

Introduction to Embedded Systems

Unit 1.2: Number Systems and Data Formats

Alexander Yemane

BCIT

INCS 3610

Fall 2025

Number Systems

From zero and one to beyond

- Embedded systems understand logic 1 and 0 and process the information that consists of them
- For some devices, logic 1 corresponds to 5V, while logic 0 corresponds to about 0V.
- For other devices, logic 1 can be 3.3V or even may be less while logic 0 is 0V.
- By combining these two symbols in any consecutive combination or in different combinations; data, instruction codes and different signals are produced in a format that digital systems can understand.

Bits, bytes, and words

Nibble: 4-bit-width

• Byte: 8-bit width

• Word: 16-bit width

Double word: 32-bit width

Quad: 64-bit width

- Individual bits in a word are named after their position, starting from the right with 0: bit 0 (b0), bit 1 (b1), and so on. Symbolically, an n-bit word is denoted as
 - $b_{n-1}b_{n-2}...b_1b_0$

Binary, octal, and hexadecimal number systems

- Binary number system = base 2.
 - For binary numbers, use suffix 'B' or 'b'
- Octal number system = base 8.
 - For octal numbers, use suffix 'Q' or 'q'
- Hexadecimal number system = base 16.
 - For hex numbers use suffix 'H' or 'h', or else prefix 0x.
- Base ten numbers have no suffix.
- Hence, we write 1011B or 1011b for 1011_2 , 25Q or 25q for 25_8 , and OA5H or OA5h or OxA5 for A5₁₆.

Binary, octal, and hexadecimal number systems

Table 2.2 Basic numeric systems

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	В
4	0100	4	4	12	1100	14	C
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	E
7	0111	7	7	15	1111	17	F

Hexadecimal representation

- Convenient to divide any size of binary numbers into nibbles
- Represent each nibble as hexadecimal, e.g.:

- Hexadecimal number system has been universally adopted in the embedded systems literature as well as in debuggers.
- Thus, memory addresses, register contents, and pretty much everything else are expressed in hexadecimal integers without implying that they are a number.

Data Formats

Representing text in ASCII

- Textual information must also be stored as binary numbers.
- Each character is represented as a 7-bit number known as ASCII codes
 - E.g., 'A' is represented by 41h and 'a' by 61h

Signed numbers

- So far, numbers are assumed to be unsigned (i.e. positive)
- How to represent signed numbers?
- Remember: the range for unsigned and signed numbers are different
 - 8-bit unsigned number: 0 ... +255
 - 8-bit signed number: -128 ... +127
- Solution 1: Sign-magnitude Use one bit to represent the sign, the remaining bits to represent magnitude

$$7 6 0$$
 $0 = +ve$
 $1 = -ve$
 $s magnitude$
 $-27 = 1001 1011_b$

Signed numbers

- Solution 2: *Two's complement* represent a negative number x by the number $2^N + x$, in an n-bit representation:
 - E.g., Encode –27 in 8-bit two's complement

- So long as we only want to represent numbers with magnitude less than 2^{N-1} , the MSB is still the *sign* bit
 - E.g., Encode 27 in 8-bit two's complement

$$27_{10} = 0001 \ 1011_{b}$$

Why two's complement representation?

- Using the sign-magnitude pattern is easy to understand but requires quite complex circuitry
- If we represent signed numbers in two's complement form, subtraction is the same as addition to the (two's complemented) number (if we ignore any carry out)

27	0001 1011 _b		
- 17	0001 0001 _b		
+ 10	0000 1010 _b		
+27	0001 1011 _b		
+ -17	1110 1111 _b		
+10	0000 1010 _b		

Fixed point representation

- So far, we have concentrated on *integer* representation with the *fractional* part
- There is an implicit binary point to the right
- In general, the binary point can be in the middle of the word

Floating point representation

- Although fixed point representation can cope with numbers with fractions, the range of values that can represented is still limited.
- Alternative: use the equivalent of "scientific notation", but in binary:

• E.g.,

IEEE-754 standard floating point

32-bit single precision floating point:

