AFC CIRCUIT

Patent number:

JP2000228656

Publication date:

2000-07-04

Inventor:

FUKUMORI HIROYUKI; ISHIDA KENICHI

Applicant:

JISEDAI DIGITAL TELEVISION HOS; NIPPON

ELECTRIC CO

Classification:

- international:

H04J11/00; H04J11/00; (IPC1-7): H04J11/00

- european:

Application number: JP19990028365 19990205 Priority number(s): JP19990028365 19990205

Report a data error here

Abstract of JP2000228656

PROBLEM TO BE SOLVED: To provide an AFC circuit capable of performing the frequency error correction of a wider range including one sub-carrier interval or more. SOLUTION: In the OFDM(orthogonal frequency division multiplex) signals of a carrier number 2m for which a known pilot signal is superimposed on the 2n-th carrier, repetitive signals obtained by equally dividing the pilot signals of one effective symbol period into 2n are held on a receiver side as the data of basic pilot signals, a complex correlation value with reception signals is calculated and the correlation peak value of the complex number of 2n times in one effective symbol period is obtained. By dividing the phase component of the correlation peak value by a basic pilot signal period, a frequency error is obtained. For the error, the phase change of the basic pilot signal period becomes 2n times of the sub-carrier interval or less. Then, by correcting the carrier wave frequency of the receiver based on the detected error, the frequency error of one sub-carrier interval or more is detected.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-228656 (P2000-228656A)

(43)公開日 平成12年8月15日(2000.8.15)

(51) Int.Cl.7 H04J 11/00 識別記号

FΙ

テーマコート*(参考)

H 0 4 J 11/00

Z 5K022

審査請求 有 請求項の数5 OL (全11頁)

(21)出願番号

特願平11-28365

(22)出願日

平成11年2月5日(1999.2.5)

(71)出願人 395017298

株式会社次世代デジタルテレビジョン放送

システム研究所

東京都港区赤坂四丁目13番5号

(71)出顧人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 福森 裕之

東京都港区赤坂5丁目2番8号 株式会社 次世代デジタルテレビジョン放送システム

研究所内

(74)代理人 100058479

弁理士 鈴江 武彦 (外5名)

最終頁に続く

(54) 【発明の名称】 AFC回路

(57)【要約】

【課題】 1サブキャリア間隔以上を含めてより広範囲 な周波数誤差補正を行うことのできるAFC回路を提供 する。

【解決手段】 2 "番目のキャリアに既知のパイロット 信号を乗せたキャリア数2mのOFDM信号において、 1有効シンボル期間のパイロット信号を2n等分して得 られる繰り返し信号を基本パイロット信号のデータとし て受信装置側に保持し、受信信号との複素相関値を計算 して、1有効シンボル期間に2回回の複素数の相関ピー ク値を得る。この相関ピーク値の位相成分を基本パイロ ット信号期間で割ることで周波数誤差を得る。この誤差 は、基本パイロット信号期間の位相変化がサブキャリア 間隔の2 " 倍以下となる。そこで、この検出誤差に基づ いて受信装置の搬送波周波数を補正することで、1サブ キャリア間隔以上の周波数誤差を検出することが可能と なる。

【特許請求の範囲】

DM受信装置に用いられ、

【請求項1】キャリア番号2n番目のキャリアが既知の規則で変調されたパイロットキャリア(以下、パイロット信号)を用いたキャリア数2mのOFDM(直交周波数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログ/デジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル信号により直交復調して複素形式のベースバンドOFDM信号に変換する直交復調回路と、この回路で得られた複素形式のベースバンドOFDM信号から各搬送波のデータ信号を復調するOFDM復調回路とを備えたOF

それぞれ前記既知の規則に則って構成され、前記直交復調回路で得られた複素形式のベースバンドOFDM信号について予め保持された前記パイロット信号との間で相関処理を行うもので、伝送帯域の中心周波数に対して相対的に正の周波数を有するパイロット信号との相関信号を出力する正フィルタと、伝送帯域の中心周波数に対して相対的に負の周波数を有するパイロット信号との相関信号を出力する負フィルタとを備えるフィルタ手段と、前記正フィルタ及び負フィルタの各出力についてピークを検出して、伝送帯域の中心周波数に対して正の周波数成分の相関ピーク信号及び負の周波数成分の相関ピーク信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を加算することで、前記ベースバンドOFDM信号における各搬送波の周波数間隔が変化せず伝送帯域の中心周波数が偏移した場合の周波数偏移量を算出する加算回路と、

前記ピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を減算することで、前記ベースバンドOFDM信号における各搬送波の中心周波数が変化せず各キャリア間の周波数間隔が偏移した場合の周波数偏移量を算出する減算回路と、

この減算回路で算出される周波数偏移量から前記サンプリングクロックの周波数誤差を検出し、この周波数誤差 40に応じて前記クロック信号発振回路の発振周波数を補正するクロック信号補正手段と、

前記加算回路で算出される周波数偏移量から前記ローカル信号の周波数誤差を検出し、この周波数誤差に応じて前記ローカル信号発振回路の発振周波数を補正するローカル信号補正手段とを具備することを特徴とするAFC回路。

【請求項2】キャリア番号2ⁿ番目のキャリアが既知の 規則で変調されたパイロットキャリア(以下、パイロッ ト信号)を用いたキャリア数2^mのOFDM(直交周波 数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログ/デジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル信号により直交復調して複素形式のベースバンドOFDM信号に変換する直交復調回路と、この回路で得られ

た複素形式のベースバンドOFDM信号から各搬送波の データ信号を復調するOFDM復調回路とを備えたOF DM受信装置に用いられ、

それぞれ前記既知の規則に則って構成され、前記直交復調回路で得られた複素形式のベースバンドOFDM信号について予め保持された前記パイロット信号との間で相関処理を行うもので、伝送帯域の中心周波数に対して相対的に正の周波数を有するパイロット信号との相関信号を出力する正フィルタと、伝送帯域の中心周波数に対して相対的に負の周波数を有するパイロット信号との相関信号を出力する負フィルタとを備えるフィルタ手段と、前記正フィルタ及び負フィルタの各出力についてピークを検出して、伝送帯域の中心周波数に対して正の周波数成分の相関ピーク信号及び負の周波数成分の相関ピーク信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を減算することで、前記ベースバンドOFDM信号における各搬送波の中心周波数が変化せず各キャリア間の周波数間隔が偏移した場合の周波数偏移量を算出する減算回路と、

の この減算回路で算出される周波数偏移量から前記サンプリングクロックの周波数誤差を検出し、この周波数誤差に応じて前記クロック信号発振回路の発振周波数を補正するクロック信号補正手段とを具備することを特徴とするAFC回路。

【請求項3】キャリア番号2ⁿ番目のキャリアが既知の規則で変調されたパイロットキャリア(以下、パイロット信号)を用いたキャリア数2^mのOFDM(直交周波数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログノデジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル信号により直交復調して複素形式のベースバンドOFDM信号に変換する直交復調回路と、この回路で得られた複素形式のベースバンドOFDM信号から各搬送波のデータ信号を復調するOFDM復調回路とを備えたOFDM受信装置に用いられ、

50 それぞれ前記既知の規則に則って構成され、前記直交復

調回路で得られた複素形式のベースバンドOFDM信号 について予め保持された前記パイロット信号との間で相 関処理を行うもので、伝送帯域の中心周波数に対して相 対的に正の周波数を有するパイロット信号との相関信号 を出力する正フィルタと、伝送帯域の中心周波数に対し て相対的に負の周波数を有するパイロット信号との相関 信号を出力する負フィルタとを備えるフィルタ手段と、 前記正フィルタ及び負フィルタの各出力についてピーク を検出して、伝送帯域の中心周波数に対して正の周波数 成分の相関ピーク信号及び負の周波数成分の相関ピーク 信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の 相関ピーク信号を加算することで、前記ベースバンドO FDM信号における各般送波の周波数間隔が変化せず伝 送帯域の中心周波数が偏移した場合の周波数偏移量を算 出する加算回路と、

この加算回路で算出される周波数偏移量から前記ローカ ル信号の周波数誤差を検出し、この周波数誤差に応じて 前記ローカル信号発振回路の発振周波数を補正するロー カル信号補正手段とを具備することを特徴とするAFC 20 回路。

【請求項4】前記フィルタ手段は、前記正フィルタ、負 フィルタ用に、前記パイロット信号波形に相当するデー タ列を格納するメモリ回路を備え、前記正フィルタ、負 フィルタはそれぞれ前記メモリ回路に格納されたデータ 列による畳み込み演算によって相関信号を求めることを 特徴とする請求項1、2、3のいずれか記載のAFC回 路。

【請求項5】前記フィルタ手段は、前記パイロット信号 が1有効シンボル期間で2°×Rキャリアに1回のと き、最小繰り返し単位2 n回の相関処理を施すことを特 徴とする請求項1、2、3のいずれか記載のAFC回 路.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、OFDM(直交周 波数分割多重)伝送方式を採用した無線伝送システムの 受信装置に用いられ、搬送波の周波数誤差及びサンプリ ング周波数誤差を補正するAFC(自動周波数制御)回 路に関する。

[0002]

【従来の技術】周知のように、OFDM伝送方式では、 送信装置と受信装置との間で、高周波段の撥送波や中間 周波段の投送波に周波数誤差があるとき、またサンプリ ング周波数に誤差があるとき、OFDMの各キャリア間 の直交性が崩れ、キャリア間干渉を生じる。そこで、従 来のOFDM受信装置には、協送波の周波数誤差及びサ ンプリング周波数誤差を補正するAFC回路が設けられ ている。このAFC回路の基本的な構成を図5に示す。

ーナ12で周波数変換されたOFDM信号は、A/D変 換回路13に入力され、クロック信号発振回路14で発 生されるサンプリングクロック(周波数fs)によりデ ジタル信号に変換される。ここでデジタル化されたOF DM信号は直交復調回路15に入力され、ローカル信号 発振回路16で発生されるローカル信号と複素数乗算す ることによって直交復調され、複素形式のベースバンド OFDM信号となってOFDM復調回路17に送られ る。このOFDM復調回路17は、入力されたOFDM 10 信号を時間領域から周波数領域に変換し、各搬送波に乗 せられたデータ信号を復調出力するものである。

【0004】一方、上記直交復調回路15の出力は周波 数誤差検出回路18に送られる。この周波数誤差検出回 路18は、ガードインターバル期間と有効シンボル期間 との相関を用いてサンプリング周波数誤差及び搬送波の 周波数誤差を検出し、その検出結果に基づいてクロック 発振回路14の発振周波数を制御し、それぞれの誤差を 同時に補正している。

[0005]

【発明が解決しようとする課題】しかしながら、上記の ような従来のAFC回路では、1シンボル単位でガード インターバル期間と有効シンボル期間との相関処理を行 うため、補正できる搬送波周波数誤差は1サブキャリア 間隔以下となり、それ以上の周波数誤差がある場合には 他の周波数制御手段で引き込み処理を行わなければなら ず、構成が複雑となってしまう。

【0006】本発明は、上記の問題を解決し、簡易な構 成にして1サブキャリア間隔以上を含めてより広範囲な 周波数誤差補正を行うことのできるAFC回路を提供す ることを目的とする。

[0007]

30

【課題を解決するための手段】上記の目的を達成するた めに、本発明に係るAFC回路は、以下のような特徴的 構成を有する。

【0008】(1) キャリア番号2 『番目のキャリアが 既知の規則で変調されたパイロットキャリア(以下、パ イロット信号)を用いたキャリア数2mのOFDM(直 交周波数分割多重)方式の変調信号(以下OFDM信 号) を受信し、その伝送周波信号を中間周波信号に変換 40 するチューナー回路と、この回路で得られたアナログ中 間周波信号をクロック信号発振回路で発生されるサンプ リングクロックによりデジタル中間周波信号に変換する アナログ/デジタル変換回路と、この回路で得られたデ ジタル中間周波信号をローカル信号発振回路で発生され るローカル信号により直交復調して複素形式のベースバ ンドOFDM信号に変換する直交復調回路と、この回路 で得られた複素形式のベースパンドOFDM信号から各 投送波のデータ信号を復調するOFDM復調回路とを備 えたOFDM受信装置に用いられ、それぞれ前記既知の 【0003】図5において、アンテナ11を通じてチュ 50 規則に則って構成され、前記直交復調回路で得られた複

.5

素形式のベースバンドOFDM信号について予め保持さ れた前記パイロット信号との間で相関処理を行うもの で、伝送帯域の中心周波数に対して相対的に正の周波数 を有するパイロット信号との相関信号を出力する正フィ ルタと、伝送帯域の中心周波数に対して相対的に負の周 波数を有するパイロット信号との相関信号を出力する負 フィルタとを備えるフィルタ手段と、前記正フィルタ及 び負フィルタの各出力についてピークを検出して、伝送 帯域の中心周波数に対して正の周波数成分の相関ピーク 信号及び負の周波数成分の相関ピーク信号を出力するピ ーク検出手段と、このピーク検出手段で得られる正及び 負の周波数成分の相関ピーク信号を加算することで、前 記ベースバンドOFDM信号における各搬送波の周波数 間隔が変化せず伝送帯域の中心周波数が偏移した場合の 周波数偏移量を算出する加算回路と、前記ピーク検出手 段で得られる正及び負の周波数成分の相関ピーク信号を 減算することで、前記ベースバンドOFDM信号におけ る各搬送波の中心周波数が変化せず各キャリア間の周波 数間隔が偏移した場合の周波数偏移量を算出する減算回 路と、この減算回路で算出される周波数偏移量から前記 サンプリングクロックの周波数誤差を検出し、この周波 数誤差に応じて前記クロック信号発振回路の発振周波数 を補正するクロック信号補正手段と、前記加算回路で算 出される周波数偏移量から前記ローカル信号の周波数誤 差を検出し、この周波数誤差に応じて前記ローカル信号 発振回路の発振周波数を補正するローカル信号補正手段 とを具備することを特徴とする。

【0009】 (2) キャリア番号2 m番目のキャリアが 既知の規則で変調されたパイロットキャリア(以下、パ イロット信号)を用いたキャリア数2mのOFDM(直 交周波数分割多重)方式の変調信号(以下OFDM信 号) を受信し、その伝送周波信号を中間周波信号に変換 するチューナー回路と、この回路で得られたアナログ中 間周波信号をクロック信号発振回路で発生されるサンプ リングクロックによりデジタル中間周波信号に変換する アナログ/デジタル変換回路と、この回路で得られたデ ジタル中間周波信号をローカル信号発振回路で発生され るローカル信号により直交復調して複素形式のベースバ ンドOFDM信号に変換する直交復調回路と、この回路 で得られた複素形式のベースバンドOFDM信号から各 搬送波のデータ信号を復調するOFDM復調回路とを備 えたOFDM受信装置に用いられ、それぞれ前記既知の 規則に則って構成され、前記直交復調回路で得られた複 素形式のベースバンドOFDM信号について予め保持さ れた前記パイロット信号との間で相関処理を行うもの で、伝送帯域の中心周波数に対して相対的に正の周波数 を有するパイロット信号との相関信号を出力する正フィ ルタと、伝送帯域の中心周波数に対して相対的に負の周 波数を有するパイロット信号との相関信号を出力する負

び負フィルタの各出力についてピークを検出して、伝送 帯域の中心周波数に対して正の周波数成分の相関ピーク 信号及び負の周波数成分の相関ピーク信号を出力するピ ーク検出手段と、このピーク検出手段で得られる正及び 負の周波数成分の相関ピーク信号を減算することで、前 記ベースバンドOFDM信号における各搬送波の中心周 波数が変化せず各キャリア間の周波数間隔が偏移した場 合の周波数偏移量を算出する減算回路と、この減算回路 で算出される周波数偏移量から前記サンプリングクロッ クの周波数誤差を検出し、この周波数誤差に応じて前記 クロック信号発振回路の発振周波数を補正するクロック 信号補正手段とを具備することを特徴とする。

【0010】(3) キャリア番号2n番目のキャリアが 既知の規則で変調されたパイロットキャリア(以下、パ イロット信号)を用いたキャリア数2mのOFDM(直 交周波数分割多重) 方式の変調信号(以下OFDM信 号)を受信し、その伝送周波信号を中間周波信号に変換 するチューナー回路と、この回路で得られたアナログ中 間周波信号をクロック信号発振回路で発生されるサンプ リングクロックによりデジタル中間周波信号に変換する アナログ/デジタル変換回路と、この回路で得られたデ ジタル中間周波信号をローカル信号発振回路で発生され るローカル信号により直交復調して複素形式のベースバ ンドOFDM信号に変換する直交復調回路と、この回路 で得られた複素形式のベースバンドOFDM信号から各 搬送波のデータ信号を復調するOFDM復調回路とを備 えたOFDM受信装置に用いられ、それぞれ前記既知の 規則に則って構成され、前記直交復調回路で得られた複 素形式のベースバンドOFDM信号について予め保持さ れた前記パイロット信号との間で相関処理を行うもの で、伝送帯域の中心周波数に対して相対的に正の周波数 を有するパイロット信号との相関信号を出力する正フィ ルタと、伝送帯域の中心周波数に対して相対的に負の周 波数を有するパイロット信号との相関信号を出力する負 フィルタとを備えるフィルタ手段と、前記正フィルタ及 び負フィルタの各出力についてピークを検出して、伝送 帯域の中心周波数に対して正の周波数成分の相関ピーク 信号及び負の周波数成分の相関ピーク信号を出力するピ 一ク検出手段と、このピーク検出手段で得られる正及び 負の周波数成分の相関ピーク信号を加算することで、前 記ベースバンドOFDM信号における各搬送波の周波数 間隔が変化せず伝送帯域の中心周波数が偏移した場合の 周波数偏移量を算出する加算回路と、この加算回路で算 出される周波数偏移量から前記ローカル信号の周波数誤 差を検出し、この周波数誤差に応じて前記ローカル信号 発振回路の発振周波数を補正するローカル信号補正手段 とを具備することを特徴とする。

ルタと、伝送帯域の中心周波数に対して相対的に負の周 【0011】(4)上記(1)~(3)のいずれかの構 波数を有するパイロット信号との相関信号を出力する負 成において、前記フィルタ手段は、前記正フィルタ、負 フィルタとを備えるフィルタ手段と、前記正フィルタ及 50 フィルタ用に、前記パイロット信号波形に相当するデー 20

タ列を格納するメモリ回路を備え、前記正フィルタ、負 フィルタはそれぞれ前記メモリ回路に格納されたデータ 列による畳み込み演算によって相関信号を求めることを 特徴とする。

【0012】(5)上記(1)~(3)のいずれかの構 成において、前記フィルタ手段は、前記パイロット信号 が1有効シンボル期間で2n×Rキャリアに1回のと き、最小繰り返し単位2 "回の相関処理を施すことを特 徴とする。

[0013]

【発明の実施の形態】まず、本発明の実施の形態を説明 するに先立ち、本発明によるAFC回路の概要について 説明する。

【0014】本発明では、受信したOFDM信号と受信 装置の搬送波周波数(サンプリングクロック、ローカル 信号)の周波数誤差を補正するために、ガードインター バルの相関ではなく、有効シンボル期間にある既知の規 則で送られてくるパイロット信号による相関を用いる。 例えば、我が国においてOFDM伝送方式の採用を前提 に標準化が進められている次世代地上波デジタル放送に あっては、周波数方向と時間方向にパイロットシンボル を分散されたSP (Scattered Pilot) 方式が検討され ている。その暫定方式における1フレーム内のパイロッ ト信号配置例を図3に示す。尚、SP方式については、 映像情報メディア学会誌Vol. 52, No. 11, pp. 1658~1665 (1998)「地上ディジタル放送におけるOFDMシンボ ル長とスキャッタードパイロットによる伝送特性」にそ の詳細が記載されているので、ここではその説明を省略 する。本発明の特徴は、フレーム内に分散配置されたパ イロット信号を利用して、周波数誤差を求めることにあ る。

【0015】本発明におけるSPの利用方法について、 図4を参照して説明する。図4において、(a) はキャ リア配置を示し、(b)は受信OFDM信号波形を示 し、(c)はパイロット信号波形を示し、(d)は受信 OFDM信号とパイロット信号との相関信号を示す。

【0016】すなわち、図4(a)のように、キャリア 番号2n番目のキャリアをパイロットキャリアとし、受 信側で容易に分かるような既知の規則で変調されたパイ ロットキャリア (これをパイロット信号とする) を用い 40 たキャリア数2mのOFDM信号において、1有効シン ボル期間のパイロット信号を2"等分すると、同じ信号 が繰り返されていることがわかる(この同じ信号を基本 パイロット信号とする)。

【0017】したがって、基本パイロット信号をデータ として受信装置側に保持し、受信信号との複素相関値を 計算すると、1有効シンボル期間に2 " 回相関値のピー ク (これを相関ビーク値とする)が現れる。相関ビーク **値は複素数であり、その位相成分は、基本パイロット信**

波数の周波数誤差によって変化した位相量を示す。位相 を時間で割ったものが周波数であるから、相関ピーク値 の位相成分を基本パイロット信号期間で割ったものが周 波数誤差である。

【0018】この方法で補正できる周波数誤差は、基本 パイロット信号期間の位相変化が360度以下、すなわ ちサブキャリア間隔の2n倍以下となる。したがって、 1 サブキャリア間隔以上の周波数誤差を検出することが 可能となり、広範囲な周波数誤差補正を行うことができ るようになる。パイロットキャリアを間引き、2°×R 番目のキャリアとしたときも同様である。

【0019】以下、図1乃至図2を参照して本発明の実 施の形態を詳細に説明する。尚、本発明において、AF C回路の基本構成は図5に示した構成と同じである。こ のため、以下では本発明の特徴部分となる周波数誤差検 出回路(18)の部分について説明する。

【0020】図1は、図5に示したAFC回路に本発明 を適用した場合の周波数誤差検出回路18の構成を示す ものである。ここで、受信されたOFDM信号は、キャ リア番号2n番目のキャリアをパイロットキャリアと し、受信側で容易に分かるような既知の規則で変調され たパイロットキャリア(これを基本パイロット信号とす る)を用いたキャリア数2mのOFDM信号とする。

【0021】図1において、直交復調回路(15)から の複素形式によるOFDM信号は正フィルタ回路181 及び負フィルタ回路182に供給される。正フィルタ回 路181は正タップ係数メモリ183に予め格納された 基本パイロット信号の波形データを入力し、直交復調さ れたOFDM信号との相関信号を求めるものである。ま た、負フィルタ回路182は負タップ係数メモリ184 に予め格納された基本パイロット信号の波形データを入 力し、直交復調されたOFDM信号との相関信号を求め るものである。

【0022】ここで、正タップ係数メモリ183に格納 される係数は、伝送帯域の中心周波数に対して相対的に 正の周波数を有する基本パイロット信号の波形データに 対応する。また、負タップ係数メモリ184に格納され る係数は、伝送帯域の中心周波数に対して相対的に負の 周波数を有する基本バイロット信号の波形データに対応 する。

【0023】上記正フィルタ回路181及び負フィルタ 回路182は、具体的には図2 (a) に示すようなFI R型デジタルフィルタで構成される。すなわち、入力さ れたOFDM信号を遅延素子D1~Dn (図ではn= 5) で1サンプルずつ遅延し、各遅延出力をそれぞれ乗 算器M1~Mnで図2(b)に示す係数メモリ(例えば ROM) 183または184からの基本バイロット信号 波形データに対応した係数と乗算し、加算器Aにより累 積加算することで、畳み込み演算がなされ、これによっ 号期間に、受信したOFDM信号と受信装置の搬送波周 50 てOFDM信号と基本パイロット信号との相関信号を得

る。

【0024】以上のことから、正フィルタ回路181 は、伝送帯域の中心周波数に対して相対的に正の周波数 を有する基本パイロット信号との相関信号を出力するの に対し、負フィルタ回路182は、伝送帯域の中心周波 数に対して相対的に負の周波数を有する基本パイロット 信号との相関信号を出力する。これらのフィルタ回路1 81、182の出力はそれぞれピーク検出回路185、 186に送られる。これらのピーク検出回路185、1 86は、それぞれ入力された相関信号のピーク値を検出 10 保持するものである。ここで検出保持されたピーク値を 相関ピーク信号とする。これらのピーク検出回路18 5、186の出力は、それぞれ加算回路187及び減算 回路188に送られる。

【0025】加算回路187は、正フィルタ回路181 の出力と負フィルタ回路182の出力とを加算すること で、OFDM信号の各搬送波の周波数間隔が変化せず、 伝送帯域の中心周波数が偏移した場合の周波数偏移量を 算出する。また、減算回路188は、正フィルタ回路1 81の出力と負フィルタ回路182の出力とを減算する 20 ことで、OFDM信号伝送帯域の中心周波数が変化せ ず、各搬送波間の周波数間隔が偏移した場合の周波数偏 移量を算出する。

【0026】加算回路187の出力は、ローカル周波数 誤差変換回路189によりローカル信号の周波数誤差に 相当する制御信号に変換されてローカル信号発振回路1 6に送られ、ローカル信号の周波数補正に供される。同 様に、減算回路188の出力は、クロック周波数誤差変 換回路1810によりサンプリングクロックの周波数誤 差に相当する制御信号に変換されてクロック信号発振回 路14に送られ、サンプリングクロックの周波数補正に 供される。

【0027】さらに具体的な構成について説明する。

【0028】まず、正フィルタ回路181は、基本パイ ロット信号のうち伝送帯域の中心周波数に対して相対的 に正の周波数を有する周波数成分のみタップ係数として 持ち、負フィルタ回路182は、基本パイロット信号の うち伝送帯域の中心周波数に対して相対的に負の周波数 を有する周波数成分のみタップ係数として持つ。これら のフィルタ回路181、182から出力される相関信号 を入力したピーク検出回路185、186は、それぞれ のビークを検出してピーク値を保持する。これを相関ピ ーク信号とする。したがって、前記基本パイロット信号 が複数回繰り返された場合、相関ピーク信号は複数回出

【0029】正フィルタ回路181を通過した正の周波 数成分の相関ピーク信号Crと負フィルタ回路182を 通過した負の周波数成分の相関ピーク信号Ciは、加算 回路187により加算され、ローカル周波数誤差変換回 路 1 8 9 に入力される。同様に、正フィルタ回路 1 8 1 50 4 (d) に示すように、1 有効シンボル期間に 2 $^{\mathrm{n}}$ 回相

を通過した正の周波数成分の相関ピーク信号Crと負フ イルタ回路182を通過した負の周波数成分の相関ピー ク信号Ciは、減算回路188により減算され、クロッ ク周波数誤差変換回路1810に入力される。

【0030】ローカル周波数誤差変換回路189とクロ ック周波数誤差変換回路1810は、複素信号を複素座 標面上の偏角に変換し、その偏角を偏角の正接に変換す るデータを持った、例えばROMで構成される。この場 合、リファレンスは偏角=0度である。

【0031】ローカル周波数誤差変換回路189の出力 は、例えばNCO(数値演算発振器)で構成したローカ ル信号発振回路16に入力される。これによって、受信 したOFDM信号のキャリア周波数と受信装置内のロー カル周波数との誤差を補正する位相同期ループが構成さ れる。同様にクロック周波数誤差変換回路1810の出 力は、例えばNCO(数値演算発振器)で構成したクロ ック信号発振回路14に入力される。これによって、受 信したOFDM信号のサンプリング周波数と受信装置内 のサンプリング周波数との誤差を補正する位相同期ルー プが構成される。

【0032】上記構成による処理動作について、図4を 参照して説明する。

【0033】OFDM信号の全搬送波の数を2m本とす る。各搬送波の周波数の低い方から順に搬送波番号をつ けると、搬送波番号は1~2mとなる。パイロット信号 として2 n 本に1本の割合で既知の特定の変調を施すと する。パイロット信号として変調を施された搬送波番号 が2ⁿ、2ⁿ⁺¹、2ⁿ⁺²、…、2^{m-n}のとき、図 4 (b) に示すように1有効シンボル期間にパイロット 信号は同じ波形が2 n 回繰り返される。したがって、繰 り返す最小単位の信号を、既知の信号データとして受信 装置側に保持し、受信したOFDM信号からパイロット 信号を抽出するフィルタ回路181、182のタップ係 数として用いることにより、図4(c)に示すように、 1 有効シンボル期間に2 " 回パイロット信号が抽出でき る。ここで、送信装置と受信装置のローカル周波数誤 差、クロック周波数誤差を相関ピーク信号から補正でき ることは、特開平8-102771号公報、および特開 平9-321733号公報に示されている通りである。 またキャリア信号の偏角(位相角)を周波数誤差信号と し位相同期ループを構成することは、一般的なデジタル PLL回路と同様である。

