BEST AVAILABLE COPY

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE
Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6: C12N 15/52, 15/76, C07K 7/06, C12N 1/21, A61K 38/08, C07C 229/36, 229/42,

(11) Numéro de publication internationale: **A1**

WO 96/01901

321/28, C07D 295/135 // (C12N 1/21, C12R 1:465)

(43) Date de publication internationale: 25 janvier 1996 (25.01.96)

(21) Numéro de la demande internationale:

PCT/FR95/00889

(22) Date de dépôt international:

4 juillet 1995 (04.07.95)

(30) Données relatives à la priorité:

94/08478

8 juillet 1994 (08.07.94) FR F-77360 Vaires-sur-Marne (FR). DUTRUC-ROSSET, Gilles [FR/FR]; 21, avenue du Docteur-Arnold-Netter, F-75012 Paris (FR).

Juine (FR). PARIS, Jean-Marc [FR/FR]; 8, rue des Acacias,

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-

Aron, F-92160 Antony (FR).

(74) Mandataire: LE COUPANEC, Pascale; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92160 Antony (FR).

(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): BLANC, Véronique [FR/FR]; 210, avenue Daumesnil, F-75012 Paris (FR).

THIBAUT, Denis [FR/FR]; 28, rue Jean-Colly, F-75013 Paris (FR). BAMAS-JACQUES, Nathalie [FR/FR]; 16, rue Plumet, F-75015 Paris (FR). BLANCHE, Francis [FR/FR]; 41, rue des Solitaires, F-75019 Paris (FR). CROUZET, Joël [FR/FR]; 48-52, rue des Meuniers, F-75012 Paris (FR). BARRIERE, Jean-Claude [FR/FR]; Résidence des Hautsde-Bures, 24, rue Max-Ernst, F-91440 Bures-sur-Yvette (FR). DEBUSSCHE, Laurent [FR/FR]; 112, avenue Jean-Jaurès, F-91200 Athis-Mons (FR), FAMECHON, Alain [FR/FR]; 10, rue Bouray-sur-Juine, F-91510 Janville-sur(81) Etats désignés: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TT, UA, UG, US, UZ, VN, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

(54) Title: STREPTOGRAMINES AND METHOD FOR PREPARING SAME BY MUTASYNTHESIS

(54) Titre: STREPTOGRAMINES ET PROCEDE DE PREPARATION DE STREPTOGRAMINES PAR MUTASYNTHESE

(57) Abstract

Novel group B streptogramine-like compounds of general formula (1), and a method for preparing streptogramines by mutasynthesis using a mutated micro-organism to influence the biosynthesis of at least one of the precursors of group B streptogramines, are disclosed. Novel nucleotide sequences involved in the biosynthesis of said precursors, and their uses, are also disclosed.

(57) Abrégé

La présente invention se rapporte à de nouveaux composés apparentés aux streptogramines du groupe B, de formule générale (I) et à un procédé de préparation de streptogramines par mutasynthèse mettant en œuvre un micro-organisme muté de manière à altérer la biosynthèse d'au moins un des précurseurs des strep-

togramines du groupe B. Elle concerne également des nouvelles séquences nucléotidiques impliquées dans la biosynthèse de ces précurseurs et leurs utilisations.

BEST AVAILABLE COPY

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AΤ	Autriche	GB	Royaume-Uni	MR	Mauritanie
ΑÜ	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce .	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélanis	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SID	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	LI	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie	LU	Luxembourg	TG	Togo
cz	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE		MC	Monaco	TT	Trinité-et-Tobago
	Allemagne	MD	République de Moldova	UA	Ukraine
DK	Danemark	MG	Madagascar	US	Etats-Unis d'Amérique
ES	Espagne	ML	Mali	UZ	Ouzbékistan
FI	Finlande _			VN	Viet Nam
FR	France	MN	Mongolie	*14	VICE I VALIF
GA	Gahon				

COLD - NO GENTANTAT I

10

15

20

25

30

35

Streptogramines et procede de preparation de streptogramines par mutasynthese

La présente invention se rapporte principalement à de nouveaux composés apparentés aux streptogramines du groupe B et à un procédé de préparation par mutasynthèse de streptogramines. Elle concerne également de nouveaux gènes impliqués dans la biosynthèse de précurseurs des streptogramines du groupe B ainsi que leurs utilisations.

Les streptogramines forment un groupe homogène d'antibiotiques constitués d'une association de deux types de molécules chimiquement différentes; d'une part des macrolactones polyinsaturées (composants du groupe A), et d'autre part des depsipeptides (composants du groupe B). Ce groupe comprend de nombreux antibiotiques connus sous différents noms en fonction de leur origine, dont les pristinamycines, les mikamycines, les virginiamycines (Cocito 1979, 1983).

Les composants A et B ont une activité antibactérienne synergique qui peut atteindre 100 fois celle des composants séparés et qui, contrairement à celle de chaque composant, est bactéricide (Cocito 1979). Cette activité est plus particulièrement efficace contre les bactéries Gram-positifs, comme les staphylocoques et les streptocoques (Cocito 1979, Videau 1982). Les composants A et B inhibent la synthèse protéique en se fixant à la sous-unité 50S du ribosome (Cocito 1979; Di Giambattista et al. 1989).

La connaissance des voies de biosynthèse de chacun des composants reste partielle à ce jour, bien que des études précédentes, présentées dans la demande de brevet PCT/FR93/0923, aient permis d'identifier plusieurs protéines et les gènes de structure correspondants, impliqués dans la biosynthèse des deux types de composants.

Dans le processus de biosynthèse des streptogramines du groupe B, deux parties peuvent être distinguées:

- 1) Biosynthèse des précurseurs, ou de leurs analogues, du macrocycle: acide 3-hydroxypicolinique, acide L-2-aminobutyrique, 4-diméthylamino-L-phénylalanine, acide-L-pipécolique, L-phénylglycine.
- 2) Formation du macrocycle à partir des précurseurs cités ci-dessus, de la L-thréonine et de la L-proline, ou de leurs analogues, avec éventuellement modification(s) subséquente(s), de type N-méthylation peptidique, épimérisation, hydroxylation et oxydation.

FEUILLE DE REMPLACEMENT (REGLE 26)

WO 96/01901 PCT/FR95/00889

2

La demande de brevet PCT/FR93/0923, a notamment pour objet les enzymes catalysant l'incorporation des précurseurs dans la chaîne peptidique des streptogramines B en cours d'élongation ainsi que leurs gènes de structure. Ces résultats ont permis de mettre en évidence le caractère de synthèse peptidique non ribosomale des composants de type B.

La présente invention concerne plus particulièrement de nouveaux composés apparentés aux streptogramines du groupe B et plus précisément des nouveaux composés de la famille des pristinamycines I (figures 1 et 2), désignés ci-après par PI, ou de la famille des virginiamycines S (figure 3).

Le constituant majoritaire des pristinamycines I (PI) est la PI_A (figure 1) qui représente environ 94 % des PI, les environ 6 % restant étant représentés par des constituants minoritaires du depsipeptide (PI_B à PI_I) dont les structures sont représentées en figure 2. La PI résulte essentiellement de la condensation d'acides aminés dont certains sont indispensables pour la synthèse protéique (thréonine et proline) et dont d'autres sont originaux et considérés eux-mêmes comme des métabolites secondaires (acide L-2-aminobutyrique, 4-diméthylamino-L-phénylalanine (DMPAPA), acide L-pipécolique et L-phénylglycine pour la PI_A) ainsi que d'un précurseur aromatique, l'acide 3-hydroxypicolinique.

En ce qui concerne les dérivés de virginiamycines S, ils résultent de la condensation des mêmes acides que pour la PI à l'exception de la DMPAPA qui est remplacée par une phénylalanine (voir figure 3).

La production de ces différents composés par biosynthèse nécessite donc la synthèse préalable, par la souche productrice, des précurseurs originaux identifiés cidessus.

La présente invention résulte précisément d'un procédé de préparation original de streptogramines qui met en oeuvre, à titre de souche productrice de streptogramines, une souche de microorganisme mutée de manière à altérer la biosynthèse des précurseurs de streptogramines du groupe B. Selon ce procédé, ladite souche mutante est cultivée dans un milieu complémenté par un précurseur original, différent du précurseur dont la biosynthèse est altérée. De manière inattendue, il s'en suit une production de nouveaux composés apparentés aux streptogramines du groupe B, intéressants sur le plan thérapeutique.

Plus précisément, la présente invention se rapporte à de nouveaux composés représentés par la formule générale I:

30

5

10

15

20

25

I

dans laquelle:

-R₂ et R₄ représentent, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupement méthyle,

-R₃ représente un atome d'hydrogène ou un groupement hydroxyle,

-X représente un groupement CO, CHOH ou CH2 et

-R₁ représente:

$$CH_{2} \qquad CH_{2} \qquad C$$

10

avec

- pour les dérivés méta:

A, C, D et E représentant un atome d'hydrogène et

15 B pouvant représenter:

- un halogène et de préférence un atome de fluor,

-un groupement monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle ou éthyle,

OCID: <WO_____9601901A1 I >

-un groupement éther. Il s'agit plus particulièrement d'un groupement OR avec R choisi de préférence parmi les groupements méthyle, éthyle, trifluorométhyle et allyle,

-un groupement thioéther représenté de préférence par un groupement alkylthio avec de préférence alkyle représentant un groupement méthyle,

- -un groupement alkyle en C1 à C3 ou
- -un groupement trihalogénométhyle et de préférence le trifluorométhyle.

- pour les dérivés para:

- 10 A, B, D et E représentant un atome d'hydrogène et
 - C pouvant représenter:
 - un halogène,
 - -un groupement NR_1R_2 avec R_1 et R_2 représentant indépendamment l'un de l'autre un groupement choisi parmi
- 15

20

30

35

5

- l'hydrogène,
- un groupement alkyle en C_1 à C_4 linéaire ou ramifié avec lorsque l'un des substituants R_1 ou R_2 représente un groupement méthyle, l'autre représente obligatoirement un groupement éthyle,
 - un groupement alkyl-cycloalkylméthyle avec un cycloalkyle en C_3 à C_4
 - un groupement cycloalkyle en C3 à C4 éventuellement substitué,
- -un groupement alcényle en C_3 à C_4 linéaire ou ramifié avec lorsque l'un des substituants, R_1 ou R_2 , représente un groupement alcényle, l'autre est différent d'un groupement méthyle ou d'un cycloalkyle en C_3 à C_6 ,
 - un groupement N-pyrrolidinyle substitué ou non,
- 25 -un groupement éther, il s'agit de préférence d'un groupement OR avec R choisi de préférence parmi les groupements méthyle, éthyle éventuellement substitué par un atome de chlore, trifluorométhyle et alcényle.
 - -un groupement thioéther représenté de préférence par un groupement alkylthio avec de préférence alkyle représentant un groupement alkyle en C_1 à C_3 .
 - -un groupement acyle ou alcoxycarbonyle et plus particulièrement un groupement COR avec R représentant de préférence un groupement alkyle en C_1 à C_3 ou un groupement alkoxy en C_1 à C_3 .
 - -un groupement alkyle en C₁ à C₆, linéaire ou ramifié, et de préférence choisi parmi les groupements méthyle, isopropyle et tert-butyle,

- un groupement alkylthiométhyl et plus préférentiellement un groupement CH2SR avec R représentant de préférence un groupement alkyle en C_1 à C_3
 - -un groupement aryle et de préférence un phényle ou
 - -un groupement trihalogénométhyle et de préférence le trifluorométhyle.

- pour les dérivés disubstitués méta-para :
- A, D et E représentant un atome d'hydrogène et
- B pouvant représenter:
 - -un halogène et de préférence un atome de fluor,
- 10

20

25

- -un groupement monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle ou éthyle,
- -un groupement éther et de préférence un groupement OR avec R choisi de préférence parmi les groupements méthyle, éthyle et trifluorométhyle,
- -un groupement thioéther et de préférence alkylthio avec alkyle représentant 15 préférentiellement un groupement éthyle, ou
 - -un groupement alkyle en C1 à C3 et

C pouvant représenter:

- -un halogène et de préférence un atome de fluor,
- -un groupement amino, monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle à la condition que B soit différent d'un atome de brome ou de chlore, ou un groupement allyle substitué ou non,
- -un groupement éther et de préférence un groupement OR avec R choisi de préférence parmi les groupements méthyle, éthyle et trifluorométhyle,
- -un groupement thioéther et de préférence un groupement alkylthio avec de préférence alkyle représentant un groupement méthyle,
- -un groupement alkyle en C1 à C6 ou
- -un groupement trihalogénométhyle et de préférence le trifluorométhyle et

30 - pour les dérivés disubstitués ortho-para :

- B, E et D représentant un atome d'hydrogène et A et C, un groupement méthyle.
 - A titre de composés préférés, on peut plus particulièrement citer:
 - la 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I_A ,
- 35 la 4ζ-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_H,

la 5γ -hydroxy 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I_H , la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_A, la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_H, la 4ζ-méthoxy-dés(4ζ-diméthylamino) pristinamycine IA, la 4ζ -méthoxycarbonyl-dés(4ζ -diméthylamino) pristinamycine I_A , 5 la 4ζ-chloro-dés(4ζ-diméthylamino) pristinamycine I_A, la 4 ζ -bromo-dés(4 ζ -diméthylamino) pristinamycine I_A , la 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine I_H, la 45-iodo-dés(45-diméthylamino) pristinamycine IA, la 4ζ-iodo-dés(4ζ-diméthylamino) pristinamycine I_H, 10 la 4ζ-trifluorométhyl-dés(4ζ-diméthylamino) pristinamycine I_A, la 4ζ -trifluorométhyl-dés(4ζ -diméthylamino) pristinamycine I $_H$, la 4ζ-tert-butyl-dés(4ζ-diméthylamino) pristinamycine IA, la 4ζ-isopropyl-dés(4ζ-diméthylamino) pristinamycine I_A, la 4ζ-isopropyl-dés(4ζ-diméthylamino) pristinamycine I_E. 15 la 4ε-méthylamino-dés(4ζ-diméthylamino) pristinamycine IA, la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I A la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I H, la 4ε-fluoro 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I A la 4ζ-amino-dés(4ζ-diméthylamino) pristinamycine I A 20 la 4ζ-éthylamino-dés(4ζ-diméthylamino) pristinamycine IA la 4 ζ -diéthylamino-dés(4 ζ -diméthylamino) pristinamycine I $_{
m A}$ la 4ζ-allylamino-dés(4ζ-diméthylamino) pristinamycine IA la 4ζ-diallylamino-dés(4ζ-diméthylamino) pristinamycine I_A la 4 ζ -allyl éthylamino-dés(4 ζ -diméthylamino) pristinamycine I_A 25 la 4 ζ -éthyl propylamino-dés(4 ζ -diméthylamino) pristinamycine I_A la 4ζ-éthyl isopropylamino-dés(4ζ-diméthylamino) pristinamycine I_A la 4 ζ -éthyl méthylcyclopropylamino-dés(4 ζ -diméthylamino) pristinamycine I_A la 4ζ-(1-pyrrolidinyl) -dés(4ζ-diméthylamino) pristinamycine I_A la 4ζ-trifluorométhoxy-dés(4ζ-diméthylamino) pristinamycine I_A 30 la 4ζ-allyloxy-dés(4ζ-diméthylamino) pristinamycine I_A la 4ζ-éthoxy-dés(4ζ-diméthylamino) pristinamycine I_A

15

20

25

30

. Fi

la 4ζ-éthylthio-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ζ-méthylthiométhyl-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ζ-(2-chloroéthoxy)-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ζ-acétyl-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ζ-éthyl-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ζ-éthyl-dés(4ζ-diméthylamino) pristinamycine I_H
la 4ε-diméthylamino-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ε-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_A
la 4ε-éthoxy-dés(4ζ-diméthylamino) pristinamycine I_A

La présente invention vise également un procédé notamment utile pour préparer les composés de formule générale I.

Plus précisément, elle se rapporte à un procédé pour préparer des streptogramines caractérisé en ce qu'il met en oeuvre une souche d'un microorganisme producteur de streptogramines, possèdant au moins une modification génétique affectant la biosynthèse d'un précurseur des streptogramines du groupe B et en ce que ladite souche mutante est cultivée dans un milieu de culture adéquat et complémenté avec au moins un précurseur original, autre que celui dont la biosynthèse est altérée et en ce que l'on récupère lesdites streptogramines.

Les souches mises en œuvre dans le cadre de la présente invention sont donc des souches productrices de streptogramines, mutées. La ou lesdites modifications génétiques peuvent être localisées soit au niveau d'un des gènes impliqués dans la biosynthèse desdits précurseurs soit en dehors de la région codante, par exemple dans les régions responsables de l'expression et/ou de la régulation transcriptionnelle ou post-transcriptionnelle desdits gènes ou dans une région appartenant au transcript contenant lesdit gènes.

Selon un mode particulier de l'invention, les souches mutantes possèdent une ou plusieurs modifications génétiques au niveau d'au moins un de leurs gènes impliqués dans la biosynthèse des précurseurs des streptogramines du groupe B.

Cette ou ces modifications génétiques altèrent l'expression dudit gène c'est à dire rendent ce gène, et le cas échéant un autre des gènes impliqués dans la biosynthèse des précurseurs, partiellement ou totalement incapable de coder pour l'enzyme naturelle impliquée dans la biosynthèse d'au moins un précurseur.

10

15

20

25

30

L'incapacité desdits gènes à coder pour les protéines naturelles peut se manifester soit par la production d'une protéine inactive en raison de modifications structurales ou conformationnelles, soit par l'absence de production, soit par la production d'une protéine ayant une activité enzymatique altérée, ou encore par la production de la protéine naturelle à un niveau atténué ou selon un mode de régulation désiré. L'ensemble de ces manifestations possibles se traduit par une altération voire un bloquage au niveau de la synthèse d'au moins l'un des précurseurs des streptogramines du groupe B.

Les gènes, susceptibles d'être mutés dans le cadre de la présente invention, sont de préférence les gènes impliqués dans la biosynthèse des précurseurs suivants: acide L-2-aminobutyrique, 4-diméthylamino-L-phénylalanine (DMPAPA), acide L-pipécolique, L-phénylglycine et/ou l'acide 3-hydroxypicolinique (3-HPA).

Il s'agit plus préférentiellement des gènes <u>papA</u>, <u>papM</u>, <u>papB</u> (SEQ ID N°3), <u>papC</u> (SEQ ID N°2), <u>hpaA</u> (SEQ ID N°8), <u>snbF</u> (SEQ ID N°6) et <u>pipA</u> (SEQ ID N°5) décrits ci-après.

En ce qui concerne les gènes <u>papA</u> et <u>papM</u>, ils ont déjà été décrits dans la demande de brevet PCT/FR93/0923. Ils sont présents sur le cosmide pIBV2. Le gène <u>papA</u> semble correspondre à un gène de biosynthèse de la 4-amino-L-phénylalanine à partir du chorismate. La 4-amino-L-phénylalanine est ensuite diméthylée par le produit du gène <u>papM</u>, une N-méthyltransférase, pour former la 4-diméthylamino-L-phénylalanine, DMPAPA, qui est ensuite incorporée dans la pristinamycine IA. Ces deux gènes interviennent donc plus particulièrement au niveau de la synthèse du précurseur dit DMPAPA.

En ce qui concerne les autres gènes <u>papB</u>, <u>papC</u>, <u>pipA</u>, <u>snbF</u> et <u>hpaA</u>, ils ont été identifiés et caractérisés dans le cadre de la présente invention. Ils sont regroupés avec les gènes <u>snbA</u>, <u>papA</u>, et <u>papM</u> sur une région chromosomique d'environ 10 kb (figure 7).

Les homologies de séquences mises en évidence pour les protéines PapB et PapC, montrent que ces protéines sont également impliquées dans la biosynthèse du précurseur DMPAPA, conjointement avec les protéines PapA et PapM. Les deux nouveaux gènes correspondants, papB et papC, ont été isolés et identifiés par sous-clonages effectués à partir du cosmide pIBV2, décrit dans la demande de brevet PCT/FR93/0923 et d'un plasmide pVRC900, dérivé de pIBV2 par une délétion HindIII, également décrit dans la demande de brevet PCT/FR93/0923.

10

15

20

25

30

35

La comparaison de la protéine codée par le gène papC, avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 27 % avec la région impliquée dans l'activité préphénate déhydrogénase des protéines bifonctionnelles TyrA d' E, coli (Hudson et Davidson, 1984) et d' Erwinia herbicola (EMBL data library, 1991). Cette région de TyrA catalyse l'aromatisation du préphénate en 4-hydroxyphénylpyruvate dans la biosynthèse de la tyrosine. Une aromatisation similaire à partir du 4-déoxy 4-amino préphénate conduisant au 4-amino phénylpyruvate intervient très vraisemblablement dans la synthèse de la DMPAPA. Elle serait catalysée par la protéine PapC (SEQ ID n°2).

Quant à la protéine PapB, elle possède une homologie de 24 à 30 % avec la région impliquée dans l'activité chorismate mutase des protéines bifonctionnelles TyrA et PheA d' E. coli (Hudson et Davidson, 1984) et de la protéine TyrA d' Erwinia herbicola. Cette région catalyse l'isomérisation du chorismate en préphénate dans la biosynthèse de la tyrosine et de la phénylalanine. La protéine PapB (SEQ ID n°3) intervient vraisemblablement au niveau de l'isomérisation similaire à partir du 4-déoxy 4-amino chorismate conduisant au 4-déoxy 4-aminopréphénate dans la synthèse de la DMPAPA.

En ce qui concerne les gènes <u>pipA</u>, <u>snbF</u> et <u>hpaA</u>, ils ont été localisés dans les régions contenues entre le gène <u>snbA</u> codant pour l'acide 3-hydroxypicolinique AMP ligase, décrite dans la demande de brevet PCT/FR93/0923 et les gènes <u>papA</u> ou <u>snbR</u>. Ils ont précisément été localisés par sous-clonages effectués à partir du plasmide pVRC900 et du cosmide pIBV2, décrits dans la demande de brevet PCT/FR93/0923.

En comparant la protéine codée par le gène <u>hpaA</u> et les séquences protéiques contenues dans la banque Genpro, il a été mis en évidence une homologie de 30 à 40 % avec un groupe de protéines probablement impliquées (Thorson <u>et al.</u>, 1993) dans la transamination d'intermédiaires de biosynthèse de différents antibiotiques (DnrJ, EryC1, TylB, StrS, PrgL). La synthèse du précurseur 3-HPA qui semble dériver de la lysine par une autre voie que la cyclodéamination (voir exemples 1-2 et 2-1), nécessite vraisemblablement une étape de transamination susceptible d'être catalysée par le produit de ce gène appelé <u>hpaA</u> (SEQ ID n°8). Les résultats de mutation réalisée dans ce gène montrent par ailleurs sans équivoque l'implication de ce gène dans la synthèse du précurseur 3-HPA.

La comparaison du produit codé par le gène dit <u>pipA</u> avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 30 % avec l'ornithine cyclodéaminase d'<u>Agrobacterium tumefasciens</u> (Schindler <u>et al.</u>,

1989). Cette enzyme intervient dans la dernière étape du catabolisme de l'octopine; elle convertit la L-ornithine en L-proline par cyclo-déamination. Des auteurs ont montré par incorporation de lysine marquée, que l'acide 4-oxopipécolique et l'acide 3-hydroxypicolinique, retrouvés aussi bien dans la PIA que dans la virginiamycine S1, dérivaient de la lysine (Molinero et al., 1989; Reed et al., 1989). Une réaction de cyclodéamination de la lysine similaire à celle décrite pour l'ornithine conduirait à la formation d' acide pipécolique. En tenant compte de cette hypothèse ce produit a été appelé PipA (SEQ ID n° 5). Les résultats de mutation dans le gène pipA, présentés dans les exemples ci-après, montrent l'implication du gène pipA dans la seule synthèse de l'acide pipécolique. On note en particulier que cette mutation n'affecte pas la biosynthèse de l'acide 3-hydroxypicolinique, qui dérive aussi de la lysine et dont l'acide pipécolique aurait pu être un précurseur.

10

15

20

25

30

35

Enfin, en comparant le produit du gène dit <u>snbF</u> avec les séquences protéiques contenues dans la banque Genpro, il a été noté une homologie de 30 à 40 % avec plusieurs hydroxylases de type cytochrome P450, impliquées dans la biosynthèse de métabolites secondaires (Omer <u>et al.</u>, 1990. Trower <u>et al.</u>, 1992). Plusieurs hydroxylations sont envisageables dans la biosynthèse des précurseurs de la pristinamycine I, notamment au niveau de la biosynthèse du 3-HPA (hydroxylation en 3 de l'acide picolinique) et de l'acide 4-oxopipécolique (hydroxylation en 4 de l'acide pipécolique). La protéine correspondante a été appelée SnbF (SEQ ID n°6).

Les résultats de mutation dans le gène <u>pipA</u>, avec des effets polaires sur l'expression du gène <u>snbF</u>, montrent l'implication du gène <u>snbF</u> dans l'hydroxylation du résidu acide pipécolique des streptogramines du groupe B. C'est ainsi que l'expression du gène <u>snbF</u> est altérée par le biais d'une modification génétique au niveau du gène <u>pipA</u>.

Préférentiellement, la ou les modifications génétiques rendent ledit gène partiellement ou totalement incapable de coder pour la protéine naturelle.

Par modification génétique, on doit entendre plus particulièrement toute suppression, substitution, délétion, ou addition d'une ou plusieurs bases dans le ou les gènes considérés. De telles modifications peuvent être obtenues <u>in vitro</u> (sur de l'ADN isolé) ou <u>in situ</u>, par exemple, au moyens des techniques du génie génétique, ou encore en exposant lesdits microorganismes à un traitement au moyen d'agents mutagènes. Par agents mutagènes, on peut citer par exemple les agents physiques tels que les rayonnements énergétiques (rayons X, γ, ultra violet, etc..), ou les agents chimiques capables de réagir avec différents groupements fonctionnels des bases de

10

15

20

25

30

l'ADN, et par exemple les agents alkylants [éthylméthane sulfonate (EMS), N-méthyl-N'-nitro-N-nitrosoguanidine, N-nitroquinoléine-1-oxyde (NQO)], les agents bialkylants, les agents intercalants, etc... Par délétion, on entend toute suppression d'une partie ou de la totalité du gène considéré. Il peut s'agir notamment d'une partie de la région codant pour lesdites protéines, et/ou de tout ou partie de la région promotrice de la transcription, de la traduction ou encore du transcript.

Les modifications génétiques peuvent également être obtenues par disruption génique, par exemple selon le protocole initialement décrit par Rothstein [Meth. Enzymol. 101 (1983) 202] ou avantageusement par double recombinaison homologue. Dans ce cas, l'intégralité de la séquence codante sera préférentiellement perturbée pour permettre le cas échéant, le remplacement, par recombinaison homologue, de la séquence génomique sauvage par une séquence non fonctionnelle ou mutante.

Selon une autre alternative de l'invention, les modifications génétiques peuvent consister à placer le ou les gènes codant pour lesdites protéines sous contrôle d'un promoteur régulé.

Les souches de micororganismes mutantes selon la présente invention peuvent être obtenues à partir de tout microorganisme producteur de streptogramines (Cf. tableau V). Selon un mode de réalisation particulier de l'invention, il s'agit d'une souche dérivant de S. <u>pristinaespiralis</u> et plus particulièrement de S. <u>pristinaespiralis</u> SP92.

A titre de souche mutante préférée dans le cadre de la présente invention, on peut plus particulièrement citer la souche SP92::pVRC508, mutée dans la biosynthèse du précurseur DMPAPA par disruption par simple crossing-over du gène <u>papA</u> ou encore plus préférentiellement la souche SP212, mutée dans la biosynthèse du précurseur DMPAPA par disruption du gène <u>papA</u> par double recombinaison homologue. Ces souches ne produisent plus de PI sauf lorsqu'elles sont complémentées par le précurseur DMPAPA. De manière inattendue, lorsqu'un précurseur original, différent de la DMPAPA et capable après, le cas échéant, métabolisation, d'être incorporé par la PI synthétase III (protéine SnbD responsable de l'incorporation des résidus L-proline et DMPAPA) est ajouté au milieu de production, ces deux souches deviennent capables de produire de nouvelles pristinamycines I ou virginiamycines ou de produire majoritairement un composant normalement minoritaire de la PI, notamment la PIB (figure 2).

10

15

20

25

30

35

Dans le cadre de la présente invention, deux autres souches mutantes ont été préparées. Il s'agit respectivement de la souche SP92pipA::Ωam^R disruptée dans le gène pipA par recombinaison homologue et la souche SP92pipA::Ωam^R disruptée dans le gène hpaA. La souche SP92pipA::Ωam^R d'une part, ne produit plus de PI dans les conditions standards de fermentation et d'autre part, en présence d'acide L-pipécolique, permet la forte production d'un composant initialement minoritaire des composants B des streptogramines dans lesquels l'acide 4-oxopipécolique est remplacé par l'acide L-pipécolique. Quant à la souche S. pristinaespiralis SP92hpaA:: Ωam^R, elle ne produit plus de PI dans les conditions standards de fermentation mais est capable de produire de nouvelles streptogramines du groupe B, en présence de précurseurs originaux.

En complémentant le milieu de culture de souches mutantes selon l'invention, avec au moins un précurseur original, il s'avère possible d'orienter la biosynthèse soit vers de nouvelles streptogramines, soit vers une forme minoritaire d'entre elles, ou encore de privilégier la formation d'une d'entre elles.

Les précurseurs mis en oeuvre dans le cadre de la présente invention peuvent être des dérivés ou analogues d'acides aminés et plus particulièrement de la phénylalanine ainsi que d'acides organiques et notamment d'acides alpha-céto-carboxyliques et plus particulièrement des dérivés d'acide phénylpyruvique.

Bien entendu, le précurseur original est tel qu'il pourvoit à l'altération voire le blocage, induit selon l'invention, au niveau de la biosynhèse d'un des précurseurs naturels des streptogramines du groupe B et conduit à la synthèse de streptogramines. Selon un mode particulier de l'invention, ce précurseur original est choisi de manière à être apparenté au précurseur dont la biosynthèse est altérée. Ainsi dans le cas particulier de mutant bloqué dans la biosynthèse du DMPAPA, le précurseur original est de préférence un dérivé de phénylalanine.

A titre de précurseurs convenant à l'invention, on peut notamment citer les suivants:

Phénylalanine, 4-diméthylaminophénylalanine, 4-méthylaminophénylalanine, 4-aminophénylalanine, 4-diéthylaminophénylalanine, 4-éthylaminophénylalanine, 4-méthylthiophénylalanine, 4-méthylphénylalanine, 4-méthoxyphénylalanine, 4-trifluorométhoxyphénylalanine, 4-bromophénylalanine, 4-iodophénylalanine, 4-trifluorométhylphénylalanine, 4-tert-butylphénylalanine, 4-isopropylphénylalanine, 3-méthylaminophénylalanine, 3-méthylalanine, 3-méthylalanine,

4-méthylphénylalanine, 3-fluoro acide L-pipécolique, acide 4-tertbutylphénylpyruvique. 4-méthylaminophénylpyruvique, acide 2naphtylphénylalanine, 4-fluorophénylalanine, 3-fluorophénylalanine, 3éthoxyphénylalanine, 2,4-diméthylphénylalanine, 3.4diméthylphénylalanine. 3-méthylphénylalanine, 4-phénylphénylalanine, 4-butylphénylalanine, 2-thiényl-3-alanine. 3-trifluorométhylphénylalanine, hydroxyphénylalanine, 3-éthylaminophénylalanine 4- allylaminophénylalanine, diallylaminophénylalanine, 4allyl éthylaminophénylalanine, éthyl propylaminophénylalanine. éthyl isopropylaminophénylalanine, 4éthyl 10 méthylcyclopropylaminophénylalanine. 4-(1-pyrrolidinyl) phénylalanine, 4-0allyltyrosine. 4-O-éthyltyrosine. 4-éthylthiophénylalanine. 4éthylthiométhylphénylalanine, 4-O-(2-chloroéthyl) tyrosine, 4-acétyl phénylalanine, 4-éthyl phénylalanine, 3-diméthylaminophénylalanine, 3-éthoxy phénylalanine, 3fluoro4-méthylphénylalanine et 4-aminométhylphénylalanine.

15

20

Parmi ces précurseurs, 4-trifluorométhoxyphénylalanine, les 3méthylaminophénylalanine, 3-méthylthiophénylalanine. 3-fluoro4méthylphénylalanine. l'acide 4-méthylaminophénylpyruvique, 3éthoxyphénylalanine, 4- allylaminophénylalanine, 4- diallylaminophénylalanine, 4allyl éthylaminophénylalanine, 4- éthyl propylaminophénylalanine, 4- éthyl isopropylaminophénylalanine, 4-éthylméthyl-cyclopropylaminophénylalanine, 4-(1pyrrolidinyl) phénylalanine, 4-éthylthiométhylphénylalanine, 4-O-(2-chloroéthyl) tyrosine, 3-diméthylaminophénylalanine et 3-éthylaminophénylalanine sont nouveaux et ont été préparés et caractérisés dans le cadre de la présente invention. Ils se révèlent particulièrement utiles pour préparer des streptogramines selon l'invention.

25

Le procédé revendiqué s'avère particulièrement intéressant pour préparer de nouvelles streptogramines du groupe B ou encore pour privilégier la formation de certaines d'entre elles. A ce titre il est tout particulièrement utile pour préparer la PIB.

30

La présente invention a également pour objet une séquence nucléotidique choisie parmi :

- (a) tout ou partie des gènes <u>papC</u> (SEQ ID n° 2), <u>papB</u> (SEQ ID n° 3), <u>pipA</u> (SEQ ID n° 5), <u>snbF</u> (SEQ ID n° 6) et <u>hpaA</u> (SEQ ID n° 8),
 - (b) les séquences hybridant avec tout ou partie des gènes (a) et,

10

15

20

(c) les séquences dérivées des séquences (a), et (b) en raison de la dégénérescence du code génétique.

Dans le cas particulier des séquences hybrides selon (b), elles codent de préférence pour un polypeptide impliqué dans la biosynthèse des streptogramines.

Encore plus préférentiellement, l'invention a pour objet les séquences nucléotidiques représentées par les gènes <u>papC</u> (SEQ ID n° 2), <u>papB</u> (SEQ ID n° 3), <u>pipA</u> (SEQ ID n° 5), <u>snbF</u> (SEQ ID n° 6) et <u>hpaA</u> (SEQ ID n° 8).

Un autre objet de l'invention concerne tout ADN recombinant comprenant un gène papC (SEQ ID n° 2), papB (SEQ ID n° 3), pipA (SEQ ID n° 5), snbF (SEQ ID n° 6) et hpaA (SEQ ID n° 8).

Bien entendu, les séquences nucléotidiques définies ci-dessus peuvent faire partie d'un vecteur de type vecteur d'expression qui peut être à réplication autonome ou intégratif ou vecteur suicide. La présente invention vise également ces vecteurs ainsi que toute utilisation d'une séquence selon l'invention ou d'un vecteur correspondant notamment pour la préparation de métabolites d'intérêt. Elle se rapporte en outre à tout polypeptide résultant de l'expression d'une séquence revendiquée.

La présente invention concerne également toute souche <u>S. pristinaespiralis</u> mutée qui possède au moins une modification génétique au niveau d'un des gènes papC (SEQ ID n° 2), papB (SEQ ID n° 3), pipA (SEQ ID n° 5), snbF (SEQ ID n° 6) et hpaA (SEQ ID n° 8) et plus préférentiellement les souches SP92pipA::ΩamR, SP92hpaA::ΩamR ainsi que toute souche S. pristinaespiralis possèdant une modification génétique consistant en une disruption du gène papA par double recombinaison homologue telle que SP212.

25

30

Les associations d'un composant des streptogramines du groupe A et d'un composé de formule générale I, selon l'invention, constituent des compositions particulièrement intéressantes sur le plan thérapeutique. Elles sont notamment employées pour les traitements d'affections dues à des bactéries Gram-positifs (du genre Staphylocoques, Streptocoques, Pneumocoques, Entérocoques) et Gramnégatifs (du genre Haemophilus, Gonocoques, Méningocoques). C'est ainsi que les composés selon l'invention synergisent l'action antibactérienne de la pristinamycine IIB sur Staphylococcus aureus IP8203 in vivo chez la souris, à des doses

principalement comprises entre 30mg/kg et 100mg/kg par voie orale, lorsqu'ils sont associés dans des proportions PI /PII de l'ordre de 30/70.

La présente invention s'étend à toute composition pharmaceutique contenant au moins un composé de formule générale I en association ou non avec une streptogramine du groupe A.

Les exemples figurant ci-après sont présentés à titre illustratif et non limitatif de la présente invention.

10 LISTE DES FIGURES.

- Figure 1 : Structure de la pristinamycine IA.
- Figure 2 : Structure des composants minoritaires de la pristinamycine I.
- Figure 3: Autres exemples de structures de composants B des streptogramines.
- Figure 4 : Représentation de la région PstI-XhoI de 2,9 kb.
- Figure 5 : Représentation de la région XhoI-PstI de 4,5 kb.
 - Figure 6 : Représentation de la région HindIII-BglII de 1,6 kb.
 - Figure 7: Représentation de la région BglII-XhoI d'environ 10 kb.
 - Figure 8: Représentation du plasmide pVRC415.
 - Figure 9: Représentation du plasmide pVRC420.
- 20 Figure 10 : Représentation du plasmide pVRC411.
 - Figure 11: Représentation du plasmide pVRC421.
 - Figure 12: Représentation du plasmide pVRC414.
 - Figure 13: Stratégie de construction de SP212.

25 EXEMPLE 1: Séquençage et identification de gènes impliqués dans la biosynthèse de la pristinamycine I et de ses précurseurs.

Identification par séquençage des gènes situés en aval et en amont du gène codant pour l'enzyme PapA décrite dans le brevet PCT/FR93/0923, ainsi que d'un gène situé en aval du gène codant pour l'enzyme SnbA, également décrite dans le brevet PCT/FR93/0923.

Cet exemple décrit comment à partir du cosmide pIBV2, décrit dans le brevet PCT/FR93/0923, et contenant les gènes de structure des enzymes PapA et PapM, intervenant dans la synthèse du précurseur 4-diméthylamino-L-phénylalanine (DMPAPA) de la pristinamycine I et le gène de structure de l'enzyme SnbA

30

35

responsable de l'activation du précurseur aromatique de la pristinamycine I, l'acide 3hydroxypicolinique (3-HPA), il s'est avéré possible d'identifier par séquençage autour de ces gènes et étude des mutants correspondants, d'autres gènes impliqués dans la biosynthèse du précurseur DMPAPA, ou dans la biosynthèse d'autres précurseurs de la pristinamycine I.

Dans ce but, des sous-clonages ont été effectués à partir du cosmide pIBV2, et du plasmide pVRC900, dérivé de pIBV2 par une délétion HindIII, et également décrit dans le brevet PCT/FR93/0923.

Cet exemple illustre comment les séquences nucléotidiques de fragments situés en aval et en amont des gènes papA et snbA de S. pristinaespiralis peuvent être obtenues.

Les techniques de clonage des fragments d'ADN d'intérêt dans les vecteurs M13mp18/19 (Messing et al., 1981) sont les techniques classiques de clonage dans Escherichia coli et sont décrites dans Maniatis et al. (1989).

15

20

25

5

10

1-1 Séquençage et analyse de la région en aval du gène papA.

Pour séquencer cette région, contenue entre les gènes papA et papM, les fragments PstI-PstI de 1,5 kb, PstI-XhoI de 0,7 kb et XhoI-XhoI de 0,7 kb ont été sous-clonés dans les vecteurs M13mp18 et M13mp19 à partir du plasmide pVRC900. Les sites de clonages ont été traversés par séquençage sur ADN double brin, en utilisant les plasmides pVRC900 et pVRC409 décrits dans le brevet PCT/FR93/0923. Les clonages ont été réalisés comme suit. Environ 2 µg du plasmide pVRC900 ont été coupés par les enzymes de restriction PstI et/ou XhoI (New England Biolabs) dans les conditions préconisées par le fournisseur. Les fragments de restrictions ainsi obtenus ont été séparés sur gel d'agarose 0,8% et les fragments d'intérêt, PstI-PstI de 1,5 kb, PstI-XhoI de 0,7 kb et XhoI-XhoI de 0,7 kb ont été isolés et purifiés par Geneclean (Bio101, La Jolla, Californie). Pour chaque clonage, environ 10 ng de M13mp19 et/ou M13mp18 coupés par PstI et/ou XhoI, ont été ligaturés avec 100 ng du 30 fragment à cloner, dans les conditions décrites par Maniatis et al. 1989. Après transformation de la souche TG1 (K12, $\Delta(lac\text{-pro})$ supE thi hsd ΔS F traD36 proA+B+ lacI9 lacZ ΔM15; Gibson, 1984) et sélection des plages de lyse sur milieu LB + X-gal + IPTG, selon la technique décrite par Maniatis et al. (1989), les phages portant les fragments souhaités ont été isolés. Les différents inserts ont été séquencés 35

10

15

20

25

30

par la méthode de réaction de terminaison de chaîne en utilisant comme amorce de synthèse le primer universel ou des oligonucléotides synthétiques et complémentaires d'une séquence de 20 nucléotides de l'insert à séquencer. Les réactions ont été faites en utilisant des didéoxynucléotides fluorescents (PRISM Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit-Applied Biosystem) et analysées sur un séquenseur d'ADN de type Applied Biosystems Model 373A. Le recouvrement entre ces différents inserts a permis d'établir la séquence nucléotidique totale présente entre les gènes papA et papM (SEQ ID N°1).

A partir de cette séquence nucléotidique, il est possible de déterminer les phases ouvertes de lecture et d'identifier ainsi des gènes impliqués dans la biosynthèse de la PI ou de ses précurseurs chez <u>S</u>. <u>pristinaespiralis</u> ainsi que les polypeptides codés par ces gènes.

Nous avons recherché la présence de phases ouvertes de lecture au sein du fragment PstI-XhoI de 2,9 kb contenant la séquence nucléotidique entre les gènes papA et papM, en utilisant le fait que l'ADN des Streptomyces présente un haut pourcentage en bases G et C ainsi qu'un fort biais dans l'usage des codons qui composent les phases codantes (Bibb et al. 1984). La méthode de Staden et Mc Lachlan (1982) permet de calculer la probabilité des phases codantes en fonction de l'usage des codons de gènes de Streptomyces déjà séquencés et rassemblés dans un fichier contenant 19673 codons obtenu à partir du serveur informatique BISANCE (Dessen et al. 1990).

Cette méthode a permis de caractériser au sein du fragment PstI-XhoI de 2,9 kb, quatre phases ouvertes de lecture fortement probables qui sont représentées dans le tableau suivant (TABLEAU I). Elles sont nommées phases 1 à 4 d'après leur position à partir du site PstI. Pour chacune, on a indiqué leur longueur en bases et leur position au sein du fragment (le site PstI étant situé à la position 1); pour les phases ouvertes de lecture 2 et 3, a été également indiquée la taille en acides aminés du polypeptide codé. Les phases 1, 3 et 4 sont codées par le même brin et la phase 2 par le brin complémentaire (figure 4). Les phases 1 et 4 correspondent respectivement à la région C-terminale de la protéine PapA et N-terminale de la protéine PapA précédemment identifiées et décrites dans le brevet PCT/FR93/00923.

Numéro de la phase et/ou nom du gène	Position	Nombre de nucléotides	Nombre d'acides aminés
1 (PapA)	1-684	684	-
2 (PapC)(inv)	949-1836	888	296
3 (PapB)	1873-2259	387	129
4 (PapM)	2259-2887	629	-

TABLEAU I

La comparaison du produit de la phase 2 (TABLEAU I) avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 27 % avec la région impliquée dans l'activité préphénate déhydrogénase des protéines bifonctionnelles TyrA d' E. coli (Hudson et Davidson, 1984) et d' Erwinia herbicola (EMBL data library, 1991). Cette région de TyrA catalyse l'aromatisation du préphénate en 4-hydroxyphénylpyruvate dans la biosynthèse de la tyrosine. Une aromatisation similaire à partir du 4-déoxy 4-amino préphénate conduisant au 4-amino phénylpyruvate intervient très vraisemblablement dans la synthèse de la DMPAPA. Cette réaction serait catalysée par le produit de la phase 2, appelé PapC (SEQ ID n°2).

15

20

10

La comparaison du produit de la phase 3 (TABLEAU I) avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 24 à 30 % avec la région impliquée dans l'activité chorismate mutase des protéines bifonctionnelles TyrA et PheA d' E. coli (Hudson et Davidson, 1984) et de la protéine TyrA d' Erwinia herbicola. Cette région catalyse l' isomérisation du chorismate en préphénate dans la biosynthèse de la tyrosine et de la phénylalanine.

10

15

Une isomérisation similaire à partir du 4-déoxy 4-amino chorismate conduisant au 4-déoxy 4-aminopréphénate intervient très vraisemblablement dans la synthèse de la DMPAPA. Cette réaction serait catalysée par le produit de la phase 3, appelé PapB (SEQ ID n°3).

Dans le cas de TyrA et PheA les activités chorismate mutase et préphénate déhydratase ou préphénate déhydrogénase sont catalysées par la même protéine. Chez S. pristinaespiralis, les activités enzymatiques chorismate mutase et préphénate déhydrogénase sont catalysées par deux protéines séparées, PapB et PapC respectivement.

Les homologies de séquences mises en évidence pour les protéines PapB et PapC, montrent que ces deux protéines sont impliquées dans la biosynthèse du dérivé aromatique DMPAPA, conjointement avec les protéines PapA et PapM. De même que pour papA la disruption des gènes papB et papC doit conduire à la construction de souches de S. pristinaespiralis incapables de produire de la PI mais susceptibles de produire en présence de précurseurs originaux de nouvelles PI modifiées au niveau du résidu DMPAPA.

1-2. Séquençage et analyse de la région en amont du gène papA.

20

25

30

35

Cette région est contenue entre le gène <u>snbA</u> codant pour l'acide 3hydroxypicolinique-AMP ligase, décrite dans le brevet PCT/FR93/00923 et le gène papA.

Les clonages ont été réalisés comme décrit dans l'exemple 1-1, à partir du plasmide pVRC900 et du cosmide pIBV2 décrits dans le brevet PCT/FR93/00923. Les fragments XhoI-XhoI de 1,3 kb, XhoI-XhoI de 0,2 kb, XhoI-XhoI de 3,3 kb, HindIII-PstI de 1,1 kb et PstI-PstI de 2,2 kb ont été sous-clonés dans les vecteurs M13mp18 et M13mp19. Ces différents clonages ont permis de traverser tous les sites de clonage. Les différents inserts ont été séquencés comme décrit en 1-1, en utilisant comme amorce de synthèse le primer universel ou des oligonucléotides synthétiques, complémentaires d'une séquence de 20 nucléotides de l'insert à séquencer.

Le recouvrement entre ces différents inserts a permis d'établir la séquence nucléotidique totale présente entre les gènes snbA et papA (SEQ ID n° 4).

A partir de cette séquence nucléotidique, il est possible de déterminer les phases ouvertes de lecture et d'identifier des gènes impliqués dans la biosynthèse des précurseurs de la PI de <u>S. pristinaespiralis</u> ansi que les polypeptides codés par ces gènes.

Nous avons recherché la présence de phases ouvertes de lecture au sein du fragment Xhol-Pstl de 4,5 kb contenant la séquence nucléotidique entre les gènes snbA et papA, comme décrit dans l'exemple 1.1. Cette méthode a permi de caractériser au sein du fragment Xhol-Pstl de 4,5 kb, quatre phases ouvertes de lecture fortement probables qui sont représentées dans le tableau suivant (TABLEAU II). Elles sont nommées phases 1 à 4 d'après leur position à partir du site Xhol. Pour chacune, on a indiqué leur longueur en bases et leur position au sein du fragment (le site Xhol étant situé à la position 1); pour les phases ouvertes de lecture 2 et 3, on a également indiqué la taille en acides aminés du polypeptide codé. Les phases 2, 3 et 4 sont codées par le même brin et la phase 1 par le brin complémentaire (figure 5). Les phases 1 et 4 correspondent respectivement aux régions N-terminales des protéines SnbA et PapA précédemment identifiées et décrites dans le brevet PCT/FR93/00923.

15

20

10

5

Numéro de la phase et/ou nom du gène	Position	nombre de nucléotides	nombre d'acides aminés
1 (SnbA)(inv)	1-329	329	-
2 (PipA)	607-1671	1065	355
3 (SnbF)	1800-2993	1194	398
4 (PapA)	3018-4496	1479	-
		·	

TABLEAU II

La comparaison du produit de la phase 2 (TABLEAU II) avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 30 %

10

15

avec l'ornithine cyclodéaminase d' <u>Agrobacterium tumefasciens</u> (Schindler <u>et al.</u>, 1989). Cette enzyme intervient dans la dernière étape du catabolisme de l'octopine; elle convertit la L-ornithine en L-proline par cyclo-déamination. Des auteurs ont montré par incorporation de lysine marquée, que l'acide 4-oxopipécolique et l' acide 3-hydroxypicolinique, retrouvés aussi bien dans la PI_A que dans la virginiamycine S1, dérivaient de la lysine (Molinero <u>et al.</u>, 1989; Reed <u>et al.</u>, 1989). Une réaction de cyclodéamination de la lysine similaire à celle décrite pour l' ornithine conduirait à la formation d' acide pipécolique. En tenant compte de cette hypothèse le produit de la phase 2 a été appelé PipA (SEQ ID n° 5). Les résultats de mutation dans le gène <u>pipA</u>, présentés en 2-1, montrent l'implication du gène <u>pipA</u> dans la seule synthèse de l' acide pipécolique car cette mutation n' affecte pas la biosynthèse de l'acide 3-hydroxypicolinique, qui dérive aussi de la lysine et dont l'acide pipécolique aurait pu être un précurseur.

La comparaison du produit de la phase 3 (TABLEAU II) avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 30 à 40 % avec plusieurs hydroxylases de type cytochrome P450 impliquées dans la biosynthèse de métabolites secondaires (Omer et al., 1990. Trower et al., 1992). Plusieurs hydroxylations sont envisageables dans la biosynthèse des précurseurs de la pristinamycine I, notamment au niveau de la biosynthèse du 3-HPA (hydroxylation en 3 de l'acide picolinique) et de l'acide 4-oxopipécolique (hydroxylation en 4 de l'acide pipécolique). Les résultats de mutation dans le gène pipA, présentés en 2-1-3, montrent l'implication du produit de la phase 3 dans l' hydroxylation du résidu acide pipécolique de la PIE. Le gène correspondant a donc été appelé snbF et la protéine correspondante SnbF (SEQ ID n°6).

25

30

35

20

1-3. Séquençage de la région en aval du gène snbA.

Cette région est comprise entre le gène snbA codant pour l'acide 3-hydroxypicolinique-adénylate-ligase et le gène snbR, codant pour une protéine membranaire probablement responsable du transport et de la résistance à la PI, toutes deux décrites dans le brevet PCT/FR93/00923. Les séquences ont été réalisées à partir d'un fragment isolé du cosmide pIBV2, comme décrit dans l'exemple 1-1.

Le fragment <u>HindIII-BgI</u>II de 1,6 kb a été sous-cloné dans les vecteurs M13mp18 et M13mp19, à partir du cosmide pIBV2. L' insert a été séquencé comme décrit en 1-1, en utilisant comme amorce de synthèse le primer universel ou des

PCT/FR95/00889 WO 96/01901

22

oligonucléotides synthétiques, complémentaires d'une séquence de 20 nucléotides de l'insert à séquencer. A partir de la séquence nucléotidique ainsi obtenue (SEQ ID n°7), il est possible de déterminer les phases ouvertes de lecture et d'identifier des gènes impliqués dans la biosynthèse des précurseurs de la PI de S. pristinaespiralis ainsi que les polypeptides codés par ces gènes. Nous avons recherché la présence de phases ouvertes de lecture au sein du fragment HindIII- BglII de 1,6 kb correspondant à la fin du gène snbA et à sa région aval, comme décrit dans l'exemple 1-1. Une phase ouverte complète codée par le même brin que le gène snbA (figure 6), a été mise en évidence. Par rapport à la position 1 correspondant au site HindIII, cette phase démarre au nucléotide 249, 30 nucléotides après la fin du gène snbA, et se termine au nucléotide 1481. Sa taille est de 1233 nucléotides correspondant à une protéine de 411 acides aminés.

La comparaison du produit de cette phase ouverte avec les séquences protéiques contenues dans la banque Genpro fait apparaître une homologie de 30 à 40 % avec un groupe de protéines probablement impliquées (Thorson et al., 1993) dans la transamination d'intermédiaires de biosynthèse de différents antibiotiques (DnrJ, EryC1, TylB, StrS, PrgL). La synthèse du précurseur 3-HPA qui semble dériver de la lysine par une autre voie que la cyclodéamination (voir exemples 1-2 et 2-1), pourrait nécessiter une étape de transamination susceptible d'être catalysée par le produit de cette phase 3, appelé HpaA (SEQ ID n°8). Les résultats de mutation dans ce gène, présentés en 2-2, montrent sans équivoque l'implication de ce gène dans la synthèse du précurseur 3-HPA et confirment notre hypothèse.

Les gènes papB, papC, pipA, snbF et hpaA décrits dans la présente invention sont regroupés avec les gènes snbA, papA, et papM sur une région chromosomique de environ 10 kb (figure 7). Ceci confirme la présence d'un cluster de gènes impliqués dans la biosynthèse de la P I et de ses précurseurs. L'étude des régions en amont et en aval de ce cluster devrait permettre d'identifier les autres gènes de biosynthèse des précurseurs de la PI, notamment de la L-phénylglycine et de l'acide L-2-aminobutyrique.

EXEMPLE 2: Construction de souches recombinées par disruption des gènes identifiés.

30

5

10

15

20

25

10

15

20

25

30

35

Cet exemple illustre comment il est possible de mettre en évidence l'implication des gènes décrits dans l'exemple 1, dans la biosynthèse des précurseurs des pristinamycines, ainsi que de construire des souches de S. pristinaespiralis capables de produire de nouvelles pristinamycines. Ces souches sont obtenues en disruptant les gènes impliqués dans la biosynthèse du résidu que l'on veut substituer et les nouvelles pristinamycines sont produites en complémentant ces mutants par des précurseurs originaux.

La souche SP92::pVRC508 utilisée dans la présente invention pour produire de nouveaux dérivés de PI en remplaçant le précurseur DMPAPA par d'autres molécules, est décrite dans le brevet PCT/FR93/0923. Elle résulte de la disruption par simple crossing-over du gène papA impliqué dans la biosynthèse du précurseur de la DMPAPA et supposé intervenir dans une étape précoce concernant la transamination du chorismate. Cette disruption a un caractère polaire puisque, dans ce mutant, l'expression du gène papM (PCT/FR93/0923), situé 1,5 kb en aval du gène papA et impliqué dans la double méthylation de la 4-amino-L-phénylalanine en DMPAPA, est

très réduite. En effet le dosage de l'activité de l'enzyme de méthylation SAMdépendante de la 4-amino-L-phénylalanine (PAPA) en DMPAPA indique pour le mutant SP92::pVRC508 une activité inférieure à 5% de l'activité de la souche sauvage.

Dans la présente invention cette souche SP92::pVRC508 permet dans des conditions de fermentation et de complémentation adéquates de produire de nouvelles pristinamycines, modifiées au niveau du résidu DMPAPA, comme il sera présenté dans l'exemple 3. Des mutants de même phénotype peuvent être obtenus par disruption des gènes papB ou papC décrits dans la présente invention.

D'une manière similaire, un autre de type souche de__S. pristinaespiralis, disruptée dans le gène papA et possédant le même phénotype que la souche SP92::pVRC508, a été obtenue par disruption par double crossing over du gène papA. Cette construction a été réalisée à partir d'un fragment SphI-HindIII de 4,6kb, isolé du cosmide pIBV2 et contenant la région 3' du gène pipA, les gènes snbF et papA en entier ainsi que la partie 3' du gène papC. Ce fragment a été cloné dans le vecteur suicide pDH5, capable de se répliquer seulement chez E. coli, mais portant un marqueur de résistance s'exprimant chez Streptomyces (le gène de résistance au thiostrepton ou au nohiheptide, tsr). Ce vecteur pDH5 a été développé par Wohlebben

et al. (1991 Nucleic Acid. Res. 19, 727-731). Une délétion BcII-BcII de 1,1 kb a ensuite été réalisée dans le gène papA et un fragment HindIII-HindIII de 2,2 kb portant le gène amR (résistance à la généticine et à l'apramycine) a été introduit après remplissage des extrémités cohésives. Le vecteur recombinant a été appelé pVRC414 et est présenté en figure 12. Après transformation de la souche productrice de pristinamycines par le plasmide pVRC414 des transformants résistants à la généticine et sensibles au thiostrepton ont été isolés et analysés. Ces clones résultent d'une double recombinaison homologue entre les régions d'ADN de S. pristinaespiralis du plasmide pVRC414 et la région chromosomique de S. pristinaespiralis correspondante telle que décrite en figure 13. Un de ces clones a été appelé SP212. Son phénotype est identique à celui de la souche SP92::pVRC508 en ce qui concerne la non production de PI et sa capacité à produire de nouveaux antibiotiques en présence de précurseurs originaux. Avantageusement, ce type de souche, obtenue par double crossing over, présente une meilleure stabilité comparativement aux souches obtenues par simple crossing-over.

5

10

15

20

25

30

35

2-1. Construction d'un mutant de <u>S.pristinaespiralis</u> SP92 disrupté dans le gène pipA.

Cet exemple illustre comment il est possible par disruption du gène pipA de construire une souche de <u>S.pristinaespiralis</u> SP92 qui ne produit plus de PI dans les conditions standards de fermentation et qui est capable de produire de nouvelles pristinamycines, modifiées au niveau du résidu acide 4-oxopipécolique de la PIA, lorsque des précurseurs originaux sont ajoutés à la fermentation.

Sa construction a été réalisée à l'aide d'un vecteur suicide se répliquant chez E.coli seulement, le vecteur pUC1318. Ce vecteur ne porte pas de marqueur de résistance s'exprimant chez Streptomyces. Sa présence dans le génome de

Streptomyces ne peut être détectée que par hybridation sur colonies.

2-1-1. Construction du plasmide pVRC420:

Cet exemple illustre comment il est possible de construire un plasmide ne se répliquant pas chez <u>S.pristinaespiralis</u> SP92, qui peut être utilisé pour disrupter par double recombinaison homologue le gène <u>pipA</u>.

10

15

20

25

Le plasmide pVRC420 a été construit pour réaliser le mutant chromosomique SP92 disrupté dans le gène pipA à partir du cosmide pIBV2 décrit dans le brevet PCT/FR93/0923. Le cosmide pIBV2 a été coupé par l'enzyme de restriction PstI et après séparation des fragments ainsi générés par électrophorèse sur gel d'agarose à 0.8 %, un fragment PstI-PstI de 2,8 kb, contenant le début des gènes snbA et snbF et la totalité du gène pipA a été isolé et purifié par Geneclean (Bio101. La Jolla, Californie). 50 ng du vecteur pUC1318 linéarisés par une digestion PstI, ont été ligués avec 200 ng du fragment de 2,8 kb, comme décrit dans l'exemple 1. Un clone portant le fragment souhaité a été isolé après transformation de la souche TG1 et sélection sur milieu LB + ampicilline 150 µg/ml + X-gal + IPTG. Le plasmide recombinant a été nommé pVRC415 (figure 8). Une cassette contenant le gène amR. codant pour la résistance à l'apramycine ou à la généticine (Kuhstoss et al., 1991) a été alors introduite au site unique HindIII du plasmide pVRC415, ce site étant situé 530 pb en aval du démarrage du gène pipA. Cette construction a été réalisée comme suit. Un fragment d'ADN de 2,5 kb contenant le gène am^R, le promoteur PermE (Bibb et al., 1985) ainsi que les 158 premiers acides aminés du gène de résistance à l'érythromycine, ermE a été isolé par une double digestion SalI-BelII à partir d'un plasmide dérivé des plasmides pLJ4026 (plasmide porteur du gène ermE sous contrôle du promoteur PermE) et pHP45Ωam^R. Après remplissage des extrémités cohésives 5' sortantes Sall et BglII par l'enzyme Klenow selon le protocole décrit par Maniatis et al. 1989, le fragment contenant le gène amR a été cloné au site HindIII du plasmide pVRC415, dont les extrémités cohésives 5' sortantes avaient été également remplies par l'enzyme Klenow, comme décrit précédemment. Le plasmide recombinant ainsi obtenu a été appelé pVRC420. Sa carte de restriction est présentée figure 9.

2-1-2. Isolement du mutant SP92 $\underline{pip}A::\Omega_{\underline{am}}^R$, disrupté dans le gène $\underline{pip}A$ par recombinaison homologue.

30

Cet exemple illustre comment le mutant de <u>S.pristinaespiralis</u> SP92 disrupté dans le gène <u>pipA</u> a été construit.

Ce mutant a été isolé par transformation de la souche SP92 avec le plasmide suicide pVRC420.

10

15

20

25

30

La préparation des protoplastes, leur transformation ainsi que l'extraction d'ADN total des souches recombinées ont été réalisées comme décrit par Hopwood et al. (1985).

La souche SP92 a été cultivée en milieu YEME (Hopwood et al., 1985), 34% de sucrose, 5 mM MgCl₂, glycine 0,25% pendant 40 heures à 30°C. Le mycélium a été protoplastisé en présence de lysozyme et 5 X 1 µg de pVRC420 ont été utilisés pour la transformation (par la méthode utilisant le PEG) des protoplastes. Après une nuit de régénération des protoplastes sur milieu R2YE (D. Hopwood et al. 1985), les recombinants ont été sélectionnés par étalement de 3 ml de milieu SNA (D. Hopwood et al. 1985) contenant 1500 µg/ml de généticine.

Sur les 5 transformations réalisées 100 clones résistants à la généticine ont été isolés. Ces recombinants résultent de l'intégration par simple ou double recombinaison homologue entre le gène pipA porté par le chromosome de la souche SP92 et les parties du gène pipA contenues dans le fragment de 5,3 kb porté par le plasmide suicide pVRC420. Pour sélectionner les recombinants obtenus par double crossing-over (c'est à dire ne contenant pas dans leur génome la partie pUC1318 du plasmide pVRC420), des hybridations sur colonies de 90 clones ont été réalisées avec comme sonde le pUC19 marqué au $[\alpha^{-32}P]$ dCTP, comme décrit dans Maniatis et al. (1989). 10 clones résistants à la généticine mais n' hybridant pas le vecteur pUC19 ont été sélectionnés. Les spores des recombinants ont été isolées par étalement et croissance sur milieu HT7 + 10 µg/ml de généticine, et réétalées sur le même milieu pour obtenir des colonies isolées. Afin de vérifier la position de l'intégration du plasmide pVRC420, différents Southerns de l'ADN total de plusieurs clones recombinants, purifiés comme décrit par Hopwood et al. 1985, ont été réalisés et hybridés avec le fragment PstI-PstI de 2,8 kb utilisé comme sonde après marquage au $[\alpha$ -32P]dCTP. Les résultats confirment que ces recombinants ont été obtenus par double crossing-over entre le vecteur pVRC420 et le chromosome de la souche SP92, aboutissant au remplacement du fragment PstI-PstI de 2,8 kb, contenant le gène pipA par un fragment PstI-PstI de 5,3 kb contenant le gène pipA disrupté par l'introduction du gène \underline{am}^R . Un de ces mutants a été nommé SP92 $\underline{pip}A::\Omega\underline{am}^R$.

2-1-3. Production de pristinamycines par le mutant SP92pipA::Ωam^R.

`5

10

15

20

25

Cet exemple illustre comment il est déterminé que le mutant de S.pristinaespiralis SP92 disrupté dans le gène pipA par l'intégration du plasmide pVR420 d'une part ne produit plus de PI dans les conditions standards de fermentation et d'autre part permet la forte production d'une forme minoritaire des composants B des streptogramines dans lesquels l'acide 4-oxopipécolique est remplacé par l'acide pipécolique.

Le mutant SP92 $pipA::\Omega$ amR, ainsi que la souche SP92, en tant que souche témoin, ont été cultivés en milieu de production liquide. La fermentation a été réalisée comme suit : 0,5 ml d'une suspension de spores de la souche précitée sont ajoutés en conditions stériles à 40 ml de milieu inoculum dans un erlen chicané de 300 ml. Le milieu inoculum est constitué par 10 g/l de Corn Steep, 15 g/l de saccharose, 10 g/l de (NH₄)₂SO₄, 1 g/l de K₂HPO₄, 3 g/l de NaCl, 0,2 g/l de MgSO₄-7H₂O et 1,25 g/l de CaCO₃. Le pH est ajusté à 6.9 par de la soude avant l'introduction du carbonate de calcium. Les erlens sont agités pendant 44 h à 27°C sur un agitateur rotatif à la vitesse de 325 rpm. 2,5 ml de la culture précédente âgée de 44 h sont ajoutés stérilement à 30 ml de milieu de production dans un erlen de 300 ml. Le milieu de production est constitué par 25 g/l de farine de soja, 7,5 g/l d'amidon, 22,5 g/l de glucose, 3,5 g/l de levure fourragère, 0,5 g/l de sulfate de zinc et 6 g/l de carbonate de calcium. Le pH est ajusté à 6,0 par de l'acide chlorhydrique avant l'introduction du carbonate de calcium. Les erlens sont agités pendant 24, 28 et 32 heures à 27°C. A chaque temps, 10 g de moût sont pesés dans un erlen lisse, auxquels sont ajoutés 20 ml de phase mobile composée de 34 % d'acétonitrile et 66 % d'une solution de 0,1 M de KH₂PO₄ (ajusté à pH 2,9 par H₃PO₄ concentré) permettant l'extraction des pristinamycines. Après agitation, le tout est centrifugé et les pristinamycines contenues dans le surnageant sont dosées par CLHP en injectant 150 µl du surnageant de centrifugation sur une colonne Nucléosil 5-C8 de 4,6 x 150 mm éluée par un mélange de 40 % d'acétonitrile et de 60 % de tampon phosphate 0,1 M pH 2,9. Les pristinamycines I sont détectées grâce à leur absorbance UV à 206 nm.

30

35

Les résultats ont montré que dans les conditions de fermentation réalisées, le mutant SP92pipA::Ωam^R n' a pas produit de PI, ceci à 24, 28 et 32 hrs de fermentation, alors que le témoin SP92 a produit pour les 3 temps testés, une quantité standard de PI. Pour les deux souches, la quantité de PII produite est restée la même. Le mutant SP92pipA::Ωam^R est bien bloqué dans une étape de biosynthèse de la PI.

10

15

20

25

30

35

Des tests complémentaires de fermentation ont été réalisés en ajoutant au bout de 16 heures à la culture en milieu de production, les différents précurseurs de la PI, séparément ou ensemble. Les résultats de ces complémentations ont permis de montrer que lorsqu' on ajoute au milieu de fermentation 100 mg/l d' acide pipécolique et 100 mg/l de DMPAPA, simultanément, le mutant produit un dérivé normalement mineur de la PI, la PIE (dont la quantité produite est inférieure à 5 % chez SP92), à un niveau équivalent à la production de PIA par la souche témoin. Cette production n' a pas lieu si l'acide pipécolique et le DMPAPA sont ajoutés séparément. La PIE diffère de la PIA (composant majeur de la PI) par l'absence de la fonction cétone en 4 sur l'acide pipécolique. Le fait que la complémentation du mutant SP92pipA::ΩamR ne puisse être réalisée qu' en ajoutant simultanément l'acide pipécolique et la DMPAPA, indique que les gènes papA et probablement papB et papM ont été disruptés par effet polaire de la construction. En effet, tous ces gènes sont situés en aval de pipA, et sont probablement cotranscrits avec pipA. La disruption de ce dernier entraîne donc la disruption des gènes pap et par conséquence l'absence de synthèse de la DMPAPA. Le fait que la complémentation du mutant SP92pipA::Ω amR par l'acide pipécolique, entraîne la production de PIE et non de PIA, conduit à deux conclusions : la première est que la construction du cycle de la PI se fait par incorporation de l'acide pipécolique et non de l'acide 4-oxopipécolique, et qu' une hydroxylation générant la fonction cétone en 4 a alors lieu ultérieurement. La deuxième est que cette hydroxylation est probablement réalisée par l'enzyme SnbF, dont le gène de structure se situe directement en aval du gène pipA. En effet, la polarité évidente de la disruption du gène pipA, sur les gènes pap, implique probablement un effet polaire sur le gène snbF, situé entre pipA et les gènes pap, qui se traduit par l'inhibition de la fonction d'hydroxylation du résidu acide pipécolique de la PIE en acide 4-hydroxypipécolique retrouvé dans les PIF et PIG (figure 2) puis oxydé en acide 4-oxopipécolique dans la PIA.

La réalisation d'un tel mutant a permis de construire une souche de S. pristinaespiralis incapable de produire de la PI sauf en présence des précurseurs de PI, DMPAPA et acide pipécolique, à partir desquels elle est capable de produire en quantité équivalente à la souche de départ un dérivé de PI normalement minoritaire dans le mélange de pristinamycine. De même en présence de précurseurs originaux ou d'un mélange de précurseurs originaux et des précurseurs normalement présents dans la PI, cette souche pourra produire de nouvelles pristinamycines, modifiées dans l'un ou l'autre ou dans les deux résidus DMPAPA et acide 4-oxopipécolique.

2-2. Construction d'un mutant de <u>S. pristinaespiralis</u> SP92 disrupté dans le gene hpaA.

5

10

Cet exemple illustre comment il est possible par disruption du gène hpaA de construire une souche de <u>S.pristinaespiralis</u> SP92 qui ne produit plus de PI dans les conditions standards de fermentation et qui est capable de produire de nouvelles pristinamycines, modifiées au niveau du précurseur 3-HPA, lorsque des précurseurs originaux sont ajoutés à la fermentation.

Sa construction a été réalisée à l' aide d'un plasmide ne se répliquant pas chez <u>S.pristinaespiralis</u> SP92, qui peut être utilisé pour disrupter par double recombinaison homologue le gène <u>hpaA</u>.

15

20

25

30

35

2-2-1. construction du plasmide suicide pVRC421

La construction du plasmide pVRC421 a été réalisée à l'aide d'un vecteur suicide, capable de se répliquer chez <u>E.coli</u> seulement, mais portant un marqueur de résistance s'exprimant chez Streptomyces, le gène de résistance au thiostrepton ou au nosiheptide, tsr. Ce vecteur, pDH5, a été développé par Hillemann <u>et al.</u> (1991).

Le plasmide pVRC421 a été construit pour réaliser le mutant chromosomique SP92 disrupté dans le gène hpaA, à partir du cosmide pIBV2 décrit dans le brevet PCT/FR93/0923. Le pIBV2 a été digéré par l' enzyme de restriction SphI et après séparation des fragments ainsi générés par électrophorèse sur gel d'agarose à 0,6 %, un fragment SphI-SphI de 4,8 kb, contenant la totalité du gène hpaA et la quasi totalité du gène snbA a été isolé et purifié par Geneclean comme décrit plus haut. 50 ng du vecteur pDH5 linéarisés par une digestion SphI, ont été ligués avec 200 ng du fragment de 4,8 kb, comme décrit ultérieurement. Un clone portant le fragment souhaité a été isolé après transformation de la souche TG1 et sélection sur milieu LB + ampicilline 150 µg/ml + IPTG + X-gal. Le plasmide recombinant a été nommé pVRC411 (figure 10). Une cassette contenant le gène amR codant pour la résistance à l'apramycine ou à la généticine a été alors introduite au site unique PfImI du plasmide

pVRC411, ce site étant situé 610 pb en aval du démarrage du gène hpaA. Cette construction a été réalisée comme suit. Un fragment d'ADN de 2,2 kb contenant le gène amR a été isolé après digestion du plasmide pHP45ΩamR contenant le gène amR, par HindIII. Après remplissage des extrémités cohésives 5' sortantes HindIII par l'enzyme Klenow selon le protocole décrit par Maniatis et al. 1989, le fragment contenant le gène amR a été cloné au site PflmI du plasmide pVRC411, dont les extrémités cohésives 3' sortantes avaient été rendues franches par l'enzyme T4 polymérase, comme décrit dans Maniatis et al. 1989. Le plasmide recombinant ainsi obtenu a été appelé pVRC421. Sa carte de restriction est présentée figure 11.

10

5

2-2-2. Isolement du mutant SP92 $\underline{hpa}A::\Omega\underline{am}^R$, disrupté dans le gène \underline{hpaA} par recombinaison homologue.

Cet exemple illustre comment le mutant de <u>S.pristinaespiralis</u> SP92, disrupté dans le gène <u>hpaA</u> a été construit.

Ce mutant a été isolé par transformation de la souche SP92 avec le plasmide suicide pVRC421.

La préparation des protoplastes et leur transformation ont été réalisées comme décrit précédemment.

20

25

30

35

15

La souche SP92 a été cultivée en milieu YEME, 34% de sucrose, 5 mM MgCl₂, glycine 0,25% pendant 40 heures à 30°C. Le mycélium a été protoplastisé en présence de lysozyme et 5 X 1 µg de pVRC421 ont été utilisés pour la transformation (par la méthode utilisant le PEG) des protoplastes. Après une nuit de régénération des protoplastes sur milieu R2YE, les recombinants ont été sélectionnés par étalement de 3 ml de milieu SNA contenant 1500 µg/ml de généticine.

Sur les 5 transformations réalisées 600 clones résistants à la généticine ont été isolés. Ces recombinants résultent de l'intégration par simple ou double recombinaison homologue entre le gène hpaa.porté par le chromosome de la souche SP92 et le fragment de 6 kb du plasmide suicide pVRC421. Pour sélectionner les recombinants obtenus par double crossing-over (c' est à dire les clones ne contenant plus dans leur génome la partie pDH5 du plasmide pVRC421), les clones ont été repiqués sur milieu HT7 contenant 400 µg/ml de thiostrepton. 6 clones résistants à la généticine mais sensibles au thiostrepton ont été sélectionnés. Les spores des recombinants ont été isolées par étalement et croissance sur milieu HT7 + 10 µg/ml de généticine, et réétalées sur le même milieu pour obtenir des colonies isolées. Afin

de vérifier la position de l'intégration du plasmide pVRC421, différents Southerns de l'ADN total des 6 clones recombinants, purifiés comme décrit par Hopwood et al. 1985, ont été réalisés et hybridés avec le fragment SphI-SphI de 4,8 kb utilisé comme sonde après marquage au [α-32P]dCTP. Les résultats confirment que ces recombinants ont été obtenus par double crossing-over entre le vecteur pVRC421 et le chromosome de la souche SP92, aboutissant au remplacement du fragment SphI-SphI de 4,8 kb, contenant le gène hpaA par un fragment SphI-SphI de 6 kb contenant le gène hpaA disrupté par le gène am^R. Un de ces mutants a été nommé SP92hpaA:: Ωam^R.

10

15

20

25

30

35

5

2-2-3. Production de pristinamycines par le mutant SP92hpaA::Ωam^R.

Cet exemple illustre comment il est déterminé que le mutant de <u>S.pristinaespiralis</u> SP92 disrupté dans le gène <u>hpaA</u> par l'intégration du plasmide pVR421, ne produit plus de PI dans les conditions standards de fermentation.

Le mutant SP92hpaA::QamR, ainsi que la souche SP92, en tant que souche témoin, ont été cultivés en milieu de production liquide. La fermentation a été réalisée comme décrit à l'exemple 2-1-3 puis les pristinamycines ont été extraites et dosées comme décrit précédemment. Les résultats ont montré que dans les conditions de fermentation réalisées, le mutant SP92hpaA::Ωam^R n' a pas produit de PI, ceci à 24, 28 et 32 hrs de fermentation, alors que le témoin a produit pour les 3 temps testés. une quantité standard de PI. Pour les deux souches, la quantité de PII produite est restée la même. Le mutant SP92hpaA::Ωam^R est bien bloqué dans une étape de biosynthèse de la PI. Des tests complémentaires de fermentation ont été réalisés en ajoutant au bout de 16 heures à la culture en milieu de production les différents précurseurs de la PI, séparément ou ensemble. Quand on ajoute au milieu de fermentation 100 mg/l d'acide 3-hydroxypicolinique, le mutant produit alors de la PI à à un niveau équivalent à la production de PI par la souche témoin. Le fait que la complémentation du mutant SP92hpaA::QamR ne puisse être réalisée qu' en ajoutant de l'acide 3-hydroxypicolinique, montre que le gène hpaA est impliqué dans la synthèse de ce précurseur.

La construction de ce mutant a permis de réaliser une souche de S. pristinaespiralis mutée pour sa production de PI, mais qui en présence du précurseur

3-HPA est capable de produire en quantité équivalente à la souche de départ de la PI. De même que dans les exemples précédents, il est envisageable à partir d'un tel mutant et en présence de précurseurs originaux de produire de nouvelles pristinamycines modifiées au niveau du résidu acide 3-hydroxypicolinique.

5

15

20

25

30

35

EXEMPLE 3: Production de composés de formule générale I par le 10 mutant SP92::pVRC508.

Cet exemple illustre comment le mutant de <u>S. pristinaespiralis</u> SP92 disrupté dans le gène <u>papA</u> par l'intégration du plasmide pVRC508 est capable de synthétiser de nouvelles streptogramines en présence de précurseurs ajoutés dans le milieu de production. Ces précurseurs peuvent être des dérivés d'acides aminés et plus particulièrement de phénylalanine mais aussi d'acides α -cétocarboxyliques et plus particulièrement d'acide phénylpyruvique.

Le mutant SP92::pVRC508 a été cultivé en milieu de production liquide. La fermentation a été réalisée comme suit : 0,5 ml d'une suspension de spores de la souche précitée est ajouté en conditions stériles à 40 ml de milieu inoculum dans un erlen chicané de 300 ml. Le milieu inoculum est constitué par 10 g/l de Corn Steep, 15 g/l de saccharose, 10 g/l de (NH₄)₂SO₄, 1 g/l de K₂HPO₄, 3 g/l de NaCl, 0,2 g/l de MgSO₄-7H₂O et 1,25 g/l de CaCO₃. Le pH est ajusté à 6.9 par de la soude avant l'introduction du carbonate de calcium. Les erlens sont agités pendant 44 h à 27°C sur un agitateur rotatif à la vitesse de 325 rpm. 2.5 ml de la culture précédente âgée de 44 h sont ajoutés stérilement à 30 ml de milieu de production dans un erlen de 300 ml. Le milieu de production est constitué par 25 g/l de farine de soja, 7,5 g/l d'amidon, 22,5 g/l de glucose, 3,5 g/l de levure fourragère, 0,5 g/l de sulfate de zinc et 6 g/l de carbonate de calcium. Le pH est ajusté à 6,0 par de l'acide chlorhydrique avant l'introduction du carbonate de calcium. Les erlens sont agités à 27°C sur un agitateur rotatif à la vitesse de 325 rpm. Au bout de 16h, 1 ml d'une solution d'un des précurseurs listés dans le tableau 3 (généralement 5 ou 10 g/l) est ajouté à la culture. Celle-ci est arrêtée 8 ou 24 h plus tard. Aussitôt le moût est volumé et on lui ajoute 2 volumes de phase mobile composée de 34 % d'acétonitrile et 66 % d'une solution de 0,1 M de KH₂PO₄ (ajusté à pH 2,9 par H₃PO₄ concentré) permettant l'extraction des pristinamycines. Après agitation, le tout est centrifugé et les pristinamycines contenues dans le surnageant sont extraites et purifiées comme décrit dans l'exemple 4. Elles sont également dosées par CLHP en injectant 150 µl du surnageant de centrifugation sur une colonne Nucléosil 5-C8 de 4,6 x 150 mm éluée par un mélange de 40 % d'acétonitrile et de 60 % de tampon phosphate 0,1 M pH 2,9. Les nouvelles pristinamycines I sont détectées grâce à leur absorbance UV à 206 nm et éventuellement grâce à leur émission de fluorescence (filtre 370 nm, excitation à 306 nm).

10

PRECURSEUR	ORIGINE	
Phénylalanine	Janssen	
4-Diméthylaminophénylalanine	Exemple 33	
4-Méthylaminophénylalanine	Exemple 34-1	
4-Aminophénylalanine	Janssen 22.794.96	
4-Diéthylaminophénylalanine	Exemple 33	
4-Ethylaminophénylalanine	Exemple 33	
4-Méthylthiophénylalanine	Exemple 33	
4-Méthylphénylalanine	J.P.S101-312-4/ Exemple 33	
4-Méthoxyphénylalanine	Janssen 16.975.97	
4-Trifluorométhoxyphénylalanine	Exemple 34-8	
4-Méthoxycarbonylphénylalanine	Exemple 33	
4-Chlorophénylalanine	Janssen 15.728.14	
4-Bromophénylalanine	Janssen 22.779.81	
4-Iodophénylalanine	Bachem F 1675	
4-Trifluorométhylphénylalanine	P.C.R. Inc. 12 445-3	
4-tert-Butylphénylalanine	Exemple 35-1	
4-Isopropylphénylalanine	Exemple36-1	
3-Méthylaminophénylalanine	Exemple35-3	
3-Méthoxyphénylalanine	J.P.S. 101-313-2	
3-Méthylthiophénylalanine	Exemple 34-11	

3-Fluoro 4-Méthylphénylalanine	Exemple 34-5
Acide 4-tert-Butylphénylpyruvique	Exemple 33
Acide 4-Méthylaminophénylpyruvique	Exemple 34-4
2-Naphtylphénylalanine	Bachem F 1865
4-Fluorophénylalanine	Bachem F 1535
PRECURSEUR	ORIGINE
3-Fluorophénylalanine	Bachem F 2135
3-Ethoxyphénylalanine	Exemple 37-1
2,4-Diméthylphénylalanine	Exemple 33
3,4-Dimethylphénylalanine	Exemple 33
	Exemple 33
3-Méthylphénylalanine	Exemple 33
4-Phénylphénylalanine	Exemple 36-3
4-Butylphénylalanine	Aldrich 28.728.8
2-Thiényl-3-Alanine	Exemple 33
3-Trifluorométhylphénylalanine	Aldrich T 9.039.5
3-Hydroxyphénylalanine	Exemple 35-6
3-Ethylaminophénylalanine	Exemple 33
4-Aminométhylphénylalanine	Exemple 38-2
4- Allylaminophénylalanine	Exemple 38-1
4- Diallylaminophénylalanine	Exemple 39-4
4- Allyl éthylaminophénylalanine	Exemple 39-6
4- Ethyl propylaminophénylalanine	Exemple 39-1
4- Ethyl isopropylaminophénylalanine	Exemple 39-8
4-Ethylméthylcyclopropylaminophénylalanine	Exemple 40-1
4-(1-pyrrolidinyl) phénylalanine	Exemple 33
4-O-allyltyrosine	Exemple 33
4-O-Ethyltyrosine	Exemple 33
4-Ethylthiophénylalanine	Exemple 41-1
4-Ethylthiométhylphénylalanine	Exemple 42-1
4-O-(2-Chloroéthyl) tyrosine	Exemple 33
4-Acétyl phénylalanine	Exemple 33

4-Ethyl phénylalanine	Exemple 33
3-Diméthylaminophénylalanine	Exemple 35-10

TABLEAU III

Le tableau suivant (TABLEAU IV) indique les temps de rétention relatifs des nouvelles P I produites en prenant pour référence la PIA. Les temps de rétention absolus ont été déterminés à 25°C dans le système CLHP décrit ci-dessus; ils varient légèrement d'une injection à l'autre d'une part et en fonction de la température d'autre part.

Précurseur	t _R (temps de	t _R (temps de rétention relatif) des nouvelles P I (Neo P I)		
	Neo P IA	Neo P I _H	Autres neo P I	
4-Méthylaminophénylalanine	0,85			
4-Aminophénylalanine	0,64			
4-Méthylthiophénylalanine	1,93	2,73	1,63	
4-Méthylphénylalanine	1,77	2,65		
4-Méthoxyphénylalanine	1,46			
4-Méthoxycarbonylphénylalanine	1,49			
4-Chlorophénylalanine	2,04			
4-Bromophénylalanine	2,16			
4-lodophénylalanine	2,42			
4-Trifluorométhylphénylalanine	2,56	3,74		
4-tert-Butylphénylalanine	3,34		·	
4-Isopropylphénylalanine	2,80		4,35	
3-Méthylaminophénylalanine	1,15			
3-Méthoxyphénylalanine	1,49	2,04		
3-Fluoro 4-Méthylphénylalanine	2,93			
Acide 4-tert-Butylphényl-pyruvique	3,34			

DOCID: <WO_____9601901A1_I_>

			
Acide 4-Méthylaminophényl- pyruvique	0,85		
4-Ethylamino phénylalanine	0,94		
4- Diéthylaminophénylalanine	0,61		
4- Allylaminophénylalanine	1,83	•	
4- Diallylaminophénylalanine	2,64		
4- Allyl éthylaminophénylalanine	2,4		
4-Ethylpropylaminophénylalanine	1,06		
4-Ethylisopropylaminophénylalanine	0,89		
4- Ethylméthylcyclopropylaminophényl	1,1		
alanine		<u> </u>	
4-(1-pyrrolidinyl) phénylalanine	2,0		
4-O-Trifluorométhyltyrosine	2,42		<u> </u>
4-O-allyltyrosine	2,62		
4-O-Ethyltyrosine	2,2		_
4-Ethylthiophénylalanine	1,96	<u> </u>	
4-Méthylthiométhylphénylalanine	1,98		
4-O-(2-Chloroéthyl) tyrosine	2,45		_
4-Acétyl phénylalanine	1,61		
4-Ethyl phénylalanine	1,86	2,40	
3-Diméthylaminophénylalanine	1,49	<u> </u>	
3-Méthylthiophénylalanine	1,93	·	
3-O-Ethyltyrosine	1,78		

TABLEAU IV

La nouvelle P I de t_R 4,35 pour la 4-Isopropylphénylalanine correspond à une neo P I_E décrite dans l'exemple 14.

La nouvelle P I de t_R 1,63 pour la 4-Méthylthiophénylalanine correspond à une 5γ-hydroxy neo P I_H décrite dans l'exemple 5.

Par ailleurs le mutant SP92::pVRC508 a été fermenté en présence de 4diméthylamino phénylalanine. Dans ces conditions de complémentation le mutant SP92::pVRC508 produit une quantité de pristinamycines I_A équivalente à celle produite par la souche SP92.

5

10

15

20

EXEMPLE 4: Préparation de la pristinamycine I_B [4 ζ -méthylamino-dés(4 ζ -diméthylamino) pristinamycine I_A] et de la 4 ζ -amino-dés(4 ζ -diméthylamino) pristinamycine I_A

4.1: Préparation de la pristinamycine I_B [4 ζ -méthylamino-dés(4 ζ -diméthylamino) pristinamycine I_A]

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans l'eau de 4-méthylaminophénylalanine (R,S) synthétisée comme à l'exemple 34-1. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la pristinamycine IB sont regroupées et évaporées. Le résidu sec est repris par 6 ml d'un mélange 65% eau et 35% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 65% de tampon phosphate 100 mM pH 2,9 et 35% d'acétonitrile. Les fractions contenant la pristinamycine IB sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 52 mg de pristinamycine Ip.

30

35

25

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.71 (dd, J= 16 et 6 Hz, 1H, 5 β_2), 0.92 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.10 à 1.40 (mt, 2H: 3 β_2 et 3 γ_2), 1.34 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.03 (mt, 1H, 3 β_1), 2.22 (mt, 1H, 5 δ_2), 2.33 (d large, J= 16 Hz, 1H: 5 δ_1), 2.40 (d, J= 16 Hz, 1H: 5 β_1), 2.82 (mt, 1H: 5 ϵ_2), 2.81 (s, 3H: 4 NCH₃ en para du phényle), 2.90 (dd,

J= 12 et 4 Hz, 1H: 4 $β_2$), 3.29 (s, 3H: 4 NCH₃), de 3.20 à 3.45 et 3.60 (2 mts, 1H chacun: CH₂ 3 δ), 3.40 (t, J= 12 Hz, 1H: 4 $β_1$), 4.57 (dd, J= 7 et 8 Hz, 1H, 3 α), 4.75 (dd large, J= 13 et 7 Hz, 1H: 5 $ε_1$), 4.83 (mt, 1H: 2α), 4.89 (d large, J= 10 Hz, 1H: 1α), 5.24 (dd, J= 12 et 4 Hz, 1H: 4 α), 5.32 (d large, J= 6 Hz, 1H: 5 α), 5.89 (d, J= 9 Hz, 1H: 6 α), 5.90 (q large, J= 7.5 Hz, 1H: 1β), 6.53 (d, J= 9 Hz, 1H: NH 2), 6.53 (d, J= 8 Hz, 2H: 4ε), 7.03 (d, J= 8 Hz, 2H: 4δ), de 7.10 à 7.35 (mt, 5H: H Aromatiques 6), 7.46 (mt, 2H: 1' H_δ et 1' H_δ), 7.85 (dd, J = 5.5 et 2 Hz, 1H: 1' H_δ), 8.44 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9 Hz, 1H: NH 6), 11.63 (s, 1H: OH).

4.2: Préparation de la 4ζ -amino-dés(4ζ -diméthylamino) pristinamycine I_A

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 5 g/l dans l'eau de 4-aminophénylalanine (S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. Le résidu seci est repris par 6 ml d'un mélange 65% eau et 35% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 65% de tampon phosphate 100 mM pH 2,9 et 35% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 5 mg de 4ζamino-dés(4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.72 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.90 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.10 à 1.40 (mt, 2H: 3 β_2 et 3 γ_2), 1.33 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.02 (mt, 1H, 3 β_1), 2.19 (mt, 1H, 5 δ_2), 2.33 (d large, J= 16 Hz, 1H: 5 δ_1), 2.42 (d, J= 16 Hz, 1H: 5 β_1), 2.81 (dt, J= 13 et 4 Hz, 1H: 5 ϵ_2), 2.90 (dd, J= 12 et 4 Hz, 1H: 4 β_2), 3.24 (s, 3H: NCH₃ 4), de 3.20 à 3.40 et 3.54 (2 mts, 1H chacun: CH₂ 3 δ), 3.30 (t, J= 12 Hz, 1H: 4 β_1), 3.72 (mf, 2H: ArNH₂), 4.54 (dd, J= 7.5 et 7 Hz, 1H, 3 α), 4.73 (dd large, J= 13 et 8 Hz, 1H: 5 ϵ_1), 4.82 (mt, 1H: 2 α), 4.89 (d large, J= 10 Hz, 1H: 1 α), 5.22 (dd, J= 12 et 4 Hz, 1H: 4 α), 5.32 (d large, J= 5.5 Hz, 1H: 5 α), 5.89 (mt, 2H: 6 α et 1 β), 6.51 (d, J= 9.5 Hz, 1H: NH 2), 6.61 (d, J= 8 Hz, 2H: 4 ϵ), 6.98 (d, J= 8 Hz, 2H: 4 ϵ), de 7.15 à 7.35 (mt, 5H: H Aromatiques 6), 7.45 (dd, J= 8.5 et 1.5 Hz, 1H: 1' H₄), 7.48 (dd, J= 8.5 et 4 Hz, 1H: 1' H₅), 7.82 (dd, J= 4 et 1.5 Hz, 1H: 1' H₆), 8.43 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9.5 Hz, 1H: NH 6), 11.63 (s, 1H: OH).

35

5

10

20

25

30

EXEMPLE 5 : Préparation de la 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I_A , de la 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I_H et de la 5γ hydroxy 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I_H

5

10

15

20

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude 0,1N de 4-méthylthiophénylalanine (R,S) synthétisée comme à l'exemple 33. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 65 mg de résidu sec. Celui-ci est repris par 6 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 45 mg de 4ζ-méthylthiodés(4ζ-diméthylamino) pristinamycine IA.

25

30

35

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.68 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.13 (mt, 1H: 3 β_2), de 1.25 à 1.40 (mt, 1H: 3 γ_2), 1.33 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.55 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.02 (mt, 1H, 3 β_1), 2.18 (mt, 1H, 5 δ_2), 2.38 (d large, J= 16.5 Hz, 1H: 5 δ_1), 2.46 (s, 3H: SCH₃), 2.48 (d, J=16 Hz, 1H, 5 β_1), 2.85 (dt, J= 13.5 et 4 Hz, 1H: 5 ϵ_2), 3.00 (dd, J= 12 et 5 Hz, 1H: 4 β_2), 3.23 (s, 3H: NCH₃ 4), 3.37 (t, J= 12 Hz, 1H: 4 β_1), 3.37 et 3.58 (2 mts, 1H chacun: CH₂ 3 δ), 4.55 (t, J= 7.5 Hz, 1H, 3 α), 4.77 (dd large, J= 13.5 et 8 Hz, 1H: 5 ϵ_1), 4.86 (mt, 1H: 2 α), 4.89 (dd, J= 10 et 1.5 Hz, 1H: 1 α), 5.30 (d large, J= 5.5 Hz, 1H: 5 α), 5.32 (dd, J= 12 et 5 Hz, 1H: 4 α), 5.90 (d, J= 9.5 Hz, 1H: 6 α), 5.92 (dq, J= 7.5 et 1.5 Hz, 1H:1 β), 6.55 (d, J= 9.5 Hz, 1H: NH 2), 7.13 (d, J= 8 Hz, 2H: 4 δ), de 7.15 à 7.35 (mt, 5H: H Aromatiques 6), 7.19 (d, J= 8)

Hz, 2H: 4ε), 7.45 (mt, 2H: 1' H_4 et 1' H_5), 7.76 (t, J = 5 Hz, 1H: 1' H_6), 8.42 (d, J = 10 Hz, 1H: NH 1), 8.76 (d, J = 9.5 Hz, 1H: NH 6), 11.65 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I_H, 10 mg de 4ζ-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_H sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus mais en portant la proportion d'acétonitrile de la phase éluante à 50%.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.32 (mt, 1H, 5 β_2), 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.20 à 1.35 (mt, 2H: 3 β_2 et 3 γ_2), 1.30(d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.35 à 2.05 (mt, 9H: 3 γ_1 - 3 β_1 - CH₂ 2 β - CH₂ 5 δ - CH₂ 5 γ et 5 γ , 2.44 (dt, J= 13.5 et 1.5 Hz, 1H: 5 γ , 2.49 (s, 3H: SCH₃), 2.99 (dd, J= 12 et 5 Hz, 1H: 4 γ , 3.09 (dd, J= 12.5 et 12 Hz, 1H: 4 γ , 3.54 et 3.64 (2 mts, 1H chacun: CH₂ 3 γ , 4.17 (dd, J= 7 et 6 Hz, 1H: 3 γ , 4.49 (d large, J= 13.5 Hz: 1H: 5 γ , de 4.70 à 4.80 (mt, 3H: 2 γ - 5 γ et 4 γ , 4.84 (dd, J=10 et 1.5 Hz, 1H: 1 γ), 5.51 (d, J= 7 Hz, 1H: 6 γ), 5.73 (mt, 1H: 1 γ), 6.65 (d, J= 9.5 Hz, 1H: NH 2), 7.10 (d, J= 8 Hz, 2H: 4 γ), 7.87 (d, J=4 Hz, 1H: 1' H₂), 8.55 (mf, 1H: NH 6), 8.55 (d, J= 10 Hz, 1H: 11 Hz), 11.70 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I , 3 mg de 5γ -hydroxy 4ζ -méthylthio-dés(4ζ -diméthylamino) pristinamycine I H sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrite ci-dessus en gardant la proportion d'acétonitrile de la phase éluante à 45%.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): on observe un isomère nettement majoritaire: le -OH en 5 γ en position axiale. 0.37 (d mt, J= 16 Hz, 1H, 5 β_2), 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.20 à 1.45 (mt, 2H: 3 β_2 et 3 γ_2), 1.31 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.40 à 1.85 (mt, 5H: 3 γ_1 - CH₂ 2 β et CH₂ 5 δ), 1.98 (mt, 1H, 3 β_1), 2.17 (d, J= 16 Hz, 1H: 5 β_1), 2.50 (s, 3H: SCH₃), 2.77 (dt, J= 13.5 et 2 Hz, 1H: 5 ϵ_2), 2.99 (dd, J= 12 et 4 Hz, 1H: 4 β_2), 3.11 (t, J= 12 Hz, 1H: 4 β_1), de 3.45 à 3.70 (mt, 2H: CH₂ 3 δ), 3.73 (mt, 1H: 5 γ en position équatoriale), 4.13 (t, J= 7 Hz, 1H, 3 α), 4.37 (d large, J= 13.5 Hz, 1H: 5 ϵ_1), de 4.75 à 4.95 (mt, 3H: 2 α - 4 α et 5 α), 4.89 (dd, J= 10 et 1 Hz, 1H: 1 α), 5.70 (d, J= 8 Hz, 1H: 6 α), 5.80 (dq,

25

30

35

5

J= 7.5 et 1 Hz, 1H: 1 β), 6.37 (d, J= 5 Hz, 1H: NH 4), 6.71 (d, J= 10 Hz, 1H: NH 2), 7.10 (d, J= 8 Hz, 2H: 4 δ), 7.22(d, J= 8 Hz, 2H: 4 ϵ), de 7.20 à 7.40 (mt, 5H: H Aromatiques 6), 7.43 (dd, J= 8.5 et 1.5 Hz, 1H: 1' H₄), 7.47 (dd, J= 8.5 et 4 Hz, 1H: 1' H₅), 7.89 (dd, J = 4 et 1.5 Hz, 1H: 1' H₆), 8.55 (d, J= 10 Hz, 1H: NH 1), 9.15 (d, J= 8 Hz, 1H: NH 6), 11.70 (s, 1H: OH).

EXEMPLE 6: Préparation de la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_A et de la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_H.

10

15

20

25

5

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 5 g/l dans la soude 0,1N de 4-méthylphénylalanine (R,S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2.9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées. séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 49 mg de résidu sec. Celui-ci est repris par 6 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 44 mg de 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine IA.

30

35

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.52 (dd, J= 16 et 6 Hz, 1H, 5 β ₂), 0.93 (t, J= 7.5 Hz, 3H: CH₃.2 γ), 1.15 (mt, 1H: 3 β ₂), de1.20 à 1.40 (mt, 1H: 3 γ ₂), 1.35 (d, J= 7.5 Hz, 3H: CH₃.1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ ₁ et CH₂.2 β), 2.04 (mt, 1H, 3 β ₁), 2.18 (mt, 1H, 5 δ ₂), de 2.25 à 2.45 (mt, 2H: 5 δ ₁ et 5 β ₁), 2.36 (s, 3H: ArCH₃), 2.83 (dt, J= 13 et 4 Hz, 1H: 5 ϵ ₂), 2.99 (dd, J= 13 et 4 Hz, 1H: 4 β ₂), 3.28 (s, 3H: NCH₃4), 3.31 et 3.59 (2 mts, 1H chacun: CH₂3 δ), 3.40 (t, J=

13 Hz, 1H: 4 β_1), 4.59 (t, J= 7.5 Hz, 1H, 3 α), 4.74 (dd large, J= 13 et 7 Hz, 1H: 5 ϵ_1), 4.85 (mt, 1H: 2 α), 4.89 (d large, J= 10 Hz, 1H: 1 α), de 5.25 à 5.35 (mt, 2H: 5 α et 4 α), de 5.85 à 5.95 (mt, 2H: 6 α et 1 β), 6.52 (d, J= 9.5 Hz, 1H: NH 2), 7.14 (AB limite, J= 9 Hz, 4H: 4 δ et 4 ϵ), de 7.15 à 7.35 (mt, 5H: H Aromatiques 6), 7.50 (mt, 2H: 1' H₄ et 1' H₅), 7.81 (dd, J = 4 et 2Hz, 1H: 1' H₆), 8.41 (d, J= 10 Hz, 1H: NH 1), 8.74 (d, J= 9 Hz, 1H: NH 6), 11.63 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I_H, 21 mg de 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_H (spectrométrie de masse: M+H+= 810) sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

EXEMPLE 7: Préparation de la 4ζ-méthoxy-dés(4ζ-diméthylamino) pristinamycine I_A.

15

20

25

30

10

5

On réalise à l'échelle de 12 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 5 g/l dans la soude 0,1N de 4-méthoxyphénylalanine (R,S). Au terme de 40 h de culture, les 0,35 litres de moût issus de 12 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 14 mg de résidu sec. Celui-ci est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semipréparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 12 mg de 4ζ-méthoxy-dés(4ζ-diméthylamino) pristinamycine IA.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, d en ppm, ref. TMS): 0.63 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.96 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.17 (mt, 1H: 3 β_2), de1.30 à 1.45 (mt, 1H: 3 γ_2), 1.38 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.55 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.05 (mt, 1H, 3 β_1), 2.20 (mt, 1H, 5 δ_2), 2.40 (d large, J= 16 Hz, 1H: 5 δ_1), 2.47 (d, J= 16 Hz, 1H: 5 β_1), 2.88 (dt, J= 13 et 4 Hz, 1H: 5 ϵ_2), 2.99 (dd, J= 12.5 et 5 Hz, 1H: 4 β_2), 3.30 (s, 3H: NCH₃ 4), 3.32 et 3.60 (2 mts, 1H chacun: CH₂ 3 δ), 3.40 (t, J= 12.5 Hz, 1H: 4 β_1), 3.80 (s, 3H: OCH₃), 4.60 (t, J= 7.5 Hz, 1H, 3 α), 4.80 (dd large, J= 13 et 8.5 Hz, 1H: 5 ϵ_1), 4.88 (mt, 1H: 2 α), 4.92 (d large, J= 10 Hz, 1H: 1 α), 5.31 (dd, J= 12.5 et 5 Hz, 1H: 4 α), 5.34 (d large, J= 5.5 Hz, 1H: 5 α), 5.90(d, J= 9 Hz, 1H: 6 α), 5.93 (q large, J= 7.5 Hz, 1H: 1 β), 6.54 (d, J= 9 Hz, 1H: NH 2), 6.87 (d, J= 8 Hz, 2H: 4 ϵ), 7.16 (d, J= 8 Hz, 2H: 4 δ), de 7.15 à 7.40 (mt, 5H: H Aromatiques 6), 7.50 (mt, 2H: 1' H₅ et 1' H₄), 7.80 (dd, J = 4 et 2.5 Hz, 1H: 1' H₆), 8.43 (d, J= 10 Hz, 1H: NH 1), 8.78 (d, J= 9 Hz, 1H: NH 6), 11.65 (s, 1H: OH).

15

20

25

30

35

5

10

EXEMPLE 8: Préparation de la 4ζ -méthoxycarbonyl-dés(4ζ -diméthylamino) pristinamycine I_A .

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l de 4-méthoxycarbonylphénylalanine (R,S) synthétisée comme à l'exemple 33. Au terme de 24 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloroméhane et injecté sur une colonne de silice (30g) montée dans le dichloroméhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 14 mg de résidu sec. Celui-ci est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semipréparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 9 mg de 4ζ -méthoxycarbonyl-dés(4ζ -diméthylamino) pristinamycine I_A .

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS); 0.70 (dd. 5 J= 16 et 6 Hz, 1H, 5 β_2), 0.93 (t, J= 7.5 Hz, 3H: CH, 2 γ), 1.08 (mt, 1H: 3 β_2), de 1.30 à 1.40 (mt, 1H: 3 γ_2), 1.33 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.55 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.02 (mt, 1H, 3 β_1), 2.13 (mt, 1H, 5 δ_2), 2.40 (d large, J= 16.5 Hz, 1H: 5 δ_1 , 2.48 (d, J=16 Hz, 1H, 5 β_1), 2.89 (dt, J= 14.5 et 4.5 Hz, 1H: 5 ϵ_2), 3.10 (dd, J= 13.5 et 6 Hz, 1H: 4 β₂), 3.24 (s, 3H: NCH, 4), 3.38 et 3.61 (2 mts, 1H chacun: CH₂ 3 δ), 3.47 (t, J= 13.5 Hz, 1H: 4 β₁), 3.96 (s, 3H: COOCH₂), 4.55 (t, J= 7.5 Hz, 1H, 3 10 α), 4.78 (dd large, J= 14.5 et 8 Hz, 1H: 5 ε₁), 4.86 (mt, 1H: 2α), 4.89 (d large, J= 10 Hz, 1H: 1α), 5.33 (d large, J= 6 Hz, 1H: 5α), 5.42 (dd, J= 13.5 et 6 Hz, 1H: 4α), 5.92 (d U=9.5 Hz) et mt, 1H chacun: respectivement 6 α et 1 β), 6.52 (d, J=10 Hz, 1H: NH 2), de 7.15 à 7.35 (mt, 5H: H Aromatiques 6), 7.28 (d, J= 8 Hz, 2H: 48), 7.43 (dd, J= 9 et 1.5 Hz, 1H: 1' H₂), 7.47 (dd, J= 9 et 5 Hz, 1H: 1' H₅), 7.66 (d, J = 5 15 et 1.5 Hz, 1H: 1' H₆), 7.98 (d, J= 8 Hz, 2H: 4ϵ), 8.38 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9.5 Hz, 1H: NH 6), 11.70 (s, 1H: OH).

EXEMPLE 9: Préparation de la 4ζ-chloro-dés(4ζ-diméthylamino) pristinamycine I_A.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude 0,1N de 4-chlorophénylalanine (R,S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate

20

25

30

35

10

15

20

25

30

35

100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 1 mg de 4ζ-chloro-dés(4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 0.95 (dd, J= 16 et 5 Hz, 1H, 5 β ₂), 1.09 (mt, 1H: 3 β ₂), de 1.20 à 1.40 (mt, 1H: 3 γ ₂), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ ₁ et CH₂ 2 β), 2.02 (mt, 1H, 3 β ₁), 2.17 (mt, 1H, 5 δ ₂), 2.43 (d large, J= 16 Hz, 1H: 5 δ ₁), 2.59 (d, J=16 Hz, 1H, 5 β ₁), 2.90 (dt, J= 13.5 et 4 Hz, 1H: 5 ϵ ₂), 3.04 (dd, J= 13 et 6 Hz, 1H: 4 β ₂), 3.21 (s, 3H: 4 NCH₃), 3.36 (t, J= 13 Hz, 1H: 4 β ₁), 3.39 et 3.59 (2 mts, 1H chacun: CH₂ 3 δ), 4.53 (t, J= 7.5 Hz, 1H, 3 α), 4.76 (dd large, J= 13.5 et 8 Hz, 1H: 5 ϵ ₁), 4.86 (mt, 1H: 2 α), 4.87(d large, J= 10 Hz, 1H: 1 α), 5.38 (mt, 2H: 5 α et 4 α), 5.93 (mt, 2H: 6 α et 1 β), 6.52 (d, J= 10 Hz, 1H: NH 2), 7.12 (d, J = 8 Hz, 2H: 4 δ), de 7.15 à 7.35 (mt, 7H: H Aromatiques 6 et 4 ϵ), 7.38 (dd, J= 9 et 4.5 Hz, 1H: 1' H₄), 7.43 (d large, J= 9 Hz, 1H:1' H₄), 7.68 (dd, J = 4.5 et 1 Hz, 1H: 1' H₆), 8.36 (d, J= 10 Hz, 1H: NH 1), 8.75 (d, J= 9 Hz, 1H: NH 6), 11.65 (s, 1H: OH).

EXEMPLE 10: Préparation de la 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine I_A et de la 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine I_H.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude 0,1N de 4-bromophénylalanine (R,S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 6 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon

. ...

5

10

15

20

30

35

phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 6 mg de 4ζ -bromo-dés(4ζ -diméthylamino) pristinamycine I_A .

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 0.95 (dd, J= 16 et 5 Hz, 1H, 5 β ₂), 1.10 (mt, 1H: 3 β ₂), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), 1.36 (mt, 1H: 3 γ ₂), de 1.50 à 1.85 (mt, 3H: 3 γ ₁ et CH₂ 2 β), 2.02 (mt, 1H, 3 β ₁), 2.18 (mt, 1H, 5 δ ₂), 2.43 (d large, J= 16 Hz, 1H: 5 δ ₁), 2.59 (d, J=16 Hz, 1H, 5 β ₁), 2.90 (dt, J= 13 et 4 Hz, 1H: 5 ϵ ₂), 3.02 (dd, J= 13 et 5.5 Hz, 1H: 4 β ₂), 3.21 (s, 3H: 4 NCH₃), 3.33 (dd, J= 13 - 11 Hz, 1H: 4 β ₁), 3.39 et 3.59 (2 mts, 1H chacun: CH₂ 3 δ), 4.53 (t, J= 7.5 Hz, 1H, 3 α), 4.76 (dd large, J= 13 et 7 Hz, 1H: 5 ϵ ₁), 4.86 (mt, 1H: 2 α), 4.89 (d large, J= 10 Hz, 1H: 1 α), 5.37 (d large, J= 5 Hz, 1H: 5 α), 5.39 (dd, J= 11 et 5.5 Hz, 1H: 4 α), 5.92 (mt, 2H: 6 α et 1 β), 6.56 (d, J= 9.5 Hz, 1H: NH 2), 7.08 (d, J = 8 Hz, 2H: 4 δ), de 7.15 à 7.35 (mt, 5H: H Aromatiques 6), 7.40 (mt, 4H: 1' H₄ - 1' H₅ et 4 ϵ), 7.70 (d large, J = 5 Hz, 1H: 1' H₆), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.77 (d, J= 9 Hz, 1H: NH 6), 11.68 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I_H, 3 mg de 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine I_H (spectrométrie de masse: M+H+= 874) sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

EXEMPLE 11: Préparation de la 4ζ-iodo-dés(4ζ-diméthylamino) 25 pristinamycine I_A et de la 4ζ-iodo-dés(4ζ-diméthylamino) pristinamycine I_H.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude de 4-iodophénylalanine (R,S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le

10

15

20

25

30

35

dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 6 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 12 mg de 4ζ-iodo-dés(4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 0.95 (dd, J= 16 et 5.5 Hz, 1H, 5 β ₂), 1.10 (mt, 1H: 3 β ₂), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), 1.38 (mt, 1H: 3 γ ₂), de 1.55 à 1.85 (mt, 3H: 3 γ ₁ et CH₂ 2 β), 2.02 (mt, 1H, 3 β ₁), 2.17 (mt, 1H, 5 δ ₂), 2.43 (d large, J= 16.5 Hz, 1H: 5 δ ₁), 2.60 (d, J=16 Hz, 1H, 5 β ₁), 2.89 (dt, J= 14 et 4.5 Hz, 1H: 5 ϵ ₂), 3.02 (dd, J= 13 et 5.5 Hz, 1H: 4 β ₂), 3.21 (s, 3H: NCH₃ 4), 3.31 (dd, J= 13 et 11 Hz, 1H: 4 β ₁), 3.39 et 3.59 (2 mts, 1H chacun: CH₂ 3 δ), 4.53 (t, J= 7.5 Hz, 1H, 3 α), 4.75 (dd large, J= 14 et 8 Hz, 1H: 5 ϵ ₁), 4.83 (mt, 1H: 2 α), 4.88 (d large, J= 10 Hz, 1H: 1 α), 5.37 (d large, J= 5.5 Hz, 1H: 5 α), 5.39 (dd, J= 11 et 5.5 Hz, 1H: 4 α), 5.92 (mt, 2H: 6 α et 1 β), 6.54 (d, J= 9.5 Hz, 1H: NH 2), 6.94 (d, J = 7.5 Hz, 2H: 4 δ), de 7.15 à 7.50 (mt, 5H: H Aromatiques 6), 7.36 (dd, J = 9 et 4 Hz, 1H: 1' H₂), 7.43 (d large, J= 9 Hz, 1H: 1' H₄), 7.62 (d, J= 7.5 Hz, 2H: 4 ϵ), 7.68 (d, J = 4 Hz, 1H: 1' H₆), 8.38 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9 Hz, 1H: NH 6), 11.60 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I_H, 6 mg de 4ζ-iodo-dés(4ζ-diméthylamino) pristinamycine I_H (spectrométrie de masse: M+H⁺= 922) sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

EXEMPLE 12: Préparation de la 4ζ -trifluorométhyl-dés(4ζ -diméthylamino) pristinamycine I_A et de la 4ζ -trifluorométhyl-dés(4ζ -diméthylamino) pristinamycine I_H .

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 5 g/l dans la soude 0,1N de 4-trifluorométhylphénylalanine (S).

10

15

.20

25

Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 5 mg de 4ζ-trifluorométhyl-dés(4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.86 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.91 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.13 (mt, 1H: 3 β_2), 1.31 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), 1.42 (mt, 1H: 3 γ_2), de 1.55 à 1.80 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.02 (mt, 1H, 3 β_1), 2.15 (mt, 1H, 5 δ_2), 2.40 (d large, J= 16.5 Hz, 1H: 5 δ_1), 2.55 (d, J=16 Hz, 1H, 5 β_1), 2.88 (dt, J= 14 et 4 Hz, 1H: 5 ϵ_2), 3.18 (s, 3H: NCH₃ 4), 3.20 et 3.31 (2 dd, respectivement J= 13 et 6 Hz et J= 13 et 10 Hz, 1H chacun: 4 β_2 et 4 β_1), 3.42 et 3.60 (2 mts, 1H chacun: CH₂ 3 δ), 4.50 (t, J= 7.5 Hz, 1H, 3 α), 4.73 (dd large, J= 14 et 7.5 Hz, 1H: 5 ϵ_1), 4.83 (mt, 1H: 2 α), 4.91 (d large, J= 10 Hz, 1H: 1 α), 5.40 (d large, J= 5.5 Hz, 1H: 5 α), 5.55 (dd, J= 10 et 6 Hz, 1H: 4 α), 5.87 (d, J= 9.5 Hz, 1H: 6 α), 5.90 (q large, J= 7.5 Hz, 1H:1 β), 6.68 (d, J= 9.5 Hz, 1H: NH 2), de 7.15 à 7.40 (mt, 9 H: 4 δ - H Aromatiques 6 - 1' H₅ et 1' H₄), 7.52 (d, J= 8 Hz, 2H: 4 ϵ), 7.68 (d, J = 4 et 1.5 Hz, 1H: 1' H₆), 8.43 (d, J= 10 Hz, 1H: NH 1), 8.76 (d, J= 9.5 Hz, 1H: NH 6), 11.70 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I_H, 4 mg de ζ-trifluorométhyl-dés(4ζ-diméthylamino) pristinamycine I_H (spectrométrie de masse: M+H+= 864) sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

10

15

20

25

30

EXEMPLE 13: Préparation de la 4ζ-tert-butyl-dés(4ζ-diméthylamino) pristinamycine I_A.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 5 g/l dans la soude 0,1N de 4-tert-butylphénylalanine(R,S) synthétisée comme à l'exemple 35-1. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 30 mg de 4ζtert-butyl-dés(4ζ-diméthylamino) pristinamycine I A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS, ref. TMS): 0.21 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.91 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.17 (mt, 1H: 3 β_2), de1.20 à 1.40 (mt, 1H: 3 γ_2), 1.33 (s, 9H: CH₃ du tert-butyle), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.04 (mt, 1H, 3 β_1), 2.13 (mt, 1H, 5 δ_2), 2.30 (mt, 2H: 5 δ_1 et 5 β_1), 2.80 (dt, J= 13 et 4 Hz, 1H: 5 ϵ_2), 3.00 (dd, J= 12 et 4 Hz, 1H: 4 β_2), 3.29 (s, 3H: NCH₃ 4), 3.31 et 3.59 (2 mts, 1H chacun: CH₂ 3 δ), 3.40 (t, J= 12 Hz, 1H: 4 β_1), 4.57 (t, J= 7.5 Hz, 1H, 3 α), 4.74 (dd large, J= 13 et 7 Hz, 1H: 5 ϵ_1), 4.85 (mt, 1H: 2 α), 4.90 (d large, J= 10 Hz, 1H: 1 α), 5.21 (d large, J= 5.5 Hz, 1H: 5 α), 5.25 (dd, J= 12 et 4 Hz, 1H: 4 α), 5.87(d, J= 9 Hz, 1H: 6 α), 5.92 (q large, J= 7.5 Hz, 1H: 1

·5

10

15

20

25

1H: 1' H_o), 8.45 (d, J=10 Hz, 1H: NH 1), 8.74 (d, J=9 Hz, 1H: NH 6), 11.65 (s, 1H: OH).

EXEMPLE 14: Préparation de la 4ζ -isopropyl-dés(4ζ -diméthylamino) pristinamycine I_A. et de la 4ζ -isopropyl-dés(4ζ -diméthylamino) pristinamycine I_E.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude 0,1N de 4-isopropylphénylalanine (R,S) synthétisée comme à l'exemple 36-1. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 61 mg de résidu sec. Celui-ci est repris par 9 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 3 fois sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 51 mg de 4ζ-isopropyl-dés(4ζ-diméthylamino) pristinamycine IA.

Spectre de R.M.N. ¹ H (250 MHz, CDCl₃, δ en ppm, ref. TMS, ref. TMS): 0.31 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.91 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.00 à 1.45 (mt, 2H: 3 β_2 et 3 γ_2), 1.25 (d, J= 7.5 Hz, 6H: CH₃ de l' isopropyle), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), de 1.95 à 2.20 (mt, 2H, 3 β_1 et 5 δ_2), 2.30 (mt, 2H: 5 δ_1 et 5 β_1), 2.80 (dt, J= 13 et 4 Hz, 1H: 5 ϵ_2), 2.88 (mt, 1H: CH de l' isopropyle), 2.98 (dd, J= 12 et 4 Hz, 1H: 4 β_2), 3.30 (s, 3H: NCH₃ 4), 3.32 et 3.55 (2 mts, 1H chacun: CH₂ 3 δ), 3.38 (t, J= 12 Hz, 1H: 4 β_1), 4.55 (t, J= 7.5 Hz,

10

15

1H, 3 α), 4.72 (dd large, J= 13 et 7 Hz, 1H: 5 ϵ_1), 4.85 (mt, 1H: 2 α), 4.88 (d large, J= 10 Hz, 1H: 1 α), 5.21 (d large, J= 5.5 Hz, 1H: 5 α), 5.25 (dd, J= 12 et 4 Hz, 1H: 4 α), 5.87(d, J= 9 Hz, 1H: 6 α), 5.90 (q large, J= 7.5 Hz, 1H: 1 β), 6.50 (d, J= 9.5 Hz, 1H: NH 2), de 7.05 à 7.35 (mt, 9H: H Aromatiques 6 - 4 ϵ et 4 δ), 7.50 (mt, 2H: 1' H $_5$ et 1' H $_4$), 7.86 (dd, J = 4 et 1.5 Hz, 1H: 1' H $_6$), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.72 (d, J= 9 Hz, 1H: NH 6), 11.60 (s, 1H: OH).

A partir des mêmes fractions issues de la colonne de silice décrite ci-dessus, contenant également le nouveau dérivé de pristinamycine I_E , 5 mg de ζ -isopropyldés(4 ζ -diméthylamino) pristinamycine I_E sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.20 (mt, 1H, 5 β_2), 0.92 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.15 à 1.40 (mt, 2H: 3 β_2 et 3 γ_2), 1.24(d, J= 7.5 Hz, 6H: CH₃ de l'isopropyle), 1.34 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.35 à 2.05 (mt, 9H: 3 γ_1 - 3 β_1 - CH₂ 2 β - CH₂ 5 δ - CH₂ 5 γ et 5 β_1), 2.45 (dt, J= 13 et 1.5 Hz, 1H: 5 ϵ_2), 2.89 (mt, 1H: ArCH), 3.09 (dd, J= 14 et 7 Hz, 1H: 4 β_2), 3.17 (s, 3H: NCH₃ 4),3.25 (dd, J= 14 et 9 Hz, 1H: 4 β_1), 3.32 et 3.52 (2 mts, 1H chacun: CH₂ 3 δ), 4.55 (mt, 2H: 3 α et 5 ϵ_1), 4.80 (mt, 1H: 2 α), 4.89 (dd, J=10 et 1.5 Hz, 1H: 1 α), 4.90 (mt, 1H: 5 α), 5.35 (dd, J= 9 et 7 Hz, 1H: 4 α), 5.60 (d, J= 8 Hz, 1H: 6 α), 5.89 (dq, J= 7.5 et 1.5 Hz, 1H: 1 β), 6.65 (d, J= 9.5 Hz, 1H: NH 2), 7.08 (d, J= 8 Hz, 2H: 4 δ), 7.14 (d, J= 8 Hz, 2H: 4 ϵ), de 7.20 à 7.40 (mt, 7H: H Aromatiques 6 - 1' H₄ et 1' H₅), 7.77 (d large, J=4 Hz, 1H: 1' H₆), 8.46 (d, J= 10 Hz, 1H: NH 1), 8.48 (d, J= 8 Hz, 1H: NH 6),11.70 (s, 1H: OH).

25

30

35

20

EXEMPLE 15 : Préparation de la 4ε-méthylamino-dés(4ζ-diméthylamino) pristinamycine I_A.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans l'eau de 3-méthylaminophénylalanine (R,S) synthétisée comme à l'exemple 35-3. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases

٠i.

·5

10

15

20

25

30

35

chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine I_A sont regroupées et évaporées. On obtient 19 mg de résidu sec. Celui-ci est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 8 mg de 4ε-méthylamino-dés(4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.93 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.00 (dd, J= 16 et 6 Hz, 1H, 5 β ₂), 1.17 (mt, 1H: 3 β ₂), de 1.25 à 1.40 (mt, 2H: 3 γ ₂), 1.35 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.55 à 1.80 (mt, 3H: 3 γ ₁ et CH₂ 2 β), 2.03 (mt, 1H, 3 β ₁), 2.23 (mt, 1H, 5 δ ₂), 2.39 (d large, J= 16 Hz, 1H: 5 δ ₁), 2.52 (d, J= 16 Hz, 1H: 5 δ ₁), 2.78 (s, 3H: ArNCH₃ 4), 2.85 (dt, J= 13 et 4 Hz, 1H: 5 ϵ ₂), 2.99 (dd, J= 13 et 4.5 Hz, 1H: 4 β ₂), 3.23 (s, 3H: NCH₃ 4), 3.25 (t, J= 13 Hz, 1H: 4 β ₁), 3.38 et 3.58 (2 mts, 1H chacun: CH₂ 3 δ), 4.05 (mf, 1H: ArNH), 4.58 (dd, J= 6.5 et 7.5 Hz, 1H, 3 α), 4.76 (dd large, J= 13 et 8 Hz, 1H: 5 ϵ ₁), 4.85 (mt, 1H: 2 α), 4.87 (d large, J= 10 Hz, 1H: 1 α), 5.35 (dd, J= 13 et 4.5 Hz, 1H: 4 α), 5.38 (d large, J= 6 Hz, 1H: 5 α), 5.90 (d, J=9.5 Hz, 1H: 6 α), 5.91 (mt, 1H: 1 β), 6.36 (s large, 1H: H 2 de l' aromatique en 4), de 6.45 à 6.55 (mt, 2H: H 4 et H 6 de l' aromatique en 4), 6.53 (d, J= 10 Hz, 1H: NH 2), 7.12 (t, J= 8 Hz, 1H: H 5 de l' aromatique en 4), de 7.15 à 7.45 (mt, 5H: H Aromatiques 6), 7.35 (mt, 2H: 1' H₄ et 1' H₅), 7.75 (t, J = 3 Hz, 1H: 1' H₆), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.78 (d, J= 9.5 Hz, 1H: NH 6), 11.60 (s, 1H: OH).

EXEMPLE 16: Préparation de la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I A et de la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I H.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1

10

15

20

25

30

ml d'une solution à 5 g/l dans la soude 0,1N de 3-méthoxyphénylalanine (S). Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 41 mg de résidu sec. Celui-ci est repris par 6 ml d'un mélange 60% eau et 40% acétonitrile et injecté en 2 fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 28 mg de 4E-méthoxy-dés(4\zeta-diméthylamino) pristinamycine I A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.52 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.90 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), de 1.10 à 1.34 (mt, 2H: 3 β_2 et 3 γ_2), 1.34 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.80 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.04 (mt, 1H, 3 β_1), 2.20 (mt, 1H, 5 δ_2), 2.35 (d large, J= 16 Hz, 1H: 5 δ_1), 2.38 (d, J= 16 Hz, 1H: 5 β_1), 2.83 (dt, J= 13 et 4 Hz, 1H: 5 ϵ_2), 2.97 (dd, J= 12 et 4 Hz, 1H: 4 β_2), 3.28 (s, 3H: NCH₃ 4), 3.28 et 3.56 (2 mts, 1H chacun: CH₂ 3 δ), 3.40 (t, J= 12 Hz, 1H: 4 β_1), 3.80 (s, 3H: OCH₃), 4.58 (t, J= 7.5 Hz, 1H, 3 α), 4.76 (dd large, J= 13 et 8 Hz, 1H: 5 ϵ_1), 4.85 (mt, 1H: 2 α), 4.90 (d large, J= 10 Hz, 1H: 1 α), 5.27 (dd, J= 12 et 4 Hz, 1H: 4 α), 5.30 (d large, J= 5.5 Hz, 1H: 5 α), 5.89 (d, J= 9.5Hz, 1H: 6 α), 5.91 (q large, J= 7.5 Hz, 1H: 1 β), 6.51 (d, J= 10 Hz, 1H: NH 2), de 6.80 à 6.90 (mt, 3H: H 2 - H 4 et H 6 de l' aromatique en 4), de 7.15 à 7.40 (mt, 6H: H 5 de l' aromatique en 4 et H Aromatiques 6), 7.45 (d large, J= 9 Hz, 1H: 1' H₄), 7.50 (dd, J= 9 et 4 Hz, 1H:1' H₅), 7.80 (d large, J= 4 Hz, 1H: 1' H₆), 8.40 (d, J= 10 Hz, 1H: NH 1), 8.73 (d, J= 9.5 Hz, 1H: NH 6), 11.62 (s, 1H: OH).

A partir des fractions issues de la colonne de silice décrite ci-dessus, contenant le nouveau dérivé de pristinamycine I H, 7 mg de 4ε-méthoxy-dés(4ζ-

diméthylamino) pristinamycine I H (spectrométrie de masse: M+H+= 826) sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

EXEMPLE 17: Préparation de 4ε-fluoro 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I A.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 10 g/l dans la soude 0,1N de 3-fluoro 4-méthylphénylalanine (R.S) synthétisée comme à l'exemple 34-5. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 15 mg de résidu sec. Celui-ci est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 9 mg de 4ε-fluoro 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0.60 (dd, J= 16 et 5.5 Hz, 1H, 5 β_2), 0.91 (t, J= 7.5 Hz, 3H: CH₃ 2 γ), 1.12 (mt, 1H: 3 β_2), de 1.25 à 1.35 (mt, 1H: 3 γ_2), 1.33 (d, J= 7.5 Hz, 3H: CH₃ 1 γ), de 1.50 à 1.85 (mt, 3H: 3 γ_1 et CH₂ 2 β), 2.02 (mt, 1H, 3 β_1), 2.13 (mt, 1H, 5 δ_2), 2.27 (s, 3H: ArCH₃), 2.36 (d large, J= 16 Hz, 1H: 5 δ_1), 2.45 (d, J= 16 Hz, 1H: 5 β_1), 2.85 (dt, J= 13 et 4.5 Hz, 1H: 5 ϵ_2), 2.97 (dd, J= 12.5 et 4.5 Hz, 1H: 4 β_2), 3.23 (s, 3H: NCH₃ 4), 3.30 et 3.56 (2 mts, 1H chacun: CH₂ 3 δ), 3.37 (t, J= 12.5 Hz, 1H: 4 β_1), 4.55 (t, J= 7.5 Hz, 1H, 3 α), 4.75 (dd large, J= 13 et 8 Hz, 1H: 5 ϵ_1), 4.83 (mt, 1H: 2 α), 4.89 (d large, J= 10 Hz, 1H: 1 α), 5.29 (dd, J= 12.5 et 4.5 Hz, 1H: 4 α), 5.32 (d large, J= 5.5 Hz, 1H: 5 α), 5.89 (d, J= 9.5 Hz, 1H: 6 α), 5.92 (mt, 1H: 1 β), 6.49 (d, J= 10 Hz, 1H: NH 2), 6.90

.

5

10

15

20

25

30

35

(mt, 2H: H 2 et H 6 de l' aromatique en4), 7.11 (t, J= 8 Hz, 1H: H 5 de l' aromatique en 4), de 7.10 à 7.30 (mt, 5H: H Aromatiques 6), 7.43 (dd, J= 8.5 et 1 Hz, 1H: 1' H_4), 7.49 (dd, J= 8.5 et 4.5 Hz, 1H: 1' H_5), 7.75 (dd, J = 4.5 et 1Hz, 1H: 1' H_6), 8.48 (d, J= 10 Hz, 1H: NH 1), 8.70 (d, J= 9.5 Hz, 1H: NH 6), 11.60 (s, 1H: OH).

5

EXEMPLE 18: Préparation de la 4ζ-éthylamino-dés(4ζ-diméthylamino) pristinamycine I_A

10

15

20

25

On réalise à l'échelle de 50 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de dichlorhydrate de 4éthylaminophénylalanine (R,S) synthétisé comme à l'exemple 33. Au terme de 40 h de culture, les 1,5 litres de moût issus de 50 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile. puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-éthylamino-dés (4ζ-diméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 65% eau et 35% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la 4ζ-éthylamino-dés (4ζdiméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 10 mg de 4ζ-éthylamino-dés(4ζ-diméthylamino) pristinamycine IA.

30

35

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,72 (dd, J = 16 et δ Hz, 1H : 1H du CH₂ en δ β); 0,90 (t, J = 7,5 Hz, 3H : CH₃ en δ γ); 1,15 (mt, 1H : 1H du CH₂ en δ β); de 1,20 à 1,40 (mt, 1H : 1H du CH₂ en δ γ); 1,27 (t, J = 7,5 Hz, 3H : CH₃ de l'éthyle); 1,33 (d, J = 7 Hz, 3H : CH₃ en δ γ); de 1,50 à 1,65 (mt, 1H : l'autre H du CH₂ en δ γ); 1,60 et 1,74 (2 mts, 1H chacun : CH₂ en δ δ); 2,02 (mt,

1H: l'autre H du CH₂ en 3 β); 2,21 et 2,33 (respectivement mt et d large, J = 16,5 Hz, 1H chacun: CH₂ en 5 δ); 2,40 (d, J = 16 Hz, 1H: l'autre H du CH₂ en 5 β); 2,82 (dt, J = 13 et 4,5 Hz, 1H: 1H du CH₂ en 5 ϵ); 2,89 (dd, J = 12 et 4 Hz, 1H: 1H du CH₂ en 4 β); 3,10 (mt, 2H: NCH₂ de l'éthyle); de 3,20 à 3,35 (mt, 1H: 1H du CH₂ en 3 δ); 3,26 (s, 3H: NCH₃); 3,31 (t, J = 12 Hz, 1H: l'autre H du CH₂ en 4 β); 3,54 (mt, 1H: l'autre H du CH₂ en 3 δ); 3,67 (mf, 1H: NH); 4,56 (dd, J = 6,5 et 7 Hz, 1H: 3 α); 4,75 (dd large, J = 13 et 8 Hz, 1H: l'autre H du CH₂ en 5 ϵ); 4,84 (mt, 1H: 2 α); 4,90 (d large, J = 10 Hz, 1H: 1 α); 5,24 (dd, J = 12 et 4 Hz, 1H: 4 α); 5,32 (d large, J = 6 Hz, 1H: 5 α); 5,88 (d, J = 9,5 Hz, 1H: 6 α); 5,90 (mt, 1H: 1 β); 6,52 (d, J = 8 Hz, 3H: NH en 2 et H Aromatiques en 4 ϵ); 7,00 (d, J = 8 Hz, 2H: H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H: H Aromatiques en 6); 7,46 (AB limite, 2H: 1' H₄ et 1' H₅); 7,84 (dd, J = 4 et 1 Hz, 1H: 1' H₆); 8,45 (d, J = 10 Hz, 1H: NH en 1); 8,77 (d, J = 9,5 Hz, 1H: NH en 6); 11,65 (s, 1H: OH).

15

,

20

25

30

35

10

5

EXEMPLE 19 : Préparation de la 4ζ -diéthylamino-dés (4ζ -diéthylamino) pristinamycine I_A

On réalise à l'échelle de 50 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de1 ml d'une solution à 20 g/l dans la soude 0,1N de dichlorhydrate de 4diéthylaminophénylalanine (R,S) synthétisé comme à l'exemple 33. Au terme de 40 h de culture, les 1,5 litres de moût issus de 50 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ -diéthylamino-dés (4ζ -diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté en deux fois sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 68% de tampon phosphate 100 mM pH 2,9 et 32% d'acétonitrile. Les fractions contenant la 4\(\ze{\chi}\)diéthylamino-dés (4ζ-diméthylamino) pristinamycine IA sont regroupées et extraites

30

35

par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 50 mg de 4ζ -diéthylamino-dés (4ζ -diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,65 (dd, J = 16 et 6 Hz, 1H : 1H du CH_2 en 5 β) ; 0,90 (t, J = 7,5 Hz, 3H : CH_3 en 2 γ) ; 1,14 (t, J = 7 Hz, $6H : CH_3$ de l'éthyle); 1,15 (mt, 1H : 1H du CH_2 en 3 β); 1,26 (mt, 1H : 1Hdu CH_2 en 3 γ); 1,32 (d, J = 6,5 Hz, 3H : CH_3 en 1 γ); 1,55 (mt, 1H : l'autre H du CH_2 en 3 γ); 1,63 et 1,75 (2 mts, 1H chacun : CH_2 en 2 β); 2,02 (mt, 1H : l'autre H du CH_2 en 3 β); 2,22 et 2,31 (respectivement mt et d large, J=16,5 Hz, 1H chacun: CH_2 en 5 δ); 2,37 (d, J = 16 Hz, 1H: l'autre H du CH_2 en 5 β); 2,80 (dt, J = 13 et 4,5 10 Hz, 1H : 1H du CH₂ en 5 ϵ) ; 2,89 (dd, J = 12,5 et 4 Hz, 1H : 1H du CH₂ en 4 β) ; de 3,20 à 3,40 (mt, 6H : NCH_2 de l'éthyle - 1H du CH_2 en 3 δ et l'autre H du CH_2 en 4 β) ; 3.27 (s, 3H : NCH₃) ; 3.55 (mt, 1H : l'autre H du CH₂ en 3 δ) ; 4.58 (dd, J = 8 et 6 Hz, 1H: 3 α); 4,76 (dd large, J = 13 et 7,5 Hz, 1H: l'autre H du CH₂ en 5 ϵ); 4,84 (mt, 1H: 2α); 4,89 (dd, J = 10 et 1 Hz, 1H: 1α); 5,21 (dd, J = 12,5 et 4 Hz, 1H: 4 15 α); 5,28 (d large, J = 6 Hz, 1H: 5 α); 5,87 (d, J = 9,5 Hz, 1H: 6 α); 5,90 (mt, 1H: 1 β); 6,52 (d, J = 9,5 Hz, 1H: NH en 2); 6,60 (d, J = 8 Hz, 2H: H Aromatiques en 4 ε); 7,02 (d, J = 8 Hz, 2H : H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H : HAromatiques en 6); 7,46 (AB limite, 2H: 1' H_4 et 1' H_5); 7,88 (dd, J = 4,5 et 2,5 Hz, $1H: 1'H_0$; 8,43 (d, J = 10 Hz, 1H: NH en 1); 8,76 (d, J = 9.5 Hz, 1H: NH en 6); 20 11,62 (s, 1H : OH).

EXEMPLE 20 : Préparation de la 4 ζ -diallylamino-dés(4 ζ -diméthylamino) pristinamycine I $_A$

On réalise à l'échelle de 94 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans l'eau de dichlorhydrate de 4-diallylaminophénylalanine (R,S) synthétisé comme à l'exemple 38-1. Au terme de 40 h de culture, les 2,8 litres de moût issus de 94 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une

colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-diallylamino-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4ζ-diallylamino-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 15 mg de 4ζ-diallylamino-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,55 (dd, J = 16 et 6 Hz, 1H: 1H du CH2 en 5 β); 0,93 (t, J = 7,5 Hz, 3H: CH3 en 2 γ); 1,18 (mt, 1H : 1H du CH2 en 3 β); 1,25 (mt, 1H : 1H du CH2 en 3 γ); 1,34 (d, J = 6,5 Hz, 3H : CH3 en 1 γ) ; 1,59 (mt, 1H : l'autre H du CH2 en 3 γ) ; 1,68 et 1,78 (2 mts, 15 1H chacun: CH2 en 2 β); 2,04 (mt, 1H: l'autre H du CH2 en 3 β); 2,25 et 2,34 (respectivement mt et d large, J = 16.5 Hz, 1H chacun: CH2 en 5.8); 2.40 (d, J = 16Hz, 1H: l'autre H du CH2 en 5β); 2,83 (dt, J=13 et 4,5 Hz, 1H: 1H du CH2 en 5 ϵ); 2,92 (dd, J = 12 et 4 Hz, 1H : 1H du CH₂ en 4 β); de 3,20 à 3,30 (mt, 1H : 1H du CH2 en 3 δ); 3,29 (s, 3H : NCH3); 3,33 (t, J = 12 Hz, 1H : l'autre H du CH2 en 20 4 β); 3,57 (mt, 1H: l'autre H du CH2 en 3 δ); 3,93 (AB limite, 4H: NCH2 de l'allyle); 4,60 (dd, J = 8 et 6,5Hz, 1H : 3 α); 4,78 (dd large, J = 13 et 7,5 Hz, 1H : l'autre H du CH2 en 5 ϵ); 4,87 (mt, 1H : 2 α); 4,92 (dd, J = 10 et 1 Hz, 1H : 1 α); de 5,10 à 5,25 (mt, 5H : 4 α et =CH2 de l'allyle) ; 5,28 (d large, J = 6 Hz, 1H : 5 α) ; 5,85 (mt, 2H : CH= de l'allyle); 5,92 (d, J = 9,5 Hz, 1H : 6 α); 5,94 (mt, 1H : 1 β); 25 6,54 (d, J = 10 Hz, 1H : NH en 2); 6,65 (d, J = 8 Hz, 2H : H Aromatiques en 4 ϵ); 7,05 (d, J = 8 Hz, 2H : H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H : 1H Aromatiques en 6); 7,51 (AB limite, $2H : 1' H_4$ et $1' H_5$); 7,88 (dd, J = 4 et $2 H_Z$, $1H: 1'H_6$; 8,43 (d, J = 10 Hz, 1H: NH en 1); 8,77 (d, J = 9,5 Hz, 1H: NH en 6); 30 11,65 (s, 1H OH).

EXEMPLE 21 : Préparation de la 4ζ -allyléthylamino-dés (4ζ -diméthylamino) pristinamycine I_A

5

10

10

15

20

25

30

35

On réalise à l'échelle de 26 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de dichlorhydrate de allyléthylaminophénylalanine (R,S) synthétisée comme à l'exemple 39-4. Au terme de 40 h de culture, les 0,78 litre de moût issus de 26 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-allyléthylamino-dés (4ζdiméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4\(\zeta\)-allyléthylamino-dés(4\(\zeta\)-diméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 20 mg de 4ζallyléthylamino-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. 1 H (400 MHz, CDCl $_3$, δ en ppm, ref. TMS): 0,58 (dd, J = 16 et 6 Hz, 1H : 1H du CH $_2$ en 5 β) ; 0,91 (t, J = 7.5 Hz, 3H : CH $_3$ en 2 γ) ; 1,16 (t, J = 7 Hz, 3H : CH $_3$ de l'éthyle) ; 1,16 (mt, 1H : 1H du CH $_2$ en 3 β) ; 1,25 (mt, 1H : 1H du CH $_2$ en 3 γ) ; 1,32 (d, J = 6,5 Hz, 3H : CH $_3$ en 1 γ) ; 1,54 (mt, 1H : l'autre H du CH $_2$ en 3 γ) ; 1,63 et 1,75 (2 mts, 1H chacun : CH $_2$ en 2 β) ; 2,02 (mt, 1H : l'autre H du CH $_2$ en 3 β) ; 2,23 et 2,31 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH $_2$ en 5 δ) ; 2,37 (d, J = 16 Hz, 1H : l'autre H du CH $_2$ en 5 β) ; 2,80 (dt, J = 13 et 4,5 Hz, 1H : 1H du CH $_2$ en 5 ϵ) ; 2,87 (dd, J = 12 et 4 Hz, 1H : 1H du CH $_2$ en 4 β) ; de 3,15 à 3,30 (mt, 1H : 1H du CH $_2$ en 3 δ) ; 3,26 (s, 3H : NCH $_3$) ; 3,30 (t, J = 12 Hz, 1H : l'autre H du CH $_2$ en 4 β) ; 3,36 (mt, 2H : NCH $_2$ de l'éthyle) ; 3,54 (mt, 1H : l'autre H du CH $_2$ en 3 δ) ; 3,90 (AB limite, 2H : NCH $_2$ de l'allyle) ; 4,57 (dd, J = 8 et 6 Hz, 1H : 3 α) ; 4,76 (dd large, J = 13 et 7,5 Hz, 1H : l'autre H du CH $_2$ en 5 ϵ) ; 4,84 (mt, 1H : 2 ϵ) ; 4,89 (dd, J = 10 et 1 Hz, 1H : 1 ϵ) ; de 5,05 à 5,20 (mt, 3H : 4 ϵ) et =CH $_2$ de l'allyle) ; 5,27 (d large, J = 6 Hz, 1H : 5 ϵ) ; 5,83 (mt, 1H : CH= de l'allyle) ; 5,88 (d, J = 9,5 Hz, 1H : 6 ϵ) ; 5,91 (mt, 1H : 1 ϵ) ; 6,60 (d, J = 10 Hz, 1H : NH en 2) ; 6,60 (d,

J = 8 Hz, 2H: H Aromatiques en 4 ϵ); 7,02 (d, J = 8 Hz, 2H: H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H: H Aromatiques en 6); 7,47 (AB limite, 2H: 1' H₄ et 1' H₅); 7,88 (dd, J = 4 et 2 Hz, 1H: 1' H₆); 8,41 (d, J = 10 Hz, 1H: NH en 1); 8,75 (d, J = 9.5 Hz, 1H: NH en 6); 11,62 (s, 1H: OH).

5

EXEMPLE 22 : Préparation de la 4ζ -éthyl propylamino-dés(4ζ -diméthylamino) pristinamycine I_A

10

15

20

25

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de dichlorhydrate de 4éthylpropylaminophénylalanine (R,S) synthétisée comme à l'exemple 39-6. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-éthyl propylamino-dés (4ζdiméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 63% de tampon phosphate 100 mM pH 2,9 et 37% d'acétonitrile. Les fractions contenant la 4ζ-éthyl propylamino-dés (4ζ-diméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 16 mg de 4ζ-éthyl propylamino-dés (4ζ-diméthylamino) pristinamycine I_A.

30

35

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,67 (dd, J = 16 et 6 Hz, 1H : 1H du CH₂ en 5 β); 0,91 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ); 0,95 (t, J = 7,5 Hz, 3H : CH₃ du propyle); 1,14 (t, J = 7 Hz, 3H : CH₃ de l'éthyle); 1,15 (mt, 1H : 1H du CH₂ en 3 β); 1,25 (mt, 1H : 1H du CH₂ en 3 γ); 1,33 (d, J = 7 Hz, 3H : CH₃ en 1 γ); de 1,45 à 1,65 (mt, 3H : l'autre H du CH₂ en 3 γ et CH₂ propyle); 1,63 et 1,75 (2 mts, 1H chacun : CH₂ en 2 β); 2,02 (mt, 1H : l'autre H du CH₂ en 3 β);

2,23 et 2,33 (respectivement mt et d large, J=16,5 Hz, 1H chacun: CH_2 en 5 δ); 2,37 (d, J=16 Hz, 1H: l'autre H du CH_2 en 5 β); 2,80 (dt, J=13 et 5 Hz, 1H: 1H du CH_2 en 5 ϵ); 2,89 (dd, J=12 et 4 Hz, 1H: 1H du CH_2 en 4 β); de 3,10 à 3,25 (mt, 3H: 1H du CH_2 en 3 δ et NCH_2 du propyle); 3,26 (s, 3H: NCH_3); de 3,25 à 3,40 (mt, 2H: 2H:

15

20

25

30

35

10

5

EXEMPLE 23 : Préparation de la 4ζ-trifluorométhoxy-dés(4ζ-diméthylamino) pristinamycine I_A

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans l'eau de chlorhydrate de 4-O-trifluorométhyltyrosine (R,S) synthétisé comme à l'exemple 34-8. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-trifluorométhoxy-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté en deux fois sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la 4ζ-trifluorométhoxy-dés (4ζdiméthylamino) pristinamycine IA sont regroupées et extraites par un volume de

dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 46,5 mg de 4ζ -trifluorométhoxy-dés (4ζ -diméthylamino) pristinamycine I_A .

Spectre de R.M.N. 1 H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,77 (dd, J =16 et 5,5 Hz, 1H : 1H du CH_2 en 5 β) ; 0,92 (t, J = 7,5 Hz, 3H : CH_3 en 2 γ) ; 1,08 5 (mt, 1H : 1H du CH_2 en 3 β) ; de 1,30 à 1,40 (mt, 1H : 1H du CH_2 en 3 γ) ; 1,33 (d, J = 7 Hz, 3H : CH₃ en 1 γ); de 1,55 à 1,70 (mt, 1H : l'autre H du CH₂ en 3 γ); 1,65 et 1,76 (2 mts, 1H chacun : CH_2 en 2 β) ; 2,02 (mt, 1H : l'autre H du CH_2 en 3 β) ; 2,11 et 2,40 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH_2 en 5 δ); 2,54 (d, J = 16 Hz, 1H: l'autre H du CH₂ en 5 β); 2,88 (dt, J = 13 et 4 Hz, 1H: 1H du CH₂ en 10 5 ϵ); 3,08 (dd, J = 12 et 5 Hz, 1H : 1H du CH₂ en 4 β); 3,22 (s, 3H : NCH₃); de 3,30 à 3,45 (mt, 1H : 1H du CH_2 en 3 δ) ; 3,39 (t, J = 12 Hz, 1H : l'autre H du CH_2 en 4 β) ; 3,59 (mt, 1H : l'autre H du CH_2 en 3 δ) ; 4,53 (t, J = 7,5 Hz, 1H : 3 α) ; 4,75 (dd large, J = 13 et 8 Hz, 1H : l'autre H du CH₂ en 5 ε) ; 4,85 (mt, 1H : 2 α) ; 4,89 (dd, J = 10 et 1,5 Hz, 1H : 1 α) ; 5,35 (d large, J = 5,5 Hz, 1H : 5 α) ; 5,41 (dd, J = 12 et 15 5 Hz, 1H : 4α); 5,92 (d, J = 10 Hz, 1H : 6α); 5,93 (mt, 1H : 1β); 6,53 (d, J = 9,5 Hz, 1H: NH en 2); de 7,15 à 7,35 (mt, 5H: H Aromatiques en 6); 7,16 (d, J = 8 Hz, 2H : H Aromatiques en 4 ε) ; 7,26 (d, J = 8 Hz, 2H : H Aromatiques en 4 δ) ; 7,37 (dd, J = 8.5 et 4 Hz, $1H : 1' H_5$); 7.42 (dd, J = 8.5 et 1.5 Hz, $1H : 1' H_4$); 7.70 (dd, J= 4 et 1,5 Hz, 1H: 1' H_6); 8,37 (d, J = 10 Hz, 1H: NH en 1); 8,75 (d, J = 10 Hz, 1H 20 : NH en 6); 11,66 (s, 1H: OH).

EXEMPLE 24 : Préparation de la 4ζ-allyloxy-dés (4ζ-diméthylamino) 25 pristinamycine I_A

On réalise à l'échelle de 90 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans l'acide chlorhydrique 0.1N de chlorhydrate de 4-O-allyltyrosine (S) synthétisée comme à l'exemple 33. Au terme de 40 h de culture, les 2,7 litres de moût issus de 90 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté

30

35

10

15

20

25

sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-allyloxy-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4ζ-allyloxy-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 29 mg de 4ζ-allyloxy-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,63 (dd, J = 16 et 6 Hz, 1H : 1H du CH₂ en 5 β) ; 0,91 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ) ; 1,13 (mt, 1H : 1H du CH_2 en 3 β) ; 1,29 (mt, 1H : 1H du CH_2 en 3 γ) ; 1,33 (d, J = 6.5 Hz, 3H : CH_3 en 1 γ); 1,57 (mt, 1H : l'autre H du CH_2 en 3 γ); 1,65 et 1,74 (2 mts, 1H chacun : CH_2 en 2 β); 2,02 (mt, 1H : l'autre H du CH_2 en 3 β); 2,14 et 2,34 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH_2 en 5 δ) ; 2,43 (d, J = 16 Hz, 1H : l'autre H du CH_2 en 5 β); 2,85 (dt, J = 13 et 4 Hz, 1H : 1H du CH_2 en 5 ϵ); 2,95 (dd, J = 12 et 4 Hz, 1H: 1H du CH₂ en 4 β); 3,25 (s, 3H: NCH₃); 3,33 (mt, 1H: 1H du CH₂ en 3 δ); 3,36 (t, J = 12 Hz, 1H: l'autre H du CH₂ en 4 β); 3,56 (mt, 1H: l'autre H du CH₂ en 3 δ); 4,51 (AB limite, 2H : OCH₂ de l'allyle); 4,56 (t, J = 7,5 Hz, 1H : 3 α); 4,75 (dd large, J = 13 et 8 Hz, 1H : l'autre H du CH₂ en 5 ϵ) ; 4,84 (mt, 1H : 2 α) ; 4,88 (dd, J = 10 et 1 Hz, 1H : 1 α) ; 5,27 (dd, J = 12 et 4 Hz, 1H : 4 α) ; 5,32 (d large, J =6 Hz, 1H : 5 α) ; 5,30 et 5,40 (respectivement mt et dd, J = 17 et 1,5 Hz, 1H chacun : =CH₂ de l'allyle) ; 5,89 (d, J = 9,5 Hz, 1H : 6 α) ; 5,91 (mt, 1H : 1 β) ; 6,02 (mt, 1H : CH= de l'allyle); 6,50 (d, J = 10 Hz, 1H : NH en 2); 6,85 (d, J = 8 Hz, 2H : H Aromatiques en 4 ϵ); 7,12 (d, J = 8 Hz, 2H : H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H: H Aromatiques en 6); 7,45 (dd, J = 8,5 et 1,5 Hz, 1H: 1'H₄); 7,57 (dd, J =8,5 et 4 Hz, $1H: 1'H_s$; 7,77 (dd, J = 4 et 1,5 Hz, $1H: 1'H_s$); 8,41 (d, J = 10 Hz, 1H: NH en 1); 8,74 (d, J = 9,5 Hz, 1H: NH en 6); 11,63 (s, 1H: OH).

EXEMPLE 25 : Préparation de la 4ζ -éthoxy-dés(4ζ -diméthylamino) pristinamycine I_A

30

10

15

20

25

30

35

On réalise à l'échelle de 90 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans l'acide chlorhydrique 0,1N de chlorhydrate de 4-Oéthyltyrosine (S) synthétisé comme à l'exemple 33. Au terme de 40 h de culture, les 2,7 litres de moût issus de 90 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ -éthoxy-dés (4ζ -diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4ζ-éthoxy-dés (4ζdiméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 29 mg de 4ζ-éthoxy-dés (4ζ-diméthylamino) pristinamycine IA.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,64 (dd, J = 16 et 5,5 Hz, 1H : 1H du CH₂ en 5 β); 0,90 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ); 1,12 (mt, 1H : 1H du CH₂ en 3 β); 1,25 (mt, 1H : 1H du CH₂ en 3 γ); 1,33 (d, J = 7 Hz, 3H : CH₃ en 1 γ); 1,42 (t, J = 7 Hz, 3H : CH₃ de l'éthyle); 1,57 (mt, 1H : l'autre H du CH₂ en 3 γ); 1,63 et 1,74 (2 mts, 1H chacun : CH₂ en 2 β); 2,02 (mt, 1H : l'autre H du CH₂ en 3 β); 2,16 et 2,35 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH₂ en 5 δ); 2,43 (dt, J = 16 Hz, 1H : l'autre H du CH₂ en 5 β); 2,83 (dt, J = 13 et 4 Hz, 1H : 1H du CH₂ en 5 ϵ); 2,93 (dd, J = 12 et 4 Hz, 1H : 1H du CH₂ en 4 ϵ); de 3,15 à 3,30 (mt, 1H : 1H du CH₂ en 3 ϵ); 3,24 (s, 3H : NCH₃); 3,35 (t, J = 12 Hz, 1H : l'autre H du CH₂ en 4 ϵ); 3,55 (mt, 1H : l'autre H du CH₂ en 3 ϵ); 3,95 (AB limite, 2H : OCH₂ de l'éthyle); 4,56 (dd, J = 7,5 et 6 Hz, 1H : 3 ϵ); 4,75 (dd large, J = 13 et 8 Hz, 1H : l'autre H du CH₂ en 5 ϵ); 4,84 (mt, 1H : 2 ϵ); 4,87 (dd, J = 10 et 1 Hz, 1H : 1 ϵ); 5,26 (dd, J = 12 et 4 Hz, 1H : 1 ϵ); 5,32 (d large, J = 5,5 Hz, 1H : 5 ϵ); 5,88 (d, J = 10 Hz, 1H : 6 ϵ); 5,92 (mt, 1H : 1 ϵ); 6,48 (d, J = 10 Hz, 1H : NH en 2); 6,83 (d, J = 8 Hz, 2H : H Aromatiques en 4 ϵ); 7,10 (d, J = 8 Hz, 2H : H

Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H : H Aromatiques en 6); 7,44 (dd, J = 8,5 et 1,5 Hz, 1H : 1' H₂); 7,57 (dd, J = 8,5 et 4,5 Hz, 1H : 1' H₅); 7,77 (dd, J = 4,5 et 1,5 Hz, 1H : 1' H₆); 8,38 (d, J = 10 Hz, 1H : NH en 1); 8,75 (d, J = 10 Hz, 1H : NH en 6); 11,60 (s, 1H : OH).

5

10

15

20

25

30

35

EXEMPLE 26 : Préparation de la 4 ζ -(2-chloroéthoxy) -dés (4 ζ -diméthylamino) pristinamycine I_A

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans l'eau de chlorydrate de 4-O(2-chloroéthyl) tyrosine (S) synthétisé comme à l'exemple 42-1. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-(2-chloroéthoxy)-dés (4ζ-diméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la 4ζ-(2chloroéthoxy)-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 3,2 mg de 4ζ-(2-chloroéthoxy)-dés (4ζdiméthylamino) pristinamycine IA.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,66 (dd, J = 16 et 5,5 Hz, 1H : 1H du CH₂ en 5 β); 0,91 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ); 1,13 (mt, 1H : 1H du CH₂ en 3 β); 1,28 (mt, 1H : 1H du CH₂ en 3 γ); 1,33 (d, J = 7 Hz, 3H : CH₃ en 1 γ); 1,57 (mt, 1H : l'autre H du CH₂ en 3 γ); 1,66 et 1,76 (2 mts, 1H chacun : CH₂ en 2 β); 2,02 (mt, 1H : l'autre H du CH₂ en 3 β); 2,16 et 2,37 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH₂ en 5 δ); 2,47 (d, J = 16

10

15

20

25

30

Hz, 1H: l'autre H du CH₂ en 5 β); 2,86 (dt, J = 13 et 4 Hz, 1H: 1H du CH₂ en 5 ϵ); 2,95 (dd, J = 12 et 4 Hz, 1H: 1H du CH₂ en 4 β); 3,23 (s, 3H: NCH₃); 3,32 (mt, 1H: 1H du CH₂ en 3 δ); 3,37 (t, J = 12 Hz, 1H: l'autre H du CH₂ en 4 β); 3,57 (mt, 1H: l'autre H du CH₂ en 3 δ); 3,82 (t, J = 6 Hz, 2H: CH₂Cl); 4,19 (AB limite, 2H: OCH₂ de l'éthyle); 4,55 (dd, J = 7,5 et 7 Hz, 1H: 3 α); 4,75 (dd large, J = 13 et 8 Hz, 1H: l'autre H du CH₂ en 5 ϵ); 4,84 (mt, 1H: 2 α); 4,87 (d large, J = 10 Hz, 1H: 1 α); 5,28 (dd, J = 12 et 4 Hz, 1H: 4 α); 5,32 (d large, J = 5,5 Hz, 1H: 5 α); 5,88 (d, J = 10 Hz, 1H: 6 α); 5,90 (mt, 1H: 1 β); 6,50 (d, J = 10 Hz, 1H: NH en 2); 6,86 (d, J = 8 Hz, 2H: H Aromatiques en 4 ϵ); 7,13 (d, J = 8 Hz, 2H: H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 5H: H Aromatiques en 6); 7,45 (AB limite, 2H: 1' H₄ et 1' H₅); 7,75 (dd, J = 4 et 2 Hz, 1H: 1' H₆); 8,38 (d, J = 10 Hz, 1H: NH en 1); 8,74 (d, J = 10 Hz, 1H: NH en 6); 11,62 (s, 1H: OH).

EXEMPLE 27: Préparation de la 4ζ-acétyl -dés 4ζ-diméthylamino) pristinamycine I_A

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de 4-acétyl phénylalanine (S) synthétisée comme à l'exemple 33. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-acétyl)dés (4\(\zert{L}\)-diméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la 45-acétyl-dés (45-diméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est

10

15

20

lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 4,2 mg de 4ζ -acétyl-dés (4ζ -diméthylamino) pristinamycine I_A .

Spectre de R.M.N. 1 H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,73 (dd, J = 16 et 6 Hz, 1H : 1H du CH, en 5 β) ; 0,93 (t, J = 7,5 Hz, 3H : CH, en 2 γ) ; 1,12 (mt, 1H: 1H du CH₂ en 3 β); de 1,25 à 1,45 (mt, 1H: 1H du CH₂ en 3 γ); 1,33 (d, J = 7 Hz, 3H: CH, en 1 y); 1,62 (mt, 1H: l'autre H du CH₂ en 3 y); de 1,60 à 1,85 (mt, 2H : CH, en 2 β); 2,02 (mt, 1H: l'autre H du CH₂ en 3 β); 2,20 et 2,42 (respectivement mt et d large, J = 16.5 Hz, 1H chacun : CH₂ en 5 δ); 2.52 (d, J = 16 Hz, 1H : l'autre H du CH, en 5 β); 2,60 (s, 3H: ArCOCH₃); 2,88 (dt, J = 13 et 4,5 Hz, 1H: 1H du CH₂ en 5 ϵ); 3,13 (dd, J = 13,5 et 5,5 Hz, 1H: 1H du CH₂ en 4 β); 3,21 (s, 3H: NCH₂); de 3,30 à 3,50 (mt, 1H: l'autre H du CH₂ en 4 \beta); de 3,30 à 3,50 et 3,63 (2 mts, 1H chacun: CH, en 3 δ); 4,53 (t, J = 7,5 Hz, 1H: 3 α); 4,75 (dd large, J = 13 et 8 Hz, 1H: l'autre H du CH, en 5 ϵ); 4,84 (mt, 1H: 2 α); 4,88 (dd, J = 10 et 1 Hz, 1H: 1 α); 5,35 (d large, J = 6 Hz, 1H: 5 α); 5,43 (dd, J = 10,5 et 4 Hz, 1H: 4 α); 5,90 (d, J = 9.5 Hz, $1H : 6 \alpha$); 5,92 (mt, $1H : 1 \beta$); 6,56 (d, J = 9.5 Hz, 1H : NH en 2); de 7,10 à 7,35 (mt, 5H: H Aromatiques en 6); 7,28 (d, J = 8 Hz, 2H: H Aromatiques en 4δ); 7,38 (dd, J = 8,5 et 2 Hz, 1H: 1' H₄); 7,42 (dd, J = 8,5 et 4,5 Hz, 1H: 1' H₄); 7.66 (dd, J = 4.5 et 2 Hz, 1H: 1' H₆); 7.88 (d, J = 8 Hz, 2H: H Aromatiques en 4 ϵ); 8,38 (d, J = 10 Hz, 1H: NH en 1); 8,74 (d, J = 9,5 Hz, 1H: NH en 6); 11,65 (s, 1H: OH).

EXEMPLE 28 : Préparation de la 4ε-diméthylamino-dés (4ζ-diméthylamino) pristinamycine I_A.

25

30

35

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de dichlorhydrate de 3-diméthylaminophénylalanine (R,S) synthétisée comme à l'exemple 35-10. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le

-5

10

15

20

25

dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ε-diméthylamino-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et évaporées. Le résidu sec est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7μ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 57% de tampon phosphate 100 mM pH 2,9 et 43% d'acétonitrile. Les fractions contenant la 4ε-diméthylamino-dés (4ζ-diméthylamino) pristinamycine I_A sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 1,1 mg de 4ε-diméthylamino-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. 1 H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,63 (dd, $J = 16 \text{ et } 5 \text{ Hz}, 1\text{H} : 1\text{H du CH}_2 \text{ en } 5 \text{ }\beta) ; 0.91 \text{ (t, } J = 7.5 \text{ Hz}, 3\text{H} : CH_3 \text{ en } 2 \text{ }\gamma) ; 1.13$ (mt, 1H : 1H du CH₂ en 3 β); de 1,20 à 1,35 (mt, 1H : 1H du CH₂ en 3 γ); 1,32 (d, J = 6,5 Hz, 3H : CH, en 1 γ) ; 1,57 (mt, 1H : l'autre H du CH, en 3 γ) ; 1,63 et 1,76 (2 mts, 1H chacun: CH₂ en 2 β); 2,02 (mt, 1H: l'autre H du CH₂ en 3 β); 2,08 et 2,31 (respectivement mt et d large, J = 16.5 Hz, 1H chacun: CH_2 en 5 δ); 2.35 (d, J = 16Hz, 1H: l'autre H du CH, en 5 β); 2,81 (dt, J = 13 et 4 Hz, 1H: 1H du CH, en 5 ϵ); 2.90 (s, 6H: N(CH₂)₂); 2,97 (dd, J = 12 et 4 Hz, 1H: 1H du CH₂ en 4 β); de 3,20 à 3,30 (mt, 1H : 1H du CH₂ en 3 δ) ; 3,28 (s, 3H : NCH₃) ; 3,37 (t, J = 12 Hz, 1H : l'autre H du CH, en 4 β); 3,57 (mt, 1H: l'autre H du CH, en 3 δ); 4,58 (t, J = 7,5 Hz, 1H : 3 α) ; 4,74 (dd large, J = 13 et 8 Hz, 1H : l'autre H du CH₂ en 5 ϵ) ; 4,86 (mt, 1H (2α) ; 4.89 (d large, J = 10 Hz, 1H: 1 α); 5,27 (dd, J = 12 et 4 Hz, 1H: 4 α); 5,29 (d large, J = 5 Hz, $1H : 5 \alpha$); 5,89 (d, J = 9.5 Hz, $1H : 6 \alpha$); 5,90 (mt, $1H : 1 \beta$); 6.50 (d. J = 10 Hz, 1H: NH en 2); de 6,50 à 6,70 (mt, 3H: H Aromatiques en ortho et en para du diméthylamino); de 7,15 à 7,35 (mt, 5H: H Aromatiques en 6); 7,20 (t, J =

10

15

20

25

30

ml d'une solution à 20 g/l dans la soude 0,1N de chlorhydrate de 3méthylthiophénylalanine (R,S) synthétisé comme à l'exemple 34-11. Au terme de 40 h de culture, les 1,68 litres de moût issus de 56 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichloromethane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 54% eau et 46% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 55% de tampon phosphate 100 mM pH 2,9 et 45% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 20 mg de 4ε-méthylthio-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,56 (dd, $J = 16 \text{ et } 5.5 \text{ Hz}, 1\text{H} : 1\text{H du CH}_2 \text{ en } 5 \text{ } \beta) ; 0.90 \text{ (t, } J = 7.5 \text{ Hz}, 3\text{H} : \text{CH}_3 \text{ en } 2 \text{ } \gamma) ; 1.13$ (mt, 1H : 1H du CH₂ en 3 β) ; 1,28 (mt, 1H : 1H du CH₂ en 3 γ) ; 1,32 (d, J = 6,5 Hz, 3H : CH_3 en 1 γ) ; 1,58 (mt, 1H : l'autre H du CH_2 en 3 γ) ; 1,62 et 1,74 (2 mts, 1H chacun: CH_2 en 2 β); 2,02 (mt, 1H: l'autre H du CH_2 en 3 β); 2,25 et 2,35 (respectivement mt et d large, J = 16.5 Hz, 1H chacun: CH_2 en 5.8); 2,39 (d, J = 16Hz, 1H: l'autre H du CH₂ en 5 β); 2,43 (s, 3H: SCH₃); 2,82 (dt, J = 13 et 4 Hz, 1H: 1H du CH₂ en 5 ϵ); 2,98 (dd, J = 12 et 4,5 Hz, 1H : 1H du CH₂ en 4 β); 3,26 (s, 3H : NCH_3); 3,30 (t, J = 12 Hz 1H : 1H du CH_2 en 3 δ); 3,38 (mt, 1H : l'autre H du CH_2 en 4 β); 3,57 (mt, 1H: l'autre H du CH₂ en 3 δ); 4,56 (t, J = 7,5 Hz, 1H: 3 α); 4,74 (dd large, J = 13 et 8 Hz, 1H: l'autre H du CH₂ en 5 ϵ); 4,84 (mt, 1H: 2 α); 4,89 (dd, J = 10 et 1 Hz, 1H : 1 α); 5,29 (dd, J = 12 et 4,5 Hz, 1H : 4 α); 5,32 (d large, J = 5.5 Hz, $1H : 5 \alpha$); 5.88 (d, J = 9.5 Hz, $1H : 6 \alpha$); 5.90 (mt, $1H : 1 \beta$); 6.51 (d, J= 10 Hz, 1H: NH en 2); 6,99 (d large, J = 8 Hz, 1H: H Aromatique en para du méthylthio); 7,10 et 7,15 (respectivement s large et d large, J = 8 Hz, 1H chacun: H Aromatiques en ortho du méthylthio); de 7,15 à 7,35 (mt, 6H: H Aromatiques en 6 et H Aromatiques en méta du méthylthio); 7,43 (d large, J = 8 Hz, 1H: 1' H_a); 7,52

(dd, J = 8 et 4 Hz, $IH : 1' H_6$); 7,79 (d large, J = 4 Hz, $IH : 1' H_6$); 8,38 (d, J = 10 Hz, IH : NH en 1); 8,73 (d, J = 9.5 Hz, IH : NH en 6); 11,62 (s, IH : OH).

10

15

20

25

30

35

EXEMPLE 30 : Préparation de la 4ε-éthoxy-dés(4ζ-diméthylamino) pristinamycine I_A.

On réalise à l'échelle de 60 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,2N de chlorhydrate de 3-O-éthyltyrosine (S) synthétisé comme à l'exemple 37-1. Au terme de 40 h de culture, les 1,8 litres de moût issus de 60 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichloromethane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant le nouveau dérivé de pristinamycine IA sont regroupées et évaporées. On obtient 19 mg de résidu sec. Celui-ci est repris par 3 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 60% de tampon phosphate 100 mM pH 2,9 et 40% d'acétonitrile. Les fractions contenant la nouvelle pristinamycine sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 15,8 mg de 4ε-O-éthoxy-dés (4ζ-diméthylamino) pristinamycine I_A.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,55 (dd, J = 16 et 5,5 Hz, 1H : 1H du CH₂ en 5 β); 0,90 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ); 1,12 (mt, 1H : 1H du CH₂ en 3 β); 1,20 (mt, 1H : 1H du CH₂ en 3 γ); 1,31 (d, J = 6,5 Hz, 3H : CH₃ en 1 γ); 1,49 (t, J = 7 Hz, 3H : CH₃ de l'éthyle); 1,54 (mt, 1H : l'autre H du CH₂ en 3 γ); 1,63 et 1,73 (2 mts, 1H chacun : CH₂ en 2 β); 2,02 (mt, 1H : l'autre H du CH₂ en 3 β); 2,22 et 2,33 (respectivement mt et d large, J = 16,5 Hz, 1H chacun : CH₂ en 5 δ); 2,46 (d, J = 16 Hz, 1H : l'autre H du CH₂ en 5 β); 2,83 (dt, J = 13 et 4 Hz, 1H : 1H du CH₂ en 5 δ); 2,95 (dd, J = 12 et 4 Hz, 1H : 1H du CH₂ en 4 δ); 3,22 (mt, 1H : 1H du CH₂ en 3 δ); 3,27 (s, 3H : NCH₃); 3,39 (t, J = 12 Hz, 1H : l'autre H du CH₂ en 4 δ); 3,53 (mt, 1H : l'autre H du CH₂ en 3 δ); 3,93 et 4,03 (2 mts, 1H chacun : OCH₂ de l'éthyle); 4,56 (dd, J = 7 et 5,5 Hz, 1H : 2 α); 4,88 (dd, J = 10 et 13 et 8 Hz, 1H : l'autre H du CH₂ en 5 δ); 4,88 (dd, J = 10 et

1 Hz, 1H: 1 α); 5,23 (dd, J = 12 et 4 Hz, 1H: 4 α); 5,23 (d large, J = 5,5 Hz, 1H: 5 α); 5,87 (d, J = 9,5 Hz, 1H: 6 α); 5,92 (mt, 1H: 1 β); 6,47 (d, J = 10 Hz, 1H: NH en 2); 6,80 (mt, 3H: H Aromatiques en ortho et en para de l'éthoxy); de 7,10 à 7,35 (mt, 6H: H Aromatiques en 6 et H Aromatiques en méta de l'éthoxy); 7,43 (dd, J = 8 et 1 Hz, 1H: 1' H₄); 7,50 (dd, J = 8 et 4 Hz, 1H: 1' H₅); 7,77 (dd, J = 4 et 1 Hz, 1H: 1' H₆); 8,38 (d, J = 10 Hz, 1H: NH en 1); 8,70 (d, J = 9,5 Hz, 1H: NH en 6); 11,60 (s, 1H: OH).

EXEMPLE 31 : Préparation de la 4ζ-éthylthio-dés(4ζ-diméthylamino) pristinamycine I_A

On réalise à l'échelle de 2 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de chlorhydrate de 4éthylthiophénylalanine (S) synthétisée comme à l'exemple 33. Au terme de 40 h de culture, les 60 ml de moût issus de 2 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois 0,5 volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20 ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 45-éthylthio-dés(45-diméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7 ml d'un mélange 60% eau et 40% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7u C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4\(\zeta\)-éthylthio-dés (4\(\zeta\)diméthylamino) pristinamycine IA sont regroupées et extraites par un volume de dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient ? mg de 4ζ-éthylthio-dés (4ζ-diméthylamino) pristinamycine IA.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm) : 0,68 (dd, J = 16 et 6 Hz, 1H : 1H du CH₂ en 5 β) ; 0,92 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ) ; de 1,10 à 1,40 (mt, 5H : 1H du CH₂ en 3 β et 1H du CH₂ en 3 γ et CH₃ de l'éthyle) ; 1,32 (d, J = 7

5

10

15

20

25

30

Hz, 3H : CH₃ en 1 γ); de 1,45 à 1,85 (mt, 3H : l'autre H du CH₂ en 3 γ et CH₂ en 2 β); 2,02 (mt, 1H : l'autre H du CH₂ en 3 β); 2,18 et 2,37 (respectivement mt et d large, J = 16.5 Hz, 1H chacun : CH₂ en 5 δ); 2,45 (d large, J = 16 Hz, 1H : l'autre H du CH₂ en 5 β); 2,85 (dt, J = 13 et 4 Hz, 1H : 1H du CH₂ en 5 ε); 2,90 (mt, 2H : ArSCH₂ éthyle); 2,98 (dd, J = 12 et 4 Hz, 1H : 1H du CH₂ en 4 β); 3,25 (s, 3H : NCH₃); 3,35 (mt, 1H : 1H du CH₂ en 3 δ); 3,39 (t, J = 12 Hz, 1H : l'autre H du CH₂ en 4 β); 3,57 (mt, 1H : l'autre H du CH₂ en 3 δ); 4,55 (t, J = 7.5 Hz, 1H : 3 α); 4,75 (dd large, J = 13 et 7,5 Hz, 1H : l'autre H du CH₂ en 5 ε); 4,85 (mt, 1H : 2 α); 4,89 (dd, J = 10 et 1 Hz, 1H : 1 α); de 5,25 à 5,40 (mt, 2H : 5 α et 4 α); 5,88 (d, J = 9.5 Hz, 1H : 6 α); 5,91 (mt, 1H : 1 β); 6,55 (d, J = 9.5 Hz, 1H : NH en 2); 7,10 (d, J = 8 Hz, 2H : H Aromatiques en 4 δ); de 7,10 à 7,35 (mt, 7H : H Aromatiques en 6 et 4 ε); 7,44 (AB limite, 2H : 1' H₄ et 1' H₅); 7,74 (mt, 1H : 1' H₆); 8,38 (d, J = 10 Hz, 1H : NH en 1); 8,75 (d, J = 9.5 Hz, 1H : NH en 6); 11,62 (s, 1H : OH).

15

20

25

30

35

5

10

EXEMPLE 32 : Préparation de la 4ζ-éthyl-dés(4ζ-diméthylamino) pristinamycine I_A

On réalise à l'échelle de 2 erlenmeyers comme décrit dans l'exemple 3 une culture de la souche SP92::pVRC508 en milieu de production avec ajout à 16h de 1 ml d'une solution à 20 g/l dans la soude 0,1N de 4-éthylphénylalanine (R,S) synthétisée comme à l'exemple 33. Au terme de 40 h de culture, les 60ml de moût issus des 2 erlenmeyers sont extraits par 2 volumes d'un mélange de 66% de tampon phosphate 100 mM pH 2,9 et 34% d'acétonitrile, puis centrifugés. Le surnageant est extrait par 2 fois volumes de dichlorométhane. Les phases chlorométhylèniques sont lavées à l'eau puis combinées, séchées sur sulfate de sodium et évaporées. L'extrait sec est repris par 20ml de dichlorométhane et injecté sur une colonne de silice (30g) montée dans le dichlorométhane et éluée successivement par paliers de 0 à 10 % de méthanol dans le dichlorométhane. Les fractions contenant la 4ζ-éthyl-dés(4ζdiméthylamino) pristinamycine IA sont regroupées et évaporées. Le résidu sec est repris par 7ml d'un mélange 52% eau et 48% acétonitrile et injecté sur une colonne semi-préparative Nucléosil 7µ C8 10x250 mm (Macherey Nagel) éluée dans un mélange de 52% de tampon phosphate 100 mM pH 2,9 et 48% d'acétonitrile. Les fractions contenant la 4ζ-éthyl-dés(4ζ-diméthylamino) pristinamycine I_A sont regroupées et extraites par un volume de dichlorométhane. La phase organique est

15

20

25

30

35

lavée à l'eau, séchée sur sulfate de sodium puis évaporée. On obtient 0,50 mg de 4ζ -éthyl-dés(4ζ -diméthylamino) pristinamycine I_A .

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm, ref. TMS): 0,42 (dd, J = 16 et 5,5 Hz, 1H : 1H du CH₂ en 5 β) ; 0,92 (t, J = 7,5 Hz, 3H : CH₃ en 2 γ) ; de 1,10 à 1,40 (mt, 2H : 1H du CH₂ en 3 β et 1H du CH₂ en 3 γ) ; 1,23 (t, J = 7,5 Hz, 3H : CH₃ de l'éthyle) ; 1,35 (d, J = 7 Hz, 3H : CH₃ en 1 γ) ; de 1,45 à 1,85 (mt, 3H : l'autre H du CH₂ en 3γ et CH₂ en 2β); 2,02 (mt, 1H : l'autre H du CH₂ en 3β); 2,15 et de 2,25 à 2,40 (2 mts, 1H chacun : CH₂ en 5 δ) ; de 2,25 à 2,40 (mt, 1H : l'autre H du CH₂ en 5 β); 2,60 (q, J = 7,5 Hz, 2H : ArCH₂ de l'éthyle) ; 2,83 (dt, J = 13 et 4 Hz, 1H : 1H du CH₂ en 5 ϵ); 2,98 (dd, J = 12 et 4 Hz, 1H : 1H du CH₃ en 4 β); de 3,25 à 3,35 (mt, 1H : 1H du CH₂ en 3 δ); 3,27 (s, 3H : NCH₃); 3,39 $(t, J = 12 \text{ Hz}, 1\text{H} : l'autre H du CH₂ en 4 \beta) ; 3,59 (mt, 1H : l'autre H du CH₂ en 3$ δ); 4,58 (dd, J = 7 et 6,5 Hz, 1H: 3 α); 4,75 (dd large, J = 13 et 8 Hz, 1H: l'autre H du CH₂ en 5 ϵ); 4,87 (mt, 1H : 2 α); 4,89 (dd, J = 10 et 1 Hz, 1H : 1 α); 5,24 (d large, J = 5.5 Hz, $1H : 5 \alpha$); 5.29 (dd, J = 12 et 4 Hz, $1H : 4 \alpha$); 5.88 (d, J = 10Hz, $1H : 6 \alpha$); 5,92 (mt, $1H : 1 \beta$); 6,73 (d, J = 10 Hz, 1H : NH en 2); de 7,10 à 7,35 (mt, 9H : H Aromatiques en 6 - 4 ϵ et 4 δ) ; 7,44 (dd, J = 8,5 et 1,5 Hz, 1H : 1' H_A); 7,50 (dd, J = 8,5 et 4,5 Hz, 1H: 1' H_5); 7,80 (dd, J = 4,5 et 1,5 Hz, 1H: 1' H_6); 8,38 (d, J = 10 Hz, 1H: NH en 1); 8,75 (d, J = 10 Hz, 1H: NH en 6); 11,66 (s, 1H:OH).

A partir des mêmes fractions issues de la colonne de silice décrite ci-dessus, contenant également le nouveau dérivé de pristinamycine I_H , 0.3mg de ζ -éthyldés(4ζ -diméthylamino) pristinamycine I_H sont isolés en opérant la chromatographie sur colonne semi-préparative comme décrit ci-dessus.

Spectre de R.M.N. ¹ H (400 MHz, CDCl₃, δ en ppm): 0,04 (mt, 1H: 1H du CH₂ en 5 β); 0,92 (t, J = 7.5 Hz, 3H: CH₃ en 2 γ); de 1,10 à 1,40 (mt, 2H: 1H du CH₂ en 5 δ et 1H du CH₂ en 5 γ); 1,18 (t, J = 7.5 Hz, 3H: CH₃ de l'éthyle); 1,30 (d, J = 6.5 Hz, 3H: CH₃ en 1 γ); de 1,45 à 1,85 (mt, 7H: l'autre H du CH₂ en 5 γ -l'autre H du CH₂ en 5 δ - 1H du CH₂ en 3 β - CH₂ en 3 γ et CH₂ en 2 β); 1,81 (d large, J = 13 Hz, 1H: l'autre H du CH₂ en 5 β); 2,02 (mt, 1H: l'autre H du CH₂ en 3 β); 2,40 (dt, J = 13 et 4 Hz, 1H: 1H du CH₂ en 5 ϵ); 2,65 (q, J = 7.5 Hz, 2H: Ar CH₂ de l'éthyle); 2,97 et 3,09 (respectivement dd et t, J = 12 et 5 Hz et J = 12 Hz, 1H chacun: CH₂ en 4 β); 3,50 et 3,60 (2 mts, 1H chacun: CH₂ en 3 δ); 4,13 (dd, J = 8 et 5 Hz, 1H: 3 α); 4,49 (d large, J = 13 Hz, 1H: l'autre H du CH₂ en 5

ε); 4,70 (mt, 2H: 5 α et 4 α); 4,77 (mt, 1H: 2 α); 4,83 (dd, J = 10 et 1 Hz, 1H: 1 α); 5,50 (d, J = 7 Hz, 1H: 6 α); 5,74 (mt, 1H: 1 β); 6,09 (d, J = 4 Hz, 1H: NH en 4); 6,72 (mf, 1H: NH en 2); 7,07 (d, J = 8 Hz, 2H: H Aromatiques en 4 ε); 7,15 (d, J = 8 Hz, 2H: H Aromatiques en 4 δ); de 7,15 à 7,35 (mt, 5H: H Aromatiques en 6); 7,40 (dd, J = 8 et 1 Hz, 1H: 1' H₄); 7,45 (dd, J = 8 et 4 Hz, 1H: 1' H₅); 7,92 (dd, J = 4 et 1 Hz, 1H: 1' H₆); 8,40 (mf, 1H: NH en 6); 8,50 (d, J = 10 Hz, 1H: NH en 1); 11,72 (s, 1H: OH).

10

20

EXEMPLE 33 : Préparation de dérivés de phénylalanine et d'acide phénylpyruvique déja décrits.

4-4-méthoxyphénylalanine, dérivés et les phénylalanine, 15 La 4 4-iodophénylalanine, 4-chlorophénylalanine, bromophénylalanine, 3-méthoxyphénylalanine 4-aminophénylalanine, trifluorométhylphénylalanine, utilisés sont commerciaux.

Les dérivés suivants de phénylalanine peuvent être préparées selon les méthodes décrites dans la littérature.

4-Diméthylaminophénylalanine (RS)

D.F. Elliott, A.T. Fuller, C.R. Harrington, J. Chem. Soc., 1948, 85-89.

4-Diéthylaminophénylalanine (RS)

Moldaver B.L., Pushkareva Z.V., Zhur. Obshchei Khim, 31, 1560-1569 (1961);

C.A. 1961, 22226f.; J.A Stock, J. Chem. Soc, 1959, 90-97

4-Ethylaminophénylalanine (RS)

F. Bergel, J.A. Stock, J. Chem. Soc, 1959, 90-97.

4-Phénylphénylalanine (RS)

30 J.V. Braun, J. Nelles, Berichte, 66B, 1933, 1464-1470.

4-Méthylphénylalanine (RS)

R.R., Herr, T. Enjoki, J.P. Dailey, J. Am. Chem. Soc, 1957, 79, 4229-4231.

4-Méthylthiophénylalanine (RS) et 4- Ethylthiophénylalanine (R,S)

R.L.Colescott, R.R.Herr, J.P. Dailey J. Am. Chem. Soc, 1957, 79, 4232-4235.

- 4-Méthoxycarbonylphénylalanine (RS)
- H.Cleland, J. Org. Chem., 1969, 34, 747.
- 2,4 Diméthylphénylalanine (RS)
- R.R., Herr, T. Enjoki, J.P. Dailey, J. Am. Chem. Soc, 1957, 79, 4229-4231.
- 5 3,4 Diméthylphénylalanine (RS)
 - R.R., Herr, T. Enjoki, J.P. Dailey, J. Am. Chem. Soc, 1957, 79, 4229-4231.
 - 3-Trifluorométhylphénylalanine (RS), chlorhydrate
 - R. Filler and H.Novar, J. Org. Chem, 1960, 25, 733-736.
 - 4-Aminométhyl phénylalanine (S)
- 10 G.E. Stokker, W.F. Hoffman and C.F. Homnick, J.Org.Chem., 1993, 58, 5015-5017.
 - 3- Méthylphénylalanine (R,S)
 - J.H Burckhalter, V.C Stephens, J.A.C.S. 1951, 73, 56-58.
 - 4-Acétyl phénylalanine (R,S)
- 15 J.I. Degaw et coll., J. Med.Che., 1969, 11, 225-227
 - 4-O-Allyl tyrosine (S)
 - A. Loffet, H. Zang, Int. J. Pept. Protein Res., 1993, 42, 346
 - 4-O-Ethyl tyrosine (S)
 - Y. Sasaki et colll, Chem. Pharm, Bull., 1982, 30, 4435
- 20 4-Ethyl phénylalanine (RS)
 - A. Zhuze et coll., Coll., Czech. Chem. Commmm., 1965, 62, 2648
 - L'acide 4-tert-butylphénylpyruvique peut être préparé suivant
 - R. Breslow, J.W. Canary, M. Varney, S.T. Waddell and D. Yang, J. Am.Chem.Soc., 1990, 112, 5212-5219.

Les autres dérivés de phénylalanine ont été préparés suivant les exemples 34 à 42 indiqués ci-dessous. Dans ces exemples, les chromatographies flash sont effectuées sous une pression d'azote moyenne de 50 kPa, en utilisant une silice de granulométrie 40-53 µm, selon Still et al., J. Org. Chem., 43, 2923, (1978).

10

15

EXEMPLE 34: Préparation de dérivés de phénylalanine et d'un dérivé d'acide phénylpyruvique par la méthode A.

$$R_1$$
 R_1
 R_2
 $X \rightarrow I, Br$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_7
 R_8
 R_8
 R_9
 R_9
 R_1
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8
 R_9
 R_9
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8
 R_9

34-1: 4-Méthylaminophénylalanine (RS), dichlorhydrate

A 3,70 g de N-acétyl 4-méthylaminophénylalaninate de méthyle on ajoute 37 ml d'acide chlorhydrique 12 N et le mélange est chauffé au reflux sous agitation pendant 8 h. Après une nuit à température ambiante, le milieu réactionnel est concentré à sec sous pression réduite (50 kPa), repris par un mélange de 50 ml de toluène et 50 ml d'éthanol puis à nouveau concentré. Après séchage en dessicateur sous pression réduite (2,6 kPa), on obtient 4,18 g (100%) de dichlorhydrate de 4-méthylaminophénylalanine (RS) sous forme d'un solide beige clair hygroscopique fondant à 158°C.

34-2: N-Acétyl 4-méthylaminophénylalaninate de méthyle (RS)

A 4 g de 4-méthylamino 2-acétamido cinnamate de méthyle placé sous atmosphère d'azote dans un autoclave, on ajoute 0,4 g de palladium sur charbon à 10% puis 50 ml d'éthanol absolu. Le mélange est placé sous une pression de 5,5 bars d'hydrogène et chauffé 15 h à 50°C sous agitation. Après stabilisation de la température à 26°C et remise à pression atmosphérique, le milieu réactionnel est filtré sur Clarcel®, rincé à l'éthanol puis concentré à sec sous sous pression réduite (2,6 kPa). On obtient ainsi 3,73 g de N-acétyl 4-méthylaminophénylalaninate de méthyle sous forme de cristaux blancs fondant à 118°C.

10

15

34-3: 4-Méthylamino 2-acétamido cinnamate de méthyle

Dans un tricol placé sous azote on ajoute 5,75 g de 2-acétamido acrylate de méthyle, 0,185 g d'acétate de palladium, 8,1 g de chlorure de tétrabutyl ammonium et 6,03 g d'hydrogénocarbonate de sodium puis on additionne à ce mélange 6,5 g de 4-iodo N-méthylaniline en solution dans 200 ml de DMF. Le mélange est chauffé 16 h 30 mn à 82°C puis après refroidissement versé sur 1000 ml d'eau distillée. Le milieu est repris par 250 ml de CH₂Cl₂, la phase organique est décantée et la phase aqueuse lavée par 2 fois 250 ml de CH₂Cl₂. Les phases organiques sont rassemblées, séchées sur sulfate de sodium, filtrées et concentrées-sous pression réduite (50 kPa) à 70°C pour donner une huile brune qui est purifiée par flash-chromatographie (éluant AcOEt / cyclohexane puis AcOEt pur).

On obtient ainsi 4 g de 4-méthylamino 2-acétamido cinnamate de méthyle, sous forme d'un solide jaune (Silice Merck 5719, Rf= 0,48) qui est utilisé tel quel.

La N-méthyl-p-iodoaniline peut être préparée suivant : S. Krishnamurthy, Tetrahedron Letters, 33, 3315-3318, 1982.

34-4: Acide 4-méthylamino phénylpyruvique

On place dans un ballon 2,4 g de 4-méthylamino 2-acétamido cinnamate de méthyle et 32 ml d'acide chlorhydrique 12 N. Le mélange est chauffé au reflux 3 h puis refroidi et lavé par 2 fois 20 ml d'éther diéthylique. La phase aqueuse est refroidie à -10°C et le précipité obtenu est filtré puis rinçé par un minimum d'acide chlorhydrique froid. Le solide obtenu est séché au dessicateur sous pression réduite pour donner 1,1 g d'acide 4-méthylamino phénylpyruvique sous forme d'un solide beige clair fondant à 210°C.

34-5: 3-Fluoro 4-méthylphénylalanine (R.S), chlorhydrate

30 En opérant comme à l'exemple 34-1 mais à partir de 1,6 g de N-Acétyl (3-fluoro-4 méthyl) phénylalaninate de méthyle, on obtient 0,6 g de chlorhydrate de 3-fluoro 4-méthyl phénylalanine (R,S) sous forme de cristaux blancs fondant à une température supérieure à 260°C.

34-6: N-Acétyl (3-fluoro-4 méthyl) phénylalaninate de méthyle(R.S)

En opérant comme à l'exemple 34-2 mais à partir de 1,9 g de (4-méthyl 3-fluoro) 2-acétamido cinnamate de méthyle, de 0,2 g de palladium sur charbon à 10% dans 230 ml d'éthanol, on obtient 1,6 g de N-acétyl (3-fluoro-4 méthyl) phénylalaninate de méthyle sous forme d'une huile incolore (Silice Merck 5719, Rf= 0,46; éluant CH_2Cl_2 / AcOEt 50/50).

34-7: (3-Fluoro 4-méthyl) 2-acétamido cinnamate de méthyle

10

15

20

5

En opérant comme à l'exemple 34-3 mais à partir de 3,6 g de 2-acétamido acrylate de méthyle, 0,12 g d'acétate de palladium, 5,2 g de chlorure de tétrabutyl ammonium, de 3,8 g d'hydrogénocarbonate de sodium et de 4 g de 2-fluoro 4-bromo toluène en solution dans 120 ml de DMF anhydre, on obtient 2,6 g de (3-fluoro 4-méthyl) 2-acétamido cinnamate de méthyle sous forme d'un solide blanc fondant à 163°C.

34-8: 4-Trifluorométhoxyphénylalanine (R.S), chlorhydrate ou Otrifluorométhyl tyrosine, chlorhydrate (R.S)

En opérant comme à l'exemple 34-1 mais à partir de 3 g de N-acétyl (4-trifluorométhoxy) phénylalaninate de méthyle et de 30 ml d'acide chlorhydrique 12 N, on obtient 1,5 g de chlorhydrate de 4-trifluorométhoxy phénylalanine (RS) sous forme de cristaux blancs fondant à 260°C.

25

30

34-9: N-Acétyl (4-trifluorométhoxy) phénylalaninate de méthyle (R.S)

En opérant comme à l'exemple 34-2 mais à partir de 3,1 g de (4-trifluorométhoxy) 2-acétamido cinnamate de méthyle, de 0,3 g de palladium sur charbon à 10% dans 50 ml d'éthanol, on obtient 3 g de N-acétyl (4-trifluorométhoxy) phénylalaninate de méthyle sous forme d'un solide blanc fondant à 80°C.

34-10: 4-Trifluorométhoxy 2-acétamido cinnamate de méthyle

En opérant comme à l'exemple 34-3 mais à partir de 4,3 g de 2-acétamido acrylate de méthyle, 0,14 g d'acétate de palladium, 6,1 g de chlorure de tétrabutyl

WO 96/01901 PCT/FR95/00889

81

ammonium, de 4,6 g d'hydrogénocarbonate de sodium et de 5 g de 4-trifluorométhoxy bromo benzène en solution dans 150 ml de DMF anhydre.

On obtient 3,1 g de (4-trifluorométhoxy) 2-acétamido cinnamate de méthyle sous forme d'un solide blanc fondant à 135°C.

5

10

15

20

25

30

34-11: 3-Méthylthiophénylalanine (RS), chlorhydrate

En opérant comme à l'exemple 34-1 mais à partir de 3,3 g de N-acétyl 3-méthylthio phénylalaninate de méthyle et de 40 ml d'acide chlorhydrique 12N, on obtient 1,38 g de chlorhydrate de 3-méthylthio phénylalanine (RS) sous forme de cristaux blancs fondant à 190°C.

34-12: N-Acétyl 3-méthylthio phénylalaninate de méthyle (RS)

On place dans un ballon 3,72 g de 3-méthylthio 2-acétamido cinnamate de méthyle en solution dans 100 ml de méthanol et 30 ml de tétrahydrofuranne puis on ajoute 1,4 g de magnésium. Après 20 mn de réaction on refroidi le milieu par un bain de glace puis on ajoute à nouveau 1,4 g de magnésium. Le mélange est agité à température ambiante pendant 18 h, versé sur 1,4 l d'eau distillée et 300 ml de CH₂Cl₂ puis filtré sur Clarcel®. La phase aqueuse est ajustée à pH 6 par addition d'acide chlorhydrique 12 N puis décantée et lavée par 100 ml de CH₂Cl₂. Les phases organiques sont rassemblées, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite pour donner 3,42 g de N-acétyl 3-méthylthio phénylalaninate de méthyle sous forme d'une huile incolore (Silice Merck 5719, Rf=0,5; AcOEt).

