REAL ANALYSIS

Chapter 2 **MEASURES**

Assoc. Prof. Nguyen Ngoc Hai

International University

October 14, 2021

Chapter 2 MEASURES

References

Textbooks:

- 1. G. B. Folland, *Real Analysis. Modern Techniques and Their Applications*, 2nd ed.
 John Wiley & Sons, 1999 (pp. 19–40)
- 2. H. L. Royden, P. M. Fitzpatrick, *Real Analysis*, 4th ed. Pearson Education, 2010 (**pp.** 337–358; 424–429)
- 3. E. Kopp, J. Malczak, T. Zastawniak *Probability for Finance*, Cambridge University Press, 2014

Definition 1.1

Let X be an arbitrary nonempty set. A collection \mathcal{M} of subsets of X is called an **algebra** (or a **field**) if it satisfies the following conditions:

- (i) $X \in \mathcal{M}$,
- (ii) $A \in \mathcal{M} \Longrightarrow A^c \in \mathcal{M}$,
- (iii) $A, B \in \mathcal{M} \Longrightarrow A \cup B \in \mathcal{M}$.

In other words, an algebra of sets in X is a nonempty collection of subsets of X that is closed under complements and finite unions.

Proposition 1.1

If M is an algebra of subsets of X, then

- (a) $\emptyset \in \mathcal{M}$;
- (b) $A_1, \ldots, A_n \in \mathcal{M} \Longrightarrow \bigcup_{i=1}^n A_i \in \mathcal{M};$
- (c) $A_1, \ldots, A_n \in \mathcal{M} \Longrightarrow \bigcap_{i=1}^n A_i \in \mathcal{M};$
- (d) $A, B \in \mathcal{M} \Longrightarrow A \setminus B \in \mathcal{M}$;
- (e) $A, B \in \mathcal{M} \Longrightarrow A\Delta B \in \mathcal{M}$.

In words,

- If \mathcal{M} is an algebra then $\emptyset \in \mathcal{M}$.
- An algebra is closed under finite unions.
- An algebra is closed under finite intersections.
- An algebra is closed under set difference.
- An algebra is closed under symmetric difference.

σ -Algebras

Definition 1.2

A system \mathcal{M} of subsets of a nonempty set X is called a σ -algebra or σ -field (over X) if it has the following properties:

- (i) $X \in \mathcal{M}$;
- (ii) $A \in \mathcal{M} \Longrightarrow A^c \in \mathcal{M}$;
- (iii') $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{M}\Longrightarrow \bigcup_{n=1}^\infty A_n\in\mathcal{M}.$

In other words, a σ -algebra of sets in X is a nonempty collection of subsets of X that is closed under complements and <u>countable</u> unions.

Remark 1.1

- (a) A σ -algebra is an algebra. Thus if \mathcal{M} is a σ -algebra, then $\emptyset \in \mathcal{M}$.
- (b) σ -algebras are also closed under countable intersections.

Example 1.1 In any set X, $\mathcal{P}(X)$ and $\{\emptyset, X\}$ are always σ -algebras.

- $\{\emptyset, X\}$ is the smallest possible σ -algebras and
- $\mathcal{P}(X)$ is the largest possible σ -algebras.

That is, if \mathcal{M} is a σ -algebra of subsets of X, then

$$\{\emptyset, X\} \subset \mathcal{M} \subset \mathcal{P}(X).$$

Example 1.2 If $A \subset X$, then

$$\mathcal{M} = \{\emptyset, A, A^c, X\}$$

is a σ -algebra in X.

Example 1.3 If \mathcal{M} is a σ -algebra in a set X and Y is a nonempty subset of X, then

$$\mathcal{A} = \{ Y \cap A : A \in \mathcal{M} \}$$

is a σ -algebra in Y.

In case $Y \in \mathcal{M}$, \mathcal{A} consists simply of all the subsets of Y which are elements of \mathcal{M} :

$$Y \in \mathcal{M} \Longrightarrow \mathcal{A} = \{B \in \mathcal{M} : B \subset Y\}.$$

Example 1.4 For any set X the system of all its subsets which are either countable or co-countable (that is, the $A \subset X$ such that either A or A^c is countable) constitute a σ -algebra.

Example 1.5 For any set X the system of all sets $A \subset X$ which are either finite or co-finite (i.e., have finite complement in X) is an algebra, but is a σ -algebra only if X is finite.

