,\xi) = (a_1 \cdots a_n) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = - \left[A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \right]^{\mathrm{T}} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= a(b_1 \cdots b_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = a(\beta,\xi),$$

$$f(\beta, \xi) = (b_1 \cdots b_n) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = -\frac{1}{a} (a_1 \cdots a_n) A^{\mathrm{T}} A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= -\frac{1}{a} \begin{bmatrix} A^{\mathrm{T}} A \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \end{bmatrix}^{\mathrm{T}} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = -a(a_1 \cdots a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= -a(\alpha, \xi),$$

*§5 反称双线性函数 · 93 ·

又 $f(\beta, \alpha) = -a(\alpha, \alpha) \neq 0$, 所以 $\beta \neq 0$.

*4. 设 $f \in n$ 维欧氏空间 V 上的反称双线性函数.

证明: 存在规范正交基 η_1 , ξ_1 , η_2 , ξ_2 ,····, η_r , ξ_r , ζ_1 ,····, ζ_{n-2r} , 使 f 关于这个基的度量矩阵具有如下分块矩阵的形式:

diag
$$\left(\begin{pmatrix} 0 & a_1 \\ -a_1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_r \\ -a_r & 0 \end{pmatrix}, 0, \dots, 0 \right), \quad a_i > 0.$$

证明: 对 V 的维数 n 用数学归纳法. 当 n = 1 时, f = 0, 结论显然成立. 现假设结论对 m < n 都成立, 证明当 $\dim V = n$ 也成立.

如 f = 0, 结论显然成立. 如 $f \neq 0$, 由习题 3, 存在非零向量 η_1, ξ_1 及数 $a_1 > 0$, 使对任意的 $\xi \in V$ 有

$$f(\eta_1, \xi) = a_1(\xi_1, \xi), \qquad f(\xi_1, \xi) = -a_1(\eta_1, \xi).$$

由于 η_1, ξ_1 的任一倍数 $k\eta_1, k\xi_1$ 也满足上述等式, 故可设 η_1, ξ_1 都是 V 中单位向量.

又, $0 = f(\xi_1, \xi_1) = -a(\eta_1, \xi_1)$, 故 η_1, ξ_1 正交, 从而 η_1, ξ_1 为 V 的规范正交向量组.

$$L = L(\eta_1, \xi_1), \qquad W = L^{\perp},$$

则 $V=L\perp W$, $\dim L=2$, $\dim W=n-2$. f 可看作是 W 上的反称双线性函数. 由归纳假设, 存在 W 的规范正交基

$$\eta_2, \xi_2, \cdots, \eta_r, \xi_r, \zeta_1, \cdots, \zeta_{n-2r}$$

及 $a_i > 0$, $i = 2, \dots, r$, 使 $f|_W$ 关于这个基的度量矩阵为分块对角阵:

diag
$$\left(\begin{pmatrix}0&a_2\\-a_2&0\end{pmatrix},\cdots,\begin{pmatrix}0&a_r\\-a_r&0\end{pmatrix},0,\cdots,0\right)$$
.

易知 $\eta_1, \xi_1, \cdots, \eta_r, \xi_r, \zeta_1, \cdots, \zeta_{n-2r}$ 构成 V 的规范正交基. 由于当 $i \geq 2$ 时有

$$f(\eta_1, \xi_i) = a(\xi_1, \xi_i) = 0,$$
 $f(\eta_1, \eta_i) = a(\xi_1, \eta_i) = 0,$

$$f(\xi_1, \xi_i) = -a(\eta_1, \xi_i) = 0,$$
 $f(\xi_1, \eta_i) = -a(\eta_1, \eta_i) = 0,$

因而 f 在基 $\eta_1, \xi_1, \cdots, \eta_r, \xi_r, \zeta_1, \cdots, \zeta_{n-2r}$ 下的度量矩阵为

diag
$$\left(\begin{pmatrix}0&a_1\\-a_1&0\end{pmatrix},\cdots,\begin{pmatrix}0&a_r\\-a_r&0\end{pmatrix},0,\cdots,0\right)$$
.

从而由数学归纳法原理知结论成立.

*§6 酉空间

1. 设酉矩阵

$$A = \frac{1}{9} \begin{pmatrix} 4+3i & 4i & -6-2i \\ -4i & 4-3i & -2-6i \\ 6+2i & -2-6i & 1 \end{pmatrix},$$

求对角矩阵 B 及酉矩阵 U, 使

$$B = U^{-1}AU.$$

解: A 的特征值为 $\lambda_1=1,\,\lambda_2=\mathrm{i},\,\lambda_3=-\mathrm{i}.$ 相应的特征向量为

$$\begin{pmatrix} i \\ 1 \\ -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} i \\ -\frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{1}{2}i \\ 1 \\ 1 \end{pmatrix}.$$

它们互相正交. 单位化后得

$$\alpha_1 = \frac{1}{3} \begin{pmatrix} 2i \\ 2 \\ -1 \end{pmatrix}, \alpha_2 = \frac{1}{3} \begin{pmatrix} 2i \\ -1 \\ 2 \end{pmatrix}, \alpha_3 = \frac{1}{3} \begin{pmatrix} -i \\ 2 \\ 2 \end{pmatrix}.$$

\$

$$U = \frac{1}{3} \begin{pmatrix} 2i & 2i & -i \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix},$$

则 U 为酉矩阵, 且

$$B = U^{-1}AU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}.$$

2. 设埃尔米特矩阵

$$A = \begin{pmatrix} 3 & -i & 0 \\ i & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix},$$

求对角矩阵 B 及酉矩阵 U, 使

$$B = U^{-1}AU.$$

解: A 的特征值为 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 4$. 属于特征值 2 的特征向量为

$$\alpha_1 = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix},$$

属于特征值 4 的特征向量为

$$\alpha_2 = \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}, \qquad \alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

它们互相正交. 单位化后得

$$\eta_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}, \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}, \eta_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

\$

$$U = \begin{pmatrix} \frac{\sqrt{2}}{2} \mathbf{i} & -\frac{\sqrt{2}}{2} \mathbf{i} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix},$$

则 U 为酉矩阵, 且

$$B = U^{-1}AU = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

3. 证明: 上三角形的酉矩阵必为对角矩阵, 而且对角元的模为 1.

证明: 设 A 是上三角形的酉矩阵, 则有 $A^{-1} = \overline{A}^{T}$. 而上三角形矩阵的逆矩阵仍是上三角形矩阵, 但它的转置矩阵则是下三角形矩阵. 因此 A 必须是对角矩阵. 设 $A = \operatorname{diag}(a_1, \dots, a_n)$, 由 $\overline{A}^{T} A = \operatorname{diag}(|a_1|^2, \dots, |a_n|^2) = E$ 可得 $|a_i| = 1, i = 1, \dots, n$.

4. 证明: 酉矩阵的特征值的模为 1.

证明: 设 λ_0 为酉矩阵 A 任一特征值,

$$\alpha = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{C}^n$$

为 A 的属于特征值 λ_0 的特征向量. 则

$$A\alpha = \lambda_0 \alpha.$$

从而

$$\overline{\alpha}^{\mathrm{T}} \alpha = \overline{\alpha}^{\mathrm{T}} (\overline{A}^{\mathrm{T}} A) \alpha = (\overline{A} \alpha)^{\mathrm{T}} (A \alpha) = \overline{\lambda_0} \overline{\alpha}^{\mathrm{T}} \cdot \lambda_0 \alpha = \overline{\lambda_0} \lambda_0 \overline{\alpha}^{\mathrm{T}} \alpha,$$

由于 $\alpha \neq 0$, $\overline{\alpha}^{\mathrm{T}} \alpha > 0$, 故 $\overline{\lambda_0} \lambda_0 = 1$.

5. 设 A 为一个可逆复矩阵, 证明: A 可分解为

$$A = UT$$
.

其中, U 是酉矩阵, T 是一个对角线上元素全为正实数的上三角形矩阵. 并证明这个分解是唯一的.

证明: (a) 首先用归纳法证明:

如 B 为一 $n \times r$ 列满秩矩阵, 则存在对角线上元素全为正的 r 阶上三角形阵 T, 使 C = BT 的列向量组为 \mathbb{C}^n 中单位正交向量组.

对 r 用归纳法. 当 r=1 时结论显然成立. 现假定结论对列数 < r 的列满秩矩阵成立. 考察 $n\times r$ 列满秩矩阵.

设 B 的列为 $\alpha_1, \dots, \alpha_r$, 则 $\alpha_1, \dots, \alpha_r$ 线性无关. 令 $a_1 = \frac{1}{|\alpha_1|}, a_{1i} = -\frac{(\alpha_i, \alpha_1)}{|\alpha_1|}, i = 2, \dots, r,$

$$T_1 = \begin{pmatrix} a_1 & a_{12} & \cdots & a_{1r} \\ & 1 & & 0 \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix},$$

$$C_1 = BT_1 = (\beta_1, \beta_2, \cdots, \beta_r),$$

则 C_1 仍为列满秩, 且

$$|\beta_1| = 1,$$
 $(\beta_1, \beta_i) = 0,$ $i = 2, \dots, r.$

*§ 6 酉空间 · 97 ·

令

$$B_1 = (\beta_2, \cdots, \beta_r).$$

则 B_1 为 $n \times (r-1)$ 的列满秩矩阵, 由归纳法假设, 存在 r-1 阶上三角形矩阵

$$T_2 = \begin{pmatrix} a_2 & * \\ & \ddots & \\ 0 & a_r \end{pmatrix}, \quad a_i > 0, \quad i \ge 2,$$

使 B_1T_2 的列向量为单位正交向量组. 令

$$T = T_1 \begin{pmatrix} 1 & 0 \\ 0 & T_2 \end{pmatrix},$$

则

$$T = \begin{pmatrix} a_1 & & * \\ & a_2 & & \\ & & \ddots & \\ 0 & & & a_n \end{pmatrix}$$

为上三角形的,且 $a_i > 0$. 令 $C = BT = (\beta_1 \mid B_1T_1)$,则 C 的各列都是单位向量,又因 β_1 与 B_1 的各列正交,而 B_1T 的各列为 B_1 的线性组合,故 C 的列向量组为单位正交向量组.

(b) 设 A 为 n 阶可逆复矩阵,则由 (a) 知,存在对角线上元素全为正的上三角形矩阵 S,使 AS 的列向量组为单位正交向量组.从而

$$U = AS$$

为酉矩阵. 令 $T=S^{-1}$, 则 T 为上三角形矩阵, 又因 S 的对角线上元素全正, 故 T 的对角线上元素全正, 且

$$A = UT$$
.

(c) 设另有酉矩阵 U_1 及对角线上元素全正的上三角形矩阵 T_1 , 使 $A = U_1T_1$. 则

$$UT = U_1T_1$$
,

从而

$$TT_1^{-1} = U^{-1}U_1.$$

上式左边是上三角形阵, 右边为正交阵, 从而 $U^{-1}U_1$ 为对角阵. 又因此矩阵的 对角线上元素全正, 故 $U^{-1}U_1 = E$. 于是

$$U = U_1, \qquad T = T_1.$$

唯一性得证.

6. 证明: 对任一复矩阵 A, 必存在酉矩阵 U, 使 $U^{-1}AU$ 为上三角形矩阵. 证明: 对 A 的阶数 n 用归纳法. n=1 时结论显然成立. 现假定结论对阶数小于 n 的矩阵成立. 考察 n 阶矩阵 A.

设 λ_1 为 A 的任一特征值, $\alpha_1 \in \mathbb{C}^n$ 为 A 的属于特征值 λ_1 的单位特征向量. 将 α_1 扩充为酉空间 \mathbb{C}^n 的规范正交基 $\alpha_1, \dots, \alpha_n$. 令

$$U_1 = (\alpha_1, \alpha_2, \cdots, \alpha_n),$$

则 U_1 为酉矩阵, 且

$$AU_1 = U_1 \left(\begin{array}{cc} \lambda_1 & * \\ 0 & A_1 \end{array} \right),$$

则

$$U_1^{-1}AU_1 = \left(\begin{array}{cc} \lambda_1 & * \\ 0 & A_1 \end{array}\right).$$

由归纳假设,存在n-1阶酉矩阵 U_2 ,使

$$U_2^{-1}A_1U_2 = \begin{pmatrix} \lambda_2 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

令

$$U = U_1 \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix},$$

则 U 为酉矩阵, 且

$$U^{-1}AU = \begin{pmatrix} \lambda_1 & & * \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}.$$

7. 证明: 对任一酉矩阵 A, 必有酉矩阵 U, 使 $U^{-1}AU$ 为对角阵.

证明:由上题,存在酉矩阵U使

$$U^{-1}AU = B$$

为上三角形矩阵. 因上式左边为酉矩阵, 故 B 为酉矩阵. 于是 B 既是酉矩阵又是上三角形矩阵, 必为对角阵.

8. 证明: 埃尔米特矩阵的特征值全是实数, 且它的属于不同特征值的特征向量相互正交.

证明: (a) 设 λ 为埃尔米特矩阵 H 的一个特征值, $\alpha \in \mathbb{C}^n$ 为 H 的属于特征值 λ 的特征向量. 则

$$\lambda \overline{\alpha}^{\mathrm{T}} \alpha = \overline{\alpha}^{\mathrm{T}} A \alpha = \overline{\alpha}^{\mathrm{T}} \overline{A}^{\mathrm{T}} \alpha = \overline{A} \overline{\alpha}^{\mathrm{T}} \alpha = \overline{\lambda} \overline{\alpha}^{\mathrm{T}} \alpha.$$

由于 $\overline{\alpha}^{T}\alpha > 0$, 所以 $\lambda = \overline{\lambda}$, $\lambda \in \mathbb{R}$.

(b) 设 α, β 分别为 H 的属于不同特征值 λ_1, λ_2 的特征向量, 则

$$\lambda_2 \overline{\alpha}^{\mathrm{T}} \beta = \overline{\alpha}^{\mathrm{T}} A \beta = \overline{\alpha}^{\mathrm{T}} \overline{A}^{\mathrm{T}} \beta = \overline{A} \overline{\alpha}^{\mathrm{T}} \beta = \lambda_1 \overline{\alpha}^{\mathrm{T}} \beta.$$

(注意: $\lambda_1 \in \mathbb{R}$) 于是 $(\lambda_1 - \lambda_2)\overline{\alpha}^T\beta = 0$. 由 $\lambda_1 \neq \lambda_2$ 可得 $\overline{\alpha}^T\beta = 0$, 即 $\alpha \perp \beta$.

9. 证明: 对任一埃尔米特矩阵 H, 必有酉矩阵 U, 使 $U^{-1}HU$ 为对角形.

证明: 由习题 6, 存在酉矩阵 U, 使 $T = U^{-1}HU$ 是上三角形矩阵. 又

$$\overline{T}^{\mathrm{T}} = \overline{\left(U^{-1}HU\right)}^{\mathrm{T}} = \overline{\overline{U}}^{\mathrm{T}}HU^{\mathrm{T}} = \overline{U}^{\mathrm{T}}HU = U^{-1}HU = T.$$

因此 T 是对角阵.

***10.** 设 A 为复矩阵, 如果 $\overline{A}^{T}A = A\overline{A}^{T}$, 则称 A 为规范方阵. 证明: 对任一规范方阵. 必有酉矩阵 U. 使 $U^{-1}AU$ 为对角形.

证明: 由习题 6, 存在酉矩阵 U, 使 $T=U^{-1}AU$ 是上三角形矩阵. 又

$$\overline{T}^{\mathrm{T}}T = \overline{(U^{-1}AU)}^{\mathrm{T}} \cdot U^{-1}AU = \overline{\overline{U}}^{\mathrm{T}}A\overline{U}^{\mathrm{T}} \cdot \overline{\overline{U}}^{\mathrm{T}}AU$$
$$= \overline{\overline{U}}^{\mathrm{T}}\overline{A}^{\mathrm{T}}AU = \overline{\overline{U}}^{\mathrm{T}}A\overline{A}^{\mathrm{T}}U$$
$$= U^{-1}AU \cdot \overline{(U^{-1}AU)}^{\mathrm{T}} = T\overline{T}^{\mathrm{T}}.$$

因此 T 也是规范方阵. 由矩阵的乘法容易证明: 上三角形的规范方阵必为对角阵, 因此结论成立.

*§7 对偶空间

1. $\not\in K^3$ 中, 求基 (1,0,2), (1,2,1), (0,2,1) 的对偶基.

解: 设 K^3 的自然基为 $\varepsilon_1=(1,0,0), \, \varepsilon_2=(0,1,0), \, \varepsilon_3=(0,0,1), \, f_1,f_2,f_3$ 为 $\varepsilon_1,\varepsilon_2,\varepsilon_3$ 的对偶基, g_1,g_2,g_3 为 $\alpha_1=(1,0,2),\, \alpha_2=(1,2,1),\, \alpha_3=(0,2,1)$ 的对偶基, 令 $(\alpha_1,\alpha_2,\alpha_3)=(\varepsilon_1,\varepsilon_2,\varepsilon_3)A$, 则

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

由命题 7.1 知,

$$(g_1, g_2, g_3) = (f_1, f_2, f_3)A^{-T},$$

这里

$$A^{-\mathrm{T}} = \frac{1}{4} \left(\begin{array}{ccc} 0 & 4 & -4 \\ -1 & 1 & 1 \\ 2 & -2 & 2 \end{array} \right).$$

因此对任意的 $\alpha = (x, y, z) \in K^3$, 有

$$\begin{split} g_1(x,y,z) &= \frac{1}{4}(-f_2+2f_3)(x,y,z) = -\frac{1}{2}y + \frac{1}{2}z, \\ g_2(x,y,z) &= \frac{1}{4}(4f_1+f_2-2f_3)(x,y,z) = x + \frac{1}{4}y - \frac{1}{2}z, \\ g_3(x,y,z) &= \frac{1}{4}(-4f_1+f_2+2f_3)(x,y,z) = -x + \frac{1}{4}y + \frac{1}{2}z. \end{split}$$

2. 设 η_1, η_2, η_3 是线性空间 V 的一个基, f_1, f_2, f_3 是它的对偶基,

$$\alpha_1 = \eta_1 + 2\eta_2 + 3\eta_2, \ \alpha_2 = \eta_1 + \eta_2 - \eta_3, \ \alpha_3 = \eta_1 + \eta_2.$$

试证 $\alpha_1, \alpha_2, \alpha_3$ 是它的一个基并求其对偶基 (用 f_1, f_2, f_3 表出). **解**: 设

$$(\alpha_1, \alpha_2, \alpha_3) = (\eta_1, \eta_2, \eta_3)A,$$

则

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & -1 & 0 \end{pmatrix}.$$

易知 A 可逆, 且

$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -3 & 3 & -1 \\ 5 & -4 & 1 \end{pmatrix}.$$

*§ 7 对偶空间 · 101 ·

因此 $\alpha_1, \alpha_2, \alpha_3$ 是 V 的一个基. 设 f'_1, f'_2, f'_3 是 $\alpha_1, \alpha_2, \alpha_3$ 的对偶基, 令

$$(f_1', f_2', f_3') = (f_1, f_2, f_3)S,$$

则由命题 7.1 得

$$S = A^{-T} = \begin{pmatrix} -1 & -3 & 5 \\ 1 & 3 & -4 \\ 0 & -1 & 1 \end{pmatrix},$$

$$(f'_1, f'_2, f'_3) = (f_1, f_2, f_3) \begin{pmatrix} -1 & -3 & 5 \\ 1 & 3 & -4 \\ 0 & -1 & 1 \end{pmatrix}.$$

3. 设 V 是数域 K 上的一个线性空间, f_1, \dots, f_s 是 V 的 s 个线性函数. 集合

$$W = \{ \alpha \in V \mid f_i(\alpha) = 0, i = 1, \dots, s \}.$$

证明: (1) $W \neq V$ 的一个线性子空间 (称为线性函数 f_1, \dots, f_s 的零化子空间);

(2) V 的任意线性子空间都是某些线性函数的零化子空间.

证明: (1) 由 $f_i(0)=0,\ i=1,\cdots,s,$ 得 $0\in W,\ W$ 非空. 设 $\alpha,\beta\in W,$ $k\in K,$ 则对 $i=1,\cdots,s,$

$$f_i(\alpha + \beta) = f_i(\alpha) + f_i(\beta) = 0,$$

 $f_i(k\alpha) = k f_i(\alpha) = 0.$

所以 $\alpha + \beta \in W$, $k\alpha \in W$, W 是 V 的线性子空间.

(2) 设 W 为 V 的一个线性子空间. 设 $\alpha_1, \dots, \alpha_r$ 是 W 的基, 将它扩充为 V 的基 $\alpha_1, \dots, \alpha_n$. 对任意的

$$\alpha = x_1 \alpha_1 + \dots + x_r \alpha_r + x_{r+1} \alpha_{r+1} + \dots + x_n \alpha_n,$$

定义

$$f_1(\alpha) = x_{r+1}, f_2(\alpha) = x_{r+2}, \dots f_{n-r}(\alpha) = x_{r+n},$$

则易知 f_1, \dots, f_{n-r} 都是 V 的线性函数. 显然对任意的 $\alpha \in W$ 有 $f_i(\alpha) = 0$, $i = 1, \dots, n-r$. 又若 $\alpha = \sum_{i=1}^n x_i \alpha_i$ 满足

$$f_i(\alpha) = 0, \qquad i = 1, \dots, n - r,$$

则有 $x_{r+1} = \cdots = x_n = 0$, 从而

$$\alpha = x_1 \alpha_1 + \dots + x_r \alpha_r \in W.$$

因此 $W \neq f_1, \dots, f_{n-r}$ 的零化子空间.

4. 设 f 为 n 维线性空间 V 上的非零线性函数, 证明: 存在 V 的基 η_1, \dots, η_n , 使

$$\forall \alpha = \sum_{i=1}^{n} x_i \eta_i, \ \text{#Af} f(\alpha) = x_1.$$

证明: 由于 f 非零, 故存在 $\gamma \in V$ 使得

$$f(\gamma) = c \neq 0 \in K$$
.

令 $\alpha = \frac{\gamma}{c}$, 则 $\alpha \neq 0$, 且 $f(\alpha) = 1$. 将 α 扩充为 V 的基 $\alpha_1 = \alpha, \alpha_2, \cdots, \alpha_n$. 令 $\eta_1 = \alpha_1, \eta_2 = \alpha_2 - f(\alpha_2)\alpha_1, \cdots, \eta_i = \alpha_i - f(\alpha_i)\alpha_1, \cdots, \eta_n = \alpha_n - f(\alpha_n)\alpha_1$, 则 η_1, \cdots, η_n 也是 V 的基,且

$$f(\eta_1) = 1, \quad f(\eta_i) = 0, \quad i = 2, \dots, n.$$

从而对任意的 $\alpha = \sum_{i=1}^{n} x_i \eta_i$, 有

$$f(\alpha) = \sum_{i=1}^{n} x_i f(\eta_i) = x_1.$$

- **5.** 设 \mathscr{A} 为数域 $K \perp n$ 维线性空间 V 的线性变换, η_1, \dots, η_n 为 V 的基. f_1, \dots, f_n 为 η_1, \dots, η_n 的对偶基.
 - (1) 证明: 对 V 的任一线性函数 f, f \varnothing 仍是 V 的线性函数;
 - (2) 定义 V* 到自身的映射 A* 为:

$$\mathscr{A}^*: f \longmapsto f \mathscr{A}$$

证明: \mathscr{A}^* 是 V^* 的线性变换;

(3) 如 $\mathscr A$ 在基 η_1, \cdots, η_n 下的矩阵是 A, 试求 $\mathscr A^*$ 在基 f_1, \cdots, f_n 下的矩阵.

证明: (1) 显然 $f \mathscr{A}$ 是 V 到 K 的映射. 对任意的 $\alpha, \beta \in V, k \in K$, 有

$$(f\mathscr{A})(\alpha+\beta) = f(\mathscr{A}(\alpha+\beta)) = f(\mathscr{A}\alpha+\mathscr{A}\beta) = f(\mathscr{A}\alpha) + f(\mathscr{A}\beta)$$

 * § 7 对偶空间 $^{\circ}$ · $^{$

$$= (f\mathscr{A})(\alpha) + (f\mathscr{A})(\beta),$$

$$(f\mathscr{A})(k\alpha) = f(\mathscr{A}(k\alpha)) = f(k\mathscr{A}\alpha) = kf(\mathscr{A}\alpha) = k(f\mathscr{A})(\alpha),$$

所以 $f A \neq V$ 上的线性函数.

(2) 由 (1) 知, \mathscr{A}^* 是 V^* 的一个变换. 对任意的 $f,g\in V^*,\,k\in K,\,\alpha\in V,$ 有

$$(\mathscr{A}^*(f+g))(\alpha) = (f+g)(\mathscr{A}\alpha) = f(\mathscr{A}\alpha) + g(\mathscr{A}\alpha)$$
$$= (f\mathscr{A})(\alpha) + (g\mathscr{A})(\alpha) = (\mathscr{A}^*f)(\alpha) + (\mathscr{A}^*g)(\alpha),$$

由 α 的任意性可得

$$\mathscr{A}^*(f+g) = \mathscr{A}^*f + \mathscr{A}^*g.$$

又由

$$(\mathscr{A}^*(kf))(\alpha) = (kf)(\mathscr{A}\alpha) = k(f\mathscr{A})(\alpha) = k(\mathscr{A}^*f)(\alpha),$$

由 α 的任意性可得

$$\mathscr{A}^*(kf) = k\mathscr{A}^*f.$$

因此 \mathscr{A}^* 是 V^* 的线性变换.

(3) 由已知,

$$(\mathscr{A}\eta_1,\cdots,\mathscr{A}\eta_n)=(\eta_1,\cdots,\eta_n)A,$$

设

$$(\mathscr{A}^*f_1,\cdots,\mathscr{A}^*f_n)=(f_1,\cdots,f_n)S,$$

则

$$\mathscr{A}^* f_j = \sum_{k=1}^n s_{kj} f_k, \qquad j = 1, \cdots, n.$$

从而

$$(\mathscr{A}^* f_j)(\eta_i) = \sum_{k=1}^n s_{kj} f_k(\eta_i) = s_{ij}, \qquad i, j = 1, \dots, n.$$

另一方面,

$$(\mathscr{A}^* f_j)(\eta_i) = f_j(\mathscr{A} \eta_i) = f_j\left(\sum_{l=1}^n a_{lj} \eta_l\right)$$
$$= \sum_{l=1}^n a_{lj} f_j(\eta_l) = a_{ji}, \qquad i, j = 1, \dots, n.$$

于是

$$a_{ji} = s_{ij}, \quad i, j = 1, \cdots, n.$$

由此得

$$S = A^{\mathrm{T}}$$
.

6. 设 V 是数域 K 上的一个线性空间, f_1, \dots, f_s 是 V 的 s 个非零线性函数, 证明: 存在向量 $\alpha \in V$, 使

$$f_i(\alpha) \neq 0, \quad i = 1, \dots, s.$$

证明:设

$$W_i = \{ \alpha \in V \mid f(\alpha) = 0 \}, \qquad i = 1, 2, \dots, s.$$

则 W_i 是 V 的子空间, 又因为 $f_i \neq 0$, $W_i \neq V$. 令

$$W = W_1 \cup W_2 \cup \cdots \cup W_s$$
,

则 W 不是 V 的线性子空间 (第三章习题 3–4.5). 因此 $W \neq V$. 又 $W \subset V$, 必 有 $\alpha \in V$, $\alpha \notin W$, 于是对所有的 $i = 1, \dots, s$ 有 $\alpha \notin W_i$, 即 $f_i(\alpha) \neq 0$.

7. 设 $\alpha_1, \cdots, \alpha_s$ 是线性空间 V 中的 s 个非零向量, 证明: 存在 V 上的线性函数 f , 使

$$f(\alpha_i) \neq 0, \quad i = 1, \dots, s.$$

证明: 考察对偶空间 V^* , 则 $\alpha_1, \dots, \alpha_s$ 可看作 V^* 上的 s 个线性函数, 故由上题, 存在 $f \in V^*$, 使

$$\alpha_i^*(f) = f(\alpha_i) \neq 0, \qquad i = 1, \dots, s.$$

第十章 坐标变换与点变换

§1 平面坐标变换

1. 两直角坐标系 $[O; \eta_1, \eta_2]$ 与 $[O; \eta'_1, \eta'_2]$ 有公共原点. 在原坐标系 $[O; \eta_1, \eta_2]$ 下, 新坐标系的基向量为:

$$\eta_1' = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad \eta_2' = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}.$$

- (1) 写出坐标变换公式;
- (2) 写出原坐标系中的基向量 $\eta_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\eta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 在新坐标系下的坐标分量;
- (3) 已知向量 \overrightarrow{v} 在 $[O; \eta_1, \eta_2]$ 的分量为 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$,求它在新坐标系 $[O; \eta'_1, \eta'_2]$ 下的分量.

解: (1) 因为 $(\eta'_1, \eta'_2) = (\eta_1, \eta_2)T$, 其中 $T = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$, 所以坐标变换公式为

$$\begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.$$

(2) 由 (1) 知:
$$(\eta_1, \eta_2) = (\eta'_1, \eta'_2)T^{-1}$$
, 其中 $T^{-1} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$, 所

以
$$\eta_1 = \frac{\sqrt{2}}{2}\eta_1' - \frac{\sqrt{2}}{2}\eta_2', \ \eta_2 = \frac{\sqrt{2}}{2}\eta_1' + \frac{\sqrt{2}}{2}\eta_2', \ \text{即:} \ \eta_1 = \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right), \ \eta_2 = \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right).$$

(3) 从 $\begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x' \\ y' \end{pmatrix}$ 可推知 $\begin{pmatrix} x' \\ y' \end{pmatrix} = T^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$. 现在 $\overrightarrow{v} = \eta_1 - \eta_2$, 所以

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -\sqrt{2} \end{pmatrix},$$

这就是 \overrightarrow{v} 在新坐标系下的分量.

2. 在平面直角坐标系 $[O; \eta_1, \eta_2]$ 中,已知新的直角坐标系 $[O'; \eta'_1, \eta'_2]$ 的原点 O' 的坐标为 (3,2),点 M(5,3) 在新坐标系的 x' 轴上,且点 M 的新坐标 x' > 0. 试用矩阵形式写出从 $[O; \eta_1, \eta_2]$ 到 $[O'; \eta'_1, \eta'_2]$ 的坐标变换公式.

解: 因为
$$X_0 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, 且由题意知 $\overrightarrow{O'M} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, 故 $\overrightarrow{O'M}$ 的单位向量是 $\begin{pmatrix} \frac{2\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} \end{pmatrix}$, 即 $\cos \theta = \frac{2\sqrt{5}}{5}$, $\sin \theta = \frac{\sqrt{5}}{5}$. 所以 $T = \begin{pmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{pmatrix}$. 因此变换公式为

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} & 3 \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

3. 设二次曲线 C 在直角坐标系 $[O; \eta_1, \eta_2]$ 中的方程是:

$$x^2 - xy + y^2 + 2x - 4y + 1 = 0.$$

§1 平面坐标变换 · 107 ·

(1) 取新的直角坐标系 $[O'; \eta'_1, \eta'_2]$, 使 O' 在旧坐标系下的坐标为 (0, 2), 且 有

$$\begin{cases} \eta_1' = \frac{\sqrt{2}}{2}\eta_1 + \frac{\sqrt{2}}{2}\eta_2 \\ \eta_2' = -\frac{\sqrt{2}}{2}\eta_1 + \frac{\sqrt{2}}{2}\eta_2, \end{cases}$$

试用矩阵形式写出坐标变换公式;

(2) 求曲线 C 在新坐标系下的方程.

解: (1) 据题设,
$$X_0 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
, $T = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$, 且行列式 $|T| = 1$.

所以坐标变换公式为:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

- (2) C 的方程为 $\frac{x'^2}{6} + \frac{y'^2}{2} = 1$.
- **4.** 设有平面直角坐标系 $[O; \eta_1, \eta_2]$, 若新的直角坐标系 $[O'; \eta'_1, \eta'_2]$ 满足: x' 轴和 y' 轴在旧坐标系中的方程分别是 x 2y + 2 = 0 和 2x + y + 4 = 0.
 - (1) 求从旧坐标系到新坐标系的变换公式;
 - (2) 求直线 x-y+2=0 在新坐标系中的方程;
 - (3) 求直线 3x' + y' + 1 = 0 在旧坐标系中的方程.

解: (1) 因
$$O'$$
 点的坐标 (x_0, y_0) 是方程组
$$\begin{cases} x - 2y + 2 = 0 \\ 2x + y + 4 = 0 \end{cases}$$
 的解, 即

$$X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}.$$

显然 x-2y+2=0 的方向系数为 2:1, 2x+y+4=0 的方向系数

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} & -2 \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

(2) x - y + 2 = 0 在新坐标系中的方程为:

$$\left(\frac{2\sqrt{5}}{5}x' - \frac{\sqrt{5}}{5}y' - 2\right) - \left(\frac{\sqrt{5}}{5}x' + \frac{2\sqrt{5}}{5}y'\right) + 2 = 0,$$

 $\mathbb{H} x' - 3y' = 0.$

(3) 由(1)的坐标变换公式可以得到

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & \frac{4\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

故 3x' + y' + 1 = 0 在旧坐标系下的方程为:

$$3\left(\frac{2\sqrt{5}}{5}x + \frac{\sqrt{5}}{5}y + \frac{4\sqrt{5}}{5}\right) + \left(-\frac{\sqrt{5}}{5}x + \frac{2\sqrt{5}}{5}y - \frac{2\sqrt{5}}{5}\right) + 1 = 0,$$

§ 2 二次曲线方程的化简

1. 化简二次曲线的方程

$$5x^2 + 4xy + 2y^2 - 24x - 12y + 12 = 0,$$

并画出它的图形以及新的坐标轴.

解: 矩阵
$$A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} -12 \\ -6 \end{pmatrix}$, 因此 $I_1 = \text{Tr}(A) = 7 > 0$,
$$I_2 = |A| = 6 > 0, I_3 = \begin{vmatrix} 5 & 2 & -12 \\ 2 & 2 & -6 \\ -12 & -6 & 12 \end{vmatrix} = -108 < 0.$$
 此曲线是椭圆. A 的特征值是方程 $\lambda^2 - 7\lambda + 6 = 0$ 的根, 解得 $\lambda_1 = 6$, $\lambda_2 = 1$. 故简化后的方程 为 $6x'^2 + y'^2 - \frac{108}{6} = 0$, 即 $\frac{x'^2}{3} + \frac{y'^2}{18} = 1$.

为画出其大致图形, 需要求出坐标变换公式. 对应于特征根 6 与 1 的单位特

征向量分别是
$$\left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right)$$
 与 $\left(-\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$, 所以 $T = \begin{pmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{pmatrix}$,

且 |T|=1. 再求曲线的中心 (即新坐标系的原点) $O'(x_0,y_0)$, 解线性方程组

$$\begin{cases} 5x_0 + 2y_0 - 12 = 0\\ 2x_0 + 2y_0 - 6 = 0 \end{cases}$$

得
$$X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
. 因此坐标变换公式是

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} & 2 \\ \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

求出新坐标系中 x' 轴与 y' 轴在旧坐标系中的方程分别是 x-2y=0 (即 y'=0) 与 2x+y-5=0 (即 x'=0).

2. 化简二次曲线方程

$$x^2 - 4xy - 2y^2 + 10x + 4y = 0,$$

并画出它的图形以及新的坐标轴.

解: 矩阵
$$A=\begin{pmatrix}1&-2\\-2&-2\end{pmatrix},\ B=\begin{pmatrix}5\\2\end{pmatrix},\$$
因此 $I_1={\rm Tr}(A)=-1<0,$ $I_2=|A|=-6<0,\ I_3=\begin{vmatrix}1&-2&5\\-2&-2&2\\5&2&0\end{vmatrix}=6>0.$ 此曲线是双曲线. A 的特征值是方程 $\lambda^2+\lambda-6=0$ 的根, 解得 $\lambda_1=2,\ \lambda_2=-3.$ 故简化后的方程为 $2x'^2-3y'^2-1=0,\$ 即 $\frac{x'^2}{\frac{1}{2}}-\frac{y'^2}{\frac{1}{3}}=1.$

为画出其大致图形,需要求出坐标变换公式.对应于特征根2与-3的单位

特征向量分别是
$$\left(\frac{2\sqrt{5}}{5}, -\frac{\sqrt{5}}{5}\right)$$
 与 $\left(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$, 所以 $T = \begin{pmatrix} \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{pmatrix}$, 且 $|T| = 1$. 再求曲线的中心 (即新坐标系的原点) $O'(x_0, y_0)$, 解线性方程组

$$\begin{cases} x_0 - 2y_0 + 5 = 0 \\ -2x_0 - 2y_0 + 2 = 0 \end{cases}$$

得
$$X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
. 因此坐标变换公式是

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & -1 \\ -\frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

求出新坐标系中 x' 轴与 y' 轴在旧坐标系中的方程分别是 x+2y-3=0 与 2x-y+4=0.

3. 化简二次曲线方程

$$x^2 - 3xy + y^2 + 10x - 10y + 21 = 0,$$

并作出它的图形以及新的坐标轴

F出它的图形以及新的坐标轴.

解: 矩阵
$$A = \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$, 因此 $I_1 = \text{Tr}(A) = 2 > 0$,

$$I_2 = |A| = -\frac{5}{4} < 0, I_3 = \begin{vmatrix} 1 & -\frac{3}{2} & 5 \\ -\frac{3}{2} & 1 & -5 \\ 5 & -5 & 21 \end{vmatrix} = -\frac{5}{4} < 0.$$
 此曲线是双曲线. A

的特征值是方程 $\lambda^2-2\lambda-\frac{5}{4}=0$ 的根, 解得 $\lambda_1=\frac{5}{2},\,\lambda_2=-\frac{1}{2}$. 故简化后的 方程为 $\frac{5}{2}x'^2 - \frac{1}{2}y'^2 + 1 = 0$, 即 $\frac{y'^2}{2} - \frac{x'^2}{2} = 1$.

为画出其大致图形, 需要求出坐标变换公式. 对应于特征根 $\frac{5}{2}$ 与 $-\frac{1}{2}$ 的单

位特征向量分别是
$$\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
 与 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, 所以 $T = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$,

且 |T|=1. 再求曲线的中心 (即新坐标系的原点) $O'(x_0,y_0)$, 解线性方程

$$\begin{cases} x_0 - \frac{3}{2}y_0 + 5 = 0\\ -\frac{3}{2}x_0 + y_0 - 5 = 0 \end{cases}$$

得
$$X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
. 因此坐标变换公式是
$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -2 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.$$

求出新坐标系中 x' 轴与 y' 轴在旧坐标系中的方程分别是 x+y=0 与 x-y+4=0.

4. 化简二次曲线方程

$$4x^2 - 4xy + y^2 + 6x - 8y + 3 = 0,$$

并画出它的图形以及新的坐标轴.

解: 矩阵
$$A = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, 因此 $I_1 = \operatorname{Tr}(A) = 5 > 0$, $I_2 = |A| = 0$, $I_3 = \begin{vmatrix} 4 & -2 & 3 \\ -2 & 1 & -4 \\ 3 & -4 & 3 \end{vmatrix} = -25 < 0$. 此曲线是抛物线. A 的特征值是方程 $\lambda^2 - 5\lambda = 0$ 的根, 解得 $\lambda_1 = 0$, $\lambda_2 = 5$. 对应于特征根 $0 = 5$ 的单位特征向量分别是 $\left(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$ 与 $\left(-\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right)$, 所以 $T = \begin{pmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} \end{pmatrix}$,

且 |T| = 1.

先用 T 作旋转坐标变换, 可得

$$\begin{pmatrix} T^{\mathrm{T}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & B \\ B^{\mathrm{T}} & 3 \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\sqrt{5} \\ 0 & 5 & -2\sqrt{5} \\ -\sqrt{5} & -2\sqrt{5} & 3 \end{pmatrix}.$$

即 $b'_1 = -\sqrt{5}$, $b'_2 = -2\sqrt{5}$. 取

$$X_0 = \begin{pmatrix} \frac{b_2'^2 - \lambda_2 c}{2b_1' \lambda_2} \\ -\frac{b_2'}{\lambda_2} \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{5}}{10} \\ \frac{2\sqrt{5}}{5} \end{pmatrix},$$

用 X_0 作平移坐标变换

$$\begin{pmatrix} X' \\ 1 \end{pmatrix} = \begin{pmatrix} E & X_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X'' \\ 1 \end{pmatrix},$$

可得

$$\begin{pmatrix} E & 0 \\ X_0^{\mathrm{T}} & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -\sqrt{5} \\ 0 & 5 & -2\sqrt{5} \\ -\sqrt{5} & -2\sqrt{5} & -2 \end{pmatrix} \begin{pmatrix} E & X_0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\sqrt{5} \\ 0 & 5 & 0 \\ -\sqrt{5} & 0 & 0 \end{pmatrix},$$

即方程化简为 $5y''^2 - 2\sqrt{5}x'' = 0$. 其简化方程为 $y''^2 = \frac{2\sqrt{5}}{5}x''$. 总的坐标变换公式为

$$\begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} T & TX_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X'' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} & -\frac{9}{10} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & \frac{1}{5} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ 1 \end{pmatrix}.$$

这条抛物线的顶点坐标是 $TX_0 = \left(-\frac{9}{10}, \frac{1}{5}\right)^T$. 新坐标系中 x' 轴与 y' 轴在旧 坐标系中的方程分别是 2x - y + 2 = 0 与 2x + 4y + 1 = 0.

5. 化简下列二次曲线的方程, 并指出它们是什么曲线:

(1)
$$4x^2 - 4xy + y^2 + 4x - 2y = 0$$
;

(2)
$$x^2 - 2xy + y^2 + 2x - 2y - 3 = 0$$
.

解: (1) 矩阵
$$A = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, 因此 $I_1 = \operatorname{Tr}(A) = 5 > 0$,
$$I_2 = |A| = 0, \ I_3 = \begin{vmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 0 \end{vmatrix} = 0. \ 为确定曲线的类型需要进一步$$

计算. A 的特征值是方程 $\lambda^2 - 5\lambda = 0$ 的根, 解得 $\lambda_1 = 0$, $\lambda_2 = 5$. 对应于特征根 0 = 5 的单位特征向量分别是 $\left(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$ 与 $\left(-\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right)$, 所以

$$T = \begin{pmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} \end{pmatrix}, \ \mathbb{H} \ |T| = 1.$$

先用 T 作旋转坐标变换, 可得

$$\begin{pmatrix} T^{\mathrm{T}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & B \\ B^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & -\sqrt{5} \\ 0 & -\sqrt{5} & 0 \end{pmatrix}.$$

即
$$b'_1 = 0$$
, $b'_2 = -\sqrt{5}$. 取 $X_0 = \begin{pmatrix} 0 \\ -\frac{b'_2}{\lambda_2} \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{5} \\ \overline{5} \end{pmatrix}$, 用 X_0 作平移坐标变

换,可得

$$\begin{pmatrix} E & 0 \\ X_0^{\mathrm{T}} & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & -\sqrt{5} \\ 0 & -\sqrt{5} & 0 \end{pmatrix} \begin{pmatrix} E & X_0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

即方程化简为 $5y''^2-1=0$,即 $y''=\pm\frac{\sqrt{5}}{5}$,这是一对平行直线. 总的坐标变换公式为

$$\begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} T & TX_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X'' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} & -\frac{2}{5} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & \frac{1}{5} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ 1 \end{pmatrix}.$$

(2) 矩阵
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, 因此 $I_1 = \text{Tr}(A) = 2 > 0$,

$$I_2 = |A| = 0, \ I_3 = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & -3 \end{vmatrix} = 0.$$
 为确定曲线的类型需要进一步

计算. A 的特征值是方程 $\lambda^2 - 2\lambda = 0$ 的根, 解得 $\lambda_1 = 0$, $\lambda_2 = 2$. 对应于特征根 0 = 2 的单位特征向量分别是 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ 与 $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, 所以

$$T = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, \ \mathbb{H} |T| = 1.$$

先用 T 作旋转坐标变换, 可得

$$\begin{pmatrix} T^{\mathrm{T}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & B \\ B^{\mathrm{T}} & -3 \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -\sqrt{2} \\ 0 & -\sqrt{2} & -3 \end{pmatrix}.$$

即 $b_1'=0,\ b_2'=-\sqrt{2}.$ 取 $X_0=\begin{pmatrix}0\\-\frac{b_2'}{\lambda_2}\end{pmatrix}=\begin{pmatrix}0\\\frac{\sqrt{2}}{2}\end{pmatrix}$,用 X_0 作平移坐标变换,可得

$$\begin{pmatrix} E & 0 \\ X_0^{\mathrm{T}} & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -\sqrt{2} \\ 0 & -\sqrt{2} & -3 \end{pmatrix} \begin{pmatrix} E & X_0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix},$$

方程化简为 $2y''^2-4=0$,即 $y''=\pm\sqrt{2}$,这是一对平行直线. 总的坐标变换公式为

$$\begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} T & TX_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X'' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ 1 \end{pmatrix}.$$

6. 求下列二次曲线的渐近线:

(1)
$$6x^2 - xy - y^2 + 3x + y - 1 = 0$$
;

$$(2) 2xy - 4x - 2y + 3 = 0.$$

解: (1) 矩阵
$$A = \begin{pmatrix} 6 & -\frac{1}{2} \\ -\frac{1}{2} & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$, 因此 $I_2 = |A| = -\frac{25}{4} <$

$$0, I_3 = \begin{vmatrix} 6 & -\frac{1}{2} & \frac{3}{2} \\ -\frac{1}{2} & -1 & \frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} & -1 \end{vmatrix} = \frac{25}{4} > 0. 此曲线是双曲线. 曲线的中心 (x_0, y_0) 满$$

足线性方程组

$$\begin{cases} 6x_0 - \frac{1}{2}y_0 + \frac{3}{2} = 0\\ -\frac{1}{2}x_0 - y_0 + \frac{1}{2} = 0 \end{cases}$$

得
$$X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5} \\ \frac{3}{5} \end{pmatrix}$$
. 渐近线方程为

$$6\left(x + \frac{1}{5}\right)^2 - \left(x + \frac{1}{5}\right)\left(y - \frac{3}{5}\right) - \left(y - \frac{3}{5}\right)^2 = 0.$$

上式可分解为

$$\left(3\left(x+\frac{1}{5}\right)+\left(y-\frac{3}{5}\right)\right)\left(2\left(x+\frac{1}{5}\right)-\left(y-\frac{3}{5}\right)\right)=0,$$

所以渐近线方程为 3x + y = 0 和 2x - y + 1 = 0.

(2) 矩阵
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$, 因此 $I_2 = |A| = -1 < 0$,

$$I_3 = \begin{vmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ -2 & -1 & 3 \end{vmatrix} = 1 > 0$$
. 此曲线是双曲线. 曲线的中心 (x_0, y_0) 满足线

性方程组

$$\begin{cases} y_0 - 2 = 0 \\ x_0 - 1 = 0 \end{cases}$$

得 $X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. 渐近线方程为 2(x-1)(y-2) = 0, 即 x = 1 和

7. 就 λ 的值讨论方程

$$\lambda x^2 - 2xy + \lambda y^2 - 2x + 2y + 5 = 0$$

所表示的曲线形状.

解: 矩阵
$$A = \begin{pmatrix} \lambda & -1 \\ -1 & \lambda \end{pmatrix}$$
, $B = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, 因此 $I_1 = \operatorname{Tr}(A) = 2\lambda$,
$$I_2 = |A| = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1), I_3 = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & 1 \\ -1 & 1 & 5 \end{vmatrix} = (5\lambda + 3)(\lambda - 1).$$

分几种情况来讨论。

- (i) 当 $\lambda \neq \pm 1$ 时, $I_2 \neq 0$. 又可分为两种情况. (a) $\lambda > 1$ 或 $\lambda < -1$, 此时 $I_2>0$. 当 $\lambda>1$ 时, I_1 与 I_3 同号, 曲线是虚椭圆; 当 $\lambda<-1$ 时, I_1 与 I_3 异号, 曲线是椭圆. (b) $-1<\lambda<1$, 此时 $I_2<0$. 当 $\lambda=-\frac{3}{5}$ 时, $I_3=0$, 曲线为一 对相交直线; 而当 $\lambda \neq -\frac{3}{5}$ 时, 曲线总是双曲线.
 - (ii) 当 $\lambda = -1$ 时, $I_2 = 0$, $I_3 \neq 0$, 曲线是抛物线.

(iii) 当
$$\lambda = 1$$
 时, $I_2 = I_3 = 0$, 利用半不变量 $K_1 = \begin{vmatrix} \lambda & -1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} \lambda & 1 \\ 1 & 5 \end{vmatrix} = 10\lambda - 2 = 8 > 0$, 可知曲线是一对虚平行直线.

8. 就 λ 的值讨论方程

$$\lambda x^2 + 2\lambda xy + y^2 - 2x - 2\lambda y + \lambda = 0$$

所表示曲线的形状.

解: 矩阵
$$A = \begin{pmatrix} \lambda & \lambda \\ \lambda & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 \\ -\lambda \end{pmatrix}$, 因此 $I_1 = \operatorname{Tr}(A) = 1 + \lambda$,
$$I_2 = |A| = \lambda(1 - \lambda), \ I_3 = \begin{vmatrix} \lambda & \lambda & -1 \\ \lambda & 1 & -\lambda \\ -1 & -\lambda & \lambda \end{vmatrix} = -(\lambda - 1)^2(2\lambda + 1).$$
 分几种情

况来讨论.

(i) 当 $\lambda \neq 1,0$ 时, $I_2 \neq 0$. 又可分为两种情况. (a) $0 < \lambda < 1$, 此时 $I_2 > 0$, $I_1 > 0$, $I_3 < 0$, 曲线是椭圆; (b) $\lambda < 0$ 或 $\lambda > 1$, 此时 $I_2 < 0$. 仅当 $\lambda = -\frac{1}{2}$ 时, $I_3 = 0$, 曲线为一对相交直线; 而当 $\lambda \neq -\frac{1}{2}$ 时, 曲线总是双曲线.

(ii) 当 $\lambda = 0$ 时, $I_2 = 0$, $I_3 \neq 0$, 曲线是抛物线.

(iii) 当
$$\lambda = 1$$
 时, $I_2 = I_3 = 0$, 利用半不变量 $K_1 = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0$, 可知曲线是一对重合直线.

- 9. 已知方程 $(A_1x + B_1y + C_1)^2 + 2(A_2x + B_2y + C_2) = 0$, 其中 $A_1B_2 A_2B_1 \neq 0$, $A_1A_2 + B_1B_2 = 0$.
 - (1) 证明此方程表示一条抛物线;
 - (2) 求出对称轴的方程.

解: (1) 设此曲线方程是关于直角坐标系 $[O;\eta_1,\eta_2]$ 的. 由于 $A_1A_2+B_1B_2=0$,因此直线 $L_1:A_1x+B_1y+C_1=0$ 与直线 $L_2:A_2x+B_2y+C_2=0$ 互相正交. 不妨设 $A_1B_2-A_2B_1>0$,令 $\Delta_1=\sqrt{A_1^2+B_1^2}$, $\Delta_2=\sqrt{A_2^2+B_2^2}$,则 L_1,L_2 的单位方向向量 $\eta_1'=\left(\frac{A_1}{\Delta_1},\frac{B_1}{\Delta_1}\right)$ 与 $\eta_2'=\left(\frac{A_2}{\Delta_2},\frac{B_2}{\Delta_2}\right)$ 构成一个规范

正交组. 令 $T = \begin{pmatrix} \frac{A_1}{\Delta_1} & \frac{A_2}{\Delta_2} \\ \frac{B_1}{\Delta_1} & \frac{B_2}{\Delta_2} \end{pmatrix}$,则有 $(\eta_1', \eta_2') = (\eta_1, \eta_2)T$,T 是一个正交矩阵,

且 |T|=1. 因此 η_1', η_2' 构成一个右手系.

如果令

$$\begin{cases} x' = \frac{A_1}{\Delta_1}x + \frac{B_1}{\Delta_1}y + \frac{C_1}{\Delta_1} \\ y' = \frac{A_2}{\Delta_2}x + \frac{B_2}{\Delta_2}y + \frac{C_2}{\Delta_2}, \end{cases}$$

就有

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{A_1}{\Delta_1} & \frac{B_1}{\Delta_1} & \frac{C_1}{\Delta_1} \\ \frac{A_2}{\Delta_2} & \frac{B_2}{\Delta_2} & \frac{C_2}{\Delta_2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

这是一个直角坐标变换公式. 在新的坐标系 $[O'; \eta'_1, \eta'_2]$ 中, 曲线的方程化简为 $\Delta_1^2 x'^2 + 2\Delta_2 Y' = 0$. 显然 $\Delta_1 \neq 0$, 因此 $x'^2 + \frac{2\Delta_2}{\Delta_1^2} y' = 0$, 这是一条抛物线.

(2) 此抛物线的对称轴是 y' 轴, 方程为 x' = 0, 即 $A_1x + B_1y + C_1 = 0$.

10. 设二次曲线方程为

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_1x + 2b_2y + c = 0.$$

证明:

- (1) 二次曲线为一条等轴双曲线或两条相互垂直的直线的充分必要条件是 $I_1 = 0$;
 - (2) 二次曲线为圆的充分必要条件是 $I_1^2 = 4I_2$, $I_1I_3 < 0$;
 - (3) 二次曲线若表示一个椭圆, 试求该椭圆面积.

证明: (1) 若此二次曲线为等轴双曲线, 则由于 I_1 是正交不变量, 从等轴双曲线的标准方程易知 $I_1=0$; 若是两条互相垂直的直线, 则其标准方程为 $\lambda_1 x'^2 + \lambda_2 y'^2 = 0$, 且 $\lambda_1 \lambda_2 < 0$, 即 $y' = \pm \sqrt{\frac{-\lambda_1}{\lambda_2}} x'$ 表示两条互相垂直的直线, 因此 $\sqrt{\frac{-\lambda_1}{\lambda_2}} \cdot \left(-\sqrt{\frac{-\lambda_1}{\lambda_2}}\right) = -1$, 推得 $\frac{-\lambda_1}{\lambda_2} = 1$, 即 $I_1 = 0$.

反之, 若 $I_1 = 0$, 则因 $I_1 = \lambda_1 + \lambda_2 = 0$, 可知 $\lambda_2 = -\lambda_1 \neq 0$), 并且 $I_2 = -\lambda_1^2 < 0$. 由简化方程 $\lambda_1 (x'^2 - y'^2) + \frac{I_3}{I_2} = 0$ 可知, 当 $I_3 \neq 0$ 时曲线是等 轴双曲线; 当 $I_3 = 0$ 时曲线是两条互相垂直的直线.

(2) 若此二次曲线是圆,则必有 $I_2 > 0$, $I_1 \cdot I_3 < 0$ (椭圆型),经过适当选择 直角坐标系知简化方程为 $\lambda_1 x'^2 + \lambda_2 y'^2 + \frac{I_3}{I_2} = 0$. 因为是圆,所以 $\lambda_1 = \lambda_2$,于 是 $I_1 = 2\lambda_1$, $I_2 = \lambda_1^2$,所以 $I_1^2 = 4I_2$.

反之, 若 $I_1 \cdot I_3 < 0$, $I_1^2 = 4I_2$, 可知 $I_2 > 0$, 曲线是椭圆. 又因 $I_1 = \lambda_1 + \lambda_2$, $I_2 = \lambda_1 \lambda_2$, 由 $I_1^2 = 4I_2$ 可得 $\lambda_1 = \lambda_2$, 故此曲线是圆.

(3) 在标准椭圆方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 中,椭圆的面积 $S = \pi ab$. 若曲线表示一个椭圆,则适当选择坐标系之后可得它的简化 方程为 $\lambda_1 x'^2 + \lambda_2 y'^2 + \frac{I_3}{I_2} = 0$,即 $\frac{x'^2}{\frac{-I_3}{I_2} \cdot \frac{1}{\lambda_1}} + \frac{y'^2}{\frac{-I_3}{I_2} \cdot \frac{1}{\lambda_2}} = 1$. 所以面积

$$S = \pi \sqrt{\frac{I_3^2}{I_2^2} \cdot \frac{1}{\lambda_1 \lambda_2}} = \frac{\pi |I_3| \sqrt{I_2}}{I_2^2}.$$

- **11.** 已知椭圆长轴和短轴分别在直线 x + y 1 = 0 和 x y + 1 = 0 上, 且长短轴长分别为 4 与 2. 求此椭圆的方程.
 - **解**: 不妨设长轴在 x' 轴 (即 y' = 0) 上, 短轴在 y' 轴 (即 x' = 0) 上, 作变

换

$$\begin{cases} x' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2} \\ y' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}, \end{cases}$$

写成矩阵形式为

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

其左上角的子矩阵 $\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$ 是行列式等于 1 的正交矩阵,因此这是右

手直角坐标系间的坐标变换. 在新的坐标系里曲线的方程应为 $\frac{x'^2}{4} + \frac{y'^2}{1} = 1$. 利用坐标变换公式,可得在旧坐标系下的方程: $\frac{1}{4} \left(\frac{\sqrt{2}}{2} x - \frac{\sqrt{2}}{2} y + \frac{\sqrt{2}}{2} \right)^2 +$ $\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}\right)^2 = 1, \quad \exists x \in \mathbb{Z} + 6xy + 5y^2 - 6x - 10y - 3 = 0.$

§3 平面的点变换

1. 判别下列对应法则是否为实数域 ℝ 到自身的映射, 并指出哪些是单射? 满射?

(1)
$$x \mapsto x^2$$
;

$$(2) x \mapsto x^3$$

$$(3) x \mapsto |x|$$

(4)
$$r \mapsto 2^x$$
.

(1)
$$x \mapsto x^2$$
; (2) $x \mapsto x^3$; (3) $x \mapsto |x|$;
(4) $x \mapsto 2^x$; (5) $x \mapsto \sin(x^2)$; (6) $x \mapsto \tan x$.

(6)
$$x \mapsto \tan x$$

解: (1)-(5) 都是 ℝ 到自身的映射, 其中 (2), (4) 是单射, (2) 是满射, (6) 不是映射.

- **2.** 设 S 表示平面上所有点组成的集合, L 是一条直线, 把平面上每个点 P(x,y) 对应到它关于 L 的对称点 P'(x',y'), 这是 S 到自身的一个变换, 称为 关于直线 L 的反射, 称 L 是反射轴.
 - (1) 求出平面关于直线 y = x 的反射公式;
 - (2) 设反射轴为 Ax + By + C = 0. 求出这时的反射公式;
- (3) 设 $\mathcal{S}_1, \mathcal{S}_2$ 是关于平面上两条平行直线 L_1, L_2 的反射. 证明 $\mathcal{S}_2 \mathcal{S}_1$ 是 一个平移.

§ 3 平面的点变换 · 121

解: (1) 已知 P(x,y) 关于直线 y=x 的对称点为 P'(x',y'). 则

$$\begin{cases} \frac{x+x'}{2} = \frac{y+y'}{2} \\ \frac{y-y'}{x-x'} = -1, \end{cases}$$

解得反射公式为

$$\begin{cases} x' = y \\ y' = x. \end{cases}$$

(2) 点 P(x,y) 关于直线 Ax + By + C = 0 的对称点为 P'(x'y'). 则

$$\begin{cases} A\left(\frac{x+x'}{2}\right) + B\left(\frac{y+y'}{2}\right) + C = 0\\ A(y-y') = B(x-x'), \end{cases}$$

解得反射公式为

$$\begin{cases} x' = \frac{1}{A^2 + B^2} \left((B^2 - A^2)x - 2ABy - 2AC \right) \\ y' = \frac{1}{A^2 + B^2} \left(-2ABx + (A^2 - B^2)y - 2BC \right). \end{cases}$$

(3) 以 L_1 作为 x 轴建立坐标系, 则 L_1 , L_2 的方程分别为 y = 0 与 y + C = 0, 其中 $C \neq 0$. 记 $\mathcal{S}_1(P) = P'(x', y')$, $\mathcal{S}_2(P') = P''(x'', y'')$. 由 (2) 知,

$$\begin{cases} x' = x \\ y' = -y, \end{cases} \qquad \begin{cases} x'' = x' \\ y'' = -y' - 2C. \end{cases}$$

代入后算得

$$\begin{cases} x'' = x \\ y'' = y - 2C. \end{cases}$$

可见 $\mathcal{S}_2\mathcal{S}_1$ 是一个平移.

3. 设 \mathcal{M} 是变换 $(x,y) \mapsto (x',y')$:

$$\begin{cases} x' = 2x + 3y + 2 \\ y' = -x + 2y - 3 \end{cases}$$

问:

(1) 点 (-1,1) 被变成了什么点?

- (2) 直线 y=2 被变成了什么图形?
- (3) 点 (9,-3) 是由哪个点变过来的?

解: (1) 点 (-1,1) 被变为 (3,0).

(2) 直线 y=2 上的点是 (t,2) $(t\in\mathbb{R})$. 而 $\mathcal{M}((t,2))=(2t+8,-t+1)$, 因 此变换后的点成一条直线,其参数方程为 $\begin{cases} x = 8 + 2t \\ y = 1 - t, \end{cases}$ 成 x + 2y - 10 = 0. (3) 解方程组 $\begin{cases} 2x + 3y + 2 = 9 \\ -x + 2y - 3 = -3 \end{cases}$ 得 x = 2, y = 1. 故 $\mathcal{M}((2, 1)) = 0$

(3) 解方程组
$$\begin{cases} 2x + 3y + 2 = 9 \\ -x + 2y - 3 = -3 \end{cases}$$
 得 $x = 2, y = 1.$ 故 $\mathcal{M}((2,1)) = (9, -3).$

4. 在直角坐标系 $[O; \eta_1, \eta_2]$ 中, 求出平面绕点 $M_0(x_0, y_0)$ 旋转 θ_0 角的变 换公式.

解: 以 $M_0(x_0, y_0)$ 为原点建立新直角坐标系 $[M_0; \eta_1, \eta_2]$, 则绕点 M_0 旋转 θ_0 角的变换在新坐标下的变换公式为

$$\begin{cases} \tilde{x}' = \cos \theta_0 \tilde{x} - \sin \theta_0 \tilde{y} \\ \tilde{y}' = \sin \theta_0 \tilde{x} + \cos \theta_0 \tilde{y}. \end{cases}$$

设点 P(x,y) 经旋转变为 P'(x',y'), 根据平移坐标变换的公式, P,P' 点的新坐 标应为 $(x-x_0, y-y_0)$, $(x'-x_0, y'-y_0)$. 代入上面的公式即得

$$\begin{cases} x' = \cos \theta_0(x - x_0) - \sin \theta_0(y - y_0) + x_0 \\ y' = \sin \theta_0(x - x_0) + \cos \theta_0(y - y_0) + y_0. \end{cases}$$

5. 若把曲线 $2xy = a^2$ 绕原点旋转 $\frac{\pi}{4}$, 求新的曲线方程.

解: 若 P(x,y) 点旋转到了 P'(x',y') 点, 则 P 点可由 P' 点经旋转 $-\frac{\pi}{4}$ 得 到. 因此

$$\begin{cases} x = \cos\left(-\frac{\pi}{4}\right)x' - \sin\left(-\frac{\pi}{4}\right)y' = \frac{\sqrt{2}}{2}(x'+y') \\ y = \sin\left(-\frac{\pi}{4}\right)x' + \cos\left(-\frac{\pi}{4}\right)y' = \frac{\sqrt{2}}{2}(-x'+y'), \end{cases}$$

代入原方程 $2xy = a^2$ 即得 $y'^2 - x'^2 = a^2$.

6. 平面的等距变换 \mathcal{M} 若有两个不动点 A,B. 则直线 AB 上每个点都是 不动点.

解: 设 C 点在直线 AB 上,则根据 C 是否位于线段 AB 上,有 d(A,C) + d(C,B) = d(A,B) $\neq d(C,A) - d(C,B) = d(A,B)$. $\neq \mathcal{M}(C) = C'$, $\neq \mathcal{M}(C) = C'$ § 3 平面的点变换 · 123 · ·

因 A, B 是 \mathcal{M} 的不动点,有 d(A, C') + d(C', B) = d(A, B) 或 |d(C', A) - d(C', B)| = d(A, B). 如果 A, B, C' 不共线,则它们构成一个三角形,而三角形两边之和大于第三边,两边之差小于第三边,与上述等式矛盾.

7. 求下述仿射变换的不动点:

$$\begin{cases} x' = 3x - y - 5 \\ y' = 2x + y + 1. \end{cases}$$

解: 解方程组 $\begin{cases} x = 3x - y - 5 \\ y = 2x + y + 1, \end{cases}$ 得 $x = -\frac{1}{2}, y = -6$,即不动点仅有 $\left(-\frac{1}{2}, -6\right)$ 一个.

8. 若在仿射变换 《 下一条直线的象与其自身重合,则称这条直线为 《 的不变直线. 求下述仿射变换的不变直线:

$$\begin{cases} x' = 7x - y + 1 \\ y' = 4x + 2y + 4. \end{cases}$$

解: 仿射变换把直线变成直线. 设不变直线为 L: Ax + By + C = 0. 若 $P(x,y) \in L$, 则 $P'(x',y') = \mathscr{A}(P) \in L$, 即 Ax' + By' + C = 0. 代入化简后得

$$(7A + 4B)x + (2B - A)y + (A + 4B + C) = 0.$$

因为L上的任意点都满足此方程,说明这个方程也是L的方程.因此有

$$\frac{7A+4B}{A} = \frac{2B-A}{B} = \frac{A+4B+C}{C} = k.$$

解得 k = 6 或 k = 3. 所以

$$\begin{cases} A = -4B \\ C = 0 \end{cases} \qquad \begin{cases} A = -B \\ C = \frac{3}{2}B, \end{cases}$$

故不变直线有两条: -4x + y = 0 和 -2x + 2y + 3 = 0.

9. 设在平面上给出了两个三角形 ABC 和 DEF. 问有几个仿射变换把 $\triangle ABC$ 变成 $\triangle DEF$?

解: 由命题 3.3(9) 可知有 3! = 6 个不同的仿射变换.

10. 证明: 平面上任给两个直角标架 (I) 和 (II), 总存在唯一的等距变换把 (I) 变成 (II).

证明: 命题 3.2(6) 已经蕴含了满足条件的等距变换的唯一性. 设有直角标架 $[O;\eta_1,\eta_2]$ 与 $[O';\eta'_1,\eta'_2]$, 则规范正交基 η_1,η_2 与 η'_1,η'_2 可以确定唯一的正交变换 \mathscr{A} 使得 $\mathscr{A}(\eta_i)=\eta'_i,\ i=1,2$. 设向量 $\delta=\overrightarrow{OO'}$, 又可定义一个平移变换 \mathscr{T}_δ . 于是复合变换 $\mathscr{T}_\delta\mathscr{A}$ 是一个等距变换, 它把直角标架 $[O;\eta_1,\eta_2]$ 映到 $[O';\eta'_1,\eta'_2]$. 存在性获证.

§ 4 变换群与几何学

1. 证明: 平面上绕一个固定点转 90°、180°、270° 的三个旋转 \mathcal{Q}_1 、 \mathcal{Q}_2 、 \mathcal{Q}_3 和恒同变换 \mathcal{E} 组成一个变换群.

证明: 记 $\mathcal{R}_0 = E$, 则因 $\mathcal{R}_i \mathcal{R}_j = \begin{cases} \mathcal{R}_{i+j} & \text{若 } i+j \leq 3, \\ \mathcal{R}_{i+j-4} & \text{若 } i+j \geq 4, \end{cases}$ 群的性质 (1) 被满足; 性质 (2) 则是显然的; 又因 $\mathcal{R}_i^{-1} = \mathcal{R}_{4-i}$, 性质 (3) 也被满足, 所以这是一个群.

2. 当 a, b 取为任意的不全为零的数时. 下列所有的仿射变换组成的集合 是否为一个群?

$$\begin{cases} x' = ax + by \\ y' = bx + ay. \end{cases}$$

解: 这个仿射变换对应的矩阵是 $A=\begin{pmatrix}a&b\\b&a\end{pmatrix}$. 设 $A_1=\begin{pmatrix}a_1&b_1\\b_1&a_1\end{pmatrix}$, $A_2=\begin{pmatrix}a_2&b_2\\b_2&a_2\end{pmatrix}$, 则 $A_1A_2=\begin{pmatrix}a_1a_2+b_1b_2&a_1b_2+b_1a_2\\a_1b_2+b_1a_2&a_1a_2+b_1b_2\end{pmatrix}$ 也是这个集合的元素,因此性质 (1) 被满足;当 a=1,b=0 时就是恒同变换,因此 (2) 也满足; $A^{-1}=\begin{pmatrix}\frac{a}{a^2-b^2}&-\frac{b}{a^2-b^2}\\-\frac{b}{a^2-b^2}&\frac{a}{a^2-b^2}\end{pmatrix}$ 也是集合的元素,因此 (3) 也满足.这个集合确实是群

§ 5 二次曲线的正交分类与仿射分类

1. 求二次曲线 $x^2 + 2y^2 - 4x - 2y - 6 = 0$ 通过点 (8,0) 的直径方程, 并求出其共轭直径的方程.

解:该二次曲线方程可写成

$$\frac{(x-2)^2}{\frac{21}{2}} + \frac{\left(y - \frac{1}{2}\right)^2}{\frac{21}{4}} = 1,$$

是椭圆.

作变换

$$\begin{cases} x' = \frac{\sqrt{42}}{21}(x-2) \\ y' = \frac{2\sqrt{21}}{21}\left(y - \frac{1}{2}\right), \end{cases} \quad \text{PI: } \begin{cases} x = \frac{\sqrt{42}}{2}x' + 2 \\ y = \frac{\sqrt{21}}{2}y' + \frac{1}{2}. \end{cases}$$

则此变换将圆 $x'^2 + y'^2 = 1$ 变为椭圆

$$\frac{(x-2)^2}{\frac{21}{2}} + \frac{\left(y - \frac{1}{2}\right)^2}{\frac{21}{4}} = 1,$$

且将点 $\left(\frac{2\sqrt{42}}{7}, -\frac{\sqrt{21}}{21}\right)$ 变成 (8,0). 所以此变换将圆的直径 $y'=-\frac{\sqrt{2}}{12}x'$ 变为椭圆的过点 (8,0) 的直径: x+12y-8=0.

与圆直径 $y' = -\frac{\sqrt{2}}{12}x'$ 垂直的直径 $y' = 6\sqrt{2}x'$ 被此变换变成与椭圆的直径 x + 12y - 8 = 0 共轭的直径 12x - 2y - 23 = 0.

2. 设双曲线的标准方程为

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

试求直径 $y = \frac{kb}{a}x$ (|k| < 1) 的共轭直径 (所给直径的平行弦的中点连线).

解: 根据对称性, 双曲线的中心是所有通过它的弦的中点, 因此所有的直径一定通过它的中心. 为确定共轭直径, 只需再找一个点. 作一条

平行弦 $y = \frac{kb}{a}x + t$, 它与双曲线的交点满足 $\frac{x^2}{a^2} - \frac{\left(\frac{kb}{a}x + t\right)^2}{b^2} = 1$, 化简为 $b^2(1-k^2)x^2 - 2abktx - a^2(b^2+t^2)$. 因此平行弦的中点的横坐标是 $\frac{x_1+x_2}{2} = \frac{akt}{b(1-k^2)}$. 纵坐标为 $\frac{kb}{a} \cdot \frac{akt}{b(1-k^2)} + t = \frac{t}{1-k^2}$. 得到共轭直径的

斜率为 $\frac{t}{1-k^2} \cdot \frac{b(1-k^2)}{akt} = \frac{b}{ak}$, 共轭直径的方程为 $y = \frac{b}{ak}x$. 可见双曲线的直径与共轭直径的斜率的乘积等于常数 $\frac{b^2}{a^2}$.

3. 已知曲线 $xy - y^2 - 2x + 3y - 1 = 0$ 的直径与 y 轴平行, 求它的方程, 并求出这直径的共轭直径.

解: 因为
$$I_2 = \begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -1 \end{vmatrix} = -\frac{1}{4} < 0, I_3 = \begin{vmatrix} 0 & \frac{1}{2} & -1 \\ \frac{1}{2} & -1 & \frac{3}{2} \\ -1 & \frac{3}{2} & -1 \end{vmatrix} \neq 0$$
,所以该

曲线是双曲线. 为求它的中心, 解以下方程组:

$$\begin{cases} \frac{1}{2}y_0 - 1 = 0\\ \frac{1}{2}x_0 - y_0 + \frac{3}{2} = 0, \end{cases}$$

得 $x_0 = 1$, $y_0 = 2$. 由于已给直径与 y 轴平行, 它的方程是 x = 1.

作一条平行弦 x=t, 它与双曲线的交点坐标应满足 $ty-y^2-2t+3y-1=0$, 因此交点的中点的纵坐标等于 $\frac{t+3}{2}$, 而横坐标为 t. 故共轭直径的方程为

$$y = \frac{\frac{3+t}{2} - 2}{t-1}(x-1) + 2, \ \mathbb{P} \ x - 2y + 3 = 0.$$

4. 试证明: 抛物线的所有直径构成与对称轴平行的直线束.

证明: 设此抛物线的标准方程是 $y^2=2px\ (p>0)$. 设抛物线的直径是由平行于 y=kx 的平行弦的中点构成的. 设平行弦的方程是 y=kx+t, 则它与抛物线交点的横坐标满足方程 $(kx+t)^2=2px$, 即 $k^2x^2+2(kt-p)x+t^2=0$. 由此可得中点的横坐标为 $\frac{x_1+x_2}{2}=\frac{p-kt}{k^2}$, 纵坐标为 $k\cdot\frac{p-kt}{k^2}+t=\frac{p}{k}$, 是一个常数. 即直径平行于 x 轴.

§6 二次超曲面方程的化简

1. 已知 3 个平面:

$$\Pi_1: x + 2y - 2z + 3 = 0,$$

$$\Pi_2: 2x + y + 2z - 1 = 0,$$

$$\Pi_3: 2x - 2y - z - 3 = 0,$$

分别取为 O'x'y', O'y'z', O'x'z' 平面. 求直角坐标变换公式, 并写出新原点的旧坐标与旧原点的新坐标.

解: 设 P(x, y, z) 在新坐标系下的坐标是 (x', y', z'), 则 P 到 3 个坐标平面的距离等于这 3 个坐标的绝对值, 即

$$\begin{cases} |x'| = \frac{|2x + y + 2z - 1|}{3} \\ |y'| = \frac{|2x - 2y - z - 3|}{3} \\ |z'| = \frac{|x + 2y - 2z + 3|}{3}. \end{cases}$$

设 $T = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$,由于 T是正交矩阵且 |T| = 1,我们可以把坐标变

换公式取为:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} & -1 \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}.$$

这是右手系之间的直角坐标变换. 显然旧坐标原点 O 的新坐标是 $\left(-\frac{1}{3},-1,1\right)$.

旧坐标用新坐标表示的公式为:

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} & \frac{5}{9} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} & -\frac{11}{9} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} & \frac{5}{9} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix},$$

因此新坐标原点 O' 的旧坐标是 $\left(\frac{5}{9}, -\frac{11}{9}, \frac{5}{9}\right)$.

2. 化简二次曲面的方程:

$$x^{2} + y^{2} + 5z^{2} - 6xy - 2xz + 2yz - 6x + 6y - 6z + 10 = 0$$

并指出这是什么曲面.

解: 由题设,

$$A = \begin{pmatrix} 1 & -3 & -1 \\ -3 & 1 & 1 \\ -1 & 1 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 \\ 3 \\ -3 \end{pmatrix},$$

矩阵 A 的特征多项式是 $\chi_A(\lambda) = \lambda^3 - 7\lambda^2 + 36$, A 的特征值为 $\lambda_1 = 6$, $\lambda_2 = 3$, $\lambda_3 = -2$. 与这 3 个特征值对应的单位特征向量 (因特征值不同, 它们互相正交) 分别是 $\xi_1 = \left(-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}\right)$, $\xi_2 = \left(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$, $\xi_3 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$.

以这3个特征向量的坐标作为列向量构造矩阵

$$T = \begin{pmatrix} -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0 \end{pmatrix},$$

则 T 一定是正交矩阵,又因 |T|=1,T 满足我们的要求. 即有 $T^{\mathrm{T}}AT=\mathrm{diag}(6,3,-2)$.

再求 AX + B = 0 的解 Δ , 相当于解线性方程组

$$\begin{cases} x - 3y - z = 3 \\ -3x + y + z = -3 \\ -x + y + 5z = 3 \end{cases}$$

得 $\Delta = (1 - 11)^{T}$. 因此作直角坐标变换

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & -1 \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}$$

可使原方程化简为:

$$6x^{2} + 3y^{2} - 2z^{2} + 1 = 0.$$

这是一个双叶双曲面.

3. 化简二次曲面的方程:

$$2x^2 + 2y^2 + 3z^2 + 4xy + 2xz + 2yz - 4x + 6y - 2z + 3 = 0,$$

并指出这是什么曲面.

解: 由题设,

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix},$$

矩阵 A 的特征多项式是 $\chi_A(\lambda) = \lambda^3 - 7\lambda^2 + 10\lambda$, A 的特征值为 $\lambda_1 = 5$, $\lambda_2 = 2$, $\lambda_3 = 0$. 与这 3 个特征值对应的单位特征向量 (因特征值不同,它们互相正交) 分别是 $\xi_1 = \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$, $\xi_2 = \left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{3}\right)$, $\xi_3 = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0\right)$.

以这3个特征向量的坐标作为列向量构造矩阵

$$T = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} & 0 \end{pmatrix},$$

则 T 一定是正交矩阵, 可是 |T| = -1, 因此必须使其中某一列变号, 重取

$$T = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} & 0 \end{pmatrix},$$

T满足我们的要求. 即有 $T^{T}AT = diag(5,2,0)$.

由于 A 退化,并且 $2=\operatorname{rank} A<\operatorname{rank}(A\ B)=3$,我们先作旋转坐标变换 $\begin{pmatrix} X\\1 \end{pmatrix}\begin{pmatrix} T&0\\0&1 \end{pmatrix}\begin{pmatrix} X'\\1 \end{pmatrix}$ 得到:

$$\begin{pmatrix} T^{\mathrm{T}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & B \\ B^{\mathrm{T}} & 3 \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & \frac{\sqrt{6}}{2} \\ 0 & 0 & 0 & \frac{5\sqrt{2}}{2} \\ 0 & \frac{\sqrt{6}}{2} & \frac{5\sqrt{2}}{2} & 3 \end{pmatrix}.$$

即
$$5x'^2 + 2y'^2 + \sqrt{6}y' + 5\sqrt{2}z' + 3 = 0$$
. 配方为 $5x'^2 + 2\left(y' + \frac{\sqrt{6}}{4}\right)^2 + 5\sqrt{2}\left(z' + \frac{9\sqrt{2}}{40}\right) = 0$. 因此再作平移坐标变换

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -\frac{\sqrt{6}}{4} \\ 0 & 0 & 1 & -\frac{9\sqrt{2}}{40} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ z'' \\ 1 \end{pmatrix}$$

可把方程化简为

$$5x''^2 + 2y''^2 + 5\sqrt{2}z'' = 0.$$

这是一个椭圆抛物面.

相应的坐标变换公式为

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & -\frac{1}{40} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & -\frac{19}{40} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ z'' \\ 1 \end{pmatrix}.$$

第十一章 一元多项式的因式分解

§1 一元多项式

1. \(\psi\)\(\pm\)\(\p

解: $2x^4 - 2ax + 2b$.

2. 计算多项式 $x^3 + 2x^2 + 3x - 1 = 3x^2 + 2x + 4$ 的乘积.

解: $3x^5 + 8x^4 + 17x^3 + 11x^2 + 10x - 4$.

3. 设

$$f(x) = 3x^{2} - 5x + 3,$$

$$g(x) = ax(x - 1) + b(x + 2)(x - 1) + cx(x + 2),$$

试确定 a, b, c, 使 f(x) = g(x).

解: 取 x = -2, 得 $a = \frac{25}{6}$; 取 x = 0, 得 $b = -\frac{3}{2}$, 取 x = 1, 得 $c = \frac{1}{3}$.

4. 设 f(x), g(x) 和 h(x) 都是实系数多项式, 证明: 如果

$$f^2(x) = xg^2(x) + xh^2(x),$$

那么

$$f(x) = g(x) = h(x) = 0.$$

证明: 如 $f(x) \neq 0$, 则左式的次数为偶数, 而右式的次数为奇数, 矛盾, 故 f(x) = 0. 从而

$$g^2(x) + h^2(x) = 0.$$

又, g(x), h(x) 皆为实系数多项式, 从而 $g^2(x)$, $h^2(x)$ 的首项系数都是非负数, 而这两个数之和为零, 故 g(x), h(x) 的首项系数都是零, 从而 g(x) = h(x) = 0.

§2 整除的概念

1. 用 g(x) 除 f(x), 求商 q(x) 与余式 r(x):

(1)
$$f(x) = x^4 + 4x^2 - x + 6$$
, $g(x) = x^2 + x + 1$;

(2)
$$f(x) = x^3 + 3x^2 - x - 1$$
, $g(x) = 3x^2 - 2x + 1$.

解:
$$(1)$$
 $q(x) = x^2 - x + 4$, $r(x) = -4x + 2$.

(2)
$$q(x) = \frac{1}{9}(3x+11), r(x) = \frac{10}{9}(x-2).$$

2. m, p, q 适合什么条件时, 有

(1)
$$x^2 + mx + 1 \mid x^3 + px + q;$$

(2)
$$x^2 + mx + 1 \mid x^4 + px^2 + q$$
.

M:
$$(1)$$
 $p = 1 - m^2$, $q = -m$.

(2)
$$\begin{cases} m = 0 \\ p = 1 + q \end{cases} \quad \overrightarrow{\mathbb{E}} \begin{cases} p = -m^2 + 2 \\ q = 1 \end{cases}$$

3. 用综合除法求商 q(x) 及余式 r(x):

(1)
$$f(x) = x^4 - 2x^3 + 4x^2 - 6x + 8$$
, $g(x) = x - 2$;

(2)
$$f(x) = 2x^5 - 5x^3 - 8x$$
, $g(x) = x + 2$.

解:
$$(1)$$
 $q(x) = x^3 + 4x + 2$, $r(x) = 12$.

(2)
$$q(x) = 2x^4 - 4x^3 + 3x^2 - 6x + 4$$
, $r(x) = -8$.

4. 用综合除法表 f(x) 为 $x-x_0$ 的方幂:

(1)
$$f(x) = x^4 - 2x^3 + 3x^2 - 2x + 1, x_0 = 2;$$

(2)
$$f(x) = x^4 - 2x^2 + 3$$
, $x_0 = -2$;

(3)
$$f(x) = x^4 + 2ix^3 - (1+i)x^2 - 3x + 1 - 2i, x_0 = -i.$$

解:
$$(1)$$
 $f(x) = (x-2)^4 + 6(x-2)^3 + 15(x-2)^2 + 18(x-2) + 9$.

(2)
$$f(x) = (x+2)^4 - 8(x+2)^3 + 22(x+2)^2 - 24(x+2) + 11$$
.

(3)
$$f(x) = (x+i)^4 - 2i(x+i)^3 - (1+i)(x+i)^2 - 5(x+i) + (1+2i)$$
.

5. 记
$$\langle x \rangle^0 = 1$$
, $\langle x \rangle^k = x(x-1)(x-2)\cdots(x-k+1)$, $(k>1)$. 试将 $f(x)$ 表为

$$c_0 + c_1 \langle x \rangle + c_2 \langle x \rangle^2 + \cdots$$

的形式:

(1)
$$f(x) = x^4 - 2x^3 + x^2 - 1$$
;

(2)
$$f(x) = x^5$$
.

§ 2 整除的概念 · 133 ·

因此 $f(x) = -1 + 2\langle x \rangle^2 + 4\langle x \rangle^3 + \langle x \rangle^4$.

(2) $f(x) = \langle x \rangle + 15\langle x \rangle^2 + 25\langle x \rangle^3 + 10\langle x \rangle^4 + \langle x \rangle^5$.

6. k 是正整数, 证明: $x \mid f^{k}(x)$ 当且仅当 $x \mid f(x)$;

证明: 设 f(x) 的常数项为 a, 则 $f^k(x)$ 的常数项为 a^k . 因此 $x \mid f^k(x) \iff a^k = 0 \iff a = 0 \iff x \mid f(x)$.

7. 设a,b 为两个不相等的常数, 证明: 多项式 f(x) 被 (x-a)(x-b) 除所得余式为

$$\frac{f(a) - f(b)}{a - b}x + \frac{af(b) - bf(a)}{a - b}.$$

证明: 设 f(x) = (x - a)(x - b)q(x) + Ax + B, 则

$$f(a) = aA + B,$$
 $f(b) = bA + B,$

由此得

$$A = \frac{f(a) - f(b)}{a - b}, \qquad B = \frac{af(b) - bf(a)}{a - b}.$$

因此结论成立.

8. 设 $f_1(x)$, $f_2(x)$, $g_1(x)$, $g_2(x)$ 都是数域 K 上的多项式, 其中 $f_1(x) \neq 0$. 证明: 如果 $g_1(x)g_2(x) \mid f_1(x)f_2(x)$, $f_1(x) \mid g_1(x)$, 则 $g_2(x) \mid f_2(x)$.

证明: 设 $f_1(x)f_2(x) = g_1(x)g_2(x)q_1(x)$, $g_1(x)=f_1(x)q_2(x)$. 则 $f_1(x)f_2(x)$ = $f_1(x)q_2(x)g_2(x)q_1(x)$, 由于 $f_1(x) \neq 0$, 可得 $f_2(x) = g_2(x)q_2(x)q_1(x)$, 即 $g_2(x) \mid f_2(x)$.

*9. 证明: $x^d - 1 \mid x^n - 1$ 当且仅当 $d \mid n$.

证明: (\Rightarrow) 若 n = dq, 则

$$x^{n} - 1 = (x^{d} - 1)(x^{d(q-1)} + x^{d(q-2)} + \dots + x^{d} + 1).$$

因此 $x^d - 1 \mid x^n - 1$.

(⇐) 设 n = dq + r, $0 \le r < d$. 由上证, $x^{dq} - 1 \equiv 0 \pmod{x^d - 1}$. 即 $x^{dq} \equiv 1 \pmod{x^d - 1}.$

$$x^n \equiv x^{dq+r} \equiv x^{dq} \cdot x^r \equiv x^r \pmod{x^d - 1},$$

 $x^n - 1 \equiv x^r - 1 \pmod{x^d - 1}.$

而 $x^d - 1 \mid x^r - 1 \Leftrightarrow r = 0$, 因此 $x^d - 1 \mid x^n - 1 \Leftrightarrow r = 0 \Leftrightarrow d \mid n$.

§3 最大公因式

- **1.** 求最大公因式 (f(x), g(x)):
- (1) $f(x) = x^4 + x^3 3x^2 4x 1$, $g(x) = x^3 + x^2 x 1$;
- (2) $f(x) = x^5 + x^4 x^3 2x 1$, $g(x) = x^4 + 2x^3 + x^2 2$;
- (3) $f(x) = x^4 x^3 4x^2 + 4x + 1$, $g(x) = x^2 x 1$.

解: (1) x+1.

- (2) 1.
- (3) 1.
- (1) $f(x) = x^4 + 2x^3 x^2 4x 2$, $g(x) = x^4 + x^3 x^2 2x 2$;
- (2) $f(x) = 4x^4 2x^3 16x^2 + 5x + 9$, $g(x) = 2x^3 x^2 5x + 4$;
- (3) $f(x) = 2x^4 + 3x^3 3x^2 5x + 2$, $g(x) = 2x^3 + x^2 x 1$.
- 解: (1) u(x) = -x 1, v(x) = x + 2, $d(x) = x^2 2$.
- (2) $u(x) = -\frac{1}{3}(x-1), v(x) = \frac{1}{3}(2x^2 2x 3), d(x) = x 1.$
- (3) $u(x) = -\frac{1}{6}(2x^2 + 3x), \ v(x) = \frac{1}{6}(2x^3 + 5x^2 6), \ d(x) = 1.$
- **3.** 证明: 如果 $d(x) \mid f(x), d(x) \mid g(x), \text{且 } d(x) \text{ 为 } f(x) \text{ 与 } g(x) \text{ 的一个组合, 那么 } d(x) \text{ 是 } f(x) \text{ 与 } g(x) \text{ 的一个最大公因式.}$

证明: 设 d(x) = u(x)f(x) + v(x)g(x), 则对任意的 $h(x) \in K[x]$, 如 $h(x) \mid f(x), h(x) \mid g(x),$ 则 $h(x) \mid d(x)$.

又, d(x) 为 f(x) 与 g(x) 的一个公因式, 故 d(x) 是 f(x) 与 g(x) 的一个最大公因式.

4. 证明: 如果 h(x) 为首一多项式,则

$$(f(x)h(x),g(x)h(x)) = (f(x),g(x))h(x).$$

证明: 设 $d(x) = (f(x), g(x)) \neq 0$, 则存在 u(x), v(x) 使

$$d(x) = u(x)f(x) + v(x)g(x).$$

所以

$$d(x)h(x) = u(x)f(x)h(x) + v(x)g(x)h(x).$$

又因 $d(x)h(x) \mid f(x)h(x), d(x)h(x) \mid g(x)h(x)$,所以 d(x)h(x) 是 f(x)h(x) 与 g(x)h(x) 的一个最大公因式. 又因 d(x),h(x) 都是首一多项式, 故 d(x)h(x) 也是首一多项式, 从而

$$(f(x)h(x), q(x)h(x)) = d(x)h(x) = (f(x), q(x))h(x).$$

又如 d(x) = 0, 则 f(x) = g(x) = 0, 原等式仍然成立.

5. 证明: 如果 f(x), g(x) 不全为零, 则

$$\left(\frac{f(x)}{(f(x),g(x))},\frac{g(x)}{(f(x),g(x))}\right) = 1.$$

证明: 因 f(x), g(x) 不全为零, 故 $(f(x), g(x)) \neq 0$. 所以

$$\begin{split} (f(x),g(x)) &= \left(\frac{f(x)}{(f(x),g(x))}(f(x),g(x)), \frac{g(x)}{(f(x),g(x))}(f(x),g(x))\right) \\ &= \left(\frac{f(x)}{(f(x),g(x))}, \frac{g(x)}{(f(x),g(x))}\right)(f(x),g(x)) \end{split}$$

(由习题 4) 两边消去 (f(x), g(x)), 得

$$\left(\frac{f(x)}{(f(x),g(x))},\frac{g(x)}{(f(x),g(x))}\right) = 1.$$

6. 证明: 如果 f(x), g(x) 不全为零, 且

$$u(x)f(x) + v(x)g(x) = (f(x), g(x)),$$

则 (u(x), v(x)) = 1.

证明: 因 f(x), g(x) 不全为零, 故 $(f(x), g(x)) \neq 0$, 因此

$$u(x)\frac{f(x)}{(f(x),g(x))} + v(x)\frac{g(x)}{(f(x),g(x))} = 1,$$
$$(u(x),v(x)) = 1.$$

7. 证明: 如果 (f(x), g(x)) = 1, (f(x), h(x)) = 1, 那么

$$(f(x), g(x)h(x)) = 1.$$

证明: 存在 u(x), v(x), s(x), t(x), 使

$$u(x)f(x) + v(x)g(x) = 1,$$

$$s(x)f(x) + t(x)h(x) = 1,$$

所以

$$f(x)(u(x)s(x)f(x) + u(x)t(x)h(x) + s(x)v(x)g(x)) + v(x)t(x)g(x)h(x) = 1,$$

$$(f(x), g(x)h(x)) = 1.$$

8. 设 $f_1(x), \dots, f_m(x), g_1(x), \dots, g_n(x)$ 都是多项式,且 $(f_i(x), g_j(x)) = 1$ $(i = 1, \dots, m; j = 1, \dots, n)$,证明:

$$(f_1(x)f_2(x)\cdots f_m(x), g_1(x)g_2(x)\cdots g_n(x)) = 1.$$

证明: 由 $(f_i(x), g_j(x)) = 1$,可得 $(f_i(x), g_1(x)g_2(x)) = 1$,..., $(f_i(x), g_1(x)g_2(x)\cdots g_n(x)) = 1$. 从而 $(f_1(x)f_2(x), g_1(x)\cdots g_n(x)) = 1$, $(f_1(x)f_2(x)f_3(x), g_1(x)\cdots g_n(x)) = 1$,..., $(f_1(x)f_2(x)\cdots f_m(x), g_1(x)\cdots g_n(x)) = 1$.

9. 证明: 如果 (f(x), g(x)) = 1, 那么 (f(x) + g(x), f(x)g(x)) = 1. 证明: 由于 (f(x), g(x)) = 1, 所以

$$(f(x) + g(x), g(x)) = (f(x), g(x)) = 1,$$

 $(f(x) + g(x), f(x)) = (g(x), f(x)) = 1,$

因此

$$(f(x) + g(x), f(x)g(x)) = 1.$$

10. 设 $f_1(x) = af(x) + bg(x)$, $g_1(x) = cf(x) + dg(x)$, 且 $ad - bc \neq 0$, 证明:

$$(f(x), g(x)) = (f_1(x), g_1(x)).$$

证明: 由题设可得 $(f(x),g(x)) \mid (f_1(x),g_1(x))$. 又

$$f(x) = \frac{d}{ad - bc}f_1(x) - \frac{b}{ad - bc}g_1(x),$$

$$g(x) = \frac{-c}{ad - bc} f_1(x) + \frac{a}{ad - bc} g_1(x),$$

所以

$$(f_1(x), g_1(x)) \mid (f(x), g(x)).$$

又因 $(f_1(x), g_1(x))$ 与 (f(x), g(x)) 的首项系数相同, 故

$$(f(x), g(x)) = (f_1(x), g_1(x)).$$

11. 证明: 如果 f(x) 与 g(x) 互素, 那么 $f(x^m)$ 与 $g(x^m)$ 也互素. 证明: 由题设, 存在多项式 u(x), v(x) 使

$$u(x)f(x) + v(x)g(x) = 1.$$

所以

$$u(x^m)f(x^m) + v(x^m)g(x^m) = 1.$$

故 $(f(x^m), g(x^m)) = 1$.

12. 证明: 对任意的正整数 n, 都有

$$(f(x), g(x))^n = (f^n(x), g^n(x)).$$

证明: 设 (f(x), g(x)) = d(x), $f(x) = d(x)f_1(x)$, $g(x) = d(x)g_1(x)$, 则 $(f_1(x), g_1(x)) = 1$.

由习题8可得

$$(f_1^n(x), g_1^n(x)) = 1.$$

于是

$$(f^{n}(x), g^{n}(x)) = (d^{n}(x)f_{1}^{n}(x), d^{n}(x)g_{1}^{n}(x))$$
$$= d^{n}(x)(f_{1}^{n}(x), g_{1}^{n}(x)) = d^{n}(x)$$
$$= (f(x), g(x))^{n}.$$

*13. 试求 $x^m - 1 = x^n - 1$ 的最大公因式.

解: 令 d = (m, n), 则根据习题 10-2.9, $x^d - 1 \mid x^m - 1$, $x^d - 1 \mid x^n - 1$. 设 h(x) 是 $x^m - 1$ 与 $x^n - 1$ 的公因式, 则有

$$x^m - 1 \equiv 0 \pmod{h(x)}, x^n - 1 \equiv 0 \pmod{h(x)}$$

$$\implies x^m \equiv 1 \pmod{h(x)}, x^n \equiv 1 \pmod{h(x)}.$$

由于 d=(m,n), 因此存在 $u,v\in\mathbb{Z}$ 使得 d=um+vn.

$$x^d = x^{um+vn} \equiv 1 \pmod{h(x)} \implies x^d - 1 \equiv 0 \pmod{h(x)}.$$

又设 d = ms - nt, $s, t \ge 0$, 则 d + nt = ms. 于是

$$x^{ms} - 1 = x^{d+nr} - 1 = (x^d - 1)x^{nr} + x^{nr} - 1.$$

若 $f(x) \in K[x]$ 满足 $f(x) \mid x^m - 1$, $f(x) \mid x^n - 1$, 则 (f(x), x) = 1, 且 $f(x) \mid x^{ms} - 1$, $f(x) \mid x^{nt} - 1$, 于是 $f(x) \mid (x^d - 1)x^{nr}$. 由 f(x) 与 x 互素可得 $f(x) \mid x^d - 1$. 因此 $(x^m - 1, x^n - 1) = x^d - 1$, 其中 d = (m, n).

***14.** 证明: 只要 $\frac{f(x)}{(f(x),g(x))}, \frac{g(x)}{(f(x),g(x))}$ 的次数都大于零, 就可以适当选择适合等式

$$u(x)f(x) + v(x)g(x) = (f(x), g(x))$$

的 u(x) 与 v(x), 使

$$\deg u(x) < \deg \left(\frac{g(x)}{(f(x),g(x))}\right), \ \deg v(x) < \deg \left(\frac{f(x)}{(f(x),g(x))}\right).$$

证明: 存在多项式 $s(x), t(x) \in K[x]$ 使

$$s(x)f(x) + t(x)g(x) = (f(x), g(x)).$$

则

$$s(x)\frac{f(x)}{(f(x),g(x))} + t(x)\frac{g(x)}{(f(x),g(x))} = 1.$$
 (*)

令

$$s(x) = \frac{g(x)}{(f(x), g(x))}q(x) + u(x),$$

其中 u(x) = 0 或 $\deg u(x) < \deg \frac{g(x)}{(f(x), g(x))}$. 记 $v(x) = \frac{f(x)}{(f(x), g(x))}q(x) + t(x)$, 则由 (*) 知,

$$u(x)\frac{f(x)}{(f(x),g(x))} + v(x)\frac{g(x)}{(f(x),g(x))} = 1.$$
 (**)

由假设, $\frac{f(x)}{(f(x),g(x))}$ 与 $\frac{g(x)}{(f(x),g(x))}$ 的次数都大于零,所以 u(x),v(x) 都不是零多项式.于是

$$\deg u(x) < \deg \frac{g(x)}{(f(x), g(x))}.$$

由 (**) 知

$$\deg\left(u(x)\frac{f(x)}{(f(x),g(x))}\right) = \deg\left(v(x)\frac{g(x)}{(f(x),g(x))}\right),\,$$

从而

$$\deg v(x) < \deg \frac{f(x)}{(f(x), g(x))}.$$

§4 不定方程与同余式

1. 设 (f(x), m(x)) = 1, 证明: 对任何的多项式 g(x), 都存在多项式 h(x), 使

$$h(x)f(x) \equiv g(x) \pmod{m(x)}.$$

证明: 由假设, 存在 $u(x), v(x) \in K[x]$, 使

$$u(x)f(x) + v(x)m(x) = 1.$$

所以

$$g(x)u(x)f(x) + g(x)v(x)m(x) = g(x).$$

于是

$$g(x)u(x)f(x) \equiv g(x) \pmod{m(x)}.$$

h(x) = g(x)u(x), 则

$$h(x)f(x) \equiv g(x) \pmod{m(x)}$$
.

***2.** 设 $m_1(x), \dots, m_s(x)$ 为一组两两互素的多项式, 证明: 对任何的多项式 $f_1(x), \dots, f_s(x)$, 都存在多项式 F(x), 使

$$F(x) \equiv f_i(x) \pmod{m_i(x)}, \quad i = 1, \dots, s.$$

证明: 令 $M(x)=m_1(x)m_2(x)\cdots m_s(x),\ R_i(x)=\dfrac{M(x)}{m_i(x)}.$ 则 $(R_i(x),m_i(x))=1,\ m_j(x)\mid R_i(x),\ i\neq j.$ 存在 $h_i(x)$ 使 (习题 1)

$$h_i(x)R_i(x) \equiv f_i(x) \pmod{m_i(x)}$$

令

$$F(x) = \sum_{i=1}^{s} h_i(x)R_i(x),$$

则

$$F(x) \equiv \sum_{i=1}^{s} h_i(x) R_i(x) \pmod{m_k(x)}$$
$$\equiv h_k(x) R_k(x) \pmod{m_k(x)}$$
$$\equiv f_k(x) \pmod{m_k(x)}.$$

*3. 设 m(x) 为复系数多项式, 且 $m(0) \neq 0$. 证明: 存在复系数多项式 f(x), 使

$$f^2(x) \equiv x \pmod{m(x)}$$
.

证明: (a) 首先证明对任意的 $a \neq 0$, 同余式

$$f^2(x) \equiv x \pmod{(x-a)^m}$$

有解. 设 \sqrt{a} 是 a 的任意一个平方根, 则

$$(x-a)^m = ((\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a}))^m = (\sqrt{x} - \sqrt{a})^m (\sqrt{x} + \sqrt{a})^m$$
$$= (h(x)\sqrt{x} - g(x))(h(x)\sqrt{x} + g(x)) = h^2(x)x - g^2(x).$$

于是

$$g^2(x) \equiv h^2(x)x \pmod{(x-a)^m}$$

而 $h(a)\sqrt{a} + g(a) = (\sqrt{a} + \sqrt{a})^m \neq 0$,而 $h(a)\sqrt{a} - g(a) = (\sqrt{a} - \sqrt{a})^m = 0$,因此 $g(a)h(a) \neq 0$,从而 $(h(x), (x-a)^m) = 1$,存在 $h_1(x) \in K[x]$ 使 $h_1(x)h(x) \equiv 1 \pmod{(x-a)^m}$.于是

$$(h_1(x)g(x))^2 \equiv x \pmod{(x-a)^m}$$

取 $f(x) = h_1(x)g(x)$, 则有

$$f^2(x) \equiv x \pmod{(x-a)^m}.$$

(b) 设 $m(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \cdots (x - a_s)^{m_s}, a_i \neq a_j$ 对 $i \neq j$. 则 $(x - a_1)^{m_1}, \cdots, (x - a_s)^{m_s}$ 两两互素. 由 (a), 存在 $f_i(x) \in K[x]$, 使

$$f_i^2(x) \equiv x \pmod{(x - a_i)^{m_i}}.$$

由习题 2, 存在 f(x) 使

$$f(x) \equiv f_i(x) \pmod{(x - a_i)^{m_i}}$$

于是

$$f^2(x) \equiv x \pmod{(x - a_i)^{m_i}}$$

由 $(x-a_1)^{m_1}, \cdots, (x-a_s)^{m_s}$ 两两互素可得

$$f^2(x) \equiv x \pmod{m(x)}.$$

§5 因式分解定理 · 141 ·

§5 因式分解定理

1. 证明: $g^m(x) \mid f^m(x) \iff g(x) \mid f(x)$. 证明: 设

$$f(x) = ap_1^{l_1}(x)p_2^{l_2}(x)\cdots p_s^{l_s}(x),$$

$$g(x) = bp_1^{k_1}(x)p_2^{k_2}(x)\cdots p_s^{k_s}(x),$$

其中 $a,b \in K$, $p_1(x), \dots, p_s(x)$ 是两两互素的不可约多项式,且 $l_i, k_i \geq 0$, $i = 1, \dots, s$. 则

$$g(x) \mid f(x) \iff k_i \leq l_i, \qquad i = 1, \dots, s$$

 $\iff mk_i \leq ml_i, \qquad i = 1, \dots, s$
 $\iff g^m(x) \mid f^m(x).$

2. 设 $f(x), g(x) \in K[x]$, 且有分解式

$$f(x) = ap_1^{r_1}(x)p_2^{r_2}(x)\cdots p_s^{r_s}(x), \quad r_i \geqslant 0, \ i = 1, \cdots, s;$$

$$g(x) = bp_1^{t_1}(x)p_2^{t_2}(x)\cdots p_s^{t_s}(x), \quad t_i \geqslant 0, \ i = 1, \cdots, s,$$

其中 $p_1(x), \cdots, p_s(x)$ 是不同的首一不可约多项式. 证明:

$$[f(x), g(x)] = p_1^{\max(r_1, t_1)}(x) p_2^{\max(r_2, t_2)}(x) \cdots p_s^{\max(r_s, t_s)}(x).$$

证明: $\Leftrightarrow m_i = \max(r_i, t_i), i = 1, \dots, s.$

$$m(x) = p_1^{m_1}(x)p_2^{m_2}(x)\cdots p_s^{m_s}(x),$$

则因 $r_i \leq m_i$, $t_i \leq m_i$, 因此

$$f(x) \mid m(x), \quad g(x) \mid m(x) \implies [f(x), g(x)] \mid m(x).$$

设 $s(x) \in K[x]$ 是 f(x), g(x) 的公倍式, 则有

$$s(x) = p_1^{l_1}(x)p_2^{l_2}(x)\cdots p_s^{l_s}(x)h(x),$$

$$l_i \le r_i, \ l_i \le t_i, \ (h(x), p_i(x)) = 1, \ i = 1, \dots, s.$$

于是

$$l_i \ge \max(r_i, t_i), \quad i = 1, \dots, s, \implies m(x) \mid s(x).$$

因此

$$[f(x), g(x)] = p_1^{m_1}(x)p_2^{m_2}(x)\cdots p_s^{m_s}(x).$$

3. 设 $f(x), g(x) \in K[x]$ 都是首一多项式, 证明:

$$[f(x), g(x)] = \frac{f(x)g(x)}{(f(x), g(x))}.$$

证明:设

$$f(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_s^{r_s}(x), \quad r_i \geqslant 0, \ i = 1, \cdots, s;$$

$$g(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_s^{r_s}(x), \quad t_i \geqslant 0, \ i = 1, \cdots, s,$$

其中 $p_1(x), \dots, p_s(x)$ 是不同的首一不可约多项式. 令

$$m_i = \max(r_i, t_i), \qquad l_i = \min(r_i, t_i), \qquad i = 1, \dots, s.$$

则

$$f(x)g(x) = p_1^{r_1+t_1}(x)p_2^{r_2+t_2}(x)\cdots p_s^{r_s+t_s}(x),$$

$$(f(x),g(x)) = p_1^{l_1}(x)p_2^{l_2}(x)\cdots p_s^{l_s}(x),$$

由于 $r_i + t_i - l_i = m_i$, $i = 1, \dots, s$. 因此

$$\frac{f(x)g(x)}{(f(x),g(x))} = p_1^{m_1}(x)p_2^{m_2}(x)\cdots p_s^{m_s}(x) = [f(x),g(x)].$$

- 4. 求下列多项式的最小公倍式:
- (1) $f(x) = x^4 4x^3 + 1$, $g(x) = x^3 3x^2 + 1$;
- (2) $f(x) = x^4 x 1 + i$. $g(x) = x^2 + 1$.

解: (1) 由于 (f(x),g(x)) = 1, $[f(x),g(x)] = f(x)g(x) = x^7 - 7x^6 + 12x^5 + x^4 - 3x^3 - 3x^2 + 1$.

- (2) 由于 (f(x), g(x)) = x i, $[f(x), g(x)] = f(x)(x + i) = x^5 + ix^4 x^2 x (1 + i)$.
- **5.** 设 p(x) 是次数大于零的多项式. 证明: 如果对于任何多项式 f(x), g(x), 由 $p(x) \mid f(x)g(x)$ 可以推出 $p(x) \mid f(x)$ 或者 $p(x) \mid g(x)$, 则 p(x) 是不可约多项式.

证明: 若 p(x) 可约, 则存在次数小于 p(x) 的非常数多项式 f(x), g(x) 使 p(x) = f(x)g(x). 从而 $p(x) \mid f(x)g(x)$. 但因

$$\deg f(x) < \deg p(x), \qquad \deg g(x) < \deg p(x),$$

§6 重因式 · 143 ·

 $p(x) \nmid f(x), p(x) \nmid g(x),$ 与假设矛盾,因此 p(x) 不可约.

*6. 证明: 次数大于 0 的首一多项式 f(x) 是某一不可约多项式的方幂的充分必要条件是, 对任意的多项式 g(x) 或者有 (f(x),g(x))=1, 或者对某一正整数 $m, f(x) \mid g^m(x)$.

证明: (\Rightarrow) 设 $f(x) = p^m(x)$, 其中 p(x) 不可约, 则若 $g(x) \in K[x]$ 满足 $p(x) \mid g(x)$, 有

$$f(x) = p^m(x) \mid g^m(x).$$

如 $p(x) \nmid g(x)$, 则 (p(x), g(x)) = 1, 从而 $(p^m(x), g(x)) = 1$, 即 (f(x), g(x)) = 1.

- (秦) 设 p(x) 是 f(x) 的一个首一不可约因子,则 (p(x), f(x)) = p(x),从 而存在某个正整数 m,使 $f(x) \mid p^m(x)$,这说明 p(x) 是 f(x) 的唯一不可约因 子. 所以 $f(x) = cp^r(x)$. 又因 f(x), p(x) 的首项系数都是 1, 故 c=1. 从而 $f(x) = p^r(x)$.
- *7. 证明: 次数大于 0 的首一多项式 f(x) 是某一不可约多项式的方幂的充分必要条件是,对任意的多项式 g(x),h(x),由 $f(x)\mid g(x)h(x)$ 可以推出 $f(x)\mid g(x)$,或者对某一正整数 $m,f(x)\mid h^m(x)$.

证明: (⇒) 设 $f(x) = p^m(x)$, 其中 p(x) 是首一不可约多项式, 则由 $f(x) \mid g(x)h(x)$, 可得 $p(x) \mid g(x)h(x)$, 从而 $p(x) \mid g(x)$ 或 $p(x) \mid h(x)$. 于是 $f(x) = p^m(x) \mid g^m(x)$ 或 $f(x) = p^m(x) \mid h^m(x)$.

(秦) 设 p(x) 是 f(x) 的一个首一不可约因子,则 $f(x) = p(x)f_1(x)$. 从而 $f(x) \mid p(x)f_1(x)$. 而 $f(x) \nmid f_1(x)$, 从而存在某个正整数 m, 使 $f(x) \mid p^m(x)$, 这说明 p(x) 是 f(x) 的唯一不可约因子. 所以 $f(x) = cp^r(x)$. 又因 f(x), p(x) 的首项系数都是 1, 故 c=1. 从而 $f(x) = p^r(x)$.

§6 重因式

- 1. 判别下列有理系数多项式有无重因式, 若有, 则求出重因式:
- (1) $f(x) = x^5 10x^3 20x^2 15x 4;$
- (2) $f(x) = x^4 4x^3 + 16x 16$;
- (3) $f(x) = x^5 6x^4 + 16x^3 24x^2 + 20x 8;$
- (4) $f(x) = x^6 15x^4 + 8x^3 + 51x^2 72x + 27$.
- **解**: (1) x+1, 4 重.
- $(2) x 2, 3 \equiv$.
- $(3) x^2 2x + 2, 2 \equiv.$

- (4) x + 3, $2 extbf{ extbf{ extit{ extbf{ extit{g}}}}}, x 1$, $3 extbf{ extbf{ extbf{ extit{g}}}}$.
- 2. a, b 应满足什么条件,下列多项式有重因式?
- (1) $f(x) = x^3 + 3ax + b$: (2) $f(x) = x^4 + 4ax + b$.
- 解: (1) 当 a=b=0 有 3 重因式 x, 当 $4a^3=-b^2$ 且 $a\neq 0$, 有 2 重因式 2ax+b.
- (2) 当 a = b = 0 有 4 重因式 x, 当 $27a^4 = b^3$ 且 $a \neq 0$, 有 2 重因式 3ax + b.
- **3.** 设 p(x) 是 f'(x) 的 k 重因式, 能否说 p(x) 是 f(x) 的 k+1 重因式, 为什么?
- 解: 不能. 因为又可能 f'(x) 任一重因式都不是 f(x) 的因式. 例如 $f(x) = x^4 1$, $f'(x) = 4x^3$.
- **4.** 证明: 如果 (f'(x), f''(x)) = 1, 那么, f(x) 的重因式都是 f(x) 的二重因式.

证明:由于 (f'(x), f''(x)) = 1, f'(x) 的任一因式都不是 f''(x) 的因式.设 p(x) 是 f(x) 的重因式,则 $p(x) \mid f'(x)$,于是 $p(x) \nmid f''(x)$,说明 p(x) 是 f'(x) 的单因式,故 p(x) 是 f(x) 的二重因式.

5. 证明: K[x] 中不可约多项式 p(x) 是 $f(x) \in K[x]$ 的 k ($k \ge 1$) 重因式的充分必要条件是 p(x) 是 $f(x), f'(x), \cdots, f^{(k-1)}(x)$ 的因式,但不是 $f^{(k)}(x)$ 的因式.

证明: (⇒) 对 k 用归纳法. 当 k = 1 时结论显然成立. 现设结论对 k - 1 成立. 设 p(x) 是 f(x) 的 k 重因式, 则 $f(x) = p^k(x)g(x)$, 其中 (p(x),g(x)) = 1. 则

$$f'(x) = kp^{k-1}(x)g(x) + p^k(x)g'(x) = p^{k-1}(x)(kg(x) + p(x)g'(x)).$$

由 (p(x), g(x)) = 1 可得 (p(x), kg(x) + p(x)g'(x)) = 1, 因此 p(x) 是 f'(x) 的 k-1 重因式. 根据归纳假设, p(x) 是 $f'(x), \dots, f^{(k-1)}(x)$ 的因式, 但不是 $f^{(k)}(x)$ 的因式. 而 p(x) 是 f(x) 的因式是已知的.

- (⇐) 如 p(x) 是 f(x), f'(x), \cdots , $f^{(k-1)}(x)$ 的因式, 但不是 $f^{(k)}(x)$ 的因式, 则 p(x) 是 $f^{(k-1)}(x)$ 的一重因式, 进而, p(x) 是 $f^{(k-2)}(x)$ 的二重因式, 依次类推, 可知 p(x) 是 f(x) 的 k 重因式.
 - **6.** 试求多项式 $x^{1999} + 1$ 除以 $(x-1)^2$ 所得余式.

解: 设 $x^{1999} + 1 = (x - 1)^2 q(x) + ax + b$, 则两边求导后得

$$1999x^{1998} = 2(x-1)q(x) + (x-1)^2q(x) + a.$$

§7 多项式的根 · 145 ·

以 x = 1 代入上两式, 得

$$a = 1999, \qquad b = -1997.$$

故所求余式为 1999x - 1997.

§7 多项式的根

1. 求下列多项式的公共根:

(1)
$$f(x) = x^4 + 2x^2 + 9$$
, $g(x) = x^4 - 4x^3 + 4x^2 - 9$;

(2)
$$f(x) = x^3 + 2x^2 + 2x + 1$$
, $g(x) = x^4 + x^3 + 2x^2 + x + 1$.

解: (1)
$$1 + \sqrt{2}i$$
, $1 - \sqrt{2}i$.

(2)
$$\frac{-1+\sqrt{3}i}{2}$$
, $\frac{-1-\sqrt{3}i}{2}$.

2. 如果 $(x-1)^2 \mid Ax^4 + Bx^2 + 1$, 求 A, B.

解: A = 1, B = -2.

3. 已知 $x^4 - 3x^3 + 6x^2 + ax + b$ 能被 $x^2 - 1$ 整除, 求 a, b.

解: a = 3, b = -7.

4. 证明: 如果 $f(x) \mid f(x^n)$, 那么 f(x) 的根只能是零或单位根.

证明: 设 a 是 f(x) 的一个根,则 f(a)=0,于是 $f(a^n)=0$,又可得到 $f((a^n)^n)=f(a^{n^2})=0,\ldots,f(a^{n^n})=0$.因而 $a,a^n,a^{n^2},\cdots,a^{n^n}$ 都是 f(x) 的根. 但 f(x) 的不同根仅有有限多个,故必有 k < l 使 $a^{n^k}=a^{n^l}$,即

$$a^{n^k}(a^{n^l-n^k}-1) = 0.$$

于是 a = 0 或 $a^{n^l - n^k} = 1$, 故 a 为 0 或单位根.

5. 证明: $\sin x$ 不是多项式。

证明: $\sin x$ 有无限多个不同的根 $k\pi$, $k \in \mathbb{Z}$, 而多项式只有有限多个根. 因此 $\sin x$ 不是多项式.

6. 已知多项式 $f(x) = x^5 - 10x^2 + 15x - 6$ 有重根, 试求它的所有根并确定根的重数.

