M Heart Disease Classification Project

★ Project Overview

Heart disease classifier based on CDC dataset (**319,795 samples**). The project implements a classification pipeline to predict heart disease occurrence based on medical indicators and lifestyle factors.

* Project Objective

Create an efficient classification model predicting heart disease occurrence in population based on medical and demographic data.

M Key Performance Indicators (KPI)

- **F1-score (weighted)** ≥ **0.75** (metric saved in MLflow)
- LogLoss as probabilistic classification quality indicator
- Metric stability in cross-validation (std ≤ 0.05)
- Automated hyperparameter tuning using Optuna
- Code and model change tracking via MLflow + Git

↑ Risk Assessment

- **Data imbalance risk:** class imbalance (91.4% "No", 8.6% "Yes") -- requires balancing (class weight, stratified sampling)
- Model dependency risk: use of specific framework (CatBoost)
- Overfitting: controlled by early stopping and cross-validation
- Reproducibility risk: minimized through version control (joblib, MLflow, git hash, random_state)

Dataset Description

Dataset consists of 319,795 samples and 18 columns (17 features + 1 label).

Columns:

Column Description

HeartDisease Heart disease diagnosis (Yes/No) -- target variable

BMI Body Mass Index

Smoking Smoking status (Yes/No)
AlcoholDrinking Alcohol consumption (Yes/No)
Stroke Previous stroke (Yes/No)

PhysicalHealth Days of poor physical health (0--30) MentalHealth Days of poor mental health (0--30)

DiffWalking Walking difficulty (Yes/No)
Sex Gender (Male/Female)

AgeCategory Age category
Race Race/ethnicity

Diabetic Diabetes status (Yes/No/Borderline/Yes during

pregnancy)

Physical Activity Physical activity (Yes/No)

General health (Excellent/Very

good/Good/Fair/Poor)

SleepTime Hours of sleep per day

Asthma (Yes/No)

KidneyDisease Kidney disease (Yes/No) SkinCancer Skin cancer (Yes/No)

Target Variable Distribution

GenHealth

• No (no heart disease): 292,422 samples (91.4%)

• Yes (heart disease): 27,373 samples (8.6%)

⚠ Warning: Clear class imbalance -- applied class_weights in CatBoost and stratified sampling.

Model Description

Model: CatBoostClassifier (gradient boosting)

CatBoost Features

- Native support for categorical data (no one-hot encoding)
- Ordered boosting -- reduces overfitting risk
- Imbalanced class handling (class weights)

Hyperparameter Tuning

- Implementation: **Optuna** + mlflow.start_run(nested=True)
- Best parameters saved in best_params.pkl and logged in MLflow
- Key optimization parameters:
 - iterations
 - learning rate
 - o depth
 - o 12 leaf reg
 - o class weights

Cross-Validation

- Implementation: catboost.cv with 5-fold stratified shuffle
- Monitored metrics: F1, LogLoss, AUC-ROC
- Results visualized with error bands using Plotly

Project Structure

devcontainer/	# Codespaces / Docker configuration
github/workflows/	# CI/CD pipeline
│	# code linting and formatting
│	# additional PR tests
— ARISA DSML/	# main source code

```
__init__.py
   config.py
                            # project configuration
   preproc.py
                            # data processing
   - train.py
                            # model training
   predict.py
                            # predictions and monitoring
 --- resolve.py
                            # model management
helpers.py
                            # utility functions
– data/
                            # project data
---- raw/
                            # raw data from Kaggle
  — interim/
                            # intermediate data
   — processed/
                            # processed data
---- external/
                            # external data
- models/
                            # models and artifacts
– reports/
                            # reports and visualizations
figures/
                            # charts and diagrams
                            # EDA/DS experiment results
results/
- mlruns/
                            # MLflow tracking
- mlartifacts/
                            # MLflow artifacts
– notebooks/
                            # Jupyter notebooks
— 01-Before_MLOps.ipynb
L 02-Model version.ipynb
– tests/
                            # unit tests
- docs/
                            # documentation

    Makefile

                            # task automation
- README.md
                            # project description
- pyproject.toml
                            # package configuration
                            # tool configuration
setup.cfg
- requirements.txt
                            # Python dependencies
```

Prerequisites

- Python 3.11+
- Pandas & NumPy
- Scikit-learn
- Matplotlib & Plotly
- Jupyter Notebook
- MLflow
- Git & GitHub

Installation and Setup

Clone repository

git clone https://github.com/Pawel20240101/PZ_ARISA_MLOps_Final.git cd PZ_ARISA_MLOps_Final

Create environment

python -m venv .venv

Windows

.\.venv\Scripts\activate

Linux/Mac

source .venv/bin/activate

Install dependencies

pip install -r requirements.txt

Input data

Data is automatically downloaded from Kaggle via API in preproc.py

Start MLflow UI

mlflow ui

#Or

MLOps Pipeline

Makefile - Local testing and development

Full local pipeline (development and debugging)

make test # Complete test: linting + ML pipeline

Individual stages

make preprocess # Data download and processing

make train # Model training with hyperopt

make predict # Predictions and drift monitoring

Code quality

make lint # Format checking

make format # Automatic formatting

Note: make test runs the full ML pipeline (preprocess \rightarrow train \rightarrow predict) and is used locally in CodeSpace for development and debugging.

GitHub Actions - CI/CD

ci.yml (runs on push/PR to main and test)

- Format checking: black --check
- Linting: flake8
- Import sorting: isort --check-only
- Unit tests: pytest -v

lint-code.yml (runs on PR to main)

- Dependency installation: make requirements
- Linting: make lint

Key difference:

- **GitHub Actions** = code quality only (fast, no ML data)
- **Makefile** = full ML pipeline (local environment)

✓ Data Processing

- Target conversion (Yes/No → 1/0)
- Train/test split (stratified)
- Categorical column validation
- Class balancing: class_weight + stratified sampling

Evaluation Metrics

Monitored.

- F1-score (weighted)
- Precision and Recall for positive class
- AUC-ROC
- Confusion Matrix
- LogLoss

Monitoring and Support

- MLflow -- metric and model version tracking
- NannyML -- data drift detection
- Git -- version control

Code Quality

- Formatting: black (line-length 99)
- Linting: flake8
- Import sorting: isort
- **Unit tests:** pytest (in tests/ directory)
- **Documentation:** docstrings + README.md

△ Git Management

.gitignore - Exclusions

data/ # Data downloaded via Kaggle API

Models generated during training

mlruns/ # MLflow tracking data

mlartifacts/ # MLflow artifacts

Large ML files (not synchronized)

reports/ # Reports and charts

```
# System files
__pycache__/
```

models/

^{*.}pyc

.pytest cache/

Benefits:

- Lightweight repository (few MB instead of hundreds)
- Fast cloning and CI/CD
- Reproducible data via make preprocess

M Experiment Results

Cross-Validation (N=5)

- Mean F1 Score: (requires improvement imbalanced classes)
- Mean LogLoss: ~0.49 (after convergence)
- Standard deviation ≪ 0.05 (no overfitting signs)

SHAP Analysis

- Most important features: AgeCategory, GenHealth, Stroke, BMI
- Low impact features: Race → model does not discriminate

1 Conclusions and Recommendations

Observations:

- F1-score below target KPI (≥0.75)
- Strong class imbalance requires additional techniques

Improvement recommendations:

- Apply SMOTE/ADASYN for synthetic sample generation
- Optimize classification threshold
- Ensemble methods (voting, stacking)
- Feature engineering (feature interactions)

Medical insights:

- Most important risk factors: older age, poor health status, stroke history, high BMI
- Interpretability ensured through SHAP
- Model requires further optimization for clinical applications