(Exercise 1) We have a hypothetical computer with this instruction format:

OP_CODE	OPERAND 1	OPERAND 2
4 BITS	4 BITS	4 BITS

0000	0xC2
0001	0x19
0010	0x5A
0011	0x2
 Figure	Memory (address and content)

SUM Rx, Ry

1001xxyy

Add RX+RY and it is stored in RX.

Following the instruction sequence:

100100010010 -> 1001 0001 0010

OP_CODE: 1001

OPERAND_1: 0x19 = 0000 0001 1001 OPERAND_2: 0x5A = 0000 0101 1010

SUM Rx, Ry: $00011001 + 01011010 = 01110011 \rightarrow 0x73$ Add RX+RY and it is stored in RX. In 0001 there were: 0x19. If we store the value of adding RX + RY it will remain: 0x73

- a) What is the result after executing this instruction? 0x73
- b) Which will be the state of the memory after the execution of this instruction?

0000	0xC2
0001	0x73
0010	0x5A
0011	0x2

- **C)** Which is the addressing mode used in both operands? I think it's about the relative.
- d) What would be the result if operand 2 uses immediate addressing mode?

OPERAND_2: 0010.

In 0010: 0x5A -> 0000 0101 1010

(Exercise 2) We have a computer with this instruction set:

Code	Instrucction	<u>Description</u>
ENT M(m)	000mmmmm	Read data from keyboard to memory.
SAL M(m)	001mmmmm	Show data on screen from memory.
CAR RO, M(m)	010mmmmm	Store content a memory address in register R0.
ALM M(m), R0	011mmmmm	Store content of R0 in a memory
MOV Rx, Ry	1000xxyy	address. Copy content of RY to RX (X, Y are
SUM Rx, Ry	1001xxyy	<u>register numbers).</u> Add RX+RY and it is stored in RX.
RES Rx, Ry	1010xxyy	Subtract RX-RY and it is stored in RX.
MUL Rx, Ry	1011xxyy	Multiply RX \ast RY and it is stored in RX.
DIV Rx,Ry	1100xxyy	Divide RX / RY and it is stored in RX.

Following the instruction sequence:

00001011(A)

00001100(B)

00010001(C)

00011100(D)

Where A, B, C, D represents the input using the keyboard and their values are: A=1

B=2

C=3

D=4

- e) What is the formula associated to A, B, C, D?
- f) What is the result shown on screen?
- g) What is the state of memory?
- h) If Program Counter (PC) initial value was 258... Which is it actual value?
- i) How many registers of general purpose (RX) has our architecture?

Share your solution and your doubts in the forum!!! If a classmate has problems with it, try to help him.