解:
$$\frac{-3+\sqrt{15}i}{2}$$
, $\frac{-3-\sqrt{15}i}{2}$, 1,1,1.

7. 求 t 的值, 使 $f(x) = x^3 - 3x^2 + tx - 1$ 有重根.

解: t = 3 时, 1 为 3 重根; $t = -\frac{15}{4}$ 时, $-\frac{1}{2}$ 为 2 重根.

8. 求多项式 $f(x) = x^3 + px + q$ 有重根的条件.

解: $4p^3 + 27q^2 = 0$.

9. 证明: 下列多项式没有重根:
$$(1) \ f(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!};$$
 *(2) $f(x) = 1 + 2x + 3x^2 + \dots + (n+1)x^n$ 证明: (1)

$$(f(x), f'(x)) = \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}, 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}\right)$$
$$= \left(\frac{x^n}{n!}, 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}\right) = 1.$$

所以 f(x) 无重根.

(2) 设

$$g(x) = (1-x)^{2}(1+2x+3x^{2}+\dots+(n+1)x^{n}) = 1-(n+2)x^{n+1}+(n+1)x^{n+2},$$

$$g'(x) = (n+2)(n+1)x^{n+1} - (n+2)(n+1)x^{n},$$

$$(g(x), g'(x)) = x - 1.$$

所以 g(x) 仅有的重根是 x = 1. 又 f(x) 的重根显然都是 g(x) 的重根, 而 x = 1不是 f(x) 的根, 故 f(x) 无重根.

10. 证明: $f(x) = x^n + ax^{n-m} + b \ (n > 2, n > m > 0)$ 不能有非零的重 数大于2的根.

证明: $f'(x) = x^{n-m-1}[nx^m + (n-m)a].$

- (a) 当 $a \neq 0$ 时, $nx^m + (n-m)a$ 的根都是单根, 所以 f(x) 的重数大于 2 的根只可能是 x=0.
- (b) 当 a=0 时, f'(x) 的仅有的重根为 x=0, 故 f(x) 的重数大于 2 的根 只可能是 x=0.
 - **11.** 如果 $a \in f'''(x)$ 的一个 k 重根, 证明: $a \in A$

$$g(x) = \frac{x-a}{2} [f'(x) + f'(a)] - f(x) + f(a)$$

的一个k+3重根.

证明:

$$g(x) = \frac{x-a}{2} [f'(x) + f'(a)] - f(x) + f(a),$$

$$g'(x) = \frac{1}{2} [f'(a) - f'(x)] + \frac{x-a}{2} f''(x),$$

$$g''(x) = \frac{x-a}{2} f'''(x),$$

§7 多项式的根 · 147 ·

显然 $a \neq g(x), g'(x), g''(x)$ 的根, 又 $a \neq f'''(x)$ 的 $k \equiv d$, 因此 $a \neq g''(x)$ 的 $k+1 \equiv d$, $k \neq g(x)$ 的 $k+3 \equiv d$.

12. 证明: x_0 是 f(x) 的 k 重根的充分必要条件是 $f(x_0) = f'(x_0) = \cdots = f^{(k-1)}(x_0) = 0$ 而 $f^{(k)}(x_0) \neq 0$.

证明: x_0 是 f(x) 的 k 重根 $\iff x - x_0$ 是 f(x) 的 k 重因式 $\iff x - x_0$ 是 f(x), f'(x), \cdots , $f^{(k-1)}(x)$ 的因式, 但不是 $f^{(k)}(x)$ 的因式 $\iff f(x_0) = f'(x_0) = \cdots = f^{(k-1)}(x) = 0$, $f^{(k)}(x_0) \neq 0$.

13. 证明: 如果 f'(x) | f(x), 则 f(x) 有 n 重根, 其中 $n = \deg f(x)$.

证明: 由假设, $\frac{f(x)}{(f(x), f'(x))} = c(x-a)$. 从而 x-a 为 f(x) 仅有的不可约因式 (推论 6.4), 所以 $f(x) = c(x-a)^n$, f(x) 有 n 重根.

14. 试按下表所给的数值, 求次数最低的多项式:

解: $f(x) = -\frac{4}{3}x^3 + 10x^2 - \frac{65}{3}x + 15$.

15. 若 n 次多项式 f(x) 的根为 x_1, x_2, \dots, x_n , 而数 c 不是 f(x) 的根, 证明:

$$\sum_{i=1}^{n} \frac{1}{x_i - c} = -\frac{f'(c)}{f(c)}.$$

证明: 考察多项式 $f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$, 则

$$f'(x) = \sum_{i=1}^{n} \frac{f(x)}{x - x_i}, \qquad \frac{f'(x)}{f(x)} = \sum_{i=1}^{n} \frac{1}{x - x_i},$$

从而

$$\sum_{i=1}^{n} \frac{1}{x_i - c} = -\frac{f'(c)}{f(c)}.$$

*16. 应用克拉默法则导出拉格朗日插值公式.

证明: 设所求多项式为

$$f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1},$$

其中 c_i 待定. 将 a_i, b_i 代入上式两边, 得 $c_0, c_1, \cdots, c_{n-1}$ 的线性方程组:

$$\begin{cases} c_0 + c_1 a_1 + \dots + c_{n-1} a_1^{n-1} = b_1 \\ c_0 + c_1 a_2 + \dots + c_{n-1} a_2^{n-1} = b_2 \\ \dots \\ c_0 + c_1 a_n + \dots + c_{n-1} a_n^{n-1} = b_n \end{cases}$$

此线性方程组的系数矩阵 A 是范德蒙德矩阵:

$$A = \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix},$$

$$|A| = \prod_{1 \le i < j \le n} (a_j - a_i).$$

由于 a_i 互不相同, 故 $|A| \neq 0$, 所以线性方程组有唯一解.

$$\begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = A^{-1} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

故所求的唯一次数不超过 n-1 的多项式

$$f(x) = (1 \ x \cdots x^{n-1}) \begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix}$$
$$= (1 \ x \cdots x^{n-1}) A^{-1} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
$$= \frac{1}{|A|} (1 \ x \cdots x^{n-1}) A^* \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

§7 多项式的根 · 149 ·

$$= \frac{1}{|A|} \sum_{k=1}^{n} (-1)^{n+k} b_k \begin{vmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 & 1 \\ a_1 & \cdots & a_{k-1} & a_{k+1} & \cdots & a_n & x \\ a_1^2 & \cdots & a_{k-1}^2 & a_{k+1}^2 & \cdots & a_n^2 & x^2 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1^{n-1} & \cdots & a_{k-1}^{n-1} & a_{k+1}^{n-1} & \cdots & a_n^{n-1} & x^{n-1} \end{vmatrix}$$

$$= \frac{1}{|A|} \sum_{k=1}^{n} (-1)^{n+k} b_k \prod_{\substack{i=1\\i\neq k}}^{n} (x-a_i) \prod_{\substack{1\leq i< j\leq n\\i,j\neq k}} (a_j-a_i)$$

$$= \sum_{k=1}^{n} (-1)^{n+k} \frac{b_k F(x)}{(x-a_k)(a_n-a_k)\cdots(a_{k+1}-a_k)(a_k-a_{k-1})\cdots(a_k-a_1)}$$

$$= \sum_{k=1}^{n} \frac{b_k F(x)}{(x-a_k)F'(a_k)}.$$

这里 $F(x) = (x - a_1)(x - a_2) \cdots (x - a_n)$.

***17.** 设 a_1, a_2, \dots, a_n 为互不相同的数, $F(x) = (x-a_1)(x-a_2) \dots (x-a_n)$. 证明: 任何多项式 f(x) 用 F(x) 除所得的余式为

$$\sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x-a_i)F'(a_i)}.$$

证明: 考察

$$\frac{1}{F(x)} = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_n}{x - a_n}.$$

两边同乘以 $x - a_i$, 再令 $x = a_i$, 可得

$$A_i = \frac{1}{F'(a_i)}.$$

因此可得恒等式

$$\frac{1}{F(x)} = \frac{1}{(x-a_1)F'(a_1)} + \frac{1}{(x-a_2)F'(a_2)} + \dots + \frac{1}{(x-a_n)F'(a_n)}.$$

从而

$$1 = \sum_{i=1}^{n} \frac{F(x)}{(x - a_i)F'(a_i)}.$$

�

$$f(x) = (x - a_i)f_i(x) + f(a_i),$$

则

$$f(x) = \sum_{i=1}^{n} [(x - a_i)f_i(x) + f(a_i)] \frac{F(x)}{(x - a_i)F'(a_i)}$$

$$= \sum_{i=1}^{n} \frac{f_i(x)F(x)}{F'(a_i)} + \sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x - a_i)F'(a_i)}$$

$$= F(x) \left(\sum_{i=1}^{n} \frac{f_i(x)}{F'(a_i)}\right) + \sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x - a_i)F'(a_i)}.$$

由于 $\sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x-a_i)F'(a_i)} \in K[x]$,且 $\deg \sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x-a_i)F'(a_i)} \leq n-1$,所以用 F(x) 除 f(x) 所得的余式为 $\sum_{i=1}^{n} \frac{f(a_i)F(x)}{(x-a_i)F'(a_i)}$.

***18.** 已知 $a_1, \dots, a_n; b_1, \dots, b_n$ 为互不相同的数, 求解下列方程组:

$$\begin{cases} \frac{1}{b_1 - a_1} x_1 + \frac{1}{b_1 - a_2} x_2 + \dots + \frac{1}{b_1 - a_n} x_n = -1, \\ \frac{1}{b_2 - a_1} x_1 + \frac{1}{b_2 - a_2} x_2 + \dots + \frac{1}{b_2 - a_n} x_n = -1, \\ \dots \\ \frac{1}{b_n - a_1} x_1 + \frac{1}{b_n - a_2} x_2 + \dots + \frac{1}{b_n - a_n} x_n = -1. \end{cases}$$

 \mathbf{M} : 设 x_1, \dots, x_n 是此方程组的任一解, 考察有理分式

$$F(x) = 1 + \frac{x_1}{x - a_1} + \frac{x_2}{x - a_2} + \dots + \frac{x_n}{x - a_n}, \tag{*}$$

则 $F(b_i) = 0, i = 1, \dots, n.$

令 $F(x)=\dfrac{g(x)}{(x-a_1)(x-a_2)\cdots(x-a_n)},$ 则 $\deg g(x)=n,$ 且 g(x) 的首 项为 $x^n.$ 由于 $F(b_i)=0,$ 故 $g(b_i)=0,$ $i=1,\cdots,n,$ 所以

$$g(x) = (x - b_1)(x - b_2) \cdots (x - b_n).$$

$$F(x) = \frac{(x - b_1)(x - b_2) \cdots (x - b_n)}{(x - a_1)(x - a_2) \cdots (x - a_n)}.$$

令

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n).$$

考察 h(x) = g(x) - f(x), 则 $\deg h(x) \le n - 1$.

由于 $h(a_i) = g(a_i)$, 由拉格朗日公式,

$$h(x) = \sum_{i=1}^{n} \frac{g(a_i)f(x)}{(x - a_i)f'(a_i)},$$

$$g(x) = f(x) + \sum_{i=1}^{n} \frac{g(a_i)f(x)}{(x - a_i)f'(a_i)},$$

$$F(x) = \frac{g(x)}{f(x)} = 1 + \sum_{i=1}^{n} \frac{1}{(x - a_i)} \cdot \frac{g(a_i)}{f'(a_i)},$$

与(*)比较,即得

$$x_1 = \frac{g(a_1)}{f'(a_1)}, x_2 = \frac{g(a_2)}{f'(a_2)}, \cdots, x_n = \frac{g(a_n)}{f'(a_n)}.$$

§8 复系数与实系数多项式

1. 分别求多项式 $f(x) = x^5 - 3x^4 + 4x^3 - 4x^2 + 3x - 1$ 在复数域和实数域上的标准分解式.

M: $f(x) = (x^2 + 1)(x - 1)^3 = (x + i)(x - i)(x - 1)^3$.

2. 分别求多项式 $f(x) = x^n - 1$ 在复数域和实数域上的标准分解式.

解: 在复数域上的分解式:

$$f(x) = \prod_{k=0}^{n-1} \left(x - \cos \frac{2k\pi}{n} - i \sin \frac{2k\pi}{n} \right);$$

在实数域上的分解式:

$$f(x) = \begin{cases} (x-1) \prod_{k=1}^{\frac{n-1}{2}} \left(x^2 - 2\cos\frac{2k\pi}{n} x + 1 \right), & n \text{ } 55\%; \\ (x-1)(x+1) \prod_{k=1}^{\frac{n-2}{2}} \left(x^2 - 2\cos\frac{2k\pi}{n} x + 1 \right), & n \text{ } 56\%. \end{cases}$$

3. 已知 m, n, p 为非负整数, 证明: $x^{3m} + x^{3n+1} + x^{3p+2}$ 能被 $x^2 + x + 1$ 整除.

证明: 因为

$$x^{3m} + x^{3n+1} + x^{3p+2} = x^{3m} - 1 + x^{3n+1} - x + x^{3p+2} - x^2 + x^2 + x + 1$$
$$= (x^{3m} - 1) + x(x^{3n} - 1) + x^2(x^{3p} - 1) + x^2 + x + 1.$$

由于 $x^3 - 1 \mid x^{3m} - 1, x^3 - 1 \mid x^{3n} - 1, x^3 - 1 \mid x^{3p} - 1,$ 所以 $x^2 + x + 1 \mid x^{3m} - 1 + x(x^{3n} - 1) + x^2(x^{3p} - 1) + (x^2 + x + 1).$

另证: 设 $\varepsilon_1, \varepsilon_2$ 为 x^2+x+1 的根,则 $\varepsilon_1^3=\varepsilon_2^3=1$. 所以 $f(\varepsilon_1)=\varepsilon_1^{3n}+\varepsilon_1^{3n+1}+\varepsilon_1^{3p+2}=1+\varepsilon_1+\varepsilon_1^2=0$.同理 $f(\varepsilon_2)=0$.所以 $x^2+x+1\mid (x)$.

4. 证明: 如果 $x^2 + x + 1 \mid f_1(x^3) + x f_2(x^3)$, 那么 $f_1(1) = f_2(1) = 0$.

证明: 设 $\varepsilon = \frac{-1 + \sqrt{3}i}{2}$, 则 $\varepsilon, \overline{\varepsilon}$ 都是 $x^2 + x + 1$ 的根. 由于 $x^2 + x + 1$ | $f_1(x^3) + x f_2(x^3)$, 所以

$$f_1(1) + \varepsilon f_2(1) = 0,$$
 $f_1(1) + \overline{\varepsilon} f_2(1) = 0.$

由此得 $f_1(1) = f_2(1) = 0$.

5. 证明: 如果 $x-1 \mid f(x^n)$, 那么 $x^n-1 \mid f(x^n)$.

证明:由于 $x-1 \mid f(x^n)$,所以f(1)=0.从而对任意的n次单位根 ε ,

$$f(\varepsilon^n) = f(1) = 0,$$

所以 $x^n - 1 \mid f(x^n)$.

6. 已知多项式 $f(x) = x^3 + ix^2 + (1 - i)x - 10 - 2i$ 有实根, 试求 f(x) 的全部根.

解:
$$2, -1 + \frac{-1 + \sqrt{17}}{2}i, -1 + \frac{-1 - \sqrt{17}}{2}i.$$

*7. 证明: 实系数多项式 f(x) 可表为两个实系数多项式的平方和的充分必要条件是对任何的实数 a, 都有 $f(a) \ge 0$.

证明: 必要性显然. 下证充分性.

设

$$f(x) = c(x - a_1)^{l_1} (x - a_2)^{l_2} \cdots (x - a_t)^{l_t} (x^2 + p_1 x + q_1)^{k_1} \cdots (x^2 + p_s x + q_s)^{k_s},$$

这里 $a_1 < a_2 < \cdots < a_t$, $p_i^2 - 4q_i < 0$, $l_i > 0$, $k_i > 0$. 由条件知, c > 0. 任 取 b,c 使 $a_{r-1} < b < a_r$, $a_r < c < a_{r+1}$, 则 f(b) 的符号为 $(-1)^{l_r + \cdots + l_t}$, f(c) 的符号为 $(-1)^{l_{r+1} + \cdots + l_t}$. 又因 f(b) > 0, f(c) > 0, 故 $(-1)^{l_r} > 0$, l_r 是偶数, $r = 1, \cdots, t$. 从而

$$f(x) = g^2(x)(x^2 + p_1x + q_1)^{k_1} \cdots (x^2 + p_sx + q_s)^{k_s}.$$

设

$$x^{2} + p_{i}x + q_{i} = (x - \alpha_{i})(x - \overline{\alpha_{i}}), \qquad \alpha_{i} \in \mathbb{C},$$

则

$$(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_s) = u(x) + iv(x), \qquad u(x), v(x) \in \mathbb{R}[x],$$

§ 9 有理系数多项式 · 153 ·

$$(x - \overline{\alpha_1})(x - \overline{\alpha_2}) \cdots (x - \overline{\alpha_s}) = u(x) - iv(x).$$

从而

$$(x^{2} + p_{1}x + q_{1})^{k_{1}} \cdots (x^{2} + p_{s}x + q_{s})^{k_{s}} = u^{2}(x) + v^{2}(x).$$

$$f(x) = g^{2}(x)(u^{2}(x) + v^{2}(x)) = (g(x)u(x))^{2} + (g(x)v(x))^{2}.$$

*8. 试用施图姆定理隔离下列多项式的实根:

(1)
$$x^3 - 3x - 1$$
;

(2)
$$x^3 + x^2 - 2x - 1$$
;

(3)
$$x^4 + x - 1$$
;

$$(4) x^4 + 4x^3 - 12x + 9.$$

解: (1) 施图姆列为: $x^3 - 3x - 1$, $x^2 - 1$, $x^2 - 1$, $x^3 - 3x - 1$, $x^3 - 3x - 1$, $x^3 - 1$,

	$-\infty$	-2	-1	0	1	2	$+\infty$
$f_0(x)$	_		+	_	_	+	+
$f_1(x)$	+	+	0	_	0	+	+
$f_2(x)$	_	_	_	+	+	+	+
$f_3(x)$	+	+	+	+	+	+	+
V(x)	3	3	2	1	1	0	0

由此知, f(x) 有 3 个实根, 实根范围是 (-2,-1), (-1,0), (1,2).

- (2) 施图姆列为: $x^3 + x^2 2x 1$, $3x^2 + 2x 2$, 2x + 1, 1.
- 实根数为 3, 实根范围是 (-2,-1), (-1,0), (1,2).
- (3) 施图姆列为: $x^4 + x 1$, $4x^3 + 1$, -3x 4, -1.
- 实根数为 2, 实根范围是 (-2,-1), (0,1).
- (4) 施图姆列为: $x^4 + 4x^3 12x + 9$, $x^3 + 3x^2 3$, $x^2 + 3x 4$, -4x 3,
- 1. 无实根.

§ 9 有理系数多项式

1. 试求下列多项式的有理根:

(1)
$$x^5 - 7x^3 - 12x^2 + 6x + 36;$$
 (2) $6x^4 + 19x^3 - 7x^2 - 26x + 12;$

- (3) $10x^4 13x^3 + 15x^2 18x 15$;
- (4) $x^6 6x^5 + 11x^4 x^3 18x^2 + 20x 8$.

解: (1) 3, -2.

$$(2)$$
 $-3, \frac{1}{2}$.

$$(3) -\frac{1}{2}$$
.

 $(4) 2, \overset{2}{2}, 2.$

2. 证明下列多项式在有理数域上不可约:

(1)
$$x^4 - 8x^3 + 12x^2 - 6x + 2$$
; (2) $x^5 - 12x^3 + 36x - 12$;

(3)
$$x^4 - x^3 + 2x + 1$$
; (4) $x^4 + 4kx + 1$, k 为整数

证明: (1) 取 p=2, 由艾森斯坦因判别法知, f(x) 不可约.

- (2) 取 p=3, 由艾森斯坦因判别法知, f(x) 不可约.
- (3) $f(y+1) = y^4 + 3y^3 + 3y^2 + 3y + 3$, 取 p = 3, 由艾森斯坦因判别法知, f(y+1) 不可约, 故 f(x) 不可约.
- (4) $f(y+1) = y^4 + 4y^3 + 6y^2 + 4(k+1)y + 2(2k+1)$, 取 p=2, 由艾森斯坦因判别法知, f(y+1) 不可约, 故 f(x) 不可约.

(5)

$$f(y-1) = (y-1)^p + p(y-1) + 1 = \sum_{k=0}^p C_p^k (-1)^k y^{p-k} + p(y-1) + 1$$
$$= \sum_{k=0}^{p-1} C_p^k (-1)^k y^{p-k} + py - p$$
$$= y^p - py^{p-1} + \frac{p(p-1)}{2} y^{p-2} + \dots + \frac{p(p-1)}{2} y^2 + 2py - p.$$

由艾森斯坦因判别法知, f(y-1) 不可约, 故 f(x) 不可约.

(6) 因为 f(x) 无有理根, 故若 f(x) 可约, 则必有

$$f(x) = (x^2 + ax + 1)(x^2 + bx + 1)$$
 \vec{g} $f(x) = (x^2 + ax - 1)(x^2 + bx - 1).$

对于左式, 计算其 3 次项及 1 次项系数, 得 a+b=5, a+b=-5, 不可能.

对右式, 令 x = 1, 得 ab = -1, 又 a + b = 5, 也不可能. 故 f(x) 不可约.

3. 试将下列分式的分母有理化:

(1)
$$\frac{1}{1+\sqrt[3]{2}+2\sqrt[3]{4}};$$
 (2) $\frac{1}{1-\sqrt[4]{2}+\sqrt{2}};$

(3)
$$\frac{1}{1+\sqrt{2}-\sqrt{3}}$$
;

(4)
$$\frac{a^2 - 3a - 1}{a^2 + 2a + 1}$$
, 其中, a 为方程 $x^3 + x^2 + 3x + 4 = 0$ 的根.

解: (1) 考察 $f(x) = 2x^2 + x + 1$ 及 $g(x) = x^3 - 2$. 易知 (f(x), g(x)) = 1. 经计算知

$$(2x^2 + x + 1)\frac{x^2 + 7x - 3}{23} - (x^3 - 2)\frac{-2x + 13}{23} = 1.$$

§ 9 有理系数多项式 · 155 ·

所以

$$\frac{1}{1+\sqrt[3]{2}+2\sqrt[3]{4}} = \frac{1}{23}(-3+7\sqrt[3]{2}-\sqrt[3]{4}).$$

(2)
$$\frac{1}{1 - \sqrt[4]{2} + \sqrt{2}} = \frac{1}{7} (1 + 3\sqrt[4]{2} + 2\sqrt{2} - \sqrt[4]{8}).$$

(3)
$$\frac{1+\sqrt{2}-\sqrt{3}}{1+\sqrt{2}-\sqrt{3}} = \frac{1}{4}(2+\sqrt{2}+\sqrt{6}).$$

(4)
$$\frac{a^2 - 3a - 1}{a^2 + 2a + 1} = 17a^2 - 3a + 55.$$

4. 设 f(x) 是一个整系数多项式. 证明: 如果 f(0) 和 f(1) 都是奇数,则 f(x) 无整数根.

证明: 反证. 如 f(x) 有整数根 a, 则 f(x) = (x - a)g(x), 其中 g(x) 为整系数多项式. 则 0 - a 与 1 - a 中至少有一个是偶数, 从而 f(0), f(1) 中至少有一个为偶数, 矛盾.

5. 设 $f(x) = x^3 + bx^2 + cx + d$ 是一个整系数多项式. 证明: 如果 bd + cd 为奇数, 则 f(x) 在有理数域上不可约.

证明: 由题设, d = b + c 都是奇数, 从而 f(0) = d 以及 f(1) = 1 + b + c + d 均为奇数, 故 f(x) 无整数根. 又因 f(x) 的首项系数为 1, 且 $\deg f(x) = 3$, 所以 f(x) 不可约.

- **6.** 已知整系数多项式 $f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ 无有理根. 证明: 如果有素数 p, 使
 - (1) $p \nmid a_0$;
 - (2) $p \mid a_i, i = 2, 3, \dots, n;$
 - (3) $p^2 \nmid a_n$

则 f(x) 在 \mathbb{Q} 上不可约.

证明: 如 $p \mid a_1$,则由艾森斯坦因判别法知f(x)在 \mathbb{Q} 上不可约.

以下设 $p \nmid a_1$. 设 $f(x) = g(x)h(x), g(x), h(x) \in \mathbb{Z}[x]$. 由于 f(x) 无有理根, 因此 $2 \leq \deg g(x) \leq n-2, 2 \leq \deg h(x) \leq n-2$. 设

$$g(x) = b_0 x^k + b_1 x^{k-1} + \dots + b_k, \qquad k \ge 2, m \ge 2,$$

$$h(x) = c_0 x^m + c_1 x^{m-1} + \dots + c_m, \qquad k + m = n.$$

由于 $b_k c_m = a_n$, $p \mid a_n$, $p^2 \nmid a_n$, 可设 $p \mid b_k$, $p \nmid c_m$. 又因 $p \nmid b_0$, 设 b_l 是从末尾 起最先一个不能被 p 整除的系数, 则

$$p \nmid a_{m+l} = c_m b_l + c_{m-1} b_{l+1} + \cdots$$

但因 $m+l \geq 2$, $p \mid a_{m+l}$, 矛盾. 因此 f(x) 在 \mathbb{Q} 上不可约.

*7. 试确定所有的整数 m, 使 $x^5 + mx - 1$ 在有理数域上可约.

证明: (a) 如 m = 0, 则 $x^5 - 1$ 显然可约.

- (b) 如 f(x) 有一次因式,则 1+m-1=0 或 -1-m-1=0,从而 m=0 或 -2.
 - (c) 若 f(x) 不含一次因式, 但可约, 则可设

$$x^5 + mx - 1 = (x^2 + ax \pm 1)(x^3 + bx^2 + cx \mp 1).$$

比较两边系数,得

$$a + b = 0$$
, $ab + c \pm 1 = 0$, $ac \pm b \mp 1 = 0$, $\mp (a - c) = m$.

故 b=-a,

$$\begin{cases}
-a^2 + c = \mp 1 \\
ac \mp a = \pm 1 \\
m = \mp (a - c)
\end{cases}$$

在第一种情形下, c = 0, a = -1, m = 1; 在第二种情形下, c = 2, a(c + 2) = -1, 不可能. 所以 m 的可能取值为 0, 1, -2. 在此 3 种情况下 $x^5 + mx - 1$ 都可约.

*8. 设 a_1, a_2, \cdots, a_n 为互不相同的整数, 证明: 多项式

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) - 1$$

在 ℚ 上不可约.

证明:设

$$f(x) = g(x)h(x), \quad g(x), h(x) \in \mathbb{Z}[x], \quad \deg g(x), \deg h(x) < \deg f(x).$$

则 $f(a_i) = g(a_i)h(a_i) = -1$, 故 $g(a_i) = -h(a_i) = \pm 1$. 从而 $g(a_i) + h(a_i) = 0$. 于是多项式

$$F(x) = g(x) + h(x)$$

有 n 个不同的根,但 $\deg F(x) < n$,只能 F(x) = 0,g(x) = -h(x), $f(x) = -g^2(x)$. 而当 x 充分大时,有 f(x) > 0, $-g^2(x) \le 0$,矛盾. 因此

*9. 设 a_1, a_2, \dots, a_n 为互不相同的整数, 证明: 多项式

$$f(x) = (x - a_1)^2 (x - a_2)^2 \cdots (x - a_n)^2 + 1$$

在 ℚ 上不可约.

§ 9 有理系数多项式 · 157 ·

证明: 设 $f(x) = g(x)h(x), g(x), h(x) \in \mathbb{Z}[x],$ 且

$$0 < \deg g(x) < 2n, \qquad 0 < \deg h(x) < 2n.$$

又因 $\deg g(x) + \deg h(x) = 2n$, 故 g(x), h(x) 中至少有一个的次数 $\leq n$, 不妨设 $\deg h(x) \leq n$. 又设 g(x), h(x) 均为首一多项式.

由于 f(x) 在实数上始终取正值,因此 f(x) 无实根,g(x),h(x) 亦无实根.于是 g(x),h(x) 在实数上始终取正值.又因 $f(a_i)=1$,故 $h(a_i)=g(a_i)=1$. h(x)-1 有 n 个不同的根 a_1,\cdots,a_n ,所以

$$h(x) = (x - a_1) \cdots (x - a_n) + 1.$$

从而 $\deg g(x) = n$, 进而

$$g(x) = (x - a_1) \cdots (x - a_n) + 1.$$

于是

$$g(x)h(x) = [(x - a_1) \cdots (x - a_n) + 1]^2$$

= $(x - a_1)^2 \cdots (x - a_n)^2 + 2(x - a_1) \cdots (x - a_n) + 1 \neq f(x),$

矛盾. 因此 f(x) 不可约.

***10.** 设本原多项式 f(x) 在有理数域上不可约. 证明: $f(x^2)$ 在有理数域上可约的充分必要条件是存在整数 $c \neq 0$ 及整系数多项式 g(x), h(x), 使

$$cf(x) = g^2(x) - xh^2(x).$$

证明: 充分性显然, 以下证必要性.

设 g(x) 为 $f(x^2)$ 的任一不可约因式, 则由 $g(x) \mid f(x^2)$ 可得 $g(-x) \mid f(x^2)$, 显然 g(-x) 也不可约.

g(x) 与 g(-x) 的关系仅有以下 3 种可能:

- (a) g(x) = g(-x); (b) g(x) = -g(-x); (3) (g(x), g(-x)) = 1.
- (a) 如 g(x) = g(-x), 则 $g(x) = h(x^2)$, 由 $h(x^2) \mid f(x^2)$ 得 $h(x) \mid f(x)$, 而 f(x) 不可约,所以 h(x) = cf(x), $g(x) = cf(x^2)$, 与 $f(x^2)$ 可约矛盾. 因此 $g(x) \neq g(-x)$.
- (b) $\mbox{ } \mbox{ } \mbox{$
- (c) 如 (g(x), g(-x)) = 1, 则 $g(x)g(-x) \mid f(x^2)$. 设 $g(x) = u(x^2) + xv(x^2)$, 则

$$g(x)g(-x) = u^2(x^2) - x^2v^2(x^2).$$

而 $u^2(x^2) - x^2v^2(x^2) \mid f(x^2)$, 因此

$$u^2(x) - xv^2(x) \mid f(x).$$

故存在 $c \neq 0$ 使 $cf(x) = u^2(x) - xv^2(x)$, 证毕.

***11.** 证明: 对所有的正整数 n, $f(x) = x^{2^n} - x^{2^{n-1}} + 1$ 在有理数域上不可约. (提示: 对 n 用归纳法并应用习题 10)

证明: 首先要把习题 10 的结论加强为: 当 f(x) 是本原多项式时, 可取 c=1. 为证这一结论, 考察

$$f(x^2) = c^{-1}(g^2(x^2) - x^2h^2(x^2)) = c^{-1}(g(x^2) + xh(x^2))(g(x^2) - xh(x^2)),$$

注意到若 $g(x^2) + xh(x^2) = r(g_1(x^2) + xh_1(x^2))$, 其中 $g_1(x^2) + xh_1(x^2)$ 是本原多项式,则 $g_1(x^2) - xh_1(x^2)$ 也是本原多项式,于是

$$f(x^2) = c^{-1}r^2(g_1(x^2) + xh_1(x^2))(g_1(x^2) - xh_1(x^2)) = c^{-1}r^2(g_1^2(x^2) - x^2h_1^2(x^2)),$$

根据高斯引理, $c^{-1}r^2 = 1$, 于是 $f(x) = g_1^2(x) - xh_1^2(x)$.

对 n 用归纳法, 并应用加强了的习题 10.

当 n=1 时, 易知 x^2-x+1 在有理数域上不可约.

现设 $x^{2^n} - x^{2^{n-1}} + 1$ 在有理数域上不可约, 而 $x^{2^{n+1}} - x^{2^n} + 1$ 在有理数域上可约, 则根据加强的习题 10, 存在 $g(x), h(x) \in \mathbb{Z}[x]$, 使

$$x^{2^{n}} - x^{2^{n-1}} + 1 = g^{2}(x) - xh^{2}(x),$$

两边求导得

$$2^{n}x^{2^{n}-1} - 2^{n-1}x^{2^{n-1}-1} = 2g(x)g'(x) - h^{2}(x) - 2xh(x)h'(x).$$

则 $2 \mid h^2(x), 2 \mid h(x),$ 所以

$$x^{2^{n}} - x^{2^{n-1}} + 1 = q^{2}(x) + 4p(x).$$

\$

$$g(x) = x^{2^{n-1}} - x^{2^{n-2}} + 1 + k(x) + 2l(x),$$

其中 k(x) 的各项系数都是 0 或 1. 则

$$x^{2^{n}} - x^{2^{n-1}} + 1 = x^{2^{n}} - x^{2^{n-1}} + 1 + 4x^{2^{n-1}} - 2x^{2^{n-2}} - 2x^{3 \cdot 2^{n-2}} + k^{2}(x) + 4p_{2}(x).$$

因此 $2 \mid k(x), 4 \mid k^2(x),$ 进而

$$x^{2^{n}} - x^{2^{n-1}} + 1 = x^{2^{n}} - x^{2^{n-1}} + 1 - 2x^{2^{n-2}} - 2x^{3 \cdot 2^{n-2}} + 4p_{3}(x),$$

$$4p_{3}(x) = 2(x^{2^{n-2}} + x^{3 \cdot 2^{n-2}},$$

这不可能, 从而知 $x^{2^{n+1}} - x^{2^n} + 1$ 在有理数域上不可约.

第十二章 多元多项式

§1 多元多项式

1. 设 $f(x_1, \dots, x_n)$ 是数域 K 上的 n 元齐次多项式.

证明: 如果存在数域 K 上的 n 元多项式 $g(x_1,\cdots,x_n)$ 与 $h(x_1,\cdots,x_n)$, 使

$$f(x_1,\cdots,x_n)=g(x_1,\cdots,x_n)h(x_1,\cdots,x_n),$$

则 $g(x_1, \dots, x_n)$ 与 $h(x_1, \dots, x_n)$ 也都是齐次多项式.

证明: 设 $\deg f = m$, $\deg g = k$, $\deg h = l$. 令

$$g = g_p + g_{p+1} + \dots + g_k, \qquad h = h_q + h_{q+1} + \dots + h_l,$$

其中 g_i, h_j 分别为 i, j 次齐次多项式,且 g_p, h_q 是分解中次数最低的齐次多项式, k+l=m,则

$$f = g_p h_q + \sum_{t=p+q+1}^m \left(\sum_{i+j=t} g_i h_j \right).$$

因此当 p+q < m 时 f 不是齐次多项式. 而 p+q = k+l = m 可推出 p = k, q = l, 因此 $g = g_k$, $h = h_l$ 都是齐次多项式.

2. 设 $f(x,y) \in K[x,y]$. 证明: 如果 f(x,x) = 0, 则 $x - y \mid f(x,y)$.

证明: 设
$$f(x,y) = \sum_{k=0}^{n} a_k(x) y^k$$
, 则

$$f(x,y) = f(x,y) - f(x,x) = \sum_{k=0}^{n} a_k(x)(y^k - x^k)$$
$$= (y-x)\sum_{k=1}^{n} a_k(x)(y^{k-1} + y^{k-2}x + \dots + yx^{k-2} + x^{k-1}).$$

因此 $x - y \mid f(x, y)$.

*3. 计算下列行列式:

$$\begin{vmatrix} \frac{1}{x_1 - a_1} & \frac{1}{x_1 - a_2} & \dots & \frac{1}{x_1 - a_n} \\ \frac{1}{x_2 - a_1} & \frac{1}{x_2 - a_2} & \dots & \frac{1}{x_2 - a_n} \\ \dots & \dots & \dots & \dots \\ \frac{1}{x_n - a_1} & \frac{1}{x_n - a_2} & \dots & \frac{1}{x_n - a_n} \end{vmatrix}.$$

解: 把原行列式记为 $D_n(x_1, \cdots, x_n, a_1, \cdots, a_n)$. 则

$$D_n(x_1, \dots, x_n, a_1, \dots, a_n) = \frac{G(x_1, \dots, x_n, a_1, \dots, a_n)}{F(x_1, \dots, x_n, a_1, \dots, a_n)},$$

其中 G 与 F 都是 $x_1, \dots, x_n, a_1, \dots, a_n$ 的多项式. 易知

$$F(x_1, \dots, x_n, a_1, \dots, a_n) = \prod_{1 \le i, j \le n} (x_i - a_j).$$

由于

$$D_n(x_1, \dots, x_i, \dots, x_i, \dots, x_n, a_1, \dots, a_n) = 0,$$

$$D_n(x_1, \dots, x_n, a_1, \dots, a_i, \dots, a_i, \dots, a_n) = 0,$$

可得

$$G(x_1, \dots, x_n, a_1, \dots, a_n) = \prod_{1 \le i < j \le n} (x_i - x_j) \prod_{1 \le i < j \le n} (a_j - a_i) \cdot G_1(x_1, \dots, x_n, a_1, \dots, a_n).$$

比较两边 x_i 与 a_j 的次数 (都是 n-1 次), 可知 $G_1=c_n$ 是一个常数. 因此

$$D_n(x_1, \dots, x_n, a_1, \dots, a_n) = \frac{\prod_{1 \le i < j \le n} (x_i - x_j) \prod_{1 \le i < j \le n} (a_j - a_i) \cdot c_n}{\prod_{1 \le i, j \le n} (x_i - a_j)}.$$

又因

$$[(x_n - a_n)D_n(x_1, \dots, x_n, a_1, \dots, a_n)]_{x_n = a_n}$$

= $D_{n-1}(x_1, \dots, x_{n-1}, a_1, \dots, a_{n-1}),$

所以

$$\frac{\left(\prod_{1 \le i < j \le n-1} (x_i - x_j)\right) (x_1 - a_n) \cdots (x_{n-1} - a_n) \left(\prod_{1 \le i < j \le n-1} (a_j - a_i)\right) (a_n - a_1) \cdots (a_n - a_{n-1}) c_n}{\left(\prod_{1 \le i, j \le n-1} (x_i - a_j)\right) (a_n - a_1) \cdots (a_n - a_{n-1}) (x_1 - a_n) \cdots (x_{n-1} - a_n)}$$

§2 对称多项式 · 161 ·

$$= \frac{\prod\limits_{1 \le i < j \le n-1} (x_i - x_j) \prod\limits_{1 \le i < j \le n-1} (a_j - a_i) \cdot c_n}{\prod\limits_{1 \le i, j \le n-1} (x_i - a_j)}$$
$$= D_{n-1}(x_1, \dots, x_{n-1}, a_1, \dots, a_{n-1}),$$

可得 $c_n = c_{n-1}$. 依此类推, 最终可得 $c_n = c_1 = 1$. 因而

$$D_n(x_1, \dots, x_n, a_1, \dots, a_n) = \frac{\prod_{1 \le i < j \le n} (x_i - x_j)(a_j - a_i)}{\prod_{1 \le i, j \le n} (x_i - a_j)}.$$

§2 对称多项式

1. 用初等对称多项式表示下列对称多项式:

(1)
$$x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2$$
;

$$(2)\ x_1^2x_2^2+x_1^2x_3^2+x_1^2x_4^2+x_2^2x_3^2+x_2^2x_4^2+x_3^2x_4^2;$$

(3)
$$(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)$$
;

(4)
$$(x_1x_2 + x_3)(x_1x_3 + x_2)(x_2x_3 + x_1);$$

(5)
$$(x_1^2 + x_2^2)(x_1^2 + x_3^2)(x_2^2 + x_3^2);$$

(6)
$$(x_1 + x_2 + x_1x_2)(x_2 + x_3 + x_2x_3)(x_1 + x_3 + x_1x_3)$$
.

