

Lecture 20

Causality

Announcements

- Homework 7 is due Wednesday, 10/12
- No lab notebook this week
- Midterm on Friday at 7pm
 - Midterm Prep Guide, Past Exams
 - Midterm Review Session on Thursday 3:30-6:30pm
 - More info to be posted on Ed
- Tutoring worksheets, walkthroughs, etc. available <u>here!</u>

Weekly Goals

- Today
 - Causation
 - Randomized Control Experiments
- Wednesday
 - P-Value as an Error
 - Examples
- Friday
 - Midterm review

Recap: A/B Testing

(Demo)

Random Assignment

Importance of Random Assignment

We've concluded that in the population, birth weights of babies whose mothers smoke weigh less than those whose mothers do not

- Is lower birth weight caused by maternal smoking?
- Can't Tell:
 - Moms aren't randomly assigned whether to smoke
 - Other factors contribute to their decision to smoke (e.g. income, geography, diet)

Causality

Randomized Controlled Experiment

- Sample A: control group
- Sample B: treatment group
- If the treatment and control groups are selected at random, then you can make causal conclusions.
- Any difference in outcomes between the two groups could be due to
 - chance
 - the treatment

(Demo)

Before the Randomization

- In the population there is one imaginary ticket for each of the 31 participants in the experiment.
- Each participant's ticket looks like this:

Potential Outcome

Potential Outcome

Outcome if assigned to treatment group

Outcome if assigned to control group

The Data

16 randomly picked tickets show:

Outcome if assigned to control group

The remaining 15 tickets show:

Outcome if assigned to treatment group

The Hypotheses

Null:

- In the population, the distribution of all potential control scores is the same as the distribution of all potential treatment scores.
- tl;dr the treatment has no effect

• Alternative:

 In the population, more of the potential treatment scores are 1 (pain improves) than the potential control scores.

Random Assignment & Shuffling

P-Values and Error Probabilities

Discussion Question

There are 2000 students in Data 8. Each student tests

Null: The coin is fair

Alternative: The coin is unfair

- based on 1000 tosses of a coin,
- the statistic | number of heads 500 |,
- and the 5% cutoff for the P-value.

Suppose all 1000 coins are fair. About how many students will conclude that their coins are unfair?

Statistic Simulated Under the Null

About 5% of the area is to the right of the gold line

Can the Conclusion be Wrong?

Yes.

	Null is true	Alternative is true
Test favors the null		X
Test favors the alternative	X	

An Error Probability

- The cutoff for the P-value is an error probability.
- If:
 - your cutoff is 5%
 - and the null hypothesis happens to be true
- then there is about a 5% chance that your test will reject the null hypothesis.

P-value cutoff vs P-value

- P-value cutoff
 - Does not depend on observed data or simulation
 - Decide on it before seeing the results
 - Conventional values at 5% and 1%
 - Probability of hypothesis testing making an error
- P-value
 - Depends on the observed data and simulation
 - Probability under the null hypothesis that the test statistic is the observed value or further towards the alternative

How We've Tested Thus Far

Hypothesis Testing Review

- 1 Sample: One Category (e.g. percent of flowers that are purple)
 - Test Statistic: observed proportion, abs (observed proportion null proportion)
 - How to Simulate: sample_proportions(n, null_dist)
- 1 Sample: More Than 2 Categories (e.g. ethnicity distribution of jury panel)
 - Test Statistic: tvd (observed dist, null dist)
 - How to Simulate: sample proportions (n, null dist)
- 1 Sample: Numerical Data (e.g. scores in a lab section)
 - Test Statistic: observed mean, abs (observed mean null mean)
 - How to Simulate: population_data.sample(n, with_replacement=False)
- 2 Samples: Underlying Values (e.g. birth weights of smokers vs. non-smokers)
 - Test Statistic: group_a_mean group_b_mean, group_b_mean group_a_mean, abs(group_a_mean - group_b_mean)
 - How to Simulate: observed_data.sample(with_replacement=False)