+

Regression

Koko Friansa

6-12-2024

(Sekolah Bisnis Manajemen ITB)

+

0

Introduction

- Regression seeks the best relationship between the independent variable (regressor) X and the dependent variable (response) Y, determines the strength of that relationship, and predicts the value of the response Y based on the regressor X.
- ullet Simple linear regression applies only to cases with one regressor variable and assumes a linear relationship between X and Y.
- The relationship between variables is not deterministic (i.e., not exact). There is a random component in the equation.

Relation Type

Relation Type

Non-Linear Relationship

No Relationship

Strength of the Relationship

Correlation measures the strength of the relationship between two variables.

- Correlation coefficient (*r*):
 - The closer it is to -1, the stronger the negative relationship. If the value of one variable increases, the value of the other tends to decrease.
 - The closer it is to 1, the stronger the positive relationship. If the value of one variable increases, the value of the other also tends to increase.
 - The closer it is to 0, the weaker the relationship.

Strength of the Relationship

Correlation measures the strength of the relationship between two variables.

- Correlation coefficient (*r*):
 - The closer it is to -1, the stronger the negative relationship. If the value of one variable increases, the value of the other tends to decrease.
 - The closer it is to 1, the stronger the positive relationship. If the value of one variable increases, the value of the other also tends to increase.
 - The closer it is to 0, the weaker the relationship.

$$r = rac{\sum{(X_i - ar{X})(Y_i - ar{Y})}}{\sqrt{\sum{(X_i - ar{X})^2} \cdot \sum{(Y_i - ar{Y})^2}}}$$

Where:

- ullet X_i and Y_i : Individual data points for variables X and Y, respectively.
- \bar{X} : Mean of X.
- \bar{Y} : Mean of Y.
- \sum : Summation symbol.

Strength of the Relationship

Regression Model

Regression Model

- Linear Regression
- Polynomial Regression
- Ridge Regression
- Lasso Regression

Simple Linear Regression

- A method to predict a quantitative output Y based on a single predictor variable X
- Assumes there is a linear (approximately)
 relationship between X and Y

$$Y \approx \beta_0 + \beta_1 X$$

 \Box The coefficients eta_0 and eta_1 represent the *intercept* and *slope* terms in the linear model

Estimating Coefficients

- \square β_0 and β_1 and unknown. So we must use data to estimate the coefficients
- □ Supposing we have n data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, our goal is to obtain estimated coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ such that the linear model fits the data:

$$\hat{y} \approx \hat{\beta}_0 + \hat{\beta}_1 x$$

Thus, we want to find an intercept $\hat{\beta}_0$ and a slope $\hat{\beta}_1$ such that the resulting line is as close as possible to the n data points

Estimating Coefficients

- Minimizing the least squares criterion is a way of measuring how close our line is from the data points
- \Box Consider $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ the prediction for a measurement of Y based on the ith value of X
- □ Now $e_i = y_i \hat{y}_i$ represents the ith residual: the difference between the ith observed value and the ith predicted value by the linear model
- \square Residual Sum of Squares: $RSS = e_1^2 + e_2^2 + ... + e_n^2$

The Least Squares

lacktriangle The least squares approach chooses \hat{eta}_0 and \hat{eta}_1 that minimize the RSS:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\text{Cov}(x, y)}{\text{Var}(x)}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

The Least Squares

- \Box $\hat{\beta}_0$ and $\hat{\beta}_1$ (the fit) and found by minimizing the residual sum of squares
 - Each grey segment represents a residual

Evaluating the Coefficient Estimates

- □ How close $\hat{\beta}_0$ and $\hat{\beta}_1$ are to the true values β_0 and β_1 ?
 - lacksquare The standard errors associated to \hat{eta}_0 and \hat{eta}_1 are:

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})} \right]$$

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})}$$

where $\sigma^2 = Var(\epsilon)$, and ϵ contains the errors for each observation

Confidence Intervals

- Standard errors can be used to compute confidence intervals
 - A 95% confidence interval is the range of values such that with 95% probability, the range will contain the true unknown value of the parameter

 \Box For linear regression, $\hat{\beta}_1 \pm 2 \cdot SE(\hat{\beta}_1)$ is the 95% confidence interval for $\hat{\beta}_1$

Confidence Intervals

□ With the 95% confidence interval $\hat{\beta}_1 \pm 2 \cdot SE(\hat{\beta}_1)$:

There is approximately a 95 % chance that the interval

$$[\hat{\beta}_1 - 2 \cdot SE(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot SE(\hat{\beta}_1)]$$

- lacksquare will contain the true value of \hat{eta}_1
- lacksquare A confidence interval for \hat{eta}_0 takes the form

$$\hat{\beta}_0 \pm 2 \cdot SE(\hat{\beta}_0)$$

Confidence Intervals

Linear regression and confidence limits

Exercise

From the dataset below, find the intercept and slope! Then create a linear model

Income (\$)	Occupancy
16923	100
15797	100
17609	110
13399	70
18252	110
	16923 15797 17609 13399

Exercise

From the linear model, predict the income (\$) from this dataset!

Date	Occupancy	Income (\$)
Jan-25	95	
Feb-25	98	
Mar-25	106	
Apr-25	79	

Model Evaluation

Evaluating the Model

- Mean Squared Error (MSE)
- Pearson Correlation (R)
- R Squared (R²)

Mean Squared Error

• **Definition**: MSE measures the average squared difference between the observed (y_i) and predicted (\hat{y}_i) values.

