1709.04905 - One-Shot Visual Imitation Learning via Meta-Learning

- Yunqiu Xu
- Other reference:
 - Presentation: https://www.youtube.com/watch?v=_9Ny2ghjwuY
 - Code: https://github.com/tianheyu927/mil

1. Introduction

- Challenge: learning each skill from a scratch is infeasible
- One-Shot Visual Imitation Learning via Meta-Learning
 - Reuse past experience to train the "base model", then adapt it to new task with only a single demonstration
 - Visual: use raw visual inputs
 - o Meta-Learning: MAML C. Finn et.al. 2017
- Prior work: take task identity / demonstration as the input into a contextual policy
- Our work: learn parameterized policy, then adapt into new tasks through a few gradient updates

2. Related work

- In this work, the state of environment is unknown → we feed raw sensory inputs to learn it
- Two challenges for learning from demonstrations then applying it to real world:
 - Compounding errors: not in this work
 - The need of a large number of demonstrations for each task
- Why don't use Inverse RL:
 - How does it work: recover reward function from demonstrations

- o Pros: reduce demonstrations, better than behavioral cloning
- o Cons:
 - Requires additional robot experience to optimize the reward C. Finn et.al.
 2016
 - Hard to evaluate learned reward, especially for high-dim data (image)
 - Gan-based IRL (e.g. GAIL) is hard to train
- How do we reduce the demonstrations: share data across tasks
 - First, use a dataset of demonstrations of many other tasks for meta learning, in this way we can build a base model
 - Then we can adapt this base model to new task with only a few demonstrations
 - Meta-learning is similar to transfer learning to some extent, the different is not the transfer on dataset, but the transfer on task
 - Take a simple instance, if the robot is learned to pick apple, orange, pear ...
 then it can pick peach easily

3. Meta-Imitation Learning

- Goal: learn a policy that can quickly adapt to new tasks from a single demonstration of that task
- ullet Each imitation task $T_i = ig\{ au = \{o_1, a_1, \ldots, o_T, a_T\} \sim \pi_i^*, L(a_{1:T}, \hat{a}_{1:T}), T ig\}$
 - \circ au : a demonstration generated by policy π_i^*
 - $\circ~L(a_1,\ldots,a_T,\hat{a}_1,\ldots,\hat{a}_T) o R$: loss function to give feedback
 - o Note that this form is different from original MAML

3.1 MAML

- ullet Consider a policy $oldsymbol{\pi}$ with parameter vector $oldsymbol{ heta}$
- ullet Sample a task T_i from p(T)
- ullet Train this task with K samples (adapt π to T_i to get new parameter heta')
- Test this task, then treat the testing error as the training error of meta-process (Use $\theta'_1, \ldots, \theta'_n$, to update θ)
- Meta objective:

$$\min_{ heta} \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta_i'}) = \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta - lpha
abla_{ heta} L_{T_i}(f_{ heta})}) \hspace{0.5cm} (1)$$

ullet Finally, you can adapt trained π to a new task with only a few data / gradient updates

Model-Agnostic Meta-Learning

Learn the weights Θ of a model such that gradient descent can make rapid progress on new tasks.

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(T): distribution over tasks **Require:** α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

Compute adapted parameters with gradient descent: θ'_i = θ − α∇_θL_{T_i}(f_θ)

7: end for

8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$

9: end while

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

$$\mathcal{T}_i = \{ \mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_T, \mathbf{a}_T \} \sim \pi_i^\star, \mathcal{L}(\mathbf{a}_{1:T}, \hat{\mathbf{a}}_{1:T}), T \}$$

Experts

3.2 Extend MAML to MIL

- ullet o_t is the observation at time t, i.e. an image, while a_t is the action
- ullet For demonstration trajectory $oldsymbol{ au}$, we use MSE to compute loss:

- Meta-training:
 - Assume each training task has at least 2 demonstrations, thus we can sample a set of tasks with two demonstrations per task
 - \circ For each task T_i , train $heta_i'$ with its one demonstration $au_i o$ inner loop of metalearning
 - \circ Use another demonstration au_i' to "test" $heta_i'$, i.e. check the mse of predicted actions and demonstration actions

