End-to-End Dense Video Captioning with Masked Transformer

Luowei Zhou* University of Michigan Yingbo Zhou* Salesforce Research Jason J. Corso University of Michigan

luozhou@umich.edu

yingbo.zhou@salesforce.com

jjcorso@eecs.umich.edu

Richard Socher Salesforce Research Caiming Xiong[†]
Salesforce Research

richard@socher.org

cxiong@salesforce.com

Motivation

- Dense Video Caption: event detection + event description.
- Previous models: build two models and train separately.
- Language information cannot have direct impacts on event proposal.
- This paper: end-to-end training, use language to help localization.
 - A masking network to convert discrete event proposals to differentiable mask, ensuring the consistency between proposal and caption.
 - Self-attention mechanism for capturing long-term dependencies.

Figure 1. Dense video captioning is to localize (temporal) events from a video, which are then described with natural language sentences. We leverage temporal convolutional networks and self-attention mechanisms for precise event proposal generation and captioning.

• Video Encoder: a video $X = \{x_1, \dots, x_T\} \rightarrow F$

$$\mathsf{V}(F^l) = \Psi(\mathsf{PF}(\Gamma(F^l)), \Gamma(F^l))$$

$$\Gamma(F^l) = \begin{pmatrix} \Psi(\text{MA}(f_1^l, F^l, F^l), f_1^l)^\top \\ \hline & \cdots \\ \Psi(\text{MA}(f_T^l, F^l, F^l), f_T^l)^\top \end{pmatrix}^\top \bullet$$

 $\Psi(\alpha, \beta) = \text{LayerNorm}(\alpha + \beta)$

$$PF(\gamma) = M_2^l \max(0, M_1^l \gamma + b_1^l) + b_2^l$$

where $\Psi(\cdot)$ represents the function that performs layer normalization on the residual output, $PF(\cdot)$ denotes the 2-layered feed-forward neural network with ReLU nonlinearity for the first layer, M_1^l , M_2^l are the weights for the feed-

- Proposal Decoder: N explicit anchors.
 - Based on ProcNets*, mainly temporal conv nets.
 - Each proposal is composed of score P_e and boundaries (S_p, E_p)

$$c_p = c_a + \theta_c l_a$$
 $l_p = l_a \exp\{\theta_l\},$
 $S_p = c_p - l_p/2$ $E_p = c_p + l_p/2.$

*: Towards Automatic Learning of Procedures from Web Instructional Videos, in AAAI 2018.

Captioning Decoder: masked transformer.

$$\begin{split} Y_{\leq t}^{l+1} &= \mathbf{C}(Y_{\leq t}^l) = \Psi(\mathrm{PF}(\Phi(Y_{\leq t}^l)), \Phi(Y_{\leq t}^l)) \\ \Phi(Y_{\leq t}^l) &= \begin{pmatrix} \Psi(\mathrm{MA}(\Omega(Y_{\leq t}^l)_1, \hat{F}^l, \hat{F}^l), \Omega(Y_{\leq t}^l)_1) \\ & \cdots \\ \Psi(\mathrm{MA}(\Omega(Y_{\leq t}^l)_t, \hat{F}^l, \hat{F}^l), \Omega(Y_{\leq t}^l)_t) \end{pmatrix} \text{ Enc-Dec Attention } \\ \Omega(Y_{\leq t}^l) &= \begin{pmatrix} \Psi(\mathrm{MA}(y_1^l, Y^l, Y^l), y_1^l)^\top \\ & \cdots \\ \Psi(\mathrm{MA}(y_t^l, Y^l, Y^l), y_t^l)^\top \end{pmatrix} \text{ Dec self-attention } \\ \hat{F}^l &= f_M(S_p, E_p) \odot F^l \qquad \text{Masking function } \\ p(w_{t+1}|X, Y_{\leq t}^L) &= \operatorname{softmax}(W^V y_{t+1}^L) \end{split}$$

Differentiable Proposal Mask: proposal specific repre.

$$f_{M}(S_{p}, E_{p}, S_{a}, E_{a}, i) = \sigma(g)$$

$$[\rho(S_{p}, :), \rho(E_{p}, :), \rho(S_{a}, :), \rho(E_{e}, :), \text{Bin}(S_{a}, E_{a}, :)]))$$

$$\rho(pos, i) = \begin{cases} \sin(pos/10000^{i/d}) & i \text{ is even} \\ \cos(pos/10000^{(i-1)/d}) & otherwise \end{cases}$$

$$\text{Bin}(S_{a}, E_{a}, i) = \begin{cases} 1 & \text{if } i \in [S_{a}, E_{a}] \\ 0 & \text{otherwise} \end{cases}$$
(1)

Gated masking:

$$f_{GM}(S_p, E_p, S_a, E_a, i) =$$

 $P_e \text{Bin}(S_p, E_p, i) + (1 - P_e) f_M(S_p, E_p, S_a, E_a, i)$

The continuous mask is used as a supplement for the proposal mask in case the confidence is low from the proposal module.

Model training:

$$\mathcal{L}_{r} = \operatorname{Smooth}_{\ell 1}(\hat{\theta}_{c}, \theta_{c}) + \operatorname{Smooth}_{\ell 1}(\hat{\theta}_{l}, \theta_{l})$$

$$\mathcal{L}_{m}^{i} = \operatorname{BCE}(Bin(S_{p}, E_{p}, i), f_{M}(S_{p}, E_{p}, S_{a}, E_{a}, i))$$

$$\mathcal{L}_{e} = \operatorname{BCE}(\hat{P}_{e}, P_{e})$$

$$\mathcal{L}_{c}^{t} = \operatorname{CE}(\hat{w}_{t}, p(w_{t}|X, Y_{\leq t-1}^{L}))$$

$$\mathcal{L} = \lambda_{1}\mathcal{L}_{r} + \lambda_{2}\sum_{i}\mathcal{L}_{m}^{i} + \lambda_{3}\mathcal{L}_{e} + \lambda_{4}\sum_{t}\mathcal{L}_{c}^{t}$$

Regression loss for event boundary.

Mask prediction loss.

Event classification loss.

Captioning model loss.

Experiment

Results from ActivityNet Caption Dataset:

Table 4. Event proposal results from ActivityNet Captions dataset. We compare our proposed methods with our baseline method ProcNets-prop on the validation set.

Method	Average Recall (%)	
ProcNets-prop [42]	47.01	
Bi-LSTM (ours)	50.65	
Self-Attn (our)	52.95	

Dense video captioning challenge leader board results. ts from the same team, we keep the highest one.

Method	METEOR	
DEM [19]	4.82	
Wang et al.	9.12	
Jin et al.	9.62	
Guo et al.	9.87	
Yao et al. ² (Ensemble)	12.84	
Our Method	10.12	

Table 1. Captioning results from ActivityNet Caption Dataset

Method	B@3	B@4	M
Bi-LSTM +TempoAttn	2.43	1.01	7.49
Masked Transformer End-to-end Masked Transformer	4.47 4.76	2.14 2.23	9.43 9.56

Summarization

- End-to-end training.
- First to use self-attention in video captioning.