PHYS 475 - Quantum Mechanics

Spring 2024

Homework #2

- 1. (a) Normalize R_{20} for hydrogen and construct the wave function ψ_{200} .
 - (b) Normalize R_{21} for hydrogen and construct the wave functions ψ_{211} , ψ_{210} , and ψ_{21-1} .
- 2. (a) Determine $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of the hydrogen atom. Express your answers in terms of the Bohr radius.
 - (b) Determine $\langle x \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of the hydrogen atom. If you exploit the symmetry of the ground state, you will not need to perform any new integration here.
 - (c) Determine $\langle x^2 \rangle$ for an electron in a hydrogen atom in the state $n=2, \ \ell=1, m=1$. It is helpful to use the fact that $x=r\sin\theta\cos\phi$.
- 3. (a) Starting with $[r_i, p_j] = -[p_i, r_j] = i\hbar \delta_{ij}$ and $[r_i, r_j] = [p_i, p_j] = 0$ where the index i stands for x, y, or z and $r_x = x$, $r_y = y$, $r_z = z$, work out the following commutator relations:

$$[L_z, x] = i\hbar y$$
 $[L_z, y] = -i\hbar x$ $[L_z, z] = 0$ $[L_z, p_x] = i\hbar p_y$ $[L_z, p_y] = -i\hbar p_x$ $[L_z, p_z] = 0$

- (b) Use the results from part (a) and the definitions $L_x = yp_z zp_y$, $L_y = zp_x xp_z$, $L_z = xp_y yp_x$ to obtain $[L_z, L_x] = i\hbar L_y$.
- (c) Evaluate the commutators $[L_z, r^2]$ and $[L_z, p^2]$ where $r^2 = x^2 + y^2 + z^2$ and $p^2 = p_x^2 + p_y^2 + p_z^2$.
- (d) Show that the Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}$ commutes with all three components of $\hat{\vec{L}}$ if \hat{V} depends only on r.