MATH 7311 - Homework 0 - Motivation (Due Aug 29, 2017)

Review Questions.

- (a) Prove that every Cauchy sequence in \mathbb{R}^n converges to a point in \mathbb{R}^n .
- (b) What is an open cover?
- (c) What definition of compactness did we start with in class?
- (d) Give a procedure to enumerate the rational numbers.
- (e) Give an example of an uncountable set.

Prove:

Proposition 1. A compact set $E \subset \mathbb{R}^n$ is bounded.

Proof by contrapositive. Suppose E is not bounded. This means that E is not covered by any ball of finite radius. However, all of \mathbb{R}^n , and thus E, will be covered by the sequence of open balls

$$B_n := \{x : |x| < n\}.$$

Any union of a finite subset of these open balls will be an open ball of finite radius, and thus will not cover E. Therefore E is not compact. \square

Prove:

Proposition 2. A compact set $E \subset \mathbb{R}^n$ is closed.

Hint: Show that $\setminus E$ (i.e. the complement of E) is open: Let $\mathbf{x} \in \setminus E$. Let

$$G_k := \left\{ \mathbf{y} : |\mathbf{y} - \mathbf{x}| > \frac{1}{k} \right\} \equiv \sqrt{B\left(\mathbf{x}, \frac{1}{k}\right)}.$$

Show that $\{G_k\}$ cover E, then conclude.

We will prove that the complement of E is open. Consider a point $\mathbf{x} \in \backslash E$ and a collection of sets

$$G_k := \{ \mathbf{y} : |\mathbf{y} - \mathbf{x}| > \frac{1}{k} \}.$$

We can see that $\bigcup_{k=1}^{\infty} G_k = \mathbb{R}^n/\mathbf{x}$. Since $\mathbf{x} \notin E$, $E \subset \bigcup G_k$, which means $\{G_k\}$ is an open cover E. We know that E is compact so it can be covered by finitely many of the G_k . The G_k are ordered by containment $(G_k \subset G_{k+1})$ so E can be covered by exactly one of the G_k , call this set G_l . Now, all of the G_k with indices strictly greater than l have complements that are disjoint from $E(A_{k+1} \subset A_k)$. The interiors of the complements of the G_k are the open balls $B(\mathbf{x}, \frac{1}{k})$. This sequence of open balls for all k > l contains the point \mathbf{x} and does not intersect E. The point \mathbf{x} was arbitrarily chosen in A_k . Therefore A_k is open, and A_k by definition is closed. A_k

Prove:

Lemma 3. Let $[a_j, b_j]$ be a nested sequence of nonempty closed intervals in \mathbb{R} : $[a_j, b_j] \supset [a_{j+1}, b_{j+1}]$ for all j. Then $\bigcap_{j=1}^{\infty} [a_j, b_j]$ is not empty.

Definition. Let $\mathbf{x} = (x_1, x_2, ..., x_n)$ and define

$$[\mathbf{a}, \mathbf{b}] := {\mathbf{x} \in \mathbb{R}^n : a_j \le x_j \le b_j, \ j = 1, ..., n},$$

where we call $[\mathbf{a}, \mathbf{b}]$ a closed n-cell or closed n-interval.

Prove:

Lemma 4. Let $[\mathbf{a}^j, \mathbf{b}^j]$ be a nested sequence of nonempty closed n-cells (n-intervals) in \mathbb{R}^n : $[\mathbf{a}_j, \mathbf{b}_j] \supset [\mathbf{a}_{j+1}, \mathbf{b}_{j+1}]$ for all j. Then $\bigcap_{j=1}^{\infty} [\mathbf{a}_j, \mathbf{b}_j]$ is not empty.

Prove:

Lemma 5. Any closed n-cell

$$[\mathbf{a}^0, \mathbf{b}^0] \equiv {\mathbf{x} \in \mathbb{R}^n : a_j^0 \le x_j \le b_j^0, \ j = 1, ..., n}$$

in \mathbb{R}^n is compact.

