

Implementing Image Pyramids Efficiently in Software

Polymorphic Technologies

Michael Stewart May 23, 2018

What Are Image Pyramids?

What Are Image Pyramids?

- Multi-scale image or signal representation
- Simplest is the Gaussian Pyramid (left)
- Most widely used is the Laplacian Pyramid (right)

Gaussian Image Pyramid

- Multi-scale copies of image
- Widely used as MipMaps starting with early GPUs for generating lower resolution views of images without aliased sampling artifacts
- Can be used as low pass filters for image blurring

Laplacian Image Pyramid

- Start with a Gaussian Pyramid
- At each resolution upsample the lower resolution and subtract from the current resolution and save the differences (differences plane).
- Lowest resolution is unsubtracted
 - If downsampled all the way to a single element (or pixel) then that represents the DC component
- Original image can be reconstructed from the Laplacian Pyramid
 - Starting from next to lowest resolution, upsample from lower resolution and add to differences all the way to the maximum resolution

Laplacian Image Pyramid Example

- Example computed in YUV color space
- Zero differences mapped to mid gray

Where Can They Be Used in Computer Vision?

Where Can They Be Used in Computer Vision?

- Noise reduction, especially to remove chroma mottle at high ISO
- Feature and object detection, pattern recognition
- Image segmentation
- Scale-space segmentation
- Optical Flow
- Stereo depth calculation
- Watershed transformation
- In-painting
- Focus estimation
- Interface

How Do They Work?

How Do They Work?

- Laplacian Pyramid performs frequency isolation in each difference plane
- Operations on a specific difference plane can be applied at that plane's spatial frequency only
- Allows operations to be performed differentially at different spatial frequencies
- Can be compared to a Guided Filter except with better, multi-frequency control
- Since the data is reduced by a factor of four at each lower resolution the amount of data to be processed is greatly reduced at lower spatial frequencies

How Are They Implemented?

How Are They Implemented?

- Matching downsamplers and upsamplers
- Floating point versus Fixed Point Fraction (FPF)
- Computational environments:
 - Interleaved versus planar data layout
 - CPU Vectorization and Parallelization
 - GPU Can achieve real time, often more power efficient than CPU
 - DSP such as Qualcomm Hexagon (HVX) for simpler FPF pipelines
 - Halide Platform independence
- Bilaterals or even non-local means sometimes used for noise reduction

Downsamplers

- 3x3 or 5x5?
- Usually uses biased sampling at edges for performance
- Want to remove Nyquist frequency as completely as possible to avoid aliasing
- Want to retain lower frequencies as much as possible
- What coefficients are best?

Coefficients

3x3 Coef	ficient W	leighting	Į.	5x5 Coefficient Weighting							
4		3 3	1	4	6	4	1				
1	2	1	4	16	24	16	4				
2	4 2	2 1	6	24	36	24	6				
Sum:	2 16	ı	4	16	24	16	4				
Odiii.	10		1	4	6	4	1				
			Sum:	256	J	·	·				

- Divide relative weight by sum to get coefficients summing to unity
- Why are they chosen?

High Frequency Removal

5x5 Coefficients (divided by sum)							High	High Frequency						Resulting Image			
1	4	6	4	1		1	0	1	0	1		1/2	1/2	1/2	1/2	1/2	
4	16	24	16	4		0	1	0	1	0		1/2	1/2	1/2	1/2	1/2	
6	24	36	24	6	Х	1	0	1	0	1	=	1/2	1/2	1/2	1/2	1/2	
4	16	24	16	4		0	1	0	1	0		1/2	1/2	1/2	1/2	1/2	
1	4	6	4	1		1	0	1	0	1		1/2	1/2	1/2	1/2	1/2	

Sum: 256

- Regardless of high frequency phase (alignment)
- 3x3 similar

Upsamplers

- Should match downsampler
- Usually uses biased sampling at edges for performance
- 3x3 is a bilinear interpolator
- What is a "5x5 upsampler" in this context?

"5X5 Upsampler"

- Imagine lower res image resampled to higher res sparse matrix
- Multiply by same coefficients as downsampler

	Ę	5x5 Coe	efficient	Weights	Sparse Matrix						
	1	4	6	4	1		Α		В		С
	4	16	24	16	4						
	6	24	36	24	6	X	D		Ε		F
	4	16	24	16	4						
	1	4	6	4	1		G		Н		ı
,	Sum:	256									

"5X5 Upsampler" Output

- The four upsampling equations:
 - 0, 0 = (A + 6B + C + 6D + 36E + 6F + G + 6H + I) / 64
 - 1, 0 = (4B + 4C + 24E + 24F + 4H + 4I) / 64
 - 0, 1 = (4D + 24E + 4C + 4G + 24H + 4I) / 64
 - 1, 1 = (16E + 16F + 16H + 16I) / 64
- With only four equations the weights can be normalized at compile time to avoid division at run time
- Applying the same method using 3x3 kernel yields a bilinear interpolator

Memory Allocation

- Mind memory alignment issues (use height, width, stride design)
- Mind cache aliasing issues (image starting addresses)
- Round lower image dimensions up to keep even
- Avoid heap thrashing

Small Bilateral Filters for Noise Reduction

- Can be applied in different places
 - Before downsampling each level during Gaussian generation to assure only filtered data is used
 - On the merged upsampled and difference planes
 - Beware that multiplying the difference plane for contrast manipulation will change your thresholds
 - On the differences plane directly
 - Variance thresholding issues when noise varies with brightness
 - Most precise frequency control and most analogous to a Guided Filter
 - Not dependent on later contrast manipulation
- Thresholds reduce as resolution reduces (about 2x each level)

Variance Stabilization vs. Dynamic Thresholds

- Variance Stabilization transforms image values so that noise sigma is constant across dynamic range
 - Enables simpler, invariant thresholds for bilateral filtering
 - Requires two more transform passes, in and out
- More commonly pixel data is available only after gamma transform
 - Noise varies non-linearly with image brightness
 - Threshold variation can be approximated with cubic polynomial
 - Use center pixel to approximate brightness to avoid increasing threshold calculations with increased bilateral size
 - Must retain original brightness if filtering Laplacian plane

Implementation on CPU

- Lends itself to both vectorization and parallelization
- Interleaved RGBA or YUVA pixels fit naturally into vectorization architecture
- Planar data can be more problematic to implement efficiently
 - Intel: Modern unaligned load/store vector instructions are now very efficient, alleviating earlier design constraints, and shuffle instruction can be very handy
 - ARM: Alignment issues are more problematic
- LUTs can be problematic, use simple calculation approximation

Memory and Cache Considerations

- Older caches: 3-4 input addresses, 1-2 output addresses
- Newer caches less restrictive
- Tiling of processing useful for neighborhood operations even with pitchlinear data layout
- Separable algorithms can be problematic in the vertical pass due to cache thrashing
- Beware cache aliasing in image allocations
- Honor cache line sizes for image line alignments
- Minimize number of passes in and out of memory
- On mobile embedded systems better perf usually means lower power

Parallelization

- Tiles are a useful unit of work, even if data is pitch linear
- In C++11 a Lambda function can be passed from thread farm manager to individual threads
 - Makes multi-threading on image processing easy, just write it as a Lambda function
 - Allows easy access to local context around Lambda function
 - Use an atomic integer for work unit (tile) index
 - Must handle recursion

Vectorization

- CPU SIMD (Single Instruction Multiple Data)
 - Intel SSE AVX
 - ARM Neon
 - More advanced instructions often require 64-bit operating mode
 - Compilers are getting better at auto-vectorization

GPU

- Inherently vectorized and parallelized
- OpenGL, OpenCV, OpenCL, Vulcan, CUDA, etc.
- Not so adept at sequential processing algorithms

DSP

Qualcomm Hexagon only vectorizes integer instructions, not floating point

Fixed Point Fraction (FPF)

- 16-bit number represents a signed fraction between 1.0 and -1.0
- Technique revolves around the existence of FPF Multiply instruction
 - Multiplies two 16-bit integers for intermediate 32-bit result, shifts right 14 bits with rounding and returns low 16 bits
 - Usually only available as a vectorized instruction
 - SSE3: _mm_mulhrs_epi16 (and AVX variants)
 - Neon: vqdmulhq_s16 (and variants)
 - Also available on Qualcomm Hexagon embedded DSP
 - No division, vectorize Newton-Raphson with FPF output
- Degrading precision contraindicates for long calculation pipelines

Implementation on GPU

- Interleaved RGBA or YUVK pixels fit naturally into GPU architecture
 - Bilinear upsampler can be directly incorporated in subtraction to reduce memory passes
- Planar data can be more problematic depending on GPU hardware support
- Can be implemented in OpenGL ES for portability
- Real time video possibilities
- There are platform memory design implications

GPU Tricks

- Avoid allocation thrashing
- Be sure to cache and re-use handles for textures and uniforms
 - Heavy overhead for creation of objects and assigning handles
 - Uniform blocks to reduce handle count
- Look for ways to use dot product to fuse multiplies with addition
- Can use texture LUTs for arbitrary function
 - Use sampling interpolator to interpolate between LUT values
 - Can interpolate to crossfade between two LUTs
 - Can pack four output values into single LUT
- Cubic polynomials quickly computed for function approximation such as varying thresholds

Platform Memory Design Implications

- PC GPUs have separate memories for CPU and GPU
 - Must transfer data back and forth between memories for combined CPU & GPU processing
- Most mobile SOCs use shared memory model
 - Physical data transfer not needed
 - May need different or special memory mappings
 - GPU usually "HW" requiring contiguous memory
 - CPU simulates contiguous memory by mapping unit
 - Requires cache maintenance for coherency

Planar Data

- Newer GPUs <u>might</u> allow declaration and use as single element pixels without performance hit
- Older ones will eat you alive if you try (¾ processing power wasted)
- Can lie to GPU telling it to use 4 element "pixels" that are actually 4 discrete pixel values
 - Remember the 4 values are not geometrically co-located
 - Can't use built-in interpolator
 - Must do manual edge value replication
 - Neighborhood operations more complicated to code
 - Need to lie about width since processing 4 pixels at once

Temporal and Multi-Dimensional Considerations

- Consider temporally interleaved data format at input if you have such control
 - Consider cache coherence restrictions
 - Might need to interleave on a cache line basis
 - Might be practical only on SOCs with HW cache coherency

Low Latency Designs

- "Just-in-Time" (JIT) processing
- Requires temporal knowledge of input image data stream progress such as a readable line counter or interrupts
- Process bands of lines at a time

Dependency Chart – 1D Example 3 Element Downsampler and Bilinear Upsampler

- Downsample value can be calculated when upscale dependencies have been input or computed
- Upsample value can be calculated when all downscale dependencies have been computed
- 2D example is analogous except with rows instead of pixels
- Latency varies across frame but can achieve sub-frame, especially if pyramid is not too deep

Conclusions

Pyramids for Efficient Spatial Processing Methods and Interchanges

- Efficient processing for neighborhood operators in the spatial frequency domain
- Consider sharing pyramids between processing modules
- Useful for image streams that serve both computer vision and human vision clients
- Choose implementation platform carefully

Resources

Resources

- Laplacian Pyramid as a Compact Image Code, Burt and Adelson, 1983
- Pyramid methods in image processing, E.H. Adelson and C.H. Anderson and J.R. Bergen and P.J. Burt and J.M. Ogden
- Fast Feature Pyramids for Object Detection, Piotr Dollar, Ron Appel, Serge Belongie, and Pietro Perona
- Fast Pattern Recognition using Normalized Grey-Scale Correlation in a Pyramid Image Representation, W. James MacLean, John K. Tsotsos
- Optical Flow Estimation using a Spatial Pyramid Network, Anurag Ranjan, Michael J. Black
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

Resources (Continued)

- Guided Image Filtering, Kaiming He, Jian Sun, Xiaoou Tang
- The Shadow Meets the Mask: Pyramid-Based Shadow Removal, Yael Shor, Dani Lischinski
- Image Inpainting based on Pyramids, M. Shahid Farid, Hassan Khan, Arif Mahmood
- The Steerable Pyramid. Pyramid methods in image processing, Eero Simoncelli
- Local Laplacian Filters: Edge-aware Image Processing with a Laplacian Pyramid,
 Sylvain Paris, Samuel W. Hasinoff, Jan Kautz
- Edge-Avoiding Wavelets and their Applications, Raanan Fattal
- Image Pyramids with Python and OpenCV, Adrian Rosebrock, https://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/

Backup Slides

Where Are Pyramids Used in Image Enhancement?

- Image blurring
- Noise reduction
- Spatial domain operations such as local tonemapping, contrast manipulation and enhancement
- Multi-resolution panoramic stitching
- Multi-focus blending
- Morphing

Local Tonemapping

Before and after enhancement

Depth, Contour, and Shape Perception

No high frequency sharpening

Guided Filter Comparison

- Guided Filter
 - Generates a low-pass filter (often a box filter on CPU)
 - Subtracts low-pass from original signal to create high pass
 - Operates on high-pass, such as noise filtering or contrast amplification
 - Adds low and high pass back together for result.
- Laplacian Pyramid
 - Next lower resolution band can be considered the low pass
 - Can be thought of as stacked "Guided Filter" operations independently at each frequency level

Non-Local Means (NLM)

- An NLM filter can be used in place of the bilateral, especially in the differences plane
- Differences plane reduces adverse effects of gradients or illuminant on patch matching – mostly matches textures or reflectant
- Lower resolutions increase window area while decreasing patch-match comparison operations resulting in performance improvement
- Lower resolution vectors may be upscaled for use as hints in higher resolutions resulting in fewer patch-match comparisons

Wavelets

- Transforms image data into sequence of frequency coefficients
- Widespread use in image compression due to better compressibility of coefficients
- Usually implemented by separable horizontal and vertical operations
 - Especially on CPUs the vertical operation can be very cache unfriendly
- Not sure the cost/benefit ratio is very good for noise reduction applications

Binomial Coefficients

 The it (one dimension) binomial coefficients appear as the entries of Pascal's triangle where each entry is the sum of the two above

Halide

- Facilitates cross platform utilization
- Separates algorithm from scheduling
- Some algorithms adapt well to Halide, others not so much
- Efficiency can be platform dependent
- Fixed Point Fraction designs not really supported
- Pyramid implementation as single Halide function available on GitHub
 - https://github.com/halide/Halide/tree/master/apps/local_laplacian

How To Convert Between Pixels and 16-Bit FPF?

- How to convert between, say 10-bit, pixels and 16-bit FPF, or between pixels of different bit depths?
- The correct way is very non-intuitive!
- From 10-bit pixels shift left 5 bits and then bit-replicate the high order 5 bits into the newly vacated low 5 bits, to get 16-bit FPF
- From 16-bit FPF clip any negative values to zero, then shift right 5 bits with truncation, not rounding!
- Converting between pixel formats of different bit depths is analogous
- The reason stems from the fact that there are an odd number of quantization intervals between 0 and 1 (all bits set to one).

Speaker Patents

- US Patent Application 16264059, Methods and Apparatus for Enhancing Optical Images and Parametric Databases
- US Patent 9,292,908 B2, System, Method, and Computer Program Product for Enhancing an Image Utilizing a Hyper-Clarity Transform
- US Patent Application 20090213211, Method and Device for Reducing the Fixed Pattern Noise of a Digital Image
- US Patent US 8197399 B2, System and Method for Producing and Improving Images
- US Patent 4,636,850, Apparatus and Method for Enhancement of Video Images (vascular landmarking and road-mapping)