Interpolation and approximation

Kristina Kislyakova University of Vienna - 29.10.2025

Outline

- Concepts and common uses of interpolation and approximation schemes
- Linear interpolation methods
- Lagrange, Hermite and Taylor polynomial interpolation
- Cubic splines
- Multi-dimensional applications: Bilinear interpolation, Kriging
- Weighted approximation schemes, robust statistics, outlier filtering, GPR
- Cookbook for what to use, when and what to be aware of.

 Often have discrete data points for which you require an estimate at an intermediate value of (x,y)

- Often have discrete data points for which you require an estimate at an intermediate value of (x,y)
- Functional representation of $y_i(x_i)$ allows sub-sampling/re-binning to intermediate values (interpolation)

- Often have discrete data points for which you require an estimate at an intermediate value of (x,y)
- Functional representation of $y_i(x_i)$ allows sub-sampling/re-binning to intermediate values (interpolation)
- Sometimes extrapolation beyond $[x_{min}, x_{max}]$ is desired as well

- Often have discrete data points for which you require an estimate at an intermediate value of (x,y)
- Functional representation of y_i(x_i)
 allows sub-sampling/re-binning to
 intermediate values (interpolation)
- Sometimes extrapolation beyond $[x_{min}, x_{max}]$ is desired as well
- Functions that do not pass through irregular points are approximations

Missing data. For example, sparse data series in....

- Missing data. For example, sparse data series in....
- Historic climate records
- Could often have missing, or corrupted data to interpolate through

- Missing data. For example, sparse data series in....
- Historic climate records
- Could often have missing, or corrupted data to interpolate through

- Numerical integration...
- We will see in the next lectures how some interpolation schemes naturally allow for efficient numerical integration

Pitfalls in interpolation?

- There are subjective decisions in the type of adopted interpolation schemes.
- Need to consider your application, known biases in observations and how the error in interpolating some underlying behaviour affects your end goal

Figure 2.4. Comparison of interpolation methods for a one-dimensional example: (a) Thiessen method; (b) inverse distance squared; (c) example of overfitting using a sixth-order polynomial; (d) thin plate splines with different tension parameters; (e) kriging (zero nugget, large range); (f) kriging (solid line: large nugget, large range; dashed line: zero nugget, very short range).

What about approximations?

- Running averages, confidence intervals can give us a sense of the general trend without reproducing exact values
- For example daily case rates of infections
- Force of infection often specified in terms of per-capita infection rate over a 7 day window

Distinction from other tools

- Important to keep in mind that interpolation and approximations are non-physical, and subject to some arbitrary choices
- They are fundamentally **different than fitting models** (analytic, numerical) to data (later lectures will cover this)
- In those cases you are using physical models to infer something from the dataset, and try to ascertain which model parameters are reproducing the data well.
- The tools we will discuss today are either numerically representing the data in places where your observations/simulations don't exist, or refining model grids in a way that can help you further analyze or characterize a problem.

Interpolation Methods: Linear interpolation

 Simplest form to interpolate a function between two end points will be to create a linear fit.

Interpolation Methods: Linear interpolation

- Simplest form to interpolate a function between two end points will be to create a linear fit.
- Value at arbitrary x is:

$$y \equiv f(x) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

Interpolation Methods: Linear interpolation

- Simplest form to interpolate a function between two end points will be to create a linear fit.
- Value at arbitrary x is:

$$y \equiv f(x) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

• Regardless of the form of f(x), the error will approximately scale of order $(x_{i+1}-x_i)^2$

 Higher accuracy than linear, but requires a small interval.

- Higher accuracy than linear, but requires a small interval
- This can potentially grow computation time

- Higher accuracy than linear, but requires a small interval
- This can potentially grow computation time
- Consider instead a polynomial function which passes through several points.

 Simplest extension would be quadratic, however let us look at general forms for polynomial interpolation.

- Simplest extension would be quadratic, however let us look at general forms for polynomial interpolation.
- Allows you to interpolate generally, for arbitrary number of data points (x_i, y_i)

- Simplest extension would be quadratic, however let us look at general forms for polynomial interpolation.
- Allows you to interpolate generally, for arbitrary number of data points (x_i, y_i)
- Does not require evenly spaced data.

- A common and flexible implementation is Lagrange interpolation
- Basic idea: with n data points, can construct polynomial of order n-1

$$y \equiv f(x) = c_0 x^2 + c_1 x + c_2$$

 System of equations can be solved for the coefficients c_i

- Lagrange generalized a form of solutions so that extension to larger n is not unwieldy
- Basis functions L_i represent the coefficients in terms of the data x_i

$$L_i(x) = \prod_{i=0, i \neq i}^{n-1} \frac{x - x_j}{x_i - x_j}$$

For example with n=3 data points:

$$L_i(x) = \prod_{i=0, j \neq i}^{n-1} \frac{x - x_j}{x_i - x_j}$$

• For example with *n*=3 data points:

$$L_i(x) = \prod_{i=0, j \neq i}^{n-1} \frac{x - x_j}{x_i - x_j}$$

$$(x-x1)/(x0-x1)*(x-x2)/(x0-x2)$$

$$(x-x0)/(x1-x0)*(x-x2)/(x1-x2)$$

$$(x-x0)/(x2-x0)*(x-x1)/(x2-x1)$$

• For example with *n*=3 data points:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} \times \frac{x - x_2}{x_0 - x_2}$$

$$L_1(x) = \frac{x - x_0}{x_1 - x_0} \times \frac{x - x_2}{x_1 - x_2}$$

$$L_2(x) = \frac{x - x_0}{x_2 - x_0} \times \frac{x - x_1}{x_2 - x_1}$$

Polynomial interpolation

$$p(x) = \sum_{i=0}^{n-1} L_i(x) f_i(x)$$

If equal spacings of Δx then this simplifies to:

$$p(x) = \frac{(x-x_1)(x-x_2)}{2\Delta x^2} f_0 - \frac{(x-x_0)(x-x_2)}{\Delta x^2} f_1 + \frac{(x-x_0)(x-x_1)}{2\Delta x^2} f_2$$

Pros:

- Easy to code and/or built-in to most languages (R, python, IDL)
- Always finds a solution

Pros:

- Easy to code and/or built-in to most languages (R, python, IDL)
- Always finds a solution

Cons:

- As the number of points rise, some spacings will produce oscillations with large deviations

Pros:

- Easy to code and/or built-in to most languages (R, python, IDL)
- Always finds a solution

Cons:

- As the number of points rise, some spacings will produce oscillations with large deviations

Pros:

- Easy to code and/or built-in to most languages (R, python, IDL)
- Always finds a solution

Cons:

- As the number of points rise, some spacings will produce oscillations with large deviations

Pros:

- Easy to code up, built-in to most languages (R, python, IDL)
- Always finds a solution

Cons:

- As the number of points rise, some spacings will produce oscillations with large deviations
- Can be overcome if you can tailor the spacing of the points (Chebyshev polynomial spacing))

Aside: Assessing errors

 Formally consider the error of the interpolating polynomial bounded by:

$$f(x) - p(x) \stackrel{\bullet}{=} \frac{f^{(n+1)}(u)}{(n+1)!} (x - x_0)....(x - x_n)$$

• Numerator is $(n+1)^{th}$ derivative of f at some point u within the interval of interest [at most over, $(a,b) = (x_0,x_p)$]

Aside: Assessing errors

• Often care about the maximum over an interval, so can consider:

$$E(x) = |f(x) - p(x)| \le \max_{[a,b]} \left| \frac{f^{(n+1)}(u)}{(n+1)!} \right| \max_{[a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

• Can revisit the statement about why linear approximation error goes as order $\sim (\Delta x)^2$

Aside: Assessing errors

Often care about the maximum over an interval, so can consider:

$$E(x) = |f(x) - p(x)| \le \max_{[a,b]} \left| \frac{f^{(n+1)}(u)}{(n+1)!} \right| \max_{[a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

• In linear approximation case, for an unknown true function f, the approximation between x_i and x_{i+1} depends on the maximal curvature (f'') and the product of $|(x-x_0)(x-x_1)|$

Aside: Assessing errors

Often care about the maximum over an interval, so can consider:

$$E(x) = |f(x) - p(x)| \le \max_{[a,b]} \left| \frac{f^{(n+1)}(u)}{(n+1)!} \right| \max_{[a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

 For generic interpolating functions we practically would want to then:

Aside: Assessing errors

• Often care about the maximum over an <u>interval</u>, so can consider:

$$E(x) = |f(x) - p(x)| \le \max_{[a,b]} \left| \frac{f^{(n+1)}(u)}{(n+1)!} \right| \max_{[a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

- For generic interpolating functions we practically would want to then:
- if possible estimate maximum of f⁽ⁿ⁺¹⁾(a<u<b)

Aside: Assessing errors

Often care about the maximum over an interval, so can consider:

$$E(x) = |f(x) - p(x)| \le \max_{[a,b]} \left| \frac{f^{(n+1)}(u)}{(n+1)!} \right| \max_{[a,b]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

- For <u>generic</u> interpolating functions we practically would want to then:
- if possible estimate maximum of f⁽ⁿ⁺¹⁾(a<u<b)
- compute maximum of (x-x₀)(x-x₁)...(x-x_n) over all (a<x<b)

Interpolation Methods: Hermite interpolation

 Can also include information on local derivative to improve accuracy.

Interpolation Methods: Hermite interpolation

- Can also include information on local derivative to improve accuracy.
- Polynomial of order n is:

$$f(x) = \sum_{i=0}^{n-1} A_i(x) f_i + \sum_{i=0}^{n-1} B_i(x) f_i'$$

 Computes new coefficients to use with local derivatives and derivatives of Lagrange coefficients

Interpolation Methods: Hermite interpolation

- Can also include information on local derivative to improve accuracy.
- Polynomial of order *n* is:

$$f(x) = \sum_{i=0}^{n-1} A_i(x) f_i + \sum_{i=0}^{n-1} B_i(x) f_i'$$

 Computes new coefficients to use with local derivative and derivative of Lagrange coefficients

$$B_i(x) = (x - x_i)L_i(x)^2$$

 $(1 - 2(x - x_i)L_i(x_i)) \times L_i^2(x)$

 Hermite polynomials match the function and its first derivative at a set of particular points

Taylor polynomials for different orders at the origin of y = sin(x)

- Hermite polynomials match the function and its first derivative at a set of particular points
- Taylor polynomial methods extend this to make the jth derivative match at the same point x_i

[e.g.,
$$p^{(j)}(x_j) = f^{(j)}(x_j)$$
]

Taylor polynomials for different orders at the origin of $y = \sin(x)$

$$p_{j}(f;a)(x) = \sum_{j=0}^{m} \frac{f^{(j)}(a)}{j!} (x-a)^{j}$$

Taylor polynomials for different orders at the origin of y = sin(x)

n=9 n=13 n=17

• Simple Example: Approximate $y = e^x$ expanding about a=0

$$p_j(f;a)(x) = \sum_{j=0}^{m} \frac{f^{(j)}(a)}{j!} (x-a)^{j}$$

 Error bound in Taylor polynomial typically cares about what order (j) you are using for the approximation

$$E(x) = p(x) - f(x) = \frac{(x-a)^{j+1}}{(j+1)!} f^{(j+1)}(u)$$

 Error bound in Taylor polynomial typically cares about what order (j) you are using for the approximation

$$E(x) = p(x) - f(x) = \frac{(x-a)^{j+1}}{(j+1)!} f^{(j+1)}(u)$$

• Continuing our example - how precise do we approximate $f = e^x$ at x=1 with $p_5(f;a=0)(x)$?

First term reduces to 1/(6!)

(for
$$a=0$$
, $x=1$, $j=5$)

Taylor interpolation

Second term is asking what the jth
derivative of the function is at some
value u.

$$E(x) = \frac{(x-a)^{j+1}}{(j+1)!} f^{(j+1)}(u)$$

Taylor interpolation

Second term is asking what the jth
derivative of the function is at some
value u.

