Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem Examination Dec-2023

EN3BS16 / BC3BS06 Engineering Physics

Programme: B.Tech. / B.Sc.

Branch/Specialisation: All / Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Which of the following relations is correct for Heisenberg Uncertainty 1 Principle?
 - (a) $\Delta E.\Delta t \ge h/4\pi$
- (b) $\Delta x.\Delta p \ge h/4\pi$
- (c) ΔJ . $\Delta \phi \geq h/4\pi$
- (d) All of these
- i. The energy of a particle in infinite potential well is-
 - (a) Proportional to n² (b) Inversely proportional to n²
 - (c) Proportional to n
- (d) Inversely proportional to n
- Here, n corresponds to the no. of shell
- iii. When the liquid is introduced between the plano convex lens and the plate in Newton's ring experiment, the diameters of the rings-
 - (a) Decreases (b) Increases (c) Remains same
 - (c) Remains same (d) None of these
- iv. The Fresnel's bi prism based on the principle of-
 - (a) Interference
- (b) Diffraction
- (c) Polarization
- (d) Quantum mechanics
- v. The following diagram used in nuclear physics for-

Velocity Selector

S3

Positive ion beam

Photographic Plate

Vaccum Chambe

Vaccum Chambe

- (a) Cyclotron
- (b) Betatron
- (c) Synchrotron
- (d) Bainbridge Mass spectrograph

P.T.O.

[2]

	vi.	The nucleus contains nucleons-		1
		(a) Electron and proton	(b) Electron and neutron	
		(c) Proton and neutron	(d) Electron, proton and neutron	
	vii.	The following diagram for which type of crystal-		
		(a) Simple Centred Cubic (SCC)	(b) Body Centred Cubic (BCC)	
		(c) Face Centred Cubic (FCC)	(d) End Centred Cubic	
	viii.	Hall effect is useful for the measurer		1
		(a) Only the type (p-type or n type)		
		(b) Type (p-type or n type), mobility		
		(c) Type (p-type or n type), conducti		
		(d) Mobility, carrier concentration at	-	_
	ix.	The He-Ne Laser emits the ligh	t of following wavelength (in	1
		Angstrom-	(a) 6229 (d) 5000	
	х.	(a) 6943 (b) 6040 Which one is the correct expres	(c) 6328 (d) 5090	1
	Λ.	(V- parameter) for optical fibre-	sion for normanzed frequency	_
		(a) $2 \text{ a}\sqrt{(n_1^2 - n_2^2)/\lambda}$	(b) $2\pi \text{ a}\sqrt{(n_1^2 - n_2^2)}/\lambda$	
		(c) $2\pi \sqrt{(n_1^2 - n_2^2)/a\lambda}$	(d) $2\pi \lambda \sqrt{(n_1^2 - n_2^2)/a}$	
Q.2 i.		Calculate the de-Broglie wavelend moving with a velocity equal to one Given mass of a proton m=1.67x10	twentieth of the velocity of light.	3
		sec.		
	ii.	What is wave function? Write the th function. Derive the expression of Wave Equation for free particle.		7
OR	iii.	What is Compton effect? Deduce	an expression for the shift in	7
OK	111.	wavelength of X- rays beams. Why visible region of light?	•	,
Q.3	i.	Write the two engineering application	ns of polarization phenomenon.	2
-	ii.	Describe the Fresnel's Biprism with		3
	iii.	Write short note on-	-	5
		(a) Diffraction Grating		
		(b) Rayleigh's Criteria of resolution		

[3]

OR iv. Obtain the expression of Intensity due to the single slit Fraunhofer 5

		diffraction with suitable ray diagram.	
Q.4	i.	Explain construction and working principle of linear particle accelerator, and show that for successive acceleration in successive gaps the length of evacuated tubes must be proportional to 1: $\sqrt{2}$: $\sqrt{3}$: $\sqrt{4}$ etc.	4
	ii.	Explain the construction and working of Geiger Muller Counter. How quenching is achieved in it?	6

OR iii. Draw a schematic sketch of a Cyclotron and explain its working. 6
Hence derive the cyclotron frequency and maximum kinetic energy of an ion accelerated through it.

