EXAMEN

Consignes:

- . Cette épreuve de 3 heures comporte 3 exercices,
- la calculatrice collège est autorisée mais pas les documents (voir les formulaires en fin de sujet),
- . Il est conseillé de lire le sujet entièrement avant de commencer.
- Comme d'habitude, la qualité de la rédaction (propreté, orthographe, concision, rigueur) sera presque prépondérante dans la notation. Favorisez les explications de raisonnements par rapport aux détails calculatoires.

Exercice 1

Considérons le signal f(t) ci-dessous où a est un paramètre réel positif fixé :

Le but des deux premières questions est d'établir de deux façons — sans intégration par parties — la transformée de Fourier de f(t). Dans la troisième question, on périodisera le signal pour en déduire la série de Fourier, étudiée dans la dernière question.

- 1. (a) Par un calcul direct, donner $\widehat{f}(0)$; en particulier vous vérifierez que \widehat{f} ne présente pas de dirac à la fréquence $\nu = 0$.
 - (b) Avec des schémas, dérivez deux fois f(t) par rapport au temps.
 - (c) Donner le spectre de f''(t) que l'on mettra sous la forme $\widehat{f''}(\nu) = -4\sin^2(\pi a\nu)$.
 - (d) En déduire $\widehat{f}(\nu)$; expliquez ce qu'il pourrait se passer en $\nu=0$.
- 2. (a) Calculer la convolution de la porte $\Pi_a(t)$ (largeur a, centrée en t=0) avec elle-même.
 - (b) Via le formulaire, donner $\widehat{\Pi}_a(\nu)$ et en déduire $\widehat{f}(\nu)$.
 - (c) Donner un avantage et un inconvénient de cette méthode par rapport à la précédente.

Les premières questions n'étaient qu'un intermédiaire pour étudier le signal 2a-périodique suivant :

- 3. (a) Expliquer comment, du côté temporel, on peut exprimer mathématiquement g(t) en fonction de f(t).
 - (b) En déduire une expression du spectre de g que vous mettrez sous la forme

$$\widehat{g}(\nu) = \sum_{n=-\infty}^{+\infty} c_n \cdot \delta\left(\nu - \frac{n}{2a}\right)$$

où vous exprimerez les coefficients de Fourier c_n grâce à la transformée de Fourier \hat{f} . Une fois n'est pas coutume, vous détaillerez bien ces calculs.

(c) Montrer que la décomposition en série de Fourier de g(t) est

$$g(t) = \frac{a}{2} + \frac{4a}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2p+1)^2} \cos\left(\frac{2p+1}{a}\pi t\right)$$

- 4. (a) Vérifier la cohérence de cette expression en $t = \frac{a}{2}$.
 - (b) Montrer que

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}.$$

(c) Avec le théorème de Parseval, démontrer que

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}.$$

Exercice 2

Voici un signal créneau x(t) portant une information binaire et son spectre d'amplitude supposé connu :

Que devient qualitativement le spectre si on multiplie le créneau par une sinusoïde de fréquence f_0 ?

Il est attendu un schéma qualitatif soigné du spectre d'amplitude justifié par un raisonnement rédigé et accompagné d'un calcul exprimant $\widehat{y}(\nu)$ grâce à $\widehat{x}(\nu)$.

Exercice 3

Voici des signaux temporels avec des échelles de temps identiques :

Et voici leurs spectres d'amplitude présentés, dans le désordre, avec une échelle de fréquences identique :

Associer chacun des signaux temporels à son spectre et expliquer les raisons de vos choix. Expliquer aussi pourquoi l'on observe tel ou tel phénomène.

Transformation de Laplace

domaine temporel	domaine opérationnel	remarque
f'(t)	$pF(p) - f(0^+)$	
$\int_0^t f(u) \mathrm{d}u$	$\frac{F(p)}{p}$	
tf(t)	-F'(p)	
$(-1)^n t^n f(t)$	$F^{(n)}(p)$	$(n \in \mathbb{N})$
$\frac{f(t)}{t}$	$\int_{p}^{+\infty} F(s) \mathrm{d}s$	
$e^{at}f(t)$	F(p-a)	$(a \in \mathbb{C})$
f(t-a)	$e^{-pa}F(p)$	$(a\geqslant 0)$
f(kt)	$\frac{1}{k}F\left(\frac{p}{k}\right)$	(k > 0)

Théorèmes des valeurs initiale et finale : Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pF(p) = f(0^+) \quad \text{et} \quad \lim_{p \to 0} pF(p) = f(+\infty)$$

original causal	image	remarque
f(t)	F(p)	
1 ou $H(t)$	$\frac{1}{p}$	
t	$\frac{1}{p^2}$	
$\frac{t^n}{n!}$	$\frac{1}{p^{n+1}}$	
e^{at}	$\frac{1}{p-a}$	$(a \in \mathbb{C})$
$\cos(\omega t)$	$\frac{p}{p^2 + \omega^2}$ $\frac{\omega}{p^2 + \omega^2}$	
$\sin(\omega t)$	$\frac{\omega}{p^2 + \omega^2}$	
$\delta(t)$	1	

Transformation de Fourier

domaine temporel	domaine fréquentiel
$f(t) = \int_{-\infty}^{+\infty} \widehat{f}(\nu) e^{2j\pi\nu t} d\nu$	$\widehat{f}(\nu) = \int_{-\infty}^{+\infty} f(t) e^{-2j\pi\nu t} dt$
f(at)	$\frac{1}{ a }\widehat{f}\left(\frac{\nu}{a}\right)$
f(-t)	$\widehat{f}(- u)$
f(t-a)	$e^{-2j\pi a\nu}\widehat{f}(\nu)$
$e^{2j\pi at}f(t)$	$\widehat{f}(u-a)$
$\frac{\mathrm{d}f}{\mathrm{d}t}$	$2j\pi u\widehat{f}(u)$
$-2j\pi t f(t)$	$\frac{\mathrm{d}\widehat{f}}{\mathrm{d} u}$
$(f_1 * f_2)(t)$	$\widehat{f}_1(u)\widehat{f}_2(u)$
$f_1(t) f_2(t)$	$(\widehat{f}_1 * \widehat{f}_2)(\nu)$
$\Pi_a(t)$	$a \operatorname{sinc}(\pi a \nu)$
$H(t)e^{-\lambda t}, \operatorname{Re}(\lambda) > 0$	$\frac{1}{\lambda + 2j\pi\nu}$
$\frac{1}{1+t^2}$	$\pi e^{-2\pi \nu }$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2\nu^2}$
$\delta(t)$	1
1	$\delta(u)$
$\mathrm{III}_T(t)$	$\frac{1}{T} \amalg_{\frac{1}{T}} (\nu)$

$$(f_1 * f_2)(x) = \int_{-\infty}^{+\infty} f_1(y) f_2(x - y) dy = \int_{-\infty}^{+\infty} f_1(x - y) f_2(y) dy$$