Projeto de permutadores pela média logarítmica da diferença de temperaturas

$$q = UAF(\Delta T)_{ml}$$

Co-corrente

Contra-corrente

$$\Delta T_{ml} = \frac{\left(T_{Ae} - T_{Be}\right) - \left(T_{As} - T_{Bs}\right)}{\ln \frac{\left(T_{Ae} - T_{Be}\right)}{\left(T_{As} - T_{Bs}\right)}} \Delta T_{ml} = \frac{\left(T_{Ae} - T_{Bs}\right) - \left(T_{As} - T_{Be}\right)}{\ln \frac{\left(T_{Ae} - T_{Bs}\right)}{\left(T_{As} - T_{Be}\right)}}$$
A: fluido quente: B: fluido frio e: entrada: s: saída

A: fluido quente; B: fluido frio e: entrada; s: saída

$$P = \frac{t_2 - t_1}{T_1 - t_1} R = \frac{T_1 - T_2}{t_2 - t_1}$$

1 e 2 representam entrada e saída, respetivamente; T fluido que circula na carcaça; t fluido que circula nos tubos independentemente de serem quentes ou frios

(a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes

(b) Two-shell passes and 4, 8, 12, etc. (any multiple of 4), tube passes

(c) Single-pass cross-flow with both fluids unmixed

(d) Single-pass cross-flow with one fluid mixed and the other unmixed

$$q_{m\acute{a}x} = (MCp)_{min} \Delta T_{m\acute{a}x}$$

 $E = q/q_{m\acute{a}x} \quad 0 < E < 1$
 $NUT = UA / (Mcp)_{min}$

$C = (MCp)_{min}/(MCp)_{máx}$

Heat exchanger type	NTU relation
1 Double-pipe:	THE RESERVED IN THE RESERVED TO SERVED IN THE RESERVED IN THE
Parallel-flow	$NTU = -\frac{\ln[1 - \varepsilon(1 + C)]}{1 + C}$
Counter-flow	$NTU = \frac{1}{C-1} In \left(\frac{\varepsilon - 1}{\varepsilon C - 1} \right)$
2 Shell and tube:	
One-shell pass 2, 4, tube passes	$NTU = -\frac{1}{\sqrt{1+C^2}} ln \left(\frac{2/\epsilon - 1 - C - \sqrt{1+C^2}}{2/\epsilon - 1 - C + \sqrt{1+C^2}} \right)$
3 $Cross-flow(single-pass)$ C_{\max} mixed, C_{\min} unmixed	$NTU = -\ln\left[1 + \frac{\ln(1 - \varepsilon C)}{C}\right]$
C_{\min} mixed, C_{\max} unmixed	$NTU = -\frac{\ln[C\ln(1-\varepsilon) + 1]}{C}$
All heat exchangers with C = 0	$NTU = -\ln(1 - \varepsilon)$

Source: Kays and London, Ref. 7.