Abstract Algebra Assignment (5): Rings

Mostafa Hassanein

31 December 2023

1.

To show that the system $(I_m, +, \cdot)$ is an ideal in the ring $(I, +, \cdot)$, we must show that:

i. $(I_m, +)$ is a sub-group of (I, +).

Proof.

$$\begin{array}{l} a,b\in I_{m}\implies a=mr_{1}\ \wedge\ b=mr_{2}\\ \Longrightarrow\ b^{-1}=-mr_{2}\\ \Longrightarrow\ a+b^{-1}=mr_{1}+(-mr_{2})=m(r_{1}-r_{2})=mr'\\ \Longrightarrow\ a+b^{-1}\in I_{m}\\ \Longrightarrow\ (I_{m},+)\ \text{is a sub-group of}\ (I,+). \end{array}$$

ii. I_m is a left ideal: $r \cdot x \in I_m$, $\forall x \in I_m \land \forall r \in I$.

Proof.

Let
$$x \in I_m \implies x = mr_1, m, r_1 \in I$$
.
Let $r_2 \in I \implies r_2 \cdot x = r_2 \cdot mr_1 = m(r_1 + r_2) = mr'$
 $\implies r_2 \cdot x \in I_m, \forall x \in I_m \land \forall r_2 \in I$
 $\implies (I_m, +, \cdot)$ is a left ideal.

iii. I_m is a right ideal: $x \cdot r \in I_m$, $\forall x \in I_m \land \forall r \in I$.

Proof.

Because I is commutative w.r.t. the second operation, and I_m is a left ideal, then I_m is also a right ideal.

2.

To prove that the system (R, \oplus, \otimes) is a field, we need to show that: i. (R, \oplus) is a commutative group.

Proof.

a. Closure:
$$a \oplus b = a + b - 1$$

 $\implies a \oplus b \in R$.

b. Associativity: $(a \oplus b) \oplus c = (a+b-1) \oplus c = (a+b-1) + c - 1 = a + (b+c-1) - 1 = a \oplus (b+c-1) = a \oplus (b \oplus c)$.

c. Existence of an identity: $a \oplus e = a \implies a + e - 1 = a$ $\implies e = 1$ $\implies e \in R$.

d. Existence of inverses: $a \oplus a^{-1} = e \implies a + a^{-1} - 1 = 1$

$$\implies a^{-1} = 2 - a$$
$$\implies a^{-1} \in R.$$

e. \oplus is commutative: \oplus is defined in terms of addition and addition is commutative \implies \oplus is commutative.

(a), (b), (c), (d), (e) \implies (R, \oplus) is a commutative group.

ii. (R^*, \otimes) is a commutative group.

Proof.

Let \bar{e} be the identity for \otimes , then: $a \otimes \bar{e} = a$ $\implies a + \bar{e} - a\bar{e} = a$ $\implies \bar{e} - a\bar{e} = 0$ $\implies \bar{e}(1 - a) = 0$ $\implies \bar{e} = 0$.

Let $b \in R^*$, then: $b \otimes b^{-1} = \bar{e}$ $\implies b + b^{-1} - bb^{-1} = 0$ $\implies b^{-1}(1-b) + b = 0$ $\implies b^{-1} = b/(b-1)$ $\implies b^{-1}$ exists for all $b \in \{R-1\} \land b^{-1} \neq e = 1$ $\implies b^{-1} \in R^*$.

Let $a, b \in R^*$, then: $a \otimes b^{-1} = ab/b - 1$ $\implies a \otimes b^{-1}$ exists for all $b \in \{R - 1\}$ $\land a \otimes b^{-1} \neq e = 1$ $\implies a \otimes b^{-1} \in R^*$ $\implies (R^*, \otimes)$ is a group.

Finally, \otimes is defined in terms of addition and multiplication which are both commutative $\implies (R^*, \otimes)$ is a commutative group.

iii. The binary operation \otimes is both left and right distributive over \oplus .

Proof.

a. Left distributivity:

$$a \otimes (b \oplus c) = a + (b \oplus c) - a(b \oplus c)$$

$$= a + (b \oplus c) - a(b \oplus c)$$

$$= a + (b + c - 1) - a(b + c - 1)$$

$$= a + (b + c - 1) - ab + ac - a$$

$$= 2a + b + c - ab - ac - 1$$

$$= (a + b - ab) + (a + c - ac) - 1$$

$$= (a \otimes b) + (a \otimes c) - 1$$

$$= (a \otimes b) \oplus (a \otimes c).$$

b. Right distributivity:

$$(a \oplus b) \otimes c = (a \oplus b) + c - (a \oplus b)c$$

$$= (a + b - 1) + c - (a + b - 1)c$$

$$= a + b - 1 + c - ac - bc + c$$

$$= a + b + 2c - bc - ac - 1$$

$$= (a + c - ac) + (b + c - bc) - 1$$

$$= (a \otimes c) + (b \otimes c) - 1$$

$$= (a \otimes c) \oplus (b \otimes c).$$

Therefore, the system (R, \oplus, \otimes) is a field.

3.

We start by constructing the Cayley table for both operations:

*	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{8}$
0	Ō	$\bar{2}$	$\overline{4}$	6	8
$\bar{2}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{8}$	$\bar{0}$
$\bar{4}$	$\bar{4}$	$\bar{6}$	$\bar{8}$	$\bar{0}$	$\bar{2}$
$\bar{6}$	$\bar{6}$		$\bar{0}$	$\bar{2}$	$\bar{4}$
$ \begin{array}{c} \overline{0} \\ \overline{2} \\ \overline{4} \\ \overline{6} \\ \overline{8} \end{array} $	$\begin{bmatrix} 0 \\ \bar{2} \\ \bar{4} \\ \bar{6} \\ \bar{8} \end{bmatrix}$	$\bar{0}$	$ \begin{array}{c} 4 \\ \overline{6} \\ \overline{8} \\ \overline{0} \\ \overline{2} \end{array} $	$\begin{array}{c} \bar{6} \\ \bar{8} \\ \bar{0} \\ \bar{2} \\ \bar{4} \end{array}$	$ \begin{array}{c} \overline{8} \\ \overline{0} \\ \overline{2} \\ \overline{4} \\ \overline{6} \end{array} $
*	$ \bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{8}$
*					
	$ \begin{vmatrix} \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \end{vmatrix} $	$ \begin{array}{c} \bar{2} \\ 0 \\ \bar{4} \\ \bar{8} \\ \bar{2} \\ \bar{6} \end{array} $	$ \begin{array}{r} \bar{4} \\ \bar{0} \\ \bar{8} \\ \bar{6} \\ \bar{4} \\ \bar{2} \end{array} $	$\begin{array}{c} \bar{6} \\ 0 \\ \bar{2} \\ \bar{4} \\ \bar{6} \\ \bar{8} \end{array}$	

Proof.

From the Cayley table for the first operation we see that:

- i. * is closed over S.
- ii. There's an identity element e = 0.
- iii. All elements have an inverse.
- iv. * is commutative.

Additionally:

- v. * is associative (because addition is associative).
- (i), (ii), (iii), (iv), (v) \implies (S,*) is a commutative group.

From the Cayley table for the second operation we see that:

- a. Δ is closed over S.
- b. Δ is commutative.
- c. Δ has no zero divisors.

Additionally:

- d. Δ is associative (because multiplication is associative).
- e. Δ is distributive over * (because multiplication is distributive over addition).
- (a), (b), (c), (d), (e) $\implies \Delta$ is an associative, distributive, and commutative binary operation on S with no zero divisors.

Therefore, $(S, *, \Delta)$ is a commutative ring with no zero divisors.

4.

To show that the system $(M_2, +, \cdot)$ is a ring, we need to show that: i. $(M_2, +)$ is a commutative group.

Proof.

$$a, b \in M_2 \implies a = \begin{bmatrix} x & y \\ -y & x \end{bmatrix} \land b = \begin{bmatrix} w & z \\ -z & w \end{bmatrix}$$

$$\implies b^{-1} = \begin{bmatrix} -w & -z \\ z & -w \end{bmatrix}$$

$$\implies a + b^{-1} = \begin{bmatrix} x & y \\ -y & x \end{bmatrix} + \begin{bmatrix} -w & -z \\ z & -w \end{bmatrix} = \begin{bmatrix} x - w & y - z \\ -(y - z) & x - w \end{bmatrix}$$

$$\implies a \cdot b = \begin{bmatrix} p & q \\ -q & p \end{bmatrix}$$

$$\implies a + b^{-1} \in M_2$$

 $\implies (M_2,+)$ is a commutative group (because matrix addition is commutative).

ii. \cdot is binary associative over M_2 .

roof.
$$a, b \in M_2 \implies a = \begin{bmatrix} x & y \\ -y & x \end{bmatrix} \land b = \begin{bmatrix} w & z \\ -z & w \end{bmatrix}$$

$$\implies a \cdot b = \begin{bmatrix} x & y \\ -y & x \end{bmatrix} \cdot \begin{bmatrix} w & z \\ -z & w \end{bmatrix}$$

$$\implies a \cdot b = \begin{bmatrix} xw - yz & xz + yw \\ -(xz + yw) & xw - yz \end{bmatrix}$$

$$\implies a \cdot b = \begin{bmatrix} p & q \\ -q & p \end{bmatrix}$$

$$\implies a \cdot b \in M_2$$

Therefore, \cdot is closed and associative (because matrix multiplication is associative) over M_2 .

iii. \cdot is distributive over +.

Proof.

Since matrix multiplication is distributive, then it must also be satisfied for the subset of matrices M_2 .

Therefore, $(M_2, +, \dot)$ is a ring.