Cours de Mathématiques — Niveau terminale RYAN BOUCHOU

Sommaire

1	Raisonnement par récurrence 3				
	1	Schéma de preuve			
	2	D'autres types de récurrence			
		2.1 Récurrence d'ordre 2			
		2.2 Récurrence finie			
		2.3 Récurrence forte			
		2.4 Récurrences multiples			
	3	Exercices			
2	Les	ensembles 8			
	1	Éléments généraux			
	2	Opérations ensemblistes			
	3	Cardinalité			
	4	Produit cartésien			
3	Dénombrement 10				
	1	k_Arrangements			
	2	Combinaisons			
	3	Triangle de Pascal			
4	TD	13			
	1	Rappels de cours			
		1.1 Voisinage			
	2	Limites			
		2.1 Question de cours			
		2.2 Démonstrations			
		2.3 Exercices			
		2.4 Autour de e^x			
		2.5 Retour sur les limites			
8	Bib	oliographie 19			

1 Raisonnement par récurrence

Le raisonnement par récurrence est une méthode de démonstration qui fait son apparition au $XVII^e$ siècle dans dans le Traité du triangle arithmétique de Blaise Pascal. Le principe de récurrence repose sur le fondement inductif de \mathbb{N} et s'énonce comme suit:

$$\left[\mathcal{P}(0) \land \left(\forall n \in \mathbb{N}, \left(\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1) \right) \right) \right] \Longrightarrow \left(\forall n \in \mathbb{N}, \mathcal{P}(n) \right)$$

Autrement dit, si $\mathcal{P}(0)$ est vraie (initialisation) et que $\forall n \in \mathbb{N}$, si la propriété est vérifiée au rang n, elle l'est aussi au rang suivant (hérédité); alors, la propriété est vrai pour tout entier.

1 Schéma de preuve

On s'attachera à suivre le schéma de preuve suivant:

Démontrons par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: "propriété dépendant de n"

- Initialisation: Montrons $\mathcal{P}(0)$.
- Hérédité: Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$: "pte au rang n+1".
- Ainsi, $\mathcal{P}(0)$ est vraie et pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ entraı̂ne $\mathcal{P}(n+1)$. Donc, par principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Remarques

- \rightarrow S'épargner une définition explicite de \mathcal{P} peut parfois vous ralentir lors de l'hérédité plus qu'autre chose. D'ailleurs n ne doit pas être quantifié dans celle-ci.
- \rightarrow Ne pas oublier de fixer n dans un ensemble de définition convenable avant l'hérédité, en tenant compte du rang de l'initialisation.
- \rightarrow Une fois rompu à l'exercice, nous serons tenté de rédiger plus brièvement; toutefois, la mention explicite du principe de récurrence et la conclusion de validité pour toute valeur de \mathbb{N} ne doivent pas être omises. Il ne faut donc pas s'arrêter après avoir montré $\mathcal{P}(n+1)$.

Exemple 1.1. Montrons par récurrence pour $n \geq 1$, $\mathcal{P}(n)$: " $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ "

• Initialisation (n = 1):

$$1 = \frac{1(1+1)}{2} \ , \ d\text{\'où } \mathcal{P}(1).$$

• *Hérédité*: Supposons \mathcal{P} pour un entier $k \geq 1$ fixé, i.e., $1+2+3+\ldots+k=\frac{k(k+1)}{2}$. Montrons la propriété au rang suivant:

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$
D'où $\mathcal{P}(k+1)$.

Ainsi, $\mathcal{P}(1)$ est vraie et pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ entraı̂ne $\mathcal{P}(n+1)$. Donc, par principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}^*$.

Ryan Bouchou 3/19

Exercice 1.1. Considérons
$$(u_n)_{n\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}}$$
 telle que
$$\begin{cases} u_0=-267\\ \forall n\geq 0, u_{n+1}=u_n+61 \end{cases}$$

Montrer par récurrence sur $n \in \mathbb{N}$ la propriété \mathcal{P}_n : " $u_n = 61n - 267$ "

Exercice 1.2. Considérons
$$(u_n)_{n\in\mathbb{N}^*}\in\mathbb{N}^{\mathbb{N}^*}$$
 telle que
$$\begin{cases} u_1=1\\ \forall n\geq 1, u_{n+1}=\frac{n+1}{n}*u_n \end{cases}$$

- 1. Montrer par récurrence sur $n \in \mathbb{N}$ la propriété \mathcal{P}_n : " $u_n > 0$ ".
- 2. De façon subsidiaire, en déduire que (u_n) est décroissante.

Exercice 1.3. Montrer que
$$\sum_{k=1}^{n} k^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

Exercice 1.4. Montrer que
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

2 D'autres types de récurrence

2.1 Récurrence d'ordre 2

Lorsqu'on établit une propriété $\mathcal{P}(n)$ qui dépend de $\mathcal{P}(n-1)$ et $\mathcal{P}(n-2)$, alors il faut procéder comme suit:

Démontrons par récurrence sur $n \geq 2$ la propriété $\mathcal{P}(n)$: "propriété dépendant de n"

- Initialisation: Montrons $\mathcal{P}(0)$ et $\mathcal{P}(1)$.
- Hérédité: Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ Montrons $\mathcal{P}(n+2)$: "pte au rang n+2".
- Ainsi, $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies et pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ entraînent $\mathcal{P}(n+2)$. Donc, par principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Exemple 1.2. Considérons la suite $(u_n)_{n\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}}$ définie par $u_0=1,u_1=3$ et $\forall n\geq 0,u_{n+2}=4u_{n+1}-3u_n$. On montre par récurrence d'ordre 2 sur $n\in\mathbb{N}$ que $u_n=3^n$.

Remarque

La preuve par récurrence se généralise à l'ordre $k \geq 0$

2.2 Récurrence finie

Cette récurrence s'établit sur un domaine de définition fini, par exemple [0, K] où $K \in \mathbb{N}$ est fixé.

2.3 Récurrence forte

On suppose la propriété vraie à tous les rangs précédents pour la montrer à un rang donné. Il suffit d'initialiser sur le premier terme.

2.4 Récurrences multiples

On opère simultanément des récurrences sur plusieurs variables. On imbrique en général les récurrences les unes dans les autres. Attention à bien énoncer les propriétés à démontrer pour chaque récurrence.

Ryan Bouchou 4/19

3 Exercices

Exercice 1.5. Montrer que $\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} 2k + 1 = n^2$

Exercice 1.6. Soit $a \in \mathbb{R}^+$. Montrer que pour $n \geq 1$,

$$(1+a)^n \ge 1 + na$$

Exercice 1.7. Considérons la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{1 + u_n} & \forall n \in \mathbb{N} \end{cases}$

Exercice 1.8. Montrer pour $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n k^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$

Exercice 1.9. Considérons les propriétés:

- \mathcal{P}_n : " $4^n 1$ est divisible par 3"
- Q_n : " $4^n + 1$ est divisible par 3"
- 1. Montrer que \mathcal{P}_n est héréditaire.
- 2. Montrer que Q_n est héréditaire.
- 3. Montrer que \mathcal{P}_n est vraie sur un domaine qu'on explicitera.
- 4. Que dire de Q_n ?

Ryan Bouchou

Correction Exercice 1.3

• Initialisation (n = 1):

$$1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$$

• Hérédité: Supposons \mathcal{P}_k pour un entier positif k, i.e.,

$$1^{2} + 2^{2} + 3^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}.$$

On veut montrer la propriété au rang k + 1:

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$
$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$
$$= \frac{(k+1)(k+2)(2k+3)}{6}.$$

Donc, comme \mathcal{P}_0 est vraie et que pour tout entier positif n, \mathcal{P}_n entraine \mathcal{P}_{n+1} , on en déduit par récurrence que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

Correction Exercice 1.4

Montrons par récurrence sur $n \in \mathbb{N}$ la formule du binome de Newton. Considérons deux réels a et b,

$$\mathcal{P}_n : "(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k "$$

• Initialisation (n = 0)

$$(a+b)^0 = {0 \choose 0} a^0 b^0 = 1.$$

• Hérédité: Supposons \mathcal{P}_k pour un entier positif k, i.e.,

$$(a+b)^k = \sum_{i=0}^k {k \choose i} a^{k-i} b^i.$$

On veut montrer la propriété au rang k+1:

$$\begin{split} (a+b)^{k+1} &= (a+b)(a+b)^k \\ &= (a+b)\sum_{i=0}^k \binom{k}{i}a^{k-i}b^i \\ &= \sum_{i=0}^k \binom{k}{i}a^{k+1-i}b^i + \sum_{i=0}^k \binom{k}{i}a^{k-i}b^{i+1} \\ &= \binom{k}{0}a^{k+1}b^0 + \sum_{i=1}^{k-1} \binom{k}{i}a^{k+1-i}b^i + \binom{k}{k}a^0b^{k+1} \\ &= \binom{k+1}{0}a^{k+1}b^0 + \sum_{i=1}^{k-1} \binom{k+1}{i}a^{k+1-i}b^i + \binom{k+1}{k+1}a^0b^{k+1}. \end{split}$$