Q.5 Attempt any two:

- i. What is Miller Indices? Determine the miller indices of a plane, whose 5 intercepts along the axes are (a, 2b, 3c)?
- i. What is Superconductivity? Distinguish between type–I and type-II 5 superconductors.
- iii. Draw the diagram of Fermi level for Intrinsic and Extrinsic 5
 Semiconductors. Differentiate conductor, insulator, and semiconductors based on band energy diagram.
- Q.6 i. What do you mean by population inversion?
 - ii. Why 'He' gas is used in He-Ne gas laser? Discuss the construction 8 and working of He Ne laser level with help of energy level diagram.

2

OR iii. Write down the principle of optical fibre with suitable diagram. Define 8 the acceptance angle and derive expression for acceptance angle of an optical fibre.

Scheme of Marking

Engineering Physics (T) - EN3BS16 (T)

Q.1	i)	d) All of these		1
	ii)	a) proportional to n ²		1
	iii)	a) decreases		1
	iv)	a) Interference		1
	v)	d) Bainbridge Mass spectrograph		1
	vi)	c) proton and neutron		1
	vii)	b) Body Centred Cubic (BCC)		1
	viii)	b) Type (p-type or n type), mobility and carrier of	concentration	1
	ix)	(c) 6328		1
	x)	b) $2\pi \ a\sqrt{(n_1^2 - n_2^2)/\lambda}$		1
Q.2	i.	The de-Broglie wavelength associated with a pro	ton	3
		$\lambda = h / mv$; $\lambda = 2.834 \times 10-14 \text{ m}$ Formula	1 mark	
		Remaining part with answer	2 marks	
	ii.	What is wave function	1 Mark	7
		Two important properties of wave function	2 Marks	
		Derivation Schrodinger Time Independent Equat	ion 4 marks	
OR	iii.	What is Compton effect?	1 mark	7
		Deduce an expression for the shift in wavelength	<u> </u>	
			5 marks.	
		Why is Compton effect not found in visible region	on of light?	
			1 mark	
Q.3	i.	Two engineering applications of polarization		2
	ii.	Describe the Fresnel's Biprism with ray diagram		3
		For ray diagram	1 mark	
		Description	2 Marks	
	iii.	a) Diffraction Grating	2.5 marks	5
		b) Rayleigh's Criteria of resolution	2.5 marks	
OR	iv.	Obtain the expression of Intensity due to the sing	le slit Fraunhofer	5
		diffraction	4 marks	
		Suitable ray diagram.	1 mark	

Q.4	i.	Explain construction	1 mark	4
		working principle of linear particle accelerator	2 marks	
		show that for successive acceleration in successive	gaps the length	
		of evacuated tubes must be proportional to	1: $\sqrt{2}$: $\sqrt{3}$:	
		√4etc.	2 marks	
	ii.	Explain the construction and working of Geiger Mu	ıller Counter.	6
			5 marks	
		How quenching is achieved in it	1 mark	
OR	iii.	Draw a schematic sketch of a Cyclotron.	1 mark	6
		Explain its working. Hence derive the cyclotron fre	quency	
			3 marks	
		maximum kinetic energy of an ion accelerated thro	ugh it	
		2,7	2 marks	
Q.5	i.	What is Miller Indices	1 mark	5
		Determine the miller indices of a plane, whose inte	ercepts along the	
		axes are (a, 2b, 3c)?	4 marks	
	ii.	What is Superconductivity?	1 mark	5
		Distinguish between type–I and type- II supercondu	ictors.	
			4 marks	
OR	iii.	Diagram of Fermi level for Intrinsic and Extrinsic S	Semiconductors.	5
			2 marks	
		Differentiate conductor, insulator, and semicondu	actors based on	
		band energy diagram.	3 marks	
Q.6	i.	Population inversion?		2
	ii.	Why is Helium gas used in He-Ne gas laser?	1 mark	8
		Construction and	2 marks	
		working of He – Ne laser level with help of	3 marks	
		energy level diagram	2 marks	
OR	iii.	Principle of optical fibre with suitable diagram	2 marks.	8
		Define the acceptance angle	1 mark	
		Expression for acceptance angle of an optical fibre		

P.T.O.

[2]