

Use of carboxamide gemini surfactant(s)

Patent Number: DE19750246

Publication date: 1999-05-20

Inventor(s): KOCH HERBERT DR (DE); BROCK MICHAEL DR (DE); KWETKAT KLAUS DR (DE)

Applicant(s):: HUELS CHEMISCHE WERKE AG (DE)

Requested Patent: DE19750246

Application Number: DE19971050246 19971113

Priority Number (s): DE19971050246 19971113

IPC Classification: C11D1/825 ; A61K7/075 ; A61K7/50 ; A61K7/48 ; D06M13/419 ; D06M15/53 ; C09D7/02 ; C14C11/00 ; B03D1/006 ; B01F17/22

EC Classification: C11D1/28, A61K7/50K8, B01F17/00K2, B03D1/01, B03D1/012, B03D1/014, C09D5/02K4, C09D7/02, C11D1/10, C11D1/34, C11D1/52K, D06L3/12P, D06L3/12R, D06M13/419, D06P1/649K

Equivalents:

Abstract

Carboxamide gemini surfactants are used in formulations for a variety of non-detergent applications. Carboxamide gemini surfactants of formula: R<1>-CO-NX-R<2>z-NY-COR<3> (I) are useful as components of formulations for: (1) cleaning hard and soft surfaces, (2) for cosmetic purposes, for body care or (3) for agrochemical or hydrochemical purposes. (where: R<1>, R<3> = 1-22C linear or branched, (un)saturated hydrocarbyl; R<2> = a spacer, comprising an optionally branched 2-100 C chain, with 0-20 oxygen (O), 0-20 nitrogen (N), 0-4 sulfur (S) and 0-3 phosphorus (P) atoms, having 0-20 substituents, e.g. of OH, COOH, NH₂ and/or acylamino, and containing 0-100 alkoxy groups; X, Y = (C₂H₄O)_a(C₃H₆O)_bH or (C₂H₄O)_c(C₃H₆O)_dQ; a = 0-50; b = 0-60, provided that R<2> is not C₂H₄ when b = 0; a+b = 1-100; c = 0-20; d = 0-20; c+d = 1-40; Q = CH₂COOM, SO₃M, P(O)(OM)₂, C₂H₄SO₃M or OC(O)C₂H₃(SO₃M)COOM'; M and M' = alkali(ne earth) metal, ammonium or alkanol ammonium). Independent claims are also included for the following: Use of gemini surfactants (I) as: (i) components of textile or leather auxiliaries and disinfectants; (ii) dispersants in coating compositions and therapeutic compositions, and in emulsion or suspension polymerisation; and (iii) flotation aids for ore processing.

Data supplied from the esp@cenet database - I2

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 197 50 246 A 1

⑤ Int. Cl. 6:

C 11 D 1/825

A 61 K 7/075

A 61 K 7/50

A 61 K 7/48

D 06 M 13/419

D 06 M 15/53

C 09 D 7/02

C 14 C 11/00

B 03 D 1/006

B 01 F 17/22

⑯ Aktenzeichen: 197 50 246.6
⑯ Anmeldetag: 13. 11. 97
⑯ Offenlegungstag: 20. 5. 99

⑯ Anmelder:

Hüls AG, 45772 Marl, DE

⑯ Erfinder:

Kwetkat, Klaus, Dr., 44534 Lünen, DE; Brock, Michael, Dr., 46514 Schermbeck, DE; Koch, Herbert, Dr., 46348 Raesfeld, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑥ Verwendung von Carbonamidgruppen-haltigen Geminitensiden

⑦ Die Erfindung betrifft die Verwendung von Geminitensiden gemäß DE 4440328 A1 mit der allgemeinen Formel (I),

als Bestandteil von Formulierungen zur Reinigung von harten oder weichen Oberflächen, für kosmetische Zwecke, zur Körperpflege, für agro- oder hydrochemische Zwecke; von Textil- oder Lederhilfsmitteln und Desinfektionsmitteln; als Dispergator in Beschichtungsmitteln, therapeutischen Zubereitungen sowie bei Emulsions- oder Suspensionspolymerisationen oder als ...

in der R¹ und R³ unabhängig voneinander jeweils für einen Kohlenwasserstoffrest mit 1 bis 22 Kohlenstoffatomen stehen; R² einen Spacer aus einer Kette mit 2 bis 100 Kohlenstoffatomen, die Sauerstoffatome, Stickstoffatome, Schwefelatome und/oder Phosphoratome enthalten sowie funktionelle Seitengruppen und Alkoxygruppen tragen kann;