6/19

Ryan Bouchou

Donc, comme \mathcal{P}_0 est vraie et que pour tout entier positif n, \mathcal{P}_n entraine \mathcal{P}_{n+1} , on en déduit par récurrence que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

Correction Exercice 1.5

On utilise l'identité remarquable $(1+n)^2=1+2n+n^2$

Correction Exercice 1.6

On part de \mathcal{P}_n , on multiplie par (1+a) et on utilise le fait que a>0.

Correction Exercice 1.7

Pour l'hérédité:

$$u_n \le u_{n+1} \iff u_n + 1 \le u_{n+1} + 1$$

 $\iff \sqrt{u_n + 1} \le \sqrt{u_{n+1} + 1}$ croissance de $x \mapsto \sqrt{x}$
 $\iff u_{n+1} \le u_{n+2}$

Correction Exercice 1.8

Pour l'hérédité:

Soit un entier
$$n \ge 1$$
. On suppose \mathcal{P}_n vraie : $S_n = \sum_{k=1}^n k^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$

$$S_{n+1} = 1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3}$$

$$= S_{n} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$= (n+1)^{2} \times \left(\frac{n^{2}}{4} + n + 1\right)$$

$$= (n+1)^{2} \times \frac{n^{2} + 4n + 4}{4}$$

$$= (n+1)^{2} \times \frac{(n+2)^{2}}{4}$$

Correction Exercice 1.9

Question 4: $4^n + 1 \equiv 2$ [3]

Ryan Bouchou 7/19

2 Les ensembles

1 Éléments généraux

Définition: Ensemble

Un ensemble est une collection d'objets appelés **éléments**, qui peuvent être en nombre fini ou non.

Un ensemble peut se définir de deux manières :

• En donnant la liste explicite et exhaustive de ses éléments. (Raisonnablement dans le cas des ensembles finis)

Exemple: $E = \{6, 8, D, \%\}$

• Par compréhension : lorsque les éléments vérifient une propriété particulière. Exemple: $E = \{x \in \mathbb{R} : x^2 + x + 1 = 0\}$ i.e $Rac(X^2 + X + 1)$

On note \emptyset l'ensemble vide, ne contenant donc aucun élément. Par ailleurs, un certain nombre d'ensembles de références sont nécessaires ; à savoir: $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ On définit pour la suite E et F des ensembles quelconques, ainsi que $n \in \mathbb{N}^*$

2 Opérations ensemblistes

- Appartenance: $x \in E$ si x appartient à E
- Inclusion: $E \subset F$ si E est inclus dans F ; i.e, E est un sous-ensemble de F
- Réunion: $E \cup F$ est l'ensemble des éléments appartenant à E ou F
- Intersection: $E \cap F$ est l'ensemble des éléments appartenant à E et à F
- Exclusion: $E \setminus F$ est l'ensemble des éléments de E qui n'appartiennent pas à F
- Différence symétrique: $E\triangle F$ est l'ensemble des éléments qui sont uniquement dans E et uniquement dans F. Autrement dit, $E\triangle F = (E \cup F) \setminus (E \cap F)$

Par ailleurs, on note P(E) les parties de E, l'ensemble des sous-ensembles de E.

 \triangle Si $B = \{1, 7, 8\}$ Attention à la différence entre $\{1\} \subset B$ et $\{1\} \in P(B)$

3 Cardinalité

Définition: Cardinal

On note Card(E), |E| ou encore #E, le nombre d'éléments de E. On l'appelle **cardinal** de E.

