

Paris, 16 and 17 October 2012
Workshop IS-ENES

STOCHASTIC RAINFALL DOWNSCALING role of RCMs

D. D'Onofrio, V. Artale, **S. Calmanti**, J. von Hardenberg <u>E. Palazzi</u> and A. Provenzale

Modelling chain: bridging the gap

Upscaling: PROTHEUS vs averaged raingauge data

Spatially averaged over all model pixels (also true for each pixel)

	Average P (mm/day)	P intensity (mm/day)	Zeros (%)
Model data	3.7	7.0	46.8
Observed data	2.7	7.8	64.4
Total precipitation		Precipitation intensity	Dry days
		$p_0 = 0.1 \text{ mm/day}$	

PROTHEUS overestimates the total precipitation but underestimates precipitation intensity and the number of dry days. Precipitation in the model is more frequent than in the observations. There is a strong correlation between the interannual variability of model data and observed data.

RainFARM downscaling procedure

RAINFarm: Rainfall Filtered Auto Regressive Model

P(X, Y, T), input field, reliability scales L_0 , T_0 r(x,y,t), output field, resolution λ , τ

Belongs to the family of "Metagaussian models", based on the nonlinear transformation of a linearly correlated stochastic field, obtained by extrapolating to small scales the power spectrum (i.e., the spatial logarithmic slope) of the original field (provided that the input field shows a approximate scaling behavior)

Rebora et al., J. Hydrometeorol., 2006

RainFARM downscaling: example

Precipitation field from PROTHEUS

Stochastic realization of the PROTHEUS downscaled field, obtained with RainFARM

Downscaling: Downscaled PROTHEUS vs individual raingauge data

Rain-gauge network

Ciccarelli et al., *Global and Planetary Change*, 2008

33 PROTHEUS pixels

■ 122 rain gauges

1958-2001

Altitude max: 2526 m

■ Altitude min: 127 m

Daily resolution

7 ERA40 pixels

PROTHEUS vs ERA40

Summary & conclusions

- The high-resolution precipitation fields obtained by downscaling the PROTHEUS output reproduce well the seasonality and the amplitude distribution of the observed rain gauge precipitation during most of the year, including the extreme events.
- However, the RainFARM stochastic downscaling procedure cannot correct the model outputs at large scale, such as the disagreement in the frequency of precipitation events in PROTHEUS in winter.

Limits of RainFARM: does not account for the orography (it can matter inside the box) and does not correct biases

Contacts

RAINFARM

SAC

provenzale@isac.cnr.it

d.donofrio@isac.cnr.it

e.palazzi@isac.cnr.it

PROTHEUS

sandro.calmanti@enea.it

paolo.ruti@enea.it

Rain-gauge network

Ciccarelli et al., *Global and Planetary Change*, 2008

PROTHEUS

33 PROTHEUS pixels

- 122 rain gauges
- **1**958-2001
- Altitude max: 2526 m
- Altitude min: 127 m
- Daily resolution

PROTHEUS vs ERA40 downscaling

Additional: RAINFarm procedure

$$lacksquare P(X,Y,T)$$
 $L_0 \leq (X,Y) \leq L_{max}$ $T_0 \leq T \leq T_{max}$ Input field

$$\hat{P}(K_x,K_y,\Omega) \qquad (K_x,K_y) \leq \frac{\pi}{L_0} \qquad \Omega \leq \frac{\pi}{T_0} \qquad \text{Fourier spectrum}$$

•
$$|\hat{P}|^2$$
; α ; β -Space-time power spectrum (exponential behavior), with slopes α , β - extrapolation to small scales

$$\hat{g}(k_x,k_y,\omega) = |\hat{g}(k_x,k_y,\omega)| exp(i\phi) \qquad \text{Fourier spectrum, ϕ are} \\ |\hat{g}(k_x,k_y,\omega)|^2 = (k^2_x + k^2_y)^{-\alpha/2} \omega^{-\beta} \qquad \text{random phases}$$

$$g(x,y,t) \qquad \qquad \lambda \leq (x,y) \leq L_{max} \qquad \tau \leq t \leq T_{max} \qquad \text{by inverting } \hat{g}$$

$$\tilde{r}(x,y,t) = e^{g(x,y,t)} \qquad \begin{array}{l} \text{Systhetic precipitation field, obtained by a nonlinear} \\ \text{tranformation of g} \end{array}$$

Additional: RAINFarm procedure

The synthetic field is forced to be equal to the original field P, when aggregating on L₀ and T₀ scales \rightarrow creation of \tilde{R} so that:

Additional: large scale bias

Composite 500hPa isobars during *intense rainfall* events at the weather station of Torino Caselle: ERA40 (blue) and PROTHEUS (red). *Intense rainfall* is defined as daily rainfall (observed) > 20mm.

The black boxes represent the PROTHEUS domain. The area between the inner and outer box is where PROTHEUS is nudged to the lateral boundary conditions.

Methodology

The method used to bridge the scale gap between coarse-scale climate model outputs and point-scale observed data is are averaging (upscaling) the raingauge data at the scale of the model or, vice versa, interpolating the model to the gauge positions (downscaling).

- Upscaling approach: comparison between PROTHEUS/ERA40 and the raingauge data averaged over the PROTHEUS/ERA40 pixels (one observed time series for each pixel)
- **Downscaling approach**: comparison between the downscaled PROTHEUS/ERA40 and data from the individual raingauges