Геометрия и топология

Курс Солынина А.А.

Осень 2022 г.

Оглавление

Оглавление			i	
1	Диф	фференциальная геометрия кривых	2	
	1.1	Понятие кривой	2	
	1.2	Длина кривой	6	
	1.3	Касательный вектор	8	
	1.4	Репер Френе	1	
	1.5	Соприкасающаяся плоскость	13	
	1.6	Вычисление кривизны	17	

Дифференциальная геометрия

Глава 1

Дифференциальная геометрия кривых

1.1. Понятие кривой

05.09.22

Кривую можно задать множеством способов, например:

- в декартовых координатах: y = f(x)
- \bullet в полярных координатах: $r=r(\varphi)$
- неявным уравнением: F(x,y) = 0

но обычно её задают в параметрическом виде:

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

В таком случае кривая

- ullet в декартовых координатах принимает вид: $\begin{cases} x=t \\ y=f(t) \end{cases}$
- в полярных координатах: $\begin{cases} x = r(t)\cos t \\ y = r(t)\sin t \end{cases}$

• для неявных уравнений свои методы, т.к. не очень понятно как с ними работать

Например, для неявных уравнений существует следующая теорема:

Теорема (О неявной функции). Если F(x,y)=0 и $F(x_0,y_0)=0$, а так же $\frac{\partial F}{\partial y}|_{(x_0,y_0)}\neq 0, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ существуют и непрерывны в окрестности (x_0,y_0) , тогда существует f(x) в некоторой окрестности x_0 , что F(x,f(x))=0.

Пример 1.1. Имеем стандартное уравнение окружности: $x^2 + y^2 - 1 = 0$. В окрестности большинства его точек можно выразить y через x: $y = \pm \sqrt{1-x^2}$. Но это выражение перестает работать в точке x = -1 или x = 1 (то есть для любой другой точки, можно найти окрестность, такую что функция будет иметь конкретный знак, в то время как для $x = \pm 1$ такое сделать невозможно). Воспользуется теоремой выше, соблюдены почти все условия, кроме:

$$\frac{\partial F}{\partial y} = 2y|_{\substack{x=\pm 1\\y=0}} = 0$$

Соответственно, именно в этих точках найти искомую f нельзя.

Параметрическое задание кривой

 $\mathbf{f}(t)$ - векторное уравнение. $\mathbf{f}:[a,b]\to\mathbb{R}^3$. Кривую определяет вектор-функция.

Определение 1.1 (Вектор-функция). f — вектор-функция как выше. На протяжении всего курса предполагаем, что у функции необходимая нам гладкость.

Определение 1.2 (Предел вектор-функции). $\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{v}, \; \text{если}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ |t - t_0| < \delta \ |\mathbf{f}(t) - \mathbf{v}| < \varepsilon$$

Свойства. Везде считаем, что свойство выполнено, если существуют соответствующие пределы.

1.
$$\lim_{t \to t_0} (\mathbf{f}(t) \pm \mathbf{g}(t)) = \lim_{t \to t_0} \mathbf{f}(t) \pm \lim_{t \to t_0} \mathbf{g}(t)$$

$$2. \ \lim_{t \rightarrow t_0} (\mathbf{f}(t)\mathbf{g}(t)) = \lim_{t \rightarrow t_0} \mathbf{f}(t) \lim_{t \rightarrow t_0} \mathbf{g}(t)$$

3.
$$\lim_{t \to t_0} (\mathbf{f}(t) \times \mathbf{g}(t)) = \lim_{t \to t_0} \mathbf{f}(t) \times \lim_{t \to t_0} \mathbf{g}(t)$$

4. Смешанное произведение аналогично

Определение 1.3 (Производная вектор-функции).

$$|\mathbf{f}'(t)|_{t=t_0} = \lim_{t \to t_0} \frac{\mathbf{f}(t) - \mathbf{f}(t_0)}{t - t_0}$$

Свойства.

1.
$$(\mathbf{f} \pm \mathbf{g})' = \mathbf{f}' \pm \mathbf{g}'$$

2.
$$(c\mathbf{f})' = c\mathbf{f}'$$

3.
$$(\mathbf{fg})' = \mathbf{f}'\mathbf{g} + \mathbf{fg}'$$

4.
$$(\mathbf{f} \times \mathbf{g})' = \mathbf{f}' \times \mathbf{g} + \mathbf{f} \times \mathbf{g}'$$

Доказательство.
$$(\mathbf{f} \times \mathbf{g})' = \mathbf{f}' \times \mathbf{g} + \mathbf{f} \times \mathbf{g}'$$
 Доказательство.
$$(\mathbf{f} \times \mathbf{g})'|_{t=t_0} = \lim_{t \to t_0} \frac{\mathbf{f}(t) \times \mathbf{g}(t) - \mathbf{f}(t_0) \times \mathbf{g}(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{\mathbf{f}(t) \times \mathbf{g}(t) - \mathbf{f}(t_0) \times \mathbf{g}(t) + \mathbf{f}(t_0) \times \mathbf{g}(t) - \mathbf{f}(t_0) \times \mathbf{g}(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{\mathbf{f}(t) - \mathbf{f}(t_0)}{t - t_0} \times \mathbf{g}(t) + \lim_{t \to t_0} \mathbf{f}(t_0) \times \frac{\mathbf{g}(t) - \mathbf{g}(t_0)}{t - t_0} = \mathbf{f}'(t_0) \times \mathbf{g}(t_0) + \mathbf{f}(t_0) \times \mathbf{g}'(t_0)$$

5. $(\mathbf{f}, \mathbf{g}, \mathbf{h})' = (\mathbf{f}', \mathbf{g}, \mathbf{h}) + (\mathbf{f}, \mathbf{g}', \mathbf{h}) + (\mathbf{f}, \mathbf{g}, \mathbf{h}')$

Доказательство.
$$(\mathbf{f},\mathbf{g},\mathbf{h})' = ((\mathbf{f}\times\mathbf{g})\mathbf{h})' = (\mathbf{f}\times\mathbf{g})'\mathbf{h} + (\mathbf{f}\times\mathbf{g})\mathbf{h}' = \\ (\mathbf{f}'\times\mathbf{g})\mathbf{h} + (\mathbf{f}\times\mathbf{g}')\mathbf{h} + (\mathbf{f}\times\mathbf{g})\mathbf{h}'$$

В свойствах отсутствует деление, т.к. операция деления векторов не определена. В вещественном анализе множество теорем доказывается с помощью следующей теоремы:

Теорема (Лагранжа). Если f(x) непрерывно дифференцируема на [a,b], тогда существует $c\in [a,b]: f'(c)=\frac{f(b)-f(a)}{b-a}.$

Для вектор-функций эта теорема, однако, не существует!

Определение 1.4 (Интеграл вектор-функции).

$$\int_{a}^{b} \mathbf{f}(t)dt = \lim_{\max|\Delta_{i}t| \to 0} \sum_{i} \mathbf{f}(\sigma_{i})\Delta_{i}t.$$

Определение 1.5 (Кривая). Кривая – образ $\mathbf{f}(t)$. Кривая не пересекает саму себя, то есть $\mathbf{f}(t_1) \neq \mathbf{f}(t_2)$. $\mathbf{f}(t)$ – параметризация кривой. Параметризация регулярна, если $\mathbf{f}'(t) \neq \mathbf{0} \ \forall t$.

Пример 1.2 (Нерегулярная параметризация). $\begin{cases} x=t^2 \\ y=t^3 \end{cases}$ или $\mathbf{r}(t)=(t^2,t^3)$ – полукубическая парабола. $y=x^{3/2}$ (плохо при x<0).

(0,0) – точка излома (т.е. точка, в которой параметризация теряет регулярность).

Перепараметризация

Пусть $\varphi:[a,b]\to [c,d],\ \varphi$ строго возрастает, $\varphi(a)=c, \varphi(b)=d,$ также существует φ^{-1} . $\mathbf{f}:[c,d]\to\mathbb{R}^3$, тогда $\mathbf{g}:=\mathbf{f}\circ\varphi:[a,b]\to\mathbb{R}^3$. В таком случае \mathbf{g} – перепараметризация кривой и $\mathbf{f}=\mathbf{g}\circ\varphi^{-1}$.

Если такая φ существует, то $\mathbf{f} \sim \mathbf{g}$ (эквивалентны).

Если образы $\mathbf{f}(t)$ и $\mathbf{g}(t)$ совпадают, кривые не самопересекаются, а их параметризации регулярны, то существует такое φ и $\mathbf{f} = \mathbf{g} \circ \varphi$.

1.2. Длина кривой

Определение 1.6 (Длина кривой). $\mathbf{f}:[a,b] \to \mathbb{R}^3, \ a=t_0 < t_1 < \ldots < t_n=b, \ \Delta_i t=t_i-t_{i-1}.$

$$L \coloneqq \lim_{\max \Delta_i t \to 0} \sum_{i=1}^n |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})|$$

Определение 1.7 (Спрямляемая кривая). Прямая называется спрямляемой, если существует её длина.

Пример 1.3. $y = \sin 1/x$ на (0,1] не спрямляемая.

Пример 1.4. $y=\sqrt{x}\sin{1/x},\ y(0)=0,$ ее сумма оценивается $L\geqslant\sum_{n=1}^{\infty}\sqrt{\frac{1}{n}}=\infty.$

Теорема 1.1.

$$L = \int_{a}^{b} |\mathbf{f}'(t)| dt$$

Замечание. $|\sum \mathbf{f}_i| \leqslant \sum |\mathbf{f}_i|, ||\mathbf{f}| - |\mathbf{g}|| \leqslant |\mathbf{f} - \mathbf{g}|, |\int \mathbf{f} dt| \leqslant \int |\mathbf{f}| dt.$

Доказательство. Хотим доказать:

$$\left|\int_a^b |\mathbf{f}'(t)| dt - \sum |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})|\right| \to 0$$

оценим это:

$$\begin{split} \left| \int_a^b |\mathbf{f}'(t)| dt - \sum |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})| \right| &= \\ \left| \int_a^b |\mathbf{f}'(t)| dt - \sum |\mathbf{f}'(\sigma_i)| \Delta_i t + \sum |\mathbf{f}'(\sigma_i)| \Delta_i t - \sum |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})| \right| \\ &\leq \left| \int_a^b |\mathbf{f}'(t)| dt - \sum |\mathbf{f}'(\sigma_i)| \Delta_i t \right| + \\ &\left| \sum |\mathbf{f}'(\sigma_i)| \Delta_i t - \sum |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})| \right| \end{split}$$

 $\left|\int_a^b |\mathbf{f}'(t)| dt - \sum |\mathbf{f}'(\sigma_i)| \Delta_i t\right| \to 0 \text{ по определению интеграла.}$ \mathbf{f}' непрерывная, значит равномерно непрерывна, тогда если $\forall \varepsilon > 0 \; \exists \delta > 0 \; |x_1 - x_2| < \delta \implies |\mathbf{f}(x_1) - \mathbf{f}(x_2)| < \varepsilon$. Выберем любое ε и зафиксируем δ , удовлетворяющее мелкости разбиения и получим:

$$\begin{split} \left| \sum |\mathbf{f}'(\sigma_i)| \Delta_i t - \sum |\mathbf{f}(t_i) - \mathbf{f}(t_{i-1})| \right| &= \\ \left| \sum \int_{t_{i-1}}^{t_i} |\mathbf{f}'(\sigma_i)| dt - \sum \left| \int_{t_{i-1}}^{t_i} \mathbf{f}'(t) dt \right| \right| &\leq \sum \int_{t_{i-1}}^{t_i} |\mathbf{f}'(\sigma_i) - \mathbf{f}'(t)| dt \\ &\leq \sum \int_{t_{i-1}}^{t_i} \varepsilon dt = \varepsilon (b-a) \to 0 \end{split}$$

Попытаемся понять как вычислять длину прямой в некоторых 12.09.22 случаях:

• в случае явного задания:

$$\begin{cases} x = t \\ y = f(t) \end{cases} \Leftrightarrow y = f(t)$$
$$|(x', y')| = \sqrt{1 + \mathbf{f}'^2(t)} \implies L = \int_0^b \sqrt{1 + \mathbf{f}'^2(t)} dt$$

К сожалению, такая формула мало применима, так как интегралы берутся редко.

• в случае параметрического задания:

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \implies L = \int_a^b \sqrt{x'^2 + y'^2 + z'^2} dt$$

• в случае полярных координат:

$$\begin{split} r &= r(\varphi) \Leftrightarrow \begin{cases} x = r(\varphi)\cos\varphi \\ y &= r(\varphi)\sin\varphi \end{cases} \implies \begin{cases} x' = r'\cos\varphi - r\sin\varphi \\ y' &= r'\sin\varphi + r\cos\varphi \end{cases} \\ x'^2 + y'^2 &= (r'\cos\varphi - r\sin\varphi)^2 + (r'\sin\varphi + r\cos\varphi)^2 = \\ r'^2\cos^2\varphi - 2rr'\sin\varphi\cos\varphi + r^2\sin^2\varphi + \\ r'^2\sin^2\varphi + 2rr'\sin\varphi\cos\varphi + r^2\cos^2\varphi = \\ r'^2 + r^2 \end{cases} \\ L &= \int_a^b \sqrt{x'^2 + y'^2} d\varphi = \int_a^b \sqrt{r'^2 + r^2} d\varphi \end{split}$$

1.3. Касательный вектор

Лемма 1.2. Если $|\mathbf{f}(t)| = const$, то $\mathbf{f}'(t) \perp \mathbf{f}(t)$.

Доказательство. Из $\mathbf{f}'(t) \perp \mathbf{f}(t)$ получаем: $(\mathbf{f}'(t), \mathbf{f}(t)) = 0 \ \forall t$.

Возьмем производную скалярного квадрата и получим:

$$(\mathbf{f}(t), \mathbf{f}(t))' = 2(\mathbf{f}'(t), \mathbf{f}(t)) = 0 = |\mathbf{f}(t)|^{2'}$$

Тогда, $|\mathbf{f}(t)| = const.$

Определение 1.8 (Касательный вектор). $\mathbf{f}'(t_0)$ называется касательным вектором к кривой в точке t_0 . Прямая, на которой лежит $\mathbf{f}'(t)$ – касательная прямая.

Теорема 1.3. Касательная прямая не зависит от параметризации, если она регулярна.

Доказательство. φ – скалярная функция, $\mathbf{f}(t)$ – вектор-функция. Также $\mathbf{f}(\varphi(t)) = \mathbf{g}(t)$. $\mathbf{f}'(t)$, $\mathbf{g}'(t) = \mathbf{f}'(\varphi(t))\varphi'(t)$ – касательные векторы \mathbf{f} и \mathbf{g} соответственно. Обозначим $\tau = \varphi(t)$. $\mathbf{f}'(t)$ и $\mathbf{g}'(t)$ отличаются друг от друга на скаляр, тогда $\mathbf{f}'(\tau) \parallel \mathbf{g}'(t)$. Следовательно, при перепараметризации касательный вектор будет параллелен предыдущему, значит касательная прямая инвариантно определена.

Замечание. Регулярная параметризация – это параметризации для которой в любой точке существует касательная прямая.

Определение 1.9 (Натуральная параметризация). Параметризация $\mathbf{f}(t)$ называется натуральной, если $|\mathbf{f}'(t)| \equiv 1 \ \forall t$.

По сути, мы идем по кривой с единичной скоростью. Но пока не ясно существует и единственна ли натуральная параметризация.

Доказательство. Проверить единственность достаточно просто: $\mathbf{g}(t) = \mathbf{f}(\varphi(t)), \ \varphi(t) = \tau$

$$|\mathbf{g}'(t)| = |\mathbf{f}'(\tau)||\varphi(t)| \implies |\varphi'(t)| = 1$$

тогда $\varphi = t + t_0$ (с точностью до выбора начального момента времени).

Теорема 1.4. Натуральная параметризация существует.

Доказательство. Вспомним про длину кривой. Глобальная идея: параметризация говорит сколько мы проходим по кривой за данное время; чтобы перейти к натуральной параметризации мы откажемся от стандартного времени, и скажем, что новое время это тот участок кривой, за которое мы его проходим, или единичное расстояние мы проходим за единичное время, значит параметр времени — это участок дуги.

Реализуем эту идею:

$$s = \int_{t_0}^t |\mathbf{f}'(\tau)| d\tau$$

s – искомый натуральный параметр. Будем считать $t-t_0$ временем. Обозначим $s=\varphi(t)$:

$$\varphi(t) = \int_{t_0}^t |\mathbf{f}'(\tau)| d\tau$$

Заметим, что $\varphi(t)$ возрастает и непрерывна. Значит существует $t=\varphi^{-1}(s)=\psi(s)$. Тогда $\mathbf{f}(t)=\mathbf{f}(\psi(s))$ должна быть натуральной параметризацией.

Теперь докажем, что $\mathbf{f}(\psi(s))$ есть натуральная параметризация. Хотим убедиться, что

$$\left| \frac{d\mathbf{f}(\psi(s))}{ds} \right| = 1.$$

Для этого

$$\psi'(s) = \frac{1}{\varphi'(t(s))} = \frac{1}{|\mathbf{f}'(t)|}$$
$$\frac{d}{ds}\mathbf{f}(\psi(s)) = \mathbf{f}'(\psi(s))\psi'(s) = \frac{\mathbf{f}'(t)}{|\mathbf{f}'(t)|}$$
$$\left|\frac{\mathbf{f}'(t)}{|\mathbf{f}'(t)|}\right| = 1$$

1.4. Репер Френе

Есть кривая и $\mathbf{f}(s)$ – ее натуральная параметризация, тогда $\mathbf{v}(s)$ – ее касательный вектор. $|\mathbf{v}(s)| = 1$. Тогда $\mathbf{v}'(s) \perp \mathbf{v}(s)$ по лемме 1.2.

Определение 1.10 (Кривизна кривой). Определим $\mathbf{n}(s)$: $\mathbf{n}(s) \uparrow \uparrow \mathbf{v}'(s)$, $|\mathbf{n}(s)| = 1$, такой \mathbf{n} – вектор главной нормали.

$$k = \frac{\mathbf{v}'(s)}{\mathbf{n}} \Leftrightarrow \mathbf{v}' = k\mathbf{n}$$

Такая k – кривизна кривой. А выражение $\mathbf{v}' = k\mathbf{n}$ называется первой формулой Френе.

Замечание. $k \geqslant 0$.

Замечание. n – не везде определен, необходима бирегулярность.

Определение 1.11. Кривая называется бирегулярной, если $\mathbf{f}''(t) \not\parallel \mathbf{f}'(t)$ для любой параметризации. Или, если $\mathbf{v}'(s) \neq 0$ для натуральной параметризации. Или \mathbf{n} корректно определен. (почему они эквивалентны – вопрос будущего)

По умолчанию считаем, что все кривые бирегулярны.

У нас есть вектор ${\bf v}$ и перпендикулярный ему ${\bf n}$. Они единичные, хотим превратить их в базис пространства. Для этого построим вектор ${\bf b}$ перпендикулярный им обоим и тоже единичный.

Определение 1.12 (Вектор бинормали).

$$\mathbf{b} \coloneqq \mathbf{v} \times \mathbf{n}$$

Правая тройка $(\mathbf{v}, \mathbf{n}, \mathbf{b})$ – репер Френе.

Изучим \mathbf{b}' : $\mathbf{b}'(s) \perp \mathbf{b}(s)$ из леммы 1.2, также $\mathbf{b}' \perp \mathbf{v}$. Почему?

$$\mathbf{b}' = (\mathbf{v} \times \mathbf{n})' = \mathbf{v}' \times \mathbf{n} + \mathbf{v} \times \mathbf{n}' = 0 + \mathbf{v} \times \mathbf{n}' \perp \mathbf{v}$$

Таким образом, $\mathbf{b}' \parallel \mathbf{n}$ и $\mathbf{b}' = -\kappa \mathbf{n}$ – вторая формула Френе.

Определение 1.13 (Кручение кривой). κ , определенная выше – кручение кривой.

Изучим n:

 $\mathbf{n}' = (\mathbf{b} \times \mathbf{v})' = \mathbf{b}' \times \mathbf{v} + \mathbf{b} \times \mathbf{v}' = -\kappa \mathbf{n} \times \mathbf{v} + \mathbf{b} \times k\mathbf{n} = \kappa \mathbf{b} - k\mathbf{v}$ получили третью формулу Френе.

Определение 1.14 (Формулы Френе).

v
 n
 b

 v'
 0

$$k$$
 0

 n'
 $-k$
 0
 κ

 b'
 0
 $-\kappa$
 0

Производная везде берется по натуральному параметру.

Определение 1.15. Плоскость (\mathbf{n}, \mathbf{b}) — нормальная плоскость кривой. Плоскость (\mathbf{v}, \mathbf{n}) — соприкасающаяся плоскость кривой. Плоскость (\mathbf{v}, \mathbf{b}) — спрямляющая плоскость кривой.

Вопрос: а как это посчитать?

Пример 1.5. Есть окружность:

$$\begin{cases} x = R\cos t \\ y = R\sin t \\ z = 0 \end{cases}$$

Хотим найти натуральную параметризацию: сейчас мы проходим окружность за время 2π , наверное нужно проходить окружность за время $2\pi R$. Тогда получим:

$$\begin{cases} x = R\cos(t/R) \\ y = R\sin(t/R) \\ z = 0 \end{cases} \implies \begin{cases} x' = -\sin(t/R) \\ y' = \cos(t/R) \end{cases}$$

1.5. Соприкасающаяся плоскость

19.09.22

В натуральной параметризации $\mathbf{v} = \mathbf{f}'$ и $\mathbf{n} = \mathbf{f}''/k$. Тогда плоскость $\langle \mathbf{f}', \mathbf{f}'' \rangle$ – соприкасающаяся плоскость для натуральной параметризации.

А что будет в случае не натуральной параметризации? Посмотрим, что в таком случае происходит с вектором \mathbf{f}'' , будет ли он перпендикулярен \mathbf{f}' ? Нет, не будет, потому что, если вектор $\mathbf{f}'' \perp \mathbf{f}'$, то $|\mathbf{f}'| = const$ и параметризация почти натуральная, в том смысле, что наша скорость постоянная, но возможно не единичная. Вывод: в обычной ситуации \mathbf{f}'' не перпендикулярен \mathbf{f}' , однако плоскость в которой он лежит не меняется.

Теорема 1.5. Плоскость $\langle \mathbf{f}', \mathbf{f}'' \rangle$ не зависит от параметризации.

Доказательство. Пусть $\mathbf{f}(t) = \mathbf{g}(s)$, где s не обязательно натуральный параметр и $s = \varphi(t)$, тогда $\mathbf{g}(\varphi(t)) = \mathbf{f}(t)$. Уже доказано, что $\mathbf{f}' \parallel \mathbf{g}'$. Теперь выясним, что

$$\begin{split} \mathbf{f}''(t) &= (\mathbf{g}(\varphi(t)))'' = (\mathbf{g}'(\varphi(t))\varphi'(t))' = \\ &\mathbf{g}''(\varphi(t))\varphi'^2(t) + \mathbf{g}'(\varphi(t))\varphi''(t) \in \langle \mathbf{g}', \mathbf{g}'' \rangle \end{split}$$

Теорема 1.6. Есть регулярная параметризация $\mathbf{f}(t)$, $\delta(t)$ – расстояние от $\mathbf{f}(t)$ до касательной в точке $\mathbf{f}(t_0)$.

Такой lim = 0 тогда и только тогда, когда касательная прямая.

Доказательство. Выберем удобную для нас координатную систему:

- $\mathbf{f}(t_0) = (0, 0, 0)$
- $t_0 = 0$ Касательная прямая прямая OX. Тогда $\mathbf{f}(0) = (a,0,0)$.

Пусть $\mathbf{f}(t) = (f_1(t), f_2(t), f_3(t))$, выясним что такое δ .

$$\delta = \sqrt{f_2^2(t) + f_3^2(t)}$$

Разложим f_1 по Тейлору:

$$f_1(t) = f_1(0) + f'_1(0)t + o(|\mathbf{f}(t) - \mathbf{f}(t_0)|) = at + o(t)$$

