EE2302 Foundations of Information Engineering

Assignment 4 (Solution)

- 1. Any integer n can be written as n = 3q + r using the quotient-remainder theorem, where $0 \le r < 3$. There are three possible cases:
 - For r = 0, $n^2 = (3q)^2 = 3(3q^2) = 3k$ for $k = 3q^2$.
 - For r = 1, $n^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1 = 3k + 1$ for $k = (3q^2 + 2q)$.
 - For r = 2, $n^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1 = 3k + 1$ for $k = (3q^2 + 4q + 1)$.

Therefore, the square of any integer has the form 3k or 3k+1 for some integer k.

2.
$$\emptyset(560) = \emptyset(2^4 * 5 * 7)$$

 $= \emptyset(2^4)\emptyset(5)\emptyset(7)$
 $= 2^3(2-1)(5-1)(7-1)$
 $= 192.$

3. gcd(46288,2046) = 22

22	46288	2046	1
	45012	1276	
1	1276	770	1
	770	506	
1	506	264	1
	264	242	
1	242	22	22
	22	0	

4.

10245	1689		
1	0	10245	a
0	1	1689	b
1	-6	111	c = a - 6b
-15	91	24	d = b - 15c
61	-370	15	e = c - 4d
-76	461	9	f = d - e
137	-831	6	g = e - f
-213	1292	3	h = f - g

gcd(10245,1689) = 3, x = -213 and y = 1292.