

#### Multimedia in IP

**General Concepts** 



# **Learning outcomes**

- Understand the scope of VoIP models
- Describe RTP operation
- Understand the SIP and H.323 protocols
- Describe architectures for interconnecting POTS and the Internet.



# Concepts and Protocols Voice over IP

More than multimedia streaming...

#### universidade de aveiro

#### IP dominance in communications

#### Circuit switched systems

- Products based on TDM still give the major profits in industry
- They are getting close to the cost and efficiency limits
- Obsolets...
- Conversation (voice services) is critical

#### Packet switched systems

- Services based on IP will be dominant (SIP, VoiceXML)
- New distributed characteristics between gateways and media servers
- Conversation (voice services) is still a critical aspect

Migration is evolutionary: there is interoperability



universidade de aveiro

## **POTS** interoperation

- Interoperation of PSTN services with data networks (e.g., the establishment of a voice call between a phone based on internet and a traditional phone)
- Interoperation of data services with PSTN networks (e.g., paging/calling a user after an email reception)
- New services simultaneously based in PSTN and Internet facilities (eg, WEB-based helpdesk, capable of sending documentation through fax)

Although IP networks dominates now, there were many years of joint co-existence of both networks, which becomes a legacy



#### Multimedia in IP

- Many algorithms/applications supporting voice/video above IP
  - Vivo, ShockWave, AAC, MPEG-4, H.323, H264, RealAudio, etc...
- As long as some QoS exists in the network, an explosion of these applications is ever expected
  - Even without explicit QoS, multimedia took over the Internet
  - End points coding became much more adaptive
- IETF centered transport standardization:
  - Specially focused in the control of teleconference sessions and network protocols
    - Cooperates now with ITU-T
  - Has complete proposals to all audio/video communication aspects

11

# Data plane and control plane

- Data plane: determines data packet behavior
  - Packet forwarding (e.g. inside a router)
  - Packet differentiation (e.g., ACLs)
  - Link scheduling
  - Multimedia transport (e.g. the codec)
- Control plane: controls the state of network elements
  - Route selection (e.g. routing protocols)
  - RSVP, capability signaling, etc.
  - Multimedia signaling (e.g. the ringing tone)

In advanced architectures, these two planes often impact different functional units (boxes)



#### Data+control

- Multimedia is associated to the notion of "session"
  - Requires both data (multimedia) and control information
    - E.g. voice is data, and #busy signal" is control
- In-band signaling
  - Sending of metadata and/or control information in the same "channel" than the data
- Out-band signaling
  - There is a dedicated "channel" created for the transmission of metadata and/or control

13



### What is signaling?

- Signalling is the process of interaction between network nodes to process calls
  - Signalling is for call control
  - Origin and destination nodes have to agree on the call establishment and its parameters
  - Network nodes have to prepare their resources/links for the calls
     have to obtain information of the call initiation and its
     parameters
  - Servers for charging
- SS7 is the signalling system used in PSTN
  - There are others, and are being used... (ISDN)
- For PSTN, ISDN and SS7 are the more advanced systems
- Signalling also has to exist in the data world....
  - SIP, Megaco, H.323, ATM UNI, etc.

14

SS7: System Signalling #7



#### What is VoIP?

- VolP is not a protocol!
  - VoIP is a set of protocols and equipments that allow coding, transport and routing of audio calls (multimedia) through IP networks
    - Both data (media) and signaling have to be tackled
    - Audio streams are coded in digital environment and encapsulated in IP for transport in the network.
- Examples of VoIP inclusion (required interoperation)
  - PSTN → VoIP → PSTN
  - VoIP Native → PSTN
  - VoIP Native → VoIP Native

15



#### **VoIP advantages**

- Cost reduction
  - Do not need to pay for PSTN circuits for call transport (user side) / consolidate infrastructure (provider side)
  - Bandwidth reduction
    - · Distributed nature of VoIP
    - Operation costs reduction voice and data traffic both in the same network
- 'Open' standards and interoperability between operators
  - Does not depend on proprietary solutions
- Integration of voice and data networks
  - Considered as 'just another IP application'
  - Two major approaches: ITU-T (early on) and IETF (current)
  - As long as the quality is similar to the PSTN network, companies can easily invest in new services and applications



universidade de aveiro

#### **Different levels of VoIP problem**

#### 1. The transport level

 How to transport multimedia information. Covers also content, but we mostly talk about RTP (and associated protocols)

#### 2. The session control

 How to signal a VoIP session. Covers also application protocols, but we talk mostly about SIP and H.323

#### 3. The gateway control

 How to signal interface entities between Internet and POTS. We address mostly Megaco



# Some Standards and protocols

- Signalling (mostly inside IETF)
  - SS7 to IP (SIGTRAN)
    - Transport of voice signalling over Internet
  - SIP, Megaco, MGCP, H.323, etc.
  - PINT (PSTN and Internet Interworking)
    - Mechanisms for the Internet to use POTS services (e.g click-to-dial, click-to-fax-back)
- Media (some standards outside IETF)
  - Real Time Protocol (RTP)
  - Echo cancelation
  - Voice coding (G.7xx)
- Major developments are in the call control field (or signalling)
  - Web streaming has taken over these standards, embedding all complexity in a "transparent service"



# Huniverside Multimedia Networking Applications

- Fundamental characteristics:
  - Typically delay sensitive
    - end-to-end delay
    - delay jitter
  - But loss tolerant:

Jitter is the variability of packet delays within the same packet stream

Antithesis of data, (salvadov Prich are loss

- Classes of multimedia applications:
  - Streaming stored audio and video
  - Streaming live audio and video
  - Real-time interactive audio and video





- Integrated services philosophy.
  - Requires dedicated links/channels with QoS requirements.
- Differentiated services philosophy.
  - Fewer changes to Internet infrastructure.
- Best effort.
  - > No major changes.
  - > More bandwidth when needed.
  - Application-level control and distribution.

