Работа №25 Лестничные фильтры

Симанкович Александр Б01-104

24 сентября 2023 г.

2. Активные звенья с двойным Т-мостом

Изучим АЧХ и ФЧХ полосового фильтра.

Схемы ФНЧ, ФВЧ, ПФ, РФ через адмиттанс

Схемы ФНЧ, ФВЧ, ПФ, РФ через импеданс

Приведем графики АЧХ для фильтров.

Рис. 1: АЧХ фильтров

9.2 Трехполюсные лестничные фильтры

1

Реализуем лестничные фильтры через импеданс.

Параметры фильтра: $R_0=50,\ f_0=1\ MHz,\ Q=10.$ Вычислим параметры $L_0=\frac{R_0}{2\pi f_0}=8$ мкГн, $C_0=\frac{1}{2\pi f_0R_0}=3.2$ нФ.

 $\mathbf{2}$

Рис. 2: Сравнение с теорией ФНЧ

Рис. 3: Сравнение с теорией, все

3

Проварьируем RLL и RSL.

Рис. 4: ФНЧ, вариация RLL

Рис. 5: ФНЧ, вариация RSL

Мы видим, что при повышении сопротивления фильтр "деградирует".

R_s	25	50	75
$\overline{ K }$	0.66	0.50	0.40
G	0.89	1.00	0.96

Таблица 1: Деградация при варьировании R_s

R_l	25	50	75
$\overline{ K }$	0.33	0.50	0.60
G	0.88	1.00	0.96

Таблица 2: Деградация при варьировании R_l

Определим ФЧХ фильтров.

Рис. 6: ФЧХ

Тип	ΦНЧ	ФВЧ	ПФ	РΦ
φ_0	0	270°	270°	0
$arphi_\infty$	-270°	0	-270°	-360°

5

Рассмотрим частотную характеристику ФНЧ, укажем на ней уровни затухания на 0, f_0 , $2f_0$, $10f_0$.

Рис. 7: ФНЧ, затухание

6

Аналогично, частотную характеристику ПФ. Отобразим полосу пропускания Δf и затухание на $2\Delta f$ и $10\Delta f$.

Рис. 8: ПФ, затухание

7

Наконец, рассмотрим режекторный фильтр. Измерим ширины полос режекции на заданных уровнях.

Рис. 9: РФ, затухание

Затухание	-3 dB	-43 dB	-63 dB
Δf	100 k	22 k	10 k

Таблица 3: Ширина полосы от уровня затухания

9.3 Фильтры нижних частот высших порядков

Рассмотрим графики ФНЧ Баттерворта с различным числом полюсов. Приведем значения затухания.

Рис. 10: ФНЧ Баттерворта высших порядков

$n\backslash f$	f_0	$2f_0$	$10f_0$
3	-3	-18	-60
4	-3	-24	-80
5	-3	-30	-100
6	-3	-36	-120
7	-3	-42	-140

Таблица 4: Уровни затухания ФНЧ Баттерворта от порядка фильтра

Рис. 11: ФНЧ Чебышева, неравномерность = 0.5 dB

Рис. 12: ФНЧ Чебышева, неравномерность = 3.0 dB

Составим таблицы затуханий для всех трех фильтров на частотах $f=2f_0$ и $f=10f_0$.

\overline{n}	3	4	5	6	7
Баттерворт	-18	-24	-30	-36	-42
Чебышев $(0.5 dB)$	-19	-30	-42	-53	-64
Чебышев $(3.0 dB)$	-28	-39	-51	-62	-74

Таблица 5: Неравномерности ФНЧ, $f=2f_0$

\overline{n}	3	4	5	6	7
Баттерворт	-60	-80	-100	-120	-140
Чебышев $(0.5 dB)$	-62	-88	-114	-140	-166
Чебышев $(3.0 dB)$	-71	-98	-123	-149	-175

Таблица 6: Неравномерности ФНЧ, $f=10f_0$

9.4 Фильтры пятого порядка

Нормализуем фильтры к фильтрам Баттерворта. Аналогично нормализуем к фильтрам Чебышева с неравномерностью $0.5\ dB$ и $3.0\ dB$.

Настроим фильтры на Q = 5, $R_0 = 50$, $f_0 = 1 MHz$.

Сделана в МісгоСар.

9.5 Семиполюсной фильтр

Нормализуем семиполюсной фильтр к ПФ Баттерворта и ПФ Чебышева с неравномерностью 0.5 dB и 3.0 dB.

Настроим фильтры на $Q=19.375,\ R_0=600,\ f_0=465\ kHz, \Delta f=24\ kHz.$

Рис. 13: ПФ Баттерворта

Рис. 14: ПФ Чебышева, неравномерность $= 0.5~\mathrm{dB}$

Рис. 15: ПФ Чебышева, неравномерность = 3.0 dB