DEPARTMENT OF COMPUTER SCIENCE

RECORD NOTE

Record work submitted to the Bharathiar University in partial fulfillment of the requirement for the Degree of

Master of Science in Computer Science

PROGRAMMING LAB - Python Programming Lab

SHRI NEHRU MAHA VIDYALAYA COLLEGE OF ARTS & SCIENCE

(Affiliated to Bharathiar University)

Shri Gambhirmal Bafna Nagar

Malumachampatti, Coimbatore-641050

OCTOBER - 2024

SHRI NEHRU MAHA VIDYALAYA COLLEGE OF ARTS AND SCIENCE SNMV

STRUCE TO HAMANTI

(Affiliated to Bharathiar University, Coimbatore, Re-accredited with "A" Grade by NAAC)
Shri Gambhirmal Bafna Nagar, Malumachampatti, Coimbatore - 641 050, Tamil Nadu, India.

MASTER OF SCIENCE IN COMPUTER SCIENCE

			•							M.Sc. (•
								18	1 year	Wilde .	compu	or Sele	nec
Staff	In -	- Ch	narge						He	ad of t	he Dep	oartme	- ent
Submi	tted	for	: Practi	cal II	: P ;	ytho	on I	Pro	gramn	ning Lab)		
Bharat	hiar	Uni	iversity	Practi	cal]	Exa	min	atio	on held	on			
Odd se	emes	ster ((2024-2)	025)									

CONTENT

S.NO	DATE	TITLE	
1.		Programs using Elementary data items Lists, Dictionaries and Tuples	
2.		Program using Conditional Branches	
3.		Programs using loops	
4.		Programs using functions	
5.		Programs using Exception Handling	
6.		Programs using Inheritance	
7.		Programs using Polymorphism	
8.		Programs to implement file operations	
9.		Programs using Modules	
10.		Programs for creating Dynamic and Interactive web pages using forms	

Staff In-Charge	

EX.NO: 1

ELEMENTARY DATA ITEMS LISTS, DICTIONARIES AND TUPLES

DATE:

AIM:

To implement a python program using elementary data items, lists, dictionaries and tuples.

ALGORITHM:

Step 1: Start the program.

Step2: Write a code for creating python list.

Step 3: Write a code creating python strings.

Step 4: Write a code creating python tuples.

Step 5: Write a code creating python Dictionary.

Step 6: Save and run the program.

Step 7: Output will be displayed.

Step 8: Stop the program.

```
metros = ['mumbai','chennai','delhi']
print('List output')
for metro in metros:
print(metro)
print()
print(Tuple output')
courses = ('bsc','bcom','msc')
print(courses)
print()
print('Dictionary output')
navisys = {'india':'navic','usa':'gps','russia':'glonass'}
print(navisys['india'])
```

```
List output
mumbai
chennai
delhi

Tuple output
('bsc', 'bcom', 'msc')

Dictionary output
navic

...Program finished with exit code 0

Press ENTER to exit console.
```

RESULT:

EX.NO: 2	CONDITIONAL BRANCHES
DATE:	

To implement a python program using Conditional branches.

ALGORITHM:

Step 1: Start the Program.

Step 2: Include the required variables .

Step 3: Use conditional statements like if and else to print the millenium year of birth .

Step 4: Save and run the program .

Step 5 : Output will be displayed.

Step: Stop the program.

```
yearofbirth >= 1 and yearofbirth <= 1000:

print('Born in First Millenium')

elif yearofbirth>1000 and yearofbirth <= 2000:

print('Born in Second Millenium')

elif yearofbirth>2000 and yearofbirth <= 3000:

print('Born in Third Millenium')

else:

print('Please enter the BirthYear between 1 to 3000')
```

```
Born in Second Millenium

...Program finished with exit code 0

Press ENTER to exit console.
```

RESULT:

EX.NO: 3	LOOPS
DATE:	

To implement a Python program using for and while loops.

ALGORITHM:

Step 1: Start the program ..

Step 2: Write a code for illustrate the loops .

Step 3: Write a code for illustrate while loops.

Step 4: Write a code for illustrate for loops.

Step 5: Save and run the program .

Step 6: Output will be displayed.

Step 7: Stop the program.

For loop:

```
Missiles = [ 'Prithvi', 'Agni', 'Nirbhay']

for m in Missiles:
    print(m,end=' ')
```

While loop:

print(sum)

```
num=0
sum=0
while num<=10:
sum = sum + num
num += 2</pre>
```

For loop:

```
Prithvi Agni Nirbhay
...Program finished with exit code 0
Press ENTER to exit console.
```

While loop:

```
...Program finished with exit code 0
Press ENTER to exit console.
```

RESULT:

EX.NO: 4	FUNCTIONS
DATE:	

To implement a python program using functions .

ALGORITHM:

Step 1: Start the program.

Step 2: Write a code for using functions to find out the leap year.

Step 3: Save the program and run the program .

Step 4: Output will be displayed.

Step 5: Stop the program.

```
def findleap(year1):
    if(year1%4 == 0):
        print(year1,'is a leap year')
    else:
        print(year1,'is not a leap year')

year=int(input("Enter the year "))
findleap(year)
```

```
Enter the year 2020
2020 is a leap year
...Program finished with exit code 0
Press ENTER to exit console.
```

RESULT:

EX.NO: 5	EXCEPTION HANDLING
DATE:	

To implement a python program to illustrate the use of Exceptions .

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the required variables.

Step 3: Include the necessary exceptions like try and except .

Step 4: Save and run the program .

Step 5: Output will be displayed.

Step 6: Stop the program.

```
class invalidsalary(Exception):

pass

salary=1

try:
    input_sal = int(input("Enter salary: "))

if input_sal < salary:
    raise invalidsalary

else:
    print("Let's hope for a good increment")

except invalidsalary:

print("Salary cannot be zero (or) -ve value")
```

```
Enter salary: -234
Salary cannot be zero (or) -ve value

...Program finished with exit code 0
Press ENTER to exit console.
```

```
Enter salary: 5000

Let's hope for a good increment

...Program finished with exit code 0

Press ENTER to exit console.
```

RESULT:

EX.NO: 6	
DATE:	INHERITANCE

To implement a python program to illustrate the inheritance .

ALGORITHM:

- Step 1: Start the program.
- Step 2: Create a base class.
- Step 3: Create a subclass which include the properties of the base class .
- Step 4: Write a code for relevant class .
- Step 5: Save and run the program .
- Step 6: Output will be displayed.
- Step 7: Stop the program.

```
class A: \\ i=0 \\ j=0 \\ class B(A): \\ k=0 \\ def sum(self): \\ i=int(input("Enter first number ")) \\ j=int(input("Enter second number ")) \\ k=int(input("Enter third number ")) \\ x=i+j+k \\ print(The sum is ',x) \\ obj=B() \\ obj.sum()
```

```
Enter first number 45
Enter second number 67
The sum is 168

...Program finished with exit code 0
Press ENTER to exit console.
```

RESULT:

EX.NO: 7	
DATE:	POLYMORPHISM

To implement a python program to illustrate the polymorphism .

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the required variables .

Step 3: Add integer and float values to represent the polymorphism .

Step 4: Save and run the program .

Step 5: Output will be displayed.

Step 6: Stop the program.

```
class intadd:
 def __init__(self, num1, num2):
   self.num1=num1
   self.num2=num2
 def sum(self):
     result=self.num1+self.num2
     print(result)
class floatadd:
 def __init__(self, no1, no2):
   self.no1=no1
   self.no2=no2
 def sum(self):
     result=self.no1+self.no2
     print(result)
ob1 = intadd(18,23)
ob2=floatadd(7.2,6.8)
for k in(ob1,ob2):
 k.sum()
```

```
The integer addition 41
The float addition 14.0
```

RESULT:

EX.NO: 8	
DATE:	IMPLEMENTING FILE OPERATIONS

To implement a python program to illustrate the file operations .

ALGORITHM:

Step 1: Start the program.

Step 2: create a function called read(), to read the contents of the file .

Step 3: create a function called open(), to opening the contents of the file .

Step 4: create a function called write(), to write the contents to the file .

Step 5: Save and run the program.

Step 6: Output will be displayed.

Step 7: Stop the program .

open a file in read mode file1 = open("file1.txt")

read the file content
read_content = file1.read()
print(read_content)

Output:

python files very good

Writing into the file

Program:

file = open('file.txt','w')
file.write("Welcome to CS ")
file.write("M.SC(CS)")
file.close()

Output:

Welcome to CS M.SC(CS)

create file1.txt in notepad in the same directory type some contents in the file execute the above program verify the output

Appending into the file

Program:

file = open('file.txt','a') file.write(" jai bharath ") file.write("bharath matha ki jai") file.close()

Output:

Welcome to CS M.SC(CS) jai bharath bharath matha ki jai

Renaming the file

Program:

import os

#rename file.txt to file9.txt
os.rename("file.txt", "file9.txt")

check the name of the file in directory

Creating directory

Program:

import os

#creating a new directory with the name new os.mkdir("CS")

check the directory for output

Removing the file

Program:

import os;
#deleting the file named file3.txt
os.remove("file1.txt")

check the directory for output

RESULT:

EX.NO: 9	MODULES
DATE:	

<u>**AIM:**</u>

To implement a python program to illustrate the modules .

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the required variables .

Step 3: With the use of modules to calculate the values of sum , average and power .

Step 4: Save and run the program .

Step 5 : Output will be displayed .

Step 6: Stop the program.

Save the following program as mymodule.py

```
def sum(x,y):
    return x+y

def average(x,y):
    return (x+y)/2

def power(x,y):
    return x**y
```

Save the following program as modtest.py

import mymodule

print ("sum:",mymodule.sum(10,20))

print("Average:",mymodule.average(10,20))

print("Power:",mymodule.power(10,2))

sum: 30

Average: 15.0

Power: 100

RESULT:

EX.NO: 10	WEB PAGES
DATE:	

To implement a python program for creating Dynamic and Interactive web pages using forms.

ALGORITHM:

- Step 1: Start Pycharm IDE
- Step 2: Start the XAMPP server for program execution from the XAMPP control panel
- Step 3:Type the following command in pycharm terminal window to import mysql connector pip install mysql-connector-python
- Step 4:Create a new project in pycharm and a new file for database connectivity program
- Step 5:Type the coding
- Step 6:Create new database and table in phpMyAdmin
- Step 7:Insert rows into the table
- Step 8:Execute the program in pycharm,the rows available in the table will be displayed in the output

```
import mysql.connector
from mysql.connector import Error
```

```
try:
  conn = mysql.connector.connect(host = 'localhost',database = 'labdb',user =
'root',password = ")
  if conn.is_connected():
     db = conn.get_server_info()
     print("connected to mysql server " + db)
     cursor = conn.cursor()
     cursor.execute('select * from student')
     record = cursor.fetchall()
     for result in record:
       print(result)
except Error as e:
  print("error while connecting database",e)
finally:
   if conn.is_connected():
     cursor.close()
     conn.close()
     print("connection closed")
type the following in terminal
pip install mysql-connector-python
```


RESULT: