Decision Trees

Decision Trees

• It approximates discrete-valued target function.

 Learning function is a set of if-then rules to improve human readability.

Highly interpretable

I want to ski

I want to ski

Decision tree for PlayTennis

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\bullet \land, \lor, XOR$
- $\bullet \ (A \land B) \lor (C \land \neg D \land E)$
- $\bullet M \text{ of } N$

 $\langle Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong \rangle$

Decision Tree

A disjunction of conjunctions of constraints on attribute values of instances.

```
(Outlook = Sunny \land Humidity = Normal)
\lor \qquad (Outlook = Overcast)
\lor \qquad (Outlook = Rain \land Wind = Weak)
```

When to use Decision Tress

- 1. Instances are represented by attribute-value pairs.
- 2. The target function has discrete output values.
- 3. Disjunctive descriptions may be required.
- 4. The training data may contain error.
- 5. The training data may contain missing attribute values.

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Types of Decision Trees

- ID3: Categorical feature that will yield the largest information gain for categorical targets
- C4.5: Successor to ID3 and removes the restriction that features must be categorical by dynamically defining a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of intervals.
- CART (Classification and Regression Trees): Similar to C4.5, but it differs in that it supports numerical target variables (regression) and does not compute rule sets.
 - https://www.quora.com/What-are-the-differences-between-ID3-C4-5-and-CART (ID: Iterative Dichotomiser)
 - https://medium.com/datadriveninvestor/tree-algorithms-id3-c4-5-c5-0-and-cart-413387342164

Inductive Learning of Decision Tree

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

- Greedy
- Top-down
- Recursive partitioning

Which attribute is best?

Loss Function

• We calculate the loss of the parent $L(R_p)$ as well as the cardinality-weighted loss of the children

Select an attribute greedily that maximizes the decrease in loss

$$L(R_p) - \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|}$$

• Misclassification loss: $L_{misclass}(R) = 1 - \max_{c}(\hat{p}_{c})$

Loss Function: Misclassification loss

$$L(R_p) = \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|} = \frac{|R_1'|L(R_1') + |R_2'|L(R_2')}{|R_1' + |R_2'|} = 100$$

(Shannon's) Entropy

- \bullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy measures homogeneity of examples.

(Shannon's) Entropy

Entropy(S) =expected number of bits needed to encode class $(\oplus \text{ or } \ominus)$ of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

Gain(S, A) =expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S,A): Number of bits saved when encoding the target value of an arbitrary member of S, by knowing the value of attribute A.

Training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute is the best classifier?

Gain (S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151

Which attribute should be tested here?

$S_{sunny} = \{D1,D2,D8,D9,D11\}$
$Gain (S_{Sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
Gain (S_{sunny} , Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570
Gain $(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Day	Outlook	Temperature	Humidity	Wind	PlayTenni
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Hypothesis space search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can't play 20 questions...
- No back tracking
 - Local minima...
- Statistically-based search choices
 - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"

Hypothesis space search in ID3

• ID3: Iterative Dichotomiser 3!!

Inductive Bias

Set of assumptions that, together with the training data, justify the classifications assigned by the learner to future instances.

Inductive Bias in Decision Trees

- Selects in favor of short trees over longer ones
- Select trees that place the attributes with highest information gain closest to the root

Approximate inductive bias of ID3: Shorter trees are preferred over longer trees

- Think about a BFS-ID3 algorithm
- ID3 is just a greedy version of BFS-ID3

Shorter trees are preferred over longer trees. that place the attributes with highest information gain closest to the root are preferred over those that do not.

Inductive bias: ID3 vs CANDIDATE-ELIMINATION

ID3 (preference bias)

- Complete hypothesis space
- Searches *incompletely* from simple to complex hypotheses
- Bias is a consequence of the ordering of hypotheses by its search strategy, not due to hypothesis space

CE (restriction bias)

- *Incomplete* hypothesis space
- Searches completely
- Bias is a consequence of the ordering of the expressive power of its hypothesis representation, not due to search strategy

Which one is more desirable?

Overfitting in Decision Trees

Definition: Given a hypothesis space H, a hypothesis $h \in H$ is said to **overfit** the training data if there exists some alternative hypothesis $h' \in H$, such that h has smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances.

- Noise in the training set
- No. of training samples is too small

Overfitting in Decision Trees

The following positive example, incorrectly marked as negative

 $\langle Outlook = Sunny, Temperature = Hot, Humidity = Normal,$

Wind = Strong, PlayTennis = No

Avoiding Overfitting

- Stop growing the tree earlier
- Allow the tree to overfit the data and then post-prune the tree

- Criterion to determine the correct final tree size
 - Separate set of examples (validation set) to determine the utility of postpruning
 - Apply statistical test to estimate whether the improvement after incorporating a new training instance is statistically significant (chi-square test)
 - Use minimum description length principle

Reduced Error Pruning

- Use validation set
- Each decision node is candidate for pruning
 - Pruning => removing the subtree rooted at the node, making it a leaf node, assigning it the most common class
 - Pruned if the resultant tree performs no worse than the original
 - Nodes are pruned iteratively
 - Nodes whose removal most increases the accuracy

Drawback: when data is limited, withholding part of it for validation further reduces the training size

Rule Post-pruning

- Allow the tree to grow based on the training set and allow to overfit
- Convert one branch (root-> leaf) to an equivalent rule
- Prune (generalize) each rule by removing any preconditions that result in improving the accuracy.
- Sort the pruned rules by their estimated accuracy

Rule Post-pruning

Why convert decision tree to rules?

- Allow distinguishing among the different contexts in which the decision node is used
- Remove the distinction between attribute tests that occur near the root vs. near the leaves
- Improve readability

Incorporating continuous-valued attributes

```
Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No
```

- Sort examples based on continuous attribute
- Decide the candidate thresholds based on the change in attribute values

$$(48+60)/2=54$$
; $(80+90)/2=85$

Calculate information gain for each of the thresholds separately.

Alternative measure of selecting attributes

• Information gain favors attributes with many values (e.g., date)

• Gain ratio:
$$\frac{Gain(S, A)}{SplitInformation(S, A)}$$

SplitInformation(S, A)
$$\equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

Issues with Gain Ratio

 It tends to select those attributes whose dominator can be zero or very small (S_i ~ S) for one of the S_i

• Heuristics: first calculate the Information Gain of each attribute, then apply Gain Ratio only to consider those attributes with above average Gain

Alternative: Choose an attribute that minimizes the distance between the current data partition and the gold data partition.

Dealing with missing attribute values

- Blood-test-result missing
- Assign the value that is most common among the training examples at a particular node
- Or Assign the value that is most common among the training examples at a particular node that have the class label same as that of the given instance
- Alternative: Assign a probability to each of the possible values of A (the missing attribute) and calculate the gain

Handling attributes with different costs

$$\frac{Gain^2(S,A)}{Cost(A)}$$

$$\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w}$$

Disadvantages of decision trees

- Decision trees can overfit, and to tackle this, we need regularization
- However, regularizing decision trees will often make them underfit instead...
- Because of this decision trees by themselves don't actually work very well
 - But they can work very well when ensembled!
 - However, this takes away some of the advantages such as being simple to understand and interpret, so it's all a trade off