2

3

4

What Is Claimed Is:

1	1. A router circuit having a plurality of electrical input
2	signals comprising:
3	an electrical-to-optical converter for changing the plurality of
4	electrical input signals into a plurality of optical input signals;
5	a mixing circuit coupled to the electrical-to-optical converter,
6	said mixing circuit generating a plurality of substantially identical
7	composite signals corresponding to the plurality of optical inputs, said
8	composite signals comprising at least a portion of each of said plurality of
9	optical signals;
0	a plurality of optical bandpass filters coupled, respectively, to
1	each one of said plurality of composite signals, said plurality of bandpass
12	filters passing a portion of said optical signal to form a plurality of filtered
13	signals, and
14	an optical-to-electrical converter circuit coupled to the
15	plurality of bandpass filters, said optical-to-electrical converter converting
16	said plurality of filtered optical signals into a plurality of respective
17	electrical output signals.
1	2 A router circuit as recited in claim 1 wherein said

- 2. A router circuit as recited in claim 1 wherein said plurality of bandpass filters comprises a respective plurality of center wavelengths.
 - 3. A router circuit as recited in claim 2 further comprising a control circuit coupled to said electrical-to-optical converter, wherein said electrical-to-optical converter comprises a plurality of electrical-to-optical converters, said control circuit selecting a respective

- plurality of electrical-to-optical converter wavelengths in response to said plurality of bandpass center wavelengths.
- 1 4. A router circuit as recited in claim 3 wherein said 2 plurality of wavelengths of the electrical-to-optical converter is tunable.
- 5. A router circuit as recited in claim 2 wherein said plurality of center wavelengths of the plurality of bandpass filters is tunable.
- 1 6. A router circuit as recited in claim 1 wherein said 2 electrical-to-optical converter comprises a plurality of electrical-to-optical 3 converters.
- 7. A router circuit as recited in claim 1 wherein said mixing circuit comprises at least a first plurality of mixers cross coupled with a second plurality of mixers.
- 8. A router circuit as recited in claim 1 wherein said electrical-to-optical converter comprises a modulated tunable laser having a programmed wavelength.
- 9. A router circuit as recited in claim 8 wherein said tunable laser is coupled to a control circuit and a temperature sensor, said control circuit tuning said laser in response to said temperature sensor to maintain the programmed wavelength.
- 1 10. A router circuit as recited in claim 1 further comprising a clock circuit, said clock circuit comprising a clock electrical-

3	to-optical converter, an optical delay line and an optical-to-electrical
4	converter.
1	11. A router circuit as recited in claim 10 wherein said
2	optical delay line comprises an optical fiber.
1	12. A router circuit as recited in claim 1 wherein said
2	optical-to-electrical converter comprises a photodiode.
1	13. A router circuit as recited in claim 1 wherein said
2	mixing circuit comprises a passive star power splitter.
1	14. A satellite system comprising:
2	said electrical inputs comprising RF inputs;
3	a router circuit as recited in claim 1.
1	15. A satellite system as recited in claim 14 further
2	comprising a buffer circuit receiving said plurality of RF signals, said
3	buffer circuit synchronizing said electrical input signals within a
4	predetermined tolerance before the router
1	16. A router circuit comprising:
2	an electrical-to-optical converter changing electrical inputs
3	into optical signals;
4	a first mixing circuit coupled to a first group of said plurality
5	of optical signals, said first mixing circuit having a first output and a
6	second output, said first output and second output each having a first
7	composite signal comprising said first group of optical signals;
8	a second mixing circuit coupled to a second group of said

plurality of optical signals, said second mixing circuit having a third output

14

15

16

17 18

19

20

21

22

2324

25

26

27

28

1

2

and a fourth output, said third output and fourth output each having a second composite signal comprising said second group of optical signals; a third mixing circuit coupled to said first and third outputs,

a third mixing circuit coupled to said first and third outputs, said third mixing circuit generating a third composite signal comprising said first composite signal and said second composite signal;

a fourth mixing circuit coupled to said second output and fourth output, said fourth mixing circuit generating a fourth composite signal comprising said first composite signal and said second composite signal;

a bandpass filter circuit coupled to said third mixing circuit and said fourth mixing circuit, said bandpass filter circuit comprising a first and a second optical bandpass filter, said first bandpass filter coupled to said third composite signal for generating a first optical output and a second bandpass filter coupled to said fourth composite signal for generating a second optical output; and

an optical-to-electrical converter circuit coupled to said bandpass filter circuit for converting said first optical output to a first electrical output and said second optical output to a second electrical output.

- 17. A router circuit as recited in claim 16 wherein said electrical-to-optical converter comprises a modulated tunable laser.
- 1 18. A router circuit as recited in claim 17 wherein said 2 tunable laser is coupled to a control circuit and a temperature sensor, said 3 control circuit controlling said laser in response to a desired router 4 operation and said temperature sensor

1	19. A router circuit as recited in claim 16 further
2	comprising a clock circuit, said clock circuit comprising a clock electrical-
3	to-optical converter, an optical time delay circuit and an optical-to-
4	electrical converter.
1	20. A router circuit as recited in claim 16 wherein said
2	optical-to-electrical converter comprises a photodiode.
1	21. A router circuit as recited in claim 16 wherein said
2	first mixing circuit and said second mixing circuit comprise a respective
3	first star power splitter and a second star power splitter.
1	22. A method of operating a routing circuit comprising:
2	converting a plurality of electrical signals to a respective
3	plurality of modulated optical signals;
4	coupling the plurality of modulated optical signals to a cross
5	connect switch;
6	forming a plurality of composite signals at a plurality of
7	outputs of the cross-connect switch, said plurality of composite signals
8	composed of said modulated optical signals;
9	converting each of the composite signals into an electrical
10	output signal corresponding to a portion of said modulated optical signals.
1	23. A method as recited in claim 22 further comprising
2	synchronizing the output signal using a clock signal.
1	24. A method as recited in claim 22 wherein

synchronizing comprises delaying the clock signal an amount

- 3 corresponding to a delay of the cross-connect switch, to obtain a delayed
- 4 clock signal.
- 1 25. A method as recited in claim 22 wherein converting a
- 2 plurality of electrical signals to a respective plurality of modulated optical
- 3 signals comprises modulating a respective plurality of diode lasers, each of
- 4 which is tuned to the center wavelength of a bandpass filter.