Algorithmic Game Theory COMP6207

Lecture 10: Stable Matching

Baharak Rastegari

b.rastegari@soton.ac.uk

Electronics and Computer Science University of Southampton

Learning Outcomes

- By the end of this session, you should be able to
 - **Describe** the stable matching problem and its objective.
 - Identify blocking pairs
 - Compute a stable matching by Gale-Shapley algorithm

College Admission

- How to assign students to universities/colleagues:
 - Every student wants to go to the university s/he likes the best
 - Universities want students they think are the best
 - Every program in every university has a limited number of seats
 - There are many ways of allocating students to different programs in various universities!
 - Which one makes more sense?

Too complicated?

Lets assume that each university has only 1 seat!

College admission => Dance Gala

Let us assume that each university has only 1 seat!!!

Now lets replace ``students'' with ``leaders'' and
 ``universities'' with ``followers'', or the other way around
 (doesn't matter)

 For now, assume that leaders can only lead and followers can only follow

Setting

Participants

- A set of leaders $L = \{1, ..., n\}$
- A set of followers $F = \{1, ..., n\}$

Preferences

- Each leader has strict preferences over all followers
- Each follower has strict preferences over all leaders

All preferences together: preference profile

Objective

- To find a one-to-one stable matching
 - (one-to-one) Matching: each leader is paired with at most one follower and vice versa
 - Stable: no pair (l, f) wants to deviate

Harry

Ron

Neville

Cho

Hermione

Luna

Stable Matching

- A matching is stable if
 - There is no leader-follower pair, each of whom would prefer to match with each other rather than their assigned partner.
- Such a pair is called a blocking pair

Stable Matching

- A matching is stable if
 - There is no leader-follower pair, each of whom would prefer to match with each other rather than their assigned partner.
 - Such a pair is called a blocking pair

Stable Matching Problem (SM)

Does a stable matching always exist?

• Can we find a stable matching efficiently, if it exists?

These two questions answered in 1962

Theorem (Gale & Shapley, 1962)

A stable matching always exists, and can be found in polynomial time.

Lloyd Shapley

David Gale

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

- D. GALE* AND L. S. SHAPLEY, Brown University and the RAND Corporation
- 1. Introduction. The problem with which we shall be concerned relates to the following typical situation: A college is considering a set of n applicants of

2012 Nobel Prize Economic Sciences

Loyd S. Shapley

Alvin Roth

"for the theory of stable allocations and the practice of market design"

Applications

- Student-college admission
- School choice
- Hospitals/Residents problem

• ...

Match Day 2017. Credit: Charles E. Schmidt College of Medicine, FAU. For more photos of this important day of medical students' life click here.

Gale-Shapley algorithm

Deferred-acceptance-leader-oriented (leaders, followers, preferences)

```
1
      Assign all leaders and followers to be free; //initial state
      While (some leader 1 is free and hasn't proposed to every follower)
            f = first follower on l's list to whom l hasn't yet proposed;
            // next: 1 proposes to f
            If (f is free)
4
                  assign 1 and f to be engaged; //tentatively matched
5
            else if (f prefers 1 to her fiancé 1') { //f is engaged
6
                  set 1 and f to be engaged;
                  set 1' to be free;
8
9
            else f rejects 1; //and l remains free
      output the n engaged pairs, who form a stable matching;
12
```

Leaders

Followers

Quiz

Go to vevox.com Meeting ID: 110-844-851

Which matching does GS return when leaders propose?

$$f_1 > f_2 > f_3$$

$$f_1$$

$$l_1 > l_2 > l_3$$

$$f_1 > f_2 > f_3$$

$$l_2$$

$$\int_2$$

$$l_1 > l_3 > l_2$$

$$f_1 > f_3 > f_2$$

$$\int f_3$$

$$l_1 > l_2 > l_3$$

Answer

Which matching does GS return when leaders propose?

$$f_1 > f_2 > f_3$$
 $l_1 \longrightarrow f_1$ $l_1 > l_2 > l_3$

$$f_1 > f_2 > f_3$$
 $l_2 \longrightarrow f_2$ $l_1 > l_3 > l_2$

$$f_1 > f_3 > f_2$$
 $l_3 \longrightarrow f_3$ $l_1 > l_2 > l_3$

Quiz

What if followers propose?

$$f_1 > f_2 > f_3$$

 l_1

$$f_1$$

$$l_1 > l_2 > l_3$$

$$f_1 > f_2 > f_3$$

 l_2

$$f_2$$

$$l_1 > l_3 > l_2$$

$$f_1 > f_3 > f_2$$

 l_3

$$f_3$$

$$l_1 > l_2 > l_3$$

Answer

What if followers propose?

How many blocking pairs?

Answer

• 2 blocking pairs: (l_1, f_1) and (l_2, f_1)

Gale-Shapley algorithm

Deferred-acceptance-leader-oriented (leaders, followers, preferences)

```
1
      Assign all leaders and followers to be free; //initial state
      While (some leader 1 is free and hasn't proposed to every follower)
            f = first follower on l's list to whom l hasn't yet proposed;
            // next: 1 proposes to f
            If (f is free)
4
                  assign 1 and f to be engaged; //tentatively matched
5
            else if (f prefers 1 to her fiancé 1') { //f is engaged
6
                  set 1 and f to be engaged;
                  set 1' to be free;
8
9
            else f rejects 1; //and l remains free
      output the n engaged pairs, who form a stable matching;
12
```

Gale-Shapley returns a stable matching

Claim. Gale-Shapley algorithm always terminates and returns a stable matching.

In order to prove this we need to show that:

- 1. The algorithm always terminates.
- 2. The algorithm returns a matching (every leader is matched with at most one follower and vice versa).
- 3. The matching it returns is stable (no blocking pair).

Proof of correctness: 1. Termination

Observation 1. Leaders propose to followers in decreasing order of preference

Observation 2. Once a follower is matched up, s/he never becomes unmatched; only ``trades up''.

Claim. Algorithm terminates after at most n² iterations of While loop.

Proof. Each time through the while loop, a leader proposes to a new follower. Thus there are at most n² possible proposals.

Proof of correctness: 2. Matching

Claim. Gale-Shapley outputs a matching.

Proof.

- Leader proposes only if unmatched \Rightarrow matched to ≤ 1 follower.
- Follower keeps only best leader \Rightarrow matched to ≤ 1 leader.

The matching is perfect (i.e. everyone is matched)

Claim. In Gale-Shapley matching, all leaders get matched.

Proof. [by contradiction]

- Suppose, for a contradiction, that some leader *l* is unmatched when Gale-Shapley terminates.
- Then some follower, say f, is unmatched upon termination.
- By Observation 2, f was never proposed to.
- But, *l* proposes to every follower, since *l* ends up unmatched
- A contradiction!

Claim. In Gale-Shapley matching, all followers get matched.

Proof. [by counting] By previous claim, all **n** leaders get matched. Thus all **n** followers get matched.

Proof of correctness: 3. Stability

Claim. in Gale-Shapley matching μ , there are no blocking pairs.

Proof. Consider any pair (l, f) that is not in μ .

- Case 1: l never proposed to f $\Rightarrow l$ prefers $\mu(l)$ to f. (since leaders propose in decreasing order of preferences) $\Rightarrow (l, f)$ is not blocking

 Partner of l in μ
- Case 2: l proposed to f $\Rightarrow f$ rejected l (either right away or later) $\Rightarrow f$ prefers $\mu(f)$ to l (as followers only trade up) $\Rightarrow (l, f)$ is **not blocking**
- In either case, the pair (l, f) is not a blocking pair

Partner of f in μ

Books

 Algorithmics of Matching under Preferences by David F. Manlove.

- Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis by Alvin E. Roth, Marilda A. Oliviera Sotomayor.
- Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations (MAS) by Yoav Shoham and Kevin Leyton-Brown
- Algorithmic Game Theory (AGT), edited by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani

Acknowledgeleaderst

Some of the slides in this lecture were based on the slides by Jie Zhang and Kevin Wayne.