	Note
	I I II
Name Vorname	1
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	
	4
${\rm Unterschrift\ der\ Kandidatin/des\ Kandidaten}$	T
	5
TECHNISCHE UNIVERSITÄT MÜNCHEN	
Fakultät für Mathematik	6
Wiederholungsklausur	7
Mathematik für Physiker 4	
(Analysis 3)	
Prof. Dr. H. Spohn	\sum
1 101. D1. 11. Spoini	
5. April 2012, 11:30 – 13:00 Uhr	I Erstkorrektur
Hörsaal: Platz:	
Hörsaal: Reihe: Platz:	IIZweitkorrektur
Hinweise:	
Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben	
Bearbeitungszeit: 90 min	
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter	
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	
Non read den Aufsicht ousfüll	_
Nur von der Aufsicht auszufüllen:	
Hörsaal verlassen von bis	

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Flächeninhalt Berechnen Sie den Flächeninhalt der Fläche $F:=\{(x,y,z)\in\mathbb{R}^3 z=xy,x^2+y^2\leq 1\}$	[8 Punkte]

2.	Oberflächenintegrale I	[11 Punkte]
	Gegeben ist das Flächenstück $G=G_f$ als Graph einer stetig differenzierbaren Funktion	$\mathbf{n} f: [0,1]^2 \to \mathbb{R}$
	und das Vektorfeld $v(x, y, z) = (-\frac{1}{2}x, -\frac{1}{2}y, z)$. Bestimmen Sie den Fluss F von v durch	n die nach oben
	orientierte Fläche G . Vereinfachen Sie möglichst weit durch partielles Integrieren.	

3. Oberflächenintegrale II

Oberflächenintegrale II $\text{Sei } M := \{(x,y,z) \in \mathbb{R}^3 \,|\, (x-1)^2 + y^2 + z^2 \leq 4, \, z \geq 0\} \text{ und } v(x,y,z) = \begin{pmatrix} x + \sin z \\ y - \sinh x \\ -x^2 - y^2 - z^2 \end{pmatrix} \text{ eintegrale II}$ Vektorfeld.

(a) Was besagt allgemein der Satz von Gauß für den Fluss von v durch den Rand ∂M von M?

(b) Berechnen Sie den Gesamtfluss F von v durch ∂M .

Geben Sie die folgenden Residuen an, wobei $n \in \mathbb{N}$.

(a)
$$\operatorname{Res}_1(\frac{1}{z^2-1}) =$$

(c)
$$\operatorname{Res}_0(e^{-\frac{1}{z}}) =$$

(e) Res₋₁(
$$\frac{1}{(z+1)^2}$$
) =

(b)
$$\operatorname{Res}_1(\frac{z^3-1}{z-1}) =$$

(d)
$$\operatorname{Res}_0(\tan z) =$$

(f)
$$\operatorname{Res}_1(\frac{z^n}{(z-1)^n}) =$$

5.	Residuenkalkül	[14 Punkte]
	Berechnen Sie $C := \int_{0}^{\infty} \frac{1}{x^3 + 1} dx$.	
	HINWEIS: Integrieren Sie entlang des Randes von $G:=\{z\in\mathbb{C}\mid \arg z\in[0,\frac{2\pi}{3}], z \leq R\}$ Sie den Limes $R\to\infty$.	und betrachten

6. Fourierreihen Sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische, stetige Funktion.	[10 Punkte]
(a) Beweisen Sie: Ist f sogar π -periodisch, d.h. $f(x+\pi)=f(x)$ für alle $x\in\mathbb{R}$, so alle ungeraden $k\in\mathbb{Z}$.	o gilt $\widehat{f}_k = 0$ für
(b) Berechnen Sie die Fourierkoeffizienten der Funktion $f(x) = \sin x $.	

Fouriertransformation Sei $f(x) = e^{-\alpha x-1 }$, $\alpha > 0$.	[6 Punkte]
(a) Begründen Sie, warum die Fouriertransformierte $\widehat{f}(k)$ quadratintegrabel ist.	
(b) Berechnen Sie $\widehat{f}(k)$.	