ECE 443/518 – Computer Cyber Security Lecture 18 Secure Multi-Party Computation

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 31, 2022

Outline

Secure Multi-Party Computation

Garbled Circuit

Reading Assignment

► This lecture: Secure Multi-Party Computation

▶ Next lecture: ICS 2-7,14

Outline

Secure Multi-Party Computation

Garbled Circuit

Secure Multi-Party Computation

- Assume there are n honest-but-curious parties $1, 2, \ldots, n$.
- \triangleright Each party k possesses a secret value v_k .
- ▶ Together they compute $f = F(v_1, v_2, ..., v_n)$.
 - \triangleright For a well-known function F.
- Confidentiality: secret remains secret.
 - Any party *k* should only learn *f* from the computation, but nothing more about secrets of other parties.
- Ignore integrity issues.

Examples

- Voting
 - Secret from every party: 0 or 1
 - F computes the summation.
 - \triangleright Every party learns only f, the number of 1's.
 - ► If there is only two parties, it is OK for each of them to actually learn other's secret since that can be derived from f and their own secret.
- Salary comparison
 - Secret from every party: a number representing salary.
 - F computes the maximum.
 - Every party learns only f, the highest salary.
 - But you can't learn other's salary even if there is only two parties.
- Let's examine the case between two parties Alice and Bob.
 - How could you represent arbitrary computations?

Outline

Garbled Circuit

Circuit

- Encode secrets from Alice and Bob, as well as the result f from the computation, all as binary strings.
- F then becomes a boolean function.
 - Implemented as a boolean circuit.
- In particular, a combinational circuit.
 - ▶ Whose size is proportional to the effort to compute *F*.
 - We will not distinguish F from its combinational circuit implementation.

NAND

- ▶ Secret from Alice: $a \in \{0, 1\}$
- ▶ Secret from Bob: $b \in \{0, 1\}$
- ► Can they compute f = NAND(a, b) without revealing their own secrets?
 - If we could further extend this to any input bits and any number of NAND gates, then we could handle arbitrary combinational circuits.
- Note that for f = NAND(a, b), if Bob chooses b = 1 then he can learn a from f.
 - This is allowed per definition of Secure Multi-Party Computation.
 - Not a concern if Bob chooses b = 0, or the circuit is much more complicated.

Idea of Garbled Circuit

- A collaboration between Alice and Bob.
- ► The garbler Alice garbles the circuit.
 - ▶ By encrypting every wire and every gate truth table.
 - Send Bob the garbled circuit.
 - Send Bob her input bits (encrypted).
 - ► Help Bob to encrypt his input bits.
- ▶ The evaluator Bob evalutes the garbled circuit.
 - ► Compute with encrypted boolean values.
 - Communicate with Alice to reveal the output bits.

Encrypting Wires

- ▶ For any wire W, Alice generates a random selection bit S_w .
- ▶ Then, Alice generates two random strings W_0 and W_1 .
 - \triangleright W_0 represents 0 and starts with S_w .
 - $ightharpoonup W_1$ represents 1 and starts with $1 S_w$.
- For the circuit O = NAND(A, B), there are three wires.

Wire	Selection Bit	0	1
0	S_O	$O_0 = S_O \cdots$	$O_1=(1-S_O)\cdots$
A	S_A	$A_0 = S_A \cdots$	$A_1=(1-S_A)\cdots$
В	S_B	$B_0 = S_B \cdots$	$B_1=(1-S_B)\cdots$

Encrypting Wires (Cont.)

For example, let's use 5 bits for each wire.

Wire	Selection Bit	0	1
0	$S_O = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
A	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- Alice cannot send Bob the above table.
- ► However, for the computation to proceed, Bob need to know A_a and B_b , and then calculate O_f .
 - ▶ Without knowing *a*, *b*. (Note that Bob knows *b* for the simple NAND example we are working with. However, for more complex circuits, we should require Bob to not know *b*.)
 - ▶ Also without knowing *f* at this point, so that if there are multiple levels of gates, the computation may continue.

Garbled Circuit

S(A)	S(B)	E(O)
$S_A=0$	$S_B = 1$	$e_{A_0,B_0}(O_1) = 6 + 18 + 5 \mod 32 = 29$
$S_A=0$	$1-S_B=0$	$e_{A_0,B_1}(O_1) = 6 + 2 + 5 \mod 32 = 13$
$1-S_A=1$	$S_B=1$	$e_{A_1,B_0}(O_1) = 16 + 18 + 5 \mod 32 = 7$
$1-S_A=1$	$1-S_B=0$	$e_{A_0,B_0}(O_1) = 6 + 18 + 5 \mod 32 = 29$ $e_{A_0,B_1}(O_1) = 6 + 2 + 5 \mod 32 = 13$ $e_{A_1,B_0}(O_1) = 16 + 18 + 5 \mod 32 = 7$ $e_{A_1,B_1}(O_0) = 16 + 2 + 17 \mod 32 = 3$

- With the help of an encryption function e(), Alice encrypts every gate truth table.
 - e will take A and B as key and O as the plaintext.
 - Subscripts are the actual boolean values, e.g. for A_0 and B_0 , we should use O_1 because 0 NAND 0 = 1.
 - Let's use $e_{A||B}(O) = A + B + O \mod 32$ for our example.
- ▶ Bob decrypts with this table to obtain O_f from A_a and B_b .
 - Using the first bit of A_a and B_b to identify the row.
 - ▶ E.g. for $A_a = 16$ and $B_b = 18$, the third row.
- Issue: if the table rows follow this particular order,
 - ▶ Bob will learn S_A and S_B and know what A and B represent.

