21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

33- Monday November 21, 2011.

Lemma 33.1: Splitting fields are unique up to isomorphism. More precisely, if σ is an isomorphism from E_1 onto E_2 , if F_1 is a splitting field extension for $P_1 \in E_1[x]$ over E_1 , and F_2 is a splitting field extension for $P_2 = \sigma P_1 \in E_2[x]$ over E_2 , then there exists an isomorphism τ from F_1 onto F_2 extending σ .¹ It follows that $[F_1:E_1] = [F_2:E_2]$. If $E_2 = E_1$ and $\sigma = id_{E_1}$, then the isomorphism τ fixes E_1 . If $F_2 = F_1$, τ is an automorphism of F_1 which moves F_1 to F_2 .

Proof. By induction on the dimension $[F_1:E_1]$.² If $[F_1:E_1]=1$, then $F_1=E_1$ and P_1 splits over E_1 , i.e. $P_1=c\prod_{i=1}^d(x-a_i)$ with $c\in E_1^*$, $a_1,\ldots,a_d\in E_1$, so that $P_2=\sigma P_1=\sigma(c)\prod_{i=1}^d(x-\sigma(a_i))$ with $\sigma(c)\in E_2^*$, $\sigma(a_1),\ldots,\sigma(a_d)\in E_2$, i.e. P_2 splits over E_2 , hence $F_2=E_2$.

If $[F_1:E_1] > 1$, let $a \in F_1 \setminus E_1$ be a root of P_1 (which exists, since F_1 is generated by these roots), so that a is algebraic over E_1 (since $P_1(a) = 0$), and let $P \in E_1[x]$ be the monic irreducible polynomial with P(a) = 0, so that P divides P_1 ; one then defines $Q = \sigma P$. Since P divides P_1 , one deduces that Q divides P_2 , so that Q splits over P_2 , and there exists $a' \in F_2$ (among the roots of P_2) such that Q(a') = 0, hence the monic irreducible polynomial in $E_2[x]$ associated to a' divides Q; then, there exists an isomorphism ρ from $E_1(a)$ onto $E_2(a')$ extending σ and such that $\rho(a) = a'$ by Lemma 32.2. Then, if $P_1 = (x - a) Q_1$ and $P_2 = (x - a') Q_2$, one has $Q_2 = \sigma Q_1$, and one checks easily that F_1 is a splitting field extension for Q_1 over $E_1(a)$, and that P_2 is a splitting field extension for P_2 over $E_2(a')$, and one applies the induction hypothesis for constructing an isomorphism τ , since $[F_1:E_1] = [F_1:E_1(a)] [E_1(a):E_1]$ and $[E_1(a):E_1] > 1$ gives $[F_1:E_1(a)] < [F_1:E_1]$.

Lemma 33.2: For any prime p and any $k \ge 1$, two fields of size $q = p^k$ are isomorphic.

Proof: If F is a finite field of characteristic p, and F_0 is its prime subfield, isomorphic to \mathbb{Z}_p , then $|F| = q = p^k$ means $[F:F_0] = k$. Since F^* is a finite multiplicative group of order q-1, one has $a^{q-1} = 1$ for all $a \in F^*$, so that $a^q = a$ for all $a \in F$. Since $x^q - x$ is a monic polynomial of degree q and one knows q distinct roots, one has $x^q - x = \prod_{a \in F} (x-a)$, and F is then a splitting field extension for $x^q - x$ over F_0 , since the polynomial splits over F and its roots certainly generate F, because every element of F is a root. Since splitting field extensions are unique up to isomorphism by Lemma 33.1, two such fields are isomorphic.

Lemma 33.3: Let D be any field of characteristic p, with D_0 as prime subfield ($\simeq \mathbb{Z}_p$). Then, the mapping φ_p , defined by $\varphi_p(a) = a^p$ for all $a \in D$, is an *injective* ring-homomorphism from D into itself. If D is finite, it is an automorphism, the *Frobenius automorphism*,⁴ with *fixed field* D_0 .⁵

it is an automorphism, the Frobenius automorphism,⁴ with fixed field D_0 .⁵ Proof: Since $\varphi_p(a+b) = (a+b)^p = a^p + \left(\sum_{j=1}^{p-1} \binom{p}{j} a^j b^{p-j}\right) + b^p$ and the binomial coefficient $\binom{p}{i}$ is a multiple of p except for i=0 and i=p because p is prime, the right side is $a^p + b^p$, i.e. $\varphi_p(a) + \varphi_p(b)$; then $\varphi_p(ab) = (ab)^p = a^p b^p = \varphi_p(a) \varphi_p(b)$, so that φ_p is a ring-homomorphism.

If $\varphi_p(a) = \varphi_p(b)$, then $\varphi_p(b-a) = \varphi_p(b) + \varphi_p(-1) \varphi_p(a) = \varphi_p(b) - \varphi_p(a) = 0$ (since p=2 implies +1=-1), and $(b-a)^p=0$ implies b=a. If D is finite, any injective mapping from D into itself is also surjective. By Fermat's theorem, $j^{p-1}=1 \pmod p$ for $j=1,\ldots,p-1$, so that $a^{p-1}=1$ for all $a\in D_0^*$, hence $a^p=a$ for all $a\in D_0$, i.e. $\varphi_p(a)=a$; since x^p-x has degree p and one already knows p distinct roots, one knows them all, and $\varphi_p(x)=x$ implies $x\in D_0$.

¹ This isomorphism τ is not unique in general, as seen from the proof, where one chooses a root of Q.

² One has $[F_1:E_1] < \infty$: if a_1, \ldots, a_d are the roots of P_1 in F_1 , then each a_j is algebraic over E_1 with an order $\leq d$, so that $[F_1:E_1]$ is at most the product of the orders, giving an upper bound d^d . Once the result is proved, it is at most d! since a splitting field extension was constructed satisfying such a bound.

³ Because Q_1 splits over F_1 , and the smallest field containing $E_1(a)$ and all the roots of Q_1 contains E_1 and all the roots of P_1 , and is then F_1 .

⁴ Ferdinand Georg Frobenius, German mathematician, 1949–1918. He worked in Berlin, Germany.

⁵ The fixed points of an endomorphism ψ of a ring R is a subring of R, since $\psi(x) = x$ and $\psi(y) = y$ imply $\psi(x+y) = \psi(x) + \psi(y) = x + y$, so that $\psi(0) = 0$ and $\psi(-x) = -\psi(x)$, and $\psi(xy) = \psi(x) \psi(y) = xy$. The fixed points of an automorphism ψ of a field K is a subfield of K, since $\psi(x) = \psi(x) \psi(1)$ for all $x \in K$ implies $\psi(1) = 1$, and $x^{-1}x = 1$ for $x \neq 0$ implies $(\psi(x))^{-1}\psi(x) = 1$, so that $\psi(x) = x \neq 0$ implies $\psi(x^{-1}) = x^{-1}$.

Lemma 33.4: Let $E = \mathbb{Z}_p$, and for $k \ge 1$ let F be a splitting field extension for $Q = x^{p^k} - x$ over E. Then $|F| = p^k$.

Proof: Since Q' = -1, there are no multiple roots in F, and since $[F:E] < \infty$, F is finite and the Frobenius mapping φ_p is an automorphism by Lemma 33.3, fixing E by Fermat's theorem, i.e. $\varphi_p \in Aut_E(F)$, hence $\varphi_p^k \in Aut_E(F)$, and $\varphi_p^k(x) = x^{p^k}$ for all x (because product means composition), the fixed field of φ_p^k is then exactly the roots of Q, which is then the smallest field containing E and the roots of Q, i.e. F, and this shows that $|F| = p^k$.

Remark 33.5: It is common to call F_q a field of order q, with q a power of a prime p, so that F_p is then isomorphic to \mathbb{Z}_p .

This is a third different meaning for the notation F_n , but it denotes now a finite field (only used if $n = p^k$ for a prime p), while the first two denoted integers, the nth Fibonacci number (with $F_0 = F_1 = 1$ and $F_{n+2} = F_n + F_{n+1}$ for all $n \ge 0$), or the nth Fermat "prime" ($F_n = 2^{2^n} + 1$, which is only known to be prime for $0 \le n \le 4$).

Lemma 33.6: If E is any field, and G is a *finite* subgroup of the multiplicative group $E^* = E \setminus \{0\}$, then G is cyclic.

Proof: Because G is finite, every element has a finite order; let ℓ be the ℓ cm (least common multiple) of the orders of the elements of G, so that $g^{\ell} = 1$ for all $g \in G$. By the structure theorem for finite Abelian groups, there is an element g_0 of order ℓ , so that G has at least ℓ elements, but on the other hand $x^{\ell} = 1$ has at most ℓ roots, so that G has exactly ℓ elements and is generated by g_0 .

Definition 33.7: If E is a field and F is a finite field extension of E, with [F:E]=k, a power basis is a basis of F (as an E-vector space) which has the form $\{1, a, \ldots, a^{k-1}\}$ for an element $a \in F$.

Remark 33.8: Using Lemma 33.6, we shall prove that a power basis exists for any finite field F_q (if E is its prime subfield, isomorphic to \mathbb{Z}_p if $q = p^k$).

From a practical point of view, finite fields are important in coding theory and in cryptography, and a power basis is often used, but implicitly as a root of an irreducible polynomial, so that one encounters the question of irreducible polynomial in $\mathbb{Z}_p[x]$, for example. In case of \mathbb{Z}_2 , I found written that the irreducible polynomials are x^2+x+1 if k=2, x^3+x+1 or x^3+x^2+1 if k=3, x^4+x+1 or x^4+x^3+1 if k=4, and that some irreducible polynomials for $k\geq 5$ are x^5+x^2+1 if k=5, x^6+x+1 if k=6, x^7+x+1 if k=7, $x^8+x^4+x^3+x^2+1$ if k=8, so that there are various practical aspects to consider, like how to check that any of these given polynomials is indeed irreducible, or how to find an irreducible polynomial in a situation which is not listed in the books.

The values used in coding theory are reasonable low for p and for k, and the study of *cyclotomic polynomials* will be of great help, but the values of p used in cryptography have a few hundred digits, and the questions for such cases are then quite different.

⁶ Directly, using additive notation, if in an Abelian group H an element a of order n, and if m divides n, then $b = \frac{n}{m}a$ has order m. If (q, r) = 1 and an element g has order q and another element h has order r, then the cyclic group generated by g and the cyclic group generated by h only intersect at 0, and g + h has order q r.