

Multivariable Calculus Notes

MATH 230

Start

 $\overline{\text{JANUARY } 22, \ 2025}$

Author

Paul Beggs BeggsPA@Hendrix.edu

Instructor

Prof. Lars Seme, M.S.

End

May 13, 2025

TABLE OF CONTENTS

1	Par	Parametric Eqs and Polar Coords			
		Param	netric Equations	2	
			Introduction	2	
		1.1.2	Parametric Equations	2	
		1.1.3	Graphing Parametric Curves in the Second Dimension	2	
		1.1.4	The Cycloid	Ç	
		1.1.5	Final Notes		
	1.2	Calcul	us of Parametric Curves		
		1.2.1	Slope for a Parametric Curve	4	
		1.2.2	Second Derivative	4	
		1.2.3	Area Under a Curve	4	
		1.2.4	Arc Length	4	
		1.2.5	Surface Area	4	
		1.2.6	The Cycloid	1	

PARAMETRIC EQS AND POLAR COORDS

1.1 Parametric Equations

1.1.1 Introduction

Most of your calculus experience has been single variable, so that the functions under consideration were typically $f: \mathbb{R} \to \mathbb{R}$. Our course is divided into roughly 3 sections:

- Parametric Equations/Functions: Functions of the form $f: \mathbb{R} \to \mathbb{R}^n$ (Chapters 1 3)
- Scalar Functions: Functions of the form $f: \mathbb{R}^n \to \mathbb{R}$ (Chapters 4 5)
- Vector Fields: Functions of the form $f: \mathbb{R}^n \to \mathbb{R}^n$ (Chapter 6)

1.1.2 Parametric Equations

A parametric equation (or, sometimes parametric function or vector-valued function) is a function of the form $f: \mathbb{R} \to \mathbb{R}^n$. We will typically consider n = 2 or n = 3 and call the input variable the parameter, usually denoted by t. We write them as

$$f(t) = \begin{cases} x(t) \\ y(t) \end{cases}$$
 or $f(t) = \begin{cases} x(t) \\ y(t) \\ z(t) \end{cases}$.

A parametric curve is the set of points (x(t), y(t)) in \mathbb{R}^2 or (x(t), y(t), z(t)) in \mathbb{R}^3 traced out. Note that in general, the curve may not be a function for y in terms of x, but is a function of the parameter t.

1.1.3 Graphing Parametric Curves in the Second Dimension

Elimination of the Parameter

In some cases, we can explicitly solve for t in terms of one of x or y. When this is possible, you can write y(x) or x(y) and use your "regular" algebraic knowledge. We call this process *eliminating the parameter*.

Using Technology

- Your TI-84 can graph this if you switch to par mode.
- Likewise, GeoGebra can do this, using the curve function.
 - In general, the syntax is: curve(x(t), y(t), t, min, max)

1.1.4 The Cycloid

A wheel of radius a is rolling along a flat road at a constant velocity. The curve generated by a point along the edge of the wheel traces out a shape called a *cycloid*. Let t represent the angle - in radians!!!! - rotated through, and that the point of interest starts at the origin. Before we find the equations for the point, let's find the location of the center of the circle:

$$f_{\text{center}}(t) = \begin{cases} x(t) = at \\ y(t) = a \end{cases}$$

Then, relative to the center, our point along the edge has equations

$$f(t) = \begin{cases} x(t) = -a\sin(t) \\ y(t) = -a\cos(t) \end{cases}$$

Thus, our point has parametric equations

$$f(t) = \begin{cases} x(t) = a(t - \sin(t)) \\ y(t) = a(1 - \cos(t)) \end{cases}$$

1.1.5 Final Notes

Next time, we'll start asking Calculus-y questions: What are the velocities in the x, y, and total directions? What total distance does it travel? What is the area of the region under one period of the cycloid?

- The syllabus has a number of practice problems to work on. These are not required, and not to be turned in, but are for you to work before class next time.
- We will talk about them at the start of the next class. You should try them beforehand.
- The most common reason for a lack of success in this class is not spending time working problems on your own.

1.2 Calculus of Parametric Curves

For this section, we will have a parametric curve in R2, defined by $f(t) = \begin{cases} x(t) \\ y(t) \end{cases}$. In many cases, the curve does not describe y as a function of x. However, we can still carry over many ideas from single variable calculus.

1.2.1 Slope for a Parametric Curve

Given a point t0, the *slope of the curve* in the xy-plane is given by

$$\left. \frac{dy}{dx} \right|_{t=t_0} = \left. \frac{dy/dt}{dx/dt} \right|_{t=t_0}.$$

Note that this is undefined when $x'(t_0) = 0$.

The *tangent line* at t_0 is given by

$$y = \left(\frac{dy}{dx}\Big|_{t=t_0}\right)(x - x(t_0)) + y(t_0).$$

1.2.2 Second Derivative

The value of the second derivative for the curve at t_0 is given by

$$\left. \frac{d^2y}{dx^2} \right|_{t=t_0} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \right|_{t=t_0} = \frac{d}{dt} \left(\frac{dy/dt}{dx/dt} \right) \right|_{t=t_0}.$$

Note the benefit of Leibnitz notation for each of these two derivatives!

1.2.3 Area Under a Curve

Suppose that a parametric curve is non-self intersecting. Then, the signed area of the region between the curve and the x-axis on the t interval $[t_a, t_b]$ is given by

$$A = \int_{t_a}^{t_b} y(t) \frac{dx}{dt} dt = \int_{t_a}^{t_b} y(t) \frac{dx}{dt} dt.$$

1.2.4 Arc Length

The arc length of a parametric curve over the t interval $[t_a, t_b]$ is given by

$$s = \int_{t_a}^{t_b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

1.2.5 Surface Area

The *surface area* of the region obtained by rotating a non-self intersecting parametric curve is given by

$$S = \int_{t_a}^{t_b} 2\pi y(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

1.2.6 The Cycloid

We can apply each of the above to the cycloid:

- Derivative: $\frac{dy}{dx} = \frac{dy}{dx} = \frac{\sin(t)}{1-\cos(t)}$. Note that the slope is then independent of the radius of the wheel and that the slope is undefined at each of $t = \dots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \dots$
- Concavity: $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{\sin(t)}{1-\cos(t)}\right)$. After some work, we find that $\frac{d^2y}{dx^2} = -\frac{a}{y^2}$, which shows that the cycloid is always concave down.
- Area: The area of one period of the cycloid $A = 3\pi a2$, after some work.
- Arc Length: The arc length of one period of the cycloid is s=8a, again after some work.
- Surface Area: The surface area of the solid obtained by rotating one period of the cycloid around the x-axis is $S = \frac{64\pi a^2}{3}$, after a lot of tedious work.