求所给矩阵的LU分解,并用矩阵相乘检验

$$(a) \begin{bmatrix} 3 & 1 & 2 \\ 6 & 3 & 4 \\ 3 & 1 & 5 \end{bmatrix} \qquad (b) \begin{bmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} \qquad (c) \begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 1 & 3 & 4 & 4 \\ 0 & 2 & 1 & -1 \end{bmatrix}$$

解:

(a) 消去过程如下:

$$egin{bmatrix} 3 & 1 & 2 \ 6 & 3 & 4 \ 3 & 1 & 5 \end{bmatrix}
ightarrow$$
第 2 行滅去第 1 行的 2 倍 $ightarrow egin{bmatrix} 3 & 1 & 2 \ 0 & 1 & 0 \ 3 & 1 & 5 \end{bmatrix}
ightarrow$ $ightarrow$ 第 3 行滅去第 1 行的 1 倍 $ightarrow egin{bmatrix} 3 & 1 & 2 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{bmatrix} = U$

把1放在主对角线上,然后乘子按消去时它们所在的特定位置放在下三角矩阵中。得到

$$L = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix}$$

现在检查

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 6 & 3 & 4 \\ 3 & 1 & 5 \end{bmatrix} = A$$

结果符合预期。

(b) 消去过程如下:

$$\begin{bmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} \rightarrow \$ \, 2$$
行减去第 1 行的 1 倍 $\rightarrow \begin{bmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}$
$$\rightarrow \$ \, 3$$
行减去第 1 行的 $\frac{1}{2}$ 倍 $\rightarrow \begin{bmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}$
$$\rightarrow \$ \, 3$$
行减去第 2 行的 $\frac{1}{2}$ 倍 $\rightarrow \begin{bmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ $= U$

把1放在主对角线上,然后乘子按消去时它们所在的特定位置放在下三角矩阵中。得到

$$L = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ rac{1}{2} & rac{1}{2} & 1 \end{bmatrix}$$

现在检查

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} = A$$

结果符合预期。

(c)消去过程如下:

$$\begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 1 & 3 & 4 & 4 \\ 0 & 2 & 1 & -1 \end{bmatrix} \rightarrow \hat{\pi} \, 3$$
 $\hat{\pi}$ $\hat{\pi$

把1放在主对角线上,然后乘子按消去时它们所在的特定位置放在下三角矩阵中。得到

$$L = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 1 & 2 & 1 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix}$$

现在检查

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 1 & 3 & 4 & 4 \\ 0 & 2 & 1 & -1 \end{bmatrix} = A$$

结果符合预期。