

Reporter: Rudan Xiao

Date: 11/04/2022

Data description & Statistical Analysis
Evaluation index & AI score Related Features
Methods of Classification
Screening for Potential Cancer

1. Data description
Data distribution & correlation analysis
Nonparametric tests Conclusion

- Data Description and Statistical Analysis :
- Data description

 Data distribution & correlation analysis

 Nonparametric tests
- Evaluation Index & Al score Related Features
- Methods of Classification
- Screening for Potential Cancer
- Conclusion

Data description & Statistical Analysis

Evaluation index & Al score Related Features Methods of Classification Screening for Potential Cancer Conclusion

Data description
Data distribution & correlation analysis
Nonparametric tests

anon_patientic	ai_score_brea	exam_year	x_groundtrut	x_cancer_late	imagelaterali	viewposition	libra_breastar	libra_densear	libra_percentde	ensity
2	0.0189209	2015	1	Left	Left	CC	127.25809	29.595217	23.256058	
2	0.0189209	2015	1	Left	Left	MLO	122.31812	39.298	32.127705	
2	0.02026367	2015	1	Left	Right	CC	114.57063	23.6376	20.631468	
2	0.02026367	2015	1	Left	Right	MLO	133.20238	36.162785	27.14875	
4	0.00537109	2012	0	NA	Left	CC	212.51105	97.206589	45.741901	
4	0.01513672	2014	0	NA	Left	CC	218.76422	94.323822	43.116657	
4	0.01513672	2014	0	NA	Left	MLO	208.70081	28.961744	13.87716	
4	0.00537109	2012	0	NA	Left	MLO	190.66724	42.413616	22.244839	
4	0.04321289	2012	0	NA	Right	CC	201.18773	68.998276	34.295467	
4	0.00231934	2014	0	NA	Right	CC	212.12688	47.054897	22.18243	
4	0.00231934	2014	0	NA	Right	MLO	217.74033	29.733984	13.655709	
4	0.04321289	2012	0	NA	Right	MLO	186.57161	52.785934	28.292587	
5	0.00500488	2009	0	NA	Left	CC	244.08507	66.80072	27.367802	
5	0.00085449	2011	0	NA	Left	CC	272.92294	49.659344	18.195372	
5	0.00366211	2016	0	NA	Left	CC	254.63614	21.904177	8.6021471	
5	0.0012207	2013	0	NA	Left	CC	279.06323	38.569664	13.82112	
5	0.00500488	2009	0	NA	Left	MLO	239.10275	27.663441	11.569687	
5	0.00085449	2011	0	NA	Left	MLO	254.54912	16.300928	6.4038439	
5	0.00366211	2016	0	NA	Left	MLO	250.4637	27.85944	11.123145	
5	0.0012207	2013	0	NA	Left	MLO	226.08678	18.285233	8.0877047	
5	0.00073242	2009	0	NA	Right	CC	322.41452	40.009872	12.409451	

Number of samples

	cancer	healthy
patients	57	721
Ai score	632	10376
Cancer in left laterality	332 (33)	_
Cancer in right laterality	300 (24)	

- ➤ Which Al score is most relevant to the cancer diagnosis?
- Which method works best for classifying cancer and healthy?
- Which healthy person should be recalled for the next diagnosis?

Data description & Statistical Analysis

Evaluation index & AI score Related Features Methods of Classification Screening for Potential Cancer Conclusion

1. Data description

Data distribution & correlation analysis

Nonparametric tests

Normality Test					
	Kolmogorov-Smirnov ^a				
	Statistics	df	Sig.		
Al score	.354	11008	.000		
Breast area	.066	11008	.000		
Dense area	.085	11008	.000		
Percent density	.080	11008	.000		

Data do not follow a normal distribution and unbalanced

Al score is more related with breast area.

Data description & Statistical Analysis

Evaluation index & Al score Related Features Methods of Classification Screening for Potential Cancer Conclusion

- 1. Data description
 - 2. Data distribution & correlation analysis
 - Nonparametric tests

Independent-Samples Wald-Wolfowitz Runs Test

Independent-Samples Moses Test of Extreme Reaction

Independent-Samples Kolmogorov-Smirnov Test

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of ai_score is the same across categories of group.	Independent- Samples Wald- Wolfowitz Runs Test	8.55E-86 ²	Reject the null hypothesis.
2	The range of ai_score is the same across categories of group.	Independent- Samples Moses Test of Extreme Reaction	3.92E-54 ¹	Reject the null hypothesis.
***	The distribution of ai_score is the same across categories of group.	Independent- Samples Mann- Whitney U Test	.000	Reject the null hypothesis.
4	The distribution of ai_score is the same across categories of group.	Independent- Samples Kolmogorov- Smirnov Test	.000	Reject the null hypothesis.

Asymptotic significances are displayed. The significance level is .05.

The **difference in Al-score** between **cancer** patients (ground truth is 1) and the **healthy** patients (ground truth is 0) are **significant** under all test methods.

¹Exact significance is displayed for this test.

²Computed using the maximum number of runs when breaking inter-group ties among the records.

- Evaluation index
 Al score related features

- Data Description and Statistical Analysis
- Evaluation Index & Al score Related Features

 Evaluation index
 Al score related features

- Methods of Classification
- Screening for Potential Cancer
- Conclusion

Evaluation index of classification

index	Notes	Formula
sensitivity (recall, true positive rate TPR)	the ability of a test to correctly identify patients with a disease	TP/(TP+FN)
specificity (selectivity, true negative rate (TNR))	the ability of a test to correctly identify people without the disease	TN/(TN+FP)
accuracy	Ratio of correct predictions to total predictions	(TP+TN)/(TP+TN+FP+FN)
precision (positive predictive value (PPV))	Ratio of true positives to total predicted positives	TP/(TP+FP)
f1_score	the harmonic mean of precision and sensitivity	2TP/(2TP+FP+FN)

Methods of Classification Screening for Potential Cancer Conclusion

Calculate the max, mean, and median of Al score by a group of patient ID

				1		
	ai_score_brea e		_			
2	0.0189209	2015	_	Left	Left	CC
2	0.0189209	2015		Left	Left	MLO
2	0.02026367	2015	1	Left	Right	CC
2	0.02026367	2015	1	Left	Right	MLO
4	0.00537109	2012	0	NA	Left	CC
4	0.01513672	2014	0	NA	Left	CC
4	0.01513672	2014	0	NA	Left	MLO
4	0.00537109	2012	0	NA	Left	MLO
4	0.04321289	2012	0	NA	Right	CC
4	0.00231934	2014	0	NA	Right	CC
4	0.00231934	2014	0	NA	Right	MLO
4	0.04321289	2012	0	NA	Right	MLO
5	0.00500488	2009	0	NA	Left	CC
5	0.00085449	2011	0	NA	Left	CC
5	0.00366211	2016	0	NA	Left	CC
5	0.0012207	2013	0	NA	Left	CC
5	0.00500488	2009	0	NA	Left	MLO
5	0.00085449	2011	0	NA	Left	MLO
5	0.00366211	2016	0	NA	Left	MLO
5	0.0012207	2013	0	NA	Left	MLO
5	0.00073242	2009	0	NA	Right	CC

