Outline

- You have to train a Chinese NER model using <u>sklearn-</u> <u>crfsuite</u> module and evaluate its performance. Characterbased Chinese NER dataset in json format will be given.
- Try to improve model performance using suggested methods and compare the results.

Procedure

Feature Engineering

(Please refer to Featuring suggestions)

```
train_sents[0]

[('Melbourne', 'NP', 'B-LOC'),
    ('(', 'Fpa', '0'),
    ('Australia', 'NP', 'B-LOC'),
    (')', 'Fpt', '0'),
    ('z5', 'Z', '0'),
    ('may', 'NC', '0'),
    ('(', 'Fpa', '0'),
    ('(', 'Fpa', '0'),
    ('EFE', 'NC', 'B-ORG'),
    (')', 'Fpt', '0')]
```

```
def word2features(sent. i):
    word = sent[i][0]
    postag = sent[i][1]
    features = {
        'bias': 1.0,
        'word.lower()': word.lower(),
        'word[-3:]': word[-3:],
        'word[-2:]': word[-2:],
        'word.isupper()': word.isupper(),
        'word.istitle()': word.istitle(),
        'word.isdigit()': word.isdigit(),
        'postag': postag,
        'postag[:2]': postag[:2],
    if i > 0:
        word1 = sent[i-1][0]
        postag1 = sent[i-1][1]
        features.update({
            '-1:word.lower()': word1.lower(),
            '-1:word.istitle()': word1.istitle(),
            '-1:word.isupper()': word1.isupper(),
            '-1:postag': postag1,
            '-1:postag[:2]': postag1[:2],
       })
    else:
        features['BOS'] = True
    if i < len(sent)-1:</pre>
        word1 = sent[i+1][0]
        postag1 = sent[i+1][1]
        features.update({
            '+1:word.lower()': word1.lower(),
            '+1:word.istitle()': word1.istitle(),
            '+1:word.isupper()': word1.isupper(),
            '+1:postag': postag1.
            '+1:postag[:2]': postag1[:2],
        })
    else:
        features['EOS'] = True
    return features
```

Assign feature as training data

```
%%time
X_train = [sent2features(s) for s in train_sents]
y_train = [sent2labels(s) for s in train_sents]

X_test = [sent2features(s) for s in test_sents]
y_test = [sent2labels(s) for s in test_sents]
```

Training

```
%%time
crf = sklearn_crfsuite.CRF(
    algorithm='lbfgs',
    c1=0.1,
    c2=0.1,
    max_iterations=100,
    all_possible_transitions=True
)
crf.fit(X_train, y_train)
```

Evaluation

0.76980231377134023

Evaluation - more detail

```
# group B and I results
sorted_labels = sorted(
    labels,
    key=lambda name: (name[1:], name[0])
)
print(metrics.flat_classification_report(
    y_test, y_pred, labels=sorted_labels, digits=3
))
```

	precision	recall	f1-score	support
B-LOC	0.775	0.757	0.766	1084
I-LOC	0.601	0.631	0.616	325
B-MISC	0.698	0.499	0.582	339
I-MISC	0.644	0.567	0.603	557
B-ORG	0.795	0.801	0.798	1400
I-ORG	0.831	0.773	0.801	1104
B-PER	0.812	0.876	0.843	735
I-PER	0.873	0.931	0.901	634
avg / total	0.779	0.764	0.770	6178

Evaluation

	Actual Value (as confirmed by experiment)						
		positives	negatives				
redicted Value	positives	TP True Positive	FP False Positive				
Predicted Value (predicted by the test	negatives	FN False Negative	TN True Negative				

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Char-based

正 0 如 0 宋 B_Time 代 I_Time 詩 B_Person 人 I_Person 高 I_Person 翥 I_Person 所 0 雲 0 " 0 南 B_Location 北 I_Location 山 I_Location 頭 I_Location 多 0 墓 B_Thing 田 I_Thing 0 **B_Time** 明 I_Time 祭 0 掃 0 各 0 紛 0 然 0 • 0

Word-based

```
正 D
如 P
宋代 Nd
詩人高翥 Nb
所 Nc
雲 Na
" FW
南北山頭 Nc
多 D
墓田 Nb
COMMACATEGORY
清明 Nd
祭掃 VC
各 Nes
紛然 VH
  PERIODCATEGORY
```

Char-based: 27 chars; 14 positive, 13 negative.

Word-based: 16 words; 5 positive, 11 negative.

dataset

```
清明是人們祭掃先人,懷念追思的日子。
正如宋代詩人高翥所雲'南北山頭多墓田,清明祭掃紙灰飛作白蝴蝶,淚血染成紅杜鵑"。
凡清明之時,總是屢屢哀思湧上心頭,對母親懷念的母親姓孫名諱秋蘭,所以,我特別喜歡陳毅"幽蘭在
```

- train_char.json
- validation_char.json
- test_char.json

[token, pos, neLabel]

```
[('正', 'D', '<mark>0'),</mark>
        'Nd',
              'B Time')
        'Nd',
              'I Time')
        'Na',
              'B_Person')
 ('人', 'Na',
              'I_Person')
 ('高', 'Nb',
              'I_Person')
 '翥', 'Nb', <mark>'</mark>I_Person')
 '所', 'Nc', '0'),
        'Na', '0'),
              'B Location')
  '北', 'Ncd', 'I_Location')
  '山', 'Nc', 'I_Location'),
              'I Location')
              'B_Thing')
              'B_Time'),
        'Nd', 'I Time'),
 ('祭', 'VC', 'O'),
 ('掃', 'VC', 'O'),
 ('各', 'Nes', '0'),
('紛', 'VH', 'O'),
('然','VH','0'),
(' °', 'PERIODCATEGORY', 'O')]
```

dataset

```
清明是人們祭掃先人,懷念追思的日子。
正如宋代詩人高翥所雲'南北山頭'多墓田,清明祭掃各紛然。
紙灰飛作白蝴蝶,淚血染成紅杜鵑"。
凡清明之時,總是屢屢哀思湧上心頭,對母親懷念的情愫越發細膩綿長。
母親姓孫名諱秋蘭,所以,我特別喜歡陳毅"幽蘭在山谷,本自無人識。
```

train_
train_
valida
test_v
Time", "是 SHI O", "人們 _ Person", "祭掃 VC O", "先人 _ Person", ", COMMACATEGORY O", "懷念 VJ O", "追思 VK O", "的 DE O", "日子 _ Time", "。 PERIODCATEGORY O"],
valida
test_v
test_v
Time", "宗代 _ Time", "詩人高翥 _ Person", "所 Nc O", "雲 Na O", ""FW O", "南北山頭 _ Location", "多 VH O", "墓田 _ Thing", ", COMMACATEGORY O", "清明 _ Time", "祭掃 VC O", "各 Nes O", "紛然 VH O", "。 PERIODCATEGORY O"], ["紙灰飛 _ Thing", "作 VC O", "白蝴蝶 _ Thing", ",

[token, pos, neLabel]