Digital Integrated Circuits Designing Combinational Logic Circuits

Fuyuzhuo

Dynamic Logic

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues

Dynamic logic cascade solution

Static or Dynamic

A first glance of dynamic logic

- Basic components
 - PDN,just like CMOS and pseudo-NMOS
 - Clock control transistors ,
 seperate circuit to two phases
- Dynamic logic's two phases
 - precharge
 - evaluation

Dynamic CMOS

- Static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

Dynamic Gate

Two phase operation

Precharge (Clk = 0) Evaluate(Clk = 1)

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L

Dynamic Logic

- Dynamic gates uses a clocked pMOS pullup
- Two modes: precharge and evaluate

The Foot

- What if pulldown network is ON during precharge?
- Use series evaluation transistor to prevent fight.

Digital IC Slide 10

Logical Effort

Inverter

NAND2

NOR2

$$\phi \rightarrow \boxed{1}$$

$$Y$$

$$A \rightarrow \boxed{1}$$

$$g_{d} = p_{d} = p_{d}$$

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{2}$$

$$B \rightarrow \boxed{2}$$

$$g_{d} = p_{d} = 1$$

unfooted
$$\begin{array}{c} \phi \to 1 \\ A \to 2 \\ A \to 2 \\ A \to 2 \\ A \to 3 \\ A \to 3$$

Logical Effort

Inverter

NAND2

NOR2

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{1}$$

$$g_d = 1/3$$

$$p_d = 2/3$$

footed
$$A = \frac{1}{2}$$
 $A = \frac{2}{3}$ $A = \frac{2$

Monotonicity

- Dynamic gates require monotonically rising inputs during evaluation
 - 0 -> 0
 - 0 -> 1
 - 1 -> 1
 - But not 1 -> 0

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
- Dynamic logic cascade solution

Properties of Dynamic Gates

- ✓ Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- ✓ Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- ✓ Non-ratioed
 - sizing of the devices does not affect the logic levels
- ✓ Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (C_{out})

Properties of Dynamic Gates

- # Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{sc})
 - No glitching
 - higher transition probabilities
 - extra load on Clk
- # PDN starts to work when the input signals exceed V_{Tn}
 - V_M , V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM_L)
- # Needs a precharge/evaluate clock

Digital

A 4-NAND dynamic logic VTC

A 4-NAND dynamic logic V_{TC}

面积	静态 电流	晶体管 数目	V _{OH}	V_{OL}	V_{M}	NM_H	NM_L	$t_{p\mathrm{HL}}$	t_{pLH}	t_p
212	0	6	5V	0V	0.75V	4.25V	0.75V	0.74nsec	0	0.37nsec

Small load capacity

Asymmetry of noise margin

- Small delay
- Fewer transistors

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness

Could we move it to there?

Charge Sharing

Dynamic gates suffer from charge sharing

$$V_{x} = V_{y} =$$

Digital IC Slide 26

Charge Sharing

Dynamic gates suffer from charge sharing

$$V_{x} = V_{Y} = \frac{C_{Y}}{C_{x} + C_{Y}} V_{DD}$$

Digital IC Slide 27

Solution to Charge Redistribution

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

Issues in Dynamic Design 3: Backgate Coupling

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

Issues in Dynamic Design 4: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD} . The fast rising (and falling edges) of the clock couple to Out.

Clock Feedthrough

Crosstalk Noise Effects

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor}(C_{gnd-a} + C_{adj})}{R_{victim}(C_{gnd-v} + C_{adj}))}$$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

Waveforms of coupling noise

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

- Dynamic logic principle
- Dynamic logic properties
- Dynamic logic design issues
 - Charge-leakage
 - Charge-sharing
 - Backgate Coupling
 - Clock feedthrough
- Dynamic logic cascade solution

Cascading Dynamic Gates

Only $0 \rightarrow 1$ transitions allowed at inputs!

Not $1 \rightarrow 0!$

Domino Logic

Domino Gates

- Follow dynamic stage with inverting static gate
 - Dynamic / static pair is called domino gate
 - Produces monotonic outputs

Why Domino?

Like falling dominos!

Designing with Domino Logic

Footless Domino

- The first gate in the chain needs a foot switch
- Precharge is rippling short-circuit current
- A solution is to delay the clock for each stage

np-CMOS

Only $0 \rightarrow 1$ transitions allowed at inputs of PDN Only $1 \rightarrow 0$ transitions allowed at inputs of PUN

Domino Summary

- Domino logic is attractive for high-speed circuits
 - 1.5 2x faster than static CMOS
 - But many challenges:
 - Monotonicity
 - Leakage
 - Charge sharing
 - Noise
- Widely used in high-performance microprocessors

Traditional Domino Circuits

Ping-pang approach for overlapping the precharge time

Some circuits pitfalls

Faults....

Outline

- Circuit Pitfalls
 - Detective puzzle
 - Given circuit and symptom, diagnose cause and recommend solution
 - All these pitfalls have caused failures in real chips

Symptom

Mux works Y=1 when selected =1 but D=1.

Symptom

Mux works Y=1 when selected =1 but D=1.

- ☐ Principle: Threshold drop
 - X never rises above V_{DD}-V_t
 - V_t is raised by the body effect $V_t = V_{t0} + \gamma(\sqrt{-2\Phi_F + V_{SB}} \sqrt{2\Phi_F})$
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.

Symptom

Mux works Y=1 when selected =1 but D=1.

- Principle: Threshold drop $V_t = V_{t0} + \gamma(\sqrt{|-2\Phi_F + V_{SB}|} \sqrt{|2\Phi_F|})$
 - X never rises above V_{DD}-V_t
 - V_t is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.

Symptom

Mux works Y=1 when selected =1 but D=1.

- Principle: Threshold drop $V_t = V_{t0} + \gamma(\sqrt{-2\Phi_F + V_{SB}} \sqrt{2\Phi_F})$
 - X never rises above V_{DD}-V_t
 - V_t is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.
- Solution: Use transmission gates, not pass transistors

Symptom

Precharge gate (Y=0)

Then evaluate

Eventually Y

spontaneously flips to 1

Symptom

Precharge gate (Y=0)

Then evaluate

Eventually Y

spontaneously flips to 1

- Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge
- Solution:

Symptom

Precharge gate (Y=0)

Then evaluate

Eventually Y

spontaneously flips to 1

- Principle: Leakage
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb

charge

Solution:

Symptom

When only one input is true, Y = 0.

Symptom

When only one input is true, Y = 0.

- Principle: Ratio Failure
 - nMOS and pMOS fight each other.
 - If the pMOS is too strong, nMOS cannot pull X low enough.
- Solution:

Symptom

When only one input is true, Y = 0.

- Principle: Ratio Failure
 - nMOS and pMOS fight each other.
 - If the pMOS is too strong, nMOS cannot pull X low enough.
- Solution: Check that ratio is satisfied in all corners

Symptom

Precharge gate while

A = B = 0, so Z = 0 Set f = 1

A rises

Z is observed to sometimes rise

Symptom

Precharge gate while

A = B = 0, so Z = 0 Set f = 1

A rises

Z is observed to sometimes rise

- Principle: Charge Sharing
 - If X was low, it shares charge with Y

Symptom

Precharge gate while

$$A = B = 0$$
, so $Z = 0$ Set $f = 1$

A rises

Z is observed to sometimes rise

- Principle: Charge Sharing
 - If X was low, it shares charge with Y
- Solutions: Limit charge sharing

• Safe if
$$C_Y >> C_X$$
 $V_x = V_Y = \frac{C_Y}{C_X + C_Y} V_{DD}$

Or precharge node X too

Summary

- Static CMOS gates are very robust
 - Logic effect/Fan-in relate to the delay/Power evaluation
- Other circuits suffer from a variety of pitfalls
 - Pseodu NMOS logic
 - Pass transistor
 - cascade problem ,restorer(keeper),some pass logic
 - Dynamic logic
 - Characteristic
 - Cascade issue
 - Domino logic
 - Some pitfalls of dynamic logic