PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-073009

(43)Date of publication of application: 18.03.1997

(51)Int.CI.

G02B 5/20 C08G 61/12 C09D165/00

(21)Application number: 07-227591

(71)Applicant: HITACHI CHEM CO LTD

(22)Date of filing:

05.09.1995

(72)Inventor: NOMURA YOSHIHIRO

URUNO MICHIO

(54) RESIN COMPOSITION FOR PROTECTIVE FILM OF COLOR FILTER AND COLOR FILTER USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a resin compsn. for the protective film of a color filter having low hygroscopicity and excellent in heat resistance, transparency and moisture resistance by dissolving polyquinoline resin or polyquinoxaline resin in an org. solvent.

SOLUTION: Polyquinoline resin or polyquinoxaline resin is dissolved in an org. solvent. The polyquinoline resin or polyquinoxaline resin is a polymer having a quinoline ring or quinoxaline ring in each of the repeating units. The polyquinoline resin is preferably polyquinoline resin having repeating units represented by formula I. The polyquinoxaline resin is preferably polyquinoxaline resin having repeating units represented by formula II. In the formulae I, II, R1 is alkyl, aryl, etc., (m) is an integer of 0–5, each of Z1 and Z2 represents independently 'no chemical bond' or arylene, Y is -O- or -O-A-O- and A is arylene, hetero-arylene, etc.

 $-\frac{1}{2}z^{2} + \frac{1}{2}z^{2} - x$

П

I

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平9-73009

(43)公開日 平成9年(1997)3月18日

							
(51) Int. C1.	•	識別記号	庁内整理番号	FI			技術表示箇所
G 0 2 B	5/20	101		G 0 2 B	5/20	101	
C 0 8 G	61/12	NLJ		C 0 8 G	61/12	NLJ	
C 0 9 D	165/00	PKT		C 0 9 D	165/00	РКТ	
-	突本語少	未請求 請求	で で で で で し し し し し し し し し し し し し し し			(人八百)	
	一一	水明水 明水	·項の数 2 UL		···	(全9頁)	
(21)出願番号	特願平7-227591			(71) 出願人 000004455			
					日立化	成工業株式会社	
(22)出願日	平成7年(1995)9月5日			東京都新宿区西新宿2丁目1番1号			
				(72)発明者	野村	好弘	
						市原市五井南海區 式会社五井工場區	
				(72)発明者		· 道生	. J
				(12) 567]4		电工 市原市五井南海岸	岸14番地 日立化成
						式会社五井工場内	- · · · · ·
				(74) 仕事 人		· 若林 邦彦	T)
				(14)1(44)	、开连工	石が <i>計</i> 修	
		•					

(54) 【発明の名称】カラーフィルター保護膜用樹脂組成物およびこれを用いたカラーフィルター

(57)【要約】

【課題】 低吸湿性で耐熱性、透明性及び耐湿性等の全 ての要求特性を満足させることの可能な新規なカラーフ ィルター保護膜用樹脂組成物およびこれを用いたカラー フィルターを提供する。

【解決手段】 ポリキノリン樹脂又はポリキノキサリン 樹脂を有機溶剤に溶解させてなるカラーフィルター保護 膜用樹脂組成物およびこのカラーフィルター保護膜用樹 脂組成物を用いたカラーフィルター。

【特許請求の範囲】

【請求項1】 ポリキノリン樹脂又はポリキノキサリン 樹脂を有機溶剤に溶解させてなるカラーフィルター保護 膜用樹脂組成物。

【請求項2】請求項1記載のカラーフィルター保護膜用 樹脂組成物を用いたカラーフィルター。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、カラーフィルター 保護膜用樹脂組成物およびこれを用いたカラーフィルタ ーに関する。

[0002]

【従来の技術】近年、カラーフィルターを内蔵したカラ 一液晶表示素子が種々発表されている。このカラー液晶 表示素子の作製にあたっては、ガラス等の透明基板上に カラーフィルターを設け、この上にインジウムチンオキ シド(ITO)等からなる無機薄膜を蒸着し、ホトリソ グラフィー法によって、パターニングして透明電極を形 成した後、液晶配向膜を形成し、さらにその上に液晶を 配置する方法が主流になっている。この場合、カラーフ ィルターには、この上にITOを蒸着して、ホトリソグ ラフィー法で透明電極を形成するプロセスに耐え得るだ けの耐熱性、耐薬品性が備わっていないため、ITOを 蒸着する前にカラーフィルター上に保護膜を形成してお く必要がある。

【0003】このカラーフィルター保護膜に要求される 特性としては、耐熱性、耐薬品性の他にガラス基板やカ ラーフィルターとの密着性、コーティング性、透明性、 耐傷性、耐湿性等があげられる。このうち、耐熱性は特 に重要で、保護膜上にITO等の透明電極を蒸着により 形成する際に、保護膜表面が、通常200℃以上に加熱 されるため、この条件下で安定であることが必要であ る。また、この時保護膜の吸湿率が大きいと、吸湿した 水分が可塑剤として作用し保護膜の耐熱性を低下させる ため吸湿率の小さいことも重要な特性である。このこと は、カラーフィルターの吸湿を防止するという点からも 重要である。

【0004】このような種々の特性に優れたカラーフィ ルター保護膜用材料としては、特開昭58-19650 6号公報や特開昭62-119501号公報記載のアク リル系樹脂、特開昭60-216307号公報、および 特開平4-202418号公報記載のポリグリシジル (メタ)アクリレート系樹脂、特開昭63-13110 3号公報記載のメラミン樹脂、特開平1-261464 号公報記載のエポキシ樹脂、その他ポリイミド樹脂等が 提案されている。

【0005】しかしながら、従来提案されている材料で は、それぞれ欠点があり、すべての要求特性を満足する バランスのとれた材料は無い。例えば、アクリル系樹脂

蒸着時に膜の表面にシワやクラックを生じるという問題 点がある。またポリイミド樹脂は、耐熱性は優れるもの の透明性が不十分で、着色しやすく、また吸湿率が高い という問題点がある。

[0006]

【発明が解決しようとする課題】請求項1記載の発明は 前記した従来の材料の欠点を解決し、低吸湿性で耐熱 性、透明性及び耐湿性等の全ての要求特性を満足させる ことの可能な新規なカラーフィルター保護膜用樹脂組成 10 物を提供するものであり、請求項2記載の発明は、これ を用いたカラーフィルターを提供するものである。

[0007]

【課題を解決するための手段】本発明におけるカラーフ ィルター保護膜用樹脂組成物は、ポリキノリン樹脂又は ポリキノキサリン樹脂を有機溶剤に溶解させてなるもの である。また、本発明は、このカラーフィルター保護膜 用樹脂組成物を用いたカラーフィルターに関する。

[0008]

【発明の実施の態様】本発明におけるポリキノリン樹脂 又はポリキノキサリン樹脂は、繰り返し単位中にキノリ ン環又はキノキサリン環を有する重合体である。本発明 におけるポリキノリン樹脂としては、例えば、米国特許 第4,000,187号明細書、米国特許第5.01 7, 677号明細書、米国特許第5, 247, 05.0号 明細書、マクロモレキュールズ (Macromolecules) 14巻(1 981年),870-880ページ(J.K.Stille)等に合成法と共に記 載されている。本発明におけるポリキノキサリン樹脂と しては、例えば、J. Macromol. Sci. - Rev. Macromol. Chem. 1971, C6, 1 (P. M. Hergenrother), Encyclopedia of Polym er Science and Technology; Interscience: NewYork, 196 9, vol. 11p389 (J. K. Stille), Polymer Eng. and Sci. 197 6, 16, 303 (P.M. Hergenrother)、特開平 3 - 1 2 2 1 2 4号公報、特開平5-295114号公報等に合成法と 共に記載されている。

【0009】また、ポリキノリン樹脂は、上記した方法 とは別に、キノリン環を有するジフルオロモノマ、ジオ ールモノマ及び必要に応じて用いるモノフルオロモノヒ ドロキシモノマ(通常、フルオロ基とヒドロキシ基と が、ほぼ当量となるような使用割合で、各モノマを使用 40 する)と塩基とを、無水溶媒中で加熱し、共沸的に水を 除去することにより、製造することもできる。また、モ ノフルオロモノヒドロキシモノマと塩基とを、無水溶媒 中で加熱し、共沸的に水を除去することにより、製造す ることもできる。このときの、加熱条件は、使用する溶 媒の共沸温度/還流温度を考慮して、適宜決定される が、通常、100~250℃で、1~24時間とされ

【0010】キノリン環を有するジフルオロモノマとし ては、例えば、2-(2-フルオロフェニル)-5-フ やメラミン樹脂では耐熱性が不十分であり、ITO等の 50 ルオロー4-フェニルキノリン、2-(4-フルオロフ

