电子科技大学

UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

专业学位硕士学位论文

MASTER THESIS FOR PROFESSIONAL DEGREE

论文题目 基于图同构的初等数学推理引擎的设计与实现

专业学位类别			别	理学硕士		
学			号	201852081006		
作	者	姓	名	李菲		
指	导	教	师	符红光 教授		

分类号			_密级		
UDC ^{注1}					
	学	位	论	文	

基于图同构的初等数学推理引擎的设计与实现

(题名和副题名)

		李菲		
		(作者姓名)		
指导教师		符红光 教	対 授	
		电子科技大学	成都	
-				_
-		(姓名、职称、单	位名称)	_
申请学位级别	硕士	专业学位类别	理学硕士	
提交论文日期		论文答辩日期		
学位授予单位	和日期	电子科技大学	年 月	
答辩委员会主	席			
评阅人				

注 1: 注明《国际十进分类法 UDC》的类号。

A Research of Multi-function Switched-beam Antenna Array

A Master Thesis Submitted to University of Electronic Science and Technology of China

Discipline:	Master of Pharmacy
Author:	Li Fei
Supervisor:	Prof. Li Si
School:	School of uestc

摘 要

近些年来,随着人工智能技术的飞速发展,许许多多专家学者开始将注意力集中在认知智能与自动推理的研究上。同时,很多的科研机构和公司也致力于将人工智能技术赋能于教育。让机器学会自动推理,

这是目前认知智能领域的一个重要目标,也是深度学习应用于逻辑推理的一个突破口。本论文的研究内容是仅在输入原始初等数学题目的基础上,对题目进行自动类人求解,简称"高考机器人"。更长远的目标是能完成一个具备良好交互能力的"机器老师"。本论文主要研究包含如下几点:

1) 图匹配推理引擎与符号计算推理的研究和构建

主要研究图匹配推理引擎与计算推理的逻辑架构与核心算法设计,针对出现问题给出相应的解决方案。从图匹配推理引擎研究与构建,复杂逻辑与计算推理相融合和类人解答过程的输出三个方面进行。其中以图匹配推理引擎的设计和实现为重点,讲述了三种不同的复杂逻辑推理组织方式,并采用"正逆结合"推理方式构建推理引擎。随后研究了推理引擎与符号计算平台之间的联系,通过符号计算提供的计算服务为具体的问题的计算推理打下了支撑。类人求解中,在推理的基础上,设计基于 DFS 的搜索算法,重构类人求解过程。

2) 初等数学的知识表示

在自然语言处理(Nature Language Process,NLP)的支持下,本文主要研究对初等数学中的知识表示问题。最终以三元组(实体-关系-实体)的形式表征文本的语义知识。

3) 初等数学问题的实例化规则

这些规则主要分成两大类。第一类:初等数学的定理和公理,以及公式。第二类:是常见的解题技巧,公式变形,以及解题策略。这些定理、公理、公式、策略以及解题技巧都演变成一个个规则实例。实例化规则通过统一的接口全部生成实例化子图保存在 neo4j 图数据库中。这些规则库中每个规则子图都有唯一的标签,唯一的标签可以用来获取相应的实例化规则子图。

采用本文设计的图匹配推理引擎逻辑结构和相关理论方法,最终搭建出一个通用的复杂逻辑与计算推理引擎,并实现了一个完善的实例化规则库。使得面向高考的非应用题的综合求解率达到82%,平均求解时间不超过7分钟。

关键词: 认知智能,图匹配推理引擎,符号计算,类人解答过程,知识表示,实例 化规则

ABSTRACT

With the widespread engineering applications ranging from broadband signals and non-linear systems, time-domain integral equations (TDIE) methods for analyzing transient electromagnetic scattering problems are becoming widely used nowadays. TDIE-based marching-on-in-time (MOT) scheme and its fast algorithm are researched in this dissertation, including the numerical techniques of MOT scheme, late-time stability of MOT scheme, and two-level PWTD-enhanced MOT scheme. The contents are divided into four parts shown as follows.

Keywords: time-domain electromagnetic scattering, time-domain integral equation (TDIE), marching-on in-time (MOT) scheme, late-time instability, plane wave time-domain (PWTD) algorithm

目 录

第-	一章	绪 论	1
	1.1	研究工作的背景与意义	1
	1.2	时域积分方程方法的国内外研究历史与现状	1
	1.3	本文的主要贡献与创新	1
	1.4	本论文的组织结构	1
第-	二章	相关技术和理论	3
	2.1	知识图谱	3
		2.1.1 知识图谱概述	3
		2.1.2 时间基函数	4
		2.1.2.1 时域方法特有的展开函数	4
		2.1.2.2 频域方法特有的展开函数	4
	2.2	入射波	4
	2.3	时域积分方程时间步进算法阻抗矩阵的存储	5
		2.3.1 时域积分方程时间步进算法产生的阻抗矩阵的特征	5
		2.3.2 数值算例与分析	5
	2.4	时域积分方程时间步进算法矩阵方程的求解	6
	2.5	本章小结	6
第三	Ξ章	图匹配推理引擎与符号计算推理的设计和构建	7
	3.1	概况	7
	3.2	复杂逻辑推理研究	7
		3.2.1 正向推理	7
		3.2.2 逆向推理	7
		3.2.3 正逆结合	7
	3.3	图匹配推理引擎的构建与设计	7
		3.3.1 引擎基本设计思想	7
		3.3.2 逻辑架构	7
		3.3.3 Match Engine	7
		3.3.4 引擎的具体功能实现	7
	3.4	类人解答过程的构建	7
		3.4.1 类人解题的前提	7

		3.4.2 重构类人解答	7
		3.4.2.1 实例化定理编码	7
	3.5	时域积分方程时间步进算法矩阵方程的求解	8
	3.6	本章小结	8
第四	宣章	时域积分方程数值方法研究	9
	4.1	时域积分方程时间步进算法的阻抗元素精确计算	9
	4.2	时域积分方程时间步进算法阻抗矩阵的存储	9
		4.2.1 时域积分方程时间步进算法产生的阻抗矩阵的特征	9
		4.2.2 数值算例与分析	9
	4.3	时域积分方程时间步进算法矩阵方程的求解	10
	4.4	本章小结	10
第王	章	全文总结与展望	11
	5.1	全文总结	11
	5.2	后续工作展望	11
致	谢		12
参考	文章	献	13
附录	₹		14
攻该	卖硕:	士学位期间取得的成果	15
外文	て资制	料原文	16
外弋	7 洛米	料译文	17

第一章 绪 论

1.1 研究工作的背景与意义

人工智能(Artificial Intelligence,AI)作为研究、开发用于模拟和扩展人类智能的理论、方法以及技术和应用系统的一门新兴科学^[1]。人工智能的概念 1956 年的研讨会正式被提出开始,它的发展可谓是起起落落充满曲折坎坷。时至今日,人工智能在科研、教育、医疗、金融等各方面正大放异彩。无论是理论还是应用层面都取得了不错的进展。

1.2 时域积分方程方法的国内外研究历史与现状

时域积分方程方法的研究始于上世纪 60 年代,C.L.Bennet 等学者针对导体目标的瞬态电磁散射问题提出了求解时域积分方程的时间步进(marching-on in-time, MOT)算法。

1.3 本文的主要贡献与创新

本论文以时域积分方程时间步进算法的数值实现技术、后时稳定性问题以及两层平面波加速算法为重点研究内容,主要创新点与贡献如下:

1.4 本论文的组织结构

本文将用6个章节介绍论文的研究成果,具体论文的章节结构安排如下:

第一章: 绪论。这部分主要是先描述了整个人工智能的发展状况和背景,再描述了逻辑推理在历史上的一些发展状态,同时结合国内"互联网+教育"的发展机遇对初等数学自动求解系统的意义进行了简要介绍。

第二章:相关理论技术。本章对文中设计的基本理论与技术进行详细的介绍与讲解。首先,介绍了知识图谱表示知识的基本原理。然后从产生式系统原理入手,针对论文工程期间使用的开源规则引擎 Drools 进行了详细的介绍。然后介绍符号计算引擎的相应情况。这些基础理论知识是论文研究的基石,同时也为系统设计实现提供了重要的理论保障。

第三章: 图匹配推理引擎与符号计算推理的设计和构建。本章主要研究复杂 图匹配推理引擎与符号计算推理的整个逻辑架构与核心算法设计,针对出现问题 给出相应解决方案。主要从图匹配推理引擎的研究与构建,图匹配推理引擎与计 算推理的交互推理,类人解答过程的生成三个方面着手。其中以图匹配推理引擎 的构建为重点。讲述了三种不同的复杂逻辑推理组织方式,并采用"正逆结合"的推理方式构建推理引擎,随后研究了推理引擎与符号计算的交互推理模式,符号计算平台提供的计算服务为具体的初等数学问题的计算打下了支撑。类人解答过程的生成,在推理的基础上,设计的 DFS 的搜索回溯算法,重构类人解答过程。

第四章: 图匹配推理引擎与符号计算推理在初等数学中的应用。本章主要介绍将图匹配推理引擎运用到具体的初等数学问题求解中。首先概述基于此推理引擎设计的类人求解系统的各个模块,然后分模块详细介绍了实现细节。

第五章:测试与分析。对基于本论文实现的图匹配推理引擎与符号计算引擎以及类人求解系统进行了详细测试和分析,首先测试了推理引擎在不同的题型中求解成功率。再采取自动解答+答案标注抽取两批共200道题,然后对结果进行了详细统计。最后对全量测试数据进行了综合统计,并根据分析结果,指出系统中存在的一些不足,以便在今后的工作中进一步提升推理引擎解题的准确率。

第六章: 总结和展望。首先对全文的研究工作做出了总结,指出研究的主要成果和创新点。再对研究中存在的不足做出说明,指出了有可能取得突破的一些方案。

第二章 相关技术和理论

时域积分方程(TDIE)方法作为分析瞬态电磁波动现象最主要的数值算法之一,常用于求解均匀散射体和表面散射体的瞬态电磁散射问题。

2.1 知识图谱

利用数值算法求解时域积分方程,首先需要选取适当的空间基函数与时间基函数对待求感应电流进行离散。

2.1.1 知识图谱概述

近些年,对知识图谱的研究越来越受关注,越来越火热,知识图谱有着各种各样的定义,再知识图谱发展的各个时期的定义和特点都是不一样的,早在计量学以及科学计量时期就已经开始有对知识图谱的研究了【30】。这个时期的知识图谱主要的形式是一些比较简单的二维图形,也有三维图,主要是用来表示科学方面的统计结果;"三维构型图谱"是由著名的计量学家格蕾汽摩在1987年的时候创立的【31】,而之后又出现了"多维知识图谱"。

$$f_n(r) = \begin{cases} \frac{l_n}{2A_n^+} \rho_n^+ = \frac{l_n}{2A_n^+} (r - r_+) & r \in T_n^+ \\ \frac{l_n}{2A_n^-} \rho_n^- = \frac{l_n}{2A_n^-} (r_- - r) & r \in T_n^- \\ 0 & \text{otherwise} \end{cases}$$
 (2-1)

其中, l_n 为三角形单元 T_n^+ 和 T_n^- 公共边的长度, A_n^+ 和 A_n^- 分别为三角形单元 T_n^+ 和 T_n^- 的面积(如图2-1所示)。

图 2-1 RWG 基函数几何参数示意图

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

$$\mathbf{r}_{i,j} = \begin{cases} 1, f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}) \ge u(\lambda), \\ 0, f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}) < l(\lambda), 1 \le i, j \le n. \end{cases}$$

$$f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}), \text{ otherwise,}$$
(2-2)

时域积分方程时间步进算法的阻抗元素直接影响算法的后时稳定性,因此阻抗元素的计算是算法的关键之一,采用精度高效的方法计算时域阻抗元素是时域积分方程时间步进算法研究的重点之一。

2.1.2 时间基函数

- 2.1.2.1 时域方法特有的展开函数
- 2.1.2.2 频域方法特有的展开函数

2.2 入射波

如图2-2(a)和图2-2(b)所示分别给出了参数 $E_0 = \hat{x}$, $a_n = -\hat{z}$, $f_0 = 250MHz$, $f_w = 50MHz$, $t_w = 4.2\sigma$ 时,调制高斯脉冲的时域与频域归一化波形图。

图 2-2 调制高斯脉冲时域与频率波形,时域阻抗元素的存储技术也是时间步进算法 并行化的关键技术之一,采用合适的阻抗元素存储方式可以很大的提高并行 时间步进算法的计算效率。

时域阻抗元素的存储技术[2] 也是时间步进算法并行化的关键技术之一,采用

合适的阻抗元素存储方式可以很大的提高并行时间步进算法的计算效率。

时域积分方程时间步进算法的阻抗元素直接影响算法的后时稳定性,因此阻抗元素的计算是算法的关键之一,采用精度高效的方法计算时域阻抗元素是时域积分方程时间步进算法研究的重点之一。

2.3 时域积分方程时间步进算法阻抗矩阵的存储

时域阻抗元素的存储技术也是时间步进算法并行化的关键技术之一,采用合适的阻抗元素存储方式可以很大的提高并行时间步进算法的计算效率。

2.3.1 时域积分方程时间步进算法产生的阻抗矩阵的特征

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

2.3.2 数值算例与分析

如图 3-1(a) 所示给出了时间步长选取为 0.5ns 时采用三种不同存储方式计算的 平板中心处方向的感应电流值与 IDFT 方法计算结果的比较。如图 3-1(b) 所示给出了存储方式为基权函数压缩存储方式,时间步长分别取时平板中心处方向的感应电流计算结果,从图中可以看出不同时间步长的计算结果基本相同。

Data: this text

Result: how to write algorithm with LATEX2e

initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;

end

end

算法 2-1 How to wirte an algorithm.

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

2.4 时域积分方程时间步进算法矩阵方程的求解

2.5 本章小结

本章首先研究了时域积分方程时间步进算法的阻抗元素精确计算技术,分别 采用 DUFFY 变换法与卷积积分精度计算法计算时域阻抗元素,通过算例验证了 计算方法的高精度。

第三章 图匹配推理引擎与符号计算推理的设计和构建

- 3.1 概况
- 3.2 复杂逻辑推理研究
- 3.2.1 正向推理
- 3.2.2 逆向推理
- 3.2.3 正逆结合
- 3.3 图匹配推理引擎的构建与设计
- 3.3.1 引擎基本设计思想
- 3.3.2 逻辑架构
- 3.3.3 Match Engine
- 3.3.3.1 图匹配
- 3.3.3.2 匹配原则
- 3.3.4 引擎的具体功能实现
- 3.4 类人解答过程的构建
- 3.4.1 类人解题的前提
- 3.4.2 重构类人解答
- 3.4.2.1 实例化定理编码
- 3.4.2.2 构建解答过程

如图 3-1(a) 所示给出了时间步长选取为 0.5ns 时采用三种不同存储方式计算的 平板中心处方向的感应电流值与 IDFT 方法计算结果的比较。如图 3-1(b) 所示给出了存储方式为基权函数压缩存储方式,时间步长分别取时平板中心处方向的感应电流计算结果,从图中可以看出不同时间步长的计算结果基本相同。

Data: this text

Result: how to write algorithm with LATEX2e

initialization;

while not at end of this document do

read current;

if understand then

go to next section;
current section becomes this one;

else
go back to the beginning of current section;
end

end

算法 3-1 How to wirte an algorithm.

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

3.5 时域积分方程时间步进算法矩阵方程的求解

3.6 本章小结

本章首先研究了时域积分方程时间步进算法的阻抗元素精确计算技术,分别 采用 DUFFY 变换法与卷积积分精度计算法计算时域阻抗元素,通过算例验证了 计算方法的高精度。

第四章 图匹配推理引擎与符号计算推理的设计和构建

- 4.1 概况
- 4.2 复杂逻辑推理研究
- 4.2.1 正向推理
- 4.2.2 逆向推理
- 4.2.3 正逆结合
- 4.3 图匹配推理引擎的构建与设计
- 4.3.1 引擎基本设计思想
- 4.3.2 逻辑架构
- 4.3.3 Match Engine
- 4.3.3.1 图匹配
- 4.3.3.2 匹配原则
- 4.3.4 引擎的具体功能实现
- 4.4 类人解答过程的构建
- 4.4.1 类人解题的前提
- 4.4.2 重构类人解答
- 4.4.2.1 实例化定理编码
- 4.4.2.2 构建解答过程

表 4-1 计算 2m × 2m 理想导体平板时域感应电流采用的三种存储方式的存储量比较。

时间步长	非压缩存储方式	完全压缩存储方式	基权函数压缩存储方式
0.4ns	5.59 MB	6.78 MB	6.78 MB
0.5ns	10.17 MB	5.58 MB	5.58 MB
0.6ns	8.38MB	4.98 MB	4.98 MB

如图4-1(a)所示给出了时间步长选取为 0.5ns 时采用三种不同存储方式计算的 平板中心处 x 方向的感应电流值与 IDFT 方法计算结果的比较, …… 。如图4-1(b) 所示给出了存储方式为基权函数压缩存储方式,时间步长分别取 0.4ns、0.5ns、

0.6ns 时平板中心处 *x* 方向的感应电流计算结果,从图中可以看出不同时间步长的 计算结果基本相同。

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

图 4-1 $2m \times 2m$ 的理想导体平板中心处感应电流 x 分量随时间的变化关系

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

4.5 时域积分方程时间步进算法矩阵方程的求解

定理 4.1 如果时域混合场积分方程是时域电场积分方程与时域磁场积分方程 的线性组合。

证明:由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。■

推论 4.2 时域积分方程方法的研究近几年发展迅速,在本文研究工作的基础上,仍有以下方向值得进一步研究。

引理 4.3 因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

4.6 本章小结

本章首先研究了时域积分方程时间步进算法的阻抗元素精确计算技术,分别 采用 DUFFY 变换法与卷积积分精度计算法计算时域阻抗元素,通过算例验证了 计算方法的高精度。

第五章 全文总结与展望

5.1 全文总结

本文以时域积分方程方法为研究背景,主要对求解时域积分方程的时间步进 算法以及两层平面波快速算法进行了研究。

5.2 后续工作展望

时域积分方程方法的研究近几年发展迅速,在本文研究工作的基础上,仍有以下方向值得进一步研究:

致 谢

在攻读博士学位期间,首先衷心感谢我的导师 XXX 教授

参考文献

- [1] 孙晔, 吴飞扬. 人工智能的研究现状及发展趋势 [D]. 价值工程, 2013, 5-7
- [2] 肖珍新. 一种新型排渣阀调节降温装置 [P]. 中国, 实用新型专利, ZL201120085830.0, 2012 年 4 月 25 日
- [3] X. F. Liu, B. Z. Wang, W. Shao, et al. A marching-on-in-order scheme for exact attenuation constant extraction of lossy transmission lines[C]. China-Japan Joint Microwave Conference Proceedings, Chengdu, 2006, 527-529
- [4] 王浩刚, 聂在平. 三维矢量散射积分方程中奇异性分析 [J]. 电子学报, 1999, 27(12): 68-71
- [5] 竺可桢. 物理学 [M]. 北京: 科学出版社, 1973, 56-60
- [6] 陈念永. 毫米波细胞生物效应及抗肿瘤研究 [D]. 成都: 电子科技大学, 2001, 50-60
- [7] 顾春. 牢牢把握稳中求进的总基调 [N]. 人民日报, 2012 年 3 月 31 日
- [8] 冯西桥. 核反应堆压力容器的 LBB 分析 [R]. 北京: 清华大学核能技术设计研究院, 1997 年 6月25日
- [9] 中华人民共和国国家技术监督局. GB3100-3102. 中华人民共和国国家标准-量与单位 [S]. 北京: 中国标准出版社, 1994 年 11 月 1 日
- [10] M. Clerc. Discrete particle swarm optimization: a fuzzy combinatorial box[EB/OL]. http://clere. maurice.free.fr/pso/Fuzzy Discrete PSO/Fuzzy DPSO.htm, July 16, 2010

附 录

攻读硕士学位期间取得的成果

- [1] J. Y. Li, Y. W. Zhao, Z. P. Nie. New memory method of impedance elements for marching-on-in-time solution of time-domain integral equation[J]. Electromagnetics, 2010, 30(5): 448-462
- [2] 张三, 李四. 时间步进算法中阻抗矩阵的高效存储新方法 [J]. 电波科学学报, 2010, 25(4): 624-631
- [3] 张三, 李四. 时域磁场积分方程时间步进算法稳定性研究 [J]. 物理学报, 2013, 62(9): 090206-1-090206-6
- [4] 张三,李四. 时域磁场积分方程时间步进算法后时稳定性研究. 电子科技大学学报 [J](已录用,待刊)
- [5] S. Zhang. Parameters discussion in two-level plane wave time-domain algorithm[C]. 2012 IEEE International Workshop on Electromagnetics, Chengdu, 2012, 38-39
- [6] 张三, 李四. 时域积分方程时间步进算法研究 [C]. 电子科技大学电子科学技术研究院第四届学术交流会, 成都, 2008, 164-168
- [7] 张三(4).人工介质雷达罩技术研究.国防科技进步二等奖,2008年
- [8] XXX, XXX, XXX, XXX, 王升. XXX 的陶瓷研究. 四川省科技进步三等奖, 2003 年 12 月
- [9] 郝吉庆. Pbl 教学法在临床医学教学中的应用与探讨 [J]. 安徽医药, 2011, 15(1): 129-131

外文资料原文

5.1 A Tight Upper Bound on Bit Error Rate

外文资料译文

5.1 基于多载波索引键控的正交频分多路复用系统模型