Module I: Part B

Stored Program Concept

- •Stored program concept is introduced by John von Neumann in 1940s.
- •The idea of a stored program is to store the instructions and data electronically as binary numbers in a storage space associated with a computer.
- •The storage space is called as memory.
- •Any data such as input or instruction is stored as a binary number in the memory.

How to implement the Stored-Program Concept in reality?

- •To Implement the stored-program concept, there are multiple layers of abstractions required both in the hardware and software.
- •The most important among them is the instruction set architecture (ISA) -abstraction between the lowest level software interface and the underlying hardware.

Von Neumann machine

Image courtesy: www.medium.com

Von Neumann Architecture

Output Device

Von Neumann architecture

- There are four sub-components in von Neumann architecture:
 - Memory
 - input and output devices
 - Arithmetic-Logic Unit
 - Control Unit
- There is a 5th key player in the architecture, i.e. a wire, or bus, that connects the components together
- Bus enables data flow from one subcomponent to another.
- Three types of communication lines in the bus: address lines, data lines and control lines.

Von Neumann Architecture

- Major principles
 - Data and instructions stored together in the storage unit / Memory unit.
 - Memory unit is a collection of locations and each location is designated with an address.
 - Central processing unit fetches the instruction and data from the memory unit.
 - The central processing unit process the data
 - Program and data cannot be accessed simultaneously

The working of von Neumann model

- The central processing unit, decides the instruction to be executed next and keep its address in the address line i.e. address bus.
- The address bus is a uni-directional bus connected from central processing unit to memory unit.
- From the memory unit, the instruction or data are placed into the data bus which carries data from the memory to the central processing unit.

Working continues...

- The instructions gets decoded at the control unit.
- Processor executes the task according to the instruction.
- The arithmetic and logical operations are performed in the arithmetic and logic unit(ALU)
- The execution of program is a sequential process, other than branching instruction execution.
- The output of the execution may be stored in the memory or sent to the output unit.

Types of instructions

 Data Transfer Instructions – transfers data from a source to a destination. The source and destination can be memory locations or registers that are associated with CPU.

Ex: Mov A,R1

 Arithmetic Instructions—performs arithmetic operations such as addition, subtraction, multiplication, division etc. It is performed by ALU.

Add R1,R2

- Logical Instructions- Performs logical operations
- Control transfer instructions The flow of sequential execution can be changed with a branch instruction, it can be made according to any condition.

Branch > 0

Harvard Architecture

Harvard Architecture

- Principles
 - In **Harvard architecture** concept,
 Memory for data was separated from the memory for instruction.
 - This concept supports the parallel access of data and instructions
 - Modern processors uses Harvard architecture

Advantages of Harvard Architecture

- Separate data path and instruction path is available.
- Fetching of data and instructions can be done simultaneously
- Different sized cells can be allowed in both the memories.

Comparison of von Neumann and Harvard Architecture

Von Neumann	Harvard
Architecture	Architecture
It is a conceptual design based on	It is a modern computer
stored program architecture	architecture
Memory is common for both	Separate memory is there for
instruction and data	instruction and data
Common bus between memory	Separate buses for instruction
and CPU for both instruction and	memory and data memory
data	
Two clock cycles required for the	Only one clock cycle is enough for
processor to execute an	the processor to execute an
instruction	instruction
Data transfer and instruction	Data transfer and instruction
fetches cannot be done	fetches can be done
simultaneously	simultaneously
Control unit design is simple	Control unit for two buses is
	more complicated which increses
	the development cost

Performance of computer

- Clock is used to synchronize the working of a unit
- Clock Cycle: Discrete time intervals at which the events happen in a computer system
 - The length of each clock cycle is considered as clock period.
 - A clock period is also called tick, clock tick etc.

Performance matrix of a computer system

- Execution time: It is the time taken to finish a task
- CPU execution time is a combination of user CPU time and system CPU time
- Throughput: It is defined as the total quantity of completed work in a specific period of time.

Relation between the time of execution and performance

- For a given task, in order to maximize the performance of a computer, we need to minimize the time required for execution or response time.
- For a computer system A, the performance is calculated by the following formula

Performance of A= 1/Execution time of A

i.e. Performance_A= 1/Execution time_A

Continued...

• i.e. we assume two computers X and Y, the relation between the performances can be represented by the below formula, if the performance of X is more than the performance of Y.

$$\frac{1}{\text{Execution time}_{X}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\frac{1}{\text{Execution time}_{Y}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\text{Execution time}_{Y} > \text{Execution time}_{X}$$

Continued...

Computer X is 'n' times faster than computer Y
 can be represented by the following formula,

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = n$$

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = n$$

CPU performance and its factors

CPU execution time for a program |=

CPU clock cycles for a program * Clock cycle time

CPU execution time for a program = CPU clock cycles for a program

Clock rate

- The above formula is called performance equation
- It indicates that the CPU performance can be improved by reducing either the number of clock cycles required for a program or by reducing the length of the clock cycle.

Performance Evaluation

The gain in performance can be achieved by improving some resources of a computer. It can be calculated using Amdhal's law.

• Amdhal's law states that, the performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used.

Amdhal's law

Amdhal's law defines speed up

Alternatively,

Speedup = Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

Execution time_{new} = Execution time_{old}
$$\times \left((1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}} \right)$$

The overall speedup is the ratio of the execution times:

$$Speedup_{overall} = \frac{Execution \ time_{old}}{Execution \ time_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

Sample Problem

Consider a CPU used in Web servicing. We need to enhance the processor by increasing the computation speed 10 times faster on computation process in web service applications. We assume that, 30% of the time the original processor is spending for computation process and 70% of the time is waiting for the i/o devices. By incorporating the enhancement, what will be the overall speed up gain?

Solution

```
    Fraction<sub>enhanced</sub> = 30% = 0.3
    Speed<sub>enhanced</sub> = 10
    Speedup<sub>overall</sub> = 1/(1-0.3)+(0.3/10) = 1/0.7+0.03 = 1/0.73
    ≈ 1.369
```

References

- Computer Architecture- A Quantitative Approach by John L. Hennessy, David A.Patterson
- 2. Computer Organization by Car-Hamacher,5th edition
- 3. Computer Organization and Architecture by william Stallings