ェニル) -5-フルオロ-4-フェニルキノリン、4-(2-フルオロフェニル) -5-フルオロー2-フェニ ルキノリン、2-(4-フルオロフェニル)-7-フル オロー4-フェニルキノリン、2,4-ジフルオロキノ リン、2, 7-ジフルオロキノリン、2, 5-ジフルオ ロキノリン、2,7-ジフルオロー6-フェニルキノリ ン、4-(4-フルオロフェニル)-7-フルオロキノ リン、6,6'ーピス[2-(4-フルオロフェニル) ーフルオロフェニル)ー4ーフェニルキノリン]、6, 6′-ビス[2-(4-フルオロフェニル)-4-tert オロフェニル) -2フェニルキノリン]、6.6′-ビ スー4-フルオロキノリン、6, 6′-ピス [4-(4)]ーフルオロフェニル) -2-(2-ピリジル) キノリ 6′ービス〔4ー(4ーフルオロフェニル)ー2ー(メ チル) キノリン]、6, 6' - ピス[2 - フルオロー 4ーフェニルキノリン〕、オキシー6,6′ーピス〔2-(4-フルオロフェニル)-4-フェニルキノリン]、 1, 4-ペンゼンービス-2, 2-[4-(4-フルオ ロフェニル) キノリン]、1,4-ベンゼンーピスー 2, 2-[4-フルオロキノリン]、1, 4-ベンゼン $- \forall x - 4, 4 - (2 - (4 - 7) + 7) + 7$ リン]、1,1,1,3,3,3-ヘキサフルオロイソ プロピリデンービスー〔(4-フェノキシー4-フェニ ル) -2-(4-フルオロキノリン)]等が挙げられ る。これらは、単独で又は2種類以上を組み合わせて使 用される。

【0011】ジオールモノマとしては、例えば、レゾル 30シノール、ヒドロキノン、4,4′ージヒドロキシビフェニル、1,3ージヒドロキシナフタレン、2,6ージヒドロキシナフタレン、2,7ージヒドロキシナフタレン、3,4′ージヒドロキシピフェニル、3,3′ージヒドロキシピフェニル、メチルー2,4ージヒドロキシベンゾエート、イソプロピリデンジフェノール(ピスフェノールA)、ヘキサフルオロイソプロピリデンジフェノール(ピスフェノールAF)、トリフルオロイソプロピリデンジフェノール、フェノールフタレイン、フェノールレッド、1,2ージ(4ーヒドロキシフェニル)エ 40タン、ジ(4ーヒドロキシフェニル)メタン、4,4ー

ジヒドロキシベンゾフェノン等が挙げられる。これら は、単独で又は2種類以上を組み合わせて使用される。 【0012】モノフルオロモノヒドロキシモノマとして は、例えば、2-(4-フルオロフェニル)-6-ヒド ロキシー4-フェニルキノリン、2-(2-フルオロフ ェニル) -6-ヒドロキシー4-フェニルキノリン、4 - (2-フルオロフェニル) - 6-ヒドロキシー2-フ ェニルキノリン、2,3-ジフェニル-4-(2-フル オロフェニル) -6-ヒドロキシキノリン、2.3-ジ キシキノリン、2,3-ジフェニル-6-(2-フルオ ロフェニル) - 4 - ヒドロキシキノリン、2, 3 - ジフ ェニルー6ー(4ーフルオロフェニル)ー4ーヒドロキ シキノリン、7-フルオロー2-ヒドロキシキノリン、 7-フルオロー2-ヒドロキシー4-フェニルキノリ ン、7-(4-フルオロフェニル)-2-ヒドロキシー 4-フェニルキノリン、7-フルオロー4-ヒドロキシ -4-フェニルキノリン、7-(4-フルオロフェニ ル) - 4 - ヒドロキシー 2 - フェニルキノリン、2 -(4-フルオロフェニル) -4-ヒドロキシー3-フェ ニルキノリン、2-(4-フルオロフェニル)-6-ヒ ドロキシー3-フェニルキノリン、2-(4-フルオロ

4

【0013】溶媒としては、例えば、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、Nーメチルピロリドン、テトラメチルウレア、ジメチルスルフォキシド、スルホラン、ジフェニルスルホン、トルエン、ジクロロベンゼン等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。塩基としては、例えば、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、金属ハイドライド、金属アマイド、ブチルリチウム等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。

フェニル) -8-ヒドロキシ-3-フェニルキノリン、

2-(4-フルオロフェニル)-8-ヒドロキシキノリ

ン、2-(2-フルオロフェニル)-4-(4-ヒドロ

キシフェニル)キノリン等が挙げられる。これらは、単

独で又は2種類以上を組み合わせて使用される。

【0014】ポリキノリン樹脂としては、取扱性、電気特性、低吸湿性等の点から、下記の一般式(I)又は一)般式(II)

【化1】

$$\left\{ Z^{2} \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(R^{2} \right)_{n} \\ X \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(R^{2} \right)_{n} \\ X \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(R^{2} \right)_{n} \\ X \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(\begin{array}{c} \left(R^{2} \right)_{n} \\ X \left(R^{2} \right)$$

【式中、R¹及びR²は、各々独立に、アルキル基、アリール基、アルコキシ基、アリルオキシ基、ホルミル基(一COH)、ケトン基(一COR³)、エステル基(一CO2R⁴若しくは一COR⁵)、アミド基(一NR°COR⁻若しくは一CONR°R°)、ヘテロアリール基、シアノ基又は2つがつながって形成される不飽和結*

*合を含んでいてもよい 2 価の炭化水素基を示し(但し、 $R^{s} \sim R^{g}$ は、水素原子、アルキル基、アリール基又はヘテロアリール基を示す)、m及Un は、各々独立に $0 \sim 5$ の整数であり、X は、無し(化学結合)、

6

【化2】

$$-0 -s -co -so -so_{2}-$$

(但し、qは $1 \sim 3$ の整数であり、Aは、-A r^{1} - (アリーレン基)、-H r^{1} - (ヘテロアリレン基)、-A r^{1} - 0 -A r^{1} - 0 -

(L¹及びL²はメチル基、トリフルオロメチル基又は2つがつながって形成される不飽和結合を含んでいてもよい2価の炭化水素基を示す)を示し、Z¹及びZ²は、それぞれ独立に、無し(化学結合)又はアリーレン基を示し、Yは、一〇一又は一〇一A一〇一を示す〕で表される繰り返し単位を有するポリキノリン樹脂が好ましい。
【0015】上記一般式(I)又は一般式(II)の定義中で、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、secーブチル基、はertーブチル基、ペンチル基、シクロペンチル40基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2ーエチルヘキシル基、デシル基、ウンデシル

基、ドデシル基、ドコシル基等が挙げられる。アリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基、アントラセニル基、ジフェニルフェニル基等が挙げられる。 1 ない。 $^{$

含んでいてもよい 2 価の炭化水素基としては、例えば、0 1,3-プロピレン基、1.4-ブチレン基、1,5-

ペンチレン基等のアルキレン基、

【化4】

-ch=ch-ch=ch-

などが挙げられる。

【0017】ポリキノキサリン樹脂としては、取扱性、電気特性、低吸湿性等の点から、下記の一般式(III) 又は一般式(IV)

【化5】

$$\left(\begin{array}{c} \left(R^{2}\right)_{m} \\ \left(Z^{2} - V\right)_{n} \\ \end{array}\right) \times \left(\begin{array}{c} \left(R^{2}\right)_{n} \\ \left(Z^{2} - V\right)_{n} \\ \end{array}\right)$$
(IV)

〔式中、 $R^1 \sim R^9$ 、 $X \times Z^1 \times Z^2$ 、 $Y \times m$ 及Un は、上記一般式(I)、一般式(II)におけると同意義である〕で表わされるポリキノキサリン樹脂が好ましい。

【0018】ポリキノリン樹脂及びポリキノキサリン樹脂の分子量は、本発明の組成物を基体に均一な膜として塗布することができる限り特に限定されないが、ゲルバーミェーションクロマトグラフィ(GPC)により標準ポリスチレンの検量線を使用して測定したときの重量平均分子量が、通常10,000~1,000,000である。樹脂の分子量は、形成する硬化塗膜の膜厚、塗布方法等の塗膜形成の目的や条件に応じて適宜選択することができる。数平均分子量では、1,000~400,000であることが好ましく、5,000~200,00

【0019】本発明におけるカラーフィルター保護膜用樹脂組成物には、密着性の向上のために官能性シランカップリング剤を含有させることが好ましい。官能性シランカップリング剤としては、ビニル基、メタクリロイル 30基、水酸基、カルボキシル基、アミノ基、イソシアネート基、エボキシ基等の反応性置換基を有するシランカップリング剤、具体的にはビニルトリメトキシシラン、ビニルトリエトキシシラン、アーイソシアナートプロビルトリエトキシシラン、アーイソシアナートプロビルトリエトキシシラン、アーグリシドキシプロビルトリメトキシシラン等を挙げることができる。特にエボキシ基を有するシランカップリング剤が密着性、耐薬品性等に優れているため好ましい。これらの官能性シランカップリング剤は、1種類のみで用いても、2種類以上を組み合わ 40せて用いてもよい。

【0020】前記官能性シランカップリング剤の使用量は、ポリキノリン樹脂又はポリキノキサリン樹脂100 重量部に対して、 $1\sim50$ 重量部であり、特に好ましくは $5\sim30$ 重量部である。少なすぎると密着性が不十分となる傾向があり、多すぎる場合は塗布性や耐熱性が低下する傾向がある。

【0021】本発明のカラーフィルター保護膜用樹脂組成物は、有機溶剤に溶解した形態で使用される。本発明におけるカラーフィルターは、本発明におけるカラーフ

ィルター保護膜用樹脂組成物をカラーフィルター基材に 塗布し、加熱乾燥により溶剤を除去することよって保護 膜を形成して作製することができる。

8

【0022】溶剤としては、ポリキノリン樹脂又はポリ キノキサリン樹脂を溶解し、かつこれらの成分と反応し ないものであれば、特に限定されるものではない。具体 例としては、フェノール、クレゾール等の芳香族系溶 剤;シクロペンタノン、シクロヘキサノン等のケトン系 溶剤;テトラヒドロフラン、ジエチレングリコールジメ チルエーテル、ジエチレングリコールジエチルエーテル 等のエーテル系溶剤;γープチロラクトン等のエステル 系溶剤;ジメチルホルムアミド、ジメチルアセトアミ ド、Nーメチルピロリドン等のアミド系溶剤等が挙げら れる。これらの溶剤のうち、ケトン系溶剤およびアミド 系溶剤が好ましく、単独で、または、2種類以上を混合 して使用することができる。ポリキノリン樹脂又はポリ キノキサリン樹脂を溶剤に溶解して、組成物溶液を調製 する方法は特に限定されるものではなく、混合、攪拌、 加熱等により溶解される。

【0023】このようにして組成物溶液を調製する場合の溶剤の使用量は、塗布に供せられる最終的な組成物溶液全量のうち60~99重量%とすることが好ましい。溶剤が少なすぎると固形分濃度が高すぎて塗膜の透明性が低下したりする場合があり、99重量%を越える場合は固形分濃度が低すぎて、塗膜の平滑性が低下する場合がある。

【0024】また、本発明の組成物には必要に応じて、シリコーン系またはフッ素系等の界面活性剤、酸化防止剤や紫外線吸収剤等の安定剤等を添加することもできる。

【0025】本発明の組成物溶液を塗布する方法は特に限定されず、浸漬法、スプレー法、ロールコート法、回転塗布法等の他、スクリーン印刷、オフセット印刷等の印刷による塗布方法等により基材に塗布することができる。

【0026】本発明の組成物の加熱乾燥条件は組成物の 各成分の具体的種類、配合割合等によって適宜選択され るが、通常、50~300℃で0.1~10時間、好ま 50 しくは100~250℃で1~5時間程度である。 【0027】本発明の組成物により形成される硬化塗膜はガラス、金属、プラスチック等の種々の材料に対して優れた密着性を示し、平滑、強靭で耐光性、耐熱性、耐水性、耐溶剤性、透明性に優れているため、ゼラチン、グリュー、ポリビニルアルコール、アクリル系樹脂等の種々のバインダー樹脂を染料による染色や、顔料分散によって着色して得られる種々のカラーフィルタの表面保護層、防染保護層として有用である。カラーフィルター保護膜は加熱硬化後の膜厚が0.005~30μm、好ましくは0.1~10μm程度となるように、適宜、塗 10布して用いることができる。

[0.028]

【実施例】以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。

【0029】合成例1[6-クロロ-2-(4"-フル オロフェニル) - 4 - フェニルキノリン) の合成] 温度計、撹拌器、塩化カルシウム管及び水分除去のため のディーンスターク管を付けた水冷式の冷却管並びに乾 燥窒素導入管を備えた2リットルの3つロフラスコに、 2-アミノー5-クロロベンゾフェノン695.0g (3.00モル)、4-フルオロアセトフェノン45 6. 0g(3.30モル)、p-トルエンスルホン酸4 7.62g(0.25モル)を仕込み、窒素下で165 ℃で44時間加熱しながら撹拌した。加熱中、水と共に 留出してくる黄色の4-フルオロアセトフェノンを水と 分離し反応系に戻した。さらに、190℃で2時間加熱 し、次いで120℃に冷却し、反応混合物を、10リッ トルの95%エタノールを激しく撹拌させている中に投 入し、次いで、濾過により採取した粗製物を1リットル のエタノールで洗浄した。得られた固体を真空乾燥器に より80℃で16時間乾燥させ目的化合物である6-ク ロロー2-(4"-フルオロフェニル)-4-フェニル キノリン) (mp 1 4 1. 0~1 4 2. 1℃) を 9 6 9 g(収率97%)得た。

【0030】合成例2[6,6′-ビス(2-(4″-フルオロフェニル)-4-フェニルキノリン)の合成〕温度計、撹拌器、塩化カルシウム管及び水分除去のためのディーンスターク管を付けた水冷式の冷却管並びに乾燥窒素導入管を備えた1リットルの3つロフラスコに、6-クロロ-2-(4-フルオロフェニル)-4-フェニルキノリン100.0g(0.3モル)、ビス(トリフェニルフオスフィン)ニッケルジクロライト2.7279(4.16ミリモル)、ヨウ化ナトリウム5.60

g (37.48ミリモル)、トリフェニルフオスフィン32.76g (133.2ミリモル)、活性亜鉛粉末12.52g (191.6ミリモル)及びNーメチルー2ーピロリドン(344ミリリットル)を仕込み、窒素下で70℃で16時間加熱しながら撹拌した。次いで、Nーメチルー2ーピロリドン(40ミリリットル)を加え170℃に昇温し、反応混合物をセライトを通して濾過した。母液を-20℃に冷却し、生成物を濾過により採取した黄色の固体を冷エタノール/メチレンクロライト(重量比3/1)で洗浄し、真空乾燥器により100℃

