$$C = \{ x \in \{a\}^{*} : \#a(x) \text{ mod } 3 = 1 \text{ QR} \\ \#a(x) \text{ mod } 5 = 1 \}$$

NFA:

Formal Definition of NFAs

An NFA is a five tuple

 $N = (Q, Z, \Delta, S, F)$ Where:

* S CQ: set of start states

* FCQ: set of accept of

Define $\triangle: 2^{\circ} \times 2^{\circ}$

 $\forall A \subseteq Q$ $\forall x \in Z$ $\hat{\triangle} (A, \mathcal{E}) = A$ $\hat{\triangle} (A, Xa) = \bigcup_{\substack{A \in \hat{\triangle} (A, X)}} (A, X)$

intuitively \$\hat{\Delta}\$ represents all the states that we can end up with by starting from some state in A,

and consuming X. \times N accepts \times if $\triangle(S,X) \cap F \neq \emptyset$

 $\star L(N) = \left\{ x \in \mathbb{Z}^* : F \cap \hat{\Delta}(S, x) \neq \emptyset \right\}$

Example: A={x e da,b}*: second rightmost symbol of x is a?

a,b rightm a,b (92)

 $\hat{\triangle}$ ($\{4.3, \&\}$ = $\{4.3\}$

 $\hat{\triangle}$ (29.3,9) = $\{4.991\}$

 $\triangle (\{4_6\}, ab) = \{4_0, 4_2\} = \triangle (\{4_0, 4_1\}, b)$

2AC3_W24 Page 2

$$\hat{\triangle} (\{463, ab\}) = \{40, 129 = \triangle (\{140, 115, b\})\}$$

$$\{40, \frac{1}{2}\} \cap F \neq \emptyset$$
it worked for $x = ab$

$$\hat{\triangle} (\{463, abb\}) = \hat{\triangle} (\{40, 463, bb\})$$

$$= \hat{\triangle} (\{40, 463, abb\}) = \{40, 663, abb\}$$

$$= \hat{\triangle} (\{40, 463, abb\}) = \{40, 663, abb\}$$

$$= \{40, 663, abb\}$$

Thm. Set A is regular if and only if there is an L(N)=A.