вич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$183,22265625 \cdot 2^{-32} - 908,73046875 \cdot 2^{-19}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                           |     |     |  |               |            |  |  |
|------------------------|-----------------------------------------------------------|-----|-----|--|---------------|------------|--|--|
|                        | ( 1                                                       | 2   |     |  | $n \setminus$ |            |  |  |
|                        | $\mid \mid \mid n \mid$                                   | n-1 | n-2 |  | 1             |            |  |  |
|                        | 1                                                         | 2   | 3   |  | n             |            |  |  |
| Целое $n \geqslant 20$ | $\mid \mid \mid n \mid$                                   | n-1 | n-2 |  | 1             | n строк    |  |  |
|                        | :                                                         | ÷   | ÷   |  | :             |            |  |  |
|                        | 1                                                         | 2   | 3   |  | n             |            |  |  |
|                        | $\left  \begin{array}{c} \setminus n \end{array} \right $ | n-1 | n-2 |  | 1 /           | ' <b>J</b> |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$3x^4 - 2x^3 + 3x - 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arctan x + x^2 - 1 = 0, \quad x_* \in [0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$e^x \sin x$$
  $x_0 = 8, 5, x_1 = 8, 75, x_2 = 9$ 

$$f(x) = \frac{1}{\sqrt{1+x}} + \cos x$$
 на отрезке  $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$  с точностью  $\varepsilon = 10^{-2}$ 

$$y''(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad}_h x_1 \underbrace{\qquad}_h x_2 \underbrace{\qquad}_h x_3$$

### БДЗ №1

#### ПИН-23, Афанасов Иван Иванович

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-92.38671875 \cdot 2^{126} + 2746.1015625 \cdot 2^{-152}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить: |   |   |   |   |   |   |   |       |          |
|------------------------|-----------------|---|---|---|---|---|---|---|-------|----------|
|                        |                 | ) | 1 | 0 | 2 | 0 | 3 | 0 | <br>n |          |
|                        |                 |   |   |   |   |   |   |   |       |          |
| Целое $n \geqslant 20$ |                 |   | : | : | : | ÷ | : | : | :     | 2n строк |
|                        | (               | ) | 1 | 0 | 2 | 0 | 3 | 0 | <br>n |          |
|                        | (               | ) | 1 |   | 2 |   |   |   |       | J        |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 + 5x^3 - 5x^2 + 2 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\operatorname{sh} x - x^2 - 0.1 = 0, \quad x_* \in [0; 0, 2]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$(\sin x)^2 + 2x$$
  $x_0 = -1/2, x_1 = 0, x_2 = 1/2$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \frac{x^2}{1 + x^4}$$
 на отрезке  $[0; 0, 6]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_{2h} x_1 \underbrace{\hspace{1cm}}_{2h} x_2 \underbrace{\hspace{1cm}}_{h} x_3$$

вич

# ПИН-23, Гайфуллин Тимур Максимо-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-2092,48046875 \cdot 2^{183} - 1121,28125 \cdot 2^{144}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:                                 | Нужно получить:  |             |             |       |             |  |  |  |
|-------------------------------------------------|------------------|-------------|-------------|-------|-------------|--|--|--|
| Массив $X = [x_1, \dots, x_n],  n \geqslant 20$ | $\int 2x_1$      | $x_1 + x_2$ | $x_1 + x_3$ |       | $x_1+x_n$   |  |  |  |
|                                                 | $x_2 + x_1$      | $2x_2$      | $x_2 + x_3$ | • • • | $x_2 + x_n$ |  |  |  |
| Maccub $X = [x_1, \ldots, x_n], n \geqslant 20$ | $x_3 + x_1$      | $x_3 + x_2$ | $2x_3$      | • • • | $x_3 + x_n$ |  |  |  |
|                                                 | i :              | :           | :           | ٠.    | :           |  |  |  |
|                                                 | $\int x_n + x_1$ | $x_n + x_2$ | $x_n + x_3$ |       | $2x_n$      |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$4x^4 + x^3 - x^2 - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arccos x + x^2 - 3/2 = 0, \quad x_* \in [0; 0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\cos x}{1+x^2} \qquad x_0 = 8, \ x_1 = 9, \ x_2 = 10$$

$$f(x) = \arccos x$$
 на отрезке  $[-\frac{1}{2},\frac{1}{2}]$  с точностью  $\varepsilon = 10^{-2}$ 

$$y'(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_{2h} x_2 \underbrace{\longrightarrow}_h x_3$$

на

# БДЗ №1 ПИН-23, Галыгина Мария Николаев-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде нормализованного числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-683,6640625 \cdot 2^{120} + 1177,0703125 \cdot 2^{173}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные:Нужно получить:Целое 
$$n \geqslant 10$$
$$\begin{pmatrix}
 \cos \frac{\pi}{n} & \cos \frac{2\pi}{n} & \cos \frac{3\pi}{n} & \cdots & \cos \frac{n\pi}{n} \\
 \cos^2 \frac{\pi}{n} & \cos^2 \frac{2\pi}{n} & \cos^2 \frac{3\pi}{n} & \cdots & \cos^2 \frac{n\pi}{n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \cos^n \frac{\pi}{n} & \cos^n \frac{2\pi}{n} & \cos^n \frac{3\pi}{n} & \cdots & \cos^n \frac{n\pi}{n}
 \end{pmatrix}$$

