IT Security #6

Organizational IT Security Policy & Analysis & Implementation Theme C (ii) on Management issues

Niels Christian Juul

Roskilde Universitet Niels Christian Juul Hus 08.2-071 Universitetsvej 1 4000 Roskilde ncjuul@ruc.dk

IT-security

Course book

Chapter 14 + 15 today

Next time:

- Selected parts of Chapter 16, 17, 18 Student presentations, eg.
- 17.3 on e-mail policy (compare to RUC)
- ??

Learning outcome

Be able to

- manage information security in an organization
- conduct a thorough risk analysis wrt organizational information security
- select relevant security controls
- create an security implementation plan

Exam themes/questions:

- What is Security Policy and how should it be managed?
- How to conduct a Detailed Security Risk Assessment?
- How to make a Security Implementation Plan?

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

IT Security Management Overview

Is the formal process of answering the questions:

What assets need to be protected

Datalog

Roskilde Universitet

How are those assets threatened

What can be done to counter those threats

- Ensures that critical assets are sufficiently protected in a costeffective manner
- Security risk assessment is needed for each asset in the organization that requires protection
- Provides the information necessary to decide what management, operational, and technical controls are needed to Informeduce the risks identified

2019-03-18

Table 14.1 27000 Series of Standards on IT Security Techniques

"Information security management systems - Overview and vocabulary"
provides an overview of information security management systems, and
defines the vocabulary and definitions used in the 27000 family of standards.
"Information security management systems – Requirements" specifies the
requirements for establishing, implementing, operating, monitoring,
reviewing, maintaining and improving a documented Information Security
Management System.
"Code of practice for information security management" provides guidelines
for information security management in an organization and contains a list of
best-practice security controls. It was formerly known as ISO17799.
"Information security management system implementation guidance" details
the process from inception to the production of implementation plans of an
Information Security Management System specification and design.
"Information security management – Measurement" provides guidance to
help organizations measure and report on the effectiveness of their
information security management system processes and controls.
"Information security risk management" provides guidelines on the
information security risk management process. It supersedes ISO13335-3/4.
"Requirements for bodies providing audit and certification of information
security management systems" specifies requirements and provides guidance
for these bodies.

27000: 2018	Information security management systems Overview and vocabulary
27001:2013	Information security management systems Requirements
27002:2013	Code of practice for information security controls
27003:2017	Information security management systems Guidance
<u>27004:2016</u>	Information security management Monitoring, measurement, analysis and evaluation
27005:2018	Information security risk management
<u>27006: 2015</u>	Requirements for bodies providing audit and certification of information security management systems
27007:2017	Guidelines for information security management systems auditing
27008:2019	Guidelines for the assessment of information security controls
27009:2016	Sector-specific application of 27001 Requirements
27010: 2015	Information security management for inter-sector and inter- organizational communications
formatile -	

2019-03-18 Niels Christian Juul

ISO 27000 ISMS family of standards relationship

27011:2016	Code of practice for Information security controls based on 27002 for telecommunications organizations
<u>27013:2015</u>	Guidance on the integrated implementation of 27001 and 20000-1
27014:2013	Governance of information security
27016:2014	Information security management Organizational economics
<u>27017: 2015</u>	Code of practice for information security controls based on 27002 for cloud services
27018:2019	Code of practice for protection of personally identifiable information (PII) in public clouds acting as PII processors
27019:2017	Information security controls for the energy utility industry
27021:2017	Competence requirements for information security management systems professionals
27023:2015	Mapping the revised editions of 27001 and 27002
27030 [U]	Guidelines for security and privacy in Internet of Things (IoT)
27031:2011	Guidelines for information and communication technology
formatik	readiness for business continuity

2019-03-18

Datalogi

Roskilde Universitet

- 27032 [U] IT Security Techniques -- Cybersecurity -- Guidelines for Internet Security
- 27033-1:2015 Network security
 - Part 1: Overview and concepts
- 27033-2:2012 Part 2: Guidelines for the design and implementation of network security
- 27033-3:2010 Part 3: Reference networking scenarios -- Threats, design techniques and control issues
- 27033-4:2014 Part 4: Securing communications between networks using security gateways
- 27033-5: 2013 Part 5: Securing communications across networks using Virtual Private Networks (VPNs)
- 27033-6: 2016 Part 6: Securing wireless IP network access

