ЛАБОРАТОРНАЯ РАБОТА №3 ПО ТЕМЕ

«МЕТОДЫ БЕЗУСЛОВНОЙ МИНИМИЗАЦИИ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ (ФМП)»

РЕШАЕМАЯ ЗАДАЧА

Дано: $f(X) = x^2 + x \cdot y + 2y^2 + (5 - NG) \cdot x + NL \cdot y$ - квадратичная функция 2-х переменных $X = (x, y) \in R^n$

здесь NL – номер компьютера, за которым выполняется работа;

NG – последние две цифры номера учебной группы.

Требуется найти: $f(X) \rightarrow min$ $X \in \mathbb{R}^n$

ЦЕЛЬ ЛАБОРАТОРНОЙ РАБОТЫ

Требуется изучить прямые методы решения поставленной задачи.

Для достижения цели — необходимо добиться выполнения критерия окончания счета для каждого метода с заданной точностью $\varepsilon = 0.01$, за число итераций не превышающее заданное N из одной и той же начальной точки $X^0 = (x^0, y^0)$, здесь $x^0 = -1.NL$, $y^0 = 2.NG$.

ИЗУЧАЕМЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ

Методы 1-го порядка

- метод градиентного спуска (N =5)
- метод покоординатного спуска (N = 5)
- метод наискорейшего градиентного спуска (N = 10)
- метод Гаусса-Зейделя (N =10)
- метод сопряженных градиентов (N =2)

Методы 2-го порядка

- метод Ньютона (N =1)
- метод Ньютона с переменным шагом (метод Ньютона-Рафсона) при $t_0 \neq 1$ (N = 5)

Методы, не требующие вычисления производных (0-го порядка)

- метод случайного поиска (N = 8)
- метод конфигураций (метод Хука-Дживса) (N =8)
- метод деформируемого многогранника (метод Нелдера-Мида) (N =8)

ПОДГОТОВКА К ЛАБОРАТОРНОЙ РАБОТЕ

1. Для минимизируемой функции $f(X) = x^2 + x \cdot y + 2y^2 + (5 - NG) \cdot x + NL \cdot y$ задать параметры: NL — номер компьютера, за которым выполняется работа; NG — последние две цифры номера учебной группы.

Пример.

Для студента группы M8O-311Б, выполняющего работу за компьютером #13, коэффициенты соответственно равны NL=13, NG=11, следовательно, $f(X)=x^2+x\cdot y+2y^2-6\cdot x+13\cdot y$

Для студента группы M8O-301Б, выполняющего работу за компьютером #13, коэффициенты соответственно равны NL=13, NG=1, следовательно, $f(X)=x^2+x\cdot y+2y^2+4\cdot x+13\cdot y$

2. Задать начальную точку $X^0 = (x^0, y^0)$, здесь $x^0 = -1.NL$, $y^0 = 2.NG$.

Пример.

Для студента группы M8O-311Б, выполняющего работу за компьютером #13, коэффициенты соответственно равны NL=13, NG=11, следовательно, начальная точка $X^0=(-1.13,2.11)$.

Для студента группы M8O-301Б, выполняющего работу за компьютером #13, коэффициенты соответственно равны NL=13, NG=1, следовательно, начальная точка $X^0=(-1.13,2.1)$.

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Часть 1

- численно найти стационарную точку выбранной функции f(X) из заданной начальной точки X^0 с заданной точностью $\varepsilon = 0.01$ за число итераций не превышающее заданное N, используя методы 1-го порядка;
- занести в отчет по лабораторной работе протоколы вычислений.

Часть 2

- численно найти стационарную точку выбранной функции f(X) из заданной начальной точки X^0 с заданной точностью $\varepsilon = 0.01$ за число итераций не превышающее заданное N, используя методы 2-го порядка;
- занести в отчет по лабораторной работе протоколы вычислений.

Часть 3

• численно найти стационарную точку выбранной функции f(X) из заданной начальной точки X^0 с заданной точностью $\varepsilon = 0.01$ за число итераций не превышающее заданное N, используя методы 0-го порядка;

В найденной точке X^k должны дополнительно выполняться условия: $\left\|X^*-X^k\right\|<0.1,$ $\left|f(X^*)-f(X^k)\right|<0.1,$ где X^* - аналитически найденная точка минимума

• занести в отчет по лабораторной работе протоколы вычислений.

СОДЕРЖАНИЕ И ПРАВИЛА ОФОРМЛЕНИЯ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

- 1. Отчет по лабораторной работе выполняется после выполнения лабораторной работы <u>на листах формата A4</u>. Отчет должен быть у <u>каждого студента</u>, даже если работа выполнялась бригадой.
- 2. Титульный лист отчета должен содержать наименование лабораторной работы, наименование дисциплины, фамилию и группу студента.
- 3. Отчет должен содержать следующие разделы:
 - (1) Постановка задачи для выбранной функции f(X).
 - (2) Аналитическое решение задачи с использованием аппарата необходимых и достаточных условий экстремума.
 - (3) Численное решение задачи, включая текст задания и результаты его выполнения скриншоты или фотографии экранов протоколов. Должно быть 10 протоколов, каждый протокол должен содержать фразу «**Критерий окончания выполнен**», а также информацию о величинах $\|X^* X^k\|$ и $|f(X^*) f(X^k)|$.
 - (4) Геометрическая интерпретация численного решения задачи, для этого:
 - на 2-х листах миллиметровки формата A3 построить чертежи линии уровня функции $f(X) = C_0$, проходящей через начальную точку $X^0 = (x^0, y^0)$;
 - нанести на первый чертеж траектории спуска для всех методов 1-го и 2-го порядков;
 - нанести на второй чертеж траектории спуска для методов 0-го порядка, а также дополнительные построения:
 - о <u>для метода конфигураций</u>: промежуточные траектории поиска вдоль координатных направлений и шаги по образцу;
 - о <u>для метода Нелдера-Мида</u>: треугольники, соответствующие каждой итерации;
 - о <u>для метода случайного поиска</u>: окружности, соответствующие каждой итерации.

Траектории для каждого метода выполняются своим цветом (или штриховкой), цвет (или штриховка) расшифровываются в «легенде» к чертежу.

Каждый чертеж должен иметь «штамп» следующего содержания:

Студент	Иванов И.И.	Чертеж к методам
Группа	М8О-301Б	
Номер	36	
компьютера		

ПРИМЕР ОТЧЕТА

Цель— изучение методов безусловной минимизации на примере квадратичной функции, не имеющей ярко выраженной овражной структуры.

Постановка задачи

Дано: $f(X) = x^2 + xy + 2y^2 + (5-1)x + 36y$ — квадратичная функция 2-х переменных.

NL = 36 – номер компьютера, за которым выполняется работа;

NG = 1 – последние две цифры номера учебной группы.

Требуется найти: $f(X) \rightarrow min$ $X \in \mathbb{R}^n$

Аналитическое решение задачи с использованием аппарата необходимых и достаточных условий экстремума

- 1. Запишем градиент целевой функции: $\nabla f(X) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^T$.
- 2. Запишем необходимые условия экстремума: $\begin{cases} \frac{\partial f}{\partial x} = 0, \\ \frac{\partial f}{\partial y} = 0. \end{cases}$
- 3. Решим полученную систему, решение системы координаты стационарной точки $\mathbf{X}^* = (\mathbf{x}^*, \mathbf{y}^*)^{\mathrm{T}}$.
- 4. Составим матрицу вторых производных (матрицу Гессе) и вычислим ее в точке $X^* = (x^*, y^*)^T$:

$$H(X^*) = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}.$$

5. Определим знакоопределенность матрицы по критерию Сильвестра. Для этого найдем угловые миноры матрицы: $\Delta_1 = h_{11}$, $\Delta_2 = \det(H(X^*))$.

Т.к. $\Delta_1 > 0$ и $\Delta_2 > 0$, то матрица положительно определена и, следовательно, $X^* = (x^*, y^*)^T$ — безусловный локальный минимум.

Ответ: получена точка $X^* = (x^*, y^*)^T -$ безусловный локальный минимум функции, $f(X^*) = f^*$.

Численное решение задачи с точностью $\varepsilon = 0.01$ из начальной точки $X^0 = (-1.36, 2.1)$

Методы 1-го порядка

 \underline{Memod} градиентного спуска (предельное число итераций N=5)

Протокол расчета

Выполнил: Иванов, группа 80-301, 29.03.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+-1x_1x_2+2x_2^2+4x_1+36x_2+0$

Метод градиентного спуска

Точность метода: 0.01, $N_{max} = 14$, Количество итераций: 5

N _{ut}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f' _{x1}	f' _{x2}	$\ \nabla f(x_1,x_2)\ $
0	0.23	-1.36	2.1	83.6856	-0.82	45.76	45.76735
1	0.61	-1.1714	-8.4248	-174.52052	10.082	3.4722	10.66316
2	0.23	-7.32142	-10.54284	-210.11034	-0.1	1.15005	1.15439
3	0.65	-7.29842	-10.80735	-210.2703	0.21051	0.069	0.22153
4	0.23	-7.43525	-10.85221	-210.28559	-0.0183	0.02643	0.03214
5	0	-7.43104	-10.85828	-210.28571	-0.0038	-0.0021	0.00434

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00272$$

$$|f(x) - f(x^*)| = 1.0E-5$$

 \underline{M} етод покординатного спуска (предельное число итераций N=5)

.....

Методы 2-го порядка

<u>Метод Ньютона (предельное число итераций N = 1)</u>

.....

Методы 0-го порядка

 $\underline{Memod\ Hendepa-Muda\ (предельное\ число\ итераций\ N=8)}$

.....