Heart Disease Visualization

Mingwei Wu

Background

The database contains 76 attributes, but all published experiments refer to using a subset of 14 of them, at particular, the Cleveland database is the only one that has been used by ML researchers to this data.

Data Description

```
age: patients' age
sex: 1 is male, 2 is female
cp: chest pain type 4 level
trestbps: resting blood presure
chol: serum cholestoral in mg/dl
fbs: fasting blood sugar >120 mg/dl is value 1
restecg: resting electrocardiographic reults (values 0,1,2)
thalach: maximum heart rate achieved
exang: exercise incuced angina
oldpeak: ST depression induced by exercise relative to rest
slope: the slope of the peak exercise ST segment
ca: number of major vessels (0-3) colored by flourosopy
thal: 3 is normal; 6 fixed defect; 7 reversable defect
target: 1 has heart disease, 0 not
```

Import data

```
data<-read.csv("heart.csv",header = TRUE)</pre>
head(data)
```

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
##
## 1
             1
                3
                        145
                              233
                                                      150
                                                                      2.3
                                                                                0
                                                                                   0
                                                                                         1
      63
                                     1
                                               0
                                                               0
                                                                                         2
## 2
       37
             1
                2
                        130
                              250
                                     0
                                               1
                                                      187
                                                               0
                                                                      3.5
                                                                                0
                                                                                   0
##
                              204
                                               0
                                                                                2
                                                                                   0
                                                                                         2
   3
       41
            0
                1
                        130
                                     0
                                                      172
                                                               0
                                                                      1.4
                                                                                         2
##
   4
       56
             1
                1
                        120
                              236
                                     0
                                               1
                                                      178
                                                               0
                                                                      0.8
                                                                                2
                                                                                   0
                                                                                2
                                                                                   0
                                                                                         2
## 5
      57
            0
                0
                        120
                              354
                                     0
                                               1
                                                      163
                                                               1
                                                                      0.6
## 6
      57
             1
                0
                              192
                                     0
                                                      148
                                                               0
                                                                       0.4
                                                                                1
                                                                                   0
                                                                                         1
                        140
                                               1
##
     target
## 1
           1
## 2
           1
## 3
           1
## 4
           1
## 5
           1
## 6
           1
```

First step, we compare the relationship on every column. Double check the dependent value.

pairs(data) #pairs data to see the relationship in numeric values

Edit the column with categories. Change the int value to character values.

```
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                              ----- tidyverse 1.3.0 --
## v tibble 3.0.4
                     v dplyr
                              1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr
          1.4.0
                     v forcats 0.5.0
            0.3.4
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(dplyr)
heart<-data%>%
 mutate(gender= ifelse(sex==1, "Male", "Female"),
        chest_pain_level= ifelse(cp==0, "normal",
                                ifelse(cp==1, "mild",
                                      ifelse(cp==2,"moderate","severe"))),
        fblood_sugar=ifelse(fbs==1,">120","<=120"),
        rest_electrocardigoraphic= ifelse(restecg==0, "normal",
                                        ifelse(restecg==1, "abnormalily", "definite")),
        exercise=ifelse(exang==1, "yes", "no"),
       heart_condition=ifelse(target==1, "yes", "no")) # rebuild the column to the data frame
```

Geder Analysis

Calculate the rate of heart disease in th gender. The attached result below, the rate of Female in database has 75% who had heart disease, and the Male rate had approximate 45%

Question: why female has higher proportion in heart disease.

Count the quantity of gender. In the dataframe, the male quantity is domain, almost double quantity than female.

Barplot of Gender

Percentage of Gender

Barplot displays the disease quantity of gender that are almost same. on the contract, the Male count higher than female.

side by side barplot

Exercise Analysis

The rate of exercise with disease is 23%, and the rate of no_exercise with disease approximate 70%

Only 33% in the dataframe who do exercise everyday.

```
a1<-table(heart$exercise)
par(mfrow=c(1,2))
```

Barplot of exercise Out of the service of the serv

Percentage of exericise

The proportion of people with no disease who do not exercise are almost same, but the proportion of disease, no-exercise is extreme higher than do-exercise.

side by side barplot

Age Analysis ### the age histogram shows the normal distribution, and estimate the high proportion of disease of age range 50-60.