10

```
27034-1:2011 Application security
              Part 1: Overview and concepts
27034-2:2015 Part 2: Organization normative framework
27034-3: 2018 Part 3: Application security management process
27034-4 [U] Part 4: Validation and verification
27034-5: 2017 Part 5: Protocols and application security controls data
              structure
27034-6: 2016 Part 6: Case studies
27034-7: 2018 Part 7: Assurance prediction framework
27035-1:2016 Information security incident management
              Part 1: Principles of incident management
27035-2:2016 Part 2: Guidelines to plan and prepare for incident response
27035-3 [U] Part 3: Guidelines for incident response operations
```


2019-03-18 Niels Christian Juul

11

27036-1:2014 Information security for supplier relationships Part 1: Overview and concepts
27036-2:2014 Part 2: Requirements
27036-3:2013 Part 3: Guidelines for information and communication technology supply chain security
27036-4:2016 Part 4: Guidelines for security of cloud services
27037:2012 Guidelines for identification, collection, acquisition and preservation of digital evidence
27038: 2014 Specification for digital
27039: 2015 Selection, deployment and operations of intrusion detection and prevention systems (IDPS)
27040: 2015 Storage security
27041: 2015 Guidance on assuring suitability and adequacy of incident investigative method
27042:2015 Guidelines for the analysis and interpretation of digital evidence
27043: 2015 Incident investigation principles and processes
Informatik

2019-03-18

Datalogi

Roskilde Universitet

<u>27045</u> [U]	Big data security and privacy Processes
27050-1:2016	Electronic discovery
	Part 1: Overview and concepts
27050-2:2018	Part 2: Guidance for governance and management of electronic discovery
27050-3:2017	Part 3: Code of practice for electronic discovery
27050-4 [U]	Part 4: Technical readiness
<u>27070</u> [U]	Security requirements for establishing virtualized roots of trust
<u>27099</u> [U]	Public key infrastructure Practices and policy framework
<u>27100</u> [U]	Cybersecurity Overview and concepts
27101 [U]	Cybersecurity Framework development guidelines
27102 [U]	Information security management guidelines for cyber insurance
27103:2018	Cybersecurity and ISO and IEC Standards

13

<u>27550</u> [U]	Privacy engineering
<u>27551</u> [U]	Requirements for attribute-based unlinkable entity authentication
<u>27552</u> [U]	Extension to 27001 and 27002 for privacy information management Requirements and guidelines
<u>27553</u> [U]	Security requirements for authentication using biometrics on mobile devices
27554 [U]	Application of ISO 31000 for assessment of identity management-related risk
27555 [U]	Establishing a PII deletion concept in organizations
27570 [U]	Privacy guidelines for Smart Cities

And you should also look for security techniques at other series in ISO, eg. 9700, 10100, 11000, 13000, 15000, 18000, 19000, 24000, and 29000

ISO/IEC JTC 1/SC 27 IT Security techniques

BUT

- What are the "drawbacks" of ISO standards?
- Cost of each standard downloaded
- Time to learn the standard
- Time and cost to plan, implement, audit, and revise (27001)
- Focus on procedures more than actual effects and efficiency

Information Security Management System

7 - Support

ACT Maintain & Improve ISMS

10 - Improvement

ISO 27001 Information Security Management System

8 - Operation

DO Implement & Operate ISMS

9 - Performance Evaluation

CHECK Monitor & Review ISMS

Informatik Datalogi Roskilde Universitet

Figure 14.1 Overview of IT Security Management

Organizational Context and Security Policy

- Maintained and updated regularly
 - Using periodic security reviews
 - Reflect changing technical/risk environments
- Examine role and importance of IT systems in organization

First examine organization's IT security:

Objectives - wanted IT security outcomes

Strategies - how to meet objectives

Policies - identify what needs to be done

2019-03-18

Security Policy Needs to address:

- Scope and purpose including relation of objectives to business, legal, regulatory requirements
- IT security requirements
- Assignment of responsibilities
- Risk management approach
- Security awareness and training
- General personnel issues and any legal sanctions
- Integration of security into systems development
- Information classification scheme
- Contingency and business continuity planning
- Incident detection and handling processes
- How and when policy reviewed, and change control to it

Management Support

- IT security policy must be supported by senior management
- Need IT security officer (CISO)
 - To provide consistent overall supervision
 - Liaison with senior management
 - Maintenance of IT security objectives, strategies, policies
 - Handle incidents
 - Management of IT security awareness and training programs
 - Interaction with IT project security officers
- Large organizations need separate IT project security officers associated with major projects and systems
 - Manage security policies within their area

2019-03-18 Niels Christian Juul

Roskilde University Information Security Policy

Find the university's documented official policy:

General information security policy for Roskilde University

- How long does it take to find and download it?
- Is it adequately published (in English and/or Danish)?

