Lecture 17

- Fourier transform of a periodic signal.
- The Sampling Theorem.

Fourier transform of a periodic signal

Before, we studied a periodic function by means of the Fourier series

$$f(t) = \sum_{n=-\infty}^{+\infty} F_n e^{in\omega_0 t}$$

Fourier transforms were motivated by extending this type of analysis to non-periodic functions. They do, however, also apply to the above case:

$$\mathcal{F}\left[\sum_{n=-\infty}^{+\infty} F_n e^{in\omega_0 t}\right] = \sum_{n=-\infty}^{+\infty} F_n \mathcal{F}\left[e^{in\omega_0 t}\right] = \sum_{n=-\infty}^{+\infty} F_n 2\pi \delta(\omega - n\omega_0)$$

This is an impulse train in frequency:

An impulse in the transform indicates a pure sinusoid at that frequency. Here, at all multiples of the fundamental frequency.

Periodic function of time

Impulse train in frequency

The graph is analogous to the line spectra we used for Fourier series, replacing lines by deltas.

Dual property:

Impulse train in time

Periodic function of frequency

Example:

$$f(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT)$$

Periodic impulse train in time \iff Periodic impulse train in frequency

The Fourier coefficients are $F_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-in\omega_0 t} dt = \frac{1}{T}$ so the previous analysis gives $F(i\omega) = \sum_{n=-\infty}^{+\infty} \frac{2\pi}{T} \delta(\omega - n\omega_0)$

$$\mathcal{F}\left[\sum_{k=-\infty}^{+\infty} \delta(t-kT)\right] =$$

$$\sum_{n=-\infty}^{+\infty} \omega_0 \delta(\omega - n\omega_0)$$

The Sampling Theorem

Given a signal f(t), we take samples of it every T seconds, and generate a sequence f(kT), k integer.

Q: Can we recover f(t) from its samples?

A: In general, no. No way of knowing what happened between sample times.

We narrow it down to a special class of functions.

Definition: A signal f(t) is said to be band-limited to [-B, B] if $F(i\omega) = 0$ for $|\omega| > B$.

Sampling Theorem:

Assume f(t) is band-limited to [-B, B]. Let $\omega_0 = \frac{2\pi}{T} > 2B$.

Then f(t) can be uniquely recovered from its samples f(kT)

Proof: consider the following interconnection of systems

$$f(t) \xrightarrow{x} r(t) \xrightarrow{\text{IDEAL LOWPASS}} y(t)$$

$$p(t) = \sum_{k=-\infty}^{+\infty} \delta(t-kT)$$

$$r(t) = \sum_{k=-\infty}^{+\infty} f(t)\delta(t-kT)$$

$$= \sum_{k=-\infty}^{+\infty} f(kT)\delta(t-kT)$$

$$kT t$$

The impulse train r(t) depends only on the samples f(kT).

We will show that the output y(t) reconstructs the input f(t): This means we have determined f(t) by its samples.

$$f(t) \xrightarrow{x} r(t) \xrightarrow{\text{IDEAL LOWPASS} \atop \text{BANDWIDTH } \frac{\omega_0}{2}} y(t)$$

$$p(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT)$$

Going to the frequency domain:

$$R(i\omega) = \mathcal{F}[r(t)] = \mathcal{F}[f(t)p(t)] = \frac{1}{2\pi}F(i\omega) * P(i\omega)$$

$$= \frac{1}{2\pi}F(i\omega) * \left[\sum_{n=-\infty}^{+\infty} \omega_0 \delta(\omega - n\omega_0)\right] = \frac{\omega_0}{2\pi}\sum_{n=-\infty}^{+\infty}F(i\omega) * \delta(\omega - n\omega_0)$$

Now,

$$F(i\omega) * \delta(\omega - n\omega_0) = \int_{-\infty}^{\infty} F(i\lambda) \delta(\omega - \lambda - n\omega_0) d\lambda = F(i(\omega - n\omega_0))$$

Also,
$$\frac{\omega_0}{2\pi} = \frac{1}{T}$$
. Therefore, $R(i\omega) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} F(i(\omega - n\omega_0))$

$$Y(i\omega) = \frac{1}{T}F(i\omega) \Rightarrow y(t) = \frac{1}{T}f(t).$$

Signal was recovered from its samples, so the Theorem is proved. We can also get an explicit time-domain formula.

$$r(t) = \sum_{k=-\infty}^{+\infty} f(kT)\delta(t - kT) \Rightarrow y(t) = \sum_{k=-\infty}^{+\infty} f(kT)h(t - kT)$$
where
$$h(t) = \frac{\sin\left(\frac{\omega_0 t}{2}\right)}{\pi t} = \frac{\sin\left(\frac{\omega_0 t}{2}\right)}{\frac{\omega_0 T}{2}t} = \frac{1}{T}\operatorname{sinc}\left(\frac{\omega_0 t}{2}\right)$$

is the impulse response of the ideal lowpass filter.

$$f(t) = Ty(t) = \sum_{k=-\infty}^{+\infty} f(kT) T h(t - kT) = \sum_{k=-\infty}^{+\infty} f(kT) \operatorname{sinc}\left(\frac{\omega_0}{2}(t - kT)\right)$$

$$f(t) = \sum_{k=-\infty}^{+\infty} f(kT) \operatorname{sinc}\left(\frac{\omega_0}{2}(t-kT)\right)$$
 Formula that interpolates a band-limited function from its samples

Aliasing

What happens if we don't sample fast enough $(\omega_0 \le 2B)$? In the previous argument, the various "copies" of $F(i\omega)$ present in $R(i\omega)$ will overlap, and the lowpass filter cannot tell them apart. This is called aliasing. Here f(t) cannot be recovered from its samples.

Example:
$$f(t) = \sin(t)$$
.

 $F(i\omega) = i\pi \left[\delta(\omega+1) - \delta(\omega-1)\right]$,
band-limited to $[-1,1]$.

 (πi)
 $(-\pi i)$

We sample it with period $T = \pi \Rightarrow \omega_0 = 2$

This is equal, but not greater than twice the signal bandwidth

The samples are $f(kT) = \sin(k\pi) = 0$ for all k!Clearly, we cannot recover f(t) from these samples, we cannot distinguish it from the zero function.