【0034】パイロット信号の搬送波がOFDM信号の 伝送帯域内の全搬送波の2º本に1本の割合で送られ、 OFDM信号の全搬送波の数を2m本とすると、パイロ ット信号の周波数成分を持った信号は、1 有効シンボル 期間で同じ信号が2回繰り返される。したがって、繰 り返す最小単位の信号を、既知の信号データとして受信 装置側に保持し、受信信号と相関を取ることにより、図 11

関が取れる。補正できる周波数誤差は、サブキャリア間 隔を前述の回数倍したものであるから、サブキャリア間 隔の2 n 倍以下となる。

【0035】したがって、上記構成による周波数誤差検出回路18を用いてAFC回路を構成すれば、送信装置と受信装置のローカル周波数のずれを1有効シンボル期間に2ⁿ回算出することができるので、周波数のずれをその逆数であるOFDMキャリア間隔の2ⁿ倍まで補正することができる。また、同様の手法でサンプリングクロックの周波数誤差も補正することができる。

【0036】尚、パイロット信号がさらに間引かれ、2 $^n \times R$ キャリアに1回のときでも、繰り返す最小単位は同じ(2^n)であるから、周波数誤差検出回路 1807ィルタ回路 181、182としては、最小単位 2^n 回の相関処理を施せばよい。例えば、先に述べた次世代地上デジタルテレビジョン放送の暫定方式では、 $12(=2^2 \times 3)$ キャリアに1回であるが、この場合、最小単位 $2^2 = 4$ 回の相関処理を施せばよい。

【0037】また、従来方式によるガードインターバル期間と有効シンボル期間との相関によって周波数誤差を 20 検出するものと組み合わせて構成してもよいことは勿論である。例えばサンプリングクロック信号、ローカル信号のいずれか一方の周波数補正をパイロット信号の相関処理によって行い、他方の周波数補正をガードインターバル期間と有効シンボル期間との相関処理によって行うことも可能である。

[0038]

【発明の効果】以上のように本発明によれば、簡易な構成にして1サブキャリア間隔以上を含めてより広範囲な周波数誤差補正を行うことのできるAFC回路を提供す 30

ることができる。

【図面の簡単な説明】

【図1】 本発明に係るAFC回路の実施の形態の構成を示すブロック回路図。

12

【図2】 同実施形態のフィルタ回路の具体的な構成を 示すブロック回路図。

【図3】 次世代地上波デジタル放送の暫定方式における1フレーム内のパイロット信号配置例を示す図。

【図4】 本発明が利用するパイロット信号による相関 10 処理を説明するための図。

【図5】 本発明が適用されるAFC回路の基本的な構成を示すブロック回路図。

【符号の説明】

- 11…アンテナ
- 12…チューナ
- 13…A/D変換回路
- 14…クロック信号発信回路
- 15…直交復調回路
- 16…ローカル信号発振回路
- 17…OFDM復調回路
 - 18…周波数誤差検出回路
 - 181…正フィルタ回路
 - 182…負フィルタ回路
 - 183…正タップ係数メモリ
 - 184…負タップ係数メモリ
 - 185、186…ピーク検出回路
 - 187…加算回路
 - 188…減算回路
 - 189…ローカル周波数誤差変換回路
- 1810…クロック周波数誤差変換回路

【図1】

【図2】

【図3】

【図4】

【図5】

【手続補正書】

【提出日】平成11年2月26日(1999.2.26)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 2 n 本に1本の割合でキャリアが既知の規則で変調されたパイロットキャリア(以下、パイロット信号)を用いたキャリア数 2 m のOFDM(直交周波数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号

をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログ/デジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル信号により直交復調して複素形式のベースバンドOFDM信号に変換する直交復調回路と、この回路で得られた複素形式のベースバンドOFDM信号から各機送波のデータ信号を復調するOFDM復調回路とを備えたOFDM受信装置に用いられ、

それぞれ前記既知の規則に則って構成され、前記直交復調回路で得られた複素形式のベースバンドOFDM信号について予め保持された前記パイロット信号との間で相関処理を行うもので、伝送帯域の中心周波数に対して相対的に正の周波数を有するパイロット信号との相関信号を出力する正フィルタと、伝送帯域の中心周波数に対して相対的に負の周波数を有するパイロット信号との相関信号を出力する負フィルタとを備えるフィルタ手段と、前記正フィルタ及び負フィルタの各出力についてピークを検出して、伝送帯域の中心周波数に対して正の周波数成分の相関ピーク信号及び負の周波数成分の相関ピーク信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の 相関ピーク信号を加算することで、前記ベースバンドO FDM信号における各搬送波の周波数間隔が変化せず伝 送帯域の中心周波数が偏移した場合の周波数偏移量を算 出する加算回路と、

前記ピーク検出手段で得られる正及び負の周波数成分の 相関ピーク信号を減算することで、前記ベースバンドO FDM信号における各搬送波の中心周波数が変化せず各 キャリア間の周波数間隔が偏移した場合の周波数偏移量 を算出する減算回路と、

この減算回路で算出される周波数偏移量から前記サンプ リングクロックの周波数誤差を検出し、この周波数誤差 に応じて前記クロック信号発振回路の発振周波数を補正 するクロック信号補正手段と、

前記加算回路で算出される周波数偏移量から前記ローカル信号の周波数誤差を検出し、この周波数誤差に応じて前記ローカル信号発振回路の発振周波数を補正するローカル信号補正手段とを具備することを特徴とするAFC回路。

【請求項2】 2 n 本に1 本の割合でキャリアが既知の規則で変調されたパイロットキャリア(以下、パイロット信号)を用いたキャリア数 2 m のOFDM(直交周波数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログ/デジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル

信号により直交復調して複素形式のベースバンドOFD M信号に変換する直交復調回路と、この回路で得られた 複素形式のベースバンドOFDM信号から各般送波のデ 一夕信号を復調するOFDM復調回路とを備えたOFD M受信装置に用いられ、

それぞれ前記既知の規則に則って構成され、前記直交復 調回路で得られた複素形式のベースバンドOFDM信号 について予め保持された前記パイロット信号との間で相 関処理を行うもので、伝送帯域の中心周波数に対して相 対的に正の周波数を有するパイロット信号との相関信号 を出力する正フィルタと、伝送帯域の中心周波数に対し て相対的に負の周波数を有するパイロット信号との相関 信号を出力する負フィルタとを備えるフィルタ手段と、 前記正フィルタ及び負フィルタの各出力についてピーク を検出して、伝送帯域の中心周波数に対して正の周波数 成分の相関ピーク信号及び負の周波数成分の相関ピーク 信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を減算することで、前記ベースバンドOFDM信号における各搬送波の中心周波数が変化せず各キャリア間の周波数間隔が偏移した場合の周波数偏移量を算出する減算回路と、

この減算回路で算出される周波数偏移量から前記サンプリングクロックの周波数誤差を検出し、この周波数誤差に応じて前記クロック信号発振回路の発振周波数を補正するクロック信号補正手段とを具備することを特徴とするAFC回路。

【請求項3】 2 n 本に1 本の割合でキャリアが既知の規則で変調されたパイロットキャリア(以下、パイロット信号)を用いたキャリア数 2 m のOFDM(直交周波数分割多重)方式の変調信号(以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナログ/デジタル変換回路と、この回路で得られたデジタル中間周波信号をローカル信号発振回路で発生されるローカル信号に変換する直交復調して複素形式のベースバンドOFDM信号に変換する直交復調回路と、この回路で得られた複素形式のベースバンドOFDM信号から各般送波のデータ信号を復調するOFDM復調回路とを備えたOFDM受信装置に用いられ、

それぞれ前記既知の規則に則って構成され、前記直交復 調回路で得られた複素形式のベースバンドOFDM信号 について予め保持された前記パイロット信号との間で相 関処理を行うもので、伝送帯域の中心周波数に対して相 対的に正の周波数を有するパイロット信号との相関信号 を出力する正フィルタと、伝送帯域の中心周波数に対し て相対的に負の周波数を有するパイロット信号との相関 信号を出力する負フィルタとを備えるフィルタ手段と、

1

前記正フィルタ及び負フィルタの各出力についてピーク を検出して、伝送帯域の中心周波数に対して正の周波数 成分の相関ピーク信号及び負の周波数成分の相関ピーク 信号を出力するピーク検出手段と、

このピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を加算することで、前記ベースバンドOFDM信号における各搬送波の周波数間隔が変化せず伝送帯域の中心周波数が偏移した場合の周波数偏移量を算出する加算回路と、

この加算回路で算出される周波数偏移量から前記ローカル信号の周波数誤差を検出し、この周波数誤差に応じて前記ローカル信号発振回路の発振周波数を補正するローカル信号補正手段とを具備することを特徴とするAFC回路。

【請求項4】前記フィルタ手段は、前記正フィルタ、負フィルタ用に、前記パイロット信号波形に相当するデータ列を格納するメモリ回路を備え、前記正フィルタ、負フィルタはそれぞれ前記メモリ回路に格納されたデータ列による畳み込み演算によって相関信号を求めることを特徴とする請求項1、2、3のいずれか記載のAFC回路。

【請求項5】前記フィルタ手段は、前記パイロット信号が1有効シンボル期間で $2^n \times R$ キャリアに1回のとき、最小繰り返し単位 2^n 回の相関処理を施すことを特徴とする請求項1、2、3 のいずれか記載のAFC回路。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】(1) 2 n 本に1本の割合でキャリアが既 知の規則で変調されたパイロットキャリア(以下、パイ ロット信号)を用いたキャリア数2mのOFDM(直交 周波数分割多重)方式の変調信号(以下OFDM信号) を受信し、その伝送周波信号を中間周波信号に変換する チューナー回路と、この回路で得られたアナログ中間周 波信号をクロック信号発振回路で発生されるサンプリン グクロックによりデジタル中間周波信号に変換するアナ ログ/デジタル変換回路と、この回路で得られたデジタ ル中間周波信号をローカル信号発振回路で発生されるロ ーカル信号により直交復調して複素形式のベースバンド OFDM信号に変換する直交復調回路と、この回路で得 られた複素形式のベースバンドOFDM信号から各搬送 波のデータ信号を復調するOFDM復調回路とを備えた OFDM受信装置に用いられ、それぞれ前記既知の規則 に則って構成され、前記直交復調回路で得られた複素形 式のベースバンドOFDM信号について予め保持された 前記パイロット信号との間で相関処理を行うもので、伝 送帯域の中心周波数に対して相対的に正の周波数を有す るパイロット信号との相関信号を出力する正フィルタ と、伝送帯域の中心周波数に対して相対的に負の周波数 を有するパイロット信号との相関信号を出力する負フィ ルタとを備えるフィルタ手段と、前記正フィルタ及び負 フィルタの各出力についてピークを検出して、伝送帯域 の中心周波数に対して正の周波数成分の相関ピーク信号 及び負の周波数成分の相関ピーク信号を出力するピーク 検出手段と、このピーク検出手段で得られる正及び負の 周波数成分の相関ピーク信号を加算することで、前記べ ースバンドOFDM信号における各搬送波の周波数間隔 が変化せず伝送帯域の中心周波数が偏移した場合の周波 数偏移量を算出する加算回路と、前記ピーク検出手段で 得られる正及び負の周波数成分の相関ピーク信号を減算 することで、前記ベースバンドOFDM信号における各 搬送波の中心周波数が変化せず各キャリア間の周波数間 隔が偏移した場合の周波数偏移量を算出する減算回路 と、この減算回路で算出される周波数偏移量から前記サ ンプリングクロックの周波数誤差を検出し、この周波数 誤差に応じて前記クロック信号発振回路の発振周波数を 補正するクロック信号補正手段と、前記加算回路で算出 される周波数偏移量から前記ローカル信号の周波数誤差 を検出し、この周波数誤差に応じて前記ローカル信号発 振回路の発振周波数を補正するローカル信号補正手段と を具備することを特徴とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

【0009】 (2) 2 本に1本の割合でキャリアが既 知の規則で変調されたパイロットキャリア(以下、パイ ロット信号)を用いたキャリア数2mのOFDM(直交 周波数分割多重)方式の変調信号(以下OFDM信号) を受信し、その伝送周波信号を中間周波信号に変換する チューナー回路と、この回路で得られたアナログ中間周 波信号をクロック信号発振回路で発生されるサンプリン グクロックによりデジタル中間周波信号に変換するアナ ログ/デジタル変換回路と、この回路で得られたデジタ ル中間周波信号をローカル信号発振回路で発生されるロ ーカル信号により直交復調して複素形式のベースバンド OFDM信号に変換する直交復調回路と、この回路で得 られた複素形式のベースバンドOFDM信号から各搬送 波のデータ信号を復調するOFDM復調回路とを備えた OFDM受信装置に用いられ、それぞれ前記既知の規則 に則って構成され、前記直交復調回路で得られた複素形 式のベースバンドOFDM信号について予め保持された 前記パイロット信号との間で相関処理を行うもので、伝 送帯域の中心周波数に対して相対的に正の周波数を有す るパイロット信号との相関信号を出力する正フィルタ と、伝送帯域の中心周波数に対して相対的に負の周波数 を有するパイロット信号との相関信号を出力する負フィルタとを備えるフィルタ手段と、前記正フィルタ及び負フィルタの各出力についてビークを検出して、伝送帯域の中心周波数に対して正の周波数成分の相関ピーク信号を出力するピーク検出手段と、このピーク検出手段で得られる正及び負の周波数成分の相関ピーク信号を対立ることで、前記数成分の相関ピーク信号を対策することで、前記数の中心場合における各投送波の中心場合ので変化せず各キャリア間の周波数間隔が偏移した場合の周波数偏移量を算出する減算回路と、この減算回路の周波数偏移量を算出する減算回路と、この減算回路の周波数偏移量を算出する減算回路と、この周波数誤差を検出し、この周波数誤差に応じて前記のロック信号発振回路の発振周波数を補正するクロック信号補正手段とを具備することを特徴とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 0

【補正方法】変更

【補正内容】

【0010】(3) 2 n本に1本の割合でキャリアが既知の規則で変調されたパイロットキャリア (以下、パイロット信号)を用いたキャリア数2 mのOFDM (直交周波数分割多重)方式の変調信号 (以下OFDM信号)を受信し、その伝送周波信号を中間周波信号に変換するチューナー回路と、この回路で得られたアナログ中間周波信号をクロック信号発振回路で発生されるサンプリングクロックによりデジタル中間周波信号に変換するアナ

ログ/デジタル変換回路と、この回路で得られたデジタ ル中間周波信号をローカル信号発振回路で発生されるロ ーカル信号により直交復調して複素形式のベースバンド OFDM信号に変換する直交復調回路と、この回路で得 られた複素形式のベースバンドOFDM信号から各換送 波のデータ信号を復調するOFDM復調回路とを備えた OFDM受信装置に用いられ、それぞれ前記既知の規則 に則って構成され、前記直交復調回路で得られた複素形 式のベースバンドOFDM信号について予め保持された 前記パイロット信号との間で相関処理を行うもので、伝 送帯域の中心周波数に対して相対的に正の周波数を有す るパイロット信号との相関信号を出力する正フィルタ と、伝送帯域の中心周波数に対して相対的に負の周波数 を有するパイロット信号との相関信号を出力する負フィ ルタとを備えるフィルタ手段と、前記正フィルタ及び負 フィルタの各出力についてピークを検出して、伝送帯域 の中心周波数に対して正の周波数成分の相関ピーク信号 及び負の周波数成分の相関ピーク信号を出力するピーク 検出手段と、このピーク検出手段で得られる正及び負の 周波数成分の相関ピーク信号を加算することで、前記べ ースバンドOFDM信号における各搬送波の周波数間隔 が変化せず伝送帯域の中心周波数が偏移した場合の周波 数偏移量を算出する加算回路と、この加算回路で算出さ れる周波数偏移量から前記ローカル信号の周波数誤差を 検出し、この周波数誤差に応じて前記ローカル信号発振 回路の発振周波数を補正するローカル信号補正手段とを 具備することを特徴とする。

【手続補正書】

【提出日】平成12年2月18日(2000.2.18)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0033

【補正方法】変更

【補正内容】

【0033】OFDM信号の全搬送波の数を2m本とする。各搬送波の周波数の低い方から順に搬送波番号をつけると、搬送波番号は1~2mとなる。パイロット信号

として 2^n 本に1本の割合で既知の特定の変調を施すとする。パイロット信号として変調を施された搬送液番号が 2^n 、 $2^n \times 2$ 、 $2^n \times 3$ 、 \cdots のとき、図4 (b) に示すように1有効シンボル期間にパイロット信号は同じ波形が 2^n 回繰り返される。したがって、繰り返す最小単位の信号を、既知の信号データとして受信装置側に保持し、受信したOFDM信号からパイロット信号を抽出するフィルタ回路181、182のタップ係数として用いることにより、図4 (c) に示すように、1有効シンボル期間に 2^n 回パイロット信号が抽出できる。

フロントページの続き

(72) 発明者 石田 憲一

東京都港区芝五丁目7番1号 日本電気株式会社内

F ターム(参考) 5K022 DD01 DD13 DD18 DD19 DD33 DD43

THIS PAGE LEFT BLANK

. .