Regressão Linear Simples

Aprendizado de máquina - Supervisionado

Dados para treinamento são rotulados

 Modelos tentam prever a saída (nesse caso valores numéricos continuos) e se adaptam, visando minimizar o erro

- Busca criar um modelo que consiga aprender a relação entre as entradas e a saída
- Ao final o modelo deve ser capaz de receber dados não vistos e prever a saída correta

Regressão Linear

 A regressão é um modelo matemático que tenta estudar a relação de uma variável resposta com base em um ou mais características, chamadas de variáveis independentes ou atributos preditivos.

- Existem diversos tipos de regressão (Logística, Polinomial, Lasso, Ridge,...)
- Faz parte do <u>aprendizado supervisionado</u>
- Podemos realizar duas tarefas: Predição e Inferência

Regressão

Inferência Estatística

• Tirar conclusões a respeito de uma variável resposta, a partir de variáveis independentes

• Com isso, podemos fazer estimativas e testar hipóteses sobre uma população

Não podemos inferir causalidade com a regressão

• Ex: Tentar estudar a relação entre a venda no número de pizzas com a população de estudantes em uma cidade. (Ex retirado do livro Estatística Aplicada à ADM/ECONO)

Regressão Linear Simples

Temos uma variável dependente e uma variável independente

Tentamos explicar linearmente a variação da VD com a nossa VI

• Foco em inferência

Estimação dos parâmetros

- É necessário estimar os coeficientes, já que não são conhecidos
- Método dos mínimos quadrados: Tentamos minimizar a soma dos erros quadráticos do modelo e com isso chegamos a estimativas dos nosso coeficientes.
- Assim, após estimarmos nossos coeficientes precisamos testar a validade deles.

$$b_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{(x_i - ar{x})^2}$$
 ESTIMATIVAS $b_0 = ar{y} - b_1ar{x}$

- $x_i o$ Valor da variável independente para a i-ésima observação (X[i])
- y_i ightarrow Valor da variável dependente para a i-ésima observação (y[i])
- $ar{x}$ ightarrow Valor médio da variável independente
- $ar{y}$ ightarrow Valor médio da variável independente

Métricas de Validação

- Visam verificar o quão satisfatoriamente a equação de regressão estimada ajusta os dados.
- R2 -> Coeficiente de determinação
- Interpretação: Porcentagem da soma total dos quadrados que pode ser explicada usando a reta de regressão. Ou seja, se R2 = 0.9, então 90% da variabilidade da VD pode ser explicada por meio da relação linear com a VI.
- Correlação -> sqrt(R2). Intensidade da associação linear entre duas variáveis. (Leva em conta o sinal da estimação de b1)

Sum of Squares Total
$$\rightarrow$$
 SST = $\sum (y - \bar{y})^2$
Sum of Squares Regression \rightarrow SSR = $\sum (y' - \bar{y'})^2$ $R^2 = \frac{SSR}{SST} = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$
Sum of Squares Error \rightarrow SSE = $\sum (y - y')^2$

Suposições do modelo

- Para realizarmos a análise da regressão é necessário fazer algumas suposições sobre o nosso modelo.
 - 1. O erro é uma variável aleatória com valor esperado igual à O
 - 2. Variância do erro é a mesma para todos os valores da variável independente. (Podemos verificar em um grafo que contenha Var(Erro) x VI)
 - 3. Erro é independente
 - 4. O erro é normalmente distribuído (Podemos verificar com QQplot)

Teste de Significância

- Utilizado para testar se uma relação de regressão é significativa
- No teste, iremos testar se os coeficientes são iguais a zero ou diferentes de zero
- Como os coeficientes foram estimados anteriormente, precisamos verificar se eles podem ser utilizados
- O teste tem o seguinte formato: (HO: Hip. Nula // H1: Hip. Alternativa)

$$IGC_i = eta_0 + eta_1 fastfood_i + u_i$$

$$\begin{cases} H_0 \colon eta_1 = 0 & \longrightarrow & \text{o consumo de } fastfood \text{ não \'e relevante para explicar o IGC de um indivíduo} \\ H_{A:} \ eta_1 \neq 0 & \longrightarrow & \text{o consumo de } fastfood \ \'e \text{ relevante para explicar o IGC de um indivíduo} \end{cases}$$

Nível de Significância

- Probabilidadade de cometermos o erro do Tipo 1 quando a hipótese nula é verdadeira.
- Valores comuns: 0.01, 0.05, 0.1
- Interpretação:
 - Caso a nossa hipótese nula seja recusada à um nível de significância de 0.01, isso significa, que a chance de HO ser falsa é de 99%, ou seja, temos 1% de chance de cometer o erro do tipo 1
 - Caso a nossa hipótese nula seja aceita à um nível de significância de 0.01, não podemos inferir nada a respeito da probabilidade de cometer o erro do tipo 2

OBS: Como não podemos inferir a respeito do Erro do Tipo 2 o recomendado, caso H0 seja aceito, é falar "não rejeitar H0"

	Decisão						
Verdade	Aceitar H ₀	Rejeitar H ₀					
H ₀ verdadeiro		Erro Tipo I					
	$(1-\alpha)$	(α)					
H ₀ falso	Erro Tipo II	_					
	β	$(1-\beta)$					

Intervalo de confiança

- Garante que há X%(nível de significância) de chance do coeficiente B1 estar entre dois valores
- Estes valores são: b1 (margem de erro) e b1 + (margem de erro)
- A margem de erro é o erro de estimação, que envolve a estatística (T ou P) multiplicado pelo desvio padrão estimado de b1
- Caso a o valor hipotético (HO) esteja dentro do intervalo de confiança, não rejeitamos HO, caso contrário, rejeitamos HO

Teste-T

- Teste estatístico para validar uma hipótese
- Desvio padrão da população é desconhecido
- Geralmente utilizado para amostras pequenas (N < 30)
- A estatística de teste segue uma distribuição t-Student com n-2 graus de liberadade
- 2 * valor-p < nivel_significância

Exemplo

VALOR-P

120			α	α				-			α				
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	v	0.02	0.015	0.01	0.0075	0.005	0.0025	0.000
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	1	15.894	21.205	31.821	42.433	63.656	127.321	636.57
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	2	4.849	5.643	6.965	8.073	9.925	14.089	31.60
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3	3.482	3.896	4.541	5.047	5.841	7.453	12.92
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	4	2.999	3.298	3.747	4.088	4.604	5.598	8.61
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	5	2.757	3.003	3.365	3.634	4.032	4.773	6.86
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	6	2.612	2.829	3.143	3.372	3.707	4.317	5.95
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	7	2.517	2.715	2.998	3.203	3.499	4.029	5.40
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	8	2.449	2.634	2.896	3.085	3.355	3.833	5.04
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	9	2.398	2.574	2.821	2.998	3.250	3.690	4.78
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	10	2.359	2.527	2.764	2.932	3.169	3.581	4.58
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	11	2.328	2.491	2.718	2.879	3.106	3.497	4.43
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	12	2.303	2.461	2.681	2.836	3.055	3.428	4.3
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	13	2.282	2.436	2.650	2.801	3.012	3.372	4.2
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	14	2.264	2.415	2.624	2.771	2.977	3.326	4.1
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	15	2.249	2.397	2.602	2.746	2.947	3.286	4.0
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	16	2.235	2.382	2.583	2.724	2.921	3.252	4.0
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	17	2.224	2.368	2.567	2,706	2.898	3.222	3.9
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	18	2.214	2.356	2.552	2.689	2.878	3.197	3.9
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	19	2.205	2.346	2.539	2.674	2.861	3.174	3.8
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	20	2.197	2.336	2.528	2.661	2.845	3.153	3.8
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	21	2.189	2.328	2.518	2.649	2.831	3.135	3.8
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	22	2.183	2.320	2.508	2.639	2.819	3.119	3.79
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	23	2.177	2.313	2.500	2.629	2.807	3.104	3.7
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	24	2.172	2.307	2.492	2.620	2.797	3.091	3.7
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	25	2.167	2.301	2.485	2.612	2.787	3.078	3.7
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	26	2.162	2.296	2.479	2.605	2.779	3.067	3.7
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	27	2.158	2.291	2.473	2.598	2.771	3.057	3.6
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	28	2.154	2.286	2.467	2.592	2.763	3.047	3.6
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	29	2.150	2.282	2.462	2.586	2.756	3,038	3.6
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	30	2.147	2.278	2.457	2.581	2.750	3.030	3.6
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	40	2.123	2.250	2,423	2.542	2.704	2.971	3.5
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	60	2.099	2.223	2.390	2.504	2.660	2.915	3,4
20	0.254	0.526	0.845	1.041	1.289	1.658	1.980	120	2.076	2.196	2.358	2.468	2.617	2.860	3.3
00	0.253	0.524	0.842	1.036	1.282	1.645	1.960	. 00	2.054	2.170	2.326	2.432	2.576	2.807	3.2

