Unit - IV

a) Find $L\left[\frac{\cos at - \cos bt}{t} + t \sin a t\right]$ b) Express $f(t) = \begin{cases} \sin t & 0 < t \le \pi \\ \sin 2t & \pi \le t \le 2\pi \\ \sin 3t & t > 2\pi \end{cases}$

in terms of Unit step function and find its Laplace transform. If f(t) is a periodic function with period T so that f(t+T)=f(t) for all values of t,

- prove that $L\{f(t)\} = \frac{1}{1-e^{-sT}} \int_{-e^{-sT}}^{T-sT} f(t) dt$
- a) Find (i) $L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$ (ii) $L^{-1}\left[\cot^{-1}\left(\frac{s}{2}\right)\right]$ b) Find $L^{-1}\left[\frac{1}{(s^2+1)(s^2+9)}\right]$ using convolution theorem.

c) Using Laplace transform technique solve $(D^3 - 3D^2 + 3D - 1)y = t^2e^t$ given that y(0) = 1, y/(0) = 0, y//(0) = -2

Unit - V

- Form a partial differential equation by eliminating arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = c^2$.
 - Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x y) = 0.$ b)
 - Derive one dimensional wave equation
- 10. a) Form the partial differential equations by eliminating arbitrary function from z = f(x + at) + g(x - at)

b) Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$. c) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$.

BT* Bloom's Taxonomy, L* Level

LIMMANY

W Challeton

ition: 3 Hours

Solve ye

Note: A

If a body air being

Obtain th

Solve p Solve (x

Obtain th

Solve (D

b) Solve d

c) Solve by

Solve (

Solve (L

Solve by

a) Prove th

Prove T

Evaluate

a) Evaluate

Evaluate

Find the

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations April - May 2018

tion: 3 Hours

6

6

7

17MA201 - ENGINEERING MATHEMATICS - II Note: Answer Five full questions choosing One full question from each Unit. Max. Marks: 100 a) Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. b) Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$, Marks BT* 6 L*3 If the temperature of the air is $30^{o}C$ and the substance cools from $100^{o}C$ to $70^{o}C$ in 15 minutes, find when the temperature of the substance will be $40^{\circ}C$. L4 Find the general and singular solution of L3 6

 $\sin px \cos y = \cos px \sin y + p$ b) Solve $y = 2px + y^2p^3$. L3 L3

Uranium disintegrates at a rate proportional to the amount then present at any instant. If M_1 and M_2 grams of uranium are present at times T_1 and T_2 respectively, find the half-life of uranium.

Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$.

b) Using the method of variation of parameters solve: 6 L3

 $(D^2+4)y=tan2x.$

c) Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = logx$.

a) Solve $y'' - 2y' + 2y = e^x \cos x$ b) Solve by the method of undetermined coefficients

 $(D^2+1)y=\sin x.$ L3

A body weighing 10 kg is hung from a spring. A pull of 20 kg.wt. will stretch the spring to 10 cm. The body is pulled to 20 cm below the state of equilibrium position and then released. Find the displacement of the body from its equilibrium position at time t sec., the maximum velocity and the period of oscillation.

Unit - III

Evaluate $\int_{-\infty}^{\infty} x^n e^{-a^2 x^2} dx$ in terms of Gamma function. L2

b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

L2 Evaluate $\int_0^{\pi/2} \sqrt{\tan\theta} \, d\theta$ in terms of Gamma function.

a) Change the order of integration in $I=\int_0^{4a}\int_{x^2/4a}^{2\sqrt{ax}}dydx$ and hence evaluate. L4

L3 Find the area bounded by the curve $r^2 = a^2 \cos 2\theta$ by using double Integration.

c) Find the volume of the solid generated by the revolution of the cardioids L3 $r = a(1 + \cos\theta)$ about the initial line.

P.T.O.

L3

L3

L4

L3

L4

L3

6. a) i) Define beta and Gamma functions

ii) Evaluate
$$\int_{0}^{\infty} x^{6}e^{-2x}dx$$
 in terms of Gamma functions.

Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 with usual notations.

Evaluate
$$\int e^{-x} \frac{\sin \alpha x}{x} dx$$
 using differentiation under the integral sign.

Unit - IV

Unit – IV

7. a) If
$$f(t)$$
 is a periodic function with period T so that $f(t+T)=f(t)$ for all values of t , Prove that $L\{f(t)\}=\frac{1}{1-e^{-sT}}\int\limits_0^T e^{-st}f(t)dt$.

Express
$$f(t) = \begin{cases} t-1 & 0 \le t < 2 \\ 3-t & 2 \le t < 3 \end{cases}$$
 in terms of unit step function and then find $0 \quad t \ge 3$

its Laplace Transform.

