Computabilità e Algoritmi - 15 Settembre 2015

Soluzioni Formali

Esercizio 1

Definire l'operazione di ricorsione primitiva e dimostrare che l'insieme C delle funzioni URM-calcolabili è chiuso rispetto a tale operazione.

Definizione di Ricorsione Primitiva: Date funzioni f: $\mathbb{N}^k \to \mathbb{N}$ e g: $\mathbb{N}^k \to \mathbb{N}$, la funzione h: $\mathbb{N}^k \to \mathbb{N}$ definita per ricorsione primitiva è:

```
h(\bar{x}, 0) = f(\bar{x})

h(\bar{x}, y+1) = g(\bar{x}, y, h(\bar{x}, y))
```

Teorema di Chiusura: Se f e g sono URM-calcolabili, allora h è URM-calcolabile.

Dimostrazione: Costruiamo un programma URM che calcola $h(\bar{x}, y)$ per ricorsione.

Schema del programma:

```
Input: x_1, ..., x_k, y nei registri R_1, ..., R_{k+1}
Algoritmo:

1. Se y = 0, calcola f(\bar{x}) e termina

2. Altrimenti, inizializza un ciclo che calcola iterativamente:
-h(\bar{x}, 0) = f(\bar{x})
-h(\bar{x}, 1) = g(\bar{x}, 0, h(\bar{x}, 0))
-h(\bar{x}, 2) = g(\bar{x}, 1, h(\bar{x}, 1))
- \dots
-h(\bar{x}, y) = g(\bar{x}, y-1, h(\bar{x}, y-1))
```

Implementazione URM dettagliata: Assumiamo che f utilizzi registri R₁...R_m e g utilizzi registri R₁...R_n.

```
I_1: J(k+1, k+2, BASE) // if y = 0 goto BASE
I_2: T(k+1, k+3) // counter \leftarrow y
I<sub>3</sub>: C(k+2)
                        // i ← 0
// Fase 2: Calcolo h(\bar{x}, 0) = f(\bar{x})
INIT: [Programma per f]
I_4: T(1, k+4) // salva risultato h(\bar{x}, i)
// Fase 3: Loop principale
LOOP: J(k+2, k+3, END) // if i = y goto END
I_5: S(k+2) // i \leftarrow i+1
I<sub>6</sub>: [Setup parametri per g(\bar{x}, i-1, h(\bar{x}, i-1))]
I7: [Programma per g]
I_8: T(1, k+4) // aggiorna h(\bar{x}, i)
I<sub>9</sub>: J(1, 1, LOOP) // goto LOOP
BASE: [Programma per f]
END: T(k+4, 1) // output \leftarrow h(\bar{x}, y)
```

// Fase 1: Gestione caso base

Correttezza:

- Il programma implementa esattamente la definizione ricorsiva
- Se f e g terminano sui loro input, h termina
- La ricorsione è "appiattita" in iterazione

Esercizio 2

Si dica che una funzione f: $\mathbb{N} \to \mathbb{N}$ è quasi costante se esiste un valore $k \in \mathbb{N}$ tale che l'insieme $\{x \mid f(x) \neq k\}$ è finito. Esiste una funzione quasi costante non calcolabile?

Risposta: Sì, esistono funzioni quasi costanti non calcolabili.

Costruzione tramite diagonalizzazione:

Definiamo f: $\mathbb{N} \to \mathbb{N}$ nel modo seguente:

```
f(x) = \{0 \text{ se } x \neq e_0 \}
\{1 \text{ se } x = e_0 \}
```

dove e₀ è un indice particolare che sceglieremo strategicamente.

Scelta di e₀: Utilizziamo il teorema di ricorsione per costruire e₀. Consideriamo la funzione h: $\mathbb{N} \to \mathbb{N}$ definita da:

```
h(e) = indice di un programma che calcola \{0 \text{ se } x \neq e \}
```

Per il secondo teorema di ricorsione, esiste e_0 tale che $\phi_{e0} = \phi_{h(e0)}$.

Verifica che f è quasi costante: L'insieme $\{x \mid f(x) \neq 0\} = \{e_0\}$ è finito (contiene un solo elemento), quindi f è quasi costante con valore k = 0.

Verifica che f non è calcolabile: Supponiamo f calcolabile con indice e₁. Allora:

- $f(e_1) = 0 \text{ se } e_1 \neq e_0$
- $f(e_1) = 1 \text{ se } e_1 = e_0$

Ma per la costruzione di e_0 , abbiamo $\phi_{e0}(e_1) = f(e_1)$. Se f fosse calcolabile, questo porterebbe a una contraddizione con l'autoreferenzialità della costruzione.

Costruzione alternativa più diretta: Definiamo f usando la caratteristica funzione di un insieme non ricorsivo ma "quasi vuoto":

$$f(x) = \{1 \text{ se } x \in A \}$$

dove A è un insieme non ricorsivo ma finito. Anche se A è finito, la decisione di appartenenza può essere non calcolabile se A è definito tramite proprietà non decidibili.

Esempio concreto: Sia A = $\{x \in \mathbb{N} \mid x \text{ è il più piccolo indice tale che } \phi_x = \phi_0 \land x \neq 0\}.$

Se tale x esiste, $A = \{x\}$, altrimenti $A = \emptyset$. In entrambi i casi A è finito, ma determinare se $A = \emptyset$ o $A = \{x\}$ richiede di risolvere un problema di equivalenza di funzioni, che è indecidibile.

Quindi $f(x) = \chi_a(x)$ è quasi costante ma non calcolabile. \Box

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid E_x = W_x + 1\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Analisi: A = $\{x \in \mathbb{N} \mid E_x = W_x + 1\}$ contiene gli indici per cui l'immagine è uguale al dominio traslato di 1.

Formalmente: $x \in A \iff \forall y: y \in E_x \iff y-1 \in W_x \text{ (per } y \ge 1\text{) e } 0 \notin E_x$.

Saturazione: A è saturato: A = $\{x \mid \phi_x \in \mathcal{A}\}\ dove\ \mathcal{A} = \{f \in C : cod(f) = dom(f) + 1\}.$

Non ricorsività per Rice:

- A $\neq \emptyset$: la funzione f(x) = x+1 soddisfa cod(f) = $\mathbb{N}\{0\}$ = \mathbb{N} + 1 = dom(f) + 1
- A ≠ N: la funzione identità non soddisfa la condizione

Per il teorema di Rice, A non è ricorsivo.

Analisi della semidecidibilità: Per A essere semidecidibile, dovremmo poter verificare che $E_x = W_x + 1$. Questo richiede:

- 1. Verificare che per ogni $y \in E_x$, esiste $z \in W_x$ tale che y = z+1
- 2. Verificare che per ogni $z \in W_x$, $z+1 \in E_x$
- 3. Verificare che 0 ∉ E_x

La condizione (2) è problematica: richiede di verificare che per ogni input nel dominio, l'output corrispondente meno 1 sia nel dominio. Questo può richiedere verifiche infinite.

Costruzione di riduzione da \bar{K}: Per dimostrare che A non è semidecidibile, costruiamo $\bar{K} \leq_m A$.

Definiamo g(u,v): g(u,v) = $\{v+1 \text{ se } u \notin K \land v \in \mathbb{N} \}$

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

- Se $u \notin K$: $W_{s(u)} = \mathbb{N}$, $E_{s(u)} = \mathbb{N}\{0\}$, quindi $E_{s(u)} = W_{s(u)} + 1$, così $s(u) \in A$
- Se $u \in K$: $W_{s(u)} = E_{s(u)} = \emptyset$, quindi $s(u) \notin A$

Quindi $\bar{K} \leq_m A$, e poiché \bar{K} non è semidecidibile. A non è semidecidibile.

Complemento Ā: Analogamente, Ā non è semidecidibile.

Conclusione:

 $\{\uparrow seu \in K$

- A non è ricorsivo
- A non è semidecidibile
- Ā non è semidecidibile

Esercizio 4

Studiare la ricorsività dell'insieme B = $\{x \in \mathbb{N} : \forall y > x. 2y \in W_x\}$.

Analisi: $B = \{x \in \mathbb{N} : \forall y > x. \ 2y \in W_x\}$ contiene gli indici per cui tutti i numeri pari maggiori di 2x sono nel dominio.

Saturazione: B è saturato: B = $\{x \mid \phi_x \in \mathcal{B}\}\ dove\ \mathcal{B} = \{f \in C : \{2y \mid y > index\} \subseteq dom(f)\}.$

Tuttavia, la saturazione dipende dall'indice x, rendendo la caratterizzazione più complessa.

Analisi più dettagliata: B = $\{x \in \mathbb{N} : \{2(x+1), 2(x+2), 2(x+3), ...\} \subseteq W_x\}$

Non ricorsività: Dimostriamo $K \leq_m B$. Definiamo g(u,v):

 $g(u,v) = \{v \text{ se } u \in K \lor v \le 2u \lor v \text{ è dispari} \}$ $\{\uparrow \text{ se } u \notin K \land v > 2u \land v \text{ è pari} \}$

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

- Se $u \in K$: $W_{s(u)} = \mathbb{N} \supseteq \{2y \mid y > s(u)\}$, quindi $s(u) \in B$
- Se u ∉ K: esistono numeri pari > 2s(u) non in W_{s(u)}, quindi s(u) ∉ B

Semidecidibilità di B: B non è semidecidibile. La verifica di $\forall y > x$. $2y \in W_x$ richiede controlli infiniti, e non possiamo semidecidere universalmente quantificate proprietà infinite sui domini.

Complemento B: $\bar{B} = \{x \in \mathbb{N} : \exists y > x. \ 2y \notin W_x\}$

B è semidecidibile:

$$SC_{\beta}(x) = 1(\mu w. \exists y > x. \neg H(x, 2y, (w)_1))$$

Conclusione:

- B non è ricorsivo
- B non è semidecidibile
- B è semidecidibile ma non ricorsivo 🗆

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che la funzione $\Delta: \mathbb{N} \to \mathbb{N}$, definita da $\Delta(x) = \min\{y : \phi_y \neq \phi_x\}$, non è calcolabile.

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione che Δ non è calcolabile:

Supponiamo per assurdo che Δ sia calcolabile.

Costruzione della contraddizione: Definiamo la funzione h: $\mathbb{N} \to \mathbb{N}$ come h(x) = Δ (x).

Poiché Δ è calcolabile per ipotesi, h è calcolabile.

Applichiamo il secondo teorema di ricorsione a h: esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi_{h(e0)} = \phi_{\Delta}(e_0)$.

Analisi del contraddizione: Per definizione di Δ : $\Delta(e_0) = \min\{y : \phi_v \neq \phi_{e0}\}$

Ma per il teorema di ricorsione: $\phi_{e0} = \phi_{-}\Delta(e_0)$.

Quindi $\Delta(e_0)$ è il minimo indice y tale che $\phi_v \neq \phi_{e0}$, ma allo stesso tempo $\phi_-\Delta(e_0) = \phi_{e0}$.

Questo significa che $\Delta(e_0)$ non può essere il minimo indice con questa proprietà, poiché $\varphi_-\Delta(e_0) = \varphi_{e0}$.

Formalizzazione della contraddizione:

- 1. $\phi_{e0} = \phi_{\Delta}(e_0)$ (dal teorema di ricorsione)
- 2. $\Delta(e_0) = \min\{y : \phi_y \neq \phi_{e0}\}\ (definizione di \Delta)$
- 3. Dalla (2): $φ_Δ(e_0) ≠ φ_{e_0}$
- 4. Ma (1) e (3) sono contraddittorie

Quindi l'ipotesi che Δ sia calcolabile è falsa.

Conclusione: La funzione Δ non è calcolabile. Questo risultato illustra come l'autoreferenzialità garantita dal secondo teorema di ricorsione possa essere utilizzata per dimostrare risultati di non calcolabilità. \Box