Exemplo prático

0.975]	[0.025	P> t	t	std err	coef		
57.478	19.826	0.000	4.087	9.456	38.6517	Intercept	
3.938	-34.793	0.117	-1.586	9.727	-15.4278	Region[T.E]	
8.419	-28.453	0.283	-1.082	9.260	-10.0170	Region[T.N]	
9.943	-19.039	0.534	-0.625	7.279	-4.5483	Region[T.S]	
4.23	-24.418	0.165	-1.402	7.196	-10.0913	Region[T.W]	
0.232	-0.603	0.378	-0.886	0.210	-0.1858	Literacy	
0.656	0.247	0.000	4.390	0.103	0.4515	Wealth	
1.785		Natson:	Durbin-	3.049		Omnibus:	
2.694							
0.260		Control of the contro	Prob(JB	-0.340	0.7		
371.		0.	Cond. N	2.454		Kurtosis:	
		Bera (JB):):	Jarque- Prob(JB	0.218 -0.340	Prob(Omnibus): Skew: Kurtosis:		

Onto our coefficients!

Teste-Z

- Teste estatístico para validar uma hipótese
- Desvio padrão da população é conhecido
- Geralmente utilizado para amostras grandes (N > 30)
- A distribuição do teste estatístico sob a hipótese nula pode ser aproximada por uma distribuição normal
- 2(valor-z) < nivel_significância