34-13: 3-Méthylthio 2-acétamido cinnamate de méthyle

En opérant comme à l'exemple 34-3 mais à partir de 5,6 g de 2-acétamido acrylate de méthyle, 0,18 g d'acétate de palladium, 8,2 g de chlorure de tétrabutyl ammonium, de 5,86 g d'hydrogénocarbonate de sodium et de 6,5 g de 3-iodo 1-méthylthiobenzène en solution dans 160 ml de DMF anhydre, on obtient 4,8 g de (3-méthylthio) 2-acétamido cinnamate de méthyle sous forme d'un solide blanc fondant à 139°C.

10

15

34-14: 3-Iodométhylthiobenzène

On place sous agitation dans un tricol 20 ml d'eau distillée et 20 ml d'acide chlorhydrique 12 N puis on ajoute par une ampoule de coulée 10 ml de 3-méthylthio aniline. Le mélange est tiédi pour assurer la dissolution puis refroidi à 5°C. On ajoute ensuite lentement par une ampoule de coulée 5,86 g de nitrite de sodium en solution dans 15 ml d'eau en maintenant la température entre 5 et 8°C. 20mn après la fin de l'addition, 13,57 g de iodure de potassium en solution dans 15 ml d'eau sont ajoutés en 10mn puis le mélange est agité 15 h à température ambiante. L'huile formée est séparée de la phase aqueuse par décantation, puis additionnée d'une solution aqueuse de thiosulfate de sodium. La phase aqueuse est décantée, et le produit extrait par 100 ml de dichlorométhane. La phase organique est lavée avec 100 ml d'eau, la phase aqueuse ajustée à pH 9 avec de la soude concentrée puis décantée. La phase organique est lavée par 2 fois 100 ml d'eau, décantée, séchée sur sulfate de magnésium, filtrée puis concentrée à sec sous pression réduite (50 kPa) à 40°C. Le produit résultant est purifié par chromatographie flash (éluant cyclohexane) pour donner 13 g de 3-iodo 1-méthylthiobenzène sous forme d'un liquide jaune (Silice Merck 5719, Rf= 0,8 / cyclohexane).

EXEMPLE 35 : Préparation de dérivés de phénylalanine par la méthode B.

35-1: 4-tert-Butylphénylalanine (RS)

Dans un tricol surmonté d'un réfrigérant sont additionnés 25 g de 4-(tert butyl) benzyl acétamidomalonate de diéthyle et 250 ml d'acide chlorhydrique à 37%. Le mélange est agité et chauffé au reflux jusqu'à ce qu'il n'y ait plus de dégagement gazeux. Après refroidissement du milieu réactionnel le précipité obtenu est filtré puis recristallisé dans l'acétonitrile pour donner 25, 6 g de chlorhydrate de 4-tert-butylphénylalanine (R,S) sous forme d'un solide blanc fondant à 234°C. (Voir également Journal of the Takeda Research Laboratories Vol. 43; N°3/4, Déc1984 p53-76).

35-2: 4-(tert butyl) benzyl acétamidomalonate de diéthyle

Dans un tricol surmonté d'un réfrigérant sont additionnés sous atmosphère d'azote, 25 g de bromure de 4-tert-butyl benzyle, 50 ml de toluène anhydre et 3,1 g d'hydrure de sodium en suspension dans l'huile à 80% puis 21,8 g d'acétamido malonate de diéthyle. Le mélange est chauffé à 110°C pendant 17 h. Après refroidissement on ajoute lentement à l'aide d'une ampoule de coulée, 15 ml d'éthanol absolu puis 15 ml d'éthanol à 50% puis 50 ml d'eau. La phase organique est décantée et la phase aqueuse lavée par 3 fois 50 ml d'éther diéthylique. Les phases organiques sont réunies, lavées à l'eau puis séchées sur sulfate de sodium. Après filtration et concentration sous pression réduite, le produit est cristallisé dans l'éther de pétrole pour donner 25 g de 4-(tert-butyl) benzyl acétamidomalonate de diéthyle sous forme d'un solide blanc fondant à 80°C.

25

30

10

15

20

35-3: 3-Méthylaminophénylalanine (R.S), dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 1,17 g 3-méthylamino benzyl acétamidomalonate de diéthyle et 20 ml d'acide chlorhydrique 12 N, on obtient 1, 03 g d'un solide jaune beige. Celui-ci est dissous dans 20 ml d'éthanol absolu et additionné de 0,4 g de noir animal. La solution est filtrée sur Clarcel®, puis filtrée et concentrée sous pression réduite (50 kPa) La même opération est recommencée avec 1 g de noir animal et le solide obtenu trituré dans 20 ml d'éther. Aprés filtration et séchage sous pression réduite (2,7 kPa) à 50°C, on obtient 0,65 g

de dichlorhydrate de 3-méthylaminophénylalanine (R,S) sous forme d'une poudre blanche fondant vers 135°C (décomposition).

35-4: 3-Méthylamino benzyl acétamidomalonate de diéthyle

5

10

15

20

25

30

On place dans un tricol maintenu sous atmosphère d'azote 3,11 ml d'anhydride acétique. On ajoute ensuite en 3 mn à 0°C, 1,51 ml d'acide formique puis on chauffe à 50°C pendant 2 heures. On laisse le mélange revenir à température ambiante en agitant pendant 3h 20 et on ajoute 4 ml de THF anhydre sous azote et on refroidi à -20°C. On ajoute en 10 mn, une solution de 4 g de 3-aminobenzyl acétamidomalonate de diéthyle dans un mélange de 15 ml de THF anhydre et de 15 ml de dichlorométhane anhydre. L'agitation est poursuivie 1h 10mn à -20°C puis à 20°C pendant 16 h. Le mélange réactionnel est concentré à sec sous pression réduite (50 kPa) à 30°C, puis coévaporé avec 30 ml de toluène anhydre pour donner un solide blanc qui est dissous dans un mélange de 10 ml de THF anhydre et de 20 ml de dichloro 1,2 éthane anhydre puis placé dans un tricol sous azote.

Le milieu est refroidi à -5°C puis 1,55 ml de complexe borane-diméthylsulfure (solution 2M dans le THF) est ajouté en 10 mn. On laisse le milieu revenir à température ambiante et la solution et chauffée 3 h au reflux puis agitée 15 h à température ambiante. Le milieu réactionnel est refroidi à 0°C puis on ajoute en 25 mn, 10 ml de MeOH. On agite 45 mn à 0°C puis 30 mn à température ambiante. On refroidit à 0°C puis on fait barboter HCl gaz jusqu'à pH 2. On chauffe 1 h à reflux puis le mélange est concentré à sec sous pression réduite à 30°C pour donner 5 g d'un produit qui est repris par 30 ml d'une solution aqueuse de NaHCO₃ et de 30 ml de CH₂Cl₂. La phase organique est décantée et la phase aqueuse lavée par 20 ml d'eau. Les phases organiques sont réunies, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite (2,6 kPa) pour donner 3,43 g d'une huile jaune qui est purifiée par chromatographie flash (éluant AcOEt-cyclohexane 50/50). On obtient ainsi après séchage sous pression réduite (2,7 kPa) à 20°C, 1,18 g de 3-méthylamino benzyl acétamidomalonate de diéthyle sous forme d'un solide beige clair fondant à 122°C.

35-5: 3-Aminobenzyl acétamidomalonate de diéthyle

Le 3-amino benzyl acétamidomalonate de diéthyle peut être préparé comme décrit dans :

5 T.S. Osdene, D.N.Ward, W.H. Chapman and H. Rakoff, J. Am. Chem. Soc., 81, 1959, 3100-3102.

35-6: 3-Ethylaminophénylalanine (R.S), dichlorhydrate

En opérant comme à l'exemple 34-1 mais à partir de 2 g de N-acétyl 3éthylarnino phénylalaninate d'éthyle(R,S) et de 30 ml d'acide chlorhydrique 12N, on obtient 1,7 g de dichlorhydrate de 3-éthylarnino phénylalanine (R,S) sous forme d'un solide beige clair hygroscopique contenant 10% molaire de dichlorhydrate de 3diéthylarnino phénylalanine (R,S).

10

15

20

25

35-7: N-Acétyl 3-éthylamino phénylalaninate d'éthyle(R.S)

On place dans un ballon sous atmosphère d'azote, 3 g de N-acétyl 3-amino phénylalaninate d'éthyle (R,S), 40 ml d'éthanol et 14 g de nickel de Raney préalablement lavé à l'eau distillée et à l'éthanol. Le mélange est chauffé au reflux 19 h, refroidi, filtré sur Clarcel® puis concentré à sec sous pression réduite (50 kPa) pour donner 3,07 g d'une huile incolore qui est purifiée par chromatographie flash (éluant AcOEt) pour donner 2,1 g de N-acétyl 3-éthylamino phénylalaninate d'éthyle (R,S) sous forme d'une huile incolore (Silice Merck 5719, Rf= 0,6 :AcOEt) contenant 10% de N-acétyl 3-diéthylamino phénylalaninate d'éthyle (R,S).

35-8: N-acétyl 3-amino phénylalaninate d'éthyle(R.S)

25 g d'un mélange de N-acétyl 3-nitro phénylalaninate d'éthyle (R,S) (75% mol./mol.) et de 3-nitro benzyl acétamidomalonate de diéthyle (25% mol./mol.) sont placés sous azote dans un autoclave. On ajoute 2,5 g de palladium sur charbon à 10% puis 200ml de dichlorométhane. Le mélange est placé sous une pression de 9 bars d'hydrogène puis agité à 18°C pendant 4 h. Après remise à la pression atmosphèrique, le milieu réactionnel est filtré sur Clarcel®, rincé par du dichlorométhane puis concentré à sec sous pression réduite (50 kPa) pour donner un solide qui est

10

15

20

25

recristallisé dans 450 ml d'eau distillée au reflux en présence de 4 g de noir animal 3S. Après filtration à chaud sur Clarcel® la cristallisation est abandonnée à 4°C, les cristaux sont filtrés puis séchés pour donner 9,9 g de N-acétyl 3-amino phénylalaninate d'éthyle (R,S) sous forme d'un solide beige clair fondant à 106°C et contenant 5% de 3-amino benzyl acétamido malonate de diéthyle.

35-9: N-acétyl 3-nitro phénylalaninate d'éthyle(R.S) et 3-nitro benzyl acétamidomalonate de diéthyle.

Dans un tricol surmonté d'un réfrigérant sont placés sous atmosphère d'azote, 600 ml d'éthanol absolu puis 7,9 g de sodium. Après dissolution totale, on ajoute 74,5 g d'acétamido malonate de diéthyle puis 60 g de chlorure de 4-nitro benzyle dans 200 ml d'éthanol anhydre. Le mélange est chauffé au reflux pendant 16h 30mn. Après refroidissement le milieu réactionnel est concentré sous pression réduite (50 kPa) puis repris par un mélange de 500 ml de CH2Cl2 et de 500 ml d'eau. Le pH est ajusté à 7 par addition d'acide sulfurique 0,5N puis la phase organique est décantée et la phase aqueuse lavée par 2 fois 200 ml de CH2Cl2. Les phases organiques sont réunies, layées avec 200 ml d'eau saturée en bicarbonate de sodium, décantée puis séchées sur sulfate de magnésium. Après filtration et concentration sous pression réduite (50 kPa), le produit est recristallisé dans 600 ml d'éthanol au reflux pour donner après cristallisation à température ambiante, filtration et séchage, 70,4 g de 3-nitro benzyl acétamidomalonate de diéthyle.sous forme de cristaux blancs fondant à 156°C. Les eaux-mères sont concentrées puis purifiées par chromatographie flash (éluant AcOEt) pour donner 25,6 g d' un mélange de N-acétyl 3-nitro phénylalaninate d'éthyle (75% mol/mol) et de 3-nitro benzyl acétamidomalonate de diéthyle (25% mol/mol) sous forme d'un solide beige clair utilisé tel que dans l'étape suivante.

35-10: 3-Diméthylamino phénylalanine (RS), dichlorhydrate

30 En opérant comme à l'exemple 35-1 mais à partir de 0,72 g de N-acétyl 3-diméthylamino phénylalaninate d'éthyle (RS) et de 8,6 ml d'acide chlorhydrique à 10N, on obtient après évaporation un solide qui est trituré dans 50ml d'acétone, filtré puis séché sous pression réduite (2,7 kPa) à 40°C. On obtient 0,68 g (93%) de dichlorhydrate de 3-diméthylamino phénylalanine (RS) sous forme d'un solide blanc fondant vers 120°C (décomposition).

10

35-11: N-acétyl 3-diméthylamino phénylalaninate d'éthyle (RS)

On place dans un tricol sous atmosphère d'azote, 4g de N-acétyl 3-amino phénylalaninate d'éthyle (RS), préparé comme décrit à l'exemple 35-8 dans 15ml de DMF et on ajoute 5,5 ml de triéthylamine puis 2,5 ml de iodure de méthyle et 4 ml de dichlorométhane en maintenant la température vers 30°C à l'aide d'un bain de glace. Le mélange est ensuite chauffé 18h à 35°C. On ajoute alors lentement 1ml de iodure de méthyle en solution dans 1ml de DMF en maintenant la température vers 30°C, puis 2,2ml de triéthylamine puis le mélange est chauffé 5h supplémentaires à 35°C. Le mélange est ramené à température ambiante puis extrait par 100ml d'acétate d'éthyle et 150ml d'eau distillée. La phase aqueuse est décantée puis relavée par 2 fois 70ml d'acétate d'éthyle. Les phases organiques sont réunies, lavées par 2 fois 80 ml d'eau distillée puis par 50ml d'eau distillée saturée en NaCl. La phase organique est décantée, séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite pour donner 2,4g d'un produit qui est purifié par chromatographie flash (dichlorométhane, MeOH 90/10). On obtient ainsi 0,72g (16%) de 3-N-acétyl 3-diméthylamino phénylalaninate d'éthyle (RS) sous forme de cristaux jaunes.

20

25

30

15

EXEMPLE 36: Préparation de dérivés de phénylalanine par la méthode C.

$$\bigcap_{\mathsf{R}} \circ \longrightarrow \bigcap_{\mathsf{R}} \circ \mathsf{M}$$

36-1: 4-Isopropylphénylalanine (R.S)

On place dans un tricol 7 g de phosphore rouge et 8 g de 4-(isopropyl benzylidène) 2-méthyl 5-oxazolone dans 45 ml d'anhydride acétique puis on ajoute lentement sous agitation à l'aide d'une ampoule de coulée 35 ml d'acide iodhydrique à 57%. En fin d'addition le mélange est chauffé 3h 30mn au reflux puis laissé 3 jours à température ambiante. Le milieu réactionnel est filtré, le solide obtenu rincé par 2 fois 10 ml d'acide acétique puis le filtrat concentré à sec sous pression réduite. Le

résidu obtenu est repris par 100 ml d'eau distillée, concentré à sec sous pression réduite pour donné un solide qui est repris dans 50 ml d'eau distillée puis extrait par 3 fois 50 ml d'éther diéthylique après addition de 0,5g de sulfite de sodium. L'éther est décanté et la phase aqueuse placée sous pression réduite pour éliminer les traces d'éther diéthylique. On ajoute à la phase aqueuse 2 g de noir animal, on chauffe à 40-50°C, on filtre sur Clarcel® puis on rince avec un minimum d'eau. Le pH est ajusté à 5 par addition, à 4°C, d'ammoniaque à 32%. Le précipité obtenu est filtré à froid, rinçé par 2 fois 10 ml d'eau, 10 ml 'éthanol puis par 2 fois 10 ml d'éther pour donner après sèchage sous pression réduite à 20°C, 3,97 g de 4-isopropylphénylalanine (R,S) sous forme d'un solide blanc fondant à une température supérieure à 260°C. (Voir également Journal of the Takeda Research Laboratories Vol. 43; N°3/4, Déc1984 p53-76).

36-2: 4-(isopropyl benzylidène) 2-méthyl 5-oxazolone

15

20

25

10

5

On place dans un ballon muni d'un réfrigérant, 18,52 g de N-acétylglycine, 10,6 g d'acétate de sodium, 20 ml de 4-isopropylbenzaldéhyde et 57 ml d'anhydride acétique. On agite 30 mn puis le mélange est agité 1 h à 110°C puis 15 h à température ambiante. Le milieu réactionnel est versé sur 600 ml d'eau et 400 ml d'éther de pétrole préalablement chauffé à 50°C. La phase organique est décantée et la phase aqueuse lavée par 2 fois 150 ml d'éther de pétrole.

Les phases organiques sont rassemblées, séchées sur sulfate de magnésium, filtrées et concentrées sous pression réduite jusqu'à 100 ml et obtention d'un précipité. Celui-ci est filtré, lavé par 2 fois 50 ml de pentane pour donner 8,2 g de 4-(isopropyl benzylidène) 2-méthyl 5-oxazolone sous forme d'un solide jaune fondant à 77°C.

36-3: 4-butylphénylalanine (R.S)

En opérant comme à l'exemple 36-1 mais à partir de 1,49 g de phosphore rouge, de 1,8 g de 4-(butyl benzylidène) 2-méthyl 5-oxazolone dans 9,23 ml d'anhydride acétique et de 7,39 ml d'acide iodhydrique à 57%, on obtient 0,35 g de 4-butylphénylalanine (R,S) sous forme d'un solide beige clair fondant à une température supérieure à 260°C.

36-4: 4-(butyl benzylidène) 2-méthyl 5-oxazolone

En opérant comme à l'exemple 36-2 mais à partir de 8,43 g de N-acétylglycine, 4,92 g d'acétate de sodium, 9,8 g de 4-butylbenzaldéhyde et 26 ml d'anhydride acétique, on obtient1,89 g de.4-(butyl benzylidène) 2-méthyl 5-oxazolone, sous forme d'un solide jaune fondant à 74°C.

10

5

EXEMPLE 37 : Préparation d'un dérivé de phénylalanine par la méthode D.

37-1: 3-Ethoxy phénylalanine(R.S), chlorhydrate (ou 3-O-Ethyltyrosine (R.S), chlorhydrate)

On place dans un ballon 1 g de N-tert butoxy carbonyl 3-éthoxy phénylalanine (R,S) en solution dans 3,6 ml de dioxanne chlorhydrique puis le mélange est agité 5 h à température ambiante. Le précipité formé est filtré, rinçé par du dioxanne puis à l'éther puis séché sous pression réduite (2,7 kPa) à 40°C pour donner 0,65 g de 3-éthoxy phénylalanine (R,S), chlorhydrate sous forme d'un solide blanc fondant à 200°C.

37-2: N-tert Butoxy carbonyl 3-éthoxy phénylalanine (R.S)

25

30

20

On place dans un ballon 1,33 g de N-tert butoxy carbonyl 3-éthoxy phénylalaninate d'éthyle (R,S) en solution dans 8 ml de méthanol puis on ajoute 8 ml de soude 1N. Après 18 h d'agitation à température ambiante, le mélange est évaporé sous pression réduite, puis acidifié par 8,56 ml d'acide chlorhydrique 1N. Le produit est extrait par 2 fois 10 ml d'acétate d'éthyle, les phases organiques sont réunies, lavées par 2 fois 10 ml d'eau, séchées filtrées puis concentrées à sec sous pression réduite pour donner 1 g de N-tert butoxy carbonyl 3-éthoxy phénylalanine (R,S) sous forme d'une huile jaune (Silice Merck 5719, Rf= 0,7, éluant : toluène 80 / MeOH 10 / diéthylamine 10).

10

15

20

37-3: N-tert Butoxy carbonyl 3-éthoxy phénylalaninate d'éthyle (R.S)

On place dans un tricol sous atmosphère d'azote, 1,5 g de N-tert butoxy carbonyl 3-tyrosine (R,S) en solution dans 7,5 ml de DMF sec puis on ajoute, 0,508 g d'hydrure de sodium à 50% dans l'huile. Après 2 h d'agitation à température ambiante on ajoute 0,86 ml de iodoéthane puis le mélange est agité 4 h à température ambiante. Le milieu est filtré, le solide résultant lavé par 3 fois 10 ml d'eau puis 2 fois 10 ml d'éther de pétrole pour donner après séchage sous pression réduite (2,7 kPa) à 30°C, 1,33 g de N-tert butoxy carbonyl 3-éthoxy phénylalaninate d'éthyle (R,S) sous forme d'un solide blanc.

37-4: N-tert Butoxy carbonyl 3-tyrosine (R.S)

On place sous agitation dans un tricol, 18 g de 3-tyrosine (R,S) en solution dans 180 ml de dioxanne puis on ajoute 99 ml de soude 1N puis 26 g de di-tert butyl dicarbonate en solution dans 160 ml de dioxanne. Après 36 h d'agitation le milieu est concentré sous pression réduite à 30°C, repris avec 100 ml d'eau distillée, acidifié avec de l'acide chlorhydrique 1N jusqu'à pH 5 puis extrait par 2 fois 200 ml d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée à sec sous pression réduite à 30°C, pour donner 30 g de N-tert butoxy carbonyl 3-tyrosine (R,S) sous forme d'un solide blanc (Silice Merck 5719, Rf= 0,25, éluant : toluène 80, MeOH 10, diéthylamine 10).

25 EXEMPLE 38: Préparation de dérivés de phénylalanine par la méthode E.

38-1: 4-Diallylaminophénylalanine (RS), dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 5,8 g de 4-30 diallylaminobenzyl acétamido malonate de diéthyle et de 48 ml d'acide chlorhydrique 10N, on obtient après évaporation un solide qui est trituré dans 50ml d'acétone, filtré puis trituré dans 10ml de dichlorométhane, filtré, puis rinçé par 3 fois 10 ml d'éther éthylique. Aprés séchage sous pression réduite (2,7 kPa) à 40°C, on obtient 4,41 g de

dichlorhydrate de 4-diallylaminophénylalanine (RS) sous forme d'un solide blanc cassé fondant vers 135°C (décomposition).

38-2: 4-Allylaminophénylalanine (RS), dichlorhydrate

5

10

20

25

30

En opérant comme à l'exemple 35-1 mais à partir de 3,27 g de 4-allylaminobenzyl acétamido malonate de diéthyle et de 30 ml d'acide chlorhydrique 10N, on obtient après évaporation un solide qui est trituré dans 50ml d'acétone, filtré puis séché sous pression réduite (2,7 kPa) à 40°C. On obtient 2,3 g de dichlorhydrate de 4-allylaminophénylalanine (RS) sous forme d'un solide blanc fondant vers 134°C (décomposition).

38-3: <u>4-Diallylaminobenzyl acétamido malonate de diéthyle et 4-</u> 15 <u>Allylaminobenzyl acétamido malonate de diéthyle</u>

On place dans un tricol surmonté d'une ampoule de coulée et maintenu sous atmosphère d'azote 10g de 4-aminobenzylacétamidomalonate de diéthyle en solution dans 150ml de DMF. On ajoute lentement à température ambiante, 6,57 ml de bromure d'allyle puis 10,76ml de triéthylamine sous agitation. Après 19 h d'agitation on ajoute à nouveau, 1,31ml de bromure d'allyle et 2,15ml de triéthylamine et le mélange est agité 26h. Le milieu réactionnel est versé sur 1,51 d'eau distillée et extrait par 11 d'acétate d'éthyle. La phase aqueuse est décantée, lavée par 2 fois 500ml d'acétate d'éthyle. Les phases organiques sont réunies, lavées par 500ml d'eau distillée puis par 500ml d'eau saturée en chlorure de sodium, décantées, séchées sur sulfate de magnésium, filtrées puis concentrées à sec pour donner une huile marron qui est purifiée par chromatographie flash (éluant CH₂Cl₂ 90/ AcOEt 10) pour donner 6,66 g de 4-diallylaminobenzyl acétamido malonate de diéthyle sous forme d'un solide beige fondant à 94-96°C (Rf =0,6 AcOEt 50/ cyclohexane 50) et 3,49g de 4-allylaminobenzyl acétamido malonate de diéthyle sous forme d'un solide beige fondant à 104-106°C (Rf =0,45 AcOEt 50/ cyclohexane 50)

Le 4-aminobenzyl acétamido malonate de diéthyle peut être préparé comme décrit dans J.B. Burckhalter, VC Stephens, J. Am. Chem. Soc., <u>56</u>, 1951, 73.

10

15

20

EXEMPLE 39: Préparation de dérivés de phénylalanine par la méthode F

39-1: 4-Ethyl isopropyl phénylalanine (RS), dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 2,9 g de 4-éthyl isopropylbenzyl acétamido malonate de diéthyle et de 24,6 ml d'acide chlorhydrique 10N, on obtient après évaporation un solide qui est trituré dans 20 ml d'acétone, filtré puis séché sous pression réduite (2,7 kPa) à 40°C. On obtient 2 g de dichlorhydrate de 4-éthyl isopropylaminophénylalanine (RS) sous forme d'un solide blanc fondant vers 147°C (décomposition).

39-2: 4-Ethyl isopropyl aminobenzyl acétamido malonate de diéthyle

On place dans un tricol maintenu sous atmosphère d'azote, 15g de 4-éthyl aminobenzylacétamido malonate de diéthyle dans 70ml de THF, on ajoute 6,4ml de 2-iodopropane puis 8,4ml de 1,5-diazabicyclo[4-3-0]non-5-ène puis le mélange est chauffé 24h à 60°C. On ajoute alors 2,13ml de 2-iodopropane, puis 8,4ml de 1,5-

diazabicyclo[4-3-0]non-5-ène puis le mélange est chauffé 24h supplémentaires à 60°C.

Le mélange est ramené à température ambiante puis extrait par 50ml de dichlorométhane et 50ml d'eau distillée. La phase aqueuse est décantée puis relavée par 2 fois 30ml de dichlorométhane. Les phases organiques sont réunies, lavées par 60 ml d'eau distillée puis par 50ml d'eau distillée saturée en NaCl. la phase organique est décantée, séchée sur sulfate de magnésium, filtrée, puis concentrée à sec sous pression réduite pour donner 16,2g d'un produit qui est purifié par chromatographie flash (dichlorométhane, MeOH 90/10). On obtient ainsi 4,59g d'un produit qui est recristallisé dans 45ml de cyclohexane pour donner 3,44g de 4-éthyl isopropyl aminobenzyl acétamido malonate de diéthyle sous forme de cristaux blancs fondants à 80°C.

15 39-3: 4-Ethylaminobenzylacétamido malonate de diéthyle

Le 4-éthyl aminobenzylacétamido malonate de diéthyle peut être préparé en opérant comme à l'exemple 35-7 mais à partir de 22 g de 4-aminobenzyl acétamidomalonate de diéthyle, 500 ml d'éthanol et 70 g de nickel de raney. On obtient ainsi, 23,8 g de 4-éthylamino benzylacétamido malonate de diéthyle sous forme d'un solide blanc cassé fondant à 136°C.

39-4: 4-Allyl éthylaminophénylalanine (RS), dichlorhydrate

25

30

20

10

En opérant comme à l'exemple 35-1 mais à partir de 4,54 g de 4-allyl éthylbenzyl acétamido malonate de diéthyle et de 37,9 ml d'acide chlorhydrique à 10N, on obtient après évaporation un solide qui est séché sous pression réduite (2,7 kPa) à 40°C. On obtient 3,67g de dichlorhydrate de 4-allyl éthylaminophénylalanine (RS) sous forme d'un solide brun fondant vers 130°C (décomposition).

.39-5: 4-Allyl éthylaminobenzyl acétamido malonate de diéthyle

En opérant comme à l'exemple 39-2 mais à partir de 8 g de 4éthylaminobenzylacétamido malonate de diéthyle, 4 ml de bromure d'allyle, 5,82 ml de 1,5-diazabicyclo[4-3-0]non-5-ène, dans 50ml de THF, on obtient après

purification par chromatographie flash (éluant CH2Cl2 / AcOEt 90-10 en volume) 5, 6g d'un solide qui est recristallisé dans 35ml de cyclohexane. On obtient ainsi 5,43g de 4-allyl éthylaminobenzyl acétamido malonate de diéthyle sous forme d'un solide blanc fondant à 86°C.

5

10

39-6: 4-Ethyl propylaminophénylalanine (RS), dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 2,5 g de 4-éthyl propylaminobenzyl acétamido malonate de diéthyle et de 21 ml d'acide chlorhydrique à 10N, on obtient après évaporation un solide qui est séché sous pression réduite (2,7 kPa) à 40°C. On obtient 2 g (97%) de dichlorhydrate de 4-éthyl propylaminophénylalanine (RS) sous forme d'un solide blanc fondant vers 147°C (décomposition).

15

39-7: 4-Ethyl propylaminobenzyl acétamido malonate de diéthyle

En opérant comme à l'exemple 39-2 mais à partir de 10 g de 4éthylaminobenzylacétamido malonate de diéthyle, 5,6 ml de 1-iodo propane, 7,2 ml de 1,5-diazabicyclo[4-3-0]non-5-ène, dans 70ml de THF, on obtient après 36heures de réaction puis purification par chromatographie flash (éluant CH2Cl2 / MeOH 97-3 en volume), 2,8g d'un solide qui est recristallisé dans 26 ml de cyclohexane.On obtient ainsi 2,9g de 4-éthyl propylaminobenzyl acétamido malonate de diéthyle sous forme d'un solide blanc fondant à 84-86°C.

25

30

35

20

39-8: 4-Ethyl méthylcyclopropylaminophénylalanine (RS) dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 3 g de 4-éthyl méthylcyclopropylaminobenzyl acétamido malonate de diéthyle et de 25 ml d'acide chlorhydrique 10N, on obtient après 3 jours de réaction, puis évaporation un solide qui est trituré dans 40 ml d'acétone, filtré puis séché sous pression réduite (2,7 kPa) à 40°C. On obtient 2,24 g de dichlorhydrate de 4-éthyl méthylcyclopropylaminophénylalanine (RS) sous forme d'un solide blanc fondant vers 140°C (décomposition).

39-9: 4-Ethyl méthylcyclopropylaminobenzyl acétamido malonate de diéthyle

En opérant comme à l'exemple 39-2 mais à partir de 8 g de 4-éthylaminobenzylacétamido malonate de diéthyle, 2,6 ml de bromométhylcyclopropane, 2,97 ml de 1,5-diazabicyclo[4-3-0]non-5-ène, dans 50ml de THF, on obtient après 3 jours de réaction puis purification par chromatographie flash (éluant CH2Cl2 / AcOEt 90-10 en volume), 3,3 g de 4-éthyl méthylcyclopropylaminobenzyl acétamido malonate de diéthyle sous forme d'un solide blanc fondant à 112-114°C.

15

10

5

EXEMPLE 40: Préparation de dérivés de phénylalanine par la méthode G

20

25

40-1: 4-(1-pyrrolidinyl) phénylalanine (RS) dichlorhydrate

En opérant comme à l'exemple 35-1 mais à partir de 1,5 g de 4-(1-pyrrolidinyl) benzyl acétamidomalonate de diéthyle et de 40 ml d'acide chlorhydrique 5N, on obtient après évaporation un solide qui est trituré dans 15 ml d'acétone, filtré puis

séché sous pression réduite (2,7 kPa) à 40°C. On obtient 0,6 g de dichlorhydrate de 4-(1-pyrrolidinyl) phénylalanine (RS) sous forme d'un solide blanc cassé.

40-2: 4-(1-pyrrolidinyl) benzyl acétamidomalonate de diéthyle

On place dans un autoclave 4g de 4-(1-pyrrolyl) benzyl acétamidomalonate de diéthyle en solution dans 100ml de MeOH et 1g de palladium sur charbon à 10%. Après avoir purgé 3 fois à l'azote, le produit est hydrogéné sous une pression de 14 bars d'hydrogène à 19°C. Après 25 heures d'agitation, l'hydrogénation est arrêtée, le produit filtré sur Clarcel®, rincé au dichlorométhane puis la solution concentrée sous pression réduite pour donner 3,85 g d'un solide qui est trituré dans un mélange de 50ml d'heptane et de 10 ml d'éther éthylique. Le solide obtenu est filtré, séché puis purifié par chromatographie flash (éluant CH₂Cl₂ / acétone 90/10 en volume) pour donner 1,6g de 4-(1-pyrrolidinyl) benzyl acétamidomalonate de diéthyle sous forme d'un solide blanc fondant à 132°C

40-3: 4-(1-pyrrolyl) benzyl acétamidomalonate de diéthyle

On place dans un tricol maintenu sous azote, 4,6 g de 4-aminobenzyl acétamidomalonate de diéthyle dans 104 ml d'acide acétique. On ajoute 7,02 g d'acétate de sodium puis 1,87 ml de 2,5-diméthoxytétrahydrofuranne. Le mélange est chauffé à 65°C pendant 1h 15mn, refroidi, puis extrait par 100ml de dichlorométhane et 100ml d'eau distillée. La phase aqueuse est décantée puis lavée par 3 fois 100 ml de dichlorométhane. Les phases organiques sont réunies, lavées par 100 ml d'eau puis par 100 ml d'une solution saturée en NaCl, décantées puis séchées sur sulfate de magnésium, filtrées puis évaporées à sec sous pression réduite(50k Pa) pour donner 6,2g d'un solide qui est purifié par chromatographie flash (éluant CH2Cl2 / acétone 75/25 en volume). On obtient ainsi 3,57 g de 4-(1-pyrrolyl) benzyl acétamidomalonate de diéthyle sous forme d'un solide beige fondant à 110°C.

EXEMPLE 41: Préparation de dérivés de phénylalanine par la méthode H

35 41-1: 4-Ethylthiométhyl phénylalanine (RS)

5

10

15

20

25

10

On place dans un tricol maintenu sous azote, 300ml de méthanol anhydre puis on ajoute sous agitation 1, 72g de méthylate de sodium puis 5,55ml d'éthyl mercaptan. Le solvant est concentré sous pression réduite à 40°C pour donner 8,5 g du sel de sodium de l'éthylmercaptan qui est mis en solution dans 100ml de THF anhydre. On ajoute à température ambiante 3,6g de 4-chlorométhyl phénylalanine (RS) puis le mélange est chauffé au reflux pendant 18h. Le solvant est évaporé sous pression réduite à 40°C et le résidu repris par 100ml d'eau distillée. La solution trouble obtenue est acidifiée par 5 ml d'acide acétique. Le précipité obtenu est filtré, rincé à l'eau distillée puis séché à 60)C sous pression réduite pour donner 3,6g d'un solide qui est purifié par chromatographie flash (éluant AcOEt 60, AcOH 12, eau 10). On obtient ainsi 256 mg de 4-éthylthiométhyl phénylalanine (RS), sous forme d'un solide blanc fondant à 251°C.

La 4-chlorométhyl phénylalanine (RS) peut être obtenue par analogie avec la 4-chlorométhyl phénylalanine (S) décrite dans : R.Gonzalez-Muniz, F. Cornille, F. Bergeron, D. Ficheux, J. Pothier, C. Durieux and B. Roques, Int. J. Pept. Protein. Res., 1991,37 (41), 331-340.

EXEMPLE 42: Préparation de dérivés de phénylalanine par la méthode I

20

25

15

42-1:4-O-(2-Chloroéthyl) tyrosine (S), chlorhydrate

On place dans un ballon, 5g de N-tert-butoxy carbonyl-4-O-(2-chloroéthyl) tyrosine (S) en solution dans 50ml de dioxane chlorhydrique. Après 28h d'agitation, le mélange est concentré à sec sous pression réduite. Le résidu obtenu est repris par 50ml d'éther, agité puis filtré. Le solide obtenu est lavé par 2 fois 25 ml d'éther, séché sous pression réduite pour donner 1,58g de chlorhydrate de 4-O-(2-chloroéthyl) tyrosine (S) sous forme d'un solide blanc fondant à 260°C.

30

35

42-2: N-tert-butoxy carbonyl-4-O-(2-chloroéthyl) tyrosine (S)

On place dans un tricol sous atmosphère d'azote, 14g de N-tert-butoxycarbonyl tyrosine (S), en solution dans 140ml de DMF. On ajoute 4,8g d'hydrure de sodium à 50% dans l'huile lentement à la spatule. Après 2h d'agitation à température ambiante,

on ajoute 16,87g de 1-tosyl 2-chloroéthanol. Après 2 jours d'agitation on ajoute 2,4g d'hydrure de sodium à 50% dans l'huile et 8,4ml supplémentaires de 1-tosyl 2-chloroéthanol. La même opération est effectuée après 24h et l'agitation est poursuivie 24h supplémentaires. La réaction est arrétée par addition de 100ml d'eau distillée et le mélange réactionnel est concentré à sec sous pression réduite. Le résidu obtenu est repris par 100ml d'eau distillée puis extrait par 3 fois 100ml d'acétate d'éthyle. La phase aqueuse est décantée, acidifiée par 50ml d'HCl 1N jusqu'à pH3 et le produit est extrait par 3 fois 100ml d'acétate d'éthyle. Les phases organiques sont réunies, lavées par 2 fois 50ml d'eau, décantées, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite pour donner 13,51g de N-tert-butoxy carbonyl-4-O-(2-chloroéthyl) tyrosine (S) sous forme d'une huile marron (Rf 0,5, toluène 70% / méthanol 20% / diéthylamine 10%) utilisée telle quelle dans l'étape suivante.

