Group Project 1: Modular Arithmetic

Jeremy Gruzka and Ian Goodbody Math 340 LtCol Alfonso

April 20, 2015

Problem Set

Problem 10

Find all solutions to x in the equations:

$$3x - 1 \equiv_8 7 \tag{1}$$

$$2x - 1 \equiv_{20} 6 \tag{2}$$

To solve equation 1, we start with $1 \equiv_8 1$ and using *Therom 2* procede to solve.

$$3x - 1 \equiv_8 7$$
$$(3x - 1) + 1 \equiv_8 7 + 1$$
$$3x \equiv_8 8$$
$$3x \equiv_8 0$$

The reciporical of this equation becomes trivial as the product between 0 and any potential factor will invariably yield 0 therefore:

$$x \equiv_8 0$$

or x is any integer multiple of 8.

To sovle equation 2, we will similary start with the statement $1 \equiv_{20} 1$ and proceed to solve.

$$2x - 1 \equiv_{20} 6$$
$$(2x - 1) + 1 \equiv_{20} 6 + 1$$
$$2x \equiv_{20} 7$$

Now we must find the reciporical for 2 in mod 20. However, because 2 and 20 share a common factor other than 1, we cannot have a reciporical. This can be expressed by the implication

Let:
$$K, L, k, l, n \in \mathbb{Z} \mid K = n \cdot k, L = n \cdot l$$

 $(n \neq 1) \Rightarrow (\forall x \in \mathbb{Z} \mid K \cdot x \mod L \neq 1)$

and can be proven using the contrapositive:

$$\begin{split} (\exists x \in \mathbb{Z} \mid K \cdot x \bmod L = 1) & \Rightarrow (n = 1) \\ \text{Assume: } K \cdot x = L \cdot q + 1, \text{ where } q \in \mathbb{Z} \\ n \cdot k \cdot x = n \cdot l \cdot q + 1 \\ \frac{1}{n} = k \cdot x - l \cdot q \end{split}$$

The conclusion then follows from the closure properties of integers over multiplication and addition

$$k \cdot x - l \cdot q \in \mathbb{Z}$$
$$\frac{1}{n} \in \mathbb{Z}$$
$$n = 1$$

Because 2 and 20 share a factor of 2, no integer reciporical for exists and there is no solution for x.

Problem 12

Show that if none of the numbers in the list $1 \cdot a, 2 \cdot a, \dots, (p-1) \cdot a$ are congruent to $0 \mod p$, then no two numbers in the list are congruent to each other (mod p).

Given a prime number p and an integer a the problem above can be written

Let
$$A \equiv \{1 \cdot a, 2 \cdot a, \dots, (p-1) \cdot a\}$$

 $\forall x \in A, \ x \bmod p \neq 0 \Rightarrow \forall y, z \in A \mid y \neq z, \ (y \bmod p) \neq (z \bmod p)$

The implication can then be proven by the contrapositive.

Assume
$$y, z \in A \mid y \neq z, \ (y \bmod p) = (z \bmod p)$$

$$y = m \cdot a = k \cdot p + r$$

$$z = n \cdot a = l \cdot p + r$$
where $k, l, m, n, r \in \mathbb{Z} \mid m, n, r$

Subtracting z from y then taking the modulus by p simplifies the expression.

$$a(m-n) = p(k-l)$$
$$[a \cdot (m-n)] \mod p = 0$$

By *Therom 2*, the two factors can be separated, and by the zero property of multiplication we can conclude that one or both of the terms must be 0.

$$(a \bmod p) \cdot [(m-n) \bmod p] = 0$$

$$a \bmod p = 0 \quad \lor \quad (m-n) \bmod p = 0$$

$$m, n
Therefore: $a \bmod p = 0$$$

a then must be a multiple of p so we can conclude:

$$\forall x \in A, \ x \bmod p = 0$$

Therefore, by the contapositive the original implication must be true.

Problem 16

Given that we have RSA encrypted string with public key n=2773 and an encryption key e=157 we are tasked with decrypting the message: 0245 2040 1698 1439 1364 1758 0946 0881 1979 1130

The key to decrptying this message is to derrive the decryption key d using the publicly available encryption key e and the value n. First, a computer alogorithm was used to compute the prime roots of n which were then arbitrarily set as constans p and q. (Because n is relatively small and the prime factors are easily to compute, this is a fairly easy encryption to break.)

$$n = 2773 = (47)(59)$$

 $p = 47$ $q = 59$

The next constant to be calculate is k which can be found with the equation:

$$k = (p-1)(q-1) (3)$$

$$k = (47 - 1)(59 - 1)$$
$$k = 2668$$

The final step in finding d is to solve the following equation for integer values of v and d.

$$d \cdot e - v \cdot k = 1 \tag{4}$$

Solving with an initial guess of v = 1 fortunately yields an integer value for d.

$$d \cdot e - k = 1$$

$$d = \frac{1+k}{e}$$

$$d = \frac{2668+1}{157}$$

$$d = 17$$

Decrypting the message now relies on the coupled encryption and decryption equations, 5 and 6 respectively, where M is the raw message number and C is the codded message number.

$$C = M^e \bmod n \tag{5}$$

$$M = C^d \bmod n \tag{6}$$

Using equation 6 the coded message can be converted into pairs of letters.

C	$M = C^{17} \bmod 2773$	String
0245	2308	WH
2040	0120	AT
1698	1905	SE
1439	2112	UL
1364	0518	ER
1758	1906	SF
0946	0918	IR
0881	1920	ST
1979	1401	NA
1130	1305	ME

Ignoring the fact that spaces would be a trivial thing to add to the cypher, the string can be broken apart as WHATS EULERS FIRST NAME? Then assuming that Euler refers to the 18^{th} century swiss mathematician, the answer is Leonhard.