НОВЫЕ ФЛУОРОФОРЫ ВО**ДИРУ** НА ОСНОВЕ АЗИНОВЫХ ПРОИЗВОДНЫХ ДИПИРРИЛМЕТАНОВ

Лежнина Д.А.⁽¹⁾, Тресцова М.А.^(1,2), Утепова И.А.^(1,2), Чупахин О.Н.^(1,2)

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Борорганические соединения ВОDIPY привлекли большое внимание в связи с их широким спектром применения в оптоэлектронных устройствах, таких как эмиттеры, органические светодиоды (OLED), зонды, датчики и светочувствительные материалы. Эти соединения обладают такими характеристиками, как большой Стоксов сдвиг, высокий квантовый выход и интенсивность излучения, химическая и термическая стабильность. Было показано, что оптические свойства можно легко «регулировать» путем выбора лиганда (хромофора) и его дальнейшей модификации за счет расширения π -электронных систем или включения электроноакцепторных или электронодонорных функциональных групп.

В настоящей работе сообщается о синтетическом приеме С-Н функционализации дипиррилметанов как основного стартового материала для красителей ВОDIPY. Нам удалось показать, что дипиррилметаны вступают в реакцию с азин-N-оксидами в присутствии бензоилхлорида (см. схему). В результате образуются дизамещенные дипиррилметаны с выходами 80-90%. Дальнейшая циклизация полученных соединений привела к новым производным ВОDIPY.

Синтез азинилсодержащих BODIPY

Установлено, что введение азиновых фрагментов в положения 3 и 5 соединений BODIPY приводит к увеличению квантового выхода флуоресценции и к батохромному сдвигу полос поглощения и излучения.

Строение полученных соединений было доказано при помощи данных ЯМР 1 H, 13 C спектроскопии, масс-спектрометрии и данных элементного анализа.

Работа выполнена при финансовой поддержке РНФ, проект № 22-13-00298.