A bit of crypto

CS 35L Section 7: Week 2 - Tuesday Spring 2020

Slides adapted from Tyler Davis

Communication Over the Internet

- What type of guarantees do we want?
 - Confidentiality
 - Message secrecy
 - (Data) Integrity
 - Message consistency
 - Authentication
 - Identity confirmation
 - Also authorization
 - Specifying access rights to resources

Encryption Types

Symmetric Key Encryption

- a.k.a shared/secret key
- Key used to encrypt is the same as key used to decrypt

Asymmetric Key Encryption: Public/Private

- 2 different (but related) keys: public and private
 - Only creator knows the relation. Private key cannot be derived from public key
- Data encrypted with public key can only be decrypted by private key and vice versa
- Public key can be seen by anyone
- Never publish private key!!!

Symmetric-key Encrption

- Same secret key used for encryption and decryption
- Example : Data Encryption Standard (DES)
- Caesar's cipher
 - Map the alphabet to a shifted version
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - DEFGHIJKLMNOPQRSTUVWXYZABC
 - Plaintext SECRET. Ciphertext –
 - VHFUHW Key is 3 (number of shifts of the
- · Key distrabation is a problem
 - The secret key has to be delivered in a safe way to the recipient
 - Chance of key being compromised

Image Source: wikipedia

Secret Key (symmetric) Cryptography

 A single key is used to both encrypt and decrypt a message

Public-key Encryption (Asymmetric)

- Uses a pair of keys for encryption
 - Public key Published and known to everyone
 - Private key Secret key known only to the owner
- Encryption
 - Use public key to encrypt messages
 - Anyone can encrypt message, but they cannot decrypt the ciphertext
- · Decryption
 - Use private key to decrypt messages
- **Example**: **RSA** Rivest, Shamir & Adleman
 - Property used Difficulty of factoring large integers to prime numbers
 - http://en.wikipedia.org/wiki/RSA_Fact oring_Challenge

Image Source: MSDN

Public Key (asymmetric) Cryptography

Two keys are used: a public and a private key.
 If a message is encrypted with one key, it has
to be decrypted with the other.

What is SSH?

- Secure Shell
- Used to remotely access shell
- Successor of telnet
- Encrypted and better authenticated session

High-Level SSH Protocol

- Client ssh's to remote server
 - -\$ ssh username@somehost

Host Validation

— If first time talking to server -> host validation

The authenticity of host 'somehost (192.168.1.1)' can't be established. RSA key fingerprint is 90:9c:46:ab:03:1d:30:2c:5c:87:c5:c7:d9:13:5d:75. Are you sure you want to continue connecting (yes/no)? **yes** Warning: Permanently added 'somehost' (RSA) to the list of known hosts.

- ssh doesn't know about this host yet
- shows hostname, IP address and fingerprint of the server's public key, so you can be sure you're talking to the correct computer
- After accepting, public key is saved in ~/.ssh/known_hosts

Host Validation

- Next time client connects to server
 - Check host's public key against saved public key
 - If they don't match:

Session Encryption

- Client and server agree on a symmetric encryption key (session key)
- All messages sent between client and server
 - encrypted at the sender with session key
 - decrypted at the receiver with session key
- anybody who doesn't know the session key (hopefully, no one but client and server) doesn't know any of the contents of those messages

User Authentication

Password-based authentication

- Prompt for password on remote server
- If username specified exists and remote password for it is correct then the system lets you in

Key-based authentication

- Generate a key pair on the client
- Copy the public key to the server (~/.ssh/authorized_keys)
- Server authenticates client if it can demonstrate that it has the private key
- The private key can be protected with a passphrase
- Every time you ssh to a host, you will be asked for the passphrase (inconvenient!)

ssh-agent (passphrase-less ssh)

- A program used with OpenSSH that provides a secure way of storing the private key
- ssh-add prompts user for the passphrase once and adds it to the list maintained by ssh-agent
- Once passphrase is added to ssh-agent, the user will not be prompted for it again when using SSH
- OpenSSH will talk to the local ssh-agent daemon and retrieve the private key from it automatically

X Window System

Windowing system that forms the basis for most GUIs on UNIX

 X is a network-based system. It is based upon a network protocol such that a program can run on one computer but be displayed on another (X Session Forwarding)

Client Steps

SSH to server

- -\$ssh UserName@server ip addr
- \$ ssh -X UserName@server_ip_addr (X11
 session forwarding)

Run a command on the remote host

- \$ xterm, \$ gedit, \$ firefox, etc.

Client Steps – Make logins convenient

- Generate public and private keys
 - -\$ssh-keygen
- Copy your public key to the server for key-based authentication (~/.ssh/authorized_keys)
 - \$ ssh-copy-id -i UserName@server_ip_addr
- Add private key to authentication agent (ssh-agent)
 - -\$ssh-add
- SSH to server
 - -\$ssh UserName@server ip addr
 - \$ ssh -X UserName@server_ip_addr (X11 session forwarding)
- Run a command on the remote host
 - \$ xterm, \$ gedit, \$ firefox, etc.

How to Check IP Addresses

- \$ifconfig
 - configure or display the current network interface configuration information (IP address, etc.)
- \$ hostname -I
 - gives the IP address of your machine directly
- \$ping <ip_addr>(packet internet groper)
 - Test the reachability of a host on an IP network
 - measure round-trip time for messages sent from a source to a destination computer
 - Example: \$ ping 192.168.0.1, \$ ping google.com