SANS - HW1

alba.canete.garrucho and riccardo.cecco

November 2021

1 Discrete Random Variables

Bernoulli discrete probability distribution

Figure 1: Bernoulli discrete probability distribution

Binomial discrete probability distribution

Figure 2: Binomial discrete probability distribution

Geometric discrete probability distribution

Figure 3: Geometric discrete probability distribution

Poisson discrete probability distribution

Figure 4: Poisson discrete probability distribution

2 Continuous Random Variables

Uniform continuous probability distribution

Figure 5: Uniform continous probability distribution

Exponential continuous probability distribution

Figure 6: Exponential continous probability distribution

Gaussian $\sigma 2 = 1$ continuous probability distribution

Figure 7: Gaussian with continous probability distribution

Gaussian $\sigma 2 = 5$ continuous probability distribution

Figure 8: Gaussian with continous probability distribution

3 Law of Large Numbers, LLN

The (Weak) Law of Large Numbers (LLN) says that the distribution of X_n^* concentrates around its average for large n.

Law of Large Numbers Bernoulli

Figure 9: Law of Large number for Bernoulli discrete probability distribution

Law of Large Numbers Uniform

Figure 10: Law of Large number for Uniform continuous probability distribution

Law of Large Numbers Exponential

Figure 11: Law of Large number for Exponential continuous probability distribution $\,$

Law of Large Numbers Gaussian

Figure 12: Law of Large number for Gaussian continuous probability distribution

4 Central Limit Theorem, CLT

The Central Limit Theorem states that the shape on the limit does not depend on the shape of the initial distribution. It will always be Gaussian.

Central Limit Theorem Bernoulli

Figure 13: Central Limit Theorem Bernoulli distribution

Central Limit Theorem Uniform

Figure 14: Central Limit Theorem Uniform distribution

Central Limit Theorem Exponential

Figure 15: Central Limit Theorem Exponential distribution

Figure 16: Central Limit Theorem Gaussian distribution

5 Multivariate Gaussian

Figure 17: Multivariate Gaussian

6 Subspaces, eigenvalues and eigenvectors

Figure 18: $Col(A) Ker(A^t)$

Figure 19: $Col(A^t) Ker(A)$

Figure 20: Col(B) $Ker(B^t)$

Figure 21: $Col(B^t)$ Ker(B)

Figure 22: Col(C) Ker(C^t)

Figure 23: $Col(C^t)$ Ker(C)

Figure 24: $Col(D) Ker(D^t)$

Figure 25: $Col(D^t) Ker(D)$

Figure 26: Circle

Figure 27: A*x(n)

Figure 28: B*x(n)

7 Orthogonal, symmetric and positive definite matrices

Figure 29: Matrix A

Eigenvalues

- 1
- -1

Eigenvectors

- 0.92388, -0.38268
- 0.38268, 0.923388

Figure 30: Matrix B

Eigenvalues

- -2.524937810560445
- 7.524937810560445

${\bf Eigenvectors}$

- 0.71445, -0.67101
- 0.67101, 0.71445

Figure 31: Matrix C

Eigenvalues

- 3.61803
- 1.38197

Eigenvectors

- 0.85065, -0.52573
- 0.52573, 0.85065