3. (a) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для *каждого* корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i,b_i]$  или средствами математического анализа.

$$x^4 + 5x^3 - x^2 + 2 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (a) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\sin(2\arccos x) + x - 1 = 0, \quad x_* \in [0, 3; 0, 4]$$

5. (a) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{x^3 - 1}{x + 1} \qquad x_0 = 4, \ x_1 = 5, \ x_2 = 6$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=rac{\cos(2x)}{x}$$
 на отрезке  $[rac{\pi}{6},rac{\pi}{2}]$  с точностью  $arepsilon=10^{-2}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (a) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y''(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_{2h} x_1 \underbrace{\hspace{1cm}}_{h} x_2 \underbrace{\hspace{1cm}}_{h} x_3$$

#### БДЗ №1

#### ПИН-23, Гомулин Иван Викторович

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-3155.23046875 \cdot 2^{135} - 2507.328125 \cdot 2^{-42}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные:   

$$X_1 \quad x_1^2/2! \quad x_1^3/3! \quad \cdots \quad x_1^n/n!$$
   
 $X_2 \quad x_2^2/2! \quad x_2^3/3! \quad \cdots \quad x_2^n/n!$    
 $X_3 \quad x_2^2/2! \quad x_2^3/3! \quad \cdots \quad x_2^n/n!$    
 $X_n \quad x_n^2/2! \quad x_n^3/3! \quad \cdots \quad x_n^n/n!$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^3 - x^2 - 3x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arctan x + x - 1 = 0, \quad x_* \in [0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\cos(\arcsin x + \pi)$$
  $x_0 = -1/2, x_1 = 0, x_2 = 1/2$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=\cos(2x)-\sqrt{x}$$
 на отрезке  $[rac{3\pi}{4},rac{5\pi}{4}]$  с точностью  $arepsilon=10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'(x_0) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

| БДЗ №1  |            |           |    |
|---------|------------|-----------|----|
| ПИН-23, | Друновский | Александр | Бо |
| рисович |            |           |    |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-1593,5859375 \cdot 2^{128} + 1619,09765625 \cdot 2^{141}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^3 - x^2 - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arccos x + x - 3/2 = 0, \quad x_* \in [0, 5; 0, 8]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\cos x + 1}{\sin x} + x^6 \qquad x_0 = 0, 8, \ x_1 = 0, 9, \ x_2 = 1$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=\operatorname{ch}(-x)\cos x$$
 на отрезке  $[\pi,2\pi]$  с точностью  $\varepsilon=10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'''(x_0) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



вич

# пин-23, Евграфов Арсений Леонидо-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде нормализованного числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-1619.09765625 \cdot 2^{177} - 3866.3125 \cdot 2^{-104}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:               |                   |                   | о получ           |       |                                                                                  |
|-------------------------------|-------------------|-------------------|-------------------|-------|----------------------------------------------------------------------------------|
|                               | $\int n$          | n-1               | n-2               |       | $ \begin{array}{c} \frac{n}{2} \\ \frac{n}{2} - 1 \\ \frac{n}{2} - 2 \\ \vdots $ |
|                               | n-1               | n-2               | n-3               | • • • | $\frac{n}{2} - 1$                                                                |
| Целое чётное $n\geqslant 20$  | n-2               | n-3               | n-4               | • • • | $\frac{n}{2} - 2$                                                                |
| целое четное $n \geqslant 20$ | <b> </b> •        | •                 | •                 |       | •                                                                                |
|                               | $\frac{n}{2} + 1$ | $\frac{n}{2}$     | $\frac{n}{2} - 1$ |       | $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$                                           |
|                               | $\frac{n}{2}$     | $\frac{n}{2} - 1$ | $\frac{n}{2} - 2$ |       | 0                                                                                |

3. (a) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 - 5x^2 + 2 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (a) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\frac{\sin x}{x} = 0, \quad x_* \in [3, 4]$$

5. (a) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$x^2 \ln x$$
  $x_0 = 5, x_1 = 8, x_2 = 10$ 

$$f(x)=rac{1}{1+x^4}$$
 на отрезке  $[rac{1}{2},1]$  с точностью  $arepsilon=10^{-3}$ 

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad}_h x_1 \underbrace{\qquad}_{2h} x_2 \underbrace{\qquad}_h x_3$$

#### БДЗ №1

#### ПИН-23, Емелин Егор Дмитриевич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-3535,625 \cdot 2^{-156} + 655,0546875 \cdot 2^{123}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 + 2x^3 + 3x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \cos(2x) = 0, \quad x_* \in [0, 5; 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\sin x \operatorname{sh} x$$
  $x_0 = -6, 5, x_1 = -6, x_2 = -5, 5$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=x^2-\sin(x/2)$$
 на отрезке  $\left[\frac{\pi}{4},\pi\right]$  с точностью  $\varepsilon=10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'''(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



#### БДЗ №1

#### ПИН-23, Ерохин Максим Алексеевич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1811.3828125 \cdot 2^{-67} - 224.11328125 \cdot 2^{-15}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные:   
Щелое 
$$n \geqslant 10$$
   
 $\begin{pmatrix} e & e^{1/2} & e^{1/3} & \cdots & e^{1/n} \\ e^{1/2} & e^{1/3} & e^{1/4} & \cdots & e^{\frac{1}{n+1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ e^{1/n} & e^{\frac{1}{n+1}} & e^{\frac{1}{n+2}} & \cdots & e^{1/2n} \end{pmatrix}$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^5 - 4x^3 - x^2 - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$2^x - 3^x + 1/2 = 0$$
,  $x_* \in [0, 5; 0, 8]$ 

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{x^4 + x^2 + 1}{x - 1} \qquad x_0 = 1, 1, \ x_1 = 1, 2, \ x_2 = 1, 3$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \arcsin x$$
 на отрезке  $[-\frac{2}{5},\frac{3}{5}]$  с точностью  $\varepsilon = 10^{-2}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о.

и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



### ПИН-23, Исламов Радмир Рашитович

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-3899,69140625 \cdot 2^{98} + 3448,72265625 \cdot 2^{56}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:       | Нужено по                                                      | олучить:                                                             |
|-----------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
|                       | $\int$ 1                                                       | $\begin{array}{c} \frac{1}{n} \\ \\ \frac{1}{n-1} \\ \\ \end{array}$ |
| Целое $n\geqslant 20$ | $\begin{array}{c} \frac{1}{3} \\ \frac{1}{2} \\ 1 \end{array}$ | 0                                                                    |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$5x^4 + x^3 + x^2 + 2x - 2 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\sin(\ln x) = 0, \quad x_* \in [22, 24]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\sin\frac{x}{\pi}}{x} \qquad x_0 = 23, \ x_1 = 24, \ x_2 = 25$$

$$f(x) = \frac{x}{1+x^2}$$
 на отрезке  $[0,1]$  с точностью  $\varepsilon = 10^{-3}$ 

$$y''(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad}_{2h} x_1 \underbrace{\qquad}_{2h} x_2 \underbrace{\qquad}_{h} x_3$$

## ПИН-23, Карамышев Алексей Андреевич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-2771,97265625 \cdot 2^{73} + 3604,2890625 \cdot 2^{142}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        |                 | Нужен | о получ | ить: |     |
|------------------------|-----------------|-------|---------|------|-----|
|                        | / 1             | 2     | 3       |      | n   |
|                        | 2               | 3     | 4       |      | n-1 |
| II > 00                | 3               | 4     | 5       |      | n-2 |
| Целое $n \geqslant 20$ | :               | :     | ÷       |      | :   |
|                        | n-1             |       | n-1     |      | 2   |
|                        | $\bigcap_{n} n$ | n-1   | n-2     |      | 1   |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$5x^5 - 15x^3 - x^2 + 3x - 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - e^x + 3/2 = 0$$
,  $x_* \in [0, 5; 1]$ 

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$e^{\frac{1}{x}}/x^2$$
  $x_0 = 2, \ x_1 = 3, \ x_2 = 4$ 

$$f(x)=x^2\sin x$$
 на отрезке  $[2\pi,3\pi]$  с точностью  $\varepsilon=10^{-3}$ 

$$y'''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad \qquad}_h x_1 \underbrace{\qquad \qquad}_h x_2 \underbrace{\qquad \qquad}_h x_3$$

## ПИН-23, Катанаева Екатерина Владимировна

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1336.9296875 \cdot 2^{17} - 1848.45703125 \cdot 2^{-60}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                             |  |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|
|                        | $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$  |  |  |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |  |  |
| Целое $n \geqslant 20$ |                                                             |  |  |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |  |  |
|                        | $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^3 + 3x^2 - 6x + 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\operatorname{sh} x - x - 0, 1 = 0, \quad x_* \in [0, 7; 0, 9]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{1}{1+x^2} \qquad x_0 = -1, \ x_1 = 0, \ x_2 = 1$$

$$f(x) = \sinh x \cos(3x)$$
 на отрезке [2, 2, 5] с точностью  $\varepsilon = 10^{-3}$ 

$$y'(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

## БДЗ №1 ПИН-23, Коновалов Артём Владими-

рович

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$3590,69921875 \cdot 2^{-23} - 617,0234375 \cdot 2^{-52}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:       | Нужно получить: |   |   |   |   |   |   |       |          |
|-----------------------|-----------------|---|---|---|---|---|---|-------|----------|
|                       | $\int 0$        | 1 | 0 | 1 | 0 | 1 | 0 | <br>1 |          |
|                       | 1               | 0 | 1 | 0 | 1 | 0 | 1 | <br>0 |          |
|                       | 0               | 1 | 0 | 1 | 0 | 1 | 0 | <br>1 |          |
| Целое $n\geqslant 20$ | 1               | 0 | 1 | 0 | 1 | 0 | 1 | <br>0 | 2n строк |
|                       | :               | : | : | : | : | : | : | :     |          |
|                       | 0               | 1 | 0 | 1 | 0 | 1 | 0 | <br>1 |          |
|                       | $\setminus 1$   | 0 | 1 | 0 | 1 | 0 | 1 | <br>0 | ' J      |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-x^3 - x^2 + 3x - 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\frac{\sin x}{x^2} = 0, \quad x_* \in [2, 5; 3, 5]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{3e^{2x}}{x} \qquad x_0 = 7, \ x_1 = 8, \ x_2 = 9$$

$$f(x) = \frac{\sin x}{\sqrt{x}}$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-2}$ 

$$y'(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_{2h} x_1 \underbrace{\hspace{1cm}}_{h} x_2 \underbrace{\hspace{1cm}}_{h} x_3$$

## БДЗ №1

ПИН-23, Кузнецов Олег Юрьевич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$3475,42578125 \cdot 2^{37} - 2086,63671875 \cdot 2^{-87}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$5x^3 - 5x^2 + 0.5 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \operatorname{tg}(2x) = 0, \quad x_* \in [1, 5; 2, 2]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\ln(3x) - \sqrt{x}$$
  $x_0 = 3, x_1 = 4, x_2 = 5$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \ln x \sin x + 1$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

| $\boldsymbol{x}$ | -1  | 0    | 1    | 2   | 3    |
|------------------|-----|------|------|-----|------|
| y                | 0.3 | -2.5 | -1.2 | 4.1 | 12.3 |

$$y'(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

вич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-1613,2578125 \cdot 2^{-114} - 48,0390625 \cdot 2^{19}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                             |  |  |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                        | $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$  |  |  |  |  |  |  |  |  |
|                        | $ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |  |
| II > 00                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$      |  |  |  |  |  |  |  |  |
| Целое $n \geqslant 20$ |                                                             |  |  |  |  |  |  |  |  |
|                        | $\begin{array}{ c cccccccccccccccccccccccccccccccccc$       |  |  |  |  |  |  |  |  |
|                        | $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-5x^3 - x^2 + 3x - 0.5 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \frac{e^x}{x} + \frac{3}{2} = 0, \quad x_* \in [1, 3; 1, 4]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\cos(\sin(x/\pi))$$
  $x_0 = 4, x_1 = 5, x_2 = 6$ 

$$f(x) = \frac{\sin x}{x}$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-2}$ 

$$y''(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

#### ПИН-23, Лунев Захар Игоревич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1663,921875 \cdot 2^{166} - 2767,44140625 \cdot 2^{-148}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить: |                 |        |       |     |  |  |  |  |
|------------------------|-----------------|-----------------|--------|-------|-----|--|--|--|--|
|                        | 0               | 1               | 2      | • • • | n   |  |  |  |  |
|                        | -1              | 0               | 1      | • • • | n-1 |  |  |  |  |
| Haraa m > 20           | -2              | -1              | 0      | • • • | n-2 |  |  |  |  |
| Целое $n \geqslant 20$ | :               | ÷               | :      |       | :   |  |  |  |  |
|                        | -(n-1)          | -(n-2) $-(n-1)$ | -(n-3) |       | 1   |  |  |  |  |
|                        | -n              | -(n-1)          | -(n-2) |       | 0   |  |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-9x^3 + 3x^2 + 6x + 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$4^x - 3^x - 1/2 = 0$$
,  $x_* \in [0, 5; 0, 9]$ 

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$(\operatorname{th} x)^3$$
  $x_0 = 0, x_1 = 0, 2, x_2 = 0, 4$ 

$$f(x) = \frac{1}{1+x^2}$$
 на отрезке  $[0,1]$  с точностью  $\varepsilon = 10^{-3}$ 

$$y'(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

# ПИН-23, Мирахмедов Эльдар Интига-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

мович

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$3029,46484375\cdot 2^{104} + 1827\cdot 2^2$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        |               |   |   | F | Іуж | сно | no | лучи | ть: |          |
|------------------------|---------------|---|---|---|-----|-----|----|------|-----|----------|
|                        | $\int 0$      | 1 | 0 | 1 | 0   | 1   | 0  |      | 1   |          |
|                        | 1             | 1 | 1 | 1 | 1   | 1   | 1  |      | 1   |          |
|                        | 0             | 1 | 0 | 1 | 0   | 1   | 0  |      | 1   |          |
| Целое $n \geqslant 20$ | 1             | 1 | 1 | 1 | 1   | 1   | 1  |      | 1   | 2n строк |
|                        | :             | : | : | : | :   | :   | :  |      | :   |          |
|                        |               |   | 0 |   | 0   |     | 0  |      | 1   |          |
|                        | $\setminus 1$ | 1 | 1 | 1 | 1   | 1   | 1  |      | 1 / | ' J      |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$4x^3 - 6x + 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (a) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\cos(\ln x) = 0, \quad x_* \in [110, 112]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$7 \ln x - x$$
  $x_0 = 1/2, x_1 = 1, x_2 = 2$ 

