Universidad Industrial de Santander, Colombia Numerical Analysis, 2020-1 Henry Arguello August 12, 2020

Lab 10. Differential Equations

	Name:
Ĺ	Instructions
(• Make a \mathbf{pdf} report including the solution to each point of the practice with name $Lab10_name_lastname.pdf$.
(Send the report and all created files in a rar or zip file with name $Lab10_name_lastname.rar$ in the Moodle.
	You are allowed to use internet, notes, and .m files that you have created before.
2	Purposes
	• To understand some numerical methods for solving differential equations.
,	• To apply some numerical methods for solving differential equations.
	• To implement some numerical methods for solving differential equations in Matlab.
3	Practice
3.1	Understanding
λns	wer with your own words the following questions:
(\bullet (0.2 points) How to solve a differential equation with initial value by using Euler's method?
	• (0.2 points) How to solve a differential equation with initial value by using Heun's method?

	(0.2 points) How to solve a differential equation with initial value by using forth-order Runge-Kutta method?
•	(0.2 points) What applications do the differential equations have?

3.2 Applying

• (1.2 points) Solve the differential equation using the forth-order Runge-Kutta method (RK4).

$$y' = e^{-2t} - 2y \tag{1}$$
 with $y(0) = \frac{1}{10}, y(t) = \frac{1}{10}e^{-2t} + te^{-2t}$.

- Take h=0.2 and take two steps calculating the values. Then, take h=0.1 and take four steps calculating the values.
- Compare the exact solution y(0.4) with the two approximations calculated in the previous point.
- Does the final global error of the approximations obtained in the previous points behave, as expected when h is divided between two?
- (1.2 points) Let M(t) be the amount of a product that decreases with time t and the rate of decrease is proportional to the amount M.
 - Determine a differential equation that models the phenomena.
 - Solve the differential equation to determine the amount of material at time t = 1. Use the Euler method with a step of h = 0.2. Consider that M(0) = 300.
 - Solve the differential equation to determine the amount of material at time t = 1. Use the Heun method with a step of h = 0.2. Consider that M(0) = 300.

3.3 Implementing

• (0.6 points) Create a Matlab function called $my_euler_function_name_lastname()$ using Euler's method to approximate the solution of the initial value y' = f(t, y) with $y(a) = y_0$ over [a, b] for $k = 0, 1, \dots, M - 1$. Make a script called $run_3a_name_lastname.m$ in which you use the created function to solve the exercise in 3.2. For instance,

```
\begin{aligned} &\text{fun} = @ \ XXXXXX; \\ &a = XX; \\ &b = XX; \\ &y_0 = XX; \\ &M = X; \\ &\text{E=my\_euler\_function\_name\_lastname}(\text{fun}, a, b, y_0, M); \end{aligned}
```

• (0.6 points) Create a Matlab function called $my_heun_function_name_lastname()$ using Heun's method to approximate the solution of the initial value y' = f(t,y) with $y(a) = y_0$ over [a,b] for $k = 0, 1, \dots, M-1$. Make a script called $run_3b_name_lastname.m$ in which you use the created function to solve the exercise in 3.2. For instance,

```
\begin{aligned} &\text{fun} = @ \ XXXXXXX; \\ &a = XX; \\ &b = XX; \\ &y_0 = XX; \\ &M = X; \\ &M = X; \\ &\text{H=my\_heun\_function\_name\_lastname}(\text{fun}, a, b, y_0, M); \end{aligned}
```

• (0.6 points) Create a Matlab function called my_RK4 -function_name_lastname() using RK4 method to approximate the solution of the initial value y' = f(t, y) with $y(a) = y_0$ over [a, b] by using the formula $y_{k+1} = y_k + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ for $k = 0, 1, \dots, M-1$. Make a script called $run_3c_name_lastname.m$ in which you use the created function to solve the exercise in 3.2. For instance,

```
\begin{aligned} &\text{fun} = @ \ XXXXXXX; \\ &a = XX; \\ &b = XX; \\ &b = XX; \\ &y_0 = XX; \\ &M = X; \\ &M = X; \\ &\text{R=my\_Rk4\_function\_name\_lastname}(\text{fun}, a, b, y_0, M); \end{aligned}
```