FREIBURG

Algorithmen und Datenstrukturen

Vorlesung 4

Dictionaries 1: Binäre Suche, Hashing mit Chaining & Offene Adressierung

Fabian Kuhn Algorithmen und Komplexität

Abstrakte Datentypen: Dictionary

Dictionary: (auch: Maps, assoziative Arrays, Symbol Table)

 Verwaltet eine Kollektion von Elementen, wo bei jedes Element durch einen eindeutigen Schlüssel (key) repräsentiert wird

Operationen:

create : erzeugt einen leeren Dictionary

D.insert(key, value): fügt neues (key, value)-Paar hinzu

falls schon ein Eintrag für key besteht, wird er ersetzt

• *D.find(key)* : gibt Eintrag zu Schlüssel *key* zurück

falls ein Eintrag vorhanden (gibt sonst einen Default-Wert zurück)

• D.delete(key) : löscht Eintrag zu Schlüssel key

Dictionary

 Wir kümmern uns in einer ersten Phase nur um die Basisoperationen insert, find, delete (und create)

Dictionary Beispiele:

Wörterbuch (key: Wort, value: Definition / Übersetzung)

Telefonbuch (key: Name, value: Telefonnummer)

• DNS Server (key: URL, value: IP-Adresse)

Python Interpreter (key: Variablenname, value: Wert der Variable)
 Java/C++ Compiler (key: Variablenname, value: Typinformation)

In all diesen Fällen ist insbesondere eine schnelle find-Op. wichig!

Dictionary mit verketteten Listen

Operationen:

- create:
 - lege neue leere Liste an
- D.insert(key, value):
 - füge neues Element vorne ein
 - Annahme: Es gibt noch keinen Eintrag mit dem Schlüssel key
- D.find(key):
 - gehe von vorne durch die Liste
- D.delete(key):
 - suche zuerst das Listenelement (wie in find)
 - lösche Element dann aus der Liste
 - Bei einfach verketten Listen muss man stoppen, sobald current.next.key == key ist!

Dictionary mit verketteten Listen

Laufzeiten:

create: O(1)

insert: O(1)

Falls man nicht überprüfen muss, ob der Schlüssel schon vorkommt

find: O(n)

Wir müssen möglicherweise über die ganze Liste iterieren

delete: O(n)

Wir müssen möglicherweise über die ganze Liste iterieren

Ist das gut?

Insbesondere find ist sehr teuer!

Operationen:

- create:
 - lege neues Array der Länge NMAX an
- D.insert(key, value):
 - füge neues Element hinten an (falls es noch Platz hat)
 - Annahme: Es gibt noch keinen Eintrag mit dem Schlüssel key
- D.find(key):
 - gehe von vorne (oder hinten) durch die Elemente
- D.delete(key):
 - suche zuerst nach dem key
 - lösche Element dann aus dem Array:

Man muss alles dahinter um eins nach vorne schieben!

Dictionary mit Array

Laufzeiten:

create: O(1)

insert: O(1)

find: O(n)

Wir müssen möglicherweise über das ganze Array iterieren

delete: O(n)

• Wir müssen möglicherweise über das ganze Array iterieren und im Worst Case $\Omega(n)$ Werte umkopieren

Bessere Ideen?

Insbesondere find ist immer noch sehr teuer!

Benutze sortiertes Array?

UNI FREIBUR

- Teure Operation bei Liste/Array, insbesondere find
- Falls (sobald) sich die Einträge nicht zu sehr ändern, ist find die wichtigste Operation!
- Kann man in einem (nach Schlüsseln) sortierten Array schneller nach einem bestimmten Schlüssel suchen?
 - Beispiel: Suche Tel.-Nr. einer Person im Telefonbuch...

Ideen für Suche nach x:

 Wir schlagen Telefonbuch mal ungefähr in der Mitte auf und schauen, ob der Name in der ersten oder in der zweiten Hälfte ist.

Ist y < x oder ist y > x oder ist y = x?

