https://matse.paddel.xyz/spicker

Analysis 1

Patrick Gustav Blaneck, Felix Racz

Letzte Änderung: 15. März 2021

Inhaltsverzeichnis

1	Grundlagen 3				
	1.1	Funktionen	3		
	1.2	Polynome	3		
	1.3	Gebrochen rationale Funktionen	4		
	1.4	Gleichungen und Ungleichungen	5		
	1.5	Komplexe Analysis	6		
2	Folgen und Reihen 7				
	2.1	Grundlagen	7		
	2.2	Binomialkoeffizienten und der binomische Lehrsatz	8		
3	Konvergenz von Folgen, Reihen und Funktionen				
	3.1	Grundlagen	8		
	3.2	Konvergenz von Folgen	10		
	3.3	Unendliche Reihen	12		
	3.4	Potenzreihen	15		
	3.5	Grenzwerte von Funktionen	16		
4	Differentialrechnung 2				
	4.1	Tangentengleichung	23		
	4.2	Ableitungsregeln	24		
	4.3	Lokale Extrema	25		
	4.4	Mittelwertsatz	25		
	4.5	Stetigkeit und Differenzierbarkeit von Potenzreihen	25		
	4.6	Monotonie	26		
	4.7	Die Grenzwerte von de L'Hospital	26		
	4.8	Krümmungseigenschaften	26		
	4.9	Die Taylorreihe	27		
5	Integration				
	5.1	Flächenberechnung	29		
	5.2	Integration zur Berechnung von Flächen zwischen mehreren Funktionen			
	5.3	Längenberechnung	32		

5.4	Mantelflächenberechnung	32
5.5	Rotationsvolumenberechnung	32
5.6	Differentiation von Integralen mit variablen Grenzen	32
5.7	Parameterintegrale	33
5.8	Uneigentliche Integrale	34
5.9	Absolute Konvergenz	34
5.10	Weitere Konvergenzkriterien	34
5.11	Das Integralkriterium zur Konvergenz von Reihen	35

1 Grundlagen

1.1 Funktionen

Definition: Injektivität

$$f(x) = f(x') \implies x = x'$$

Definition: Surjektivität

$$\forall y, \exists x : x = f(y)$$

Definition: Bijektivität

$$\forall y, \exists !x : x = f(y)$$

Algorithmus: Beweisen der Injektivität

- 1. Behauptung: f(x) = f(x')
- 2. Umformen auf eine Aussage der Form x = x'

Algorithmus: Beweisen der Surjektivität

- 1. Aufstellen der Umkehrfunktion
- 2. Zeigen, dass diese Umkehrfunktion auf dem gesamten Definitionsbereich definiert ist

Algorithmus: Beweisen der Bijektivität

- 1. Injektivität beweisen
- 2. Surjektivität beweisen

1.2 Polynome

Definition: Polynom

Eine Funktion $p(x) = \sum_{i=0}^{n} a_i x^i$ mit $a_i, x \in \mathbb{R}$ $(\mathbb{C}), a_n \neq 0$ heißt *Polynom vom Grad n*.

Bonus: Abspalten von Linearfaktoren

Sei x_0 eine Nullstelle eines Polynoms p(x), dann ist

$$p(x) = q(x) \cdot (x - x_0).$$

Dabei ist $(x - x_0)$ ein abgespaltener Linearfaktor und q(n) das entsprechend reduzierte Polynom mit $q(n) = \frac{p(x)}{x - x_0}$.

Bonus: Faktorisierung

Sind x_1, \ldots, x_n Nullstellen eines Polynoms p(x), so ist

$$p(x) = a_n \cdot (x - x_1) \cdot \ldots \cdot (x - x_n)$$

die Faktorisierung von p(x).

Polynome vom Grad 2

Algorithmus: pq-Formel

- 1. Polynom der Form $x^2 + px + q = 0$
- 2. $x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 q}$

Algorithmus: Mitternachtsformel

- 1. Polynom der Form $ax^2 + bx + c = 0$
- 2. $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

Bonus: Besonderheiten bei $x \in \mathbb{C}$

• Ist x_i eine Nullstelle des Polynoms p(x) mit *reellen Koeffizienten*, dann ist auch $\overline{x_i}$ eine Nullstelle von p(x).

1.3 Gebrochen rationale Funktionen

Definition: Gebrochen rationale Funktionen

Seien $p_m(x)$ und $p_n(x)$ Polynome vom Grad m bzw. n, dann heißt

$$f(x) = \frac{p_m(x)}{p_n(x)}$$

gebrochen rationale Funktion.

Im Fall m < n heißt die Funktion echt gebrochen rational, sonst unecht gebrochen rational.

Algorithmus: Polynomdivision

Gegeben ist unecht gebrochen rationale Funktion $f(x) = \frac{p_m(x)}{p_n(x)}$

- 1. Dividiere die größten Exponenten aus beiden Polynomen
- 2. Mutipliziere Ergebnis mit Divisor zurück
- 3. Subtrahiere Ergebnis vom Dividenden
- 4. Wiederhole, bis:

Ergebnis 0 ist, oder

Grad des Ergebnisses kleiner ist als Grad des Divisors (ergibt Rest)

Algorithmus: Hornerschema

Gegeben ist *Polynom* $p_m(x)$ und ein *Wert* x_0

Vorbereitung:

- Erstelle eine Tabelle mit m + 2 Spalten und 3 Zeilen
- Erste Zelle frei lassen und dann Koeffizienten a_m, a_{m-1}, \dots, a_0 in die erste Zeile schreiben
- In die erste Zelle der zweiten Zeile kommt x_0

Anwendung (beginnend in zweiter Zelle der dritten Zeile):

- 1. Erster Koeffizient der ersten Zeile in die dritte Zeile
- 2. Multipliziere Zahl der ersten Spalte mit diesem Koeffizienten
- 3. Schreibe Ergebnis in zweite Zeile, unterhalb des nächsten Koeffizienten
- 4. Addiere Ergebnis mit diesem Koeffizienten
- 5. Wiederhole 2-4 bis zum Schluss

Ergebnis:

- Wert des Polynoms $p_m(x_0)$ in letzter Zelle der letzten Zeile
- Bei Wert $p_m(x_0) = 0$ steht in der letzten Zeile das Polynom nach Abspalten des Linearfaktors $(x x_0)$

Bonus: Tipps und Tricks

- Polynomdivision und Hornerschema funktionieren auch sehr gut mit komplexen Zahlen
- Bei mehreren abzuspaltenden Linearfaktoren bietet sich das Hornerschema sehr gut an

Algorithmus: Partialbruchzerlegung

Gegeben: Echt gebrochen rationale Funktion $f(x) = \frac{p_m(x)}{p_n(x)}$

- 1. Berechne Nullstellen des *Nennerpolynoms* $x_0, \ldots, x_k \in \mathbb{R}$
- 2. Verschiedene Fälle:

Relle Nullstellen:

$$x_i$$
 ist einfache Nullstelle $\Longrightarrow \frac{A}{x-x_1}$
 x_i ist r -fache Nullstelle $\Longrightarrow \frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2} + \ldots + \frac{A_r}{(x-x_1)^r}$

Nichtrelle Nullstellen:

Einfacher quadratischer Term
$$\implies \frac{Ax+B}{x^2+px+q}$$

 r -facher quadratischer Term $\implies \frac{A_1x+B_1}{x^2+px+q} + \frac{A_2x+B_2}{(x^2+px+q)^2} + \ldots + \frac{A_rx+B_r}{(x^2+px+q)^r}$

- 3. Koeffizientenvergleich:
 - a) Brüche gleichnamig machen (Multipliziere beide Seiten mit Nennerpolynom)
 - b) Potenzen von x zusammenfassen
 - c) Gleichungssystem lösen
 - d) Lösungen in Ansatz einsetzen

Bonus: Besonderheiten in C

• Für Partialbrüche ohne relle Nullstellen können wir in C stets Nullstellen finden. Das Verfahren erfolgt dann analog mit komplexen Nullstellen.

