BİL 331 – BİLGİSAYAR ORGANİZASYONU FİNAL PROJESİ RAPORU

1. GİRİŞ

Bir instruction'ın yaşam döngüsü

İnstruction, instruction.mem dosyasından okunur, mips_core modülü içinde parçalarına ayrılır. Opcode ve function control unit modülüne gönderilir ve bu değerlere göre sinyaller belirlenir. Daha sonra ALU modülüne registers.mem dosyasından okunan source register'larının değerleri gönderilir. ALU'dan çıkan sonuç destination register'a yazılır. Clock 0 dan 1 e değiştiği zaman (posedge) PC değeri 1 artar ve bir sonraki instruction okunur.

Testbench dosyasında #50 clock = ~clock; #50 clock = ~clock; yapmamızın sebebi, 1 cycle'ı tamamlamaktır. Clock O'dan başlıyor ve 50 birim zaman sonra 1 oluyor, ve 50 birim zaman sonra yeniden 0 oluyor ve yeniden 1 ve yeniden 0 şeklinde devam ediyor. Yukarıdaki görselde de görüldüğü gibi 1 clock cycle, O'dan 1 e anında başlıyor ve yine O'dan 1 e anında tamamlanıyor.

Eksikler

Final projemde, zamanım yetmediği için maalesef J type, I type instruction'ları çalıştıramadım.

2. Metod

Mips_registers modülü:

Outputs:

Read_data_1: rs contenti

Read_data_2: rt contenti

Inputs:

write_data: yazılacak data

read_reg_1: okunacak register (rs)

read_reg_2: okunacak register (rt)

write_reg: yazılacak register (rd for R types)

signal_reg_write: registera yazma sinyali

clock: clock girişi

Bu modülde registers.mem dosyası okunur rs ve rt registerlarının contentleri output olarak verilir. Ayrıca, signal_reg_write sinyali 1 ise ALU'da hesaplanan ve writedataya gelen değer rd register'ına yazılır.

Mips_instr_mem modülü:

inputs:

clock: clock girişi

program counter: okunacak instruction'ın adresini belirten değer

outputs:

instruction: program_counter adresinden okunan instruction

Bu modülde program counter'ın gösterdiği yerdeki instruction okunur ve output olarak iletilir.

Mips_data_mem modülü:

inputs:

clock: clock girişi

mem_address: değerin okunacağı adres

write_data: memory'e yazılacak data

sig_mem_read: data memory okuma sinyali 1 ise okumaya izin vardır, 0 ise okuma izni yoktur.

sig_mem_write: data memory yazma sinyali 1 ise yazmaya izin vardır, 0 ise yazma izni yoktur.

Outputs:

141044076 TANER DURKUT

Read_data: memory'den okunan data

Bu modülde data memory'i ifade eden data.mem dosyası okunur. Eğer yazma izni varsa (yani sinyal 1 ise) write_data daki değer memory'ye yazılır. Eğer okuma izni varsa (yani sinyal 1 ise) mem_address in gösterdiği yerdeki değer okunur ve read_data ile dışarı output olarak iletilir.

Mips_control_unit modülü:

inputs:

opcode: okunan instruction'ın ilk 6 biti

func: okunan instruction'ın son 6 biti

Outputs:

RegDst: sonucun rt'ye mi rd'ye mi yazılacağını belirten sinyal (0: rt, 1:rd)

Branch: instruction branch instruction'ı ise 1 olan sinyal

MemRead: memory'den okuma izninin olup olmadığını ifade eden sinyal

MemtoReg: memory'den register'a yazma işlemini temsil eden sinyal

ALUOp: ALU'nun hangi işlemi yapacağını belirten 4 bitlik değer

MemWrite: memory'ye yazma izninin olup olmadığını ifade eden sinyal

ALUSrc: 1 ise source2 signextend imm olarak seçilir, 0 ise rt

RegWrite: register bloğuna yazma izninin olup olmadığını belirten sinyal

Bu modülde opcode veya func koduna göre sinyaller ayarlanır.

Instr.	Reg Des	ALUSrc	Memto Reg	Reg Wr	Mem Rd	Mem Wr	Branch	ALUop1	ALUop0
R-type	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
sw	Χ	1	X	0	0	1	0	0	0
beq	Χ	0	X	0	0	0	1	0	1

Table: Control Lines Determined by the opcode

Mips_alu modülü:

inputs:

ALUOp: hangi işlemin yapılacağını belirten 4 bitlik değer

Content1: rs değeri

141044076 TANER DURKUT

Content2: rt değeri

Outputs:

Result: işlemin sonucunu dışarı ileten birim

Signal_zero: branch instruction'ı durumunda 1 ileten sinyal

Bu modülde gelen işleme göre contentler kullanılarak sonuç belirlenir.

3.Sonuç

Registers BEFORE

Ss1.png

Registers AFTER

141044076 TANER DURKUT

Ss2.png

Testbench results:

