DDPG and Soft AC

Spring, 2024

Outline

Deep Deterministic Policy Gradient

Soft Actor-Critic

Reinforcement Learning

Table of Contents

- Deep Deterministic Policy Gradient
- Soft Actor-Critic

Q-learning-DDPG-TD3-SAC

- Value based RL methods starting from Q-learning are also being developed over the years
- 2 DDPG: Deterministic Policy Gradient Algorithms, Silver et al. ICML 2014
- **3 TD3**: Addressing Function Approximation Error in Actor-Critic Methods, Fujimoto et al. ICML 2018
- SAC: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, Haarnoja et al. ICML 2018

Stochastic Policy

The policy is stochastic and denoted by

$$\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A}),$$

where $\mathcal{P}(A)$ is the set of probability measures on A and $\theta \in \mathbb{R}^n$ is a vector of n parameters.

- $\pi_{\theta}(a_t|s_t)$ is the conditional probability density at a_t associated with the policy.
- For the same state s, the actions stochastically selected according to θ might be different.

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

Reinforcement Learning Spring, 2024 5 / 23

Deterministic Policy

Select a deterministic action:

$$a = \mu_{\theta}(s)$$

- ullet action is *uniquely* determined at the state s w.r.t the parameter heta
- suitable for the continuous action space, especially if the action space has many dimensions

Continuous Action Space

$$A\in [0,2\pi]*[0,\pi]$$

Reinforcement Learning

DQN for Continuous Action Space

Deterministic Policy Gradient

9 / 23

Deep Deterministic Policy Gradient (DDPG)

- Motivation: how to extend DQN to the environment with continuous action space?
- 2 DDPG is very similar to DQN, which can be considered as a continuous action version of DQN

$$extbf{DQN}: a^* = rg \max_a Q^*(s,a)$$
 $extbf{DDPG}: a^* = rg \max_a Q^*(s,a) pprox Q_\phi(s,\mu_ heta(s))$

- 1 a deterministic policy $\mu_{\theta}(s)$ directly gives the action that maximizes $Q_{\phi}(s,a)$
- 2 as action a is continious we assume Q-function $Q_{\phi}(s,a)$ is differentiable with respect to a

Q Function of DQN

$$Q(S, A) \leftarrow Q(S, A) + lpha \Big[R + \gamma \max_a Q ig(S', aig) - Q(S, A) \Big]$$

11 / 23

forcement Learning Spring, 2024

Actor Network of DDPG

Reinforcement Learning

Actor Network of DDPG (2)

Critic 输出的价值代表了Actor预测动作的好坏,因此策略网络的目标是最大化价值 Value,自然就想到了用梯度上升法来最大化 q(s,a;w) ,于是,我们可以对 q(s,a;w) 求 θ 的梯度,让我们将策略网络记作 $\pi(s;\theta)$:

$$pg = rac{\partial q(s,\pi(s; heta);w)}{\partial heta} = rac{\partial q(s,a;w)}{\partial a} * rac{\partial a}{\partial heta}$$

然后用梯度上升更新 θ :

$$heta \leftarrow heta + lpha' * pg$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

DDPG Framework

14 / 23

DDPG Framework (2)

DDPG Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

DDPG Algorithm (2)

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

行动策略为随机策略 for t = 1. T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

经验回放

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Hopdate critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q)^2)$

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}}\mu|_{s_{t}} \approx \frac{1}{N} \sum_{i} \nabla_{a}Q(s, a|\theta^{Q})|_{s=s_{t}, a=\mu(s_{t})} \nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})|_{s_{t}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

目标网络参数更新

end for end for

Example: TORCS

https://youtu.be/8CNck-hdys8

Table of Contents

- Deep Deterministic Policy Gradient
- Soft Actor-Critic

- 1 SAC optimizes a stochastic policy in an off-policy way, which unifies stochastic policy optimization and DDPG-style approaches
- SAC incorporates entropy regularization
- 3 Entropy is a quantity which measures how random a random variable is, $H(P) = E_{x \sim P}[-\log P(x)]$
- 4 Entropy-regularized RL: the policy is trained to maximize a trade-off between expected return and entropy, a measure of randomness in the policy

$$\pi^* = rg \max_{\pi} \mathbb{E}_{(s_t, a_t) \sim
ho_{\pi}}[\sum_{t} R(s_t, a_t)]$$

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} [\sum_{t} \underbrace{R(s_t, a_t)}_{reward} + \alpha \underbrace{H(\pi(\cdot|s_t))}_{entropy}]$$

4□ > 4回 > 4 = > 4 = > = 900

$$q_{\pi}(s,a) \leftrightarrow s,a$$
 r
 s'
 $\leftrightarrow a'$

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

$$q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') (q_{\pi}(s',a') - \alpha \log(\pi(a'|s'))$$

The recursive Bellman equation for soft Q-function is

$$Q_{soft}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}, a_{t+1}}[Q_{soft}(s_{t+1}, a_{t+1}) - \alpha \log(\pi(a_{t+1}|s_{t+1}))]$$

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣り○

Policy Iteration

Policy evaluation Estimate ν_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy iteration for traditional RL

• Policy evaluation: fix policy, update Q-function

$$Q_\pi(s,a) = r(s,a) + \lambda \mathbb{E}_{s',a'} Q_\pi(s',a')$$

Policy improvement: update policy

$$\pi'(s) = rg \max_a Q_{\pi}(s, a)$$

Policy iteration for SAC

Policy evaluation: fix policy, update Q-function

$$Q_{soft}^{\pi}(s_t, a_t) = r(s_t, a_t) + \lambda \mathbb{E}_{s_{t+1}, a_{t+1}}[Q_{soft}^{\pi}(s_{t+1}, a_{t+1}) - \alpha \log(\pi(a_{t+1}|s_{t+1}))]$$

Policy improvement: update policy

$$\pi' = \arg\min_{\pi_k \in \Pi} D_{KL}(\pi_k(\cdot|s_t)||\frac{\exp(\frac{1}{\alpha}Q_{soft}^\pi(s_t,\cdot))}{Z_{soft}^\pi(s_t)})$$