23

Would require QoS

Only possible in private networks or operator infrastructure

















- VCR-like functionality: client can pause, rewind, fastfoward, push slider bar.
  - 10 sec initial delay OK.
  - 1-2 sec until command effect OK.
  - Timing constraint for still-to-be transmitted data: in time for playout.

31

# Streaming Live Multimedia

- Examples:
  - Internet TV/radio show.
  - Live sporting event.
- Streaming
  - Playback buffer.
  - Playback can lag tens of seconds after transmission.
  - Still have timing constraint.
- Interactivity
  - Fast forward impossible.
  - Rewind, pause possible!



#### Applications:

- IP telephony, video conference, online-game multimedia actions, distributed interactive worlds.
- End-end delay requirements:
  - → Audio: < 150 msec good, < 400 msec OK
    - Includes application-level (packetization) and network delays.
    - Higher delays noticeable, impair interactivity.
- Requires session initialization
  - Advertise its IP address, port number, encoding algorithms, required contents, available contents

33

universidade

## **UDP** Streaming vs. TCP Streaming

#### UDP

- Server sends at rate appropriate for client .
  - Often send rate = encoding rate = constant rate.
  - Then, fill rate = constant rate packet loss.
- Short playout delay (2-5 seconds) to compensate for network delay jitter.
- Error recover: time permitting.

#### . TCP

- Send at maximum possible rate under TCP.
- Fill rate fluctuates due to TCP congestion control.
- Larger playout delay: smooth TCP delivery rate.
- HTTP/TCP passes more easily through firewalls.



# **HTTP/TCP Streaming**

- Multiple versions with distinct/complementary characteristics are generated for the same content
  - With different bitrates, resolutions, frame rates.
- Each version is divided into time segments.
  - e.g., two seconds.
- Each segment is provided on a web server and can be retrieved through standard HTTP GET requests.
- Examples of protocols:
  - MPEG's Dynamic Adaptive Streaming over HTTP (DASH).
    - Standard ISO/IEC 23009-1. YouTube's default.
  - Adobe HTTP Dynamic Streaming (HDS).
  - Apple HTTP Live Streaming (HLS).
  - Microsoft Smooth Streaming (MSS).

35

# **EUser Control of Streaming Media:**RTSP

- RTSP (Real Time Streaming Protocol): RFC 2326
  - Client-server application layer protocol.
  - For user to control display: rewind, fast forward, pause, resume, repositioning, etc...
- Does not define how audio/video is encapsulated for streaming over network.
- Does not restrict how streamed media is transported.
  - Can be transported over UDP or TCP.
- Does not specify how the media player buffers audio/video.
- RTSP messages are also sent out-of-band:
  - RTSP control messages use different port numbers than the media stream: out-of-band
    - Port 554
  - The media stream is considered "in-band"



#### **RTSP:** out of band control

- FTP uses an "out-of-band" control channel:
  - A file is transferred over one TCP connection
  - Control information (directory changes, file deletion, file renaming, etc.) is sent over a separate TCP connection
  - The "out-of-band" and "in-band" channels use different port numbers
- RTSP messages are also sent out-of-band:
  - RTSP control messages use different port numbers than the media stream: out-of-band
  - Port 554
  - The media stream is considered "in-band"



# RTSP Exchange Example

- C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0
- Transport: rtp/udp; compression; port=3056; mode=PLAY
- S: RTSP/1.0 200 1 OK
- Session 4231
- C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
- Session: 4231
- Range: npt=0-
- C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
- Session: 4231
- Range: npt=37
- C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
- Session: 4231
- S: 200 3 OK

39

universidade de aveiro

### **Streaming Media: RTSP**

#### →RTSP: RFC 2326

- Application layer protocol (client-server)
- Presentation control of streaming
  - rewind, fast forward, pause, resume, reposition, etc...

#### **Limitations:**

- Does not define how audio/video is encapsulated for streaming (RTP)
- Does not impose transport mechanisms (UDP or TCP)
- Does not describe how the audio/video is played (nor the type of buffering)

#### Out of band control:

- RTSP messages use different ports from the "media stream" (which is "in-band")
  - Port 554





#### **WebRTC**

- Peer-to-peer connections.
  - An instance allows an application to establish peer-topeer communications with another instance in another browser, or to another endpoint implementing the required protocols.
- RTP Media.
  - Allow a web application to send and receive media stream over a peer-to-peer connection (discussed in a minute)
- Peer-to-peer Data
  - Allows a web application to send and receive generic application data over a peer-to-peer connection.
- Peer-to-peer DTMF.







