

Aplicação de Técnicas de Aprendizagem de Máquina utilizando R

Mário de Noronha Neto e Richard Demo Souza

1

Alguns tipos de aprendizado de máquina

Aprendizagem
Supervisionadas
(Supervised Learning)

Aprendizagem não supervisionadas (Unsupervised Learning)

Aprendizagem por reforço (Reinforcement Learning)

O processo de treinamento do modelo é realizado com um conjunto de dados em que as entradas e saídas são conhecidas

O processo de treinamento do modelo é realizado com um conjunto de dados em que apenas as entradas são fornecidas

O processo de treinamento é realizado a partir de recompensas nas interações com o ambiente

Técnicas de Aprendizagem não Supervisionada abordadas neste curso

Utilizada para identificar associações úteis nos dados

Agrupamento (Clustering)

Utilizada para segmentação de grupos com algumas semelhanças

Regras de Associação

As regras de associação buscam identificar padrões/regras de relacionamento existentes entre itens de um determinado conjunto de dados. Esta técnica não é utilizada para predições, mas sim para descobertas em base de dados em que apenas as entradas são fornecidas (não supervisionado).

Regras de Associação

Esta técnica pode ser aplicadas em tarefas como:

- Market Basket Analysis
- Encontrar padrões de compras ou reivindicações médicas que ocorrem em combinação com o uso fraudulento de cartões de crédito ou seguros.
- Identificar combinações de comportamentos que precedem cancelamentos de serviços de telefonia celular ou atualizações de pacotes de TV a cabo, por exemplo.

O Algoritmo *Apriori* para regras de associação

- Em análises envolvendo regras de associação, o número de conjuntos de itens cresce exponencialmente com o número de características. Uma loja que vende 100 itens teria 2^100 = 1,27e+30 conjunto de itens para um algoritmo avaliar.
- Ao invés de avaliar cada um dos possíveis conjuntos de itens, uma regra prática seria não considerar combinações raras, com por exemplo {motor de carro, batom}.
- Ignorando conjunto de itens raros, é possível limitar o universo de possibilidades para tamanhos gerenciáveis.

O Algoritmo *Apriori* para regras de associação

O nome *Apriori* vem do fato do algoritmo utilizar informações *a priori* do conjunto de dados disponíveis para diminuir o número de conjunto de itens a serem analisados. Todos os **subconjuntos** derivados dos **conjuntos** de itens que ocorrem com frequência devem ocorrer com frequência. Algumas características do algoritmo:

Strengths	Weaknesses
Is capable of working with large amounts of transactional data Results in rules that are easy to understand Useful for "data mining" and discovering unexpected knowledge in databases	 Not very helpful for small datasets Requires effort to separate the true insight from common sense Easy to draw spurious conclusions from random patterns

O Algoritmo Apriori: Suporte e Confiança

Transaction number	Purchased items
1	{flowers, get well card, soda}
2	{plush toy bear, flowers, balloons, candy bar}
3	{get well card, candy bar, flowers}
4	{plush toy bear, balloons, soda}
5	{flowers, get well card, soda}

Suporte: medida da frequência com que um conjunto de itens ocorre

$$\operatorname{support}(X) = \frac{\operatorname{count}(X)}{N}$$

 $\{get\ well\ card,\ flowers\} = 3/6 = 0.6$

$$\{candy\ bar\} = 2/5 = 0.4$$

Confiança: Proporção de transações em que a presença de **X** resulta na presença de **Y**

$$\operatorname{confidence}(X \to Y) = \frac{\operatorname{support}(X, Y)}{\operatorname{support}(X)}$$

 $\{flowers\} -> \{get well card\} = 0.6/0.8 = 0.75$

 $\{get \ well \ card\} -> \{flowers\} = 0.6/0.6 = 1$

O Algoritmo *Apriori*: Construindo as regras

Princípio: Se {A} não é frequente, não deveremos considerar {A,B} ou qualquer outro conjunto de itens que contenha {A}. De forma geral, o processo de criação das regras ocorrem em duas fases:

- 1. Identificar todos os conjuntos de itens que atendam um limite mínimo de *suporte*
- 2. Criar regras a partir destes conjuntos de itens usando aqueles que atendam um limite mínimo de *confiança*

O Algoritmo *Apriori*: Exemplo

A primeira fase ocorre em múltiplas iterações. Cada iteração sucessiva envolve a avaliação do suporte para conjuntos de itens cada vez maiores. Para o exemplo a seguir, vamos considerar os itens {A}, {B}, {C} e {D}.

Primeira iteração: {A}, {B} e {C} ocorrem com frequência e {D} com pouca frequência. {D} é eliminado.

Segunda iteração: São considerados {A,B}, {A,C} e {B,C}. Destes novos conjuntos, {A,C} não atende o limite mínimo de suporte e é eliminado.

Terceira iteração: O princípio *Apriori* diz que {A,B,C} não pode ser frequente, já que o subconjunto {A,C} não é. Portanto, o algoritmo não gera um novo conjunto de itens e para nesta iteração.

Na segunda fase são geradas as regras com base nos conjuntos de itens que ocorreram com maior frequência. Por exemplo, {A} -> {B} e {B} -> {A}. Estas regras terão seu grau de confiança calculado e qualquer regra que não atenda o nível desejado será eliminada.

Exemplo: Identificando mantimentos comprados frequentemente

Passo 1: Coleta de dados

Dataset utilizado:

O *dataset* utilizado neste exemplo é composto por dados de compras coletados por um mês em um mercado. O *dataset* contém 9835 transações, uma média de 327 transações por dia, e foi adaptado do *dataset Groceries* do pacote *arule* do R. Para este exemplo, todas as marcas de pão, leite, detergente, etc, foram retiradas. Isto reduziu o número de itens para 169 tipos.

groceries <- read.csv("groceries.csv")</pre>

	V1	V2	V3	V4
1	citrus fruit	semi-finished bread	margarine	ready soups
2	tropical fruit	yogurt	coffee	
3	whole milk			
4	pip fruit	yogurt	cream cheese	meat spreads
5	other vegetables	whole milk	condensed milk	long life bakery product

Neste caso, a função *read.csv* importará o arquivo com quatro colunas em função da primeira compra ter apenas 4 itens, deixando o arquivo em um formato não apropriado para este exemplo. Como o número de itens varia em cada compra, uma solução é utilizar uma matriz esparsa para representar esses dados. A função *read.transactions()* do pacote *arules* funciona de forma similar ao comando *read.csv* com a diferença de que o resultado é apresentado em uma matriz esparsa. O comando *sep* = "." indica que os itens são separados por vírgula.

> groceries <- read.transactions("groceries.csv", sep = ",")</pre>

> summary(groceries)

transactions as itemMatrix in sparse format with

9835 rows (elements/itemsets/transactions) and

169 columns (items) and a density of 0.02609146

most frequent items:

rolls/buns	vegetables	whole milk other
1809	1903	2513
(Other)	yogurt	soda
34055	1372	1715

O item whole milk aparece em 2513 compras (aproximadamente em 2513/9835 = 0.2555 = 25%)

element (itemset/transaction) length distribution:											
sizes											
1	2	3	4	5	6	7	8	9	10	11	12
2159	1643	1299	1005	855	645	545	438	350	246	182	117
13	14	15	16	17	18	19	20	21	22	23	24
78	77	55	46	29	14	14	9	11	4	6	1
26	27	28	29	32							
1	1	1	3	1)						
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.000 2.000 3.000 4.409 6.000 32.000											
M:	in. /1:	st Qu	. Med	dian	Mea	n 3rd	Qu.	Ma	x.		
1.0	000	2.00	3	.000	4.40	9 6	.000	32.0	00		

Observe que 32 que apenas uma compra/transação tem 32 itens e que 25% das compras possuem 2 ou menos itens.


```
> inspect(groceries[1:5])
  items
1 {citrus fruit,
  margarine,
   ready soups,
   semi-finished bread}
2 {coffee,
   tropical fruit,
                              > itemFrequency(groceries[, 1:3])
   yogurt}
                              abrasive cleaner artif. sweetener
                                                                    baby cosmetics
3 {whole milk}
                                  0.0035587189
                                                    0.0032536858
                                                                      0.0006100661
4 {cream cheese,
   meat spreads,
   pip fruit,
   yogurt}
5 {condensed milk,
   long life bakery product,
   other vegetables,
   whole milk}
```


Apresenta um histograma com os itens que possuem um suporte de pelo menos 10%

> itemFrequencyPlot(groceries, topN = 20)

Apresenta um histograma com os 20 itens mais frequentes

Passo 3: Treinando o modelo

Association rule syntax

using the apriori() function in the arules package

Finding association rules:

```
myrules <- apriori(data = mydata, parameter =
  list(support = 0.1, confidence = 0.8, minlen = 1))</pre>
```

- data is a sparse item matrix holding transactional data
- support specifies the minimum required rule support
- confidence specifies the minimum required rule confidence
- minlen specifies the minimum required rule items

The function will return a rules object storing all rules that meet the minimum criteria.

Examining association rules:

inspect(myrules)

myrules is a set of association rules from the apriori() function

This will output the association rules to the screen. Vector operators can be used on myrules to choose a specific rule or rules to view.

Example:

```
groceryrules <- apriori(groceries, parameter =
  list(support = 0.01, confidence = 0.25, minlen = 2))
inspect(groceryrules[1:3])</pre>
```


Passo 3: Treinando o modelo

Com a configuração padrão, nenhuma regra é gerada.

> apriori(groceries)
set of 0 rules

Parâmetros sugeridos: Um item tem que ser comprado em média duas vezes por dia, as associações definidas pelas regras ocorrem pelo menos 25% das vezes e vamos considerar regras que contém menos de dois itens.

> groceryrules
set of 463 rules

2.000

2.000

Passo 4: Analisando o desempenho do modelo


```
summary(groceryrules)
set of 463 rules

Left-hand side (LHS) e right-hand side (RHS)

rule length distribution (lhs + rhs):sizes
2  3  4

150 297 16

Min. 1st Qu. Median Mean 3rd Qu. Max.
```

3.000

2.711

3.000

4.000

summary of quality measures:

support	confidence	lift	count
Min. :0.006101	Min. :0.2500	Min. :0.9932	Min. : 60.0
1st Qu.:0.007117	1st Qu.:0.2971	1st Qu.:1.6229	1st Qu.: 70.0
Median :0.008744	Median :0.3554	Median :1.9332	Median : 86.0
Mean :0.011539	Mean :0.3786	Mean :2.0351	Mean :113.5
3rd Qu.:0.012303	3rd Qu.:0.4495	3rd Qu.:2.3565	3rd Qu.:121.0
Max. :0.074835	Max. :0.6600	Max. :3.9565	Max. :736.0

$$\int \operatorname{lift}(X \to Y) = \frac{\operatorname{confidence}(X \to Y)}{\operatorname{support}(Y)}$$

O valor do lift maior que 1 implica que X e Y são encontrados juntos com mais frequência do que um deles separadamente

mining info:

data ntransactions support confidence

groceries 9835 0.006 0.25

> inspect(groceryrules[1:3])

Leitura da regra 1: se um cliente comprar vasos de plantas, ele está 1.56 vezes mais propenso a comprar leite integral do que um cliente qualquer. Essa regra cobre 0,7% das transações e ocorre em 40% das compras envolvendo vasos de plantas.

Uma abordagem comum é dividir as regras de decisão em três categorias: **Úteis**; **triviais** ou **inexplicáveis**.

Ordenando as regras de associação

> inspect(sort(groceryrules, by = "lift")[1:5])

```
1hs
                        rhs
                                                 support confidence
                                                                        lift
1 {herbs}
                     => {root vegetables}
                                             0.007015760
                                                          0.4312500 3.956477
2 {berries}
                     => {whipped/sour cream} 0.009049314 0.2721713 3.796886
3 {other vegetables,
  tropical fruit,
  whole milk}
                     => {root vegetables}
                                             0.007015760 0.4107143 3.768074
4 {beef,
  other vegetables} => {root vegetables}
                                             0.007930859
                                                         0.4020619 3.688692
5 {other vegetables.
  tropical fruit}
                    => {pip fruit}
                                             0.009456024
                                                          0.2634561 3.482649
```

Leitura da regra 1: Os clientes que compram ervas são quase quatro vezes mais propensos a comprar vegetais de raiz do que um cliente qualquer.

Analisando um subconjunto das regras

```
> berryrules <- subset(groceryrules, items %in% "berries")
```

> inspect(berryrules)

Salvando as regras em um arquivo ou dataframe


```
> write(groceryrules, file = "groceryrules.csv",
sep = ",", quote = TRUE, row.names = FALSE)
```

> groceryrules_df <- as(groceryrules, "data.frame")</pre>