5

TABLEAU V

MICROORGANISMES	ANTIBIOTIQUES
CHAMPIGNONS	
Micromonospora sp.	Vernamycines
STREPTOMYCES	
S. alborectus	Virginiamycines
S. conganensis (ATCC13528)	F1370 A, B
S. diastaticus	Plauracines, Streptogramines
S. graminofasciens	Streptogramines
S. griseus (NRRL2426)	Viridogriséine (Etamycine)
S. griseoviridus	Griseoviridine
S. griseoviridus (FERMP3562)	Néoviridogriséines
S. lavendulae	Etamycines
<u>S. loïdensis</u> (ATCC11415)	Vernamycines
S. mitakaensis (ATCC15297)	Mikamycines
S. olivaceus (ATCC12019)	Synergistines (PA114 A, B)
S. ostréogriseus (ATCC27455)	Ostréogrycines
S. pristinaespiralis (ATCC25486)	Pristinamycines
S. virginiae (ATCC13161)	Virginiamycines (Staphylomycines)
ACTINOMYCETES	
A. auranticolor(ATCC31011)	Plauracines
A. azureus (ATCC31157)	Plauracines
A. daghestanicus	Etamycine
A. philippinensis	A-2315 A, B, C
Actinoplanes sp. (ATCC33002)	A15104
Actinoplanes sp.	A17002 A, B, C, F
Actinomadura flaya	Madumycines

Abréviations utilisées:

AcOEt acétate d'éthyle

ADN: acide déoxyribonucléique

5 AMP: adénosine 5'-monophosphate

CH₂Cl₂: dichlorométhane

CLHP: chromatographie liquide haute performance

dCTP déoxy-cytosine 5'-triphosphate

DMF diméthylformamide

10 DMPAPA 4-diméthylamino-L-phénylalanine

HCl acide chlorhydrique

HT7 Hickey Tresner solid medium
3-HPA acide 3-hydroxypicolinique

IPTG isopropyl β-D-thiogalactopyranoside

15 kb: kilobase

LB: Luria broth (milieu de croissance riche pour E. coli)

MeOH méthanol

MMPAPA 4-méthylamino-L-phénylalanine

NaOH hydroxyde de sodium

20 PAPA 4-amino-L-phénylalanine

PEG Polyéthylène glycol
P I Pristinamycine I

P II Pristinamycine II

pb: paire de base

25 SAM: S-adénosylméthionine

TE: tampon 10 mM Tris-HCl, 1 mM EDTA, pH 7,5

THF tétrahydrofuranne

Tris: amino-2-hydroxylméthyl-2 propanediol-1,3

U.V.: rayons ultra-violets

30 X-gal: 5-bromo-4-chloro-3-indoyl-β-D-galactoside

YEME: yeast extract-malt extract medium (milieu de croissance riche pour

Streptomyces)

Bibliographie:

- Bibb M. J., Findlay P. R. et Johnson M. W. (1984) Gene, 30: 157-166.
- Bibb M. J., Janssen G. R., et Ward J. M. (1985) Gene, 38: 215-226.
- 5 Cocito C. G. (1979) Microbiol. Rev., 43: 145-198.
 - Cocito C. G. (1983) In Antibiotics, 6: (Ed. F. E. Hahn), 296-332.
 - Dessen P. C., Fondrat C., Valencien C. et Mugnier C. (1990) Comp. Appl. in Biosciences, 6: 355-356.
 - Di Giambattista M., Chinali G. et Cocito C. G. (1989) J. Antim. Chemother., 24: 485-507.
 - Gibson T.J. (1984) Ph.D. thesis, Cambridge University, England.
 - Hillemann D., Pülher A. et Wohlleben W. (1991) Nucl. Acids Res., 19:727-731.
 - Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M. et Scrempf H. (1985) A laboratory manual.,
- 15 The John Innes Fondation, Norwich, England.
 - Hudson G. S. et Davidson B. E. (1984) J. Mol. Biol., 180: 1023-1051.
 - Kuhstoss S., Richardson M. A., et Rao R. N. (1991) Gene 97: 143-146.
 - Maniatis T., Fritsh E. F. et Sambrook J. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, N. Y.,
- Messing J., Crea R. et Seeburg P. H. (1981) Nucleic Acids Res., 9: 309.
 - Molinero A. A., Kingston D. G. I., et Reed J. W. (1989) J. Nat. Prod., 52: 99-108.
 - Omer C. A., Lenstra R., Litle P. J., Dean J., Tepperman J. M., Leto K. J., Romesser J. A., et O'Keefe D. P. (1990) *J. Bact.* 172: 3335-3345.
- Reed J. W., Purvis M. B., Kingston D. G. I., Biot A., et Gosselé F. (1989) J. Org.
 Chem. 54: 1161-1165.
 - Staden R. et McLachlan A. D. (1982) Nucleic Acids Res., 10:141-156.
 - Schindler U., Sans N., et Schröder J. (1989) J. Bact. 171: 847-854.
 - Thorson J. S.; Lo S. F., et Liu H-W. (1993) J. Am. Chem. Soc. 115: 6993-6994.
- 30 Videau D. (1982) Path. Biol., 30: 529-534.

LISTE DE SEQUENCES

	(1) INFORMATION GENERALE:														
5	(i) DEPOSANT: (A) NOM: RHONE-POULENC RORER S.A. (B) RUE: 20, avenue Raymond ARON (C) VILLE: ANTONY (E) PAYS: FRANCE (F) CODE POSTAL: 92165 (ii) TITRE DE L' INVENTION: NOUVELLES STREPTOGRAMINES ET PROCEDE														
10	(ii) TITRE DE L' INVENTION : NOUVELLES STREPTOGRAMINES ET PROCEDE DE PREPARATION DE STREPTOGRAMINES PAR MUTASYNTHESE.														
	(iii) NOMBRE DE SEQUENCES: 8														
15	 (iv) FORME LISIBLE PAR ORDINATEUR: (A) TYPE DE SUPPORT: Tape (B) ORDINATEUR: IBM PC compatible (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS (D) LOGICIEL: Patentin Release #1.0, Version #1.25 (OEB) 														
	(2) INFORMATION POUR LA SEQ ID NO: 1:														
20	(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 2888 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: double (D) CONFIGURATION: linéaire														
	(ii) TYPE DE MOLECULE: ADNC														
25	(111) HYPOTHETIQUE: NON														
	(iii) ANTI-SENS: NON														
	<pre>(vi) ORIGINE: (A) ORGANISME: Streptomyces pristinaespiralis</pre>														
30	(x1) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:														
~-	10 20 30 40 50 60 CTGCAGTTCC CCGGGGCCAC CGTGCTCAGC TCCTCACCCG AACGGTTCCT GCGCATCGGC														
35	70 80 90 100 110 120 GCGGACGCT GGGCGAGTC CAAACCCATC AAGGGCACCC GCCCCGCGG CGCCGGCCCC														
40	130 140 150 160 170 180 GCCCAGGACG CCGCCGTCAA GGCCTCCCTC GCCGCGGCCG AGAAGGACCG CAGCGAGAAC														
	190 200 210 220 230 240 CTGATGATCG TCGACCTGGT CCGCAACGAC CTCGGCCAGG TCTGCGACAT CGGCTCCGTC														
45	250 260 270 280 290 300 CACGTACCGG GCCTGTTCGA GGTGGAGACC TACGCCACCG TCCACCAGCT CGTCAGCACG														
50	310 320 330 340 350 360 GTCCGCGGCC GCCTGGCGCC CGACGTCTCC CGCCCCCGCG CGGTACGGGC CGCCTTCCCC														

	370 GGCGGGTCGA	380 TGACCGGCGC	390 GCCCAAGGTC	400 CGCACCATGC	410 AGTTCATCGA	420 CCGGCTCGAG
5	430 AAGGCCCGC	440 GCGGCGTGTA	450 CTCGGGCGCG			
	490 GACCTCAGCA	500 TCGTCATCCG	510 CACCATCGTC	520 GCCACCGAGG	530 AGGCCGCCAC	540 CATCGGCGTG
10	550 GGCGGCGCCG	560 TCGTCGCCCT				600 GCTCCTCAAG
15	610 GCGCAGACCA	620 CCCTCGCCGC		640 GCACACGCGG	650 GCGCCACCGC	
15	670 GAACTCCTGG	680 CCGGCAGCCT	690 GCGGTGACCC			720 CACCGCAACC
20	730 CCGGCTCACC	740 CCCGGGGCGG			770 CGGCCGACCC	
	790 CCGCTCGCGG	800 ACCGGGTGAC	810 GGACCCGGCG	820 GCGGGGCCGG	830 CGGCGGGCCG	840 GGACGTGGGC
25	850 CGGGACGTGG	860 GCCCGGCGTC			890 CGGGCCCGGA	
	910	920 CGACCGGCAC	930	940	950	960
30	970	980 GCGCACAGCC	990	1000	1010	1020
35	1030	1040 AGGGCGGCGA	1050	1060	1070	1080
	1090		1110	1120	1130	1140
40	1150		1170	1180	1190	1200
	1210		1230	1240	1250	1260
45	1270		1290	1300	1310	1320
50	1330 GTGCCGCCGC	1340	1350	1360	1370	1380
50	1390	1400	1410	1420	1430	1440
55	1450	CCGGGCCCGT	1470	1480	1490	1500
	1510	GCGAACATCG 1520	1530	1540	1550	1560
60		GCGATCCGGC 1580				CACCGGGCCG
	CATCACCCCC	GCCAGCACCT 1640	CCACCGCCTC	CCACGCCACC	GGCTCCGGCA	CCGCCAGCAC
65	CACCACGTCC	GCCGCCGCCA	GCGCCGCGAC	CGCCTCCGGC	CCCGGCCGCC	GCACATCACC

	GGCCACCACC	CGCACCCCGT	CCGCCGCACC	GCCCCGGCC	ACGTCCAGCC	AGGTCACCGC
-	1750	1760	1770	1780	1790	1800
	CACCCCCGAA	CGCACCAGCC	AGTGGCTGAA	CATGCGGCCC	ACCGCACCGG	CCCCGCCCA
5	1810	1820	1830	1840	1850	1860
	CACCACACAA	CGCCCGAACA	CCGAACCACC	CCTCATCCGC	GTTCCCGATC	CCCCCGGTAC
10	1870	1880	1890	1900	1910	1920
	GGAGGAAGAA	CCATGACCCC	GCCCGCCATC	CCCGCCGCCC	CGCCCGCCAC	cccccccc
	1930	1940	1950	1960	1970	1980
	CCCGCCACCG	ACCCCTCGA	CGCGCTGCGC	GCCCGCCTGG	ACGCCGCGGA	CGCCGCCCTC
15	1990	2000	2010	2020	2030	2040
	CTGGACGCCG	TCCGCACACG	CCTGGACATC	TGCCTGCGCA	TCGGCGAGTA	CAAGCGCCTO
20	2050 CACCAGGTGC	2060 CGATGATGCA	2070 GCCCCACCGG	2080 ATCGCCCAGG	2090 TCCACGCCAA	
20	2110	2120	2130	2140	2150	2160
	TACGCCGCCG	ACCACGGCAT	CGACCCCGCC	TTCCTGCGCA	CCCTGTACGA	CACGATCATO
25	2170	2180	2190	2200	2210	2220
	ACCGAGACCT	GCCGCCTCGA	GGACGAGTGG	ATCGCCTCCG	GCGGCGCCCC	CGTCCCCACO
	2230	2240	2250	2260	2270	2280
	CCCGTGCACG	CGTCCGCGTC	CGCGCGGGGG	GCCGTGTCGT	GACCGCCGCC	GCACCCACCO
30	2290	2300	2310	2320	2330	2340
	TCGCCCAGGC	GCTGGACGAG	GCCACCGGGC	AGCTGACCGG	CGCCGGGATC	ACCGCCGACO
	2350	2360	2370	2380	2390	2400
	CCGCCCGGGC	CGACACCCGG	CTGCTGGCCG	CCCACGCCTG	CCAGGTCGCC	CCGGGGGAC
35	2410 TCGACACCTG	2420 CCTGGCCGGC	2430 CCGGTGCCGC	2440 CCCGGTTCTG	2450 GCACTACGTC	
40	2470	2480	2490	2500	2510	2520
	TGACCCGCGA	ACCCGCCGAA	CGCATCGTCG	GCCACGCCTA	CTTCATGGGC	CACCGCTTC
	2530	2540	2550	2560	2570	2580
	ACCTGGCCCC	CGGCGTCTTC	GTCCCCAAAC	CCGAGACCGA	GGAGATCACC	CGGGACGCCA
45	2590	2600	2610	2620	2630	2640
	TCGCCCGCCT	GGAGGCCCTC	GTCCGCCGCG	GCACCACCGC	ACCCCTGGTC	GTCGACCTG
50	2650	2660	2670	2680	2690	2700
	GCGCCGGACC	GGGCACCATG	GCCGTCACCC	TGGCCCGCCA	CGTACCGGCC	GCCCGCGTC
50	2710	2720	2730	2740	2750	2760
	TGGGCATCGA	ACTCTCCCAG	GCCGCCGCCC	GCGCCGCCCG	GCGCAACGCC	CGCGGCACC
55	2770	2780	2790	2800	2810	2820
	GCGCCCGCAT	CGTGCAGGGC	GACGCCCGCG	ACGCCTTCCC	CGAACTGAGC	GGCACCGTC
	2830 ACCTCGTCGT	2840 CACCAACCCG	2850 CCCTACATCC	2860 CCATCGGACT		2886 GCACCCGAA
60	TGCTCGAG				·	

(3) INFORMATION POUR LA SEQ ID NO: 2:

5		 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 888 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: double (D) CONFIGURATION: linéaire 																	
		(ii)	TYP	E DE	: MOI	ECUI	E: A	DNc		•				•					
		(111	.) ну	POTH	ETIQ	UE:	иои												
		(iii	.) AN	TI-S	ENS:	NON	i												
10		(vi)	ORI (A)			ME:	Stre	ptom	yces	pri	stin	aesp	iral	is					
		(xi)	DES	CRIP	TION	DE	LA S	EQUE	NCE:	SEQ	ID	NO:	2						
15																			
	ATG Met	AGG Arg	GGT Gly	GGT Gly	TCG Ser	GTG Val	TTC Phe	GGG Gly	CGT Arg	TGT Cys	GTG Val	GTG Val	GTG Val	GGC Glv	GGG Glv	GCC Ala	GGT Glv	GCG Ala	5 1
20																			
	GTG Val	GGC	CGC Arg	ATG Met	TTC Phe	AGC Ser	CAC His	TGG Trp	CTG Leu	GTG Val	CGT Arg	TCG Ser	GGG	GTG Val	GCG Ala	GTG Val	ACC Thr	TGG Trp	10- 3-
25	CTG	GAC	GTG	GCC	GGG	GCC	GGT	GCG	GCG	GAC	GGG	GTG	CGG	GTG	GTG	GCC	GGT	GAT	16
	Leu	Asp	vaı	A19	GIĀ	Ala	GIĀ	AIA	ATS	Asp	GIĀ	Val	Arg	Val	Val	Ala	GIA	Asp	5
30	GTG Val	CGG Arg	CGG Arg	CCG Pro	GGG Gly	CCG Pro	GAG Glu	GCG Ala	GTC Val	GCG Ala	GCG Ala	CTG Leu	GCG Ala	GCG Ala	GCG Ala	GAC Asp	GTG Val	GTG Val	21 7:
	CTC	حتبر	ccc	ርሞር	ccc	GAG	ccc	CTC	ccc	TCC	CAC	ccc	Cmc	CAC	CDC	OMC.	ccc	ccc	27
35	Val	Leu	Ala	Val	Pro	Glu	Pro	Val	Ala	Trp	Glu	Ala	Val	Glu	Val	Leu	Ala	Gly	9
						GCG													32
40	Val	Met	Arg	Pro	Gly	Ala	Val	Leu	Ala	Asp	Thr	Leu	Ser	Val	Lys	Ser	Arg	Ile	10
40						GAG													37
	Ala	GIA	Arg	Leu	Arg	Glu	Ala	Ата	Pro	Gly	Leu	Gln	Ala	Val	Gly	Leu	Asn	Pro	120
45						CTG Leu													432 144
					001	200	027	200	02	017		110	V 4.2	77.0	n.u.	, a.	,,,,	V	
50	ACC Thr	GAC Asp	GGG Gly	CCC Pro	GGT Gly	GTG Val	CGG Arg	GCC Ala	CTG Leu	GTG Val	GAG Glu	CTG Leu	GTG Val	GCC Ala	GGG Gly	TGG Trp	GGG Gly	GCC Ala	486 162
55						CCG Pro													540 180
						GCG Ala													594 198
											_		_		_				

	GTG (GAC Asp	GTG Val	GGG Gly	GCG Ala	CTG Leu	CGG Arg	GAC Asp	AGT Ser	GCC Ala	CCG Pro	CCG Pro	CCG Pro	CAT His	CTG Leu	GCG Ala	ATG Met	CTG Leu	648 216
5	GCG (CTG Leu	CTG Leu	GCC Ala	CGG Arg	ATC Ile	GCC Ala	GGC Gly	GGG Gly	ACG Thr	CCG Pro	GAG Glu	GTG Val	TAT Tyr	TTC Phe	GAC Asp	ATC Ile	CAG Gln	702 234
10	GCC (GCC Ala	AAC Asn	CCC Pro	GGC Gly	GCG Ala	CCG Pro	GCC Ala	GCG Ala	CGG Arg	CAG Gln	GCG Ala	CTG Leu	ggc Gly	CGC Arg	GGC Gly	CTG Leu	GTG Val	75 <i>6</i> 252
15	CGG (CTG Leu	GGG Gly	CAG Gln	GCC Ala	GTC Val	GAG Glu	AGG Arg	GGC Gly	GAC Asp	GAG Glu	GAG Glu	ACG Thr	TTC Phe	GCC Ala	GCC Ala	CTG Leu	TTC Phe	810 270
20	GCC Ala	GAA Glu	CTG Leu	CGC Arg	GGT Gly	GTG Val	CTG Leu	GGC Gly	GAG Glu	CAC His	GGC Gly	GCG Ala	GAG Glu	CTG Leu	GAA Glu	CGG Arg	CTG Leu	TGC Cys	864 288
1 5	GCG Ala																		888 296
25																			
	(4) IN	FORI	MATI	ON PO	OUR I	La si	EQ II	D NO:	: 3:										
30	(i) ((A) (B) (C)	LONG TYPI NOMI CONI	GUEU E: a BRE 1	R: 3 cide DE B	87 pa nuci RINS	aire: léign : don	s de ue uble	NCE: base	es								
35	(ii)	TYP	E DE	MOL	ECUL	E: A	DNc											
	(111) HY	ротн	ETIQ	UE:	иои												
	(111) AN	TI-S	ENS:	NON													
	((vi)	ORI (A)	GINE ORG	: ANIS	ME:	Stre	ptom	yces	pri	stin	aesp	iral	is					
40	((xi)	DES	CRIP	TION	DE	LA S	EQUE	NCE:	SEQ	ID	NO:	3						
45	ATG Met	ACC Thr	CCG Pro	CCC	GCC Ala	ATC Ile	CCC Pro	GCC Ala	GCC Ala	CCG Pro	CCC Pro	GCC Ala	ACC Thr	GGG Gly	CCC Pro	GCC Ala	CCC Ala	GCC Ala	54 18
50	ACC Thr	GAC Asp	CCC	CTC Leu	GAC Asp	GCG Ala	CTG Leu	CGC	GCC Ala	CGC Arg	CTG Leu	GAC Asp	GCC Ala	GCG Ala	GAC Asp	GCC Ala	GCC Ala	CTG Leu	108 36
55	CTG Leu	GAC Asp	GCC Ala	GTC Val	CGC Arg	ACA Thr	CGC Arg	CTG Leu	GAC Asp	ATC Ile	TGC Cys	CTG Leu	CGC Arg	ATC Ile	GGC Gly	GAG Glu	TAC Tyr	AAG Lys	162 54
	CGC	CTC	CAC	CAG	GTG Val	CCG	ATG	ATG Met	CAG Gln	CCC	CAC His	CGG	ATC Ile	GCC Ala	CAG Gln	GTC Val	CAC His	GCC Ala	216 72

5						GCC TTC CTG Ala Phe Leu		70 90
10						GAC GAG TGG Asp Glu Trp		24 08
10						GCG TCC GCG Ala Ser Ala		78 26
15	GCC GTG Ala Val							87 29
20								
	(5) INFORM	ATION POUR	LA SEQ ID NO	0: 4:				
25		(A) LONGUEU (B) TYPE: a (C) NOMBRE	QUES DE LA : R: 4496 pai: cide nucléic DE BRINS: do RATION: line	res de base que ouble	s			
	(ii)	TYPE DE MOL	ECULE: ADNO					
	(iii)	Hypothetiq	UE: NON					
30	(iii)	ANTI-SENS:	NON .					
	(vi)	ORIGINE: (A) ORGANIS	ME: Streptor	myces prist	inaespirali	s		
35	(xi)	DESCRIPTION	DE LA SEQUI	ENCE: SEQ I	D NO: 4			
40	10 CTCGAGCAGG		30 CGGCGGCACG	40 GTGCGCGGGC		60 CCGGCAGCGC		
45	70 GCCCAGACGG		90 AGCACACCGC	100 GACGAACTCG		120 GCAGCTGCAC	•	
45			150 CGATCCCGCG		170 CCCGCCGCCA		:	
50	190 CCAGCGGTCC					240 CCAGCGCCTC		
	250 CCGCTCGCCG	260 TACTGCTCCG	270 CCCAGCGGCC		290 CCCAGCGGCT		· .	
55	310 GTAGCCGGCC		330 TCGCGGCCAC			360 ATCCGTCCAG		
	370	380	. 390	400	410	. 420		

		CCTTTCCGGC '				
_	430 CACGCCGCTG	440 ATGCGCCGCG	450 CCCGCGCGCC	460 GCCGCTCCGT	470 CAGGAGCCGA	TCAGGGCGGC
5	490 GTCAGCCGGG	500 CCGGACAGGA	510 TGCCGCCCAC	520 GGGGCCCGGC	530 ACACCGGGCC	540 GCGGCGACAG
10	550 CGGGCCGGCG	560 ACCGGCAGGC	570 CGACACCACG	580 CACGGACGAG	590 AAGAAACAAC	ACAAGGGGAG
	610 CACCCGATGG	620 AGACCTGGGT	630 CCTGGGCCGG	640 CGCGACGTCG	650 CCGAGGTGGT	660 GGCCGCCGTC
15	GGCCGCGACG	680 AACTCATGCG	CCGCATCATC	GACCGCCTCA	CCGGCGGACT	GGCCGAGAIC
20	GGCCGCGGCG	740 AGCGGCACCT	GTCCCCGCTG	CGCGGCGGAC	TGGAACGCAG	CGAACCCGIG
20	790 CCCGGCATCT	800 GGGAATGGAT	GCCGCACCGC	GAACCCGGCG	ACCACATCAC	CCTCAAGACC
25	850 GTCGGCTACA	GCCCGCCAA	CCCCGGCCGC	TTCGGCCTGC	CGACCATCCT	
	910 GCCCGCTACG	ACGACACCAC	CGGCGCCCTG	ACCGCCCTGA	TGGACGGCGT	
30		CCGCCGCCGC	CTCCGCCGTC	GCCTCCCGCC	TGCTGGCCCG	
35	CACACCCTGG	GACTGATCGG	CACCGGCGCC	CAGGCCGTCA	CCCAACTGCA	1080 CGCCCTGTCC 1140
	CTGGTACTGC	1100 CCCTGCAACG 1160	GGCCCTGGTG	TGGGACACCG	ACCCCCCCCA	CCGGGAAAGC
40	TTCGCCCGGC	GCGCCGCGTT	CACCGGCGTC	AGCGTCGAGA	ICGCCGAGCC	CGCCCGGATC
	GCCGCCGAGG	CCGACGTCAT	CTCCACCGCC	ACCTCGGTAG	CCGTCGGCCA	GGGCCCGGTC
45	CTGCCCGACA	CCGGCGTCCG	CGAGCACCT	CACATCAACG	CCGTCGGCGC	GGACCTCGTC
50		AACTGCCGCT	CGGCCTGCTC	GAGCGGGCG1	1430	1440
	GAGCAGGCGC	TGCGCGAGGG	CGAGTGCCAG	CAACTUTCU	1490	1500
55	CTGGCCCACC	TGTGCGCCGA	CCCGGCGGC	n 1546	1550	1560
60	TTCGACTCC/	A CCGGCTTCGC	CTTCGAGGA	C GCCCTGGCGA	1616	1620
60	GCCGCCGAAG	GGGACCTGGG	CATCCGGGT	G GGCATCGAA	167	1680
65	GACCCCTAC	G CCCTCCAGC	CCTGCCCCT	n 172	173) 1740
	CCTTTTTTC	G GGACCCCCG	CTCTTTTCG	A GACCCCCGC	c ceecceecc	C GGCCCTCCTC

	1750 CCGCCGGCCC	1760 CCATGCCCGG	1770 CCGGGCCGGG	1780 GCACCCACGA	1790 CGCCCTCGCG	1800 AGGAGAGAA
5	1810 TGCCCCCCAC	1820 CCCCCGGCCC	1830 ACCACCGACG	1840 ACGGCGGCCG	1850 TGAACTGCTC	1860 GCCTGGCTGC
10	GCGAGATGCG	1880 CCACCACCAC	CCCGTCCACG	AGGACGAATA	CGGTGCCTTC	ÇACGTCTTCC
10	1930 GGCACGCCGA	1940 CGTCCTCACC	1950 GTCGCCTCCG	1960 ACCCCGGCGT	1970 CTACTCCTCC	1980 CAGCTCAGCC
15		CGGCTCCCAG	GCGTTGAGCG	AACAGATCCT		GACCCGCCGA
	TGCACCGCAC	2060 CCTGCGCCGC	CTGGTCAGCC	AGGCCTTCAC	CCCCGCACC	GTCGCCGACC
20	TCGAACCACG	2120 CGTCACCGAA	CTGGCCGGGC	-AACTGCTCGA	CGCCGTCGAC	GGCGACACGT
25	TCGACCTCGT	2180 CGCCGACTTC	GCCTACCCGC	TGCCCGTGAT	CGTGATCGCC	GAACTCCTCG
23	2230 GCGTGCCGCC	2240 CGCCGACCGC	2250 ACCCTGTTCC	2260 GCTCCTGGTC	2270 CGACCGGATG	2280 CTGCAGATGC
30	2290 AGGTCGCCGA	2300 CCCGGCGGAC	ATGCAGTTCG	GCGACGACGC		TACCAACGCC
	2350 TCGTCAAAGA	ACCCATGCGC	GCCATGCACG		CGACCACGTC	ACCGACCGCC
35	ececceccc	CGCGAACGAC		CACTCGTCGC	CGCCCGCGTG	GAGGGCGAAC
40	GACTCACCGA	2480 CGAGCAGATC	GTCGAATTCG	GGGCGCTGCT	GCTGATGGCC	GGCCACGTCT
	CCACCTCCAT	2540 GCTGCTCGGC	AACACCGTGC	TGTGCCTGAA	GGACCACCCC	CGGGCCGAGG
45	2590 CCGCCGCCCG	2600 CGCCGACCGG	TCCCTGATCC	CCGCCCTGAT	CGAAGAAGTA	CTGCGGCTGC
	2650 GGCCGCCGAT	2660 CACCGTCATG	GCCCGCGTCA	CCACCAAGGA		GCCGGCACCA
50		CGGACGCATG	GTCGTGCCCT	CCCTGCTGTC		2760 GACGAACAGG
55	TCTTCACCGA		CTCGACCTCG	CCCGCGAAGG	CCGCCAGATC	2820 GCCTTCGGCC
	2830 ACGGCATCCA	CTACTGCCTG	GCCCCCCCC	TCGCCCGCCT	GGAGGGCCGC	2880 ATCGCCCTGG
60	2890 AAGCCCTCTT	2900 CGACCGATTC	2910 CCCGACTTCT	2920 CGCCCACCGA	CGGCGCAAAA	2940 CTGCGCTACC
	2950 ACCGCGACGG	ACTGTTCGGC		TGCCGCTGAC	CGTACGGCGC	3000 GGCTGACACA
65	3010 GACAAGGGGG	3020 CCACCTGGTG	3030 CGCACCGTGC	3040 GAACCCTGCT	3050 GATCGACAAC	3060 TACGACTCGT

	3070 TCACCTACAA	3080 CCTCTTCCAG	3090 ATGCTGGCCG	3100 AGGTGAACGG	3110 CGCCGCTCCG	3120 CTCGTCGTCC
5	3130 GCAACGACGA	3140 CACCCGCACC	3150 TGGCAGGCCC	3160 TGGCGCCGGG		3180 AACGTCGTCG
	3190 TCTCACCCGG	3200 CCCCGGCCAC	3210 CCCGCCACCG	3220 ACACCGACCT	3230 GGGCCTCAGC	3240 CGCCGGGTGA
10	3250 TCACCGAATG	3260 GGACCTGCCG	3270 CTGCTCGGGG	3280 TGTGCCTGGG	3290 CCACCAGGCC	3300 CTGTGCCTGC
15	3310 TCGCCGGCGC	3320 CGCCGTCGTC	3330 CACGCACCCG	3340 AACCCTTTCA	3350 CGGCCGCACC	3360 AGCGACATCC
13	3370 GCCACGACGG	3380 GCAGGGCCTG	3390 TTCGCGAACA	3400 TCCCCTCCCC	3410 GCTGACCGTG	3420 GTCCGCTACC
20	3430 ACTCGCTGAC			3460 ACCTGCGCGC		
		3500 GGCCGTCGCC				3540 TTCCACCCCG
25	3550 AATCGATCAG	3560 CAGCGAACAC	3570 GGCCACCGGA	3580 TGCTCGCCAA	3590 CTTCCGCGAC	3600 CTGTCCCTGC
30	3610 GCGCGGCCGG	3620 CCACCGCCCC	3630 CCGCACACCG	3640 AACGCATACC	3650 CGCACCCGCA	3660 CCCGCCCCG
50	3670 CCCCCGCCCC	3680 CGCACCGGCA	CCGCCCGCGT	CCGCGCCGGT	GGGGGAGTAC	CGGCTGCATG
35	3730 TGCGCGAGGT			3760 ACGCCGCGTT		
	3790 CCCCGGCCCG	3800 GTTCTGGCTC	3810 GACAGCAGCC	3820 GCGTCGAGCC	3830 GGGCCTCGCC	3840 CGCTTCACCT
40		CCCCGCCGGC	CCGCTCGGCG	AACAGATCAC	CTACGACGTC	
45	CCGTGCGCGT	3920 CAAGGACGGT	TCAGGCGGCG	AGACCCGCCG	GCCCGGCACC	
	ACCTGGAACA	3980 CGAACTGGCC	eccececc	TGCCCGCCAC	CGGCCTGCCC	TTCGAGTTCA
50	ACCTCGGCTA		CTCGGCTACG	AGACCAAGGC	CGACAGCGGC	GGCGAGGACG
	4090 CCCACCGCGG	4100 CGAACTGCCC	GACGGCGCCT	TCATGTTCGC	CGACCGGATG	CTCGCCCTCG
55		GGGGCGGCC	TGGCTCCTGG		CACCCGACGG	
60	CACCCGCCGC	4220 CGAACGCTGG	CTCACCGACG	CCGCCCGGAC	CCTCGCCACC	ACCGCCCCCC
	GCCCGCCCTT	4280 CACCCTGCTG	CCCGACGACC	AACTGCCCGC	CCTGGACGTC	CACTACCGCC
65	ACAGCCTGCC		GAACTGGTCG	AGGAATGCCG	CCGCCTGATC	ACCGACGGCG
	4390	4400	4410	4420	4430	4440

AGACCTACGA GGTGTGCCTG ACGAACATGC TCCGGGTGCC CGGCCGGATC GACCCGCTCA

5	cccc	445 CTACO		sccci	4460 rgcgo			1470 IGCC	CCGC		180 TA (CGCC	449 SCCT/		TGCA	3 .			
10	(6) 3		CAR# (A) (B) (C)	CTEF LON TYP NOM	RISTI IGUEU PE: a IBRE	QUES R: 1 cide DE E	EQ IOE OF ORINGE	LA S pair léig	EQUE es d nue ouble	ENCE: le ba				·.					
		(ii)					Æ: A			•									
15				POTH															
15				TI-S GINE		NON													
20		(xi)					Stre							is					
25	ATG Met	GAG Glu	ACC Thr	TGG Trp	GTC Val	CTG Leu	GGC Gly	CGG Arg	CGC Arg	GAC Asp	GTC Val	GCC Ala	GAG Glu	GTG Val	GTG Val	GCC Ala	GCC Ala	GTC Val	54 18
30	Gly GGC	CGC Arg	GAC Asp	GAA Glu	CTC Leu	ATG Met	CGC	CGC	ATC Ile	ATC Ile	GAC Asp	CGC Arg	CTC Leu	ACC Thr	GGC Gly	GGA Gly	CTG Leu	GCC Ala	108 36
35	GAG Glu	ATC Ile	GGC Gly	CGC Arg	GGC	GAG Glu	CGG	CAC His	CTG Leu	TCC Ser	CCG Pro	CTG Leu	CGC Arg	GGC Gly	GGA Gly	CTG Leu	GAA Glu	CGC Arg	162 54
33	AGC Ser	GAA Glu	CCC Pro	GTG Val	CCC Pro	GGC Gly	ATC Ile	TGG Trp	GAA Glu	TGG Trp	ATG Met	CCG Pro	CAC His	CGC Arg	GAA Glu	CCC Pro	GGC Gly	GAC Asp	216 72
40	CAC His	ATC Ile	ACC Thr	CTC Leu	AAG Lys	ACC Thr	GTC Val	GGC Gly	TAC Tyr	AGC Ser	CCC Pro	GCC Ala	AAC Asn	CCC Pro	GGC Gly	CGC Arg	TTC Phe	GGC Gly	270 90
45	CTG Leu	CCG Pro	ACC Thr	ATC Ile	CTG Leu	GGC GIY	ACC Thr	GTC Val	GCC Ala	CGC Arg	TAC Tyr	GAC Asp	GAC Asp	ACC Thr	ACC Thr	GGC Gly	GCC Ala	CTG Leu	324 108
50	ACC Thr	GCC Ala	CTG Leu	ATG Met	GAC Asp	GGC Gly	GTG Val	CTG Leu	CTC Leu	ACC Thr	GCC Ala	CTG Leu	CGC Arg	ACC Thr	GGC Gly	GCC Ala	GCC Ala	TCC Ser	378 126
.	GCC Ala	GTC Val	GCC Ala	TCC Ser	CGC Arg	CTG Leu	CTG Leu	GCC Ala	CGC Arg	CCC Pro	GAC Asp	AGC Ser	CAC His	ACC Thr	CTG Leu	GGA Gly	CTG Leu	ATC Ile	432 144
55	GGC	ACC Thr	GGC Gly	GCC Ala	CAG Gln	GCC Ala	GTC Val	ACC Thr	CAA Gln	CTG Leu	CAC His	GCC Ala	CTG Leu	TCC Ser	CTG Leu	GTA Val	CTG Leu	CCC Pro	486 162

	CTG	CAA	CGG	GCC	CTG	GTG	TGG	GAC	ACC	GAC	CCC	GCC	CAC	CGG	GAA	AGC	TTC	GCC	540
	Leu	Gln	Arg	Ala	Leu	Val	Trp	Asp	Thr	Asp	Pro	Ala	His	Arg	Glu	Ser	Phe	Ala	180
5	CGG	CGC	GCC	GCG	TTC	ACC	GGC	GTC	AGC	GTC	GAG	ATC	GCC	GAG	CCC	GCC	CGG	ATC	594
	Arg	Arg	Ala	Ala	Phe	Thr	Gly	Val	Ser	Val	Glu	Ile	Ala	Glu	Pro	Ala	Arg	Ile	198
10	GCC	GCC	GAG	GCC	GAC	GTC	ATC	TCC	ACC	GCC	ACC	TCG	GTA	GCC	GTC	GGC	CAG	GGC	648
	Ala	Ala	Glu	Ala	Asp	Val	Ile	Ser	Thr	Ala	Thr	Ser	Val	Ala	Val	Gly	Gln	Gly	216
15	CCG	GTC	CTG	CCC	GAC	ACC	GGC	GTC	CGC	GAG	CAC	CTG	CAC	ATC	AAC	GCC	GTC	GGC	702
	Pro	Val	Leu	Pro	Asp	Thr	Gly	Val	Arg	Glu	His	Leu	His	Ile	Asn	Ala	Val	Gly	234
20	GCG	GAC	CTC	GTC	GGC	AAG	ACG	GAA	CTG	CCG	CTC	GGC	CTG	CTC	GAG	CGG	GCG	TTC	756
	Ala	Asp	Leu	Val	Gly	Lys	Thr	Glu	Leu	Pro	Leu	Gly	Leu	Leu	Glu	Arg	Ala	Phe	252
	GTC	ACC	GCC	GAC	CAC	CCC	GAG	CAG	GCG	CTG	CGC	GAG	GGC	GAG	TGC	CAG	CAA	CTC	810
	Val	Thr	Ala	Asp	His	Pro	Glu	Gln	Ala	Leu	Arg	Glu	Gly	Glu	Cys	Gln	Gln	Leu	270
25	TCC	GCC	GAC	CGG	CTC	GGC	CCG	CAG	CTG	GCC	CAC	CTG	TGC	GCC	GAC	CCG	GCG	GCC	864
	Ser	Ala	Asp	Arg	Leu	Gly	Pro	Gln	Leu	Ala	His	Leu	Cys	Ala	Asp	Pro	Ala	Ala	288
30	GCC Ala	GCC Ala	GGC	CGG Arg	CAG Gln	GAC Asp	ACC Thr	CTG Leu	AGC Ser	GTC Val	TTC Phe	GAC Asp	TCC Ser	ACC	GGC	TTC Phe	GCC Ala	TTC Phe	918 306
35	GAG Glu	GAC Asp	GCC Ala	CTG Leu	GCG Ala	ATG Met	GAA Glu	GTG Val	TTC Phe	CTC Leu	GAG Glu	GCC	GCC Ala	GCC Ala	GAA Glu	CGG Arg	GAC Asp	CTG	972 324
40	GGC Gly	ATC	CGG Arg	GTG Val	GGC Gly	ATC	GAA Glu	CAC His	CAC His	CCC Pro	GGC Gly	GAC Asp	GCC Ala	CTG Leu	GAC Asp	CCC Pro	TAC Tyr	GCC	1026 342
. •	CTC Lev	CAC Glr	CCC	CTC Lev	CCC	CTC Lev	CCC Pro	CTC	GCC 1 Ala	C GCC	CCC Pro	GCC Ala	CAC His	:					1065 355
45																			

(7) INFORMATION POUR LA SEQ ID NO: 6:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 1194 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: ADNC
- (iii) HYPOTHETIQUE: NON
- (iii) ANTI-SENS: NON 55
 - (vi) ORIGINE: (A) ORGANISME: Streptomyces pristinaespiralis

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6

5																		GCC Ala	54 18
10	TGG Trp	CTG Leu	CGC Arg	GAG Glu	ATG Met	CGC Arg	CAC His	CAC His	CAC His	CCC Pro	GTC Val	CAC His	GAG Glu	GAC Asp	GAA Glu	TAC	GGT	GCC Ala	108 36
	TTC Phe	CAC His	GTC Val	TTC Phe	CGG Arg	CAC His	GCC Ala	GAC Asp	GTC Val	CTC	ACC Thr	GTC Val	GCC Ala	TCC Ser	GAC Asp	CCC	GGC	GTC Val	162 54
15	TAC Tyr	TCC Ser	TCC Ser	CAG Gln	CTC Leu	AGC Ser	CGG Arg	CTA Leu	CGG Arg	CCC Pro	GGC Gly	TCC Ser	CAG Gln	GCG Ala	TTG Leu	AGC Ser	GAA Glu	CAG Gln	216 72
20	ATC Ile	CTG Leu	TCG Ser	GTC Val	ATC Ile	GAC Asp	CCG Pro	CCG Pro	ATG Met	CAC His	CGC Arg	ACC Thr	CTG Leu	CGC Arg	CGC Arg	CTG Leu	GTC Val	AGC Ser	270 90
25	CAG Gln	GCC Ala	TTC Phe	ACC Thr	CCC	CGC Arg	ACC Thr	GTC Val	GCC Ala	GAC Asp	CTC Leu	GAA Glu	CCA Pro	CGC Arg	GTC Val	ACC Thr	GAA Glu	CTG Leu	324 108
30	GCC Ala	GGG Gly	CAA Gln	CTG Leu	CTC Leu	GAC Asp	GCC Ala	GTC Val	GAC Asp	GGC Gly	GAC Asp	ACG Thr	TTC Phe	GAC Asp	CTC Leu	GTC Val	GCC Ala	GAC Asp	378 126
25			TAC Tyr																432 144
35			CGC Arg														_		486 162
40			CCG Pro																540 180
45			AAA Lys																594 198
50			CGC Arg																648 216
			GGC Gly																702 234
55			GCC Ala																756 252
60			GAC Asp																810 270
65			CTG Leu																864 288

									11	.4									
	CGC	GTC	ACC	ACC	AAG	GAC	ACC	GTC	CTC	GCC	GGC	ACC	ACC	ATC	ccc	GCC	GGA	CGC	918
	Arg	Val	Thr	Thr	Lys	Asp	Thr	Val	Leu	Ala	Gly	Thr	Thr	Ile	Pro	Ala	Gly	Arg	306
5	ATG	GTC	GTG	CCC	TCC	CTG	CTG	TCC	GCC	AAC	CAC	GAC	GAA	CAG	GTC	TTC	ACC	GAC	972
	Met	Val	Val	Pro	Ser	Leu	Leu	Ser	Ala	Asn	His	Asp	Glu	Gln	Val	Phe	Thr	Asp	324
10	CCC	GAC	CAC	CTC	GAC	CTC	GCC	CGC	GAA	GGC	CGC	CAG	ATC	GCC	TTC	GGC	CAC	GGC	1026
	Pro	Asp	His	Leu	Asp	Leu	Ala	Arg	Glu	Gly	Arg	Gln	Ile	Ala	Phe	Gly	His	Gly	342
15	ATC	CAC	TAC	TGC	CTG	GGC	GCC	CCG	CTC	GCC	CGC	CTG	GAG	GGC	CGC	ATC	GCC	CTG	1080
	Ile	His	Tyr	Cys	Leu	Gly	Ala	Pro	Leu	Ala	Arg	Leu	Glu	Gly	Arg	Ile	Ala	Leu	360
	GAA	GCC	CTC	TTC	GAC	CGA	TTC	CCC	GAC	TTC	TCG	CCC	ACC	GAC	GGC	GCA	AAA	CTG	1134
	Glu	Ala	Leu	Phe	Asp	Arg	Phe	Pro	Asp	Phe	Ser	Pro	Thr	Asp	Gly	Ala	Lys	Leu	378
20	CGC	TAC	CAC	CGC	GAC	GGA	CTG	TTC	GGC	GTC	AAG	AAC	CTG	CCG	CTG	ACC	GTA	CGG	1188
	Arg	Tyr	His	Arg	Asp	Gly	Leu	Phe	Gly	Val	Lys	Asn	Leu	Pro	Leu	Thr	Val	Arg	396
25		GGC																	1194 398
	(8) I	NFOR	ITAM	ON P	OUR	LA S	EQ I	D NO	: 7:										
30			CARA (A) (B)	LON TYF NON CON	ISTI GUEU E: a BRE	QUES R: 1 cide DE B	DE 561 nuc	LA S pair léig	EQUE es d ue uble	e ba	ses.								

