Universität Konstanz

Illustrative Computer Graphics

Week 10

3D Lines III – Suggestive Contour

Lecturers:
Oliver Deussen
KC Kwan

Contours

Perpendicular normal

- Add line if the normal is perpendicular to the view
 - Dot product = 0

Suggestive Contours

"Almost contours":

- Points that become contours in nearby views

contours

contours + suggestive contours

Suggestive Contours: Definition 1

Contours in nearby viewpoints

(not corresponding to contours in closer views)

Suggestive Contours: Definition 2

 $n \cdot v$ not quite zero, but a local minimum (in the projected view direction w)

Explanation

A dot B

It is maxima if the angle is small It is minima if the angle is large

Explanation

- $n \cdot v$ not quite zero, but a local minimum:
- $n \cdot v$ is positive
 - Minima $\rightarrow 0$
 - Almost perpendicular to the view
- $n \cdot v$ is negative
 - Minima → -1
 - Parallel to the view
 - Back face, cannot be rendered.

Suggestive Contours: Definition 2

 $n \cdot v$ not quite zero, but a local minimum (in the projected view direction w)

Minima vs. Zero Crossings

Definition 2: Minima of $n \cdot v$

Finding minima is equivalent to: finding zeros of the derivative checking that 2nd derivative is positive

This leads to definition 3.

Derivative of $n \cdot v$ is a form of curvature...

Radial Curvature κ_r

Curvature in projected view direction, w:

Suggestive Contours: Definition 3

Points where $\kappa_r = 0$ and $D_w \kappa_r > 0$ Increasing

Results...

contours

contours + suggestive contours

Results...

contours

contours + suggestive contours

Qualitative Structure

Suggestive contours have two behaviors:

Continuity of Extensions

Suggestive contours line up with contours in the image

Ending contours

Difficult to localize in real images

Viewpoint Dependence

Suggestive contours appear at inflections viewed from convex side

Viewpoint Dependence

Suggestive contours appear at inflections viewed from convex side

Viewpoint Dependence

Suggestive contours move across surface

 At a typical point, inflections exist only when viewed from specific directions

Distribution of Suggestive Contours

Suggestive contour density over all views

Distribution of Suggestive Contours

Suggestive contour density over all views

Regions where K < 0

Negative Gaussian Curvature: Hyperbolic Points

Tangent plane intersects surface along 2 curves

Suggestive Contour Software

RTSC 1.6

https://gfx.cs.princeton.edu/proj/sugcon/

Comparisons

Golf Ball (1962) Roy Lichtenstein

Estate of Roy Lichtenstein

SC + SH

SC + invert(SC)

Intensity Valleys in Images

suggestive contours

image valleys

Suggestive Contours

No lines in convex regions

contours (no suggestive contours)

contours and ridges

Lines Summary

Derivative Order	Image-Space	View-Independent Object-Space	View-Dependent Object-Space
Oth	Isophotes	Topo-lines	Cutting planes
1st		Isophotes	Occluding contours
2 nd	Edges, extremal lines	Parabolic lines	Suggestive contours, suggestive highlights, principal highlights
3 rd		Crest lines (ridges and valleys)	Apparent ridges

NEXT LEVEL?

Illustrative Computer Graphics

Chapter Extra ☺

Illustrative Rendering

- 2D Techniques
 - Traditional and artistic half toning, stippling
- 2.5D Techniques
 - enhancing images with depth information
- 3D Techniques
 - computing contours (suggestive contours)
 - computing geometric features

Half-Toning

Dithering

Error Diffusion

Text Art

Stippling

Dart-throwing

Poisson disk

Blue noise

Relaxation with Voronoi diagram

Color Quantization

Stroke Texture

Painterly Rendering

Mosaic

Edge Enhancement With Depth

Unsharp Masking

Tree Abstraction

Toon Shading

Perception Study

Line Drawing Style

3D Lines

Line Definition

Ray-based Lines

Surface Curvature

Principle Highlight

Suggestive Contour

Important

- Examination
 - 10 Feb 2022 (Thu) whole day
 - 11 Feb 2022 (Fri) whole day
 - Currently, morning only.
- You need to register examination on Zeus!
- If you did not sign the timeslot, please contact our secretary
 Ingrid Baiker ZT808 +49 (0)7531 88-4233

Suggestive Contour 3

- Object vs. Image space
 - "Object space algorithms" work on the geometry of an object
 - "Image space algorithms" work on the rendered image of an object
- Object space suggestive Contours
 - Analyze each rectangle
 - Compare local curvature
 - Find minima while considering that meshes are not actually smooth
 - Doable but complex, needs filtering

- Instead, let's use image space
- Render NV Image
 - viewVector v
 - pointOnMesh p, its normal n_p
 - cameraPosition c
 - -v=p-c
 - $-vn = \widehat{n_p} \cdot \widehat{v}$ (normalized dot product)
 - -RGB(vn, vn, vn)
- Resulting greyscale image is a good approximation

- Contours = Steep valleys in the NV image
- Valley detection:
 - Foreach pixel i with intensity p_i :
 - Collect other pixels in neighborhood with radius r
 - Find brightest pixel m in neighborhood
 - Count pixels darker than p_i in neighborhood into d
 - Count seen pixels into s
 - Pi marked as a contour (= black) if both is true:
 - Brightness(m) Brightness $(p_i) > D$
 - $\frac{d}{s} < S$
- With
 - $-D = \frac{1}{r} \cdot d_{mod}$
 - $-S = 1 \frac{1}{r} \cdot s_{mod}$

- The previous algorithm works well as a fragment shader in OpenGL, but processing is bugged
 - We will do it in software (i.e. slow)
- Task
 - Render the NV Image
 - Apply the described algorithm to the NV image to detect ridges
 - Create an image with alpha channel where you mark the ridges
 - Blend the resulting contour image onto the rendered image
- This gives us occluding contours "for free"
- D and S need to be tuned
- The result degenerates very quickly for bad values
- You get an image and the normal map, as with the previous sketches.

Course Completed

Illustrative Computer Graphics

Universität Konstanz

Oliver Deussen KC Kwan

Questions & Comments?