P1 de Álgebra Linear I – 2003.2

Data: 15 de setembro de 2003.

Gabarito Prova Tipo B

1)

Itens	V	\mathbf{F}	N
1.a		X	
1.b	X		
1.c	X		
1.d	X		
1.e		X	
1.f		X	
1.g	X		
1.h		X	
1.i		X	
1.j	X		

2) Considere o plano de equação cartesiana

$$\pi \colon x + y - z = 1$$

e os pontos A=(0,2,1) e B=(0,0,-1) do plano $\pi.$

- a) Determine o vetor \overline{AB} .
- **b)** Determine um vetor w paralelo ao plano π e ortogonal ao vetor \overline{AB} .
- c) Determine um vetor u paralelo a w e de mesmo módulo que o vetor \overline{AB} .

d) Determine as coordenadas de pontos C e D tais que A, B, C, e D são os vértices de um quadrado contido no plano π .

Respostas:

a)
$$\overline{AB} = (0, -2, -2)$$
.

b)
$$w = (2, -1, 1)$$

c)
$$u = (4/\sqrt{3}, -2/\sqrt{3}, 2/\sqrt{3}).$$

d)
$$C = (4/\sqrt{3}, 2 - 2/\sqrt{3}, 1 + 2/\sqrt{3}), \qquad D = (4/\sqrt{3}, -2/\sqrt{3}, -1 + 2/\sqrt{3})$$

3) Considere a reta r_1 de equações paramétricas

$$r_1: (1+t, 2-2t, 3+2t) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x + y + z = -2$$
, $y + 2z = 3$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).
- d) Calcule a distância d entre as retas r_1 e r_2 .

Respostas:

a)
$$\pi$$
: $y + z = 5$, ρ : $2x + y = 4$.

b)
$$r_2$$
: $(-5+t, 3-2t, t), t \in \mathbb{R}$.

c) reversas

d) $11/\sqrt{5}$.

- 4) Considere os pontos A = (-1, 1, -1) e B = (1, 0, 2).
- a) Determine uma equação paramétrica da reta r determinada pelos pontos $A \in B$.
- b) Determine o ponto médio M do segmento AB.
- c) Determine a equação cartesiana do plano π cujos pontos são todos equidistantes de A e B.
- d) Considere o ponto C = (21, 13, 19). Determine explicitamente um ponto D a distância 13 de C.
- e) Considere o plano ρ : x-y-z=0. Determine a equação cartesiana de um plano τ a distância 3 de ρ .

Respostas:

- a) $r: (-1+2t, 1-t, -1+3t), t \in \mathbb{R}$.
- **b)** M = (0, 1/2, 1/2).
- c) π : 2x y + 3z = 1
- d) os seis pontos mais simples são D = (34, 13, 19), D = (8, 13, 19), D = (21, 26, 19), D = (21, 0, 19), D = (21, 13, 6) e D = (21, 13, 32).
- e) τ : $x y z = \pm 3\sqrt{3}$.