And review it:

- Which of the topics listed on page 485-486 in the book is addressed and which not?
- Is the document adequate for its purpose?

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Niels Christian Juul

Security Risk Assessment

Critical component of process

Ideally examine every organizational asset

Not feasible in practice

Approaches to identifying and mitigating risks to an organization's IT infrastructure:

- Baseline
- Informal
- Detailed risk
- Combined

Baseline Approach

- Goal is to implement agreed controls to provide protection against the most common threats
- Forms a good base for further security measures
- Use "industry best practice"
 - Easy, cheap, can be replicated
 - Gives no special consideration to variations in risk exposure
 - May give too much or too little security
- Generally recommended only for small organizations without the resources to implement more structured approaches

nformatik Datalogi

Informal Approach

Involves conducting an informal, pragmatic risk analysis on organization's IT systems

Exploits knowledge and expertise of analyst

Fairly quick and cheap

Judgments can be made about vulnerabilities and risks that baseline approach would not address

2019-03-18

Some risks may be incorrectly assessed

Skewed by analyst's views, varies over time

Suitable for small to medium sized organizations where IT systems are not necessarily essential

Detailed Risk Analysis

Most comprehensive approach

Significant cost in time, resources, expertise

May be a legal requirement to use

Assess using formal structured process

- •Number of stages
- •Identify threats and vulnerabilities to assets
- •Identify likelihood of risk occurring and consequences

Suitable for large organizations with IT systems critical to their business objectives

2019-03-18 Niels Christian Juul 26

Combined Approach

- Combines elements of the baseline, informal, and detailed risk analysis approaches
- Aim is to provide reasonable levels of protection as quickly as possible then to examine and adjust the protection controls deployed on key systems over time
- Approach starts with the implementation of suitable baseline security recommendations on all systems
- Next, systems either exposed to high risk levels or critical to the organization's business objectives are identified in the high-level risk assessment
- A decision can then be made to possibly conduct an immediate informal risk assessment on key systems, with the aim of relatively quickly tailoring controls to more accurately reflect their requirements
- Lastly, an ordered process of performing detailed risk analyses of these systems can be instituted
- Over time, this can result in the most appropriate and cost-effective security controls being selected and implemented on these systems

2019-03-18 Niels Christian Juul

27

Exercise

- Which approach is reflected in the security policy document from Roskilde University, 2012?
- Why?

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Detailed Security Risk Analysis

Provides the most accurate evaluation of an organization's IT system's security risks

Highest cost

Initially focused on addressing defense security concerns

Often mandated by government organizations and associated businesses

Figure 14.3 Risk Assessment Process

Step 1: Establishing the Context

- Initial step
 - Determine the basic parameters of the risk assessment
 - Identify the assets to be examined
- Explores political and social environment in which the organization operates
 - Legal and regulatory constraints
 - Provide baseline for organization's risk exposure
- Risk appetite
 - The level of risk the organization views as acceptable

Figure 14.4 Generic Organizational Risk Context

Informatik

Datalogi

Roskilde Universitet

2019-03-18 Niels Christian Juul

33

Asset Identification

- Last component is to identify assets to examine
- Draw on expertise of people in relevant areas of organization to identify key assets
 - Identify and interview such personnel

2019-03-18

Asset

• "anything that needs to be protected" because it has value to the organization and contributes to the successful attainment of the organization's objectives

Exercise: Roskilde case

1. Identify an important asset, that RUC needs to care about

Step 2: Conduct Risk Analysis

- Identify the threats or risks the assets are exposed to
- Vulnerability Identification
- Likelihood of occurrence
- Cost to organization in case of incident
- Determine risk

Terminology

Asset:

 A system resource or capability of value to its owner that requires protection

Threat:

 A potential for a threat source to exploit a vulnerability in some asset, which if it occurs may compromise the security of the asset and cause harm to the asset's owner

Vulnerability:

 A flaw or weakness in an asset's design, implementation, or operation and management that could be exploited by some threat