Garbled Circuit (Cont.)

▶ Alice sorts the rows into S(A)S(B) = 00,01,10,11.

S(A)	S(B)	E(O)
0	0	13
0	1	29
1	0	3
1	1	7

- With $A_a = 16$ and $B_b = 18$, Bob can decrypt to obtain $O_f = d_{16||18}(10) = 7 16 18 \mod 32 = 5$
 - Locate the row with E(O) = 7 using the first bits of A and B.
 - Though Bob has no idea what a, b and f are.
- ► Could Bob learn other A, B, or O from the table?
 - We will answer this question in Homework 4 using an argument similar to OTP.

Input and Output

- For input wires,
 - ► Alice sends Bob A₂.
 - Alice uses OT to send Bob B_b.
 - Obviously Bob doesn't want Alice to know b.
- \triangleright Once Bob calculates O_f . Alice tells what is f.
- Alice has no need to send Bob A_{1-a}.
- Could Alice also send Bob B_{1-b} to avoid using OT?
 - Alice cannot send Bob B_{1-b} .
 - ightharpoonup Otherwise Bob can compute $O_{f'}$ from A_a and B_{1-b} and then $a = O_{f'} \oplus O_f$ since f' = NAND(a, 1 - b).

A More Complicated Circuit

- What about more complicated circuits?
 - ▶ E.g. f = NAND(NAND(a, b), NAND(c, d)) where Alice provides a and c while Bob provides b and d.
- ▶ Identify wires and gates before encrypting them.
 - ► Wires: A, B, C, D, X, Y, Z

 - Gate 3: Z = NAND(X, Y)

The Garbler Alice: Encrypting Wires

Wire	Selection Bit	0	1
Α	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$
С	$S_C = 1$	$C_0 = 10100 = 20$	$C_1 = 00001 = 1$
D	$S_D = 1$	$D_0 = 11001 = 25$	$D_1 = 00111 = 7$
X	$S_X=0$	$X_0 = 00111 = 7$	$X_1 = 11111 = 31$
Y	$S_Y = 0$	$Y_0 = 00000 = 0$	$Y_1 = 10101 = 21$
Ζ	$S_Z = 1$	$Z_0 = 10001 = 17$	$Z_1 = 00101 = 5$

The Garbler Alice: Encrypting Truth Tables

Gate 1				
S(A)	S(B)	E(X)		
$S_A=0$	$S_B = 1$	$e_{A_0,B_0}(X_1) = 6 + 18 + 31 \mod 32 = 23$		
$S_A=0$	$1 - S_B = 0$	$e_{A_0,B_1}(X_1) = 6 + 2 + 31 \mod 32 = 8$		
$1-S_A=1$	$S_B = 1$	$e_{A_1,B_0}(X_1) = 16 + 18 + 31 \mod 32 = 1$		
$1-S_A=1$	$1-S_B=0$	$e_{A_1,B_1}(X_0) = 16 + 2 + 7 \mod 32 = 25$		
Gate 2				
S(C)	S(D)	E(Y)		
$S_C = 1$	$S_D = 1$	$e_{C_0,D_0}(Y_1) = 20 + 25 + 21 \mod 32 = 2$		
$S_C = 1$	$1-S_D=0$	$e_{C_0,D_1}(Y_1) = 20 + 7 + 21 \mod 32 = 16$		
$1 - S_C = 0$	$S_D = 1$	$e_{C_1,D_0}(Y_1) = 1 + 25 + 21 \mod 32 = 15$		
$1-S_C=0$	$1-S_D=0$	$e_{C_1,D_1}(Y_0) = 1 + 7 + 0 \mod 32 = 8$		
		Gate 3		
S(X)	S(Y)	E(Z)		
$S_X=0$	$S_Y = 0$	$e_{X_0,Y_0}(Z_1) = 7 + 0 + 5 \mod 32 = 12$		
$S_X=0$	$1-S_Y=1$	$e_{X_0,Y_1}(Z_1) = 7 + 21 + 5 \mod 32 = 1$		
$1-S_X=1$	$S_Y = 0$	$e_{X_1,Y_0}(Z_1) = 31 + 0 + 5 \mod 32 = 4$		
$1-S_X=1$	_			

The Evaluator Bob

► The garbled circuit sent by Alice

Colo 1					,
Gate 1		Gate 2		Gate 3	
S(A) S(B)	E(X)	S(C) S(D)	E(Y)	S(X) S(Y)	E(Z)
0.0	8	0 0	8	0 0	12
0 1	23	0 1	15	0 1	1
1 0	25	1 0	16	1 0	4
1 1	1	1 1	2	1 1	5

- ▶ Alice sends her inputs: $A_a = 16$, $C_c = 20$
- ▶ Alice sends Bob's inputs via OT: $B_1 = 2$, $D_1 = 7$
- Bob's calculation
 - $X_x = 25 16 2 \mod 32 = 7$
 - $Y_v = 16 20 7 \mod 32 = 21$
 - $Z_z = 1 7 21 \mod 32 = 5$
- After Bob shares $Z_z = 5$ with Alice, both party learn the result f = 1.

Discussions

- ► The mechanism works with arbitrary number of NAND gates, and thus any combinational circuits.
 - ▶ Bob can evalute each gate following the topological ordering, without knowing what each gate inputs and gate output mean.
- Overall, there is constant amount of computation and communication per each NAND gate.
 - Efficient in theory.
- ▶ A lot of ongoing research to improve its practical performance
 - ► The mechanism works with arbitrary gates and some gates lile XOR and NOT can be implemented much more easily.

Summary

▶ Secure two-party computation via garbled circuit.