(ii) TYPE DE MOLECULE: ADNC 35

(111) HYPOTHETIQUE: NON

(iii) ANTI-SENS: NON

(vi) ORIGINE:
 (A) ORGANISME: Streptomyces pristinaespiralis

40 (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7

45	10	20	30	40	50	60
	AAGCTTCCCG	ACCGGGTGGA	GGTCGTCGAC	GCGTTCCCGC	TGACCGGCCT	CAACAAGGTC
=0	70	80	90	100	110	120
	GACAAGAAGG	CCCTGGCGGC	CGACATCGCC	GCCAAGACCG	CCCCCACCCG	CCCCACCACC
50	130	140	150	160	170	180
	GCCGGCCACG	GCCCGACCAC	GGACGGCGAT	ACGGCCGGTG	GGGGTGGGTC	CGCGGGCGGG
55	190	200	210	220	230	240
	GTGACGGCCG	CCGGTGGCGG	GCGGGAGGAG	GCGGCGTGAG	CGGGCCCGGG	CCCGAGGGCG
	250	260	270	280	290	300
	GCTACCGGGT	GCCGTTCGCG	CGACGCGGTT	CGGTGGTGGG	CGAGGCGGAC	CTGGCGGCGC

PCT/FR95/00889 WO 96/01901

		320 GGTCCGCTCG				
5	370 AGGAACAGTT	380 CGCCCGCCTG	390 ACCGGCGCCC	400 GGCACGCGCT	410 CAGTGTCACC	420 AGCGGCACCG
10	430 TCGCGCTGGA	440 ACTGGCGGTG			470 GGGCGACGAG	480 GTGATCGCCA
10	490 CCCCGCAGAC	500 GTTCCAGGCG	510 ACGGTGCAGC		530 CCACGACGTG	540 CGGCTGCGGT
15	550 TCTGCGACAT	560 CGACCCGGAC	570 ACCCTCAACC	580 TCGACCCGGC	590 GGTGCTGGAG	600 ACGCTGATCA
	610		630	640	650	660
20	670		690	700	710	720
	730	740 GTACCGGGG	750	760	770	780
25	790	800 GAAGAACATC	810	820	830	840
30	850	860 CCAGCGGGTG	870	880	890	900
	910		930	940	950	960
35	970		990	1000	1010	1020
	1030		1050	1060	1070	1080
40	1090		1110	1120	1130	1140
45	1150		1170	1180	1190	1200
	1210	1220 GGTGCGGGAG	1230	1240	1250	1260
50	1270		1290	1300	1310	1320
	1330	1340 GACGGCCGAA	1350	1360	1370	1380
55	1390	1 400 TGACGGCCAG	1410	1420	1430	1440
60	1450	1460	1470	1480	1490	1500
υυ	1510		1530	1540	1550	1560
65	T CCGGTGGTTT	TCCAAGACCG	JOURDAUDUR	AGGCGTATGC	CGTTCATCGA	AGIGAAGATC

(9) INFORMATION POUR LA SEQ ID NO: 8:

5	(i)	(B) (C)	CTERI LONG TYPE NOME CONE	SUEUR E: ac BRE D	: 12 :ide E BF	33 p nucl	aire léigu dou	es de le lble		ies			·.					
	(ii) TYP	E DE	MOLE	CULI	e: AI	ONC											
	(ii	i) HY	POTHI	TIQU	Æ: N	ON	•											
10	(ii	.i) AN	TI-SI	ENS:	NON													
	(vi	.) ORI (A)	GINE:		Œ: S	Strep	otomy	/ces	pris	tina	esp	iral:	is					
15	(xi	L) DES	CRIP!	rion	DE I	LA SI	EQUE	NCE:	SEQ	ID I	NO:	8						
20	GTG CC	G TTC	GCG Ala	CGA Arg	CGC Arg	GGT Gly	TCG Ser	GTG Val	GTG Val	GGC Gly	GAG Glu	GCG Ala	GAC Asp	CTG Leu	GCG Ala	GCG Ala	CTG Leu	5 1
25	GGC GA	A CTG	GTC Val	CGC Arg	TCG Ser	G17 GGC	CGG Arg	TCG Ser	CTG Leu	ACG Thr	TCG Ser	GGG Gly	GTG Val	TGG Trp	CGG Arg	GAG Glu	CGG Arg	10 3
	TTC GA	G GAA u Glu	CAG Gln	TTC Phe	GCC Ala	CGC Arg	CTG Leu	ACC Thr	GGC Gly	GCC Ala	CGG Arg	CAC His	GCG Ala	CTC Leu	AGT Ser	GTC Val	ACC Thr	16. 5
30	AGC GG Ser Gl	C ACC	GTC Val	GCG Ala	CTG Leu	GAA Glu	CTG Leu	GCG Ala	GTG Val	CGG Arg	ATG Met	CTG Leu	GAC Asp	CTG Leu	GCG Ala	CCG Pro	GGC Gly	21 7
35	GAC GA Asp Gl	AG GTG Lu Val	ATC 1le	GCC Ala	ACC Thr	CCG Pro	CAG Gln	ACG Thr	TTC Phe	CAG Gln	GCG Ala	ACG Thr	GTG Val	CAG Gln	CCG Pro	CTG Leu	CTC Leu	27 9
40	GAC CA	AC GAC is Asp	GTG Val	CGG Arg	CTG Leu	CGG Arg	TTC Phe	TGC Cys	GAC Asp	ATC Ile	GAC Asp	CCG Pro	GAC Asp	ACC Thr	CTC Leu	AAC Asn	CTC Leu	32 10
45	GAC CO	CG GCG co Ala	GTG Val	CTG Leu	GAG Glu	ACG Thr	CTG Leu	ATC Ile	ACC Thr	GAC Asp	CGC Arg	ACC Thr	CGG Arg	GCG Ala	ATC Ile	CTG Leu	CTC Leu	37 12
	GTC CA	AC TAC Ls Tyr	GGC	GGC Gly	AAC Asn	CCG Pro	GCC Ala	GAC Asp	ATG Met	GAC Asp	CGC Arg	ATC Ile	ATG Met	GCC Ala	CTG Leu	GCC Ala	CGC Arg	43. 14
50	AAG CO	GC GGC cg Gly	ATC Ile	ATC Ile	GTC Val	GTC Val	GAG Glu	GAC Asp	AGC Ser	GCG Ala	CAC His	GCG Ala	CTG Leu	GGC Gly	GCC Ala	GTG Val	TAC Tyr	48 16
55	CGG GG Arg G	GG CGG	CGG Arg	CCG Pro	GGG Gly	GCA Ala	CTG Leu	GCG Ala	GAC Asp	ATC Ile	GGC Gly	TGC Cys	TTC Phe	ACT Thr	TTC Phe	CAC His	TCC Ser	54 18

WO 96/01901 PCT/FR95/00889

117

	ACG Thr	AAG Lys	AAC Asn	ATC Ile	ACC	ACC Thr	CTC Leu	GGC Gly	GAG Glu	GGC	GGC	ATG Met	Ile	ACC	Leu	TCG Ser	CGT	GAC Asp	594 198
5	GAG Glu	TGG	GCC Ala	CAG Gln	CGG	GTG Val	GGA Gly	CGT Arg	ATC Ile	CGC Arg	GAC Asp	AAC Asn	GAG Glu	GCC Ala	GAC Asp	GGC Gly	GTG Val	TAC Tyr	648 216
10	GCG Ala	GCG Ala	CTG Leu	CCG Pro	GAC Asp	TCC Ser	GCG Ala	CGG Arg	GCG Ala	GGT Gly	GCT Ala	CCG	GCG Ala	CTG Leu	CTG	CCG	TGG Trp	ATG Met	702 234
15	AAG Lys	TTC Phe	GCG Ala	GAG Glu	GGT Gly	GTG Val	TAC Tyr	GGT Gly	CAC His	CGG Arg	GCG Ala	GTC Val	GGG Gly	GTC Val	CGC	GGG Gly	GCG Ala	GGC Gly	75 <i>6</i> 252
	ACG	AAC	GCG	ACG	ATG	TCG	GAG	GCG	GCG	GCG	GCG	GTG	GGC	GTG	GTG	CAA	CTG	GCG	81 0
	Thr	Asn	Ala	Thr	Met	Ser	Glu	Ala	Ala	Ala	Ala	Val	Gly	Val	Val	Gln	Leu	Ala	27 0
20	TCG	CTG	GAG	CGG	TTC	GTG	GCC	CGG	CGC	CGG	AGC	ATC	GCG	CAG	CGG	CTG	GAC	GAG	864
	Ser	Leu	Glu	Arg	Phe	Val	Ala	Arg	Arg	Arg	Ser	Ile	Ala	Gln	Arg	Leu	Asp	Glu	288
25	GCC	GTG	GCC	TCG	GTG	GCC	GGC	ACC	CGG	CTG	CAC	CGG	GCG	GCG	GCG	GAC	AGT	CTG	918
	Ala	Val	Ala	Ser	Val	Ala	Gly	Thr	Arg	Leu	His	Arg	Ala	Ala	Ala	Asp	Ser	Leu	306
30	CAC	GCC	TAC	CAC	CTG	TAC	ACG	TTC	TTC	CTC	ACC	GGC	GGC	CGG	CAG	GTG	CGG	GAG	972
	His	Ala	Tyr	His	Leu	Tyr	Thr	Phe	Phe	Leu	Thr	Gly	Gly	Arg	Gln	Val	Arg	Glu	324
35	CGG	TTC	GTG	CGC	GCC	CTG	GAC	CGG	CTG	GGT	GTG	GAG	GTC	CAG	TTG	CGG	TAC	TTC	1026
	Arg	Phe	Val	Arg	Ala	Leu	Asp	Arg	Leu	Gly	Val	Glu	Val	Gln	Leu	Arg	Tyr	Phe	342
40	CCG	CTC	CAT	CTG	TCG	CCC	GAG	TGG	CGG	CTG	CGC	GGC	CAC	GGG	CCG	GGC	GAG	TGT	1080
	Pro	Leu	His	Leu	Ser	Pro	Glu	Trp	Arg	Leu	Arg	Gly	His	Gly	Pro	Gly	Glu	Cys	360
40	CCG	ACG	GCC	GAA	CGG	GTC	TGG	TTC	GAG	GAG	CAC	ATG	AAC	CTG	CCG	TGC	CAT	CCC	1134
	Pro	Thr	Ala	Glu	Arg	Val	Trp	Phe	Glu	Glu	His	Met	Asn	Leu	Pro	Cys	His	Pro	378
45	GGT	CTG	ACT	GAC	GGC	CAG	GTC	GAC	TAC	ATG	GTC	GAG	GCG	GTC	ACC	CGC	GCC	CTG	1188
	Gly	Leu	Ser	Asp	Gly	Gln	Val	Asp	Tyr	Met	Val	Glu	Ala	Val	Thr	Arg	Ala	Leu	396
50						ACG Thr													1233 411

55

REVENDICATIONS

1. Composé caractérisé en ce qu'il est représenté par la formule générale I

5

I

dans laquelle:

 $-R_2$ et R_4 représentent, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupement méthyle,

- -R₃ représente un atome d'hydrogène ou un groupement hydroxyle,
- -X représente un groupement CO, CHOH ou CH2 et
- -R₁ représente:

 $CH_{2} \longrightarrow CH_{2} \longrightarrow C$

15

20

avec

- pour les dérivés méta:

A, C, D et E représentant un atome d'hydrogène et

B pouvant représenter:

- un halogène et de préférence un atome de fluor,

DOCID: <WO

- -un groupement monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle ou éthyle,
 - -un groupement éther.
 - -un groupement thioéther,
- 5 -un groupement alkyle en C₁ à C₃ ou
 - -un groupement trihalogénométhyle et de préférence le trifluorométhyle.

- pour les dérivés para:

A, B, D et E représentant un atome d'hydrogène et

- 10 C pouvant représenter:
 - un halogène,
 - -un groupement NR_1R_2 avec R_1 et R_2 représentant indépendamment l'un de l'autre un groupement choisi parmi
 - l'hydrogène,
- un groupement alkyle en C₁ à C₄ linéaire ou ramifié avec lorsque l'un des substituants R₁ ou R₂, représente un groupement méthyle, l'autre représente obligatoirement un groupement éthyle,
 - un groupement alkyl-cycloalkylméthyle avec un cycloalkyl en C_3 à C_4
 - un groupement cycloalkyle en C₃ à C₄ éventuellement substitué,
 - -un groupement alcényle en C_1 à C_4 linéaire ou ramifié avec lorsque l'un des substituants R_1 ou R_2 , représente un groupement alcényle, l'autre est différent d'un groupement méthyle ou d'un groupement cycloalkyle en C_3 à C_6 ,
 - un groupement N-pyrrolidinyle substitué ou non,
- 25 -un groupement éther,
 - -un groupement thioéther,
 - -un groupement acyle ou alcoxycarbonyle,
 - -un groupement alkyle en C₁ à C₆, linéaire ou ramifié, et de préférence choisi parmi les groupements méthyle, isopropyle et tert-butyle,
- 30 un groupement alkylthiométhyle,
 - -un groupement aryle et de préférence un phényle ou
 - -un groupement trihalogénométhyle et de préférence le trifluorométhyle et
 - pour les dérivés disubstitués méta-para:
- 35 A, D et E représentant un atome d'hydrogène et

B pouvant représenter:

- -un halogène et de préférence un atome de fluor,
- -un groupement monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle ou éthyle,
- 5 -un groupement éther,
 - -un groupement thioéther,
 - -un groupement alkyle en C1 à C3 et

C pouvant représenter:

- -un halogène et de préférence un atome de fluor,
- -un groupement amino, monoalkylamino ou dialkylamino avec alkyle représentant de préférence un groupement méthyle à la condition que B soit différent d'un atome de brome ou de chlore, ou un groupement allyle substitué ou non,
 - -un groupement éther,
- 15 -un groupement thioéther,
 - -un groupement alkyle en C1 à C6 ou
 - -un groupement trihalogénométhyle et de préférence le trifluorométhyle et

- pour les dérivés disubstitués ortho-para :

- 20 B, E et D représentant un atome d'hydrogène et A et C, un groupement méthyle.
 - 2. Composé selon la revendication 1 caractérisé en ce qu'il s'agit de préférence de:
 - la 4ζ-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_A,
- 25 la 4ζ-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_H,
 - la 5 γ-hydroxy 4ζ-méthylthio-dés(4ζ-diméthylamino) pristinamycine I_H,
 - la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine IA,
 - la 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I_H,
 - la 4ζ-méthoxy-dés(4ζ-diméthylamino) pristinamycine IA,
- 30 la 4ζ-méthoxycarbonyl-dés(4ζ-diméthylamino) pristinamycine I_A,
 - la 4ζ-chloro-dés(4ζ-diméthylamino) pristinamycine I_A,
 - la 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine I_A,
 - la 4ζ-bromo-dés(4ζ-diméthylamino) pristinamycine Iμ,
 - la 4ζ-iodo-dés(4ζ-diméthylamino) pristinamycine I_A,

	la 4 ζ -iodo-dés(4 ζ -diméthylamino) pristinamycine I $_{ m H}$,
,	la 4ζ-trifluorométhyl-dés(4ζ-diméthylamino) pristinamycine I _A ,
	la 4 ζ -trifluorométhyl-dés(4 ζ -diméthylamino) pristinamycine I $_{H}$,
	la 4ζ-tert-butyl-dés(4ζ-diméthylamino) pristinamycine IA,
5	la 4ζ-isopropyl-dés(4ζ-diméthylamino) pristinamycine IA,
	la 4ζ-isopropyl-dés(4ζ-diméthylamino) pristinamycine IE.
	la 4ε-méthylamino-dés(4ζ-diméthylamino) pristinamycine I _A ,
	la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I A,
	la 4ε-méthoxy-dés(4ζ-diméthylamino) pristinamycine I H,
10	la 4ε-fluoro 4ζ-méthyl-dés(4ζ-diméthylamino) pristinamycine I A
	la 4ζ-amino-dés(4ζ-diméthylamino) pristinamycine I A
	la 4ζ-éthylamino-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4ζ-diéthylamino-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4ζ-allylamino-dés(4ζ-diméthylamino) pristinamycine I _A
15	la 4ζ-diallylamino-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4ζ-allyl éthylamino-dés(4ζ-diméthylamino) pristinamycine IA
	la 4ζ-éthyl propylamino-dés(4ζ-diméthylamino) pristinamycine $I_{\mathbf{A}}$
	la 4 ζ -éthyl isopropylamino-dés(4 ζ -diméthylamino) pristinamycine I $_{f A}$
	la 4ζ-éthyl méthylcyclopropylamino-dés(4ζ-diméthylamino) pristinamycine I _A
20	la 4 ζ -(1-pyrrolidinyl) -dés(4 ζ -diméthylamino) pristinamycine I $_{ m A}$
	la 4ζ-trifluorométhoxy-dés(4ζ-diméthylamino) pristinamycine IA
	la 4ζ-allyloxy-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4 ζ -éthoxy-dés(4 ζ -dirnéthylamino) pristinamycine I $_{f A}$
•	la 4ζ-éthylthio-dés(4ζ-diméthylamino) pristinamycine I _A
25	la 4 ζ -méthylthiométhyl-dés(4 ζ -diméthylamino) pristinamycine I $_{f A}$
	la 4ζ-(2-chloroéthoxy)-dés (4ζ-diméthylamino) pristinamycine I _A
	la 4ζ-acétyl-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4ζ-éthyl-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4 ζ -éthyl-dés(4 ζ -diméthylamino) pristinamycine I $_{ m H}$
30	la 4ε-diméthylamino-dés(4ζ-diméthylamino) pristinamycine I _A
	la 4ε-méthylthio-dés(4ζ-diméthylamino) pristinamycine I _A et
	la 4E-éthoxy-dés(4C-diméthylamino) pristinamycine I A.

15

25

- 3. Procédé de préparation de streptogramines caractérisé en ce qu'il met en oeuvre une souche d'un microorganisme producteur de streptogramines, possédant au moins une modification génétique affectant la biosynthèse d'un précurseur des streptogramines du groupe B et en ce que ladite souche mutante est cultivée sur un milieu de culture adéquat et complémenté avec au moins un précurseur original, autre que celui dont la biosynthèse est altérée et en ce que l'on récupère lesdites streptogramines.
- 4. Procédé selon la revendication 3 caractérisé en ce que la souche mutée possède au moins une modification génétique localisée au niveau d'un des gènes impliqués dans la biosynthèse des précurseurs des streptogramines du groupe B.
 - 5. Procédé selon la revendication 4 caractérisé en ce que le ou les gènes, dont l'expression est altérée, sont choisis parmi les gènes impliqués dans la biosynthèse de l'acide L-2-aminobutyrique, le 4-diméthylamino-L-phénylalanine (DMPAPA), l'acide L-pipécolique, la L-phénylglycine et/ou l'acide 3-hydroxypicolinique.
- 6. Procédé selon la revendication 4 ou 5 caractérisé en ce qu'il s'agit d'au moins un gène choisi parmi les gènes <u>papA</u>, <u>papM</u>, <u>papC</u> (SEQ ID n° 2), <u>papB</u> (SEQ ID n° 3), <u>pipA</u> (SEQ ID n° 5), <u>snbF</u> (SEQ ID n° 6) et <u>hpaA</u> (SEQ ID n° 8).
 - 7. Procédé selon l'une des revendications 3 à 6 caractérisé en ce que ladite modification génétique rend au moins l'un des gènes impliqués dans la biosynthèse de précurseurs de streptogramines du groupe B, partiellement ou totalement incapables de coder pour l'enzyme naturelle.
 - 8. Procédé selon l'une des revendications 3 à 7 caractérisé en ce que la modification génétique consiste en une disruption d'un des gènes impliqués dans la biosynthèse des précurseurs des streptogramines du groupe B.
 - 9. Procédé selon l'une des revendications précédentes caractérisé en ce que la souche mutante mise en oeuvre dérive de la souche <u>S. pristinaespiralis</u> et de préférence de la souche <u>S. pristinaespiralis</u> SP92.

- 10. Procédé selon la revendication 9 caractérisé en ce qu'il s'agit de préférence de la souche SP92: pVRC508.
- 11. Procédé selon la revendication 9 caractérisé en ce qu'il s'agit de préférence de la souche SP212.
 - 12.Procédé selon la revendication 9 caractérisé en ce qu'il s'agit de préférence de la souche SP92pipA::Ωam^R.
- 13. Procédé selon la revendication 9 caractérisé en ce qu'il s'agit de préférence de la souche SP92hpaA::Ωam^R.
 - 14. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le précurseur original, introduit dans le milieu de culture, est choisi parmi des dérivés ou analogues d'acides aminés et d'acides alpha-cétocarboxyliques.
 - 15. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le précurseur original est de préférence choisi de manière à être apparenté au précurseur dont la biosynthèse est altérée.
 - 16. Procédé selon la revendication 14 ou 15 caractérisé en ce que le précurseur original est de préférence un dérivé de phénylalanine lorsque le gène, dont l'expression est altérée, concerne la biosynthèse du DMPAPA.
- 25 17. Procédé selon l'une des revendications précédentes utile pour préparer de la pristinamycine IB.
 - 18. Séquence nucléotidique caractérisée en ce qu'elle est choisie parmi:
- (a) tout ou partie des gènes <u>papC</u> (SEQ ID n° 2), <u>papB</u> (SEQ ID n° 3), <u>pipA</u> 30 (SEQ ID n° 5), <u>snbF</u> (SEQ ID n° 6) et <u>hpaA</u> (SEQ ID n° 8),
 - (b) les séquences hybridant avec tout ou partie des gènes (a) et,
 - (c) les séquences dérivées des séquences (a) et (b) en raison de la dégénérescence du code génétique.

- 19. Séquence nucléotidique selon la revendication 18 caractérisée en ce qu'elle est choisie parmi les gènes papC (SEQ ID n° 2), papB (SEQ ID n° 3), pipA (SEQ ID n° 5), snbF (SEQ ID n° 6) et hpaA (SEQ ID n° 8).
- 20. ADN recombinant comprenant un gène choisi parmi les gènes papC (SEQ 5 ID n° 2), papB (SEQ ID n° 3), pipA (SEQ ID n° 5), snbF (SEQ ID n° 6) et hpaA (SEQ ID n° 8).
 - 21. Vecteur caractérisé en ce qu'il comprend une séquence nucléotidique selon la revendication 18 ou 19 ou un ADN recombinant selon la revendication 20.
- 22. Utilisation d'une séquence selon la revendication 18 ou 19 et/ou d'un vecteur selon la revendication 21 pour la préparation de métabolites.
 - 23. Polypeptide résultant de l'expression d'une séquence selon la revendication 18 ou 19.
- 24. Souche mutante <u>S. pristinaespiralis</u> caractérisée en ce qu'elle possède au moins une modification génétique au niveau d'un de ses gènes <u>papC</u> (SEQ ID n° 2), <u>papB</u> (SEQ ID n° 3), <u>pipA</u> (SEQ ID n° 5), <u>snbF</u> (SEQ ID n° 6) et/ou <u>hpaA</u> (SEQ ID n° 8).
 - 25. Souche mutante selon la revendication 24 caractérisée en ce qu'il s'agit de la souche SP92 $pipA::\Omega$ amR.
- 26. Souche mutante selon la revendication 24 caractérisée en ce qu'il s'agit de la souche SP92hpaA::Ωam^R.
 - 27. Souche mutante <u>S. pristinaespiralis</u> caractérisée en ce qu'elle possède une modification génétique consistant en une disruption du gène <u>papA</u> par double recombinaison homologue telle que SP212.
- 4s'agit du qu'il ce caractérisé en Composé 28. 25 3-méthylaminophénylalanine, 3trifluorométhoxyphénylalanine, 4-3-fluoro4-méthylphénylalanine, l'acide méthylthiophénylalanine, méthylaminophénylpyruvique, 3-éthoxyphénylalanine, 4- allylaminophénylalanine, éthylaminophénylalanine, éthyl allyl diallylaminophénylalanine, 4isopropylaminophénylalanine, 4éthyl propylaminophénylalanine, 4-30

- éthylméthylcyclopropylaminophénylalanine, 4-(1-pyrrolidinyl) phénylalanine, 4éthylthiométhylphénylalanine, 4-O-(2-chloroéthyl) tyrosine, 3diméthylaminophénylalanine et 3-éthylaminophénylalanine.
- 29. Composition pharmaceutique caractérisée en ce qu'elle contient au moins 5 un composé selon la revendication 1 ou 2 en association ou non avec une streptogramine du groupe A.

Figure 1

$$R_1$$
 = H, R_2 = H vernamycin Bδ

PI $_{\rm B}$ = pristinamycin I $_{\rm B}$, vernamycin B $_{\rm A}$, ostreogrycin B $_{\rm 2}$

PI $_{C}$ = pristinamycin I_{C} , vernamycin B_{γ} , ostreogrycin B_{1} .

Figure 2

3/13

R₁ = Me, virginiamycin S₁

R1 = Me, R2 = H R3 = -OH R4 = H VS2

$$R_1 = Me, R_2 = OH R_3 = OR_4 = Me VS_3$$

Etamycin A (neoviridogrisein IV, viridogrisein)

$$\rm R_1$$
= OH (cis), $\rm R_2$ = Me
$$\rm neoviridogrisein~I,~R_1$$
= H, $\rm R_2$ = Et, $\rm R_3$ = Me
$$\rm II,~R_1$$
= H, $\rm R_2$ = Me, $\rm R_3$ = Me
$$\rm III,~R_1$$
= OH, $\rm R_2$ = Et, $\rm R_3$ = Me
$$\rm CI-c,~R_1$$
= CI (cis), $\rm R_2$ = Me, $\rm R_3$ = Me

CI- t, R₁= CI (trans), R₂= Me, R₃= Me

viridogrisein II, $R_1 = OH$, $R_2 = EI$, $R_3 = H$

Grividomycin I, II

R₁= OH (cis / trans), R₂= Me

Grividomycin III

R₁= OH. R₂= H

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

11/13

EcoRI Sphl snba HindIII -Pflml/Hindlll pVRC421 12 kb 4egn Pflml/Hindlil HindIII Sphl

Figure 11

Figure 12

Figure 13

INTERNATIONAL SEARCH REPORT

Interna. 1 Application No PCT/FR 95/00889

				PUIT	FK 95/00889
IPC 6	C07C229/36 C07C229/42 C07 C12R1:465)	K7/06 C321/28		1 /135	A61K38/08 //(C12N1/21,
According to	o International Patent Classification (IPC) or to both nation	nal classification	and IPC		
R. FIELDS	SEARCHED				
Minimum de IPC 6	ocumentation searched (classification system followed by COOK CI2N A61K COOC	dassification syn	(slode		
	ion searched other than minimum documentation to the ex	tent that such do	cuments are incl	uded in t	he fields searched
Documentat	ion searched other than minimum documentation of the ex				
Electronic d	ata base consulted during the international search (name of	f data base and,	where practical.	search te	mns used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT				Relevant to claim No.
Category *	Citation of document, with indication, where appropriate	, of the relevant	passages		K SICARUT TO CISTUR 140:
Χ.	WO,A,94 08014 (RHONE POULENC ;BLANC VERONIQUE (FR); BLANC	RORER S	A IS		1,3-27, 29
	(FR)) 14 April 1994 cited in the application see page 2, line 23 - page 4 claims; example 5				
,	* Seq. ID. 10 * see page 4, line 27 - page 5				12_27
X	WO,A,93 20182 (RHONE POULENG ;BARRERE GENEVIEVE (FR); JUN (F) 14 October 1993 see claims; examples	C RORER S MEL CATHE	A RINE		29
A .	EP,A,O 133 096 (RHONE POULE February 1985 see the whole document	NC SANTE)	13		1,2,29
	See the whole document				i.
		-/	•		
X Fur	ther documents are listed in the continuation of box C.	X	Patent family	member	s are listed in annex.
"A" docum	ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance		or priority date a cited to understa invention	nd the pri	after the international filing date a conflict with the application but inciple or theory underlying the
E earlier	date the thick may throw doubts on priority claim(s) or	•	cannot be consid involve an inven	tered nov	tevance; the claimed invention el or cannot be considered to when the document is taken alone tevance; the claimed invention the when the
which citatio "O" docum	n is cited to establish the publication that of another on on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means		cannot be consid	tered to H	nvolve an inventive step when the th one or more other such docu- being obvious to a person skilled
"P" docum	ment published prior to the international filing date but than the priority date claimed	.%.	document memb		same patent family
	e actual completion of the international search	1			ernational search report
4	1 October 1995		17. 10). YO	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2		Authorized office	er .	
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016		Fuhr,	C	

INTERNATIONAL SEARCH REPORT

Interna 1 Application No PCT/FR 95/00889

		PC1/FR 95/00889		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages			
x	J. AM. CHEM. SOC. (1990), 112(13), 5212-19 CODEN: JACSAT; ISSN: 0002-7863, BRESLOW, RONALD ET AL 'Artificial transaminases linking pyridoxamine to binding cavities: controlling the geometry' see page 5214, right column, last paragraph - page 516, left column, paragraph 1; table I	28		
X	HELV. CHIM. ACTA (1974), 57(8), 2406-20 CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution' see figures 2,3; table 1	28		
X	US,A,4 156 734 (STONE CLEMENT A) 29 May 1979 see claims; examples	28		
	·			
		1		
ĺ				

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interns : Application No PCT/FR 95/00889

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9408014	14-04-94	FR-A- 269618 AU-B- 482399 CA-A- 214552 EP-A- 066213 FI-A- 95140	3 26-04-94 3 14-04-94 4 12-07-95
WO-A-9320182	14-10-93	FR-A- 268951 AU-B- 389349 CA-A- 213108 EP-A- 063392 FI-A- 94456 JP-T- 750528 ZA-A- 930222	3 08-11-93 7 02-10-93 8 18-01-95 3 30-09-94 8 15-06-95
EP-A-0133096	13-02-85	FR-A- 254906 JP-C- 181553 JP-B- 502271 JP-A- 6003838 US-A- 461729	9 18-01-94 7 30-03-93 5 27-02-85
US-A-4156734	29-05-79	AU-B- 51196 AU-B- 219207 BE-A- 85105 DE-A- 270586 FR-A,B 234072 GB-A- 152718 JP-A- 5209922 NL-A- 770094 US-A- 417065	7 10-08-78 1 03-08-77 3 18-08-77 9 09-09-77 1 04-10-78 7 19-08-77 5 16-08-77 4 09-10-79

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Deman iternationale No PCT/FR 95/00889

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/52 C12N15/76 A61K38/08 C12N1/21 C07K7/06 //(C12N1/21. CO7D295/135 CO7C321/28 C07C229/4? C07C229/36 C12R1:465) Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultee (système de classification suivi des symboles de classement) CO7K C12N A61K C07C CIB 6 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relévent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilises) C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie * 1,3-27, WO, A, 94 08014 (RHONE POULENC RORER SA X ; BLANC VERONIQUE (FR); BLANCHE FRANCIS (FR)) 14 Avril 1994 cité dans la demande voir page 2, ligne 23 - page 4, ligne 2; revendications; exemple 5 * Seq. ID. 10 * voir page 4, ligne 27 - page 5, ligne 18 1,3-27, WO, A, 93 20182 (RHONE POULENC RORER SA X BARRERE GENEVIEVE (FR); JUMEL CATHERINE (F) 14 Octobre 1993 voir revendications; exemples 1,2,29 EP,A,O 133 096 (RHONE POULENC SANTE) 13 A Février 1985 voir le document en entier -/--Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents l X X document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention Catégories speciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité document antérieur, mais publié à la date de dépôt international ou après cette date inventive par rapport au document considéré isolément document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considèrée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier "O" document se referant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document public avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée '&' document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 17. 10. 95 4 Octobre 1995 Fonctionnaire autorisé Nom et adresse postale de l'administration chargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fuhr, C

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

FAX (+31-70) 340-3016

RAPPORT DE RECHERCHE INTERNATIONALE

Demar. iternationale No PCT/FR 95/00889

X J. AM. CHEM. SOC. (1990), 112(13), 5212-19 CODEN: JACSAT; ISSN: 0002-7863, BRESLOW, RONALD ET AL 'Artificial transaminases linking pyridoxamine to binding cavities: controlling the geometry' voir page 5214, colonne de droite, dernier alinéa - page 516, colonne de gauche, alinéa 1; tableau I X HELV. CHIM. ACTA (1974), 57(8), 2406-20 CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution' voir figures 2,3; tableau 1			PC1/FR 95/00889
X J. AM. CHEM. SOC. (1990), 112(13), 5212-19 CODEN: JACSAT; ISSN: 0002-7863, BRESLOW, RONALD ET AL 'Artificial transaminases linking pyridoxamine to binding cavities: controlling the geometry' voir page 5214, colonne de droite, dernier alinéa - page 516, colonne de gauche, alinéa 1; tableau I X HELV. CHIM. ACTA (1974), 57(8), 2406-20 CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution' voir figures 2,3; tableau 1 X US,A,4 156 734 (STONE CLEMENT A) 29 Mai 28			
CODEN: JACSAT; ISSN: 0002-7863, BRESLOW, RONALD ET AL 'Artificial transaminases linking pyridoxamine to binding cavities: controlling the geometry' voir page 5214, colonne de droite, dernier alinéa - page 516, colonne de gauche, alinéa 1; tableau I X HELV. CHIM. ACTA (1974), 57(8), 2406-20 CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution' voir figures 2,3; tableau 1 US,A,4 156 734 (STONE CLEMENT A) 29 Mai 28 1979	Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinen	no. des revendications vistes
CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution' voir figures 2,3; tableau 1 US,A,4 156 734 (STONE CLEMENT A) 29 Mai 28 1979	x	CODEN: JACSAT; ISSN: 0002-7863, BRESLOW, RONALD ET AL 'Artificial transaminases linking pyridoxamine to binding cavities: controlling the geometry' voir page 5214, colonne de droite, dernier alinéa - page 516, colonne de gauche,	28
1979	X	CODEN: HCACAV, ZELLER, E. ALBERT ET AL 'Ophidian L-amino acid oxidases. 6. Interaction of ophidian L-amino acid oxidase with its substrates and inhibitors. Role of molecular geometry and electron distribution'	28
	K	1979	28

1

Formulaire PCT/ISA/210 (suita de la deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Deman ternationale No
PCT/FR 95/00889

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
WO-A-9408014	14-04-94	AU-B- CA-A-	2696189 4823993 2145523 0662134 951403	01-04-94 26-04-94 14-04-94 12-07-95 24-03-95
WO-A-9320182	14-10-93	FR-A- AU-B- CA-A- EP-A- FI-A- JP-T- ZA-A-	2689518 3893493 2131087 0633928 944563 7505288 9302225	08-10-93 08-11-93 02-10-93 18-01-95 30-09-94 15-06-95 14-10-93
EP-A-0133096	13-02-85	FR-A- JP-C- JP-B- JP-A- US-A-	2549062 1815539 5022717 60038385 4617290	18-01-85 18-01-94 30-03-93 27-02-85 14-10-86
US-A-4156734	29-05-79	AU-B- AU-B- BE-A- DE-A- FR-A,B GB-A- JP-A- NL-A- US-A- US-A-	511964 2192077 851051 2705863 2340729 1527181 52099227 7700945 4170654 4160835	18-09-80 10-08-78 03-08-77 18-08-77 09-09-77 04-10-78 19-08-77 16-08-77 09-10-79 10-07-79

Formulaire PCT/ISA/210 (annexe familles de bravets) (juillet 1992)

A TON THE WORLD'S STATE OF THE STATE OF THE

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)