

15-826: Multimedia Databases and Data Mining

Lecture #20: SVD - part III (more case studies)

C. Faloutsos

Must-read Material

- MM Textbook Appendix D
- Graph Mining Textbook, chapter 15.
- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

Copyright: C. Faloutsos (2016)

2

Must-read Material, cont'd

- Haveliwala, Taher H. (2003)
 <u>Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for WebSearch</u>. Extended version of the WWW2002 paper.
- Chen, C. M. and N. Roussopoulos (May 1994). Adaptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2016)

Outline

Goal: 'Find similar / interesting things'

• Intro to DB

- Indexing similarity search
- Data Mining

15-826

3

Copyright: C. Faloutsos (2016)

C. Faloutsos 15-826

17

19

Properties - by defn.:

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{A}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

A(1):
$$\mathbf{U}^{\mathrm{T}}_{[r \times n]} \mathbf{U}_{[n \times r]} = \mathbf{I}_{[r \times r]}$$
 (identity matrix)

A(2):
$$\mathbf{V}^{\mathrm{T}}_{[\mathrm{r} \times \mathrm{n}]} \mathbf{V}_{[\mathrm{n} \times \mathrm{r}]} = \mathbf{I}_{[\mathrm{r} \times \mathrm{r}]}$$

A(2):
$$\mathbf{V}^{T}_{[r \times n]} \mathbf{V}_{[n \times r]} = \mathbf{I}_{[r \times r]}$$

A(3): $\mathbf{\Lambda}^{k} = \operatorname{diag}(\lambda_{1}^{k}, \lambda_{2}^{k}, ... \lambda_{r}^{k})$ (k: ANY real number)

$$A(4)$$
: $A^T = V \Lambda U^T$

15-826

Copyright: C. Faloutsos (2016)

Less obvious properties

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = ??$$

Copyright: C. Faloutsos (2016)

18

20

Less obvious properties

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$
symmetric; Intuition?

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

15-826

Less obvious properties

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$

symmetric; Intuition?

'document-to-document' similarity matrix

B(2): symmetrically, for 'V'

$$(\mathbf{A}^{\mathrm{T}})_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}$$

Intuition?

15-826

Copyright: C. Faloutsos (2016)

5

C. Faloutsos 15-826

Exercise

Verify formula:

$$A = [1 \ 2]$$
 $b = [4]$

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = [1]$$

$$\Lambda = [sqrt(5)]$$

$$V= [1/sqrt(5) 2/sqrt(5)]^T$$

$$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$$

15-826

Copyright: C. Faloutsos (2016)

Exercise

Verify formula:

$$A = [1 \ 2]$$
 $b = [4]$

$$\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$$

$$U = [1]$$

$$\Lambda = [sqrt(5)]$$

 $V = [1/sqrt(5) 2/sqrt(5)]^T$

Copyright: C. Faloutsos (2016)

Exercise

CMU SCS

Exercise

45

Verify formula:

Show that w=4/5, z=8/5 is

- (a) A solution to 1*w + 2*z = 4 and
- (b) Minimal (wrt Euclidean norm)

15-826

Copyright: C. Faloutsos (2016)

47

CMU SCS

Verify formula:

Show that w=4/5, z=8/5 is

48

- (a) A solution to 1*w + 2*z = 4 and
 - A: easy
- (b) Minimal (wrt Euclidean norm)

A: [4/5 8/5] is perpenticular to [2 -1]

15-826

Copyright: C. Faloutsos (2016)

C. Faloutsos 15-826

Least obvious properties altogether

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$: shortest, actual or leastsquares solution

C(2): $\mathbf{A}_{[n \times m]} \mathbf{v}_{1 [m \times 1]} = \lambda_1 \mathbf{u}_{1 [n \times 1]}$ C(3): $\mathbf{u}_1^T \mathbf{A} = \lambda_1 \mathbf{v}_1^T$

C(4): $A^T A v_1 = \lambda_1^2 v_1$

Copyright: C. Faloutsos (2016)

57

59

Properties - conclusions

 $\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$

B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v'} \sim \text{(constant) } \mathbf{v}_1$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or leastsquares solution

 \sim C(4): $A^T A v_1 = \lambda_1^2 v_1$

15-826

Copyright: C. Faloutsos (2016)

58

60

CMU SCS

SVD - detailed outline

- Case studies
- SVD properties
- · more case studies

- Kleinberg/google algorithms
- query feedbacks
- Conclusions

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

Kleinberg's algo (HITS)

Kleinberg, Jon (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

15-826

Copyright: C. Faloutsos (2016)

Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0: find all pages containing the query terms

Step 1: expand by one move forward and backward

15-826

CMU SCS

Copyright: C. Faloutsos (2016)

61

Kleinberg's algorithm

observations

- recursive definition!
- each node (say, 'i'-th node) has both an authoritativeness score a_i and a hubness score h_i

15-826

Copyright: C. Faloutsos (2016)

65

67

Kleinberg's algorithm

Let *E* be the set of edges and **A** be the adjacency matrix:

the (i,j) is 1 if the edge from i to j exists

Let *h* and *a* be [n x 1] vectors with the 'hubness' and 'authoritativiness' scores.

Then:

15-826

Copyright: C. Faloutsos (2016)

66

68

Kleinberg's algorithm

Then:

$$a_i = h_k + h_l + h_m$$

that is

 $a_i = \text{Sum}(h_j)$ over all j that (j,i) edge exists

or

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

Kleinberg's algorithm

15-826

symmetrically, for the 'hubness':

$$h_i = a_n + a_p + a_q$$

that is

 $h_i = \text{Sum}(q_j)$ over all j that (i,j) edge exists

or

h = A a
Copyright: C. Faloutsos (2016)

CMU SCS

Kleinberg's algorithm

In conclusion, we want vectors **h** and **a** such that:

$$h = A a$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

Recall properties:

C(2):
$$\mathbf{A}_{[n \times m]} \mathbf{v}_{1[m \times 1]} = \lambda_1 \mathbf{u}_{1[n \times 1]}$$

C(3):
$$\mathbf{u_1}^T \mathbf{A} = \lambda_1 \mathbf{v_1}^T$$

15-826

Copyright: C. Faloutsos (2016)

69

71

Kleinberg's algorithm

In short, the solutions to

$$h = A a$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

are the <u>left- and right- singular-vectors</u> of the adjacency matrix **A.**

Starting from random a' and iterating, we'll eventually converge

(Q: to which of all the singular-vectors? why?)

15-826

Copyright: C. Faloutsos (2016)

70

72

Kleinberg's algorithm

(Q: to which of all the singular-vectors? why?)

A: to the ones of the strongest singular-value, because of property B(5):

B(5):
$$(\mathbf{A}^T \mathbf{A})^k \mathbf{v'} \sim \text{(constant)} \mathbf{v}_1$$

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

Kleinberg's algorithm - results

Eg., for the query 'java':

0.328 www.gamelan.com

0.251 java.sun.com

0.190 www.digitalfocus.com ("the java developer")

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

Kleinberg's algorithm - discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social networs / 'small world' phenomena

15-826

CMU SCS

Copyright: C. Faloutsos (2016)

73

75

SVD - detailed outline

- ...
- Case studies
- SVD properties
- more case studies
 - $\ Kleinberg/\underline{google}\ algorithms$
 - query feedbacks
- Conclusions

15-826

Copyright: C. Faloutsos (2016)

74

76

PageRank (google)

•Brin, Sergey and Lawrence Page (1998). *Anatomy of a Large-Scale Hypertextual Web Search Engine*. 7th Intl World Wide Web Conf

Larry Page Sergey Brin

15-826

Copyright: C. Faloutsos (2016)

CMU SCS

Problem: PageRank

Given a directed graph, find its most interesting/central node

A node is important, if it is connected with important nodes (recursive, but OK!)

15-826

Copyright: C. Faloutsos (2016)

Alternative notation – eigenvector viewpoint

M

Modified transition matrix

$$\mathbf{M} = \mathbf{c} \ \mathbf{B} + (1-\mathbf{c})/\mathbf{n} \ \mathbf{1} \ \mathbf{1}^{\mathrm{T}}$$

Then

$$p = M p$$

That is: the steady state probabilities =

PageRank scores form the *first eigenvector* of the 'modified transition matrix'

15-826

Copyright: C. Faloutsos (2016)

85

Parenthesis: intuition behind eigenvectors

- Definition
- 2 properties
- intuition

15-826 Copyright: C. Faloutsos (2016)

Copyright. C. Faloutsos (2010)

Formal definition

If **A** is a (n x n) square matrix (λ, \mathbf{x}) is an **eigenvalue/eigenvector** pair of **A** if

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

CLOSELY related to singular values:

15-826

Copyright: C. Faloutsos (2016)

87

Property #2

- If $A_{[nxn]}$ is a real, symmetric matrix
- Then it has *n* real eigenvalues

(if **A** is not symmetric, some eigenvalues may be complex)

15-826

Copyright: C. Faloutsos (2016)

89

Conclusions cont' d

- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

15-826

Copyright: C. Faloutsos (2016)

125

References

- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.
- Chen, C. M. and N. Roussopoulos (May 1994).
 Adaptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2016)

126

References cont' d

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992). Numerical Recipes in C, Cambridge University Press.

15-826

Copyright: C. Faloutsos (2016)

127