解: (1) 原式 = $x_1x_2(x_1+x_2+x_3)+x_1x_3(x_1+x_2+x_3)+x_2x_3(x_1+x_2+x_3)-3x_1x_2x_3=\sigma_1\sigma_2-3\sigma_3$.

(2) 2 2 0 0
$$\sigma_2^2$$

2 1 1 0 $\sigma_1\sigma_3$
1 1 1 1 σ_4

因此原式 = $\sigma_2^2 + A\sigma_1\sigma_3 + B\sigma_4$.

取
$$x_1 = x_2 = x_3 = 1$$
, $x_4 = 0$, 得 $3 = 9 + 3A$, $A = -2$;

取
$$x_1 = x_2 = x_3 = x_4 = 1$$
, 得 $B = 2$;

故原式 =
$$\sigma_2^2 - 2\sigma_1\sigma_3 + 2\sigma_4$$
.

(3) 原式 =
$$(\sigma_1 - x_3)(\sigma_1 - x_2)(\sigma_1 - x_1) = \sigma_1^3 - \sigma_1\sigma_1^2 + \sigma_2\sigma_1 - \sigma_3 = \sigma_1\sigma_2 - \sigma_3$$
.

(4) 原式 =
$$\frac{1}{\sigma_3}(\sigma_3 + x_3^2)(\sigma_3 + x_2^2)(\sigma_3 + x_1^2)$$
. 由于

$$x_1^2 + x_2^2 + x_3^2 = \sigma_1^2 - 2\sigma_2,$$

$$x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 = \sigma_2^2 - 2\sigma_1 \sigma_3,$$

$$x_1^2 x_2^2 x_3^2 = \sigma_3^2,$$

原式 =
$$\frac{1}{\sigma_3} (\sigma_3^3 + (\sigma_1 - 2\sigma_2)\sigma_3^2 + (\sigma_2^2 - \sigma_1\sigma_3)\sigma_3 + \sigma_3^2)$$

= $\sigma_1^2 \sigma_3 - 2\sigma_1\sigma_3 + \sigma_2^2 - 2\sigma_2\sigma_3 + \sigma_3^2 + \sigma_3$.

(5) 原式=
$$(x_1^2 + x_2^2 + x_3^2 - x_3^2)(x_1^2 + x_2^2 + x_3^2 - x_2^2)(x_1^2 + x_2^2 + x_3^2 - x_1^2)$$

= $(\sigma_1^2 - 2\sigma_2 - x_3^2)(\sigma_1^2 - 2\sigma_2 - x_2^2)(\sigma_1^2 - 2\sigma_2 - x_1^2)$
= $(\sigma_1^2 - 2\sigma_2 - x_3^2)^3 - (\sigma_1^2 - 2\sigma_2 - x_3^2)(\sigma_1^2 - 2\sigma_2 - x_3^2)^2 + (\sigma_1^2 - 2\sigma_1\sigma_3)(\sigma_1^2 - 2\sigma_2\sigma_3)^2$
= $\sigma_1^2\sigma_2^2 - 2\sigma_1^3\sigma_3 - 2\sigma_2^3 + 4\sigma_1\sigma_2\sigma_3 - \sigma_3^2$

- 2. 用初等对称多项式表示下列 n 元对称多项式:
- $(1) \sum x_1^4;$

- $(2) \sum x_1^2 x_2^2;$
- $(3) \sum x_1^2 x_2 x_3;$
- $(4) \sum x_1^2 x_2^2 x_3 x_4.$

解:
$$(1)$$
 $\sigma_1^4 - 4\sigma_1^2\sigma_2 + 2\sigma_2^2 + 4\sigma_1\sigma_2 - 4\sigma_4$.

- (2) $\sigma_2^2 2\sigma_1\sigma_3 + 2\sigma_4$.
- (3) $\sigma_1\sigma_3-4\sigma_4$.
- $(4) \sigma_2\sigma_4 4\sigma_1\sigma_5 + 9\sigma_6.$
- **3.** 设 x_1, x_2, x_3 是方程 $3x^3 5x^2 + 1$ 的三个根. 计算

$$x_1^3x_2 + x_1x_2^3 + x_1^3x_3 + x_1x_3^3 + x_2^3x_3 + x_2x_3^3$$

解: 原式 =
$$\sigma_1^2 \sigma_2 - 2\sigma_2^2 - \sigma_1 \sigma_3 = \frac{5}{9}$$
.

$$\frac{x^2}{yz} + \frac{y^2}{xz} + \frac{z^2}{xy}.$$

解: 原式=
$$\frac{x^3 + y^3 + z^3}{xyz}$$

$$= \frac{\sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3}{xyz} = 3.$$

5. 证明: 三次方程 $x^3 + a_1 x^2 + a_2 x + a_3 = 0$ 的三个根成等差数列的充分必要条件是

$$2a_1^3 - 9a_1a_2 + 27a_3 = 0.$$

§2 对称多项式 · 163 ·

证明: 三个根成等差数列的充分必要条件是以下 3 个数

$$x_1 + x_2 - 2x_3$$
, $x_1 + x_3 - 2x_2$, $x_2 + x_3 - 2x_1$,

中至少有一个等于 0. 故

三个根成等差数列 $\iff (x_1 + x_2 - 2x_3)(x_1 + x_3 - 2x_2)(x_2 + x_3 - 2x_1) = 0.$

而

$$(x_1 + x_2 - 2x_3)(x_1 + x_3 - 2x_2)(x_2 + x_3 - 2x_1)$$

$$= (x_1 + x_2 + x_3 - 3x_3)(x_1 + x_2 + x_3 - 3x_2)(x_1 + x_2 + x_3 - 3x_1)$$

$$= (-a_1)^3 - 3(-a_1)(-a_1)^2 + 9a_2(-a_1) - 27(-a_3)$$

$$= 2a_1^3 - 9a_1a_2 + 27a_3.$$

***6.** 设 x_1, x_2, \dots, x_n 是方程

$$x^n + a_1 x^{n-1} + \dots + a_n = 0$$

的根, 证明: x_2, x_3, \dots, x_n 的对称多项式可表成 $x_1 与 a_1, a_2, \dots, a_n$ 的多项式. **证明**: 设

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n) = \sum_{k=0}^{n} (-1)^k a_k x^{n-k}.$$

从而

$$(x - x_2) \cdots (x - x_n) = \frac{f(x)}{x - x_1} = \frac{f(x) - f(x_1)}{x - x_1}$$

$$= \frac{\sum_{k=0}^{n} (-1)^k a_k x^{n-k} - \sum_{k=0}^{n} (-1)^k a_k x_1^{n-k}}{x - x_1}$$

$$= \sum_{k=0}^{n-1} (-1)^k a_k (x^{n-k-1} + x^{n-k-2} x_1 + \dots + x^{n-n-1}).$$

由最后一式知 x 的各次项系数都是 x_1 与 a_1, \dots, a_n 的多项式 ($a_0 = 1$),从而 x_2, \dots, x_n 的初等对称多项式是 x_1 与 a_1, \dots, a_n 的多项式,进而由对称多项式 基本定理知 x_2, \dots, x_n 的对称多项式可表成是 x_1 与 a_1, \dots, a_n 的多项式.

*7. 设

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$

$$= x^{n} - \sigma_{1}x^{n-1} + \dots + (-1)^{n}\sigma_{n},$$

$$s_{k} = x_{1}^{k} + x_{2}^{k} + \dots + x_{n}^{k}, \quad (k = 0, 1, 2, \dots).$$

(1) 证明:

$$x^{k+1}f'(x) = (s_0x^k + s_1x^{k-1} + \dots + s_{k-1}x + s_k)f(x) + g(x),$$

其中 g(x) 的次数 < n 或 g(x) = 0.

(2) 证明牛顿 (Newton) 公式:

$$s_k - \sigma_1 s_{k-1} + \sigma_2 s_{k-2} + \dots + (-1)^{k-1} \sigma_{k-1} s_1 + (-1)^k k \sigma_k = 0 \quad k \leq n,$$

$$s_k - \sigma_1 s_{k-1} + \dots + (-1)^n \sigma_n s_{k-n} = 0 \quad k > n.$$

证明: 设
$$g(x) = \sum_{i=1}^{n} \frac{x_i^{k+1} f(x)}{x - x_i}$$
, 则 $g(x) = 0$ 或 $\deg g(x) < n$. 而

$$x^{k+1}f'(x) - g(x) = \sum_{i=1}^{n} \frac{x^{k+1}f(x)}{x - x_i} - \sum_{i=1}^{n} \frac{x_i^{k+1}f(x)}{x - x_i} = \left(\frac{x^{k+1} - x_i^{k+1}}{x - x_i}\right) f(x)$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{k} (x^{k-j}x_i^j f(x)) = \sum_{j=0}^{k} \left(\sum_{i=1}^{n} (x^{k-j}x_i^j) f(x)\right)$$

$$= \left(\sum_{j=0}^{k} x^{k-j} s_j\right) f(x)$$

$$= \left(s_0 x^k + s_1 x^{k-1} + \dots + s_{k-1} x + s_k\right) f(x).$$

即得所证.

(2) 比较等式

$$x^{k+1}f'(x) = (s_0x^k + s_1x^{k-1} + \dots + s_{k-1}x + s_k)f(x) + g(x)$$

两边 n 次项系数, 由于 g(x) 的次数 < n 或 g(x) = 0, 所以

 $x^{k+1}f'(x)$ 的n次项系数= $(s_0x^k + s_1x^{k-1} + \dots + s_{k-1}x + s_k)f(x)$ 的n次项系数, 所以当 $k \le n$ 时,

$$(n-k)(-1)^k \sigma_k = s_k - \sigma_1 s_{k-1} + \sigma_2 s_{k-2} + \dots + (-1)^k \sigma_k s_0,$$

即

$$s_k - \sigma_1 s_{k-1} + \sigma_2 s_{k-2} + \dots + (-1)^{k-1} \sigma_{k-1} s_1 + (-1)^k k \sigma_k = 0.$$

当 k > n,

$$0 = s_k - \sigma_1 s_{k-1} + \sigma_2 s_{k-2} + \dots + (-1)^n \sigma_n s_{k-n},$$

即得所证.

根.

*8. 用初等对称多项式表示 s_2, s_3, s_4, s_5

M:
$$s_2 = \sigma_1^2 - 2\sigma_2$$
,
 $s_3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$,
 $s_4 = \sigma_1^4 - 4\sigma_1^2\sigma_2 + 2\sigma_2^2 + 4\sigma_1\sigma_3 - 4\sigma_4$,
 $s_5 = \sigma_5^5 - 5\sigma_1^3\sigma_2 + 5\sigma_1\sigma_2^2 + 5\sigma_1^2\sigma_3 - 5\sigma_2\sigma_3 - 5\sigma_1\sigma_4 + 5\sigma_5$.

*§3 结式

- 1. 计算下列多项式的结式:
- (1) $f(x) = x^3 3x^2 + 2x + 1$, $g(x) = 2x^2 x 1$;
- (2) $f(x) = 2x^3 3x^2 x + 2$, $g(x) = x^4 2x^3 3x + 4$;

解: (1) Res
$$(f,g) = (-1)^{2\cdot 3}$$
 Res $(2x^2 - x - 1, f) = (-1)^6 \cdot 2^3 \cdot f\left(-\frac{1}{2}\right) f(1)$ = -7.

- (2) f(x), g(x) 有公共根 1, 所以结式 Res(f,g) = 0.
- 2. 当 λ 取何值时, 下列多项式有公共根:
- (1) $f(x) = x^3 \lambda x + 2$, $g(x) = x^2 + \lambda x + 2$;
- (2) $f(x) = x^3 + \lambda x^2 9$, $g(x) = x^3 + \lambda x 3$.

解: $(1) \operatorname{Res}(f,g) = -4(\lambda+1)^2(\lambda-3)$, 故当 $\lambda = -1$ 或 3 时有公共根.

(2) $\operatorname{Res}(f,g) = 9(\lambda^2 + 12)(\lambda^2 + 2)$, 故当 $\lambda = \pm 2\sqrt{3}$ i 或 $\pm \sqrt{2}$ i 时有公共

3. 求下列曲线的直角坐标方程:

(1)
$$x = t^2 + t - 1$$
, $y = 2t^2 + t - 1$;

(2)
$$x = \frac{t-1}{t^2+1}$$
, $y = \frac{t^2+t-1}{t^2+1}$.

M: (1) $4x^2 - 4xy + y^2 + 5x - 3y + 1 = 0$.

- (2) $5x^2 6xy + 2y^2 + 5x 3y + 1 = 0$.
- **4.** 当 λ 为何值时, 下列多项式有重根?

(1)
$$f(x) = x^3 - 3x + \lambda;$$
 (2) $f(x) = x^4 - 4x^3 + (2 - \lambda)x^2 + 2x - 2.$

解: (1) 2, -2;
(2) -1,
$$-\frac{3}{2}$$
, $\frac{7}{2}$ + $\frac{9}{2}$ $\sqrt{3}$ i, $\frac{7}{2}$ - $\frac{9}{2}$ $\sqrt{3}$ i.

5. 求下列方程组的解:

(1)
$$\begin{cases} 5x^2 - 6xy + 5y^2 = 16, \\ 2x^2 - xy + y^2 - x - y = 4; \end{cases}$$
 (2)
$$\begin{cases} x^2 + y^2 + 4x - 2y = -3, \\ x^2 + 4xy - y^2 + 10y = 9. \end{cases}$$

M: (1) $\operatorname{Res}_y(f,g) = 32(y^4 - y^3 - 3y^2 + y + 2),$

$$\begin{cases} x = 1 \\ y = -1 \end{cases} \qquad \begin{cases} x = -1 \\ y = 1 \end{cases} \qquad \begin{cases} x = 2 \\ y = 2 \end{cases}$$

(2) $\operatorname{Res}_x(f,g) = 4(5x^4 + 40x^3 + 106x^2 + 104x + 33),$

$$\begin{cases} x = -1 \\ y = 2 \end{cases} \begin{cases} x = -3 \\ y = 0 \end{cases} \begin{cases} x = -2 + \frac{3}{5}\sqrt{5} \\ y = 1 + \frac{1}{5}\sqrt{5} \end{cases} \begin{cases} x = -2 - \frac{3}{5}\sqrt{5} \\ y = 1 - \frac{1}{5}\sqrt{5} \end{cases}$$

- 6. 求下列圆锥曲线的交点坐标:
- (1) 圆 $x^2 + y^2 3x y = 0$ 与双曲线 $x^2 + 2xy y^2 4y 2 = 0$;
- (2) 双曲线 $4x^2 7xy + y^2 + 13x 2y 3 = 0$ 与双曲线 $9x^2 14xy + y^2 + 28x 4y 5 = 0$.

解:
$$(1)$$
 $(1,-1)$, $\left(\frac{3}{2} + \frac{1}{2}\sqrt{2}, \frac{1}{2} + \sqrt{2}\right)$, $\left(\frac{3}{2} - \frac{1}{2}\sqrt{2}, \frac{1}{2} - \sqrt{2}\right)$;

- (2) (0,-1), (1,2), (2,3), (-2,1).
- 7. 证明结式的下列性质: 设 f(x), g(x) 分别是 n 次与 m 次多项式. 则
- (1) $\operatorname{Res}(f,g) = (-1)^{mn} \operatorname{Res}(g,f);$
- (2) $\operatorname{Res}(af, bg) = a^m b^n \operatorname{Res}(f, g);$
- *(3) Res((x-a)f,g) = g(a) Res(f,g).

证明: (1), (2) 显然. 今证 (3). 设

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, \qquad g(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m,$$

则

$$(x-a)f(x) = a_0x^{n+1} + (a_1 - a_0a)x^n + \dots + (a_n - a_{n-1}a)x - a_na.$$

*§3 结式 · 167 ·

$$\operatorname{Res}((x-a)f,g) =$$

$$\begin{vmatrix} a_0 & a_1 - a_0 a & a_2 - a_1 a & \cdots & a_n - a_{n-1} a & -a_n a \\ & a_0 & a_1 - a_0 a & a_2 - a_1 a & \cdots & a_n - a_{n-1} a & -a_n a \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & a_0 & \cdots & \cdots & \cdots & a_n - a_{n-1} a & -a_n a \\ b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m \\ & b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & & b_0 & \cdots & \cdots & \cdots & b_{m-1} & b_m \end{vmatrix} ^{m+1}$$

自第一列起, 各列乘 a 加到后一列, 直至最后一列, 可得

$$\operatorname{Res}((x-a)f,g) =$$

 y_j).

从最后一行起, 各行乘 (-a) 加到前一行, 直到第 n+1 行, 再按最后一列展开, 可得

$$\operatorname{Res}((x-a)f,g) = g(a)\operatorname{Res}(f,g).$$

*8. 设
$$f(x) = a(x - x_1) \cdots (x - x_n), g(x) = b(x - y_1) \cdots (x - y_m).$$

证明: Res $(f, g) = a^m \prod_{i=1}^n g(x_i) = (-1)^{mn} b^n \prod_{j=1}^m f(y_j) = a^m b^n \prod_{i=1}^n \prod_{j=1}^m (x_i - y_j)$

证明: Res
$$(f,g)$$
= a^m Res $((x-x_1)\cdots(x-x_n),g(x))$
= $a^m g(x_1)$ Res $((x-x_2)\cdots(x-x_n),g(x))$
= $a^m g(x_1)g(x_2)\cdots g(x_n)$
= $a^m b^n \prod_{i=1}^n \prod_{j=1}^m (x_i-y_j) = (-1)^{mn} b^n \prod_{j=1}^m f(y_j).$

*9. 证明: $\operatorname{Res}(f(x), g_1(x)g_2(x)) = \operatorname{Res}(f(x), g_1(x)) \operatorname{Res}(f(x), g_2(x)).$

证明:设

$$f(x) = a(x - x_1) \cdots (x - x_n),$$

则

$$\operatorname{Res}(f, g_1 g_2) = a^{\deg g_1 g_2} \prod_{i=1}^n g_1(x_i) g_2(x_i)$$

$$= a^{\deg g_1} \prod_{i=1}^n g_1(x_i) a^{\deg g_2} \prod_{i=1}^n g_2(x_i)$$

$$= \operatorname{Res}(f, g_1) \operatorname{Res}(f, g_2).$$

***10.** 设 f 为首一多项式, 证明: 对任意多项式 h, Res(f,g) = Res(f,g+hf).

证明: 设 $f(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$, 则

$$\operatorname{Res}(f, g + hf) = \prod_{i=1}^{n} (g(x_i) + h(x_i)f(x_i))$$
$$= \prod_{i=1}^{n} g(x_i) = \operatorname{Res}(f, g).$$

*11. 利用习题 7 至 10 证明的结式性质计算下列多项式的结式:

- (1) $f(x) = x^n + x + 1$, $g(x) = x^2 3x + 2$;
- (2) $f(x) = x^n + 1$, $g(x) = (x 1)^n$;
- (3) $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$,

$$g(x) = a_0 x^{n-1} + a_1 x^{n-2} + \dots + a_{n-2} x + a_{n-1}.$$

(4)
$$f(x) = \frac{x^n - 1}{x - 1}$$
, $g(x) = \frac{x^m - 1}{x - 1}$;

解: $(1) \operatorname{Res}(f,g) = (-1)^{2n}(1+1+1)(2^n+2+1) = 3(2^n+3).$

- (2) $\operatorname{Res}(f,g) = (-1)^n \cdot 2^n$
- (3) 由于 $f(x) = xg(x) + a_n$, 所以

$$\operatorname{Res}(f,g) = (-1)^{n(n-1)} \operatorname{Res}(g,f) = (-1)^{n(n-1)} \operatorname{Res}(g,a_n) = a_n^{n-1}.$$

(4) (a) 如
$$(m,n) = d > 1$$
,则 $\frac{x^n - 1}{x - 1}$ 与 $\frac{x^m - 1}{x - 1}$ 有公共根,因此 $\operatorname{Res}(f,g) = 0$.

(b) 如 (m,n) = 1, 不妨设 n > m, 则 n = mq + r, $0 \le r < m$. 显然 (m,r) = 1. 则

$$\frac{x^n - 1}{x - 1} = \frac{x^{mq}x^r - 1}{x - 1} = \frac{(x^{mq} - 1)x^r + x^r - 1}{x - 1},$$

*§4 吴消元法 · 169 ·

从而

$$\operatorname{Res}\left(\frac{x^{n}-1}{x-1}, \frac{x^{m}-1}{x-1}\right) = (-1)^{m-1)(n+r)} \operatorname{Res}\left(\frac{x^{r}-1}{x-1}, \frac{x^{m}-1}{x-1}\right).$$

我们证明 (m-1)(n+r) 一定是偶数.

如 m-1 是偶数, 则结论成立. 现设 m-1 是奇数, 则 m 为偶数, 从而 n是奇数, r 也是奇数, 于是 n+r 是偶数. 从而

$$\operatorname{Res}\left(\frac{x^n-1}{x-1}, \frac{x^m-1}{x-1}\right) = \operatorname{Res}\left(\frac{x^r-1}{x-1}, \frac{x^m-1}{x-1}\right).$$

再用 r 除 m, 根据辗转相除法的原理, 由 (m,r)=1 可得

$$\operatorname{Res}\left(\frac{x^{r}-1}{x-1}, \frac{x^{m}-1}{x-1}\right) = \dots = \operatorname{Res}\left(\frac{x^{r'}-1}{x-1}, 1\right) = 1.$$

即当
$$(m,n)=1$$
 时 $\operatorname{Res}\left(\frac{x^n-1}{x-1},\frac{x^m-1}{x-1}\right)=1.$
*12. 设 $f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\in K[x],$

证明: f(x) 的判别式

$$D(f) = (-1)^{\frac{n(n-1)}{2}} a_0^{-1} \operatorname{Res}(f, f').$$

证明:

$$D(f) = a_0^{2n-2} \prod_{1 \le i < j \le n} (x_i - x_j)^2 = (-1)^{\frac{n(n-1)}{2}} a_0^{2n-2} \prod_{i \ne j} (x_i - x_j)$$

$$= (-1)^{\frac{n(n-1)}{2}} a_0^{2n-2} \prod_{i=1}^n (x_i - x_1) \cdots (x_i - x_{i-1}) (x_i - x_{i+1}) \cdots (x_i - x_n)$$

$$= (-1)^{\frac{n(n-1)}{2}} a_0^{n-2} \prod_{i=1}^n f'(x_i)$$

$$= (-1)^{\frac{n(n-1)}{2}} a_0^{n-2} \operatorname{Res}((x - x_1) \cdots (x - x_n), f')$$

$$= (-1)^{\frac{n(n-1)}{2}} a_0^{n-1} \operatorname{Res}(f, f').$$

*§4 吴消元法

1. 仿照例 4.4 分别用分步法及一步法解多项式方程组:

$$\begin{cases}
-12x_2^2 + 7x_1x_2 - 2 = 0, \\
-2x_3 + x_1^2 = 0, \\
-x_3^2 + x_1x_2 + 2 = 0.
\end{cases}$$

解: 这里只列出分步法的过程,并列出部分运算结果.

>read 'd:/mapleuser/wsolve2':

>P1:=-12*x2^2+7*x1*x2-2:

>P2:=-2*x3+x1^2;

>P3:=-x3^2+x1*x2+2;

>PS1:={P1,P2,P3};

>ord:=[x3,x2,x1];

>B1:=basset(PS1,ord);

$$B_1 := [-2x_3 + x_1^2, -12x_2^2 + 7x_1x_2 - 2]$$

>R1:=remseta(PS1,B1,ord);

$$R_1 := \{8 + 4x_1x_2 - x_1^4\}$$

>PS2:={op(B1)} union R1;

>B2:=basset(PS2,ord);

$$B_2 := [-2x_3 + x_1^2, 8 + 4x_1x_2 - x_1^4]$$

>R2:=remseta(PS2,B2,ord);

$$R_2 := \{64x_1^2 + 192 - 48x_1^4 - 7x_1^6 + 3x_1^8\}$$

>PS3:={op(B2)} union R2;

>B3:=basset(PS3,ord);

$$B_3 := \left[-2x_3 + x_1^2, 8 + 4x_1x_2 - x_1^4, 64x_1^2 + 192 - 48x_1^4 - 7x_1^6 + 3x_1^8 \right]$$

>R3:=remseta(PS3,B3,ord);

$$R_3 := \{\}$$

>J:=Initial(B3[1],ord)*Initial(B3[2],ord)*Initial(B3[3],ord);

$$J := x_1$$

>solveas(B3,ord, $\{x1\}$);

这样解得8组解:

$$\begin{cases} x_1 = 2, & \begin{cases} x_1 = -2, \\ x_2 = 1, \\ x_3 = 2; \end{cases} & \begin{cases} x_1 = -2, \\ x_2 = -1, \\ x_3 = 2; \end{cases} & \begin{cases} x_1 = \sqrt{3}i, \\ x_2 = -\frac{\sqrt{3}}{12}i, \\ x_3 = -\frac{3}{2}; \end{cases} & \begin{cases} x_1 = -\sqrt{3}i, \\ x_2 = \frac{\sqrt{3}}{12}i, \\ x_3 = -\frac{3}{2}; \end{cases} \end{cases}$$

$$\begin{cases} x_1 = \frac{\sqrt{-6 + 6\sqrt{13}}}{3} \mathrm{i}, & \begin{cases} x_1 = -\frac{\sqrt{-6 + 6\sqrt{13}}}{3} \mathrm{i}, \\ x_2 = \frac{2(2 + \sqrt{13})}{3\sqrt{-6 + 6\sqrt{13}}} \mathrm{i}, \\ x_3 = \frac{1 - \sqrt{13}}{3}; \end{cases} \\ x_3 = \frac{1 - \sqrt{13}}{3}; \end{cases} x_3 = \frac{-2(2 + \sqrt{13})}{3\sqrt{-6 + 6\sqrt{13}}} \mathrm{i},$$

$$\begin{cases} x_1 = \frac{\sqrt{6+6\sqrt{13}}}{3} \mathrm{i}, \\ x_2 = \frac{2(-2+\sqrt{13})}{3\sqrt{6+6\sqrt{13}}} \mathrm{i}, \\ x_3 = \frac{1+\sqrt{13}}{3}; \end{cases} \qquad \begin{cases} x_1 = -\frac{\sqrt{6+6\sqrt{13}}}{3} \mathrm{i}, \\ x_2 = -\frac{2(-2+\sqrt{13})}{3\sqrt{6+6\sqrt{13}}} \mathrm{i}, \\ x_3 = \frac{1+\sqrt{13}}{3}. \end{cases}$$

2. 解多项式方程组

$$\begin{cases} 2x_3^2 - x_1^2 - x_2^2 = 0, \\ x_1x_3 - 2x_3 + x_1x_2 = 0, \\ x_1^2 - x_2^2 = 0. \end{cases}$$

解: 这里只列出分步法的过程, 并列出部分运算结果,

>read 'd:/mapleuser/wsolve2':

>P1:=2*x3^2-x1^2-x2^2;

>P2:=x1*x3-2*x3+x1*x2;

>P3:=x1^2-x2^2:

>PS1:={P1,P2,P3};

>ord:=[x3,x2,x1];

>B1:=basset(PS1,ord);

$$B_1 := [x_1 x_3 - 2x_3 + x_1 x_2, x_1^2 - x_2^2]$$

>R1:=remseta(PS1,B1,ord);

$$R_1 := \{x_1^2(x_1 - 1)\}$$

>PS2:={op(B1)} union R1;

>B2:=basset(PS2,ord);

$$B_2 := [x_1x_3 - 2x_3 + x_1x_2, x_1^2 - x_2^2, x_1^2(x_1 - 1)]$$

>R2:=remseta(PS2,B2,ord);

$$R_2 := \{\}$$

>J:=Initial(B2[1],ord)*Initial(B2[2],ord)*Initial(B2[3], ord);

$$J := x_1 - 2$$

>solveas(B2,ord, $\{x1-2\}$);

这样解得 4 组解:

$$\begin{cases} x_1 = 0, & \begin{cases} x_1 = 1, \\ x_2 = 0, \\ x_3 = 0, \end{cases} \begin{cases} x_1 = 1, \\ x_2 = -1, \\ x_3 = -1, \end{cases} \begin{cases} x_1 = 1, \\ x_2 = 1, \\ x_3 = 1. \end{cases}$$

*8.5 几何定理的机器证明

1. 证明: 菱形的对角线互相垂直.

证明: 根据假设条件可以得到下列多项式方程:

$$P_1 \stackrel{\text{def}}{=} u_2^2 + x_1^2 - u_1^2 = 0,$$
 $(|AD| = |AB|)$

$$P_{1} \stackrel{\text{def}}{=} u_{2}^{2} + x_{1}^{2} - u_{1}^{2} = 0, \qquad (|AD| = |AB|)$$

$$P_{2} \stackrel{\text{def}}{=} (x_{2} - u_{2})^{2} + (x_{3} - x_{1})^{2} - u_{1}^{2} = 0, \qquad (|DC| = |AB|)$$

$$P_{3} \stackrel{\text{def}}{=} (x_{2} - u_{1})^{2} + x_{3}^{2} - u_{1}^{2} = 0. \qquad (|BC| = |AB|)$$

$$P_3 \stackrel{\text{def}}{=} (x_2 - u_1)^2 + x_3^2 - u_1^2 = 0.$$
 (|BC| = |AB|)

这样定理假设可以归结成一个多项式组 $\mathscr{P} = \{P_1, P_2, P_3\}.$

定理结论是 $AC \perp BD$, 可以归结为多项式方程

$$G \stackrel{\text{def}}{=} (u_2 - u_1)x_2 + x_1x_3 = 0.$$

设变量的序为 x_1, x_2, x_3 , 求得两个特征列 $\mathscr{C}_i = \{C_{i1}, C_{i2}, C_{i3}\}$ 分别为:

$$C_{11} = x_1^2 - u_1^2 + u_2^2,$$

 $C_{12} = x_2,$
 $C_{13} = x_3.$

以及

$$C_{21} = x_1^2 - u_1^2 + u_2^2,$$

$$C_{22} = -x_2 + u_1 + u_2,$$

$$C_{33} = x_1 x_3 - u_1^2 + u_2^2.$$

从 \mathcal{C}_1 导出 $x_2 = x_3 = 0$, 显然是增根. 计算 $\text{Rem}(G, \mathcal{C}_2) = 0$, 可知定理成立. 而非退化条件 $J_2 = x_1$, 从几何意义看, 这是不可以的.

2. 证明: 等腰梯形底角相等.

证明: 根据假设条件可以得到下列多项式方程:

这样定理假设可以归结成一个多项式组 $\mathscr{P} = \{P_1, P_2\}.$

定理结论是 $\angle BAD = \angle CBA$, 可以归结为多项式方程

$$G \stackrel{\text{def}}{=} -u_1^2 u_3 (x_1 - u_1) - u_1^2 u_2 x_2 = 0.$$

求得特征列 $\mathscr{C}=\{C_1,C_2\}$ 就是 \mathscr{P} 自己,而且 J=1,没有非退化条件. 计算 $\mathrm{Rem}(G,\mathscr{C})=0$,可知定理成立.

如果把定理的第二个条件改成

$$P_2 \stackrel{\text{def}}{=} u_2^2 + u_3^2 - (x_1 - u_1)^2 - x_2^2 = 0,$$
 $(|AD| = |BC|)$

计算后会得到两个特征列,一个特征列同前,另一个特征列是

$$C_1 = -x_1 + u_1 + u_2,$$

$$C_2 = x_2 - u_3$$
.

G 关于这个特征列的余式等于 $u_1^2u_2u_3$, 也就是说结论不对. 从几何意义来看, $C_1=0$ 相当于 $u_1=x_1-u_2$, 即 ABCD 是平行四边形 (见下图). 这是不符合 题意的增根, 因此 $\angle BAD \neq \angle CBA$.

3. 证明: 三角形的两条中线的交点分顶点与对边中点成 2:1.

证明: 根据假设条件可以得到下列多项式方程:

$$P_1 \stackrel{\text{def}}{=} u_3 x_1 - (u_1 + u_2) x_2 = 0,$$
 (AGD 共线)
 $P_2 \stackrel{\text{def}}{=} (u_2 - 2u_1) x_2 - (x_1 - 2u_1) u_3 = 0,$ (BGE 共线)

这样定理假设可以归结成一个多项式组 $\mathscr{P}=\{P_1,P_2\}.$

定理结论是 $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AD}$, 可以归结为多项式方程

$$G_1 \stackrel{\text{def}}{=} 3x_1 - 2(u_1 + u_2) = 0,$$

$$G_2 \stackrel{\text{def}}{=} 3x_2 - 2u_3 = 0.$$

设变量的序为 x_1, x_2 , 求得特征列 $\mathscr{C} = \{C_1, C_2\}$ 为:

$$C_1 = 3x_1 - 2u_1 - 2u_2,$$

$$C_2 = -3x_2 + 2u_3.$$

而且 J=1, 没有非退化条件. 显然 G_1,G_2 都能被 $\mathscr C$ 除尽.

4. 证明: 直角三角形斜边上的高是斜边上两线段的比例中项.

证明: 根据假设条件可以得到下列多项式方程:

$$P_1 \stackrel{\text{def}}{=} u_1 x_1 - u_2 x_2 = 0,$$
 $(AD \perp BC)$ $P_2 \stackrel{\text{def}}{=} (x_2 - u_2) u_1 + u_2 x_1 = 0.$ $(BDC 共线)$

这样定理假设可以归结成一个多项式组 $\mathscr{P} = \{P_1, P_2\}.$

定理结论是 $|AD|^2 = |CD||DB|$, 可以归结为多项式方程

$$G \stackrel{\text{def}}{=} (x_1^2 + x_2^2)^2 - (x_1^2 + (x_2 - u_2)^2)((u_1 - x_1)^2 + x_2^2) = 0.$$

设变量的序为 x_1, x_2 , 求得特征列 $\mathscr{C} = \{C_1, C_2\}$ 为:

$$\begin{split} C_1 &= (u_1^2 + u_2^2) x_1 - u_1 u_2^2, \\ C_2 &= -(u_1^2 - u_2^2) x_2 + u_1^2 u_2. \end{split}$$

计算 $\operatorname{Rem}(G,\mathscr{C})=0$,可知定理成立. 而非退化条件是 u_2 以及 $J=(u_1^2+u_2^2)^2$,从几何意义看,这些情形都是不允许的.

5. 如图, 设 $\triangle ABC$ 中 $\angle A$ 是直角, M_1, M_2, M_3 分别是 AB, AC, BC 边的中点. $AH \perp BC$ 并且 H 是垂足. 证明 M_1, M_2, M_3, H 四点共圆.

第5题

证明: 根据假设条件可以得到下列多项式方程:

$$P_1 \stackrel{\text{def}}{=} u_1 - 2x_1 = 0,$$
 $(M_1 是 AB \text{ 的中点})$
 $P_2 \stackrel{\text{def}}{=} u_2 - 2x_2 = 0,$ $(M_2 是 AC \text{ 的中点})$
 $P_3 \stackrel{\text{def}}{=} u_1 - 2x_3 = 0,$ $(M_3 是 BC \text{ 的中点})$
 $P_4 \stackrel{\text{def}}{=} u_2 - 2x_4 = 0,$ $(M_3 是 BC \text{ 的中点})$
 $P_5 \stackrel{\text{def}}{=} u_1x_5 - u_2x_6 = 0,$ $(AH \perp BC)$
 $P_6 \stackrel{\text{def}}{=} u_1(x_6 - u_2) + u_2x_5 = 0.$ $(BHC \pm 3)$
 $P_7 \stackrel{\text{def}}{=} (x_1 - x_7)^2 - x_7^2 = 0,$ $(|OM_1| = |OA|)$
 $P_8 \stackrel{\text{def}}{=} (x_2 - x_8)^2 - x_8^2 = 0.$ $(|OM_2| = |OA|)$

这样定理假设可以归结成一个多项式组 $\mathscr{P} = \{P_1, P_2, \cdots, P_8\}.$

定理结论是 $|OH| = |OM_3| = |OA|$, 可以归结为多项式方程

$$G_1 \stackrel{\text{def}}{=} (x_5 - x_7)^2 + (x_6 - x_8)^2 - x_7^2 - x_8^2 = 0,$$

$$G_2 \stackrel{\text{def}}{=} (x_3 - x_7)^2 + (x_4 - x_8)^2 - x_7^2 - x_8^2 = 0.$$

设变量的序为 x_1, x_2, \cdots, x_8 , 求得特征列 $\mathscr{C} = \{C_1, C_2, \cdots, C_8\}$ 为:

$$\begin{split} C_1 &= -2x_1 + u_1, \\ C_2 &= -2x_2 + u_2, \\ C_3 &= -2x_3 + u_1, \\ C_4 &= -2x_4 + u_2, \\ C_5 &= (u_1^2 + u_2^2)x_5 - u_1u_2^2, \\ C_6 &= -(u_1^2 + u_2^2)x_6 + u_1^2u_2, \\ C_7 &= -4x_7 + u_1, \\ C_8 &= -4x_8 + u_2. \end{split}$$

计算 $\text{Rem}(G_1, \mathscr{C}) = 0$, $\text{Rem}(G_2, \mathscr{C}) = 0$, 可知定理成立. 而非退化条件是 u_2 以及 $J = (u_1^2 + u_2^2)^2$, 从几何意义看, 这些情形都是不允许的.

6. 如图, A, B, C 三点在一条直线上, A', B', C' 三点在另一条直线上. P, Q, R 是它们连线的交点. 证明: P, Q, R 三点共线.

证明: 因为这是个仿射问题, 因此可建立仿射坐标系如上图所示. 根据假设条件可以得到下列多项式方程:

$$\begin{split} P_1 &\stackrel{\text{def}}{=} x_1(-u_4) - u_2(x_2 - u_4) = 0, & (A'PB \pm \$) \\ P_2 &\stackrel{\text{def}}{=} x_1(-u_5) - u_1(x_2 - u_5) = 0, & (B'PA \pm \$) \\ P_3 &\stackrel{\text{def}}{=} x_3(-u_4) - u_3(x_4 - u_4) = 0, & (A'QC \pm \$) \\ P_4 &\stackrel{\text{def}}{=} x_3(-u_6) - u_1(x_4 - u_6) = 0, & (C'QA \pm \$) \\ P_5 &\stackrel{\text{def}}{=} x_5(-u_5) - u_3(x_6 - u_5) = 0, & (B'RC \pm \$) \\ P_6 &\stackrel{\text{def}}{=} x_5(-u_6) - u_2(x_6 - u_6) = 0. & (C'RB \pm \$) \end{split}$$

这样定理假设可以归结成一个多项式组 $\mathcal{P} = \{P_1, P_2, \cdots, P_6\}$. 定理结论是 PQR 共线, 可以归结为多项式方程

$$G \stackrel{\text{def}}{=} (x_3 - x_1)(x_6 - x_2) - (x_5 - x_1)(x_4 - x_2) = 0,$$

设变量的序为 x_1, x_2, \dots, x_6 , 求得特征列 $\mathscr{C} = \{C_1, C_2, \dots, C_6\}$ 为:

$$\begin{split} C_1 &= (u_1u_4 - u_2u_5)x_1 - u_1u_2(u_4 - u_5), \\ C_2 &= (u_1u_4 - u_2u_5)x_2 - (u_1 - u_2)u_4u_5, \\ C_3 &= (u_1u_4 - u_3u_6)x_3 - u_1u_3(u_4 - u_6), \\ C_4 &= (u_1u_4 - u_3u_6)x_4 - (u_1 - u_3)u_4u_6, \\ C_5 &= -(u_2u_5 - u_3u_6)x_5 + u_2u_3(u_5 - u_6), \\ C_6 &= -(u_2u_5 - u_3u_6)x_6 + (u_2 - u_3)u_5u_6. \end{split}$$

计算 $\text{Rem}(G,\mathcal{C}) = 0$,可知定理成立. 而非退化条件是 u_2, u_3 以及 $J = (u_1u_4 - u_2u_5)^2(u_1u_4 - u_3u_6)^2(u_2u_5 - u_3u_6)^2$.

对非退化条件的几何意义作分析:

(1) 若 $u_2 = 0$ 或 $u_3 = 0$, 它的几何意义是 B 或 C 与 A'B'C' 共线, 从而 P,Q,R 不确定, 问题无意义.

- $(2) \ u_1u_4 u_2u_5 = 0 \implies A'B//B'A, \ u_1u_4 u_3u_6 = 0 \implies A'C//C'A, \ u_2u_5 u_3u_6 = 0 \implies B'C//C'B,$ 任何一种情形出现都会使 P,Q,R 中的一个点无法确定,问题无意义.
 - 7. 证明: 圆心角等于相应圆周角的两倍.

证明: 根据假设条件可以得到下列多项式方程:

$$P_1 \stackrel{\text{def}}{=} u_1^2 + x_1^2 - r^2 = 0, \qquad (|OA| = r)$$

$$P_2 \stackrel{\text{def}}{=} u_2^2 + x_2^2 - r^2 = 0, \qquad (|OB| = r)$$

$$P_3 \stackrel{\text{def}}{=} u_2^2 + x_2^2 - r^2 = 0, \qquad (|OC| = r)$$

这样定理假设可以归结成一个多项式组 $\mathscr{P} = \{P_1, P_2, P_3\}.$

定理结论是 $\angle AOB = 2\angle ACB$, 即

$$\tan \angle AOB = \tan(2\angle ACB) = \frac{2\tan \angle ACB}{1 - \tan^2 \angle ACB}.$$
 (*)

由于

$$\angle AOB = \frac{k_{OB} - k_{OA}}{1 + k_{OB}k_{OA}} = \frac{u_1x_2 - u_2x_1}{u_1u_2 + x_1x_2},$$

$$\angle ACB = \frac{k_{CB} - k_{CA}}{1 + k_{CB}k_{CA}} = \frac{(u_1 - u_3)(x_2 - x_3) - (u_2 - u_3)(x_1 - x_3)}{(u_1 - u_3)(u_2 - u_3) + (x_1 - x_3)(x_2 - x_3)} = \frac{\alpha}{\beta}.$$
代人(*) 式得

$$\frac{u_1 x_2 - u_2 x_1}{u_1 u_2 + x_1 x_2} = \frac{2\frac{\alpha}{\beta}}{1 - \frac{\alpha^2}{\beta^2}} = \frac{2\alpha\beta}{\beta^2 - \alpha^2}.$$

因此命题的结论可以归结为多项式方程

$$G \stackrel{\text{def}}{=} (u_1 x_2 - u_2 x_1) (((u_1 - u_3)(u_2 - u_3) + (x_1 - x_3)(x_2 - x_3))^2$$

$$- ((u_1 - u_3)(x_2 - x_3) - (u_2 - u_3)(x_1 - x_3))^2) - 2(u_1 u_2 + x_1 x_2)$$

$$\times ((u_1 - u_3)(x_2 - x_3) - (u_2 - u_3)(x_1 - x_3)) ((u_1 - u_3)(u_2 - u_3)$$

$$+ (x_1 - x_3)(x_2 - x_3)) = 0.$$

设变量的序为 x_1, x_2, x_3 , 求得特征列 $\mathscr C$ 就是原来的多项式组 $\mathscr P$. 计算 $\operatorname{Rem}(G,\mathscr C)=0$, 可知定理成立. 而且没有非退化条件.

第十三章 多项式矩阵与若尔当典范形

§1 多项式矩阵

1. 求下列多项式矩阵的正规形:

$$(1) \begin{pmatrix} \lambda + 1 & \lambda \\ \lambda - 1 & \lambda - 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} \lambda - 1 & \lambda - 1 \\ \lambda - 1 & \lambda^2 - 2\lambda + 1 \end{pmatrix};$$

(3)
$$\begin{pmatrix} \lambda - 1 & \lambda & \lambda^2 - 1 \\ 3\lambda - 1 & \lambda^2 + 2\lambda & 3\lambda^2 - 1 \\ \lambda + 1 & \lambda^2 & \lambda^2 + 1 \end{pmatrix};$$

$$(4) \begin{pmatrix} \lambda^2 & \lambda^2 - 1 & 3\lambda^2 \\ -\lambda^2 - \lambda & \lambda^2 + \lambda & \lambda^3 - 2\lambda^2 - 3\lambda \\ \lambda^2 + \lambda & \lambda^2 + \lambda & 2\lambda^2 + 2\lambda \end{pmatrix};$$

(5)
$$\begin{pmatrix} \lambda + 2 & 0 & 0 \\ -1 & \lambda + 2 & 0 \\ 0 & -1 & \lambda + 2 \end{pmatrix};$$

(6)
$$\begin{pmatrix} 0 & 0 & \lambda(\lambda - 1) \\ 0 & \lambda^2 - 1 & 0 \\ \lambda(\lambda - 1)^2 & 0 & 0 \end{pmatrix}.$$

解: $(1) \operatorname{diag}(1, \lambda - 1)$.

- (2) diag $(\lambda 1, (\lambda 1)(\lambda 2))$.
- (3) diag $(1, \lambda, 0)$.

(4) diag
$$(1, \lambda(\lambda+1), \lambda(\lambda+1)^2 \left(\lambda - \frac{1}{2}\right))$$
.

- (5) diag $(1, 1, (\lambda + 2)^3)$.
- (6) diag $(\lambda 1, \lambda(\lambda 1)(\lambda + 1), \lambda(\lambda 1)^2(\lambda + 1))$.
- 2. 判断下列多项式矩阵是否等价:

$$(1) A = \begin{pmatrix} \lambda & \lambda - 3 & \lambda^2 - 4\lambda + 3 \\ 2\lambda - 2 & 2\lambda - 5 & \lambda^2 - 4\lambda + 3 \\ \lambda - 2 & \lambda - 2 & (\lambda - 2)^2 \end{pmatrix},$$

$$B = \begin{pmatrix} \lambda^2 - 3\lambda + 3 & 2\lambda - 3 & \lambda - 3 \\ \lambda^2 - 2\lambda + 1 & 4\lambda - 7 & 2\lambda - 5 \\ \lambda^2 - 3\lambda + 2 & 2\lambda - 4 & \lambda - 2 \end{pmatrix}.$$

$$(2) A = \begin{pmatrix} \lambda^2 - \lambda - 2 & \lambda^2 - 1 & \lambda + 1 \\ 0 & \lambda + 1 & 1 \\ (\lambda + 1)^2 & \lambda^2 + \lambda & \lambda + 1 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2\lambda^2 + \lambda - 1 & \lambda - 1 \\ \lambda & \lambda - 2 & \lambda^2 + \lambda \\ 1 & \lambda & \lambda + 1 \end{pmatrix}.$$

解: (1) 等价; (2) 不等价.

3. 下列多项式矩阵中, 哪些是可逆的? 若可逆试求其逆.

$$(1) \begin{pmatrix} \lambda+1 & \lambda-1 \\ \lambda+3 & \lambda+1 \end{pmatrix}; \qquad (2) \begin{pmatrix} \lambda^2-2 & \lambda^2-\lambda \\ \lambda+2 & \lambda+1 \end{pmatrix}; \\ (3) \begin{pmatrix} 1-\lambda & -\lambda & -\lambda^2 \\ -\lambda+2 & -\lambda+1 & -\lambda^2 \\ -1+\lambda & \lambda & \lambda^2+1 \end{pmatrix}; (4) \begin{pmatrix} \lambda-1 & \lambda^2 & \lambda \\ \lambda & -\lambda & \lambda \\ \lambda^2+1 & \lambda^2 & \lambda^2-1 \end{pmatrix}.$$

$$\mathbf{M}: (1) 可逆, 逆矩阵为 \frac{1}{4} \begin{pmatrix} \lambda+1 & -\lambda+1 \\ -\lambda-3 & \lambda+1 \end{pmatrix}.$$

(2) 可逆, 逆矩阵为
$$-\frac{1}{2}\begin{pmatrix} \lambda+1 & -\lambda^2+\lambda\\ -\lambda-2 & \lambda^2-2 \end{pmatrix}$$
.

(3) 可逆, 逆矩阵为
$$\begin{pmatrix} \lambda^2 - \lambda + 1 & \lambda & \lambda^2 \\ -\lambda^2 + \lambda - 2 & -\lambda + 1 & -\lambda^2 \\ 1 & 0 & 1 \end{pmatrix}.$$

(4) 不可逆.

4. 设 $A(\lambda)$ 为一个多项式矩阵, 证明: $A(\lambda)$ 可逆的充分必要条件是对所有的复数 c, A(c) 都可逆.

证明: (\Rightarrow) 设 $A(\lambda)$ 可逆, 则

$$|A(\lambda)| = a \neq 0 \in \mathbb{C}.$$

故对任意的 $c \in \mathbb{C}$, |A(c)| = a, 所以 A(c) 可逆.

§2 不变因子 · 181 ·

 (\Leftarrow) 考察 $f(\lambda) = |A(\lambda)|$, 则对任意的 $c \in \mathbb{C}$, $f(c) \neq 0$, 故 $f(\lambda)$ 在 \mathbb{C} 中无 根. 所以 $f(\lambda) = a \neq 0 \in \mathbb{C}$, $|A(\lambda)| = a \neq 0 \in \mathbb{C}$. 因此 $A(\lambda)$ 可逆.

5. 下列结论是否成立: (如成立,则加以证明,如不成立,则举出反例.)

两个多项式矩阵等价的充分必要条件是, 对所有的 $k \in K$, A(k) 与 B(k)都等价.

解: 不成立. 如

$$A(\lambda) = \begin{pmatrix} 1 \\ \lambda \end{pmatrix}, \qquad B(\lambda) = \begin{pmatrix} 1 \\ \lambda^2 \end{pmatrix},$$

则 $A(\lambda)$ 与 $B(\lambda)$ 不等价, 但对任意的 $k \in K$, A(k) 与 B(k) 等价.

§2 不变因子

1. 求下列多项式矩阵

$$(1) \begin{pmatrix} \lambda^2 - 1 & \lambda + 1 & 2\lambda - 1 \\ \lambda + 1 & \lambda^2 + 2\lambda + 1 & -1 \\ \lambda^2 + \lambda & \lambda^2 + 3\lambda + 2 & \lambda - 2 \end{pmatrix};$$

$$(2) \begin{pmatrix} \lambda + 1 & -1 & \lambda^2 \\ 2\lambda & \lambda^2 - 1 & \lambda^2 - \lambda \\ \lambda - 1 & \lambda^2 & -\lambda \end{pmatrix}.$$

(2)
$$\begin{pmatrix} \lambda + 1 & -1 & \lambda^2 \\ 2\lambda & \lambda^2 - 1 & \lambda^2 - \lambda \\ \lambda - 1 & \lambda^2 & -\lambda \end{pmatrix}$$

解: (1) 3; (2) 2.

(3)
$$\begin{pmatrix} \lambda + \alpha & \beta & 1 & 0 \\ -\beta & \lambda + \alpha & 0 & 1 \\ 0 & 0 & \lambda + \alpha & \beta \\ 0 & 0 & -\beta & \lambda + \alpha \end{pmatrix};$$

$$(4) \begin{pmatrix}
 \lambda - 1 & 1 & 0 & 0 \\
 0 & \lambda - 1 & 1 & 0 \\
 0 & 0 & \lambda - 1 & 1 \\
 0 & 0 & 0 & \lambda - 1
 \end{pmatrix};$$

$$(5) \begin{pmatrix}
 \lambda - \alpha & \beta & \beta & \beta & \cdots & \beta \\
 0 & \lambda - \alpha & \beta & \beta & \cdots & \beta \\
 0 & 0 & \lambda - \alpha & \beta & \cdots & \beta \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & 0 & \cdots & \lambda - \alpha
 \end{pmatrix};$$

$$(6) \begin{pmatrix}
 \lambda & 0 & 0 & \cdots & 0 & a_n \\
 -1 & \lambda & 0 & \cdots & 0 & a_{n-1} \\
 0 & -1 & \lambda & \cdots & 0 & a_{n-2} \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & -1 & \lambda + a_1
 \end{pmatrix}.$$

- (2) $1, \lambda 1, \lambda(\lambda 1)$.
- $(3) \ \ \text{III} \ \beta \neq 0, \ 1, 1, 1, [(\lambda + \alpha)^2 + \beta^2]^2; \ \ \text{III} \ \beta = 0, \ 1, 1, (\lambda + \alpha)^2, (\lambda + \alpha)^2.$
- $(4) 1, 1, 1, (\lambda 1)^4$.
- (5) $\mbox{yll } \beta \neq 0, 1, 1, \dots, 1, (\lambda \alpha)^n; \mbox{yll } \beta = 0, \lambda \alpha, \lambda \alpha, \dots, \lambda \alpha.$ (6) $1, 1, \dots, 1, \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$
- 3. 设 $A(\lambda)$ 为一个多项式矩阵,证明: ${\rm rank}\,A(\lambda)=\max\{{\rm rank}\,A(k)|k\in A(k)\}$ K}.

解: 设 rank $A(\lambda) = r$, 则 $A(\lambda)$ 有一个 r 阶子式 $M_{r+1}(\lambda) = 0$. 故对所有 的 $k \in K$, $M_{r+1}(k) = 0$, 这说明 rank $A(k) \le r$. 又因 $M_r(\lambda) \ne 0$, 存在 $c \in K$ 使 $M_r(c) \neq 0$, 这说明 $r = \max\{\operatorname{rank} A(k) \mid k \in K\}$.

4. 设 $D_k(\lambda)$ $(k=1,2,\cdots,r)$ 为 $A(\lambda)$ 的行列式因子, 证明:

$$D_k^2(\lambda) \mid D_{k-1}(\lambda)D_{k+1}(\lambda), \quad k = 2, 3, \dots, r-1.$$

证明: 设 $A(\lambda)$ 的不变因子为

$$d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda),$$

则

$$D_{k-1}(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_{k-1}(\lambda),$$

$$D_k(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_k(\lambda) = D_{k-1}(\lambda)d_k(\lambda),$$

$$D_{k+1}(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_{k+1}(\lambda),$$

所以

$$D_k^2(\lambda) = D_{k-1}^2(\lambda)d_k^2(\lambda) \mid D_{k-1}(\lambda)D_k(\lambda)d_k(\lambda)d_{k+1}(\lambda),$$

$$D_k^2(\lambda) \mid D_{k-1}(\lambda)D_{k+1}(\lambda).$$

5. 设 $A(\lambda)$ 为 n 阶方阵, 证明: $A(\lambda)$ 与 $A^{\mathrm{T}}(\lambda)$ 等价.

证明: 存在可逆矩阵 $P(\lambda), Q(\lambda)$, 使

$$P(\lambda)A(\lambda)Q(\lambda) = \begin{pmatrix} d_1(\lambda) & & & \\ & d_2(\lambda) & & \\ & & \ddots & \\ & & & d_n(\lambda) \end{pmatrix},$$

故

$$P(\lambda)A(\lambda)Q(\lambda) = \begin{pmatrix} d_1(\lambda) & & & \\ & d_2(\lambda) & & \\ & & \ddots & \\ & & & d_n(\lambda) \end{pmatrix}^{\mathrm{T}} = Q(\lambda)^{\mathrm{T}}A(\lambda)^{\mathrm{T}}P(\lambda)^{\mathrm{T}},$$

于是 $A(\lambda)$ 与 $A^{T}(\lambda)$ 等价.

*6. 设 $f_1(x), \dots, f_n(x) \in K[x]$, 且 $(f_1(x), \dots, f_n(x)) = 1$. 证明: 存在多项式 $f_{ij}(x) \in K[x]$ $(i = 2, 3, \dots, n, j = 1, 2, \dots, n)$, 使

$$\begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_{21}(x) & f_{22}(x) & \cdots & f_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1}(x) & f_{n2}(x) & \cdots & f_{nn}(x) \end{vmatrix} = 1.$$

证明:考察多项式矩阵

$$A(x) = (f_1(x), f_2(x), \cdots, f_n(x)),$$

由已知, A(x) 的不变因子为 1, 故存在可逆矩阵 P(x), 使

$$A(x)P(x) = (1, 0, \dots, 0).$$
 (*)

设 $|P(x)| = c \neq 0$, 则存在可逆矩阵 Q(x), 使

$$Q(x)P(x) = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ & & & c \end{pmatrix}. \tag{**}$$

记

$$Q(x) = (f_{ij}(x)),$$

作

$$B(x) = \begin{pmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_{21}(x) & f_{22}(x) & \cdots & f_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1}(x) & f_{n2}(x) & \cdots & f_{nn}(x) \end{pmatrix},$$

则由(*)与(**)知

$$B(x)P(x) = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ & & & c \end{pmatrix},$$

于是 |B(x)||P(x)| = c, 又因 |P(x)| = c, 得 |B(x)| = 1, 从而 $f_{ij}(x)$ 即为所求.

§3 矩阵相似的条件

1. 判断下列矩阵是否相似:

$$(1) A = \begin{pmatrix} 3 & 2 & -5 \\ 2 & 6 & -10 \\ 1 & 2 & -3 \end{pmatrix}; B = \begin{pmatrix} 6 & 20 & -34 \\ 6 & 32 & -51 \\ 4 & 20 & -32 \end{pmatrix}.$$

$$(2) A = \begin{pmatrix} 6 & 6 & -15 \\ 1 & 5 & -5 \\ 1 & 2 & -2 \end{pmatrix}; B = \begin{pmatrix} 37 & -20 & -4 \\ 34 & -17 & -4 \\ 119 & -70 & -11 \end{pmatrix}.$$

§3 矩阵相似的条件 · 185 ·

(3)
$$A = \begin{pmatrix} 2 & -2 & 1 \\ 1 & -1 & 1 \\ 1 & -2 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}.$$

解: (1) 是; (2) 是; (3) 否.

2. 证明: 任何方阵 A 与它的转置矩阵 A^{T} 相似.

证明:由于 $\lambda E - A^{\mathrm{T}} = (\lambda E - A)^{\mathrm{T}}$ 等价于 $\lambda E - A$ (习题 12–2.5),因此 A 与 A^{T} 相似.

3. 设 A 与 B 为 n 阶方阵, 证明: $(AB)^ = B^*A^*$

证明: 考察等式

$$[(\lambda E + A)(\lambda E + B)][(\lambda E + A)(\lambda E + B)]^*$$

$$= |(\lambda E + A)(\lambda E + B)|E = |\lambda E + A|E \cdot |\lambda E + B|E$$

$$= (\lambda E + A)(\lambda E + B)(\lambda E + B)^*(\lambda E + A)^*.$$

所以

$$(\lambda E + A)(\lambda E + B)\left\{\left[(\lambda E + A)(\lambda E + B)\right]^* - (\lambda E + B)^*(\lambda E + A)^*\right\} = 0.$$

比较上式两边的次数,知

$$[(\lambda E + A)(\lambda E + B)]^* - (\lambda E + B)^*(\lambda E + A)^* = 0,$$

即

$$[(\lambda E + A)(\lambda E + B)]^* = (\lambda E + B)^*(\lambda E + A)^*.$$

$$(AB)^* = B^*A^*.$$

4. 证明: 如果矩阵 $A \ni B$ 相似, 则它们的伴随矩阵 $A^ \ni B^*$ 也相似.

证明: 试 A 与 B 相似, 则存在可逆矩阵 P, 使 $P^{-1}AP = B$. 于是利用习 题 4 的结论.

$$B^* = (P^{-1}AP)^* = P^*A^*(P^{-1})^* = P^*A^*(P^*)^{-1}.$$

故 A* 与 B* 相似.

*5. 证明: 矩阵的相似与数域的扩张无关.

证明: 设 A, B 是数域 K_1 中的矩阵, 则 $\lambda E - A$ 与 $\lambda E - B$ 的不变因子都是系数在 K_1 中的多项式. 设数域 $K_1 \subset K_2$, 那么这些多项式也可以看成系数在 K_2 中的多项式, 从而不变因子组与数域的扩张无关 (最多差一个常数因子).

而矩阵 A, B 相似当且仅当 $\lambda E - A$ 与 $\lambda E - B$ 有相同的不变因子组. 因此矩阵的相似与数域的扩张无关.

*6. 设 A 为 n 阶方阵, λ_0 为 A 的一个特征值. 证明: 特征值 λ_0 的代数重数 $\geqslant n - \operatorname{rank}(\lambda_0 E - A)$.

证明: 设 λ_0 为 A 的 r 重特征值, 设 $d_1(\lambda), \cdots, d_n(\lambda)$ 为 A 的不变因子. 则 $\lambda - \lambda_0 \mid d_n(\lambda)$,但 $\lambda - \lambda_0 \mid d_{n-r}(\lambda)$,(否则, 如 $\lambda - \lambda_0 \mid d_{n-r}(\lambda)$,则 $\lambda - \lambda_0 \mid d_{n-r+1}(\lambda), \cdots, \lambda - \lambda_0 \mid d_n(\lambda)$,于是 $\lambda - \lambda_0$ 的重数 $\geq r+1$)因此存在可逆矩阵 $P(\lambda), Q(\lambda)$ 使

$$P(\lambda)(\lambda E - A)Q(\lambda) = \begin{pmatrix} d_1(\lambda) & & & & & \\ & \ddots & & & & \\ & & d_{n-r}(\lambda) & & & \\ & & & d_{n-r+1}(\lambda) & & \\ & & & & \ddots & \\ & & & & d_n(\lambda) \end{pmatrix},$$

故

$$P(\lambda_0)(\lambda_0 E - A)Q(\lambda_0) = \begin{pmatrix} d_1(\lambda_0) & & & & \\ & \ddots & & & \\ & & d_{n-r}(\lambda_0) & & \\ & & & d_{n-r+1}(\lambda_0) & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix},$$

由于 $d_1(\lambda_0) \neq 0, \cdots, d_{n-r}(\lambda_0) \neq 0$, 所以

$$\operatorname{rank}(\lambda_0 E - A) \ge \operatorname{rank} P(\lambda_0)(\lambda_0 E - A)Q(\lambda_0) \ge n - r.$$

因此

$$r \ge n - \operatorname{rank}(\lambda_0 E - A).$$

§4 初等因子

1. 求下列多项式矩阵的初等因子:

(1)
$$\begin{pmatrix} \lambda^2 + 2\lambda - 3 & \lambda - 1 & \lambda^2 + 2\lambda - 3 \\ 2\lambda^2 + 3\lambda - 5 & \lambda^2 - 1 & \lambda^2 + 3\lambda - 4 \\ \lambda^2 + \lambda - 2 & 0 & \lambda - 1 \end{pmatrix};$$

§4 初等因子 · 187 ·

(2)
$$\begin{pmatrix} \lambda^2 - 2 & \lambda^2 + 1 & 2\lambda^2 - 2 \\ \lambda^2 + 1 & \lambda^2 + 1 & 2\lambda^2 - 2 \\ \lambda^2 + 2 & \lambda^2 + 1 & 3\lambda^2 - 5 \end{pmatrix}.$$

- (2) $\lambda + 1, \lambda 3$.
- **2.** 已知多项式矩阵 $A(\lambda)$ 的初等因子, 秩 r 与阶数 n, 求 $A(\lambda)$ 的正规形:
- (1) $\lambda + 1, \lambda + 1, (\lambda + 1)^2, \lambda 1, (\lambda 1)^2; r = 4, n = 5;$
- (2) $\lambda 2, (\lambda 2)^2, (\lambda 2)^3, \lambda + 2, (\lambda + 2)^3; r = 4, n = 4$
- (3) $\lambda 1, (\lambda 1)^2, (\lambda 1)^3, \lambda + 2, (\lambda + 2)^2; r = 3, n = 5$
- **解**: (1) diag(1, λ + 1, (λ + 1)(λ 1), (λ + 1)²(λ 1)², 0).
- (2) diag $(1, \lambda 2, (\lambda 2)^2(\lambda + 2), (\lambda 2)^3(\lambda + 2)^3)$.
- (3) diag $(\lambda 1, (\lambda 1)^2(\lambda + 2), (\lambda 1)^3(\lambda + 2)^2, 0.0)$.

$$(1) \begin{pmatrix} 0 & \lambda(\lambda+1)^2 & 0 & 0\\ \lambda^2(\lambda-1) & 0 & 0 & 0\\ 0 & 0 & 0 & \lambda^2-1\\ 0 & 0 & \lambda(\lambda+1)^2 & 0 \end{pmatrix};$$

(2)
$$\begin{pmatrix} \lambda^2 - 4 & 0 & 0 & 0 \\ 0 & \lambda^2 + 2\lambda & 0 & 0 \\ 0 & 0 & \lambda^3 - 2\lambda^2 & 0 \\ 0 & 0 & 0 & \lambda^3 - 4\lambda \end{pmatrix};$$

$$\begin{pmatrix}
0 & 0 & \lambda(\lambda+1)^2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\lambda^2 - 4 & 0 & 0 & 0 \\
0 & \lambda^2 + 2\lambda & 0 & 0 \\
0 & 0 & \lambda^3 - 2\lambda^2 & 0 \\
0 & 0 & 0 & \lambda^3 - 4\lambda
\end{pmatrix};$$

$$\begin{pmatrix}
\lambda^2 + 2\lambda - 3 & \lambda^2 + \lambda - 2 & 0 & 0 \\
2\lambda^2 + 2\lambda - 4 & 2\lambda^2 + \lambda - 3 & 0 & 0 \\
0 & 0 & \lambda + 1 & \lambda + 2 \\
0 & 0 & \lambda^2 - 1 & \lambda^2 + \lambda - 2
\end{pmatrix};$$

$$\begin{pmatrix}
\lambda^2 - \lambda - 2 & 0 & \lambda^3 + \lambda^2 - \lambda - 1 & 0
\end{pmatrix};$$

(4)
$$\begin{pmatrix} \lambda^{2} - \lambda - 2 & 0 & \lambda^{3} + \lambda^{2} - \lambda - 1 & 0 \\ \lambda^{2} - 4 & 0 & \lambda^{3} + 2\lambda^{2} - \lambda - 2 & 0 \\ 0 & \lambda^{2} + 2\lambda & 0 & \lambda^{2} + 6\lambda - 2 \\ 0 & \lambda^{2} + \lambda - 2 & 0 & \lambda^{2} + 5\lambda - 7 \end{pmatrix}$$

解: (1) diag(1, $\lambda(\lambda+1)$, $\lambda(\lambda+1)^2(\lambda-1)$, $\lambda^2(\lambda+1)^2(\lambda-1)$).

- (2) diag $(1, \lambda(\lambda^2 4), \lambda(\lambda^2 4), \lambda^2(\lambda^2 4))$.
- (3) diag $(1, \lambda 1, (\lambda 1)(\lambda + 1), 0)$.
- (4) diag $(1, 1, \lambda^2 4, 0)$.
- 4. 求下列矩阵的不变因子, 行列式因子与初等因子:

$$(1) \begin{pmatrix} 4 & 2 & -5 \\ 6 & 4 & -9 \\ 5 & 3 & -7 \end{pmatrix}; \qquad (2) \begin{pmatrix} -2 & 1 & 3 \\ 6 & -3 & -9 \\ 4 & -2 & -6 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}; \qquad (4) \begin{pmatrix} 2 & -3 & 0 & 0 \\ 3 & -4 & 0 & 0 \\ 1 & 5 & 1 & -2 \\ 0 & 2 & 2 & -3 \end{pmatrix}.$$

解: (1) 不变因子: $1,1,\lambda^2(\lambda-1)$, 行列式因子: $1,1,\lambda^2(\lambda-1)$, 初等因子: $\lambda^2,\lambda-1$.

- (2) 不变因子: $1, \lambda, \lambda(\lambda+1)$, 行列式因子: $1, \lambda, \lambda^2(\lambda+1)$, 初等因子: $\lambda, \lambda, \lambda+1$.
- (3) 不变因子: $1, \underbrace{\lambda, \cdots, \lambda}_{n-2 \wedge}, \lambda(\lambda n)$, 行列式因子: $1, \lambda, \lambda^2, \cdots, \lambda^{n-2}$, $\lambda^{n-1}(\lambda n)$, 初等因子: $\underbrace{\lambda, \cdots, \lambda}_{n-2 \wedge}, \lambda n$.
- (4) 不变因子: $1,1,1,(\lambda+1)^4$, 行列式因子: $1,1,1,(\lambda+1)^4$, 初等因子: $(\lambda+1)^4$.
- **5.** 设 λ_0 为 n 阶矩阵 A 的一个特征值, 证明: 矩阵 A 的属于特征值 λ_0 的 初等因子的个数等于 $n \text{rank}(\lambda_0 E A)$.

证明: 设 $d_1(\lambda), \dots, d_n(\lambda)$ 为 A 的不变因子. 如 A 的属于特征值 λ_0 的初等因子的个数为 r, 则

 $\lambda - \lambda_0 \mid d_n(\lambda), \cdots, \lambda - \lambda_0 \mid d_{n-r+1}(\lambda), \lambda - \lambda_0 \nmid d_{n-r}(\lambda), \cdots, \lambda - \lambda_0 \nmid d_1(\lambda).$ 因此存在可逆矩阵 $P(\lambda), Q(\lambda)$ 使

$$P(\lambda)(\lambda E - A)Q(\lambda) = \begin{pmatrix} d_1(\lambda) & & & \\ & \ddots & & \\ & & d_n(\lambda) \end{pmatrix},$$

$$P(\lambda_0)(\lambda_0 E - A)Q(\lambda_0) = \begin{pmatrix} d_1(\lambda_0) & & & \\ & \ddots & & \\ & & d_{n-r}(\lambda_0) & \\ & & & 0 \end{pmatrix},$$

$$0 & & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix},$$

§ 5 若尔当典范形 · 189 ·

于是

$$n-r = \operatorname{rank} P(\lambda_0)(\lambda_0 E - A)Q(\lambda_0) = \operatorname{rank}(\lambda_0 E - A),$$

即

$$r = n - \operatorname{rank}(\lambda_0 E - A).$$

§5 若尔当典范形

1. 求下列矩阵的若尔当典范形:

$$(1) \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 2 & 6 & -15 \\ 1 & 1 & -5 \\ 1 & 2 & -6 \end{pmatrix};$$

$$(3) \begin{pmatrix} 13 & 16 & 14 \\ -6 & -7 & -6 \\ -6 & -8 & -7 \end{pmatrix}; \qquad (4) \begin{pmatrix} 9 & -6 & -2 \\ 18 & -12 & -3 \\ 18 & -9 & -6 \end{pmatrix};$$

$$(5) \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}; \qquad (6) \begin{pmatrix} 1 & -2 & -1 \\ -2 & 4 & 2 \\ 3 & -6 & -3 \end{pmatrix};$$

$$(7) \begin{pmatrix} 1 & -1 & 1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{pmatrix}; \qquad (8) \begin{pmatrix} 5 & 2 & 6 \\ -2 & 0 & 3 \\ 2 & 1 & -2 \end{pmatrix};$$

$$(9) \begin{pmatrix} -2 & 1 & 1 & -2 \\ 5 & -4 & 2 & 9 \\ -3 & 1 & 2 & -2 \\ 2 & -4 & 3 & 8 \end{pmatrix}; \qquad (10) \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix};$$

$$(11) \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}; \qquad (12) \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & n - 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix};$$

$$\mathbf{MF}: (1) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0$$

$$(3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}; \qquad (4) \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix};$$

$$(5) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (6) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix};$$

$$(7) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad (8) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + 2\sqrt{6} & 0 \\ 0 & 0 & 1 - 2\sqrt{6} \end{pmatrix};$$

$$(9) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \qquad (10) \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix};$$

(11) diag(1, ε_1 , ε_2 , \cdots , ε_{n-1}), 1, ε_1 , ε_2 , \cdots , ε_{n-1} 是 $x^n - 1$ 的 n 个根;

$$(12) \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

2. 设矩阵

$$A = \begin{pmatrix} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & 2 \end{pmatrix}.$$

- (1) 矩阵 A 可能有怎样的若尔当典范形?
- (2) 试确定 A 可对角化的条件.

解: (1) A 仅有一个特征值 $\lambda_0 = 2$, 所以 A 的若尔当块的块数 = A 的初等因子的个数 = $\operatorname{rank}(\lambda_0 E - A)$ (参见习题 12–4.5) 而

$$\begin{aligned} & \operatorname{rank}(\lambda_0 E - A) \\ & = \begin{cases} 2 & \text{\textit{if }} ac \neq 0, \\ 1 & \text{\textit{if }} a, c \text{ 中一个等于 0}, \text{ 另一个不等于 0}, \text{ 或 } a, c \text{ 都是 0}, \text{ 但 } b \neq 0 \text{ 时}, \\ 0 & \text{\textit{if }} a = b = c = 0 \text{ 时}. \end{cases}$$

§5 若尔当典范形 · 191 ·

因此当 $ac \neq 0$ 时,A 的若尔当典范形是 $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$; 当 a,c 中一个等于 0,另 一个不等于 0,或 a,c 都是 0,但 $b \neq 0$ 时,A 的若尔当典范形是 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$;

一个不等于
$$0$$
, 或 a , c 都是 0 , 但 $b \neq 0$ 时, A 的若尔当典范形是 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$;

当
$$a=b=c=0$$
 时, A 的若尔当典范形是 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- (2) A 可对角化 $\iff a=b=c=0$.
- 3. 设矩阵 A 的特征多项式

$$\chi_A(\lambda) = \lambda^5 + \lambda^4 - 5\lambda^3 - \lambda^2 + 8\lambda - 4.$$

试求出 A 所有可能的若尔当典范形.

解: $\chi_A(\lambda) = (\lambda - 1)^3 (\lambda + 2)^2$, 因此 A 的可能的初等因子为:

(a)
$$\lambda - 1, \lambda - 1, \lambda - 1, \lambda + 2, \lambda + 2;$$

(b)
$$(\lambda - 1)^2$$
, $\lambda - 1$, $\lambda + 2$, $\lambda + 2$;

(c)
$$(\lambda - 1)^3, \lambda + 2, \lambda + 2;$$

(d)
$$\lambda - 1, \lambda - 1, \lambda - 1, (\lambda + 2)^2;$$

(e)
$$(\lambda - 1)^2$$
, $\lambda - 1$, $(\lambda + 2)^2$;

(f)
$$(\lambda - 1)^3$$
, $(\lambda + 2)^2$.

故 A 的可能的若尔当典范形为:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}.$$

*4. 设矩阵 A 的秩为 1. 证明: A 的若尔当典范形只可能为

$$\begin{pmatrix} \beta & & & & \\ & 0 & & & \\ & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}, \qquad \quad \sharp \Pi \beta = \operatorname{Tr} A \neq 0,$$

或

证明:由于 A 的秩等于 1,因此 J_A 的秩也等于 1.故 A 的若尔当块中仅有一个的秩为 1,其余的秩都等于 0. 而秩为 0 的若尔当块就是一阶零矩阵 (0),秩为 1 的若尔当块可能是一阶阵 (β) 或 2 阶若尔当块 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. 所以 A 的若尔当典范形只可能为

$$\begin{pmatrix} \beta & & & & & \\ & 0 & & & & \\ & & 0 & & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}, \quad \vec{\mathfrak{g}} \quad \begin{pmatrix} 0 & 1 & & & \\ 0 & 0 & & & \\ & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}.$$

又因 $\operatorname{Tr} J_A = \operatorname{Tr} A$, 即得所需结论.

*5. 利用上题的结论计算下列矩阵的行列式:

$$\begin{pmatrix}
a_1 & x & x & \cdots & x \\
x & a_2 & x & \cdots & x \\
x & x & a_3 & \cdots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & x & \cdots & a_n
\end{pmatrix}, \quad a_i \neq x, \quad (2) \quad \begin{pmatrix}
x_0 & a_1 & a_2 & \cdots & a_n \\
a_0 & x_1 & a_2 & \cdots & a_n \\
a_0 & a_1 & x_2 & \cdots & a_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_0 & a_1 & a_2 & \cdots & x_n
\end{pmatrix},$$

 $x_i \neq a_i$

解: (1)
$$|A| = \left| \begin{pmatrix} a_1 - x & & \\ & \ddots & \\ & & a_n - x \end{pmatrix} + x \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \right|$$

§ 5 若尔当典范形 · 193 · ·

$$= \prod_{i=1}^{n} (a_i - x) \left| E + x \begin{pmatrix} \frac{1}{a_1 - x} & \dots & \frac{1}{a_1 - x} \\ \frac{1}{a_2 - x} & \dots & \frac{1}{a_2 - x} \\ \vdots & \ddots & \vdots \\ \frac{1}{a_n - x} & \dots & \frac{1}{a_n - x} \end{pmatrix} \right|$$

$$= \prod_{i=1}^{n} (a_i - x) \left| E + x \begin{pmatrix} \sum_{i=1}^{n} \frac{1}{a_i - x} & 0 \\ & & \ddots \\ 0 & & 0 \end{pmatrix} \right|$$

$$= \prod_{i=1}^{n} (a_i - x) \left[1 + \sum_{i=1}^{n} \frac{x}{a_i - x} \right].$$

(2) 同样的方法可得

$$|A| = \prod_{i=0}^{n} (x_i - a_i) \left[1 + \sum_{i=0}^{n} \frac{a_i}{x_i - a_i} \right].$$

*6. 设 λ_0 为 n 阶矩阵 A 的一个特征值. 令

$$n_0 = \operatorname{rank} E = n, n_k = \operatorname{rank} (\lambda_0 E - A)^k,$$

 $a_k = n_{k-1} - n_k, b_k = a_k - a_{k+1}, k = 1, 2, \cdots$

如下表所示:

证明: (1) 矩阵 A 的属于特征值 λ_0 的若尔当块的块数等于 a_1 ;

(2) 矩阵 A 的属于特征值 λ_0 的 k 阶若尔当块的块数等于 b_k ;

证明: (1) 由习题 12-4.5 立即可得.

