

# **UNIVERSITY EXAMINATIONS: 2023/2024**

# EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN SOFTWARE DEVELOPMENT/BAC

BAC 3209/ BSD 3205: EMBEDDED SYSTEMS

## FULLTIME/PART-TIME/DISTANCE LEARNING

DATE: APRIL 2024 TIME: 2 HOURS

## **INSTRUCTIONS: Question One Is Compulsory, Choose Two Other Questions**

## **QUESTION ONE (20 marks) Compulsory**

a) Consider the following embedded system with a dial that can set A3..A0 to binary 0 to 9, and a 7-segment display (Wikipedia: 7-Segment Display) connected to B6..B0 as shown:



Below is a (partial) RIM C program that appropriately sets the display for the given dial position:

```
#include "RIMS.h"

void main()
{

while (1) {

switch( A )

{

case 0 : B = 0x77; break; // 0111 0111 (0)

case 1 : B = 0x24; break; // 0010 0100 (1)

case 2 : B = 0x5D; break; // 0101 1101 (2)
```

```
//...

case 9: B = 0x6F; break; // 0110 1111 (9)

default: B = 0x5B; break; // 0101 1011 (E for Error)
}
```

- i) What B\_ outputs should be set to 1 for case 3? List in ascending order separated by spaces, e.g., B0 B2 ... [2 marks]
- ii) To what should B be set for case  $3? B = \underline{\hspace{1cm}}$ ; Use uppercase letters for the hex literal. [2 marks]
- b) Design a state machine for a simple traffic light control system with three states: Green, Yellow, and Red. The system should transition between states in the traditional sequence, with timers controlling the duration of each state.
  - State Diagram: Draw a state diagram for the traffic light control system. Label each state and transition clearly.
     [3 marks]
  - ii. State Transition Table: Create a state transition table that includes current states, input (timer expiration), and next states. [4 marks]
  - iii. Implementation: Write pseudocode for the state machine. Include initialization, state transitions, and timer management. [5 marks]
  - iv. Enhancements: Suggest one enhancement to improve traffic flow or safety and describe how it can be integrated into the current state machine model. [4 marks]

## **QUESTION TW0 (15 marks)**

Eight parking spaces in an intelligent parking lot are equipped with sensors. These sensors are connected to input A of an embedded system. Each sensor outputs a value of '1' if the space is occupied and '0' if it is vacant.

#### Task:

Develop a program for the embedded system that accomplishes the following objectives:

- a) Sensor Data Reading: Utilize the GetBit() function to read the status of each parking space sensor connected to input A. Briefly describe how the GetBit() function works in this context. [3 marks]
- b) Occupancy Count Algorithm: Write a segment of code that iterates through each sensor's status to count the number of occupied spaces. The total should be stored in variable B. [4 marks]

- c) Optimization: Propose a method to optimize your program for efficiency or speed. Discuss why your proposed optimization could be beneficial in an embedded systems environment. [5 marks]
- d) Error Handling: Implement error handling in your program to manage potential issues, such as a sensor failure. Describe the approach and how it ensures the reliability of the occupancy count. [3 marks]

## Additional Instructions:

• Provide comments in your code explaining the logic of each major step.

# **QUESTION THREE (15 marks)**

Given the following timing diagram and the light on/off SM, determine the value of B0 at the specified times.





Transition for true cond, do action

| 1) 0 s   | [3 marks] |
|----------|-----------|
| ii) 1 s  | [3 marks] |
| iii) 2 s | [3 marks] |
| iv) 3 s  | [3 marks] |
| v) 4 s   | [3 marks] |

## **QUESTION FOUR (15 marks)**

Design and implement an automated plant watering system using Arduino. This system should monitor soil moisture levels and automatically water the plant when the soil is dry.

a) **System Design:** Sketch the circuit diagram for connecting the soil moisture sensor and water pump to the Arduino. Include a brief description of how each component interacts with the Arduino.

[3 marks]

- b) **Programming Logic:** Write an Arduino program that reads the moisture level from the sensor. The program should activate the water pump when the soil moisture level falls below a predefined threshold. Include comments to explain the logic of your code. [6 marks]
- c) **Energy Efficiency:** Discuss strategies to make your automated watering system energy-efficient. Propose at least one method and explain its implementation in the context of your project.

[3 marks]

d) **Scalability:** Describe how your system could be scaled to manage multiple plants, considering factors such as circuit complexity and code modifications. [3 marks]

## **Additional Guidelines:**

- Provide a list of materials needed for your project.
- Ensure your code is well-commented to demonstrate your thought process.
- Consider practical aspects such as the water source and how to avoid overwatering.