Technology Mapping

Introduction

- Technology mapping is a step of
 - taking a logic netlist as the input and
 - expressing the netlist using a set of gates from a technology library
- In the technology library, a gate may have different configurations, resulting in different area, delay, and power
- In this assignment, you are going to write a program to determine the gate configurations to minimize the power subject to a delay constraint

Problem Formulation

Inputs

- A netlist in the AIG format
- A technology library

Output

 A functionally equivalent netlist implemented with gates in the technology library

Objective

Optimize the total power with the minimum delay

Input 1 – Netlist (.blif)

- Netlist are given in the blif format
- Use ABC to parse the netlist and transfer it into the AIG format
- Don't optimize the given netlist

Input 2 – Technology Library (.lib)

INV

Pattern Type	Timing (n:#FOs)	Power	
INV1	0.28+0.72*n	20.92	
INV2	1.03+2.64*n	1	
INV3	0.47+1.20*n	2.75	
INV4	0.82+2.10*n	19.25	

NAND

Pattern Type	Timing (n:#FOs)	Power	
NAND1	0.56+1.44*n	25.76	
NAND2	2.31+5.95*n	1.4	
NAND3	1.16+3.00*n	10.82	
NAND4	1.79+4.61*n	25.38	

Output - Netlist (.mbench)

- Output the mapped netlist in the modified bench format
- You cannot modify PI and PO names

```
INPUT(x1)
INPUT(x2)
...
OUTPUT(y1)
OUTPUT(y2)
...
G1 = INV1(x1)
G2 = AND2(x2, G1)
...
```

Technology Mapping

- An AND node is mapped to an NAND + an INV
- A complemented fanin (phase==1) is mapped as an INV
- Two INVs on a wire are redundant and need to be removed
- Minimum delay
 - Circuit delay under which all the nodes are mapped to the fastest gates
 - Topological timing analysis

Delivery & Due Date

- A zip file including
 - Your source code and a ReadMe describing how to compile and run your program
 - Your mapping results of ISCAS'85 benchmarks
 c432 ~ c7552
- Due on 2022/6/12 before lecture