(2) 由于 n_i 是矩阵的相似不变量,故所有的 a_i, b_i 也都是矩阵的相似不变量. 设 A 的属于特征值 λ_0 的 k 阶若尔当块的块数为 m_k ,而其余不属于特征值 λ_0 的各若尔当块的阶数之和为 m,则

$$n_0 = \sum_{k \ge 1} m_k k + m,$$

从而

$$\begin{split} a_1 &= \left(\sum_{k \geq 1} m_k k + m\right) - \left(\sum_{k \geq 1} m_k (k-1) + m\right) = \sum_{k \geq 1} m_k, \\ a_2 &= \left(\sum_{k \geq 1} m_k (k-1) + m\right) - \left(\sum_{k \geq 2} m_k (k-2) + m\right) \\ &= \left(\sum_{k \geq 2} m_k (k-1) + m\right) - \left(\sum_{k \geq 2} m_k (k-2) + m\right) = \sum_{k \geq 2} m_k \\ & \dots \\ a_r &= \left(\sum_{k \geq r-1} m_k (k-r) + m\right) - \left(\sum_{k \geq r} m_k (k-r) + m\right) \\ &= \left(\sum_{k \geq r} m_k (k-r) + m\right) - \left(\sum_{k \geq r} m_k (k-r) + m\right) = \sum_{k \geq r} m_k \end{split}$$

所以

$$b_r = a_r - a_{r+1} = \sum_{k \ge r} m_k - \sum_{k \ge r+1} m_k = m_r.$$

*7. 利用上题的结论计算下列矩阵的若尔当典范形:

$$\begin{pmatrix}
1 & -3 & 0 & 3 \\
-2 & -6 & 0 & 13 \\
0 & -3 & 1 & 3 \\
-1 & -4 & 0 & 8
\end{pmatrix};$$

$$(2) \begin{pmatrix}
3 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
3 & 0 & 5 & -3 \\
4 & -1 & 3 & -1
\end{pmatrix}.$$

§ 5 若尔当典范形 · 195 · .

 \mathbf{M} : (1) 易知, $\lambda_0 = 1$ 是矩阵的一个特征值. 可得下表:

所以

$$b_1 = 1, \qquad b_2 = , \qquad b_3 = 1.$$

即此矩阵有1阶与3阶的若尔当块各1个. 从矩阵的阶数可知它没有别的特征值. 因此其若尔当典范形为

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

(2) 此矩阵仅有 1 个特征值 $\lambda_0 = 2$. 可得下表:

故此矩阵有2个2阶若尔当块. 因此其若尔当典范形为

$$\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right).$$

*8. 设矩阵 A 的特征值 (在复数范围内) 全是 1. 证明: A^k 与 A 相似, 其中, k 为任一非零整数 (正的或负的).

证明: 先设 A 为若尔当块:

$$J = \begin{pmatrix} 1 & 1 & & & 0 \\ & 1 & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ 0 & & & & 1 \end{pmatrix}.$$

若 k > 0, 则

$$J^{k} = \begin{pmatrix} 1 & k & & & * \\ & 1 & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & k \\ 0 & & & 1 \end{pmatrix}.$$

于是 J^k 的若尔当块的块数 = $r - \text{rank}(E - J^k) = r - (r - 1) = 1$. 所以 J^k 的若尔当典范形也是 J, 从而 J^k 与 J 相似.

又因

$$J^{-1} = \begin{pmatrix} 1 & -1 & & & * \\ & 1 & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & -1 \\ 0 & & & 1 \end{pmatrix}.$$

同理可证 J^{-1} 与 J 相似, 于是 J^{-k} 与 J^k 相似, 从而也与 J 相似. 对于一般的情形, 设 A 的若尔当典范形为

$$J_A = \left(\begin{array}{ccc} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{array}\right).$$

则

$$A^k \sim J_A^k \sim \left(egin{array}{ccc} J_1^k & & & & & \\ & J_2^k & & & & \\ & & & \ddots & & \\ & & & & J_s^k \end{array}
ight) \sim J_A \sim A.$$

§6 矩阵的极小多项式

1. 求下列矩阵的极小多项式:

$$\begin{pmatrix}
1 & 2 & -3 \\
1 & 1 & 2 \\
1 & -1 & 4
\end{pmatrix};$$

$$(2) \begin{pmatrix}
2 & -5 & 2 \\
-1 & 5 & -3 \\
1 & 0 & -1
\end{pmatrix};$$

$$(3) \begin{pmatrix} 3 & -1 & 3 & -1 \\ -1 & 3 & -1 & 3 \\ -3 & 1 & -3 & 1 \\ 1 & -3 & 1 & -3 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 2 & 0 & 0 \\ -2 & -3 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{pmatrix};$$

$$(5) \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix};$$

$$(5) \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 3 & 4 & \cdots & n & 1 \end{pmatrix}.$$

$$\mathbf{F}: (1) (\lambda - 2)^3.$$

- (2) $\lambda^3 6\lambda^2 4\lambda$.
- (3) λ^2 .
- $(4) (\lambda + 1)^2$.
- (5) $\lambda(\lambda-n)$.
- (6) 设

$$P = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad f(\lambda) = 1 + 2\lambda + \dots + n\lambda^{n-1}.$$

则

$$A = E + 2P + 3P^{2} + \dots + nP^{n-1} = f(P).$$

由于 P 的特征值为 $1, \varepsilon, \varepsilon^2, \cdots, \varepsilon^{n-1}$, 其中 ε 为 n 次本原单位根. 所以 A 的特 征多项式为

$$\chi_A(\lambda) = (\lambda - f(1))(\lambda - f(\varepsilon)) \cdots (\lambda - f(\varepsilon^{n-1})) = \left(\lambda - \frac{n(n+1)}{2}\right) g(\lambda).$$

因为

$$f(\lambda) = \frac{n\lambda^{n+1} - (n+1)\lambda^n + 1}{(1-\lambda)^2},$$

所以

$$f(\varepsilon^k) = \frac{n\varepsilon - n}{(1 - \varepsilon^k)^2} = -\frac{n}{1 - \varepsilon^k}.$$
 (*)

$$g(\lambda) = \prod_{k=1}^{n-1} \left(\lambda + \frac{n}{1 - \varepsilon^k} \right) = \frac{1}{\prod_{k=1}^{n-1} (1 - \varepsilon^k)} \prod_{k=1}^{n-1} (\lambda + n - \lambda \varepsilon^k)$$

$$= \frac{1}{n} \prod_{k=1}^{n-1} \lambda \left(\frac{\lambda + n}{\lambda} - \varepsilon^k \right) = \frac{\lambda^{n-1}}{n} \cdot \frac{\left(\frac{\lambda + n}{\lambda} \right)^n - 1}{\frac{\lambda + n}{\lambda} - 1}$$

$$= \frac{\lambda^{n-1}}{n^2} \left[\left(\frac{\lambda + n}{\lambda} \right)^n - 1 \right] = \frac{1}{n^2} [(\lambda + n)^n - \lambda^n].$$

所以

$$\chi_A(\lambda) = \frac{1}{n^2} \left(\lambda - \frac{n(n+1)}{2}\right) [(\lambda + n)^n - \lambda^n].$$

又由 (*) 知, $\chi_A(\lambda)$ 无重根, 故 A 的极小多项式就是其特征多项式, 从而 A 的极小多项式为

$$\frac{1}{n^2} \left(\lambda - \frac{n(n+1)}{2} \right) \left[(\lambda + n)^n - \lambda^n \right].$$

2. 设 A 为 n 阶方阵, $m(\lambda)$ 是它的极小多项式, $g(\lambda)$ 为任一多项式, $d(\lambda) = (m(\lambda), g(\lambda))$.

证明: (1) $\operatorname{rank} d(A) = \operatorname{rank} g(A)$;

- (2) g(A) 可逆的充分必要条件是 $g(\lambda)$ 与 $m(\lambda)$ 互素;
- (3) 如 g(A) 可逆, 则 $g^{-1}(A)$ 一定是 A 的多项式.

证明: (1) 存在多项式 $u(\lambda), v(\lambda)$, 使

$$m(\lambda)u(\lambda) + g(\lambda)v(\lambda) = d(\lambda).$$

故

$$m(A)u(A) + g(A)v(A) = d(A).$$

由 m(A) = 0 可得 d(A) = g(A)v(A). 所以

$$\operatorname{rank} d(A) \leq \operatorname{rank} g(A).$$

又因 $d(\lambda) \mid g(\lambda)$, 存在 $h(\lambda)$ 使 $d(\lambda)h(\lambda) = g(\lambda)$, 即 d(A)h(A) = g(A). 于是 rank $g(A) \leq \operatorname{rank} d(A)$.

最后得

$$\operatorname{rank} g(A) = \operatorname{rank} d(A).$$

(2) (⇒) 设 $\lambda_1, \dots, \lambda_n$ 为 A 的全部特征值. 则 g(A) 的全部特征值为 $g(\lambda_1), \dots, g(\lambda_n)$. 如 g(A) 可逆, 则 g(A) 的每个特征值 $g(\lambda_i) \neq 0$. 由于 $m(\lambda)$ 的根都是 A 的特征值, 因此 $g(\lambda)$ 与 $m(\lambda)$ 无公共根, 从而 $(g(\lambda), m(\lambda)) = 1$.

(\Leftarrow) 如 $(g(\lambda), m(\lambda)) = 1$, 则由 (1) 所证, $d(\lambda) = 1$, 因此 d(A) = E. 故对于 (1) 中的 $v(\lambda)$, 有

$$g(A)v(A) = E,$$

g(A) 可逆.

- (3) 如 g(A) 可逆, 在 (2) 的充分性的证明中, 已得 g(A)v(A) = E. 所以 $g(A)^{-1} = v(A)$ 为 A 的多项式.
- **3.** 证明: 矩阵 A (在复数域上) 可对角化的充分必要条件是其极小多项式无重根.

证明: (\Rightarrow) A 可对角化, 从而此对角形就是 A 的若尔当典范形. 因此 A 的若尔当块全是一阶的, A 的初等因子全是一次的. 而 A 的极小多项式作为初等因子的最小公倍式, 一定是不同一次因子的乘积, 从而无重根.

 (\Leftarrow) 如 A 的极小多项式无重根,则此极小多项式是不同一次因子的乘积. 于是 A 的初等因子都是一次的,即若尔当典范形中的若尔当块都是一阶的,是一个对角矩阵,说明 A 可对角化.

4.
$$\ \mathcal{U} A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}, \ \mathcal{R} A^{100}.$$

解: A 的特征多项式为 $\lambda(\lambda^2-2)$. 令

$$\lambda^{100} = \lambda(\lambda^2 - 2)g(\lambda) + a\lambda^2 + b\lambda + c,$$

分别以 $\lambda = 0, \sqrt{2}, -\sqrt{2}$ 代入上式, 的

$$c = 0,$$
 $2^{50} = 2a + \sqrt{2}b,$ $2^{50} = 2a - \sqrt{2}b.$

解得 b = 0, $a = 2^{49}$. 所以

$$A^{100} = 2^{49}A^2 = 2^{49} \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

*5. 证明: 如果对任意 $k \in \mathbb{N}$ 都有 $\operatorname{Tr}(A^k) = 0$, 则 $\chi_A(\lambda) = \lambda^n$.

证明: 由于矩阵的迹就是矩阵的全部特征值之和, 设 A 的特征值为 $\lambda_1, \dots, \lambda_n$, 则

$$\operatorname{Tr}(A^k) = \lambda_1^k + \dots + \lambda_n^k = s_k.$$

由 $\operatorname{Tr}(A^k)=0$ 可得 $s_k=0$. 从牛顿公式可得 $\lambda_1,\cdots,\lambda_n$ 的所有初等对称多项式 $\sigma_1=\cdots=\sigma_n=0$, 于是

$$\chi_A(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n) = \lambda^n.$$

*6. 设 A 的特征多项式 $\chi(\lambda) = h(\lambda)g(\lambda)$, 且 $(h(\lambda), g(\lambda)) = 1$, 证明: rank $h(A) = \deg g(\lambda)$, rank $g(A) = \deg h(\lambda)$.

证明:设 A 的特征值为 $\lambda_1, \dots, \lambda_n$,则 h(A) 的特征值为 $h(\lambda_1), \dots, h(\lambda_n)$, g(A) 的特征值为 $g(\lambda_1), \dots, g(\lambda_n)$.由于 $\chi(\lambda) = h(\lambda)g(\lambda)$ 且 $\left(h(\lambda), g(\lambda)\right) = 1$, 因此 $\{h(\lambda_i)\}$ 中 0 的个数等于 $\deg h(\lambda)$, $\{g(\lambda_i)\}$ 中 0 的个数等于 $\deg g(\lambda)$, 且 $\deg h(\lambda) + \deg g(\lambda) = n$.

由习题 12-3.6 知,

$$\deg h(\lambda) \ge n - \operatorname{rank}(h(A)) \tag{1}$$

$$\deg g(\lambda) \ge n - \operatorname{rank}(g(A)) \tag{2}$$

因此

$$n = \deg h(\lambda) + \deg g(\lambda) \ge 2n - (\operatorname{rank} h(A) + \operatorname{rank} g(A)),$$
$$\operatorname{rank} h(A) + \operatorname{rank} g(A) \ge n.$$

又因

$$h(A)g(A) = \chi(A) = 0,$$

$$\operatorname{rank} h(A) + \operatorname{rank} g(A) < n.$$

于是

$$\operatorname{rank} h(A) + \operatorname{rank} g(A) = n.$$

从而 (1), (2) 式全都取等号, 使得

$$\operatorname{rank} h(A) = n - \operatorname{deg} h(\lambda) = \operatorname{deg} g(\lambda),$$
$$\operatorname{rank} g(A) = n - \operatorname{deg} g(\lambda) = \operatorname{deg} h(\lambda).$$

第十四章 若尔当典范形的讨论与应用

§1 若尔当典范形的几何意义

1. 对下列矩阵 A, 求变换矩阵 T, 使 $T^{-1}AT$ 为若尔当典范形:

解: (1) 解一(初等变换法):

先作初等变换把特征矩阵 $\lambda E - A$ 化为对角形:

$$\begin{pmatrix} \lambda E - A \\ E \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4\lambda + 4 & \lambda^2 - 2\lambda - 3 \\ 0 & 3\lambda + 7 & \lambda^2 - \lambda - 6 \\ 0 & 0 & 1 \\ 1 & 4 & \lambda - 1 \\ 1 & 3 & \lambda - 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & (\lambda + 1)^2 \\ 0 & 1 & 1 \\ 1 & \lambda - 1 & \lambda + 3 \\ 1 & \lambda - 1 & \lambda + 2 \end{pmatrix}.$$

因此 A 的初等因子是 $(\lambda-3),(\lambda+1)^2$. A 的若尔当典范形是

$$J = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix},$$
$$Q_1(\lambda) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & \lambda - 1 & \lambda + 3 \\ 1 & \lambda - 1 & \lambda + 2 \end{pmatrix}.$$

再作初等变换把特征矩阵 $\lambda E - J$ 化为与上面相同的对角形:

$$\begin{pmatrix} \lambda E - J \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} \lambda - 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & (\lambda + 1)^2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \lambda + 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & (\lambda + 1)^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda + 1 \end{pmatrix}.$$

因此

$$Q_2(\lambda) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda + 1 \end{pmatrix}.$$

再求 $Q_1(\lambda)Q_2(\lambda)^{-1}$ (只做初等列变换),

$$\begin{pmatrix} Q_2(\lambda) \\ Q_1(\lambda) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda + 1 \\ 0 & 1 & 1 \\ 1 & \lambda - 1 & \lambda + 3 \\ 1 & \lambda - 1 & \lambda + 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ \lambda - 1 & 2 & 1 \\ \lambda - 1 & 1 & 1 \end{pmatrix}.$$

于是

$$Q_1(\lambda)Q_2(\lambda)^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ \lambda - 1 & 2 & 1 \\ \lambda - 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda + \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

用 J 从右边代入 λ , 即得

$$T = Q_0 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

可以验证 TJ = AT, 从而

$$T^{-1}AT = J = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

解二 (子空间求基):

先算出 A 的初等因子是 $(\lambda - 3), (\lambda + 1)^2$. 因此 A 的若尔当典范形是

$$J = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

与此典范形对应的基向量是 $\eta'_{11}, \eta'_{21}, \eta'_{22}$. 其中 η'_{11} 满足的方程是

$$(A - 3E)\eta'_{11} = \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \eta'_{11} = 0,$$

解得 $\eta'_{11} = (1,2,2)^{\mathrm{T}}$.

η'22 应满足的条件是

$$(A+E)^2 \eta'_{22} = \begin{pmatrix} 16 & -16 & 16 \\ 32 & -32 & 32 \\ 32 & -32 & 32 \end{pmatrix} \eta'_{22} = 0,$$

$$(A+E)\eta'_{22} = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \eta'_{22} \neq 0.$$

可取 $\eta'_{22} = (0,1,1)^{\mathrm{T}}$,从而

$$\eta'_{21} = (A+E)\eta'_{22} = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

于是

$$T = (\eta'_{11}, \eta'_{21}, \eta'_{22}) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

(2) 解一(初等变换法):

先作初等变换把特征矩阵 $\lambda E - A$ 化为对角形:

$$\begin{pmatrix} \lambda E - A \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} \lambda - 3 & 2 & -1 \\ -2 & \lambda + 2 & -2 \\ -3 & 6 & \lambda - 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & (\lambda - 2)^2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & \lambda + 1 \end{pmatrix}.$$

因此 A 的初等因子是 $(\lambda - 2), (\lambda - 2)^2$. A 的若尔当典范形是

$$J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix},$$

$$Q_1(\lambda) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & \lambda + 1 \end{pmatrix}.$$

再作初等变换把特征矩阵 $\lambda E - J$ 化为与上面相同的对角形:

$$\begin{pmatrix} \lambda E - J \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} \lambda - 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & (\lambda - 2)^2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \lambda - 2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & (\lambda - 2)^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda - 2 \end{pmatrix}.$$

因此

$$Q_2(\lambda) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda - 2 \end{pmatrix}.$$

再求 $Q_1(\lambda)Q_2(\lambda)^{-1}$ (只做初等列变换),

$$\begin{pmatrix} Q_2(\lambda) \\ Q_1(\lambda) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \lambda - 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & \lambda + 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix}.$$

于是

$$Q_1(\lambda)Q_2(\lambda)^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix} = Q_0 = T.$$

从而

$$T^{-1}AT = J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

解二 (子空间求基):

先算出 A 的初等因子是 $(\lambda-2),(\lambda-2)^2,$ 因此 A 的极小多项式 $m_A(\lambda)=(\lambda-2)^2,$ A 的若尔当典范形是

$$J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

与此典范形对应的基向量是 $\eta'_{11}, \eta'_{21}, \eta'_{22}$.

由于 $(A-2E)^2=0$, η'_{22} 应满足的条件是

$$(A-2E)\eta'_{22} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 3 & -6 & 3 \end{pmatrix} \eta'_{22} \neq 0.$$

可取 $\eta'_{22} = (0,0,1)^{\mathrm{T}}$, 从而

$$\eta'_{21} = (A - 2E)\eta'_{22} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 3 & -6 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

 η'_{11} 满足的方程是

$$(A - 2E)\eta'_{11} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 3 & -6 & 3 \end{pmatrix} \eta'_{11} = 0,$$

可取一个解 $\eta'_{11} = (0,1,2)^{\mathrm{T}}$, 它与 η'_{21} 线性无关.

于是

$$T = (\eta'_{11}, \eta'_{21}, \eta'_{22}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix}.$$

(3) 解一(初等变换法):

先作初等变换把特征矩阵 $\lambda E - A$ 化为对角形:

$$\begin{pmatrix} \lambda E - A \\ E \end{pmatrix} = \begin{pmatrix} \lambda - 3 & 4 & 0 & -2 \\ -4 & \lambda + 5 & 2 & -4 \\ 0 & 0 & \lambda - 3 & 2 \\ 0 & 0 & -2 & \lambda + 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & (\lambda^2 - 1)^2 & 0 \\ 0 & 0 & 0 & 32 & 0 \\ 0 & 0 & 2 & 2(-3\lambda^3 - \lambda^2 + 3\lambda + 17) \\ 0 & 1 & -\lambda + 3 & 3\lambda^4 - 8\lambda^3 - 6\lambda^2 + 24\lambda + 19 \\ 1 & 0 & 4 & 4(-3\lambda^3 - \lambda^2 + 7\lambda + 5) \end{pmatrix}.$$

因此 A 的初等因子是 $(\lambda - 1)^2$, $(\lambda + 1)^2$. A 的若尔当典范形是

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

$$Q_1(\lambda) = \begin{pmatrix} 0 & 0 & 0 & 32 \\ 0 & 0 & 2 & 2(-3\lambda^3 - \lambda^2 + 3\lambda + 17) \\ 0 & 1 & -\lambda + 3 & 3\lambda^4 - 8\lambda^3 - 6\lambda^2 + 24\lambda + 19 \\ 1 & 0 & 4 & 4(-3\lambda^3 - \lambda^2 + 7\lambda + 5) \end{pmatrix}.$$

再作初等变换把特征矩阵 $\lambda E - J$ 化为与上面相同的对角形:

$$\begin{pmatrix} \lambda E - J \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ (\lambda - 1)^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & (\lambda + 1)^2 & 0 \\ 1 & 0 & 0 & 0 \\ \lambda - 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \lambda + 1 & 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & (\lambda^2 - 1)^2 \\ 0 & \lambda + 2 & 0 & \lambda^2 + 2\lambda + 1 \\ 1 & \lambda^2 + \lambda - 2 & 0 & \lambda^3 + \lambda^2 - \lambda - 1 \\ 0 & \lambda - 2 & 0 & \lambda^2 - 2\lambda + 1 \\ 0 & (\lambda - 2)(\lambda + 1) & 1 & \lambda^3 - \lambda^2 - \lambda + 1 \end{pmatrix}.$$

因此

$$Q_2(\lambda) = \begin{pmatrix} 0 & \lambda + 2 & 0 & \lambda^2 + 2\lambda + 1 \\ 1 & \lambda^2 + \lambda - 2 & 0 & \lambda^3 + \lambda^2 - \lambda - 1 \\ 0 & \lambda - 2 & 0 & \lambda^2 - 2\lambda + 1 \\ 0 & (\lambda - 2)(\lambda + 1) & 1 & \lambda^3 - \lambda^2 - \lambda + 1 \end{pmatrix}.$$

再求 $Q_1(\lambda)Q_2(\lambda)^{-1}$ (只做初等列变换),

$$\begin{pmatrix} Q_2(\lambda) \\ Q_1(\lambda) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -8\lambda + 16 \\ \frac{1}{2}(3\lambda^4 - 5\lambda^3 - 5\lambda^2 - 11\lambda + 34) & 0 \\ \frac{1}{4}(-3\lambda^5 + 14\lambda^4 - 10\lambda^3 - 35\lambda^2 + 27\lambda + 39) & 0 \\ 3\lambda^4 - 5\lambda^3 - 9\lambda^2 + 8\lambda + 11 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
8\lambda + 16 & 0 & 1 \\
\frac{1}{2}(-3\lambda^4 - 7\lambda^3 + \lambda^2 + 19\lambda + 30) & 1 \\
\frac{1}{4}(3\lambda^5 - 2\lambda^4 - 22\lambda^3 + 15\lambda^2 + 57\lambda + 25) & -\lambda + 3 \\
-3\lambda^4 - 7\lambda^3 + 5\lambda^2 + 15\lambda + 6 & 4
\end{array}$$

于是

$$Q_{1}(\lambda)Q_{2}(\lambda)^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda^{5} + \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & -3 & 0 \\ 7 & 0 & -1 & 0 \\ 6 & 0 & -6 & 0 \end{pmatrix} \lambda^{4}$$

$$+ \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ -5 & 0 & -7 & 0 \\ -5 & 0 & -11 & 0 \\ -10 & 0 & -14 & 0 \end{pmatrix} \lambda^{3} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 & 0 \\ -10 & 0 & 2 & 0 \\ -35 & 0 & 15 & 0 \\ -36 & 0 & 20 & 0 \end{pmatrix} \lambda^{2}$$

$$+ \frac{1}{4} \begin{pmatrix} -32 & 0 & 32 & 0 \\ -22 & 0 & 38 & 0 \\ 27 & 0 & 57 & -4 \\ 32 & 0 & 60 & 0 \end{pmatrix} \lambda + \frac{1}{4} \begin{pmatrix} 64 & 0 & 64 & 0 \\ 68 & 0 & 60 & 8 \\ 39 & 0 & 25 & 12 \\ 44 & 4 & 24 & 16 \end{pmatrix}.$$

用 J 从右边代入 λ , 即得

$$T = Q_0 = \begin{pmatrix} 8 & -8 & 8 & 8 \\ 8 & -12 & 8 & 6 \\ 8 & -8 & 0 & 0 \\ 8 & -12 & 0 & 0 \end{pmatrix}.$$

可以验证 TJ = AT, 从而

$$T^{-1}AT = J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

解二 (子空间求基):

先算出 A 的初等因子是 $(\lambda-1)^2, (\lambda+1)^2$. 因此 A 的若尔当典范形是

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

与此典范形对应的基向量是 $\eta'_{11}, \eta'_{12}, \eta'_{21}, \eta'_{22}$. 其中 η'_{12} 满足的方程是

$$(A - E)^2 \eta'_{12} = \begin{pmatrix} -12 & 16 & 12 & -16 \\ -16 & 20 & 16 & -20 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \eta'_{12} = 0,$$

$$(A-E)\eta'_{12} = \begin{pmatrix} 2 & -4 & 0 & 2 \\ 4 & -6 & -2 & 4 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 2 & -2 \end{pmatrix} \eta'_{12} \neq 0.$$

解得 $\eta'_{12} = (1,0,1,0)^{\mathrm{T}}$.

$$\eta_{11}' = (A - E)\eta_{12}' = \begin{pmatrix} 2 & -4 & 0 & 2 \\ 4 & -6 & -2 & 4 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}.$$

 η'_{22} 应满足的条件是

$$(A+E)^2 \eta'_{22} = \begin{pmatrix} 0 & 0 & 12 & -8 \\ 0 & 0 & 8 & -4 \\ 0 & 0 & 12 & -8 \\ 0 & 0 & 8 & -4 \end{pmatrix} \eta'_{22} = 0,$$

$$(A+E)\eta'_{22} = \begin{pmatrix} 4 & -4 & 0 & 2\\ 4 & -4 & -2 & 4\\ 0 & 0 & 4 & -2\\ 0 & 0 & 2 & 0 \end{pmatrix} \eta'_{22} \neq 0.$$

可取 $\eta'_{22} = (1,0,0,0)^{\mathrm{T}}$, 从而

$$\eta'_{21} = (A+E)\eta'_{22} = \begin{pmatrix} 4 & -4 & 0 & 2 \\ 4 & -4 & -2 & 4 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 0 \\ 0 \end{pmatrix}.$$

于是

$$T = (\eta'_{11}, \eta'_{12}, \eta'_{21}, \eta'_{22}) = \begin{pmatrix} 2 & 1 & 4 & 1 \\ 2 & 0 & 4 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}.$$

显然本题的解二远比解一简单.

(4) 解一(初等变换法):

先作初等变换把特征矩阵 $\lambda E - A$ 化为对角形:

$$\begin{pmatrix} \lambda E - A \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & 0 & (\lambda - 1)^3 \\ 1 & -4 & -\lambda + 4 & \lambda^2 - 2\lambda + 4 \\ 0 & 1 & 1 & -2\lambda + 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & -\lambda + 2 \end{pmatrix}.$$

因此 A 的初等因子是 $(\lambda - 1), (\lambda - 1)^3$. A 的若尔当典范形是

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$Q_1(\lambda) = \begin{pmatrix} 1 & -4 & -\lambda + 4 & \lambda^2 - 2\lambda + 4 \\ 0 & 1 & 1 & -2\lambda + 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & -\lambda + 2 \end{pmatrix}.$$

再作初等变换把特征矩阵 $\lambda E - J$ 化为与上面相同的对角形:

$$\begin{pmatrix} \lambda E - J \\ E \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & 0 & (\lambda - 1)^3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & \lambda - 1 \\ \lambda - 1 & 1 & 0 & (\lambda - 1)^2 \end{pmatrix}.$$

因此

$$Q_2(\lambda) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & \lambda - 1 \\ \lambda - 1 & 1 & 0 & (\lambda - 1)^2 \end{pmatrix}.$$

再求 $Q_1(\lambda)Q_2(\lambda)^{-1}$ (只做初等列变换),

$$\begin{pmatrix} Q_2(\lambda) \\ Q_1(\lambda) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\lambda + 4 & \lambda^2 - 3\lambda + 5 & 4\lambda - 3 & -4 \\ 1 & -2\lambda + 3 & -\lambda + 1 & 1 \\ 0 & 3 & 0 & 0 \\ 1 & -\lambda + 2 & 0 & 0 \end{pmatrix}.$$

于是

用 J 从右边代入 λ , 即得

$$T = Q_0 = \begin{pmatrix} 3 & 3 & 0 & 1 \\ 1 & 1 & -2 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & 1 & -1 & 0 \end{pmatrix}.$$

可以验证 TJ = AT, 从而

$$T^{-1}AT = J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

解二 (子空间求基):

先算出 A 的初等因子是 $(\lambda - 1), (\lambda - 1)^3$. 因此 A 的极小多项式是 $m_A(\lambda) = (\lambda - 1)^3$, 若尔当典范形是

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

与此典范形对应的基向量是 $\eta'_{11}, \eta'_{21}, \eta'_{22}, \eta'_{23}$. 由于 $(A - E)^3 = 0, \eta'_{23}$ 应满足的条件是

$$(A-E)^{2}\eta_{23}' = \begin{pmatrix} 3 & 9 & 0 & -18\\ 1 & 3 & 0 & -6\\ 3 & 9 & 0 & -18\\ 1 & 3 & 0 & -6 \end{pmatrix} \eta_{23}' \neq 0.$$

可取 $\eta'_{23} = (1,0,0,0)^{\mathrm{T}}$, 从而

$$\eta'_{22} = (A - E)\eta'_{23} = \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 0 \\ -1 \end{pmatrix}.$$

$$\eta'_{21} = (A - E)^2 \eta'_{23} = \begin{pmatrix} 3 & 9 & 0 & -18 \\ 1 & 3 & 0 & -6 \\ 3 & 9 & 0 & -18 \\ 1 & 3 & 0 & -6 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 1 \end{pmatrix}.$$

 η'_{11} 满足的方程是

$$(A-E)\eta'_{11} = \begin{pmatrix} 0 & -3 & 0 & 3 \\ -2 & -7 & 0 & 13 \\ 0 & -3 & 0 & 3 \\ -1 & -4 & 0 & 7 \end{pmatrix} \eta'_{11} = 0.$$

解得 $\eta'_{11} = (0,0,1,0)^{\mathrm{T}}$, 它与 η'_{21} 线性无关. 于是

$$T = (\eta'_{11}, \eta'_{21}, \eta'_{22}, \eta'_{23}) = \begin{pmatrix} 0 & 3 & 0 & 1 \\ 0 & 1 & -2 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}.$$

2. 证明: 每个复方阵 A 可分解为 A = D + H, 其中 D 为可对角化矩阵, H 为幂零阵 (即有一个正整数 m, 使得 $H^m = 0$), 且 DH = HD.

证明: 设 $A = J_k(c)$ 是一个若尔当块, 则有分解

$$J_k(c) = cE_k + H_k = \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & c \end{pmatrix} + \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

其中 cE_k 是纯量矩阵, H_k 满足 $H_k^k = 0$, 是幂零矩阵, 而且 $(cE_k)H_k = H_k(cE_k)$. 因此这是满足条件的分解.

再设 $A = J = \operatorname{diag}(J_{k_1}(\lambda_1), \cdots, J_{k_s}(\lambda_s)),$ 则有

$$J = D_J + H_J = \operatorname{diag}(\lambda_1 E_{k_1}, \cdots, \lambda_s E_{k_s}) + \operatorname{diag}(H_{k_1}, \cdots, H_{k_s}),$$

其中 $D_J = \operatorname{diag}(\lambda_1 E_{k_1}, \dots, \lambda_s E_{k_s})$ 是对角矩阵, $H_J = \operatorname{diag}(H_{k_1}, \dots, H_{k_s})$ 满足 $H_J^{\max_i\{k_i\}} = 0$. 因此 H_J 是幂零矩阵. 由于

$$D_{J}H_{J} = \begin{pmatrix} \lambda_{1}E_{k_{1}}H_{k_{1}} & 0 & \cdots & 0 \\ 0 & \lambda_{2}E_{k_{2}}H_{k_{2}} & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_{s}E_{k_{s}}H_{k_{s}} \end{pmatrix}$$

$$= \begin{pmatrix} H_{k_{1}}(\lambda_{1}E_{k_{1}}) & 0 & \cdots & 0 \\ 0 & H_{k_{2}}(\lambda_{2}E_{k_{2}}) & \cdots & 0 \\ 0 & 0 & \cdots & H_{k_{s}}(\lambda_{s}E_{k_{s}}) \end{pmatrix} = H_{J}D_{J},$$

可见这也是满足条件的分解.

最后设 $A=TJT^{-1}$, 先作上述分解 $J=D_J+H_J$, 令 $D=TD_JT^{-1}$, $H=TH_JT^{-1}$. 则 A=D+H, D 相似于对角矩阵 D_J , 因此是可对角化矩阵. 又因 $H^m=TH_J^mT^{-1}$, 因此从 H_J 是幂零矩阵可以得到 H 也是幂零矩阵. 最后由

$$DH = (TD_J T^{-1})(TH_J T^{-1}) = TD_J H_J T^{-1}$$

= $TH_J D_J T^{-1} = (TH_J T^{-1})(TD_J T^{-1}) = HD$,

可知这是符合条件的分解.

3. 特征值全为 1 的方阵称为幂幺矩阵 (unipotent matrix). 证明: 每个可逆的复方阵 A 可分解为 A = DU, 其中 D 为可对角化矩阵, U 为幂幺阵, 且 DU = UD.

证明: 设 $A = J_k(c)$ 是一个若尔当块, 且 $c \neq 0$, 则有分解

$$J_k(c) = (cE_k)(U_k(c^{-1})) = \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & c \end{pmatrix} \begin{pmatrix} 1 & c^{-1} & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

其中 cE_k 是纯量矩阵, $U_k(c^{-1})$ 的特征值都是 1, 因此是幂幺阵, 而且 (cE_k) $U_k(c^{-1}) = U_k(c^{-1})(cE_k)$. 因此这是满足条件的分解.

再设 $A=J=\mathrm{diag}(J_{k_1}(\lambda_1),\cdots,J_{k_s}(\lambda_s))$, 由于 A 是可逆矩阵,因此所有的特征值 $\lambda_i\neq 0$. 则有

$$J = D_J U_J = \operatorname{diag}(\lambda_1 E_{k_1}, \cdots, \lambda_s E_{k_s}) \operatorname{diag}(U_{k_1}(\lambda_1^{-1}), \cdots, U_{k_s}(\lambda_s^{-1})),$$

其中 $D_J = \operatorname{diag}(\lambda_1 E_{k_1}, \dots, \lambda_s E_{k_s})$ 是对角矩阵, $U_J = \operatorname{diag}(U_{k_1}(\lambda_1^{-1}), \dots, U_{k_s}(\lambda_s^{-1}))$ 的特征值都是 1, 因此是幂幺阵. 由于

$$D_{J}U_{J} = \begin{pmatrix} \lambda_{1}E_{k_{1}}H_{k_{1}}(\lambda_{1}^{-1}) & 0 & \cdots & 0 \\ 0 & \lambda_{2}E_{k_{2}}H_{k_{2}}(\lambda_{2}^{-1}) & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_{s}E_{k_{s}}H_{k_{s}}(\lambda_{s}^{-1}) \end{pmatrix}$$
$$= \begin{pmatrix} H_{k_{1}}(\lambda_{1}E_{k_{1}}) & 0 & \cdots & 0 \\ 0 & H_{k_{2}}(\lambda_{2}E_{k_{2}}) & \cdots & 0 \\ 0 & 0 & \cdots & H_{k_{s}}(\lambda_{s}^{-1})(\lambda_{s}E_{k_{s}}) \end{pmatrix} = U_{J}D_{J},$$

可见这也是满足条件的分解.

最后设 $A = TJT^{-1}$, 先作上述分解 $J = D_JU_J$, 令 $D = TD_JT^{-1}$, $U = TU_JT^{-1}$. 则 A = DU, D 相似于对角矩阵 D_J , 因此是可对角化矩阵. 又因 U 的特征值都是 1, 因此是幂幺阵. 最后由

$$DU = (TD_J T^{-1})(TU_J T^{-1}) = TD_J U_J T^{-1}$$

= $TU_J D_J T^{-1} = (TU_J T^{-1})(TD_J T^{-1}) = UD$,

可知这是符合条件的分解.

*4. 证明:每个复方阵可分解为两个复对称矩阵的乘积,并且其中的一个是可逆的.

证明: 设 $A = J_k(c)$ 是一个若尔当块, 则有分解

$$J_k(c) = S_k(c)P_k = \begin{pmatrix} 0 & \cdots & 0 & 1 & c \\ 0 & \cdots & 1 & c & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 1 & \ddots & 0 & 0 & 0 \\ c & \cdots & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & 0 & 0 & 0 \\ 1 & \cdots & 0 & 0 & 0 \end{pmatrix}.$$

其中 $S_k(c)$, P_k 都是对称矩阵, P_k 又是可逆的.

再设
$$A = J = \operatorname{diag}(J_{k_1}(\lambda_1), \cdots, J_{k_s}(\lambda_s)),$$
 则有

$$J = S_J P_J = \operatorname{diag}(S_{k_1}(\lambda_1), \cdots, S_{k_s}(\lambda_s)) \operatorname{diag}(P_{k_1}, \cdots, P_{k_s}),$$

其中 $S_J = \operatorname{diag}(S_{k_1}(\lambda_1), \dots, S_{k_s}(\lambda_s))$ 和 $P_J = \operatorname{diag}(P_{k_1}, \dots, P_{k_s})$ 都是对称矩阵, P_J 又是可逆的. 因此这是满足条件的分解.

