Arduino Wetterstation

Funktionsbeschrieb

In diesem Projekt setze ich eine Arduino Wetterstation um, die Temperatur, Luftfeuchtigkeit und Luftdruck misst und auf einem LCD anzeigt. Zusätzlich werden das Datum und die Zeit angezeigt mithilfe einer RTC. Die Daten werden als HTTP Request an meinen PHP Endpoint geschickt, welcher sie in einer SQL-Datenbank abspeichert.

Use Cases

Use Case Wetterdatenanzeige

Name	Wetterdaten-Anzeige			
Akteur	BME 280 Sensor (Luftdruck-, Luftfeuchtigkeits- und			
	Temperatursensor), LCD			
Trigger	Keine			
Kurzbeschreibung	Es werden der momentane Luftdruck, Luftfeuchtigkeit und die Temperatur gemessen und anschliessend auf der linken Seite des LCD angezeigt.			
Vorbedingungen	Keine			
Komponenten	GUI			
	Intention der Systemumgebung	Reaktion des Systems		
	Werte werden gemessen			
	Werte werden im Code gelesen	LCD zeigt Wetterdaten		
Essenzielle	und auf LCD ausgegeben	an		
Schritte				
Schritte				
Ausnahmefälle				
Nachbedingung				
Zeitverhalten	Die LCD Reaktionszeit			
Verfügbarkeit				

Use Case Uhrzeitanzeige

Name	Uhrzeit-Anzeige			
Akteur	Real Time Clock, LCD			
Trigger	keine			
Kurzbeschreibung	Rechts oben auf dem LCD wird die Uhrzeit angezeigt. Die			
	Uhrzeit-Anzeige wird korrekt aktualisiert.			
Vorbedingungen	Keine			
Komponenten	GUI			
	Intention der Systemumgebung	Reaktion des Systems		
	Uhrzeit vom Sensor wird			
Essenzielle Schritte	eingelesen			
	Uhrzeit wird auf LCD	LCD zeigt Uhrzeit an		
	ausgegeben			
Ausnahmefälle				
Nachbedingung				
Zeitverhalten	Die LCD Reaktionszeit			
Verfügbarkeit				
Folge Use Case				

Use Case Datenspeicherung

Name	Daten-Speicherung			
Akteur	BME 280 Sensor, Real Time Clock, WiFi Modul			
Trigger	Wetterdatenmessung			
Kurzbeschreibung	Bei jeder Messung der Wetterdaten werden die Daten an			
	einen SQL-Server geschickt und in einer Datenbank			
	gespeichert. Wenn dies Erfolgreich ist, zeigt das LCD für 5			
	Sekunden «Daten gespeichert», sonst zeigt es «Fehler beim			
	Speichern».			
Vorbedingungen	Internetverbindung			
Komponenten	SQL-Datenbank-Verbindung, GUI			
	Intention der Systemumgebung	Reaktion des Systems		
	Wetterdaten werden gemessen	Daten werden eingelesen		
	Sendet Daten an SQL-Server	Daten werden in		
		Datenbank gespeichert		
Essenzielle Schritte		und LCD zeigt «Daten		
L33eH2IeHe 3cH1tte		gespeichert»		
		Daten konnten nicht		
		gespeichert werden und		
		LCD zeigt «Fehler beim		
		Speichern»		
Ausnahmefälle	Keine Internetverbindung ->			
	zeigt «Fehler beim Speichern»			
Nachbedingung				
Zeitverhalten	Zeit, in welcher die Daten an			
	den Server gesendet werden			
	und eine Antwort zurückkommt			
Verfügbarkeit				

Blockschaltbild

Architektur

Die Architektur sieht folgendermassen aus:

- Integriertes WiFi-Modul: Stellt beim Aufstarten die Internetverbindung über meinen Mobile Hotspot auf. Fragt ein einziges Mal das aktuelle Datum und die aktuelle Uhrzeit über das Internet ab.
- Integrierte RTC: Aktualisiert das Datum und die Uhrzeit.
- BME680: Misst alle 30 Sekunden Temperatur, Feuchtigkeit und Druck.
- Integriertes WiFi-Modul: Nach jeder Messung wird ein HTTP PUT-Request mit den Daten an meine PHP REST-API geschickt.
- PHP REST-API: Hier wird eine SQL-Insert-Query mit den Wetterdaten, dem Datum und der Uhrzeit an den MySQL-Server geschickt.
- MySQL-Server: Speichert die Daten in meiner Datenbank
- PHP REST-API: Nach dem Speichern wird eine HTTP-Response zurückgeschickt an das Wifi-Modul.
- Arduino: Analysiert die HTTP-Response, bereitet Daten auf.
- LCD: Zeigt das Datum, die Uhrzeit, die Wetterdaten, sowie verschiedene Meldungen

M242 Arduino Wetterstation Sara Billing

Test Cases

Vorbedingungen

Mobile Hotspot, Webserver und SQL Server laufen

Nr.	Was?	Wie?	Erwartet	Resultat
1	Zeitanzeige	- LCD Uhrzeit vergleichen	Zeit wird angezeigt mit	Es hat eine
		mit Computer Uhrzeit	nicht mehr als 3 Sekunden	Verzögerung von
		- 5 Minuten warten	Verzögerung.	ca. 2 Sekunden
		- Nochmal vergleichen	Eine geringe Abweichung	und nach 5
			von 1 – 3 Sekunden ist zu	Minuten ist die
			erwarten, weil es noch	Verzögerung
			einen Moment geht bis der	immer noch
			Code ausgeführt ist.	gleich.
2	Wetterdaten	- Temperatur und	Jede halbe Minute wird	Es werden alle
		Feuchtigkeit	eine neue Messung	30 Sekunden die
		- Warten bis zu einer	gemacht und die Daten	neuen Daten
		halben Minute	werden angezeigt	angezeigt.
		- Schauen ob neue Daten		
		angezeigt werden		
3	Wetterdaten	- Bis kurz vor der Messung	Temperatur und	Beides ist ein
		warten	Feuchtigkeit sollten ein	bisschen
		- Sensor anhauchen	bisschen ansteigen	angestiegen.
4	Daten-	- Auf Messung warten	Neuer Eintrag in der	Die Daten
	Speicherung	- In Datenbank	Datenbank, Erfolg-Meldung	werden
		nachschauen	auf LCD	gespeichert und
				es steht
				«Erfolgreich
				gespeichert».
5	Fehler-	- Im Code falsche URI	Fehlermeldung auf LCD	Es kommt die
	Meldung	angeben für Webserver		Meldung «Fehler
				beim Speichern»

Umsetzung

Als Erstes habe ich die einzelnen Komponenten über ein Breadboard mit dem Arduino verbunden. Die RTC, den Wettersensor und das LCD habe ich mit kleinen Testprogrammen ausprobiert. Als ich mir sicher war, dass alles funktioniert, habe ich die Kabel angelötet:

Danach habe ich Schritt für Schritt meine Software geschrieben.

- 1. Zuerst habe ich nur die Uhrzeit und das Datum angezeigt
- 2. Dann habe ich zusätzlich die Wetterdaten angezeigt
- 3. Als nächstes musste ich für mein LCD Scrolling implementieren, um all meine Daten anzeigen zu können
- 4. Danach habe ich eine Datenbank erstellt und PHP einen Endpoint aufgesetzt, der Daten in die Datenbank schreiben kann
- 5. Das Schwierigste war, den HTTP Request im Arduino Code korrekt aufzubauen, hat dann aber mit einem PUT Request funktioniert
- 6. Dann habe ich LCD-Meldungen implementiert

M242 Arduino Wetterstation Sara Billing Meldungen

Bei Datenmessung

Diese Meldung wird angezeigt, wenn gerade eine Messung stattfindet.

Bei Speicherung

Dies wird angezeigt, wenn die Daten gespeichert werden.

Erfolg

Wurden die Daten erfolgreich gespeichert, wird das angezeigt.

Fehler

Gab es einen Fehler beim Speichern, wird das angezeigt.

Hülle

Für die Hülle habe ich aus Styropor ein Wetterhaus gemacht.

Endresultat

Das Endresultat sieht so aus: Das LCD ist an der Vorderseite des Hauses, der Arduino ist im Haus versteckt und der Sensor befindet sich hinter dem Wetterhahn.

Vorder- und Rückseite

M242 Arduino Wetterstation Sara Billing

Innen

Reflexion

Ich wusste von Anfang an, dass es ein paar Holpersteine geben wird, da ich es mir schwierig vorgestellt habe, einerseits die Uhrzeit korrekt zu aktualisieren und andererseits die Wetterdaten in einer Datenbank abzuspeichern. Vor allem beim letzten Punkt musste ich einige Zeit lang ausprobieren, bis ich es geschafft habe, meine Daten über einen HTTP Request an meinen PHP Endpoint zu schicken. Aber schlussendlich konnte ich doch noch all meine Anforderungen erfüllen. Das Projekt war somit eine spannende und erfolgreiche Herausforderung für mich.