keywords

subject

26 Feb 2024 Linear Functions Linear Algebra Kervel topic 3.1 Functions on Vector Spaces Image Quiz Review From Friday Def: Dimension: # basis vectors Know these definitions! $H= span \left\{ \left[i \right] \left[i \right] \right\} \subseteq \mathbb{R}^{t}$ dim H = 2 + 4 = dim BY > dim H = 4-2=2 -> basis of H+ has 2 vectors $\vec{X} \in H^1 \iff \vec{X}$ orthogonal to $H \iff \vec{X}$ orthogonal to basis vectors of HFunctions (W, θ, O) (V,+,•) Ohi Creat T: V->W
is a
Linear Transformation Definition Hu, veV, aER, This has a lot of · T(\$\vec{u} + \$\vec{v}\$) = T(\$\vec{u}\$) \$\therefore T(\$\vec{v}\$)\$ will structure! T(a-) = 00 T() (0 U.S. Axioms Bases Orthogonelity Norm 1) T: R3 -> P2 Via (x+y) + zt + yt2 Examples Is T linear? $\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ z_1 \end{bmatrix} \in \mathbb{R}^3$, as \mathbb{R} 1) $T\left(\begin{bmatrix} x_1 \\ y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \\ y_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ y_2 + y_2 \end{bmatrix}\right) = \left(x_1 + x_2 + y_1 + y_2\right) + \left(y_1 + y_2\right) +$ $= (x_{1} + y_{1}) + z_{1}t + y_{1}t^{2} + (x_{2} + y_{2}) + z_{2}t + y_{2}t^{2}$ $= T\left(\begin{bmatrix} x_{1} \\ y_{1} \\ -z_{1} \end{bmatrix}\right) + T\left(\begin{bmatrix} x_{2} \\ y_{2} \\ z_{2} \end{bmatrix}\right)$ 2) $T\left(\alpha\begin{bmatrix} x_1\\ y_1\\ z_1 \end{bmatrix}\right) = T\left(\begin{bmatrix} \alpha x_1\\ \alpha y_1\\ \alpha z_1 \end{bmatrix}\right) = (\alpha x_1 + \alpha y_1) + \alpha z_1 t + \alpha y_1 \xi^2$ $= \alpha \left(x_1 + y_1 + z_1 t + y_1 t^2 \right)$ $\Rightarrow = a T\left(\begin{bmatrix} x_1 \\ Y_1 \\ 2 \end{bmatrix}\right) \checkmark$ > T is a linear transformation!

©2024 ELEANORWAISS.GITHUB.IO			ACADEMIC WEAPON
subject		date	keywords
topic	'		
Fun Fact	If T:s line	ar , thun $T(\vec{o}) = \vec{0}$	(Say T: V > W)
	Proof: TO	$ (\vec{\sigma} - \vec{v}) = T(\vec{\sigma} + \vec{e}) $ $ = T(\vec{\sigma}) - T(\vec{v}) = \vec{o}_w $	
Examples	$T: \mathbb{R}^3 \to \mathbb{R}^3$	$U_{i} = \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} x_{i} \\ y \end{bmatrix}$	
		$T(\mathring{O}_{\mathbb{R}^{3}}) = T([\mathring{S}]) = [\mathring{S}]$ $T([\mathring{S}]) + [\mathring{S}] = T([\mathring{S}])$	
		$ \begin{array}{c} $	$\begin{bmatrix} x_1 & x_1 \\ y_1 & y_2 \\ y_1 & y_2 \end{bmatrix} + \begin{bmatrix} x_2 + y_2 \\ y_2 & y_2 \\ y_1 & y_2 \end{bmatrix}$
		can also verity w/ counter	
Kervel and Image	Def: Kernel .	T, denoted Ket T = T, denoted iMag T =	$\{\hat{x} \in \text{dom } T : T(\hat{x}) = \hat{o}\} \subseteq \text{dom } T$ $\{\hat{x} \in \text{T}(\hat{x}) \in \text{codom } T : \hat{x} \in \text{dom } T\} \subseteq \text{codom } T$
Pokéballs		V T	W wag T
Examples	ToT	P? V:a [x] > [x xy] :ncar? If so t are bayes for ker T or :mag T? T :ngetten and/or surjective? ort one dimension of ker T, imag T, (1)	
	· Wh	ert are dimension of ker T, imag T, (1	cet), (imag t)
	TS T inject	tim? No! T([3]) = [6] = T([4]) sective? No! Z [5] = + T([5]) [6]	
		or? Yes! Check: 1,] + [x3]) = T([x,+x2]) = [x,+y,+x, 0)	$(Y_{\lambda}) = (X_{\lambda}) + (X_{\lambda})$
	7(a[$\begin{cases} x \in Y \\ 0 \end{cases} = \alpha T([x]) $
	kerT = {	$\begin{bmatrix} x \\ y \end{bmatrix} : T \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \vec{0} \vec{3} = \vec{3} \begin{bmatrix} x \\ y \end{bmatrix} : \chi_{ij}$	$\gamma = 0$ = $\left\{ \begin{bmatrix} x \\ -x \end{bmatrix} : \chi \in \mathbb{R} \right\} = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$
	3	dim ker T = 1 => div	n(ker 7) = 1
		(ker 1) imag T	
		to be continued	