多层线性模型/混合线性模型工作坊——R语言中的实现

张光耀 (中科院心理所 李兴珊课题组) 2019年11月5日

R语言中的实现

- □数据包及函数
- □数据基本操作
- □模型优化
- □主效应与固定效应
- □简单效应分析
- □因子对比方式与模型回归系数
- planned contrasts

个人简介

- 研究方向:
 - 工作记忆与语义加工; 眼动的脑机制;
- GitHub:
 - https://github.com/usplos
 - Eye-movement-related
 - Shiny dashboard
 - DPEEM
- 知乎:
 - https://www.zhihu.com/people/Psych.ZhangGuangyao/
 - 「中国R语言社区」

数据包及函数

□lmerTest package 强烈推荐
□lme4 package → 不能输出回归系数的 p 值

```
lmer(data = Data,
  formula = DV ~ IV + (1 + RandomSlope | Cluster),
  contrasts = ...,
  control = ...,
  ...)
```

```
glmer(data = , formula = , contrasts = , family = , ...)
```

Wait! ! Let's start from the very basic data operations.

数据基本操作——数据结构

	创建	示例
原子向量	c()	Vector = c(2,3,4)
矩阵	matrix()	Matrix = $\frac{\text{matrix}}{\text{data}} = 1:8$, $\text{nrow} = 2$, $\text{ncol} = 4$, $\text{byrow} = F$)
数组	array()	Array = $\frac{\text{array}}{\text{data}}$ = 1:8, dim = $\text{c}(2,2,2)$)
数据框	data.frame()	DataFrame = $\frac{\text{data.frame}}{\text{Score}} = c('Bob','Tom'),$ Score = $c(80,90)$
列表	list()	List = list(DataFrame, Vector)

数据基本操作——数据类型

	创建	强制转变	判断
数值型	double()	as.double()	is.double()
整形	integer()	as.integer()	is.integer()
逻辑型	logical()	as.logical()	is.logical()
因子型	factor()	as.factor()	is.factor()
字符型	character()	as.character()	is.character()
矩阵	matrix()	as.matrix()	is.matrix()
数据框	data.frame()	as.data.frame()	is.data.frame()
列表	list()	as.list()	is.list()

数据基本操作——数据导入与导出

rio package

- 数据导入
 - import('Data.csv')
 - import('Data.xlsx')
 - import('Data..sav')
 - import('Data.dat')
 - import('Data.txt')
- 数据导出
 - export('Data.csv')
 - export('Data.xlsx')
 - export('Data..sav')
 - export('Data.dat')

other packages

- 数据导入
 - readr::read_csv('Data.csv')
 - readr::read_csv('*URL*')
 - readxl::read_excel('Data.xlsx')
 - haven::read_dta('Data.dta')
 - haven::read_sav('Data.sav')
- 数据导出
 - readr::write_csv('Data.csv')
 - haven::write_sav('Data.sav')
 - haven::write_dta('Data.dta')

数据基本操作——长宽数据转换

> WideData
Name Grade Course Score

1 Alex 1 Reading 90
2 Tom 2 Math 80
3 Sam 3 Science 94

```
> LongData
Grade Information Value
   1
        Name Alex
   2
        Name
               Tom
   3
        Name
               Sam
   1
       Course Reading
       Course Math
                              长数据
   3
6
       Course Science
   1
               90
       Score
8
               80
       Score
   3
9
       Score
               94
```

数据基本操作——长宽数据转换

□ 宽变长 tidyr::gather(data = , key = , value = , ...)

tidyr package

数据基本操作——长宽数据转换

- □ 宽变长 tidyr::gather(data = , key = , value = , ...)
- □ 长变宽 tidyr::spread(data = , key = , value = , ...)
- > spread(data = LongData, key = Information, value = Value)
 Grade Course Name Score
- 1 1 Reading Alex 90
- 2 2 Math Tom 80
- 3 Science Sam 94
- □ 其他函数: data.table::melt()

数据基本操作——数据框操作1

创建新变量

> mutate(WideData, Gender = c('M','M','M'))				
Name	Grade	Course	Score	Gender
1 Alex	1	Reading	90	M
2 Tom	2	Math	80	M
3 Sam	3	Science	94	M

dplyr package

筛选变量

> select(WideData, c(Name,Score)) Name Score 1 Alex 90 2 Tom 80 3 Sam 94

筛选数据

> filter(WideData, Score>=90)			
Name	Grade	Course	Score
1 Alex	1	Reading	90
2 Sam	3	Science	94

数据基本操作——数据框操作2

数据排序

> arrange(WideData, Score)

Name Grade Course Score

- 1 Tom 2 Math 80
- 2 Alex 1 Reading 90
- 3 Sam 3 Science 94
- > arrange(WideData, -Score)

