The poset of floor quotients

Jeff Lagarias, Harry Richman

University of Michigan Ann Arbor, MI USA

December 4, 2019

Möbius function

The Möbius function sends

$$\mu: \mathbb{N} \to \{-1, 0, 1\}$$

depending on the prime factorization.

Figure: Graph of Möbius function

Möbius function

The Möbius function sends

$$\mu: \mathbb{N} \to \{-1, 0, 1\}$$

depending on the prime factorization.

Figure: Graph of Möbius function

Mertens function

The Mertens function takes sums of the Möbius function

$$M(x) = \sum_{n \le x} \mu(x)$$

Figure: Graph of Mertens function

Mertens function

The Mertens function takes sums of the Möbius function

$$M(x) = \sum_{n \le x} \mu(x)$$

Figure: Graph of Mertens function

Why care?

Weighted prime counting $\Pi(x) := \sum_{p \le x} \log p$

Theorem

$$R. H. \Leftrightarrow \Pi(x) = x + O(x^{1/2+\epsilon})$$

Mertens function $M(x) := \sum_{n \le x} \mu(x)$ where $\mu(x)$ is Möbius function

Theorem

R. H.
$$\Leftrightarrow$$
 $M(x) = O(x^{1/2+\epsilon})$

i.e. $\mu: \mathbb{N} \to \{-1,0,1\}$ "behaves like random"

Why care? Data

Figure: Mertens function

Why care? Data

Figure: Mertens function

Why care? Data

Figure: Mertens function

Almost divisors

The **divisors** of *n* are

$$\mathsf{Div}(n) = \left\{ d \in \mathbb{N} : d = \frac{n}{k} \text{ for some integer } k \right\}.$$

Ex.
$$Div(16) = \{1, 2, 4, 8, 16\}$$

The **floor quotients** (or "almost divisors") of n are

$$\mathsf{ADiv}(n) = \left\{ d \in \mathbb{N} : d = \left\lfloor \frac{n}{k} \right\rfloor \ \text{ for some integer } k
ight\}.$$

$$\underline{\text{Ex}}. \ \mathsf{ADiv}(16) = \{1, 2, \textcolor{red}{3} = \left\lfloor \frac{16}{5} \right\rfloor, 4, \textcolor{red}{5} = \left\lfloor \frac{16}{3} \right\rfloor, 8, 16\}$$

Almost divisors

The **divisors** of *n* are

$$\mathsf{Div}(n) = \left\{ d \in \mathbb{N} : d = \frac{n}{k} \text{ for some integer } k \right\}.$$

Ex.
$$Div(16) = \{1, 2, 4, 8, 16\}$$

The **floor quotients** (or "almost divisors") of n are

$$ADiv(n) = \left\{ d \in \mathbb{N} : d = \left\lfloor \frac{n}{k} \right\rfloor \text{ for some integer } k \right\}.$$

$$\underline{\text{Ex}}. \ \mathsf{ADiv}(16) = \{1, 2, \textcolor{red}{3} = \left\lfloor \frac{16}{5} \right\rfloor, 4, \textcolor{red}{5} = \left\lfloor \frac{16}{3} \right\rfloor, 8, 16\}$$

Theorem (Cardinal)

The floor quotient relation $d \leq_{FQ} n$ defines a partial order on \mathbb{N} .

Floor quotient partial order

Ex. n = 16

Floor quotient partial order

Ex.
$$n = 20$$

Floor quotient Möbius function

Möbius function of a partial order $(\mathbb{N}, \preceq_{FQ})$ is defined by

$$\mu_{FQ}(1) = 1, \qquad \mu_{FQ}(n) = -\sum_{\substack{d \leq_{FQ}n \ d \neq n}} \mu_{FQ}(d)$$

Ex. n = 16

 $\xrightarrow{\mu_{AD}}$

Floor quotient Möbius function: Data

Floor quotient Möbius function: Data

Bounding μ_{AD}

Problem

Does μ_{FQ} satisfy

$$\mu_{FQ}(n) = O(n^{1/2+\epsilon})?$$

Floor quotient Möbius function: Data

Floor quotient Möbius function: Data

Bounding μ_{AD}

Theorem (Lagarias-R)

The almost-divisor Möbius function μ_{AD} satisfies

$$\mu_{AD}(n) = O(n^{1.729})$$
 as $n \to \infty$.

