NC State University

Department of Electrical and Computer Engineering

ECE 563: Fall 2017

Project #2: Branch Prediction

by

Abhiram Dronavalli

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."

Student's electronic signature: Abhiram Dronavalli

Course number: 563

Part 1: Performance of Bimodal Predictor using gcc_trace.txt

M	MISPREDICTION RATE(%)
7	26.65
8	22.43
9	18.49
10	15.67
11	13.65
12	12.47

• There is a linear decrease in misprediction rate at 4% for every increase in *m* value. But increasing the *m* value after 11, the misprediction rate decreases at a slow rate of around 1%.

Design:

• M=11 i.e Predictor Size = 2048 Bytes

Part 1: Performance of Bimodal Predictor using perl_trace.txt

M	MISPREDICTION RATE (%)
7	21.31
8	16.45
9	14.14
10	11.95
11	11.05
12	9.09

• For the *perl_trace.txt* the rate decreases linearly but later on stabilises once *m* reaches 10 and more.

Design:

• M=10 i.e Predictor Size = 1024 Bytes

Part 1: Performance of Bimodal Predictor using jpeg_trace.txt

M	MISPREDICTION RATE(%)
7	7.92
8	7.79
9	7.74
10	7.7
11	7.62
12	7.6

• The misprediction rate decreases at a rate of 3-4% until 9 and then starts to stabilise.

Design:

• M=9 i.e Predictor Size = 512 Bytes.

Part 1: Analysis

- We observe a exponential increasing trend of prediction accuracy to *m* parameter.
- Misprediction rate is inversely proportional to *m* parameter.
- Out of all the traces, *jpeg_trace.txt* has the best prediction accuracy. This indicated that the incoming PC address addresses are *taken* most of the time. It might indicate a for loop or a if loop with a true condition.
- If we increase number of bits in the predictor table, the misprediction rate decreases and it starts/ will start to level off after a size of the predictor table.

Part 2: Performance of Gshare Predictor using gcc_trace.txt

• The misprediction rate decreases by around 3-5% till M is increased to 11 bits. After that, the misprediction rate decreases only by 1-1.5% for each bit increased.

Design:

• M=11 i.e. Predictor Size = 2048 Bytes.

Part 2: Performance of Gshare Predictor using perl_trace.txt

• For *perl_trace.txt* the misprediction rate decreases drastically for N=8. The misprediction rate decreases by around 3-8% till M is increased to 12 bits. After that, the misprediction rate decreases around1percent for each bit increased.

Design:

• M=12 i.e. Predictor Size = 4kB, N=8.

Part 2: Performance of Gshare Predictor using jpeg_trace.txt

• For **N=8**, the misprediction rate decreases by around 0.1-0.2% till M is increased to 12bits. After that, the misprediction rate decreases only by 0.01-0.04% for each bit increased.

Design:

• M=12 i.e. Predictor Size = 4kB

Part 2: Analysis

- We observe a exponential increasing trend of prediction accuracy to m parameter.
- Misprediction rate is inversely proportional to *m* parameter.
- From the plots above, we observe that the branch misprediction rate *decreases* inversely with increase in size of the Gshare Predictor table.
- We also see that the misprediction rate, in general, *increases* with increase in the number of GHR bits (with a few minor exceptions in jpeg and perl benchmarks).
- The misprediction rate is comparatively *low for the jpeg* benchmark compared to the other two. Also the range of misprediction rate is very less for jpeg benchmark. It changes from max 9.74% to min 6.84%(range=2.9)whereas the range of misprediction rate range is around 18in gcc and perl benchmarks.