$$f(x) = \sin(x + \frac{\pi}{6}) + \sqrt{x}$$
 на отрезке  $[1, \pi/2]$  с точностью  $\varepsilon = 10^{-3}$ 

$$y''(x_0) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

вович

# ПИН-23, Миронов Даниил Святосла-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$31.46875 \cdot 2^{-166} - 1720.546875 \cdot 2^{-28}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:     |     |     |       |     |  |  |  |
|------------------------|---------------------|-----|-----|-------|-----|--|--|--|
|                        | 1                   | 2   | 3   |       | n   |  |  |  |
|                        | 2                   | 1   | 2   | • • • | n-1 |  |  |  |
| Целое $n \geqslant 20$ | 3                   | 2   | 1   | • • • | n-2 |  |  |  |
|                        | :                   | ÷   | :   | ٠     | :   |  |  |  |
|                        | $ \mid \int n \mid$ | n-1 | n-2 |       | 1   |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$2x^3 + 5x^2 + 3x + 0.5 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\sin x - \frac{e^x}{10x} = 0, \quad x_* \in [2, 5; 3]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\cos\sqrt{x} + 1 \qquad x_0 = 1, \ x_1 = 3, \ x_2 = 5$$

$$f(x)=x^2\sin(3x)$$
 на отрезке  $[1,5;2]$  с точностью  $\varepsilon=10^{-3}$ 

$$y'(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad}_{2h} x_1 \underbrace{\qquad}_{2h} x_2 \underbrace{\qquad}_{h} x_3$$

## ПИН-23, Сорокин Федор Александро-

<sub>цро-</sub>

1

3

4

5

6

8

вич

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

2

$$-1167, 17578125 \cdot 2^{64} + 402, 6875 \cdot 2^{19}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:       | Нужно в                                                                                                                    | получить:                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Целое $n\geqslant 20$ | $ \begin{pmatrix} 1 & & & & & \\ & 1 & & & & \\ & 1 & & & \\ & & & & 1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $ | $\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-x^3 - x^2 + 10x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x\cos x = 0, \quad x_* \in [1, 2]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\sin(\arctan x)$$
  $x_0 = 0, x_1 = \pi/2, x_2 = \pi$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = e^{-x}\cos x$$
 на отрезке  $\left[\frac{\pi}{2},\pi\right]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'''(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad \qquad}_{h} x_1 \underbrace{\qquad \qquad}_{h} x_2 \underbrace{\qquad \qquad}_{h} x_3$$

| БДЗ №1  |         |        |          |
|---------|---------|--------|----------|
| ПИН-23, | Суханов | Михаил | Григорье |

вич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-315,90234375 \cdot 2^{-193} - 2606,390625 \cdot 2^{-172}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные: Нужно получить:

Целое 
$$n \ge 10$$
 (  $C_n^0$   $C_n^1$  ...  $C_n^n$  ),  $C_n^k = \frac{n!}{(n-k)!k!}$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 + 5x^3 - 5x^2 + 0.5 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$4^x - e^x - 1/2 = 0, \quad x_* \in [0, 5; 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$1/x + \cos x$$
  $x_0 = 2, x_1 = 3, x_2 = 4$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=rac{\sh x}{3x}$$
 на отрезке  $[0,5;2,5]$  с точностью  $arepsilon=10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

| x | -1   | 0   | 1   | 2   | 3   |
|---|------|-----|-----|-----|-----|
| y | -1.6 | 0.5 | 2.5 | 4.8 | 7.3 |

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

#### ПИН-23, Таипов Айгиз Ильгамович

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1663,921875 \cdot 2^{166} - 2767,44140625 \cdot 2^{-148}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:                                |   |             | Нужн        | о получит   | пь:   |             |
|------------------------------------------------|---|-------------|-------------|-------------|-------|-------------|
|                                                | 1 | $2x_1$      | $x_1 + x_2$ | $x_1 + x_3$ |       | $x_1 + x_n$ |
| Массив $X=[x_1,\ldots,x_n], n\geqslant 20$     |   | $x_2 + x_1$ | $2x_2$      | $x_2 + x_3$ | • • • | $x_2 + x_n$ |
| Maccub $X = [x_1, \dots, x_n], n \geqslant 20$ |   | $x_3 + x_1$ | $x_3 + x_2$ | $2x_3$      | • • • | $x_3 + x_n$ |
|                                                |   | :           | :           | :           | ٠.    | :           |
|                                                |   | $x_n + x_1$ | $x_n + x_2$ | $x_n + x_3$ | • • • | $2x_n$      |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^5 - 4x^3 - x^2 - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \operatorname{tg}(2x) = 0, \quad x_* \in [1, 5; 2, 2]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$e^x \sin x$$
  $x_0 = 8, 5, x_1 = 8, 75, x_2 = 9$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \sinh x \cos(3x)$$
 на отрезке [2, 2, 5] с точностью  $\varepsilon = 10^{-3}$ 

