Superficies de nivel

Grado en Matemáticas e Ingeniería Informática Universidad Autónoma de Madrid

Superficies de nivel

Definición

Sea $f:\mathbb{R}^3 \to \mathbb{R}$ una función, las superficies de nivel de la función son los conjuntos

$$N_C = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = C\}$$

donde $C \in \mathbb{R}$.

Observaciones:

- **1** Las superficies de nivel son subconjuntos de \mathbb{R}^3 , y cada valor de C define una superficie de \mathbb{R}^3 en cuyos puntos la función es constante.
- **2** $N_{C_1} \cap N_{C_2} = \emptyset$ si $C_1 \neq C_2$.

Existen muchas formas de dibujar una superficie de nivel de una función, pero no existe un método general para dibujarlas. No obstante, existen algunas estrategias que pueden permitirnos visualizarlas.

Superficies de nivel de una función

① Una idea puede ser que al ver que puntos están en N_C , tratemos de despejar alguna de las variables en función de las otras. Por ejemplo, si tenemos que $f(x, y, z) = x^2 + y^2 - z$, entonces

$$N_C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z = C\}$$

Observamos que

$$x^2 + y^2 - z = C \Leftrightarrow z = x^2 + y^2 - C.$$

Por tanto N_C es el grafo de la función $g(x,y) = x^2 + y^2 - C$.

② Otro método es intentar manipular algebraicamente la condición f(x,y,z)=C, para obtener otra condición equivalente que conozcamos mejor. Por ejemplo, si $f(x,y,z)=e^{x^2+y^2+z^2}$, entonces $N_C=\{(x,y,z)\in\mathbb{R}^3\mid e^{x^2+y^2+z^2}=C\}$. Observamos que

$$e^{x^2+y^2+z^2}=C \Leftrightarrow x^2+y^2+z^2=\ln(C).$$

Por tanto, podemos ver que las superficies de nivel son esferas.

Algunas superficies definidas por ecuaciones en \mathbb{R}^3

Elipsoides

La ecuación $(\frac{x}{a})^2 + (\frac{y}{b})^2 + (\frac{z}{c})^2 = C$, define un elipsoide (de semiejes a,b,c).

Esferas

La ecuación $x^2+y^2+z^2=C$, define una esfera de centro (0,0,0) y de radio \sqrt{C} .

Hiperboloides de una hoja

La ecuación $(\frac{x}{a})^2 + (\frac{y}{b})^2 - (\frac{z}{c})^2 = 1$, define un hiperboloide de una hoja.

Hiperboloides de dos hojas

La ecuación $(\frac{x}{a})^2 + (\frac{y}{b})^2 - (\frac{z}{c})^2 = -1$, define un hiperboloide de una hoja.

Conos

La ecuación $(\frac{x}{a})^2 + (\frac{y}{b})^2 = z^2$, define un cono elíptico.

Cono circular

La ecuación $x^2 + y^2 = z^2$, define un cono circular.

Paraboloide elíptico

La ecuación $z = (\frac{x}{a})^2 + (\frac{y}{b})^2$, define un paraboloide elíptico.

Paraboloides hiperbólicos

La ecuación $z=(\frac{x}{a})^2-(\frac{y}{b})^2$, define un paraboloide hiperbólico.

11 / 15

Cilindros elípticos

La ecuación $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$, define un cilindro elíptico.

12 / 15

Cilindro circular

La ecuación $x^2 + y^2 = C$, define un cilindro circular.

Cilindro hiperbólico

La ecuación $(\frac{x}{a})^2 - (\frac{y}{b})^2 = 1$, define un cilindro hiperbólico.

Cilindro parabólico

La ecuación $y^2 = cx$, define un cilindro parabólico.

