CS122A: Introduction to Data Management

Lecture #6

Instructor: Chen Li

Next: Relational Database Design

- There are two aspects to this problem:
 - Logical schema design: We just saw one approach, namely, doing ER modeling followed by an ER → relational schema translation step
 - Physical schema design: Later, once we learn about indexes, when should we utilize them?
- We will look at both problem aspects this term, starting first with relational schema design
 - Our power tools will be functional dependencies (FDs) and normalization theory
 - Note: FDs also play an important role in other contexts as well, e.g., in SQL query optimization

So, Given a Relational Schema...

- * How do I know if my relational schema is a "good" logical database design or not?
 - What might make it "not good"?
 - How can I fix it, if indeed it's "not good"?
 - How "good" is it, after I've fixed it?
- Note that your relational schema might have come from one of several places
 - You started from an ER model (but maybe that model was "wrong" in some way?)
 - You went straight to relational in the first place
 - It's not your schema you inherited it! ◎

Ex: Wisconsin Sailing Club

Proposed schema design #1:

sid	sname	rating	age	date	bid	bname	color
22	Dustin	7	45.0	10/10/98	101	Interlake	blue
22	Dustin	7	45.0	10/10/98	102	Interlake	red
22	Dustin	7	45.0	10/8/98	103	Clipper	green
22	Dustin	7	45.0	10/7/98	104	Marine	red
31	Lubber	8	55.5	11/10/98	102	Interlake	red
31	Lubber	8	55.5	11/6/98	103	Clipper	green
31	Lubber	8	55.5	11/12/98	104	Marine	red
•••	•••	•••	•••	•••	•••	•••	•••

Q: Do you think this is a "good" design? (Why or why not?)

Ex: Wisconsin Sailing Club

Proposed schema design #2:

sid	sname	rating	age	
22	Dustin	7	45.0	
31	Lubber	8	55.5	
•••	•••	•••	•••	

Q: What about *this* design?

- Is #2 "better than #1...? Explain!
- Is it a "best" design?
- How can we go from design #1 to this one?

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
•••	•••	•••

bid	bname	color	
101	Interlake	blue	
102	Interlake	red	
103	Clipper	green	
104	Marine	red	

Ex: Wisconsin Sailing Club

Proposed schema design #3:

sid	sname	rating	age	
22	Dustin	7	45.0	
31	Lubber	8	55.5	
•••			•••	

- **Q:** What about *this* design?
- Is #3 "better" or "worse" than #2...?
- What sort of tradeoffs do you see between the two?

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
•••	•••	•••

bid	bname
101	Interlake
102	Interlake
103	Clipper
104	Marine

bid	color
101	blue
102	red
103	green
104	red

The Evils of Redundancy

- * *Redundancy* is at the root of several problems associated with relational schemas:
 - Redundant storage
 - Insert/delete/update anomalies

Basic rule of thumb:

"One fact, one place!"

- * Functional dependencies can help in identifying problem schemas and suggesting refinements.
- ❖ Main refinement technique: <u>decomposition</u>, e.g., replace R(ABCD) with R1(AB) + R2(BCD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - Does the decomposition cause any problems?

** Functional Dependencies (FDs)

- * A <u>functional dependency</u> $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R:
 - For t1 and t2 in r, t1.X = t2.X implies t1.Y = t2.Y
 - I.e., given two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y can be *sets* of attributes.)
- ❖ An FD is a statement about *all* allowable relations.
 - Identified based on application semantics (similar to E-R).
 - Given some instance *r*1 of R, we can check to see if it violates some FD *f*, but we cannot tell if *f* holds over R!
- \diamond Saying K is a candidate key for R means that K \rightarrow R
 - Note: $K \rightarrow R$ does not require K to be *minimal*! If K minimal, then it is a candidate key.

Example: Constraints on an Entity Set

- Suppose you're given a relation called HourlyEmps:
 - HourlyEmps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- Notation: We will denote this relation schema by simply listing the attributes: SNLRWH
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name (e.g., HourlyEmps for SNLRWH).
- Suppose we also have some FDs on HourlyEmps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines hrly_wages: R → W

Example (Cont'd.)

Wages | R | W | 8 | 10 | 5 | 7

❖ Problems due to $R \rightarrow W$:

- <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNLRWH?
- Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his rating?
- Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

How about two smaller tables?

	S	N	L	R	Н		
¥	123-22-3666	Attishoo	48	8	40		
	231-31-5368	Smiley	22	8	30		
	131-24-3650	Smethurst	35	5	30		
	434-26-3751	Guldu	35	5	32		
	612-67-4134	Madayan	35	8	40		

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40