CLAIMS

What is claimed is:

1	1. For a wavelength division multiplexed optical network having a plurality of
. 2	optical nodes coupled by spans with each optical node capable of receiving at least one
3	optical pre-amplifier for each input fiber and at least one optical post-amplifier for each
4	output fiber, a computer implemented method of selecting amplifier placement, the
5	method comprising:
6	selecting an optical power criterion for constraining placement of one or more
7	optical amplifiers in the optical network, the optical power criterion being indicative of a
8	sufficient minimum received power in at least one receiver;
9	placing at least one amplifier in accord with the optical power criterion to
10	form an initial placement of amplifiers; and
11	determining a set of amplifier placement configurations which are consistent
12	with the initial placement of amplifiers.
1	2. The method of claim 1, wherein the optical power criterion comprises:
2	placing an amplifier in a pre-selected node location responsive to an optical loss
3	associated with at least one portion of a lightpath of the network exceeding a threshold
4	loss.
1	3. The method of claim 1, wherein the optical criterion comprises:
2	analyzing the power level of at least one wavelength channel from a source node
3	and placing an amplifier at a node location prior to a first node location in which the
4	power level decreases below a threshold power level.
1	4. The method of claim 1, wherein the optical power criterion comprises:
2	calculating an aggregate loss for all of the spans and all of the nodes; and

3	forming a constraint on the number of amplifier required in the optical network by
4	determining an aggregate number of amplifiers required for the aggregate optical loss.
1	5. The method of claim 1, further comprising:
2	performing a quality of service analysis upon each of the amplifier placement
3	configurations; and
4	selecting the amplifier placement configuration having a desired level of
5	service and a minimum number of optical amplifiers.
1	6. An optical network designed by the method of claim 5.
1	7. An optical network designed by the method of claim 1.
1	8. For a wavelength division multiplexed optical network having a plurality of
2	optical nodes coupled by spans with each optical node capable of receiving at least one
3	optical pre-amplifier for each input fiber and at least one optical post-amplifier for each
4	output fiber, a computer implemented method of selecting amplifier placement, the
5	method comprising:
6	selecting a plurality of light paths of the optical network;
7	for each selected light path, placing optical amplifiers in node locations
8	requiring optical amplification to form an initial placement of amplifiers; and
9	determining a set of amplifier placement configurations which are consistent
10	with the initial placement of amplifiers.
1	9. The method of claim 8, wherein an optical amplifier is placed in a node
2	location responsive to an optical loss associated with at least one portion of the lightpath
3	exceeding a threshold loss.
1	10. The method of claim 8, further comprising:

2	analyzing the power level of at least one wavelength channel from a source node
3	and placing an amplifier at a node location prior to a first node location in which the
4	power level decreases below a threshold power level.
1	11. The method of claim 8, further comprising:
2	calculating an aggregate loss for all of the spans and all of the nodes; and
3	forming a constraint on the number of amplifiers required in the optical network
4	by determining an aggregate number of amplifiers required for the aggregate optical loss.
1	12. The method of claim 8, further comprising:
2	performing a quality of service analysis upon each of the amplifier placement
3	configurations; and
4	selecting the amplifier placement configuration having a desired level of
5	service and a minimum number of optical amplifiers.
1	13. An optical network designed by the method of claim 12.
1	14. An optical network designed by the method of claim 8.
1	15. A computer implemented method for designing a wavelength division
2	multiplexed optical network, the method comprising:
3	providing an interface for a user to input an arrangement of optical nodes
4	coupled by optical fiber spans, each of the optical fiber spans having an associated optical
5	fiber loss that is dependent upon its length and upon an attenuation characteristic of the
6	span;
7	each node having a minimum and a maximum number of possible optical pre-
8	amplifiers which may be coupled to each of its input ports and a minimum and a
9	maximum number of possible optical post-amplifiers which may be coupled to each of its

10	output ports, the optical network having an associated multiplicity of possible optical
11	amplifier placement configurations;
12	for each node of the optical network, configuring optical components of
13	optical add/drop multiplexers to add, drop, and pass through optical wavelength channels
14	according to a channel map for providing services in the optical network, the optical
15	components of the node having an associated optical loss characteristic;
16	selecting a set of optical amplifier placement configurations;
17	analyzing quality of service for each optical amplifier placement configuration
18	in the set of optical amplifier placement configurations; and
19	selecting an optical amplifier placement configuration having a minimum
20	number of optical amplifiers and a desired quality of service.
1	16. The method of claim 15, wherein selecting the set comprises:
2	selecting an optical power criterion for constraining placement of one or more
3 ·	optical amplifiers in the optical network, the optical power criterion being indicative of a
4	sufficient minimum received power in at least one receiver;
5	placing at least one amplifier in accord with the optical power criterion to
6	form an initial placement of amplifiers; and
7	determining a set of amplifier placement configurations which are consistent
8	with the initial placement of amplifiers.
1	17. The method of claim 15, wherein selecting the set comprises:
2	for a node having at least one channel passing through the node, determining a
3	pass-through optical loss associated with the at least one channel passing through the
4	optical node;