Example 1.6 Let X, Y be nonempty sets and $f: X \to Y$ a mapping. Further let \mathcal{A} and \mathcal{B} be σ -algebras in X and Y, respectively. Then the systems of sets

$$\mathcal{M}=f^{-1}(\mathcal{B}):=\left\{f^{-1}(B):B\in\mathcal{B}\right\}$$

and

$$\mathcal{N} = \left\{ B \subset Y : f^{-1}(B) \in \mathcal{A} \right\}$$

are respectively σ -algebras over X and Y. One says $f^{-1}(\mathcal{B})$ is the **inverse image of \mathcal{B} under** f. Thus,

The inverse image of a σ -algebra is a σ -algebra.

The Borel σ -algebra

Theorem 1.2

The intersection $\bigcap_{i\in I} \mathcal{M}_i$ of any family $(\mathcal{M}_i)_{i\in I}$ of σ -algebras on a common set X is itself a σ -algebra on X.

For every nonempty system \mathcal{E} of subsets of X, there is at least one σ -algebra of subsets of X containing \mathcal{E} , namely $\mathcal{P}(X)$.

Let

$$\sigma(\mathcal{E}) = \bigcap \{ \mathcal{M} \subset \mathcal{P}(X) : \mathcal{M} \supset \mathcal{E}, \ \mathcal{M} \text{ is a } \sigma\text{-algebra in } X \}.$$

Then, by Theorem 1.1, $\sigma(\mathcal{E})$ is a σ -algebra in X and it is the smallest σ -algebra containing \mathcal{E} .

 $\sigma(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} .

- $\sigma(\mathcal{E})$ is a σ -algebra with the following properties:
- (i) $\mathcal{E} \subset \sigma(\mathcal{E})$;
- (ii) for every σ -algebra \mathcal{M} in X with $\mathcal{E} \subset \mathcal{M}$, we have $\sigma(\mathcal{E}) \subset \mathcal{M}$.

Remark 1.2

If
$$\mathcal{E} \subset \sigma(\mathcal{F})$$
 then $\sigma(\mathcal{E}) \subset \sigma(\mathcal{F})$.

Example 1.7

- (a) If \mathcal{E} itself is a σ -algebra in X, then $\sigma(\mathcal{E}) = \mathcal{E}$.
- (b) If \mathcal{E} consists of a single set $A \subset X$, then

$$\sigma(\mathcal{E}) = \{\emptyset, A, A^c, X\}.$$

(c) The σ -algebra in Example 1.4 (\mathcal{M} consists of all countable subsets of X and their complements) is generated by the system of all finite subsets of X.

Definition 1.3

If X is any metric space, the σ -algebra generated by the family of open sets in X is called the **Borel** σ -algebra on X and is denoted by $\mathcal{B}(X)$. Its members are called **Borel sets**.

Example 1.8 Let (X, d) be a metric space. The following are Borel sets:

- (i) any open or closed set;
- (ii) any one-point set $\{x\}$, $x \in X$;
- (iii) any countable set.
- (iv) If $X = \mathbb{R}$ with the usual metric

$$d(x,y)=|x-y|,$$

then all intervals (open, closed, semiclosed, finite or infinite) are Borel sets.

Let (X, d) be a metric space. $\mathcal{B}(X)$ includes open sets, closed sets, countable intersections of open sets, countable unions of closed sets, and so forth.

It is clear that

 $\mathcal{B}(X)$ is also generated by the class of all closed sets in X.

Example 1.9 The Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is generated by each of the following three systems:

$$\mathcal{E} = \{(a, b) : a < b, a, b \in \mathbb{R}\},\$$
 $\mathcal{F} = \{(-\infty, b] : b \in \mathbb{R}\}, \text{ and }$
 $\mathcal{G} = \{(-\infty, b) : b \in \mathbb{R}\}.$

Definition 2.1

By a **measurable space** we mean a couple (X, \mathcal{M}) consisting of a set X and a σ -algebra \mathcal{M} of subsets of X. A subset E of X is called **measurable** (or measurable with respect to \mathcal{M}) provided E belongs to \mathcal{M} .

Definition 2.2

Let X be a set equipped with a σ -algebra \mathcal{M} . A **measure** on \mathcal{M} (or on (X,\mathcal{M}) , or simply on X if \mathcal{M} is understood) is a function $\mu: \mathcal{M} \to [0,\infty]$ such that

- (i) $\mu(\emptyset) = 0$;
- (ii) if $\{E_i\}_{i=1}^{\infty}$ is a sequence of <u>disjoint</u> sets in \mathcal{M} , then

$$\mu\bigg(\bigcup_{i=1}^{\infty}E_i\bigg)=\sum_{i=1}^{\infty}\mu(E_i).$$

Property (ii) is called **countable additivity** (or σ -additivity).

