Chocolate Game - Chomp

- First-Player Win
- · quadratic board

1

- optimal strategy
 - * take piece top right of the toxic piece
 - * creates two independent fields
 - * Tweedledum-Tweedledee-Principle
 - first player copies moves of second player
- rectangle board (of arbitrary size)
 - draws are not possible
 - * must be a first or second player win
 - assuming A does not have a winning strategy
 - * A can just take the top right piece
 - * B makes a winning move
 - * A could have just started with the move B just made
 - ◆ strategy stealing
 - * contradiction
 - A must have a winning strategy for every possible game board size
 - ◆ First-Player Win
 - A's winning strategy exists but is unknown
 - for general board sizes

Tic Tak Toe

- [[2 Player Combinatorial Game]]
- no winner if played optimally
- [[Min-Max Decision Tree]]

Storing a board:

2 bit per square:

 $2 \times 9 = 18$ bit, thus $2^{18} = 262144$ possible boards.

3 possibilities per square:

 $3^9 = 19683$ possible boards with $\lceil \log_2 3^9 \rceil = 15$ bit.

n half-	game-	different	
moves	tree	boards	
0	1	1	
1	9	3	
2	72	12	
3	504	38	
4	3024	108	
5	15120	174	
6	60480	228	
7	181440	174	
8	362880	89	
9	362880	23	
sum	986410	850	

- 986410 = game-tree complexity
- $262144 = 2^{18}$
- $19683 = 3^9$
- 850 different boards
 = state space
 complexity

Nine Men's Morris - Mühle

- http://ninemensmorris.ist.tugraz.at:8080/
- 3 phases
 - placing stones
 - moving stones
 - * allowed along the lines
 - moving stones
 - jumping allowed
- 3 stones along a line
 - choose opponent's stone to remove
- draw if played optimally
- operations to combine equivalent game states

Pólya-Redfield Enumeration Theorem: 16 Operations:

$$R_0$$
: ID: $r_0 = \binom{24}{2} \times 22 = 6072$

$$R_1$$
 Rotation 90° (R_3 Rotation 270°): $r_1 = r_3 = 0$

$$R_2$$
 Rotation 180° : $r_2 = 0$

$$R_4 \dots R_7$$
 Reflections: $r_4 = \dots = r_7 = 6 \times (9 + {5 \choose 2}) = 114$

$$R_8$$
: In-Out Inversion: $r_8 = 8 \times (8 + \binom{7}{2}) = 232$

$$R_9 \dots R_{15}$$
: In-Out-Inversion plus $R_1 \dots R_7$

$$r_9 = r_{10} = r_{11} = 0$$
 $24 * 23 * 22 = 12144 \text{ games}$

$$r_{12} = \dots = r_{15} = 2 \times 11 = 22$$

Number of orbits= $\frac{6072+4\times114+232+4\times22}{16} = \frac{6848}{16} = \frac{428}{16}$

^{*} only 765 states when stopping after winning

Connect 4

- http://connect4.ist.tugraz.at:8080/
- First-Player Win
- states (7x6 board)
 - 0 to 42 fields which have a
 - * yellow token
 - * red token
 - * no token

For each column from above: write 0 for each empty field, then a 1 befor the first non-empty field. Starting from there write 0 for a yellow token, and 1 for a red token.

- 7 bit per column
 - * 7*7 = 49 bit require 6 byte + 1 bit
 - * first 1 acts as separator
 - marks the first token
 - afterwards only the color is stored
 - * last separator is not needed
 - number of half moves = total number of tokens
 - count tokens in first 6 columns
 - tokens in last column = total number of tokens tokens in first 6 columns
 - * only store empty fields and colors without separator
 - saves 1 bit \Rightarrow exactly 6 byte required

7 bit per column

 $7 \times 7 = 49$ bit in total > 6 byte

Number of tokens: save

'stop' bit in last column: 6 byte

- move generator
 - up to 7 successors
 - add a token to a non-full column
- identify final states

- draw
 - * 42 tokens placed and no win
- lose
 - * check if previous player has won
- win
 - * check 11 4-tuples which include just placed token
 - * fields above just placed token not considered
- · hybrid approach
 - store first 23 half moves in DB
 - compute remaining decision tree online
 - maximum remaining search depth 42-23=19

* with ~5 possible moves on average

4 With 5 possible moves on average							
half-	different	half-	different	half-	different		
moves	boards	moves	boards	moves	boards		
0	1	8	91295	16	177841160		
1	4	9	269531	17	363798195		
2	25	10	809464	18	767435580		
3	121	11	2148087	19	1448894267		
4	568	12	5832236	20	2818993420		
5	2144	13	14105207	21	4907390200		
6	8231	14	35045629	22	8788132016		
7	27109	15	77785047	23	14066554884		
				sum	33475164421		

 $_$ 33475164421 states with 6 byte each: 200 GB + 34 GB