

ScienceDirect

Review Article

Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms

Jae Hyung Kim¹, Yong-Tae Kim² and Sang Hoon Joo¹

Abstract

Selective two-electron (2 e $^-$) pathway oxygen reduction reaction (ORR) has gained prominence for enabling small-scale, on-site electrochemical $\rm H_2O_2$ production and has emerged as a promising alternative to the conventional anthraquinone process. The rational design of catalysts that can suppress the competing four-electron pathway ORR is critical. This review highlights catalyst design strategies for promoting the selective 2 e $^-$ pathway ORR, including alloying with inert metals, partial surface poisoning, and generating atomically dispersed sites. The major results and advances, as well as unresolved challenges are summarized.

Addresses

 Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk, 37673, Republic of Korea

Corresponding authors: Kim, Yong-Tae (yongtae@postech.ac.kr); Joo, Sang Hoon (shjoo@unist.ac.kr)

Current Opinion in Electrochemistry 2020, 21:109-116

This review comes from a themed issue on **Energy Transformation**Edited by **Hiroyuki Uchida**

For a complete overview see the Issue and the Editorial

Available online 1 February 2020

https://doi.org/10.1016/j.coelec.2020.01.007

2451-9103/© 2020 Elsevier B.V. All rights reserved.

Keywords

Electrocatalysis, Oxygen reduction reaction, $\rm H_2O_2$ production, Catalyst design, Metal isolation.

Introduction

The oxygen reduction reaction (ORR) is arguably one of the most important electrochemical reactions affecting the efficiency of energy conversion devices such as fuel cells [1] and metal-air batteries [2]. Two ORR pathways are possible: the four-electron (4 e^-) pathway, where oxygen is converted to H_2O by complete reduction and the two-electron (2 e^-) pathway involving partial reduction of O_2 to generate hydrogen peroxide (H_2O_2)

[3]. The 2 e⁻ pathway ORR has been regarded as an adverse side reaction that impedes the efficient 4 e⁻ pathway in polymer electrolyte membraae fuel cells (PEMFCs), as it degrades the performance of PEMFC by destroying the Nafion membrane [4,5]. However, the selective 2 e⁻ pathway has recently garnered a surge of interest as a means of the electrochemical production of H_2O_2 [6–16].

H₂O₂ is strongly oxidizing yet environmentally benign and is thus widely exploited in polymer and pharmaceutical syntheses, pulp and textile bleaching, as well as wastewater and ballast water treatment [6-9]. The annual global production of H₂O₂ is estimated to reach a value of ~6 billion US dollars by 2023 [8]. Ninety-five percent of the current H₂O₂ production uses the anthraquinone process [6], which undesirably requires high pressure H₂ and expensive Pd-based catalysts, large infrastructures, and energy-intensive distillation steps. This process typically produces H₂O₂ in high concentration in a large volume, with attendant safety risks related to the storage and transportation of H₂O₂. Recently, electrochemical H₂O₂ production has emerged as a promising alternative to the anthraquinone process [6–9]. Electrochemical H₂O₂ production allows continuous, on-site H_2O_2 production with dilute H_2O_2 , mitigating the drawbacks of the anthraquinone process.

Pivotal to efficient H₂O₂ electrosynthesis is the design of electrode catalysts that can promote the selective 2 e⁻ pathway ORR while suppressing the competing 4 e⁻ pathway ORR [9]. In the ORR, oxygen can be adsorbed on the surface of metal catalysts in two different configurations: (i) dissociative side-on adsorption which leads to the increased bond length and weakening of the oxygen double bond, yielding H₂O as the product; (ii) associative end-on adsorption where oxygen is adsorbed in the form of *OOH, which can produce both H₂O₂ and H₂O [3,17–19]. To promote the 2 e⁻ pathway ORR, ensemble or hollow sites that facilitate the side-on adsorption of O₂ should be eliminated by isolating the surface metal atoms.

In this short review, we present catalyst preparation strategies for isolating the active metal atoms to promote electrochemical H_2O_2 production. Three major