Balanced Slope Detector-Drawbacks

• Even more difficult to tune, as there are three different frequencies to be tuned.

Amplitude limiting still not provided.

• Linearity, although better than single slope detector, is still not good enough.

 In this all the tuned circuits are tuned to the same frequency.

Balanced Slope Detector circuit with some changes is used.

 This circuit yields far better linearity than slope detection.

• When input frequency = f_c

The phase shift between primary and secondary winding is 90' and the output of D1 is equal to the output of D2

That as V_{ao}=V_{bo}, hence discriminator output is zero.

• When input frequency = $fc + \delta f$

-The phase shift between primary and secondary winding is not equal (less) to 90' and the output of D1 is more than the output of D2

 V_{ab} V_{ab} V_{ab} V_{ab} V_{bo} V_{bo} V_{bo}

• That as $V_{ao} > V_{bo}$, hence discriminator output is positive.

- When input frequency = $fc-\delta f$
 - The phase shift between primary and secondary winding is not equal to 90' and the output of D1 is less than the output of D2

• That as $V_{ao} < V_{bo}$, hence discriminator output is negative.

• It is much easier to align, as there are now two tuned circuits and both are tuned to the same frequency.

 Linearity is quite better, as circuit relies less on frequency & more on primary-secondary phase relation, which is quite linear.

Only drawback is, there is no provision for amplitude limiting.

 Ratio detector demodulator is modified Foster-Seeley circuit in order to incorporate amplitude limiting.

• In Foster-Seeley discriminator that sum of voltages $V_{ao}+V_{bo}$ Should remain constant,

 and their difference should vary due to variation in input frequency.

• But practically speaking any variation in the amplitude of input signal, also has impact on sum of $V_{ao}+V_{bo}$, leading to distortion.

• Ratio-detector circuit eliminates this variation of $V_{ao}+V_{bo}$, and performs the function of amplitude limiter also.

Change 1: Diode D2 is reversed so that now sum of $V_{ao} \& V_{bo}$ appears across points a' and b' instead of difference.

Change 2: A capacitor C_5 with large time constant is connected across a'-b' in order to keep $V_{ao}+V_{bo}$ constant.

Change 3: Output is taken from o-o' as the difference of V_{ao} & V_{bo} appears there. Ground is shifted to O'.

Performance Comparison of FM Demodulators

S.No.	Parameter of	Balanced Slope	Foster-Seeley	Ratio Detector
	Comparison	detector	(Phase)	
			discriminator	
(i)	Alignment/tuning	Critical as three circuits	Not Critical	Not Critical
		are to be tuned at		
		different frequencies		
(ii)	Output characteristics	Primary and secondary	Primary and	Primary and
	depends on	frequency relationship	secondary phase	secondary phase
			relation.	relation.
(iii)	Linearity of output	Poor	Very good	Good
	characteristics			
(iv)	Amplitude limiting	Not providing inherently	Not Provided	Provided by the ratio
			inherently	detector.
(v)	Amplifications	Not used in practice	FM radio, satellite	TV receiver sound
			station receiver	section, narrow band
			etc.	FM receivers.