Optimization Theory

Lecture 04

Fudan University

luoluo@fudan.edu.cn

- Subgradient and Subdifferential
- Subdifferential Calculus
- Regularity Conditions
- Second-Order Characterization

- Subgradient and Subdifferential
- 2 Subdifferential Calculus
- Regularity Conditions
- 4 Second-Order Characterization

Subgradient and Subdifferential

We say a vector $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of a proper convex function $f : \mathbb{R}^d \to \mathbb{R}$ at $\mathbf{x} \in \text{dom } f$ if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

holds for any $\mathbf{y} \in \mathbb{R}^d$.

The set of subgradients at $\mathbf{x} \in \text{dom } f$ is called the subdifferential of f at \mathbf{x} , defined as

$$\partial f(\mathbf{x}) \triangleq \big\{\mathbf{g} \in \mathbb{R}^d : f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ holds for any } \mathbf{y} \in \mathbb{R}^d \big\}.$$

Examples of Subdifferential

1 The subdifferential of f(x) = |x| at 0 is the set

$$\partial f(x) = [-1, 1].$$

What about the general norm?

② The subdifferential of an indicator function $\mathbb{1}_{\mathcal{C}}(\mathbf{x})$ is

$$\partial \mathbb{1}_{\mathcal{C}}(\mathbf{x}) = \mathcal{N}_{\mathcal{C}}(\mathbf{x}),$$

where

$$\mathcal{N}_{\mathcal{C}}(\mathbf{x}) = \left\{ \mathbf{g} \in \mathbb{R}^d : \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0 \text{ for all } \mathbf{y} \in \mathcal{C}
ight\}$$

is called the normal cone of C at \mathbf{x} .

3 If a convex function f is differentiable at $\mathbf{x} \in \mathcal{C}$, then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$$

- Subgradient and Subdifferentia
- Subdifferential Calculus
- Regularity Conditions
- Second-Order Characterization

Let f_1 and f_2 be proper convex functions on \mathbb{R}^d , then

$$\partial (f_1 + f_2)(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

If the sets $ri(\text{dom } f_1)$ and $ri(\text{dom } f_2)$ have a point in common (overlap sufficiently), we have

$$\partial (f_1 + f_2)(\mathbf{x}) = f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

We define the relative interior $\mathrm{ri}(\mathcal{C})$ for convex $\mathcal{C}\subseteq\mathbb{R}^d$ as

$$\label{eq:rice} \begin{split} \operatorname{ri}(\mathcal{C}) = \{\mathbf{z} \in \mathcal{C}: \text{ for every } \mathbf{x} \in \mathcal{C} \text{ such that} \\ & \text{there exist a } \mu > 1 \text{ such that } (1-\mu)\mathbf{x} + \mu\mathbf{z} \in \mathcal{C}\}. \end{split}$$

It means every line segment in $\mathcal C$ having $\mathbf z$ as one endpoint can be prolonged beyond $\mathbf z$ without leaving $\mathcal C$.

Nonempty subdifferential and convexity:

- **1** If any $\mathbf{x} \in \text{dom } f$ satisfies $\partial f(\mathbf{x}) \neq \emptyset$, then f is convex.
- ② If $f : \mathbb{R}^d \to \mathbb{R}$ is convex and \mathbf{x} belongs to the interior of $\operatorname{dom} f$, then $\partial f(\mathbf{x}) \neq \emptyset$.

Theorem (Hyperplane Separation Theorem)

Let $\mathcal{X} \subseteq \mathbb{R}^d$ is a convex set and \mathbf{x}_0 belongs to its boundary. Then, there exists a nonzero vector $\mathbf{w} \in \mathbb{R}^d$ such that

$$\langle \mathbf{w}, \mathbf{x} \rangle \leq \langle \mathbf{w}, \mathbf{x}_0 \rangle.$$

The subgradient of a convex function may not exist at a boundary point of the domain.

As an example, consider the function

$$f(x) = -\sqrt{x}$$

defined on $[0, +\infty)$, where we have $\partial f(0) = \emptyset$.

Given matrix $\mathbf{A} \in \mathbb{R}^{d \times m}$ and vector $\mathbf{b} \in \mathbb{R}^d$, define

$$h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b}),$$

where f is a proper convex on \mathbb{R}^d .