- \circ Then we can update heta according to the gradient of meta-objective
- \circ As we get a series of $heta_i's$ and their testing error, we can update heta
- \circ Finally we can get trained parameters $oldsymbol{ heta}$ for meta-learner

Algorithm 1 Meta-Imitation Learning with MAML

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
  2: while not done do
             Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
             for all \mathcal{T}_i do
  4:
                  Sample demonstration \tau = \{\mathbf{o}_1, \mathbf{a}_1, ... \mathbf{o}_T, \mathbf{a}_T\} from \mathcal{T}_i
  5:
                  Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \tau and \mathcal{L}_{\mathcal{T}_i} in Equation 2
Compute adapted parameters with gradient descent: \theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
  6:
  7:
                  Sample demonstration \tau_i' = \{\mathbf{o}_1', \mathbf{a}_1', ... \mathbf{o}_T', \mathbf{a}_T'\} from \mathcal{T}_i for the meta-update
  8:
  9:
             Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) using each \tau'_i and \mathcal{L}_{\mathcal{T}_i} in Equation 2
10:
11: end while
12: return parameters \theta that can be quickly adapted to new tasks through imitation.
```

- Meta-testing:
 - \circ Sample a new task $oldsymbol{T}$ and its one demonstration
 - o This task can involve new goals or manipulating new, previously unseen objects
 - \circ Then we can adapt $oldsymbol{ heta}$ to this task

3.3 Two Head Structure

- Why use this: more flexibility during adapting
- The parameters of pre-update head are not used for post-update head in final
- Modification: parameters of final layers are not shared, forming two heads
 - Change loss function as:

- $lackbreak y_t^{(j)}$: post-synamptic activations of the last hidden layer
- W, b: weights and bias for last layer
- \circ Then the meta-objective is about heta, W, b

$$\min_{ heta,W,b} \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta_i'}) = \sum_{T_i \sim p(T)} L_{T_i}(f_{ heta - lpha
abla_{ heta} L_{T_i}(f_{ heta})}) \hspace{0.5cm} (4)$$

3.4 Learning to Imitate without Expert Actions

- Why use this: it is more practical to simply provide a video of the task being performed
- We just simplify this problem by simplify the loss function as

• This can be a future question for more robust loss function

4. Network Architecture

Figure 2: Diagrams of the policy architecture with a bias transformation (top and bottom) and two heads (bottom). The green arrows and boxes indicate weights that are part of the meta-learned policy parameters θ .

• Layer normalization after each layer

- o Data within a demonstration trajectory is highly correlated across time
- Thus BN was not effective
- Bias transformation → improve the performance of meta-learning
 - Concatenate a vector of parameters to a hidden layer of post-synaptic activations
 - Thus vector is treated as same as other parameters during meta-learning and final testing

$$y = Wx + b \rightarrow y = W_1x + W_2z + b$$

- z is the parameter vector form bias transformation
- $W = [W_1, W_2]$
- o This modification increases the representational power of the gradient
- Does not affect the representation power of the network itself

4. Experiment

• Questions:

- Can a policy be learned to maps from image pixels to actions using a single demonstration of a task
- How does our meta-imitation learning method compare to other one-shot imitation learning methods
- Can we learn without expert actions
- How well does our method scale to real world tasks
- Methods for comparison:
 - Our method
 - Random policy: output random actions from standard normal distribution
 - Contextual policy:
 - Input the final image of demonstration
 - Indicate goal and current image (observation)
 - Then output current action
 - LSTM:
 - Input demonstration and current observation
 - Output current action
 - o LSTM + attention: only applicable to non-vision tasks
- Task 1 : simulated reaching
 - o Goal: reach a target of a particular color
 - Both vision and non-vision versions are tested
 - o meta-learning can handle raw-inputs
 - o Our method can handle small dataset (demonstration) well
 - o Bias transformation (bt) can perform more consistently across dataset sizes

Simulated reaching

Simulated reaching

• Task 2 : simulated pushing

Simulated pushing

Task:

- A push is considered as success if the center of the target object lands on the red target circle for at least 10 timestamps.
- ☐ Each task is defined as pushing a particular objects
- ☐ 74 tasks x 6 different trials per task

method		video+state	video	video
		+action	+state	
LSTM	1-shot	78.38%	37.61%	34.23%
contextual		n/a	58.11%	56.98%
MIL (ours)		85.81%	72.52%	66.44%
LSTM	ot	83.11%	39.64%	31.98%
contextual	shot	n/a	64.64%	59.01%
MIL (ours)	5	88.75%	78.15%	70.50%

Table 1: One-shot and 5-shot simulating pushing success rate with varying demonstration information provided at test-time. MIL can more successfully learn from a demonstration without actions and without robot state and actions than LSTM and contextual policies.

- Task 3: real-world placing
 - Experiment goal: place a held item into a target container, such as a cup, plate, or bowl, while ignoring two distractors

Real-World Placing

subset of training objects

test objects

subset of training objects

test objects

Task:

Evaluate how well a real robot (PR2) can learn to interact with new unknown objects from a single visual demonstration.

Success: the held object landed in or on the target container after the gripper is opened

method	test performance
LSTM	25%
contextual	25%
MIL	90%
MIL, video only	68.33%

Table 2: One-shot success rate of placing a held item into the correct container, with a real PR2 robot, using 29 held-out test objects. Meta-training used a dataset with ~100 objects. MIL, using video only receives the only video part of the demonstration and not the arm trajectory or actions.

5. Summary and Ongoing Work

- Summary:
 - reuse prior experience when learning in new settings
 - o learning-to-learn enables effective one-shot learning
- ullet Ongoing work: one-shot imitation from human video ullet during demo, let human put the ball in cup

6. Code

6.1. main() function in main.py

- I will focus on training part, while validation and testing part will be similar
- In this function data_generator is used twice: network initialization and model training
- Why mention this: during training these 2 generated parts will be concated

- Network initialization: performed before training
 - Get train_image_tensors via data_generator
 - Get inputa, inputb to shape train input tensors
 - network initialization

