Question number	Scheme	Marks
7 (a)	$\frac{61}{6} = \frac{a(1-r^3)}{1-r} \longrightarrow 1$	M1
	$\frac{125}{6} = \frac{a}{1-r} \longrightarrow 2$	M1
(i)	$1 \div 2 \Rightarrow \frac{\frac{61}{6}}{\frac{125}{6}} = \frac{\frac{a(1-r^3)}{1-r}}{\frac{a}{1-r}} \Rightarrow \frac{61}{125} = 1 - r^3 \Rightarrow r = \frac{4}{5}*$	dM1A1 cso
(ii)	$\frac{125}{6} = \frac{a}{1 - \frac{4}{5}} \Rightarrow a = \frac{25}{6}$	M1A1
(11)	$\frac{1-\frac{1}{5}}{5}$ ALT	[6]
	$a + ar + ar^2 = a + 1 + r + r^2 = \frac{61}{6}$ and $\frac{a}{1 - r} = \frac{125}{6}$	[M1M1
	$\Rightarrow \frac{125}{6} \ 1 - r \ 1 + r + r^2 = \frac{61}{6} \Rightarrow 125 \ 1 - r^3 = 61$	dM1
(i)	$\Rightarrow 1 - r^3 = \frac{61}{125} \Rightarrow r^3 = \frac{64}{125} \Rightarrow r = \frac{4}{5} *$	A1 cso
(ii)	$\frac{125}{6} = \frac{a}{1 - \frac{4}{5}} \Rightarrow a = \frac{25}{6}$	M1A1]
(b)	$19.8 < \frac{\frac{25}{6} (1 - 0.8^n)}{1 - 0.8} \Rightarrow \frac{19.8 \times 6 \times 0.2}{25} < 1 - 0.8^n$ $\frac{594}{625} < 1 - 0.8^n \Rightarrow 0.8^n < \frac{31}{625}$	M1
	$625 625 n \lg(0.8) < \lg\left(\frac{31}{625}\right)^*$	A1 cso
(c)	$n > \frac{\lg\left(\frac{31}{625}\right)}{\lg(0.8)} \Rightarrow n > 13.461 \Rightarrow n = 14$	[2] M1A1
		[2]

Part	Mark	Notes
(a)(i)		Forms a correct equation for the sum of the first 3 terms or the sum to infinity.
	M1	Either $\frac{61}{6} = \frac{a(1-r^3)}{1-r}$ or $\frac{125}{6} = \frac{a}{1-r}$ These formulae must be correct as they are given in the Formulae sheet

	1	
	M1	For both $\frac{61}{6} = \frac{a(1-r^3)}{1-r}$ and $\frac{125}{6} = \frac{a}{1-r}$ correct
		For a valid method to eliminate a from both equations by division or substitution
		and attempting to re-arrange to find a value for r^3 .
		$\lceil 125(1-r) \rceil_{(r-2)}$
	dM1	Eg., $\frac{125}{6} = \frac{a}{1-r} \Rightarrow a = \frac{125(1-r)}{6} \Rightarrow \frac{61}{6} = \frac{\left[\frac{123(1-r)}{6}\right](1-r^3)}{1-r} \Rightarrow r^3 = 1 - \frac{61}{125}$
	unviii .	Eg., $\frac{123}{6} = \frac{a}{1} \Rightarrow a = \frac{123(1-r)}{6} \Rightarrow \frac{61}{6} = \frac{1}{125} \Rightarrow r^3 = 1 - \frac{61}{125}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		This mark is dependent on both previous M marks.
		4
	A1*	For $r = \frac{4}{5}$ This value is given, there must be no errors for the award of this mark
	ALT	
(i)	M1	For either $a + ar + ar^2 = [a + 1 + r + r^2] = \frac{61}{61}$ or $\frac{125}{61} = \frac{a}{61}$ correct
()	1411	For either $a + ar + ar^2 = \left[a \ 1 + r + r^2\right] = \frac{61}{6}$ or $\frac{125}{6} = \frac{a}{1 - r}$ correct For both $a + ar + ar^2 = \left[a \ 1 + r + r^2\right] = \frac{61}{6}$ and $\frac{125}{6} = \frac{a}{1 - r}$ correct
	M1	For both $a+ar+ar^2=\begin{bmatrix} a & 1+r+r^2 \end{bmatrix}=\frac{61}{2}$ and $\frac{125}{2}=\frac{a}{2}$ correct
	1411	
		For a valid method to eliminate a from both equations by division or substitution
		and attempting to re-arrange to find a value for r^3 .
	dM1	E.g. $\Rightarrow \frac{125}{6} \ 1 - r \ 1 + r + r^2 = \frac{61}{6} \Rightarrow 125 \ 1 - r^3 = 61 \Rightarrow r^3 = 1 - \frac{61}{125}$
		6 125
		This mark is dependent on both previous M marks.
		4
	A1	For $r = \frac{4}{5}$ This value is given, there must be no errors for the award of this mark
		$a = 61 a(1-r^3)$ 125 $a = 61$
		For substituting $\frac{4}{5}$ into either their $\frac{61}{6} = \frac{a(1-r^3)}{1-r}$ or their $\frac{125}{6} = \frac{a}{1-r}$ or
(ii)	M1	
()		their $a + ar + ar^2 = \frac{61}{6}$ (where their expression for a sum has been seen earlier) to
		find a value of a
	A1	For $a = \frac{25}{6}$
(b)		For using the correct formula for the sum of a geometric series with $r = 0.8$ [oe]
	M1	and their a , setting up an inequality (allow $<$ or $>$ for this mark) using the value of
		19.8 and attempting to achieve the given result.
		For the correct inequality as shown with no errors as this is a given result.
	A1*	$n\lg(0.8) < \lg\left(\frac{31}{625}\right)$
		(625)
(c)		For solving the given inequality in <i>n</i> using logarithms.
	M1	They must achieve a value for <i>n</i> for this mark.
		Allow use of $<$, $>$, or $=$ for this mark.
	A1	For $n = 14$