Outline Main References Introduction Background Basic Protocols The proposed scheme

k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

Reporter:Ximeng Liu Supervisor: Rongxing Lu

 $\label{eq:School} School of EEE, NTU \\ http://www.ntu.edu.sg/home/rxlu/seminars.htm$

May 9, 2014

- Main References
- 2 Introduction
- 3 Background
- Basic Protocols
- The proposed scheme

Main References

- 1. Samanthula B K, Elmehdwi Y, Jiang W. k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data[J]. arXiv preprint arXiv:1403.5001, 2014.
- 2. Elmehdwi Y, Samanthula B K, Jiang W. Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments[C]. ICDE 2014, accepted.

k-Nearest Neighbor algorithm

Problem Definition

Suppose Alice owns a database D of n records t_1, \dots, t_n and m+1 attributes. Let $t_{i,j}$ denote the j-th attribute value of record t_i . Initially, Alice encrypts her database attribute-wise, that is, she computes $E_{pk}(t_{i,j})$, for $1 \le i \le n$ and $1 \le j \le m+1$, where column (m+1) contains the class labels. Let the encrypted database be denoted by D'.

Problem Definition

Let Bob be an authorized user who wants to classify his input record $q=< q_1, \cdots, q_m>$ by applying the k-NN classification method based on D'. We refer to such a process as privacy-preserving k-NN (PPkNN) classification over encrypted data in the cloud. Formally, we define the PPkNN protocol as:

$$PPkNN(D',q) \rightarrow c_q$$

where c_q denotes the class label for q after applying k-NN classification method on D and q.

Paillier Cryptosystem

a. Homomorphic Addition

$$E_{pk}(a+b) = E_{pk}(a) * E_{pk}(b) \mod N^2$$

b. Homomorphic Multiplication

$$E_{pk}(a*b) = E_{pk}(a)^b \mod N^2$$

All of the below protocols are considered under two-party semi-honest setting. In particular, we assume the exist of two semi-honest parties P_1 and P_2 such that the Paillier's secret key sk is known only to P_2 whereas pk is treated as public.

1. Multiplication (SM) Protocol: This protocol considers P_1 with input $(E_{pk}(a), E_{pk}(b))$ and outputs $E_{pk}(a*b)$ to P_1 , where a and b are not known to P_1 and P_2 . During this process, no information regarding a and b is revealed to P_1 and P_2 .

Secure Squared Euclidean Distance (SSED) Protocol: In this protocol, P_1 with input $(E_{pk}(X), E_{pk}(Y))$ and P_2 with sk securely compute the encryption of squared Euclidean distance between vectors X and Y. Here X and Y are m dimensional vectors where $E_{pk}(X) = \langle E_{pk}(x1), \cdots, E_{pk}(x_m) \rangle$ and $E_{pk}(Y) = \langle E_{pk}(y_1), \cdots, E_{pk}(y_m) \rangle$. The output of the SSED protocol is $E_{pk}(|X-Y|^2)$ which is known only to P_1

Secure Bit-Decomposition (SBD) Protocol: P_1 with input $E_{pk}(z)$ and P_2 securely compute the encryptions of the individual bits of z, where $0 \le z < 2^l$. The output $[z] = \langle E_{pk}(z_1), \cdots, E_{pk}(z_l) \rangle$ is known only to P_1 . Here z_1 and z_l are the most and least significant bits of integer z, respectively

Secure Minimum (SMIN) Protocol: In this protocol, P_1 holds private input (u',v') and P_2 holds sk, where $u'=([u],E_{pk}(s_u))$ and $v=([v],E_{pk}(s_v))$. Here s_u (resp., s_v) denotes the secret associated with u (resp., v). The goal of SMIN is for P_1 and P_2 to jointly compute the encryptions of the individual bits of minimum number between u and v. In addition, they compute $E_{pk}(smin(u,v))$. That is, the output is $([min(u,v)],E_{pk}(s_{min(u,v)}))$ which will be known only to P_1 . During this protocol, no information regarding the contents of u, v, s_u , and s_v is revealed to P_1 and P_2 .

