

Why choose one single wireless protocol if you can have them all?

Nordic Semiconductor ASA

Larry Tsai November 2018 © NORDIC SEMICONDUCTOR Slide 2 of 9

There are numerous of wireless standards

- There is no single protocol that covers all use cases
- Only selected protocols are supported by modern mobile phones and tablets
- Consumers don't understand protocol limitations
- Protocols speak different languages (both on application and physical layer)
- Let's imagine that we don't have to choose!

© NORDIC SEMICONDUCTOR Slide 3 of 9

Why our embedded radios cannot implement them all?

- Radio transceivers dedicated for consumer electronics are based on hardware modulators, demodulators, front-end etc.
- How PHYs of protocols are different?
 - Frequencies
 - Modulation
 - Coding
 - Bitrate
 - Spread spectrum techniques
- How do we overcome these differences?

© NORDIC SEMICONDUCTOR Slide 4 of 9

Option 1: use two physical radios

© NORDIC SEMICONDUCTOR Slide 5 of 9

Is then using two radio technically flawless?

Assumptions:

- Both radios share the same frequency band
- Both radios installed in the same equipment

Affected:

Thread, Zigbee, Bluetooth LE, Wi-Fi transceivers etc.

Solutions:

- Spatial isolation
- Frequency isolation
- Collaborative coexistence

© NORDIC SEMICONDUCTOR Slide 6 of 9

Option 2: Single SoC - switched multiprotocol

Pros (+) / Cons (-)

- (+) Protocols do not interfere with each other
- (+) No need for radio arbitration
- (-) Losing connections when switching protocols
- (-) Application must be aware of multi-protocol nature of the solution
- (-) Switching time may be noticeable by user

Key Usage / Applications

- Performing provisioning
- Performing OTA Upgrade
- Diagnostics

© NORDIC SEMICONDUCTOR Slide 7 of 9

Option 3: Single SoC - dynamic multiprotocol

Pros (+) / Cons (-)

- (+) Lack of time-expensive initializations in between
- (+) Application developer unaware about multiple protocol being used
- (+) Connections are not ceased while switching
- (-) One protocol may decrease performance of another one (frames might be lost)

Key Applications

- Lighting control systems
- Sensors
- Remotes
- Asset tracking
- Leveraging Bluetooth support in smartphones to control Thread/Zigbee networks

© NORDIC SEMICONDUCTOR Slide 8 of 9

Switching time

© NORDIC SEMICONDUCTOR Stide 9 of 9

Make use of Sleepy End Device role

© NORDIC SEMICONDUCTOR Slide 10 of 9

Let's limit the role to Sleepy End Device

© NORDIC SEMICONDUCTOR Slide 11 of 9

Thread/BLE Multiprotocol Use Cases Eddystone Beacon

- Thread Router + BLE Eddystone beacon
- Functions as a Thread dimmable light
- In addition broadcasts an Eddystone beacon

© NORDIC SEMICONDUCTOR Slide 12 of 9

Thread/BLE Multiprotocol Examples (Nordic UART Service)

- Light switch + NUS UART service
- Functions as a Thread dimmable light
- In addition can be controlled using mobile phone via BLE

nRF5 SDK for Thread Demo

Nordic SoC offering

© NORDIC SEMICONDUCTOR Slide 15 of 9

Thank you for your attention!

- Visit <u>www.nordicsemi.com</u>
- Try out our SDKs!
 - Thread & BLE
 - Zigbee & BLE
 - ANT & BLE
 - BLF Mesh & BLF
 - All above + NFC

© NORDIC SEMICONDUCTOR Slide 16 of 9

Thank you for your attention!