Statistical Data Analysis

Dr. Jana de Wiljes

1. Dezember 2021

Universität Potsdam

III-posedness and Regularization

If the least squares problem is ill-posed, i.e., solution does not exist or is unstable.

Small perturbations in ${\bf y}$ or ${\bf X}$ yield large perturbations in β

Solve regularized problem: For some $\lambda>0$ and matrix ${\bf G}$

$$\min_{\beta} \frac{1}{2} \|\mathbf{X}\beta - \mathbf{y}^{\top}\|^2 + \frac{\lambda}{2} \|\mathbf{G}\beta\|^2$$

Iterative Methods

Iterative Solvers for Least-Squares Regression

So far: Given $\mathbf{y} \in \mathbb{R}^n$, solve

$$\min_{\beta} \frac{1}{2} \| \mathbf{X}\beta - \mathbf{y} \|$$

directly using $\beta^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}^\top$. Here

$$\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$$
 and $\beta \in \mathbb{R}^{(p+1)}$.

Problems:

- 1. Generating $\mathbf{X}^{\top}\mathbf{X}$ and solving normal equations is too costly for large-scale problems.
- Exact solution not useful when problem is ill-posed → add explicit regularization or do so implicitly by early stopping.

Iterative methods that avoid working with $\mathbf{X}^{\top}\mathbf{X}$

- Steepest descent
- · Conjugate gradient for least-squares (CGLS)

Excellent references: Numerical Optimization [4], iterative linear algebra [5], general introduction [1]

Iterative Methods

General idea - obtain a sequence $eta_1,\ldots,eta_j,\ldots$ that converges to least-squares solution eta^*

$$\beta_j \longrightarrow \beta^*$$
, for $j \to \infty$.

How fast does the sequence converge? Assume

$$\|\beta_{j+1} - \beta^*\| < \gamma_j \|\beta_j - \beta^*\|$$

where all $\gamma_i < 1$. Then

- If γ_i is bounded away from 0 and 1 the convergence is linear
- ullet If $\gamma_i
 ightarrow 0$ the convergence is superlinear
- ullet If $\gamma_j
 ightarrow 1$ the convergence is sublinear

The sequence converges quadratically if γ_i is bounded away from 0 and 1 and

$$\|\beta_{j+1} - \beta^*\| < \gamma_j \|\beta_j - \beta^*\|^2$$

Steepest Descent for Least-Squares

Consider now

$$\phi(\beta) = \frac{1}{2} \|\mathbf{X}\beta - \mathbf{y}\|^2 \quad \text{with} \quad \nabla_{\beta} \phi(\beta) = \mathbf{X}^{\top} (\mathbf{X}\beta - \mathbf{y}).$$

Steepest descent direction is $\mathbf{d}_j = \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\beta_j)$ and

$$\beta_{j+1} = \beta_j + \alpha_j \mathbf{d}_j$$

How to choose α_i ?

Idea: Minimize ϕ along direction \mathbf{d}_i

$$\alpha_j = \operatorname*{argmin}_{lpha} \phi(eta_j + lpha \mathbf{d}_j) = \operatorname*{argmin}_{lpha} \frac{1}{2} \|lpha \mathbf{X} \mathbf{d}_j - \mathbf{r}_j\|^2$$

with residual $\mathbf{r}_j = \mathbf{y} - \mathbf{X}\beta_j$.

This leads to simple quadratic equation in 1D whose solution is

$$\alpha_j = \frac{\mathbf{r}_j^\top \mathbf{X} \mathbf{d}_j}{\|\mathbf{X} \mathbf{d}_j\|^2}$$

Algorithm: Steepest Descent for Least-Squares

for $j=1,\ldots$

- Compute residual $\mathbf{r}_j = \mathbf{y} \mathbf{X}\beta_j$
- ullet Compute the SD direction $\mathbf{d}_j = \mathbf{X}^{ op} \mathbf{r}_j$
- $\bullet \quad \text{Compute step size } \alpha_j = \frac{\mathbf{r}_j^\top \mathbf{X} \mathbf{d}_j}{\|\mathbf{X} \mathbf{d}_j\|^2}$
- ullet Take the step $eta_{j+1} = eta_j + lpha_j \mathbf{d}_j$

Converges linearly, i.e.,

$$\|\beta_{j+1} - \beta^*\| < \gamma \|\beta_j - \beta^*\| \quad \text{with} \quad \gamma \approx \left| \frac{\kappa - 1}{\kappa + 1} \right|$$

Here, κ depends on condition number of \mathbf{X} , i.e.,

$$\kappa \approx \frac{\sigma_{\rm max}^2}{\sigma_{\rm min}^2}$$

Can be painfully slow for ill-conditioned problems

Accelerating Steepest Descent: Post-Conditioning

Idea: Improve convergence by transforming the problem

$$\phi(\beta) = \frac{1}{2} \|\mathbf{XSS}^{-1}\beta - \mathbf{y}\|^2$$

Here: **S** is invertible Solve in two steps:

1. Set $\mathbf{z} = \mathbf{S}^{-1} \boldsymbol{\beta}$ and compute

$$\mathbf{z}^* = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{X}\mathbf{S}\mathbf{z} - \mathbf{y}\|^2$$

2. Then $\beta = Sz$.

Pick S such that XS is better conditioned.

Conjugate Gradient Method for Least-Squares

CG is designed to solve quadratic optimization problems

$$\min_{\beta} \frac{1}{2} \beta^{\top} \mathbf{H} \beta - \mathbf{b}^{\top} \beta$$

with H symmetric positive definite. In our case

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \left\| \mathbf{X} \beta - \mathbf{y} \right\|^2 = \underset{\beta}{\operatorname{argmin}} \frac{1}{2} \beta^\top \underbrace{\mathbf{X}^\top \mathbf{X}}_{=\mathbf{H}} \beta - \underbrace{\mathbf{y}^\top \mathbf{X}}_{=\mathbf{b} \top} \beta$$

CG improves over SD by using previous step (not a memory-less method) and constructing a basis for the solution.

Facts:

- terminates after at most n steps (in exact arithmetic)
- good solutions for $j \ll n$

Conjugate Gradient Least-Squares

- Uses the structure of the problem to obtain stable implementation
- · Typically converges much faster than SD
- · Accelerate using post conditioning

$$\min_{\beta} \frac{1}{2} \|\mathbf{XSS}^{-1}\beta - \mathbf{y}\|^2$$

 \bullet Faster convergence when eigenvalues of $\mathbf{S}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{S}$ are clustered.

Iterative Regularization

Consider

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{b}\|^2$$

- Assume that X has non-trivial null space
- The matrix X^TX is not invertible
- Can we still use iterative methods (CG, CGLS, ...)?

What are the properties of the iterates?

Excellent introduction to computational inverse problems $[2, \, 6, \, 3]$

Iterative Regularization: L-Curve

The CGLS algorithm has the following properties

- For each iteration $\|\mathbf{X}\beta_k \mathbf{y}\|^2 \le \|\mathbf{X}\beta_{k-1} \mathbf{y}\|^2$
- If starting from $\beta = 0$ then $\|\beta_k\|^2 \ge \|\beta_{k-1}\|^2$
- ullet eta_1,eta_2,\dots converges to the minimum norm solution of the problem
- Plotting $\|\beta_k\|^2$ vs $\|\mathbf{X}\beta_k \mathbf{y}\|^2$ typically has the shape of an L-curve

Cross Validation - 1

Finding good least-squares solution requires good parameter selection.

- \bullet λ when using Tikhonov regularization (weight decay)
- number of iteration (for SD and CGLS)

Suppose that we have two different "solutions"

$$\begin{split} \beta_1 & \rightarrow & \left\|\beta_1\right\|^2 = \eta_1 & \left\|\mathbf{X}\beta_1 - \mathbf{y}\right\|^2 = \rho_1. \\ \beta_2 & \rightarrow & \left\|\beta_2\right\|^2 = \eta_2 & \left\|\mathbf{X}\beta_2 - \mathbf{y}\right\|^2 = \rho_2. \end{split}$$

How to decide which one is better?

Cross Validation - 2

Goal: Gauge how well the model can predict new examples.

Let $\{\mathbf{X}_{\mathrm{CV}},\mathbf{y}_{\mathrm{CV}}\}$ be data that is not used for the training

 $\text{Idea: If } \|\mathbf{X}_{\mathrm{CV}}\beta_{1} - \mathbf{y}_{\mathrm{CV}}\|^{2} \leq \|\mathbf{X}_{\mathrm{CV}}\beta_{2} - \mathbf{y}_{\mathrm{CV}}\|^{2} \text{, then } \beta_{1} \text{ is a better solution that } \beta_{2}.$

When the solution depends on some hyper-parameter(s) λ , we can phrase this as bi-level optimization problem

$$\boldsymbol{\lambda}^* = \underset{\boldsymbol{\lambda}}{\operatorname{argmin}} \left\| \mathbf{X}_{\mathrm{CV}} \boldsymbol{\beta}(\boldsymbol{\lambda}) - \mathbf{y}_{\mathrm{CV}} \right\|^2,$$

where $\beta(\lambda) = \operatorname{argmin}_{\beta} \frac{1}{2} \|\mathbf{X}\beta - \beta\|^2 + \frac{\lambda}{2} \|\beta\|^2$.

Cross Validation - 3

To assess the final quality of the solution cross validation is not sufficient (why?).

Need a final testing set.

Procedure

- $\bullet \quad \text{Divide the data into 3 groups } \{\textbf{X}_{train}, \textbf{X}_{CV}, \textbf{X}_{test}\}.$
- Use X_{train} to estimate $\beta(\lambda)$
- $\bullet~$ Use \mathbf{X}_{CV} to estimate λ
- \bullet Use X_{test} to assess the quality of the solution

Important - we are not allowed to use \textbf{X}_{test} to tune parameters!

Neural Networks

Motivation from biology

By Santiago Ramn y Cajal in 1899 see

 $\verb|https://de.wikipedia.org/wiki/Santiago_Ramn_y_Cajalfordetails||$

Neuron

Activation function example: sigmoid

Sigmoid function:

$$\operatorname{sig}(t) = \frac{1}{1+e^{-t}}$$

Properties:

- Derivative: $\frac{1 + e^{-x} + xe^{-x}}{(1 + e^{-x})^2}$
- $\operatorname{sig}'(t) = \operatorname{sig}(t) (1 \operatorname{sig}(t))$

Activation function example: ReLu

Rectified linear unit:

$$ReLu(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$
$$= \max\{0, x\}$$

Properties:

Derivative:

$$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} \tag{1}$$

- · very popular for Deep RL
- Dying ReLU problem vanishing gradient problem.

Activation function example: Softmax

Softmax:

$$\begin{split} \sigma(\mathbf{z})_i &= \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \quad \text{for } i = 1, \dots, K \\ \text{and } \mathbf{z} &= (z_1, \dots, z_K) \in \mathbb{R}^K. \end{split}$$

Properties:

Derivative:

$$\frac{\partial}{\partial \mathbf{q}_k} \sigma(\mathbf{q}, i) = \sigma(\mathbf{q}, i) (\delta_{ik} - \sigma(\mathbf{q}, k)). \tag{2}$$

- used in to normalize the output (map to a probability distribution)
- · also used in RL to convert action values into action probabilities

Multilayer perceptron

Training Neural Network

- 1. Choose network architecture:
 - activation functions
 - hidden layers (shallow or deep)
 - number of neurons
 - etc.
- 2. Choose appropriate loss function E, e.g., least squares
- 3. Find minima via:
 - stochastic gradient descent
 - Backpropagation

Stochastic Gradient Descent

 $Image\ ref:\ https://morioh.com/p/bc6bc20e9739\ and \ https://medium.com/38th-street-studios/exploring-stochastic-gradient-descent-with-restarts-sgdr-fa206c38a74e$

Iterative weight improvement:

$$w := w - \eta \nabla E_i(w). \tag{3}$$

References i

U. M. Ascher and C. Greif.

A First Course on Numerical Methods.

SIAM, Philadelphia, 2011.

P. C. Hansen.

Rank-deficient and discrete ill-posed problems.

SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.

References ii

P. C. Hansen.

Discrete inverse problems, volume 7 of Fundamentals of Algorithms.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.

J. Nocedal and S. Wright.

Numerical Optimization.

Springer Series in Operations Research and Financial Engineering. Springer Science & Business Media, New York, Dec. 2006.

References iii

Y. Saad.

Iterative Methods for Sparse Linear Systems.

Second Edition. SIAM, Philadelphia, Apr. 2003.

C. R. Vogel.

Computational Methods for Inverse Problems.

SIAM, Philadelphia, 2002.