BT209

Bioreaction Engineering

22/03/2023

Autocatalytic reaction and reactor

nth order reaction (n>0)
$$A \rightarrow R$$
 $-r_A = -\frac{dC_A}{dt} = kC_A^n$

When a material reacts away (A \rightarrow R) by any nth order rate (n > 0) in a batch reactor,

- ▶its rate of disappearance is rapid at the start when the concentration of reactant is high.
- >This rate then slows progressively as reactant is consumed.

Autocatalytic reaction

$$A + R \rightarrow R + R$$
, $-r_A = kC_A^a C_R^r$

- The rate at the start is low because little product is present;
- >it increases to a maximum as product is formed
- >then drops again to a low value as reactant is consumed.

PFR Vs CSTR for autocatalytic reaction

For any particular rate-concentration curve a comparison of areas in Fig. shows which reactor is superior (which requires a smaller volume) for a given job.

- 1. At low conversion the mixed reactor is superior to the plug flow reactor.
- 2. At high enough conversions the plug flow reactor is superior.

These findings differ from ordinary nth-order reactions (n > 0) where the plug flow reactor is always more efficient than the mixed flow reactor.

Optimum Recycle Operations

- ☐ In addition, we should note that a plug flow reactor will not operate at all with a feed of pure reactant. In such a situation the feed must be continually primed with product, an ideal opportunity for using a recycle reactor.
- ☐ Using optimization problems we can find the optimum recycle ratio which gives the minimum reactor volume or minimum space time

$$R = \frac{\text{volume of fluid returned to the reactor entrance}}{\text{volume leaving the system}}$$

Cont.

✓ The optimum recycle ratio is found by differentiating Eq. with respect to R and

setting to zero, thus

 $\frac{d(\tau/C_{A0})}{d\mathbf{R}} = 0$

Cont.

$$\frac{d(\tau/C_{A0})}{d\mathbf{R}} = 0 \qquad \text{for} \qquad \frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = (\mathbf{R}+1) \int_{X_{Ai} = \left(\frac{\mathbf{R}}{\mathbf{R}+1}\right) X_{Af}}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$

$$F(\mathbf{R}) = \int_{a(\mathbf{R})}^{b(\mathbf{R})} f(x, \mathbf{R}) dx$$

$$F(\mathbf{R}) = \int_{a(\mathbf{R})}^{b(\mathbf{R})} f(x, \mathbf{R}) dx$$

$$\frac{dF}{d\mathbf{R}} = \int_{a(\mathbf{R})}^{b(\mathbf{R})} \frac{\partial f(x, \mathbf{R})}{\partial \mathbf{R}} dx + f(\mathbf{b}, \mathbf{R}) \frac{db}{d\mathbf{R}} - f(a, \mathbf{R}) \frac{da}{d\mathbf{R}}$$

$$\frac{d(\tau/C_{A0})}{d\mathbf{R}} = 0 = \int_{X_{Ai}}^{X_{Af}} \frac{dX_{A}}{(-r_{A})} + 0 - \frac{\mathbf{R} + 1}{(-r_{A})} \left|_{X_{Ai}} \frac{dX_{Ai}}{d\mathbf{R}}\right|$$

Cont.

$$X_{Ai} = \left(\frac{R}{R+1}\right) X_{Af}$$

$$\frac{dX_{Ai}}{dR} = \frac{X_{Af}}{(R+1)^2}$$

$$\frac{d(\tau/C_{A0})}{d\mathbf{R}} = 0 = \int_{X_{Ai}}^{X_{Af}} \frac{dX_{A}}{(-r_{A})} + 0 - \frac{\mathbf{R} + 1}{(-r_{A})} \left| \frac{dX_{Ai}}{d\mathbf{R}} \right|$$

$$\left| \frac{1}{-r_{A}} \right|_{X_{Ai}} = \frac{\int_{X_{Ai}}^{X_{Af}} \frac{dX_{A}}{-r_{A}}}{(X_{Af} - X_{Ai})}$$

✓ In words, the optimum recycle ratio introduces to the reactor a feed whose $1/(-r_A)$ value (KL in Fig.) equals the average $1/(-r_A)$ value in the reactor as a whole (PQ in Fig.).

Reactor combination for autocatalytic reaction without recycle

- ☐ For autocatalytic reactions
- In general, for a rate-concentration curve as shown in Fig one should always try to reach point M in one step (using mixed flow in a single reactor), then follow with plug flow or as close to plug flow as possible. This procedure is shown as the shaded area in Fig.

Occurrence of Autocatalytic Reactions

The most important examples of autocatalytic reactions are the broad class of fermentation reactions which result from the reaction of microorganism on an organic feed.

➤ When they can be treated as single reactions, the methods of this chapter can be applied directly.

S+ Cell → More cell