Hint: Suppose for contradiction that $[\mathbf{a}^0, \mathbf{b}^0]$ has an open cover $\{G_{\alpha}\}$ not containing a finite subcover. Set $c_j^0 := \frac{1}{2}(a_j^0 + b_j^0)$. Then the intervals $[a_j^0, c_j^0]$, $[c_j^0, b_j^0]$ determine 2^n closed n-cells whose union is $[\mathbf{a}^0, \mathbf{b}^0]$. At least one of these n-cells (having sides half the lengths of the sides of $[\mathbf{a}^0, \mathbf{b}^0]$) cannot be covered by a finite sub-cover of $\{G_{\alpha}\}$. Denote this cell by $[\mathbf{a}^1, \mathbf{b}^1]$. Continue this process ad infinitum and use Lemma 4 to extract a contradiction.

Prove:

Proposition 6. A closed subset F of a compact set K in \mathbb{R}^n is compact.

Hint: if $\{G_{\alpha}\}$ is an open cover of F, then $\{G_{\alpha}, \backslash F\}$ is an open cover of K.

Prove:

Corollary 7. The intersection of a closed set and a compact set in \mathbb{R}^n is compact.

Prove:

Proposition 8. If E is closed and bounded in \mathbb{R}^n , then E is compact.

Note: Propositions 1, 2, 8 constitute the Heine-Borel Theorem.

Prove:

Theorem 9 (Bolzano-Weierstrass Theorem). Every bounded infinite set E of points in \mathbb{R}^n has a limit point (i.e. a point of accumulation).

Hint: first by enclosing E in an n-cell, then using a sequence of bisections, as in the hint for Lemma 5, to obtain a nested family of cells each containing an infinite number of points.

Prove it again by enclosing the bounded infinite set in a compact n-cell K and assuming for contradiction that no point of K is a limit point of E. Then each $\mathbf{x} \in K$ would have a neighborhood $B(\mathbf{x}, \delta(\mathbf{x}))$ containing at most one point of E, namely \mathbf{x} if $\mathbf{x} \in E$. Then conclude.

Prove:

Theorem 10. If $E \subset \mathbb{R}^n$ is compact, then every sequence in E has a subsequence converging to a limit in E.

The converse of Theorem 10 is a consequence of the next two lemmas. Prove them.

Lemma 11. If every sequence in $E \subset \mathbb{R}^n$ has a subsequence converging to a limit in E, and if $\{G_{\alpha}\}$ is an open cover of E, then there is an r > 0 with the property that for each $\mathbf{y} \in E$ there is an $\alpha(\mathbf{y})$ such that $B(\mathbf{y}, r) \subset G_{\alpha(\mathbf{y})}$.

Hint: if not, then for each $k \in \mathbb{N}$, there would be a \mathbf{y}_k such that $B\left(\mathbf{y}_k, \frac{1}{k}\right)$ belongs to no G_{α} .

Lemma 12. If every sequence in $E \subset \mathbb{R}^n$ has a subsequence converging to a limit in E, then E is totally bounded, i.e. for arbitrary $\epsilon > 0$, there is a finite number of points $\mathbf{x}_1, ..., \mathbf{x}_J$ such that $E \subset \bigcup_{j=1}^J B(\mathbf{x}_j, \epsilon)$.

Hint: if not, there would be an $\epsilon > 0$ such that E could not be covered by a finite number of balls of radius ϵ . Choose $\mathbf{y}_1 \in E$, $\mathbf{y}_2 \in E \setminus B(\mathbf{y}_1, \epsilon)$, $\mathbf{y}_3 \in E \setminus B(\mathbf{y}_1, \epsilon) \setminus B(\mathbf{y}_2, \epsilon)$, ...

Prove:

Theorem 13. If every sequence in $E \subset \mathbb{R}^n$ has a subsequence converging to a limit in E, then E is compact.

Show that a number of our results in \mathbb{R}^n are not readily exported to infinite-dimensional spaces by proving

Proposition 14. The sequence of functions $\{f_k\}$, where $f_k(t) = \sqrt{2/\pi} \sin kt$, $k \in \mathbb{N}$, $0 \le t \le \pi$, in the space $C^0([0,\pi])$ of continuous real-valued functions on the interval $[0,\pi]$ endowed with the norm

$$||f|| = \sqrt{\int_0^\pi |f(t)|^2 dt},$$

is bounded but has no convergent subsequence.

