1. Задача 1.

Пусть система отсчета K двигается относительно системы K* со скоростью v_1 . А система K* двигается относительно системы K** со скоростью v_2 . Предполагая , что координаты (x*,t*) с (x,t), как и (x**,t**) с (x*,t*) связаны стандартными соотношениями Лоренца, проверить следует ли из этого, что (x**,t**) выражаются через (x,t) аналогичными соотношениями , в которых роль скорости системы отсчета K относительно K** играет u(v1,v2)—функция от v1 и v2.

Найти эту функцию. Утвердительный ответ для этой задачи означает, что преобразования Лоренца образуют группу.

2. Задача 2.

Используя вид уравнений Максвелла в терминах электрического E_{κ} и магнитного H_{κ} полей ($\kappa=1,2,3$) (то есть не переходя к векторному и скалярному потенциалам) , проверить , что, если функции координат и времени E_{κ} и H_{κ} удовлетворяют уравнениям Максвелла, то и $E*_{\kappa}$ и $H*_{\kappa}$ —некоторые определенные линейными комбинации полей E_{κ} и H_{κ} , взятых в точке пространства-времени с координатами (x*,y*,z*,t*), которые выражаются через (x,y,z,t) формулами преобразования Лоренца, для случая движения одной системы отсчета относительно другой со скоростью в вдоль оси x.

Найти явно коэффициенты в этих линейных комбинациях. Утвердительный ответ для этой задачи означает, что уравнения Максвелла инвариантны относительно преобразований Лоренца .

3. Задача 3.

Пусть A(N) -алгебра Клиффорда с образующими g_n , где n=1,...,N, которые удовлетворяют соотношениям $g_ng_m+g_mg_n=2d_{n,m}$, или $g_ng_m,g_mg_n=2d_{n,m}$ где $d_{n,m}$ -символ Кронекера. В качестве базиса A(N) как векторного пространства можно взят e-единицу в алгебре E, а также мономы $g_{n_1}...g_{n_k}$, где $n_1<...< n_{\kappa}< H$.

Найти число элементов этого базиса, то есть размерность алгебры $\mathrm{A}(N)$ как векторного пространстваю

4. Задача 4.

Преставление алгебры A(N) для четного N матрицами $2^{N/2}x2^{N/2}$ можно построить следующим образом. Пусть V-векторное пространство размерности $2^{N/2}$. Поставим в соответствие элементам алгебры A(N) линейные операторы, действующие в пространстве V. Очевидно, что достаточно сделать это для генераторов g_n . Удобно от g_n перейти к их линейным комбинациям b_{κ}^+ и b_{κ}^- ,где $\kappa=1,...,N/2$.

$$b_{\kappa}^{+} = (g_{2\kappa-1} + ig_{2\kappa})/2$$
$$b_{\kappa}^{-} = (g_{2\kappa-1} - ig_{2\kappa})/2.$$

Новые генераторы удовлетворяют соотношениям операторов "рождения"и уничтожения"

$$b_{\kappa}^{+}, b_{m}^{+} = b_{\kappa}^{-}, b_{m}^{-} = 0,$$

 $b_{\kappa}^{+}, b_{m}^{-} = d_{k,m}$

Поскольку операторы рождения b_{κ}^+ антикоммутируют между собой, как и операторы уничтожения b_{κ}^- , то в пространстве V существует вектор |v>, который удовлетворяет условиям

$$b_{\kappa}^{-}|v>=0.$$

Действие на в операторов b_{κ}^{+} определяет вектора

$$v(s_1,...,s_{N/2}) = (b_1^+)_1^s...(b_{\kappa}^+)s_{N/2}|v>,$$

где $s_i = 0.1 \forall i$.

Покажите, что вектор |v> существует. Покажите, что вектора $v(s_1,...,s_{N/2})$ линейно независимы, а их число равно $2^{N/2}$.

Таким образом вектора $v(s_1,...,s_{N/2})$ задают базис в пространстве V. В этом базисе операторам b_{κ}^- и b_{κ}^- , а значит и операторам g_n соответствуют матрицы $2^{H/2} \times 2^{H/2}$. Матрицы, соответствующие g_n , называются матрицами Дирака,обозначим их G_n , определяются из соотношений

$$g_n v(s_1,...,s_{N/2}) = (G_n)_{s_1,...,s_{N/2}}^{t_1,...,t_{N/2}} v(t_1,...,t_{N/2}).$$

коэффициенты $(G_n)_{s_1,\dots,s_{N/2}}^{t_1,\dots,t_{N/2}}$ являются матричными элементами матрицы G_n .

Найти матрицы Дирака G_n явно для случаев N=2 и N=4.