

### **Network Management**

- Course 1 -

Chapter 6: Introduction to IPv6 Protocol (1/1)

Dr. Nadira Benlahrache

NTIC Faculty email@univ-constantine2.dz



#### **Network Management**

- Course 1 -

Chapter 6: Introduction to IPv6 Protocol (1/1)

#### Dr. Nadira Benlahrache

NTIC Faculty
email@univ-constantine2.dz

#### **Concerned Students:**

| Faculty | Department | Level     | Speciality |  |
|---------|------------|-----------|------------|--|
| NTIC    | TLSI       | License 3 | G.L.       |  |

### Objectives:

The objective of this course is to present IPv6:

- its objectives,
- its notation and structure,
- its types.

# Main Objectives of IPv6

- Solve the problem of IPv4 address exhaustion,
- Reduce the size of routing tables,
- Simplify the protocol (by simplifying the IP header) to improve router efficiency,
- Provide better security (authentication and confidentiality),
- Manage host mobility (auto-configuration),
- Allow for flexible coexistence with IPv4.

#### Presentation

**IPv6** retains the principles that made IP a **success**; and corrects the "weaknesses" in IPv4. Thus, it uses:

- A new notation,
- An aggregated addressing plan,
- Each machine in IPv6 has its own IP address (directly visible on the Internet).
- An "unclassified" address.

Global Unicast Address Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

### IPv6 Address: Notation

An IPv6 address is defined on 128 bits (16 bytes). Format:

X:X:X:X:X:X:X

where **X** is a **quadruplet of 4** hexadecimal digits.

**Capacity** between 1,564 and 3,911,873,538,269,506,102 addresses on the entire Earth.

Note: no more general broadcast addresses.

### IPv6 Address: Notation

#### Address on 128 bits for:

- Hierarchical, aggregated organization;
- Flexible enough for the future.

#### Reuse of CIDR principles:

Prefix / prefix\_length

#### **Example:**

2001:660:111:2:a00:20ff:fe18:964c/64

### IPv6 Address: Notation

Full address:

FEDC:0000:0000:0000:400:A987:6543:210F

Condensed notation:

Remove one or more blocks of consecutive **zeros**. Use "::" to indicate where the replacement occurred.

FEDC :: 400:A987:6543:210F

**Note:** Only one group of consecutive blocks can be removed.

Representation of a prefix:

3EDC:BA98:7654:3210::/64

• Example: The machine a200:e8ff:fe65:df9a on the network **fedc:6482:cafe:ba05** has the following IPv6 address:

fedc:6482:cafe:ba05:a200:e8ff:fe65:df9a /64

Global Unicast Addres Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

# IPv6 Address Types and Structure

IPv6 addressing is structured into **multiple levels** according to an "aggregated" model defined by the **IANA** (Internet Assigned Numbers Authority). This structure should allow for better **route aggregation** and a **reduction** in the size of **routing tables**.

| Prefix (48 bits) |         |          | ts)     | Sub-Net | Interface    |
|------------------|---------|----------|---------|---------|--------------|
| 3 bits           | 13 bits | 8 bits   | 24 bits | 16 bits | 64 bits      |
| 001              | TLA     | Reserved | NLA     | SLA     | ID Interface |

Aggregatable Global Unicast Address

Global Unicast Address Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

# IPv6 Address Types and Structure

|        | Prefix (48 bits) |          |         | Sub-Net | Interface    |
|--------|------------------|----------|---------|---------|--------------|
| 3 bits | 13 bits          | 8 bits   | 24 bits | 16 bits | 64 bits      |
| 001    | TLA              | Reserved | NLA     | SLA     | ID Interface |

Aggregatable Global Unicast Address

**Top Level Aggregator (TLA)**: An entity that has received delegation directly from IANA, typically a first-level operator such as "Algérie Télécom".

**Network Level Aggregator (NLA)**: A network operator/ISP (Internet Service Provider) such as "Djezzy".

**Site Level Aggregator (SLA)**: A local authority at a site, such as a Company network.

# Site Level Aggregator

- A company has its own SLA identifier, or several (one per site);
- For example, when subscribing to an ISP, the ISP will assign the subscriber their own **SLA**.
- Through an **SLA**, an enterprise can configure *65536 networks* of 2<sup>64</sup> machines each.

# Types of addresses

A machine does not have **just one**, but **multiple** IPv6 addresses. Each IPv6 address can be used in a specific context:



Global Unicast Addres Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

# Types of addresses

A machine does not have **just one**, but **multiple** IPv6 addresses. Each address can be used in a specific context:

- Unicast:
  - Global Unicast address, which is routable on the Internet,
  - Link-Local address obtained through automatic configuration,
  - Unique Local address, which is equivalent to a private network address,
  - Loopback address, which is equivalent to the IPv4 127.0.0.1 address.
  - Mapped or Embedded IPv4 address, which is used to communicate with IPv4 hosts,
  - Reserved IPv6 address.
- Multicast,
- Anycast.

Global Unicast Address Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

### Global Unicast Address

- A Unicast address defines a specific host.
- A packet sent to this destination address is delivered to only the machine having this IPv6 address.
- Starts at 2000::/3
- 48 bits for the network: public prefix or topology
- 16 bits for subnet or site topology
- 64 bits for interface or host or interface topology.

| Prefix (48 bits) |         |          | ts)     | Sub-Net | Interface    |
|------------------|---------|----------|---------|---------|--------------|
| 3 bits           | 13 bits | 8 bits   | 24 bits | 16 bits | 64 bits      |
| 001              | TLA     | Reserved | NLA     | SLA     | ID Interface |

Aggregatable Global Unicast Address

### Global Unicast Address

- Public Topology (48 bits)
  - 3 bits identify the aggregated addressing plan,
  - 13 bits identify the Top-Level Aggregation (TLA),
  - 8 bits reserved for addressing evolution. To be allocated to TLA or NLA → Needs difficult to quantify.
  - 24 bits identify the Next-Level Aggregation (NLA).
- Site Topology (SLA): can be hierarchized by the manager and define its own subnets within this range. In summary, the 48 + 16=64 bits identify the network portion of the IPv6 address.
- Site interface Topology (64 bits): these bits identify the interface where the host is on the network.

### Link-local address

- This link-local address is obtained through automatic configuration and is only valid within the same link space without any intermediate router.
- The interconnection through a hub or Mac-level switch represents this link space.
- The prefix of a link-local address is fe80::/10.
- It starts from **FE8** to **FEB** (generally FE80).
- Has a "plug and play" effect.



# Unique local address

- These addresses are used for local communications and are routable only within sites that choose to use them.
- They are equivalent to **private** address ranges.
- fc00::/7
- The 8th bit must currently be set to 1 (setting it to 0 is not yet defined), which gives the prefix for locally assigned addresses as fd00::/8.
- The address includes a pseudo-random 40-bit prefix to avoid conflicts when interconnecting private networks.



### Reserved addresses

- These are the addresses ::/8 (constituting 1/256 of the total space),
- ::/128: unspecified address usable as a source address in the IPv6 address acquisition phase,
- ::1/128 : loopback address identical to 127.0.0.1 in IPv4,
- ::ffff:0:0/96 : used by programs, not visible on the network, to encode IPv4 addresses in a structure intended for IPv6.

# Mapped or Embedded IPv4 Address

- An IPv6 machine can communicate with both an IPv4 machine and an IPv6 machine
- It uses @IPv4-mapped addresses to communicate with IPv4 machines and uses IPv6 addresses to communicate with IPv6 machines.
- The machine then has both stacks.
- These addresses are in the form:

::ffff:a.b.c.d

• For example, ::ffff:147.30.20.10.



### Multicast Address

- The Multicast Address concerns a group of hosts belonging to the same broadcast group.
- Equivalent to 224 in IPv4 or Class D.
- A packet sent to this destination address is delivered to all machines concerned by this address.
- The prefix of a multicast address is **ff00**::/8.



### Multicast Address

- The Multicast Address concerns a group of hosts belonging to the same broadcast group.
- Equivalent to 224 in IPv4 or Class D.
- A packet sent to this destination address is delivered to all machines concerned by this address.
- The prefix of a multicast address is ff00::/8.



# Anycast Address

- With an **Anycast** address, a packet sent will be delivered to only one member of the group.
- Used to reach the closest host when multiple hosts share the same anycast address,
- All nodes with the same anycast address provide the same service (e.g., routers)
- Useful for load balancing across multiple servers,
- An anycast address is indistinguishable from a global unicast address and cannot be used as a source address.



Global Unicast Address Link-local address Unique local address Reserved addresses Mapped IPv4 Address Multicast Address Anycast Address

# Recap

| Address Type         | Range                               | Application                  |  |
|----------------------|-------------------------------------|------------------------------|--|
| Aggregateable Global | 2000::/3 Host-to-Host communication |                              |  |
| Unicast              |                                     |                              |  |
| Link-local Unicast   | FE80::/10                           | Connected-link communication |  |
| Multicast            | FF00::/8                            | One-to-many communication    |  |
| Anycast              | Same as                             | Application-based, including |  |
|                      | Unicast                             | load balancing & redundancy  |  |

### Interface Identifier

- The interface identifier allows to build the IPv6 address and guarantee its global uniqueness.
- The mechanism used consists of taking the Mac address of the network interface (network card) and placing it in the last 64 bits of the IPv6 address.



### Example:

Let's take a MAC address = 00:A0:24:E3:FA:4B (48 bits)

Interface Identifier or **EUI-64** =

**02 A0:24 FF:FE E3:FA4B** (48+16 bits)

Where the **seventh bit** is inverted to **1** and **FF:FE** is added in the middle of the interface address:



### IPv4 - IPv6 Transition



# New protocols

- Neighbor Discovery (ND),
- Path MTU Discovery,
- IPv6 Auto-configuration; stateless or stateful using DHCPv6,
- Multicast Listener Discovery (MLD), [RFC2710];
- ICMPv6, covers the functionality of ICMP in IPv4 and encapsulates ND and MLD messages.

# IPv6 Routing

- CIDR Routing: the longest prefix (most specific) is used,
- Routing protocols are extensions of IPv4 protocols:

RIPng OSPF-v3

Routing operations (currently) are less efficient than in IPv4.

#### Conclusion

 This course aimed to introduce the basic concepts of IPv6 addressing such as notation, address types, and protocols dedicated to this type of addressing.

### Some useful Links

- http://www.iplogos.fr/ipv6-les-differentes-adresses
- http://www.e-campus.uvsq.fr
- http://sesame-mips.unice.fr/lips/cours/reseaux/cours/10-IPv6.pdf
- http://www.linux-france.org/
- http://wildcat.espix.org/ipv6/i01\_principe\_ip\_v1b.pdf