5. 双目立体视觉系统

- 平行视图
- 图像校正
- 对应点搜索

给定3D点,在左右图像中找到相应观测值,也称双目融合问题

图像校正后,p'点沿着扫描线寻找即可!!

对应点问题——相关法

左图

p 点像素坐标 (p_u, p_v)

右图

p' 点像素坐标 (p'_u, p'_v)

对应点问题——相关法

左图

p 点像素坐标 (p_u, p_v)

右图

p' 点像素坐标 (p'_u, p'_v)

例: W 是用红色框出的 3x3 窗口, 展开成 9x1 向量 $\mathbf{w} = [100, 100, 100, 100, 100, 20, 160, 180, 200]^T$

1. $p = (p_u, p_v)$ 处选择一个窗口 W , 建立向量 w

例: W 是用红色框出的 3x3 窗口, 展开成 9x1 向量 w = [100, 100, 100, 100, 100, 20, 160, 180, 200] T

- 1. $p = (p_u, p_v)$ 处选择一个窗口 W , 建立向量 w
- 2. 在右图中沿扫描线在每个位置 s_u' 建立窗口 W' ,并获得 w'向量

例: W 是用红色框出的 3x3 窗口,展开成 9x1 向量 $\mathbf{w} = [100, 100, 100, 100, 100, 20, 160, 180, 200]^T$

- 1. $p = (p_u, p_v)$ 处选择一个窗口 W , 建立向量 w
- 2. 在右图中沿扫描线在每个位置 s_u' 建立窗口 W' ,并获得 w'向量
- 3. 计算每个 \mathbf{s}'_u 位置 $\mathbf{w}^T \mathbf{w}'$ 的值

例: W 是用红色框出的 3x3 窗口, 展开成 9x1 向量 $\mathbf{w} = [100, 100, 100, 100, 100, 20, 160, 180, 200]^T$

- 1. $p = (p_u, p_v)$ 处选择一个窗口 W , 建立向量 w
- 2. 在右图中沿扫描线在每个位置 s_u' 建立窗口 W' ,并获得 w'向量
- 3. 计算每个 \mathbf{s}'_u 位置 $\mathbf{w}^T \mathbf{w}'$ 的值
- $4. \quad p'_u = \arg\max_{s'_u} \mathbf{w}^T \mathbf{w}'$

亮度/曝光变化

窗口中的像素的灰度值发生剧烈变化

归一化相关匹配

匹配度计算:

$$\frac{(w-\overline{w})^T(w'-\overline{w}')}{\left||w-\overline{w}|\right|||(w'-\overline{w}')||}$$

 $\overline{w} = W$ 内的灰度均值

 $\overline{w}' = W'$ 内的灰度均值

归一化相关匹配

- 1. $p = (p_u, p_v)$ 处选择一个窗口 W , 建立向量 w
- 2. 在右图中沿扫描线在每个位置 s_u' 建立窗口 W' ,并获得 w'向量
- 3. 计算每个 \mathbf{s}'_u 位置 $\frac{(w-\bar{w})^T(w'-\bar{w}')}{||w-\bar{w}|| |||(w'-\bar{w}')||}$ 的值

4.
$$p'_u = arg \max_{s'_u} \frac{(w - \overline{w})^T (w' - \overline{w}')}{||w - \overline{w}|| |||(w' - \overline{w}')||}$$

 \overline{w} 为 W 的灰度均值, \overline{w}' 为 W' 的灰度均值

示例

窗口大小的影响

窗口大小 = 3

窗口大小 = 20

- 较小的窗口
 - > 细节丰富
 - ▶ 更多噪声
- 较大的窗口
 - ▶ 视差图更平滑、噪声更少
 - > 细节丢失

• 透视缩短

• 遮挡

- 为了减少透视缩短和遮挡的影响,希望有更小的
 B/z 比值!
- 但是,当 B/z 小时,测量值的小误差意味着估 算深度的大误差

• 同质区域

• 重复模式

- ▶ 遮挡
- ▶ 透视缩短
- ▶ 基线选择
- ▶ 同质区域
- ▶ 重复性模式

- ▶ 遮挡
- ▶ 透视缩短
- ▶ 基线选择
- ▶ 同质区域
- ▶ 重复性模式

依然是一个很难的问题!!

- ▶ 遮挡
- ▶ 透视缩短
- ▶ 基线选择
- ▶ 同质区域
- ▶ 重复性模式

依然是一个很难的问题!!

引入更多的约束解决对应点问题!!

其他约束

- 唯一性约束
 - ▶ 一张图像中的任何点,在另一张图像中最多只有一个 匹配点
- 顺序约束/单调性约束
 - ▶ 左右视图中的对应点次序一致
- 平滑性约束
 - ➢ 视差函数通常是平滑的(除了遮挡边界)

其他约束

- 唯一性约束
 - ▶ 一张图像中的任何点,在另一张图像中最多只有一个 匹配点
- 顺序约束/单调性约束
 - > 左右视图中的对应点次序一致
- 平滑性约束
 - > 视差函数通常是平滑的(除了遮挡边界)

Computer Vision: A Modern Approach (2nd Edition)

5. 双目立体视觉系统

- 平行视图
- 图像校正
- 对应点搜索(完)

5. 双目立体视觉系统

- 平行视图 (完)
- 图像校正(完)
- 对应点搜索(完)