Translated from English to Turkish - www.onlinedoctranslator.com

illilli cisco

Modül 3: Sayı Sistemler

Ağ Aygıtları ve İlk Yapılandırma (INET)

Modül Hedefleri

Modül Başlığı:Sayı Sistemleri

Modül Amacı: Ondalık, ikili ve onaltılık sistemler arasındaki sayıları hesaplayın.

Konu Başlığı	Konu Amaç
İkili Sayı Sistemi	Ondalık ve ikili sistemler arasındaki sayıları hesaplayın.
Onaltılık Sayı Sistemi	Ondalık ve onaltılık sistemler arasındaki sayıları hesaplayın.

İkili ve IPv4 Adresleri

- IPv4 adresleri genellikle 0'dan 9'a kadar olan 10 rakamdan oluşan ondalık sayı sistemini kullanarak gösterilir.
 - Şekil, IP adreslerini görüntülemek için noktalı ondalık sayı biçimini kullanan bir örnek topolojiyi göstermektedir.
- Ancak, ana bilgisayarlar, sunucular ve ağ aygıtları birbirlerini, bit adı verilen 0 ve 1 rakamlarından oluşan ikili sayı sistemini kullanarak tanımlarlar.
- Ağ yöneticileri ikili adreslemeyi bilmeli ve iki tabanlı (ikili) ve on tabanlı (ondalık) sayı sistemlerini dönüştürmek için pratik beceriler kazanmalıdır.

Video - İkili ve Ondalık Sayı Sistemleri Arasında Dönüşüm

Bu videoda aşağıdaki konular ele alınacaktır:

- Pozisyonel notasyon incelemesi
- 10'un Güçleri incelemesi
- Ondalık sayı sistemi 10 tabanlı numaralandırma incelemesi
- İkili 2 tabanlı numaralandırma incelemesi
- Bir P adresini ikili sayı sisteminden ondalık sayı sistemine dönüştürme

Ondalık Sayıdan İkili Sayıya Dönüşüm

• İkili konumsal değer tablosu, noktalı ondalık IPv4 adresini ikiliye dönüştürmek için değerli bir araçtır.

- Oktetin ondalık sayısı (n), en önemli bitten () eşit veya daha büyük müdür?128)?
 - Hayır ise, o zaman ikili girin**0**içinde**128**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde128konumsal değer ve çıkar128ondalık sayıdan.
- Oktetin ondalık sayısı (n), bir sonraki en önemli bitten (64)?
 - Hayır ise, o zaman ikili girin**0**içinde**64**konumsal değer.
 - Evet ise, bir ikili ekleyin**1**içinde**64**konumsal değer ve çıkar**64**ondalık sayıdan.

Ondalık Sayıdan İkili Sayıya Dönüşüm (Devamı)

- Oktetin ondalık sayısı (n), en önemli bitten () eşit veya daha büyük müdür?32)?
 - Hayır ise, o zaman ikili girin**0**içinde**32**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde32konumsal değer ve çıkar32ondalık sayıdan.

- Oktetin ondalık sayısı (n) eşit veya daha büyük müdür?
 bir sonraki en önemli parça (16)?
 - Hayır ise, o zaman ikili girin**0**içinde**16**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde16konumsal değer ve çıkar16ondalık sayıdan.

Ondalık Sayıdan İkili Sayıya Dönüşüm (Devamı)

- Oktetin ondalık sayısı (n), en önemli bitten () eşit veya daha büyük müdür?8)?
 - Hayır ise, o zaman ikili girin**0**içinde**8**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde8konumsal değer ve çıkar8ondalık sayıdan.

- Oktetin ondalık sayısı (n) eşit veya daha büyük müdür?
 bir sonraki en önemli parça (4)?
 - Hayır ise, o zaman ikili girin**0**içinde**4**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde4konumsal değer ve çıkar4ondalık sayıdan.

Ondalık Sayıdan İkili Sayıya Dönüşüm (Devamı)

- Oktetin ondalık sayısıdır (**N**) en önemli bitten eşit veya daha büyük (**2**)?
 - Hayır ise, o zaman ikili girin**0**içinde**2**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde2konumsal değer ve çıkar2ondalık sayıdan.

- Oktetin ondalık sayısıdır (**N**) eşit veya daha büyük bir sonraki en önemli parça (**1**)?
 - Hayır ise, o zaman ikili girin**0**içinde**1**konumsal değer.
 - Evet ise, bir ikili ekleyin1içinde1konumsal değer ve çıkar1ondalık sayıdan.

Ondalık Sayıdan İkili Sayıya Dönüşüm Örneği

- Sürecin anlaşılmasına yardımcı olmak için IP adresini göz önünde bulundurun 192.168.11.10.
- İlk oktet sayısıdır 192 yüksek dereceli bit'e eşit veya ondan büyük 128?
 - Evet öyle. Bu nedenle, bir tane ekleyin1temsil edilecek yüksek dereceli konumsal değere128.
 - Çıkar**128**itibaren**192**geri kalanını üretmek**64**.

- Geri kalan64bir sonraki yüksek dereceli bit'e eşit veya ondan büyük64?
 - Eşittir. Bu nedenle bir ekleyin**1**bir sonraki yüksek dereceli konumsal değere.

Ondalık Sayıyı İkili Sayıya Dönüştürme Örneği (Devamı)

- Kalan olmadığından, ikili sayıya girin**0**kalan konumsal değerlerde.
 - İlk oktetin ikili değeri**11000000**.

- İkinci oktet sayısıdır**168**yüksek dereceli bit'e eşit veya ondan büyük**128**?
 - Bu nedenle, bir tane ekleyin1temsil edilecek yüksek dereceli konumsal değere128.
 - Çıkar**128**itibaren**168**geri kalanını üretmek**40**.

Example: 192.168.10.11

11000000 . _____ . ____ . ____ . ____

Ondalık Sayıyı İkili Sayıya Dönüştürme Örneği (Devamı)

- Geri kalan40bir sonraki yüksek dereceli bit'e eşit veya ondan büyük64?
 - Hayır, bu nedenle ikili bir koda girmeyin**0**pozisyonel değerde.

- Geri kalan64bir sonraki yüksek dereceli bit'e eşit veya ondan büyük32?
 - Evet öyle, bu nedenle bir tane ekleyin1temsil edilecek yüksek dereceli konumsal değere32.
 - Çıkar**32**itibaren**40**geri kalanını üretmek**8**.

Ondalık Sayıyı İkili Sayıya Dönüştürme Örneği (Devamı)

- Geri kalan8bir sonraki yüksek dereceli bit'e eşit veya ondan büyük16?
 - Hayır, bu nedenle ikili bir koda girmeyin**0**pozisyonel değerde.

- Geri kalan8bir sonraki yüksek dereceli bit'e eşit veya ondan büyük8?
 - Eşittir, bu nedenle bir ekleyin**1**bir sonraki yüksek dereceli konumsal değere.

Ondalık Sayıyı İkili Sayıya Dönüştürme Örneği (Devamı)

- Kalan olmadığından, ikili sayıya girin**0**kalan konumsal değerlerde.
 - İkinci oktetin ikili değeri**10101000**.

• Üçüncü oktetin ikili değeri**00001010**.

• Dördüncü oktetin ikili değeri**00001011.**

Example: 192.168.10.11

Example: 192.168.10.11

Example: 192.168.10.11

IPv4 Adresleri

• IPv4 adresleri genellikle noktalı ondalık biçiminde gösterilir. Bir bilgisayara atandığında.

Noktalı Ondalık Adres:

• 192.168.10.10 bir ana bilgisayara atanan bir IP adresidir.

192	168	·	10	·	10
11000000	10101000		00001010		00001010

4 Oktet:

• 192.168.10.10 adresi dört oktetten oluşur.

32-bit Adres:

• Ana bilgisayar adresi 32 bitlik bir veri akışı olarak depolar.

3.2 Onaltılık Sayı Sistem

Onaltılık Sayı Sistemi

Onaltılık ve IPv6 Adresleri

- IPv6 adresleri onaltılık tabandaki on altı sayı sistemini kullanır.
 - Onaltılık sistemde 0'dan 9'a kadar olan sayılar ve A'dan F'ye kadar olan harfler kullanılır.
- IPv6 adreslerini anlamak için şunları yapmalısınız:
 Onaltılık sayı sistemini ondalık sayı sistemine ve tam tersine dönüştürebilmek.
- İkili ve onaltılı sistemler birlikte iyi çalışır çünkü bir değeri dört ikili bit olarak ifade etmektense tek bir onaltılık basamak olarak ifade etmek daha kolaydır.
- Şekilde eşdeğer ondalık, ikili ve onaltılık değerler gösterilmektedir.

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
Α
В
С
D
E
F

Onaltılık Sayı Sistemi

Onaltılık ve IPv6 Adresleri (Devamı)

- IPv6 ve Ethernet MAC adresleri, onları temsil etmek için onaltılık sayı sistemini kullanır.
- IPv6 adresleri 128 bit uzunluğundadır ve her 4 biti tek bir onaltılık basamak temsil eder ve toplam 32 onaltılık değere sahiptir.
 - IPv6 adresleri büyük/küçük harfe duyarlı değildir ve hem küçük hem de büyük harfle yazılabilir.
- IPv6 adresleri, her "x"in dört onaltılık değerden oluştuğu, genellikle hekstet olarak adlandırılan ax:x:x:x:x:x:x formatını kullanarak yazılır.
 - Her "x" tek bir hekstet, 16 bit veya dört onaltılık basamaktır.

Onaltılık Sayı Sistemi

Video - Onaltılık ve Ondalık Sayı Sistemleri Arasında Dönüşüm

Bu videoda aşağıdaki konular ele alınacaktır:

- Onaltılık Sistemin Özellikleri
- Onaltılık sistemden Ondalık sisteme dönüştürme
- Ondalıktan Onaltılığa Dönüşüm

3.3 Sayı Sistemleri Özet

Sayı Sistemleri Özeti

Bu Modülde Neler Öğrendim?

- İkili sayı sistemi, bit adı verilen 0 ve 1 rakamlarından oluşan bir sayı sistemidir.
- Ana bilgisayarlar, sunucular ve ağ aygıtları ikili IPv4 adreslerini kullanır.
- IPv4 adresleri noktalı ondalık gösterimle ifade edilir.
- İkili sistem 2 tabanlı bir sayı sistemidir ve her basamak değeri 0 veya 1 olabilir.
- Sekiz bit bir bayta eşittir.
- Onaltılık sayılandırma sistemi, IP Sürüm 6 adreslerini ve Ethernet MAC adreslerini temsil etmek için ağları kullanır.
- Bu on altı tabanlı sayı sistemi 0'dan 9'a kadar rakamları ve A'dan F'ye kadar harfleri kullanır.
- İkili ve onaltılı sistemler birlikte iyi çalışır çünkü bir değeri dört ikili bit olarak ifade etmektense tek bir onaltılık basamak olarak ifade etmek daha kolaydır.
- IPv6 adresleri 128 bit uzunluğundadır ve her 4 biti tek bir onaltılık basamak temsil eder ve toplam 32 onaltılık değere sahiptir.
- IPv6 adresleri büyük/küçük harfe duyarlı değildir ve hem küçük hem de büyük harfle yazılabilir.

