NAME:

Textbook Material for Test 3 (Wednesday April 29, 2015)

Chapter 6: Normal Curves and Sampling Distributions	Section 6.1: Normal curves (except control charts) Section 6.2: Standard normal distribution Section 6.3: Areas under normal curves (except assessing normality) Section 6.4: Sampling distribution for \overline{X} Section 6.5: Central Limit Theorem Section 6.6: Normal Approximation to binomial distribution
Chapter 7: Estimation	Section 7.1: Estimating μ when σ is known Section 7.2: Estimating μ when σ is unknown Section 7.3: Estimating p in the binomial distribution
Chapter 8: Hypothesis Testing	Section 8.1: Introduction to statistical tests Section 8.2: Testing the mean μ Section 8.3: Testing a proportion p

1) If X has a normal distribution with mean 15 and standard deviation 3, determine the appropriate parameters of the distribution of \bar{x} for sample sizes

a. n = 4 3/2 b. n = 16 3/4 c. n = 100 3/10

2) Given that X is a normal variable with mean 110 and standard deviation 12, find:

a. $P(X \le 120) = 0.7967$ b. $P(X \ge 80) = 0.9938$

c. $P(108 \le X \le 117) = 0.2865$

3) Find z such that 5% of the area under the standard normal curve lies to the right of z.

1.645

4) Find z such that 99% of the area under the standard normal curve lies between -z and z.

-2.58, +2.58

5) Find z such that 13.35% of the area under the standard normal curve lies to the left of z.

-1.11

- **6)** The Customer Service Center in a large department store has determined that the amount of time spent with a customer about a complaint is normally distributed with a mean of 9.3 minutes and a standard deviation of 2.5 minutes. What is the probability that for a randomly chosen customer with a complaint, the amount of time spent resolving the complaint will be:
 - a. less than 10 minutes = $\frac{0.6103}{}$
 - b. longer than 5 minutes = 0.9573
 - c. between 8 and 15 minutes = 0.6872
- 7) Use the table of the standard normal curve to obtain the following shaded areas:

8) What is the area of the shaded region, between 115 and 140, in the following normal curve:

- **9)** The life of of an electronic device is normally distributed with mean 5000 hours and standard deviation 450 hours.
 - a. Find the probability that the device will wear out in 5000 hours or less. 0.50
 - b. The manufacturer wants to place a guarantee on the devices so that no more than 5% fail during the guarantee period. How many hours should the guarantee cover?

 4260 hours

10) What is the x-score corresponding to P90 as shown in the following figure:

- **11)** Attendance at large exhibition shows in Denver averages about 8000 people per day, with standard deviation of about 500. Assume that the daily attendance figures follow a normal distribution. What is the probability that the daily attendance:
 - a. will be fewer than 7200 people? 0.0548
 - b. will be more than 8900 people?

 0.0359
 - c. will be between 7200 and 8900 people? 0.9093
- **12)** Consider a sample from a population having mean 128 and standard deviation 16. Compute the approximate probability that the **sample mean** \overline{X} lie between 124 and 132 when the sample size is:

- **13)** The blood cholesterol levels of a population of workers have mean 202 and standard deviation 14. If a sample of 36 workers is selected, approximate the probability that the sample mean \overline{X} of their blood cholesterol levels will lie between 198 and 206. 0.913
- **14)** Consider a sample size of 16 from a population having mean 100 and standard deviation σ . Approximate the probability that the sample mean \overline{X} lies between 96 and 104 when:

a.
$$\sigma = 16$$
 0.6826
b. $\sigma = 8$ 0.9544
c. $\sigma = 4$ 1

15) The mean living space for single-family detached homes is 1742 sq. ft. Assume a standard deviation of 568 sq. ft.

a. For samples of 25 single-family detached homes, determine the mean and standard deviation of \bar{x} .

$$\mu = 1742, \quad \sigma = 113.6$$

b. Repeat part (a) for a sample size of 500.

$$\mu = 1742$$
, $\sigma = 25.4$

16) Let μ denote the population mean birth weight of all male babies. Assume that the weights are normally distributed with standard deviation σ = 1.33 lb. For samples of size 400, the sample mean birth weight, \overline{X} is approximately normally distributed (see figure below)

What is the percentage of male babies that have mean birth weights within 0.125 lb of the population mean μ ?

93.98%

- 17) A variable of a population has mean μ and standard deviation σ . For a large sample size n, fill in the blanks. Justify your answers.
 - a. Approximately _____% of all possible samples have means within σ/\sqrt{n} of the population mean μ .
 - b. Approximately _____% of all possible samples have means within $2\sigma/\sqrt{n}$ of the population mean μ .
 - c. Approximately _____% of all possible samples have means within $3\sigma/\sqrt{n}$ of the population mean μ .
- **18)** Suppose X has a normal distribution with σ = 6. A random sample of size 16 has sample mean 50. Find a 90% confidence interval for μ .

47.53 to 52.47

19) Suppose X has a mound-shaped distribution with σ = 9. A random sample of size 36 has sample mean 20. Find a 95% confidence interval for μ .

Math13 - Introduction to Statistics (code 21947), Spring 2015

Exam 3 Review; Wednesday, April 27

17.06 to 22.94

- **20)** A small group of 15 hummingbirds has been under study in a ecological reserve. The average weight for these birds is $\bar{x} = 3.15$ grams. Based on previous studies, we can assume that the weights have a normal distribution with $\sigma = 0.33$ grams.
 - a. Find the 80% confidence interval for the average weights of studied hummingbirds. 3.04gm to 3.26gm
 - b. What's the margin of error?

 0.11 gm
 - c. Find the sample size necessary for an 80% confidence level with margin of error 0.08. n = 28
- **21)** A random sample of size 36 is drawn from a given distribution. The sample mean is 100.
 - a. Suppose the distribution has σ = 30. Compute a 90% confidence interval for μ . What is the value of the margin of error?

Interval: 91.77 to 108.23; margin: 8.23

b. Suppose the distribution has σ = 20. Compute a 90% confidence interval for μ . What is the value of the margin of error?

Interval: 94.52 to 105.48; margin: 5.48

- **22)** A random sample of size 36 is drawn from a population with σ = 12 and sample mean 30.
 - a. Compute a 95% confidence interval for μ based on a sample size of 49. What is the value of the margin of error?

Interval: 26.64 to 33.36; margin: 3.36

b. Compute a 95% confidence interval for μ based on a sample size of 100. What is the value of the margin of error?

Interval: 27.65 to 32.35; margin: 2.35

23) Suppose X has a mound-shaped distribution. A random sample of size 16 has sample mean 10 and sample standard deviation 2. Find a 90% confidence interval for μ using a Student's t distribution.

9.12 to 10.88

24) A random sample of size 81 has sample mean 20 and sample standard deviation 3. Find a 95% confidence interval for μ using a Student's *t* distribution.

Math13 - Introduction to Statistics (code 21947), Spring 2015

Exam 3 Review; Wednesday, April 27

19.34 to 20.66

25) For a tree-ring dating study, we have a sample of 8 trees with the following values:

1189, 1271, 1267, 1268, 1316, 1275, 1317, 1275

- a. Verify that the sample mean year is $\bar{x} \approx 1272$, with sample standard deviation s ≈ 37 .
- b. Find a 90% confidence interval for the mean of all three-ring dates from this archaeological site. *Hint:* use a Student's *t* distribution.

1249 to 1295

26) Adult wild mountain lions captured and released for the first time in the San Andres Mountains (New Mexico) gave the following weights (in pounds):

68 104

128

122

60

64

- a. Verify that the sample mean is \bar{x} = 91, with sample standard deviation s \approx 30.7.
- b. Find a 75% confidence interval for the population average weight μ of all adult mountain lions in the San Andres Mountains. *Hint:* use a Student's *t* distribution.

74.7 lb to 107.3 lb

- **27)** Consider n = 100 binomial trials with k = 30 successes.
 - a. Find a 90% confidence interval for the population proportion of successes p. 0.225 to 0.375
- **28)** Consider n = 200 binomial trials with k = 80 successes.
 - a. Find a 95% confidence interval for the population proportion of successes p. 0.332 to 0.468
- **29)** A random sample of 5792 physicians showed that 3139 provide some charity care.
 - a. Let *p* represent the proportion of all physicians who provide some charity care. Find a point estimate for *p*.

p-hat = 0.5420

b. Find a 99% confidence interval for *p*.

0.53 to 0.56

- **30)** Case studies showed that out of 10,351 convicts who escaped from U.S. prisons, only 7867 were recaptured.
 - a. Let *p* represent the proportion of all escaped convicts who will eventually be recaptured. Find a point estimate for *p*.

p-hat = 0.76

b. Find a 99% confidence interval for *p*.

0.75 to 0.77

Math13 - Introduction to Statistics (code 21947), Spring 2015

Exam 3 Review; Wednesday, April 27

- **31)** In a survey of 1000 corporations, 250 said that, given a choice between a job candidate who smokes and an equally qualified non-smoker, the nonsmoker would get the job.
 - a. Let *p* represent the proportion of all corporations preferring a nonsmoking candidate. Find a point estimate for *p*.

p-hat = 0.25

b. Find a 0.95 confidence interval for p.

0.22 to 0.28

- **32)** A random sample of size 20 from a normal distribution has $\sigma = 4$ and $\overline{X} = 8$.
 - a. Compute that sample test statistic z under the null hypothesis H_0 : $\mu = 7$. z = 1.12
 - b. For $H_1 \neq 7$, estimate the P-value of the test statistic.
 - c. For a level of significance of 0.05 and the hypotheses of parts (a) and (b) do you reject or fail to reject the null hypothesis?
 Fail to reject
- **33)** The body weight of a healthy 3-month-old colt should be about $\mu = 60$ kg.
 - a. If you want to set up a statistical test to challenge the claim that μ = 60 kg, what would you use for the null hypothesis H₀?

 H_0 : $\mu = 60 \text{ kg}$

b. Suppose you want to test the claim that the average weight of a wild colt is less than 60 kg. What would you use for the alternative hypothesis H_1 ?

 H_1 : μ < 60 kg

c. Suppose you want to test the claim that the average weight of a wild colt is different from 60 kg. What would you use for the alternative hypothesis H₁?

H₁: μ≠ 60 kg

34) Over the past 8 weeks, a veterinarian took the following glucose readings from a horse (in mg/100ml): 93 88 82 105 99 110 84 89

The sample mean is $\bar{x}\approx 93.8$. We may assume that the glucose level has a normal distribution, and we know from past experience that $\sigma=12.5$. The mean glucose level for horses should be $\mu=85$ mg/100ml. Do these data indicate that the analyzed horse has an overall average glucose level higher than 85? Use $\alpha=0.05$.

 H_0 : $\mu = 85 \text{ mg/100ml}$

 H_1 : $\mu > 85 \text{ mg}/100\text{ml}$

Corresponding $z \approx 1.99$

Math13 - Introduction to Statistics (code 21947), Spring 2015 Exam 3 Review; Wednesday, April 27

P-value of 0.0233 (area to the right of 1.99)

Since P-value ≤ 0.05 , we reject H₀.

It seems that the horse average glucose level is higher than average.