/X = Média amostral ux = Valor hipotético

sigma_x = Desvio padrão n = Tamanho amostral

Exemplo

	0.00	0.00	0.07	0.00	O OF	0.04	0.02	0.00	0.04	
Z	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0
2.7									T	T
-3,7						T	etc	<0,00010	0,0001	0,00011
-3,6	0,00011	0,00012	0,00012	0,00013	0,00013	0,00014	0,00014	0,00015	0,00015	0,00016
-3,5	0,00017	0,00017	0,00018	0,00019	0,00019	0,0002	0,00021	0,00022	0,00022	0,00023
-3,4	0,00024	0,00025	0,00026	0,00027	0,00028	0,00029	0,0003	0,00031	0,00032	0,00034
-3,3	0,00035	0,00036	0,00038	0,00039	0,0004	0,00042	0,00043	0,00045	0,00047	0,00048
-3,2	0,0005	0,00052	0,00054	0,00056	0,00058	0,0006	0,00062	0,00064	0,00066	0,00069
-3,1	0,00071	0,00074	0,00076	0,00079	0,00082	0,00084	0,00087	0,0009	0,00094	0,00097
-3	0,001	0,00104	0,00107	0,00111	0,00114	0,00118	0,00122	0,00126	0,00131	0,00135
-2,9	0,00139	0,00144	0,00149	0,00154	0,00159	0,00164	0,00169	0,00175	0,00181	0,00187
-2,8	0,00193	0,00199	0,00205	0,00212	0,00219	0,00226	0,00233	0,0024	0,00248	0,00256
-2,7	0,00264	0,00272	0,0028	0,00289	0,00298	0,00307	0,00317	0,00326	0,00336	0,00347
-2,6	0,00357	0,00368	0,00379	0,00391	0,00402	0,00415	0,00427	0,0044	0,00453	0,00466
-2,5	0,0048	0,00494	0,00508	0,00523	0,00539	0,00554	0,0057	0,00587	0,00604	0,00621
-2,4	0,00639	0,00657	0,00676	0,00695	0,00714	0,00734	0,00755	0,00776	0,00798	0,0082
-2,3	0,00842	0,00866	0,00889	0,00914	0,00939	0,00964	0,0099	0,01017	0,01044	0,01072
-2,2	0,01101	0,0113	0,0116	0,01191	0,01222	0,01255	0,01287	0,01321	0,01355	0,0139
-2,1	0,01426	0,01463	0,015	0,01539	0,01578	0,01618	0,01659	0,017	0,01743	0,01786
-2	0,01831	0,01876	0,01923	0,0197	0,02018	0,02068	0,02118	0,02169	0,02222	0,02275
Z	0.09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0
-1,9	0,0233	0,02385	0,02442	0,025	0,02559	0,02619	0,0268	0,02743	0,02807	0,02872
-1,8	0,02938	0,03005	0,03074	0,03144	0,03216	0,03288	0,03362	0,03438	0,03515	0,03593
-1,7	0,03673	0,03754	0,03836	0,0392	0,04006	0,04093	0,04182	0,04272	0,04363	0,04457
-1,6	0,04551	0,04648	0,04746	0,04846	0,04947	0,0505	0,05155	0,05262	0,0537	0,0548
-1,5	0,05592	0,05705	0,05821	0,05938	0,06057	0,06178	0,06301	0,06426	0,06552	0,06681
-1,4	0,06811	0,06944	0,07078	0,07215	0,07353	0,07493	0,07636	0,0778	0,07927	0,08076
-1,3	0,08226	0,08379	0,08534	0,08692	0,08851	0,09012	0,09176	0,09342	0,0951	0,0968
-1,2	0,09853	0,10027	0,10204	0,10383	0,10565	0,10749	0,10935	0,11123	0,11314	0,11507
-1,1	0,11702	0,119	0,121	0,12302	0,12507	0,12714	0,12924	0,13136	0,1335	0,13567
-1	0,13786	0,14007	0,14231	0,14457	0,14686	0,14917	0,15151	0,15386	0,15625	0,15866
-0,9	0,16109	0,16354	0,16602	0,16853	0,17106	0,17361	0,17619	0,17879	0,18141	0,18406
-0,8	0,18673	0,18943	0,19215	0,19489	0,19766	0,20045	0,20327	0,20611	0,20897	0,21186
-0,7	0,21476	0,2177	0,22065	0,22363	0,22663	0,22965	0,2327	0,23576	0,23885	0,24196
-0,6	0,2451	0,24825	0,25143	0,25463	0,25785	0,26109	0,26435	0,26763	0,27093	0,27425
-0,5	0,2776	0,28096	0,28434	0,28774	0,29116	0,2946	0,29806	0,30153	0,30503	0,30854
-0,4	0,31207	0,31561	0,31918	0,32276	0,32636	0,32997	0,3336	0,33724	0,3409	0,34458
-0,3	0,34827	0,35197	0,35569	0,35942	0,36317	0,36693	0,3707	0,37448	0,37828	0,38209
-0,2	0,38591	0,38974	0,39358	0,39743	0,40129	0,40517	0,40905	0,41294	0,41683	0,42074
-0,1	0,42465	0,42858	0,43251	0,43644	0,44038	0,44433	0,44828	0,45224	0,4562	0,46017
0	0,46414	0,46812	0,4721	0,47608	0,48006	0,48405	0,48803	0,49202	0,49601	0,5
Z	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0

Cuidados na Regressão Linear Simples

- Rejeitar HO, e concluir que a relação entre x e y é significativa não nos permite concluir uma relação de causa efeito
- Não podemos concluir que alterações em x provocam alterações em y simplesmente por encontrar relações significativas
- Não podemos concluir que a relação entre x e y seja linear
- Podemos afirmar que x e y estão relacionados e que temos uma <u>relação linear</u> que explica a parte significativa da variabilidade em y ao longo dos valores observados de x

Tópico Adicional

- Data Leakage: Vazar informações do teste para o treino ou vice-versa
- Enviesar o modelo
- Vaza informações do treino para o teste, que na teoria não deveria ter contato com o treino

Casos

Preencher valores missing com a média da coluna

Qualquer encoder que leve em consideração a classe do objeto

Métodos de normalização (Min Max, Standart,...)

Aplicação

```
# Escalonamento dos dados usando StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Divisão dos dados em treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```



```
# Divisão dos dados em treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Escalonamento dos dados usando StandardScaler após a divisão
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

