Pillai, Fall 2021 ECE-GY 6303

ECE-GY 6303, Probability & Stochastic Processes

Homework # 9

Prof. Pillai

Fall 2021

Problem 1

Which among the following represent auto-correlation function of a stochastic process?

- a.) $\max(t_i, t_j)$;
- b.) $t_i^2 t_i^2$;
- c.) $t_i + t_i$;
- d.) $1/(t_i + t_i)$.

Problem 2

Given

$$R_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \quad \text{and} \quad R_{2} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix},$$

define

$$R = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix},$$

where $c_{ij} = a_{ij}b_{ij}$. Show that if R_1 and R_2 are positive definite, then R is also positive definite.

Problem 3

a.) X(t) is a W.S.S. process. Define

$$Y(t) = X(t) + aX(t-T) + bX(t+T).$$

Is Y(t) W.S.S.?

b.) X(t) is a zero mean Gaussian process with auto-correlation function $R_{XX}(t_1-t_2)$. Let

$$Y(t) = X^2(t) + X(t - T).$$

Find $R_{YY}(t_1, t_2)$. Is Y(t) stationary in any sense? Is Y(t) Gaussian?

Pillai, Fall 2021 ECE-GY 6303

Problem 4

X(t) is a zero mean stationary Gaussian process with auto-correlation function $R_{XX}(\tau)$.

- a.) Find $R_{YY}(t_1, t_2)$ and $R_{ZZ}(t_1, t_2)$.
- b.) Is Y(t) or Z(t) stationary in any sense?

Problem 5

Suppose X_n conditional on X_{n-1} is Poisson distributed with parameter λX_{n-1} . Let

$$\mu_n = E[X_n], \quad \sigma_n^2 = Var(X_n).$$

Find μ_n and σ_n^2 in terms of λ , given $\mu_1 = 1$ and $\sigma_1^2 = 1$.

Problem 6

X(t) is a zero mean Gaussian process with auto-correlation function $R_{XX}(t_i,t_j)=\min(t_i,t_j)$. Define

$$Y(t) = e^{j(X(t)+\theta)},$$

where $\theta \sim U(-\pi, \pi)$ and independent of X(t).

- a.) Find the mean and auto-correlation function of Y(t).
- b.) Is Y(t) W.S.S.?