X und Y unabhängig voneinander jeweils einen Substituenten der Formel -(C₂H₄O)_α(C₃H₆O)_βH (II) bedeuten, in der α = 0 bis 50, β = 0 bis 60, α + β = 1 bis 100 ist, wobei R² nicht C₂H₄ ist, wenn β = 0 ist, oder X und Y unabhängig voneinander jeweils einen Substituenten der Formel -(C₂H₄O)_τ(C₃H₆)_δFR (III) bedeuten, in der τ = 0 bis 20, δ = 0 bis 20, τ + δ = 1 bis 40 ist, wobei R² nicht C₂H₄ ist, wenn β = 0 ist und wobei FR für einen funktionellen Rest -CH₂-COOM, -SO₃M, -P(O)(OM)₂, -C₂H₄-SO₃M oder -O-C(O)-C₂H₃(SO₃M)-CO₂M' steht, worin M und M' ein Alkali-, Ammonium-, Alkanolammonium- oder 1/2 Erdalkalioion bedeutet,

DE 197 50 246 A 1

DE 197 50 246 A 1

-(C₂H₄O)_τ(C₃H₆)_δFR (II)

bedeuten,
in der

$τ = 0$ bis 20, vorzugsweise 0 bis 8,
 $δ = 0$ bis 20, vorzugsweise 0 bis 12, und
 $τ + δ = 1$ bis 40, vorzugsweise 5 bis 20 ist,
wobei R² nicht C₂H₄ ist, wenn β = 0 ist,

wobei die Alkoxideinheiten statistisch oder blockweise eingebunden sind und die Reihenfolge beliebig ist und wobei FR für einen funktionellen Rest -CH₂-COOM, -SO₃M, -P(O)(OM)₂, -C₂H₄-SO₃M oder -O-C(O)-C₂H₃(SO₃M)-CO₂M' steht, worin M und M' ein Alkali-, Ammonium-, Alkanolammonium- oder $\frac{1}{2}$ Erdalkalijon bedeutet, als Bestandteil von Formulierungen zur Reinigung von harten oder weichen Oberflächen, für kosmetische Zwecke, zur Körperpflege, für agro- oder hydrochemische Zwecke; von Textil- oder Lederhilfsmitteln und Desinfektionsmitteln; als Dispergator in Beschichtungsmitteln, therapeutischen Zubereitungen sowie bei Emulsions- oder Suspensionspolymerisationen, als Flotationshilfsmittel bei der Erzaufbereitung.

Die Geminitside (I) sind in den Formulierungen, Mitteln oder Mischungen je nach Verwendungszweck oder Fallgestaltung im allgemeinen in Mengen von mindestens 0,1 Gew.-% enthalten. Sie können als Mischung aus mehreren unter die Formel (I) fallenden Individuen eingesetzt werden, z. B. als Mischung verschiedener Homologen (sowohl hinsichtlich der C-Kettenlänge der lipophilen Ketten R¹ und R³ als auch des Spacers R² oder der Alkoxyetherketten X und Y) oder als Mischung von Verbindungen mit verschiedenem Funktionalisierungsgrad, zum Beispiel Sulfierungsgrad zwischen 1 und 2, vorliegen. Der Alkoxylierungsgrad ist jeweils ein Mittelwert und kann jeden beliebigen, auch nicht ganzzähligen Wert in den angegebenen Grenzen annehmen.

1. Formulierungen für die Reinigung von harten oder weichen Oberflächen

Die harten Oberflächen, die erfindungsgemäß gereinigt werden, könnten solche von anorganischen, organischen und/oder anorganisch-organischen Materialien sein. Anorganische Materialien sind beispielsweise Metalle oder Metalllegierungen, z. B. Eisen, Stahl, Eisenlegierungen, wie mit Nickel-, Chrom-, Vanadium- und/oder Wolfram legierte Stähle, Aluminium und Aluminiumlegierungen, wie Duraluminium und Silumin; Zink, verzinkten Metallen, Kupfer und Kupferlegierungen, wie Messing und Bronze, Titan, Magnesiumlegierungen, Silber- und Silberlegierungen.

Andere anorganische Materialien, deren harte Oberflächen erfindungsgemäß gereinigt werden, sind Silicium, dotiertes Silicium, Siliciumdioxid und/oder andere Metall und/oder Nichtmetalloxide enthaltende Materialien, z. B. Gläser, wie Fensterglas, Kristallglas, Quarzglas; feuerfestes Glas, Apparateglas und Emailbeschichtungen; glasiertes oder unglasiertes Porzellan oder Steingut, Fliesen und Kacheln, Wandputz, abgebundene Kalk-, Zement und/oder Gipsmörtel nach Aufbringen vor Ort oder in vorgefertigten Elementen sowie Beton.

Von den organischen Materialien, deren harte Oberflächen erfindungsgemäß gereinigt werden, seien genannt: Holz und Holzprodukte, wie Parkett, Pfosten, Ständer, Gartenzäune und hölzerne Fassadenverkleidungen; hart vulkanisierte natürliche oder synthetische Kautschuke; weiterhin Polymere, wie Polyolefine, z. B. Polyethylen und Polypropylen sowie Copolymeren des Ethyleins und/oder Propylens, Polyurethan, Polyethylenterephthalat, Polycarbonat, Poly(meth)acrylate, Polyacryl-nitril, Polyamide-6, -6,6 und -12, Polyesteramide, Polyetheresteramide, Polystyrol, Styrolcopolymeren, wie Styrol-Acrylnitril- und Styrol-Butadien-Acrylnitril-Copolymeren, Melaminharze, Polybutylenterephthalat, Polyvinylchlorid und Epoxyharze, soweit diese Polymeren hart eingestellt sind. Typische harte Polymeroberflächen sind z. B. Arbeitsplatten in Küchen. Andere geeignete organische Materialien mit harter Oberfläche sind Beschichtungen, z. B. aus lösemittelhaltigen, wässrigen oder pulverförmigen Lacken mit den verschiedenartigsten Bindemitteln oder aus Dispersionssfarben.

Organisch-anorganische Materialien mit harten Oberflächen sind z. B. Bitumen und mineralische Stoffe enthaltende Massen, wie Straßenbeläge und Dachabdeckungen.

Materialien mit weichen Oberflächen, die erfindungsgemäß gereinigt werden, sind z. B. die zuvor erwähnten organischen Polymeren, soweit sie elastisch oder weich sind oder elastisch oder weich eingestellt werden können; wie z. B. weichgemachtes PVC, sowie Polyorganosiloxane. Als erfindungsgemäß zu reinigende Materialien mit weicher Oberfläche werden im Rahmen dieser Erfindung auch natürliche oder synthetische Fasern oder Produkte daraus angesehen, wie lanolinhaltige Rohwolle; Gewebe oder Gewirke mit Schlichte oder anderen temporären Appreturen oder Mitteln; Rohbaumwolle, cellulösische Materialien, wie z. B. Altpapier.

Die genannten Formulierungen für die Reinigung schließen solche für die Industrie, das Verkehrswesen, Handel und Gewerbe und für den privaten Sektor ein. Im einzelnen seien beispielhaft genannt: Erzaufbereitende Industrie, Metall- und metallverarbeitende Industrie, Automobil- und Automobilzulieferindustrie, Elektroindustrie, Elektronikindustrie, Photoindustrie und -gewerbe, Freizeitindustrie und -gewerbe, Baustoffindustrie, Brauindustrie und -gewerbe; Nahrungsmittelindustrie (z. B. Verarbeitung oder Herstellung von Fleisch-, Geflügel-Milch- Fischprodukten) Tiernahrungsmittelindustrie, Kosmetika-Industrie, Pharmaindustrie, Agroindustrie, Gastronomie, Gesundheitswesen, Handwerksbetriebe, professionelles Reinigungsgewerbe und öffentliches Verkehrswesen.

Beispiele für zu reinigende Objekte sind Gebäude mit Wohn-, Büro- oder Geschäftsräumen der verschiedensten Art sowie Sanitärräumen, Lagerhäuser, Brauereien, Einzelhandelsgeschäfte, wie Bäckereien, Metzgereien und Supermärkte; Krankenhäuser, Pflegeheime, Altersheime, Verwaltungsgebäude, Fabrikgebäude, Arztpraxen; weiterhin Kraftfahrzeuge (PKW und LKW), Autobusse, Straßentankfahrzeuge (innen und außen); Eisenbahnkesselwagen, Personen- und Güterwagen, sowie Luftfahrzeuge und Schiffe; ferner Gebäudefassaden, gekachelte oder gestrichene Wände, Fußböden aus Holz (Parkett, Dielen) mit Estrich oder textilen oder Kunststoffbelägen, Signal- und Beleuchtungseinrichtungen, Möbel, Geländer, Schildbrücken, Schilder, Warnbaken, Begrenzungspfähle, Kessel, Geschirr, Glasscheiben, Straßen und Wege.

4,634,551 erwähnte Kombinationen von Bleichmitteln und -aktivatoren gehören. Ganz besonders bevorzugt als Bleichaktivatoren sind Amidderivate der Formeln $R^1N(R^5C(O)R^2C(O)L)$ oder $R^1C(O)N(R^5)R^2C(O)L$, wobei R^1 eine Alkylgruppe mit 6 bis 12 Kohlenstoffatomen, R^2 eine Alkylengruppe mit 1 bis 6 Kohlenstoffatomen, R^5 ein Wasserstoffatom oder Alkyl-, Aryl- oder Alkylaryl mit 1 bis 10 Kohlenstoffatomen und L jedwede für nucleophile geeignete Abgangsgruppe (z. B. Phenylsulfonat) bedeuten. Als Beispiele seien hier die folgenden Verbindungen erwähnt: (6-Octanamido-caproyl)oxyphenylsulfonat, (6-Nonanamido-caproyl)oxyphenylsulfonat, (6-Decanamidocaproyl)oxyphenyl-sulfonat und deren Mischungen. Acyllactamaktivatoren gehören zu einer anderen Klasse bevorzugter Bleichaktivatoren, hier besonders Acylcaprolactam und Acylvalerolactam mit Alkyl-, Aryl-, Alkoxyaryl- und Alkylaryl-acylgruppen, die 1 bis 16 Kohlenstoffatome enthalten. Unter den nicht auf Sauerstoff basierenden Bleichmitteln gehören sulfonierte Zink- und/oder Aluminium-phthalocyanine zu den bevorzugten Systemen.

1.4 Buildersysteme

Ebenfalls optional können die erfindungsgemäßen Waschmittel Buildersysteme enthalten. Es können dabei sowohl anorganische wie organische Systeme eingesetzt werden. Sie werden in Waschmittelformulierungen eingesetzt, um die Partikelschmutz entfernung zu unterstützen und die Wasserhärte zu kontrollieren. Feste Formulierungen enthalten wenigstens ca. 0,5%; Flüssigformulierungen von 5 bis 50%, bevorzugt 5 bis 30% Builder. Granulierte Formulierungen enthalten 10 bis 80%, bevorzugt 15 bis 50% Builder. Niedrigere und höhere Konzentrationen sollen hier jedoch nicht ausgeschlossen werden. Zu den anorganischen Buildern zählen, ohne die erfindungsgemäßen Formulierungen darauf einzuschränken, Alkali-, Ammonium- und Alkanolammoniumsalze von Polyphosphaten (z. B. Tripolyphosphate, Pyrophosphate und polymere Metaphosphate), Phosphonate, Silikate, Carbonate (auch Bicarbonate und Sesquicarbonate), Sulfate und Alumosilikate.

Beispiele für Silikatbuilder sind Alkalisilikate, besonders solche mit $SiO_2 : Na_2O$ im Verhältnis 1,6 : 1 bis 3,2 : 1 und Schichtsilikate wie Natriumsilikate vom Typ $NaMSi_xO_{2x+1} \cdot yH_2O$ (M steht für Na oder H, $x = 1,9-4$, $y = 0-20$). Besonders bevorzugt ist der mit SKS-6 bezeichnete Typ. Auch Magnesiumsilikate können hier eingesetzt werden. Alumosilikate sind ebenfalls nützlich in den erfindungsgemäßen Formulierungen und besonders wichtig in granularen Waschmittelformulierungen. Die verwendbaren Alumosilikatbuilder können mit der empirischen Formel $[M_z(zAlO_2)_y] \cdot xH_2O$ beschrieben werden, z und y nehmen Werte von wenigstens 6 an, das molare Verhältnis von z zu y liegt im Bereich von 1,0 bis 0,5, x nimmt Werte von ca. 0 bis 30 an. Es kann sich sowohl um kristalline als auch um amorphe, synthetische oder natürlich vorkommende Alumosilikate handeln.

Auch organische Builder gehören zu den in den erfindungsgemäßen Formulierungen verwendbaren Buildern. Dazu gehören Polycarboxylate, wie Ethercarboxylate, cyclisch oder acyclisch, Hydroxypolycarboxylate, Copolymeren aus Maleinsäureanhydrid und Ethylen oder Vinylmethylether, 1,3,5-Trihydroxybenzol-2,4,6-trisulfonsäure, Carboxymethoxybernsteinsäure und Polyasparaginsäure, die alle in Form der Säure oder ihrer Alkali-, Ammonium- oder Organoammoniumsalze eingesetzt werden können. Alkyl-, Ammonium- oder Organoammoniumsalze der Polyessigsäure sind ebenso geeignet wie Salze der Zitronensäure oder Kombinationen von verschiedenen Buildern. Alkenylbernsteinsäuren und -salze sind besonders bevorzugte organische Builder. Monocarbonsäuresalze können ebenso entweder allein oder in Kombination mit einem der vorgenannten Builder in die erfindungsgemäßen Formulierungen eingearbeitet werden.

