Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Problem class 3:

Hypothesis tests; Inference under model uncertainty; Hierarchical Bayes

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

1 Hypothesis test

Exercise 1. (**)Consider a Bayesian model

$$\begin{cases} x_i | \lambda & \stackrel{\text{iid}}{\sim} \operatorname{Pn}(\lambda), \ \forall i = 1, ..., n \\ \lambda & \sim \Pi(\lambda) \end{cases}$$

Hint-1 Poisson distribution has PMF: $Pn(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$

 $\textbf{Hint-2} \ \ \text{Gamma distribution has PDF: } \ \text{Ga}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) \mathbf{1}_{(0,\infty)}(x), \ \text{with } \ \mathbf{E}(x) = a/b, \ \mathbf{Var}(x) = a/b^2.$

Hint-3 Negative Binomial distribution has PMF: $Nb(x|r,\theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x1_{\mathbb{N}}(x)$. with $\theta \in (0,1), r \in \mathbb{N}$.

Consider that we are interested in testing the hypothesis whether $\lambda = \lambda_0$, (where λ_0 is a fixed known number), or not. Let $\pi_j = P(H_j)$ be the marginal prior probability of hypothesis H_j .

- 1. Design the test of hypotheses in Bayesian framework: Namely, set pair of hypotheses, specify priors, and compute the associated Bayes Factor.
- 2. Compute the posterior probability that $\lambda = \lambda_0$.
- 3. Perform the hypothesis test to test if $\lambda = 2$ or not based on the Jeffrey's scaling rule, by considering that
 - we have collected two observations $x_1 = 2$, $x_2 = 3$,
 - a priori the probability that $\{\lambda=2\}$ is 0.5,
 - given $\{\lambda \neq 2\}$, the prior distr. of λ is a conjugate one with $E(\lambda) = 2$, and $Var(\lambda) = 1$.

2 Inference under model uncertainty

Exercise 2. $(\star\star)$ Let $B_{k,j}(y)$ be the Bayes factor of model \mathscr{M}_k against model \mathscr{M}_j , for all $\forall k,i,j\in\mathcal{K}$. Show that $B_{k,j}(y)=B_{k,i}(y)B_{i,j}(y)$, for all $\forall k,i,j\in\mathcal{K}$.

3 Hierarchical Bayes

Exercise 3. $(\star\star\star)$ [Relevance Vector Machine]

Regarding the statistical model: Long story short (supplementary material)

Consider that we are interested in recovering the mapping

$$x \stackrel{\eta}{\longmapsto} \eta(x)$$

in the sense that $y \in \mathbb{R}$ is the response (output quantity) that depends on $x = (x_1, ..., x_d) \in \mathcal{X} \subseteq \mathbb{R}^d$ which is the independent variable (input quantity) in a procedure; E.g.:,

- y: precipitation in log scale
- x = (longitude, latitude): geographical coordinates.

Consider a set of observed data $\{(y_i, x_i)\}_{i=1}^n$, which may be contaminated by additive noise of unknown variance; i.e.

$$y_i = \eta(x_i) + \epsilon_i,$$

where $\epsilon_i \stackrel{\text{IID}}{\sim} \text{N}\left(0,\sigma^2\right)$ and $\sigma^2>0$ is unknown. We wish to recover $\eta(x)$ by using the Tikhonov regularization on the functional space $\mathcal H$ such that

$$\eta = \arg\min_{\forall \tilde{\eta} \in \mathcal{H}} \left\{ \sum_{i=1}^{n} L(y_i - \tilde{\eta}(x_i)) + \lambda \|\tilde{\eta}\|_{\mathcal{H}}^2 \right\}$$
 (1)

By assuming that \mathcal{H} is a Reproducing Kernel Hilbert Space (RKHS), the solution to (1) is such that

$$\eta(x) = \beta_0 + \sum_{j=1}^{n} k(x, x_j) \beta_j = k(x)^{\top} \beta$$

where $k(x) = (1, k(x, x_1), ..., k(x, x_n))^{\top}$, $k(x, x_j)$ is the reproducing kernel (such as $k_{\phi}(x, x_j) = \exp\left(-\phi \|x - x_j\|^2\right)$ for some known parameter $\phi > 0$), and $\beta \in \mathbb{R}^{n+1}$ is an unknown vector.

Consider the following Bayesian model¹

$$\begin{cases} y|\beta,\sigma^2 & \sim \mathrm{N}\left(K\beta,I\sigma^2\right) \\ \beta|\lambda & \sim \mathrm{N}\left(0,D^{-1}\right), \quad D=(\lambda_0,\lambda_1,...,\lambda_n) \\ \lambda_i & \stackrel{\mathrm{iid}}{\sim} \mathrm{d}\Pi\left(\lambda_i\right) \propto \lambda_i^{a-1} \exp\left(-b\lambda_i\right) \mathrm{d}\lambda_i, \quad \forall i=1,...,n \\ \sigma^2 & \sim \mathrm{d}\Pi\left(\sigma^2\right) \propto \left(\sigma^2\right)^{c-1} \exp\left(-\frac{1}{\sigma^2}d\right) \mathrm{d}\sigma^2 \\ \beta,\sigma^2 & \text{a priori independent} \end{cases}$$

where K is a known matrix with size $n \times (n+1)$ such that

$$K = \begin{bmatrix} 1 & k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & k(x_n, x_1) & \cdots & k(x_n, x_n) \end{bmatrix}.$$

The quantities a > 0, b > 0, c > 0, d > 0, and $\phi > 0$ are considered as fixed.

¹Dixit, A., & Roy, V. (2021). Posterior impropriety of some sparse Bayesian learning models. Statistics & Probability Letters, 171, 109039.

- 1. When b = 0, show that a necessary condition for a valid posterior inference is $a \in (-1/2, 0)$ for any choice of prior for τ (i.e. any choice of (c, d)).
- 2. Let $P = K (K^{T}K)^{-1} K^{T}$. Show that (2a) and (2b) are sufficient conditions for the Bayesian model to lead to a valid posterior inference
 - (a) if a > 0 and b > 0, or
 - (b) if $y^{\top} (I P) y + 2d > 0$ and $c > -\frac{n}{2}$
- 3. Does the the improper Uniform prior on the joint $\log(\lambda_i)$ and $\log(\sigma^2)$, i.e. $\pi(\log(\lambda_i), \log(\sigma^2)) \propto 1$, lead to a valid inference?
- 4. Does the Jeffreys' prior $\pi(\lambda_i) \propto 1/\lambda_i$ lead to a valid inference?

Hint-1:

$$(y - K\beta)^{\top}(y - K\beta) + (\beta - \mu)^{\top}V^{-1}(\beta - \mu) = (\beta - \mu^*)^{\top}(V^*)^{-1}(\beta - \mu^*) + S^*;$$

$$S^* = \mu^{\top}V^{-1}\mu - (\mu^*)^{\top}(V^*)^{-1}(\mu^*) + y^{\top}y; \qquad V^* = (V^{-1} + K^{\top}K)^{-1}; \qquad \mu^* = V^*(V^{-1}\mu + K^{\top}y)$$

Hint-2: Sherman-Morrison-Woodbury formula:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1}$$

Hint-3:

$$-\frac{\boldsymbol{y}^{\top}\boldsymbol{y}}{2\sigma^{2}} \leq -\frac{\boldsymbol{y}^{\top}\left(\boldsymbol{I}\sigma^{2} + \boldsymbol{K}\boldsymbol{D}^{-1}\boldsymbol{K}^{\top}\right)^{-1}\boldsymbol{y}}{2} \leq -\frac{1}{2\sigma^{2}}\boldsymbol{y}^{\top}\left(\boldsymbol{I} - \boldsymbol{P}\right)\boldsymbol{y}$$

where $P = K (K^{\top} K)^{-1} K$.

Hint-4: It is given that $\int_{(0,\infty)} \frac{t^{-(a+1)}}{(\xi+t)^{1/2}} dt < \infty$ if and only if $a \in (-1/2,0)$.