Name Grade Course Score

- 1 Sam 3 Science 94
- 2 Alex 1 Reading 90
- 3 Tom 2 Math 80

变量重命名

> rename(WideData,

Subject = Course,

Value = Score)

Name Grade Subject Value

- 1 Alex 1 Reading 90
- 2 Tom 2 Math 80
- 3 Sam 3 Science 94

数据基本操作——数据合并.1

dplyr package

数据基本操作——数据合并.2

dplyr package

数据基本操作——变量中心化

```
> scale(Data)
                                                   [,1]
                                               [1,] 0.7445
> Data
                                               [2,] -0.0677
[1] 12 9 14 6 11 12 7 3
                                               [3,] 1.2860
> mean(Data)
                                               [4,] -0.8799
                                scale()
[1] 9.25
                                               [5,] 0.4738
> sd(Data)
                                               [6,] 0.7445
[1] 3.69
                                               [7,] -0.6092
                                               [8,] -1.6921
                                               attr(,"scaled:center")
                                               [1] 9.25
                                               attr(,"scaled:scale")
                                               [1] 3.69
```

数据基本操作——分组中心化

dplyr package

% >%
group_by()
mutate()

```
> df %>%
    group_by(Class) %>%
    mutate(ScoreNew = scale(Score))
         Class
                  ScoreNew
Score
 <int>
         <fct>
                  <dbl>
  93
         Α
                  -1.01
   97
                  0.337
         Α
   97
         A
                  0.337
4
   92
         A
                  -1.35
   97
         Α
                  0.337
  100
         Α
                  1.35
         В
   96
                  0.550
   85
         В
                  -0.747
         В
  100
                  1.02
10
   87
         В
                  -0.511
                  -1.34
11
    80
         В
   100
         В
                  1.02
```

数据基本操作——小结

- 数据结构与数据类别
 - 有哪几种? 如何创建? 如何转换? 如何判断?
- 读入和导出数据
 - 从文件夹读入数据
 - 从网页读入数据
 - 将R的工作空间的数据导出到文件夹
- 数据框操作
 - 数据框内: 创建变量,筛选变量,筛选数据,数据排序,变量重命名
 - 数据框间: 按列合并, 按行合并, 按左/右侧共有列合并
- 数据中心化
 - 分组&不分组
- 建议利用某些数据包来快速整理数据

数据基本操作——小结

Tidyverse 数据整理 dplyr 数据框 数据可视化 ggplot2 长宽数据 readr tidyr 数据导入输出 purrr 泛函与映射 > install.packages('tidyverse') M!> library(tidyverse)

从读数据开始

- > library(tidyverse) # 会用到读取数据的函数
- > library(lmerTest) # 加载 lmerTest 包

> Data =

read_csv('https://raw.githubusercontent.com/uspl os/Eye-movementrelated/master/DataforShiny.csv')

```
> head(Data,3)
# A tibble: 3 x 5
 Sub A B Item Y
<dbl><chr><dbl><dbl>
  1 A2 B2 1 254
  1 A2 B2 1 341
  1 A1 B1 2 189
```


混合线性模型的实现(更新 20190607)

来自专栏中国R语言社区

等 27 人赞同了文章

> 为你朗读

12 分钟

本文最早发布在本人的GitHub上,后来在R语 言中文社区的公共号上发布过。在之后对其内 容进行过几次更新,这一版为最新版,修改了 一些错误的地方(如**调整比较方式**部分),增 添了新的内容(**随机斜率取舍**部分)。

▲ 赞同 27 ▼

两因素被试内设计

改变变量类别

> Data[c('Sub','A','B','Item')] = lapply(Data[c('Sub','A','B','Item')],factor)

```
等价
```

- > Data\$Sub = factor(Data\$Sub)
- > Data\$A = factor(Data\$A)
- > Data\$B = factor(Data\$B)
- > Data\$Item = factor(Data\$Item)

建模

> Model = lmer(data = Data, Y \sim (A*B)+(1+(A*B)|Sub)+(1+A*B|Item))

固定效应:一般为要考察的自变量。

随机因子: beyond the first level。e.g. 认知实验中的被试,项目;社会调查中的城市、省份

随机截距: 因变量在随机因子的每个单位上的 分布是不同的。 e.g. 被试的平均反应时

随机斜率:随机因子的每个单位上,某因素 (一般为固定效应)与因变量的关系是不 同的。 e.g. 噪音大小对学习效率的影响在 不同被试上的差异 consistent inconsistent
红红红

1个item

被若干被试处理
被若干条件处理

建模

> Model = lmer(data = Data, Y \sim A*B + (1 + A*B |Sub)+(1+A*B|Item))

But.....

