

OR-MSM

Transport planning and transport modeling

May 31th 2022

Marlin Arnz

Who I am

Marlin Arnz

PhD Student at Chair of Infrastructure Policy, TU Berlin

How does transport sufficiency support fast decarbonisation of the energy system?

Tel: +49 (0) 30 120 843 490

E-Mail: maa@wip.tu-berlin.de; marlin.arnz@rl-stiftung.de

Web: https://www.reiner-lemoine-stiftung.de/en/phd-group/

Twitter: @RL_Kolleg

Agenda

Introduction

Transport systems and externalities

Transport decarbonization

Transport modeling

Transport supply modeling

Transport demand modeling

Transport systems and externalities

What are relevant differentiations in transport?

Freight / passenger transport

• ...

Transport system analysis framework

Source: Own illustration based on Allsop (2008): Transport networks and their use: how real can modelling get?. Philosophical Transactions of the Royal Society A, 366, 1879-1892

Social cost

Internal/private cost (bared by driver)

External cost (bared by society)

Social cost

Internal/private cost (bared by driver)

External cost (bared by society)

Transport externalities

Average external cost of passenger transport in Germany 2017

Source: infras (2019): Externe Kosten des Verkehrs in Deutschland

Transport externalities - space

Space demand of different transport modes

Source: Agora Verkehrswende (2017): 12 Thesen für die Verkehrswende

Transport decarbonization

Transport GHG emissions in Germany

Source: BMU (2020): Klimaschutz in Zahlen

Scenarios for 100% RES in German transport

Transport and decarbonization

Source: Reiner Lemoine Stiftung (2020): Weichenstellungen ins Erneuerbare Energiesystem. Impulspapier zur EnergieSystemWende im Wahljahr 2021

OR-MSM 2022

Both dimensions – efficiency and sufficiency – have similar emissions reduction potential

Transport policies

Passenger transport:

•

Transport policy overview (mobility transformation)

Transport policies found in EU-NECPs

Source: Zell-Ziegler, C., Thema, J., Best, B., Wiese, F., Lage, J., Schmidt, A., Toulouse, E., & Stagl, S.(2021): Enough? The role of sufficiency in energy and climate plans of European countries. Energy Policy, 157, 112483

Why transport planning?

Short-term operation either via free market competition or central planning

Long-term strategic infrastructure planning always centralized

Source: Own illustration based on Allsop (2008): Transport networks and their use: how real can modelling get?. Philosophical Transactions of the Royal Society A, 366, 1879-1892

Early transport planning

Transport planning evolved in the 1950s and 1960s:

- Uptake of private motorization
- Fast urbanization
- Need for expanded network capacities
- Not sufficient computational power for complex calculations
- → Focus on expanding network capacities to satisfy demand

Chicago Area Transportation Study (CATS) in the 1950s

Modern transport planning

First step: Establish a vision → shape demand

Political and societal objectives

- "Vision Zero"
- Healthy transport
- Just mobility
- Economic development
- Environmental sustainability

Luftverschmutzung in Deutschland kostet

jährlich 1.468 Euro pro Stadtbewohner*in

21.10.2020 | BUNDESWEIT, PRESSEMITTEILUNG

Source: Changing Cities

% based on year 2000

Modern transport planning

Include new trends and modes

- Sharing economy
- Integrated, smart mobility
- Multimodality

Example: German transport planning

Bundesverkehrswegeplan

- Every ~10 years
- Methods are scientific
- Goals are highly political
 See Wer Straßen säht, wird Verkehr ernten –
 Politische Tricksereien im
 Bundesverkehrswegeplan

Transport modeling and transport planning

Transport modeling is the scientific underlay of transport planning.

Classic approach to transport planning (transport economist approach)

- 1. Search (future) network bottlenecks via transport modeling
- 2. Identify network expansion alternatives
- 3. Estimate consequences of alternatives via transport modeling
- 4. Assess alternatives using monetary cost-benefit ratios

Transport planning is only one field of transport policy.

Most transport policies can be assessed through transport modeling.

Transport modeling policy coverage

Transport policies found in EU-NECPs

Source: Zell-Ziegler, C., Thema, J., Best, B., Wiese, F., Lage, J., Schmidt, A., Toulouse, E., & Stagl, S.(2021): Enough? The role of sufficiency in energy and climate plans of European countries. Energy Policy, 157, 112483

Transport modeling

Two schools of transport modeling

Agent-based (micro)

- Individual travelers with individual schedules
- Temporal: minutes to hours
- Spatial: Cities or regions
- Data: very high requirements

Source: MATSim

Aggregated (macro)

- Aggregated demand groups traveling between aggregated zones
- Temporal: hours to years
- Spatial: regional to international
- Data: lower requirements depending on desired model quality

Source: quetzal_germany

Questions?