Advanced Probability

-Martingales

(15th October 2018, Monday)

Chapter 2. Martingales in Discrete Time

2.1. Definitions.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• A Filtration for $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence $(\mathcal{F}_n)_{n\geq 0}$ of σ -algebras s.t. for all $n\geq 0$, we have

$$\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$$

Set $F_{\infty} = \sigma(\mathcal{F}_n : n \geq 0)$ then $\mathcal{F}_{\infty} \subset \mathcal{F}$. We allow $\mathcal{F}_{\infty} \neq \mathcal{F}$. We interpret n as times and \mathcal{F}_n as the extent of knowledge at time n.

• A Random process(in discrete time) is a sequence of random variables $(X_n)_{n\geq 0}$. It has a natural filtration $(F_n^X)_{n\geq 0}$ given by

$$\mathcal{F}_n^X = \sigma(X_0, \cdots, X_n)$$

That is, the knowledge obtained from X_n by time n. We say $(X_n)_{n\geq 0}$ is **adapted to** $(\mathcal{F}_n)_{n\geq 0}$ if X_n is \mathcal{F}_n -measurable for all $n\geq 0$. This is equivalent to having $\mathcal{F}_n^X\subset \mathcal{F}_n$, for all $n\geq 0$. (Here, X_n are real-valued)

- We would say $(X_n)_{n\geq 0}$ is **integrable** if X_n is integrable for all $n\geq 0$.
- A martingale is an adapted, integrable random process $(X_n)_{n\geq 0}$ s.t. for all $n\geq 0$,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n \quad \text{a.s.}$$

In the case $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ a.s., $(X_n)_n$ is called a **super-martingale** and in the case $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ a.s., $(X_n)_n$ is called a **sub-martingale**.

Optional Stopping

- A random variable $T: \Omega \to \{0, 1, 2, \cdots\} \cup \{\infty\}$ is a **stopping time** if $\{T \le n\} \in \mathcal{F}_n$ for all $n \ge 0$.
- For a stopping time T, we set $\mathcal{F}_T = \{A \in \mathcal{F}_\infty : A \cap \{T \leq n\} \in \mathcal{F}_n \text{ for all } n \geq 0\}$. It is easy to check \mathcal{F}_T is indeed a σ -algebra and that if $T(\omega) = n$ for all $\omega \in \Omega$, then T is a stopping time and $\mathcal{F}_T = \mathcal{F}_n$.
- Given X, define $X_T(\omega) = X_{T(\omega)}(\omega)$ whenever $T(\omega) < \infty$ and define the **stopped process** X^T by

$$X_n^T(\omega) = X_{T(\omega) \wedge n}(\omega) \text{ for } n \ge 0$$

Proposition 2.2.1.) Let X be an adapted process. Let S, T be stopping times for X. Then

- (a) $S \wedge T$ is a stopping time for X.
- (b) \mathcal{F}_T is a σ -algebra.

- (c) If $S \leq T$ then $\mathcal{F}_S \subset \mathcal{F}_T$.
- (d) $X_T 1_{T < \infty}$ is an \mathcal{F}_T -measurable random variable.
- (e) X^T is adapted.
- (f) If X is integrable, then X^T is also integrable.

proof)

- (a) $\{S \land T \leq n\} = \{S \leq n\} \cup \{T \leq n\} \in \mathcal{F}_n \text{ for all } n \geq 0, \text{ so } S \land T \text{ is a stopping times}$
- (b) Directly from the definition, we see that $\phi \mathcal{F}_T$. Also, given $A \in \mathcal{F}_T$ and a sequence $(A_m)_m \subset \mathcal{F}_T$, we have

$$A^{c} \cap \{T \leq n\} = \{T \leq n\} - A \cap \{T \leq n\} \in \mathcal{F}_{n} \quad \Rightarrow A^{c} \in \mathcal{F}_{T}$$
$$(\cup_{m} A_{m}) \cap \{T \leq n\} = \cup_{m} (A_{m} \cap \{T \leq n\}) \in \mathcal{F}_{n} \quad \Rightarrow \cup_{m} A_{m} \in \mathcal{F}_{T}$$

hence \mathcal{F}_T is a σ -algebra.