Risk:

 The potential for loss computed as the combination of the likelihood that a given threat exploits some vulnerability to an asset, and the magnitude of harmful consequence that results to the asset's owner

37

Threat Identification

A threat is:

Integrity

Confidentiality

Anything that might hinder or prevent an asset from providing appropriate levels of the key security services

Availability

Accountability

Reliability

Authenticity

Threat Sources

- Threats may be
 - Natural "acts of God"
 - Man-made
 - Accidental or deliberate

Evaluation of human threat sources should consider:

- Motivation
- Capability
- Resources
- Probability of attack
- Deterrence
- Any previous experience of attacks seen by the organization also needs to be considered

Vulnerability Identification

- Identify exploitable flaws or weaknesses in organization's IT systems or processes
 - Determines applicability and significance of threat to organization
- Need combination of threat and vulnerability to create a risk to an asset
- Outcome should be a list of threats and vulnerabilities with brief descriptions of how and why they might occur

Exercise: Roskilde case

- 1. Identify an important asset, that RUC needs to care about
- 2. What are the treats to that asset?
- 3. Which vulnerabilities?

Analyze Risks

- Specify likelihood of occurrence of each identified threat to asset given existing controls
- Specify consequence should threat occur
- Derive overall risk rating for each threat
 - Risk = probability threat occurs x cost to organization
- Hard to determine accurate probabilities and realistic cost consequences
- Use qualitative, not quantitative, ratings

Analyze Existing Controls

- Existing controls used to attempt to minimize threats need to be identified
- Security controls include:
 - Management
 - Operational
 - Technical processes and procedures
 - Use checklists of existing controls and interview key organizational staff to solicit information

2019-03-18 Niels Christian Juul

Table 14.2 Risk Likelihood.

Rating	Likelihood Description	Expanded Definition
1	Rare	May occur only in exceptional circumstances and may be deemed as "unlucky" or very unlikely.
2	Unlikely	Could occur at some time but not expected given current controls, circumstances, and recent events.
3	Possible	Might occur at some time, but just as likely as not. It may be difficult to control its occurrence due to external influences.
4	Likely	Will probably occur in some circumstance and one should not be surprised if it occurred.
5	Almost Certain	Is expected to occur in most circumstances and certainly sooner or later.

Rating	Consequence	Expanded Definition	
1	Insignificant	Generally a result of a minor security breach in a single area.	
		Impact is likely to last less than several days and requires only	
		minor expenditure to rectify. Usually does not result in any tangible	
		detriment to the organization.	
2	Minor	Result of a security breach in one or two areas. Impact is likely to	
		last less than a week but can be dealt with at the segment or project	
		level without management intervention. Can generally be rectified	
		within project or team resources. Again, does not result in any	
		tangible detriment to the organization, but may, in hindsight, show	hm 1 1 1 6 7 8
		previous lost opportunities or lack of efficiency.	Table 14.3
3	Moderate	Limited systemic (and possibly ongoing) security breaches. Impact	15 WIWAIW - 25 2 50W
		is likely to last up to 2 weeks and will generally require	
		management intervention, though should still be able to be dealt	
		with at the project or team level. Will require some ongoing	
		compliance costs to overcome. Customers or the public may be	
	3.7	indirectly aware or have limited information about this event.	
4	Major	Ongoing systemic security breach. Impact will likely last 4-8 weeks	
		and require significant management intervention and resources to	5 FG 0 - FT
		overcome. Senior management will be required to sustain ongoing] <u>Rig</u> k
		direct management for the duration of the incident and compliance	5272338272
		costs are expected to be substantial. Customers or the public will be	
		aware of the occurrence of such an event and will be in possession	
		of a range of important facts. Loss of business or organizational	Para avarati Para ava
		outcomes is possible, but not expected, especially if this is a once off.	Consequences
5	Catastrophic	Major systemic security breach. Impact will last for 3 months or	.1 1.
3	Catastropine	more and senior management will be required to intervene for the	
		duration of the event to overcome shortcomings. Compliance costs	
		are expected to be very substantial. A loss of customer business or	
		other significant harm to the organization is expected. Substantial	
		public or political debate about, and loss of confidence in, the	
		organization is likely. Possible criminal or disciplinary action	
		against personnel involved is likely.	
6	Doomsday	Multiple instances of major systemic security breaches. Impact	
Ü	Doomsaay	duration cannot be determined and senior management will be	
		required to place the company under voluntary administration or	
		other form of major restructuring. Criminal proceedings against	
		senior management is expected, and substantial loss of business and	
		failure to meet organizational objectives is unavoidable.	(Table can be found on pages
		Compliance costs are likely to result in annual losses for some	476-477 in textbook)Christian Juul 45
		years, with liquidation of the organization likely.	
		,	

Table 14.4

Risk Level Determination and Meaning

	Consequences					
Likelihood	Doomsday	Catastrophic	Major	Moderate	Minor	Insignificant
Almost	Е	Е	Е	Е	Н	Н
Certain						
Likely	Е	Е	E	Н	Н	M
Possible	Е	Е	Е	Н	M	L
Unlikely	Е	Е	Н	M	L	L
Rare	Е	Н	Н	M	L	L

Risk Level	Description
Extreme (E)	Will require detailed research and management planning at an executive/director
	level. Ongoing planning and monitoring will be required with regular reviews.
	Substantial adjustment of controls to manage the risk are expected, with costs
	possibly exceeding original forecasts.
High (H)	Requires management attention, but management and planning can be left to senior
	project or team leaders. Ongoing planning and monitoring with regular reviews are
	likely, though adjustment of controls are likely to be met from within existing
	resources.
Medium (M)	Can be managed by existing specific monitoring and response procedures.
) I	Management by employees is suitable with appropriate monitoring and reviews.
Low (L)	Can be managed through routine procedures.

Table 14.5

Risk Register

Asset	Threat/ Vulnerability	Existing Controls	Likelihood	Consequence	Level of Risk	Risk Priority
Internet router	Outside hacker attack	Admin password only	Possible	Moderate	High	1
Destruction of data center	Accidental fire or flood	None (no disaster recovery plan)	Unlikely	Major	High	2

2019-03-18

Roskilde Universitet

Exercise: Roskilde case

- 1. Identify an important asset, that RUC needs to care about
- 2. What are the treats to that asset?
- 3. Which vulnerabilities?
- 4. What are the likelihood of the risk?
- 5. What are the risk consequences and the cost of addressing the risk?

Risk Treatment Alternatives

Risk acceptance

Choosing to accept a risk level greater than normal for business reasons

Risk avoidance

Not proceeding with the activity or system that creates this risk

Risk transfer Sharing responsibility for the risk with a third party

Reduce consequence

Modifying the structure or use of the assets at risk to reduce the impact on the organization should the risk occur

Reduce likelihood Implement suitable controls to lower the chance of the vulnerability being exploited

2019-03-18

Summary, chapter 14

- IT security management
- Organizational context and security policy
- Security risk assessment
 - Baseline approach
 - Informal approach
 - Detailed risk analysis
 - Combined approach

- Detailed security risk analysis
 - Context and system characterization
 - Identification of threats/risks/vulnerabilities

51

- Analyze risks
- Evaluate risks
- Risk treatment

2019-03-18 Niels Christian Juul

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

2019-03-18

52

Case Study: Silver Star Mines

- Fictional operation of global mining company
- Large IT infrastructure
 - Both common and specific software
 - Some directly relates to health and safety
 - Formerly isolated systems now networked
- Decided on combined approach
- Mining industry less risky end of spectrum
- Subject to legal/regulatory requirements
- Management accepts moderate or low risk

2019-03-18 Niels Christian Juul

53

Assets

2019-03-18 Niels Christian Juul

Table 14.6 Silver Star Mines Risk Register

Asset	Threat/ Vulnerability	Existing Controls	Likelihood	Conseque nce	Level of Risk	Risk Priority
Reliability and integrity of the SCADA nodes and network	Unauthorized modification of control system	Layered firewalls and servers	Rare	Major	High	1
Integrity of stored file and database information	Corruption, theft, loss of info	Firewall, policies	Possible	Major	Extreme	2
Availability and integrity of financial system	Attacks/errors affecting system	Firewall, policies	Possible	Moderate	High	3
Availability and integrity of procurement system	Attacks/errors affecting system	Firewall, policies	Possible	Moderate	High	4
Availability and integrity of maintenance/ production system	Attacks/errors affecting system	Firewall, policies	Possible	Minor	Medium	5
Availability, integrity and confidentiality of mail services	Attacks/errors affecting system	Firewall, ext mail gateway	Almost Certain	Minor	High	6

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

Figure 15.1 IT Security Management Controls and Implementation

2019-03-18 Niels Christian Juul

57

Security Control

Control is defined as:

 "An action, device, procedure, or other measure that reduces risk by eliminating or preventing a security violation, by minimizing the harm it can cause, or by discovering and reporting it to enable corrective action."

Control Classifications

Management controls

- Focus on security policies, planning, guidelines, and standards that influence the selection of operational and technical controls to reduce the risk of loss and to protect the organization's mission
- These controls refer to issues that management needs to address

Operational controls

- Address the correct implementation and use of security policies and standards, ensuring consistency in security operations and correcting identified operational deficiencies
- These controls relate to mechanisms and procedures that are primarily implemented by people rather than systems
- They are used to improve the security of a system or group of systems

Technical controls

- Involve the correct use of hardware and software security capabilities in systems
- These range from simple to complex measures that work together to secure critical and sensitive data, information, and IT systems functions

2019-03-18 Niels Christian Juul

Control Classes

- Each of the control classes may include the following:
- Supportive controls
 - Pervasive, generic, underlying technical IT security capabilities that are interrelated with, and used by, many other controls
- Preventative controls
 - Focus on preventing security breaches from occurring, by inhibiting attempts to violate security policies or exploit a vulnerability
- Detection and recovery controls
 - Focus on the response to a security breach, by warning of violations or attempted violations of security policies or the identified exploit of a vulnerability and by providing means to restore the resulting lost computing resources

61

Table 15.1 NIST SP800-53 Security Controls

CLASS	CONTROL FAMILY
Management	Planning
Management	Program Management
Management	Risk Assessment
Management	Security Assessment and Authorization
Management	System and Services Acquisition
Operational	Awareness and Training
Operational	Configuration Management
Operational	Contingency Planning
Operational	Incident Response
Operational	Maintenance
Operational	Media Protection
Operational	Personnel Security
Operational	Physical and Environmental Protection
Operational	System and Information Integrity
Technical	Access Control
Technical	Audit and Accountability
Technical	Identification and Authentication
Technical	System and Communications Protection

Security Policies Ensure that information security policies support business requirements and comply with relevant laws and regulations.

Organization of Information Security Provide a management framework for controlling the implementation of security policies, and ensuring security of mobile devices.

Human Resource Security Ensure that employees and contractors understand and comply with security policies. Protect the organization's interests during the process of terminating or changing employment.

Asset Management Identify assets to be protected and define appropriate responsibilities for managing assets. prevent unauthorized disclosure, modification, removal or destruction of information stored on media.

Access Control Define access privileges for access to information and information processing facilities. Ensure authorized user access and prevent unauthorized user access. Hold users accountable for safeguarding their authentication information.

Cryptography Ensure proper and effective use of cryptographic software and hardware so as to provide confidentiality, integrity, and authenticity services.

Physical and Environmental Security Define and implement policies to secure information processing facilities and to manage physical access to secure locations and secured facilities. Prevent loss, damage, theft or compromise of assets and interruption to the organization's operations.

Operations Security Ensure that the operation of information processing facilities conforms to security policies. Measures include ensuring that information and information processing facilities are protected against malware; protecting against loss of data; recording events and generate evidence; ensuring the integrity of operational systems to prevent exploitation of technical vulnerabilities.

Communications Security Implement security policies to protect network equipment and facilities, and to protect information transferred within an organization and with an external entity.

System acquisition, development and maintenance Ensure that security policies and procedures apply throughout a system's lifetime.

Supplier relationships Ensure that agreements with suppliers meet security policy requirements. Monitor and assess compliance with security agreements.

Information security incident management Implement an incident management capability that enables management of information security incidents, including reporting and documenting incidents and responses.

Information security continuity Ensure that security policies address requirements for incorporation into the organization's business continuity management systems.

Compliance Ensure that legal, statutory, regulatory or contractual obligations related to information security are met. Ensure that systems and personnel comply with the organization's security policies.

Table 15.2

27002 Security Controls

Access Control

Access Control Policy and Procedures, Account Management, Access Enforcement, Information Flow Enforcement, Separation of Duties, Least Privilege, Unsuccessful Login Attempts, System Use Notification, Previous Logon (Access) Notification, Concurrent Session Control, Session Lock, Permitted Actions without Identification or Authentication, Security Attributes, Remote Access, Wireless Access, Access Control for Mobile Devices, Use of External Information Systems, User-Based Collaboration and Information Sharing, Publicly Accessible Content

Awareness and Training

Security Awareness and Training Policy and Procedures, Security Awareness, Security Training, Security Training Records, Contacts with Security Groups and Associations

Audit and Accountability

Audit and Accountability Policy and Procedures, Auditable Events, Content of Audit Records, Audit Storage Capacity, Response to Audit Processing Failures, Audit Review, Analysis, and Reporting, Audit Reduction and Report Generation, Time Stamps, Protection of Audit Information, Non-repudiation, Audit Record Retention, Audit Generation, Monitoring for Information Disclosure, Session Audit

Security Assessment and Authorization

Security Assessment and Authorization Policies and Procedures, Security Assessments, Information System Connections, Plan of Action and Milestones, Security Accreditation, Continuous Monitoring

Configuration Management

Configuration Management Policy and Procedures, Baseline Configuration, Configuration Change Control, Security Impact Analysis, Access Restrictions for Change, Configuration Settings, Least Functionality, Information System Component Inventory, Configuration Management Plan

Contingency Planning

Contingency Planning Policy and Procedures, Contingency Plan, Contingency Training, Contingency Plan Testing and Exercises, Alternate Storage Site, Alternate Processing Site, Telecommunications Services, Information System Backup, Information System Recovery and Reconstitution

Identification and Authentication

Identification and Authentication Policy and Procedures, Identification and Authentication (Organizational Users), Device Identification and Authentication, Identifier Management, Authenticator Management, Authenticator Feedback, Cryptographic Module Authentication, Identification and Authentication (Non- Organizational Users)

Incident Response

Incident Response Policy and Procedures, Incident Response Training, Incident Response Testing and Exercises, Incident Handling, Incident Monitoring, Incident Response Plan

Maintenance

System Maintenance Policy and Procedures, Controlled Maintenance, Maintenance Tools, Non-Local Maintenance, Maintenance Personnel, Timely Maintenance

Media Protection

Media Protection Policy and Procedures, Media Access, Media Marking, Media Storage, Media Transport, Media Sanitization

Physical and Environmental Protection

Physical and Environmental Protection Policy and Procedures, Physical Access Authorizations, Physical Access Control, Access Control for Transmission Medium, Access Control for Output Devices, Monitoring Physical Access, Visitor Control, Access Records, Power Equipment and Power Cabling, Emergency Shutoff, Emergency Power, Emergency Lighting, Fire Protection, Temperature and Humidity Controls, Water Damage Protection, Delivery and Removal, Alternate Work Site, Location of Information System Components, Information Leakage

Table 15.3

Detailed NIST SP800-53 Security Controls

Planning

Security Planning Policy and Procedures, System Security Plan, Rules of Behavior, Privacy Impact Assessment, Security-Related Activity Planning

Personnel Security

Personnel Security Policy and Procedures, Position Categorization, Personnel Screening, Personnel Termination, Personnel Transfer, Access Agreements, Third-Party Personnel Security, Personnel Sanctions

Risk Assessment

Risk Assessment Policy and Procedures, Security Categorization, Risk Assessment, Vulnerability Scanning

System and Services Acquisition

System and Services Acquisition Policy and Procedures, Allocation of Resources, Life Cycle Support, Acquisitions, Information System Documentation, Software Usage Restrictions, User Installed Software, Security Engineering Principles, External Information System Services, Developer Configuration Management, Developer Security Testing, Supply Chain Protection, Trustworthiness, Critical Information System Components

System and Communications Protection

System and Communications Protection Policy and Procedures, Application Partitioning, Security Function Isolation, Information in Shared Resources, Denial of Service Protection, Resource Priority, Boundary Protection, Transmission Integrity, Transmission Confidentiality, Network Disconnect, Trusted Path, Cryptographic Key Establishment and Management, Use of Cryptography, Public Access Protections, Collaborative Computing Devices, Transmission of Security Attributes, Public Key Infrastructure Certificates, Mobile Code, Voice Over Internet Protocol, Secure Name /Address Resolution Service (Recursive or Caching Resolver), Architecture and Provisioning for Name/Address Resolution Service, Session Authenticity, Fail in Known State, Thin Nodes, Honeypots, Operating System-Independent Applications, Protection of Information at Rest, Heterogeneity, Virtualization Techniques, Covert Channel Analysis, Information System Partitioning, Transmission Preparation Integrity, Non-Modifiable Executable Programs