anon_patientid	score_max	score_mean	score_median	c_groundtruth
2	0.02026367	0.01959229	0.019592285	1
4	0.04321289	0.01651001	0.010253907	0
5	0.01306152	0.00369263	0.002441406	0
6	0.34094238	0.09927368	0.03314209	0
7	0.33312988	0.08357239	0.047607422	0
8	0.04101563	0.02081299	0.020812989	0
9	0.16906738	0.07175293	0.042297364	0
12	0.48291016	0.15710449	0.115783692	1
14	0.04980469	0.00752258	0.001342774	0
15	0.01916504	0.00585938	0.002807618	0
17	0.12353516	0.03697205	0.021850586	0
19	0.04736328	0.01590576	0.007995605	0
20	0.0402832	0.0123291	0.006408692	0
21	0.02294922	0.01175944	0.008239746	0
22	0.0847168	0.02505493	0.015258789	0
23	0.04211426	0.00775147	0.001708985	0
24	0.46643066	0.09239197	0.032470703	0
25	0.31213379	0.08125814	0.027648926	0
27	0.09716797	0.02256266	0.004089356	0
28	0.41955566	0.05447388	0.001037598	0
29	0.16845703	0.04467773	0.000976563	0
30	0.4543457	0.1177063	0.008117676	0

Nonparametric Tests

Tests of Normality						
Kol		gorov-Sm	irnov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
score_max	.233	778	.000	.701	778	.000
score_mean	.265	778	.000	.595	778	.000
score_median	.344	778	.000	.378	778	.000

a. Lilliefors Significance Correction

The difference in three features (score_max, score_mean, and score_median) between cancer patients (ground truth is 1) and the **healthy** patients (ground truth is 0) are significant under all test methods

Hypothesis Test Summary

	Trypodrioolo Tool Calliniary					
	Null Hypothesis	Test	Sig.	Decision		
1	The distribution of score_max is the same across categories of group.	Independent- Samples Mann- Whitney U Test	.000	Reject the null hypothesis.		
2	The distribution of score_max is the same across categories of group.	Independent- Samples Kolmogorov- Smirnov Test	.000	Reject the null hypothesis.		
3	The distribution of score_mean is the same across categories of group.	Independent- Samples Mann- Whitney U Test	.000	Reject the null hypothesis.		
4	The distribution of score mean is the same across categories of group.	Independent- Samples Kolmogorov- Smirnov Test	.000	Reject the null hypothesis.		
5	The distribution of score_median is the same across categories of group.	Independent- Samples Mann- Whitney U Test	.000	Reject the null hypothesis.		
6	The distribution of score_median is the same across categories of group.	Independent- Samples Kolmogorov- Smirnov Test	.000	Reject the null hypothesis.		

Asymptotic significances are displayed. The significance level is .05.

Evaluation index & Al score Related Features Methods of Classification Screening for Potential Cancer Conclusion

From the **features distribution** of class 0 (healthy) and class 1 (cancer), score_max seems to be easier to distinguish by quartile threshold.

Data description & Statistical Analysis Evaluation index & Al score Related Features Methods of Classification Screening for Potential Cancer

Conclusion

- **Threshold**
- Traditional machine learning Multi-Layer perceptron (MLP)

- Data Description and Statistical Analysis
- Evaluation Index & Al score Related Features
- Methods of Classification

- Screening for Potential Cancer
- Traditional machine learning

 Multi-Layer perceptron (MLP)

Conclusion

Data description & Statistical Analysis Evaluation index & Al score Related Features Methods of Classification

Screening for Potential Cancer Conclusion

- Threshold
- Traditional machine learning
- Multi-Layer perceptron (MLP)

Receiver Operating Characteristic curve (ROC)

Evaluation Result

index	Threshold (Quartile=0.5)	Threshold (Quartile=0.75)
sensitivity	0.8772	0.7895
specificity	0.5298	0.7920
accuracy	0.5553	0.7918
precision	0.1285	0.2308
f1_score	0.2242	0.3571
AUC	0.70	0.79

Data description & Statistical Analysis Evaluation index & Al score Related Features

Methods of Classification

Screening for Potential Cancer Conclusion

- 1. Threshold
- 2. Traditional machine learning
- 3. Multi-Layer perceptron (MLP)

Receiver Operating Characteristic curve (ROC)

- SVM_rbf performs best among all the traditional machine learning methods of classification.
- Score_max performs best among all the features.