Bonus: Tipps und Tricks

- Partialbruchzerlegung ist erst bei einer echt gebrochen rationale Funktion sinnvoll
- Ist die Funktion unecht gebrochen rational, führe zuerst eine Polynomdivision durch und zerlege dann den Rest in die Partialbrüche

1.4 Gleichungen und Ungleichungen

Algorithmus: Berechnen einer Lösungsmenge bei Ungleichungen

Gegeben: Ungleichung mit Bezug auf Variable x

1. Für jeden Betrag |a(x)|, eine Fallunterscheidung machen für

$$a(x) \ge 0 \implies |a(x)| = a(x)$$

 $a(x) < 0 \implies |a(x)| = -a(x)$

Hier haben wir bereits eine Einschränkung für die Lösungsmenge des jeweiligen Falles gegeben!

- 2. Ungleichungen nach x auflösen
- 3. Jeder Fall i erzeugt eine Lösungsmenge L_i bestehend aus *umgestellter Ungleichung* und Fallbedingungen

5

4. Lösungsmenge $L = \bigcup_{i=1}^{n} L_i$, wobei n die Anzahl der betrachteten Fälle ist

Bonus: Tipps und Tricks

- n Beträge in der Gleichung können zu 2^n Fällen führen.
- Es kann vorkommen, dass ein Fall einer Fallunterscheidung unerreichbar ist, z.B. für $x > 5 \land x < 1$. Die Lösungsmenge L ist dann leer $(L = \emptyset)$.
- Radizieren (Wurzelziehen) ist in Ungleichungen nur erlaubt, wenn danach der *Betrag* der Wurzel betrachtet wird
- Quadrieren einer Ungleichung 'erzeugt' potentiell ein falsches Ergebnis. Nach dem Quadrieren sollte man also jedes Ergebnis prüfen.
- Multiplikation mit negativen Zahlen sollte vermieden werden, da das Umdrehen des Ungleichheitszeichens schnell für Flüchtigkeitsfehler sorgen kann.

1.5 Komplexe Analysis

Bonus: Rechenregeln für komplexe Zahlen in kartesischen Koordinaten

Darstellung: $z = a + i \cdot b$ und $w = c + i \cdot d$

Addition und Subtraktion: $z \pm w = (a \pm c) + i \cdot (b \pm d)$

Multiplikation: $z \cdot w = (ac - bd) + i \cdot (ad + bc)$

Division: $\frac{z}{w} = \frac{z \cdot \overline{w}}{w \cdot \overline{w}}$

Komplex konjugiert: Vorzeichen von \Im wechseln: $\overline{z} = a - i \cdot b$

Betrag: Abstand vom Ursprung: $|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$

Bonus: Rechenregeln für komplexe Zahlen in Polarkoordinaten

Darstellung: $z = r \cdot (\cos \theta + i \cdot \sin \theta) = r \cdot e^{i \cdot \theta}$

Multiplikation: $z \cdot w = r_z \cdot r_w \cdot e^{i \cdot (\theta_z + \theta_w)}$

Division: $\frac{z}{w} = \frac{r_z}{r_w} \cdot e^{i \cdot (\theta_z + \theta_w)}$

Komplex konjugiert: $\overline{z} = (r, -\theta) = (r, 2\pi - \theta)$

Betrag: |z| = r

Algorithmus: Kartesische Koordinaten ightarrow Polarkoordinaten

1.
$$r = |z| = \sqrt{x^2 + y^2}$$

2.
$$y \ge 0$$
: $\theta = \arctan \frac{x}{r}$
 $y < 0$: $\theta = -\arctan \frac{x}{r}$

Algorithmus: Polarkoordinaten \rightarrow Kartesische Koordinaten

1.
$$x = r \cdot \cos \theta$$

2.
$$y = r \cdot \sin \theta$$

Algorithmus: Radizieren von komplexen Zahlen

Gesucht: Lösung von $z^n = r \cdot e^{i \cdot \theta}$

- 1. Ist z^n nicht in Polarkoordinaten gegeben, so ist zunächst die Polarform zu bilden.
- 2. Bertechne $r_k = \sqrt[n]{r}$. Dieser Radius ist die Länge aller Lösungen.
- 3. Berechne für alle $k \in [0, n-1]$

$$\theta_k = \frac{\theta + k \cdot 2\pi}{n} = \frac{\theta}{n} + \frac{k}{n} \cdot 2\pi$$

4. Die Lösungen sind dann die n Zahlen $z_k = (r_k, \theta_k)$ für $k \in [0, n-1]$.

2 Folgen und Reihen

2.1 Grundlagen

Bonus: Rechenregeln für Summen

$$\sum_{k=m}^{n} a_k = \sum_{k=m-l}^{n-l} a_{k+l}$$

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{c} a_k + \sum_{k=c}^{n} a_k$$

$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} a_k + b_k$$

$$\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k$$

Die Regeln gelten auch für unendliche Reihen.

Bonus: Wichtige Summen

• Arithmetische Summe:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• Geometrische Summe:

$$\sum_{k=1}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} = \frac{x^{n+1} - 1}{x - 1}$$

• Summe der Quadratzahlen:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

• Summe der Kubikzahlen:

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

2.2 Binomialkoeffizienten und der binomische Lehrsatz

Definition: Binomialkoeffizient

Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge bezeichnen wir mit $\binom{n}{k}$. Diese Zahlen heißen Binomialkoeffizienten oder Binomialzahlen.

Definition: Rekursionsformel für Binomialkoeffizient

Für $k, n \in \mathbb{N}$ mit $k \le n$ gilt:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Definition: Kombinatorische Formel für Binomialkoeffizient

$$\binom{n}{k} = \begin{cases} 0 & \text{, für } k > n \\ \frac{n!}{(n-k)! \cdot k!} & \text{, für } k \le n \end{cases}$$

Definition: Der binomische Lehrsatz

Für beliebige $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}$$

3 Konvergenz von Folgen, Reihen und Funktionen

3.1 Grundlagen

Definition: Schranken

Gilt

$$\forall x \in A : |x| < K$$

so heißt die Menge A beschränkt und K Schranke.

Gilt nur $x \le K$, so heißt die Menge nach oben beschränkt und K obere Schranke.

Im Falle $x \ge K$ heißt A nach unten beschränkt und K untere Schranke.

Definition: Beschränktheit

Eine Menge *M* heißt genau dann *beschränkt*, wenn sie nach oiben und nach unten beschränkt ist.

Definition: Supremum, Maximum

Der Wert

$$K = \min_{K^* \in \mathbb{R}} \{ K \text{ ist obere Schranke} \}$$

heißt kleinste obere Schranke oder Supremum von A. Notation: sup A

Gilt $K \in A$, so heißt K *Maximum von A*. Notation: max A.

Definition: Infimum, Minimum

Der Wert

$$K = \max_{K^* \in \mathbb{R}} \{ K \text{ ist untere Schranke} \}$$

heißt größte untere Schranke oder Infimum von A. Notation: inf A

Gilt $K \in A$, so heißt K *Minimum von A*. Notation: min A.

Bonus: Vollständigkeitsaxiom

Jede nicht-leere nach oben beschränkte Menge *A* hat ein *Supremum*, jede nicht-leere nach unten beschränkte Menge *A* hat ein *Infimum*.

Definition: ϵ -Umgebung von K in \mathbb{R}

$$U_{\epsilon}(K) := \{ x \in \mathbb{R} \mid |x - K| < \epsilon \}$$

heißt ϵ -Umgebung von K in \mathbb{R} .

Definition: Innerer Punkt

 $x_0 \in A$ heißt *innerer Punkt von A*, falls eine ϵ -Umgebung existiert, so dass $U_{\epsilon}(x_0) \in A$, also vollständig in A enthalten ist. A heißt *offen*, falls jeder Punkt der Menge innerer Punkt ist.

Definition: Häufungspunkt (Mengen)

a heißt *Häufungspunkt einer Menge A*, wenn $\forall \epsilon > 0$ in der Umgebung $U_{\epsilon}(a)$ ein Punkt $x \in A$ mit $x \neq a$ existiert.

Sei x größter Häufungspunkt von A, dann heißt

$$x = \limsup A$$
 (Limes Superior).

Sei *x* kleinster Häufungspunkt von *A*, dann heißt

$$x = \lim \inf A$$
 (Limes Inferior).

Definition: Abgeschlossenheit

A heißt abgeschlossen, wenn jeder Häufungspunkt von A in A liegt.

Definition: Bolzano-Weierstrass für Mengen

Jede unendliche beschränkte Menge A reeller Zahlen besitzt mindestens einen Häufungspunkt.

3.2 Konvergenz von Folgen

Definition: Monotonie

Eine Folge a_n heißt monoton wachsend, falls $\forall n \in \mathbb{N} : a_n \leq a_{n+1}$. Gilt sogar $a_n < a_{n+1}$, so heißt die Folge streng monoton wachsend.

Eine Folge a_n heißt monoton fallend, falls $\forall n \in \mathbb{N} : a_n \ge a_{n+1}$. Gilt sogar $a_n > a_{n+1}$, so heißt die Folge streng monoton fallend.

Definition: Häufungspunkt (Folgen)

a heißt *Häufungspunkt einer Folge*, wenn zu jeder ϵ -Umgebung $U_{\epsilon}(a)$ unendlich viele Folgenglieder a_n in $U_{\epsilon}(a)$ liegen, also

$$\forall \epsilon > 0, \exists \infty$$
-viele $a_n : |a_n - a| < \epsilon$

Definition: Grenzwert / Limes

Eine Zahl $a \in \mathbb{R}$ oder \mathbb{C} heißt *Grenzwert* oder *Limes* einer Zahlenfolge a_n , wenn $\forall \epsilon > 0$, $\exists n_0(\epsilon)$, so dass für alle $n \geq n_0(\epsilon)$ (fast immer) gilt

$$|a_n - a| < \epsilon$$

Jeder Grenzwert ist auch ein Häufungspunkt.

Definition: Konvergenz / Divergenz

Eine Folge a_n heißt konvergent, falls ein Grenzwert existiert.

Existiert dieser nicht, so heißt die Folge divergent.

Eine konvergente Folge mit a = 0 heißt *Nullfolge*.

Ist $\lim_{n\to\infty} a_n = a$, so ist $\lim_{n\to\infty} (a_n - a) = 0$, d.h. $b_n = \lim_{n\to\infty} (a_n - a)$ ist Nullfolge.

Definition: Bolzano-Weierstrass für Folgen

- 1. Jede beschränkte Folge a_n besitzt mindestens eine konvergente Teilfolge.
- 2. Jede beschränkte Folge a_n besitzt einen kleinsten und größten Häufungspunkt mit $b \ge a$

$$a = \lim \inf a_n,$$

 $b = \lim \sup a_n.$

3. Eine Folge konvergiert genau dann, wenn sie beschränkt ist und nur einen Häufungspunkt besitzt. Dann ist

$$a = \lim_{n \to \infty} a_n = \liminf a_n = \limsup a_n.$$

Definition: Sandwich-Lemma oder Einschnürungssatz

Gilt fast immer, also bis auf endliche viele n (oder auch für $n \ge n_0$)

$$a_n \leq c_n \leq b_n$$

und $\lim_{n\to\infty} a_n = a = \lim_{n\to\infty} b_n$, so ist

$$\lim_{n\to\infty}c_n=a.$$

Bonus: Rechenregeln für Grenzwerte

$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\lim_{n \to \infty} c \cdot a_n = c \cdot a$$

$$\lim_{n \to \infty} a_n b_n = a \cdot b$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \text{ für } b_n \neq 0, b \neq 0$$

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a} \text{ für } a_n \neq 0, a \neq 0$$

Bonus: Wichtige Grenzwerte

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0 \text{ für } \alpha > 0$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \text{ für } a > 0$$

$$\lim_{n \to \infty} q^n = 0 \text{ für } |q| < 1$$

$$\lim_{n \to \infty} n^k q^n = 0 \text{ für } |q| < 1, k \in \mathbb{N}$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Definition: Konvergenz monotoner Folgen

Jede beschränkte monotone Folge ist konvergent.

Der Grenzwert ist bei monoton fallenden Folgen inf a_n , bei wachsenden Folgen sup a_n .

Definition: Eulersche Zahl

Der Grenzert $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ existiert und heißt *eulersche Zahl*.

Definition: Cauchy-Konvergenz

Eine Folge a_n heißt Cauchy-konvergent, falls

$$\forall \epsilon > 0, \exists n_0(\epsilon) \text{ mit } |a_n - a_m| < \epsilon, \forall n > m \ge n_0.$$

3.3 Unendliche Reihen

Definition: Unendliche Reihe

$$\sum_{k=m}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=m}^{n} a_k$$

Definition: Cauchy-Reihe

$$\forall \varepsilon > 0, \exists n_0(\varepsilon) : \left| \sum_{k=m+1}^n a_k \right| < \varepsilon, \forall n > m \ge n_0$$

Eine Reihe konvergiert genau dann, wenn die zugehörige Cauchy-Reihe konvergiert.

Bonus: Konvergenz durch Nullfolge

Sei $\sum_{k=1}^{n} a_k$ konvergent, dann ist a_k Nullfolge.

Definition: Absolute Konvergenz

Eine Reihe heißt *absolut konvergent* wenn $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

Analog heißt eine Folge *absolut konvergent* wenn $|a_n|$ konvergiert.

Algorithmus: Teleskopsumme

Eine Teleskopsumme hat man dann, wenn sich die Terme einer Summe gegenseitig auflösen.

Bonus: Beispiel Teleskopsumme

$$\sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} = \frac{1}{1} + \left(\sum_{k=2}^{n} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k}\right) - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

Algorithmus: Majorantenkriterium

Man sucht eine zweite Folge b_k , sodass diese fast immer größer ist als die vorgegebene Folge

Konvergiert $\sum_{k=1}^{\infty} b_k$ dann konvergiert auch die ursprüngliche Reihe.

Bonus: Beispiel Majorantenkriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{k^2+1}$?

Ja, da $\frac{1}{k^2+1}<\frac{1}{k^2}$ und wir wissen, dass $\sum_{k=1}^{\infty}\frac{1}{k^2}$ konvergiert. Wir haben also eine konvergente Majorante.

Algorithmus: Minorantenkriterium

Man sucht eine zweite Folge b_k , sodass diese fast immer kleiner ist als die vorgegebene Folge ist. Divergiert $\sum_{k=1}^{\infty} b_k$ dann divergiert auch die ursprüngliche Reihe.

Bonus: Beispiel Majorantenkriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{\ln(k)}$?

Nein, da $\frac{1}{k} < \frac{1}{\ln(k)}$ $(k \ge 3)$ und wir wissen, dass $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert.

Wir haben also eine divergente Minorante.

