The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not contain all of the variables in the domain of the expression. For example, the expression $\overline{ABC} + A\overline{BD} + \overline{ABCD}$ has a domain made up of the variables A, B, C, and D. However, notice that the complete set of variables in the domain is not represented in the first two terms of the expression; that is, D or \overline{D} is missing from the first term and C or \overline{C} is missing from the second term.

A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression. For example, $A\overline{B}CD + \overline{A}\overline{B}C\overline{D} + AB\overline{C}\overline{D}$ is a standard SOP expression. Standard SOP expressions are important in constructing truth tables, covered in Section 4–7, and in the Karnaugh map simplification method, which is covered in Section 4–8. Any nonstandard SOP expression (referred to simply as SOP) can be converted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the domain can be expanded to standard form to include all variables in the domain and their complements. As stated in the following steps, a nonstandard SOP expression is converted into standard form using Boolean algebra rule 6 ($A + \overline{A} = 1$) from Table 4–1: A variable added to its complement equals 1.

- Step 1: Multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement. This results in two product terms. As you know, you can multiply anything by 1 without changing its value.
- **Step 2:** Repeat Step 1 until all resulting product terms contain all variables in the domain in either complemented or uncomplemented form. In converting a product term to standard form, the number of product terms is doubled for each missing variable, as Example 4–15 shows.

Use a Karnaugh map to minimize the following standard SOP expression:

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$

Solution

The binary values of the expression are

$$101 + 011 + 001 + 000 + 100$$

Map the standard SOP expression and group the cells as shown in Figure 4-37.

FIGURE 4-37

Notice the "wrap around" 4-cell group that includes the top row and the bottom row of 1s. The remaining 1 is absorbed in an overlapping group of two cells. The group of four 1s produces a single variable term, \overline{B} . This is determined by observing that within the group, \overline{B} is the only variable that does not change from cell to cell. The group of two 1s produces a 2-variable term $\overline{A}C$. This is determined by observing that within the group, \overline{A} and C do not change from one cell to the next. The product term for each group is shown. The resulting minimum SOP expression is

$$\overline{B} + \overline{A}C$$

Keep in mind that this minimum expression is equivalent to the original standard expression.

Use a Karnaugh map to minimize the following SOP expression:

$$\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + AB\overline{C}\overline{D} + \overline{A}\overline{B}CD + A\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D}$$

Solution

The first term $\overline{B} \ \overline{C} \ \overline{D}$ must be expanded into $A\overline{B} \ \overline{C} \ \overline{D}$ and $\overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$ to get the standard SOP expression, which is then mapped; the cells are grouped as shown in Figure 4–38.

FIGURE 4-38

Notice that both groups exhibit "wrap around" adjacency. The group of eight is formed because the cells in the outer columns are adjacent. The group of four is formed to pick up the remaining two 1s because the top and bottom cells are adjacent. The product term for each group is shown. The resulting minimum SOP expression is

$$\overline{D} + \overline{B}C$$

Keep in mind that this minimum expression is equivalent to the original standard expression.

Step 1: Determine the binary value of each product term in the standard SOP expression. After some practice, you can usually do the evaluation of terms mentally.

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell having the same value as the product term.

FIGURE 4-28 Example of mapping a standard SOP expression.

Map the following SOP expression on a Karnaugh map: $\overline{A} + A\overline{B} + AB\overline{C}$.

Solution

The SOP expression is obviously not in standard form because each product term does not have three variables. The first term is missing two variables, the second term is missing one variable, and the third term is standard. First expand the terms numerically as follows:

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010
011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 3-variable Karnaugh map in Figure 4–31.

AB	0	1
00	1	1
01	1	1
11	1	
10	1	1

Map the following standard SOP expression on a Karnaugh map:

$$\overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

Solution

Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in Figure 4–29 for each standard product term in the expression.

$$\overline{A}\,\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

$$0\,0\,1 \quad 0\,1\,0 \quad 1\,1\,0 \quad 1\,1\,1$$

FIGURE 4-29

Map the following SOP expression on a Karnaugh map: $\overline{A} + A\overline{B} + AB\overline{C}$.

Solution

The SOP expression is obviously not in standard form because each product term does not have three variables. The first term is missing two variables, the second term is missing one variable, and the third term is standard. First expand the terms numerically as follows:

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 3-variable Karnaugh map in Figure 4–31.

FIGURE 4-31

Map the following SOP expression on a Karnaugh map:

$$\overline{B}\overline{C} + A\overline{B} + AB\overline{C} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$$

Solution

The SOP expression is obviously not in standard form because each product term does not have four variables. The first and second terms are both missing two variables, the third term is missing one variable, and the rest of the terms are standard. First expand the terms by including all combinations of the missing variables numerically as follows:

$$\overline{BC}$$
 + $A\overline{B}$ + $AB\overline{C}$ + $A\overline{B}C\overline{D}$ + $\overline{A}\overline{B}\overline{C}D$ + $A\overline{B}CD$
0000 1000 1100 1010 0001 1011
1000 1010 1010
1001 1011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 4-variable Karnaugh map in Figure 4–32. Notice that some of the values in the expanded expression are redundant.

AB CI	00	01	11	10
00	1	1		
01				
11	1	1		
10	1	1	1	1

FIGURE 4-32

Group the 1s in each of the Karnaugh maps in Figure 4-33.

FIGURE 4-33

Solution

The groupings are shown in Figure 4–34. In some cases, there may be more than one way to group the 1s to form maximum groupings.

