Badanie oddziaływania pola magnetycznego na przewodnik z prądem

doświadczenie 204 (sala 217A)

Sebastian Maciejewski 132275 i Jan Techner 132332

22 grudnia 2017

1 Wstęp teoretyczny

Oddziaływanie pola magnetycznego na przewodnik z prądem jest zjawiskiem powszechnie wykorzystywanym w technice. W licznych doświadczeniach z cząsteczkami obdarzonymi ładunkiem elektrycznym poruszającymi się w polu magnetycznym zaobserwowano występowanie siły powodującej zakrzywienie ich toru. Siłę tę jako pierwszy opisał Holenderski fizyk Hendrik Lorentz, a konsekwencją występowania siły Lorentza jest siła działająca w polu magnetycznym na przewodnik z prądem. Siła ta bierze się z tego, że w odcinku o długości w danej chwili przepływa n elektronów o ładunku e i średniej prędkości unoszenia v_u i na każdy elektron działa siła Lorentza.

Opis doświadczenia

Doświadczenie polega na zbadaniu siły elektrodynamicznej działającej na ramkę w polu magnetycznym. Chcąc wyznaczyć siłę elektrodynamiczną działającą na dolny bok ramki, musimy rozważyć momenty sił występujące po wychyleniu ramki z położenia równowagi. Momenty te będą związane z siłami: grawitacji oraz elektrodynamiczną.

Szukana przez nas siła będzie miała postać

$$F_E D = \frac{1}{2} t g(\alpha) m g,$$

gdzie m to masa ramki i α to kąt odchylenia.

Ponieważ widać, że $tg(\alpha)$ będzie równy stosunkowi długości odcinka x odczytanej ze skali do odległości osi obrotu od środka skali d, można powyższy wzór przedstawić jako

$$F_{ED} = \frac{mgx}{2d},$$

a z racji tego, że wielkości m, g i d są stałe finalna postać wzoru to (po podstawieniu $c = \frac{mg}{2d}$):

$$F_{ED} = cx$$

2 Wyniki pomiarów

Wyniki pomiarów natężenia prądu I[A] w zależności od wychylenia i liczby zwojów

	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,1
5	0,128	0,281	0,421	0,566	0,706	0,859	1,008	1,118	1,281	1,426
-5	0,145	0,289	0,426	0,596	0,738	0,882	1,057	1,213	1,381	1,557
10	0,065	0,141	0,208	0,277	0,351	0,432	0,501	0,592	0,652	0,732
-10	0,075	0,141	0,218	0,301	0,374	0,454	0,529	0,616	0,694	0,781
15	0,046	0,091	0,143	0,195	0,242	0,282	0,337	0,39	0,444	0,495
-15	0,047	0,098	0,139	0,198	0,245	0,307	0,354	0,417	0,478	0,525
20	0,037	0,075	0,102	0,143	0,186	0,213	0,261	0,298	0,341	0,381
-20	0,036	0,071	0,112	0,152	0,187	0,227	0,278	0,315	0,369	0,419
25	0,02	0,049	0,088	0,118	0,144	0,175	0,202	0,241	0,275	0,308
-25	0,027	0,055	0,085	0,122	0,147	0,186	0,218	0,248	0,293	0,323

3 Opracowanie wyników

Poniższe wykresy TODO

Wyliczymy teraz, korzystając z metody regresji liniowej, współczynnik nachylenia prostej odpowiadającej zależności siły elektrodynamicznej od natężenia prądu przepływającego przez uzwojenia ramki (dla 10 zwojów) wychylonej w prawo.

Przyjmujemy, że $F_{ED}=y,\,I=x$ i wzorami:

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2},\tag{1}$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2},$$
 (2)

wyznaczamy współczynnik a oraz punkt b przecięcia prostej z osią OY:

$$a = 0,356601115 \tag{3}$$

$$b = 0,0048569 \tag{4}$$

Błąd wyznaczenia wielkości a:

$$\Delta a = \sqrt{\frac{n(\Sigma y_i^2 - a\Sigma x_i y_i - b\Sigma y_i)}{(n-2)(n\Sigma x_i^2 - (\Sigma x_i)^2)}} = 0,003340024$$

Następnie korzystając z równania:

$$B = \frac{a_R}{na} \tag{5}$$

gdzie a_R jest obliczonym przez nas wyżej współczynnikiem a, n jest ilością zwojów zaś a jest długością dolnego boku ramki i wynosi $a = (13, 0 \pm 0, 2)cm$, obliczamy wartość indukcji pola magnetycznego B, która wynosi:

$$B = \frac{0,356601115}{10*0,13} = 0,27430855T$$

Błąd wyznaczenia B wyznaczamy za pomocą różniczki logarytmicznej:

$$\Delta B = \left(\frac{\Delta a_R}{a_R} + \frac{\Delta a}{a}\right) B$$

co po podstawieniu odpowiednich wartości Δa_R , a_R , Δa , a i B daje nam:

$$\Delta B = 0,006789381T$$

Zatem ostateczne wartości a_R i B wyglądają następująco:

Wnioski

TODO

	a	B
wynik obliczeń	0,356601115	0,27430855
dokładność	0,003340024	0,006789381
po zaokrągleniu	$0,357 \pm 0,003$	$(0,274\pm0,007)T$

Tablica 1: Współczynnik nachylenia prostej ai wartość indukcji pola magnetycznego B wraz z dokładnościami Δa i ΔE_A