Day 2

Egad! It's Excel

The Data Bootcamp

Objectives

- Basic Excel navigation and functionality
- Gain familiarity with the value of Pivot Tables and the steps for their utilization.
- Gain comfort utilizing VLookups and Hlookups
- Understand how to implement conditional formatting based on logical rules

Admin Stuff

Class Git Repository

All Class Content and Homework will be here:

https://usc.bootcampcontent.com/usc-boot-camp/USCLOS201805DATA1-Class-Repository-DATA.git

Class Videos (UPDATE)

Class Videos will be automatically uploaded here:

https://codingbootcamp.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%2 2ee8745c8-c7ff-4d38-b766-a8d3001005ad%22&folderSets=3

Other Resource

Free Python Material:

- Social Learning
 - https://www.sololearn.com/Course/Python
- Daily Newsletter:
 - https://realpython.com/python-tricks/
- Learn by Doing Project:
 - https://knightlab.northwestern.edu/2014/06/05/five-mini-programming-projects-for-the-python-beginner/
- Practical Business Python:
 - http://pbpython.com/
- Learn by watching video:
 - https://www.fullstackpython.com/best-python-videos.html

Other Resource

Deep Learning

- Daily Digest:
 - https://medium.com/tag/deep-learning
 - https://www.kdnuggets.com/author/gregory-piatetsky
 - https://www.analyticsvidhya.com/
- Certifications:
 - https://www.coursera.org/specializations/deep-learning
 - http://www.openculture.com/2017/05/artificial-intelligence-a-free-online-course-from-mit.html
 - https://www.coursera.org/learn/deep-learning-business

You will be analyzing thousands of Kickstarter projects to look for funding trends across goal targets and topics.

Due: Next Saturday

Recommended Target: Thursday of Next Week

Quick Refresher

Truth-Telling & Story Telling

What are the steps in the **Analytics Paradigm?**

Analytics Paradigm

Regardless of type or industry, this paradigm provides a repeatable pathway for effective data problem solving.

Let's Start with the Basics

Formulas

Function

Arguments

In a way, Excel has introduced you to a sort of protoprogramming. Throughout your time writing scripts you will rely on **functions** (methods) that do *something* to or with **arguments**.

Function

Variable Arguments

When we reference a set of range, Excel is being given a set of **variable** inputs. It will determine the actual values of these inputs prior to executing the function.

What about this example?

Which is the function? Which are the arguments?

= SUM(AVG(F4:F6), AVG(G4:G6))

What about this example? Which is the function? Which are the arguments?

= SUM(AVG(F4:F6), AVG(G4:G6))

It Depends...

What about this example? Which is the function? Which are the arguments?

The **AVG functions** takes as their arguments the ranges provided.

What about this example? Which is the function? Which are the arguments?

This is a **nested function.** We'll be doing plenty of complex nests in this class.

Python Snippet from Last Class

```
requests.get(target_url_italian, headers=headers).json()
requests.get(target_url_mexican, headers=headers).json()
```

Python Snippet from Last Class

Syntax and capabilities may differ across technologies and platforms, but fundamental concepts remain the same.

Conditionals

Conditionals: If This... Then That

Conditionals present a way to **control the flow** of logic based on certain criteria being met. This is a *core building block* in all languages.

Conditionals: If This... Then That

=IF(D2>5,TRUE,FALSE)

AND, NOT, OR

Conditionals: If This... Then That

=IF(**AND(**D2>5, D2<10**)**,TRUE,FALSE)

Conditionals: If This... Then That

Nesting conditionals can quickly become a very convoluted (albeit necessary) part of your data prep.

Demo Time!

(04-Stu_GradeBook - 08-McDonalds)

BREAK

Pivot Tables

Get Pivot With It

Pivot Tables are one of the most important data visualization concepts to master in this class.

(Don't worry. They are a cinch to deal with)

Get Pivot With It

Seller	Qty. Sold	Date
Joseph	\$42.50	1/1/17
Jacob	\$65.00	1/3/17
Jacob	\$5.25	1/6/17
Joseph	\$125.00	1/6/17
Jacob	\$3.50	1/7/17
Matt	\$32.00	1/9/17

Seller	Total Sold
Joseph	\$167.50
Jacob	\$73.75
Matt	\$32.0

In essence, Pivot tables are a **summative** analytic tool that allows us to perform aggregate functions that along any combination of fields.

(The name comes from the fact that we are pivoting along a data axis)

Words to the Wise – Keep It Flat!

В	С	D	E	F	G	Н
DateTime −	Week# =	Section?	Pace =	Academic Support =	Self-Master y =	Instructor Er =
2016-09-11T04:00:00.000Z	18	RCB0503FSF - CCC	3	5	5	4
2016-09-11T05:00:00.000Z	6	UT0726FSF	3	5	3	4
2016-09-12T04:00:00.000Z	11	UCF062016FSF	4	4	3	5
2016-09-12T04:00:00.000Z	23	UCF0329FSF	2	4	5	1
2016-09-12T04:00:00.000Z	9	UNC0712FSF	3	4	4	3
2016-09-12T04:00:00.000Z	23	UCF0328FSF	4	3	2	3
2016-09-12T04:00:00.000Z	6	RUT0725FSF-NB	5	4	4	5
2016-09-12T04:00:00.000Z	6	RUT0725FSF-NB	5	5	4	5
2016-09-12T04:00:00.000Z	6	RUT0725FSF-NB	2	4	4	4
2016-09-12T04:00:00.000Z	11	UCF062016FSF	4	5	4	5
2016-09-12T04:00:00.000Z	13	UCF061416FSF	4	5	1	5

- Modern BI tools like Tableau, Sisense, and Salesforce work best if data is stored in flat CSVs – meaning column headers represent fields (vertically) on the spreadsheet. This is largely because all of these technologies heavily utilize Pivot Tables beneath their visualizations.
- Don't try to confuse this simplicity. "Spreadsheet magic" is a nightmare to analyze.

Demo Time!

(09-PivotTables, 10-TopSongs)

Lookups

Look It Up with Lookups

Planet	Population	
Zeelo	5020	
Merinoa	380	
Cardboard Box	2	
• • •		
Asteroid 9	95	

Assume this table is gigantic...

How would we retrieve the population of a specific planet for use in another formula?

Look It Up with Lookups

Planet	Population	
Zeelo	5020	
Merinoa	380	
Cardboard Box	2	
• • •		
Asteroid 9	95	

Assume this table is gigantic...

How would we retrieve the population of a specific planet for use in another formula?

=vlookup(<value>, <full table>, <column to retrieve>)

What Will This Yield?

Planets

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
Asteroid 9	95	The Asterisks

=vlookup("Asteroid 9", Planets, 3)

What Will This Yield?

Planets

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
Asteroid 9	95	The Asterisks

=vlookup("Astroid 9", Planets, 3)

The Asterisks

Demo Time!

(11-Lookups, 12-ProductPivot)

Questions / Discussion