Leiden Grid Infrastructure the future of computational chemistry

Hugo Meiland (LIC-ICT)

Mark Somers (LIC-THEOR)

Battle plan of this presentation:

- Some awarenesses.
- The true problems and challenges developers will be facing.
- Are computer GRIDs a possible solution?
- Grid middle ware.
- The 3 layer structure of LGI.
- Communication within LGI:

XML

HTTPS

- Where are we now.
- What's next?

Some awarenesses

- Research focus turns to results rather than methodology.
- Computers are more and more used as disposable objects.
- (PhD) Students are encouraged to spend more time on computing/research.
- The number of programs used is relatively low.

In contrast to:

- Computers are becoming more and more complex and diverse.
- Theories and algorithms are getting more advanced.
- Installing most of the (chemistry) software is not for the fainthearted.
- Using computers efficiently becomes harder to do.
- Doing both chemistry and computer science is no longer possible.

Some awarenesses

- Research focus turns to results rather than methodology.
- Computers are more and more used as disposable objects.
- (PhD) Students are en processes are time on computing/research.
- The number of programs used is relatively low.

In contrast to:

- Computers are becoming more and more complex and diverse.
- Theories and algorithms are getting more advanced.
- Install thearted.
- Using computers elless developers!
- Doing both chemistry and computer science is no longer possible.

The problems developers will be facing

The program serves a **purpose** and **users** determine program's existence:

- Need to make programs more **intuitively** and **accessible** for the most common tasks performed by the program so that they are easier to use.
- Need to disentangle program interface from hardware details so user needn't worry about queues, nodes, security and all the complexity of setting up the program on each type of hardware.
- Need to provide **scalability** and **continuity** for the programs to support more users in future and to match the demand for more hardware again *without interfering the users*.

For example... The usual way of starting a calculation...

- 1) Start with logging into cluster
- 2) Setup program
- 3) Edit input file
- 4) Edit PBS script file
- 5) Submit calculation
- 6) Regularly check job

Only input file is independent of cluster and the hardware used!

For example... wouldn't it be really cool if...

New job for m.somers at 22 Mar 2007 9:16:47 UTC

Are computer grids the answer?

A GRID is a collection of different types of computers, all connected to each other, that are owned and administrated by several people, that are capable of performing tasks and can be regarded as a whole.

Grids do allow for scalability and continuity but need "middle ware"...

Grid middle warez...

Globus Architecture

Grid middle warez...

Globus Architecture

Insert a new layer that is:

- General
- Scalable
- Extendable
- Easy to administer and maintain

Insert a new layer that is:

- General
- Scalable
- Extendable
- Easy to administer and maintain

HARDWARE LAYER

Very important that standard UNIX administrators can work with this using techniques they are already familiar with!

Users submit jobs to database on project server and check for results by using a browser...

Resources
request work
they can handle
from database on
project server
and report back
the results...

Resource Daemon

Communication within the LGI...

Communication within the LGI...

What is eXtensible Markup Language?

A format that allows to markup or encapsulate data suitable for transferring and extending...

It uses tags:

```
<LGI>
    <CA certificate> http://www.LGI.org/LGI-CA.crt </CA certificate>
    <response>
         ject> testproject 
         <this project sever> https://fwnc7003.leidenuniv.nl/testslaveserver </this project server>
         <user> mark </user>
         <groups> teras, cyttron </groups>
         <doj>
              <job id> 147 </job id>
              <application> testapp </application>
              <state> queued </state>
              <target resources> any </target resources>
              <owners> sjoerd, cyttron </owners>
              <read_access> any, sjoerd, cyttron </read_access>
              <state time stamp> 1259936661 </state time stamp>
              <job specifics> </job specifics>
              <input> CDEF9021569C8787E </input>
         </iob>
    </response>
</LGI>
```

Communication within the LGI...

What is Hyper Text Transport Protocol Secure?

A protocol to transfer data between computers securely using Secure Socket Layer technology...

It uses certificates and asymmetric encryption:

Asymmetric encryption (RSA)...

If we are sure that we use the recipients public key, the data can only be read by that recipient!

Assurance is guaranteed by using <u>certificates</u>!

x509 Certificates...

Piece of data that stores the public key and the identity of a recipient:

Certificate version, serial number and signature algorithm
Certificate Authority Name
Certificate holder information (Name, Organisation, Address etc.)
Public Key of certificate holder
X.509 V3 Certificate Extensions
Digital Signature of Certificate Authority

Certificate has been 'signed' by a trusted third party!

'Signing' by encrypting the fingerprint with the private key of trusted party.

Where are we now...

Project server software and communication has been implemented using:

- Apache web server using SSL (https) with client- and server-certificates.
- API for 'Interface' → 'Project server', 'Project server' → 'Resource' and 'Project server' → 'Project server' communication using XML in **PHP**:

interface_submit_job
interface_job_state
interface_delete_job
interface_project_server_list
interface_project_resource_list

resource_signup_resource
resource_request_work
resource_job_details
resource_lock_job
resource_unlock_job
resource_update_job
resource_submit_job
resource_job_state
resource_signoff_resource
resource_get_resource_details

server_get_update
server_run_update

- MySQL database as back-end on 'Project server' with user management tables.

https://fwnc7003.leidenuniv.nl/LGI

Where are we now...

'Resource daemon' has been implemented for UNIX systems in C++ using STL and libCURL:

```
<LGI>
        <ca_certificate_file> ../certificates/LGI+CA.crt </ca_certificate_file>
        <resource>
               <resource_certificate_file> ../certificates/fwnc7003.crt </resource_certificate_file>
               <resource_key_file> ../certificates/fwnc7003.key </resource_key_file>
               <run directory> ./runhere </run directory>
               <owner_allow> <any> 10 </any> </owner_allow>
               <owner deny> nobody </owner deny>
               <number_of_projects> 1 </number_of_projects>
               ct number='1'>
                       project_name> LGI 
                       <owner_allow> <any> 5 </any> </owner_allow>
                       <owner deny> nobody </owner deny>
                       <number_of_applications> 1 </number_of_applications>
                       <application number='1'>
                              <application_name> hello_world </application_name>
                              <owner allow> <any> 2 </any> </owner allow>
                              <owner denv> nobodv </owner denv>
                               <max_output_size> 4096 </max_output_size>
                              <check_system_limits_script> ./hello_world_scripts/check_system_limits_script </check_system_limits_script>
                              <job_check_limits_script> ./hello_world_scripts/job_check_limits_script </job_check_limits_script>
                              <job_check_running_script> ./hello_world_scripts/job_check_running_script </job_check_running_script>
                              <job_check_finished_script> ./hello_world_scripts/job_check_finished_script </job_check_finished_script>
                              <job_proloque_script> ./hello_world_scripts/job_proloque_script </job_proloque_script>
                              <job_run_script>./hello_world_scripts/job_run_script </job_run_script>
                              <iob epiloque script> ./hello world scripts/job epiloque script </job epiloque script>
                              <job_abort_script> ./hello_world_scripts/job_abort_script </job_abort_script>
                       </application>
               </project>
        </resource>
</LGI>
```

Where are we now...

'Resource daemon' already runs on:

Aster (linux IA64)

Huygens (linux IBM PPC)

Woodcrest (linux EM64T)

Nocona (linux EM64T)

My laptop (linux IA32)

Hugo's laptop (FreeBSD Mac OSX IA32)

https://fwnc7003.leidenuniv.nl/LGI/daemon

Basic interface in PHP has been built:

https://fwnc7003.leidenuniv.nl/LGI/basic_interface

What's next?

- 1) Implementing the secure 'file transfer programs'.
- 2) Testing phase and do more that just 'hello world';-).

like... run ADF and Gaussian ?!

Thank you for your attention... any further questions?

https://fwnc7003.leidenuniv.nl/LGI/docs/LGI.pdf