MOOC Econometrics

Lecture P.2 on Building Blocks: Probability Distributions

Erik Kole

Erasmus University Rotterdam

Independence

Independence

Two random variables x, y with joint density f(v, w) and marginal densities $f_x(v)$, $f_v(w)$ are independent if and only if

$$f(v, w) = f_x(v) f_y(w)$$
 for all v, w

Consequence: joint probability is product of marginal probabilities

$$P[a \le x \le b, c \le y \le d] = \int_a^b \int_c^d f(v, w) dw dv$$

$$= \int_a^b \int_c^d f_x(v) f_y(w) dw dv \stackrel{*}{=} \int_a^b f_x(v) dv \int_c^d f_y(w) dw$$

$$= P[a \le x \le b] \cdot P[c \le y \le d]$$

Moments

Let x be a random variable with pdf f(v).

- Mean: first moment, $\mu = E[x]$
- Variance: second centered moment, $\sigma^2 = var[x] = E[(x \mu)^2]$
- Centered moment of order k

$$\mu_k = E\left[(x - \mu)^k \right]$$

Often standardized by σ^k .

- Skewness: $\mu_3/\sigma^3 = E\left[(x-\mu)^3\right]/\sigma^3$ (asymmetry)
- Kurtosis: $\mu_4/\sigma^4 = E\left[(x-\mu)^4\right]/\sigma^4$ (tail fatness)

Lecture P.2, Slide 2 of 12, Erasmus School of Economics

Independence and expectation

If x and y are independent, the expectation of a product is the product of expectations:

$$E[xy] = E[x]E[y]$$

$$E[g(x)h(y)] = E[g(x)]E[h(y)]$$

Test

Calculate cov[x, y] and $E[(x - \mu_x)^2 (y - \mu_y)^2]$ when x and y are independent.

Answer

- $cov(x, y) = E[(x \mu_x)(y \mu_y)] = E[x \mu_x]E[y \mu_y] = 0.$
- $E[(x \mu_x)^2(y \mu_y)^2] = E[(x \mu_x)^2]E[(y \mu_y)^2] = \sigma_x^2 \sigma_y^2$.

Normal distribution

$$x \sim N(\mu, \sigma^2)$$
: $f(v) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$

- $E[x] = \mu$ and $var[x] = \sigma^2$.
- ullet Bell shaped, symmetric around $\mu.$
- Skewness: 0; Kurtosis: 3.
- $y = (x \mu)/\sigma$: standard normal distribution, $y \sim N(0, 1)$.

χ^2 (chi-square) distribution

Consider $y_i \sim NID(0,1)$, i = 1, 2, ..., n

$$z = y'y = \sum_{i=1}^{n} y_i^2 : \quad z \sim \chi^2(n)$$

- NID: normally and independently distributed
- "z follows a χ^2 -distribution with n degrees of freedom."
- $E[z] = E[\sum_{i=1}^{n} y_i^2] = \sum_{i=1}^{n} E[y_i^2] = \sum_{i=1}^{n} 1 = n$

Fragues

Multivariate normal distribution

x multivariate normal: $x \sim N(\mu, \Sigma)$ $(n \times 1)$ $(n \times n)$

- $E[x] = \mu$, $var[x] = \Sigma$.
- $x_i \sim N(\mu_i, \sigma_i^2)$.
- If $\sigma_{ij} = 0$, x_i and x_j are independent.
- Linear transformations of x remain normal:

$$y = A x + b,$$
 then $y \sim N(A\mu + b, A\Sigma A')$

Lecture P.2, Slide 6 of 12, Erasmus School of Economic

Sequence of random variables

Test

Let $x_i \sim NID(\mu, \sigma^2)$, i = 1, 2, ..., n. Find the joint distribution of x, and the distributions of

$$y = \sum_{i=1}^{n} x_i$$
 and $z = \sum_{i=1}^{n} (x_i - \mu)^2$

Answer

- $x \sim N(\mu \iota, \sigma^2 I)$, as $\sigma_{ii} = 0$ for all $i \neq i$.
- $y = \iota' x$ so $y \sim N(\mu_y, \sigma_y^2)$ with $\mu_y = \iota' \mu \iota = \iota' \iota \mu = n \mu$ and $\sigma_y^2 = \iota' \sigma^2 I \iota = \iota' I \iota \sigma^2 = \iota' \iota \sigma^2 = n \sigma^2$.
- z/σ^2 : sum of squared iid normals, so $z/\sigma^2 \sim \chi^2(n)$.

Student's t distribution

Let $y \sim \textit{N}(0,1)$ and $z \sim \chi^2(\nu)$, y,z independent

$$\frac{y}{\sqrt{z/\nu}} \sim t(\nu)$$

- $t(\nu)$: Student's t distribution with ν degrees of freedom.
- fatter tails than a normal distribution
- ullet converges to a standard normal distribution for $u o\infty$

Erofus

Lecture P.2, Slide 9 of 12, Erasmus School of Economics

t − and F-distributions

Test

Let $x_1, x_2 \stackrel{\text{iid}}{\sim} t(n)$. Find distributions for $x_1 + x_2$ and x_1^2 .

Answer

 $x_1 = rac{y_1}{\sqrt{z_1/n}}$, with y_1 and z_1 independent; similar for x_2

•
$$x_1 + x_2 = \frac{y_1}{\sqrt{z_1/n}} + \frac{y_2}{\sqrt{z_2/n}}$$
, no further simplication

•
$$x_1^2 = \frac{y_1^2}{z_1/n}$$
, and $y_1^2 \sim \chi^2(1)$, so $x_1^2 \sim F(1, n)$.

F-distribution

Let $z_1 \sim \chi^2(d_1)$ and $z_2 \sim \chi^2(d_2)$, z_1 and z_2 independent

$$rac{z_1/d_1}{z_2/d_2} \sim F(d_1, d_2)$$

• F-distribution with d_1 and d_2 degrees of freedom.

Ezafus

Lecture P.2, Slide 10 of 12, Erasmus School of Economics

Training Exercise P.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus