Package 'edm1'

September 9, 2024

Title Simplify Complex Data Manipulation

Version 2.0.0.0	
Description Provides complex sorting algorythms. Provides date manipulation algorythms. In addition to providing handy functions to discretize variables, an SQL joins alternatives, a set of function to work with geographical coordinates, and other functions to work with text mining.	c-
License GPL (==3)	
Encoding UTF-8	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.3.1	
Imports stringr, stringi, dplyr, data.table, openxlsx	
Depends stringr, stringi, dplyr, data.table, openxlsx Contents	
arroundr_mean arroundr_min better_match better_split better_split_any better_sub better_sub_mult better_unique	56 77 78 111 112 131 141 151 161

2 Contents

pind_rows	18
can_be_num	18
closer_ptrn	19
closer_ptrn_adv	21
clusterizer_v	23
colins_datf	25
	26
	27
	27
	28
-	29
	30
	31
	31
-	32
	33
<i>=c</i>	35
<u> </u>	36
-	37
	38
- 11	38
	39
	40
11	40
**	40 41
-	41
-	42 42
• •	43
	43
· ·	43 44
	44 45
<u>-</u> C 1 - 3	46
-c 1- 7	47
- 1	48
$=$ 1 $=$ ε	50
$-1 - \varepsilon$	52
<u> -1 – </u>	55
	57
	59
	60
-1	61
-	62
=	68
	68
	69
	70
	70
	71
5**=	71
get_rec	72
	72
glue groupr v	73

Contents 3

grep_all	 					 										74
grep_all2	 					 										74
groupr_datf	 					 										75
gsub_mult	 					 										76
historic_sequence1	 					 										77
historic_sequence2	 					 										78
how normal	 					 										79
how unif	 					 										82
id_keepr																83
incr fillr																84
infinite_char_seq .																85
inner_all																85
insert datf														•	•	86
intersect all														•	•	87
intersect_mod														•	•	87
intersect_mod intersect_mod2														•	•	89
inter_max														•	•	90
														•	•	91
inter_min														•	•	
isnt_divisible														•	•	92
is_divisible														•	•	92
join_n_lvl														٠	٠	93
just_anything														٠	•	94
just_anything2															•	94
just_anything3															•	95
just_chr	 							•								95
just_chr2																96
just_chr3																96
just_nb																97
just_nb2	 					 										97
just_nb3	 					 										98
just_not_anything .	 					 										98
just_not_anything2	 					 										99
just_not_anything3	 					 										99
leap_yr	 					 										100
left_all	 					 										100
letter to nb	 					 										101
list files																101
lst_flatnr																102
match_by																
match_na_omit																
multitud																
nb2 follow																
nb follow																
nb to letter																
nestr_datf1																
nestr_datf2																
nest_v																
new_ordered																
normal_dens																
occu																
old_to_new_idx																
or_bool1	 					 										111

4 Contents

or_bool2	
pairs_findr	
pairs_findr_merger	113
pairs_insertr	
pairs_insertr2	116
paste_datf	117
oaste_datf2	118
pattern_generator	118
pattern_gettr	119
pattern_tuning	120
power_to_char	121
ore_to_post_idx	
otrn_switchr	
otrn_twkr	
read_edm_parser	
rearangr_v	
regex_spe_detect	
regroupr	
m_na_rows	
m_rows	
row_to_col	
:_print	
save_untl	
see datf	
see_diff	
see_diff_all	
see_diff_detailled	
see_file	
see_idx	
see_inside	
see_in_grep	
see_in_l	
see_mode	
selected_char	
sequence_na_mean1	
sequence_na_mean2	
sequence_na_med1	
sequence_na_med2	
sort_date	
sort_normal_qual	
sort_normal_qual2	146
split_by_step	149
str_remove_untl	150
sub_mult	151
successive_diff	152
sum_group1	152
sum_group2	
rest_order	
ime_serie_equalizer	
o_unique	
nion_all	

all_concat 5

	union_keep	60
	unique_datf	61
	unique_ltr_from_v	62
	unique_pos	62
	unique_total	63
	until_stnl	63
	val_replacer	64
	vector_replacor	64
	vec_in_datf	
	vlookup_datf	66
	wider_datf	67
	wide_to_narrow_idx	68
	write_edm_parser	69
Index	1	70
		—

Description

all_concat

Output all the possible concatenations of elements in different vectors, see examples

all_concat

Usage

```
all\_concat(..., sep = "\_")
```

Arguments

is all the vectors of the elements that will be concatenated, see examplesis the separator to use between concatenated elements

```
print(all_concat(c("France", "Germany"), c("2012", "2013"), c(1:2), sep = "_"))
[1] "France_2012_1" "Germany_2012_1" "France_2013_1" "Germany_2013_1"
[5] "France_2012_2" "Germany_2012_2" "France_2013_2" "Germany_2013_2"
```

6 all_stat

all_stat

Description

Allow to see all the main statistics indicators (mean, median, variance, standard deviation, sum, max, min, quantile) of variables in a dataframe by the modality of a variable in a column of the input datarame. In addition to that, you can get the occurence of other qualitative variables by your chosen qualitative variable, you have just to precise it in the vector "stat_var" where all the statistics indicators are given with "occu-var_you_want/".

Usage

```
all_stat(inpt_v, var_add = c(), stat_var = c(), inpt_datf)
```

Arguments

inpt_v is the modalities of the variables
var_add is the variables you want to get the stats from

stat_var is the stats indicators you want

inpt_datf is the input dataframe

```
datf <- data.frame("mod"=c("first", "seco", "seco", "first", "first", "third", "first"),</pre>
                "var1"=c(11, 22, 21, 22, 22, 11, 9),
               "var2"=c("d", "d", "z", "z", "z", "d",
               "var3"=c(45, 44, 43, 46, 45, 45, 42),
              "var4"=c("A", "A", "A", "A", "B", "C", "C"))
print(all_stat(inpt_v=c("first", "seco"), var_add = c("var1", "var2", "var3", "var4"),
 stat_var=c("sum", "mean", "median", "sd", "occu-var2/", "occu-var4/", "variance",
"quantile-0.75/"),
 inpt_datf=datf))
#
    modal_v var_vector occu sum mean med standard_devaition
                                                                       variance
#1
     first
#2
                              64
                                   16 16.5
                                             6.97614984548545 48.6666666666667
                  var1
#3
                var2-d
                          1
#4
                var2-z
#5
                            178 44.5
                                       45
                                             1.73205080756888
                                                                               3
                  var3
#6
                var4-A
                          2
#7
                var4-B
                          1
#8
                var4-C
                          1
#9
       seco
#10
                              43 21.5 21.5 0.707106781186548
                                                                            0.5
                  var1
#11
                var2-d
                          1
#12
                var2-z
                          1
#13
                              87 43.5 43.5 0.707106781186548
                                                                            0.5
                  var3
#14
                var4-A
                          2
#15
                var4-B
                          0
#16
                var4-C
    quantile-0.75
```

and_bool1 7

#1	
#2	22
#3	
#4	
#5	45.25
#6	
#7	
#8	
#9	
#10	21.75
#11	
#12	
#13	43.75
#14	
#15	
#16	

and_bool1	and_bool1
-----------	-----------

Description

Returns a boolean vector according to 'and' condition on boolean vector in a dataframe, each column represents a boolean vector, see examples

Usage

```
and_bool1(inpt_datf)
```

Examples

```
and_bool2 and_bool2
```

Description

Returns a boolean vector according to 'and' condition on boolean vector in a dataframe, each column represents a boolean vector, see examples, uses a different algorithm than and_bool1

Usage

```
and_bool2(inpt_datf)
```

8 any_join_datf

Examples

any_join_datf

any_join_datf

Description

Allow to perform SQL joints with more features

Usage

```
any_join_datf(
  inpt_datf_l,
  join_type = "inner",
  join_spe = NA,
  id_v = c(),
  excl_col = c(),
  rtn_col = c(),
  d_val = NA
)
```

Arguments

inpt_datf_l	is a list containing all the dataframe
join_type	is the joint type. Defaults to inner but can be changed to a vector containing all the dataframes you want to take their ids to don external joints.
join_spe	can be equal to a vector to do an external joints on all the dataframes. In this case, join_type should not be equal to "inner"
id_v	is a vector containing all the ids name of the dataframes. The ids names can be changed to number of their columns taking in count their position in inpt_datf_l. It means that if my id is in the third column of the second dataframe and the first dataframe have 5 columns, the column number of the ids is $5 + 3 = 8$
excl_col	is a vector containing the column names to exclude, if this vector is filled so "rtn_col" should not be filled. You can also put the column number in the manner indicated for "id_v". Defaults to $c()$
rtn_col	is a vector containing the column names to retain, if this vector is filled so "excl_col" should not be filled. You can also put the column number in the manner indicated for "id_v". Defaults to $c()$
d_val	is the default val when here is no match

any_join_datf 9

```
datf1 <- data.frame("val"=c(1, 1, 2, 4), "ids"=c("e", "a", "z", "a"),</pre>
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8), "third_col"=c(4:1))
datf2 \leftarrow data.frame("val"=c(3, 7, 2, 4, 1, 2), "ids"=c("a", "z", "z", "a", "a", "a"),
"bool"=c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE),
"second_ids"=c(13, 12, 8, 34, 22, 12))
datf3 <- data.frame("val"=c(1, 9, 2, 4), "ids"=c("a", "a", "z", "a"),</pre>
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8))
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type="inner",
id_v=c("ids", "second_ids"),
              excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last second_ids
#3 z12 2 z non 12 7 z FALSE 12 2 z non 12
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type="inner", id_v=c("ids
excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last second_ids
#2 a 1 a oui 11 3 a TRUE 13 1 a oui
                       12 7 z FALSE
                                            12 2 z non
   Z
          z non
#3
                                                                  12
                       8 4 a FALSE
      4 a oui
   а
                                            34
                                                9 a oui
#4
                                                                 11
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type=c(1), id_v=c("ids"),
              excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last
11 3 a TRUE
#2 a 1 a oui
                                              13 1 a oui
#3 z 2 z non
                       12 7 z FALSE
                                              12 2 z non
                      8 4 a FALSE
#4 a 4 a oui
                                              34 9 a oui
# second_ids
#1 <NA>
#2
        13
#3
         12
#4
         11
print(any_join_datf(inpt_datf_l=list(datf2, datf1, datf3), join_type=c(1, 3),
              id_v=c("ids", "second_ids"),
              excl_col=c(), rtn_col=c()))
   ids val ids bool second_ids val ids last second_ids val ids last
            a TRUE 13 <NA> <NA> <NA>
#1 a13
                                                     1
                                                         a oui
                          12 2 z non
8 <NA> <NA> <NA>
                                                12 2 z non
         7
#2 z12
             z FALSE
        2 z FALSE
                                               <NA> <NA> <NA> <NA>
#3
   z8
        4 a FALSE
                          34 <NA> <NA> <NA>
                                               <NA> <NA> <NA> <NA>
#4 a34
#5 a22
        1 a TRUE
                          22 <NA> <NA> <NA>
                                               <NA> <NA> <NA> <NA>
#6 a12
        2 a TRUE
                          12 <NA> <NA> <NA>
                                               <NA> <NA> <NA> <NA>
#7 a13 <NA> <NA> <NA>
                        <NA> <NA> <NA> <NA>
                                              <NA> <NA> <NA> <NA>
                        <NA> 1 a oui
<NA> <NA> <NA> <NA>
#8 all <NA> <NA> <NA>
                                                11 9 a oui
#9 z12 <NA> <NA> <NA>
                                               <NA> <NA> <NA> <NA>
```

10 appndr

#10 a8 <NA> <NA> <NA> 4 a oui

```
#
  second_ids
#1
         13
#2
         12
#3
       <NA>
       <NA>
#4
#5
       <NA>
#6
       <NA>
#7
       <NA>
#8
        11
#9
       <NA>
#10
          8
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type=c(1), id_v=c("ids"),
             excl_col=c(), rtn_col=c()))
#ids val ids last second_ids val ids bool second_ids val ids last
11 3 a TRUE
12 7 z FALSE
8 4 a FALSE
                                          13 1 a oui
#2 a
      1 a oui
                     12
                                                2 z non
9 a oui
                                            12
#3 z
      2 z non
#4 a
      4 a oui
                                            34
# second_ids
#1
      <NA>
#2
        13
        12
#3
#4
        11
```

8 4

a oui

appndr

appndr

Description

Append to a vector "inpt_v" a special value "val" n times "mmn". The appending begins at "strt" index.

Usage

```
appndr(inpt_v, val = NA, hmn, strt = "max")
```

Arguments

inpt_v	is the input vector
val	is the special value
hmn	is the number of special value element added
strt	is the index from which appending begins, defaults to max which means the end of "inpt_v"

arroundr_mean 11

Examples

```
print(appndr(inpt_v=c(1:3), val="oui", hmn=5))
#[1] "1"    "2"    "3"    "oui" "oui" "oui" "oui" "oui"
print(appndr(inpt_v=c(1:3), val="oui", hmn=5, strt=1))
#[1] "1"    "oui" "oui" "oui" "oui" "oui" "2"    "3"
```

arroundr_mean

arroundr_mean

Description

Takes an ascendly int ordered vector as input and assigns each elements that are close enough to the same value accrdng to a step value (step_value), see examples.

Usage

```
arroundr_mean(inpt_v = c(), step_val)
```

Arguments

```
inpt_v is the input vector
step_val is the step_value
```

Examples

arroundr_min

arroundr_min

Description

Takes an ascendly int ordered vector as input and assigns each elements that are close enough to the same value accrdng to a step value (step_value), see examples.

Usage

```
arroundr_min(inpt_v = c(), step_val)
```

12 better_match

Arguments

```
inpt_v is the input vector
step_val is the step value
```

Examples

```
print(arroundr_min(inpt_v = c(-11:25), step_val = 5))

[1] -11 -11 -11 -11 -11 -11 -6 -6 -6 -6 -6 -1 -1 -1 -1 -1 4 4 4
[20] 4 4 9 9 9 9 9 14 14 14 14 14 19 19 19 19 19 24
```

better_match

better_match

Description

Allow to get the nth element matched in a vector

Usage

```
better_match(inpt_v = c(), ptrn, untl = 1, nvr_here = NA)
```

Arguments

inpt_v is the input vector

ptrn is the pattern to be matched

untl is the maximum number of matched pattern outputed

nvr_here is a value you are sure is not present in inpt_v

```
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=3, untl=1))
#[1] 3
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=3, untl=5))
#[1] 3 13 16
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=c(3, 4), untl=5))
[1] 3 13 16 4 14
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=c(3, 4), untl=c(1, 5)))
[1] 3 4 14
```

better_split 13

better_split better_split

Description

Allows to split a string by multiple split, returns a vector and not a list.

Usage

```
better_split(inpt, split_v = c())
```

Arguments

```
inpt is the input character
split_v is the vector containing the splits
```

Examples

```
print(better_split(inpt = "o-u_i", split_v = c("-")))
[1] "o" "u_i"
print(better_split(inpt = "o-u_i", split_v = c("-", "_")))
[1] "o" "u" "i"
```

```
better_split_any better_split_any
```

Description

Allows to split a string by multiple split regardless of their length, returns a vector and not a list. Contrary to better_split, this functions keep the delimiters in the output.

Usage

```
better_split_any(inpt, split_v = c())
```

Arguments

```
\begin{array}{ll} \text{inpt} & \text{is the input character} \\ \text{split\_v} & \text{is the vector containing the splits} \end{array}
```

14 better_sub

Examples

```
print(better_split_any(inpt = "o-u_i", split_v = c("-")))
[1] "o" "-" "u_i"
print(better_split_any(inpt = "o-u_i", split_v = c("-", "_")))
[1] "o" "-" "u" "_" "i"
[1] "--"
                "/"
          " 0 "
                                   "m"
                                                "m"
                                                       "/"
[10] " "
                "-opo-" "/"
                                          "-u"
          "_"
                             "m"
                                   "/"
                                                       "i-"
[19] "_"
          "__"
print(better_split_any(inpt = "(ok(ee:56))(ok2(oui)(ee:4))", split_v = c("(", ")", ":")))
        "ok" "("
[1] "("
                 "ee" ":"
                           "56" ")"
                                     ")" "(" "ok2" "(" "oui"
        "("
             "ee" ":"
                       "4"
                            ")"
                                ")"
 [13] ")"
```

better_sub

better_sub

Description

Allow to perform a sub operation to a given number of matched patterns, see examples

Usage

```
better_sub(inpt_v = c(), pattern, replacement, untl_v = c())
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern is the expression that will be substituted
replacement is the expression that will substituate pattern
untl_v is a vector containing, for each element of inpt_v, the number of pattern that will be substituted

better_sub_mult 15

better_sub_mult

better_sub_mult

Description

Allow to perform a sub_mult operation to a given number of matched patterns, see examples

Usage

```
better_sub_mult(
  inpt_v = c(),
  pattern_v = c(),
  replacement_v = c(),
  untl_v = c()
)
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern_v is a vector containing all the patterns to be substituted in any elements of inpt_v
replacement_v
 is a vector containing the expression that are going to substituate those provided
 by pattern_v

untl_v is a vector containing, for each element of inpt_v, the number of pattern that will
be substituted

16 better_unique

better_unique

better_unique

Description

Returns the element that are not unique from the input vector

Usage

```
better_unique(inpt_v, occu = ">-1-")
```

Arguments

inpt_v

is the input vector containing the elements

occu

is a parameter that specifies the occurence of the elements that must be returned, defaults to ">-1-" it means that the function will return all the elements that are present more than one time in inpt_v. The synthax is the following "comparaison_type-actual_value-". The comparaison type may be "==" or ">" or "<". Occu can also be a vector containing all the occurence that must have the elements to be returned.

```
print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non")))
#[1] "oui" "non"

print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu="=
#[1] "oui"

print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu=">
#[1] "non"

print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu=c("oui", "oui", "non", "peut", "peut1", "non")
```

bind_cols 17

```
print(better_unique(inpt_v = c("a", "b", "c", "c"), occu = "==-1-"))
[1] "a" "b"
print(better_unique(inpt_v = c("a", "b", "c", "c"), occu = "<-2-"))
[1] "a" "b"</pre>
```

bind_cols

bind_cols

Description

Allow to find the cols of a dataframe in an other dataframe, see examples

Usage

```
bind_cols(from_datf, in_datf)
```

Arguments

from_datf is the dataframe that contains the cols to find among other cols in_datf is the dataframe that only contans the cols to find in from_datf

```
iris[, 5] <- as.character(iris[, 5])</pre>
iris <- cbind(iris, iris[, 4])</pre>
from_datf <- iris</pre>
in_datf <- iris[, c(1, 2, 2, 2, 4)]</pre>
bind_cols(from_datf = from_datf,
           in_datf = in_datf)
[[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 2
[[4]]
[1] 2
[[5]]
[1] 4 6
```

18 can_be_num

bind_rows

bind_rows

Description

Allow to find the rows of a dataframe in an other dataframe, see examples

Usage

```
bind_rows(from_datf, in_datf)
```

Arguments

from_datf is the dataframe that contains the rows to find among other rows in_datf is the dataframe that only contans the rows to find in from_datf

Examples

can_be_num

can_be_num

Description

Return TRUE if a variable can be converted to a number and FALSE if not (supports float)

Usage

```
can_be_num(x)
```

closer_ptrn 19

Arguments

Х

is the input value

Examples

```
print(can_be_num("34.677"))
#[1] TRUE
print(can_be_num("34"))
#[1] TRUE
print(can_be_num("3rt4"))
#[1] FALSE
print(can_be_num(34))
#[1] TRUE
```

closer_ptrn

closer_ptrn

Description

Take a vector of patterns as input and output each chosen word with their closest patterns from chosen patterns.

Usage

```
closer_ptrn(
   inpt_v,
   base_v = c("?", letters),
   excl_v = c(),
   rtn_v = c(),
   sub_excl_v = c(),
   sub_rtn_v = c()
)
```

Arguments

inpt_v is the input vector containing all the patterns

must contain all the characters that the patterns are succeptible to contain, defaults to c("?", letters). "?" is necessary because it is internally the default value added to each element that does not have a sufficient length compared to the longest pattern in inpt_v. If set to NA, the function will find by itself the elements to be filled with but it may takes an extra time

excl_v

is the vector containing all the patterns from inpt_v to exclude for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.

20 closer_ptrn

is the vector containing all the patterns from inpt_v to keep for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.

sub_excl_v is the vector containing all the patterns from inpt_v to exclude for using them to compare to another pattern. If this parameter is filled, so "sub_rtn_v" must be empty.

sub_rtn_v is the vector containing all the patterns from inpt_v to retain for using them to compare to another pattern. If this parameter is filled, so "sub_excl_v" must be empty.

Examples

#[[15]]

```
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoi
#[[1]]
#[1] "bonjour"
#[[2]]
#[1] "lpoerc"
                "nonnour" "bonnour" "nonjour" "aurevoir"
#[[3]]
#[1] 1 1 2 7 8
#[[4]]
#[1] "lpoerc"
#[[5]]
#[1] "bonjour" "nonnour" "bonnour" "nonjour" "aurevoir"
#[[6]]
#[1] 7 7 7 7 7
#[[7]]
#[1] "nonnour"
#[[8]]
#[1] "bonjour" "lpoerc"
                           "bonnour" "nonjour" "aurevoir"
#[[9]]
#[1] 1 1 2 7 8
#[[10]]
#[1] "bonnour"
#[[11]]
#[1] "bonjour" "lpoerc"
                           "nonnour" "nonjour"
                                                 "aurevoir"
#[[12]]
#[1] 1 1 2 7 8
#[[13]]
#[1] "nonjour"
#[[14]]
#[1] "bonjour" "lpoerc"
                           "nonnour" "bonnour"
                                                 "aurevoir"
```

closer_ptrn_adv 21

```
#[1] 1 1 2 7 8
#[[16]]
#[1] "aurevoir"
#[[17]]
#[1] "bonjour" "lpoerc" "nonnour" "bonnour" "nonjour"
#[[18]]
#[1] 7 8 8 8 8
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoi
excl_v=c("nonnour", "nonjour"),
                sub_excl_v=c("nonnour")))
#[1] 3 5
#[[1]]
#[1] "bonjour"
#[[2]]
#[1] "lpoerc"
               "bonnour" "nonjour" "aurevoir"
#[[3]]
#[1] 1 1 7 8
#[[4]]
#[1] "lpoerc"
#[[5]]
#[1] "bonjour" "bonnour" "nonjour" "aurevoir"
#[[6]]#
#[1] 7 7 7 7
#[[7]]
#[1] "bonnour"
#[[8]]
#[1] "bonjour" "lpoerc" "bonnour" "nonjour" "aurevoir"
#[[9]]
#[1] 0 1 2 7 8
#[[10]]
#[1] "aurevoir"
#[[11]]
#[1] "bonjour" "lpoerc" "nonjour" "aurevoir"
#[[12]]
#[1] 0 7 8 8
```

22 closer_ptrn_adv

Description

Allow to find how patterns are far or near between each other relatively to a vector containing characters at each index ("base_v"). The function gets the sum of the indexes of each pattern letter relatively to the characters in base_v. So each pattern can be compared.

Usage

```
closer_ptrn_adv(
  inpt_v,
  res = "raw_stat",
  default_val = "?",
  base_v = c(default_val, letters),
  c_word = NA
)
```

Arguments

inpt_v	is the input vector containing all the patterns to be analyzed
res	is a parameter controling the result. If set to "raw_stat", each word in inpt_v will come with its score (indexes of its letters relatively to base_v). If set to something else, so "c_word" parameter must be filled.
default_val	is the value that will be added to all patterns that do not equal the length of the longest pattern in inpt_v. Those get this value added to make all patterns equal in length so they can be compared, defaults to "?"
base_v	is the vector from which all pattern get its result (letters indexes for each pattern relatively to base_v), defaults to c("default_val", letters). "default_val" is another parameter and letters is all the western alphabetic letters in a vector
c_word	is a pattern from which the nearest to the farest pattern in inpt_v will be compared

```
print(closer_ptrn_adv(inpt_v=c("aurevoir", "bonnour", "nonnour", "fin", "mois", "bonjour'
    res="word", c_word="bonjour"))

#[[1]]
#[1] 1 5 15 17 38 65
#
#[[2]]
#[1] "bonjour" "bonnour" "aurevoir" "nonnour" "mois" "fin"

print(closer_ptrn_adv(inpt_v=c("aurevoir", "bonnour", "nonnour", "fin", "mois")))

#[[1]]
#[1] 117 107 119 37 64
#
#[[2]]
#[1] "aurevoir" "bonnour" "nonnour" "fin" "mois"
```

clusterizer_v 23

```
clusterizer_v clusterizer_v
```

Description

Allow to output clusters of elements. Takes as input a vector "inpt_v" containing a sequence of number. Can also take another vector "w_v" that has the same size of inpt_v because its elements are related to it. The way the clusters are made is related to an accuracy value which is "c_val". It means that if the difference between the values associated to 2 elements is superior to c_val, these two elements are in distinct clusters. The second element of the outputed list is the begin and end value of each cluster.

Usage

```
clusterizer_v(inpt_v, w_v = NA, c_val)
```

Arguments

inpt_v is the vector containing the sequence of numberw_v is the vector containing the elements related to inpt_v, defaults to NAc_val is the accuracy of the clusterization

```
print(clusterizer_v(inpt_v=sample.int(20, 26, replace=TRUE), w_v=NA, c_val=0.9))
# [[1]]
#[[1]][[1]]
#[1] 1
#[[1]][[2]]
#[1] 2
#[[1]][[3]]
#[1] 3
#[[1]][[4]]
#[1] 4
#[[1]][[5]]
#[1] 5 5
#[[1]][[6]]
#[1] 6 6 6 6
#[[1]][[7]]
#[1] 7 7 7
#[[1]][[8]]
#[1] 8 8 8
#[[1]][[9]]
#[1] 9
```

24 clusterizer_v

```
#[[1]][[10]]
#[1] 10
#[[1]][[11]]
#[1] 12
#[[1]][[12]]
#[1] 13 13 13
#[[1]][[13]]
#[1] 18 18 18
#[[1]][[14]]
#[1] 20
#[[2]]
# [1] "1" "1" "-" "2" "2" "-" "3" "3" "-" "4" "4" "-" "5" "5" "-" #[16] "6" "6" "-" "7" "7" "-" "8" "8" "-" "9" "9" "-" "10" "10" "-"
#[31] "12" "12" "-" "13" "13" "-" "18" "18" "-" "20" "20"
print(clusterizer_v(inpt_v=sample.int(40, 26, replace=TRUE), w_v=letters, c_val=0.29))
#[[1]]
#[[1]][[1]]
#[1] "a"
#[[1]][[2]]
#[1] "b"
#[[1]][[3]]
#[1] "c" "d"
#[[1]][[4]]
#[1] "e" "f"
#[[1]][[5]]
#[1] "g" "h" "i" "j"
#[[1]][[6]]
#[1] "k"
#[[1]][[7]]
#[1] "1"
#[[1]][[8]]
#[1] "m" "n"
#[[1]][[9]]
#[1] "o"
#[[1]][[10]]
#[1] "p"
#[[1]][[11]]
```

#[1] "q" "r"

colins_datf 25

```
#[[1]][[12]]
#[1] "s" "t" "u"
#[[1]][[13]]
#[1] "v"
#[[1]][[14]]
#[1] "w"
#[[1]][[15]]
#[1] "x"
#[[1]][[16]]
#[1] "y"
#[[1]][[17]]
#[1] "z"
#[[2]]
# [1] "13" "13" "-" "14" "14" "-" "15" "15" "-" "16" "16" "-"
                                                                  "17" "17" "-"
#[16] "19" "19" "-" "21" "21" "-" "22" "22" "-" "23" "23" "-"
                                                                  "25" "25" "-"
#[31] "27" "27" "-" "29" "29" "-" "30" "30" "-" "31" "31" "-"
                                                                  "34" "34" "-"
#[46] "35" "35" "-" "37" "37"
```

colins_datf

colins_datf

Description

Allow to insert vectors into a dataframe.

Usage

```
colins_datf(inpt_datf, target_col = list(), target_pos = list())
```

Arguments

```
inpt_datf is the dataframe where vectors will be inserted
target_col is a list containing all the vectors to be inserted
target_pos is a list containing the vectors made of the columns names or numbers where
the associated vectors from target_col will be inserted after
```

26 col_convertr

```
# frst_col cur_col scd_col cur_col.1 cur_col
  1 oui 5 oui u
2 oui 4 oui z
#1
#2
                     3 2
        3
#3
             oui
                             oui
        4
                             non
#4
             non
                                      Z
                     1
#5
       5
                             non
             non
print(colins_datf(inpt_datf=datf1, target_col=list(c("oui", "oui", "oui", "non", "non"),
           c("u", "z", "z", "z", "u")),
              target_pos=list(c(1, 2), c("frst_col"))))
# frst_col cur_col scd_col cur_col cur_col
#1
      1 oui 5 u
                     4
       2
#2
            oui
                            Z
                                  oui
                     4 z oui
3 z oui
2 z non
1 u non
       3 oui
4 non
5 non
#3
#4
#5
```

```
col_convertr col_convertr
```

Description

Allow to convert all column that may be converted to a numeric, to a numeric, see examples

Usage

```
col_convertr(inpt_datf)
```

Arguments

```
inpt_datf is the input dataframe
```

```
datf <- mtcars
datf[, 3] <- as.character(datf[, 3])</pre>
datf[, 4] <- as.character(datf[, 4])</pre>
str(datf)
'data.frame': 32 obs. of 11 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num
              6 6 4 6 8 6 8 4 4 6 ...
              "160" "160" "108" "258" ...
 $ disp: chr
             "110" "110" "93" "110"
 $ hp : chr
 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num 16.5 17 18.6 19.4 17 ...
 $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
 $ am : num 1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

col_to_row 27

```
datf <- col_convertr(inpt_datf = datf)
all(datf == mtcars)
[1] TRUE</pre>
```

```
col_to_row
```

col_to_row

Description

Allow to reverse a dataframe (cols become rows and rows become cols)

Usage

```
col_to_row(inpt_datf)
```

Arguments

```
inpt_datf is the inout dataframe
```

Examples

```
datf_test <- data.frame(c(1:11), c(11:1))
print(col_to_row(inpt_datf = datf_test))

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 1 2 3 4 5 6 7 8 9 10 11
2 11 10 9 8 7 6 5 4 3 2 1</pre>
```

converter_date

converter_date

Description

Allow to convert any date like second/minute/hour/day/month/year to either second, minute...year. The input date should not necessarily have all its time units (second, minute...) but all the time units according to a format. Example: "snhdmy" is for second, hour, minute, day, month, year. And "mdy" is for month, day, year.

Usage

```
converter_date(inpt_date, convert_to, frmt = "snhdmy", sep_ = "-")
```

28 converter_format

Arguments

```
inpt_date is the input date
convert_to is the time unit the input date will be converted ("s", "n", "h", "d", "m", "y")
frmt is the format of the input date
sep_ is the separator of the input date. For example this input date "12-07-2012" has
"-" as a separator
```

Examples

```
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="m"))
#[1] 24299.15
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="y"))
#[1] 2024.929
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="s"))
#[1] 63900626400
print(converter_date(inpt_date="63900626400", sep_="-", frmt="s", convert_to="y"))
#[1] 2024.929
print(converter_date(inpt_date="2024", sep_="-", frmt="y", convert_to="s"))
#[1] 63873964800
```

```
converter_format converter_format
```

Description

Allow to convert a format to another

Usage

```
converter_format(inpt_val, sep_ = "-", inpt_frmt, frmt, default_val = "00")
```

Arguments

is the input value that is linked to the format

sep____ is the separator of the value in inpt_val

inpt_frmt is the format of the input value

frmt is the format you want to convert to

default_val is the default value given to the units that are not present in the input format

cost_and_taxes 29

Examples

cost_and_taxes

cost_and_taxes

Description

Allow to calculate basic variables related to cost and taxes from a bunch of products (elements). So put every variable you know in the following order:

Usage

```
cost_and_taxes(
   qte = NA,
   pu = NA,
   prix_ht = NA,
   tva = NA,
   prix_ttc = NA,
   prix_tva = NA,
   pu_ttc = NA,
   adjust = NA,
   prix_d_ht = NA,
   prix_d_ttc = NA,
   pu_d = NA,
   pu_d = NA,
   pu_d_ttc = NA
```

Arguments

```
is the quantity of elements
qte
                  is the price of a single elements without taxes
pu
                  is the duty-free price of the whole set of elements
prix_ht
                  is the percentage of all taxes
tva
                  is the price of all the elements with taxes
prix_ttc
prix_tva
                  is the cost of all the taxes
                  is the price of a single element taxes included
pu_ttc
                  is the discount percentage
adjust
                  is the free-duty price of an element after discount
prix_d_ht
                  is the price with taxes of an element after discount
prix_d_ttc
                  is the price of a single element after discount and without taxes
pu_d
                  is the free-duty price of a single element after discount
pu_d_ttc
```

30 cumulated_rows

Examples

```
print(cost_and_taxes(pu=45, prix_ttc=2111, qte=23))
# [1] 23.000000 45.000000 1.039614 2111.000000 1076.000000
# [7] 45.000000 NA NA NA NA NA
```

cumulated_rows

Description

Output a vector of size that equals to the rows number of the input dataframe, with TRUE value at the indices corresponding to the row where at least a cell of any column is equal to one of the values inputed in values_v

Usage

```
cumulated_rows(inpt_datf, values_v = c())
```

Arguments

inpt_datf is the input data.frame
values_v is a vector containing all the values that a cell has to equal to return a TRUE
value in the output vector at the index corresponding to the row of the cell

```
datf\_teste \leftarrow data.frame(c(1:10), c(10:1))
print(datf_teste)
   c.1.10. c.10.1.
1
        1
              10
2
         2
                 9
3
         3
                 8
4
         4
5
         5
                 6
                 5
6
         6
7
         7
                 4
8
                 3
         8
9
         9
                 2
10
        10
                 1
print(cumulated_rows(inpt_datf = datf_teste, values_v = c(2, 3)))
[1]
      FALSE TRUE TRUE FALSE
                                FALSE FALSE TRUE TRUE
                                                                   FALSE
```

cumulated_rows_na 31

Description

Output a vector of size that equals to the rows number of the input dataframe, with TRUE value at the indices corresponding to the row where at least a cell of any column is equal to NA.

Usage

```
cumulated_rows_na(inpt_datf)
```

Arguments

```
inpt_datf is the input data.frame
```

Examples

```
datf_teste <- data.frame(c(1, 2, 3, 4, 5, NA, 7), c(10, 9, 8, NA, 7, 6, NA))
print (datf_teste)
  c.1..2..3..4..5..NA..7. c.10..9..8..NA..7..6..NA.
1
                        1
2
                        2
                                                   9
3
                                                   8
                        3
4
                                                  NA
                        4
5
                        5
                                                   7
6
                       NA
                                                   6
                                                  NA
print(cumulated_rows_na(inpt_datf = datf_teste))
[1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE
```

```
cutr_v cutr_v
```

Description

Allow to reduce all the elements in a vector to a defined size of nchar

Usage

```
cutr_v(inpt_v, untl = "min")
```

Arguments

```
inpt_v is the input vector
unt1 is the maximum size of nchar authorized by an element, defaults to "min", it
means the shortest element in the list
```

32 cut_v

Examples

```
test_v <- c("oui", "nonon", "ez", "aa", "a", "dsfsdsds")
print(cutr_v(inpt_v=test_v, untl="min"))
#[1] "o" "n" "e" "a" "a" "d"
print(cutr_v(inpt_v=test_v, untl=3))
#[1] "oui" "non" "ez" "aa" "a" "dsf"</pre>
```

cut_v

cut_v

Description

Allow to convert a vector to a dataframe according to a separator.

Usage

```
cut_v(inpt_v, sep_ = "")
```

Arguments

```
inpt_v is the input vector
sep_ is the separator of the elements in inpt_v, defaults to ""
```

data_gen 33

Description

Allo to generate in a csv all kind of data you can imagine according to what you provide

Usage

Arguments

type_	is a vector. Its arguments designates a column, a column can be made of numbers ("number"), string ("string") or both ("mixed")
strt_l	is a vector containing for each column the row from which the data will begin to be generated
nb_r	is a vector containing for each column, the number of row full from generated data
output	is the name of the output csv file, defaults to NA so no csv will be outputed by default
properties	is linked to type_distri because it is the parameters ("min_val-max_val") for "random type", ("u-x") for the poisson distribution, ("u-d") for gaussian distribution
type_distri	is a vector which, for each column, associate a type of distribution ("random", "poisson", "gaussian"), it meas that non only the number but also the length of the string will be randomly generated according to these distribution laws
str_source	is the source (vector) from which the character creating random string are (default set to the occidental alphabet)
round_l	is a vector which, for each column containing number, associate a round value, if the type of the value is numeric
sep_	is the separator used to write data in the csv

Value

new generated data in addition to saving it in the output

34 data_gen

```
print(data_gen())
# X1
      X2
            ХЗ
#1
  4
      2 <NA>
  2
      4
#2
           <NA>
#3 5 2
           <NA>
  2 abcd <NA>
#4
#5 4 abcd <NA>
#6 2 4
           <NA>
#7 2 abc <NA>
#8 4 abc <NA>
#9 4 3 <NA>
#10 4 abc abcd
#11 5 <NA> abc
#12 4 <NA>
           abc
#13 1 <NA>
           ab
#14 1 <NA> abcde
#15 2 <NA> abc
#16 4 <NA>
            а
#17 1 <NA> abcd
#18
   4 <NA>
           ab
#19 2 <NA> abcd
#20 3 <NA>
           ab
#21 3 <NA>
           abcd
#22 2 <NA>
#23 4 <NA>
            abc
#24 1 <NA> abcd
#25 4 <NA>
           abc
#26 4 <NA>
           ab
#27 2 <NA> abc
#28 5 <NA> ab
#29 3 <NA> abc
#30 5 <NA> abcd
#31 2 <NA> abc
#32 2 <NA> abc
#33 1 <NA>
           ab
#34 5 <NA>
            а
#35 4 <NA>
           ab
#36 1 <NA>
             ab
#37 1 <NA> abcde
#38 5 <NA> abc
#39
    4 <NA>
            ab
#40 5 <NA> abcde
#41 2 <NA>
#42
    3 <NA>
#43 2 <NA>
             ab
#44 4 <NA> abcd
#45 5 <NA>
           abcd
#46 3 <NA>
           abcd
#47 2 <NA>
           abcd
#48 3 <NA>
           abcd
#49 3 <NA> abcd
#50 4 <NA>
print(data_gen(strt_l=c(0, 0, 0), nb_r=c(5, 5, 5)))
```

data_meshup 35

```
# X1 X2 X3
#1 2 a abc
#2 3 abcde ab
#3 4 abcde a
#4 1 3 abc
#5 3 a abcd
```

data_meshup

data_meshup

Description

Allow to automatically arrange 1 dimensional data according to vector and parameters

Usage

```
data_meshup(
  data,
  cols = NA,
  file_ = NA,
  sep_ = ";",
  organisation = c(2, 1, 0),
  unic_sep1 = "_",
  unic_sep2 = "-"
)
```

Arguments

```
data
                     is the data provided (vector) each column is separated by a unic separator and
                     each dataset from the same column is separated by another unic separator (ex:
                     \mathtt{c}("",\,c("d",\,"\text{--"},\,"e",\,"\text{--"},\,"f"),\,\,"",\,\mathtt{c}("\mathtt{a}",\,"\mathtt{a}1",\,"\text{--"},\,"\mathtt{b}",\,"\text{--"},\,"\mathtt{c}",\,"\mathtt{c}1"),\,"\_")
cols
                     are the colnames of the data generated in a csv
                     is the file to which the data will be outputed, defaults to NA which means that
file_
                     the functio will return the dataframe generated and won't write it to a csv file
                     is the separator of the csv outputed
sep_
organisation is the way variables include themselves, for instance , resuming precedent ex-
                     ample, if organisation=c(1, 0) so the data output will be: d, a d, a1 e, c f, c f,
                     c1
                     is the unic separator between variables (default is "_")
unic_sep1
unic_sep2
                     is the unic separator between datasets (default is "-")
```

Examples

#3 e B

36 date_addr

```
#4 e r
#5 e uy
#6 f c
#7 f c1
```

date_addr

date_addr

Description

Allow to add or substract two dates that have the same time unit or not

Usage

```
date_addr(
  date1,
  date2,
  add = FALSE,
  frmt1,
  frmt2 = frmt1,
  sep_ = "-",
  convert_to = "dmy"
)
```

Arguments

```
date1 is the date from which the second date will be added or substracted
date2 is the date that will be added or will substract date1
add equals to FALSE if you want date1 - date2 and TRUE if you want date1 + date2
frmt1 is the format of date1 (snhdmy) (second, minute, hour, day, monthn year)
frmt2 is the format of date2 (snhdmy)
sep_ is the separator of date1 and date2
convert_to is the format of the outputed date
```

date_converter_reverse 37

Description

Allow to convert single date value like 2025.36 year to a date like second/minutehour/day/month/year (snhdmy)

Usage

```
date_converter_reverse(inpt_date, convert_to = "dmy", frmt = "y", sep_ = "-")
```

Arguments

inpt_date is the input date
convert_to is the date format the input date will be converted
frmt is the time unit of the input date
sep_ is the separator of the outputed date

date_converter_reverse

```
print(date_converter_reverse(inpt_date="2024.929", convert_to="hmy", frmt="y", sep_="-"))
#[1] "110-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="dmy", frmt="y", sep_="-"))
#[1] "4-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="hdmy", frmt="y", sep_="-")
#[1] "14-4-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="dhym", frmt="y", sep_="-")
```

38 datf_appendr2

```
#[1] "4-14-2024-11"
```

datf_appendr

datf_appendr

Description

Allow to append all columns of a dataframe in a vector.

Usage

```
datf_appendr(inpt_datf)
```

Arguments

```
inpt_datf is the input dataframe
```

Examples

```
datf_teste <- data.frame("col1" = c(1:5), "col2" = c(5:1))
print(datf_appendr(inpt_datf = datf_teste))
[1] 1 2 3 4 5 5 4 3 2 1</pre>
```

datf_appendr2

datf_appendr2

Description

Allow to append all columns of a dataframe in a vector, specifying the column types ("integer" or "character"), see examples

Usage

```
datf_appendr2(inpt_datf, chs_type = "integer")
```

Arguments

```
inpt_datf is the inout dataframe
```

datf_insertr 39

Examples

```
datf_teste <- data.frame("col1" = c(1:5), "col2" = c(5:1),
    "col3" = c("oui", "oui", "oui", "non", "non"))

print(datf_appendr2(inpt_datf = datf_teste, chs_type = "integer"))

[1] 1 2 3 4 5 5 4 3 2 1

print(datf_appendr2(inpt_datf = datf_teste, chs_type = "character"))

[1] "oui" "oui" "oui" "non" "non"</pre>
```

datf_insertr

datf_insertr

Description

Insert rows after certain indexes, see examples

Usage

```
datf_insertr(inpt_datf, ids_vec, val_l)
```

Arguments

```
inpt_datf is the input dataframe
ids_vec is the ids where the rows has to be inserted after
val_l is a list containing all the rows (vector) to be inserted, linked to eevery index within ids_vec
```

Examples

```
datf \leftarrow data.frame(c(1:4), c(4:1))
print(datf)
  c.1.4. c.4.1.
1
     1
           4
2
       2
              3
3
       3
              2
       4
              1
print(datf_insertr(inpt_datf = datf, ids_vec = c(1, 3), val_l = list(c("non", "non"), c(")
  c.1.4. c.4.1.
1
       1
               4
2
      non
             non
21
       2
              3
3
       3
              2
5
      oui
             oui
        4
               1
```

print(datf_insertr(inpt_datf = datf, ids_vec = c(1, 3), val_l = list(c("non", "non"))))

40 datf_row_appendr2

```
datf_row_appendr datf_row_appendr
```

Description

Allow to append all rows of a dataframe in a vector.

Usage

```
datf_row_appendr(inpt_datf)
```

Arguments

```
inpt_datf is the input dataframe
```

Examples

```
datf_row_appendr2 datf_row_appendr2
```

Description

Allow to append all rows of a dataframe in a vector, specifying the column types ("integer" or "character"), see examples

Usage

```
datf_row_appendr2(inpt_datf, chs_type = "integer")
```

Arguments

```
inpt_datf is the inout dataframe
```

dcr_untl 41

Examples

```
datf_teste <- data.frame("col1" = c(1:5), "col2" = c(5:1),
    "col3" = c("oui", "oui", "oui", "non", "non"))

print(datf_row_appendr2(inpt_datf = datf_teste, chs_type = "integer"))

NULL

print(datf_row_appendr2(inpt_datf = datf_teste, chs_type = "character"))

col1 col2 col3 col1 col2 col3 col1 col2 col3 col1 col2 col3 col1
    "1" "5" "oui" "2" "4" "oui" "3" "3" "oui" "4" "2" "non" "5"
    col2 col3
    "1" "non"</pre>
```

dcr_untl

dcr_untl

Description

Allow to get the final value of a incremental or decremental loop.

Usage

```
dcr_untl(strt_val, cr_val, stop_val = 0)
```

Arguments

```
strt_val is the start value
cr_val is the incremental (or decremental value)
stop_val is the value where the loop has to stop
```

```
print(dcr_untl(strt_val=50, cr_val=-5, stop_val=5))
#[1] 9
print(dcr_untl(strt_val=50, cr_val=5, stop_val=450))
#[1] 80
```

depth_pairs_findr

dcr_val

dcr_val

Description

Allow to get the end value after an incremental (or decremental loop)

Usage

```
dcr_val(strt_val, cr_val, stop_val = 0)
```

Arguments

strt_val is the start value
cr_val is the incremental or decremental value
stop_val is the value the loop has to stop

Examples

```
print(dcr_val(strt_val=50, cr_val=-5, stop_val=5))
#[1] 5
print(dcr_val(strt_val=47, cr_val=-5, stop_val=5))
#[1] 7
print(dcr_val(strt_val=50, cr_val=5, stop_val=450))
#[1] 450
print(dcr_val(strt_val=53, cr_val=5, stop_val=450))
#[1] 448
```

```
{\tt depth\_pairs\_findr} \quad \textit{depth\_pairs\_findr}
```

Description

Takes the pair vector as an input and associate to each pair a level of depth, see examples

Usage

```
depth_pairs_findr(inpt)
```

Arguments

inpt is the pair vector

diff_datf 43

Examples

```
print(depth_pairs_findr(c(1, 1, 2, 3, 3, 4, 4, 2, 5, 6, 7, 7, 6, 5)))
[1] 1 1 1 2 2 2 2 1 1 2 3 3 2 1
```

diff_datf

diff_datf

Description

Returns a vector with the coordinates of the cell that are not equal between 2 dataframes (row, column).

Usage

```
diff_datf(datf1, datf2)
```

Arguments

```
datf1 is an an input dataframe datf2 is an an input dataframe
```

Examples

```
datf1 <- data.frame(c(1:6), c("oui", "oui", "oui", "oui", "oui", "oui", c(6:1))
datf2 <- data.frame(c(1:7), c("oui", "oui", "oui", "oui", "non", "oui", "zz"))
print(diff_datf(datf1=datf1, datf2=datf2))
#[1] 5 1 5 2</pre>
```

Description

Allow to convert the indices of vector ('from_v_ids') which are related to the each characters of a vector (from_v_val), to fit the newly established characters of the vector from_v_val, see examples.

Usage

```
dynamic_idx_convertr(from_v_ids, from_v_val)
```

44 edm_arrangr

Arguments

from_v_ids is the input vector of indices from_v_val is the input vector of elements, or just the total number of characters of the elementsq in the vector

Examples

```
print(dynamic_idx_convertr(from_v_ids = c(1, 5), from_v_val = c("oui", "no", "oul")))
[1] 1 2
print(dynamic_idx_convertr(from_v_ids = c(1, 6), from_v_val = c("oui", "no", "oul")))
[1] 1 3
```

edm_arrangr edm_arranger

Description

Arranges data according to the values of a variable, see examples

Usage

```
edm_arrangr(inpt_datf, col_order, top_n = 10, decreasing = TRUE)
```

Arguments

is the input dataframe inpt_datf

is the column names or the column number of the variable that will be used to col_order

21.0 6 160.0 110 3.90 2.620 16.46 0 1

21.4 4 121.0 109 4.11 2.780 18.60 1 1

22.8 4 140.8 95 3.92 3.150 22.90 1 0

Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1

Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1

arrange data

is the top values top_n

Examples

Mazda RX4

Volvo 142E

Merc 230

```
print(edm_arrangr(inpt_datf = mtcars, col_order = "wt", top_n = 15, decreasing = FALSE))
              mpg cyl disp hp drat
                                      wt qsec vs am gear carb
                       95.1 113 3.77 1.513 16.90
Lotus Europa
              30.4
                   4
                                                1
                                                  1
Honda Civic
             30.4
                    4
                       75.7
                            52 4.93 1.615 18.52
                                                            2
                                                1
                            65 4.22 1.835 19.90
Toyota Corolla 33.9
                    4
                       71.1
                                                1
                                                   1
                                                        4
                                                            1
                   4
             27.3
                       79.0
Fiat X1-9
                            66 4.08 1.935 18.90
                                                1
                                                   1
                                                            1
Porsche 914-2 26.0
                   4 120.3 91 4.43 2.140 16.70
                                                0
                                                   1
             32.4
                   4 78.7
                            66 4.08 2.200 19.47
Fiat 128
                                                1
                                                   1
                                                            1
Datsun 710
            22.8
                   4 108.0 93 3.85 2.320 18.61
                                                   1
                                                            1
                                                1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01
                                                1 0
                                                        3
```

1

2

2

edm_arrangr2 45

```
Ford Pantera L 15.8
                    8 351.0 264 4.22 3.170 14.50 0 1
Merc 240D
              24.4
                    4 146.7 62 3.69 3.190 20.00 1 0
print(edm_arrangr(inpt_datf = mtcars, col_order = "wt", top_n = 10, decreasing = TRUE))
                   mpg cyl disp hp drat wt qsec vs am gear carb
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82
                                                     0 0
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42
                                                     0 0
                                                                  4
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98
                                                     0 0
                                                             3
                                                                  4
                  16.4 8 275.8 180 3.07 4.070 17.40 0 0
Merc 450SE
                                                                  3
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0
Camaro Z28
                 13.3 8 350.0 245 3.73 3.840 15.41 0 0
Merc 450SLC
                 15.2 8 275.8 180 3.07 3.780 18.00 0 0
                                                            3
                                                                  3
Merc 450SL
                 17.3 8 275.8 180 3.07 3.730 17.60 0 0
                                                            3
                                                                  3
                                                            3
                 14.3 8 360.0 245 3.21 3.570 15.84 0 0
Duster 360
                                                                  4
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0
                                                            5
                                                                  8
                                                            3
```

edm_arranger2 edm_arranger2

Description

Same as edm_arrangr but takes in count power like numbers for the values of the variable used to arrange the data.

Usage

```
edm_arrangr2(inpt_datf, col_order, top_n = 10, decreasing = TRUE)
```

Arguments

inpt_datf is the input dataframe

col_order is the column names or the column number of the variable that will be used to

arrange data

top_n is the top values

```
print(edm_arrangr2(inpt_datf = mtcars, col_order = "wt", top_n = 15, decreasing = FALSE))
```

```
mpg cyl disp hp drat
                                    wt qsec vs am gear carb
                     95.1 113 3.77 1.513 16.90
Lotus Europa
             30.4 4
                                            1 1
                  4 75.7 52 4.93 1.615 18.52
                                                        2.
Honda Civic
             30.4
                                             1
                                               1
                  4 71.1 65 4.22 1.835 19.90
Toyota Corolla 33.9
                                             1
                                               1
                                                    4
                                                        1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
                                               1
                                                        1
                                             1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70
                                             0 1
Fiat 128
            32.4 4 78.7 66 4.08 2.200 19.47
                                             1 1
                                                        1
Datsun 710
            22.8 4 108.0 93 3.85 2.320 18.61
                                            1 1
                                                       1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3
                                                       1
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5
```

46 edm_group_by1

Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1

```
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
                                                           1
                                                                 4
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0
                                                                 4
                                                                       2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1
                                                                5
                                                                       4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0
                                                                       2.
                                                                 4
print(edm_arrangr2(inpt_datf = mtcars, col_order = "wt", top_n = 10, decreasing = TRUE))
                       mpg cyl disp hp drat wt qsec vs am gear carb
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82
                                                             0 0 3
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3
                                                                            3
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3
                                                                            2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3
                                                                            3
Merc 450SL
                    17.3 8 275.8 180 3.07 3.730 17.60 0 0 3
                                                                            3
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3
                                                                            4
                                                                            8
```

```
edm_group_by1
```

edm_group_by1

Description

Performs a group by (different algorythm than edm_group_by2), see examples

Usage

```
edm_group_by1(inpt_datf, grp_v = c())
```

Arguments

```
inpt_datf is the input dataframe
grp_v is the vector containiong the column names or the column numbers to perform
the group by, see examples
```

```
datf <- data.frame("col1" = c("A", "B", "B", "A", "C", "B"),</pre>
                "col2" = c("E", "R", "E", "E", "R", "R"),
                "col3" = c("P", "P", "O", "O", "P", "O"))
print(datf)
 col1 col2 col3
1
   A E P
2
    В
        R
3
    B E O
4
    A E O
5
    C R P
    B R O
```

edm_group_by2 47

```
print(edm_group_by1(inpt_datf = datf, grp_v = c("col1")))
 col1 col2 col3
1
  A E
4
       Ε
   Α
2
   В
      R
3
   В
      E
6
   B R
          0
   C R
print(edm_group_by1(inpt_datf = datf, grp_v = c("col1", "col2")))
 col1 col2 col3
1 A E P
   A E
           0
2
   B R
           Р
   B R
          0
6
      E
3
   В
           0
   С
print(edm_group_by1(inpt_datf = datf, grp_v = c("col2", "col1", "col3")))
 col2 col1 col3
1
   E A
   Ε
           0
       Α
      В
   E
           0
   R B
2
          Р
   R B
          0
print(edm_group_by1(inpt_datf = datf, grp_v = c("col2", "col1", "col3")))
 col2 col1 col3
1
  E A P
4
   E A
          0
3
   E B
2
   R B P
6
  R B O
  R C
```

```
edm_group_by2 edm_group_by2
```

Description

Performs a group by (different algorythm that edm_group_by1), see examples

Usage

```
edm_group_by2(inpt_datf, grp_v)
```

48 edm_pert

Arguments

inpt_datf is the input dataframe
grp_v is the vector containiong the column names or the column numbers to perform
the group by, see examples

```
\label{eq:data_data} \begin{array}{lll} \text{data.frame("col1" = c("A", "B", "B", "A", "C", "B"),} \\ \text{"col2" = c("E", "R", "E", "E", "R", "R"),} \\ \text{"col3" = c("P", "P", "O", "O", "P", "O"))} \end{array}
print(datf)
  col1 col2 col3
1
     A E
2
     В
           R
                 Ρ
3
     В
           E
                 0
4
                0
     Α
           \mathbf{E}
5
                P
     С
           R
6
     В
           R
                0
print(edm_group_by2(inpt_datf = datf, grp_v = c("col1")))
  col1 col2 col3
1
     A E
         E
2
     В
         R
               P
3
     B E
               0
     B R
6
               0
5
     C R
print(edm_group_by2(inpt_datf = datf, grp_v = c("col1", "col2")))
  col1 col2 col3
     Α
          Ε
     Α
           Ε
3
     В
           Ε
                 0
                P
2
     В
           R
         R
                0
6
     В
         R
     С
print(edm_group_by2(inpt_datf = datf, grp_v = c("col2", "col1")))
  col2 col1 col3
     E
1
          Α
     Ε
           Α
3
     E
         В
2
     R B P
6
    R B O
5
     R C P
```

edm_pert 49

Description

Calculates margins and critical path of tasks based on PERT algorythm. The first tasks must be at the top of the input dataframe, see examples.

Usage

```
edm_pert(inpt_datf)
```

Arguments

inpt_datf

is the input dataframe which contains all the tasks, their duration, their finish date at the earliest/latest and their antecedent, so the inpt_datf must contain 5 columns see examples

```
datf <- data.frame("task" = toupper(letters[1:7]),</pre>
                "duration" = c(2, 8, 5, 2, 6, 5, 3),
                "antecedent" = c(NA, NA, "A", "B", "B", "E", "A,D"),
                "earliest" = c(2, 8, 19, 10, 14, 19, 19),
                "latest" = c(14, 8, 19, 16, 14, 19, 19))
print(datf)
 task duration antecedent earliest latest
   A 2 <NA>
                            8
2
           8
    В
                  <NA>
                                   8
         5
3
   С
                            19
                   A
                                  19
                    В
          2
                           10
4
   D
                                  16
          6
                   В
5
   E
                           14
                                  14
                    E
6
    F
           5
                           19
                                  19
           3
                   A,D
                           19
                                  19
    G
print(edm_pert(inpt_datf = datf))
[[1]]
 rtn_datf free_margin tot_margin
1
     A 0 12
2
       В
                 0
                          0
                12
                          12
3
       С
                0
                          6
4
       D
       Ε
                 0
                           0
       F
                 0
                           0
       G
                 6
```

```
[[2]]
[1] "B" "E" "F"
```

50 edm_pivot_longer1

```
edm_pivot_longer1 edm_pivot_longer1
```

Description

Performs a pivot longer on dataframe, see examples. The synthax for variables must be value_id-modalitie_var1.modalitie_var2...

Usage

```
edm_pivot_longer1(
  inpt_datf,
  col_vars = c(),
  col_vars_to = c(),
  null_value = c(0),
  nvr_here = "?"
)
```

Arguments

is the column name or the column number of the individuals

```
datf \leftarrow data.frame("individuals" = c(1, 2, 3),
                     c(1, 2, 3),
                     c(6, 0, 2),
                     c(7, 0, 0),
                     c(0, 0, 0),
                     c(1, 0, 4),
                     c(3, 0, 8),
                     c(9, 0 , 0),
                     c(11, 0, 5))
colnames(datf)[2:ncol(datf)] <- c("val1-A.R",</pre>
                                      "val1-A.T",
                                      "val1-B.R",
                                      "val1-B.T",
                                      "val2-A.R",
                                      "val2-A.T",
                                      "val2-B.R",
                                      "val2-B.T")
datf2 \leftarrow data.frame("individuals" = c(1, 2, 3),
                     c(7, 0, 2),
                     c(1, 0, 4),
                     c(9, 0, 8),
```

edm_pivot_longer1 51

```
c(11, 22, 5))
colnames(datf2)[2:ncol(datf2)] <- c(</pre>
                   "val1-A",
                   "val1-B",
                   "val2-A",
                   "val2-B"
               )
print(datf)
 individuals val1-A.R val1-A.T val1-B.R val1-B.T val2-A.R val2-A.T val2-B.R
     1 1 6 7 0 1 3 9
2
                                     0
                                                   0
                                                           0
         2
               2
                      0
                             0
                                            0
                             0
3
         3
                3
                      2
                                     0
                                            4
                                                   8
                                                           0
val2-B.T
1 11
2
     0
3
print(edm_pivot_longer1(inpt_datf = datf,
                    col_vars = c(2:9),
                    individual\_col = 1,
                    col_vars_to = c("Shape", "Way"),
                    null_value = c(0))
 individuals Shape Way val1 val2
     1 A R 1 1
1
2
              A T
         1
3
             B R 7 9
        1
             B T 0 11
4
        1
             A R 2 0
         3
             A R 3 4
7
         3
             A T 2 8
             B T 0 5
         3
print(datf2)
 individuals val1-A val1-B val2-A val2-B
     1 7 1 9 11
1
2
              0
                    0
                         0
         2
         3
              2
                    4
                        8
print(edm_pivot_longer1(inpt_datf = datf2,
                   col\_vars = c(2:5),
                   individual\_col = 1,
                   col_vars_to = c("Shape"),
                   null\_value = c(0))
 individuals Shape val1 val2
       1 A 7 9
1
              в 1 11
2
         1
3
             В 0 22
         3
             A 2 8
5
         3
             в 4 5
```

52 edm_pivot_longer2

```
print(cur_data)
      individual country year twh_cons-biofuel_electricity
7475 France_1995 France 1995
7503 France_2023 France 2023
                                                     9.50
     twh_cons-coal_electricity twh_cons-gas_electricity
7475
                        24.18
                                                  3.84
7503
                         2.16
                                                 31.43
    twh_cons-hydro_electricity twh_cons-nuclear_electricity
7475
                         71.33
                         53.19
                                                     335.65
    twh_cons-oil_electricity twh_cons-other_renewable_exc_biofuel_electricity
7475
                       10.50
                                                                         0.51
7503
                                                                         0.60
                        9.71
    {\tt twh\_cons-solar\_electricity}\ {\tt twh\_cons-wind\_electricity}
7475
                          0.00
                                                    0.00
7503
                         23.26
                                                   48.61
print(edm_pivot_longer1(inpt_datf = cur_data,
                       col_vars = c(4:ncol(cur_data)),
                       col_vars_to = "type_energie"))
   individual country year
                                                      type_energie twh_cons
1 France_1995 France 1995
                                               biofuel_electricity 1.82
2 France_1995 France 1995
                                                  coal_electricity
                                                                    24.18
3 France_1995 France 1995
                                                                      3.84
                                                   gas_electricity
                                                                    71.33
4 France_1995 France 1995
                                                 hydro_electricity
5 France_1995 France 1995
                                               nuclear_electricity 377.23
                                                   oil_electricity
6 France 1995 France 1995
                                                                      10.5
7 France_1995 France 1995 other_renewable_exc_biofuel_electricity
                                                                     0.51
8 France_2023 France 2023
                                               biofuel_electricity
                                                                       9.5
9 France_2023 France 2023
                                                  coal_electricity
                                                                      2.16
10 France_2023 France 2023
                                                   gas_electricity 31.43
11 France_2023 France 2023
                                                 hydro_electricity
                                                                    53.19
12 France_2023 France 2023
                                               nuclear_electricity 335.65
13 France_2023 France 2023
                                                   oil_electricity 9.71
14 France_2023 France 2023 other_renewable_exc_biofuel_electricity
                                                                       0.6
15 France_2023 France 2023
                                                solar_electricity
                                                                     23.26
16 France_2023 France 2023
                                                  wind_electricity
                                                                    48.61
```

```
edm_pivot_longer2 edm_pivot_longer2
```

Description

Performs a pivot longer on dataframe keeping the null values, see examples. The synthax for variables must be value_id-modalitie_var1.modalitie_var2...

Usage

```
edm_pivot_longer2(inpt_datf, col_vars = c(), col_vars_to = c())
```

edm_pivot_longer2 53

Arguments

is the column name or the column number of the individuals

```
datf \leftarrow data.frame("individuals" = c(1, 2, 3),
                   c(1, 2, 3),
                   c(6, 0, 2),
                   c(7, 0, 0),
                   c(0, 0, 0),
                   c(1, 0, 4),
                   c(3, 0, 8),
                   c(9, 0 , 0),
                   c(11, 0, 5))
colnames(datf)[2:ncol(datf)] <- c("val1-A.R",</pre>
                                   "val1-A.T",
                                   "val1-B.R",
                                   "val1-B.T",
                                   "val2-A.R",
                                   "val2-A.T",
                                   "val2-B.R",
                                   "val2-B.T")
datf2 \leftarrow data.frame("individuals" = c(1, 2, 3),
                   c(7, 0, 2),
                   c(1, 0, 4),
                   c(9, 0, 8),
                   c(11, 22, 5))
colnames(datf2)[2:ncol(datf2)] <- c(</pre>
                        "val1-A",
                        "val1-B",
                        "val2-A",
                        "val2-B"
                   )
print(datf)
  individuals val1-A.R val1-A.T val1-B.R val1-B.T val2-A.R val2-A.T val2-B.R
                        6 7 0 1 3
1
         1
                1
                                                                           9
2
                              0
                                                0
                                                          0
                                                                   0
                                                                             0
            2
                     2
                                       0
3
                     3
                              2
                                       0
                                                0
                                                          4
                                                                   8
                                                                             0
            3
  val2-B.T
1
       11
2
         0
3
print(edm_pivot_longer2(inpt_datf = datf,
                          col\_vars = c(2:9),
```

54 edm_pivot_longer2

```
individual_col = 1,
                       col_vars_to = c("Shape", "Way")))
  individuals Shape Way val1 val2
1
           1 A R
                      1 1
2
                    Т
                             3
           1
                Α
                        6
3
           1
                В
                   R
                        7
4
           1
               В
                   Т
                       0 11
5
           2
               А
                   R
                       2 0
           2
                   Τ
6
               A
                       0 0
7
           2
               B R 0 0
8
           2
               B T
                       0 0
9
           3
               A R 3 4
               A T
                       2 8
10
           3
                       0 0
11
           3 B R
           3
                        0
12
               В
                   Τ
print(datf2)
 individuals val1-A val1-B val2-A val2-B
          1
             7 1 9 11
2
          2
                0
                      0
                            0
                                  22
3
          3
                2
                      4
                            8
                                  5
print(edm_pivot_longer2(inpt_datf = datf2,
                     col\_vars = c(2:5),
                     individual_col = 1,
                     col_vars_to = c("Shape")))
 individuals Shape val1 val2
     1 A 7 9
3
              A 0 0
4
          2
              в 0 22
              A 2 8
5
          3
                       5
6
          3
              в 4
print(cur_data)
     individual country year twh_cons-biofuel_electricity
7475 France_1995 France 1995
7503 France_2023 France 2023
    twh_cons-coal_electricity twh_cons-gas_electricity
7475
                      24.18
                                            3.84
                                            31.43
7503
                      2.16
    twh_cons-hydro_electricity twh_cons-nuclear_electricity
7475
                                               377.23
                      71.33
7503
                       53.19
                                               335.65
   twh_cons-oil_electricity twh_cons-other_renewable_exc_biofuel_electricity
7475
                     10.50
                                                                 0.51
                                                                 0.60
                      9.71
  twh_cons-solar_electricity twh_cons-wind_electricity
7475
                       0.00
                                               0.00
7503
                       23.26
                                              48.61
```

edm_pivot_series 55

```
print(edm_pivot_longer2(inpt_datf = cur_data,
                       col_vars = c(4:ncol(cur_data)),
                       col_vars_to = "type_energie"))
   individual country
                                             year
1 France_1995 France
                                             1995
2 France_1995 France
                                             1995
3 France_1995 France
                                             1995
4 France_1995 France
                                             1995
5 France 1995 France
                                             1995
6 France_1995 France
                                             1995
7 France_1995 France
                                             1995
8 France_1995 France
                                             1995
9 France_1995 France
                                             1995
10 France_2023 France
                                             2023
11 France_2023 France
                                             2023
12 France_2023 France
                                             2023
13 France_2023 France
                                             2023
14 France_2023 France
                                             2023
15 France_2023 France
                                             2023
16 France_2023
              France
                                             2023
17 France_2023
               France
                                             2023
18 France_2023 France
                                             2023
                            type_energie twh_cons
1
                      biofuel_electricity
                                            1.82
2
                                          24.18
                        coal_electricity
3
                         gas_electricity
                                            3.84
                                           71.33
                        hydro_electricity
4
                      nuclear_electricity 377.23
5
6
                          oil_electricity
                                            10.5
7
  other_renewable_exc_biofuel_electricity
                                            0.51
8
                       solar_electricity
9
                         wind_electricity
                                               0
10
                      biofuel_electricity
                                             9.5
11
                        coal_electricity
                                            2.16
12
                         gas_electricity 31.43
13
                        hydro_electricity
                                           53.19
14
                      nuclear_electricity 335.65
15
                         oil_electricity 9.71
16 other_renewable_exc_biofuel_electricity
                                             0.6
17
                        solar_electricity
                                            23.26
18
                         wind_electricity
                                            48.61
```

edm_pivot_series edm_pivot_series

Description

Allow to create a new column for the value of the chosen columns at each new value of the column that represents the time. The occurence of each time stamp has to be equal, see examples (if not consider performing the time_serie_equalizer function fromm the same package)

Usage

```
edm_pivot_series(inpt_datf, time_col, col_v = NULL)
```

56 edm_pivot_series

Arguments

inpt_datf is the input dataframe

time_col is the column name or number of the datafame

col_v is a vector containing all the column numbers or names of the variables, if null all the column will be considered as variables apart from the column designated in time_col

```
print(cur_datf)
  year
                                energy_source twh_cons
1
  1995
                          biofuel_electricity
2
  1995
                             coal_electricity
                                                24.18
3
  1995
                              gas_electricity
                                                 3.84
4
  1995
                            hydro_electricity
                                                71.33
  1995
5
                           nuclear_electricity
                                               377.23
6
  1995
                               oil_electricity
                                               10.50
  1995 other_renewable_exc_biofuel_electricity
                                                 0.51
  1995
                            solar_electricity
8
                                                 0.00
  1995
                             wind_electricity
                                                 0.00
10 2023
                           biofuel_electricity
                                                  9.50
11 2023
                              coal_electricity
                                                 2.16
12 2023
                              gas_electricity
                                                 31.43
13 2023
                            hydro_electricity
                                                 53.19
                                                335.65
14 2023
                           nuclear_electricity
15 2023
                                                 9.71
                              oil_electricity
16 2023 other_renewable_exc_biofuel_electricity
                                                 0.60
17 2023
                            solar_electricity
                                                 23.26
18 2023
                              wind_electricity
                                                 48.61
print(edm_pivot_series(inpt_datf = cur_datf, time_col = 1, col_v = c(3)))
                           energy_source twh_cons_1995 twh_cons_2023
1
                     biofuel_electricity
                                               1.82 9.50
2
                       coal_electricity
                                               24.18
                                                              2.16
3
                                                3.84
                         gas_electricity
                                                             31.43
                                              71.33
4
                       hydro_electricity
                                                             53.19
5
                                              377.23
                                                            335.65
                     nuclear_electricity
                                              10.50
6
                         oil_electricity
                                                              9.71
7 other_renewable_exc_biofuel_electricity
                                               0.51
                                                              0.60
8
                      solar_electricity
                                                 0.00
                                                             23.26
9
                        wind_electricity
                                                 0.00
                                                              48.61
print(datf)
   individual year
                                            energy_source twh_cons
1 France_1995 1995
                                      biofuel_electricity
                                                            1.82
2 France_1995 1995
                                                            24.18
                                         coal_electricity
3 France_1995 1995
                                                             3.84
                                          gas_electricity
4 France_1995 1995
                                        hydro_electricity
                                                            71.33
 France_1995 1995
                                      nuclear_electricity
                                                          377.23
6 France_1995 1995
                                          oil_electricity
                                                           10.50
7 France_1995 1995 other_renewable_exc_biofuel_electricity
                                                             0.51
 France_1995 1995
                                        solar_electricity
                                                            0.00
 France_1995 1995
                                         wind_electricity
                                                             0.00
```

edm_pivot_wider1 57

```
10 France_2023 2023
                                     biofuel_electricity
11 France_2023 2023
                                        coal_electricity
                                                            2.16
                                                         31.43
12 France_2023 2023
                                         gas_electricity
                                                         53.19
13 France_2023 2023
                                       hydro_electricity
14 France_2023 2023
                                                         335.65
                                     nuclear_electricity
15 France_2023 2023
                                                          9.71
                                         oil_electricity
16 France_2023 2023 other_renewable_exc_biofuel_electricity
                                                          0.60
                                       solar_electricity 23.26
17 France_2023 2023
18 France_2023 2023
                                        wind_electricity
                                                         48.61
print(edm_pivot_series(inpt_datf = cur_datf, time_col = 2, col_v = c(1, 4)))
 individual_1995
                                         energy_source twh_cons_1995
1
    France_1995
                                   biofuel_electricity
                                                              1.82
2
    France_1995
                                     coal_electricity
                                                             24.18
3
     France_1995
                                       gas_electricity
                                                              3.84
    France_1995
4
                                     hydro_electricity
                                                              71.33
5
    France_1995
                                   nuclear_electricity
                                                            377.23
6
     France_1995
                                       oil_electricity
                                                            10.50
7
     France_1995 other_renewable_exc_biofuel_electricity
                                                              0.51
8
     France_1995
                                    solar_electricity
                                                              0.00
9
     France_1995
                                      wind_electricity
                                                               0.00
 individual_2023 twh_cons_2023
                 9.50
1
    France_2023
                        2.16
     France_2023
2
                       31.43
    France_2023
3
    France_2023
                       53.19
4
    France_2023
5
                      335.65
    France_2023
                        9.71
6
7
    France_2023
                        0.60
                       23.26
8
    France 2023
    France_2023
                       48.61
```

Description

Performs a pivot wider to a dataframe, see examples.

Usage

```
edm_pivot_wider1(inpt_datf, col_vars = c(), col_vals = c(), individual_col)
```

Arguments

inpt_datf	is the input dataframe
col_vars	is a vector containig the column names or column numbers of the variables to pivot
col_vals	is a vector containing the column numbers or column names of the values to pivot
individual_c	ol

is the column name or column number of the individuals

58 edm_pivot_wider1

```
datf2 \leftarrow data.frame("individual" = c(1, 1, 1, 2, 3, 3),
                "var1" = c("A", "A", "B", "B", "B", "A"),
                "val1" = c(6, 7, 1, 0, 4, 2),
                "val2" = c(3, 9, 11, 22, 5, 8))
datf \leftarrow data.frame("individual" = c(1, 1, 1, 2, 3, 3),
                "var1" = c("A", "A", "B", "B", "B", "A"),
                "var2" = c("R", "T", "T", "R", "T", "R"),
                "val1" = c(6, 7, 1, 0, 4, 2),
                "val2" = c(3, 9, 11, 22, 5, 8))
print(datf)
 individual var1 var2 val1 val2
       1 A R 6 3
         1
                 Τ
                     1 11
3
         1 B T
         2 B R 0 22
                T
5
         3 B
                     4 5
         3 A
                    2
6
                R
print(datf2)
 individual var1 val1 val2
        1 A 6 3
         1
             Α
                  7
                1
            В
                    11
3
         1
                0
         2
            В
                     22
           В
                4
5
         3
                    5
                2
6
         3
           Α
print(edm_pivot_wider1(
                   inpt_datf = datf,
                   col\_vars = c(2, 3),
                   col_vals = c(4, 5),
                   individual\_col = 1)
   )
 individuals val1-A.R val1-A.T val1-B.R val1-B.T val2-A.R val2-A.T val2-B.R
  1 6 7 0 1 3 9 0
1
                                        0
                                                0
                                                        0
2
          2
                 0
                         0
                                 0
                                                               22
3
          3
                 2
                        0
                                 0
                                         4
                                                8
                                                       0
val2-B.T
  11
1
2
       0
       5
print(edm_pivot_wider1(
                   inpt_datf = datf2,
                    col\_vars = c(2),
                    col_vals = c(3, 4),
                   individual\_col = 1)
 individuals val1-A val1-B val2-A val2-B
        1 7 1 9 11
                           0
          2
               0
                     0
```

edm_pivot_wider2 59

3 3 2 4 8 5

Description

Performs a pivot wider to a dataframe with a different algorythm than edm_pivot_wider, see examples.

Usage

```
edm_pivot_wider2(inpt_datf, col_vars = c(), col_vals = c(), individual_col)
```

Arguments

```
inpt_datf is the input dataframe
col_vars is a vector containing the column names or column numbers of the variables to
    pivot

col_vals is a vector containing the column numbers or column names of the values to
    pivot
individual_col
```

is the column name or column number of the individuals

```
datf2 \leftarrow data.frame("individual" = c(1, 1, 1, 2, 3, 3),
                   "var1" = c("A", "A", "B", "B", "B", "A"),
                   "val1" = c(6, 7, 1, 0, 4, 2),
                   "val2" = c(3, 9, 11, 22, 5, 8))
datf \leftarrow data.frame("individual" = c(1, 1, 1, 2, 3, 3),
                   "var1" = c("A", "A", "B", "B", "B", "A"),
"var2" = c("R", "T", "T", "R", "T", "R"),
                   "val1" = c(6, 7, 1, 0, 4, 2),
                   "val2" = c(3, 9, 11, 22, 5, 8))
print(datf)
  individual var1 var2 val1 val2
1
        1 A
                   R
                        6
                                3
2
           1
                Α
                     Τ
                          7
                                9
                             11
3
           1
                В
                     Τ
                          1
4
           2
                В
                     R
                          0
                              22
                         4
                    Τ
5
           3
                В
                               5
                   R
                        2
                             8
           3
                Α
print(datf2)
  individual var1 val1 val2
1
         1
              A
                     6
2
          1
               Α
                     7
          1 B 1 11
          2 B 0 22
```

60 elements_equalifier

```
В
                 4
         3
             Α
                 2
                      8
print(edm_pivot_wider2(
                   inpt_datf = datf,
                   col\_vars = c(2, 3),
                   col_vals = c(4, 5),
                   individual_col = 1)
   )
 individuals val1-A.R val1-A.T val1-B.R val1-B.T val2-A.R val2-A.T val2-B.R
1
        1
              6 7 0 1 3 9
2
          2
                         0
                                0
                                        0
                                               0
                                                      0
                                                              22
                0
3
                                0
                                               8
          3
                2
                        0
                                        4
                                                      0
                                                             0
 val2-B.T
  11
1
2
       0
3
       5
print(edm_pivot_wider2(
                   inpt_datf = datf2,
                   col_vars = c(2),
                   col_vals = c(3, 4),
                   individual\_col = 1)
   )
 individuals val1-A val1-B val2-A val2-B
            7 1 9 11
1
      1
2
          2
               0
                    0
                          0
                                22
3
          3
               2
                    4
                                 5
```

```
elements_equalifier 
 elements_equalifier
```

Description

Takes an input vector with elements that have different occurence, and output a vector with all these elements with the same number of occurence, see examples

Usage

```
elements_equalifier(inpt_v, untl = 3)
```

Arguments

```
inpt_v is the input vector
unt1 is how many times each elements will be in the output vector
```

equalizer_v 61

Examples

```
print (elements_equalifier (letters, untl = 2))

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z" "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
[39] "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

print (elements_equalifier(c(letters, letters[-1]), untl = 2))

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"
[39] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z" "a"
```

```
equalizer_v
```

equalizer_v

Description

Takes a vector of character as an input and returns a vector with the elements at the same size. The size can be chosen via depth parameter.

Usage

```
equalizer_v(inpt_v, depth = "max", default_val = "?")
```

Arguments

inpt_v	is the input vector containing all the characters
depth	is the depth parameter, defaults to "max" which means that it is equal to the character number of the element(s) in inpt $_v$ that has the most
default_val	is the default value that will be added to the output characters if those has an inferior length (characters) than the value of depth

```
print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=2))
#[1] "aa" "zz" "q?"
print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=12))
#[1] "aa?????????" "zzz???????" "q????????"
```

```
extract_normal extract_normal
```

Description

Allow to extract values that fits a normal distribution from any kind of dataset, see examples and parameters

Usage

```
extract_normal(
  inpt_datf,
  mean,
  sd,
  accuracy,
  round_value = 1,
  normalised = FALSE,
  n = NA,
  tries = 3
)
```

Arguments

inpt_datf	is the input dataset as a dataframe, values/modalities are in the first column and frequency (not normalised) is in the second column
mean	is the mean of the target normal distribution
sd	is the standard deviation of the target normal distribution
accuracy	is how much of a difference beetween the points of the targeted normal distribution and the actual points is tolerated
round_value	is the round value for the normal distribution used under the hood to compare the dataset and extract the best points, defaults to 1
normalised	is if the input frequency is divided by n, if TRUE the parameter n must be filled
n	is the number of points
tries	is how many normal distributions are used under the hood to compare their points to the those in the input dataset, defaults to 3. The higher it is, the higher the number of different points from the input dataset will be in accordance for the normal distribution the function tries to build from the dataset. It does not increase by a lot but can be non-negligible and note that the higher the number of tries is, the higher the execution time of the function will be.

```
sample_val <- round(rnorm(n = 72000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)
sample_qual <- infinite_char_seq(n = length(sample_freq))
datf_test <- data.frame(sample_qual, sample_freq)
n <- nrow(datf_test)
print(datf_test)
sample_qual sample_freq</pre>
```

1 2 3 4 5 6 7 8	a b c d e f g h i	72 1155 1255 743 696 1028 1160 1219 1353
10 11	j k	1336 1308
12 13 14	l m	485 1306 1429
15	n o	623
16 17	р	1172
18	q r	1054 999
19	S	125
20 21	t u	1461 1430
22	V	341
23 24	W	1453 427
25	х У	869
26	Z	1395
27 28	aa ab	841 952
29	ac	246
30 31	ad ae	468 237
32	af	555
33	ag	1297
34 35	ah ai	571 349
36	аj	773
37 38	ak al	1086 1281
39	am	1471
40	an	1236
41 42	ao ap	394 1433
43	aq	1328
4 4 4 5	ar as	976 640
46	at	308
47 48	au	698 864
49	av aw	1346
50 51	ax	1349
51 52	ay az	6 1071
53	ba	248
54 55	bb bc	929 925
56	bd	452
57	be	207

58	bf	546
59	bg	62
60	bh	107
61	bi	1184
62	bj	739
63	bk	624
64	bl	850
65	bm	1408
66	bn	620
67	bo	202
68	bp	10
69	bq	700
70	br	397
71	bs	1291
72	bt	178
73	bu	397
74	bv	1089
75	bw	1301
76	bx	328
77	by	1348
78	bz	97
79	ca	1452
80	cb	4
81	CC	100
82	cd	593
83	ce	503
84	cf	164 32
85 86	cg	259
	ch	
87 88	ci	1089 249
89	сj	165
90	ck cl	42
91	CM	143
92	cn	467
93	CO	347
94	ср	143
95	cd	69
96	cr	18
97	CS	290
98	ct	55
99	cu	141
100	CV	86
101	CW	303
102	CX	88
103	су	16
104	CZ	213
105	da	3
106	db	75
107	dc	32
108	dd	66
109	de	105
110	df	34
111	dg	56
112	dh	17
113	di	22
114	dj	120
	_	

```
dk
dl
dm
115
                 54
116
                  9
                 8
117
        dn
118
                  36
        do
119
                  20
        dp
                  26
120
        dq
121
                 54
        dr
122
                  8
123
        ds
                 10
       dt
du
dv
dw
124
                  4
125
                 53
126
                 29
                  1
127
        dx
128
                  8
                 10
129
        dy
130
                  4
        dz
131
        ea
                 22
132
                  9
        eb
        ec
133
                 17
        ed
134
                  55
        ee
                  21
135
        ef
136
                   6
                  4
        eg
137
                  3
138
         eh
         ei
                  7
139
        еj
                  1
140
        ek
141
                  4
        el
142
                  2
        em
143
144
        en
                  4
145
                  1
        eo
146
                  2
        ер
147
                  3
        eq
148
        er
                  8
149
        es
                  4
                  3
150
        et
                  3
151
        eu
                  2
152
        ev
                  2
153
        ew
                  2
        ex
154
155
                   1
        еу
156
         ez
                   2
157
         fa
                   2
158
         fb
                   1
teste <- extract_normal(inpt_datf = datf_test,</pre>
               mean = 10,
               sd = 2,
               accuracy = .1,
               round_value = 1,
```

print(length(unique(teste[, 1])) / n)

normalised = FALSE,

tries = 5)

^{[1] 0.2848101} # so nearly 28.5 % of the different points were in #accordance with the construction of the target normal distribution

print(teste)

```
values
             frequency
        dw 0.0001406866
        dw 0.0001406866
3
        dw 0.0001406866
        el 0.0002813731
4
5
        el 0.0002813731
        el 0.0002813731
6
7
        el 0.0002813731
8
        da 0.0004220597
9
        da 0.0004220597
10
        cb 0.0005627462
11
        cb 0.0005627462
        em 0.0007034328
12
13
        ay 0.0008441193
        ay 0.0008441193
14
15
        ei 0.0009848059
16
        ei 0.0009848059
17
        ei 0.0009848059
18
        dm 0.0011254924
19
        bp 0.0014068655
20
        cy 0.0022509848
21
        cy 0.0022509848
        cy 0.0022509848
22
        dh 0.0023916714
23
        dh 0.0023916714
24
25
        cr 0.0025323579
26
        ee 0.0029544176
        di 0.0030951041
27
28
        dp 0.0036578503
29
        dp 0.0036578503
30
        cg 0.0045019696
31
        cg 0.0045019696
32
        df 0.0047833427
        dn 0.0050647158
33
34
        cl 0.0059088351
        cl 0.0059088351
35
36
        du 0.0074563872
37
        du 0.0074563872
38
        dq 0.0078784468
39
        dq 0.0078784468
40
        bg 0.0087225661
41
        bg 0.0087225661
42
        dd 0.0092853123
43
        cq 0.0097073720
44
        cq 0.0097073720
45
        a 0.0101294316
46
        cv 0.0120990433
47
        cx 0.0123804164
48
        cx 0.0123804164
49
        bz 0.0136465954
50
        cc 0.0140686550
51
        bh 0.0150534609
52
        bh 0.0150534609
53
        dj 0.0168823860
```

```
54
        s 0.0175858188
55
        s 0.0175858188
56
        cm 0.0201181767
57
        cf 0.0230725943
58
        ck 0.0232132808
59
       bt 0.0250422060
60
       bt 0.0250422060
61
       be 0.0291221159
62
       be 0.0291221159
       cz 0.0299662352
63
       cz 0.0299662352
64
65
       be 0.0291221159
66
       bo 0.0284186832
67
       bt 0.0250422060
        ck 0.0232132808
68
        ck 0.0232132808
69
70
        cm 0.0201181767
71
       cu 0.0198368036
72
        s 0.0175858188
        dj 0.0168823860
73
74
        bh 0.0150534609
75
        bh 0.0150534609
76
        de 0.0147720878
77
        bz 0.0136465954
78
        bz 0.0136465954
79
        cx 0.0123804164
        cv 0.0120990433
80
81
        db 0.0105514913
        a 0.0101294316
82
83
        cq 0.0097073720
        dd 0.0092853123
84
85
        dd 0.0092853123
86
        bg 0.0087225661
87
        bg 0.0087225661
88
        dg 0.0078784468
89
        dk 0.0075970737
       du 0.0074563872
90
91
       cl 0.0059088351
       cl 0.0059088351
92
93
       dn 0.0050647158
       df 0.0047833427
94
95
        df 0.0047833427
96
       cq 0.0045019696
97
        dv 0.0040799100
98
        dp 0.0036578503
        di 0.0030951041
99
       di 0.0030951041
100
101
       ee 0.0029544176
102
       cr 0.0025323579
       dh 0.0023916714
103
104
       cy 0.0022509848
105
       cy 0.0022509848
       cy 0.0022509848
106
107
       cy 0.0022509848
108
      dl 0.0012661790
109
    dm 0.0011254924
       ei 0.0009848059
110
```

68 fillr

```
111
       ei 0.0009848059
112
       ay 0.0008441193
113
       ay 0.0008441193
114
       em 0.0007034328
115
       em 0.0007034328
116
       cb 0.0005627462
117
       cb 0.0005627462
118
       da 0.0004220597
119
       da 0.0004220597
120
       el 0.0002813731
121
       el 0.0002813731
122
       el 0.0002813731
123
       el 0.0002813731
124
      dw 0.0001406866
125
    dw 0.0001406866
       dw 0.0001406866
126
```

```
extrt_only_v extrt_only_v
```

Description

Returns the elements from a vector "inpt_v" that are in another vector "pttrn_v"

Usage

```
extrt_only_v(inpt_v, pttrn_v)
```

Arguments

```
inpt_v is the input vector
pttrn_v is the vector contining all the elements that can be in inpt_v
```

Examples

```
print(extrt_only_v(inpt_v=c("oui", "non", "peut", "oo", "ll", "oui", "non", "oui", "oui")
    pttrn_v=c("oui")))
#[1] "oui" "oui" "oui" "oui"
```

```
fillr fillr
```

Description

Allow to fill a vector by the last element n times

Usage

```
fillr(inpt_v, ptrn_fill = "\\.\\.\\d")
```

fixer_nest_v 69

Arguments

inpt_v is the input vector

ptrn_fill is the pattern used to detect where the function has to fill the vector by the last element n times. It defaults to "...\d" where "\d" is the regex for an int value. So this paramater has to have "\d" which designates n.

Examples

```
print(fillr(c("a", "b", "...3", "c")))
#[1] "a" "b" "b" "b" "c"
```

Description

Retur the elements of a vector "wrk_v" (1) that corresponds to the pattern of elements in another vector "cur_v" (2) according to another vector "pttrn_v" (3) that contains the pattern elements.

Usage

```
fixer_nest_v(cur_v, pttrn_v, wrk_v)
```

Arguments

cur_v is the input vector

pttrn_v is the vector containing all the patterns that may be contained in cur_v

wrk_v is a vector containing all the indexes of cur_v taken in count in the function

70 fold_rec2

Description

Allow to get all the files recursively from a path according to an end and start depth value. If you want to have an other version of this function that uses a more sophisticated algorythm (which can be faster), check file_rec2. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
fold_rec(xmax, xmin = 1, pathc = ".")
```

Arguments

xmax	is the end depth value
xmin	is the start depth value
pathc	is the reference path

|--|--|

Description

Allow to find the directories and the subdirectories with a specified end and start depth value from a path. This function might be more powerfull than file_rec because it uses a custom algorythm that does not nee to perform a full recursive search before tuning it to only find the directories with a good value of depth. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
fold_rec2(xmax, xmin = 1, pathc = ".")
```

Arguments

xmax	is the depth value

xmin is the minimum value of depth

pathc is the reference path, from which depth value is equal to 1

format_date 71

Description

Allow to convert xx-month-xxxx date type to xx-xx-xxxx

Usage

```
format_date(f_dialect, sentc, sep_in = "-", sep_out = "-")
```

Arguments

f_dialect are the months from the language of which the month come
sentc is the date to convert

sep_in is the separator of the dat input (default is "-")
sep_out is the separator of the converted date (default is "-")

Examples

```
print(format_date(f_dialect=c("janvier", "février", "mars", "avril", "mai", "juin",
   "juillet", "aout", "septembre", "octobre", "novembre", "décembre"), sentc="11-septembre-2
#[1] "11-09-2023"
```

Description

Return a dataframe containing the nearest geographical points (row) according to established geographical points (column).

Usage

```
geo_min(inpt_datf, established_datf)
```

Arguments

inpt_datf is the input dataframe of the set of geographical points to be classified, its firts column is for latitude, the second for the longitude and the third, if exists, is for

the altitude. Each point is one row.

established_datf

is the dataframe containing the coordinates of the established geographical points

72 globe

Examples

```
in_{-} \leftarrow data.frame(c(11, 33, 55), c(113, -143, 167))
in2_ <- data.frame(c(12, 55), c(115, 165))
print(geo_min(inpt_datf=in_, established_datf=in2_))
                    X2
          Х1
   245.266
#1
                    NA
#2 24200.143
                   NA
#3
          NA 127.7004
in_{-} \leftarrow data.frame(c(51, 23, 55), c(113, -143, 167), c(6, 5, 1))
in2_ <- data.frame(c(12, 55), c(115, 165), c(2, 5))
print(geo_min(inpt_datf=in_, established_datf=in2_))
         X1
                  X2
#1
        NA 4343.720
#2 26465.63
                  NA
#3
         NA 5825.517
```

```
get_rec
```

get_rec

Description

Allow to get the value of directorie depth from a path.

Usage

```
get_rec(pathc = ".")
```

Arguments

pathc

is the reference path example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

globe

globe

Description

Allow to calculate the distances between a set of geographical points and another established geographical point. If the altitude is not filled, so the result returned won't take in count the altitude.

Usage

```
globe(lat_f, long_f, alt_f = NA, lat_n, long_n, alt_n = NA)
```

glue_groupr_v 73

Arguments

lat_f	is the latitude of the established geographical point
long_f	is the longitude of the established geographical point
alt_f	is the altitude of the established geographical point, defaults to NA
lat_n	is a vector containing the latitude of the set of points
long_n	is a vector containing the longitude of the set of points
alt_n	is a vector containing the altitude of the set of points, defaults to NA

Examples

```
glue_groupr_v
```

Description

Takes an input vector and returns the same vector unlike that certain elements will be glued as an unique element according to thoses designated in a special vector, see examples.

Usage

```
glue_groupr_v(inpt_v, group_v = c(), untl)
```

Arguments

inpt_v is the input vector

a vector containing all the elements that will be glued in the output vector

```
print(glue_groupr_v(inpt_v = c("o", "-", "-", "u", "i", "-", "n",
    "o", "-", "-", "-", "zz", "/", "/"), group_v = c("-", "/")))

[1] "o" "--" "u" "i" "-" "n" "o" "---" "zz" "//"

print(glue_groupr_v(inpt_v = c("o", "-", "-", "u", "i", "-", "n",
    "o", "-", "-", "-", "-", "zz", "/", "/"), group_v = c("-", "/"), untl = 3))

[1] "o" "--" "u" "i" "-" "n" "o" "---" "-", "u", "i", "-", "n",
    "o", "-", "-", "-", "-", "zz", "/", "/"), group_v = c("-", "/"), untl = 2))

[1] "o" "--" "u" "i" "-" "n" "o" "---" "zz" "//"
```

74 grep_all2

grep_all

grep_all

Description

Allow to perform a grep function on multiple input elements

Usage

```
grep_all(inpt_v, pattern_v)
```

Arguments

```
inpt_v is the input vectors to grep elements from
pattern_v is a vector containing the patterns to grep
```

Examples

grep_all2

grep_all2

Description

Performs the grep_all function with another algorythm, potentially faster

Usage

```
grep_all2(inpt_v, pattern_v)
```

Arguments

```
inpt_v is the input vectors to grep elements from
pattern_v is a vector containing the patterns to grep
```

groupr_datf 75

Examples

groupr_datf

groupr_datf

Description

Allow to create groups from a dataframe. Indeed, you can create conditions that lead to a flag value for each cell of the input dataframeaccording to the cell value. This function is based on see_datf and nestr_datf2 functions.

Usage

```
groupr_datf(
  inpt_datf,
  condition_lst,
  val_lst,
  conjunction_lst,
  rtn_val_pos = c()
)
```

Arguments

76 gsub_mult

Examples

```
interactive()
datf1 <- data.frame(c(1, 2, 1), c(45, 22, 88), c(44, 88, 33))
val_lst <- list(list(c(1), c(1)), list(c(2)), list(c(44, 88)))
condition_lst <- list(c(">", "<"), c("%%"), c("==", "=="))
conjunction_lst <- list(c("|"), c(), c("|"))
rtn_val_pos <- c("+", "++", "+++")
print(groupr_datf(inpt_datf=datf1, val_lst=val_lst, condition_lst=condition_lst, conjunction_lst=conjunction_lst, rtn_val_pos=rtn_val_pos))
# X1 X2 X3
#1 <NA> + +++
#2 ++ ++++++
#3 <NA> ++++ ++
```

gsub_mult

gsub_mult

Description

Performs a gsub operation with n patterns and replacements.

Usage

```
gsub_mult(inpt_v, pattern_v = c(), replacement_v = c())
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern_v is a vector containing all the patterns to be substituted in any elements of inpt_v
replacement_v

is a vector containing the expression that are going to substituate those provided by pattern_v

historic_sequence1 77

```
historic_sequence1 historic_sequence1
```

Description

Allow to perform a pivot wider on a sequencial dataset (here the type is dataframe), each variable will be dupplicated in a column to show the value to this variable at n - 1 for each individual, see examples.

Usage

```
historic_sequence1(inpt_datf, bf_ = 1)
```

Arguments

```
inpt_datf is the input dataframe
bf_ is the number of previous value of the individual it will search for, see examples
```

```
set.seed(123)
var1 < - round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 \leftarrow round(runif(n = 14, min = 14, max = 20))
datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18,
                          17, 17, 17),
                 "individual" = c("oui", "non", "peut1", "peut2",
                                 "oui", "peut1", "peut2"),
                 "var1" = var1,
                 "var2" = var2)
print(datf)
  ids individual var1 var2
1
  20 oui 106 16
2
  20
            non 117
                       19
3
         peutl 109
   20
                       16
4
  20
          peut2 119
                       19
5
   19
           oui 121
                        2.0
         peut1
6
   19
                  101
                        14
7
   19
          peut2
                  112
                        17
8
   18
           oui
                  120
9
   18
             non
                  112
                        17
10
   18
           peut1
                  110
                        17
   18
11
           peut2
                  121
                        20
12
   17
                        17
            oui
                  110
13 17
                  115
                        18
           peut1
14 17
                       17
           peut2
                 113
historic_sequence1(inpt_datf = datf, bf_ = 2)
  id_seq individual var1-1 var1-2 var2-1 var2-2
     20 oui 121 120 20
2
     20
              non
                     NA
                            112
                                   NA
                                          17
```

78 historic_sequence2

```
3
     20
           peut1
                  101
                         110
                                14
4
     20
           peut2
                   112
                         121
                                17
                                      20
5
     19
            oui
                   120
                         110
                                19
                                      17
                         115
6
                                17
     19
            peut1
                   110
                                      18
7
     19
                   121
                         113
                                20
                                      17
           peut2
historic_sequence1(inpt_datf = datf, bf_ = 3)
 id_seg individual var1-1 var1-2 var1-3 var2-1 var2-2 var2-3
                       120 110 20 19
1
     20
            oui 121
2
     20
                   NA
                         112
                               NA
                                     NA
                                            17
            non
3
     20
          peut1
                  101
                        110 115
                                     14
                                            17
                                                 18
                         121
                                     17
                                            20
4
     20
           peut2 112
                              113
                                                 17
```

historic_sequence2 historic_sequence2

Description

Allow to perform a pivot wider on a sequencial dataset (here the type is dataframe), each variable will be dupplicated in a column to show the value to this variable at n - 1 for each individual, see examples.

Usage

```
historic_sequence2(inpt_datf, bf_ = 1)
```

Arguments

```
inpt_datf is the input dataframe
bf_ is the number of previous value of the individual it will search for, see examples
```

```
set.seed(123)
var1 < - round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 \leftarrow round(runif(n = 14, min = 14, max = 20))
datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18,
                           17, 17, 17),
                  "individual" = c("oui", "non", "peut1", "peut2",
                                   "oui", "peut1", "peut2"),
                  "var1" = var1,
                  "var2" = var2)
print(datf)
   ids individual var1 var2
1
   20
            oui 106
2
  20
             non 117
                        19
3
  20
          peut1 109
                        16
  20
           peut2 119
                       19
5
  19
             oui 121
                         20
```

how_normal 79

```
peut1 101
   19
         peut2
7
   19
               112
                     17
          oui 120
non 112
8
   18
                     19
9
   18
                     17
10 18
         peut1 110
                     17
         peut2 121
11 18
                     2.0
          oui 110
12 17
                     17
          peut1 115
13 17
                     18
         peut2 113
14 17
                     17
print(historic_sequence2(inpt_datf = datf, bf_ = 2))
 id_seq individual var1-0 var1-1 var1-2 var2-0 var2-1 var2-2
     20 oui 106 121 120 16 20 19
1
            non 117
                                     19
2
     20
                         NA 112
                                            NA
                                                  17
3
                  109
                             110
                                            14
     20
                         101
                                     16
           peut1
                                                  17
4
     20
           peut2 119
                         112 121
                                     19
                                            17
                                                  20
5
     19
                   121
                       120
                               110 20
                                            19
                                                 17
            oui
6
     19
           peut1
                   101
                         110
                               115
                                      14
                                            17
                                                  18
     19
           peut2
                   112
                         121
                               113
                                      17
                                            20
                                                  17
print(historic_sequence2(inpt_datf = datf, bf_ = 3))
 id_seq individual var1-0 var1-1 var1-2 var1-3 var2-0 var2-1 var2-2 var2-3
1
                 106 121 120
                                   110 16 20 19 17
     20
            oui
2
     20
                   117
                         NA
                               112
                                      NA
                                            19
                                                  NA
                                                        17
                                                              NA
             non
                                                       17
3
                   109
                                            16
                                                 14
                                                              18
     20
                         101
                               110
                                     115
           peut1
4
                   119
                         112 121
                                                 17
     20
                                     113
                                            19
                                                        20
                                                              17
           peut2
```

|--|--|

Description

Allow to get how much a sequence of numbers fit a normal distribution with chosen parameters, see examples

Usage

```
how_normal(inpt_datf, normalised = TRUE, mean = 0, sd = 1)
```

Arguments

inpt_datf	is the input dataframe containing all the values in the first column and their frequency (normalised or no), in the second column
normalised	is a boolean, takes TRUE if the frequency for each value is divided by n, FALSE if not $$
mean	is the mean of the normal distribution that the dataset tries to fit
sd	is the standard deviation of the normal distribution the dataset tries to fit

80 how_normal

```
sample_val <- round(rnorm(n = 12000, mean = 6, sd = 1.25), 1)
sample_freq <- unique_total(sample_val)</pre>
datf_test <- data.frame(unique(sample_val), sample_freq)</pre>
print(datf_test)
  unique.sample_val. sample_freq
                6.9
1
                        306
2
                 8.3
                             63
3
                 7.7
                            148
4
                 5.6
                            363
5
                 6.5
                            349
                 4.6
                            202
7
                 6.6
                            324
8
                 6.7
                            335
9
                 6.0
                            406
10
                 5.7
                            365
11
                 7.9
                            109
12
                            420
                 6.2
13
                            386
                 5.9
14
                 4.5
                             185
15
                 5.1
                             326
16
                 6.1
                             360
17
                 5.5
                            346
18
                 6.3
                            375
                            207
19
                 7.4
20
                 7.6
                            162
                            129
21
                 4.2
22
                 3.9
                            102
23
                5.2
                            325
24
                 2.3
                             7
25
                 5.8
                            387
26
                6.4
                            319
27
                 9.1
                             21
28
                 7.0
                            280
29
                8.8
                             27
30
                 4.9
                           218
                            98
31
                8.1
                            25
32
                 3.0
33
                 8.4
                             66
34
                 4.3
                            160
35
                 7.2
                            267
36
                 8.7
                             40
37
                 5.3
                            313
38
                 4.1
                             127
                             275
39
                 5.0
40
                 4.0
                            119
41
                 9.3
                             13
42
                 4.4
                            196
43
                 6.8
                            313
44
                 7.1
                            247
45
                 3.5
                             57
46
                 7.8
                            139
47
                 3.6
                             57
48
                 7.5
                            189
49
                 7.3
                             215
```

how_normal 81

```
230
             4.7
50
                       36
51
              3.2
52
             9.5
                         8
                        79
53
              3.8
54
             8.2
                        62
55
              5.4
                       343
56
             8.5
                        55
57
                       207
             4.8
58
              3.7
                       79
59
             8.6
                        33
60
              3.3
                        38
61
             3.4
                        43
62
             8.9
                        21
             8.0
                      105
63
             3.1
                       23
64
65
              9.0
                        27
66
             10.0
                        5
67
              2.5
                        10
              2.9
                        16
68
              9.7
69
70
              2.7
                        11
71
             10.5
                         1
72
                        13
              9.4
73
              9.2
                        16
74
             2.6
                        16
75
             9.9
                         3
             2.8
76
                        10
77
             2.4
                        10
78
             1.9
                        2
79
             2.0
                        6
80
            10.2
                        2
81
             9.6
                         3
82
             11.3
                        1
                        1
83
             1.8
                        3
84
             2.2
                        2
85
             2.1
                        1
86
             1.6
                         1
87
             10.6
             9.8
88
                         1
89
             10.4
                         1
90
             1.7
print(how_normal(inpt_datf = datf_test,
             normalised = FALSE,
             mean = 6,
             sd = 1))
[1] 9.003683
print(how_normal(inpt_datf = datf_test,
             normalised = FALSE,
             mean = 5,
             sd = 1))
```

[1] 9.098484

82 how_unif

Description

Allow to see how much a sequence of numbers fit a uniform distribution, see examples

Usage

```
how_unif(inpt_v, normalised = TRUE)
```

Arguments

normalised is a boolean, takes TRUE if the frequency for each value is divided by n, FALSE if not
inpt_datf is the input dataframe containing all the values in the first column and their frequency at the second column

```
sample\_val \leftarrow round(runif(n = 12000, min = 24, max = 27), 1)
sample_freq <- unique_total(sample_val)</pre>
datf_test <- data.frame(unique(sample_val), sample_freq)</pre>
print(datf_test)
  unique.sample_val. sample_freq
1
                  24.4
2
                  24.8
                                379
3
                  25.5
                               414
4
                  26.0
                               366
5
                  26.6
                               400
6
                  25.7
                                419
7
                  24.3
                                389
8
                  24.1
                                423
9
                  26.1
                                404
10
                  26.5
                                406
11
                  26.2
                                356
12
                  26.8
                                407
13
                  24.6
                                388
14
                  25.3
                                402
15
                  26.3
                                388
16
                  25.4
                                422
17
                  25.0
                                436
                  25.9
                                373
18
19
                  25.2
                                423
20
                  25.6
                                388
21
                  27.0
                                202
22
                  24.2
                                380
23
                  24.9
                                404
24
                  25.1
                                417
25
                  26.4
                                401
26
                  26.7
                                431
27
                  24.5
                                392
```

id_keepr 83

```
28
                 24.0
                            218
29
                 26.9
                              407
                              371
30
                 25.8
31
                 24.7
                              394
print(how_unif(inpt_datf = datf_test, normalised = FALSE))
[1] 0.0752957
sample_val <- round(rnorm(n = 12000, mean = 24, sd = 7), 1)
sample_freq <- unique_total(sample_val)</pre>
datf_test <- data.frame(unique(sample_val), sample_freq)</pre>
print(how_unif(inpt_datf = datf_test, normalised = FALSE))
[1] 0.7797352
```

id_keepr

id_keepr

Description

Allow to get the original indexes after multiple equality comparaison according to the original number of row

Usage

```
id_keepr(inpt_datf, col_v = c(), el_v = c(), rstr_l = NA)
```

Arguments

inpt_datf	is the input dataframe
col_v	is the vector containing the column numbers or names to be compared to their respective elements in "el_v"
el_v	is a vector containing the elements that may be contained in their respective column described in " col_v "
rstr_l	is a list containing the vector composed of the indexes of the elements chosen for each comparison. If the length of the list is inferior to the length of comparisons, so the last vector of rstr_l will be the same as the last one to fill make rstr_l equal in term of length to col_v and el_v

84 incr_fillr

incr fillr

incr fillr

Description

Take a vector uniquely composed by double and sorted ascendingly, a step, another vector of elements whose length is equal to the length of the first vector, and a default value. If an element of the vector is not equal to its predecessor minus a user defined step, so these can be the output according to the parameters (see example):

Usage

```
incr_fillr(inpt_v, wrk_v = NA, default_val = NA, step = 1)
```

Arguments

inpt_v is the asending double only composed vector
wrk_v is the other vector (size equal to inpt_v), defaults to NA
default_val is the default value put when the difference between two following elements of inpt_v is greater than step, defaults to NA
step is the allowed difference between two elements of inpt_v

infinite_char_seq 85

```
#[1] "1" "2" "NAN" "4" "5" "NAN" "NAN" "NAN" "9" "10"
```

```
infinite_char_seq infinite_char_seq
```

Description

Allow to generate an infinite sequence of unique letters

Usage

```
infinite_char_seq(n, base_char = letters)
```

Arguments

n is how many sequence of numbers will be generated

base_char is the vector containing the elements from which the sequence is generated

Examples

```
print(infinite_char_seq(28))

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"
[16] "p" "g" "r" "s" "t" "u" "v" "w" "x" "v" "a" "aa" "ab"
```

```
inner_all inner_all
```

Description

Allow to apply inner join on n dataframes, datatables, tibble

Usage

```
inner_all(..., keep_val = FALSE, id_v)
```

Arguments

... are all the dataframes etc

keep_val is if you want to keep the id column

id_v is the common id of all the dataframes etc

86 insert_datf

Examples

```
datf1 <- data.frame(
    "id1"=c(1:5),
    "var1"=c("oui", "oui", "oui", "non", "non")
)

datf2 <- data.frame(
    "id1"=c(1, 2, 3, 7, 9),
    "var1"=c("oui2", "oui2", "oui2", "non2", "non2")
)

print(inner_all(datf1, datf2, keep_val=FALSE, id_v="id1"))

id1 var1.x var1.y
1 1 oui oui2
2 2 oui oui2
3 3 oui oui2</pre>
```

insert_datf

insert_datf

Description

Allow to insert dataframe into another dataframe according to coordinates (row, column) from the dataframe that will be inserted

Usage

```
insert_datf(datf_in, datf_ins, ins_loc)
```

Arguments

```
datf_in is the dataframe that will be inserted
datf_ins is the dataset to be inserted
ins_loc is a vector containg two parameters (row, column) of the begining for the insertion
```

intersect_all 87

```
# c.1..3..5..6. c.1.4. c.5..4..5...ereer..
             1
                   1
# 2
             3
                    2
# 3
             5
                    1
# 4
             6
                   4
                                      3
print(insert_datf(datf_in=datf2, datf_ins=datf1, ins_loc=c(2, 2)))
# c.1..3..5..6. c.1.4. c.5..4..5...ereer..
# 1
                  1
# 2
             3
                                      5
                   1
# 3
                                      3
             5
                  4
            6 4
# 4
```

Description

Allows to calculate the intersection between n vectors

Usage

```
intersect_all(...)
```

Arguments

is all the vector you want to calculate the intersection from

Examples

```
print(intersect_all(c(1:5), c(1, 2, 3, 6), c(1:4)))
[1] 1 2 3
```

intersect_mod

intersect_mod

Description

Returns the mods that have elements in common

Usage

```
intersect_mod(datf, inter_col, mod_col, n_min, descendly_ordered = NA)
```

88 intersect_mod

Arguments

datf is the input dataframe is the column name or the column number of the values that may be commun inter_col betwee the different mods mod col is the column name or the column number of the mods in the dataframe is the minimum elements in common a mod should have to be taken in count n_min ordered_descendly in case that the elements in commun are numeric, this option can be enabled by

giving a value of TRUE or FALSE see examples

Examples

non

4

```
datf <- data.frame("col1"=c("oui", "oui", "oui", "oui", "oui", "oui",</pre>
                     "non", "non", "non", "non", "ee", "ee", "ee"), "col2"=c(1:6, 2:5, 1:
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=2))
   coll col2
2
   oui
           2.
3
   oui
           3
7
    non
           2
8
    non
           3
12
           2
     ee
13
     ee
           3
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=3))
   coll col2
2.
  oui
           2.
3
  oui
           3
4
           4
   oui
5
   oui
           5
7
           2
   non
8
           3
   non
9
    non
           4
10 non
           5
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=5))
  col1 col2
1 oui
         1
2
  oui
          2
  oui
          3
  oui
          4
5
  oui
          5
6 oui
datf <- data.frame("col1"=c("non", "non", "oui", "oui", "oui", "oui",</pre>
                      "non", "non", "non", "ee", "ee", "ee"), "col2"=c(1:6, 2:5, 1
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=3))
   col1 col2
    non
           3
```

intersect_mod2 89

```
10 non 5
3 oui 3
4 oui 4
5 oui 5
```

```
intersect_mod2
```

intersect_mod2

Description

Returns the mods that have elemnts in common, uses a different algorith than intersect_mod1, see examples

Usage

```
intersect_mod2(inpt_datf, inter_col, mod_col, n_min = 1)
```

Arguments

```
inpt_datf is the input dataframe
inter_col is the column number or name of the elements that may be in common to each
mod
mod_col is the column number or name of the mods
n_min is the minimum number of elements in common each mod have to have to be outputed in the returned dataframe
```

```
datf <- data.frame("country" = c("Germany", "France", "Italy", "France", "Germany", "Italy")</pre>
                   "year" = c(2000, 2000, 2001, 2002, 2003, 2004),
                   "random_value" = c(1, 3, 2, 1, 2, 2))
print(datf)
  country year random_value
1 Germany 2000
2 France 2000
   Italy 2001
                          2
4 France 2002
                          2
5 Germany 2003
   Italy 2004
print(intersect_mod2(inpt_datf = datf, inter_col = "year", mod_col = "country"))
  country year random_value
1 Germany 2000
2 France 2000
                          3
```

90 inter_max

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)). The function will return the list of lists altered according to the maximum step found in the input list.

Usage

```
inter_max(inpt_l, max_ = -1000, get_lst = TRUE)
```

Arguments

```
inpt_l is the input list
max_ is a value you are sure is the minimum step value of all the sub-lists
get_lst is the parameter that, if set to True, will keep the last values of vectors in the return value if the last step exceeds the end value of the vector.
```

```
print(inter_max(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)), get_lst=TRUE))
#[[1]]
#[1] 0 4
#
#[[2]]
#[1] 0 4
#
#[[3]]
#[1] 1.0 2.3

print(inter_max(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)), get_lst=FALSE))
# [[1]]
#[1] 0 4
#
#[[2]]
#[1] 0 4
#
#[[2]]
#[1] 1 0 4
```

inter_min 91

inter_min inter_min

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)). This function will return the list of vectors with the same steps preserving the begin and end value of each interval. The way the algorythmn searches the common step of all the sub-lists is also given by the user as a parameter, see how_to paramaters.

Usage

```
inter_min(
  inpt_l,
  min_ = 1000,
  sensi = 3,
  sensi2 = 3,
  how_to_op = c("divide"),
  how_to_val = c(3)
)
```

Arguments

inpt_l	is the input list containing all the intervals
min_	is a value you are sure is superior to the maximum step value in all the intervals
sensi	is the decimal accuracy of how the difference between each value n to $n+1$ in an interval is calculated
sensi2	is the decimal accuracy of how the value with the common step is calculated in all the intervals
how_to_op	is a vector containing the operations to perform to the pre-common step value, defaults to only "divide". The operations can be "divide", "substract", "multiply" or "add". All type of operations can be in this parameter.
how_to_val	is a vector containing the value relatives to the operations in hot_to_op, defaults to 3 output from ex:

```
print(inter_min(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3))))
# [[1]]
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
#[20] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
#[39] 3.8 3.9 4.0
#
#[[2]]
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
#[20] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
#[39] 3.8 3.9 4.0
#
#[[3]]
```

92 is_divisible

```
# [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
```

Description

Takes a vector as an input and returns all the elements that are not divisible by all choosen numbers from another vector.

Usage

```
isnt_divisible(inpt_v = c(), divisible_v = c())
```

Arguments

```
\label{eq:containing} \begin{array}{ll} \text{inpt\_v} & \text{is the input vector} \\ \text{divisible\_v} & \text{is the vector containing all the numbers that will try to divide those contained in inpt\_v} \end{array}
```

Examples

```
print(isnt_divisible(inpt_v=c(1:111), divisible_v=c(2, 4, 5)))
# [1] 1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39 41 43 47
# [20] 49 51 53 57 59 61 63 67 69 71 73 77 79 81 83 87 89 91 93
# [39] 97 99 101 103 107 109 111
```

```
is_divisible is_divisible
```

Description

Takes a vector as an input and returns all the elements that are divisible by all choosen numbers from another vector.

Usage

```
is\_divisible(inpt\_v = c(), divisible\_v = c())
```

Arguments

```
\label{eq:containing} \begin{array}{ll} \text{inpt\_v} & \text{is the input vector} \\ \text{divisible\_v} & \text{is the vector containing all the numbers that will try to divide those contained in} \\ \text{inpt\_v} & \\ \end{array}
```

join_n_lvl 93

Examples

```
print(is_divisible(inpt_v=c(1:111), divisible_v=c(2, 4, 5)))
#[1] 20 40 60 80 100
```

join_n_lvl

join_n_lvl

Description

Allow to see the progress of the multi-level joins of the different variables modalities. Here, multi-level joins is a type of join that usually needs a concatenation of two or more variables to make a key. But here, there is no need to proceed to a concatenation. See examples.

Usage

```
join_n_lvl(frst_datf, scd_datf, join_type = c(), lst_pair = list())
```

Arguments

```
is the first data.frame (table)

scd_datf is the second data.frame (table)

join_type is a vector containing all the join type ("left", "inner", "right") for each variable is a lis of vectors. The vectors refers to a multi-level join. Each vector should have a length of 1. Each vector should have a name. Its name refers to the column name of multi-level variable and its value refers to the column name of the join variable.
```

Examples

|==| 100%

[1] "pair: vil2 idl2"

```
datf3 <- data.frame("vil"=c("one", "one", "one", "two", "two", "two"),</pre>
                     "charac"=c(1, 2, 2, 1, 2, 2),
                     "rev"=c(1250, 1430, 970, 1630, 2231, 1875),
                     "vil2" = c("one", "one", "one", "two", "two", "two"),
                     "id12" = c(1:6))
datf4 <- data.frame("vil"=c("one", "one", "one", "two", "two", "three"),</pre>
                    "charac"=c(1, 2, 2, 1, 1, 2),
                     "rev"=c(1.250, 1430, 970, 1630, 593, 456),
                     "vil2" = c("one", "one", "one", "two", "two"),
                     "idl2" = c(2, 3, 1, 5, 5, 5))
print(join_n_lvl(frst_datf=datf3, scd_datf=datf4, lst_pair=list(c("charac" = "vil"), c("v
                 join_type=c("inner", "left")))
[1] "pair: charac vil"
     0%
1
|= | 50%
2
```

94 just_anything2

```
| | 0%
one
|= | 50%
two
|==| 100%

main_id.x vil.x charac.x rev.x vil2.x idl2.x main_id.y vil.y charac.y rev.y
1 loneonel one 1 1250 one 1 <NA> <NA> NA NA
2 2oneone2 one 2 1430 one 2 <NA> <NA> NA NA
3 2oneone3 one 2 970 one 3 2oneone3 one 2 1430
4 ltwotwo4 two 1 1630 two 4 <NA> <NA> NA NA
vil2.y idl2.y
1 <NA> NA
2 <NA> NA
3 one 3
4 <NA> NA
```

just_anything

just_anything

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_anything(inpt_v, symbol_ = "-", anything_v = c())
```

Arguments

```
inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers
```

Examples

```
print(just_anything(inpt_v = c("oui222jj644", "oui122jj"),
symbol_ = "-", anything_v = letters))
[1] "oui-jj-" "oui-jj"
```

just_anything2

just_anything2

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_anything2(inpt_v, symbol_ = "-", anything_v = c())
```

just_anything3 95

Arguments

```
inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers
```

Examples

```
print(just_anything2(inpt_v = c("oui222jj44", "oui122jj"),
    symbol_ = "-", anything_v = letters))
[1] "oui---jj--" "oui---jj"
```

just_anything3

just_anything3

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_anything3(inpt_v, anything_v = c())
```

Arguments

inpt_v

is the input vector

Examples

```
print(just_anything3(inpt_v = c("oui222jj644", "oui122jj"),
    anything_v = letters))
[1] "ouijj" "ouijj"
```

just_chr

just_chr

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_chr(inpt_v, symbol_ = "-")
```

Arguments

inpt_v is the input vector

symbol_ is the chosen symbol to replace numbers

96 just_chr3

Examples

just_chr2

just_chr2

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_chr2(inpt_v, symbol_ = "-")
```

Arguments

inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers

Examples

just_chr3

just_chr3

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_chr3(inpt_v)
```

Arguments

inpt_v

is the input vector

```
print(just_chr3(inpt_v = c("oui222jj644", "oui122jj")))
[1] "ouijj" "ouijj"
```

just_nb 97

just_nb just_nb

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_nb(inpt_v, symbol_ = "-")
```

Arguments

inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers

Examples

just_nb2

just_nb2

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_nb2(inpt_v, symbol_ = "-")
```

Arguments

```
inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers
```

```
print(just_nb2(inpt_v = c("oui222jj44", "oui122jj"),
         symbol_ = "-"))
[1] "---222--44" "---122--"
```

98 just_not_anything

```
just_nb3 just_nb3
```

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_nb3(inpt_v)
```

Arguments

```
inpt_v is the input vector
```

Examples

```
print(just_nb3(inpt_v = c("oui222jj644", "oui122jj")))
[1] 222644 122
```

```
just_not_anything just_not_anything
```

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_not_anything(inpt_v, symbol_ = "-", anything_v = c())
```

Arguments

```
inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers
```

just_not_anything2 99

```
just_not_anything2 just_not_anything2
```

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_not_anything2(inpt_v, symbol_ = "-", anything_v = c())
```

Arguments

```
inpt_v is the input vector
symbol_ is the chosen symbol to replace numbers
```

Examples

```
just_not_anything3 just_not_anything3
```

Description

Extract only the letters from all elements of a vector, see examples

Usage

```
just_not_anything3(inpt_v, anything_v = c())
```

Arguments

```
inpt_v is the input vector
```

left_all

leap_yr

leap_year

Description

Get if the year is leap

Usage

```
leap_yr(year)
```

Arguments

year

is the input year

Examples

```
print(leap_yr(year=2024))
#[1] TRUE
```

left_all

left_all

Description

Allow to apply left join on n dataframes, datatables, tibble

Usage

```
left_all(..., keep_val = FALSE, id_v)
```

Arguments

```
are all the dataframes etckeep_val is if you want to keep the id columnid_v is the common id of all the dataframes etc
```

```
datf1 <- data.frame(
    "id1"=c(1:5),
    "var1"=c("oui", "oui", "oui", "non", "non")
)
datf2 <- data.frame(
    "id1"=c(1, 2, 3, 7, 9),
    "var1"=c("oui2", "oui2", "oui2", "non2", "non2")
)</pre>
```

letter_to_nb

```
print(left_all(datf1, datf2, datf2, datf2, keep_val=FALSE, id_v="id1"))
 id1 var1.x var1.y var1.x.x var1.y.y
            oui2 oui2
oui2 oui2
       oui
                            oui2
   2
                             oui2
       oui
       oui oui2 oui2
   3
                             oui2
   4 non <NA> <NA> <NA>
5 non <NA> <NA> <NA> + '
4
print(left_all(datf1, datf2, datf2, keep_val=FALSE, id_v="id1"))
 id1 var1.x var1.y var1
       oui oui2 oui2
  2
2
       oui oui2 oui2
3
  3 oui oui2 oui2
4
  4 non <NA> <NA>
  5 non <NA> <NA>
```

letter_to_nb

letter_to_nb

Description

Allow to get the number of a spreadsheet based column by the letter ex: AAA = 703

Usage

```
letter_to_nb(letter)
```

Arguments

letter is the letter (name of the column)

Examples

```
print(letter_to_nb("rty"))
#[1] 12713
```

list_files

list_files

Description

A list.files() based function addressing the need of listing the files with extension a or or extension b ...

Usage

```
list_files(patternc, pathc = ".")
```

102 match_by

Arguments

patternc is a vector containing all the exensions you want

pathc is the path, can be a vector of multiple path because list.files() supports it.

Description

Flatten a list to a vector

Usage

```
lst_flatnr(inpt_l)
```

Arguments

inpt_l is the input list

Examples

```
print(lst_flatnr(inpt_l=list(c(1, 2), c(5, 3), c(7, 2, 7))))
#[1] 1 2 5 3 7 2 7
```

match_by

match_by

Description

Allow to match elements by ids, see examples.

Usage

```
match_by(to_match_v = c(), inpt_v = c(), inpt_ids = c())
```

Arguments

 $\verb"to_match_v" is the vector containing all the elements to match$

inpt_v is the input vector containing all the elements that could contains the elements

to match. Each elements is linked to an element from inpt_ids at any given

index, see examples. So inpt_v and inpt_ids must be the same size

inpt_ids is the vector containing all the ids for the elements in inpt_v. An element is

linked to the id x is both are at the same index. So inpt_v and inpt_ids must be

the same size

match_na_omit 103

Examples

match_na_omit

match_na_omit

Description

Performs a match, but remove the NA values in the output if there is one or many, see examples.

Usage

```
match_na_omit(x, table)
```

Arguments

x is the vector of the patterns to be matched

table is the vector that may contain the patterns to be matched

Examples

```
match_na_omit(x = c("oui", "non", "2"), table = c("1", "oui", "oui", "ee", "non"))
[1] 2 5
```

multitud

multitud

Description

```
From a list containing vectors allow to generate a vector following this rule: list(c("a", "b"), c("1", "2"), c("A", "Z", "E")) -> c("a1A", "b1A", "a2A", "b2A", a1Z, ...)
```

Usage

```
multitud(l, sep_ = "")
```

nb2_follow

Arguments

```
is the list

sep_ is the separator between elements (default is set to "" as you see in the example)
```

Examples

```
print(multitud(l=list(c("a", "b"), c("1", "2"), c("A", "Z", "E"), c("Q", "F")), sep_="/")
#[1] "a/1/A/Q" "b/1/A/Q" "a/2/A/Q" "b/2/A/Q" "a/1/Z/Q" "b/1/Z/Q" "a/2/Z/Q"
#[8] "b/2/Z/Q" "a/1/E/Q" "b/1/E/Q" "a/2/E/Q" "b/2/E/Q" "a/1/A/F" "b/1/A/F"
#[15] "a/2/A/F" "b/2/A/F" "a/1/Z/F" "b/1/Z/F" "a/2/Z/F" "b/2/Z/F" "a/1/E/F"
#[22] "b/1/E/F" "a/2/E/F" "b/2/E/F"
```

nb2_follow

nb2_follow

Description

Allows to get the number and pattern of potential continuous pattern after an index of a vector, see examples

Usage

```
nb2_follow(inpt_v, inpt_idx, inpt_follow_v = c())
```

Arguments

```
inpt_v is the input vector
inpt_idx is the index
inpt_follow_v
```

is a vector containing the patterns that are potentially just after inpt_nb

```
print(nb2_follow(inpt_v = c(1:12), inpt_idx = 4, inpt_follow_v = c(5)))

[1] 1 5
# we have 1 times the pattern 5 just after the 4nth index of inpt_v

print(nb2_follow(inpt_v = c(1, "non", "oui", "oui", "oui", "nop", 5), inpt_idx = 2, inpt_
[1] "3" "oui"

# we have 3 times continuously the pattern 'oui' and 0 times the pattern 5 just after the print(nb2_follow(inpt_v = c(1, "non", "5", "5", "5", "nop", 5), inpt_idx = 2, inpt_follow
[1] "3" "5"
```

nb_follow 105

nb_follow

nb_follow

Description

Allow to get the number of certains patterns that may be after an index of a vector continuously, see examples

Usage

```
nb_follow(inpt_v, inpt_idx, inpt_follow_v = c())
```

Arguments

```
inpt_v is the input vector
inpt_idx is the index
inpt_follow_v
```

is a vector containing all the potential patterns that may follow the element in the vector at the index inpt_idx

Examples

```
nb_to_letter
```

 nb_to_letter

Description

Allow to get the letter of a spreadsheet based column by the number ex: 703 = AAA

Usage

```
nb_to_letter(x)
```

Arguments

Х

is the number of the column

nb_to_letter

```
print(nb_to_letter(5))
[1] "e"
print(nb_to_letter(27))
[1] "aa"
print(nb_to_letter(51))
[1] "ay"
print(nb_to_letter(52))
[1] "az"
print(nb_to_letter(53))
[1] "ba"
print(nb_to_letter(675))
[1] "yy"
print(nb_to_letter(676))
[1] "yz"
print(nb_to_letter(677))
[1] "za"
print(nb_to_letter(702))
[1] "zz"
print(nb_to_letter(703))
[1] "aaa"
print(nb_to_letter(18211))
[1] "zxk"
print(nb_to_letter(18277))
[1] "zzy"
print(nb_to_letter(18278))
[1] "zzz"
print(nb_to_letter(18279))
[1] "aaaa"
```

nestr_datf1 107

nestr_datf1

nestr_datf1

Description

Allow to write a value (1a) to a dataframe (1b) to its cells that have the same coordinates (row and column) than the cells whose value is equal to a another special value (2a), from another another dataframe (2b). The value (1a) depends of the cell value coordinates of the third dataframe (3b). If a cell coordinates (1c) of the first dataframe (1b) does not correspond to the coordinates of a good returning cell value (2a) from the dataframe (2b), so this cell (1c) can have its value changed to the same cell coordinates value (3a) of a third dataframe (4b), if (4b) is not set to NA.

Usage

```
nestr_datf1(
  inptf_datf,
  inptt_pos_datf,
  nestr_datf,
  yes_val = TRUE,
  inptt_neg_datf = NA
)
```

Arguments

```
print(nestr_datf1(inptf_datf=data.frame(c(1, 2, 1), c(1, 5, 7)),
inptt_pos_datf=data.frame(c(4, 4, 3), c(2, 1, 2)),
inptt_neg_datf=data.frame(c(44, 44, 33), c(12, 12, 12)),
nestr_datf=data.frame(c(TRUE, FALSE, TRUE), c(FALSE, FALSE, TRUE)), yes_val=TRUE))
  c.1..2..1. c.1..5..7.
#1
           4
                      12
                      12
#2
           44
            3
#3
print(nestr_datf1(inptf_datf=data.frame(c(1, 2, 1), c(1, 5, 7)),
inptt_pos_datf=data.frame(c(4, 4, 3), c(2, 1, 2)),
inptt_neg_datf=NA,
nestr_datf=data.frame(c(TRUE, FALSE, TRUE), c(FALSE, FALSE, TRUE)), yes_val=TRUE))
    c.1..2..1. c.1..5..7.
```

108 nest_v

```
#1
              4
#2
              2
#3
```

|--|--|

Description

Allow to write a special value (1a) in the cells of a dataframe (1b) that correspond (row and column) to whose of another dataframe (2b) that return another special value (2a). The cells whose coordinates do not match the coordinates of the dataframe (2b), another special value can be written (3a) if not set to NA.

Usage

```
nestr_datf2(inptf_datf, rtn_pos, rtn_neg = NA, nestr_datf, yes_val = T)
```

Arguments

```
is the input dataframe (1b)
inptf_datf
                  is the special value (1a)
rtn_pos
                  is the special value (3a)
rtn_neg
                 is the dataframe (2b)
nestr_datf
                  is the special value (2a)
yes_val
```

Examples

```
 \texttt{print} (\texttt{nestr\_datf2} (\texttt{inptf\_datf=data.frame} (\texttt{c(1, 2, 1)}, \texttt{c(1, 5, 7)}), \texttt{ rtn\_pos="yes"}, \\ \texttt{rtn\_pos="yes"}, \\
rtn_neg="no", nestr_datf=data.frame(c(TRUE, FALSE, TRUE), c(FALSE, FALSE, TRUE)), yes_val
   # c.1..2..1. c.1..5..7.
   #1
                                                                                                                         yes
                                                                                                                                                                                                                                                                                                     no
   #2
                                                                                                                                              no
                                                                                                                                                                                                                                                                                                       no
   #3
                                                                                                                                      yes
```

```
nest\_v
nest_v
```

Description

Nest two vectors according to the following parameters.

yes

Usage

```
nest_v(f_v, t_v, step = 1, after = 1)
```

new_ordered 109

Arguments

f_v	is the vector that will welcome the nested vector t_v
t_v	is the imbriquator vector
step	defines after how many elements of f_v the next element of t_v can be put in the output
after	defines after how many elements of f_v, the begining of t_v can be put

Examples

```
print(nest_v(f_v=c(1, 2, 3, 4, 5, 6), t_v=c("oui", "oui2", "oui3", "oui4", "oui5", "oui6'
    step=2, after=2))
#[1] "1"    "2"    "oui"    "3"    "4"    "oui2"    "5"    "6"    "oui3"    "oui4"
```

Description

Returns the indexes of elements contained in "w_v" according to "f_v"

Usage

```
new_ordered(f_v, w_v, nvr_here = NA)
```

Arguments

f_v is the input vector
w_v is the vector containing the elements that can be in f_v
nvr_here is a value you are sure is not present in f_v

```
print(new_ordered(f_v=c("non", "non", "oui"), w_v=c("oui", "non", "non")))
#[1] 4 1 2
```

110 occu

normal_dens

normal_dens

Description

Calculates the normal distribution probality, see examples

Usage

```
normal_dens(target_v = c(), mean, sd)
```

Arguments

 ${\tt target_v} \qquad \quad is \ the \ target \ value(s) \ (one \ or \ bounded), \ see \ examples$

mean is the mean of the normal distribution

is the standard deviation of the normal distribution

Examples

```
print (normal_dens(target_v = 13, mean = 12, sd = 2))
[1] 0.1760327
print (normal_dens(target_v = c(9, 11), mean = 12, sd = 1.5, step = 0.01))
[1] 0.2288579
print (normal_dens(target_v = c(1, 18), mean = 12, sd = 1.5, step = 0.01))
[1] 0.9999688
```

occu

осси

Description

Allow to see the occurence of each variable in a vector. Returns a datafame with, as the first column, the all the unique variable of the vector and , in he second column, their occurence respectively.

Usage

```
occu(inpt_v)
```

Arguments

inpt_v

the input dataframe

old_to_new_idx

Examples

```
print(occu(inpt_v=c("oui", "peut", "peut", "non", "oui")))

# var occurence
#1 oui     2
#2 peut     2
#3 non     1
```

Description

Allow to convert index of elements in a vector inpt_v to index of an vector type 1:sum(nchar(inpt_v)), see examples

Usage

```
old_{to}_{new_idx(inpt_v = c())}
```

Arguments

```
inpt_v is the input vector
```

Examples

```
print(old_to_new_idx(inpt_v = c("oui", "no", "eeee")))
[1] 1 1 1 2 2 3 3 3 3
```

```
or_bool1 or_bool1
```

Description

Returns a boolean vector according to 'or' condition on boolean vector in a dataframe, each column represents a boolean vector, see examples, uses a different algorithm than or_bool1

Usage

```
or_bool1(inpt_datf)
```

112 pairs_findr

```
or_bool2 or_bool2
```

Description

Returns a boolean vector according to 'or' condition on boolean vector in a dataframe, each column represents a boolean vector, see examples, uses a different algorithm than or_bool1

Usage

```
or_bool2(inpt_datf)
```

Examples

pairs_findr

pairs_findr

Description

Takes a character as input and detect the pairs of pattern, like the parenthesis pais if the pattern is "(" and then ")"

Usage

```
pairs_findr(inpt, ptrn1 = "(", ptrn2 = ")")
```

Arguments

inpt is the input characterptrn1 is the first pattern ecountered in the pairptrn2 is the second pattern in the pair

```
print (pairs_findr(inpt="ze+(yu*45/(jk+zz)*(o()p))-(re*(rt+qs)-fg)"))
[[1]]
[1] 4 1 1 3 2 2 3 4 6 5 5 6
[[2]]
[1] 4 11 17 19 21 22 24 25 27 31 37 41
```

pairs_findr_merger 113

```
pairs_findr_merger pairs_findr_merger
```

Description

Takes two different outputs from pairs_findr and merge them. Can be usefull when the pairs consists in different patterns, for example one output from the pairs_findr function with ptrn1 = "(" and ptrn2 = ")", and a second output from the pairs_findr function with ptrn1 = "" and ptrn2 = "".

Usage

```
pairs_findr_merger(lst1 = list(), lst2 = list())
```

Arguments

is the first ouput from pairs findr function 1st2 is the second ouput from pairs findr function

```
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 8, 9))),
                         lst2=list(c(1, 1), c(1, 2)))
[[1]]
[1] 1 1 2 3 4 4 3 2
[[2]]
[1] 1 2 3 4 5 7 8 9
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 8, 9))),
                         lst2=list(c(1, 1), c(1, 11)))
[[1]]
[1] 1 2 3 4 4 3 2 1
[[2]]
[1] 1 3 4 5 7 8 9 11
print(pairs\_findr\_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 8, 10, 11)),\\
                         lst2=list(c(4, 4), c(6, 7)))
[[1]]
[1] 1 2 3 4 4 3 2 1
[[2]]
[1] 3 4 5 6 7 8 10 11
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 10, 11)))
                         lst2=list(c(4, 4), c(8, 9))))
[[1]]
[1] 1 2 3 3 4 4 2 1
[[2]]
```

114 pairs_insertr

```
[1] 3 4 5 7 8 9 10 11
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 10, 11)),
                         lst2=list(c(4, 4), c(18, 19))))
[[1]]
[1] 1 2 3 3 2 1 4 4
[[2]]
[1] 3 4 5 7 10 11 18 19
print(pairs_findr_merger(lst1 = list(c(1, 1, 2, 2, 3, 3), c(1, 25, 26, 32, 33, 38)),
                        1st2 = list(c(1, 1, 2, 2, 3, 3), c(7, 11, 13, 17, 19, 24))))
[[1]]
[1] 1 2 2 3 3 4 4 1 5 5 6 6
[[21]
 [1] 1 7 11 13 17 19 24 25 26 32 33 38
print(pairs_findr_merger(lst1 = list(c(1, 1, 2, 2, 3, 3), c(2, 7, 9, 10, 11, 15)),
                         lst2 = list(c(3, 2, 1, 1, 2, 3, 4, 4), c(1, 17, 18, 22, 23, 29,
 [1] 6 5 1 1 2 2 3 3 4 4 5 6 7 7
[[2]]
 [1] 1 2 7 9 10 11 15 17 18 22 23 29 35 40
print(pairs_findr_merger(lst1 = list(c(1, 1), c(22, 23)),
                         lst2 = list(c(1, 1, 2, 2), c(3, 21, 27, 32))))
[[1]]
[1] 1 1 2 2 3 3
[[2]]
[1] 3 21 22 23 27 32
```

pairs_insertr pairs_insertr

Description

Takes a character representing an arbitrary condition (like ReGeX for example) or an information (to a parser for example), vectors containing all the pair of pattern that potentially surrounds condition (flagged_pair_v and corr_v), and a vector containing all the conjuntion character, as input and returns the character with all or some of the condition surrounded by the pair characters. See examples. All the pair characters are inserted according to the closest pair they found priotizing those found next to the condition and on the same depth-level and , if not found, the pair found at the n+1 depth-level.

pairs_insertr 115

Usage

```
pairs_insertr(
  inpt,
  algo_used = c(1:3),
  flagged_pair_v = c(")", "]"),
  corr_v = c("(", "["),
  flagged_conj_v = c("&", "|")
)
```

Arguments

inpt is the input character representing an arbitrary condition, like ReGex for example, or information to a parser for example

algo_used

is a vector containing one or more of the 3 algorythms used. The first algorythm will simply put the pair of parenthesis at the condition surrounded and/or after a character flagged (in flagged_conj_v) as a conjunction. The second algorythm will put parenthesis at the condition that are located after other conditions that are surrounded by a pair. The third algorythm will put a pair at all the condition, it is very powerfull but takes a longer time. See examples and make experience to see which combination of algorythm(s) is the most efficient for your use case.

flagged_pair_v

is a vector containing all the first character of the pairs

corr_v is a vector containing all the last character of the pairs

flagged_conj_v

is a vector containing all the conjunction character

```
print(pairs_insertr(inpt = "([one]|two|twob)three(four)", algo_used = c(1)))
[1] "([one]|[two]|[twob])three(four)"
print(pairs_insertr(inpt = "(one|[two]|twob)three(four)", algo_used = c(2)))
[1] "(one|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2)))
[1] "(oneA|[one]|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2, 3)))
[1] "([oneA]|[one]|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(3)))
[1] "([oneA]|[one]|(two)|(twob))(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three((four))", algo_used = c(3)))
[1] "([oneA]|[(one)]|(two)|(twob))(three)((four))"
```

116 pairs_insertr2

```
pairs_insertr2 pairs_insertr2
```

Description

Takes a character representing an arbitrary condition (like ReGeX for example) or an information (to a parser for example), vectors containing all the pair of pattern that potentially surrounds condition (flagged_pair_v and corr_v), and a vector containing all the conjuntion character, as input and returns the character with all or some of the condition surrounded by the pair characters. See examples. All the pair characters are inserted according to the closest pair they found priotizing those found next to the condition and on the same depth-level and , if not found, the pair found at the n+1 depth-level.

Usage

```
pairs_insertr2(
   inpt,
   algo_used = c(1:3),
   flagged_pair_v = c(")", "]"),
   corr_v = c("(", "["),
   flagged_conj_v = c("&", "|"),
   method = c("(", ")")
)
```

Arguments

is the input character representing an arbitrary condition, like ReGex for example, or information to a parcer for example.

ple, or information to a parser for example

algo_used is a vector containing one or more of the 3 algorythms used. The first algorythm

will simply put the pair of parenthesis at the condition surrounded and/or after a character flagged (in flagged_conj_v) as a conjunction. The second algorythm will put parenthesis at the condition that are located after other conditions that are surrounded by a pair. The third algorythm will put a pair at all the condition, it is very powerfull but takes a longer time. See examples and make experience

to see which combination of algorythm(s) is the most efficient for your use case.

flagged_pair_v

is a vector containing all the first character of the pairs

corr_v is a vector containing all the last character of the pairs

flagged_conj_v

is a vector containing all the conjunction character

method is length 2 vector containing as a first index, the first character of the pair in-

serted, and at the last index, the second and last character of the pair

```
print(pairs_insertr2(inpt = "([one]|two|twob)three(four)", algo_used = c(1), method = c('
[1] "([one]|(two)|(twob))three(four)"
print(pairs_insertr2(inpt = "([one]|two|twob)three(four)", algo_used = c(1), method = c(')
```

paste_datf 117

```
[1] "([one]|[two]|[twob])three(four)"
print(pairs_insertr2(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2)))
[1] "(oneA|[one]|(two)|(twob)) (three) (four)"
print(pairs_insertr2(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2), meth flagged_pair_v = c(")", "]", "#"), corr_v = c("(", "[", "-")))
[1] "(oneA|[one]|-two#|-twob#)-three#(four)"
print(pairs_insertr2(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2, 3)))
[1] "((oneA)|[one]|(two)|(twob)) (three) (four)"
print(pairs_insertr2(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(3), method
[1] "([oneA]|[one]|[two]|[twob]) [three] (four)"
print(pairs_insertr2(inpt = "(oneA|[one]|two|twob)three((four))", algo_used = c(3)))
[1] "((oneA)|[one]|(two)|(twob)) (three) ((four))"
```

Description

Return a vector composed of pasted elements from the input dataframe at the same index.

Usage

```
paste_datf(inpt_datf, sep = "")
```

Arguments

```
inpt_datf is the input dataframe
sep is the separator between pasted elements, defaults to ""
```

```
print(paste_datf(inpt_datf=data.frame(c(1, 2, 1), c(33, 22, 55))))
[1] "133" "222" "155"
```

pattern_generator

|--|--|

Description

Return a vector composed of pasted elements from the input dataframe at the same column.

Usage

```
paste_datf2(inpt_datf, sep = "")
```

Arguments

```
inpt_datf is the input dataframe
sep is the separator between pasted elements, defaults to ""
```

Examples

```
print(paste_datf2(inpt_datf=data.frame(c(1, 2, 1), c(33, 22, 55))))
#[1] "121" "332255"
```

```
pattern_generator pattern_generator
```

Description

Allow to create patterns which have a part that is varying randomly each time.

Usage

```
pattern_generator(base_, from_, nb, hmn = 1, after = 1, sep = "")
```

Arguments

base_	is the pattern that will be kept
from_	is the vector from which the elements of the random part will be generated
nb	is the number of random pattern chosen for the varying part
hmn	is how many of varying pattern from the same base will be created
after	is set to 1 by default, it means that the varying part will be after the fixed part, set to 0 if you want the varying part to be before
sep	is the separator between all patterns in the returned value

pattern_gettr 119

Examples

```
print(pattern_generator(base_="oui", from_=c("er", "re", "ere"), nb=1, hmn=3))
# [1] "ouier" "ouire" "ouier"
print(pattern_generator(base_="oui", from_=c("er", "re", "ere"), nb=2, hmn=3, after=0, set
# [1] "er-re-o-u-i" "ere-re-o-u-i" "ere-er-o-u-i"
```

pattern_gettr

pattern_gettr

Description

Search for pattern(s) contained in a vector in another vector and return a list containing matched one (first index) and their position (second index) according to these rules: First case: Search for patterns strictly, it means that the searched pattern(s) will be matched only if the patterns containded in the vector that is beeing explored by the function are present like this c("pattern_searched", "other", ..., "pattern_searched") and not as c("other_thing pattern_searched other_thing", "other", ..., "pattern_searched other_thing") Second case: It is the opposite to the first case, it means that if the pattern is partially present like in the first position and the last, it will be considered like a matched pattern. REGEX can also be used as pattern

Usage

```
pattern_gettr(
  word_,
  vct,
  occ = c(1),
  strict,
  btwn,
  all_in_word = "yes",
  notatall = "###"
)
```

Arguments

word_	is the vector containing the patterns
vct	is the vector being searched for patterns
occ	a vector containing the occurence of the pattern in word_ to be matched in the vector being searched, if the occurence is 2 for the nth pattern in word_ and only one occurence is found in vct so no pattern will be matched, put "forever" to no longer depend on the occurence for the associated pattern
strict	a vector containing the "strict" condition for each nth vector in word_ ("strict" is the string to activate this option)
btwn	is a vector containing the condition ("yes" to activate this option) meaning that if "yes", all elements between two matched patern in vct will be returned , so the patterns you enter in word_ have to be in the order you think it will appear in vct

120 pattern_tuning

```
all_in_word is a value (default set to "yes", "no" to activate this option) that, if activated, won't authorized a previous matched pattern to be matched again notatall is a string that you are sure is not present in vct
```

Examples

```
print(pattern_gettr(word_=c("oui", "non", "erer"), vct=c("oui", "oui", "non", "oui",
    "non", "opp", "opp", "erer", "non", "ok"), occ=c(1, 2, 1),
    btwn=c("no", "yes", "no"), strict=c("no", "no", "ee")))

#[[1]]
#[1] 1 5 8
#
#[[2]]
#[1] "oui" "non" "opp" "opp" "erer"
```

```
pattern_tuning pattern_tuning
```

Description

Allow to tune a pattern very precisely and output a vector containing its variations n times.

Usage

```
pattern_tuning(
  pattrn,
  spe_nb,
  spe_l,
  exclude_type,
  hmn = 1,
  rg = c(1, nchar(pattrn))
```

Arguments

```
pattrn is the character that will be tuned

spe_nb is the number of new character that will be replaced

spe_l is the source vector from which the new characters will replace old ones

exclude_type is character that won't be replaced

hmn is how many output the function will return

rg is a vector with two parameters (index of the first letter that will be replaced, index of the last letter that will be replaced) default is set to all the letters from the source pattern
```

```
print(pattern_tuning(pattrn="oui", spe_nb=2, spe_l=c("e", "r", "T", "O"), exclude_type="out"
#[1] "orT" "oTr" "oOi"
```

power_to_char 121

Description

Convert a scientific number to a string representing normally the number.

Usage

```
power_to_char(inpt_v = c())
```

Arguments

inpt_v is the input vector containing scientific number, but also other elements that

won't be taken in count

Examples

```
print(power_to_char(inpt_v = c(22 * 10000000, 12, 9 * 0.0000002)))
[1] "2200000000" "12" "0.0000018"
```

Description

Allow to convert indexes from a pre-vector to post-indexes based on a current vector, see examples

Usage

```
pre_to_post_idx(inpt_v = c(), inpt_idx = c(1:length(inppt_v)))
```

Arguments

```
inpt_v is the new vector
inpt_idx is the vector containing the pre-indexes
```

```
print(pre_to_post_idx(inpt_v = c("oui", "no", "eee"), inpt_idx = c(1:8)))
[1] 1 1 1 2 2 3 3 3
As if the first vector was c("o", "u", "i", "n", "o", "e", "e", "e")
```

122 ptrn_twkr

Description

Allow to switch, copy pattern for each element in a vector. Here a pattern is the values that are separated by a same separator. Example: "xx-xxx-xx" or "xx/xx/xxxx". The xx like values can be switched or copied from whatever index to whatever index. Here, the index is like this 1-2-3 etcetera, it is relative of the separator.

Usage

```
ptrn_switchr(inpt_l, f_idx_l = c(), t_idx_l = c(), sep = "-", default_val = NA)
```

Arguments

inpt_l	is the input vector
f_idx_l	is a vector containing the indexes of the pattern you want to be altered.
t_idx_l	is a vector containing the indexes to which the indexes in f_idx_l are related.
sep	is the separator, defaults to "-"
default_val	is the default value , if not set to NA, of the pattern at the indexes in f_idx_l. If it is not set to NA, you do not need to fill t_idx_l because this is the vector containing the indexes of the patterns that will be set as new values relatively to the indexes in f_idx_l. Defaults to NA.

Examples

```
print(ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
   "2022-01-01"), f_idx_l=c(1, 2, 3), t_idx_l=c(3, 2, 1)))
#[1] "11-01-2022" "14-01-2022" "21-01-2022" "01-01-2022"

print(ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
   "2022-01-01"), f_idx_l=c(1), default_val="ee"))
#[1] "ee-01-11" "ee-01-14" "ee-01-21" "ee-01-01"
```

```
ptrn_twkr ptrn_twkr
```

Description

Allow to modify the pattern length of element in a vector according to arguments. What is here defined as a pattern is something like this xx-xx-xx or xx/xx/xxx... So it is defined by the separator

read_edm_parser 123

Usage

```
ptrn_twkr(
  inpt_l,
  depth = "max",
  sep = "-",
  default_val = "0",
  add_sep = TRUE,
  end_ = TRUE
)
```

Arguments

inpt 1 is the input vector is the number (numeric) of separator it will keep as a result. To keep the numdepth ber of separator of the element that has the minimum amount of separator do depth="min" and depth="max" (character) for the opposite. This value defaults to "max". is the separator of the pattern, defaults to "-" sep is the default val that will be placed between the separator, defaults to "00" default_val defaults to TRUE. If set to FALSE, it will remove the separator for the patterns add_sep that are included in the interval between the depth amount of separator and the actual number of separator of the element. is if the default_val will be added at the end or at the beginning of each element end_ that lacks length compared to depth

Examples

```
v <- c("2012-06-22", "2012-06-23", "2022-09-12", "2022")
ptrn_twkr(inpt_l=v, depth="max", sep="-", default_val="00", add_sep=TRUE)
#[1] "2012-06-22" "2012-06-23" "2022-09-12" "2022-00-00"
ptrn_twkr(inpt_l=v, depth=1, sep="-", default_val="00", add_sep=TRUE)
#[1] "2012-06" "2012-06" "2022-09" "2022-00"
ptrn_twkr(inpt_l=v, depth="max", sep="-", default_val="00", add_sep=TRUE, end_=FALSE)
#[1] "2012-06-22" "2012-06-23" "2022-09-12" "00-00-2022"</pre>
```

```
read_edm_parser
```

Description

Allow to read data from edm parsed dataset, see examples

124 rearangr_v

Usage

```
read_edm_parser(inpt, to_find_v = c())
```

Arguments

inpt is the input dataset
to_find_v is the vector containing the path to find the data, see examples

Examples

```
print (read_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))",
to_find_v = c("ok", "oui", "rr", "rr2")))

[1] "6"

print (read_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))", t

[1] "56"

print (read_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5))))) (oui(bb(rr2:1))) (ee1:4))", t

[1] "56"
```

rearangr_v

rearangr_v

Description

Reanranges a vector "w_v" according to another vector "inpt_v". inpt_v contains a sequence of number. inpt_v and w_v have the same size and their indexes are related. The output will be a vector containing all the elements of w_v rearanges in descending or asending order according to inpt_v

Usage

```
rearangr_v(inpt_v, w_v, how = "increasing")
```

Arguments

inpt_v is the vector that contains the sequence of number w_v is the vector containing the elements related to inpt_v

how is the way the elements of w_v will be outputed according to if inpt_v will be sorted ascendigly or descendingly

```
print(rearangr_v(inpt_v=c(23, 21, 56), w_v=c("oui", "peut", "non"), how="decreasing"))
#[1] "non" "oui" "peut"
```

regex_spe_detect 125

```
regex_spe_detect regex_spe_detect
```

Description

Takes a character as input and returns its regex-friendly character for R.

Usage

```
regex_spe_detect(inpt)
```

Arguments

inpt

the input character

Examples

```
print(regex_spe_detect("o"))
[1] "o"
print(regex_spe_detect("(")))
[1] "\\(")
print(regex_spe_detect("tr(o)m"))
[1] "tr\\(o\\)m"
print(regex_spe_detect(inpt="fggfg[fggf]fgfg(vg?fgfgf.gf)"))
[1] "fggfg\\[fggf\\]fgfg\\(vg\\?fgfgf\\.gf\\)"
print(regex_spe_detect(inpt = "---"))
[1] "\\-\\-\"
```

regroupr

regroupr

Description

Allow to sort data like "c(X1/Y1/Z1, X2/Y1/Z2, ...)" to what you want. For example it can be to "c(X1/Y1/21, X1/Y1/Z2, ...)"

Usage

```
regroupr(
  inpt_v,
  sep_ = "-",
  order = c(1:length(unlist(strsplit(x = inpt_v[1], split = sep_)))),
  l_order = NA
)
```

126 rm_na_rows

Arguments

is the input vector containing all the data you want to sort in a specific way. All the sub-elements should be separated by a unique separator such as "-" or "/" sep_ is the unique separator separating the sub-elements in each elements of inpt_v order is a vector describing the way the elements should be sorted. For example if you want this dataset "c(X1/Y1/Z1, X2/Y1/Z2, ...)" to be sorted by the last element you should have order=c(3:1), for example, and it should returns something like this c(X1/Y1/Z1, X2/Y1/Z1, X1/Y2/Z1, ...) assuming you have only two values for X.

1_order is a list containing the vectors of values you want to order first for each sub-elements

Examples

```
vec <- multitud(l=list(c("a", "b"), c("1", "2"), c("A", "Z", "E"), c("Q", "F")), sep_="/"</pre>
print (vec)
# [1] "a/1/A/Q" "b/1/A/Q" "a/2/A/Q" "b/2/A/Q" "a/1/Z/Q" "b/1/Z/Q" "a/2/Z/Q"
 [8] "b/2/Z/Q" "a/1/E/Q" "b/1/E/Q" "a/2/E/Q" "b/2/E/Q" "a/1/A/F" "b/1/A/F"
#[15] "a/2/A/F" "b/2/A/F" "a/1/Z/F" "b/1/Z/F" "a/2/Z/F" "b/2/Z/F" "a/1/E/F"
#[22] "b/1/E/F" "a/2/E/F" "b/2/E/F"
print(regroupr(inpt_v=vec, sep_="/"))
# [1] "a/1/1/1"
                 "a/1/2/2"
                             "a/1/3/3"
                                         "a/1/4/4"
                                                    "a/1/5/5"
                                                                "a/1/6/6"
# [7] "a/2/7/7" "a/2/8/8"
                           #[13] "b/1/13/13" "b/1/14/14" "b/1/15/15" "b/1/16/16" "b/1/17/17" "b/1/18/18"
#[19] "b/2/19/19" "b/2/20/20" "b/2/21/21" "b/2/22/22" "b/2/23/23" "b/2/24/24"
vec <- vec[-2]
print(regroupr(inpt_v=vec, sep_="/"))
# [1] "a/1/1/1"
                                         "a/1/4/4"
                 "a/1/2/2"
                             "a/1/3/3"
                                                    "a/1/5/5"
                                                                "a/1/6/6"
# [7] "a/2/7/7"
                 "a/2/8/8"
                             "a/2/9/9"
                                         "a/2/10/10" "a/2/11/11" "a/2/12/12"
#[13] "b/1/13/13" "b/1/14/14" "b/1/15/15" "b/1/16/16" "b/1/17/17" "b/2/18/18"
#[19] "b/2/19/19" "b/2/20/20" "b/2/21/21" "b/2/22/22" "b/2/23/23"
print(regroupr(inpt_v=vec, sep_="/", order=c(4:1)))
#[1] "1/1/A/Q"
                "2/2/A/Q"
                            "3/3/A/Q"
                                        "4/4/A/Q"
                                                   "5/5/Z/Q"
                                                              "6/6/Z/Q"
                            "9/9/E/Q"
                 "8/8/Z/Q"
                                       "10/10/E/Q" "11/11/E/Q" "12/12/E/Q"
# [7] "7/7/Z/Q"
#[13] "13/13/A/F" "14/14/A/F" "15/15/A/F" "16/16/A/F" "17/17/Z/F" "18/18/Z/F"
#[19] "19/19/Z/F" "20/20/Z/F" "21/21/E/F" "22/22/E/F" "23/23/E/F" "24/24/E/F"
```

rm_na_rows rm_na_rows

Description

Allow to remove certain rows that contains NA, see examples.

rm_rows 127

Usage

```
rm_na_rows(inpt_datf, flagged_vals = c())
```

Arguments

```
inpt_datf is the input dataframe
flagged_vals is a vector containing the characters that will drop any rows that contains it
```

Examples

```
datf \leftarrow data.frame(c(1, 2, NA, 4), c(1:4))
print(datf)
  c.1..2..NA..4. c.1.4.
1
             1
              2
2
3
             NA
              4
print(rm_na_rows(inpt_datf = datf))
 c.1..2..NA..4. c.1.4.
1
         1
2
             2
              4
```

rm_rows rm_rows

Description

Allow to remove certain rows that contains certains characters, see examples.

Usage

```
rm_rows(inpt_datf, flagged_vals = c())
```

Arguments

```
inpt_datf is the input dataframe
flagged_vals is a vector containing the characters that will drop any rows that contains it
```

128 r_print

row_to_col

row_to_col

Description

Allow to reverse a dataframe (rows become cols and cols become rows)

Usage

```
row_to_col(inpt_datf)
```

Arguments

inpt_datf is the inout dataframe

Examples

r_print

r_print

Description

Allow to print vector elements in one row.

Usage

```
r_print(inpt_v, sep_ = "and", begn = "This is", end = ", voila!")
```

save_untl 129

Arguments

```
inpt_v is the input vector

sep_ is the separator between each elements

begn is the character put at the beginning of the print

end is the character put at the end of the print
```

Examples

```
print(r_{print}(inpt_{v=c}(1:33)))
#[1] "This is 1 and 2 and 3 and 4 and 5 and 6 and 7 and 8 and 9 and 10 and 11 and 12 and #and 14 and 15 and 16 and 17 and 18 and 19 and 20 and 21 and 22 and 23 and 24 and 25 and #and 27 and 28 and 29 and 30 and 31 and 32 and 33 and , voila!"
```

```
save_untl save_untl
```

Description

Get the elements in each vector from a list that are located before certain values

Usage

```
save_untl(inpt_l = list(), val_to_stop_v = c())
```

Arguments

```
\begin{array}{ll} \text{inpt\_l} & \text{is the input list containing all the vectors} \\ \text{val\_to\_stop\_v} \end{array}
```

is a vector containing the values that marks the end of the vectors returned in the returned list, see the examples

```
print(save_untl(inpt_l=list(c(1:4), c(1, 1, 3, 4), c(1, 2, 4, 3)), val_to_stop_v=c(3, 4))
#[[1]]
#[1] 1 2
#
#[[2]]
#[1] 1 1
#
#[[3]]
#[1] 1 2
print(save_untl(inpt_l=list(c(1:4), c(1, 1, 3, 4), c(1, 2, 4, 3)), val_to_stop_v=c(3)))
#[[1]]
#[1] 1 2
#
#[[2]]
```

see_datf

```
#[1] 1 1
#
#[[3]]
#[1] 1 2 4
```

see_datf

see_datf

Description

Allow to return a dataframe with special value cells (ex: TRUE) where the condition entered are respected and another special value cell (ex: FALSE) where these are not

Usage

```
see_datf(
  datf,
  condition_l,
  val_l,
  conjunction_l = c(),
  rt_val = TRUE,
  f_val = FALSE
)
```

Arguments

datf is the input dataframe is the vector of the possible conditions ("==", ">", "<", "!=", "%%", "reg", condition_l "not_reg", "sup_nchar", "inf_nchar", "nchar") (equal to some elements in a vector, greater than, lower than, not equal to, is divisible by, the regex condition returns TRUE, the regex condition returns FALSE, the length of the elements is strictly superior to X, the length of the element is strictly inferior to X, the length of the element is equal to one element in a vector), you can put the same condition n times. val_l is the list of vectors containing the values or vector of values related to condition_l (so the vector of values has to be placed in the same order) conjunction_l contains the and or conjunctions, so if the length of condition_l is equal to 3, there will be 2 conjunctions. If the length of conjunction 1 is inferior to the length of condition_1 minus 1, conjunction_1 will match its goal length value with its last argument as the last arguments. For example, c("&", "I", "&") with a goal length value of $5 \rightarrow c("\&", "|", "\&", "\&", "\&")$ is a special value cell returned when the conditions are respected rt_val f_val is a special value cell returned when the conditions are not respected

Details

This function will return an error if number only comparative conditions are given in addition to having character values in the input dataframe.

see_diff

Examples

```
datf1 <- data.frame(c(1, 2, 4), c("a", "a", "zu"))</pre>
print(see_datf(datf=datf1, condition_l=c("nchar"), val_l=list(c(1))))
    Х1
          X2
#1 TRUE TRUE
#2 TRUE TRUE
#3 TRUE FALSE
print(see\_datf(datf=datf1, condition\_l=c("=="), val\_l=list(c("a", 1)))))
    X1
#1 TRUE TRUE
#2 FALSE TRUE
#3 FALSE FALSE
print(see_datf(datf=datf1, condition_l=c("nchar"), val_l=list(c(1, 2))))
    X1
         X2
#1 TRUE TRUE
#2 TRUE TRUE
#3 TRUE TRUE
print(see_datf(datf=datf1, condition_l=c("not_reg"), val_l=list("[a-z]")))
    X1 X2
#1 TRUE FALSE
#2 TRUE FALSE
#3 TRUE FALSE
```

```
see_diff see_diff
```

Description

Output the opposite of intersect(a, b). Already seen at: https://stackoverflow.com/questions/19797954/function-to-find-symmetric-difference-opposite-of-intersection-in-r

Usage

```
see\_diff(vec1 = c(), vec2 = c())
```

Arguments

```
vec1 is the first vector
vec2 is the second vector
```

see_diff_detailled

Examples

```
print(see_diff(c(1:7), c(4:12)))
[1] 1 2 3 8 9 10 11 12
```

```
see_diff_all
```

see_diff_all

Description

Allow to perform the opposite of intersect function to n vectors.

Usage

```
see_diff_all(...)
```

Arguments

... are all the input vectors

Examples

```
vec1 <- c(3:6)
vec2 <- c(1:8)
vec3 <- c(12:16)

print(see_diff_all(vec1, vec2))

[1] 1 2 7 8

print(see_diff_all(vec1, vec2, vec3))

[1] 3 4 5 6 1 2 7 8 12 13 14 15 16</pre>
```

```
\verb|see_diff_detailled| \textit{see\_diff_detailled}|
```

Description

Behaves exactly like the see_diff function but is written more explicitely, see examples

Usage

```
see\_diff\_detailled(vec1 = c(), vec2 = c())
```

Arguments

vecl	is one of the input vector
vec2	is the other input vector

see_file 133

Examples

```
print(see_diff_detailled(c(1:6), c(3:9)))
[1] 1 2 7 8 9
```

see_file

see_file

Description

Allow to get the filename or its extension

Usage

```
see_file(string_, index_ext = 1, ext = TRUE)
```

Arguments

string_ is the input string

index_ext is the occurence of the dot that separates the filename and its extension

ext is a boolean that if set to TRUE, will return the file extension and if set to FALSE,

will return filename

Examples

```
print(see_file(string_="file.abc.xyz"))
#[1] ".abc.xyz"
print(see_file(string_="file.abc.xyz", ext=FALSE))
#[1] "file"
print(see_file(string_="file.abc.xyz", index_ext=2))
#[1] ".xyz"
```

see_idx

see_idx

Description

Returns a boolean vector to see if a set of elements contained in v1 is also contained in another vector (v2)

Usage

```
see_idx(v1, v2)
```

see_inside

Arguments

```
v1 is the first vector
v2 is the second vector
```

Examples

```
print(see_idx(v1=c("oui", "non", "peut", "oo"), v2=c("oui", "peut", "oui")))
#[1] TRUE FALSE TRUE FALSE
```

see inside

see inside

Description

Return a list containing all the column of the files in the current directory with a chosen file extension and its associated file and sheet if xlsx. For example if i have 2 files "out.csv" with 2 columns and "out.xlsx" with 1 column for its first sheet and 2 for its second one, the return will look like this: c(column_1, column_2, column_3, column_4, column_5, unique_separator, "1-2-out.csv", "3-3-sheet_1-out.xlsx", 4-5-sheet_2-out.xlsx)

Usage

```
see_inside(
  pattern_,
  path_ = ".",
  sep_ = c(","),
  unique_sep = "#####",
  rec = FALSE
)
```

Arguments

path__ is a vector containin the file extension of the spreadsheets ("xlsx", "csv"...)

path__ is the path where are located the files

sep__ is a vector containing the separator for each csv type file in order following the operating system file order, if the vector does not match the number of the csv files found, it will assume the separator for the rest of the files is the same as the last csv file found. It means that if you know the separator is the same for all the csv type files, you just have to put the separator once in the vector.

unique_sep is a pattern that you know will never be in your input files

rec is a boolean allows to get files recursively if set to TRUE, defaults to TRUE If x is the return value, to see all the files name, position of the columns and possible

sheet name associanted with, do the following:

see_in_grep 135

300_111_910p	see_	_in_grep	see_in_grep
--------------	------	----------	-------------

Description

Allow to get the indices of the elements of a vector that contains certyain patterns. The type of the output may change in function of the input vectors, see examples

Usage

```
see_in_grep(from_v = c(), in_v = c())
```

Arguments

is the vector that may contains elements that contains the same patterns that those in in_v, see examples
in_v is a vector that contains the patterns to find

Examples

```
see_in_l see_in_l
```

Description

Allow to get the patterns that are present in the elements of a vector, see examples

Usage

```
see_in_l(from_v = c(), in_v = c())
```

136 selected_char

Arguments

from_v is the vector that may contains elements that contains the same patterns that those in in_v, see examples
in_v is a vector that contains the patterns to find

Examples

```
print(see_in_l(from_v = c("oui", "non", "peut"),
   in_v = c("ou", "pe", "plm")))

  ou   pe   plm
   TRUE   TRUE   FALSE
```

see_mode

see_mode

Description

Allow to get the mode of a vector, see examples.

Usage

```
see\_mode(inpt\_v = c())
```

Arguments

inpt_v is the input vector

Examples

```
print(see_mode(inpt_v = c(1, 1, 2, 2, 2, 3, 1, 2)))
[1] 2
print(see_mode(inpt_v = c(1, 1, 2, 2, 2, 3, 1)))
[1] 1
```

selected_char

selected_char

Description

Allow to generate a char based on a conbinaison on characters from a vector and a number

Usage

