Assignment 9

Govinda Rohith Y

May 27, 2022

Outline

- Question
- Denote Random Variables
- Given data
- Solution(a)
- Solution(b)

Question

2-24(Papoullis):

Box 1 contains 1000 bulbs of which 10% are defective. Box 2 contains 2000 bulbs which 5% are defective. Two bulbs are picked from a randomly selected box.

- (a) Find the probability that both bulbs are defective.
- (b) Assuming that both are defective, find the probability that they came from box 1.

3/7

Denote Random Variables

Assign events to random variables

Denote the random variables $Y \in \{0, 1\}$. and $X \in \{0, 1, 2\}$ Events are described in Table 1:

Variable	Event
X = 0	Picking two defective bulbs
<i>X</i> = 1	Picking one defective bulbs
X = 2	Picking zero bulbs
Y = 0	Picking up Box 1
Y = 1	Picking up Box 2

Table 1

4/7

Given data

Represent the given data

	1
Event	Probabilty
D ()(0)	
$\Pr(Y=0)$	0.5
Pr(Y=1)	0.5
$\Gamma \Gamma (T-1)$	0.5
Pr(X = 0 Y = 0)	<u>11</u>
,	1110
$ \Pr(X = 0 Y = 1) $	99
$+ \cdots (\mathcal{F} - 1)$	39980

Table 2

Solution(a)

Solution

Pr(X = 0) denotes the probability that both bulbs are defective.

From Total probability theorem

$$\Pr(X = 0) = \sum_{i=0}^{1} \Pr(Y = i) \Pr(X = 0 | Y = i)$$
 (1)

$$\implies \left| \Pr(X) \approx 0.006193 \right| \tag{2}$$

Solution(b)

Solution

Pr(Y = 0|X = 0) denotes two bulbs are picked from box 1 assuming both are defective.

From Bayes theorem

$$\Pr(Y = 0|X = 0) = \frac{\Pr(Y = 0)\Pr(X = 0|Y = 0)}{\Pr(X)}$$
(3)

$$\Longrightarrow \boxed{\Pr(Y=0|X=0)\approx 0.8} \tag{4}$$