It implies finite additivity:

(ii') if $\{E_i\}_{i=1}^n$ are *disjoint* sets in \mathcal{M} , then

$$\mu\bigg(\bigcup_{i=1}^n E_i\bigg) = \sum_{i=1}^n \mu(E_i).$$

Definition 2.3

If μ is a measure on a measurable space (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a **measure space**.

Example 2.1 For every σ -algebra \mathcal{M} in X and every point $a \in X$ the function δ_a defined on \mathcal{M} by

$$\delta_a(A) = \begin{cases} 1 & \text{if } a \in A, \\ 0 & \text{if } a \notin A, \end{cases}$$

is a measure. It is called the **unit point mass** or **Dirac measure** concentrated at **a**.

Example 2.2 Let X be an uncountable set, and let \mathcal{M} be the σ -algebra of countable or co-countable sets, that is,

$$\mathcal{M} = \{ E \subset X : E \text{ countable or } E^c \text{ countable} \}.$$

The function μ on $\mathcal M$ defined by

$$\mu(E) = \begin{cases}
0 & \text{if } E \text{ is countable,} \\
1 & \text{if } E \text{ is co-countable,}
\end{cases}$$

is a measure.

Note There exist non-empty sets which have measure 0.

Example 2.3 Let X be an arbitrary set, and let \mathcal{M} be a σ -algebra on X. Define $\mu: \mathcal{M} \to [0, \infty]$ by

$$\mu(E) = \left\{ \begin{array}{c} \text{the number of elements of E if E is finite,} \\ \infty \text{ if E is infinite.} \end{array} \right.$$

Then μ is a measure, called the **counting measure** on \mathcal{M} .

Example 2.4 Let (X, \mathcal{M}, μ) be a measure space and take $\emptyset \neq A \in \mathcal{M}$. Let

$$\mathcal{M}_A = \{E \subset A : E \in \mathcal{M}\} \text{ and } \mu_A(E) = \mu(E).$$

Then $(A, \mathcal{M}_A, \mu_A)$ is also a measure space.

Note that

$$\mathcal{M}_A = \{F \cap A : F \in \mathcal{M}\}.$$

Example 2.5 Let X be an infinite set and $\mathcal{M} = \mathcal{P}(X)$. Define

$$\mu(E) = \begin{cases} 0 & \text{if } E \text{ is finite,} \\ \infty & \text{if } E \text{ is infinite,} \end{cases}$$

Then μ is finitely additive but <u>not</u> σ -additive.

Definition 2.4

Let (X, \mathcal{M}, μ) be a measure space.

- (a) If $\mu(X) < \infty$, μ is called **finite**.
- (b) If $X = \bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{M}$ and $\mu(A_n) < \infty$ for all n, μ is called σ -finite.
- (c) If $E = \bigcup_{n=1}^{\infty} E_n$ where $E_n \in \mathcal{M}$ and $\mu(E_n) < \infty$ for all n, the set E is said to be σ -finite.
- (d) If $\mu(X) = 1$, we also call μ a probability measure and (X, \mathcal{M}, μ) a probability space.

Note In probability contexts, measurable sets are called **events**.

Example 2.6 Let (X, \mathcal{M}, μ) be a measure space and let c be a positive real number. Then

- $c\mu$ is a measure;
- in particular, if $0 < \mu(X) < \infty$, $\left(X, \mathcal{M}, \frac{1}{\mu(X)}\mu\right)$ is a probability space.

Example 2.7

- (a) Let $\mathcal{M} = \{X, \emptyset\}$. Define $\mu(\emptyset) = 0$ and $\mu(X)$ be any number in $[0, \infty]$. Then μ is a measure on \mathcal{M} .
- (b) Let A be a subset of X such that $\emptyset \neq A \neq X$ and let $\mathcal{M} = \{\emptyset, A, A^c, X\}$.

Then all probability measures on (X, \mathcal{M}) have the form

$$\mathbf{P}(\emptyset) = 0$$
, $\mathbf{P}(A) = p$, $\mathbf{P}(A^c) = 1-p$, $\mathbf{P}(X) = 1$, where $0 .$

Example 2.8 Let $X = \{x_1, x_2, ...\}$ be a countable (finite or countably infinite) set, $x_k \neq x_m$ for $k \neq m$, and let $p_1, p_2, ...$ be extended nonnegative numbers. For each $A \subset X$, define

$$\mu(A) = \sum_{x_k \in A} p_k.$$

- (If $A = \emptyset$, we set $\mu(A) = 0$.) Then
- (a) μ is a measure on $\mathcal{P}(X)$ and

$$\mu(\{x_k\}) = p_k, \quad k = 1, 2, ...;$$

- (b) μ is σ -finite if $p_k < \infty$ for each k;
- (c) μ is a probability measure if $\sum_k p_k = 1$;
- (d) μ is the counting measure if $p_k = 1$ for all k.

Example 2.9 (a) Let $X = \{x_1, x_2, ..., x_N\}$ be a finite set of exactly N points, and let \mathcal{M} be the power set of X, that is, $\mathcal{M} = \mathcal{P}(X)$. If we choose

$$p_k = \mu(\{x_k\}) = \frac{1}{N},$$

then the function μ defined in Example 2.8 reduces to

$$\mu(A) = \frac{\text{number of elements of } A}{N},$$

which is a probability measure on (X, \mathcal{M}) .

• μ is called the **uniform probability**.

(b) If $X = \{0, 1, \dots, N\}$, $p \in (0, 1)$ is a fixed number, and

$$ho_k = \left(egin{array}{c} N \ k \end{array}
ight)
ho^k (1-
ho)^{N-k}, \hspace{0.5cm} k=0,1,\ldots,N,$$

we call μ (defined in Example 2.8) the **binomial probability** with parameters N, p.

(c) If
$$X=\{0,1,2,\ldots\}=\{0\}\cup\mathbb{N},\ \lambda\in(0,\infty)$$
, and
$$p_k=e^{-\lambda}\frac{\lambda^k}{k!},\qquad k=0,1,\ldots$$

we get the **Poisson probability** with parameter λ .

(d) If $X=\mathbb{N}$, p is a fixed number in (0,1), and $p_k=(1-p)^{k-1}p, \qquad k=1,2\ldots,$

then μ is the **geometric probability**.

Theorem 2.1

Let (X, \mathcal{M}, μ) be a measure space.

- (a) (Monotonicity) If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$.
- (b) (Excision) If $E \subset F$ and $\mu(E) < \infty$, then $\mu(F \setminus E) = \mu(F) \mu(E)$. In particular, if $\mu(E) = 0$, then $\mu(F \setminus E) = \mu(F)$.
- (c) $(\sigma\text{-Subadditivity})$ If $\{E_n\}_{n=1}^{\infty}\subset\mathcal{M}$, then

$$\mu\left(\bigcup_{n=1}^{\infty}E_{n}\right)\leq\sum_{n=1}^{\infty}\mu(E_{n}).$$

Remark 2.1

- 1. If μ is finite, then $\mu(E) < \infty$ for all $E \in \mathcal{M}$.
- 2. σ -subadditivity implies **finite subadditivity**: If $\{E_n\}_{n=1}^k \subset \mathcal{M}$, then

$$\mu\left(\bigcup_{n=1}^k E_n\right) \leq \sum_{n=1}^k \mu(E_n).$$

Theorem 2.2 (Continuity of Measure)

Let (X, \mathcal{M}, μ) be a measure space.

(a) (Continuity from below) If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$ and $E_1 \subset E_2 \subset \cdots$, then

$$\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)=\lim_{n\to\infty}\mu(E_n).$$

(b) (Continuity from above) If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$, $E_1 \supset E_2 \supset \cdots$, and $\mu(E_1) < \infty$, then

$$\mu\bigg(\bigcap_{n=1}^{\infty}E_n\bigg)=\lim_{n\to\infty}\mu(E_n).$$

Let $\{A_n\}$ be a sequence of subsets of a set X.

• If $A_1 \subset A_2 \subset A_3 \subset \cdots$ and $\bigcup_{n=1}^{\infty} A_n = A$, we say that the A_n form an **increasing** sequence of sets with limit A, or that the A_n **increase** to A and we write $A_n \nearrow A$.

If

 $A_1 \supset A_2 \supset A_3 \supset \cdots$ and $\bigcap_{n=1}^{\infty} A_n = A$, we say that the A_n form a **decreasing** sequence of sets with limit A, or that the A_n **decrease** to A and we write $A_n \searrow A$.

Example 2.10 (The Borel-Cantelli Lemma)

Let $\{E_k\}$ be a sequence of measurable sets in X, such that

$$\sum_{k=1}^{\infty} \mu(E_k) < \infty.$$

Then

$$\mu\bigg(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_k\bigg)=0.$$

Note Let $\{E_k\}$ be a sequence of sets in X. We define **limit superior** and **limit inferior** of $\{E_k\}$ to be the sets

$$\limsup_{n} E_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k}$$

and

$$\underset{n}{\mathsf{lim}_{\mathsf{n}}\mathsf{inf}}\,E_{\mathsf{n}}=\bigcup_{\mathsf{n}=1}^{\infty}\bigcap_{\mathsf{k}=\mathsf{n}}^{\infty}E_{\mathsf{k}},$$

respectively. It is easy to verify that

 $\limsup E_n = \big\{ x : x \in E_n \text{ for infinitely many } n \big\},$ $\liminf E_n = \big\{ x : x \in E_n \text{ for all but finitely many } n \big\}.$

The Borel-Cantelli Lemma can be restated as follows:

If $\sum_{k=1}^{\infty} \mu(E_k) < \infty$, then almost all $x \in X$ lie in at most finitely many of the sets E_k .

Definition 2.5

If (X, \mathcal{M}, μ) is a measure space, a set $E \in \mathcal{M}$ such that $\mu(E) = 0$ is called a **null set**.

Remark 2.2

- Every measurable subset of a null set is also a null set.
- By σ -subadditivity, any countable union of null sets is a null set.

Definition 2.6

A measure whose domain includes all subsets of null sets is called **complete**.

$$\mu \text{ complete} \iff ([\mu(A) = 0 \land (B \subset A)] \Longrightarrow B \in \mathcal{M}).$$

Example 2.11

- (a) Every measure μ on $\mathcal{P}(X)$ is complete.
- (b) The counting measure (defined on any σ -algebra) is complete.
- (c) If X has more than one point and $\mathcal{M}=\{\emptyset,X\}$, then the measure $\mu(\emptyset)=\mu(X)=0$ is not complete.

• Let $\mu: \mathcal{E} \to \overline{\mathbb{R}}$ and $\nu: \mathcal{F} \to \overline{\mathbb{R}}$. If

$$\mathcal{E} \subset \mathcal{F}$$
 and $\mu(E) = \nu(E)$ for all $E \in \mathcal{E}$,

 ν is said to be an **extension** of μ to \mathcal{F} , or equivalently, μ is the **restriction** of ν to \mathcal{E} .

• Let \mathcal{A} be an algebra on X and $\mu: \mathcal{A} \to [0, \infty]$ a σ -additive function on \mathcal{A} with $\mu(\emptyset) = 0$.

Question:

Under what conditions does there exist a σ -algebra \mathcal{M} on X and a measure $\bar{\mu}$ on \mathcal{M} such that μ is the restriction of $\bar{\mu}$ to \mathcal{A} ?

Definition 3.1

An **outer measure** on a nonempty set X is a set function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies three properties:

- 1) $\mu^*(\emptyset) = 0$,
- 2) $\mu^*(A) \le \mu^*(B)$ if $A \subset B$, that is, μ^* is monotone,
- 3) $\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu^* (A_n)$ holds for every sequence $\{A_n\}$ of subsets of X; that is, μ^* is σ -subadditive.

Remark 3.1 • Conditions 2) and 3) are equivalent to the following:

If
$$A, A_n \subset X$$
 and $A \subset \bigcup_{n=1}^{\infty} A_n$, then $\mu^*(A) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.

- Every outer measure is finitely subadditive.
- Any measure on $\mathcal{P}(X)$ is also an outer measure on X.

Example 3.1 For $A \subset X$ set

$$\mu^*(A) = egin{cases} 0 & ext{if } A = \emptyset, \ 1 & ext{if } A
eq \emptyset. \end{cases}$$

Then μ^* is an outer measure on X.

• Note that μ^* is **not** additive.

Theorem 3.1

Suppose \mathcal{E} is a family of subsets of X with $\emptyset \in \mathcal{E}$ and $\mu : \mathcal{E} \to [0, \infty]$ satisfies $\mu(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{E} \text{ and } A \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

If there is no sequence $\{A_n\}$ of \mathcal{E} such that $A \subset \bigcup_{n=1}^{\infty} A_n$, then we let $\mu^*(A) = \infty$. Then μ^* is an outer measure, called the **outer measure** induced by (\mathcal{E}, μ) .

Definition 3.2

Let μ^* be an outer measure on X. A subset A of X is called **measurable** (more precisely, μ^* -measurable) if,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subset X$.

Remark 3.2 • \emptyset and X are measurable.

- If $\mu^*(N) = 0$, we say the set N is μ^* -null (or of μ^* -measure zero). Every μ^* -null set is measurable.
- A is measurable if and only if

$$\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E)$$
 for all $E \subset X$.

Example 3.2 Let X be a set having more than one point, $\mathcal{M} = \{\emptyset, X\}$, $\mu(\emptyset) = 0$, $\mu(X) = 1$. Then μ is a measure on the σ -algebra \mathcal{M} .

(a) The outer measure μ^* induced by (\mathcal{M}, μ) is

$$\mu^*(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{if } A \neq \emptyset. \end{cases}$$

(b) The family of μ^* -measurable sets is also the σ -algebra \mathcal{M} .

Theorem 3.2 (Carathéodory's Theorem)

If μ^* is an outer measure on X, then the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

The measure $\bar{\mu}$ that is the restriction of μ^* to the σ -algebra \mathcal{M} of μ^* -measurable sets is called the measure induced by the outer measure μ^* .

$$\bar{\mu} = \mu^*_{|\mathcal{M}}$$

Definition 3.3

Let $\mathcal{M} \subset \mathcal{P}(X)$ be an algebra. A function $\mu: \mathcal{M} \to [0, \infty]$ will be called a **premeasure** if

- (i) $\mu(\emptyset) = 0$;
- (ii) μ is σ -additive, that is, if $\{A_n\}_{n=1}^{\infty}$ is a sequence of <u>disjoint</u> sets in \mathcal{M} such that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$, then

$$\mu\bigg(\bigcup_{n=1}^{\infty}A_n\bigg)=\sum_{n=1}^{\infty}\mu(A_n).$$

A premeasure is finitely additive.

The notions of finite and σ -finite premeasures are defined just as for measures.

If μ is a premeasure on an algebra $\mathcal{M} \subset \mathcal{P}(X)$, it induces an outer measure on X in accordance with Theorem 3.1, namely,

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{M}, E \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

A premeasure induces an outer measure and an outer measure induces a measure:

premeasure $\mu \Longrightarrow$ outer measure $\mu^* \Longrightarrow$ measure $\bar{\mu}$

Question:

What is the relation between μ and $\bar{\mu}$?

Theorem 3.3

Let μ be a premeasure on an algebra \mathcal{M} , let μ^* be the outer measure generated by μ , and let \mathcal{M}_{μ^*} be the σ -algebra of μ^* -measurable sets.

(i) Every set in \mathcal{M} is μ^* -measurable and the restriction of μ^* to \mathcal{M}_{μ^*} is an extension of μ :

$$\mathcal{M} \subset \mathcal{M}_{\mu^*}$$
 and $\mu_{|\mathcal{M}}^* = \mu$.

(ii) If μ is σ -finite and \mathcal{A} is any σ -algebra with $\mathcal{M} \subset \mathcal{A} \subset \mathcal{M}_{\mu^*}$, then the restriction of μ^* to \mathcal{A} is the only measure on \mathcal{A} that is an extension of μ .

If $X \subset \mathbb{R}$ and $f: X \to \mathbb{R}$, f is called

- increasing if $f(x) \le f(y)$ whenever $x \le y$;
- strictly increasing if f(x) < f(y) whenever x < y;
- **decreasing** if $f(x) \ge f(y)$ whenever $x \le y$;
- **strictly decreasing** if f(x) > f(y) whenever x < y.

A function that is either increasing or decreasing is called **monotone**.

• Let f be a function on $(a,b) \subset \mathbb{R}$. For $c \in [a,b)$, the limit

$$f(c+) = \lim_{x \searrow c} f(x)$$

(provided it exists) is called the **right-hand limit** of *f* at *c*.

• Similarly, for $c \in (a, b]$ the limit

$$f(c-) = \lim_{x \nearrow c} f(x)$$

(provided it exists) is called the **left-hand limit** of f at c.

A function f is said to be **right continuous** at c if

$$f(c+)=f(c)$$

and **left continuous** at c if

$$f(c-)=f(c).$$

If f(c-) and f(c+) are both finite and f is discontinuous at c, then we say that f has a **simple** discontinuity at c.

Theorem 4.1

Let $f:(a,b)\to\mathbb{R}$ be increasing and let $c\in(a,b)$. Then

- (a) f(c-) and f(c+) both exist,
- (b) $f(c-) = \sup\{f(x) : a < x < c\},$
- (c) $f(c+) = \inf\{f(x) : c < x < b\},\$
- (d) $-\infty < f(c-) \le f(c) \le f(c+) < \infty$,
- (e) $a < c < d < b \text{ implies } f(c+) \le f(d-)$.

A similar theorem obtains for decreasing functions.

Note Let $f: \mathbb{R} \to \mathbb{R}$ be monotone.

(i) If $x_n < a \in \mathbb{R}$, $x_n \to a$, then

$$\lim_{n\to\infty} f(x_n) = f(a-).$$

- (ii) If $x_n \to +\infty$, then $\lim_{n\to\infty} f(x_n) = f(+\infty)$.
- (iii) If $x_n > a \in \mathbb{R}$, $x_n \to a$, then

$$\lim_{n\to\infty} f(x_n) = f(a+).$$

(iv) If $x_n \to -\infty$, then $\lim_{n \to \infty} f(x_n) = f(-\infty)$.

Here

$$f(+\infty) := \lim_{x \to \infty} f(x)$$
 and $f(-\infty) := \lim_{x \to -\infty} f(x)$.

Theorem 4.2

The set of all discontinuities of a monotone function is countable and each discontinuity is simple.

If $f : \mathbb{R} \to \mathbb{R}$ is an increasing function, then by Theorem 4.1, f has right- and left-hand limits at each point:

$$f(a+) = \lim_{x \to a^+} f(x) = \inf_{x > a} f(x),$$

 $f(a-) = \lim_{x \to a^-} f(x) = \sup_{x < a} f(x).$

Moreover,

$$f(\infty) := \lim_{x \to +\infty} f(x) = \sup_{x \in \mathbb{R}} f(x)$$

and

$$f(-\infty) := \lim_{x \to -\infty} f(x) = \inf_{x \in \mathbb{R}} f(x)$$

(these values possibly equal $\pm \infty$).

Let

$$I_{a,b}=(a,b] \quad ext{if } -\infty \leq a \leq b < \infty$$
 $I_{a,b}=(a,\infty) \quad ext{if } -\infty \leq a < b = \infty$ (if $a=b \in \mathbb{R}$, $(a,b]=\emptyset$).

Theorem 4.3

Let \mathcal{M} be the collection of finite disjoint unions of intervals in \mathbb{R} of the form $I_{a,b}$. Then

- (i) M is an algebra;
- (ii) The σ -algebra generated by \mathcal{M} is $\mathcal{B}(\mathbb{R})$.

Definition 4.1

Measures on \mathbb{R} whose domain is the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ are called **Borel measures**.

Let μ be a finite Borel measure on \mathbb{R} .

Define $F: \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \mu((-\infty, x]).$$

Then F is increasing, right continuous, and

$$\mu((a,b]) = F(b) - F(a), \quad \mu((a,\infty)) = F(\infty) - F(a).$$

We will show that:

There is a 1-1 correspondence between Borel measures on \mathbb{R} (that are finite on every bounded Borel sets) and the class of increasing and right continuous functions.

Theorem 4.4

Let $F : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. If I_{a_i,b_i} $(i=1,2,\ldots,k)$ are disjoint, let

$$\mu_F\bigg(\bigcup_{i=1}^k I_{a_i,b_i}\bigg) = \sum_{i=1}^k \big[F(b_i) - F(a_i)\big].$$

Then μ_F is a premeasure on \mathcal{M} , the algebra constructed as in Theorem 4.3.

Let μ^* be the outer measure generated by μ_F .

Definition 4.2

Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. The space $(\mathbb{R}, \mathcal{M}_{\mu^*}, \bar{\mu}_F)$, where $\bar{\mu}_F = {\mu^*}_{|\mathcal{M}_{\mu^*}}$, is called a **Lebesgue-Stieltjes measure space** and $\bar{\mu}_F$ is called the **Lebesgue-Stieltjes measure** generated by F.

Remark 4.1

 $\mathcal{B}(\mathbb{R})\subset\mathcal{M}_{\mu^*}$, that is, every Borel set in \mathbb{R} is μ^* -measurable.

Definition 4.3

When F(x) = x for all $x \in \mathbb{R}$, the measure $\bar{\mu}_F$ is called the **Lebesgue measure** and the σ -algebra \mathcal{M}_{μ^*} is called the class of **Lebesgue measurable** sets.