Proof for boundedness:

$$||f_k(t)|| = \sqrt{\int_0^{\pi} |\sqrt{2/\pi} \sin kt|^2 dt}$$
$$= \sqrt{2/\pi} \sqrt{\int_0^{\pi} |\sin kt|^2 dt}$$
$$\leq \sqrt{2/\pi} \sqrt{\int_0^{\pi} 1 dt}$$
$$= \sqrt{2\pi}$$

So the sequence is bounded for all k. For the proof for no convergent subsequence, we will use the triangle inequality. Consider $||f_n(t) - f_m(t)||$ for natural numbers with $n \neq m$

$$||f_n(t) - f_m(t)|| = \sqrt{\int_0^{\pi} |\sqrt{2/\pi} \sin nt - \sqrt{2/\pi} \sin mt|^2 dt}$$

$$= \sqrt{2/\pi} \sqrt{\int_0^{\pi} |\sin nt - \sin mt|^2 dt}$$
The triangle inequality:
$$\geq \sqrt{2/\pi} \sqrt{|\int_0^{\pi} (\sin nt - \sin mt)^2 dt|}$$

$$= \sqrt{2/\pi} \sqrt{|\int_0^{\pi} \sin^2 nt + \sin^2 mt - 2\sin mt \sin nt dt|}$$
Since $n \neq m = \sqrt{2/\pi} \sqrt{|\pi/2 + \pi/2 - 0|}$

$$= \sqrt{2}$$

This shows that as long as $m \neq n$ the norm of the difference between any two functions in the sequence will be greater than $\sqrt{2}$. Which proves that are no convergent subsequences. Prove:

Proposition 15. Let E be compact in \mathbb{R}^n . Let $f: E \to \mathbb{R}$ be continuous on E relative to E. Then f is bounded on E.

Hint: first by noting that for each $\epsilon > 0$ and each $\mathbf{x} \in E$, there is a $\delta(\epsilon, \mathbf{x}) > 0$ such that $|f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$ when $|\mathbf{x} - \mathbf{y}| < \delta(\epsilon, \mathbf{x})$ and $\mathbf{y} \in E$. Cover E with $B(\mathbf{x}, \delta(\epsilon, \mathbf{x}))$, then conclude.

Prove it again by assuming for contradiction that f is not bounded on E, in which case there would be a sequence \mathbf{x}_k in E with $|f(\mathbf{x}_k)| \to \infty$.

Prove:

Theorem 16. Let E be compact in \mathbb{R}^n . Let $f: E \to \mathbb{R}$ be continuous on E relative to E. Then f attains its infimum on E, i.e. f has a minimum on E.

Prove:

Theorem 17. Let E be compact in \mathbb{R}^n . Let $f: E \to \mathbb{R}$ be continuous on E relative to E. Then f is uniformly continuous on E.

Prove:

Theorem 18. The distance between two nonempty compact disjoint sets X and Y in \mathbb{R}^n is positive.

Hint: first by regarding $X \cup Y$ as a single compact set and covering it with sets of the form

$$B\left(\mathbf{x}, \frac{1}{3}|\mathbf{x} - \mathbf{y}|\right) \cup B\left(\mathbf{y}, \frac{1}{3}|\mathbf{x} - \mathbf{y}|\right)$$

for each $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Prove it again by using the definition of infimum to show that there are sequences $\mathbf{x}_k \in X$ and $\mathbf{y}_k \in Y$ such that

$$\operatorname{dist}(X,Y) \equiv \inf\{|\mathbf{x} - \mathbf{y}| : \mathbf{x} \in X, \mathbf{y} \in Y\} = \lim_{k \to \infty} |\mathbf{x}_k - \mathbf{y}_k|.$$

Prove it yet again by defining dist $(\mathbf{x}, Y) := \inf_{\mathbf{y} \in Y} |\mathbf{x} - \mathbf{y}|$ and showing that $g(\mathbf{x}) := \operatorname{dist}(\mathbf{x}, Y)$ is continuous on the compact set X. (This proof works if Y is merely closed.)