

编译原理与设计

北京理工大学 计算机学院

语法分析: 自下而上分析

自下而上分析: LR(0)分析

LR(0)分析表构造算法对含有归约项目 $A \rightarrow a \cdot$ 的项目集 I_i ,不管当前输入符号为何,皆把action子表相应于状态 I_i 的那一行的诸元素都指定为 r_j (其中j 为产生式 $A \rightarrow a \cdot$ 的编号)。

按照SLR(1)方法构造的文法G的LR分析表,如果每个入口不含多重定义,则称它为G的SLR(1)分析表。具有SLR(1)分析表的文法G称为SLR(1)文法。使用SLR(1)分析表的语法分析器称作SLR(1)分析器。

SLR(1)分析表构造= SLR(1)方法+ LR(0)分析表构造 SLR(1)方法 = LR(0)方法 + "冲突"解决方法

自下而上分析: SLR(1)分析的缺陷

例:设文法G(S')为

- $(1) S' \rightarrow S$
- $(2) S \rightarrow L = R$
- (3) $S \rightarrow R$
- (4) $L \rightarrow R$
- $(5) L \rightarrow i$
- $(6) \quad \mathbf{R} \to \mathbf{L}$

自下而上分析: SLR(1)分析的缺陷

 $I_2 = \{ S \rightarrow L = R, R \rightarrow L \}$ 存在移进 - 归约冲突 据SLR(1)方法有:

FOLLOW(R)=
$$\{=, \#\}$$
 且 FOLLOW(R) $\cap \{=\} \neq \Phi$

:文法G是非SLR(1)文法

对SLR(1)分析,存在 $I_k: A \rightarrow \alpha$ •

$$I_k: A \rightarrow \alpha \bullet$$

若 a ∈ FOLLOW(A) \Rightarrow action(k, a) = {A \rightarrow α}

自下而上分析: SLR(1)分析的缺陷

若 a ∈ FOLLOW(A) ⇒ action(k, a) =
$$\{A \rightarrow \alpha\}$$
 归约未必有效!

- : 可能不存在一个规范句型含有βAa
- ∴ $用A \rightarrow α$ 归约不一定有效。

$$FOLLOW(A) = \{a \mid S \stackrel{*}{=} > ... A a ..., a \in V_T\}$$

	α	k
	β	•••
	#	0
-		

对a的求解未限定是规范推导

• LR(k)项目

文法G的一个LR(k)项目是 [$A \rightarrow \alpha \cdot \beta$, $a_1 a_2 \dots a_k$] $A \rightarrow \alpha \cdot \beta$ 是一个LR(0)项目; $a_1 a_2 \dots a_k$: 搜索符串, $a_i \in V_T$;

• LR(1)有效项目

若文法G的一个LR(1)项目 [$A \rightarrow \alpha \cdot \beta$, a] 对活前缀γ是有效的,当且仅当存在**规范推导**

 $S => \delta A \omega => \underline{\delta \alpha \beta \omega}$

其中: $\omega \in V_T^*$, $\gamma = \delta \alpha$, $a \in FIRST(\omega)$ 或a为'#' (当 $\omega = \epsilon$), 称a为搜索符。

• LR(0)项目

若文法G的一个LR(0)项目 [$A \rightarrow \beta_1 \cdot \beta_2$] 对活前缀α β_1 是有效的,当且仅当存在**规范推导**