```
# build train_input_tensors
train_image_tensors = data_generator.make_batch_tensor(network_config,
    restore_iter=FLAGS.restore_iter)

inputa = train_image_tensors[:, :FLAGS.update_batch_size*FLAGS.T, :]

inputb = train_image_tensors[:, FLAGS.update_batch_size*FLAGS.T:, :]

train_input_tensors = {'inputa': inputa, 'inputb': inputb}

# build val_input_tensors, simillar to above

val_input_tensors = ...

# network initialization

model.init_network(graph, input_tensors=train_input_tensors,
    restore_iter=FLAGS.restore_iter)

model.init_network(graph, input_tensors=val_input_tensors,
    restore_iter=FLAGS.restore_iter, prefix='Validation_')
```

• Training:

- After initialize network we will perform training, here data_generator will be called again in each iteration
- Once an iter is ended we can get result to update prelosses and

```
# build training data

tate, tgt_mu = data_generator.generate_data_batch(itr)

statea = state[:, :FLAGS.update_batch_size*FLAGS.T, :]

tateb = state[:, FLAGS.update_batch_size*FLAGS.T:, :]

actiona = tgt_mu[:, :FLAGS.update_batch_size*FLAGS.T, :]

actionb = tgt_mu[:, FLAGS.update_batch_size*FLAGS.T:, :]

feed_dict = {model.statea: statea, model.stateb: stateb, model.actiona: actiona, model.actionb: actionb}

input_tensors = [model.train_op]

# get result

results = sess.run(input_tensors, feed_dict=feed_dict)

prelosses.append(results[-2])

train_writer.add_summary(results[-3], itr)

postlosses.append(results[-1])
```

6.2. construct_model() in mil.py

- This is similar to construct model() of maml.py
- Suffix 'a' is for inner training and suffix 'b' is for inner testing
- Difference 1: concat two parts of input:
 - o obs: the input data we generate during network initialization
 - state: the input data we generate during training
 - 此处存疑, 我感觉这两个不会同时出现, 应该总有一个是placeholder

```
# if these item does not exist --> placeholder
# inputb is similar
self.obsa = obsa = input_tensors['inputa'] # network initialization
# statea = self.statea # training
actiona = self.actiona # training
inputa = tf.concat(axis=2, values=[statea, obsa])
```

• Convert to image dims

```
inputa, _, state_inputa = self.construct_image_input(inputa, self.state
    _idx, self.img_idx, network_config=network_config)
if FLAGS.zero_state:
    state_inputa = tf.zeros_like(state_inputa)

inputb, flat_img_inputb, state_inputb =
    self.construct_image_input(inputb, self.state_idx, self.img_idx,
    network_config=network_config)
```

- Perform batch_metalearn → inner loop
 - \circ Pre-update: inputa, get outputa \rightarrow final_eept_lossa, local_lossa
 - Compute fast gradients
 - Post-update: inputb, get outputb → final_eept_lossesb, local_lossesb
 - Here I omit final_eept_lossa and final_eept_lossesb:我猜这个是用来构造双头结构的,先省略咯
 - Edulidean distance is used for computing loss
 - 。 这里虽然分成了pre-update和post-update, 我感觉和原版MAML差不多, 前者数据a, 用于计算训练误差, 后者数据b用来计算测试误差(内循环)

```
# pre-update
local outputa, final eept preda = self.forward(inputa, state inputa,
 weights, network config=network config)
 # Compute train loss of inner loop
 # act loss eps: default 1, the coefficient of the action loss
 local lossa = act loss eps * euclidean loss layer(local outputa,
 actiona, multiplier=loss multiplier, use 11=FLAGS.use 11 12 loss)
 # compute fast gradients, similar to maml
 grads = tf.gradients(local lossa, weights.values())
 gradients = dict(zip(weights.keys(), grads))
 # post-update
outputb, final eept predb = self.forward(inputb, state inputb,
 fast weights, meta testing=True, network config=network config)
local outputbs.append(outputb)
 # compute test loss of inner loop
local lossb = act loss eps * euclidean loss layer(outputb, actionb,
```

• Output of batch metalearn

```
1. local_fn_output = [local_outputa, local_outputbs, local_outputbs[-1],
    local_lossa, local_lossesb, final_eept_lossesb, flat_img_inputb,
    gradients_summ]
```

• Output of construct model: map batch metalearn to all training data

multiplier=loss multiplier, use l1=FLAGS.use l1 l2 loss)

```
1. result = tf.map_fn(batch_metalearn, elems=(inputa, inputb, actiona, act
ionb), dtype=out_dtype)
```

6.3 [init_network()] in [mil.py]

• This is similar to meta update process in maml.py

local lossesb.append(local lossb)

By calling [construct_model] we can get the result of inner loop

```
with Timer('building TF network'):
    result = self.construct_model(input_tensors=input_tensors, prefix=p)
```

```
refix, dim_input=self._d0, dim_output=self._dU,
network_config=self.network_params)

outputas, outputbs, test_output, lossesa, lossesb, final_eept_lossesb,
flat_img_inputb, gradients = result
```

• Compute average loss for meta-update

```
total_loss1 = tf.reduce_sum(lossesa) / tf.to_float(self.meta_batch_size
)

total_losses2 = [tf.reduce_sum(lossesb[j]) / tf.to_float(self.meta_batch_size) for j in range(self.num_updates)]

total_final_eept_losses2 = [tf.reduce_sum(final_eept_lossesb[j]) / tf.t o_float(self.meta_batch_size) for j in range(self.num_updates)]

# assign variables (this is for training, validation is similar)
self.total_loss1 = total_loss1
self.total_losse2 = total_losse2
self.total_final_eept_losses2 = total_final_eept_losses2
```

Meta update:

```
# recall that in train(), input_tensors = [model.train_op]
self.train_op =
tf.train.AdamOptimizer(self.meta_lr).minimize(self.total_losses2[self.
num_updates - 1])
```