3.3 COMPLETE SOLUTION TO AR = F

- 501	ution	l to	ΑŻ	: B +	qke	s the	form	1 = 7	χ̂ _P +	X _n	where	χ̈́ρ	s one	parti	cular	so I v	tion to	A X	ر قرقا =	in = ar	ig solu	tion .	to Ar	= 0	
			essio	n is	abt	ained	lest.													1	null sp				
			AU	g m on	red	man	urik (/	(ខ្ង		→ [Ra	F •+]	A												
Two) e)	(tre									- extr														
								mxŊ																	
								400											_						
						C	U	11	LŁ	If	20	L	JT	101	T	0	ΑĀ	3	Ь						

EXAMPLE : Find all solutions to Ax = 6 where

#1) row reduce the augmented maurix

O Remember RREF, au o's above pivots

R3 . R2	,	2_	. 1	o	4	1 R2	1	z	1	0	y	K1 - K2	,	2	٥	- y	7		
	0	0	2	8	-6		0	D	t	ч	-3		0	0	1	ч	- 3	= R	à
	0	o	0	o	0		0	0	0	0	0		0	٥	0	0	0		

#2) Bet pivots = free vars

$$\begin{cases} X_1 + 2X_2 = -4X_4 = 7 \\ X_3 + 4X_4 = -3 \end{cases} \Rightarrow \begin{cases} X_1 = 7 - 2X \\ X_2 = -3 - 4X_4 \end{cases}$$

where $A\vec{x}p = \vec{b}$ and $\vec{X}_n \in NCA$ i.e. $A\vec{x}_n = \vec{0}$

solutions of $A\vec{x} = \vec{b}$ (any point on the plane of \vec{x})

| NULL SPACE | NU

Xp = C7,0,3,0)

EXTREAM CASES

#1 Full Column Rank Case

EXAMPLE:

- A: 1 2 a) Does $A\vec{x} = \vec{b}$ have solutions for any $\vec{b} \in IR^3$? IF NOT, find a condition on \vec{b} so that $A\vec{x} = \vec{b}$ has a solution.

 2 5 recall $A\vec{x} = \vec{b}$ has a solution means $\vec{b} \in CCA$
 - - C(A) = Span { (1, 2, 1), (2, 5, 4) } = plane = R3
 - 4 80 $A\vec{x} = \vec{b}$ does not have a solution for some $\vec{b} \in \mathbb{R}^3$

[A	े । वं	1	2	ь	R2 - 2 R1	,	2	b ₁	R3 - 2R2	ı	2	b ₁		ı	0	56, -21	b2
		2	5	62	R3 - 1 R1	0	1	b2 · 2þ1	\longrightarrow	0	ı	b2-201	R1 - 2R2	0	1	b2 - 2	b ₁
		1	¥	b ₃		0	2	b3 · b1		0	0	36, · 262 + 63		0	0	2b, - 26 g	163

 $A\vec{x} = \vec{b}$ has a solution when $3b_1 - 2b_2 + b_3 = 0$

b) find our solutions to $A\vec{x} = \vec{b}$ under one condition found in (a). \vec{X}_p ? \vec{X}_u ?

A SSUMING
$$3b_1 - 2b_2 + b_3 = 0$$
 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \end{bmatrix} = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \end{bmatrix} + \frac{1}{x_0}$

c) rank of 1? # of free variables?

FULL COL. RANK GENERAL CASE

in general:

rank A = n (# of columns) means # of pivots = # of columns in A (EVERY COLUMN HAS A PIVOT)

rank A implies :

- in there are no free variables, $\hat{x}_n = 0$, NCA) = $\{\hat{\sigma}\}$
- (i) Ax = 1, if solveable, has only I solution

since $\vec{x_p} + \vec{x_n} = \vec{x}$, but $\vec{x_n} = 0$, there's no wiggle room for our solution