Définition: Ensembles deux à deux disjoints

Si $E_1,...,E_n$ sont deux à deux disjoints, alors $\forall i,j \in [1..n]$ et $i \neq j, Card((E_i \cap E_j)) = 0$

Propriété

Si $E_1, ..., E_n$ sont deux à deux disjoints et finis, alors $Card(E_1 \cup ... \cup E_n) = \sum_{i=1}^n Card(E_i)$

Ryan Bouchou 8/19

Produit cartésien

On appelle produit cartésien de n ensemble $E_1, ..., E_n$, l'ensemble

$$E_1 \times ... \times E_n = \{(x_1, ..., x_n) \mid x_1 \in E_1, ..., x_n \in E_n\}$$

dont les éléments sont des n_uplets. On parle alors de couple, triplet, quadruplets etc... Si l'un des E_i est vide alors, le produit cartésien l'est aussi. Enfin, si $E_1 = ... = E_n = E$ alors on note leur produit cartésien E^n

Propriété

Soient
$$E_1, ..., E_n$$
 des ensembles finis.
 $Card(E_1 \times ... \times E_n) = \prod_{i=1}^n Card(E_i)$

Exercices

Exercices 1

On considère le diagramme de Venn suivant, avec A,B,C trois parties d'un ensemble E; et a,b,c,d,e,f,g,h des éléments de E.

Dire si les affirmations suivantes sont vraies ou fausses:

- $q \in A \cap \bar{B}$
- $g \in \bar{A} \cap \bar{B}$
- $g \in \bar{A} \cup \bar{B}$
- $f \in C \backslash A$
- $e \in \bar{A} \cap \bar{B} \cap \bar{C}$
- $\{h,b\}\subset \bar{A}\cap \bar{B}$

Exercice 2

Soient A, B, C trois ensembles tels que $A \cup B = B \cap C$. Montrer que $A \subset B \subset C$.

Exercice 3

Soient A, B et C trois parties d'un ensemble E. Pour $X \subset E$, on note X^c le complémentaire de X dans E. Démontrer les lois de Morgan suivantes :

1.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
 2. $(A^c)^c = A$

2.
$$(A^c)^c = A$$

$$\mathbf{3.} \ (A \cap B)^c = A^c \cup B^c$$

$$4. \ (A \cup B)^c = A^c \cap B^c.$$

Exercice 4

Écrire l'ensemble des parties de E=a,b,c,d.

Ryan Bouchou 9/19

Exercice 5

On considère l'ensemble $D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}$. Montrer qu'il ne peut pas s'écrire comme un produit cartésien de deux parties de \mathbb{R} .

Exercice 6

On considère $\Sigma_1 = \{0, 1\}$ et $\Sigma_2 = \{a, b, c, d, e\}$. On souhaite composer des mots de passes composé d'un chiffre et de 8 lettres. Quel est le nombre de mdp possibles ?

Quel est le nombres de mots de passes si on s'autorise à avoir un ou deux chiffres ?

3 Dénombrement

On considère dans cette partie un ensemble E de cardinal fini n et $0 \le k \le n$:

1 k_Arrangements

Définition: Arrangement

On appelle k_liste ou k_Arrangements un k_ uplet d'éléments de E tous différents.

On assimile un k_Arrangement au nombre d'issues lors d'un tirage sans remise de k éléments dans un ensemble à n éléments.

Propriété

Le nombre de k_Arrangements vaut $n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$

Propriété

Le nombre de permutations de E vaut n!

2 Combinaisons

Définition: k_Combinaison

Partie de E à k éléments.

On assimile le nombre de k-combinaison au nombre d'issues d'un tirage avec remise de k éléments dans un ensemble de cardinal n.

Propriété

Le nombre de k-combinaisons de E est $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Symétrie des coefficients binomiaux: $\binom{n}{k} = \binom{n}{n-k}$

Exercice 7

On considère une course de karting comprenant n pilotes. Déterminer le nombre de podium possibles (on classera les 3 premiers).

Ryan Bouchou 10/19

Exercice 8

On considère une course de karting comprenant n pilotes. Malheureusement, tous ne peuvent pas s'élancer sur la grille de départ en même temps. Déterminer le nombre de possibilités de sélectionner les k premiers qui partiront en premiers.

3 Triangle de Pascal

Démonstrations

 \rightarrow Méthode combinatoire

ightarrow Méthode algébrique

Ryan Bouchou 11/19

Propriété

Pour n un entier natural, on a $:\sum_{k=0}^{n} = \binom{n}{k} = 2^{n}$

Démonstrations

 \rightarrow Méthode combinatoire

 \rightarrow Méthode algébrique

Propriété

Le nombre de parties d'en ensemble à n éléments vaut 2^n

Exercice - Spécialité NSI

On pourra aborder ici quelques notions sur les Langages

On considère $\Sigma_1 = \{0,1\}$ et $\Sigma_2 = \{a,b,c,d,e\}$. On souhaite composer des mots de passes à partir du langage engendré par $L = \Sigma_1^+ \cdot \Sigma_2^+$; dont on restreindra leur taille à un entier n>1. On notera L' le langage subséquent.

• Cas où n=2

Préciser la partie de L, notée L', qui nous intéresse ici à l'aide d'une description ensembliste par compréhension.

Même question avec un produit cartésien. Donner alors le cardinal de cet ensemble.

• Cas où n>1

On considère u un mot de L'. Préciser sa décomposition et les caractéristiques de celles-ci. Donner le cardinal de L' en fonction de n, et des autres données de l'exercice.

Ryan Bouchou 12/19

4 TD

1.	Limite et continuité	14
2.	Ensemble et dénombrement	16

Ryan Bouchou 13/19

LIMITES ET CONTINUITÉ

On considère dans tout ce qui suit une fonction f de $I \subset \mathbb{R} \to \mathbb{R}$ et $a \in \overline{I}$

1 Rappels de cours

1.1 Voisinage

Analogie avec les suites et la condition "à partir d'un certain rang".

Définition: Voisinage de $a \in \mathbb{R}$

On dit que f vérifie une propriété $\mathcal P$ au voisinage de a ssi $\exists \ \varepsilon > 0 : f$ vérifie $\mathcal P$ sur $I \cap [a-\varepsilon,a+\varepsilon]$

Définition: Voisinage de $a = \infty$

On dit que f vérifie une propriété $\mathcal P$ au voisinage de $+\infty$ ssi $\exists \ M \in \mathbb R: f$ vérifie $\mathcal P$ sur $I \cap [M, +\infty[$

On notera $\mathcal{V}(a)$ l'ensemble des voisinages de a. Dans \mathbb{R} , $\{[a-\eta,a+\eta],\eta\in\mathbb{R}\}$ forme une base de $\mathcal{V}(a)$. Ce faisant, tout voisinage de a peut s'écrire sous cette forme.

2 Limites

2.1 Question de cours

On considère un réel l. Traduisez les assertions suivantes:

• f tend vers l en a.

• f tend vers $+\infty$ en a.

• f tend vers l en $+\infty$.

• f tend vers $+\infty$ en $+\infty$.

2.2 Démonstrations

Proposition

 $\overline{Si\ f}$ admet une limite finie en a, alors f est bornée au voisinage de a.

- 1. Démontrer la propriété précédente.
- 2. Démontrer le théorème d'unicité de la limite.

2.3 Exercices

- 1. Démontrer que la fonction sinus n'admet pas de limite en l'infini
- 2. Montrer que $\sqrt{x^2+1}-x \underset{x\to+\infty}{\longrightarrow} 0$
- 3. La fonction $f = \begin{cases} e^{\frac{-1}{x}} & \text{si } x > 0 \\ 0 & \text{sinon.} \end{cases}$ est-elle continue sur \mathbb{R} ?

- 4. Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose que f admet une limite ℓ en $+\infty$, avec $\ell > 0$. Démontrer qu'il existe un réel A > 0 tel que, pour tout $x \ge A$, f(x) > 0.
- 5. Soit $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.

Définition: Sinus et cosinus hyperbolique

On définit sur \mathbb{R} les fonctions sh : $x \to \frac{e^x - e^{-x}}{2}$ et ch : $x \to \frac{e^x + e^{-x}}{2}$

Autour de e^x 2.4

1. Résoudre les systèmes d'équations suivantes :

1.
$$\begin{cases} e^x e^y = 10 \\ e^{x-y} = \frac{2}{5} \end{cases}$$
2.
$$\begin{cases} e^x - 2e^y = -5 \\ 3e^x + e^y = 13 \end{cases}$$
3.
$$\begin{cases} 5e^x - e^y = 19 \\ e^{x+y} = 30 \end{cases}$$

2. Démontrer que, pour tout $n \geq 2$, on a

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}.$$

3. Démontrer que, pour tous $x, y \in \mathbb{R}$,

$$sh(x+y) = sh(x)ch(y) + ch(x)sh(y)$$

4. Montrer que, pour tout $x \neq 0$,

$$\sum_{k=0}^{n} ch(kx) = \frac{ch(nx/2)sh((n+1)x/2)}{sh(x/2)}.$$

2.5Retour sur les limites..

1. Montrer que: $\lim_{x\to l} f(x) = +\infty \iff \forall (x_n) \in I^{\mathbb{N}} \mid x_n \underset{n\to +\infty}{\longrightarrow} l, \ f(x_n) \underset{n\to +\infty}{\longrightarrow} +\infty$

2. Variante - Soit $f: \mathbb{R} \to \mathbb{R}$ périodique. Montrer qu'elle ne peut pas avoir de limite infinie en $+\infty$

3. Déterminer les limites des fractions rationnelles suivantes:

1.
$$\frac{X^2 - X + 1}{7X^3} en + \infty$$

1.
$$\frac{X^2 - X + 1}{7X^3} en + \infty$$
 2. $\frac{X^2 + 4e^X}{e^X} en + \infty$

3.
$$x^{\frac{1}{1-x}}$$
 en 1

4.
$$\lim_{x \to 0^+} \left(\left(1 + \frac{1}{\sqrt{x}} \right) (x - 3) \right)$$

Ensemble et dénombrement

Formalisme des ensembles Exercice 5

Question 1 Cours

• $\pi \dots \mathbb{Q}$

ℚ…ℝ

• 8.5 . . . R

N...Z

• $\{6\}\dots\mathbb{Z}$

ℝ…ℤ

• $(7, -9, 5.8) \dots \dots$

ℝ* . . . ℝ

Question 2 Cours

Rappeler la définition d'un ensemble formulé par compréhension

Question 3

- Donner l'ensemble des entiers naturels pairs
- Donner l'ensemble des entiers relatifs impairs
- Donner l'ensemble des entiers relatifs dont le reste de leur division par 3 vaut 2
- Soit $(n, S) \in \mathbb{N}^2$. Donner l'ensemble des n_uplets dont la somme de leurs éléments vaut S.

Question 4

Soient $A = \{1, 2, 3\}$ et $B = \{0, 1, 2, 4\}$. Donner les ensembles $A \cap B$, $A \cup B$ et $A \times B$

Question 5

Déterminer deux 3_uplets de 0,1. Combien en existe-t-il au total?

Question 6

Soient A = [0, 2] et B =]1.5, 3]. Donner les ensembles $A \cap B, A \cup B$

Question 7

Soient A, B et C trois parties d'un ensemble E. Pour $X \subset E$, on note X^c le complémentaire de X dans E. Démontrer les lois de Morgan suivantes :

1.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
 2. $(A^c)^c = A$

2.
$$(A^c)^c = A$$

$$3. \ (A \cap B)^c = A^c \cup B^c$$

$$4. \ (A \cup B)^c = A^c \cap B^c.$$

Exercice 6 Propriétés sur les ensembles

Question 1

Soient $A = \{1, 2, 3\}$ et $B = \{0, 1, 2, 4\}$. Donner $\#A, \#B, \#A \cup B$

Question 2

On réalise un sondage sur un ensemble d'individus afin de connaître les langages qu'ils maîtrisent. On reporte les résultats sur le diagramme de Venn suivant:

Pour chacune des questions, on donnera une notation ensembliste afin de traduire l'énoncer.

- Donner le nombre total de personnes interrogées.
- Donner le nombre d'individus qui parlent Anglais, Espagnol et Italien.
- Donner le nombre d'individus qui parlent Espagnol et Italien seulement.
- Donner le nombre d'individus qui parlent (Anglais et Italien) ou (Anglais et Espagnol)

Question 3

Soient A et B deux ensembles finis et disjoints. On sait que $Card(A \cup B)=23$ et $Card(A \times B)=132$. Déterminer Card(A) et Card(B) sachant que Card(A) < Card(B).

Exercice 7 Dénombrement

Question 1

- Combien y-a-t-il de podiums possibles?
- Combien y-a-t-il de podiums possibles où Émile est premier?
- Combien y-a-t-il de podiums possibles dont Émile fait partie?
- On souhaite récompenser les 3 premiers en leur offrant un prix identique à chacun. Combien y-a-t-il de distributions de récompenses possibles?

Question 2

Un cadenas possède un code à 3chiffres, chacun des chiffres pouvant être un chiffre de 1 à 9.

- Combien y-a-t-il de codes possibles?
- Combien y-a-t-il de codes se terminant par un chiffre pair?
- Combien y-a-t-il de codes contenant au moins un chiffre 4?
- Combien y-a-t-il de codes contenant exactement un chiffre 4?

Dans cette question on souhaite que le code comporte obligatoirement trois chiffres distincts.

• Combien y-a-t-il de codes possibles?

Ryan Bouchou 17/19

- Combien y-a-t-il de codes se terminant par un chiffre impair?

Ryan Bouchou 18/19

8 Bibliographie

Récurrence

Ryan Bouchou 19/19