

WHAT IS CLAIMED IS:

1 1. A microsystem for determining clotting time of blood, the
2 microsystem comprising:

3 a single-use device including: a microfluidic channel formed in the
4 device; inlet and outlet ports in fluid communication with the channel wherein the
5 inlet port allows the introduction of blood into the channel and wherein the blood
6 flows along a length of the channel; and a microsensor at least partially in fluid
7 communication with the channel for sensing a property of the blood at various
8 locations along the length of the channel and providing corresponding signals; and

9 a signal processor for processing the signals to obtain the clotting
10 time.

1 2. The microsystem as claimed in claim 1, wherein the
2 microsensor includes a pair of spaced, conductive traces extending along the length
3 of the channel.

1 3. The microsystem as claimed in claim 2; wherein the
2 conductive traces are equally spaced along the length of the channel.

1 4. The microsystem as claimed in claim 2, wherein the
2 conductive traces are variably spaced along the length of the channel.

1 5. The microsystem as claimed in claim 2, wherein at least one
2 of the conductive traces is segmented at predetermined intervals along the length of
3 the channel.

1 6. The microsystem as claimed in claim 2, wherein the
2 conductive traces are conductive metal or carbon traces.

1 7. The microsystem as claimed in claim 1, wherein the channel
2 is spiral-shaped to minimize footprint size of the device.

1 8. The microsystem as claimed in claim 7, wherein the
2 microsensor is also spiral-shaped.

1 9. The microsystem as claimed in claim 7, wherein the
2 microsensor is spoke-shaped.

1 10. The microsystem as claimed in claim 1 wherein the signal
2 processor includes a circuit for processing the signals to obtain a stop signal which
3 indicates that the blood is clotted.

1 11. The microsystem as claimed in claim 1, wherein the property
2 of the blood is at least one of impedance and capacitance of the blood in the channel.

1 12. The microsystem as claimed in claim 2, wherein the
2 conductive traces includes Ag/AgCl, gold, platinum or iridium lines at least partially
3 disposed in the channel.

1 13. The microsystem as claimed in claim 1, wherein the
2 microsensor includes a set of spaced conductors disposed in the channel adjacent the
3 inlet port to provide a start signal when the blood is first introduced into the channel
4 and wherein the signal processor processes the start signal.

1 14. The microsystem as claimed in claim 1, wherein the device
2 further includes a substrate and a cap having the inlet port, the channel being
3 disposed between the cap and the substrate.

1 15. A low-cost, single-use device for analyzing blood coagulation,
2 the device comprising:
3 a microfluidic channel;
4 inlet and outlet ports in fluid communication with the channel wherein
5 the inlet port allows the introduction of blood into the channel and wherein the blood
6 flows along a length of the channel; and

7 a microsensor at least partially in fluid communication with the
8 channel for sensing a property of the blood at various locations along the length of
9 the channel and providing corresponding signals.

1 16. The device as claimed in claim 15, wherein the microsensor
2 includes a pair of spaced, conductive traces extending along the length of the
3 channel.

1 17. The device as claimed in claim 16, wherein the conductive
2 traces are equally spaced along the length of the channel.

1 18. The device as claimed in claim 16, wherein the conductive
2 traces are variably spaced along the length of the channel.

1 19. The device as claimed in claim 16, wherein at least one of the
2 conductive traces is segmented at predetermined intervals along the length of the
3 channel.

1 20. The device as claimed in claim 16, wherein the conductive
2 traces are conductive metal or carbon traces.

1 21. The device as claimed in claim 15, wherein the channel is
2 spiral-shaped to minimize footprint size of the device.

1 22. The device as claimed in claim 21, wherein the microsensor
2 is also spiral-shaped.

1 23. The device as claimed in claim 21, wherein the microsensor
2 is spoke-shaped.

1 24. The device as claimed in claim 15, wherein the property of
2 the blood is at least one of impedance and capacitance of the blood in the channel.

1 25. The device as claimed in claim 16, wherein the conductive
2 traces includes Ag/AgCl, gold, platinum or iridium lines at least partially disposed
3 in the channel.

1 26. The device as claimed in claim 15, wherein the microsensor
2 includes a set of spaced conductors disposed in the channel adjacent the inlet port
3 to provide a start signal when the blood is first introduced into the channel.

1 27. The device as claimed in claim 15, further comprising a
2 substrate and a cap including the inlet port, the channel being disposed between the
3 cap and the substrate.

1 28. The microsystem as claimed in claim 1, wherein the blood
2 flows in the channel by capillary action or laminar flow.

1 29. The device as claimed in claim 15, wherein the blood flows
2 in the channel by capillary action or laminar flow.