T3. COMUNICACIÓN EN SISTEMAS MULTIAG.

AGENTES Y SISTEMAS MULTIAGENTE

Fidel Aznar Gregori

Departamento de Ciencia de la Computación e Inteligencia Artificial.

Universidad de Alicante

INDICE

- Comprendiendo a los demás
- Ontologías
- Actos de comunicación
- Lenguajes de comunicación
- FIPA
- Protocolos FIPA

COMPRENDIENDO A LOS DEMÁS

- En comunicación, necesitamos términos comunes para describir dominios.
 - Un agente podría comprar un artículo de otro agente; ambiguedades: ¿'tamaño', 'pulgada', 'centímetro'...?
- Una ontología proporciona una base común de entendimiento.
- Los agentes necesitan intercambiar información para tomar decisiones y alcanzar sus objetivos.
- Existen diferentes aspectos a tener en cuenta al diseñar un sistema de comunicación entre agentes.

ONTOLOGÍAS

- Las ontologías son una forma de representar el conocimiento compartido entre los agentes.
- Permiten establecer una terminología común y definir relaciones entre conceptos.
- Ayudan a asegurar que los agentes tengan una comprensión compartida de los mensajes que intercambian.

¿QUÉ ES UNA ONTOLOGÍA? (I)

- Una definición formal de un cuerpo de conocimiento.
- Comúnmente contiene un componente estructural
 - Una taxonomía de clases y relaciones de subclases, junto con definiciones de las relaciones entre estas.
- Muchas ontologías actuales surgen del interés en la web semántica.

EJEMPLO DE ONTOLOGÍA (PRODUCTOS)

- Clases:
 - Producto
 - ProductoElectrónico (subclase de Producto)
 - ProductoAlimenticio (subclase de Producto)
- Propiedades:
 - nombre (tipo: string)
 - precio (tipo: float)
 - categoría (tipo: string)
 - descripción (tipo: string)
 - proveedor (tipo: string)

¿NO ES UNA BASE DE DATOS? (I)

- Tabla: Productos
 - Columnas:
 - nombre (tipo: varchar(100))
 - precio (tipo: decimal(10,2))
 - categoria (tipo: varchar(50))
 - descripcion (tipo: text)
 - proveedor (tipo: varchar(100))

¿NO ES UNA BASE DE DATOS? (II)

Una ontología captura la semántica y las relaciones en el dominio, mientras que la descripción de campos en la base de datos se centra en la estructura y los tipos de datos básicos necesarios para almacenar los datos.

¿NO ES UNA BASE DE DATOS? (III)

- Una ontología y una descripción de campos en una base de datos son dos enfoques diferentes para representar información
- Tienen diferencias significativas en términos de estructura y propósito:
 - Propósito y enfoque
 - Complejidad y expresividad
 - Interoperabilidad y reutilización
 - Razonamiento y consultas semánticas

PARTES DE UNA ONTOLOGÍA (I)

Una ontología consta de varias partes que trabajan juntas para capturar el conocimiento y la estructura de un dominio específico. Las partes principales son:

- 1. Clases y Jerarquías de Clases
- 2. Instancias
- 3. Propiedades
- 4. Restricciones
- 5. Reglas
- 6. Axiomas

PARTES DE UNA ONTOLOGÍA (II)

CLASES, JERARQUÍA E INSTANCIAS

- Representan los diferentes tipos de objetos en un dominio.
- Las clases pueden estar relacionadas entre sí mediante jerarquías de clases, que establecen relaciones de subclase y superclase.
- Una instancia es un objeto de la clase

PARTES DE UNA ONTOLOGÍA (III)

PROPIEDADES

- Definen atributos o relaciones entre las clases en una ontología.
- Pueden tener un dominio (la clase a la que se aplica la propiedad) y un rango (el tipo de valor que puede tener la propiedad).
- Tipos de propiedades:
 - Instancia: describen características específicas de un objeto.
 - Relación: establecen relaciones entre objetos.

PARTES DE UNA ONTOLOGÍA (III)

PROPIEDADES

Ejemplo

- Propiedad de instancia: nombre (dominio: Animal, rango: string)
- Propiedad de relación: tieneHabitat
 (dominio: Animal, rango: Habitat)

PARTES DE UNA ONTOLOGÍA (IV)

RESTRICCIONES

- Imponen condiciones o reglas sobre las clases y las propiedades en una ontología.
- Estas restricciones pueden incluir restricciones de cardinalidad, restricciones de rango, restricciones de valor permitido, entre otras.

Ejemplo

Restricción de cardinalidad: cada Animal tiene exactamente un nombre.

PARTES DE UNA ONTOLOGÍA (V)

REGLAS

- Las reglas permiten definir lógica o inferencias adicionales en una ontología.
- Pueden ser reglas lógicas o reglas basadas en la semántica de los conceptos y relaciones en el dominio.

Ejemplo:

• Regla lógica: Si un Animal es un Mamífero, entonces es un Vertebrado.

PARTES DE UNA ONTOLOGÍA (VI)

AXIOMAS EN UNA ONTOLOGÍA

- Los axiomas son declaraciones que establecen verdades fundamentales o asunciones en una ontología (partes anteriores).
- Proporcionan información adicional y restricciones sobre las clases, propiedades y relaciones en el dominio.
- Los axiomas pueden ser de diferentes tipos: equivalencia, herencia y restricción

ACTOS DE COMUNICACIÓN (I)

- Las ontologías nos proporcionan un marco semántico común, indispensable para la comunicación
- ¿Cómo hacer el intercambio de mensajes mensajes entre agentes?
- Los actos de comunicación son una forma de estructurar los mensajes que los agentes intercambian.
- Ejemplos de actos de comunicación incluyen "solicitud", "informe", "confirmación", "negociación", etc.

ACTOS DE COMUNICACIÓN (II)

- Las ontologías pueden incluir actos de comunicación
- Estas definiciones permiten que los agentes comprendan el propósito y la intención detrás de los mensajes y puedan participar en negociaciones y coordinación de acciones.
- Al utilizar la ontología para interpretar los actos de comunicación, los agentes pueden tomar decisiones basadas en la semántica subyacente y coordinar sus acciones de manera más efectiva.

ACTOS DE COMUNICACIÓN (III)

- Def: trans. de información o conocimiento entre agentes mediante el intercambio de mensajes.
- Tiene lugar entre dos o más agentes con el propósito T/R información específica.
- Son esenciales para la colaboración y la coordinación entre agentes inteligentes:
 - Permiten intercambiar información relevante
 - Sincronizar sus acciones
 - Lograr objetivos comunes.
- Suelen estar definidos dentro de un protocolo de comunicación.

ACTOS DE COMUNICACIÓN (III)

Algunos ejemplos de actos de comunicación en agentes inteligentes incluyen:

- solicitar información
- ofrecer recursos
- notificar eventos
- coordinar acciones conjuntas
- hacer preguntas
- responder consultas...

LENGUAJES DE COMUNICACIÓN (I)

- Los lenguajes de comunicación son un conjunto de reglas que los agentes utilizan para comunicarse entre sí.
- Ejemplos de lenguajes de comunicación incluyen KQML, ACL, FIPA-SL, XML-RPC....
- Los lenguajes de comunicación especifican cómo se estructuran los mensajes y qué significan los diferentes actos de comunicación.

LENGUAJES DE COMUNICACIÓN (II)

- La ontología y el lenguaje de comunicación se complementan entre sí en la comunicación entre agentes inteligentes:
 - Ontología: proporciona una estructura semántica común y definiciones de conceptos,
 - Lenguaje de comunicación: establece las reglas y el formato para el intercambio de mensajes.
- Juntos, permiten la interoperabilidad semántica, la comunicación precisa y la comprensión compartida entre los agentes.

KQML

- KQML (Knowledge Query and Manipulation Language) es un lenguaje de comunicación utilizado en sistemas multiagente.
- Fue desarrollado en los años 90 y sigue siendo utilizado en algunos sistemas hoy en día.
- KQML define una sintaxis para los mensajes y una serie de actos de comunicación predefinidos.
- En el lenguaje KQML, se utilizan mensajes estructurados para realizar consultas y manipular el conocimiento entre agentes

EJEMPLO DE USO DEL LENGUAJE KQML (I)

- En este ejemplo, el Agente A envía una consulta al Agente B utilizando el mensaje (Send ...).
- La consulta se realiza mediante la acción ask-one con un predicado específico y un argumento.
- A continuación, el Agente B responde a la consulta de Agente A con un mensaje (Tell ...). La respuesta contiene un resultado y referencia al mensaje original de la consulta.

EJEMPLO DE USO DEL LENGUAJE KQML (II)

1. Agente A envía una consulta a Agente B:

2. Agente B responde a la consulta de Agente A:

EJEMPLO DE USO DEL LENGUAJE KQML (III)

- En la práctica, se pueden utilizar diversos tipos de mensajes y acciones para realizar consultas más complejas y manipular el conocimiento entre agentes.
- KQML es un lenguaje de comunicación específico:los agentes involucrados deben entender y procesar los mensajes en formato KQML.

ACL

- ACL (Agent Communication Language) es otro lenguaje de comunicación utilizado en sistemas multiagente.
- Es una extensión de KQML que incluye un conjunto más amplio de actos de comunicación y un mecanismo de protocolo más sofisticado.
- FIPA (Foundation for Intelligent Physical Agents) es una organización que ha desarrollado un conjunto de protocolos de comunicación basados en ACL.

EJEMPLO DE USO DEL LENGUAJE ACL

1. Agente A envía una petición a Agente B:

```
(REQUEST
    :sender (agent-identifier :name AgenteA :addresses
    (sequence AgenteA-address))
    :receiver (set (agent-identifier :name AgenteB :addresses
        (sequence AgenteB-address)))
    :content "¿Estado del sistema?")
```

2. Agente B responde a la petición de Agente A:

OTROS LENGUAJES DE COM. ENTRE AG. (1)

- Campo en constante evolución
 - Lenguajes específicos de comunicación entre agentes
 - Lenguajes generales:
 - Semantic Web Languages: RDF
 (Resource Desc. Framework), OWL (Web Ontology Language) y SPARQL
 - JSON-LD (JSON for Linked Data): Ext. de JSON que permite la representación de datos enlazados semánticamente.

OTROS LENGUAJES DE COM. ENTRE AG. (II)

- Lenguajes generales:
 - gRPC (Google Remote Procedure Call): gRPC es un framework de comunicación de alto rendimiento desarrollado por Google.
 - Protocolos basados en HTTP y REST: Muchos agentes inteligentes están utilizando protocolos basados en HTTP (Hypertext Transfer Protocol) y REST (Representational State Transfer) para la comunicación.

FIPA (FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS)

- Organización internacional dedicada a promover y estandarizar tecnologías relacionadas con Ag. I.
- Fue establecida en 1996 y está compuesta por expertos de la academia, la industria y otras organizaciones interesadas.
- FIPA se centra en el desarrollo de estándares y especificaciones para facilitar la interoperabilidad y el intercambio de información entre agentes inteligentes.

FIPA (II)

- 1. Estándares y especificaciones: FIPA desarrolla estándares y especificaciones técnicas que establecen un marco común
- 2. Interoperabilidad: Los estándares de FIPA permiten que los agentes inteligentes de diferentes plataformas y sistemas se comuniquen y colaboren entre sí de manera efectiva.
- 3. Fue una organización clave en la promoción y estandarización de tecnologías (global e industrial) relacionadas con agentes inteligentes

FIPA (III)

- FIPA dejó de operar en 2009
- Sin embargo, su legado y contribuciones siguen teniendo una influencia significativa en el campo de los agentes inteligentes. A continuación, se destacan algunas razones por las que FIPA sigue siendo importante:
 - 1. Estándares y especificaciones establecidos
 - 2. Conceptos y enfoques clave
 - 3. Influencia en investigaciones y desarrollos posteriores
 - 4. Comunidad y red de expertos

PROTOCOLOS DE COMUNICACIÓN DE FIPA

- FIPA ha desarrollado un conjunto de protocolos de comunicación para facilitar la comunicación entre agentes.
- Cada protocolo define un conjunto de actos de comunicación y un mecanismo de intercambio de mensajes específico.
- Ejemplos de protocolos de FIPA incluyen el protocolo de solicitud-propuesta y el protocolo de suscripción-información...

Protocolo	Descripción
FIPA-ACL	Intercambio de mensajes entre agentes
FIPA-AMS	Administración de servicios para registrar, buscar y obtener información de servicios
FIPA-	Protocolo para enviar solicitudes de
Request	acción y obtener resultados

Protocolo	Descripción
FIPA-Propose	Protocolo para proponer soluciones a un problema
FIPA-Contract- Net	Protocolo para asignar tareas a los agentes y obtener el resultado
FIPA-Iterated- Contract-Net	Extensión del protocolo FIPA- Contract-Net para varias rondas de negociación

Protocolo	Descripción
FIPA-Request- When	Protocolo para enviar una solicitud condicional
FIPA-Query-If	Protocolo para enviar una consulta condicional
FIPA- Brokerage	Protocolo para coordinar interacciones complejas entre agentes

Protocolo	Descripción
FIPA-Agent-	Protocolo para administrar el ciclo
Mngt	de vida de los agentes
FIPA-	Extensión del protocolo FIPA-
Subscribe-	Subscribe para interactuar con el
Interaction	agente emisor de la notificación
FIPA- Recruiting	Protocolo para reclutar agentes que satisfagan un conjunto de requisitos

Protocolo	Descripción
FIPA-Proxy	Protocolo para delegar solicitudes a agentes intermediarios
FIPA- Security	Protocolo para asegurar la confidencialidad, integridad y autenticidad de los mensajes
FIPA-Trace	Protocolo para permitir el rastreo de mensajes a través de la plataforma JADE
FIPA- Location- Service	Protocolo para descubrir la ubicación de los agentes y servicios en la plataforma JADE

EJEMPLOS DE PROTOCOLOS

PROTOCOLO DE SOLICITUD-PROPUESTA

- El protocolo de solicitud-propuesta: un agente solicite una tarea a otro agente y reciba una propuesta de cómo se realizará la tarea.
- El agente solicitante envía un mensaje "solicitud" que incluye los detalles de la tarea que se está solicitando.
- El agente que recibe la solicitud envía un mensaje "propuesta" que incluye una oferta para realizar la tarea y los detalles de cómo se llevará a cabo.

Ejemplo: comunicación entre dos agentes que buscan intercambiar información sobre el clima:

EJEMPLOS DE PROTOCOLOS

PROTOCOLO DE SUSCRIPCIÓN-INFORMACIÓN

 Un agente se suscriba a una fuente de información y reciba actualizaciones cuando la información cambia

EJEMPLO:

Dos agentes intercambian información sobre el estado del tráfico en tiempo real:

PROTOCOLOS DE COMUNICACIÓN FIPA

- Los protocolos de comunicación de la FIPA son marcos y especificaciones que establecen reglas y procedimientos para la interacción entre agentes.
- Estos protocolos definen el formato, la secuencia y el contenido de los mensajes intercambiados entre agentes.
- Proporcionan una estructura estándar y consistente para la comunicación, permitiendo la coordinación y colaboración efectiva entre agentes.

ACTOS DE COMUNICACIÓN EN LOS PROTOCOLOS FIPA

- Dentro de un protocolo de comunicación de la FIPA, los agentes pueden realizar diferentes actos de comunicación.
- Estos actos incluyen solicitar información, realizar propuestas, aceptar o rechazar ofertas, notificar eventos, entre otros.
- Los agentes llevan a cabo estos actos utilizando los mensajes y las reglas definidas en el protocolo.