RELATIVITÉ GÉNÉRALE, PHQ615: DEVOIR 1 Pierre-Antoine Graham 23 septembre 2022

Considérons un espace euclidien plat E à d-dimensions. L'espace est submergé dans un espace hôte de dimsenion \mathbb{R}^{d+1} (cette submersion est toujours possible pour un espace plat). Soit la carte de coordonnées $u: \mathbb{R}^{d+1} \to \mathbb{R}^d$ qui envoie les points $\mathbf{X} \in \mathbb{R}^{d+1}$ de la sumbmersion à des coordonnées $\mathbf{x} \in \mathbb{R}^d$. L'application inverse u^{-1} permet d'écrire les composantes $[X_1, \dots, X_{d+1}]$ de \mathbf{X} dans une base $\operatorname{orthonormée}$ de \mathbb{R}^{d+1} en fonction des coordonnées x^i . Sans perte de généralité pour un espace plat E, on pose que $X_{d+1} \equiv 0$.

Ignorant la composante nulle de \mathbf{X} , on peut interpréter u^{-1} comme une application $\mathbb{R}^d \to \mathbb{R}^d$ qui déforme la grille orthogonale de l'espace des coordonnées vers les points correspondant de \mathbf{X} . Cette application déforme le volume cubique $\mathrm{d}^d x = dx^1 \cdots dx^d$ vers un parallélotope. Les côtés du parallélotope sont données par le déplacement $d\mathbf{X} = \partial_i \mathbf{X} \mathrm{d} x^i$ dans l'espace hôte induit par une variation infinitésimale $\mathrm{d} x^i$ de la coordonnée x^i (gardant les autres coordonnées constantes). Le volume $\mathrm{d} V$ du parallélotope image de $\mathrm{d}^d x$ est donné par

$$dV = \begin{vmatrix} \partial_{1}X_{1} & \cdots & \partial_{d}X_{1} \\ \vdots & \ddots & \vdots \\ \partial_{1}X_{d} & \cdots & \partial_{d}X_{d} \end{vmatrix} dx^{1} \cdots dx^{d}$$

$$= \begin{vmatrix} \begin{bmatrix} \partial_{1}X_{1} & \cdots & \partial_{d}X_{1} \\ \vdots & \ddots & \vdots \\ \partial_{1}X_{d} & \cdots & \partial_{d}X_{d} \end{bmatrix} \begin{bmatrix} \partial_{1}X_{1} & \cdots & \partial_{d}X_{1} \\ \vdots & \ddots & \vdots \\ \partial_{1}X_{d} & \cdots & \partial_{d}X_{d} \end{bmatrix} \begin{vmatrix} 1/2 \\ dx^{1} & \cdots & dx^{d} \end{vmatrix}$$

$$= \begin{vmatrix} \begin{bmatrix} \partial_{1}\mathbf{X} \cdot \partial_{1}\mathbf{X} & \cdots & \partial_{1}\mathbf{X} \cdot \partial_{d}\mathbf{X} \\ \vdots & \ddots & \vdots \\ \partial_{d}\mathbf{X} \cdot \partial_{1}\mathbf{X} & \cdots & \partial_{d}\mathbf{X} \cdot \partial_{d}\mathbf{X} \end{vmatrix} \end{vmatrix}^{1/2} dx^{1} \cdots dx^{d} = \sqrt{g}dx^{1} \cdots dx^{d}$$

où g est le déterminant du tenseur métrique $g_{ij} = \partial_i \mathbf{X} \cdot \partial_j \mathbf{X}$.

Soit le référentiel S associé à la base $\{\hat{x}, \hat{y}, \hat{z}, \hat{t}\}$ donnant les coordonnées des évenements de l'espace de Minkowski $\mathbb{R}^{3,1}$. Les coordonnées des évenements dans S sont envoyés vers un second référenciel S' associé à la base $\{\hat{x}', \hat{y}', \hat{z}', \hat{t}'\}$ avec un boost de rapidité ϕ dans la direction \hat{x} . L'action de ce boost laisse \hat{z} invariant et, dans le sous-espace $\mathbb{R}^{2,1}$, il admet la representation matricielle

$$\Lambda_{\phi,\hat{x}} = \begin{bmatrix} \cosh(\phi) & \sinh(\phi) & 0\\ \sinh(\phi) & \cosh(\phi) & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Un second boost envoie les coordonnées de S' vers un dernier référenciel S'' avec un boost de rapidité ψ dans la direction $\hat{y}' = \hat{y}$. Ce boost preserve aussi \hat{z} et sa representation matricielle dans le sous-espace $\mathbb{R}^{2,1}$ est

$$\Lambda_{\psi,\hat{y}'} = \begin{bmatrix} \cosh(\psi) & 0 & \sinh(\psi) \\ 0 & 1 & 0 \\ \sinh(\psi) & 0 & \cosh(\psi) \end{bmatrix}.$$

Le passage de S à S'' est décrit par la transformation $M = \Lambda_{\psi,\hat{y}'}\Lambda_{\phi,\hat{x}}$ qui n'affecte globalement pas \hat{z} . On peut écrire M comme le rpoduit d'un boost Λ et d'une rotation dans le plan Oxy (seule plan de rotation laissant \hat{z} invariant). La représentation matricielle de R^{-1} dans $\mathbb{R}^{2,1}$ est

$$R^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

. On cherche à extraire la rotation contenue dans M en y appliquant R^{-1} . La résultat est la representation matricielle de Λ qui s'écrit

$$\Lambda = \begin{bmatrix} \cosh\left(\phi\right)\cosh\left(\psi\right) & \sinh\left(\phi\right) & \sinh\left(\psi\right)\cosh\left(\phi\right) \\ -\sin\left(\theta\right)\sinh\left(\psi\right) + \cos\left(\theta\right)\sinh\left(\phi\right)\cosh\left(\psi\right) & \cos\left(\theta\right)\cosh\left(\phi\right) & -\sin\left(\theta\right)\cosh\left(\psi\right) + \cos\left(\theta\right)\sinh\left(\phi\right)\sinh\left(\phi\right) \\ \sin\left(\theta\right)\sinh\left(\phi\right)\cosh\left(\psi\right) + \cos\left(\theta\right)\sinh\left(\psi\right) & \sin\left(\theta\right)\cosh\left(\phi\right) & \sin\left(\theta\right)\sinh\left(\phi\right)\sinh\left(\psi\right) + \cos\left(\theta\right)\cosh\left(\psi\right) \end{bmatrix}$$

Puisque Λ est un boost pure par hypothese, sa representation matricielle doit être symétrique et cela impose la contrainte suivante sur θ :

$$0 = \sin(\theta) \cosh(\phi) + \sin(\theta) \cosh(\psi) - \cos(\theta) \sinh(\phi) \sinh(\psi)$$

$$\implies \left[\cos(\theta) \neq 0 \& \tan(\theta) = \frac{\sinh(\psi) \sinh(\phi)}{\cosh(\psi) + \cosh(\phi)} \right] \quad \text{or} \quad [\cos(\theta) = 0 \& \cosh(\phi) + \cosh(\psi) \implies \emptyset]$$

qui correspond à l'égalité $\Lambda^0{}_2=\Lambda^2{}_0$. À première vue, 2 angles séparés par π satisfont la contrainte. En réalité, on peut combiner le fait que $\theta=0$ est réalisé lorsque $\phi=0$ ou $\psi=0$ à la contrainte $\cos(\theta)\neq 0$ pour avoir $\theta\in(-\pi/2,\pi/2)$ qui fixe une branche unique de l'inverse de tan (arctan). On a finalement

$$\theta = \arctan\left(\frac{\sinh(\psi)\sinh(\phi)}{\cosh(\psi)+\cosh(\phi)}\right).$$

