

## TE (Comp.) (Semester – V) (RC) Examination, November/December 2015 AUTOMATA LANGUAGES & COMPUTATION

Duration: 3 Hours

Total Marks: 100

Instructions: 1) Assume data wherever required.

2) Answer any 5 questions with atleast one from each Module.

## MODULE-I

1. a) State Kleens Theorem. Prove Part 1 of Kleens theorem

6

b) Construct a Mealy Machine to add two binary numbers. Convert the resulting Mealy Machine to equivalent Moore machine.

8

c) Minimize the following deterministic finite Automata using table filling algorithm.

6



2. a) Obtain regular expressions for the following languages:

j) 
$$L = \{ a^n b^m | n \ge 4, m \le 3 \}$$

ii) 
$$L = \{ w \mid n_a(w) \mod 3 = 0 \text{ and } w \in \{a, b\}^* \}.$$

6

b) Prove that the languages:

i) 
$$L = \{a^{n!} | n \ge 0\}$$
 is not regular

ii) 
$$L = \{w \mid n_a(w) < n_b(w) \text{ and } w \in \{a,b\}^*\} \text{ is not regular.}$$

6

c) Convert the following Non-deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA).

6



d) Explain Homomorphism using examples.

2

## MODULE-II

3. a) Convert the given grammar to Grcibach Normal Form (GNF)

 $S \rightarrow ABb/a$ 

 $A \rightarrow aaA$ 

 $B \rightarrow b A b$ .

6

b) What is ambiguous grammar? How will you prove that the grammar is ambiguous? Show with the help of an example.

6

c) Construct a non deterministic Push Down Automata that accepts all palindrome strings (odd as well as even) validate the strings a b b a and a b c b a for the same.

8

4. a) Design a Deterministic Push Down Automata (DPDA) to recognize the language  $L = \{ 0^n 1^m 0^n | n, m > 0 \}$  validate the string 00100.

6

b) State Pumping Lemma for context Free Languages. Prove that the language :  $L = \left\{ a^n b^{2n} c^n \middle| n \ge 0 \right\} \text{ is not context free language.}$ 

4

8



| c) | Convert the following grammar into Grcibach Normal From (GNF) and hence draw a Push Down Automata (PDA) for the same.                                           |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | E→ E/E E*E T                                                                                                                                                    |    |
|    | $T \rightarrow (E) a$ .                                                                                                                                         | 6  |
| d) | Construct context Free Grammar for the following language                                                                                                       |    |
|    | $L = \left\{ a^i b^j \middle  i \ge 2j \right\}.$                                                                                                               | 4  |
|    | MODULE – III manifest to meldera gratishi (iii.                                                                                                                 |    |
| a) | Design a Non Deterministic Turing Machine to accept numbers that are multiples of 2 or 3 in unary format.                                                       | 4  |
| b) | Design a turing machine to compute the function $f(x) = m \times n$ where m and n are positive integers. Initially, the tape contains string $1^m \ 01^n \ 0$ . | 10 |
| c) | Write short notes on :  i) Non-Deterministic Turing Machine  ii) Church Turing Thesis.                                                                          | 6  |
| a) | Design and Encode a turing machine to find 1's complement of a given binary number.                                                                             | 8  |
| b) | Design a turing machine to accept the language                                                                                                                  |    |
|    | $L = \{ w \in \{0, 1\}^*   w \text{ ends with } 010 \}.$                                                                                                        | 6  |
| c) | Write short notes on :  i) Multitape Multihead turing machine                                                                                                   |    |
|    | ii) Recursively Enumerable language.                                                                                                                            | 6  |

## MODULE-IV

7. a) What are context sensitive Languages? Determine Context Sensitive Grammar for language

$$L = \left\{ a^n b^n c^n \middle| n \ge 1 \right\}.$$



|    | b) | Explain the following terms:                                                             |   |
|----|----|------------------------------------------------------------------------------------------|---|
|    |    | i) Linear Bounded Automata                                                               |   |
|    |    | ii) Rice Theorem.                                                                        | 6 |
|    | c) | Explain the equivalence of turing machine and type O grammar.                            | 6 |
| 8. | a) | Explain the closure properties of families of languages.                                 | 6 |
|    | b) | Explain the following terms:                                                             |   |
|    |    | i) Chomsky Hierarchy                                                                     |   |
|    |    | ii) Halting problem of turing machine.                                                   | 6 |
|    | c) | Prove that: If $L_1$ and $L_2$ are recursively enumerable languages over $\Sigma$ , then |   |
|    |    | L <sub>1</sub> U L <sub>2</sub> is also recursively enumerable.                          | 8 |