Course Title: Modern Physics		3	2	4	
2.0					
None					
PHY1001, PHY1005, PHY1010					
 To enrich knowledge in fundamentals of wave optics To introduce and make appreciate the role of Quantum mechanics in microscopic devices and computation To know the basics of semiconductor and magnetic devices 					
	2.0 None PHY1001, PHY1005, PHY1010 1. To enrich knowledge in fundamentals of w 2. To introduce and make appreciate the role in microscopic devices and computation	2.0 None PHY1001, PHY1005, PHY1010 1. To enrich knowledge in fundamentals of wave optonic control of Qualin microscopic devices and computation	2.0 None PHY1001, PHY1005, PHY1010 1. To enrich knowledge in fundamentals of wave optics 2. To introduce and make appreciate the role of Quantum in microscopic devices and computation	 2.0 None PHY1001, PHY1005, PHY1010 1. To enrich knowledge in fundamentals of wave optics 2. To introduce and make appreciate the role of Quantum mech in microscopic devices and computation 	

CO-PO mapping

Course Outcomes (COs)	Course Outcome Statement		Programme Objectives (POs)	
CO1	Understanding interference and these conceptuengineering applications	diffraction and applying ual knowledge to	PO1, PO2, PO3, PO4, PO5	
CO2	Understand the fundamental concepts and principles of quantum mechanics relevant to engineering applications such as quantum computing PO1, PO2, PO3, PO4, PO5			
CO3	Comprehend use of concepts of semiconductors and their applications in some electronic devices like solar cell, LED, thermistor etc		PO1 PO2 PO3 PO4 PO5 PO6 PO7	
CO4	Understand the basics of magnetism and explore some of their technological applications		PO1, PO2, PO3, PO4, PO5, PO6, PO7	
CO5	Explore important connections between theory, experiment, and current applications			
Total Instru	Total Instructional hours		45 hours	
Module No. 1 Wave Optics - Interference		-	9 hours	

Interference- Interference of light, Conditions for sustained Interference, Interference in thin films, Newton's Rings, Determination of Wavelength. Engineering applications of Interference – thickness of film, testing of flatness of optical surfaces, the angle of beam splitter, testing of prism and lens for chromatic aberrations, anti-glare glasses and anti-reflective glasses, Interferometer: Michelson interferometer.

Module No. 2	Wave Optics - Diffraction	7 hours
	Diffiaction	

Diffraction-Fraunhofer Diffraction, Single and Double slits, Diffraction Grating, Grating Spectrum, Resolving power and dispersive power, Determination of Wavelength. Applications of diffraction - impact on resolution of telescope and microscope, X-ray, electron, and neutron diffraction, spectroscopy, Coherent diffraction imaging (CDI)

Module No. 3	Elementary	9 hours
Wodule No. 5	Quantum Mechanics	3 Hours

Wave—particle duality, de-Broglie hypothesis, Matter waves: properties of matter waves, wave packet, group velocity, phase velocity and their relations. Application of matter waves: Scanning Electron Microscopy and Transmission Electron Microscopy. Uncertainty principle: Illustrations: Non-confinement of electron inside the nucleus and broadening of spectral lines. Wave function, physical significance of wave function, Eigen function, Eigen values; Application: Quantum Computer (Classical BITS vs QBITS). One dimensional time independent Schrodinger's wave equation - particle in a box. Application of Schrodinger's wave equation: STM, Tunnel diode

Module No. 4 Semiconductors 11 hour

Semiconductors – Band formation, Direct and indirect band-gap, Intrinsic and extrinsic semiconductors, Variation of fermi energy level with doping, Mobility of charge carriers, Effect of temperature on mobility, Electrical conductivity of semiconductors, Thermistor, Junctions: Semiconductor-Semiconductor junctions, metal-semiconductor junctions, Ohmic and Schottky junctions, p-n junction diode - switch, Transducer, Carrier generation and recombination in Light emitting diode (LED), Solar cells, Thermistor, Photodetector, Sensors for medical diagnosis, Semiconductor memory devices.

Module No. 5 Magnetic materials 9 hours

Magnetization, Dia, Para and Ferromagnetism, Orbital angular momentum of an electron in an atom, Magnetic susceptibility and permeability, Superparamagnetism, Electron spin resonance (ESR), Application to detect biological free radicals; Nuclear Magnetic Resonance (NMR), Application to Magnetic resonance imaging, Magnetic levitation, Power generators, types of memory devices.

Loud speakers, MRAM, motors and transformers, maglev trains, magnetic separators, cyclotron/synchrotrons, detection higher energy particles, wireless chargers

Text Books

- 1. Ghatak, Optics, 6th Edition, McGraw Hill Education India Private Limited (2019)
- 2. N. Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley India Private Ltd. (2016)
- 3. D.A. Neamen, D. Biswas, Semiconductor Physics and Devices, McGraw Hill Education; 4th edition (2017)
- 4. Nicola A. Spaldin, Magnetic Materials Fundamentals and Applications, 2nd edition, Cambridge University Press (2011)

References

- 1. E. Hecht, A.R. Ganesan, Optics, 4th edition, Pearson Education (2019)
- 2. R.H. Webb, Elementary Wave Optics, 2nd Dover Publications Inc. (2019)
- 3. D. J. Griffiths, Introduction to Quantum Mechanics, 2nd edition, Pearson Education (2018)
- 4. R. Shankar, Principles of Quantum Mechanics, 2nd edition, Springer India Private Ltd. (2016)
- 5. S. M. Sze, Physics of Semiconductor Devices, 4th Edition, Wiley (2021)
- 6. B. D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edition Wiley-IEEE Press (2010)
- 7. Charles Kittel, Introduction to Solid State Physics, 8th edition, John Wiley (2018)
- 8. Sabrie Soloman, Sensors Handbook, 2nd edition, Mc Graw Hill (2018)

List of experiments:

- 1. Interaction of light with matter: Determination of Planck's constant by Photo Electric Effect
- 2. Interaction of charged particle with magnetic field: Estimation of e/m by Thomson method

- 3. Measurement of low dimensions by Laser Diffraction
- 4. Measurement of dielectric constant of different samples
- 5. Determination of Magnetic susceptibility of ferromagnetic materials by Quincke's method
- 6. Verification of Heisenberg's Uncertainty Principle
- 7. p-n junction characteristics LED
- 8. Thermistor for band-gap measurement
- 9. Determination of energy band gap of a semiconductor by Four probe method
- 10. Magnetic field sensor: Hall effect
- 11. B-H loop: Estimation of coercively and retentively
- 12. Solar cell: I-V characteristics and determination of efficiency
- 13. Newton's ring experiment

	CAT-1	Weightage (in %)	20
	CAT-2	Weightage (in %)	20
Mode of Evaluation	FAT	Weightage (in %)	20
Wode of Evaluation	Assignment/Quiz	Weightage (in %)	15
	Lab	Weightage (in %)	25
		Total	100
Recommended by the Board of Studies on		8 th November 2021	
Date of Approval by the Academic Council		9 th November 2021	