Introduction to Physical Design / APR

Workshop Session 1

Presented by Hafiz Wajeh ul Hasan

https://github.com/merledu https://www.merledupk.org

Our Tape-outs

> We have taped-out 5 designs on Google shuttle program

MPW-1 | Nov 2020

STATUS: In the midst of fabrication

MPW-2 | June 2021

STATUS: In the midst of verification before fabrication

GitHub Links

- 1.https://github.com/hadirkhan10/caravel_ibtida_soc
- 2.https://github.com/merledu/carayel_Ghazi_soc
- 3.hhtps://github.com/merledu/carayel_azadi_soc
- 4.hhtps://guthub.com/wajehulhasan/caravel_Lexicon
- 5.https://github.com/HamzaShabbir517/caravel_BrqRV_EB1

Instructions

- ➤Post the questions in the comment box
- You can post the questions on slack workspace as well, the link is provided in the description
- ➤ You should also install VM in your PCs/laptops with the Sky130 PDK installed using the links provided on the slack
- In case you are encountering any problems during installation, post them on the slack workspace

Contents

- ➤ Design Flow
- ➤ Physical Design
- >Standard Cells
- >Stick Diagrams
 - Inverter
 - NAND
 - NOR
- >APR
 - APR Flow

Design Flow

An overview of the design flow

- > Step 1: Defining the architecture of your design
- ➤ Step 2: Writing the design abstraction for the architecture
 - This could be done using VHDL, Verilog or System Verilog
- Step 3: This code is then synthesized to Gate Level Circuit Design/Netlist
 - The circuit design level can also be referred to transistor level, inside every Gate/Standard Cell we have some transistors
- Step 4: **Physical Design**, this is the process of transforming a circuit description into the physical layout.

Physical Design

- The physical design is where the circuit level is converted to a complete physical geometric representation. This geometric representation is called integrated circuit layout
- During the Physical Design, we place and route Logic Gates[Standard Cells]. So the basic building block for the complete design are the Standard Cells
- ➤ Standard Cells comprises of Transistors[CMOS]

Physical view of a simple planar transistor

Standard Cells

The basic Standard Cells are:

Inverter

Symbolic View

NAND

Symbolic View

Schematic View

NOR

Symbolic View

Schematic View

Stick Diagram

It is basically an interface between symbolic circuit and the actual layout.

>Stick diagrams convey layer information through color codes (or

monochrome encoding).

Inverter

➤ Step 1: RTL code

➤ Step 2: Logic design

>Step 3: Schematic level design

 $Z = \sim X$

METAL

POLY

P Diff

N Diff

NAND

➤ Step 1: RTL code

➤ Step 2: Logic design

➤ Step 3: *Schematic* level design

METAL

POLY

P Diff

N Diff

NOR

- ➤ Step 1: RTL code
- ➤ Step 2: Logic design
- ➤ Step 3: Schematic level design

APR

- ➤ What is APR
 - APR is Auto Place and Route
 - Place the standard cells
 - Route the standard cells together
- ➤ Why APR?
 - Lets have a look at the following design

Note: The last design we did had **279995** Gates

Imagine yourself placing and routing near 300,000 Gates

Now let's have an overview of the APR flow

When the designs are too big, it is tedious to draw the layout manually

APR Flow

