

ТРИ ТЕЗИСА

- Температура фотосферы Солнца равна 5770 К
- В классической (ньютоновой) механике сила взаимного притяжения между двумя точечными массами описывается кулоновским потенциалом: $\phi \propto \frac{1}{r}$
- Скорость света в вакууме равна 299 792 458 метров в секунду.

ТРИ ТЕЗИСА-2

• Параллакс GAIA для источника #5957660191302614528 $\pi = -273~\mu as~\pm 767~\mu as$

 $|\pm 0.46???$

- Параметр Хаббла на текущую эпоху по свойствам реликтового фона $H_0=67.74~{
 m km}~{
 m c}^{-1}~{
 m M}{
 m n}{
 m k}^{-1}$
- Элементарный заряд в СИ $e=1.602176634\cdot 10^{-19}~{
 m A}\cdot {
 m c}$ точно.

СТАТИСТИЧЕСКАЯ ОШИБКА

Конечность выборки (sampling error)

Несовершенство прибора Несовершенство модели Несовершенство статистического метода

Неизвестна, но одинакова для разных измерений Систематическая ошибка

Случайная ошибка (Random or Statistical) Неизвестна, и разная для разных измерений

Статистическая ошибка

СЛУЧАЙНЫЕ И СИСТЕМАТИЧЕСКИЕ ОШИБКИ

ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ ВЕЗДЕ!

Нильс Бор (1885-1962)

ЧТО ЗДЕСЬ НЕ ТАК?

http://faculty.humanities.uci.edu/bjbecker/exploringthecosmos/lecture12.html

Fig. 1. — Différences entre les longitudes calculées et les longitudes observées d'Uranus (1690-1845). Valeurs rapportées par Le Verrier aux tables de Bouvard, après correction de celles-ci.

Danjon 1946, C&T, 62, 369

ОШИБКИ ИЗМЕРЕНИЙ

Магнитный угол нейтронной звезды — угол между осью вращения и магнитным моментом.

Table 1. Beam parameters for cone-dominated pulsars.

PSR	P (s)	$2\Delta\phi$ (°)	$2\Delta\psi$ (°)	$(d\psi/d\phi)_m$	eta_{90} (°)	ρ ₉₀ (°)	$2\Delta\psi_p \ (^\circ)$	eta_n	α (°)	β (°)
0031-07 0105+65 0136+57 0148-06 0149-16	0.943 1.284 0.272 1.465 0.833	36.0 17.0 12.0 40.0 13.0	20.0 60.0 70.0 125.0 150.0	-0.5 -6.0 5.3 7.4 30.0	9.6 10.9 7.8 1.9	12.8 12.4 21.4 6.8	83.1 58.0 136.9 147.2	0.75 0.88 0.36 0.28	53.7	4.5 8.7 2.1 1.9

00

Lyne & Manchester 1988, MNRAS, 234, 477

Table 5. Model parameters from the RVM fit to the observed position-angle variations

Parameter	$Value^{a}$	
Assumed parameters:		
Orbit inclination i	73°	
Precession rate Ω_p	$1^{\circ}.36 \text{ yr}^{-1}$	
RVM reference phase ϕ_0	0.0	
Reference time for precession	MJD 53000.0	
Derived parameters:		
Spin-orbit misalignment angle δ	$93^{\circ} (-9^{\circ}, +16^{\circ})$	
Precession angle Φ_0	$175^{\circ}.5 \ (-2^{\circ}.8, +1^{\circ}.8)$	
Offset in PA $\Delta \psi_0$	-118.7 ± 0.2	
Magnetic inclination α	$160^{\circ} (-16^{\circ}, +8^{\circ})$	
^a Most probable value and 68% of	confidence limits.	

