Leads Scoring Case Study Presentation

By Satvik Praveen, Manika Gupta and Animesh Gupta DS C46 July Batch

Problem Statement

An education company named X Education needs to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires us to assign a lead score to each of the leads such that the customers with a higher lead score have a higher conversion chance and the customers with a lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

EDA

There were 3 different analyses done:

Univariate Analysis: the analysis of a single variable.

Bivariate Analysis: the analysis of two variables taken together.

Multivariate Analysis: the analysis of multiple variables taken together.

Variable: Country

Variable: City

Variable: lead_origin

Variable: lead_quality

Numerical Variable: totalvisits

Numerical Variable: page_views_per

Numerical Variable: total_time_spent

Total visits post treatment

Numerical Variables and Target variable

Categorical Variable and target variable

Multivariate Analysis

Model Building

Logistic Regression Model building:

The Feature selection work is done based on Recursive Feature Elimination procedure and then manual selection of variables using the following criteria:

- P-value less than 0.05 for a variable to be kept.
- VIF value less than 5 for a variable to be kept.

ROC Curve

Plot- accuracy, specificity, sensitivity

Explanation

The observation made from the previous two graphs are as follows:

- The area under the ROC curve is 92% which is great.
- The cut-off obtained from the plot is about 0.37 which we shall use to perform the prediction.

Metrics\Dataset	Train	Test
Accuracy	0.8495	0.8443
Sensitivity (Recall)	0.8288	0.8362
Specificity	0.6329	0.6211
Precision	0.7835	0.7746
F-score	0.8055	0.8042

Precision-Recall Tradeoff curve

Explanation

From the precision-recall curve, it is very clear that the cut-off is around 41. We shall employ this cut-off in our prediction.

Metrics\Dataset	Train	Test
Accuracy	0.8544	0.8495
Sensitivity (Recall)	0.8136	0.8197
Specificity	0.6418	0.6308
Precision	0.8021	0.7936
F-score	0.8078	0.8064

Conclusion

The variables contributing to the conversion are as follows:

- totalvisits
- 2. total_time_spent
- 3. lead_source: olark_chat, reference, welingak_website.
- 4. lead_quality: not_sure, might_be, worst, low_in_relevance
- 5. last activity: sms sent
- 6. last_notable_activity: olark_chat_conversation, unreachable
- 7. do_not_email_yes
- 8. asymmetric_activity_index_low

The model has achieved an accuracy of about 85% and hence, has sufficiently met the business goal.