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Interpretation:
 - A smaller MSE indicates better model performance.
 - MSE penalizes larger errors more heavily because of squaring.

Model Evaluation

Pearson Correlation (r)

• **Definition:** Pearson's correlation coefficient quantifies the linear relationship between the observed (y) and predicted (\hat{y}) values.

$$r = rac{\mathrm{Cov}(y, \hat{y})}{\sqrt{\mathrm{Var}(y) \cdot \mathrm{Var}(\hat{y})}}$$

Where:

- Cov (y, \hat{y}) : Covariance between y and \hat{y} .
- Var(y): Variance of y, and similarly for \hat{y} .

Interpretation:

- r ranges from -1 to 1.
 - r=1: Perfect positive linear relationship.
 - r=0: No linear relationship.
 - r=-1: Perfect negative linear relationship.
- ullet A higher r value suggests stronger correlation.

R-Squared (R^2)

• **Definition:** R^2 measures the proportion of variance in the dependent variable (y) explained by the independent variable (x) through the model.

$$R^2 = 1 - \frac{SSE}{SST}$$

Where:

- $SSE = \sum (y_i \hat{y}_i)^2$: Sum of squared errors.
- $SST = \sum (y_i \bar{y})^2$: Total sum of squares (variability of y around its mean).

or
$$R^2 = \left(rac{\mathrm{Cov}(x,y)}{\sqrt{\mathrm{Var}(x)\cdot\mathrm{Var}(y)}}
ight)^2$$

Multiple Linear Regression

- How can we extend our analysis in order to accommodate these additional predictors?
 - We can give each predictor a separate slope coefficient in a single model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 \square X_j represents the jth predictor and β_j quantifies the association between that variable and the response

Estimating the Regression Coefficients

 \square Given estimates $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, ..., $\hat{\beta}_p$, predictions can me made using the formula:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

 The parameters are estimated using the same least squares approach used in the context of simple linear regression

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$$

Estimating the Regression Coefficients

The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.

Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a predictor X, is a polynomial model of degree M,

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_M x^M + \epsilon.$$

Just as in the case of linear regression with cross terms, polynomial regression is a special case of linear regression - we treat each x^m as a separate predictor. Thus, we can write:

$$\mathbf{Y} = \left(egin{array}{c} y_1 \ dots \ y_n \end{array}
ight), \qquad \mathbf{X} = \left(egin{array}{cccc} 1 & x_1^1 & \dots & x_1^M \ 1 & x_2^1 & \dots & x_2^M \ dots & dots & \ddots & dots \ 1 & x_n & \dots & x_n^M \end{array}
ight), \qquad oldsymbol{eta} = \left(egin{array}{c} eta_0 \ eta_1 \ dots \ eta_M \end{array}
ight).$$

Generalized Polynomial Regression

We can generalize polynomial models:

1. consider polynomial models with multiple predictors $\{X_1, ..., X_i\}$:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_M x_1^M + \beta_{M+1} x_2 + \dots + \beta_{2M} x_2^M + \dots + \beta_{M(J-1)+1} x_J + \dots + \beta_{MJ} x_J^M$$

2. consider polynomial models with multiple predictors $\{X_1, X_2\}$ and cross terms: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_M x_1^M$

$$+ \beta_{1+M}x_2 + \ldots + \beta_{2M}x_2^M + \beta_{1+2M}(x_1x_2) + \ldots + \beta_{3M}(x_1x_2)^M$$

Polynomial Regression Degree

Polynomial Regression Degree

Shrinkage Methods

- Shrinking the coefficient estimates can significantly reduce variance
- Two best-known techniques:
 - Ridge Regression
 - Lasso Regression

The least squares fitting procedure estimates the coefficients using the values that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

t Ridge regression is similar, choosing $\hat{eta}^R_{\pmb{\lambda}}$ that minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

- $_{ extstyle }$ In this equation, $\lambda \geq 0$ is a tuning parameter.
- We seek for coefficients that lead to small RSS. The second term, $\lambda \sum_{j=1}^{p} {\beta_j}^2$, called shrinkage penalty, is small when the coefficients are close to zero
- $\hfill\Box$ The second term has the effect of shrinking the estimates of β_j towards zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

- $lue{}$ The tuning parameter λ controls the relative impact of the two terms on the regression coefficient estimates
- \square When $\lambda=0$ the penalty term has no effect, and ridge regression produces the least squares estimates
- □ As λ → ∞, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

The advantage of ridge regression's over least squares is rooted in the bias-variance trade-off

- Ridge regression includes all p predictors in the final model
 - The penalty term $\lambda \sum {\beta_j}^2$ will shrink all the coefficients towards zero, but it will not set any of them exactly to zero (unless $\lambda = \infty$)
 - This can be a problem in model interpretation, when the number of variables p is very large
 - We might wish to build a model including just the predictors considered more important for the desired outcome

 \square Lasso is an alternative to ridge regression that overcomes this disadvantage, choosing $\hat{\beta}^L_{\lambda}$ to minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- \square We just replaced ${\beta_j}^2$ by $\left|\beta_j\right|$ in the penalty
- \square We now have an ℓ_1 penalty instead of an ℓ_2 penalty
- \square The ℓ_1 norm of a coefficient vector β is $\|\beta\|_1 = \sum |\beta_i|$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- \blacksquare The ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large
- Thus, lasso performs variable selection
- Models generated from the lasso are generally much easier to interpret than those produced by ridge regression

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Thank you

