

Curso de Ciência da computação Disciplina: Matemática discreta Professor: Carlos Roberto Silva

Atividade 7 - Permutações e Simetrias

Atividade 7 (máx. dupla) Entregar até o dia 11/11, com resoluções.

- 1) (3,0) Considere a permutação $\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 6 & 5 & 3 & 8 & 9 & 7 \end{bmatrix}$. Expresse π nas seguintes formas:
 - a) Como um conjunto de pares ordenados. (lembrando que uma permutação é uma função, e as funções são conjuntos de pares ordenados)
 - b) Como uma tabela de duas colunas.
 - c) Em notação de ciclo (ciclo disjunto).
- 2) (3,5) Sejam π , σ , $\tau \in S_9$ dadas por

$$\pi = (1)(2,3,4,5)(6,7,8,9)$$

$$\sigma = (1,3,5,7,9,2,4,6,8)$$

$$\tau = (1,9)(2,8)(3,5)(4,6)(7)$$

Calcule:

- a) $\pi \circ \sigma$
- b) $\sigma \circ \pi$
- c) π ∘ π
- d) π^{-1}
- e) σ^{-1}
- f) τ^{-1}
- g) $\tau \circ \tau$
- 3) (1,5) Verifique, por ilustrações (figuras) e por cálculo de permutações, que $F_H \circ R_{90} = F_{\backslash}$.
- 4) (2,0) Seja T um triângulo equilátero. Assim como no quadrado realizado em sala de aula, por meio de uma tabela ache todas as simetrias de T e represente-as como permutações dos vértices.