TOPOLOGIE ET CALCUL DIFFÉRENTIEL 2015-2016, EXAMEN FINAL

Question 1.

- (1). Vrai.
- (2). Faux. Supposons qu'il existe un tel homéomorphisme $\phi: U(0,1) \to]-1,1[$. Alors, comme $U(0,1)-\{0\}$ est connexe (et même connexe par arcs), on a que

$$\phi(U(0,1) - \{0\}) =]-1, 1[-\{\phi(0)\}]$$

est connexe, contradiction.

- (3). Vrai.
- (4). Faux. L'un est compact, l'autre ne l'est pas.
- (5). Faux. On sait que \mathbb{Q} est dense dans \mathbb{R} et différent de \mathbb{R} . Soit donc x un nombre irrationnel et soit (x_n) une suite de rationnels convergeant vers x. C'est une suite de Cauchy de rationnels qui ne converge pas dans \mathbb{Q} .
 - (6). Faux car il n'est pas borné.
 - (7). Vrai.
 - (8). Faux. Considérer l'espace métrique de la question (5), par exemple.

Question 2.

- (1). Gradient: $\nabla f(x,y) = (3x^2 12y, -12x + 24y^2)$. Hessienne: $Hf(x,y) = \begin{pmatrix} 6x & -12 \\ -12 & 48y \end{pmatrix}$.
- (2). Les points critiques sont les $(x,y) \in \mathbb{R}^2$ tels que $3x^2 12y = -12x + 24y^2 = 0$ c'est-à-dire (0,0) et (2,1).
- (3). $Hf(0,0) = \begin{pmatrix} 0 & -12 \\ -12 & 0 \end{pmatrix}$ est de déterminant < 0 donc a deux valeurs propres non-nulles de signes opposés. Donc (0,0) est un point selle.
- $Hf(2,1) = \begin{pmatrix} 12 & -12 \\ -12 & 48 \end{pmatrix}$ est de déterminant > 0 et de trace > 0 donc a deux valeurs propres strictement positives. Donc (2,1) est un minimum local.

Question 3.

- (1). Voir le cours.
- (2). Soit $f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x^2 + z^2$. C'est une application \mathcal{C}^{∞} dont la différentielle est de rang maximal, c'est-à-dire de rang 1, en tout point de l'ouvert $\mathbb{R}^3 - \{(0,0,0)\}$ qui contient A. Par ailleurs $A = f^{-1}(1)$. On en déduit que A est une sous-variété différentielle de classe \mathcal{C}^{∞} et de dimension 2 de \mathbb{R}^3 . Idem pour B.
- (3). Supposons que $A \cap B$ est une sous-variété de dimension 1 de \mathbb{R}^3 . Il existe un voisinage V de (0,0,1) dans $A \cap B$ qui est homéomorphe à un intervalle ouvert de \mathbb{R} . Mais $V - \{(0,0,1)\}$ a 4 composantes connexes alors qu'un intervalle ouvert privé d'un point n'en a que 2, contradiction.

Autre argument qui a été détaillé en TD: si $A \cap B$ était une sous variété de dimension 1 de \mathbb{R}^3 alors les vecteurs tangents à $A \cap B$ en un point donné seraient tous proportionnels entre eux. Or, on voit sur le dessin que ce n'est pas le cas en le point (0,0,1). Donc $A \cap B$ n'est pas une sous-variété de dimension 1 de \mathbb{R}^2 .

(4). Montrons que $A \cap B - \{(0,0,\pm 1)\}$ est une sous-variété de dimension 1 de \mathbb{R}^3 . Soit $g: \mathbb{R}^3 \to \mathbb{R}^2, (x,y,z) \to (x^2+z^2,y^2+z^2)$. C'est une application \mathcal{C}^{∞} dont la matrice jacobienne en un point (x, y, z) est

$$2\begin{pmatrix} x & 0 & z \\ 0 & y & z \end{pmatrix}$$

Cette matrice est de rang maximal, c'est-à-dire de rang 2, en tout point de l'ouvert de \mathbb{R}^3 défini par $x \neq 0$ ou $y \neq 0$, ouvert qui contient $A \cap B - \{(0,0,\pm 1)\}$. Cela montre que $A \cap B - \{(0,0,\pm 1)\}$ est une sous-variété de classe \mathcal{C}^{∞} et de dimension 1 de \mathbb{R}^3 .

Question 4.

(1). La matrice jacobienne est $DF_{\lambda}(x,y) = \lambda \begin{pmatrix} -\sin(x+y) & -\sin(x+y) \\ \cos(x+y) & \cos(x+y) \end{pmatrix}$.

(2). On a
$$|||L||| = \sup_{(u,v) \in \mathbb{R}^2 - \{(0,0)\}} \frac{\|L(u,v)\|_2}{\|(u,v)\|_2}$$
.

On a

$$||DF_{\lambda}(x,y)(u,v)||_{2} = ((\lambda \sin(x+y)(u+v))^{2} + (\lambda \cos(x+y)(u+v))^{2})^{1/2}$$

$$= |\lambda||u+v|$$

$$\leq \sqrt{2}|\lambda|||(u,v)||_{2}$$

où la dernière inégalité découle de l'inégalité de Cauchy-Schwarz:

$$|u+v| = |\langle (u,v), (1,1)\rangle| \le ||(u,v)||_2 ||(1,1)||_2 = \sqrt{2}||(u,v)||_2.$$

- (3). Voir le cours pour l'énoncé de l'inégalité des accroissements finis. On en déduit que $\mathrm{Lip} F_\lambda \leq \sqrt{2} |\lambda|$.
- (4). Voir le cours pour l'énoncé du théorème du point fixe de Banach. On remarque que les solutions du système sont les points fixes de F_{λ} . On en déduit que le système a une unique solution pour tout $\lambda \in]-1/\sqrt{2},1/\sqrt{2}[$.