1.5 Schmutzlösepolymeren

Sämtliche zum Stand der Technik gehörenden Schmutzlösepolymeren können als Ingredienzien in den erfindungsgemäßen Formulierungen eingesetzt werden. Als Bestandteil von Formulierungen tragen Schmutzlösepolymeren zu einer leichteren Ablösung von Öl- und Fettschmutz bei, insbesondere bei Waschvorgängen und bei der Textilverarbeitung. Schmutzlösepolymeren zeichnen sich dadurch aus, daß sie sowohl hydrophile wie auch hydrophobe Bauelemente besitzen. Die Wirkungsweise von Schmutzlösepolymeren beruht auf einer Modifizierung der Faseroberfläche von Polyester- bzw. Baumwoll/Polyestermischgeweben mit Hilfe des hydrophilierenden Polymers. Dabei bewirkt das hydrophile Segment des Schmutzlösepolymeren eine leichtere Benetzung der Oberfläche, während das hydrophobe Segment als Ankergruppe fungiert.

Der Feuchtigkeitstransport (Wasserabsorption und Saugfähigkeit) wird bei den mit dem Schmutzlösepolymer behandelten hydrophoben Geweben wie Polyester oder Polyester/Baumwollmischgeweben erheblich verbessert. Außerdem verleihen sie den Stoffen antistatische und Gleiteigenschaften, wodurch die Handhabung dieser Fasern beim Schneiden und Nähen (Textilverarbeitung) erleichtert wird. Die Behandlung des Gewebes mit dem Schmutzlösepolymer ist als eine Art Imprägnierung zu verstehen, d. h. das Schmutzlösepolymer verbleibt für mehrere Waschzyklen auf der Faser.

Zur wichtigsten Gruppe von Schmutzlösepolymeren gehören Poly- bzw. Oligoester auf Basis Terephthalsäure/Polyoxalkylenglykole/monomere Glykole.

Schmutzlösepolymeren dieser Gruppe werden schon seit mehreren Jahren vermarktet. Zu den wichtigsten Verkaufsprodukten zählen u. a. ZELCON (Du Pont) MILEASE T (ICI), ALKARIL QCF/QCI (Alkaril Inc.) und RE-PEL-O-TEX (Rhone-Poulenc). Bevorzugt sind im Rahmen der in dieser Erfindung beanspruchten Formulierungen Schmutzlösepolymeren, die sich durch folgende empirische Summenformel beschreiben lassen:

Dabei repräsentiert (CAP) sog. "capping groups", die das Polymer am Ende verschließen. Der Endgruppenverschluß trägt zur Stabilisierung der Polymeren bei. Dabei steht (CAP) für eine Vielzahl von möglichen Endgruppen. Bevorzugte Endgruppen sind u. a. Sulfoarylgruppen, wie z. B. die Sulfonyl-Gruppe, die in Form einer Umesterung mit Sulfobenzoësäurealkylester eingeführt werden kann. Der Einbau von Endgruppen wirkt sich dabei zum einen regulierend auf das Molekulargewicht aus, andererseits führt er zur Stabilisierung der gewonnenen Polymeren. Neben Sulfoaryl-Grup-

gen einer Waschflotte zu steigern vermag.

1.8 Polymere Dispersionshilfen (Cobuilder)

Diese Additive werden in Mengen von 0,1 bis 7,0% der erfundungsgemäßen Gesamtformulierung eingesetzt, wobei es sich um Polycarboxylate oder um Polyethylenglykole handelt, die sowohl die Wirkung des eingesetzten Builders verstärken als auch Inkrustierungen und Wiederanschmutzungen verhindern und bei der Ablösung von Partikelschmutz eine Rolle spielen. Die hier einsetzbaren Verbindungen werden durch Polymerisation oder Copolymerisation von geeigneten ungesättigten Carbonsäure- oder Carbonsäureanhydridmonomeren erhalten. Hier sind Polyacrylate aber auch Maleinsäureanhydrid/Acrylicsäure-Copolymerisate bevorzugt. Die Molekulargewichte der ersteren bewegen sich in einem Bereich von 2000 bis 10 000, bevorzugt 4000 bis 7000 und besonders bevorzugt im Bereich von 4000 bis 5000. Geeignete Copolymerisate weisen Molgewichte von 2000 bis 100 000, bevorzugt 5000 bis 75 000 und besonders bevorzugt 7000 bis 65 000 auf. Verwendbare Polyethylenglykole weisen Molgewichte im Bereich 500 bis 100 000, besonders bevorzugt 1500 bis 10 000 auf. Auch Polyasparaginate und -glutamate können zusammen mit Zeolith-Buildern eingesetzt werden, wobei die verwendbaren Polyasparaginate mittlere Molgewichte von ca. 10 000 aufweisen.

1.9 Optische Aufheller

Alle nach dem Stand der Technik bekannten optischen Aufheller sind in den erfundungsgemäßen Formulierungen einsetzbar. Sie werden zu 0,05 bis 1,2%, bezogen auf die Gesamtformulierung, eingearbeitet. Einige nicht einschränkende Beispiele für geeignete Verbindungsgruppen seien im folgenden genannt: Stilbenderivate, Pyrazoline, Cumarin, Carbonsäuren, Methincyanine, Dibenzothiophen-5,5-dioxid, Azole, 5- und 6-gliedrige Heterocyclen.

1.10 Schauminhibitoren

Je nach genauer Zusammensetzung (d. h. Schäumvermögen der verwendeten Tenside) und Art des Schauminhibitors müssen 0 bis 5% (bezogen auf Gesamtformulierung) davon eingesetzt werden. Monofettsäuresalze werden in einer Menge von 0 bis zu 5%, bevorzugt jedoch 0,5 bis 3% eingesetzt, Silicone werden in einer Menge bis zu 2%, bevorzugt jedoch 0,01 bis 1% und besonders bevorzugt von 0,25 bis 0,5% eingesetzt. Zu den Verbindungen, die in den erfundungsgemäßen Formulierungen als Schauminhibitor eingesetzt werden können, gehören Monofettsäuren und ihre Salze, mit C-Kettenlängen von 10 bis 24, bevorzugt jedoch 12 bis 18 Kohlenstoffatomen. Auch hochmolekulare nicht oberflächenaktive Verbindungen, wie Paraffine, Fettsäureester (z. B. Triglyceride), aliphatische Ketone, N-alkylierte Aminotriazine oder Di- bis Tetraalkyldiaminchlortriazine, Monostearylphosphate und Monostearylalkoholphosphatester können eingesetzt werden. Auch Silicone können in der vorliegenden Formulierung als Schauminhibitor eingesetzt werden; ebenso wie Mischungen von Siliconen und Silan-modifizierten Silikaten, i. a. können hier Polyalkylenglykole als Lösungsmittel eingesetzt werden.

In den Reinigungsmitteln können die Geminitenside (I) mit einer Vielzahl von weiteren als Bestandteile von Reinigungsmitteln bekannten Komponenten kombiniert werden, z. B. mit Schmutzredispositionsinhibitoren (z. B. Phosphaten, Polyphosphaten, Silikaten, Metasilikaten, Citraten, Tartraten, Gluconaten, Phosphonsäuren, Phosphonalkarbonsäuren), Nitrilcarbonsäuren (wie Nitrilotriessigsäure), Korrosionsinhibitoren, organischen Lösungsmitteln (wie Paraffinen, Isoparaffinen), chlorierten und/oder fluorierten Kohlenwasserstoffen, Terpenen, wasserlöslichen oder -mischbaren Siliconölen, Alkylenglykolen (C₂ bis C₈), Alkoholen (C₂ bis C₂₂), Wasserstoffperoxid, Natriumhypochlorit, Desinfektions- und Konservierungsmitteln (wie Phenoxyethanol, Methylbromoglutaronitril), Wachsester und kationischen Polymeren.

2. Formulierungen für die Körperpflege oder kosmetische Zwecke

Formulierungen, in denen die Geminitenside (I) eingesetzt werden können, sind z. B. Bodylotionen, Aftershave, Hautaufhellungsmitteln, Bräunungscremes, wasserfeste Sonnenschutzcremes oder -lotionen, dekorative Kosmetika (wie Lippenstifte und Eyeliner); Shampoos, Babyshampoos, Waschgele, Dusch- und Badegele, Handwaschlotionen, Desodorantien (wie Roll-on oder Stift), Zahnpulpmittel, Gebißreiniger, Mundwässer, Schaumbäder, Ölwäder, Ölschaumbäder, Make-up-Entferner, Gesichtsreinigungscremes, Haarcremes (Pomaden), Haarconditioniergele, Haarentfernungsmittel (z. B. in Form von Cremes), Rasiergele oder -schäume, Massagcremes, Foundationcremes, Haarwellmittel, Haarfärbemittel, Stückseifen vom Kombibar-Typ, Syndetseifen und flüssige Handwaschseifen.

Von den sonstigen Ingredienzien, mit denen die Geminitenside (I) bei der Herstellung von Formulierungen für die Körperpflege oder kosmetische Zwecke kombiniert werden können, seien beispielweise genannt: Alkylsarcosinate, Cellulose und Guarerdeivate, Aromaöle (wie Lavendel, Rosmarin, Fichtennadel- und Latschenkieferöl oder Mundpflegearomaöl Dragoco ZM 0065), Parfümöl; Pflegeöle, wie Avocado-, Jojoba- und Teatree-Öl; UV-Absorber (wie in der EU-Direktive Nr. 76/768/CEE und ihren Anhängen und Modifikationen aufgeführt), Dihydroxyaceton, Cyclodextrine (aber z. B. als Geruchshemmer oder gefüllt z. B. mit Duftstoffen und/oder Wirkstoffen) Vitamine, wie Vitamin A oder E, Vitaminiderivate, wie Vitamin A-Palmitat, Squalan, β-Carotin und weitere Farbstoffe, Tocopherol und Tocopherolderivate (wie Tocopherolacetat), Retinylpalmitat Bisabolol, d-Panthenol, Ascorbinsäure, Antioxidantien, Pflanzensteroide (wie Ergosterin und β-Sitosterin) und deren Derivate, Cholesterin und dessen Derivate, Parabene und deren Derivate (wie Methyl-, Ethyl-, Propyl- und Butyl-Paraben), Perleffekstoffe, Entzündungshemmer, Ceramide, Pseudoceramide, Imidazolidinylharnstoff, Diisoarachidylidinoleat, Polymere (wie Polyacrylamide, Carboxy-Vinyl-Polymer, Maleinsäureanhydrid-Oleat-Copolymer, Polyéthylenglykolmono- oder -diester, Polyvinylpyrrolidon, Polysaccharide, Polyacrylate, Fluorkohlenwasserstoffe, kationische Polymere (wie Diethyldiallylammoniumchlorid-Acrylamid-Copolymere, Antitranspirantien (wie Aluminium oder Zirconiumsalze), Zitronensäure, Milchsäure, Hyaluronsäure, Octylmethoxycin-

DE 197 50 246 A 1

Fettsäureester, Alkoxylate höherer Alkohole, alkoxylierte Fettsäureglyceride, Polyoxyethylenoxypropylenglykolfettsäureester, Polyoxyethylensorbitanfettsäureester, Polyoxyethylen-Rhizinusöl- oder gehärtete Rhizinusölderivate, Polyoxyethylenlanolinderivate, Polyoxyethylenfettsäureamide, Polyoxyethylenalkylamine, Derivate von Alkanolaminen, Alkylaminoxide, Derivate von Eiweißhydrolysaten, Hydroxymischether, Alkylmono- oder -polyglycosi- oxide, Derivate von Eiweißhydrolysaten, Hydroxymischether, Alkylmono- oder -poly- glycoside und Alkylglucamide (z. B. N-Methylethylglucamide) sowie nichtionische Geminitenside bzw. verbrückte nichtionische Tenside (wie in WO 95/19951 (Polyhydroxyaminverbindungen), WO 95/19953, WO 95/19954 und WO 95/19955 sowie WO 95/20026 beschrieben) genannt. Als Beispiele für anionische grenzflächenaktive Substanzen, die für Kombinationen eingesetzt werden können, seien Seifen, Ethercarbonsäuren und deren Salze, Alkylsulfonate, α -Olefinsulfonate, α -Sulfosettsäurederivate (einschließlich der in WO 93/25646 beschriebenen), Dicarbonat (wie in DE 196 22 612 beschrieben), Sulfonate höherer Fettsäureester, höhere Alkoholsulfate (primär und sekundär) Alkoholethersulfate, Hydroxymischethersulfate Sulfate und Carbonate von alkoxylierten Carbonsäurealkanolamiden, Salze von Phosphatestern, Tauride, Isethionate, lineare Alkylbenzolsulfonate, verbrückte Alkylbenzolsulfonate (wie DOWFAX-Typen der Firma Dow), Alkylarylsulfonate, Sulfate der Polyoxyethylenfettsäureamide und Derivate von Acylaminosäuren, Alkylethercarbonsäuren, Alkyl- und Dialkylsulfosuccinate, Alkenylsulfosuccinate, Alkyl- oder Alkenylsarcosinate und sulfatierte Glycerinalkylether genannt. Als Beispiele für kationische gängige grenzflächenaktive Substanzen, die für Kombinationen eingesetzt werden können, seien Alkyldimethylammoniumsalze, Dialkyldimethylammoniumsalze, Alkyldimethylbenzylammoniumsalze, Imidazoliniumderivate, Alkylpyridiniumsalze, quaternierte Fettsäureester von Alkanolaminen, Alkylisochinoliniumsalze, Benzetoniumchloride und kationische Acylaminosäurederivate genannt.

Als Beispiele für ampholytische und betainische grenzflächenaktive Substanzen, die für Kombinationen eingesetzt werden können, seien Carbobetaine, wie z. B. Kokosacylamidopropyldimethylbetain, Acylamidopentandiethylbetain, Dimethylammoniohexanoat-acylamidopropan-(oder -ethan-)dimethyl-(oder-diethyl-)betain – alle mit C-Kettenlängen zwischen 10 und 18, Sulfobetaine, Imidazolinderivate, Sojaöllipide und Lecithin genannt. Die oben erwähnten Amin-N-oxide können auch in polymerer Form vorliegen, wobei ein Verhältnis Amin- zu Amin-N-oxid von 10 : 1 bis 1 : 1 000 000 vorliegen muß. Die mittlere Molmasse beträgt 500 bis 1 000 000, besonders bevorzugt jedoch 5000 bis 100 000.

Weitere Komponenten für die Verwendungen 1 bis 6 der Geminitenside (I)

Verschiedene weitere Komponenten können jeweils einzeln oder in Kombinationen mit den Geminitensiden (I) kombiniert werden. Von diesen Komponenten seien genannt: Trägerstoffe, Hydrotropica, Prozesshilfsmittel, Farbstoffe oder Pigmente, Parfums, Lösungsmittel für Flüssigformulierungen (besonders bevorzugt sind Alkohole mit 1 bis 6 Kohlenstoffatomen und 1 bis 6 Hydroxygruppen), feste Füller für Stückseifenformulierungen, Perlglanzmittel, z. B. Distearoylglyceride, Konservierungsmittel, Pufferungssysteme und so weiter. Sollte ein höheres Schäumvermögen der Formulierung, wie z. B. in einigen Körperpflegemitteln, erforderlich sein, so kann dieses z. B. durch den Zusatz von C_{10} - C_{16} -Alkanolamiden (in Konzentrationen von 1 bis 10% der Gesamtformulierung) erhöht werden. Auch weitere wasserlösliche Magnesiumsalze können zur Erhöhung des Schäumvermögens und der Fettlösekraft in Mengen von 0,1 bis 2% zugesetzt werden. Wenn notwendig, können einige der obengenannten Tensidkomponenten auch durch Adsorption auf poröse hydrophobe Substanzen stabilisiert und mit einer weiteren hydrophoben Schicht versiegelt in die Formulierung eingearbeitet werden.

Patentansprüche

1. Verwendung von Geminitensiden gemäß DE 44 40 328 A1 mit der allgemeinen Formel (I),

in der R^1 und R^3 unabhängig voneinander jeweils für einen unverzweigten oder verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 22 Kohlenstoffatomen, vorzugsweise 7 bis 17 Kohlenstoffatomen stehen:

R^2 einen Spacer aus einer unverzweigten oder verzweigten Kette mit 2 bis 100 Kohlenstoffatomen, die 0 bis 20 Sauerstoffatome, 0 bis 20 Stickstoffatome, 0 bis 4 Schwefelatome und/oder 0 bis 3 Phosphoratome enthält, die 0 bis 20 funktionelle Seitengruppen, wie z. B. Hydroxyl-, Carbonyl-, Carboxyl-, Amino- und/oder Acylaminogruppen aufweist und die 0 bis 100, vorzugsweise 0 bis 20 Alkoxygruppen enthält;

X und Y unabhängig voneinander jeweils einen Substituenten der Formel II

bedeuten,

in der

$\alpha = 0$ bis 50, vorzugsweise 10 bis 30,

$\beta = 0$ bis 60, vorzugsweise 20 bis 40, und