Laboratorio de Métodos Numéricos

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Trabajo Práctico Número 1

Con 15 θ 's discretizo alto horno

Integrante	LU	Correo electrónico
Ciruelos Rodríguez, Gonzalo	063/14	gonzalo.ciruelos@gmail.com
Costa, Manuel José Joaquín	035/14	manuc94@hotmail.com
Gatti, Mathias Nicolás	477/14	mathigatti@gmail.com

Descripcion del Tp

Eliminación gaussiana factorización LU discretización key4

1. Introducción teórica

El objetivo del presente informe es resolver un problema práctico mediante el modelado matemático del mismo. Este problema consiste en considerar la sección horizontal de un horno de acero cilíndrico, y dadas las temperaturas en el interior y en el exterior de este, analizar si se encuentra en peligro o no.

Para ello, se debe encontrar una cierta isoterma, que si se encuentra muy cerca (para algún significado de la palabra muy) de la pared del horno, consideraremos que el sistema se encuentra en peligro.

Para modelar la difusión de la temperatura, utilizaremos la ecuación de Laplace.

$$\frac{\partial^2 T(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial^2 T(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial T(r,\theta)}{\partial \theta^2} = 0.$$
 (1)

Como puede verse en la ecuación 1, esta ecuación depende de variables que son continuas, lo que es matemáticamente válido, pero computacionalmente imposible (a menos que se haga simbólicamente) de calcular.

Para resolver este problema computacionalmente, debemos discretizar el dominio del problema en coordenadas polares. Por eso consideramos una particion $0 < \theta_0 < \theta_1 < ... < \theta_n = 2\pi$ en n ángulos discretos, con $\theta_i - \theta_{i-1} = \Delta \theta$ constante, y una partición $r_i = r_0 < r_1 < ... < r_m = r_e$ en m+1 radios discretos con $r_j - r_{j-1} = \Delta r$ para j=1,...,m.

Entonces ahora, aproximado las derivadas numéricamente utilizando idea del cociente incremental, podemos obtener un sistema de ecuaciones linales que describa el sistema. La formulación detallada de la formulación del sistema se encuentra en el desarrollo.

Para resolver estos sitemas, utilizaremos los dos métodos vistos en clase, eliminación Gaussiana y factorización LU. Además, como explicaremos mejor y también demostramos en el anexo, podemos realizar estos métodos sin utilizar pivoteo, dado que nunca aparecerá ningun 0 en la diagonal cuando triangulemos la matriz.

2. Desarrollo

2.1. Convenciones

De aquí en adelante, si no se aclara otra cosa, se asumen las siguientes convenciones:

- r_i es el radio que va del centro del horno al borde interno de la pared, mientras que r_e es el radio considerando el borde externo;
- n es la cantidad de ángulos discretos $(0 = \theta_0 < \ldots < \theta_{n-1} = 2\pi \Delta\theta)$ en los que se particiona la pared;
- m+1 es el total de radios discretos ($r_i = r_0 < \ldots < r_m = r_e$);
- $t_{k,j} = T(r_k, \theta_j)$, donde T es la función de temperatura de la pared (que desconocemos);
- $b \in \mathbb{R}^{n \times (m+1)}$: $b = (b_0, b_1, \dots, b_{(n \times (m+1))-1})$ será el vector de términos independientes del sistema que plantearemos luego (veremos que la dimensión escogida es correcta).

2.2. Métodos numéricos usados

A partir de la ecuación del calor de Laplace y las discretizaciones de las derivadas parciales dadas en el enunciado del presente trabajo práctico, se puede obtener un sistema de ecuaciones donde las soluciones son las temperaturas en los puntos de la discretización. Es decir que el problema de hallar la isoterma se reduce a dos sub-problemas: el primero es resolver efectivamente el sistema planteado, mientras que el segundo consiste en usar las temperaturas halladas para estimar la posición de la isoterma.

Para resolver el sistema haremos uso de los métodos de eliminación gaussiana y la factorización LU, para luego poder contrastar su eficiencia ante distintas situaciones. Adicionalmente, realizaremos una variación de cada método para aprovechar una de las características propias de la matriz del sistema.

Para hallar la posición de la isoterma (de temperatura t_{iso}), dado un ángulo θ_j de la discretización, lo que haremos es buscar dos radios, r_k y r_{k+1} , tales que $t_{k+1,j} \le t_{iso} \le t_{k,j}$. A partir de estos dos valores, fácilmente podemos realizar un ajuste lineal considerando la recta de pendiente $m = \frac{t_{k,j} - t_{k+1,j}}{\Delta r}$ que pasa por $(r_k, t_{k,j})$ y $(r_{k+1}, t_{k+1,j})$. Para una explicación más detallada ver el apéndice ??????.

2.3. Armado del sistema de ecuaciones y su matriz asociada

Tenemos un sistema con $n \times (m+1)$ incógnitas.

