Arbitrarily Close

- Everything that we can do in algebra is ultimately based on three things:
 - 1. The substitution principle.
 - 2. The closed and well-defined nature of addition and multiplication.
 - 3. The nine real number (field) axioms.
- But there are some problems that algebra cannot solve:
 - 1. The slope of a tangent line to a non-linear curve.
 - 2. The area under a non-linear curve.
- A new concept is needed to solve problems that algebra alone cannot solve: arbitrarily close.

Q: What is meant by saying that one thing is *close* to another?

A: The *distance* between them is *small*.

But this is a subjective statement. In math, we want objective facts.

Definition: Distance

Let $a, b \in \mathbb{R}$ such that $a \leq b$. The *distance* from a to b is given by:

$$d(a,b) = |b - a|$$

Properties: Distance

1.
$$d(a,b) = |b-a| = |a-b| = d(b,a)$$

2.
$$d(a,0) = |a-0| = |a|$$

Let $a \in \mathbb{R}^+$. By the density of \mathbb{R} , there always exists some number $x \in \mathbb{R}$ such that 0 < x < a.

 $\begin{array}{cccc}
\bullet & \bullet & \bullet \\
0 & x & a
\end{array}$

Definition: Arbitrarily Small

To say that a value $x \in \mathbb{R}^+$ is arbitrarily small means that for every $a \in \mathbb{R}^+$, 0 < x < a.

Saying that x is arbitrarily small does not imply that x is assigned a particular value nor does it say that x=0; instead, it is indicative of an infinite process:

- 1. Select a positive number a.
- 2. Now select a number x such that 0 < x < a.
- 3. Let a = x.
- 4. Go to 2.

Example

1

 $\frac{1}{2}$

1

1

0.1

0.0001

0.00005

0.00000000001

:

The lowercase Greek letters epsilon (ϵ) and delta (δ) are typically used to represent arbitrarily small values.

Definition: Arbitrarily Close

To say that a value $x \in \mathbb{R}$ is *arbitrarily close* to another value $a \in \mathbb{R}$, denoted by $x \to a$, means that the distance between x and a becomes arbitrarily small (but not 0):

$$\forall \epsilon > 0, 0 < |x - a| < \epsilon$$

This means that for every $\epsilon > 0$, $a - \epsilon < x < a + \epsilon$:

Thus, as ϵ gets arbitrarily small, the distance between x and a gets arbitrarily small, but never 0.

Definition: Neighborhood

Let $x, \epsilon \in \mathbb{R}$ such that $\epsilon > 0$. The open interval $(x - \epsilon, x + \epsilon)$ is called an ϵ -neighbohood of x.

Also important is the negation: To say that $x\not\to a$ means that there exists an $\epsilon>0$ such that $|x-a|\ge \epsilon.$

Thus, there is always some finite gap between x and a.

Theorem

If $x \to a$ then x = a.

Proof. Assume that $x \neq a$. Then there exist some $\epsilon > 0$ such that $|x - a| \geq \epsilon$. Therefore $x \not\to a$.

Note that the converse is not true because if x=a then |x-a|=0, which violates the definition of arbitrarily close.

Example

Recall that one of the ways of representing a rational number is a terminating infinite repeating sequence of decimal digits. For example:

$$\frac{1}{9} = 0.11111\dots = 0.\overline{1}$$

It is easy to mark $\frac{1}{9}$ on the number line. But how does $0.\overline{1}$ correspond to this point? As each repeated digit is added, the value $0.\overline{1}$ gets arbitrarily close to $\frac{1}{9}$. For every $\epsilon>0$, enough digits can be added so that the result is eventually within ϵ of $\frac{1}{9}$.

$$\begin{array}{cccc}
\bullet & & & \bullet \\
0 & & \frac{1}{9} - \epsilon & \frac{1}{9}
\end{array}$$

How many digits are required for $\epsilon = 0.001$?

$$0.\overline{9} - 0.9 = 0.0\overline{9} > 0.001$$

$$0.\overline{9} - 0.99 = 0.00\overline{9} > 0.001$$

$$0.\bar{9} - 0.999 = 0.000\bar{9} = 0.001$$

$$0.\bar{9} - 0.9999 = 0.0000\bar{9} = 0.0001 < 0.001$$

Example

This works for irrational numbers as well, which are represented by terminating infinite sequences of non-repeating digits. Consider $\pi=3.1415926\ldots$ For every $\epsilon>0$, enough digits can be added so that the result is eventually within ϵ or π .

$$\leftarrow 0 \qquad \pi - \epsilon \qquad \pi$$

How many digits are required for $\epsilon = 0.001$?

$$3.1415926... - 3 = 0.1415926... > 0.001$$

$$3.1415926... - 3.1 = 0.0415926... > 0.001$$

$$3.1415926... - 3.14 = 0.0015926... > 0.001$$

$$3.1415926... - 3.141 = 0.0005926... < 0.001$$

Example

Why isn't $24.57\overline{9}$ arbitrarily close to 24.6?

Since $24.57\overline{9} < 24.58$:

$$24.6 - 24.57\overline{9} > 24.6 - 24.58 = 0.02$$

So there exists $\epsilon = 0.02$ such that $24.6 - 24.57\overline{9} \ge \epsilon$.

Example

Consider the real numbers $\frac{1}{7}$, π , and ϵ . How many digits in the decimal forms are required such that each value is within 0.005 and then 0.000001 of its corresponding exact value?

$$\frac{1}{7} = 0.14285714...$$

 $\pi = 3.14159265...$
 $e = 2.71828182...$

ϵ	$\frac{1}{7}$	π	e
0.0005	0.1428	3.1415	2.718
0.000001	0.142857	3.141592	2.718281