Copy Number and Structural Variation

Chris Miller

Some slides adapted from:

Malachi Griffith, Obi Griffith, Fouad Yousif High-Throughput Biology: From Sequence to Networks

https://github.com/griffithlab/rnaseq_tutorial_wiki/blob/master/LectureFiles/cbw-cshl/2017/IGV Tutorial Brief.pptx

Tobias Rausch

Structural and copy-number variation analysis

https://www.ebi.ac.uk/training/materials/cancer-genomics-materials/structural-and-copy-number-variation-mutational-signatures/structural-and-copy-number-variation-analysis/

Tandem Duplication

Types of Structural Variation

SVs can get complicated!

Genomic diversity from SVs

 Underappreciated due to past limitations of technology

- probably about 1% of each genome (by bp) differs from the reference
 - only 0.1% different by SNPs

SV calls from WGS of 14,623 samples

Somatic SVs are a frequent cause of cancer

Polyploidy

Haploid (N) Diploid (2N) Triploid (3N) Tetraploid (4N)

Whole Genome Doubling

Somatic SVs are a frequent cause of cancer

MCF7 Breast Cancer cell line

Read counting in windows for tumor and normal data

- Log2 ratio for each window
- Chromosome-wide plot

$$log_2 \frac{\# Reads_{Disease}}{\# Reads_{Normal}}$$

Gets more complicated with targeted sequencing, but still works!

B-allele frequency for CN-neutral Loss of Heterozygosity

- Other factors:
 - Sample prep
 - GC-bias
 - Probe affinities
 - Sample Purity
 - Subclonal populations

• Cleaner data, deeper data = higher resolution

There are few decent packages for doing this

CNVkit is my go-to algorithm these days

Paired-end sequencing

DNA or cDNA

Fragment and size select

Paired-end sequencing

Paired-end sequencing

Interpreting inferred insert size

The "inferred insert size" can be used to detect structural variants including

- Deletions
- Insertions
- Inter-chromosomal rearrangements: (Undefined insert size)

What is the effect of a deletion on inferred insert size?

Inferred insert size is > expected value

Color by insert size

Insert size color scheme

• Smaller than expected insert size:

Larger than expected insert size:

Pairs on different chromosomes

Each end colored by chromosome of its mate

Rearrangement

Rearrangement

Interpreting Read-Pair Orientations

Orientation of paired reads can reveal structural events:

- Inversions
- Duplications
- Translocations
- Complex rearrangements

Orientation is defined in terms of

- read strand, left vs right, and
- read order, first vs second

Interpretation of read pair orientations

LR Normal reads.

The reads are left and right (respectively) of the unsequenced part of the sequenced DNA fragment when aligned back to the reference genome.

LL,RR Implies inversion in sequenced DNA with respect to reference.

RL Implies duplication or translocation with respect to reference.

These categories only apply to reads where both mates map to the same chromosome.

Figure courtesy of Bob Handsaker

Reference genome

Anomaly: expected orientation of pair is inward facing (→ →)

"Left" side pair

Color by pair orientation

Soft-clipping

Soft-clipping

Assignment

https://gist.github.com/chrisamiller/1150bcdb1a269b6c32d1f2a77dccb9aa

37 y.o. female with AML; M3 morphology

PML-RARA fusion

https://image.slidesharecdn.com/ sinhaematology2012-121128014851phpapp01/95/genetics-inhaematology2012-28-

37 y.o. female with AML; M3 morphology

Chemo + ATRA

37 y.o. female with AML; M3 morphology

Chemo + ATRA

Complex cytogenetics, negative for PML-RARA

Chemo only

JAMA. 2011;305(15):1577-1584. doi: 10.1001/jama.2011.497

Use of Whole-Genome Sequencing to Diagnose a Cryptic Fusion Oncogene

A Breakpoints in chromosomes 15 and 17 resulting in PML-RARA fusion

for SCT.

Additional cryptic M3 AMLs

