Rapport des travaux pratiques N° 4 en Architecture des réseaux informatiques:

Réalisé par :

CHIBANE ASMAA ELHAMIDI MAROUA **Encadré par :**

Mme: ZIAD

LAMIA

SOMMAIRE

IN'	FROCUTION	N GENERALI	E	•••••	•••••	••••
Pa	rtie 1 : L'arch	nitecture des r	'éseau	ıx inforn	natiqu	es
I.	La résolutio	n des exercice	es du	TP N°4	•••••	• • • • •
		1. Concevoir IP				_
		2. Attribuer des réseau connectivité	et	vérif	ier	la
CC	NCLUSION	GENERALE				

INTRODUCTION GENERALE

Les travaux pratiques N° 4 a comme objectifs la familiarisation avec la segmentation en sous réseaux.

Le segmentation d'un réseau est très crucial car, elle va nous permet de savoirs le nombre suffisant ou maximum d'adresses IP qu'on peut les attribuer à l'ensemble des hots qu'on peut les intégrer au sein de ce réseau.

Pour effectuer cette segmentation il faut construire ce qu'on appelle la plage d'adresse de ce réseau selon le suivi d'un ensemble d'étapes enchainés.

Ces travaux pratiques englobent les différents traitements en relation avec la segmentation des réseaux en sous réseaux et l'ensemble des adresses appliquées à chaque équipement et sous réseau.

Partie 1 : concevoir un schéma d'adressage IP

<u>Etape 1 :</u> divisez le réseau 192.168.100.0/24 en nombre approprié de sousréseaux.

Réponses:

- a) Cinq sous réseaux sont nécessaires.
- <u>b</u>) Le nombre de bits doivent être empruntés pour permettre la prise en charge du nombre de sous-réseaux de la table topologique est :

(2 à la puissance n) -2=5 ⇔6 bits

c) On obtient six sous réseaux.

- Cette figure illustre la topologie utilisée pour ce TP.
- d) Le nombre d'hôtes utilisables cette opération crée-t-elle par sous-réseau est :

(2 à la puissance 5) -2=30

e) la valeur binaire des cinq premiers sous-réseaux :

```
      Net 0 : 192 . 168 . 100 . 0 0 0 0 0 0 0 0 0 0

      Net 1 : 192 . 168 . 100 . 0 0 1 0 0 0 0 0 0

      Net 2 : 192 . 168 . 100 . 0 1 0 0 0 0 0 0

      Net 3 : 192 . 168 . 100 . 0 1 1 0 0 0 0 0 0 0

      Net 4 : 192 . 168 . 100 . 1 0 0 0 0 0 0 0 0
```

1 la valeur binaire et décimale du nouveau masque de sous-réseau.

```
Net 0 : 192 . 168 . 100 . 0 0 1 1 1 1 1 1 1 192.168.100.31

Net 1 : 192 . 168 . 100 . 0 0 1 1 1 1 1 1 1 192.168.100.63

Net 2 : 192 . 168 . 100 . 0 1 0 1 1 1 1 1 1 192.168.100.95

Net 3 : 192 . 168 . 100 . 0 1 1 1 1 1 1 1 192.168.100.127

Net 4 : 192 . 168 . 100 . 1 0 0 1 1 1 1 1 1 192.168.100.159
```

g) La table des sous réseaux :

N° de sous- réseau	Adresse de sous- réseau	Première adresse d'hôte utilisable	Dernière adresse d'hôte utilisable	Adresse de diffusion	
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168. 100.31	
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63	
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95	
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127	
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159	
5	192.168.100.160	192.168.100.161	192.168.100.190	192.168.100.191	
6	192.168.100.192	192.168.100.193	192.168.100.222	192.168.100.223	
7	192.168.100.224	192.168.100.225	192.168.100.254	192.168.100. 255	

Étape 2: configurez l'adressage IP sur S3, y compris la passerelle par défaut.

- a) L'affectation de sous-réseau 0 au réseau local connecté à l'interface GigabitEthernet 0/0 de R1 : 192.168.100.0 / 27.
- b) L'affectation de sous-réseau 1 au réseau local connecté à l'interface GigabitEthernet 0/1 de R1 : 192.168.100.32 / 27.
- c) L'affectation de sous-réseau 2 au réseau local connecté à l'interface GigabitEthernet 0/0 de R2 : 192.168.100.64 / 27.
- d) L'affectation de sous-réseau 3 au réseau local connecté à l'interface GigabitEthernet 0/1 de R1 : 192.168.100.96 / 27.
- e) L'affectation de sous-réseau 4 au réseau WAN connectant les deux réseaux R1 et R2 : 192.168.100.128 / 27.

Étape 3: Documenter le schéma d'adressage.

Dispositif	Interface	Adresse IP	Masque de sous réseau	Passerelle par défaut
	G0/0	192.168.100.1	255.255.255.224	
R1	G0/1	192.168.100.33	255.255.255.224	
	S0/0/0	192.168.100.129	255.255.255.224	
	G0/0	192.168.100.65	255.255.255.224	
R2	G0/1	192.168.100.97	255.255.255.224	
	S0/0/0	192.168.100.158	255.255.255.224	
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168. 100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Partie 2 : attribuer des adresses IP aux périphériques réseau et vérifier la connectivité

Étape1 : Configurer l'adressage IP sur les interfaces LAN R1.

• Cette figure illustre le processus de configuration du routeur 1.

Etape2: Configurer l'adressage IP sur S3, y compris la passerelle par défaut

• Cette figure illustre le processus de configuration de S3.

Etape4: Verify connectivity

• Cette figure illustre le processus de configuration de PC4.

• Cette figure illustre le processus de configuration de PC4.

CONCLUSION GENERALE

Les travaux pratiques N° 4 nous a permis de savoir le processus de la transmission d'un message au sein d'un réseau global instaurant plusieurs sous réseaux. Pour cela il faut passer de la notion de **segmentation d'un réseau** qui nous a permis de savoirs le nombre suffisant ou maximum d'adresses IP qu'on peut les attribuer à l'ensemble des hots, interfaces et passerelles par défaut qu'on peut les intégrer au sein de ce réseau. Nous avons en fin de compte de réaliser un Ping depuis le PC4 ver le PC1.