```
par(mfrow=c(1,2))
hist(heart$age,labels=TRUE,main="Histogram of Age",xlab = "age",ylab = "frequency")
boxplot(heart$age,horizontal = TRUE,col="red",main="boxplot of age")
```

Histogram of Age

boxplot of age

qqnorm(heart\$age,frame=FALSE)
qqline(heart\$age,col="steelblue",lwd=2)

Normal Q-Q Plot

Fasting Blood Sugar Analysis

The fasting blood sugar either less than 120 or greater than 120, it is not significat effect to the disease.

```
heart%>%
  group_by(fblood_sugar)%>%
 summarise(fblood_sugar_rate=mean(target))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 2
    fblood_sugar_rate
##
##
     <chr>
                             <dbl>
## 1 <=120
                             0.550
## 2 >120
                             0.511
heart%>%
 ggplot(aes(heart_condition,fill=fblood_sugar))+geom_bar()+ggtitle("blood_sugar > 120 vs heart_conditi
```

blood sugar > 120 vs heart condition

Cholestoral Analysis ### Plot the dependent value of chol and age to disease. For the Female, age and chol with disease display increased trend line, but non-disease is decreased. However, for the male, either disease or not, both trends increased line.

```
heart%>%
ggplot(aes(x=age,y=chol,color=heart_condition))+geom_point()+geom_smooth(method="lm")+ggtitle("relation))
```

`geom_smooth()` using formula 'y ~ x'

relationship age and chol vs heart_condition in gender

${\bf Resting\ electrocardiographic\ Analysis}$

```
heart%>%

ggplot(aes(gender,trestbps))+geom_boxplot()+xlab("Sex")+ylab("resting blood pressure")+facet_grid(~ch
```


Maximum Heart Rate Achieved Analysis ### No matter with gender, if people have disease, the maximum heart rate achieved is higher than non-disease, also decresed with age. the non-disease heart rate achieved is relatively stable.

```
heart%>%
ggplot(aes(age,thalach,color=heart_condition))+geom_point()+geom_smooth(se=FALSE)+facet_grid(~gender)
```

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

maxium heart rate vs gender and target

Principle Component Analysis

```
pca<-prcomp(heart[,4:10],scale=TRUE)</pre>
## Standard deviations (1, .., p=7):
## [1] 1.3315929 1.1225306 1.0087031 0.9402348 0.9008774 0.8115652 0.7713909
##
## Rotation (n x k) = (7 \times 7):
                                                               PC5
                                                                          PC6
                  PC1
                                        PC3
                                                   PC4
##
                             PC2
## trestbps -0.2962509   0.4836945 -0.28351741   0.5166899 -0.33164295 -0.41673496
           -0.1787205  0.4122420  0.61954768  0.3047407
## chol
                                                       0.54268445
                                                                  0.15616166
## fbs
           -0.1208119   0.4598572   -0.63005504   -0.3290019
                                                       0.45347280 0.23869262
           0.2092606 -0.4497390 -0.36233415 0.6286817 0.47640056 -0.02035216
## restecg
## thalach
            -0.5180609 \ -0.2336930 \quad 0.04786729 \ -0.1924133 \quad 0.27701992 \ -0.61645776
## exang
## oldpeak -0.5292331 -0.1384268 -0.06453488 0.2742982 -0.27776514 0.58860905
##
                    PC7
## trestbps 0.217415421
## chol
            0.050163486
## fbs
           -0.078182227
## restecg
            0.006815801
## thalach -0.751928923
```

```
## exang -0.425354114
## oldpeak -0.444670682
```

library(factoextra)

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
screeplot(pca)

fviz_screeplot(pca) #plot the tendency of principle component analysis

pca\$sdev^2

[1] 1.7731395 1.2600750 1.0174820 0.8840414 0.8115801 0.6586380 0.5950439

pca\$rotation

```
PC1
                                  PC3
##
                        PC2
                                           PC4
                                                     PC5
                                                               PC6
## chol
         -0.1787205  0.4122420  0.61954768  0.3047407  0.54268445
                                                         0.15616166
         -0.1208119   0.4598572   -0.63005504   -0.3290019
                                               0.45347280 0.23869262
## fbs
## restecg
         0.2092606 -0.4497390 -0.36233415 0.6286817 0.47640056 -0.02035216
## thalach
          ## exang
         -0.5180609 \ -0.2336930 \quad 0.04786729 \ -0.1924133 \quad 0.27701992 \ -0.61645776
## oldpeak -0.5292331 -0.1384268 -0.06453488 0.2742982 -0.27776514 0.58860905
## trestbps 0.217415421
## chol
          0.050163486
## fbs
         -0.078182227
## restecg
         0.006815801
## thalach
         -0.751928923
## exang
         -0.425354114
## oldpeak -0.444670682
```


Statistics Analysis

Randomly split the data into 70% train_set and 30% test_set for logistic regression.

```
library(caTools)
set.seed(927)
sample<-sample.split(data$target,SplitRatio=0.70)
train_set<-subset(data,sample==TRUE)
test_set<-subset(data,sample==FALSE)
head(heart,10)</pre>
```

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
##
                                                                   2.3
## 1
       63
             1
                3
                        145
                             233
                                             0
                                                    150
                                                            0
                                                                            0
                                                                               0
                                                                                     1
                                    1
                2
                                                                                     2
## 2
       37
             1
                        130
                             250
                                    0
                                             1
                                                    187
                                                            0
                                                                   3.5
                                                                            0
                                                                               0
## 3
       41
             0
                1
                        130
                             204
                                    0
                                             0
                                                    172
                                                            0
                                                                   1.4
                                                                            2
                                                                               0
                                                                                     2
## 4
       56
             1
               1
                        120
                             236
                                    0
                                             1
                                                    178
                                                                   0.8
                                                                                     2
## 5
       57
             0 0
                        120
                             354
                                    0
                                                    163
                                                                   0.6
                                                                            2
                                                                               0
                                                                                     2
                                             1
                                                            1
## 6
       57
             1
                0
                        140
                             192
                                    0
                                                    148
                                                                   0.4
                                                                               0
                                                                                     1
## 7
       56
             0 1
                        140
                             294
                                    0
                                             0
                                                    153
                                                            0
                                                                   1.3
                                                                            1
                                                                               0
                                                                                     2
## 8
       44
             1 1
                        120
                             263
                                    0
                                             1
                                                    173
                                                                   0.0
                                                                            2
                                                                               0
                                                                                     3
                                             1
                                                                   0.5
                                                                            2
                                                                               0
## 9
       52
             1
                2
                        172
                             199
                                    1
                                                    162
                                                            0
                                                                                     3
```

```
150 168 0
## 10 57 1 2
                                         1
                                               174
                                                              1.6
      target gender chest_pain_level fblood_sugar rest_electrocardigoraphic
## 1
           1
               Male
                              severe
                                             >120
                                                                      normal
## 2
                                             <=120
           1
               Male
                            moderate
                                                                 abnormalily
## 3
           1 Female
                                mild
                                             <=120
                                                                      normal
## 4
               Male
                                             <=120
                                mild
                                                                 abnormalily
## 5
           1 Female
                             normal
                                             <=120
                                                                 abnormalily
## 6
           1
               Male
                              normal
                                             <=120
                                                                 abnormalily
## 7
           1 Female
                                mild
                                             <=120
                                                                      normal
## 8
           1
               Male
                                mild
                                            <=120
                                                                 abnormalily
## 9
           1
               Male
                            moderate
                                             >120
                                                                 abnormalily
## 10
                                            <=120
                                                                 abnormalily
           1
               Male
                            moderate
##
      exercise heart_condition
## 1
            no
## 2
            no
                           yes
## 3
            no
                           yes
## 4
            no
                           yes
## 5
           yes
                           yes
## 6
            no
                           yes
## 7
            no
                           yes
## 8
            nο
                           yes
## 9
            no
                           yes
## 10
            no
                           yes
logistic<-glm(target~.,train_set,</pre>
              family=binomial())
summary(logistic)
##
## Call:
## glm(formula = target ~ ., family = binomial(), data = train_set)
## Deviance Residuals:
       Min
                      Median
                                   3Q
                 1Q
## -2.4446 -0.3966
                      0.1437
                               0.5971
                                        2.5361
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.963599
                           2.911957
                                      0.674 0.50011
                                      0.125 0.90023
## age
                0.003474
                           0.027706
## sex
               -1.744546
                           0.563229
                                    -3.097 0.00195 **
                0.982057
                           0.229104
                                     4.287 1.82e-05 ***
## ср
                           0.012554
                                     -1.154 0.24830
## trestbps
               -0.014493
## chol
               -0.002281
                           0.004659
                                     -0.490 0.62444
## fbs
               -0.124715
                           0.667916
                                     -0.187 0.85188
               0.574945
                           0.420552
                                     1.367
                                             0.17159
## restecg
## thalach
                0.021966
                           0.012269
                                      1.790
                                             0.07340
               -0.869894
                           0.472047
                                     -1.843 0.06536
## exang
## oldpeak
               -0.612452
                           0.259405
                                     -2.361
                                             0.01823 *
                                     1.224 0.22082
## slope
               0.557911
                           0.455675
## ca
               -0.852029
                           0.235122
                                     -3.624 0.00029 ***
                           0.356196 -2.579 0.00990 **
## thal
               -0.918692
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 292.36 on 211 degrees of freedom
## Residual deviance: 150.91 on 198 degrees of freedom
## AIC: 178.91
##
## Number of Fisher Scoring iterations: 6
```

Remove insignificant factors

After removing the insignificant factors, the AIC value is going down.

```
##
## Call:
## glm(formula = target ~ sex + cp + thalach + oldpeak + ca + thal,
      family = binomial(), data = train_set)
##
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
                     0.1999
## -2.3901 -0.4855
                              0.5545
                                       2.4572
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.06097
                          1.73144 -0.035 0.971910
                          0.47503 -3.138 0.001703 **
## sex
              -1.49045
## cp
                          0.20969
                                   4.756 1.98e-06 ***
              0.99727
## thalach
              0.02621
                          0.01024
                                   2.559 0.010483 *
                          0.21597 -3.865 0.000111 ***
## oldpeak
              -0.83470
              -0.75831
                          0.21032 -3.605 0.000312 ***
## ca
## thal
              -0.97051
                          0.32970 -2.944 0.003244 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 292.36 on 211 degrees of freedom
##
## Residual deviance: 161.50 on 205 degrees of freedom
## AIC: 175.5
##
## Number of Fisher Scoring iterations: 5
```

coefficients build up formular

logistic1\$coefficients

```
## (Intercept) sex cp thalach oldpeak ca
## -0.06096859 -1.49044986 0.99726987 0.02620721 -0.83469979 -0.75830641
## thal
## -0.97050613
```

prediction on test_set

```
pred<-predict(logistic1,test_set,type="response")
pred_new<-as.data.frame(pred)
categorise<-function(x){
   return(ifelse(x>0.5,1,0))
}
pred_new<-apply(pred_new,2,categorise)
head(pred_new,10)</pre>
```

```
##
      pred
## 2
## 4
          1
## 6
## 12
          1
## 13
          1
## 15
          1
## 20
## 32
          0
## 34
          1
## 38
          1
```

Model Evaluation

Model has 85.7% accuracy in predecting future data with logistic regression model.

```
library(caret)

## Loading required package: lattice
```

```
## Loading required package: lattice

##
## Attaching package: 'caret'

## The following object is masked from 'package:purrr':
##
## lift

confusionMatrix(as.factor(test_set$target),as.factor(pred_new))
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
           0 32 9
##
           1 4 46
##
##
##
                  Accuracy : 0.8571
                    95% CI : (0.7681, 0.9217)
##
       No Information Rate : 0.6044
##
       P-Value [Acc > NIR] : 1.294e-07
##
##
##
                     Kappa : 0.7083
##
##
   Mcnemar's Test P-Value: 0.2673
##
##
              Sensitivity: 0.8889
##
              Specificity: 0.8364
##
           Pos Pred Value : 0.7805
##
           Neg Pred Value: 0.9200
                Prevalence: 0.3956
##
##
           Detection Rate: 0.3516
##
     Detection Prevalence: 0.4505
##
         Balanced Accuracy: 0.8626
##
          'Positive' Class : 0
##
##
```