Assessing systemic effects of renewables expansion in Austria

Sebastian Wehrle, Johannes Schmidt

University of Natural Resources and Life Sciences, Vienna

February 25, 2020

NOeG Annual Meeting 2020

- 1 Background
- 2 Motivation & Method
- 3 Results
- 4 Sensitivity
- Discussion & Conclusion

Austrian energy policy objectives

according to government programme 2020-2024

- 100%¹ of electricity demand from domestic renewable sources on annual balance by 2030
 - → necessarily turns Austria into a net exporter of electricity
- additional annual electricity generation of 27 TW h is expected to suffice
- technology-specific additions:

	2018	2018 ²	Policy	2030	2030
	[GW]	[TWh]	[TWh]	[TWh]	[GW]
Solar PV	1.44	1.23	+11	12.23	14.27
Wind (onshore)	3.05	6.14	+10	16.14	8
Hydro (run-of-river)	5.72	28.34	+5	33.34	6.73
Biomass	~ 1	4.78	+1	5.78	> 2

¹excluding system services and industry own consumption. At current levels this equals 10% of consumption, i.e. actual target is around 90%.

²meteorological conditions as in 2016

Why wind is not solar

A side note on imperfect substitutes

Aggregate generation profile in Austria

- secure system
 operation requires
 S = D at any point
 in time
- electricity not easily storable
- »transforming« electricity feed-in to end-use electricity is costly

Stylized Facts

- Apart from wind and solar, potentials for renewable electricity generation in Austria largely exhausted
- Under announced policies, solar PV is only large-scale substitute to wind power
- Increasing social conflict around the large-scale expansion of onshore wind power
- Traditional power system models do not account for local negative externalities of renewable energy generators, such as:
 - visual impact on landscape
 - harm to wildlife
 - noise, flickering, glaring

- 1 Background
- 2 Motivation & Method
- 3 Results
- 4 Sensitivity
- **5** Discussion & Conclusion

The problem from a social planner's perspective

How to account for local negative externalities in renewables expansion planning?

The cost of undisturbed landscapes

• assess energy system effects and costs of substituting wind power with solar PV

The value of undisturbed landscapes

• estimates of the negative external effect of wind turbines reported in literature

Approach

- Resemble Austrian power system in 2030
- include most important electricity trading partner Germany
- set policy target of meeting 90% of demand in 2030 from domestic renewable sources
- incorporate announced electricity system targets for Germany in 2030
 - nuclear phase-out
 - partial coal exit
 - expansion of renewable capacities in line with EEG 2017
- simulate prospective electricity system with *medea*

Power system model medea

Objective

- minimize total system cost
 - fuel and CO₂ cost
 - Q&M cost.
 - capital cost

Decision variables

- hourly dispatch
- inter-zonal electricity trade
- investment in power plants, storages, and transmission

Constraints

- market clearing
- capacity constraints
- co-generation & fuel use
- system service requirement
- inter-zonal electricity trade

Economic assumptions

- perfect competition
- perfect foresight
- price-inelastic demand

Resolution

- hours (one year)
- bidding zones
- 41 technologies

Implementation

- linear program
- python & GAMS

medea is available on github.com/inwe-boku/medea under an open MIT license

Estimating the opportunity cost of wind power

- 1) derive unrestricted optimal deployment of wind and solar power
- 2) restrict deployment of wind power by a small margin(→ solar PV substitutes for wind)
- 3) repeat till no wind power can be deployed

We approximate the cost of undisturbed landscapes (i.e. the forgone value of wind power w) by the change in net cost of the electricity system including air pollution cost c_{net} in response to a change in deployed wind power w, i.e.

$$oc_w = \frac{\Delta c_{net}}{\Delta w}$$

- 1 Background
- 2 Motivation & Method
- 3 Results
- 4 Sensitivity
- 5 Discussion & Conclusion

Cost with restricted wind power

System operation with restricted wind power

Capital cost of solar PV	630	€/kWp
	90	€/MWł

- 1 Background
- 2 Motivation & Method
- 3 Results
- 4 Sensitivity
- 5 Discussion & Conclusion

Sensitivity to capital cost of solar PV

Capital cost estimates for solar PV in 2030

Small-scale	830 €/kWp
rooftop	
Utility-scale	280 €/kWp
open space	

Sensitivity to capital cost of solar PV

- 1 Background
- 2 Motivation & Method
- 3 Results
- 4 Sensitivity
- **5** Discussion & Conclusion

Discussion of results

- Renewable resource quality held constant as capacity is expanded
- Sub-national electricity transmission and distribution grids neglected
- Technical operation of generators not fully represented (e.g. no unit commit, simplified balancing)
- Electricity market-splitting has increased market concentration
- Announced policy necessarily turns Austria into a net exporter of electricity
 - \rightarrow "loop-flows" potentially avoided
 - → artificial transmission restriction between DE and AT could be eliminated

Conclusions

- If we value CO₂ emissions at 30 €/MWh or lower, onshore wind power can be substituted by open-space utility-scale solar PV at little loss
- CO₂ valuation above 30 €/MWh or a preference for rooftop PV allows for gains to be made from wind power deployment
- Gains from wind power could be used to compensate the ones affected by local negative externalities of wind turbines
- Complementing our analysis with spatially resolved estimates of wind turbine impacts, one could derive a spatially explicit plan for the socially optimal expansion of wind power in Austria

Thank you!

https://refuel.world

https://github.com/inwe-boku/medea

sebastian.wehrle@boku.ac.at

We gratefully acknowledge support from the European Research Council ("reFUEL" ERC-2017-STG 758149).