Find the Laplace Transform of i) $e^{-t} \cos^2 t$ ii) $t^2 e^{-3t} \sin 2t$

B. (a) Find (i)
$$L^{-1} \left\{ \frac{e^{-3s}}{(s-4)^2} \right\}$$
 (ii) $L^{-1} \left\{ \frac{s^2}{(s+2)^3} \right\}$

b) State Convolution theorem. Using the theorem find the inverse Laplace Transform of $\left\{ \frac{s}{(s^2 + \rho^2)^2} \right\}$

Solve
$$x''(t) + 4x'(t) + 4x(t) = 4e^{-2t}$$
; $x(0) = -1$, $x'(0) = 4$

9. a) Construct P.D.E by eliminating the constants a, b from

i)
$$z = (x^2 + a)(y^2 + b)$$
 ii) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

- Solve by the method of separation of variables $\frac{\partial^2 z}{\partial x^2} 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$
- c) With usual notations and assumptions derive one dimensional heat flow equation in the form $u_{i} = c^{2} u_{i}$
- 10. a) Form the P.D.E by eliminating the arbitrary function from $f(x^2 + y^2, z - xy) = 0$
 - b) Solve (y+z)p-(z+x)q=x-y by Lagrange's Method.
 - c) With usual notations and assumptions derive one dimensional wave equation in the form $u_n = c^2 u_m$

(An Second S

tion: 3 Hours

Note: Answer

a) Solve
$$(xy^3 + y)$$

b) Find the orthog

where λ is the p c) If the temperatu in 15 minutes, f

6 a) Find the genera $\sin px \cos y =$

b) Solve y = 2px

Uranium disinte instant. If M₁ respectively, fir

Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx}$ Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx}$

 $(D^2 + 4)y =$ 6 c) Solve $x^2 \frac{d^2y}{dx^2}$

Solve y'' - 2Solve by the m

 $(D^2 + 1)y =$

A body weighir spring to 10 c position and t equilibrium pos oscillation.

6) Evaluate $\int x^n$

7) Prove that $\beta(n)$

Evaluate $\int_0^{\pi/2} \sqrt{1}$

Change the ord

Find the area b Find the volume

 $r = a(1 + \cos\theta)$

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester B.E.(Credit System) Degree Examinations Make up / Supplementary Examinations – July 2018

17MA201 - ENGINEERING MATHEMATICS-II

-	ation: 3 Hours	Many Mande	100
3	Note: Answer Five full questions choosing One full question from each	Max. Marks	s. 100
	Unit - I a) Solve $y e^{xy} dx + (xe^{xy} + 2y) dy = 0$	Marks	BT*
	b) Find the orthogonal trajectories of $r^2 = a^2 \cos 2\theta$ where a is a parameter.	6	L*2
4		7	L3
	c) Suppose water at a temperature 100°C cools to 80°C in 10 minutes, in a room		
	maintained at a temperature of 30°C , find when the temperature of water will		
	become 40°C	7	L4
	Find the general and singular solution of $y = px - \sqrt{1 + p^2}$		L4
4	N Column the non-linear F	6	L2
	P ³ +2xP ² - y ² P ² - 2xy ² P = 0		A.4
	c) Solve $y(1+xy)dx + x(1-xy)dy = 0$	7	L4 L3
	Unit – II		LS
4	Solve $(D^2 + 3D + 2)y = e^{-2x} - 1$		
	By using the method of variation of parameter solve, $(D^2-4D+4)y=xe^{2x}$	6	L2
4		7	L3
	A spring is such that 1.96 Kg weight stretches it 19.6 cms. an impressed force		_
4	$\frac{1}{2}$ cos 8t is acting on the spring. If the weight is started from the equilibrium		
	point with an imparted upward velocity of 14.7cms per sec. determine the		
	position of the weight as a function of time.	7	L4
4	Solve $(D^3 - D)y = 4\cos x + 2e^x$		10
	Solve (D ² + D 2) by the method of undetermined coefficients	6	L2
	Solve $(D^2 + D - 2)y = x + \sin x$, by the method of undetermined coefficients.	7	L4
	Solve $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10 \left(x + \frac{1}{x}\right)$		
5	$dx^3 + 2x dx^2 + 2y - 10(x x)$	7	L3
	Unit – III		
5	CO CO	9	
	integral $\iint_{V} \frac{e^{-y}}{v} dy dx$		
	0.7	6	L2
5	Find the area bounded by the leminiscate $r^2 = a^2 \cos 2\theta$.	7	L3
	a x x + y	CA LA	
	Evaluate $\iint_{0}^{a} \int_{0}^{x+y+z} dz dy dx$	7	L4
5		10/2018 to 15	