> Model = lmer(data = Data, Y ~ A*B + (1 + A*B | Sub)+(1+A*B | Item)) boundary (singular) fit: see ?isSingular Warning message:

Model failed to converge with 2 negative eigenvalues: -1.5e-01 -2.0e-01

全模型(包含尽可能多的 随机斜率)往往不能收敛 或出现畸形协方差矩阵;

零模型(只包含随机截距) 往往不出现以上问题。

Q1. 建模从零模型还是全模型开始?

- 模型应包含尽可能多的随机斜率(Barr, 2013)
- 从零模型开始,逐渐加随机斜率 → p-Harking!
- 从全模型开始! 从全模型开始!! 从全模型开始!!! (说三遍)再解决问题。

模型不能收敛

畸形协方差矩阵

1. 数据不能支持如此多的随机斜率

2. 某个随机斜率的效应太小(与其他斜率存在 共线性/方差过小)

> sumr			
Groups	s Name	Std.Dev.	Corr
Item	(Intercept)	12.5670	
	AA2	25.1545	-0.948
	BB2	34.8443	-0.994 0.908
	AA2:BB2	49.2017	0.996 -0.971 -0.981
Sub	(Intercept)	26.9739	
	AA2	9.4915	0.179
	BB2	8.2699	0.202 -0.705
	AA2:BB2	19.6023	0.315 -0.856 0.634
Residual		85.3361	

查看模型信息

固定效应&随机效应: summary(Model)

主效应&交互作用: anova(Model)

判断模型是否出现畸形协方差

> Model = lmer(data = Data, Y ~ A*B + (1 + A*B | Sub) + (1 + A*B | Item))boundary (singular) fit: see ?isSingular

Warning message:

Model failed to converge with 2 negative eigenvalues: -1.5e-01 -2.0e-01

- → 建模时输出warning
- > isSingular(Model, tol = 1e-05)
 [1] TRUE
 - → 利用函数判断 tol设为 1e-04 可能更好
- Q2.1 如何删减随机斜率(优化模型)?

Q2.1 删减随机斜率(优化模型)的步骤?

1. 如果随机斜率中包含交互作用,优先删除交互作用(Barr, 2013)

> Model = lmer(data = Data, Y \sim A*B + (1 + A:B |Sub)+(1+A*B|Item))

Q2.1 删减随机斜率(优化模型)的步骤?

- 1. 如果随机斜率中包含交互作用,优先删除交互作用(Barr, 2013)
- 2. 当需从两个主效应的随机斜率删除某一个时,应考虑分别删除后的模型

> Model = lmer(data = Data, Y \sim A*B + (1 + A |Sub)+(1+A*B|Item))

考虑并比较

> Model = lmer(data = Data, Y \sim A*B + (1 + B | Sub)+(1+A*B | Item))

Q2.1 删减随机斜率(优化模型)的步骤?

- 1. 如果随机斜率中包含交互作用,优先删除交互作用 (Barr, 2013)
- 2. 当存在两个主效应的随机斜率时,应同时考虑分别删除后的模型
- 3. 优先考虑删除差异较小(between units)的随机因子上的斜率

> Model = lmer(data = Data, Y ~ A*B + (1 + A*B | Sub) + (1 + A*B | Item))

被试间的差异较大 项目间的差异较小 优先删除项目上的斜率

Q2.1 删减随机斜率(优化模型)的步骤?

- 1. 如果随机斜率中包含交互作用,优先删除交互作用(Barr, 2013)
- 2. 当存在两个主效应的随机斜率时,应同时考虑分别删除后的模型
- 3. 优先考虑删除差异较小(between units)的随机因子上的斜率
- 4. 对删减后的新模型,应考察它与全模型是否有显著差异(理论上应没有)
- > Model = lmer(data = Data, Y \sim A*B + (1 + A*B |Sub)+(1+A*B|Item))
- > Model2 = lmer(data = Data, Y \sim A*B + (1 + B |Sub)+(1|Item))

> anova(Model2, Model)

refitting model(s) with ML (instead of REML)

Of AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Model2 9 14218 14264 -7100.2 14200

Model 25 14245 14372 -7097.4 14195 5.6199 16 0.9917

anova(Model1, Model2) # 比较模型差异

Q2.1 删减随机斜率(优化模型)的步骤?

- 1. 如果随机斜率中包含交互作用,优先删除交互作用 (Barr, 2013)
- 2. 当存在两个主效应的随机斜率时,应同时考虑分别删除后的模型
- 3. 优先考虑删除差异较小(between units)的随机因子上的斜率
- 4. 对删减后的新模型,应考察它与全模型是否有显著差异(理论上应没有)

But.....

随着随机因子数量和随机斜率数量的增加,可能存在的模型数量急剧增加!

- 两因素+单个随机因子 → 8个
- 两因素+两个随机因子 → 35个
- 三因素+两个随机因子→ 288个

Q2.2 如何更高效地优化模型?

Q2.2 如何更高效地优化模型?

- 1. 寻求较强的理论支持,限定要考察的随机斜率
 - · e.g. 只从包含某个随机斜率的模型中考察
- 2. 从方法上优化

Q2.2.1 模型遍历的思路?

- 1. 自动/手动产生所有可能的模型;
 - 两因素/三因素+两个随机因子
- 2. 自动运行这些模型,并考察它们是否能收敛、是否出现畸形协方差;
- 3. 根据输出的结果筛选;
 - 好的模型的标准:能收敛、无畸形协方差、包含尽可能多的斜率。

Q2.2.2 利用主成分分析优化模型的思路? (Bate et al., 2015)

- 如果模型的随机斜率组成是合理的,那么每个随机斜率都能代表某个独特的效应/独特的成分;
- 这个随机斜率应该表现出在某个成分的载荷量非常大,而在其他成分的载荷量非常小;
- 如果某个随机斜率在任何成分的载荷量都不大,说明这个成分是多余的, 同时这个随机斜率也可能是不合理。

```
> Model = lmer(data = Data, Y ~ A*B + (1 + A*B |Sub)+(1+A*B|Item))
> ModelPCA = rePCA(Model)
> ModelPCA
```

```
$Item
Standard deviations (1, .., p=4):
[1] 0.77 0.1 0.01 0

Rotation (n x k) = (4 x 4):
    [,1] [,2] [,3] [,4]
[1,] -0.19 -0.085 0.19 -0.9591
[2,] 0.37 -0.733 -0.56 -0.1195
[3,] 0.52 0.664 -0.47 -0.2566
[4,] -0.75 0.123 -0.65 0.0064
```

```
$Sub

Standard deviations (1, ..., p=4):

[1] 0.33 0.24 0.07 0

Rotation (n x k) = (4 x 4):

[,1] [,2] [,3] [,4]

[1,] -0.91 -0.39 -0.035 -0.15

[2,] 0.04 -0.45 0.139 0.88

[3,] -0.11 0.24 -0.923 0.28

[4,] -0.40 0.76 0.356 0.36
```

> ModelPCAItem = ModelPCA\$Item\$rotation

```
> ModelPCAItem
[,1] [,2] [,3] [,4]
[1,] -0.19 -0.085 0.19 -0.9591
[2,] 0.37 -0.733 -0.56 -0.1195
[3,] 0.52 0.664 -0.47 -0.2566
[4,] -0.75 0.123 -0.65 0.0064
```

```
> ModelPCAItem[abs(ModelPCAItem) < 0.9] = NA
> ModelPCAItem
        Comp1 Comp2 Comp3 Comp4
Intercept
        NA
             NA
                   NA
                        -0.96
Α
       NA NA NA
                        NA
В
     NA NA NA
                        NA
A:B
                        NA
        NA
             NA
                   NA
```

同理……

```
> ModelPCASub
       Comp1 Comp2 Comp3 Comp4
Intercept -0.91 NA
                  NA
                       NA
Α
     NA NA NA
                       NA
       NA NA -0.92
B
                       NA
A:B
       NA
            NA
                  NA
                       NA
```

> ModelNew = lmer(data = Data, Y \sim A*B + (B|Sub) + (1|Item))

> anova(ModelNew, Model)

refitting model(s) with ML (instead of REML)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

ModelNew 9 14218 14264 -7100 14200

Model 25 14245 14372 -7097 14195 5.62 16 0.99

PCA: 推荐使用, but 注意一些问题:

- 0.9的标准
- 在多水平/多因素交互时是否有变化
- 目前没有固定的优化标准(提供优化的依据,而不是规定优化的流程)

模型优化完成:

- 被试(Sub)上: 随机截距+B Slope
- 项目(Item)上: 随机截距

主效应与固定效应

summary(Model) → 两个水平的比较(t 检验)

(Intercept)			13		Pr(> t) 5.2e-12 1.7e-01
_	11.1	9.4 12.2	28	1.17	2.5e-01 4.4e-01

anova(Model) → F检验 (特殊情况: 因素只有两个水平)

```
Type III Analysis of Variance Table with Satterthwaite's method
   Sum Sq Mean Sq NumDF
                          DenDF
                                 F value
                                        Pr(>F)
   7999
          7999
                          25.5
                                 1.10
                                        0.30
   4591 4591 1
                          11.1
                                        0.44
                                 0.63
A:B 4904 4904
                          16.1
                                 0.67
                                        0.42
```

WHY Pr(>|t|) ≠ Pr(>F) → 稍后讨论.....

Q4.1 如果主效应显著怎么办/如何进行事后检验?

事后检验

Q4.1如何进行事后检验?

emmeans package

```
emmeans(model = , pairwise\sim, adjust = )
```

```
> emmeans(ModelNew, pairwise~A, adjust='none')
$contrasts
contrast estimate SE df t.ratio p.value
A1 - A2 -6.34 5.11 1088 -1.243 0.2143
```

Results are averaged over the levels of: B

Degrees-of-freedom method: kenward-roger

```
> p.adjust.methods
[1] "holm" "hochberg" "hommel" "bonferroni" "BH"
[6] "BY" "fdr" "none"
```

Q4.2 交互作用显著了怎么办?

简单(主)效应

Q4.2 交互作用显著了怎么办?

emmeans package

```
joint_test(object = , by = )
```

```
> joint_tests(ModelNew, by = 'A') A = A1: model term df1 df2 F.ratio p.value B 1 24.67 1.362 0.2544 A = A2: model term df1 df2 F.ratio p.value B 1 24.05 0.028 0.8692
```

Q4.3 简单主效应显著了怎么办/如何进行简单主效应的事后比较?

简单效应的事后检验

Q4.3 如何进行简单主效应的事后比较?

emmeans package

emmeans(model = , pairwise \sim A|B)

```
> emmeans(ModelNew, pairwise~A|B, adjust='none')
$emmeans
$contrasts
B = B1:
contrast estimate SE df t.ratio p.value
A1 - A2 -11.1 8.0 144 -1.380 0.1700
B = B2:
contrast estimate SE df t.ratio p.value
A1 - A2 -1.6 7.87 134 -0.203 0.8394
```

Q4.4 简单效应、事后检验、事后多重比较的关系?

简单效应&事后检验&事后多重比较

Q4.4 简单效应、事后检验、事后多重比较的关系?

- 若交互作用显著,则分析简单主效应
- 若简单主效应显著,且因素水平超过2个,则事后检验需要矫正
- 若交互作用不显著但主效应显著,且因素水平超过2个,则主效应的事后检验需要矫正

交互作用不显著,且主效应显著 且因素水平≥ 3

方差分析 交互作用显著

简单效应分析

简单主效应显著 且因素水平≥ 3

事后多重比较

小结

Q1. 建模从零模型还是全模型开始?

从全模型开始

Q2.1 删减随机斜率(优化模型)的步骤?

- 1. 如果随机斜率中包含交互作用,优先删除交互作用(Barr, 2013)
- 2. 当存在两个主效应的随机斜率时,应同时考虑分别删除后的模型
- 3. 优先考虑删除差异较小(between units)的随机因子上的斜率
- 4. 对删减后的新模型,应考察它与全模型是否有显著差异(理论上应没有)

Q2.2 如何更高效地优化模型?

- 1. 寻求较强的理论支持,限定要考察的随机斜率
- 2. 从方法上优化

小结

Q2.2.1 模型遍历的思路?

• 自编函数运行所有可能的模型,并根据模型信息筛选

Q2.2.2 利用主成分分析优化模型的思路?

- 如果模型的随机斜率组成是合理的,那么每个随机斜率都能代表某个独特的效应/独特的成分;
- 这个随机斜率应该表现出在某个成分的载荷量非常大,而在其他成分的载荷量非常小;
- 如果某个随机斜率在任何成分的载荷量都不大,说明这个成分是多余的,同时这个随机斜率也可能是不合理。

Q3 如何查看模型信息和因素的效应?

summary() & anova()

Q4 简单效应、事后检验、多重比较矫正的关系?

回到固定效应与主效应.....

summary(Model)

Estimate (Intercept)	Std. 239.7			t value 22.89	Pr(> t) 5.2e-12
AA2	11.1			1.39	1.7e-01
BB2	11.1	9.4	28	1.17	2.5e-01
AA2:BB2	-9.5	12.2	57	-0.78	4.4e-01

anova(Model)

```
Type III Analysis of Variance Table with Satterthwaite's method
    Sum Sq Mean Sq
                   NumDF
                           DenDF
                                   F value
                                           Pr(>F)
    7999
           7999
                           25.5
                                   1.10
                                           0.30
   4591 4591
                           11.1
                                   0.63
                                           0.44
A:B 4904 4904
                           16.1
                                   0.67
                                           0.42
```

WHY Pr(>|t|) ≠ Pr(>F) → 稍临湖途.....現在解决!

固定效应中的回归系数与 比较方式的关系

- □ 自变量(X)为连续变量
 - 回归系数: X每变化一个单位, Y变 化的单位量
- □ 自变量(X)为因子变量
 - 线性模型要求预测变量是数值型
 - 用一系列与因子水平相对应的数值 型的对照变量来代替因子
 - 对照变量定义了对比方式/矩阵

Q5.1 对单个因子变量,对比方式产生的规 律是什么

线性模型中无序因子变量的对 比方式与回归系数的关系:原 理,困境及其解决

来自专栏中国R语言社区

hcp4715 等 12 人赞同了文章

6分钟

R语言中,进行线性模型分析时,因为模型要求 预测变量是数值型, 当碰到因子时, 它会用一 系列与因子水平相对应的数值型的对照变量来 代替因子,这些**对照变量就是题目中说的对比** 方式。

单因素两水平的变量如何产生对比方式

以R中的mtcars数据为例

mtcars数据收集了若干种汽车的若干参数, 这里想考察汽车的变速器(am, Transmission, 0 = automatic, 1 = manual)对耗油量(mpg, miles per gallon)的影响。

```
> mtcarsNew = within(mtcars, {Transmission = NA;
                             Transmission[am == 0] ='Auto';
                             Transmission[am == 1] = 'Manual')
> mtcarsNew$Transmission = factor(mtcarsNew$Transmission)
> mtcarsNew = mtcarsNew[c('mpg', 'Transmission')]
> head(mtcarsNew, 3)
              mpg Transmission
Mazda RX4
              21
                    Manual
Mazda RX4 Wag 21 Manual
Datsun 710
               23 Manual
> Model = lm(data = mtcarsNew, mpg\simTransmission)
```

单因素两水平变量如何产生对比方式

```
> summary(Model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.15 1.12 15.25 1.1e-15 ***

Transmission Manual 7.24 1.76 4.11 0.00029 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- 模型回归系数部分中显示的是当汽车为手动挡 (Manual)时的信息;
- 模型对自变量生成了一 个新变量,设置了其对 比方式

> contrasts(mtcarsNew\$Transmission)

Manual

Auto 0 Manual 1

单因素多水平变量的对比方式

```
> ThreeLevel = factor(c('A','B','C'))
> contrasts(ThreeLevel)
B C
A 0 0
B 1 0
C 0 1
```

```
> FourLevel = factor(c('A','B','C','D'))
> contrasts(FourLevel)
B C D
A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1
```

Q5.2 模型是如何利用对比方式来 获取回归系数的

Q5.1 对单个因子变量,对比方式 产生的规律是什么

- 1. 对于某个含有 k 个水平的因子,会产生 k-1 个对比变量;
- 2. 对比变量以一个 $k \times (k-1)$ 的 矩阵的形式存在;
- 3. 矩阵中每一列表示一个对比变量或对比方式;
- 4. 矩阵中的每一行代表某个水平在不同对比方式下的编码;
- 5. 默认的对比方式总是将某个水平作为基线(比如 A),每种对比方式表示用其他的某个水平和基线进行比较。

单因素多水平变量的对比方式

```
> FourLevel = factor(c('A','B','C','D'))
```

> contrasts(FourLevel)

B C D

A 0 0 0

B 1 0 0

C 0 1 0

D 0 0 1

$$Y = b_1 X_B + b_2 X_C + b_3 X_D + d + \sigma$$

A水平: $Y_A = d + \sigma$

B水平: $Y_B = b_1 + d + \sigma$

C水平: $Y_C = b_2 + d + \sigma$

D水平: $Y_D = b_3 + d + \sigma$

$$\begin{vmatrix} Y_B - Y_A = b_1 \\ Y_A - b_1 \end{vmatrix}$$

$$Y_c - YA = h_2$$

$$Y_D - YA = b_3$$

单因素 k 水平默认的对比方式下, 回归系数等于真实效应差异

treatment coding VS sum coding

```
> contr.treatment(2)
10
2.1
> contr.treatment(3)
  23
100
2 1 0
3 0 1
> contr.treatment(4)
  2 3 4
1000
2 1 0 0
3010
4001
```

```
> contr.sum(2)
  [,1]
> contr.sum(3)
  [,1] [,2]
1 1 0
3 -1 -1
> contr.sum(4)
  [,1] [,2] [,3]
2 0 1 0
4 -1 -1 -1
```

设置因子对比方式

通过全局参数设置

```
> options(contrasts = c('contr.sum', 'contr.poly'))
```

需要同时依次定义无序因子和有序因子的对比方式,后者为定义有序因子的,不常用,这里不展开说了。

在模型中设置(局部)

```
> ComMatrix = contr.sum(2)
> rownames(ComMatrix) = levels(mtcarsNew$Transmission)
```

- > colnames(ComMatrix) = 'Auto'
- > ComMatrix

Auto

Auto 1

Manual -1

> Model = lm(data = mtcarsNew, mpg~Transmission, contrasts = list(Transmission = ComMatrix))

设置因子对比方式

```
> summary(Model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.7698 0.8822 23.543 < 2e-16 ***

Transmission Auto -3.6225 0.8822 -4.106 0.000285 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

What?! 回归系数成了原来的一半了!

