# Class: LS

## **Mathematics Department**

#### A: Recall:

Anti-derivative (primitive, indefinite integral):

**<u>1-Definition</u>**: Let f be a continuous function over an interval I then if f'(x) = g(x) we say that f is an anti-derivative of g and we write :  $\int g(x)dx = \int f'(x)dx = f(x) + C$  where C is an arbitrary constant.

## 2-Rules:

| n+1                                                                                                  | $\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $\int \frac{1}{\cos^2(ax)} dx = \frac{1}{a} \tan(ax) + C \text{ where } \tan(ax) \text{ is defined}$ | $\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$ |

**Techniques** 

| (Change of the variable Or Substitution)                           | (Integration by parts)-Not required For LS   |
|--------------------------------------------------------------------|----------------------------------------------|
| $\int u' \times u^n dx = \frac{u^{n+1}}{n+1} + C, with  n \neq -1$ | $\int u.v'dx = u.v - \int v.u'dx  \text{or}$ |
| n+1                                                                | $\int u \ dv = u.v - \int v \ du$            |

## **B: 1-Definition**:(Definite integral)

Let f be a continuous function over an interval E; a and b are two real numbers of E.

Let F and G be anti-derivatives (primitives) of f over E;

G(x) = F(x) + k where k is a constant, so G(b) - G(a) = F(b) - F(a), and this difference is said to be integral from a to b of the function f.

We write  $: \int_{a}^{b} f(x)dx = G(x)|_{a}^{b} = G(b) - G(a)$  (where a is the lower bound and b is the upper one and G is the anti-derivative of f)

#### 2-Main properties for integration:

Table 1

|            | _ | continuous function over an interval E; the rees of f over E.                                                                                              | eal numbers a, b and c are in E. Let F be one of the anti- |  |
|------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
|            | 1 | $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(z)dz$                                                                                          | The variables x , t , z are said to be mute.               |  |
| Pr         | 2 | $\int_{a}^{a} f(x)dx = 0 \text{ and } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$                                                                          |                                                            |  |
| Properties | 3 | $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$                                                                                          | Chasles' relation                                          |  |
|            | 4 | $\int_{a}^{b} f(x)dx \text{ takes the same sign of the product of } (b-a) \text{ and } f(x) \text{ when } f(x) \text{keeps the samesign}$ between a and b. |                                                            |  |

|            |   |                                                                                         | Table 2                   |                                                                                             |
|------------|---|-----------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|
| Properties | 6 | f is continuous over an interval E of cent<br>0; a is an element of E such that a > 0   | f is odd                  | $\int_{-a}^{a} f(x) dx = 0$                                                                 |
|            | 7 |                                                                                         | f is even                 | $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$                                              |
|            | 8 | f is continuous over R, and a is a real number.                                         | f is periodic of period T | $\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$ $\int_{T}^{a+T} f(x)dx = \int_{0}^{a} f(x)dx$ |
|            | 9 | f is continuous over an interval [u(x); v(<br>with u and v are differentiable functions |                           | $\phi'(x) = v'(x)f(v(x)) - u'(x) f(u(x))$                                                   |

|          |    |                                                                                                           | Table 3                       |              |                                                                                           |
|----------|----|-----------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-------------------------------------------------------------------------------------------|
| Property | 10 | f and g are two functions that are continuous over the same interval E. a and b are two real numbers in E | α and β are two real numbers. | ∫<br>a<br>[• | $\alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx$ $+\beta \int_{a}^{b} g(x) dx$ |

## 4-Rules of calculation of an area:

#### a-Calculation of the area:

The area A of the shaded region, in an orthogonal system, is given by the formula:

A = A' u<sup>2</sup> with A' =  $\int_{a}^{b} (Y_{greater} - Y_{smaller}) dx =$   $\int_{a}^{b} |f(x) - g(x)| dx = \int_{a}^{c} (f(x) - g(x)) dx + \int_{c}^{b} (g(x) - f(x)) dx$ 



#### Test your knowledge

I-Calculate the following integrals:

$$J = \int_{-1}^{2} (x^2 - 1) dx , K = \int_{-1}^{2} \frac{2x - 1}{(x^2 - x + 3)^4} dx , N = \int_{-1}^{2} |x^2 - 1| dx ; P = \int_{0}^{\frac{1}{2}} \frac{2x - 1}{\sqrt{1 - x^2}} dx$$

II-Given the following figure in a direct orthonormal system calculate:

$$I = \int_{-2}^{1} f(x) dx$$



III-

In the plane of an orthonormal system, consider (C) and (C') as the representative curves of the two continuous functions f and g over the interval [a,b].

Let D be the region limited by (C),(C') and the two straight lines x=a and x=b. Calculate the area A of the domain D in each of the following:

1- a=-1,b=2; 
$$f(x) = -x^2 + 2x$$
,  $g(x) = x-2$ .

2- 
$$a = -2$$
,  $b = 3$ ;  $f(x) = -x^2 + 2x$ ,  $g(x) = x-2$ .

3- 
$$a = -4$$
,  $b = 2$ ;  $f(x) = x^2 + 2x - 3$ ,  $g(x) = 0$ .

IV-

Let (C) be the representative curve of the function f defined over ] -1;  $+\infty$  [ by

$$f(x) = \frac{x^2}{\sqrt{1+x^3}}$$
 in an orthonormal system  $(O; \vec{i}, \vec{j})$ .

- 1) Set up the table of variations of f.
- 2) Calculate the area  $A(\lambda)$  of the domain limited by (C) ,x'ox, y'oy,

and the line of equation  $x = \lambda$ , where  $-1 < \lambda < 0$ .

3) Deduce  $\lim_{\lambda \to -1} A(\lambda)$ .



In the adjacent figure Given the curves of two functions f and f '.

- 1- Using the graph determine which curve is that of f and which one is that of f.
- 2- Calculate f((1)) and f(2).
- 3- Calculate the area of the domain limited by the curve  $(\Omega)$ , (x'ox), and the two lines of equations x = 1 and x = 2