System and Information Integrity

System and Information Integrity Policy and Procedures, Flaw Remediation, Malicious Code Protection, Information System Monitoring, Security Alerts Advisories and Directives, Security Functionality Verification, Software and Information Integrity, Spam Protection, Information Input Restrictions, Information Input Validation, Error Handling, Information Output Handling and Retention, Predictable Failure Prevention

Program Management

Information Security Program Plan, Senior Information Security Officer, Information Security Resources, Plan of Action and Milestones Process, Information System Inventory, Information Security Measures of Performance, Enterprise Architecture, Critical Infrastructure Plan, Risk Management Strategy, Security Authorization Process, Mission/Business Process Definition

Table 15.3

Continued

Figure 15.3 Residual Risk

2019-03-18 Niels Christian Juul

66

Cost-Benefit Analysis

Should be conducted by management to identify controls that provide the greatest benefit to the organization given the available resources

May be qualitative or quantitative

Must show cost justified by reduction in risk

Should contrast the impact of implementing a control or not, and an estimation of cost

Management chooses selection of controls

Considers if it reduces risk too much or not enough, is too costly or appropriate

Fundamentally a business decision

Agenda

- 1. Intro
- 2. Organizational IT Security Policy, Ch. 14.1-2
- 3. Risk Assessment, Overview, Ch. 14.3
- 4. Detailed Risk Analysis, Ch. 14.4
- 5. Case: Silver Mine, Ch. 14.5
- 6. Security Controls, Ch. 15.2 (Monica)
- 7. Security Planning, Ch. 15.3
- 8. Implementing Controls and Risk Management, Ch. 15.4-5
- 9. Silver Mine Case, Ch. 15.6

IT Security Plan

- Provides details of:
 - What will be done
 - What resources are needed
 - Who is responsible
- Goal is to detail the actions needed to improve the identified deficiencies in the risk profile

Should include

Risks, recommended controls, action priority

Selected controls, resources needed

Responsible personnel, implementation dates

Maintenance requirements

Table 15.4 Implementation Plan - example

Risk (Asset/Threat)	Hacker attack on Internet router
Level of Risk	High
Recommended	•Disable external telnet access
Controls	•Use detailed auditing of privileged command use
	•Set policy for strong admin passwords
	•Set backup strategy for router configuration file
	•Set change control policy for the router configuration
Priority	High
Selected Controls	•Implement all recommended controls
	•Update related procedures with training for affected staff
Required	•3 days IT net admin time to change & verify router configuration, write
Resources	policies;
	•1 day of training for network administration staff
Responsible	John Doe, Lead Network System Administrator,
Persons	Corporate IT Support Team
Start – End Date	February 6, 2017 to February 9, 2017
Other Comments	•Need periodic test and review of configuration and policy use

Exercise: Roskilde case

- 1. Identify an important asset, that RUC needs to care about
- 2. What are the treats to that asset?
- 3. Which vulnerabilities?
- 4. What are the likelihood of the risk?
- 5. What are the risk consequences and the cost of addressing the risk?

6. Make an Implementation Plan (Table 15.4) for this risk

Risk (Asset/Threat)	Hacker attack on Internet router
Level of Risk	High
Recommended Controls	Disable external telnet access Use detailed auditing of privileged command use Set policy for strong admin passwords Set backup strategy for router configuration file Set change control policy for the router configuration
Priority	High
Selected Controls	Implement all recommended controls Update related procedures with training for affected staff
Required Resources	 •3 days IT net admin time to change & verify router configuration, write policies; •1 day of training for network administration staff
Responsible Persons	John Doe, Lead Network System Administrator, Corporate IT Support Team
Start – End Date	February 6, 2017 to February 9, 2017
Other Comments	•Need periodic test and review of configuration and policy use

Learning outcome

Be able to

- manage information security in an organization
- conduct a thorough risk analysis wrt organizational information security
- select relevant security controls
- create an security implementation plan

Exam themes/questions:

- What is Security Policy and how should it be managed?
- How to conduct a Detailed Security Risk Assessment?
- How to make a Security Implementation Plan?

IT-security

Next week:

Course book

- Chapter 15.4-6(from today)
- Selected parts of Chapter 16, 17, 18

Student presentations, eg.

• 17.3 on e-mail policy (compare to RUC)

