ĐẠI SỐ A2

Chương 0

$\widehat{ ext{ON}}$ TẬP ĐẠI S $\widehat{ ext{O}}$ A1

TS. Lê Văn Luyện

lvluyen@hcmus.edu.vn

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh, 2016

Các phép biến đổi sơ cấp trên dòng

Định nghĩa. Cho $A \in M_{m \times n}(K)$. Ta gọi phép biến đổi sơ cấp trên dòng, viết tắt là phép BDSCTD trên A, là một trong ba loại biến đổi sau:

Loại 1. Hoán vị hai dòng i và j $(i \neq j)$.

Ký hiệu : $d_i \leftrightarrow d_j$

Loại 2. Nhân dòng *i* với một số $\alpha \neq 0$.

Ký hiệu: αd_i

Loại 3. Cộng vào dòng i với β lần dòng j $(j \neq i)$.

Ký hiệu: $d_i + \beta d_j$

Trong thực hành chúng ta có thể sử dụng phép biến đổi: nhân dòng i với một số $\alpha \neq 0$ sau đó cộng thêm β lần dòng j $(j \neq i)$.

Ký hiệu: $\alpha d_i + \beta d_i$

Ví du.

Cho ma trận
$$A = \begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 1 & 7 & -1 & -2 & -2 \\ 2 & 14 & 2 & 7 & 0 \\ 6 & 42 & 3 & 13 & -3 \end{pmatrix}.$$

- a) Tìm dạng bậc thang của A. Từ đó xác định hạng của A.
- b) Tìm ma trận dạng bậc thang rút gọn của A.

Giải. b)

$$\begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 1 & 7 & -1 & -2 & -2 \\ 2 & 14 & 2 & 7 & 0 \\ 6 & 42 & 3 & 13 & -3 \end{pmatrix} \xrightarrow{d_2-d_1} \begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 0 & 0 & -2 & -5 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -3 & -5 & -3 \end{pmatrix}$$
$$\xrightarrow{-\frac{1}{2}d_2}_{d_1-d_2} \begin{pmatrix} 1 & 7 & 0 & \frac{1}{2} & -1 \\ 0 & 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac{5}{2} \end{pmatrix} \xrightarrow{d_1-\frac{1}{2}d_3}_{d_2-\frac{5}{2}d_3} \begin{pmatrix} 1 & 7 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Hệ phương trình tuyến tính

Ví dụ. Giải hệ phương trình sau:

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 1; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = -1; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 5; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 4, \end{cases}$$

Giải. Ma trận hóa hệ phương trình, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 1 & 3 & -13 & 22 & -1 \\ 3 & 5 & 1 & -2 & 5 \\ 2 & 3 & 4 & -7 & 4 \end{pmatrix}$$

$$\xrightarrow{d_2-d_1}_{d_3-3d_1} \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & -1 & 10 & -17 & 2 \\ 0 & -1 & 10 & -17 & 2 \end{pmatrix}$$

Vậy hệ đã cho có hai ẩn tự do là x_3, x_4 . Cho $x_3 = t, x_4 = s$, ta tính được

$$\begin{cases} x_1 = 5 - 17t + 29s; \\ x_2 = -2 + 10t - 17s. \end{cases}$$

Vậy hệ đã cho có vô số nghiệm với hai ẩn tự do

$$(x_1, x_2, x_3, x_4) = (5 - 17t + 29s, -2 + 10t - 17s, t, s)$$

với $s, t \in \mathbb{R}$ tùy ý.

Ma trận khả nghịch

Dịnh lý. Cho $A \in M_n(K)$. Khi đó các khẳng định sau tương đương:

- (i) A khả nghịch.
- (ii) r(A) = n.
- (iii) $A \sim I_n$.
- (iv) Tồn tại các phép BĐSCTD $\varphi_1, \ldots, \varphi_k$ biến ma trận A thành ma trận đơn vị I_n :

$$A \xrightarrow{\varphi_1} A_1 \longrightarrow \cdots \xrightarrow{\varphi_k} A_k = I_n.$$

Hơn nữa, khi đó qua chính các phép BĐSCTD $\varphi_1, \dots, \varphi_k$, ma trận đơn vị I_n sẽ biến thành ma trận nghịch đảo A^{-1} :

$$I_n \xrightarrow{\varphi_1} B_1 \longrightarrow \cdots \xrightarrow{\varphi_k} B_k = A^{-1}.$$

Phương pháp tìm ma trận nghịch đảo

Lập $(A|I_n)$ và dùng các phép BĐSCTD đưa A về dạng ma trận bậc thang rút gọn:

$$(A|I_n) \xrightarrow{\varphi_1} (A_1|B_1) \longrightarrow \cdots \xrightarrow{\varphi_p} (A_p|B_p) \longrightarrow \cdots$$

Trong quá trình biến đổi có thể xảy ra hai trường hợp sau:

- Trường hợp 1: Tồn tại p sao cho trong dãy biến đổi trên, ma trận A_p có ít nhất một dòng hay một cột bằng 0. Khi đó A không khả nghịch.
- Trường hợp 2: Mọi ma trận A_i trong dãy biến đổi trên đều không có dòng hay cột bằng 0. Khi đó ma trận cuối cùng của dãy trên có dạng $(I_n|B)$. Ta có A khả nghịch và $A^{-1} = B$.

Ví dụ. Cho
$$A=\begin{pmatrix}1&1&1\\1&2&2\\1&2&3\end{pmatrix}$$
. Xét tính khả nghịch của A và tìm A^{-1} (nếu có).

Giải.

$$(A|I_{3}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 & 1 & 0 \\ 1 & 2 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{d_{2}-d_{1}} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{d_{1}-d_{2}} \begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{d_{2}-d_{3}} \begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix}$$

$$(I_{3}|A^{-1})$$

Ví dụ. Xét tính khả nghịch của A và tìm A^{-1} (nếu có)

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 5 & 4 & 7 \\ 3 & 7 & 8 & 12 \\ 4 & 8 & 14 & 19 \end{array}\right)$$

Giải.

$$(A|I_4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 2 & 5 & 4 & 7 & 0 & 1 & 0 & 0 \\ 3 & 7 & 8 & 12 & 0 & 0 & 1 & 0 \\ 4 & 8 & 14 & 19 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$d_{2-2d_1} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & -1 & -2 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & -3 & 0 & 1 & 0 \\
0 & 0 & 2 & 3 & -4 & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{d_1-2d_2} \xrightarrow{d_3-d_2} \begin{pmatrix}
1 & 0 & 7 & 6 & 5 & -2 & 0 & 0 \\
0 & 1 & -2 & -1 & -2 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 2 & 3 & -4 & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{d_1-7d_3} \xrightarrow{d_2+2d_3} \xrightarrow{d_2+2d_3} \begin{pmatrix}
1 & 0 & 0 & -1 & 12 & 5 & -7 & 0 \\
0 & 1 & 0 & 1 & -4 & -1 & 2 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 2 & -2 & 1
\end{pmatrix}$$

$$\xrightarrow{d_1+d_4} \xrightarrow{d_2-d_4} \xrightarrow{d_3-d_4} \begin{pmatrix}
1 & 0 & 0 & 0 & 10 & 7 & -9 & 1 \\
0 & 1 & 0 & 0 & -2 & 2 & -2 & 1 \\
0 & 0 & 1 & 0 & 1 & -2 & 2 & -2 & 1
\end{pmatrix} = (I_4|A^{-1}).$$

Định thức ma trận

Nhắc lại.Cho $A = (a_{ij})_{n \times n} \in M_n(\mathbb{R})$. Khi đó, ta có thể tính định thức của A như sau

$$|A| \stackrel{\text{dong } \mathbf{i}}{=\!=\!=\!=} \sum_{k=1}^{n} a_{ik} (-1)^{\mathbf{i}+k} |A(\mathbf{i}|k)|$$

$$\stackrel{\text{côt } \mathbf{j}}{=\!=\!=} \sum_{k=1}^{n} a_{k\mathbf{j}} (-1)^{k+\mathbf{j}} |A(k|\mathbf{j})|$$

Trong đó trận A(i|j) được gọi là ma trận có được từ A bằng cách $x\acute{o}a$ đi dòng i và $c\^{o}t$ j của A.

Dịnh lý. Cho $A, A' \in M_n(\mathbb{R})$. Khi đó

- (i) $N\acute{e}u \ A \xrightarrow[i \neq j]{d_i \leftrightarrow d_j} A' \ thi \ |A'| = -|A|;$
- (ii) $N\acute{e}u \ A \xrightarrow{\alpha d_i} A' \ thi \ |A'| = \alpha |A|;$
- (iii) $N\hat{e}u \ A \xrightarrow[i \neq j]{d_i + \beta d_j} A' \ thì \ |A'| = |A|.$

Lưu ý. Vì $|A^{\top}| = |A|$ nên trong quá trình tính định thức ta có thể sử dụng các phép biến đổi sơ cấp trên cột.

Ví dụ.(tự làm) Tính định thức các ma trận sau

$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ -3 & 1 & 4 & -2 \\ 4 & 1 & 3 & 1 \end{pmatrix}.$$

Đáp án. $|A| = -19; \quad |B| = -30.$

Ví dụ. (tự làm) Tính định thức các ma trận sau

$$C = \begin{pmatrix} 13 & 18 & 6 & -1 & 7 \\ 4 & 7 & 3 & 4 & 1 \\ 7 & 9 & 3 & -1 & 4 \\ 6 & 9 & 3 & -2 & 3 \\ 6 & 3 & 1 & -2 & 3 \end{pmatrix}; \quad D = \begin{pmatrix} 3 & 4 & 2 & 1 & 3 \\ 2 & -3 & 5 & 1 & 8 \\ -4 & -7 & 2 & -2 & 4 \\ 3 & -5 & 4 & 3 & 5 \\ 8 & 6 & -4 & 1 & 2 \end{pmatrix}$$

Đáp án. |C| = 24; |D| = -174.

Ma trận phụ hợp

Định nghĩa. Cho $A=(a_{ij})\in M_n(\mathbb{R})$. Đặt $C=(c_{ij})$ với

$$c_{ij} = (-1)^{i+j} |A(i,j)|$$

là phần bù đại số của a_{ij} . Ta gọi ma trận chuyển vị C^{\top} của C là ma trận phụ hợp của A, ký hiệu là adj(A).

Ví dụ. Cho
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 2 & -1 & 2 \\ 3 & 4 & -2 \end{pmatrix}$$
. Tìm ma trận phụ hợp của A ?

Giải. Ta có
$$C = \begin{pmatrix} -6 & 10 & 11 \\ 10 & -7 & 1 \\ 7 & -2 & -8 \end{pmatrix} \Rightarrow \operatorname{adj}(A) = \begin{pmatrix} -6 & 10 & 7 \\ 10 & -7 & -2 \\ 11 & 1 & -8 \end{pmatrix}.$$

Nhận diện ma trận khả nghịch

Định lý. Ma trận vuông A khả nghịch khi và chỉ khi $|A| \neq 0$. Hơn nữa,

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A).$$

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$$
. Hỏi A có khả nghịch hay không? Nếu có, hãy tìm ma trận nghịch đảo của A .

Đáp án.

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{-2} \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Tổ hợp tuyến tính

Định nghĩa. Cho $u_1, u_2, \dots, u_m \in V$. Một $t \mathring{o}$ hợp tuyến tính của u_1, u_2, \dots, u_m là một vectơ có dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m$$
 với $\alpha_i \in K$.

Khi đó, đẳng thức trên được gọi là $dang \ biểu \ diễn$ của u theo các vecto u_1, u_2, \ldots, u_m .

Để kiểm tra u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ trong \mathbb{R}^n ta áp dụng các bước sau:

Bước 1. Lập ma trận mở rộng $(u_1^\top \ u_2^\top \ \dots \ u_m^\top \ | \ u^\top)$ (\star)

Bước 2. Giải hệ phương trình (\star) .

- \triangleright Nếu (\star) **vô nghiệm**, kết luận u không phải là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$.
- ▶ Nếu (★) **có nghiệm** $\alpha_1, \alpha_2, ..., \alpha_m$ thì u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ và có dạng biểu diễn là

Ví dụ. Xét xem u=(-3,1,4) có là tổ hợp tuyến tính của các vecto $u_1=(1,2,1), u_2=(-1,-1,1), u_3=(-2,1,1)$ hay không?

$$\begin{aligned} & \textbf{Gi\'{a}i.} \text{ L\^{a}p } (u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \begin{pmatrix} 1 & -1 & -2 & | & -3 \\ 2 & -1 & 1 & | & 1 \\ 1 & 1 & 1 & | & 4 \end{pmatrix} \\ & & \xrightarrow[d_3-d_1]{} \begin{pmatrix} 1 & -1 & -2 & | & -3 \\ 0 & 1 & 5 & | & 7 \\ 0 & 2 & 3 & | & 7 \end{pmatrix} \xrightarrow[d_3-2d_2]{} \begin{pmatrix} 1 & 0 & 3 & | & 4 \\ 0 & 1 & 5 & | & 7 \\ 0 & 0 & -7 & | & -7 \end{pmatrix} \\ & \xrightarrow[d_1-3d_3]{} & \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}. \end{aligned}$$

Hệ phương trình có nghiệm duy nhất $(\alpha_1, \alpha_2, \alpha_3) = (1, 2, 1)$.

Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 .

Dạng biểu diễn của u là $u = u_1 + 2u_2 + u_3$.

Độc lập và phụ thuộc tuyến tính

Định nghĩa. Cho $u_1, u_2, \dots, u_m \in V$. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m = 0. \tag{*}$$

- Nếu (*) chỉ có nghiệm tầm thường $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$ thì ta nói u_1, u_2, \dots, u_m (hay $\{u_1, u_2, \dots, u_m\}$) độc lập tuyến tính.
- Nếu (*) có nghiệm không tầm thường thì ta nói u_1, u_2, \ldots, u_m (hay $\{u_1, u_2, \ldots, u_m\}$) **phụ thuộc tuyến tính**.

Nói cách khác,

- ▶ Nếu phương trình (*) có nghiệm duy nhất thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- Nếu phương trình (*) có vô số nghiệm thì u_1, u_2, \ldots, u_m phụ thuộc tuyến tính.

Thuật toán kiểm tra tính độc lập tuyến tính của các vectơ u_1,u_2,\ldots,u_m trong K^n

Bước 1. Lập ma trận A bằng cách xếp u_1, u_2, \ldots, u_m thành các cột hoặc thành các dòng.

Bước 2. Xác định hạng r(A) của A.

- ightharpoonup Nếu r(A) = m thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- ightharpoonup Nếu r(A) < m thì u_1, u_2, \dots, u_m phụ thuộc tuyến tính.

Trường hợp m=n, ta có A là ma trận vuông. Khi đó có thể thay Bước 2 bằng Bước 2' sau đây:

Bước 2'. Tính định thức của A.

- ightharpoonup Nếu $\det A \neq 0$ thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- ightharpoonup Nếu detA=0 thì u_1,u_2,\ldots,u_m phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^4 cho các vectơ $u_1=(-1,2,-1,2);$ $u_2=(2,2,-4,2);$ $u_3=(1,3,1,2).$ Hãy xét xem u_1,u_2,u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Giải.

$$\text{Lập } A = (u_1^{\top} \ u_2^{\top} \ u_3^{\top}) = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -4 & 1 \\ 2 & 2 & 2 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 6 & 5 \\ 0 & -6 & 0 \\ 0 & 6 & 4 \end{pmatrix} \\
 \frac{d_3 + d_2}{d_4 - d_2} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 6 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \end{pmatrix} \xrightarrow{d_4 + \frac{1}{5}d_3} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 6 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 5 \end{pmatrix}$$

Ta có r(A) = 3. Suy ra u_1, u_2, u_3 độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^5 cho các vecto $u_1=(1,2,-3,5,1);$ $u_2=(1,3,-13,22,-1);$ $u_3=(3,5,1,-2,5).$ Hãy xét xem u_1,u_2,u_3 độc lập tuyến tính hay phụ thuộc tuyến tính?

Giải.

$$\text{Lập} \quad A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 1 & 3 & -13 & 22 & -1 \\ 3 & 5 & 1 & -2 & 5 \end{pmatrix} \\
 \frac{d_2 - d_1}{d_3 - 3d_1} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & -1 & 10 & -17 & 2 \end{pmatrix} \\
 \frac{d_3 + d_2}{d_3 - 3d_2} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ta có r(A) = 2 < 3. Suy ra u_1, u_2, u_3 phụ thuộc tuyến tính.

Tập sinh

Định nghĩa. Cho V là không gian vectơ và S là tập con của V. Tập S được gọi là $t\hat{q}p$ sinh của V nếu mọi vectơ của V đều là tổ hợp tuyến tính của S. Khi đó, ta nói S sinh ra V hoặc V dược sinh bởi S, ký hiệu $V = \langle S \rangle$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, ta kiểm tra xem u có là tổ hợp tuyến tính của u_1,u_2,u_3 không?

Lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 2 & x \\ 1 & 2 & 3 & y \\ 1 & 1 & 1 & z \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 2 & x \\ 0 & 1 & 1 & -x + y \\ 0 & 0 & -1 & -x + z \end{array}\right).$$

Hệ có nghiệm, suy ra u là tổ hợp tuyến tính của u_1, u_2, u_3 . Vậy S là tập sinh của \mathbb{R}^3 .

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, -1); u_2 = (2, 3, 1); u_3 = (3, 4, 0)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{cc|c} 1 & 2 & 3 & x \\ 1 & 3 & 4 & y \\ -1 & 1 & 0 & z \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 2 & 3 & x \\ 0 & 1 & 1 & -x+y \\ 0 & 0 & 0 & 4x-3y+z \end{array} \right).$$

Với $u_0 = (1, 1, 1)$ thì hệ trên vô nghiệm. Vậy u_0 không là tổ hợp tuyến tính của u_1, u_2, u_3 . Suy ra S không là tập sinh của \mathbb{R}^3 .

Cơ sở

Định nghĩa. Cho V là không gian vectơ và \mathcal{B} là tập con của V. Tập \mathcal{B} được gọi là một \boldsymbol{co} sở của V nếu \mathcal{B} là một tập sinh của V và \mathcal{B} độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Kiểm tra \mathcal{B} là cơ sở của \mathbb{R}^3 .

Giải. \mathcal{B} là tập sinh của \mathbb{R}^3 . (theo ví dụ trên)

Kiểm tra ${\mathcal B}$ độc lập tuyến tính. Lập ma trận

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$
. Ta có $r(A) = 3$ (hoặc $|A| = -1$). Suy ra

 \mathcal{B} độc lập tuyến tính. Vậy \mathcal{B} là cơ sở của \mathbb{R}^3 .

Số chiều

Nhận diện cơ sở của không gian V có $\dim V = n$

Vì $\dim V=n$ nên mọi cơ sở của V phải gồm n vectơ. Hơn nữa, nếu S là tập con của V và số phần tử của S bằng n thì

S là cơ sở của $V \iff S$ độc lập tuyến tính.

 \iff S là tập sinh của V.

 \mathbf{V} í dụ. Kiểm tra tập hợp nào sau đây là cơ sở của không gian \mathbb{R}^3 ?

- a) $B_1 = \{u_1 = (1, 2, 3), u_2 = (2, 3, 4)\}.$
- b) $B_2 = \{u_1 = (2, 1, 3), u_2 = (2, 1, 4), u_3 = (2, 3, 1), u_4 = (3, 4, 5)\}.$
- c) $B_3 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$
- d) $B_4 = \{u_1 = (2, -1, 0), u_2 = (1, 2, 3), u_3 = (5, 0, 3)\}$

Không gian vectơ con

Định lý. Cho W là một tập con khác rỗng của V. Khi đó các mệnh đề sau tương đương:

- (i) $W \leq V$.
- (ii) Với mọi $u, v \in W$; $\alpha \in K$, ta có $u + v \in W$ và $\alpha u \in W$.
- (iii) Với mọi $u, v \in W$; $\alpha \in K$, ta có $\alpha u + v \in W$.

Thuật toán tìm số chiều và cơ sở của một không gian con của K^n khi biết một tập sinh

Giả sử $W=\langle u_1,u_2,\dots,u_m\rangle\leq K^n$, để tìm số chiều và một cơ sở của W ta tiến hành như sau:

- **Bước 1.** Lập ma trận A bằng cách xếp u_1, u_2, \dots, u_m thành các dòng.
- **Bước 2.** Dùng các phép BĐSCTD đưa A về dạng bậc thang R_A .
- **Bước 3.** Số chiều của W bằng số dòng khác 0 của R (= r(A)) và các vectơ dòng khác 0 của R tạo thành một cơ sở của W.

Ví dụ. Cho W sinh bởi $S=\{u_1,u_2,u_3,u_4\}$ trong đó $u_1=(1,2,1,1);$ $u_2=(3,6,5,7);$ $u_3=(4,8,6,8);$ $u_4=(8,16,12,20).$ Tìm một cơ sở của không gian W?

Giải. Lập

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 20 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W có $\dim W = 3$ và có một cơ sở

$${v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2); v_3 = (0, 0, 0, 1)}.$$

Nhận xét. Vì dimW=3, hơn nữa, có thể kiểm chứng u_1,u_2,u_4 độc lập tuyến tính nên ta cũng có $\{u_1,u_2,u_4\}$ là một cơ sở của W.

Ví dụ.
(tự làm) Tìm một cơ sở cho không gian con của \mathbb{R}^4 sinh bởi các vect
ơ $u_1,u_2,u_3,$ trong đó

$$u_1 = (1, -2, -1, 3); u_2 = (2, -4, -3, 0); u_3 = (3, -6, -4, 4).$$

Không gian nghiệm của hệ phương trình tuyến tính thuần nhất

Định lý. Gọi W là tập hợp nghiệm $(x_1, x_2, ..., x_n)$ của hệ phương trình tuyến tính thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0; \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0. \end{cases}$$

Khi đó, W là không gian con của \mathbb{R}^n và số chiều của W bằng số ẩn tự do của hệ. Như vậy

$$W = \{ u \in \mathbb{R}^n \mid Au^\top = \mathbf{0} \}$$

với A là ma trận cho trước và $u = (x_1, x_2, \dots, x_n)$.

Tìm cơ sở của không gian nghiệm

Thuật toán

Bước 1. Giải hệ phương trình, tìm nghiệm tổng quát.

Bước 2. Lần lượt cho bộ ẩn tự do các giá trị

$$(1,0,\ldots,0),\ldots,(0,0,\ldots,1)$$

ta được các nghiệm cơ bản u_1, u_2, \dots, u_m .

Bước 3. Khi đó không gian nghiệm có cơ sở là $\{u_1, u_2, \dots, u_m\}$.

Ví dụ. Tìm cơ sở và số chiều của không gian nghiệm sau

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 0; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = 0; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 0; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 0. \end{cases}$$

Giải. Ma trận hóa hệ phương trình, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 2 & -3 & 5 \\ 1 & 3 & -13 & 22 \\ 3 & 5 & 1 & -2 \\ 2 & 3 & 4 & -7 \end{pmatrix} \xrightarrow{d_2 - d_1} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -10 & 17 \\ 0 & -1 & 10 & -17 \\ 0 & -1 & 10 & -17 \end{pmatrix}$$
$$\xrightarrow{d_1 - 2d_2} \xrightarrow{d_3 + d_2} \begin{pmatrix} 1 & 0 & 17 & -29 \\ 0 & 1 & -10 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra nghiệm của hệ là

$$u = (x_1, x_2, x_3, x_4) = (-17t + 29s, 10t - 17s, t, s) \text{ v\'oi } t, s \in \mathbb{R}.$$

Các nghiệm cơ bản của hệ là

$$u_1 = (-17, 10, 1, 0), u_2 = (29, -17, 0, 1).$$

Do đó, nếu W là không gian nghiệm thì $\mathcal{B} = \{u_1, u_2\}$ cơ sở của W và $\dim W = 2$.

Tọa độ

Định nghĩa. Cho V là không gian vectơ và $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là một cơ sở của V. Khi đó \mathcal{B} được gọi là **cơ sở được sắp** của V nếu thứ tự các vectơ trong \mathcal{B} được cố định. Ta thường dùng ký hiệu

$$(u_1,u_2,\ldots,u_n)$$

để chỉ cơ sở được sắp theo thứ tự u_1, u_2, \ldots, u_n .

Định lý. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là cơ sở của V. Khi đó mọi vecto $u \in V$ đều được biểu diễn một cách duy nhất dưới dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n.$$

Ta đặt

$$[\boldsymbol{u}]_{\mathcal{B}} = \left(egin{array}{c} lpha_1 \\ lpha_2 \\ \vdots \\ lpha_n \end{array}
ight).$$

Khi đó $[u]_{\mathcal{B}}$ được gọi là tọa độ của u theo cơ sở \mathcal{B} .

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^3 , ta có cơ sở chính tắc

$$\mathcal{B}_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}.$$

Với $u = (x_1, x_2, x_3)$ ta có: $u = x_1e_1 + x_2e_2 + x_3e_3$. Suy ra

$$[u]_{\mathcal{B}_0} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = u^\top.$$

Nhận xét. Đối với cơ sở chính tắc $\mathcal{B}_0 = (e_1, e_2, \dots, e_n)$ của không gian K^n và $u = (x_1, x_2, \dots, x_n) \in K^n$ ta có

$$[u]_{\mathcal{B}_0} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = u^{\top}.$$

Phương pháp tìm $[u]_{\mathcal{B}}$

Cho V là không gian vectơ có cơ sở là $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ và $u\in V$. Để tìm $[u]_B$ ta đi giải phương trình

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n \quad (*)$$

với ẩn $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$. Do \mathcal{B} là cơ sở nên phương trình (*) có nghiệm duy nhất

$$(\alpha_1,\alpha_2,\ldots,\alpha_n)=(c_1,c_2,\ldots,c_n).$$

Khi đó
$$[u]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
.

Lưu ý. Khi $V = \mathbb{R}^n$, để giải phương trình (*) ta lập hệ

$$(u_1^\top u_2^\top \dots u_n^\top \mid u^\top)$$

Ví dụ. Trong không gian \mathbb{R}^3 , cho các vecto

$$u_1 = (1, 2, 1), u_2 = (1, 3, 1), u_3 = (2, 5, 3).$$

- a) Chúng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- b) Tìm tọa độ của vecto $u = (a, b, c) \in \mathbb{R}^3$ theo cơ sở \mathcal{B} .

Giải.

a) Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 5 & 3 \end{pmatrix}$$
. Ta có $\det A = 1$, suy ra u_1, u_2, u_3

độc lập tuyến tính. Vậy \mathcal{B} là cơ sở của \mathbb{R}^3 .

b) Với u=(a,b,c), để tìm $[u]_{\mathcal{B}}$ ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 2 & a \\ 2 & 3 & 5 & b \\ 1 & 1 & 3 & c \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 4a - b - c \\ 0 & 1 & 0 & -a + b - c \\ 0 & 0 & 1 & -a + c \end{array}\right).$$

Vậy
$$[u]_{\mathcal{B}} = \left(\begin{array}{c} 4a-b-c \\ -a+b-c \\ -a+c \end{array} \right).$$

Ví dụ.(tự làm) Trong không gian \mathbb{R}^4 cho

$$u_1 = (1, 2, 1, 2); u_2 = (-1, -1, 2, 1); u_3 = (-2, -2, 3, 1).$$

Gọi W là không gian sinh bởi u_1, u_2, u_3 .

- a) Chứng tỏ $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở của W.
- b) Cho $u=(x,y,z,t)\in\mathbb{R}^4$. Tìm điều kiện để $u\in W$, sau đó tìm $[u]_{\mathcal{B}}$?

Hướng dẫn. b) Để $u \in W$ thì u là tổ hợp tuyến tính của u_1, u_2, u_3 . Ta xét hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{ccc|c} 1 & -1 & -2 & x \\ 2 & -1 & -2 & y \\ 1 & 2 & 3 & z \\ 2 & 1 & 1 & t \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & -x+y \\ 0 & 1 & 0 & 8x-5y+2z \\ 0 & 0 & 1 & -5x+3y-z \\ 0 & 0 & 0 & -x-z+t \end{array}\right).$$

Như vậy để $u \in W$ thì -x - z + t = 0. Hơn nữa

$$[u]_{\mathcal{B}} = \begin{pmatrix} -x+y\\ 8x-5y+2z\\ -5x+3y-z \end{pmatrix}.$$

$$\begin{array}{l} \mathbf{Vi} \ \mathbf{du.}(\mathrm{t}\psi \ \mathrm{lam}) \ \mathrm{Cho} \ \mathcal{B}_1 = (u_1 = (1,2,3), u_2 = (2,1,1), u_3 = (2,1,3)) \ \mathrm{va} \\ \mathcal{B}_2 = (v_1 = (2,5,-2), v_2 = (1,3,-2), v_3 = (-1,-2,1)) \ \mathrm{la} \ \mathrm{hai} \ \mathrm{co} \ \mathrm{so} \ \mathrm{cua} \\ \mathbb{R}^3 \ \mathrm{va} \ [u]_{\mathcal{B}_1} = \left(\begin{array}{c} 2 \\ -3 \\ 1 \end{array} \right) . \ \mathrm{Tim} \ [u]_{\mathcal{B}_2}?$$

Đáp án.
$$[u]_{\mathcal{B}_2} = (10 -4 \ 18)^{\top}$$
.

Mệnh đề. Cho \mathcal{B} là cơ sở của V. Khi đó, với mọi $u, v \in V, \alpha \in \mathbb{R}$ ta có:

- $[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$.
- $[\alpha u]_{\mathcal{B}} = \alpha [u]_{\mathcal{B}}$.

Ma trận chuyển cơ sở

 \mathbf{Dinh} nghĩa. Cho V là một không gian vecto và

$$\mathcal{B}_1 = (u_1, u_2, \dots, u_n), \, \mathcal{B}_2 = (v_1, v_2, \dots, v_n)$$

là hai cơ sở của V. Đặt

$$P = ([v_1]_{\mathcal{B}_1} \ [v_2]_{\mathcal{B}_1} \dots [v_n]_{\mathcal{B}_1}).$$

Khi đó P được gọi là ma trận chuyển cơ sở từ cơ sở \mathcal{B}_1 sang cơ sở \mathcal{B}_2 và được ký hiệu $(\mathcal{B}_1 \to \mathcal{B}_2)$.

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = (u_1 = (1, -2, 3), u_2 = (2, 3, -1), u_3 = (3, 1, 3))$$

là cơ sở của \mathbb{R}^3 . Gọi \mathcal{B}_0 là cở sở chính tắc của \mathbb{R}^3 . Khi đó

$$(\mathcal{B}_0 \to \mathcal{B}) = ([u_1]_{\mathcal{B}_0} \ [u_2]_{\mathcal{B}_0} \ [u_3]_{\mathcal{B}_0}) = (u_1^\top \ u_2^\top \ u_3^\top) = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 3 & 1 \\ 3 & -1 & 3 \end{pmatrix}.$$

Nhận xét. Nếu $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là một cơ sở của \mathbb{R}^n và \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^n thì

$$(\mathcal{B}_0 \to B) = (u_1^\top \ u_2^\top \dots \ u_n^\top)$$

Phương pháp tìm $(\mathcal{B}_1 \to \mathcal{B}_2)$

Giả sử $\mathcal{B}_1 = (u_1, u_2, \dots, u_n)$ và $\mathcal{B}_2 = (v_1, v_2, \dots, v_n)$ là hai cơ sở của V. Để tìm $(\mathcal{B}_1 \to \mathcal{B}_2)$, ta thực hiện như sau:

- Cho u là vecto bất kỳ của V, xác định $[u]_{\mathcal{B}_1}$.
- Lần lượt thay thế u bằng v_1, v_2, \ldots, v_n ta xác định được

$$[v_1]_{\mathcal{B}_1}, [v_2]_{\mathcal{B}_1}, \ldots, [v_n]_{\mathcal{B}_1}.$$

Khi đó

$$(\mathcal{B}_1 \to \mathcal{B}_2) = ([v_1]_{\mathcal{B}_1} [v_2]_{\mathcal{B}_1} \dots [v_n]_{\mathcal{B}_1}).$$

Đặc biệt, khi $V = \mathbb{R}^n$, để xác định $(\mathcal{B}_1 \to \mathcal{B}_2)$ ta có thể làm như sau:

- Lập ma trận mở rộng $(u_1^\top\ u_2^\top\dots\ u_n^\top\ |\ v_1^\top\ v_2^\top\dots\ v_n^\top)$
- Dùng các phép biến đổi sơ cấp trên dòng đưa ma trận trên về dạng $(I_n|P)$.
- Khi đó $(\mathcal{B}_1 \to \mathcal{B}_2) = P$.

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^3 , cho hai cơ sở

$$\mathcal{B}_1 = (u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (2, 3, 1))$$

và

$$\mathcal{B}_2 = (v_1 = (1, -3, 2), v_2 = (-1, -2, 4), v_3 = (3, 3, -2)).$$

Tìm ma trận chuyển cơ sở từ \mathcal{B}_1 sang \mathcal{B}_2 .

Giải. Cho $u=(a,b,c)\in\mathbb{R}^3$, xác định $[u]_{\mathcal{B}_1}$. Ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top | u^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 2 & a \\ 1 & 2 & 3 & b \\ 1 & 1 & 1 & c \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & a-b+c \\ 0 & 1 & 0 & -2a+b+c \\ 0 & 0 & 1 & a-c \end{array}\right).$$

Như vậy $[u]_{\mathcal{B}_1} = \begin{pmatrix} a-b+c\\ -2a+b+c\\ a-c \end{pmatrix}$. Thay lần lượt u bởi v_1,v_2,v_3 ta có

$$[v_1]_{\mathcal{B}_1} = \begin{pmatrix} 6 \\ -3 \\ -1 \end{pmatrix}, [v_2]_{\mathcal{B}_1} = \begin{pmatrix} 5 \\ 4 \\ -5 \end{pmatrix}, [v_3]_{\mathcal{B}_1} = \begin{pmatrix} -2 \\ -5 \\ 5 \end{pmatrix}.$$

Vây
$$(\mathcal{B}_1 \to \mathcal{B}_2) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix}$$
.

Cách khác. Lập ma trận mở rộng

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ v_1^\top \ v_2^\top \ v_3^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & -3 & -2 & 3 \\ 1 & 1 & 1 & 2 & 4 & -2 \end{array}\right) \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 6 & 5 & -2 \\ 0 & 1 & 0 & -3 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 5 \end{pmatrix}. \text{ Suy ra } (\mathcal{B}_1 \to \mathcal{B}_2) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix}.$$

TS. Lê Văn Luyện

Định lý. Cho V là một không gian vectơ và $\mathcal{B}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ là các cơ sở của V. Khi đó

- (i) $(\mathcal{B} \to \mathcal{B}) = I_n$.
- (ii) $\forall u \in V, [u]_{\mathcal{B}_1} = (\mathcal{B}_1 \to \mathcal{B}_2)[u]_{\mathcal{B}_2}.$
- (iii) $(\mathcal{B}_2 \to \mathcal{B}_1) = (\mathcal{B}_1 \to \mathcal{B}_2)^{-1}$.
- $\mathrm{(iv)}\ (\mathcal{B}_1 \to \mathcal{B}_3) = (\mathcal{B}_1 \to \mathcal{B}_2)(\mathcal{B}_2 \to \mathcal{B}_3).$

Nhắc lại. Cho $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ là một cơ sở của \mathbb{R}^n . Khi đó

$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top \ u_2^\top \dots u_n^\top).$$

Hệ quả. Cho $\mathcal{B}_1, \mathcal{B}_2$ là hai cơ sở của không gian K^n . Khi đó

- (i) $(\mathcal{B}_1 \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}$.
- (ii) $\forall u \in V, [u]_{\mathcal{B}_1} = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}[u]_{\mathcal{B}_0}.$
- (iii) $(\mathcal{B}_1 \to \mathcal{B}_2) = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}(\mathcal{B}_0 \to \mathcal{B}_2).$

Ví dụ. Cho W là không gian con của \mathbb{R}^4 sinh bởi các vectơ:

$$u_1 = (1, 2, 2, 1), u_2 = (0, 2, 0, 1), u_3 = (-2, 3, -4, 1).$$

- a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.
- b) Cho u=(a,b,c,d), tìm điều kiện để $u\in W$. Khi đó tìm $[u]_{\mathcal{B}}$?
- c) Cho $v_1 = (1,0,2,0); v_2 = (0,2,0,1); v_3 = (0,0,0,1)$. Chứng minh $\mathcal{B}' = (v_1,v_2,v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' ?

Giải.

a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.

Lập
$$A=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}=\begin{pmatrix}1&2&2&1\\0&2&0&1\\-2&3&-4&1\end{pmatrix}$$
. Ta có $r(A)=3$, suy ra $\mathcal B$ độc lập tuyến tính. Vì $W=\langle\mathcal B\rangle$ nên $\mathcal B$ là cơ sở của W .

b) Cho u = (a, b, c, d), tìm điều kiện để $u \in W$. Khi đó tìm $[u]_{\mathcal{B}}$?

Ta có $u \in W$ khi u là tổ hợp tuyến tính của \mathcal{B} . Lập hệ phương trình

$$(u_1^\top\ u_2^\top\ u_3^\top|u^\top) = \left(\begin{array}{ccc|c} 1 & 0 & -2 & a \\ 2 & 2 & 3 & b \\ 2 & 0 & -4 & c \\ 1 & 1 & 1 & d \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & a+2b-4d \\ 0 & 1 & 0 & -a-3b+7d \\ 0 & 0 & 1 & b-2d \\ 0 & 0 & 0 & -2a+c \end{array}\right).$$

Dựa vào hệ phương trình, ta thấy để $u \in W$ thì

$$-2a + c = 0.$$

Hơn nữa

$$[u]_B = \left(\begin{array}{c} a+2b-4d\\ -a-3b+7d\\ b-2d \end{array}\right).$$

c) Cho $v_1 = (1, 0, 2, 0); v_2 = (0, 2, 0, 1); v_3 = (0, 0, 0, 1)$. Chứng minh $\mathcal{B}' = (v_1, v_2, v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' ?

Ta thấy các vectơ v_1, v_2, v_3 đều thỏa điều kiện -2a + c = 0 nên theo câu a), các vectơ này thuộc W.

Mặt khác, dễ thấy rằng $\mathcal{B}'=(v_1,v_2,v_3)$ độc lập tuyến tính nên \mathcal{B}' cũng là cơ sở của W (do dim $W=|\mathcal{B}|=3=|\mathcal{B}'|$). Dùng kết quả ở câu b) ta có

$$[v_1]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, [v_2]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, [v_2]_{\mathcal{B}} = \begin{pmatrix} -4 \\ 7 \\ -2 \end{pmatrix}.$$

Suy ra
$$(\mathcal{B} \to \mathcal{B}') = \begin{pmatrix} 1 & 0 & -4 \\ -1 & 1 & 7 \\ 0 & 0 & -2 \end{pmatrix}$$
.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = (u_1 = (1, 1, 3), u_2 = (1, -2, 1), u_3 = (1, -1, 2))$$

$$T = (v_1 = (1, -2, 2), v_2 = (1, -2, 1), v_3 = (1, -1, 2))$$

- a) Chứng tỏ S và T là cơ sở của \mathbb{R}^3 .
- b) Tìm ma trận chuyển cơ sở từ S sang T?

c) Cho
$$u \in \mathbb{R}^3$$
 thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tìm $[u]_S$?

a) Chứng tỏ S và T là cơ sở của \mathbb{R}^3 .

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & -2 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
. Ta có $r(A) = 3$, suy ra S độc

lập tuyến tính. Hơn nữa $\dim\mathbb{R}^3=$ số vectơ của S. Vậy S là cơ sở của $\mathbb{R}^3.$ Làm tương tự cho T.

b) Tìm ma trận chuyển cơ sở từ S sang T?

Lập ma trận mở rộng

$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \ | \ v_1^{\top} \ v_2^{\top} \ v_3^{\top}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -2 & -1 & -2 & -2 & -1 \\ 3 & 1 & 2 & 2 & 1 & 2 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 & 1 \end{array}\right). \text{ Suy ra } (S \rightarrow T) = \left(\begin{array}{ccc|c} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{array}\right).$$

c) Cho
$$u \in \mathbb{R}^3$$
 thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tìm $[u]_S$?

Ta có
$$[u]_S = (S \to T)[u]_T = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ 4 \end{pmatrix}.$$

TS. Lê Văn Luyện

Ánh xạ tuyến tính

Định nghĩa. Cho V và W là hai không gian vectơ trên K. Ta nói $f:V\longrightarrow W$ là một ánh xa tuyến tính nếu nó thỏa hai điều kiện sau:

- i) f(u+v) = f(u) + f(v) với mọi $u, v \in V$;
- ii) $f(\alpha u) = \alpha f(u)$ với mọi $\alpha \in K$ và với mọi $u \in V$.

Nhận xét. $Diều\ kiện\ i)\ và\ ii)\ trong\ định nghĩa có thể được thay thế bằng một điều kiện :$

$$f(\alpha u + v) = \alpha f(u) + f(v), \forall \alpha \in K, \forall u, v \in V.$$

- L(V, W) là tập hợp các ánh xạ tuyến tính từ V vào W.
- Nếu $f \in L(V,V)$ thì f được gọi là một **toán tử tuyến tính** trên V. Viết tắt $f \in L(V)$ hay $f \in End_KV$

Không gian nhân

Định nghĩa. Cho $f:V\to W$ là một ánh xạ tuyến tính. Ta đặt

$$\operatorname{Ker} f = \{ u \in V \, | \, f(u) = \mathbf{0} \}$$

Khi đó Kerf là không gian con của V, ta gọi Kerf là không gian nhân của f.

Nhận xét. Dựa vào định nghĩa, ta được

$$u \in \operatorname{Ker} f \Leftrightarrow f(u) = 0.$$

Ví dụ. Cho $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (x + y - z, 2x + 3y - z, 3x + 5y - z).$$

Tìm một cơ sở của $\operatorname{Ker} f$?

$$f(x,y,z) = (x+y-z, 2x+3y-z, 3x+5y-z)$$

Giải. Gọi $u=(x,y,z)\in\mathbb{R}^3$. Ta có

$$u \in \operatorname{Ker} f \Leftrightarrow f(u) = 0$$

$$\Leftrightarrow \begin{cases} x + y - z = 0 \\ 2x + 3y - z = 0 \\ 3x + 5y - z = 0 \end{cases}$$

Ma trận hóa ta được,
$$\tilde{A} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Hệ phương trình có nghiệm

$$(x, y, z) = (2t, -t, t)$$
 với $t \in \mathbb{R}$.

Nghiệm cơ bản của hệ là $u_1 = (2, -1, 1)$.

Vậy, Ker f có một cơ sở là $\{u_1 = (2, -1, 1)\}.$

Không gian ảnh

Định nghĩa. Cho $f:V\to W$ là một ánh xạ tuyến tính. Ta đặt

$$\mathrm{Im} f = \{ f(u) \, | \, u \in V \}$$

Khi đó Imf là không gian con của W, ta gọi Imf là không gian ảnh của f.

Định lý. Cho $f: V \to W$ là một ánh xạ tuyến tính. Khi đó, nếu

$$S = \{u_1, u_2, \dots, u_m\}$$

là tập sinh của V thì

$$f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$$

là tập sinh của Im f.

Nhận xét. Dựa vào Định lý trên, để tìm cơ sở Imf, ta chọn một tập sinh S của V (để đơn giản ta có thể chọn cơ sở chính tắc). Khi đó Imf sinh bởi tập ảnh của S.

Ví dụ. Cho $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (x + y - z, 2x + 3y - z, 3x + 5y - z).$$

Tìm một cơ sở của Im f?

Giải. Gọi $\mathcal{B}_0 = \{e_1, e_2, e_3\}$ là cơ sở chính tắc của \mathbb{R}^3 . Ta có

$$f(e_1) = f(1,0,0) = (1,2,3),$$

 $f(e_2) = f(0,1,0) = (1,3,5),$
 $f(e_3) = f(0,0,1) = (-1,-1,-1).$

Ta có Imf sinh bởi $\{f(e_1), f(e_2), f(e_3)\}$.

Lập ma trận
$$A = \begin{pmatrix} f(e_1) \\ f(e_2) \\ f(e_3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Do đó Imf có cơ sở là $\{v_1 = (1, 2, 3), v_2 = (0, 1, 2)\}.$

Ví dụ.(tự làm) Cho $f:\mathbb{R}^3 \to \mathbb{R}^4$ được xác định bởi:

$$f(x, y, z) = (x + 2y - 3z, 3x + 2y, 2x + 2y - z, 4x - y + 5z).$$

Tìm một cơ sở của Im f?

Ma trận biểu diễn ánh xạ tuyến tính

Định nghĩa. Cho V có cơ sở $\mathcal{B} = (u_1, u_2, \dots, u_n), W$ có cơ sở $\mathcal{B}' = (v_1, v_2, \dots, v_m)$ và $f \in L(V, W)$. Đặt

$$P = ([f(u_1)]_{\mathcal{B}'} \ [f(u_2)]_{\mathcal{B}'} \ \dots \ [f(u_n)]_{\mathcal{B}'}).$$

Khi đó ma trận P được gọi là ma trận biểu diễn của ánh xạ f theo cặp cơ sở $\mathcal{B}, \mathcal{B}'$, ký hiệu $P = [f]_{\mathcal{B}, \mathcal{B}'}$ (hoặc $[f]_{\mathcal{B}}^{\mathcal{B}'}$).

Nếu $f \in L(V)$ thì ma trận $[f]_{\mathcal{B},\mathcal{B}}$ được gọi là ma trận biểu diễn toán tử tuyến tính f, ký hiệu $[f]_{\mathcal{B}}$.

Ví dụ. Xét ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x,y,z) = (x-y,2x+y+z)$$

và cặp cơ sở $\mathcal{B} = (u_1 = (1, 1, 0), u_2 = (0, 1, 2), u_3 = (1, 1, 1)),$ $\mathcal{C} = (v_1 = (1, 3), v_2 = (2, 5)).$ Tìm $[f]_{\mathcal{B},\mathcal{C}}$? Ta có

$$f(u_1) = (0,3),$$

 $f(u_2) = (-1,3),$
 $f(u_3) = (0,4).$

Với $v = (a, b) \in \mathbb{R}^2$, tìm $[v]_{\mathcal{C}}$.

Lập
$$(v_1^\top \ v_2^\top \mid v^\top) \rightarrow \begin{pmatrix} 1 & 2 \mid a \\ 3 & 5 \mid b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \mid -5a+2b \\ 0 & 1 \mid 3a-b \end{pmatrix}$$
.

Suy ra
$$[v]_{\mathcal{C}} = \begin{pmatrix} -5a + 2b \\ 3a - b \end{pmatrix}$$
.

Lần lượt thay $f(u_1), f(u_2), f(u_3)$ ta có

$$[f(u_1)]_{\mathcal{C}} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}, [f(u_2)]_{\mathcal{C}} = \begin{pmatrix} 11 \\ -6 \end{pmatrix}, [f(u_3)]_{\mathcal{C}} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}.$$

Vây

$$[f]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 6 & 11 & 8 \\ -3 & -6 & -4 \end{pmatrix}.$$

Ví dụ. Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ định bởi

$$f(x, y, z, t) = (x - 2y + z - t, x + 2y + z + t, 2x + 2z).$$

Tìm ma trận biểu diễn ánh xạ tuyến tính f theo cặp cơ sở chính tắc.

Giải.

$$[f]_{\mathcal{B}_0,\mathcal{B}_0'} = \begin{pmatrix} 1 & -2 & 1 & -1 \\ 1 & 2 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{pmatrix}$$

Ví dụ. Cho $f \in L(\mathbb{R}^2)$ xác định bởi f(x,y) = (2x + y, x - 4y). Khi đó ma trận biểu diễn f theo cơ sở chính tắc \mathcal{B}_0 là:

$$[f]_{\mathcal{B}_0} = \left(\begin{array}{cc} 2 & 1\\ 1 & -4 \end{array}\right).$$

Định lý. Cho V và W là các không gian vectơ; $\mathcal{B}, \mathcal{B}'$ và $\mathcal{C}, \mathcal{C}'$ tương ứng là các cặp cơ sở trong V và W. Khi đó, với mọi ánh xạ tuyến tính $f: V \to W$ ta có

- (i) $\forall u \in V, [f(u)]_{\mathcal{C}} = [f]_{\mathcal{B},\mathcal{C}}[u]_{\mathcal{B}}.$
- (ii) $[f]_{\mathcal{B}',\mathcal{C}'} = (\mathcal{C} \to \mathcal{C}')^{-1} [f]_{\mathcal{B},\mathcal{C}} (\mathcal{B} \to \mathcal{B}').$

Hệ quả. Cho \mathcal{B} và \mathcal{B}' là hai cơ sở của không gian hữu hạn chiều V. Khi đó đối với moi toán tử tuyến tính $f \in L(V)$ ta có

- (i) $\forall u \in V, [f(u)]_{\mathcal{B}} = [f]_{\mathcal{B}}[u]_{\mathcal{B}}.$
- (ii) $[f]_{\mathcal{B}'} = (\mathcal{B} \to \mathcal{B}')^{-1} [f]_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}').$

Ví dụ. Trong không gian \mathbb{R}^3 cho cơ sở

$$\mathcal{B} = (u_1 = (1, 1, 0); u_2 = (0, 2, 1); u_3 = (2, 3, 1))$$

và ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ định bởi:

$$f(x, y, z) = (2x + y - z, x + 2y - z, 2x - y + 3z).$$

Tìm $[f]_{\mathcal{B}}$?

Giải. Gọi \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^3 , ta có

$$[f]_{\mathcal{B}_0} = \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{array}\right).$$

Áp dụng hệ quả trên, ta có

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1} [f]_{\mathcal{B}_0} (\mathcal{B}_0 \to \mathcal{B}),$$

trong đó
$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top \ u_2^\top \ u_3^\top) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$
, do đó

$$(\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{pmatrix} -1 & 2 & -4 \\ -1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Suy ra

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1}[f]_{\mathcal{B}_0}(\mathcal{B}_0 \to \mathcal{B})$$

$$= \begin{pmatrix} -1 & 2 & -4 \\ -1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -8 & 7 & -13 \\ -3 & 2 & -3 \\ 5 & -3 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -8 \\ -1 & 1 & -3 \\ 2 & 0 & 7 \end{pmatrix}.$$

Ví dụ. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$, biết ma trận biểu diễn của f trong cặp cơ sở $\mathcal{B} = (u_1 = (1,1,1); u_2 = (1,0,1); u_3 = (1,1,0))$ và $\mathcal{C} = (v_1 = (1,1); v_2 = (2,1))$ là

$$[f]_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{ccc} 2 & 1 & -3 \\ 0 & 3 & 4 \end{array}\right).$$

Tìm công thức của f.

Cách 1. Do
$$[f]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{pmatrix}$$
. Ta có

•
$$[f(u_1)]_{\mathcal{C}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
. Suy ra $f(u_1) = 2v_1 + 0v_2 = (2, 2)$.

•
$$[f(u_2)]_{\mathcal{C}} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
. Suy ra $f(u_2) = v_1 + 3v_2 = (7,4)$.

•
$$[f(u_3)]_{\mathcal{C}} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
. Suy ra $f(u_3) = -3v_1 + 4v_2 = (5,1)$.

Cho $u = (x, y, z) \in \mathbb{R}^3$. Tìm $[u]_{\mathcal{B}}$.

$$\text{Lập } (u_1^\top u_2^\top u_3^\top | u^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 1 & x \\ 1 & 0 & 1 & y \\ 1 & 1 & 0 & z \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & x-y-z \\ 0 & 1 & 0 & 2x+y-z \\ 0 & 0 & 1 & -x+z \end{array} \right).$$

Vậy
$$[u]_{\mathcal{B}} = \begin{pmatrix} -x + y + z \\ x - y \\ x - z \end{pmatrix}$$
.

Suy ra $u = (-x + y + z)u_1 + (x - y)u_2 + (x - z)u_3$.

Vậy, ta có

$$f(u) = (-x + y + z)f(u_1) + (x - y)f(u_2) + (x - z)f(u_3)$$

= $(-x + y + z)(2, 2) + (x - y)(7, 4) + (x - z)(5, 1)$
= $(10x - 5y - 3z, 3x - 2y + z).$

Cách 2. Gọi \mathcal{B}_0 và \mathcal{C}_0 lần lượt là cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^2 . Áp dụng công thức ta có

$$[f]_{\mathcal{B}_0,\mathcal{C}_0} = (\mathcal{C} \to \mathcal{C}_0)^{-1} [f]_{\mathcal{B},\mathcal{C}}(\mathcal{B} \to \mathcal{B}_0).$$

Ta có

•
$$(\mathcal{C} \to \mathcal{C}_0)^{-1} = (\mathcal{C}_0 \to C) = (v_1^\top v_2^\top) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
.

$$\bullet \ (\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top \, u_2^\top \, u_3^\top) = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right).$$

Suy ra
$$(\mathcal{B} \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

Vậy

$$[f]_{\mathcal{B}_{0},\mathcal{C}_{0}} = (\mathcal{C} \to \mathcal{C}_{0})^{-1}[f]_{\mathcal{B},\mathcal{C}}(\mathcal{B} \to \mathcal{B}_{0})$$

$$= \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 7 & 5 \\ 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & -5 & -3 \\ 3 & -2 & 1 \end{pmatrix}.$$

Suy ra f(x, y, z) = (10x - 5y - 3z, 3x - 2y + z).

Ví dụ.
(tự làm) Cho f là toán tử tuyến tính trong không gian
 \mathbb{R}^3 được xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + 3x_2, -2x_2 + x_3, 4x_1 - x_2 + 2x_3).$$

- a) Tìm ma trận biểu diễn f trong cơ sở chính tắc của \mathbb{R}^3 .
- b) Tìm ma trận biểu diễn f trong cơ sở

$$\mathcal{B} = (u_1 = (-1, 2, 1), u_2 = (0, 1, 1), u_3 = (0, -3, -2)).$$

$ilde{\mathrm{DAI}}$ Số A2

Chương 1

SỰ CHÉO HÓA

TS. Lê Văn Luyện

lvluyen@hcmus.edu.vn

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh, 2016

Nội dung

Chương 1. SỰ CHÉO HÓA

- 1. Trị riêng và vectơ riêng
- 2. Không gian con riêng
- 3. Toán tử và ma trận chéo hóa được
- 4. Một vài ứng dụng của sự chéo hóa

Một số ký hiệu

- K: Trường $(\mathbb{Q}, \mathbb{R}, \mathbb{C})$
- \bullet $M_n(K)$: Tập của tất cả các ma trận vuông cấp n trên trường K.
- \bullet I_n : Ma trận đơn vị cấp n
- \bullet diag $(\lambda_1,\ldots,\lambda_n)$: Ma trận đường chéo
- V: Không gian vecto n chiều trên trường K.
- \mathcal{B}_0 : Cơ sở chính tắc của V.
- $(\mathcal{B} \to \mathcal{B}')$: Ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}'
- \bullet [f]_B: Ma trận biểu diễn ánh xạ tuyến tính f theo cơ sở \mathcal{B}
- $End_K(V)$: Tập các toán tử tuyến tính $f: V \to V$
- \bullet **Id**_V: Ánh xạ đồng nhất trên V

Giới thiệu

Bài toán 1. Cho $f \in End_K(V)$ là một toán tử tuyến tính. Tồn tại hay không một cơ sở \mathcal{B} của V sao cho $[f]_{\mathcal{B}}$ là ma trận đường chéo?

Bài toán 2. Cho $A \in M_n(K)$ là một ma trận vuông cấp n. Tồn tại hay không một ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận đường chéo?

Nhắc lại.

Nếu $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là cơ sở của V thì

$$[f]_{\mathcal{B}} = ([f(u_1)]_{\mathcal{B}} [f(u_2)]_{\mathcal{B}} \dots [f(u_n)]_{\mathcal{B}}).$$

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x_1, x_2) = (3x_1 + 4x_2, 6x_1 + 5x_2).$$

và cơ sở $\mathcal{B} = \{u_1 = (-1, 1), u_2 = (2, 3)\}$. Tìm $[f]_{\mathcal{B}}$?

Đáp án.

$$[f]_{\mathcal{B}} = \left(\begin{array}{cc} -1 & 0 \\ 0 & 9 \end{array} \right).$$

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
 và $P = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$.

Tìm P^{-1} và tính $P^{-1}AP$?

Dáp án.
$$P^{-1} = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$P^{-1}AP = (P^{-1}A)P = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -4 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

1.1. Trị riêng và vectơ riêng

Định nghĩa. Cho $f \in End_K(V)$. Vecto $v \in V$ được gọi là một \boldsymbol{vecto} \boldsymbol{rieng} của f nếu:

- (i) $v \neq 0$;
- (ii) tồn tại $\lambda \in K$ sao cho $f(v) = \lambda v$.

Khi đó ta nói λ là một tri $ri\hat{e}ng$ của f, và v là vecto $ri\hat{e}ng$ under với tri $ri\hat{e}ng$ u.

Nhận xét. Nếu v là vectơ riêng ứng với trị riêng λ thì μv ($\mu \neq 0$) cũng là vectơ riêng ứng với trị riêng λ .

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x_1, x_2) = (x_1 + 2x_2, -x_1 + 4x_2).$$

Chứng tỏ $\lambda = 2$ là một trị riêng của f.

$$f(x_1, x_2) = (x_1 + 2x_2, -x_1 + 4x_2)$$
 và $\lambda = 2$

Giải. Giả sử $v=(x_1,x_2)$. Xét phương trình $f(v)=\lambda v$

$$f(v) = \lambda v$$

$$\Leftrightarrow (x_1 + 2x_2, -x_1 + 4x_2) = 2(x_1, x_2)$$

$$\Leftrightarrow (-x_1 + 2x_2, -x_1 + 2x_2) = (0, 0)$$

$$\Leftrightarrow \begin{cases} -x_1 + 2x_2 = 0, \\ -x_1 + 2x_2 = 0. \end{cases}$$

Chọn v=(2,1). Ta có f(v)=2v. Suy ra $\lambda=2$ là một trị riêng của f.

Định nghĩa. Cho $f \in End_K(V)$ và \mathcal{B} là một cơ sở của V. Ta đặt $A := [f]_{\mathcal{B}}$, khi đó **đa thức đặc trưng** của f được định nghĩa là

$$P_f(\lambda) := \det(A - \lambda I_n).$$

Nhận xét. Đa thức đặc trưng của f không phụ thuộc vào cách chọn cơ sở của không gian V.

Giải thích. Giả sử \mathcal{B} và \mathcal{B}' là hai cơ sở của V. Khi đó

$$[f]_{\mathcal{B}'} = (\mathcal{B} \to \mathcal{B}')^{-1} [f]_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}').$$

Đặt
$$A := [f]_{\mathcal{B}}, A' := [f]_{\mathcal{B}'}$$
 và $P := (\mathcal{B} \to \mathcal{B}')$, ta có
$$|A' - \lambda I_n| = |P^{-1}AP - \lambda I_n|$$
$$= |P^{-1}(A - \lambda I_n)P|$$
$$= |P^{-1}||A - \lambda I_n||P|$$
$$= |A - \lambda I_n|.$$

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (3x_1 + x_2 + x_3, 2x_1 + 4x_2 + 2x_3, x_1 + x_2 + 3x_3).$$

Tìm đa thức đặc trưng của f?

Giải. Ma trận biểu diễn f theo cơ sở chính tắc là

$$A = [f]_{\mathcal{B}_0} = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}.$$

Khi đó

$$P_f(\lambda) = |A - \lambda I_3|$$

$$= \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix}$$

$$= -\lambda^3 + 10\lambda^2 - 28\lambda + 24.$$

Mệnh đề. λ là trị riêng của toán tử f khi và chỉ khi nó là nghiệm của phương trình đặc trưng

$$P_f(t) = 0.$$

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x_1, x_2) = (x_1 + 2x_2, -x_1 + 4x_2).$$

Tìm trị riêng của f?

Giải. Đa thức đặc trưng của f là

$$P_f(\lambda) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3).$$

Như vậy toán tử f có hai trị riêng là $\lambda_1 = 2, \lambda_2 = 3$.

1.2. Không gian riêng

Định nghĩa. Cho $f \in End_K(V)$. Nếu λ là một trị riêng của f thì

$$E(\lambda) := \{v \in V | \ f(v) = \lambda v\}$$

là một không gian con của V và ta gọi nó là không gian $ri\hat{e}ng$ của f ứng với trị riêng λ .

Nhận xét.

$$E(\lambda) = \{ v \in V \mid (f - \lambda \operatorname{Id}_V)(v) = \mathbf{0} \}$$
$$= Ker(f - \lambda \operatorname{Id}_V).$$

Ngoài ra, nếu $f \in End_K(K^n)$ có ma trận biểu diễn theo cơ sở chính tắc là A thì $E(\lambda)$ chính là không gian nghiệm của hệ phương trình

$$(A - \lambda I_n)X = 0.$$

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (3x_1 - 2x_2, -2x_1 + 3x_2, 5x_3).$$

Tìm các trị riêng của f và không gian riêng ứng với các trị riêng này?

Giải. Ma trận biểu diễn f theo cơ sở chính tắc là

$$A = [f]_{\mathcal{B}_0} = \left(\begin{array}{rrr} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{array} \right).$$

- Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -(\lambda - 5)^2(\lambda - 1).$$

- Trị riêng

$$P_f(\lambda) = 0 \Leftrightarrow \lambda = 5 \text{ (bôi 2)}, \ \lambda = 1 \text{ (bôi 1)}.$$

Vậy f có 2 trị riêng là $\lambda_1 = 5$ (bội 2), $\lambda_2 = 1$ (bội 1).

- Không gian riêng

• Với $\lambda_1 = 5$, không gian riêng E(5) là không gian nghiệm của hệ

$$(A - 5I_3)X = \mathbf{0} \Leftrightarrow \begin{pmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -2x_1 - 2x_2 = 0; \\ -2x_1 - 2x_2 = 0. \end{cases}$$
 (1)

Giải hệ (1) ta tìm được nghiệm tổng quát

$$(x_1, x_2, x_3) = (-t, t, s), \quad t, s \in \mathbb{R}.$$

Suy ra E(5) có $\dim E(5) = 2$ với cơ sở

$$\mathcal{B}_1 = \{(-1, 1, 0); (0, 0, 1)\}.$$

• Với $\lambda_2=1$, không gian E(1) là không gian nghiệm của hệ

$$(A - I_3)X = 0 \Leftrightarrow \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} 2x_1 & -2x_2 & = 0; \\ -2x_1 & +2x_2 & = 0; \\ 4x_3 & = 0. \end{cases}$$
(2)

Giải hệ (2) ta tìm được nghiệm tổng quát

$$(x_1, x_2, x_3) = (t, t, 0), \quad t \in \mathbb{R}.$$

Suy ra E(1) có dimE(1) = 1 với cơ sở

$$\mathcal{B}_2 = \{(1, 1, 0)\}.$$

Nhắc lại. Cho W_1, W_2, \ldots, W_n là các không gian con của V. Ta nói W là không gian tổng trực tiếp của W_1, W_2, \ldots, W_n , ký hiệu

$$W = W_1 \oplus W_2 \oplus \ldots \oplus W_n$$

nếu $W=W_1+W_2+\cdots+W_n$ và với mọi $i\in\overline{1,n}$

$$W_i \bigcap \left(\sum_{i \neq j=1}^n W_j\right) = \{0\}.$$

Mệnh đề. Cho $\lambda_1, \ldots, \lambda_p$ là các trị riêng khác nhau của toán tử tuyến tính f. Khi đó $E(\lambda_1) + \cdots + E(\lambda_p)$ là một tổng trực tiếp.

Mệnh đề. Cho $f \in End_K(V)$. Nếu λ là một trị riêng bội m của f thì $\dim E(\lambda) \leq m$.

Chứng minh. Giả sử dim $E(\lambda) > m$. Khi đó tồn tại $v_1, \ldots, v_m, v_{m+1}$ là các vectơ độc lập tuyến tính của $E(\lambda)$.

Bổ túc họ các vectơ này thành một cơ sở \mathcal{B} của V:

$$\mathcal{B} = (v_1, \dots, v_m, v_{m+1}, w_{m+2}, \dots, w_n).$$

Ta có

$$[f]_{\mathcal{B}} = \begin{pmatrix} \lambda & 0 & \\ & \ddots & A \\ 0 & \lambda & \\ \hline & 0 & B \end{pmatrix}.$$

Từ đó suy ra

$$P_f(t) = \det \begin{pmatrix} \lambda - t & 0 & \\ & \ddots & & A \\ \hline 0 & \lambda - t & \\ \hline & 0 & B - tI_{n-m-1} \end{pmatrix}$$

Suy ra λ là tri riêng bôi lớn hơn hoặc bằng m+1 (mâu thuẫn).

 $= (\lambda - t)^{m+1} \det(B - tI_{n-m-1}).$

TS. Lê Văn Luyện Chương 1. Sự chéo hóa Năm 2016 77/296

1.3. Toán tử và ma trận chéo hóa được Toán tử chéo hóa được

Định nghĩa. Cho $f \in End_K(V)$. Toán tử f được gọi là **chéo hóa được** nếu tồn tại một cơ sở \mathcal{B} của V sao cho $[f]_{\mathcal{B}}$ là ma trận đường chéo.

Định lý. Toán tử tuyến tính $f \in End_K(V)$ chéo hóa được khi và chỉ khi tồn tại một cơ sở của V gồm toàn các vectơ riêng của f.

Chứng minh. (\Rightarrow) Giả sử f chéo hóa được, nghĩa là tồn tại một cơ sở $\mathcal{B} = (v_1, v_2, \dots, v_n)$ sao cho $[f]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Khi đó,

$$f(v_1) = \lambda_1 v_1, \ f(v_2) = \lambda_2 v_2, \dots, f(v_n) = \lambda_n v_n,$$

nghĩa là v_1, v_2, \dots, v_n đều là các vecto riêng của f.

(<) Giả sử $\mathcal{B}=(v_1,v_2,\ldots,v_n)$ là cơ sở gồm toàn các vectơ riêng của f. Khi đó

$$f(v_1) = \lambda_1 v_1, f(v_1) = \lambda_2 v_2, \dots, f(v_n) = \lambda_n v_n.$$

Do đó

$$[f]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Định lý. Toán tử tuyến tính $f \in End_K(V)$ chéo hóa được khi và chỉ khi các điều kiện dưới đây được thỏa

(i) $P_f(\lambda)$ phân rã trên K, nghĩa là $P_f(\lambda)$ có thể phân tích thành dạng

$$P_f(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$$

 $v\acute{\sigma}i \ \lambda_1, \ldots, \lambda_p \in K \ v\grave{a} \ m_1 + \cdots + m_p = n.$

(ii) $\forall i \in \overline{1, p}, \dim E(\lambda_i) = m_i$.

Hệ quả. Nếu f có n trị riêng khác nhau thì f chéo hóa được.

TS. Lê Văn Luyên

Ví dụ. Xét toán tử tuyến tính $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ được xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 - 2x_3, 3x_1 + 2x_2 - 4x_3, 2x_1 - x_2).$$

Hỏi f có chéo hóa được không?

Giải. Ma trận biểu diễn f theo cơ sở chính tắc là

$$A = \left(\begin{array}{ccc} 1 & 2 & -2 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{array}\right).$$

Da thức đặc trưng của f là $P_f(\lambda) = |A - \lambda I_3| = (1 - \lambda)(\lambda^2 - 2\lambda - 6)$.

Suy ra f có 3 giá trị riêng khác nhau là

$$\lambda_1 = 1, \lambda_2 = \frac{1 + \sqrt{7}}{2}, \lambda_3 = \frac{1 - \sqrt{7}}{2}.$$

Như vây f chéo hóa được.

Thuật toán chéo hóa toán tử

Bước 1. Chọn một cơ sở bất kỳ \mathcal{B} của V (thông thường là cơ sở chính tắc). Lập $A=[f]_{\mathcal{B}}$.

Bước 2. Tìm đa thức đặc trưng $P_f(\lambda) = |A - \lambda I|$.

- Nếu $P_f(\lambda)$ không phân rã thì f không chéo hóa được và thuật toán kết thúc.
- Ngược lại, chuyển sang bước tiếp theo.

Bước 3. Tìm tất cả các nghiệm $\lambda_1, \ldots, \lambda_p$ của $P_f(\lambda) = 0$ và các số bội m_1, \ldots, m_p của chúng. Đối với mỗi $i \in \overline{1, p}$, tìm $\dim E(\lambda_i)$.

- Nếu tồn tại một $i \in \overline{1,p}$ sao cho dim $E(\lambda_i) < m_i$ thì f không chéo hóa được và thuật toán kết thúc.
- \bullet Ngược lại, f chéo hóa được và chuyển sang bước tiếp theo.

Bước 4. Với mỗi $i \in \overline{1,p}$, tìm một cơ sở cho $E(\lambda_i)$, gọi là \mathcal{B}_i chẳng hạn. Khi đó $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ là cơ sở của V. Ta có ma trận biểu diễn f theo \mathcal{B} là

$$[f]_{\mathcal{B}} := \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{m_1 \hat{\operatorname{lan}}}, \dots, \underbrace{\lambda_r, \dots, \lambda_r}_{m_r \hat{\operatorname{lan}}}).$$

Ví dụ. Xét toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi

$$f(x_1, x_2, x_3) = (4x_1 + x_2 - x_3, -6x_1 - x_2 + 2x_3, 2x_1 + x_2 + x_3).$$

Hỏi f có chéo hóa được không?

Giải. Ma trận biểu diễn f theo cơ sở chính tắc là

$$A = [f]_{\mathcal{B}_0} = \begin{pmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

- Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = (\lambda - 1)^2 (2 - \lambda).$$

Ta thấy $P_f(\lambda)$ phân rã trên \mathbb{R} .

- Trị riêng

$$P_f(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (bội 2)}, \quad \lambda = 2 \text{ (bội 1)}.$$

Vậy f có 2 trị riêng là $\lambda_1 = 1$ (bội 2), $\lambda_2 = 2$ (bội 1).

- Không gian riêng
- Với $\lambda_1=1$, không gian riêng E(1) chính là không gian nghiệm của hệ phương trình $(A-I_3)X=0$. Ta có

$$(A - I_3) = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -2 & 2 \\ 2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Vậy, hạng của $A-I_3$ bằng 2, suy ra $\dim E(1)=3-2=1$ nhỏ hơn số bội của trị riêng $\lambda_1=1$. Do đó toán tử f không chéo hóa được.

Ví dụ. Xét toán tử tuyến tính $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ được xác định bởi

$$f(x_1, x_2, x_3) = (4x_1 + 2x_2 - x_3, -6x_1 - 4x_2 + 3x_3, -6x_1 - 6x_2 + 5x_3).$$

Hỏi f có chéo hóa được hay không? Nếu được, hãy tìm một cơ sở $\mathcal B$ của V sao cho $[f]_{\mathcal B}$ là ma trận đường chéo.

Giải. Ma trận biểu diễn f theo cơ sở chính tắc là

$$A = [f]_{\mathcal{B}_0} = \begin{pmatrix} 4 & 2 & -1 \\ -6 & -4 & 3 \\ -6 & -6 & 5 \end{pmatrix}.$$

- Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -\lambda^3 + 5\lambda^2 - 8\lambda + 4 = -(\lambda - 1)(\lambda - 2)^2.$$

- Trị riêng

$$P_f(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (boi 1)}, \quad \lambda = 2 \text{ (boi 2)}.$$

Vậy f có 2 trị riêng $\lambda_1 = 1$ (bội 1), $\lambda_2 = 2$ (bội 2).

- Không gian riêng

• Với $\lambda_1=1$, không gian riêng E(1) chính là không gian nghiệm của hệ phương trình $(A-I_3)X=0$. Ta có

$$A - I_3 = \begin{pmatrix} 3 & 2 & -1 \\ -6 & -5 & 3 \\ -6 & -6 & 4 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} 3 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{pmatrix}$$
$$\xrightarrow{d_1 + 2d_2} \begin{pmatrix} 3 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Chọn $x_3 = t$, ta tìm được nghiệm tổng quát là

$$(x_1, x_2, x_3) = (-\frac{1}{3}t, t, t), \quad t \in \mathbb{R}.$$

Suy ra E(1) có dimE(1) = 1 với cơ sở $\mathcal{B}_1 = \{u_1 = (1, -3, -3)\}.$

• Với $\lambda_1=2$, không gian riêng E(2) chính là không gian nghiệm của hệ phương trình $(A-2I_3)X=0$. Ta có

$$A - 2I_3 = \begin{pmatrix} 2 & 2 & -1 \\ -6 & -6 & 3 \\ -6 & -6 & 3 \end{pmatrix} \xrightarrow{d_2 + 3d_1} \begin{pmatrix} 2 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Chọn $x_1 = t, x_2 = s$, ta tìm được nghiệm tổng quát là

$$(x_1, x_2, x_3) = (t, s, 2t + 2s), \quad t, s \in \mathbb{R}.$$

Suy ra E(2) có $\dim E(2)=2$ với cơ sở

$$\mathcal{B}_2 = \{u_2 = (1, 0, 2); u_3 = (0, 1, 2)\}.$$

Do số chiều của các không gian riêng đều bằng số bội của trị riêng tương ứng nên f chéo hóa được. Hơn nữa cơ sở cần tìm là

$$\mathcal{B} = \{u_1 = (1, -3, -3); u_2 = (1, 0, 2); u_3 = (0, 1, 2)\}$$

và

$$[f]_{\mathcal{B}} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

 \mathbf{Vi} dụ. (tự làm) Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (-4x_1 - 3x_2 - 3x_3, -x_1 - x_3, 7x_1 + 5x_2 + 6x_3).$$

Hỏi f có chéo hóa được hay không? Nếu được, hãy tìm một cơ sở \mathcal{B} của V sao cho $[f]_{\mathcal{B}}$ là ma trận đường chéo.

Ma trận chéo hóa được

Nhắc lại. Cho $A, B \in M_n(K)$. A được gọi là **đồng dạng** với B nếu tồn tại ma trận khả nghịch P sao cho $A = P^{-1}BP$. Ký hiệu $A \sim B$.

Lưu ý. Quan hệ đồng dạng là một quan hệ tương đương, nghĩa là:

- $\forall A \in M_n(K), A \sim A.$
- $\forall A, B \in M_n(K)$, nếu $A \sim B$ thì $B \sim A$.
- $\forall A, B, C \in M_n(K)$, nếu $A \sim B$ và $B \sim C$ thì $A \sim C$.

Định nghĩa. Cho $A \in M_n(K)$. Ma trận A được gọi là *chéo hóa được* nếu nó đồng dạng với ma trận đường chéo.

Nhắc lại. Cho $\mathcal{B}, \mathcal{B}'$ là hai cơ sở của V và f là toán tử tuyến tính trên V. Khi đó

$$[f]_{\mathcal{B}'} = (\mathcal{B} \to \mathcal{B}')^{-1} [f]_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}').$$

Giả sử f chéo hóa được bằng cơ sở \mathcal{B}' và xem xét A là ma trận biểu diễn f theo cơ sở \mathcal{B} . Ta đặt

$$D := [f]_{\mathcal{B}'} \text{ và } P := (\mathcal{B} \to \mathcal{B}').$$

Khi đó

$$A = P^{-1}DP.$$

Suy ra A chéo hóa được.

Như vậy bài toán chéo hóa ma trận A chính là bài toán chéo hóa toán tử f với A là ma trận biểu diễn của f theo một cơ sở nào đó.

Tương tự như trên toán tử, ta cũng có các định nghĩa về việc chéo hóa trên ma trận.

Thuật toán chéo hóa ma trận

Bước 1. Tìm đa thức đặc trung $P_A(\lambda) = |A - \lambda I|$.

- Nếu $P_A(\lambda)$ không phân rã thì A không chéo hóa được và thuật toán kết thúc.
- Ngược lại, chuyển sang bước tiếp theo.

Bước 2. Tìm tất cả các nghiệm $\lambda_1, \ldots, \lambda_p$ của $P_A(\lambda) = 0$ và các số bội m_1, \ldots, m_p của chúng. Đối với mỗi $i \in \overline{1,p}$ tìm số chiều của của không gian nghiệm $E(\lambda_i)$ của hệ phương trình $(A - \lambda_i I)X = 0$.

- Nếu tồn tại một $i \in \overline{1,p}$ sao cho dim $E(\lambda_i) < m_i$ thì A không chéo hóa được và thuật toán kết thúc.
- \bullet Ngược lại, A chéo hóa được và chuyển sang bước tiếp theo.

Bước 3. Với mỗi $i \in \overline{1,p}$, tìm một cơ sở \mathcal{B}_i cho $E(\lambda_i)$, Ta đặt P là ma trận có được bằng cách dựng các vectơ trong \mathcal{B}_i thành các cột. Khi đó ma trận P làm chéo A và $P^{-1}AP$ là ma trận đường chéo

$$\operatorname{diag}(\underbrace{\lambda_1,\ldots,\lambda_1}_{m_1 \text{lån}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{m_r \text{lån}}).$$

Ví dụ. Cho ma trận thực
$$A = \begin{pmatrix} 3 & 3 & 2 \\ 1 & 1 & -2 \\ -3 & -1 & 0 \end{pmatrix}$$
. Tìm trị riêng và

vectơ riêng của A. Xác định cơ sở, số chiều của các không gian riêng tương ứng.

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 3 - \lambda & 3 & 2 \\ 1 & 1 - \lambda & -2 \\ -3 & -1 & -\lambda \end{vmatrix} = -(\lambda - 4)(\lambda^2 + 4).$$

- Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 4.$$

Do đó ma trận A chỉ có một trị riêng $\lambda = 4$ (bội 1).

- Không gian riêng E(4) là không gian nghiệm của hệ phương trình $(A-4I_3)X=0$. Ta có

$$(A-4I_3) = \begin{pmatrix} -1 & 3 & 2 \\ 1 & -3 & -2 \\ -3 & -1 & -4 \end{pmatrix} \xrightarrow{\begin{array}{c} -d_1 \\ d_2-d_1 \\ d_3+3d_1 \end{array}} \begin{pmatrix} 1 & -3 & -2 \\ 0 & 0 & 0 \\ 0 & -10 & -10 \end{pmatrix}$$
$$\xrightarrow{\begin{array}{c} -\frac{1}{10}d_3 \\ d_2\leftrightarrow d_3 \end{array}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có nghiêm tổng quát

$$(x_1, x_2, x_3) = (-t, -t, t), \quad t \in \mathbb{R}.$$
 chọn $t = 1$

Suy ra dimE(4) = 1 với cơ sở $\mathcal{B} = \{(-1, -1, 1)\}.$

Ví dụ. Chéo hóa ma trận thực

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array}\right).$$

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 2)^2.$$

- Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (bội 1)}, \lambda = -2 \text{ (bội 2)}.$$

Vậy A có 2 trị riêng là $\lambda_1 = 1$ (bội 1), $\lambda_2 = -2$ (bội 2).

- Không gian riêng

• Với $\lambda_1=1$, không gian riêng E(1) là không gian nghiệm của hệ phương trình $(A-I_3)X=0$. Ta có

$$(A - I_3) = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{3}d_2 \\ d_1 \leftrightarrow d_2 \\ \hline d_3 - 3d_1 \end{array}} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix}$$
$$\xrightarrow{\begin{array}{c} -\frac{1}{3}d_2 \\ d_1 - 2d_2 \\ \hline d_3 - 3d_2 \end{array}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (t, -t, t), \quad t \in \mathbb{R}.$$
 chọn $t = 1$

Suy ra E(1) có dimE(1) = 1 với cơ sở $\mathcal{B}_1 = \{u_1 = (1, -1, 1)\}.$

• Với $\lambda_2=-2$, không gian riêng E(-2) là không gian nghiệm của hệ phương trình $(A+2I_3)X=0$. Ta có

$$(A+2I_3) = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{3}d_1 \\ d_2+3d_1 \\ d_3-3d_1 \end{array}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (-t - s, t, s), \quad t, s \in \mathbb{R}.$$

Suy ra E(1) có $\dim E(1) = 2$ với cơ sở

$$\mathcal{B}_2 = \{u_2 = (-1, 1, 0), u_3 = \{-1, 0, 1\}\}.$$

Vì các không gian $E(\lambda_i)$ của A có số chiều bằng số bội của các trị riêng tương ứng nên A chéo hóa được.

Lập ma trận P bằng cách lần lượt dựng các vectơ trong

$$\mathcal{B}_1 = \{u_1 = (1, -1, 1)\}$$
 và $\mathcal{B}_2 = \{u_2 = (-1, 1, 0), u_3 = \{-1, 0, 1\}\}$

thành các cột

$$P = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Khi đó

$$P^{-1}AP = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & -2 \end{array}\right).$$

Ví du.(tư làm) Chéo hóa ma trân thực

$$\left(\begin{array}{cccc}
1 & -4 & -4 \\
8 & -11 & -8 \\
-8 & 8 & 5
\end{array}\right)$$

1.4. Một vài ứng dụng sự chéo hóa

- 1. Tính lũy thừa của ma trận
- 2. Tính lũy thừa của toán tử tuyến tính
- 3. Tìm một dãy số thỏa công thức truy hồi
- 4. Giải hệ phương trình vi phân tuyến tính hệ số hằng

1.4.1. Tính lũy thừa của ma trận

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
. Tính A^n ?

Bài toán. Cho $A \in M_n(K)$ và A chéo hóa được trên K. Tìm A^k ?

 ${\bf Giải.}$ Vì A chéo hóa được trên Knên tồn tại một ma trận khả nghịch P sao cho

$$P^{-1}AP = D (1)$$

là một ma trận đường chéo. Giả sử

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Từ (1) ta có $A = PDP^{-1}$ nên

$$A^{k} = (PDP^{-1})^{k} = PD^{k}P^{-1} = P\operatorname{diag}(\lambda_{1}^{k}, \dots, \lambda_{n}^{k})P^{-1}.$$

Giải.

- Đa thức đặc trưng

$$P_A(\lambda) = (\lambda - 2)(\lambda - 3).$$

- Trị riêng

$$A$$
 có 2 trị riêng là $\lambda_1 = 2$, $\lambda_2 = 3$.

- Không gian riêng

$$E(2) = \langle u = (-1, 1) \rangle$$
 và $E(3) = \langle v = (-1, 2) \rangle$.

Vậy $P = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$ là ma trận làm ché
oA và

$$D = P^{-1}AP = \left(\begin{array}{cc} 2 & 0\\ 0 & 3 \end{array}\right).$$

Ta có

$$A = PDP^{-1}$$

Do đó

$$A^n = PD^nP^{-1}.$$

Do D là ma trận đường chéo nên dễ dàng tính được

$$D^n = \left(\begin{array}{cc} 2^n & 0\\ 0 & 3^n \end{array}\right).$$

Tiếp theo, tính được

$$P^{-1} = \left(\begin{array}{cc} -2 & -1 \\ 1 & 1 \end{array} \right).$$

Ta có

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 2^{n+1} - 3^{n} & 2^{n} - 3^{n} \\ -2^{n+1} + 2 \cdot 3^{n} & -2^{n} + 2 \cdot 3^{n} \end{pmatrix}.$$

Ví dụ.(tự làm) Cho $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$. Tìm công thức A^n ?

1.4.2. Tính lũy thừa của toán tử

Bài toán. Cho f là một toán tử chéo hóa được trên V. Tìm công thức của f^k ?

Giải. Vì f chéo hóa được nên tồn tại một cơ sở $\mathcal{B} = (u_1, u_2, \dots, u_n)$ của V sao cho $[f]_{\mathcal{B}}$ là ma trận đường chéo. Giả sử

$$[f]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Gọi \mathcal{B}_0 là cơ sở chính tắc của V, ta dễ dàng lập ma trận $[f]_{\mathcal{B}_0}$. Khi đó

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1}[f]_{\mathcal{B}_0}(\mathcal{B}_0 \to \mathcal{B})$$

hay

$$[f]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B})[f]_{\mathcal{B}}(\mathcal{B}_0 \to \mathcal{B})^{-1}.$$

Do đó

$$([f]_{\mathcal{B}_0})^k = (\mathcal{B}_0 \to \mathcal{B})([f]_{\mathcal{B}})^k (\mathcal{B}_0 \to \mathcal{B})^{-1}.$$

Hơn nữa

$$[f^k]_{\mathcal{B}_0} = ([f]_{\mathcal{B}_0})^k.$$

Suy ra

$$[f^k]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B})([f]_{\mathcal{B}})^k(\mathcal{B}_0 \to \mathcal{B})^{-1}.$$

Ngoài ra ta có

- $([f]_{\mathcal{B}})^k = \operatorname{diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k).$
- $\bullet \ (\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top u_2^\top \dots u_n^\top).$

Do đó, ta dễ dàng tính $[f^k]_{\mathcal{B}_0}$. Từ đó suy ra được công thức của f^k .

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x_1, x_2) = (x_1 - x_2, 2x_1 + 4x_2).$$

Tìm công thức f^n ?

Giải.

Bước 1. Tiến hành chéo hóa toán tử ta được tìm được một cơ sở $\mathcal{B} = (u_1 = (-1, 1), u_2 = (-1, 2))$ và

$$[f]_{\mathcal{B}} = \left(\begin{array}{cc} 2 & 0\\ 0 & 3 \end{array}\right).$$

Bước 2. Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top \ u_2^\top) = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$$

và

$$(\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}.$$

Ngoài ra

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1} [f]_{\mathcal{B}_0} (\mathcal{B}_0 \to \mathcal{B})$$

hay

$$[f]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B})[f]_{\mathcal{B}}(\mathcal{B}_0 \to \mathcal{B})^{-1}.$$

Suy ra

$$([f]_{\mathcal{B}_0})^n = (\mathcal{B}_0 \to \mathcal{B})([f]_{\mathcal{B}})^n (\mathcal{B}_0 \to \mathcal{B})^{-1}$$

$$= \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}^n \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & 3^n \end{pmatrix} \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n+1} - 3^n & 2^n - 3^n \\ -2^{n+1} + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix}.$$

Như vậy công thức của f^n là

$$f^{n}(x_{1}, x_{2}) = ((2^{n+1} - 3^{n})x_{1} + (2^{n} - 3^{n})x_{2}, (-2^{n+1} + 2 \cdot 3^{n})x_{1} + (-2^{n} + 2 \cdot 3^{n})x_{2}).$$

1.4.3. Tìm một dãy số thỏa công thức truy hồi

Minh họa cho trường hợp hai dãy số.

Ví dụ. Giả sử các dãy số thực $(u_n)_{n\in\mathbb{N}}$ và $(v_n)_{n\in\mathbb{N}}$ thỏa các công thức truy hồi

$$\begin{cases} u_{n+1} = u_n - v_n; \\ v_{n+1} = 2u_n + 4v_n, \end{cases} \quad \text{v\'oi} \quad \begin{cases} u_0 = 2; \\ v_0 = 1. \end{cases}$$
 (1)

Tìm công thức tính các số hạng tổng quát của u_n và v_n .

Đặt

$$X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \text{ và } A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}. \tag{2}$$

Công thức (1) được viết lại như sau:

$$X_{n+1} = AX_n \text{ v\'oi } X_0 = \begin{pmatrix} 2\\1 \end{pmatrix}. \tag{3}$$

Từ đó tính được $X_n = A^n X_0$.

Sử dụng phương pháp chéo hóa ta tính được

$$A^{n} = \begin{pmatrix} 2^{n+1} - 3^{n} & 2^{n} - 3^{n} \\ -2^{n+1} + 2 \cdot 3^{n} & -2^{n} + 2 \cdot 3^{n} \end{pmatrix}.$$

Suy ra

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 3^n & 2^n - 3^n \\ -2^{n+1} + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2^{n+2} - 2 \cdot 3^n + 2^n - 3^n \\ -2^{n+2} + 4 \cdot 3^n - 2^n + 2 \cdot 3^n \end{pmatrix}.$$

Vậy

$$\begin{cases} u_n = 5 \cdot 2^n - 3^{n+1}; \\ v_n = -5 \cdot 2^n + 6 \cdot 3^n. \end{cases}$$

1.4.4. Giải hpt vi phân tuyến tính hệ số hằng

Ví dụ. Giải hệ phương trình vi phân $\begin{cases} \frac{ax}{dt} = 2x; \\ \frac{dy}{dt} = 3y \end{cases}$ với x, y là các hàm khả vi theo biến t.

Đáp án.

$$\begin{cases} x = C_1 e^{2t} \\ y = C_2 e^{3t}, \end{cases}$$

trong đó C_1 và C_2 là các hằng số.

Ví dụ. Giải hệ phương trình vi phân
$$\begin{cases} \frac{dx}{dt} = x - y; \\ \frac{dy}{dt} = 2x + 4y. \end{cases}$$

Bài toán. Tìm nghiệm của phương trình vi phân tuyến tính

$$\begin{cases}
\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n; \\
\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n; \\
\dots \\
\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n,
\end{cases}$$
(1)

trong đó mọi $a_{ij} \in K$ và mọi x_i đều là hàm khả vi theo biến t.

Gọi
$$x=(x_1,x_2,\ldots,x_n)$$
. Khi đó $X=[x]_{\mathcal{B}_0}=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$. Hệ (1) được

viết lại dưới dạng ma trận như sau:

$$\frac{dX}{dt} = AX, \text{ v\'oi } A = (a_{ij})$$
 (2)

Giả sử A chéo hóa được, nghĩa là tồn tại ma trận chéo D và ma trận khả nghịch P sao cho

$$D = P^{-1}AP. (3)$$

Ngoài ra, ta có thể xem A như ma trận của biểu diễn toán tử tuyến tính $f \in End_K(K^n)$ theo cơ sở chính tắc \mathcal{B}_0 . Khi đó tồn tại một cơ sở $\mathcal{B} = (u_1, u_2, \ldots, u_n)$ sao cho ma trận

$$D = [f]_{\mathcal{B}} \text{ và } P = (\mathcal{B}_0 \to \mathcal{B}).$$

Gọi $X' = [x]_{\mathcal{B}}$, ta có

$$[x]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}_0)[x]_{\mathcal{B}_0} \Leftrightarrow [x]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1}[x]_{\mathcal{B}_0}$$

hay

$$X' = P^{-1}X \tag{4}$$

Lấy vi phân theo t, ta có

$$\frac{dX'}{dt} = P^{-1}\frac{dX}{dt}. (5)$$

Thế (2) vào (5)

$$\frac{dX'}{dt} = P^{-1}AX. (6)$$

Từ (3) ta có $P^{-1}A = DP^{-1}$. Thế vào (6), ta được

$$\frac{dX'}{dt} = DP^{-1}X. (6)$$

Măt khác $X' = P^{-1}X$. Suy ra

$$\frac{dX'}{dt} = DX'. (7)$$

$$\frac{dX'}{dt} = DX'. (7)$$

Vì D là ma trận đường chéo nên ta dễ dàng tìm ra X'. Sau đó để tìm X ta dùng công thức X = PX'.

Tóm lại, nếu A là ma trận chéo hóa được thì hệ (1) có thể được giải qua các bước sau:

- Bước 1. Chéo hóa ma trận A, nghĩa là tìm ma trận khả nghịch P sao cho $D = P^{-1}AP$ là ma trận chéo.
- Bước 2. Giải hệ $\frac{dX'}{dt} = DX'$.
- Bước 3. Tìm X bởi công thức X = PX'.

Ví dụ. Giải hệ phương trình vi phân $\begin{cases} \frac{dx}{dt} = x - y; \\ \frac{dy}{u} = 2x + 4y. \end{cases}$

$$\begin{cases} \frac{dx}{dt} = x - y; \\ \frac{dy}{dt} = 2x + 4y \end{cases}$$

Giải.

Bước 1. Ma trận của hệ là $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$.

Tiến hành chéo hóa ma trận A ta tìm được $P = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$ làm chéo

A và

$$D = P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Bước 2. Xét
$$X=\left(\begin{array}{c}x\\y\end{array}\right)$$
. Đặt $X'=P^{-1}X,$ ta có $\frac{dX'}{dt}=DX'$

Viết lại hệ
$$\frac{dX'}{dt} = DX'$$
 thành hệ
$$\begin{cases} \frac{dx'}{dt} = 2x'; \\ \frac{dy'}{dt} = 3y'. \end{cases}$$

Nghiệm của hệ này là

$$\begin{cases} x' = C_1 e^{2t} \\ y' = C_2 e^{3t}, \end{cases}$$

trong đó C_1 và C_2 là các hằng số.

Bước 3. Ta có X = PX'. Do đó

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -x' - y' \\ -x' + 2y' \end{pmatrix}.$$

Suy ra

$$\begin{cases} x = -C_1 e^{2t} - C_2 e^{3t}; \\ y = -C_1 e^{2t} + 2C_2 e^{3t}. \end{cases}$$

Ví dụ. (tự làm) Giải hệ phương trình vi phân

$$\begin{cases} \frac{dx}{dt} = -x - 3y - 2z; \\ \frac{dy}{dt} = -2x - 2y - 2z; \\ \frac{dz}{dt} = 6x + 9y + 7z. \end{cases}$$

Dãy Fibonacci

Dãy Fibonacci là dãy vô hạn các số

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Mỗi số hạng trong dãy Fibonacci (kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng ngay trước nó

$$F_{k+2} = F_{k+1} + F_k, k \ge 0, F_0 = 0, F_1 = 1.$$

Câu hỏi. Làm thế nào để tính số hạng F_n mà không cần tính lần lượt từ các số $F_0 = 0, F_1 = 1$?

Đặt
$$u_k := \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
 và $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Khi đó

$$u_{k+1} = Au_k.$$

Từ đó suy ra

$$u_k = A^k u_0$$
, với $u_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. (1)

Vấn đề dẫn đến việc tính A^k . Ta sẽ dùng phương pháp chéo hóa ma trân.

Đa thức đặc trưng $f_A(\lambda) = \lambda^2 - \lambda - 1$ có hai nghiệm là

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$
 (2)

Do đó A chéo hóa được và một dạng chéo của A là

$$D = P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \text{ v\'oi } P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}.$$
 (3)

Ta có

$$P^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{pmatrix}. \tag{4}$$

Từ các công thức (1), (3) và (4) ta tính được

$$\left(\begin{array}{c}F_{k+1}\\F_{k}\end{array}\right)=u_{k}=A^{k}u_{0}=\frac{1}{\lambda_{1}-\lambda_{2}}\left(\begin{array}{c}\lambda_{1}^{k+1}-\lambda_{2}^{k+2}\\\lambda_{1}^{k}-\lambda_{2}^{k}\end{array}\right).$$

Từ đó kết hợp với công thức (2) suy ra

$$F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right].$$
 (5)

Lưu ý $\left| \frac{1 - \sqrt{5}}{2} \right| < 1$. Suy ra $\left(\frac{1 - \sqrt{5}}{2} \right)^k \to 0$ khi $k \to \infty$. đó, với k càng

lớn thì

$$\frac{F_{k+1}}{F_k} \approx \frac{1+\sqrt{5}}{2} \approx 1,618.$$

Con số 1,618 được những người Hy Lạp cổ đại gọi là ti $l\hat{e}$ vàng. Tờ giấy A4 mà ngày nay chúng ta đang sử dụng chính là hình chữ nhật có tỉ lệ vàng như vậy.

ĐẠI SỐ A2

Chương 2

DẠNG CHÍNH TẮC JORDAN

TS. Lê Văn Luyện

lvluyen@hcmus.edu.vn

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh, 2016

Nội dung

Chương 2. DẠNG CHÍNH TẮC JORDAN

- 1. Sự tam giác hóa
- 2. Đa thức triệt tiêu, định lý Hamilton Calley
- 3. Đa thức tối tiểu
- 4. Dạng tam giác khối
- 5. Dạng chính tắc Jordan

2.1. Sự tam giác hóa

Nhắc lại. Cho ma trận vuông $A = (a_{ij}) \in M_n(K)$. Ta nói

- A là ma trận $tam\ giác\ trên\ nếu\ a_{ij}=0,\ \forall i>j.$
- A là ma trận $tam \ giác \ dưới \ nếu \ a_{ij} = 0, \ \forall i < j.$

Mệnh đề. Mọi ma trận tam giác trên đều đồng dạng với một ma trận tam giác dưới.

Chứng minh. Giả sử

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1\,n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{2\,n-1} & a_{2n} \\ 0 & 0 & \dots & a_{3\,n-1} & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix}$$

là ma trận tam giác trên và $f \in End_K(K^n)$ sao cho $[f]_{\mathcal{B}_0} = A$ với $\mathcal{B}_0 = \{e_1, \dots, e_n\}$ là cơ sở chính tắc.

Xét cơ sở $\mathcal{B} = \{e_n, \dots, e_1\}$. Ta có

$$[f]_{\mathcal{B}} = \begin{pmatrix} a_{nn} & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{3n} & a_{3n-1} & \dots & 0 & 0 \\ a_{2n} & a_{2n-1} & \dots & a_{22} & 0 \\ a_{1n} & a_{1n-1} & \dots & a_{12} & a_{11} \end{pmatrix}.$$

Rõ ràng $[f]_{\mathcal{B}}$ là ma trận tam giác dưới. Hơn nữa

$$[f]_{\mathcal{B}_0} = (\mathcal{B} \longrightarrow \mathcal{B}_0)^{-1} [f]_{\mathcal{B}}(\mathcal{B} \longrightarrow \mathcal{B}_0).$$

Suy ra $[f]_{\mathcal{B}_0}$ đồng dạng với $[f]_{\mathcal{B}}$ hay A đồng dạng với một ma trận tam giác dưới.

Bài toán 1. Cho $A \in M_n(K)$ là một ma trận vuông. Khi nào ma trận A đồng dạng với ma trận tam giác?

Bài toán 2. Cho $f \in End_K(V)$ là một toán tử tuyến tính. Tồn tại hay không một sở \mathcal{B} của V sao cho $[f]_{\mathcal{B}}$ là ma trận tam giác?

Định lý. Cho toán tử tuyến tính $f \in End_K(V)$. Toán tử f tam giác hóa được khi và chỉ khi đa thức đặc trưng của f phân rã trên K.

Chứng minh.

(⇒) Giả sử f tam giác hóa được. Khi đó tồn tại cơ sở \mathcal{B} của V sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

Ta có

$$P_f(\lambda) = \begin{vmatrix} \lambda_1 - \lambda & * \\ & \ddots & \\ 0 & \lambda_n - \lambda \end{vmatrix} = (\lambda_1 - \lambda) \dots (\lambda_n - \lambda).$$

Suy ra $P_f(\lambda)$ phân rã trên K.

 (\Leftarrow) Giả sử $P_f(\lambda)$ phân rã trên K. Ta chứng minh f tam giác hóa được bằng qui nạp theo số chiều của V.

- Nếu n=1, hiển nhiên.
- Giả sử n > 1 và khẳng định đúng với n 1.

Gọi $\lambda_1 \in K$ là một nghiệm nào đó của $P_f(\lambda)$ và u_1 là một vectơ riêng ứng với trị riêng λ_1 . Ta bổ túc thêm n-1 vectơ vào (u_1) để có một cơ sở $\mathcal{C} = (u_1, u_2, \dots, u_n)$ của V. Khi đó

$$A = [f]_{\mathcal{C}} = \left(\begin{array}{c|c} \lambda_1 & b_1 \dots b_n \\ \hline 0 & B \end{array}\right).$$

với B là ma trận vuông cấp n-1.

Xét không gian con $W = \langle u_2, \dots, u_n \rangle$ và g là toán tử tuyến tính trên W sao cho ma trận biểu diễn g theo cơ sở (u_2, \dots, u_n) là B. Ta có

$$P_f(\lambda) = |A - \lambda I_n| = (\lambda_1 - \lambda) |B - \lambda I_{n-1}| = (\lambda_1 - \lambda) P_q(\lambda).$$

$$P_f(\lambda) = |A - \lambda I_n| = (\lambda_1 - \lambda) |B - \lambda I_{n-1}| = (\lambda_1 - \lambda) P_g(\lambda).$$

Vì $P_f(\lambda)$ phân rã trên K nên $P_g(\lambda)$ cũng phân rã trên K.

Theo giả thiết qui nạp, ta có B tam giác hóa được. Như vậy tồn tại một cơ sở (v_2, \ldots, v_n) của W sao cho ma trận biểu diễn g theo cơ sở này là ma trận tam giác trên. Khi đó ma trận biểu diễn f theo cơ sở

$$(u_1,v_2,\ldots,v_n)$$

cũng là ma trận tam giác trên.

Hệ quả. Mọi ma trận $A \in M_n(\mathbb{C})$ đều tam giác hóa được trên \mathbb{C} .

Nhận xét. Nếu ma trận A đồng dạng với ma trận tam giác A' thì trên đường chéo chính của A' chỉ toàn là các trị riêng của A.

Định nghĩa. Giả sử đa thức đặc trưng $P_A(\lambda)$ có các nghiệm $\lambda_1, \ldots, \lambda_p \in K$, với k_i là bội của λ_i . Khi đó ta viết

$$Sp_K(A) = \{\underbrace{\lambda_1, \dots, \lambda_1}_{k_1}, \dots, \underbrace{\lambda_p, \dots, \lambda_p}_{k_p}\}$$

và gọi nó là *phổ của ma trận* A.

Ví dụ. Giả sử ma trận A có $P_A(\lambda)=(\lambda+1)^2(\lambda-2)^3(\lambda-4)$. Khi đó $Sp_{\mathbb{R}}(A)=\{-1,-1,2,2,2,4\}.$

Ví dụ. Giả sử toán tử f có $P_f(\lambda) = \lambda^2 + 1$. Khi đó

$$Sp_{\mathbb{R}}(f) = \emptyset$$
 và $Sp_{\mathbb{C}}(f) = \{-i, i\}.$

Hệ quả. Cho $A \in M_n(\mathbb{R})$ và $Sp_{\mathbb{C}}(A) = \{\lambda_1, \dots, \lambda_n\}$. Khi đó ta có $tr(A) = \lambda_1 + \dots + \lambda_n$ và $\det A = \lambda_1 \dots \lambda_n$.

Chứng minh. Do các ma trận đồng dạng đều có cùng vết và cùng định thức nên những điều cần chứng minh là hiển nhiên.

Ví dụ. Cho ma trận
$$A = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{pmatrix}$$
. Hỏi A có tam giác hóa được trên \mathbb{R} không? Nếu được, hãy tìm ma trận khả nghịch P sao cho

Giải. Đa thức đặc trưng của A,

 $P^{-1}AP$ là ma trân tam giác?

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} -4 - \lambda & 0 & -2 \\ 0 & 1 - \lambda & 0 \\ 5 & 1 & 3 - \lambda \end{vmatrix} = -(\lambda + 2)(\lambda - 1)^2.$$

Vì $P_A(\lambda)$ phân rã trên \mathbb{R} nên A tam giác hóa được trên \mathbb{R} .

Ta dễ dàng tìm được toán tử f sao cho $[f]_{\mathcal{B}_0} = A$. Vì f tam giác hóa được nên tồn tại một cơ sở $\mathcal{B} = (u_1, u_2, u_3)$ sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} -2 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

Suy ra

$$f(u_1) = -2u_1$$

$$f(u_2) = au_1 + u_2$$

• Tîm u_1

$$f(u_1) = -2u_1 \Leftrightarrow (f + 2\mathrm{Id}_V)(u_1) = 0.$$

Suy ra u_1 là nghiệm của hệ $(A + 2I_3)X = 0$.

$$A + 2I_3 = \begin{pmatrix} -2 & 0 & -2 \\ 0 & 3 & 0 \\ 5 & 1 & 5 \end{pmatrix} \xrightarrow{\frac{-\frac{1}{2}d_1}{d_3 - 5d_1}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\xrightarrow{\frac{1}{3}d_2}_{d_3 - d_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Chọn $x_3 = 1$, ta có $u_1 = (-1, 0, 1)$.

• Tim u_2

$$f(u_2) = au_1 + u_2 \Leftrightarrow f(u_2) - u_2 = au_1$$

 $\Leftrightarrow (f - \mathrm{Id}_V)(u_2) = (-a, 0, a).$

Suy ra u_2 là nghiệm của hệ $(A - I_3)X = (-a, 0, a)^{\top}$.

$$\begin{pmatrix} -5 & 0 & -2 & -a \\ 0 & 0 & 0 & 0 \\ 5 & 1 & 2 & a \end{pmatrix} \xrightarrow[d_2 \leftrightarrow d_3]{d_3 + d_1} \begin{pmatrix} -5 & 0 & -2 & -a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ta chọn a = 0 và $x_3 = 5$, ta có $u_2 = (-2, 0, 5)$.

• Tim u_3

$$f(u_3) = bu_1 + cu_2 + u_3 \Leftrightarrow (f - \mathrm{Id}_V)(u_3) = bu_1 + cu_2$$

 $\Leftrightarrow (f - \mathrm{Id}_V)(u_3) = (-b - 2c, 0, b + 5c)$

$$\begin{pmatrix} -5 & 0 & -2 & | & -b - 2c \\ 0 & 0 & 0 & | & 0 \\ 5 & 1 & 2 & | & b + 5c \end{pmatrix} \xrightarrow{d_3 + d_1} \begin{pmatrix} -5 & 0 & -2 & | & -b - 2c \\ 0 & 1 & 0 & | & 3c \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Chọn b = 0, c = 1 và $x_3 = 1$, ta có $u_3 = (0, 3, 1)$.

Như vậy ta có $u_1 = (-1, 0, 1)$, $u_2 = (-2, 0, 5)$, $u_3 = (0, 3, 1)$. Dễ dàng kiểm tra u_1, u_2, u_3 độc lập tuyến tính, do đó $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của V.

Hơn nữa

$$P = (\mathcal{B}_0 \longrightarrow \mathcal{B}) = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 0 & 3 \\ 1 & 5 & 1 \end{pmatrix}$$

và

$$P^{-1}AP = \left(\begin{array}{rrr} -2 & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array}\right).$$

Ví dụ.(tự làm) Cho ma trận
$$A = \begin{pmatrix} -1 & 1 & 3 \\ -8 & 5 & 8 \\ 2 & -1 & 0 \end{pmatrix}$$
. Hỏi A có tam giác

hóa được trên $\mathbb R$ không? Nếu được, hãy tìm ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận tam giác?

2.2. Đa thức triệt tiêu, định lý Hamilton-Calley

Định nghĩa. Cho V là một không gian vectơ trên trường K và $Q(t) \in K[t],$

$$Q(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0.$$

Với $f \in End_K(V)$ và $A \in M_n(K)$, ta có đa thức Q(t) theo

 \bullet ma trận Alà

$$Q(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 I_n,$$

 \bullet toán tử flà

$$Q(f) = a_m f^m + a_{m-1} f^{m-1} + \dots + a_1 f + a_0 \mathrm{Id}_V.$$

Ví dụ. Cho
$$Q(t) = 2t^2 - 3t + 4$$
 và $A = \begin{pmatrix} 1 & 2 \\ 3 & -2 \end{pmatrix}$. Tìm $Q(A)$?

Giải. Ta có

$$Q(A) = 2A^2 - 3A + 4I_2.$$

Do

$$2A^2 = \begin{pmatrix} 14 & -4 \\ -6 & 20 \end{pmatrix}, \ 3A = \begin{pmatrix} 3 & 6 \\ 9 & -6 \end{pmatrix}, \ 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}.$$

nên

$$Q(A) = \left(\begin{array}{cc} 15 & -10 \\ -15 & 30 \end{array}\right).$$

Ví dụ. Cho $Q(t) = -2t^2 + 5t - 4$ và $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x,y) = (x + 2y, -x + y).$$

Tìm Q(f)?

Ta có

$$Q(f) = -2f^2 + 5f - 4\operatorname{Id}_{\mathbb{R}^2}.$$

Hơn nữa

- $f^2(x,y) = f(f(x,y)) = f(x+2y, -x+y) = (-x+4y, -2x-y).$
- $\operatorname{Id}_{\mathbb{Q}}(x,y) = (x,y).$

Suy ra

$$Q(f)(x,y) = (3x + 2y, -x + 3y).$$

Ví dụ. (tự làm) Cho
$$A = \begin{pmatrix} 5 & -3 & -3 \\ 0 & -1 & 0 \\ 6 & -3 & -4 \end{pmatrix}$$
 và đa thức $Q(t) = t^2 - t - 2$. Tính $Q(A)$?

Ví dụ. (tự làm) Cho toán tử tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi

$$f(x,y) = (x - y, x + 2y)$$

và đa thức $Q(t) = t^2 - 3t + 4$. Tìm công thức Q(f)?

Nhận xét. Cho $P(t), Q(t) \in K[t]$. Khi đó

- $\forall f \in End_K(V), P(f)Q(f) = Q(f)P(f).$
- $\forall A \in M_n(K), P(A) Q(A) = Q(A) P(A)$

Định nghĩa. Cho $f \in End_K(V)$ và $Q(t) \in K[t]$. Ta nói Q(t) là đa thức triệt tiêu toán tử f nếu Q(f) = 0.

Mệnh đề. Giả sử Q(t) là đa thức triệt tiêu toán tử f và λ là một trị riêng của f. Khi đó λ là nghiệm của Q(t).

Chứng minh. Gọi v là một vectơ riêng của f ứng với trị riêng $\pmb{\lambda}$. Khi đó

$$f^k(v) = \lambda^k v, \forall k \in \mathbb{N}.$$

Giả sử

$$Q(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0$$

là đa thức triệt tiêu f.

Khi đó ta có

$$a_{m}f^{m} + a_{m-1}f^{m-1} + \dots + a_{1}f + a_{0}\operatorname{Id}_{V} = 0$$

$$\Rightarrow (a_{m}f^{m} + a_{m-1}f^{m-1} + \dots + a_{1}f + a_{0}\operatorname{Id}_{V})(v) = 0$$

$$\Rightarrow a_{m}f^{m}(v) + a_{m-1}f^{m-1}(v) + \dots + a_{1}f(v) + a_{0}\operatorname{Id}_{V}(v) = 0$$

$$\Rightarrow a_{m}\lambda^{m}v + a_{m-1}\lambda^{m-1}v + \dots + a_{1}\lambda v + a_{0}v = 0$$

$$\Rightarrow (a_{m}\lambda^{m} + a_{m-1}\lambda^{m-1} + \dots + a_{1}\lambda + a_{0})v = 0.$$

Do $v \neq 0$ nên

$$a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda + a_0 = 0$$

hay $Q(\lambda) = 0$. Suy ra λ là nghiệm của Q(t).

Nhận xét.

- ② Không phải tất cả các nghiệm của đa thức triệt tiêu của f đều là trị riêng của f.

Hỏi. Cho toán tử tuyến tính $f \in End_K(V)$. Tồn tại hay không đa thức $0 \neq Q(t) \in K[t]$ mà triệt tiêu f?

Câu trả lời là **có**.

Chứng minh. Nếu $\dim_K(V) = n$ thì

$$End_K(V) \cong M_n(K).$$

Suy ra

$$\dim_K(End_K(V)) = n^2.$$

Do đó các phần tử $\mathrm{Id}_V, f, f^2, \ldots, f^{n^2}$ phụ thuộc tuyến tính trong $End_K(V)$. Suy ra, tồn tại các phần tử $a_0, a_1, a_2, \ldots, a_{n^2} \in K$, không phải tất cả đều bằng 0, sao cho

$$a_0 I dV + a_1 f + a_2 f^2 + \dots + a_{n^2} f^{n^2} = 0.$$

Vậy $Q(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_{n^2} t^{n^2}$ là đa thức triệt tiêu f.

Định lý. [Hamilton-Calley] Cho f là toán tử tuyến tính trên không gian vectơ hữu hạn chiều. Khi đó đa thức đặc trưng $P_f(\lambda)$ triệt tiêu f, nghĩa là $P_f(f) = 0$.

Định nghĩa. Cho $f \in End_K(V)$. Giả sử đa thức đặc trưng $P_f(\lambda)$ phân rã trên K:

$$P_f(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_p)^{m_p}.$$

Ta gọi

$$N(\lambda_i) := Ker(f - \lambda_i \mathrm{Id}_V)^{m_i}$$

là *không gian đặc trưng* ứng với tri riêng λ_i .

Ví du. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + x_3, -4x_1 + 3x_2 + 4x_3, 2x_1 - x_2)$$

Tìm không gian đặc trưng tương ứng với các trị riêng của f?.

Giải. Ma trận biểu diễn của f theo cơ sở chính tắc là

$$A = [f]_{\mathcal{B}_0} = \begin{pmatrix} 1 & 0 & 1 \\ -4 & 3 & 4 \\ 2 & -1 & 0 \end{pmatrix}.$$

- Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -(\lambda - 1)^2 (\lambda - 2).$$

- Trị riêng

$$P_f(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (bội 2)}, \quad \lambda = 2 \text{ (bội 1)}.$$

Vậy f có 2 trị riêng là $\lambda_1 = 1$ (bội 2), $\lambda_2 = 2$ (bội 1).

- Không gian đặc trưng
- Với $\lambda_1 = 1$, không gian đặc trưng

$$N(1) = Ker(f - \operatorname{Id}_{\mathbb{R}^3})^2.$$

Nhận xét, N(1) là không gian nghiệm của hệ phương trình

$$(A - I_3)^2 X = 0.$$

Ta có
$$(A - I_3)^2 = \begin{pmatrix} 0 & 0 & 1 \\ -4 & 2 & 4 \\ 2 & -1 & -1 \end{pmatrix}^2 = \begin{pmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{pmatrix}$$

$$\frac{d_3 - d_1}{} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Chọn $x_2 = t, x_3 = s$, ta tìm được nghiệm tổng quát là

$$(x_1, x_2, x_3) = (\frac{t+s}{2}, t, s), \quad t, s \in \mathbb{R}.$$

Suy ra N(1) có $\dim N(1) = 2$ với cơ sở

$$\mathcal{B}_1 = \{u_1 = (1,0,2); u_2 = (1,2,0)\}.$$

• Với $\lambda_2 = 2$, không gian đặc trưng

$$N(2) = Ker(f - 2\mathrm{Id}_{\mathbb{R}^3}).$$

Nhân xét, N(2) là không gian nghiệm của hệ phương trình

$$(A - 2I_3)X = 0.$$

Ta có

$$(A-2I_3) = \begin{pmatrix} -1 & 0 & 1 \\ -4 & 1 & 4 \\ 2 & -1 & -2 \end{pmatrix} \xrightarrow{d_2-4d_1} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
$$\xrightarrow{d_3+d_2} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Chọn $x_3 = t$, ta tìm được nghiệm tổng quát là

$$(x_1, x_2, x_3) = (t, 0, t), \quad t \in \mathbb{R}.$$

Suy ra N(2) có dimN(2) = 1 với cơ sở

$$\mathcal{B}_2 = \{u_3 = (1,0,1)\}.$$

 \mathbf{Vi} dụ. (tự làm) Cho toán tử $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (2x_1 + x_3, -2x_1 + 3x_2 + 3x_3, 2x_1 - x_2 + x_3)$$

Tìm không gian đặc trung tương ứng với các trị riêng của f?.

Nhận xét.

• Không gian riêng luôn nằm trong không gian đặc trưng, nghĩa là

$$E(\lambda) \subset N(\lambda)$$

với λ là trị riêng.

2 Không gian đặc trưng là bất biến đối với f, nghĩa là

$$f(N(\lambda)) \subset N(\lambda)$$
.

Mệnh đề. Cho $f \in End_K(V)$. Giả sử đa thức đặc trưng $P_f(\lambda)$ phân rã trên K:

$$P_f(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_p)^{m_p}.$$

Khi đó

$$V = N(\lambda_1) \oplus N(\lambda_2) \oplus \cdots \oplus N(\lambda_p).$$

Định lý. Toán tử tuyến tính $f \in End_K(V)$ chéo hóa được khi và chỉ khi tồn tại một đa thức phân rã trên K, có toàn nghiệm đơn và triệt tiêu f.

2.3. Đa thức tối tiểu

Định nghĩa. Đa thức $Q(t) \in K[t]$ được gọi là **đa thức đơn khởi** nếu nó có hệ số ở bậc cao nhất bằng 1, nghĩa là Q(t) có dạng

$$Q(t) = t^{m} + a_{m-1}t^{m-1} + \dots + a_{1}t + a_{0}.$$

Định nghĩa. Cho $f \in End_K(V)$ là toán tử tuyến tính. Đa thức đơn khởi bậc nhỏ nhất triệt tiêu f được gọi là da thức tối tiểu của f và ký hiệu là m_f .

Mệnh đề. Đa thức $Q(t) \in K[t]$ triệt tiêu f khi và chỉ khi Q(t) chia hết cho $m_f(t)$ trong K[t].

Chứng minh. (\Rightarrow) Giả sử Q(t) triệt tiêu f, nghĩa là Q(f) = 0.

Chia Q(t) cho $m_f(t)$

$$Q(t) = P(t) m_f(t) + R(t), \quad \text{v\'oi } \deg(R) < \deg(m_f).$$

Vì Q(f)=0 nên R(f)=0. Do đó R(t) là đa thức triệt tiêu f. Hơn nữa $m_f(t)$ là đa thức tối tiểu và $\deg(R)<\deg(m_f)$ nên R(t)=0. Suy ra

$$Q(t) = P(t) m_f(t).$$

(\Leftarrow) Giả sử Q(t) chia hết cho $m_f(t)$, nghĩa là tồn tại đa thức P(t) sao cho $Q(t) = P(t) m_f(t)$. Do đó

$$Q(f) = P(f) m_f(f) = 0.$$

Như vậy Q(t) triệt tiêu f.

Hệ quả. Đa thức tối tiểu là ước của đa thức đặc trưng.

Chứng minh. Áp dụng Định lý Hamilton-Calley.

Hệ quả. Da thức tối tiểu là duy nhất

Chứng minh. Giả sử m_1 và m_2 là hai đa thức tối tiểu của toán tử tuyến tính f. Khi đó, m_1 chia hết cho m_2 và m_2 cũng chia hết m_1 . Hơn nữa m_1 và m_2 đều là các đa thức đơn khởi nên $m_1 = m_2$.

Mệnh đề. Tập nghiệm của m_f trùng với tập nghiệm của P_f .

Chứng minh. Vì m_f là ước của P_f nên nghiệm của m_f cũng đều là nghiệm của P_f .

Ta có tập nghiệm của P_f là tập các trị riêng λ của f. Vì m_f triệt tiêu f nên λ là nghiệm của m_f . Suy ra nghiệm của P_f cũng là nghiệm của m_f .

Ví dụ. Cho
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. Tìm đa thức tối tiểu của A ?

Giải. Đa thức đặc trung

$$P_A(t) = |A - tI_3| = \begin{vmatrix} -t & 1 & 2 \\ 1 & -t & 2 \\ 1 & 2 & -t \end{vmatrix} = -(t-3)(t+1)(t+2).$$

Suy ra đa thức tổi tiểu của A là

$$m_A(t) = (t-3)(t+1)(t+2).$$

Ví dụ. Cho
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Tìm đa thức tối tiểu của A ?

Giải. Đa thức đặc trưng

$$P_A(t) = |A - tI_3| = \begin{vmatrix} -1 - t & 1 & 1 \\ 1 & -1 - t & 1 \\ 1 & 1 & -1 - t \end{vmatrix} = -(t - 1)(t + 2)^2.$$

$$P_A(t) = -(t-1)(t+2)^2.$$

Suy ra

$$m_A(t) = \begin{bmatrix} (t-1)(t+2); \\ (t-1)(t+2)^2. \end{bmatrix}$$

Hơn nữa,

$$(A - I_3)(A + 2I_3) = 0.$$

Vây

của A?

$$m_A(t) = (t-1)(t+2).$$

Ví dụ.(tự làm) Ma trận $A = \begin{pmatrix} 1 & 0 & 1 \\ -4 & 3 & 4 \\ 2 & -1 & 0 \end{pmatrix}$. Tìm đa thức tối tiểu

Định lý. Cho toán tử tuyến tính $f \in End_K(V)$. Toán tử f chéo hóa được khi và chỉ khi đa thức tối tiểu m_f của f phân rã trên K và tất cả các nghiệm của m_f đều là nghiệm đơn.

Ví dụ. Cho ma trận
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. Khi đó

$$m_A(t) = (t-1)(t+2).$$

Suy ra A chéo hóa được.

Ví dụ. Ma trận
$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 có đa thức đặc trưng

$$P_A(t) = -(t-1)^3.$$

Suy ra

$$m_A(t) = \begin{bmatrix} t-1; \\ (t-1)^2; \\ (t-1)^3. \end{bmatrix}$$

Ta có A chéo hóa được $\Leftrightarrow m_A(t)=t-1 \Leftrightarrow A-I_3=0$. Do $A\neq I_3$ nên A không chéo hóa được.

Ví dụ. Cho
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Hỏi A có chéo hóa được \mathbb{R} không?

Giải. Ma trân A có đa thức đặc trưng là

$$P_A(t) = -(t-1)(t-2)^2.$$

Do đó

$$m_A(t) = \begin{bmatrix} (t-1)(t-2); \\ (t-1)(t-2)^2. \end{bmatrix}$$

Ta có A chéo hóa được khi và chỉ khi

$$m_A(t) = (t-1)(t-2)$$

 $\Leftrightarrow (A - I_3)(A - 2I_3) = 0.$

Bằng việc tính toán, ta có $(A-I_3)(A-2I_3) \neq 0$. Suy ra A không chéo hóa được.

Ví dụ.(tự làm) Cho
$$A = \begin{pmatrix} 3 & -2 & -2 \\ 0 & -1 & 0 \\ 4 & -2 & -3 \end{pmatrix}$$
. Tìm đa thức tối tiểu của

A? Hỏi A có chéo hóa được trên \mathbb{R} không?

Ví dụ.(tự làm) Tìm đa thức tối tiểu của $B = \begin{pmatrix} 3 & -1 & 1 \\ -4 & 3 & 4 \\ 2 & -1 & 2 \end{pmatrix}$? Hỏi B có chéo hóa được trên $\mathbb R$ không?

Ví dụ.(tự làm) Cho toán tử $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận biểu diễn trong cơ sở chính tắc là

$$A = \left(\begin{array}{ccc} 7 & -4 & -3 \\ 4 & -3 & 0 \\ 6 & -3 & -4 \end{array}\right).$$

Tìm đa thức tối tiểu của f? Từ đó rút ra kết luận gì về tính chéo hóa của f?

2.4 Dạng tam giác khối

Nhắc lại. Cho $f \in End_K(V)$ và W là không gian con của V. W được gọi là $b\acute{a}t$ $bi\acute{e}n$ đối với f nếu $f(W) \subset W$.

Định nghĩa. Cho $f \in End_K(V)$ và W là không gian con của V bất biến đối với f. Khi đó toán tử hạn chế của f lên W (ký hiệu $f|_{W}$) được xác định

$$f|_W(w) = f(w), \, \forall w \in W.$$

Giả sử $\mathcal C$ là cơ sở của W. Khi đó $[f|_W]_{\mathcal C}$ được gọi là ma trận biểu diễn hạn chế của f lên W theo $\mathcal C$.

Ví dụ. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + x_3, -4x_1 + 3x_2 + 4x_3, 2x_1 - x_2)$$

và W sinh bởi $\{u_1=(1,0,2); u_2=(0,1,-1)\}.$ Chứng t
ởW bất biến đối với f và tìm
 $f|_W?$

$$f(x_1, x_2, x_3) = (x_1 + x_3, -4x_1 + 3x_2 + 4x_3, 2x_1 - x_2)$$
$$u_1 = (1, 0, 2), \ u_2 = (0, 1, -1)$$

Giải. Ta có

•
$$f(u_1) = f(1,0,2) = (3,4,2) = 3u_1 + 4u_2$$

•
$$f(u_2) = f(0, 1, -1) = (-1, -1, -1) = -u_1 - u_2$$

Như vậy $f(u_1), f(u_2) \in W$. Suy ra W bất biến đối với f.

Với $u \in W$, u có dạng $u = au_1 + bu_2$. Ta có

$$f|_{W}(u) = f(u) = f(au_{1} + bu_{2})$$

$$= af(u_{1}) + bf(u_{2})$$

$$= a(3u_{1} + 4u_{2}) + b(-u_{1} - u_{2})$$

$$= (3a - b)u_{1} + (4a - b)u_{2}.$$

Định lý. Cho $V = V_1 \oplus \cdots \oplus V_p$, trong đó V_i là các không gian con bất biến đối với f. Khi đó, nếu $\mathcal{B}_1, \ldots, \mathcal{B}_p$ tương ứng là các cơ sở của V_1, \ldots, V_p thì ma trận của f theo cơ sở $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_p$ là

$$[f]_{\mathcal{B}} = \begin{pmatrix} \boxed{M_1} & 0 \\ & \ddots & \\ 0 & \boxed{M_p} \end{pmatrix} =: diag(M_1, \dots, M_p)$$

trong đó $M_i = [f|_{V_i}]_{\mathcal{B}_i}$ là ma trận biểu diễn $f|_{V_i}$ theo \mathcal{B}_i .

Chứng minh. Giả sử

$$\mathcal{B}_1 = (u_1, \dots, u_{n_1}), \dots, \mathcal{B}_p = (v_1, \dots, v_{n_p}).$$

Khi đó

$$\mathcal{B} = (u_1, \dots, u_{n_1}, \dots, v_1, \dots, v_{n_n}).$$

Tim $[f(u_i)]_{\mathcal{B}}, \dots, [f(v_i)]_{\mathcal{B}}$?

Vì $f(V_i) \subset V_i$, $\forall i$ nên ta có

$$\begin{cases} f(u_1) = a_{11}u_1 + \dots + a_{1n_1}u_{n_1}; \\ f(u_{n_1}) = a_{n_11}u_1 + \dots + a_{n_1n_1}u_{n_1}; \\ \dots & \dots & \dots \\ \begin{cases} f(v_1) = b_{11}v_1 + \dots + b_{1n_p}v_{n_p}; \\ f(v_{n_p}) = b_{n_p1}v_1 + \dots + b_{n_pn_p}v_{n_p}. \end{cases}$$

Suy ra

$$[f(u_i)]_{\mathcal{B}} = \begin{pmatrix} a_{i1} \\ \vdots \\ a_{in_1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, [f(v_i)]_{\mathcal{B}} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b_{i1} \\ \vdots \\ b_{in_p} \end{pmatrix}.$$

Do đó $[f]_{\mathcal{B}} = diag(M_1, \dots, M_p).$

Định lý. Cho $f \in End_K(V)$. Giả sử đa thức đặc trưng $P_f(\lambda)$ phân rã trên K:

$$P_f(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}, \ \lambda_i \neq \lambda_j \forall i \neq j.$$

Gọi f_i là toán tử hạn chế của f lên không gian đặc trưng $N(\lambda_i)$. Khi đó f_i tam giác hóa được.

Hơn nữa, nếu \mathcal{B}_i là cơ sở của $N(\lambda_i)$ làm tam giác hóa f_i thì $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_p$ là cơ sở của V và

$$[f]_{\mathcal{B}} = \operatorname{diag}(M_1, \dots, M_p)$$

trong đó $M_i = [f_i]_{\mathcal{B}_i}$ là ma trận biểu diễn f_i theo \mathcal{B}_i .

Chứng minh. Ta cần chứng minh f_i tam giác hóa được và

$$Sp_K(f_i) = (\underbrace{\lambda_i, \dots, \lambda_i}_{m_i \text{ lần}})$$

Theo định nghĩa,

$$N(\lambda_i) = Ker(f - \lambda_i \operatorname{Id}_V)^{m_i}$$

nên

$$(f - \lambda_i \operatorname{Id}_V)^{m_i}(u) = 0, \forall u \in N(\lambda_i).$$

Suy ra

$$(f_i - \lambda_i \operatorname{Id}_{N(\lambda_i)})^{m_i} = 0.$$

Vậy $(t - \lambda_i)^{m_i}$ là đa thức triệt tiêu f_i . Do đó đa thức tối tiểu của f_i có dạng

$$m_{f_i}(t) = (t - \lambda_i)^{k_i}, \, k_i \leq m_i.$$

Suy ra đa thức đặc trưng của f_i có dạng

$$P_{f_i}(t) = (t - \lambda_i)^{r_i}, \, r_i \ge k_i$$

Suy ra f_i tam giác hóa dược trên $N(\lambda_i)$ và $Sp_K(f_i) = \underbrace{(\lambda_i, \dots, \lambda_i)}_{r_i \text{ lần}}$. Bây

giờ ta cần chứng minh $r_i = m_i$.

Ta có

$$V = N(\lambda_1) \oplus \cdots \oplus N(\lambda_p).$$

Theo Định lý trước, nếu \mathcal{B}_i là cơ sở của $N(\lambda_i)$ làm tam giác hóa f_i thì $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ là cơ sở của V và

$$[f]_{\mathcal{B}} = \operatorname{diag}(M_1, \ldots, M_p)$$

trong đó $M_i = [f_i]_{\mathcal{B}_i}$ là ma trận biểu diễn f_i theo \mathcal{B}_i . Ta có

$$P_f(\lambda) = |M_1 - \lambda I| \dots |M_p - \lambda I|$$

$$= P_{f_1}(\lambda) \dots P_{f_p}(\lambda)$$

$$= (-1)^n (\lambda - \lambda_1)^{k_1} \dots (\lambda - \lambda_p)^{k_p}$$

Hơn nữa
$$P_f(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$$
nên

$$k_i = m_i, \, \forall i \in \overline{1, p}.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$
 là ma trận biểu diễn toán tử

 $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ theo cơ sở chính tắc \mathcal{B}_0 . Tìm một cơ sở \mathcal{B} của \mathbb{R}^4 để $[f]_{\mathcal{B}}$ là ma trận dạng tam giác khối?

Giải. Vì
$$P_f(\lambda) = \lambda^2(\lambda + 1)(\lambda - 3)$$
nên tồn tại cơ sở

$$\mathcal{B} = (u_1, u_2, u_3, u_4)$$

sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} \mathbf{0} & \mathbf{a} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & 0 & -\mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{3} \end{pmatrix}$$

Nghĩa là $f(u_1) = 0$, $f(u_2) = au_1$, $f(u_3) = -u_3$ và $f(u_4) = 3u_4$.

- Tìm u_1 ?

Rõ ràng u_1 là vectơ riêng của trị riêng $\lambda=0.$ Ta có E(0) là nghiệm của hệ AX=0.

$$A = \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{d_3 - d_1} \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & -1 & -2 \end{pmatrix}$$
$$\xrightarrow{d_4 - d_3} \xrightarrow{d_3 + d_2} \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Chọn $u_1 = (1, 1, 0, 0)$.

- Tìm u_2 ?

Ta có $f(u_2) = au_1 = a(1, 1, 0, 0) = (a, a, 0, 0).$

Xét hệ phương trình

$$\begin{pmatrix} 1 & -1 & 2 & 2 & a \\ 0 & 0 & 1 & -1 & a \\ 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{d_3 - d_1} \begin{pmatrix} 1 & -1 & 2 & 2 & a \\ 0 & 0 & 1 & -1 & a \\ 0 & 0 & -1 & -2 & -a \\ 0 & 0 & -1 & -2 & -a \end{pmatrix}$$

$$\xrightarrow{d_4 - d_3} \begin{pmatrix} 1 & -1 & 2 & 2 & a \\ 0 & 0 & 1 & -1 & a \\ 0 & 0 & 1 & -1 & a \\ 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Chọn a = 1, sau đó ta chọn $u_2 = (0, 1, 1, 0)$.

Tương tự như u_1 , ta có u_3 là vectơ riêng của trị riêng $\lambda = -1$ và u_4 là vectơ riêng của trị riêng $\lambda = 3$. Áp dụng tương tự các bước đi tìm u_1 , ta chọn $u_3 = (-2, 0, 1, 1)$ và $u_4 = (2, 0, 1, 1)$.

Dễ dàng kiểm tra $\{u_1, u_2, u_3, u_4\}$ đôc lập tuyến tính, suy ra $\mathcal{B} = (u_1, u_2, u_3, u_4)$ là cơ sở của \mathbb{R}^4 và la cơ sở cần tìm.

Ví dụ. (tự làm) Cho
$$A = \begin{pmatrix} 2 & -3 & 1 & -4 \\ -1 & 0 & -3 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$
 là ma trận biểu diễn

toán tử $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ theo cơ sở chính tắc \mathcal{B}_0 . Tìm một cơ sở \mathcal{B} của \mathbb{R}^4 để $[f]_{\mathcal{B}}$ là ma trận dạng tam giác khối?

Giải. Đa thức đặc trưng
$$P_A(\lambda) = (\lambda + 1)^2(\lambda - 2)^2$$
.

Ví dụ.(tự làm) Cho ma trận
$$A = \begin{pmatrix} 3 & 2 & 0 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & 0 & 2 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
. Tìm ma trận

khả nghịch P sao cho $P^{-1}AP$ là ma trận tam giác khối.

Giải. Đa thức đặc trưng
$$P_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)^2$$
.

2.5. Dạng chính tắc Jordan

Định nghĩa. Ta gọi ma trận dạng sau đây là một *khối Jordan*

$$J(\lambda) = \begin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$$

Nếu cấp của khối bằng 1 thì ta qui ước $J(\lambda) = (\lambda)$.

Ví dụ.

- Khối Jordan cấp 2: $J(3) = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$.
- Khối Jordan cấp 3: $J(-1) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.

Mệnh đề. $Giả sử J(\lambda)$ là một khối Jordan cấp n. Khi đó ta có:

•
$$P_J(t) = (-1)^n (t - \lambda)^n$$
.

$$m_J(t) = (t - \lambda)^n.$$

 $\mathbf{0} \operatorname{dim} E(\lambda) = 1.$

Dinh nghĩa. Ma trận Jordan là một ma trận khối có các khối Jordan trên đường chéo.

Ví dụ.

$$\begin{pmatrix} \mathbf{4} & \mathbf{1} & 0 \\ 0 & \mathbf{4} & 0 \\ 0 & 0 & \mathbf{4} \end{pmatrix}; \begin{pmatrix} -\mathbf{1} & \mathbf{1} & 0 & 0 \\ 0 & -\mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{3} & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{3} \end{pmatrix}; \begin{pmatrix} \mathbf{2} & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{3} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{3} & \mathbf{1} \\ 0 & 0 & 0 & 0 & 0 & \mathbf{3} \end{pmatrix}$$

Định nghĩa. Nếu A đồng dạng với ma trận Jordan B thì B được gọi là $dang\ chính\ tắc\ Jordan\$ của A.

Định lý. Dạng chính tắc Jordan của một ma trận được xác định duy nhất, sai khác hoán vị các khối Jordan của nó.

Lưu ý. Cho $J(\lambda)$ là khối Jordan cấp n. Khi đó

2 Ta có $(N_n)^n = 0$. Do đó, nếu $k \ge n$ thì

$$J^{k}(\lambda) = (\lambda I_{n} + N_{n})^{k} = \sum_{i=0}^{k} C_{k}^{i} \lambda^{k-i} (N_{n})^{i} = \sum_{i=0}^{n-1} C_{k}^{i} \lambda^{k-i} (N_{n})^{i}.$$

Mệnh đề. Cho $f \in End_K(V)$ sao cho

$$P_f(\lambda) = (-1)^n (t - \lambda)^n; m_f(t) = (t - \lambda)^k \text{ } v\grave{a} \dim E(\lambda) = r.$$

Khi đó, tồn tại một cơ sở $\mathcal B$ của V sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} \boxed{J_1(\lambda)} & & & 0 \\ & \boxed{J_2(\lambda)} & & & \\ & & \ddots & & \\ 0 & & \boxed{J_r(\lambda)} \end{pmatrix} =: \tilde{\boldsymbol{J}}(\boldsymbol{\lambda})$$

trong đó:

- $J_i(\lambda)$ là khối Jordan;
- Cấp của khối lớn nhất là k;
- Số các khối Jordan là **r**.

Ta gọi $\tilde{J}(\lambda)$ là ma trận Jordan tương ứng với trị riêng λ .

Nhắc lại. $A \setminus B = \{x \mid x \in A \text{ nhưng } x \notin B\}$

Ví dụ. Giả sử toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận biểu diễn theo cơ sở chính tắc là

$$A = \left(\begin{array}{rrr} 3 & 0 & -1 \\ -2 & 2 & 2 \\ 3 & 1 & 1 \end{array}\right).$$

- a) Tìm đa thức tối tiểu của f?
- b) Tìm một cơ sở \mathcal{B} của \mathbb{R}^3 sao cho $[f]_{\mathcal{B}}$ là ma trận Jordan?

Giải. a) Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -(\lambda - 2)^3.$$

Suy ra đa thức tối tiểu của f có dạng

$$m_f(t) = (t-2)^k$$
, với $k \le 3$.

Ta có

$$A - 2I_3 = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \\ 3 & 1 & -1 \end{pmatrix} \neq 0; \ (A - 2I_3)^2 = \begin{pmatrix} -2 & -1 & 0 \\ 4 & 2 & 0 \\ -2 & -1 & 0 \end{pmatrix} \neq 0.$$

Như vậy đa thức tối tiểu là $m_f(t) = (t-2)^3$.

b) \triangleright Tim dimE(2).?

$$E(2):=Ker(f-2\mathrm{Id}_{\mathbb{R}^3})$$
 là không gian nghiệm của hệ phương trình
$$(A-2I_3)X=0.$$

Ta có

$$A - 2I_3 = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \\ 3 & 1 & -1 \end{pmatrix} \xrightarrow[d_3 - 3d_1]{} \xrightarrow[d_3 - 3d_1]{} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Suy ra $\dim E(2) = 1$. Theo Dịnh lý trên ta có

- Số các khối Jordan là 1 (bằng $\dim E(2)$)
- Cấp của khối lớn nhất là 3 (bằng số bội của $\lambda = 2$ trong $m_f(t)$)

Do đó tồn tại cở sở $\mathcal{B} = (u_1, u_2, u_3)$ sao cho $[f]_{\mathcal{B}}$ có dạng chính tắc Jordan là

$$[f]_{\mathcal{B}} = \left(\begin{array}{ccc} \mathbf{2} & \mathbf{1} & 0 \\ 0 & \mathbf{2} & \mathbf{1} \\ 0 & 0 & \mathbf{2} \end{array}\right)$$

Suy ra

$$f(u_1) = 2u_1 \Leftrightarrow (f - 2Id_{\mathbb{R}^3})(u_1) = 0 \tag{1}$$

$$f(u_2) = u_1 + 2u_2 \Leftrightarrow (f - 2Id_{\mathbb{R}^3})(u_2) = u_1 \tag{2}$$

$$f(u_3) = u_2 + 2u_3 \Leftrightarrow (f - 2Id_{\mathbb{R}^3})(u_3) = u_2$$
 (3)

Từ (1) và (2), ta có

$$(f - 2Id_{\mathbb{R}^3})^2(u_2) = (f - 2Id_{\mathbb{R}^3})(u_1) = 0.$$
(4)

Từ (3) và (4), ta có

$$(f - 2Id_{\mathbb{R}^3})^3(u_3) = (f - 2Id_{\mathbb{R}^3})^2(u_2) = 0.$$
 (5)

Hơn nữa

$$(f - 2Id_{\mathbb{R}^3})^2(u_3) = (f - 2Id_{\mathbb{R}^3})(u_2) = u_1 \neq 0.$$
 (6)

Từ (5) và (6), ta có

$$u_3 \in Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^3 \backslash Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^2.$$

• Tìm $Ker(f - 2Id_{\mathbb{R}^3})^2$. Xét hệ phương trình $(A - 2I_3)^2 X = 0$. Ta có $(A - 2I_3)^2 = \begin{pmatrix} -2 & -1 & 0 \\ 4 & 2 & 0 \\ -2 & -1 & 0 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} -2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

Suy ra $u \in Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^2$ có dạng $u = (-\frac{y}{2}, y, z)$.

• Tìm $Ker(f-2\mathrm{Id}_{\mathbb{R}^3})^3$. Xét hệ phương trình $(A-2I_3)^3X=0$. Ta có $(A-2I_3)^3=0$. Suy ra $Ker(f-2\mathrm{Id}_{\mathbb{R}^3})^3=\mathbb{R}^3$.

Vì
$$u_3 \in Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^3 \setminus Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^2$$
 nên ta chọn $u_3 = (1, 0, 0)$.

Ta có

- $u_2 = (f 2\operatorname{Id}_{\mathbb{R}^3})(u_3) = (1, -2, 3).$
- $u_1 = (f 2\operatorname{Id}_{\mathbb{R}^3})(u_2) = (-2, 4, -2).$

Suy ra $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở cần tìm.

Ví dụ. Cho ma trận
$$A := \begin{pmatrix} -2 & 2 & 4 \\ 0 & -4 & -4 \\ 0 & 1 & 0 \end{pmatrix}$$
. Hãy tìm một ma trận

Jordan A' đồng dạng với A và chỉ rõ ma trận khả nghịch P thỏa mãn $A' = P^{-1}AP$.

Giải. Gọi f là toán tử tuyến tính có ma trận biểu diễn theo cơ sở chính tắc là A.

→ Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -(\lambda + 2)^3.$$

Suy ra đa thức tối tiểu của f có dạng

$$m_f(t) = (t+2)^k$$
, với $k \le 3$.

Ta có

$$A + 2I_3 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & -2 & -4 \\ 0 & 1 & 2 \end{pmatrix} \neq 0; \ (A + 2I_3)^2 = 0$$

Như vậy đa thức tối tiểu là $m_f(t) = (t+2)^2$.

ightharpoonup Tim dimE(-2).

 $E(-2) := Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})$ là không gian nghiệm của hệ phương trình

$$(A+2I_3)X=0.$$

$$A + 2I_3 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & -2 & -4 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}d_1}_{\substack{d_2 + 2d_1 \\ d_3 - d_1}} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Suy ra $\dim E(-2) = 2$. Như vậy,

- Số các khối Jordan là 2 (bằng $\dim E(2)$)
- \bullet Cấp của khối lớn nhất là ${\bf 2}$ (bằng số bội của $\lambda=2$ của $m_f(t))$

Do đó tồn tại cở sở $\mathcal{B} = (u_1, u_2, u_3)$ sao cho $[f]_{\mathcal{B}}$ có dạng chính tắc Jordan là

$$[f]_{\mathcal{B}} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

Suy ra

$$f(u_1) = -2u_1 \Leftrightarrow (f + 2Id_{\mathbb{R}^3})(u_1) = 0 \tag{1}$$

$$f(u_2) = -2u_2 \Leftrightarrow (f + 2Id_{\mathbb{R}^3})(u_2) = 0$$
 (2)

$$f(u_3) = u_2 - 2u_3 \Leftrightarrow (f + 2Id_{\mathbb{R}^3})(u_3) = u_2 \tag{3}$$

Rõ ràng $\{u_1, u_2\}$ là cơ sở của không gian riêng E(-2).

Từ (2) và (3), ta có

$$(f + 2Id_{\mathbb{R}^3})^2(u_3) = (f + 2Id_{\mathbb{R}^3})(u_2) = 0.$$
(4)

Từ (3) và (4), ta suy ra được

$$u_3 \in Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})^2 \backslash Ker(f + 2\mathrm{Id}_{\mathbb{R}^3}).$$

• Tìm $Ker(f + 2Id_{\mathbb{R}^3})$. Xét hệ phương trình $(A + 2I_3)X = 0$.

$$A + 2I_3 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & -2 & -4 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}d_1} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Suy ra $u \in Ker(f + 2Id_{\mathbb{R}^3})$ có dạng u = (x, -2z, z).

• Tìm $Ker(f+2\mathrm{Id}_{\mathbb{R}^3})^2$. Xét hệ phương trình $(A+2I_3)^2X=0$. Ta có $(A+2I_3)^2=0$. Suy ra $Ker(f+2\mathrm{Id}_{\mathbb{R}^3})^2=\mathbb{R}^3$.

Vì $u_3 \in Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})^2 \setminus Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})$ nên ta chọn $u_3 = (0, 1, 0)$.

Ta có

$$u_2 = (f + 2\mathrm{Id}_{\mathbb{R}^3})(u_3) = (2, -2, 1).$$

Ta phải chọn $u_1 \in E(-2)$ sao cho $\{u_1, u_2\}$ độc lập tuyến tính. Do đó ta có thể chọn $u_1 = (1, 0, 0)$.

Khi đó $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở cần tìm.

Lập
$$P = (u_1^\top \ u_2^\top \ u_3^\top) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
. Khi đó

$$P^{-1}AP = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}.$$

Ví dụ. Giả sử toán tử tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^4$ có ma trận biểu diễn theo cơ sở chính tắc là

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 1 \\ -2 & -4 & -4 & -1 \end{array}\right).$$

- a) Tìm đa thức tối tiểu của f?
- b) Tìm một cơ sở \mathcal{B} của \mathbb{R}^4 sao cho $[f]_{\mathcal{B}}$ là ma trận Jordan?

Giải. a) Đa thức đặc trưng $P_f(\lambda) = |A - \lambda I_4| = (\lambda - 1)^4$. Suy ra đa thức tối tiểu của f có dạng

$$m_f(t) = (t-1)^k$$
, với $k \le 4$.

Ta có

$$A - I_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 2 & 1 \\ -2 & -4 & -4 & -2 \end{pmatrix}; (A - I_4)^2 = 0.$$

Suy ra

$$m_f(t) = (t-1)^2.$$

b) \triangleright Tim dimE(1)?

 $E(1) := Ker(f - \mathrm{Id}_{\mathbb{R}^4})$ là không gian nghiệm của hệ phương trình

$$(A - I_4)X = 0.$$

Do đó $\dim E(1) = 3$. Suy ra

- Số các khối Jordan là 3 (bằng $\dim E(1)$)
- \bullet Cấp của khối lớn nhất là ${\bf 2}$ (bằng số bội của $\lambda=1$ của $m_f(t))$

Do đó tồn tại cở sở $\mathcal{B}=(u_1,u_2,u_3,u_4)$ sao cho $[f]_{\mathcal{B}}$ có dạng chính tắc Jordan là

$$[f]_{\mathcal{B}} = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}.$$

Suy ra

$$f(u_1) = u_1 \Leftrightarrow (f - Id_{\mathbb{R}^4})(u_1) = 0 \tag{1}$$

$$f(u_2) = u_2 \Leftrightarrow (f - Id_{\mathbb{R}^4})(u_2) = 0 \tag{2}$$

$$f(u_3) = u_3 \Leftrightarrow (f - Id_{\mathbb{R}^4})(u_3) = 0 \tag{3}$$

$$f(u_4) = u_3 + u_4 \Leftrightarrow (f - Id_{\mathbb{R}^4})(u_4) = u_3$$
 (4)

Rõ ràng $u_1, u_2, u_3 \in Ker(f - \mathrm{Id}_{\mathbb{R}^4})$. Từ (3) và (4), ta có

$$(f - Id_{\mathbb{R}^4})^2(u_4) = (f - Id_{\mathbb{R}^4})(u_3) = 0.$$
 (5)

Từ (4) và (5), ta suy ra được

$$u_4 \in Ker(f - \mathrm{Id}_{\mathbb{R}^4})^2 \backslash Ker(f - \mathrm{Id}_{\mathbb{R}^4}).$$

• Tim $Ker(f - \mathrm{Id}_{\mathbb{R}^4})$

Suy ra $u \in Ker(f - \mathrm{Id}_{\mathbb{R}^4})$ có dạng u = (-2y - 2z - t, y, z, t)

• Tìm $Ker(f-\mathrm{Id}_{\mathbb{R}^4})^2$ Ta có

$$(A - I_4)^2 = 0.$$

Suy ra $Ker(f - \mathrm{Id}_{\mathbb{R}^4})^2 = \mathbb{R}^4$. Vì

$$u_4 \in Ker(f - \mathrm{Id}_{\mathbb{R}^4})^2 \text{ và } u_4 \notin Ker(f - \mathrm{Id}_{\mathbb{R}^4}).$$

Nên ta có thể chọn $u_4 = (1, 0, 0, 0)$. Ta có

$$u_3 = (f - \mathrm{Id}_{\mathbb{R}^4})(u_4) = (0, 0, 1, -2).$$

Vì $u_1, u_2 \in Ker(f - \mathrm{Id}_{\mathbb{R}^4})$, ta có thể chọn

$$u_1 = (-2, 1, 0, 0), u_2 = (-2, 0, 1, 0).$$

Rõ ràng u_1, u_2, u_3, u_4 độc lập tuyến tính. Suy ra $\mathcal{B} = (u_1, u_2, u_3, u_4)$ là cơ sở cần tìm. Hơn nữa

$$P = \begin{pmatrix} -2 & -2 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$
 và $P^{-1}AP = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}.$

Ví dụ.(tự làm) Cho ma trận
$$A = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
. Hãy tìm một ma

trận Jordan A^\prime đồng dạng với A và chỉ rõ ma trận khả nghịch P thỏa mãn $A^\prime=P^{-1}AP.$

Định lý. Cho $f \in End_K(V)$. Nếu f có các trị riêng khác nhau $\lambda_1, \ldots, \lambda_p$ sao cho

$$P_f(t) = (-1)^n (t - \lambda_1)^{m_1} \dots (t - \lambda_p)^{m_p}.$$

thì tồn tại một cơ sở ${\cal B}$ của V sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} \tilde{J}(\lambda_1) & & & 0 \\ & \tilde{J}(\lambda_2) & & & \\ & & \ddots & & \\ 0 & & & \tilde{J}(\lambda_p) \end{pmatrix}$$

Ví dụ. Cho $A = \begin{pmatrix} 3 & 3 & 4 \\ -2 & -2 & -4 \\ 1 & 2 & 4 \end{pmatrix}$. Tìm ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận Jordan.

Giải. Gọi f là toán tử tuyến tính có ma trận biểu diễn theo cơ sở chính tắc là A.

⊳ Đa thức đặc trưng

$$P_f(\lambda) = |A - \lambda I_3| = -(\lambda - 1)(\lambda - 2)^2.$$

ightharpoonup Tìm ma trận Jordan tương ứng với $\lambda_1=1.$

Ta có $E(1) := Ker(f - Id_{\mathbb{R}^3})$. Xét hệ phương trình $(A - I_3)X = 0$.

$$A - I_3 = \begin{pmatrix} 2 & 3 & 4 \\ -2 & -3 & -4 \\ 1 & 2 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Như vậy $u \in E(1)$ có dạng u = (z, -2z, z).

Suy ra ${\rm dim}E(1)=1.$ Do đó $\tilde{J}(1)$ chỉ có 1 khối Jordan. Hơn nữa cấp của $\tilde{J}(1)$ bằng 1 nên $\tilde{J}(1)$ chỉ có 1 khối Jordan cấp 1. Nghĩa là

$$\tilde{J}(1) = (1). \tag{1}$$

ightharpoonup Tìm ma trận Jordan tương ứng với $\lambda_2=2$.

Ta có $E(2) = Ker(f - 2\mathrm{Id}_{\mathbb{R}^3})$. Xét hệ phương trình $(A - 2I_3)X = 0$.

$$A - 2I_3 = \begin{pmatrix} 1 & 3 & 4 \\ -2 & -4 & -4 \\ 1 & 2 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Như vậy $u \in E(2)$ có dạng u = (-z, -z, z).

Suy ra $\dim E(2)=1.$ Do đó $\tilde{J}(2)$ chỉ có 1 khối Jordan. Hơn nữa cấp của $\tilde{J}(2)$ bằng 2 nên $\tilde{J}(1)$ chỉ có 1 khối Jordan cấp 2. Nghĩa là

$$\tilde{J}(2) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}. \tag{2}$$

Từ (1), (2) và định lý trên, ta suy ra tồn tại một cơ sở $\mathcal{B}=(u_1,u_2,u_3)$ sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} \tilde{J}(1) & 0 \\ 0 & \tilde{J}(2) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Suy ra

$$f(u_1) = u_1 \Leftrightarrow (f - Id_{\mathbb{R}^3})(u_1) = 0 \tag{3}$$

$$f(u_2) = 2u_2 \Leftrightarrow (f - 2Id_{\mathbb{R}^3})(u_2) = 0 \tag{4}$$

$$f(u_3) = u_2 + 2u_3 \Leftrightarrow (f - 2Id_{\mathbb{R}^3})(u_3) = u_2$$
 (5)

Rõ ràng $u_1 \in Ker(f - Id_{\mathbb{R}^3}) = E(1)$.

Từ (4) và (5), ta có

$$(f - 2Id_{\mathbb{R}^3})^2(u_3) = (f - 2Id_{\mathbb{R}^3})(u_2) = 0.$$
 (6)

Từ (5) và (6), ta suy ra được

$$u_3 \in Ker(f - 2\mathrm{Id}_{\mathbb{R}^3})^2 \backslash Ker(f - 2\mathrm{Id}_{\mathbb{R}^3}).$$

Tìm u_1 . Vì $u \in E(1)$ có dạng u = (z, -2z, z) nên ta có thể chọn

$$u_1 = (1, -2, 1).$$

Tìm u_3 .

• Tìm $Ker(f-2\mathrm{Id}_{\mathbb{R}^3})^2$. Xét hệ phương trình $(A-2I_3)^2X=0$.

$$(A - 2I_3)^2 = \begin{pmatrix} -1 & -1 & 0 \\ 2 & 2 & 0 \\ -1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Suy ra $u \in Ker(f - 2\operatorname{Id}_{\mathbb{R}^3})^2$ có dạng u = (-t, t, s).

Vì
$$u_3 \in Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})^2 \setminus Ker(f + 2\mathrm{Id}_{\mathbb{R}^3})$$
 nên ta chọn $u_3 = (-1, 1, 0)$.

Ta có

$$u_2 = (f - 2\mathrm{Id}_{\mathbb{R}^3})(u_3) = (2, -2, 1).$$

Như vậy $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở cần tìm. Lập

$$P = (u_1^\top \ u_2^\top \ u_3^\top) = \left(\begin{array}{ccc} 1 & 2 & -1 \\ -2 & -2 & 1 \\ 1 & 1 & 0 \end{array} \right).$$

Khi đó

$$P^{-1}AP = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right).$$

Ví dụ.(tự làm) Cho ma trận
$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
. Tìm ma trận

khả nghịch P sao cho $P^{-1}AP$ là ma trận Jordan.

Ví dụ.(tự làm) Cho ma trận
$$A = \begin{pmatrix} 2 & -1 & -2 & 2 \\ -1 & 4 & 4 & -3 \\ 2 & -1 & -1 & 2 \\ 0 & -1 & -2 & 4 \end{pmatrix}$$
. Tìm ma

trận khả nghịch P sao cho $P^{-1}AP$ là ma trận Jordan.

Gợi ý.
$$P_A(\lambda) = (\lambda - 3)(\lambda - 2)^3$$

Ví dụ. (tự làm) Cho ma trận
$$A = \begin{pmatrix} 1 & -1 & -2 & 2 \\ 0 & 3 & 4 & -4 \\ 1 & 0 & -1 & 3 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$
. Tìm ma trận l
hể nghiện B cao cho $B^{-1}AB$ là ma trận Lordon

khả nghịch P sao cho $P^{-1}AP$ là ma trận Jordan.

Gợi ý.
$$P_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)^2$$

Ví dụ. (tự làm) Cho ma trận
$$A = \begin{pmatrix} -1 & -2 & -2 & 2 \\ 0 & 3 & 4 & -4 \\ 1 & 0 & -1 & 3 \\ -2 & -1 & -1 & 3 \end{pmatrix}$$
. Tìm ma

trận khả nghịch P sao cho $P^{-1}AP$ là ma trận Jordan.

Gợi ý.
$$P_A(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 2)^2$$

ĐẠI SỐ A2

Chương 3

KHÔNG GIAN EUCLID

TS. Lê Văn Luyện

lvluyen@hcmus.edu.vn

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh, 2016

Nội dung

Chương 3. KHÔNG GIAN EUCLID

- 1. Tích vô hướng và không gian Euclid
- 2. Sự trực giao.
- 3. Cơ sở trực giao và cơ sở trực chuẩn. Quá trình trực giao hóa Gram-Schmidt
- 4. Khoảng cách từ một véctơ đến một không gian con
- 5. Ma trận biểu diễn của tích vô hướng
- 6. Toán tử đối xứng
- 7. Toán tử trực giao

3.1. Tích vô hướng và không gian Euclid

 \mathbf{Dinh} nghĩa. Cho V là không gian vecto. Ánh xạ

$$\langle , \rangle : V \times V \longrightarrow \mathbb{R}$$

$$(u, v) \longmapsto \langle u, v \rangle$$

được gọi là một *tích vô hướng* trong V nếu $\forall u, v, w \in V, \forall \alpha, \beta \in \mathbb{R}$, thỏa các tính chất sau:

- (i) $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle;$
- (ii) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle;$
- (iii) $\langle u, v \rangle = \langle v, u \rangle;$
- (iv) $\langle u, u \rangle \ge 0$, trong đó $\langle u, u \rangle = 0 \Leftrightarrow u = 0$.

Định nghĩa. Ta gọi một không gian vectơ hữu hạn chiều với tích vô hướng là một *không gian Euclid*.

Ví dụ. Cho không gian vectơ $V = \mathbb{R}^n$, với $u = (x_1, \dots, x_n)$ và $v = (y_1, \dots, y_n)$ ta định nghĩa

$$\langle u,v\rangle:=x_1y_1+\cdots+x_ny_n.$$

Khi đó V là không gian Euclid. Tích vô hướng này được gọi là t trong \mathbb{R}^n .

Ví dụ. Với
$$u=(x_1,x_2), v=(y_1,y_2)\in\mathbb{R}^2$$
, ta định nghĩa

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2.$$

Khi đó

- a) Chứng tỏ \langle , \rangle là một tích vô hướng trong \mathbb{R}^2 .
- b) Tính ((2,3), (-1,2))?

Đáp án. b) $\langle (2,3), (-1,2) \rangle = 30$.

Ví dụ. Xét không gian vectơ $M_2(\mathbb{R})$ gồm các ma trận vuông cấp 2 trên trường số thực \mathbb{R} . Với $A, B \in M_2(\mathbb{R})$, ta định nghĩa

$$\langle \boldsymbol{A}, \boldsymbol{B} \rangle := tr(A^{\top}B).$$

Chứng tỏ $M_2(\mathbb{R})$ là không gian Euclid với tích vô hướng \langle , \rangle .

Ví dụ. Với các đa thức $P,Q \in \mathbb{R}[x]$, ta định nghĩa

$$\langle \mathbf{P}, \mathbf{Q} \rangle = \int_0^1 P(x)Q(x)dx.$$

- a) Chứng tỏ \langle , \rangle là một tích vô hướng trong $\mathbb{R}[x]$.
- b) Tính tích vô hướng của $2x^2 + x$ và x + 1.

Đáp án.
$$b) \int_0^1 (2x^2 + x)(x+1)dx = 2.$$

Ví dụ. Xét không gian vectơ $(C[a,b],\mathbb{R})$ gồm các hàm thực liên tục trên [a,b]. Khi đó $(C[a,b],\mathbb{R})$ là một không gian Euclid với tích vô hướng

 $\langle f,g
angle = \int_a^b f(x)g(x)dx.$

Nhận xét. Cho W là không gian vectơ con của V. Giả sử trong V có tích vô hướng \langle,\rangle_V . Với mọi $u,v\in W$, định nghĩa

$$\langle u,v\rangle_W:=\langle u,v\rangle_V.$$

Khi đó \langle , \rangle_W là một tích vô hướng trong W.

Định nghĩa. Cho V là không gian Euclid và $u \in V$. Ta nói

0 Chuẩn hay độ dài của vecto u, ký hiệu $\|u\|$, được định nghĩa

$$||u|| := \sqrt{\langle u, u \rangle};$$

2 u là vecto don vi nếu ||u|| = 1.

Tính chất. Cho $u \in V$ và $\lambda \in \mathbb{R}$. Khi đó

- (i) $\langle u, u \rangle = ||u||^2$.
- (ii) $||u|| = 0 \Leftrightarrow u = 0$.
- (iii) $\|\lambda u\| = |\lambda| \|u\|$.

Ví dụ. Cho $V = \mathbb{R}^3$ với tích vô hướng chính tắc và u = (1, -2, 3). Tìm ||u||?

Đáp án. $||u|| = \sqrt{14}$.

Bổ đề. [Bất đẳng Cauchy-Schwarz] Với mọi $u, v \in V$, ta có

$$\langle u,v\rangle^2 \leq \|u\|^2 \|v\|^2.$$

Hơn nữa, dấu = xảy ra khi và chỉ khi u và v phụ thuộc tuyến tính.

Chứng minh. Nếu ||u|| = 0 = ||v|| thì u = 0 = v. Suy ra bất đẳng thức đúng.

Giả sử $||v|| \neq 0$ và $\lambda \in \mathbb{R}$ là một số thực bất kỳ. Ta có

$$||u + \lambda v||^2 \ge 0$$

$$\Leftrightarrow ||u||^2 + ||\lambda v||^2 + 2\langle u, \lambda v \rangle \ge 0$$

$$\Leftrightarrow \lambda^2 ||v||^2 + 2\lambda \langle u, v \rangle + ||u||^2 \ge 0.$$

Vế trái của bất đẳng thức sau cùng là một tam thức bậc hai theo λ . Để tam thức này luôn nhận giá trị ≥ 0 đối với mọi $\lambda \in \mathbb{R}$ thì điều kiện cần và đủ là biệt số $\Delta' \leq 0$, nghĩa là $\langle u,v \rangle^2 - \|u\|^2 \|v\|^2 \leq 0$

$$\langle u, v \rangle^2 - ||u||^2 ||v||^2 \le 0$$

hay

$$\langle u, v \rangle^2 \le ||u||^2 ||v||.$$

ightharpoonup Giả sử dấu = xảy ra, nghĩa là $\langle u,v\rangle^2=\|u\|^2\|v\|^2$. Khi đó tam thức bậc hai nói trên có nghiệm kép, nghĩa là tồn tại $\lambda\in\mathbb{R}$ sao cho

$$\lambda^{2} ||v||^{2} + 2\lambda \langle u, v \rangle + ||u||^{2} = 0$$

hay $||u + \lambda v||^2 = 0$. Suy ra $u + \lambda v = 0$ hay u và v là các vecto phụ thuộc tuyến tính.

Mệnh đề. [Bất đẳng thức tam giác] Với mọi $u, v \in V$, ta có

$$||u+v|| \le ||u|| + ||v||.$$

Hơn nữa, khi $u \neq 0$, dấu = xảy ra khi và chỉ khi tồn tại $\lambda \geq 0$ sao cho $v = \lambda u$.

Chứng minh. Ta có

$$\begin{aligned} ||u+v||^2 &= ||u||^2 + ||v||^2 + 2\langle u, v \rangle \\ &\leq ||u||^2 + ||v||^2 + 2|\langle u, v \rangle| \\ &\leq ||u||^2 + ||v||^2 + 2||u|| ||v|| \quad \text{(do bắt đẳng thức C-S)} \\ &= (||u|| + ||v||)^2. \end{aligned}$$

Suy ra $||u + v|| \le ||u|| + ||v||$.

ightharpoonup Nếu $v=\lambda u$, với $\lambda>0$ thì ta có

$$||u + v|| = ||u + \lambda u|| = ||(1 + \lambda)u||$$

$$= (1 + \lambda)||u|| = ||u|| + \lambda||u||$$

$$= ||u|| + ||\lambda u|| = ||u|| + ||v||.$$

Ngược lại, giả sử

$$||u+v|| = ||u|| + ||v||. (1)$$

Ta có

$$||u+v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$$

Hơn nữa, từ (1) ta có

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2||u|| ||v||.$$

Suy ra

$$\langle u, v \rangle = ||u|| ||v|| \Rightarrow \langle u, v \rangle^2 = ||u||^2 ||v||^2.$$

Theo Bổ đề trên, ta có u và v phụ thuộc tuyến tính.

Giả sử
$$v = \lambda u$$
. Vì $\langle u, v \rangle = ||u|| ||v||$ nên $\langle u, v \rangle \ge 0$. Thay $v = \lambda u$ ta có $\langle u, v \rangle = \langle u, \lambda u \rangle = \lambda \langle u, u \rangle = \lambda ||u||^2 \ge 0$. Suy ra $\lambda \ge 0$.

Nhận xét. Giả sử u và v là hai vectơ khác không của V. Áp dụng bất đẳng thức C-S, ta có

$$\frac{|\langle u, v \rangle|}{\|u\| \|v\|} \le 1.$$

Định nghĩa. Cho V là không gian Euclide và $u,\,v\in V$. Góc giữa hai vectơ u và v là $\theta\in[0,\pi]$ thỏa

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Lưu ý. Góc giữa vectơ $\mathbf{0}$ và một vectơ u bất kỳ được xem là tùy ý.

Ví dụ. Cho $V=(C[0,\frac{\pi}{2}],\mathbb{R})$ với tích vô hướng

$$\langle f, g \rangle = \int_0^{\frac{\pi}{2}} f(x)g(x)dx.$$

Tìm góc giữa $\sin x$ và $\cos x$?

Giải. $\langle \sin x, \cos x \rangle = \frac{1}{2}$; $\|\sin x\| = \frac{1}{2}\sqrt{\pi}$; $\|\cos x\| = \frac{1}{2}\sqrt{\pi}$. Do đó

$$\cos \theta = \frac{\langle \sin x, \cos x \rangle}{\|\sin x\| \|\cos x\|} = \frac{2}{\pi}$$
. Suy ra $\theta = \arccos(\frac{2}{\pi})$.

3.2. Sự trực giao

 \mathbf{Dinh} nghĩa. Cho V là một không gian Euclid.

- a) Với $u, v \in V$, ta nói u **trực giao** với v nếu $\langle u, v \rangle = 0$, ký hiệu $u \perp v$.
- b) Nếu $\emptyset \neq A \subseteq V$ thì ta đặt

$$A^{\perp} := \{ u \in V \mid \langle u, a \rangle = 0, \forall a \in A \}.$$

Khi đó A^{\perp} là một không gian con của V và ta gọi A^{\perp} là không gian trực giao với A.

Nhận xét.

- (i) $\{0\}^{\perp} = V \ v \grave{a} \ V^{\perp} = \{0\}.$
- (ii) $A^{\perp} = \langle A \rangle^{\perp}$.
- (iii) $A^{\perp} \cap A \subset \{\mathbf{0}\}.$

Nhận xét. Để tìm không gian trực giao với không gian vectơ sinh bởi một tập hợp thì ta chỉ cần tìm không gian trực giao với tập hợp đó.

Ví dụ. Cho $V = \mathbb{R}^4$ với tích vô hướng chính tắc và W sinh bởi

$${u_1 = (1, 2, 1, 1), u_2 = (2, 3, -2, 1), u_3 = (4, 7, 0, 3)}.$$

Tìm W^{\perp} ?

Giải. Giả sử $u=(x,y,z,t)\in W^{\perp}$. Ta có

$$\begin{cases} \langle u, u_1 \rangle = 0 \\ \langle u, u_2 \rangle = 0 \\ \langle u, u_3 \rangle = 0. \end{cases}$$
 Suy ra
$$\begin{cases} x + 2y + z + t = 0; \\ 2x + 3y - 2z + t = 0; \\ 4x + 7y + 3t = 0. \end{cases}$$

Giải hệ ta được u=(7a+b,-4a-b,a,b) với $a,b\in\mathbb{R}$. Suy ra W^{\perp} có cơ sở là

$$\{(7, -4, 1, 0), (1, -1, 0, 1)\}.$$

Ví dụ. Trong không gian \mathbb{R}^4 cho tích vô hướng \langle,\rangle được định nghĩa như sau:

với
$$u = (x_1, x_2, x_3, x_4); v = (y_1, y_2, y_3, y_4);$$

$$\langle u, v \rangle = x_1 y_1 + 2x_2 y_2 + x_3 y_3 + 2x_4 y_4.$$

Đặt W là không gian sinh bởi các vectơ:

$$u_1 = (1, 1, 3, 1); u_2 := (5, 1, -1, -3); u_3 = (-1, 1, 5, 3).$$

Tìm một cơ sở cho không gian con W^{\perp} ?

Hướng dẫn. Giả sử $u=(x,y,z,t)\in W^{\perp}$. Ta có

$$\begin{cases} \langle u, u_1 \rangle = 0 \\ \langle u, u_2 \rangle = 0 \\ \langle u, u_3 \rangle = 0. \end{cases}$$
 Suy ra
$$\begin{cases} x + 2y + 3z + 2t = 0; \\ 5x + 2y - z - 6t = 0; \\ -x + 2y + 5z + 6t = 0. \end{cases}$$

Giải hệ ta được u=(a+2b,-2a-2b,a,b) với $a,b\in\mathbb{R}$. Suy ra cơ sở của W^{\perp} là $\{(1,-2,1,0),(2,-2,0,1)\}.$

 \mathbf{Hoi} . Cho W là không gian vectơ con của không gian Euclide V.

$$V = W \oplus W^{\perp}$$
?

Mệnh đề. Nếu W là không gian con của không gian Euclid V thì

$$\dim V = \dim W + \dim W^{\perp}.$$

Hệ quả. Nếu W là không gian con của không gian Euclid V thì

- (i) $V = W \oplus W^{\perp}$.
- (ii) $D\check{a}t\ W^{\perp\perp} := (W^{\perp})^{\perp},\ ta\ co\ W^{\perp\perp} = W.$

Chứng minh. (i) Ta có $W \cap W^{\perp} = \{0\}$ và từ mệnh đề trên, suy ra

$$V = W \oplus W^{\perp}$$
.

(ii) Giả sử $u \in W$. Với mọi $v \in W^{\perp}$, ta có $\langle u, v \rangle = 0$. Suy ra $u \in W^{\perp \perp}$. Do đó $\mathbf{W} \subset \mathbf{W}^{\perp \perp}$.

Áp dụng hệ quả trên ta có

$$\dim V = \dim W^{\perp} + \dim W^{\perp \perp}.$$

Suy ra

$$\dim W^{\perp \perp} = \dim V - \dim W^{\perp}$$
$$= \dim V - (\dim V - \dim W)$$
$$= \dim W.$$

$$Vi W \subset W^{\perp \perp} và \dim W = \dim W^{\perp \perp} nên W = W^{\perp \perp}.$$

3.3. Cơ sở trực giao và cơ sở trực chuẩn

Định nghĩa. Cho V là không gian Euclid n chiều và $\mathcal{B} = \{u_1, \dots, u_n\}$ là một cơ sở của V.

 \bullet Ta nói ${\cal B}$ là $c\sigma$ sở trực giao nếu

$$\langle u_i, u_j \rangle = 0, \, \forall i \neq j.$$

 \bullet Ta nói ${\cal B}$ là $c\sigma$ sở trực chuẩn nếu ${\cal B}$ là cơ sở trực giao và

$$||u_i|| = 1, \forall i = \overline{1, n}.$$

Hiển nhiên nếu $\{u_1, \ldots, u_n\}$ là cơ sở trực giao thì $\left\{\frac{u_1}{||u_1||}, \ldots, \frac{u_n}{||u_n||}\right\}$ là cơ sở trực chuẩn.

Định lý. Trong một không gian Euclid bất kỳ luôn tồn tại các cơ sở trực giao.

Chứng minh. Ta sử dụng qui nạp theo số chiều n của V.

- \triangleright Nếu n=1 hiển nhiên.
- \triangleright Nếu $n \ge 2$. Giả sử điều khẳng định là đúng cho những không gian có chiều nhỏ hơn n. Xét một vectơ $0 \ne u \in V$, khi đó

$$V = \langle u \rangle \oplus \langle u \rangle^{\perp}$$
 và $\dim \langle u \rangle^{\perp} = n - 1$.

Theo giả thiết qui nạp trong $\langle u \rangle^{\perp}$ ta tìm được cơ sở trực giao, chẳng hạn $\{u_1,\ldots,u_{n-1}\}$. Khi đó

$$\{u,u_1,\ldots,u_{n-1}\}$$

là một cơ sở trực giao của V.

Nhận xét. Nếu $\mathcal{B} = \{u_1, \dots, u_n\}$ là cơ sở trực chuẩn của V. Với mọi cặp vectơ $u = \sum_{i=1}^n x_i u_i$ và $v = \sum_{j=1}^n y_i u_i$ của V, ta có

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \sum_{i=1}^{n} x_i u_i, \sum_{i=j}^{n} y_j u_j \rangle = \sum_{i,j=1}^{n} x_i y_j \langle u_i, u_j \rangle = \sum_{i=1}^{n} x_i y_i.$$

Định lý. Cho $\mathcal{B} = (u_1, \dots, u_n)$ là một cơ sở của không gian Euclid V. Khi đó, \mathcal{B} là cơ sở trực chuẩn nếu và chỉ nếu đối với mọi vectơ u, v của V ta có

$$\langle u, v \rangle = x_1 y_1 + \dots + x_n y_n,$$

$$trong\ \textit{$d\acute{o}$}\ [u]_{\mathcal{B}} = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) v\grave{a}\ [v]_{\mathcal{B}} = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right) l\grave{a}\ to a\ \textit{$d\^{o}$}\ \textit{c\'ua}\ \textit{c\'ac}\ \textit{vecto}\ u, v$$

trong cơ sở \mathcal{B} .

Chứng minh. (\Rightarrow) Giả sử $\mathcal{B} = (u_1, \dots, u_n)$ là cơ sở trực chuẩn và $u, v \in V$. Ta có

$$\langle u, v \rangle = \langle \sum_{i=1}^{n} x_i u_i, \sum_{j=1}^{n} y_j u_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle u_i, u_j \rangle = \sum_{i=1}^{n} x_i y_i.$$

(
$$\Leftarrow$$
) Hiển nhiên, vì ta tính được $\langle u_i, u_j \rangle = \left\{ \begin{array}{ll} 1 & \text{nếu } i = j \\ 0 & \text{nếu } i \neq j \end{array} \right.$

Mệnh đề. Cho $\mathcal{B} = \{u_1, \dots, u_n\}$ là một cơ sở trực chuẩn của không gian Euclid V và $u \in V$. Khi đó

$$u = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_n \rangle u_n.$$

Chứng minh. Giả sử $u = x_1u_1 + x_2u_2 + \ldots + x_nu_n$. Khi đó

$$\langle u, u_i \rangle = x_1 \langle u_1, u_i \rangle + x_2 \langle u_2, u_i \rangle + \ldots + x_n \langle u_n, u_i \rangle.$$

Vì \mathcal{B} là cơ sở trực chuẩn nên

$$\langle u_i, u_j \rangle = \begin{cases} 1 & \text{n\'eu } i = j \\ 0 & \text{n\'eu } i \neq j \end{cases}$$

$$\langle u, u_i \rangle = x_i.$$

Suy ra

Ví dụ. Cho cơ sở trực chuẩn của không gian Euclid \mathbb{R}^3 với tích vô hướng chính tắc là

$$\mathcal{B} = \left(u_1 = \left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right); u_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right); u_3 = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right).$$

Hãy tìm tọa độ vecto u = (3, -2, 1) theo cơ sở \mathcal{B} .

Giải. Giả sử
$$[u]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
. Khi đó

$$x_1 = \langle u, u_1 \rangle = \frac{3}{\sqrt{6}}; \ x_1 = \langle u, u_2 \rangle = \frac{1}{\sqrt{2}}; \ x_1 = \langle u, u_3 \rangle = \frac{6}{\sqrt{3}}.$$

Định nghĩa. Cho W là không gian con của không gian Euclid V. Khi đó với mỗi $u \in V$ đều viết được một cách duy nhất dưới dạng

$$\boldsymbol{u} = \boldsymbol{u_0} + \boldsymbol{v}$$
, trong đó $u_0 \in W$ và $v \in W^{\perp}$.

Ta gọi u_0 là hình chiếu trực giao của u lên W và ký hiệu là $u_0 = pr_W(u)$.

Định lý. Cho V là không gian Euclid và W là một không gian con của V. Giả sử $\{u_1, \ldots, u_m\}$ là một cơ sở trực chuẩn của W và $u \in V$. Khi đó

$$pr_W(u) = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_m \rangle u_m.$$

Chứng minh. Gọi $\{u_{m+1},\ldots,u_n\}$ là một cơ sở trực chuẩn của không gian W^{\perp} . Khi đó, $\{u_1,\ldots,u_m,u_{m+1},\ldots,u_n\}$ là một cơ sở trực chuẩn của V. Ta có

$$u = \langle u, u_1 \rangle u_1 + \dots + \langle u, u_m \rangle u_m + \langle u, u_{m+1} \rangle u_{m+1} + \dots + \langle u, u_n \rangle u_n$$

Lưu ý rằng

$$\langle u, u_1 \rangle u_1 + \cdots + \langle u, u_m \rangle u_m \in W$$

và

$$\langle u, u_{m+1} \rangle u_{m+1} + \dots + \langle u, u_n \rangle u_n \in W^{\perp}.$$

Suy ra

$$pr_W(u) = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_m \rangle u_m.$$

Quá trình trực giao hóa Gram-Schmidt

Định lý. Cho $\{v_1, \ldots, v_m\}$ là một họ các vectơ độc lập tuyến tính của không gian Euclid V và $W = \langle v_1, \ldots, v_m \rangle$. Khi đó, từ các vectơ v_1, \ldots, v_m ta có thể xây dựng một cơ sở trực chuẩn cho W.

Nói riêng, từ một cơ sở bất kỳ của V ta có thể xây dựng được một cơ sở trực chuẩn của V.

Chứng minh. Ta chỉ cần xây dựng một cơ sở trực giao của W.

$$ightharpoonup$$
 Đặt $u_1:=v_1$ $u_2:=v_2+\lambda_1u_1, ext{ với } \lambda_1\in\mathbb{R} ext{ sao cho } u_2\perp u_1.$

Với điều kiện này ta có

$$0 = \langle u_2, u_1 \rangle = \langle v_2 + \lambda_1 u_1, u_1 \rangle = \langle v_2, u_1 \rangle + \lambda_1 \langle u_1, u_1 \rangle.$$

Do
$$u_1 \neq 0$$
 nên từ đó suy ra
$$\lambda_1 = -\frac{\langle v_2, u_1 \rangle}{||u_1||^2}.$$

ightharpoonup Tiếp theo, tìm u_3 dưới dạng

 $u_3 = v_3 + \lambda_1 u_1 + \lambda_2 u_2$, với $\lambda_1, \lambda_2 \in \mathbb{R}$ sao cho $u_3 \perp u_1$ và $u_3 \perp u_2$.

Tìm λ_1 như sau:

$$0 = \langle u_3, u_1 \rangle = \langle v_3 + \lambda_1 u_1 + \lambda_2 u_2, u_1 \rangle$$

= $\langle v_3, u_1 \rangle + \lambda_1 ||u_1||^2$ (do $\langle u_2, u_1 \rangle = 0$).

Từ đó suy ra $\lambda_1 = -\frac{\langle v_3, u_1 \rangle}{||u_1||^2}$. Tương tự, nhận được $\lambda_2 = -\frac{\langle v_3, u_2 \rangle}{||u_2||^2}$.

 \triangleright Giả sử đã tìm được các vectơ trực giao $u_1,\dots,u_{m-1}.$ Ta sẽ tìm vectơ u_m dưới dạng sau

$$u_m = v_m + \lambda_1 u_1 + \cdots + \lambda_{m-1} u_{m-1}.$$

Từ điều kiện $u_m \perp u_i$ ta tìm được $\lambda_i = -\frac{\langle v_m, u_i \rangle}{||u_i||^2}$. Như vậy ta đã xây dựng được một họ các vecto trực giao $\{u_1, \dots, u_m\}$.

Bây giờ ta chỉ cần chứng minh

$$\langle u_1,\ldots,u_m\rangle=\langle v_1,\ldots,v_m\rangle.$$

Ta có $\langle u_1 \rangle = \langle v_1 \rangle$. Giả sử $1 < i \le p-1$ và

$$\langle u_1, \dots, u_i \rangle = \langle v_1, \dots, v_i \rangle.$$

Khi đó mỗi một vecto u_k $(1 \le k \le i)$ đều là tổ hợp tuyến tính của các vecto v_1, \ldots, v_i . Theo cách xây dựng thì u_{i+1} là tổ hợp tuyến tính của các vecto $v_{i+1}, u_1, \ldots, u_i$, do đó u_{i+1} cũng là tổ hợp tuyến tính của các vecto $v_{i+1}, v_1, \ldots, v_i$. Ta đã chứng minh

$$\langle u_1, \ldots, u_{i+1} \rangle \subseteq \langle v_1, \ldots, v_{i+1} \rangle.$$

Hoàn toàn tương tự ta cũng có

$$\langle v_1, \dots, v_{i+1} \rangle \subseteq \langle u_1, \dots, u_{i+1} \rangle.$$

Ví dụ. Trong không gian Euclid \mathbb{R}^4 với tích vô hướng chính tắc cho vectơ u=(1,2,0,3) và không gian con W được sinh ra bởi các vectơ

$$v_1 = (1, 1, 0, 0), v_2 = (1, 0, -1, 1), v_3 = (0, 1, 1, 1).$$

- a) Tìm một cơ sở trực chuẩn của W?
- b) Tìm hình chiếu trực giao của u lên W?

Giải. a) Dễ dàng chứng minh $\{v_1, v_2, v_3\}$ một cơ sở của W.

- \triangleright Đặt $u_1 := v_1$.
- ightharpoonup Tim u_2 . Ta có $u_2 := v_2 + \lambda_1 u_1$, với $\lambda_1 = -\frac{\langle v_2, u_1 \rangle}{||u_1||^2} = -\frac{1}{2}$. Từ đó

$$u_2 = (1, 0, -1, 1) + (-\frac{1}{2})(1, 1, 0, 0) = \frac{1}{2}(1, -1, -2, 2).$$

Nhận xét rằng nếu ta thay u_2 bởi $u_2' = \alpha u_2$, $(\alpha \neq 0)$ thì các vecto u_1 và u_2' vẫn trực giao với nhau. Do đó ta có thể lấy $u_2 = (1, -1, -2, 2)$.

ightharpoonup Tìm u_3 . Ta có $u_3 = v_3 + \lambda_1 u_1 + \lambda_2 u_2$, với

$$\lambda_1 = -\frac{\langle v_3, u_1 \rangle}{||u_1||^2} = -\frac{1}{2} \text{ và } \lambda_2 = -\frac{\langle v_3, u_2 \rangle}{||u_2||^2} = \frac{1}{10}.$$

Do đó

$$u_3 = \frac{2}{5}(-1, 1, 2, 3).$$

Tuy nhiên ta có thể lấy $u_3 = (-1, 1, 2, 3)$. Trực chuẩn hóa cơ sở (u_1, u_2, u_3) ta nhận được cơ sở trực chuẩn sau của W như sau

$$\left(e_1 = \frac{1}{\sqrt{2}}(1, 1, 0, 0), e_2 = \frac{1}{\sqrt{10}}(1, -1, -2, 2), e_3 = \frac{1}{\sqrt{15}}(-1, 1, 2, 3)\right).$$

b) Ta có

- $\langle u, e_1 \rangle e_1 = (\frac{3}{2}, \frac{3}{2}, 0, 0);$
- $\langle u, e_2 \rangle e_2 = (\frac{1}{2}, -\frac{1}{2}, -1, 1);$
- $\langle u, e_3 \rangle e_3 = (-\frac{2}{3}, \frac{2}{3}, \frac{4}{3}, 2).$

Vậy hình chiếu trực giao của u lên W là

$$pr_W(u) = \langle u, e_1 \rangle e_1 + \langle u, e_2 \rangle e_2 + \langle u, e_3 \rangle e_3$$
$$= \left(\frac{4}{3}, \frac{5}{3}, \frac{1}{3}, 3\right).$$

Ví dụ.(tự làm) Trong không gian Euclid \mathbb{R}^4 với tích vô hướng chính tắc, cho W là không gian vectơ sinh bởi

$$\{(1,0,1,1),(0,1,1,1),(1,1,1,1)\}.$$

- a) Tìm một cơ sở trực chuẩn của W?
- b) Cho u = (1, 2, -1, 2). Tim $pr_W(u)$?

Ví dụ. Cho không gian Euclid \mathbb{R}^4 với tích vô hướng chính tắc và W là không gian con của \mathbb{R}^4 có cơ sở là

$$\mathcal{B} = \{u_1 = (2, -1, 1, 0), u_2 = (-2, 1, 0, 1)\}.$$

Tìm hình chiếu của vectơ u = (1, 1, 0, 1) lên W.

Giải. Ta viết u dưới dạng $u = pr_W(u) + v$ trong đó

$$pr_W(u) = \alpha_1 u_1 + \alpha_2 u_2 \in W \text{ và } v \in W^{\perp}.$$

Khi đó

$$u = \alpha_1 u_1 + \alpha_2 u_2 + v.$$

Vì $v \in W^{\perp}$ nên $\langle v, u_1 \rangle = 0$, $\langle v, u_2 \rangle = 0$. Do đó, ta có

$$\begin{cases} \langle u, u_1 \rangle = \alpha_1 \langle u_1, u_1 \rangle + \alpha_2 \langle u_2, u_1 \rangle \\ \langle u, u_2 \rangle = \alpha_1 \langle u_1, u_2 \rangle + \alpha_2 \langle u_2, u_2 \rangle \end{cases} \Leftrightarrow \begin{cases} 6\alpha_1 - 5\alpha_2 = 1 \\ -5\alpha_1 + 6\alpha_2 = 0 \end{cases}$$

Ta giải được $\alpha_1 = \frac{6}{11}, \alpha_2 = \frac{5}{11}$. Suy ra

$$pr_W(u) = \alpha_1 u_1 + \alpha_2 u_2 = \left(\frac{2}{11}, \frac{-1}{11}, \frac{6}{11}, \frac{5}{11}\right).$$

3.4. Khoảng cách trong không gian Euclid

Lưu ý. Trong phần này,

- V được ký hiệu là không gian Euclid với tích vô hướng \langle , \rangle .
- \bullet $W \leq V$ được ký hiệu là W là không gian vectơ con của V

Định nghĩa. Cho $u, v \in V$. Khi đó khoảng cách giữa hai vectơ u và v được định nghĩa là

$$d(u,v) := ||u-v||.$$

Bổ đề. Cho $u, v, w \in V$. Ta có các khẳng định sau:

- (i) $d(u, v) = 0 \Leftrightarrow u = v$.
- (ii) d(u, v) = d(v, u).
- (iii) $d(u, w) \le d(u, v) + d(v, w)$.

Định nghĩa. Cho $W \leq V$ và $u \in V$. **Khoảng cách** giữa u và W (ký hiệu d(u, W)) được định nghĩa là khoảng cách giữa u và hình chiếu trực giao của nó lên W, nghĩa là

$$d(u,W) := ||u - pr_W(u)||.$$

Mệnh đề. Cho $W \leq V$ và $u \in V$. Khi đó d(u, W) là khoảng cách ngắn nhất từ u đến các vectơ của W.

Ta đặt $w = pr_W(u)$, ta cần chứng minh, với mọi $v \in W$,

$$||u - v|| \ge ||u - w||.$$

Ta có

$$u - v = (u - w) + (w - v).$$

Hơn nữa, vì $v,w\in W$ và $V=W\oplus W^{\perp}$ nên ta c
ó $u-w\in W^{\top}$ và $w-v\in W$. Suy ra u-w trực giao với w-v, nghĩa là

$$\langle u-w,w-v\rangle=0.$$

Ta có

$$u - v = (u - w) + (w - v)$$

$$\Rightarrow ||u - v|| = ||(u - w) + (w - v)||$$

$$\Leftrightarrow ||u - v||^2 = ||(u - w) + (w - v)||^2$$

$$\Leftrightarrow ||u - v||^2 = ||u - w||^2 + ||w - v||^2 + 2\langle u - w, w - v \rangle$$

$$\Leftrightarrow ||u - v||^2 = ||u - w||^2 + ||w - v||^2 \quad (\text{vì } \langle u - w, w - v \rangle = 0)$$

Suy ra

$$||u-v||^2 \ge ||u-w||^2$$
 hay $||u-v|| \ge ||u-w||$.

3.5. Ma trận biểu diễn của tích vô hướng

Nhận xét. $Gi\mathring{a} s\mathring{u} \mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là cơ sở của V. Khi đó với $m \circ i \ u, v \in V$, ta có

$$u = x_1u_1 + x_2u_2 + \dots + x_nu_n,$$

 $v = y_1u_1 + y_2u_2 + \dots + y_nu_n.$

Khi đó
$$\langle u, v \rangle = \left\langle \sum_{i=1}^{n} x_i u_i, \sum_{j=1}^{n} y_j u_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle u_i, u_j \rangle.$$

Định nghĩa. Cho V là không gian Euclid với tích vô hướng \langle,\rangle và $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là một cơ sở của V. Khi đó ma trận biểu diễn tích vô hướng \langle,\rangle theo cơ sở \mathcal{B} là

$$A = (a_{ij}) \text{ v\'oi } \mathbf{a}_{ij} = \langle \mathbf{u}_i, \mathbf{u}_j \rangle.$$

Ta ký hiệu $\langle , \rangle_{\mathcal{B}}$ để chỉ ma trận này.

Ví dụ. Với $u=(x_1,x_2), v=(y_1,y_2)\in\mathbb{R}^2$, ta có tích vô hướng

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2.$$

Tìm ma trận biểu diễn \langle , \rangle

- a) theo cơ sở chính tắc $\mathcal{B}_0 = (e_1, e_2),$
- b) theo cơ sở $\mathcal{B} = (u_1 = (-1, 2), u_2 = (2, 1)).$

Giải. a) Ta có $\langle e_1, e_1 \rangle = 1$, $\langle e_1, e_2 \rangle = 2$, $\langle e_2, e_1 \rangle = 2$, $\langle e_2, e_2 \rangle = 5$. Suy ra

$$\langle,\rangle_{\mathcal{B}_0} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}.$$

b) Ta có $\langle u_1,u_1\rangle=13,\ \langle u_1,u_2\rangle=14,\ \langle u_2,u_1\rangle=14,\ \langle u_2,u_2\rangle=17.$ Suy ra

$$\langle,\rangle_{\mathcal{B}} = \begin{pmatrix} 13 & 14 \\ 14 & 17 \end{pmatrix}.$$

Ví dụ. Cho $V = \mathbb{R}_2[x]$ với tích vô hướng được định nghĩa

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x)dx.$$

Tìm ma trận biểu diễn \langle , \rangle theo cơ sở chính tắc

$$\mathcal{B}_0 = (P_1(x) = 1, P_2(x) = x, P_3(x) = x^2).$$

Giải. Ta có

$$\langle P_1, P_1 \rangle = \int_0^1 dx = 1;$$
 $\langle P_1, P_2 \rangle = \int_0^1 x dx = \frac{1}{2};$ $\langle P_1, P_3 \rangle = \int_0^1 x^2 dx = \frac{1}{3};$ $\langle P_2, P_2 \rangle = \int_0^1 x^2 dx = \frac{1}{3};$ $\langle P_2, P_3 \rangle = \int_0^1 x^3 dx = \frac{1}{4};$ $\langle P_3, P_3 \rangle = \int_0^1 x^3 dx = \frac{1}{5}.$

Suy ra

$$\langle , \rangle_{\mathcal{B}} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}.$$

 Ví dụ. (tự làm) Với $u=(x_1,x_2,x_3), v=(y_1,y_2,y_3)\in\mathbb{R}^3$, ta có tích vô hướng

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := x_1 y_1 + 2x_2 y_2 + x_3 y_3 + x_1 y_2 + x_2 y_1.$$

Tìm ma trận biểu diễn \langle , \rangle

- a) theo cơ sở chính tắc $\mathcal{B}_0 = (e_1, e_2, e_3)$,
- b) theo cơ sở $\mathcal{B} = (u_1 = (1, 2, 0), u_2 = (0, 1, 1), u_2 = (1, 1, -2)).$

Mệnh đề. Cho V là một không gian Euclid với tích vô hướng \langle , \rangle và $\mathcal{B} = (u_1, u_2, \ldots, u_n)$ là một cơ sở của V. Khi đó \mathcal{B} là cơ sở trực chuẩn khi và chỉ khi $\langle , \rangle_{\mathcal{B}} = I_n$.

Chứng minh.

$$\mathcal{B}$$
 là cơ sở trực chuẩn $\Leftrightarrow \langle u_i, u_j \rangle = \begin{cases} 1 & \text{nếu } i = j \\ 0 & \text{nếu } i \neq j \end{cases} \Leftrightarrow \langle, \rangle_{\mathcal{B}} = I_n.$

Mệnh đề. Cho V là một không gian Euclid với tích vô hướng \langle , \rangle và \mathcal{B} là một cơ sở của V. Giả sử $u, v \in V$, khi đó

$$\langle u, v \rangle = [u]_{\mathcal{B}}^{\top} \langle, \rangle_{\mathcal{B}} [v]_{\mathcal{B}}.$$

Mệnh đề. Cho V là một không gian Euclid với tích vô hướng \langle , \rangle và $\mathcal{B} = (u_1, u_2, \dots u_n), \, \mathcal{B}' = (u_1', u_2', \dots u_n')$ là hai cơ sở của V. Khi đó

$$\langle,\rangle_{\mathcal{B}'} = (\mathcal{B} \to \mathcal{B}')^{\top} \langle,\rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}').$$

Chứng minh. Với mọi $u, v \in V$, ta có

$$[u]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}')[u]_{\mathcal{B}'} \text{ và } [v]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}')[v]_{\mathcal{B}'}.$$

Hơn nữa

$$\langle u, v \rangle = [u]_{\mathcal{B}}^{\top} \langle , \rangle_{\mathcal{B}} [v]_{\mathcal{B}}.$$

Do đó

$$\langle u, v \rangle = ((\mathcal{B} \to \mathcal{B}')[u]_{\mathcal{B}'})^{\top} \langle, \rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}')[v]_{\mathcal{B}'}$$
$$= [u]_{\mathcal{B}'}^{\top} (\mathcal{B} \to \mathcal{B}')^{\top} \langle, \rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}') [v]_{\mathcal{B}'}.$$

Mặt khác

$$\langle u, v \rangle = [u]_{\mathcal{B}'}^{\top} \langle , \rangle_{\mathcal{B}'} [v]_{\mathcal{B}'}$$

Suy ra

$$[u]_{\mathcal{B}'}^{\top} \langle , \rangle_{\mathcal{B}'} [v]_{\mathcal{B}'} = [u]_{\mathcal{B}'}^{\top} (\mathcal{B} \to \mathcal{B}')^{\top} \langle , \rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}') [v]_{\mathcal{B}'}.$$

Bằng cách chọn u và v lần lượt là các vectơ trong cơ sở $\mathcal{B}',$ ta suy ra được

$$\langle , \rangle_{\mathcal{B}'} = (\mathcal{B} \to \mathcal{B}')^{\top} \langle , \rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}').$$

Ví dụ. Trong không gian Euclid \mathbb{R}^3 với tích vô hướng \langle , \rangle , cho cơ sở

$$\mathcal{B} = (u_1 = (1, -1, 1), u_2 = (1, 1, 0), u_3 = (-1, 2, -2))$$

và ma trận biểu diễn \langle , \rangle theo cơ sở \mathcal{B} là:

$$\langle , \rangle_{\mathcal{B}} = \begin{pmatrix} 3 & -2 & -6 \\ -2 & 6 & 6 \\ -6 & 6 & 13 \end{pmatrix}.$$

- a) Cho u = (1, 2, -1) và v = (1, -1, 2). Tính $\langle u, v \rangle$?
- b) Cho $u = (x_1, x_2, x_3), v = (y_1, y_2, y_3)$. Tính $\langle u, v \rangle$?

Giải. a) Tìm $[u]_{\mathcal{B}}$ và $[v]_{\mathcal{B}}$. Ta giải được

$$[u]_{\mathcal{B}} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ [v]_{\mathcal{B}} = \begin{pmatrix} -2\\1\\-2 \end{pmatrix}.$$

Áp dụng công thức

$$\langle u, v \rangle = [u]_{\mathcal{B}}^{\top} \langle , \rangle_{\mathcal{B}} [v]_{\mathcal{B}}$$

$$= \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -2 & -6 \\ -2 & 6 & 6 \\ -6 & 6 & 13 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$$

$$= -6.$$

b) Cách 1. Tìm $[u]_{\mathcal{B}}$ và $[v]_{\mathcal{B}}$. Sau đó áp dụng công thức

$$\langle u, v \rangle = [u]_{\mathcal{B}}^{\top} \langle , \rangle_{\mathcal{B}} [v]_{\mathcal{B}}$$

Cách 2. Tìm ma trận biểu diễn \langle , \rangle theo cơ sở chính tắc. Ta có công thức

$$\langle,\rangle_{\mathcal{B}_0} = (\mathcal{B} \to \mathcal{B}_0)^\top \,\langle,\rangle_{\mathcal{B}} \,(\mathcal{B} \to \mathcal{B}_0).$$

Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top \ u_2^\top \ u_3^\top) = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 2 \\ 1 & 0 & -2 \end{pmatrix}.$$

Mặt khác

$$(\mathcal{B} \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{pmatrix} 2 & -2 & -3 \\ 0 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix}.$$

Do đó

$$\langle , \rangle_{\mathcal{B}_0} = (\mathcal{B} \to \mathcal{B}_0)^\top \langle , \rangle_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}_0)$$

$$= \begin{pmatrix} 2 & 0 & 1 \\ -2 & 1 & -1 \\ -3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & -2 & -6 \\ -2 & 6 & 6 \\ -6 & 6 & 13 \end{pmatrix} \begin{pmatrix} 2 & -2 & -3 \\ 0 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Như vậy

$$\langle u, v \rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + 3x_2 y_2 + x_3 y_3.$$

Ví dụ.(tự làm) Trong không gian Euclid \mathbb{R}^3 với tích vô hướng \langle, \rangle , cho ma trận biểu diễn \langle, \rangle theo cơ sở chính tắc là:

$$\langle , \rangle_{\mathcal{B}_0} = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

- a) Cho u = (1, 1, 2), v = (1, 3, -2). Tính $\langle u, v \rangle$?
- b) Cho $\mathcal{B} = (u_1 = (-1, 0, 1), u_2 = (2, 1, -1), u_3 = (3, 0, -2))$ là một cơ sở khác của \mathbb{R}^3 . Tính $\langle , \rangle_{\mathcal{B}}$

Đáp án. a) $\langle u, v \rangle = 8$

b)
$$\langle , \rangle_{\mathcal{B}} = \begin{pmatrix} 1 & -3 & -3 \\ -3 & 11 & 10 \\ -3 & 10 & 10 \end{pmatrix}$$
.

3.6. Toán tử đối xứng

Định nghĩa. Cho f là toán tử tuyến tính trên không gian Euclid V. Toán tử f được gọi là toán tử dối xứng nếu

$$\langle f(u),v \rangle = \langle u,f(v) \rangle, \forall u,v \in V.$$

Nhắc lại. Cho $\mathcal{B} = (u_1, \dots, u_n)$ là cơ sở trực chuẩn của V. Giả sử vectơ $u = \sum_{i=1}^n x_i u_i$ và $v = \sum_{i=1}^n y_i u_i$, khi đó

$$\langle u,v \rangle = \sum_{i=1}^n x_i y_i$$
. Như vậy $\langle u,v \rangle = [u]_{\mathcal{B}}^{\top} [v]_{\mathcal{B}}$.

Nhận xét. Theo định nghĩa trên, f là toán tử đối xứng nếu với mọi $u, v \in V$, thì

$$\langle f(u), v \rangle = \langle u, f(v) \rangle.$$

Giả sử B là một cơ sở trực chuẩn của V, ta có

$$\langle f(u), v \rangle = \langle u, f(v) \rangle$$

$$[f(u)]_{\mathcal{B}}^{\top} [v]_{\mathcal{B}} = [u]_{\mathcal{B}}^{\top} [f(v)]_{\mathcal{B}}$$

$$([f]_{\mathcal{B}} [u]_{\mathcal{B}})^{\top} [v]_{\mathcal{B}} = [u]_{\mathcal{B}}^{\top} [f]_{\mathcal{B}} [v]_{\mathcal{B}}$$

$$[u]_{\mathcal{B}}^{\top} [\mathbf{f}]_{\mathbf{B}}^{\top} [v]_{\mathcal{B}} = [u]_{\mathcal{B}}^{\top} [\mathbf{f}]_{\mathbf{B}} [v]_{\mathcal{B}}$$

Điều này dẫn đến $[f]_{\mathcal{B}} = [f]_{\mathcal{B}}^{\top}$ hay $[f]_{\mathcal{B}}$ là ma trận đối xứng. Do đó ta có bổ đề sau

Bổ đề. Cho $f \in End_{\mathbb{R}}(V)$. Toán tử f là toán tử đối xứng khi và chỉ khi ma trận biểu diễn f theo cơ sở trực chuẩn là ma trận đối xứng.

Ví dụ. (tự làm) Cho $V=\mathbb{R}^3$ là không gian Euclide với tích vô hướng chính tắc và $f\in End_{\mathbb{R}}(V)$ xác định bởi

$$f(x_1, x_2, x_2) = (2x_1 + x_2, x_1 + 4x_2 + 2x_3, 2x_2 + 5x_3).$$

Chứng tỏ f là toán tử đối xứng.

Định lý. Cho f là toán tử đối xứng trong không gian Euclid. Khi đó

- (i) Mọi trị riêng của f $\,\mbox{\it d\`eu}$ là số thực.
- (ii) f chéo hóa được.
- (iii) Các không gian con riêng của f đôi một trực giao với nhau.

Ví dụ.(tự làm) Cho toán tử $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận biểu diễn theo cơ sở chính tắc là

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Hãy xây dựng một cơ sở trực chuẩn của \mathbb{R}^3 từ các vectơ riêng của f?

3.7. Toán tử trực giao

Định nghĩa. Cho V là một không gian Euclid và f là một toán tử tuyến tính trên V. Ta nói f là một toán tử trực giao nếu

$$\langle f(u), f(v) \rangle = \langle u, v \rangle, \quad \forall u, v \in V.$$

Mệnh đề. Đối với toán tử tuyến tính $f \in End_{\mathbb{R}}(V)$ những điều kiện sau đây tương đương:

- (i) $\langle f(u), f(v) \rangle = \langle u, v \rangle$, $\forall u, v \in V$.
- (ii) $||f(u)|| = ||u||, \forall u \in V.$
- (iii) Nêu $\mathcal{B} = (u_1, \dots, u_n)$ là một cơ sở trực chuẩn và $A = [f]_{\mathcal{B}}$ thì

$$A^{\top}A = I_n = AA^{\top}.$$

Nói riêng, A là ma trận khả nghịch và $det A = \pm 1$.

Chứng minh. (i) \Rightarrow (ii). Chỉ việc cho u = v.

(ii)
$$\Rightarrow$$
 (i). Ta có

$$\langle f(u), f(v) \rangle = \frac{1}{2} (||f(u) + f(v)||^2 - ||f(u)||^2 - ||f(v)||^2)$$

$$= \frac{1}{2} (||f(u+v)||^2 - ||f(u)||^2 - ||f(v)||^2)$$

$$= \frac{1}{2} (||u+v||^2 - ||u||^2 - ||v||^2) = \langle u, v \rangle.$$

(i) \Leftrightarrow (iii). Vì \mathcal{B} là cơ sở trực chuẩn nên với mọi $u,v\in V$ ta có

$$\langle f(u), f(v) \rangle = \langle u, v \rangle$$

$$\Leftrightarrow [f(u)]_{\mathcal{B}}^{\top} [f(v)]_{\mathcal{B}} = [u]_{\mathcal{B}}^{\top} [v]_{\mathcal{B}}$$

$$\Leftrightarrow ([f]_{\mathcal{B}} [u]_{\mathcal{B}})^{\top} ([f]_{\mathcal{B}} [v]_{\mathcal{B}}) = [u]_{\mathcal{B}}^{\top} [v]_{\mathcal{B}}$$

$$\Leftrightarrow [u]_{\mathcal{B}}^{\top} ([f]_{\mathcal{B}}^{\top} [f]_{\mathcal{B}}) [v]_{\mathcal{B}} = [u]_{\mathcal{B}}^{\top} [v]_{\mathcal{B}}$$

$$\Leftrightarrow [f]_{\mathcal{B}}^{\top} [f]_{\mathcal{B}} = I_n \text{ hay } A^{\top} A = I_n.$$

Phần khẳng định còn lại của (iii) là hiển nhiên.

Hệ quả. Nếu f là một toán tử trực giao thì $\det f = \pm 1$. Nói riêng, f là một tự đẳng cấu.

Định lý. Toán tử tuyến tính $f \in End_{\mathbb{R}}(V)$ là một toán tử trực giao khi và chỉ khi nó biến một cơ sở trực chuẩn thành một cơ sở trực chuẩn.

Chứng minh. (\Rightarrow) Giả sử f là một toán tử trực giao. Theo Hệ quả trên, f là một tự đẳng cấu, do đó f biến cơ sở thành cơ sở. Nếu $\mathcal{B} = \{u_1, \dots, u_n\}$ là cơ sở trực chuẩn thì

$$\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = \delta_{ij}.$$

Vậy $\{f(u_1), \ldots, f(u_n)\}$ cũng là cơ sở trực chuẩn.

(\Leftarrow) Giả sử tồn tại cơ sở trực chuẩn $\mathcal{B} = \{u_1, \dots, u_n\}$ sao cho $\{f(u_1), \dots, f(u_n)\}$ cũng là cơ sở trực chuẩn. Xét các vecto $u, v \in V$:

$$u = \sum_{i=1}^{n} x_i u_i \text{ và } v = \sum_{j=1}^{n} y_j u_j.$$

Do $\{u_1,\ldots,u_n\}$ và $\{f(u_1),\ldots,f(u_n)\}$ là các cơ sở trực chuẩn nên ta có

$$\langle f(u), f(v) \rangle = \langle f(\sum_{i=1}^{n} x_i u_i), f(\sum_{j=1}^{n} y_j u_j) \rangle = \sum_{i,j=1}^{n} x_i y_j \langle f(u_i), f(u_j) \rangle$$
$$= \sum_{i,j=1}^{n} x_i y_j \delta_{ij} = \sum_{i=1}^{n} x_i y_i = \langle u, v \rangle.$$

Vây f là phép biến đổi trực giao.

Mệnh đề. Ma trận chuyển cơ sở từ một cơ sở trực chuẩn sang một cơ sở trực chuẩn là một ma trận trực giao.

Chứng minh. Giả sử $\mathcal{B} = (u_1, \dots, u_n)$ và $\mathcal{B}' = (u'_1, \dots, u'_n)$ là hai cơ sở trực chuẩn. Gọi f là toán tử tuyến tính thỏa

$$f(u_i) = u_i', \ \forall i \in \overline{1, n}.$$

Theo Định lý trên, ta có f là toán tử trực giao. Hơn nữa

$$[f]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}').$$

Chương 3. Không gian Euclid

Ví dụ. Cho ma trận
$$A=\frac{1}{3}\begin{pmatrix}2&-1&2\\2&2&-1\\-1&2&2\end{pmatrix}$$
. Chứng tỏ A là ma trận trực giao?

Giải. Ta kiếm tra điều này bằng cách thực hiện phép nhân ma trận

$$A^{\top}A = I_3.$$

Ngoài ra, ta cũng có thể kiểm tra bằng cách khác như sau:

Xét không gian Euclid \mathbb{R}^3 với tích vô hướng chính tắc. Đặt

$$u_1 = \frac{1}{3}(2, 2, -1), u_2 = \frac{1}{3}(-1, 2, 2), u_3 = \frac{1}{3}(2, -1, 2).$$

Khi đó toán tử

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 thỏa $f(e_i) = u_i, \ \forall i \in \{1, 2, 3\}$

biến cơ sở trực chuẩn thành cơ sở trực chuẩn. Suy ra f là toán tử trực giao. Do A là ma trận biểu diễn f trong cơ sở trực chuẩn nên A là ma trận trực giao.

ĐẠI SỐ A2

Chương 4

DẠNG SONG TUYẾN TÍNH VÀ DẠNG TOÀN PHƯƠNG

TS. Lê Văn Luyện

lvluyen@hcmus.edu.vn

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh, 2016

Nội dung

Chương 4. DẠNG SONG TUYẾN TÍNH VÀ DẠNG TOÀN PHƯƠNG

- 1. Định nghĩa dạng song tuyến tính
- 2. Ma trận biểu diễn dạng song tuyến tính. Sự thay đổi cơ sở
- 3. Dạng toàn phương
- 4. Dạng chính tắc của dạng toàn phương. Phương pháp Lagrange
- 5. Đưa dạng toàn phương thực về dạng chính tắc bằng các toán tử trực giao
- 6. Dạng toàn phương thực. Luật quán tính và tiêu chuẩn Sylvester

4.1. Định nghĩa dạng song tuyến tính

Định nghĩa. Cho V là một không gian vectơ trên trường K. Một dạng song~tuyến~tính trên V là một ánh xạ

$$f: V \times V \longrightarrow K$$

 $(u,v) \longmapsto f(u,v)$

có tính chất tuyến tính theo từng biến u,v, nghĩa là với mọi $u,u_1,u_2,$ $v,v_1,v_2\in V,$ và $\pmb{\alpha},\pmb{\beta}\in K$ ta có

- $f(\alpha u_1 + u_2, v) = \alpha f(u_1, v) + f(u_2, v);$
- $f(u, \beta v_1 + v_2) = \beta f(u, v_1) + f(u, v_2).$

Dạng song tuyến tính f được gọi là đối xứng nếu f(u, v) = f(v, u) với mọi $u, v \in V$.

Ví dụ. Một tích vô hướng trên không gian Euclid V là một dạng song tuyến tính trên V.

Ví dụ. Với mỗi $u=(x_1,\ldots,x_n), v=(y_1,\ldots,y_n)\in K^n,$ đặt

$$f(u,v) = x_1 y_1 + \dots + x_n y_n.$$

Khi đó f là một dạng song tuyến tính đối xứng trên K^n .

Ví dụ. Cho $A, B \in M_n(\mathbb{R})$, đặt f(A, B) = tr(AB). Chứng minh f là một dạng song tuyến tính đối xứng trên $M_n(\mathbb{R})$.

Ví dụ. Với mỗi
$$u = (x_1, x_2, x_3), v = (y_1, y_2, y_3) \in K^3$$
, đặt

$$f(u,v) = x_1y_1 + 2x_1y_2 + 2x_2y_1 - x_2y_2 - x_2y_3 - x_3y_2 + x_3y_3.$$

Chứng minh f là một dạng song tuyến tính đối xứng trên K^n .

4.2. Ma trận biểu diễn dạng song tuyến tính

Định nghĩa. Cho $\mathcal{B} = (u_1, \dots, u_n)$ là một cơ sở của V. $Ma\ trận\ biểu\ diễn\ dạng\ song\ tuyến\ tính\ f$ theo cơ sở \mathcal{B} , ký hiệu $[f]_{\mathcal{B}}$, là ma trận $A = (a_{ij})_{n \times n}$, trong đó

$$a_{ij} = f(u_i, u_j), \quad \forall i, j \in \overline{1, n}.$$

Nhận xét. $Giả sử u, v \in V$,

$$u = x_1 u_1 + \dots + x_n u_n \ v a \ v = y_1 u_1 + \dots + y_n u_n.$$

Khi đó

$$f(u,v) = f(\sum_{i=1}^{n} x_i u_i, \sum_{j=1}^{n} y_j u_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(u_i, u_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \mathbf{a}_{ij}.$$

$$f(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \mathbf{a}_{ij}.$$

Biểu thức này được viết dưới dạng

$$f(u,v) = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = [u]_{\mathcal{B}}^{\top}[f]_{\mathcal{B}}[v]_{\mathcal{B}}.$$

Như vậy

$$f(u,v) = [u]_{\mathcal{B}}^{\top}[f]_{\mathcal{B}}[v]_{\mathcal{B}}.$$

Nhân xét.

- Với cơ sở $\mathcal{B} = (u_1, \dots, u_n)$ cho trước, dạng song tuyến tính f được hoàn toàn xác định bởi ma trận $[f]_{\mathcal{B}}$.
- ② Dạng song tuyến tính f trên V là đối xứng khi và chỉ khi $[f]_{\mathcal{B}}$ là ma trận đối xứng.

Ví dụ. Xét dạng song tuyến tính f trên \mathbb{R}^3 xác định bởi: $u=(x_1,x_2,x_3),v=(y_1,y_2,y_3),$

$$f(u,v) = x_1y_1 + 2x_1y_2 + 4x_1y_3 + x_2y_1 - 2x_2y_2 + 3x_2y_3 + x_3y_1 + 6x_3y_2.$$

Tìm ma trận biểu diễn f theo cơ sở chính tắc?

Giải. Ma trận biểu diễn dạng song tuyến tính f theo cơ sở chính tắc là

$$[f]_{\mathcal{B}_0} = \left(\begin{array}{ccc} 1 & 2 & 4\\ 1 & -2 & 3\\ 1 & 6 & 0 \end{array}\right).$$

Ví dụ. (tự làm) Xét dạng song tuyến tính f trên \mathbb{R}^2 xác định bởi: $u = (x_1, x_2), v = (y_1, y_2),$

$$f(u,v) = 2x_1y_1 + 2x_1y_2 + 3x_2y_1 - 3x_2y_2.$$

Tìm ma trận biểu diễn f theo cơ sở $\mathcal{B} = \{u_1 = (1,2), u_2 = (-1,1)\}$?

Mệnh đề. Cho f là một dạng song tuyến tính trên V. Giả sử \mathcal{B} và \mathcal{B}' là hai cơ sở của V, khi đó

$$[f]_{\mathcal{B}'} = (B \to B')^{\top} [f]_{\mathcal{B}} (B \to B').$$

Chứng minh. Với mọi $u, v \in V$, ta có

$$[u]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}')[u]_{\mathcal{B}'}$$
 và $[v]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}')[v]_{\mathcal{B}'}$.

Hơn nữa

$$f(u,v) = [u]_{\mathcal{B}}^{\top} [f]_{\mathcal{B}} [v]_{\mathcal{B}}.$$

Do đó

$$f(u,v) = ((\mathcal{B} \to \mathcal{B}')[u]_{\mathcal{B}'})^{\top} [f]_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}')[v]_{\mathcal{B}'}$$
$$= [u]_{\mathcal{B}'}^{\top} (\mathcal{B} \to \mathcal{B}')^{\top} [f]_{\mathcal{B}} (\mathcal{B} \to \mathcal{B}') [v]_{\mathcal{B}'}.$$

Mặt khác

$$f(u,v) = [u]_{\mathcal{B}'}^{\top} [\mathbf{f}]_{\mathbf{B}'} [v]_{\mathcal{B}'}$$

Suy ra

$$[f]_{\mathcal{B}'} = (\mathcal{B} o \mathcal{B}')^{ op} [f]_{\mathcal{B}} (\mathcal{B} o \mathcal{B}')$$

Ví dụ. Cho f là dạng song tuyến tính trên \mathbb{R}^3 với ma trận biểu diễn f theo cơ sở chính tắc là

$$[f]_{\mathcal{B}_0} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 2 & 1 & -1 \end{pmatrix}.$$

Cho $\mathcal{B} = (u_1 = (1, -1, -1), u_2 = (0, 1, 2), u_3 = (1, 1, 2))$. Chứng tỏ \mathcal{B} là cơ sở của \mathbb{R}^3 và tìm $[f]_{\mathcal{B}}$?

Giải. Lập ma trận

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Ta tính được r(A) = 3. Do đó $\mathcal{B} = (u_1, u_2, u_3)$ là tập độc lập tuyến tính. Hơn nữa, dim $\mathbb{R}^3 = 3$ bằng số vectơ của \mathcal{B} . Suy ra \mathcal{B} là cơ sở của \mathbb{R}^3 .

Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 2 & 2 \end{pmatrix}.$$

Hơn nữa

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{\top} [f]_{\mathcal{B}_0} (\mathcal{B}_0 \to \mathcal{B})$$

$$= \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 2 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} -6 & 5 & 3 \\ 6 & -2 & 3 \\ 4 & 2 & 8 \end{pmatrix}.$$

4.3. Dạng toàn phương

Định nghĩa. Cho f là một dạng song tuyến tính đối xứng trên V. Khi đó ánh xạ

$$Q : V \longrightarrow K$$
$$u \longmapsto f(u, u)$$

được gọi là $dang \ toàn \ phương$ trên V ứng với dạng song tuyến tính đối xứng f. Ta gọi f là $dang \ cực$ của dạng toàn phương Q.

Ví dụ. Xét dạng song tuyến tính f trên \mathbb{R}^3 xác định bởi: $u=(x_1,x_2,x_3),v=(y_1,y_2,y_3),$

$$f(u,v) = x_1y_1 + 2x_1y_2 + 4x_1y_3 + 2x_2y_1 - 2x_2y_2 + 3x_2y_3 + 4x_3y_1 + 3x_3y_2.$$

Chứng tỏ f đối xứng và tìm dạng toàn phương tương ứng với f?

Giải. Dễ dàng kiểm tra f đối xứng. Khi đó dạng toàn phương tương ứng với f là $Q(u) = f(u, u) = x_1^2 + 4x_1x_2 + 8x_1x_3 - 2x_2^2 + 6x_2x_3.$

Nhận xét. Dạng cực f của dạng toàn phương Q được hoàn toàn xác định bởi Q.

Giải thích. Ta có

$$f(u+v, u+v) = f(u, u) + f(u, v) + f(v, u) + f(v, v)$$

= $f(u, u) + 2f(u, v) + f(v, v)$.

Suy ra

$$f(u,v) = \frac{1}{2} [f(u+v, u+v) - f(u, u) - f(v, v)]$$

= $\frac{1}{2} [Q(u+v) - Q(u) - Q(v)]$

Ví dụ. Cho dạng toàn phương Q trên \mathbb{R}^2 được xác định bởi: $u = (x_1, x_2) \in \mathbb{R}^2$,

$$Q(u) = x_1^2 + 6x_1x_2 + 4x_2^2.$$

Xác định dang cực của Q.

$$Q(u) = x_1^2 + 6x_1x_2 + 4x_2^2.$$

Giải. Với $u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$, ta có

•
$$Q(u+v) = (x_1+y_1)^2 + 6(x_1+y_1)(x_2+y_2) + 4(x_2+y_2)^2$$
;

- $Q(u) = x_1^2 + 6x_1x_2 + 4x_2^2$;
- $Q(v) = y_1^2 + 6y_1y_2 + 4y_2^2.$

Áp dụng công thức

$$f(u,v) = \frac{1}{2}[Q(u+v) - Q(u) - Q(v)].$$

Suy ra

$$f(u,v) = x_1y_1 + 3x_1y_2 + 3x_2y_1 + 4x_2y_2.$$

Ví dụ. (tự làm) Cho dạng toàn phương Q trên \mathbb{R}^3 được xác định bởi: $u=(x_1,x_2,x_3)\in\mathbb{R}^3$,

$$Q(u) = 2x_1^2 + 4x_1x_2 + 2x_1x_3 + x_2^2 + 2x_3^2.$$

Xác định dạng cực của Q.

Đáp án. Với
$$u = (x_1, x_2, x_3), v = (y_1, y_2, y_3) \in \mathbb{R}^3$$
,

$$f(u,v) = 2x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_1y_3 + x_3y_1 + x_2y_2 + 2x_3y_3.$$

Nhận xét. Trong không gian \mathbb{R}^n , cho dạng toàn phương Q xác định bởi: $u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$,

$$Q(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j.$$

Khi đó, dạng cực của Q được xác định như sau $u = (x_1, x_2, \dots, x_n), v = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$

$$f(u,v) = \sum_{i=1}^{n} \frac{\mathbf{a}_{ii}}{2} x_i y_i + \sum_{1 \le i \ne j \le n} \frac{\mathbf{a}_{ij}}{2} x_i y_j.$$

Ví dụ. (tự làm) Cho dạng toàn phương Q trên \mathbb{R}^3 được xác định bởi: $u=(x_1,x_2,x_3)\in\mathbb{R}^3,$

$$Q(u) = x_1^2 + 6x_1x_2 + 8x_2x_3 - x_2^2 + 2x_3^2.$$

Xác định dạng cực của Q.

Định nghĩa. Cho Q là một dạng toàn phương trên V ứng với dạng song tuyến tính đối xứng f và \mathcal{B} là một cơ sở của V. Khi đó ma trận biểu diễn dạng toàn phương <math>Q theo cơ sở \mathcal{B} , ký hiệu là $[Q]_{\mathcal{B}}$, là ma trận biểu diễn dạng song tuyến tính f theo cơ sở \mathcal{B} .

Ví dụ. Cho dạng toàn phương Q trên \mathbb{R}^3 được xác định bởi: $u=(x_1,x_2,x_3)\in\mathbb{R}^3,$

$$Q(u) = 2x_1^2 + 4x_1x_2 + 2x_1x_3 + x_2^2 + 2x_3^2.$$

Tìm ma trân biểu diễn dang toàn phương Q theo cơ sở chính tắc?

Giải. Ma trận biểu diễn dạng toàn phương Q theo cơ sở chính tắc là:

$$[Q]_{\mathcal{B}_0} = \left(\begin{array}{ccc} 2 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{array}\right).$$

Nhận xét. Cho Q là dạng toàn phương trên V và \mathcal{B} là một cơ sở của V. Ta có

 $lackbox{0}$ $[Q]_{\mathcal{B}}$ là ma trận đối xứng.

$$V\acute{o}i \ u = x_1 u_1 + x_2 u_2 + \dots + x_n u_n \in V,$$

$$Q(u) = [u]_{\mathcal{B}}^{\top} [Q]_{\mathcal{B}} [u]_{\mathcal{B}} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

$$= \sum_{i=1}^{n} \mathbf{a}_{ii} x_i^2 + \sum_{i=1}^{n} 2 \mathbf{a}_{ij} x_i x_j. \tag{*}$$

(*) được gọi là biểu thức tọa độ của dạng toàn phương Q theo cơ sở \mathcal{B} .

Mệnh đề. Cho Q là một dạng toàn phương trên V. Giả sử \mathcal{B} và \mathcal{B}' là hai cơ sở của V, khi đó

$$[Q]_{\mathcal{B}'} = (\mathcal{B} o \mathcal{B}')^{\top} [Q]_{\mathcal{B}} (\mathcal{B} o \mathcal{B}').$$

Hạng và tính suy biến của dạng toàn phương

Định nghĩa. Cho Q là một dạng toàn phương trên V và \mathcal{B} là một cơ sở của V. Hạng của ma trận $[Q]_{\mathcal{B}}$ được gọi là hang của dang toàn phương Q, ký hiệu là rank(Q) hay r(Q)).

Nhận xét. Hạng của Q không phụ thuộc vào cách chọn cơ sở \mathcal{B} .

Định nghĩa. Cho $\dim V = n$ và Q là một dạng toàn phương trên V.

- ightharpoonup Nếu r(Q)=n thì ta nói Q **không suy biến**.
- ightharpoonup Ngược lại, nếu r(Q) < n thì Q suy biến.

Ví dụ. Cho dạng toàn phương Q trên \mathbb{R}^3 xác định bởi: $u = (x_1, x_2, x_3) \in \mathbb{R}^3$,

$$Q(u) = x_1^2 - 3x_2^2 + 2x_1x_2 - 4x_1x_3 + 8x_2x_3.$$

- a) Tìm hạng và khảo sát tính không suy biến của Q?
- b) Tìm biểu thức toạ độ của Q theo cơ sở $B=(u_1=(0,-1,1),u_2=(1,2,2),u_3=(1,1,4))$ và chỉ ra phép biến đổi toạ độ không suy biến tương ứng.

Giải. Ma trận biểu diễn Q theo cơ sở chính tắc là

$$[Q]_{\mathcal{B}_0} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -3 & 4 \\ -2 & 4 & 0 \end{pmatrix}.$$

a) Ta c
ó $r([Q]_{\mathcal{B}_0})=3$. Suy ra hạng của Q là 3. Do đ
ó Q không suy biến.

b) Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = \left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 2 & 4 \end{array} \right).$$

Hơn nữa

$$[Q]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{\top} [Q]_{\mathcal{B}_0} (\mathcal{B}_0 \to \mathcal{B})$$

$$= \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ 1 & -3 & 4 \\ -2 & 4 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} -11 & 3 & -12 \\ 3 & 17 & 26 \\ -12 & 26 & 16 \end{pmatrix}.$$

Vậy biểu thức tọa độ của Q theo cơ sở $\mathcal B$ định bởi:

$$Q(u) = -11y_1^2 + 17y_2^2 + 16y_3^2 + 6y_1y_2 - 24y_1y_3 + 52y_2y_3.$$

với $u = y_1 u_1 + y_2 u_2 + y_3 u_3 \in \mathbb{R}^3$.

TS. Lê Văn Luyện

Ta có $[u]_{\mathcal{B}_0} = (B_0 \to \mathcal{B})[u]_{\mathcal{B}}$. Suy ra phép biển đổi tọa độ không suy biến tương ứng là

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Do đó

$$\begin{cases} x_1 &= y_2 + y_3; \\ x_2 &= -y_1 + 2y_2 + y_3; \\ x_3 &= y_1 + 2y_2 + 4y_3. \end{cases}$$

Ví dụ. (tự làm) Cho dạng toàn phương Q trên \mathbb{R}^3 xác định bởi: $u = (x_1, x_2, x_3) \in \mathbb{R}^3$,

$$Q(u) = 2x_1^2 + 2x_1x_2 - 4x_2x_3 + 2x_3^2.$$

- a) Tìm hang và khảo sát tính không suy biến của Q?
- b) Tìm biểu thức toạ độ của Q theo cơ sở $\mathcal{B} = (u_1 = (1, -1, -1), u_2 = (0, 1, 2), u_3 = (1, 1, 2))$ và chỉ ra phép biến đổi toa đô không suy biến tương ứng.

4.4. Dạng chính tắc của dạng toàn phương

Định nghĩa. Cho Q là một dạng toàn phương trên V có dạng cực là f. Cơ sở $\mathcal{B} = (u_1, \dots, u_n)$ của V được gọi là một **cơ sở Q-chính tắc** nếu

$$f(u_i, u_j) = 0$$
 với mọi $i \neq j$.

Điều này tương đương với tính chất ma trận $[Q]_{\mathcal{B}}$ là một ma trận đường chéo, hay biểu thức toạ độ của Q theo cơ sở \mathcal{B} có dạng

$$Q(u) = \sum_{i=1}^{n} a_i x_i^2 \tag{*}$$

với mọi $u = x_1u_1 + \cdots + x_nu_n \in V$. Khi đó ta gọi (*) là **dạng chính** tắc của dạng toàn phương Q.

Định lý. Cho Q là một dạng toàn phương trên V. Khi đó trong V tồn tại một cơ sở Q-chính tắc.

Chứng minh. Ta chứng minh định lý này bằng cách đi tìm dạng chính tắc của Q.

Giả sử biểu thức tọa độ của dạng toàn phương Q theo cơ sở $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ định bởi

$$Q(u) = \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{1 \le i < j \le n} 2a_{ij} x_i x_j$$
 (*)

với $u=x_1u_1+\cdots+x_nu_n$. Để đưa Q về dạng chính tắc ta chia bài toán thành 3 trường hợp sau:

Trường hợp 1. Tồn tại $a_{ii} \neq 0$ với một i nào đó. Sau khi đánh số lại các phần tử của cơ sở \mathcal{B} nếu cần, ta có thể giả sử $a_{11} \neq 0$. Khi đó

$$Q(u) = a_{11} \left[x_1^2 + 2x_1 \sum_{i=2}^n \frac{a_{1i}}{a_{11}} x_i + \left(\sum_{i=2}^n \frac{a_{1i}}{a_{11}} x_i \right)^2 \right] + Q_1(x_2, \dots, x_n)$$

$$= a_{11} \left(x_1 + \sum_{i=2}^n \frac{a_{1i}}{a_{11}} x_i \right)^2 + Q_1(x_2, \dots, x_n).$$

$$\text{Dặt} \left\{ \begin{array}{ll} y_1 & = & x_1 + \sum\limits_{i=2}^n \frac{a_{1i}}{a_{11}} x_i; \\ y_i & = & x_i \text{ với } i > 1. \end{array} \right.$$
 Khi đó
$$y_i = x_i \text{ với } i > 1.$$

$$Q(u) = a_{11} y_1^2 + Q_1(y_2, \dots, y_n)$$

trong đó $Q_1(y_2,\ldots,y_n)$ là dạng toàn phương với n-1 biến. Ta có thể sử dụng phương pháp qui nạp để đưa Q_1 về dạng toàn phương chính tắc.

Trường hợp 2. $a_{ii} = 0 \,\forall i$ nhưng tồn tại $a_{ij} \neq 0$ với $i \neq j$ nào đó. Sau khi đánh số lại các phần tử của cơ sở \mathcal{B} nếu cần, ta có thể giả sử $a_{12} \neq 0$. Thực hiện phép biến đổi tọa độ

$$\begin{cases} x_1 &= y_1 + y_2; \\ x_2 &= y_1 - y_2; \\ x_i &= y_i, \forall i \ge 2. \end{cases}$$

Ta có

$$2a_{12}x_1x_2 = 2a_{12}(y_1^2 - y_2^2).$$

Rỗ ràng hệ số của y_1^2 là $2a_{12} \neq 0$. Áp dụng lại **Trường hợp 1.**

Trường hợp 3. $a_{ij} = 0$ với mọi i, j. Khi đó Q(u) = 0 với mọi u nên Q có dạng chính tắc trong bất kỳ cơ sở nào của V.

Ví dụ. Cho dạng toàn phương

$$Q(u) = x_1^2 + x_2^2 + x_3^2 - 2x_4^2 - 2x_1x_2 + 2x_1x_3 - 2x_1x_4 + x_2x_3 - 4x_2x_4$$
 với $u = (x_1, x_2, x_3, x_4) \in \mathbb{R}^3$. Đưa Q về dạng chính tắc và tìm cơ sở Q -chính tắc?

Giải.

$$Q(u) = \mathbf{x_1^2} + x_2^2 + x_3^2 - 2x_4^2 - 2\mathbf{x_1}\mathbf{x_2} + 2\mathbf{x_1}\mathbf{x_3} - 2\mathbf{x_1}\mathbf{x_4} + x_2x_3 - 4x_2x_4$$

$$= x_1^2 + 2x_1(-x_2 + x_3 - x_4) + x_2^2 + x_3^2 - 2x_4^2 + x_2x_3 - 4x_2x_4$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - (-x_2 + x_3 - x_4)^2 + x_2^2 + x_3^2 - 2x_4^2 + x_2x_3 - 4x_2x_4$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - 3\mathbf{x_4^2} + 3x_2x_3 - 6\mathbf{x_2}\mathbf{x_4} + 2\mathbf{x_3}\mathbf{x_4}$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - 3\left[x_4^2 + 2x_4(x_2 - \frac{1}{3}x_3)\right] + 3x_2x_3$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - 3\left[x_4^2 + 2x_4(x_2 - \frac{1}{3}x_3)\right] + 3x_2x_3$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - 3(x_4 + x_2 - \frac{1}{3}x_3)^2 + 3(x_2 - \frac{1}{3}x_3)^2 + 3x_2x_3$$

$$= (x_1 - x_2 + x_3 - x_4)^2 - 3(x_4 + x_2 - \frac{1}{3}x_3)^2 + 3\frac{2}{3}x_2^2 + \frac{1}{3}x_3^2 + \frac{2}{3}x_3^2 + \frac{2}{3}x_3^$$

Đặt

$$\begin{cases} y_1 &= x_1 - x_2 + x_3 - x_4; \\ y_2 &= x_4 + x_2 - \frac{1}{3}x_3; \\ y_3 &= x_2 + \frac{1}{6}x_3; \\ y_4 &= x_3. \end{cases}$$

Khi đó ta đưa Q về dạng chính tắc

$$Q(u) = y_1^2 - 3y_2^2 + 3y_3^2 + \frac{1}{4}y_4^2.$$

với $u = y_1 u_1 + y_2 u_2 + y_3 u_3 + y_4 u_4$, trong đó cơ sở Q-chính tắc $\mathcal{B} = (u_1, u_2, u_3, u_4)$.

Tìm B. Ta có

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 1 & \frac{1}{6} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Hơn nữa

$$[u]_{\mathcal{B}} = (\mathcal{B} \to \mathcal{B}_0)[u]_{\mathcal{B}_0}.$$

Suy ra

$$(\mathcal{B} o \mathcal{B}_0) = \left(egin{array}{cccc} 1 & -1 & 1 & -1 \ 0 & 1 & -rac{1}{3} & 1 \ 0 & 1 & rac{1}{6} & 0 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = (\mathcal{B} \to \mathcal{B}_0)^{-1} = \begin{pmatrix} 1 & 1 & 0 & -2/3 \\ 0 & 0 & 1 & -1/6 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1/2 \end{pmatrix}.$$

Suy ra cơ sở Q-chính tắc là $\mathcal{B} = (u_1, u_2, u_3, u_4)$ với $u_1 = (1, 0, 0, 0);$ $u_2 = (-1, 0, 0, 1);$ $u_3 = (0, 1, 0, -1);$ $u_4 = (2/3, -1/6, 1, 1/2).$

Ví dụ. Cho dạng toàn phương

$$Q(u) = x_1 x_2 + 2x_1 x_3 - 2x_2 x_3$$

với $u=(x_1,x_2,x_3)\in\mathbb{R}^3$. Đưa Q về dạng chính tắc và tìm cơ sở Q-chính tắc?

Giải. Đổi biến

$$\begin{cases} x_1 &= y_1 + y_2; \\ x_2 &= y_1 - y_2; \\ x_3 &= y_3. \end{cases} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
(1)

Khi đó

$$Q(u) = y_1^2 - y_2^2 + 2(y_1 + y_2)y_3 - 2(y_1 - y_2)y_3$$

= $y_1^2 - \mathbf{y_2^2} + 4\mathbf{y_2y_3}$
= $y_1^2 - (y_2^2 - 4y_2y_3 + 4y_3^2) + 4y_3^2$
= $y_1^2 - (y_2 - 2y_3)^2 + 4y_3^2$.

Đặt

$$\begin{cases}
z_1 = y_1; \\
z_2 = y_2 - 2y_3; \Leftrightarrow \begin{pmatrix} z_1 \\ z_2 \\ z_3 = y_3.
\end{cases} \Rightarrow \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} (2)$$

Khi đó ta đưa Q về dạng chính tắc

$$Q(u) = z_1^2 - z_2^2 + 4z_3^2$$

với $u = z_1u_1 + z_2u_2 + z_3u_3$, trong đó cơ sở Q-chính tắc $\mathcal{B} = (u_1, u_2, u_3)$.

Tìm \mathcal{B} . Từ (1) và (2) ta có

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}; \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Suy ra

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

Vậy

$$(\mathcal{B}_0 \to \mathcal{B}) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Suy ra cơ sở Q-chính tắc là

$$\mathcal{B} = \{u_1 = (1, 1, 0), u_2 = (1, -1, 0), u_3 = (2, -2, 1)\}.$$

Ví dụ.(tự làm) Cho dạng toàn phương

$$Q(u) = x_1^2 - x_2^2 - x_3^2 + 4x_1x_2 - 2x_1x_3 + 3x_2x_3$$

với $u=(x_1,x_2,x_3)$. Đưa Q về dạng chính tắc và tìm cơ sở Q-chính tắc?

Ví dụ.(tự làm) Cho dạng toàn phương

$$Q(u) = 2x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_3 + 4x_2x_3 - 8x_2x_4 - 14x_3x_4$$

với $u=(x_1,x_2,x_3,x_4)$. Đưa Q về dạng chính tắc và tìm cơ sở Q-chính tắc?

 Ví dụ. (tự làm) Đưa các dạng toàn phương Q sau về dạng chính tắc và tìm cơ sở Q-chính tắc?

- a) $Q(x_1, x_2, x_3) = 4x_1x_2 + 4x_1x_3 + 4x_2x_3$;
- b) $Q(x_1, x_2, x_3) = x_1x_2 3x_2x_3 + 2x_1x_3$.

4.5. Đưa dạng toàn phương thực về dạng chính tắc bằng các toán tử trực giao

Định nghĩa. Cho V là một không gian Euclid và Q là một dạng toàn phương trên V. Cơ sở \mathcal{B} được gọi là một $\operatorname{cơ}$ sở $\operatorname{Q-chính}$ tắc trực giao nếu \mathcal{B} là một cơ sở trực chuẩn đồng thời cũng là một cơ sở $\operatorname{Q-chính}$ tắc của V. Khi đó biểu thức tọa độ của Q trong cơ sở $\operatorname{\mathcal{B}}$ được gọi là dang $\operatorname{chính}$ tắc $\operatorname{trực}$ giao của Q .

Nhắc lại.

- **9** Ma trận vuông A được gọi là **chéo hóa trực giao được** nếu tồn tại ma trận trực giao P sao cho $P^{-1}AP$ là ma trận đường chéo.
- 2 Mọi ma trận đối xứng thực đều chéo hoá trực giao được.
- **③** Trong không gian Euclid V, cho \mathcal{B} và \mathcal{B}' là hai cơ sở của V. Nếu \mathcal{B} là cơ sở trực chuẩn và $(\mathcal{B} \to \mathcal{B}')$ là ma trận trực giao thì \mathcal{B}' là cơ sở trực chuẩn.

 $\begin{array}{ll} \textbf{Dịnh lý.} & \textit{Cho V là một không gian Euclid và Q là một dạng toàn} \\ \textit{phương trên V. Khi đó trong V tồn tại một cơ sở Q-chính tắc trực giao.} \end{array}$

Chứng minh. Xét \mathcal{B}_0 là một cơ sở trực chuẩn nào đó của V. Khi đó ma trận $[Q]_{\mathcal{B}_0}$ là ma trận đối xứng nên chéo hoá trực giao được, nghĩa là tồn tại ma trận trực giao P sao cho $P^{-1}[Q]_{\mathcal{B}_0}P$ là ma trận đường chéo. Gọi \mathcal{B} là cơ sở của V sao cho $(\mathcal{B}_0 \to \mathcal{B}) = P$. Khi đó

$$[Q]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{\top}[Q]_{\mathcal{B}_0}(\mathcal{B}_0 \to \mathcal{B}) = P^{\top}[Q]_{\mathcal{B}_0}P = P^{-1}[Q]_{\mathcal{B}_0}P$$

là ma trận chéo. Vì $[Q]_{\mathcal{B}}$ là ma trận chéo nên \mathcal{B} là cơ sở Q-chính tắc.

Mặt khác, do $(\mathcal{B}_0 \to \mathcal{B}) = P$ là ma trận trực giao nên \mathcal{B} là một cơ sở trực chuẩn. Suy ra \mathcal{B} là một cơ sở Q-chính tắc trực giao của V.

Từ chứng minh Định lý trên ta thấy để đưa Q về dạng chính tắc trực giao ta dùng phép biến đổi tọa độ

$$[u]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B})[u]_{\mathcal{B}}$$

Thuật toán đưa dạng toàn phương Q trên không gian Euclid V về dạng chính tắc trực giao

Bước 1. Xác định $[Q]_{\mathcal{B}_0}$ với \mathcal{B}_0 là một cơ sở trực chuẩn nào đó của V.

Bước 2. Chéo hoá trực giao ma trận $[Q]_{\mathcal{B}_0}$, tìm ma trận trực giao P làm chéo $[Q]_{\mathcal{B}_0}$.

Bước 3. Cơ sở Q-chính tắc trực giao $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ định bởi $(\mathcal{B}_0 \to \mathcal{B}) = P$ và phép biến đổi tọa độ trực giao là X = PY với $X = [u]_{\mathcal{B}_0}; Y = [u]_{\mathcal{B}}$. Khi đó dạng chính tắc trực giao của Q là

$$Q(u) = \sum_{i=1}^{n} a_i y_i$$

với $u = y_1 u_1 + y_2 u_2 + \dots + y_n u_n$.

Ví dụ. Đưa dạng toàn phương sau đây về dạng chính tắc trực giao:

$$Q(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3.$$

Chỉ ra cơ sở Q-chính tắc trực giao và phép biến đổi tọa độ trực giao tương ứng.

Giải. Bước 1. Ma trận biểu diễn Q theo cơ sở chính tắc là

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Bước 2. Chéo hoá trực giao ma trận A.

- Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda + 1)^2(\lambda - 2).$$

- Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = -1 \text{ (boi } 2), \lambda = 2 \text{ (boi } 1).$$

Vậy A có 2 trị riêng là $\lambda_1 = -1$ (bội 2), $\lambda_2 = 2$ (bội 1).

- Không gian riêng
- Với $\lambda_1 = -1$, không gian riêng E(-1) là không gian nghiệm của hệ phương trình $(A + I_3)X = 0$.

$$(A - I_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (-t - s, t, s), \quad \text{v\'ent } t, s \in \mathbb{R}.$$

Suy ra E(-1) có $\dim E(-1) = 2$ với cơ sở

$$\mathcal{B}_1 = \{u_1 = (-1, 1, 0), u_2 = (-1, 0, 1)\}.$$

Ta xây dựng cơ sở trực chuẩn của E(-1) bằng quá trình trực chuẩn Gram-Schmidt:

$$v_1 = u_1 = (-1, 1, 0); v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 = (-\frac{1}{2}, -\frac{1}{2}, 1).$$

$$w_1 = \frac{v_1}{\|v_1\|} = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0); w_2 = \frac{v_2}{\|v_2\|} = (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}).$$

 \bullet Với $\lambda_2=2,$ không gian riêng E(2) là không gian nghiệm của hệ phương trình $(A-2I_3)X=0.$

$$(A - 2I_3) = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (t, t, t), \quad \text{v\'oi } t \in \mathbb{R}.$$

Suy ra E(2) có dimE(2) = 1 với cơ sở

$$\mathcal{B}_2 = \{u_3 = (1, 1, 1)\}.$$

Ta xây dựng cơ sở trực chuẩn $\{w_3\}$ của E(2) với

$$w_3 = \frac{w_3}{\|w_3\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right).$$

Đặt $\mathcal{B} = \{w_1, w_2, w_3\}$. Ta có \mathcal{B} là một cơ sở trực chuẩn của \mathbb{R}^3 và

$$P^{-1}AP = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{array}\right)$$

với

$$P = (\mathcal{B}_0 \to \mathcal{B}) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Bước 3. Từ kết quả bước 2, ta suy ra dạng chính tắc trực giao của Q là

$$Q(u) = -y_1^2 - y_2^2 + 2y_3^2$$

với $u = y_1 w_1 + y_2 w_2 + y_3 w_3$, trong đó

$$w_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0); w_2 = (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}); w_3 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$$

Cơ sở chính tắc trực giao tương ứng là $\mathcal{B} = \{w_1, w_2, w_3\}.$

Phép biến đổi tọa độ trực giao tương ứng X = PY, nghĩa là

$$\begin{cases} x_1 &= -\frac{1}{\sqrt{2}}y_1 - \frac{1}{\sqrt{6}}y_2 + \frac{1}{\sqrt{3}}y_3; \\ x_2 &= \frac{1}{\sqrt{2}}y_1 - \frac{1}{\sqrt{6}}y_2 + \frac{1}{\sqrt{3}}y_3; \\ x_3 &= \frac{2}{\sqrt{6}}y_2 + \frac{1}{\sqrt{3}}y_3. \end{cases}$$

Ví dụ. Đưa dạng toàn phương sau đây về dạng chính tắc trực giao:

$$Q(x_1, x_2, x_3) = 2x_1^2 - 2x_1x_2 - 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 2x_3^2.$$

Chỉ ra cơ sở Q-chính tắc trực giao và phép biến đổi tọa độ trực giao tương ứng.

4.6. Dạng chuẩn tắc. Luật quán tính và tiêu chuẩn Sylvester

Định nghĩa. Cho Q là một dạng toàn phương trên V và $\mathcal{B}=(u_1,u_2,\ldots,u_n\}$ là một cơ sở của V. Giả sử biểu thức tọa độ của Q theo cơ sở \mathcal{B} có dạng

$$Q(u) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_r^2 \tag{*}$$

với $u = x_1 u_1 + \cdots + x_n u_n$, trong đó r, s là các số nguyên thỏa $0 \le s \le r \le n$. Khi đó ta nói \mathcal{B} là một **cơ** sở Q-**chuẩn** tắc và (\star) là **dạng chuẩn** tắc của Q.

Định lý. Cho V là một không gian vectơ thực hữu hạn chiều và Q là một dạng toàn phương trên V. Khi đó trong V tồn tại một cơ sở Q-chuẩn tắc.

Chứng minh. Ta gọi $\mathcal B$ là một cơ sở Q-chính tắc của V. Đặt $r=\mathrm{rank}(Q)$. Bằng cách đánh số lại nếu cần ta có thể giả sử biểu thức tọa độ của Q trong cơ sở trên có dạng

$$Q(u) = a_1 x_1^2 + a_2 x_2^2 + \dots + a_r x_r^2$$

và tồn tại số nguyên $0 \le s \le r$ sao cho

$$a_i > 0 \quad \forall i = \overline{1, s}; \qquad a_i < 0 \quad \forall i = \overline{s+1, r}.$$

Dùng phép biến đổi toạ độ không suy biến

$$x_i = \begin{cases} \frac{1}{\sqrt{a_i}} y_i & \text{n\'eu } 1 \leq i \leq s; \\ \frac{1}{\sqrt{-a_i}} y_i & \text{n\'eu } s + 1 \leq i \leq r; \\ y_i & \text{n\'eu } r + 1 \leq i \leq n \end{cases}$$

ta có được dạng chuẩn tắc của Q là

$$Q(u) = y_1^2 + \dots + y_s^2 - y_{s+1}^2 - \dots - y_r^2$$

Cơ sở tương ứng chính là cơ sở Q-chuẩn tắc cần tìm.

Ví dụ. Cho dạng toàn phương Q trên \mathbb{R}^4 được xác định như sau

$$Q(x_1, x_2, x_3, x_4) = 4x_1^2 - 3x_2^2 + 9x_3^2 - x_4^2.$$

Tìm dạng chuẩn tắc của Q và cơ sở Q-chuẩn tắc của \mathbb{R}^4 ?

 ${\bf Giải.}$ Ta thấy Q là một dạng chính tắc. Do đó để đưa về dạng chuẩn tắc thì ta cần sử dụng phép biến đổi tọa độ

$$\begin{cases} y_1 &= 2x_1; \\ y_2 &= 3x_3; \\ y_3 &= \sqrt{3}x_2; \\ y_4 &= x_4 \end{cases} \Leftrightarrow \begin{cases} x_1 &= \frac{1}{2}y_1; \\ x_2 &= \frac{1}{\sqrt{3}}y_3; \\ x_3 &= \frac{1}{3}y_2; \\ x_4 &= y_4. \end{cases}$$
(1)

Do đó dang chuẩn tắc của Q là

$$Q(u) = y_1^2 + y_2^2 - y_3^2 - y_4^2.$$

trong đó $u = y_1u_1 + y_2u_2 + y_3u_3 + y_4u_4$ với $\mathcal{B} = \{u_1, u_2, u_3, u_4\}$ là cơ sở Q-chuẩn tắc.

 $\underline{\text{Tìm }\mathcal{B}}$. Từ (1) ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{3}} & 0\\ 0 & \frac{1}{3} & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Suy ra

$$u_1 = (\frac{1}{2}, 0, 0, 0); u_2 = (0, 0, 0, \frac{1}{3}); u_3 = (0, \frac{1}{\sqrt{3}}, 0, 0); u_4 = (0, 0, 0, 1).$$

Ví dụ.
(tự làm) Cho dạng toàn phương Q trên \mathbb{R}^5 được xác định như sau

$$Q(x_1, x_2, x_3, x_4, x_5) = -x_1^2 + 4x_2^2 - 9x_3^2 - 16x_4^2 + 8x_5^2.$$

Tìm dang chuẩn tắc của Q và cơ sở Q-chuẩn tắc của \mathbb{R}^5 ?

Định nghĩa. Cho Q là một dạng toàn phương trên V và \mathcal{B} là một cơ sở Q-chuẩn tắc của V. Khi đó biểu thức tọa độ của Q trong cơ sở \mathcal{B} có dạng $Q(u) = x_1^2 + \cdots + x_s^2 - x_{s+1}^2 - \cdots - x_r^2.$

trong đó $r=\mathrm{rank}(Q)$ và $0\leq s\leq r$ không phụ thuộc vào cách chọn cơ sở $\mathcal{B}.$ Ta gọi

- s là chỉ số dương quán tính của Q;
- r-s là chỉ số âm quán tính của Q;
- (s, r s) là **cặp chỉ số quán tính** của Q;

Ví dụ.(tự làm) Cho công thức của dạng toàn phương Q trên \mathbb{R}^6 theo cơ sở nào đó của \mathbb{R}^6 là

$$Q(u) = 2x_1^2 - 4x_2^2 + 8x_3^2 - x_4^2 + 6x_5^2 - 7x_6^2.$$

Xác định chỉ số âm quán tính và chỉ số dương quán tính của Q.

Đáp án. s = 3; r - s = 3.

Nhận xét. Giả sử Q là dạng toàn phương có dạng chính tắc

$$Q(u) = a_1 x_1^2 + a_2 x_2^2 + \dots + a_n x_n^2$$

 $X\acute{e}t \ d\tilde{a}y \ a_1, a_2, \ldots, a_n \ (*). \ Ta \ c\acute{o}$

- (i) Chỉ số dương quán tính của Q bằng số các số hạng dương của (*).
- (ii) Chỉ số âm quán tính của Q bằng số các số hạng âm của (*).

 \mathbf{V} í dụ. Cho dạng toàn phương Q có dạng chính tắc

$$Q(u) = y_1^2 - 4y_2^2 + 5y_3^2 + \frac{1}{8}y_4^2$$

Khi đó Q có

- Chỉ số dương quán tính là 3.
- Chỉ số âm quán tính là 1.
- Cặp chỉ số quán tính là (3,1).

 \mathbf{Dinh} nghĩa. Cho Q là một dạng toàn phương trên V. Ta nói

- 1) Q xác định dương nếu Q(u) > 0 với mọi $u \neq 0$.
- 2) Q xác định âm nếu Q(u) < 0 với mọi $u \neq 0$.

Nhận xét. Q xác định dương khi và chỉ khi dạng cực của Q là một tích vô hướng trên V.

 $\mathbf{Dịnh} \ \mathbf{lý}$. Cho Q là một dạng toàn phương trên không gian vectơ n chiều. Khi đó

- (i) Q xác định dương $\Leftrightarrow Q$ có chỉ số dương quán tính bằng n.
- (ii) Q xác định âm $\Leftrightarrow Q$ có chỉ số âm quán tính bằng n.

Chứng minh. (i) (\Rightarrow) Giả sử Q xác định dương nhưng chỉ số dương quán tính của Q khác n. Gọi $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là một cơ sở Q-chính tắc của V. Khi đó biểu thức tọa độ của Q trong \mathcal{B} có dạng

$$Q(u) = a_1 x_1^2 + \dots + a_n x_n^2$$

$$Q(u) = a_1 x_1^2 + \dots + a_n x_n^2$$

trong đó có $a_i \leq 0$ với một i nào đó.

Ta có $u_i \neq 0$ và $Q(u_i) = a_i \leq 0$. Mâu thuẫn với tính xác định dương của Q.

(\Leftarrow) Giả sử Q có chỉ số dương quán tính bằng n. Khi đó tồn tại cơ sở Q-chuẩn tắc \mathcal{B} của V sao cho biểu thức tọa độ của Q trong cơ sở \mathcal{B} có dạng như sau:

$$Q(u) = x_1^2 + x_2^2 + \dots + x_n^2$$

với $u = x_1 u_1 + x_2 u_2 + \dots + x_n u_n$.

Nếu $u \neq 0$ thì tồn tại i sao cho $x_i \neq 0$, dẫn đến Q(u) > 0. Vậy Q xác định dương.

(ii) Tương tự như chứng minh (i).

 \mathbf{V} í dụ.(tự làm) Tìm tham số m để cho dạng toàn phương trên \mathbb{R}^3

$$Q(x_1, x_2, x_3) = x_1^2 + (m^2 - 1)x_2^2 + (m + 2)x_3^2.$$

xác định dương?

 \mathbf{V} í dụ.(tự làm) Cho dạng toàn phương trên \mathbb{R}^3 xác định bởi

$$Q(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 17x_3^2 - 8x_1x_3 + 8x_2x_3.$$

Hỏi Q xác định dương hay âm?

Hệ quả. Mọi dạng toàn phương xác định dương hay xác định âm đều không suy biến.

Ví dụ. Đưa dạng toàn phương sau về dạng chuẩn tắc

$$Q(x, y, z) = 2x^{2} + 9y^{2} + 9z^{2} + 8xy + 4xz + 12yz.$$

Chỉ ra cơ sở Q-chuẩn tắc và phép biến đổi toạ độ tương ứng. Từ đó xác định các chỉ số quán tính của Q. Xét xem Q có xác định dương hay xác định âm không?

Giải. Dùng thuật toán Lagrange đề đưa Q về dạng chính tắc.

$$\begin{split} Q(x,y,z) &= \mathbf{2x^2} + 9y^2 + 9z^2 + \mathbf{8xy} + \mathbf{4xz} + 12yz \\ &= 2[x^2 + 2x(2y+z)] + 9y^2 + 9z^2 + 12yz \\ &= 2(x+2y+z)^2 - 2(2y+z)^2 + 9y^2 + 9z^2 + 12yz \\ &= 2(x+2y+z)^2 + \mathbf{y^2} + \mathbf{4yz} + 7z^2 \\ &= 2(x+2y+z)^2 + (y+2z)^2 + 3z^2 \\ &= [\sqrt{2}(x+2y+z)]^2 + (y+2z)^2 + (\sqrt{3}z)^2. \end{split}$$

$$Q(u) = \left[\sqrt{2}(x+2y+z)\right]^2 + (y+2z)^2 + (\sqrt{3}z)^2$$

Thực hiện phép biến đổi tọa độ

$$\left\{ \begin{array}{lll} x' & = & \sqrt{2}(x+2y+z) \\ y' & = & y+2z \\ z' & = & \sqrt{3}z \end{array} \right. \Leftrightarrow \left(\begin{array}{lll} x' \\ y' \\ z' \end{array} \right) = \left(\begin{array}{lll} \sqrt{2} & 2\sqrt{2} & \sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{3} \end{array} \right) \left(\begin{array}{ll} x \\ y \\ z \end{array} \right).$$

Ta đưa Q về dạng chuẩn tắc

$$Q(u) = x'^2 + y'^2 + z'^2 \tag{*}$$

với $u = x'u_1 + y'u_2 + z'u_3$, trong đó trong đó cơ sở Q-chuẩn tắc $\mathcal{B} = \{u_1, u_2, u_3\}$ định bởi

$$(\mathcal{B} \to \mathcal{B}_0) = \begin{pmatrix} \sqrt{2} & 2\sqrt{2} & \sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{3} \end{pmatrix}$$

với \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^3 .

Ta có

$$(\mathcal{B}_0 \to \mathcal{B}) = (\mathcal{B} \to \mathcal{B}_0)^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -2 & \sqrt{3} \\ 0 & 1 & -\frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Do đó

$$u_1 = (\frac{1}{\sqrt{2}}, 0, 0); u_2 = (-2, 1, 0); u_3 = (\sqrt{3}, -\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$$

 $T\mathring{u}$ (*) ta suy ra:

- Chỉ số dương quán tính của Q là 3.
- Chỉ số âm quán tính của Q là 0.
- Q xác định dương.

Ví dụ. Đưa dạng toàn phương sau về dạng chính tắc

$$Q(x, y, z) = 2x^{2} + 9y^{2} + \lambda z^{2} + 8xy + 4xz + 12yz.$$

Xác định tham số $\lambda \in \mathbb{R}$ để Q không suy biến; và Q xác định dương.

Giải. Dùng thuật toán Lagrange đề đưa Q về dạng chính tắc.

$$Q(x, y, z) = 2(x + 2y + z)^{2} + (y + 2z)^{2} + (\lambda - 6)z^{2}.$$

Thực hiện phép biến đổi tọa độ

$$\left\{\begin{array}{ccc} x' & = & x+2y+z \\ y' & = & y+2z \\ z' & = & z \end{array} \right. \Leftrightarrow \left(\begin{array}{c} x' \\ y' \\ z' \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

Suy ra

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \Leftrightarrow \begin{cases} x = x' - 2y' + 3z' \\ y = y' - 2z' \\ z = z' \end{cases}$$

Khi đó dạng chính tắc của Q là

$$Q(u) = 2x'^{2} + y'^{2} + (\lambda - 6)z'^{2}.$$
 (**)

Từ $(\star\star)$ ta có

- Q không suy biến $\Leftrightarrow \lambda 6 \neq 0 \Leftrightarrow \lambda \neq 6$.
- Q xác định dương $\Leftrightarrow \lambda 6 > 0 \Leftrightarrow \lambda > 6$.

Ví dụ. (tự làm) Xác định tham số m để dạng toàn phương sau không xác định dương và không xác định âm.

$$Q(x_1, x_2, x_3) = x_1^2 + 5x_2^2 + mx_3^2 - 4x_1x_2 + 6x_1x_3 + 2x_2x_3$$

 $\underline{\mathbf{Dáp}} \ \mathbf{\acute{an}}. \ m \leq 58.$

Tiêu chuẩn Sylvester

Định nghĩa. Cho $A = (a_{ij})_{n \times n}$ là một ma trận vuông cấp n. **Định** thức con chính cấp k $(1 \le k \le n)$ của A là định thức con sinh bởi các dòng $1, \ldots, k$ và các cột $1, \ldots, k$:

$$\Delta_k = \left| \begin{array}{ccc} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{array} \right|.$$

 $\mathbf{Dinh} \ \mathbf{lý}. \ [\mathbf{Ti\hat{e}u} \ \mathbf{chuẩn} \ \mathbf{Sylvester}] \ \mathbf{Gi} \ \mathbf{s} \ \mathbf{d} \ \mathbf{Q} \ \mathbf{la} \ một \ \mathbf{dang} \ \mathbf{toàn} \ \mathbf{phương} \ \mathbf{tren} \ \mathbf{V} \ \mathbf{co} \ ma \ \mathbf{tran} \ \mathbf{bi} \ \mathbf{\tilde{e}u} \ \mathbf{dien} \ \mathbf{theo} \ một \ \mathbf{co} \ \mathbf{s} \ \mathbf{d} \ \mathbf{nao} \ \mathbf{do} \ \mathbf{la} \ \mathbf{A}. \ \mathbf{Khi} \ \mathbf{do} \$

- (i) Q xác định dương \Leftrightarrow mọi định thức con chính của A đều dương.
- $\begin{array}{ll} \mbox{(ii)} & Q \ x\'{a}c \ d\ inh \ am \Leftrightarrow mọi \ d\ inh \ thức \ con \ chính \ cấp \ chẵn \ của \ A \ d\ cầu \\ dương \ và \ mọi \ d\ inh \ thức \ con \ chính \ cấp \ lẻ \ của \ A \ d\ cầu \ am. \end{array}$

Ví dụ. Xác định tham số $\lambda \in \mathbb{R}$ để dạng toàn phương sau xác định dương

$$Q(x, y, z) = x^{2} + \lambda y^{2} + (\lambda + 3)z^{2} - 2xy + 4xz - 6yz.$$

Giải. Ma trận của dạng toàn phương Q theo cơ sở chính tắc là

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & \lambda & -3 \\ 2 & -3 & \lambda + 3 \end{pmatrix}.$$

Các định thức con chính của A là

$$\Delta_1 = 1$$
.

$$\Delta_2 = \left| \begin{array}{cc} 1 & -1 \\ -1 & \lambda \end{array} \right| = \lambda - 1.$$

$$\Delta_3 = \begin{vmatrix} 1 & -1 & 2 \\ -1 & \lambda & -3 \\ 2 & -3 & \lambda + 3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 \\ 0 & \lambda - 1 & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda.$$

Theo tiêu chuẩn Sylvester ta có

$$Q \text{ xác định dương} \Leftrightarrow \left\{ \begin{array}{l} \Delta_1 > 0 \\ \Delta_2 > 0 \\ \Delta_3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 > 0 \\ \lambda - 1 > 0 \\ \lambda^2 - 2\lambda > 0 \end{array} \right. \Leftrightarrow \lambda > 2.$$

 Ví dụ. (tự làm) Xác định tham số m để dạng toàn phương sau xác định dương

$$Q(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + mx_3^2 - 2x_1x_2 + 8x_1x_3 + 4x_2x_3.$$

Ví dụ.(tự làm) Cho dạng toàn phương thực phụ thuộc vào tham số $\lambda \in \mathbb{R}$:

$$Q(x, y, z) = x^{2} + (6 - \lambda)y^{2} + 4z^{2} + 4xy - 2xz + (2\lambda - 8)yz.$$

- a) Với $\lambda=1$, đưa Q về dạng chính tắc và tìm cơ sở Q-chính tắc tương ứng?
- b) Tìm điều kiện λ để Q xác định dương?