Algorithmus: Cauchy-Kondensatioskriterium

Die Konvergenz von folgenden Reihen ist äquivalent.

$$\sum_{k=1}^{\infty} a_k \quad \text{und} \quad \sum_{k=1}^{\infty} 2^k \cdot a_{2^k}$$

Bonus: Beispiel Cauchy-Kondensatioskriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{k}$?

Die Frage ist äquivalent dazu, ob

$$\sum_{k=1}^{\infty} 2^k \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} 1$$

konvergiert. Das tut sie offensichtlich nicht, also konvergiert auch $\sum_{k=1}^{\infty} \frac{1}{k}$ nicht.

Algorithmus: Wurzelkriterium

Sei $r=\lim_{n\to\infty}\sqrt[n]{|a_n|}$. Dann konvergiert $\sum_{k=1}^\infty a_k$ für r<1. Für r>1 divergiert die Reihe. Für r = 1 liefert das Kriterium keine Aussage.

Bonus: Beispiel Wurzelkriterium

Konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{1}{7^k}$?

Es gilt

$$r = \lim_{k \to \infty} \sqrt[k]{\frac{1}{7^k}} = \frac{1}{7} < 1$$

Also konvergiert die Reihe.

Algorithmus: Quotientenkriterium

Sei
$$r = \lim_{n \to \infty} \sqrt[n]{\left|\frac{a_{n+1}}{1_n}\right|}$$
.

Dann konvergiert $\sum_{k=1}^{\infty} a_k$ für r < 1.

Für r > 1 divergiert die Reihe.

Für r = 1 liefert das Kriterium keine Aussage.

Bonus: Beispiel Quotientenkriterium

Konvergert die Reihe $\sum_{k=1}^{\infty} \frac{x^k}{k!}$?

Wir berechnen dann

$$r = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = 0$$

Die Reihe konvergiert also für alle x.

Algorithmus: Leibnizkriterium

Das Leibnizkriterium wird für alternierende Reihen genutzt.

Sei $\sum_{k=1}^{\infty} (-1)^n \cdot a_n$ und a_n eine beliebige Folge.

Jetzt muss man nur drei Eigenschaften für a_n zeigen:

- 1. a_n muss monoton fallend sein,
- 2. a_n muss immer größer als Null sein und
- 3. $\lim_{n\to\infty} a_n = 0$.

Dann konvergiert die Reihe.

Bonus: Beispiel Leibnizkriterium

Konvergiert die Reihe $\sum_{k=2}^{\infty} (-1)^n \cdot \frac{1}{\ln(k)}$. Wir wissen, dass $\ln(k) > 0$ für k > 1. Außerdem wissen wir, dass der natürliche Logarithmus monoton steigend ist, also ist $\frac{1}{\ln(k)}$ monoton fallend. Es gilt auch $\lim_{n\to\infty} = 0$. Also konvergiert die Reihe.

3.4 Potenzreihen

Definition: Potenzreihe

Sei $x \in \mathbb{R}$, $a_n \in \mathbb{R}$, so heißt

$$p(x) := \sum_{n=0}^{\infty} a_n x^n$$

reelle Potenzreihe von x.

Jede Potenzreihe konvergiert für x = 0.

Definition: Konvergenz von Potenzreihen (Entwicklungspunkt $x_0 = 0$)

Jede Potenzreihe konvergiert für x = 0.

Jede Potenzreihe konvergiert für

$$|x| < R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 bzw. $|x| < R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$

und divergiert für |x| > R.

Der Rand muss oft gesondert betrachtet werden!

Definition: Konvergenz von Potenzreihen (Entwicklungspunkt $x_0 \neq 0$)

Jede Potenzreihe $p(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ konvergiert für

$$|x - x_0| < R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 bzw. $|x| < R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$

und divergiert für $|x - x_0| > R$.

Der Rand muss oft gesondert betrachtet werden!

Definition: Konvergenzradius

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 bzw. $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$

heißt der Konvergenzradius der Potenzreihe.

Bonus: Spezielle Potenzreihen

$$f(x) = \frac{1}{1 - c(x - x_0)} \iff \sum_{n=0}^{n} c^n \cdot (x - x_0)^n \text{ für } |x - x_0| < \frac{1}{|c|}$$

Bonus: Beispiel: Potenzreihe um Entwicklungspunkt bestimmen

Wir wollen die Potenzreihe um $x_0 = 1$ der Reihe

$$f(x) = \frac{3}{5 + 2x}$$

bestimmen. Zunächst ist:

$$f(x) = \frac{3}{5+2x}$$

$$= 3 \cdot \frac{1}{5+2(x-1)+2}$$

$$= 3 \cdot \frac{1}{7-(-2) \cdot (x-1)}$$

$$= \frac{3}{7} \cdot \frac{1}{1-(-\frac{2}{7}) \cdot (x-1)}$$

$$= \frac{3}{7} \cdot \sum_{n=0}^{\infty} \left(\frac{-2}{7} \cdot (x-1)\right)^n \text{ für } \left|\frac{-2}{7}(x-1)\right| < 1$$

$$= \frac{3}{7} \cdot \sum_{n=0}^{\infty} \left(\frac{-2}{7}\right)^n \cdot (x-1)^n \text{ für } |x-1| < \frac{7}{2}$$

Definition: Exponentialfunktion

Die Funktion

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

heißt *Exponentialfunktion* oder *exponentielle Funktion*. Sie konvergiert für jedes $x \in \mathbb{R}$ und ist damit wohldefiniert.

3.5 Grenzwerte von Funktionen

Definition: Konvergenz von Funktionen

Gilt $\forall x_n$, dass (falls $\lim_{n\to\infty} x_n = x_0$ gilt):

$$\lim_{n\to\infty} f(x_n) = L$$

so heißt die Funktion konvergent für $x \to x_0$ und wir schreiben

$$\lim_{n\to\infty}=:\lim_{x\to x_0}f(x).$$

Definition: Stetigkeit von Funktionen

Gilt $\forall x_n$, dass (falls $\lim_{n\to\infty} x_n = x_0$ gilt):

$$\lim_{n\to\infty} f(x_n) = f(x_0)$$

so heißt die Funktion stetig in x_0 .

Jede Potenzreihe ist im Inneren ihres Konvergenzradius (also nicht zwingend für die Randpunkte) stetig.

Definition: Rechtsseitiger und linksseitiger Grenzwert

Existiert für Folgen x_n mit $x_n > x_0$ ein Grenzwert L, also existiert

$$\lim_{x \to x_0 \land x > x_0} f(x) = L =: \lim_{x \downarrow x_0} f(x)$$

so heißt der Grenzwert rechtsseitiger Grenzwert. Gilt $L = f(x_0)$, so heißt die Funktion rechtsseitig stetig.

Entsprechend für $x < x_0$:

$$\lim_{x \to x_0 \land x < x_0} f(x) = L =: \lim_{x \uparrow x_0} f(x).$$

Definition: Stetigkeit

Eine Funktion f(x) ist genau dann *stetig in* x_0 , wenn

$$\lim_{x \downarrow x_0} f(x_0) = \lim_{x \uparrow x_0} f(x_0) = f(x_0).$$

Sei $f: D \to \mathbb{R}$ heißt stetig auf D = [a, b], falls f für jedes $x_0 \in D$ stetig ist.

Definition: ϵ - δ -Kriterium

Eine Funktion f(x) heißt stetig in x_0 , falls

$$\forall \epsilon > 0, \exists \delta(x_0, \epsilon) > 0, \forall |x - x_0| < \delta : |f(x) - f(x_0)| < \epsilon$$

Bonus: Beispiel: ϵ - δ -Kriterium

Untersuche die Stetigkeit von $f(x) = \frac{1}{\sqrt{x}}, \quad x > 0.$

f(x) ist stetig in x_0 , wenn

$$\forall \epsilon > 0, \exists \delta(x_0, \epsilon) > 0 : \forall |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

$$|f(x) - f(x_0)|$$

$$= \left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x_0}} \right|$$

$$= \left| \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x_0}} \right) \cdot \frac{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x_0}}}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x_0}}} \right|$$

$$= \left| \frac{\frac{1}{x} - \frac{1}{x_0}}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x_0}}} \right|$$

$$= \left| \frac{\frac{x_0 - x}{xx_0}}{xx_0 \left(\sqrt{x_0} + \sqrt{x} \right)} \right|$$

$$= \left| \frac{x_0 - x}{xx_0 \left(\sqrt{x_0} + \sqrt{x} \right)} \right|$$

$$= \left| \frac{x - x_0}{\sqrt{xx_0} \left(\sqrt{x_0} + \sqrt{x} \right)} \right|$$

$$= |x - x_0| \cdot \frac{1}{\sqrt{xx_0} \left(\sqrt{x_0} + \sqrt{x} \right)}$$

$$< \delta \cdot \frac{1}{\sqrt{xx_0} \sqrt{x_0} + \sqrt{xx_0} \sqrt{x}}$$

$$\leq \delta \cdot \frac{1}{\sqrt{xx_0} \sqrt{x}}$$

$$\leq \delta \cdot \frac{1}{\sqrt{xx_0} \sqrt{x}}$$

$$\leq \delta \cdot \frac{1}{x\sqrt{x_0}}$$

Sei $|x - x_0| < \frac{x_0}{2}$:

$$|x - x_0| < \frac{x_0}{2} \implies x_0 - \frac{x_0}{2} < x < x_0 + \frac{x_0}{2} \iff \frac{x_0}{2} < x$$

Daraus folgt weiterhin:

$$\delta \cdot \frac{1}{x\sqrt{x_0}}$$

$$< \frac{2\delta}{x_0\sqrt{x_0}} < \epsilon$$

$$\iff \delta < \frac{x_0\sqrt{x_0}}{2}\epsilon$$

Mit $\delta = \min\{\frac{x_0}{2}, \frac{x_0\sqrt{x_0}}{2}\epsilon\}$ ist f(x) stetig.

Definition: Sandwich-Lemma für Funktionen

Gilt

$$\forall |x - x_0| < K, x \neq x_0 : f(x) \le g(x) \le h(x)$$

und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = c$$

so ist auch

$$\lim_{x \to x_0} g(x) = c.$$

Definition: Unstetigkeit

Es gibt verschiedene Typen der Unstetigkeit:

1. Sprungstellen:

$$\lim_{x \uparrow x_0} f(x) \neq \lim_{x \downarrow x_0} f(x)$$

2. Unendlichkeitsstellen: f ist in der Umgebung von x_0 nicht beschränkt, d.h.

$$\lim_{x \to x_0} f(x) > R$$

3. Oszillationsstellen: z.B.

$$\lim_{x\to 0} \sin\frac{1}{x} \text{ in } x_0 = 0$$

4. Singuläre Definitionen:

$$f(x) = \begin{cases} g(x) & \text{, für } x \in M \\ h(x) & \text{, für } x \notin M \end{cases}$$

5. Definitionslücken: z.B.

$$f(x) = \frac{x}{x} \text{ für } x \neq 0$$

6. Kombinationen aus den oben genannten

Definition: Hebbare Lücke

Sei f(x) stetig für $x \neq x_0, x_0 \notin D$. Dann erhält man mit $f(x) := \lim_{x \to x_0} f(x)$ eine stetige Funktion, wenn der Grenzwert existiert. x_0 heißt hebbare Lücke.

Bonus: Stetigkeit auf Intervallen

Sei $f : [a, b] \to \mathbb{R}$ stetig, dann:

- ist f(x) beschränkt.
- existieren $x_1, x_2 \in [a, b] : f(x_1) \le f(x) \le f(x_2), \forall x \in [a, b]$

Definition: Gleichmäßige Stetigkeit

Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig auf D, falls es ein $\delta>0$ unabhängig von x_0 gibt, so dass

$$|f(x) - f(x_0)| < \epsilon, \forall |x - x_0| < \delta.$$

Jede gleichmäßig stetige Funktion ist stetig.

Eine stetige Funktion $f : [a, b] \to \mathbb{R}$ ist gleichmäßig stetig.

Definition: Lipschitz-Stetigkeit

Eine Funktion f heißt *lokal Lipschitz-stetig in* x_0 , wenn es ein $L \ge 0$ und ein $\delta > 0$ gibt, so dass

$$|f(x) - f(x_0)| \le L \cdot |x - x_0|, \forall |x - x_0| < \delta.$$

Eine Funktion f heißt *Lipschitz-stetig*, wenn es ein $L \ge 0$, so dass

$$|f(x) - f(y)| \le L \cdot |x - y|, \forall x, y \in [a, b].$$

L heißt Lipschitz-Konstante.

Ist eine Funktion Lipschitz-stetig, so ist sie auch gleichmäßig stetig.

Bonus: Beispiel: Lipschitz-Stetigkeit

$$f(x) = \sqrt{2+3x}$$

Ist die Funktion lokal Lipschitz-stetig im Punkt $x_0=1$? Berechnen Sie gegebenenfalls die Lipschitz-Konstante L in Abhängigkeit von δ . Lipschitz-Stetigkeit: $\exists L\geq 0, \forall x,x_0\in D: |f(x)-f(x_0)|\leq L\cdot |x-x_0|$

$$|f(x) - f(y)|$$

$$= \left| \sqrt{2 + 3x} - \sqrt{2 + 3y} \right|$$

$$= \left| (\sqrt{2 + 3x} - \sqrt{2 + 3y}) \cdot \frac{\sqrt{2 + 3x} + \sqrt{2 + 3y}}{\sqrt{2 + 3x} + \sqrt{2 + 3y}} \right|$$

$$= \left| \frac{2 + 3x - (2 + 3y)}{\sqrt{2 + 3x} + \sqrt{2 + 3y}} \right|$$

$$= \left| \frac{3(x - y)}{\sqrt{2 + 3x} + \sqrt{2 + 3y}} \right|$$

$$= \frac{3}{\sqrt{2 + 3x} + \sqrt{2 + 3y}} \cdot |x - y|$$

$$= \frac{3}{\sqrt{2 + 3(x_0 - \delta)} + \sqrt{2 + 3(x_0 - \delta)}} \cdot |x - y|$$

$$= \frac{3}{\sqrt{2 + 3(1 - \delta)} + \sqrt{2 + 3(1 - \delta)}} \cdot |x - y|$$

$$= \frac{3}{\sqrt{2 + 3 - 3\delta}} \cdot |x - y|$$

$$= \frac{3}{2 \cdot \sqrt{5 - 3\delta}} \cdot |x - y|$$

Damit ist f lokal Lipschitz-stetig im Punkt $x_0 = 1$ mit $L = \frac{3}{2\sqrt{5-3\delta}}$.

Definition: Zwischenwertsatz

Sei $f : [a, b] \to \mathbb{R}$ stetig mit f(a) = c und f(b) = d, dann gilt

$$\forall y \in [\min(c,d), \max(c,d)], \exists x \in [a,b] : f(x) = y.$$

Definition: Fixpunktsatz

Ein Wert $x^* \in \mathbb{R}$ heißt *Fixpunkt* einer Funktion f(x), falls $x^* = f(x^*)$.

Sei $f:[a,b] \to [c,d]$ stetig mit $[c,d] \subset [a,b]$ (*selbstkontrahierend*), dann existiert ein *Fixpunkt* u = f(u).

Bonus: Beispiel: Fixpunktberechnung (Teil 1)

Gegeben ist die Funktion

$$f:[0,\infty)\to [0,\infty), \quad f(x)=\frac{x+\frac{1}{2}}{x+1}$$

(a) Zeigen Sie, dass die Funktion die Voraussetzungen des Fixpunktsatzes erfüllt.

Stetigkeit: f ist offensichtlich stetig, da f aus stetigen Funktionen zusammengesetzt ist (und insbesondere, da $\forall x \in [0, \infty] : x \neq -1$).

Monotonieverhalten: Wir vermuten, dass die Funktion monoton steigend ist:

Damit ist *f* monoton steigend.

Kontraktion: Zu zeigen: $\forall x \in [0, \infty)$] : $f(x) \in [0, \infty)$]:

$$f(0) = \frac{0 + \frac{1}{2}}{0 + 1} = \frac{1}{2} \in [0, \infty), \text{ und } \lim_{n \to \infty} f(n) = \lim_{n \to \infty} \frac{n + \frac{1}{2}}{n + 1} = 1 \in [0, \infty)$$

Da beide Werte im gegebenen Definitionsbereich sind und f monoton steigend ist, ist f insgesamt selbstkontrahierend.

Insgesamt sind also alle Bedingungen für den Fixpunktsatz erfüllt.

Bonus: Beispiel: Fixpunktberechnung (Teil 2)

(b) Berechnen Sie den Fixpunkt von f.

$$f(x^*) = x^*$$

$$\equiv \frac{x^* + \frac{1}{2}}{x^* + 1} = x^*$$

$$\equiv x^* + \frac{1}{2} = x^*(x^* + 1)$$

$$\equiv x^* + \frac{1}{2} = (x^*)^2 + x^*$$

$$\equiv 0 = (x^*)^2 - \frac{1}{2}$$

$$\implies x^* = \sqrt{\frac{1}{2}} \lor x^* = -\sqrt{\frac{1}{2}}$$

$$x^* \in [0, \infty] \implies x^* = \sqrt{\frac{1}{2}}$$

4 Differentialrechnung

4.1 Tangentengleichung

Algorithmus: Tangentengleichung

Wollen wir die Gleichung der Tangente einer Funktion f(x) in einem Punkt x_0 bestimmen, so verwenden wir den Ansatz

$$T(x) = f_1(x) = m \cdot (x - x_0) + b.$$

Die Tangente im Punkt x_0 hat die Eigenschaften

- Die Steigung ist m = f'(x),
- Sie geht durch den Punkt $(x_0, f(x_0))$.

Einsetzen der zweiten Bedingung liefert

$$f(x_0) = f_1(x_0) = b$$

und damit ist die Tangentengleichung bekannt mit

$$f_1(x) = f'(x_0) \cdot (x - x_0) + f(x_0).$$

4.2 Ableitungsregeln

Definition: Faktorregel

$$f(x) = c \cdot g(x) \implies f'(x) = c \cdot g'(x)$$

Definition: Summenregel

$$f(x) = g(x) + h(x) \implies f'(x) = g'(x) + h'(x)$$

Definition: Produktregel

$$f(x) = g(x) \cdot h(x) \implies f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Definition: Quotientenregel

$$f(x) = \frac{g(x)}{h(x)} \implies f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}$$

Definition: Kettenregel

$$f(x) = g(h(x)) \implies f'(x) = g'(h(x)) \cdot h'(x)$$

Bonus: Ableitung der Umkehrfunktion

$$(f^{-1})(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

Bonus: Elementare Ableitungsfunktionen

$$\begin{array}{c|cc}
f(x) & f'(x) \\
\hline
x^n & n \cdot x^{n-1} \\
\sin x & \cos x \\
\cos x & -\sin x \\
\tan x & \frac{1}{\cos^2 x} = \tan^2 x + 1 \\
\cot x & e^x & e^x \\
a^x & a^x \cdot \ln a \\
\ln x & \frac{1}{x}
\end{array}$$

4.3 Lokale Extrema

Definition: Lokale Extrema

Existiert eine Stelle x_0 einer Funktion f(x) und eine ϵ -Umgebung $U_{\epsilon}(x_0)$ von x_0 , so dass $\forall x \in U_{\epsilon}(x_0)$ gilt:

- $f(x) \ge f(x_0)$, so heißt x_0 lokales Minimum,
- $f(x) \le f(x_0)$, so heißt x_0 lokales Maximum.

Ist f differenzierbar in x_0 und x_0 lokales Extremum, soi gilt

$$f'(x_0) = 0.$$

4.4 Mittelwertsatz

Bonus: Satz von Rolle

Ist f auf [a,b] stetig mit f(a)=f(b) und auf (a,b) differenzierbar, so existiert ein $x^* \in (a,b)$: $f'(x^*)=0$.

Definition: Mittelwertsatz

Sei $f \in C[a,b]$ und in (a,b) differenzierbar. Dann existiert ein $x^* \in (a,b)$ mit

$$f'(x^*) = \frac{f(b) = f(a)}{b - a}.$$

4.5 Stetigkeit und Differenzierbarkeit von Potenzreihen

Definition: Stetigkeit / Differenzierbarkeit von Potenzreihen

Jede Potenzreihe ist stetig im Inneren des Konvergenzbereiches. Die Potenzreihe $p(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ ist differenzierbar im Inneren des Konvergenzbereiches und die Ableitung p'(x) kann summandenweise berechnet werden mit:

$$p'(x) = \sum_{n=1}^{\infty} a_n \cdot n \cdot (x - x_0)^{n-1}$$
$$= \sum_{n=0}^{\infty} a_{n+1} \cdot (n+1) \cdot (x - x_0)^n$$

4.6 Monotonie

Definition: Monotonie für Funktionen

Eine Funktion heißt monoton wachsend auf [a, b], falls

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 : f(x_1) \le f(x_2) \iff \forall x \in (a, b) : f'(x) \ge 0.$$

Eine Funktion heißt streng monoton wachsend auf [a, b], falls

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 : f(x_1) < f(x_2) \iff \forall x \in (a, b) : f'(x) > 0.$$

Eine Funktion heißt monoton fallend auf [a, b], falls

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 : f(x_1) \ge f(x_2) \iff \forall x \in (a, b) : f'(x) \le 0.$$

Eine Funktion heißt streng monoton fallend auf [a, b], falls

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 : f(x_1) > f(x_2) \iff \forall x \in (a, b) : f'(x) < 0.$$

4.7 Die Grenzwerte von de L'Hospital

Definition: Regeln von de L'Hospital

Seien $f,g \in C[a,b]$ und in (a,b) differenzierbar mit f(a) = g(a) = 0.

Weiterhin gelte $\forall x \in (a, b) : g'(x) \neq 0$ und es existiert

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

dann existiert auch

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

und es ist

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

4.8 Krümmungseigenschaften

Definition: Krümmung

Sei $f \in C^2(a,b)$ und ist $\forall x \in (a,b) : f''(x) > 0$, so heißt f(x) konvex oder linksgekrümmt.

Ist $\forall x \in (a,b): f''(x) < 0$ so heißt f(x) konkav oder rechtsgekrümmt

Definition: Wendepunkt

Sei $f \in C^2(a,b)$ und wechselt die Funktion für $x^* \in (a,b)$ von einer links- zu einer rechtsgekrümmten Funktion (oder umgekehrt), so heißt x^* Wendepunkt der Funktion.

Ist x^* Wendepunkt und $f \in C^2(a,b)$, so ist f''(x) = 0.

4.9 Die Taylorreihe

Definition: Taylorreihe

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \frac{f'''(x_0)}{6} (x - x_0)^3 + \dots$

Dabei heißt x_0 Entwicklungspunkt der Potenzreihe und die Reihe konvergiert für $|x - x_0| < r$ mit $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$.

Bonus: Beispiel: Taylorreihe

Bestimmen Sie das Taylorpolynom dritten Grades für die Funktion $g(x) = \ln(x \cdot e^{-2x})$ an der Stelle $x_0 = 1$.

Taylorpolynom *k*-ten Grades einer Funktion *f*:

$$T_k(x) := \sum_{n=0}^k \frac{\mathrm{d}^n f}{\mathrm{d} x^n} (x_0) \cdot \frac{(x-x_0)^n}{n!}$$

Das Taylorpolynom dritten Grades von $g(x) = \ln(x \cdot e^{-2x})$ an der Stelle $x_0 = 1$ ist dann gegeben durch:

$$T_{3}(x) = \sum_{n=0}^{3} \frac{d^{n}g}{dx^{n}} (1) \cdot \frac{(x-1)^{n}}{n!}$$

$$= g(1) + \frac{dg}{dx} (1) \cdot \frac{x-1}{1!} + \frac{d^{2}g}{dx^{2}} (1) \cdot \frac{(x-1)^{2}}{2!} + \frac{d^{3}g}{dx^{3}} (1) \cdot \frac{(x-1)^{3}}{3!}$$

$$\stackrel{*}{=} \ln(e^{-2}) + \left(\frac{1}{1} - 2\right) \cdot (x-1) + \frac{-1}{1} \cdot \frac{(x-1)^{2}}{2} + \frac{2}{1} \cdot \frac{(x-1)^{3}}{6}$$

$$= -2 - (x-1) - \frac{1}{2} \cdot (x-1)^{2} + \frac{1}{3} \cdot (x-1)^{3}$$

$$= -2 - x + 1 - \frac{1}{2} \cdot (x^{2} - 2x + 1) + \frac{1}{3} \cdot (x^{3} - 3x^{2} + 3x - 1)$$

$$= -1 - x - \frac{x^{2}}{2} + x - \frac{1}{2} + \frac{x^{3}}{3} - x^{2} + x - \frac{1}{3}$$

$$= \frac{x^{3}}{3} - \frac{3x^{2}}{2} + x - \frac{11}{6}$$

Nebenrechnungen:

$$\frac{dg}{dx} = \frac{1}{x} - 2$$
, $\frac{d^2g}{dx^2} = \frac{-1}{x^2}$, $\frac{d^3g}{dx^3} = \frac{2}{x^3}$

5 Integration

5.1 Flächenberechnung

Definition: Stammfunktion

Sei $f \in C[a,b]$. Eine differenzierbare Funktion F(x) mit $\forall x \in [a,b] : F'(x) = f(x)$ heißt eine *Stammfunktion von f.*

Definition: Unbestimmtes Integral

 $F(x) = \int f(x) dx$ heißt das unbestimmte Integral von f.

Definition: Hauptsatz der Differential- und Integralrechnung

Sei $f \in C[a, b]$, dann ist

$$F_a(x) = \int_a^x f(t) dt$$
 differenzierbar

und es gilt

$$F_a'(x) = f(x).$$

Damit ist also:

$$\left(\int_{a}^{x} f(t) dt\right)' = F'_{a}(x) = f(x).$$

Definition: Fläche einer Funktion

Sei $f \in C[a, b]$, dann ist die Fläche der Funktion im Intervall [a, b] gegeben mit

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) =: F(x)|_{x=1}^{b}$$

Bonus: Potenzregel

$$\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$$

Bonus: Faktorregel

$$\int c \cdot f(x) \, \mathrm{d}x = c \cdot \int f(x) \, \mathrm{d}x$$

Bonus: Summenregel

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

Bonus: Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

Entscheidend bei partieller Integration ist die Wahl von f(x) und g'(x). Eine falsche Wahl kann unter Umständen dazu führen, dass das Integral noch komplizierter wird.

Faustregel:

- 1. L logarithmische Funktionen (ln, \log_a , ...)
- 2. I inverse Winkelfunktionen (arcsin, arccos, arctan, ...)
- 3. A algebraische Funktionen (x^2 , $5x^3$, ...)
- 4. T trigonometrische Funktionen (sin, cos, tan, csc, ...)
- 5. E Exponentialfunktionen (e^x , $5a^x$, ...)

Entsprechend des Rangs wird f(x) ausgewählt. Will man beispielsweise $x^2 \cos x$ integrieren, so würde man x^2 für f(x) wählen und $\cos x$ für g'(x), da algebraische Funktionen höher in der Liste stehen als trigonometrische Funktionen.

Bonus: Integration durch Substitution

$$\int f(x) \, \mathrm{d}x = \int f(\phi(u)) \cdot \phi'(u) \, \mathrm{d}u$$

5.2 Integration zur Berechnung von Flächen zwischen mehreren Funktionen

Algorithmus: Berechnung der Fläche zwischen zwei Funktionen

Wir betrachten die Fläche zwischen zwei Funktionen f(x) und g(x).

- 1. Schnittpunkte a, b von f(x) und g(x) berechnen.
- 2. Integriere |f(x) g(x)| zwischen den Schnittpunkten:

$$\left| \int_a^b |f(x) - g(x)| \, \mathrm{d}x \right|$$

Beachte: Bei mehr als zwei Schnittpunkten müssen mehrere Integrale mit den jeweiligen Grenzen addiert werden.

Das Verfahren lässt sich sehr einfach auf mehrere Funktionen erweitern.

Bonus: Beispiel: Fläche zwischen drei Funktionen

Wie groß ist der Flächeninhalt, der von den Funktionen

$$f(x) = -0.25x^4 + 4$$
, $g(x) = -2x - 4$, $h(x) = 2x - 4$

eingeschlossen wird?

Wir sehen in der Zeichnung, dass für die Fläche A zwischen den Graphen gilt:

$$A = \left| \int_{-2}^{0} (f(x) - g(x)) \, dx \right| + \left| \int_{0}^{2} (f(x) - h(x)) \, dx \right|$$

$$= \left| \int_{-2}^{0} \left(-\frac{1}{4}x^{4} + 2x + 8 \right) \, dx \right| + \left| \int_{0}^{2} \left(-\frac{1}{4}x^{4} - 2x + 8 \right) \, dx \right|$$

$$= \left| \left[-\frac{1}{20}x^{5} + x^{2} + 8x \right]_{-2}^{0} \right| + \left| \left[-\frac{1}{20}x^{5} - x^{2} + 8x \right]_{0}^{2} \right|$$

$$= \left| 0 - \left(-\frac{1}{20} \cdot (-2)^{5} + (-2)^{2} + 8 \cdot (-2) \right) \right| + \left| -\frac{1}{20} \cdot 2^{5} + 2^{2} + 8 \cdot 2 - 0 \right|$$

$$= \left| -\frac{8}{5} - 4 + 16 \right| + \left| -\frac{8}{5} - 4 + 16 \right|$$

$$= \frac{52}{5} + \frac{52}{5}$$

$$= \frac{104}{5}$$

Damit beträgt der Flächeninhalt $\frac{104}{5}$ Flächeneinheiten.

5.3 Längenberechnung

Algorithmus: Längenberechnung eines Graphen

Gegeben sind eine Funktion $f \in C[a, b]$ und die Punkte a, b.

Die Länge L_a^b des Graphen der Funktion f ist dann gegeben mit

$$L_a^b(f) = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$$

5.4 Mantelflächenberechnung

Algorithmus: Mantelflächenberechnung

Gegeben sind eine Funktion $f \in C[a, b]$ und die Punkte a, b.

Die Mantelfläche ${\cal M}_a^b$ des Rotationskörpers der Funktion f ist dann gegeben mit

$$M_a^b(f) = \int_a^b 2\pi \cdot f(x) \cdot \sqrt{1 + (f'(x))^2} \, \mathrm{d}x$$

5.5 Rotationsvolumenberechnung

Algorithmus: Rotationsvolumenberechnung

Gegeben sind eine Funktion $f \in C[a, b]$ und die Punkte a, b.

Das Volumen ${\cal M}_a^b$ des Rotationskörpers der Funktion f ist dann gegeben mit

$$V_a^b(f) = \int_a^b \pi \cdot f(x)^2 \, \mathrm{d}x$$

5.6 Differentiation von Integralen mit variablen Grenzen

Algorithmus: Differentiation von Integralen mit variablen Grenzen

Gegeben sei das Integral

$$\int_{\sigma(x)}^{h(x)} f(t) \, \mathrm{d}t.$$

Dann gilt:

$$\left(\int_{g(x)}^{h(x)} f(t) dt\right)' = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x).$$

5.7 Parameterintegrale

Definition: Parameterintegral

Sei f(x,t) eine von zwei rellen Parametern abhängige Funktion. Die Funktionen $g_1(x)$ und $g_2(x)$ seien stetig auf [a,b] und differenzierbar auf (a,b) sowie f(x,t) integrierbar bez. t.

Dann heißt

$$F(x) = \int_{g_1(x)}^{g_2(x)} f(x, t) \, dt$$

das Parameterintegral.

Bonus: Beispiel: Parameterintegral

$$\lim_{x \to \infty} \left(\frac{1}{x} \cdot \int_0^x \frac{t+1}{t^2 + 2} \, \mathrm{d}t \right) \stackrel{\text{de L'Hospital}}{=} \lim_{x \to \infty} \left(\frac{1}{1} \cdot \left(\frac{x+1}{x^2 + 2} \cdot 1 - \frac{0+1}{0+2} \cdot 0 \right) \right)$$

$$= \lim_{x \to \infty} \left(\frac{x+1}{x^2 + 2} \right)$$

$$= 0$$

Definition: Leibniz-Regel

Das Parameterintegral $F(x) = \int_{g_1(x)}^{g_2(x)} f(x,t) dt$ ist differenzierbar und es ist

$$F'(x) = f(x, g_2(x)) \cdot g_2'(x) - f(x, g_1(x)) \cdot g_1'(x) + \int_{g_1(x)}^{g_2(x)} \frac{\mathrm{d}f(x, t)}{\mathrm{d}x} \, \mathrm{d}t$$

Bonus: Beispiel: Leibniz-Regel

$$F(x) = \int_{t=x}^{x^2} \frac{1}{t} \cdot \ln(1+x \cdot t) \, dt \quad (x > 0)$$

$$\frac{dF}{dx} = \int_{t=x}^{x^2} \frac{1}{t} \cdot \ln(1+x \cdot t) \, dt$$

$$= \frac{1}{x^2} \cdot \ln(1+x \cdot x^2) \cdot 2x - \left(\frac{1}{x} \cdot \ln(1+x \cdot x) \cdot 1\right) + \int_{t=x}^{x^2} \frac{1}{t} \cdot t \cdot \frac{1}{1+x \cdot t} \, dt$$

$$= \frac{2\ln(1+x^3)}{x} - \frac{\ln(1+x^2)}{x} + \left[\frac{\ln(1+x \cdot t)}{x}\right]_{t=x}^{x^2}$$

$$= \frac{2\ln(1+x^3)}{x} - \frac{\ln(1+x^2)}{x} + \frac{\ln(1+x \cdot x^2)}{x} - \frac{\ln(1+x \cdot x)}{x}$$

$$= \frac{3\ln(1+x^3) - 2\ln(1+x^2)}{x}$$

5.8 Uneigentliche Integrale

Definition: Uneigentliche Integrale

Sei f(x) beschränkt auf \mathbb{R} , dann definieren wir

$$\int_{a}^{\infty} f(x) dx := \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

$$\int_{-\infty}^{b} f(x) dx := \lim_{R \to \infty} \int_{-R}^{b} f(x) dx$$

$$\int_{-\infty}^{\infty} f(x) dx := \lim_{R \to \infty} \int_{c}^{R} f(x) dx + \lim_{R \to \infty} \int_{R}^{c} f(x) dx$$

Definition: Konvergenz von Integralen

Die Integrale heißen konvergent, wenn die Grenzwerte existieren, sonst heißen sie divergent.

5.9 Absolute Konvergenz

Definition: Absolute Konvergenz von Integralen

Sei $\int_a^b f(x) dx$ ein eigentliches oder uneigentliches Integral.

Konvergiert

$$\int_a^b |f(x)| \, \mathrm{d}x,$$

so heißt $\int_a^b f(x) dx$ absolut konvergent.

5.10 Weitere Konvergenzkriterien

Definition: Majoranten- und Minorantenkriterium für unbeschränkte Integrationsintervalle

Sei $\forall x \in [a, \infty) : 0 \le |f(x)| \le g(x)$ und konvergiert $\int_a^\infty g(x)$, dann konvergiert $\int_a^\infty f(x) \, dx$ und es gilt

$$\left| \int_{a}^{\infty} f(x) \, dx \right| \le \int_{a}^{\infty} |f(x)| \, dx \le \int_{a}^{\infty} g(x) \, dx.$$

Ist $\forall x \in [a, \infty) : 0 \le g(x) \le f(x)$ und divergiert $\int_a^\infty g(x) \, dx$, so divergiert auch $\int_a^\infty f(x) \, dx$.

Definition: Majoranten- und Minorantenkriterium für unbeschränkte Integranden

Sei $\forall x \in [a,b]: 0 \le |f(x)| \le g(x)$ und konvergiert $\int_a^b g(x)$, dann konvergiert $\int_a^b f(x) \, dx$ und es gilt

$$\left| \int_a^\infty f(x) \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, \mathrm{d}x \le \int_a^b g(x) \, \mathrm{d}x.$$

34

Ist $\forall x \in [a,b] : 0 \le g(x) \le f(x)$ und divergiert $\int_a^b g(x) \, dx$, so divergiert auch $\int_a^b f(x) \, dx$.

5.11 Das Integralkriterium zur Konvergenz von Reihen

Definition: Integralkriterium

Sei f eine auf $[m-1,\infty]$ monoton fallende Funktion mit $\forall x \in [m,\infty): f(x) \geq 0$, dann ist die Reihe

$$\sum_{n=m}^{\infty} f(n)$$

genau dann konvergent, wenn

$$\int_{m}^{\infty} f(x) \, \mathrm{d}x$$

existiert. Es gilt bei Konvergenz

$$\sum_{n=m+1}^{\infty} f(n) \le \int_{m}^{\infty} f(x) \, \mathrm{d}x \le \sum_{n=m}^{\infty} f(n) \le \int_{m-1}^{\infty} f(x) \, \mathrm{d}x.$$

Bonus: Beispiel: Integralkriterium

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} f(n)$$

f(n) ist offensichtlich auf dem Intervall $[1, \infty)$ streng monoton fallend.

Damit muss nur geprüft werden, dass das Integral $\int_{n=1}^{\infty} f(n) \; \mathrm{d}n$ existiert bzw. konvergiert:

$$\int_{n=1}^{\infty} f(n) \, \mathrm{d}n = \int_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \, \mathrm{d}n$$

$$= \lim_{b \to \infty} \left[\frac{3n^{\frac{2}{3}}}{2} \right]_{n=1}^{b}$$

$$= \lim_{b \to \infty} \left(\frac{3b^{\frac{2}{3}}}{2} - \frac{3}{2} \right)$$

$$= \infty$$

Damit divergiert das Integral und die gegebene Summe divergiert ebenfalls.