Two Pole 50 Caustic w = 0.160 70 Radio-data 80 Viewing angle (ζ°) Outer Gap 50 w = 0.160 70 ATLAS contours $\Delta = 0.35 - 0.4$ 2-peak profile 50 80 60 70 Magnetic inclination (α°)

arXiv:1012.4658

ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ (CONFIDENCE)

$$x \sim \text{normal}(\pi, 2.0)$$

$$N_{\rm gen} = 10^6$$

$$n = 100$$

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n(n-1)} \sum_{i=1}^{n} (x_{i} - m)^{2}$$

$$p(\pi \in m - 2s \dots m + 2s) = ?$$

1000 доверительных интервалов, построенных на независимых выборках по 100 элементов.

pprox 95% включают π , pprox 5% нет

9

Джон фон Нейман (1903-1957)

УРОВЕНЬ ЗНАЧИМОСТИ α

- НЕ означает, что истинное значение параметра лежит внутри интервала [a; b] с вероятностью α
- НЕ означает долю экспериментов, в которых параметр лежит в интервале [a; b]
- Уровень значимости это доля доверительных интервалов, которые могут быть построены в рамках эксперимента на независимых выборках и содержащих истинное значение параметра.

ВІСЕР2: ВИХРЕВАЯ МОДА ПОЛЯРИЗАЦИИ

at 1.7σ . The observed *B*-mode power spectrum is well fit by a lensed- Λ CDM + tensor theoretical model with tensor-to-scalar ratio $r = 0.20^{+0.07}_{-0.05}$, with r = 0 disfavored at 7.0σ . Accounting for the contribution of foreground dust will shift this value downward by an amount which will be better constrained with upcoming datasets.

ТЕСТИРОВАНИЕ ГИПОТЕЗ

https://www.theanalysisfactor.com/confusing-statistical-terms-1-alpha-and-beta/

 $1 - \alpha$ = вероятность отвергнуть верную нулевую гипотезу (совершить ошибку І рода)

 β = вероятность принять неверную нулевую гипотезу (совешить ошибку II рода)

	Принимаем Н ₀	Отвергаем Н ₀
Н ₀ истинна	«Уровень значимости» $(p$ -значение) $p=1-\alpha$	Ошибка I рода $p=lpha$
Н _о ложна	Ошибка II рода $p=eta$	«Мощность критерия» $p=1^2-eta$

КРИЗИС ВОСПРОИЗВОДИМОСТИ?

Джон Иоаннидис (р. 1965)

- Пусть гипотезы проверяются на уровне значимости 5%, мощность критерия 80%
- 45 из 125 «открытий» -- ложноположительные...

Essay

Why Most Published Research Findings Are False

ohn P. A. Ioannidis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/

P-VALUE И ТОЧНЫЙ ТЕСТ ФИШЕРА

		T	ABLE III							TAB	LE OF χ ²			
n.	P=+99.	·98.	*95+	190.	·8o.	70.	1	*50.	*30	'20.	10.	·05.	*02.	401.
1	*000157	-000628	100393	·0158	-0642	-148	i	-455	1.074	1-642	2.706	384	5 4.2	0635
2	*0201	-0404	-103	-211	+446	*713		1.386	2.408	3.219	4.605	5.991	7-824	9.210
3	-115	.185	.352	+584	1.002	1.424		2-366	3.665	4.642	6.251	7.815	9.837	11:341
4	-297	-429	-711	1.064	1.649	2.195		3:357	4.878	5.989	7.779	9-488	11-668	13-277
5	-554	-752	1.145	1.610	2.343	3.000		4.351	6.064	7.289	9.236	11.070	13.388	15-086
6	*872	1.134	1-635	2-204	3.070	3.828	- 7 -	5.348	7-231	8-558	10.645	12-592	15.033	16-812
7	1.239	1.564	2.167	2-833	3.822	4-671	-	6.346	8-383	9.803	12:017	14-067	16-622	18-475
8	1-646	2.032	2-733	3.490	4.594	5.527	100	7:344	9-524	11.030	13-362	15.507	18-168	20-090
9	2:088	2-532	3:325	4-168	5.380	6-393		8.343	10-656	12:242	14.684	16-919	19.679	21-666
10	2-558	3.059	3-940	4.865	6.179	7-267		9.342	11.781	13-442	15-987	18-307	21-161	23.209
11	3.053	3-609	4*575	5*578	6-989	8-148	9	10-341	12-899	14-631	17-275	19:675	22-618	24.725
12	3.571	4-178	5.226	6-304	7.807	9.034	1	11:340	14.011	15.812	18-549	21:026	24.054	26-217
13	4-107	4.765	5.892	7.042	8-634	9.926		12:340	15.119	16-985	19-812	22:362	25:472	27-688
14	4-660	5.368	6-571	7.790	9.467	10.821		13-339	16-222	18-151	21-064	23.685	26-873	29-141
15	5-229	5-985	7-261	8-547	10.307	11.721	17	14.339	17:322	19:311	22:307	24-996	28-259	30-578
16	5-812	6-614	7-962	9.312	11.152	12-624		15-338	18-418	20-465	23.542	26-296	29-633	32.000
17	6-408	7-255	8-672	10-085	12.002	13.531		16-338	19.511	21-615	24.769	27.587	30-995	33-409
18	7-015	7-906	9-390	10-865	12.857	14.440	1	17.338	20.601	22.760	25.989	28-869	32-346	34-805
19	7-633	8-567	10-117	11-651	13:716	15.352	1	18-338	21.689	23.900	27:204	30-144	33-687	36-191
20	8-250	9*237	10-851	12:443	14.578	16-266		19:337	22.775	25-038	28.412	31.410	35-020	37-566
21	8-897	9-915	11-591	13-240	15:445	17-182		20.337	23-858	26-171	29.615	32-671	36-343	38-932
22	9.542	10-600	12-338	14-041	16-314	18-101	1	21.337	24.939	27.301	30.813	33-924	37-659	40-289
23	10.196	11-293	13-091	14-848	17-187	19-021	9	22-337	26-018	28-429	32.007	35-172	38-968	41.638
24	10.856	11-992	13.848	15-659	18-062	19-943	3	23'337	27-096	29:553	33-196	36-415	40.270	42.980
25	11:524	12-697	14.611	16-473	18-940	20-867		24.337	28-172	30.675	34.382	37-652	41.566	44.314
26	12-198	13:409	15:379	17:292	19-820	21-792	1	25-336	29-246	31.795	35-563	38-885	42.856	45.642
27	12-879	14.122	16-151	18-114	20-703	22:719		26-336	30:319	32:912	36-741	40.113	44.140	46-963
28	13.565	14.847	16-928	18-939	21-588	23.647	N	27:336	31.391	34.027	37-916	41.337	45.419	48-278
29	14.256	15.574	17:708	19:768	22.475	24.577		28-336	32:461	35-139	39-087	42.557	46-693	49-588
30	14-953	16-306	18-493	20-599	23.364	25.508	100	29-336	33.530	36-250	40-256	43.773	47.962	50-892

For larger values of n, the expression $\sqrt{2\chi^2} - \sqrt{2n-1}$ may be used as a n

may be used as a normal deviate with unit standard error.

Бин	P1	P2	Всего
1	x1	у1	x1 + y1
2	x2	у2	x2 + y2
Всего:	x1+x2	y1+y2	N

Рональд Фишер (1890 – 1962)

$$p = \frac{(x_1 + x_2)! (y_1 + y_2)! (x_1 + y_1)! (x_2 + y_2)!}{N! x_1! y_1! x_2! y_2!}$$

Совместная вероятность двух независимых выборок из одной генеральной совокупности описывается гипергеометрическим распределением.

https://www.amstat.org/asa/files/pdfs/p-valuestatement.pdf

CMЫCЛ P-VALUE

- 1. Р-значения указывают на то, насколько несовместимы данные с конкретной статистической моделью.
- 2. Р-значение НЕ измеряет вероятность того, что изучаемая гипотеза верна или что данные получены исключительно по случайности (примерно про то же и п.6.)
- 3. Научный вывод НЕ может быть сделан только на основе р-значения.
- 4. Публикуя р-значение, необходимо публиковать всё, что имело отношение к его расчёту.
- 5. Р-значение НЕ измеряет величину эффекта.
- 6. Само по себе, р-значение не может служить количественной характеристикой качества модели или гипотезы.

ПРИМЕНИМОСТЬ МЕТОДОВ

- Непараметрическая статистика Колмогорова-Смирнова (KS-test) чувствительна к разности средних в распределениях, но слабо чувствительна к разности дисперсий.
- Для корректного использования теста χ^2 при сравнении распределений, в каждом бине должно быть не менее 10 событий.
- Для корректного расчёта значимости малого превышения сигнала над шумом лучше пользоваться не нормальным, а t-распределением, т.к., вообще говоря $t = \frac{\overline{x} \mu_0}{s\sqrt{n}}$
- Решая задачу максимума правдоподобия для малых данных, нужно максимизировать не не квадратичный функционал, основанный на нормальном распределении, а более сложным, основанной на распределении Пуассона $l(\lambda,x) = -n\lambda \sum_i \ln x_i! + \ln \lambda \sum_i x_i$

СЛУЧАЙ KEPLER-452B

 $\frac{\sigma_P}{P} \sim 10^{-6} \text{ !!!}$

Table 3. Planet Parameters for Kepler-452b

Parameter	Value	Notes
Transit and orbital parameters		
*	204.049±0.007	,
Orbital period P (day)	$384.843^{+0.007}_{-0.012}$	a, b
Epoch (BJD - 2454833)	$314.985^{+0.015}_{-0.019}$	a, b
Scaled planet radius $R_{\rm P}/R_{\star}$	$0.0128^{+0.0013}_{-0.0006}$	a, b
Impact parameter $b \equiv a \cos i / R_{\star}$	$0.69^{+0.16}_{-0.45}$	a, b
Orbital inclination i (deg)	$89.806^{+0.134}_{-0.049}$	a
Transit depth $T_{\rm dep}$ (ppm)	199^{+18}_{-21}	\mathbf{a}
Transit duration $T_{\rm dur}$ (hr)	$10.63^{+0.53}_{-0.60}$	\mathbf{a}
Eccentricity $e\cos(\omega)$	$0.03^{+0.75}_{-0.39}$	a, b
Eccentricity $e \sin(\omega)$	$-0.02^{+0.31}_{-0.31}$	a, b
Planetary parameters		
Radius $R_{\rm P} \ (R_{\oplus})$	$1.63^{+0.23}_{-0.20}$	a
Orbital semimajor axis a (AU)	$1.046^{+0.019}_{-0.015}$	a
Equilibrium temperature T_{equ} (K)	265_{-13}^{+15}	$^{\mathrm{c}}$
Insolation relative to Earth	$1.10^{+0.29}_{-0.22}$	d

arXiv:1507.06723

17

СЛУЧАЙ KEPLER-452B

arXiv:1803.11307

ОТНОШЕНИЕ СИГНАЛ-ШУМ

FIGURE 25-8
Minimum detectable SNR. An object is visible in an image only if its contrast is large enough to overcome the random image noise. In this example, the three squares have SNRs of 2.0, 1.0 and 0.5 (where the SNR is defined as the contrast of the object divided by the standard deviation of the noise).

Pearson's correlation coefficient between them. The coefficients for Night 2, Night 3 and Night 4 are 0.35, 0.50 and 0.70, respectively, at the confidence level of more than 99.99%. This indicates that the relation can be taken as bluer-when-bright trend which appears less, moderately and strongly pronounced during Night 2, Night 3 and Night 4, respectively. Similar observations were made by [46] in their study of the source on intranight timescales.

https://www.mdpi.com/2075-4434/6/1/2/htm#fig body/display galaxies-06-00002-f004

КОРРЕЛЯЦИЯ

Figure 4. Intranight optical color magnitude relation the blazar BL Lac. The symbols are color coded to represent time.

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Квази генеральная совокупность:

 $N_{\rm gen} = 10^6$

Выборки элементов по:

n = 20

$$r = 0$$

 $x \sim \text{normal}(0, 1)$

 $y \sim \text{normal}(0, 1)$

Проблема множественности сравнений!

ЧТО ЗДЕСЬ НЕ ТАК?

+100"
-100"
-100"
-100"
-100"
-100"
-100"
-100"

Fig. 1. — Différences entre les longitudes calculées et les longitudes observées d'Uranus (1690-1845). Valeurs rapportées par Le Verrier aux tables de Bouvard, après correction de celles-ci.

$y = -6 \cdot 10^{-4} x^5 + 10^{-2} x^4 - 0.1 x^3 + 0.5 x^2 + 3x + 6 + N(0, 10^{-7})$

МОДЕЛЬ

ЗАКОЛДОВАННАЯ МОНЕТА

Выпадет орёл. Решка и так выпала 99 раз подряд! Если она выпадет и 100-й раз, это будет уж очень-очень маловероятно!

Каждый бросок монеты не зависит от предыдущего, поэтому орёл и решка выпадут с одинаковой вероятностью.

Выпадет решка! С монетой явно что-то не так! На лицо явная тенденция. Может там орла вообще нет?

АКСИОМЫ СТАТИСТИКИ

Андрей Колмогоров (1903-1987)

- Каждому событию ${\mathcal X}$ из множества всех возможных событий в рамках эксперимента поставлено в соответствие вещественное число ${\mathbf P}({\mathcal X})$, которое называется вероятностью события ${\mathcal X}$
- ullet Вероятность того, что произойдёт любое из всех возможных событий $\mathbf{P}(\Omega)=1$
- ${f P}$ Если события x и y не пересекаются, то ${f P}(x+y)={f P}(x)+{f P}(y)$

Мануэль Блюм (р. 1938)

Аксиомы Блюма позволяют ввести понятие статистической сложности («колмогоровская сложность»). С ним задача о заколдованной монете решается иначе — выпадение орла в 100-м испытании более вероятно, т.к. делает последовательность более «сложной».

ДВЕ ИНТЕРПРЕТАЦИИ ВЕРОЯТНОСТИ

1. Частотная:

• Вероятность -- это процентная доля успешных (подходящих) событий среди всех возможных событий.

2. Байесовская:

• Вероятность — это количественная характеристика доверия значению величины/исходу эксперимента/любому событию.

Пусть событие A это «я забыл телефон, выходя из дома», P(A) = 1/100 Пусть событие B это «я опоздал на работу», P(B) = 1/100

$$P(A \bowtie B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B) \neq 10^{-4}$$

$$P(x|\text{data}) = \frac{P(x) \cdot P(\text{data}|x)}{P(\text{data})}$$

АПРИОРНАЯ ИНФОРМАЦИЯ

Эффект Малмквиста (Malmquist bias)

https://www.astroml.org/book figures 1ed/chapter5/fig malmquist bias.html

Эффект Лутца-Келкера

Lutz & Kelker 1973, PASP, 85, 573

https://iopscience.iop.org/article/10.1086/129506

ПАРАДОКС МОНТИ ХОЛЛА

Монти Холл (1921 – 2017)

ЧТО ПОЧИТАТЬ

- Д. Худсон, «Статистика для физиков» http://ikfia.ysn.ru/wp-content/uploads/2018/01/Hudson1970ru.pdf
- Wall & Jenkins, "Practical statistics for astronomers" (Cambridge series)
- Steven W. Smith, «The Scientist and Engineer's Guide to Digital Signal Processing» http://www.dspguide.com/
- 3 short lectures in AstroStatistics on American Astronomical Soc. 227th Meeting https://hea-www.harvard.edu/astrostat/aas227 2016/lectures.html
- Andreon & Weaver, "Bayesian methods for the physical sciences" https://www.springer.com/gp/book/9783319152868
- Д. Шпигельхалтер, «Искусство статистики», М: Манн, Иванов и Фербер, 2021 https://www.mann-ivanov-ferber.ru/books/iskusstvo-statistiki/

