Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи оптимізації та планування експерименту Лабораторна робота №5

«Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів(центральний ортогональний композиційний план)»

Виконала:

студентка групи IB-81

Базова Л.Г.

Номер залікової книжки № 8101

Перевірив: Регіда П.Г.

Код програми:

```
import numpy as np
from scipy.stats import f, t
from tabulate import tabulate
import sklearn.linear_model as lm
def mult(x1, x2, x3 = np.ones(15)):
         x = np.ones(15)
         for i in range (15):
                   x[i] *= x1[i] * x2[i] * x3[i];
         return x
def find_x(x_min, x_max):
     #величини для значень матриці планування
     x01 = (x max[0] + x min[0]) / 2
     x02 = (x_max[1] + x_min[1]) / 2
     x03 = (x_max[2] + x_min[2]) / 2
     delta x1 = x max[0] - x01
    delta_x2 = x_max[1] - x02
    delta_x3 = x_max[2] - x03
    X1 = np.array([x_min[0], x_min[0], x_min[0], x_min[0], x_max[0], x_max[0], x_max[0],
x_{max}[0], -l*delta_x1+x01, l*delta_x1+x01, x01, x01, x01, x01, x01])
    X2 = np.array([x_min[1], x_min[1], x_max[1], x_max[1], x_min[1], x_min[1], x_max[1],
x_max[1], x02, x02, -l*delta_x2+x02, l*delta_x2+x02, x02, x02, x02])
    X3 = \text{np.array}([x \min[2], x \max[2], x \min[2], x \max[2], x \min[2], x 
x max[2], x03, x03, x03, x03, -l*delta x3+x03, l*delta x3+x03, x03])
     return np.array(list(zip(X1, X2, X3, mult(X1, X2), mult(X1, X3), mult(X2, X3),
mult(X1, X2, X3), mult(X1, X1), mult(X2, X2), mult(X3, X3))))
def find_y(x_min, x_max):
         # визначаєио утах, утіп
         y_max = int(200 + x_max.mean())
         y_min = int(200 + x_min.mean())
         return np.random.randint(y_min, y_max, size=(N, m))
def find b(X, y):
         x = list(X)
         for i in range(len(x)):
                   x[i] = np.array([1, ] + list(x[i]))
         X = np.array(x)
         model = lm.LinearRegression(fit intercept=False)
         model.fit(X, y)
         coefs = model.coef
         print("Pibhяння perpecii")
         print(f"{coefs[0]:.3f} + x1 * {coefs[1]:.3f} + x2 * {coefs[2]:.3f} + x3 *
{coefs[3]:.3f}"
                       f''+ x1x2 * \{coefs[4]:.3f\} + x1x3 * \{coefs[5]:.3f\} + x2x3 * \{coefs[6]:.3f\}''
                        f"+ x1x2x3 * {coefs[7]:.4f} + x1^2 * {coefs[8]:.4f} + x2^2 * {coefs[9]:.4f} +
x3^2 * {coefs[10]:.4f}")
          return coefs
def find_disper(y, y_mean):
         disper = np.zeros(N)
         for i in range(N):
                   for j in range(m):
                            disper[i] += (y[i][j] - y_mean[i]) ** 2
                   disper[i] /= m
          return disper
def matrix_print(y, x_list, y_mean, disper):
         global header_table
         header_table = ["M", "x1", "x2", "x3", "x1x2", "x1x3", "x2x3", "x1x2x3", "x1^2",
"x2^2", "x3^2"]
         table = []
```

```
for i in range(N):
        table.append([i + 1])
    for i in range(N):
        for _ in range(len(x_list[0])):
            table[i].append(x_list[i][_])
        for j in range(m):
            table[i].append(y[i][j])
        table[i].append(y_mean[i])
        table[i].append(disper[i])
    for i in range(m):
        header table.append("Y" + str(i + 1))
    header_table.append("Y")
    header table.append("S^2")
    print(tabulate(table, headers=header table, tablefmt="fancy grid"))
def kohren_check(disper):
    global Gp, Gt, f1, f2
    print("Критерій Кохрена")
   Gp = max(disper) / sum(disper)
    f1 = m - 1
    f2 = N
    fisher = f.isf(*[q / f2, f1, (f2 - 1) * f1])
   Gt = round(fisher / (fisher + (f2 - 1)), 4)
    print("Gp = " + str(Gp) + ", Gt = " + str(Gt))
def student check():
    global sb, d, f3, yy, t_exp
   d = len(x_code[0])
    print("Критерій Стьюдента")
    f3 = f1 * f2
    sb = sum(disper) / N
    ssbs = sb / N * m
    sbs = ssbs ** 0.5
    beta = np.zeros(d)
    t exp = []
    for j in range(d):
        for i in range(N):
            if (j == 0):
                beta[j] += y_mean[i]
                beta[j] += y_mean[i] * x_code[i][j]
        beta[j] /= N
        t exp.append(abs(beta[i]) / sbs)
   ttabl = round(abs(t.ppf(q / 2, f3)), 4)
    string eq = f''y = \{b[0]:.7f\}''
    for i in range(len(t exp)):
        if (t exp[i] < ttabl):</pre>
            print(f"Коефіцієнт t{i:} = \{t_exp[i]:.7f\} не значимий")
            b[i] = 0
            d = d - 1
        else:
            print(f"Коефіцієнт t{i:} = {t_exp[i]:.7f} значимий")
            if(i != 0): string_eq += f" + {b[i]:.7f} * " + header_table[i]
    print("Значимих коефіцієнтів: d = ", d, "\nРівняння регресії після виключення
коефіцієнтів:\n", string_eq)
   yy = np.zeros(N)
    for row in range(len(x_list)):
        yy[row] += b[0]
        for el in range(len(x_list[row])):
            yy[row] += b[el + 1] * x_list[row][el]
```

```
def fisher check():
    print("Критерій Фішера")
    f4 = N - d
    sad = 0
    for i in range(N):
        sad += (yy[i] - y_mean[i]) ** 2
    sad *= (m / (N - d))
    Fp = sad / sb
    print("Fp=", round(Fp, 2))
    Ft = round(abs(f.isf(q, f4, f3)), 4)
    print("Fp = " + str(round(Fp, 2)) + ", Ft = " + str(Ft))
    if Fp > Ft:
        print("Fp > Ft -> Рівняння неадекватне оригіналу")
    else:
        print("Fp < Ft -> Рівняння адекватне оригіналу")
#величини за варіантом:
x_{min} = np.array([-5, -5, -2])
x_{max} = np.array([8, 8, 6])
#рівняння з урахуванням квадратичних членів
print("y=b0+b1*x1+b2*x2+b3*x3+b12*x1*x2+b13*x1*x3+b23*x2*x3+b123*x1*x2*x3+b11*x1^2+b22*x
2^2+b33*x3^2+\n")
#константи для початкових умов
m = 3
k = 3 \# const
p = 0
N = 15 \#2^{(k - p)+2k} + N0
l = 1.215 #за формулою
q = 0.05
#матриця плануванння
x_list = find_x(x_min, x_max)
y = find_y(x_min, x_max)
x_{code} = find_x(np.array([-1, -1, -1]), np.array([1, 1, 1]))
while 1:
    if(m > 3):
        next_int = np.random.randint(y_min, y_max, size=(N, 1))
        y = np.append(y, next int, axis=1)
    y_mean = np.sum(y, axis=1) / m
    disper = find_disper(y, y_mean)
    print("Матриця планування:")
    matrix_print(y, x_code, y_mean, disper)
    print("Натуралізована матриця:")
    matrix_print(y, x_list, y_mean, disper)
    b = find_b(x_list, y_mean)
    kohren check(disper)
                                  #find Gp, Gt, f1, f2
    if Gp > Gt:
        print("Дисперсія неоднорідна, потрібно збільшити m")
        \mathsf{m} = \mathsf{m} + \mathbf{1}
        continue
    print("Gp < Gt -> Дисперсія однорідна\n")
    student_check()
    fisher check()
    break
```

Результат роботи програми y=b0+b1*x1+b2*x2+b3*x3+b12*x1*x2+b13*x1*x3+b23*x2*x3+b123*x1*x2*x3+b11*x1^2+b22*x2^2+b33*x3^2+

Матриця планування:

Ne	x1	x2	х3	x1x2	x1x3	x2x3	x1x2x3	x1^2	x2^2	x3^2	Y1	Y2	Y3	Y	S^2
1	-1	-1	-1	1	1	1	-1	1	1	1	204	198	199	200.333	6.88889
2	-1	-1	1	1	-1	-1	1	1	1	1	201	206	199	202	8.66667
3	-1	1	-1	-1	1	-1	1	1	1	1	198	201	196	198.333	4.22222
4	-1	1	1	-1	-1	1	-1	1	1	1	203	204	200	202.333	2.88889
5	1	-1	-1	-1	-1	1	1	1	1	1	204	204	204	204	0
6	1	-1	1	-1	1	-1	-1	1	1	1	196	201	199	198.667	4.22222
7	1	1	-1	1	-1	-1	-1	1	1	1	198	198	201	199	2
8	1	1	1	1	1	1	1	1	1	1	205	201	196	200.667	13.5556
9	-1.215	0	0	-0	-0	0	-0	1.47623	0	0	196	200	204	200	10.6667
10	1.215	0	0	0	0	0	0	1.47623	0	0	202	202	204	202.667	0.888889
11	0	-1.215	0	-0	0	-0	-0	0	1.47623	0	201	204	201	202	2
12	0	1.215	0	0	0	0	0	0	1.47623	0	198	198	205	200.333	10.8889
13	0	0	-1.215	0	-0	-0	-0	0	0	1.47623	205	197	203	201.667	11.5556
14	0	0	1.215	0	0	0	0	0	0	1.47623	200	201	198	199.667	1.55556
15	0	0	0	0	0	0	0	0	0	0	204	203	198	201.667	6.88889

Натуралізована матриця:

урал	1130bana M	- Pridire													
Ne	x1	x2	х3	x1x2	x1x3	x2x3	x1x2x3	x1^2	x2^2	x3^2	Y1	Y2	Y3	Y	S^2
1	-5	-5	-2	25	10	10	-50	25	25	4	204	198	199	200.333	6.88889
2	-5	-5	6	25	-30	-30	150	25	25	36	201	206	199	202	8.66667
3	-5	8	-2	-40	10	-16	80	25	64	4	198	201	196	198.333	4.22222
4	-5	8	6	-40	-30	48	-240	25	64	36	203	204	200	202.333	2.88889
5	8	-5	-2	-40	-16	10	80	64	25	4	204	204	204	204	0
6	8	-5	6	-40	48	-30	-240	64	25	36	196	201	199	198.667	4.22222
7	8	8	-2	64	-16	-16	-128	64	64	4	198	198	201	199	2
8	8	8	6	64	48	48	384	64	64	36	205	201	196	200.667	13.5556
9	-6.3975	1.5	2	-9.59625	-12.795	3	-19.1925	40.928	2.25	4	196	200	204	200	10.6667
10	9.3975	1.5	2	14.0963	18.795	3	28.1925	88.313	2.25	4	202	202	204	202.667	0.888889
11	1.5	-6.3975	2	-9.59625	3	-12.795	-19.1925	2.25	40.928	4	201	204	201	202	2
12	1.5	9.3975	2	14.0963	3	18.795	28.1925	2.25	88.313	4	198	198	205	200.333	10.8889
13	1.5	1.5	-2.86	2.25	-4.29	-4.29	-6.435	2.25	2.25	8.1796	205	197	203	201.667	11.5556
14	1.5	1.5	6.86	2.25	10.29	10.29	15.435	2.25	2.25	47.0596	200	201	198	199.667	1.55556
15	1.5	1.5	2	2.25	3	3	4.5	2.25	2.25	4	204	203	198	201.667	6.88889

```
Рівняння регресії
201.459 + x1 * 0.150 + x2 * -0.152 + x3 * 0.137+ x1x2 * -0.011 + x1x3 * -0.050 + x2x3 * 0.040+ x1x2x3 * 0.0035 + x1^2 * -0.0025 + x2^2 * -0.0052 + x3^2 * -0.0349
Критерій Кохрена
Gp = 0.15601023017902815, Gt = 0.3346
Gp < Gt -> Дисперсія однорідна

Критерій Стыюдента
Косфіцієнт t0 = 186.6398714 значимий
Косфіцієнт t1 = 0.4144685 не значимий
Косфіцієнт t2 = 0.0266333 не значимий
Косфіцієнт t3 = 0.0825840 не значимий
Косфіцієнт t4 = 0.5780881 не значимий
Косфіцієнт t5 = 0.5780881 не значимий
Косфіцієнт t7 = 136.2487537 значимий
Косфіцієнт t8 = 136.2182755 значимий
Косфіцієнт t9 = 136.126411 значимий
Косфіцієнт t9 = 136.126411 значимий
Косфіцієнт t9 = 136.126471 жижий
Косфіцієнт t7 = 136.126471 жижий
Косфіцієнт t1 = 136.1
```