

Introduction to Machine Learning

Module 1C: Optimization

Instructor: Tugce Gurbuz

July 14th 2022

What do we optimize?

How do we optimize?

What do we optimize?

How do we optimize?

Why optimization is important (at the societal level)?

What do we optimize? -> Parameters of the model to make the loss minimum

How do we optimize?

Why optimization is important (at the societal level)?

What do we optimize? -> Parameters of the model tomake the loss minimum

How do we optimize? -> Math!

Why optimization is important (at the societal level)?

What do we optimize? -> Parameters of the model tomake the loss minimum

How do we optimize? -> Math!

Why optimization is important (at the societal level)? -> Creating fair algorithms

How to calculate the loss?

Multiclass classification: Cross-entropy vs. MSE?

Source: module1B-tutorial1

How to decide the loss function?

- Identify your problem (e.g., classification, regression?)
- Check the literature

Random search?

Algorithm:

sample random points around current w

if random point, w', yields lower objective (i.e. J(w') < J(w)): Accept w' as new position and store it in w

Random search?

Gradient Descent <3

Algorithm:

- Compute gradient (it points uphill)
- Do step in opposite direction of gradient
- Step size (learning rate), η

Gradient Descent

Algorithm:

- Compute gradient (it points uphill)
- Do step in opposite direction of gradient
- Step size (learning rate), η

$$w_{t+1} = w_t - \eta \nabla J(w_t)$$

Gradient Descent

• How to choose learning rate?

Gradient Descent

How to choose learning rate?

[Distill.pub]

Momentum <3

- Accelerates along flat directions
- Slows down along sharp directions

[Distill.pub]

How does the momentum work?

Momentum algorithm:

- Do a gradient descent step
- Apply the update from the last iteration, only smaller (momentum step)

$$w_{t+1} = w_t - \eta \nabla J(w_t) + \beta(w_t - w_{t-1})$$

Adaptive Methods <3

Learning rate schedules

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

Adaptive Methods <3

Learning rate schedules

$$w_{t+1} = w_t - \eta_t \nabla J(w_t)$$

Polynomial schedules, e.g.
$$\rightarrow \eta_t = \frac{\alpha}{c+t}, \ \eta_t = \frac{\alpha}{c+\sqrt{t}}$$

Exponential

Stepwise decay

Cosine/cyclical schedules

Adaptive Methods <3

- Adagrad (Duchi et al., 2011)
 - Adapts the learning rate for each parameter
 - Using running sum squares of past gradients
 - Typically used in stochastic form:
 - Instead of full gradient, use gradient from mini-batch

$$[w_{t+1}]_i = [w_t]_i - \frac{\eta}{\sqrt{[v_{t+1}]_i + \epsilon}} [\nabla J(w_t)]_i$$

$$[v_{t+1}]_i = \sum_{s=1}^t [\nabla J(w_s)]_i^2$$

Adaptive Methods <3

- RMSprop
 - Uses a moving average instead of sum used by Adagrad
 - Moving average can be useful on non-convex objectives

$$[w_{t+1}]_i = [w_t]_i - \frac{\eta}{\sqrt{[v_{t+1}]_i + \epsilon}} [\nabla J(w_t)]_i$$

$$[v_{t+1}]_i = \alpha [v_t]_i + (1 - \alpha) [\nabla J(w_t)]_i^2$$

Adaptive Methods <3

- RMSprop
 - Uses a moving average instead of sum used by Adagrad
 - Moving average can be useful on non-convex objectives

$$[w_{t+1}]_i = [w_t]_i - \frac{\eta}{\sqrt{[v_{t+1}]_i + \epsilon}} [\nabla J(w_t)]_i$$

$$[v_{t+1}]_i = \alpha[v_t]_i + (1 - \alpha)[\nabla J(w_t)]_i^2$$

Adam: RMSprop + momentum

Non-convexity Problem

Non-convexity Problem

- Convex <3 -> have the same global and local minimum
- Non-convex -> have different global and local minimum

Non-convexity Problem

- Convex <3 -> have the same global and local minimum
- Non-convex -> have different global and local minimum

Great non-convexity, comes with great responsibility!

Non-convexity Problem

Initialization matters!!
https://losslandscape.com/explorer

Non-convexity Problem

Overparameterization

Computation Cost Problem

Computation Cost Problem

Minibatch training <3

Computation Cost Problem

Minibatch training <3 -> stochastic gradient descent

Computation Cost Problem

- Minibatch training <3 -> stochastic gradient descent
 - Minibatch size:
 - Too small batch size: optimization bounces around alot, and can lead to slower convergence to a minimum.
 - Too big batch size: won't fit on GPU
 - Rule of thumb -> pick the largest batch size that fits in the GPU

28 x 28 image -> 784 vector

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

