Topology Qualifying Exam Spring 1990

Work 9 of the following problems. Do not turn in more than 9.

For a subset A contained in a topological space X, let A^- denote the closure of A in X, let A° denote the interior of A in X, and let Fr(A) denote the frontier of A in X. All Euclidean spaces will have the usual topology, and all product spaces will have the product topology.

- **1.** For a topological space X, prove that "o–" and "–o" are both idempotent operations on the subsets of X; that is, $A^{o-o-} = A^{o-}$ and $A^{-o-o} = A^{-o}$ for all $A \subseteq X$.
- 2. (a) Define "net".
 - (b) Give an example of a net that is not a sequence.
- **3.** Prove that [0,1] (with its usual topology) is compact.
- **4.** (a) Characterize the compact subsets of \mathbb{R} .
 - (b) State and prove a maximum value theorem from calculus.
 - (c) Using maximum, minimum, and intermediate value theorems from calculus, prove every continuous open function $f:[0,1] \to [0,1]$ is surjective.
- **5.** Prove that there is no smallest (\subseteq minimal) base for the usual topology on \mathbb{R} .
- **6.** Prove that if $e: X \to Y$ is an embedding and $h: Y \to Z$ is a homeomorphism, then $h \circ e$ is an embedding.
- **7.** Give an example of two topologies σ and τ on the set of integers \mathbb{Z} for which $\sigma \subsetneq \tau$ and (\mathbb{Z}, σ) is homeomorphic to (\mathbb{Z}, τ) .
- **8.** (a) Prove that the product of two connected spaces is connected.
 - (b) Is the product of uncountably many connected spaces necessarily connected?
- **9.** Prove that if $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ are quotient maps, then $X \xrightarrow{g \cdot f} Z$ is a quotient map.
- **10.** Show that $\mathbb{Q} \times \mathbb{Q} \cap S^1$ is dense in S^1 .
- 11. Prove that if A is a compact subset of a regular (non Hausdorff) space X, then A^- is compact.
- 12. Prove that any uncountable subset of \mathbb{R} has a limit point.
- 13. Give statements of the following theorems:
 - (a) Urysohn's Lemma.
 - (b) Urysohn's Metrization Theorem.
 - (c) Tychonoff's Theorem.
 - (d) Baire Category Theorem.
- **14.** Prove that the circle (S^1) is not a retract of the plane (\mathbb{R}^2) .
- 15. Prove or disprove that every separable space is second countable.
- **16.** Prove that the following are equivalent for any topological space Y:

- (a) Y is Hausdorff.
- (b) The diagonal $\Delta_Y = \{(y, y) | y \in Y\}$ is closed subset of $Y \times Y$.
- (c) For each space Z and each pair of continuous functions $f,g:Z\to Y$ that agree on a dense subset of Z, it follows that f=g.