(十二) 图论: 匹配与网络流 (Matching and Network Flow)

魏恒峰

hfwei@nju.edu.cn

2021年05月27日

Definition (Network (网络))

A network is a digraph with

- ightharpoonup a distinguished source vertex s,
- \triangleright a distinguished sink vertex t,
- ▶ a capacity $c(e) \ge 0$ on each edge e

Definition (Flow (流))

A flow f is a function that assigns a value f(e) to each edge e.

Definition (Feasible Flow)

A flow f is feasible if it satisfies

Capacity Constraints:

$$\forall e \in E. \ 0 \le f(e) \le c(e)$$

Flow Conservation:

$$\forall v \in V. \ f^+(v) = f^-(v)$$

$$f^+(v) = \sum_{(v,w) \in E} f(v,w)$$
 $f^-(v) = \sum_{(u,v) \in E} f(u,v)$

$$f^+(v) = \sum_{(v,w) \in E} f(v,w)$$
 $f^-(v) = \sum_{(u,v) \in E} f(u,v)$

$$f^{+}(U) = \sum_{u \in U, v \in \overline{U}, (u,v) \in E} f(u,v)$$

$$f^+(v) = \sum_{(v,w) \in E} f(v,w)$$
 $f^-(v) = \sum_{(u,v) \in E} f(u,v)$

$$f^{+}(U) = \sum_{u \in U, v \in \overline{U}, (u,v) \in E} f(u,v) \qquad f^{-}(U) = \sum_{v \in \overline{U}, u \in U, (v,u) \in E} f(v,u)$$

◆□▶◆□▶◆■▶◆■▶ ■ 990

$$\forall U \subseteq (V - \{s, t\}). \ f^+(U) = f^-(U)$$

$$\forall U \subseteq (V - \{s, t\}). \ f^+(U) = f^-(U)$$

$$s \in U \land t \notin U \implies f^+(U) - f^-(U) =$$

$$\forall U \subseteq (V - \{s, t\}). \ f^+(U) = f^-(U)$$

$$s \in U \land t \notin U \implies f^+(U) - f^-(U) = f^+(s)$$

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

Definition (Maximum Flow (最大流))

A maximum flow is a feasible flow of maximum value.

4□ > 4□ > 4□ > 4□ > □ ● 900

Definition (f-augmenting Paths (增广路径))

When f is a feasible flow, an f-augmenting path is a $s \sim t$ path P in the underlying graph such that for each edge $e \in E(P)$,

- (a) if P follows e in the forward direction, then f(e) < c(e);
- (b) if P follows e in the backward direction, then f(e) > 0.

Definition (f-augmenting Paths)

Let P be an f-augmenting path.

$$\epsilon(e) = \begin{cases} c(e) - f(e) \\ f(e) \end{cases}$$

 $\epsilon(e) = \begin{cases} c(e) - f(e) & \text{if } e \text{ is forward on } P \\ f(e) & \text{if } e \text{ is backward on } P \end{cases}$

Definition (f-augmenting Paths)

Let P be an f-augmenting path.

$$\epsilon(e) = \begin{cases} c(e) - f(e) & \text{if } e \text{ is forward on } P \\ f(e) & \text{if } e \text{ is backward on } P \end{cases}$$

An f-augmenting path leads to a flow with larger value.

$$\min_{e \in E(P)} \epsilon(e)$$

Definition (Source/Sink Cut (割))

In a network, a source/sink cut [S,T] consists of the edges from a source set S to a sink set T, where

$$(T = V - S) \land (s \in S) \land (t \in T)$$

Definition (Capacity of Cut (割的容量))

$$\operatorname{cap}(S,T) = \sum_{u \in S, v \in T, uv \in E} c(u,v)$$

Definition (Minimum Cut (最小割))

A minimum cut is a cut of minimum value.

Definition (Minimum Cut (最小割))

A minimum cut is a cut of minimum value.

Let f be any feasible flow and [S,T] be any source/sink cut.

$$val(f) \leq cap(S,T).$$

Let f be any feasible flow and [S,T] be any source/sink cut.

$$val(f) \leq cap(S,T).$$

$$\mathsf{val}(f) = f^+(S) - f^-(S)$$

Let f be any feasible flow and [S,T] be any source/sink cut.

$$val(f) \leq cap(S,T).$$

$$\operatorname{val}(f) = f^+(S) - f^-(S) \le f^+(S)$$

Let f be any feasible flow and [S,T] be any source/sink cut.

$$val(f) \leq cap(S,T).$$

$$\mathsf{val}(f) = f^+(S) - f^-(S) \le f^+(S) \le \mathsf{cap}(S,T)$$

Lemma

$$\max_f \mathit{val}(f) \leq \min_{[S,T]} \mathit{cap}(S,T)$$

Lemma

$$\max_f \mathit{val}(f) \leq \min_{[S,T]} \mathit{cap}(S,T)$$

What if val(f) = cap(S, T) for some flow f and some cut [S, T]?

Lemma

$$\max_f \mathit{val}(f) \leq \min_{[S,T]} \mathit{cap}(S,T)$$

What if $\mathsf{val}(f) = \mathsf{cap}(S, T)$ for some flow f and some cut [S, T]?

f is maximum and [S,T] is minimum

$$val(f) = f^+(S) - f^-(S) = f^+(S) = cap(S, T)$$

$$\mathsf{val}(f) = f^{+}(S) - f^{-}(S) = f^{+}(S) = \mathsf{cap}(S, T)$$

$$f^{-1}(S) = 0 \wedge f^+(S) = \operatorname{cap}(S, T)$$

$${\rm val}(f) = f^+(S) - f^-(S) = f^+(S) = {\rm cap}(S,T)$$

$$|f^{-1}(S) = 0 \wedge f^+(S) = \operatorname{cap}(S, T)|$$

$$\operatorname{val}(f) = f^+(S) - f^-(S) = f^+(S) = \operatorname{cap}(S,T)$$

$$f^{-1}(S) = 0 \wedge f^+(S) = \operatorname{cap}(S, T)$$

Theorem (Max-flow Min-cut Theorem (Ford and Fulkerson; 1956))

$$\max_{f} \mathit{val}(f) = \min_{[S,T]} \mathit{cap}(S,T)$$

(Strong Duality)

L. R. Ford Jr. $(1927 \sim 2017)$

D. R. Fulkerson (1924 \sim 1976)

17/27

18 / 27

Theorem

A feasible flow f is maximum iff there are no f-augmenting paths.

Theorem

A feasible flow f is maximum iff there are no f-augmenting paths.

We construct a cut [S,T] with val(f) = cap(S,T).

Theorem

A feasible flow f is maximum iff there are no f-augmenting paths.

We construct a cut [S,T] with val(f) = cap(S,T).

 $S \triangleq \{\text{the vertices reachable from } s \text{ along } \mathbf{partial} \text{ } f\text{-augmenting paths}\}$

 $S \triangleq \{\text{the vertices reachable from } s \text{ along } \mathbf{partial} \text{ } f\text{-augmenting paths}\}$

$$T \triangleq V - S$$

20 / 27

 $S \triangleq \{\text{the vertices reachable from } s \text{ along } \mathbf{partial} \text{ } f\text{-augmenting paths}\}$

$$T \triangleq V - S$$

$$f^{-1}(S) = 0 \wedge f^+(S) = \operatorname{cap}(S, T)$$

 $S \triangleq \{\text{the vertices reachable from } s \text{ along partial } f\text{-augmenting paths}\}$

$$T \triangleq V - S$$

$$f^{-1}(S) = 0 \wedge f^+(S) = \operatorname{cap}(S, T)$$

$$\operatorname{val}(f) = f^+(S) - f^-(S) = f^+(S) = \operatorname{cap}(S,T)$$

(hfwei@nju.edu.cn)

The Ford-Fulkerson Method

Repeatedly finding f-augmenting paths until no more ones exist.

The Ford-Fulkerson Method

Repeatedly finding f-augmenting paths until no more ones exist.

The Ford-Fulkerson Method

Repeatedly finding f-augmenting paths until no more ones exist.

21/27

The Edmonds-Karp Algorithm

Using BFS (Breadth-first Search) to find f-augmenting paths.

The Edmonds-Karp Algorithm

Using BFS (Breadth-first Search) to find f-augmenting paths.

The Edmonds-Karp Algorithm

Using BFS (Breadth-first Search) to find f-augmenting paths.

Theorem (Hall Theorem; 1935)

There is an X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

Theorem (Hall Theorem; 1935)

There is an X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

$$\forall x \in X. \ c(s, x) = 1 \quad \forall y \in Y. \ c(y, t) = 1 \quad \forall x \in X, y \in Y. \ c(x, y) = \infty$$

Theorem (Hall Theorem; 1935)

There is an X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

$$\forall x \in X. \ c(s, x) = 1 \quad \forall y \in Y. \ c(y, t) = 1 \quad \forall x \in X, y \in Y. \ c(x, y) = \infty$$

We need to show that $\max_{f} \mathsf{val}(f) = |X|$.

←□ → ←□ → ← = → ← = → へへ

We need to show that $\min_{[S,\overline{S}]} \operatorname{cap}(S,\overline{S}) = \left|X\right|$.

We need to show that $\min_{[S,\overline{S}]} \operatorname{cap}(S,\overline{S}) = \left|X\right|$.

$$\min_{[S,\overline{S}]} {\rm cap}(S,\overline{S}) \leq \left|X\right|$$

We need to show that $\min_{[S,\overline{S}]} \operatorname{cap}(S,\overline{S}) = \left|X\right|$.

$$\min_{[S,\overline{S}]} \operatorname{cap}(S,\overline{S}) \leq \left|X\right|$$

Therefore, we need to show that $\min_{[S,\overline{S}]} \operatorname{cap}(S,\overline{S}) \ge |X|$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めの○

Let $[S, \overline{S}]$ be a minimum cut. We need to show that $\mathsf{cap}(S, \overline{S}) = |X|$.

Let $[S, \overline{S}]$ be a minimum cut. We need to show that $\mathsf{cap}(S, \overline{S}) = \left|X\right|$.

$$N(S \cap X) \subseteq (S \cap Y)$$

Let $[S, \overline{S}]$ be a minimum cut. We need to show that $\mathsf{cap}(S, \overline{S}) = |X|$.

 $N(S \cap X) \subseteq (S \cap Y)$

$${\rm cap}(S,\overline{S}) = \sum_{u \in S, v \in \overline{S}} c(x,y)$$

$$\begin{split} \operatorname{cap}(S,\overline{S}) &= \sum_{u \in S, v \in \overline{S}} c(x,y) \\ &= \sum_{v \in \overline{S} \cap X} c(s,v) + \sum_{u \in S \cap Y} c(u, \textcolor{red}{t}) \end{split}$$

$$\begin{split} \operatorname{cap}(S,\overline{S}) &= \sum_{u \in S, v \in \overline{S}} c(x,y) \\ &= \sum_{v \in \overline{S} \cap X} c(\underline{s},v) + \sum_{u \in S \cap Y} c(u,\underline{t}) \\ &= \left| X \right| - \left| S \cap X \right| + \left| S \cap Y \right| \end{split}$$

$$\begin{split} \operatorname{cap}(S,\overline{S}) &= \sum_{u \in S, v \in \overline{S}} c(x,y) \\ &= \sum_{v \in \overline{S} \cap X} c(s,v) + \sum_{u \in S \cap Y} c(u,t) \\ &= \left| X \right| - \left| S \cap X \right| + \left| S \cap Y \right| \\ &\geq \left| X \right| - \left| S \cap X \right| + \left| N(S \cap X) \right| \end{split}$$

$$\begin{split} \operatorname{cap}(S,\overline{S}) &= \sum_{u \in S, v \in \overline{S}} c(x,y) \\ &= \sum_{v \in \overline{S} \cap X} c(\underline{s},v) + \sum_{u \in S \cap Y} c(u,\underline{t}) \\ &= \left| X \right| - \left| S \cap X \right| + \left| S \cap Y \right| \\ &\geq \left| X \right| - \left| S \cap X \right| + \left| N(S \cap X) \right| \\ &\geq \left| X \right| \end{split}$$

Theorem (König (1931), Egerváry (1931))

If G is a bipartite graph, then the maximum size of a mathching in G equals the minimum size of a vertex cover of G

Theorem (König (1931), Egerváry (1931))

If G is a bipartite graph, then the maximum size of a mathching in G equals the minimum size of a vertex cover of G

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn