Quicksort

Algorithms & Data Structures ITCS 6114/8114

Dr. Dewan Tanvir Ahmed
Department of Computer Science
University of North Carolina at Charlotte

Outline and Reading

- Quick-sort (§4.3)
 - Algorithm
 - Partition step
 - Quick-sort tree
 - Execution example
- Analysis of quick-sort (4.3.1)
- In-place quick-sort (§4.8)
- Summary of sorting algorithms

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - lacktriangledown Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal to x
 - G elements greater than x
 - lacksquare Recur: sort L and G
 - lacksquare Conquer: join L, E and G

Partition

- We partition an input sequence as follows:
 - lacktriangle We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quicksort takes O(n) time

```
Algorithm partition(S, p)
   Input sequence S, position p of pivot
   Output subsequences L, E, G of the
      elements of S less than, equal to,
      or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
   while ¬S.isEmpty()
      y ← S.remove(S.first())
      if \mathbf{v} < \mathbf{x}
         L.insertLast(y)
      else if y = x
          E.insertLast(y)
      else \{ y > x \}
         G.insertLast(y)
   return L, E, G
```

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

Join, join

Quicksort - Best case

- We cut the array size in half each time
- So the depth of the recursion in log₂n
- At each level of the recursion, all the partitions at that level do work that is linear in n
- $\bigcirc O(\log_2 n) * O(n) = O(n\log_2 n)$
- Hence in the best case, quicksort has time complexity
 O(nlog₂n)

Worst-case Running Time

- In the worst-case, partitioning always divides the size
 n array into these three parts:
 - A length one part, containing the pivot itself
 - A length zero part, and
 - \square A length n-1 part, containing everything else
- We don't recur on the zero-length part
- Recurring on the length n-1 part requires (in the worst case) recurring to depth n-1

Worst-case Running Time (cont..)

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- The running time is proportional to the sum

$$n + (n - 1) + ... + 2 + 1$$

Thus, the worst-case running time of quick-sort is $O(n^2)$

Worst-case Running Time

- When does this happen?
 - There are many arrangements that could make this happen
 - Here are two common cases:
 - When the array is already sorted
 - When the array is inversely sorted (sorted in the opposite order)

Typical case for quicksort

- If the array is sorted to begin with, Quicksort is terrible: $O(n^2)$
- However, Quicksort is usually O(n log₂n)
- Quicksort is generally the fastest algorithm known
- Most real-world sorting is done by Quicksort

Expected Running Time

- \square Consider a recursive call of quick-sort on a sequence of size n
 - Good call: the sizes of L and G are at most 3n/4 and at least n/4
 - **Bad call:** one of \boldsymbol{L} and \boldsymbol{G} has size greater than $3\boldsymbol{n}/4$
- A call is good with probability 1/2
 - □ 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get ${\it k}$ heads is $2{\it k}$
- \Box For a node of depth i, we expect i/2 ancestors are good calls

If a node v of the quicksort tree T is associated with a "good" recursive call, the input size of the children of v are at most 3s(v)/4 [i.e. $\frac{s(v)}{4/3}$]

If we take a path in T from the root to an external node, then the length of this path is at most the number of invocations that have to be made until achieving $\log_{4/3} n$ good invocations.

Expected Running Time, Part 2

- The expected number of invocations we must make until this occurs is $2log_{4/3}n$ (if a path terminates before this level, this is better)
- □ The expected height of the quick-sort tree is O(log n)
 The amount or work done at the nodes of the same depth is O(n)
 Thus, the expected running time of quick-sort is O(n log n)

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than *h*
 - lacktriangle the elements equal to the pivot have rank between h and k
 - lacktriangledown the elements greater than the pivot have rank greater than $oldsymbol{k}$
- The recursive calls consider
 - \square elements with rank less than h
 - lacktriangle elements with rank greater than k

```
Algorithm inPlaceQuickSort(S, 1, r)
   Input sequence S, ranks 1 and r
   Output sequence S with the
      elements of rank between 1 and r
      rearranged in increasing order
   if 1≥r
      return
   i ← a random integer between 1 and r
   x ← S.elemAtRank(i)
   (h, k) ← inPlacePartition(x)
   inPlaceQuickSort(S, 1, h - 1)
   inPlaceQuickSort(S, k + 1, r)
```


Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

$$j$$
 k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9 (pivot = 6)

- Repeat until j and k cross:
 - \square Scan j to the right until finding an element $\geq x$.
 - □ Scan k to the left until finding an element < x.
 - Swap elements at indices j and k

Example of partitioning

choose pivot:	<u>4</u>	3	6	9	2	7	3	1	2	1	8	9	3	5	6	
search:	<u>4</u>	3	6	9	2	7	3	1	2	1	8	9	3	5	6	
swap:	<u>4</u>	3	3	9	2	7	3	1	2	1	8	9	6	5	6	
search:	<u>4</u>	3	3	9	2	7	3	1	2	1	8	9	6	5	6	
swap:	<u>4</u>	3	3	1	2	7	3	1	2	9	8	9	6	5	6	
search:	<u>4</u>	3	3	1	2	7	3	1	2	9	8	9	6	5	6	
swap:	<u>4</u>	3	3	1	2	2	3	1	7	9	8	9	6	5	6	
search:	<u>4</u>	3	3	1	2	2	3	1	7	9	8	9	6	5	6	(left > right)
swap with pivot:	1	3	3	1	2	2	3	<u>4</u>	7	9	8	9	6	5	6	

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-place slow (good for small inputs)
quick-sort	O(n log n) expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)

Choice Of Pivot

Three ways to choose the pivot:

- Pivot is rightmost (or leftmost) element in list that is to be sorted
 - \square When sorting A[1:30], use A[30] (or A[1]) as the pivot
- Randomly select one of the elements to be sorted as the pivot
 - □ When sorting A[1:30], generate a random number r in the range [1, 30]
 - \square Use A[r] as the pivot

Small arrays

- Quicksort does not perform well for very small arrays
- How small depends on many factors, such as
 - the time spent making a recursive call, the compiler, etc.
- So, do not use quicksort recursively for small arrays
 - Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort

- Use the median of the array
 - Partitioning always cuts the array into roughly half
 - \square An optimal quicksort $(O(n \log n))$
 - However, hard to find the exact median
 - e.g., sort an array to pick the value in the middle

- Median-of-Three rule from the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot
 - \square When sorting A[1:20]
 - examine A[1], A[10] ((1+20)/2), and A[20]
 - Select the element with median (i.e., middle) key
 - □ If
 - A[1]=30,
 - A[10] = 3, and
 - A[20] = 12,
 - A[20] becomes the pivot

- We will use median of three
 - Compare just three elements: the leftmost, rightmost and center
 - Swap these elements if necessary so that
 - A[left] = Smallest
 - A[right] = Largest
 - A[center] = Median of three
 - Pick A[center] as the pivot
 - Swap A[center] and A[right 1] so that pivot is at second last position (why?)

median3

```
center = (left+right) / 2;

if ( a[center] < a[left] )
    swap( a+left, a+center);

if ( a[right] < a[left] )
    swap( a+left, a+right);

if ( a[right] < a[center] )
    swap( a+center, a+right);</pre>
```


Main Quicksort Routine

```
if
   (left + 10 \le right)
                                                         Choose pivot
    int pivot = medianOfThree_pivot (a, left, right);
    int i = left, j = right - 2;
    for( ; ; ){
        while (a[++i] < pivot);
                                                          Partitioning
        while ( pivot < a[--j] );
        if ( i < j )</pre>
            swap(a+i, a+j);
        else break;
    swap (a+i, a+right-1);
                                                         Recursion
    median3QuickSort( a, left, i-1);
    median3QuickSort( a, i+1, right);
else
                                                         For small arrays
    insertionSort(a, left, right);
```

Quicksort Faster than Mergesort

- $^{-}$ Both quicksort and mergesort take $O(n \log n)$ in the average case.
- Why is quicksort faster than mergesort?
 - □ The inner loop consists of an increment/decrement (by 1, which is fast), a test and a jump.
 - There is no extra juggling as in mergesort.

```
int i = left, j = right - 2;
for(;;){
    while ( a[++i] < pivot );
    while ( pivot < a[--j] );
    if ( i < j )
        swap(a+i, a+j);
    else break;
}</pre>
```

inner loop

Analysis

- **Assumptions:**
 - A random pivot (no median-of-three partitioning)
 - No cutoff for small arrays
- Running time
 - pivot selection: constant time, i.e. O(1)
 - partitioning: linear time, i.e. O(N)
 - running time of the two recursive calls
- T(N) = T(i) + T(N i 1) + cN where c is a constant
 - \square *i*: number of elements in S_1

Worst-Case Analysis

- What will be the worst case?
 - The pivot is the smallest element, all the time
 - Partition is always unbalanced

$$T(N) = T(N-1) + cN$$
 $T(N-1) = T(N-2) + c(N-1)$
 $T(N-2) = T(N-3) + c(N-2)$
 \vdots
 $T(2) = T(1) + c(2)$
 $T(N) = T(1) + c\sum_{i=2}^{N} i = O(N^2)$

Best-case Analysis

$$T(N) = 2T\left(\frac{N}{2}\right) + cN$$

$$\frac{T(N)}{N} = \frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}} + c$$

$$\frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}} = \frac{T\left(\frac{N}{4}\right)}{\frac{N}{4}} + c$$

$$\frac{T\left(\frac{N}{4}\right)}{\frac{N}{4}} = \frac{T\left(\frac{N}{8}\right)}{\frac{N}{8}} + c$$

$$\vdots$$

$$\frac{T(2)}{2} = \frac{T(1)}{4} + c$$

What will be the best case?

- Partition is perfectly balanced.
- Pivot is always in the middle (median of the array)

$$\frac{T(N)}{N} = \frac{T(1)}{1} + clog N$$

$$T(N) = cNlog N + N = O(Nlog N)$$

Average-Case Analysis

- Assume
 - Each of the sizes for S1 is equally likely
- This assumption is valid for our pivoting (median-ofthree) strategy
- On average, the running time is O(N log N)

Reference

- Algorithm Design: Foundations, Analysis, and Internet Examples. Michael T. Goodrich and Roberto Tamassia. John Wiley & Sons.
- Introduction to Algorithms. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
 Clifford Stein.