We know that a < u < x in this example

$$E(x) = \frac{(x-a)^{j+1}}{(j+1)!} f^{(j+1)}(u)$$

Expected error reduces to

$$E_5(x) = \frac{1}{6!} f^6(u \in [0, 1])$$

• Given that $f(x) = e^x$ and u < 1 we can bound maximum absolute error:

$$E_5(x) = \frac{1}{6!} f^6(u) \le \frac{e^u}{6!} \le \frac{e^1}{6!} \sim 0.00378$$

- What is guaranteed in these simple interpolation schemes, is that there is a polynomial of some order n which will pass through the points, and reproduce the function to within a maximal interpolation error, E_{n.max}
- It is not guaranteed that the maximum error E_{max} → 0 as n → becomes large!

- What is guaranteed in these simple interpolation schemes, is that there is a polynomial of some order n which will pass through the points, and reproduce the function to within a maximal interpolation error, E_{n.max}
- It is *not guaranteed* that the maximum error E_{max} → 0 as n → becomes large!

- What is guaranteed in these simple interpolation schemes, is that there is a polynomial of some order n which will pass through the points, and reproduce the function to within a maximal interpolation error, E_{n.max}
- It is *not guaranteed* that the maximum error E_{max} → 0 as n → becomes large!

- We can try to improve this behaviour by considering piecewise interpolating functions.
- These divide the function into segments and impose boundary conditions for how interpolants must behave and inter-connect.

 To avoid errors with large number of points, we can break apart the data set into piecewise segments.

- To avoid errors with large number of points, we can break apart the data set into piecewise segments.
- Find flexible polynomials which reproduce continuity (slope and curvature) with the next segment

- To avoid errors with large number of points, we can break apart the data set into piecewise segments.
- Find flexible polynomials which reproduce continuity (slope and curvature) with the next segment
- Formally we require the first and second derivatives of each endpoint to match for each cubic polynomial constructed for a segment.

 In brief, for cubic splines (m=3), for each interval you have a polynomial which reproduces those points

$$p_i(x) = \sum_{k=0}^{k=[m=3]} c_{i,k} x^k$$

Also require j=0,...m-1 derivatives
 to match at interval transition points

$$p_i^j(x_{i+1}) = p_{i+1}^j(x_{i+1})$$

If you have n data points, there are
 n-1 intervals of [x_i,x_{i+1}]

- If you have n data points, there are
 n-1 intervals of [x_i,x_{i+1}]
- In each interval you have a polynomial that has order j with j+1 coefficients

- If you have n data points, there are
 n-1 intervals of [x_i,x_{i+1}]
- In each interval you have a polynomial that has order j with j+1 coefficients
- Need to jointly solve for coefficients of all polynomials together → Need (j+1)(n-1) (= 12 constraints, in this example)

• For all middle points you get continuity constraints between $p_i^j(x_i) = p_{i+1}^{j}(x_i)$ up to j=m-1

- For all middle points you get continuity constraints between $p_i^j(x_i) = p_{i+1}^j(x_i)$ up to j=m-1
- E.g.,

$$p_0(x_1) = p_1(x_1) = y_1$$

 $p'_0(x_1) = p'_1(x_1)$
 $p'_0(x_1) = p'_1(x_1)$

Same for other middle point... so 8 constraints so far

First and last point must trivially satisfy the value of the data

$$p_0(x_0) = y_0$$
 ; $p_2(x_3) = y_3$

• First and last point must trivially satisfy the value of the data $p_0(x_0) = y_0$; $p_2(x_3) = y_3$

This is now 10 constraints out of 12 in this example.

- First and last point must trivially satisfy the value of the data $p_0(x_0) = y_0$; $p_2(x_3) = y_3$
- This is now 10 constraints out of 12 in this example.
- For last two constraints often set second derivative of the first and last point to zero, or linearly extrapolate and set continuity to that line - or any other arbitrary slope.

- We can extend some of these interpolation schemes easily to higher dimensions.
- Typically you will
 want to use some
 built-in routines to do
 this, but bi-linear or
 bi-cubic interpolation
 are conceptually and
 algorithmically easy
 to understand

2D interpolation

 Finding f(x,y) at an arbitrary location based on known surrounding data is not a linear problem in general.

2D interpolation

 Finding f(x,y) at an arbitrary location based on known surrounding data is not a linear problem in general.

However a direct
 approach is to
 approximate the
 parameter space as
 linear in x and y
 separately.

Interpolation Methods:

2D interpolation

 Finding f(x,y) at an arbitrary location based on known surrounding data is not a linear problem in general.

However a direct
 approach is to
 approximate the
 parameter space as
 linear in x and y
 separately.

- Whether bi-linear, or bi-cubic or 2D spline, most algorithms will do this piece-wise in 2D.
- Particularly common for image resampling and compression
- These would still be considered deterministic interpolation methods

 First, one computes a semivariogram - half the variance between data points as a function of their separation

$$\gamma(d) = \frac{1}{2} \mathrm{mean}((z_i - z_j)^2)$$

 Typically bin in pair separation (d) and then compute the quantity γ for all points with roughly that pair separation

- Plotting them gives you a sense of how the data are correlated at different spatial scales.
- Typically an analytic function is fit to the semivariogram data
- This helps provide a smooth computation of the weights which go into interpolating a 2D data set

$$z(x_{new},y_{new}) = \sum_{i}^{N} \lambda_i z(x_i,y_i)$$

Figure 3 Omnidirectional semivariograms of cholera and dysentery incidence rates, with the model fitted.

Interpolation Methods:

2D interpolation

 These weights try to account for some covariance amongst the data during the interpolation.

 It can be extremely sensitive to the function fit to the the variogram data

- A more stable but less flexible option is Inverse Distance Weighting (IDW)
- Here the weighting (λ) is of the form: $\lambda = d^{-p}$
- While closer points
 provide more weight you
 still have a subjective
 choice on how quickly this
 weighting falls off with
 distance

- As with 1D interpolation you still have subjective choices which can significantly alter your final interpolated values
- E.g., why should weighting fall off linearly with distance? Quadratically? Which variogram model best represents the covariance in the data?
- You can't separate most numerical algorithms from subjective choices
- Even things that are trained on data, have biases because of training sets or construction choices for the neural network, interpolation, or optimization routines.
- The best thing you can do is TEST parameter variations!
 Understand limitations and always consider the physical system.

Interpolation Type	Function	Library	Description
1D Linear Interpolation	interp1d	scipy	Creates a linear interpolant over 1D data. Useful for filling gaps in evenly spaced data.
1D Spline Interpolation	UnivariateSpline	scipy	Smooth spline interpolation over 1D data, with adjustable smoothing. Ideal for noisy data.
Cubic Spline	CubicSpline	scipy	Provides cubic spline interpolation, often producing smoother results.
2D Interpolation	interp2d	scipy	Interpolates over 2D grids using linear, cubic, or quadratic methods.
Multidimensional Spline	RectBivariateSpline	scipy	Spline-based 2D interpolation for gridded data in two dimensions.
Regular Grid Interpolation	RegularGridInterpolator	scipy	Interpolates for N-dimensional data on a regular grid. Can handle more than 2 dimensions.

Grid Interpolation for Scattered Data	griddata	scipy	Interpolates unstructured 2D or 3D data using linear, cubic, or nearest neighbor methods.
Nearest Neighbor Interpolation	NearestNDInterpolator	scipy	Interpolates nearest neighbors for multidimensional data, useful for irregular grids.
Radial Basis Function (RBF)	Rbf	scipy	Performs interpolation based on radial basis functions for scattered 1D, 2D, or 3D data.
Piecewise Polynomial	PchipInterpolator	scipy	Monotonic piecewise cubic Hermite interpolator, suitable for non-oscillatory data.
Polynomial Interpolation	polyfit	numpy	Fits a polynomial to the data, suitable for small datasets or low- degree polynomials.
Lagrange Interpolation	lagrange	scipy	Uses Lagrange polynomials for interpolation; can be unstable for high-degree polynomials.

Approximation Methods: Running averages

 In some cases we may want to highlight the smooth behaviour of a data set, rather than an instantaneous interpolation between two values.

- In some cases we may want to highlight the smooth behaviour of a data set, rather than an instantaneous interpolation between two values.
- This can be sometimes useful for visualization and characterization purposes.

- In some cases we may want to highlight the smooth behaviour of a data set.
- This can be sometimes useful for visualization and characterization purposes.
- More often can help isolate influence/dependence of other variables in multi-dimensional data sets.

 Simplest boxcar estimates of mean and variance allow for smooth reconstructions at the cost of resolution.

