WO 2004/006878 PCT/EP2003/006955

- 64 -

What is claimed is:

1. Use of a compound of formula

wherein

R₁ and R₂ are each independently of the other hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; or unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is a cyano group; -COOR₅; -CONHR₅; -COR₅; or -SO₂R₅; -CONR₁R₅.

R₄ is a cyano group; -COOR₆; -CONHR₆; -COR₆; or -SO₂R₆; -CONR₂R₆;

R₅ and R₆ are each independently of the other C₁-C₂₂alkyl; cyclo-C3-C₈alkyl; or unsubstituted or C₁-C6alkyl-substituted C₆-C₂₀aryl;

or R₃ and R₄ together or R₅ and R₆ together form a 5- to 7-membered, monocyclic, carbocyclic or heterocyclic ring;

Z₁ and Z₂ are each independently of the other a -(CH₂)₁- group which is uninterrupted or interrupted by -O-, -S-, or by -NR₇-, and/or is unsubstituted or substituted by C₁-C₆alkyl;

R7 is C1-C5alkyl;

l is from 1 to 4;

m is from 1 to 7;

n is from 1 to 4;

when n = 2, R_1 , R_5 or R_6 is a bivalent alkyl group; or R_1 and R_2 together with the 2 nitrogen atoms linking them form a -(CH₂)_m- ring;

when n = 3, R_1 , R_5 or R_6 is a trivalent alkyl group;

when n = 4, R_1 , R_5 or R_6 is a tetravalent alkyl group; and

R₁ and R₂ in formula (1) are not simultaneously hydrogen;

in protecting human and animal hair and skin from UV radiation.

2. Use according to claim 1, relating to a compound of formula (1) or

R₁ and R₂ are each independently of the other hydrogen; C₁-C₂₂alkyl; or unsubstituted or C₁-C₅alkyl- or C₁-C₅alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is a cyano group; -COOR₅; -CONHR₅; -COR₅; or -SO₂R₅;

R₄ is a cyano group; -COOR₆; -CONHR₆; -COR₆; or -SO₂R₆;

 R_5 and R_6 are each independently of the other C_1 - C_{22} alkyl; or unsubstituted or C_1 - C_5 alkylsubstituted C_6 - C_{20} aryl;

or R₅ and R₆ together form a 5- to 7-membered, monocyclic, carbocyclic or heterocyclic ring;

Z₁ and Z₂ are each independently of the other a -(CH₂)₁- group which is uninterrupted or interrupted by -O-, -S-, or by -NR₂-, and/or is unsusbstituted or substituted by C₁-C₅alkyl;

R₇ is C₁-C₅alkyl;

l is from 1 to 4;

m is from 1 to 7;

n is from 1 to 4;

when n = 2, R_1 , R_5 or R_8 is a bivalent alkyl group; or R_1 and R_2 together with the 2 nitrogen atoms linking them form a -(CH₂)_m- ring;

when n = 3, R_1 , R_5 or R_6 is a trivalent alkyl group;

when n = 4, R_1 , R_5 or R_6 is a tetravalent alkyl group; and

R₁ and R₂ in formula (1) are not simultaneously hydrogen.

- 3. Use according to either claim 1 or claim 2, wherein
- R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is a cyano group; -COOR₅; -CONHR₅; -COR₅; or -SO₂R₅;

R₄ is a cyano group; -COOR₆; -CONHR₆; -COR₆; or -SO₂R₆;

R₅ and R₆ are each independently of the other C₁-C₂₂alkyl; or C₆-C₂₀aryl; and

Z is as defined in claim 1.

Ģ.

4. Use according to any one of claims 1 to 3, wherein

R₃ is a cyano group; and

R₄ is -CONHR₆; and

 R_6 is C_1 - C_{22} alkyl; or C_6 - C_{20} aryl.

5. Use according to any one of claims 1 to 4, wherein

 R_6 is C_4 - C_{20} alkyl.

6. Use according to any one of claims 1 to 3, wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is -COOR₅;

R₄ is a cyano group; -COOR₆; or -SO₂R₆;

 R_{5} and R_{6} are each independently of the other $C_{1}\text{-}C_{22}$ alkyl; or $C_{6}\text{-}C_{20}$ aryl; and

m is from 1 to 7.

7. Use according to claim 6, wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is -COOR₅;

R₄ is -COOR₆;

R₅ and R₆ are each independently of the other C₁-C₂₂alkyl; or C₆-C₂₀aryl; and

m is from 1 to 7.

8. Use according to claim 6, wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is -COOR₅;

R₄ is a cyano group;

 R_5 is C_1 - C_{22} alkyl; or C_6 - C_{20} aryl; and

m is from 1 to 7.

- 9. Use according to claim 6, wherein
- R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

R₃ is -COOR₅;

R₄ is -SO₂R₆;

 R_5 and R_6 are each independently of the other C_1 - C_{22} alkyl; or C_6 - C_{20} aryl; and m is from 1 to 7.

10. Use according to either claim 1 or claim 2, which comprises using a compound of formula

(3a)
$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} N - CH = CH - CH = CH - CH_2 \begin{cases} CN \\ C - X - (CH_2)_n \end{cases}$$
 or (3b)
$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} N - CH = CH - CH = CH - CH_2 \begin{cases} CN \\ C - X - (CH_2)_n \end{cases}$$

wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the 2 nitrogen atoms linking them form a -(CH₂)_m- ring;

- X is -O-; or -NH-;
- Z₂ a -(CH₂)_Γ group which is uninterrupted or interrupted by -O-, -S-, or by -NR₇-, and/or is unsubstituted or substituted by C₁-C₆alkyl; and
- n is from 1 to 3.
- 11. Use according to claim 10, wherein
- R_1 and R_2 are each independently of the other C_1 - C_{22} alkyl; or R_1 and R_2 together with the nitrogen atom linking them form the radical N—; or N—.
- 12. Use according to claim 1, which comprises using a compound of formula

(4)
$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} N - CH = CH - CH = \begin{bmatrix} R_3 \\ C - O - (CH_2) \end{bmatrix}_3$$
, wherein

9 0 0

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

 R_3 is a cyano group; -COOR₅; -CONHR₅; -COR₅; or -SO₂R₅; and R₅ and R₆ are each independently of the other C₁-C₂₂alkyl; or C₆-C₂₀aryl.

13. Use according to claim 12, wherein

 R_1 and R_2 are each independently of the other C_1 - C_{22} alkyl; or R_1 and R_2 together with the nitrogen atom linking them form the radical N—; or N—.

14. Use according to either claim 1 or claim 2, which comprises using a compound of formula

(5)
$$\begin{bmatrix} R_1 \\ N-CH=CH-CH \\ C-O-(CH_2) \end{bmatrix} C$$
, wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is uninterrupted or interrupted by -O- or by -NH-;

 R_3 is a cyano group; -COOR₅; -CONHR₅; -COR₅; or -SO₂R₅; and

 R_5 is C_1 - C_{22} alkyl; or C_6 - C_{20} aryl.

15. Use according to claim 14, wherein

 R_1 and R_2 are each independently of the other C_1 - C_{22} alkyl; or R_1 and R_2 together with the nitrogen atom linking them form the radical N—; or N—.

- 16. Use according to any one of claims 1 to 15, wherein
- Z_1 or Z_2 is an atom grouping which results in the formation of an oxazolidine ring, a pyrrolidine ring or a thiazolidine ring.
- 17. Use according to one of claim 16, wherein it corresponds to formula

(2b)
$$\begin{bmatrix} R_8 \\ R_9 \\ N \\ C \\ CH \\ CH \\ CH \\ CH \\ R_4 \\ 0 \end{bmatrix}$$
 wherein

R₈ and R₉ are each independently of the other hydrogen; or C₁-C₅alkyl; and

Y is -O-; -S-; oder -CH₂-;

and

R₁, R₃, R₄ and n are as defined in claim 1.

18. Use according to claim 17, wherein

R₁ is C₁-C₁₂alkyl;

R₃ is a cyano group; -COOR₅; -COR₅; or -SO₂R₅;

R₄ is -COR₆; or -COOR₆;

 R_5 and R_6 are each independently of the other unsubstituted or C_1 - C_5 alkyl- or C_1 - C_5 alkoxy-substituted C_6 - C_{20} aryl.

- 19. A cosmetic preparation comprising at least one or more compounds of formula (1) or (2) according to claim 1 with cosmetically acceptable carriers or adjuvants.
- 20. A compound of formula

(6)
$$R_1 = \begin{bmatrix} O & O - R_s \\ R_2 & CN \end{bmatrix}_2$$
 wherein

R₁ is C₁-C₄alkylene;

R₂ is C₁-C₅alkyl; or R₁ and R₂ together with the 2 nitrogen atoms linking them form a -(CH₂)_m- ring;

R₅ is C₁-C₂₂alkyl;

m is from 1 to 7.