The device keeps in a locked position a shaft that is attached to the reefing line of the parachute, the locked position is achieved with bearings. The shaft has a cavity where the bearings fit.

The device has a cap that moves along the axis of the device, when this cap is in the retracted position the bearings have enough movement to allow the shaft to get inside the device. When the cap returns to the repose position, this fixes the bearings. This way the shaft is locked i that position until the cap is retracted.

It is expected that the conditions of operation of the mechanism secure the correct release of the cables.

We hope the device achieve an easy connection and connection of the reefing lines of the parachute, allowing the release without explosions.

We also consider that if another row of bearings is added, the loads should be more distributed and could hold more force before the device fails.

We use Solid Works to create the parts of the device, generate animations of the movement and analyze the behavior of the device under a determined force.

Also, we realize some calculations with MATLAB.

Next, we expose some calculation we do

```
Parachute diameter = 25.45 ft = 25.45 m

Parachute weight = 127 pounds = 57.6 kg

3 Parachutes weight = 380.95 pounds = 172.8 kg

Cabin weight = 5374.87 pounds = 2438 kg

Total weight = 5755.82 pounds = 2610.8 kg

Descent speed with 3 parachutes and cabin = 22 miles/h = 35.40 km/h = 9.83 m/s
```

```
Calculations
```

```
W-kV2=0W-kV2=0
```

```
2610.8-k(9.83)22610.8-k(9.83)2
= 0
-k(96.62)-k(96.62)
= -2610.8
k=-2610.8-96.62k=-2610.8-96.62
```

k=27.0 kg m/s2k=27.0 kg m/s2 ---- Air resistance force Our differential equation 172.8V.=2610.8-27V172.8V.=2610.8-27V

Solving using Laplace 2610.8S-27V(S)=172.8V(S)2610.8S-27VS=172.8V(S)

V(S)[172.8+27]= 2610.8SVS172.8+27= 2610.8S

V(S)=2610.8S[172.8S+27]VS=2610.8S[172.8S+27]

V(S)=2610.8172.8 S2+27 SVS=2610.8172.8 S2+27 S

Using Inverse Laplace transform

$$V(S)=(15.10)(1S2+0.15 S)VS=(15.10)1S2+0.15 S$$

$$V(S)=(15.10)(1S)(1S+0.15)VS=(15.10)1S1S+0.15$$

Speed formula

Using our differential equation to calculate parachute speed using Simulink

As we can see in the graph the speed of the cabin with the parachutes is 5 m/s.

```
Speed previous parachutes deployment V22-V21=2g(\Delta h)V22-V12=2g(\Delta h)
```

 $\begin{array}{l} h1{=}10000~\text{ft}{=}3048~\text{mh}1{=}10000~\text{ft}{=}3048~\text{m}\\ \text{(post deployment height)}\\ h2{=}24000~\text{ft}{=}7315.2~\text{mh}2{=}24000~\text{ft}{=}7315.2~\text{m}\\ \text{(pre-deployment height)}\\ t=12s~\text{(deployment time)}\\ g=9.81~\text{m/}\\ s2s2 \end{array}$

V1V1

 $=28000~km/h=7777.77~m/s~(speed~of~entry~to~earth)\\68~suspension~lines~per~parachute\\V22-(7777.77)2=2(9.81)~(7315.2-3048)V22-7777.772=2(9.81)(7315.2-3048)$

V21=-7783.15 m/sV21=-7783.15 m/s

V22= 7783.15 m/sV22= 7783.15 m/s

The speed before deployment is 7783.15 m/s7783.15 m/s

Calculations of tension in suspension lines

Considering previous constant speed = 96.15 m/s (taken from Speed formula) Using second Newton Law = F=maF=ma

a = V4-V3 tV4-V3 t

m = 172.8 kgV3=5 m/sV3=5 m/s

V4=96.15 m/sV4=96.15 m/s

F= (96.15-512)(172.8)=19831.20 NF=96.15-512172.8=19831.20 N

T=F68=19831.2068=291.635 NT=F68=19831.2068=291.635 N

The tension in each suspension line is 291.635 N The tension in each parachute is 19831.20 N The total tension of three parachutes is 59493.6 N

We use de tension of each parachute which is 19831.20 N to calculate deformation and maximum equivalent stress on project.

Descripción

This mechanism allows two parts to be deployed without any kind of rupture or explosion. The mechanism consists of contracting a tube that secures the two parts with small balls of steel.

Simulación de Ensamblaje Proptotipo

Fecha: domingo, 3 de octubre de 2021

Diseñador: Astro Quetzales

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripcion	3
Suposiciones	<i>6</i>
Información de modelo	7
Propiedades de estudio	10
Unidades	10
Propiedades de material	11
Cargas y sujeciones	12
Información de malla	13
Fuerzas resultantes	15
VigasError! Bookmark not de	fined
Resultados del estudio	16
ConclusiónError! Bookmark not de	fined

Suposiciones

Modelo original

Información de modelo

Nombre del modelo: Ensamblaje Proptotipo Configuración actual: Default

Sól	idos

Sólidos				
Nombre de documento y referencia	Tratad o como	Propiedades volumétricas	Ruta al documento/Fecha de modificación	
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3 Peso:0.000579546 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021	
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3 Peso:0.000579546 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021	
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021	

A.		Peso:0.000579546 lbf	
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3 Peso:0.000579546 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3 Peso:0.000579546 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021
Revolución1	Sólido	Masa:0.000579939 lb Volumen:0.002044 93 in^3 Densidad:0.283599 lb/in^3 Peso:0.000579546 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Balin 4mm.SLDPRT Oct 3 15:21:38 2021
Saliente-Extruir1	Sólido	Masa:0.190538 lb Volumen:0.671856 in^3 Densidad:0.283599 lb/in^3 Peso:0.190409 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Cuerpo.SLDPRT Oct 3 16:54:07 2021
Chaflán 1	Sólido	Masa:0.0730624 lb Volumen:0.257625 in^3 Densidad:0.283599 lb/in^3 Peso:0.0730128 lbf	C:\Users\alana\OneDrive\Documentos\N ASA Space Challenge\Prototipo 2\Sujetador.SLDPRT Oct 3 05:23:43 2021

Propiedades de estudio

Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (C:\Users\alana\OneDrive\Documentos\NASA Space Challenge\Prototipo 2)

Unidades

Sistema de unidades:	Inglés (IPS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	psi

Propiedades de material

Referencia de modelo	Propiedades		Componentes
÷	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 4340 Acero normalizado Isotrópico elástico lineal Tensión de von M máx. 102,977 psi 160,992 psi 2.97327e+07 psi 0.32 0.283599 lb/in^3 1.1603e+07 psi 6.83333e-06 /Fahrenheit	Sólido 1(Revolución1)(Bali n 4mm-1), Sólido istéRevolución1)(Bali n 4mm-10), Sólido 1(Revolución1)(Bali n 4mm-11), Sólido 1(Revolución1)(Bali n 4mm-12), Sólido 1(Revolución1)(Bali n 4mm-8), Sólido 1(Revolución1)(Bali n 4mm-9), Sólido 1(Revolución1)(Bali n 4mm-9), Sólido 1(Saliente-Extruir1)(Cuerpo- 1), Sólido 1(Chaflán1)(Sujeta dor-1)
Datos de curva:N/A			

Cargas y sujeciones

Nombre de sujeción	Imagen de	sujeción	Detalles de sujeción		
Fijo-1	٨		Entidades: Tipo:	1 cara(s) Geometría fija	
Fuerzas resultante	es				
Componentes		X	Y	Z	Re
Fuerza de reaco	ción(lbf)	-2.63705e-05	-1.37212e-05	4,458.23	4,4
Momento de reacción(lbf.in)		0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga	
Fuerza-1		Entidades: Tipo: Valor:	1 cara(s) Aplicar fuerza normal -19,831.2 N

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos para malla de alta calidad	16 Puntos
Tamaño de elementos	2.49062 mm
Tolerancia	0.124531 mm
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	15889
Número total de elementos	9189
Cociente máximo de aspecto	15.834
% de elementos cuyo cociente de aspecto es < 3	95.3
El porcentaje de elementos cuyo cociente de aspecto es > 10	0.294
Porcentaje de elementos distorsionados	0
Tiempo para completar la malla (hh;mm;ss):	00:00:04
Nombre de computadora:	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	lbf	-2.63705e-05	-1.37212e-05	4,458.23	4,458.23

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	lbf.in	0	0	0	0

Fuerzas de cuerpo libre

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	lbf	-0.000586222	-0.000748543	0.00114915	0.00149149

Momentos de cuerpo libre

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	lbf.in	0	0	0	8.85075e-33

Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+00mm	6.317e-02mm
	resultantes	Nodo: 695	Nodo: 12512

Nombre	Tipo	Mín.	Máx.
Deformaciones	ESTRN: Deformación	2.647e-06	1.564e-03
unitarias1	unitaria equivalente	Elemento: 8776	Elemento: 141

Nombre	Tipo
Desplazamientos1{1}	Deformada

the next step calculates the reference to the cables and the motor

the force to lift the cap is calculated, considering its power and the force of the internal spring Cap force calculation

$$F = F_s - F_\omega$$

$$F = k \cdot x - w \cdot g$$

$$F = 5.46 \cdot 10.6 - 15 \cdot 9.81$$

$$F = 57.72N$$

Force per cable

$$F1 = 57.72/3$$

 $F1 = 19.24N$

the deformation of the cable is calculated

$$\delta = \frac{F \cdot L}{A \cdot y}$$

$$\delta = \frac{19.24 \cdot 61}{.098 \cdot 1936000}$$

$$\delta = .006174mm$$

torque is calculated for motor power

if the spool behaves like a pulley

$$\tau = r \cdot F$$

$$\tau = 19.24 \cdot 8$$

$$\tau = .4617N. m$$

Motor is selected with the next characteristic

Voltage=5v

Vel.= 11600rpm

Load=0. 49N.m

Load Amperage =270mA

P=5v*.270A=1.35w