UE Image L3 Contrôle Continu

Année 2010 - 2011

Exercice 1

(C) Indiquer le résultat du filtre sur la partie indiquée en gras dans l'image suivante :

210	208	210	208
208	210	60	208
60	208	60	62
58	54	60	62

210	208	210	208
208	210	60	208
60	208	60	62
58	54	60	62

1	2	1
0	0	0
-1	-2	-1

Convolution discrète

- Une image a un support borné et est définie par une matrice de valeurs (fij)ij où i est l'indice de ligne et j indice de colonne
 - Si le support de la fonction de référence est un carré de côté 2p+1 centré à l'origine

In carre de cote 2p
$$f \otimes g(i,j) = \sum_{\alpha=-p}^{+p} \sum_{\beta=-p}^{+p} f_{i-\alpha,j-\beta} \cdot g(\alpha,\beta) = \sum_{\alpha=-p}^{+p} \sum_{\beta=-p}^{+p} f_{i-\alpha,j-\beta} \cdot a_{\alpha,\beta}$$
images - 2020/2021

images - 2020/2021

1	3	5	6	3		
2	3	2	1	1		
2	4	5	3	2	1	
4	1	4	1	3	2	
3	1	2	2	3	3	
1	3	1	0	7	4	
2	2					

<i>]</i>		9		
	3	2	1	
	5	4	3	
	1	2	2	

2p + 1 = 3
p = ?
p = 1

$$f \otimes g(2,1) = \sum_{\alpha=-p}^{+p} \sum_{\beta=-p}^{+p} f_{i-\alpha,j-\beta} \cdot g(\alpha,\beta)$$

$$i=2$$
, $j=1$

$$f \otimes g(2,1) =$$

$$\begin{array}{|c|c|c|c|}\hline \alpha = -1, \beta = -1 & f_{i-(-1),j-(-1)} \cdot g(-1,-1) = f_{i+1,j+1} \cdot g(-1,-1) \\ \hline \alpha = -1, \beta = 0 & + f_{i-(-1),j-(0)} \cdot g(-1,0) = f_{i+1,j} \cdot g(-1,0) \\ \hline \alpha = -1, \beta = 1 & + f_{i-(-1),j-(1)} \cdot g(-1,1) = f_{i+1,j-1} \cdot g(-1,1) \\ \hline \alpha = 0, \beta = -1 & f_{i-(0),j-(-1)} \cdot g(0,-1) = f_{i,j+1} \cdot g(0,-1) \\ \hline \alpha = 0, \beta = 0 & + f_{i-(0),j-(0)} \cdot g(0,0) = f_{i,j} \cdot g(0,0) \\ \hline \alpha = 0, \beta = 1 & + f_{i-(0),j-(1)} \cdot g(0,1) = f_{i,j-1} \cdot g(0,1) \\ \hline \alpha = 1, \beta = -1 & f_{i-(1),j-(-1)} \cdot g(1,-1) = f_{i-1,j+1} \cdot g(1,-1) \\ \hline \alpha = 1, \beta = 0 & + f_{i-(1),j-(0)} \cdot g(1,0) = f_{i-1,j} \cdot g(1,0) \\ \hline \alpha = 1, \beta = 1 & + f_{i-(1),j-(1)} \cdot g(1,1) = f_{i-1,j-1} \cdot g(1,1) \\ \hline \end{array}$$

Donc:

$$f \otimes g(2,1) =$$

$$\begin{split} f_{i+1,j+1} \cdot g(-1,-1) &= f_{3,2} \cdot g(-1,-1) \\ + f_{i+1,j} \cdot g(-1,0) &= f_{3,1} \cdot g(-1,0) \\ + f_{i+1,j-1} \cdot g(-1,1) &= f_{3,0} \cdot g(-1,1) \\ + f_{i,j+1} \cdot g(0,-1) &= f_{2,2} \cdot g(0,-1) \end{split}$$

$$\begin{split} &+ f_{i,j} \cdot g(0,0) = f_{2,1} \cdot g(0,0) \\ &+ f_{i,j-1} \cdot g(0,1) = f_{2,0} \cdot g(0,1) \\ &+ f_{i-1,j+1} \cdot g(1,-1) = f_{1,2} \cdot g(1,-1) \\ &+ f_{i-1,j} \cdot g(1,0) = f_{1,1} \cdot g(1,0) \\ &+ f_{i-1,i-1} \cdot g(1,1) = f_{1,0} \cdot g(1,1) \end{split}$$

Donc:

$$f \otimes g(2,1) =$$

$$f_{3,2} \cdot g(-1,-1) = 4 \cdot g(-1,-1)$$

$$+ f_{3,1} \cdot g(-1,0) = 1 \cdot g(-1,0)$$

$$+ f_{3,0} \cdot g(-1,1) = 4 \cdot g(-1,1)$$

$$+ f_{2,2} \cdot g(0,-1) = 5 \cdot g(0,-1)$$

$$+ f_{2,1} \cdot g(0,0) = 4 \cdot g(0,0)$$

$$+ f_{2,0} \cdot g(0,1) = 2 \cdot g(0,1)$$

$$+ f_{1,2} \cdot g(1,-1) = 2 \cdot g(1,-1)$$

$$+ f_{1,1} \cdot g(1,0) = 3 \cdot g(1,0)$$

$$+ f_{1,0} \cdot g(1,1) = 2 \cdot g(1,1)$$

$f \otimes g(2,1) =$

$$4 \cdot g(-1, -1) = 4 \cdot 3 = 12$$

+ $1 \cdot g(-1, 0) = 1 \cdot 2 = 2$
+ $4 \cdot g(-1, 1) = 4 \cdot 1 = 4$
+ $5 \cdot g(0, -1) = 5 \cdot 5 = 25$

9

$$+4 \cdot g(0,0) = 4 \cdot 4 = 16$$

 $+2 \cdot g(0,1) = 2 \cdot 3 = 6$
 $+2 \cdot g(1,-1) = 2 \cdot 1 = 2$
 $+3 \cdot g(1,0) = 3 \cdot 2 = 6$
 $+2 \cdot g(1,1) = 2 \cdot 2 = 4$

Donc:

$$f \otimes g(2,1) = 12 + 2 + 4 + 25 + 16 + 6 + 2 + 6 + 4 = 73$$

Faire un produit de convolution c'est symétriser le noyau.

la convolution est le processus consistant à retourner les colonnes et les lignes du noyau puis de multiplier localement les valeurs ayant la même position, puis sommer le tout.

210	208	210	208
208	210	60	208
60	208	60	62
58	54	60	62

1	2	1
0	0	0
-1	-2	-1

210	208	210	208
208	210	60	208
60	208	60	62
58	54	60	62

-1	-2	-1
0	0	0
1	2	1

$$f \otimes g(1,1) = (210 * -1) + (208 * -2) + (210 * -1) + 60 + (208 * 2) + 60$$

= -210 - 406 - 210 + 60 + 406 + 60 = -420 + 120 = -300

$$f \otimes g(1,2) = -208 - 420 - 208 + 208 + 120 + 62 = -208 - 420 + 1$$

= $-628 + 182 = -446$ [?]

$$f \otimes g(2,1) = -208 - 420 - 60 + 58 + (54 * 2) + 60 = -628 + 58 + 108$$

= $-628 + 166 = -462$

$$f \otimes g(2,2) = -210 - 120 - 208 + 54 + 120 + 62 = -418 + 54 + 62 = -418 + 116$$

= -302

Exercice 1

(a) Avec quel objectif précis fait on un produit de convolution entre une image et le masque suivant :

1	2	1
0	0	0
-1	-2	-1

Figure 1 Masques de convolution des operateurs de Prewitt (k=1) et de Sobel (k=2)

L'operateur de Prewitt est defini pour une valeur de k=1 et Sobel pour k=2. Ces masques sont concus pour repondre maximalement aux contours horizontaux et verticaux.

L'application separee de chacun des masques donne une estimation des composantes horizontales et verticales du gradient, notees respectivement ∇_x et ∇_y par un simple filtrage lineaire avec un masque 3x3.

Source: http://ultra.sdk.free.fr/docs/lmage-
http://ultra.sdk.free.fr/docs/lmage-
http://ultra.sdk.free.fr/docs/lmage-
http://ultra.sdk.free.fr/docs/lmage-
Processing/filters/Edges%20Detection/Localisation%20et%20epaisseur%20des%20contours%20des%20detecteurs%202.pdf

Exercice 1

(b) Opère-t-on ainsi un filtre passe-haut ou passe-bas?

Filtre passe-haut.

Filtre passe-bas

Filtre ayant pour objet de couper les <u>hautes</u> fréquences. Cette opération a pour effet de réduire le bruit et d'ajouter du flou (c-à-d. éliminer les détails de l'images)

Filtre passe-haut

Filtre ayant pour objet de couper les <u>basses</u> fréquences. <u>Cette opération a pour effet</u> d'accentuer les détails de l'image, les contours et le bruit. Toutes les régions uniformes sont éliminées par cette procédure.

Source:

http://www.dmi.usherb.ca/~jodoin/cours/imn259/notes/Filtrage IMN259 2018 3pages.pdf

Exercice 1

(d) Indiquer le résultat d'un filtre médian sur la partie indiquée en gras dans la même image.

Filtre médian

- · Ce n' est pas un filtre de convolution
- La moyenne est un paramètre moins robuste que la médiane
- · Plus adapté au bruit impulsionnel
- Remplace le niveau de gris du pixel central d'une fenêtre par la valeur médiane des niveaux de gris des pixels de la fenêtre

images - 2020/2021

0	8
10	12
20	1
30	0
40	2
50	0
60	0
70	0
80	0
90	0
100	2
110	2
120	9
130	0
140	1

150	0
160	0
170	1
180	0
190	0
200	0
210	1
220	6
230	4
240	4
250	3

Produit