Then the function h(x) is convex and

$$\partial h(\mathbf{x}) \supseteq \mathbf{A}^{\top} \partial f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

If the range of **A** contains a point of ri(dom h), then

$$\partial h(\mathbf{x}) = \mathbf{A}^{\top} \partial f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

Optimal Condition

Theorem

Consider proper closed convex function f and closed convex set $C \subseteq (\text{dom } f)^{\circ}$. A point $\mathbf{x}^* \in C$ is a solution of convex optimization problem

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$$

if and only if

$$\mathbf{0} \in \partial (f(\mathbf{x}^*) + \mathbb{1}_{\mathcal{C}}(\mathbf{x}^*)).$$

Equivalently, there exists a subgradient $\mathbf{g}^* \in \partial f(\mathbf{x}^*)$, such that any $\mathbf{y} \in \mathcal{C}$ satisfies

$$\langle \mathbf{g}^*, \mathbf{y} - \mathbf{x}^* \rangle \geq 0.$$

In particular, the point \mathbf{x}^* is the solution of the problem in unconstrained case if

$$\mathbf{0} \in \partial f(\mathbf{x}^*).$$

- Subgradient and Subdifferential
- Subdifferential Calculus
- Regularity Conditions
- 4 Second-Order Characterization

Regularity Conditions

The following regularity conditions are useful in the convergence analysis of convex optimization problems.

• We say that a function $f: \mathcal{C} \to \mathbb{R}$ is G-Lipschitz continuous if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, we have

$$|f(\mathbf{x}) - f(\mathbf{y})| \leq G \|\mathbf{x} - \mathbf{y}\|_2$$
.

② We say a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth if it has L-Lipschitz continuous gradient. That is, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, we have

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2.$$

If the function

$$g(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x}\|_2^2$$

is convex for some $\mu > 0$, we say f is μ -strongly convex.

Strong Convexity

Theorem

The function $f:\mathcal{C}\to\mathbb{R}$ defined on convex set \mathcal{C} is μ -strongly-convex if and only if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \frac{\mu \alpha (1 - \alpha)}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and $\alpha \in [0, 1]$.

Theorem

If a function f is differentiable on open set $\mathcal C$, then it is $\mu\text{-strongly convex}$ on $\mathcal C$ if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

hols for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$.

Strong Convexity

If there exists some

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}),$$

then it is the unique minimizer.

Moreover, the solution is stable such that any approximate solution $\hat{\mathbf{x}}$ satisfying

$$f(\mathbf{x}) \le f(\mathbf{x}^*) + \epsilon$$

leads to

$$\|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 \le \frac{2\epsilon}{\mu}.$$

Lipschitz Continuity and Smoothness

Theorem

A convex function f is G-Lipschitz continuous on $(\operatorname{dom} f)^{\circ}$ if and only if

$$\|\mathbf{g}\|_2 \leq G$$

for all $\mathbf{g} \in \partial f(\mathbf{x})$ and $\mathbf{x} \in (\operatorname{dom} f)^{\circ}$.

Theorem

A function $f:\mathbb{R}^d \to \mathbb{R}$ is L-smooth (possibly nonconvex), then it holds

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

holds for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Smoothness and Convexity

Theorem

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex and L-smooth, then we have

$$0 \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

- Subgradient and Subdifferential
- Subdifferential Calculus
- Regularity Conditions
- Second-Order Characterization

Second-Order Characterization

Theorem (Smoothness and Convexity)

Let $f(\cdot)$ be a twice differentiable function defined on \mathbb{R}^d

- It is L-smooth if and only if $-L\mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L\mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- ② It is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- **3** It is μ -strongly-convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.

Sometimes, we say $f(\cdot)$ is ℓ -weakly convex if the function

$$g(\mathbf{x}) = f(\mathbf{x}) + \frac{\ell}{2} \|\mathbf{x}\|_2^2$$

is convex for some $\ell > 0$.

Second-Order Characterization

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function. Suppose that $\nabla^2 f(\cdot)$ is continuous in an open neighborhood of $\mathbf{x}^* \in \mathbb{R}^d$.

• If \mathbf{x}^* is a local minimizer of $f(\cdot)$, then it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

If it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$,

then the point \mathbf{x}^* is a strict local minimizer of $f(\cdot)$.

Second-Order Characterization

Some examples:

For unconstrained quadratic problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x},$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$. We have

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}.$$

2 For regularized generalized linear model

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^n \phi_i(\mathbf{a}^\top \mathbf{x}) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.$$

where $\phi_i: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. We have

$$\nabla f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \phi_i'(\mathbf{a}_i^{\mathsf{T}} \mathbf{x}) \mathbf{a} + \lambda \mathbf{x} \quad \text{and} \quad \nabla^2 f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \phi_i''(\mathbf{a}_i^{\mathsf{T}} \mathbf{x}) \mathbf{a}_i \mathbf{a}_i^{\mathsf{T}} + \lambda \mathbf{I}.$$