Universidade Federal de Uberlândia Prof. Aldicio J. Miranda

FUNÇÃO EXPONENCIAL

1. POTÊNCIA COM EXPOENTE RACIONAL

1.1 DEFINIÇÕES

Sendo a um número real qualquer ($a \in R$) e n um número inteiro ($n \in Z$);

para n > 1,
$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{\text{n fatores}}$$

para n = 1, $a^1 = a$;
para n = 0, $a^0 = 1$;
e ainda, $a^{-n} = \frac{1}{a^n}$ para $a \neq 0$.

onde aⁿ é uma *potência* de base <u>a</u> e expoente *inteiro* <u>n</u>.

1.2 PROPRIEDADES DAS POTÊNCIAS

As potências com expoente racional gozam das seguintes propriedades:

$$P_{1} a^{m} \cdot a^{n} = a^{m+n}$$

$$P_{2} a^{m} : a^{n} = a^{m-n} para a \neq 0$$

$$P_{3} (a \cdot b)^{n} = a^{n} \cdot b^{n}$$

$$P_{4} \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} para b \neq 0$$

$$P_{5} (a^{m})^{n} = a^{m \cdot n}$$

Além disso, se a é um número real e positivo, temos:

$$a^{\frac{p}{q}} = \sqrt[q]{x^p}$$
, onde $p \in Z$ e $q \in Z_+^*$

Exemplo 1:

Calcular, reduzindo, se possível, a uma só potência:

a)
$$2^3 \cdot 2^4 = 2^{3+4} = 2^7$$

c)
$$2^4:2^5=2^{4-5}=2^{-1}=\frac{1}{2}$$

b)
$$5^4:5^3=5^{4-3}=5^1=5$$

Exemplo 2:

a)
$$(a^3)^2 = a^{3.2} = a^6$$

b)
$$2^{-x}: 2^x = 2^{-x-x} = 2^{-2x}$$

c)
$$3^{\frac{1}{3}} \cdot \sqrt{3} = 3^{\frac{1}{3}} \cdot 3^{\frac{1}{2}} = 3^{\frac{1}{3} + \frac{1}{2}} = 3^{\frac{5}{6}} = \sqrt[6]{3^5}$$

2. POTÊNCIAS COM EXPOENTE REAL

É importante saber que as propriedades das potências para expoentes racionais permanecem válidas para expoentes irracionais.

Então, lembrando que a reunião dos números racionais, com os números irracionais, dá o conjunto dos números reais. Assim, têm significado em R potências do tipo:

$$2^{\frac{7}{5}}$$
, $3^{-0.75}$, $3^{\sqrt{2}}$, 2^{π} , etc.

Seus valores racionais aproximados dependem de tabelas e gráficos especiais que se baseiam no estudo das funções *exponencial e logarítmica*.

EXERCÍCOS PROPOSTOS

1) Efetue, reduzindo a uma só potência.

a)
$$x \div x^3$$

b)
$$\left(\frac{3}{2}\right) \div \left(\frac{3}{2}\right)^{-5}$$

c)
$$2^3 - 2^4$$

d)
$$3^4 \cdot 3^3$$

e)
$$2^3 + 2^4$$

f)
$$\left[\left(\frac{2}{3} \right)^{\frac{1}{2}} \right]^2$$

2) Efetue:

a)
$$\left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^{\frac{2}{3}} \cdot \left(\frac{1}{2}\right)^0$$

b)
$$3^{x-2} \div 3^{x-3}$$

c)
$$(0,2)^4 \cdot 5^4 \cdot (0,2)^{-2}$$

d)
$$\left(\sqrt{2}\right)^{-2}$$

$$f) \left(\frac{1}{4}\right)^{-\frac{1}{2}}$$

3) Obter x nas equações:

a)
$$x^{\frac{2}{3}} = 16$$

b)
$$x^{\frac{5}{2}} = 25\sqrt{5}$$

c)
$$x^{-0.5} = \frac{4}{5}$$

3. COMPARAÇÃO DE POTÊNCIAS

Vimos anteriormente que:

- 1) Potência de expoente real deve ter base positiva.
- 2) Toda potência de base 1 é igual a 1.

Para compararmos potências de mesma base saber se a^n é maior, menor , igual a a^m devemos considerar dois casos:

1° caso: a base é real e maior que 1 (a > 1)

2° caso: a base é real e está compreendida entre 0 e 1 (0 < a < 1).

No 1° caso, vale a propriedade: "se a é um número real maior que 1" $(a \in R \ e \ a > 1)$ e b e c são números reais, então:

$$a^b < a^c \Leftrightarrow b < c$$

Por exemplo,

 $2^7 > 2^4$, pois, a base 2 é maior que 1 e 7 > 4.

$$5^{\frac{1}{3}} < 5^{\frac{1}{2}}$$
, pois a base 5 é maior que 1 e 1/3 < 1/2.

Em outras palavras, se a é um número real maior que 1 ($a \in R$ e a > 1), a potência a^x cresce com o crescer do expoente real x.

No 2^o caso, vale a propriedade: "se a é um número real compreendido entre 0 e 1 ($a \in R$ e 0 < a < 1) e b e c são números reais, então.

$$a^b < a^c \Leftrightarrow b > c$$

Por exemplo,

$$\left(\frac{1}{2}\right)^5 < \left(\frac{1}{2}\right)^3$$
, pois, a base 1/2 está compreendida entre 0 e 1 e 5 > 3.

$$(0,32)^2 > (0,32)^3$$
, pois, a base 0,32 está compreendida entre 0 e 1 e 2 < 3.

Em outras palavras, se a é um número real compreendido entre 0 e 1 ($a \in R$ e 0 < a < 1), a potência a^x decresce com o crescer do expoente x.

Resultado:

Se a, b,
$$c \in \mathbf{R}$$
, então,
para $a > 1$ tem-se $a^b < a^c \Leftrightarrow b < c$
para $0 < a < 1$ tem-se $a^b < a^c \Leftrightarrow b > c$

EXERCÍCIOS PROPOSTOS

1) Classificar em V (verdadeiro) ou F (falso):

a)
$$2^{0.3} < 2^{0.4}$$

b)
$$3^{-0.001} < 0$$

$$c) \left(\frac{3}{7}\right)^{-1,5} < 1$$

$$d) \left(\frac{1}{5}\right) - 5 > \left(\frac{1}{5}\right)^{\frac{1}{5}}$$

e)
$$\left(\frac{1}{3}\right)^{\sqrt{2}} > \left(\frac{1}{3}\right)^{1,4}$$

d)
$$\left(\frac{1}{5}\right) - 5 > \left(\frac{1}{5}\right)^5$$
 e) $\left(\frac{1}{3}\right)^{\sqrt{2}} > \left(\frac{1}{3}\right)^{1,4}$ f) $\left(\frac{1}{2}\right)^{0,5} < \left(\frac{1}{2}\right)^{0,6}$

4. FUNÇÃO EXPONENCIAL

Dado um número real a, tal que a > 0 e $a \ne 1$, denominamos função exponencial de base a à função $f(x) = a^x$ definida para todo x real.

O domínio de $y = a^x \in R$ e o conjunto-imagem $\in R^*_+$

4.1 GRÁFICO DA FUNÇÃO EXPONENCIAL

1º exemplo: $f(x) = 2^x$ ou $y = 2^x$.

Tabela

X	$y=2^x$
-3	1/8
-2	1/4
-1	1/2
0	1
1	2
2	4
3	8

Gráfico

Observemos que:

- a) O domínio é R
- b) O conjunto-imagem é R*+.
- c) A curva passa pelo ponto (0, 1).
- d) Como a base 2 é maior que 1, a função $y = 2^x$ é crescente, pois,

$$x_1 < x_2 \Longrightarrow 2^{x_1} < 2^{x_2}, \quad \forall x_1, x_2 \in R$$

(quando x cresce, em correspondência, $y = 2^x$ cresce)

2º exemplo: $f(x) = (1/2)^x$ ou $y = (1/2)^x$

_	_		
1	'a	he	la.

Tueeru		
X	$y = (1/2)^x$	
-3	8	
-2	4	
-1	2	
0	1	
1	1/2	
2	1/4	
3	1/8	

Observemos que:

- a) O domínio é R
- b) O conjunto-imagem é R^{*}₊
- c) A curva passa pelo ponto (0, 1)
- d) Como a base 1/2 está compreendida entre 0 e 1, a função $y=(1/2)^x$ é decrescente, pois

$$x_1 < x_2 \implies \left(\frac{1}{2}\right)^{x_1} > \left(\frac{1}{2}\right)^{x_2}, \ \forall \ x_1, x_2 \in R$$

(quando x cresce, em correspondência, $y = (1/2)^x$ decresce)

Conclusão:

- 1- Domínio da função: o domínio é R, ou seja: D(f) = R.
- 2- Imagem: o conjunto-imagem é R_{+}^* , ou seja: $Im(f) = R_{+}^*$
- 3- Em qualquer dos casos, o ponto P(0, 1) pertence ao gráfico da função.
- 4- A função é injetora, pois se $x_1 \neq x_2 \Rightarrow a^{x_1} \neq a^{x_2}$.
- 5- A função é sobrejetora, pois $\forall y \in R^*$ existe $x \in R$ tal que $y = a^x$.
- 6- A função é bijetora, pois é injetora e sobrejetora.
- 7- No caso a > 1 a função é crescente, pois se $x_1 > x_2 \implies a^{x_1} > a^{x_2}$.
- 8- No caso 0 < a < 1 a função é decrescente, pois $x_1 > x_2 \implies a^{x_1} < a^{x_2}$.

Exemplo:

Verificar se as funções exponenciais abaixo são crescentes ou decrescentes (em R).

a)
$$f(x) = 5^x$$

b)
$$y = (0.35)^x$$

c)
$$f(x) = \left(\frac{3}{8}\right)^{-x}$$

solução:

- a) $f(x) = 5^x$ é crescente, pois 5 > 1
- b) Como $\left(\frac{3}{8}\right)^{-x} = \left(\frac{8}{3}\right)^{x}$ a função é crescente, pois $\frac{8}{3} > 1$
- c) $y = (0.35)^x$ é decrescente, pois 0 < 0.35 < 1

EXERCÍCIOS PROPOSTOS

1) Verifique se as funções abaixo são crescentes ou decrescentes em **R**. Justifique:

a)
$$f(x) = (1,6)^x$$

b)
$$f(x) = \left(\frac{\sqrt{5}}{2}\right)^x$$

c)
$$\left(\sqrt{2}-1\right)^x$$

d)
$$f(x) = \left(\frac{3}{\sqrt{5}}\right)^{-x}$$

e)
$$f(x) = \pi^x$$

f)
$$(10^{-1})^x$$

2) Faça a representação gráfica das funções:

a)
$$y = 3^x - 1$$

$$b) y = \left(\frac{1}{2}\right)^{x+2}$$

c)
$$y = \left(\frac{2}{3}\right)^x$$

5. EQUAÇÕES EXPONENCIAIS

Chamamos de equação exponencial a toda equação que apresenta a incógnita no expoente.

São exemplos de equações exponenciais:

a)
$$3^x = 1$$

b)
$$5^{x-3} = 10.2^{x-1}$$

c)
$$\pi^{x} = 3$$

Resolver uma equação significa achar o valor (ou valores) da incógnita que torne a equação uma sentença numérica verdadeira. Por exemplo, na equação $2^x = 32$, o valor x = 5 é uma raiz, pois $2^5 = 32$.

É possível transformar (através da propriedades) algumas equações exponenciais em outras equivalente que possuam, nos dois membros, potências de mesma base (maior que zero e difente de 1). Obtido isso, e lembrando que a função $y = a^x$ é injetora, chegamos a uma equação que envolve somente os expoentes dos dois membros.

Quando não for possível obter potências de mesma base nos dois membros utilizaremos outros métodos, em especial os Logaritmos.

Exemplo 1: Resolver a equação $3^x = 9$

solução:

$$9 = 3^2 \implies 3^x = 3^2 \implies x = 2$$

O conjunto solução é $S = \{2\}$.

Exemplo 2: Resolver a equação $\sqrt{3} = 27^x$

Solução:

Como
$$\sqrt{3} = 3^{\frac{1}{2}}$$
 e $27 = 3^3$, temos:

$$3^{\frac{1}{2}} = \left(3^3\right)^x \Rightarrow 3^{\frac{1}{2}} = 3^{3x} \Rightarrow 3x = \frac{1}{2} \Rightarrow x = \frac{1}{6}$$
 O conjunto solução é $S = \{\frac{1}{6}\}$

Exemplo 3: Resolver a equação $2^x + 2^{x+1} = 24$

solução:

A equação também pode ser escrita assim: $2^x + 2^x$. 2 = 24. Substituindo 2^x por y, temos:

$$y + 2y = 24 \Rightarrow y = 8$$

então, $2^x = 8 \Rightarrow x = 3$
O conjunto solução = S = {3}

EXERCÍCIOS PROPOSTOS

1) Resolva as seguintes equações:

a)
$$2^{x+2} + 2^x = 80$$
 b) $3^{x-4} + 3^x = \frac{82}{27}$ c) $\frac{5^{5x}}{5^4} = \left(\frac{1}{5}\right)^{x+1}$

c)
$$\frac{5^{5x}}{5^4} = \left(\frac{1}{5}\right)^{x+1}$$

d)
$$1000 = \sqrt[5]{(0,01)^{x-1}}$$
 e) $4^{\frac{x-2}{3}} = 4^{\frac{2x+1}{4}}$ f) $5^{x-2} + 3 \cdot 5^{x+1} = 351 + 5^x$

6. INEQUAÇÕES EXPONENCIAIS

Chamamos de inequação exponencial a toda inequação que apresenta a incógnita no expoente.