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



| БДЗ №1  |         |        |           |
|---------|---------|--------|-----------|
| ПИН-23, | Терехин | Кирилл | Вячеславо |

вич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1663,921875 \cdot 2^{166} - 2767,44140625 \cdot 2^{-148}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные: Нуэкно получить:   
Целое 
$$n \geqslant 10$$
 (  $C_n^0$   $C_n^1$  ...  $C_n^n$  ),  $C_n^k = \frac{n!}{(n-k)!k!}$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-x^3 - x^2 + 3x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\frac{\sin x}{x^2} = 0, \quad x_* \in [2, 5; 3, 5]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\cos(\arcsin x + \pi)$$
  $x_0 = -1/2, x_1 = 0, x_2 = 1/2$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \frac{\sin x}{\sqrt{x}}$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-2}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

| x | 3 4   |       | 5     | 6      | 7      |
|---|-------|-------|-------|--------|--------|
| y | 148.8 | 341.2 | 657.7 | 1126.5 | 1776.5 |

$$y'''(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

| БДЗ №1     |                  |         |
|------------|------------------|---------|
| ПИН-23, Те | ерехов Александр | Виталье |

вич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-2092,48046875 \cdot 2^{183} - 1121,28125 \cdot 2^{144}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные: Нужно получить:

Целое 
$$n \ge 10$$
 (  $C_n^0$   $C_n^1$  ...  $C_n^n$  ),  $C_n^k = \frac{n!}{(n-k)!k!}$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$3x^4 - 2x^3 + 3x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\sin(2\arccos x) + x - 1 = 0, \quad x_* \in [0, 3; 0, 4]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$(\operatorname{th} x)^3$$
  $x_0 = 0, \ x_1 = 0, 2, \ x_2 = 0, 4$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \frac{1}{1 + x^4}$$
 на отрезке  $[\frac{1}{2}, 1]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

| x | 2    | 3    | 4    | 5     | 6     |
|---|------|------|------|-------|-------|
| y | 17.2 | 45.5 | 96.5 | 175.8 | 288.9 |

$$y'''(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

### ПИН-23, Терехов Олег Николаевич

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-2092,48046875 \cdot 2^{183} - 1121,28125 \cdot 2^{144}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:       | Нужсно по                                                      | олучить:                                                             |
|-----------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
|                       | $\int$ 1                                                       | $\begin{array}{c} \frac{1}{n} \\ \\ \frac{1}{n-1} \\ \\ \end{array}$ |
| Целое $n\geqslant 20$ | $\begin{array}{c} \frac{1}{3} \\ \frac{1}{2} \\ 1 \end{array}$ | 0                                                                    |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$3x^4 - 2x^3 + 3x - 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arccos x + x^2 - 3/2 = 0, \quad x_* \in [0; 0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\sin\frac{x}{\pi}}{x} \qquad x_0 = 23, \ x_1 = 24, \ x_2 = 25$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \ln x \sin x + 1$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

дрович

# ПИН-23, Ширяев Александр Алексан-

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$31.46875 \cdot 2^{-166} - 1720.546875 \cdot 2^{-28}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                             |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|                        | $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$  |  |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |  |
| Целое $n \geqslant 20$ |                                                             |  |  |  |  |  |  |
|                        |                                                             |  |  |  |  |  |  |
|                        | $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-9x^3 + 3x^2 + 6x + 1 = 0$$

4. Известно, что интервалу [a, b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a, b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - e^x + 3/2 = 0$$
,  $x_* \in [0, 5; 1]$ 

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\cos x}{1+x^2} \qquad x_0 = 8, \ x_1 = 9, \ x_2 = 10$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \ln x \sin x + 1$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y'(x_1) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$

вич

| ПИН-23, | Шкурко | Дмитрий | Алексее |
|---------|--------|---------|---------|
|         |        |         |         |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде нормализованного числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-92,38671875 \cdot 2^{126} + 2746,1015625 \cdot 2^{-152}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                              |   |  |  |  |  |  |
|------------------------|--------------------------------------------------------------|---|--|--|--|--|--|
|                        | $\int 1  2  3  \cdots  n-1 \qquad n$                         |   |  |  |  |  |  |
|                        | $ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$ | - |  |  |  |  |  |
| 11 > 00                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$       | 2 |  |  |  |  |  |
| Целое $n \geqslant 20$ |                                                              |   |  |  |  |  |  |
|                        | $\begin{array}{ c cccccccccccccccccccccccccccccccccc$        |   |  |  |  |  |  |
|                        | $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$   |   |  |  |  |  |  |

3. (a) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i,b_i]$  или средствами математического анализа.

$$5x^4 + x^3 + x^2 + 2x - 2 = 0$$

4. Известно, что интервалу [a, b] принадлежит monbko корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$4^x - 3^x - 1/2 = 0$$
,  $x_* \in [0, 5; 0, 9]$ 

5. (a) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{\cos x}{1+x^2} \qquad x_0 = 8, \ x_1 = 9, \ x_2 = 10$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \frac{1}{1+x^4}$$
 на отрезке  $[\frac{1}{2},1]$  с точностью  $\varepsilon = 10^{-3}$ 

7. Данные некоторого физического эксперимента представлены в таблице. Характер зависимости y(x) заранее точно неизвестен. Есть предположения, что зависимость может быть линейной, квадратичной или кубической. (а) Методом среднеквадратического приближения построить три типа приближения y(x) (т.е. аппроксимирующие многочлены первой, второй и третьей степеней). (б) Для каждого аппроксимирующего многочлена вычислить среднеквадратическое отклонение  $\sqrt{\frac{1}{n+1}\sum_{i=0}^{n}(y(x_i)-y_i)^2}$ . (в) Выбрать минимальное с.к.о. и указать соответствующий ему тип зависимости (линейная, квадратичная или кубическая), т.е. наиболее вероятный в проведённом эксперименте.

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\qquad \qquad}_h x_1 \underbrace{\qquad \qquad}_h x_2 \underbrace{\qquad \qquad}_h x_3$$

### БДЗ №1

ПИН-23, Запасной вариант №1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-3535,625 \cdot 2^{-156} + 655,0546875 \cdot 2^{123}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

Входные данные:   
Щелое 
$$n \geqslant 10$$
   
 $\begin{pmatrix} e & e^{1/2} & e^{1/3} & \cdots & e^{1/n} \\ e^{1/2} & e^{1/3} & e^{1/4} & \cdots & e^{\frac{1}{n+1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ e^{1/n} & e^{\frac{1}{n+1}} & e^{\frac{1}{n+2}} & \cdots & e^{1/2n} \end{pmatrix}$ 

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 + 2x^3 + 3x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \frac{e^x}{x} + \frac{3}{2} = 0, \quad x_* \in [1, 3; 1, 4]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$(\operatorname{th} x)^3$$
  $x_0 = 0, x_1 = 0, 2, x_2 = 0, 4$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=\cos(2x)-\sqrt{x}$$
 на отрезке  $[rac{3\pi}{4},rac{5\pi}{4}]$  с точностью  $arepsilon=10^{-3}$ 

$$y'''(x_3) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\hspace{1cm}}_h x_1 \underbrace{\hspace{1cm}}_h x_2 \underbrace{\hspace{1cm}}_h x_3$$

## БДЗ №1

ПИН-23, Запасной вариант №2

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$3475,42578125 \cdot 2^{37} - 2086,63671875 \cdot 2^{-87}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 - 5x^2 + 2 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$2^x - 3^x + 1/2 = 0$$
,  $x_* \in [0, 5; 0, 8]$ 

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{x^3-1}{x+1}$$
  $x_0=4, x_1=5, x_2=6$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = x^2 \sin x$$
 на отрезке  $[2\pi, 3\pi]$  с точностью  $\varepsilon = 10^{-3}$ 

$$y'(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



## БДЗ №1

ПИН-23, Запасной вариант №3

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-315,90234375 \cdot 2^{-193} - 2606,390625 \cdot 2^{-172}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                 |            |               |       |               |  |  |
|------------------------|-------------------------------------------------|------------|---------------|-------|---------------|--|--|
|                        | 1                                               | 1          | 1             |       | 1             |  |  |
|                        | 2                                               | $\sqrt{2}$ | $\sqrt[3]{2}$ |       | $\sqrt[n]{2}$ |  |  |
| Целое $n \geqslant 20$ | 3                                               | $\sqrt{3}$ | $\sqrt[3]{3}$ | • • • | $\sqrt[n]{3}$ |  |  |
|                        |                                                 | :          | :             | ٠     | :             |  |  |
|                        | $\left  \begin{array}{c} n \end{array} \right $ | $\sqrt{n}$ | $\sqrt[3]{n}$ |       | $\sqrt[n]{n}$ |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$x^4 + 5x^3 - 5x^2 + 0.5 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arctan x + x^2 - 1 = 0, \quad x_* \in [0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$(\sin x)^2 + 2x$$
  $x_0 = -1/2, x_1 = 0, x_2 = 1/2$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x) = \operatorname{ch}(-x) \cos x$$
 на отрезке  $[\pi, 2\pi]$  с точностью  $\varepsilon = 10^{-3}$ 

$$y'''(x_0) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



### ПИН-23, Запасной вариант №4

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$1811,3828125 \cdot 2^{-67} - 224,11328125 \cdot 2^{-15}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:       | Нужно получить: |   |   |   |   |   |   |       |                                        |          |
|-----------------------|-----------------|---|---|---|---|---|---|-------|----------------------------------------|----------|
|                       | 0               | 1 | 0 | 2 | 0 | 3 | 0 |       | n                                      |          |
|                       | 0               | 1 | 0 | 2 | 0 | 3 | 0 | • • • | $\begin{pmatrix} n \\ n \end{pmatrix}$ |          |
| Целое $n\geqslant 20$ | :               | : | : | : | : | : | : |       | :                                      | 2n строк |
|                       | 0               | 1 | 0 | 2 | 0 | 3 | 0 |       | n                                      |          |
|                       | 0 ]             | 1 | 0 | 2 | 0 | 3 | 0 |       | n                                      | J        |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$-x^3 - x^2 + 10x - 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$x - \frac{e^x}{r} + \frac{3}{2} = 0, \quad x_* \in [1, 3; 1, 4]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\ln(3x) - \sqrt{x} \qquad x_0 = 3, \ x_1 = 4, \ x_2 = 5$$

