

Université de Montpellier Faculté des Sciences

Session : 2 Durée de l'épreuve : 3 heures
Date : Jeudi 28 juin 2018 Documents autorisés : aucun
Licence ⋈ Master □ Matériels autorisés : aucun

Libellé + Code de l'UE : Algèbre et analyse 2 HLMA203

Le soin apporté à la rédaction sera un élément d'appréciation; toutes les réponses devront être soigneusement justifiées.

Exercice 1. Soit f la fraction rationnelle suivante :

$$f(x) = \frac{4x^2 + 4x + 8}{(x - 1)(x + 3)^2}.$$

1. Démontrer qu'il existe trois réels a, b et c tels que :

$$f(x) = \frac{a}{x-1} + \frac{b}{x+3} + \frac{c}{(x+3)^2}$$
.

2. En utilisant le résultat précédent calculer l'intégrale suivante :

$$\int_{2}^{3} \frac{4x^{2} + 4x + 8}{(x - 1)(x + 3)^{2}} dx.$$

Exercice 2. On considère l'équation différentielle suivante :

$$y' + 3y = 3x^2 - x + 2$$
 (E).

- 1. Donner l'ensemble des solutions de l'équation homogène associée.
- **2.** Donner une solution particulière de l'équation (E). On pourra chercher une solution sous la forme d'un polynôme de degré 2.
- **3.** En déduire l'ensemble des solutions de l'équation (E).
- **4.** Donner la solution de (E) vérifiant y(0) = 1.

Exercice 3.

- 1. En effectuant une intégration par partie, donner une primitive de la fonction $f(x) = x \cos x$.
- 2. En déduire l'ensemble des solutions de l'équation différentielle suivante :

$$y' - (x\cos x)y = 0.$$

Exercice 4.

- 1. Rappeler les développements limités en 0 et à l'ordre 4 exactement des fonctions sinus et cosinus.
- **2.** En déduire le développement en 0 et à l'ordre 4 de la fonction $x \mapsto \sin(2x)$.
- 3. En déduire le développement limité en 0 et à l'ordre 4 de la fonction $x \mapsto \sin(2x)\cos x$.
- 4. En déduire la limite en 0 de la fonction suivante :

$$f(x) = \frac{\sin 2x \cos x - 2x}{x^3}.$$

Exercice 5. Soient P et Q les polynômes suivants : $P(X) = X^7 - X - 1$ et $Q(X) = X^5 + 1$.

- 1. En utilisant l'algorithme d'Euclide, calculer le PGCD de P et Q.
- **2.** En déduire deux polynômes U et V tels que UP + VQ = 1.

Exercice 6. Soit u l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par :

$$u(x, y, z) = (x - y, 2x + y, x + z, y + z).$$

- 1. Montrer que u est une application linéaire.
- **2.** Soient $\mathscr{C} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\mathscr{C}' = (f_1, f_2, f_3, f_4)$ la base canonique de \mathbb{R}^4 . Calculer $u(e_1), u(e_2)$ et $u(e_3)$ en fonction de f_1, f_2, f_3 et f_4 .
- 3. Écrire la matrice de u dans les bases canoniques \mathscr{C} et \mathscr{C}' .
- **4.** Montrer que $\mathscr{B} = (f_1, f_2, u(e_1), u(e_2))$ est une base de \mathbb{R}^4 .
- **5.** Écrire la matrice de u dans les bases \mathscr{C} et \mathscr{B} .

Exercice 7. On considère la matrice suivante :

$$A = \begin{pmatrix} 2-a & 1 & 1\\ 1 & 2-a & 1\\ 1 & 1 & 2-a \end{pmatrix}$$

où a est un nombre réel.

- 1. Sans faire de calcul, expliquer pourquoi le déterminant de A est nul pour a=1.
- 2. Calculer le déterminant de la matrice A.
- **3.** Donner toutes les valeurs de a pour lesquelles la matrice A n'est pas inversible.