BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI – Hyderabad Campus SECOND SEMESTER 2021-22 Course Handout Part II

Date:

15-01-2022

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further details regarding the course.

Course No: CHEM F243

Course Title: Organic Chemistry-II

Instructor-in-charge: Manab Chakravarty

Instructor: Arijit Mukherjee

- 1. Scope and objective of the course: Stereochemistry is highly important to most life-saving drugs, many materials that cater to our essential needs. Hence, this course will familiarize the students with stereochemical concepts and their applications in organic synthesis; important functional group transformations, and pericyclic reactions. Emphasis will be placed not only on the mechanistic and stereoelectronic features but also on how they are utilized in target synthesis.
- **2. Text Books:** E. L. Eliel, S. H. Wilen & L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons, 1st Ed., 2004. **(T1)**

Michael B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th ed., 2012. (T2)

Reference Books:

- J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. (R1)
- R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th ed. (R2)

Subrata Sengupta, Basic Stereochemistry of organic molecules, Oxford University press (R3)

3. Course Plan:

Lec. No.	Topics to be Covered	Learning objectives	Chapter in the Text Book

1-2	Nature of stereoisomers,	Introduction to stereoisomers; identifying enantiomers and	T1 : Ch. 3, pg. 49-69.
	Enantiomers and	diastereomers; also to understand their difference	
	Diastereomers		
3-5	Symmetry elements,	Introduction to symmetry elements; to identify symmetry	T1 : Ch. 4, pg. 71-87, 92-
	symmetry operators,	elements in molecules; associate molecules with symmetry	97
	symmetry and molecular	point groups.	
	properties.		
6-8	Relative and absolute	What is meant by relative and absolute configuration? How	T1 : Ch. 5, pg. 101-112,
	configuration, relative	relative configuration is determined? Rules governing R/S	117-123, 126-128, 130-
	configuration and	nomenclature (absolute configuration).	144
	notation, determination		
	of relative configuration		
9-10	Introduction,	Chirality in molecules devoid of chiral centers – 1. Why these	T1 : Ch. 14, pg. 1119-24,
	nomenclature, allenes	molecules are considered as chiral? Important examples and	1132
		their applications.	
11-13	Alkylidenecycloalkanes,	Chirality in molecules devoid of chiral centers -2. Why these	T1 : Ch. 14, pg. 1133-50,
	Spriranes, Biphenyl	molecules are considered as chiral? Important examples and	1166-76
	atropisomersism,	their applications.	
	Molecules with planar		
	chirality		
14-15	cis-trans isomerism,	Stereochemistry of alkenes; E-Z nomenclature of alkenes;	T1 : Ch. 9, pg. 539-574
	determination of	methods for the determination of configuration.	
	configuration of cis-trans		
	isomers by chemical &		
	physical methods		
16-17	Conformation of	What is conformation of a molecule? Importance and	T1 : Ch. 10, pg. 597-627
	unsaturated acyclic and	important examples. Conformation of acyclic molecules;	
	miscellaneous molecules		

		identifying stable and unstable conformations. What are the various interactions leading to stable/unstable conformations?	
18-20	Conformational aspects of the chemistry of six membered ring compounds	Understanding the conformations of cyclic molecules; identifying stable and unstable conformations. What are the various interactions leading to stable/unstable conformations in cyclohexane?	T1 : Ch. 10, pg. 665-754
21-26	Different reaction mechanisms involved in organic transformations such as SN1/SN2/SN'/SNi, neighboring group mechanism E1, E2, E1cB, addition to C=C double bond.	Understand diverse reaction mechanism, ranging from substitution to elimination. Non-classical carbocations, reason for their stability and examples.	T2 : Ch. 10: 425-519, Ch. 17: 1477-1506, Lecture notes
27-31	Resolution and stereoselective synthesis	Asymmetric synthesis; common approaches	R1 : Ch.16, 399-404, Ch.34, 881-904, Lecture notes
32-40	Types of Pericyclic reactions (electrocyclic, cycloaddition & sigmatropic), correlation diagrams, FMO approach & PMO approach, Woodward-Hofmann rules	Pericyclic reactions; type; mechanism and applications	R2 : Ch. 20 1032-1048, Lecture notes

4. Evaluation Scheme:

Component Duration Weightage Date & Time Nature of Component	ıt
--	----

		(%)		
Midsem Examination	90 min	30	16/03 9.00am to10.30am	Closed Book
Class tests [*]	15 min	20	Continuous	Open Book
Assignment/HW/Seminar	-	10	Continuous	Open book
Comprehensive	2 hrs	40	19/05 FN	Closed book
Examination				

- 5. Make-up(s) will be granted only for genuine reasons.
- **6. Chamber consultation hours:** To be announced in the class.
- 7. Notices: All the notices pertaining to this course will be displayed on Chemistry Department Notice Board and CMS.
- **8. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- 9. Course Policies:
- (a) **Absences:** Students are responsible for all materials presented in the course as well as for acquiring missed information.
- (b) **Electronic Devices: Cell phones must be turned off in class.** All electronic devices must be off during class or exams. This includes laptop computers as well as programmable calculators. You will be allowed only a simple scientific calculator for exams (if required).

Instructor-in-Charge CHEM F243