Introduction to Robotics Assignment-1 Report

Gokul B. Nair 201502034

Answer 1:

Subsection 1:

I've written the required code in Matlab which takes in the following parameters as inputs. The command to run the code (in Matlab IDE) is as follows with the respective parameters:

ShowCuboid(x-coordinate of a specific corner, y-coordinate of the corner, z coordinate of the corner, length, width, height, angle of rotation about x, angle of rotation about y, angle of rotation about z axis)

Here, the angles are in degrees. The code generates a plot with two cuboids, the green one showing the initial orientation and the blue one showing the final orientation of the cuboid with respect to the coordinate axes.

Subsection 2:

The code has been submitted as 'ShowCuboid.m' file. The plot obtained after rotating the cube by 90 degrees about x, 45 degrees about y and 23 degrees about z is as follows:

Rotation Transformations on Cuboid

Initial Coordinates:

0	2	0	0	2	0 3	2	2
0	0	3	0	3	3	0	3
0	0	0	1	0	1	1	1

Final Coordinates:

0 1.3018 1.9527 0.3907 3.2545 2.3434 1.6925 3.6452

0 0.5526 0.8289 -0.9205 1.3814 -0.0916 -0.3679 0.4609

0 -1.4142 2.1213 0 0.7071 2.1213 -1.4142 0.7071

Here, each column represents, (x,y,z) coordinate of each of the 8 corners of the cuboid.

On applying rotation in the reverse order, that is, 23 degrees about z axis, 45 degrees about y axis and 90 degrees about x axis respectively, i obtained the following plot and coordinates:

Rotation Transformations on Cuboid

0	2	0	0 2 0 0 3 3	0	2	2	
0	0	3	0	3	3	0	3
0	0	0	1	0	1	1	1

Final Coordinates:

0	1.3018	-0.8289	0.7071	0.4729	-0.1218	2.0089	1.1800
0	1.3018	-0.8289	-0.7071	0.4729	-1.5360	0.5947	-0.2342
0	0.7815	2.7615	0	3.5430	2.7615	0.7815	3.5430

Answer 2:

The code has been attached as 'LineIntersection.m'. The function can be run as follows:

 $\label{line1} Line Intersection (line1_end1_x, line1_end1_y, line1_end1_z, line1_end2_x, line1_end2_y, line1_end2_y, line2_end1_x, line2_end1_y, line2_end1_z, line2_end2_x, line2_end2_z, line2_end$

Input1: LineIntersection(1,0,0,0,1,0,-1,1,1,-2,0,-3)
Output1: (-0.5000,1.5000,0), (-0.5000,1.5000,3.0000)

Input2: LineIntersection(4,0,0,0,4,0,-4,4,4,-8,0,-12)

Output2: (-2,6,0), (-2,6,12)

Answer 3:

The coordinate frames have been applied on each joint of the right leg as required in the following manner:

The D-H Parameters, thus obtained are as follows: (taking B2 as Joint-0)

The B TTT draffictors, that obtained are as follows: (taking B2 as some s)						
	$\alpha(i)$	a(i)	heta(i)	d(i)		
1	0°	a1	θ 1	0		
2	-90°	0	θ2	0		
3	-90°	0	θ3	0		
4	0°	a4	θ 4	0		
5	0°	a5	θ 5	0		
6	+90°	0	θ 6	0		