Основни свойства на материалите с електронна проводимост

a Vip

Материалознание

Съдържание

- 1 Физическа природа на електронната проводимост
- 2 > Влияние на температурата
- 3 > Влияние на примесите и дефектите
- 4 > Контактна потенциална разлика и термо е. д. н.

1.1. Общи сведения

Проводници са материали, които

нямат забранена зона ∆W ≈ 0 eV

имат малки стойности на специфичното съпротивление ρ (или големи стойности на специфичната проводимост σ)

Проводимостта на материалите може да бъде два вида:

- 1. *Електронна* метали и техните сплави или проводници от I род;
- 2. *Йонна* електролити или проводници от II род.

Структура на метала – кристална решетка с колективни електрони, които при нормални условия стават свободни и могат да се движат в кристала.

1.2. Квантова статистика на електроните в метала

Ако няма външна енергия (T = 0 K) електроните заемат най-ниските енергийни нива т. е. всички ниски нива са заети, а всички високи – свободни.

С увеличаване на температурата вероятността за заемане на по-високите нива се увеличава според разпределението на Ферми:

$$P(W) = \frac{1}{1 + \exp\left(\frac{W - W_F}{kT}\right)}$$

Нивото на Ферми се дефинира като:

- 1. При T = 0 K е най-високото заето ниво;
- 2. При T > 0 K е онова ниво, вероятността за заемането на което е: $P(W_F) = 0,5$.

Разпределението на Ферми е симетрично спрямо W_F т. е. заетите нива над W_F са точно толкова, колкото са свободните нива под него.

1.3. Специфична проводимост σ

Електрическата проводимост определя линейната зависимост между плътността на тока *J*, протичащ през метален проводник, и интенитета *E* на приложеното в двата му края поле:

$$J = \sigma.E$$
 (Закон на Ом)

$$\rho = \frac{1}{\sigma} = R \frac{S}{l}, \Omega.m$$

където R е съпротивление, S – сечение и l - дължина на проводника.

От друга страна, според дифузионния модел на твърдото тяло:

$$\sigma = n.\mu.q$$

където q = e – заряд на електрона, n – концентрация и μ – подвижност на свободните електрони.

Различните метали имат почти еднакви и големи стойностти на n, затова различната им проводимост се определя от и.

$$\mu = \frac{e\lambda_{\sf cp}}{2mv_{\sf T}}$$

 $\mu = \frac{e \lambda_{\rm cp}}{2 m v_{\scriptscriptstyle T}}$ където $\lambda_{\rm cp}$ е среден свободен пробег, $v_{\rm T}$ – скорост на топлинно движение и m – маса на електрона.

Следователно електронната проводимост се определя основно от стойността на $\lambda_{\rm cp}$, поради което най-малко ρ имат металите с найправилна кристална решетка, без примеси и дефекти в нея.

2.1. Коефициент на топлопроводимост h_T

В твърдото тяло топлината се пренася по два механизма:

- 1. Чрез трептения на свързаните градивни частици (фонони);
- 2. Чрез движение на свободни носители на заряд (електрони).

В **диелектриците** няма свободни токоносители \Rightarrow топлината се предава бавно \Rightarrow имат малки $h_{\mathcal{T}}$.

В **металните проводници** топлината се пренася значително по-бързо за сметка на движение на свободни електрони \Rightarrow имат големи h_{τ} .

Също така при металите механизмите на топло- и електропроводимостта са еднакви.

Закон на Видеман-Франц: $h_T = aT_{\mathfrak{S}}$

където а е константа на Видеман-Франц.

Примесите и механичната обработка силно влияят върху h_T .

Ограничения на закона:

- 1. Не отчита пренасянето на топлина чрез трептения на възлите на кристалната решетка;
- 2. Не е в сила при свръхпроводимост.

2.2. Относителен температурен коефициент на специфичното съпротивление $\alpha_{ ho}$

$$\rho = \frac{1}{\sigma} = \frac{1}{n\mu e}$$

С увеличаване на температурата T се увеличава концентрацията на "активните" електрони n.

От друга страна нараства амплитудата на трептене на възлите на кристалната решетка, поради което намалява средната дължина на свободния пробег на електроните λ_{co} и оттам намалява и подвижността им μ .

В чистите метали стойността на n е достатъчно голяма, поради което промяната на специфично им съпротивление ρ се определя основно от μ (или λ_{cp}).

Следователно при увеличаване на T , ρ на чистите метали нараства.

Серъхпроводимост – явление, наблюдавано при определени метали и сплави, при които се наблюдава пълно отсъствие на електрическо съпротивление при много ниски температури (за чисти метали около 9 K, а за сплави – около 125 K).

$$\alpha_{\rho} = \frac{d\rho}{\rho dT}, \quad {}^{\circ}C^{-1}$$

За чисти метали $\alpha_{\rho} > 0$.

Тъй като в работния температурен интервал зависимостта ρ = f(T) е линейна, то α_{ρ} = const и тогава може да се използва формулата

$$lpha_{
ho} = rac{
ho_{T} -
ho_{A}}{
ho_{A}(T - T_{A})}$$
 или $ho_{T} =
ho_{A} \left[1 + lpha_{
ho}(T - T_{A}) \right]$

където ρ_A е специфично съпротивление при стайна температура T_A , а ρ_T – при произволна температура T.

3. Влияние на примесите и дефектите

3.1. Влияние на примесите

Примесните атоми създават изкривяване в кристалната решетка на метала и по този начин намаляват средния свободен пробег на електроните.

Следователно при увеличаване на концентрацията на примесите в металите специфичното им съпротивление ρ се увеличава.

$$\rho_{\mathsf{np}} = C.x.(1-x)$$

където х е частта на примесите, а С – примесен коефициент.

3. Влияние на примесите и дефектите

Сплав между метали, които образуват твърд разтвор – единият метал запазва кристалната си решетка, а атомите на другият се разполагат в нея.

Въпреки, че всички метали имат положителен α_{ρ} , то за сплав е възможно α_{ρ} < 0.

При тях температурната зависимост на ρ се определя основно от нарастване на концентрацията на свободните електрони, а не от намаляването на дължината на средния им свободен пробег.

При подходящо съотношение между двата метала може да се получи сплав с $\alpha_o \approx 0$.

3. Влияние на примесите и дефектите

3.2. Влияние на механичните деформации

Механичните деформации в металите намаляват средния свободен пробег на електроните, поради което предизвикват увеличаване на специфичното им съпротивление ρ.

Затова след всяка механична операция, металът се подлага на специална термична обработка за рекристализация и намаляване на дефектите и деформациите.

$$\rho = \rho_T + \rho_{np} + \rho_{dep}$$

 $ho_{
m de\phi}$ – специфично съпротивление, породено от механичните деформации.

Отделителна работа $W_{\rm O}$ се нарича външната енергия необходима на електрона в метала, за да напусне структурата на метала.

На практика това е разликата между нивото на Ферми W_F и енергийното ниво на вакуума $W_{\text{вак}}$ т. е. $W_O = W_{\text{вак}} - W_F$.

Различните метали имат различни W_F , следователно различни W_O .

При контакт между два метала с различно ниво на Ферми започва преминаването на електрони от метала с по-високо ниво към този с по-ниско.

По този начин металът с по-високо W_F обеднява на електрони и се зарежда положително, докато този с по-ниско се обогатява на електрони и се зарежда отрицателно.

Възникналата между тях потенциална разлика се нарича контактна:

$$U_K \sim W_{OA} - W_{OB}$$

Ако единият край на метален проводник е с по-висока температура от другия, то в него ще има повече електрони, които ще се предвижат към студения.

Така топлият край обеднява на електрони и се зарежда положително, като получената потенциална разлика се нарича термо-е.д.н.

Ако за измерване на термо-е. д. н. се включи волтметър чрез проводници от различни метали, то в мястото на контактуване се получава контактна потенциална разлика, правопропорционална на температурата.

Термодвойката е система от два метала с различно ниво на Ферми, която се използва за измерване на температура чрез преобразуването й в напрежение.