Primero contamos con n variables, los $t_{0,j}$ con $j=0,1,\ldots,n-1$ (es decir, las temperaturas interiores), cuyos valores conocemos pues nos son dados como inputs. Lo mismo sucede con $t_{m,j}$ para $j=0,1,\ldots,n-1$ (temperaturas externas). Luego, para las temperaturas interiores sabemos gracias a la función de Laplace y a la discretización de las derivadas que vale

$$\frac{t_{k-1,j}-2t_{k,j}+t_{k+1,j}}{(\Delta r)^2}+\frac{1}{r_k}\times\frac{t_{k,j}-t_{k-1,j}}{\Delta r}+\frac{1}{r_k^2}\times\frac{t_{k,j-1}-2t_{k,j}+t_{k,j+1}}{(\Delta \theta)^2}=0$$

Reescribiendo convenientemente la ecuación de arriba nos queda que

$$\frac{r_k - \Delta r}{r_k(\Delta r)^2} t_{k-1,j} + \frac{1}{r_k^2(\Delta \theta)^2} t_{k,j-1} + \frac{r_k \Delta r(\Delta \theta)^2 - 2(\Delta r)^2}{r_k^2(\Delta r)^2(\Delta \theta)^2} t_{k,j} + \frac{1}{r_k^2(\Delta \theta)^2} t_{k,j+1} + \frac{1}{(\Delta r)^2} t_{k+1,j} = 0$$
 (2)

Hay que distinguir dos casos bordes que deben tratarse un poco diferente: si j = 0 entonces en lugar de $t_{k,j-1}$ se usa $t_{k,n-1}$, mientras que si j = n-1 en lugar de $t_{k,j+1}$ va $t_{k,0}$.

Vale destacar que si bien todos los coeficientes dependen de la distancia al centro del horno (r_k) , ninguno lo hace respecto del ángulo concreto en que se encuentra el punto. Esto resulta muy razonable si tenemos en cuenta que el valor del ángulo depende exclusivamente del sistema de referencia escogido (dónde ubicamos el ángulo 0), mientras que dado un punto de la pared es lógico que su temperatura no dependa del sistema de referencia escogido para su medición.

Para facilitar la lectura, de ahora en adelante llamaremos a los coeficientes de la ecuación (2):

$$\bullet \ a_k = \frac{r_k - \Delta r}{r_k (\Delta r)^2}$$

$$\bullet b_k = \frac{1}{r_k^2(\Delta\theta)^2}$$

$$d_k = \frac{1}{(\Delta r)^2}$$

Pensamos ahora el orden que le daremos a los puntos de la discretización. Este será el orden en el que escribiremos las ecuaciones. Sin demasiadas complicaciones, un orden razonable es primero por ángulo (desde θ_0 y avanzando en sentido antihorario) y luego por radio (de menor a mayor) respetando el orden relativo previo. Luego, dado un $t_{k,j}$ para obtener su posición (contada desde 0) en este orden debemos realizar la siguiente cuenta

$$posicion(t_{k,j}) = k \times n + j \tag{3}$$

La cantidad total de variables es $n \times (m+1)$ (cantidad de ángulos por cantidad de radios), y como para cada una podemos o bien plantear la ecuación 2, o bien ya conocemos su valor, podemos armar un sistema de $n \times (m+1)$ ecuaciones lineales.

A continuación presentamos el sistema de ecuaciones:

$$\begin{cases} t_{0,0} = b_0 \\ t_{0,1} = b_1 \\ \vdots \\ t_{0,n-1} = b_{n-1} \\ a_1t_{0,0} + c_1t_{1,0} + b_1t_{1,1} + b_1t_{1,n-1} + d_1t_{2,0} = 0 = b_n \\ a_1t_{0,1} + b_1t_{1,0} + c_1t_{1,1} + b_1t_{1,2} + d_1t_{2,1} = 0 = b_{n+1} \\ \vdots \\ a_1t_{0,n-2} + b_1t_{1,n-3} + c_1t_{1,n-2} + b_1t_{1,n-1} + d_1t_{2,n-1} = 0 = b_{2(n-1)} \\ a_1t_{0,n-1} + b_1t_{1,0} + b_1t_{1,n-2} + c_1t_{1,n-1} + d_1t_{2,n-1} = 0 = b_{2n-1} \\ a_2t_{1,0} + c_2t_{2,0} + b_2t_{2,1} + b_2t_{2,n-1} + d_2t_{3,0} = 0 = b_{2n} \\ a_{m-1}t_{m-2,n-1} + b_{m-1}t_{m-1,n-1} + c_{m-1}t_{m,n-1} + d_{m-1}t_{m-1,n-2} + d_{m-1}t_{m-1,0} = 0 = b_{n \times m-1} \\ t_{m,0} = b_{n \times m} \\ \vdots \\ t_{m,n-1} = b_{n \times (m+1)-1} \end{cases}$$

b tiene valores pasados por el usuario en las primeras n posiciones y en las n últimas, siendo el resto todos ceros.

Como primera observación importante notemos que el valor de cada $t_{k,j}$ $(1 \le k < m)$ depende exclusivamente del valor de sus cuatro vecinos, lo que permite prever que cada fila de la matriz asociada tendrá sólo cinco elementos distintos de 0.

Para realizar la siguiente observación primero veamos un ejemplo concreto. Consideremos la siguiente discretización con n=4 (particionamos la pared en cuatro ángulos iguales) y m=3 (4 radios en total). El sistema tendrá entonces $4 \times (3+1) = 16$ variables, con 16 ecuaciones. En este caso, el sistema (4) queda así

$$\begin{cases} t_{0,0} = b_0 \\ t_{0,1} = b_1 \\ t_{0,2} = b_2 \\ t_{0,3} = b_3 \\ a_1t_{0,0} + c_1t_{1,0} + b_1t_{1,1} + b_1t_{1,3} + d_1t_{2,0} = 0 = b_4 \\ a_1t_{0,1} + b_1t_{1,0} + c_1t_{1,1} + b_1t_{1,2} + d_1t_{2,1} = 0 = b_5 \\ a_1t_{0,2} + b_1t_{1,1} + c_1t_{1,2} + b_1t_{1,3} + d_1t_{2,2} = 0 = b_6 \\ a_1t_{0,3} + b_1t_{1,0} + b_1t_{1,2} + c_1t_{1,3} + d_1t_{2,3} = 0 = b_7 \\ a_2t_{1,0} + c_2t_{2,0} + b_2t_{2,1} + b_2t_{2,3} + d_2t_{3,0} = 0 = b_8 \\ a_2t_{1,1} + b_2t_{2,0} + c_2t_{2,1} + b_2t_{2,2} + d_2t_{3,1} = 0 = b_9 \\ a_2t_{1,2} + b_2t_{2,1} + c_2t_{2,2} + b_2t_{2,3} + d_2t_{3,2} = 0 = b_{10} \\ a_2t_{1,3} + b_2t_{2,0} + b_2t_{2,2} + c_2t_{2,3} + d_2t_{3,3} = 0 = b_{11} \\ t_{3,0} = b_{12} \\ t_{3,1} = b_{13} \\ t_{3,2} = b_{14} \\ t_{3,3} = b_{15} \end{cases}$$

$$(5)$$

Ahora escribamos la matriz asociada a (5) es

Rápidamente notamos que A cumple la propiedad de ser una matriz banda. No solo eso, sino que además el ancho de ambas bandas (superior e inferior) es igual a 4, lo que coincide con n.

Tratemos ahora de convencernos que esto no se debe a una característica particular del ejemplo y que vale en el caso general. Por un lado está claro que tanto las primeras como las últimas n filas van a tener 1's en la diagonal y 0's en el resto de las posiciones, pues esas son las temperaturas que conocemos a priori. Por lo tanto, con estas filas no hay problema.

Para las filas de en medio analicemos la distancia (entiéndase cantidad de variables de distancia) desde el elemento de la diagonal hasta el último elemento no nulo de la fila, tanto a izquierda como a derecha. Viendo la ecuación (2) es fácil darse cuenta que la variable más alejada (con coeficiente no nulo) a izquierda de $t_{k,j}$ es $t_{k-1,j}$, mientras que a derecha es $t_{k+1,j}$. Ambas variables están a distancia n de $t_{k,j}$, pues para llegar desde el punto (r_k, θ_j) a $(r_k - 1, \theta_j)$ o $(r_k + 1, \theta_j)$ es necesario dar una vuelta completa (n ángulos discretos) en sentido horario o antihorario respectivamente. Por lo tanto cualquier coeficiente de la matriz asociada a más de distancia n de la diagonal es nulo. Con esto ya nos aseguramos que la matriz es banda, cuyo ancho es como mucho n. Pero además como dijimos que los coeficientes que acompañan a $t_{k-1,j}$ y $t_{k+1,j}$ son no nulos (lo cual vale siempre pues efectivamente a_k y d_k nunca pueden ser 0^1), es cierto que el ancho de ambas bandas es exactamente n.

¹Efectivamente $a_k = 0 \Leftrightarrow r_k - \Delta r = 0$, pero como $r_k = r_i + k \times \Delta r$ la única forma de que esa resta sea 0 es que r_i sea 0, lo cual no tiene sentido en el contexto del problema (sería pura pared).

2.4. Estructuración del código

Para el modelado del problema diseñamos dos módulos: Matriz y Sistema.

2.4.1. Matriz

Representación interna La representación interna es realmente simple: un vector de vectores fila, y dos enteros, n para la cantidad de filas y m para la cantidad de columnas.

Interfaz La interfaz de Matriz provee las siguientes operaciones:²

- Matriz(int n, int m, double init): constructor de la matriz. n es la cantidad de filas y m la de columnas, mientras que init será el valor que tendrán inicialmente todos los elementos de la matriz.
- Otras operaciones usuales: un constructor por copia, una función para imprimir la matriz, funciones que devuelven la cantidad de filas y de columnas, y un operador que permite acceder a cada elemento de la matriz (se numera a partir de 0).
- vector<double> backward_subst(Matriz A, vector<double> b): función que dada una matriz cuadrada triangular superior sin ceros en la diagonal y un vector de tamaño igual a la cantidad de columnas de la matriz, resuelve el sistema planteado mediante el algoritmo de backward substitution.
- **vector**<**double**> forward_subst(**Matriz** A, **vector**<**double**> b): análogo al anterior pero para matrices triangulares inferiores, resuelve el sistema usando forward substitution.
- vector<double> gaussian elim(Matriz A, vector<double> b)
- pair<Matriz *, Matriz *> LU fact()
- vector<double> gaussian elim banda(vector<double> b, int ancho)
- pair<Matriz *, Matriz *> LU fact banda(int ancho)

2.4.2. Sistema

Sistema es un módulo que engloba todo lo relacionado al modelado.

Representación interna Se almacenan varios valores: la cantidad de radios y ángulos de la discretización $(m_mas_uno_$ y $n_$), y el radio interno, el externo, Δr y $\Delta \theta$. Se guarda un puntero a la matriz asociada al sistema de ecuaciones, A. bs es un vector cuyos elementos a su vez son vectores, uno por cada instancia del problema que el usuario haya pasado. En soluciones se guardarán los vectores solución del sistema para cada instancia. Adicionalmente, tenemos algunas funciones auxiliares:

- col_matriz que permite obtener dados k, j la posición de la variable $t_{k,j}$ en el orden que les dimos (realizando la operación (1));
- double $resolver_isoterma(\mathbf{vector} < \mathbf{double})$ radios, double isoterma, double eps = 0.0001): radios tiene la temperatura en cada radio sobre un ángulo fijo, isoterma es el valor de la isoterma buscada, y eps es un parámetro hardcodeado que define el error que se tiene en cuenta para realizar una comparación en el caso extremo en que la isoterma buscada no se encuentre entre ningún par de radios, es decir, que el radio buscado es menor que r_i o mayor que r_e). Por decisión, en estos casos devolvemos r_i o r_e según la temperatura interior sea mayor que la isoterma buscada o no respectivamente. Sino, lo que devolvemos es la distancia desde el centro del horno hasta el punto donde estimamos se encuentra la isoterma (usando el ajuste lineal explicado en sección (2.2)).
- Tres funciones que nos dan 3 criterios para decidir si el sistema está en peligro o no, dado un vector que tiene la posición de la isoterma en cada ángulo: mediana, promedio y máximo.

 $^{^2}$ Cuando se escribe la aridad de la función la misma puede no coincidir con la notación usada en C++. Esto está bien pues lo único que se busca aquí es dar una orientación de lo que hace cada función y no código preciso.

Interfaz La interfaz de Sistema provee las siguientes operaciones:³

- Sistema(double r_i, double r_e, int m_mas_uno, int n, vector<vector<double>> interiores, vector<vector<double>> exteriores) : constructor del sistema. Cada vector de interiores es una medición de las temperaturas interiores en una determinada instancia (la cual está dada por la posición de la medición en interiores). exteriores es análogo a interiores para las mediciones de temperaturas exteriores. En una primera etapa inicializa los atributos de tipo double. Luego, arma A y bs.
- void solve(ofstream& f soluciones, metodo met):
- void isotermas(ofstream& f isotermas, double isoterma):

2.5. Experimentación

Pasemos a detallar los métodos que usamos para la experimentación.

En cuanto a la experimentación en lo que concierne al comportamiento de los resultados del programa cuando se cambian las discretizaciones, podemos decir que tuvimos muchos intentos hasta obtener el resultado deseado. De hecho, la experimentación extensiva que realizamos nos perimitió detectar un pequeño bug del código que no se hacía notar en los tests de la cátedra.

Para evaluar el comportamiento de los resultados, diseñamos configuraciones de sistemas que varían lo más posible cuando se cambia la discretización, como se verá en los resultados y la discusión.

Para evaluar como cambian los resultados cuando se aumenta la granularidad con respecto a los ángulos, lo que hicimos fue simplemente hacer un sistema cuyas temperaturas exteriores sean todas iguales, excepto 3 o 4 que son mucho más altas y están juntas. En consecuencia, cuando se achique la granularidad, estos detalles se perderán y el sistema parecerá más estable de lo que en realidad es.

Para evaluar como varían los resultados cuando se aumenta la granularidad con respecto a los radios, lo que hicimos fue similar, solo que no hace falta tomar un sistema muy especial, dado que las diferencias se notan fácilmente.

En cuanto a la experimentación en lo que concierne a la comparación del tiempo que le toma resolver el problema a cada uno de los métodos, lo que hicimos fue crear sistemas de variada granularidad y calcular cuanto tiempo le tomaba al programa resolverlo (desde que la matriz del sistema se terminó de construir, hasta que se resolvió el problema para todos los b's).

Los tests fueron planteados por separado para sistemas en los que se debe resolver un único b y otros en los que se debe resolver múltiples bs. Además, comparamos las implementaciones de eliminación Gaussiana, factorización LU y sus respectivas implementaciones optimizadas.

Al principio realizamos únicos tests que no distinguían granularidad de ángulos y de radios, pero luego notamos que en nuestras implementaciones optimizadas, teóricamente, podían surgir diferencias entre un cambio en la granularidad de ángulos y otro en la de radios, cosa que luego verificamos empíricamente. Por esta razón, decidimos separar los tests de tiempos de único b en 2, uno que varíe cantidad de radios y otro cantidad de ángulos.

Para esto, repetimos 50 veces cada corrida, 30 veces las que tardaban mas de 30 segundos y 15 las que tomaban más de un minuto, dado que la desviación standard es mucho menor (dado que la desviación se debe generalmente a cambios de contexto durante el runtime del programa, que para programas que corren poco tiempo varía mucho).

Elegimos este número dado que la desviación standard era lo suficientemente chica como para que el experimento fuera confiable, y al mismo tiempo que tardaran un tiempo razonable para permitirnos realizar muchos experimentos.

Los tiempos fueron tomados en una computadora que contaba con un procesador Intel Core i5-2450M @ $2.50 \mathrm{GHz}$, con $8 \mathrm{GB}$ de memoria RAM.

 $^{^3}$ Cuando se escribe la aridad de la función la misma puede no coincidir con la notación usada en C++. Esto está bien pues lo único que se busca aquí es dar una orientación de lo que hace cada función y no código preciso.

3. Resultados y discusión

Métodos Numéricos: TP1

3.1. Evaluación de los métodos

3.1.1. Método utilizado para el calculo de la isoterma

Una vez obtenidas todas las temperaturas del sistema buscamos por cada ángulo del horno entre que dos puntos debería estar la temperatura buscada de la isoterma. Una vez localizados estos puntos suponemos que el crecimiento de la temperatura es lineal, lo cual no necesariamente es cierto pero si se toman puntos suficientemente cercanos el error es ínfimo, a partir de esta suposición podemos fácilmente plantear la ecuación de una recta que pasa por los dos puntos que conocemos y deducir de esto donde debería estar el punto que tiene la temperatura que nos interesa.

3.2. Criterios de análisis para la isoterma

Para tener una referencia a partir de la cual decidir si el horno podía llegar a estar en peligro o no, decidimos utilizar tres criterios clásicos, el promedio, la mediana y el máximo, ya que cada uno presenta ciertos aspectos útiles. La media o promedio permite tener una idea general de los valores que tiene la isoterma, permitiendo darnos una idea básica de que tantos ángulos o con que tanta intensidad están superando el umbral. La mediana permite eliminar outliers, medidas que estén fuera de lugar respecto de las que aparezcan por mayoría no afectaran el resultado final y se obtendrá una idea mas clara del valor que se esta teniendo mayormente. El máximo permite ver picos que podrían pasar desapercibidos viendo únicamente la media o mediana.

Una vez escogidos estos criterios de análisis lo que hicimos fue para una instancia de isoterma dada ver si al calcular el promedio, mediana o máximo alguno de estos supera cierto umbral escogido entonces se dirá que el horno esta en peligro. Para elegir el umbral se aconseja basarse en casos previos de hornos de características similares que sufrieron daños, a partir de esto estudiar la isoterma en esos casos con los criterios establecidos previamente y deducir valores adecuados dentro de los cuales sea recomendable trabajar.

3.2.1. Relación entre granularidad y precisión en el calculo de la isoterma

A través de una serie de experimentos buscamos estudiar que factores contribuyen a una mayor precisión en el cálculo de la posición de la isoterma. Logrando así una predicción mas fiable del peligro en el que puede llegar a estar el horno y sin perder el tiempo con cálculos innecesarios.

Al realizar los experimentos nos interesamos en estudiar como la granularidad afectaba la aproximación precisa de la isoterma, para así poder estar seguros si el horno estaba o no en peligro. Para hacer esto separamos los experimentos en dos, primero estudiamos que pasaba cuando utilizábamos una mayor cantidad de ángulos y luego lo mismo para los radios. En este documento presentamos las imágenes mas representativas de nuestra investigación pero para una mayor profundización se puede visitar http://bit.ly/1Uqt90x donde están todos nuestros experimentos sobre isotermas.

3.2.2. Granularidad de los ángulos

A través de nuestros experimentos pudimos observar como al aumentar la cantidad de ángulos se podían detectar mejor los cambios bruscos en la isoterma, permitiendo ver con mayor claridad donde comienzan y donde acaban los picos mientras mejor sea la granularidad. En caso de utilizar una granularidad pobre se ven picos poco precisos o incluso gráficos de isotermas erróneos que fallan en detectar el pico, lo cual podría conllevar consecuencias muy graves al no advertir un posible peligro en el horno.

En este primer experimento se utiliza una instancia en la cual la temperatura en todos los ángulos externos es igual excepto en una pequeña zona donde aumenta.

En las Figuras 1 y 4, con 30 ángulos, se puede detectara la perfección la existencia y ubicación de un pico en la isoterma. Luego, en las Figuras 2 y 5, con 10 ángulos si bien se detecta un pico, la forma que se muestra está muy alejada de la real. Nótese por ejemplo que la dirección en la que se encuentra el pico no es la misma que la anterior, además de que el tamaño es distinto. Esto podría causar falsas alarmas o la ausencia de las mismas. Finalmente, en las Figuras 3 y 6, en la que se discretizó con 8 ángulos se puede observar como el pico desaparece fallando dramáticamente la predicción en la forma de la isoterma.

Para mas detalles de la evolución de la isoterma y las temperaturas calculadas en el sistema se recomienda recurrir al link citado mas arriba, http://bit.ly/1Uqt90x, en la animación comp_angs_iso se podrá notar con mayor claridad lo nombrado previamente, la isoterma ira marcando el pico con mayor precisión a medida que se utilicen mas ángulos, en los casos en que la cantidad de ángulos sea insuficiente el pico y las temperaturas en esa zona estarán muy distorsionadas, esto se puede observar claramente en comp_angs_temp, donde las temperaturas en la zona del pico se calculan de forma imprecisa debido a la utilización de una cantidad de ángulos muy pobre.

3.2.3. Granularidad de los radios

Al estudiar las posibilidades en la cantidad de radios a utilizar se puede observar como a mayor granularidad mejora la posición de la isoterma, convergiendo a la posición real. A diferencia de los ángulos, con los radios los picos serán detectados sin tomar demasiadas precauciones pero para asegurar que el tamaño de los picos, y de la isoterma en general, sean predichos de forma confiable se recomendara utilizar una cantidad de radios adecuadamente alta según la necesidad que se tenga.

Para verificar un poco esto utilizamos dos instancias de prueba. La primera forma una isoterma con forma de óvalo debido a un aumento en la temperatura externa en dos zonas opuestas. La segunda es un círculo perfecto producido por una temperatura constante a lo largo de todo el interior y exterior del horno. En ambos casos veremos como la figura va cambiando su tamaño al tender a la isoterma real.

3.2.4. Instancia 1

Figura 7

Figura 8

Se puede observar como, a pesar de tener el mismo conjunto de temperaturas exteriores e interiores, y la misma discretización con respecto a los ángulos, hay una gran diferencia entre la Figura 7, con 30 radios, que consigue una aproximación muy buena del tamaño de la isoterma y la Figura 8 que con sus 5 radios consigue una isoterma muy alejada de la real.

3.2.5. Instancia 2

Figura 9: 60 radios

Figura 10: 10 radios

Sucede lo mismo que en en el experimento anterior, al tomar una cantidad relativamente alta de radios se logra un error muy pequeño del tamaño de la isoterma, en este caso se utilizaron 60. La diferencia entre utilizar 40, 50 y 60 radios no fue muy grande, al menos para nuestros estandáres, por lo cual se podrían utilizar simplemente 40 consiguiendo un buena relación entre tiempo de cálculo y aproximación al tamaño de la isoterma, para apreciar mejor esto pueden acceder a http://bit.ly/1Uqt90x y ver las animaciones çomp_rads_isoz çomp_rads iso2".

3.3. Evaluación de los métodos

3.3.1. Único *b*

Nuestro primer análisis de los métodos utilizados para la resolución del problema va a consistir en uno teórico.

La resolución mediante el método de eliminación Gaussiana tiene dos partes, la primera es la eliminación gaussiana propiamente dicha, que tiene un costo de $O(k^3)$ flops, donde k es la cantidad de filas (y columnas) de la matriz y la segunda es el algoritmo llamado backwards substitution, que tiene un costo de $O(k^2)$ flops.

La resolución mediante el método de factorización LU tiene tres partes, la primera es obtener la factorización LU de la matriz en cuestión, que tiene un costo de $O(k^3)$, y luego aplicar forward substitution y backward substitution, cada uno con un costo de $O(n^2)$ flops.

Para medir los tiempos de ambas implementaciones decidimos hacer dos experimentos separados, sin embargo similares. En uno fijamos una cantidad de radios y movemos la cantidad de ángulos, y en el otro al revés. Lo hicimos así para que las dimensiones de la matriz (ancho o alto, dado que son iguales porque es cuadrada) crezca linealmente, ya que si hacemos variar ángulos y radios al mismo tiempo, las dimensiones dejan de crecer linealmente. Queremos que las dimensiones crezcan linealmente para que los resultados se entiendan mejor, dado que una escala lineal es, generalmente, más natural a la vista.

Figura 11: Tiempo tomado por la nuestra, implementación de eliminación gaussiana y de factorización LU para resolver el problema. La granularidad de radios está fija en 40 y la de ángulos se indica en el eje x. La barra principal indica el promedio, y el segmento indica la desviación standard.

Figura 12: Tiempo tomado por nuestra implementación de eliminación gaussiana y de factorización LU para resolver el problema. La granularidad de ángulos está fija en 40 y la de radios se indica en el eje x. La barra principal indica el promedio, y el segmento indica la desviación standard.

Como se ve en las figuras 11 y 12, las performances entre las implementaciones son realmente similares. También puede observarse algo que nos llamó la atención, que es que el método por eliminación gaussiana tuvo consistentemente peor performance que LU, contradiciendo parcialmente el análisis a priori. Sin embargo, la diferencia es mínima: siempre menor al $3\,\%$.

Por esta razón no creemos que sea algo importante a tener en cuenta, y podríamos atribuirlo a optimizaciones del compilador, dado que los códigos son realmente parecidos (de hecho hicimos nuestra implementación de la factorización LU sobre nuestra implementación de eliminación gaussiana), y las partes que son diferentes le agregan complejidad a la factorización LU.

Por eso lo atribuimos a cuestiones relacionadas con la optimización en tiempo de compilación y no a errores en las mediciones, dado que los tests fueron corridos varias veces por el hecho de que estos resultados eran llamativos.

Por otro lado, vemos que dividir entre ángulos y radios no hace diferencia en la performance, dado que como esperábamos, el runtime solamente depende del tamaño de la matriz, es decir n(m+1), que en ambos gráficos es igual columna a columna.

