

TOPIC 2: TRIGONOMETRY

OUTLINE

- Pythagoras Theorem
- Trigonometric ratios
- •Inverse Trigonometric Functions
- •Reciprocal Trigonometric Ratios
- Law of Sines
- Law of Cosines

PYTHAGORAS THEOREM

A

Hypotenuse

Opposite

Adjacent

B

from the perspective of $\angle A$

•Finding an unknown side in a right angle triangle:

$$h^2 = a^2 + b^2$$

TRIGONOMETRIC RATIOS:

- •The ratios of the sides of a triangle are called trigonometric ratios. Three common trigonometric ratios are the sine (sin), cosine (cos), and tangent (tan).
- *Using SOH CAH TOH:

SOH,
$$\sin \theta = \text{Opposite/Hypotenuse}$$
CAH, $\cos \theta = \text{Adjacent/Hypotenuse}$
TOA, $\tan \theta = \text{Opposite/Adjacent}$

$$\sin(A) = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos(A) = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$tan(A) = \frac{opposite}{adjacent}$$

INVERSE TRIGONOMETRIC FUNCTIONS

Trigonometric functions input angles and output side ratios

Inverse trigonometric functions input side ratios and output angles

$$\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \longrightarrow \sin^{-1}\left(\frac{\text{opposite}}{\text{hypotenuse}}\right) = \theta$$

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \longrightarrow \cos^{-1}\left(\frac{\text{adjacent}}{\text{hypotenuse}}\right) = \theta$$

$$\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \longrightarrow \tan^{-1}\left(\frac{\text{opposite}}{\text{adjacent}}\right) = \theta$$

Example 1: Find all the unknowns in the following triangles.

Question 1: In the following triangle, (a) calculate the length of AD, (b) calculate the size of angle DCB.

RECIPROCAL TRIGONOMETRIC RATIOS

$$\sin(A) = \frac{a}{c}$$

$$\cos(A) = \frac{b}{c}$$

$$\tan(A) = \frac{a}{b}$$

$$\cos(A) = \frac{b}{a}$$

$$\tan(A) = \frac{a}{b}$$

Cosecant (csc)

$$\sin(A) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c}$$
 $\cos(A) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c}$

$$\csc(A) = rac{ ext{hypotenuse}}{ ext{opposite}} = rac{c}{a} \qquad \qquad \sec(A) = rac{ ext{hypotenuse}}{ ext{adjacent}} = rac{c}{b}$$

Secant (sec)

$$\cos(A) = rac{ ext{adjacent}}{ ext{hypotenuse}} = rac{b}{b}$$

$$\operatorname{sec}(A) = rac{\operatorname{hypotenuse}}{\operatorname{adjacent}} = rac{d}{d}$$

Cotangent (cot)

$$\tan(A) = \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{b}$$

$$\cot(A) = \frac{ ext{adjacent}}{ ext{opposite}} = \frac{b}{a}$$

Verbal description

Mathematical relationship

cosecant	The cosecant is the reciprocal of the sine.	$\csc(A) = \frac{1}{\sin(A)}$
secant	The secant is the reciprocal of the cosine.	$\sec(A) = \frac{1}{\cos(A)}$
cotangent	The cotangent is the reciprocal of the tangent.	$\cot(A) = \frac{1}{\tan(A)}$

Example 2: In the triangle below, find csc (c), sec (c), and cot (c).

LAW OF SINES AND COSINES

Law of Sines:
$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos(\gamma)$

Example 3: Find all the unknowns of the triangle shown:

Question 2: Find all the unknowns of the triangle shown?

Question 3: An airplane is approaching point A along a straight line and at a constant altitude h. The angle of elevation of the airplane changes from 20° to 60° in 2 minutes. What is the altitude h of the airplane if the speed of the airplane is constant and equal to 600 km/hr?

Resource:

https://www.raywenderlich.com/2736-trigonometry-for-game-programming-part-1-2

