

MODELISER LE COMPORTEMENT DES SYSTEMES MECANIQUES DANS LE BUT D'ETABLIR UNE LOI DE COMPORTEMENT OU DE DETERMINER DES ACTIONS MECANIQUES EN UTILISANT LE PFD

PSI - PSI ★

SYNTHESE DE LA LOI DE COMMANDE D'UN ROBOT

ROBOT DELTA 2D

1 OBJECTIFS

1.1 Objectif technique

Objectif:

L'objectif de ce TP est d'établir la loi de mouvement pour réaliser un cycle en U.

1.2 Contexte pédagogique

Analyser:

☐ A3 – Conduire l'analyse

Modéliser:

☐ Mod2 – Proposer un modèle

Résoudre:

- Rés2 Procéder à la mise en œuvre d'une démarche de résolution analytique
- ☐ Rés3 Procéder à la mise en œuvre d'une démarche de résolution numérique

1.3 Évaluation des écarts

L'objectif de ce TP est de vérifier si le moteur de la barrière est compatible avec le besoin du client en analysant les résultats des simulations.

2 MISE EN SITUATION

Le rôle d'un robot pick and place est de déplacer des objets entre 2 points, en suivant une trajectoire définie. On s'intéresse à la trajectoire en « $\bf U$ » ci-contre, que doit suivre le point P. Le cahier des charges demande à ce que la trajectoire soit réalisée en 3 secondes.

Objectif:

Déterminer les lois angulaires des deux moteurs permettant de réaliser la trajectoire demandée.

3 LOI DE DEPLACEMENT DU MOTEUR ET DE LA BARRIERE

On donne un schéma cinématique paramétré du système.

Les dimensions sont les suivantes :

- $O_0A = O_0B = a = 60 \text{ mm}$
- AD = BE = CJ = I = 170 mm
- AC = DJ = 80 mm
- DF = EF = IH = L = 330 mm
- DI = FH = 60 mm
- $O_5F = (25, -50) \text{ mm}$
- $O_5H = (-27, -80) \text{ mm}$
- $O_5P = (-25, 25) \text{ mm}$
- FP = (-35, -75) mm

3.1 Réalisation d'un modèle cinématique

Modélisation

Activité 1. Réaliser un schéma cinématique paramétré du système en donnant les figures de changement de base.

3.2 Cinématique directe et inverse

solution

Activité 2. Exprimer la position du point $\overline{O_0P}$ en fonction de α_1 et α_2 et les angles α_1 et α_2 en fonction des positions du point P.

3.3 Simulation

Résolution

Activité 3. En utilisant Python, établir les commandes α_1 et s α_2 permettant de réaliser le cycle en U.