Lista 1: Projektowanie algorytmów, schematy blokowe i pseudokod

Witold Dyrka

Marzec 2021

Rozwiązania zadań proszę przedstawić w formie sprawozdania zapisanego w formacie Portable Document Format (PDF).

Sprawozdanie — oprócz samych rozwiązań — powinno zawierać dane identyfikujące autora (imię, nazwisko, numer indeksu) i grupę zajęciową, datę wykonania, a także przytaczać treść zadań (bez przykładów). Otrzymane wyniki proszę opatrzyć komentarzem. W szczególności dot. to sytuacji, gdy algorytm zachowuje się w sposób "nieoczekiwany" (nie kończy się, zwraca wynik niepoprawny). Sprawozdanie powinno być napisane poprawnym językiem polskim (lub innym — ustalonym z prowadzącym) i zredagowane w sposób estetyczny. Zachęcamy do tworzenia sprawozdań w systemie LATFX.

Ponadto wymagane jest oświadczenie w formie "Oświadczam, że sprawozdanie wykonał[ae]m samodzielnie." Jeśli złożenie oświadczenia takiej treści nie jest możliwe, proszę określić rodzaj i zakres udziału zewnętrznego. Jeśli przy rozwiązywaniu zadań korzystano z materiałów zewnętrznych (np. stron internetowych), wymagane jest podanie źródła.

Zad. 1

Przeanalizuj stany następującego algorytmu obliczania pola trójkąta na podstawie długości jego boków a, b i c (wzór Herona):

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$

gdzie p = (a+b+c)/2.

Algorytm

- 1. $o_pol := (a + b + c) / 2$
- 2. iloczyn := o_pol
- 3. $iloczyn *= o_pol a$
- 4. iloczyn *= o_pol b

```
5. iloczyn *= o_pol - c
```

Przykład Dla a = 2, b = 3, c = 4 mamy:

krok	a	b	С	o_pol	iloczyn	pole	komentarz
0	2	3	4	-	-	-	a := 2, b := 3, c := 4
1	2	3	4	4.5	-	-	o_pol := (a+b+c) / 2
2	2	3	4	4.5	4.5	_	iloczyn := o_pol
3	2	3	4	4.5	11.25	_	iloczyn *= o_pol - a
4	2	3	4	4.5	16.875	_	iloczyn *= o_pol - b
5	2	3	4	4.5	8.4375	-	iloczyn *= o_pol - c
6	2	3	4	4.5	8.4375	2.90473751	pole := iloczyn^0.5

Wykonaj podobną analizę dla następujących zestawów parametrów:

a)
$$a = 3, b = 4, c = 5,$$

b)
$$a = 3, b = 10, c = 5.$$

Zad. 2

Zaproponuj algorytm obliczający część wspólną dwóch odcinków A i B w przestrzeni 1-wymiarowej przy zadanych punktach początkowych A_p, B_p i końcowych A_k, B_k . Zapisz go w postaci pseudokodu lub schematu blokowego. Przedstaw analizę stanów dla sytuacji, gdy:

- a) odcinki są identyczne,
- b) odcinek A zawiera się w odcinku B,
- c) odcinek B zawiera się w odcinku A,
- d) odcinki częściowo pokrywają się,
- e) odcinki jedynie stykają się,
- f) odcinki nie mają części wspólnej.

Zad. 3

Przeanalizuj stany algorytmu dzielenia całkowitego (omawianego na wykładzie) dla podanych przez prowadzącego przykładów, gdy:

- a) 0 < dzielnik < dzielna,
- b) 0 < dzielna < dzielnik,

- c) dzielnik < 0 < dzielna,
- d) dzielna < 0 < dzielnik,
- e) dzielna < dzielnik < 0,
- f) dzielnik < dzielna < 0.

Algorytm

- 1. Niech suma_dzielnikow wynosi dzielnik.
- 2. Niech iloraz wynosi zero.
- 3. Czy suma_dzielnikow jest mniejsza albo równa dzielnej?
 - 4. Jeśli nie, to zwracamy iloraz i algorytm kończy się;
 - 5. w przeciwnym wypadku:
 - 6. zwiększamy suma_dzielnikow o dzielnik,
 - 7. zwiększamy iloraz o 1.
 - 8. Wracamy do pkt 3.

 \mathbf{Przyk} ad \mathbf{Gdy} dzielna = 11 oraz dzielnik = 4:

powtórzenie	krok	dzielna	dzielnik	suma_dzielnikow	iloraz	suma_dzielnikow < dzielna	komentarz
_	0	11	4	1	-	-	$ exttt{dzielna} := 11, exttt{dzielnik} := 4$
-	1	11	4	4	-	prawda	$\mathtt{suma_dzielnikow} := \mathtt{dzielnik}$
-	2	11	4	4	0	prawda	iloraz:=0
1	3	11	4	4	0	prawda	sprawdzenie warunku stopu \rightarrow do kroku 5
1	6	11	4	8	0	prawda	$suma_dzielnikow += dzielnik$
1	7	11	4	8	1	prawda	iloraz += 1
2	3	11	4	8	1	prawda	sprawdzenie warunku stopu \rightarrow do kroku 5
2	6	11	4	12	1	falsz	${\tt suma_dzielnikow} += {\tt dzielnik}$
2	7	11	4	12	2	falsz	iloraz += 1
3	3	11	4	12	2	falsz	sprawdzenie warunku stopu \rightarrow do kroku 4

Zad. 4

Opierając się na przykładzie przedstawionym na wykładzie zaprojektuj i przeanalizuj algorytm zliczania wystąpień zadanego elementu x w tablicy T:

- a) Przedstaw schemat blokowy algorytmu,
- b) Przeanalizuj stany algorytmu dla trzech tablic o różnych rozmiarach,
- c) Narysuj wykres zależności liczby kroków od długości tablicy.

Zad. 5

Zaprojektuj algorytm, który sprawdza, czy podany łańcuch tekstu (napis) należy do języka łańcuchów a^nb^n , gdzie $n=\{1,2,\ldots\}$. Do tak zdefiniowanego języka należą ciągi ab, aabb, aaabb itd. Nie należą natomiast do niego np. ciąg pusty oraz ciągi a, acb, abb, aaaabbb.

- a) Przedstaw pseudokod,
- b) Przedstaw schemat blokowy,
- c) Wykonaj analizę złożoności obliczeniowej czasowej,
- d) Wykonaj analizę stanów dla przykładowych ciągów: należącego i nienależącego do języka.