

EXPLORE MOON to MARK

Introduction to Additive Manufacturing for Propulsion and Energy Systems

Paul R. Gradl, Omar R. Mireles
National Aeronautics and Space Administration (NASA)

Nathan Andrews
Southwest Research Institute

23 January 2023
AIAA SciTech

Overview of Presentation

- Introduction
- Metal AM Process Selection
- Overview of AM Materials & Microstructure
- Metal AM Feedstock
- AM Post-Processing
- Design for the AM (DfAM) Lifecycle
- Example use cases

The Case for Additive Manufacturing in Propulsion

- Metal Additive Manufacturing (AM) can provide significant advantages for lead time and cost over traditional manufacturing for rocket engines.
 - Lead times reduced by 2-10x
 - Cost reduced by more than 50%
- Complexity is inherent in liquid rocket engines and AM provides new designs, part consolidation, and performance opportunities.
- Materials that are difficult to process using traditional techniques, long-lead, or not previously possible are now accessible using metal additive manufacturing.

Part Challenging Alloys

Traditional Manufacturing...Forging to final assembly

A rocket combustion chamber case study for AM

LINER CASTING FORMED LINER MACHINED AND SLOTTED LINER FWD MANIFOLD CASTING FINAL HIP BONDED MCC ASSEMBLY ASSEMBLY ASSEMBLY *Low volume production			Evolving AM Development	
Category	Category Traditional Manufacturing			
Design and Manufacturing Approach	Multiple forgings, machining, slotting, and joining operations to complete a final multi-alloy chamber assembly	Four-piece assembly using multiple AM processes; limited by AM machine size. Two-piece L-PBF GRCop-84 liner and EBW-DED Inconel 625 jacket	Three-piece assembly with AM machine size restrictions reduced and industrialized. Multi-alloy processing; one-piece L-PBF GRCop-42 liner and Inconel 625 LP-DED jacket	
Schedule (Reduction)	18 months	8 months (56%)	5 months (72%)	
Cost (Reduction)	\$310,000	\$200,000 (35%)	\$125,000 (60%)	

As AM process technologies evolve using multi-materials and processes, additional design and programmatic advantages are being discovered

Additive Manufacturing in use on NASA Space Launch System (SLS)

Successful hot-fire testing of full-scale additive manufacturing (AM) Part to be flown on SLS RS-25 RS-25 Pogo Z-Baffle – Used existing design with AM to reduce complexity from 127 welds to 4 welds

Additive Manufacturing (AM) Development at NASA for Liquid Rocket Engines

Various Metal AM Processes

Many AM processes exists and must be traded (along with traditional techniques) to optimize

AM Processes for various applications

A) Laser Powder Bed Fusion [https://doi.org/10.1016/j.actamat.2017.09.051], B) Electron Beam Powder Bed Fusion [Credit: Courtesy of Freemelt AB, Sweden], C) Laser Powder DED [Credit: Formalloy], D) Laser Wire DED [Credit: Ramlab and Cavitar], E) Arc Wire DED [Credit: Institut Maupertuis and Cavitar], F) Electron Beam DED [NASA], G) Cold spray [Credit: LLNL], H) Additive Friction Stir Deposition [NASA], I) Ultrasonic AM [Credit: Fabrisonic].

Laser Powder Bed Fusion (L-PBF)

Laser Powder Bed Fusion (L-PBF)

- Basic Process: Layer-by-layer powder-bed approach where desired features are melted using a laser and solidify.
- Advantages: High feature resolution, complex internal designs such as cooling channels.
- <u>Disadvantages</u>: Scale limited and does not provide a solution for all components.

Electron Beam Melting

- <u>Basic Process</u>: Similar to L-PBF but uses an electron beam.
- Advantages: Performed in-near vacuum, which is useful for reactive materials such as Ti6A4V.

Laser Powder Bed Fusion (L-PBF)

Methodical AM Process Selection

- What is the alloy required for the application?
- What is the overall part size?
- What is the feature resolution and internal complexities?
- Is it a single alloy or multiple?
- What are programmatic requirements such as cost, schedule, risk tolerance?
- What are the end-use environments and properties required?
- What is the qualification/certification path for the application/process?

Criteria and Comparison Various Metal AM Processes

Various criteria for selecting AM techniques

Large Scale Additive Manufacturing for Nozzles

LP-DED Process Overview

- Powder and laser beam path (sometimes optics) integrated into deposition head
- Basic parameters include power, powder feedrate, travel speed
- Additional geometry control for layer height, step over (hatching), standoff distance, angle of head and trunnion table
- Can vary spot size

AlAA Book: Metal Additive Manufacturing for Propulsion Systems, Gradl et al (unreleased)

Gradl, P. R., & Protz, C. S. (2020). Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. Acta Astronautica. https://doi.org/10.1016/j.actaastro.2020.04.067

Laser Powder Directed Energy Deposition (DED)

Example of LP-DED with small features

Large-scale Thin Wall Deposition of Nozzles

LP-DED Large Scale Nozzle Development

60" (1.52 m) diameter and 70" (1.78 m) height with integral channels

JBK-75

95" (2.41 m) dia and 111" (2.82 m) height Near Net Shape Forging Replacement

90 day deposition

Additive Manufacturing Typical Process Flow

Proper AM process selection requires an integrated evaluation of all process lifecycle steps

Microstructure of Various AM Processes Alloy 625 – As-Built

Laser Powder Bed Fusion

Electron Beam Powder Bed Fusion

Laser Powder DED (1070 W)

Electron Beam Wire DED

Laser Wire DED

Arc Wire DED

Cold Spray

Additive Friction Stir Deposition

Each AM process results in different grain structures, which ultimately influence properties

Gamon, A., Arrieta, E., Gradl, P.R., Katsarelis, C., Murr, L.E., Wicker, R.B., Medina, F., 2021. Microstructure and hardness comparison of as-built Inconel 625 alloy following various additive manufacturing processes. Results in Materials 12. https://doi.org/10.1016/j.rinma.2021.100239

Gradl, P., Tinker, D., Park, A., Mireles, O., Garcia, M., Wilkerson, R., Mckinney, C., 2021. Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components. Journal of Materials Engineering and Performance, Springer. https://doi.org/10.1007/s11665-022-06850-0

Rivera, O. G., Allison, P. G., Jordon, J. B., Rodriguez, O. L., Brewer, L. N., McClelland, Z., ... & Hardwick, N. (2017). Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Materials Science and Engineering: A, 694, 1-9.

Image from Mark Norfolk, Fabrisonic

Microstructure of Various AM Processes Alloy 625 – Stress Relief, HIP, Solution per AMS 7000

100 ym

Laser Powder Bed Fusion

Electron Beam PBF

Laser Powder DED (1070 W)

Electron Beam Wire DED

Laser Wire DED

Arc Wire DED

Cold Spray

[•] Gamon, A., Arrieta, E., Gradl, P.R., Katsarelis, C., Murr, L.E., Wicker, R.B., Medina, F., 2021. Microstructure and hardness comparison of as-built Inconel 625 alloy following various additive manufacturing processes. Results in Materials 12. https://doi.org/10.1016/j.rinma.2021.100239

Gradl, P., Tinker, D., Park, A., Mireles, O., Garcia, M., Wilkerson, R., Mckinney, C., 2021. Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components. Journal of Materials Engineering and Performance, Springer. https://doi.org/10.1007/s11665-022-06850-0

Material Properties for Various AM Processes

- Material properties are highly dependent on the type of process (L-PBF, DED, UAM, Cold spray....), the starting feedstock chemistry, the parameters used in the process, and the heat treatment processes used post-build.
- Each AM process results in different grain distributions, precipitates, and porosity, all of which influence final properties.
- Heat treatments should be developed based on the requirements and environment of the end component use.
- Process, parameters, and feedstock should all be stable before property development.

Alloy 625, Heat Treated per AMS 7000 Room Temperature UTS

*Not design data and provided as an example only

AM Alloys and Processes In-work

Material 🔻	Process
Haynes 282	L-PBF
Haynes 282	LP-DED
Hastelloy X	L-PBF
Hastelloy X	LP-DED
Inconel 625	L-PBF
Inconel 625	LP-DED
Inconel 625	LW-DED
Inconel 625	AW-DED
Inconel 718	L-PBF
Inconel 718	LP-DED
Inconel 718	AW-DED
Inconel 939	L-PBF
Haynes 230	L-PBF
Haynes 230	LP-DED
Haynes 214	L-PBF
Haynes 233	L-PBF
Haynes 233	LP-DED

Material 🔻	Process		
NASA HR-1	L-PBF		
NASA HR-1	LP-DED		
JBK-75	L-PBF		
JBK-75	LP-DED		
CoCr	L-PBF		
CoCr	LP-DED		
Invar 36	LP-DED		
Stellite 21	LP-DED		
316L	LP-DED		
15-5	LP-DED		
17-4	L-PBF		
17-4	LP-DED		
Scalmalloy	L-PBF		
6061-RAM2	L-PBF		
6061-RAM2	LP-DED		
F357	L-PBF		
F357	LP-DED		
1000-RAM10	L-PBF		
AlSi10Mg	L-PBF		
AlSi10Mg	LP-DED		
7A77	L-PBF		

Material 🔻	Process
Monel K500	LP-DED
Monel K500	L-PBF
GRCop-42	L-PBF
GRCop-42	LP-DED
GRCop-84	L-PBF
C-18150	L-PBF
Ti6Al-4V	L-PBF
Ti6Al-4V	LP-DED
Ti6Al-4V	LW-DED
Ti6Al-4V	EBW-DED
Ti6242	L-PBF
Ti6242	LP-DED
GRX-810	L-PBF
GRX-810	LP-DED
Haynes 214-ODS	L-PBF
C-103	LP-DED

55+ Alloys in characterization

Data example of Haynes 230 LP-DED

Power (W) Layer height (μm) 1070 381		(mm/r	Travel speed (mm/min) 1016	
Proce (Design	edure nation)	Temperature (°C)	Time (hrs)	Cooling
Stress Relief (SR)		1066	1.5	Furnace cool
HIP [2]		1163/103 MPa	3	Furnace cool

1177

[2] HIP per ASTM F3301

Solution Annealing

(SOL)

Data from Gradl, Mireles, Protz, Garcia. "Metal Additive Manufacturing for Propulsion Applications", AIAA Progress Series. (2022). Appendix A.

Argon quench

New Alloy Development to Improve Performance

Max. Use Temp. (°C)	Alloy Family	Purpose	Novel AM Alloys	Propulsion Use
200	Aluminum	Light weighting	-	Various
750	Copper	High conductivity; strength at temperature	GRCop-42 GRCop-84	Combustion Chambers
800	Iron-Nickel	High strength and hydrogen resistance	NASA HR-1	Nozzles, Powerheads
900	Nickel	High strength to weight	-	Injectors, Turbines
1100	ODS Nickel	High strength at elevated temp; reduced creep	GRX-810 Alloy 718-ODS	Injectors, Turbines
1850	Refractory	Extreme temperature	C-103, C-103- CDS, Mo, W	Uncooled Chambers

New alloy development using various additive manufacturing processes (PBF and DED) can yield performance improvements over traditional alloys

The Challenges with AM Processes

There are a lot of inputs and steps in the AM lifecycle that must go right to meet the expected geometry

Bimetallic AM for combustion chambers

LP-DED Jacket

Cold spray Jacket

Direct deposit LP-DED nozzle (Axial Bimetallic)

EBW-DED Jacket

Industrial Maturity and TRL of AM Processes

15:23:08

Design for Additive Manufacturing (DfAM)

AM Design Cycle

DfAM – Coordinates & Overhang Surfaces

Fig. 7.1 AM reference coordinate system.

Fig. 7.16 Unsupported overhang surfaces vs. build direction. a) No unsupported surfaces. b) Unsupported surfaces.

Fig. 7.14 Example of overhang surfaces in reference to the build plate and build direction (Z).

Angle is measured in relation to the build direction, Z

DfAM – Sacrificial Volumes

Fig. 7.11 Chamber design for L-PBF AM with sacrificial stock material added (turquoise regions).

Fig. 7.13 Base-plate thickness vs. removal method for a) vertical band saw [5 mm (0.196 in.)] and b) wire-EDM [1 mm (0.039 in.)].

DfAM – Holes & Drain Ports

Fig. 7.18 Build failure observed at the tops of Ti6Al4V L-PBF holes oriented perpendicular to the build direction.

Fig. 7.20 Hole shape vs size, diamond slot, and surface roughness vs angle in L-PBF – built AlSi10Mg.

Fig. $7.26\,\,$ a) Channel terminating at the build plate and b) base plate with powder drain port.

Fig. 5.5 Cross-sectional cut of a part with trapped powder that sintered during stress-relief heat treatment. (Source: NASA.)

DfAM – Orientation and Placement

Fig. 7.29 a-b) Each L-PBF part orientation for optimized build. c) Assembly of parts.

Fig. 7.31 Specimen placement relative to recoater and gas directions.

DfAM – Supports

Fig. 7.22 Placement and volume of support structures (blue regions) are highly dependent on part orientation.

Fig. 7.23 Perforated block supports: a) full length, b) 30° angle, and c) projected onto a user-designed support scaffold.

Fig. 5.12 L-PBF support examples. (Source: NASA.)

Fig. 5.13 Manual support removal using hand tools. (Source: NASA.)

Fig. 7.25 Comparison of a) unsupported overhang flange, b) 40° sacrificial support, c) crown support, and d) Inconel 718 crown support made by L-PBF.

DfAM - Case Study

Fig. 7.30 Build layout of a part, support structures, and serialized witness specimens.

Fig. 7.28 Part a) in final machined condition and b) integrated supports, stock added to

interfaces, and drain ports.

Fig. 7.32 Component placement relative to the dose chamber and recoater blade path.

Fig. 7.33 Build layout top view with part positions and scan order optimized for a machine platform with perpendicular gas flow and recoater blade.

Huge Variety of Geometries

Design for DED Considerations

Substrate

- Size, Material, Temper
- Integral or Sacrificial?

Material

- Chemistry and form
- Material feedstock effect on surface finish

Deposition Strategy and Parameters

- Melt pool size and bead width/height
- Motion platform degrees of freedom and self-supporting angles
- Start / Stop / Transition locations and impact on properties

Machining

Fixturing and datum locations

Inspection

Surface interface with NDE and/or geometry compatibility

Example: Deposition Strategies

Wall Thicknesses and Geometry Limitations

- Wall thicknesses of 1 mm are easily accomplished with LP-DED and LW-DED
- Thinner walls possible, but build angles severely limited and deposition rate reduces significantly
- Internal and complex features are feasible, but within build angle confines
 - Build angles are dependent on the build strategy – continuous motion; 3-axis, other
 - All features in 3D space must be considered including intersecting compound angles
- "Solid" support structures are used small lattices not possible

Build Angles depend on strategy

*Image courtesy of RPMI

Freedom in DED design and deposition strategies

Ability to use multiple axes for complex features fabricated locally

RS25 Powerhead demonstrator using LP-DED under NASA SLS Artemis Program (NASA/RPMI)

Deposition Rate and Geometry

Laser Power: 1070 W	Laser Power: 2000 W	Laser Power: 2620 W
Dep. Rate: 1 in ³ /hr (23 cc/hr)	Dep. Rate: 3 in ³ /hr (49 cc/hr)	Dep. Rate: 5 in ³ /hr (82 cc/hr)
Deposition Time: 24 hours	Deposition Time: 11 hours	Deposition Time: 6 hours

FEATURE RESOLUTION

DEPOSITION SPEED

Courtesy: RPM Innovations

General Process Flow (Post-Processing)

Fig. 5.1 General post-processing steps. The iterative aspect should be considered during the design phase.

Machining

兽

Heat Treatment

Q

Fig. 5.3 Unpacking example: a) Build completion. b) Build plate raised. c) Powder removed.

