Condensé de la terminale Mathématiques

Notations non vues en cours

Contents

0	Out	
	0.1	Composition de fonction $f \circ g$
	0.2	Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$
	0.3	Opérations avec des puissances
	0.4	Diverses théorèmes
		0.4.1 Application de fonctions aux inéquations
1	Suit	ses numériques
_	1.1	Définition fonctionnelle
	1.2	Définition par récurrence
	1.3	Suite arithmétique
	1.4	Suite géométrique
	1.5	Limites
	1.6	Majoration et minoration
	1.7	Opérations sur les limites
	1.8	Comparaisons et limites
	1.0	
2		babilités 7
	2.1	Probabilité conditionnelle $P(A B)$
	2.2	Probabilités d'intersections $P(A \cap B)$
	2.3	Probabilités d'union $P(A \cup B)$
	2.4	Partitions
	2.5	Formule des probabilités totales
	2.6	Indépendance d'évenements
	2.7	Loi de Bernouilli
	2.8	Autre vocabulaire
3	Lim	ites lim
	3.1	Notation
	3.2	Limites d'un quotient à la valeur indéfinie
	3.3	Opérations sur les limites
	3.4	Asymptotes
	3.5	Simplifications de limites
		3.5.1 Polynômes
	3.6	Fonctions composées
1	Com	atinuité des fonctions
4	4.1	tinuité des fonctions Définition
		Continuité de fonctions usuelles
	4.2	Théorèmes utilisant la continuité
	4.0	4.3.1 Valeurs intermédiaires
		4.3.2 Bijection
		4.5.2 Dijection
5	Non	mbres complexes $\mathbb C$
	5.1	Définition
	5.2	Partie imaginaire Im et réelle Re
		5.2.1 Définition
		5.2.2 Propriétés
	5.3	Conjugé \overline{z}
		5.3.1 Définition
		5.3.2 Identités
	5.4	Affixe Aff
		5.4.1 Propriétés
	5.5	Racines des polynômes de second degré $az^2 + bz + c$

6		Dérivées				
	6.1	Opération sur des fonctions	13			
7		action exponentielle exp	1 4			
	7.1	Notation	14			
	7.2	Caractéristiques	14			
	7.3	Propriétés				
	7.4	Limites remarquables				
8	Géo	Géométrie dans l'espace				
	8.1	Intersections	15			
		8.1.1 Droite-droite, plan-plan				
		8.1.2 Droite-plan				
	8.2	Section d'un cube				
	8.3	Orthogonalité \bot				
	8.4	$\operatorname{Plan} \perp \operatorname{droite} \ldots \ldots \ldots \ldots \ldots \ldots$				
	8.5	Plan médiateur				
	8.6	Propriétés				

0 Outils

0.1 Composition de fonction $f \circ g$

Soit f et g des fonctions respectivement définies sur I et J

$$(f \circ g)(x) \iff f(g(x))$$

Attention: il faut que x soit défini dans I et que g(x) soit défini dans J

Plus généralement, soit Θ un ensemble de fonctions

$$\left(\bigcirc_{i=0}^{j}\Theta_{i}\right)(x) = \Theta_{0}\left(\Theta_{1}\left(\Theta_{2}\left(\Theta_{3}\ldots\left(x\ldots\right)\right)\right)\right)$$

0.2 Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$

Soit R le rayon du cercle, et $O(x_0; y_0)$ le centre du cercle Un cercle dans le plan peut être décrit par l'équation suivante:

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

0.3 Opérations avec des puissances

$$(x^{a})^{b} = x^{ab}$$

$$x^{a}x^{b} = x^{a+b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

$$x^{\frac{1}{a}} = \sqrt[a]{x}$$

$$x^{0} = 1$$

0.4 Diverses théorèmes

0.4.1 Application de fonctions aux inéquations

Soit I une intervalle, f une fonction définie et croissante sur I, x et y deux nombres dans I

$$x \gtrsim y$$

$$\iff f(x) \gtrsim f(y)$$

1 Suites numériques

1.1 Définition fonctionnelle

Soit f une fonction:

$$u_n = f(n)$$

1.2 Définition par récurrence

Soit f une fonction

$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = f(u_n) \end{cases}$$

1.3 Suite arithmétique

Avec r la raison de la suite

Définition fonctionnelle $u_n = u_0 + r \cdot n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n + r \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=i}^{j} u_i = (j-i+1) \cdot \frac{u_j + u_i}{2}$

1.4 Suite géométrique

Avec q la raison de la suite

Définition fonctionnelle $u_n = u_0 \cdot q^n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n \cdot q \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=j}^{j} u_i = u_j \cdot \frac{1-q^{j-i+1}}{1-q}$

1.5 Limites

Suite convergeante vers $L \lim_{n \to +\infty} u_n = L$

Suite divergeante $\lim_{n\to+\infty} u_n \neq L$

Limites de type $cste^n$ ou n^{cste}

1.6 Majoration et minoration

Soit (u_n) une suite définie sur les rangs dans I et L un réel

Suite majorée $\forall n \in I \ \exists M \ u_n \leq M$

Suite minorée $\forall n \in I \ \exists m \ u_n \geq m$

Suite bornée Suite majorée et minorée

$$\lim_{n\to+\infty}u_n\dots$$

Soit f la fonction associée à u_n

$$\lim_{n \to +\infty} u_n = L \implies \lim_{n \to +\infty} u_{n+1} = f(L)$$

1.7 Opérations sur les limites

Voir en 3.3

1.8 Comparaisons et limites

Soit $L \in \mathbb{R}$, (u_n) , (v_n) et (w_n) trois suites et l_A la limite quand $n \to +\infty$ de la suite A_n

Nom du théorème	Condi	tions	Résultat	Explication graphique
Par comparaison	$u_n \le v_n$	$l_u = +\infty$	$\implies l_v = +\infty$	(u_n) emporte (v_n) vers $+\infty$
Tar comparaison	$u_n \ge v_n$	$l_u = -\infty$	$\implies l_v = -\infty$	(u_n) emporte (v_n) vers $-\infty$
Théorème des gendarmes	$w_n \ge v_n \ge u_n$	$l_u = l_w = L$	$\implies l_v = L$	(u_n) et (w_n) forcent (v_n) à tendre vers L

2 Probabilités

2.1 Probabilité conditionnelle P(A|B)

Probabilité que A soit réalisé sachant que B a déjà été réalisé.

$$P(A|B)$$
 ou $P_B(A) = \frac{P(A \cap B)}{P(B)}$ si $P(B) \neq 0$

2.2 Probabilités d'intersections $P(A \cap B)$

Probabilité que A et B soit réalisées.

$$P(A \cap B) = P(B) \cdot P(A|B)$$
$$= P(A) \cdot P(B|A)$$

2.3 Probabilités d'union $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B)$$

2.4 Partitions

Si on a deux évenements ou plus tel que...

- Aucun évenement n'est vide $\iff B_i \neq \emptyset \quad \forall i$
- Aucun évenement ne recouvre un autre $\iff B_i \cap B_j = \emptyset \quad \forall i, j$
- L'union de chaque partition couvre l'univers entier $\iff \bigcup_{i=1}^j B_i = \Omega$

2.5 Formule des probabilités totales

Soit $B_1, B_2, ..., B_n$ des évenements formant une partition de Ω

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

2.6 Indépendance d'évenements

A et B sont indépendants $\iff \overline{B}$ et B forment une partition de Ω

 $\iff \overline{A}$ et A forment une partition de Ω

 $\iff \overline{A} \text{ et } \overline{B}, A \text{ et } \overline{B} \text{ et } B \text{ et } \overline{A} \text{ sont indépendants}$

