20

25

WHAT IS CLAIMED IS:

1. A glycopeptide compound having at least one substituent of the formula:

$$-R^{a}-Y-R^{b}-(Z)_{x}$$

5 wherein

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^c-$, -S(O)-, $-SO_2-$, $-NR^cC(O)-$, -OC(O)-, $-NR^cSO_2-$, $-OSO_2-$, $-C(O)NR^c-$, -C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$, $-OP(O)(OR^c)NR^c-$, -OC(O)O-, $-NR^cC(O)O-$, $-NR^cC(O)NR^c-$, $-OC(O)NR^c-$ and $-NR^cSO_2NR^c-$; each Z is independently selected from hydrogen, aryl, cycloalkyl,

cycloalkenyl, heteroaryl and heterocyclic; each R^c is independently selected from the group consisting of hydrogen,

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl,

15

cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

x is 1 or 2;

and pharmaceutically acceptable salts thereof;

5 provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- 2. The compound of Claim 1, wherein the glycopeptide compound is substituted with from 1 to 3 substituents of the formula $-R^a-Y-R^b-(Z)_x$.
 - 3. The compound of Claim 2, wherein each Ra is independently selected from alkylene having from 1 to 10 carbon atoms.
 - 4. The compound of Claim 3, wherein Ra is ethylene or propylene.
- 5. The compound of Claim 2, wherein Z is hydrogen and R^b is alkylene of from 8 to 12 carbon atoms.
 - 6. The compound of Claim 5, wherein R^b and Z form an n-octyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl group.

- 7. The compound of Claim 2, wherein Z is aryl, cycloalkyl, cycloalkenyl, heteroaryl or heterocyclic and R^b is a covalent bond or alkylene of from 1 to 10 carbon atoms.
- 8. The compound of Claim 7, wherein Z is aryl and R^b is a covalent bond, methylene, $-(CH_2)_6$, $-(CH_2)_7$, $-(CH_2)_8$, $-(CH_2)_9$ or $-(CH_2)_{10}$.
 - 9. The compound of Claim 2, wherein each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -NR^c-, -S(O)-, -SO₂-, -NR^cC(O)-, -OC(O)-, -NR^cSO₂-, -C(O)NR^c-, -C(O)O- and -SO₂NR^c-.
- 10. The compound of Claim 9, wherein Y is oxygen, sulfur, -NR^c- or -NR^cSO₂-.
 - 11. The compound of Claim 2, wherein each Z is independently selected from hydrogen, aryl, cycloalkyl, heteroaryl and heterocyclic.
 - 12. The compound of Claim 11, wherein Z is hydrogen or aryl.
- 13. The compound of Claim 12, wherein Z is phenyl, substituted phenyl, biphenyl, substituted biphenyl or terphenyl.
 - 14. The compound of Claim 2, wherein the $-R^a-Y-R^b-(Z)_x$ group is selected from the group consisting of:

$$-CH2CH2-NH-(CH2)9CH3;$$

$$-CH_2CH_2CH_2-NH-(CH_2)_8CH_3;$$

$$-CH_2CH_2-NHSO_2-(CH_2)_9CH_3;$$

```
-CH_2CH_2-NHSO_2-(CH_2)_{11}CH_3;
                   -CH_2CH_2-S-(CH_2)_8CH_3
                   -CH_2CH_2-S-(CH_2)_9CH_3
                   -CH_2CH_2-S-(CH_2)_{10}CH_2;
 5
                   -CH_2CH_2CH_2-S-(CH_2)_8CH_3;
                   -CH_2CH_2CH_2-S-(CH_2)_9CH<sub>3</sub>;
                   -CH_2CH_2CH_2-S-(CH_2)_3 CH=CH-(CH_2)_4CH_3 (trans);
                   -CH_2CH_2CH_2CH_2-S-(CH_2)_7CH_3;
                   -CH_2CH_2-S(O)-(CH_2)_9CH_2;
10
                   -CH_2CH_2-S-(CH_2)_6Ph;
                   -CH_2CH_2-S-(CH_2)_8Ph_2
                   -CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>8</sub>Ph
                   -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>/4-(4
                                                    -Cl/Ph)-Ph;
                   -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-[ACH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>-]-Ph;
15
                   -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>4-(4-CF<sub>3</sub>-Ph)-Ph;
                   -CH_2CH_2-S-CH_2-4-(4/CI-Ph)-Ph;
                   -CH_2CH_2-S(O)-CH_2-4-(4-C1-Ph)-Ph;
                   -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                   -CH_2CH_2-S(O)-CH_2+4-(4-C1-Ph)-Ph;
20
                   -CH_2CH_2CH_2-S-CH_2-4-[3,4-di-Cl-PhCH_2O-)-Ph;
                   -CH_2CH_2-NHSO_2-CH_2-4-[4-(4-Ph)-Ph]-Ph;
                   -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                   -CH_2CH_2CH_2-NHSO_2-CH_2-4-(Ph-C=C-)-Ph;
                   -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-4-(4-Cl-Ph)-Ph; and
                   -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-4-(naphth-2-yl)-Ph.
25
```

10

15

15. A compound of formula I:

$$R^2$$
 O X^1 O X^2 R^{13} R^{11} R^{12} R^{14} R^{15} $R^$

--145--

 R^1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-R^a-Y-R^b-(Z)_x$ or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^e$, or $-O-R^e$;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

R⁵ is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c, -CH(R^c)-NR^cR^e \text{ and } -CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x;$

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

20

15

5

10

10

15

20

25

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;
each R^a is independently selected from the group consisting of alkylene,
substituted alkylene, alkenylene, substituted alkynylene, alkynylene and substituted alkynylene;

each R^b is independently selected/from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $+C(\Phi)R^d$

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is a saccharide group;

X¹, X² and X³ are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -NR^c-, -S(O)-, -SO₂-, -NR^cC(O)-, -OSO₂-, -OC(O)-, -NR^cSO₂-, -C(O)NR^c-, -C(O)O-, -SO₂NR^c-, -SO₂O-, -P(O)(OR^c)O-,

ij.

17. The compound of Claim 16, wherein R¹ is a saccharide group of the formula:

10

5

15

wherein

 R^{15} is $-R^a-Y-R^b-(Z)_x$; and

R¹⁶ is hydrogen or methyl

The compound of Claim 17, wherein R^{15} is a $-R^a-Y-R^b-(Z)_x$ group 18.

5 selected from the group consisting of:

 $-CH_2CH_2-NH-(CH_2)/CH_3$;

-CH2CH2CH2-NH-(// 1/2)/8CH3;

-CH₂CH₂CH₂CH₂-NH (CH₂)CH₃;

-CH₂CH₂-NHSO₂/(CH₂)₉CH₃

10 -CH₂CH₂-NHSO₂/(CH₂)₁₁CH₃

-CH₂CH₂-S-(CH₂),CH₃;

 $-CH_2CH_2-S-(CH_2)_9CH_3$;

 $-CH_2CH_2-S-(CH_2)_{10}CH_3;$

 $-CH_2CH_2CH_2-S-(CH_2)$ CH_3 ;

-CH₂CH₂CH₂-S-(CH₂)CH₃; 15

 $-CH_2CH_2CH_2-S-(CH_2)_3$ CH = CH-(CH₂)₄CH₃ (trans);