- Simplest boxcar estimates of mean and variance allow for smooth reconstructions at the cost of resolution.
- Divide data $[x_i, x_{i+1}, ... x_n]$ into subsets and compute statistics of interest within this window

- Simplest boxcar estimates of mean and variance allow for smooth reconstructions at the cost of resolution.
- Divide data [x_i, x_{i+1},...x_n] into subsets and compute statistics of interest within this window
- Often want to preserve ~equal error in average estimates; can bin by i.e., equal number of points

 Moving/running averages instead update the data set by replacing the last element of the window with the average from within the window

- Moving/running averages instead update the data set by replacing the last element of the window with the average from within the window
- E.g., x_{is} = sum(x_i,x_{i+1}...x_j)/j for window size of j, over all data points i<(n-j)

- Moving/running averages instead update the data set by replacing the last element of the window with the average from within the window
- E.g., x_{is} = sum(x_i,x_{i+1}...x_j)/j for window size of j, over all data points i<(n-j)
- Has benefit of preserving resolution, but results qualitatively depend on window choice, and optionally, weighting choices

Summary on Interpolation/Approximation

- If you want smooth re-binning of simple data, representation of missing data for e.g., numerical integrals **interpolation** can be helpful.
- If you want coarse trends of the data (including confidence intervals) in order to understand higher dimensional dependencies or role of outliers approximations/reconstructions can be helpful
- Finally, remember that both interpolation and approximation are non-physical, can produce extrapolations or behaviours which are not necessarily the 'truth', and that subjective choices in e.g., order number or window size can change your interpretation.
- They are helpful methods but **always**, consider the physical constraints of your system/question/data, and be aware that they all (even GPR) have subjective parameters which you should marginalize over.

Approximation Type	Function	Library	Description
Polynomial Approximation	polyfit	numpy	Fits a polynomial of a specified degree to data points; suitable for simple data or trends in smaller datasets.
Spline Approximation	UnivariateSpline, LSQUnivariateSpline, CubicSpline	scipy	Smooth curve fitting with splines, allowing for adjustable smoothing parameters. Great for 1D data.
Radial Basis Functions (RBF)	Rbf	scipy	Approximates scattered data in higher dimensions using radial basis functions, with various kernel options like Gaussian and Multiquadric.

Least Squares Fitting	curve_fit	scipy	Fits arbitrary functions to data by minimizing the squared error; often used for nonlinear curve fitting.
Piecewise Linear Approximation	interp1d With kind='linear'	scipy	Provides a piecewise linear approximation, essentially connecting data points with straight lines.
Piecewise Polynomial (PCHIP)	PchipInterpolator	scipy	Monotonic, piecewise polynomial fit that prevents oscillations, ideal for strictly increasing or decreasing data.
Gaussian Process Regression (GPR)	GaussianProcessRegressor	sklearn	Probabilistic model useful for high-dimensional function approximation, which provides uncertainty estimates.

Chebyshev Polynomial Approximation	Chebyshev.fit	numpy.polynomial	Fits Chebyshev polynomials, which minimize approximation error in the least-squares sense and are useful for function approximation over intervals.
Fourier Series Approximation	fft Or irfft	numpy	Approximates periodic data by decomposing it into a sum of sinusoids, useful for analyzing frequency components.
Linear Regression	LinearRegression	sklearn	Fits a linear model to data, often used as a baseline approximation for continuous or noisy data with a linear relationship.

Polynomial Regression	PolynomialFeatures + LinearRegression	sklearn	Transforms data to include polynomial terms before applying linear regression, creating polynomial approximation.
k-Nearest Neighbors Regression	KNeighborsRegressor	sklearn	A non-parametric approximation that averages values from the nearest neighbors, useful for irregular data.
Support Vector Regression (SVR)	SVR	sklearn	Uses support vector machines for regression tasks, suitable for nonlinear relationships and higher-dimensional data.

Neural Network Approximation	MLPRegressor	sklearn	Multilayer Perceptron model for function approximation, suitable for complex and high-dimensional data patterns.
Local Polynomial Regression (LOESS)	lowess	statsmodels	Locally weighted regression that fits simple models around each data point, suitable for smooth approximation in 1D data with trends or seasonality.