EXEMPLU 1. Factorial

1. Varianta 1

% (i, i) (i, o) fact1(0, 1). fact1(N, F):- N > 0, N1 is N-1, fact1(N1, F1), F is N * F1.

go1 := fact1(3, 6).

2. Varianta 2

```
% (i, i) (i,o)
fact2(0, 1):-!.
fact2(N, F):- N1 is N-1,
fact2(N1, F1),
F is N * F1.
```

go2 :- fact2(3, 6).

3. Varianta 3

EXEMPLU 2. Apartenență element în listă.

1. Varianta 1

```
% (i, i), (o, i)
member1(E,[E]).
member1(E,[L]):- member1(E,L).
```

go1 :- member1(1,[1,2,1,3,1,4]).

2. Varianta 2

```
\% (i, i), (o, i)
member2(E,[E|_]) :- !.
member2(E,[_|L]) :- member2(E,L).
```

go2 := member2(1,[1,2,1,3,1,4]).

```
SWI-Prolog (Multi-threaded, version 6.6.6)
File Edit Settings Run Debug Help
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word)
   d:/Docs/Didactice/Cursuri/2014-15/pfl/teste/member.pl compiled 0.00 sec, 7 clauses ?- member1(1,[1,2,1,3,1,4]).
true ;
true ;
true ;
false.
   ?- member1(X,[1,2,1,3,1,4]).
= 1;
= 2;
= 1;
= 3;
= 1;
= 4;
3 ?- member1(1,[2,1,3]).
true ; false.
4 ?- member1(5,[2,1,3]). false.
5 ?- go1.
true ;
true ;
true ;
false.
 6 ?- member2(1,[1,2,1,3,1,4]).
7 ?- member2(X,[1,2,1,3,1,4]).
X = 1.
8 ?- member2(1,[2,1,3]).
9 ?- member2(5,[2,1,3]). false.
10 ?- go2.
11 ?-
```

3. Varianta 3

EXEMPLU 3.

Se dă o listă numerică. Se cere să se determine....

```
a) Fără variabilă colectoare
```

f aux([H|T],Rez,Col):-H mod 2=:=0,

 $f_{aux}([_|T],Rez,Col):-f_{aux}(T,Rez,Col).$

EXEMPLU 4.

Se dă o listă eterogenă formată din numere, simboluri sau liste de numere. Se cere să se determine suma numerelor din lista eterogenă.

adaugsf(H,Col,Col1),
f_aux(T,Rez,Col1).

EXEMPLU 5.

Se dă o listă numerică. Se cere să se determine....

```
\begin{tabular}{ll} \% (L: list of numbers, L: list of number) \\ \% (i,o) - nondeterm \\ \$P([],[]). \\ \$P ([\_|T],S):-\$P(T,S). \\ \$P ([H|T],[H|S]):- H \ mod \ 2 =:=0, \\ !, \\ \$P(T,S). \\ \$P ([H|T],[H|S]):-\$I(T,S). \\ \$P ([H|T],[H|S]):-\$I(T,S). \\ \$I([H|T],[H|S]):-\$P(T,S). \\ \$I([H|T],[H|S]):-\$P(T,S). \\ \end{tabular}
```

EXEMPLU 6.

Se dă o listă numerică. Se cere să se afișeze elementele listei în ordine crescătoare. Se va folosi sortarea arborescentă (folosind un ABC).

Indicație. Se va construi un ABC cu elementele listei. Apoi, se va parcurge ABC în inordine.

```
% domeniul corespunzător ABC – domeniu cu alternatice
% arbore=arb(integer, arbore, arbore);nil
% Functorul nil îl asociem arborelui vid

% (integer, arbore, arbore) – (i,i,o) determ
% insereaza un element într-un ABC
inserare(E,nil,arb(E,nil,nil)).
inserare(E,arb(R,S,D),arb(R,SNou,D)):-E=<R,!,inserare(E,S,SNou).
inserare(E,arb(R,S,D),arb(R,S,DNou)):-inserare(E,D,DNou).

% (arbore) – (i) determ
% afișează nodurile arborelui în inordine
inordine(nil).
inordine(arb(R,S,D)):-inordine(S),write(R),nl,inordine(D).

% (arbore, list) – (i,o) determ
% creează un ABC cu elementele unei liste
creeazaArb([],nil).
```

creeazaArb([H|T],Arb):-creeazaArb(T,Arb1),inserare(H,Arb1,Arb).

```
% (list) – (i) determ
% afișează elementele listei în ordine crescătoare (folosind sortare arborescentă)
sortare(L):-creeazaArb(L,Arb),inordine(Arb).
```