2.7 Loi de Bernouilli

Épreuve de Bernouilli

2.8 Autre vocabulaire

Évenements incompatibles $P(A \cap B) = 0$

3 Limites lim

3.1 Notation

Soit x, C et D des nombres et Ψ un réel, $+\infty$ ou $-\infty$

$$\lim_{x \to \Psi} C = D \iff C \xrightarrow[x \to \Psi]{} D$$

$$\iff \text{Limite de } C \text{ quand } x \text{ tends vers } \Psi$$

$$\lim_{\substack{x\to\Psi\\>}}C=D\iff C\xrightarrow[x\to\Psi^+]{}D$$
 \iff Limite de C en Ψ par valeurs supérieures

 \iff Limite de C à droite de Ψ

$$\begin{split} \lim_{x \to \Psi} C &= D \iff C \xrightarrow[x \to \Psi^-]{} D \\ &\iff \text{Limite de } C \text{ en } \Psi \text{ par valeurs inférieures} \\ &\iff \text{Limite de } C \text{ à gauche de } \Psi \end{split}$$

3.2 Limites d'un quotient à la valeur indéfinie

Soit $f: x \mapsto \frac{p(x)}{q(x)}$ et $r \in \mathbb{R}$ tq. q(r) = 0

- 1. Calculer $\lim_{x \to r} p(x)$
- 2. Par valeurs supérieures Calculer $\lim_{x\to r^+}q(x)$: 0^+ ou 0^- Par valeurs inférieures Calculer $\lim_{x\to r^-}q(x)$: 0^+ ou 0^-
- 3. Conclure par quotient: $0^+ \rightarrow +$ et $0^- \rightarrow -$

3.3 Opérations sur les limites

Les opérations entre deux limites réelles sont comparables aux opérations sur des nombres

FI Forme Indéterminée

x, y	x+y	$x \cdot y$	x/y		
$\pm \infty$	$\begin{array}{ccc} \text{Signes} = & \pm \infty \\ \text{Signes} \neq & \text{FI} \end{array}$	(règle des signes)	ान	FI	
	Signes \neq FI	(regie des signes)	11		
		x = 0 FI	y = 0	FI	
\mathbb{R} ou $\pm \infty$	$\pm\infty$	$x > 0 \pm \infty$	$y = \pm \infty$	0	
nt ou ±∞		$x < 0 \mp \infty$	$x = \pm \infty \text{ et } y \in \mathbb{R}^*$	$\pm \infty$	

3.4 Asymptotes

Soit $L \in \mathbb{R}$, f une fonction, Γ la courbe d'équation y = f(x) et Ψ un nombre ou symbole

$$f(x) \xrightarrow[x \to \Psi]{} L \iff \Gamma \text{ admet en } \Psi \text{ une asymptote (horizontale) d'équation } y = L$$

$$\begin{cases} f(x) \xrightarrow[x \to L^+]{} \pm \infty \\ f(x) \xrightarrow[x \to L^-]{} \pm \infty \end{cases} \iff \Gamma \text{ admet en } L \text{ une asymptote (verticale) d'équation } x = L$$

3.5 Simplifications de limites

3.5.1 Polynômes

Pour les limites en $+\infty$ ou en $-\infty$, on peut simplifier la limite d'un polynôme à la limite du terme de plus haut degré:

$$\lim_{x \to +\infty} 2x^3 - 4x + 1 = \lim_{x \to +\infty} 2x^3$$

Ça marche aussi avec les fractions:

$$\lim_{x \to +\infty} \frac{4x^9 + x^3 - 2}{5x^3 - 8x^{18} + 420} = \lim_{x \to +\infty} \frac{4x^9}{-8x^{18}}$$

3.6 Fonctions composées

Soit $a, b \in \mathbb{R} \cup \{-\infty; +\infty\}$, f et g des fonctions

$$\begin{cases} f(x) \xrightarrow[x \to a]{x \to a} b \\ g(x) \xrightarrow[x \to b]{} c \end{cases} \implies (f \circ g)(x) \xrightarrow[x \to a]{} c$$

4 Continuité des fonctions

4.1 Définition

Une fonction est continue quand "on peut tracer sa courbe sans lever le stylo". Plus rigoureusement, la fonction f est continue sur l'intervalle I si, pour tout $a \in I$, $f(a) \xrightarrow[T \to a]{} f(a)$.

4.2 Continuité de fonctions usuelles

Polynôme \mathbb{R} \sqrt{x} \mathbb{R}^+

Rationnelle Ensemble de définition

De plus, n'importe quelle fonction créée par +, \times , \circ ou \div à partir de fonctions continues sont continues

4.3 Théorèmes utilisant la continuité

4.3.1 Valeurs intermédiaires

Soit a et b des réels, f une fonction continue sur [a;b].

 $\forall k \in [f(a); f(b)], \quad f(x) = k \text{ admet au moins une solution dans } [a; b]$

4.3.2 Bijection

Soit I une intervalle, a et b des réels dans I et f une fonction définie sur I ou plus grand

 $\begin{cases} f \text{ est continue sur } I \\ f \text{ est strictement monotone sur } I \\ k \in [f(a); f(b)] \end{cases} (2)$

 $\implies f(x) = k$ admet une unique solution dans [a; b]

(1) quand elle ne l'est pas, on étudie séparémment chaque intervalle où la fonction est strictement monotone (2) si a ou $b = \pm \infty$, on calcule la limite pour l'intervalle image:

Montrer que f(x) = k n'admet qu'une seule solution dans \mathbb{R}

$$k \in \left[\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x) \right]$$

Attention: pour montrer que f(x) = k n'a pas de solutions on n'utilise pas la bijection mais le tableau de variations

5 Nombres complexes $\mathbb C$

5.1 Définition

$$i^2:=-1,\quad a,b\in\mathbb{R},\quad z\in\mathbb{C}$$

$$z=a+ib$$

Ensemble des imaginaires purs: $i\mathbb{R} := \mathbb{C} \setminus \mathbb{R}$

5.2 Partie imaginaire Im et réelle Re

5.2.1 Définition

- $\operatorname{Re}(a+ib) := a$
- $\operatorname{Im}(a+ib) := b$

5.2.2 Propriétés

- Re $z = 0 \iff z \in \mathbb{R}$
- Im $z = 0 \iff z \in i\mathbb{R}$

5.3 Conjugé \overline{z}

5.3.1 Définition

$$\overline{a+ib} := a-ib$$

5.3.2 Identités

 \square représente les opérations +, \times et \div

- $z \cdot \overline{z} = (\operatorname{Im} z)^2 + (\operatorname{Re} z)^2$
- $\bullet \ \overline{z \square w} = \overline{z} \square \overline{w}$
- $\overline{z^n} = (\overline{z})^n$
- $\bullet \ \ \overline{\overline{z}}=z$
- $\overline{z} = z \iff z \in \mathbb{R}$

5.4 Affixe Aff

L'affixe est un nombre complexe représenté par un point ou un vecteur dans le plan:

$$Aff \begin{pmatrix} a \\ b \end{pmatrix} = a + ib$$

Réciproquement, l'image de a+ib est (a;b)

5.4.1 Propriétés

•
$$\operatorname{Aff}(\overrightarrow{AB}) = \operatorname{Aff}(B) - \operatorname{Aff}(A)$$

5.5 Racines des polynômes de second degré az^2+bz+c $az^2+bz+c=0 \quad a,b,c\in\mathbb{R}, \quad \Delta:=b^2-4ac$

$$\begin{cases} \Delta < 0 & \Longrightarrow \frac{-b \pm i\sqrt{-\Delta}}{2a} \\ \Delta = 0 & \Longrightarrow \frac{-b}{2a} \\ \Delta > 0 & \Longrightarrow \frac{-b \pm \sqrt{\Delta}}{2a} \end{cases}$$

6 Dérivées

6.1 Opération sur des fonctions

Soit u et v des fonctions.

$$(uv)' = u'v + v'u$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$(u^n)' = nu'u^{n-1} \quad \forall n \in \mathbb{N} \cup \{0.5; -1\}$$

$$(u \circ v)' = u'(v' \circ u)$$

$$\sin' = \cos$$

$$\cos' = -\sin$$

7 Fonction exponentielle exp

7.1 Notation

$$e^x := \exp x$$

7.2 Caractéristiques

Soit $x \in \mathbb{R}$ et u une fonction définie sur \mathbb{R}

Dérivée
$$(e^x)' = e^x$$

$$(e^x)' = e^x$$
$$(e^u)' = u'e^u$$

Réciproque
$$\ln(e^x) = x$$

Signe
$$e^x > 0$$

Variations strictement croissante sur
$$\mathbb{R}$$

Limites
$$e^x \xrightarrow[x \to +\infty]{} +\infty$$

7.3 Propriétés

$$e^a \gtrsim e^b \iff a \gtrsim b$$

7.4 Limites remarquables

lim	$x \rightarrow$	=	
$e^x - 1/x$	0	1	
Par croissa	Par croissance comparée \downarrow		
xe^x	$-\infty$	0	
$\frac{e^x/x}{}$	+∞	$+\infty$	

8 Géométrie dans l'espace

8.1 Intersections

8.1.1 Droite-droite, plan-plan

Soit a et b des droites et P et Q des plans

	Coplanaires				
	Parallèles		Sécantes	Non-coplanaires	
	Strictement	Confondues	Decantes		
$a \cap b$	Ø	$a ext{ et } b$	{point}	Ø	
$P\cap Q$	Ø	P et Q	droite	Ø	

8.1.2 Droite-plan

	Parallèl	Sécants	
	Strictement	$a \subset P$	occanos
$a \cap P$	Ø	droite	{point}

8.2 Section d'un cube

2 points dans la même face Relier directement

 $[AB]\ sur\ une\ face,\ C\ sur\ face\ opposée$ Tracer la parallèle à $[AB]\ passant\ par\ C$

[AB] sur une face E, C sur face adjaçente Prolonger une arrête et (AB) jusqu'à intersection en DTracer (DC). La partie du segment qui est sur la face E est la section.

8.3 Orthogonalité \perp

$$d \underset{\text{orth.}}{\perp} d' \iff \gamma \underset{\text{perp.}}{\perp} \gamma' \quad \exists \gamma \parallel d, \gamma' \parallel d'$$

8.4 Plan \perp droite

$$d \bot P \iff d \bot \gamma \wedge d \bot \gamma' \quad \forall \gamma \cap \gamma' = \text{point}$$
$$\implies \gamma \bot d \quad \forall \gamma \subset P$$

8.5 Plan médiateur

$$P \operatorname{med} [AB] \iff P \perp (AB) \land I \in P \quad \forall I \operatorname{mil} [AB]$$

$$\iff P = \{C \mid CA = CB\}$$

8.6 Propriétés

$$d \parallel d' \implies P \bot d \quad \forall P \bot d'$$

$$\iff d \parallel \gamma \wedge d' \parallel \gamma$$

$$\iff P \cap P' = d' \wedge d \parallel P \wedge d \parallel P'$$

$$P \parallel P' \iff P \bot d \wedge P' \bot d$$

$$\iff P \parallel \Delta \wedge P' \parallel \Delta$$

$$\iff d_1 \parallel d'_1 \wedge d \parallel d' \quad \forall d \cap d' = \text{point}, d_1 \cap d'_1 = \text{point}$$

$$\iff \Gamma \cap P' = \gamma \wedge \Gamma \cap P = \gamma' \wedge \gamma \parallel \gamma' \quad \forall \Gamma \cap P = \text{droite}$$

$$\Delta \parallel d \wedge \Delta \parallel d' \iff d \parallel d' \wedge d \subset P \wedge d' \subset P' \wedge P \cap P' = \Delta$$

$$\Delta \parallel P \iff \Delta \parallel d \quad \forall d \subset P$$

 $P \parallel Q \land \Gamma \cap P = \gamma \implies \Gamma \cap Q = \gamma' \land \gamma \parallel \gamma'$