DEEPFAKE DETECTION

Olmo Ceriotti 2193258

Andrea Gravili 2180997

Computer Vision - Homework

Sapienza, University of Rome. MSc in Al and Robotics

OUTLINE

- PROBLEM STATEMENT
- STATE OF THE ART
- PROPOSED METHOD
- DATASET
- EXPERIMENTAL SETUP
- MODEL EVALUATION
- CONCLUSIONS
- REFERENCES

PROBLEM STATEMENT

THE RISE OF DEEP LEARNING

Synthetic media generated by AI (GANs, diffusion models) poses a significant threat to digital content authenticity

ETHICAL AND SECURITY CONCERNS

Deepfakes challenge truth and trust, raising risks of misinformation, identity misuse, and digital manipulation.

GENERALIZATION GAP

Models trained on one dataset often perform poorly on unseen forgery methods or diverse deepfake types due to bias towards "method-specific fake textures"

ADVERSARIAL VULNERABILITY

Detection systems can be deceived by minor, intentional pixel-level perturbations, undermining their reliability

STATE OF THE ART

Current defenses

- Frequency transformed input
- Adversarial training
- DropBlock

PROPOSED METHOD: TRAINING PROCESS

Use of pre-trained CNNs as backbones

EfficientNetB0 (focus)

Integration of Gradient Regularization

- Improve generalization, better performance on unseen generation methods.
- Reduce sensitivity to shallow features.
- Uses a gradient based regularization term.

PROPOSED METHOD: GRADIENT REGULARIZATION

PROPOSED METHOD: ATTACKS AND VALIDATION

PROPOSED METHOD: ATTACK TYPES

FGSM

- Applies a single perturbation in the direction of the gradient of the loss
- Computationally weak, easier to defend against

$$\mathbf{x}_{\mathrm{adv}} = \mathbf{x} + \epsilon \cdot \mathrm{sign}\left(\nabla_{\mathbf{x}} L(\mathbf{x}, y)\right)$$

PGD

- Iteratively applies small FGSM-like steps and projects back to stay within a perturbation limit.
- More expensive, more effective

$$x_0' = x$$
 $x_{n+1}' = \operatorname{Proj}\left\{x_n' + \epsilon \cdot \operatorname{sign}\left(
abla_x L(x_n', l)
ight)
ight\}$

DATASET

Base Datasets

- Diverse Fake Faces Dataset (DFFD)
- Original size: ≈300.000 images
- Used sample size: ≈40.000 images

Data Structure

- Organized in: True dataset from ffhq and fake dataset from styleGAN ffhq.
- OOD dataset created combining fake photos from DFFD.

Preprocessing

- Images resized to 224x224 pixels
- Convertend to PyTorch Tensors
- Normalization

EXPERIMENTAL SETUP

Models tested

- EfficientNetB0
- EfficientNetB0 with PIM
- EfficientNetB0 with frequency transform
- EfficientNetB0 with DropBlock

Training parameters

- Pre-training: All models initialized with ImageNet pretrained weights.
- Optimizer: AdamW
- Learning Rate: 0.001
- Loss Function: cross entropy
- Epochs: 2
- Batch Size: 32

pim hyperparameters

- R_PIM: 0.1 (Controls magnitude of perturbation)
- ALPHA_PIM: 1.0 (Weight of regularization loss)
- SHALLOW_FEATURE_IDX: 2
 (Determines the split point for shallow features)

MODEL EVALUATION (CLEAN DATA)

test/clean_detailed_f1_score

MODEL EVALUATION (CLEAN DATA)

MODEL EVALUATION (CLEAN DATA)

test_adv_detailed/PGD_Linf_eps4_steps7_avg_confidence

Conclusions

Key Findings

- Improved robustness with PIM
- Better generalization capabilities on unseen generators
- Improved stability during training

Limitations of CurrentWork

Limited attack resistance

Future Work

- Adversarial training with PIM
- Adaptive gradient regularization

References

- W. Guan, W. Wang, J. Dong and B. Peng, (2024). Improving Generalization of Deepfake Detectors by Imposing Gradient Regularization, In IEEE Transactions on Information Forensics and Security, vol. 19, pp. 5345-5356.
- M. Tan and Q. Le, (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proc. Int. Conf. Mach. Learn., pp. 6105–6114.
- 3. On the Detection of Digital Face Manipulation Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil Jain, (2020), In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR 2020), Seattle, WA, Jun. 2020
- 4. Abbasi, M., V´az, P., Silva, J. and Martins, P. (2025). Comprehensive Evaluation of Deepfake Detection Models: Accuracy, Generalization, and Resilience to Adversarial Attacks. Applied Sciences, 15(3), 1225.