Benutze Divide and Conquer Idee!

Suche nach der Zahl (dem Key) 19:

2	3	4	6	9	12	15	16	17	18	19	20	24	27	29	
---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	--

Binäre Suche

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29

Algorithmus (Array A der Länge n, Suche nach Schlüssel x):

• Behalte linken und rechten Rand l und r, so dass (falls x in A ist)

$$A[l] \le x \le A[r]$$

- Am Anfang setzen wir l=0 und r=n-1
- Gehe in die Mitte m = (l + r)/2
 - Falls $A[m] = x \implies x$ gefunden!
 - Falls $A[m] < x \implies x$ ist im rechten Teil $\implies l = m + 1$
 - Falls $A[m] > x \implies x$ ist im linken Teil $\implies l = m 1$

2	3	4	6	9	12	15	16	17	18	19	20	24	27	29

Algorithmus (Array A der Länge n, Suche nach Schlüssel x):

Falls Schlüssel x im Array ist, dann gilt am Schluss A[l] = x

Wie überprüft man das?

- Empirisch: Unit Test oder auch systematischere Tests...
- Formal?
 - Korrektheit ist (meistens) noch wichtiger als Performance!

Hoare Kalkül

- Wir schauen hier nur die Grundideen an
- Vorbedingung
 - Bedingung, welche am Anfang (der Methode / Schleife / ...) gilt
- Nachbedingung
 - Bedingung, welche am Schluss (der Methode / Schleife / ...) gilt
- Schleifeninvariante
 - Bedingung welche am Anfang / Ende jedes Schleifendurchlaufs gilt

Ist der Algorithmus korrekt?

```
l = 0; r = n - 1;
while r > 1 do
    m = (l + r) / 2;
    if A[m] < x then l = m + 1
    else if A[m] > x then r = m - 1
    else l = m; r = m
```

Vorbedingung

Array ist am Anfang sortiert, Array hat Länge n

Nachbedingung

• Falls x im Array ist, dann gilt A[l] = x

Schleifeninvariante

• Falls x im Array ist, dann gilt $A[l] \le x \le A[r]$

Ist der Algorithmus korrekt?

Vorbedingung

Array ist am Anfang sortiert, Array hat Länge n

$$1 = 0; r = n - 1;$$

Schleifeninvariante

Schleifeninvariante

- Falls x im Array ist, dann gilt $A[l] \le x \le A[r]$
- Vorbedingung und Zuweisung zu l und $r \rightarrow$ Schleifeninvariante
 - Invariante gilt am Anfang des ersten Schleifendurchlaufs

Nachbedingung

- Falls x im Array ist, dann gilt A[l] = x
- Abbruchbedingung while-Schleife $\rightarrow l \geq r$ und damit $A[l] \geq A[r]$
- Falls x im Array ist, dann folgt aus der Schleifeninvariante und da A sortiert ist, dass A[l] = A[r] und damit A[l] = x

Ist der Algorithmus korrekt?

```
l = 0; r = n - 1;
while r > l do
    m = (l + r) / 2;
    if A[m] < x then l = m + 1
    else if A[m] > x then r = m - 1
    else l = m; r = m
```

Schleifeninvariante

- Falls x im Array ist, dann gilt $A[l] \le x \le A[r]$
 - Die Schleifeninvariante gilt am Anfang der Schleife, sie kann nur ungültig werden, wenn wir die Variablen l und r verändern
 - Wenn wir l=m+1 setzen, dann wissen wir, dass A[m] < x, daher gilt danach $A[m+1] \le x$ falls x enthalten ist.
 - Analog, wenn wir r=m-1 setzen, dann wissen wir, dass A[m]>x, daher gilt danach $x \leq A[m-1]$ falls x enthalten ist.

Terminiert der Algorithmus?


```
l = 0; r = n - 1;
while r > l do
    m = (l + r) / 2;
    if A[m] < x then l = m + 1
    else if A[m] > x then r = m - 1
    else l = m; r = m
```

- Veränderung der Anz. Elemente (r l + 1) pro Schleifendurchlauf?
 - l = m + 1:

$$r - (m+1) + 1 \le r - \left(\frac{l+r}{2} + \frac{1}{2}\right) + 1 = \frac{r-l+1}{2}$$

- r = m - 1:

$$(m-1)-l+1 \le \frac{l+r}{2}-1-l+1 = \frac{r-l}{2} < \frac{r-l+1}{2}$$

- Sonst wird x gefunden und r - l + 1 wird 1

Terminiert der Algorithmus?

- In jedem Schleifendurchlauf wird die Anzahl der Elemente mindestens halbiert.
- Der Algorithmus terminiert!

Laufzeit?

$$T(n) \le T(\lfloor n/2 \rfloor) + c, \qquad T(1) \le c$$

Laufzeit Binäre Suche

Der Algorithmus terminiert in Zeit $O(\log n)$.

Dictionary mit sortiertem Array

Operationen:

- create:
 - lege neues Array der Länge NMAX an
- D.find(key):
 - Suche nach key mit binärer Suche
- D.insert(key, value):
 - suche nach key und füge neues Element an der richtigen Stelle ein
 - Einfügen: alles dahinter muss um eins nach hinten geschoben werden!
- D.delete(key):
 - suche zuerst nach dem key und lösche den Eintrag
 - Löschen: alles dahinter muss um eins nach vorne geschoben werden!

Dictionary mit sortiertem Array

Laufzeiten:

create: O(1)

insert: O(n)

find: $O(\log n)$

delete: O(n)

Können wir alle Operationen schnell machen?

und das find noch schneller?

Dictionary bis jetzt

Bis jetzt sahen wir 3 einfache Dictionary Implementierungen

	Verkettete Liste (unsortiert)	Array (unsortiert)	Array (sortiert)
insert	O (1)	O (1)	O(n)
delete	O(n)	O(n)	O(n)
find	O(n)	O(n)	$O(\log n)$

n: Aktuelle Anzahl Elemente im Dictionary

- Wichtigste Operation oft: find
- Können wir das find noch weiter verbessern?
- Können wir alle Operationen schnell haben?

Direkte Adressierung

Mit einem Array können wir alles schnell machen, ...falls das Array gross genug ist.

Annahme: Schlüssel sind ganze Zahlen zwischen 0 und M-1

0	None
1	None
2	Value 1
3	None
4	None
5	None
6	Marc
7	Value 3
8	None
:	:
1	None

1. Direkte Adressierung benötigt zu viel Platz!

Falls Schlüssel ein beliebiger *int* (32 bit) sein kann: Wir benötigen ein Array der Grösse $2^{32} \approx 4 \cdot 10^9$. Bei 64 bit Integers sind's sogar schon mehr als 10^{19} ...

2. Was tun, wenn die Schlüssel keine ganzen Zahlen sind?

- Wo kommt das (key,value)-Paar ("Philipp", "Assistent") hin?
- Wo soll der Schlüssel 3.14159 gespeichert werden?
- Pythagoras: "Alles ist Zahl"
 "Alles" kann als Folge von Bits abgespeichert werden:
 Interpretiere Bit-Folge als ganze Zahl
- Verschärft das Platz-Problem noch zusätzlich!

Hashing: Idee

UNI FREIBURG

Problem

- Riesiger Raum S an möglichen Schlüsseln
- Anzahl n der wirklich benutzten Schlüssel ist viel kleiner
 - Wir möchten nur Arrays der Grösse $\approx n$ (resp. O(n)) verwenden...
- Wie können wir M Schlüssel auf O(n) Array-Positionen abbilden?

