SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO I

Numer zadania		Etapy rozwiązania zadania	Modelowy wynik etapu	Liczba punktów
1	1.1	Obliczenie średniej ocen z języka polskiego.	$\bar{x} \approx 3,86$	1
	1.2	Obliczenie wariancji (w tym 1 p. za metodę oraz 1 p. za obliczenia).	0,69	2
	1.3	Obliczenie odchylenia standardowego.	0,83	1
2	2.1	Opisanie ciągu arytmetycznego określającego daną sytuację.	$a_1 = x, a_{12} = x + 11r, r = -50,$ $S_{12} = 8700$	1
	2.2	Zapisanie równania z wykorzystaniem wzoru na sumę 12 wyrazów ciągu arytmetycznego.	$(2x - 550) \cdot 6 = 8700$	1
	2.3	Rozwiązanie równania i wyznaczenie pierwszej i ostatniej raty (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$a_1 = 1000, a_{12} = 450$	2
3	3.1	Zapisanie układu równań opisującego warunki zadania.	$\begin{cases} a+b+1=2\\ 4a+2b+1=-1 \end{cases}$	1
	3.2	Rozwiązanie układu równań oraz zapisanie wzoru funkcji kwadratowej (w tym 1 p. za metodę oraz 1 p. za obliczenia).	a = -2, b = 3 $f(x) = -2x^2 + 3x + 1$	2
	3.3	Rozwiązanie nierówności (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$x \in \left(0; \frac{3}{2}\right)$	2
4	4.1	Wykorzystanie własności symetralnej odcinka <i>CD</i> .	$ CP = DP \Leftrightarrow CP ^2 = DP ^2$	1
	4.2	Wyznaczenie $ CP ^2$ i $ DP ^2$.	$ CP ^2 = (x-4)^2 + (y-6)^2$ $ DP ^2 = (x-6)^2 + (y+2)^2$	1
	4.3	Ułożenie równania.	$(x-4)^2 + (y-6)^2 = (x-6)^2 + (y+2)^2$	1
	4.4	Przekształcenie równania do prostszej postaci i zapisanie równania symetralnej odcinka <i>CD</i> .	x - 4y + 3 = 0	1
5	5.1	Wykonanie rysunku i wprowadzenie oznaczeń lub wprowadzenie dokładnie opisanych oznaczeń.	AF = 21cali, AC = 32cale	1
		Zastosowanie podobieństwa trójkątów: <i>ABC</i>	1 1 1	_
	5.2	i <i>AEF</i> do wyznaczenia skali podobieństwa <i>k</i> .	$k = \frac{ AC }{ AF } = \frac{32}{21}$	1
	5.3	Obliczenie stosunku pól powierzchni ekranów.	$\frac{P_2}{P_1} = k^2 = \left(\frac{32}{21}\right)^2 \approx 2,322$	1
	5.4	Wyrażenie różnicy pól powierzchni ekranów w procentach.	132,2%	1

	<i>c</i> 1	I Iladamia násymania z miasyja dama s	3 10 2 . 21 20 0	1
6	6.1	Ułożenie równania z niewiadomą <i>n</i> .	$n^3 - 10n^2 + 31n - 30 = 0$	1
	6.2	Wykorzystanie twierdzenia Bèzouta do rozkładu lewej strony równania na czynniki.	$(n-2)(n^2-8n+15)=0$	1
	6.3	Wyznaczenie pozostałych pierwiastków równania.	$n_1 = 3, n_2 = 5$	1
	6.4	Wyznaczenie pozostałych wyrazów ciągu równych zero.	$a_3 = 0, a_5 = 0$	1
7	7.1	Sporządzenie wykresu funkcji.	30 20 10 11 2 3 4 5 6 7	1
	7.2	Określenie zbioru wartości funkcji.	Y={2,5,10,17,26,37,50}	1
	7.3	Wyznaczenie argumentu dla którego wartość funkcji wynosi 37.	<i>x</i> = 6	1
8	8.1	Sporządzenie odpowiednich rysunków z oznaczeniami lub opis oznaczeń.	R = 10 cm - promień kuli 2r = 16 cm, h = 12 cm - średnica i wysokość stożka $2r_w = \frac{8\sqrt{3}}{3} \text{ cm} - \text{średnica walca}$	1
	8.2	Zastosowanie wzorów na objętość kuli, stożka do obliczenia objętości walca.	$V_W = \frac{4768}{3}\pi$	1
	8.3	Ułożenie równania na objętość walca z niewiadomą h_w (h_w – wysokość walca).	$\frac{16}{3}\pi h_{_{W}} = \frac{4768}{8}\pi$	1
	8.4	Rozwiązanie równania.	$h_{w} = 298 \text{ cm}$	1
9	9.1	Zapisanie układu nierówności opisujących trójkąt <i>ABC</i> (w tym 2 p. za poprawne nierówności oraz 1 p. za zapisanie układu). Za dwie poprawne nierówności albo za trzy nierówności z których co najmniej jedna jest ostra o właściwych kierunkach przyznajemy 1p.	$\begin{cases} x \le 5 \\ y \ge -\frac{3}{5}x \\ y \le \frac{3}{5}x \end{cases}$	3
	9.2	Wyznaczenie długości podstawy i wysokości trójkąta <i>ABC</i> .	CB = 6, AD = 5	1
	9.3	Obliczenie pola figury F jako pole $\triangle ABC$.	$P = \frac{1}{2} CB \cdot AD = 15$	1
10	10.1	Określenie zdarzenia losowego.	A – zdarzenie polegające na wylosowaniu dwóch żetonów o nominale 10 zł.	1
	10.2	Wyznaczenie liczby wszystkich zdarzeń elementarnych.	$\bar{\Omega} = \binom{n+6}{2} = \frac{(n+5)(n+6)}{2}, n \in N_+ - \{1,2\}$	1
	10.3	Wyznaczenie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu <i>A</i> .	$n \in N_{+} - \{1,2\}$ $= A = \binom{n}{2} = \frac{(n-1)n}{2}$	1

	10.4	Wykorzystanie prawdopodobieństwa $P(A)$ do ułożenia równania.	$\frac{(n-1)n}{(n+5)(n+6)} = \frac{1}{2}$	1
	10.5	Rozwiązanie równania (w tym 1 p. za metodę z uwzględnieniem założenia oraz 1 p. za obliczenia).	n = -2 nie spełnia warunków zadania n = 15 spełnia warunki zadania	2
11	11.1	Sporządzenie rysunku wraz z oznaczeniami.	W State of the sta	1
	11.2	Wyznaczenie pola <i>P</i> podstawy ostrosłupa.	$P = \frac{3}{2}a^2\sqrt{3}$	1
	11.3	Wykorzystanie pola podstawy do ułożenia równania z niewiadomą a .	$\frac{3}{2}a^2\sqrt{3} = 6\sqrt{3}$	1
	11.4	Wyznaczenie długości a odcinka AB.	a=2	1
	11.5	Wyznaczenie długości h_p odcinka OC .	$h_p = \sqrt{3}$	1
	11.6	Wykorzystanie pola powierzchni bocznej ostrosłupa i obliczenie długości h_b wysokości ściany bocznej ostrosłupa.	$12 = 6h_b$ $h_b = 2$	1
	11.7	Wyznaczenie miary kąta nachylenia ściany bocznej do płaszczyzny podstawy.	$\cos \beta = \frac{h_p}{h_b} = \frac{\sqrt{3}}{2}$ $\beta = 30^{\circ}$	1

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.