- Threshold
- 2. Traditional machine learning3. Multi-Layer perceptron (MLP)

The evaluation result of all the traditional machine learning models

	sensitivity	specificity	accuracy	precision	f1_score	AUC
Logistic Regression	0.3478	0.9915	0.9339	0.8	0.4848	0.69
Gradient Boosting Trees	0.3913	0.9957	0.9416	0.9	0.5455	0.69
Random Forest	0.4348	0.9957	0.9455	0.9091	0.5882	0.72
KNN	0.4348	0.9786	0.93	0.6667	0.5263	0.69
DecisionTree	0.3913	0.9957	0.9416	0.9	0.5455	0.69
AdaBoost	0.3913	0.9915	0.9377	0.8182	0.5294	0.71
svm_rbf	0.6957	0.9359	0.9144	0.5161	0.5926	0.82
svm_sigmoid	0.6087	0.6087	0.93	0.6087	0.6087	0.81

Data description & Statistical Analysis Evaluation index & Al score Related Features

Methods of Classification

Screening for Potential Cancer Conclusion

- Threshold

 - Traditional machine learning
 Multi-Layer perceptron Multi-Layer perceptron (MLP)

MLP is a kind of neural network

With a **layered** structure, we can obtain the intermediate results and use them as the inputs to the next layer. We call this structure the multilayer perceptron (MLP)

$$L(w) = \sum_{x_i \in D} -y_i(w^T x_i + b),$$

$$D = \{x_i \mid y_i(w^T x_i + b) < 0\}$$
Los

Loss Function

Evaluation Result

index	Threshold (Quartile=0.5)
sensitivity	0.4348
specificity	0.9872
accuracy	0.9377
precision	0.7692
f1_score	0.5556
AUC	0.82

Data description & Statistical Analysis Evaluation index & Al score Related Features

Methods of Classification

Screening for Potential Cancer Conclusion

- **Threshold**
- Traditional machine learning
- 3. Multi-Layer perceptron (MLP)

Significant test in the difference of AUC by DeLong

	P-Value (0.05)	
MLP V.S. SVM_rbf	0.2377	
Threshold V.S. SVM_rbf	0.1098	
MLP V.S. Threshold	0.0067	

Receiver Operating Characteristic curve (ROC)

Data description & Statistical Analysis
Evaluation index & Al score Related Features
Methods of Classification
Screening for Potential Cancer
Conclusion

- Data Description and Statistical Analysis
- Evaluation Index & Al score Related Features
- · Methods of Classification
- Screening for Potential Cancer
- Conclusion

Data description & Statistical Analysis Evaluation index & Al score Related Features Methods of Classification

Screening for Potential Cancer

Conclusion

https://bioinfogp.cnb.csic.es/tools/venny/index.html

Number of wrong classify patients

	MLP	SVM_rbf	Threshold (Quartile=0.75)
Cancer (x_groundtruth=1)	28	15	12
Healthy (x_groundtruth=0)	14	64	150

The three classifiers are more consistent in the classification of healthy people (possibly due to data imbalanced).

recalled for further diagnostic

14 patients misclassified as cancer in all three classifiers may need to be recalled. Data description & Statistical Analysis
Evaluation index & Al score Related Features
Methods of Classification
Screening for Potential Cancer
Conclusion

- Data Description and Statistical Analysis
- Evaluation Index & Al score Related Features
- · Methods of Classification
- Screening for Potential Cancer
- Conclusion

1. MLP performs best among all classifiers.

2. Traditional machine learning models are more explanatory and can explain the contribution of each feature.

3. The **distribution of features** data and the **features rank** results of machine learning both show that the **score_max** has the **largest contribution**.

- ➤ AIR (abnormal interpretation rate) seems to be commonly used for evaluation in **cohort studies**, combined with some clinical data.
- For the **time series analysis**, now the data seems does not include enough time information, for example, patients with groundtruth 1, what time is the **date of the first diagnosis**?
- > CC and MLO have the same Al score value?

Solve the problem of unbalanced.