Pseudocode for FDR & Precision test

Ziyang Chen

May 19, 2021

Algorithm 1: Annotation

 ${f Data:}\ rawdata$ is the target peak list, lib is the target-decoy list used by ${f NetID}$

Result: $Ann_{mz}, Ann_{node}, Ann_{edge}, Ann_{ni}$ are annotation lists by each method

1 $SCORE_{mz}, SCORE_{node}, SCORE_{edge}, Ann_{ni}$ are generated using NetID with rawdata, lib as input

// SCOREs are score matrix of the peak list using mz, node, edge score

2 Ann_{mz} , Ann_{node} , Ann_{edge} are decided using $SCORE_{mz}$, $SCORE_{node}$, $SCORE_{edge}$ by obtaining a similar amount of Unknown in Ann_{mz} , Ann_{node} , Ann_{edge} , Ann_{ni}

Algorithm 2: Target-Decoy library Generator

Data: target library lib_{in} that is used by NetID

Result: a 1:1 target-decoy library lib_{out}

1 decoys D is generated by substitute a H of every formula in lib_{in} by an element randomly chosed from imp

// imp is a list of implausible elements which removed all elements used in target library

2 $lib_{out} = lib_{in} \bigcup D$

Algorithm 3: FDR calculator

Data: Ann is a annotation list of length M **Result:** FDR is the false discovery rate

1 FP = number of annotations that have implausible element

 $_{2}$ $FDR = \frac{FP}{M-FP}$

Algorithm 4: Precision calculator

Data: Ann is a annotation list of length M, GT is a anotation list of 314 peaks that are manually annotated

Result: P is the percentage of correct annotated peaks of Ann with respect to GT

 $1 P = \frac{N_{correct}}{314}$

Algorithm 5: FDR&Precision test

Data: rawdata is the target peak list, lib_{in} is the target library, GT is a anotation list of 314 peaks that are mannually annotated, REP is the time of repeatation

Output: FDR is a $4 \times REP$ matrix of false discovery rate for 4 methods, P is a $4 \times REP$ matrix of Precision for 4 methods

```
1 FDR, P \leftarrow []_{4 \times REP}
```

2 for i in 1 : REP do

```
oldsymbol{3} \mid lib_{out} = 	exttt{Target-Decoy library Generator} \; (lib_{in})
```

4 $Ann_{mz}, Ann_{node}, Ann_{edge}, Ann_{ni} = Annotation (rawdata, lib_{out})$

 $FDR[,i] = [exttt{FDR calculator} (Ann_{mz}), exttt{FDR calculator}]$

 (Ann_{node}) , FDR calculator (Ann_{edge}) , FDR calculator (Ann_{ni})]

 $P[,i] = [ext{Precision calculator } (Ann_{mz}), ext{Precision calculator } (Ann_{node}), ext{Precision calculator } (Ann_{edge}), ext{Precision calculator } (Ann_{ni})]$