

อักษรภาพ

้นักวิจัยกลุ่มหนึ่งกำลังศึกษาความคล้ายคลึงกันระหว่างลำดับอักษรภาพ 2 ลำดับ พวกเขาใช้ตัวเลขจำนวนเต็มไม่ติดลบ เขียนแทนอักษรภาพแต่ละตัว ในการศึกษาวิจัยพวกเขาใช้แนวคิดต่อไปนี้เกี่ยวกับลำดับ

พิจารณาลำดับ A เราจะเรียกลำดับ S ว่าเป็น **ลำดับย่อย** ของ A ก็ต่อเมื่อเราสามารถสร้าง S ได้จากการลบตัวอักษรบาง ตัวจาก A (หรืออาจไม่ลบเลยก็ได้)

ตารางด้านล่างนี้แสดงตัวอย่างบางส่วน ของลำดับย่อย ของลำดับ A=[3,2,1,2].

ลำดับย่อย	สร้างมาจาก A ได้อย่างไร	
[3, 2, 1, 2]	ไม่ต้องลบตัวอักษรใดเลย	
[2, 1, 2]	[3 , 2, 1, 2]	
[3, 2, 2]	[3, 2, 1 , 2]	
[3, 2]	[3, 2 , 1 , 2] หรือ [3, 2, 1 , 2]	
[3]	[3, 2 , 1 , 2]	
[]	[3 , 2 , 1 , 2]	

ในทางกลับกัน [3,3] หรือ [1,3] ไม่ใช่ลำดับย่อยของ A

พิจารณาลำดับอักษรภาพสองลำดับ A และ B เราจะถือว่าลำดับ S เป็น **ลำดับย่อยร่วม** ของ A และ B ก็ต่อเมื่อ S เป็น ลำดับย่อยของทั้ง A และ B นอกจากนี้ เราจะถือว่าลำดับ U เป็น **ลำดับย่อยร่วมถ้วนหน้า** ของ A และ B ก็ต่อเมื่อ เงื่อนไขสองข้อต่อไปนี้เป็นจริง:

- ullet U เป็นลำดับย่อยร่วมของ A และ B
- ullet ลำดับย่อยร่วมของ A และ B ทุกลำดับ ล้วนเป็นลำดับย่อยของ U เช่นกัน

เราสามารถพิสูจน์ได้ว่าลำดับ A และ B ใดๆ มีลำดับย่อยร่วมถ้วนหน้าอย่างมากที่สุดหนึ่งลำดับ

นักวิจัยค้นพบลำดับอักษรภาพ A และ B ลำดับ A ประกอบด้วยอักษรภาพ N ตัว และลำดับ B ประกอบด้วยอักษรภาพ M ตัว ให้คุณช่วยนักวิจัยคำนวณหาลำดับย่อยร่วมถ้วนหน้าของลำดับ A และ B หรือตอบว่าลำดับดังกล่าวไม่มีอยู่จริง

รายละเอียดการเขียนโปรแกรม

คุณจะต้องเขียนฟังก์ชันต่อไปนี้

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- ullet A: อาร์เรย์ความยาว N ซึ่งเป็นลำดับอักษรแรก
- ullet B: อาร์เรย์ความยาว M ซึ่งเป็นลำดับอักษรที่สอง
- ถ้าลำดับย่อยร่วมถ้วนหน้าของ A และ B มีอยู่จริง ฟังก์ชันควรคืนค่าอาร์เรย์ที่บรรจุลำดับอักษรดังกล่าว $\,$ มิเช่น นั้น ฟังก์ชันควรคืนค่า [-1] (อาร์เรย์ความยาว 1 ซึ่งมีสมาชิกเดียวคือ -1)
- ฟังก์ชันนี้จะถูกเรียกใช้หนึ่งครั้งพอดี สำหรับแต่ละกรณีทดสอบ

เงื่อนไข

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- ullet $0 \leq A[i] \leq 200\,000$ สำหรับแต่ละ i ที่ $0 \leq i < N$
- ullet $0 \leq B[j] \leq 200\,000$ สำหรับแต่ละ j ที่ $0 \leq j < M$

ปัญหาย่อย

ปัญหา ย่อย	คะแนน	เงื่อนไขเพิ่มเติม
1	3	N=M; ทั้ง A และ B ประกอบด้วยจำนวนเต็ม ที่แตกต่างกัน N จำนวน มีค่าระหว่าง 0 และ $N-1$ (รวมหัวท้าย)
2	15	สำหรับจำนวนเต็ม k ใดๆ (จำนวนตัวอักษรของ A ที่มีค่าเท่ากับ k) บวกกับ (จำนวนตัวอักษร ของ B ที่มีค่าเท่ากับ k) จะไม่เกิน 3
3	10	$A[i] \leq 1$ สำหรับแต่ละ i ที่ $0 \leq i < N$; $B[j] \leq 1$ สำหรับแต่ละ j ที่ $0 \leq j < M$
4	16	ลำดับย่อยร่วมถ้วนหน้าของ A และ B มีอยู่จริง
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

ตัวอย่าง 1

พิจารณาการเรียกฟังก์ชันด้านล่างนี้

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

กรณีนี้ ลำดับย่อยร่วมของ A และ B มีดังนี้: $[\]$, [0] , [1] , [2] [0,0] , [0,1] , [0,2] [1,0] , [1,2] , [0,0,2] , [0,1,0] [0,1,2] , [1,0,2] และ [0,1,0,2]

เนื่องจาก [0,1,0,2] เป็นลำดับย่อยร่วมของ A และ B และ ลำดับย่อยร่วมทั้งหมดของ A และ B เป็นลำดับย่อยของ [0,1,0,2] ฟังก์ชันควรคืนค่า [0,1,0,2]

ตัวอย่าง 2

พิจารณาการเรียกฟังก์ชันด้านล่างนี้

กรณีนี้ ลำดับย่อยร่วมของ A และ B มีเพียงลำดับเดียวคือ ลำดับว่าง $[\,]$ ดังนั้นฟังก์ชันจึงควรส่งคืนอาร์เรย์ว่าง $[\,]$

ตัวอย่าง 3

พิจารณาการเรียกฟังก์ชันด้านล่างนี้

```
ucs([0, 1, 0], [1, 0, 1])
```

กรณีนี้ ลำดับย่อยร่วมของ A และ B คือ $[\],[0],[1],[0,1]$ และ [1,0] จะเห็นได้ว่าลำดับย่อยร่วมถ้วนหน้าไม่มีอยู่จริง ดัง นั้นฟังก์ชันควรส่งคืน [-1]

เกรดเดอร์ตัวอย่าง

รูปแบบข้อมูลนำเข้า:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

รูปแบบข้อมูลส่งออก:

```
T
R[0] R[1] ... R[T-1]
```

กรณีนี้ นดร คืนค่าอาร์เรย์ R ซึ่งมีความยาว T