- (c) Let $A \in \mathcal{F}_S$. Then $A \cap \{T \leq n\} = A \cap \{S \leq n\} \cap \{T \leq n\} \in \mathcal{F}_n$, hence $A \in \mathcal{F}_T$.
- (d) For each $t \in \mathbb{R}$, we have $\{X_T 1_T > t\} = \bigcup_m \{X_m > t, T = n\}$ so for any $n \ge 0$,

$${X_T 1_T > t} \cap {T \le n} = \bigcup_{m=1}^n {X_m > t, T = n} \in \mathcal{F}_n$$

and so $X_T 1_T$ is \mathcal{F}_T -measurable.

(e) By definition of being a stopping time, for any $t \in \mathbb{R}$,

$$\{(X^T)_n > t\} = \{T > n, X_n > t\} \cup \left(\cup_{m=0}^n \{T = m, X_m > t\} \right) \in \mathcal{F}_n$$

so X^T is adapted.

(f) First consider the case where X is non-negative integrable. Then

$$\mathbb{E}(X_n^T) = \mathbb{E}(\mathbb{E}(X_n^T|T)) = \sum_{m \ge n} \mathbb{P}(T=m)\mathbb{E}(X_m) + \mathbb{P}(T>n)\mathbb{E}(X_n) < \infty$$

for any n, so we have the result for non-negative X.

For the general case, divide X into a non-negative and a negative part.

(End of proof) \square

Theorem 2.2.2) (Optional stopping theorem) Let X be a super-martingale and let S, T be bounded stopping times with $S \leq T$ a.s. Then

$$\mathbb{E}[X_T] \leq \mathbb{E}[X_S]$$

proof) Fix $n \geq 0$ such that $T \leq n$ a.s. Then

$$X_T = X_S + \sum_{S \le k < T} X_{k+1} - X_k$$
$$= X_S + \sum_{k=0}^{n} (X_{k+1} - X_k) 1_{S \le k < T}$$

Now $\{S \leq k\}$ is in \mathcal{F}_k and $\{T > k\}$ is in \mathcal{F}_k , so

$$\begin{split} \mathbb{E}[(X_{k+1} - X_k) \mathbf{1}_{S \le k < T}] &= \mathbb{E}[\mathbb{E}[(X_{k+1} - X_k) \mathbf{1}_{S \le k < T} | \mathcal{F}_k]] \\ &= \mathbb{E}[\mathbb{E}[X_{k+1} - X_k | \mathcal{F}_k] \mathbf{1}_{S < k < T}] \end{split}$$

but since (X_n) was a super-martingale, $\mathbb{E}[X_{k+1}-X_k|\mathcal{F}_k] \leq 0$ a.s. and therefore $\mathbb{E}[(X_{k+1}-X_k)1_{S\leq k < T}] \leq 0$ a.s. Hence $\mathbb{E}(X_T) \leq \mathbb{E}(X_S)$.

(End of proof) \square

•Note that X is a sub-martingale if and only if (-X) is a super-martingale, and that X is a martingale if and only if X and (-X) are super-martingales. Hence, we obtain sub-martingale and martingale versions of the theorem :

If
$$(X_n)$$
 is a sub-martingale, $\mathbb{E}[X_T] \geq \mathbb{E}[X_S]$
If (X_n) is a martingale, $\mathbb{E}[X_T] = \mathbb{E}[X_S]$

Theorem 2.2.3.) Let X be an adapted integrable process. Then the followings are equivalent.

- (a) X is a super-martingale.
- (b) for all bounded stopping times T and stopping time S,

$$\mathbb{E}(X_T|\mathcal{F}_S) \leq X_{S \wedge T}$$
 a.s.,

- (c) for all stopping times T, the stopped process X^T is a super-martingale,
- (d) for all bounded stopping times T and all stopping times S with $S \leq T$ a.s,

$$\mathbb{E}(X_T) \leq \mathbb{E}(X_S)$$

 \star The theorem gives an inverse statement of the optional stopping theorem.

proof)

(a) \Rightarrow (b) Suppose X is a super-martingale and S, T are stopping times. Let $T \leq n$, for some $n < \infty$. Then

$$X_T = X_{S \wedge T} + \sum_{k=0}^{T} (X_{k+1} - X_k) 1_{S \le k < T} \cdot \dots \cdot (*)$$

Let $A \in \mathcal{F}_S$. Then $A \cap \{S \leq k\} \in \mathcal{F}_k$ and $\{T > k\} \in \mathcal{F}_k$ so

$$\mathbb{E}[(X_{k+1} - X_k) 1_{S < k < T} 1_A] = \mathbb{E}[\mathbb{E}[(X_{k+1} - X_k) 1_{S < k < T} 1_A | \mathcal{F}_k]] \le 0$$

and

$$\mathbb{E}[(X_T - X_{S \wedge T})1_A] = \mathbb{E}[\sum_{n=0}^T (X_{k+1} - X_k)1_{S \leq k < T}1_A] \leq 0$$

$$\Rightarrow \mathbb{E}[X_T 1_A] \leq \mathbb{E}[X_{S \wedge T}1_A]$$

But since this inequality is true for any $A \in \mathcal{F}_S$ and noting that $X_{S \wedge T} \in \mathcal{F}_S$), we see

$$\mathbb{E}[X_T|\mathcal{F}_S] \leq X_{S \wedge T}$$
 a.s.

The implications (b) \Rightarrow (c) and (c) \Rightarrow (d) are obvious.

(d) \Rightarrow (a) Let $m \leq n$ and $A \in \mathcal{F}_n$. Set $T = m1_A + n1_{A^c}$. Then T is a stopping with $T \leq n$. Then

$$\mathbb{E}(X_n 1_A - X_m 1_A) = \mathbb{E}(X_n) - \mathbb{E}(X_T) \le 0$$

(note, if $\omega \in A$ then $(X_n 1_A - X_m 1_A)(\omega) = X_n(\omega) - X_m(\omega)$ and 0 otherwise) so

$$\mathbb{E}[X_n|\mathfrak{F}_m] \leq X_m$$

(End of proof) \square

2.3. Doob's upcrossing inequality

- Let X be a random process and let $a, b \in \mathbb{R}$ s.t. a < b. Fix $\omega \in \Omega$. By an **upcrossing** of [a, b] by $X(\omega)$, we mean an interval of times $\{j, j+1, \cdots, k\}$ s.t. $X_j(\omega) < a, X_k(\omega) > b$.
- Write $U_n[a,b](\omega)$ for the number of disjoint upcrossings contained in $\{0,1,\cdots,n\}$, and $U_n[a,b]\nearrow U[a,b]$ as $n\to\infty$.

Theorem 2.3.1.) (Doob's upcrossing inequality) Let X be a super-martingale. Then

$$(b-a)\mathbb{E}[U[a,b]] \le \sup_{n \ge 0} \mathbb{E}[(X_n - a)^-]$$

(Recall, $x^- = (-x) \vee 0$)

proof) Set $T_0 = 0$ and define recursively for $k \ge 0$,

$$S_{k+1} = \inf\{m \ge T_k : X_m < a\}, \quad T_{k+1} = \sup\{m \ge S_{k+1} : X_m > b\}$$

Note that if $T_k < \infty$, then $\{S_k, S_k + 1, T_k\}$ is an upcrossing of [a, b] by X, and T_k is the time of completion of the k - th upcrossing. Also note that $U_n[a, b] \le n$. For $m \le n$, we have

$$\{U_n[a,b] = m\} = \{T_m \le n < T_{m+1}\}$$

On this event,

$$X_{T_k \wedge n} - X_{S_k \wedge n} = \begin{cases} X_{T_k} - X_{S_k} \ge b - a & \text{if } k \le m \\ X_n - X_{S_k} \ge X_n - a & \text{if } k = m1, S_{m+1} \le n \\ 0 & \text{otherwise} \end{cases}$$

Hence

$$\sum_{k=1}^{n} (X_{T_k \wedge n} - X_{S_k \wedge n}) \ge (b-a)U_n[a,b] + X_n - a$$

$$\ge (b-a)U_n[a,b] - (X_n - a)^{-1}$$

Since X is a super-martingale and $T_k \wedge n$ and $S_k \wedge n$ are bounded stopping times with $S_k \leq T_k$, by optional stopping theorem, we have

$$\mathbb{E}(X_{T_k \wedge n}) \leq \mathbb{E}(X_{S_k \wedge n})$$

By $\mathbb{E}(\sum_{k=1}^{n}(X_{T_{k}\wedge n}-X_{S_{k}\wedge n}))$ we get

$$(b-a)\mathbb{E}(U_n[a,b]) \le \sum_{n>0} \mathbb{E}[(X_n-a)^-]$$

Apply monotone convergence, with $n \to \infty$, then we are done.

(End of proof) \square

This theorem does not seem to have any significance at the moment, but it will turn out to be important later on.

2.4. Doob's maximal inequalities.

Define
$$X_n^* = \sum_{k \ge n} |X_k|$$

In the next two theorems, we see that the martingale (or sub-martingale) property allows us to obtain estimates on this X_n^* in terms of expectations for X_n .

Theorem 2.4.1) (Doob's maximal inequality) Let X be a martingale or a non-negative sub-martingale. Then for all $\lambda \geq 0$,

$$\lambda \mathbb{P}(X_n^* \ge \lambda) \le \mathbb{E}(|X_n| 1_{\{X_n^* > \lambda\}}) \le \mathbb{E}(|X_n|)$$

proof) If X is a martingale, then |X| is a non-negative sub-martingale. It suffices to consider the case where X is a non-negative sub-martingale.

Set $T = \inf\{k \geq 0 : X_k \geq \lambda\} \wedge n$. Then T is a stopping time and $T \leq n$, so by optional stopping, has

$$\mathbb{E}(X_n) \ge \mathbb{E}(X_T) = \mathbb{E}(X_T 1_{X_n^* \ge \lambda}) + \mathbb{E}(X_T 1_{X_n^* < \lambda})$$
$$= \mathbb{E}(\lambda 1_{X_n^* > \lambda}) + \mathbb{E}(X_n 1_{X_n^* < \lambda})$$

and

$$\mathbb{E}(X_n 1_{X^* > \lambda}) \ge \lambda \mathbb{P}(X_n^* \ge \lambda)$$

(End of proof) \square

Theorem 2.4.2) (Doob's L^p -inequality) Let X be a martingale or a non-negative sub-martingale. Then, for all p > 1 and q = p/(p-1), we have

$$\parallel X_n^* \parallel_p \leq q \parallel X_n \parallel_q$$

proof) Again, it suffices to consider when X is a non-negative sub-martingale. Fix $k < \infty$. Then

$$\mathbb{E}[(X_n^* \wedge k)^p] = \mathbb{E} \int_0^k p\lambda^{p-1} 1_{\{x_n^*\lambda\}} d\lambda \quad \text{(integration by parts)}$$

$$= \int_0^k p\lambda^{p-1} \mathbb{P}(X_n^* \ge \lambda) d\lambda \quad \text{(Fubini)}$$

$$\leq \int +0^k p\lambda^{p-2} \mathbb{E}(X_n 1_{X_n^* \ge \lambda}) d\lambda \quad \text{(Doob's maximal inequality)}$$

$$= \frac{p}{p-1} \mathbb{E}(X_n (X_n^* \wedge k)^{p-1})$$

$$\leq q \parallel X_n \parallel_p \parallel X_n^* \wedge k \parallel_p^{p-1} \quad \text{(H\"older's inequality)}$$

Hence, $\|X_n^* \wedge k\|_p \le q \|X_n\|_p$. Apply monotone convergence theorem with $k \to \infty$, then we have the desired result.

(End of proof) \square

Doob's maximal and L^p inequalities have different versions which apply under the same hypothesis to

$$X^* = \sum_{n \ge 0} |X_n|$$

since $X_n^* \nearrow X^*$. Letting $n \to \infty$ in Doob's maximal inequality gives

$$\lambda \mathbb{P}(X^* \ge \lambda) \lim_{n \to \infty} \lambda \mathbb{P}(X_n^* \ge \lambda) \le \sup_{n \ge 0} \mathbb{E}(|X_n|)$$

We can then replace $\lambda \mathbb{P}(X^* > \lambda)$ by $\lambda \mathbb{P}(X^* \ge \lambda)$ by taking limits from the right in λ . Similarly, for $p \in (1, \infty)$ by monotone convergence,

$$\parallel X^* \parallel_p \le q \sup_{n>0} \parallel X_n \parallel_p$$

(19th October, Friday)

2.5. Doob's martingale convergence theorems

We are going to study three different martingale convergence theorems. They are all important.

- We say that a random process X is L^p -bounded if $\sum_{n>0} ||X_n||_p < \infty$.
- We say that X is **uniformly integrable** if

$$\sup_{n>0} \mathbb{E}(|X_n|1_{|X_n|>\lambda}) \to 0 \quad \text{as } \lambda \to \infty$$

• If X is L^p bounded for some p > 1, then this implies that X is uniformly integrable. This again implies that X is L^1 bounded. The first implication follows from Hölder inequality. The second implication is true because $\mathbb{E}(|X_n|) = \mathbb{E}(|X_n|1_{|X_n| \le \lambda}) + \mathbb{E}(|X_n|1_{|X_n| > \lambda}) \le \lambda + \mathbb{E}(|X_n|1_{|X_n| > \lambda})$.

Theorem 2.5.1) (Almost sure martingale convergence theorem) Let X be an L^1 -bounded super-martingale. Then there exists an integrable and \mathcal{F}_{∞} -measurable random variable X_{∞} such that

$$X_n \to X$$
 a.s. as $n \to \infty$

proof) For a sequence of real numbers $(x_n)_{n\geq 0}$, as $n\to\infty$, $(x_n)_n$ either converges $or\ |x_n|\to\infty$, $or\ \lim\inf_n x_n<\lim\sup_n x_n$. In the last case, since the rationals are dense in \mathbb{R} , there exist $a,b\in\mathbb{Q}$ such that $\lim\inf x_n< a< b\lim\sup x_n$.

Set $\Omega_0 = \Omega_\infty \cap (\bigcap_{a,b \in \mathbb{Q}, a < b} \Omega_{a,b})$ where $\Omega_\infty = \{\liminf |X_n| < \infty\}, \Omega_{a,b} = \{U[a,b] < \infty\}$ (Recall that U[a,b] is the number of upcrossings). Then $X_n(\omega)$ converges for all $\omega \in \Omega_0$. By Fatous' lemma,

$$\mathbb{E}(\liminf |X_n|) \le \liminf \mathbb{E}|X_n| < \infty$$

so this implies $\mathbb{P}(\Omega_{\infty}) = 1$. By Doob's inequality, for a < b, has

$$(b-a)\mathbb{E}(U[a,b]) \leq |a| + \sup_{n \geq 0} \mathbb{E}|X_n| < \infty$$

and therefore $\mathbb{P}(\Omega_{a,b}) = 1$. Putting this together, we deduce that $\mathbb{P}(\Omega_0) = 1$, and we can find a random variable X_{∞} defined by

$$X_{\infty} = \lim_{n \to \infty} X_n 1_{\Omega_0}$$

Then $X_n \to X_\infty$ a.s. Also X_∞ is \mathcal{F}_∞ -measurable and $|X_\infty| \le \liminf |X_n|$ so $\mathbb{E}(|X_\infty|) < \infty$. Hence X_∞ is integrable.

(End of proof) \square

Remark: Every non-negative integrable super-martingale is L^1 -bounded, hence it converges a.s.

Theorem 2.5.2) (L^1 martingale convergence theorem) Let $(X_n)_{n\geq 0}$ be a uniformly integrable martingale. Then there exists a random variable $X_\infty \in L^1(\mathcal{F}_\infty)$ such that

$$X_n \xrightarrow{n \to \infty} X_\infty$$
 a.s. and in L^1

Moreover, $X_n = \mathbb{E}(X_{\infty}|\mathcal{F}_n)$ a.s. for all $n \geq 0$.

Conversely, for all $Y \in L^1(\mathcal{F}_{\infty})$, on choosing version X_n of $\mathbb{E}(Y|\mathcal{F}_n)$ for all n, we obtain a uniformly integrable martingale $(X_n)_{n\geq 0}$ such that

$$X_n \xrightarrow{n \to \infty} Y$$
 a.s. and in L^1

We can think of this theorem as establishing the bijection

proof) Let $(X_n)_{n\geq 0}$ be a uniformly integrable martingale. By the almost sure martingale convergence theorem, there exists $X_\infty\in L^1(\mathcal{F}_\infty)$ s.t. $X_n\to X_\infty$ a.s. Since X is uniformly integrable, it also follows that $X_n\to X_\infty$ in L^1 .(see PM, Thm 2.5.1. and 6.2.3.)

