```
In [4]: |
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
In [5]: from sklearn.datasets import load_boston
        df2=load_boston()
In [6]:
        df2
        C:\Users\hi\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWar
        ning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and w
        ill be removed in 1.2.
            The Boston housing prices dataset has an ethical problem. You can refer to
            the documentation of this function for further details.
            The scikit-learn maintainers therefore strongly discourage the use of this
            dataset unless the purpose of the code is to study and educate about
            ethical issues in data science and machine learning.
            In this special case, you can fetch the dataset from the original
            source::
                import pandas as pd
                import numpy as np
                data_url = "http://lib.stat.cmu.edu/datasets/boston"
                raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
                data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
                target = raw_df.values[1::2, 2]
            Alternative datasets include the California housing dataset (i.e.
            :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing
            dataset. You can load the datasets as follows::
                from sklearn.datasets import fetch_california_housing
                housing = fetch_california_housing()
            for the California housing dataset and::
                from sklearn.datasets import fetch openml
                housing = fetch_openml(name="house_prices", as_frame=True)
            for the Ames housing dataset.
          warnings.warn(msg, category=FutureWarning)
```

```
Out[6]: {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+00],
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+00],
                [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+00]]),
         'target': array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
                19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
                20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
                23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
                32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
                26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
                31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
                22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
                20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
                19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
                32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
                16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
                13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
                12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1,
                                                           8.3, 8.5, 5., 11.9,
                27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,
                                                          7., 7.2, 7.5, 10.4,
                 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11.,
                 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
                10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
                15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
                19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
                29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
                20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
                23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
         'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
        'RAD',
                'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
         'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n------------
```

-----\n\n**Data Set Characteristics:** \n\n :Number of Instances: 506 \n\n :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.\n\n :Attribute Information (in order):\n per capita crime rate by town\n - ZN proportion of residential land zoned for lots over 25,000 sq.ft.\n - INDUS proportion of non-retai l business acres per town\n - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n nitric oxides concentration NOX (parts per 10 million)\n - RM average number of rooms per dwelling\n proportion of owner-occupied units built prior to 1940\n - DTS - RAD weighted distances to five Boston employment centres\n index of accessibility to radial highways\n - TAX full-value property-tax rate per \$10,000\n PTRATIO pupil-teacher ratio by town\n 10 00(Bk - 0.63)^2 where Bk is the proportion of black people by town\n - LSTA % lower status of the population\n MEDV Median value of owner-oc cupied homes in \$1000's\n\n :Missing Attribute Values: None\n\n :Creator: Ha rrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttp s://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n\n\nThis dataset w as taken from the StatLib library which is maintained at Carnegie Mellon Universit y.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\npr ices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81 -102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, N.B. Various transformations are used in the table on\npages 244-261 of th e latter.\n\nThe Boston house-price data has been used in many machine learning pa pers that address regression\nproblems. \n \n.. topic:: References\n\n elsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and So urces of Collinearity', Wiley, 1980. 244-261.\n - Quinlan, R. (1993). Combining I nstance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Mor gan Kaufmann.\n",

'filename': 'boston_house_prices.csv',
'data_module': 'sklearn.datasets.data'}

In [7]: df2.feature_names

Out[7]: array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')

Out[15]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.
	•••													
	501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.
	502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.
	503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.
	504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.
	505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.

506 rows × 13 columns

```
In [9]:
         df2.target
         array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
                19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
                20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
                23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
                32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
                26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
                31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
                22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
                20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
                19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
                32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
                16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
                13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
                      8.5, 5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5., 11.9,
                27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,
                                                          7., 7.2, 7.5, 10.4,
                 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11.
                 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
                10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
                15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
                19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
                29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
                20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
                23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
         df3['medV']=df2.target
In [20]:
         df3.head(2)
In [21]:
Out[21]:
             CRIM
                    ΖN
                        INDUS CHAS
                                      NOX
                                             RM
                                                 AGE
                                                        DIS
                                                             RAD
                                                                   TAX PTRATIO
                                                                                    B LSTAT
         0.00632
                                                                                        4.98
                    18.0
                           2.31
                                      0.538
                                           6.575
                                                 65.2
                                                      4.0900
                                                              1.0
                                                                  296.0
                                                                                 396.9
                                  0.0
                                                                            15.3
         1 0.02731
                    0.0
                           7.07
                                  0.0 0.469
                                           6.421
                                                 78.9 4.9671
                                                              2.0
                                                                  242.0
                                                                            17.8 396.9
                                                                                        9.14
In [25]:
         x1=df3[['RM']]
         y1=df3['medV']
```

```
from sklearn.linear_model import LinearRegression
In [26]:
          lr2=LinearRegression()
          lr2.fit(x1,y1)
          LinearRegression()
Out[26]:
          y_predict2=lr2.predict(x1)
In [28]:
          y_predict2[:5]
          array([25.17574577, 23.77402099, 30.72803225, 29.02593787, 30.38215211])
Out[28]:
          1r2.predict([[6.575]])
In [29]:
          C:\Users\hi\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does n
          ot have valid feature names, but LinearRegression was fitted with feature names
            warnings.warn(
          array([25.17574577])
Out[29]:
In [36]:
          plt.scatter(x1,y1,color='c')
          plt.scatter(x1,y_predict2,color='gray')
          df3.corr()
                       CRIM
                                   ΖN
                                          INDUS
                                                     CHAS
                                                                NOX
                                                                           RM
                                                                                    AGE
                                                                                               DIS
Out[36]:
             CRIM
                    1.000000 -0.200469
                                         0.406583
                                                 -0.055892
                                                            0.420972 -0.219247
                                                                                 0.352734
                                                                                          -0.379670
                   -0.200469
                              1.000000
                                        -0.533828
                                                 -0.042697
                                                            -0.516604
               ΖN
                                                                      0.311991
                                                                                -0.569537
                                                                                          0.664408 -(
            INDUS
                    0.406583 -0.533828
                                         1.000000
                                                  0.062938
                                                            0.763651
                                                                     -0.391676
                                                                                0.644779
                                                                                          -0.708027
             CHAS -0.055892 -0.042697
                                         0.062938
                                                  1.000000
                                                            0.091203
                                                                       0.091251
                                                                                 0.086518
                                                                                         -0.099176
              NOX
                    0.420972 -0.516604
                                         0.763651
                                                  0.091203
                                                            1.000000
                                                                     -0.302188
                                                                                0.731470 -0.769230
               RM
                   -0.219247
                              0.311991
                                        -0.391676
                                                  0.091251
                                                           -0.302188
                                                                      1.000000
                                                                                -0.240265
                                                                                          0.205246
                    0.352734 -0.569537
                                                  0.086518
                                                            0.731470 -0.240265
                                                                                 1.000000 -0.747881
              AGE
                                        0.644779
               DIS
                   -0.379670
                              0.664408
                                        -0.708027
                                                  -0.099176
                                                            -0.769230
                                                                      0.205246
                                                                                -0.747881
                                                                                          1.000000
```

RAD

TAX

PTRATIO

LSTAT

medV

0.625505

0.582764

0.289946

0.455621

-0.388305

B -0.385064

-0.311948

-0.314563

-0.391679

0.175520

-0.412995

0.595129

0.720760

-0.356977

0.603800

0.360445 -0.483725

-0.007368

-0.035587

0.048788

-0.053929

0.175260

0.383248 -0.121515

0.611441

0.668023

0.188933

-0.380051

0.590879

-0.427321

-0.209847

-0.292048

-0.355501

0.128069

-0.613808

0.695360

0.456022

0.506456

-0.273534

0.602339

-0.376955

-0.494588

-0.534432

0.291512

-0.496996

0.249929

0.261515 -0.232471

In []: