Attention in Transformer

Self Attention

Key concept used in Transformer

Self Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Model Architecture

Figure 1: The Transformer - model architecture.

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	WQ
Keys	k ₁	k ₂	WK
Values	V ₁	V ₂	W ^v

How it works?

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK}{\sqrt{d_k}})V$$

$$Q = XW_q, V = XW_k, V = XW_v$$
 $W_q, W_k, W_v \in \mathbb{R}^{d \times d_k}$

References

• https://welcome-to-dewy-world.tistory.com/108

• https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

• https://jalammar.github.io/illustrated-transformer/

"Attention is all you need"
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polosukhin, I.
(2017). Attention is all you need. *Advances in Neural Information Processing Systems* (p./pp. 5998--6008), .

E.O.D