10

で乾燥させ目的化合物である6,6'-ピス(2-(4"-フルオロフェニル)-4-フェニルキノリン)(mp280~282℃)を76.3g(収率85%)。

【0031】合成例3(ポリキノリンの合成)

6,6'-ピス(2-(4"-フルオロフェニル)-4 ーフェニルキノリン)74.3g(0.124モル、 1.03当量)、4、4′-(1,1,1,3.3.3 ーヘキサフルオロー 2, 2ープロピリデン) ピスフェノ 20 ール40.6g(0.121モル、1.00当量)、無 水炭酸カリウム25g(0.181モル、1.5当量) を 1 リットルのステンレスフラスコに加え、溶媒として N-メチル-2-ピロリドン450ミリリットル、トル エン90ミリリットルをさらに加えた。塩化カルシウム 管、および水分除去のためのディーンスターク管をつけ た水冷式の冷却管、乾燥窒素導入管、メカニカルスター ラ、温度計を設置した。オイルバスを使用し、24時間 加熱環流し、さらに24時間トルエンとともに系中の水 分を留去した。溶液は最初は黄色であったが、段々茶褐 色に変わり、この段階で黒色になった。さらに反応温度 を200℃まで上げ、6時間反応させた。反応溶液は黒 色から粘度の上昇とともに深青色に変わっていった。N ーメチルー2-ピロリドン650ミリリットルを加えて 希釈し冷却することによって反応を停止した。得られた ポリマー溶液を精製するために、水中へ投入し沈殿させ た。引き続いて、50℃の水中で2時間撹拌し洗浄する ことを3度繰り返したのち、ポリマーをろ別し、60℃ の真空乾燥機で一昼夜乾燥させた。ポリマーの収量は1 01.1g(89.0%)であった。このものの重量平 40 均分子量は、ポリスチレン換算で87,000であっ

【0032】得られたポリマーは、下記式 (V) の繰り返し単位を有するものである。

【化6】

【0033】合成例4 (ポリキノリンの合成)

メカニカルスターラ、凝縮器と窒素導入管を付けたディ ーンスターク管並びに温度計を備え付けた2リットルの 丸底三ツロフラスコに、6,6′-ビス(2-(4″-フルオロフェニル) - 4 - フェニルキノリン) 114. 75g(0.9225モル、1.03当量)、9,9-ピス (4-ヒドロキシフェニル) フルオレン66.04 72g(0.18848モル、1.00当量)、炭酸カ リウム39. lg (0.28モル、1.5当量)、N-メチルーピロリドン705ミリリットル、トルエン42 1ミリリットルを仕込んだ。反応混合物は窒素雰囲気下 で15時間加熱された。トルエンがディーンスターク管 20 によって除かれ、反応混合物はさらに200℃で12時*

*間加熱された。ついで、反応混合物はN-メチルーピロ リドンで希釈され、室温まで冷却された。得られたポリ 10 マー溶液を3倍容量のアセトンにゆっくり注ぐことによ りポリマーを凝縮された。ポリマーを濾過して集め、N ーメチルーピロリドンに溶解し、三倍容量の水で凝縮し た。また、ポリマーが集められ真空下130℃で12時 間乾燥した。ポリマーの収量は170g(99%)であ った。このものの数平均分子量は、ポリスチレン換算で 46,900、ガラス転移点は約306℃であった。 【0 0 3 4】得られたポリマーは、下記式 (VI) の繰り 返し単位を有するものである。

【化7】

【0035】実施例1

合成例3で得られたポリキノリン樹脂100重量部に対 し、アーグリシドキシプロピルトリメトキシシラン (S H-6040; 東レ・ダウコーニング・シリコーン(株) 商品名)10重量部、シクロペンタノン1250重量部 を加えて室温で均一に混合、溶解させ、カラーフィルタ 一保護膜用樹脂組成物を得た。この溶液を、孔径0.2 μmのメンプランフィルタで濾過した後、スピンコータ ーを用いてガラス板(ダウコーニング社 7059材、 無アルカリガラス)上に回転数700rpmで回転塗布し た。塗布後、ガラス板を200℃のクリーンオーブン中 にて1時間処理し、塗膜を乾燥させた。得られた塗膜は 40 無色透明であった。触針式膜厚計 (Surfcom; 東京精密 (株)商品名)によって測定した膜厚は2.3 μmであっ た。塗膜の 4 0 0 nmにおける吸収スペクトルを塗布した ものと同じガラス板をリファレンスとして測定したとこ ろ、光線透過率は95%以上であった。

【0036】次に、前記のカラーフィルター保護膜用樹 脂組成物を一般的に知られている方法で作製したカラー フィルター基材上に塗布した後、加熱乾燥して保護膜を 形成し、保護膜付きカラーフィルターの特性を調べた。 すなわち、カラーフィルター基材は透明ガラス基板上に 50 異常は全く認められなかった。

ゼラチンと重クロム酸カリウム溶液を用いて、常法によ りストライプ状の赤、緑、青の3色の染色式カラーフィ ルター (ストライプ幅100μm) を作製したものであ る。この基材の表面凹凸を触針式膜厚計 (Surfcom; 東 京精密(株)商品名)によって測定したところ、1.0μ mであった。次に、このカラーフィルター基材上に前記 のカラーフィルター保護膜用樹脂組成物を700rpmで 回転塗布し、200℃で1時間乾燥することにより保護 層を形成した。このようにして作製された保護膜付きカ ラーフィルター上に、インジウムチンオキシド(IT O)を常法に従い蒸着した。このITOがついたカラー フィルターを光学顕微鏡で詳細に観察したが、カラーフ ィルターや保護膜にシワやクラック等は全く認められな

【0037】さらに、このITOがついたカラーフィル ターを湿度100%の雰囲気下に2週間放置した後、液 晶配向膜(STX-24、日立化成工業(株)商品名)を スピンコートにより乾燥後の膜厚が 0.05μmとなる ように塗布し、200℃のホットプレート上で10分間 乾燥させ成膜した。この後、カラーフィルターを光学題 微鏡で詳細に観察したが、カラーフィルターや保護膜に

【0038】実施例2

合成例4で得られたポリキノリン樹脂100重量部に対 し、アーグリシドキシプロピルトリメトキシシラン(S H-6040; 東レ・ダウコーニング・シリコーン(株) 商品名) 10重量部、N-メチルピロリドン1500重 **量部を加えて室温で均一に混合、溶解させ、カラーフィ** ルター保護膜用樹脂組成物を得た。この溶液を、孔径 0. 2 μmのメンプランフィルタで濾過した後、スピン コーターを用いてガラス板(ダウコーニング社 705 9材、無アルカリガラス)上に回転数 7 0 0 rpmで回転 塗布した。塗布後、ガラス板を200℃のクリーンオー ブン中にて1時間処理し、塗膜を乾燥させた。得られた 塗膜は無色透明であった。触針式膜厚計 (Surfcom; 東 京精密(株)商品名) によって測定した膜厚は2.5 μm であった。塗膜の400nmにおける吸収スペクトルを塗 布したものと同じガラス板をリファレンスとして測定し たところ、光線透過率は95%以上であった。

【0039】次に本実施例で調製した前記カラーフィルター保護膜用樹脂組成物を一般的に知られている方法で作製したカラーフィルター基材上に塗布した後、加熱硬 20 化して保護膜を形成し、保護膜付カラーフィルターの特性を調べた。カラーフィルター基材は透明ガラス基板上にゼラチンと重クロム酸カリウム溶液を用いて、常法によりストライプ状の赤、緑、青の3色の染色式カラーフィルターがついた基材を作製した(ストライプ幅100μm)。この基材の表面凹凸を触針式膜厚計(Surfcom;東京精密(株)商品名)によって測定したところ、*

14

*1.0μmであった。次に、このカラーフィルター基材上に前記組成物を700rpmで回転塗布し、200℃で1時間乾燥することにより保護層を形成した。このようにして作製された保護膜付きカラーフィルター上に、インジウムチンオキシド(ITO)を常法に従い蒸着した。このITOがついたカラーフィルターを光学顕微鏡で詳細に観察したが、カラーフィルターや保護膜にシワやクラック等は全く認められなかった。

【0040】さらに、このITOがついたカラーフィル 9ーを湿度100%の雰囲気下に2週間放置した後、液 晶配向膜(STX-24、日立化成工業(株)商品名)をスピンコートにより乾燥後の膜厚が0.05μmとなるように塗布し、200℃のホットプレート上で10分間 乾燥させ成膜した。この後、カラーフィルターを光学顕 微鏡で詳細に観察したが、カラーフィルターや保護膜に 異常は全く認められなかった。

【0041】比較例1

下記式 (VII) で表わされる繰り返し単位を有し、重量 平均分子量 (ポリスチレン換算) が約80、000であるポリアミド樹脂100重量部に対してN-メチルピロリドンが1500重量部になるように合成された反応液に $\gamma-$ グリシドキシプロピルトリメトキシシラン (SH-6040; 東レ・ダウコーニング・シリコーン(株)商品名) 10重量部を加えて室温で均一に混合、溶解させた。

【化8】

【0042】この溶液を、孔径0.2 μmのメンブラン フィルタで濾過した後、スピンコーターを用いてガラス 板(ダウコーニング社 7059材、無アルカリガラ ス)上に回転数700rpmで回転塗布した。塗布後、ガ ラス板を200℃のクリーンオーブン中にて1時間処理 し、塗膜を硬化させた。得られた塗膜は黄色であった。 触針式膜厚計(Surfcom;東京精密(株)商品名)によっ て測定した膜厚は 2. 4 μ m であった。 塗膜の 4 0 0 nm 40 における吸収スペクトルを塗布したものと同じガラス板 をリファレンスとして測定したところ、光線透過率は4 0%であった。次に本比較例で調製した組成物溶液を一 般的に知られている方法で作製したカラーフィルター基 材上に塗布した後、加熱硬化して保護膜を形成し、保護 膜付きカラーフィルターの特性を調べた。カラーフィル ター基材は透明ガラス基板上にゼラチンと重クロム酸カ リウム溶液を用いて、常法によりストライプ状の赤、 緑、青の3色の染色式カラーフィルターがついた基材を 作製した(ストライプ幅 1 0 0 μm)。この基材の表面 50

凹凸を触針式膜厚計 (Surfcom; 東京精密(株)商品名) によって測定したところ、1.0 μmであった。

【0043】次に、このカラーフィルター基材上に前記組成物溶液を700rpmで回転塗布し、200℃で1時間硬化することにより保護層を形成した。このようにして作製された保護膜付きカラーフィルター上に、インジウムチンオキシド(ITO)を常法に従い蒸着した。このITOがついたカラーフィルターを光学顕微鏡で詳細に観察したが、カラーフィルターや保護膜にシワやクラック等は全く認められなかった。さらに、このITOがついたカラーフィルターを湿度100%の雰囲気下に2週間放置した後、液晶配向膜(STX-24、日立化成工業(株)商品名)をスピンコートにより乾燥後の膜厚が 0.05μ mとなるように塗布し、200℃のホットプレート上で10分間乾燥させ成膜した。この後、カラーフィルターを光学顕微鏡で詳細に観察したが、カラーフィルターを光学顕微鏡で詳細に観察したが、カラーフィルターに吸湿が原因と考えられる色抜けが見られた。

【0044】比較例2

10

重量平均分子量(ポリスチレン換算)80,000のポリメタクリル酸グリシジル100重量部、無水トリメリット酸10重量部、γーグリシドキシプロピルトリメトキシシラン(SH-6040;東レ・ダウコーニング・シリコーン(株)商品名)1.0重量部、エチルセロソルプアセテート580重量部を室温で均一に混合溶解し、得られた溶液を実施例と同様にしてガラス板上に塗布、加熱硬化させた。得られた塗膜は無色透明であった。触針式膜厚計によって測定した膜厚は2.0μmであった。塗膜の400mにおける吸収スペクトルを塗布したものと同じガラス板をリファレンスとして測定したところ、光線透過率は95%以上であった。

【0045】次に本比較例で調製した組成物溶液を一般的に知られている方法で作製したカラーフィルター基材上に塗布した後、加熱硬化して保護膜を形成し、保護膜付きカラーフィルターの特性を調べた。カラーフィルター基材は透明ガラス基板上にゼラチンと重クロム酸カリウム溶液を用いて、常法によりストライプ状の赤、緑、青の3色の染色式カラーフィルターがついた基材を作製した(ストライプ幅100 μ m)。この基材の表面凹凸20を触針式膜厚計(Surfcom;東京精密(株)商品名)によって測定したところ、1.0 μ mであった。次に、このカラーフィルター基材上に前記組成物溶液を700rpmで回転塗布し、200℃で1時間硬化することにより保

16

護層を形成した。このようにして作製された保護膜付きカラーフィルター上に、インジウムチンオキシド(ITO)を常法に従い蒸着した。このITOがついたカラーフィルターを光学顕微鏡で詳細に観察したが、保護膜にシワおよびクラックが発生していた。

【0046】さらに、このITOがついたカラーフィルターを湿度 100%の雰囲気下に 2 週間放置した後、液晶配向膜(STX-24、日立化成工業(株)商品名)をスピンコートにより乾燥後の膜厚が 0.05μ mとなるように塗布し、 200 C のホットプレート上で 10 分間乾燥させ成膜した。この後、カラーフィルターを光学顕微鏡で詳細に観察したが、カラーフィルターに吸湿が原因と考えられる色抜けが見られた。

[0047]

【発明の効果】請求項1におけるカラーフィルター保護 膜用樹脂組成物から形成される塗膜は、透明性、耐熱性 に優れるとともに耐湿性に極めて優れている。請求項2 におけるカラーフィルタは、請求項1におけるカラーフ ィルター保護膜用樹脂組成物を用いて形成され、前記樹 脂組成物から形成される塗膜と同様の特長を示す。これ は、ポリキノリン樹脂が透明性に優れるとともに耐熱性 が高く、吸湿性が低いため、耐湿性に優れることによ る。