单因素两水平 sum coding 下的对比

> contrasts(mtcarsNew\$Transmission)

[,1]

Auto 1

Manual -1

$$Y = b_1 X_{\text{Transmission}} + d + \sigma$$

Manual
$$\ \ \ Y_{Manual} = -b_1 + d + \sigma$$

Auto水平:
$$Y_{Auto} = b_1 + d + \sigma$$

$$Y_{Auto} - Y_{Manual} = 2b_1$$

$$b_1 = \frac{Y_{Auto} - YManual}{2}$$

单因素两水平sum coding的对比下, 回归系数等于真实效应的一半

单因素三水平 sum coding 下的对比

> contrasts(ThreeLevel)

A 1 0

B 0 1

C -1 -1

$$Y = b_1 X_1 + b_2 X_2 + d + \sigma$$

A 水平: $Y_A = b_1 + d + \sigma$

B 水平: $Y_B = b_2 + d + \sigma$

C 水平: $Y_C = -b_1 - b_2 + d + \sigma$

$$Y_A - Y_C = 2b_1 + b_2$$

$$Y_B - YC = b_1 + 2b_2$$

单因素多水平sum coding的对比下, 回归系数不等于真实效应

因子水平超过2时,采用sum coding 的对比方式存在问题

两因素两水平无交互的情况

treatment coding

$$Y = b_{1}X_{A} + b_{2}X_{B} + d + \sigma$$

$$X_{A} = \begin{cases} 0, & X_{A} = A1\\ 1, & X_{A} = A2 \end{cases}$$

$$X_{B} = \begin{cases} 0, & X_{B} = B1\\ 1, & X_{B} = B2 \end{cases}$$

$$Y_{A1} = b_2 + d + \sigma$$
 $Y_{A2} = b_1 + b_2 + d + \sigma$
 $Y_{A2} - YA_1 = b_1$
同理
 $Y_{B2} - YB_1 = b_2$

采用treatment coding编码的对比下,各 因子的回归系数等于其真实效应

两因素两水平无交互的情况

sum coding

$$Y = b_{1}X_{A} + b_{2}X_{B} + d + \sigma$$

$$X_{A} = \begin{cases} -1, & X_{A} = A1\\ 1, & X_{A} = A2 \end{cases}$$

$$X_{B} = \begin{cases} -1, & X_{B} = B1\\ 1, & X_{B} = B2 \end{cases}$$

$$Y_{A1} = b_1 + d + \sigma$$
 $Y_{A2} = b_1 + d + \sigma$
 $Y_{A2} = b_1 + d + \sigma$
 $Y_{A2} - YA_1 = 2b_1$
同理
 $Y_{B2} - YB_1 = 2b_2$

采用sum coding编码的对比下,各因子的回归系数等于其真实效应的一半

两因素两水平有交互的情况

treatment coding

$$Y = b_{1}X_{A} + b_{2}X_{B} + b_{3}X_{A}X_{B} + d + \sigma$$

$$X_{A} = \begin{cases} 0, & X_{A} = A1\\ 1, & X_{A} = A2 \end{cases}$$

$$X_{B} = \begin{cases} 0, & X_{B} = B1\\ 1, & X_{B} = B2 \end{cases}$$

$$Y_{A1B1} = d + \sigma$$

 $Y_{A1B2} = b_2 + d + \sigma$
 $Y_{A2B1} = b_1 + d + \sigma$
 $Y_{A2B2} = b_1 + b_2 + b_3 + d + \sigma$
 $(Y_{A2B2} - Y_{A2B1}) - (Y_{A1B2} - Y_{A1B1}) = b_3$

treatment coding的对比下, 交互作用的回归系数等于真 实的效应,主效应的回归系 数不是真实的效应

两因素两水平有交互的情况

sum coding

$$Y = b_1 X_A + b_2 X_B + b_3 X_A X_B + d + \sigma$$
 $X_A = \begin{cases} -1, & X_A = A1 \\ 1, & X_A = A2 \end{cases}$
 $X_B = \begin{cases} -1, & X_B = B1 \\ 1, & X_B = B2 \end{cases}$

$$Y_{A1} = b_1 - b_2 + d + \sigma$$
 $Y_{A2} = b_1 - b_2 + d + \sigma$
 $Y_{A2} - YA_1 = 2b_1$
同理
 $Y_{B2} - YB_1 = 2b_2$

$$Y_{A1B1} = -b_1 - b_2 + b_3 + d + \sigma$$

$$Y_{A1B2} = -b_1 + b_2 - b_3 + d + \sigma$$

$$Y_{A2B1} = b_1 - b_2 - b_3 + d + \sigma$$

$$Y_{A2B2} = b_1 + b_2 + b_3 + d + \sigma$$

$$(Y_{A2B2} - Y_{A2B1}) - (Y_{A1B2} - Y_{A1B1}) = 4b_3$$

即sum coding的对比下,交互作用的回归系数等于真实的效应的 $\frac{1}{4}$,主效应的回归系数等于真实的效应的 $\frac{1}{2}$

 $[-1,1] \rightarrow [-0.5,0.5]$ 回归系数 = 真实效应

对比方式对回归系数的影响

Q5.3 treatment coding与 sum coding下,回归系数与真实效应的关系?

- treatment coding 适用于无交互的主效应 & 有交互的交互作用
- · 一旦因素有超过两个水平, sum coding 不适用

	treatme	nt coding	sum coding		
	主效应	交互作用	主效应	交互作用	
单因素两水平	相等		真实效应的 一半		
单因素多水平	相等		不相等		
两因素两水平无交互	相等		真实效应的 一半		
两因素两水平有交互	不相等	相等	真实效应的 一半	真实效应的 1/4	
多因素多水平无交互	相等		不相等		
多因素多水平有交互	不相等	相等	不相等	不相等	

对比方式对回归系数的影响

Q5.4 k 因素 n 水平的情况下($k \ge 1$, $n \ge 2$),如何保证回归系数等于 真实的效应值?

simple coding

But simple coding is not simple......

> contr.simple(2) [,1] 1 -0.5 2 0.5 > contr.simple(3) [,1] [,2] [1,] -0.33 -0.33 [2,] 0.67 -0.33 [3,] -0.33 0.67

来自专栏中国R语言社区

simple coding 编码规律

Q5.5 simple coding 的编码规律?

- 每一列代表一个对比方式;
- 每一行代表一个水平;
- 第一个水平为基线;
- 对于某一列 C, 表示基线之外的某个水平 L与基线的对比;
- 在 C 列中,水平 L 所在行的编码为 $1-\frac{1}{n}$,其余行编码为 $-\frac{1}{n}$ 。

> contr.simple(2)

[,1]1 -0.5

2 0.5

> contr.simple(3)

> contr.simple(4)

Back to LMM

```
> ModelNew = lmer(data = Data,
 Y \sim A*B+(B|Sub)+(1|Item),
 contrasts = list(A = contr.simple(2),
 B = contr.simple(2)))
```

> summary(ModelNew)\$coef						
Estimate Std. Error						
(Intercept)	248.44	10.09				
A1	6.34	5.09				
B1	6.32	7.20				
A1:B1	-9.49	12.17				

JAMOVI

Fixed Effects Parameter Estimates

Names	Effect	Estimate	SE
(Intercept) A1 B1 A1 * B1	(Intercept) A2 - A1 B2 - B1 A2 - A1 * B2 - B1	248.439 6.344 6.319 –9.492	10.094 5.085 7.197 12.169

结果一致!!!

planed contrasts

Q6 planed contrasts 时如何设置比较矩阵(简单的对比矩阵)?

- · 每个contrast的和为0;
- · 每个contrast的绝对值的和为1;
- · 任意两个contrast的对应乘积和为0

错误!!

错误!!

正确!!

	Cont1		Cont1	Cont2	Cont3		Cont1	Cont2
Α	0.5	Α	0.5	0	0	Α	0.5	0
В	-0.5	В	-0.5	0.5	0	В	-0.5	0
С	0.5	С	0	-0.5	0.5	С	0	0.5
D	0	D	0	0	-0.5	D	0	-0.5

小结

Q5.1 对单个因子变量,对比方式 产生的规律是什么

- **1.** 对比变量以一个 $k \times (k-1)$ 的矩阵 的形式存在;
- 2. 列表示对比变量/对比方式;
- 3. 行代表某个水平的编码;
- 4. 总是将某个水平作为基线。

Q5.2 模型是如何利用对比方式来 获取回归系数的

Q6 如何自定义对比矩阵?

- 每个contrast的和为0;
- · 每个contrast的绝对值的和为1;
- · 任意两个contrast的对应乘积和为0

Q5.3 treatment coding 与 sum coding下,回归系数与真实效应的关系?

- treatment coding 适用于无交互的 主效应 & 有交互的交互作用
- 一旦因素有超过两个水平, sum coding 不适用

Q5.4 如何保证回归系数等于真实的效应值?

simple coding

Q5.5 simple coding 的编码规律?

jamovi中的实现

Q1 jamovi 是啥?

Q2 为啥用jamovi?

Q3 怎么用jamovi?

https://www.jamovi.org/download.html

IMOV Statis. Statis. Spen. Spen. Features download news about resources ~

download

Download for macOS

1.0.8 solid

Recommended For Most Users

1.1.6 current

Latest Features

基于R语言建立的统计分析软件

Labels

开源软件

界面简洁友好

功能强大

自带数据库

数据与分析结果 修改即时

为啥用? 谁用谁知道

怎么用? 一用就知道

R or JAMOVI

不要拘泥于一个软件:

编辑数据: Excel is more powerful;

筛选模型: R is more powerful;

数据可视化: R is more powerful;

一般统计分析: R is more powerful;

初学者: JAMOVI is more powerful;

单一指标/"小数据": JAMOVI is more powerful;