<u>1st OpenFOAM HPC Challenge (OHC-1):</u> Software Track Summary

JULY 1, 2025, VIENNA

Mini-symposium to be held in the auspices of the 2025 OpenFOAM Workshop

Organized by the OpenFOAM HPC Technical Committee (TC)

Presented by: Sergey Lesnik, Gregor Olenik, Mark Wasserman

Rules (Software/Open Track)

- Objective: Showcase code optimizations that improve performance (time, energy), whilst retaining the basic level of accuracy as demonstrated with standard OpenFOAM
- Hardware: unconstrained
- Software: unconstrained, OpenFOAM-based code
- Case setup: <u>occDrivAerStaticMesh</u>, with fixed mesh and physical modelling (temporal and spatial discretization, turbulence model)
 - Steady-state, incompressible flow
 - RANS with kw-SST turbulence model
 - Pre-defined fvSchemes (changes allowed but have to be reported)
- Proposed topics for investigation: accelerators, pre-/post-processing (I/O), mixed-precision, linear solvers, renumbering/decomposition

Validation via Force Coefficients

- Extracted profiles at run time
- Participants of the software track were required to extract force convergence and analyze using meanCalc
- Results were reported via submission sheet and time series
- Data analysis team double checked and cross compared values
- Reported data with requirements
- Check validity of 2*sigma(mu) < 0.0015

Total timesteps [nread]	4000	4000	4000
Averaging start timestep [nskip]	1723	1723	1723
Averaging samples [nused]	2277	2277	2277
Mean value μ	0.2627	0.0740	0.0149
Error Mean Value $\sigma(\mu)$	0.00065	0.00165	0.00166
95% conf. int. on mean $2*\sigma(\mu)$	0.0013	0.0033	0.0033
Standard deviation s	0.0052	0.0180	0.0088
Error Standard Deviation σ(s)	0.0005	0.0012	0.0012

OF Reference Values (fine)

Cd | 2.62E-01 Cl | 7.87E-02 Cs | 1.16E-02

Contributors

- 60+ data points contributed by 5 contributors:
 - Engys
 - CINECA
 - Huawei
 - Wikki GmbH
 - KIT/TUM

Software Track in Numbers

	Software Track	Hardware Track	
Submitted Results	62	175	26%
Min. energy per Iteration [Ws]	1867	2613	-28%
Max. performance [MfvOps]	737	629	+17%
Min. time step [s]	0.11	0.37	-70%

Metrics

Software Track

- Single- and Multi-node Scalability
- Time-to-solution, excl. Pre-processing (decomposition, renumbering) and initialization (potentialFoam)
- Energy-to-solution (energy-per-iteration)
- FVOPS (Finite-volume operations per second)
- Accuracy w.r.t reference solution obtained with standard OpenFOAM (hardware track)
 - Mean and variance of aerodynamic coefficients

Breakdown of Contributions (Statistics)

- fvOps: higher is better
- On node basis

Breakdown of Contributions (Statistics)

1st OpenFOAM HPC Challenge (OHC-1)

June 25

Breakdown of Contributions by Category

- Full GPU ports
- Linear Solvers on GPUs
- Decomposition Optimisations
- Mixed precision,
- Selective Memory Allocation
- Coherent I/O

Breakdown of Contributions by Category

1st OpenFOAM HPC Challenge (OHC-1)

June 25

Breakdown of Contributions by Category

1st OpenFOAM HPC Challenge (OHC-1)

Full GPU Port vs GPU Linear Solver Potential

Software Optimizations Potential

Conclusions and Future Work

- Submission addressed various areas of optimization
- Full GPU ports show promising results
- Software optimizations can outperform several generation-jumps in hardware
- Currently we had only approximately 20% of total submissions in the software track
- Promote a more relevant benchmark case than LidDrivenCavity3D
- Derive best practice based on submissions
- Publication of results