

NOISE REDUCTION OF QUADCOPTER DRONES FROM DIFFERENT FREQUENCY PHASE OFFSETS

IDETC/CIE 2023

Phillip A. O. Gavino¹, Jack Qiao¹

Motivation

How can we design a **control system** to **reduce noise** on quadcopter drones?

Main Idea

Phase Lock Loop for Drone Propellers

Controller Design for Propeller Phase Synchronization with Aeroacoustic Performance Metrics

Patterson, A., Schiller, N. H., Ackerman, K. A., Gahlawat, A., Gregory, I. M., & Hovakimyan, N. (2020). Controller design for propeller phase synchronization with aeroacoustic performance metrics. In *AIAA Scitech 2020 Forum* (p. 1494).

Experimental Setup

Laser Tachometer

IR Laser

IR Detector

Experimental Procedure

System Identification

$$\Omega(s) = rac{2081}{s + 9.708}$$

Controller Design

Phase Lock Control System

(SR = 500 Hz)

$$G_c(s) = k_d s + k_p + rac{k_i}{s}$$

$$G_{OL} = rac{7038(s^2 + 1.111s + 0.333s)}{s^2(s^2 + 611.65s + 5845)}$$

Controller Design

$$G_{OL} = rac{7038(s^2 + 1.111s + 0.333s)}{s^2(s^2 + 611.65s + 5845)}$$

Controller Performance

Tachometer Readings

Acoustic Results (1)

Frequency spectrum with conventional operation

	Change in Acoustic Power (dB)
Conventional Operation	0
Phase Control	-4.86

Frequency spectrum with phase control

Conclusion

Contributions:

- Extended multirotor phase synchronization noise reduction to the quadcopter design
- Developed low profile, economical control system with only tachometers

Limitations:

- Changing voltage source
- Tachometer bandwidth
- BLDC motor PWM resolution
- Grounded drone

Future Work

- Assess acoustic performance while hovering
- Develop modular, seamless integration with proprietary
 FCs
- Investigate multirotor configurations
- Implement more robust controller

THANK YOU.

Phillip A. O. Gavino

Undergraduate Student

Jack Qiao

Undergraduate Student

Preston S. Wilson

Project Advisor

Michael R. Haberman

Project Advisor

Zhenghui Sha

Project Advisor

Emails:

phillip.gavino@utexas.edu jackqiao2002@utexas.edu

The University of Texas at Austin Cockrell School of Engineering