PS2_1 import pandas as pd import numpy as np

#cite:https://blog.csdn.net/IT SoftEngineer/article/details/107325062

#1.1

#思路: 先对国家进行分类并进行加和,然后根据死亡人数进行降序排序,输出前十行即可

Sig_Eqs= pd.read_csv('earthquakes-2021-10-25_21-26-58_+0800.tsv',encoding='gbk',sep='\t') Sig_Eqs= pd.read_csv('earthquakes-2021-26-58_+0800.tsv',encoding='

Out[3]:	Country CHINA TURKEY IRAN SYRIA	2074900. 0 1074569. 0 1011437. 0 439224. 0
	ITALY HAITI	434863. 0 323472. 0
	AZERBAIJAN JAPAN	317219. 0 278138. 0
	ARMENIA PAKISTAN	191890. 0 148783. 0
		dtype: float64

#1.2

#思路: 先对表格按照震级大于六的数据进行筛选,再增加一列'Total_Number',每一行赋值 #为 1,便于后面计算总数,在对年份进行分类并进行加和数据,并将其赋值与一个新的 #dataframe,最后进行画图

import matplotlib.pyplot as plt
Sig_Eqs.loc[(Sig_Eqs['Mag'] >6)]
Sig_Eqs['Total_Number']= 1;
Sig_Eqs1= (Sig_Eqs.groupby(['Year']).sum()).reset_index()
plt.plot (Sig_Eqs1['Year'],Sig_Eqs1['Total_Number'])

Out[4]: [<matplot1ib.lines.Line2D at 0x296367d2df0>]

#思路: 先对年月日所在列进行类型转换,然后整合到'Date'列表示日期,接着定义函数 #CountEq_LargestEq (C,Sig_Eqs),函数内部思路主要为先找出含有特定国家的所有行并进行 #加和,另外,将以国家为特定值筛选的 dataframe 赋值给新的 dataframe,按照震级惊喜排 #序,输出第一行的 date 列的值。最后在原 dataframe 中找到所有的国家并建立一个 dataframe # (df),最后在 df 中加入两行空列,分别填入函数运行后的值,最后根据总数进行排序即可

```
Sig Eqs['cYear']=Sig Eqs['Year'].astype('Int64').astype(str)
Sig Eqs['cMo']= Sig Eqs['Mo'].astype('Int64').astype(str)
Sig Eqs['cDy']= Sig Eqs['Dy'].astype('Int64').astype(str)
Sig Eqs['cMo'][Sig Eqs['Mo']<10] = '0' + Sig Eqs['cMo'].astype(str)
Sig_Eqs['cDy'][Sig_Eqs['Dy']<10] = '0' + Sig_Eqs['cDy'].astype(str)
Sig\_Eqs['Date'] = Sig\_Eqs['cYear'] + '/' + Sig\_Eqs['cMo'] + '/' + Sig\_Eqs['cDy']
def CountEq LargestEq (C,Sig Eqs):
    Total Number=Sig Eqs.loc[(Sig Eqs['Country']== C)].sum()['Total Number']
    Sig_Eqs2=Sig_Eqs.loc[(Sig_Eqs['Country']==C)]
    Date=Sig Eqs2.sort values('Mag',ascending=False).head(1)['Date']
    Date=Date.values.tolist( )
    return Total Number, Date[0]
#Zhan Yang explained to me what is asked in this problem
df = pd.DataFrame(Sig Eqs['Country'].unique(),columns=['Country'])
df = df.dropna(axis=0)
df[Total Number] = 0
df['Date'] = None
for i in range(df.shape[0]):
    df['Total Number'].iat[i],df['Date'].iat[i] = CountEq LargestEq(df['Country'].iat[i],Sig Eqs)
df=df.sort values('Total Number', ascending=False)
df
```

Out[44]:

15	CHINA	610	1668/07/25
	JAPAN		
33	57117114	409	2011/03/11
69	INDONESIA	401	2004/12/26
8	IRAN	380	856/12/22
10	TURKEY	330	1916/01/24
94	NORWAY	1	1819/08/31
127 CI	ENTRAL AFRICAN REPUBLIC	1	1921/09/16
125	PALAU	1	1914/10/23
119	KIRIBATI	1	1905/06/30
156	COMOROS	1	2018/05/15
		·	

156 rows × 3 columns

PS2 2

import pandas as pd

#思路:导入文档,将 WND 列中代表风速的数提取出来赋值到新的一列中,在将月份与日 #期进行相同的操作。然后对'WND1'进行种类的转换(转为 int,用于计算)。最后使用 for 循 #环根据每一个年份进行筛选,并对月份进行分类然后对风速进行均值计算,最后画出每一 #年的月平均风速与月份的曲线即可。

```
import numpy as np
import matplotlib.pyplot as plt
#cite:https://blog.csdn.net/Asher117/article/details/84346073/

wind= pd.read_csv('2281305.csv')
wind['WND1']= wind['WND'].map(lambda x:x.split(',')[3])
wind['month']= wind['DATE'].map(lambda x:x.split('-')[1])
wind['year']= wind['DATE'].map(lambda x:x.split('-')[0])
wind['WND2']=wind['WND1'].astype('int')
lst=['2010','2011','2012','2013','2014','2015','2016','2017','2018','2019','2020']
for a in lst:

table=wind.loc[(wind['year'] == a )].groupby(['month'])['WND2'].mean().reset_index()
plt.plot(table['month'],table['WND2'])
plt.legend(labels=['2010','2011','2012','2013','2014','2015','2016','2017','2018','2019','2020'],fontsiz e=7)
```


#规律: 2013, 2014, 2016, 2017, 2019 在四月份前后月均风速有明显的上升,随后直到八月份 #风速波动上涨,在八月份之后开始回落。2010, 2011, 2012 年无明显的波动,在六月份前后 #有一个小的高峰。总的来说无明显统一趋势。

PS2_3 #思路:采取的数据为实验室的抽水试验数据,读取文件,使用 plot 函数对时间和水位变化进行绘图,随后对水位进行最大值、最小值、均值、方差及标准差进行计算

import pandas as pd import numpy as np import matplotlib.pyplot as plt

#3.1 head= pd.read_csv('head.csv') head

0.1.507				
Out[3]:		date	time	head
	0	2021/8/13	14:57:37	1018.567
	1	2021/8/13	14:57:47	1018.683
	2	2021/8/13	14:57:57	1018.683
	3	2021/8/13	14:58:07	1018.567
	4	2021/8/13	14:58:17	1018.975
	1337	2021/8/13	18:40:27	1019.033
	1338	2021/8/13	18:40:37	1020.725
	1339	2021/8/13	18:40:47	1020.842
	1340	2021/8/13	18:40:57	1018.508
	1341	2021/8/13	18:41:07	1018.450
	1342 r	rows × 3 co	olumns	

#3.2 plt.plot(head['time'],head['head'])

Out[4]: [<matplotlib.lines.Line2D at 0x2be2208bf70>]

#3.3
Max=head['head'].max()
Min=head['head'].min()
Mean=head['head'].mean()
variance=(((head['head']-Mean)**2).sum())/1342
std_deviation=variance**(1/2)
Max,Min,Mean,variance,std_deviation

Out[12]: (1451.342, 1013.783, 1199.2142429210164, 16750.979195589276, 129.42557396275774)