На малом промежутке $|{f f}(t)-{f f}(t_0)| pprox t.$ Аналогично с f_2,f_3 :

$$f_2(t) = f_2(0) + f'_2(0)t + o(t) = o(t)$$
$$f_3(t) = o(t)$$

Отсюда, $\delta(t) = o(t)$ и

$$\lim_{t \to 0} \frac{\delta(t)}{t} = 0$$

А так же

$$\lim_{t\to 0}\frac{|\mathbf{f}(t)-\mathbf{f}(0)|}{t}=|\mathbf{f}'(0)|$$

Обратное доказательство – упражнение. (Hint: если δ – расстояние от данной точки до любой прямой, кроме OX, то в формуле для δ появится слагаемое $f_1^2(t)$)

Теорема 1.7. Пусть $\mathbf{f}(t)$ — бирегулярная параметризация. δ — расстояние от $\mathbf{f}(t)$ до плоскости α .

$$\lim_{t \to t_0} \frac{\delta}{t^2} = 0 \left(\lim_{t \to t_0} \frac{\delta}{|\mathbf{f}(t) - \mathbf{f}(t_0)|^2} = 0 \right)$$

Такой $\lim = 0 \Leftrightarrow \alpha$ – соприкасающаяся плоскость.

Доказательство. Введем удобную систему координат:

- 1. $t_0 = 0$
- 2. $\mathbf{f}(0) = (0, 0, 0)$
- 3. $\mathbf{f}'(0) = (a,0,0)$ и $\mathbf{f}''(0) = (b,c,0)$

Тогда соприкасающаяся плоскость, должна быть плоскостью z=0. Докажем это.

Запишем вектор-функцию в координатах: $\mathbf{f}(t) = (f_1(t), f_2(t), f_3(t))$. Пусть плоскость α задана уравнением Ax + By + Cz + D = 0 и $A^2 + B^2 + C^2 = 1$. Подсчитаем δ используя разложение по Тейлору:

$$\begin{split} \delta &= |Af_1(t) + Bf_2(t) + Cf_3(t) + D| = \\ & \left| A \left(f_1(0) + f_1'(0)t + \frac{f_1''(0)}{2}t^2 + o(t^2) \right) + \right. \\ & \left. B \left(f_2(0) + f_2'(0)t + \frac{f_2''(0)}{2}t^2 + o(t^2) \right) + \right. \\ & \left. C \left(f_3(0) + f_3'(0)t + \frac{f_3''(0)}{2}t^2 + o(t^2) \right) + D \right| = \\ & \left. \left| Aat + \frac{Ab}{2}t^2 + \frac{Bc}{2}t^2 + D + o(t^2) \right| \right. \end{split}$$

Теперь хотим выяснить чему равносильно $\delta = o(t^2)$.

$$\begin{cases} Aa = 0 \\ Bc = 0 \\ D = 0 \end{cases}$$

При этом $a \neq 0$, т.к. это единственная ненулевая координата касательного вектора, она не может быть нулем. И $c \neq 0$, иначе \mathbf{f}'' коллинеарно \mathbf{f}' . Тогда

$$\begin{cases} A = 0 \\ B = 0 \\ D = 0 \end{cases}$$

и α имеет единственно возможное уравнение z=0.

Посмотрим как задаются все эти плоскости в координатах. Пусть

$$\mathbf{f}(t) = (f_1(t), f_2(t), f_3(t))$$

и ${\bf f}$ не натуральная параметризация (т.к. к натуральной параметризации тяжело перейти).

$$\mathbf{f}'(t) = (f_1', f_2', f_3')$$

Построим нормальную плоскость:

$$f_1'(t_0)(x-f_1(t_0))+f_2'(t_0)(y-f_2(t_0))+f_3(t_0)(z-f_3(t_0))=0$$

Построим соприкасающуюся плоскость: для этого найдем вектор главной нормали

$$\mathbf{n} = \mathbf{f}' \times \mathbf{f}'' = (f_2' f_3'' - f_3' f_2'', f_3' f_1'' - f_1' f_3'', f_1' f_2'' - f_2' f_1'')$$

и уравнение плоскости

$$(f_2'f_3''-f_3'f_2'')(x-f_1)+(f_3'f_1''-f_1'f_3'')(y-f_2)+(f_1'f_2''-f_2'f_1'')(z-f_3)=0$$

Построение спрямляющей плоскости опущено в виду громоздкости выкладок.

