

Figure 1

- 1. Figure 1 shows a two-layer feedforward neural network receiving 3-dimensional inputs $(x_1, x_2, x_3) \in \mathbb{R}^3$. The connection weights and biases of the neurons n_1, n_2 , and n_3 are as indicated in the figure. The hidden-layer neurons have activation functions given by $g(u) = \frac{1.0}{1 + e^{-0.5u}}$ where u denotes the synaptic input to the neuron. The activation function f(u) of the output neuron is a ReLU function: $f(u) = \max\{0, u\}$.
 - a. Write weight vectors and biases connected to individual neurons, and the weight matrix and bias vector connected to the hidden layer.
 - b. Find the synaptic inputs and activations of the neurons for the following input signals:

(i)
$$(1.0, -0.5, 1.0)$$
 (ii) $(-1.0, 0.0, -2.0)$ (iii) $(2.0, 0.5, -1.0)$.

Figure 2

- 2. Two input binary neuron shown in figure 2 has a unit step activation function with a bias b = 0.5 and receives two-dimensional input $(x_1, x_2) \in \mathbb{R}^2$.
 - (a) Find the space of possible values of weights (α, β) if the neuron is
 - (i) ON for input (1.0, 1.0)
 - (ii) ON for input (0.5, -1.0)
 - (iii) OFF for input (2.0, -0.5).
 - (b) Indicate the weight space in 2-D α - β plot and show that (-0.2, 0.2) is in this space.
- 3. The network shown in figure 3 consists of neurons having threshold activation functions and receives three-bit binary patterns $(x_1, x_2, x_3) \in \{0,1\}^3$. By analyzing the outputs for all possible three-bit input patterns, determine the logic function that the network implements. All unlabeled weights shown in figure 3 are of unity weight.

Figure 3