$$S => \alpha A \omega => \alpha \beta_1 \beta_2 \omega$$

设有文法G: $S \rightarrow BB$ $B \rightarrow aB \mid b$

LR(1)项目 [B \rightarrow a.B, a] 对活前缀aaa有效

·: 日规范推导 S => BB => BaB => Bab => aBab => aa aB ab

LR(1)项目 [B → a.B, #] 对活前缀Baa有效

:: ∃规范推导 S =>BB =>BaB => BaaB

δα αβ

例:设文法G(S')为

- (1) S' \rightarrow S
- $(2) S \rightarrow L = R$
- (3) $S \rightarrow R$
- $(4)/L \rightarrow *R$
- (5) $L \rightarrow i$
- $(6) \quad \mathbf{R} \to \mathbf{L}$

```
I_{0}\colon S'\to\cdot S \xrightarrow{S} I_{1}\colon S'\to S \cdot \\ S\to\cdot L=R \xrightarrow{L} I_{2}\colon S\to L\cdot =R \\ L\to\cdot^{*}R \xrightarrow{R\to\cdot L} I_{2}\colon S\to L\cdot =R \\ R\to\cdot L \xrightarrow{L\to\cdot i} R \xrightarrow{L\to\cdot i} R \xrightarrow{L\to\cdot i} R
\downarrow L\to\cdot i \xrightarrow{L\to\cdot i} R \xrightarrow{L\to\cdot i} R \xrightarrow{L\to\cdot i} R
\downarrow L\to\cdot^{*}R \xrightarrow{L\to\cdot i} I_{2}\colon L\to i \xrightarrow{L\to\cdot i} I_{2}\colon S\to L=R \xrightarrow{L\to\cdot i} I_{3}\colon R\to L \xrightarrow{L\to\cdot i} I_{4}\colon R\to L \xrightarrow{L\to\cdot i} I_{5}\colon L\to i \xrightarrow{L\to\cdot i} I_{8}\colon R\to L \xrightarrow{L\to\cdot i} I_{8}\: R\to L\to L\to R
```

 $I_2 = \{ S \rightarrow L = R, R \rightarrow L \cdot \} \text{ FOLLOW}(R) = \{ =, \# \}$

从[R→L;=]项目考察知,它对L无效。

而[R→L;#]项目考察知,它对L有效。

S'=>S =>L=R,存在规范句型L是前缀,下一个符号是#,L不在栈顶

S'=>S=>R=>L,存在规范句型L是前缀,下一个符号是#,L已经在栈顶

- 构造LR(1)项目集规范族C
 - step1:求函数 closure(I);
 - step2:求GO函数;
 - step3:用算法items构造LR(1)项目集规范族C。

```
closure (I) { do {   if (对 I 的每个项目 [A \rightarrow \alpha B\beta, a], G'中的每个产生式B \rightarrow \gamma和 FRIST(\betaa)的每个终结符 b, 如果[B \rightarrow \bullet \gamma]不在I中)则把[B \rightarrow \bullet \gamma, b]加到I中; } while (没有更多的项目可以加入 I); return I; }
```

The state of the s

- 构造LR(1)项目集规范族C
 - step1:求函数 closure(I);
 - step2:求GO函数;
 - step3:用算法items构造LR(1)项目集规范族C。

```
Go (I, X) {
    令J是项目[A→αX•β, a]的集合,使得[A→α•Xβ, a]在I中;
    return closure(J);
}
```


- 构造LR(1)项目集规范族C
 - step1:求函数 closure(I);
 - step2:求GO函数;
 - step3:用算法items构造LR(1)项目集规范族C。

•LR(1)分析表构造

输入: 拓广的文法G'和文法G'的LR(1)项目集规范族C和GO函数

输出: 文法G'的LR(1)分析表

设构造G'的LR(1)项目集规范族 $C = \{I_0, I_1, ..., I_n\}$

令每个 I_k 的下标 K 为分析表状态,令含有 $S' \rightarrow S$,#]的项目集为分析表的初态。则有:

①对于每个项目集 I_i 中形如 [$A \rightarrow \alpha \cdot X\beta$, b] 的项目,若GO (I_i , X) = I_j ,且X = a,($a \in V_T$)时,置action [I_i , a] = S_j 。若 $X \in V_N$ 时,则置GOTO [I_i , X] = j。

②若归约项目 $[A\rightarrow\alpha; a]\in I_i$, $A\rightarrow\alpha$ 为文法的第j个产生式,则置 action $[I_i,a]=r_i$ 。

③若项目 [S'→S·, #] ∈ I_i, 则置: action [I_i, #] = "acc"。

④对分析表中不能按上述规则填入信息的元素,则置"出错"标志。

设有文法G(A)

- $(1) A' \rightarrow A$
- $(2) A \rightarrow BB$
- (3) $\mathbf{B} \rightarrow \mathbf{a}\mathbf{B}$
- (4) $\mathbf{B} \rightarrow \mathbf{b}$

- \bigcirc $A' \rightarrow A$
- \bigcirc A \rightarrow BB
- $\bigcirc 3 B \rightarrow aB$
- $\textcircled{4} \quad \mathbf{B} \rightarrow \mathbf{b}$

	ACTIONE		GOTO表		
state	ACTION表			GOTOX	
state	a	b	#	A	В
0	S_3	S_4		1	2
1			acc		
2	S_6	S_7			5
3	S_3	S_4			8
4	$\mathbf{r_4}$	r ₄			
5			r ₂		
6	S_6	S_7			9
7			$\mathbf{r_4}$		
8	r ₃	r ₃			
9			r ₃		

自下而上分析: LR(1)

 $S \rightarrow aAd \mid bBd \mid aBe \mid bAe A \rightarrow g$

 $\mathbf{B} \rightarrow \mathbf{g}$

自下而上分析: LR(1)

S→aAd | bBd | aBe | bAe A→g B→g

