Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Probeklausur. Dauer 120 Minuten.

Aufgabe 1. Prüfen Sie jeweils für $f, g, h : \mathbb{C} \to \mathbb{C}$, an welchen Punkten die Funktion komplex differenzierbar ist und bestimmen Sie die Ableitung:

- (a) $f(z) = |z|^2$,
- (b) $g(z) = \exp(i\sin(z)),$
- (c) $h(z) = x^2 y^2 + 2xyi$,

wobei jeweils z = x + iy.

Aufgabe 2. (a) Sei $\log : \mathbb{C} \setminus \Gamma \to \mathbb{C}$ ein holomorpher Zweig des Logarithmus und $f(z) = z \log(z) - z$. Berechnen Sie f'(z).

(b) Zeigen Sie, dass $g(z)=\exp(1/z)$ keine Stammfunktion in $\mathbb{C}\setminus\{0\}$ hat. Hinweis: Berechnen sie das Residuum bei z=0.

Aufgabe 3. Sei

$$f(z) = \frac{e^{iz}}{(z - 3i)^2(z + 2i)}$$

und definiere die Halbkreise $\gamma_R:[0,\pi]$ für R>0 durch $\gamma_R(t)=Re^{it}$.

(a) Berechnen sie

$$\lim_{R \to \infty} \int_{\gamma_R} f(z) dz$$

- (b) Berechnen sie alle Residuen von f.
- (c) Finden sie

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx.$$

Aufgabe 4. Sei

$$f: [0, 2\pi] \to \mathbb{R}$$

 $x \mapsto (x - \pi)^2$

- (a) Skizzieren Sie die 2π -periodische Fortsetzung von f.
- (b) Die N-te partielle Fouriersumme von f ist

$$f_N(x) = \sum_{-N}^{N} \hat{f}_k e^{ikx}$$

Schreiben Sie $f_1(x) = \alpha + \beta \cos(x) + \gamma \sin(x)$.

(c) Prüfen Sie, ob die Reihe f_N im Limes $N\to\infty$ gleichmäßig nach f konvergiert. Wie groß muss man N wählen, damit $\sup_x |f(x)-f_N(x)| \le \frac{1}{100}$?

Aufgabe 5. (a) Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben als $f(x) = e^{-|x|}$. Berechnen Sie $\mathcal{F}f(k)$.

(b) Berechnen Sie die Fourier-Transformation $\mathcal{F}T_f$ für $f:\mathbb{R}\to\mathbb{R},\ f(x)=x^3-x,$ im Sinne von temperierten Distributionen.

Aufgabe 6. Wir betrachten folgendes Anfangswertproblem für die Schwartz-Funktion $u_0 \in \mathcal{S}(\mathbb{R};\mathbb{C})$:

$$\begin{cases} \partial_t u(t,x) - \partial_x u(t,x) = 0\\ u(0,x) = u_0(x) \end{cases}$$
 (1)

- (a) Berechnen Sie die Fouriertransformation von (1).
- (b) Lösen Sie die Fourier-transformierten Gleichungen als gewöhnliche Differenzialgeleichung in t (für festes k).
- (c) Lösen sie (1) als Faltung mit u_0 .