Problem Statement 1:

Is gender independent of education level? A random sample of 395 people were surveyed, and each person was asked to report the highest education level they obtained. The data that resulted from the survey is summarized in the following table:

	High Sc	hool B	achelors	Mast	ters	Ph.d.	Total
Femal	e 60	54	46	41	2	01	
Male	40	44	53	57	19	4	
Total	100	98	99	98	39	5	

Question: Are gender and education level dependent at 5% level of significance? In other words, given the data collected above, is there a relationship between the gender of an individual and the level of education that they have obtained?

Chi-Square Test Statistic

Chi-Square Test Statistic

$$\chi^2 = \sum (O - E)^2 / E$$

where O represents the observed frequency. E is the expected frequency under the null hypothesis and computed by:

$$E = \frac{\text{row total} \times \text{column total}}{\text{sample size}}$$

Here's the table of expected counts E:

	High School	Bachelors	Masters	Ph.d.	Total
Female	50.886	49.868	50.377	49.868	201
Male	49.114	48.132	48.623	48.132	194
Total	100	98	99	98	395

$$\chi^2 = (60-50.886)^2 / 50.886 + \cdots + (57-48.132)^2 / 48.132 = 8.006$$

The critical value of $\chi 2$ with 3 degree of freedom is 7.815. Since 8.006 > 7.815, therefore we reject the null hypothesis and conclude that the education level depends on gender at a 5% level of significance.

Problem Statement 2:

Using the following data, perform a one-way analysis of variance using α =.05. Write up the results in APA format.

[Group1: 51, 45, 33, 45, 67] [Group2: 23, 43, 23, 43, 45]

[Group3: 56, 76, 74, 87, 56]

Sample means $(\bar{x} \bar{x})$ for the groups: = 48.2, 35.4, 69.8

Intermediate steps in calculating the group variances:

Group 1

value mean deviations sq deviations

1	51 48.2	2.8	7.84
2	45 48.2	-3.2	10.24
3	33 48.2	-15.2	231.04
4	45 48.2	-3.2	10.24
5	67 48.2	18.8	353.44

Group 2

value mean deviations sq deviations

1	23 35.4	-12.4	153.76	
2	43 35.4	7.6	57.76	
3	23 35.4	-12.4	153.76	
4	43 35.4	7.6	57.76	
5	45 35.4	9.6	92.16	

Group 3

value mean deviations sq deviations

1	56 69.8	-13.8	190.44
2	76 69.8	6.2	38.44

3	74 69.8	4.2	17.64	
4	87 69.8	17.2	295.84	
5	56 69.8	-13.8	190.44	

Sum of squared deviations from the mean (SS) for the groups:

612.8 515.2 732.8

 $Var_1 = 612.8/5 - 1 = 153.2$

 $Var_2 = 515.2/5 - 1 = 128.8$

 $Var_3 = 732.8/5 - 1 = 183.2$

 $MS_{error} = (153.2 + 128.8 + 183.2)/3 = 155.07$

Calculating the remaining error (or within) terms for the ANOVA table:

dferror=15-3=12

SSerror=(155.07)(15-3)=1860.8

Intermediate steps in calculating the variance of the sample means:

Grand mean $(x^- grand) = 48.2 + 35.4 + 69.8/3 = 51.13$

group mean grand mean deviations sq deviations

48.2	51.13	-2.93	8.58
35.4	51.13	-15.73	247.43
69.8	51.13	18.67	348.57

Sum of squares (SSmeans)=604.58

Varmeans=604.583-1=302.29

MSbetween = (302.29)(5) = 1511.45

Calculating the remaining between (or group) terms of the ANOVA table:

dfgroups=3-1=2

SSgroup = (1511.45)(3-1) = 3022.9

Test statistic and critical value

F=1511.45/155.07=9.75

Fcritical(2,12)=3.89

Decision: reject H0

ANOVA table

source	SS	df	MS
group	3022.9	2	1511.45
error	1860.8	12	155.07
total	4883.7		

Effect size

 η^2 =3022.9/4883.7=0.62

APA writeup

F(2, 12) = 9.75, p < 0.05,

 $\eta^2 = 0.62$.

Problem Statement 3:

Calculate F Test for given 10,20,30,40,50 and 5,10,15,20,25. For 10, 20,30,40,50:

Calculate Variance of first set

```
Total Inputs (N) = (10,20,30,40,50)

Total Inputs (N)=5

Mean (xm)= 150/5 = 30

SD=sqrt(1/(N-1)*((x_1-xm)^2+(x_2-x_m)^2+...+(x_n-x_m)^2))

=sqrt(1/(5-1)((10-30)^2+(20-30)^2+(30-30)^2+(40-30)^2+(50-30)^2))

=sqrt(1/4((-20)^2+(-10)^2+(0)^2+(10)^2+(20)^2))

=sqrt(1/4((400)+(100)+(0)+(100)+(400)))

=sqrt(250)

=15.8114

Variance=SD<sup>2</sup>

Variance=15.8114<sup>2</sup>

Variance=250
```

Calculate Variance of second set

```
For 5, 10,15,20,25:

Total Inputs(N) = (5,10,15,20,25)

Total Inputs(N)=5

Mean (xm)= 75/5 = 15

SD=sqrt(1/(N-1)*((x_1-x_m)^2+(x_2-x_m)^2+...+(x_n-x_m)^2))
=sqrt(1/(5-1)((5-15)^2+(10-15)^2+(15-15)^2+(20-15)^2+(25-15)^2))
=sqrt(1/4((-10)^2+(-5)^2+(0)^2+(5)^2+(10)^2))
=sqrt(1/4((100)+(25)+(0)+(25)+(100)))
=sqrt(62.5)
=7.9057
Variance=SD^2
Variance=62.5
```

To calculate F Test

```
F Test = (variance of 10, 20,30,40,50) / (variance of 5, 10, 15, 20, 25) = 250/62.5 = 4.
```

The F Test value is 4.