EXEMPLU 7

Să se dispună N dame pe o tablă de sah NxN, încât să nu se atace reciproc.

```
valid(_,_,[]).
valid(Lin,Col,[[Lin1,Col1]|T]):-
       Col=\=Col1,
       DLin is Col-Col1,
       DCol is Lin-Lin1,
       abs(DLin) = \ bs(DCol),
       valid(Lin,Col,T).
% (integer, list*) – (i,i) determ.
tipar( ,[]):-nl.
tipar(N,[[_,Col]|T]):-tipLinie(N,Col),tipar(N,T).
% (integer, char) - (i,o) determ.
caracter(1,'*'):-!.
caracter(_,'-').
% (integer, list^*) – (i,i) determ.
tipLinie(0,_):-nl,!.
tipLinie(N,Col):-caracter(Col,C),
                write(C),
                N1 is N-1,
                Col1 is Col-1,
                tipLinie(N1,Col1).
```

EXEMPLU 8.

PROBLEMA CELOR 3 CASE.

- 1. Englezul locuiește în prima casă din stânga.
- 2. În casa imediat din dreapta celei în care s află lupul se fumează Lucky Strike.
- 3. Spaniolul fumează Kent.
- 4. Rusul are cal.

Cine fumează LM? Al cui este câinele?

```
SWI-Prolog -- d:/Gabi/gabi/FACULTAT/2014-2015/PLF/DOC/Exemple_SWI/exemple.pl
  File Edit Settings Run Debug Help
  % library(win_menu) compiled into win_menu 0.00 sec, 29 clauses
% c:/users/istvan/appdata/roaming/swi-prolog/pl.ini compiled 0.00 sec, 1 clauses
% d:/Gabi/gabi/FACULTAT/2014-2015/PLF/DOC/Exemple_SWI/exemple.pl compiled 0.00 sec, 95 clauses
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 6.2.0)
Copyright (c) 1990-2012 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
  For help, use ?- help(Topic). or ?- apropos(Word)
         rezolva(N,A,T)
     = [eng, spa, rus],
= [caine, lup, cal],
= [lm, kent, ls];
= [eng, rus, spa],
= [lup, cal, caine],
= [lm, ls, kent];
  2 ?- ■
% rezolva - (0,0,0)
% candidati - (0.0.0)
% restrictii - (i,i,i)
rezolva(N,A,T):-candidati(N,A,T), restrictii(N,A,T).
candidati(N,A,T):-perm([eng,spa,rus],N),
                          perm([caine,lup,cal],A),
                          perm([lm,kent,ls],T).
restrictii(N,A,T):-aux(N,A,T,eng, , ,1),
                           aux(N,A,T,_,lup,_,Nr),
                           dreapta(Nr,M),
                           aux(N,A,T,_,,ls,M),
                           aux(N,A,T,spa,_,kent,_),
                           aux(N,A,T,rus,cal,\_,\_).
% dreapta - (i,o)
dreapta(I,J):-J is I+1.
% aux (i,i,i,o,o,o,o)
aux([N1,_,_],[A1,_,_],[T1,_,_],N1,A1,T1,1).
aux([_,N2,_],[_,A2,_],[_,T2,_],N2,A2,T2,2).
aux([_,_,N3],[_,_,A3],[_,_,T3],N3,A3,T3,3).
% insereaza (i,io)
insereaza(E,L,[E|L]).
insereaza(E,[H|L],[H|T]):-insereaza(E,L,T).
% perm (i,o)
perm([],[]).
perm([H|T],L):-perm(T,P),insereaza(H,P,L).
```

PROBLEMA CELOR 5 CASE.

5 people live in the five houses in a street. Each has a different profession, animal, favorite drink, and each house is a different color.

- 1. The Englishman lives in the red house
- 2. The Spaniard owns a dog
- 3. The Norwegian lives in the first house on the left
- 4. The Japanese is a painter
- 5. The green house is on the right of the white one
- 6. The Italian drinks tea
- 7. The fox is in a house next to the doctor
- 8. Milk is drunk in the middle house
- 9. The horse is in a house next to the diplomat
- 10. The violinist drinks fruit juice
- 11. The Norwegians house is next to the blue one
- 12. The sculptor breeds snails
- 13. The owner of the green house drinks coffee
- 14. The diplomat lives in the yellow house

Who owns the zebra? Who drinks water?