CN-Advanced L38

Network Support for Multimedia

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com https://www.youtube.com/rprustagi

Acknowledgements

Chapter 7 Multimedia Networking

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Network support for multimedia

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
Making best	All traffic	None or	No network	low	everywhere
of best effort	treated	soft	support (all at		
service	equally		application)		
Differentiated	Traffic	None of	Packet market,	med	some
service	"class"	soft	scheduling,		
			policing.		
Per-	Per-	Soft or hard	,	high	little to
connection	connection	after flow	scheduling,		none
QoS	flow	admitted	policing, call		
			admission		

Dimensioning best effort networks

- approach: deploy enough link capacity so that congestion doesn't occur, multimedia traffic flows without delay or loss
 - low complexity of network mechanisms (use current "best effort" network)
 - high bandwidth costs
- challenges:
 - network dimensioning: how much bandwidth is "enough?"
 - estimating network traffic demand: needed to determine how much bandwidth is "enough" (for that much traffic)

Providing multiple classes of service

- thus far: making the best of best effort service
 - one-size fits all service model
- alternative: multiple classes of service
 - partition traffic into classes
 - network treats different classes of traffic differently (analogy: VIP service versus regular service)
 - granularity: differential service among multiple classes, not among individual connections
 - history: ToS bits

Multiple classes of service: scenario

Scenario I: mixed HTTP and VoIP

- example: IMbps VoIP, HTTP share 1.5 Mbps link.
 - HTTP bursts can congest router, cause audio loss
 - want to give priority to audio over HTTP

Principle

packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

Principles for QOS guarantees (more)

- what if applications misbehave (VoIP sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- marking, policing at network edge

Principle 2

provide protection (isolation) for one class from others

Principles for QOS guarantees (more)

 allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn't use its allocation

Principle 3

while providing isolation, it is desirable to use resources as efficiently as possible

Scheduling and policing mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

Scheduling policies: priority

- priority scheduling: send highest priority queued packet
- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

- Round Robin (RR) scheduling:
- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

- Weighted Fair Queuing (WFQ):
- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

Policing mechanisms

- goal: limit traffic to not exceed declared parameters
- Three common-used criteria:
- (long term) average rate: how many pkts can be sent per unit time (in the long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- peak rate: e.g., 6000 pkts per min (ppm) avg.; I 500 ppm peak rate
- (max.) burst size: max number of pkts sent consecutively (with no intervening idle)

Policing mechanisms: implementation

token bucket: limit input to specified burst size and average rate

- bucket can hold b tokens
- tokens generated at rate r token/sec unless bucket full
- over interval of length
 t: number of packets
 admitted less than or
 equal to (r t + b)

Policing and QoS guarantees

 token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!

Per-connection QOS guarantees

 basic fact of life: can not support traffic demands beyond link capacity

Principle 4

call admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

QoS guarantee scenario

Summary

- Best effort networks
- Multiple classes of service
- Scheduling policies
 - Round Robin
 - WFQ
- Policy mechanisms
 - Leaky bucket implementation