### **Disadvantages of TCP**

- Connection-oriented
  - Not appropriate to multicast
- Retains traffic (push)
- Retransmissions are not convenient to "soft" real time traffic (i.e. that accepts losses)
- Does not contain limitation on data length
- Does not provide timing information









# RTP and QoS

- RTP <u>does not</u> provide any mechanism to ensure timely delivery of data or provide other quality of service guarantees.
- RTP encapsulation is only seen at the end systems: it is not seen by intermediate routers.
  - Routers providing best-effort service do not make any special effort to ensure that RTP packets arrive at the destination in a timely matter.
  - Operators may create separate channels for specific services





#### **Types of RTP entities (Relays)**

- Translators
  - Modify data format
  - Do not modify SSRC nor timestamp
  - Examples:
    - Multicast to unicast, coding, flow quality reduction
- Mixers (SSRC field)
  - Generate an output through several inputs (CSRC field)
  - Examples:
    - · Audio mixer, video PiP, ...





### "Light" sessions

- There is no explicit control of group participation
  - Participants get together in groups
- There is no explicit conference control
- Members that have data to send, just send it
- Session packets quasi-periodical
  - Identity, reception reports, sincronization information
- Adequated to multicast models

53

# Concept: Application Level Framing (ALF)

- Application semantics should be reflected in the communication protocol
- Application to control the packing of information in packets
- It creates Application Data Units (ADUs)
  - Each ADU can be independently processed
- Associate ADUs in a single network packet (if possible)







# Joint source and channel coding

- Principle
  - Corollary for A.L.F.
    - Need to consider the transmission channel when coding the data
- The source coding algorithm becomes sensitive to the network
  - Algorithms are modified for producing selfsufficient information.
  - Packet loss has low impact
- Example: H.261

Next slides...

© Rui L. Aguiar (ruilaa@det.ua.pt)



# Standard H.261 algorithm

- · Video coding similar to MPEG.
- Predictive mechanism
  - "predicted image"
- Time compression
  - differential coding between frame N and frame N-1
- Assumes "lossless" channel
- If there are data loss...
  - Resynchronizes with the next Group of Blocks (GOB)
  - Reconstruction errors remain in the decoder.

© Rui L. Aguiar (ruilaa@det.ua.pt)

# Intra H.261 Algorithm

- Reacts to IP network features
- Subset of H.261
- Conditional image reconstruction
- No differential reconstruction of frames
- Macroblocks become ADUs (application data units)

© Rui L. Aguiar (ruilaa@det.ua.pt)













#### RTP Example

- Consider sending 64 kbps PCM-encoded voice over RTP
- Application collects the encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk
- The audio chunk along with the RTP header form the RTP packet, which is encapsulated into a UDP segment
- RTP header indicates type of audio encoding in each packet
  - Sender can change encoding during a conference
- RTP header also contains sequence numbers and timestamps

65

# Real-Time Control Protocol (RTCP)

- P)
  Internet

  Excelver

  Excelver

  Excelver
- Works associated to RTP, to obtain feedback information that can lead to behavior change
- Each participant in RTP session periodically transmits RTCP control packets to all other participants
- Sends all session in multicast: a multicast address per session, shared by RTP and RTCP packets
  - In different ports
  - RTCP traffic per participant is variable with time
- Each RTCP packet contains sender and/or receiver reports
  - Report statistics useful to application including number of packets sent, number of packets lost, interarrival jitter, etc...
- Essential to multicast
  - Diagnosis tool
  - Feedback control can lead to change in the sender transmission <sup>66</sup> rate



#### **RTCP Protocol**

- Provides information about reception quality
  - To senders and receivers
  - QoS information to the flow
    - packet info: loss, delay, jitter
    - end-system info: user info
    - application-specific or flow-specific info
- · Identifies each participant
- · Calculates the number of sources
- Minimum session control
  - Information about participants
  - Session leave, ...
  - Minimum synchronization
- Protocol "Announce-Listen", soft-state
  - Good for scalability





# **Types of RTCP packets**

- Sender report (SR): sending of statistics by senders
  - SSRC of the RTP stream, the current time, the number of packets sent, and the number of bytes sent.
- Receiver Report (RR): sending of statistics by receivers
  - Fraction of packets lost, last sequence number, average interarrival jitter
- Source Description (SDES): CNAME, NAME, e-mail, ...
  - Sender e-mail address, sender's name, SSRC of associated RTP stream
  - Provide mapping between the SSRC and the user/host name.
- BYE: Leaving the session
- APP: Specific for each application
- It is common the concatenation of PDUs: at least two should be sent in each UDP message
  - Mixers and translators also concatenate packets

69

universidade

## Sources (streams) synchronization

- RTP used to synchronize different streams
  - Consider videoconferencing application for which each sender generates one RTP stream for video and one for audio
    - Timestamps in RTP packets tied to the video and audio sampling clocks
    - Not tied to the wall-clock time
- RTCP reports have:
  - Timestamp in the last RTP packet
  - Time (wall clock) of the packet generation
- Receivers can use this information to synchronize different media sources (audio/video)
  - RTP timestamp value is centered in the sampling rates and not in the transmission time



#### **RTP** limitations

- RTP standardizes and makes easier the transmission of continuous audio and video flows, but:
  - Does not reserve resources
  - Does not have QoS guaranties
  - Does not support congestion control
  - Does not support reliability
  - ...
- ...should work together with other protocols (RSVP) and networks (ATM) for QoS guaranties
  - An essential aspect for these flows
- · Routers do not "see" RTP
  - They cannot provide priviledge services
- Scalability problems:
  - When many receivers get in the sessions simultaneously (many reports, not aggregated)

VoIP
Voice (and Video and ...)
over IP



# Overview recall: Voice over IP

- Network loss: IP datagram lost due to network congestion (router buffer overflow).
- Delay loss: IP datagram arrives too late for playout at receiver.
  - Delays: processing, queueing in network; end-system (sender, receiver) delays.
  - Typical maximum tolerable delay: 400 ms.
- Loss tolerance: depending on voice encoding, packet loss rates between 1% and 10% can be tolerated.
- . Speaker's audio: alternating talk/speech with silent periods.
  - 64 kbps during talk/speech.
  - Packets generated only during talk/speech.
    - 20 msec chunks at 8 Kbytes/sec: 160 bytes data
- Requires session establishment.
- VoIP protocols/frameworks:
  - Session Initiation Protocol (SIP)
    - Session Description Protocol (SDP)
  - H 323
- VoIP and PSTN interoperability in large/ISP scalable scenarios require complex control frameworks:
  - Media Gateway Controller Protocol (MGCP);
  - H.248/Megaco.

73



#### **SIP vs H.323**

- SIP comes from IETF: Borrows much of its concepts from HTTP
- H.323 is another signaling protocol for real-time, interactive.
  - Comes from the ITU (telephony).
- SIP has a Web flavor, whereas H.323 has a telephony flavor.
- SIP is a single component. Works with RTP, but it can be combined with other protocols and services.
- H.323 is a complete, vertically integrated suite of protocols for multimedia conferencing: signaling, registration, admission control, transport and codecs.













## Gatekeeper in an H.323 system

- · Gatekeeper is optional
  - When present, can provide a set of functionalities
    - Routing of call signalling (better control, intelligent routing decisions, load balacing of gateways)
    - However, these messages can be sent directly between users
- H.323 networks with IP/PSTN gateways should contain a gatekeeper to make address translation
- Mandatory functions
  - Address translation, admission and bandwidth control, zone management
- Optional functions
  - Call control signalling, call authorization and management



- Supports the required functionalities for three or more terminals and gateways to participate in a multi-point session
  - Multipoint Controller (MC)
    - Signalling and session control
  - Multipoint Processor (MP)
    - · Processing (multiplexing and sending) of multimedia flows.
- MC e MP
  - Centralized multi-point session
    - Signalling, control, and multimedia data information traverse the MCU
- Only MC
  - Descentralized multi-point session
    - · Only signalling and control information traverse the MCU









## H.323 operation (protocols)

- Obtain gatekeeper permission (RAS Admission Request)
- Find the address of the user to call (RAS Address resolution)
- Press the number (call) (Q931 call setup)
- Tell the partners what languages it understands/talks (H245 capability negotiation Set, Ack, Reject)
- Wait for the communication of its capabilities (H245 capability negotiation Set, Ack, Reject)
- Inform what languages will be used during the conversation (H245 Logical channel signaling; languages=codecs)
- Start talking (and listening) (Data transfer with RTP/RTCP)
- Upon termination, say Bye (H245 end session)
- Disconnect (Q931 call termination, release complete)
- Inform the gatekeeper that the call ended (RAS Disengage Request)

85



## H.323 operation (more...)

- Multiples languages can be used during the communication
- The language can be changed during conversation, as long as the other partner understands it
  - An explicit announcement has to be done
- Say Bye before terminating is optional....

• ..



## **H.225 RAS Messages**

#### gatekeeper discovery and registration

- . Gatekeeper discovery:
  - Gatekeeper Request (GRQ), Gatekeeper Confirm (GCF) and Gatekeeper Reject (GRJ)
  - If one gatekeeper answers positively, the endpoint should select which one to use.
- . Endpoints registration:
  - Registration Request (RRQ) and Unregistration Request (URQ)
- Endpoints location:
  - Location Request (LRQ), Location Confirm (LCF) and Location Reject (LRJ)
  - Through the alias of another endpoint, it can obtain contact information of that endpoint.
- Admission to participate in a session:
  - , Admission Request (ARQ), Admission Confirmation (ACF) and Admission Reject (ARJ)
- . Change of bandwidth by an endpoint or gatekeeper
  - Bandwidth Request (BRQ), Bandwidth Confirm (BCF) and Bandwidth Request (BRJ)
- State information of an endpoint:
  - Information Request (IRQ) and Information Request Response (IRR)
- Session leave:
  - Disengage Request (DRQ), Disengage Confirm (DCF) and Disengage Reject (DRJ)
- . Communication of available resources gateways should inform gatekeepers about its capacities:
  - Resource Available Indicate (RAI) and Resource Available Confirmation (RAC)

87



## H.225 Call Signaling Q.931 Messages

- Call establishment messages:
  - Setup, Setup Acknowledge, Alerting, Call Proceeding, Connect, Connect Acknowledge, and Progress.
- Call Clearing messages:
  - Disconnect, Release, and Release Complete.
- Call Information Phase messages:
  - Resume, Resume Acknowledge, Resume Reject, Suspend,
     Suspend Acknowledge, Suspend Reject, and User Information.
- Miscellaneous messages:
  - Congestion Control, Information, Notify, Status, and Status Inquiry.
- . Q.932/H.450 messages:
  - Facility, Hold, Hold Acknowledge, Hold Reject, Retrieve, Retrieve Acknowledge, and Retrieve Reject.



