Лекция 6 Кольца и поля

- \cdot 1. Понятие кольца. Кольцо вычетов по модулю n.
- •2. Функция Эйлера. Теорема Эйлера.
- •3. Малая теорема Ферма.
- •4. Понятие поля. Конечные поля.

Литература

- 1. Белоусов А.И., Ткачев С.Б. Дискретная математика. М., 2002.
- 2. Бухштаб А.А. Теория чисел: учебное пособие. СПб., 2020.
- 3. Василенко О.Н. Теоретико-числовые алгоритмы в криптографии. М., 2003.

1. Понятие кольца. Кольцо вычетов по модулю n

Определение 1

Кольцом называется алгебра $R = < X, +, \cdot, 0, 1 >$ с двумя бинарными и двумя нульарными операциями, которая удовлетворяет аксиомам:

- (1) < X, +, 0 > коммутативная группа;
- (2) $< X, \cdot, 1 > -$ моноид;
- (3) $\forall x, y, z \in X$ имеет место дистрибутивность:

$$z \cdot (x+y) = z \cdot x + z \cdot y$$
$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Операция + называется операцией *сложения кольца*;

Операция · называется операцией умножения кольца;

Элемент **0** – *нулем* кольца;

Элемент <u>1</u> – *единицей* кольца.

Группа (1) называется аддитивной группой кольца R;

Моноид (2) называется мультипликативным моноидом кольца R;

Аксиома (3) устанавливает дистрибутивность операции умножения относительно операции сложения.

Если операция умножения коммутативна, то кольцо называют коммутативным.

Аксиомы кольца (1)-(3) называются основными тождествами кольца.

CP

Выпишите полный список аксиом кольца.

Пусть $x,y,z \in X$.

Теорема 1

В любом *кольце* выполняются тождества:

1.
$$0 \cdot x = x \cdot 0 = 0$$

2.
$$(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$$

3.
$$z \cdot (x-y) = z \cdot x - z \cdot y$$
, $(x-y) \cdot z = x \cdot z - y \cdot z$

Тождества в п.1 выражают аннулирующее свойство нуля в кольце.

Следствие

В любом кольце справедливо тождество:

$$(-1)\cdot x = x\cdot (-1) = -x$$

Ненулевые элементы x и y кольца R называются делителями нуля, если $x \cdot y = \mathbf{0}$ или $y \cdot x = \mathbf{0}$.

Например, $\forall a\neq 0, b\neq 0$

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \bullet \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$< Z, +, \cdot, 0, 1 >$$

(1)
$$< Z, +, 0 > -$$
 коммутативная группа

(2)
$$< \mathbf{Z}, \cdot, 1 > -$$
 моноид

(3) $\forall x, y, z \in \mathbb{Z}$ выполняется дистрибутивность:

$$z \cdot (x+y) = z \cdot x + z \cdot y$$
$$(x+y) \cdot z = x \cdot z + y \cdot z.$$

• коммутативность умножения:

$$\forall x,y \in \mathbb{Z}$$
 $x \cdot y = y \cdot x$.

Алгебра $R = <\mathbf{Z}, +, \cdot, 0, 1> -$ коммутативное кольцо.

Модулярная арифметика

Пусть
$$x, y \in \mathbb{Z}, n \in \mathbb{N}$$
.
$$\mathbf{Z}_{[n]} = \{ [0], [1], ..., [n-1] \}$$

- множество классов вычетов по модулю n.

Операции на
$$Z_{[n]}$$

Сложение по модулю n :

$$[a] \oplus [b] = [a+b]$$

• Умножение по модулю n:

$$[a] \otimes [b] = [a \cdot b]$$

Определим класс:

$$-[a] = [n - a]$$

Пример 2
$$\langle \mathbf{Z}_{[n]}, \oplus, \otimes \rangle$$

$$(1) < \mathbf{Z}_{[n]}, \oplus > -$$
 коммутативная группа

$$(2)$$
 $<$ $Z_{[n]}$, \otimes $>$ $-$ моноид

(3)
$$\forall [a], [b], [c] \in \mathbf{Z}_{[n]}$$
 дистрибутивность:

$$[c] \otimes ([a] \oplus [b]) = [c] \otimes [a] \oplus [c] \otimes [b]$$
$$([a] \oplus [b]) \otimes [c] = [a] \otimes [c] \oplus [b] \otimes [c]$$

• коммутативность умножения:

$$\forall a,b \in \mathbf{Z}_{[n]} \quad [a] \otimes [b] = [b] \otimes [a]$$

Алгебра $R = \langle \mathbf{Z}_{[n]}, \oplus, \otimes \rangle$ – коммутативное кольцо.

ITMO University

 $<{f Z}_{[n]}, \oplus>-$ аддитивная группа вычетов по модулю n. Порядок группы равен n.

 $<\mathbf{Z}_{[n]}, \otimes>$ - мультипликативный монои ∂ по модулю n.

Кольцо $R = < \mathbf{Z}_{[n]}, \oplus, \otimes >$ называется кольцом вычетов по модулю n.

2. Функция Эйлера. Теорема Эйлера

 $Z_{[n]} = \{[0], [1], ..., [n-1]\}$ - множество классов вычетов по модулю n.

Определение 2

Функцией Эйлера называется число классов по модулю n, взаимно простых с этим модулем.

Обозначение: $\varphi(n)$

Функцией Эйлера называется число натуральных чисел, не превосходящих n, и взаимно простых с n:

$$\varphi(n) = |\{x \in \mathbb{N}: x \leq n, HOД(x,n)=1\}|$$

$$\varphi(1)=1$$
 $\varphi(2)=1$ $\varphi(3)=2$ $\varphi(4)=2$ $\varphi(5)=4$

$$\varphi(6)=2 \qquad \varphi(8)=4$$

Свойства функции Эйлера

Пусть $a,b,p \in N$

1. Если p — простое число, то $\varphi(p) = p-1$

2.
$$\forall \alpha \in \mathbb{N}$$
 $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$

3. Функция Эйлера мультипликативна:

HOД
$$(a,b) = 1 \Rightarrow \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$$

4. Если $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_k^{\alpha_k}$ каноническое разложение числа n, то

$$\varphi(n) = p_1^{\alpha_1^{-1}} \cdot p_2^{\alpha_2^{-1}} \cdot \dots \cdot p_k^{\alpha_k^{-1}} \cdot (p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1).$$

5. При n > 1

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}),$$

где p|n означает, что множители произведения Π берутся при всех возможных простых делителях числа n.

6. Тождество Гаусса:

$$\sum_{d|n} \varphi(d) = n,$$

где d|n означает, что суммирование производится по всем положительным делителям числа n.

Примеры:

$$\varphi(18) = \varphi(2.9) = \varphi(2) \cdot \varphi(3^2) = 3^1(3-1) = 6$$

$$\varphi(200) = \varphi(2^3 \cdot 5^2) = 2^2 (2-1) \cdot 5(5-1) = 80$$

 $Z_{[n]} = \{[0], [1], ..., [n-1]\}$ - множество классов вычетов по модулю n.

Пусть $a \in \mathbb{N}$, HOД(a,n)=1.

Рассмотрим $a, a^2, a^3...$

Возьмем $a^s = a^t \pmod{n}$, $s > t \ge 1$.

 $HOД(a,n)=1 \Rightarrow HOД(a^t,n)=1$ и $a^{s-t}=1 \pmod{n}$.

Обозначим k = s - t, тогда $a^k = 1 \pmod{n}$, $k \ge 1$.

Вместе с тем $\forall m \in \mathbb{N}$ имеем $a^{km} = 1 \pmod{n}$.

Вывод: существует бесконечно много степеней числа a, принадлежащих классу [1].

Леонард Эйлер (1707 – 1783)

© I.Krivtsova ITMO University

Теорема Эйлера

Для любого модуля n и $\forall a \ge 1$, взаимно простого с n, выполняется сравнение:

$$a^{\varphi(n)} = 1 \pmod{n}$$

Пример 3

В $Z_{[n]}$ рассмотрим классы вычетов [a], взаимно простые с n, и операцию \otimes .

 $\forall [a]$ существует обратный класс по \otimes :

$$[a]^{-l} = [a^{\varphi(n)-l}]$$

Действительно,

$$[a] \otimes [a^{\varphi(n)-1}] = [a \cdot a^{\varphi(n)-1}] = [a^{\varphi(n)}] = [1]$$

$$[a^{\varphi(n)-1}] \otimes [a] = [a^{\varphi(n)-1} \cdot a] = [a^{\varphi(n)}] = [1]$$

В кольце вычетов по модулю *п* обратимыми вычетами (делителями единицы) являются вычеты, взаимно простые с модулем.

Теорема 2

Элемент a кольца $<\mathbf{Z}_{[n]},\oplus,\otimes>$ имеет обратный $a^{-l} \Leftrightarrow \mathsf{HOД}(a,n){=}1.$

3. Малая теорема Ферма

Пусть модуль p – простое число.

Условие $HOД(a,p)=1 \Leftrightarrow a$ не делится на p.

Число классов вычетов по модулю p, взаимно простых с p:

$$\varphi(p) = p-1$$
.

Пьер де Ферма (1601 – 1665)

Малая теорема Ферма

(1) Если p – простое число, то $\forall a \ge 1, p \nmid a$, выполняется сравнение:

$$a^{p-1} = 1 \ (mod \ p)$$

(2) Если p – простое число, то $\forall a \in N$ выполняется сравнение:

$$a^p = a \pmod{p}$$

СР Доказательство Т. Ферма:

Замечание:

Т. Ферма дает только *необходимое*, но не достаточное условие того, что число p – простое.

 $\mathbf{Z}_{[p]}$ – множество классов вычетов по модулю p.

Следствие из Т. Ферма

Если p – простое, то в кольце $<\mathbf{Z}_{[p]},\oplus,\otimes>$ выполняется равенство:

$$a^{-1} = a^{p-2}$$

Пример 4

$$p=5$$
, $\mathbf{Z}_{[5]} = \{[0], [1], [2], [3], [4]\}$
 $a=2$ $2^{-1} = 2^{5-2} \pmod{5}$
 $2^{-1} = 2^3 \pmod{5} = 8 \pmod{5} = 3 \pmod{5}$

Ответ:
$$2^{-1} = 3$$
 в $\mathbf{Z}_{[5]}$

Вывод: теорема Ферма позволяет находить обратные элементы по операции \otimes в кольце $\mathbf{Z}_{[p]}$

Пример 5 $< Z^*_{[p]}, \otimes >$

 ${f Z}^*_{~[p]}-$ множество классов вычетов, взаимно простых с ~p.

- (1) операция ⊗ ассоциативна
- (2) ∃! нейтральный элемент класс [1]
- (3) $\forall a \; \exists ! \; \text{обратный элемент} \\ a^{-1} = a^{p-2}$
- операция ⊗ коммутативна

 $<{f Z}^*_{[p]}, \otimes>$ - мультипликативная группа кольца вычетов по модулю p.

Порядок группы равен p-1

4. Понятие поля. Конечные поля

Определение 2

Коммутативное кольцо, в котором для каждого *ненулевого* элемента существует обратный относительно операции умножения, называется полем.

Конечные поля называются полями Галуа.

Эварист Галуа (1811-1832)

© I.Krivtsova ITMO University

Теорема 3

Кольцо вычетов $<\mathbf{Z}_{[n]},\,\oplus,\,\otimes>$ является полем $\Leftrightarrow n$ — простое число.

СР Аксиомы поля:

