# TREE-BASED MODELS

Lecture 3

MALI, 2024

# **DECISION TREES**





## HOW DECISION TREES WORK

Step I

Find the feature that is the best predictor of your data

• Step 2

Partition instances of your training set according to that feature

• Step 3

Repeat I-2 recursively

Stop when

All instances in a given node belong to the same class or

There are no more ways to split

#### A FICTITIOUS EXAMPLE

| id | salary | savings debt |           | class    |
|----|--------|--------------|-----------|----------|
| ı  | Low    | High         | True      | Approved |
| 2  | Low    | Low          | False     | Declined |
| 3  | High   | Low          | False     | Approved |
| 4  | Low    | Low          | True      | Declined |
| 5  | High   | Low          | True      | Approved |
| 6  | High   | High         | False     | Approved |
| 7  | High   | Low          | False     | Approved |
| 8  | Low    | Low          | True      | Declined |
| 9  | High   | High         | True      | Approved |
| 10 | Low    | Low          | Low False |          |
| 11 | Low    | High         | False     | Approved |
| 12 | Low    | Low          | True      | Declined |

How do we decide which feature to branch off on?

#### A FICTITIOUS EXAMPLE

| id | salary | savings    | debt  | class    |
|----|--------|------------|-------|----------|
| I  | Low    | High       | True  | Approved |
| 2  | Low    | Low        | False | Declined |
| 3  | High   | Low        | False | Approved |
| 4  | Low    | Low        | True  | Declined |
| 5  | High   | Low        | True  | Approved |
| 6  | High   | High       | False | Approved |
| 7  | High   | Low        | False | Approved |
| 8  | Low    | Low        | True  | Declined |
| 9  | High   | High       | True  | Approved |
| 10 | Low    | Low False  |       | Declined |
| П  | Low    | High False |       | Approved |
| 12 | Low    | Low        | True  | Declined |

### The Gini impurity index

$$G(D) = 1 - \sum_{j} p_{j}^{2} = 1 - \left(--\right)^{2} - \left(--\right)^{2} =$$

$$G_k(D) = \sum_i \frac{n_i}{n} G(D_i)$$

$$G_{\text{salary}}(D) = -\left(1 - \left(-\right)^2 - \left(-\right)^2\right) + -\left(1 - \left(-\right)^2 - \left(-\right)^2\right)$$

### A FICTITIOUS EXAMPLE

| id | salary | savings | debt       | class    |
|----|--------|---------|------------|----------|
| ı  | Low    | High    | True       | Approved |
| 2  | Low    | Low     | False      | Declined |
| 3  | High   | Low     | False      | Approved |
| 4  | Low    | Low     | True       | Declined |
| 5  | High   | Low     | True       | Approved |
| 6  | High   | High    | False      | Approved |
| 7  | High   | Low     | False      | Approved |
| 8  | Low    | Low     | True       | Declined |
| 9  | High   | High    | True       | Approved |
| 10 | Low    | Low     | False      | Declined |
| 11 | Low    | High    | High False |          |
| 12 | Low    | Low     | True       | Declined |

### The Gini impurity index

$$G_{\text{salary}}(D) = 0.24$$
  
 $G_{\text{savings}}(D) = 0.31$   
 $G_{\text{debt}}(D) = 0.47$ 

#### A FICTITIOUS EXAMPLE

| id | salary | savings debt |       | class    |
|----|--------|--------------|-------|----------|
| I  | Low    | High         | True  | Approved |
| 2  | Low    | Low          | False | Declined |
| 3  | High   | Low          | False | Approved |
| 4  | Low    | Low          | True  | Declined |
| 5  | High   | Low          | True  | Approved |
| 6  | High   | High         | False | Approved |
| 7  | High   | Low          | False | Approved |
| 8  | Low    | Low          | True  | Declined |
| 9  | High   | High         | True  | Approved |
| 10 | Low    | Low          | False | Declined |
| 11 | Low    | High         | False | Approved |
| 12 | Low    | Low          | True  | Declined |

## **B**eginning to draw the tree

### A FICTITIOUS EXAMPLE

| id | salary | savings | debt  | class    |
|----|--------|---------|-------|----------|
| I  | Low    | High    | True  | Approved |
| 2  | Low    | Low     | False | Declined |
| 3  | High   | Low     | False | Approved |
| 4  | Low    | Low     | True  | Declined |
| 5  | High   | Low     | True  | Approved |
| 6  | High   | High    | False | Approved |
| 7  | High   | Low     | False | Approved |
| 8  | Low    | Low     | True  | Declined |
| 9  | High   | High    | True  | Approved |
| 10 | Low    | Low     | False | Declined |
| П  | Low    | High    | False | Approved |
| 12 | Low    | Low     | True  | Declined |

## Finishing the tree



## LEARNING DECISION TREES

- means learning the sequence of questions that gets us to the best answer most quickly
- the questions may be yes/no but usually of the form "
- the algorithm searches over all possible and finds the most one

# **VISUALIZATION**



Jupyter Notebook Decision Trees I:Visualization and hyperparameters

# **VISUALIZATION**





## OVERFITTING AND HYPERPARAMETERS

Accuracy on training data: 1.0 Accuracy on testing data: 0.92

max\_depth



max\_leaf\_notes

min\_samples\_split

(criterion)

# PRE-PRUNING



Jupyter Notebook Decision Trees I:Visualization and hyperparameters

# PROS AND CONS OF DECISION TREES

Pros Cons

## ENSEMBLES OF DECISION TREES

Random forests (bagging)

Gradient boosted decision trees (boosting)

# RANDOM FORESTS



# RANDOMIZATION I: BOOTSTRAPPING

|                       | fı | f <sub>2</sub> | $f_3$ | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|-------|----------------|----------------|----------------|
| <b>X</b> I            | 45 | 5              | 21    | 45             | 15             | I              |
| X <sub>2</sub>        | 87 | 2              | 12    | 44             | 64             | 2              |
| <b>x</b> <sub>3</sub> | 24 | 8              | 15    | 43             | 36             | 3              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17    | 44             | 87             | 2              |
| <b>X</b> <sub>5</sub> | 13 | 5              | 12    | 44             | 65             | 3              |
| <b>x</b> <sub>6</sub> | 87 | 4              | 16    | 42             | 34             | I              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13    | 42             | 2              | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14    | 43             | 54             | 3              |
| X <sub>9</sub>        | 35 | 6              | П     | 41             | 63             | 2              |



## A bootstrap dataset

|                       | $f_1$ | $f_2$ | <b>f</b> <sub>3</sub> | f <sub>4</sub> | <b>f</b> <sub>5</sub> | f <sub>6</sub> |
|-----------------------|-------|-------|-----------------------|----------------|-----------------------|----------------|
| <b>X</b> <sub>7</sub> | 89    | 7     | 13                    | 42             | 2                     | 2              |
| X <sub>9</sub>        | 35    | 6     | П                     | 41             | 63                    | 2              |
| <b>X</b> <sub>4</sub> | 67    | 7     | 17                    | 44             | 87                    | 2              |
| <b>x</b> <sub>8</sub> | 68    | 3     | 14                    | 43             | 54                    | 3              |
| <b>X</b> <sub>7</sub> | 89    | 7     | 13                    | 42             | 2                     | 2              |
| <b>x</b> <sub>2</sub> | 87    | 2     | 12                    | 44             | 64                    | 2              |
| <b>X</b> <sub>3</sub> | 24    | 8     | 15                    | 43             | 36                    | 3              |
| <b>X</b> <sub>3</sub> | 24    | 8     | 15                    | 43             | 36                    | 3              |
| <b>x</b> <sub>8</sub> | 68    | 3     | 14                    | 43             | 54                    | 3              |

# RANDOMIZATION I: BOOTSTRAPPING

### Dataset for tree I

## Dataset for tree 2

#### Dataset for tree 3

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>X</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>x</b> <sub>6</sub> | 87 | 4              | 16             | 42             | 34             | I              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

|                       | <b>f</b> ı | $f_2$ | <b>f</b> <sub>3</sub> | f <sub>4</sub> | <b>f</b> <sub>5</sub> | f <sub>6</sub> |
|-----------------------|------------|-------|-----------------------|----------------|-----------------------|----------------|
| <b>X</b> <sub>3</sub> | 24         | 8     | 15                    | 43             | 36                    | 3              |
| <b>X</b> <sub>3</sub> | 24         | 8     | 15                    | 43             | 36                    | 3              |
| <b>x</b> <sub>8</sub> | 68         | 3     | 14                    | 43             | 54                    | 3              |
| <b>X</b> <sub>7</sub> | 89         | 7     | 13                    | 42             | 2                     | 2              |
| <b>X</b> <sub>I</sub> | 45         | 5     | 21                    | 45             | 15                    | I              |
| <b>X</b> <sub>I</sub> | 45         | 5     | 21                    | 45             | 15                    | I              |
| X <sub>6</sub>        | 87         | 4     | 16                    | 42             | 34                    | ı              |
| <b>x</b> <sub>5</sub> | 13         | 5     | 12                    | 44             | 65                    | 3              |
| <b>X</b> <sub>7</sub> | 89         | 7     | 13                    | 42             | 2                     | 2              |
|                       |            |       |                       |                |                       |                |

# RANDOMIZATION II: FEATURE SELECTION

#### Dataset for tree I

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| <b>x</b> <sub>2</sub> | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

For each node, randomly select a of features and ask the question involving

# RANDOMIZATION II: FEATURE SELECTION

### Dataset for tree I

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | Ш              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

max\_features

max\_features = n\_features

max\_features = 1

# RANDOMIZATION II: FEATURE SELECTION

### Dataset for tree I

|                       | fı | f <sub>2</sub> | f <sub>3</sub> | f <sub>4</sub> | f <sub>5</sub> | f <sub>6</sub> |
|-----------------------|----|----------------|----------------|----------------|----------------|----------------|
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>9</sub>        | 35 | 6              | П              | 41             | 63             | 2              |
| <b>X</b> <sub>4</sub> | 67 | 7              | 17             | 44             | 87             | 2              |
| <b>X</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |
| <b>X</b> <sub>7</sub> | 89 | 7              | 13             | 42             | 2              | 2              |
| X <sub>2</sub>        | 87 | 2              | 12             | 44             | 64             | 2              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>X</b> <sub>3</sub> | 24 | 8              | 15             | 43             | 36             | 3              |
| <b>x</b> <sub>8</sub> | 68 | 3              | 14             | 43             | 54             | 3              |

A low value of max\_features

A high value of max\_features

A rule of thumb

# PREDICTIONS USING RANDOM FORESTS



# PROS AND CONS OF RANDOM FORESTS

Pros Cons

# TREES VS. FORESTS



Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees

## GRADIENT BOOSTED DECISION TREES

OR GRADIENT BOOSTED REGRESSION TREES OR GRADIENT BOOSTING MACHINES

# **HYPERPARAMETERS**

n\_estimators

max\_depth

learning\_rate

# CODING BOOSTED TREES



Jupyter Notebook Decision Trees 2: Feature importance and ensembles of trees

# PROS AND CONS OF GRADIENT BOOSTED DECISION TREES

Pros Cons

# WHEN TO USE WHAT

Tree Forest Boosted tree

