

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Fuzzy Logic Control Design

Computing With Words---Example

- Our example uses data from the paper by
 Y.F. Li and C.C. Lau, "Development of fuzzy
 algorithms for servo systems," IEEE Control Systems
 Magazine, pp. 65--72, April 1989
- Rule #1: IF the error is ZE and the error change is SP THEN the control is SN
- Rule #2: IF the error is ZE and the error change is ZE THEN the control is ZE
- Rule #3: IF the error is SN and the error change is SN THEN the control is SP
- Rule #4: IF the error is SN and the error change is ZE THEN the control is LP

Defuzzification: Moving From Fuzzy Rules to Numbers

Contribution of Rule #1

- Center-of-gravity---0.6×(-2)
- Center average defuzzifier--- 0.6×0.8×(-2)

Defuzzification: Contribution of Rule #2

- Center-of-gravity---0.2×0
- Center average defuzzifier--- 0.6 × 0.2×0

Defuzzification: Contribution of Rule #3

- Center-of-gravity---0×2
- Center average defuzzifier--- 0.6×0×2

Defuzzification: Contribution of Rule #4

- Center-of-gravity---0.2×4
- Center average defuzzifier--- 0.6×0.2×4

Combining All Contributions Together

Center-of-gravity

$$u = \frac{0.6 \times (-2) + 0.2 \times 0 + 0 \times 2 + 0.2 \times 4}{0.6 + 0.2 + 0 + 0.2} = -0.4$$

Center average defuzzifier (product inference rule)

$$u = \frac{0.48 \times (-2) + 0.12 \times 0 + 0 \times 2 + 0.12 \times 4}{0.48 + 0.12 + 0 + 0.12} = -0.67$$

Designing a Fuzzy Logic Controller for DC Motor---Control Objective

• Design a controller that forces the closed loop system output x(t) to track a given reference signal $x_c(t)$

• Force the tracking error $e(t) = x - x_d$ to asymptotically decay to 0

Fuzzy Logic Controller (FLC) in the Loop

FLC Design Algorithm

- Identify ranges of the controller inputs
- Identify ranges of the controller output
- Create fuzzy sets for each input and output
- Translate the interaction of the inputs and outputs into IF-THEN rules, and then form the rules matrix
- Decide on the defuzzifier, and then use it to generate the control surface
- Implement the controller, test it, and modify it if necessary

Fuzzy Logic Tracking Control of a DC Motor

DC motor schematic

More On the Control Objective and the Plant

- DC motor--- Electro-Craft Corporation MOTOMATIC system
- Control objective---design a simple fuzzy logic tracking controller, simulate the dynamical behavior of the closed-loop and test the design in the lab
- Math model of the DC motor needed for simulations

Tracking Error Fuzzy Sets

CHANGE-IN-ERROR Fuzzy Sets

Control Action Fuzzy Sets

Rules Matrix

Change-in-error	LN	N	ZE	Р	LP	
Error						
Large Negative (LN)	LN	LN	LN	N	ZE	
Negative (N)	LN	LN	N	ZE	Р	
Zero (ZE)	N	N	ZE	Р	Р	
Positive (P)	N	ZE	Р	LP	LP	
Large Positive (LP)	ZE	Р	LP	LP	LP	

Defuzzifier

Center average defuzzifier for a two-input controller

$$u = \frac{\sum_{l=1}^{M} \mu_{A_l}(e) \mu_{B_l}(\Delta e) \theta_c^l}{\sum_{l=1}^{M} \mu_{A_l}(e) \mu_{B_l}(\Delta e)}$$

where θ_c^l is the centroid of the control action fuzzy set and M is the number of fuzzy rules

Control Surface

FLC in SIMULINK

Simulation Results

- Excessive overshoot
- Fine tune the controller
- Good results when changed the error range of the tracking error from

$$[-0.15, 0.15]$$

to

$$[-0.1,0.1]$$

New Tracking Error Fuzzy Sets

Fuzzy Logic Control:

- incorporates linguistic description of the controller action, rather than a mathematical plant model, to compute the control action--computing with words
- different ways to achieve high controller performance---use a two-range controller consisting of coarse and fine parts to regulate the large tracking error and small tracking error
- use more fuzzy sets, this in turn requires more fuzzy rules