## H.225 Call Signaling (most common)

- . Setup Establish a session between endpoints.
- . Call Proceeding (optional) answer to a setup indicating that it received the establishment process of the running session.
- Alerting message sent by a callee to indicate that the user was already notified (corresponds to the phone ringing).
- Progress optional message sent by a gateway to indicate that the session is in progress.
- . Connect message sent by a callee that indicates session acceptation.
- , Release Complete message sent by an endpoint to terminate a session.
- Facility message sent by an endpoint to another one to inform where to redirect the session (other information can be sent)
- Notify optional message used by any H.323 entity to send information to another one.
- Status Inquiry message used by an endpoint during a session lifetime to ask another one about its status.
- . Status message used to answer to a status inquiry message.

89

# © 931 Call Signaling – establish, control and terminate connections

- Setup Establish a session between endpoints
- call proceeding (optional) answer to a setup indicating that it received the establishment process of the running session
- Alerting message sent by a callee to indicate that the user was already notified (corresponds to the phone ringing)
- progress optional message sent by a gateway to indicate that the session is in progress
- connect message sent by a callee that indicates session acceptation
- release complete message sent by an endpoint to terminate a session
- facility message sent by an endpoint to another one to inform where to redirect the session (other information can be sent)
- notify optional message used by any H.323 entity to send information to another one
- status inquiry message used by an endpoint during a session lifetime to ask another one about its status
- status message used to answer to a status inquiry message



## **H.245 Control Messages**

- Capacities and preferences negotiation of each participant entity
- · Signalling of logical channels used for data communication
- Used after the exchange of Setup and Connect messages to open an H.245 control channel.
- . Capacities negotiation (supported formats for sending and reception):
  - terminalCapabilitySet, terminalCapabilitySetAck, terminalCapabilitySetReject
- Master/slave determination to solve conflicts that may appear during a session lifetime:
  - masterSlaveDetermination, masterSlaveDeterminationAck, masterSlaveDeterminationReject
- Opening of logical channels for several flows:
  - openLogicalChannel, openLogicalChannelAck, openLogicalChannelConfirm, openLogicalChannelReject
- Closing of logical channels:
  - closeLogicalChannel, closeLogicalChannelAck, requestChannelClose, requestLogicalChannelAck, requestLogicalChannelReject
- When all logical channels are closed, the session can be terminated:
  - endSession

91



## **ITU Recommendations**

|          | H.320                   | H.321                   | H.322                   | H.323v1<br>H323v2                                 | H.324          |
|----------|-------------------------|-------------------------|-------------------------|---------------------------------------------------|----------------|
| Network  | Narrowband<br>ISDN      | Broadband<br>ISDN/ATM   | Guaranteed<br>B/W       | Non-<br>Guaranteed<br>B/W                         | PSTN/POTS      |
| Approval | 1990                    | 1995                    | 1995                    | 1996/1998v2                                       | 1996           |
| Audio    | G.711<br>G.722<br>G.728 | G.711<br>G.722<br>G.728 | G.711<br>G.722<br>G.728 | G.711<br>G.722<br>G.728<br>G.723.1<br>G.729, 729A | G.723          |
| Video    | H.261<br>H.263          | H.261<br>H.263          | H.261<br>H.263          | H.261<br>H.263                                    | H.261<br>H.263 |
| Data     | T.120                   | T.120                   | T.120                   | T.120                                             | T.120          |
| Control  | H.230<br>H.243          | H.242                   | H.230<br>H.242          | H.245                                             | H.245          |











## Advantages and disadvantages

- + Works!
- + There are many implementations... some are free...
- + Supports many languages (codecs).
- + Interoperates with other languages: H320 (ISDN), H324 (POTS)
- + Good role in a specific transition period of coexistence
- Very complicated...
- Many protocols can be combined in the H.323 environment... It implies technology redundancy....
- Problems when Gatekeeper is overloaded and MCU is full!
- Firewalls ? ... Difficult to develop (multiple ports have to be managed in a conversation).

98



**Session Initiation Protocol (SIP)** 



### SIP

- SIP = base protocol to establish sessions in the internet (peer-to-peer), low complexity and generic
  - Developed by IETF mmusic group, since 1995
  - Peer-to-peer signalling protocol (RFC 2543 in 1999, RFC 3261)
- Transports session description information of initiator (caller) to destination (callee)
  - Client-server approach (origination/answer)
  - Independent of protocol (UDP, TCP, AAL5, ...)
    - · Supports multicast
    - But generally works through UDP...
    - Security at the transport and network layer provided with TLS (requires TCP) or IPSec
- Supports change of parameters in the middle of the session
- · Signaling messages not frequent
  - Always with acknowledges
- · Objective:
  - Allow maximum re-utilization of existent protocols
  - Use HTTP-alike coding (text-based)
  - Reuse already existent addresses (URLs, DNS, proxies...)
  - Be an alternative to H.323
  - Supporting new services
  - Being scalable, extensible

100



## SIP allows...

- Create, modify and terminate multimedia sessions with two or more participants
  - VoIP, distribution of multimedia data and multimedia conference
- Provides functionalities that can be used to implement the following services
  - Users location
  - Users availability
  - Determination of users capabilities
  - Negotiation (and re-negotiation) of the parameters of users participating in a session
  - Negotiation of session characteristics
    - Session Description Protocol
  - Users mobility
  - Security mechanisms
    - · Prevention of denial of service attacks
    - Users authentication
    - · Message integrity and confidentiality
- It does not distribute multimedia data
  - Part of IETF architecture of conference control (+SAP, + RTSP, + SDP, ...)
- It is not able to control media gateways

UT



## **SIP** functionalities

- SIP supports five communication aspects:
  - User location (given an e-mail type address) determination of the end system to be used for communication
    - Distributed directory lookups
  - User capabilities determination of the media and media parameters to be used
  - User availability determination of the willingness of the called party to engage in communications
  - Call (session) establishment "ringing", establishment of session parameters at both called and calling party;
    - Including multi-party, using an MCU, or a fully-meshed strategy
  - Call (session) control including transfer and termination of sessions, modifying session parameters, and invoking services
    - (Re)-negotiation of call parameters
    - · Forwarding: manual and automatic
    - · Personal mobility: different terminals with the same identifier
    - Call center: reach the first (load distribution) or all (conference)
    - Initiates, modifies and terminates sessions (conferences)
      - Including between gateways to the PSTN

SIP has been heavily explored in current network concepts (IMS)

102

universidade de aveiro

## SIP clients and servers

User Agent Server, UAS User Agent Client, UAC





Gateways Registrar Redirect Proxy

- UAC: user-agent client (application that starts the call)
- UAS: user-agent server that accepts, redirects or rejects calls
- redirect server: redirect requests
- proxy server: server + client; controls the call, gets the address of the proxy callee, can also redirect
- registrar: registers the location of the user
- user agent = UAC + UAS
  - Usually combine a registrar + (proxy or redirect server)



## **SIP Clients and Servers**

- SIP Clients
  - Phones (software based or hardware).
  - Gateways
  - User Agents
  - A User Agent acts as a
    - Client when it initiates a request (UAC),
    - Server when it responds to a request (UAS).
- SIP Servers
  - Proxy server
    - Receives SIP requests from a client and forwards them on the client's behalf.
    - Receives SIP messages and forward them to the next SIP server in the network
    - Provides functions such as authentication, authorization, network access control, routing, reliable request retransmission, and security.
  - Redirect server
    - Provides the client with information about the next hop or hops that a message should take and then the client contacts the next-hop server or UAS directly.
  - Registrar server
    - Processes requests from UACs for registration of their current location.
    - Registrar servers are often co-located with a redirect or proxy server.

104



## **Proxy servers**

- Intermediate entities that behave as servers and clients
  - Make requests in name of other clients
- · Get location of other endpoints
- Route SIP messages
- Optional
  - Authentication and accounting

universidade

## Registration and redirect servers

- Registration
  - Entities where users register their UAs
  - Allow the mapping between users addresses and their UAs addresses
    - · Database of location service
    - Request to database by proxy and redirect servers
      - Routing and redirect of messages
- Redirect
  - Returns alternative locations of UAs and servers
    - · Receives requests
    - · Requests the location service
    - Returns a list of alternative addresses to where the request should be redirected

106



## **User Agent**

- Endpoint of sessions
  - Initiates and terminates sessions
  - User Agent Server (UAS) and User Agent Client (UAC)
- UAC
  - Creates the requests (e.g. to initiate a session)
- UAS
  - Generates answers to requests (e.g. to answer a session request)
- Hardware or software equipment that implements UA functions





## **SIP** addresses

- URI (Uniform Resource Identifier)
  - Translated, by proxy server, to the UA address used by the user
  - A same user can have and use different UAs
  - sip:user@host:port;uri-parameters?headers
    - uri-parameters are parameters that affect the request for the resource identified by SIP URI
    - · headers are fields to be included in the request
- sip:275313364@telecom.pt;user=phone
  - Identifies a user or a resource through the phone number 275313364 in the telecom.pt domain
  - To enforce that it is a phone number, the parameter user with the value phone is used

universidade de aveiro

## **SIP Messages**

- SIP used for Peer-to-Peer Communication though it uses a Client-Server model.
- . SIP is a text-based protocol and uses the UTF-8 charset.
- A SIP message is either a request from a client to a server, or a response from a server to a client.
  - A request message consists of a Request-Line, one or more header fields, an empty line indicating the end of the header fields, and an optional message-body;
  - A response message consists of a Status-Line, one or more header fields, an empty line indicating the end of the header fields, and an optional message-body.
  - All lines (including empty ones) must be terminated by a carriage-return line-feed sequence (CRLF).



## **SIP** messages

| Method   | Propósito                                               |  |  |
|----------|---------------------------------------------------------|--|--|
| REGISTER | Registar um UA no serviço de localização.               |  |  |
| INVITE   | Estabelecer ou alterar os parâmetros de uma sessão.     |  |  |
| ACK      | Confirmar a recepção da resposta a um pedido de sessão. |  |  |
| CANCEL   | Terminar um pedido de sessão pendente.                  |  |  |
| BYE      | Terminar uma sessão.                                    |  |  |
| OPTIONS  | Interrogar uma entidade acerca das suas capacidades.    |  |  |

#### Some fields

- To address of the destination entity
- From address of the entity that sends the message
- Call-ID identifies, together with the parameters tag of fields To and From, each session SIP and all registration requests of a UA
- Via contains information about a path followed by the request from its origin, that should be used to route the answer
- Proxy-Authenticate contains a challenge sent by a proxy server to be used in the authentication
- Proxy-Authorization contains the answer to the challenge sent by a proxy server
- Route used to indicate the route of a request through a set of proxy servers

110

#### universidade

## **SIP** Responses Codes and Purposes

- The first digit of the Status-Code defines the class of response.
  - 1xx: Provisional request received, continuing to process the request;
  - 2xx: Success the action was successfully received, understood, and accepted;
  - 3xx: Redirection further action needs to be taken in order to complete the request;
  - 4xx: Client Error the request contains bad syntax or cannot be fulfilled at this server;
  - 5xx: Server Error the server failed to fulfill an apparently valid request;
  - 6xx: Global Failure the request cannot be fulfilled at any server.