最后设 $A = TJT^{-1}$, 先作上述分解 $J = S_J P_J$, 令 $S = TS_J T^{\mathrm{T}}$, $P = T^{-\mathrm{T}} P_J T^{-1}$, 则 S, T 都是对称矩阵, P 又是可逆的. 并且有满足条件的分解

$$A = TS_J P_J T^{-1} = (TS_J T^{\mathrm{T}})(T^{-\mathrm{T}} P_J T^{-1}) = SP.$$

§ 2 简单的矩阵方程

1. 设

$$A = U \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 \\ \hline \end{array} \right) V^{-1}.$$

求解 AX = XB

2. 设

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

求 C(A) 以及 dim C(A).

解:
$$C(A) = \left\{ \begin{pmatrix} a & b & c & d & e & 0 \\ 0 & a & b & 0 & d & 0 \\ 0 & 0 & a & 0 & 0 & 0 \\ \hline 0 & f & g & h & i & 0 \\ 0 & 0 & f & 0 & h & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & j \end{pmatrix} \right\}$$
, 因此 dim $C(A) = 10$.

3. 写出矩阵方程

$$X^{2} - 2X - 3E = 0, \quad X \in M_{3}(\mathbb{C}),$$

§3 矩阵函数 · 217 ·

的解的初等因子组.

解: $\lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1)$, 因此初等因子组有 4 种可能: $\lambda - 3$, $\lambda - 3$: $\lambda - 3$, $\lambda - 3$, $\lambda + 1$; $\lambda - 3$, $\lambda + 1$; $\lambda + 1$, $\lambda + 1$, $\lambda + 1$.

4. 不用命题 3.1 直接证明: 若 A 与 B 有公共的特征值, 则矩阵方程 AX = XB 有非零解.

证明: 设 A 与 B 有公共的特征值 λ_0 , 则 $B^{\rm T}$ 也有特征值 λ_0 . 设与 A 和 $B^{\rm T}$ 对应的特征向量分别是 U 和 V (看成列矩阵). 则有 $AU = \lambda_0 U$, $B^{\rm T}V = \lambda_0 V$. 于是 $A(UV^{\rm T}) = \lambda_0 UV^{\rm T}$, $(UV^{\rm T})B = U(V^{\rm T}B) = U(B^{\rm T}V)^{\rm T} = \lambda_0 UV^{\rm T} = A(UV^{\rm T})$, 因此 $UV^{\rm T}$ 是矩阵方程 AX = XB 的一个非零解.

§3 矩阵函数

1. 设
$$A = T \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} T^{-1}$$
, 试直接利用矩阵函数的定义写出公式

$$f(A) = f(3)Z_{10} + f(2)Z_{20} + f'(2)Z_{21}$$

中的 Z_{10}, Z_{20}, Z_{21} .

解:根据定义,

$$\begin{split} f(A) &= T \begin{pmatrix} f(3) & 0 & 0 \\ 0 & f(2) & f'(2) \\ 0 & 0 & f(2) \end{pmatrix} T^{-1} = f(3) T \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} T^{-1} \\ &+ f(2) T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} T^{-1} + f'(2) T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} T^{-1}. \end{split}$$

因此

$$Z_{10} = T \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} T^{-1}, \qquad Z_{20} = T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} T^{-1},$$
$$Z_{21} = T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} T^{-1}.$$

解: 由于

$$\begin{pmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & 1 & \lambda - 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda + 1)(\lambda - 1)^2 \end{pmatrix},$$

$$m_A(\lambda) = (\lambda + 1)(\lambda - 1)^2$$
. 所以

$$f(A) = f(-1)Z_{10} + f(1)Z_{20} + f'(1)Z_{21}.$$

分别取 $f(\lambda) = 1, \lambda, \lambda^2$, 可得方程组

$$E = Z_{10} + Z_{20}$$

$$A = -Z_{10} + Z_{20} + Z_{21}$$

$$A^{2} = Z_{10} + Z_{20} + 2Z_{21}$$

解得

$$Z_{10} = \frac{1}{4}(A^2 - 2A + E) = \frac{1}{4} \begin{pmatrix} 3 & -3 & 0 \\ -1 & 1 & 0 \\ -2 & 2 & 0 \end{pmatrix}$$
$$Z_{20} = \frac{1}{4}(-A^2 + 2A + 3E) = \frac{1}{4} \begin{pmatrix} 1 & 3 & 0 \\ 1 & 3 & 0 \\ 2 & -2 & 4 \end{pmatrix}$$
$$Z_{21} = \frac{1}{2}(A^2 - E) = \frac{1}{2} \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

当 $f(\lambda) = \lambda^{100}$ 时,

$$A^{100} = Z_{10} + Z_{20} + 100Z_{21} = \begin{pmatrix} 51 & -50 & 100 \\ 50 & -49 & 100 \\ 0 & 0 & 1 \end{pmatrix}.$$

§3 矩阵函数 · 219 ·

当 $f(\lambda) = \exp(\lambda)$ 时,

$$\exp(A) = e^{-1}Z_{10} + eZ_{20} + eZ_{21} = \frac{1}{4} \begin{pmatrix} 3e + 3e^{-1} & e - 3e^{-1} & 4e \\ 3e - e^{-1} & e + e^{-1} & 4e \\ 2e - 2e^{-1} & -2e + 2e^{-1} & 4e \end{pmatrix}.$$

当 $f(\lambda) = \sqrt[3]{\lambda}$ 时,

$$\sqrt[3]{A} = -Z_{10} + Z_{20} + \frac{1}{3}Z_{21} = \frac{1}{3} \begin{pmatrix} -1 & 4 & 1\\ 2 & 1 & 1\\ 3 & -3 & 3 \end{pmatrix}.$$

3. 矩阵 A 的初等因子应该具有怎样的形式才能使得 $\sin A = \cos A$?

解:设 $f(\lambda) = \sin \lambda$, $g(\lambda) = \cos \lambda$.则 f(A) = g(A)的充分必要条件是 $f(\Lambda_A) = g(\Lambda_A)$.设 $(\lambda - c)^k$ 是 A的一个初等因子.则除了 $f(c) = \sin c = g(c) = \cos c$ 外,当 k > 1时还有 $f'(c) = \cos c = g'(c) = -\sin c$.因此当 k > 1时必有 $\sin c = \cos c = 0$,这是不可能的.所以 k = 1.解 $\sin c = \cos c$ 得 $c = m\pi + \frac{\pi}{4}$.因此 A的初等因子都应该是形如 $(\lambda - \frac{\pi}{4} + m\pi)$ 的. A是一个可对角化矩阵.这个条件也是充分的.

对角化矩阵. 这个条件也是充分的.

4. 设
$$A = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$$
, 试求矩阵 B , 使 $B^2 = A$.

解:由于

$$\begin{pmatrix} \lambda - 1 & 3 & -3 \\ 2 & \lambda + 6 & -13 \\ 1 & 4 & \lambda - 8 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^3 \end{pmatrix},$$

 $m_A(\lambda) = (\lambda - 1)^3$. 所以

$$f(A) = f(1)Z_{10} + f'(1)Z_{11} + f''(1)Z_{12}.$$

分别取 $f(\lambda) = 1, \lambda, \lambda^2$, 可得方程组

$$E = Z_{10}$$

$$A = Z_{10} + Z_{11}$$

$$A^{2} = Z_{10} + 2Z_{11} + 2Z_{12}$$

解得

$$Z_{10} = E$$

$$Z_{11} = A - E = \begin{pmatrix} 0 & -3 & 3 \\ -2 & -7 & 13 \\ -1 & -4 & 7 \end{pmatrix}$$
$$Z_{12} = \frac{1}{2} (A^2 - 2A + E) = \frac{1}{2} \begin{pmatrix} 3 & 9 & -18 \\ 1 & 3 & -6 \\ 1 & 3 & -6 \end{pmatrix}$$

取 $f(\lambda) = \sqrt{\lambda}$, 有

$$B = \sqrt{A} = Z_{10} + \frac{1}{2}Z_{11} - \frac{1}{4}Z_{12} = \frac{1}{8} \begin{pmatrix} 5 & -21 & 30 \\ -9 & -23 & 58 \\ -5 & -19 & 42 \end{pmatrix}.$$

B满足 $B^2 = A$.

5. 设 n 阶实矩阵 A 的特征值全是正实数. 证明: 存在实矩阵 B, 使 $B^2 = A$.

证明:设 A 的初等因子是 $(\lambda - \lambda_1)^{k_1}, \cdots, (\lambda - \lambda_t)^{k_t}$, 其中 λ_i 都是正实数.以 $(\lambda - \sqrt{\lambda_1})^{k_1}, \cdots, (\lambda - \sqrt{\lambda_t})^{k_t}$ 作为初等因子组构造若尔当典范形 J,则 J 是一个实矩阵,把命题 2.5 应用于矩阵函数 $f(\lambda) = \lambda^2$,由于 $f'(\sqrt{\lambda_i}) = 2\sqrt{\lambda_i} \neq 0$,因此 J^2 的初等因子组是 $(\lambda - \lambda_1)^{k_1}, \cdots, (\lambda - \lambda_t)^{k_t}$,与 A 相同,所以 J^2 与 A 相似.从而存在可逆实矩阵 T 使得 $A = T^{-1}J^2T = (T^{-1}JT)^2$. $B = T^{-1}JT$ 就是满足题意的实矩阵.

6. 已知矩阵 A 的初等因子组是 λ^3 , $\left(\lambda - \frac{\pi}{2}\right)^3$, $(\lambda - \pi)^4$. 试写出 $\cos A$ 的 初等因子组.

解: 设 $f(\lambda) = \cos \lambda$. 则 $f(0) = 1, f\left(\frac{\pi}{2}\right) = 0, f(\pi) = -1, f'(\lambda) = -\sin \lambda, \qquad f'(0) = f'(\pi) = 0, f'\left(\frac{\pi}{2}\right) = -1, f''(\lambda) = -\cos \lambda, f''(0) = -1, f''(\pi) = 1.$ 因此根据命题 2.5, $f(A) = \cos A$ 的 初等因子组是 $(\lambda - 1)^2, (\lambda - 1), \lambda^3, (\lambda + 1)^2, (\lambda + 1)^2$.

7. 设 A 的特征值全为 ±1, 证明: $A = A^{-1}$ 相似.

证明: 设 $f(\lambda) = \lambda^{-1}$, 则有 $f(A) = A^{-1}$. 对于 A 的任意一个初等因子 $(\lambda - c)^k$, 由于 $f'(c) = -c^{-2} \neq 0$, 根据命题 2.5, f(A) 相应的初等因子是 $(\lambda - f(c))^k$. 当 $c = \pm 1$ 时,有 $f(c) = c^{-1} = c$, 因此 A 与 f(A) 有相同初等因子组,从而相似.

8. 设 J 是特征值为 1 的 n 阶若尔当块, 试求使 g(J) 相似于 J 的多项式 $g(\lambda)$ 应满足的充分必要条件.

§3 矩阵函数 · 221 ·

证明: J 的初等因子只有一个 $(\lambda - 1)^n$. g(J) 与 J 相似的充分必要条件是 g(J) 的初等因子也是 $(\lambda - 1)^n$. 由命题 2.5 可知, 这等价于 g(1) = 1, $g'(1) \neq 0$.

9. 利用矩阵函数, 求出递归数列

$$D_1, D_2, \cdots, D_n, \cdots, D_n = 3D_{n-1} - 3D_{n-2} + D_{n-3} \quad (n > 3)$$

的通项公式 $D_n = f(D_1, D_2, D_3)$.

(提示: 考察矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$$
)

解: 我们有

$$\begin{pmatrix} D_{n-2} \\ D_{n-1} \\ D_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix} \begin{pmatrix} D_{n-3} \\ D_{n-2} \\ D_{n-1} \end{pmatrix} = \dots = A^{n-3} \begin{pmatrix} D_1 \\ D_2 \\ D_3 \end{pmatrix}.$$

为求 A^{n-3} , 可以利用矩阵函数.

通过计算,

$$\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 3 & \lambda - 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^3 \end{pmatrix}.$$

因此 $m_A(\lambda) = (\lambda - 1)^3$. 所以

$$f(A) = f(1)Z_{10} + f'(1)Z_{11} + f''(1)Z_{12}.$$

分别取 $f(\lambda) = 1, \lambda, \lambda^2$, 可得方程组

$$E = Z_{10}$$

$$A = Z_{10} + Z_{11}$$

$$A^{2} = Z_{10} + 2Z_{11} + 2Z_{12}$$

解得

$$Z_{10} = E$$

$$Z_{11} = A - E = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & -3 & 2 \end{pmatrix}$$

$$Z_{12} = \frac{1}{2}(A^2 - 2A + E) = \frac{1}{2} \begin{pmatrix} 1 & -2 & 1\\ 1 & -2 & 1\\ 1 & -2 & 1 \end{pmatrix}$$

取 $f(\lambda) = \lambda^{n-3}$, 有

$$A^{n-3} = Z_{10} + (n-3)Z_{11} + (n-3)(n-4)Z_{12}$$

$$= \frac{1}{2} \begin{pmatrix} n^2 - 9n + 20 & -2n^2 + 16n - 30 & (n-3)(n-4) \\ (n-3)(n-4) & -2n^2 + 12n - 16 & n^2 - 5n + 6 \\ (n-2)(n-3) & -2(n-1)(n-3) & (n-1)(n-2) \end{pmatrix}.$$

(实际上只要计算矩阵的第3行就够了) 因此

$$D_n = \frac{1}{2}(n-2)(n-3)D_1 - (n-1)(n-3)D_2 + \frac{1}{2}(n-1)(n-2)D_3.$$

*10. 试应用第十三章第 5 节练习 13-5.6 的结论证明命题 3.5 的 (2).

证明:根据假设,有 $f(J_k(c)) = f(c)E_k + \frac{f^{(h)}(c)}{h!}H_k^h + \cdots$,因此 $f(c)E_k - f(J_k(c)) = -\frac{f^{(h)}(c)}{h!}H_k^h + \cdots$,且当 $1 \le i \le q$ 时有 $(f(c)E_k - f(J_k(c)))^i = \left(-\frac{f^{(h)}(c)}{h!}H_k^h\right)^i + \cdots$ 注意到 k = hq + r, $0 \le r < h$,当 i > q 时有 $(f(c)E_k - f(J_k(c)))^i = 0$.又因 $f^{(h)}(c) \ne 0$,可得

$$n_i = \operatorname{rank}(f(c)E_k - f(J_k(c)))^i = \operatorname{rank} H_k^{hi} = \begin{cases} k - hi & \text{ if } 1 \le i \le q, \\ 0 & \text{ if } i \ge q + 1. \end{cases}$$

并且 $n_0 = k$. 于是

$$a_{i} = a_{i-1} - a_{i} = \begin{cases} h & \text{ if } 1 \leq i \leq q, \\ k - hq = r & \text{ if } i = q + 1, \\ 0 & \text{ if } i \geq q + 2. \end{cases}$$

$$b_{i} = b_{i} - b_{i+1} = \begin{cases} 0 & \text{ if } 1 \leq i \leq q - 1, \\ h - r & \text{ if } i = q, \\ r & \text{ if } i = q + 1, \\ 0 & \text{ if } i \geq q + 2. \end{cases}$$

§ 3 矩阵函数 · 223 ·

也就是说非零的 b_i 只有 $b_q = h - r$, $b_{q+1} = r$. 根据练习 13–5.6 的结论 (2), $f(J_k(c))$ 的属于特征值 f(c) 的 q 阶若尔当块有 h - r 个, q + 1 阶若尔当块有 r 个. 这就是命题 2.5 的 (2) 的结论.

*11. 设

$$m(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s},$$

$$m_i(\lambda) = \frac{m(\lambda)}{(\lambda - \lambda_i)^{k_i}}$$

$$= (\lambda - \lambda_1)^{k_1} \cdots (\lambda - \lambda_{i-1})^{k_{i-1}} (\lambda - \lambda_{i+1})^{k_{i+1}} \cdots (\lambda - \lambda_s)^{k_s}.$$

对于满足 $1 \le i \le s$, $0 \le j \le k_i - 1$ 的 i, j, 定义

$$\varphi_{ij}(\lambda) = \frac{1}{j!} \sum_{\alpha=0}^{k_i - j - 1} \frac{1}{\alpha!} \left(\frac{1}{m_i(\lambda)} \right)_{\lambda = \lambda_i}^{(\alpha)} (\lambda - \lambda_i)^{j + \alpha} m_i(\lambda),$$

其中右上角的 (α) 表示关于 λ 取 α 阶导数, 右下角的 $\lambda = \lambda_i$ 表示在 λ_i 处的导数值. 验证:

$$(\varphi_{ij}(\lambda))_{\lambda=\lambda_p}^{(q)} = \begin{cases} 1, & \text{若 } p = i, \ q = j, \\ 0, & \text{其它情形.} \end{cases}$$

这样的多项式称为拉格朗日-西尔维斯特插值多项式.

证明: 当 $p \neq i$ 时, $(\lambda - \lambda_p)^{m_p}$ 是 $m_i(\lambda)$ 的因子, 因此 $(\lambda - \lambda_p)^{m_p} \mid \varphi_{ij}(\lambda)$, 从而 $\varphi_{ij}(\lambda)$ 在 λ_p 处的小于 m_p 阶导数都等于 0. 以下考虑 p = i 的情形. 利用 莱布尼兹求导公式,

$$\begin{split} &(\varphi_{ij}(\lambda))_{\lambda=\lambda_{i}}^{(q)} \\ &= \frac{1}{j!} \sum_{l=0}^{q} \frac{q!}{l!(q-l)!} \left(\sum_{\alpha=0}^{k_{i}-j-1} \frac{1}{\alpha!} \left(\frac{1}{m_{i}(\lambda)} \right)_{\lambda=\lambda_{i}}^{(\alpha)} (\lambda - \lambda_{i})^{j+\alpha} \right)_{\lambda=\lambda_{i}}^{(l)} (m_{i}(\lambda))_{\lambda=\lambda_{i}}^{(q-l)} \\ &= \frac{1}{j!} \sum_{l=i}^{q} \frac{q!}{l!(q-l)!} \cdot \frac{l!}{(l-j)!} \left(\frac{1}{m_{i}(\lambda)} \right)_{\lambda=\lambda_{i}}^{(l-j)} (m_{i}(\lambda))_{\lambda=\lambda_{i}}^{(q-l)}, \end{split}$$

当 q < j 时上式等于 0, 当 q = j 时, 上式等于 1. 如果 q > j, 同样根据莱布尼 兹求导公式, 有

$$\sum_{l=j}^{q} \frac{(q-j)!}{(l-j)!(q-l)!} \left(\frac{1}{m_i(\lambda)}\right)_{\lambda=\lambda_i}^{(l-j)} (m_i(\lambda))_{\lambda=\lambda_i}^{(q-l)}$$
$$= \left(\frac{1}{m_i(\lambda)} \cdot m_i(\lambda)\right)_{\lambda=\lambda_i}^{(q-j)} = (1)_{\lambda=\lambda_i}^{(q-j)} = 0.$$

这样就证明了当 $q \neq j$ 时有 $(\varphi_{ij}(\lambda))_{\lambda=\lambda_i}^{(q)} = 0$.

§4 矩阵的广义逆

1. 根据命题 4.1 求出矩阵

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 2 & -1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 & 2 \end{array}\right)$$

的所有 {1} 逆.

解: 通过初等变换

\$

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & -1 \end{pmatrix}, \qquad Q = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & 0 & 3 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

就有

$$PAQ = \begin{pmatrix} E_2 & 0 \\ 0 & 0 \end{pmatrix}.$$

A 的所有 {1} 逆为

$$G = Q \begin{pmatrix} E_2 & U \\ V & W \end{pmatrix} P = Q \begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ v_{11} & v_{12} & w_1 \\ v_{21} & v_{22} & w_2 \\ v_{31} & v_{32} & w_3 \end{pmatrix} P.$$

§4 矩阵的广义逆 · 225 ·

2. 设 $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, 证明 $G = \begin{pmatrix} A_1^{(1)} & X_{12} \\ X_{21} & A_2^{(1)} \end{pmatrix}$ 是 A 的 $\{1\}$ 逆的充分必要条件是 $A_1X_{12}A_2 = A_2X_{21}A_1 = 0$.

证明: 由于

$$AGA = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} A_1^{(1)} & X_{12} \\ X_{21} & A_2^{(1)} \end{pmatrix} \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$
$$= \begin{pmatrix} A_1 A_1^{(1)} A_1 & A_1 X_{12} A_2 \\ A_2 X_{21} A_1 & A_2 A_2^{(1)} A_2 \end{pmatrix} = \begin{pmatrix} A_1 & A_1 X_{12} A_2 \\ A_2 X_{21} A_1 & A_2 \end{pmatrix},$$

因此 AGA = A 当且仅当 $A_1X_{12}A_2 = A_2X_{21}A_1 = 0$.

3. 证明 $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等矩阵 (即满足 $A^2 = A$ 的矩阵). 且

$$\operatorname{rank}(AA^{(1)})=\operatorname{rank}(A^{(1)}A)=\operatorname{rank}A.$$

证明: $(AA^{(1)})^2 = (AA^{(1)}A)A^{(1)} = AA^{(1)}, (A^{(1)}A)^2 = A^{(1)}(AA^{(1)}A) = A^{(1)}A$, 因此 $AA^{(1)}$ 与 $A^{(1)}A$ 都是幂等矩阵.

根据矩阵乘积的秩的不等式 $rank(AB) \le min\{rank A, rank B\}$, 可得

$$\operatorname{rank}(AA^{(1)}) \leq \operatorname{rank} A$$
 以及 $\operatorname{rank} A = \operatorname{rank}(AA^{(1)}A) \leq \operatorname{rank}(AA^{(1)}).$

因此 $rank(AA^{(1)}) = rank A$. 同理可证另一个等式.

4. 设 $A \in M_{m,n}(\mathbb{R})$, $A^{(1)}$ 是 A 的一个 $\{1\}$ 逆. 如果对于 $B \in M_{m,1}(\mathbb{R})$, 方程 AX = B 有解. 证明方程的所有解都能表示成以下形式

$$X = A^{(1)}B + (E_n - A^{(1)}A)Z$$

其中 $Z \in M_{n,1}(\mathbb{R})$ 是任意的列矩阵.

(提示: 如果 X_0 是 AX = B 的一个解, 可取 $Z = X_0$.)

证明: 首先验证上面定义的 X 确实是方程的解:

$$AX = A(A^{(1)}B + (E_n - A^{(1)}A)Z) = A(A^{(1)}B) + (A - AA^{(1)}A)Z = A(A^{(1)}B).$$

由于 $A^{(1)}$ 是 A 的 $\{1\}$ 逆, 因此 $A^{(1)}B$ 是方程 AX=B 的解. 即 $A(A^{(1)}B)=B$. 从而 AX=B.

反之, 若方程 AX = B 有解 X_0 , 即 $AX_0 = B$, 则

$$A^{(1)}B + (E_n - A^{(1)}A)X_0 = A^{(1)}B + X_0 - A^{(1)}AX_0 = A^{(1)}B + X_0 - A^{(1)}B = X_0.$$

只要取 $Z = X_0, X_0$ 就可用上述公式表示.

5. 设 $A \in M_{m,n}(\mathbb{R})$, $G \in M_{n,m}(\mathbb{R})$, $B \in M_{m,1}(\mathbb{R})$ 是一个列向量. 证明: 若 $GB \not\in AX = B$ 的解, 且满足 $(GA)^{\mathrm{T}} = GA$, 则必有 $(E_n - GA)^{\mathrm{T}}(GB) = 0$.

证明: 由于 $GB \stackrel{\cdot}{=} AX = B$ 的解, 因此 AGB = B. 从而

$$(E_n - GA)^{\mathrm{T}}(GB) = (E_n - (GA)^{\mathrm{T}})GB = (E_n - GA)GB$$

= $(GB - G(AGB)) = 0$.

6. 验证 (4.2) 式定义的 A^+ 确实是 A 的 M-P 逆.

证明: 记 $G = V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}}$.

(1)
$$AGA = (UV)(V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}})(UV) = UV = A.$$

(2)
$$GAG = (V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}})(UV)(V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}})$$

= $V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}} = G$.

(3)
$$(AG)^{\mathrm{T}} = (UVV^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}})^{\mathrm{T}} = (U(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}})^{\mathrm{T}} = U((U^{\mathrm{T}}U)^{\mathrm{T}})^{-1}U^{\mathrm{T}} = U(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}} = AG.$$

$$(4) \ (GA)^{\mathrm{T}} = (V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}}UV)^{\mathrm{T}} = (V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}V)^{\mathrm{T}} = V^{\mathrm{T}}((VV^{\mathrm{T}})^{\mathrm{T}})^{-1}V = V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}V = GA.$$

7. 计算

$$A = \left(\begin{array}{rrrr} 1 & -1 & 2 & 0 \\ -1 & 2 & -3 & 1 \\ 0 & 1 & -1 & 1 \end{array}\right)$$

的 M-P 逆.

解: 先作满秩分解

$$A = UV = \begin{pmatrix} 1 & -1 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix}.$$

$$U^{T}U = \begin{pmatrix} 2 & -3 \\ -3 & 6 \end{pmatrix},$$

$$VV^{T} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix},$$

$$A^{+} = V^{\mathrm{T}}(VV^{\mathrm{T}})^{-1}(U^{\mathrm{T}}U)^{-1}U^{\mathrm{T}}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

$$=\frac{1}{9} \begin{pmatrix} 3 & 0 & 3 \\ 1 & 1 & 2 \\ 2 & -1 & 1 \\ 4 & 1 & 5 \end{pmatrix}.$$

8. 利用 M-P 逆求以下方程组的最小二乘解:

$$\begin{cases} x_1 - x_2 + 2x_3 = 3 \\ -x_1 + 2x_2 - 3x_3 + x_4 = 6 \\ x_2 - x_3 + x_4 = 0. \end{cases}$$

解: 取

$$A = \begin{pmatrix} 1 & -1 & 2 & 0 \\ -1 & 2 & -3 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix}.$$

因此上述方程组可以表达为 AX = B. 利用广义逆可以得到一个最小二乘解

$$A^{+}B = \frac{1}{9} \begin{pmatrix} 3 & 0 & 3 \\ 1 & 1 & 2 \\ 2 & -1 & 1 \\ 4 & 1 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

9. 验证例 4.3 的结论.

$$(1) AA^{+}A = \begin{pmatrix} A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{s} \end{pmatrix} \begin{pmatrix} A_{1}^{+} & 0 & \cdots & 0 \\ 0 & A_{2}^{+} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{s}^{+} \end{pmatrix}$$

$$\times \begin{pmatrix} A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{s} \end{pmatrix} = \begin{pmatrix} A_{1}A_{1}^{+}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2}A_{2}^{+}A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{s}A_{s}^{+}A_{s} \end{pmatrix}$$

$$= \begin{pmatrix} A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{s} \end{pmatrix} = A.$$

10. 举例说明 $(AB)^+ = B^+A^+$ 不一定正确.

解: 例如取
$$A = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, 则 $AB = (1)$, $(AB)^+ = (1)$, $A^+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $B^+ = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $B^+A^+ = \begin{pmatrix} \frac{1}{2} \end{pmatrix}$.

*11. 设 $A \in M_{m,n}(\mathbb{R}), G \in M_{n,m}(\mathbb{R})$ 满足以下两个条件:

$$AGA = A,$$
 $(GA)^{\mathrm{T}} = GA.$

则称 $G \neq A$ 的 $\{1,4\}$ 逆. 设 $B \in M_{m,1}(\mathbb{R})$, 使得方程 AX = B 有解. 证明 GB 是具有最小长度的解(这里把列矩阵看成标准欧几里得空间里的向量,因 此向量 X 的长度 $|X| = \sqrt{X^T X}$.)

(提示: 利用练习 4.5 的结果.)

证明: 由于 G 也是 A 的 $\{1\}$ 逆, 因此 GB 是方程 AX = B 的解, 即 A(GB) = B. 由练习 1 知, 方程的所有解可以表成

$$X = GB + (E_n - GA)Z$$

的形式. 而根据练习 5, 有

$$((E_n - GA)Z)^{\mathrm{T}}GB = Z^{\mathrm{T}}(E_n - GA)^{\mathrm{T}}GB = 0,$$

 $(GB)^{\mathrm{T}}(E_n - GA)Z = ((E_n - GA)^{\mathrm{T}}GB)^{\mathrm{T}}Z = 0.$

于是

$$|X|^{2} = (GB + (E_{n} - GA)Z)^{T}(GB + (E_{n} - GA)Z)$$
$$= |GB|^{2} + |(E_{n} - GA)Z|^{2} + (GB)^{T}(E_{n} - GA)Z + ((E_{n} - GA)Z)^{T}GB$$

$$= |GB|^2 + |(E_n - GA)Z|^2 \ge |GB|^2.$$

可见 GB 确实是长度最小的解.

***12.** 设 $A \in M_{m,n}(\mathbb{R})$, A^+ 是 A 的 M-P 逆. 设 $B \in M_{m,1}(\mathbb{R})$. 证明方程 AX = B 的所有最小二乘解都能表示成以下形式

$$X = A^{+}B + (E_{n} - A^{+}A)Z$$

其中 $Z \in M_{n,1}(\mathbb{R})$ 是任意的列矩阵.

(提示:参考练习4的解法.)

证明: 由于 M-P 逆当然是 $\{1\}$ 逆, 因此当 AX = B 有解时结论已在练习 4 证明. 现在假设 AX = B 无解, 那么 X_0 是最小二乘解的充分必要条件是 $A^{\mathrm{T}}AX_0 = A^{\mathrm{T}}B$. 因此由于 $A^{+}B$ 是最小二乘解, 首先有 $A^{\mathrm{T}}AA^{+}B = A^{\mathrm{T}}B$. 以下验证练习给出的 X 确实是方程的最小二乘解:

$$A^{T}AX = A^{T}A(A^{+}B + (E_{n} - A^{+}A)Z)$$

= $A^{T}A(A^{+}B) + (A^{T}A - A^{T}(AA^{+}A))Z = A^{T}AA^{+}B = A^{T}B.$

可见 X 是方程 AX = B 的最小二乘解.

反之, 若
$$X_0$$
是方程 $AX = B$ 的最小二乘解, 即 $A^TAX_0 = A^TB$, 则

$$A^{+}AX_{0} = A^{+}AA^{+}AX_{0} = A^{+}(AA^{+})^{T}AX_{0} = A^{+}(A^{+})^{T}A^{T}AX_{0}$$
$$= A^{+}(A^{+})^{T}A^{T}B = A^{+}(AA^{+})^{T}B = A^{+}AA^{+}B = A^{+}B.$$

因此

$$A^{+}B + (E_{n} - A^{+}A)X_{0} = A^{+}B + X_{0} - A^{+}AX_{0}$$
$$= A^{+}B + X_{0} - A^{+}B = X_{0}.$$

也就是说只要取 $Z = X_0, X_0$ 就可用上述公式表示.

*13. 设 $A \in M_{m,n}(\mathbb{R})$, A^+ 是 A 的 M-P 逆. 设 $B \in M_{m,1}(\mathbb{R})$. 证明 A^+B 是方程 AX = B 的长度最小的最小二乘解.

证明: 由于 $(A^+A)^T = A^+A$, 因此 $E - AA^+$ 是对称矩阵. 所以

$$(E - A^{+}A)^{\mathrm{T}}A^{+}B = (E - A^{+}A)A^{+}B = A^{+}B - (A^{+}AA^{+})B = 0,$$
$$(A^{+}B)^{\mathrm{T}}(E - A^{+}A) = ((E - A^{+}A)^{\mathrm{T}}A^{+}B)^{\mathrm{T}} = 0.$$

根据练习 12, AX = B 的所有最小二乘解可以表成 $A^+B + (E_n - A^+A)Z$, 于是

$$|A^{+}B + (E_{n} - A^{+}A)Z|^{2} = |A^{+}B|^{2} + |(E_{n} - A^{+}A)Z|^{2}$$

+
$$(A^+B)^{\mathrm{T}}(E - A^+A)Z + ((E - A^+A)Z)^{\mathrm{T}}A^+B$$

= $|A^+B|^2 + |(E_n - A^+A)Z|^2 \ge |A^+B|^2$.

可见 A^+B 确实是长度最小的最小二乘解.

§5 矩阵特征值的范围

1. 模仿例 5.1 求出以下矩阵的特征值范围:

$$(1) A = \begin{pmatrix} 9 & -1 & 1 \\ -1 & i & 1 \\ -1 & 1 & 3 \end{pmatrix}; \qquad (2) A = \begin{pmatrix} 2 & -2 & 1 \\ -1 & 10 & 1 \\ -8 & 2 & 20 \end{pmatrix}.$$

解: (1) A 的 3 个盖施戈林圆为

$$G_1: |z-9| \le 2,$$

 $G_2: |z-i| \le 2,$
 $G_3: |z-3| \le 2.$

 G_2 与 G_3 相交, G_1 是孤立的, 因此其中恰有一个特征值. 取对角矩阵 D = diag(2, 1, 1), 则

$$B = DAD^{-1} = \begin{pmatrix} 9 & -2 & 2 \\ -0.5 & i & 1 \\ -0.5 & 1 & 3 \end{pmatrix}.$$

得到新的盖施戈林圆

$$G_1': |z-9| \le 4,$$

$$G_2': |z-{\bf i}| \le 1.5,$$

$$G_3': |z-3| \le 1.5.$$

这是 3 个孤立的圆. 每个圆中恰有 B (也是 A) 的一个特征值. 因此 A 的 3 个特征值分别位于 G_1, G_2', G_3' 中.

(2) A的3个盖施戈林圆为

$$G_1 : |z - 2| \le 3,$$

 $G_2 : |z - 10| \le 2,$
 $G_3 : |z - 20| \le 10.$

· 231 ·

 G_2 与 G_3 相交, G_1 是孤立的, 因此其中恰有一个特征值, 而且是实数. 取对角矩阵 D = diag(2, 1, 1), 则

$$B = DAD^{-1} = \begin{pmatrix} 2 & -4 & 2 \\ -0.5 & 10 & 1 \\ -4 & 2 & 20 \end{pmatrix}.$$

得到新的盖施戈林圆

$$G_1': |z-2| \le 6,$$

$$G_2': |z-10| \le 1.5,$$

$$G_3': |z-20| \le 6.$$

这是 3 个孤立的圆. 每个圆中恰有 B (也是 A) 的一个特征值. 因此 A 的 3 个特征值分别位于 G_1, G_2', G_3' 中,而且都是实数.

2. 应用盖施戈林圆定理确定实矩阵

$$A = \left(\begin{array}{cccc} 9 & -1 & -2 & 1\\ 0 & 8 & -1 & 1\\ 1 & 0 & 4 & 0\\ -1 & 0 & 0 & 1 \end{array}\right)$$

的特征值范围, 并证明 A 至少有 2 个实特征值.

解: A的4个盖施戈林圆为

$$G_1: |z-9| \le 4$$

$$G_2 : |z - 8| \le 2,$$

 $G_3 : |z - 4| \le 1,$
 $G_4 : |z - 1| \le 1.$

其中 G_4 是孤立的圆, 因此根据推论 5.5, 必有一个实特征值. 又因虚特征值是成对出现的, 所以 A 至少有 2 个实特征值.

3. 利用推论 5.5 证明以下 n 阶 (n > 1) 实矩阵

$$A = \begin{pmatrix} 2 & \frac{1}{2} & \frac{1}{2^2} & \cdots & \frac{1}{2^{n-1}} \\ \frac{2}{3} & 4 & \frac{2}{3^2} & \cdots & \frac{2}{3^{n-1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{n}{n+1} & \frac{n}{(n+1)^2} & \frac{n}{(n+1)^3} & \cdots & 2n \end{pmatrix}$$

可相似于实对角矩阵.

证明: A 的第 i 个盖施戈林圆的半径是

$$r_i = \frac{i}{i+1} + \frac{i}{(i+1)^2} + \dots + \frac{i}{(i+1)^{n-1}} = 1 - \frac{1}{(i+1)^{n-1}} < 1.$$

所以 A 的 n 个盖施戈林圆

$$G_i: |z-2i| \le r_i, \qquad i = 1, 2, \cdots, n,$$

都是孤立的. 根据推论 5.5, A 的特征值是 n 个不同的实数, 所以 A 相似于实对角矩阵.

4. 证明: 如果对称矩阵 $A = (a_{ij}) \in M_n(\mathbb{R})$ 满足条件

$$a_{ii} > \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}| > 0, \quad i = 1, \dots, n,$$

则 A 是正定矩阵.

证明:由于对称矩阵的特征值都是实数,根据盖施戈林圆盘定理,必有某个 1 < i < n 使得

$$|\lambda_0 - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^n |a_{ij}|,$$

即

$$\lambda_0 \ge a_{ii} - \sum_{\substack{j=1\\j \ne i}}^n |a_{ij}| > 0.$$

因此 A 的所有特征值都是正实数, A 是正定矩阵.

5. 设

$$A = \begin{pmatrix} \frac{n^2}{2} & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & \frac{n^2}{2} & 1 & \cdots & n-3 & n-2 \\ n-2 & n-1 & \frac{n^2}{2} & \cdots & n-4 & n-3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 2 & 3 & \cdots & n-1 & \frac{n^2}{2} \end{pmatrix},$$

证明: $|\det A| \geq \left(\frac{n}{2}\right)^n$. 你能进一步证明 $\det A \geq \left(\frac{n}{2}\right)^n$ 吗? 证明: 对 $i=1,2,\cdots,n$ 有

$$H_i = \frac{n^2}{2} - (1 + 2 + \dots + (n-1)) = \frac{n^2}{2} - \frac{n(n-1)}{2} = \frac{n}{2}$$

根据推论 5.2 可得

$$|\det A| \ge \left(\frac{n}{2}\right)^n$$
.

为证上述不等式中的绝对值符号可以取消,需要证明 $\det A > 0$. 为此,设

$$A(t) = \begin{pmatrix} \frac{n^2}{2} & t & 2t & \cdots & (n-2)t & (n-1)t \\ (n-1)t & \frac{n^2}{2} & t & \cdots & (n-3)t & (n-2)t \\ (n-2)t & (n-1)t & \frac{n^2}{2} & \cdots & (n-4)t & (n-3)t \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ t & 2t & 3t & \cdots & (n-1)t & \frac{n^2}{2} \end{pmatrix},$$

当 $1 \le t \le 1$ 时,矩阵 A(t) 满足阿达马条件,因此 $\det A(t) \ne 0$. 而 $\det A(0) = \left(\frac{n^2}{2}\right)^n > 0$,由于 $\det A(t)$ 是 t 的连续实函数,根据连续性原理,必有 $\det A = \det A(1) > 0$.