

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

84 11 05 087

AT MARKET AND

Technical Report Documentation Page

1. Report No.	2. Government Accessi	on No.	Recipient's Catalog N	lo.
FAA-EE-84-04	AIF 7	79/		
4. Title and Subtitle		5. (Report Date	
Noise Measurement Flight Tes	t for Aerospat:	iale	August 1984	
AS 355F TwinStar Helicopter:		6.	Performing Organizati	on Code
		8. 1	Performing Organizati	on Report No.
7. Author's) J.Steven Newman, Edw Kristy R. Beattie (2), Tyron	ard J. Rickley	(1)		
9. Performing Organization Name and Address		10	Work Unit No. (TRAI	S)
Federal Aviation Administrat		1	WORLDHIN NO. TIKAI	3,
and Energy, Noise Abatement			Contract or Grant No	
Branch, (AEE-120), 800 Indep		- 100.11.01.001	communication or	•
Washington, DC 20591	endence ave., .		Type of Report and F	
12. Sponsoring Agency Name and Address			Type of Report and P	Silod Covered
Federal Aviation Administrat	ion Office of	Environment		
and Energy, Noise Abatement				
Branch, (AEE-120), 800 Indep			Sponsoring Agency C	nde.
Washington, DC 20591	endence ave., .) W	oponsoring Agency C	-
15. Supplementary Notes				
(1) U.S. Department of Trans Cambridge, Mass 021142 (2) ORI, Inc., 1375 Piccard I			ems Center, Ko	endall Square,
measurement flight test program with the TwinStar twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This report is the fourth in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The TwinStar test program involved the acquisition of detailed acoustical,				
This test program was designed to address a series of objectives including: 1) acquisition of acoustical data for use in assessing heliport environmental impact, 2) documentation of directivity characteristics for static operation of helicopters, 3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, 4) determination of noise event duration influences on energy dose acoustical metrics, 5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and 6)documentation of noise levels acquired using international helicopter noise certification test procedures.				
<u></u>				
17. Key Words	1	8. Distribution Statement		.,
helicopter, noise, TwinStar, Environmental impact, direct certification standards		This document is through the Nati Service, Springf	onal Technica	al Information
	20. Security Classif	(of this page)	21. No. of Pages	22. Price
19. Security Classif. (of this report) Unclassified	Unclassifie		187	
Form DOT F 1700 7 (8-72)			1	L

Acknowledgments

The authors wish to thank the following individuals and organizations who contributed to the success of the measurement program and/or the production of this report.

- The Aerospatiale Helicopter Corporation, for providing the test helicopter, the pilot Mr. Dave Jones, and the test coordination assistance of Mr. John Tolfa.
- 2. The Dulles Air Traffic Control Tower Mr. Art Harrison, Chief
- The National Air and Space Administration (NASA), Rotorcraft Office, and Mr. John Ward for their support of data reduction activities.
- 4. Ms. Sharon Daboin for her support in data acquisition and test administration.
- Ms. Maryalice Locke of ORI, Inc. for her support in report production.
- 6. Ms. Loretta Harrison for her typing and report production assistance.

Access	ion For			
		X 00		
By	ibution/		7	Sie Marc
Avai	lability	Codes		
Dist	Avail an			
A-1				

TABLE OF CONTENTS

			PAGE
LIST	OF TA	ABLES	iv
LIST	OF F	IGURES	v
GLOS	SARY.		vii
1.0	INTRO	DDUCTION	1
2.0	TEST	HELICOPTER DESCRIPTION	5
3.0	TEST	SYNOPSIS	9
	3.1	MEASUREMENT FACILITY	11
	3.2	MICROPHONE LOCATIONS	13
	3.3	FLIGHT PATH MARKERS AND GUIDANCE SYSTEMS LOCATIONS	13
4.0	TEST	PLANNING AND BACKGROUND	17
	4.1	ADVANCE BRIEFINGS AND COORDINATION	17
	4.2	TEST COMMUNICATIONS	17
	4.3	LOCAL MEDIA NOTIFICATION	19
	4.4	AMBIENT NOISE	19
5.0	DATA	ACQUISITION AND GUIDANCE SYSTEMS	21
	5.1	APPROACH GUIDANCE SYSTEM	21
	5.2	PHOTO ALTITUDE DETERMINATION SYSTEM	22
	5.3	COCKPIT PHOTO DATA	26
	5.4	UPPER AIR METEOROLOGICAL DATA/NWS: STERLING, VA	27
	5.5	SURFACE METEOROLOGICAL DATA/NWS: DULLES AIRPORT	29
	5.6	NOISE MEASUREMENT INSTRUMENTATION	31
		5.6.1 TSC MAGNETIC RECORDING SYSTEM	31
		5.6.2 FAA DIRECT READ MEASUREMENT SYSTEM 5.6.3 DEPLOYMENT OF ACOUSTICAL MEASUREMENT	32
		INSTRUMENTATION	35
6.0	NOISI	E DATA REDUCTION	39
	6.1	TSC MAGNETIC RECORDING DATA REDUCTION	39
		6.1.1 AMBIENT NOISE	41
		6.1.2 SPECTRAL SHAPING	41
		6.1.3 ANALYSIS SYSTEM TIME CONSTANT	41
		6.1.4 BANDSHARING	42
		6.1.5 TONE CORRECTIONS	42
		6.1.6 OTHER METRICS	42
		6.1.7 SPECTRAL DATA/STATIC TESTS	43

				PAGE
	6.2	6.2.1	ECT READ DATA PROCESSING	44 44 46
7.0	TEST	SERIES	DESCRIPTION	47
8.0			ANALYSES/PROCESSING OF TRAJECTORY AND ICAL DATA	53
			LTITUDE/FLIGHT PATH TRAJECTORY ANALYSES IR METEOROLOGICAL DATA	53 55
9.0	EXPLO	DRATORY	ANALYSES AND DISCUSSIONS	61
	9.1	FLYOV	ON IN NOISE LEVELS WITH AIRSPEED FOR LEVEL ER OPERATIONS	62
	9.3	vs.	SOFT PROPAGATION CHARACTERISTICS	65
	9.4	MICRO	PHONESS OF DURATION EFFECTS	70 73
	7.7		RELATIONSHIP BETWEEN SEL, AL AND T10	73
		9.4.2	ESTIMATION OF 10 dB DOUN DURATION TIME RELATIONSHIP BETWEEN SEL MINUS AL AND THE	76
	9.5		RATIO D/V	79
	9.6	SITES	EQUIDISTANT OVER SIMILAR PROPAGATION PATHS ON IN NOISE LEVELS WITH AIRSPEED FOR 6 AND 9	82
	7.0		E APPROACH OPERATIONS	86
	9.7		S OF GROUND-TO-GROUND ACOUSTICAL PROPAGATION.	90
			SOFT PROPAGATION PATH	90
		9.7.2	HARD PROPAGATION PATH	91
	9.8	ACOUSTI	CAL PROPAGATION ANALYSIS/AIR-TO-GROUND	97
REFE	RENCES	3		102
10.0	APPEI	NDICES		
	APPE		MAGNETIC RECORDING ACOUSTICAL DATA AND DURATION FACTORS FOR FLIGHT OPERATIONS	
	APPE		DIRECT READ ACOUSTICAL DATA AND DURATION FACTORS FOR FLIGHT OPERATIONS	
	APPE		MAGNETIC RECORDING ACOUSTICAL DATA FOR STATIC OPERATIONS	
	APPE		DIRECT READ ACOUSTICAL DATA FOR STATIC OPERATIONS	

APPENDIX E: COCKPIT INSTRUMENT PHOTO DATA AND OBSERVER DATA

APPENDIX F: PHOTO-ALTITUDE AND FLIGHT PATH TRAJECTORY DATA

APPENDIX G: NWS UPPER AIR METEOROLOGICAL DATA

APPENDIX H: NWS-IAD SURFACE METEOROLOGICAL DATA

APPENDIX I: ON-SITE METEOROLOGICAL DATA

LIST OF TABLES

		PAGE
2.1	HELICOPTER CHARACTERISTICS	6
2.2	ICAO REFERENCE PARAMETERS	7
5.1	REFERENCE HELICOPTER ALTITUDES FOR APPROACH	22
5.2	EWS SYSTEM ACCURACY	30
5.3	RUSTRAK RECORDER RANGE	30
7.1	TEST SUMMARY	49
9.1	ADVANCING BLADE TIP MACH NUMMBERS	63
9.2	A-WEIGHTED NOISE LEVEL RANGES	68
9.3	COMPARISON OF GROUND AND 4-FT. MICROPHONE DATA	72
9.4	DURATION (T-10) REGRESSION ON D/V	78
9.5	SEL-ALM REGRESSION ON D/V	81
9.6	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HIGE	84
9.7	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HOGE	84
9.8	COMPARISON OF NOISE VS. DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: FI	85
9.9	6 AND 9 DEGREE APPROACH DATA	89
9.10	DATA FROM SOFT SITES	93
9.11	EMPIRICAL PROPAGATION CONSTANTS FOR SOFT SITES	94
9.12	DATA FROM HARD SITES	95
9.13	EMPIRICAL PROPAGATION CONSTANTS FOR HARD SITES	96
9.14	PROPAGATION DATA - ICAO TAKEOFF	99
9.15	PROPAGATION DATA - STANDARD TAKEOFF	99
9.16	SUMMARY TABLE OF PROPAGATION CONSTANTS FOR TWO TAKEOFF OPERATIONS	99

			PAGE
9.17	SUMMARY TABLE	FOR TAKEOFF OPERATION	99
9.18	LEVEL FLYOVER	PROPAGATION ANALYSIS - AL	100
9.19	SUMMARY TABLE	FOR LFO - AL	100
9.20	LEVEL FLYOVER	PROPAGATION - EPNL	101
9.21	SUMMARY TABLE	FOR LFO - EPNL	101

1

LIST OF FIGURES

1.1	HELICOPTER NOISE SOURCES	PAGE 3
		•
3.1	FLIGHT TEST AND NOISE MEASUREMENT PERSONNEL IN ACTION	10
3.2	DULLES AIRPORT AND TEST FLIGHT TRACK	12
3.3	NOISE MEASUREMENT AND PHOTO-SITE SCHEMATIC	15
4.1	COMMUNICATIONS NETWORK	18
4.2	QUAIL AND QUAIL SONG	20
5.1	POP SYSTEM	24
5.2	COCKPIT PHOTOGRAPH	27
5.3	TECHNICIANS LAUNCHING RADIOSONDE BALLOON	28
5.4	ACOUSTICAL MEASUREMENT INSTRUMENTATION	33
5.5	ACOUSTICAL MEASUREMENT INSTRUMENTATION	34
5.6	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR FLIGHT OPERATIONS	36
5.7	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR STATIC OPERATIONS	37
6.1	TSC LABORATORY	39
6.2	ACOUSTICAL DATA REDUCTION/INSTRUMENTATION	40
6.3	ACOUSTICAL EMISSION ANGLE CONVENTION	43
6.4	DIRECT READ DATA REDUCTION	45
7.1	HELICOPTER TAKEOFF NOISE TESTS	50
7.2	HELICOPTER APPROACH NOISE TESTS	51
7.3	HELICOPTER FLYOVER NOISE TESTS	52
8.1	TIME HISTORY ANALYSIS FOR TEMPERATURE	56
8.2	TIME HISTORY ANALYSIS FOR RELATIVE HUMIDITY	56
0 2	LITHE CHEER UC TIME. HEAD/MATE LITHE	ε 0

		PAGE
8.4	WIND SPEED VS. TIME: CROSS WIND	59
9.1	LFO: SEL VS. INDICATED AIRSPEED	64
9.2	LFO: AL VS. INDICATED AIRSPEED	64
9.3	LFO: EPNL VS. INDICATED AIRSPEED	64
9.4	LFO: PNLTM VS. INDICATED AIRSPEED	64
9.5	HARD VS. SOFT PATH DIRECTIVITY: HIGE	66
9.6	HARD VS. SOFT PATH DIRECTIVITY: HOGE	66
9.7	HARD VS. SOFT PATH DIRECTIVITY: FI	68
9.8	HARD VS. SOFT PATH DIRECTIVITY: GI	68
9.9	HELICOPTER HOVER NOISE TEST	69
9.10	RELATIONSHIP BETWEEN INCIDENT AND REFLECTED SOUND WAVES	72
9.11	DURATION ANALYSIS - 500 FT. LFO	76
9.12	APPROACH OPERATION: SEL	89
9.13	APPROACH OPERATION: AL	89
Q 14	TIP VORTEY INTERACTION	87

GLOSSARY

AGL	-	Above ground level
AIR	-	Aerospace Information Report
AL	-	A-Weighted sound level, expressed in decibels (See $L_{\mbox{\scriptsize A}}$)
ALM	-	Maximum A-weighted sound level, expressed in decibels (see $L_{\mbox{\scriptsize AM}}$)
ALAM	-	As measured maximum A-weighted Sound Level
ALT	-	Aircraft altitude above the microphone location
APP	-	Approach operational mode
CLC	-	Centerline Center
CPA	-	Closest point of approach
d	-	Distance
dB	-	Decibel
dBA	-	A-Weighted sound level expressed in units of decibels (see ${\sf A}_{\sf L}$)
df	-	Degree of freedom
Δ	-	Delta, or change in value
Δι	-	Correction term obtained by correcting SPL values for atmospheric absorption and flight track deviations per FAR 36, Amendment 9, Appendix A, Section A36.11, Paragraph d
Δ2	-	Correction term accounting for changes in event duration with deviations from the reference flight path
DUR(A)	-	" $10~\mathrm{dB}\text{-}\mathrm{Down}$ " duration of L_A time history
EPNL	-	Effective perceived noise level (symbol is LEPN)

EV	-	Event, test run number
FAA	-	Federal Aviation Administration
FAR	-	Federal Aviation Regulation
FAR-36	-	Federal Aviation Reg lation, Part 36
GLR	-	Graphic level recorder
HIGE	-	Hover-in-ground effect
HOGE	-	Hover-out-of-ground effect
IAS	-	Indicated airspeed
ICAO	-	International Civil Aviation Organization
IRIG-B	-	Inter-Range Instrumentation Group B (established technical time code standard)
K(DUR)	-	The constant used to correct SEL for distance and velocity duration effects in $\Delta 2$
KIAS	-	Knots Indicated Air Speed
K(P)	-	Propagation constant describing the change in noise level with distance
K(S)	-	Propagation constant describing the change in SEL with distance
Kts	-	Knots
LA	-	A-Weighted sound level, expressed in decibels
Leq	-	Equivalent sound level
LFO	-	Level Flyover operational mode
$M_{\mathbf{A}}$	-	Advancing blade tip Mach number
$M_{\mathbf{R}}$	-	Rotational Mach number
$M_{\mathbf{T}}$	-	Translational Mach number
N	-	Sample Size
NWS	-	National Weather Service

OASPLM Maximum overall sound pressure level in decibels PISLM Precision integrating sound level meter Maximum perceived noise level PNLM Maximum tone corrected perceived noise level PNLTM Photo overhead positioning system POP Time history "shape factor" Relative Humidity in percent RH RPM Revolutions per minute Society of Automotive Engineers SAE SEL Sound exposure level expressed in decibels. The integration of the AL time history, normalized to one second (symbol is L_{AE}) As measured sound exposure level SELAM SEL-AL_M Duration correction factor SHP Shaft horse power SLR Single lens reflex (35 mm camera) SPL Sound pressure level Ten dB down duration time T Tone correction calcualted at $PNLT_M$ TC Takeoff T/O Department of Transportation, Transportation Systems TSC Center Velocity VASI Visual Approach Slope Indicator Maximum speed in level flight with maximum V_H continuous power

Velocity for best rate of climb

Never-exceed speed

VNE

۷y

1.0 <u>Introduction</u> - This report documents the results of a Federal Aviation Administration (FAA) noise measurement/flight test program involving the Aerospatiale Twinstar helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise.

This report is the fourth in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983.

The Twinstar test program was conducted by the FAA in cooperation with Aerospatiale Helicopter Corporation and a number of supporting Federal agencies. The rigorously controlled tests involved the acquisition of detailed acoustical, position and meteorological data.

This test program was designed to address a series of objectives including: 1) acquisition of acoustical data for use in heliport environmental impact analyses, 2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, 4) determination of noise event duration influences on energy dose acoustical metrics, 5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and 6) documentation of noise levels acquired using international helicopter noise certification test procedures.

The helicopter is a complex acoustical source generating noise from many different origins. Figure 1.1 provides a diagram identifying some of these sources. Two other noise generating mechanisms associated with forward flight effects (both associated with flight effects and both producing impulsive noise) are blade vortex interaction (see Figure 9.14) and high advancing tip Mach Numbers. These figures are provided for the reader's reference.

The appendices to this document provide a reference set of acoustical data for the TwinStar helicopter operating in a variety of typical flight regimes. The first seven chapters contain the introduction and description of the helicopter, test procedures and test equipment.

Chapter 8 describes analyses of flight trajectories and meteorological data and is documentary in nature. Chapter 9 delves into the areas of acoustical propagation, helicopter directivity for static operations, and variability in measured acoustical data over various propagation surfaces. The analyses of Chapter 9 in some cases succeed in establishing relationships characterizing the acoustic nature of the subject helicopter, while in other instances the results are too variant and anomalous to draw any firm conclusions. In any event, all of the analyses provide useful insight to people working in the field of helicopter environmental acoustics, either in providing a tool or by identifying areas which need the illumination of further research efforts.

Helicopter Noise Sources

TEST HELICOPTER DESCRIPTION

2.0 <u>Test Helicopter Description</u> - The AS 355F TwinStar is a twin-engined, light, general purpose helicopter. The aircraft is marketed and supported by Aerospatiale Helicopter Corporation of Grand Prairie, Texas and was certificated by the FAA in November of 1981. Intended primarily for commercial companies working in the oil industry, the AS 355F provides cabin outfitting for a pilot, co-pilot and four passengers. There are also three baggage holds with external doors.

Selected operational characteristics, obtained from the helicopter manufacturer, are presented in Table 2.1.

Table 2.2 presents a summary of the flight operational reference parameters determined using the procedures specified in the International Civil Aviation Organization (ICAO) noise certification testing requirements. Presented along with the operational parameters are the altitudes that one would expect the helicopter to attain (referred to the ICAO reference test sites). This information is provided so that the reader may implement an ICAO type data correction using the "As Measured" data contained in this report. This report does not undertake such a correction, leaving it as the topic of a subsequent report.

TABLE 2.1

HELICOPTER CHARACTERISTICS

HELICOPTER MANUFACTURER	: Aerospatiale	
HELICOPTER MODEL	: AS 355F Twinstar	
HELICOPTER TYPE	: Single Rotor	
TEST HELICOPTER N-NUMBER	:_ 5780 D	
MAXIMUM GROSS TAKEOFF WEIGHT	:_ 5070 lbs	
NUMBER AND TYPE OF ENGINE(S)	: 2 Allison 250C20f	
SHAFT HORSE POWER (PER ENGINE)	: 420 HP	
MAXIMUM CONTINUOUS POWER	: 321 HP	
SPECIFIC FUEL CONSUMPTION AT MAXIMUM POWER (LB/HR/HP)	: .701 lb/hr/hp	
NEVER EXCEED SPEED (VNE)	: 173 mph (150 kts)	
MAX SPEED IN LEVEL FLIGHT WITH MAX CONTINUOUS POWER (VH)	: 145 mph (126 kts)	
SPEED FOR BEST RATE OF CLIMB (Vy)	: 63 mph (55 kts)	
BEST RATE OF CLIMB	:1870 fpm	
MAIN AND TAIL	ROTOR SPECIFICATIONS	
	MAIN	TAIL
ROTOR SPEED (100%)	: 394RPM	2088 RPM
DIAMETER	: 420.8"	73.2"
CHORD	: 13.8"	7.28"
NUMBER OF BLADES	:_3	2
PERIPHERAL VELOCITY	: 723,5 fps	667 fps
DISK LOADING	: 5.25 lb/ft ²	
FUNDAMENTAL BLADE PASSAGE FREQUENCY	: 20 Hz	70 Hz
ROTATIONAL TIP MACH NUMBER (77°F)	: .6371	. `5874

A STATE OF THE STA

TABLE 2.2

ICAO REFERENCE PARAMETERS

	TAKEOFF	APPROACH	LEVEL FLYOVER
AIRSPEED (KTS)	· 55	55	113.4
RATE OF CLIMB/DESCENT (fpm)	:_1870	583	NA
CLIMB/DESCENT ANGLE (DEGREES)	19.6	6.0	NA
ALTITUDE/CPA (FEET)			
SITE 5	<u>475/44</u> 7	342/340	492
SITE 1	:_650/612	394/392	492
SITE 4	: <u>825/77</u> 8	446/443	492
SLANT RANGE (FEET) TO			
SITE 2	: 815	630	696
SITE 3	: 815	630	696

NOTE

A preliminary comparison of noise levels (for the ICAO noise certification flight regimes) has been made by engineers from Aerospatiale Helicopters using results from previous tests in France and data presented in this report. The Aerospatiale engineers cite generally good agreement, showing the uncorrected data in this report as 1.2 EPNdB higher than French results for level flyover, 1.1 EPNdB 1 ower for approach, and 0.3 EPNdB 1 ower for takeoff operations. In the process of imlementing the full ICAO correction procedure, (in a subsequent report) a more thorough comparison will be made.

At the present time, a Helicopter Noise Measurement Repeatability Program is being cnducted by The International Civil Aviation Organization (ICAO). This program involves eight to ten different national measurement teams conducting noise tests on the same helicopter model, a Bell 206-L3. In the process of analyzing results of that program, a compendium of other comparative helicopter noise measurements will also be developed. In that context, the results reported in this document will be compared in detail with other detailed results.

TEST SYNOPSIS

- 3.0 <u>Test Synopsis</u> Below is a listing of pertinent details pertaining to the execution of the helicopter tests.
- 1. Test Sponsor, Program Management, and Data Analysis: Federal

 Aviation Administration, Office of Environment and Energy, Noise Abatement

 Division, Noise Technology Branch (AEE-120).
- 2. Test Helicopter: AS 355F TwinStar, provided by Aerospatiale Helicopter Corporation
 - 3. Test Date: Tuesday, June 7, 1983
- 4. Test Location: Dulles International Airport, Runway 30 over-run area.
- 5. Noise Data Measurement (recording), processing and analysis:

 Department of Transportation (DOT), Transportation Systems Center (TSC),

 Noise Measurement and Assessment Facility.
- 6. Noise Data Measurement (direct-read), processing and analysis: FAA, Noise Technology Branch (AEE-120).
- 7. Cockpit instrument photo documentation; photo-altitude determination system; documentary photographs: Department of Transportation, Photographic Services Laboratory.
- 8. Meteorological Data (fifteen minute observations): National Weather Service Office, Dulles International Airport.
- 9. Meteorological Data (radiosonde/rawinsonde weather balloon launches): National Weather Service Upper Air Station, Sterling Park, Virginia.

FIGURE 3.1 Flight Test and Noise Measurement Personnel In Action

- 10. Meteorological Data (on site observations): DOT-TSC.
- 11. Flight Path Guidance (portable visual approach slope indicator (VASI) and theodolite/verbal course corrections): FAA Technical Center, ACT-310.
- 12. Air Traffic Control: Dulles International Airport Air Traffic Control Tower.
- 13. Test site preparation; surveying, clearing underbrush, connecting electrical power, providing markers, painting signs, and other physical arrangements: Dulles International Airport Grounds and Maintenance, and Airways Facilities personnel.
- Figure 3.1 is a photo collage of flight test and measurement personnel performing their tasks.
- 3.1 Measurement Facility The noise measurement testing area was located adjacent to the approach end of Runway 12 at Dulles International Airport. (The approach end of Runway 12 is synonymous with Runway 30 over-run area.) The low ambient noise level, the availability of emergency equipment, and the security of the area all made this location desirable. Figure 3.2 provides a photograph of the Dulles terminal and of the test area.

The test area adjacent to the runway was nominally flat with a ground cover of short, clipped grass, approximately 1800 feet by 2200 feet, and bordered on north, south, and west by woods. There was minimum interference from the commercial and general aviation activity at the airport since Runway 12/30 was closed to normal traffic during the tests. The runways used for normal traffic, 1L and 1R, were approximately 2 and 3 miles east, respectively, of the test site.

Figure 3.2

The Terminal and Air Traffic Control Tower at Dulles International Airport

Approach to Runway 12 at Dulles Noise Measurement Site for 1983 Helicopter Tests

The flight track centerline was located parallel to Runway 12/30 centered between the runway and the taxiway. The helicopter hover point for the static operations was located on the southwest corner of the approach end of Runway 12. Eight noise measurement sites were established in the grassy area adjacent to the Runway 12 approach ground track.

- 3.2 <u>Microphone Locations</u> There were eight separate microphone sites located within the testing area, making up two measurement arrays. One array was used for the flight operations, the other for the static operations. A schematic of the test area is shown in Figure 3.3.
- A. Flight Operations The microphone array for flight operations consisted of two sideline sites, numbered 2 and 3 in Figure 3.3, and three centerline sites, numbered 5, 1, and 4, located directly below the flight path of the helicopter. Since site number 3, the north sideline site, was located in a lightly wooded area, it was offset 46 feet to the west to provide sufficient clearance from surrounding trees and bushes.
- B. Static Operations The microphone array for static operations consisted of sites 7H, 5H, 1H, 2, and 4H. These sites were situated around the helicopter hover point which was located on the southwest corner of the approach end of Runway 12. These site locations allowed for both hard and soft ground-to-ground propagation paths.
- 3.3 Flight Path Markers and Guidance System Locations Visual cues in the form of squares of plywood painted bright yellow with a black "X" in the center were provided to define the takeoff rotation point. This point was located 1640 feet (500 m) from centerline center (CLC) microphone

location. Four portable, battery-powered spotlights were deployed at various locations to assist pilots in maintaining the array centerline. To provide visual guidance during the approach portion of the test, a standard visual approach slope indicator (VASI) system was used. In addition to the visual guidance, the VASI crew also provided verbal guidance with the aid of a theodolite. Both methods assisted the helicopter pilot in adhering to the microphone array centerline and in maintaining the proper approach path. The locations of the VASI from CLC are shown in the following table.

Approach Angle	Distance from CLC		
(degrees)	(feet)		
12 1830			
9	2456		
6	3701		
3 7423			

Each of these locations provided a glidepath which crossed over the centerline center microphone location at an altitude of 394 feet.

This test program included approach operations utilizing 6 and 9 degree glide slopes.

FIGURE 3.3

Noise Measurement and Photo Site Schematic

NOTES: Broken Line Indicates not to Scale.

Metric Measurements to

Nearest Meter.

0

TEST PLANNING AND BACKGROUND

- 4.0 Test Planning/Background Activities This section provides a brief discussion of important administrative and test planning activities.
- 4.1 Test Program Advance Briefings and Coordination A pre-test briefing was conducted approximately one month prior to the test. The meeting was attended by all pilots participating in the test, along with FAA program managers, manufacturer test coordinators, and other key test participants from the Dulles Airport community. During this meeting, the airspace safety and communications protocol were rigorously defined and at the same time test participants were able to iron out logistical and procedural details. On the morning of the test, a final brief meeting was convened on the flight line to review safety rules and coordinate last-minute changes in the test schedule.
- 4.2 <u>Communications Network</u> During the helicopter noise measurement test, an elaborate communications network was utilized to manage the various systems and crews. This network was headed by a central group which coordinated the testing using three two-way radio systems, designated as Radios 1-3.

Radio 1 was a walkie talkie system operating on 169.275 MHz, providing communications between the VASI, National Weather Service, FAA Acoustic Measurement crew, the TSC acoustic team coordinator, and the noise test coordinating team.

Radio 2 was a second walkie talkie system operating on 170.40 MHz, providing communications between the TSC acoustic team coordinator and the TSC acoustic measurement teams.

Helicopter Noise Test Communication Network Schematic FIGURE 4.1

Radio 3, a multi-channel transceiver, was used as both an air-to-ground and ground-to-ground communications system. In air-to-ground mode it provided communications between VASI, helicopter flight crews, and noise test control on 123.175 MHz. In ground-to-ground mode it provided communications between the air traffic control tower (121.9 MHz), Page Avjet (the fuel source; 122.95 MHz), and noise test control.

A schematic of this network is shown in Figure 4.1.

- 4.3 Local Media Notification Noise test program managers working through the FAA Office of Public Affairs released an article to the local media explaining that helicopter noise tests were to be conducted at Dulles Airport on June 7, the test day commencing around dawn and extending through midday. The article described general test objectives, flight paths, and rationale behind the very early morning start time (low wind requirements). In the case of a farm located very close to the airport, a member of the program management team personally visited the residents and explained what was going to be involved in the test. As a consequence of these efforts (it is assumed), there were very few complaints about the test program.
- 4.4 Ambient Noise One of the reasons that the Dulles Runway 30 over-run area was selected as the test site was the low ambient noise level in the area. Typically one observed an A-Weighted LEQ on the order of 45 dB, with dominant transient noise sources primarily from the avian and insect families. The primary offender was the Collinus Virginianus, commonly known as the bobwhite, quail, or partridge. The infrequent intrusive

sound pressure levels were on the order of 55 dB centered in the 2000 Hz one-third octave band. A drawing of the noisy offender and a narrow band analysis of the song may be found in Figure 4.2.

As an additional measure for safety and for lessening ambient noise, a Notice to Airmen or NOTAM was issued advising aircraft of the noise test, and indicating that Runway 12/30 was closed for the duration of the test.

FIGURE 4.2

1.5 Sec. Avg.

DATA ACQUISITION AND GUIDANCE SYSTEMS

- 5.0 Data Acquisition and Guidance Systems This section provides a detailed description of the test program data acquisition systems, with special attention given to documenting the operational accuracy of each system. In addition, discussion is provided (as needed) of field experiences which might be of help to others engaged in controlled helicopter noise measurements. In each case, the location of a given measurement system is described relative to the helicopter flight path.
- 5.1 Approach Guidance System Approach guidance was provided to the pilot by means of a visual approach slope indicator (VASI) and through verbal commands from an observer using a ballon-tracking theodolite. (A picture of the theodolite is included in Figure 3.1, in Section 3.0.) The VASI and theodolite were positioned at the point where the approach path intercepted the ground.

The VASI system used in the test was a 3-light arrangement giving vertical displacement information within ±0.5 degrees of the reference approach slope. The pilot observed a green light if the helicopter was within 0.5 degrees of the approach slope, red if below the approach slope, white if above. The VASI was adjusted and repositioned to provide a variety of approach angles. A picture of the VASI is included in Figure 3.1.

The theodolite system, used in conjunction with the VASI, also provided accurate approach guidance to the pilot. A brief time lag existed between the instant the theodolite observor perceived deviation, transmitted a command, and the pilot made the correction; however, the theodolite crew was generally able to alert the pilot of approach path deviations (slope and lateral displacement) before the helicopter exceeded the limits of the one degree green light of the VASI. Thus, the helicopter only

occasionally and temporarily deviated more than 0.5 degrees from the reference approach path.

Approach paths of 6 and 9 degrees were used during the test program.

Table 5.1 summarizes the VASI beam width at each measurement location for a variety of the approach angles used in this test.

TABLE 5.1

REFERENCE HELICOPTER ALTITUDES FOR APPROACH TESTS

(all distances expressed in feet)

	MICROPHONE	MICROPHONE	MICROPHONE
	NO. 4	NO. 1	NO. 5
APPROACH ANGLE = 3°	A = 8010 B = 420 C = +70	A = 7518 B = 394 C = +66	A = 7026 B = 368 C = +62
6°	A = 4241	A = 3749	A = 3257
	B = 446	B = 394	B = 342
	C = +37	C = <u>+</u> 33	C = +29
9°	A = 2980	A = 2488	A = 1362
	B = 472	B = 394	B = 316
	C = <u>+</u> 27	C = +22	C = +18

A = distance from VASI to microphone location

B = reference helicopter altitude

C = boundary of the 1 degree VASI glide slope
"beam width".

5.2 Photo Altitude Determination Systems - The helicopter altitude over a given microphone was determined by the photographic technique described in the Society of Automotive Engineers report AIR-902 (ref. 1). This technique involves photographing an aircraft during a flyover event and

proportionally scaling the resulting image with the known dimensions of the aircraft. The camera is initially calibrated by photographing a test object of known size and distance. Measuring the resulting image enables calculation of the effective focal length from the proportional relationship:

(image length)/(object length) = (effective focal length)/(object
distance)

This relationship is used to calculate the slant distance from microphone to aircraft. Effective focal length is determined during camera calibration, object length is determined from the physical dimensions of the aircraft (typically the rotor diameter or fuselage) and the image size is measured on the photograph. These measurements lead to the calculation of object distance, or the slant distance from camera or microphone to aircraft. The concept applies similarly to measuring an image on a print, or measuring a projected image from a slide.

The SAE AIR-902 technique was implemented during the 1983 helicopter tests with three 35mm single lens reflex (SLR) cameras using slide film. A camera was positioned 100 feet from each of the centerline microphone locations. Lenses with different focal lengths, each individually calibrated, were used in photographing helicopters at differing altitudes in order to more fully "fill the frame" and reduce image measurement error.

The photoscaling technique assumes the aircraft is photographed directly overhead. Although SAE AIR-902 does present equations to account for deviations caused by photographing too soon or late, or by the aircraft deviating from the centerline, these corrections are not required when

Photo Overhead Positioning System (Pop System)

Artist's Drawing of the Photo Overhead Positioning System (Figure is not to scale.)

Photographer using the POP system to photograph the helicopter.

Photographs of the AS 355F TwinStar, as taken by the photographer using the POP system.

deviations are small. Typically, most of the deviations were acoustically insignificant. Consequently, corrections were not required for any of the 1983 test photos.

The photographer was aided in estimating when the helicopter was directly overhead by means of a photo-overhead positioning system (POPS) as illustrated in the figure and pictures in Figure 5.1 The POP system consisted of two parallel (to the ground) wires in a vertical plane orthogonal to the flight path. The photographer, lying beneath the POP system, initially positioned the camera to coincide with the vertical plane of the two guide wires. The photographer tracked the approaching helicopter in the viewfinder and tripped the shutter when the helicopter crossed the superimposed wires. This process of tracking the helicopter also minimized image blurring and the consequent elongation of the image of the fuselage.

A scale graduated in 1/32-inch increments was used to measure the projected image. This scaling resolution translated to an error in altitude of less than one percent. A potential error lies in the scaler's interpretation of the edge of the image. In an effort to quantify this error, a test group of ten individuals measured a selection of the fuzziest photographs from the helciopter tests. The resulting statistics revealed that 2/3 of the participants were within two percent of the mean altitude. SAE AIR-902 indicates that the overall photoscaling technique, under even the most extreme conditions, rarely produces error exceeding 12 percent, which is equivalent to a maximum of 1 dB error in corrected sound level data. Actual accuracy varies from photo to photo; however, by using skilled photographers and exercising reasonable care in the measurements, the accuracy is good enough to ignore the resulting small error in altitude.

Tests were recently conducted in West Germany which compared this camera method with the more elaborate Kinotheodolite tracking method to discover which was best for determining overflight height and overground speed.

Both methods were found to be reasonably accurate; thus, the simpler camera method remains appropriate for most test purposes (ref. 2).

5.3 Cockpit Photo Data - During each flight operation of the test program, cockpit instrument panel photographs were taken with a 35mm SLR camera, with an 85mm lens, and high speed slide film. These pictures served as verification of the helicopter's speed, altitude, and torque at a particular point during a test event. The photos were intended to be taken when the aircraft was directly over the centerline-center microphone site #1 (see Figure 3.3). Although the photos were not always taken at precisely that point, the pictures do represent a typical moment during the test event. When slides were projected onto a screen, it was possible to read and record the instrument readings with reasonable accuracy. The word typical is important because the snapshot freezes instrument readings at one moment in time, while actually the readings are constantly changing by a small amount because of instrument fluctuation and pilot input. Thus, fluctuations above or below reference conditions are to be anticipated. A reproduction of a typical cockpit photo is shown in Figure 5.2. This data acquisition system was augmented by the presence of an experienced cockpit obersver who provided additional documentation of operational parameters.

For future tests, the use of a video tape system is being considered to acquire a continuous record of cockpit parameters during each data run. Preliminary FAA studies (April 1984) indicate that this technique can be successful using off the shelf equipment.

FIGURE 5.2

5.4 Upper Air Meterorlogical Data Acquisition/NWS: Sterling, VA - The National Weather Service (NWS) at Sterling, Virginia provided upper air meteorological data obtained from balloon-borne radiosondes. These data consisted of pressure, temperature, relative humidity, wind direction, and speed at 100' intervals from ground level through the highest test altitude. The balloons were launched approximately 2 miles north of the measurement array. To slow the ascent rate of the balloon, an inverted parachute was attached to the end of the flight train. The VIZ Accu-Lok (manufacturer) radiosonde employed in these tests consisted of sensors which sampled the ambient temperature, relative humidity, and pressure of the air. Each radiosonde was individually calibrated by the manufacturer. The sensors were coupled to a radio transmitter which emitted an RF signal of 1680 MHz sequentially pulse-modulated at rates corresponding to the values of sampled meteorological parameters. These signals were received

by the ground-based tracking system and converted into a continuous trace on a strip chart recorder. The levels were then extracted manually and entered into a minicomputer where calculations were performed. Wind speed and direction were determined from changes in position and direction of the "flight train" as detected by the radiosonde tracking system. Figure 5.3 shows technicians preparing to launch a radiosonde.

FIGURE 5.3

The manufacturer's specifications for accuracy are:

Pressure = ± 4 mb up to 250 mb

Temperature = ± 0.5 °C, over a range of ± 30 °C to ± 30 °C

Humidity = $\pm 5\%$ over a range of ± 25 °C to 5°C

The National Weather Service has determined the "operational accuracy" of a radiosonde (as documented in an unpublished report entitled "Standard for Weather Bureau Field Programs", 1-1-67) to be as follows:

Pressure = ± 2 mb, over a range of 1050 mb to 5 mb

Temperature = ± 1 °C, over a range of ± 50 °C to ± 70 °C

Humidity = $\pm 5\%$ over a range of ± 40 °C to ± 40 °C

-

The temperature and pressure data are considered accurate enough for general documentary purposes. The relative humidity data are the least reliable. The radiosonde reports lower than actual humidities when the air is near saturation. These inaccuracies are attributable to the slow response time of the humidity sensor to sudden changes. (Ref. 3).

For future research program testing, the use of a SODAR (acoustical sounding) system is being considered. The SODAR is a measurement system capable of defining the micro-wind structure, making the influences of wind speed, direction and gradient easier to identify and to assess in real time (Ref. 4).

National Weather Service Station at Dulles provided temperature, windspeed, and wind direction on the test day. Readings were noted every 15 minutes. These data are presented in Appendix H. The temperature transducers were located approximately 2.5 miles east of the test site at a height of 6 feet (1.8 m) above the ground, the wind instruments were at a height of 30 feet (10 m) above ground level. The dry bulb thermometer and dew point transducer were contained in the Bristol (manufacturer) HO-61 system operating with + one degree accuracy. The windspeed and direction were measured with the Electric Speed Indicator (manufacturer) F420C System, operating with an accuracy of 1 knot and +5°.

On-site meterological data were also obtained by TSC personnel using a Climatronics (manufacturer) model EWS weather system. The anemometer and temperature sensor were located 10 feet above ground level at noise site 4. These data are presented in Appendix I. The following table

(Table 5.2) identifies the accuracy of the individual components of the EWS system.

TABLE 5.2

Sensor	Accuracy	Range	Time Constant
Windspeed	+.025 mph or 1.5%	0-100 mph	5 sec
Wind Direction	<u>+</u> 1.5%	0-360° Mech 0-540° Elect	15 sec
Relative Humidity	+2% 0-100% RH	0-100% RH	10 sec
Temperature	<u>+</u> 1.0°F	-40 to +120°F	10 sec

After "detection" (sensing), the meteorological data are recorded on a Rustrak (manufacturer) paperchart recorder. The following table (Table 5.3) identifies the <u>range and resolutions associated with the recording</u> of each parameter.

TABLE 5.3

Sensor	Range	Chart Resolution
Windspeed	0-25 TSC mod 0-50 mph	<u>+0.5</u> mph
Wind Direction	0-540°	<u>+</u> 5°
Relative Humidity	0-100% RH	<u>+</u> 2% RH
Temperature	-40° to 120°F	<u>+</u> 1°F

- 5.6.0 Noise Data Acquisition Sytems/System Deployment This section provides a detailed description of the acoustical measurement systems employed in the test program along with the deployment plan utilized in each phase of testing.
- 5.6.1 Description of TSC Magnetic Recording Systems TSC personnel deployed Nagra two-channel direct-mode tape recorders. Noise data were recorded with essentially flat frequency response on one channel. The same input data were weighted and amplified using a high frequency pre-emphasis filter and were recorded on the second channel. The pre-emphasis network rolled off those frequencies below 10,000 Hz at 20 dB per decade. The use of pre-emphasis was necessary in order to boost the high frequency portion of the acoustical signal (such as a helicopter spectrum) characterized by large level differences (30 to 60 dB) between the high and low frequencies. Recording gains were adjusted so that the best possible signal-to-noise ratio would be achieved while allowing enough "head room" to comply with applicable distortion avoidance requirements.

TRIG-B time code synchronized with the tracking time base was recorded on the cue channel of each system. The typical measurement system consisted of a General Radio 1/2 inch electret microphone oriented for grazing incidence driving a General Radio P-42 preamp and mounted at a height of four feet (1.2 meters). A 100-foot (30.5 meters) cable was used between the tripod and the instrumentation vehicle located at the perimeter of the test circle. A schematic of the acoustical instrumentation is shown in Figure 5.4.

Figure 5.4 also shows the cutaway windscreen mounting for the ground microphone. This configuration places the lower edge of the microphone diaphram approximately one-half inch from the plywood (4 ft by 4 ft) surface. The ground microphone was located off center in order to avoid natural mode resonant vibration of the plywood square.

5.6.2 <u>FAA Direct Read Measurement Systems</u> - In addition to the recording systems deployed by TSC, four direct read, Type-1 noise measurement systems were deployed at selected sites. Each noise measurement site consisted of an identical microphone-preamplifier system comprised of a General Radio 1/2-inch electret microphone (1962-9610) driving a General Radio P-42 preamplifier mounted 4 feet (1.2m) above the ground and oriented for grazing incidence. Each microphone was covered with a 3-inch windscreen.

Three of the direct read systems utilized a 100-foot cable connecting the microphone system with a General Radio 1988 Precision Integrating Sound Level Meter (PISLM). In each case, the slow response A-weighted sound level was output to a graphic level recorder (GIR). The GLRs operated at a paper transport speed of 5 centimeters per minute (300 cm/hr). These systems collected single event data consisting of maximum A-weighted Sound Level (AL), Sound Exposure Level (SEL), integration time (T), and equivalent sound level (LEQ).

The fourth microphone system was connected to a General Radio 1981B Sound Level Meter. This meter, used at site 7H for static operations only, provided A-weighted Sound Level values which were processed using a microsampling technique to determine LEQ.

FIGURE 5.4

Acoustical Measurement Instrumentation

FIGURE 5.5

Acoustical Measurement Instrumentation

Direct Read Noise Measurement System

All instruments were calibrated at the beginning and end of each test day and approximately every hour in between. A schematic drawing of the basic direct read system is shown in Figure 5.5.

5.6.3 <u>Deployment of Acoustical Measurement Instrumentation</u> - This section describes the deployment of the magnetic tape recording and direct read noise measurement systems.

During the testing, TSC deployed six magnetic tape recording systems.

During the flight operations, four of these recording system were located at the three centerline sites: one system at site 4, one at site 5, and two at centerline center with the microphone of one of those systems at 4 feet above ground, the microphone of the other at ground level. The two remaining recording systems were located at the two sidelines sites. The FAA deployed three direct read systems at the three centerline sites during the flight operations. Figure 5.6 provides a schematic drawing of the equipment deployment for the flight operations.

In the case of static operations, only four of the six recorder systems were used. The recorder system with the 4-foot microphone at site 1 moved to site 1H. The recorders at sites 4 and 5 moved to 4H and 5H respectively. The recorder at site 2, the south sideline site, was also used. The three direct read systems were moved from the centerline sites to sites 5H, 2, and 4H. The fourth direct read system was employed at site 7H. Figure 5.7 provides a schematic diagram of the equipment deployment for the static operations.

FIGURE 5.6

Microphone and Acoustical Measurement Instrument Deployment

4H©

—/// Surface Microphone

Measurement Site

1.2m Microphone

2-Channel Recorder

2 ⊚ •

1H ●

Hover Point

1988 Sound Level Meter with Graphic Level Recorder

FIGURE 5.7

Microphone and Acoustical Measurement Instrument Deployment Static Operations

⊛ %

ACOUSTICAL DATA REDUCTION

- 6.0 Acoustical Data Reduction This section describes the treatment of tape recorded and direct read acoustical data from the point of acquisition to point of entry into the data tables shown in the appendices of this document.
- recordings analyzed at the TSC facility in Cambridge, Massachusetts were fed into magnetic disc storage after filtering and digitizing using the GenRad 1921 one-third octave real-time analyzer. Figure 6.1 is a picture of the TSC facility; Figure 6.2 provides a flow chart of the data collection, reduction and out process accomplish by TSC personnel. Recording system frequency response adjustments were applied, assuring overall linearity of the recording and reduction system. The stored 24, one-third octave sound pressure levels (SPLs) for contiguous one-half second integration periods making up each event comprise the base of "raw data." Data reduction followed the basic procedures defined in Federal Aviation Regulation (FAR) Part 36 (Ref. 3). The following sections describe the steps involved in arriving at final sound level values.

FIGURE 6.1

- 6.1.1 Ambient Noise The ambient noise is considered to consist of both the acoustical background noise and the electrical noise of the measurement system. For each event, the ambient level was taken as the five to ten-second time averaged one-third octave band taken immediately prior to the event. The ambient noise was used to correct the measured raw spectral data by subtracting the ambient level from the measured noise levels on an energy basis. This subtraction yielded the corrected noise level of the aircraft. The following execptions are noted:
- 1. At one-third octave frequencies of 630 Hz and below, if the measured level was within 3 dB of the ambient level, the measured level was corrected by being set equal to the ambient. If the measured level was less than the ambient level, the measured level was not corrected.
- 2. At one-third octave frequencies above 630 Hz, if the measured level was within 3 dB or less of the ambient, the level was identified as "masked."
- 6.1.2 Spectral Shaping The raw spectral data, corrected for ambient noise, were adjusted by sloping the spectrum shape at -2 dB per one-third octave for those bands (above 1.25 kHz) where the signal to noise ratio was less than 3 dB, i.e., "masked" bands. This procedure was applied in cases involving no more than 9 "masked" one-third octave bands. The shaping of the spectrum over this 9-band range was conducted to minimize EPNL data loss. This spectral shaping methodology deviates from FAR-36 procedures in that the extrapolation includes four more bands than normally allowed.
- 6.1.3 Analysis System Time Constant/Slow Response The corrected raw spectral data (contiguous linear 1/2 second records of data) were

processed using a sliding window or weighted running logarithmic averaging procedure to achieve the "slow" dynamic response equivalent to the "slow response" characteristic of sound level meters as required under the provisions of FAR-36. The following relationship using four consecutive data records was used:

$$L_i = 10 \text{ Log } [0.13(10.0.1L_i^{-3}) + 0.21(10.0.1L_i^{-2}) + 0.27(10.0.1L_i^{-1}) + 0.39)10.0.1L_i)]$$

where $L_{\hat{\mathbf{i}}}$ is the one-third octave band sound pressure level for the ith one-half second record number.

- 6.1.4 <u>Bandsharing of Tones</u> All calculations of PNLTM included testing for the presence of band sharing and adjustment in accordance with the procedures defined in FAR-36, Appendix B, Section B 36.2.3.3, (Ref. 6).
- 6.1.5 Tone Corrections Tone corrections were computed using the helicopter acoustical spectrum from 24 Hz to 11,200 Hz, (bands 14 through 40). Tone correction values were computed for bands 17 through 40, the same set of bands used in computing the EPNL and PNLT. The initiation of the tone correction procedure at a lower frequency reflects recognition of the strong low frequency tonal content of helicopter noise. This procedure is in accordance with the requirements of ICAO Annex 16, Appendix 4, paragraph 4.3. (Ref. 7)
- 6.1.6 Other Metrics In addition to the EPNL/PNLT family of metrics and the SEL/AL family, the overall sound pressure level and 10-dB down duration times are presented as part of the "As Measured" data set in Appendix A. Two factors relating to the event time history (distance duration and speed corrections, discussed in a later section) are also presented.

6.1.7 Spectral Data/Static Tests - In the case of static operations, thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) were energy averaged to produce the data tabulated in Appendix C. The spectral data presented is "as measured" at the emission angles shown in Figure 6.3, established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angles) average levels, calculated by both arithmetic and energy averaging.

Note that "masked" levels (see Section 6.1.1) are replaced in the tables of Appendix C with a dash (-). The indexes shown, however, were calculated with a shaped spectra as per Section 6.1.2.

FIGURE 6.3

Acoustical Emission Angle Convention

6.2 FAA Direct Read Data Reduction - Figure 6.4 provides a flow diagram of the data collection, reduction and output process effected by FAA personnel. FAA direct read data was reduced using the Apple IIe microcomputer and the VISICALO® software package. VISICALO® is an electronic worksheet composed of 256 x 256 rows and columns which can support mathematical manipulation of the data placed anywhere on the worksheet. This form of computer software lends itself to a variety of data analyses, by means of constructing templates (worksheets constructed for specific purposes). Data files can be constructed to contain a variety of information such as noise data and position data using a file format called DIF (data interchange format).

Data analysis can be performed by loading DIF files onto analysis templates. The output or results can be displayed in a format suitable for inclusion in reports or presentations. Data tables generated using these techniques are contained in Appendices B and D, and are discussed in Section 9.0.

6.2.1 Aircraft Position and Trajectory - A VISICALO® DIF file was created to contain the photo altitude data for each event of each test series for the test conducted. These data were input into a VISICALO® template designed to perform a 3-point regression through the photo altitude data from which estimates of aircraft altitudes could be determined for each microphone location.

FIGURE 6.4

and the same of th

Direct Read Data Reduction

:

1

the state of and

6.2.2 Direct Read Noise Data - Another template was designed to take two VISICALO® DIF files as input. The first contained the "as measured" noise levels SEL and dBA obtained from the FAA direct read systems and the 10-dB duration time obtained from the graphic level recorder strips, for each of the three microphone sites.

The second consisted of the estimates of aircraft altitude over three microphone sites. Calculations using the two input files determined two figures of merit related to the event duration influences on the SEL energy dose metric. This analysis is described in Section 9.4. All of the available template output data are presented in Appendix B.

TEST SERIES DESCRIPTION

7.0 <u>Test Series Description</u> - The noise-flight test operations schedule for the TwinStar consisted of two major parts.

The first part or core test program included the ICAO certification test operations (takeoff, approach, and level flyover) supplemented by level flyovers at various altitudes (at a constant airspeed) and at various airspeeds (at a constant altitude). In addition to the ICAO takeoff operation, a second, direct climb takeoff flight series was included. Alternative approach operations were also included, utilizing nine and twelve degree approach angles to compare with the six degree ICAO approach data.

The second part of the test program consisted of static operations designed to assess helicopter directivity patterns and examine ground-to-ground propagation.

The information presented in Table 7.1 describes the Hughes 500D test schedule by test series, each test series representing a group of similar events. Each noise event is identified by a letter prefix, corresponding to the appropriate test series, followed by a number which represents the numerical sequence of event (i.e., A1, A2, A3, A4, B5, B6,...etc.). In some cases the actual order of test series may not follow alphabetically, as a D1, D2, D3, D4, E5, E6, E8, H9, H10, H11,... etc.). In the case of static operations the individual events are reported by the acoustical emission angle referenced to each individual microphone location (i.e., J120, J165, J210, J255, J300, J345, J030, J75). In Table 7.1, the test target operational parameters for each series are specified along with approximate start and stop times. These times can be used to reference

corresponding meteorological data in Appendix G. Timing of fuel breaks are also identified so that the reader can estimate changes in helicopter weight with fuel burn-off. Actual operational parameters and position information for specific events are specified in the appendices of this document.

The "standard takeoff" operation, elected by the manufacturer, consisted of a direct climbout from a 5-foot hover, using the best angle of climb. The reader is referred to Appendices E and F for appropriate cockpit instrument and trajectory information necessary to fully characterize this operation.

Figures 7.1, 7.2 and 7.3 present the test flight configuration for the takeoff, approach and level flyover operations. A schematic of the actual flight tracks is available in Figure 3.3.

TABLE 7.1

TEST SUMMARY

AEROSPATIALE AS-355F TWIN STAR

TEST SERIES RUN NOS.	DESCRIPTION OF SERIES	START TIME	FINISH TIME	NOTES
I	Hover in ground effect	6:05 am	6:17 am	8 Dir Angles
J(A)	Static/Flight Idle RPM		6:43 am	8 Dir Angles
J(B)	Static/Ground Idle RPM	6:20 am	6:43 am	8 Dir Angles
K	Hov out of Grd Effect	6:44 am	6:57 am	8 Dir Angles
	DUE TO POOR VISIBIL	ITY THE TEST P	ROGRAM WAS DELAYE	_
A/A1-A6	LFO, 500 Ft/0.9 VH	7:56 am	8:08 am	
B/B7-B13	LFO, 500 Ft/0.8 VH	8:11 am	8:26 am	
C/C15-C18	LFO, 500 Ft/O.7 VH	8:33 am	8:46 am	
D/D19-D25	LFO, 1000 Ft/0.9 VH	8:48 am	9:04 am	
E/E26/E33	ICAO Takeoff, 63 MPH	9:06 am	9:43 am	
		FUEL BREAK		
н/н34-н37	9 Deg Approach, 75 MPH	10:32 am	10:44 am	
G/G38-G41	Takeoff "STD"	10:49 am	10:59 am	
F/F42-F48	6 Deg Approach, 63 MPH	11:07 am	11:30 am	
M/M49-M53	LFO, 500 Ft/146 MPH VH	11:39 am	11:49 am	
n/n54-n56	LFO, 500 Ft/86 MPH	11:52 am	11:58 am	

Helicopter Takeoff Noise Tests

and the contract of

The take-off flight path shall be established as follows:

the helicopter shall be established in level flight at the best rate of climb speed, V_v, ± 3 knots, of the maximum speed of the curve contignous to the ordinated of the limiting height-speed envelope + 3 knots (±3 knots), whichever is greater, and, at a height of 20 m (66 ft) above the ground until a point 500 m (1,640 ft) before the flight path reference point is reached;

Takeon the Take Path

- b) upon reaching the point specified in a) above, the power shall be increased to maximum take-off power and a steady climb initiated and maintained over the noise measurement time period;
- c) airspeed established in a) above shall be maintained throughout the take-off reference procedure;
- d) the steady climb shall be made with the rotor speed stabilized at the maximum rpm for power-on operations
- e) a constant take-off configuration selected by the applicant shall be maintained throughout the take-off reference procedure except that the landing gear may be retracted; and
- the weight of the helicopter shall be the maximum take-off weight.

J. May et a southern in

THE PROPERTY

The approach procedure shall be established as follows:

a) the helicopter shall be stabilized and following a 6.0° approach path;

Helicopter Approach

Noise Tests

- b) the approach shall be made at a stabilized airspeed equal to the best rate of climb speed $V_{\nu,-}\pm 3$ knots, or the maximum speed of the curve contiguous to the ordinate of the limiting height-speed envelope ± 3 knots (± 3 knots), whichever is the greater, with power stabilized during the approach and over the flight path reference point, and continued to 50 feet above ground level
- c) the approach shall be made with the rotor speed stabilized at the maximum rpm for power-on operations.
- d) the constant approach configuration used in airworthiness cartification tests, with the landing gear extended, shall be maintained throughout the approach reference procedure; and
- e) the weight of the helicopter shall be the maximum landing weight

Microphone **Positions** Approach Ground Track Approach

Helicopter Flyover Noise Tests

The flyover procedure shall be established as follows:

- a) the helicopter shall be stabilized in level flight overhead the flight path reference point at a height of 150 m (492 ft);
- b) a speed of $0.9~V_{H}$ or $0.9~V_{NE}$, whichever is the lesser, shall be maintained throughout the overflight reference procedure;

NOTE: V_H is the maximum speed in level flight at maximum continuous power.
V_{NE} is the never exceed speed.

- c) the overflight shall be made with the rotor speed stabilized at the maximum rpm; for power-on operations.
- d) the helicopter shall be in the cruise configuration; and

e) the weight of the helicopter shall be the maximum take—off weight.

DOCUMENTARY ANALYSES

- 8.0 <u>Documentary Analyses/Processing of Trajectory and Meteorological</u>

 <u>Data</u> This section contains analyses which were performed to document the flight path trajectory and upper air meteorological characteristics during the TwinStar test program.
- 8.1 Photo-Altitude Flight Path Trajectory Analyses Data acquired from the three centerline photo-altitude sites were processed on an Apple IIe microcomputer using a VISICALC® (manufacturer) electronic spreadsheet template developed by the authors for this specific application. The scaled photo-altitudes for each event (from all three photo sites) were entered as a single data set. The template operated on these data, calculating the straight line slope in degrees between the helicopter position over each pair of sites. In addition, a linear regression analysis was performed in order to create a straight line approximation to the actual flight path. This regression line was then used to compute estimated altitudes and CPA's (Closest Point of Approach) referenced to each microphone location (Note: Photo sites were offset from microphone sites by 100 feet). The results of this analysis are contained in the tables of Appendix F.

<u>viscussion</u> ~ While the photo-altitude data do provide a reasonable description of the helicopter trajectory and provide the means to effect distance corrections to a reference flight path (not implemented in this report), there is the need to exercise caution in interpretation of the data. The following excerpt makes an important point for those trying to relate the descent profiles (in approach test series) to resulting acoustical data.

In our experience, attempts by the pilot to fly down a very narrow VASI beam produce a continuously varying rate of descent. Thus while the mean flight path is maintained within a reasonable degree of test precision, the rate of descent (important parameter connected with blade/vortex interactions) at any instant in time may vary much more than during operational flying. (Ref. 8)

Further, care is necessary when using the regression slope and the regression estimated altitudes; one must be sure that the site-to-site slopes are similiar (approximate constant angle) and that they are in agreement with the regression slope. If these slopes are not in agreement, then use photo altitude data along with the site-to-site slopes in calculating altitude over microphone locations. Also included for reference are the mean values and standard deviations for the data collected at each site, for each series. These data display the variability in helicopter position within a given test series.

8.2 <u>Upper Air (500-2000 ft) Meteorological Data</u> - This section documents the coarse variation in upper air meteorological parameters as a function of time for the June 7 test program. References are also made to surface meteorological data.

The National Weather Service office in Sterling, Virginia provided preliminary data processing resulting in the data tables shown in Appendix H. Supplementary analyses were then undertaken to develop time histories of various parameters over the period of testing for selected altitudes. Each time history was constructed using least square linear regression techniques for the five available data points (one for each launch). The plots attempt to represent the gross (macro) meteorological trends over the test period.

Temperature - Figure 8.1 shows the time history of temperature (degree Celsius) for June 7, 1983. Between the hours of 7 and 9 a.m. we see a slight temperature inversion up to the 500-foot level, concurrent with static and level flyover portions of the test. Aside from the presence of this inversion layer, the air mass tends to be stable with a normal lapse rate as one would expect for a typical summer day, with gradual warming of the earth's surface as a function of time. For the takeoff/approach portion of this test, only surface meteorological data were available.

National Weather Service records show surface temperatures on the order of 20 - 30°C for these test series.

FIGURE 8.1

FIGURE 8.2

Relative Humidity - Figure 8.2 shows the (7-9 a.m.) time history of relative humidity for June 7. From the figure, it can be seen that a decrease in surface RH from 97% at 7 a.m. to 75% at 9 a.m. existed which coincides with the expected burnoff of grounde moisture with solar heating of the earth's surface. Similar decreases occur at the higher altitudes as the figure shows.

The primary concern with relative humidity is its influence in controlling atmospheric absorption of sound. In considering a center frequency of 500 Hz we see from reference ARP 886 (Ref.) that a constant absorption coefficient is applicable for the stated range percent relative humidity. The reader may consider undertaking a more extensive assessment of absorption influences.

Wind Data - Figure 8.3 and 8.4 show the time history of the wind velocity from 7 a.m. to 9 a.m. on June 7. Figure 8.3 shows the magnitude of the head/tail wind component (5 to 10 knots), while figure 8.4 shows the magnitude of the cross wind component (approximately 7 knots). These wind conditions as reported existed during the level flyover portion of the test. The reader should note that wind direction (and its influence as a head or tail wind) is related to the helicopter heading. During the test, level flyover operations were conducted alternately in the 300 - 120° directions to facilitate quick turnaround times between events.

During the takeoff/approach portion of this test, only surface meteorological data from the National Weather Service were available. Examination of this data reveals ground winds on the order of 10 knots from the 330 direction, creating a headwind condition for takeoffs and a tailwind condition for approaches.

Discussion - In the context of a noise measurement/flight test one attempts to avoid so-called anomalous meteorological conditions, (see ref. 3) a concept that is difficult to define. Although the reasons behind the requirement to avoid "anomalous conditions" arose from concerns involved with atmospheric absorption, one might extend the requirement to include concerns for smooth flight, and normal attitudinal operation of the helicopter. While extreme cross wind components and/or strong shifts in wind in the vicinity of the test site might suggest the presence of buffeting or turbulance, it is primarily the pilot's reported ease or difficulty in flying the helicopter which identifies a potential problem. While the data do suggest the presence of variation in wind speed and direction (and the presence of moderate wind strength) they do not connote extreme conditions which might lead to senous concern. Most importantly there were no pilot reports of turbulence or difficulty in flight control.

As a final note, the influence of wind on blade-vortex interactions (a strong function) cannot be completely addressed using the data presented in this section. Rather, it is necessary to acquire data virtually concurrent with the flight operations and in very close proximity to the test helicopter. It is anticipated that future tests will employ tethered ballon systems or acoustical sounding, SODAR systems in close proximity to the test area.

HEAD/TAIL WIND

FIGURE 8.3

This plot indicates a headwind for operations in the 300 degree magnetic direction.

CROSS WIND

FIGURE 8.4

This plot indicates a right side corsswind for operations in the 120 degree magnetic direction.

EXPLORATORY ANALYSES AND DISCUSSIONS

9.0 Exploratory Analyses and Discussion - This section is comprised of a series of distinct and separate analyses of the data acquired during the Aerospatiale TwinStar noise measurement program. In each analysis section an introductory discussion is provided describing pre-processing of data (beyond the basic reduction previously described), followed by presentation of either a data table, graph(s), or reference to appropriate appendices. Each section concludes with a discussion of salient results and presentation of conclusions.

The following list identifies the analyses which are contained in this section.

- 9.1 Variation in noise levels with airspeed for level flyover operations
- 9.2 Static data analysis: source directivity and hard vs. soft propagation characteristics
- 9.3 Comparison of noise data: 4-foot vs. ground microphones
- 9.4 Duration effect analysis
- 9.5 Analysis of variability in noise levels for two sites equidistant over similar propagation paths
- 9.6 Variation in noise levels with airspeed and rate of descent for approach operations
- 9.7 Analysis of ground-to-ground acoustical propagation for a nominally soft propagation path
- 9.8 Air-to-ground acoustical propagation analysis

9.1 Variation in Noise Levels with Airspeed for Level Flyover

Operations - This section analyzes the variation in noise levels for level flyover operations as a function of airspeed. Data acquired from the centerline-center location (site 1) magnetic recording system (see Appendix A) have been utilized in this analysis. All data are "as measured", uncorrected for the minor variations in altitude from event to event.

The data scatter plotted in Figures 9.1 through 9.4 represent individual noise events (for each acoustical metric). The line in each plot links the average observation at each target airspeed.

Discussion - The plots show the general trend that can be expected with an increase in airspeed during level flyover operations. It has been observed that as a helicopter increases its airspeed, two acoustically related events take place. First, the noise event duration is decreased as the helicopter passes more quickly. Second, the source acoustical emission characteristics change. These changes reflect the aerodynamic effects which accompany an increase in speed. At speeds higher than the speed for minimum power, the power required (torque) increases with an increase in airspeed. These influences lead to a noise intensity versus airspeed relationship generally approximated by a parabolic curve. At first, noise levels decrease with airspeed, then an upturn occurs at as a consequence of increasing advancing blade tip Mach number effects, which in turn generate impulsive noise.

The noise versus airspeed plots for the Aerospatiale TwinStar are shown for various acoustical metrics in Figures 9.1 through 9.4. The TwinStar

noise level relationships follow a generally parabolic pattern (plotted as straight line segments) characterized by a sharp upturn in noise level at approximately 120 mph. A similar curve shape is ovserved for each metric. This airspeed is equivalent to a translational Mach Number of 0.155 (120 mph x 1.467/1135.6) This airspeed dependent Mach Number increases by 0.013 for every 10 mph increase in airspeed. The rotational Mach Number remains relatively constant at .6371 ((394 rpm/60) x (PI x 35.07)/1135.6). Advancing tip Mach Number relationships corresponding to airspeeds are presented in the table below. The point of inflection in the noise level airpseed relationship is therefore associated with an advancing tip Mach Number of approximately 0.79. From this point forward, noise level increases approximately 3 dB per 10 mph (3 dB/0.013 change in Mach Number).

Table 9.1

IAS (MPH)	MA		
90	•753		
100	.766		
110	•779		
120	.792		
130	•805		
140	.818		
150	.831		

TwinStar Level Flyover Plots

90十

89-

884

374

864

354

844

33+

324

31+

894.

TARGET IAS (MPH)

90 100 110 120 130 140 150 160

FIGURE 9.2

FIGURE 9.3

FIGURE 9.4

Path Propagation Characteristics - This analysis is comprised of two principal components. First, the plots shown in Figures 9.5 through 9.8 depict the time averaged directivity patterns for various static operations for measurement sites located equidistant from the hover point. The second component involves the fact that one of the two sites lies separated from the hover point by a hard concrete surface, while the other site is separated from the hover point by a soft grassy surface. The difference in the propagation of sound over the two disparate surfaces is reflected in the difference between the upper and lower curves in each plot. A figure (Figure 9.9) is provided showing the microphone positions and the hard and soft paths at the end of this section.

Time averaged (approximately 60 seconds) data are shown for acoustical emission directivity angles (see Figure 6.1) established every 45 degrees from the nose of the helicopter (zero degrees), in a clockwise fashion.

Magnetic recording data plotted in these figures can be found in Appendix C for microphones 5H and 2. A schematic of the typical hover-in-ground effect measurement configuration is shown in Figure 9.9.

<u>Discussion</u> - The following paragraphs highlight salient features associated with static test data.

HIGE - Noise data collected for the Hover-In-Ground-Effect operation are shown in Figure 9.5. The TwinStar displays an acoustical radiation pattern that is dominant on the left side of the aircraft. The minimum and maximum noise levels occur for the 0 and 180 degree emission angles corresponding to the nose and engine exhaust port respectively (see Figure 1.1).

Further, examination reveals that this left side dominance in emission pattern cannot be attributed to placement of tail rotor system, but is possibly due to the clockwise rotating main rotor interacting with previously generated vortices. The average difference in noise levels (hard versus soft path) is 6 db; clearly underscoring the influence of surface characteristics on noise propagation.

HOGE - Noise data collected for the Hover-out-of-ground effect (HOGE) operation are shown in Figure 9.6. As found for the HIGE operation, the HOGE operation also displays an acoustic radiation pattern that is dominant at the left side of the aircraft. The minimum and maximum noise levels are associated with the 0 and 225 degree emission angles corresponding to the nose and left rear quadrant. The average difference in noise levels propagated across hard and soft paths is 6 dB, reflecting the influence of surface characteristics on the propagation of sound.

Further examination of Figure 9.6 reveals that for 2 emission angles (135 and 180 degrees), the noise levels measured for the soft path are 2 to 3 dB greater that hose for the hard path. This anomolous result is likely associated with variant meterological conditions (especially wind) influencing blade-vortex interactions.

Flight Idle - Noise data for the flat pitch, flight idle (FI) operation are shown in Figure 9.7. This figure displays the same trend that has been observed for other static operations in regard to acoustic emission radiation pattern. However, for the FI operation, we see the maximum noise levels occurring at the 270 degree emission angle, corresponding to the left side of the aircraft. An interesting point worth noting is that the 180 degree emission angle, corresponding to the engine exhaust ports is 2 to 3 dB less in noise levels than the right side of the aircraft where the tail rotor system is mounted.

Ground Idle - Figure 9.8 shows data collected for four directivity angles for the relatively quiet ground idle operation. Significant differences are observed in average sound level are for the two different paths under consideration underscoring the significant role that ground surface characteristics can play in heliport planning. While some differences are observed in the directivity of acoustical radiation the overall pattern is smoother and less characterized by sharp nodes and maxima.

Environmental Impact - The table shown below presents observations concerning noise impact and acceptability based on consideration of typical urban/community ambient noise levels and the levels or urban transportation noise sources. Interpretations assume that event durations reflect static operational scenarios (usually one minute to 15 minutes). In general, the interpretation of environmental impact requires careful consideration of the ambient sound levels in the vicinity of the specific heliport under consideration. A useful document for further interpretation is Reference 9.

TABLE 9.2

A-Weighted Noise Level Ranges

60 dB - Urban ambient noise level
Mid 60's - Urban ambient noise level
70 dB - Noise level of minor concern
Mid 70's - Moderately intrusive noise level
80 dB - Clearly intrusive noise level
Mid 80's - Potential Problems due to noise
90 dB - Noise level to be avoided for any length of time.

Helicopter Hover Noise Test

Helicopter Rotates in 45° Steps 8 Microphone Positions

9.3 Comparison of Measured Sound Levels: 4 Foot vs. Ground Microphones - This analysis addresses the comparability of noise levels measured at ground level and at 4 feet above the ground surface. The topic is discussed in the context of noise certification testing requirements. The analysis involves examination of differences between noise levels acquired for ground mounted and 4-ft mounted microphone systems. The objectives of this analysis are as follows: 1) observe the value and variability of ground/4-ft microphone differences and identify the degree of phase coherence and 2) examine the variation with operational configuration.

The data employed in this analysis are from the microphone site #1 magnetic recording system (Appendix A). The mean differences between the ground and four foot microphones are shown in Table 9.3 for eight different test series.

In conducting this analysis, our initial assumption was that the ground-mounted microphone experiences phase coherent pressure doubling (a reasonable assumption at the frequencies of interest). At the 4-foot microphone, one would expect to see a lower value, somewhere within the range of 0 to 3 dB, depending on the degree of random verses coherent phase between incident and reflected sound waves. It is also possible to experience phase cancellation between the two sound paths. If cancellation occurs at dominant frequencies, then one is likely to observe noise levels at the 4-foot microphone more than 3 dB below the ground microphone values. In fact, data presented in this section display

significant cancellation with instances of 5.7 dB (weighted metric) lower levels at the 4-foot microphone. Figure 9.10 provides a schematic of the various "difference regions" associated with different relationships between incident and reflected sound waves.

Discussion - It is argued that acquisition of data from ground-mounted microphones provides a cleaner spectrum, closer to the spectrum actually emitted by the helicopter--that is, not influened by a mixture of constructive and destructive ground reflections. Theoretically, one would be interested in correcting ground-based data to levels expected at 4 feet or vice versa in order to maintain equally stringent regulatory policy. In other words, to change a certification limit at a 4-ft microphone to fit a ground-based microphone test, one theoretically would have to increase the limit by an amount necessary to maintain equal stringency.

Examination of the results in Table 9.3 show that most differences do fall between 3 and 5 dB. These results are consistent with theory and suggest that a degree of cancellation typically accompanies the 3 dB difference one would expect for random versus coherent phase relationships.

The variability in test results between operations modes displays no clear pattern. The variation in difference in values can be considered to reflect differences in the "acoustical angle" or the angle of incidence at the time of the maximum noise. These geometrical factors are also joined by differences in spectral content in influencing resulting sound level values. A narrow band analysis of the data would identify the specific frequencies where cancellation and reinforcement effects are present (and dominant) for various operational modes.

FIGURE 9.10

RELATIONSHIP BETWEEN INCIDENT AND REFLECTED SOUND WAVES

TABLE 9.3

HELICOPTER: TWINSTAR

COMPARISON OF

GROUND AND 4 FT. (1.2 M) MICROPHONE DATA

TEST		SAMPLE	TARGET IAS		(GND MIC.) n		
SERIES	OPERATION	SIZE	(KTS)	SEL	AL	EPNL	PNLTM
A	500' LF0	6	130.5	5	4.8	5.2	5
8	500' LFO	6	116	5.1	4.9	5.4	5
C	500' LF0	5	101.5	3.4	2.9	3.9	2.8
D	1000' LFO	7	130.5	3.8	3.8	4	5.7
E	1CAO T/0	8	63	2.9	3.4	3.1	2.6
F	ICAO APP	7	63	3.8	3.8	3.6	4.2
6	TAKEOFF	4	63	3.4	3.5	3.5	2.8
H	APPROACH	4	63	3.9	3.6	4	4.1
		WEIGHTED AVE	3.9	3.95	4.07	4.08	

- 9.4 Analysis of Duration Effects This section consists of three parts, each developing relationships and insights useful in adjusting from one acoustical metric to another (typically from a maximum level to an energy dose). Each section quantitatively addresses the influence of the event duration.
- 9.4.1 Relationships Between SEL, AL and $^{T}10$ This analysis explores the relationship between the helicopter noise event (intensity) time-history, the maximum intensity, and the total acoustical energy of the event. Our interests in this endeavor include the following:
- 1) It is often necessary to estimate an acoustical metric given only part of the information required.
- 2) The time history duration is related to the ground speed and altitude of a helicopter. Thus any data adjustments for different altitudes and speeds will affect duration time and consequently the SEL (energy metric). The requirement to adjust data for these effects often arises in environmental impact analysis around heliports. In addition, the need to implement data corrections in helicopter noise certification tests further warrants the study of duration effects.

Two different approaches have been utilized in analyzing the effect of event 10-dB-down duration (DURATION or T_{10}) on the accumulated energy dose (Sound Exposure Level).

Both techniques are empirical, each employing the same input data but using a different theoretical approach to describe duration influences.

The fundamental question one may ask is "If we know the maximum A-weighted sound level and we know the 10-dB-down duration time, can we with confidence estimate the acoustical energy dose, the Sound Exposure Level?" A rephrasing of this question might be: If we know the SEL, the AL, and the 10-dB-down duration time (DURATION), can we construct a universal relationship linking all three?

Both attempts to establish relationships involve taking the difference between the SEL and AL (delta), placing the delta on the left side of the equation and solving as a function of duration. The form which this function takes represents the differences in approach.

In the first case, one assumes that delta equals some constant K(DUR) multiplied by the base 10 logarithm of DURATION, i.e.,

 $SEL - AL = K(DUR) \times LOG(DURATION)$

In the second case, we retain the $10 \times LOG$ dependency, consistent with theory, while achieving the equality through the shape factor, Q, which is some value less than unity i.e., $SEL-AL = 10 \times LOG(Q \times DURATION)$. In a situation where the flyover noise event time history was represented by a step function or square wave shape, we would expect to see a value of Q

equaling precisely one. However, we know that the time history for typical non-impulsive event is much closer in shape to an isoceles triangle and consequently likely to have a Q much closer to 0.5.

Another possible use of this analytical approach for the assessment of duration effects is in correcting noise certification test data which were acquired under conditions of nonstandard ground speed and/or distance.

Discussion - Each of the noise template data tables lists both of the duration related figures of merit for each individual event (see Appendix B). One immediate observation is the apparent insensitivity of the metrics to changes in operation, and the extremely small variation in the range of metric values, nearly a constant Q = 0.4 and a stable K(A) value of 7.0. Data have been plotted in Figure 9.11 which show the minor variation of both metrics with airspeed for the level flyover operation for the microphone site 1 direct read system. The lack of variation in the parameters, suggests that a simple and nearly constant dependency exists between SEL, AL, and log DURATION, relatively unaffected by changes in airspeed, in turn suggesting a consistent time history shape for the range of airspeeds evaluated in this test. As SEL increases with airspeed, the increase appears to be related to increase in AL_M but mitigated in part by reduced duration time (and a nearly constant K(A)=7).

FIGURE 9.11

It is interesting to note that similar results were found for the Bell 222 helicopter, (Ref.10) suggesting that different helicopter models will have similar values for K and Q. This implies that it would not be necessary to develop unique constants for different helicopter models for use in implementing duration corrections. Caution is raised, however, to avoid any firm conclusion. The possibility exists that this particular analytical technique lacks the sensitivity necessary to detect distance and airspeed functionality.

9.4.2 Estimation of 10 dB Down Duration Time - In some cases, one does not have access to 10 dB down duratin time (DURATION) information. A moderate to highly reliable technique for estimating DURATION for the TwinStar is developed empirically in this section.

The distance from the helicopter to the observer at the closest point of approach (expressed in feet) divided by the airspeed (expressed in mph) yields a ratio, hereafter referred to as (D/V). This ratio has been compiled for various test series for micorphone sites 1,2 and 3 and has been presented in Table 9.4 along with the average DURATION expressed in seconds. A linear regression was performed on each data set in Table 9.4 and those results are also displayed in Table 9.4. Here one observes generally high correlation coefficients, in the range of 0.75 to 0.92. The regression equations relating DURATION with D/V are given as

Centerline center, Microphone Site 1: $T_{10} = [2.75 \times (D/V)] + 3.6$ Sideline South, Microphone Site 2: $T_{10} = [2.15 \times (D/V)] + 7.3$ Sideline North, Microphone Site 3: $T_{10} = [1.33 \times (D/V)] + 8.6$

It is interesting to note that each relationship has a similar slope but the sideline site equations exhibit intercept values roughly 4 units (seconds) greater than the centerline site equation. This demonstrates that sideline sites generally experience flyover time histories which are longer and less peaked than the centerline site for a given distance and velocity. Because the regression analyses were conducted for a population consisting of all test series (which involved the operations in both directions) it is not possible to comment on left-right side acoustical directivity of the helicopter.

In summary, one sees that knowledge of the helicopter distance and velocity will enable an observer reasonably estimate the 10 dB down duration time.

TABLE 9.4

DURATION (T~10) REGRESSION ON D/V

HELICOPTER: TWINSTAR

SITE 1

2115 1						
	COCKPIT					
	PHOTO					
TEST	DATA	AV6	AVG			
	V AV6	DUR(A)		D/V		
JERTED	V 1140	DUNINA	LUI NEI	<i>U</i> / V		
A	132.43	12.7	484.4	3.7	LINEAR	
В	114.71	15.2	513	4.5	REGRESSION	
Č	132.8	16	484	3.6	VEAVERATOR	
Ď	133.43	24.4	943.4	7.1	SITE #1	
Ē	61	29.7	602	9.9	VI. 12 112	
F	70.83	13.2	360.8	5.1	SLOPE	2.75
G	67.5	21.7	445.9	6.6	INTERCEPT	3.63
H	74.25	23	398.6	5.4	R SQ.	.83
H	141.8	11.3		3.4	R	.91
N	86	20.3		5.7	: Sample	10
••	00	2010	10010	0.7	Gran CE	10
SITE 2						
A	132.43	15.3	690.6	5.2	LINEAR	
8	114.71	19.9	0,0.6 711	ó.2	REGRESSION	
C	132.8	22	690.4	5.2	KEOKE331 UF	
D	133.43	23.4		3.2 8	CITE MO	
E	61	33.2	1064.1 777.5	12.7	SITE #2	
F	70.83	27.6		8.6	SLOPE	2.15
6	67.5	25.9		9.8	INTERCEPT	7.29
H	74.25	32	633.2	7.6 8.5	R SQ.	.75
M	141.8	15.8	691	4.9	R Se.	
N	86	23.3	692	4. <i>9</i> 8	r Sample	.87 10
11	00	23.3	072	0	SHIFLE	10
SITE 3						
A	132.43	15.4	690.8	5.2	LINEAR	
В	114.71	17.7	711.3	6.2	REGRESSION	
Ċ	132.8	17.3	690.2	5.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Ď	133.43	22.9	1066	8	SITE #3	
Ē	61	26.6	757	12.4	V. I. IIV	
F	70.83	16.9	605.2	8.5	SLOPE	1.33
6	67.5	20.5	656.8	9.7	INTERCEPT	8.64
H	74.25	15.4	625.6	8.4	R SQ.	.61
Ä	141.8	13.7	690.6	4,9	R Su.	.78
N	86	21.7	692	8	SAMPLE	10
''	00		U/ L	U	ALE II PP	

Synthesis of Results - It is now possible to merge the results of Section 9.4.1 with the findings above in establishing a relationship linking (D/V) with SEL and AL. Given the approximation

 $SEL = AL + (10 \times LOG(0.45 \times DURATION))$

it is possible to insert the computed value for $^{T}10$ (DURATION) into the equation and arrive at the desired relationship.

It is worth noting that the general trend observed for the TwinStar (longer sideline duration) is just opposite the trend observed for the Hughes 500D (Ref. 1). It appears necessary to carefully consider helicopter specific characteristics in estimating SEL or other energy-dose acoustical metrics at sideline locations. It is significant to note that slopes computed above for the TwinStar are very similar (approximately 2) to those observed for the Hughes 500D, suggesting that a general relationship would do well in assessing changes or differentials in noise level with changes in either distance or velocity.

9.4.3 Relationship Between SEL minus AL and the Ratio D/V - The difference between SEL and AL_M or conversely, EPNL and PNLT_M (in a certification context), is referred to as the DURATION CORRECTION. This difference is clearly controlled by the event T10 or (10 dB down duration time) and the acoustical energy contained within those bounds. As discussed in previous sections, the T10 is highly correlated with the ratio D/V. This analysis establishes a direct link between D/V and the DURATION CORRECTION in a manner similar to that employed in Section 9.4.2.

Table 9.5 provides a summary of data used in regression analyses for microphones 1, 2 and 3. The regression equations along with other statistical information is also provided in Table 9.5.

It is encouraging to note the strong correlations (coefficients greater than 0.85) which suggest that SEL can be estimated directly (and with confidence) from the ALM and knowledge of D/V. It is also interesting to note that similar regression equations. As mentioned in Section 9.4.2, it is difficult to comment explicitly (and quantitatively) on source directivity because operations were conducted in both directions.

Regardless, one can see that centerline/sideline differences exist. The reader is cautioned not to expect these relationships to necessarily hold for D/V ratios beyond the range explored in these analyses.

TABLE 9.5
SEL-ALm REGRESSION ON D/V

HELICOPTER: TWINSTAR

SITE 1

	COCKPIT					
	PHOTO					
TEST	DATA	AV6	AVG			
SERIES	V AV6	SEL-ALIN	EST ALT	DV		
A	132.43	7.1	484.4	3.7	LINEAR	
B	114.71			4.5	REGRESSION	
C	132.8			3.6		
D	133.43	9.4	943.4	7.1	SITE #1	
E	61		602	9.9		
	70.83		360.8	5.1	SLOPE	.56
	67.5		445.9	6.6	INTERCEPT	5.21
H	74.25		398.6	5.4	R SQ.	.84
M	141.8	6.3	485.1	3.4	R	.92
N	86	8.6	486.6	5.7	SAMPLE	10
SITE 2						
A	132.43	8.1	690.6	5.2	LINEAR	
			711	6.2	REGRESSION	
3	132.8	9.2	698.4	5.2		
Đ	133.43		1064.1	8	SITE #2	
E	61		777.5	12.7		
F	70.83	10.5	610.1	8.6	SLOPE	.44
6	67.5	10.4	664.2	9.8	INTERCEPT	6.3
H	74.25	11.4	633.2	8.5	R SQ.	.74
H	141.8	7.8	691	4.9	R	.86
N	86	9.6	692	8	SAMPLE	10
SITE 3						
A	199 40	Λ 1	400 0	2 9	I THEAD	
	132.43 114.71	0 P	690.8 711.3	5.2	LINEAR	
_					REGRESSION	
Đ	132.8 133.43	9.5	690.2		PITE MA	
E	61	10.3	1066 75 7	8 12.4	SITE #3	
F	70.83	8.5	695.2	8.5	ei nor	24
6	67.5	9.5	656.8	9.7	SLOPE Intercept	.26 6.87
H	74.25	8.1	625.6	9.7 8.4	R SQ.	.58
H	141.8	7.7	690.6	4.9	R SN.	.76
N	86	9.5	692	8	k Sample	10
14	00	7.5	974	U	SHILLE	10

Propagation Paths - This analysis examines the differences in noise levels observed for two sites each located 500 feet away from the hover point over similar terrain. The objective of the analysis was to examine variability in noise levels associated with ground-to-ground propagation over nominally similar propagation paths. The key word in the last sentence was nominally,...in fact the only difference in the propagation paths is that microphone lH was located in a slight depression, (elevation is minus 2.5 feet relative to the hover point), while site 2 has an elevation of plus 0.2 feet relative to the hover point. This is a net difference of 2.7 feet over a distance of 500 feet. This configuration serves to demonstrate the sensitivity of ground-to-ground sound propagation to minor terrain variations.

<u>Discussion</u> - The results presented in Table 9.6, 9.7, and 9.8 show the observed differences in time average noise levels for eight directivity angles and the spacial average. In each case, magnetic recording data (Appendix C) have been used in the analyses. It is observed that significant differences in noise level occur for the low angle (ground-to-ground) propagation scenarios.

It is speculated that very minor variations in site elevation (and resulting microphone placement) lead to site-to-site differences in the measured noise levels for static operations. Differences in microphone height result in different positions within the interference pattern of incident and reflected sound waves. It is also appropriate to consider

whether variation in the acoustical source characteristics contributes to noise level differences. In this analysis, magnetic recording data from microphone site 2 are compared with data recorded at site 1H approximately one minute later. That is, the helicopter rotated 45 degrees every sixty seconds, in order to project each directivity angle (there is a 45 degree separation between the two sites). In addition to source variation, it is also possible that the helicopter "aim," based on magnetic compass readings may have been slightly different in each case, resulting in the projection of different intensities and accounting for the observed differences. A final item of consideration is the possibility of refraction of sound waves (due to thermal or wind gradients) resulting in shadow regions. It is worth noting that, generally, similar results have been observed for other test helicopters (Bell 222, ref. 10; Aerospatiale Dauphin, ref. 11).

Regardless of what the mechanisms are which create this variance, one perceives that static operations display intrinsically variant sound levels, in both direction and time, and also potentially variant (all other factors being normalized) for two nominally identical propagation paths.

TABLE 9.6

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: TWINSTAR

OPERATION: HOVER-IN-GROUND

DIRECTIVITY ANGLES (DEGREES) La										av(360 DEGREE)	
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.	
·	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEG	
SOFT 1H SOFT 2	62 67	66.5 72.2	61.2 70.4	64.8 73.4	67.3 75.9	66.6 74.6	68.1 73.3	67.2 69.8	66 72.8	65.5 72.1	
DELTA d8	5	5.7	9.2	8.6	8.6	8	5.2	2.6	6.8	6.6	

* DELTA dB = (SITE 1H) minus (SITE 2)

TABLE 9.7

COMPARISON OF
NOISE VERSUS DIRECTIVITY ANGLES
FOR
TWO SOFT SURFACES

HELICOPTER: TWINSTAR

OPERATION: HOVER-OUT-OF-GROUND

DIRECTIVITY ANGLES (DEGREES)										Lav(360 DEGREE)
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.
	LEQ	LEG								
SOFT 1H	66.5	72.5	68.3	74	78.4	79.2	71.1	66.9	74.5	72.1
SOFT 2	72.3	76.2	75.1	79.6	83	79.2	74.8	75.3	78.2	76.9
DELTA dB	5.8	3.7	6.8	5.6	4.6	0	3.7	8.4	3.7	4.8

^{*} DELTA dB = (SITE 1H) minus (SITE 2)

TABLE 9.8

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: TWINSTAR

OPERATION: FLIGHT IDLE

DIRECTIVITY ANGLES (DEGREES) Lav(360 D									DEGREE	
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.
******************	LEG	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEG	LEG
SOFT 1H SOFT 2	56.6 65	57.8 69.3	60.2 70	62.1 73.4	60.8 68.6	62.8 72.5	61.2 71.5	59.9 67	60.6 70.4	69.2 69.7
DELTA d8	8.4	11.5	9.8	11.3	7.8	9.7	10.3	7.:	9.3	9.5

^{*} DELTA dB = (SITE 1H) minus (SITE 2)

9.6 Variation in Noise Levels With Airspeed for 6 and 9 Degree Approach
Operations - This section examines the variation in noise level for
variations in approach angle. This analysis has two objectives: first,
to evaluate further the realm of "Fly Neighborly" operating possibilities,
and second, to consider whether or not it is reasonable to consider
establishing a range of approach operating conditions for noise
certification testing. The appropriate "as measured" acoustical data,
contained in Appendix A, have been tabulated in Table 9.9 and plotted
(corrected for the minor differences in altitude) in Figures 9.12 - 9.13.

Discussion - In the approach operational mode, impulsive (banging or slapping) acoustical signatures are a result of the interaction between vortices (generated by the fundamental rotor blade action) colliding with successive sweeps of the rotor blades (see Figure 9.14). As reported in reference 11, for certain helicopters, maximum interaction occurs at airspeeds in the 50 to 70 knot range, at rates-of-descent ranging from 200 to 400 feet per minute. When the rotor blade enters the vortex region, it experiences local pressure fluctuations and associated changes in blade loading. These perturbations and resulting pressure gradients generate the characteristic impulsive signature.

The data presented in Figures 9.12 and 9.13 portray the variation in noise level along the ground track for centerline noise sites as the approach angle (rate of descent) changes from 6 to 9 degrees) with airspeed held nominally constant. The 9 degree approach achieves a 2 dB reduction in the intensity metric L_A at each measurement site. The reduction in the energy metric SEL varies from 0 to 2 dB from site 4 to site 5.

UNCLASSIF1ED	AEROSPATIA ADMINISTRA	GUREMENT FLIGHT LE AS 355F TWI LTION WASHINGTO LET AL. AUG 84	NSTA(U) FEDE IN DC OFFICE OF	RAL AVIATION ENVIR.	3 /3	
	A					

È

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Tip Vortex Interaction

It is believed that the descent changes the vertical location of the trip vortices with respect to the blades, thereby changing the relative degree of interaction. From a certification standpoint, it is clear that the 6 degree approach would present a greater noise exposure than the alternative procedure examined.

It is noted that a more exhaustive series of testing would include 5 to 6 airspeeds (and additional microphone locations) for each approach angle. A recent study conducted in France (ref. 14) included a matrix of 24 microphones. While cost and logistical constraints make this unrealistic for evaluation of each civil transport helicopter, one would be prudent to evaluate several centerline and sideline microphone locations for a variety of operational modes in any in-depth "Fly Neighborly" flight test program.

Two other points of concern in developing "Fly Neighborly" procedures are safety and passenger comfort. Rates of descent, airspeed, initial approach altitude and "engine-out" performance are all factors requiring careful consideration in establishing a noise abatement approach. Finally, while certain operational modes may significantly reduce noise levels, there may be an unacceptable acceleration /deceleration or rate-of-descent imposed on passengers. This clearly presents an important trade-off to consider in any commercial air-shuttle operation.

Table 9.9

	Average	Average
	AL	SEL
		
6 ⁰	83.9	91.3
9°	80.9	89.6
9 ⁰ adjusted	81.8	90.2

The 9 degree metrics were adjusted for differences in altitude between the 6 and 9 degree approach operations.

TWINSTAR APPROACH OPERATION PLOTS

TWINSTAR APPROACH OPERATIONS 90+ 89. 88-87-6 QEGREE 86 DB -85 84 83 82-9 DEG ADJUSTED 81 30 MICROPHONE SITES

FIGURE 9.12

FIGURE 9.13

9.7 Analysis of Ground-to-Ground Acoustical Propagation

9.7.1 Soft Propagation Path - This analysis involves the empirical derivation of propagation constants for a nominally level, "soft" path, a ground surface composed of mixed grasses. As discussed in previous analyses, there are several physical phenomena that influence the diminution of sound over distance. Among these phenomena, spreading loss, ground-to-ground attenuation and refraction are considered dominant in controlling the observed propagation constants.

A-weighted $L_{\mbox{eq}}$ data for the four static operational modes- HIGE, HOGE, Flight Idle, and Ground Idle- have been analyzed in each case for eight different directivity angles. Direct read acoustical data from sites 2 and 4H have been used to calculate the propagation constants (K) as follows:

K = (Leq(site 2) - Leq(site 4))/Log (2/1)

where the Log (2/1) factor represents the doubling of distance dependency (Site 2 is 492 feet and site 4H is 984 feet from the hover point).

For each mode of operation, the average (over various directivity angles) propagation constant has also been computed.

The data used in this analysis (derived from Appendix C) are displayed in Table 9.10 and the results are summarized in Table 9.11.

Discussion - The results shown in Table 9.13 exhibit some minor variation from one operational mode to the next. For the higher elevation angle operation (HOGE), one observes a smaller rate of attenuation. In the case of HIGE and Flight Idle (FI), one observes similar and rather consistent attenuation constants, 37 and 35 respectively. The attenuation constants tend to differ from results reported for the Hughes 500D (ref. 10) and the Aerospatiale Dauphin (ref. 9). As noted in those reports, the relationship dB = 25 log (d1/d2) provided a reasonable working approximation for calculating ground-to-ground diminution of A-weighted sound levels over nominally soft paths out to a distance of 1000 feet.

In the case of the TwinStar however, it appears that a relationship of the form $\Delta dB = 35 \log (d1/d2)$ would perform better.

9.7.2 Hard Propagation Path - This part of the analyses involves the empirical derivation of constants for sound propagation over a "hard" propagation path, a concrete/composite taxi-way surface. The analytical methods described above (Section 9.7.1) are applicable using data from sites 5H and 7H, respectively 492 and 717 feet from the hover site. The data used in this analyses (derived from Appendix D) are shown in Table 9.13 and the results are summarized in Table 9.13. The salient feature of this scenario is the presence of a ground surface which is highly reflective and uniform in composition.

Discussion - The results shown in Table 9.1 exhibit significant mode to mode variation. The results for HOGE are somewhat anomolous, perhaps controlled by refraction effects. At the time of the static test, there was very little wind, a minor temperature inversion and very high humidity. In spite of certain anomolous results, it is clear that sound propagates more efficiently over a hard path. Calculations produce a mean propagation constant of 20 (setting aside the HOGE results) as opposed to 35 for the soft path. In conducting environmental impact analyses involving hard paths between heliports and noise sensitive areas, it appears reasonable to use an approximate propagation costant of 20 in analyzing propagation out to distances of 1000 feet.

TABLE 9.10

DATA UTILIZED IN COMPUTING EMPIRICAL

PROPAGATION CONSTANTS (K)

FOR SOFT SITES (4H + 2)

nstar

6-7-93

SITE 4H (SOFT SITE)

HIGE LEQ		FLT.IDLE	LEQ	GRN.IDLE		HOGE	LE0	
I~0	58.40	J-0A	55.30	J-0B	44.40	K-0	64.70	
1-315	60.40	J-315A	57.80	J-31 58	NA	K-315	65.50	
1-270	63.60	J-278A	61.50	J-2708	48.70	K-270	65.60	
1-225	64.10	J-225A	60.80	J-2258	NA	K-225	69.60	
I-180	63.60	J-180A	59.20	J-180B	49.40	K-180	74.60	
I-135	60.80	J-135A	62.70	J-1358	NA	K-135	75,40	
1-90	58.80	J-90A	59.10	J-908	49.40	K-90	67.30	
I-45	61.60	J-45A	59.20	J-458	NA	K-45	64.70	

SITE 2 (SOFT SITE)

HIGE	LEQ	FLT.IDLE	LEQ	GND.IDLE	LEQ	HOGE	LEQ
1-0	67.90	J-0A	65.40	J-0B	54.50	K-0	72.80
I-315	70.70	j-315A	67.80	J-315B	NA	K-315	75.30
I-270	73.80	J-270A	72.10	J-270B	58.50	K-270	75.50
1-225	75.20	J-225A	72.48	J-225A	NA	K-225	79.70
I-180	76.20	J-180A	69.00	J-180B	NA	K-180	83.50
1-135	73.00	J-135A	73.60	J-1358	NA	K-135	80.20
1-90	70.90	J-90A	69.70	J-90B	58.90	K-90	75.90
1-45	72.60	J-45A	NA	J-45B	NA	K-45	77.10

TABLE 9.11

EMPIRICAL PROPOGATION CONSTANTS (K)
FOR SOFT SITES (4H+2)

H1GE K	FLT.1DLE K	GND.IDLE K	HOGE K
31.67	33.67	33.67	27.00
34.33	33.33		32.67
34.00	35.33	32.67	33.00
37.00	38.67		33.67
42.00	32.67		29.67
40.67	36.33		16.00
40.33	35.33	31.67	28.67
36.67			41.33
	31.67 34.33 34.00 37.00 42.00 40.67 40.33	K K 31.67 33.67 34.33 33.33 34.00 35.33 37.00 38.67 42.00 32.67 40.67 36.33 40.33 35.33	K K K 31.67 33.67 33.67 34.33 33.33 34.00 35.33 32.67 37.00 38.67 42.00 32.67 40.67 36.33 40.33 35.33 31.67

** AVERAGE WITHOUT 135 DEGREE

and the second second second second second

TABLE 9.12

DATA UTILIZED IN COMPUTING EMPIRICAL

PROPAGATION CONSTANTS (K)

FOR HARD SITES (5H + 7H)

TWINSTAR

6-7-83

SITE 5H (HARD SITE)

HIGE	LEQ.	FLT.IDLE	LEO	GRN.IDLE	LEQ	HOGE	LEQ
I-90	72.60	J-90A	75.60	J-90B	ć5.4ú	K-98	78.30
I-45	76.40	J-45A	75.00	J-458	NA	K-45	79.40
1-0	74.00	J-0A	70.30	J-08	65.90	K-0	72.20
1-315	77.30	J-31 5 A	76.50	J-315B	NA	K-315	76.00
1-270	81.50	J-270A	83.00	J-270B	64.60	K-276	77,70
I-225	84.90	J-225A	78.80	J-2258	NA	K-225	86,10
I-180	85.30	J-180A	74.90	J-180B	62.00	K-180	81.90
1-135	79.98	J-135A	77.40	J-135B	NA	X-135	NA

SITE 7H (HARD SITE)

HIGE	LEQ	FLT.IDLE	LEQ	GND.IDLE	LEQ	HOGE	LEQ
1-90	67.23	J-90A	69.85	J-90B	58.66	K-90	75.05
1-45	71.23	J-45A	68.02	J-45B	NA	K-45	77.06
I-0	69.89	J-OA	63.58	J-0B	55.49	K-0	68.67
I-315	73.11	J-315A	71.68	J-3158	NA .	K-315	72.65
1-270	78.68	J-270A	77.38	J-270B	57.64	K-278	75.33
1-225	80.62	J-225A	73.59	J-2258	NA.	K-225	83.14
I-180	79.87	J-180A	67.73	J-180B	55.85	K-188	78.84
I-135	73.98	J-135A	71.15	J-1358	NA.	K-135	76.04

TABLE 9.13

EMPIRICAL PROPOGATION CONSTANTS (K)
FOR HARD SITES (5H+7H)

EMISSION ANGLE	H1 6 E K	FLT.IDLE _ K	GND.1DLE K	HOGE K
90	17.90	19.17	22.47	10.83
45	17.23	23.27		7.80
0	13.70	22.40	34.70	11.77
315	13.97	16.07		11.17
270	9.40	18.73	23.20	7.90
225	14.27	17.37		9.87
180	18.10	23.90	20.50	10.20
135	19.73	20.83		
AVERAGE	15.54	20.22	25.22	9.93
	16.41**			

** AVERAGE WITHOUT 270 DEGREE ANGLE

9.8 Air-to-Ground Acoustical Propagation Analysis - The approach and takeoff operations provided the opportunity to assess empirically the influences of spherical spreading and atmospheric absorption. Through utilization of both noise and position data at each of the three flight track centerline locations (microphones 5, 1, and 4), it was possible to determine air-to-ground propagation constants.

One would expect the propagation constants to reflect the aggregate influences of spherical spreading and atmospheric absorption. It is assumed that the acoustical source characteristics remain constant as the helicopter passes over the measurement array. In past studies (Ref. 10, Ref. 11, Ref. 12), it has been observed that this assumption is reasonably valid for takeoff and level flyover operations. In the case of approach, however, significant variation has been evident. Because of the spacial/temporal variability in approach sound radiation along the (1000 feet) segment of interest, approach data have not been utilized in estimating propagation constants. As a final background note relating to the assumption of source stability, a helicopter would require approximately 10 seconds, travelling at 60 knots, to travel the distance between measurement sites 4 and 5.

In both the case of the single event intensity metric, AL, and the single event energy metric, SEL, the difference between SEL and AL is determined for each pair of centerline sites. The delta in each case is then equated with the base ten logarithm of the respective altitude ratio multiplied by the propagation constant (either KA(AL) or KA(SEL), the values to be determined.

Data have also been analyzed from the 500 and 1000 foot level flyover operations and the KA(AL) has been computed. In this case data were pooled for all centerline sites (5, 1, and 4) in the process of arriving at the propagation constant.

The takeoff analyses are shown in Table 9.14 and 9.15 and are summarized in Table 9.16. Results of the level flyover calculations are presented in Table 9.18. The level flyover and takeoff analyses are also accompanied by a tabulation of results from three previous reports (Tables 9.18 and 9.19).

<u>Discussion</u> - In the case of takeoff data (Table 9.16) one observes a propagation constant of 24.5 (the midway point for two highly variant results, 20 and 30). This variation suggests that the source frequency content plays a significant role in influencing rate of attenuation.

In the case of level flyover data (Table 9.18), one observes a value of approximately 20, somewhat lower than the results found for the Dauphin and the Huges 500 D. A comparison to the Bell 222 (ref. 10), however, does not fare so well (Bell 222, KA(AL) = 27.8). This difference is likely associated with disparate source frequency content and different absorption characteristics on the various test days.

Table 9.20 provides a brief examination of propagation constants for the EPNL acoustical metric, used in noise certification. Calculations show a constant of approximately 13. This constant is in contrast to results for other helicopters summarized in Table 9.21. The reader may consider computing propagation constants for other acoustical metrics as the need arises.

TABLE 9.14

TABLE 9.15

HELICOPTER: TWINSTAR

HELICOPTER: TUINSTAR

TEST DATE: 6-7-83

TEST DATE: 6-7-83

OPERATION: ICAO TAKEOFF

TARGET IAS=63 MPH

OPERATION: STANDARD TAKEOFF
TARGET IAS=63 MPH

MIC. 5-4

MIC. 5-4

EVENT NO. KP(AL) KP(SEL)

EVENT NO.	KP(AL)	KP(SEL)
E26	18.8	10.9
E27	15	11.4
E28	18.8	10.1
E29	20	12.1
E30	20.9	12.4
E31	21	12.9
E32	21.5	12
E33	20.2	12.8
AVERAGE	19.5	11.8

G38 28.8 17.6 G39 36.5 18.7 G40 27.2 15.2 G41 24.8 12.4

AVERAGE 29.3 16

STD. DEV

90% C.1. 5.93 3.27

5.04

2.78

90% C.I. 1.41 0.65

STD. DEV 2.10 0.98

TABLE 9.16

Summary Table of Propagation Constants for Two Takeoff Operations TABLE 9.17

Summary Table for Takeoff Operation AL Metric

ICAO Takeoff Standard Takeoff		19.5 29.3
	Average	24.4

Helicopter		ropagation onstant (k)
Bell 222		N/A
Aerospatiale Dauphin 2		20.06
Hughes 500D		21.15
Aerospatiale TwinStar		24.4
	Average	22.07

TABLE 9.18

TWINSTAR

LEVEL FLYOVER PROPAGATION--AL

OPERATION		MIC 5	MIC 1	Mic S	al Weighted Average	
	N=	6	6	6		
500' (0.9Vh)	avg al=	77.7	77.8	77.3	77.60	
	STD DEV=	.6	.9	.9		
	N=	7	7	7		
1999' (0.9Vh)	avg al=	72.4	71.5	71.5	71.80	
	STD DEV=	.9	.3	1		

 $K = \Delta dB / L06(945.72 / 488.15)$

△d8= 5.80

K= 5.80 / .2872093

K= 20.19

TABLE 9.19

SUMMARY FOR LEVEL FLYOVER OPERATION

AL METRIC

HELICOPTER	PROPAGATION CONSTANT (K)
BELL 222	21.08
AEROSPATIALE DAUPHIN 2	21.40
HUGHES 500D	20.81
AEROSPATIALE TWINSTAR	20.19

AVERAGE = 20.87

and the second

and the same of th

TABLE 9.20
TWINSTAR

LEVEL FLYOVER PROPAGATION--EPNL

OPERATION	MIC 5		MIC 1	MIC 4	EPNL WE1GHTED AVERAGE	
	H =	6	6	6		
500' (0.9Vh)	avg epnl=	88.8	88.7	88.4	88.63	
	STD DEV=	.4	.7	.6		
	N=	7	5	7		
1008' (0.9Vh)	AVG EPNL=	85.1	84.4	84.4	84.66	
	STD DEV≔	.6	.6	.6		

 $K = \Delta d8 / L06(945.72 / 488.15)$

∆d8≈ 3.98

K= 3.98 / .2872093

K= 13.84

TABLE 9.21

SUMMARY TABLE FOR EPNL

HELICOPTER	PROPAGATION CONSTANT (K)
BELL 222	14.33
AEROSPATIALE DAUPHIN 2	18.67
HUGHES 500D	14.80
AEROSPATIALE TWINSTAR	13.84

AVERAGE = 15.41

REFERENCES

- "Determination of Minimum Distance from Ground Observer to Aircraft For Acoustic Tests," Aerospace Information Report 902, Society of Automotive Engineers, May 15, 1966.
- "Flight Path Tracking: Kinotheodolite vs. Camera A comparison of Results. "ICAO Committee on Aviaiton Environmental Protection, Working Group II meeting, Boston, MA, May 1984.
- 3. Richner, Hans and Peter Phillips, "Reproducibility of VIZ Radiosonde Data and Some Sources of Air," <u>Journal of Applied Meteorology</u>, 26, November 1980, May 1981.
- 4. "Measuring Micro-Wind Structure in the Vicinity of the Microphone Array During Noise Certification Testing," ICAO Committee on Aviation Enviroinmental Protection, Working Group II Meeting, Boston, MA, May 1984.
- 5. "Noise Standards: Aircraft Type and Airworthiness Certification," Federal Aviation Regulations Part 36, Department of Transportation, Washington, D.C., June 1974.
- 6. FAR 36, Appendix B, Section B36.2.3.3.
- 7. "International Standards and Recommended Practices Aircraft Noise," Annex 16, International Civil Aviation Organization, May 1981, Appendix 4, paragraph 4.3.
- 8. Westland Helicopters Limited, via P. R. Kearsey, personal communication, January 1984.
- Impact of Noise on People Federal Aviation Administration, Office of Environmental Quality, Washington, DC, May 1977.
- 10. Newman, J. Steven, Edward J. Rickley, Tyrone L. Bland, Sharon A. Daboin. Noise Measurement Flight Test: Data/Analyses Bell 222 Twin Jet Helicopter FAA-EE-84-01, Federal Aviation Administration, Washington, DC, February 1984.
- 11. Newman, J. Steven, Edward J. Rickley, Sharon A. Daboin, Kristy R. Beattie. Noise Measurement Flight Test: Data/Analyses Aerospatiale SA 365N Dauphin Helicopter FAA-EE-84-02, Federal Aviation Administration, Washington, DC, April 1984.
- 12. Newman, J. Steven, Edward J. Rickley, Kristy R. Beattie, Tyrone L. Bland. Noise Measurment Flight Test: Data/Analyses Hughes 500D FAA-EE-84-03, Federal Aviation Administration, Washington, DC, June 1984.

- 13. Cox, C. R., "Helicopter Rotor Aerodynamic and Aeroacoustic Environments," paper at the 4th AIAA Aeroacoustic Conference, Atlanta, GA, October 1977.
- 14. "Procedures de Vol A Empreintes Acoustiques Reduites Pour Le SA 365N Dauphin," ICAO Committee on Aviation Environmental Protection, Working Group II Meeting, Boston, MA, May 1984.

APPENDIX A

Magnetic Recording Acoustical Data and Duration Factors for Flight Operations

This appendix contains magnetic recording acoustical data acquired during flight operations. A detailed discussion is provided in Section 6.0 which describes the data reduction and processing procedures. Helpful cross references include measurement location layout, Figure 3.3; measurement equipment schematic, Figure 5.4; and measurement deployment plan, Figure 5.7. Tables A.a and A.b which follow below provide the reader with a guide to the structure of the appendix and the definition of terms used herein.

TABLE A.a

The key to the table numbering system is as follows:

Table No. A.	1-1.	1
		-
Appendix No		,
Helicopter No. & Microphone Locat	tion	
Page No. of Group		

Microphone No. 1 centerline-center
1G centerline-center(flush)
2 sideline 492 feet (150m) south
3 sideline 492 feet (150m) north
4 centerline 492 feet (150m) west
5 centerline 617 feet (188m) east

NEEDE SEEDEN AND CONTRACT

TABLE A.b

Definitions

A brief synopsis of Appendix A data column headings is presented.

EV	Event Number
SEL	Sound Exposure Level, the total sound energy measured within the period determined by the 10 dB down duration of the A-weighted time history. Reference duration, 1-second.
ALm	A-weighted Sound Level(maximum)
SEL-ALm	Duration Correction Factor
K(A)	A-weighted duration constant where:
	K(A) = (SEL-ALm) / (Log DUR(A))
Q	Time History Shape Factor, where:
	$Q = (100 \cdot 1(SEL-ALm) / (DUR(A))$
EPNL	Effective Perceived Noise Level
PNLm	Perceived Noise Level(maximum)
PNLTm	Tone Corrected Perceived Noise Level(maximum)
K(P)	Constant used to obtain the Duration Correction for EPNL, where:
	K(P) = (EPNL-PNLTm + 10) / (Log DUR(P))
OASPLm	Overall Sound Pressure Level(maximum)
DUR(A)	The 10 dB down Duration Time for the A-weighted time history
DUR(P)	The 10 dB down Duration Time for the PNLT time history
TC	Tone Correction calculated at PNLTm

Each set of data is headed by the site number, microphone location and test date. The target reference condtions are specified above each data subset.

10 m 10 m 110

TABLE NO. A.2-1.1

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 1 JUNE 7,1983 CENTERLINE - CENTER E۷ SEL EPNL PMLTs K(P) DASPLE DUR(A) DUR(P) ALB SEL-ALB K(A) PNLs TC 500 FT. FLYOVER -- TARGET IAS 130.5 NPH 89.6 90.6 90.9 90.2 89.2 90.3 88.2 89.4 88.8 89.3 87.7 89.0 91.4 92.1 92.4 91.9 91.1 92.1 12.5 14.0 9.5 13.0 86.9 88.7 88.3 88.7 77.3 78.3 78.7 78.0 7.1 7.1 6.1 7.4 7.9 11.0 13.0 9.0 12.5 1.8 1.5 1.7 A1 A2 A3 A4 A5 84.4 85.4 84.8 6.5 6.3 6.6 6.9 6.3 6.6 6.7 6.7 6.5 6.5 0.4 85.4 84.1 84.9 0.4 1.8 87.5 87.9 76.2 14.0 12.5 10.5 11.5 1.8 78.1 84.8 0.5 0.4 77.8 0.9 0.7 7.1 0.6 0.5 6.5 0.3 0.2 0.4 88.7 0.7 0.5 90.1 6.6 0.1 0.1 88.0 0.7 0.6 12.6 1.7 1.4 1.7 Avg. Std Dv 90% CI 11.2 0.6 0.5 1.4 0.0 500 FT. FLYOVER -- TARGET IAS 116 NPH 15.0 12.5 15.0 13.5 18.5 83.8 83.2 83.2 83.0 83.6 82.6 7.9 7.5 8.0 7.5 8.5 7.5 89.8 90.2 89.2 89.2 88.8 88.8 84.1 83.9 83.5 83.4 83.5 83.1 75.9 75.7 75.2 75.5 87.4 86.7 86.9 86.6 87.1 88.4 88.7 87.7 87.9 87.6 13.5 10.0 14.5 12.5 17.5 B8 B9 B10 6.8 6.6 6.7 6.7 6.8 6.8 6.7 1.5 1.4 1.3 1.3 0.4 0.4 0.4 B11 B12 83.2 0.4 0.3 75.4 0.4 0.3 7.8 0.4 0.3 6.7 0.1 0.1 0.4 86.9 0.4 0.3 87.9 0.5 0.4 89.3 0.6 0.5 6.7 0.1 0.1 83.6 0.4 0.3 14.7 2.1 1.7 1.4 0.0 500 FT. FLYOVER -- TARGET IAS 101.5 NPH 82.7 83.7 83.5 83.7 7.6 8.1 7.2 8.5 8.2 0.4 0.4 0.4 0.4 0.4 87.5 88.3 88.8 88.0 98.8 89.6 90.1 89.3 6.4 6.7 6.4 6.7 82.8 83.9 84.5 84.0 83.6 15.0 15.0 15.0 17.5 86.2 87.1 87.0 14.0 13.0 12.5 14.5 15.5 1.3 1.3 1.4 1.3 75.1 75.7 76.3 6.4 6.8 6.1 6.8 6.7 C15 C16 C17 75.2 75.4 87.1 87.0 83.6 83.4 0.4 0.4 7.9 0.5 0.5 89.4 0.5 0.4 6.5 0.2 0.2 75.5 0.5 0.5 83.8 6.6 0.3 0.3 86.9 88.1 Avg. Std Dv 90% Ci 0.0 0.4 0.5 0.5 1.2 0.6 0.1 1.2

And whome you

DOT/TSC 2/9/84

Contract Contract of

MOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-1.2 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUHMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

as neasured *

	SITE: 1					CENTERLINE - CENTER				JUNE 7,1983			
EV	SEL	ALs	SEL-ALB	K(A)	<u>Q</u>	EPNL	PNLs	PMLTs	K(P)	0ASPL=	DUR(A)	DUR(P)	TC
1000 F	T. FLY(OVER	TARGET !	IAS 130	.5 HPH								
019 020 021 022 023 024 025	81.4 81.3 81.5 80.2 80.8 80.8	71.8 71.6 71.6 71.3 71.3 72.0 71.1	9.5 9.7 9.9 8.8 9.5 8.8	6.8 6.9 6.7 6.6 6.9 7.1 6.7	0.4 0.4 0.3 0.3 0.4 0.4	84.9 85.0 83.6 84.4 84.0	84.1 84.0 83.6 83.4 83.1 84.1	85.9 86.0 85.7 85.3 85.1 86.2 84.6	6.4 6.3 6.7 6.9	82.7 82.8 81.4 81.8 81.1 82.5	25.5 25.0 29.5 22.0 24.0 17.5 27.0	21.0 28.5 20.5 16.5 24.0	1.9 2.1 2.0 1.9 1.9 2.1
Avg. Std Dv 90% Ci	81.0 0.5 0.3	71.5 0.3 0.2	9.4 0.4 0.3	6.8 0.2 0.1	0.4 0.0 0.0	84.4 0.6 0.6	83.6 0.5 0.3	85.5 0.6 0.4	6.6 0.2 0.2	81.9 0.7 0.5	24.4 3.8 2.8	22.1 4.5 4.3	1.9 0.2 0.1
TAKEOF	F 11	MRGET 1	AS 63 NP	H (ICAO)								
E26 E27 E28 E29 E30 E31 E32 E33	83.8 83.5 84.7 83.5 83.0 83.2 83.9	73.6 73.2 74.4 74.0 71.1 73.5 73.3 73.9	10.2 10.4 10.4 9.5 11.9 9.8 10.6 10.7	6.9 7.2 7.1 7.8 7.2 7.4 6.6	0.3 0.4 0.4 0.5 0.4 0.4	86.7 88.1 86.8 86.5 86.8 87.2	86.2 84.7 86.5 86.0 84.4 85.2 85.1 86.1	87.9 86.9 88.3 87.9 86.3 87.0 86.7	6.8 6.7 7.0 6.9 7.0 7.1 7.3	80.2 79.4 80.4 79.9 79.3 79.7 78.9 79.7	30.5 32.5 27.5 22.0 34.5 22.5 27.0 41.0	21.0 28.5 25.5 19.5 29.0 24.0 27.5 21.0	1.7 2.2 1.8 2.1 2.0 2.1 1.6
Avg. 91d Dr 90% CI	83.8 0.6 0.4	73.4 1.0 0.7	10.4 0.7 0.5	7.1 0.3 0.2	0.4 0.1 0.0	87.1 0.5 0.4	85.5 0.8 0.5	87.4 0.7 0.5	7.0 0.2 0.1	79.7 0.5 0.3	29.7 6.4 4.3	24.5 3.7 2.5	1.9 0.2 0.1
APPRO	VCH	TARGET	IAS 63 H	PH (ICA	0)								
F42 F43 F44 F45 F46 F47 F48	91.1 92.0 91.0 91.5 91.7 91.0 91.0	83.1 84.6 83.8 84.7 82.8 84.2 83.9	8.0 7.9 6.4 7.7 7.0 8.2 6.7	7.3 7.1 6.2 7.0 6.3 6.3 6.7	0.5 0.4 0.5 0.4 0.3 0.5	93.6 95.0 94.1 94.8 94.7 93.6 93.7	94.8 95.9 96.9 96.2 96.3 94.5 95.7	95.9 97.0 98.1 97.3 97.1 95.4 96.5	7.1 7.2 6.0 6.8 6.8 6.3 7.0	91.0 91.5 92.8 92.9 92.1 90.2 90.7	12.5 13.0 11.0 12.5 13.0 20.5 10.0	12.0 13.0 10.0 12.5 13.0 20.0 11.0	1.1 1.5 1.2 1.2 0.7 1.0 0.7
std d		0.7 0.5	0.7	0.4	0.1 0.0	0.6	0.9 0.6	0.9 0.7	0.4	1.0	3.4 2.5	3.2 2.4	0.3 0.2

⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-1.3 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

AS NEASURED *

DOT/TSC 2/9/84

TE. 1 CENTED INC _ CENTED

		SITE: 1			CEN	CENTERLINE - CENTER				JUNE 7,1983			
EV	SEL	ALD	SEL-ALB	K(A)	0	EPNL	PNLB	PMLTm	K(P)	OASPLE	DUR(A)	DUR(P)	TC
TAKEOF	F 11	ARGET 1	AS 63 NP	H STAND	ARD (SEE TEX	۲)						
638 639 640 641	85.9 85.1 85.8 85.6	76.8 76.0 77.5 76.2	9.2 9.1 8.4 9.4	6.8 6.9 6.9	0.4 0.4 0.4 0.3	89.2 88.2 89.3 88.8	89.0 88.0 89.9 88.4	90.7 89.7 91.9 90.3	6.9 6.5 6.6	82.6 81.7 83.6 82.5	22.0 21.0 16.5 27.5	16.5 16.5 14.0 20.0	1.8 2.1 2.0 1.9
Avg. Std Dv 90% C	85.6 0.4 0.5	76.6 0.7 0.8	9.0 0.5 0.5	6.8 0.2 0.2	0.4 0.0 0.0	88.9 0.5 0.6	88.8 0.8 1.0	90.7 0.9 1.1	6.7 0.2 0.3	82.6 0.8 0.9	21.7 4.5 5.3	16.7 2.5 2.9	1.9 0.1 0.2
APPRO	NCH '	TARGET	1AS 63 H	PH STAN	DARD	SEE TE	KT)						
H34 H35 H36 H37	89.8 89.5 89.5 89.5	81.7 80.0 90.6 81.3	8.1 9.5 8.9 8.2	6.2 6.6 6.1 6.8	0.3 0.3 0.3 0.4	92.5 91.9 92.2 92.2	93.9 92.4 93.0 93.2	94.7 92.9 93.9 94.1	6.2 7.6 6.8 7.1	90.6 88.1 88.7 89.0	20.0 27.0 29.0 16.0	18.5 15.5 16.5 14.0	0.8 0.8 1.0 0.9
Avg. Std Dv 90Z C	89.6 0.2 0.2	80.9 0.7 0. 9	8.7 0.7 0.8	6.4 0.4 0.4	0.3 0.1 0.1	92.2 0.3 0.3	93.1 0.6 0.8	93.9 0.8 0.9	6.9 0.6 0.7	89.1 1.1 1.3	23.0 6.1 7.1	16.1 1.9 2.2	0.8 0.1 0.1
500 F1	r. FLYO	VER	TARGET 1	NS 145	NPH								
H49 H50 H51 H52 H53	86.0 85.7 86.0 85.5 86.0	78.0 80.3 78.9 78.9 79.6	8.0 5.4 7.2 6.6 6.3	7.3 5.8 6.8 6.5 5.6	0.5 0.4 0.5 0.4 0.3	89.4 89.6 89.7 89.4 89.7	90.2 92.6 91.1 91.7 91.7	91.8 94.2 92.6 93.4 93.1	7.0 6.0 6.7 6.1 5.9	89.7 90.6 88.3 90.4 88.5	12.5 8.5 11.5 10.5 13.5	12.0 8.0 11.5 9.5 13.5	1.6 1.6 1.7 1.4
Avg. Std D 90% C		79.1 0.9 0.8	6.7 1.0 0.9	6.4 0.7 0.7	0.4 0.1 0.1	89.6 0.2 0.2	91.5 0.9 0.8	93.0 0.9 0.9	6.3 0.5 0.5	89.5 1.1 1.0	11.3 1.9 1.8	10.9 2.2 2.1	1.6 0.1 0.1
500 F1	r. FLYO	VER	TARGET 1	AS 86.0	HPH								
N54 N55 N56	83.8 83.8 83.6	74.7 76.1 74.6	9.1 7.7 9.0	6.5 6.4 6.8	0.3 0.4 0.4	87.0 86.8 86.8	86.9 88.7 86.9	88.1 89.5 88.0	6.7 6.2 6.8	82.9 83.7 82.4	24.5 15.5 21.0	21.5 15.0 20.0	1.2 0.8 1.1
Avg. Std Da 90% C	83.7 0.1 0.1	75.1 0.8 1.4	8.6 0.6 1.3	6.6 0.2 0.3	0.4 0.0 0.0	86.9 0.1 0.2	87.5 1.0 1.8	88.5 0.8 1.4	6.6 0.3 0.5	83.0 0.6 1.0	20.3 4.5 7.6	18.8 3.4 5.7	1.0 0.2 0.4

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-1G.1 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUHMARY NOISE LEVEL DATA

AS HEASURED *

	SITE: 16					RLINE-CEI	NTER (F	LUSH)	JU	NE 7,19	B3		
EV	SEL	ALB	SEL-ALB	K(A)	0	EPML	PNLs	PNLTs	K(P)	OASPLE	DUR(A)	DUR(P)	TC
500 F	r. FLYO	VER	TARGET 14	NS 130.	5 MPH								
A1 A2 A3 A4 A5 A6	89.3 90.3 89.7 90.3 88.8 90.2	82.0 83.0 83.7 82.6 81.6 82.6	7.3 7.3 6.0 7.8 7.2 7.6	6.6 6.3 6.7 6.7 6.6	0.4 0.4 0.4 0.5 0.4	93.3 94.5 94.0 94.5 92.8 94.5	94.6 95.8 96.1 95.3 93.9 95.2	96.1 97.4 97.9 96.9 95.6 96.7	6.6 6.5 6.4 6.7 6.9 7.0	93.5 94.0 93.8 93.7 92.9 93.4	13.0 14.5 9.0 14.5 11.5 14.0	12.5 12.5 9.0 13.5 11.0 13.0	1.5 1.6 1.8 1.6 1.8
Avg. Std D 90% C	89.8 v 0.6 i 0.5	82.6 0.7 0.6	7.2 0.6 0.5	6.5 0.2 0.2	0.4 0.0 0.0	93.9 0.7 0.6	95.1 0.8 0.7	96.8 0.8 0.7	6.7 0.2 0.2	93.5 0.4 0.3	12.7 2.2 1.8	11.9 1.7 1.4	1.6 0.1 0.1
500 F	T. FLY0	VER	TARGET I	NS 116	HPH								
88 89 810 811 812 813	89.2 88.0 88.4 87.7 88.8 87.7	81.4 80.4 80.3 80.1 80.1 79.7	7.8 7.6 8.1 7.6 8.7 8.0	6.7 7.0 6.8 6.8 6.4 7.1	0.4 0.5 0.4 0.4 0.3 0.5	93.3 92.1 92.5 91.8 92.6 91.9	94.1 93.1 92.8 92.6 92.6 91.9	95.6 94.7 94.1 94.2 93.6 93.6	6.8 6.9 7.2 6.9 7.2 7.5	91.1 89.7 90.3 89.5 90.0 89.1	14.5 12.5 15.5 13.0 22.5 13.5	13.5 11.5 14.5 12.5 17.5 13.0	1.5 1.6 1.6 1.1 1.6
Avg. Std D 90Z C	88.3 v 0.6 l 0.5	80.3 0.6 0.5	8.0 0.4 0.3	6.8 0.2 0.2	0.4 0.1 0.0	92.3 0.6 0.5	92.8 0.7 0.6	94.3 0.8 0.6	7.1 0.2 0.2	89.9 0.7 0.6	15.2 3.7 3.1	13.7 2.1 1.7	1.5 0.2 0.2
500 F	T. FLYO	VER	TARGET I	AS 101.	5 NPH								
C14 C15 C16 C17 C18	86.9 87.3 86.3 87.0 86.5	78.7 79.0 77.8 78.7 77.9	8.1 8.3 8.5 8.3 8.6	6.8 6.9 7.1 6.9 7.0	0.4 0.4 0.5 0.4 0.4	90.8 91.5 90.4 91.1 90.3	91.1 91.7 90.6 91.3 90.9	92.5 92.8 91.6 92.2 92.2	7.1 7.2 7.4 7.4 6.7	87.6 88.5 87.3 87.8 87.1	15.5 16.0 15.5 16.0 17.0	15.0 16.0 15.5 16.0 16.5	1.4 1.1 1.0 0.9 1.2
Avg. Std D 90% C	86.8 v 0.4 i 0.4	78.4 0.5 0.5	0.2	6.9 0.1 0.1	0.4 0.0 0.0	90.8 0.5 0.5	91.1 0.4 0.4	92.2 0.5 0.4	7.2 0.3 0.3	87.7 0.6 0.5	16.0 0.6 0.6	15.8 0.6 0.5	1.1 0.2 0.2

^{* -} NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-16.2

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS NEASURED *

JUNE 7,1983 SITE: 16 CENTERLINE-CENTER (FLUSH) E۷ SEL ALB SEL-ALB K(A) EPNL PHLs PWLTm K(P) DASPL® DUR(A) DUR(P) TC 1000 FT. FLYOWER -- TARGET 130.5 MPH 85.1 84.8 85.2 84.3 84.6 84.5 88.9 89.5 87.8 88.2 88.1 86.0 86.0 85.1 86.1 84.6 85.7 85.5 26.5 24.0 23.0 16.0 21.5 17.5 24.5 75.0 75.4 75.6 75.7 75.1 75.1 0.3 0.4 0.4 87.7 86.9 87.9 87.7 89.7 88.9 89.7 89.7 2.0 2.0 1.8 2.1 10.1 9.4 9.6 019 6.9 7.0 6.9 7.0 7.1 29.5 24.5 23.5 17.5 23.0 20.0 28.0 6.4 6.9 6.8 6.7 7.2 7.3 6.7 D20 D21 D22 8.6 9.5 9.3 88.6 89.1 D23 D24 86.6 87.1 87.2 1.9 0.4 0.4 2.0 84.8 88.4 89.1 9.5 0.5 0.3 6.9 0.1 0.1 6.9 0.3 0.2 85.6 0.6 0.4 84.8 0.3 0.2 75.3 0.3 0.2 0.4 88.4 87.3 89.3 Avg. Std Dv 90% CI 23.7 21.9 2.0 0.0 0.5 0.4 0.5 4.2 3.1 3.8 2.8 0.1 TAKEOFF -- TARGET IAS 63 MPH (ICAO) 90.4 89.2 90.7 90.0 88.2 90.6 89.6 9.4 10.3 9.8 9.8 11.5 9.1 89.1 87.5 89.2 88.6 86.9 7.0 7.1 7.0 7.2 7.8 0.4 0.4 0.4 0.5 90.3 89.8 7.2 7.4 7.5 7.5 7.9 7.0 7.8 83.8 82.6 83.8 83.3 83.0 83.7 82.6 84.0 22.0 28.5 25.0 23.0 30.0 21.0 27.0 23.5 27.5 25.0 22.0 26.0 20.0 23.0 18.0 1.3 1.8 1.5 E26 E27 E28 E29 E30 E31 E32 86.8 77.4 76.1 77.7 77.0 74.3 77.0 76.5 86.4 87.6 86.8 85.8 86.1 86.1 91.1 90.1 89.4 1.4 6.9 7.3 7.0 0.4 0.4 0.4 89.7 90.2 90.6 88.6 88.2 89.7 10.4 1.4 87.0 86.7 0.6 0.4 7.1 0.3 0.2 90.2 0.5 0.4 88.5 0.9 0.6 7.4 0.3 0.2 9.9 83.4 0.6 0.4 24.4 3.8 2.6 23.1 3.1 2.1 Avg. Std Dv 90% CI 76.8 0.4 90.0 1.6 8.0 1.0 1.2 0.0 0.3 .0.0 APPROACH -- TARGET IAS 63 MPH (ICAO) 98.6 99.4 99.9 99.4 100.1 98.9 99.5 99.2 99.8 100.9 100.0 100.5 99.6 99.9 86.9 87.9 88.3 87.3 88.7 87.3 97.4 98.2 97.6 98.4 98.1 11.5 12.5 10.0 13.0 10.0 12.5 14.0 7.5 7.3 6.4 7.5 6.7 7.2 7.2 94.9 8.0 7.6 6.5 8.1 6.7 7.5 7.5 7.5 6.5 7.7 7.1 7.1 0.5 0.5 0.5 0.5 0.5 0.5 94.4 94.9 96.3 95.4 95.1 95.0 95.1 0.6 95.5 94.8 95.4 95.4 94.8 95.2 0.4 F43 F44 F45 F46 F47 F48 11.5 13.0 13.5 11.5 0.5 0.7 87.6 97.8 0.4 7.4 0.6 0.4 7.1 0.4 0.3 99.4 0.5 0.4 11.3 1.2 0.9 95.1 0.3 0.2 100.0 7.1 95.2 12.6 87.7 0.5 97.8 0.6 ST Dv CI 0.0 0.4 0.4 0.3 0.6 0.2 0.6 0.6 0.9

BH PAPER

 ⁻ HOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OF AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-1G.3 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

AS MEASURED *

		SI	TE: 16		CENTE	RLINE-CEI	NTER (F	LUSH)	JU	INE 7,19	83		
EV	SEL	ALD	SEL-ALB	K(A)	<u>Q</u>	EPNL	PNLs	PNLTs	K(P)	OASPL	DUR(A)	DUR(P)	TC
TAKEOFF	1/	arget i	AS 63 MPI	H STAND	ARD (SEE TEXT)						
G38 G39 G40 G41	89.3 88.4 89.3 89.0	80.4 79.5 80.6 80.1	8.9 8.9 8.7 9.0	7.0 7.3 6.8 7.0	0.4 0.5 0.4 0.4	92.7 91.8 92.7 92.3	92.7 91.2 92.6 91.9	94.2 92.6 93.9 93.3	7.1 7.5 7.3 7.2	86.8 85.9 87.2 86.1	18.5 16.5 19.0 19.0	15.5 17.0 16.0 18.0	1.5 1.4 1.3 1.4
Avg. Std Dv 90% Ci	89.0 0.4 0.5	80.1 0.5 0.5	8.9 0.1 0.1	7.0 0.2 0.2	0.4 0.0 0.0	92.4 0.4 0.5	92.1 0.7 0.8	93.5 0.7 0.8	7.3 0.2 0.2	86.5 0.6 0.7	18.2 1.2 1.4	16.6 1.1 1.3	1.4 0.1 0.1
APPROAG	H	TARGET	1AS 63 M	PH STAN	DARD	(SEE TE)	(T)						
H34 H35 H36 H37	93.8 93.4 93.3 93.6	86.3 84.7 85.2 85.9	7.5 8.7 8.2 7.6	6.3 7.4 7.1 6.8	0.4 0.5 0.5 0.4	96.4 96.1 96.2 96.1	98.2 96.5 96.8 97.7	98.6 97.4 97.7 98.2	6.5 7.3 7.3 7.1	93.6 92.5 92.6 93.5	15.5 15.0 14.0 13.0	16.0 15.5 15.0 13.0	0.4 0.9 1.0 0.4
Avg. Std Dv 90% CI	93.5 0.2 0.3	85.5 0.7 0.8	8.0 0.5 0.6	6.9 0.4 0.5	0.4 0.1 0.1	96.2 0.2 0.2	97.3 0.8 0.9	98.0 0.5 0.6	7.0 0.4 0.4	93.0 0.6 0.7	14.4 1.1 1.3	14.9 1.3 1.5	0.7 0.3 0.4
500 FT.		VER	TARGET I	AS 145 NO DATA									

500 FT. FLYOVER -- TARGET 1AS 86.0 MPH ------ NO DATA ------

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. 8.2-2.1

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

DOT/TSC 2/9/84

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 2 SIDELINE - 150 M. SOUTH JUNE 7,1983 E۷ SEL ALB SEL-ALB K(A) Ø **EPNL** PNLs PMLTm K(P) DASPLE DUR(A) DUR(P) TC 500 FT. FLYOVER -- TARGET IAS 130.5 NPH 90.5 88.4 90.3 88.8 90.7 89.3 88.1 87.3 88.0 87.9 88.2 88.0 87.4 90.8 87.4 91.0 6.9 7.1 7.0 0.4 0.5 0.5 13.5 15.0 13.0 16.5 13.5 18.5 13.5 23.0 6.7 7.0 6.9 1.9 76.5 7.7 88.9 A2 A3 A4 A5 83.8 84.9 84.3 84.4 84.4 87.3 88.9 87.9 87.3 75.5 77.1 8.3 7.8 1.4 75.6 76.7 8.6 7.7 0.4 0.5 0.3 7.1 6.7 86.B 90.4 13.0 21.0 13.0 20.5 1.4 6.9 6.9 0.3 0.2 88.4 0.7 0.6 6.8 0.1 0.1 89.0 2.0 1.6 Avg. Std Dv 90% CI 84.3 87.9 89.7 1.3 0.3 0.3 76.2 8.1 0.4 15.3 0.4 0.6 0.4 0.1 0.3 1.0 500 FT. FLYOVER -- TARGET IAS 116 NPH 85.5 84.9 84.7 84.4 84.5 84.5 86.2 20.5 15.5 29.5 17.5 74.0 87.1 16.0 17.5 19.5 1.0 86.2 7.0 86.7 85.4 86.6 86.3 86.2 83.3 82.7 82.8 83.1 74.8 73.4 74.8 73.8 73.8 8.6 9.3 8.0 9.2 8.6 6.9 7.2 0.4 86.6 88.5 86.4 87.7 6.8 6.5 6.7 **B9 B10** 1.1 B11 B12 6.4 6.1 7.1 86.0 18.0 0.3 87.1 87.3 32.0 16.5 0.9 86.3 7.1 18.5 **B13** 82.6 1.6 8.8 0.5 0.4 86.2 0.3 0.2 86.2 0.5 0.4 87.4 0.7 6.8 0.2 0.2 20.3 5.4 5.2 1.2 0.4 0.3 82.9 6.9 84.7 19.9 Avg. Std Dv 0.6 0.3 0.2 0.5 0.4 6.0 5.0 0.6 500 FT. FLYOVER -- TARGET IAS 101.5 NPH 84.5 85.9 84.6 86.0 85.2 85.9 86.9 85.6 87.2 87.0 21.5 26.0 24.0 20.5 22.0 72.5 73.6 73.3 9.4 9.2 9.2 0.4 0.3 0.4 85.2 86.0 85.8 85.9 86.0 7.0 6.4 7.3 83.6 83.0 83.8 83.0 22.0 26.0 19.0 21.0 22.0 1.4 C15 C16 C17 C18 82.7 82.5 82.7 82.7 6.5 7.2 1.6 73.7 73.6 9.0 9.1 6.8 0.4 84.4 1.8 82.5 86.5 0.7 0.7 85.8 85.2 83.6 22.0 22.8 6.9 0.4 6.8 0.3 0.5 0.5 0.2 0.3 0.0 0.7 2.5 2.4 2.2 2.1 0.3 0.3 0.4 0.6

the charge

 ⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-2.2

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS NEASURED *

SITE: 2 SIDELINE - 150 M. SOUTH JUNE 7,1983

EV	SEL	ALB	SEL-ALB	K(A)	<u> </u>	EPML	PMLs	PNLTs	K(P)	OASPL	DUR(A)	DUR(P)	TC
1000 F	T. FLY	OVER	TARGET I	AS 130	.5 NPH								
019 020 021 022 023 024 025	81.8 81.7 82.0 82.3 80.6 82.0 81.4	71.9 72.1 72.9 72.9 70.7 72.9 71.1	9.9 9.6 9.1 9.5 10.0 9.1	7.1 7.2 6.3 7.6 7.3 7.0 6.9	0.4 0.3 0.5 0.4 0.4	84.6 85.7 84.9 86.4 83.3 85.8	84.2 85.0 84.5 86.1 82.3 85.1 82.1	85.5 87.0 85.9 88.1 83.2 87.0 83.2	6.8 6.7 6.3 7.0 7.4 7.1	86.5 84.1 85.3 84.0 85.4 83.5	24.0 22.0 27.5 17.5 23.0 19.5 30.5	22.5 19.5 27.0 15.5 23.5 17.5	1.2 2.0 1.4 2.0 1.3 1.9
Avg. Std Dv 90% C		72.1 0.9 0.7	9.6 0.5 0.3	7.1 0.4 0.3	0.4 0.1 0.0	85.1 1.1 0.9	84.2 1.5 1.1	85.7 1.9 1.4	6.9 0.4 0.3	84.8 1.0 0.8	23.4 4.5 3.3	20.9 4.2 3.5	1.6 0.4 0.3
TAKEOF	F 1	arget i	AS 63 MPI	I (ICAO	1)								
E26 E27 E28 E29 E30 E31 E32 E33	86.1 85.3 85.8 85.4 85.2 85.6 85.2 85.4	74.1 74.8 74.6 73.4 73.9 74.0 73.8 74.7	12.1 10.5 11.2 11.9 11.4 11.6 11.4	7.6 7.3 7.2 7.5 7.6 7.7 7.5 7.3	0.4 0.4 0.4 0.4 0.5 0.4	88.2 87.8 88.3 87.6 88.0 88.0 87.5 88.1	85.6 85.9 86.9 85.5 85.7 85.8 85.7	86.9 88.1 89.1 87.7 88.0 87.7 87.6 87.7	7.1 7.0 6.5 7.2 6.9 7.0 7.1	81.0 81.4 82.0 81.2 81.3 81.3 81.0	38.0 27.5 35.5 39.0 31.0 32.0 33.0 29.5	39.5 24.0 25.5 24.0 29.0 30.5 26.5 29.0	1.9 2.2 2.2 2.2 2.2 2.1 1.9 2.1
Avg. Std Dv 902 Cl		74.1 0.5 0.3	11.3 0.5 0.4	7.5 0.2 0.1	0.4 0.0 0.0	87.9 0.3 0.2	85.8 0.4 0.3	87.8 0.6 0.4	7.0 0.2 0.1	81.3 0.3 0.2	33.2 4.0 2.7	28.5 5.1 3.4	2.1 0.1 0.1
APPROA	VCH	TARGET	IAS 63 MF	H (ICA	0)								
F42 F43 F44 F45 F46 F47 F48	85.7 84.9 85.0 84.8 85.5 85.1 84.6	74.9 75.1 75.5 73.8 75.0 74.1 74.0	10.8 9.7 9.5 11.0 10.5 11.0	7.7 7.1 6.3 8.1 6.6 7.9 7.5	0.5 0.4 0.3 0.6 0.3 0.5	88.6 88.3 88.1 88.1 88.5 88.3 88.0	86.7 87.7 87.5 85.4 87.1 86.8 86.7	87.8 88.7 88.7 86.8 88.5 88.0 87.8	8.0 7.1 6.7 8.3 7.6 7.4 7.3	83.6 83.9 84.6 84.4 85.2 85.0 85.2	25.5 23.5 32.0 23.0 38.5 25.0 25.5	22.5 22.5 26.0 22.5 20.5 24.0 25.0	1.1 1.3 1.2 1.4 1.3 1.2
Avg. Stå Dv 90% Cl	85.1 0.4 0.3	74.6 0.7 0. 5	10.5 0.6 0.4	7.3 0.7 0.5	0.4 0.1 0.1	88.3 0.2 0.2	86.8 0.7 0.5	88.0 0.7 0.5	7.5 0.6 0.4	84.6 0.6 0.5	27.6 5.7 4.2	23.3 1.8 1.4	1.2 0.1 0.1

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-2.3

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS MEASURED #

SITE: 2 SIDELINE - 150 M. SOUTH JUNE 7,1983 PNLD EV SEL ALB SEL-ALB K(A) EPNL Q PWLTm K(P) BASPL® DUR(A) DUR(P) TC TAKEOFF -- TARGET IAS 63 NPH STANDARD (SEE TEXT) 26.0 23.0 25.0 29.5 85.2 87.6 7.4 7.5 7.2 26.0 22.0 23.5 10.4 0.4 86.1 87.2 83.3 1.1 75.5 74.9 7.3 7.2 7.5 0.4 86.9 86.5 85.7 87.9 87.6 82.9 83.8 9.9 1.0 639 85.3 87.9 85.0 85.2 G40 10.1 87.4 74.1 25.9 2.7 3.2 10.4 87.4 Avg. Std Dv 90% CI 87.7 83.0 0.4 7.3 0.5 0.2 0.5 0.4 0.1 0.7 2.0 3.4 0.1 0.1 0.5 0.0 0.1 APPROACH -- TARGET IAS 63 MPH STANDARD (SEE TEXT) H34 H35 H36 H37 84.8 85.8 85.0 84.3 0.4 0.5 0.4 0.5 86.1 88.0 86.1 87.6 7.4 7.0 7.7 6.9 34.5 33.5 34.5 25.5 34.5 31.0 34.0 24.5 87.4 0.7 73.7 73.1 73.6 12.2 11.9 10.7 8.0 7.7 88.5 87.9 87.3 86.0 85.3 86.2 86.0 84.4 85.3 2.4 73.6 0.3 0.4 85.7 0.5 0.5 85.0 0.6 0.7 11.4 0.7 0.8 7.6 0.3 0.4 0.4 87.8 86.9 7.3 0.3 0.4 85.0 32.0 Avg. (Std Dv 90% CI 31.0 1.3 0.1 0.6 1.0 0.8 4.6 500 FT. FLYOVER -- TARGET IAS 145 MPH 76.5 78.1 76.6 79.4 76.2 88.5 88.5 88.3 89.9 89.5 91.3 92.0 89.4 92.1 90.3 17.0 11.5 18.5 11.5 8.4 **H49** 85.0 0.4 7.3 17.0 85.1 84.8 86.2 M50 6.9 8.2 6.5 0.4 6.8 .1.5 0.3 88.4 89.6 88.5 91.9 89.5 93.3 19.0 12.0 1.2 M51 7.0 6.8 8.7 6.3 6.0 7.1 **M52** 84.9 1.0 85.2 0.6 0.5 77.4 1.3 1.3 7.8 0.9 0.8 88.6 0.6 0.5 90.6 1.7 1.6 Avg. Std Dv 90% CI 6.6 0.2 0.2 0.4 6.8 0.5 0.5 15.8 1.2 0.2 0.1 1.6 3.8 3.6 500 FT. FLYOVER -- TARGET IAS 86.0 MPH 82.3 81.9 82.3 84.4 86.1 84.1 85.4 87.5 85.1 72.1 10.2 0.4 85.4 85.1 85.1 25.5 17.5 27.0 25.5 14.5 24.0 7.3 7.1 6.5 7.3 82.1 84.5 82.1 73.5 72.0 N55 N56 8.4 6.8 7.2 82.2 72.5 9.6 7.1 85.2 86.0 7.0 23.3 Avg. Std Dv 90% CI 0.4 84.9 82.9 21.3 0.2 0.2 0.8 1.1 0.4 5.1 8.6 6.0 0.2 0.3 0.0

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-3.1

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 3 SIDELINE - 150 M. NORTH JUNE 7,1983 DASPLE DUR(A) DUR(P) TC ΕV SEL PMLTs K(P) ALm SEL-ALm K(A) 500 FT. FLYOVER -- TARGET IAS 130.5 NPH 86.5 88.3 86.5 88.3 85.8 88.1 87.9 89.6 88.5 89.9 88.0 89.6 83.2 84.8 83.4 85.1 82.9 74.9 76.4 75.4 77.0 74.9 8.3 8.3 8.0 8.1 8.0 6.8 7.1 6.7 6.9 6.7 0.4 0.5 0.4 0.4 86.8 88.1 87.4 88.6 87.0 88.1 86.9 88.6 87.0 16.5 15.0 15.5 15.0 15.5 15.0 16.0 17.0 15.5 15.0 7.2 7.0 6.7 7.2 6.7 7.1 A1 AZAS ASS 1.6 1.3 1.6 87.6 87.0 14.5 15.5 1.5 76.8 88.4 84.8 8.0 0.4 75.9 0.9 0.8 0.4 0.0 0.0 87.7 0.8 0.6 88.9 0.9 0.7 7.0 0.2 0.2 87.5 0.7 0.6 15.4 0.6 0.5 15.6 0.9 0.7 84.0 1.0 0.8 8.1 8.8 87.3 0.1 0.1 0.1 500 FT. FLYOVER -- TARGET IAS 116 HPH 7.2 7.3 7.1 6.9 7.3 7.2 86.8 84.8 86.6 85.2 86.7 84.2 88 89 83.6 82.1 83.7 82.1 83.5 74.7 73.0 74.9 73.3 8.9 9.1 86.4 85.2 86.1 85.9 87.6 86.0 87.5 87.0 84.5 83.4 83.8 82.4 17.5 17.5 17.5 19.5 18.5 7.3 7.3 7.3 6.8 7.4 6.9 0.5 0.4 0.4 0.5 0.5 16.5 17.5 16.5 0.9 6.8 8.9 9.3 8.7 BIO 1.4 B11 B12 B13 1.1 74.2 72.6 0.9 1.2 86.6 84.8 87.3 86.0 84.1 82.2 18.5 15.5 7.2 0.3 0.2 83.4 0.9 0.8 86.9 0.7 0.6 17.7 82.7 73.8 8.9 85.7 0.4 85.8 0.2 1.2 1.0 1.0 0.8 0.2 1.1 1.1 0.0 0.7 0.2 0.1 0.0 500 FT. FLYOVER -- TARGET IAS 101.5 MPH 72.9 73.7 72.7 74.4 73.6 85.8 87.2 86.4 87.7 86.6 20.0 17.0 17.5 16.5 15.5 19.0 18.0 13.0 20.5 15.0 C14 C15 C16 C17 C18 81.6 82.8 81.4 83.1 81.6 8.7 9.1 8.7 8.7 8.1 6.7 7.4 7.0 7.1 6.8 0.4 0.5 0.4 84.4 86.2 84.2 86.3 84.6 84.7 85.5 85.4 86.1 85.8 6.8 7.2 7.0 6.6 6.8 80.2 84.7 81.0 84.2 82.3 1.1 1.0 0.8 82.1 0.8 0.8 73.4 0.7 0.7 6.9 0.2 0.2 17.3 1.7 1.6 8.7 0.4 85.2 82.5 86.7 0.7 0.7 1.9 0.0 1.0 0.5 0.4

^{# -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-3.2 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUNMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

as neasured =

		SI	TE: 3		SID	ELINE -	150 M.	NORTH		JUNE	7,1983		
EV	SEL	ALB	SEL-AL»	K(A)	0	EPML.	PNLs	PNLTa	K(P)	OASPLE	DUR(A)	DUR(P)	TC
1000 !	FT. FLY(OVER	TARGET 1	IS 130.	5 NPH								
D19 D20 D21 D22 D23 D24 D25	83.6 81.6 83.2 80.5 82.3 81.8	73.6 73.3 73.2 71.4 72.3 72.4	10.0 8.3 10.0 9.1 10.1 9.4	7.7 6.2 7.1 6.6 7.5 7.1	0.5 0.3 0.4 0.3 0.5	87.3 84.5 86.6 86.0 84.8	86.1 84.8 85.7 82.1 85.2 84.1	87.8 85.4 87.2 83.5 87.1 85.8	7.4 6.8 7.0 7.0 6.9	84.1 83.9 82.7 83.1 82.8 84.4	20.0 21.0 25.5 24.0 22.0 21.5	19.0 21.5 22.0 18.5 20.0	1.7 0.6 1.6 1.6 1.9
Avg. Std Dv 90% C	82.7 82.2 v 1.1 1 0.8	73.0 72.7 0.8 0.6	9.7 9.5 0.6 0.5	7.0 0.5 0.4	0.4 0.1 0.0	86.2 85.9 1.1 0.9	85.9 84.9 1.4 1.0	87.8 86.4 1.6 1.2	7.0 0.3 0.2	82.6 83.4 0.7 0.5	26.0 22.9 2.3 1.7	19.0 20.0 1.4 1.2	1.9 1.6 0.5 0.3
TAKEO	FF T/	ARGET I	as 63 MPI	(ICAO	i)								
E26 E27 E28 E29 E30 E31 E32 E33	87.4 85.4 85.3 85.4 85.3 88.5 85.2	79.1 74.8 74.6 75.0 75.1 78.0 75.9 74.4	10.3 10.5 10.8 10.4 10.2 10.5 9.3	7.3 7.0 7.6 7.6 7.2 7.3 6.8 7.3	0.4 0.4 0.5 0.4 0.4 0.4	91.5 88.1 88.2 87.6 90.6 88.1 88.0	89.4 85.7 85.1 85.7 85.3 88.4 86.6 85.0	91.2 88.1 87.1 88.1 87.5 90.8 88.5 87.3	7.4 7.0 7.8 7.5 7.0 7.0	82.4 80.7 81.5 81.9 80.9 81.4 81.0	25.5 31.5 26.5 23.5 26.0 27.5 24.0 28.5	25.0 27.0 25.5 22.5 25.0 25.0 23.5 28.0	2.0 2.4 2.6 2.4 2.2 2.4 1.9 2.4
Avg. Std D 902 C		75.9 1.7 1.2	10.3 0.4 0.3	7.3 0.3 0.2	0.4 0.0 0.0	88.8 1.4 1.0	86.4 1.6 1.1	88.6 1.6 1.1	7.3 0.3 0.2	81.3 0.6 0.4	26.6 2.6 1.7	25.2 1.8 1.2	2.3 0.2 0.2
APPRO	ACH	TARGET	IAS 63 M	PH (ICA	(D)								
F42 F43 F44 F45 F46 F47 F48	98.6 87.5 90.2 98.8 98.8 89.4 98.9	80.9 79.2 82.6 80.2 79.6 79.9 80.3	7.7 8.3 7.6 8.5 9.2 9.5 8.5	7.1 6.4 6.2 6.9 7.4 7.8 6.6	0.5 0.3 0.4 0.5 0.4	91.7 90.5 93.0 91.7 92.0 92.2 91.6	92.2 91.6 94.4 91.4 91.8 91.9	93.8 93.5 95.9 93.3 93.4 94.3	7.4 5.6 5.8 6.9 7.2 7.2 6.3	88.7 88.1 90.0 87.5 87.8 88.1 88.5	12.0 19.5 17.0 17.0 16.5 19.5	12.0 18.0 16.5 16.5 16.0 14.5	1.6 1.8 1.6 1.9 2.0 1.6 2.4
Std D 902 C	v 0.8	1.1	0.7 0.5	0.6	0.1 0.1	0.7	1.0 0.8	0.9	0.7 0.5	0.8	2.5 1.8	1.9	0.3

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-3.3 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

as neasured #

		SI	ITE: 3		SIC	ELINE -	150 M.	NORTH		JUNE :	7,1983		
EV	SEL	ALB	SEL-ALB	K(A)	0	EPNL	PNLB	PMLTa	K(P)	DASPLE	DUR(A)	DUR(P)	TC
TAKEOF	F T	arget i	AS 63 MPI	STAND	ARD (SEE TEXT	()						
638 639 640 641	85.4 85.6 85.5 85.6	76.1 75.6 76.0 76.2	9.3 9.9 9.5 9.4	7.2 7.3 7.6 7.1	0.4 0.4 0.5 0.4	88.0 87.8 88.1 87.9	87.0 86.8 86.9 87.8	88.6 88.6 88.5 89.1	7.3 7.0 7.6 6.9	82.1 81.5 83.2 82.8	20.0 22.5 18.0 21.5	20.0 20.5 18.0 19.0	1.6 1.9 1.7 1.3
Avg. Std Dv 90% Cl		76.0 0.2 0.3	9.5 0.3 0.3	7.3 0.2 0.3	0.4 0.0 0.0	88.0 0.1 0.1	87.1 0.5 0.6	88.7 0.3 0.3	7.2 0.3 0.4	82.4 0.8 0.9	20.5 2.0 2.3	19.4 1.1 1.3	1.6 0.3 0.3
APPROA	VCH	TARGET	IAS 63 M	PH STAN	DARO	(SEE TE)	(T)						
H34 H35 H36 H37	89.9 88.9 89.7 89.7	82.2 79.5 81.8 82.4	7.7 9.4 7.9 7.3	6.2 7.6 6.8 6.7	0.3 0.5 0.4 0.4	92.6 91.3 92.6 92.6	93.8 91.6 93.9 93.2	95.5 93.1 95.6 94.6	5.8 6.9 6.3 7.4	89.5 87.7 89.7 89.2	17.5 17.5 14.5 12.0	16.5 15.5 13.0 12.0	1.6 1.8 1.7 1.5
Avg. Std Dv 90% Ci		81.5 1.4 1.6	8.1 0.9 1.1	6.8 0.6 0.7	0.4 0.1 0.1	92.3 0.7 0.8	93.1 1.0 1.2	94.7 1.1 1.3	6.6 0.7 0.8	89.0 0.9 1.1	15.4 2.7 3.1	14.2 2.1 2.5	1.7 0.1 0.1
500 F1	. FLYO	VER	TARGET 1	AS 145	MPH								
H49 H50 H51 H52 H53	86.8 84.3 86.8 84.3 85.6	79.4 77.0 78.7 77.0 77.5	7.3 7.3 8.1 7.3 8.1	6.6 6.5 7.4 6.6 6.7	0.4 0.4 0.5 0.4	90.3 87.5 89.6 87.3 88.8	91.8 89.0 90.3 88.5 88.9	92.8 89.9 91.5 89.3 90.4	6.6 6.7 7.4 7.1 6.6	90.2 91.7 88.1 90.7 87.1	13.0 13.5 12.5 13.0 16.5	13.5 13.5 12.5 13.5 19.0	1.0 1.0 1.2 1.3 1.5
Avg. Std Dv 90% C	85.6 1.2 1.2	77.9 1.1 1.0	7.7 0.4 0.4	6.8 0.4 0.4	0.4 0.1 0.0	88.7 1.3 1.2	89.7 1.4 1.3	90.8 1.4 1.3	6.9 0.4 0.3	89.6 1.9 1.8	13.7 1.6 1.5	14.4 2.6 2.5	1.2 0.2 0.2
500 F1	r. FLYO	VER	TARGET 1	AS 86.0	MPH								
N54 N55 N56	81.3 83.1	72.3 72.9	8.9 10.1	NO DA 7.5 7.0	0.5 0.4	84.2 85.9	84.4 84.1	85.2 85.6	7.3 7.1	82.0 82.4	15.5 28.0	17.0 28.5	1.4 1.5
Avg. Std D 902 Cl	82.2 1.3 5.7	72.6 0.4 2.0	9.5 0.8 3.7	7.2 0.4 1.7	0.4 0.1 0.4	85.1 1.2 5.4	84.3 0.2 0.7	85.4 0.3 1.4	7.2 0.2 0.8	82.2 0.3 1.5	21.7 8.8 39.5	22.7 8.1 36.3	1.4 0.1 0.3

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-4.1 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

AS MEASURED *

		SI	ITE: 4		CENT	ERLINE -	150 M.	WEST		JUNE	7,1983		
EV	SEL	ALD	SEL-AL	K(A)	9	EPML	PNLB	PNLTs	K(P)	GASPLa	DUR(A)	DUR(P)	TC
500 F1	r. FLYO	VER	TARGET 14	S 130.	5 MPH								
A1 A2 A3 A4 A5 A6	84.5 85.3 85.0 85.2 83.7 85.3	77.4 77.2 78.5 77.8 75.7 77.3	7.1 8.1 6.5 7.4 8.0 8.0	6.6 6.9 6.4 6.6 7.2 7.3	0.4 0.4 0.4 0.4 0.5 0.5	88.1 88.7 88.8 88.8 87.4 88.9	89.4 89.6 90.9 90.0 88.1 89.7	90.9 90.9 92.5 91.3 89.7 91.1	6.9 6.8 6.5 6.7 7.1 6.9	86.8 87.6 86.8 86.2 87.1	12.0 15.0 10.5 13.5 13.0 12.5	11.0 14.0 9.5 13.0 12.0 13.5	1.6 1.4 1.6 1.1 1.5
Avg. Std Dv 90% C1	84.8 v 0.6 i 0.5	77.3 0.9 0.8	7.5 0.6 0.5	6.8 0.4 0.3	0.4 0.0 0.0	88.4 0.6 0.5	89.6 0.9 0.7	91.1 0.9 0.7	6.8 0.2 0.2	86.9 0.5 0.4	12.7 1.5 1.2	12.2 1.7 1.4	1.4 0.2 0.1
500 F	T. FLYO	VER	TARGET 1	NS 116	MPH								
88 89 810 811 812 813	84.2 83.7 83.6 83.5 82.9 82.3	76.1 76.1 75.1 75.9 73.7 74.7	8.1 7.6 8.5 7.5 9.2 7.6	6.8 6.8 6.5 7.2 6.8	0.4 0.4 0.4 0.4 0.4	87.7 87.2 87.4 87.1 86.4 86.0	88.7 89.4 87.6 88.5 86.4 87.1	90.0 90.9 88.8 89.7 87.4 88.4	6.6 6.1 6.3 6.6 6.9 6.9	83.9 84.7 83.1 83.8 82.4 82.6	16.0 13.0 17.5 14.5 19.0 13.5	15.0 11.0 23.0 13.5 20.0 12.5	1.7 1.4 1.2 1.2 1.2
Avg. Std Dv 90% CI	83.4 v 0.7 i 0.5	75.3 1.0 0.8	8.1 0.6 0.5	6.8 0.2 0.2	0.4 0.0 0.0	87.0 0.6 0.5	87.9 1.1 0.9	89.2 1.2 1.0	6.6 0.3 0.3	83.4 0.9 0.7	15.6 2.4 1.9	15.8 4.7 3.8	1.4 0.2 0.1
500 F1	T. FLYO	ver	TARGET 14	S 101.	5 MPH								
C14 C15 C16 C17 C18 Avg. Std Dv 90% C1		74.2 75.3 75.1 74.6 75.1 74.9 0.4 0.4	7.9 8.5 8.0 8.8 8.1 8.2 0.4	6.7 6.9 6.9 6.9 6.8 0.1	0.4 0.4 0.4 0.4 0.4 0.0	85.6 87.2 86.5 87.0 86.7 86.6 0.6	86.8 87.8 87.7 87.4 87.7 87.5 0.4	88.2 88.9 89.1 88.7 89.1 88.8 0.4	6.5 6.6 6.5 6.6 6.5 0.1	82.1 83.5 83.2 83.0 83.3 83.0 0.6 0.5	15.0 18.5 14.0 18.5 15.0 16.2 2.1 2.0	14.0 18.0 13.5 19.0 14.0 15.7 2.6 2.5	1.4 1.1 1.4 1.4 1.3 0.1

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-4.2 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUNHARY NOISE LEVEL DATA

DOT/TSC 2/9/84

AS HEASURED #

		SI	TE: 4		CENT	ERLINE -	150 M.	WEST		JUNE	7,1983		
EV	SEL	ALB	SEL-ALB	K(A)	9	EPNL	PNLB	PNLTs	K(P)	OASPL	DUR(A)	DUR(P)	TC
1000 F	T. FLY	DVER	TARGET 1	AS 130	.5 MPH								
D19 D20 D21 D22 D23 D24 D25	81.1 81.5 82.1 80.7 81.2 80.8 80.7	70.8 72.0 73.0 71.9 70.6 72.3 70.3	10.3 9.5 9.1 8.8 10.6 8.5 10.5	7.4 7.2 6.8 6.7 7.4 6.7	0.4 0.4 0.4 0.4 0.4	84.2 84.9 85.5 83.9 84.2 84.2	83.2 84.0 84.7 83.5 82.7 84.7 82.3	84.8 86.0 86.2 85.4 84.6 86.5 84.0	7.3 7.3 6.7 6.8 7.2 6.3	81.5 83.0 81.5 82.4 80.7 81.8 80.9	25.0 21.0 22.0 21.0 27.5 19.0 25.5	19.0 16.5 24.5 17.5 21.5 16.5 22.5	1.6 2.0 1.5 1.9 1.8 1.8
Avg. Std Dv 90% CI	81.2 0.5 0.4	71.5 1.0 0.7	9.6 0.9 0.6	7.1 0.4 0.3	0.4 0.0 0.0	84.4 0.6 0.4	83.6 0.9 0.7	85.4 0.9 0.7	7.0 0.4 0.3	81.7 0.8 0.6	23.0 3.0 2.2	19.7 3.2 2.3	1.8 0.2 0.1
TAKEOF	F T/	NRGET 1	as 63 mph	(ICAG)								
E26 E27 E28 E29 E30 E31 E32 E33	82.4 83.6 83.2 82.6 82.6 83.3 83.0	71.6 72.8 71.8 71.9 72.5 71.9 72.6	10.8 10.8 11.4 10.8 10.1 11.4	NG DA 7.5 7.3 7.3 7.0 6.8 6.8 7.2	0.4 0.4 0.3 0.3 0.3	96.5 85.9 85.6 85.5 - 85.8	83.1 84.3 83.4 83.3 84.2 83.3 84.0	85.0 86.2 85.3 85.1 86.0 85.3 85.8	7.3 7.3 7.2 6.6	78.0 78.0 77.8 77.2 78.4 77.1 78.0	27.0 29.5 37.0 35.0 31.5 47.0 27.0	26.5 28.0 28.5 27.5 25.5	1.9 1.9 2.0 1.8 1.8 2.0
Avg. Std Dv 90% CI	83.0 0.4 0.3	72.2 0.5 0.3	10.8 0.5 0.3	7.1 0.3 0.2	0.4 0.1 0.0	85.9 0.4 0.4	83.7 0.5 0.4	85.5 0.5 0.3	7.1 0.3 0.3	77.8 0.5 0.3	33.4 7.1 5.2	27.2 1.2 1.1	1.9 0.1 0.1
APPROA	CH 1	ARGET 1	AS 63 MP	H (ICAC	3)								
F42 F43 F44 F45 F46 F47 F48 Avg. Std Dv 902 C1	91.3 89.3 91.0 91.3 91.3 90.2 90.7 0.8 0.7	82.9 79.9 82.4 83.6 85.2 83.4 82.9 1.7	8.4 9.4 8.5 7.7 6.1 6.8 7.8 1.2	NO DAT 6.8 7.4 7.2 6.4 5.9 5.9 6.6 0.5	0.4 0.5 0.5 0.4 0.4 0.3 0.4 0.1	94.2 92.2 93.6 93.9 94.2 92.7 93.5 0.8 0.7	94.3 92.7 94.2 95.5 97.1 95.1 94.8 1.5	95.4 94.0 95.2 96.5 98.2 96.1 95.9 1.4	7.2 6.7 7.1 6.5 5.8 5.9 6.5 0.6	88.5 88.7 90.2 90.0 91.7 90.9 90.0 1.2	17.0 18.5 15.5 16.0 11.0 14.0	17.0 16.5 15.5 13.5 11.0 13.5 14.5 2.3 1.9	1.0 1.3 1.0 1.0 1.1 1.0

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-4.3 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

AS MEASURED *

DOT/TSC 2/9/84

		SI	TE: 4		CENTE	ERLINE -	150 M.	WEST		JUNE 7	7,1983		
EV	SEL	ALB	SEL-ALD	K(A)	8	EPNL	PMLs	PMLTs	K(P)	OASPL	DUR(A)	DUR(P)	TC
TAKEOF	F TA	ARGET I	AS 63 MPH	STAND	ARD (SEE TEXT	1)						
G38	85.0	75.6	9.4	7.2	0.4	88.3	87.4	89.0	7.4	81.4	20.5	18.5	1.8
G39	84.7	74.8	9.8	6.7	0.3	87.2	86.4	88.4	7.0	80.8	29.5	18.5	2.0
G40	85.1	75.1	10.0	7.2	0.4	88.2	86.6	88.7	7.5	80.8	24.0	18.5	2.2
G41	84.7	74.0	10.6	7.2	0.4	87.4	85.8	87.6	7.3	79.9	29.5	22.0	1.8
Avg.		74.9	10.0	7.1	0.4	87.8	86.5	88.4	7.3	80.7	25.9	19.4	1.9
Std Dv		0.6	0.5	0.3	0.0	0.5	0.6	0.6	0.2	0.6	4.4	1.7	0.2
90% Ci		0.8	0.6	0.3	0.1	0.6	0.8	0.7	0.2	0.7	5.2	2.1	0.2
APPROA	CH 1	TARGET	1AS 63 NI	PH STAN	DARO	(SEE TE)	(T)						
H34	89.7	81.9	7.9	6.6	0.4	91.8	92.3	92.9	7.2	86.9	15.5	17.0	0.6
H35	89.2	79.6	9.7	6.9	0.4	91.5	91.6	92.7	6.6	87.5	25.0	22.0	1.3
H36	88.9	80.1	8.9	6.5	0.3	91.6	91.3	91.9	7.1	87.1	23.0	23.5	0.9
H37	88.9	81.0	7.9	6.7	0.4	91.7	92.5	93.7	6.8	88.6	15.0	14.5	1.2
Avg.	89.2	80.6	8.6	6.7	0.4	91.6	91.9	92.8	6.9	87.5	19.6	19.2	1.0
Std Dv	0.4	1.0	0.9	0.2	0.0	0.1	0.6	0.8	0.3	0.8	5.1	4.2	0.3
902 Ci	0.5	1.2	1.0	0.2	0.0	0.2	0.7	0.9	0.3	0.9	6.0	5.0	0.4
500 FT	. FLYO	VER	TARGET I	AS 145	MPH								
H49	85.4	77.9	7.6	7.3	0.5	88.8	90.2	91.7	7.0	89.6	11.0	10.5	1.5
H50	85.7	79.3	6.4	6.7	0.5	89.7	92.4	94.0	6.3	89.9	9.0	8.0	1.6
H51	86.0	78.3	7.7	6.9	0.4	89.3	90.3	91.8	6.7	88.3	13.0	13.0	1.5
H52	85.0	77.2	7.8	7.2	0.5	88.6	90.4	92.1	6.4	88.6	12.0	10.5	1.7
H53	85.3	77.2	8.0	6.9	0.4	88.7	89.7	90.9	6.7	87.3	14.5	14.5	1.2
Avg.	85.5	78.0	7.5	7.0	0.5	89.0	90.6	92.1	6.6	88.7	11.9	11.3	1.5
Std Dv	0.4	0.9	0.6	0.2	0.0	0.5	1.0	1.2	0.3	1.0	2.1	2.5	0.2
90% C	0.4	0.8	0.6	0.2	0.0	0.4	1.0	1.1	0.3	1.0	2.0	2.4	0.2
500 F1	r. flyo	VER	TARGET I	AS 86.(HPH (
N54	84.0	73.9	10.2	6.7	0.3	87.1	86.0	86.9	6.8	81.7	33.0	32.0	0.9
N55	83.5	75.9	7.6	6.3	0.4	86.6	88.0	89.0	6.4	83.2	16.0	15.5	1.0
N56	83.4	74.1	9.3	6.8	0.4	86.5	86.0	87.2	7.1	82.3	23.5	20.5	1.1
	83.6 v 0.3 l 0.6	74.6 1.1 1.9	1.3	6.6 0.3 0.4	0.3 0.0 0.0	86.7 0.3 0.6	86.7 1.2 1.9	87.7 1.1 1.9	6.7 0.4 0.6	82.4 0.7 1.3	24.2 8.5 14.4	22.7 8.5 14.3	1.0 0.1 0.2

^{* -} NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, MUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

A PARTIE HOLD

TABLE NO. A.2-5.1 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) SUMMARY NOISE LEVEL DATA

DOT/TSC 2/9/84

AS HEASURED *

		SI	TE: 5		CENT	ERLINE -	188 M.	EAST		JUNE	7,1983		
EA	SEL	ALB	SEL-ALM	K(A)	6	EPML	PNLs	PHLTB	K(P)	CASPLE	DUR(A)	OUR(P)	TC
500 F1	r. FLYO	VER	TARGET I	\S 130.	5 NPH								
A1 A2 A3 A4 A5 A6	84.5 85.2 85.1 85.6 84.6 85.1	77.0 78.3 77.9 78.4 77.2 77.5	7.5 6.9 7.2 7.2 7.3 7.6	6.8 6.3 6.7 6.3 6.5 6.6	0.4 0.4 0.4 0.4 0.4	88.4 89.0 89.0 89.3 88.4 88.8	89.7 90.3 90.6 90.6 89.8 89.4	91.2 91.9 92.1 92.2 91.3 91.1	6.7 6.5 6.5 6.4 6.8	87.1 87.6 87.9 87.4 88.1 86.9	13.0 12.5 12.0 13.5 13.5 14.0	12.0 12.0 11.5 12.5 12.5 13.5	1.5 1.6 1.7 1.6 1.7
Avg. Std Dy 90% CI		77.7 0.6 0.5	7.3 0.3 0.2	6.5 0.2 0.2	0.4 0.0 0.0	88.8 0.4 0.3	90.1 0.5 0.4	91.6 0.5 0.4	6.6 0.2 0.1	87.5 0.5 0.4	13.1 0.7 0.6	12.3 0.7 0.6	1.6 0.1 0.1
500 F	T. FLYO	VER	TARGET 1	AS 116	MPH								
88 89 810 811 812 813	84.1 83.7 83.3 83.0 83.7 83.0	76.2 76.0 75.6 75.3 74.8 74.5	7.9 7.6 7.7 7.6 8.9 8.5	6.5 6.6 6.6 7.0 6.9	0.4 0.4 0.4 0.4 0.4	87.7 87.2 86.9 86.8 87.5 86.6	88.7 88.6 88.4 88.1 87.6 86.9	90.0 90.1 89.8 89.3 88.9 88.5	6.6 6.3 6.7 6.9 6.8	83.8 84.0 83.5 84.2 83.4 82.9	16.0 14.5 14.5 14.5 18.5 17.0	14.5 13.0 13.5 13.0 18.0 15.5	1.3 1.6 1.4 1.4 1.2 1.6
Avg. Std Dv 90% CI		75.4 0.7 0.5	8.0 0.5 0.4	6.7 0.2 0.2	0.4 0.0 0.0	87.1 0.4 0.4	88.1 0.7 0.5	89.4 0.7 0.5	6.6 0.2 0.2	83.6 0.5 0.4	15.8 1.7 1.4	14.6 1.9 1.6	1.4 0.1 0.1
500 F	T. FLYO	ver	TARGET I	AS 101.	5 NPH								
C14 C15 C16 C17 C18	83.3 84.2 83.7 83.9 83.4	74.9 76.3 76.0 75.8 75.0	8.4 7.9 7.7 8.1 8.4	6.7 6.2 6.0 6.8 7.1	0.4 0.3 0.3 0.4 0.5	86.9 87.9 87.1 87.3 87.0	87.8 89.0 88.6 88.3 87.7	89.1 90.2 90.1 89.3 89.0	6.3 6.1 6.5 6.9 6.8	83.6 84.3 84.4 84.1 83.4	18.0 19.0 19.5 15.5 15.0	17.5 18.0 11.5 14.5 15.0	1.4 1.5 1.4 1.4
Avg. Std D 90% C	83.7 v 0.4 i 0.4	75.6 0.6 0.6	8.1 0.3 0.3	6.6 0.5 0.4	0.4 0.1 0.1	87.3 0.4 0.4	88.3 0.6 0.5	89.6 0.6 0.6	6.5 0.3 0.3	84.0 0.4 0.4	17.4 2.0 1.9	15.3 2.6 2.5	1.4 0.1 0.1

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-5.2 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

00T/TSC 2/9/84

SUMMARY NOISE LEVEL DATA AS MEASURED *

		SI	TE: 5		CENT	ERLINE -	198 H.	EAST		JUNE	7,1983		
EV	SEL	ALB	SEL-AL:	K(A)	0	EPNL	PHLB	PHLTB	K(P)	OASPL	DUR(A)	DUR(P)	TC
1000 F	FT. FLY	OVER	TARGET 1	AS 130	.5 MPH								
D19 D20 D21 D22 D23 D24 D25	82.0 80.6 82.2 82.0 81.6 81.5	73.1 70.3 72.7 72.7 72.8 72.9 72.4	9.6 9.2 8.8	7.2 6.9 7.0 6.7	0.4 0.4 0.4 0.4 0.4	85.4 83.9 85.5 85.5 85.0 85.3	84.9 83.5 84.3 84.2 84.2 84.4	86.6 85.5 86.1 86.2 86.1 86.1	6.9 6.8 6.8 7.1 7.0 6.8 6.9	82.9 83.9 81.7 83.3 81.9 83.2 81.4	20.0 26.5 24.5 21.0 20.5 19.0 23.0	18.5 17.5 24.5 20.0 19.0 23.0 22.0	1.7 1.9 1.7 2.1 1.9 2.0
Avg. Std D 90% C	81.7 v 0.6 i 0.4	72.4 0.9 0.7	9.3 0.6 0.4	6.9 0.2 0.1	0.4 0.0 0.0	0.6	84.3 0.4 0.3		6.9 0.1 0.1	0.9	22.1 2.7 2.0	20.6 2.6 1.9	1.9 0.2 0.1
TAKEO	FF TI	arget i	AS 63 MPI	I (ICAO)								
E26 E27 E28 E29 E30 E31 E32 E33	85.6 85.8 86.8 86.2 85.9 85.8 86.6	77.2 76.1 78.9 77.6 78.1 78.0 77.9 78.9	9.7 7.9 8.7 7.8 7.8	6.3 6.8 6.4 6.8 6.2 6.5 6.4	0.3 0.3 0.4 0.4 0.3 0.4	89.2 89.5 90.4 89.7 89.3 89.6 90.0	89.5 88.8 90.9 90.0 90.0 90.4 89.8 90.5	91.4 90.4 92.6 91.7 92.3 91.9 91.4 92.7	6.4 7.0 6.3 6.5 6.3 6.4 6.7	83.0 82.6 85.0 83.9 84.0 83.6 83.1	21.0 26.5 17.5 18.5 17.5 16.0 24.0 15.5	16.5 20.0 17.0 17.0 13.0 16.5 16.5	1.9 1.9 2.3 1.7 2.3 1.5 2.1
Avg. Std D 90% C	86.1 v 0.4 I 0.3	77.8 0.9 0.6	8.3 0.7 0.5	6.5 0.2 0.2	0.4 0.0 0.0		90.0 0.7 0.4	91.8 0.7 0.5	6.5 0.2 0.2	83.6 0.7 0.5	19.6 3.9 2.6	16.3 2.1 1.4	2.0 0.3 0.2
APPRO	ACH	TARGET	IAS 63 M	PH (ICA	()								
F42 F43 F44 F45 F46 F47 F48	92.7 93.6 92.8 93.7 92.4 93.4	85.8 87.3 86.6 87.0 85.9 87.2	6.9	NO DA 6.4 6.3 6.5 6.5 6.3	0.4 0.4 0.5 0.4 0.4 0.4	95.8 96.6 96.3 96.4 95.0 95.9	97.9 98.9 99.0 98.4 98.1 98.6	98.6 99.6 99.8 99.4 99.2 99.3	6.8 6.9 7.0 6.8 6.0 6.6	93.2 94.8 94.7 93.6 94.3 93.9	12.0 10.0 9.0 11.0 10.5 9.5	11.5 10.5 8.5 11.0 9.5	0.7 0.6 0.8 1.0 1.2 0.7
Avg. Std D 90% C	93.1 v 0.6 l 0.5	86.6 0.6 0.5	0.3	0.1	0.4 0.0 0.0		98.5 0.5 0.4	99.3 0.4 0.3	6.7 0.4 0.3	94.1 0.6 0.5	10.3 1.1 0.9	10.2 1.1 0.9	0.8 0.2 0.2

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.2-5.3

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

SUMMARY NOISE LEVEL DATA

AS MEASURED *

CENTERLINE - 188 M. EAST JUNE 7,1983 SITE: 5 PMLTs K(P) DASPLB DUR(A) DUR(P) E۷ SEL ALB SEL-ALB K(A) TAKEOFF -- TARGET 1AS 63 MPH STANDARD (SEE TEXT) 15.5 16.0 14.0 16.5 91.9 90.8 91.8 91.2 92.4 91.9 92.5 94.1 93.4 94.3 93.1 86.0 85.4 86.0 85.2 6.6 6.5 6.4 6.9 88.2 87.5 80.2 79.7 80.8 8.0 7.8 7.5 6.5 6.5 14.0 15.0 1.4 1.8 1.7 639 640 641 0.4 88.3 87.7 91.4 0.5 0.6 92.1 0.4 0.5 7.8 0.3 0.3 6.6 0.2 0.3 Avg. 87.9 Std Dv 0.4 90% CI 0.4 0.1 0.0 0.6 0.5 APPROACH -- TARGET IAS 63 NPH STANDARD (SEE TEXT) 93.1 94.6 94.0 94.6 95.8 95.6 H35 H36 H37 0.4 0.5 89.8 92.0 91.2 81.9 83.7 83.0 8.4 7.8 8.2 95.3 96.6 96.5 6.5 7.0 6.5 17.0 12.5 17.0 94.0 0.7 0.8 96.7 8.0 14.4 0.0 3.1 500 FT. FLYOVER -- TARGET IAS 145 MPH H49 H50 H51 79.9 78.8 78.2 78.6 90.1 90.2 89.3 90.0 0.3 6.6 0.3 **M52** 86.3 0.5 0.6 7.4 0.7 0.8 89.9 0.4 0.5 91.7 9.7 0.8 93.2 0.7 0.8 6.6 0.3 0.3 90.3 0.9 1.1 14.6 2.0 2.4 78.9 6.4 0.5 0.6 0.0 500 FT. FLYOVER -- TARGET IAS 86.0 NPH N54 N55 N56 7.0 7.0 16.5 26.0 87.6 0.7 3.3 7.1 0.0 0.1 88.5 0.7 3.2 83.8 0.0 0.1

NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

APPENDIX B

Direct Read Acoustical Data and Duration Factors for Flight Operations

In addition to the magnetic recording systems, four direct-read, Type-1 noise measurement systems were deployed at selected sites during flight operations. The data acquisition is described in Section 5.6.2.

These direct read systems collected single event data consisting of maximum A-weighted sound level (AL), Sound Exposure Level (SEL), integration time (T), and equivalent sound level (LEQ). The SEL and dBA, as well as the integration time were put into a computer data file and analyzed to determine two figures of merit related to the event duration influence on the SEL energy dose metric. The data reduction is further described in Section 6.2.2; the analysis of these data is discussed in Section 9.4.

This appendix presents direct read data and contains the results of the helicopter noise duration effect analysis for flight operations. The direct read acoustical data for static operations is presented in Appendix D.

Each table within this appendix provides the following information:

Run No.	The test run number
SEL(dB)	Sound Exposure Level, expressed in decibels
AL(dB)	A-Weighted Sound Level, expressed in decibels
T(10-dB)	Integration time
K(A)	Propagation constant describing the change in dBA with distance
Q	Time history "shape factor"
Average	The average of the column
N	Sample size
Std Dev	Standard Deviation
90% C.I.	Ninety percent confidence interval
Mic Site	The centerline mircophone site at which the measurements were taken

HELICOPTER: TWINSTAR TABLE B.1.1

TEST DATE: 6-7-83

OPERATION: 500 FT.LFO--TARGET IAS 130.5 MPH

MIC SITE: 5

RUN NO.	SEL(DB)	AL(08)	T(10-08)	K(A)	Q
A1	85.8	78.2	` ₈ 4	NA	NA
42	86.4	79.2	NA	* \	NA
A3	86.1	70	NA	NA	NA
A4	86.8	79.2	NA	NA	*#
A5	34.8	78.1	NA	NA	NA
A6	80.3	78.1	NA	NA	₽¥1
AVERAGE	86.00	78.60			
N	6	ô			
STO.DEV.	0.69	0.55			
90% 0.1.	0.57	9.48			

HELICOPTER: TWINSTAR TABLE B.1.2

TEST DATE: 6-7-83

OPERATION: 500 FT.LF0--TARGET 145 130.5 MPH

MIC SITE:

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(Á)	9
A1	85.4	78.2	12	6.7	.4
A2	35.8	79	12	6.3	,4
A3	86.1	79.5	11	6.3	, 4
A4	86.6	70	12	7	.5
A5	85.3	77.5	12	7.2	.5
ėė.	86.6	79.7	11.5	٥.5	.4
AVERAGE	86.00	78.80	11.80	6.70	.4
N	é	é	6	÷	ô
3T0.0EV.	0.57	0.93	9,42	. 38	.04
¥27, 111,	0,47	6.88	0.34	.31	.03

HELICOPTER: TWINSTAR TABLE B.1.3

TEST DATE: 6-7-83

OPERATION: 500 FT.LFO--TARGET IAS 130.5 MPH

RUN NO.	SEL(DB)	AL(08)	T(10-08)	K(A)	6
Al	85.2	78	12	6.7	.4
A2	86.3	78.7	15	6.5	.4
A3	86	79.6	10	6.4	.4
A4	86.2	79.2	13	6.3	.4
A5	84.4	76.6	13	7	
A6	86.1	78.4	11.5	7.3	
AVERAGE	85.70	78.40	12.40	6.70	.4
N	6	ó	6	6	ć
STD.DEV.	0.75	1.06	1.69	.38	.05
90% C.I.	0.62	0.87	1.39	.31	.04

MIC SITE:

MIC SITE:

HELICOPTER: TWINSTAR TABLE B.2.1

TEST DATE: 6-7-83

OPERATION: 500 FT.LF0--TARGET IAS 116 MPH

RUN NO. SEL(DB) AL(DB) T(10-DB) K(A) 87 84.4 77.2 NA 76.8 NA 88 85 NA NA 84.7 77.1 89 NA NA NA B10 84.3 76.2 NA NA B11 84.2 76.5 NA NA NA 812 84.8 75.5 NA NA NA 813 84 75.6 AVERAGE 84.50 76.40

STD.DEV. 0.36 0.68

N

7 7

90% C.I. 0.26 0.50

نبد جانبون م

HELICOPTER: TWINSTAR TABLE B.2.2

TEST DATE: 6-7-83

OPERATION: 500 FT.LF0--TARGET IAS 116 MPH

MIC SITE:

RUN NO.	SEL(DB)	AL(08)	T(10-08)	k(A)	ũ
87	84.7	77.5	12.5	5.5	, 4
88	85.5	77.4	15	6.9	. 4
89	84.8	77	12	7.2	.5
B16	84.7	76.7	15	6.8	.4
811	84.6	76.8	:3	7	.5
812	85	76.4	18	5.9	.4
813	83.8	75.9	13	7.1	,5
AVERAGE	84.70	76.80	14.10	6.90	. 4
N	7	7	7	7	7
STD.DEV.	0.51	ũ.58	2.09	.24	.04
90% C.I.	0.37	0.43	1.54	.18	.03

HELICOPTER: TWINSTAR TABLE B.2.3

TEST DATE: 6-7-83

OPERATION: 500 FT.LF0--TARGET IAS 116 MPH

MIC SITE: 4 RUN NO. SEL(DB) AL(DB- T(10-DB) K(A) 76.4 87 83.8 12 5.9 77.1 88 85.: 15.5 6.7 89 84.5 76.7 12 7.2 .5 34.4 B10 76.1 17 6.7 84.: 14 ٥,٦ 76.4 .4 B11 18 7.2 84.2 75.2 4 B12 83.2 : 4 10.1 B13 71.6 AVERAGE 84.20 75.60 14.66 7.40 .5 N 7 7 7 7 7 1.88 2.32 1.23 .23 STD.DEV. 0.59 1,71 .91 .17 90% C.I. 0.44 36.1

HELICOPTER: TWINSTAR TABLE B.3.1

TEST DATE: 6-7-83

OPERATION: 500 FT.LEO-TARGET IAS 101.5 MPH

			5		
RUN NO.	SEL(DB)	AL(DB) TO	10-DB)	K(A)	Q
C14	83.8	75.4	NA	NA	NA
015	84.9	76.3	NA	NA	NA
C16	84.3	76.5	NA	NA	NA
C17	84.7	76.3	NA	NA	NA
£18	84	75.7	NA	NA	NA
AVERAGE	84.30	76.00			
N	5	5			
STD.DEV.	0.46	0.47			
90% C.I.	0.44	0.45			

HELICOPTER: TWINSTAR TABLE B.3.2

TEST DATE: 6-7-83

OPERATION: 500 FT.LFC--TARGET TAS 101.5 MPH

ND. SEL(DB) AL(DB).T(10-DB) K(A)

MIC SITE:

RUN NÛ.	SEL(DB)	AL(DB).T	(10-DB)	K(A)	H
C14	83.5	75.8	15	6.5	.4
C15	84.5	76.3	14	7.2	.5
C16	84.2	76.4	14	6.8	.4
C17	84.3	75.5	15.5	7.4	.5
C18	84.2	76.2	13	7.2	.5
AVERAGE	84.10	76.00	14.30	7.00	.5
N	5	5	5	5	5
STD.DEV.	0.38	0.38	0.97	.34	.04
00°/ C 1	n 34	0.36	0.93	.32	.04

Marie Commence of the second

HELICOPTER: TWINSTAR TABLE B.3.3

TEST DATE: 6-7-83

OPERATION: 500 FT.LFO--TARGET IAS 101.5 MPH

MIC	SITE:	

RUN NO.	SEL(DB)	AL (DR)	T(10-DB)	K(A)	(
			: 110 00/	177077	,
C14	83.5	74.6	15	7.6	
C15	84.5	76.1	19	6.7	.4
C16	84.2	75.4	14	7.7	.5
C17	84.3	75.9	15.5	7.1	.5
C18	84.2	75.6	14	7.5	.5
AVERAGE	84.10	75.50	15.30	7.30	.5
N	5	5	5	5	5
STD.DEV.	0.38	0.57	1.64	.4	.07
90% C.I.	0.36	0.54	1.57	.38	.06

HELICOPTER: TWINSTAR TABLE B.4.1

90% C.1. 0.38 0.64

TEST DATE: 6-7-83

OPERATION: 1000 FT.LFO--TARGET IAS 130.5 MPH

MIC SITE: 5

The second of the second of

RUN NO.	SEL(DB)	AL(DB)	T(10-D8)	k(A)	Q
019	82.6	74.1	ΝA	MA	NA
D20	81.2	71.3	NiA	NA	NA
D21	82.8	72.8	NA	NA	144
022	82.1	73.4	NA	NA	NA
023	82	72.9	NA	NA	NA.
D24	82	73.3	NA	NA	·#
025	82.2	72.6	NA	NA	NA
AVERAGE	82.10	72.90			
N	7	7			
STD.DEV.	0.51	0.87			

HELICOPTER: TWINSTAR

TABLE B.4.2

TEST DATE: 6-7-83

OPERATION: 1000 FT.LFO-TARGET IAS 130.5 MPH

MIC SITE:

MIC SITE:

RUN NO.	SEL(DB)	AL(DB)	T(10-0B)	K(A)	1
019	82.1	72.5	21	7.3	,,
D20	81.9	72.3	19.5	7.4	
021	82.1	72.3	24	7.1	
022	81.7	73.1	16	7.1	, . 9,
023	81.4	72	21	7.1	.4
024	81.6	72.5	17	7.4	.5
D25	81.3	72	22	7.3	.4
AVERAGE	81.80	72.40	20.10	7.20	.4
N	?	7	7	7	7
STD.DEV.	0.26	0.38	2.81	.14	.03
90% C.I.	0.19	9.28	2.06	.1	.02

HELICOPTER: TWINSTAR TABLE B.4.3

TEST DATE: 6-7-83

OPERATION: 1000 FT.LF0--TARGET 1AS 130.5 MPH

RUN NO. SEL(DB) AL(DB) 7(10-DB) K(A)019 81.8 72.1 20 7.5 .5 020 82.3 73.2 16 7.6 .5 021 82.8 73.8 21 6.8 022 81.4 72.7 20 6.7 023 82.1 71.9 24 .4 7.4 J24 81.5 72.9 18.5 6.8 .4 925 81.8 71.7 24 7.3 AVERAGE 82.00 72.60 20.50 7.10 N ? 7 7 7 STO.DEV. 0.49 0.76 2.87 .37 . 25 99% C.I. 0.36 Ú.56 2.11 .27 . 34

HELICOPTER: TWINSTAR TABLE B.5.1

TEST DATE: 6-7-83

OPERATION: TAKEOFF--TARGET IAS 63 MPH (ICAO)

			5		
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
E26	86.3	77.4	NA	NA	NA
E27	86.2	76.3	NA	NA	NA
E28	87.5	79.3	NA	NA	NA
E29	87	78	NA	NA	NA
E30	86.7	78.3	NA	NA	NA
E31	86.6	78.5	NA	NA	NA
E32	87.1	78.7	NA	NA	NA
£33	87.5	79.4	NA	NA	NA
AVERAGE	86.90	78.20			
N	8	8			
STO.DEV.	0.50	1.02			
90% C.I.	0.33	0.68			

HELICOPTER: TWINSTAR TABLE B.5.2

TEST DATE: 6-7-83

OPERATION: TAKEOFF--TARGET IAS 63 MPH (ICAO)

		MIC SITE:				
RUN NO.	SEL(08)	AL(08)	T(10-08)	K(A)	Q	
E26	84.8	74.3	NA	NA	NA	
E27	84.4	74.3	24	7.3	.4	
E28	85.8	75.4	26	7.3	.4	
E29	84.6	74.8	21	7.4	5،	
E30	83.9	72.2	27	8.2	.5	
E31	84.5	74.4	22	7.5	.5	
E32	84.8	74.9	24	7.2	.4	
E33	85.2	74.8	24	7.5	.5	
AVERAGE	84.80	74.40	24.00	7.50	.5	
N	8	8	7	7	7	
STD.DEV.	0.57	0.96	2.08	.32	.05	
90% C.I.	0.38	0.64	1.53	. 24	.03	

and the second of the second o

HELICOPTER: TWINSTAR TABLE B.5.3

TEST DATE: 6-7-83

OPERATION: TAKEOFF--TARGET IAS 63 MPH (ICAD)

	MIC SITE:					
RUN NO.	SEL(DB)	AL(DB)	⁺ (10-DB)	K(A)	Q	
£26	83.4	72.4	32	7.3	.4	
E27	83.3	72.5	30	7.3	.4	
E28	84.5	73.7	29.5	7.3	.4	
E29	83.5	72.2	27	7.9	.5	
E30	83.2	72.4	28	2.5	.4	
E31	83.3	73.1	27	7.1	.4	
E32	83.8	72.8	33	7.2	.4	
E33	83.7	73.4	24	7.5	.5	
AVERAGE	83.60	72.80	28.80	7.40	.4	
N	8	8	8	8	8	
STD.DEV.	0.42	0.54	2.93	.23	.04	
90% C.I.	8.28	0.36	1.96	.15	.03	

HELICOPTER: TWINSTAR TABLE B.6.1

TEST DATE: 6-7-83

OPERATION: APPROACH--TARGET IAS 63 MPH (ICAO)

			M	IC SITE:	5
RUN NO.	SEL(08)	AL(DB)	T(10-08)	⊀(A)	Q
F42	93.5	86.6	NA	NA	NA
F43	92.7	85.8	NA	NA	NA
F44	93.9	87.6	NA	NA	NA
F45	92.7	86.6	NA	NA	NA
F46	93.9	87.3	NÁ	NA	N/A
F47	92.3	85.8	NA	NA	NA
F48	93.7	87.8	NA	NA	NA
AVERAGE	93.20	86.80			
N	7	?			
STD.DEV.	0.66	0.81			
90% C.I.	€.49	0.60			
90% C.I.	€.49	0.60			

HELICOPTER: TWINSTAR TABLE B.6.2

TEST DATE: 6-7-83

OPERATION: APPROACH--TARGET IAS 63 MPH (ICAO)

		MIC SITE:					
RUN	SEL(DB)	AL(08)	T(10-0B)	K(A)	a		
F42	91.9	83.8	12	7.5	.5		
F43	92.8	84.9	13	7.1	.5		
F44	91.9	85	10.3	6.8	.5		
F45	95.9	93.2	12	2.5	.2		
F46	97.8	NA	11	NA	NA.		
F47	94.3	87.6	11	6.4	.4		
F48	91.9	NA	9	NA	NA		
AVERAGE	93.80	86.90	11.20	6.10	.4		
N	7	5	7	5	5		
STD.DEV.	2.33	3.79	1.31	2.03	.15		
90% C.I.	1.71	3.61	0.96	1.94	.14		

and the second of the second o

HELICOPTER: TWINSTAR TABLE B.6.3

MIC SITE: 4

TEST DATE: 6-7-83

OPERATION: APPROACH -- TARGET IAS 63 MPH (ICAO)

RUN NO.	SEL(DB)	AL(DB)	T(10-08)	K(A)	Q
F42	82.4	84.2	13	-1.5	.1
F43	82.9	32.9	16	0	.:
F44	81.1	81.1	18	0	.1
F45	84.1	84.1	14	3	.1
F46	85.3	85.3	12	D	.1
F47	85.9	85.9	10	0	.1
F48	84.1	84.1	13	0	.1
AVERAGE	83.70	83.90	13.70	-0.10	
N	7	7	7	7	7
STD.DEV.	1.67	1.58	2.63	.61	.92
90% C.I.	1.23	1.16	1.93	.45	.01

HELICOPTER: TWINSTAR TABLE B.7.1

TEST DATE: 6-7-83

OPERATION: TAKEOFF -- TARGET IAS 63 MPH STANDARD

	MIC SITE:					
RUN NO.	SEL(DB)	AL(08)	T(10~08)	K(A)	4	
G38	88.1	80.2	NA	NA	NA	
G39	87.4	80	NA	NA	NA	
640	88.6	81.1	NA	NA	MA	
641	87.7	79.8	NA	NA	NA	
AVERAGE	88.00	80.30				
٧	4	4				
STD.DEV.	0.52	0.57				
90% C.I.	0.61	0.68				

HELICOPTER: TWINSTAR TABLE B.7.2

MIC SITE: 1

TEST DATE: 6-7-83

OPERATION: TAKEOFF--TARGET IAS 63 MPH STANDARD

RUN NO. SEL(DB) AL(DB) T(10-DB) K(A) 21 638 86.4 77.1 7 G39 85.3 76.3 17 7.3 .5 G48 86.2 77.8 16 7 21 G41 85.6 76.2 7.1 . 4 AVERAGE 85.90 76.90 18.80 7.10 4 4 STD.DEV. 0.51 0.75 2.63 .03 .15

0.88

3.09

.17

.03

HELICOPTER: TWINSTAR TABLE B.7.3

TEST DATE: 6-7-83

90% C.I. 0.60

OPERATION: TAKEOFF--TARGET IAS 63 MPH STANDARD

MIC SITE: RUN NO. SEL(DB) AL(DB) T(10-DB) K(A) 7.2 638 85.9 76.6 19.5 G39 85.2 75.7 19 7.4 .5 G40 85.8 76.1 16 8.1 .6 641 35.3 75 24 7.5 .5 AVERAGE 85.60 75.90 19.60 7.50 .5 4 STD.DEV. 0.35 0.68 3.30 .36 .Ûó 90% C.I. 0.41 0.803.98 .43 .08 HELICOPTER: TWINSTAR TABLE B.8.1

TEST DATE: 6-7-83

OPERATION: APPROAH--TARGET IAS 63 MPH STANDARD

	MIC SITE:				
RUN NO.	SEL(08)	AL(DB)	T(10-08)	K(A)	Q
H34	87.2	81.1	NA	NA	NA
H35	92.3	85.9	NA	NA	NA
H36	90.2	82	NA	NA	NA
H37	91.8	83.6	NA	NA	NA
AVERAGE	90.40	83.20			
N	4	4			
STD.DEV.	2.30	2.10			
90% C.I.	2.70	2.48			

HELICOPTER: TWINSTAR TABLE B.8.2

TEST DATE: 6-7-83

OPERATION: APPROAH -- TARGET IAS 63 MPH STANDARD

MIC SITE:					
RUN NO.	SEL(OB)	AL(08)	T(10-08)	K(A)	Q
H34	90.8	82.6	17	6.7	.4
H35	89.4	79.7	16.4	8	.6
H36	NA	NA	7	NA	NA
H37	90.1	82.2	13	7.1	.5
AVERAGE	90.10	81.50	13.40	7.20	.5
N	3	3	4	3	3
STD.DEV.	0.70	1.57	4.59	.67	.09
90% C.I.	1.18	2.65	5.40	1.14	.15

HELICOPTER: TWINSTAR TABLE B.8.3

TEST DATE: 6-7-83

OPERATION: APPROAH--TARGET IAS 63 MPH STANDARD

4	MIC SITE:					
9	K(A)	T(10-08)	AL(08)	SEL(DB)	RUN NO.	
, 4	6.1	15	84.4	91.6	Н34	
.4	7.2	22.2	80.5	90.2	H35	
,4 .5	6.8	23	80.6	89.9	H36	
.5	7 . i	13	82.3	90.2	H37	
.4	6.80	18.30	82.00	90.50	AVERAGE	
4	4	4	4	4	N	
.05	.49	5.04	1.83	0.76	STD.DEV.	
.Je	.57	5.93	2.15	0.90	90% 8.1.	

HELICOPTER: TWINSTAR TABLE B.9.1

TEST DATE: 6-7-83

OPERATION: 500 FT.LF0--TARGET IAS 145 MPH

		MIC SITE:					
RUN NO.	SEL(08)	AL(08) T	(80-03)	N.A.C	ā		
MAG	Se.5	79.7	NΑ	Nei	NA		
M50	96.8	30.5	NA	NA	شنج ا		
M51	30.2	79.7	N a -	NA			
#52	90.:	70	NA	NA.	NA		
M53	80.5	78.7	NA	NA	NH		
HVERAGE	80.50	79.30					
N	5	5					
STD.DEV.	0.25	0.78					
90% C.I.	0.24	9.74					

HELICOPTER: TWINSTAR TABLE B.9.2

TEST DATE: 6-7-93

OPERATION: 500 FT.LFO--TARGET IAS 145 MPH

MIC SITE: 1 RUN NO. SEL(08) #1(08) T(10-08) K(A) g M49 86.3 78.3 12.5 7.3 M50 86 80.3 3 5.3 .5 M5: 86.3 78.9 11 7.1 .5 M52 85.8 79 13 5.3 .5 12 86.3 79.4 M53 6.4 .4 AVERAGE 86.10 79.20 10.70 6.30 5 5 5 5 N 5 STD.DEV. 0.23 0.74 1.79 .43 .04 90% C.I. 0.22 0.71 1.71 .41 .04

HELICOPTER: TWINSTAR TABLE B.9.3

TEST DATE: 6-7-83

OPERATION: 500 FT.LFO-TARGET IAS 145 MPH

RUN NO.	SEL(08)	AL(08)	T(10-08)	K(A)	Q
M49	86.6	79.8	10	6.8	.5
M50	86.3	80	9	6.6	.5
M51	86.9	79.3	13	6.8	.4
M52	85.8	78.7	11	6.8	.5
M53	86	78.2	14	6.8	.4
AVERAGE	86.30	79.20	11.40	6.80	.5
N	5	5	5	5	5
STO.DEV.	0.44	0.75	2.07	.09	.02
90% C.I.	0.42	0.72	1.98	.09	.02

MIC SITE:

HELICOPTER: TWINSTAR TABLE B.10.1

TEST DATE: 6-7-83

OPERATION: 750 FT.LFO-TARGET IAS 130.5 MPH

	MIC SITE:				
RUN NO.	SEL(DB)	AL(DB)	T(10-08)	K(A)	Q
N54	84.9	75	NA	NA	NA
N55	83.9	76	NA	NA	NA
N56	84.5	74.7	NA	NA	NA
AVERAGE	84.40	75.20			
N	3	3			
STD.DEV.	0.50	0.68			
90% C.I.	0.85	1.15			

A STATE OF THE STA

HELICOPTER: TWINSTAR TABLE B.10.2

TEST DATE: 6-7-83

OPERATION: 750 FT.LF0--TARGET IAS 130.5 MPH

4	C SITE:	MIC SITE:					
Q	K(A)	T(10-08)	AL(08)	SEL(DB)	RUN NO.		
.5	7.5	21	74.8	84.7	N54		
NA	NA	NA	76.3	84.1	N55		
.4	7.2	21	74.7	84.2	N56		
.4	7.30	21.00	75.30	84.30	AVERAGE		
2	2	2	3	3	N		
.04	.21	0.00	0.90	0.32	STD.DEV.		
.16	.96	0.00	1.51	0.54	90% 8.1.		

MIC SITE: 1

HELICOPTER: TWINSTAR TABLE B.10.3

TEST DATE: 6-7-83

OPERATION: 750 FT.LF0--TARGET IAS 130.5 MPH

RUN NO. SEL(08) AL(58) T(10-08) K(A) 3 N54 74.4 83.6 19 7.2 .4 75.9 17 6.7 74.7 20 7.2 N55 84.1 N5a 84.1 AVERAGE 83.90 75.00 18.70 7.00 N 3 3 3 3 3 STD.DEV. 0.29 0.79 1.53 .32 .03 90% C.I. 0.49 1.34 2.58 .53 .05

APPENDIX C

Magnetic Recording Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data along with time averaged, one-third octave sound pressure level information for eight different directivity emission angles. These data were acquired June 6 using the TSC magnetic recording system discussed in Section 5.6.1.

Thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) have been energy averaged to produce the data tabulated in this appendix. The spectral data presented are "As Measured" for the given emission angles established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angle) average levels, calculated by both arithmetic and energy averaging. The data reduction is further described in Section 6.1. Figure 6.1 (previously shown) provides the reader with a quick reference to the emission angle convention.

The data contained in these tables have been used in analyses presented in Sections 9.2 and 9.7. The reader may cross reference the magnetic recording data of this appendix with direct read static data presented in Appendix D.

APPENDIX C

Magnetic Recording Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data along with time averaged, one-third octave sound pressure level information for eight different directivity emission angles. These data were acquired June 6 using the TSC magnetic recording system discussed in Section 5.6.1.

Thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) have been energy averaged to produce the data tabulated in this appendix. The spectral data presented are "As Measured" for the given emission angles established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angle) average levels, calculated by both arithmetic and energy averaging. The data reduction is further described in Section 6.1. Figure 6.1 (previously shown) provides the reader with a quick reference to the emission angle convention.

The data contained in these tables have been used in analyses presented in Sections 9.2 and 9.7. The reader may cross reference the magnetic recording data of this appendix with direct read static data presented in Appendix D.

Appendix C

"As Measured" 1/3 Octave Noise Data--Static Test are presented.

The key to the table numbering system is as follows:

Table No.	C.1-X.X	Aerospatiale	SA-365N (Dauphin)
	C.2-X.X	Aerospatiale	SA-355F (Twinstar)
	C.3-X.X	Aerospatiale	AS-350D (Astar)
	C.4-X.X	Sikorsky	S-76 (Spirit)
	C.5-X.X	Bell	222
	C.6-X.X	Hughes	500D
	C.7-X.X	Boeing Vertol	CH-470D (Shinook)

Microphone No.	1H	(soft)	150 m northwest
•	2	(soft)	150 m west
	4H	(soft)	300 m west
	5 H	(hand)	150 m north

Page No.	1	Hover-in-Ground-Effect
J	2	Flight Idle
	3	Ground Idle
	4	Hover-Out-of-Ground-Effect

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 1H

(SOFT) - 150 M. NW

JUNE 7,1983

DOT/TSC 4/25/84

			HOVER	I NGR	OUND-E	FFECT						
	LEVELS	@ ACO	USTIC	EMMISI	ON AND	LES OF	(DEGR	EES)	OVE	VERAGE R 360	LEVEL DEGREES	
BAND NO.	0	45 SOU	90 ND PRE	135 ISSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG	Y AVE	ARITH	Sta Dv
111111222222222223333333333334 456789012345678901234567890	535271653351229743287911848 958882752173483812217786182 456566566655434838122177864182	069666059971986469194332707 769893055551148345764098303 7698930555551148345764098303	0357702307359961113160207142 758641053331573454209865205	98761803503004039528361862 958613166677609345653219741 	297007955006111176974669932 069745218008111476974669932	1838367961185286838222330140 158995478974028134220966283 556566666666654555555444433	255466136874181055079503406 0709832279735615678630893 9393	5565665766859060467763099405 821331727026739432685782275	122218516750459421368161472 0698031967647871344308664173 122218516750459421368161472	486093402894630627381366367 5648312336772556034542976160 13244455555544555555444433	7211146021853917539349135403 49659818666524769111076443962 496231866665444455554443333	088266264187844783360170166
AL DASPL PNL PNLT	62.0 74.2 75.4 76.9	66.5 76.3 79.8 81.2	61.2 74.0 73.9 74.9	64.8 76.9 77.4 79.2	67.3 79.6 79.6 81.8	66.6 77.5 80.2 81.3	68.1 78.3 81.3 82.6	67.2 77.2 80.3 81.7		66.0	65.5 76.7 78.5 79.9	2.6 1.9 2.6 2.7

^{* -} UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 340 DEGREES
- A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 1H

(SOFT) - 150 M. NW

JUNE 7,1983

DOT/TSC 4/25/84

	LEVELS	e ACO	USTIC	EES)	AVE OVER	RAGE 360	LEVEL DEGREES					
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	*	AVE **	ARITH	Std Dv
11111222222222223333333333334 456789012345678901234567890	357249926462171955104444932 3556773170960023544322206669 35565555543333333332222	413158122532542509857154265 346537518908467887664310877 756565565565543333333333332222	456565566666554333333333332222 456565566666554333333333332222	9243708420384320380478883 	494568135641311605457174005 6355759769341511605457174005	43.8 53.6	42.2	43.2 53.3 65.4 56.7	43556844093221224194943985 43556844093221224194943985 4355686503316789199765329	785469395466303615417593460 78578754466303615417593460	809140254986454711529844261 3345558640220567809875432968 4565655666665433433333333222	255221442925789719973200882
AL OASPL PNL PNLT	56.6 71.8 69.0 70.7	57.8 71.1 70.0 71.2	60.2 73.6 72.4 74.0	62.1 73.7 74.7 76.7	60.8 74.6 73.1 75.3	62.8 73.8 74.8 76.3	61.2		60.6 6 73.1 72.8 74.4	50.6	60.2 72.9 72.3 73.8	2.1 1.2 2.0 2.2

⁻⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES -- A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES -- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

TABLE NO. C.2-1H.3 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

DOT/TSC 4/25/84

SITE: 1H

(SOFT) - 150 M. NW

JUNE 7,1983

	LEVELS	@ ACOUS	REES)	AVERAGE LEVEL OVER 360 DEGREES								
BAND NO.	0		90 PRE	135 SSURE	180 LEVEL	225	270	315 croPasca	ENERG'	Y AVE	ARITH	Std Dv
111119012345678901234567890		920837096173203581 4454444513555555436098		4454445555433322 4454445555433322		357660429041565748 3499449994465748 44949994469888		447-67-83-92-522-68-18-13-44-54-55-55-54-12-6	033070191589566598 44545455555432222	97855087623747794 1112223334443322222	45977563342277 45977563342277 4445555555222277	11211112012112111
AL OASPL PNL PNLT	 	50.9 61.4 62.6 64.1	 	51.3 61.7 61.9 62.8	**** *** ***	52.3 62.0 64.0 64.4	- - -	50.2 61.2 62.4 64.4	51.0 61.6 61.3 61.8	51.0	51.2 61.6 62.7 63.9	0.9 0.4 0.9 0.8

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{- 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/TSC 4/25/84

AS MEASURED***

SITE: 1H

(SOFT) - 150 M. NW

JUNE 7,1983

HOVER-OUT-OF-GROUND-EFFECT

	0 45 90 135 180 225 270 3 SOUND PRESSURE LEVEL dB re 20 micro 50.1 49.9 48.4 52.7 54.0 52.4 51.5 5 55.5 57.0 56.1 57.6 58.1 57.3 56.0 5 68.8 70.3 69.3 70.0 70.5 69.7 68.8 6										LEVEL DEGREES	
BAND NO.	0							315 roPasca	ENERG	Y AVE	ARITH	Std Dv
456789012345678901234567890	55.5 68.8 57.1	57.0 70.3 58.8 71.3 64.3 59.7 64.2	56.1 69.3 57.6 66.7 61.3	57.6 70.0 58.4 72.6 65.3 67.5 67.0 67.3	58.1 70.5 57.7 74.5 67.8 66.8	57.3 69.7 60.1 70.6 66.1 66.3	508153320972334519319104380 168873205752659232295300505 168873205752655265923229530050505050505050505050505050505050505	833384546125056024098290795 269771693404004898839089405 556566566665555555554544443	886285046756852052410746222 169804397874804787398620626 255657666666656666555555443	1400609328900332584339411177588423347888472687409731613	576110559035813693016363801 169804185752660344286510526 55657666666556666655555443	996073009098684015930768110
AL OASPL PNL PNLT	66.5 75.3 79.3 80.9	72.5 77.6 84.2 85.9	68.3 75.2 80.9 82.1	74.0 79.2 84.2 86.0	78.4 82.9 88.9 90.8	79.2 82.6 89.4 90.6	71.1 77.3 83.1 84.3	66.9 75.7 79.3 80.9	74.5 79.2 85.1 86.7	74.5	72.1 78.2 83.7 85.2	4.9 3.1 3.9 3.9

- -- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES -- A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES -- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
- **** 32 SECOND AVERGING TIME

TABLE NO. C.2-2H.1 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

DOT/TSC 4/25/84

SITE: 2

(SOFT) - 150 M. WEST JUNE 7,1983

			HOVER		AVERAGE LEVEL							
	LEVELS	@ ACO	USTIC	EMMISI	ON AND	SLES OF	(DEGR	EES)	ave	VERAGE R 360	DEGREES	
BAND NO.	0	45 SOU	90 IND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasc	ENERG	Y AVE	ARITH	Std Dv
111111222222222233333333334 456789012345678901234567890	099435192098160373604775994 625447307721961593466403750 5676665555445555555449	5477550400.10179750212109771163 310380350504703684126471163	483336283067908027136763149 483336283067908027136763149	5676777777776665555444443333	571916019168698147730841464 8585020525333194655554209639	966667484571622882298331923 624440713434998036766535972 7777777666655555555444	721728754105056991717448665 758559661708653448100844849	219645093506166399603934003 824337419007416793577512850 8257667677666554455555554440	006820723653134535389188801 746460631311975934655401649 746460631311975934655401649	360605619797315731302383796 2424077722244438357775512626 242435544556666665555555555443	884747178759468475730448681 567676777776666555555544443	42397831222572572951914609985
AL OASPL PNL PNLT	67.0 80.3 81.7 83.1	72.2 82.8 84.5 85.9	70.4 81.6 82.7 83.6	73.4 84.2 85.6 87.3	75.9 85.9 88.2 90.0	74.6 83.5 87.6 88.8	73.3 84.2 87.9 89.1	69.8 80.9 83.6 84.9	72.8 83.3 85.9 87.4	72.8	72.1 82.9 85.2 86.6	2.9 1.9 2.5 2.6

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

TABLE NO. C.2-2H.2 AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

DOT/TSC 4/25/84

SITE: 2

(SOFT) - 150 M. WEST

JUNE 7,1983

FLIGHT IDLE AVERAGE LEVEL LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) OVER 360 DEGREES												
BAND NO.	0	45	90	135	180	225	270	315 roPasca	ENERGY		ARITH	
22 23 24 25	329028224794603445513581217 11123561837531057178888877429 567676666666544338383333333	547 6752 6752 6752 6752 6753 6753 6753 6753 6753 6753 6753 6753	52.9 61.5 72.9 64.9 63.4 74.3 681.0 70.0	52.0 61.8 71.8 678.0 64.2 69.6 75.2 683.9	52.7 61.4 72.8 62.1 78.0	211583828369 217676588369	1021364171009838156767677777666555446	14167577744849760 56767676767553289	14893285190705927615	3444630133304721717747041230047217	52.8 46.1 43.5 44.2	21130736345698521052
AL OASPL PNL PNLT	65.0 79.3 77.5 79.2	69.3 80.5 80.8 82.5	70.0 80.9 81.9 83.3	73.4 83.5 84.4 86.6	68.6 82.2 81.1 83.2	81.0 83.7	71.5 80.8 82.7 84.3	67.0 79.6 79.5 80.7	70.4 81.2 81.9 83.6	70.4	69.7 81.0 81.4 83.1	2.8 1.4 2.3 2.3

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

TABLE NO. 0.2-2H.3

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

DOT/TSC 4/24/84

SITE: 2

(SOFT) - 150 M. WEST

JUNE 7,1983

GROUND IDLE

	CIVO CITED A LOCAL.								AVERAGE LEVEL				
	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES							REES)	OVER 360 DEGREES				
BAND NO.	0	45	90	135	180	225	270	315	ENERG	Y AVE	ARITH	Std Dv	
		SOU	IND PRE	SSURE	LEVEL	dB re	20 mic	croPasc	al				
111111102222222222333333333333333333333	6.48.63.19.19.97.01.18.74.10.18.37.87.466.44.55.55.55.54.44.32.23.33.33.33.33.33.33.33.33.33.33.33.		129 4823 40 628 655 67 49 050 49 827 020 65 90 90 74 48 49 1135 77 35 55 56 56 55 56 55 56 55 56 55 56 56 55 56 56		53.8 487.9 333.2 334.2 31.2 31.2.1		066245639720625353879777 895938699886349241112309 4454555555555554433333333		95559601064433954332951511 709917555655564333333333333334 455455555655543333333333	31495555147108067213353664 12123344455454333333333333	7294677622456631881116024 708891645789622277102235542 708891645789622277102235542	567802032235100976469536841	
38 39 40	36.7 44.5 31.7		32.9 39.8 28.2		29.1 28.1 27.5 27.3		29.6 33.8 24.1		33.1 40.1 28.7	33.0 39.0 26.2	31.8 36.4 27.8	3.8	
AL OASPL PNL PNLT	54.0 65.4 66.9 68.6		58.7 68.9 70.6 72.1		59.6 68.8 70.9 71.5		57.8 67.9 69.0 70.2		58.0 68.0 70.1 71.6	58.0	57.5 67.7 69.3 70.6	2.5 1.6 1.8 1.6	

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{*** - 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 2

(SOFT) - 150 M. WEST

JUNE 7,1983

DOT/TSC 4/24/84

HOVER-OUT-OF-GROUND-EFFECT

	LEVELS	e aco	ustic	EMMISI	ON AND	LES OF	OEGR	EES)	OVE	VERAGE R 360	LEVEL DEGREES	# ## LIN 1##
BAND NO.	0	45	90	135	180	225	270	315	ENERG	Y AVE	ARITH	Std
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasc	a l			
11111122222222222233333333333333333333	145254366844364518930102154 567570449178740612086754061 6767676666655555544	56767777777777766666666555544 65767777777777	957450751210733812312965344831 857450751210861377388844950	104047617374174514489379075 068602053445405722822376272	949037431578294540751857852 66868777788777777777666555543	673721873027682812913774897 5676777777777777776676635758061	900204040566732529737419499 858549661409875113607655050	220612177327428320296793863 047458539020885235531967284	958682953544307699631066172 958682953544307699631066172 958682953544307699631066172	7500298495902625505294805417243545555666666666667666555544	263967292108336947926543433 958571842432195367520966172 777777766666666555544	11112233223343334542233411111
AL OASPL PNL FNLT	72.3 83.3 85.7 87.3	76.2 84.4 89.5 91.1	75.1 83.7 87.2 88.5	79.6 86.6 91.3 93.2	83.0 90.4 94.9 96.5	79.2 86.4 91.3 93.0	74.8 83.8 88.0 89.5	75.3 83.1 88.2 89.7	78.2 86.0 90.4 91.9	78.2	76.9 85.2 89.5 91.1	3.4

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{- 32} SECOND AVERGING TIME

TABLE NO. 0.2-4H.1

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

DOT/TSC 4/24/84

SITE: 4H

(SOFT) - 300 M. WEST

JUNE 7,1983

HOVER-IN-GROUND-EFFECT

	HOVER-IN-GROUND-EFFECT LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)									AVERAGE LEVEL OVER 360 DEGREES					
BAND NO.	0	45 80U	90 ND PRE	135 SSURE	180 LEVEL	225 d8 re	270 20 mic	315 roPasca	ENERG		ARITH	Std Dv			
456789012345678901234567890	451337705942105240640190641 5366573276303445791124533600 456565555554333334444453330	18374485665558849468291319 4565483089995920109753982	907682172483246470E86 524296517865166567532 	868335596844278757916 524479610009477666431	692674636889079136137 747580851210930787520 45656666665543333333	91084523579254571301143 52443972332206025653085 456565566666655444430	11877739764676578154151712 65764977160724403333333333322 4565666655444443333333322	456565565565565433333333333333333333333	150338185118547830832819491 6365586530208489011988998270 456565566665543444433333533322	141113071252748036855014586 14115967771252748036855014586	948166710046667099702881181 	1111121122337494C0096K95C46462392			
AL DASPL PNL PNLT	55.9 70.8 70.3 71.7	58.4 71.4 70.5 71.7	55.6 69.4 67.1 68.1	58.5 72.2 70.1 71.8	60.9 74.1 71.8 73.6	61.3 72.4 73.4 74.5	60.4 74.1 73.9 75.3	56.9 70.9 70.1 71.4	59.1 72.2 71.9 73.3	59.1	58.5 71.9 70.9 72.3	2.2 1.6 2.1 2.2			

^{* -} UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
** - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/TSC 4/24/84

AS MEASURED****

SITE: 4H

(SOFT) - 300 M. WEST JUNE 7,1983

P-1	GHT	1 5	VI 127

	LEVELS @ ACOUSTIC EMMISSION ANGLES OF (DEGREES)							EES)			LEVEL DEGREES	
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG	Y AVE	ARITH	Std Dv
11111122222222222333333333334 111112222222222	0744748609848192246875 2023345082530620009987 456565555555554433332222	0347525201306693367468616 2233562857873768886542092 45656555555555433333333333222	83x1383928800346905193198 2126144379873765676531972 	4565655656665554343333332222	3764946083082503762732 2123774560950566766329 	3445597990196818038870080 20139457600850088653083 	1379683702726284705921482 2012255171096189000775294 2012255171096189000775294	2352253514164098473731 2565655555555433119	5037823948160694382334669 2123464269974877877542082 4565655655555554333333333333333	2875672809502406342566618 2173835638019566888653192 122333344455443333333333333222	5126811912569684383559458 21223364169862766766431082 456565555554333333333222	7763217385846444564112210
AL DASPL PNL PNLT	51.9 68.6 63.7 65.4	56.4 69.9 68.4 70.1	57.1 69.8 68.7 70.0	60.3 72.8 71.9 74.1	56.8 71.8 68.9 71.0	58.3 68.9 69.8 70.7	59.1 70.1 70.7 72.1	54.5 69.0 66.8 68.2	57.4 70.4 69.2 70.9	57.4	56.8 70.1 68.6 70.2	2.7 1.5 2.5 2.6

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

DOT/TSC 4/24/84

AS MEASURED****

SITE: 4H

(SOFT) - 300 M. WEST

JUNE 7,1983

GROUND IDLE****

									AVERAGE LEVEL			
	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)								OVE	R 360	DĒĞŔĒĒS	
BAND NO.	0	45	90 JND PRE	135	180 LEVEL	225	270	315 roPasca	ENERG	Y AVE	ARITH	Std Dv
456789012345678901234567890	523188123343649774742380313 4454444444333536864257		72428410339343057251248075 25844400059343057251248075 444444002 4455455444403333222222222222222222222222		27575731916952056194115228 22023455481785886533455297 44544454332222222211	dB re	116358899385467288012108753 116358899385467288012108753 444444444444444444444444444444444444	rorasc:	542330313037035663970465843 2393487888955588655446763027 44444444433222222222221	206115209171216869993660738 244385824709426765557874014 11122333343332222222222221	528334134660390922859255773 238347777785848765445763017 4444444443322222222222	0120021352555522221111111015
AL DASPL PNL PNLT	42.3 56.1 54.3 55.2	- - -	47.1 59.1 59.0 59.6	-	46.9 57.8 58.3 58.9		46.4 58.3 58.0 58.6	-	46.0 57.9 57.9 58.5	46.0	45.7 57.8 57.4 58.1	2.3 1.3 2.1 2.0

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{- 32} SECOND AVERGING TIME

^{*****} TABULATED LEVELS ARE CONTAMINATED BY LOCAL AMBIENT

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

DOT/TSC 4/25/84

SITE: 4H

(SOFT) - 300 M. WEST

JUNE 7,1983

HOVER-OUT-OF-GROUND-EFFECT

			HUVEK			AUEDAGE LEUEL						
	LEVELS @ ACQUSTIC EMMISION ANGLES OF (DEGREE								AVERAGE LEVEL OVER 360 DEGREES			
BAND NO.	0	45 SOU	90 IND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasc	ENERGY	AVE	ARITH	Std Dv
111111222222222333333333334 456789012345678901234567890	349674023461639552714524496 7355794591884760231109777156 555555555555544432	680848819731804594368358154 647680620232735790975308591	178369423203134720772241036 178369423203134720772241036	832547751298988316099131947 857691064455022701087518144 4565666666655556666555554432	167650462407319167134632514 079915408010509233197418255 556576678765665666655554432	28113478001504956375264972 847761934677353577443296693 4565665666655555555444333	34729573538693793947508090 74662857051959691130095693 456565566665544455555444433	581593928223374078531133332 93653745903059712210974592 1000000000000000000000000000000000000	45656656666665555555544432 456566566666655555555544432	352618009478511578745297022 352618009478511578765297022	1816051930227254495111990267 847670852443820355432966034 4565665666655555554329	332493550274919778111861410
AL OASPL PNL PNLT	62.9 73.0 76.2 77.9	62.6 73.8 75.3 76.9	65.4 73.8 78.4 79.8	69.7 76.3 82.3 84.0	72.7 80.0 84.8 86.3	67.8 75.7 80.4 81.7	63.5 73.5 76.7 78.2	63.1 72.5 75.9 77.2	67.6 75.6 79.8 81.3	67.6	66.0 74.8 78.7 80.2	3.7 2.5 3.4 3.4

⁻ UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{** - 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 5H

(HARD) - 150 M. NORTH

JUNE 7,1983

DOT/TSC 4/25/84

			HOVER		•	UEDACE						
	LEVELS	e ACO	USTIC	EMMISI	EES)	AVERAGE LEVEL OVER 360 DEGREES						
BAND NO.	0	45 SQU	90 IND PRE	135 :SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG	Y AVE	ARITH	Std Dv
456789012345678901234567890	004740644818167130034953836 56767161978777765207555546105 5676766666666666555555555555555555555	178524351109465403002517306 214327378909889864296310861	635382205255826955664249744 103185386765488510742088538 676666666666665555544443	5676777668777777777766666555544 51327707334564444086410854083 608776687777777777666665555546	367512195286969492116125664 625302176990997421863185294	567677763.66295378190540510856 50244.83.6629537819055405555083	567677767777777777776666555544 487244827117292264393617323	709924230781883023621506642 709924230781883023621506642 709924230781883023621506642	833225264932764079122174735 5676752456554186419744083	197000150076945275145379620	522177911983626713568087291 567676777777777666655555544	1111323334555543444433332222
AL OASF PNL PNL	85.0	75.2 81.4 86.1 87.2	72.7 79.4 83.8 84.7	79.4 85.6 90.7 92.6	83.8 89.5 95.1 97.1	83.2 88.3 94.0 95.1	81.2 86.5 92.2 93.2	75.1 81.2 86.4 87.6	79.8 85.5 91.0 92.5	79.8 - -	77.9 84.0 89.2 90.4	4.5 3.9 4.4 4.6

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{- 32} SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR)

1/3 OCTAVE NOISE DATA -- STATIC TESTS

(HARD) - 150 M. NORTH

AS MEASURED***

JUNE 7,1983

DOT/TSC 4/25/84

SITE: 5H

FLIGHT IDLE AVERAGE LEVEL LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES) OVER 360 DEGREES												
BAND NO.	0	45 SOU	90 ND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG'	Y AVE	ARITH	Std Dv
11111122222222222233333333333333333333	744578103520742569938507468	031303524838241133646584747 091114075798877854197654193	180901765049736441644046497334205987097541865543199	653.873.159 663.65555555555555555555555555555555555	585528846676332157988942776 3911552360097754310986553072	55270527123505860582890530 99112431822333198543198630	85335681732321475684666173 4133.566777777777777668531951	85352110085856071727 091418300210098763400	1912363192221108754106361343 79871025414496354106361343	334445613578877552: 259514028814474708:	82399558739974076777766666666666666666666666666666	3.6
AL DASPL PNL PNLT	69.5 78.9 82.8 84.5	74.6 79.8 86.0 87.3	75.1 80.9 86.6 88.1	76.7 81.7 87.7 89.6	73.7 81.4 86.1 88.0	78.2 83.0 89.7 91.2	82.2 87.2 93.9 94.9	75.9 81.8 88.0 89.0	77.1 82.6 88.8 90.2	77.1	75.7 81.8 87.6 89.1	3.7 2.5 3.2 3.0

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

- UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
- A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

**** - 32 SECOND AVERGING TIME

AEROSPATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

SITE: 5H

(HARD) - 150 M. NORTH

JUNE 7,1983

DOT/TSC 4/25/84

	EES)	QVE	VERAGE R 360	LEVEL DEGREES	ì							
BAND NO.	0	45 SOL	90 IND PRE	135 SSURE	180 LEVEL	225 dB re	270 20 mic	315 roPasca	ENERG	Y AVE	ARITH	Std Dv
11111122222222222333333333333333333333	861105578231709494081579195 34759311468551309991035543418 455555555555555555555555555555555555	-	44.7 46.0 54.3 47.3 49.9		562439884257954809116192 480671104929231975531207 4464455555655554444443		945400446005707375050130510 114948799996575309980075419 155545555555555444553		74238274664773409958299228174238274664775555554454	9.0 22.6 17.1 24.6 34.7 35.6	265009090403312133006858383 676705447807464209988985551 445455555555555544444454	3321232421122333222234556705
AL DASPL PNL PNLT	65.9 68.4 80.0 81.8	 	65.4 70.0 78.1 79.6		60.5 68.0 72.9 73.4	 	63.1 69.1 76.5 78.0		64.2 69.0 77.8 79.5	64.2	63.7 68.9 76.9 78.2	2.5 0.9 3.0 3.6

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

A Commence of the Commence of

^{* --} UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** -- A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** -- UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

^{**** - 32} SECOND AVERGING TIME

AEROSFATIALE SA-355F HELICOPTER (TWINSTAR) 1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED****

DOT/TSC 4/25/84

SITE: 5H

(HARD) - 150 M. NORTH

JUNE 7,1983

HOVER-OUT-OF-GROUND-EFFECT

	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)						EES)		VERAGE R 360	LEVEL DEGREES		
BAND NO.	0	45	90 ND PRE	135	180 LEVEL	225 dB re	270	315 roPasca	ENERG	Y AVE	ARITH	Std Dv
456789012345678901234567890	390220563022876645519718029 5043472282786303589735546294 555555555555555555555555555555555555	5 67 67 77 77 77 77 77 77 76 66 66 65 55 55 4	704697024974306507205301966 3251176370233220315759754072 567676777777776666655555544	56.1.19 66.1.39 66.10.64 67.70.63 67.70.63 67.70.70 77.70.70 77.70.70 77	947574287207783408560443484 567677777777777777766555444	857825797777888888888767777666618415 56777777888888888767777666618415	5676767777777766666666555544 9474291637431955998129662294	56767676777777766666555555555555555555	56767776777777776689842076294 7365619557777530689842076294	721342878144978674169570763 24250908566777766676666555544	024786902477168548634503666 7777777777786656631976294	2112234343444444565433221111
AL OASPL PNL PNLT	71.1 81.0 84.9 86.4	78.9 84.9 90.7 92.2	77.2 83.5 89.0 90.2	77.7 84.7 89.8 91.6	81.1 88.4 93.4 95.0	85.3 91.4 97.2 98.1	78.1 85.4 90.6 91.5	75.1 83.7 88.0 89.4	79.8 86.6 91.9 93.3	79 .8 - - -	78.1 85.4 90.4 91.8	4.1 3.2 3.7 3.5

BANDS 14 TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz

**** - 32 SECOND AVERGING TIME

UNWEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES A-WEIGHTED ENERGY AVERAGE OF MEASURED LEVELS OVER 360 DEGREES UNWEIGHTED ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES

APPENDIX D

Direct Read Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data (Leq values) obtained using direct read Precision Integrating Sound Level meters. Data are presented for microphone locations 5H, 2, and 4 (see Figure 3.3).

A description of the measurement systems is provided in Section 5.6.2, and a figure of the typical PISLM system is shown in Figure 5.4. Data are shown in Table D-1, depicting the equivalent sound levels for eight different source emission angles. In each case the angle is indexed to the specific measurement site. A figure showing the emission angle convention is included in the text (Figure 6.1). In each case, the Leq (or time averaged AL) represents an average over a sample period of approximately 60 seconds.

Quantities appearing in this appendix include:

HIGE Hover-in-ground-effect, skid height 5 feet above

ground level

HOGE Hover-out-of-ground-effect, skid height 30 feet

above ground level

Flight Idle Skids on ground

Ground Idle Skids on ground

TABLE 0.1.1

STATIC OPERATIONS DIRECT READ DATA (ALL VALUES A-WEIGHTED LEG, EXPRESSED IN DECIBLES)

TWINSTAR

6-7-83

SITE 4H (SOFT SITE)

HIGE		FLT.IDLE		GRN.IDLE		HOGE		
1-0	58.40	J-0A	55.30	J-08	44.40	K-0	64.70	
1-315	60.40	J-315A	57.80	J-315B	NA.	K-315	65.50	
1-270	63.60	J-270A	61.50	J-270B	48.70	K-270	65.60	
1-225	64.10	J-22 5 A	60.80	J-2258	N/A	K-225	69.60	
I-180	63.60	J-180A	59.20	J-180B	49.40	K-180	74.60	
I-135	60.80	J-135A	62.70	J-1358	NA.	K-135	75.40	
1-90	58.80	J-90A	59.10	J-90B	49.40	K-90	67.30	
1-45	61.60	J-45A	59.20	J-45B	NA	K-45	54.70	

SITE 2 (SOFT SITE)

HIGE		FLT.IDLE		GND.IDLE		HOGE	HOGE		
I-0	67.90	J-OA	65.40	J-08	54.50	K-0	72.80		
I-315	70.70	J-315A	67.80	J-315B	NA	K-315	75.30		
1-270	73.80	J-270A	72.10	J-270B	58.50	K-270	75.50		
1-225	75.20	J-225A	72.48	J-225A	NA	K-225	79.76		
1-180	76.20	J-180A	69.00	J-180B	NA	K-180	83.50		
I-135	73.00	J-135A	73.60	J-1358	NA	K-135	80.20		
1-90	70.90	J-90A	69.70	J-90B	58.90	K-90	75.90		
1-45	72.60	J-45A	NA	J-458	NA	K-45	77.18		

TABLE D.1.2

STATIC OPERATIONS DIRECT READ DATA (ALL VALUES A-WEIGHTED LEG, EXPRESSED IN DECIBLES)

TWINSTAR

6-7-83

SITE 5H (HARD SITE)

HIGE		FLT.IDLE		GRN.IDLE		HOSE	HOGE		
1-90	72.60	J-90A	75.60	J-90B	65.40	K-90	78.30		
1-45	76.40	J-45A	75.00	J-458	NA	K-45	79.40		
I-0	74.00	J-0A	70.30	J-OB	65.90	K-0	72.20		
1-315	77.30	J-315A	76.50	J-3158	NA	K-315	76.00		
1-270	81.50	J-270A	83.00	J-270B	64.60	K-270	77.70		
1-225	84.90	J-225A	78.80	J-225B	NA	K-225	86.10		
1-180	85.30	J-180A	74.90	J-1808	62.00	K-180	81.90		
1-135	79.90	J-135A	77.40	J-135B	NA	K-135	N A		

SITE 7H (HARD SITE)

HIGE		FLT.IDLE		SND.IDLE		HOGE	HOGE		
I-90	67.23	J-90A	69.85	J-90B	58.66	K-90	75.05		
1-45	71.23	.1-45A	68.02	J-45B	NA.	X-45	77.06		
1-0	69.89	J-0A	63.58	J-0B	55.49	K-0	68.67		
I-315	73.11	J-315A	71.68	J-315B	NA	K-315	72.35		
1-270	78.68	J-270A	77.38	J-2708	57.84	K-270	75.33		
1-225	80.62	J-225A	73.59	J-2258	VA.	K-225	83.14		
I-180	79.87	J-180A	67.73	J-180B	55.85	K-180	78.54		
I-135	73.98	J-135A	71.15	J-135B	NA.	K-135	76.34		

The Property of

The same of the sa

APPENDIX E

Cockpit Instrument Photo Data

During each event of the June 1983 Helicopter Noise Measurement program cockpit photos were taken. The slides were projected onto a screen (considerably enlarged) making it possible to read the instruments with reasonable accuracy. The photos were supposed to be taken when the aircraft was directly over the centerline-center microphone site. Although this was not achieved in each case the cockpit photos reflect the helicopter "stabilized" configuration during the test event. One important caution is necessary in interpreting the photographic information; the snapshot freezes instrument readings at one moment of time whereas most readings are constantly changing by a small amount as the pilot "hunts" for the reference condition. Thus fluctuations above or below reference conditions are to be anticipated. The instrument readings are most useful in terms of verifying the region of operation for different parameters. The data acquisition is discussed in Section 5.3

Each table within this appendix provides the following information:

Event No. This event number along with the test date provides

a cross reference to other data.

Event Type This specifies the event.

Time of Photo The time of the range control synchronized clock

consistent with acoustical and tracking time

bases.

Heading The compass magnetic heading which fluctuates

around the target heading.

Altimeter Specifies the barometric altimeter reading, one of

the more stable indicators.

IAS Indicated airspeed, a fairly stable indicator.

Rotor Speed Main Rotor speed in RPM or percent, a very stable

indicator.

Torque The torque on the main rotor shaft, a fairly stable

value.

TABLE E.1

COCKPIT PHOTO DATA	

HELICOPTER TwinStar

TEST DATE 6/7/83

TORQUE	65 65	65	79	6 4	49	99	20	10	20	25	22	22	54	22	10	22	99	65	65	65	65	99	89	99	62	99	89	62	70	70	99	99 (99
ROTOR SPEED (RPM OR %)	385 385	385	385	385	385	385	380	265	385	385	380	385	385	385	225	385	385	385	385	385	385	385	385	385	385	390	390	390	390	390	390	390	390
IAS (KTS)	71	52	53	52	26	53	51	51	20	47	48	48	51	52	54	52	09	62	63	64	62	09	9	9	09	132	132	132	132	134	134	130	133
ALTIMETER (AGL) FT. (METERS)																																	
HEADING (DEGREES)	350	75	120	165	210	255	305	300	350	030	075	120	165	210	210	560	305	350	350	030	075	120	165	210	260		300	120	300	120	300	120	300
TIME OF PHOTO	6:07 6:09	6:11	6:12	6:14	6:16	6:17	6:22	6:22	6:25	6:27	6:32	6:34	6:39	6:39	6:41	6:43	97:9	25:47	9:48	65:49	6:50	6:52	6:54	6:55	6:57	6:59	7:55	7:57	8:00	8:02	8:04	8:05	8:09
EVENT	HIGE	HIGE	HIGE	HIGE	HIGE	HIGE	GROUND IDLE	GROUND IDLE	_	٠.	FLIGHT IDLE	_	FLIGHT IDLE	_	GROUND IDLE	FLIGHT IDLE	HOGE	HOGE	HOGE	HOGE	HOGE	HOGE	HOGE	HOGE	HOGE		LFO 500 0.9VH	LFO 500'0.9VH	LFO 500'0.9VH				LFO 500'0.9VH
EVENT NO.	1030	1075	1120	I165	I210	1255	J300b		J345a	J030a	J075a	J120a	J165a	J210a	J210b	J255a	K300	K345	K345	K030	K075	K120	K165	K210	K255		A1	A2	A3	A4	A5	·	A6

COCKPIT PHOTO DATA

TwinStar (CONT)

HELICOPTER

6/1/83

TEST DATE

TOROUE 72 61 66 68 68 70 70 70 65 70 68 68 68 68 72 ROTOR SPEED (RPM OR %) 390 390 390 390 390 390 390 390 390 390 390 390 390 390 390 390 390 385 385 385 385 385 385 385 IAS (KTS) 115 118 115 117 117 61 69 59 71 64 64 101 100 102 102 134 133 135 135 136 137 130 63 63 ALTIMETER (AGL) FT. (METERS) (DEGREES) HEADING 120 315 125 310 125 310 310 125 310 310 300 310 310 125 310 125 310 310 305 TIME OF **PHOTO** 8:20 8:35 8:39 8:42 8:44 8:12 8:15 8:17 8:24 9;46 8:49 8:51 8:54 8:56 8:56 8:59 9:04 9:14 9:19 9:22 9:25 9:32 9:35 9:39 9:07 1000'0.9VH 1000'0.9VH LFO 500'0.8VH LFO 500'0.8VH LFO 500'0.8VH LFO 500'0.8VH 1000'0.9VH 1000 to.9VH 1000'0.9VH 1000'0.9VH 1000'0.9VH 500'0.8VH 500'0.7VH 500'0.7VH 500'0.7VH 500'0.7VH 500'0.8VH 500'0.7VH ICAO ICAO ICAO ICAO ICA0 ICAO EVENT 5555555 LFO LFO LFO LF0 LF0 LF0 LF0 LF0 EVENT B7 B8 B9 B10 B11 B12 B13 C15 C15 C16 C17 C18 D19 D20 D21 D22 D23 D24 D25 E26 E27 E28 E29 E30 E31 E33

TABLE E.3

COCKPIT PHOTO DATA

HELICOPTER	TwinStar (CONT)	ONT)	,		TEST DATE	E 6/7/83	
EVENT NO.	EVENT TYPE	TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED (RPM OR %)	TORQUE
H34	APPROACH	10:33			72	385	
H35	APPROACH	10:37			92	385	14
	APPROACH	10:40			72	385	15
	APPROACH	10:44			77	385	12
045	TAKEOFF	10:57	305		71	385	70
	TAKEOFF	11:00	310		79	385	89
	APPROACH	11:09	140		69	385	30
	APPROACH	11:12	130		69	385	20
	APPROACH	11:16			72	385	20
F45	APPROACH	11:20			73	385	20
	APPROACH	11:23			72	385	22
F47	APPROACH	11:26	.120		70	385	56
F48	APPROACH	11:30	120		92	385	54

72 72 72 72

385 385 385 385 385

148 142 136 143 140

11:41 11:43 11:45 11:47 11:49

LFO 500' LFO 500' LFO 500' LFO 500'

M49 M50 M57 M52 M53 34 35 35

385 385 385

88 90

125 305 305

11:34 11:54 11:59

LFO 500' 0.9VH LFO 500' 0.9VH LFO 500' 0.9VH

N54 N55 N56

APPENDIX F

Photo-Altitude and Flight Path Trajectory Data

This appendix contains the results of the photo-altitude and flight path trajectory analysis.

The helicopter altitude over a given microphone was determined by a photographic technique which involves photographing an aircraft during a flyover event and proportionally scaling the resulting image with the known dimensions of the aircraft. The data acquisition is described in detail in Section 5.2. The detailed data reduction procedures is set out in Section 6.2.1; the analysis of these data is discussed in Section 8.2

Each table within this appendix provides the following information:

Event No.	the test run number
Est. Alt.	estimated altitude above microphone site
P-Alt.	altitude above photo site, determined by photographic technique
Est. CPA	estimated closest point of approach to microphone site
Est. ANG	Helicopter elevation with respect to the ground as viewed from a sideline site as the helicopter passes through a plane perpendicular to the flight track and coincident with the observer location.
ANG 5-1	flight path slope, expressed in degrees, between P-Alt site 5 and P-Alt site 1.
ANG 1-4	flight path slope, expressed in degrees, between P-Alt Site 1 and P-Alt Site 4.
ANG 5-4	flight path slope, expressed in degrees, between P-Alt Site 5 and P-Alt Site 4.
Reg C/D Angle	flight path slope, expressed in degress, of regression line through P-Alt data points.

TABLE F.1

TEST DATE: 6-7-83

OPERATION: 500 FT.FLYOVER/TARGET IAS=130.5 MPH

			CE	REPLINE				SI	DELINE					
	1	1IC #5	t	1IC #1	*	IIC #4	M	C #2	M)	E #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	AN6	ang	AN6	C/0
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
Al	532.8	537.2	511.2	515.6	489.6	NA	709.5	46.1	708.1	NA	-2.4	NA	NA	-2.4
A2	472.3	474.9	459.5	462.1	446.7	NA	673.2	43	672.4	NA	-1.4	NA	NA	-1.4
A3	486.1	483.7	467.3	482.7	452.3	448.5	678.6	43.5	680.2	43.4	0	-3.9	-1.9	-1.6
A4	473	472	478.8	NA	482.4	481.4	686.6	44.2	686	NA	NA	NA	.5	.5
A5	516.1	512.4	510.3	521.8	505.6	500.7	708.8	46	709.4	46	1.1	-2.4	6	-,4
A6	500	510.2	479	467.1	462.2	474.1	686.6	44.2	688.5	44.1	-4.9	.8	-2	-1.9
AVERAGE	496.7	498.4	484.4	489.9	473.1	476.2	690.6	44.5	690.8	22.3				
STD. DRV	24.3	25.7	21.7	27.5	23.1	244.5	15.3	1 3	15	24 4				

TABLE F.2

HELICOPTER: TWINSTAR

TEST DATE: 6-7-83

OPERATION: 500 FT.FLYOVER/TARGET IAS=116 MPH

			CB	ITERLINE				SI	DELINE					
	ŀ	11C #5	1	11C #1	١	IIC #4	MI	C #2	HI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	AN6	C/D
EVENT NO	ALT.	P-ALT,	ALT,	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ang	5-1	1-4	5-4	ANGLE
87	522	523.9	504.8	509.6	491.1	492.8	704.9	45.7	706.5	45.7	-1.6	-1.9	-1.7	-1.5
88	479.7	480.7	479.9	477.4	480.1	481.4	687.3	44.3	687.3	44.3	-,3	.5	0	0
89	522.3	522.8	519.8	520.3	517.3	NA	715.7	46.6	715.5	NA	2	NA	NA	2
810	502.9	504.7	497.8	496.5	493.7	495.7	699.9	45.3	700.4	45.3	9	0	4	4
B11	511.9	515.8	503.7	499.3	497.2	501.7	704.1	45.7	704.9	45.6	-1.8	.3	7	7
B12	521.2	519.3	530.6	529.8	538.1	536.2	723.6	47.2	722.7	47.2	1.2	.7	1	.9
B13	557	556.5	554.4	556.9	552.4	551.7	741.3	48.4	741.5	48.4	0	5	2	1
AVERAGE	516.7	517.7	513	512.8	510	509.9	711	46.2	711.3	39.5				
STD. DEV	23.4	22.8	24.3	25.8	26.9	194.4	17.6	1.3	17.4	17.5				

TABLE F.3

TEST DATE: 6-7-83

OPERATION: 500 FT.FLYOVER/TARGET IAS=110.5 MPH

			CEN	ITERLINE				SI	DELINE					
	١	IC #5	١	IIC W1	۲	IIC #4	H	C #2	HI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ang	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
C14	524.2	526.3	526.2	520.3	527.7	530.5	720.4	46.9	720.2	46.9	6	1.2	.2	.2
C15	456.8	458.1	456.7	453.7	456.7	458.4	671.3	42.9	671.3	42.9	4	.5	0	Û
C16	477.2	475.8	486.1	NA	491.3	489.9	691.6	44.7	690.8	NA	NA	NA	.8	.8
C17	469.2	472	462.7	459.7	457.6	460.9	675.4	43.2	676	43.2	-1.3	.1	5	5
C18	484.9	481.7	488.2	493.6	490.8	487	693.1	44.8	692.8	44.8	1.4	7	.3	.3
AVERAGE	482.4	482.8	484	481.8	484.8	485.3	690.4	44.5	690.2	35.6				
STD. DEU	25.5	25.8	27.4	31.1	29.4	29.1	19.4	1.6	19.1	19.9				

TABLE F.4

HELICOPTER: TWINSTAR

TEST DATE: 6-7-83

OPERATION: 1000 FT.FLYOVER/TARGET 1AS=130.5 MPH

			CEN	ITERLINE				SI	DELINE					
	M	IIC #5	H	IC #1	N	IIC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ang	C/D
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
D19	912.1	914.3	907.6	905	904.1	906.7	1032.4	61.5	1032.9	61.5	-1	.2	3	3
D20	963.6	963.4	955.3	960	948.6	948.1	1074.5	62.7	1075.5	62.7	3	-1.3	8	7
021	971.2	971.5	926.6	949.5	691.1	889.6	1049.1	62	1054.2	61.9	-2.5	-6.8	-4.7	-4
D22	934.1	936.4	919.6	NA	911.1	913.4	1043	61.9	1044.6	NA	NA	NA	-1.2	-1.2
D23	974.2	975.5	973.2	970.7	972.4	974	1090.5	63.2	1090.6	63.2	5	.4	0	0
024	991.7	1009.3	954	934.2	924	944.5	1073.4	62.7	1077.7	62.7	-8.6	1.2	-3.7	-3.4
D25	978	983.8	967.8	960	959.6	966.5	1085.6	63.1	1086.8	63	-2.7	.8	9	8
AVERAGE	960.7	964.9	943.4	946.6	930.1	934.7	1064.1	62.4	1066	53.6				
STD. DEV	27.8	31.2	25.4	23.8	30.6	31.9	22.5	.6	22.2	23.6				

TABLE F.5

TEST DATE: 6-7-83

OPERATION: ICAO TAKEOFF/TARGET IAS=63 MPH

			CB	ITERLINE				SI	DELINE					
	1	11C #5	N	IIC #1	١	IIC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ang	CPA	ANG	5-1	1-4	5-4	ANGLE
E26	402.7	367.6	592.4	571.6	743.7	707.4	770.1	50.3	751.6	51	22.5	15.4	19.1	17.6
E27	427.5	394.5	616.3	591	766.9	733.4	788.6	51.4	769.9	52	21.8	16.1	19	17.5
E28	377.7	336.9	585.4	567.9	751	708.4	764.7	50	744.5	50.7	25.2	15.9	20.7	19.3
E29	402.7	369	615.2	579.2	784.7	751.1	787.8	51.4	766.7	52.1	23.1	19.3	21.2	19.7
E30	398.7	354.2	601.9	595.1	764	716.5	777.4	50.7	757.5	51.4	26.1	13.9	20.2	18.9
E31	407.8	371.8	590.5	575.4	736.2	698.5	768.6	50.2	750.8	50.8	22.5	14	18.4	17
E32	416.1	377.6	619.7	599.2	782	742.1	791.3	51.6	771	52.2	24.2	16.2	20.3	18.9
E33	384.6	338.7	594.2	587	761.3	712.4	771.4	50.4	750.9	51.1	26.8	14.3	20.8	19.5
AVERAGE	402.2	363.8	602	583.3	761.2	721.2	777.5	50.8	757.9	51.4				
STD. DEV	16	19.6	13.4	11.5	17.2	18.7	10.4	.6	10.1	.6				

TABLE F.6

HELICOPTER: TWINSTAR

TEST DATE: 6-7-83

OPERATION: ICAO 6 DEGREE APPROACH/TARGET IAS=63 MPH

			CE	ITERLINE				SI	DELINE					
	•	IIC #5	1	1IC #1	١	IIC #4	MI	C #2	H	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-i	1-4	5-4	ANGLE
F42	302.3	289.8	377.1	365.8	436.7	424.1	619.9	37.5	614.1	37.9	8.8	6.8	7.8	6.9
F43	299.9	287.4	365.1	359	417.1	484.1	612.7	36.6	607.8	36.9	8.3	5.2	6.8	6.1
F44	288.3	276.5	360.1	348.9	417.3	405.4	609.7	36.2	604.3	36.6	8.4	6.6	7.5	6.7
F45	281.4	267	344	343.4	393.9	378.4	600.3	35	595.8	35.3	8.8	4.1	6.5	5.8
F46	300.3	288.6	356.2	353.2	400.8	388.4	607.4	35.9	603.3	36.2	7.5	4.1	5.8	5.2
F47	300.1	285.6	366.9	364.3	420.2	404.8	613.7	36.7	608.7	37.1	9.1	4.7	6.9	6.2
F48	293.3	280.2	356	352.5	406	392.1	607.3	35.9	602.6	36.2	8.4	4.6	6.5	5.8
AVERAGE	295.1	282.2	360.8	355.3	413.1	399.6	610.1	36.3	605.2	36.6				
STD. DEV	7.8	8.2	10.4	8.2	14.2	14.8	6.2	.8	5.7	.8				

The state of the s

TABLE F.7

TEST DATE: 6-7-83

OPERATION: STANDARD TAKEOFF/TARGET IAS=63 MPH

			CB	ITERLINE				SI	DELINE					
	1	11C #5	١	IIC #1	۲	IIC #4	MI	C #2	M)	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
638	360.2	364.98	427	381.1	480.2	488.9	651.4	41	645.9	41.3	1.9	12.4	7.2	6.2
639	383.7	370.72	450.3	444.4	503.4	489.9	667	42.5	661.2	42.8	8.5	5.3	6.9	6.2
640	331.2	325.6	428.3	389.6	505.7	502.7	652.3	41	644.2	41.5	7.4	12.9	10.2	9
G41	364.1	352.8	477.9	443.3	568.6	559.1	685.9	44.2	675.8	44.7	10.4	13.2	11.8	10.6
AVERAGE	359.8	353.5	445.9	414.6	514.5	510.2	664.2	42.2	656.8	42.6				
STD. DEV	21.7	20.1	23.9	34	37.9	33.2	16.2	1.5	14.8	1.6				

TABLE F.8

HELICOPTER: TWINSTAR

TEST DATE: 6-7-83

OPERATION: APPROACH/TARGET IAS=63 MPH

			CEN	ITERLINE				SI	DELINE					
	N	IIC #5	۲	IIC #1	M	IC #4	ΝI	C #2	MI	£ #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ang	0/0
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
H34	300.9	286.1	376.6	379.4	473	458.4	632	38.9	624.3	39.4	10.7	9.1	9.9	8.9
H35	303.4	283.1	408.1	398.5	491.6	470.5	639.2	39.7	630.7	40.2	13.2	8.3	10.8	9.7
H36	306.5	289.1	392.1	386.1	460.4	442.1	629.1	38.6	622.4	39	11.2	6.5	8.8	8
H37	301.4	281.6	397.5	391.4	474.2	453.4	632.5	38.9	624.9	39.4	12.6	7.2	9.9	8.9
AVERAGE	303	285	398.6	388.9	474.8	456.1	633.2	39	625.6	39.5				
STD. DEV	2.5	3.3	6.8	8.1	12.8	11.8	4.3	.5	3.6	.5				

TABLE F.9

TEST DATE: 6-7-83

OPERATION: 500 FT.FLYOVER/TARGET 1AS=145 MPH

			CB	ITERLINE				SI	DELINE					
	1	IC #5	١	IIC #1	•	IIC #4	MJ	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ANG	ang.	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	AN6	CPA	ANG	5-1	1-4	5-4	ANGLE
N49	490.8	498.2	483.7	470.9	478.1	487	690	44.5	690.6	44.5	-3.1	1.9	6	6
M50	513.5	NA	476.7	482.7	447.4	453.4	685.1	44.1	683.2	NA	NA	-3.3	NA	-3.3
M51	478	482.7	474.7	465.9	472	477.7	683.6	44	683.9	44	-1.9	1.4	2	2
M52	495.9	495	500.2	499.3	504.5	NA	701.6	45.5	701.9	NA	.5	NA	NA	.5
M53	479	479.7	490.3	482.7	499.3	500.7	694.6	44.9	693.6	45	.3	2.1	1.2	1.1
AVERAGE	491.4	488.9	485.1	480.3	480.3	479.7	691	44.6	690.6	26.7				
STD. DEV	14.5	9.1	10.4	12.9	22.9	215.2	7.3	.6	7.7	24.4				

TABLE F.10

HELICOPTER: TWINSTAR

TEST DATE: 6-7-83

OPERATION: 500 FT.FLYOVER/TARGET 1AS=130.5 MPH

			CEN	ITERLINE				SI	DELINE					
	ř	IIC #5	ŀ	IIC #1	ħ	IIC #4	H	C #2	M)	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ANG	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
N54	477.2	478.3	488.6	480	497.8	499.7	693.4	44.8	692.4	44.9	.2	2.3	1.2	1.1
N55	471.1	470.2	475.7	474.8	480.3	NA	684.4	44	684.7	NA	.5	NA	NA	.5
N56	501.8	510.2	495.5	480	490.5	500.7	698.3	45.2	698.9	45.2	-3.4	2.4	5	5
AVERAGE	483.4	486.2	486.6	478.3	489.5	500.2	692	44.7	692	30				
STD. DEV	16.3	21.1	10	3	8.8	288.8	7.1	.6	7.1	26				

APPENDIX G

NWS Upper Air Meteorological Data

This appendix presents a summary of meteorological data gleaned from National Weather Service radiosonde (rawinsonde) weather balloon ascensions conducted at Sterling, VA. The data collection is further described in Section 5.4. Tables are identified by launch date and launch time. Within each table the following data are provided:

Time expressed first in Eastern Standard, then in

Eastern Daylight Time

Surface Height height of launch point with respect to sea level

Height height above ground level, expressed in feet

Pressure expressed in millibars

Temperature expressed in degrees centigrade

Relative expressed as a percent Humidity

Wind Direction the direction from which the wind is blowing

(in degrees)

Wind Speed expressed in knots

/ 83

DATE:

PRESSURE	RE TEMPERATURE	RELATIVE	CINIS	WIND SPEED	
MB	DEG C	HUMIBITY	DIRECTION	KTX	
998.4	17.8	94	340	2	
994.9	N	44	666-	O.	
991.4	18.1	93	666-	666-	
987.8	18.2	93	298	56	
984.3	18.3	89	295	32	
980.9	18.4	85:	303	30	
977.4	18.5	80	325		
973.9	18.6	7.7	36	16	
970.5	18.6	73	20	14	
967.1	18.7	69	8	15	
963.9	18.7	89	340	14	1.14
7.096	18.6	89	330	15	
922.6	18.5	42	327		
954.4	18.5	29	323	14	
950.8	18.3	89	327	17	
947.2	18.1	69	324	16	
943.6	17.9	70	312	16	
940.0	17.7	71	314	19	
936.6	17.4	72	313	21	
٠	17.2	74	311	22	
930.0	16.9	75	31.1	20	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
926.7	•	77	311	19	
923.4	16.5	79	310	21	1
920.0	16.2	80	310	20	
	•	82	313	17	
	15.9	83	313	-	
910.2	15.8	84	317	13	1
907.0	15.7	85	315	14	
•	15.6	98	0	13	2 1
900.5	15.4	8.7	294	13	
4 400					

/ 83	
~	
•	
DATE	

HE I GHT FEET	PRESSURE	TEMPERATURE DEG C	RELATIVE HUMIDITY	WIND	WIND SPEED	
0	4.666	18.7	92	3.30	6	
100	995.8	18.5	63	666-	666-	
200	992.3	18.4	0.6	666-	666-	
300	988.8	18.3	88	666-	666-	
400	985.3	18.1	85	349	:	
200	981.8	18.0	82	342	13	
009	978.3	•	80	349	13	
200	974.9	17.8	77	334	17	
008	971.6	17.6		336	17	
900	968.4	17.5	77	334	17	
1000	965.2	17.3	2/	331	19	The second secon
1100	961.9	17.1	76	334	18	
1200	7.854	17.0	76	333	21	
1300	954.9	16.9	75	333	21	
1.400	951.2	16.9	73	333	22	
1500		16.8	72	328	27	
1600	944:1	16.8	69	333	26	
1700	940.8	16.6	29	335	21	
1800	937.4	16.4	79	330	25	
1900	934.0	16.2	99	329	23	
2000	630.7	16.0		326	20	
2100	•	'n	47	326	20	
2200	924.1	15.6	20	326	25	· · · · · · · · · · · · · · · · · · ·
2300	920.8	15.3	73	324	21	
2400	917.5	15.0	7.6	321	19	
2500	•	14.8	30	319	23	
2600	910.9	14.5	. 83	311	19	
2700	407.7	14.3	85	310	25	
2800	904.4	14.1	88.	307	19	
2900	901.1	14.0	06	309	17	
COURT	0010		***			

TE: 6 /7 / 83

IDT	
8:45 ED	
M #	-
FLIGHT	
EST	
745	
TIME:	

																							;								
	KING OTERS	4	666-	-999	•	6	10	10	+ #		16	16	17	18	19	18	17	20	21	22	N	22	24	22	27	21	20	20	17	14	: i
THE CONTRACTOR	DIRECTION	340		666-	342	348	335	344	340	336	338	338	338	337	336	337	333	328	322	318	315	315	315	317	314	313	314	300	295	281	***
	HIMIDITY	84	83	84	86	87	86	84	83	81	80	78	76	75	73	71	71	7	71	72	72	72	73	74	76	77	78	80	81	83	•
	DEG C	19.2	•	18.6	18.4	18.1	17.9	17.7	17.4	17.2	17.1	16.9	16.8	16.6	16.5	16.3	16.2	16.1	15.9	15.8	15.7	15.6	15.5	15.4	15.3	15.2	15.1	15.0	14.9	14.8	1
	TKE SOUKE.	999.8	996.2	992.7	989.3	985.8	982.3	978.8	975.3	971.8	968.4	6.456	961.5	958.1	954.7	951.3	947.9	944.5	941.1	937.8	934.4	931.0	927.7	924.4	921.1	917.8	914.5	911.2	907.9	904.7	* ***
	FEET	0	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	

DATE: 6 /7 / 83

TIME: 823 EST FLIGHT # 4 9:23 EDT

HEIGHT	PRESSURE	Œ	RELATIVE	CZIS	WIND SPEED	
FEET	A M	DEG C	HUMIDITY	DIRECTIO		
0	6.666	19.9	82	330	99	
100	4.966	19.4	80	308	10	
200	992.9	19.0	78	666-	666-	
300	989.4	18.9	78	666-	666-	
400	983.9	18.7	78	357		
200	982.4	18.4	81	350	•	
909	4.876	18:1	83	332	6	
200	975.5	17.7	84	332	10	
800	972.0	17.4	85	333	10	
900	968.5	17.2	85	328	11	
1000	965.1	17.0	85	324		
1100	961.6	16.9	84	329	15	
1200	958.2	16.7	48	332	14	
1300	954.8	16.3	83	330	41	
1400	951.4	16.3	18	327	17	
1500	948.0	16.2	80	323	21	
1600	944.6	16.0	78	321	22	
1700	941.3	15.8	78	320	22	
1800	937.9	15.5	77	319	22	
1900	934.6	15.3	77	316	23	
2000	931.2	15.1	77	314	26	
2100	927.9	14.9	77	313	25	
2200	924.5	14.7	76	311	23	
2300	921.2	14.5	76	310	24	
2400	917.9	14.3	76	310	25	
2500	914.6	14.1	76	309	26	
2600	911.3	14.0	11	308	25	
2700	0.806	13.8	77	306	22	
2800	904.7	13.6	77	302	18	
2900	901.5	13.5	78	299	17	
3000	898.2	13.4	80	297	17	

/ 83	
//	
9	
DATE:	

		:											;						1						:								
		WIND SPEED KTS		666-	_	14	15	17	18	22	12	13	10	14	16	23	22	14	14	13	15	13	in T	18	16	10		17	21	13	16	18	20
	ď	WIND W	330	666-	330	307	308	315	316	312	322	325	326	323	322	325	321	325	328	321	323	319	31.4	31.3	313	315	318	318	316	312	305	310	711
EDT	= MISSING DATA	RELATIVE HUMIDITY	70	99	67	29	89	69	69	20	71	72	74	76	78	79	81	81		42	80	08	81	82	83	84	85	87	88	89	16	92	56
17 + 5 10:16 EDT	=666- TSW .	TEMPERATURE DEG C	20.4	•	19.5	19.2		18.6	18.3	18.1	17.8	17.5	17.3	17.0	16.7	16.5	16.2	16.0	∮		15.3	15.0	14.7	14.3	13.9	13.6	13.2	13.0	12.8	12.5	12.3	12.1	11.8
EST FLIGHT	HEIGHT= 279 FT	PRESSURE MB	1000.0	.966	993.0	989.5	•	982.5	979.0	975.5	972.0	9.896	965.2	961.8	958.3	954.9	951.5	948.1	944.7	941.3	938.0	934.6	931.3	927.9	924.6	921.2	917.9	914.6	911.3	0.806	904.8	•	898.2
TIME: 916	SURFACE HEI	HEIGHT	0	100	200	300	400	200	909	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

APPENDIX H

NWS - IAD Surface Meteorological Data

This appendix presents a summary of meteorological data gleaned from measurements conducted by the National Weather Service Station at Dulles. Readings were noted evey 15 minutes during the test. The data acquisition is described in Section 5.5.

Within each table the following data are provided:

Time(EDT) time the measurement was taken, expressed in

Eastern Daylight Time

Barometric expressed in inches of mercury pressure

Temperature expressed in degrees Fahrenheit and centigrade

Humidity relative, expressed as a percent

Wind Speed expressed in knots

Wind Direction direction from which the wind is moving

TABLE H.1

SURFACE METEOROLOGICAL DATA (NWS)

TEST DATE:	June 7, 1983	HELICOPTER: SA-355F TwinStar	tar	LOCATION: DULLES AIRPORT*	S AIRPORT*
TIME (EDT)	BAROMETRIC PRESSURE (INCHES)	TEMPERATURE °F (°C)	HUMIDITY (%)	SPEED (MPH)	WIND DIRECTION (DEGREES)
05:34	29.77	64(18)	100	5	310
05:45	29.77	64(18)	100	ю	300
05:55	29.77	64(18)	100	7	320
06:19	29.79	64(18)	100	5	330
06:31	29.79	64(18)	100	7	340
94:90	29.79	64(18)	100	5	350
06:52	29.79	64(18)	100	٣	340
07:15	29.80	64(18)	100	0	000
07:32	29.81	64(18)	100	3	310
24:40	29.81	65(18)	26	5	330
07:55	29.82	65(18)	26	5	330
08:19	29.82	66(19)	76	2	330
08:32	29.83	66(19)	76	10	340
08:45	29.82	66(19)	76	9	350
08:55	29.82	66(19)	76	5	330
91:60	29.82	68(20)	86	6	340
09:28	29.83	68(20)	84	ω	340
95:60	29.83	68(20)	87	6	330
9:55	29.83	68(20)	87	11	330
10:17	29.83	69(20)	84	9	330

*Sensors located approximately 2 miles east of measurement array.

TABLE H.2

SURFACE METEOROLOGICAL DATA (NWS)

TEST DATE:	TEST DATE: June 7, 1983	HELICOPTER:	HELICOPTER: SA-355F TwinStar (CONT)	LOCATION: DULLES AIRPORT#	ES AIRPORT#
TIME (EDT)	BAROMETRIC PRESSURE (INCHES)	TEMPERATURE °F(°C)	HUMIDITY (%)	SPEED (MPH)	WIND DIRECTION (DEGREES)
10:32	29.83	71(22)	79	10	310
10:47	29.83	70(21)	81	80	350
11:15	29.83	70(21)	42	6	320
11:32	29.84	71(22)	73	7	310
11:46	29.83	72(22)	73	6	330
11:54	29.83	73(23)	7.1	6	310

*Sensors located approximately 2 miles east of measurement array

APPENDIX I

On-Site Meteorological Data

This appendix presents a summary of meteorological data collected on-site by TSC personnel using a climatronics model EWS weather system. The anemometer and temperature sensor were located 5 feet above ground level at noise site 4. The data collection is further described in Section 5.5.

Within each table, the following data are provided:

Time(EDT) expressed in Eastern Daylight Time

Temperature expressed in degrees Fahrenheit and centigrade

Humidity expressed as a percent

Windspeed expressed in knots

Wind Direction direction from which the wind is blowing

Remarks observations concerning cloud cover and visibility

AD-A147 497 NOISE MEASUREMENT FLIGHT TEST: DATA/ANALYSES
ACROSPATIALE AS 355F TWINSTA...(U) FEDERAL AVIATION
ADMINISTRATION WASHINGTON DC OFFICE OF ENVIR..
UNCLASSIFIED J S NEWMAN ET AL. AUG 84 DOT/FAA/EE-84-04 F/G 20/1 NL

END
END
END
END

12:84 btic

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

TABLE I.1

SURFACE METEOROLOGICAL DATA

and the second second

SENSOR HEIGHT IS 9 FEET ABOVE GROUND

TABLE I.2

SURFACE METEOROLOGICAL DATA

TEST DATE:	June 7, 1983		HELICOPTER:	SA-355F T	HELICOPTER: SA-355F TwinStar (CONT)	LOCATION: DULLES, SITE #4*
TIME (EDT)	TEMPERATURE °F(°C)	HUMIDITY (%)	WINDSPEED AVG R/ (MPH) (N	PEED RANGE (MPH)	WIND DIRECTION (DEGREES)	REMARKS
11.00	70(21)	55	14	7-19	320	
11:15	70(21)	52	10	5-11	330	
11:30	70(21)	51	19	10-20	320	
11:45	71(22)	50	17	13-23	310	
12:00	,70(21)	50	17	12-21	320	