/ARRANJOS MULTIDIMENSIONAIS

Introdução a Programação

/VARIÁVEIS COMPOSTAS HOMOGÊNEAS MULTIDIMENSIONAIS

Matrizes:

"Uma estrutura que precisasse de mais de um índice, [...], seria denominada estrutura composta multidimensional"

/VETORES X /MATRIZES

- São estruturas complementares;
- Os vetores representam uma caixa de dados com apenas uma dimensão;
- A Matriz representa duas ou mais dimensões;

/EXEMPLO DE MATRIZ

/MATRIZES EM PYTHON

- Abstraímos a ideia de vetores e inserimos os objetos dentro de uma lista;
- Se um vetor é uma lista, qual estrutura podemos construir uma Matriz?

/EXEMPLO 1

- ☐ Crie uma lista de 3 dimensões por 3 dimensões. Esta lista deve conter apenas números inteiros.
- Acessa elementos da lista e os imprima com a função print();

/EXEMPLO 2

☐ Leia uma matriz 10 x 10 e escreva a localização (linha e coluna) de maior valor.

/ARRANJOS MULTIDIMENSIONAIS

Introdução a Programação