Fig. 5.8 Powder removal with a) a powder vacuum and b) compressed air. (Source: NASA.)

Fig. 4.20 Effects on metal alloy properties of the temperature-dependent recovery, recrystallization, and grain growth regions. (From GATE Metallurgical Engineering [58]; reprinted with permission of GATE Metallurgical Engineering.)

Fig. 5.22 a) Band saw cutting parts from build plate. b) Build plate surface after parts removed.

Fig. 5.23 L-PBF aluminum part fixtured wire-EDM cut chamber before the removal of specimens. (Source: Quadrus Advanced Manufacturing.)

Fig. 4.22 a) General phase diagram and b) corresponding heat-treatment schedule for precipitation hardening. (From Ogunsanya et al. [67]; reprinted under the Creative Commons Attribution-Noncommercial 3.0 Unported License [CC BY-NC 3.0] license, https://creativecommons.org/licenses/by-nc/3.0/.)

Fig. 5.11 X-ray images of a GRCop-84 chamber with trapped powder in channels. (Source: NASA.)

Fig. 5.50 General surface roughness values for selected metal AM processes.

Fig. 5.20 Different chemical support removal methods for original unaltered supports from the L-PBF process. (Source: NASA.)

Post-Processing Summary

	Powder Removal and Verification	Support Removal*	Stress Relief**	Build Plate Removal	Heat Treatment Required?	Post-Curing	Final Machining ***
Laser Powder Bed Fusion (L-PBF)	Υ	Υ	Υ	Υ	Υ	N	0
Electron Beam Powder Bed Fusion (EB-PBF)	Y	Y	N	Y	Y	N	O
Blown Powder Directed Energy Deposition (BP-DED)	Y	Y	Y	Y	Y	N	Y
Arc-Deposition DED	N	N	Υ	Υ	Υ	N	Υ
Laser Hot-wire DED	N	N	Υ	Υ	Υ	N	Υ
Electron Beam DED	N	N	Υ	Υ	Υ	N	Υ
Laser Wire DED	N	N	Υ	Υ	Υ	N	Υ
Ultrasonic	N	N	N	N	O	N	Υ
Friction Stir	N	N	N	N	0	N	Υ
Coldspray	N	N	N	Υ	0	N	Υ
Binder Jet	Υ	0	N	N	Υ	Υ	0

Y = Requires operation N = Does not require O = May Require

Summary

- Various AM processes have matured for rocket propulsion applications each with unique advantages and disadvantages.
- AM is <u>not a solve-all</u>; consider trading with other manufacturing technologies and use only when it makes sense.
- Complete understanding of the design process, build-process, feedstock, and post-processing is critical to take full advantage of AM.
- Additive manufacturing takes practice!
- Standards and certification of the AM processes are in-work.
- AM is evolving and imagination is the limit.

Examples

A simple printing exercise can demonstrate the typical workflow

Your widget will change the world.....how can you print it?

Progression from your design to the machine

Create Single Part Layout

Create Build Layout

Unexpected results should be expected

What happened?!?!

Taking your time and thinking ahead can save headache

Improvements to build plan

Successful build!

A real AM workflow example: Closed Impeller

...Almost... A real AM workflow example: Closed Impeller

Closed Centrifugal Compressor Impellers

Material: SS 17-4 PH

Inspect

Prepare for Printing

Print and Remove Part

Post Process

What happened?!?!

The component was redesigned using new material and successful prints were taken off the machine

Prepare for Printing

Print and Remove Part

Looks good! So it must be right.....How can we make sure?

Post Process

Geometric and material characterization of the printed component was completed

Non-Destructive Evaluations

Support material remains after extrude hone finish

Figure 12. Magnified View of Fillet Region Between Impellet Blade and Shroud

Destructive Evaluation

Impeller Exit Width Flow Path Accuracy (inches) Surface Roughness (Ra) 1st Generation 0.08 φ +0.011 Ist Generation 0.11 ϕ NA NA -0.015 to -0.010 2^{nd} Generation 0.08 ϕ 63-125 Impeller Variation 'a' Generation 0.08 ϕ -0.011 to -0.005 Impeller Variation 'b' nd Generation 0.08 ϕ -0.005 to ±0.000 16 Impeller Variation 'c' ^{2nd} Generation 0.11 φ -0.014 to -0.012 63-125 Impeller Variation 'a' 2nd Generation 0.11 φ -0.005 63-125 Impeller Variation 'b' 16-92 2nd Generation 0.11 φ -0.003 Impeller Variation 'c'

Table 2. Dimensional Accuracy of Manufactured Impellers

Figure 13. Comparison of Grain Size Between Wrought Inconel 718 and DMLS Inconel 718

Figure 14. Magnification of DMLS Inconel 718 Sample Showing
Micro-Porosity

Allison et. al. "Manufacturing and Testing Experience with Direct Metal Laser Sintering for Closed Centrifugal Compressor Impellers", 2014

Application Testing

Figure 18. Comparison of Predicted and Tested Normalized
Isentropic Efficiency vs. Flow Coefficient

Figure 17. Comparison of Predicted and Tested Head vs. Flow
Coefficient

Mechanical property characterization of printed IN738 were measured for high-temperature applications

Specimens

Post Process

Historical Cast In738 Data

Figure 2: Cast Inconel 738 Creep Sample Data and Associated Test Points (Denoted by Green Accent), Heat Treat - 2050F, 2 hrs, AC +1550F, 24 hrs, AC (data taken from [8])

Wilkes et. al. "Creep and Tensile Properties of DMLS Printed Inconel 738 Coupons and Comparison to Cast Properties", 2018

Printed In738LC Data

Specimen ID	Test	Diameter	Ultimate	Yield	Elongation	Reduction	Fracture
Specimen ID	Temper	(Inches)	Strength	Strength	(%)	Of Area (%)	Location
S1	1330	0.2507	162,000	113,000	17.5	27.1	Gage
S2	1330	0.2493	161,100	113,000	16.8	23.9	Gage
S3	1100	0.2498	190,600	111,600	15.4	23.5	Gage
S4	1100	0.2496	191,400	113,100	15.6	22	Gage
R1	1330	0.2507	161,300	114,300	21.6	34.1	Gage
R2	1330	0.2507	161,700	115,200	23.4	37.3	Gage
R3	1100	0.2509	185,800	113,600	15.2	23.1	Gage
R4	1100	0.251	185,700	112,800	14.6	22.1	Gage

The AM Process Lifespan

Successful AM application needs access to all the processes

Printing Capability: Renishaw AM250

- 273mm x 273mm build area
- IN 718 capable

Inspection Capability: CT Scan

Non-destructive evaluation of impeller

Component Testing: Pressurized Coolant Flow Test Rig

- Shop air (~100 psi)
- Measure pressure drop
- Measure flow rate

Application: 12.5kW Gas Turbine

- 118,000 rpm
- Material IN718
- 90mm diameter

Mechanical Testing & Characterization Lab

- Surface characterization
- Destructive evaluation tests

Design was functionally considered for AM benefits

AMS 5663

1D heat transfer analysis to determine passage size to achieve 550°C metal temperature using available compressor bleed air

The turbine cooling requirements are defined to achieve conventional cooling effectiveness values

3	Case 1	Case 2	Case 3	Case 4
Inlet Channel Width [mm]	0.5	0.6	0.75	1
Cooling Split [%]	0.75%	1.08%	1.35%	1.79%
Flow Check [KPa]	-1	40	121	135
Max Mach #[]	0.92	0.93	0.54	0.37
Tm-ext Max [K]	835	823	823	823
Tm-ext Target [K]	823	823	823	823

Cooling flow sourced from compressor discharge

3D heat transfer and mechanical analysis to determine mechanical integrity and life

118,000 rpm
Fixed axial displacement
Shaft cylindrical support
Assume 550°C-370°C

1202°F Property	Wrought	Printed
Modulus Elasticity	3016.8 ksi	2538.1 ksi
Yield Strength	169.7 ksi	161.0 ksi
Ultimate Strength	204.5 ksi	195.8 ksi

Printed material properties for heat treated IN718 from Strobner et al. 2015 and Deng et al. 2017

AMS 5663

Ref: 1996, Aerospace Structural Metals Handbook, Purdue University Center for Information and Numerical Data Analysis and Synthesis.

FIGURE 3.042. CREEP-RUPTURE TIME AND MINIMUS CREEP RATE OF BAR AS FUNCTIONS OF STRESS IN THE TEMPERATURE RANGE 1100 TO 1300 F (1)

Several test prints have been completed to determine AM print capabilities and considerations of the design

Quarter geometry for blade angles

Quarter geometry for cooling channel thickness

What if we account for build distortions?

What if we make the blades thicker?

Build CAD geometry using supports (Baseline)

What if we build the impeller directly on the build plate?

Non-destructive evaluations were used to determine printability of features and expected distortions

Coordinate Measurement Machine (CMM) inspections show geometric distortions

Original CAD model

Location	Measured Distortion
1	0.51 mm
2	0.43 mm
3	0.31 mm
4	0.39 mm
5	0.24 mm
6	0.34 mm

X-Ray CT Inspections show 0.75 mm cooling channels are repeatable

Teardrop-shaped turbulators had the best build resolution, which is also the most aerodynamic, and 0.75 mm was the minimum repeatable passage width

The cooling passages are modified to allow easy removal of powder prior to stress relief

Generation 3 will utilize vibration apparatus

Vibration & Mechanical Removal Gradl, P., Mireles, O., and Andrews, N., 2018, "Intro to Additive Manufacturing for Propulsion Systems."

Improved powder remove processes revealed cleaner and more precise capabilities

Build direction

Two separate heat treatments and different build orientations studied

Process	#1	#2	
Description	Combined HIP+Heat Treat	Separate HIP and Heat Treat	
HIP Vendor (std)	Quintus (ASTM F3055-14a)	KittyHawk (ASTM F3055-14a)	
Heat Treat (HT)Vendor (std)	Quintus	Texas Heat Treat (AMS 5663N)	
HIP process	>14.5 ksi @ 2050°F-2165°F ±25°F for 4h ±1h hold in inert atmosphere; Cool below 800°F		
Solution HT process	1725°F-1850°F hold within ±25F for time commensurate with cross-sectional thickness. Cool at a rate equivalent to air cool or faster		
Aging HT process	1325-1400°F \pm 15°F hold for 6h ; Cool 100°F \pm 15°F per hr to 1150-1200°F; Hold \pm 15°F for 2h and air cool.	1325-1400°F ±15°F hold for 8h; Cool 100°F ±15°F per hr to 1150-1200°F; Hold ±15°F for 8h and air cool. May furnace cool at any rate provided the time at 1150-1200°F is adjusted to give 18h total	

ID#	Part Description
3-11	1mm thick tensile coupon, built on edge 45deg CW Rotation
3-12	1mm thick tensile coupon, built on edge 45deg CW Rotation
3-13	1mm thick tensile coupon, built on edge 45deg CW Rotation
3-21	3 mm thick tensile coupon, built on edge 45deg CW Rotation
3-22	3 mm thick tensile coupon, built on edge 45deg CW Rotation
3-23	3 mm thick tensile coupon, built on edge 45deg CW Rotation
3-31	3 mm thick tensile coupon, built on face No Rotation
3-32	3 mm thick tensile coupon, built on face No Rotation
3-33	3 mm thick tensile coupon, built on face No Rotation
3-41	3 mm thick tensile coupon, built on edge 45deg CCW Rotation
3-42	3 mm thick tensile coupon, built on edge 45deg CCW Rotation
3-43	3 mm thick tensile coupon, built on edge 45deg CCW Rotation
3-44	3 mm thick tensile coupon, built on edge 45deg CCW Rotation
3-45	3 mm thick tensile coupon, built on edge 45deg CCW Rotation
3-51	1mm thick tensile coupon, built on edge 45deg CCW Rotation
3-52	1mm thick tensile coupon, built on edge 45deg CCW Rotation
3-53	1mm thick tensile coupon, built on edge 45deg CCW Rotation

Orientations and heat treatments do show some sensitivity

SwRI AM printed materials are typically within 10% of wrought properties and early estimates.

Effects of build orientation and thickness can be neglected at elevated temperatures.

Build orientation and thickness can show sensitivity

The printed materials are consistent with literature and wrought properties for all temperatures.

Post-treatment has little effect on material response at 780°C, but YS at 550°C is lower for the combined HIP/HT process.

Don't forget to update analysis predictions with the new data!

Deeper investigations made to examine anomalies

The specimens were sectioned at the fracture location for analysis.

3-41 has least porosity.

No significant differences in microstructure were observed in the specimens.

Specimen 3-21 exhibited areas of melting and partial fusion along the fracture surface.

Enhanced images of the fracture surface of specimen 3-22, 3-44, and 3-41 did not indicate significant secondary cracking.

Application testing confirms form, fit and function

Build orientation and thickness can show sensitivity

Impeller models II through IV had good flow agreement and all impeller tests indicated higher than expected surface roughness.

The flow in the thermal test was much lower than measurements recorded while the impellers were on the build plate.

TCJ TCS TCS

One impeller was cooled while the other impeller in the kiln served as a baseline.

Increasing the mass flow lowered the temperatures of both impellers, as expected.

The cooling effectiveness measured in the thermal test is within the expected range of the one-dimensional thermal design calculations.

NASA led book on Metal Additive Manufacturing

https://arc.aiaa.org/doi/book/10.2514/4.106279

Online version and hardcopy available

P. R. Gradl, O. Mireles, C.S. Protz, C. Garcia. (2022). *Metal Additive Manufacturing for Propulsion Applications*. AIAA Progress in Astronautics and Aeronautics Book Series. https://arc.aiaa.org/doi/book/10.2514/4.106279

Additive manufacturing (AM) processes are proving to be a disruptive technology and are grabbing the attention of the propulsion industry. AM-related advancements in new industries, supply chains, design opportunities, and novel materials are increasing at a rapid pace. The goal of this text is to provide an overview of the practical concept-to-utilization lifecycle in AM for propulsion applications.

Acknowledgements

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the National Aeronautics and Space Administration (NASA) or the United States Government.

- John Fikes
- Rapid Analysis and Manufacturing Propulsion Technology (RAMPT) Project
- Long Life Additive Manufacturing Assembly (LLAMA) Project
- Space Launch System (SLS) Program
- Mike Ogles
- Nima Shamsaei
- Drew Hope
- Matt Melis
- Lynn Machamer
- RPM Innovations (RPMI)
- Tyler Blumenthal
- DM3D
- GE Research
- Bhaskar Dutta
- REM Surface Engineering
- Powder Alloy Corp
- AP&C
- Keystone Synergistic
- Formalloy

- Auburn University (NCAME)
- Fraunhofer CLA
- Tal Wammen
- Tom Teasley
- Scott Chartier
- Test Stand 115 crew
- Kevin Baker
- Matt Medders
- Adam Willis
- Marissa Garcia
- Nunley Strong
- Gregg Jones
- Marissa Garcia
- Dwight Goodman
- Will Brandsmeier
- Jonathan Nelson
- Bob Witbrodt
- Shawn Skinner
- Megan Le Corre
- Will Evans
- John Ivester

- Will Tilson
- Zach Jones
- Dave Ellis
- Jim Lydon
- Brian West
- Gabe Demeneghi
- Dave Ellis
- Judy Schneider / UAH
- David Myers
- Ron Beshears
- James Walker
- Steve Wofford
- Jessica Wood
- Robert Hickman
- Johnny Heflin
- Mike Shadoan Keegan Jackson
- Many others in Industry, commercial space and academia

Metal Additive Manufacturing for Propulsion Applications

Editors: Paul R. Gradl, Omar R. Mireles, Christopher S. Protz, Chance P. Garcia

https://arc.aiaa.org/doi/book/10.2514/4.106279

Chapter 1 Introduction and

Applications of Additive Manufacturing for Propulsion

