Лабораторная работа №1.2 Исследование эффекта Комптона

Драчов Ярослав Факультет общей и прикладной физики МФТИ

11 ноября 2020 г.

Экспериментальные данные приведены в табл.1. Будем исследовать за-

$\theta,^{\circ}$	N
0	653
10	609
20	556
30	525
40	467
50	413
60	367
70	331
80	298
90	268
103	236

Таблица 1: Зависимость номера канала N от угла рассеяния θ

висимость

$$\frac{1}{N(\theta)} = a(1 - \cos \theta) + b.$$

Согласно МНК получаем (графически результаты представлены на рис. 1)

$$a = (213 \pm 3) \cdot 10^{-5}$$
 $b = (162 \pm 2) \cdot 10^{-5}$.

Откуда

$$N(0)_{\text{наил}} = 617 \pm 8$$
 $N(1)_{\text{наил}} = 267 \pm 3$.

Следовательно

$$mc^2 = 504 \pm 4$$
 кэВ.

Сравнивая с табличным значением $512~{\rm kp}$ обнаруживаем лишь небольшое расхождение.

Рис. 1: Зависимость $1/N(\theta) = a(1-\cos\theta) + b$