5	responsive to the pass-through optical loss exceeding a threshold loss, placing
6	at least one amplifier in the node.
1	18. The method of claim 15, wherein selecting the set comprises:
2	for at least one optical wavelength channel, forming an equivalent optical
3	circuit model having an associated equivalent optical loss to couple a wavelength channel
4	from a first node to a second node in the network; and
5	responsive to the equivalent optical loss exceeding a threshold optical loss,
6	placing an optical amplifier in at least one of the nodes.
. 1	19. The method of claim 18, wherein the first and second nodes comprise an
2	optical add/drop path, the minimum equivalent loss includes the losses along the
3	add/drop path, and the optical amplifier is placed in one of the nodes along the add/drop
4	path.
1	20. The method of claim 15, wherein selecting the set comprises:
2	for at least one optical wavelength channel that is added and dropped,
3	sequentially moving from an add node to each subsequent node along an optical path to a
4	drop node;
5	at each node in the sequence of nodes along the optical path, determining if an
6	optical amplifier is required to couple the optical wavelength signal to a subsequent node;
. 7	and
8	responsive to determining that an optical amplifier is required to couple the
9	optical wavelength channel to a subsequent node, placing an amplifier in a node location
10	selected to couple the optical wavelength signal to the subsequent node.
1	21. The method of claim 20, further comprising:

2	performing a power analysis of the wavelength channel along the optical path
3	for an initial optical amplifier configuration; and
4	responsive to the wavelength channel having a power level below a threshold
5	power level in a node, placing an optical amplifier in a previous node.
1	22. The method of claim 15, wherein selecting the set comprises:
2	placing amplifiers proximate high loss regions of the optical network.
1	23. The method of claim 15, wherein selecting the set further comprises:
2	eliminating from consideration amplifier configurations belonging to branches of a
3	decision tree likely to have unacceptably low power for at least one wavelength channel
4	in at least one node.
1	24. The method of claim 15, where selecting the set comprises:
2	placing an optical amplifier in a node, responsive to the optical loss of the node
3	for at least one pass-through channel exceeding a first threshold loss; and
4	placing at least one amplifier proximate one end of a span responsive to
5	determining a path loss for a wavelength channel added in a first node traveling along an
5	optical path including the span to a second node exceeding a second threshold loss.
1	25. The method of claim 24, further comprising:
2	forming configurations having at least one additional optical amplifier.
İ	26. The method of claim 15, wherein selecting the set further comprises:
2	calculating an aggregate optical loss for all of the spans and all of the nodes; and
3	forming an estimate of the number of amplifiers required in the optical network
1	by determining an aggregate number of amplifiers required for the aggregate optical loss.
	27. An optical network designed by the method of claim 15.

1	28. A network design tool for a wavelength division multiplexed optical network
2	in which each optical node is capable of receiving a plurality of optical amplifiers,
3	comprising:
4	selection means for placing at least one optical amplifier to form an initial
5	placement of amplifiers in accord with an optical power criteria;
6	means for forming a set of optical amplifier placement configurations in accord
7	with the initial placement of the selection means; and
8	quality of service means to analyze the quality of service of each amplifier
9	placement configuration.
1	29. A network design tool, comprising:
2	a network configuration module for configuring optical components of nodes
3	of an optical network to add, drop, and pass-through wavelength channels according to a
4	channel map;
5	an amplifier placement selection module for selecting a subset of amplifier
6	placement configurations from the set of all possible amplifier placement configurations;
7	and
8	a quality of service analysis module configured to analyze the quality of
9	service for each amplifier configuration of the subset of amplifier placement
10	configurations and select an amplifier configuration having a minimum number of
11	amplifiers and a desired quality of service.
1	30. The system of claim 29, wherein the amplifier placement selection module
2	places amplifiers proximate high loss regions of the optical network
1	31. The system of claim 29, wherein the amplifier placement selection module
2	eliminates from consideration amplifier configurations belonging to branches of a

3	decision tree likely to have unacceptably low power for at least one wavelength channel
4	in at least one node.
1	32. A wavelength division multiplexed optical network, comprising:
2	at least four optical nodes coupled by fiber optic spans,
3	each node having an optical add/drop multiplexer and each node capable of
4	receiving at least one optical pre-amplifier for each input fiber and at least one optical
5	post amplifier for each output fiber;
6	at least one optical amplifier disposed in the nodes, wherein the configuration
7	of the at least one optical amplifier is selected and validated by a design tool.
8	33. The network of claim 32, wherein the network provides OC-192 compliant
9	services.
1	34. The network of claim 32, wherein the network has at least five nodes.
1	35. The optical network of claim 32, wherein the design tool performs the steps
2	of:
3	selecting a subset of optical amplifier placement configurations;
4	analyzing quality of service for each optical amplifier placement configuration
5	in the subset of optical amplifier placement configurations; and
6	selecting an optical amplifier placement configuration having a minimum
7	number of optical amplifiers and a desired quality of service.