Hashfunktionen

Schlüsselraum S, |S| = M (alle möglichen Schlüssel)

Arraygrösse m (\approx Anz. Schlüssel, welche wir max. speichern wollen)

Hashfunktion

$$h: S \to \{0, ..., m-1\}$$

- Bildet Schlüssel vom Schlüsselraum S in Arraypositionen ab
- h sollte möglichst nahe bei einer zufälligen Funktion sein
 - alle Elemente in $\{0, ..., m-1\}$ etwa gleich vielen Schlüsseln zugewiesen sein
 - ähnliche Schlüssel sollten auf verschiedene Positionen abgebildet
- h sollte möglichst schnell berechnet werden können
 - Wenn möglich in Zeit O(1)
 - Wir betrachten es im folgenden als Grundoperation (Kosten = 1)

- 1. insert(k_1, v_1)
- 2. insert(k_2, v_2)
- 3. insert(k_3, v_3)

Hashtabelle

Hashtabellen: Kollisionen

Kollision:

Zwei Schlüssel k_1 , k_2 kollidieren, falls $h(k_1) = h(k_2)$.

Was tun bei einer Kollision?

- Können wir Hashfunktionen wählen, bei welchen es keine Kollisionen gibt?
 - Das ist nur möglich, wenn man die Menge der benutzten Schlüssel im Voraus kennt.
 - Selbst dann ist es unter Umständen sehr teuer, eine solche Hashfunktion zu finden.
- Eine andere Hashfunktion nehmen?
 - Man müsste dann bei jeder neuen Kollision wieder eine neue Hashfunktion wählen
 - Eine neue Hashfunktion heisst, dass man alle bestehenden Werte in der Hashtabelle umkopieren muss.
- Weitere Ideen?

Hashtabellen: Kollisionen

Kollisionen Lösungsansätze

- Annahme: Schlüssel k_1 und k_2 kollidieren
- 1. Speichere beide (key, value)-Paare an die gleiche Stelle
 - Die Hashtabelle muss an jeder Position Platz f
 ür mehrere Elemente bieten
 - Wir wollen die Hashtabelle aber nicht einfach vergrössern (dann könnten wir gleich mit einer grösseren Tabelle starten...)
 - Lösung: Verwende verkettete Listen
- 2. Speichere zweiten Schlüssel an eine andere Stelle
 - Kann man zum Beispiel mit einer zweiten Hashfunktion erreichen
 - Problem: An der alternativen Stelle könnte wieder eine Kollision auftreten
 - Es gibt mehrere Lösungen
 - Eine Lösung: Verwende viele mögliche neue Stellen
 (Man sollte sicherstellen, dass man die meistens nicht braucht...)

Jede Stelle in der Hashtabelle zeigt auf eine verkette Liste

Hashtabelle

Laufzeit Hashtabellen-Operationen

Zuerst, um's einfach zu machen, für den Fall ohne Kollisionen...

create: $\mathbf{0}(\mathbf{1})$

insert: $\mathbf{0}(1)$

find: $\mathbf{0}(1)$

delete: O(1)

- Solange keine Kollisionen auftreten, sind Hashtabellen extrem schnell (falls die Hashfunktion schnell ausgewertet werden kann)
- Wir werden sehen, dass dies auch mit Kollisionen gilt...

Laufzeit mit Chaining

Zuerst, um's einfach zu machen, für den Fall ohne Kollisionen...

create: $\mathbf{0}(1)$

insert: $\mathbf{0}(1 + \text{Listenlänge})$

- Falls man nicht überprüfen muss, ob der Schlüssel schon vorkommt, dann sind die insert-Kosten sogar $\mathcal{O}(1)$.

find: $\mathbf{0}(1 + \text{Listenlänge})$

delete: $\mathbf{0}(1 + \text{Listenlänge})$

• Wir müssen also anschauen, wie lang die Listen werden.

Funktionsweise Hashtabellen

Schlechtester Fall bei Hashing mit Chaining

- Alle Schlüssel, welche vorkommen, haben den gleichen Hashwert
- Ergibt eine verkettete Liste der Länge n
- Wahrscheinlichkeit bei zufälligem h:

Hashtabelle

None

- None
 - None
 - None
 - None
 - None
 - None
 - None

5

6

None

Länge der verketten Liste

- Kosten von insert, find und delete hängt von der Länge der entprechenden Liste ab
- Wie lang werden die Listen?
 - Annahme: Grösse der Hashtabelle m, Anzahl Elemente n
 - Weitere Annahme: Hashfunktion h verhält sich wie zufällige Funktion
- Listenlängen entspricht folgendem Zufallsexperiment

m Urnen und n Kugeln

- Jede Kugel wird (unabhängig) in eine zufällige Urne geworfen
- Längste Liste = maximale Anz. Kugeln in der gleichen Urne
- Durchschnittliche Listenlänge = durchschn. Anz. Kugeln pro Urne m Urnen, n Kugeln \rightarrow durschn. #Kugeln pro Urne: n/m

Balls and Bins

• Worst-case Laufzeit = $\Theta(\max \# Kugeln pro Urne)$

mit hoher Wahrscheinlichkeit (whp) $\in O(n/m + \frac{\log n}{\log \log n})$

- bei $n \le m$ also $O(\frac{\log n}{\log \log n})$
- Die längste Liste wird also Länge $\Theta(\frac{\log n}{\log\log n})$ haben.

Erwartete Laufzeit (für jeden Schlüssel):

- Schlüssel in Tabelle:
 - Liste eines zufälligen Eintrags
 - entpricht der #Kugeln in der Urne einer zufälligen Kugel
- Schlüssel nicht in Tabelle:
 - Länge einer zufälligen Liste, d.h. #Kugeln einer zufälligen Urne

Erwartete Laufzeit von Find

Load α der Hashtabelle:

$$\alpha \coloneqq \frac{n}{m}$$

Kosten einer Suche:

- Suche nach einem Schlüssel x, welcher nicht in der Hashtabelle ist
 - h(x) ist eine uniform zufällige Position
 - \rightarrow erwartete Listenlänge = durchschn. Listenlänge = α

Erwartete Laufzeit: $O(1 + \alpha)$

Erwartete Laufzeit von Find

Load α der Hashtabelle:

$$\alpha \coloneqq \frac{n}{m}$$

Kosten einer Suche:

- Suche nach einem Schlüssel x, welcher in der Hashtabelle ist Wieviele Schlüssel $y \neq x$ sind in der Liste von x?
- Die anderen Schlüssel sind zufällig verteilt, also entspricht die erwartete Anzahl $y \neq x$ der erwarteten Länge einer zufälligen Liste in einer Hashtabelle mit n-1 Einträgen.
- Das sind $\frac{n-1}{m} < \frac{n}{m} = \alpha \rightarrow$ Erw. Listenlänge von $x < 1 + \alpha$

Erwartete Laufzeit: $O(1 + \alpha)$

Laufzeiten Hashing mit Chaining

create:

• Laufzeit O(1)

insert, find & delete:

• Worst Case: $\Theta(n)$

- nur, wenn $\alpha \leq \log^{1-\varepsilon} n$
- Worst Case mit hoher Wahrsch. (bei zufälligem h): $O\left(\alpha + \frac{\log n}{\log \log n}\right)$
- Erwartete Laufzeit (für bestimmten Schlüssel x): $O(1 + \alpha)$
 - gilt für erfolgreiche und nicht erfolgreiche Suchen
 - Falls $\alpha = O(1)$ (d.h., Hashtabelle hat Grösse $\Omega(n)$), dann ist das O(1)
- Hashtabellen sind extrem effizient und haben typischerweise O(1) Laufzeit für alle Operationen.

