MATH 305:201, 2020W T2

Homework set 4 — due Feb 12

Problem 1. Optional, will not be marked.

Let $Log(\zeta)$ and $\zeta^{1/2}$ be the principal branches of the logarithm and the square root.

(i) Show that

$$w = -i\text{Log}\left(iz + (1-z^2)^{\frac{1}{2}}\right)$$
 (1)

is such that sin(w) = z.

- (ii) Let w(z) be defined as above. Show that $w'(z) = \frac{1}{(1-z^2)^{1/2}}$.
- (iii) Show that if z is real and in [-1,1], then w is real and between $[-\pi/2,\pi/2]$.

Hint. Where does $iz + (1 - z^2)^{\frac{1}{2}}$ lie in the complex plane?

Remark. In other words, the expression in (1) is defined for all $z \in \mathbb{C} \setminus \{0\}$ and agrees with the standard arcsin on the real interval [-1,1]; we say that (1) defines a holomorphic extension of the usual arcsine function.

Problem 2. Use complex analysis to find the temperature distribution in a layer of ice of thickness σ on a frozen lake, given that the water temperature is 0° C and the air is at T° C.

Problem 3. (i) Determine the set Ω on which $\text{Log}(\frac{z-1}{z-2})$ is holomorphic.

(ii) Find a branch of $(z^2 - 1)^{\frac{1}{2}}$ which is holomorphic in the disc $B_1(0)$. Hint. Write $(z^2 - 1) = (-1)(1 - z^2)$.

Problem 4. Find a (piecewise) smooth parametrization of the following contours:

- (i) The curve in the figure to the right
- (ii) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where z = x + iy), running once from $z_i = a$ to itself with the positive orientation.

Hint. Use polar coordinates and express r as a function of the angle θ along the ellipse.

