	[1]
(b)	A smooth pebble, made from uniform rock, has the shape of an elongated sphere as shown in Fig. 1.1.
	Fig. 1.1
	The length of the pebble is L . The cross-section of the pebble, in the plane perpendicular to L , is circular with a maximum radius r .
	A student investigating the density of the rock makes measurements to determine the values of L , r and the mass M of the pebble as follows:
	$L = (0.1242 \pm 0.0001) \text{m}$ $r = (0.0420 \pm 0.0004) \text{m}$ $M = (1.072 \pm 0.001) \text{kg}.$
	(i) State the name of a measuring instrument suitable for making this measurement of L.
	[1]
	(ii) Determine the percentage uncertainty in the measurement of <i>r</i> .

percentage uncertainty = % [1]

(c)	The	density ρ of the rock from which the pebble in (b) is composed is given by
		$\rho = \frac{Mr^n}{kL}$
	whe	ere n is an integer and k is a constant, with no units, that is equal to 2.094.
	(i)	SI base units to show that n is equal to -2 .
		[2]
	(ii)	Calculate the percentage uncertainty in ρ .
		percentage uncertainty = % [3]
	(iii)	Determine ρ with its absolute uncertainty. Give your values to the appropriate number of significant figures.
		ρ = (±) kg m ⁻³ [3]

[Total: 11]