Introdução às Técnicas de Demonstração QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

- Enunciados de generalização e de existência
- Provas de Generalização
- Provas de Existência
- Téncicas de Provas de Condicionais

Referências para esta aula

• **Seção 1.7** do livro: Kenneth H. Rosen. *Matemática Discreta e suas Aplicações*. (Sexta Edição).

Introdução

Demonstração de Teoremas

Demonstrar um teorema (geralmente) envolve:

- 1. analisar a estrutura da sua proposição,
- 2. identificar técnicas adequadas para provar a afirmação e escolher uma,
- 3. levantar hipóteses de acordo com a técnica escolhida,
- 4. * provar uma nova proposição (objetivo), criada pela técnica,
- 5. concluir que a proposição-objetivo segue das hipóteses.

Os Items 3 a 5 serão a prova do teorema, da proposição original. O * no Item 4 aponta uma abertura na prova. Esta parte é contextual, dependente do assunto do teorema. É nosso trabalho completá-la, re-aplicando o roteiro acima recursivamente.

Tipos de Enunciados de Teoremas

Há principalmente dois tipos de enunciados:

- Universais (ou Generalizações)
- Existenciais

Algumas técnicas são orientadas ao tipo de enunciado:

- Prova de Generalização
- Prova Existencial
- Prova por Contraexemplo
- Prova de Unicidade

• Universais (ou Generalizações)

$$\forall x (P(x) \rightarrow Q(x))$$

"Todos os elementos do domínio que satisfazem à propriedade P(x) devem satisfazer também à propriedade Q(x)"

- É o formato mais comum que teoremas assumem.
- A fim de provar um teorema da forma $\forall x (P(x) \to Q(x))$, nosso objetivo é mostrar que $P(c) \to Q(c)$ é verdadeiro, onde c é um elemento arbitrário do domínio.
 - Uma vez provado isso, aplicamos a regra de inferência generalização universal.

Enunciados de Generalização - Exemplo

• Universais (ou Generalizações)

$$\forall x (P(x) \rightarrow Q(x))$$

$$P(x) = \text{"x \'e par" e } Q(x) = \text{"}x^2 \text{ \'e par"}$$

Variações:

- "Para todo número, se este é par, então seu quadrado é par."
- "Para todo número par, seu quadrado é par."
- "Se um número é par, seu quadrado é par."
- "Para qualquer número par, seu quadrado é par."
- "Dado um número par, seu quadrado será par."
- "O quadrado de um inteiro par é par."

Como interpretar?

• "O quadrado de um inteiro par é par."

Procure os seguintes elementos:

- 1. Sempre há um condicional (\rightarrow) ou um bicondicional (\leftrightarrow)
- 2. O restante do texto é composto por afirmações menores.
 - Que partes do enunciado caracterizam objetos?
 - Que tipos de objetos são esses?
- Algumas afirmações são condições (à priori) e outros são conclusões (à posteriori).

Observação: É possível ter outros elementos no texto, mas estes da lista acima sempre existirão.

Como interpretar?

• "O quadrado de um inteiro par é par."

Procure os seguintes elementos:

- 1. Sempre há um condicional (\rightarrow) ou um bicondicional (\leftrightarrow)
 - Se n\u00e3o estiver explícito, assuma que \u00e9 um condicional simples.
 Quando tiver os outros elementos da lista, re-avalie este item.

Resposta: Condicional \rightarrow

Como interpretar?

• "O quadrado de um inteiro par é par."

Procure os seguintes elementos:

- 2. O restante do texto é composto por afirmações menores.
 - Que partes do enunciado caracterizam objetos?
 - Que tipos de objetos são esses?

Resposta: "um inteiro par", "o quadrado desse inteiro é par"

Como interpretar?

• "O quadrado de um inteiro par é par."

Procure os seguintes elementos:

Algumas afirmações são condições (à priori) e outros são conclusões (à posteriori).

Resposta: Neste enunciado, a descrição "um inteiro par" condiciona a descrição "o quadrado desse um inteiro é par". Então temos que SE "um inteiro é par", ENTÃO "o quadrado desse inteiro é par".

Enunciados Existenciais

Existenciais

$$\exists x P(x)$$

"Alguns elementos do domínio satisfazem à propriedade P(x)."

- A propriedade P(x) pode ser também uma fórmula com conectivos.
- O conectivo mais comum é a conjunção.
- Admitem exceções.

Enunciados Existenciais

Existenciais

$$\exists x (P(x) \land Q(x))$$

$$P(x) = "x \text{ \'e primo" e } Q(x) = "x \text{ \'e par"}$$

Variações:

- "Existe um número primo par"
- "Algum número primo é par"
- "Existe um número que é primo e par"
- "Ao menos um número é simultaneamente primo e par"
- "Há números que são primos e pares"
- "Alguns números que são primos são pares"

Enunciados Existenciais

Como interpretar?

• "Algum número primo é par."

Procure os mesmos elementos de antes:

- 1. Identifique partes do enunciado que descrevam objetos e que tipos de objetos são.
- 2. Quais deles são condições? Normalmente indicarão o domínio.

Procure também os seguintes elementos:

- 3. Quantificadores para cada variável.
 - Se o condicional do enunciado tiver exceções, ele se tornará verdadeiro ou falso? Caso permaneça verdadeiro, o enunciado é existencial; caso falso, é universal.

Observação: A palavra "**algum**" indica que basta um elemento do domínio satisfazer às propriedades. Isso significa que o enunciado admite exceções. A única variável existente é existencial.

- Universal, Verdadeiro: Prova de Generalizações
- Universal, Falso: Prova por Contraexemplo
- Existencial, Verdadeiro: Prova de Existência
 - Construtiva ou
 - Não-Construtiva
- Existencial, Falso: Prova de Generalizações

Exemplo: "Existe um número par cujo quadrado é ímpar."

$$\exists x (x \in par \land x^2 \in impar)$$

Exemplo: "Existe um número par cujo quadrado é ímpar."

$$\exists x (x \in par \land x^2 \in impar)$$

Parece falso, não é mesmo? Lá atrás vimos que:

• Existencial, Falso: Prova de Generalizações

Exemplo: "Existe um número par cujo quadrado é ímpar."

$$\exists x (x \in par \land x^2 \in impar)$$

Parece falso, não é mesmo? Lá atrás vimos que:

Existencial, Falso: Prova de Generalizações

Vamos negar esta frase:

Não existe nenhum número par cujo quadrado seja ímpar

$$\neg \exists x (x \text{ \'e par } \land x^2 \text{ \'e impar })$$

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \in par \land x^2 \in impar)$

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \in par \land x^2 \in impar)$ • $\equiv \forall x \neg (x \in par \land x^2 \in impar)$ (Lei da negação do quantificador)

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \notin par \land x^2 \notin impar)$

○
$$\equiv \forall x \neg (x \text{ \'e par } \land x^2 \text{ \'e impar})$$
 (Lei da negação do quantificador)
○ $\equiv \forall x (\neg x \text{ \'e par } \lor \neg x^2 \text{ \'e impar})$ (DeMorgan)

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \in par \land x^2 \in impar)$

```
 \circ \equiv \forall x \neg ( \text{ x \'e par } \land x^2 \text{ \'e \'impar } )  (Lei da negação do quantificador)  \circ \equiv \forall x (\neg \text{ x \'e par } \lor \neg x^2 \text{ \'e \'impar } )  (DeMorgan)  \circ \equiv \forall x ( \text{ x \'e par } \to \neg x^2 \text{ \'e \'impar } )  (Lei do condicional)
```


Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \notin par \land x^2 \notin impar)$ • $\equiv \forall x \neg (x \notin par \land x^2 \notin impar)$ (Lei da negação do quantificador) • $\equiv \forall x (\neg x \notin par \lor \neg x^2 \notin impar)$ (DeMorgan) • $\equiv \forall x (x \notin par \to \neg x^2 \notin impar)$ (Lei do condicional) • $\equiv \forall x (x \notin par \to x^2 \notin par)$ (Negação)

Desenvolvimento completo a partir da negação:

P: Não existe nenhum número par cujo quadrado seja ímpar

• $\neg \exists x (x \notin par \land x^2 \notin impar)$

```
 \circ \equiv \forall x \neg ( \text{ x \'e par } \land x^2 \text{ \'e impar } )  (Lei da negação do quantificador)  \circ \equiv \forall x (\neg \text{ x \'e par } \lor \neg x^2 \text{ \'e impar } )  (DeMorgan)  \circ \equiv \forall x ( \text{ x \'e par } \to \neg x^2 \text{ \'e impar } )  (Lei do condicional)  \circ \equiv \forall x ( \text{ x \'e par } \to x^2 \text{ \'e par } )  (Negação)
```

- ¬P: Para todo número par, seu quadrado é par.
- ¬P: Se um número é par, então seu quadrado é par.
- $\neg P$: O quadrado de um inteiro par é par.

Por exemplo, no enunciado (decodificado anteriormente)

• O quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

temos o quantificador universal.

Portanto, para demonstrar que o enunciado é verdadeiro, precisaremos da **Prova de Generalizações**.

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x é par \rightarrow x^2 é par)$$

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

1. (Instanciação Universal) Seja c um inteiro qualquer.

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Este item é deixado em aberto pela generalização.
 - o Demanda a aplicação de outra técnica.

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Este item é deixado em aberto pela generalização.
 - o Demanda a aplicação de outra técnica.
- (Generalização Universal) Como provamos a propriedade para um inteiro qualquer, a propriedade vale para todos os inteiros.

Recapitulando...

Eu acho que o enunciado é falso ou verdadeiro?

- Universal, Verdadeiro: Prova de Generalizações <==
- Universal, Falso: Prova por Contraexemplo
- Existencial, Verdadeiro: Prova de Existência
 - Construtiva
 - Não-Construtiva
- Existencial, Falso: **Prova de Generalizações** \longleftarrow

Recapitulando...

Eu acho que o enunciado é falso ou verdadeiro?

- Universal, Verdadeiro: Prova de Generalizações <==
- Universal, Falso: Prova por Contraexemplo
- Existencial, Verdadeiro: Prova de Existência <=
 - Construtiva
 - o Não-Construtiva
- Existencial, Falso: **Prova de Generalizações** \longleftarrow

Prova de existência

Vimos, anteriormente, o seguinte enunciado:

• "Algum número primo é par."

$$\exists x (x \text{ \'e primo } \land x \text{ \'e par})$$

Neste enunciado, temos um quantificador universal.

- Portanto, para demonstrar que o enunciado é verdadeiro, precisaremos da Prova de Existência.
 - o Uma Prova de Existência pode ser construtiva ou não-construtiva.

Prova de existência – Construtiva

- **Definição:** Um inteiro n é **par** se existe um inteiro k tal que n = 2k.
- Definição: Um inteiro n é ímpar se existe um inteiro k tal que n = 2k + 1.
- Definição: Um inteiro p é primo se p > 1 e se os únicos divisores positivos de p são 1 e p.
- Definição: Um inteiro positivo que é maior do que 1 e não é primo é chamado de composto.

- **Definição:** Um inteiro n é par se existe um inteiro k tal que n = 2k.
- **Definição:** Um inteiro n é **impar** se existe um inteiro k tal que n = 2k + 1.
- Definição: Um inteiro p é primo se p > 1 e se os únicos divisores positivos de p são 1 e p.
- **Definição:** Um inteiro positivo que é maior do que 1 e não é primo é chamado de **composto**.

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

- **Definição:** Um inteiro n é par se existe um inteiro k tal que n = 2k.
- **Definição:** Um inteiro n é **impar** se existe um inteiro k tal que n = 2k + 1.
- Definição: Um inteiro p é primo se p > 1 e se os únicos divisores positivos de p são 1 e p.
- **Definição:** Um inteiro positivo que é maior do que 1 e não é primo é chamado de **composto**.

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

Prova construtiva: O número 2 é primo e é par.

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

Prova não-construtiva:

 Por contradição, suponha que não existe nenhum número primo par. Isso significaria que todos os números primos são ímpares.

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

- Por contradição, suponha que não existe nenhum número primo par. Isso significaria que todos os números primos são ímpares.
- Considere agora um número par como, por exemplo, o número 42.

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

- Por contradição, suponha que não existe nenhum número primo par. Isso significaria que todos os números primos são ímpares.
- Considere agora um número par como, por exemplo, o número 42.
- Pela nossa suposição, 42 não é primo, ou seja, 42 é composto (um produto de números primos).

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

- Por contradição, suponha que não existe nenhum número primo par. Isso significaria que todos os números primos são ímpares.
- Considere agora um número par como, por exemplo, o número 42.
- Pela nossa suposição, 42 não é primo, ou seja, 42 é composto (um produto de números primos).
- Como todos os primos são ímpares, temos um produto de números ímpares que resulta em um número par (Absurdo!).

Teorema. Algum número primo é par.

 $\exists x (x \text{ \'e primo } \land x \text{ \'e par})$

- Por contradição, suponha que não existe nenhum número primo par. Isso significaria que todos os números primos são ímpares.
- Considere agora um número par como, por exemplo, o número 42.
- Pela nossa suposição, 42 não é primo, ou seja, 42 é composto (um produto de números primos).
- Como todos os primos são ímpares, temos um produto de números ímpares que resulta em um número par (Absurdo!).
- Logo, deve existir ao menos um número primo par.

Recapitulando...

Eu acho que o enunciado é falso ou verdadeiro?

- Universal, Verdadeiro: Prova de Generalizações <==
- Universal, Falso: Prova por Contraexemplo
- Existencial, Verdadeiro: Prova de Existência <=
 - Construtiva
 - o Não-Construtiva
- Existencial, Falso: **Prova de Generalizações** \longleftarrow

Recapitulando...

Eu acho que o enunciado é falso ou verdadeiro?

- Universal, Verdadeiro: **Prova de Generalizações** \Leftarrow
- Universal, Falso: Prova por Contraexemplo <=
- Existencial, Verdadeiro: Prova de Existência <=
 - Construtiva
 - Não-Construtiva
- Existencial, Falso: **Prova de Generalizações** \longleftarrow

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x(P(x) \rightarrow Q(x)).$
- Sempre há um condicional (se-então) numa generalização.

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.
- $\neg \forall x (P(x) \rightarrow Q(x))$

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.
- $\neg \forall x (P(x) \rightarrow Q(x))$ • $\equiv \exists x \neg (P(x) \rightarrow Q(x))$ (Lei da negação do quantificador)

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.

•
$$\neg \forall x (P(x) \rightarrow Q(x))$$

$$\circ \equiv \exists x \neg (P(x) \rightarrow Q(x))$$

$$\circ \equiv \exists x \neg (\neg P(x) \lor Q(x))$$

(Lei da negação do quantificador) (Lei do condicional)

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.
- $\neg \forall x (P(x) \rightarrow Q(x))$
 - $\circ \equiv \exists x \neg (P(x) \rightarrow Q(x))$
 - $\circ \equiv \exists x \neg (\neg P(x) \lor Q(x))$
 - $\circ \equiv \exists x (\neg \neg P(x) \land \neg Q(x))$

(Lei da negação do quantificador) (Lei do condicional) (DeMorgan)

- Universal, Falso: Prova por Contraexemplo
- O formato mais comum de enunciado é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional (se-então) numa generalização.
- Dada uma afirmação condicional, como provar que ela é falsa?
 - o A maneira típica de refutar um condicional é criar um contraexemplo.
 - Um contraexemplo de uma afirmação "se P, então Q" seria uma instância em que P é verdadeira, mas Q é falsa.

•
$$\neg \forall x (P(x) \rightarrow Q(x))$$

$$\circ \equiv \exists x \neg (P(x) \rightarrow Q(x))$$

$$\circ \equiv \exists x \neg (\neg P(x) \lor Q(x))$$

$$\circ \equiv \exists x (\neg \neg P(x) \land \neg Q(x))$$

$$\circ \equiv \exists x (P(x) \land \neg Q(x))$$

(Lei da negação do quantificador) (Lei do condicional) (DeMorgan) (Negação dupla)

Definições

• **Definição:** Sejam a e b inteiros. Dizemos que a é divisível por b se existir um inteiro c, de modo que bc = a.

Definições

- **Definição:** Sejam a e b inteiros. Dizemos que a é divisível por b se existir um inteiro c, de modo que bc = a.
- Alternativamente, podemos dizer que:
 - ∘ a é um múltiplo de b,
 - ∘ *b* é um fator de *a*,
 - *b* é um divisor de *a*, ou
 - o b divide a.

Definições

- **Definição:** Sejam a e b inteiros. Dizemos que a é divisível por b se existir um inteiro c, de modo que bc = a.
- Alternativamente, podemos dizer que:
 - ∘ a é um múltiplo de b,
 - b é um fator de a,
 - *b* é um divisor de *a*, ou
 - o b divide a.
- A notação correspondente é b|a e deve ser lida como "b divide a".
- Simbolicamente, se a e b são inteiros,

 $b|a \iff \exists$ um inteiro k tal que a = bk.

Afirmação falsa: Sejam a e b inteiros. Se a|b e b|a, então a=b.

$$\forall a \forall b \ ((a|b \wedge b|a) \rightarrow (a=b))$$

Afirmação falsa: Sejam a e b inteiros. Se a|b e b|a, então a=b.

$$\forall a \forall b \ ((a|b \wedge b|a) \rightarrow (a=b))$$

• Parece que, se a|b, então $a \le b$ e se b|a, então $b \le a$, então a = b. Mas este raciocínio é incorreto.

Afirmação falsa: Sejam a e b inteiros. Se a|b e b|a, então a=b.

$$\forall a \forall b \ ((a|b \wedge b|a) \rightarrow (a=b))$$

- Parece que, se a|b, então $a \le b$ e se b|a, então $b \le a$, então a = b. Mas este raciocínio é incorreto.
- Para refutar a afirmação, precisamos achar inteiros a e b tais que, de uma lado, verifiquem a|b e b|a, mas, de outro, não verifiquem a=b.

Afirmação falsa: Sejam a e b inteiros. Se a|b e b|a, então a=b.

$$\forall a \forall b \ ((a|b \wedge b|a) \rightarrow (a=b))$$

- Parece que, se a|b, então $a \le b$ e se b|a, então $b \le a$, então a = b. Mas este raciocínio é incorreto.
- Para refutar a afirmação, precisamos achar inteiros a e b tais que, de uma lado, verifiquem a|b e b|a, mas, de outro, não verifiquem a=b.
- Contraexemplo: a = 5 e b = -5.

Resumo — Tipos de Enunciados

Estas técnicas são as únicas associadas a quantificadores.

- Prova de Generalizações
- Prova de Existenciais
- Prova por Contra-Exemplo

Resumo — Tipos de Enunciados

Estas técnicas são as únicas associadas a quantificadores.

- Prova de Generalizações
- Prova de Existenciais
- Prova por Contra-Exemplo

Vimos que

- O enunciado mais comum é o de generalização $\forall x (P(x) \rightarrow Q(x))$.
- Sempre há um condicional numa generalização.
 - Conclusão: Precisamos de técnicas para provar condicionais.

Técnicas para provar $P(c) \rightarrow Q(c)$:

Prova direta

Prova por Contraposição

• Prova por Contradição (ou Redução ao Absurdo)

Técnicas para provar $P(c) \rightarrow Q(c)$:

- Prova direta
 - \circ suponha P(C), alcance/conclua Q(c).
- Prova por Contraposição

• Prova por Contradição (ou Redução ao Absurdo)

Técnicas para provar $P(c) \rightarrow Q(c)$:

- Prova direta
 - \circ suponha P(C), alcance/conclua Q(c).
- Prova por Contraposição
 - ∘ suponha $\neg Q(C)$, alcance/conclua $\neg P(c)$.
- Prova por Contradição (ou Redução ao Absurdo)

Técnicas para provar $P(c) \rightarrow Q(c)$:

- Prova direta
 - \circ suponha P(C), alcance/conclua Q(c).
- Prova por Contraposição
 - ∘ suponha $\neg Q(C)$, alcance/conclua $\neg P(c)$.
- Prova por Contradição (ou Redução ao Absurdo)
 - ∘ suponha $p(C) \land \neg Q(c)$, alcance/conclua \bot .

Prova de Condicionais: Prova Direta

Prova Direta

Definição: Uma demonstração direta de um condicional p → q é
construída quando o primeiro passo é supor que p é verdadeira; os passos
subsequentes são construídos utilizando-se axiomas, definições e teoremas
previamente comprovados, junto com regras de inferência, com o passo
final mostrando que q deve ser também verdadeira.

Prova Direta — Exemplo 1

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

Prova Direta — Exemplo 1

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

1. (Instanciação Universal) Seja c um inteiro qualquer.

Prova Direta — Exemplo 1

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Este item é deixado em aberto pela generalização.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Este item é deixado em aberto pela generalização.
 - o Demanda a aplicação de outra técnica.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Este item é deixado em aberto pela generalização.
 - o Demanda a aplicação de outra técnica.
- 3. (**Generalização Universal**) Como provamos a propriedade para um inteiro qualquer, a propriedade vale para todos os inteiros.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

Demonstre que o quadrado de um inteiro par é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

1. (Instanciação Universal) Seja c um inteiro qualquer.

$$\forall x (x \text{ é par } \rightarrow x^2 \text{ é par })$$

- 1. (**Instanciação Universal**) Seja *c* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - 2.1 Por PROVA DIRETA, suponha que c é par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (**Instanciação Universal**) Seja *c* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - 2.1 Por PROVA DIRETA, suponha que c é par.
 - 2.2 Então, existe $k \in \mathbb{Z}$ tal que c = 2k (definição).

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (**Instanciação Universal**) Seja *c* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - 2.1 Por PROVA DIRETA, suponha que c é par.
 - 2.2 Então, existe $k \in \mathbb{Z}$ tal que c = 2k (definição).
 - 2.3 Logo, $c^2 = 4k^2 = 2 \cdot (2k^2)$ é um número par.

$$\forall x (x \in par \rightarrow x^2 \in par)$$

- 1. (**Instanciação Universal**) Seja *c* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - 2.1 Por PROVA DIRETA, suponha que c é par.
 - 2.2 Então, existe $k \in \mathbb{Z}$ tal que c = 2k (definição).
 - 2.3 Logo, $c^2 = 4k^2 = 2 \cdot (2k^2)$ é um número par.
- 3. (**Generalização Universal**) Como provamos a propriedade para um inteiro qualquer, a propriedade vale para todos os inteiros.

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in \text{impar } \rightarrow x^2 \in \text{impar })$$

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

Demonstração:

1. Seja n um número inteiro ímpar.

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

- 1. Seja *n* um número inteiro ímpar.
- 2. Pela definição de número ímpar, temos que n = 2k + 1, em que k é algum inteiro. Queremos demonstrar que n^2 é também ímpar.

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

- 1. Seja *n* um número inteiro ímpar.
- 2. Pela definição de número ímpar, temos que n = 2k + 1, em que k é algum inteiro. Queremos demonstrar que n^2 é também ímpar.
- 3. Vamos elevar ao quadrado ambos os membros da equação n=2k+1. (Para quê? Qual a finalidade?)

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

- 1. Seja *n* um número inteiro ímpar.
- 2. Pela definição de número ímpar, temos que n=2k+1, em que k é algum inteiro. Queremos demonstrar que n^2 é também ímpar.
- 3. Vamos elevar ao quadrado ambos os membros da equação n = 2k + 1. (Para quê? Qual a finalidade?)
- 4. Assim, temos $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

- 1. Seja *n* um número inteiro ímpar.
- 2. Pela definição de número ímpar, temos que n=2k+1, em que k é algum inteiro. Queremos demonstrar que n^2 é também ímpar.
- 3. Vamos elevar ao quadrado ambos os membros da equação n=2k+1. (Para quê? Qual a finalidade?)
- 4. Assim, temos $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- 5. Pela definição de inteiro ímpar, concluímos que n^2 é ímpar.

Demonstre que se n é um inteiro ímpar, então n^2 é ímpar..

$$\forall x (x \in impar \rightarrow x^2 \in impar)$$

- 1. Seja *n* um número inteiro ímpar.
- 2. Pela definição de número ímpar, temos que n=2k+1, em que k é algum inteiro. Queremos demonstrar que n^2 é também ímpar.
- 3. Vamos elevar ao quadrado ambos os membros da equação n=2k+1. (Para quê? Qual a finalidade?)
- 4. Assim, temos $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
- 5. Pela definição de inteiro ímpar, concluímos que n^2 é ímpar.
- 6. Consequentemente, provamos que se n é um inteiro ímpar, então n^2 é ímpar.

Definição

Um inteiro a é um quadrado perfeito se existe um inteiro b tal que $a = b^2$.

• **Exemplos:** 4, 9, 16, 25, 36, ...

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

Demonstração:

1. Sejam m e n dois inteiros quadrados perfeitos.

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.
- 3. Portanto, temos que $mn = s^2t^2$

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.
- 3. Portanto, temos que $mn = s^2t^2 = sstt$

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.
- 3. Portanto, temos que $mn = s^2t^2 = sstt = stst$

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.
- 3. Portanto, temos que $mn = s^2t^2 = sstt = stst = (st)(st)$

Demonstre que se m e n são ambos quadrados perfeitos, então $m \cdot n$ também é um quadrado perfeito.

$$U = \mathbb{N}, \ \forall m \forall n \ (QP(m) \land QP(n) \longrightarrow QP(mn))$$

- 1. Sejam m e n dois inteiros quadrados perfeitos.
- 2. Pela definição de quadrado perfeito, segue-se que existem inteiros s e t tal que $m=s^2$ e $n=t^2$.
- 3. Portanto, temos que $mn = s^2t^2 = sstt = stst = (st)(st) = (st)^2$
 - (usando comutatividade e associatividade da multiplicação).
- 4. Pela definição de quadrado perfeito, segue que *mn* também é um quadrado perfeito.

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

Demonstração:

1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

- 1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.
- 2. Vamos mostrar que a divide c.

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

- 1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.
- 2. Vamos mostrar que a divide c.
- 3. Pela definição de dividibilidade, b = ar e c = bs para inteiros r e s.

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

- 1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.
- 2. Vamos mostrar que a divide c.
- 3. Pela definição de dividibilidade, b = ar e c = bs para inteiros r e s.
- 4. Por substituição e associatividade da multiplicação, temos que:

$$c = bs$$
$$= (ar)s$$
$$= a(rs)$$

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

Demonstração:

- 1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.
- 2. Vamos mostrar que a divide c.
- 3. Pela definição de dividibilidade, b = ar e c = bs para inteiros r e s.
- 4. Por substituição e associatividade da multiplicação, temos que:

$$c = bs$$
$$= (ar)s$$
$$= a(rs)$$

5. Seja k = rs, onde k é um número inteiro.

Teorema. Para todos os inteiros a, b e c, se a|b e b|c, então a|c.

$$U = \mathbb{N}, \quad \forall a \forall b \forall c \ (a|b \wedge b|c \longrightarrow a|c)$$

- 1. Sejam a, b e c inteiros arbitrários, tais que a divide b e b divide c.
- 2. Vamos mostrar que a divide c.
- 3. Pela definição de dividibilidade, b = ar e c = bs para inteiros r e s.
- 4. Por substituição e associatividade da multiplicação, temos que:

$$c = bs$$

= $(ar)s$
= $a(rs)$

- 5. Seja k = rs, onde k é um número inteiro.
- 6. Logo, c = ak, ou seja, a divide c, pela definição de divisibilidade.

O número real r é racional se existem inteiros p e q com $q \neq 0$, tal que r = p/q.

Um número real que não é racional é chamado de irracional.

Exemplos:

(a) 10/3 é racional? Sim quociente de inteiros.

Exemplos:

- (a) 10/3 é racional? Sim quociente de inteiros.
- (b) 0,281 é racional?

Exemplos:

- (a) 10/3 é racional? Sim quociente de inteiros.
- (b) 0,281 é racional? Sim. Número na notação decimal que representa 281/100.

Definição de racional e irracional

Exemplos:

- (a) 10/3 é racional? Sim quociente de inteiros.
- (b) 0,281 é racional? Sim. Número na notação decimal que representa 281/100.
- (c) 0,121212... é racional?

Definição de racional e irracional

Exemplos:

- (a) 10/3 é racional? Sim quociente de inteiros.
- (b) 0,281 é racional?Sim. Número na notação decimal que representa 281/100.
- (c) 0,121212... é racional? Sim.

Seja
$$x = 0, 121212...$$
 e $100x = 12, 121212...$

$$100x - x = 12, 121212... - 0, 121212...$$

 $99x = 12$
 $x = 12/99$

Teorema. A soma de dois números racionais é um número racional.

$$U = \mathbb{R}, \ \forall r \forall s \ (r \in \mathbb{Q} \land s \in \mathbb{Q} \ \longrightarrow \ r + x \in \mathbb{Q})$$

Teorema. A soma de dois números racionais é um número racional.

$$U = \mathbb{R}, \ \forall r \forall s \ (r \in \mathbb{Q} \land s \in \mathbb{Q} \longrightarrow r + x \in \mathbb{Q})$$

Demonstração:

1. Sejam r e s dois números racionais.

Teorema. A soma de dois números racionais é um número racional.

$$U = \mathbb{R}, \ \forall r \forall s \ (r \in \mathbb{Q} \land s \in \mathbb{Q} \longrightarrow r + x \in \mathbb{Q})$$

- 1. Sejam r e s dois números racionais.
- 2. Pela definição de número racional, existem inteiros p e q, com $q \neq 0$, tais que r = p/q, e inteiros t e u, com $u \neq 0$, tais que s = t/u.
 - o Podemos usar esta informação para mostrar que r + s é racional?

Teorema. A soma de dois números racionais é um número racional.

$$U = \mathbb{R}, \ \forall r \forall s \ (r \in \mathbb{Q} \land s \in \mathbb{Q} \longrightarrow r + x \in \mathbb{Q})$$

- 1. Sejam r e s dois números racionais.
- 2. Pela definição de número racional, existem inteiros p e q, com $q \neq 0$, tais que r = p/q, e inteiros t e u, com $u \neq 0$, tais que s = t/u.
 - o Podemos usar esta informação para mostrar que r + s é racional?
- 3. Somando r e s, nós obtemos o seguinte número:

$$r+s=\frac{p}{q}+\frac{t}{u}=\frac{pu+qt}{qu}.$$

Teorema. A soma de dois números racionais é um número racional.

$$U = \mathbb{R}, \ \forall r \forall s \ (r \in \mathbb{Q} \land s \in \mathbb{Q} \longrightarrow r + x \in \mathbb{Q})$$

Demonstração:

- 1. Sejam r e s dois números racionais.
- 2. Pela definição de número racional, existem inteiros p e q, com $q \neq 0$, tais que r = p/q, e inteiros t e u, com $u \neq 0$, tais que s = t/u.
 - o Podemos usar esta informação para mostrar que r + s é racional?
- 3. Somando r e s, nós obtemos o seguinte número:

$$r+s=\frac{p}{q}+\frac{t}{u}=\frac{pu+qt}{qu}.$$

4. Como $q \neq 0$ e $u \neq 0$, segue que $qu \neq 0$. Assim, r + s pode ser expresso como a razão de dois inteiros, pu + qt e qu, com $qu \neq 0$. Isso implica que r + s é racional.

Prova de Condicionais:

Prova por Contraposição

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

2. Reescreva a afirmação na forma contrapositiva:

$$\forall x \in U$$
, se $\neg Q(x)$ então $\neg P(x)$

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

2. Reescreva a afirmação na forma contrapositiva:

$$\forall x \in U$$
, se $\neg Q(x)$ então $\neg P(x)$

- 3. Prove a contrapositiva por uma prova direta:
 - (a) Suponha x um elemento escolhido arbitrariamente de U tal que $\neg Q(x)$ seja V.
 - (b) Tomando $\neg Q(x)$ como premissa e usando axiomas, definições e teoremas previamente provados e regras de inferência, mostre que $\neg P(x)$ deve ser verdadeira.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

Demonstração: (por contraposição)

1. (Instanciação) Seja *n* um inteiro qualquer.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (Instanciação) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (Instanciação) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.
 - 2.2 Devemos mostrar que n^2 não é par (ou seja, é ímpar).

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (**Instanciação**) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.
 - 2.2 Devemos mostrar que n^2 não é par (ou seja, é ímpar).
 - 2.3 Por definição de um número ímpar, sabe-se que n=2k+1 para algum inteiro k. Então, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (**Instanciação**) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.
 - 2.2 Devemos mostrar que n^2 não é par (ou seja, é ímpar).
 - 2.3 Por definição de um número ímpar, sabe-se que n=2k+1 para algum inteiro k. Então, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.
 - 2.4 Desta forma, n^2 é um número ímpar.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (**Instanciação**) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.
 - 2.2 Devemos mostrar que n^2 não é par (ou seja, é ímpar).
 - 2.3 Por definição de um número ímpar, sabe-se que n=2k+1 para algum inteiro k. Então, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.
 - 2.4 Desta forma, n^2 é um número ímpar.
- 3. (Generalização) Como provamos a propriedade para um inteiro *n* qualquer, a propriedade vale para todos os inteiros.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

- 1. (Instanciação) Seja *n* um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que: " n^2 é par $\rightarrow n$ é par"
 - 2.1 Por CONTRAPOSIÇÃO, suponha que n é ímpar.
 - 2.2 Devemos mostrar que n^2 não é par (ou seja, é ímpar).
 - 2.3 Por definição de um número ímpar, sabe-se que n=2k+1 para algum inteiro k. Então, $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.
 - 2.4 Desta forma, n^2 é um número ímpar.
- (Generalização) Como provamos a propriedade para um inteiro n qualquer, a propriedade vale para todos os inteiros.
 Como a negação do consequente do enunciado condicional implica a negação do antecedente do enunciado condicional, temos que o enunciado condicional original é verdadeiro.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

Teorema. Dado qualquer inteiro n, se n^2 é par, então n é par.

Demonstração:

Vamos provar a afirmação por contraposição. Seja n um inteiro qualquer. Suponha que n é ímpar. Pela definição de número ímpar, temos que n=2k+1 para algum inteiro k. Isso implica que

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

Isto é, $n^2 = 2s + 1$ sendo $s = (2k^2 + 2k)$ é um inteiro. Pela definição de número ímpar, concluímos que n^2 é ímpar.

Como a negação do consequente do enunciado condicional implica a negação do antecedente do enunciado condicional, temos que o enunciado condicional original é verdadeiro.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

Demonstração:

1. Vamos provar a contrapositiva. Dados dois inteiros positivos a e b, suponha que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ é falso.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

- 1. Vamos provar a contrapositiva. Dados dois inteiros positivos a e b, suponha que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ é falso.
- 2. Usando o significado da disjunção junto com a Lei de DeMorgan, isto implica que $a>\sqrt{n}$ e $b>\sqrt{n}$.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

- 1. Vamos provar a contrapositiva. Dados dois inteiros positivos a e b, suponha que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ é falso.
- 2. Usando o significado da disjunção junto com a Lei de DeMorgan, isto implica que $a>\sqrt{n}$ e $b>\sqrt{n}$.
- 3. Podemos multiplicar essas duas inequações juntas para obter $ab > \sqrt{n} \cdot \sqrt{n} = n$.
 - Aqui, usamos o fato de que se 0 < s < t e 0 < u < v, então su < tv.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

- 1. Vamos provar a contrapositiva. Dados dois inteiros positivos a e b, suponha que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ é falso.
- 2. Usando o significado da disjunção junto com a Lei de DeMorgan, isto implica que $a > \sqrt{n}$ e $b > \sqrt{n}$.
- 3. Podemos multiplicar essas duas inequações juntas para obter $ab > \sqrt{n} \cdot \sqrt{n} = n$.
 - Aqui, usamos o fato de que se 0 < s < t e 0 < u < v, então su < tv.
- 4. Assim, concluímos que $n \neq ab$.

Teorema. Dados dois inteiros positivos a e b, se n=ab, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

- 1. Vamos provar a contrapositiva. Dados dois inteiros positivos a e b, suponha que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ é falso.
- 2. Usando o significado da disjunção junto com a Lei de DeMorgan, isto implica que $a > \sqrt{n}$ e $b > \sqrt{n}$.
- 3. Podemos multiplicar essas duas inequações juntas para obter $ab > \sqrt{n} \cdot \sqrt{n} = n$.
 - Aqui, usamos o fato de que se 0 < s < t e 0 < u < v, então su < tv.
- 4. Assim, concluímos que $n \neq ab$.
- Como a negação do consequente do enunciado condicional implica a negação do antecedente do enunciado condicional, temos que o enunciado condicional original é verdadeiro.

