2023 Spring RL Final Presentation

Batch Constraint Q-Learning

Members:

111550006 林庭寫

111550093 朱驛庭

111550106 何義翔

111550160 黄佑得

Table of contents

01

Introduction

The idea of BCQ

03

Ablation Study

finding better nn settings on gym task 02

Reproduction

Reproduction of the result on D4RL

04

Adroit Task

Try to improve returns in Adroit tasks

O1 Introduction

Brief intro. to today's main method, BCQ

Four Networks in BCQ

Exploration

adjust the action derived from VAE into a range.

Generate action

generate an action with given state, the action is near to behavioral policy

Double Q Learning

calculate the TD target with another two target Q value network

Why BCQ?

Try to solve **Extrapolation error**, caused by:

- Absent data
- 2. Model Bias
- 3. Training mismatch

02Reproduction

Reproduce the result from original paper

Maze2D & Hopper Reproduce

		seed=123	seed=456	seed=789	avg	paper
Maze2D	ant-maze-medium-diverse-v0	0.00	0.00	0.00	0.00	0.00
	ant-maze-medium-play-v0	0.00	0.30	0.00	0.10	Х
	maze2d-large-v1	109.10	119.10	90.20	106.13	23.20
	maze2d-medium_v1	85.60	71.10	72.60	76.43	35.00
	maze2d-umaze-v1	91.50	76.90	81.30	83.23	41.50
hopper	hopper-random-v0	330.58	324.36	322.87	325.94	323.90
	hopper-medium-v0	929.84	2664.16	988.39	1527.46	1752.40
	hopper-expert-v0	3679.69	2793.27	3664.08	3379.02	Х
	hopper-medium-replay-v0	1185.01	726.79	1165.64	1025.81	1057.80
	hopper-medium-expert-v0	3667.69	3518.68	3668.15	3618.17	3588.50

Halfcheetah & Walker2D Reproduce

					-	
		seed=123	seed=456	seed=789	avg	paper
halfcheetah	halfcheetah-random-v0	-1.12	-1.21	-1.46	-1.26	-1.30
	halfcheetah-medium-v0	4688.00	4462.00	4721.00	4623.67	4767.90
	halfcheetah-expert-v0	11211.00	10806.00	12307.00	11441.33	х
	halfchmedium-replay-v0	4371.00	4315.00	4125.00	4270.33	4463.90
	halfchmedium-expert-v0	12073.00	10727.00	12615.00	11805.00	7750.80
	walker2d-random-v0	220.94	221.52	222.11	221.52	228.00
	walker2d-medium-v0	2815.42	2847.64	2164.88	2609.31	2441.00
walker2d	walker2d-expert-v0	4549.01	3366.86	4521.77	4145.88	х
	walker2d-medium-replay-v0	716.67	779.04	822.28	772.66	688.70
	walker2d-medium-expert-v0	3413.47	3823.71	3335.65	3524.28	2640.30

O3 Ablation Study

Find better hyperparameters for gym task.

hopper-random-v0

The reward is relatively stable

Iterations = 1e5

Quick convergence of hopper-random-vO

Seed = 123, 456, 789

Get the average reward of three seeds

Deeper Q Network

Multiple hidden layers

The increasing complexity doesn't enhance the overall performance.

Follow the link in the graph to modify its data and then paste the new one here. For more info, click.

Deeper VAE & Q Network

Multiple VAE hidden layers

The performance maintains.

250

CQL + BCQ

CQL + BCQ

```
current_Q1, current_Q2 = self.critic(state, action)
vae_Q1, vae_Q2 = self.critic(state, self.vae.decode(next_state))
pred_Q1, pred_Q2 = self.critic(state, self.actor.forward(state, action))
```

CQL + BCQ

```
alpha = torch.tensor(0.4, dtype=torch.float32)
q1_cat = torch.cat([current_Q1, vae_Q1, pred_Q1], 1)
q2 cat = torch.cat([current Q2, vae Q2, pred Q2], 1)
logsumexp_Q1 = torch.logsumexp(q1_cat, dim=1).mean()
logsumexp_Q2 = torch.logsumexp(q2_cat, dim=1).mean()
penalty1 = alpha*(logsumexp Q1 - current Q1)
penalty2 = alpha*(logsumexp_Q2 - current_Q2)
bellman er1 = F.mse loss(current Q1, target Q)
bellman_er2 = F.mse_loss(current_Q2, target_Q)
critic_loss = (0.5 * bellman_er1 + penalty1) + (0.5 * bellman_er2 +
penalty2)
```

Scaling Hidden Size

Delete Target Perturbation Network

Use the same network to evaluate Q target

The performance maintains.

Follow the link in the graph to modify its data and then paste the new one here. For more info, click.

Delete Target Perturbation Network

```
def train(self, replay_buffer, iterations, batch_size=100):
# ...
# Critic Training
with torch.no_grad():
# Duplicate next state 10 times
next_state = torch.repeat_interleave(next_state, 10, 0)
# Compute value of perturbed actions sampled from the VAE
target_Q1, target_Q2 = self.critic_target(next_state, self.actor(next_state, self.vae.decode(next_state)))
# ...
```

Use (q1 + q2) to Select Action

The original implement use only q1

The performance maintains.

Follow the link in the graph to modify its data and then paste the new one here. For more info, click.

Use (q1 + q2) to Select Action

```
def select_action(self, state):
    with torch.no_grad():
        state = torch.FloatTensor(state.reshape(1, -1)).repeat(100, 1).to(self.device)
        action = self.actor(state, self.vae.decode(state))
        q1 = self.critic.q1(state, action)
        ind = q1.argmax(0)
    return action[ind].cpu().data.numpy().flatten()
```

Triple Q Networks

Use 3 Q-Networks

The performance maintains.

Follow the link in the graph to modify its data and then paste the new one here. For more info, click.

Triple Q Networks

```
with torch.no_grad():
   # Duplicate next state 10 times
   next state = torch.repeat interleave(next state, 10, 0)
   # Compute value of perturbed actions sampled from the VAE
   target 01, target 02, target 03= self.critic target(next state, self.actor target(next state, self.vae.decode(next state)))
   # Soft Clipped Double Q-learning
   #mini = torch.min(target Q1, target Q2)
   mini = torch.min( torch.min(target Q1, target Q2), target Q3)
   maxi = torch.max( torch.max(target Q1, target Q2), target Q3)
   target Q = self.lmbda * mini + (1. - self.lmbda) * maxi
   # Take max over each action sampled from the VAE
   target Q = target Q.reshape(batch size, -1).max(1)[0].reshape(-1, 1)
   target Q = reward + not done * self.discount * target Q
current Q1, current Q2, current Q3 = self.critic(state, action)
critic loss = F.mse loss(current 01, target 0) + F.mse loss(current 02, target 0) + F.mse loss(current 03, target 0)
self.critic optimizer.zero grad()
critic loss.backward()
self.critic optimizer.step()
```

04 Adroit Task

solve a more complex task with BCQ

door

door-[human/cloned/expert]

Iterations = 5e5

Seed = 123, 456, 789

Get the average reward of three seeds

Aroit Task Results

	3 VAE + 3 hidden	wide hidden	Triple Q	delete actor target	select action	CQL+BCQ	Origin
door -human	-57.12	-57.03	-59.36	-59.95	-59.81	-53.46	-56.6
door -cloned	-59.21	-56.26	-55.27	-57.52	-57.45		-56.3
door -expert			2948.32	2992.68	2972.49	2943.71	2850.7

Thanks!