ROS1-单臂R5Pro-SDK

一、硬件配置

1、硬件清单

类目	型号	数量
机械臂	R5Pro	1
机械臂底座	/	1
USB2CAN	CAN	1

电源	DC24V	1
G型夹	G型	2
螺丝扳手	m3	若干

本体

USB2CAN

电源

G型夹

螺丝扳手

夹持端参数

夹持范围	0-80mm
反馈及控制方式	位置 速度 扭矩
末端接口	集成机械臂(xt30 2+2)
最大夹持力	10NM
重量	约585g

2、整体组装

连接底座

G型夹固定

将底座与机械臂本体,通过螺丝连接,并通过G型夹将机械臂固定在桌子边缘。

右侧接口

连接

如右图所示连接电源、can模块和机械臂。

将电源插入插排,将usb线插入电脑。

确保机械臂为折叠的状态,确保接口在机械臂右侧

开始配置软件。

二、软件配置

1、环境配置

注意一定按照安装顺序

ROS1-noetic安装: ubuntu系统20.04 推荐鱼香ROS安装

1 wget http://fishros.com/install -0 fishros && . fishros

配置can环境

- 1 配置can
- 2 sudo apt install can-utils
- 3 sudo apt install net-tools

在ARX_R5Pro/ROS/R5_Pro_ws/目录下打开终端,执行。

1 #编译

此时一个完整的ros项目就搭建完成了。

2、启动机械臂

第一步: 开启CAN

参考文档:配置CAN手册。

第二步、启动机械臂

运行

```
1 #在工作空间,即R5_Pro_ws文件夹中
2 #每次打开新终端都要运行
3 source devel/setup.bash
4 #不要忘记运行ros核心
5 roscore
6
7 #运行相应的节点
8 rosrun arx_r5pro_controller R5ProController
9
10 #按下 Ctril+C 退出终端
```

```
| INFO| [1732329124.796636050]: Publishing RobotStatus message | INFO| [1732329124.806627791]: Publishing RobotStatus message | INFO| [1732329124.816657259]: Publishing RobotStatus message | INFO| [1732329124.826666749]: Publishing RobotStatus message | INFO| [1732329124.836669778]: Publishing RobotStatus message | INFO| [1732329124.836669778]: Publishing RobotStatus message | INFO| [1732329124.846681198]: Publishing RobotStatus message | INFO| [1732329124.856721309]: Publishing RobotStatus message | INFO| [1732329124.866663801]: Publishing RobotStatus message | INFO| [1732329124.876688845]: Publishing RobotStatus message | INFO| [1732329124.886676889]: Publishing RobotStatus message | INFO| [1732329124.896666980]: Publishing RobotStatus message | INFO| [1732329124.896666980]: Publishing RobotStatus message | INFO| [1732329124.906688854]: Publishing RobotStatus message | INFO| [1732329124.906688854]
```

新开终端(不要关闭之前的终端)启动按键控制:

```
1 #每次打开新终端都要运行
```

2 source devel/setup.bash

3 rosrun arx_r5pro_controller KeyBoard

终端需要"Ctrl+c"关闭,不可以直接关闭。

键位映射:

		W	前			R	复位					I	重力补偿	0	张开			
Α	左	S	后	D	右									L	pit+			
				С	闭合			N	roll-	М	roll+	,	yaw-		pit-	/	yaw+	UP
																	LEFT	DOW

三、操作方式及注意事项

1、控制说明

	ros话题说明							
	节点 topic 名称 作用							
通过话题控制机械臂	R5ProController	/r5pro_status	发布机械臂信息					
	R5ProController	/r5pro_cmd	订阅控制信息					
通过VR控制机械臂	R5ProControllerVr	/r5pro_status	发布机械臂信息					
地位 V K 经市场 M M 有	R5ProControllerVr	/ARX_VR_L	订阅控制信息(VR左手柄)					

通过话题控制机械臂:

在运行 "rosrun arx_r5pro_controller R5ProController"后,在相同目录下再开一个终端,运行:

- 1 source devel/setup.bash
- 2
- 3 #按tab可自动补全
- 4 rostopic pub /r5pro_cmd arx_r5pro_msg/RobotCmd
- 5 #或者使用
- 6 rqt
- **7** #Plugins->Topics->message publisher->选择/r5pro_cmd->点击右侧加号->勾选话题前的"方块"
- 8
- 9 #按下 Ctril+C 退出终端

```
nuc@nuc-04:~/@_work/ts_new_sdk/ros1_ws$ rostopic pub /r5_cmd arx_r5_msg/RobotCmd
   "header:
    seq: 0
    stamp: {secs: 0, nsecs: 0}
    frame_id: ''
end_pos: [0.0, 0.0, 0.0, 0.0, 0.0]
joint_pos: [0.0, 0.0, 0.0, 0.0, 0.0]
gripper: 0.0
mode: 0" []
```

R5与R5Pro显示内容都相同

rgt(R5与R5Pro显示内容都相同)

topic中各个变量的作用:

变量名称	作用	备注
end_pos	末端位姿	xyz + rpy
joint_pos	关节位置	六个关节
gripper	夹爪	
mode	控制模式	六种模式

mode	模式功能	备注
0	力矩清零	所有关节力矩为0
1	机械臂复位	回到初始位形
2	阻尼模式	在"0"的基础上增加阻尼
3	重力补偿	可任意拖动

4	末端位姿控制	通过 "end_pos" 控制
5	关节控制	通过"joint_pos"控制

```
1 //单位: 米、弧度
```

- 2 //[x y z]:末端位置
- 3 //[roll pitch yaw]:末端姿态
- 4 float64 x //末端位置 前后 范围:[0, 0.5]
- 5 float64 y //末端位置 左右 范围:[-0.5, 0.5]
- 6 float64 z //末端位置 上下 范围:[0.5, 0.5]
- 7 float64 roll //末端roll 正负1.3弧度
- 8 float64 pitch //末端pitch 正负1.3弧度
- 9 float64 yaw //末端yaw 正负1.3弧度
- 10 float64 gripper //夹爪开合 0-5 对应 0-80mm

11

关节限位:

关节	1	2	3	4	5	6
范围(弧度)	[-3.14, 2.6]	[-3.6, 0.1]	[-1.57, 1.57]	[-1.3, 1.3]	[-1.57, 1.57]	[-1.57, 1.57]

注意,只有在对应的mode下,对应的变量才会起作用。其中gripper在任何模式下都可以控制夹爪

通过VR控制机械臂:

使用VR时需要在原本的控制机械臂的基础上,增加连接VR的硬件。

在启动机械臂的SDK之前<mark>需要先启动VR的SDK</mark>,具体可参考VR SDK中的readme文件。

通过VR控制机械臂启动的节点和上述不同,需要运行:

1 rosrun arx_r5pro_controller R5ProControllerVR

查看机械臂的状态:

在运行 "rosrun arx_r5pro_controller R5ProController"后,在相同目录下再开一个终端,运行:

```
1 source devel/setup.bash
2
3 rostopic echo /r5pro_status
4
5 #按下 Ctril+C 退出终端
```

```
header:
seq: 1363
stamp:
secs: 1732332053
nsecs: 601799391
frame_id: ''
end_pos: [-0.00209808349609375, 0.000572204589951e-05, 0.005298795104026794, -0.0014597536064684395, -0.025371035560965538, 0.002671871101483703]
joint_pos: [-0.00209808349609375, 0.00057220458984375, 0.01049041748046875, 0.01544952392578125, -0.00476837158203125, -0.00133514404296875, -0.045586585998535156]
joint_vet: [0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.01099014282265625, -0.010990142822265625, -0.010990142822265625, -0.01099014282265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.01099014282265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.010990142822265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.010990142826265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.01099014282265625, -0.010990142826265625, -0.010990142826265625, -0.010990142826265625, -0.0109901428265625, -0.0109901428265625, -0.0109901428265625, -0.0109901428265625, -0.0109
```

变量名称	作用	备注
end_pos	末端位姿	xyz + rpy
joint_pos	关节位置	六个关节+夹爪
joint_vel	关节速度	六个关节+夹爪
joint_cur	关节力矩	六个关节+夹爪

2、注意事项

关闭终端前务必先输入:

```
1 Ctrl + c
```

不可直接关闭终端,若不正常退出且出现异常,应该重启电脑,关闭后台的线程。

串联机械臂,奇异位置是不可避免的,尽量不要在工作空间边缘进行控制。 当关节超限时,机械臂会停止运动。

机械臂各个关节轴向

不同型号的机械臂,其关节的轴向都是相同的。关节转向符合右手定理,大拇指的指向关节轴向,四指方向就是电机转动的正方向。

异常处理

机械臂垂落,无法控制	终端是否提示safe mode(碰撞检测进入保护模式,断电复位,重启即可)
某个can口打不开	检查can连接,重新插拔对应的usb,重新开启can。
电机无法连接	重新插拔机械臂底座的插头