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=\cos(2x)-\sqrt{x}$$
 на отрезке  $[rac{3\pi}{4},rac{5\pi}{4}]$  с точностью  $arepsilon=10^{-3}$ 

$$y'(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$



## БДЗ №1

## ПИН-23, Запасной вариант №5

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Все задачи необходимо снабдить достаточно подробными решениями. Ответы без решения не принимаются. Справочные материалы: http://miet.aha.ru/cm/

1. (а) Представить слагаемые и результат в виде *нормализованного* числа с плавающей точкой двойной точности:  $(-1)^s \cdot 2^{e-1023} \cdot 1.f$ , где 1.f записано в двоичном виде. (б) Если результат неточный (не умещается целиком в мантиссе), то указать относительную погрешность ошибки. Исходные данные в десятичной системе счисления.

$$-2771.97265625 \cdot 2^{73} + 3604.2890625 \cdot 2^{142}$$

2. Написать последовательность инструкций Matlab, формирующих указанную матрицу. Около каждой инструкции указать промежуточный результат в виде матрицы. Разрешается использовать матричные функции (eye, repmat, flipud и др.). Использовать циклы нельзя.

| Входные данные:        | Нужно получить:                                 |            |               |       |               |  |  |  |  |
|------------------------|-------------------------------------------------|------------|---------------|-------|---------------|--|--|--|--|
|                        | 1                                               | 1          | 1             |       | 1             |  |  |  |  |
|                        | 2                                               | $\sqrt{2}$ | $\sqrt[3]{2}$ |       | $\sqrt[n]{2}$ |  |  |  |  |
| Целое $n \geqslant 20$ | 3                                               | $\sqrt{3}$ | $\sqrt[3]{3}$ | • • • | $\sqrt[n]{3}$ |  |  |  |  |
|                        |                                                 | :          | :             | ٠     | :             |  |  |  |  |
|                        | $\left  \begin{array}{c} n \end{array} \right $ | $\sqrt{n}$ | $\sqrt[3]{n}$ |       | $\sqrt[n]{n}$ |  |  |  |  |

3. (а) Локализовать корни уравнения (для каждого корня  $z_i$  указать отрезок  $[a_i, b_i]$ , содержащий только один этот корень  $z_i$ ). Для каждого корня (б) построить итерационный процесс  $x_{n+1} = \varphi(x_n)$ , сходящийся к корню и (в) указать начальное значение  $x_0$ . Указание: локализацию проводить перебором интервалов  $[a_i, b_i]$  или средствами математического анализа.

$$4x^3 - 6x + 1 = 0$$

4. Известно, что интервалу [a,b] принадлежит *только* корень  $x_*$  уравнения (другие корни интервалу не принадлежат). (а) Построить итерационный процесс Ньютона  $x_{n+1} = x_n - f(x_n)/f'(x_n)$  и (б) обосновать какую из границ интервала [a,b] можно принять за  $x_0$ . Указание: в пункте (б) выяснить знаки производных f'(x) и f''(x) и использовать соответствующую теорему.

$$\arctan x + x^2 - 1 = 0, \quad x_* \in [0, 1]$$

5. (а) Построить интерполяционный многочлен Лагранжа для функции f(x) по узлам  $x_i$ . (б) Оценить сверху погрешность  $|R_n(x)|$  приближения функции многочленом.

$$\frac{1}{1+x^2}$$
  $x_0 = -1, x_1 = 0, x_2 = 1$ 

6. Заданную функцию будут интерполировать на отрезке [a,b] по чебышёвским узлам с заданной точностью  $|R_n(x)| < \varepsilon$ . Требуется (a) определить требуемое для заданной точности  $\varepsilon$  количество узлов (т.е. степень интерполяционного многочлена плюс 1) и (б) вычислить значения всех узлов и отметить их на действительной оси Ox (если узлов окажется много, ограничиться вычислением значений наименьших 10 узлов).

$$f(x)=rac{1}{1+x^2}$$
 на отрезке  $[0,1]$  с точностью  $arepsilon=10^{-3}$ 

$$y''(x_2) = c_0 y(x_0) + c_1 y(x_1) + c_2 y(x_2) + c_3 y(x_3) + O(h^p).$$

$$x_0 \underbrace{\longrightarrow}_h x_1 \underbrace{\longrightarrow}_h x_2 \underbrace{\longrightarrow}_h x_3$$