Prova de Condicionais:

Prova por Contradição (Redução ao Absurdo)

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

2. Primeiro, suponha que $\neg Q(x)$ é verdadeira para x qualquer.

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

- 2. Primeiro, suponha que $\neg Q(x)$ é verdadeira para x qualquer.
- 3. Então, use a premissa P(x) e a negação da conclusão, $\neg Q(x)$, para chegar em uma contradição.

1. Expresse a afirmação a ser provada na forma:

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

- 2. Primeiro, suponha que $\neg Q(x)$ é verdadeira para x qualquer.
- 3. Então, use a premissa P(x) e a negação da conclusão, $\neg Q(x)$, para chegar em uma contradição.

A razão pela qual essas demonstrações são válidas está na equivalência lógica:

$$p o q \equiv (p \wedge \neg q) o \mathbf{F}$$

Teorema. O quadrado de um inteiro par é par.

1. (Instanciação Universal) Seja c um inteiro qualquer.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - \circ Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.
 - Então, existem $k \in \mathbb{Z}$ tal que c = 2k (definição de par) e $j \in \mathbb{Z}$ tal que $c^2 = 2j + 1$ (definição de ímpar).

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.
 - ∘ Então, existem $k \in \mathbb{Z}$ tal que c = 2k (definição de par) e $j \in \mathbb{Z}$ tal que $c^2 = 2j + 1$ (definição de ímpar).
 - Temos que $c^2 = c \cdot c = 2k \cdot 2k = 4k^2$. Logo, $4k^2 = 2j + 1$.

Teorema. O quadrado de um inteiro par é par.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.
 - ∘ Então, existem $k \in \mathbb{Z}$ tal que c = 2k (definição de par) e $j \in \mathbb{Z}$ tal que $c^2 = 2j + 1$ (definição de ímpar).
 - Temos que $c^2 = c \cdot c = 2k \cdot 2k = 4k^2$. Logo, $4k^2 = 2j + 1$.
 - o Isolando j, encontraremos que $j=\frac{4k^2-1}{2}=\frac{4k^2}{2}-\frac{1}{2}=2k^2-\frac{1}{2}$, que não é inteiro.

Teorema. O quadrado de um inteiro par é par.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.
 - ∘ Então, existem $k \in \mathbb{Z}$ tal que c = 2k (definição de par) e $j \in \mathbb{Z}$ tal que $c^2 = 2j + 1$ (definição de ímpar).
 - Temos que $c^2 = c \cdot c = 2k \cdot 2k = 4k^2$. Logo, $4k^2 = 2j + 1$.
 - o Isolando j, encontraremos que $j=\frac{4k^2-1}{2}=\frac{4k^2}{2}-\frac{1}{2}=2k^2-\frac{1}{2}$, que não é inteiro.
 - Absurdo, pois *j* deveria ser inteiro.

Teorema. O quadrado de um inteiro par é par.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\rightarrow c^2$ é par"
 - o Por CONTRADIÇÃO, suponha que c é par, mas c^2 é ímpar.
 - ∘ Então, existem $k \in \mathbb{Z}$ tal que c = 2k (definição de par) e $j \in \mathbb{Z}$ tal que $c^2 = 2j + 1$ (definição de ímpar).
 - Temos que $c^2 = c \cdot c = 2k \cdot 2k = 4k^2$. Logo, $4k^2 = 2j + 1$.
 - o Isolando j, encontraremos que $j=\frac{4k^2-1}{2}=\frac{4k^2}{2}-\frac{1}{2}=2k^2-\frac{1}{2}$, que não é inteiro.
 - Absurdo, pois *j* deveria ser inteiro.
- (Generalização Universal) Como provamos a propriedade para um inteiro qualquer, a propriedade vale para todos os inteiros.

Teorema. A soma de dois inteiros ímpares é par.

1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p + q$ é par"
 - $\circ\;$ Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p + q$ é par"
 - $\circ\,$ Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.
 - $\circ~$ Então, existem $\{k,j\}\subset\mathbb{Z}$ tais que p=2k+1 e q=2j+1 (definição de ímpar)
 - e $m \in \mathbb{Z}$ tal que p + q = 2m + 1 (definição de ímpar).

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p + q$ é par"
 - $\circ\,$ Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.
 - $\circ~$ Então, existem $\{k,j\}\subset\mathbb{Z}$ tais que p=2k+1 e q=2j+1 (definição de ímpar)
 - e $m \in \mathbb{Z}$ tal que p + q = 2m + 1 (definição de ímpar).
 - Temos que p + q = 2k + 1 + 2j + 1 = 2m + 1. Logo, 2(k + j + 1) = 2m + 1.

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p+q$ é par"
 - o Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.
 - $\circ~$ Então, existem $\{k,j\}\subset\mathbb{Z}$ tais que p=2k+1 e q=2j+1 (definição de ímpar)
 - e $m \in \mathbb{Z}$ tal que p + q = 2m + 1 (definição de ímpar).
 - Temos que p + q = 2k + 1 + 2j + 1 = 2m + 1. Logo, 2(k + j + 1) = 2m + 1.
 - o Isolando m, encontraremos que $m = \frac{2(k+j+1)-1}{2} = \frac{2(k+j+1)}{2} \frac{1}{2}$, que não é inteiro.

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p+q$ é par"
 - o Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.
 - \circ Então, existem $\{k,j\}\subset \mathbb{Z}$ tais que p=2k+1 e q=2j+1 (definição de ímpar)
 - e $m \in \mathbb{Z}$ tal que p + q = 2m + 1 (definição de ímpar).
 - Temos que p + q = 2k + 1 + 2j + 1 = 2m + 1. Logo, 2(k + j + 1) = 2m + 1.
 - o Isolando m, encontraremos que $m = \frac{2(k+j+1)-1}{2} = \frac{2(k+j+1)}{2} \frac{1}{2}$, que não é inteiro.
 - Absurdo, pois *m* deveria ser inteiro.

- 1. (Instanciação Universal) Sejam $p \in q$ dois inteiros quaisquer.
- 2. (**Desenvolvimento**) Provaremos que "se p e q são ímpares $\rightarrow p+q$ é par"
 - o Por CONTRADIÇÃO, suponha que p e q são ímpares, mas p+q é ímpar.
 - \circ Então, existem $\{k,j\}\subset \mathbb{Z}$ tais que p=2k+1 e q=2j+1 (definição de ímpar)
 - e $m \in \mathbb{Z}$ tal que p + q = 2m + 1 (definição de ímpar).
 - Temos que p + q = 2k + 1 + 2j + 1 = 2m + 1. Logo, 2(k + j + 1) = 2m + 1.
 - o Isolando m, encontraremos que $m = \frac{2(k+j+1)-1}{2} = \frac{2(k+j+1)}{2} \frac{1}{2}$, que não é inteiro.
 - Absurdo, pois *m* deveria ser inteiro.

• Na prova por contraposição a afirmação

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

é provada apresentando uma prova direta da afirmação equivalente

$$\forall x \in U$$
, se $\neg Q(x)$ então $\neg P(x)$

• Na prova por contraposição a afirmação

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

é provada apresentando uma prova direta da afirmação equivalente

$$\forall x \in U$$
, se $\neg Q(x)$ então $\neg P(x)$

- Este tipo de prova segue os seguintes passos:
- (a) Suponha que x é um elemento arbitrário de U tal que $\neg Q(x)$
- (b) Através do raciocínio dedutivo isto leva a $\neg P(x)$

• Na prova por contraposição a afirmação

$$\forall x \in U$$
, se $P(x)$ então $Q(x)$

é provada apresentando uma prova direta da afirmação equivalente

$$\forall x \in U$$
, se $\neg Q(x)$ então $\neg P(x)$

- Este tipo de prova segue os seguintes passos:
 - (a) Suponha que x é um elemento arbitrário de U tal que $\neg Q(x)$
- (b) Através do raciocínio dedutivo isto leva a $\neg P(x)$
- A prova por contradição é baseada nos seguintes passos:
 - (a) Suponha que existe um elemento $x \in U$ tal que $P(x) \land \neg Q(x)$
- (b) Usando o mesmo raciocínio dedutivo isto leva a contradição $P(x) \land \neg P(x)$

Teorema. Para todo inteiro n, se n^2 é par, então n é par.

Demonstração: (por contradição)

• Suponha, por contradição, que exista um inteiro n tal que n^2 é par e n é ímpar. (Deve-se chegar a uma contradição)

Teorema. Para todo inteiro n, se n^2 é par, então n é par.

Demonstração: (por contradição)

- Suponha, por contradição, que exista um inteiro n tal que n^2 é par e n é ímpar. (Deve-se chegar a uma contradição)
- Já que n é ímpar, n^2 que é o produto $n \cdot n$ é também ímpar.

Teorema. Para todo inteiro n, se n^2 é par, então n é par.

Demonstração: (por contradição)

- Suponha, por contradição, que exista um inteiro n tal que n^2 é par e n é ímpar. (Deve-se chegar a uma contradição)
- Já que n é ímpar, n^2 que é o produto $n \cdot n$ é também ímpar.
- Isto contradiz a suposição que n^2 é par. (Logo, as proposições $P(n) = n^2$ é par e $\neg P(n) = n^2$ é ímpar são verdadeiras ao mesmo tempo, o que é uma contradição.)

- Prova por contraposição:
 - © É fácil saber que conclusão deve ser provada: negação da hipótese.
 - © Não é necessário obter a negação da afirmação.

- Prova por contradição:
 - A prova termina assim que é achada uma contradição.
 - Esta técnica aplica-se a declarações gerais, sejam elas quantificadas ou não-quantificadas.

- Prova por contraposição:
 - © É fácil saber que conclusão deve ser provada: negação da hipótese.
 - © Não é necessário obter a negação da afirmação.
 - Só pode ser usado para afirmações com quantificadores existencial ou universal.
- Prova por contradição:
 - A prova termina assim que é achada uma contradição.
 - © Esta técnica aplica-se a declarações gerais, sejam elas quantificadas ou não-quantificadas.
 - ☼ A negação da afirmação é mais complexa.
 - O Pode ser mais difícil achar o caminho da prova.

Provas de condicionais

Estas técnicas são as mais comumente usadas para condicionais.

- Prova Direta
- Prova por Contraposição
- Prova por Contradição

Sentenças Não-Quantificadas:

Prova por Contradição (Redução ao Absurdo)

- 1. Suponha que a afirmação a ser provada é falsa.
- 2. Mostre que essa suposição leva logicamente a uma contradição.
- 3. Conclua que a afirmação a ser provada é verdadeira.

- 1. Suponha que a afirmação a ser provada é falsa.
- 2. Mostre que essa suposição leva logicamente a uma contradição.
- 3. Conclua que a afirmação a ser provada é verdadeira.

A razão pela qual esta técnica de demonstração é válida deve-se à seguinte equivalência:

$$P \equiv P \vee \mathbf{F} \equiv \neg(\neg P) \vee \mathbf{F} \equiv \neg P \rightarrow \mathbf{F}$$

- 1. Suponha que a afirmação a ser provada é falsa.
- 2. Mostre que essa suposição leva logicamente a uma contradição.
- 3. Conclua que a afirmação a ser provada é verdadeira.

A razão pela qual esta técnica de demonstração é válida deve-se à seguinte equivalência:

$$P \equiv P \vee \mathbf{F} \equiv \neg(\neg P) \vee \mathbf{F} \equiv \neg P \rightarrow \mathbf{F}$$

• Suponha que podemos encontrar uma contradição q tal que $\neg p \rightarrow q$ é verdadeira. Como q é falsa, mas $\neg p \rightarrow q$ é verdadeira, podemos concluir que $\neg p$ é falsa, o que significa que p é verdadeira.

- 1. Suponha que a afirmação a ser provada é falsa.
- 2. Mostre que essa suposição leva logicamente a uma contradição.
- 3. Conclua que a afirmação a ser provada é verdadeira.

A razão pela qual esta técnica de demonstração é válida deve-se à seguinte equivalência:

$$P \equiv P \vee \mathbf{F} \equiv \neg(\neg P) \vee \mathbf{F} \equiv \neg P \rightarrow \mathbf{F}$$

- Suponha que podemos encontrar uma contradição q tal que ¬p → q é verdadeira. Como q é falsa, mas ¬p → q é verdadeira, podemos concluir que ¬p é falsa, o que significa que p é verdadeira.
- A dificuldade nesta técnica pode ser expressa nesta pergunta: Como podemos encontrar uma contradição q que possa nos ajudar a provar que p é verdadeira?

Teorema. $\sqrt{2}$ é irracional.

Demonstração:

• Suponha, por contradição, que $\sqrt{2}$ é um número racional.

Teorema. $\sqrt{2}$ é irracional.

- Suponha, por contradição, que $\sqrt{2}$ é um número racional.
- Pela definição de número racional, $\sqrt{2}$ pode ser escrito como uma fração de inteiros.

Teorema. $\sqrt{2}$ é irracional.

- Suponha, por contradição, que $\sqrt{2}$ é um número racional.
- Pela definição de número racional, $\sqrt{2}$ pode ser escrito como uma fração de inteiros.
- Então, sejam a e b inteiros tais que $\sqrt{2} = a/b$, onde $b \neq 0$ e a e b não têm fator comum (a fração a/b é irredutível). (Aqui, estamos usando o fato de que todo número racional pode ser escrito em uma fração irredutível.)

Teorema. $\sqrt{2}$ é irracional.

- Suponha, por contradição, que $\sqrt{2}$ é um número racional.
- Pela definição de número racional, $\sqrt{2}$ pode ser escrito como uma fração de inteiros.
- Então, sejam a e b inteiros tais que $\sqrt{2} = a/b$, onde $b \neq 0$ e a e b não têm fator comum (a fração a/b é irredutível). (Aqui, estamos usando o fato de que todo número racional pode ser escrito em uma fração irredutível.)
- Elevando ambos os membros da equação ao quadrado, segue-se que $2 = a^2/b^2$. Portanto, $2b^2 = a^2$.

Teorema. $\sqrt{2}$ é irracional.

- Suponha, por contradição, que $\sqrt{2}$ é um número racional.
- Pela definição de número racional, $\sqrt{2}$ pode ser escrito como uma fração de inteiros.
- Então, sejam a e b inteiros tais que $\sqrt{2} = a/b$, onde $b \neq 0$ e a e b não têm fator comum (a fração a/b é irredutível). (Aqui, estamos usando o fato de que todo número racional pode ser escrito em uma fração irredutível.)
- Elevando ambos os membros da equação ao quadrado, segue-se que $2 = a^2/b^2$. Portanto, $2b^2 = a^2$.
- Pela definição de número par, a² é par. Podemos usar o fato de que se a² é par, então a é par, o qual segue do teorema anterior provado em aula.

Continuação da Demonstração:

• Mas se a é par, pela definição de número par, a=2c para algum inteiro c. Então, $2b^2=a^2$ implica que $2b^2=4c^2$.

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro c. Então, $2b^2 = a^2$ implica que $2b^2 = 4c^2$.
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.

- Mas se a é par, pela definição de número par, a=2c para algum inteiro c. Então, $2b^2=a^2$ implica que $2b^2=4c^2$.
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro
 c. Então, 2b² = a² implica que 2b² = 4c².
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.
- Novamente usando o fato de que se o quadrado de um inteiro é par, então o inteiro também deve ser par, concluímos que b deve ser par também.

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro
 c. Então, 2b² = a² implica que 2b² = 4c².
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.
- Novamente usando o fato de que se o quadrado de um inteiro é par, então o inteiro também deve ser par, concluímos que b deve ser par também.
- Portanto, ter assumido que $\sqrt{2}$ é racional nos levou à equação $\sqrt{2}=a/b$, em que a e b não têm fator comum, mas a e b são pares.

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro c. Então, $2b^2 = a^2$ implica que $2b^2 = 4c^2$.
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.
- Novamente usando o fato de que se o quadrado de um inteiro é par, então o inteiro também deve ser par, concluímos que b deve ser par também.
- Portanto, ter assumido que $\sqrt{2}$ é racional nos levou à equação $\sqrt{2} = a/b$, em que a e b não têm fator comum, mas a e b são pares.
- Isto é uma contradição.

Prova por Contradição

Continuação da Demonstração:

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro
 c. Então, 2b² = a² implica que 2b² = 4c².
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.
- Novamente usando o fato de que se o quadrado de um inteiro é par, então o inteiro também deve ser par, concluímos que b deve ser par também.
- Portanto, ter assumido que $\sqrt{2}$ é racional nos levou à equação $\sqrt{2} = a/b$, em que a e b não têm fator comum, mas a e b são pares.
- Isto é uma contradição.
- Como a afirmação " $\sqrt{2}$ é racional" nos levou a uma contradição, então ela deve ser falsa. Ou seja a sentença " $\sqrt{2}$ é irracional" é que é verdadeira.

Prova por Contradição

Continuação da Demonstração:

- Mas se a é par, pela definição de número par, a = 2c para algum inteiro c. Então, $2b^2 = a^2$ implica que $2b^2 = 4c^2$.
- Dividindo ambos os membros dessa equação por 2, temos $b^2 = 2c^2$.
- Pela definição de par, isso significa que b^2 é par.
- Novamente usando o fato de que se o quadrado de um inteiro é par, então o inteiro também deve ser par, concluímos que b deve ser par também.
- Portanto, ter assumido que $\sqrt{2}$ é racional nos levou à equação $\sqrt{2}=a/b$, em que a e b não têm fator comum, mas a e b são pares.
- Isto é uma contradição.
- Como a afirmação " $\sqrt{2}$ é racional" nos levou a uma contradição, então ela deve ser falsa. Ou seja a sentença " $\sqrt{2}$ é irracional" é que é verdadeira.
- Portanto, provamos que $\sqrt{2}$ é irracional.

Provas de Equivalência

Provas de Equivalência

- Como provar sentenças da forma $p \leftrightarrow q$?
- Para demonstrar um teorema que é uma sentença bicondicional, mostramos que p → q e q → p são ambas verdadeiras.
- A validade desse método segue da seguinte equivalência lógica:

$$(p \leftrightarrow q) \equiv (p o q) \wedge (q o p)$$

Teorema. Se n é um inteiro, então n é par se e somente se n^2 é par.

1. (Instanciação Universal) Seja c um inteiro qualquer.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\leftrightarrow c^2$ é par"
 - A fim de provar esse bicondicional, devemos provar que "c é par $\rightarrow c^2$ é par" e que " c^2 é par $\rightarrow c$ é par".

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\leftrightarrow c^2$ é par"
 - A fim de provar esse bicondicional, devemos provar que "c é par $\to c^2$ é par" e que " c^2 é par $\to c$ é par".
 - Ambas as implicações já foram provadas em slides anteriores.

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\leftrightarrow c^2$ é par"
 - A fim de provar esse bicondicional, devemos provar que "c é par $\rightarrow c^2$ é par" e que " c^2 é par $\rightarrow c$ é par".
 - Ambas as implicações já foram provadas em slides anteriores.
 - \circ Portanto, como provamos que ambas "c é par $\to c^2$ é par" e " c^2 é par $\to c$ é par" são verdadeiras, mostramos que "c é par $\leftrightarrow c^2$ é par".

- 1. (Instanciação Universal) Seja c um inteiro qualquer.
- 2. (**Desenvolvimento**) Provaremos que "c é par $\leftrightarrow c^2$ é par"
 - A fim de provar esse bicondicional, devemos provar que "c é par $\rightarrow c^2$ é par" e que " c^2 é par $\rightarrow c$ é par".
 - Ambas as implicações já foram provadas em slides anteriores.
 - \circ Portanto, como provamos que ambas "c é par $\to c^2$ é par" e " c^2 é par $\to c$ é par" são verdadeiras, mostramos que "c é par $\leftrightarrow c^2$ é par".
- 3. (**Generalização Universal**) Como provamos a propriedade para um inteiro qualquer, a propriedade vale para todos os inteiros.

Teorema. As seguintes sentenças sobre o inteiro *n* são equivalentes:

- *p*₁: *n* é par.
- p_2 : n-1 é ímpar.
- p_3 : n^2 é par.

Teorema. As seguintes sentenças sobre o inteiro *n* são equivalentes:

- p₁: n é par.
- p_2 : n-1 é ímpar.
- p_3 : n^2 é par.

Demonstração:

- Note que basta mostrar que os condicionais $p_1 \to p_2$, $p_2 \to p_3$ e $p_3 \to p_1$ são verdadeiros.
- Para mostrar $p_1 o p_2$ usamos demonstração direta. Suponha que n é para Então, n=2k para algum inteiro k. Consequentemente, n-1=2k-1=2(k-1+1)-1=2(k-1)+1. Isso significa que n-1 é ímpar, pois é da forma 2m+1, em que m=k-1.

Continuação da Demonstração:

• Para mostrar $p_2 o p_3$ usamos demonstração direta. Suponha que n-1 é ímpar. Então n-1=2k+1 para algum inteiro k. Portanto, n=2k+2, e isto implica que $n^2=(2k+2)^2=4k^2+8k+4=2(2k^2+4k+2)$. Logo, n^2 é par, pois é da forma 2m, sendo $m=2k^2+4k+2$.

Continuação da Demonstração:

- Para mostrar p₂ → p₃ usamos demonstração direta. Suponha que n − 1 é ímpar. Então n − 1 = 2k + 1 para algum inteiro k. Portanto, n = 2k + 2, e isto implica que n² = (2k + 2)² = 4k² + 8k + 4 = 2(2k² + 4k + 2). Logo, n² é par, pois é da forma 2m, sendo m = 2k² + 4k + 2.
- Para mostrar $p_3 \rightarrow p_1$ usamos demonstração por contraposição. Ou seja, provamos que se n não é par, então n^2 não é par. Isso é o mesmo que demonstrar que se n é ímpar, então n^2 é ímpar, o que já demonstramos em slides anteriores. Isso completa a demonstração.

FIM