Sine & Cosine at Key Angles

with Cofunction Identities

(dbhoriya.github.io/teaching_ $F101/tutorial_2.pdf$) or SCAN:

Some Trigonometry identities:

Exact Values at Common

Angles

7 8					
θ	0°	30°	45°	60°	90°
$\sin \theta$	0	1 2_	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Some identities:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta,$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta.$$

Example:
$$\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$
, $\cos 30^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$.

Sin-Cos in various quadrants

Sin-Cos in various quadrants

Polar co-ordinates

Definition and motivation

Polar Coordinates: Definition & Formulas

- A point (x, y) is represented as (r, θ):
 - r = distance from origin
 - $\theta = \text{angle from positive}$ x-axis
- Conversion to Cartesian coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$

Conversion from Cartesian coordinates:

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan \frac{y}{x} = an^{-1} \left(\frac{y}{x} \right)$$

Why Do We Need Polar Coordinates? Real-Life Motivation

• Some situations are easier to describe with **distance** + **angle** than (x, y).

• Examples:

• GPS: "5 km at 30° NE"

Radar/Sonar: Track objects by angle & range

• Lighthouses: Light beam at a specific distance & direction

• CCTV: Camera coverage via rotation & reach

Engineering & Math Usefulness

Engineering:

- AC circuits: voltages/currents as polar vectors
- Mechanical systems: gears, turbines, rotating parts
- Robotics: arm positions via joint angles
- Civil structures: domes, arches, tunnels

Mathematics:

- Circle equation: $x^2 + y^2 = a^2 \Rightarrow r = a$ (simpler in polar)
- Ideal for problems with circular or rotational symmetry

Plot the following points, given in polar coordinates, and find all

polar coordinates for each point.

A:
$$(-2, \pi/2)$$
, **C**: $(-2, -5\pi)$

B:
$$(3, -\pi/4)$$
, **D:** $(3, \pi/3)$

Hint: Remember that a point (r, θ) is equivalent to $(-r, \theta + \pi)$ and that angles can be expressed modulo 2π .

 $D = (3; 60^{\circ})$

Answer:

A:
$$(-2, \pi/2 + 2n\pi), (2, -\pi/2 + 2n\pi)$$
 where $n \in \mathbb{Z}$

B:
$$(3, -\pi/4 + 2n\pi), (-3, 3\pi/4 + 2n\pi)$$
 where $n \in \mathbb{Z}$.

C:
$$(-2, -\pi + 2n\pi), (2, 2n\pi)$$
 where $n \in \mathbb{Z}$.

D:
$$(3, \pi/3 + 2n\pi), (-3, -2\pi/3 + 2n\pi)$$
 where $n \in \mathbb{Z}$.

Question 2: Find the polar coordinates of the following points.

(a)
$$(\sqrt{3}, -1)$$
, with $0 \le \theta < 2\pi$ and $r \le 0$.

(b)
$$(\sqrt{3}, -1)$$
, with $-\pi \le \theta < \pi$ and $r \ge 0$.

Answer: (a)
$$(-2, \pi - \pi/6)$$
 (b) $(2, -\pi/6)$

Question 3: Convert the following into Cartesian equations:

(a)
$$r^2 + 2r^2 \cos \theta \sin \theta = 1$$
 (b) $r \sin \theta = \ln r + \ln \cos \theta$.

Question 2: Find the polar coordinates of the following points.

(a)
$$(\sqrt{3}, -1)$$
, with $0 \le \theta < 2\pi$ and $r \le 0$.

(b)
$$(\sqrt{3}, -1)$$
, with $-\pi \le \theta < \pi$ and $r \ge 0$.

Answer: (a)
$$(-2, \pi - \pi/6)$$
 (b) $(2, -\pi/6)$

Question 3: Convert the following into Cartesian equations:

(a)
$$r^2 + 2r^2 \cos \theta \sin \theta = 1$$
 (b) $r \sin \theta = \ln r + \ln \cos \theta$.

(b)
$$r \sin \theta = \ln r + \ln \cos \theta$$
.

Answer:

(a)
$$x^2 + y^2 + 2r\cos\theta r \sin\theta = 1 \iff x^2 + y^2 + 2xy = 1$$

(b)
$$r \sin \theta = \ln r + \ln \cos \theta \Longrightarrow r \sin \theta = \ln r \cos \theta$$
.

This gives
$$y = \ln x$$

Question 5: Sketch the region defined by the inequalities $-1 \le r \le 1$ and $-\pi/4 \le \theta \le \pi/4$

Question 5: Sketch the region defined by the inequalities $-1 \le r \le 1$ and $-\pi/4 \le \theta \le \pi/4$

Answer:

Polar Coordinates: lemniscate (a polar curve resembling the infinity symbol $\infty)$

Question 4: Draw the graph of the curve $r^2 = -\sin 2\theta$.