```
selected_char(n, base_char = letters)
```

sequence_na_mean1 137

Arguments

```
n is how many sequence of numbers will be generated
base_char is the vector containing the elements from which the character is generated
```

Examples

```
print(selected_char(1222))
[1] "zta"
```

```
sequence_na_mean1 sequence_na_mean1
```

Description

In a dataframe generated by the function historic_sequence1, convert all NA to the mean of the values at the same variable for the individual at the id where the NA occurs, see examples (only accepts numeric variables)

Usage

```
sequence_na_mean1(inpt_datf, bf_)
```

Arguments

```
inpt_datf is the input dataframe
```

```
set.seed(123)
var1 < - round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 \leftarrow round(runif(n = 14, min = 14, max = 20))
datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18,
17, 17, 17),
"individual" = c("oui", "non", "peut1", "peut2",
"oui", "peut1", "peut2"),
"var1" = var1,
"var2" = var2)
datf <- historic_sequence1(inpt_datf = datf, bf_ = 2)</pre>
datf[3, 4] <- NA
datf[6, 4] <- NA
datf[1, 3] <- NA
print(datf)
  id_seq individual var1-1 var1-2 var2-1 var2-2
1
      20
                     NA
                            120
                                   20
                                             19
               oui
2
      20
                        NA
                              112
                                      NA
                                             17
               non
3
      20
              peut1
                       101
                              NA
                                      14
                                             17
      20
              peut2
                     112
                              121
                                      17
                                              20
5
     19
               oui
                      120
                              110
                                      19
                                             17
```

138 sequence_na_mean2

```
peut1
                     110
                            NA
                                    17
7
     19
             peut2
                     121
                            113
                                    20
                                          17
print(sequence_na_mean1(inpt_datf = datf, bf_ = 2))
 id_seq individual var1-1 var1-2 var2-1 var2-2
1
     2.0
                    115 120.0
                                  2.0
                                         19
              oui
                     112 112.0
2
     20
                                   17
                                          17
              non
                    101 105.5
3
     20
            peut1
                                   14
                                          17
                     112 121.0
4
     20
            peut2
                                   17
                                          20
5
     19
                     120 110.0
                                   19
                                          17
             oui
6
     19
           peut1
                    110 105.5
                                   17
                                          18
7
     19
            peut2
                    121 113.0
                                   20
                                          17
```

```
sequence_na_mean2 sequence_na_mean2
```

Description

In a dataframe generated by the function historic_sequence1, convert all NA to the mean of the values at the same variable for the individual at the id where the NA occurs, see examples (only accepts numeric variables)

Usage

```
sequence_na_mean2(inpt_datf, bf_)
```

Arguments

```
inpt_datf is the input dataframe

bf_ is how at how many n -1 we look for the value of the variables for the individual at time index n
```

```
set.seed(123)
var1 < - round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 \leftarrow round(runif(n = 14, min = 14, max = 20))
datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18,
17, 17, 17),
"individual" = c("oui", "non", "peut1", "peut2",
"oui", "peut1", "peut2"),
"var1" = var1,
"var2" = var2)
datf <- historic_sequence2(inpt_datf = datf, bf_ = 2)</pre>
datf[3, 4] <- NA
datf[6, 4] <- NA
datf[1, 3] <- NA
print(datf)
  id_seq individual var1-0 var1-1 var1-2 var2-0 var2-1 var2-2
```

sequence_na_med1 139

20	oui	NA	121	120	16	NA	19
20	non	117	NA	112	19	NA	17
20	peut1	109	NA	110	16	14	17
20	peut2	119	112	121	19	17	20
19	oui	121	120	110	20	19	17
19	peut1	101	NA	115	14	17	18
19	peut2	112	121	113	17	20	17
int(seq	uence_na_me	ean2(ing	pt_datf =	datf, }	$of_ = 2$))	
id_seq	individual	var1-0	var1-1	var1-2	var2-0	var2-1	var2-2
id_seq 20	individual oui	var1-0 117	var1-1 121.0000	var1-2 120	var2-0 16	var2-1 18	var2-2 19
20	oui	117	121.0000	120	16	18	19
20	oui non	117 117	121.0000 114.5000	120 112	16 19	18 18	19 17
20 20 20	oui non peut1	117 117 109	121.0000 114.5000 108.3333	120 112 110	16 19 16	18 18 14	19 17 17
20 20 20 20	oui non peut1 peut2	117 117 109 119	121.0000 114.5000 108.3333 112.0000	120 112 110 121	16 19 16 19	18 18 14 17	19 17 17 20
-	20 20 19 19	20 peut1 20 peut2 19 oui 19 peut1 19 peut2	20 peut1 109 20 peut2 119 19 oui 121 19 peut1 101 19 peut2 112	20 peut1 109 NA 20 peut2 119 112 19 oui 121 120 19 peut1 101 NA 19 peut2 112 121	20 peut1 109 NA 110 20 peut2 119 112 121 19 oui 121 120 110 19 peut1 101 NA 115 19 peut2 112 121 113	20 peut1 109 NA 110 16 20 peut2 119 112 121 19 19 oui 121 120 110 20 19 peut1 101 NA 115 14 19 peut2 112 121 113 17	20 peut1 109 NA 110 16 14 20 peut2 119 112 121 19 17 19 oui 121 120 110 20 19 19 peut1 101 NA 115 14 17

```
sequence_na_med1 sequence_na_med1
```

Description

In a dataframe generated by the function historic_sequence1, convert all NA to the median of the values at the same variable for the individual at the id where the NA occurs, see examples (only accepts numeric variables)

Usage

```
sequence_na_med1(inpt_datf, bf_)
```

Arguments

```
\begin{array}{ll} \text{inpt\_datf} & \text{is the input dataframe} \\ \text{bf\_} & \text{is how at how many } n \text{--}1 \text{ we look for the value of the variables for the individual} \\ & \text{at time index } n \end{array}
```

```
set.seed(123)
var1 <- round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 <- round(runif(n = 14, min = 14, max = 20))

datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17),
   "individual" = c("oui", "non", "peut1", "peut2",
   "oui", "peut1", "peut2"),
   "var1" = var1,
   "var2" = var2)
datf <- historic_sequencel(inpt_datf = datf, bf_ = 2)
datf[3, 4] <- NA</pre>
```

140 sequence_na_med2

```
datf[6, 4] <- NA
datf[1, 3] \leftarrow NA
print(datf)
 id_seq individual var1-1 var1-2 var2-1 var2-2
1
           oui NA 120 20
    20
2
    20
                  NA
                      112
                             NA
            non
3
    20
         peut1
                 101
                        NA
                              14
                                    17
          peut2 112 121
4
    20
                              17
                                    20
5
           oui 120 110
    19
                             19
                                   17
                             17
         peut1
    19
                 110
                       NA
7
    19
          peut2
                121
                        113
                             20
                                    17
print(sequence_na_med1(inpt_datf = datf, bf_ = 2))
 id_seq individual var1-1 var1-2 var2-1 var2-2
    20 oui 115 120.0 20
1
                              17
2.
    2.0
       non
peut1
            non 112 112.0
                                    17
                              14
3
    20
                 101 105.5
                                    17
         peut2
                  112 121.0
4
    20
                              17
                                    20
5
    19
           oui
                  120
                      110.0
                              19
                                    17
        peut1
6
    19
                  110
                      105.5
                              17
                                    18
           peut2
                  121 113.0
7
    19
                              20
                                    17
```

Description

In a dataframe generated by the function historic_sequence2, convert all NA to the median of the values at the same variable for the individual at the id where the NA occurs, see examples (only accepts numeric variables)

Usage

```
sequence_na_med2(inpt_datf, bf_)
```

Arguments

```
inpt_datf is the input dataframe

bf_ is how at how many n -1 we look for the value of the variables for the individual at time index n
```

```
set.seed(123)
var1 <- round(runif(n = 14, min = 100, max = 122))
set.seed(123)
var2 <- round(runif(n = 14, min = 14, max = 20))
datf <- data.frame("ids" = c(20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 17),
"individual" = c("oui", "non", "peut1", "peut2",
"oui", "peut1", "peut2"),</pre>
```

sort_date 141

```
"var1" = var1,
"var2" = var2)
datf <- historic_sequence2(inpt_datf = datf, bf_ = 2)</pre>
datf[3, 4] <- NA
datf[6, 4] <- NA
datf[1, 3] <- NA
print(datf)
 id_seg individual var1-0 var1-1 var1-2 var2-0 var2-1 var2-2
1
            oui NA 121 120 16 20 19
     20
                         NA 112
     20
             non 117
                                      19
                                             NA
                                                  17
3
     20
           peut1 109
                          NA 110
                                      16
                                            14
           peut2 119 112 121
4
     20
                                      19 17
                                                  20
            oui 121 120 110 20 19
peut1 101 NA 115 14 17
5
                                                  17
     19
6
     19
                                                  18
            peut1
7
     19
           peut2 112
                          121
                               113
                                      17
                                             20
                                                   17
print(sequence_na_med2(inpt_datf = datf, bf_ = 2))
 id_seq individual var1-0 var1-1 var1-2 var2-0 var2-1 var2-2
                                    16
     20
        oui 120 121.0 120
                    117 114.5
109 109.0
     20
             non
                                112
                                       19
                                             18
3
     20
           peut1
                                110
                                       16
                                             14
                                                   17
                    119 112.0
                                                   20
4
     20
           peut2
                                121
                                       19
                                             17
                                110 20
115 14
113 17
                    121 120.0
                                      20
                                                   17
5
                                             19
     19
            oui
                    101 109.0
                                                   18
6
     19
                                             17
           peut1
                    112 121.0
    19
                                                  17
7
            peut2
                                             20
```

sort date	sort	date
-----------	------	------

Description

Allow to sort any vector containing a date, from any kind of format (my, hdmy, ymd ...), see examples.

Usage

```
sort_date(inpt_v, frmt, sep_ = "-", ascending = FALSE, give = "value")
```

Arguments

inpt_v	is the input vector containing all the dates
frmt	is the format of the dates, (any combinaison of letters "s" for second, "n", for minute, "h" for hour, "d" for day, "m" for month and "y" for year)
sep_	is the separator used for the dates
ascending	is the used to sort the dates
give	takes only two values "index" or "value", if give == "index", the function will output the index of sorted dates from inpt_v, if give == "value", the function will output the value, it means directly the sorted dates in inpt_v, see examples

142 sort_normal_qual

Examples

```
sort_normal_qual sort_normal_qual
```

Description

Sort qualitative modalities that have their frequency normally distributed from an unordered dataset, see examples. This function uses an another algorythm than choose_normal_qual2 which may be faster.

Usage

```
sort_normal_qual(inpt_datf)
```

Arguments

inpt_datf is the input dataframe, containing the values in the first column and their frequency in the second

```
sample_val <- round(rnorm(n = 2000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)
sample_qual <- infinite_char_seq(n = length(sample_freq))
datf_test <- data.frame(sample_qual, sample_freq)
datf_test[, 2] <- datf_test[, 2] / sum(datf_test[, 2]) # optional</pre>
```

sort_normal_qual 143

print(datf_test)

```
sample_qual sample_freq
            a 0.208695652
             b 0.234782609
             c 0.321739130
4
             d 0.339130435
             e 0.330434783
            f 0.069565217
7
             q 0.234782609
            h 0.400000000
9
            i 0.347826087
10
            j 0.043478261
11
            k 0.278260870
12
            1 0.286956522
13
           m 0.243478261
14
           n 0.147826087
15
            0 0.234782609
           p 0.252173913
16
           q 0.417391304
17
18
             r 0.095652174
19
             s 0.313043478
20
             t 0.008695652
21
             u 0.130434783
22
             v 0.391304348
23
            w 0.113043478
24
            x 0.295652174
25
            y 0.243478261
            z 0.382608696
26
27
          aa 0.008695652
          ab 0.347826087
28
29
          ac 0.330434783
30
          ad 0.321739130
31
          ae 0.347826087
32
          af 0.321739130
          ag 0.173913043
33
34
          ah 0.278260870
          ai 0.278260870
35
          aj 0.347826087
36
          ak 0.026086957
37
          al 0.295652174
38
           am 0.226086957
39
           an 0.295652174
40
           ao 0.234782609
41
42
            ap 0.113043478
43
            aq 0.234782609
44
            ar 0.173913043
45
            as 0.017391304
           at 0.252173913
46
47
           au 0.078260870
48
          av 0.086956522
49
          aw 0.278260870
50
           ax 0.086956522
51
          ay 0.200000000
52
          az 0.295652174
53
          ba 0.052173913
54
          bb 0.165217391
```

144 sort_normal_qual

F F	1-	0 400005050
55 56	bc	0.408695652 0.269565217
57	bd be	0.269565217
58	bf	0.391304348
59	bg	0.104347826
60	bh	0.043478261
61	bi	0.200000000
62	bj	0.095652174
63	bk	0.191304348
64	bl	0.008695652
65	bm	0.165217391
66	bn	0.226086957
67	bo	0.086956522
68	bp	0.017391304
69	bq	0.121739130
70	br	0.234782609
71	bs	0.121739130
72	bt	0.078260870
73	bu	0.173913043
74	bv	0.104347826
75 76	bw bx	0.208695652
76	by	0.017391304 0.243478261
78	by	0.034782609
79	ca	0.017391304
80	cb	0.008695652
81	CC	0.173913043
82	cd	0.147826087
83	ce	0.060869565
84	cf	0.017391304
85	cg	0.060869565
86	ch	0.008695652
87	ci	0.208695652
88	сj	0.043478261
89	ck	0.052173913
90	cl	0.017391304
91	cm	0.017391304
92	cn	0.095652174
93	CO	0.113043478
94 95	ср	0.017391304
96	cq cr	0.017391304 0.026086957
97	CS	0.034782609
98	ct	0.017391304
99	cu	0.026086957
100	cv	0.026086957
101	CW	0.026086957
102	CX	0.017391304
103	су	0.043478261
104	CZ	0.008695652
105	da	0.034782609
106	db	0.017391304
107	dc	0.060869565
108	dd	0.008695652
109	de	0.008695652
110	df	0.017391304
111	dg	0.008695652

sort_normal_qual 145

112

```
dh 0.008695652
113
             di 0.017391304
114
             dj 0.008695652
             dk 0.008695652
115
print(sort_normal_qual(inpt_datf = datf_test))
0.00869565217391304 0.00869565217391304 0.00869565217391304 0.00869565217391304
              "aa"
                                   "cb"
                                                         "cz"
0.00869565217391304 \ 0.00869565217391304 \ 0.0173913043478261 \ 0.0173913043478261
              "dh"
                                   "dk"
                                                         "bp"
                                                                              "ca"
0.0173913043478261
                    0.0173913043478261
                                          0.0173913043478261
                                                               0.0173913043478261
              "cl"
                                   "ср"
                                                         "ct"
0.0173913043478261
                    0.0260869565217391
                                          0.0260869565217391
                                                               0.0347826086956522
              "di"
                                   "cr"
                                                         "cv"
                                                                              "bz"
0.0347826086956522
                                          0.0434782608695652
                    0.0434782608695652
                                                               0.0521739130434783
              "da"
                                   "bh"
                                                         "cy"
                                                                              "ck"
                                          0.0782608695652174
0.0608695652173913
                    0.0695652173913043
                                                               0.0869565217391304
              "cq"
                                     "f"
                                                         "bt"
                                                                              "ax"
0.0956521739130435
                    0.0956521739130435
                                           0.104347826086957
                                                                 0.11304347826087
               "r"
                                    "cn"
                                                         "bq"
  0.11304347826087
                      0.121739130434783
                                           0.147826086956522
                                                                0.165217391304348
               "co"
                                    "bs"
                                                          "n"
                                                                              "bb"
 0.173913043478261
                      0.173913043478261
                                           0.191304347826087
                                                                               0.2
                                                                              "bi"
              "ag"
                                    "bu"
                                                         "bk"
 0.208695652173913
                      0.226086956521739
                                           0.234782608695652
                                                                0.234782608695652
              "bw"
                                    "am"
                                                          "b"
                                                                               " 0 "
                                           0.243478260869565
 0.234782608695652
                      0.243478260869565
                                                                0.252173913043478
               "aq"
                                     "m"
                                                         "bv"
                                                                              "at"
 0.278260869565217
                      0.278260869565217
                                            0.28695652173913
                                                                0.295652173913043
                " k "
                                                          " | "
                                    "ai"
                                                                              "al"
 0.295652173913043
                      0.321739130434783
                                           0.321739130434783
                                                                0.330434782608696
               "az"
                                     "c"
                                                         "af"
                                                                              "ac"
 0.347826086956522
                      0.347826086956522
                                           0.382608695652174
                                                                0.391304347826087
               " i "
                                    "ae"
                                                          "z"
                                                                              "bf"
 0.408695652173913
                      0.417391304347826
                                                          0.4
                                                                0.391304347826087
                                     "q"
                                                          "h"
               "ho"
                                                                               11 77 11
 0.347826086956522
                      0.347826086956522
                                           0.339130434782609
                                                                0.330434782608696
               "aj"
                                    "ab"
                                                          "d"
                                                                               "e"
 0.321739130434783
                       0.31304347826087
                                           0.295652173913043
                                                                0.295652173913043
                                     "s"
               "ad"
                                                         "an"
                                                                               " × "
                      0.278260869565217
 0.278260869565217
                                           0.269565217391304
                                                                0.252173913043478
               "aw"
                                    "ah"
                                                         "bd"
 0.243478260869565
                      0.234782608695652
                                           0.234782608695652
                                                                0.234782608695652
                                   "br"
                                                         "ao"
                                                                               "g"
 0.226086956521739
                                                                               0.2
                      0.208695652173913
                                           0.208695652173913
              "bn"
                                   "ci"
                                                         "a"
                                                                              "ay"
 0.173913043478261
                      0.173913043478261
                                           0.165217391304348
                                                                0.147826086956522
              "cc"
                                   "ar"
                                                         "bm"
                                                                              "cd"
 0.130434782608696
                                            0.11304347826087
                                                                0.104347826086957
                      0.121739130434783
               "u"
                                   "ba"
                                                         "ap"
                                                                              "bv"
 0.104347826086957
                     0.0956521739130435
                                          0.0869565217391304
                                                               0.0869565217391304
              "be"
                                   "bj"
                                                         "bo"
0.0782608695652174
                     0.0608695652173913
                                          0.0608695652173913
                                                               0.0521739130434783
              "au"
                                   "dc"
                                                        "ce"
                     0.0434782608695652
0.0434782608695652
                                          0.0347826086956522
                                                               0.0260869565217391
                                    "j"
              "cj"
                                                         "cs"
                                                                              "CW"
```

146 sort_normal_qual2

```
0.0260869565217391 \quad 0.0260869565217391 \quad 0.0173913043478261 \quad 0.0173913043478261
               "cu"
                                      "ak"
                                                            "df"
0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261
               "cq"
                                     "cm"
                                                            "cf"
0.0173913043478261 \ 0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304
               "as"
                                     "dj"
                                                            "dq"
                                                                                   "dd"
0.00869565217391304 0.00869565217391304 0.00869565217391304
               "ch"
                                      "bl"
```

```
sort_normal_qual2 sort_normal_qual2
```

Description

Sort qualitative modalities that have their frequency normally distributed from an unordered dataset, see examples. This function uses an another algorythm than choose_normal_qual which may be faster.

Usage

```
sort_normal_qual2(inpt_datf)
```

Arguments

inpt_datf is the input dataframe, containing the values in the first column and their frequency in the second

```
sample_val \leftarrow round(rnorm(n = 2000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)</pre>
sample_qual <- infinite_char_seq(n = length(sample_freq))</pre>
datf_test <- data.frame(sample_qual, sample_freq)</pre>
datf_test[, 2] <- datf_test[, 2] / sum(datf_test[, 2])</pre>
print(datf_test)
   sample_qual sample_freq
1
              a 0.208695652
               b 0.234782609
2
3
               c 0.321739130
4
               d 0.339130435
5
               e 0.330434783
6
               f 0.069565217
7
               g 0.234782609
8
               h 0.40000000
9
               i 0.347826087
1.0
               j 0.043478261
11
               k 0.278260870
12
              1 0.286956522
13
              m 0.243478261
              n 0.147826087
15
               o 0.234782609
```

sort_normal_qual2 147

16	n	0.252173913
17	p	0.417391304
	q	
18	r	0.095652174
19	S	0.313043478
20	t	0.008695652
21	u	0.130434783
22	V	0.391304348
23		0.113043478
	W	
24	Х	0.295652174
25	У	0.243478261
26	Z	0.382608696
27	aa	0.008695652
28	ab	0.347826087
29	ac	0.330434783
30	ad	0.321739130
31	ae	0.347826087
32	af	0.321739130
33	aq	0.173913043
34	ah	0.278260870
35	ai	0.278260870
36	аj	0.347826087
37	ak	0.026086957
38	al	0.295652174
39	am	0.226086957
40	an	0.295652174
41	ao	0.234782609
42	ap	0.113043478
43	aq	0.234782609
44	ar	0.173913043
45	as	0.017391304
46	at	0.252173913
47	au	0.078260870
48	av	0.086956522
49	aw	0.278260870
50	ax	0.086956522
51	ay	0.200000000
52	az	0.295652174
53	ba	0.052173913
54		0.165217391
	bb	
55	bc	0.408695652
56	bd	0.269565217
57	be	0.104347826
58	bf	0.391304348
59	bg	0.104347826
60	bh	0.043478261
61	bi	0.200000000
62	bј	0.095652174
63	bk	0.191304348
64	bl	0.008695652
65	bm	0.165217391
66		0.226086957
	bn	
67	bo	0.086956522
68	bp	0.017391304
69	bq	0.121739130
70	br	0.234782609
71	bs	0.121739130
72	bt	0.078260870

sort_normal_qual2

```
73
             bu 0.173913043
74
             bv 0.104347826
75
             bw 0.208695652
76
             bx 0.017391304
77
             by 0.243478261
78
             bz 0.034782609
79
             ca 0.017391304
             cb 0.008695652
80
             cc 0.173913043
81
82
            cd 0.147826087
83
            ce 0.060869565
            cf 0.017391304
85
            cg 0.060869565
86
            ch 0.008695652
87
            ci 0.208695652
88
            cj 0.043478261
89
             ck 0.052173913
90
             cl 0.017391304
91
             cm 0.017391304
92
             cn 0.095652174
93
             co 0.113043478
94
             ср 0.017391304
95
             cq 0.017391304
96
             cr 0.026086957
97
             cs 0.034782609
98
             ct 0.017391304
             cu 0.026086957
99
             cv 0.026086957
100
             cw 0.026086957
101
102
            cx 0.017391304
103
            cy 0.043478261
            cz 0.008695652
104
105
            da 0.034782609
106
            db 0.017391304
107
            dc 0.060869565
108
            dd 0.008695652
109
            de 0.008695652
             df 0.017391304
110
             dg 0.008695652
111
             dh 0.008695652
112
113
             di 0.017391304
114
             dj 0.008695652
115
             dk 0.008695652
print(sort_normal_qual2(inpt_datf = datf_test))
0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304
              "aa"
                                   "cb"
                                                         "cz"
0.00869565217391304 \ \ 0.00869565217391304 \ \ \ 0.0173913043478261 \ \ \ 0.0173913043478261
               "dh"
                                    "dk"
                                                         "bp"
0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261
              "cl"
                                    "cp"
                                                         "ct"
0.0173913043478261 \quad 0.0260869565217391 \quad 0.0260869565217391 \quad 0.0347826086956522
              "di"
                                   "cr"
                                                         "cv"
0.0347826086956522 \quad 0.0434782608695652 \quad 0.0434782608695652 \quad 0.0521739130434783
              "da"
                                   "bh"
                                                         "cy"
```

 $0.0608695652173913 \quad 0.0695652173913043 \quad 0.0782608695652174 \quad 0.0869565217391304$

split_by_step 149

"cg"	"f"	"bt"	"ax"
0.0956521739130435	0.0956521739130435	0.104347826086957	0.11304347826087
"r"	"cn"	"bg"	"M"
0.11304347826087	0.121739130434783	0.147826086956522	0.165217391304348
"co"	"bs"	"n"	"bb"
0.173913043478261 "ag"	0.173913043478261 "bu"	0.191304347826087 "bk"	0.2 "bi"
0.208695652173913	0.226086956521739	0.234782608695652	0.234782608695652
"bw"	"am"	"b"	"0"
0.234782608695652	0.243478260869565	0.243478260869565	0.252173913043478
"aq"	"m"	"by"	"at"
0.278260869565217	0.278260869565217	0.28695652173913	0.295652173913043
"k"	"ai"	"1"	"al"
0.295652173913043	0.321739130434783	0.321739130434783	0.330434782608696
"az" 0.347826086956522	"c" 0.347826086956522	"af" 0.382608695652174	"ac" 0.391304347826087
0.347620060930322 "i"	"ae"	U.302000093032174	"bf"
0.408695652173913	0.417391304347826	0.4	0.391304347826087
"bc"	"q"	"h"	" _V "
0.347826086956522	0.347826086956522	0.339130434782609	0.330434782608696
"aj"	"ab"	"d"	"e"
0.321739130434783	0.31304347826087	0.295652173913043	0.295652173913043
"ad" 0.278260869565217	"s" 0.278260869565217	"an" 0.269565217391304	"x" 0.252173913043478
"aw"	0.276260669363217 "ah"	"bd"	0.232173913043476 "p"
0.243478260869565	0.234782608695652	0.234782608695652	0.234782608695652
"y"	"br"	"ao"	" g"
0.226086956521739	0.208695652173913	0.208695652173913	0.2
"bn"	"ci"	"a"	"ay"
0.173913043478261	0.173913043478261	0.165217391304348	0.147826086956522
"cc" 0.130434782608696	"ar" 0.121739130434783	"bm" 0.11304347826087	"cd" 0.104347826086957
" ₁₁ "	"bq"	"ap"	"bv"
0.104347826086957	0.0956521739130435	0.0869565217391304	0.0869565217391304
"be"	"bj"	"bo"	"av"
0.0782608695652174	0.0608695652173913	0.0608695652173913	0.0521739130434783
"au"	"dc"	"ce"	"ba"
0.0434782608695652	0.0434782608695652	0.0347826086956522	0.0260869565217391
"cj" 0.0260869565217391	"j" 0.0260869565217391	"cs" 0.0173913043478261	"cw" 0.0173913043478261
"cu"	"ak"	"df"	"CX"
0.0173913043478261	0.0173913043478261	0.0173913043478261	0.0173913043478261
"cq"	"cm"	"cf"	"bx"
0.0173913043478261		0.00869565217391304	0.00869565217391304
"as"	"dj"	"dg"	"dd"
		4 0.0086956521739130	4
"ch"	"bl"	"t"	

split_by_step

Description

Allow to split a string or a vector of strings by a step, see examples.

str_remove_untl

Usage

```
split_by_step(inpt_v, by)
```

Arguments

```
inpt_v is the input character or vector of characters
by is the step
```

Examples

```
print(split_by_step(inpt_v = c("o", "u", "i", "n", "o", "o", "u", "i", "o", "Z"), by = 2)
[1] "ou" "in" "oo" "ui" "oZ"

print(split_by_step(inpt_v = c("o", "u", "i", "n", "o", "o", "u", "i", "o", "Z"), by = 3)
[1] "oui" "noo" "uio" "Z"

print(split_by_step(inpt_v = c("o", "u", "i", "n", "o", "o", "u", "i", "o", "Z"), by = 4)
[1] "ouin" "ooui" "oZ"

print(split_by_step(inpt_v = 'ouinoouioz', by = 4))
[1] "ouin" "ooui" "oZ"
```

```
str_remove_untl str_remove_untl
```

Description

Allow to remove pattern within elements from a vector precisely according to their occurence.

Usage

```
str_remove_untl(
  inpt_v,
  ptrn_rm_v = c(),
  untl = list(c(1)),
  nvr_following_ptrn = "NA"
)
```

Arguments

sub_mult 151

Examples

```
vec <- c("45/56-/98mm", "45/56-/98mm", "45/56-/98-mm//")
print(str_remove_untl(inpt_v=vec, ptrn_rm_v=c("-", "/"), untl=list(c("max"), c(1))))
#[1] "4556/98mm" "4556/98mm" "4556/98mm//"
print(str_remove_untl(inpt_v=vec, ptrn_rm_v=c("-", "/"), untl=list(c("max"), c(1:2))))
#[1] "455698mm" "455698mm" "455698mm//"
print(str_remove_untl(inpt_v=vec[1], ptrn_rm_v=c("-", "/"), untl=c("max")))
#[1] "455698mm" "455698mm" "455698mm"</pre>
```

sub_mult

sub_mult

Description

Performs a sub operation with n patterns and replacements.

Usage

```
sub_mult(inpt_v, pattern_v = c(), replacement_v = c())
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern_v is a vector containing all the patterns to be substituted in any elements of inpt_v
replacement_v

is a vector containing the expression that are going to substituate those provided by pattern_v

152 sum_group1

```
successive_diff successive_diff
```

Description

Allow to see the difference beteen the suxxessive elements of an numeric vector

Usage

```
successive_diff(inpt_v)
```

Arguments

```
inpt_v is the input numeric vector
```

Examples

```
print(successive_diff(c(1:10)))
[1] 1 1 1 1 1
print(successive_diff(c(1:11, 13, 19)))
[1] 1 1 1 1 2 6
```

```
sum_group1
```

sum_group1

Description

Allow to aggregate variables according to groups, do not visually group the individual unlike sum_group2, see examples

Usage

```
sum_group1(inpt_datf, col_grp = c(), col_to_add = c())
```

Arguments

```
inpt_datf is the input dataframe
col_grp is a vector containing the column names or the column numbers of the groups
col_to_add is a vector containing the column names or the column numbers of the variables to aggregate
```

sum_group1 153

```
set.seed(123)
datf <- data.frame("country" = c("France", "Germany", "France", "Italy", "Italy", "France"
                  "year" = c(2012, 2012, 2013, 2011, 2012, 2011),
                  "comp_arm" = c("higher", "lower", "higher", "lower", "lower"
                  "pop" = runif(n = 6, min = 65000000, max = 69000000),
                  "random_var" = round(x = runif(n = 6, min = 16, max = 78), digits = 0)
datf
 country year comp_arm
                           pop random_var
1 France 2012 higher 66150310
2 Germany 2012 lower 68153221
3 France 2013 higher 66635908
                                      50
  Italy 2011 higher 68532070
                                      44
  Italy 2012 lower 68761869
                                      75
6 France 2011 lower 65182226
                                       44
print(sum_group1(inpt_datf = datf, col_grp = c("country", "year"), col_to_add = c("random
                           pop random_var
  country year comp_arm
1 France 2012 higher 66150310
2 Germany 2012
                lower 68153221
               higher 66635908
3 France 2013
                                       50
               higher 68532070
   Italy 2011
                                       44
               lower 68761869
   Italy 2012
                                       75
                lower 65182226
6 France 2011
                                       44
print(sum_group1(inpt_datf = datf, col_grp = c("year"), col_to_add = c("random_var", "por
  country year comp_arm
                            pop random_var
1 France 2012 higher 203065400
                                     195
2 Germany 2012 lower 203065400
                                      195
3 France 2013 higher 66635908
                                       50
  Italy 2011 higher 133714296
  Italy 2012 lower 203065400
                                      195
6 France 2011 lower 133714296
                                       88
print(sum_group1(inpt_datf = datf, col_grp = c("country"), col_to_add = c("random_var", '
 country year comp_arm
                           pop random_var
1 France 2012 higher 197968444 143
2 Germany 2012
                lower 68153221
                                       71
3 France 2013 higher 197968444
                                       143
               higher 137293939
   Italy 2011
                                       119
               lower 137293939
   Italy 2012
                                       119
6 France 2011
                 lower 197968444
                                       143
set.seed(123)
pop_v \leftarrow runif(n = 6, min = 65000000, max = 69000000)
pop_v[c(1, 3)] <- NA
set.seed(123)
datf <- data.frame("country" = c("France", "Germany", "France", "Italy", "Italy", "France")</pre>
                  "year" = c(2012, 2012, 2013, 2011, 2012, 2011),
                  "comp_arm" = c("higher", "lower", "higher", "higher", "lower", "lower"
                  "pop" = pop_v,
                  "random_var" = round(x = runif(n = 6, min = 16, max = 78), digits = 0)
```

154 sum_group2

```
datf
```

```
country year comp_arm pop random_var 1 France 2012 higher NA 34
2 Germany 2012 lower 68153221
                                    65
3 France 2013 higher NA
                                    41
  Italy 2011 higher 68532070
                                    71
  Italy 2012 lower 68761869
                                    74
6 France 2011 lower 65182226
                                    19
print(sum_group1(inpt_datf = datf, col_grp = c("year"), col_to_add = c("random_var", "por
 country year comp_arm
                          pop random_var
1 France 2012 higher 136915090 173
2 Germany 2012 lower 136915090
                                    173
3 France 2013 higher NA
                                    41
4 Italy 2011 higher 133714296
                                     90
5
  Italy 2012 lower 136915090
                                   173
6 France 2011 lower 133714296
```

3 France 2013 higher 66635908

Description

Allow to aggregate variables according to groups, see examples

Usage

```
sum_group2(inpt_datf, col_grp = c(), col_to_add = c())
```

Arguments

```
inpt_datf is the input dataframe

col_grp is a vector containing the column names or the column numbers of the groups

col_to_add is a vector containing the column names or the column numbers of the variables to aggregate
```

Examples

50

sum_group2 155

```
Italy 2011
               higher 68532070
              lower 68761869
   Italy 2012
                                      75
6 France 2011
                lower 65182226
                                      44
print(sum_group2(inpt_datf = datf, col_grp = c("country"), col_to_add = c("random_var", '
 country year comp_arm
                          pop random_var
1 France 2012 higher 197968444 143
3 France 2013 higher 197968444
                                      143
6 France 2011 lower 197968444
                                      143
2 Germany 2012 lower 68153221
                                       71
4 Italy 2011 higher 137293939
                                      119
5 Italy 2012 lower 137293939
                                      119
print(sum_group2(inpt_datf = datf, col_grp = c("year"), col_to_add = c("random_var", "por
 country year comp_arm
                           pop random_var
1 France 2012 higher 203065400 195
2 Germany 2012 lower 203065400
                                      195
  Italy 2012
                lower 203065400
                                     195
3 France 2013 higher 66635908
   Italy 2011 higher 133714296
6 France 2011 lower 133714296
print(sum_group2(inpt_datf = datf, col_grp = c("country", "year"), col_to_add = c("random
 country year comp_arm
                          pop random_var
1 France 2012 higher 66150310
2 Germany 2012
               lower 68153221
                                      71
3 France 2013 higher 66635908
4 Italy 2011 higher 68532070
                                     44
  Italy 2012 lower 68761869
                                      75
6 France 2011 lower 65182226
                                     44
set.seed(123)
pop_v \leftarrow runif(n = 6, min = 65000000, max = 69000000)
pop_v[c(1, 3)] <- NA
set.seed(123)
datf <- data.frame("country" = c("France", "Germany", "France", "Italy", "Italy", "France")</pre>
                  "year" = c(2012, 2012, 2013, 2011, 2012, 2011),
                  "comp_arm" = c("higher", "lower", "higher", "higher", "lower", "lower"
                  "pop" = pop_v,
                  "random_var" = round(x = runif(n = 6, min = 16, max = 78), digits = 0)
 country year comp_arm pop random_var
France 2012 higher NA 34
               lower 68153221
                                      65
2 Germany 2012
3 France 2013 higher NA
                                      41
  Italy 2011 higher 68532070
                                      71
  Italy 2012 lower 68761869
                                      74
6 France 2011 lower 65182226
                                      19
print(sum_group2(inpt_datf = datf, col_grp = c("year"), col_to_add = c("random_var", "por
 country year comp_arm pop random_var
1 France 2012 higher 136915090 173
2 Germany 2012 lower 136915090
                                     173
```

156 swipr

```
5 Italy 2012 lower 136915090 173
3 France 2013 higher NA 41
4 Italy 2011 higher 133714296 90
6 France 2011 lower 133714296 90
```

Description

Returns an ordered dataframes according to the elements order given. The input datafram has two columns, one with the ids which can be bonded to multiple elements in the other column.

Usage

```
swipr(inpt_datf, how_to = c(), id_w = 2, id_ids = 1)
```

Arguments

```
    inpt_datf
    is the input dataframe
    how_to
    is a vector containing the elements in the order wanted
    id_w
    is the column number or the column name of the elements
    id_ids
    is the column number or the column name of the ids
```

Examples

7

8

9

10

Arg

Arm

Arm

Al

В

G

В

```
datf <- data.frame("col1"=c("Af", "Al", "Al", "Al", "Arg", "Arg", "Arg", "Arm", "Arm",
                                                                       "col2"=c("B", "B", "G", "S", "B", "S", "G", "B", "G", "B"))
print(swipr(inpt_datf=datf, how_to=c("G", "S", "B")))
                          col1 col2
 1
                                         Αf
                                                                                    В
 2
                                         Al
                                                                                               G
 3
                                         Al
                                                                                               S
 4
                                       Al
                                                                                             В
 5
                                  Arg
                                                                                            G
 6
                                  Arg
                                                                                           S
```

test_order 157

test_order

test_order

Description

Allow to get if two vectors have their commun elements in the same order, see examples

Usage

```
test_order(inpt_v_from, inpt_v_test)
```

Arguments

is

the vector we want to test if its commun element with inpt_v_from are in the same order

Examples

```
print(test_order(inpt_v_from = c(1:8), inpt_v_test = c(1, 4)))
[1] TRUE
print(test_order(inpt_v_from = c(1:8), inpt_v_test = c(1, 4, 2)))
[1] FALSE
```

Description

Allow ewualize the occurence of each elements in all the timestamps, see examples

Usage

```
time_serie_equalizer(
  inpt_datf,
  time_col,
  null_value = 0,
  individual_col,
  var_col = c()
)
```

158 time_serie_equalizer

Arguments

Examples

print(datf)

	individual	count ry	vear	energy_source	twh cons
		_	_	34 <u>—</u>	_
1	A	France	1995	biofuel_electricity	1.82
2	A	France	1996	coal_electricity	24.18
3	A	France	1997	gas_electricity	3.84
4	A	France	1998	hydro_electricity	71.33
5	A	France	1999	nuclear_electricity	377.23
6	A	France	2000	oil_electricity	10.50
7	A	France	2001	other_renewable_exc_biofuel_electricity	0.51
10	В	France	1995	biofuel_electricity	9.50
11	В	France	1996	coal_electricity	2.16
12	В	France	1997	gas_electricity	31.43
13	В	France	1998	hydro_electricity	53.19
14	В	France	1999	nuclear_electricity	335.65
15	В	France	2000	oil_electricity	9.71
16	В	France	2001	other_renewable_exc_biofuel_electricity	0.60
17	В	France	2002	solar_electricity	23.26
18	В	France	2003	wind_electricity	48.61

	individual	country	year	energy_source	twh_cons
1	A	France	1995	biofuel_electricity	1.82
2	A	France	1996	coal_electricity	24.18
3	A	France	1997	gas_electricity	3.84
4	A	France	1998	hydro_electricity	71.33
5	A	France	1999	nuclear_electricity	377.23
6	A	France	2000	oil_electricity	10.50
7	A	France	2001	other_renewable_exc_biofuel_electricity	0.51
8	В	France	1995	biofuel_electricity	9.50
9	В	France	1996	coal_electricity	2.16
10	В	France	1997	gas_electricity	31.43
11	В	France	1998	hydro_electricity	53.19
12	В	France	1999	nuclear_electricity	335.65
13	В	France	2000	oil_electricity	9.71
14	В	France	2001	other_renewable_exc_biofuel_electricity	0.60
15	В	France	2002	solar_electricity	23.26
16	В	France	2003	wind_electricity	48.61
17	А	France	2002	biofuel_electricity	0.00

to_unique 159

18 A France 2003

biofuel_electricity 0.00

to_unique to_unique

Description

Allow to transform a vector containing elements that have more than 1 occurrence to a vector with only uniques elements.

Usage

```
to_unique(inpt_v, distinct_type = "suffix", distinct_val = "number", sep = "-")
```

Arguments

distinct_val takes two values: number (unique sequence of number to differencfiate each value) or letter (unique sequence of letters to differenciate each value)

```
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "suffix",
                distinct_val = "number",
                sep = "-"))
[1] "a-1" "a-2" "e" "a-3" "i-1" "i-2"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "suffix",
                distinct_val = "letter",
                sep = "-"))
[1] "a-a" "a-b" "e"
                      "a-c" "i-a" "i-b"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "prefix",
                distinct_val = "number",
                sep = "/"))
[1] "1/a" "2/a" "e" "3/a" "1/i" "2/i"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "prefix",
                distinct_val = "letter",
                sep = "_"))
[1] "a_a" "b_a" "e" "c_a" "a_i" "b_i"
```

union_keep

union_all

union_all

Description

Allow to perform a union function to n vectors.

Usage

```
union_all(...)
```

Arguments

... are all the input vectors

Examples

```
print(union_all(c(1, 2), c(3, 4), c(1:8)))
[1] 1 2 3 4 5 6 7 8
print(union_all(c(1, 2), c(3, 4), c(7:8)))
[1] 1 2 3 4 7 8
```

union_keep

union_keep

Description

Performs a union operation keeping the number of elements of all input vectors, see examples

Usage

```
union_keep(...)
```

Arguments

... are all the input vectors

```
print(union_keep(c("a", "ee", "ee"), c("p", "p", "a", "i"), c("a", "a", "z")))
[1] "a" "ee" "ee" "p" "p" "i" "z"
print(union_keep(c("a", "ee", "ee"), c("p", "p", "a", "i")))
[1] "a" "ee" "ee" "p" "p" "i"
```

unique_datf 161

unique_datf unique_datf

Description

Returns the input dataframe with the unique columns or rows.

Usage

```
unique_datf(inpt_datf, col = FALSE)
```

Arguments

inpt_datf is the input dataframe
col is a parameter that specifies if the dataframe returned should have unique columns
or rows, defaults to F, so the dataframe returned by default has unique rows

```
datf1 <- data.frame(c(1, 2, 1, 3), c("a", "z", "a", "p"))</pre>
print(datf1)
  c.1..2..1..3. c..a...z...a...p.. c.1..2..1..3..1
1
            1
                                а
             2
3
             1
             3
                                                  3
print (unique_datf(inpt_datf=datf1))
#
   c.1..2..1..3. c..a...z...a...p..
#1
          1
#2
              2
datf1 \leftarrow data.frame(c(1, 2, 1, 3), c("a", "z", "a", "p"), c(1, 2, 1, 3))
print(datf1)
  c.1..2..1..3. c..a...z...a...p..
1
       1
2
             2
3
             1
                                  а
print(unique_datf(inpt_datf=datf1, col=TRUE))
# cur_v cur_v
#1
    1 a
      2
#2
          Z
#3
      1
#4
      3
```

162 unique_pos

```
unique_ltr_from_v
```

Description

Returns the unique characters contained in all the elements from an input vector "inpt_v"

Usage

```
unique_ltr_from_v(inpt_v, keep_v = c("?", "!", ":", "&", ",", ".", letters))
```

Arguments

```
inpt_v is the input vector containing all the elements
```

keep_v is the vector containing all the characters that the elements in inpt_v may contain

Examples

```
print(unique_ltr_from_v(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "a
#[1] "b" "o" "n" "j" "u" "r" "l" "p" "e" "c" "a" "v" "i"
```

unique_pos

unique_pos

Description

Allow to find the first index of the unique values from a vector.

Usage

```
unique_pos(vec)
```

Arguments

vec

is the input vector

```
print(unique_pos(vec=c(3, 4, 3, 5, 6)))
#[1] 1 2 4 5
```

unique_total 163

unique_total unique_total

Description

Returns a vector with the total amount of occurences for each element in the input vector. The occurences of each element follow the same order as the unique function does, see examples

Usage

```
unique_total(inpt_v = c())
```

Arguments

inpt_v

is the input vector containing all the elements

Examples

```
print (unique_total(inpt_v = c(1:12, 1)))

[1] 2 1 1 1 1 1 1 1 1 1 1 1

print (unique_total(inpt_v = c(1:12, 1, 11, 11)))

[1] 2 1 1 1 1 1 1 1 1 1 3 1

vec <- c(1:12, 1, 11, 11)

names(vec) <- c(1:15)

print (unique_total(inpt_v = vec))

1 2 3 4 5 6 7 8 9 10 11 12
2 1 1 1 1 1 1 1 1 3 1</pre>
```

until_stnl

 $until_stnl$

Description

Maxes a vector to a chosen length. ex: if i want my vector c(1, 2) to be 5 of length this function will return me: c(1, 2, 1, 2, 1)

Usage

```
until_stnl(vec1, goal)
```

Arguments

vec1 is the input vector goal is the length to reach

164 vector_replacor

Examples

```
print(until_stnl(vec1=c(1, 3, 2), goal=56))
# [1] 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2
```

val_replacer

val_replacer

Description

Allow to replace value from dataframe to another one.

Usage

```
val_replacer(datf, val_replaced, val_replacor = TRUE)
```

Arguments

```
datf is the input dataframe

val_replaced is a vector of the value(s) to be replaced

val_replacor is the value that will replace val_replaced
```

Examples

```
#1 1 NA
#2 004 FALSE
#3 NA NA
#4 FALSE NA
```

vector_replacor

vector_replacor

Description

Allow to replace certain values in a vector.

Usage

```
vector_replacor(inpt_v = c(), sus_val = c(), rpl_val = c(), grep_ = FALSE)
```

vec_in_datf

Arguments

inpt_v	is the input vector
sus_val	is a vector containing all the values that will be replaced
rpl_val	is a vector containing the value of the elements to be replaced (sus_val), so sus_val and rpl_val should be the same size
grep_	is if the elements in sus_val should be equal to the elements to replace in inpt_v or if they just should found in the elements

Examples

vec_in_datf vec_in_datf

Description

Allow to get if a vector is in a dataframe. Returns the row and column of the vector in the dataframe if the vector is contained in the dataframe.

Usage

```
vec_in_datf(
  inpt_datf,
  inpt_vec = c(),
  coeff = 0,
  stop_untl = 1,
  conventional = FALSE
)
```

Arguments

```
inpt_datf is the input dataframe
inpt_vec is the vector that may be in the input dataframe
coeff is the "slope coefficient" of inpt_vec
stop_untl is the maximum number of the input vector the function returns, if in the dataframe
conventional is if a positive slope coefficient means that the vector goes upward or downward
```

166 vlookup_datf

Examples

```
datf1 \leftarrow data.frame(c(1:5), c(5:1), c("a", "z", "z", "z", "a"))
print(datf1)
# c.1.5. c.5.1. c..a...z...z...z.........a..
#1
       1
#2
        2
               4
#3
       3
               3
              2
#4
       4
       5
              1
#5
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 4, "z"), coeff=1))
#NULL
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 2, "z"), coeff=1))
#[1] 5 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(3, "z"), coeff=1))
#[1] 3 2
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(4, "z"), coeff=-1))
#[1] 2 2
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(2, 3, "z"), coeff=-1))
#[1] 2 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 2, "z"), coeff=-1, conventional=TRUE))
#[1] 5 1
datf1[4, 2] <- 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(1, "z"), coeff=-1, conventional=TRUE, stop_
#[1] 4 2 5 2
```

vlookup_datf

vlookup_datf

Description

Alow to perform a vlookup on a dataframe

Usage

```
vlookup_datf(datf, v_id, col_id = 1, included_col_id = "yes")
```

wider_datf 167

Arguments

```
datf is the input dataframe

v_id is a vector containing the ids

col_id is the column that contains the ids (default is equal to 1)

included_col_id

is if the result should return the col_id (default set to yes)
```

Examples

```
datf1 <- data.frame(c("az1", "az3", "az4", "az2"), c(1:4), c(4:1))</pre>
print(vlookup_datf(datf=datf1, v_id=c("az1", "az2", "az3", "az4")))
    c..az1....az3....az4....az2.. c.1.4. c.4.1.
#2
                               az1
                                       1
#4
                                        4
                                               1
                               az2
#21
                               az3
                                        2
                                               3
#3
                               az4
                                        3
                                               2
```

wider_datf wider_datf

Description

Takes a dataframe as an input and the column to split according to a seprator.

Usage

```
wider_datf(inpt_datf, col_to_splt = c(), sep_ = "-")
```

"k" "11" 2

Arguments

```
inpt_datf is the input dataframe
col_to_splt is a vector containing the number or the colnames of the columns to split according to a separator
sep_ is the separator of the elements to split to new columns in the input dataframe
```

Examples

#k-11 4

168 wide_to_narrow_idx

```
#000-mm 5
              "000" "mm" 1
print(wider_datf(inpt_datf=datf2, col_to_splt=c("col2"), sep_="-"))
       pre_datf X.o. X.y.
              "о" "у"
#о-у
       1
              "hj" "yy"
#hj-yy 2
              "er" "y"
#er-y
      3
#k-11 4
              "k" "11"
              "000" "mm"
#000-mm 5
```

```
wide_to_narrow_idx wide_to_narow_idx
```

Description

Allow to convert the indices of vector ('from_v_ids') which are related to each characters of a vector, to fit the newly established maximum character of the vector, see examples.

Usage

```
wide_to_narrow_idx(from_v_val = c(), from_v_ids = c(), val = 1)
```

Arguments

```
from_v_val is the input vector of elements, or just the total number of characters of the
    elementsq in the vector

from_v_ids is the input vector of indices

val is the value - 1 from which the number of character of an element is too high, so
    the indices in 'from_v_ids' will be modified
```

```
print(wide_to_narrow_idx(from_v_val = c("oui", "no", "oui"), from_v_ids = c(4, 6, 9), val
[1] 2 4 5

print(wide_to_narrow_idx(from_v_val = c("oui", "no", "oui"), from_v_ids = c(4, 6, 9), val
[1] 2 2 3

print(wide_to_narrow_idx(from_v_val = c("oui", "no", "oui"), from_v_ids = c(4, 6, 9), val
[1] 4 6 9
```

write_edm_parser 169

```
write_edm_parser write_edm_parser
```

Description

Allow to write data to edm parsed dataset, see examples

Usage

```
write_edm_parser(inpt, to_write_v, write_data)
```

Arguments

```
inpt is the input dataset
to_write_v is the vector containing the path to write the data, see examples
```

```
print (write_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))",
to_write_v = c("ok", "ee"), write_data = c("ii", "olm")))

[1] "(ok(ee:56) (ii:olm)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))"

print (write_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))",
to_write_v = c("ok", "oui"), write_data = c("ii", "olm")))

[1] "(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (ii:olm) (oui(bb(rr2:1))) (ee1:4))"

print (write_edm_parser("(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ee1:4))",
to_write_v = c("ok", "oui", "oui"), write_data = c("ii", "olm")))

[1] "(ok(ee:56)) (ok(oui(rr((rr2:6)(rr:5)))) (oui(bb(rr2:1))) (ii:olm) (ee1:4))"

print (write_edm_parser("",
to_write_v = c(), write_data = c("ii", "olm")))

[1] "(ii:olm)"
```

Index

all_concat,5	depth_pairs_findr,42
all_stat,6	diff_datf,43
and_bool1,7	<pre>dynamic_idx_convertr, 43</pre>
and_bool2,7	
<pre>any_join_datf,8</pre>	edm_arrangr,44
appndr, 10	edm_arrangr2,45
arroundr_mean, 11	edm_group_by1,46
arroundr_min, 11	edm_group_by2,47
	edm_pert,48
better_match, 12	edm_pivot_longer1,50
better_split, 13	edm_pivot_longer2,52
better_split_any, 13	edm_pivot_series,55
better_sub, 14	edm_pivot_wider1,57
better_sub_mult, 15	edm_pivot_wider2,59
better_unique, 16	elements_equalifier, 60
bind_cols, 17	equalizer_v,61
bind_rows, 18	extract_normal,62
	extrt_only_v,68
can_be_num, 18	
closer_ptrn, 19	fillr,68
closer_ptrn_adv, 21	fixer_nest_v,69
clusterizer_v, 23	fold_rec, 70
col_convertr, 26	fold_rec2,70
col_to_row, 27	format_date,71
colins_datf, 25	
converter_date, 27	geo_min,71
converter_format, 28	get_rec,72
cost_and_taxes, 29	globe, 72
cumulated_rows, 30	glue_groupr_v,73
cumulated_rows_na,31	grep_all,74
cut_v, 32	grep_all2,74
cutr_v, 31	groupr_datf,75
	gsub_mult,76
data_gen, 33	historic_sequence1,77
data_meshup, 35	historic_sequence2,78
date_addr, 36	how_normal, 79
date_converter_reverse, 37	how_unif, 82
datf_appendr, 38	110w_u1111, 02
datf_appendr2, 38	id_keepr,83
datf_insertr,39	incr_fillr,84
datf_row_appendr, 40	infinite_char_seq, 85
datf_row_appendr2,40	inner_all, 85
dcr_untl,41	insert_datf, 86
dcr_val, 42	inter_max, 90

INDEX 171

inter_min, 91	power_to_char, 121
intersect_all,87	pre_to_post_idx, 121
intersect_mod, 87	ptrn_switchr, 122
intersect_mod2,89	ptrn_twkr, 122
is_divisible, 92	
isnt_divisible, 92	r_print, 128
	read_edm_parser, 123
join_n_lvl, 93	rearangr_v, 124
just_anything, 94	regex_spe_detect, 125
just_anything2,94	regroupr, 125
just_anything3,95	rm_na_rows, 126
just_chr, 95	rm_rows, 127
just_chr2,96	row_to_col, 128
just_chr3,96	
just_nb, 97	save_untl, 129
just_nb2, 97	see_datf, 130
just_nb3, 98	see_diff, 131
just_not_anything, 98	see_diff_all, 132
just_not_anything2,99	see_diff_detailled, 132
just_not_anything3,99	see_file, 133
Juse_noe_anyenings, //	see_idx, 133
leap_yr, 100	see_in_grep, 135
left_all, 100	see_in_1, 135
letter_to_nb, 101	see_inside, 134
list_files, 101	see_mode, 136
lst_flatnr, 102	selected_char, 136
,,	sequence_na_mean1, 137
match_by, 102	sequence_na_mean2, 138
match_na_omit, 103	sequence_na_med1, 139
multitud, 103	sequence_na_med2, 140
	sort_date, 141
nb2_follow, 104	sort_normal_qual, 142
nb_follow, 105	sort_normal_qual2, 146
nb_to_letter, 105	split_by_step, 149
nest_v, 108	str_remove_untl, 150
nestr_datf1, 107	sub_mult, 151
nestr_datf2, 108	successive_diff, 152
new_ordered, 109	sum_group1, 152
normal_dens, 110	sum_group2, 154
	swipr, 156
occu, 110	SWIPI, 130
old_to_new_idx,111	test_order, 157
or_bool1, 111	time_serie_equalizer, 157
or_bool2, 112	to_unique, 159
	60 <u>-</u> anique, 10)
pairs_findr, 112	union_all, 160
pairs_findr_merger, 113	union_keep, 160
pairs_insertr, 114	unique_datf, 161
pairs_insertr2, 116	unique_ltr_from_v, 162
paste_datf, 117	unique_pos, 162
paste_datf2, 118	unique_total, 163
pattern_generator, 118	until_stnl, 163
pattern_gettr, 119	_ ,
pattern_tuning, 120	val replacer, 164

INDEX

```
vec_in_datf, 165
vector_replacor, 164
vlookup_datf, 166
wide_to_narrow_idx, 168
wider_datf, 167
write_edm_parser, 169
```