US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12393772

August 19, 2025

Cahill; Emily et al.

Tracking approvals for an electronic document managed by an electronic document platform

Abstract

An electronic document associated with users of a collaborative document platform is identified. The electronic document is associated with a data structure including entries that each correspond to an approval request for a respective user to approve at least a portion of content of the electronic document. At least a portion of the data structure is embedded within the content of the electronic document for presentation to a first user. A first user updating a first entry of at least a portion of the data structure is detected. The update to the first entry corresponds to a first approval request for a second user to approve one or more portions of the content of the electronic document. The data structure is updated to include data of the first entry in accordance with the update to the first entry by the first user.

Inventors: Cahill; Emily (Brooklyn, NY), Parbhoo; Shamil (Brooklyn, NY), Mckenzie;

Lloyd (Denver, CO), D'Angelo; John Gabriel (New York, NY), Hoehl; Jeffery (New York, NY), Galante; Gregory George (Little Silver, NJ), Hariri; Behnoosh

(New York, NY), Xi; Joy (Lakewood, CO)

Applicant: Google LLC (Mountain View, CA)

Family ID: 1000008763384

Assignee: Google LLC (Mountain View, CA)

Appl. No.: 18/609894

Filed: March 19, 2024

Prior Publication Data

Document IdentifierUS 20240220713 A1

Publication Date
Jul. 04, 2024

Related U.S. Application Data

Publication Classification

Int. Cl.: G06F40/166 (20200101); G06F16/176 (20190101); G06F40/194 (20200101); G06Q10/101 (20230101)

U.S. Cl.:

CPC **G06F40/166** (20200101); **G06F16/176** (20190101); **G06F40/194** (20200101); **G06Q10/101** (20130101);

Field of Classification Search

USPC: None

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
6704906	12/2003	Yankovich et al.	N/A	N/A
6832202	12/2003	Schuyler	705/7.26	G06Q 10/10
6918082	12/2004	Gross et al.	N/A	N/A
7890872	12/2010	Champlain et al.	N/A	N/A
8725549	12/2013	Arroyo et al.	N/A	N/A
9135312	12/2014	Greenspan et al.	N/A	N/A
9965685	12/2017	Matsuoka et al.	N/A	N/A
10101893	12/2017	Van Doorn et al.	N/A	N/A
10346532	12/2018	Codrington et al.	N/A	N/A
10769365	12/2019	Fern et al.	N/A	N/A
10810361	12/2019	Venkatraman et al.	N/A	N/A
11334375	12/2021	Smith et al.	N/A	N/A
11972200	12/2023	Cahill	N/A	G06Q 10/103
2002/0091725	12/2001	Skok	N/A	N/A
2002/0143691	12/2001	Ramaley et al.	N/A	N/A
2006/0047555	12/2005	Kang	705/7.26	G06Q 10/06316
2012/0317239	12/2011	Mulder et al.	N/A	N/A
2013/0326330	12/2012	Harris et al.	N/A	N/A
2015/0339282	12/2014	Goyal	N/A	N/A
2017/0200123	12/2016	Safa	N/A	N/A
2021/0248556	12/2020	Venkatraman et al.	N/A	N/A

OTHER PUBLICATIONS

International Search Report and Written Opinion for International Application No.

[&]quot;Setting up approvals on the Huddle web app," https://huddle.zendesk.com/hc/en-us/articles/200124953-Setting-up-approvals-on-the-Huddle-web-app#top, Aug. 21, 2022, pp. 1-9. cited by applicant

[&]quot;Get approvals on files in Google Drive," https://support.google.com/drive/answer/9387535? hl=en#zi, Jul. 22, 2022, pp. 1-3. cited by applicant

PCT/US2023/078241 mailed Feb. 16, 2024, 18 Pages. cited by applicant

Skees T., "How to request approvals in Google docs, sheets, and slides,"

https://copyprogramming.com/howto/how-to-request-approvals-in-google-docs-sheets-and-slides, Aug. 3, 2022, pp. 1-32. cited by applicant

"Step 10: Approving work in Huddle," https://huddle.zendesk.com/hc/en-us/articles/220740188-Step-10-Approving-.work-in-Huddle, Aug. 21, 2022, pp. 1-10. cited by applicant

Primary Examiner: Nguyen; Maikhanh

Attorney, Agent or Firm: Lowenstein Sandler LLP

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. patent application Ser. No. 18/061,403, filed Dec. 2, 2022, which is hereby incorporated in its entirety herein by reference.

TECHNICAL FIELD

(1) Aspects and implementations of the present disclosure relate to tracking approvals for an electronic document managed by an electronic document platform.

BACKGROUND

(2) A platform (e.g., an electronic document platform, etc.) can enable users to access electronic documents via a graphical user interface (GUI) associated with the platform. In some instances, users can add, modify, and/or remove content of an electronic document (e.g., via a platform GUI provided to a client device associated with a user by the platform). In some instances, an electronic document platform can be a collaborative document platform. Users of a collaborative document platform can collaborate on an electronic document across one or more client devices. For example, a first user can update the electronic document by providing one or more edits and a second user can access the updated electronic document to see the edits provided by the first user. In some instances, a user of the collaborative document platform can request approval of another user for edits made to an electronic document.

SUMMARY

- (3) The below summary is a simplified summary of the disclosure in order to provide a basic understanding of some aspects of the disclosure. This summary is not an extensive overview of the disclosure. It is intended neither to identify key or critical elements of the disclosure, nor to delineate any scope of the particular implementations of the disclosure or any scope of the claims. Its sole purpose is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.
- (4) In some implementations, a system and method are disclosed for providing approval requests of electronic documents at a platform. In an implementation, a method includes identifying an electronic document associated with users of a collaborative document platform. The electronic document is associated with an approval data structure. The approval data structure includes entries that each correspond to an approval request for a user to approve at least a portion of content of the electronic document. The method further includes providing a first client device associated with a first user with access to the electronic document. A portion of the approval data structure is included within the content of the electronic document for presentation to the first user. The method further includes detecting that the first user has updated a first entry of the portion of the approval data structure included within the contents of the electronic document via the first client device. The update to the first entry corresponds to a first approval request for a second user to approve one

or more portions of the content of the electronic document. The method further includes transmitting a first notification to a second client device associated with the second user. The first notification indicates the first approval request. The method further includes updating the approval data structure to include data of the first entry in accordance with the update to the first entry by the first user of the first client device.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) Aspects and implementations of the present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various aspects and implementations of the disclosure, which, however, should not be taken to limit the disclosure to the specific aspects or implementations, but are for explanation and understanding only.
- (2) FIG. **1** illustrates an example system architecture, in accordance with implementations of the present disclosure.
- (3) FIG. **2**. is a block diagram illustrating an example platform and an approval engine, in accordance with implementations of the present disclosure.
- (4) FIG. **3** illustrates an example of an approval data structure associated with an electronic document, in accordance with implementations of the present disclosure.
- (5) FIG. **4**A-**4**C illustrates an example of updating a portion of an approval data structure included within content of an electronic document, in accordance with embodiments of the present disclosure.
- (6) FIG. **5.** illustrates an example of updating an approval data structure associated with an electronic document, in accordance with implementations of the present disclosure.
- (7) FIG. **6**. illustrates presenting an exemplary notification, in accordance with implementations of the present disclosure.
- (8) FIG. 7 depicts a flow diagram of an example method for tracking approvals for a collaborative electronic document managed by an electronic document platform, in accordance with implementations of the present disclosure.
- (9) FIG. **8** is a block diagram illustrating an exemplary computer system, in accordance with implementations of the present disclosure.

DETAILED DESCRIPTION OF THE DRAWINGS

- (10) Aspects of the present disclosure generally relate to tracking approvals for a collaborative electronic document managed by an electronic document platform. An electronic document platform, such as a collaborative document platform, can provide a user with access to an electronic document via a graphical user interface (GUI). The platform GUI can enable the user to consume the document, edit the document, annotate the document, and so forth. In some instances, multiple users may access and/or edit an electronic document via the collaborative document platform. For example, a first user can access and edit the document using a first client device and a second user can access edits made by the first user to the document using a second client device. (11) In some instances, a platform can enable users to solicit approval of edits made to the document by other users. For example, a user of the platform can edit content of an electronic document, as described above. In some instances, the user can request approval of the edits from one or more other users of the platform. For example, one or more employees can work on a report
- document, as described above. In some instances, the user can request approval of the edits from one or more other users of the platform. For example, one or more employees can work on a report with a manager. The employees can edit content of the report document while working on preparing the report. The employee can then send the edited report document to their manager for approval (e.g., before the report is sent out to a customer, another manager, etc.). A user of the platform can request approval of the document by engaging with one or more elements of the platform GUI designated for requesting approval by another user of the platform. When the other

user (referred to herein as an approver) accesses the document (e.g., via the platform GUI), the platform can provide a notification to the approver indicating the request for approval by the requesting user (referred to herein as the requestor). The approver can review the edits made by the document by the requestor and can provide an approval decision (e.g., approve or reject) the edits using the tool. The requestor may receive a notification (e.g., via electronic mail (e-mail), etc.) of the approval decision provided by the approver.

- (12) Conventional platforms do not enable users to easily track approvals provided by users associated with an electronic document. In some instances, multiple users may be responsible for approving one or more sections of an electronic document before a finalized version can be created. In order to determine whether a finalized version of the electronic document can be created, a user (e.g., a requestor) may search through an e-mail inbox to identify notifications (e.g., e-mails) received in response to approval decisions from approvers and determine whether each approver has provided their approval for their respective section. It can take a significant amount of time for the requestor to identify such notifications, which can consume a large amount of computing resources (e.g., processing cycles, memory resources, etc.). If the requestor is not able to identify a notification for an approval decision provided by one or more approvers, the requestor may need to provide another approval request to such approvers (e.g., to ensure that the required approval is received from all responsible users). Such approvers may provide another approval decision (e.g., by accessing the electronic document via the platform GUI) for their respective sections of the electronic document and another notification indicating the approval decision is transmitted to the requesting user. Accordingly, a requestor may solicit approval of provided edits to the content of the electronic document that have already been approved by reviewers, which creates redundancy by causing users to access the document for longer time periods. Soliciting additional approvals from users can consume additional computing resources, causing such resources to be unavailable for other processes. Accordingly, an overall efficiency is decreased and an overall latency for the platform is increased.
- (13) In addition, conventional platforms enable a requestor to request approval for all content of an electronic document rather than a particular portion of content of the electronic document. In some instances, an electronic document can be significantly large (e.g., hundreds or thousands of pages). A user may provide updates to one or more sections of content of the electronic document. Conventional platforms do not enable the user to request approval from approvers for the particular sections that include the edits, and instead the user needs to request approval for the entire electronic document. An approver may agree with the edits made to the content of a first section of the electronic document but not a second section of the electronic document. However, as the approval request is made for the entire electronic document rather than particular sections of the document, the approver is not able to provide a first approval decision (e.g., an approval) to the first section and a second approval decision (e.g., a rejection) to the second section. If the approver approves the document, the requestor may not be notified that the approver disagrees with the second section of the document, and therefore may not make appropriate changes to the second section that the approver desires. If the approver rejects the document, the approver may spend additional time and computing resources to provide unnecessary edits to the content of the first a section of the document, which can increase an overall latency of the platform and decrease an overall efficiency of the platform, as indicated above.
- (14) Finally, conventional platforms present the status (e.g., pending, approved, rejected, etc.) of an approval request via a portion of the platform GUI that is separate from the content of the electronic document. Because such information is not included in the content of the document, a user that generates and/or accesses a physical copy (e.g., a hardcopy or a printed copy) of the electronic document is unable to determine whether the document is approved by respective approvers without also accessing the electronic document via the platform GUI of a client device. Obtaining a physical copy of an electronic document and then accessing the electronic document

via the platform GUI to determine the approval status for the document can take a significant amount of time and therefore consume a significant amount of computing resources, which can increase an overall system latency and decrease an overall system efficiency, as indicated above. (15) Aspects of the present disclosure address the above deficiencies by enabling a collaborative document platform to facilitate and track approval requests and responses via an approval data structure included (e.g., embedded) within content of an electronic document. An electronic document platform (e.g., a collaborative document platform) can manage or host electronic documents that are accessible to multiple users of the platform. Electronic documents can be or correspond to a word document, slide presentation document, a spreadsheet document, etc. Each electronic document can be associated with an approval data structure. The platform can use the approval data structure to track approvals requested from and provided by users of the platform, in accordance with embodiments described herein. In some embodiments, the approval data structure can be stored at a data store that is accessible by the collaborative document platform (e.g., via a network). An approval data structure can include one or more entries that correspond to approval requests for an approver to approve at least a portion of content of the electronic document. For example, the platform can update an entry of the approval data structure to include data associated with an approval request by a requestor (e.g., in response to detecting the approval request). The platform can update the entry to include data associated with an approval or a rejection by the approver in response to the approval request. Further details regarding the approval data structure are provided herein. As used herein, an approver can represent a user of the collaborative document platform who has privileges to edit a document (e.g., add content to the document, modify existing content of the document, removing existing content from the electronic, etc.), request approval of document content, and update approval data structure entries (e.g., add an approval data structure entry, remove an existing approval data structure entry, modify an existing approval data structure entry, etc.). A requester can represent a user of the collaborative document platform who has privileges to edit a document (e.g., add content to the document, modify existing content of the document, removing existing content from the electronic, etc.), respond to approval requests (e.g., accept edits made to document content, deny edits made to document content, etc.), and update approval data structure entries (e.g., add an approval data structure entry, remove an existing approval data structure entry, modify an existing approval data structure entry, etc.). (16) Embodiments of the present disclosure provide that at least a portion of the approval data structure can be included within the content of an electronic document. Users accessing the electronic document can interact with entries of the included portion of the approval data structure to provide requests for approval to edits to the content made by the users and/or respond to requests to approval from other users of the platform. For example, a first user of the platform (e.g., a requestor) can provide one or more edits to one or more portions of content of the electronic document via the platform GUI. An edit can include adding content to an electronic document, modifying existing content of an electronic document, removing existing content from the electronic document, etc. The requestor can update an entry of the portion of the approval data structure that is included within the content of the electronic document via the platform GUI to include an indication of a second user that is to provide approval of the edits made to the document (e.g., an approver or a reviewer). The collaborative document platform may detect that the requestor has updated an entry of the portion of the approval data structure included within the content of the electronic document. As indicated above, the updated entry may correspond to a first approval request for the second user to approve edits made by the first user. Upon detecting the update to the entry of the included portion of the data structure, the platform can update the approval data structure (e.g., at the data store) to include data of the updated entry. In addition to or in response to updating the approval data structure, the collaborative document platform may transmit a notification (e.g., an electronic mail notification, a push notification, etc.) to a second client device associated with the second user. In some embodiments, the second user can access the

electronic document via the platform GUI at the second client device (or another client device) and can update the entry of the included portion of the approval data structure to indicate an approval or rejection to the edits made to the one or more portions of the content by the first user. In such embodiments, the second user accesses the electronic document using the same application (e.g., a document editing application) that the first user accessed to provide the approval request. Further details regarding such examples are provided with respect to FIGS. **4**A-**4**C.

- (17) In other or similar embodiments, the notification transmitted to the second client device alerting the second user to the first approval request can be provided to the second user via a different application than the application that the first user accessed to provide the approval request. For example, the notification can be provided to the second user via an electronic mail application. The second user can provide a response to the approval request by engaging with an approval GUI element or a rejection GUI element provided via a GUI of the second client device by the electronic mail application. After the second user provides a response to the approval request, the platform can update the approval data structure to include additional data corresponding to the response. The portion of the approval data structure embedded within the content of the electronic document can also be updated to include the additional data corresponding to the response. Users of the platform that access the electronic document (e.g., the first user, the second user, etc.) can accordingly view the approval request and response history based on the updates to the embedded portion of the approval data structure. Further details regarding such an example are provided with respect to FIG. **6**.
- (18) In some embodiments, one or more first portions of the approval data structure can be associated with first content of the electronic document and one or more second portions of the approval data structure can be associated with second content of the electronic document. A user can cause (e.g., by interacting with one or more GUI elements) the first portions of the data structure to be embedded in a region of the electronic document that is near or adjacent to the first content of the electronic document and the second portions of the data structure to be embedded in a region of the document that is near or adjacent to the second content of the electronic document. Accordingly, users can solicit and provide approval decisions for the first content and/or the second content via the respective first portions and second portions of the data structure.
- (19) Aspects of the present disclosure address the above and other deficiencies by providing techniques for tracking approval requests and responses via a portion of an approval data structure embedded within content of an electronic document. By facilitating and tracking approval requests and responses within the electronic document, users can easily access the approval request and response history when accessing the electronic document to determine a status of the electronic document, which can improve overall system workflow and reduce the amount of time that users are editing an electronic document and/or the amount of time users spend interacting with the associated electronic document platform. Accordingly, fewer computing resources are consumed by the collaborative document platform, which improves an overall efficiency of a system including the collaborative document platform and decreases overall latency of the system. Further, embodiments of the present disclosure enable users to provide approval decisions for respective sections of an electronic document, rather than an entire electronic document (e.g., which may be hundreds or thousands of pages long). Users are therefore able to identify rejected sections and make appropriate corrections more quickly, which can reduce the amount of time such users spend accessing and editing the electronic document. Accordingly, more computing resources are made available to other processes of the computing system, which can increase an overall efficiency and decrease an overall latency of the computing system.
- (20) FIG. **1** illustrates an example system architecture **100**, in accordance with implementations of the present disclosure. The system architecture **100** (also referred to as "system" herein) includes client devices **102**A-N, a data store **110**, a platform **120**, and/or a server machine **150** each connected to a network **108**. In implementations, network **108** can include a public network (e.g.,

- the Internet), a private network (e.g., a local area network (LAN) or wide area network (WAN)), a wired network (e.g., Ethernet network), a wireless network (e.g., an 802.11 network or a Wi-Fi network), a cellular network (e.g., a Long Term Evolution (LTE) network), routers, hubs, switches, server computers, and/or a combination thereof.
- (21) In some implementations, data store **110** is a persistent storage that is capable of storing data as well as data structures to tag, organize, and index the data. In some embodiments, a data item can correspond to one or more portions of a document displayed via a graphical user interface (GUI) on a client device **102**, in accordance with embodiments described herein. Data store **110** can be hosted by one or more storage devices, such as main memory, magnetic or optical storage based disks, tapes or hard drives, NAS, SAN, and so forth. In some implementations, data store **110** can be a network-attached file server, while in other embodiments data store **110** can be some other type of persistent storage such as an object-oriented database, a relational database, and so forth, that may be hosted by platform **120** or one or more different machines coupled to the platform **120** via network **108**.
- (22) The client devices **102**A-N can each include computing devices such as personal computers (PCs), laptops, mobile phones, smart phones, tablet computers, netbook computers, networkconnected televisions, etc. In some implementations, client devices **102**A-N may also be referred to as "user devices." Each client device can include a content viewer. In some embodiments, a content viewer can be an application that provides a graphical user interface (GUI) for users to view, create, or edit content of a file **121**, such as an electronic document file, an electronic message file (e.g., an email file), an image file, a video file, etc. For example, the content viewer can be a web browser that can access, retrieve, present, and/or navigate files **121** served by a web server. The content viewer can render, display, and/or present the content of a file 121 to a user. In one example, the content viewer can be a standalone application (e.g., a mobile application or app) that allows users to view, edit, and/or create digital content items (e.g., electronic documents, electronic messages, digital video items, digital images, electronic books, etc.). In some implementations, the content viewer can be an electronic document platform application for users to generate, edit, and/or upload content for electronic documents on the platform 120. In other or similar implementations, the content viewer can be an electronic messaging platform application (e.g., an electronic mail (email) application) for users to generate and send messages via platform 120. As such, the content viewers can be provided to the client devices **102**A-**102**N by platform **120**.
- (23) In some implementations, platform 120 and/or server machine 150 can be one or more computing devices (such as a rackmount server, a router computer, a server computer, a personal computer, a mainframe computer, a laptop computer, a tablet computer, a desktop computer, etc.), data stores (e.g., hard disks, memories, databases), networks, software components, and/or hardware components that may be used to provide a user with access to a file 121 (e.g., an electronic document, an e-mail message, etc.) and/or provide the file 121 to the user. For example, platform 120 can be an electronic document platform, such as a collaborative document platform. The electronic document platform may allow a user to create, edit (e.g., collaboratively with other users), access or share with other users an electronic document stored at data store 110. In another example, platform 120 can be an electronic messaging platform (e.g., e-mail platform). The electronic messaging platform can allow a user to create, edit, or access electronic messages (e.g., e-mails) addressed to other users of the electronic messaging platform or users of client devices outside of the electronic messaging platform. Platform 120 can also include a website (e.g., a webpage) or application back-end software that can be used to provide a user with access to files 121.
- (24) As illustrated in FIG. **1**, platform **120** can include a document management component **122**, in some embodiments. Document management component **122** can be configured to manage access to a particular document by a user of platform **120**. For example, a client device **102** can provide a request to platform **120** for a particular file **121** corresponding to an electronic document.

Document management component **122** can identify the file **121** (e.g., stored in data store **110**) and can determine whether a user associated with the client device **102** is authorized to access the requested file **121**. Responsive to determining that the user is authorized to access the requested file **121**, document management component **122** can provide access to the file **121** to the client device **102**. The client device **102** can provide the user with access to the file via the GUI of the content viewer, as described above.

- (25) As indicated above, a user can create and/or edit an electronic document (e.g., of file 121) via a GUI of a content viewer of a client device associated with the user (also referred to herein as a platform GUI). The electronic document can include content, in some embodiments, Content can include one or more text strings, images, videos, graphics, etc. In some embodiments, the electronic document can be or can correspond to a word document, slide presentation document, a spreadsheet document, and so forth. Platform **120** is configured to enable a user to create and/or edit an electronic document. For example, a client device **102**A associated with a user of platform **120** can transmit a request to platform **120** to create a word document based on a word document template associated with platform **120**. Platform **120** can generate a file **121** associated with the word document based on the word document template and can provide the user with access to the word document via the platform GUI. In another example, a client device **102** associated with a user of platform 120 can transmit a request to access an electronic document (e.g., a word document) via the platform GUI. Document management component 122 can obtain the file 121 associated with the requested electronic document, as described above, and platform **120** can provide the user with access to the electronic document via the platform GUI. The user can edit one or more portions of the electronic document via the platform GUI and the platform 120 can update the file **121** associated with the electronic document to include the edits to the one or more portions. The electronic document can be a collaborative document that, in some embodiments, can be edited (e.g., concurrently) by one or more users of platform 120.
- (26) An approval data structure **124** can be stored at data store **110**. The approval data structure can be maintained and/or otherwise accessible to platform **120** (e.g., via network **108**, via a bus, etc.). The approval data structure **124** can include entries corresponding to approval requests. An approval request can include, for example, a request by one or more users (e.g., a requester) of platform **120** for another user of platform **120** (e.g., a reviewer) to provide an approval decision (e.g., accept, reject, etc.) with respect to edits made to an electronic document. As indicated above, an electronic document can include content. In some embodiments, a portion of an approval data structure can be embedded within the content of the electronic document. For example, a portion (e.g., one or more entries) of the approval data structure can be embedded above, below, or within the one or more portions of content such that the embedded portion of the data structure is presented as a respective content object of the electronic document (e.g., via the platform GUI), in accordance with embodiments, of FIGS. 4A-4C. Platform 120 can enable the user to provide and/or modify the portion of the approval data structure embedded within the content of the electronic document, in accordance with embodiments described below. For example, the user can update an entry of the embedded portion of the approval data structure by interacting with one or more GUI elements associated with one or more fields of an entry. Updating the embedded portion of the approval data structure can additionally or alternatively include a user adding an additional entry to the embedded portion of the approval data structure via the one or more GUI elements of the platform GUI. For example, the user can edit the embedded portion of the approval data structure to add an entry (e.g., an approval entry, as described with respect to FIG. **4**B). The approval entry that is added or updated by a user can correspond to an approval request.
- (27) As illustrated in FIG. **1**, platform **120** can include an approval engine **141**. Approval engine **141** can manage and track approval requests by users of platform **120**. Approval engine **141** can update approval data structure **124**, and the portion of approval data structure embedded within the content of the document, based on approval requests and corresponding approval decisions (e.g.,

approvals, rejections, etc.) provided by users of platform **120**, as described herein. In some embodiments, approval engine 141, can detect updates made to the approval data structure embedded within the contents of the electronic document. In an illustrative example, approval engine **141** can detect that a user (e.g., a requester) has added one or more entries to a portion of an approval data structure embedded within an electronic document (e.g., via the platform GUI). Responsive to detecting that the requester has added one or more entries to the embedded portion of the approval data structure, approval engine **141** can update approval data structure **124** associated with the electronic document based on the entry the requester has added to the portion of the approval data structure embedded within the contents of the electronic document. Further details regarding approval data structure **124** and approval engine **141** are provided herein. (28) A notification engine **151** can transmit a notification to a user (e.g., a reviewer) of platform **120** indicating an approval request provided by another user. For example, in response to approval engine **141** updating approval data structure **124**, notification engine **151** can transmit a notification to a client device **102** associated with the reviewer indicating that another user (e.g., the requestor) has requested approval of edits made to an electronic document. As described above, the requestor can provide the request by updating one or more entries of the portion of the approval data structure embedded within the content of the electronic document, as described herein. In some embodiments, notification engine **151** can transmit the notification via an electronic mail (e-mail) application and/or via a push notification application.

- (29) It should be noted that although FIG. **1** illustrates approval engine **141** and notification engine **151** as part of platform **120**, in additional or alternative embodiments, approval engine **141** and/or notification engine **151** can reside on one or more server machines that are remote from platform **120** (e.g., server machine **150**).
- (30) It should be noted that in some other implementations, the functions of server machines **140** and **150** and/or platform **120** can be provided by a fewer number of machines. For example, in some implementations server machines **140** and **150** may be integrated into a single machine, while in other implementations server machines **140** and **150** may be integrated into multiple machines. In addition, in some implementations one or more of server machines **140** and **150** may be integrated into platform **120**.
- (31) In general, functions described in implementations as being performed by platform **120** and/or server machines **140** and **150** can also be performed on the client devices **102**A-N in other implementations. In addition, the functionality attributed to a particular component can be performed by different or multiple components operating together. Platform **120** can also be accessed as a service provided to other systems or devices through appropriate application programming interfaces, and thus is not limited to use in websites.
- (32) Although implementations of the disclosure are discussed in terms of platform **120** and users of platform **120** accessing an electronic document, implementations can also be generally applied to any type of documents or files. Implementations of the disclosure are not limited to electronic document platforms that track approvals for an electronic document.
- (33) In implementations of the disclosure, a "user" can be represented as a single individual. However, other implementations of the disclosure encompass a "user" being an entity controlled by a set of users and/or an automated source. For example, a set of individual users federated as a community in a social network can be considered a "user." In another example, an automated consumer can be an automated ingestion pipeline of platform **120**.
- (34) Further to the descriptions above, a user may be provided with controls allowing the user to make an election as to both if and when systems, programs, or features described herein may enable collection of user information (e.g., information about a user's social network, social actions, or activities, profession, a user's preferences, or a user's current location), and if the user is sent content or communications from a server. In addition, certain data can be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For

example, a user's identity can be treated so that no personally identifiable information can be determined for the user, or a user's geographic location can be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user can have control over what information is collected about the user, how that information is used, and what information is provided to the user. (35) FIG. 2 is a block diagram illustrating an example platform 120 and an approval engine 141, in accordance with implementations of the present disclosure. In some embodiments, platform 120 can include a file 121, and/or a document management component 122, as described with respect to FIG. 1. Platform 120 can be connected (e.g., via network 108) to one or more client device 102 (e.g., client devices 102A-102N, etc.). File 121 can be a file for an electronic document, such as a word document, a slide presentation document, a spreadsheet document, etc. As described with respect to FIG. 1, the electronic document of file 121 can include content that is accessible by users of platform 120 via a platform GUI provided via one or more client devices 102. Content can include text, drawings, images, and/or the portion of the approval data structure embedded within the content of the electronic document.

- (36) In some embodiments, platform **120**, approval engine **141** and/or notification engine **151** can be connected to memory **250** (e.g., via a network such as network **108**, via a bus, etc.). In some embodiments, one or more portions of memory **250** can correspond to data store **110**. In some embodiments, one or more portions of memory **250** can additionally or alternatively correspond to a memory of client device **102** and/or another memory associated with system **100**.
- (37) As described above, document management component **122** can provide a user with access to an electronic document via a content viewer GUI provided by platform **120** (referred to as platform GUI herein). In some embodiments, the user can interact with the electronic document via one or more peripheral devices (e.g., a keyboard, a touch screen, a mouse, etc.) that is included with or otherwise connected to client device **102**. For example, the user can edit text by engaging with keys of a keyboard and/or buttons of a touch screen of client device **102**. In response to detecting that the user has engaged with one or more keys of the keyboard and/or buttons of the touch screen, platform **120** can update one or more sections of the electronic document to correspond with the user-provided edit.
- (38) As indicated above, approval engine **141** can be configured to manage and track approval requests and/or approval decisions provided by users of platform **120** An approval request refers to a request by a first (e.g., the requestor) for a second user (e.g., an approver) to provide an approval decision (e.g., an approval, a rejection, etc.) for content of an electronic document. Approval engine **141** can include an approval detection component **220**, and/or an approval update component **224**, as illustrated in FIG. 2. In some embodiments, the electronic document can be associated with one or more approval data structures (e.g., approval data structure 124), as described above. Platform **120** can use approval data structure **124** to maintain and/or track approval requests. Approval data structure **124** can include one or more entries that are each associated with approval requests and corresponding approval decisions, as described below with respect to FIG. 3. FIG. 3 illustrates an example approval data structure **124** associated with an electronic document, in accordance with implementations of the present disclosure. As illustrated by FIG. 3, approval data structure **124** can include one or more entries **330** that each correspond to a respective approval request (e.g., the first approval request, the second approval request, the third approval request, etc.) made for the electronic document. Each entry **330** can include a reviewer field **312**, a status field **314**, a due date field **316**, and a notes field **318**. Reviewer field **312** of a respective entry **330** can include an identifier associated with a user of platform **120** associated with reviewing the corresponding approval request. Status field 314 of the respective entry 330 can include indication of a status of the approval request. Due date field **316** can include a due date associated with the approval request. Notes field **318** can include additional details (e.g., edits made to the electronic document) associated with the approval request. In some embodiments, each entry **330** can include additional

fields (e.g., name of a requester, request date, reviewer comments, etc. (not shown)) associated with the approval request.

- (39) In some embodiments, approval engine **141** can use approval data structure **124** to track a status of approval requests and/or approval decisions provided by users of platform **120**. A user of platform **120** can request approval of edits made to content of the electronic document according to one or more techniques, as described herein. In some embodiments, a platform GUI can provide one or more GUI elements that enable a user (e.g., a requestor) to request approval of edits made to content of the electronic document. When the user interacts with the one or more GUI elements, a region of the platform GUI (e.g., a sidebar near or adjacent to the content of the electronic document) can be updated to include additional elements that enable the user to provide an indication of another user (e.g., an approver) that is to provide an approval decision in accordance with the approval request. Approval detection component **220** detects that the requestor has provided the approval request via the sidebar and updates data structure **124** to include an entry that corresponds to the approval request. The approver can access the electronic document via the platform GUI at a client device associated with the approver. When the approver accesses the electronic document, a region of the platform GUI (e.g., a side bar near or adjacent to the content of the electronic document) can be updated to include an indication that the requestor has requested approval of the edits made to the electronic document. The side bar can additionally include GUI elements that enable the approver to provide an approval decision (e.g., to approve or reject) with respect to the edits made to the content of the electronic document. The approver can review the edits made to the document by the requestor and can engage with the one or more GUI elements of the sidebar to indicate the approval decision. Approval detection component **220** can detect that the approver has provided the approval decision (e.g., the approval or rejection) and can update the entry of data structure **124** to include an indication of the approval decision. (40) In an illustrative example, the requestor can provide an approval request and indicate a reviewer (e.g., "John Doe"), a due date (e.g., "Aug. 25, 2022"), and notes (e.g., "please approve the updated project timeline") via the additional elements of a sidebar near or adjacent to the content of
- reviewer (e.g., "John Doe"), a due date (e.g., "Aug. 25, 2022"), and notes (e.g., "please approve th updated project timeline") via the additional elements of a sidebar near or adjacent to the content of the document. Approval detection component **220** can detect that the requestor has provided the approval request via the sidebar and can determine the indicated reviewer, due date, and notes based on the provided approval request. Approval detection component **220** can update data structure **124** to include entry **330**B that corresponds to the approval request. Approval detection component **220** can update entry **330**B of data structure **124** to include the indicated reviewer, "John Doe," in reviewer field **312**; the indicated due date, "Aug. 25, 2022" in due date field **316**; the indicated notes, "please approve the update project timeline," in notes field **318**; and can automatically populate status field **314** to "requested," as illustrated by FIG. **3**. John Doe can review the edits made to the content of the document by the requestor (e.g., via the platform GUI) and can engage with the one or more GUI elements of the sidebar to indicate the approval of the edits. Approval detection component **220** can detect a user interaction at the client device associated with John Doe and can determine, based on the user interaction, that John Doe has provided an approval decision and can update the status field **314** of entry **330**B of the approval data structure **124** to indicate the approval decision (not shown).
- (41) In additional or alternative embodiments, one or more portions of approval data structure **124** can be embedded within the content of the electronic document. FIGS. **4**A-**4**C illustrate an example of one or more portions of approval data structure **124** embedded within the content of an electronic document. Each of FIGS. **4**A-**4**C include a GUI **410** provided by platform **120** to user devices **102**. GUI **410** can display one or more sections **412** of content **414** (e.g., text) included in the electronic document to a user accessing the electronic document via a respective client device **102**. As further illustrated in FIGS. **4**A-**4**C, one or more portions of approval data structure **124** can be embedded within content **414** of the electronic document. For example, FIG. **4**A illustrates entries **330**A and **330**B as the portion of approval data structure **124** embedded within the content

of the electronic document. In some embodiments, portions of approval data structures associated with respective electronic documents of platform 120 can be embedded within the same region of each electronic document. For example, portions of the data structure embedded within the content of a respective electronic document can be automatically (e.g., without user interaction) included above, below, or within the one or more portions of content of the document. As illustrated in FIGS. 4A-C, entries 330A and 330B of data structure 124 can be automatically embedded (e.g., without user interaction) below content 414. In other or similar embodiments, a user can manually insert the portion of the approval data structure to be embedded in the content of the electronic document by interacting with one or more GUI elements of platform GUI associated with embedding portions of the approval data structure **124** into the content of the electronic document. In some embodiments, the user can designate a particular region that is to include the embedded portions of the data structure **124**. For example, platform **120** can embed the portion of the approval data structure into the electronic document according to a cursor location of the user. (42) In some embodiments, a user can request approval of edits made to the electronic document by updating the one or more embedded portions of the approval data structure. In an illustrative example, the platform GUI 410 can include one or more GUI elements (e.g., GUI element 440) that enable the user to add and/or update one or more entries of the portions of approval data structure **124** embedded within the content of the electronic document. The user can engage with (e.g., select, click, etc.) the one or more GUI elements to update an entry of the embedded portion of the approval data structure **124** provided via platform GUI **410**. For instance, the user can provide an indication of an identifier associated with one or more users that are subject to the approval request, a due date of the approval request, and/or notes or comments associated with the approval request. As illustrated in FIG. 4A, a requestor can interact with GUI element 440 to add an entry to the portion of the approval data structure embedded within the content of the document. The requestor can update the reviewer field **422** of the added entry to provide an indication of the reviewer to receive the approval request. The requestor can update the due date field **426** of the added to entry to indicate a due date associated with the approval request. The requestor can update the notes field **428** to indicate notes and/or comments associated with the approval request. Responsive to the requestor updating the reviewer field 422, the due date field 426, and the notes filed 428, status field **424** can be automatically populated to be "requested," or "pending." (43) Referring back to FIG. 2, approval detection component 220 can detect that the requestor has made an update to the portion of the approval data structure **124** embedded within the content of the electronic document. In some embodiments, approval detection component **220** can detect that platform **120** has updated the portion of the approval data structure **124** embedded within the content of the electronic document in response to a user selection or interaction with a peripheral device and/or a GUI element of the platform GUI, as described above. In an illustrative example, one or more portions of approval detection component **220** can be included a web application running on client device **102** to provide the platform GUI to a user associated with the client device **102**. In response to the user selection or interacting with the platform GUI, a signal indicating the selection or interaction can be transmitted (e.g., from a controller for a peripheral device of client device **102**, etc.) to the web application. The approval detection component **220** can receiving an indication of the selection or interaction from the web application, in some embodiments. In other or similar embodiments, platform **120** can transmit a notification to approval detection component **220** (e.g., via network **108**, via a bus, etc.) indicating the update was made to the portion(s) of approval data structure embedded within the content of the electronic document. (44) As illustrated in FIG. **4**B, a user can update content of the electronic document to add text string "4. OCCUPANTS: The premise shall not be occupied by any person other than those designated above as tenant with exception of the following named persons." Such addition can correspond to a respective edit by the user. The user can update the embedded portion of the approval data structure **124** to include an entry associated with an approval request of content

within the electronic document. As illustrated in FIG. **4**B the user can edit the embedded portion(s) of approval data structure **124** to add approval entry **430**. Approval entry **430** can correspond to an approval request from the user to approve one or more portions of the content (e.g., the added portion, other portions, etc.), as described above.

- (45) The requester can update one or more fields of entry **430** to include information associated with the approval request. For example, the requester can update the reviewer field **422** to indicate a reviewer or approver that is subject to the approval request (e.g., "John Doe"), the due date field **426** to indicate a due date for the approval request (e.g., "Aug. 27, 2022"), and/or the notes field **428** to include notes or comments associated with the approval request (e.g., "Please approve the changes to the document."). In some embodiments, the requestor can also update the status field **424** of entry **420** to indicate a status (e.g., requested, pending, etc.) of the approval request. In additional or alternative embodiments, platform **120** can populate the status field **424** (e.g., automatically) to indicate that the request is pending. In some embodiments, the user can update a field by selecting an entry from a pre-defined set. For example, the user can select a reviewer **422** from a GUI element (e.g., drop-down menu) indicating a set of pre-defined approvers or reviewers associated with the electronic device via a peripheral device (e.g., a keyboard, a touch screen, a mouse, etc.). The set of pre-defined approvers or reviews can be provided to platform **120** by one or more users of the electronic document, such as one or more owners (e.g., a creator and/or a user that has ownership control) of the electronic document). It is important to note that an entry in the embedded portion(s) of the approval data structure **124** may not always correspond to a request for approval of a user edit to the electronic document. In some embodiments, the entry of embedded portion of the approval data structure can correspond to a review request associated with the electronic document, rather than the content of the electronic document. For example, an entry of the embedded portion of the approval data structure can correspond to an approval request to approve an updated project timeline associated with the electronic document (e.g., approval data structure entry **330**B), or a request to approve a budget of a project associated with the electronic document.
- (46) Referring back to FIG. **2**, in some embodiments, platform **120** can transmit a notification to document management component **122** (e.g., via network **108**, via a bus, etc.) indicating the update was made to the embedded portion of the approval data structure **124** by the requester. Responsive to receiving the notification, document management component **122** can prevent certain users (e.g., the requestor) with from editing the electronic by platform **120** until an approval decision has been received from the approver (e.g., in response to the request). For example, a client device **102** can provide a request to platform **120** for a particular file **121** corresponding to the electronic document. Document management component **122** can identify the file **121** (e.g., stored in data store **110**) and can determine whether a user associated with the client device **102** is authorized to edit the requested file **121**. Responsive to determining that the requester is unauthorized to edit the requested file **121**, document management component **122** can provide read-only access to the file **121** to the client device **102**. The client device **102** can provide the requester with read-only access to the file via the platform GUI.
- (47) Responsive to approval detection component **220** detecting an update to the embedded portion of the approval data structure embedded **124**, approval update component **224** can update approval data structure **124** (e.g., at memory **250**) to include data associated with the entry added by the requester. In some embodiments, approval update component **224** can receive a notification from approval detection component **220** (e.g., via a bus, etc.) indicating that an update has been made to the embedded portion of the approval data structure **124**. Approval update component **224** can identify data associated with the detected updated. The data associated with the detected update can include data added to the fields of the updated entry, as described with respect to FIG. **4A-4C**. In some embodiments, the data associated with the detected update can be added to approval data structure **124**, described with respect to FIG. **5**.

- (48) FIG. 5 illustrates updates made to an approval data structure 124 by an approval update component 224 of platform 120, in accordance with embodiments of the present disclosure. As described above with respect to FIG. 3, approval data structure 124 can include one or more entries that each correspond to a respective approval request made for the electronic document. Responsive to obtaining data (e.g., reviewer field 422, status field 424, due date field 426, notes field 428) for a respective update to the embedded portion of the data structure 124 from approval detection component 220, approval update component 224 can add an entry 430 to approval data structure 124 corresponding to the respective update. For example, approval update component 224 can add entry 430 indicating that an approval request has been generated associated with reviewer field 512 ("Jane Doe"), status field 514 ("Requested."), due date field ("Aug. 27, 2022"), and notes field 518 ("Please approve the changes to the document.").
- (49) Referring back to FIG. **2**, responsive to approval detection component **220** detecting an update to the embedded portion of the approval data structure and/or responsive to approval update component **224** updating the embedded portion of the approval data structure, notification engine **151** can transmit a notification to a second user (e.g., a reviewer) indicating the approval request. For example, notification engine **151** can determine that an entry has been added to approval data structure **124**. For example, approval engine **141** can transmit a signal to notification engine **151** (e.g., via a bus, via network **108**, etc.) that indicates to notification engine **151** that entry **430** is added to data structure **124**. The signal can include data of entry **430**, in some embodiments. In another example, approval engine **141** can access data structure **124** and detect that entry **430** is added to data structure **124**.
- (50) Responsive to determining that entry **430** has been added to approval data structure **124**, notification engine **151** can extract, from data of entry **430**, an indication of the reviewer associated with the request. Notification engine **151** can transmit a notification to a client device associated with the reviewer indicating the approval request. In some embodiments, notification engine **151** can transmit the notification in a format corresponding to an application associated with the electronic document (e.g., a web application) or in another format (e.g., a push notification format, an email notification format, etc.) associated with another application.
- (51) FIG. **6** illustrates an exemplary notification **600** transmitted to a client device **102**B by notification engine **151**. A client device **102**B can provide the reviewer with access to the notification via GUI **610** of notification content viewer **612**. In some embodiments, notification content viewer **612** may include a notification associated with the approval request (e.g., notification content 614) and the associated changes made to the electronic document (e.g., notification content **616**). In some embodiments, GUI **610** can additionally include GUI elements that enable the reviewer to provide an indication of an approval decision for the edits of the approval request. For example, the additional GUI elements may include an approve button **620**, a reject button **622**, and/or a comment button **624**. Responsive, to detecting a user selection of a particular GUI element, client device 102B may transmit an indication of the response corresponding to the selected GUI element to platform **120**. For example, the reviewer can interact with approve button **620**. Responsive to detecting the user selection of the approve button **620** (e.g., via GUI **610**), client device **102**B may transmit a notification indicating the reviewer's approval (e.g., referred to as "approval decision" herein) of the changes made to the electronic document. (52) In some embodiments, notification engine **151** can receive the notification indicating the reviewer's approval response, described above with respect to FIG. **6**, to the approval request of entry **430**. Responsive to receiving the notification, notification engine **151** can forward the notification and/or transmit another notification to approval update component 224 indicating the approval decision. Approval update component **224** can subsequently update approval data structure **124** according to the approval decision. For example, notification engine **151** can receive the approval decision from a reviewer (e.g., via an email application of client device **102**B) indicating that the reviewer approves the changes made to one or more portions of content of the

electronic document. Notification engine **151** can transmit (e.g., via network **108**, via a bus, etc.) the approval response to approval update component **224**. Referring now to FIG. **5**, responsive to receiving the approval response, approval update component **224** can update the status **514** of entry **430** of data structure **124** to indicate that the reviewer has approved the changes made to the electronic document.

- (53) In some embodiments, approval update component **224** can also be configured to, responsive to receiving the approval response associated with the approval request, update the embedded portion of the approval data structure **124** to indicate the approval response. For example, as illustrated in FIG. 4C, approval update component 224 can update the status field 424 of entry 430 of the embedded portion of the approval data structure to an "approved." status. In some embodiments, update component **224** can update one or more fields to include additional details associated with the approval response. For example, status field **424** of entry **430** can be updated to additional include a decision data (e.g., "Decision Date: Aug. 25, 2022"). In some embodiments, approval update component **224** can update the embedded portion of the approval data structure in real time (or approximately real time) responsive to receiving an approval decision (e.g., from notification engine **151**). While in other embodiments, the embedded portion of the approval data structure can be updated manually responsive to a user interacting with a GUI element of the embedded portion of the approval data structure. For example, a user may interact with a refresh button **416** to transmit a request to update the embedded portion of the approval data structure based on the approval response. Approval update component **224** can update the embedded portion of approval data structure **124** in response to the request.
- (54) In some embodiments, a reviewer can update (e.g., via the platform GUI) one or more existing entries of an approval data structure embedded within the contents of the electronic document to indicate an approval response to approval request. For example, the reviewer can edit status field **424** of entry **430** to approve the changes made to the electronic document. Approval detection component **220** can detect the update and approval update component **224** can update data structure **124** based on the update, as described above.
- (55) As indicated above, in some embodiments, portions of approval data structure **124** can be embedded in multiple regions of the content of the electronic document. For example, a user can cause one or more first entries of approval data structure **124** to be embedded within a first region of content and one or more second entries of approval data structure 124 to be embedded with a second region of content. In some embodiments, the user can provide an indication that the first region of content corresponds to the one or more first entries and/or the second region of content corresponds with the one or more second entries by interacting with (e.g., clicking, selecting, tapping, etc.) a particular GUI element. For example, the user can highlight or otherwise annotate content of the first region (e.g., via the platform GUI) and then can interact with one or more GUI elements to embed one or more entries of approval data structure **124** in the content of the document. Approval update component 224 can update the first region to include the one or more entries (e.g., above or below the highlighted content). Approval update component 224 can associate the content of the first region with the entries embedded in the first region in view of the user interaction with the one or more GUI elements. The user can provide an indication that the second region of content corresponds to the one or more second entries, in accordance with embodiments described above. In some embodiments, approval update component **224** can update approval data structure **124** (e.g., at memory **250**) to include an indication of the first region and/or the second region of the content that includes the first entries and/or the second entries, respectively. For example, approval data structure **124** can include an additional field that indicates a region of content that corresponds to a respective entry of approval data structure **124**. Approval update component **224** can update the additional field of the first entries and/or the second entries to indicate a region of content (e.g., a paragraph number, a range of paragraph numbers, a text string, coordinates of the electronic document, etc.) that correspond to the first entries and/or the

second entries. A requestor can provide requests for content included in the first region and/or the second region by updating the first entries and/or the second entries embedded in the first region and/or the second region, in accordance with previously described embodiments. An approver can provide an approval decision in response to such requests, as described above.

- (56) FIG. 7 depicts a flow diagram of an example method **700** for providing one or more approval requests of an electronic document based on user interaction with a portion of an approval data structure included within the contents of the electronic document, in accordance with implementations of the present disclosure. Method **700** can be performed by processing logic that can include hardware (circuitry, dedicated logic, etc.), software (e.g., instructions run on a processing device), or a combination thereof. In one implementation, some or all the operations of method **700** can be performed by one or more components of system **100** of FIG. **1**. In some embodiments, some or all of the operations of method **700** can be performed by platform **120**, approval engine **141**, and/or notification engine **151** as described above.
- (57) At block **702**, processing logic identifies an electronic document associated with users of a collaborative document platform. The electronic document can be associated with an approval data structure including one or more entries that each correspond to an approval request for a respective user of the users to approve at least a portion of content of the electronic document. In some embodiments, the approval data structure can correspond to approval data structure **124**, described with respect to FIG. **3** above.
- (58) At block **704**, processing logic provides a first client device associated with a first user of the users with access to the identified electronic document. A portion of the approval data structure can be included within the content of the electronic document for presentation to the first user. In some embodiments, the portion of the approval data structure included within the content of the electronic document can be included within section **412** of the electronic document that is accessible by the first user via platform GUI **410**, as described with respect to FIGS. **4A-4**C. In some embodiments, the portion of the approval data structure included within the content of the electronic document can include a first field including an identifier associated with the user (e.g., a reviewer) associated with a corresponding user request and a second field including an indication of a statues of the approval request. In some embodiments, the first field can correspond to reviewer **422** and the second field can correspond to status **424**, as described with respect to FIGS. **4A-4**C.
- (59) At block **706**, processing logic detects that the first user has updated a first entry of the portion of the approval data structure included within the content of the electronic document via the first client device. The update to the first entry can correspond to a first approval request for a second user of the plurality of users to approve one or more portions of the content of the electronic document. In some embodiments, processing logic can detect that the first user has updated the first entry of the portion of the approval data structure by receiving an indication of a user interaction with one or more first elements of a GUI (e.g., GUI **410**) for a first application associated with a collaborative document platform.
- (60) In some embodiments, processing logic can detect that the second user has updated the first entry via the second client device. The second user update can correspond to a response to the first approval request. Processing logic can update (e.g., via approval update component **224**) the approval data structure to include data of the update of the first entry by the second user. Processing logic can transmit a second notification (e.g., via notification engine **151**) to the first client device associated with the first user indicating the response to the first approval request. In some embodiments, processing logic can receive the request from the second client device in response to a user interaction with one or more second GUI elements of a second application, as described above with respect to FIG. **6**. In some embodiments, the second application can be an email application.
- (61) In some embodiments, processing logic can, responsive to detecting that the first user has

updated the first entry, receive a request from a third client device associated with a third user to modify the one or more portions of the content of the electronic document. Processing logic can transmit a notification to the third client device indicating that the request to modify the one or more portions of the electronic document is denied until a response to the first approval request is received from the second user.

- (62) At block **708**, processing logic transmits a first notification to a second client device associated with the second user, the first notification indicating the first approval request. In some embodiments, the first notification can be an email notification and/or a push notification. In some embodiments, the first notification can be transmitted via notification engine **151**, as described above with respect to FIG. **1**.
- (63) At block **710**, processing logic updates the approval data structure to include data of the first entry in accordance with the update to the first entry by the first user of the first client device. (64) FIG. **8** is a block diagram illustrating an exemplary computer system **1000**, in accordance with implementations of the present disclosure. The computer system **800** can correspond to platform **120** and/or client devices **102**A-N, described with respect to FIG. **1**. Computer system **800** can operate in the capacity of a server or an endpoint machine in endpoint-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine can be a television, a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term "machine" shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. (65) The example computer system **800** includes a processing device (processor) **802**, a main memory **804** (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), double data rate (DDR SDRAM), or DRAM (RDRAM), etc.), a static memory **806** (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage device 818, which communicate with each other via a bus 840. (66) Processor (processing device) **802** represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor **802** can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors implementing a combination of instruction sets. The processor **802** can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processor **802** is configured to execute instructions **805** for performing the operations discussed herein.
- (67) The computer system **800** can further include a network interface device **808**. The computer system **800** also can include a video display unit **810** (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an input device **812** (e.g., a keyboard, and alphanumeric keyboard, a motion sensing input device, touch screen), a cursor control device **814** (e.g., a mouse), and a signal generation device **820** (e.g., a speaker).
- (68) The data storage device **818** can include a non-transitory machine-readable storage medium **824** (also computer-readable storage medium) on which is stored one or more sets of instructions **805** embodying any one or more of the methodologies or functions described herein. The instructions can also reside, completely or at least partially, within the main memory **804** and/or within the processor **802** during execution thereof by the computer system **800**, the main memory **804** and the processor **802** also constituting machine-readable storage media. The instructions can further be transmitted or received over a network **830** via the network interface device **808**. (69) In one implementation, the instructions **805** include instructions for providing fine-grained

version histories of electronic documents at a platform. While the computer-readable storage medium **824** (machine-readable storage medium) is shown in an exemplary implementation to be a single medium, the terms "computer-readable storage medium" and "machine-readable storage medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The terms "computer-readable storage medium" and "machine-readable storage medium" shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The terms "computer-readable storage medium" and "machine-readable storage medium" shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.

- (70) Reference throughout this specification to "one implementation," "one embodiment," "an implementation," or "an embodiment," means that a particular feature, structure, or characteristic described in connection with the implementation and/or embodiment is included in at least one implementation and/or embodiment. Thus, the appearances of the phrase "in one implementation," or "in an implementation," in various places throughout this specification can, but are not necessarily, referring to the same implementation, depending on the circumstances. Furthermore, the particular features, structures, or characteristics can be combined in any suitable manner in one or more implementations.
- (71) To the extent that the terms "includes," "including," "has," "contains," variants thereof, and other similar words are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term "comprising" as an open transition word without precluding any additional or other elements.
- (72) As used in this application, the terms "component," "module," "system," or the like are generally intended to refer to a computer-related entity, either hardware (e.g., a circuit), software, a combination of hardware and software, or an entity related to an operational machine with one or more specific functionalities. For example, a component can be, but is not limited to being, a process running on a processor (e.g., digital signal processor), a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Further, a "device" can come in the form of specially designed hardware; generalized hardware made specialized by the execution of software thereon that enables hardware to perform specific functions (e.g., generating interest points and/or descriptors); software on a computer readable medium; or a combination thereof.
- (73) The aforementioned systems, circuits, modules, and so on have been described with respect to interact between several components and/or blocks. It can be appreciated that such systems, circuits, components, blocks, and so forth can include those components or specified subcomponents, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it should be noted that one or more components can be combined into a single component providing aggregate functionality or divided into several separate sub-components, and any one or more middle layers, such as a management layer, can be provided to communicatively couple to such sub-components in order to provide integrated functionality. Any components described herein can also interact with one or more other components not specifically described herein but known by those of skill in the art.
- (74) Moreover, the words "example" or "exemplary" are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use

of the words "example" or "exemplary" is intended to present concepts in a concrete fashion. As used in this application, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or." That is, unless specified otherwise, or clear from context, "X employs A or B" is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then "X employs A or B" is satisfied under any of the foregoing instances. In addition, the articles "a" and "an" as used in this application and the appended claims should generally be construed to mean "one or more" unless specified otherwise or clear from context to be directed to a singular form.