The exponent satisifes $\zeta(1.729) < 2$

Bounding μ_{AD}

Theorem (Lagarias-R)

The almost-divisor Möbius function μ_{AD} satisfies

$$\mu_{AD}(n) = O(n^{1.729})$$
 as $n \to \infty$.

The exponent satisifes $\zeta(1.729) < 2$

Can we do any better?

Problem

Does μ_{FQ} satisfy

$$\mu_{FQ}(n) = O(n^{1/2+\epsilon})?$$

References

J.-P. Cardinal (2010)

Symmetric matrices related to the Mertens function *Lin. Alg. Appl.* **432**(1), 161–172.

J. C. Lagarias and D. H. Richman

The floor quotient partial order submitted.

Poset of floor quotients

Thank you!

Observation: μ_{FQ} "behaves like" Mertens function

Let
$$\Delta \mu_{FQ}(n) = \mu_{FQ}(n) - \mu_{FQ}(n-1)$$
 \Rightarrow "behaves like" usual Möbius

Observation: μ_{FQ} "behaves like" Mertens function

Let
$$\Delta \mu_{FQ}(n) = \mu_{FQ}(n) - \mu_{FQ}(n-1)$$
 \Rightarrow "behaves like" usual Möbius

Observation: μ_{FQ} "behaves like" Mertens function

Let
$$\Delta \mu_{FQ}(n) = \mu_{FQ}(n) - \mu_{FQ}(n-1)$$
 \Rightarrow "behaves like" usual Möbius

Theorem (Lagarias-R)

The differenced almost-divisor Möbius function $\Delta\mu_{AD}$ for $n\geq 3$ satisfies the recursion

$$\Delta \mu_{AD}(n) = egin{cases} -\sum_{\substack{d \mid n \ \sqrt{n} < d < n}} \Delta \mu_{FQ}(d) - \mu_{FQ}(s) & \textit{if } n = s^2 \ \textit{or } s(s+1) \ -\sum_{\substack{d \mid n \ \sqrt{n} < d < n}} \Delta \mu_{FQ}(d) & \textit{otherwise}. \end{cases}$$

Recall that
$$\mu(n) = -\sum_{\substack{d \mid n \\ 1 \leq d \leq n}} \mu(d)$$

Theorem (Lagarias-R)

The differenced almost-divisor Möbius function $\Delta \mu_{AD}$ for $n \geq 3$ satisfies the recursion

$$\Delta \mu_{AD}(n) = \begin{cases} -\sum_{\substack{d \mid n \\ \sqrt{n} < d < n}} \Delta \mu_{FQ}(d) - \mu_{FQ}(s) & \textit{if } n = s^2 \\ & \textit{or } s(s+1) \\ -\sum_{\substack{d \mid n \\ \sqrt{n} < d < n}} \Delta \mu_{FQ}(d) & \textit{otherwise}. \end{cases}$$

Recall that
$$\mu(n) = -\sum_{\substack{d \mid n \\ 1 \leq d \leq n}} \mu(d)$$

Theorem (Lagarias-R)

 $\Delta \mu_{FQ}(n) = 0$ if n satisfies either

- 1 n is square-free and odd
- 2 *n* has prime divisor $p \ge \sqrt{n} + 1$

Corollary

The density of the support of $\Delta\mu_{FQ}$ is

$$\lim_{x \to \infty} \frac{\#\{n \le x : \Delta\mu_{FQ}(n) \ne 0\}}{x} < 0.183$$