Next, for $m \geq n$,

$$||X_n - \mathbb{E}(X_\infty | \mathcal{F}_n)||_1 = ||\mathbb{E}(X_m - X_\infty | \mathcal{F}_n)||_1$$

$$= ||X_m - X_\infty||_1 \to 0 \text{ as } m \to \infty$$

Hence $X_n = \mathbb{E}(X_{\infty}|\mathcal{F}_n)$ a.s.

For the converse statement, suppose $Y \in L^1(\mathcal{F}_{\infty})$ and let X_n be a version of $\mathbb{E}(Y|\mathcal{F}_n)$ for all n. Then $(X_n)_{n\geq 0}$ is a martingale by the tower property, and is uniformly integrable by **Lemma 1.5.1.** Hence there exists $X_{\infty} \in L^1(\mathcal{F}_{\infty})$ such that $X_n \to X_{\infty}$ a.s. and in L^1 . For all $n \geq 0$ and all $A \in \mathcal{F}_n$, we have

$$\mathbb{E}(X_{\infty}1_A) = \lim_{m \to \infty} \mathbb{E}(X_m 1_A) = \lim_{n \le m \to \infty} \mathbb{E}(\mathbb{E}(Y 1_A | \mathcal{F}_m)) = \mathbb{E}(Y 1_A)$$

where the second equality follows because $\mathbb{E}(X_m|\mathcal{F}_n) = \mathbb{E}(Y|\mathcal{F}_n)$. Now X_{∞} , $Y \in L^1(\mathcal{F}_{\infty})$ and $\bigcup_n \mathcal{F}_n$ is a π -system generating \mathcal{F}_{∞} . Hence, by Dynkin's lemma,

$$X_{\infty} = Y$$
 a.s.

(End of proof) \square

Theorem 2.5.3) (L^p -martingale convergence theorem) Let $p \in (1, \infty)$. Let $(X_n)_{n \ge 0}$ be an L^p -bounded martingale. Then there exists a random variable $X_\infty \in L^p(\mathcal{F}_\infty)$ s.t.

$$X_n \to X_\infty$$
 a.s. and in L^p

Moreover, $X_n = \mathbb{E}(X_{\infty}|\mathcal{F}_n)$ a.s. for all $n \geq 0$.

Conversely, for all $Y \in L^p(\mathcal{F}_{\infty})$, on choosing a version X_n of $\mathbb{E}(Y|\mathcal{F}_n)$ for all n, we obtain an L^p -bounded martingale such that $X_n \to Y$ a.s. and in L^p .

This is very similar to the statement of L^1 -martingale convergence theorem. Indeed, the proof is also very similar.

proof) Let (X_n) be an L^p -bounded martingale. By a.s. martingale convergence theorem, there exists $X_{\infty} \in L^1(\mathcal{F}_{\infty}), X_n \to X_{\infty}$ a.s.

By Doob's L^p -inequality, $\|X^*\|_p \le q \sup_{n \ge 0} \|X_n\|_p < \infty$, where $X^* = \sup_{n \ge 0} |X_n|$. Also, since $|X_n - X_\infty|^p \le (2X^*)^p$ for all n, we may apply dominated convergence theorem to deduce that $X_n \to X_\infty$ in L^p . Then $X_n = \mathbb{E}(X_\infty | \mathcal{F}_n)$ a.s. for all n, as in the L^1 -convergence.

For the converse statement, suppose $Y \in L^p(\mathcal{F}_{\infty})$ and let X_n be a version of $\mathbb{E}(Y|\mathcal{F}_n)$. Then $(X_n)_{n\geq 0}$ is a martingale by the tower property and by Jensen inequality,

$$||X_n||_p = ||\mathbb{E}(Y|\mathcal{F}_n)||_p \leq ||Y||_p$$

Let $X_n \to X_\infty$ a.s. and in L^P for $X_\infty \in L^p(\mathfrak{F}_\infty)$, using the previous part. Then proceed as in the proof of L^1 -convergence to prove that in fact $Y = X_\infty$ a.s.

(End of proof) \square

(22nd October, Monday)

Recall that, for a stopping time T and a random process X, X_T has been defined only on $\{T < \infty\}$. Given an almost sure limit X_{∞} for X, we define $X_T = X_{\infty}$ on $\{T = \infty\}$. Then the optional stopping theorem extends to all stopping times for uniformly integrable martingales.

Theorem 2.5.5.) Let X be a uniformly integrable martingale and let T be any stopping time. Then $\mathbb{E}(X_T) = \mathbb{E}(X_0)$. Moreover, for all stopping time S and T, we have

$$\mathbb{E}(X_T|\mathcal{F}_S) = X_{S \wedge T}$$
 a.s.

This theorem is an extension of Optional stopping theorem, Theorem 2.2.2 and Theorem 2.2.3.

proof) By the optional stopping time theorem and **2.2.3**, when applied to the bounded stopping time $T \wedge n$, we have

$$\mathbb{E}(X_{T \wedge n}) = \mathbb{E}(X_0)$$

$$\mathbb{E}(X_{T \wedge n} | \mathcal{F}_S) = X_{S \wedge T \wedge n}$$

In order to get the claim by letting $n \to \infty$, we need to prove $X_{T \wedge n} \to X_T$ a.s. and in L^1 . This will imply that

$$\mathbb{E}(X_{T \wedge n} | \mathcal{F}_S) \to \mathbb{E}(X_T | \mathcal{F}_S)$$
 in L^1

Claim: $X_{T \wedge n} \to X_T$ a.s. and in L^1

proof) By the L^1 martingale convergence theorem, there exists $X_{\infty} \in L^1(\mathcal{F}_{\infty})$ s.t. $X_n \to X_{\infty}$ a.s. and in L^1 and $X_n = \mathbb{E}(X_{\infty}|\mathcal{F}_n)$. This implies $X_{T \wedge n} \to X_T$ a.s. as $n \to \infty$.(if $T < \infty$, the convergence trivial, and in the case $T = \infty$, the convergence justified the previous statement). Since $F_{T \wedge n} \subset F_n$, by **Theorem 2.2.3.** and the tower property we have

$$X_{T \wedge n} = \mathbb{E}(X_n | \mathcal{F}_{T \wedge n}) = \mathbb{E}(X_\infty | \mathcal{F}_{T \wedge n})$$

By Lemma 1.5.1, $(X_{T \wedge n})_{n \geq 0}$ is uniformly integrable. Hence

$$X_{T \wedge n} \to X_T$$
 in L^1

(End of proof) \square

Backward martingale

- A backward filtration $(\hat{\mathcal{F}}_n)_{n\geq 0}$ is a sequence of σ -algebras such that $\mathcal{F}\supset \hat{\mathcal{F}}_n\supset \hat{\mathcal{F}}_{n+1}$.
- This also defines $\hat{\mathcal{F}}_{\infty} = \bigcap_{n>0} \hat{\mathcal{F}}_n$

Theorem 2.5.4.) (Backward martingale convergence theorem) For all $Y \in L^1(\mathcal{F})$, we have

$$\mathbb{E}(Y|\hat{\mathfrak{F}}_n) \to \mathbb{E}(Y|\hat{\mathfrak{F}}_\infty)$$
 a.s. and in L^1 as $n \to \infty$

Note that we do not need a uniformly integrability condition, because our assumption of backward filtration already implies uniform convergences.

proof) Write $X_n = \mathbb{E}(Y|\hat{\mathcal{F}}_n)$ for all $n \geq 0$. Fix $n \geq 0$, by the Tower property, $(X_{n-k})_{0 \leq k \leq n}$ is a martingale for the filtration $(\hat{\mathcal{F}}_{n-k})_{0 \leq k \leq n}$. For a < b, the number $U_n[0, \infty]$ of upcrossings of [a, b] by $(X_k)_{0 \leq k \leq n}$ equals the number of upcrossings of [-b, -a] by the process $(-X_{n-k})_{0 \leq k \leq n}$. Hence by **Theorem 2.3.1**,

$$(b-a)\mathbb{E}(U_n[a,b]) \le \mathbb{E}((X_0-b)^+)$$

and so by monotone convergence,

$$(b-a)\mathbb{E}(U[a,b]) \le \mathbb{E}((X_0-b)^+) \le \mathbb{E}(|Y|) + |b| < \infty$$

Also,

$$\mathbb{E}(\liminf |X_n|) \le \liminf \mathbb{E}|X_n| \le \mathbb{E}|Y| < \infty$$

The only used(???) in the proof of the almost sure martingale convergence theorem applies to show that $\mathbb{P}(\hat{\Omega}_0) = 1$. where $\hat{\Omega}_0 = \{X_n \text{ converges as } n \to \infty\}$

Set $X_{\infty}1_{\hat{\Omega}_0}\lim_{n\to\infty}X_n$. Then $X_{\infty}\in L^1(\hat{\mathcal{F}}_{\infty})$ and $X_n\to X_{\infty}$ a.s. Now $(X_n)_{n\geq 0}$ is uniformly integrable (by **Lemma 1.5.1**), so $X_n\xrightarrow{L^1}X_{\infty}$. Finally, for all $A\in \hat{F}_{\infty}$, we have

$$\mathbb{E}((X_{\infty} - \mathbb{E}(Y|\hat{\mathcal{F}}_{\infty}))1_A) = \lim_{n \to \infty} \mathbb{E}((X_n - Y)1_A) = 0$$

This implies $X_{\infty} = \mathbb{E}(Y|\hat{\mathcal{F}}_{\infty})$ a.s.

(End of proof) \square

3. Applications of martingale theory

Sums of independent random variables

Let $S_n = X_1 + \cdots + X_n$, where $(X_n)_{n \geq 0}$ is a sequence of independent random variables.

Theorem 3.1.1) (Strong Law of Large Numbers) Let $(X_n)_{n\geq 0}$ be a sequence of independent identically distributed (i.i.d) integrable random variables. Set $\mu = \mathbb{E}(X_1)$. Then

$$S_n/n \to \mu$$
 a.s. and in L^1

proof) Define $\hat{\mathcal{F}}_n = \sigma(S_m : m \ge n)$, $\mathcal{T}_n = \sigma(X_m : m \ge n+1)$ and $\mathcal{T} = \bigcap_{n \ge 1} \mathcal{T}_n$. Then $\hat{\mathcal{F}}_n = \sigma(S_n, \mathcal{T}_n)$ and $(\hat{\mathcal{F}}_n)_{n \ge 1}$ is a backward filtration. Since $\sigma(X_1, S_n)$ is independent of \mathcal{T}_n , we have

$$\mathbb{E}(X_1|\hat{\mathcal{F}}_n) = \mathbb{E}(X_1|S_n)$$
 a.s.

For $k \leq n$ and all Borel sets B, we have

$$\mathbb{E}(X_k 1_{\{S_n \in B\}}) = \mathbb{E}(X_1 1_{\{S_n \in B\}})$$

by symmetry $(X_k, S_n) \stackrel{\mathrm{d}}{=} (X_1, S_n)$ in distribution, so $\mathbb{E}(X_k | S_n) = \mathbb{E}(X_1 | S_n)$ a.s. But

$$\mathbb{E}(X_1|S_n) + \dots + \mathbb{E}(X_n|S_n) = \mathbb{E}(S_n|S_n) = S_n$$
 a.s.

so $\mathbb{E}(X_1|\hat{\mathcal{F}}_n) = S_n/n$ almost surely. Then by backward martingale convergence theorem, has $S_n/n \to Y$ a.s. and in L^1 for some random variable Y. Then $Y \in \mathcal{T}$. By Kolmogorov's 0-1 law [PM **Theorem 2.6.1**], Y is almost surely a constant. Hence

$$Y = \mathbb{E}(Y) = \lim \mathbb{E}(S_n/n) = \mu$$
 a.s.

where the second equality follows from L^1 convergence $S_n/n \to Y$.

(End of proof) \square

Since a.s. convergence implies convergence in probability, we have the following corollary.

Corollary 3.1.2) (Weak law of large numbers) Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. integrable r.v.. Set $\mu=\mathbb{E}(X_1)$. Then

$$\mathbb{P}(|\frac{S_n}{n} - \mu| > \epsilon) \to 0 \text{ as } n \to \infty \quad \forall \epsilon > 0$$