Secure Minimum out of *n* Numbers ($SMIN_n$) Protocol: In this protocol, we consider P_1 with n encrypted vectors $([d_1], \dots, [d_n])$ along with their respective encrypted secrets and P_2 with sk. Here $[d_i] = E_{pk}(d_{i,1}), \cdots, E_{pk}(d_{i,l})$ where $d_{i,1}$ and $d_{i,l}$ are the most and least significant bits of integer d_i respectively, for $1 \le i \le n$. The secret of d_i is given by s_{d_i} . P_1 and P_2 jointly compute $[min(d_1, \dots, d_n)]$. In addition, they compute $E_{pk}(s_{min(d_1, \dots, d_n)})$. At the end of this protocol, the output $([min(d_1,\cdots,d_n)],E_{pk}(s_{min(d_1,\cdots,d_n)}))$ is known only to P_1 . During the $SMIN_n$ protocol, no information regarding any of d_i 's and their secrets is revealed to P_1 and P_2 .

Secure Bit-OR (SBOR) Protocol: P_1 with input $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 securely compute $E_{pk}(o_1 \vee o_2)$, where o_1 and o_2 are two bits. The output $E_{pk}(o_1 \vee o_2)$ is known only to P_1 .

Secure Multiplication (SM)

$$a * b = (a + r_a) * (b + r_b) - a * r_a - b * r_b - r_a * r_b$$

Note that, for any given $x \in Z_N$, N-x is equivalent to -x under Z_N

Secure Multiplication (SM)

```
Algorithm 1 SM(E_{nk}(a), E_{nk}(b)) \rightarrow E_{nk}(a * b)
Require: P_1 has E_{nk}(a) and E_{nk}(b); P_2 has sk
 1: P<sub>1</sub>:
     (a). Pick two random numbers r_a, r_b \in \mathbb{Z}_N
     (b). a' \leftarrow E_{vk}(a) * E_{vk}(r_a)
     (c). b' \leftarrow E_{pk}(b) * E_{pk}(r_b); send a', b' to P_2
 2: P<sub>2</sub>:
     (a). Receive a' and b' from P_1
     (b). h_a \leftarrow D_{sk}(a'); h_b \leftarrow D_{sk}(b')
     (c), h \leftarrow h_a * h_b \mod N
     (d). h' \leftarrow E_{nk}(h); send h' to P_1
 3: P<sub>1</sub>:
     (a). Receive h' from P_2
     (b). s \leftarrow h' * E_{pk}(a)^{N-r_b}
     (c). s' \leftarrow s * E_{nk}(b)^{N-r_a}
     (d). E_{nk}(a*b) \leftarrow s' * E_{nk}(r_a*r_b)^{N-1}
```

Secure Squared Euclidean Distance (SSED)

```
Algorithm 2 SSED(E_{pk}(X), E_{pk}(Y)) \rightarrow E_{pk}(|X - Y|^2)
```

Require: P_1 has $E_{pk}(X)$ and $E_{pk}(Y)$; P_2 has sk

1:
$$P_1$$
, for $1 \le i \le m$ do:

(a).
$$E_{pk}(x_i - y_i) \leftarrow E_{pk}(x_i) * E_{pk}(y_i)^{N-1}$$

- 2: P_1 and P_2 , for $1 \le i \le m$ do:
 - (a). Compute $E_{pk}((x_i y_i)^2)$ using the SM protocol
- 3: P_1 computes $E_{pk}(|X-Y|^2) \leftarrow \prod_{i=1}^m E_{pk}((x_i-y_i)^2)$

Secure Bit-Decomposition (SBD)

We assume that P_1 has $E_{pk}(z)$ and P_2 has sk, where z is not known to both parties and $0 \le z < 2^l$. Given $E_{pk}(z)$, the goal of the secure bit-decomposition (SBD) protocol is to compute the encryptions of the individual bits of binary representation of z. That is, the output is $[z] = \langle E_{pk}(z_1), \cdots, E_{pk}(z_l) \rangle$, where z_1 and z_l denote the most and least significant bits of z respectively. At the end, the output [z] is known only to P_1 . During this process, neither the value of z nor any z_i 's is revealed to P_1 and P_2 .

the basic idea of the proposed SMIN protocol is for P_1 to randomly choose the functionality F (by flipping a coin), where F is either u>v or v>u, and to obliviously execute F with P_2 . Since F is randomly chosen and known only to P_1 , the result of the functionality F is oblivious to P_2 . Based on the comparison result and chosen F, P_1 computes $[\min(u,v)]$ and $E_{pk}(s_{\min(u,v)})$ locally using homomorphic properties.

```
Algorithm 3 SMIN(u', v') \rightarrow ([\min(u, v)], E_{pk}(s_{\min(u, v)}))
Require: P_1 has u' = ([u], E_{pk}(s_u)) and v' = ([v], E_{pk}(s_v)), where 0 \le u, v < 2^l; P_2 has sk
  1: P<sub>1</sub>:
         (a). Randomly choose the functionality F
         (b). for i = 1 to l do:
                        • E_{nk}(u_i * v_i) \leftarrow SM(E_{nk}(u_i), E_{nk}(v_i))

    T<sub>i</sub> ← E<sub>nk</sub>(u<sub>i</sub> ⊕ v<sub>i</sub>)

    H<sub>i</sub> ← H<sup>r<sub>i</sub></sup><sub>i-1</sub> * T<sub>i</sub>; r<sub>i</sub> ∈<sub>R</sub> Z<sub>N</sub> and H<sub>0</sub> = E<sub>pk</sub>(0)

    Φ<sub>i</sub> ← E<sub>pk</sub>(−1) * H<sub>i</sub>

    if F: u > v then W<sub>i</sub> ← E<sub>pk</sub>(u<sub>i</sub>) * E<sub>pk</sub>(u<sub>i</sub> * v<sub>i</sub>)<sup>N-1</sup> and Γ<sub>i</sub> ← E<sub>pk</sub>(v<sub>i</sub> − u<sub>i</sub>) * E<sub>pk</sub>(r̂<sub>i</sub>); r̂<sub>i</sub> ∈ R Z<sub>N</sub>

                             else W_i \leftarrow E_{pk}(v_i) * E_{pk}(u_i * v_i)^{N-1} and \Gamma_i \leftarrow E_{pk}(u_i - v_i) * E_{pk}(\hat{r}_i); \hat{r}_i \in \mathbb{R} \mathbb{Z}_N
                        • L_i \leftarrow W_i * \Phi_i^{r_i'}; r_i' \in_R \mathbb{Z}_N
         (c). if F: u > v then: \delta \leftarrow E_{pk}(s_v - s_u) * E_{pk}(\bar{r})
                  else \delta \leftarrow E_{pk}(s_u - s_v) * E_{pk}(\bar{r}), where \bar{r} \in \mathbb{R} \mathbb{Z}_N
         (d). \Gamma' \leftarrow \pi_1(\Gamma) and L' \leftarrow \pi_2(L)
         (e). Send \delta. \Gamma' and L' to P_2
```

- 2: P₂:
 - (a). Decryption: $M_i \leftarrow D_{sk}(L_i)$, for $1 \le i \le l$
 - (b). If $\exists j$ such that $M_j = 1$ then $\alpha \leftarrow 1$ else $\alpha \leftarrow 0$
 - (c). if $\alpha = 0$ then:
 - $M'_i \leftarrow E_{pk}(0)$, for $1 \le i \le l$
 - $\delta' \leftarrow E_{pk}(0)$

else

- $M'_i \leftarrow \Gamma'_i * r^N$, where $r \in_R \mathbb{Z}_N$ and is different for $1 \leq i \leq l$
- $\delta' \leftarrow \delta * r_{\delta}^N$, where $r_{\delta} \in_R \mathbb{Z}_N$
- (d). Send $M', E_{pk}(\alpha)$ and δ' to P_1

3: P₁:

(a).
$$\widetilde{M} \leftarrow \pi_1^{-1}(M')$$
 and $\theta \leftarrow \delta' * E_{pk}(\alpha)^{N-\bar{r}}$

(b).
$$\lambda_i \leftarrow \widetilde{M}_i * E_{pk}(\alpha)^{N-\hat{r}_i}$$
, for $1 \le i \le l$

(c). if F: u > v then:

•
$$E_{pk}(s_{\min(u,v)}) \leftarrow E_{pk}(s_u) * \theta$$

•
$$E_{pk}(\min(u,v)_i) \leftarrow E_{pk}(u_i) * \lambda_i$$
, for $1 \le i \le l$

else

•
$$E_{pk}(s_{\min(u,v)}) \leftarrow E_{pk}(s_v) * \theta$$

•
$$E_{pk}(\min(u,v)_i) \leftarrow E_{pk}(v_i) * \lambda_i$$
, for $1 \le i \le l$

• Compute the encrypted bit-wise XOR between the bits u_i and v_i as $T_i = E_{pk}(u_i \oplus v_i)$ using the below formulation.

$$T_i = E_{pk}(u_i) * E_{pk}(v_i) * E_{pk}(u_i * v_i)^{N-2}$$

- Compute an encrypted vector H by preserving the first occurrence of E_{pk}(1) (if there exists one) in T by
 initializing H₀ = E_{pk}(0). The rest of the entries of H are computed as H_i = H^r_{i-1} * T_i. We emphasize that at
 most one of the entry in H is E_{pk}(1) and the remaining entries are encryptions of either 0 or a random number.
- Then, P₁ computes Φ₁ = Epk(-1) * H₁. Note that "-1" is equivalent to "N 1" under Z_N. From the above discussions, it is clear that Φ₁ = Epk(0) at most once since H₁ is equal to Epk(1) at most once. Also, if Φ₂ = Epk(0), then index j is the position at which the bits of u and v differ first (starting from the most significant bit position).

• If F: u > v, compute

$$\begin{array}{lll} W_i & = & E_{pk}(u_i)*E_{pk}(u_i*v_i)^{N-1} \\ & = & E_{pk}(u_i*(1-v_i)) \\ \Gamma_i & = & E_{pk}(v_i-u_i)*E_{pk}(\hat{r}_i) \\ & = & E_{pk}(v_i-u_i+\hat{r}_i) \end{array}$$

• If F: v > u, compute:

$$\begin{array}{lll} W_i &=& E_{pk}(v_i)*E_{pk}(u_i*v_i)^{N-1} \\ &=& E_{pk}(v_i*(1-u_i)) \\ \Gamma_i &=& E_{pk}(u_i-v_i)*E_{pk}(\hat{r_i}) \\ &=& E_{pk}(u_i-v_i+\hat{r_i}) \end{array}$$

Secure Minimum out of n Numbers $(SMIN_n)$

```
 \begin{split} & \textbf{Algorithm 4 SMIN}_n([d_1], \dots, [d_n]) \to [d_{\min}] \\ & \textbf{Require: } P_1 \text{ has } ([d_1], \dots, [d_n]); \ P_2 \text{ has } sk \\ & \text{1: } P_1: \\ & \text{(a). } [d_i'] \leftarrow [d_i], \text{ for } 1 \leq i \leq n, \text{ and } num \leftarrow n \\ & \text{2: } P_1 \text{ and } P_2, \text{ for } i = 1 \text{ to } \lceil \log_2 n \rceil; \\ & \text{(a). } \text{ for } 1 \leq j \leq \left \lfloor \frac{num}{2} \right \rfloor; \\ & \text{ • if } i = 1 \text{ then: } \\ & - \left \lfloor d_{2j-1} \right \rfloor \leftarrow \text{SMIN}([d_{2j-1}'], [d_{2j}']) \\ & - \left \lfloor d_{2j}' \right \rfloor \leftarrow 0 \\ & \text{else} \\ & - \left \lfloor d_{2i(j-1)+1} \right \rfloor \leftarrow \text{SMIN}([d_{2i(j-1)+1}'], [d_{2ij-1}']) \\ & - \left \lfloor d_{2ij-1}' \right \rfloor \leftarrow 0 \\ & \text{(b). } num \leftarrow \left \lceil \frac{num}{2} \right \rceil \\ & \text{3: } P_1 \text{ sets } \left \lfloor d_{\min} \right \rfloor \text{ to } \left \lfloor d_1' \right \rfloor \end{split}
```

Secure Bit-OR (SBOR)

Suppose P_1 holds $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 holds sk, where o_1 and o_2 are two bits not known to both parties. The goal of the SBOR protocol is to securely compute $E_{pk}(o_1 \vee o_2)$. At the end of this protocol, only P_1 knows $E_{pk}(o_1 \vee o_2)$. During this process, no information related to o_1 and o_2 is revealed to P_1 and P_2 . Given the secure multiplication (SM) protocol, P_1 can compute $E_{pk}(o_1 \vee o_2)$ as follows:

 P_1 with input $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 involve in the SM protocol. At the end of this step, the output $E_{pk}(o1*o2)$ is known only to P_1 . Note that, since o_1 and o_2 are bits, $Epk(o1*o2) = Epk(o1 \land o2)$. $Epk(o1 \lor o2) = Epk(o1 + o2) * Epk(o1 \land o2)^{N-1}$

Basic scheme

Algorithm 5 SkNN_b $(E_{pk}(T), Q) \rightarrow \langle t'_1, \dots, t'_k \rangle$

Require: C_1 has $E_{pk}(T)$; C_2 has sk; Bob has Q

- 1: Bob:
 - (a). Compute $E_{nk}(q_i)$, for 1 < j < m
 - (b). Send $E_{pk}(Q) = \langle E_{pk}(q_1), \dots, E_{pk}(q_m) \rangle$ to C_1
- 2: C_1 and C_2 :
 - (a). C_1 receives $E_{pk}(Q)$ from Bob
 - (b). for i = 1 to n do:
 - $E_{pk}(d_i) \leftarrow SSED(E_{pk}(Q), E_{pk}(t_i))$
 - (c). Send $\{\langle 1, E_{pk}(d_1) \rangle, \dots, \langle n, E_{pk}(d_n) \rangle \}$ to C_2
- 3: C₂:
 - (a). Receive $\{\langle 1, E_{nk}(d_1) \rangle, \dots, \langle n, E_{nk}(d_n) \rangle\}$ from C_1
 - (b). $d_i \leftarrow D_{sk}(E_{nk}(d_i))$, for $1 \le i \le n$
 - (c). Generate $\delta \leftarrow \langle i_1, \dots, i_k \rangle$, such that $\langle d_{i_1}, \dots, d_{i_k} \rangle$ are the top k smallest distances among $\langle d_1, \dots, d_n \rangle$
 - (d). Send δ to C_1

Basic scheme

- 4: C₁:
 - (a). Receive δ from C_2
 - (b). for $1 \le j \le k$ and $1 \le h \le m$ do:
 - $\gamma_{j,h} \leftarrow E_{pk}(t_{i_j,h}) * E_{pk}(r_{j,h})$, where $r_{j,h} \in_R \mathbb{Z}_N$ • Send $\gamma_{j,h}$ to C_2 and $r_{j,h}$ to Bob
- 5: C₂:
 - (a). for $1 \le j \le k$ and $1 \le h \le m$ do:
 - Receive $\gamma_{j,h}$ from C_1
 - $\gamma'_{j,h} \leftarrow D_{sk}(\gamma_{j,h})$; send $\gamma'_{j,h}$ to Bob
- 6: Bob:
 - (a). for $1 \le j \le k$ and $1 \le h \le m$ do:
 - Receive $r_{j,h}$ from C_1 and $\gamma'_{j,h}$ from C_2
 - $t'_{j,h} \leftarrow \gamma'_{j,h} r_{j,h} \mod N$

Fully Secure kNN Protocol

```
Algorithm 6 SkNN<sub>m</sub>(E_{pk}(T), Q) \rightarrow \langle t'_1, \dots, t'_k \rangle
Require: C_1 has E_{nk}(T) and \pi; C_2 has sk; Bob has Q
  1: Bob sends E_{pk}(Q) = \langle E_{pk}(q_1), \dots, E_{pk}(q_m) \rangle to C_1
 2: C<sub>1</sub> and C<sub>2</sub>:
      (a). C_1 receives E_{nk}(Q) from Bob
      (b). for i = 1 to n do:
              • E_{pk}(d_i) \leftarrow SSED(E_{pk}(Q), E_{pk}(t_i))

    [d<sub>i</sub>] ← SBD(E<sub>nk</sub>(d<sub>i</sub>))

  3: for s = 1 to k do:
      (a). C<sub>1</sub> and C<sub>2</sub>:
              • [d_{\min}] \leftarrow SMIN_n([d_1], \dots, [d_n])
      (b). C_1:
              • E_{pk}(d_{\min}) \leftarrow \prod_{\gamma=0}^{l-1} E_{pk}(d_{\min,\gamma+1})^{2^{l-\gamma-1}}
              • if s \neq 1 then, for 1 \leq i \leq n
                 - E_{pk}(d_i) \leftarrow \prod_{\gamma=0}^{l-1} E_{pk}(d_{i,\gamma+1})^{2^{l-\gamma-1}}
              • for i = 1 to n do:
                 -\tau_i \leftarrow E_{pk}(d_{\min}) * E_{pk}(d_i)^{N-1}
                 -\tau_i' \leftarrow \tau_i^{r_i}, where r_i \in_R \mathbb{Z}_N
              • \beta \leftarrow \pi(\tau'); send \beta to C_2
```

Fully Secure kNN Protocol

```
(c). C_2:

• Receive \beta from C_1

• \beta_i^t \leftarrow D_{sk}(\beta_i), for 1 \le i \le n

• Compute U, for 1 \le i \le n:

• if \beta_i^t = 0 then U_i = E_{pk}(1)

• else U_i = E_{pk}(0)

• Send U to C_1

(d). C_1:

• Receive U from C_2 and compute V \leftarrow \pi^{-1}(U)

• V_{i,j}^t \leftarrow \text{SM}(V_i, E_{pk}(t_{i,j})), for 1 \le i \le n and 1 \le j \le m

• E_{pk}(t_{s,j}^t) \leftarrow \prod_{i=1}^n V_{i,j}^t, for 1 \le j \le m
```

• $E_{nk}(t'_{o}) = \langle E_{nk}(t'_{o-1}), \dots, E_{nk}(t'_{o-m}) \rangle$

• $E_{pk}(d_{i,\gamma}) \leftarrow \mathrm{SBOR}(V_i, E_{pk}(d_{i,\gamma}))$, for $1 \leq \gamma \leq l$ The rest of the steps are similar to steps 4-6 of $\mathrm{S}k\mathrm{NN_h}$

(e). C_1 and C_2 , for $1 \le i \le n$:

◆□▶ ◆御▶ ◆불▶ ◆불▶ 불 夕久

Outline Main References Introduction Background Basic Protocols The proposed scheme

Thank you

Rongxing's Homepage:

http://www.ntu.edu.sg/home/rxlu/index.htm

PPT available @: http://www.ntu.edu.sg/home/rxlu/seminars.htm

Ximeng's Homepage:

http://www.liuximeng.cn/