

House Sales Price Prediction Prediction

Hybrid Deep Learning and Classical Machine Learning Kaggle Australian Property Sales Dataset Graduation Project

By: Haneen Nabil, Sama Samer, Nadine Ali, El Menshawy, Mostafa Tamer

Project Objectives

Robust Forecasting

Use LSTM for time-series prediction of property prices.

Insightful Analysis

Identify seasonal and structural sales patterns.

Smart Strategies

Enable inventory and pricing decisions with data.

Scalable Tool

Deploy AI model with user-friendly interface.

overview

Technologies & Tools

Used Python – core language for data processing and modeling

Pandas / NumPy – data manipulation and numerical operations

Matplotlib / Seaborn – data visualizationScikit-learn

- classical ML models and preprocessing
utilitiesTensorFlow / Keras – for building and
training LSTM deep learning models

Streamlit – web framework for deploying an interactive prediction

appMinMaxScaler / TimeseriesGenerator – data

normalization and sequence generation for

LSTMGoogle Colab / Jupyter Notebook –

development environment

Scope of Work

Data Acquisition & Preprocessing

Clean data, encode features, normalize values.

Exploratory Data Analysis

Visualize trends, detect outliers, analyze features.

Model Design & Training

Build and train LSTM and classical ML models.

Evaluation & Deployment

Assess models, deploy with Streamlit interface.

Installation and setups

Access the Application The application will be available at: http://localhost:8501

DATA ANALYSIS

Exploratory Data Analysis

Seasonal Trends

Strong cyclical price patterns and market recovery after drops.

Correlation Insights

Bedrooms strongly correlate (0.92) with moving average prices.

Property Type Impact

Houses have higher prices than units, confirmed by correlations.

Visualization the data

the correlation between the feature

balance between the number of rooms

Distribution of the MA

the MA (likely a housing price metric) rises consistently, with both the median and spread of values growing. Notably, homes with 5 bedrooms show the widest price range, suggesting greater variability in high-end properties.

"MA" (possibly Moving Average) is highly positively correlated with "bedrooms" (0.92) and "propertyType_house" (0.55), but strongly negatively correlated with "propertyType_unit" (-0.55).

Modeling Approach

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 12, 200)	163,200
dropout (Oropout)	(None, 12, 200)	0
lstm_1 (USTM)	(None, 12, 150)	210,600
dropout_1 (Dropout)	(None, 12, 150)	0
Istm_2 (LSTH)	(None, 188)	100,400
dense (Dense)	(fione, 50)	5,050
dropout_2 (Dropout)	(None, 50)	0
dense_1 (Dense)	(fione, 20)	1,020
dense_2 (Dense)	(None, 1)	21

Classical Models

- Linear Regression baseline
- Random Forest & XGBoost for nonlinear patterns

Deep Learning

LSTM with 3-5 layers, Adam optimizer, time-series validation.

Hybrid Model

Ensemble averaging to improve accuracy.

The result of some model

3 layer of LSTM and fully connected

Loss:

Train loss: 0.0475

· Validation loss: 0.0474

5 layer of LSTM and fully connected

Loss:

• Train loss: 0.0472

· Validation loss: 0.0484

Loss:

Train loss: **0.1**515

· Validation loss: 0.0519

Evaluation & Deployment

Evaluation Metrics

Used MSE, MAE, RMSE to assess models.

Deployment

Streamlit app for realtime price prediction.

Model Export

Saved final model in .h5 format for inference.

Enter Property Details 🖘

Predicted Price for 2019-12-31:
\$524,130.31

Daniel .

Conclusion & Future Work

Conclusion

Hybrid models combine temporal and structural

insights effectively.

Future Work

Add geospatial data and attention mechanisms for better forecasts. Data might not be applicable in Egypt

Integration

Enable API connections with real estate platforms.

Conclusion

At the end, this project demonstrates the effectiveness of combining classical and deep learning models for timeseries forecasting in the real estate domain. The hybrid model benefits from both LSTM's temporal awareness and tree-based models' structural feature handling. The deployment via Streamlit adds practical utility for endusers and stakeholders.