Проверка гипотез.

- 1. Выдана выборка X_1, \ldots, X_{100} из распределения $Exp(\theta)$, $\theta \in \{0.9; 1; 1.1\}$. С помощью процедуры проверки гипотез определить истинное значение параметра θ . Открывать файлы следует с помощью функции numpy.load.
- 2. Пусть X_1, \ldots, X_n выборка из распределения $N(\theta,1)$. Построить функцию мощности критерия Стьюдента проверки гипотезы $H_0: \theta=0$ уровня значимости 0.05 для $\theta\in[-10,10]$. Как объяснить ее изменения при растущих n? Найти такое минимальное n, что при $|\theta_0-\theta_1|=1$ при проверке гипотезы $H_0: \theta=\theta_0$ против альтернативы $H_1: \theta=\theta_1$ критерием Стьюдента уровня значимости 0.05 вероятность ошибки второго рода станет меньше вероятности ошибки первого рода.
- 3. Выдана выборка $X=(X_1,\ldots,X_{200})$. Рассмотрим основную гипотезу $H_0:X\sim N(0,\sigma)$ против альтернативы $H_1:X\sim Laplas(\theta)$. На основе байесовского критерия построить критерии различения H_0 и H_1 уровня значимости 0.05 с помощью моделирования (построив эмпирическое распределение статистики байесовского критерия с помощью N=10000 выборок) и определить, к какому распределению принадлежит выданная выборка. Напомним, статистика байесовского критерия следующая

$$K = \frac{\int f_0(X, \sigma)q(\sigma)d\sigma}{\int f_1(X, \theta)\widetilde{q}(\theta)d\theta},$$

где f_0 и f_1 — функции правдоподобия, соответствующие гипотезам H_0 и H_1 соответственно, а $q(\sigma)$ и $\widetilde{q}(\theta)$ — априорные плотности σ и θ . Выбрать априорным распределением σ и θ стандартное экспоненциальное, также предположить, что σ и θ независимы.