<確認テスト>

					の酸素を混合し,点火して
タンを完全燃焼させる。原子量は H: 1, C: 12, O: 16 (1) 反応前のメタンおよび酸素はそれぞれ何 mol か。				。また,有効致 CH4	子2桁(合えよ。 mol
	ノン ひより 吹乐 (A (10 (10)) III	101 V ₀	<u>O</u> ₂	mol
(2) 生成した二醇	酸化炭素は標準	犬態で何 L か。			<u>L</u>
(3) 生成した水(は何gか。				g
2 水酸化ナトNaOH=40 であ		5g を水 100g	」に溶解させた	:溶液の密度が	I.2 g/cm³であった。ただし
(1) この水溶液(の質量パーセン	ト濃度は何%か	0		<u>%</u>
(2) この水溶液(のモル濃度は何	mol/L か。			mol/L
③ 次の(a)~(cつずつ選び,数字		結合を持つ物質	なして最も通	∮切なものを, →	それぞれ①~④のなかから:
(a) ナトリウム	(b) フッイ	ヒカリウム	(c) アルゴ	· (d) 3	ダイヤモンド
① 酸化銅(Ⅱ)	② 銀	③ 二酸化烷	ケイ素	④ ヘリウム	
<u>(a)</u>	(b)	(c)	(d)		
4 次の①~④	の物質のうち,酉	記位結合をもつ	ものを全て選	び,数字で答え	よ。
① H ₂ O	② NH ₄ ⁺	③ [Co(NF	H ₃) ₆]Cl ₃	4 BF ₃	
<u>答え</u>					

<確認テスト・解答>

Ⅱ 化学反応を伴う化学計算 (各Ⅰ点:計4点)

(1) CH_4 : 0.13 mol O_2 : 0.75 mol (2) 2.8 L

(3) **4.5** g

<方針>

(1) 単位に注目!

 CH_4 : $|2+1\times 4=16$ g/mol であるから, $\frac{2.0 \, [g]}{16 \, [g/mol]}=0.125 \, [mol]$ となる。有効数字 2 桁に注意。

気体は標準状態で 22.4 L/mol であるから, O_2 は $\frac{16.8\,[L]}{22.4\,[L/mol]} = 0.75\,[mol]$ となる。

(2)(3) 化学反応式に関する表を書く!

mol)
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

前 0.125 0.75 0 0

変 -0.125 -0.25 +0.125 +0.25

反応 mol 比=係数比

後 0 0.50 0.125 0.25

CO₂: 0.125 [mol] × 22.4 [L/mol] = $\frac{22.4}{8}$ [L] = 2.8 [L] H₂O: 0.25 [mol] × 18 [g/mol] = $\frac{18}{4}$ [g] = 4.5 [g]

2 濃度計算(完答 | 点)

(1) 20 % (2) 6.0 mol/L

<方針> 定義をちゃんと把握する! ↓比を使ったらどうなるのか等は質問してどうぞ。

(1) $\frac{\text{$rac{lpha g}{3 \ \ g}}}{\text{$rac{lpha h}{3 \ \ g}}} \times 100[\%] = \frac{25 \, [g]}{100 + 25 \, [g]} \times 100[\%] = 20[\%]$

$$(2) \frac{\text{溶質 [mol]}}{\text{溶液 [L]}} = \frac{\frac{25 \text{ [g]}}{40 \text{ [g/mol]}}}{\frac{125 \text{ [g]}}{125 \text{ [g]}} \times \frac{1 \text{ [L]}}{120 \text{ [g/mol]}}} = 6.0 \text{ [mol/L]} ※同じ色どうしは相殺。 灰囲み は分母=分子。$$

3 化学結合の分類 (各 | 点: 計 4 点)

- (a) ② (b) ① (c) ④
- (d) **③**

<方針>金属・非金属元素のどちらなのかを考える!

イオン結合: 金属 と非金属 (b) KF, ① CuO

共有結合: 非金属と非金属 (d) C, ③ SiO₂ ※ どちらも共有結合結晶。

金属結合: 金属 と 金属 (a) Na, ② Ag

分子間力: 分子 と 分子 (c) Ar, ④ He ※どちらも貴ガス(18族)なので分子内の結合はない。

4 配位結合(完答 | 点)

2, 3

<方針> 配位結合を持つ代表的な物質は、 オキソニウムイオン H₃O+, アンモニウムイオン NH₄+, およ び錯イオン(例 $[Co(NH_3)_6]^{3+}$)である。錯イオンは、金属イオン(例 Co^{3+})の周りに非共有電子対を持っ た物質(例 NH₃)が配位結合してできるもの。

<知識系テスト>

- | 次の化学式を答えよ。
- (1) ダイヤモンド
- (2) 二酸化ケイ素
- (3) 銅
- (4) フッ化ナトリウム
- (5) 硫酸バリウム
- (6) 酸化銀
- (7) リン酸カルシウム
- |2|| 以下の化学反応式の係数をつけなさい(係数が | のときは省略)
- (I) $\underline{\hspace{1cm}} C_2H_6 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$
- $(2) \ ___H_2O_2 \to ___O_2 + ___H_2O$
- (3) $__NaOH + ___H_2C_2O_4 \rightarrow ___Na_2C_2O_4 + ___H_2O$
- *(4) ____Cu + ____HNO₃ \rightarrow ____Cu(NO₃)₂ + ____NO + ____H₂O

<知識系テスト・解答>

※各1点 11点満点(2は完答)

- 1 化学式
- (I) C
- (2) SiO₂
- (3) Cu
- (4) NaF \leftarrow Na⁺: F⁻ = I:I
- (5) BaSO₄ \leftarrow Ba²⁺ : SO₄²⁻= I:I
- (6) $Ag_2O \leftarrow Ag^+ : O^{2-} = 2:I$
- (7) $Ca_3(PO_4)_2 \leftarrow Ca^{2+} : PO_4^{3-} = 3 : 2$

2 化学反応式

- (1) $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
- $(2) \ 2H_2O_2 \to O_2 + 2H_2O$
- (3) $2NaOH + H_2C_2O_4 \rightarrow Na_2C_2O_4 + 2H_2O$
- *(4) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

<学習のアドバイス>

5限 → 現代科学は定量的に考えること(≒要するに計算)が基本。入試問題でもたくさん計算問題が 出てくるけれども、計算から逃げていては点数が伸びません。しかし、逆を言うと、計算の方法をマスタ ーすればだいぶ点数は伸びるのですごく重要!

6限 → 化学は例外も多いのですが、例外は一旦置いといて、原則どうなるかを考えると簡単に思えてくるよ。

「なんか知っている話題だな」「この分野大丈夫」「細かいことが多いな」という感想もあるかもしれない。ただ、他の分野もこの内容が基礎になっているので、仮に大丈夫であっても他の分野にこの考え方が活かせないかな?と考えると良いです。

今日はあまり面白い話ができなかったかもしれない。でも、徐々に面白くなります(2 話が一番面白いアニメってあんまりないんじゃない?)。

<次回予告>

- ①§3「化学反応~酸·塩基」
- ②§3「分子の形・極性を理論的に考えたり,分子間力に思いを馳せたり」

予習: p16~19 演習問題 5·6 p66~69 演習問題 5·6