STATO LIQUIDO

GLI STATI DI AGGREGAZIONE DELLA MATERIA

Lo stato liquido

- ✓ I liquidi sono dotati di volume proprio ma sono privi di forma
- ✓ Forze intermolecolari intermedie fra solidi e gas → le particelle posso traslare e scorrere e une sulle altre con un cammino libero medio limitato
- ✓ I liquidi sono virtualmente incomprimibili
- ✓ La superficie presenta caratteristiche molto diverse da quelle all'interno della massa (forze intermolecolari non bilanciate)

Tensione superficiale γ o Γ (N·cm⁻¹)

Lo stato liquido

Tensione Superficiale

Le sollecitazioni che agiscono su ciascuna molecola presente in superficie hanno una risultante non nulla diretta verso l'interno del liquido e di conseguenza la superficie di un liquido tende a contrarsi

Lo stato liquido Tensione Superficiale

Un'elevata tensione superficiale corrisponde a forti interazioni intermolecolari. La tensione superficiale diminuisce, in genere al crescere della temperatura.

Le forze cui sono soggette le molecole di un liquido possono essere di

Coesione: attrazione intermolecolare fra molecole simili

Adesione: attrazione intermolecolare fra molecole diverse

L'acqua risale all'interno di un tubo di vetro di piccolo immerso in essa

Azione capillare

Lo stato liquido

Viscosità

La **viscosità** è una misura della resistenza di un fluido allo scorrimento.

Un' elevata viscosità corrisponde a forti interazioni intermolecolari

Diminuisce, in genere, al crescere della temperatura

Lo stato liquidoPressione di vapore

Alla natura e all'intensità delle interazioni di superficie è legato il passaggio di alcune particelle dallo stato liquido (o dallo stato solido) a quello aeriforme

In un recipiente chiuso si stabilisce un equilibrio dinamico fra il numero di particelle che passa dallo stato liquido a quello gassoso (evaporazione) e quelle che passano da quello gassoso a quello liquido (condensazione). La pressione che si registra nelle condizioni di equilibrio è detta tensione di vapore o pressione di vapore.

Tanto più alta è la pressione di vapore di un liquido tanto maggiore sarà la sua tendenza a passare allo stato gassoso cioè la sua volatilità.

u

$$G = H - TS$$

$$dG = dH - TdS - SdT < \int$$

Per un cambiamento reversibile in un sistema chiuso (senza cambiamento della composizione) e con lavoro esclusivamente di espansione

Sappiamo che:

$$H = U + PV \longrightarrow$$

$$dH = dU + PdV + VdP$$

$$dG = dU + PdV + VdP - TdS - SdT$$

Sappiamo inoltre che:
$$dU = \delta Q_{rev} - \delta W$$

$$dU = TdS - PdV$$

$$dG = TdS - PdV + PdV + VdP - TdS - SdT$$

$$dG = VdP - SdT$$

All'equilibrio dG=0 (e d G_V =d G_L)

$$V_L dP - S_L dT = V_V dP - S_V dT$$

Ordinando e raggruppando:

$$\frac{dP}{dT} = \frac{S_{V} - S_{L}}{V_{V} - V_{I}} = \frac{\Delta S}{\Delta V}$$

Considerando che $\Delta H_{ev}/T = \Delta S$ e che $\Delta V \cong V_v = RT/P$ si ha

$$\frac{dP}{dT} = P \frac{\Delta H_{ev}}{RT^2}$$

Legge di Clausius-Clapeyron

Se T1 e T2 differiscono poco (<10K) $\Delta \text{Hev}_1 = \Delta \text{Hev}_2 = \Delta \text{Hev}$ e

$$\ln \frac{P_1}{P_2} = -\frac{\Delta H_{ev}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Legge di Clausius-Clapeyron

Derivando InP rispetto alla temperatura si ottiene

$$\ln P = \ln c - \frac{\Delta H_{ev}}{RT} \longrightarrow \frac{d \ln P}{dT} = \frac{\Delta H_{ev}}{RT^2}$$

Essendo \(\Delta Hev > 0 \) la pressione di vapore \(\text{è} \) sempre crescente al crescere della temperatura

PASSAGGI DI STATO

GLI STATI DI AGGREGAZIONE DELLA MATERIA

Passaggi di stato

Passaggi di stato

Curva di riscaldamento

Diagramma isobaro di riscaldamento

Passaggi di stato Curve di raffreddamento

Sostanze pure

Temperatura

Punto triplo

Sostanze pure

Temperatura

Diagramma di Andrews

Regola delle fasi

Fase: porzione di una sostanza uniforme sia rispetto alla composizione chimica che rispetto allo stato fisico (stato di aggregazione)

Transizione di fase: passaggio spontaneo da una fase ad un' altra che si verifica, ad una data pressione, per una certa temperatura

Varianza: (n° gradi di libertà) cioè numero di parametri che si possono modificare senza modificare il numero delle fasi presenti

f = numero di fasi presenti

c = numero di componenti indipendenti

n = parametri fisici che influiscono sullo stato del sistema

Regola delle fasi

v=c-f+n

 CO_2

Acqua

Allo stato solido l'acqua, caso più unico che raro, occupa un volume maggiore che allo stato liquido