Ahora es el turno de las implementaciones que aprovechan que la matriz es banda. La diferencia es

enorme. Para comparar rápidamente, podemos usar una tabla:

Implementación	Gauss	Gauss Banda	LU	LU Banda
Tiempo (segundos)	26.24	0.98	25.53	1.04

Figura 13: Tiempo promedio tomado por las implementaciones para resolver un sistema con n = m + 1 = 40.

Con la Figura 13 se observa como la diferencia entre las implementaciones vanilla y las optimizadas es abismal, superando el 2600 %. Esta tabla no pretende analizar las implementaciones optimizadas, simplemente probar la diferencia de rendimiento que se obtiene, dado que poner ambas implementaciones en un mismo gráfico no nos permitiría apreciar la diferencia.

A continuación analizaremos las implementaciones optimizadas.

Como puede verse en el código, la complejidad de los algoritmos optimizados para realizar la eliminación Gaussiana (y por lo tanto la factorización LU) es $O(n^3(m+1))$. Esto se debe a que, para cada fila (hay n(m+1) filas) debemos realizar un trabajo que cuesta $O(n^2)$ flops.

Lo anterior es fácilmente justificable, porque en cada paso de la eliminación gaussiana el objetivo es poner ceros debajo de la diagonal, entonces solo debemos modificar tantas filas como cantidad de ángulos hay, dado que la matriz es banda y tiene la forma que fue explicada anteriormente.

Además de esas filas, sólo se deben modificar tantos coeficientes como ángulos, dado que sabemos que para la derecha de la fila en cuestión hay solamente ceros. Nuevamente, esto se sigue de la explicación anterior sobre la construcción de la matriz, que fue explicada anteriormente.

Debido a esto, esperamos que cueste mucho mas aumentar la granularidad con respecto a los ángulos que con respecto a los radios, como se vió reflejado en los experimentos que siguen.

Tiempo por granularidad

Gauss

I LU

3.0

Figura 14: Tiempo tomado por la nuestra implementación optimizada de eliminación gaussiana y de factorización LU para resolver el problema. La granularidad de radios está fija en 40 y la de ángulos se indica en el eje x. La barra principal indica el promedio, y el segmento indica la desviación standard.

Figura 15: Tiempo tomado por la nuestra implementación optimizada de eliminación gaussiana y de factorización LU para resolver el problema. La granularidad de ángulos está fija en 40 y la de radios se indica en el eje x. La barra principal indica el promedio, y el segmento indica la desviación standard.

Los resultados que se ven en las Figuras 14 y 15 son muy interesantes. Primero notemos que como los procesos de eliminación gaussiana y factorización LU ambos consumen menos tiempo, se nota más la ventaja que le saca gauss a LU con un solo b, dado que los procesos de substitución empiezan a pesar asintóticamente.

Como la complejidad de los algoritmos optimizados es $O(n^3(m+1))$, en los experimentos se refleja que es mucho más caro aumentar la granularidad con respecto a los radios que con respecto a los ángulos, como sostuvimos anteriormente.

3.3.2. Múltiples b's

Cuando buscamos simular un escenario similar al experimento anterior, pero donde las condiciones de borde (temperaturas interiores y exteriores) cambian en distintos instantes de tiempo, la situación es muy distinta. Aquí esperaríamos ver el verdadero poder de la factorización LU.

Por esta razón, esperamos que la implementación de la factorización LU supere ampliamente a la de la eliminación Gaussiana, dado que en la Gaussiana se paga un costo cúbico cada vez que se quiere resolver el sistema, mientras que en con la factorización LU el costo cúbico se paga solo una vez.

Por esta razón se puede decir que, para muchas instancias, el costo de resolver Ax = b es cúbico para la eliminación gaussiana y cuadrático amortizado para la factorización LU.

Figura 16: Tiempo tomado por la nuestra implementación de eliminación gaussiana y de factorización LU para resolver el problema para varias instancias de n = m + 1 = 30. La barra principal indica el promedio, y el segmento indica la desviación standard.

En los resultados se refleja lo que esperábamos. Como se ve en la figura 16, luego de aplicar la factorización LU, el costo que hay que pagar para resolver cada sistema es muy poco, lo cual permite una excelente performance.

Por otra parte, se observa que el tiempo que le toma a la eliminación gaussiana resolver n instancias, es también es lineal en la cantidad de instancias, pero con una pendiente mucho mayor, lo cual confirma más aún nuestras expectativas derivadas de la teoría.

En cuanto a las implementaciones optimizadas, esperamos que su comportamiento sea similar a los resultados anteriores.

Figura 17: Tiempo tomado por la nuestra implementación optimizada de eliminación gaussiana y de factorización LU para resolver el problema para varias instancias de n=m+1=30. La barra principal indica el promedio, y el segmento indica la desviación standard.

Como se observa en la Figura 17, confirmamos nuestras expectativas. Se observa, al igual que antes, que la implementación optimizada de Gauss crece linealmente con respecto a la cantidad de instancias del problema entradas, al igual que la implementación de la factorización LU, sólo que esta ultima lo hace con una pendiente mucho menor.

Métodos Numéricos: TP1 2º cuatrimestre de 2015

4. Conclusiones

5. Apéndices

5.1. Demostración de la Proposición 1 del enunciado

Primero observemos que A es una matriz diagonal dominante no estricta. Para eso tenemos que ver que para cada fila el valor absoluto de la diagonal es mayor o igual que la norma-1 del resto de los elementos de esa fila. En nuestro caso puntual, esto significa ver que $|c_k| \ge |a_k| + 2|b_k| + |d_k|^4$.

Primero calculemos el lado derecho de la desigualdad:

$$\left| \frac{r_k - \Delta r}{r_k (\Delta r)^2} \right| + 2 \times \left| \frac{1}{r_k^2 (\Delta \theta)^2} \right| + \left| \frac{1}{(\Delta r)^2} \right| = \frac{r_k - \Delta r}{r_k (\Delta r)^2} + 2 \times \frac{1}{r_k^2 (\Delta \theta)^2} + \frac{1}{(\Delta r)^2}$$

$$(6)$$

$$= \frac{2r_k^2(\Delta\theta)^2 - (\Delta r)r_k(\Delta\theta)^2 + 2(\Delta r)^2}{r_k^2(\Delta r)^2(\Delta\theta)^2}$$
 (7)

En (6) efectivamente podemos quitar los módulos pues todos los términos son positivos. Esto es evidente para b_k y c_k , aunque un poco menos para a_k . En efecto, $r_k - \Delta r$ podría llegar a ser negativo sólo en el caso que k=0, pues $r_k=r_i+k\times \Delta r$. Pero para todos los $t_{0,j}$ no planteamos la ecuación 2 pues ya conocemos su valor, así que no afecta.

Entonces, queremos ver que $|b_k|$ es mayor o igual que (7), es decir

$$\frac{\left|-2r_k^2(\Delta\theta)^2+(\Delta r)r_k(\Delta\theta)^2-2(\Delta r)^2\right|}{|r_k^2(\Delta r)^2(\Delta\theta)^2|}\geq \frac{2r_k^2(\Delta\theta)^2-(\Delta r)r_k(\Delta\theta)^2+2(\Delta r)^2}{r_k^2(\Delta r)^2(\Delta\theta)^2}$$

Que es equivalente a

$$\left| -2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2 \right| \ge 2r_k^2(\Delta\theta)^2 - (\Delta r)r_k(\Delta\theta)^2 + 2(\Delta r)^2$$

Supongamos que lo que está dentro del módulo es positivo, entonces tenemos

$$\begin{split} -2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2 &\geq 2r_k^2(\Delta\theta)^2 - (\Delta r)r_k(\Delta\theta)^2 + 2(\Delta r)^2 \\ &\updownarrow \\ 2 \times (-2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2) &\geq 0 \\ &\updownarrow \\ -2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2 &\geq 0 \end{split}$$

Pero esta última desigualdad vale pues habíamos supuesto que efectivamente eso era positivo.

Ahora veamos que pasa si lo de adentro del módulo es negativo. Tenemos que

$$-2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2 \leq -2r_k^2(\Delta\theta)^2 + (\Delta r)r_k(\Delta\theta)^2 - 2(\Delta r)^2$$

$$0 < 0$$

Que vale trivialmente. Luego probamos que la matriz del sistema es diagonal dominante no estricta, si $|r_k - \Delta r| \ge 0$. Notar además que por la última cuenta no es cierto que sea diagonal dominante estricta.

Ahora, la demostración que sigue es similar a la demostración de la proposición que demuestra que diagonal dominante estricta implica que no aparecen ceros en la diagonal al hacer eliminación gaussiana. En esta demostración, simplemente se ve que aplicarle un paso de eliminación gaussiana a la matriz la deja diagonal superior.

Con una lógica muy parecida, podemos ver que la matriz de nuestro problema, luego de aplicarle un paso de eliminación gaussiana, queda diagonal dominante (no estricta). Además, la matriz queda banda, con las bandas exteriores siendo las mismas que antes. Esto se ve claramente, dado que cuando se modifica fila por fila,

 $^{^4}$ Los coeficientes están definidos en la sección 2.3

solo hay que modificar tantas filas como el ancho de la banda, y todas estas filas siguen teniendo la propiedad de tener todos valores iguales a 0 fuera de la banda, dado que restarle la fila a la que le estamos aplicando el paso de factorización gaussiana tiene todos ceros a partir de un coeficiente.

Figura 18: Representación de la matriz, la columna roja indica la columna en la que voy a poner ceros (a la izquierda hay todos ceros, ya que aplicamos eliminación gaussiana), y tengo que restarle la fila roja a la fila azul.

Luego, vimos que la matriz, al aplicarle un paso de eliminación gaussiana, queda diagonal dominante (no estricta) y banda, con las mismas bandas de siempre. Veamos entonces que la matriz tiene un elemento distinto de 0 en la diagonal, antes de aplicar el siguiente paso de eliminación gaussiana.

Como la fila tiene elementos distintos de 0 (en particular, el coeficiente determinado por la banda superior es siempre distinto de 0), y además la matriz es diagonal superior (no estricta), tenemos que

$$|a_{ii}^{(i)}| \ge \sum_{j \ne i} |a_{ij}^{(i)}| > 0$$

Entonces, $|a_{ii}^{(i)}|>0,$ que es lo que queríamos ver.