

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta028

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p)a) Să se calculeze modulul numărului complex 1+i.
- (4p) **b**) Să se calculeze modulul vectorului $\overrightarrow{MN} + \overrightarrow{NP} + \overrightarrow{PM}$, unde M(0,1), N(-1,0) şi P(0,-1).
- c) Să se determine ecuația tangentei la cercul $x^2 + y^2 = 20$ dusă prin punctul P(2,4). (4p)
- **d**) Să se arate că patrulaterul cu vârfurile în punctele L(1,0), M(0,1), N(-1,0) și (4p)P(0,-1) este pătrat.
- e) Să se calculeze coordonatele punctului de intersectie al diagonalelor patrulaterului (2p)cu vârfurile în punctele L(1, 0), M(0, 1), N(-1, 0) și P(0, -1).
- f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe (2p)(3+2i)(3-2i) = a+bi.

SUBIECTUL II (30p)

1.

- a) Dacă într-o progresie geometrică primul termen este 1 și rația este 3, să se (3p)calculeze termenul al saselea.
- **b**) Să se calculeze probabilitatea ca un număr $n \in \{0,1,2,3,4\}$ să verifice relația $n^2 + 4 < 3^n$. (3p)
- c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{13} + 1$, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(2). (3p)
- **d)** Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+4)=3$. (3p)
- e) Să se calculeze suma cuburilor rădăcinilor polinomului $f = X^3 X 6$. (3p)
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2^x + 3^x$.
- a) Să se calculeze f'(x), $x \in \mathbf{R}$. (3p)
- **b)** Să se calculeze $\int_{0}^{1} f(x)dx$. (3p)
- c) Să se arate că funcția f este convexă pe \mathbf{R} . (3p)
- $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$. (3p)Să se calculeze
- (3p)Să se determine ecuația asimptotei către $-\infty$ la graficul funcției f.

1

SUBIECTUL III (20p)

În $M_2(\mathbf{R})$ se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- (4p) a) Să se verifice că $A^2 = B^2 = I_2$.
- (4p) b) Să se calculeze determinantul și rangul matricei A.
- (4p) c) Să se arate că matricea B este inversabilă și să se calculeze inversa ei.
- (2p) d) Să se verifice că $AB \neq BA$.
- (2p) e) Să se arate că $(BA)^n \neq I_2$, $\forall n \in \mathbb{N}^*$.
- (2p) f) Să se arate că ecuația $X^2 = I_2$ are cel puțin 2007 soluții în mulțimea $M_2(\mathbf{Z})$.
- (2p) g) Să se dea un exemplu de structură de grup în care există două elemente de ordin finit, al căror produs nu are ordin finit.

SUBIECTUL IV (20p)

Se consideră numerele reale $a_1, a_2, ..., a_n$ și funcțiile $f: \mathbf{R} \to \mathbf{R}$, $F: \mathbf{R} \to \mathbf{R}$ $f(x) = a_1 \cos x + a_2 \cos 2x + ... + a_n \cos nx \text{ și } F(x) = a_1 \sin x + \frac{a_2}{2} \sin 2x + ... + \frac{a_n}{n} \sin nx ,$ unde $n \in \mathbf{N}$, $n \ge 2$. Notăm cu $\mathbf{S}(p,q) = \int\limits_0^{2\pi} \cos px \cos qx \, dx$, $\forall p,q \in \mathbf{N}^*$.

- (4p) a) Să se arate că funcția F este o primitivă a funcției f pe \mathbb{R} .
- (4p) b) Să se verifice că $F(x+2k\pi) = F(x)$, $\forall k \in \mathbb{Z}$, $\forall x \in \mathbb{R}$.
- (4p) c) Utilizând rezultatul : "Dacă o funcție $g: \mathbf{R} \to \mathbf{R}$ este periodică și monotonă atunci funcția g este constantă", să se arate că dacă $f(x) \ge 0, \ \forall x \in \mathbf{R}$, atunci funcția F este constantă.
- (2p) d) Utilizând formula: $2\cos a \cos b = \cos(a-b) + \cos(a+b)$, $\forall a,b \in \mathbf{R}$, să se arate că $\mathbf{S}(p,q) = 0$, dacă $p \neq q$, $p,q \in \mathbf{N}^*$.
- (2p) e) Să se arate că $S(p, p) = \pi, \forall p \in \mathbb{N}^*$.
- (2p) f) Să se demonstreze că dacă $f(x) \ge 0$, $\forall x \in \mathbf{R}$, atunci $a_1 = a_2 = \dots = a_n = 0$.
- (2p) g) Să se arate că, dacă $\int_{0}^{2\pi} f^{2}(x)dx = 0$, atunci $a_{1} = a_{2} = ... = a_{n} = 0$.