实验 3 线性系统的根轨迹分析 —— NI 平台实验报告

一、实验目的

- 1. 根据对象的开环传函,做出根轨迹图。
- 2. 掌握用根轨迹法分析系统的稳定性。
- 3. 通过实际实验,来验证根轨迹方法。

二、实验设备

- 1. PC 机一台
- 2. NI ELVIS III 一台
- 3. "Circuits Control Board 1"(自动控制原理课程实验套件 1)
- 4. 导线 6 根

三、实验原理

(简述实验原理,按步骤画出系统根轨迹,并根据根轨迹分析系统稳定性,参照实验指导书三节 4、5 点。)

1. 方框图:

图 3-1 线性系统方框图

2. 模拟电路图:

R≥2591kΩ,R=166kΩ,R<166kΩ,166kΩ<R<2591kΩ

图 3-2 线性系统模拟电路图

3. 开环传递函数:

$$G(S) = \frac{K}{S(S+1)(0.5S+1)}$$

其中,系统的开环增益为 $K = \frac{500 \text{K}\Omega}{R}$

根轨迹如图, 0<k<3 时系统稳定, k=3 系统临界稳定, k>3,系统不稳定

<k<3 ,R 为 500/3 KΩ到无穷大 ,系统无右半平面极点 系统稳定 k=3 R 为 500/3 KΩ ,系统有虚轴上的两个极点 系统临界稳定 k>3, R 为 0 到 500/3 KΩ 系统有两个右半平面极点 系统不稳定

四、实验数据与结果分析

1. 判断系统处于不同状态时闭环极点在 s 平面上的位置,并计算 K 和 R 的取值范围。

系统响应	闭环极点在根轨迹上的位置 K		R /ΚΩ
非周期过程	负实轴	0 <k<=0.192 r="">=2604.2</k<=0.192>	
等幅振荡	虚轴	3	166.7
系统发散	右半平面	K>3	R<166.7
系统衰减振荡	左半平面	0.192 <k<3 166.7<="" td=""></k<3>	
			<r<2604.2< td=""></r<2604.2<>

2. 截取系统处于不同状态时的响应曲线,并画出此时闭环极点在 s 平面上的示意图。

实验 3 线性系统的根轨迹分析 —— 直流伺服系统平台实验报告

一、实验目的

- 1. 掌握二阶系统的性能指标同系统闭环极点位置的关系。
- 2. 掌握由开环零极点的位置确定闭环零极点的位置的方法。
- 3. 会用 Routh 判据判定闭环系统的稳定性。

二、实验设备

- 1. GSMT2014 型直流伺服系统控制平台。
- 2. PC、MATLAB 平台

三、实验原理

根轨迹是当根轨迹增益 K 由 0→∞变化时,闭环特征根在 s 平面上移动的根轨迹曲线,根轨迹不仅直观地表示了 K 变化时间闭环特征根的变化,还给出了参数对闭环特征根在 s 平面上分布的影响。可判定系统的稳定性,确定系统的品质。

闭环系统的稳定性表现在:根轨迹若越过虚轴进入 s 右半平面,与虚轴交点的 K 即为临界增益。根据坐标原点的根数,确定系统的型别,同时可以确定对应的静态误差系数。已知直流伺服电机系统的三阶开环传递函数为

$$G(s)H(s) = \frac{K_1K_2K_3}{T_0s(T_1s+1)(T_2s+1)} = \frac{K}{s(T_1s+1)(T_2s+1)}$$

其中, $K = K_1 K_2 K_3 / T_0$ 为开环增益。

闭环系统结构图如下图所示:

若取
$$\begin{cases} T_0 = 1 \\ T_1 = 0.12 \ , \ 则三阶系统的开环传递函数为: \\ T_2 = 0.052 \end{cases}$$

$$G(s)H(s) = \frac{K}{s(0.12s+1)(0.052s+1)}$$

系统的特征方程为1+G(s)H(s)=0,由式(8.2)可得

$$s(0.12s+1)(0.052s+1)+K=0$$

展开得到:

$$0.006s^3 + 0.175s^2 + s + K = 0$$

化简得:

$$s^3 + 29.17s^2 + 166.67s + 166.67K = 0$$

其中:

$$a_0 = 1$$
;

$$a_1 = 29.17$$
;

$$a_2 = 166.67$$
;

$$a_3 = 166.67K$$
;

列写 Routh 判据

s^3	$a_0 = 1$	$a_2 = 166.67$
s ²	$a_1 = 29.17$	$a_3 = 166.67K$
s^1	$b_1 = (a_1 a_2 - a_0 a_3) / a_1$ = 166.67 - 5.7137 K	b ₂ = 0
s^{0}	$c_1 = (b_1 a_3 - a_1 b_2)/b_1 = 166.67K$	

若系统稳定,则劳斯判据第一列系数大于零,即:

$$\begin{cases} 166.67 - 5.7137K > 0 \\ 166.67K > 0 \end{cases}$$

可以得到闭环系统稳定时 K 取值范围: 0 < K < 29.17

由于开环增益为正,所以不稳定时 K 取值范围: K > 29.17

系统临界稳定时 K 取值范围: K = 29.17

系统根轨迹如下图所示:

四、实验数据与结果分析

模型仿真

DCT 137								
K	$C(t_p)$	$C(\infty)$	σ (%)	$t_p(s)$	$t_s(s)$		阻	极点位置
					第一行	为误	尼	
					差取 0.0	5	类	
					第二行	为误	型	
					差取 0.0	2		
2	1002	1000	0.2	1.651	1.651	欠阻	尼	左半平面
					1.651			
5	1206	1000	20.6	0.63	1.169	欠阻	尼	左半平面
					1.736			
15	1718	1000	71.8	0.347	3.863	欠阻	尼	左半平面
					4.855			
25	发散					负阻	 尼	右半平面
35	发散					负阻	尼	右半平面

实时控制

1.改变 K 值从图中读值。

К	$C(t_p)$	$C(\infty)$	σ (%)	$t_p(s)$	$t_s(s)$	阻尼类	极点位置
					第一行为误	型型	
					差取 0.05		
					第二行为误		
					差取 0.02		
1		2000			2.6	过阻尼	负实轴
					3.148		
5	2489	2000	24.45	0.554	1.095	欠阻尼	左半平面
					1.635		
8	2697	2000	34.85	0.548	1.780	欠阻尼	左半平面

					2.203		
12	2739	2000	36.95	0.567	3.345	欠阻尼	左半平面
					4.752		

2. 寻找无阻尼、临界阻尼时 K 值

阻尼类型	К
无阻尼	18
临界阻尼	2

五、思考

1、实验中阶跃输入信号的幅值范围应该如何考虑? 阶跃输入信号的幅值大约是系统量程的 1/10,

太大系统响应振荡时可能会超出量程,

太小会使读数困难造成误差

2、高阶系统的稳定性与哪些参数有关?

与系统型别,极点在复平面位置,系统阶数,系统单位负反馈下开环传递函数增益 K 有关