Devoir à la maison n^{o} 2 Algèbres de Boole Congruences modulo n - Entiers modulo n

Exercice 1:

- 1. Soit n un entier naturel non nul, et a un entier quelconque. Donner la définition du résidu de a modulo n.
- 2. Calculer le plus judicieusement possible les résidus modulo 7 des entiers $53,53^2$ et 53^3 .
- 3. En déduire le résidu modulo 7 de 53^5 .

Exercice 2:

- 1. Soit n un entier quelconque. Ecrire la division euclidienne de n par 5. Quels sont alors les restes possibles dans cette division?
- 2. Pour chaque valeur possible de ce reste, calculer le résidu modulo 5 de n^2 , n^3 et n^4 . On pourra présenter les résultats dans un tableau pour plus de clarté.
- 3. En déduire que pour tout entier n il existe un entier k tel que $n^4 = 5k$ ou $n^4 = 1 + 5k$.

Exercice 3:

- 1. Construire la table de multiplication dans $\mathbb{Z}/8\mathbb{Z}$.
- 2. Déterminer les éléments inversibles dans $\mathbb{Z}/8\mathbb{Z}$, et déterminer leurs inverses.
- 3. Quels sont les diviseurs de zéro dans $\mathbb{Z}/8\mathbb{Z}$? Justifiez votre réponse.
- 4. Résoudre dans $\mathbb{Z}/8\mathbb{Z}$ les équations $\dot{5}\dot{x} = \dot{7}$ et $\dot{4}\dot{x} = \dot{4}$.

Exercice 4: On considère l'ensemble $\mathbb{Z}/4\mathbb{Z} = \{\dot{0}, \dot{1}, \dot{2}, \dot{3}\}.$

- 1. Dresser la table de multiplication dans $\mathbb{Z}/_{4\mathbb{Z}}$.
- 2. Résoudre dans $\mathbb{Z}/4\mathbb{Z}$ l'équation $\dot{2}x = \dot{2}$.
- 3. Résoudre dans $\mathbb{Z}/_{4\mathbb{Z}}$ le système $\left\{ \begin{array}{lcl} \dot{2}x+\dot{3}y&=&\dot{2}\\ \dot{2}x+\dot{1}y&=&\dot{2} \end{array} \right.$
- 4. Résoudre dans $\mathbb{Z}/_{4\mathbb{Z}}$ l'équation $\dot{2}x^2 + \dot{2}x = \dot{0}$.

Exercice 5: Résoudre dans \mathbb{Z} la congruence $3x \equiv 8 \mod 14$.

Exercice 6: Soit $(E, +, \times, ')$ une algèbre de Boole quelconque.

- 1. Déterminer les compléments dans E de
 - (a) b'c + cd
 - (b) bc' + b'a + ac
- 2. Montrer les égalités suivantes :
 - (a) a + a'b = a + b
 - (b) a + a'b + a'b'c = a + b + c
 - (c) (a+b+c')(a+b'+c)(a'+b+c) = a'b'c'+ab+ac+bc

Solution:

Exercice 1:

- 1. Le résidu de a modulo n est le reste dans la division euclidienne de a par n. C'est donc le plus petit entier positif qui soit congru à a modulo n.
- 2. Ecrivons la division euclidienne de 53 par 7 : $53 = 7 \times 7 + 4$. Le résidu de 53 modulo 7 est donc 4. On peut alors écrire que $53 \equiv 4 \pmod{7}$.

D'après l'une des propriétés du cours on a donc $53^2 \equiv 4^2 \pmod{7}$. Or $4^2 = 16$ et $16 \equiv 2 \pmod{7}$. Ainsi $53^2 \equiv 2 \pmod{7}$ et le résidu de $53^2 \pmod{7}$ est 2.

$$53^3=53^2\times 53$$
 donc $53^3\equiv 2\times 4\ (mod\ 7)$. Or $2\times 4=8$ et $8\equiv 1\ (mod\ 7)$. Donc le résidu de 53^3 modulo 7 est égal à 1.

3. $53^5 = 53^2 \times 53^3$ donc $53^5 \equiv 2 \times 1 \pmod{7}$. Ainsi le résidu de 53^5 modulo 7 est égal à 2.

Exercice 2:

1. Il existe des entiers q et r uniques tels que n=5q+r, avec $0\leqslant r<5$. Le reste r peut donc prendre toutes valeurs entières de 0 à 4.

	r	n^2	n^3	n^4
	0	0	0	0
2.	1	1	1	1
۷.	2	4	3	1
	3	4	2	1
	4	1	4	1

Dans la colonne de n^2 on note le résidu de n^2 modulo 5. On procède de façon analogue pour les colonnes de n^3 et n^4 .

Rappel : $n \equiv r \pmod{5}$ donc $n^2 \equiv r^2 \pmod{5}$. Enfin on utilise le fait que $n^3 = n^2 \times n$ et que $n^4 = (n^2)^2$, ou que $n^4 = n^3 \times n$.

3. On constate que le résidu de n^4 modulo 5 ne peut prendre que les valeurs 0 et 1. $n^4 \equiv 0 \pmod{5} \iff \text{il existe un entier } k \text{ tel que } n^4 = 5k.$ Et $n^4 \equiv 1 \pmod{5} \iff \text{il existe un entier } k \text{ tel que } n^4 = 1 + 5k.$

Exercice 3:

1. Dressons la table de multiplication dans $\mathbb{Z}/8\mathbb{Z}=\left\{\dot{0},\dot{1},\ldots,\dot{7}\right\}$:

×	Ò	i	$\dot{2}$	$\dot{3}$	$\dot{4}$	5	6	7	3
Ó	Ò	Ó	Ò	Ò	Ò	Ò	Ó	Ò]
i	Ò	i	Ż	3	4	5	6	7	
$\dot{2}$	Ò	$\dot{2}$	$\dot{4}$	6	Ö	$\dot{2}$	$\dot{4}$	6	4.
$\dot{3}$	Ò	$\dot{3}$	6	i	$\dot{4}$	7	$\dot{2}$	5	
$\dot{4}$	Ò	$\dot{4}$	Ò	$\dot{4}$	Ö	$\dot{4}$	Ò	$\dot{4}$	
5	Ò	5	$\dot{2}$	7	$\dot{4}$	i	$\dot{6}$	3	
$\dot{6}$	Ò	6	$\dot{4}$	$\dot{2}$	Ö	6	$\dot{4}$	$\dot{2}$	
7	Ó	7	6	5	$\dot{4}$	$\dot{3}$	$\dot{2}$	i	

- 2. Les éléments inversibles sont $\dot{1}, \dot{3}, \dot{5}$ et $\dot{7}$. De plus $\dot{1}^{-1} = \dot{1}, \dot{3}^{-1} = \dot{3}, \dot{5}^{-1} = \dot{5}$ et $\dot{7}^{-1} = \dot{7}$ d'après la table ci-contre.
 - Les classes $\dot{0}, \dot{2}, \dot{4}$ et $\dot{6}$ sont les diviseurs de zéro car $\dot{0} \times \dot{1} = \dot{0}, \dot{2} \times \dot{4} = \dot{0}, \dot{4} \times \dot{2} = \dot{0}$ et $\dot{6} \times \dot{4} = \dot{0}$.
 - Dans la ligne de la table de multiplication correspondant à $\dot{5}$, on lit que l'équation $\dot{5}\dot{x}=\dot{7}$ possède comme unique solution $\dot{x}=\dot{3}$. Alors $\mathcal{S}=\{\dot{3}\}$. Dans la ligne de la table de multiplication correspondant à $\dot{4}$, on lit que l'équation $\dot{4}\dot{x}=\dot{4}$ possède comme solutions $\dot{1},\dot{3},\dot{5}$ et $\dot{7}$.

Alors
$$S = \{\dot{1}, \dot{3}, \dot{5}, \dot{7}\}.$$

Exercice 4:

1. Dressons la table de multiplication dans

$$\mathbb{Z}/4\mathbb{Z} = \{\dot{0}, \dot{1}, \dot{2}, \dot{3}\}:$$

	×	Ò	İ	$\dot{2}$	3
(Ċ	Ò	Ò	Ò	Ò
	i	Ó	i	$\dot{2}$	3
4	į	Ò	$\dot{2}$	Ò	$\dot{2}$
	3	Ò	3	Ż	i

2. Dans la ligne de la table de multiplication correspondant à $\dot{2}$, on lit que l'équation $\dot{2}\dot{x}=\dot{2}$ possède comme solutions $\dot{1}$ et $\dot{3}$. Alors $\mathcal{S}=\{\dot{1},\dot{3}\}$.

3.
$$\begin{cases} \dot{2}x + \dot{3}y &= \dot{2} & L_1 \\ \dot{2}x + \dot{1}y &= \dot{2} & L_2 \end{cases} \iff \begin{cases} \dot{2}x + \dot{3}y &= \dot{2} & L_1 \\ \dot{2}y &= \dot{0} & L_2 \leftarrow L_1 - L_2 \end{cases}$$

D'après la table de multiplication, l'équation 2y = 0 admet comme solutions 0 et 2.

D'après
$$L_1, y = \dot{0} \iff \dot{2}x = \dot{2} \iff (x = \dot{1} \text{ ou } x = \dot{3})$$
 d'après la question 2.
Et $y = \dot{2} \iff \dot{2}x + \dot{6} = \dot{2} \iff \dot{2}x + \dot{2} = \dot{2} \iff \dot{2}x = \dot{0} \iff (x = \dot{0} \text{ ou } x = \dot{2})$.

Le système admet donc 4 couples solutions : $S = \{(\dot{1}, \dot{0}), (\dot{3}, \dot{0}), (\dot{0}, \dot{2}), (\dot{2}, \dot{2})\}.$

4.
$$\begin{vmatrix} \dot{x} & \dot{0} & \dot{1} & \dot{2} & \dot{3} \\ \dot{2}x^2 + \dot{2}x & \dot{0} & \dot{0} & \dot{0} & \dot{0} \end{vmatrix}$$
 Alors $\mathcal{S} = \mathbb{Z}/4\mathbb{Z} = \{\dot{0}, \dot{1}, \dot{2}, \dot{3}\}.$

Exercice 5 : Résoudre dans \mathbb{Z} la congruence $3x \equiv 8 \mod 14$.

 $3x \equiv 8 \mod 14 \iff \dot{3}\dot{x} = \dot{8} \operatorname{dans} \mathbb{Z}/_{14\mathbb{Z}}.$

 $\dot{3}$ est inversible car PGCD(3, 14)=1 (14 = 1 × 7 et 3 est premier). Les éléments inversibles dans $\mathbb{Z}/_{14\mathbb{Z}}$ sont les classes \dot{a} telles que a ne soit ni multiple de 2 ni de 7, puisqu'on doit avoir PGCD(a,14)=1. Le tableau suivant permet de chercher l'inverse de $\dot{3}$ parmi les éléments inversibles de $\mathbb{Z}/_{14\mathbb{Z}}$.

$\dot{x} \in (\mathbb{Z}/_{14\mathbb{Z}})^*$	i	3	5
$\dot{3}\dot{x}$	$\dot{3}$	9	i

Alors
$$\dot{3}^{-1} = \dot{5}$$
.

Ainsi
$$\dot{3}\dot{x} = \dot{8} \iff \dot{x} = \dot{3}^{-1} \times \dot{8} \iff \dot{x} = \dot{5} \times \dot{8} = \dot{40} = \dot{12} \iff \exists k \in \mathbb{Z} \text{ tel que } x = 12 + 14k$$

Alors l'ensemble des solutions de la congruence $3x \equiv 8 \bmod 14$ est $\mathcal{S} = \{12 + 14k/k \in \mathbb{Z}\}.$

Exercice 6:

1. Calculs des compléments en utilisant les lois de Morgan

(a)
$$(b'c + cd)' = (b'c)'(cd)' = (b + c')(c' + d')$$

(b) $(bc' + b'a + ac)' = (bc')'(b'a)'(ac)' = (b' + c)(b + a')(a' + c')$

2. Egalités

(a)
$$a + a'b = (a + a')(a + b) = 1 \times (a + b) = a + b$$

(b)
$$a+a'b+a'b'c=a+a'(b+b'c)$$

.. $=a+a'(b+c)$ d'après l'égalité (a)
.. $=a+(b+c)$ en remplaçant b par $b+c$ dans l'égalité (a)
.. $=a+b+c$

(c) (a+b+c')(a+b'+c)(a'+b+c) = (a+(b+c')(b'+c))(a'+b+c) d'après la distributivité de + par rapport à ×
.. = (a+bb'+bc+c'b'+c'c)(a'+b+c).. = (a+bc+c'b')(a'+b+c)

= aa' + bca' + a'c'b' + ab + bcb + c'b'b + ac + bcc + c'b'c

a'b'c' + bca' + bc + ac + ab

.. $= a'b'c' + ab + ac + bc \operatorname{car} bca' \operatorname{est}$ "absorbé" par bc

Deuxième méthode:

$$(a+b+c')(a+b'+c)(a'+b+c) = (a+ab'+ac+bb'+bc+c'a+c'b'+c'c)(a'+b+c)$$

$$.. = (a+bc+c'b')(a'+b+c) \text{ car } a+ax=a \ \forall x$$

$$.. = aa'+ab+ac+bca'+bcb+bcc+c'b'a'+c'b'b+c'b'c$$

$$.. = a'b'c'+ab+ac+bc$$