a)
$$H(s) = \frac{100}{(s/2+1) \cdot (2s+1)}$$

Approximate Magnitude:

$$\omega << 0.5$$
: $M(\omega) \sim 20 \cdot \log_{10}(100) = 40db$

$$\omega \in [0.5, 2] : dM(\omega)/d\omega = -20db/decade$$

$$\omega > 2$$
: $dM(\omega)/d\omega = -40db/decade$

Approximate Phase:

$$\omega << 0.5/10 : \varphi(\omega) \sim 0^{\circ}$$

$$\omega \in [0.5/10 , 2/10] : d\varphi(\omega)/d\omega = -45^{\circ}/decade$$

$$\omega \in [2/10, 0.5 \cdot 10] : d\varphi(\omega)/d\omega = -90^{\circ}/decade$$

$$\omega \in [0.5 \cdot 10 , 2 \cdot 10] : d\varphi(\omega)/d\omega = -45^{\circ}/decade$$

$$\omega > 2 \cdot 10$$
: $d\varphi(\omega)/d\omega = 0^{\circ}/decade$, $\varphi(\omega) \sim -180^{\circ}$

^{*} Gain Margin = INFINITE (The Phase is > -180 for all values of W)

^{*} Phase Margin: Approximately 15 degrees (M(W) \sim =0dB at W \sim 10 rad/sec, Phase at that W is \sim -165 degrees)

$$H(s) = \frac{30 \cdot (s+8)}{s \cdot (s+2) \cdot (s+4)}$$

Approximate Phase:

$$\omega << 2/10$$
: $\varphi(\omega) \sim -90^{\circ}$ (phase mainly due to pole at 0)

$$\omega \in [2/10, 4/10]$$
: $d\varphi(\omega)/d\omega = -45^{\circ}/decade$ (rate mainly due to pole "-2")

$$\omega \in [4/10, 8/10]$$
: $d\varphi(\omega)/d\omega = -90^{\circ}/decade_{\text{(...to poles "-2,-4")}}$

$$\omega \in [8/10 , 2.10] : d\varphi(\omega)/d\omega = -45^{\circ}/decade_{\text{(.. to poles "-2,-4", zero "-8")}}$$

$$\omega \in [2.10 , 4.10] : d\varphi(\omega)/d\omega = 0^0/decade$$
 (.. to pole "-4", zero "-8")

$$\omega \in [4.10 , 8.10] : d\varphi(\omega)/d\omega = +45^{\circ}/decade_{(zero "-8")}$$

$$\omega > 8.10$$
: $d\varphi(\omega)/d\omega = 0^{\circ}/decade$, $\varphi(\omega) \sim -180^{\circ}$

Phase Margin: Approximately 10 degrees. $M(W) \sim 0$ at $W \sim 6$ rad/sec, where Phase is ~ 170 degrees (-170 = -180+10)

^{*} Gain Margin $\,\sim 10 dB\,$ (Phase crosses -180 degrees at W $\sim\!10$ rad/sec, and M(W) $\sim\!-10 dB.$

$$H(s) = \frac{200 \cdot (s+8)}{(s+2) \cdot (s+4) \cdot (s+20)}$$

Approximate Phase:

$$\omega \ll 2/10$$
: $\varphi(\omega) \sim 0^{\circ}$

$$\omega \in [2/10, 4/10]$$
: $d\varphi(\omega)/d\omega = -45^{\circ}/decade$

$$\omega \in [4/10, 8/10]$$
: $d\varphi(\omega)/d\omega = -90^{\circ}/decade$

$$\omega \in [8/10, 20/10]$$
: $d\varphi(\omega)/d\omega = -45^{\circ}/decade$

$$\omega \in [20/10 , 2.10] : d\varphi(\omega)/d\omega = -90^{\circ}/decade$$

$$\omega \in [2.10 , 4.10] : d\varphi(\omega)/d\omega = -45^{\circ}/decade$$

$$\omega \in [4.10 , 8.10] : d\varphi(\omega)/d\omega = +0^0/decade$$

$$\omega \in [8 \cdot 10 , 20 \cdot 10] : d\varphi(\omega)/d\omega = -45^{\circ}/decade$$

$$\omega > 20.10$$
: $d\varphi(\omega)/d\omega = 0^{\circ}/decade$, $\varphi(\omega) \sim -180^{\circ}$

^{*} Gain Margin: INFINITE (there is no W where Phase touches -180 degrees)

^{*} Phase Margin: Approximately 60 degrees. $M(W) \sim 0$ at $W \sim 10$ rad/sec, where Phase is ~ 120 degrees (-120 = -180 + 60)

d)
$$H(s) = \frac{(s/100+1) \cdot (s/120+1)}{s \cdot (s+4) \cdot (s+1)}$$

Approximate Phase:

$$\omega << 0.1$$
: $\varphi(\omega) \sim -90^{\circ}$

$$\omega \in [0.1 , 0.4] : d\varphi(\omega)/d\omega = -45^{\circ}/decade$$

$$\omega \in [0.4 , 10] : d\varphi(\omega)/d\omega = -90^{\circ}/decade$$

$$\omega \in [10 , 12] : d\varphi(\omega)/d\omega = 0^0/decade$$

$$\omega \in [12 , 40] : d\varphi(\omega)/d\omega = +45^{\circ}/decade$$

$$\omega \in [40 , 1000] : d\varphi(\omega)/d\omega = +90^{\circ}/decade$$

$$\omega \in [1000$$
 , 1200] : $d\varphi(\omega)/d\omega = +45^{\circ}/decade$

$$\omega > 1200$$
: $d\varphi(\omega)/d\omega = 0^0/decade$, $\varphi(\omega) \sim -90^0$

Questions: ask the lecturer; via Moodle Forum or via email.

^{*} Gain Margin ~ 20dB (Phase touches -180 degrees at W~2 rad/sec, Magnitude(W) ~-20dB.

^{*} Phase Margin: Approximately 75 degrees. $M(W) \sim 0.2$ rad/sec, where Phase is ~ 105 degrees.