IN THE CLAIMS:

The following **Listing of Claims** will replace all prior versions and listings of claims in the application:

1. (Currently Amended) A method of manufacturing an electro-active lens comprising:

providing an electro-active element; and

covering an exposed surface of the electro-active element to produce an electro-active

lens;

wherein the electro-active element comprises a plurality of pixels; and

wherein the electro-active lens is capable of focusing an image in-from ambient light:

wherein the electro-active element is connected to a power source; and

wherein the power source is connected to a hinge screw of a spectacle frame.

2. (Previously Presented) A method as in claim 1, wherein the exposed surface of the electroactive element is covered by a lens blank; and

wherein the lens blank is selected from the group consisting of a semi-finished blank, an unfinished lens blank, a lens wafer, a preformed optic and a finished lens blank.

- 3. (Previously Presented) A method as in claim 2, further comprising the forming of a recess in the front or back surface of the lens blank for receiving the electro-active element which is placed on the lens blank.
- 4. (Previously Presented) The method of claim 3 wherein the recess is formed by one of machining or molding the surface of the lens blank.

- 5. (Previously Presented) A method as in claim 1, wherein the electro-active element is connected to an electrical bus.
- 6. (Previously Presented) A method as in claim 5, wherein the bus is flexible.
- 7. (Previously Presented) A method as in claim 5, wherein the bus at least partially encircles the electro-active element.
- 8. (Previously Presented) A method as in claim 5, wherein the bus is connected to a transparent electro-active lead that reaches into a periphery of the electro-active lens.
- 9. (Previously Presented) A method as in claim 5, wherein the bus comprises a plurality of transparent electrical leads that radiate outward from the electro-active element.
- 10. (Previously Presented) A method as in claim 5, wherein the bus contains at least one perforation.
- 11. (Previously Presented) A method as in claim 1, wherein the electro-active element is connected to a controller.

Claims 12-16 are cancelled.

- 17. (Previously Presented) A method as in claim 1, wherein the covering is formed by molding.
- 18. (Previously Presented) A method as in claim 1, wherein the covering is formed by surface-casting.
- 19. (Previously Presented) A method as in claim 1, wherein the covering is formed by conformal sealing.
- 20. (Previously Presented) A method as in claim 1, wherein the covering is formed by a lens wafer.

- 21. (Previously Presented) A method as in claim 2, wherein the lens blank is a finished lens blank having an optical power equal to a wearer's distance vision prescription.
- 22. (Previously Presented) A method as in claim 2, wherein the lens blank is a finished lens blank having an optical power equal to zero.
- 23. (Previously Presented) A method as in claim 1, wherein the electro-active element provides a refractive change.
- 24. (Previously Presented) A method as in claim 23, wherein the refractive change corrects for a higher order aberration.
- 25. (Currently Amended) A method as in claim 23, wherein the refractive change corrects for a non-conventional refractive error of an eye-other than myopia, hyperopia, presbyopia, and regular astigmatism.
- 26. (Previously Presented) A method as in claim 23, wherein the refractive change corrects for conventional refractive error of an eye;

wherein the conventional refractive error is at least one of myopia, hyperopia, presbyopia or regular astigmatism.

- 27. (Previously Presented) The method of claim I where in the electro-active element is connected to a view detector.
- 28. (Currently Amended) A lens-manufactured according to the method of claims 2 A method of manufacturing an electro-active lens comprising:

	providing an electro-active element;
	covering an exposed surface of the electro-active element to produce an electro-active
lens:	

wherein the electro-active element comprises a plurality of pixels,	
the electro-active lens is capable of focusing an image from ambient light,	
the exposed surface of the electro-active element is covered by a lens blank,	
the lens blank is selected from a group comprising a semi-finished blank, an unfinished	
lens blank, a lens wafer, a preformed optic and a finished lens blank,	
wherein-the lens blank corrects at least one of a wearer's conventional and non-	
conventional refractive error, and	
wherein-the electro-active element corrects the wearer's spherical error.	
29. (Currently Amended) A method of manufacturing an electro-active lens from a lens blank	
comprising	
providing a lens blank comprising a front and back surface, a thickness and an index of	
refraction, the front or back lens blank surface having a recess;	
placing an electro-active element containing a plurality of pixels within the recess of the	
lens blank surface; and	
forming a covering layer over the surface of the lens blank containing the electro-active	
element;	
wherein the electro-active element is capable of focusing an image in ambient light, and	
wherein the covering layer is formed by way of curing an optical resin.	
30. (Previously Presented) A method as in claim 29, wherein the covering layer is formed by	
way of a lens wafer.	
Claims 31-34 are cancelled.	
35. (Previously Presented) A method as in claim 5, wherein the bus is bonded to the lens blank.	

Claim 36 is cancelled.