- Common Response codes:
  - \_ 100 Trying
    - The request has been received and that some unspecified action is being taken.
  - 180 Ringing
    - . Trying to alert the user.
  - 200 OK
  - 301 Moved Permanently and 302 Moved Temporarily
    - User can no longer be found at the address in the Request-URI.
  - 400 Bad Request
    - . Request could not be understood.
  - 401 Unauthorized
    - . Request requires user authentication.
  - 403 Forbidden
    - Server understood the request, but is refusing to fulfill it.
  - 404 Not Found
    - Server has definitive information that the user does not exist.



































universidade de aveiro

## **SIP** potencialities

- Other defined facilities (generally in extensions)
  - Presence and instant messaging (methods of general notifications – IETF: SIMPLE WG), caller preference, callee capabilities, ...
    - Allow the unification of servers and common databases!
  - Integration of web, email, fax/video... In an unified way
  - Uses RTSP, similarly to HTTP (request-response)
- Programming of services
  - SIP-CGI, CPL, SIP-servlet
- SIP conference



## **SIP Extensions**

- SIP Specific Event Notification (RFC 3265)
  - SUBSCRIBE and NOTIFY messages.
  - Extensible framework by which SIP nodes can request notification from remote nodes indicating that certain events have occurred.
  - E.g. request notifications for voicemail messages waiting.
- SIP INFO Method (RFC 6086)
  - INFO message.
  - Allow for the carrying of session related control information that is generated during a session.
  - E.g DTMF tones emulation.
- SIP Extension for Event State Publication (RFC 3903)
  - PUBLISH message.
  - Allows to publish event state used within the SIP Events framework.
  - E.g. User/terminal status change (Away, Busy, etc...)

# de aveire SIP Presence and Instant Messaging

- SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)
  - Provides for presence and buddy lists,
  - Instant Messaging in the enterprise,
  - Telephony enabled user lists.
- Presence
  - SIP-Specific Event Notification (RFC 6665).
    - SUBSCRIBE and NOTIFY methods.
  - Session Initiation Protocol (SIP) Extension for Event State Publication (RFC 3903)
    - PUBLISH mechanism.
- Instant Messaging
  - Page Mode
    - Doesn't require a session. Uses MESSAGE method (RFC 3428).
  - Session Mode
    - Message Session Relay Protocol (RFC 4975, RFC 4976).
    - Text-based protocol for exchanging content between users
    - Requires the establishment of an MSRP session.
      - Set-up using MSRP URI, within SIP and SDP signaling.



## **SIP for Presence**

- The SUBSCRIBE method is used to request current state and state updates/notifications from a remote node for a specific event.
  - Must contain an "Event" header field with information to identify the resource for which event notification is desired.
    - e.g., Voicemail (Event: message-summary).
  - Should contain an "Expires" header field indicating the duration of the subscription.
    - Unsubscribing is handled as refreshing a subscription, with the "Expires" header field set to "0".
  - May contain an "Accept" header field indicating the body formats allowed in notifications.
- The NOTIFY requests are sent to inform subscribers of changes in state (events) to which the subscriber has a subscription.
  - Does not terminate its corresponding subscription.
- 200 OK responses are used to acknowledge SUBSCRIBE and NOTIFY requests.
- The PUBLISH method is used to create, modify, and remove an event state.
  - e.g., Presence (away, busy, available, etc...) Event: presence

134

universidade de aveiro

## **SIP for Instant Message (IM)**

- The MESSAGE method (an extension to SIP) allows the transfer of Instant Messages (IM).
- MESSAGE requests carry the content in the form of MIME body parts.
  - Content-Type header defines content format.
- MESSAGE requests do not themselves initiate a SIP dialog.
  - May be sent in the context of a dialog initiated by some other SIP request.

## Session Description Protocol (SDP)

- Protocol used to describe multimedia sessions announcements, requests to join or other ways of starting a multimedia session
  - When initiating multimedia teleconferences, VoIP calls, streaming video, or other sessions, is required to transmit to participants media details, transport addresses, and other session description metadata.
- A multimedia session is a set of streams that is active for a period of time
- Not "exactly a protocol", but describes data used in other protocols
  - SDP is purely a format for session description.
  - SDP (RFC 2327, RFC 4566) provides a standard representation for such information, irrespective of how that information is transported.
  - SDP is intended to be general purpose so that it can be used in a wide range of network environments and applications: SIP, RTSP, H.332, PINT.
  - SIP carries (encapsulates) SDP messages.

136

#### **SDP Session Description** . An SDP session description is • Types Session description v= (protocol version) entirely textual. o= (originator and session identifier) . Consists of a number of lines of text of the form <type>=<value> i=\* (session information) u=\* (URI of description) <type> is one case-significant character. p=\* (phone number) <value> is structured text whose b=\* (zero or more bandwidth information lines) format depends on <type>. One or more time descriptions ("t=" and "r=" lines; see below) z=\* (time zone adjustments) Consists of a session-level section k=\* (encryption key) followed by zero or more mediaa=\* (zero or more session attribute lines) Zero or more media descriptions level sections. The session-level part starts with a Time description t= (time the session is active) "v=" line and continues to the first r=\* (zero or more repeat times) media-level section. Media description, if present Each media-level section starts m= (media name and transport address) with an "m=" line. i=\* (media title) c=\* (connection information -- optional if included at b=\* (zero or more bandwidth information lines) k=\* (encryption key) 137 a=\* (zero or more media attribute lines)



## **SDP: Session Description Protocol**

- E.g:
- v = 0
- o=g.bell 877283459 877283519 IN IP4 132.151.1.19
- s=Come here, Watson!
- u=http://www.ietf.org
- e=g.bell@bell-telephone.com
- c=IN IP4 132.151.1.19
- b=CT:64
- t=3086272736 0
- k=clear:manhole cover
- m=audio 3456 RTP/AVP 96
- a=rtpmap:96 VDVI/8000/1
- m=video 3458 RTP/AVP 31
- m=application 32416 udp wb
- media
- attributes

138



## **SIP vs H.323**

- SIP comes from IETF: Borrows much of its concepts from HTTP
- H.323 is another signaling protocol for real-time, interactive.
  - Comes from the ITU (telephony).
- SIP has a Web flavor, whereas H.323 has a telephony flavor.
- SIP is a single component. Works with RTP, but it can be combined with other protocols and services.
- H.323 is a complete, vertically integrated suite of protocols for multimedia conferencing: signaling, registration, admission control, transport and codecs.



## **SIP** vs **H.323**

- Request response based in text (HTTP-alike)
- SDP (types of media and transport addresses)
- Types of server: registrar, proxy, redirect
- Defines a minimum set and uses profiles and extensions (KISS)
- ASN.1 coding with specific coding rules
- Sub-protocols: H.245, H.225 (Q.931, RAS, RTP/RTCP), H.450.x...
- H.323 Gatekeeper
- Defines extensively the functions

-Both use RTP/RTCP through UDP/IP
-H.323 only through UDP
- H.323 is considered "heavy-weight", ITU-T biased

140



## **Learning outcomes**

- Understand the scope of VoIP models
- Describe RTP operation
- Understand the SIP and H.323 protocols
- Describe architectures for interconnecting POTS and the Internet.











## **ISPs and PSTN**

- Having VoIP (specially voice) sessions connecting to old-style phone networks implies:
  - 1. Interconnecting voice signalling
  - 2. Interconnecting data (voice)
    - Typically this is set by routing tables in both sides
  - 3. Linking both inteconnection actions
  - 4. Selecting where to do each one of these

146



## What about REAL interoperation?

- Signaling boxes between the data and circuit systems must be interconnected
  - · Multiple interconnection points may exist
- Systems must select best interconnection points
  - This implies best routing solution
    - And this is mixed routing both in data and circuit systems
  - Interoperation points may be different for the data and control planes
- Different types of boxes may exist (interoperation of data/control/both)

# **VoIP** and PSTN Interoperability in Large Scalable Scenarios

- Requires an application programming interface and a corresponding protocol for controlling VoIP Gateways from external call control elements.
- . Signaling must be inter-operable between PSTN and VoIP.
- Protocols:
  - Media Gateway Controller Protocol (MGCP) RFC 2705
  - MGCP evolution/successor → H.248/Megaco (RFC 3015) → H.248.1/Gateway Control Protocol (RFC 3525)
    - These are control plane signaling only.
  - SIGTRAN (Signaling Transport) is the standard telephony protocol used to transport Signaling System 7 (SS7) signals over the Internet.
    - → Stream Control Transmission Protocol (SCTP) RFC 3286
      - Is an IP transport designed for transporting signaling information over an IP network.
      - Reliable transport protocol with support for framing of individual message boundaries.







## **MGCP** e Megaco

- Media Gateway Controller Protocol (RFC 2705)
- Controls phone Gateways resorting to external control elements, the media gateway controllers (MGC) a.k.a. call agents
  - Gateways: Eg: RGW (residential gateway): physical interconnection between VoIP networks and phone interfaces at homes
  - The call control "intelligence" is outside the gateways, and is controlled by external elements
  - master-slave philosophy
- Objective: scalable gateway infrastructure between PSTN and IP networks
- MGCP Successor: H.248/Megaco
- These are control plane signaling ONLY.



#### universidade de aveiro

## MGCP/H.248 Elements

- Media Gateway Controller (MGC)
  - Controls the parts of the call state that pertain to connection control for media channels in a MG.
- Media Gateway (MG: RGW/TGW)
  - Converts media provided in one type of network to the format required in another type of network.
  - MG could terminate bearer channels from a switched circuit network (e.g., DS0s) and media streams from a packet network (e.g., RTP streams in an IP network).
- Signaling Gateway (SG)
  - Responsible for transferring signaling messages (e.g., SS7 messages) to different protocols and transports.
    - Signaling Transport (SIGTRAN)
    - e.g., SS7 to SIGTRAN (SCTP/IP).

