

Opportunities for Experiments Based on Stored Muon Beams at Fermilab

(in next ~5-10 years, for ~3-20M\$)

Milorad Popovic

MAP Meeting May, 2015

How to get 100k events

- In next year or two there will be stored muon beam at ~3 GeV/c in the storage ring with ~60 meters long straits (Debuncher ring as g-2 delay beam line).
- There will be ~400 CC neutrino events in some imaginary 100 ton detector, 10 meters downstream from the one ring's straits, running for 10^7 sec Booster at 3 Hz, 8 GeV beam(5x10^12 protons per pulse) and storing muons for 100 turns.
- Numbers in point 2., are g-2 beam, and are just to establish reference point.
- Running (two Booster batches stacked) 120 GeV beam from MI on the same target and using ICARAUS (600 ton) detector for 2x10⁷ seconds (Fermilab year) will create 40000 CC neutrino events.

All this is for investment of ~10M\$ in building to house detector and willingness to move ICARUS detector in suggested location!

Motivation

- Measure neutrino cross-section with better than 10% precision
- Take advantage of the existing accelerator complex configuration providing beam to the New Muon g-2 Experiment
- Utilize existing detectors (MicroBooNE, ICARUS)
- Minimize initial investment. Providing a suitable building to house the detector would be the only investment required
- Describe possible improvements in collecting and storing muons that would allow cross-section measurements with a precision of a few percent with a modest additional investment.

Provide a suitable test facility for future NF

Muon Campus = Mu2e + g-2 + ???

Proton Beam Like for g-2, but with g-2 off

- 5x10¹² protons in a Booster pulse
- 3 Hz, 8 GeV Booster
- Muons are stored for ~100 turns
- Running time 10⁷ Sec (1 year)
- 100 ton detector, 10 meters downstream from ring

~ 400 CC neutrino events

This is for about the cost of moving an existing detector (mBooNE??, 60T) and building a new detector housing (about 3M\$)

Looking in the near future (cost~\$3M)

- 1x10¹³ protons from MI (two Booster pulses slip stacked)
- ~1 Hz, 120 GeV MI (every 1.33 sec)
- Muons are stored for ~100 turns
- Running time 1year(2x10⁷ Sec)
- 100 ton detector, 10 meters downstream from ring

~ 2/3/1.33*120/8*2x400 --- 6000 CC neutrino events

So in 10 bins even if detector is only 50% efficient, cross section Can be measured with error less then 10%

Looking Into the Future (cost~\$10M)

- 1x10¹³ protons from MI (two Booster pulses, slip stacked)
- ~1 Hz, 120 GeV MI (1.33 sec)
- Running time 1year(2x10⁷ Sec) Fermilab year is ~2x10⁷ Sec
- Larger detector, ~500 ton detector(x5) ICARUS is 600 ton

~30000 CC neutrino events

Looking Into the Future (cost~\$??)

- 1x10¹³ protons from MI (two Booster pulses, slip stacked)
- 1 Hz, 120 GeV MI
- New Li lens r = 2 cm to increase collection of pi's (x1.5)

 CERN has made this size Lens
- Make ring to be racetrack (x1.5x2) Provide a suitable test facility for future NF
- Running time 1year(2x10⁷ Sec) Fermilab year is ~210⁷ Sec
- Larger detector, ~500 ton detector(x5) ICARUS is 600 ton

~100k CC neutrino events

Questions?

The End and New Beginning Or The way to the nuSTORM (everything is used in upgrade)

If Far Detector is in CDF

If Far Detector is in D0

Questions?

May be there is more to all this