The Conditional Mean Function

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goals

Define the conditional mean function

Explain how to estimate it from data

Conditional mean

Random variables \tilde{a} and \tilde{b} belong to the same probability space

If $\tilde{a} = a$ what is the mean of \tilde{b} ?

Joint pmf

Mean of \tilde{b} if \tilde{a} is known?

Mean of \tilde{b} if $\tilde{a}=1$

Mean of \tilde{b} if $\tilde{a} = 2$

Mean of \tilde{b} if $\tilde{a} = 3$

$$\sum_{b \in B} b p_{\tilde{b} \mid \tilde{s}}(b \mid 3) = 1 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3}$$

$$= 2$$

Conditional mean function

The conditional mean function of a discrete random variable \tilde{b} given \tilde{a} is

$$\mu_{\tilde{b}\,|\,\tilde{a}}(a) := \sum_{b\in B} b\, p_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a)$$

$$\mu_{\tilde{b}\,|\,\tilde{a}}(1) = \sum_{b\in B} b\, p_{\tilde{b}\,|\,\tilde{a}}(b\,|\,1) = \frac{15}{7}$$

$$\mu_{\tilde{b}\,|\,\tilde{a}}(2) = \sum_{b\in B} b \, \rho_{\tilde{b}\,|\,\tilde{a}}(b\,|\,2) = \frac{16}{7}$$

$$\mu_{\tilde{b}\,|\,\tilde{a}}(3) = \sum_{b \in \mathcal{B}} b \, p_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) = 2$$

Triangle lake

Mean of \tilde{b} if $\tilde{a} = a$?

$$f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a)=rac{f_{\tilde{a},\tilde{b}}(a,b)}{f_{\tilde{a}}(a)}$$

Marginal pdf

$$f_{\tilde{a}}(a) = \int_{b=-\infty}^{\infty} f_{\tilde{a},\tilde{b}}(a,b) db$$
$$= \int_{b=0}^{1-a} 2 db = 2(1-a)$$

Mean of \tilde{b} if $\tilde{a} = a$?

$$egin{align} f_{ ilde{b}\,|\,\, ilde{a}}(b\,|\,a)&=rac{f_{ ilde{a}, ilde{b}}(a,b)}{f_{ ilde{a}}(a)}\ &=rac{2}{2(1-a)}&=rac{1}{1-a} \qquad b\in[0,1-a] \end{array}$$

$$\int_{b=-\infty}^{\infty} b f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) \,\mathrm{d}b = \int_{b=0}^{1-a} \frac{b}{1-a} \,\mathrm{d}b$$
$$= \frac{(1-a)^2}{2(1-a)}$$

Conditional mean function

The conditional mean function of a continuous random variable \tilde{b} given \tilde{a} is

$$\mu_{\tilde{b}\,|\,\tilde{a}}(a) := \int_{b=-\infty}^{\infty} b \, f_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a) \, \mathrm{d}b$$

Triangle lake

$$\mu_{\tilde{b}\,|\,\tilde{a}}(a)=\frac{1-a}{2}$$

Sample conditional mean

Dataset \mathcal{D} : (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , where $x_i \in A$

Data interpreted as samples from random variables \tilde{a} (range A) and \tilde{b}

Estimate of $\mu_{\tilde{b}\,|\,\tilde{a}}$?

For any $a \in A$,

$$Y_a := \{ y \mid (a, y) \in \mathcal{D} \}$$

$$\widehat{m}_{\widetilde{b} \mid \widetilde{a}}(a) := \frac{1}{n_a} \sum_{v \in Y_a} y$$

 n_a = number of elements of Y_a

Movie ratings

Independence Day

macpendence Bay						
		1	2	3	4	5
	1	2	3	5	1	0
	2	3	12	18	11	5
	3	5	14	37	41	17
	4	6	15	20	47	19
	5	0	0	4	12	17

Mission Impossible

Sample conditional mean function

Sample conditional mean function

Dataset
$$\mathcal{D}$$
: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Data interpreted as samples from random variables \tilde{a} and \tilde{b}

If \tilde{a} is continuous, estimate of $\mu_{\tilde{b}\,|\,\tilde{a}}$?

2 options:

- Estimate $f_{\tilde{b}\,|\,\tilde{a}}$ using kernel density estimation and use it to approximate $\mu_{\tilde{b}\,|\,\tilde{a}}$
- \blacktriangleright For small ϵ ,

$$Y_{a,\epsilon} := \{ y \mid (x,y) \in \mathcal{D} \text{ for } |x-a| \le \epsilon \}$$

$$\widehat{m}_{\widetilde{b} \mid \widetilde{a}}(a) := \frac{1}{n_a} \sum_{y \in Y_{a,\epsilon}} y$$

Temperature in Corvallis and Versailles

Sample conditional mean function

What have we learned

Definition of conditional mean function

How to estimate it from data