 $-CH_2CH_2CH_2CH_2-S-(CH_2)_7CH_3;$

 $-CH_2CH_2-S(O)-(CH_2)_9CH_3;$

 $-CH_2CH_2-S-(CH_2)_6Ph;$

```
-150--
                       -CH_2CH_2-S-(CH_2)_8Ph;
                       -CH_2CH_2CH_2-S-(CH_2)_8Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-[4-CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>-]-Ph;
   5
                       -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4-CF<sub>3</sub>-Ph)-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-S(O)-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-S(O)-CH<sub>2</sub>-4-(4-Q1-Ph)-Ph;
                      -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-[3,4-di-Cl-PhCH<sub>2</sub>O-)-Ph;
 10
                      -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-CH<sub>2</sub>/4-[4/(4-Ph)-Ph]-Ph;
                      -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>/CH<sup>2</sup>/4-(4-Cl-Ph)-Ph;
                      -CH_2CH_2-CH_2-NHSO/-CH_2-4/(Ph-C=C-)-Ph;
                      -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSQ<sub>2</sub>-4-(4-Cl-Ph)-Ph; and
                      -CH_2CH_2CH_2-NHS\phi_2-\cancel{A}(haphth-2-yl)-Ph.
 15
                                The compound of Claim 15, wherein R3 is -OH or -NRCRC.
                      19.
                                The compound of Claim 15, wherein R5 is hydrogen, -CH2-N-(N-
                     20.
           CH<sub>3</sub>-D-glucamine); -CH<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>2</sub>-NH-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>; -CH<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>2</sub>-NH-
           (CH_2)_{11}CH_3; -CH_2-NH-(CH_2)_5-CO\phi H; and -CH_2-N-(2-amino-2-deoxygluconic)
20
           acid).
                                The compound of Claim 15, wherein R8 is -CH2C(O)NH2,
                     21.
          -CH<sub>2</sub>COOH, benzyl, 4-hydroxyphenyl or 3-chloro-4-hydroxyphenyl.
```

22. The compound of Claim 15, wherein R⁹ is hydrogen and R¹¹ is hydrogen or methyl.

10

23. The compound of Claim $2^{\frac{1}{2}}$, wherein R^{10} is alkyl or substituted alkyl.

--1512--

24. The compound of Claim 23, wherein R^{12} is hydrogen, alkyl, substituted alkyl or $-C(O)R^d$.

25. The compound of Claim 24, wherein n is 1.

26. A compound of formula II:

HO
$$R^{26}$$
 R^{26}
 R^{27}
 R^{22}
 R^{23}
 R^{23}
 R^{23}
 R^{24}
 R^{25}
 R^{27}
 R^{27}
 R^{27}

 R^{21} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-R^a-Y-R^b-(Z)_x$; or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^{22} is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$ or $-NR^c-R^a-Y-R^b-(Z)_x$; R^{23} is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-R^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$; R^{24} is selected from the group consisting of hydrogen and lower alkyl;

R²⁵ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

 R^{26} is selected from the group consisting of hydrogen and lower alkyl; or R^{25} and R^{26} are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{27} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{26} and R^{27} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(\Phi)R^d$;

15

20

25

10

10

15

20

25

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is an aminosaccharide group;

each Y is independently selected from the group consisting of oxygen, sulfur, $-S-S-,-NR^c-,-S(O)-,-SO_2-,-NR^cC(O)-,-OSO_2-,-OC(O)-,$

 $-NR^{c}SO_{2}^{-}$, $-C(O)NR^{c}$, $-C(O)O^{-}$, $-SO_{2}NR^{c}$, $-SO_{2}O^{-}$, $-P(O)(OR^{c})O^{-}$,

 $-P(O)(OR^c)NR^{c-}$, $-OP(O)(OR^c)O + OP(O)(OR^c)NR^{c-}$, -OC(O)O-,

 $-NR^{c}C(O)O-$, $-NR^{c}C(O)NR^{c}-$, $-OC(O)NR^{c}-$ and $-NR^{c}SO_{2}NR^{c}-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{21} , R^{22} , R^{23} or R^{27} has a substitutent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
 - (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- The compound of Claim 26, wherein \mathbb{R}^{21} is a saccharide group of the formula:

wherein

 R^{15} is $-R^a-Y-R^b-(Z)_x$, and

R¹⁶ is hydrogen or methyl.

The compound of \angle laim 27, wherein R^{15} is a $-R^a-Y-R^b-(Z)_x$ group 28.

selected from the group consisting of 5

 $-CH_2CH_2-NH-(CH_2)_9$ H_3 ;

 $-CH_2CH_2CH_2-NH-(QH_2)_8CH_3$

-CH₂CH₂CH₂CH₂-NH₁-(CH₂)₇CH₃;

-CH₂CH₂-NHSO₂-(CH₂)₉CH₃;

 $-CH_2CH_2-NHSO_2-\langle CH_2\rangle_{11}CH_3;$ 10

-CH₂CH₂-S-(CH₂), CH₃;

-CH₂CH₂-S-(CH₂) CH₃

-CH₂CH₂-S-(CH₂)₁₀CH₃;

-CH₂CH₂CH₂-S-(CH₂)₈CH₃;

 $-CH_{2}CH_{2}CH_{2}-S-(CH_{2})_{9}CH_{3};$ 15

 $-CH_2CH_2CH_2-S-(CH_2)_3-CH=CH-(CH_2)_4CH_3$ (trans);

 $-CH_{2}CH_{2}CH_{2}CH_{2}-S-(CH_{2}^{\dagger})_{7}CH_{3};$

 $-CH_2CH_2-S(O)-(CH_2)_9CH_9;$

 $-CH_2CH_2-S-(CH_2)_6Ph;$

20 $-CH_2CH_2-S-(CH_2)_8Ph$;

```
-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>8</sub>Ph;
```

- -CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
- -CH₂CH₂-NH-CH₂-4-[4-CH₃)₂CHCH₂-]-Ph;
- $-CH_2CH_2-NH-CH_2-4-(4-CF_3-Ph)-Ph;$
- 5 $-CH_2CH_2-S-CH_2-4-(4-Cl-Ph)-Ph$;
 - $-CH_2CH_2-S(O)-CH_2-4-(4-Cl-Ph)-Ph;$
 - $-CH_2CH_2CH_2-S-CH_2-4-(4-Cl-Ph)-Ph;$
 - -CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
 - -CH₂CH₂CH₂-S-CH₂-4-[3,4|di-Cl-PhCH₂O-)-Ph;
- 10 $-CH_2CH_2-NHSO_2-CH_2-4-[4](4-Ph)-Ph]-Ph;$
 - -CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-¢/1-Ph)-Ph;
 - $-CH_2CH_2CH_2-NHSO_2-CH_2-4-(Ph-C=C-)-Ph;$
 - -CH₂CH₂CH₂-NHSO₂-4-(4-CHPh)-Ph; and
 - -CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.
 - 29. The compound of Claim 26, wherein R²² is -OH or -NR^cR^c.
 - 30. The compound of Claim 26, wherein R²³ is hydrogen, -CH₂-N-(N-CH₃-D-glucamine); -CH₂-NH-CH₂CH₂-NH-(CH₂)₉CH₃; -CH₂-NH-CH₂CH₂-NH-(CH₂)₁₁CH₃; -CH₂-NH-(CH₂)₅-COOH; or -CH₂-N-(2-amino-2-deoxygluconic acid).
- 31. The compound of Claim 26, wherein R²⁴ is hydrogen and R²⁶ is hydrogen or methyl.
 - 32. The compound of Claim 31, wherein R^{25} is alkyl or substituted alkyl.
 - 33. The compound of Claim 32, wherein R²⁵ is isobutyl.

- 34. The compound of Claim 33, wherein R^{27} is hydrogen, alkyl, substituted alkyl or $-C(O)R^d$.
- 35. A compound shown in any of Tables I, II, III, IV, V or VI, or a pharmaceutically-acceptable salt thereof.
- 36. A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a glycopeptide compound having at least one substituent of the formula:

 $-R^a-Y-R^b-(Z)$

10

20

25

5

wherein

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^c-$, -S(O)-, $-SO_2-$, $-NR^cC(O)-$, -OC(O)-, $-NR^cSO_2-$, $-OSO_2-$, $-C(O)NR^c-$, -C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$, $-OP(O)(OR^c)NR^c-$, -OC(O)O-,

-NR^cC(O)O-, -NR^cC(O)NR^c-, -OC(O)NR^c- and -NR^cSO₂NR^c-; each Z is independently selected from hydrogen, aryl, cycloalkyl,

cycloalkenyl, heteroaryl and heterocyclic;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl,

15

20

cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

x is 1 or 2;

and pharmaceutically acceptable salts thereof; provided that:

10 (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least/5 carbon atoms;

(ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;

(iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and

(iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.

37. The pharmaceutical composition of Claim 36, wherein the glycopeptide compound is substituted with from 1 to 3 substituents of the formula $-R^a-Y-R^b-(Z)_x$.

- 38. The pharmaceutical composition of Claim 37, wherein each R^a is independently selected from alkylene having from 1 to 10 carbon atoms.
- 39. The pharmaceutical composition of Claim 38, wherein R^a is ethylene or propylene.

- 40. The pharmaceutical composition of Claim 37, wherein Z is hydrogen and R^b is alkylene of from 8 to 12 carbon atoms.
- 41. The pharmaceutical composition of Claim 40, wherein \mathbb{R}^b and \mathbb{Z} form an n-octyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl group.
- The pharmaceutical composition of Claim 37, wherein Z is aryl, cycloalkyl, cycloalkenyl, heteroaryl or heterocyclic and R^b is a covalent bond or alkylene of from 1 to 10 carbon atoms.
 - 43. The pharmaceutical composition of Claim 42, wherein Z is aryl and R^b is a covalent bond, methylene, $-(CH_2)_{6^-}$, $-(CH_2)_{7^-}$, $-(CH_2)_{9^-}$ or $-(CH_2)_{10^-}$.
 - 44. The pharmaceutical composition of Claim 37, wherein each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -NR^c-, -S(O)-, -SO₂-, -NR^cC(O)-, -OC(O)-, -NR^cSO₂-, -C(O)NR^c-, -C(O)O- and -SO₂NR^c-.
- 15 45. The pharmaceutical composition of Claim 44, wherein Y is oxygen, sulfur, -NR^c- or -NR^cSO₂-.
 - 46. The pharmaceutical composition of Claim 37, wherein each Z is independently selected from hydrogen, aryl, cycloalkyl, heteroaryl and heterocyclic.
- 20 47. The pharmaceutical composition of Claim 46, wherein Z is hydrogen or aryl.

48. The pharmaceutical composition of Claim 47, wherein Z is phenyl, substituted phenyl, biphenyl, substituted biphenyl or terphenyl.

49. The pharmaceutical composition of Claim 37, wherein the $-R^a-Y-R^b-(Z)_x$ group is selected from the group consisting of:

```
5
                          -CH_2CH_2-NH-(CH_2)_9CH_3;
                         -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NH-(CH<sub>2</sub>)<sub>8</sub>CH<sub>3</sub>;
                         -CH_2CH_2CH_2CH_2-NH-(CH_2)_7CH3;
                         -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
                         -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-(CH<sub>2</sub>)<sub>11</sub>CH<sub>3</sub>;
 10
                         -CH_2CH_2-S-(CH_2)_8CH_3;
                         -CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
                         -CH_2CH_2-S-(CH_2)_{10}CH_3;
                        -CH_2CH_2CH_2-S-(CH_2)_8CH_3';
                        -CH_2CH_2CH_2-S-(CH_2)_9CH_3
15
                        -CH_2CH_2CH_2-S-(CH_2)_3-CH_2
                                                                         H = CH - (CH_2)_4 CH_3 (trans);
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)/CH
                        -CH<sub>2</sub>CH<sub>2</sub>-S(O)-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
                        -CH_2CH_2-S-(CH_2)_6Ph;
                        -CH_2CH_2-S-(CH_2)_8Ph;
20
                        -CH_2CH_2CH_2-S-(CH_2)_8\dot{P}_n^h;
                        -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4/Cl-Ph)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-[4|CH<sub>3</sub>)2CHCH<sub>2</sub>-]-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4-CF<sub>3</sub>-Ph)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH_2CH_2-S(O)-CH_2-4-(4-Cl-Ph)_{T-Ph};
25
                       -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                       -CH_2CH_2CH_2-S(O)-CH_2-4-(4-Cl-P_h)-Ph;
```

-CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-)-Ph;

--160---CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph; -CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph; $-CH_2CH_2CH_2-NHSO_2-CH_2-4-(Ph-C=C-)-Ph;$ -CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph; and $-CH_2CH_2CH_2-NHSO_2-4-(naphth-2-yl)-Ph.\\$

A pharmaceutical composition comprising a pharmaceutically-50. acceptable carrier and a therapeutically effective amount of a compound of

formula I:

$$R^2 O$$
 NH
 R^3
 $R^4 O$
 R^5
 R^6
 R^7
 R^7
 R^7
 R^8
 R^8

10

15

R1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-R^a-Y-R^b-(Z)_x$; or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)$,

10

15

20

25

 R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^{3} is $-OR^{c}$, $-NR^{c}R^{c}$, $-O-R^{a}-Y+R^{b}-(Z)_{x}$, $-NR^{c}-R^{a}-Y-R^{b}-(Z)_{x}$, $-NR^{c}R^{e}$, or $-O-R^{e}$;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

R⁵ is selected from the group consisting of hydrogen, halo,
-CH(R^c)-NR^cR^c, -CH(R^c)-NR^cR^e and -CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and

heterocyclic; or R^8 and R^{10} are joined to form $-Ar^1-O-Ar^2-$, where Ar^1 and Ar^2 are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen -C(9)R^d and a saccharide group;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl,

10

5

15

20

cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic: R^e is a saccharide group; X^1 , X^2 and X^3 are independently selected from hydrogen or chloro; 5 each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^{c}-$, -S(O)-, $-SO_{2}-$, $-NR^{c}C(O)-$, $-OSO_{2}-$, -OC(O)-, $-NR^{c}SO_{2}^{-}$, $-C(O)NR^{c}$, $-C(O)O_{-}$, $-SO_{2}NR^{c}$, $-SO_{2}O_{-}$, $-P(O)(OR^{c})O_{-}$, $-P(O)(OR^c)NR^{c-}$, $-OP(O)(OR^c)O-$, $-OP(O)(OR^c)NR^{c-}$, -OC(O)O-, -NR°C(O)O-, -NR°C(O)NR°-, - \oint C(O)NR°- and -NR°SO₂NR°-; each Z is independently selected from hydrogen, aryl, cycloalkyl, 10 cycloalkenyl, heteroaryl and heterocyclic; n is 0, 1 or 2; x is 1 or 2; and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R, R², R³, R⁴, R⁵, R⁶, R⁷ or R¹² has a 15 substitutent of the formula $-R^a - Y - R^b - (Z)_x$; and further provided that: when Y is $-NR^{c}/$, R^{c} is alkyl of 1/1 to 4 carbon atoms, Z is hydrogen (i) and R^b is alkylene, then R^b contains at least 5 carbon atoms; 20 when Y is $-C(\phi)NR^{l_c}$, Z is hydrogen and R^b is alkylene, then R^b (ii) contains at least 5 carbon atoms;/ when Y is sulfur, Z is hydrogen and Rb is alkylene, then Rb (iii) contains at least 7 carbon atoms; and (iv) when Y is oxygen, Z is hydrogen and Rb is alkylene, then Rb 25 contains at least 11 carbon atoms. The pharmaceutical composition of Claim 50, wherein R1 is a 51. saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$.

--163--

15

52. The pharmaceutical composition of Claim 51, wherein R¹ is a saccharide group of the formula:

wherein

 R^{15} is $-R^a-Y-R^b-(Z)_x$ and

R¹⁶ is hydrogen or methyl.

53. The pharmaceutical composition of Claim 52, wherein R¹⁵ is a -R^a-Y-R^b-(Z)_x group selected from the group consisting of:

-CH₂CH₂-NH-(CH₂)₉CH₃;

 $-CH_2CH_2CH_2-NH/(CH_2)_8CH_3$;

10 -CH₂CH₂CH₂CH₂/NH-(CH₂)₇CH₃;

-CH₂CH₂-NHSO/-(CH₂)/CH₃;

 $-CH_2CH_2-NHSO_1/(CH_2)_1/CH_3$;

 $-CH_2CH_2-S-(CH_2^{\downarrow})_8CH_3;$

-CH₂CH₂-S-(CH₂)₉CH₃;

 $-CH_2CH_2-S-(CH_2)_{10}CH_3;$

-CH₂CH₂CH₂-S-(CH₂)₈CH₃

-CH₂CH₂CH₂-S-(CH₂)₉CH₃;

 $-CH_2CH_2CH_2-S-(CH_2)_3-CH=CH-(CH_2)_4CH_3$ (trans);

-CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;

```
-CH<sub>2</sub>CH<sub>2</sub>-S(O)-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
                         -CH_2CH_2-S-(CH_2)_6Ph;
                         -CH_2CH_2-S-(CH_2)_8Ph;
                         -CH_2CH_2CH_2-S-(CH_2)_8Ph;
                         -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
  5
                        -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-[4-CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>-]-Ph;
                        -CH_2CH_2-NH-CH_2-4-(4-CF_3-Ph)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl<sub>1</sub>Ph)-Ph;
                        -CH_2CH_2-S(O)-CH_2-4-(4|Cl-Ph)/Ph;
10
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S(O)-CH<sub>2</sub>-4/(4-Cl-Ph)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-[4,4-di-Cl-PhCH<sub>2</sub>O-)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-CH<sub>2</sub>/4 [4-Ph)-Ph]-Ph;
                       -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>/CH<sub>2</sub>/4/(4-Cl-Ph)-Ph;
                       -CH_2CH_2CH_2-NHSO_2-CH_2/4-(Ph-C=C-)-Ph;
15
                     -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-4/(4-Cl-Ph)-Ph; and
                       -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-4-(naphth-2-yl)-Ph.
```

- 54. The pharmaceutical composition of Claim 50, wherein R³ is -OH or -NR^cR^c.
- 55. The pharmaceutical composition of Claim 50, wherein R⁵ is hydrogen, -CH₂-N-(N-CH₃-D-glucamine); -CH₂-NH-CH₂CH₂-NH-(CH₂)₉CH₃; -CH₂-NH-CH₂CH₂-NH-(CH₂)₁₁CH₃; -CH₂-NH-(CH₂)₅-COOH; and -CH₂-N-(2-amino-2-deoxygluconic acid).
- 56. The pharmaceutical composition of Claim 50, wherein R⁸ is -CH₂C(O)NH₂, -CH₂COOH, benzyl, 4 hydroxyphenyl or 3-chloro-4-hydroxyphenyl.

10

- 57. The pharmaceutical composition of Claim 50, wherein R⁹ is hydrogen and R¹¹ is hydrogen or methyl.
- 58. The pharmaceutical composition of Claim 57, wherein R¹⁰ is alkyl or substituted alkyl.
- 59. The pharmaceutical composition of Claim 58, wherein R^{12} is hydrogen, alkyl, substituted alkyl or $C(O)R^{d}$.
 - 60. The pharmaceutical composition of Claim 50, wherein n is 1.
 - 61. A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of formula II:

HO
$$R^{21}$$
 R^{26} R^{26} R^{27} R^{27} R^{27} R^{27} R^{22} R^{23} R^{23} R^{24} R^{25} R^{27} R^{27}

wherein

 R^{21} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-R^a-Y-R^b-(Z)_x$; or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^{22} is $-OR^c$, $-NR^cR^c$, $-O-R^a Y^-R^b - (Z)_x$ or $-NR^c - R^a - Y - R^b - (Z)_x$; R^{23} is selected from the group consisting of hydrogen, halo,

 $-CH(R^c)-NR^cR^c$, $-CH(R^c)-R^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$;

R²⁴ is selected from the group consisting of hydrogen and lower alkyl;

R²⁵ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R²⁶ is selected from the group consisting of hydrogen and lower alkyl; or R²⁵ and R²⁶ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{27} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{26} and R^{27} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

10

15

20

25

15

20

25

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is an aminosaccharide group;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^c-$, -S(O)-, $-SO_2-$, $-NR^cC(O)-$, $-OSO_2-$, -OC(O)-, $-NR^cSO_2-$, $-C(O)NR^c-$, -C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$, $-OP(O)(OR^c)OR^c-$, $-OP(O)(OR^c)NR^c-$, -OC(O)O-, $-NR^cC(O)O-$, $-NR^cC(O)NR^c-$, $-OC(O)NR^c-$, and $-NR^cSO_2NR^c-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic:

n is 0, 1 or 2;

x is 1 or 2:

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{21} , R^{22} , R^{23} or R^{27} has a substitutent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is $-C(O)NR^{c}$, Z is hydrogen and R^{b} is alkylene, then R^{b} contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and

- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- 62. The pharmaceutical composition of Claim 61, wherein R²¹ is a saccharide group of the formula:

wherein

5

15

 R^{15} is $-R^a-Y-R^b-(Z)_x$, and

R¹⁶ is hydrogen or methyl/

63. The pharmaceutical composition of Claim 62, wherein R^{15} is a $-R^a-Y-R^b-(Z)_x$ group selected from the group consisting of:

10
$$-CH_2CH_2-NH-(CH_2)_9CH_3;$$

$$-CH_2CH_2-NHSO_2-(CH_2)_9CH_3;$$

$$-CH2CH2-S-(CH2)8CH3;$$

```
-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
                           -CH_2CH_2CH_2-S-(CH_2)_3-CH=CH-(CH_2)_4CH_3 (trans);
                          -CH_2CH_2CH_2CH_2-S-(CH_2)_7CH_3;
                          -CH<sub>2</sub>CH<sub>2</sub>-S(O)-(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>;
    5
                          -CH_2CH_2-S-(CH_2)_6Ph;
                          -CH_2CH_2-S-(CH_2)_8Ph;
                          -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>8</sub>Ph;
                          -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                          -CH<sub>2</sub>CH<sub>2</sub>-NH-CH<sub>2</sub>-4-[4-CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>-]-Ph;
                         -CH_{2}CH_{2}-NH-CH_{2}-4-(4-CF_{3}-Ph)-Ph;
 10
                         -CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                         -CH_2CH_2-S(O)-CH_2-4-(4-Cl_7Ph)-Ph;
                         -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                         -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S(O)-CH<sub>2</sub>-4-(4-C1-Ph)-Ph;
 15
                         -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-S-CH<sub>2</sub>-4-[3,4-di-Cl-PhCH<sub>2</sub>O-)-Ph;
                         -CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-CH<sub>2</sub>-4-[4/(4-Ph)-Ph]-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-CH<sub>2</sub>-4-(4-Cl-Ph)-Ph;
                        -CH_{2}CH_{2}CH_{2}-NHSO_{2}-CH_{2}-4-(Ph_{7}C=C)-Ph;
                        -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-NHSO<sub>2</sub>-4/(4-Cl<sub>2</sub>Ph)-Ph; and
20
                        -CH2CH2CH2-NHSO2-4 (naphth-2-yl)-Ph.
```

- 64. The pharmaceutical composition of Claim 61, wherein R²² is -OH or -NR^cR^c.
- 65. The pharmaceutical composition of Claim 61, wherein R²³ is hydrogen, -CH₂-N-(N-CH₃-D-glucamine); -CH₂-NH-CH₂CH₂-NH-(CH₂)₉CH₃; -CH₂-NH-CH₂CH₂-NH-(CH₂)₁₁CH₃; -CH₂-NH-(CH₂)₅-COOH; or -CH₂-N-(2-amino-2-deoxygluconic acid).

- 66. The pharmaceutical composition of Claim 61, wherein R^{24} is hydrogen and R^{26} is hydrogen or methyl.
- 67. The pharmaceutical composition of Claim 66, wherein R²⁵ is alkyl or substituted alkyl.
- 5 68. The pharmaceutical composition of Claim 67, wherein R²⁵ is isobutyl.
 - 69. The pharmaceutical composition of Claim 68, wherein R^{27} is hydrogen, alkyl, substituted alkyl or $-C(Q)R^d$
 - 70. A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound shown in any of Tables I, II, III, IV, V or VI, or a pharmaceutically-acceptable salt thereof.
 - 71. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of Claim 36, 50 or 61.