Kürzere Listenlängen

REIBUR

Idee:

- Benutze zwei Hashfunktionen h_1 und h_2
- Füge Schlüssel x in die kürzere der beiden Listen bei $h_1(x)$ und $h_2(x)$ ein

- Lege Kugel in Urne mit weniger Kugeln
- Bei n Kugeln, m Urnen: maximale Anz. Kugeln pro Urne (whp): $n/m + O(\log \log m)$
- Bekannt als "power of two choices"

Hashing mit offener Adressierung

Ziel:

- Speichere alles direkt in der Hashtabelle (im Array)
- offene Adressierung = geschlossenes Hashing
- keine Listen

Grundidee:

- Bei Kollisionen müssen alternative Einträge zur Verfügung stehen
- Erweitere Hashfunktion zu

$$h: S \times \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}$$

- Ergibt Hashwerte $h(x,0), h(x,1), h(x,2), \dots, h(x,m-1)$
- Für jedes $x \in S$ sollte h(x, i) durch alle m Werte gehen (für versch. i)
- Einfügen eines Elements mit Schlüssel x:
 - Versuche der Reihe nach an den Positionen

$$h(x,0), h(x,1), h(x,2), ..., h(x,m-1)$$

Lineares Sondieren

Idee:

• Falls h(x) besetzt, versuche die nachfolgende Position:

$$h(x,i) = (h(x) + i) \mod m$$

für
$$i = 0, ..., m - 1$$

Beispiel:

Füge folgende Schlüssel ein

$$- x_1, h(x_1) = 3$$

$$- x_2, h(x_2) = 5$$

$$- x_3, h(x_3) = 3$$

$$- x_4, h(x_4) = 8$$

$$- x_5, h(x_5) = 4$$

$$-x_6, h(x_6) = 6$$

– ..

0	
1	
2	
3	x_1 / x_3
4	$x_3 \not\mid_{x_5}$
5	$x_2 \not\mid_{/} x_5$
6	$x_5 \not\mid x_6$
7	x_6
8	x_4
:	:
1	

m –

Lineares Sondieren

Vorteile:

- sehr einfach zu implementieren
- alle Arraypositionen werden angeschaut
- gute Cache-Lokalität

Nachteile:

- Sobald es Kollisionen gibt, bilden sich Cluster
- Cluster wachsen, wenn man in irgendeine Position des Clusters "hineinhasht"
- Cluster der Grösse k wachsen in jedem Schritt mit Wahrscheinlichkeit (k+2)/m
- Je grösser die Cluster, desto schneller wachsen sie!!

Quadratisches Sondieren

Idee:

Nehme Sequenz, welche nicht zu Cluster führt:

$$h(x,i) = \left(h(x) + c_1 i + c_2 i^2\right) \bmod m$$
 für $i=0,\dots,m-1$

Vorteil:

- ergibt keine zusammenhängenden Cluster
- deckt bei geschickter Wahl der Parameter auch alle m Positionen ab

Nachteil:
$$h(x) = h(y) \implies h(x, i) = h(y, i)$$

- kann immer noch zu einer Art Cluster-Bildung führen
- Problem: der erste Hashwert bestimmt die ganze Sequenz!
- Asympt. im besten Fall so gut, wie Hashing mit verketteten Listen

Doppel-Hashing

Idee: Benutze zwei Hashfunktionen

$$h(x,i) = (h_1(x) + i \cdot h_2(x)) \mod m$$

Vorteile:

- Falls m eine Primzahl ist, werden alle Positionen abgedeckt
- Sondierungsfunktion hängt in zwei Arten von x ab
- Vermeidet die Nachteile von linearem und quadr. Sondieren
- Wahrscheinlichkeit, dass zwei Schlüssel x und x' die gleiche Positionsfolge erzeugen:

$$h_1(x) = h_1(x') \land h_2(x) = h_2(x') \implies \text{WSK} = \frac{1}{m^2}$$

Funktioniert in der Praxis sehr gut!

Offene Adressierung:

Schlüssel x kann an folgenden Positionen sein:

$$h(x,0), h(x,1), h(x,2), ..., h(x,m-1)$$

Operation Find?

Hashtabelle i = 0

```
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:
  i += 1
```

```
return (i < m and H[h(x,i)] != None)
```

Beim Einfügen von x wird x an Stelle H[h(x,i)] eingefügt, wenn H[h(x, j)] für j < i besetzt ist

Offene Adressierung: Operation Delete

Offene Adressierung:

Schlüssel x kann an folgenden Positionen sein:

$$h(x,0), h(x,1), h(x,2), ..., h(x,m-1)$$

Operation Delete

```
i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:
    i += 1
if i < m and H[h(x,i)] != None:
    H[h(x,i)] = deleted</pre>
```

Beim Einfügen von x wird x an Stelle H[h(x,i)] eingefügt, wenn H[h(x,j)] für j < i besetzt ist

Offene Adressierung:

• Schlüssel x kann an folgenden Positionen sein:

$$h(x,0), h(x,1), h(x,2), ..., h(x,m-1)$$

Operation Find

```
i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:
    i += 1</pre>
```

```
return (i < m and H[h(x,i)] != None)
```

Beim Einfügen von x wird x an Stelle H[h(x,i)] eingefügt, wenn H[h(x,j)] für j < i besetzt ist

Offene Adressierung: Zusammenfassung

Offene Adressierung:

- Alle Schlüssel/Werte werden direkt im Array gespeichert
 - Gelöschte Einträge müssen markiert werden
- Keine Listen nötig
 - spart den dazugehörigen Overhead...
- Nur schnell, solange der Load

$$\alpha = \frac{n}{m}$$

nicht zu gross wird...

- dann ist's dafür in der Praxis besser als Chaining...
- $\alpha > 1$ ist nicht möglich!
 - da nur m Positionen zur Verfügung stehen

Zusammenfassung Hashing

Wir haben bisher gesehen:

effiziente Methode, um einen Dictionary zu implementieren

- Alle Operationen haben typischerweise O(1) Laufzeit
 - Falls die Hashfunktionen genug zufällig sind und in O(1) Zeit ausgewertet werden können.
 - Die Worst-Case Laufzeit ist etwas h\u00f6her, in jeder Anwendung von Hashfunktionen wird es ein paar teurere Operationen dabei haben.

Wir werden uns noch anschauen:

- Wie wählt man eine gute Hashfunktion?
- Was macht man, wenn die Hashtabelle zu klein wird?
- Man kann Hashing so implementieren, dass find immer in O(1)Zeit implementiert werden kann.

Hashing in Python

Hashtabellen (Dictionary):

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

neue Tabelle generieren: table = {}

(key,value)-Paar einfügen: table.update({key : value})

Suchen nach key: key in table

table.get(key)

table.get(key, default_value)

Löschen von key: del table[key]

table.pop(key, default_value)

Hashing in Java

Java-Klasse HashMap:

- Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V)
 HashMap<K,V> table = new HashMap<K,V>();
- Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V)
 table.put(key, value)
- Suchen nach key
 table.get(key)
 table.containsKey(key)
- Löschen von key table.remove(key)
- Ähnliche Klasse HashSet: verwaltet nur Menge von Schlüsseln

Hashing in C++

Es gibt nicht eine Standard-Klasse

hash_map:

Sollte bei fast allen C++-Compilern vorhanden sein

http://www.sgi.com/tech/stl/hash_map.html

unordered_map:

Seit C++11 in Standard STL

http://www.cplusplus.com/reference/unordered map/unordered map/

Hashing in C++

C++-Klassen hash_map / unordered_ map:

- Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V)
 unordered_map<K,V> table;
- Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V)
 table.insert(key, value)
- Suchen nach key
 table[key] oder table.at(key)
 table.count(key) > 0
- Löschen von key table.erase(key)

Hashing in C++

Achtung

- Man kann eine hash_map / unordered_map in C++ wie ein Array benutzen
 - die Array-Elemente sind die Schlüssel
- Aber:

T[key] fügt den Schlüssel key ein, falls er noch nicht drin ist

T.at(key) wirft eine Exception falls key nicht in der Map ist