(75) Finally, implementations described herein include collection of data describing a user and/or activities of a user. In one implementation, such data is only collected upon the user providing consent to the collection of this data. In some implementations, a user is prompted to explicitly allow data collection. Further, the user can opt-in or opt-out of participating in such data collection activities. In one implementation, the collect data is anonymized prior to performing any analysis to obtain any statistical patterns so that the identity of the user cannot be determined from the collected data.

Claims

- 1. A method for a server computing device, the method comprising: providing a first client device associated with a first user of a plurality of users with access to an electronic document comprising content, wherein one or more entries of an approval data structure are embedded within the content of the electronic document for presentation to the first user; detecting that the first user has updated a first entry of the one or more entries embedded within the content via the first client device, wherein the update to the first entry corresponds to a first approval request for at least a second user of the plurality of users to approve one or more portions of the content of the electronic document; based on the detection, updating the approval data structure to include data of the first entry in accordance with the update to the first entry by the first user of the first client device; providing a second client device associated with the second user with access to the electronic document, wherein the data of the updated approval data structure is embedded within the content of the electronic document for presentation to the second user; and responsive to detecting that the second user has provided a response to the first approval request by updating the first entry of the updated approval data structure, providing a notification indicating the response to the first client device associated with the first user.
- 2. The method of claim 1, further comprising: transmitting an additional notification to the second client device associated with the second user, wherein the notification indicates the first approval request.
- 3. The method of claim 2, wherein the additional notification transmitted to the second client device corresponds to at least one of an electronic mail notification or a push notification.
- 4. The method of claim 1, further comprising: detecting that the second user has updated the first entry of at least the portion of the data structure embedded within the content of the electronic document via a second client device, wherein the update to the first entry corresponds to a response to the first approval request from the second user; and updating the data structure to include data of the update of the first entry by the second user.
- 5. The method of claim 1, wherein detecting that the first user has updated the first entry of at least the portion of the data structure comprises receiving an indication of a user interaction with one or more first elements of a graphical user interface (GUI) for a first application associated with a collaborative document platform.
- 6. The method of claim 5, further comprising: receiving a request from the second client device to update the data structure to include additional data corresponding to the first entry, wherein the request is received in response to a user interaction with one or more second GUI elements of a

second application associated with the collaborative document platform; updating the data structure to include the additional data in response to the request; and updating at least the portion of the data structure embedded within the content of the electronic document to include the additional data for presentation to at least the first user via the GUI.

- 7. The method of claim 6, wherein the second application comprises an email application.
- 8. The method of claim 1, wherein the first entry of at least the portion of the data structure embedded within the content of the electronic document each comprise a first field including an identifier associated with the respective user of the plurality of users associated with a corresponding approval request and a second field including an indication of a status of the corresponding approval request.
- 9. The method of claim 1, further comprising: responsive to detecting that the first user has updated the first entry of at least the portion of the data structure embedded within the content of the electronic document, receiving a request from a third client device associated with a third user of the plurality of users to modify the one or more portions of the content of the electronic document; and transmitting a notification to the third client device indicating that the request to modify the one or more portions of the content of the electronic document is denied until a response to the first approval request is received from the second user.
- 10. A system comprising: a memory device; and a set of one or more processors coupled to the memory device, the set of one or more processors to perform operations comprising: providing a first client device associated with a first user of a plurality of users with access to an electronic document comprising content, wherein one or more entries of an approval data structure are embedded within the content of the electronic document for presentation to the first user; detecting that the first user has updated a first entry of the one or more entries embedded within the content via the first client device, wherein the update to the first entry corresponds to a first approval request for at least a second user of the plurality of users to approve one or more portions of the content of the electronic document; based on the detection, updating the approval data structure to include data of the first entry in accordance with the update to the first entry by the first user of the first client device; providing a second client device associated with the second user with access to the electronic document, wherein the data of the updated approval data structure is embedded within the content of the electronic document for presentation to the second user; and responsive to detecting that the second user has provided a response to the first approval request by updating the first entry of the updated approval data structure, providing a notification indicating the response to the first client device associated with the first user.
- 11. The system of claim 10, wherein the operations further comprise: transmitting an additional notification to the second client device associated with the second user, wherein the notification indicates the first approval request.
- 12. The system of claim 11, wherein the additional notification transmitted to the second client device corresponds to at least one of an electronic mail notification or a push notification.
- 13. The system of claim 10, wherein the operations further comprise: detecting that the second user has updated the first entry of at least the portion of the data structure embedded within the content of the electronic document via a second client device, wherein the update to the first entry corresponds to a response to the first approval request from the second user; and updating the data structure to include data of the update of the first entry by the second user.
- 14. The system of claim 13, wherein detecting that the first user has updated the first entry of at least the portion of the data structure comprises receiving an indication of a user interaction with one or more first elements of a graphical user interface (GUI) for a first application associated with a collaborative document platform.
- 15. The system of claim 14, wherein the operations further comprise: receiving a request from the second client device to update the data structure to include additional data corresponding to the first entry, wherein the request is received in response to a user interaction with one or more second

GUI elements of a second application associated with the collaborative document platform; updating the data structure to include the additional data in response to the request; and updating at least the portion of the data structure embedded within the content of the electronic document to include the additional data for presentation to at least the first user via the GUI.

- 16. The system of claim 15, wherein the second application comprises an email application.
- 17. The system of claim 10, wherein the first entry of at least the portion of the data structure embedded within the content of the electronic document each comprise a first field including an identifier associated with the respective user of the plurality of users associated with a corresponding approval request and a second field including an indication of a status of the corresponding approval request.
- 18. The system of claim 10, wherein the operations further comprise: responsive to detecting that the first user has updated the first entry of at least the portion of the data structure embedded within the content of the electronic document, receiving a request from a third client device associated with a third user of the plurality of users to modify the one or more portions of the content of the electronic document; and transmitting a notification to the third client device indicating that the request to modify the one or more portions of the content of the electronic document is denied until a response to the first approval request is received from the second user.
- 19. A non-transitory computer readable storage medium comprising instructions that, when executed by a processing device, cause the processing device to perform operations comprising: providing a first client device associated with a first user of a plurality of users with access to an electronic document comprising content, wherein one or more entries of an approval data structure are embedded within the content of the electronic document for presentation to the first user; detecting that the first user has updated a first entry of the one or more entries embedded within the content via the first client device, wherein the update to the first entry corresponds to a first approval request for at least a second user of the plurality of users to approve one or more portions of the content of the electronic document; based on the detection, updating the approval data structure to include data of the first entry in accordance with the update to the first entry by the first user of the first client device; providing a second client device associated with the second user with access to the electronic document, wherein the data of the updated approval data structure is embedded within the content of the electronic document for presentation to the second user; and responsive to detecting that the second user has provided a response to the first approval request by updating the first entry of the updated approval data structure, providing a notification indicating the response to the first client device associated with the first user.
- 20. The non-transitory computer readable storage medium of claim 19, further comprising: transmitting an additional notification to the second client device associated with the second user, wherein the notification indicates the first approval request.