Design and implementation of the Low Level Query environment for PerLa language

Tesi di: Diego Viganò Relatore: Prof. Fabio A. Schreiber Correlatore: Ing. Romolo Camplani

22/02/2010

Introduzione

<u>Sistema pervasivo</u>: un insieme di device (nodi) eterogenei connessi tra di loro (ad esempio: reti di sensori)

Dal punto di vista informatico, una loro eventuale integrazione con i sistemi informativi comporta una serie di problematiche:

- ✓ Supporto eterogeneità
- ✔ Politiche di risparmio energetico
- ✔ Riconfigurazione a runtime
- ✓ Supporto a livello di device
- ✓ Integrazione ad alto livello
- ✓ Meccanismi di recupero dati
- ✔ Riusabilità

✓Linguaggio dichiarativoSQL-like✓Middleware

Architettura di PerLa

Astrazione differente a seconda delle capacità del device.

Se il device ha piene capacità computazionali la query può essere eseguita direttamente dal device.

Altrimenti è necessario introdurre un **Esecutore delle query.**

Obiettivi e posizione del lavoro svolto

Query (AQ,LLQ,HLQ)

- (Concentrandosi sulle LLQ) provare che un esecutore è necessario
- Svilupparne il design e l'implementazione...
- ...concentrandosi sul recupero dei dati e sull'interfaccia verso l'FPC

Importanza di un esecutore

Un esecutore è davvero necessario? Perchè non delegare tutto a FPC?

FPC è solo il modulo che astrae un device (nodo) del sistema pervasivo.

FPC però non effettua il processing dei dati.

Un **esecutore di LLQ** (LLQ Exec) deve essere introdotto.

Esecuzione delle LLQ

L'esecuzione delle LLQ è stata analizzata, identificando i seguenti passi fondamentali:

- 1. Recupero dei dati dai dispositivi
- 2. Filtraggio dei dati indesiderati
- 3. Calcolo dei risultati della LLQ

Design proposto

Aspetti fondamentali

 Componenti creati ad-hoc a injection-time per la LLQ che andranno a servire, da un componente appositamente disegnato (QueryAnalyzer)

- Totalmente disaccoppiati grazie a strutture dedicate (Pipes)
- Precise strutture dati sono state create a supporto
 - Record
 - Strutture dati per le frequenze di campionamento
 - Ambienti contenti ogni LLQ in esecuzione (Environments)

Design interfaccia FPC

 Creare canale di comunicazione per il flusso dei dati

 Possibilità di recuperare qualsiasi caratteristica del device astratto

 Conversione dal formato dati del device a quello interno di PerLa

Conclusioni e punti aperti

- ✓ Una precisa interfaccia verso l'FPC è stata definita ed implementata
- Attraverso il concetto di DataCollector e la sua implementazione è possibile ora recuperare i dati dal sistema pervasivo.

Alcuni punti rimangono però aperti

- ? Interfaccia verso il mondo "HLQ"/"AQ" da esplorare
- ? FPC Registry deve essere implementato

Attualmente PerLa viene impiegato per il controllo delle frane sul monte S.Martino (Lecco)