Roll No.	-

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BEC-201

Subject: Fundamentals of Electronics Engineering

Course: B.Tech.

Semester: 2nd

SECOND SESSIONAL EXAMINATION, EVEN SEMESTER, (2024-2025)

Branch: (CS, CE, EC, ME, EE)

Time -1hr. 30 min.

Maximum Marks - 30

1. Attempt any \underline{FIVE} questions:

QN	QUESTIONS	Marks	CO	BL
a.	What are the binary-arithmetic operations for $11.10 + 10.11 + 111.00 + 110.11 + 001.01 = ?$	2	CO4	L3
b.	Express the Boolean function $F = A + BC$ in a standard SOP form.	2	CO4	L3
c.	Realize basic logic gates by using NOR gate only.	2	CO4	L3
d.	Define minterm and maxterm of the Boolean function.	2	CO4	L1
e.	Find 1's and 2's complement of 1101001.	2	CO4	L3
f.	Simplify the following logical expression using Boolean algebra F (A, B, C) = $\sum m$ (1, 3, 5)	2	CO4	L3

2. Attempt any <u>ONE</u> of the following:

QN	QUESTIONS		co	BL
a.	Simplify the following logical expression using K-Map and design logic resultant circuit using basic logic gates only $F(A, B, C, D) = \sum m(0, 1, 2, 3, 1)$	5	CO4	L3
b.	5, 7, 13, 15) + d (8, 10). Minimize the following Boolean function in POS form using the K map. F (A, B, C, D, E) = ΠΜ (3, 5, 6, 9, 10, 11, 13, 19, 21, 22, 23, 25, 26, 27, 29)	5	CO4	L3
c.	By showing all the calculations, do as directed: I. $(345)_{10} = (531)_x$ II. $(110110.011)_2 = (?)_{16}$ III. $(231.36)_{10} = (?)_2$ IV. $(534)_8 = (?)_{10}$ V. Perform $(4)_{10} - (9)_{10}$ using 1's complement method.	5	CO4	L3

3. Attempt any FIVE questions:

	QUESTIONS	Marks	co	BL
QN		2	CO5	Ll
	Explain the need of modulation in communication system.	2	CO5	Ll
b.	Calculate the transmission efficiency if the modulation factor is 0.5.	2	CO5	Li
c.	Explain the block diagram of a communication system.			-

	d.	The un-modulated RMS current of an AM wave is 8.93 A, and it increases to 11.25 A with modulation. Determine the modulation index.	2	CO5	L3
	e.	Explain Electromagnetic spectrum starting range of frequencies for each application.	2	CO5	L1
-	f.	Explain the types of demodulation technique of AM waves.	2	CO5	L1

4. Attempt any \underline{ONE} of the following:

QN	QUESTIONS	Marks	CO	BL
\ 1.	Write short notes on any two of the following:		*	
a.	 I. Fundamentals of Satellite & Radar Communication. II. Different generations and standards in cellular communication system. III. Digital wireless communication system. 	5	CO5	L3
b.	Derive the transmission efficiency and total power of amplitude modulated wave assuming message and carrier wave as sinusoidal wave.	5	CO5	L1
	An audio frequency signal 5 Sin $(2\pi \times 500t)$ is used to AM a carrier of 25			
	Sin $(2\pi \times 10^5 t)$. Calculate:			
c.	I. m_a (Modulation Index).II. Amplitude of each side band.	5	CO5	L.3
	III. P _t (Total Power)		7	-
	IV. BW (Bandwidth)			
	V. Transmission Efficiency (η)			

Bloom's Taxonomy Level (BL):

Creating (L6) Evaluating (L5) Analyze (L4) Understanding (L2) Apply (L3) Remember (L1)

