k-Means Clustering

This is an iterative procedure. To use it the _____, k, must be decided first. The stages of the iteration are:

- 1. Initialize by either (a) partitioning the data into k groups, and compute the k group means or (b) an initial set of k points as the first estimate of the cluster means (seed points).
- 2. Loop over all observations _____ them to the group with the closest mean.
- 3. Recompute group _____.

 Iterate steps 2 and 3 until _____.

Step 0

i	X 1	X 2
A	1	1
В	1	0
С	0	2
D	2	4
Е	3	5

Use k=2. Suppose A and C are randomly selected as the initial means.

Step 1.1

 $\overline{\mathbf{X}}_{1}^{0}$

 \overline{X}_{2}^{0}

i	X 1	χ_2	
A	1	1	
В	1	0	
С	0	2	
D	2	4	
Е	3	5	

i	
A	1.4
В	2.2
С	0
D	2.8
Е	4.2

Compute distances between each of the cluster means and all other points.

Step 1.1

i			Cluster
A	0	1.4	
В	1	2.2	
С	1.4	0	
D	3.2	2.8	
Е	4.5	4.2	

i	X 1	X 2
A	1	1
В	1	0
С	0	2
D	2	4
Е	3	5

 $\overline{\mathbf{X}}$

 $\overline{\mathbf{X}}_{2}^{1}$

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

_

Step 1.1 - Plots

$$\overline{X}_{1}^{1} = (1,0.5)$$

$$\overline{X}_{2}^{1} = (1.7, 3.7)$$

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

Step 2.1

i	X 1	X 2
A	1	1
В	1	0
С	0	2
D	2	4
Е	3	5

$$\overline{X}_{1}^{1}=(1,0.5)$$

$$\overline{X}_{1}^{1}=(1,0.5)$$
 $\overline{X}_{2}^{1}=(1.7,3.7)$

i	
A	2.7
В	3.7
С	2.4
D	0.5
Е	1.9

Compute distances between each of the cluster means and all other points.

Step 2.1

i			Cluster
A	0.5	2.7	
В	0.5	3.7	
С	1.8	2.4	
D	3.6	0.5	
Е	4.9	1.9	

i	X 1	X 2
A	1	1
В	1	0
С	0	2
D	2	4
Е	3	5

$$\overline{\mathbf{X}}_{1}^{2}$$

$$\overline{X}_{2}^{2}$$

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

Step 2.1 - Plots

$$\overline{X}_{1}^{2} = (0.7,1)$$

$$\overline{X}_{2}^{2} = (2.5, 4.5)$$

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

7

Step 3

$$\overline{X}_{1}^{2} = (0.7,1)$$

$$\overline{X}_{2}^{2} = (2.5, 4.5)$$

Algorithm has _____ - re-calculating distances, reassigning cases to clusters results in no change. This is the _____.

k-Means - Initialization

- The algorithm needs to be _____ by choosing k initial means.
- Approaches:
 - 1. ____ choose k points from the data set to act as the initial means.
 - 2.First do ______, decide on k, and use the _____ of these clusters as the initial k-means.
- Initialization can _____ the final result.
- If k is not known, re-run for several _____ k.

Examples

pp1

- Flea beetles
- Several cases are confused.
- Why would kmeans have trouble with this data?

1

Example

• k-means does not handle nuisance variables well, but surprisingly does well with these data sets.

Example - partitioning

- Many clustering tasks involve _____ data into chunks.
- There may not be natural clusters.

13

Example - partitioning

• ____ matters in the way the data gets partitioned.

k-means

factor(x.km\$cluster)

1 2
3 4
4

Summarizing results

Need to show how the clusters _____ from each other:

- Tabulate the _____ for each cluster.
 Make separate plots for each cluster, using same scale
- Plot the _____ on one plot

Example

cluster	tars1	tars2	head	aede1	aede2	aede3
mean 1	183.10	129.62	51.24	146.19	14.10	104.86
sd 1	12.14	7.16	2.23	5.63	0.89	6.18
mean 2	138.23	125.09	51.59	138.27	10.09	106.59
sd 2	9.34	8.55	2.84	4.14	0.97	5.85
mean 3	201.00	119.32	48.87	124.65	14.29	81.00
sd 3	14.90	6.65	2.35	4.62	1.10	8.93

Cluster 1 has ____ values on all variables. Cluster 2 has values for tars1 and aede2, ___ values of head and aede3. Cluster 3 has ____ -2 values of tars 1 and aede2, but ____ values of all other variables.

Example

Plotting all of the data shows the ____ in each cluster.

17

Example

PC1

Plotting the clusters in a _____ like the first two principal components can also help evaluate the clusters.