MOwNiT

Aproksymacja Trygonometryczna

Dane sprzętowe:

Do obliczeń użyłem języka Python 3.10.4 , system operacyjny wykorzystywany przeze mnie to Ubuntu 20.04.

Procesor to 16 wątkowy AMD® Ryzen 7 4800h 8 x 2.9Ghz, Pamieć RAM 16GB DDR4

Obliczenia są wykonywane przez załączony do opracowania program wykorzystujący bibliotekę numpy do operacji na wektorach i macierzach. Wykresy rysowane były z pomocą biblioteki matplotlib.

Zadana funkcja:

$$f(x) = -k \cdot x \cdot \sin(m(x-1))$$

Doświadczenie:

Doświadczenie polegało na uruchomieniu programu obliczającego wielomian trygonometryczny aproksymacyjny dla liczby węzłów ∈

Doświadczenie wykonywano dla m od 3 do floor((n-1) / 2) co 2

Do sprawozdania załączono najciekawsze przypadki.

Doświadczenie było wykonywane jedynie dla węzłów równoodległych.

Błędy były liczone zgodnie z wzorem na SSE (Sum Squared Error).

Wykresy były rysowane przez obliczenie wartości interpolowanej funkcji dla 1000 równoodległych punktów na podanym w punkcie wyżej przedziale.

Na każdym z wykresów widnieja:

- **f** funkcja bazowa (zielona)
- **F** funkcja aproksymacyjna (niebieska)

Użyte wzory:

$$F(x) = c_0 \varphi_o(x) + c_1 \varphi_1(x) + \dots + c_m \varphi_m(x) = \sum_{i=0}^m c_i \varphi_i(x)$$
(1)

Gdy dokonujemy aproksymacji funkcji okresowej często lepsze (dokładniejsze, mniejszym kosztem) rezultaty uzyskamy z pomocą rodziny wielomianów trygonometrycznych . Dla wielomianów trygonometrycznych baza (ciąg funkcji bazowych ze wzoru (1)) to:

$$(\varphi_i(x)) = 1$$
, $\sin(x)$, $\cos(x)$, $\sin(2x)$, $\cos(2x)$, ..., $\sin(mx)$, $\cos(mx)$

Można pokazać, że gdy przyjmiemy n +1 równo odległych węzłów aproksymacji opisanych wzorem $x_i=n^*i^*\frac{\pi}{2}$, to kolejne elementy tej bazy będą do siebie ortogonalne. Daje nam to te same korzyści co w przypadku ortogonalnych wielomianów algebraicznych – układ normalny jest dobrze uwarunkowany a jego policzenie jest zadaniem trywialnym, gdyż jedyne niezerowe elementy znajdują się na diagonali macierzy współczynników.

Ostateczne wzory przybliżające szukaną funkcję wielomianem trygonometrycznym:

$$F_m(x) = \frac{1}{2} \cdot a_0 + \sum_{j=1}^m \left(a_j \cdot \cos(j \cdot x) + b_j \cdot \sin(j \cdot x) \right)$$

$$a_j = \frac{2}{n} \cdot \sum_{i=0}^{n-1} f(x_i) \cdot \cos(j \cdot x_i)$$

$$b_j = \frac{2}{n} \cdot \sum_{i=0}^{n-1} f(x_i) \cdot \sin(j \cdot x_i)$$

 $gdzie m \le floor((n-1)/2)$

Wyniki doświadczenia:

n	m	SSE	MAX
7	3	15480.205	9.073
10	3	14253.339	9.279
12	3	9208.882	6.871
12	5	9457.253	6.136
14	3	8354.971	6.033
14	5	5098.982	4.980
18	3	7893.419	5.555
18	5	4050.741	5.191
18	7	1027.287	3.134
20	3	7814.769	5.542
20	5	3904.742	5.617
20	7	808.063	2.785
20	9	645.789	2.809
23	3	7753.034	5.532
23	5	3795.366	6.032
23	7	662.341	2.477
23	9	402.641	2.272
23	11	406.494	2.437
26	3	7721.708	5.526
26	5	3741.634	6.299
26	7	596.047	2.808
26	9	308.075	1.984
26	11	253.757	1.974
30	3	7700.135	5.522
30	5	3705.382	6.534
30	7	553.318	3.114
30	9	251.913	1.829
30	11	174.871	1.648
30	13	158.183	1.677

n	m	SSE	MAX
35	3	7687.064	5.519
35	5	3683.774	6.720
35	7	528.648	3.349
35	9	221.294	2.132
35	11	135.353	1.426
35	13	105.103	1.374
35	15	96.914	1.398
35	17	101.643	1.488
40	3	7680.529	5.517
40	5	3673.109	6.842
40	7	516.678	3.498
40	9	206.994	2.319
40	11	117.811	1.616
40	13	83.139	1.206
40	15	68.715	1.179
40	17	64.133	1.199
40	19	65.824	1.260
50	3	7674.804	5.514
50	5	3663.901	6.988
50	7	506.366	3.670
50	9	195.049	2.533
50	11	103.705	1.876
50	13	66.292	1.423
50	15	48.364	1.075
50	17	39.180	0.927
50	19	34.584	0.919

n	m	SSE	MAX
55	3	7673.474	5.513
55	5	3661.799	7.035
55	7	503.975	3.724
55	9	192.343	2.597
55	11	100.600	1.954
55	13	62.704	1.515
55	15	44.200	1.184
55	17	34.321	0.917
55	19	28.871	0.831
55	21	25.975	0.827
55	23	24.727	0.840
55	25	24.683	0.865
55	27	25.659	0.906
70	3	7671.605	5.511
70	5	3658.914	7.123
70	7	500.567	3.822
70	9	188.537	2.714
70	11	96.313	2.093
70	13	57.854	1.679
70	15	38.699	1.374
70	17	28.067	1.135
70	19	21.739	0.940
70	21	17.804	0.774
70	23	15.306	0.645
70	25	13.729	0.638
70	27	12.780	0.639
70	29	12.290	0.647
70	31	12.160	0.661
70	33	12.336	0.681

n	m	SSE	MAX
100	3	7670.656	5.509
100	5	3657.560	7.203
100	7	498.703	3.905
100	9	186.476	2.812
100	11	94.047	2.207
100	13	55.363	1.810
100	15	35.960	1.524
100	17	25.054	1.306
100	19	18.424	1.131
100	21	14.155	0.988
100	23	11.285	0.866
100	25	9.291	0.761
100	27	7.871	0.669
100	29	6.841	0.586
100	31	6.086	0.511
100	33	5.531	0.442
100	35	5.124	0.437
100	37	4.831	0.435
100	39	4.629	0.438
100	41	4.500	0.441
100	43	4.434	0.448
100	45	4.422	0.457
100	47	4.460	0.463
100	49	4.546	0.480

Wykresy:

Rys.1 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.2 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.3 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.4 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.5 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.6 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.7 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.8 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.9 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.10 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.11 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.12 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.13 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.14 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.15 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.16 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.17 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.18 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Rys.19 Wykres funkcji aproksymacyjnej i bazowej dla powyższych parametrów

Wnioski:

- W porównaniu z aproksymacją wielomianową, w przypadku badanej funkcji znacznie lepiej wypada aproksymacja trygonometryczna.
- Analizując powyżej zebrane dane, widzimy ścisły związek pomiędzy zwiększeniem liczby węzłów aproksymacji a błędami w obu metrykach (SSE oraz MAX).
- Zwiększając liczbę węzłów możemy zwiększyć stopień wielomianu trygonometrycznego z uwagi na ograniczenie m <= floor((n - 1) / 2)
- Samo zwiększenie liczby węzłów, przy stałym stopniu wielomiany z reguły przekłada się na zwiększenie dokładności funkcji aproksymacyjnej
- Aproksymacja trygonometryczna może dawać bardzo dobre wyniki z uwagi na wzór aproksymowanej funkcji (-x * sin(2(x-1))) ponieważ występuje tam czynnik sin(X).