1.6. Вычисление кривизны

В натуральной параметризации $\mathbf{f}(s_0) = |\mathbf{f}''(s_0)|$.

Теорема 1.8. $k \equiv 0 \Leftrightarrow$ кривая является частью прямой.

Доказательство. В натуральной параметризации k=0 равносильно $\mathbf{f}''(t)=0$, а это равносильно тому, что $\mathbf{f}(t)=\mathbf{u}t+\mathbf{v}$, где \mathbf{u} и $\mathbf{v}=const$.

Теорема 1.9. Для любой регулярной параметризации

$$k = \frac{|\mathbf{f}'(t) \times \mathbf{f}''(t)|}{|\mathbf{f}'(t)|^3}.$$

Доказательство. Пусть $\mathbf{g}(s)$ – натуральная параметризация, а $\mathbf{f}(t)$ любая другая параметризация.

$$s=\varphi(t)=\int_{t_0}^t |\mathbf{f}'(\tau)| d\tau$$

Тогда связь между ними: $\mathbf{f}(t) = \mathbf{g}(\varphi(t))$. И существует $\psi(s) = t$ обратная функция и $\mathbf{g}(s) = \mathbf{f}(\psi(s))$.

Пусть $\mathbf{u} \in \langle \mathbf{f}', \mathbf{f}'' \rangle$

Вычислим k:

$$k = |\mathbf{g}''(s)| = |(\mathbf{f}(\psi(s)))''| =$$

$$|\mathbf{f}''(\psi(s))\psi'^{2}(s) + \mathbf{f}'(\psi(s))\psi''(s)| =$$

$$\Pi \mathbf{p}_{\mathbf{r}}(\mathbf{f}''(\psi(s))\psi'^{2}(s) + \mathbf{f}'(\psi(s))\psi''(s))$$

Пусть

$$\begin{aligned} \mathbf{u} &= \mathbf{f''}(\psi(s))\psi'^2(s) + \mathbf{f'}(\psi(s))\psi''(s) \\ \mathbf{f'} \times \mathbf{u} &= \mathbf{f'} \times \mathbf{f''}\psi'^2 + 0 \\ \psi'(s) &= \frac{1}{\varphi'(t)} = \frac{1}{|\mathbf{f'}(t)|} \end{aligned}$$

тогда

$$\frac{|\mathbf{f}' \times \mathbf{u}|}{|\mathbf{f}'|} = \frac{|\mathbf{f}' \times \mathbf{f}''|}{|\mathbf{f}'|} \psi'^{2}(s) = \frac{|\mathbf{f}' \times \mathbf{f}''|}{|\mathbf{f}'|^{3}}$$

Если
$$\mathbf{f} = (f_1, f_2, f_3)$$
, то

$$k = \frac{\sqrt{(f_2'f_3'' - f_3'f_2'')^2 + (f_3'f_1'' - f_1'f_3'')^2 + (f_1'f_2'' - f_2'f_1'')^2}}{(f_1^2 + f_2^2 + f_3^2)^{3/2}}$$

В случае плоских кривых $(f_3 = 0)$:

$$k = \frac{|f_1'f_2'' - f_2'f_1''|}{(f_1^2 + f_2^2)^{3/2}}$$

При явном задании

$$y = f(x) \quad \begin{cases} x = f_1 = t \\ y = f_2 = f(t) \end{cases}$$
$$k = \frac{|f''|}{(1 + f'^2)^{3/2}}$$

В полярных координатах

$$\begin{split} r &= r(\varphi) \quad \begin{cases} f_1 = x = r\cos\varphi \\ f_2 = y = r\sin\varphi \end{cases} \\ |f'| &= \sqrt{r^2 + r'^2} = \sqrt{f_1'^2 + f_2'^2} \\ \begin{cases} f_1' = r'\cos\varphi - r\sin\varphi \\ f_2' = r'\sin\varphi + r\cos\varphi \end{cases} \\ \begin{cases} f_1'' = r''\cos\varphi - 2r'\sin\varphi - r\cos\varphi \\ f_2'' = r''\sin\varphi + 2r'\cos\varphi - r\sin\varphi \end{cases} \end{split}$$

Чему равно $|f_1'f_2'' - f_2'f_1''|$ – упражнение.