DS5003 Feature Engineering for Time Series Data

An Overview – July 2025 *Harold Haugen*

SCHOOL of DATA SCIENCE

Introduction

- Background on Time Series
- Feature Engineering Methods for Time Series
- Example Structure

Seaborn Tutorial – Time Series

Time Series Background

- Time Series Data represented in a sequence successively; at regular or irregularly frequencies
- Temporal Characteristics
 - Temporal Dependency data values at a point in time depends on the values at prior time points
 - Temporal Order data must be arranged in chronological / sequential order
- Structure Univariate and Multivariate
 - Multivariate e.g., vital signs, lab results, chart events...

Time Series Background

Four Key Components:

- **Trend** long-term, persistent behavior of a time series.
- Seasonality repeating patterns at regular fixed time intervals, corresponding to specific seasons, months, weeks, etc.
- **Cyclical Patterns** long-term fluctuations that are often linked to non calendar cycles, potentially spanning years at varying lengths.
- Noise residual / error, random variation present in time series data, or the remaining noise after removing trend and seasonality.

Date / Time Features

- Developing slices of date / time data as new features; to provide additional insights
- E.g., Hour, Month, Day of Week, Season, Holiday, and Binary Indicators 0/1 (before noon / after noon)
- Healthcare heart rate / vital signs, lab results

```
load temp hour month dayofweek
2012-01-01 00:00:00 2,698.00 32.00 0 1 1
2012-01-01 01:00:00 2,558.00 32.67 1 1 1
2012-01-01 02:00:00 2,444.00 30.00 2 1 1
2012-01-01 03:00:00 2,402.00 31.00 3 1 1
2012-01-01 04:00:00 2,403.00 32.00 4 1
```

Lag Features

- Capturing past values of the times series through 'sliding windows', as new features associated to the target variable [Temporal Dependencies]
- Nested Lag Grouped values by period, e.g., total orders for the previous 4, 8, 12 hours, etc.

```
# Sample time series data
data = {'value': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
df = pd.DataFrame(data)
# Create lag features
df['lag1'] = df['value'].shift(1)
df['lag2'] = df['value'].shift(2)
print(df)
   value
          lag1
                lag2
           NaN
                 NaN
           1.0
                 NaN
           2.0
                 1.0
                 2.0
           4.0
                 3.0
                 4.0
                 5.0
                 6.0
                 7.0
                 8.0
```


Rolling Windows

 Computation of key statistics (e.g., Mean, Standard Deviation) over a prior set time including T+0 [Temporal Dependencies]

Expanding Windows

 Window continuously expands with time / includes all prior values
 [Temporal Dependencies]

```
[3]: # Calculate rolling mean and standard deviation
     df['rolling mean'] = df['value'].rolling(window=3).mean()
     df['rolling std'] = df['value'].rolling(window=3).std()
     print(df)
         value
                lag1
                      lag2
                            rolling mean
                                           rolling std
                 NaN
                       NaN
                                     NaN
                                                   NaN
                 1.0
                       NaN
                                     NaN
                                                   NaN
                 2.0
                       1.0
                                     2.0
                                                   1.0
                 3.0
                       2.0
                                      3.0
                                                   1.0
                       3.0
                                     4.0
                                                   1.0
                       4.0
                                     5.0
                                                   1.0
                       5.0
                                     6.0
                                                   1.0
                       6.0
                                     7.0
                                                   1.0
                       7.0
                                     8.0
                                                   1.0
                       8.0
                                      9.0
                                                   1.0
```

```
        min
        mean
        max
        load+1

        2012-01-01
        00:00:00
        2,698.00
        2,698.00
        2,698.00
        2,558.00

        2012-01-01
        01:00:00
        2,558.00
        2,628.00
        2,698.00
        2,444.00

        2012-01-01
        02:00:00
        2,444.00
        2,566.67
        2,698.00
        2,402.00

        2012-01-01
        03:00:00
        2,402.00
        2,525.50
        2,698.00
        2,403.00

        2012-01-01
        04:00:00
        2,402.00
        2,501.00
        2,698.00
        2,453.00

        2012-01-01
        05:00:00
        2,402.00
        2,493.00
        2,698.00
        2,560.00

        2012-01-01
        06:00:00
        2,402.00
        2,502.57
        2,698.00
        2,719.00

        2012-01-01
        07:00:00
        2,402.00
        2,529.62
        2,719.00
        2,916.00

        2012-01-01
        08:00:00
        2,402.00
        2,572.56
        2,916.00
        3,105.00

        2012-01-01
        09:00:00
        2,402.00
        2,625.80
        3,105.00
        3,174.00
```


Fourier Transforms

- Decomposes a Time Signal into a Frequency Domain
 - Simpler Terms decomposes a possibly messy signal into pure sine / cosine waves
- Fourier Transforms will assist in revealing:
 - Periodic Behavior not seen in time domain
 - Dominant Cycles/ Frequencies (as features)
 - Isolation of certain frequency bands / Filtering out the Noise
 - Simplify complex signals to a few key frequencies
 [Temporal Dependencies]

- Time series reveals three components at different frequencies of 2, 5, and 10 HZ
- · Numpy fft and fftreq

SCHOOL of DATA SCIENCE

Seasonality Feature

- Decomposition Models (Additive & Multiplicative)
- Breakdown a time series into the Trend + Seasonality + Residual / Noise components
- Isolate Seasonality as a Feature / supports the model learn seasonality explicitly

```
[31]: # Decompose the series (monthly → period=12)
decomp = sm.tsa.seasonal_decompose(df_season['value'], model='additive', period=12)

[36]: # Extract and display the seasonal component
df_season['seasonal'] = decomp.seasonal
df_season.head(20)
```

	date	value	seasonal			
0	2010-01-31	55.993428	5.105323			
1	2010-02-28	58.383725	7.910412			
2	2010-03-31	61.295377	8.329753			
3	2010-04-30	61.706314	8.762467			
4	2010-05-31	54.531693	4.690788			
5	2010-06-30	49.531726	1.210407			
6	2010-07-31	48.158426	-4.648775			
7	2010-08-31	42.874615	-8.249412			
8	2010-09-30	39.061051	-10.249620			
9	2010-10-31	42.424866	-8.855133			
10	2010-11-30	44.073165	-3.936090			
	50					

Example Structure

- Times Series Structure
- Uses Seasonality, Lag and Rolling Window Statistics Features (3-Mo)
- Y-Target may be any time in the future, e.g., T+3 Months.
- Model data must begin were the Lag Ends, no NaNs.

	date	value	seasonal	lag1	lag2	lag3	rolling_mean	rolling_std	y_target	
0	2010-01-31	55.993428	5.105323	NaN	NaN	NaN	NaN	NaN	70.196688	
1	2010-02-28	58.383725	7.910412	55.993428	NaN	NaN	NaN	NaN	79.579267	
2	2010-03-31	61.295377	8.329753	58.383725	55.993428	NaN	NaN	NaN	89.000534	
3	2010-04-30	61.706314	8.762467	61.295377	58.383725	55.993428	59.344711	2.679357	33.799516	Ī
4	2010-05-31	54.531693	4.690788	61.706314	61.295377	58.383725	58.979277	3.313444	37.558295	
5	2010-06-30	49.531726	1.210407	54.531693	61.706314	61.295377	56.766278	5.838059	9.398194	
6	2010-07-31	48.158426	-4.648775	49.531726	54.531693	61.706314	53.482040	6.128793	57.828014	
7	2010-08-31	42.874615	-8.249412	48.158426	49.531726	54.531693	48.774115	4.792593	3.594227	
8	2010-09-30	39.061051	-10.249620	42.874615	48.158426	49.531726	44.906455	4.839613	46.559802	
9	2010-10-31	42.424866	-8.855133	39.061051	42.874615	48.158426	43.129740	3.759603	54.264463	
10	2010-11-30	44.073165	-3.936090	42.424866	39.061051	42.874615	42.108424	2.147392	28.654125	
11	2010-12-31	49.068540	-0.070119	44.073165	42.424866	39.061051	43.656906	4.167288	59.083326	
12	2011-01-31	55.483925	5.105323	49.068540	44.073165	42.424866	47.762624	5.871617	3.050025	
13	2011-02-28	54.833694	7.910412	55.483925	49.068540	44.073165	50.864831	5.367845	3.734819	
14	2011-03-31	56.550164	8.329753	54.833694	55.483925	49.068540	53.984081	3.352546	82.260056	
15	2011-04-30	57.535679	8.762467	56.550164	54.833694	55.483925	56.100865	1.189804	36.019064	

References

- Rahul Holla Advanced Feature Engineering for Time Series Data [Medium]
- **2. Francesca Lazzeri** Introduction to feature engineering for time series forecasting [Medium]
- **3. Roshmita Dey -** Understanding Time Series Data and Key Concepts [Medium]
- 4. Donato_TH The Journey into Time Series: Dancing with Trends and Seasons [Medium]
- **5. Khairul Omar -** Deconstructing Time Series using Fourier Transform [*Medium*]
- **6. Nayeem Islam** Comprehensive Guide to Time Series Data Analytics and Forecasting with Python [Medium]

Thank you

SCHOOL of DATA SCIENCE