- The Lebesgue measure is denoted by m and the Lebesgue σ -algebra \mathcal{M}_{μ^*} is denoted by \mathcal{L} .
- $\mathcal{L} \supset \mathcal{B}(\mathbb{R})$ and m is complete.
- If $a, b \in \mathbb{R}$, then

$$m([a,b]) = m((a,b)) = m((a,b)) = m((a,b)) = b - a, \dots$$

Theorem 4.5

If $F: \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a, b. If G is another such function, we have $\mu_F = \mu_G$ iff F-G is constant. Conversely, if μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets and we define

$$F(x) = \begin{cases} \mu((0,x]) & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -\mu((x,0]) & \text{if } x < 0, \end{cases}$$

then F is increasing and right continuous, and $\mu = \mu_F$.

- **Note** The domain of the (complete) Lebesgue-Stieltjes measure $\bar{\mu}_F$ includes $\mathcal{B}(\mathbb{R})$ and the Borel measure μ_F equals the restriction of $\bar{\mu}_F$ to $\mathcal{B}(\mathbb{R})$.
- ullet We also denote the complete measure $\bar{\mu}_F$ by μ_F .

Note If
$$\mu(\mathbb{R})=1$$
, then $\mu=\mu_F$ where $F(x)=\mu((-\infty,x]).$

F is called the **cumulative distribution function** of μ ; this differs from the F specified in Theorem 4.3 by $\mu((-\infty, 0])$.

Example 4.1 Show that if $F = \chi_{[c,\infty)}$, then $\mu_F = \delta_c$, the Dirac measure concentrated at c on $\mathcal{B}(\mathbb{R})$.

Let μ be a complete Lebesgue-Stieltjes measure on \mathbb{R} associated to the increasing, right continuous function F.

Let \mathcal{M}_{μ} denote the domain of μ .

Theorem 4.6

If $E \in \mathcal{M}_{\mu}$, then

$$\mu(E) = \inf \{ \mu(U) : U \supset E \text{ and } U \text{ is open} \}$$

= $\sup \{ \mu(K) : K \subset E \text{ and } K \text{ is compact} \}.$

Generating the Borel σ -algebra with intervals

A subset J of \mathbb{R}^n is called an **interval** in \mathbb{R}^n if there are intervals $J_k \subset \mathbb{R}$ with $1 \le k \le n$ such that

$$J=J_1\times J_2\times \cdots \times J_n.$$

Theorem 5.1

Let \mathcal{M} be the collection of finite disjoint unions of intervals in \mathbb{R}^n . Then

- (i) M is an algebra;
- (ii) The σ -algebra generated by \mathcal{M} is $\mathcal{B}(\mathbb{R}^n)$.

The Lebesgue outer measure

Let $J = J_1 \times J_2 \times \cdots \times J_n$ be an interval in \mathbb{R}^n . The **n**-dimensional volume of the interval J in \mathbb{R}^n is defined as

$$vol(J) := \prod_{k=1}^{n} I(J_k),$$

where $I(J_k)$ is the length of the interval J_k .

Denote by $\mathbb{J}(n)$ the collection of all intervals in \mathbb{R}^n .

Theorem 5.2

If $I_j \in \mathbb{J}(n)$ (j = 1, 2, ..., k) are disjoint, let

$$\mu\left(\bigcup_{j=1}^{k} I_j\right) = \sum_{j=1}^{k} \operatorname{vol}(I_j)$$

and let $\mu(\emptyset) = 0$. Then μ is a premeasure on \mathcal{M} , the algebra constructed as in Theorem 5.1.

Definition 5.1

The collection of μ^* -measurable sets is denoted by \mathcal{L}^n and called the **Lebesgue measurable** sets. The restriction of μ^* to \mathcal{L}^n is called **Lebesgue measure** on \mathcal{L}^n or *n*-dimensional **Lebesgue measure** and denoted by m_n .

- When there is no danger of confusion, we shall usually omit the subscript n and write m for m_n .
- Every interval $J \in \mathbb{J}(n)$ is Lebesgue measurable and we have

$$m_n(J) = \operatorname{vol}(J).$$

Corollary 5.3

The σ -algebra \mathcal{L}^n of Lebesgue measurable subsets of \mathbb{R}^n contains the Borel subsets of \mathbb{R}^n . Moreover, the measure space $(\mathbb{R}^n, \mathcal{L}^n, m_n)$ is both σ -finite and complete.

Theorem 5.4 (The Regularity of Lebesgue Measure)

Let E be a Lebesgue measurable subset of \mathbb{R}^n . Then

$$m_n(E) = \inf \{ m_n(U) : E \subset U, U \text{ open} \}$$

and

$$m_n(E) = \sup \{m_n(K) : K \subset E, K \text{ compact}\}.$$