São exemplos de inequações exponenciais:

$$5^x > 5^2$$
, $3^{x-1} < 9$,

Resolver uma inequação significa achar valor (ou valores) da incógnita que torne a inequação uma desigualdade numérica verdadeira.

É possível mostrar através das propriedades algumas inequações exponenciais em outras equivalentes que possuam, nos dois membros, potências de mesma base (maior que zero e diferente de 1). Feito isso, e lembrando que a função $y = a^x$ é crescente quando a > 1 e decrescente quando 0 < a < 1, obtemos uma inequação que envolve apenas os expoentes.

Caso não seja possível a obtenção de bases iguais, usaremos outros métodos.

Exemplo 1: Resolver a inequação $10^x > 1000$.

Solução:

Temos: $1000 = 10^3 \implies 10^x > 10^3$

Como as bases são iguais e maiores que 1 o sinal > é mantido para os expoentes pois, nessas condições, a função exponencial é crescente. Então x > 3.

O conjunto solução é $S = \{x \in R / x > 3\}$

Exemplo 2: Resolver a inequação $(0,7)^x \le \frac{7}{10}$

Solução:

Temos:
$$(0,7)^x \le (0,7)^1$$

Como as bases são iguais, positivas e menores que 1, o sinal \leq será trocado por \geq pois, nessas condições, a função exponencial é decrescente. Então $x \geq 1$.

O conjunto solução é $S = \{x \in R / x \ge 1\}.$

EXERCÍCIOS PROPOSTOS

1) Resolva as seguintes inequações exponenciais:

a)
$$5^x < 125$$
 b) $3^x \ge \frac{1}{3}$ c) $\left(\frac{3}{4}\right)^x < \frac{9}{16}$

d)
$$10^{4-2x} \ge 1000$$

d)
$$10^{4-2x} \ge 1000$$
 e) $\sqrt[3]{(0,1)^{x+1}} < 10^{-4}$ f) $16^{\frac{x}{2} + \frac{1}{3}} \le 32^{x-1}$

f)
$$16^{\frac{x}{2} + \frac{1}{3}} \le 32^{x-1}$$

Exemplo 3: Resolver a inequação $2^x < 2^3 < 2^{2x}$. (inequação dupla)

Solução:

Devemos ter simultaneamente:

$$2^{x} < 2^{3}$$
 (I)

$$2^3 < 2^{2x}$$
 (II)

(1) $2^x < 2^3 \Rightarrow x < 3$, pois as bases são iguais e maior que 1

(II)
$$2^3 < 2^{2x} \Rightarrow 3 < 2x \Rightarrow x > \frac{3}{2}$$
, mesmo motivo.

O conjunto solução é
$$S = \left\{ x \in R \mid \frac{3}{2} < x < 3 \right\}$$

EXERCÍCIOS PROPOSTOS

1) Resolva as seguintes inequações exponenciais:

a)
$$5 < 5^x < 125$$

b)
$$\frac{8}{3} \le \left(\frac{3}{8}\right)^{x-2} < \left(\frac{3}{8}\right)^{2x+3}$$
 c) $8 < \left(\frac{1}{2}\right)^x < 64$

c)
$$8 < \left(\frac{1}{2}\right)^x < 64$$

POTÊNCIA 7. COMENTÁRIO DE DE **EXPOENTE IRRACIONAL**

Veremos agora como é possível interpretar uma potência de base positiva (e diferente de 1), mas de expoente irracional. Para isso usaremos aproximações com potências de expoente racional.

Exemplo:

Seja o número $5^{\sqrt{2}}$, onde a base é 5 (maior que 1) e o expoente $\sqrt{2}$, irracional.

Uma tabela com valores aproximados (por falta e por excesso) de $\sqrt{2}$ é:

$$1 < \sqrt{2} < 2$$

$$1,4 < \sqrt{2} < 1,5$$

$$1,41 < \sqrt{2} < 1,42$$

. . .

. . .

. . .

Como a função $y=5^x$ é crescente em R, pois a base é maior que 1, teremos em correspondência uma tabela de valores aproximados de $5^{\sqrt{2}}$.

$$5^1 < 5^{\sqrt{2}} < 5^2$$

$$5^{1.4} < 5^{\sqrt{2}} < 5^{1.5}$$

$$5^{1,41} < 5^{\sqrt{2}} < 5^{1,42}$$

. . .

. . .

. . .

Observação: na coluna da esquerda estão os valores de $5^{\sqrt{2}}$, por falta, e na direita, por excesso.

Desse modo, o número $5^{\sqrt{2}}$ fica definido por esses dois conjuntos de valores aproximados (por falta e por excesso), nos quais foram utilizados expoentes racionais.