6.4.1. Chuỗi hàm

1. Định nghĩa

Chuỗi hàm là chuỗi $\sum u_n(x)$, trong đó các $u_n(x)$ là các hàm của x.

Khi $x = x_0$ thì chuỗi hàm trở thành chuỗi số $\sum u_n(x_0)$. Nếu chuỗi số hội tụ thì điểm x_0 gọi là điểm hội tụ, nếu nó phân kỳ thì x_0 gọi là điểm phân kỳ.

- Tập hợp tất cả các điểm x mà chuỗi hàm hội tụ được gọi là miền hội tụ của chuỗi hàm.

-
$$s_n(x) = \sum_{k=1}^n u_k(x)$$
: gọi là tổng riêng thứ n của chuỗi hàm.

- Nếu lim $s_n(x) = s(x)$ thì S(x) gọi là tổng của chuỗi hàm. Trong trường hợp này, $r_n(x) = s(x) - s_n(x)$: gọi là phần dư thứ n của chuỗi hàm. Do đó ta có $r_n(x) = u_{n+1}(x) + u_{n+2} + \dots$

2. Ví dụ

$$1) \sum_{n=0}^{\infty} x^n$$

Chuỗi này hội tụ với mọi x thoả |x| < 1 và có tổng $S(x) = \frac{1}{1-x}$.

Vậy miền hội tụ của chuỗi trên là X = (-1; 1)

2)
$$\sum_{n=1}^{\infty}$$
 có miền hội tụ là $X = (1; +\infty)$ (theo kết quả của chuỗi Riemann đã biết)

3)
$$\sum \frac{\cos nx}{n^3 + x^2}$$

Ta có
$$\left| \frac{\sin nx}{n^3 + x^2} \right| \le \frac{1}{n^3 + x^2} \le \frac{1}{n^3}$$
, $\forall x$. Mà chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^3}$ hội tụ nên $\sum \frac{\cos nx}{n^3 + x^2}$ hội tụ, $\forall x$

Vậy miền hội tụ là X = R.

6.4.2. Chuỗi hàm hội tụ đều

1. Định nghĩa

Chuỗi hàm $\sum u_n(x)$ được goi là hội tụ đều tới hàm S(x) trên X, nếu $\forall \varepsilon > 0, \exists n_0 > 0 : n > n_0 \Rightarrow \left| S(x) - S_n(x) \right| = \left| r_n(x) \right| < \varepsilon, \, \forall x \in X$

1

2. Ví du

Chuỗi
$$\sum \frac{(-1)^n}{x^2 + n}$$
 hội tụ với mọi x (theo đlý Leibnitz)

Ta có
$$|r_n(x)| \le |u_{n+1}(x)| = \frac{1}{x^2 + n + 1} < \frac{1}{n+1}, \ \forall x \in \mathbb{R}$$

Ta có
$$|r_n(x)| \le |u_{n+1}(x)| = \frac{1}{x^2 + n + 1} < \frac{1}{n+1}, \ \forall x \in \mathbb{R}$$

Như vậy
$$|r_n(x)| < \frac{1}{n+1} < \varepsilon, \forall n > \frac{1}{\varepsilon} - 1$$

Do đó
$$\forall \varepsilon > 0$$
, lấy $n_0 > \frac{1}{\varepsilon} - 1$. Khi đó $\forall n \ge n_0, \left| r_n(x) \right| < \varepsilon, \forall x \in \mathbb{R}$

Vậy chuỗi
$$\sum \frac{(-1)^n}{x^2 + n}$$
 hội tụ đều trên R.

3. Tiêu chuẩn về sự hội tụ đều

a. Định lý (tiêu chuẩn Cauchy)

Chuỗi hàm
$$\sum u_n(x)$$
 hội tụ đều trên X khi và chỉ khi $\forall \varepsilon > 0$, $\exists n_0 : \forall n, p \in N^*$, $n \ge n_0$

$$\Rightarrow |u_{n+1}(x) + ... + u_{n+p}(x)| < \varepsilon, \forall x \in X$$

b. Định lý (tiêu chuẩn Weierstrass)

Cho chuỗi hàm $\sum u_n(x)$. Nếu có một chuỗi số dương $\sum a_n$ hội tụ sao cho $|u_n(x)| \le a_n$, $\forall n \ge 1$, $\forall x \in X$ thì chuỗi hàm trên hội tụ tuyệt đối và đều trên X.

Chứng minh.

Rõ ràng chuỗi $\sum |u_n(x)|$, $\forall x \in X$ hội tụ (theo tiêu chuẩn so sánh)

Do đó chuỗi $\sum u_n(x)$ hội tụ tuyệt đối.

Vì chuỗi số $\sum a_n$ hội tụ nên ta có

$$\begin{split} \left| u_{n+1}(x) + \ldots + u_{n+p}(x) \right| &< |u_{n+1}(x)| + \ldots + |u_{n+p}(x)| < \\ &< a_{n+1} + \ldots + a_{n+p} < \varepsilon, \forall x \in X \end{split}$$

Theo định lý Cauchy trên, suy ra chuỗi hàm hội tụ đều trên X

Vi du

Xét tính hội tụ đều của chuỗi hàm

$$\sum \frac{\cos nx}{n^2 + x^2}$$

Ta có
$$\left| \frac{\cos nx}{n^2 + x^2} \right| \le \frac{1}{n^2 + x^2} \le \frac{1}{n^2}, \ \forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$$

Ta đã biết chuỗi số dương $\sum_{n=1}^{\infty} h$ ội tụ nên chuỗi hàm $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2+x^2}$ hội tụ tuyệt đối và đều trên R.

4. Tính chất cơ bản của chuỗi hàm hội tụ đều

a. Tính chất 1

Cho chuỗi hàm $\sum_n u_n(x)$ hội tụ đều về hàm S(x) trên X. Nếu các số hạng $u_n(x)$ đều liên tục $x_0 \in X$ thì S(x) cũng liên tục tại $x_0 \in X$.

$$Ta\ c\acute{o}\ \lim_{x\to x} S(x) = S(x_0) \Leftrightarrow \lim_{x\to x_0} \sum_n u_n(x) = \sum_n u_n(x_0) = \sum_n \lim_{x\to x_0} u_n(x).$$

Vi du

Tính
$$\lim_{x \to \pi} \sum_{n} \frac{\sin nx}{n^2 + x^2}$$

Ta thấy chuỗi trên hội tụ đều, có các số hạng liên tục tại $x = \pi$

Do đó
$$\lim_{x \to \pi} \sum_{n} \frac{\sin nx}{n^2 + x^2} = \sum_{n} \lim_{x \to \pi} \frac{\sin nx}{n^2 + x^2} = 0$$

b. Tính chất 2

Cho chuỗi hàm $\sum_{n} u_n(x)$ hội tụ đều về hàm S(x) trên [a, b]. Nếu các số hạng $u_n(x)$ đều liên tục trên [a, b], $\forall n \ge 1$ thì $\int_a^b S(x) dx = \int_a^b \left[\sum_{n} u_n(x) \right] dx = \sum_{n} \int_a^b u_n(x) dx$.

c. Tính chất 3

Cho chuỗi hàm $\sum_{n} u_{n}(x)$ hội tụ trên (a, b) tới S(x), các số hạng $u_{n}(x)$, $u'_{n}(x)$ liên tục trên (a, b). Khi đó nếu chuỗi $\sum_{n} u'_{n}(x)$ hội tụ đều trên (a, b) thì S(x) khả vi và $S'(x) = \sum_{n} u'_{n}(x)$.