

b.

Vout(max) = 1,86v y Vout(min) = -1,38v

Vamos a calcular los valores de $V\gamma$ de los diodos a partir de los obtenidos para Vout.

Para Vout (max):

En este caso, si Vout es máximo, la fuente V1 está suministrando su máximo voltaje (5v) y la corriente iría hacia arriba. Al llegar al nodo Vout, se bifurca hacia las ramas D1 y Rload, ya que D2 no permite el paso de corriente debido a su posición. Como D1 conduce y D2 corte, entonces $1,86 = 1,2 + V\gamma$. Despejando, obtenemos $V\gamma = 0,66v$.

Para Vout (min):

En este caso, si Vout es mínimo, la fuente V1 está suministrando su mínimo voltaje (-5v) y la corriente, tal como está dibujada la fuente que la genera, iría hacia abajo. Al llegar al nodo, se bifurca hacia las ramas D2 y Rload, ya que D1 no permite el paso de corriente debido a su posición. Como D1 corte y D2 conduce, entonces -1,38 = -0,7 - V γ . Despejando, obtenemos V γ = 0,68v.

A continuación vemos la salida del circuito para valores de V2 y V3 grandes:

La máxima amplitud es 2,5v. Esto tiene sentido porque si las fuentes V2 y V3 toman valores muy grandes, teniendo $V\gamma$ prácticamente igual para ambos diodos, las corrientes por esas ramas van a ser muy grandes, pero en sentidos contrarios, así que se "cancelarían". Entonces, quedaría un circuito con la fuente de tensión V1, y dos resistencias de 1K: R y RLoad. Simulando este circuito, vemos que produce una onda sinusoidal de amplitud 2,5v, que coincide con el valor obtenido previamente y teóricamente.

e.

Rload (Kohm)	Voutmax (v)	Voutmin (v)
0,22	4,26	8,61m
0,47	4,28	197m
1	4,30	928m
2,2	4,32	2,06
4,7	4,33	3,01
10	4,34	3,65
22	4,35	4,01