Shao-Heng Ko

Collective Algorithms Lab National Taiwan University r04921049@ntu.edu.tw

Dec 18, 2015

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons Conclusion

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneous Game vs. Sequential Game

- Given n players in simultaneous game, each has action space A_i
- The sequential version: order the players from 1 to n
- Strategy is from $A_1 \times A_2 \times ... \times A_{j-1}$ to A_j for player j
- SPNE(Subgame Perfect Nash Equilibrum):
 In all subgames, the player in turn makes a no-regret choice

SPNE vs. NE

- Perfect information: players fully observe what the predecessors do
- If perfect information, SPNE exists and can be derived using backward-induction
- NE ⊂ SPNE, for the sequential game itself
- In general not a NE for the simultaneous game

○○○ ●○○○○

Outline

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game

Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons

- *n* jobs (players)
- m machines
- R_i: the set of machines that job i can choose
- $\gamma_r(x)$: decreasing cost function for machine r
- Machine $s_i \in R_i$ is chosen by job i (strategies)
- Cost function is given by:
 c_i(S) = γ_{s_i}(n_{s_i}) where n_r = |j ∈ N; s_j = r|
- Fair cost allocation: $\gamma_r(x) = c_r/x$

Simultaneous Version: PoA and PoS [2]

Sequential Version: SPNE and SPoA [1]

- O(log(n))-optimal SPNE
- Can be found by a simple O(log(n)) greedy algorithm
- SPNE is independent of the order of the sequence
- ⇒ SPNE ∈ NE

Concept and Result

- Coordination reduces cost
- By choosing "coordination machines", former players can expect latter players to join (cannot be done in simultaneity)
- SPoA also improves (compared to PoA) in the following games:
 - Unrelated Machine Scheduling Games
 - Concensus Games
- In Cut Games(opposition of Concensus Games), SPoA is worse

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games

SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons Conclusion

Symmetric Atomic Network Routing: Model

- Directed graph G(V, E)
- Source and destination s, t ∈ V
- A linear latency function $l_e(x) = d_e(x)$ for each $e \in E$
- n players traveling from s to t (symmetric)
- Each player choosing one s t path (strategies)
- Cost function is given by: by choosing path A_i,
 c_i(A) = ∑_{e∈A_i} d_en_e,
 where n_e = ∑_{i=1}ⁿ |A_i ∩ {e}| is # of players using e.

Previous Work on This Model

- For atomic case:
 PoA = 5/2, tight for n ≥ 3 (Christodoulou, 2005) [4]
- For non-atomic case: (comparison)
 PoA = 4/3 (Braess's Paradox!) (Roughgarden, 2001) [5]
- For sequential version of the game:
 SPoA < PoA for small n (de Jong, 2014) [6]
- de Jong and Uetz thought that SPoA is also 5/2.

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games

SPoA of Two-player Games

SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons

Two-player Network Routing

- PoA = 4/3 (Why?)
- It is proved that SPoA = 7/5 in this paper
- Upper bound is proved by linear programming (omitted)
- Lower bound: an example

Lower Bound Example

FIGURE 2. Lower bound example for 2 players. Numbers are arc latencies.

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

•00

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons
Conclusion

SPoA of N-Player Game is Unbounded

FIGURE 4. A lower bound instance of a network routing game. Players travel from s to t.

There are $n = p\sqrt{x} + 5x^2$ players, while n is large enough (larger than disjoint strategies).

SPoA of N-Player Game is Unbounded

- Optimality: each player chooses 1 arc from each segment (Players share arcs as little as possible)
- Optimal social cost is $p\sqrt{x} + 7x^2$.
- An algorithmetic SPNE is constructed
- Threaten former players and force inefficient strategies
- Threatening cost is low for latter players; high for former
- SPNE social cost is $p\sqrt{x}x + 7x^2$.
- SPoA → x.

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality Comparisons

Conclusion

Comparisons

Game	PoA	SPoA	Winner
Machine Cost Sharing	<i>O</i> (<i>n</i>)	O(log(n))	Sequentiality
Consensus Games	∞	1(SPNE=opt)	Sequentiality
Cut Games	2	$2 \leq SPoA \leq 4$	Simultaneity
2-p Linear Routing	4/3	7/5	Simultaneity
General Linear Routing	5/2	∞	Simultaneity

Q: How to decide the winner?

- In NE, everyone decides simultaneously
 - \rightarrow some kind of fairness
- In SPNE, the order of players create unfairness
- An important concept of SPNE:
 SPNE is supported by threats on off-equilibrum actions
- How about threats cannot be formed?

On Externality

- Ironically, in Machine Cost Sharing Games latter players can do only positive externalities on formers
- SPNE ⊂ NE; in fact they are the best NE's
- While in Linear Routing Games latter players can do only negative externalities on formers
- Threats are constructed on negative externalities

The Curse of Simultaneity [1]

Simultaneous Game vs. Sequential Game Revisiting Machine Cost Sharing Games

The Curse of Sequentiality [3]

Symmetric Atomic Network Routing Games SPoA of Two-player Games SPoA of N-Player Games

Simultaneity vs. Sequentiality

Comparisons

Conclusion

Conclusion

- Insight: from the nature of games, we may see whether simulatneity or sequentiality does better
- However, even in games with negative externalities, sequentiality may help avoid bad (unfortunate) NE.
 Ex: Traffic lights, Consensus games
- My guess: SPoA(sequentiality) is better most of the time, but society needs not only efficiency but also fairness

- R. P. Leme, V. Syrgkanis, E. Tardos, *The Curse of Simultaneity*, Proceedings of the 3rd ITCS, 60-67, 2012.
- E. Anshelevich, A. Dasgupta, J.M. Kleinberg, E. Tardos, T. Wexler, T. Roughgarden, The Price of Stability for Network Design with Fair Cost Allocation, 45th Symposium on Foundations of Computer Science (FOCS 2004), 295-304, 2004.
- J. Correa, J. de Jong, B. de Keijzer, M. Uetz, The Curse of Sequentiality in Routing Games, Web and Internet Economics: 11th International Conference, 258-271, 2015.
- G. Christodoulou, E. Koutsoupias,

 The Price of Anarchy of Finite Congestion Games,

Proceedings of the 37th STOC, 67-73, 2005.

- T. Roughgarden, E. Tardos,

 How Bad is Selfish Routing?,

 Journal of ACM, vol. 49, no. 2, 236–259, 2002.
- J. de Jong, M. Utez,

 The Sequential Price of Anarchy for Atomic Congestion

 Games,

 Proceedings of the 10th WINE, 429-434, 2014.