

Devoir N3

MTH6312 - METHODES STATISTIQUES D'APPRENTISSAGE

2 novembre 2018 Lyes Heythem Bettache -1923715

Devoir N°3

Lyes Heythem BETTACHE

2 novembre 2018

R Markdown

QUESTION N°1

```
remove(list=ls())

# On importe les données
data=read.csv("C:/Users/defaultuser0.DESKTOPI1A8N1U.000/Desktop/Auto18/MTH631
2/d3/Equipement.csv")

# Convertir "default" à numeric
data$Y=as.numeric(data$Y == 'D')
data_xi = data[,c(1,2)]
data_y= data[,3]
```

a) KNN.

a-1) En utilisant la technique de validation croisée «LOOCV» sur les 250 observations, estimer le taux de l'erreur test pour différentes valeurs (une dizaine) du nombre de voisins, k.

```
mean(data_y[ folds[[i]] ] != model_knn)
})
mean(error_k)
})
knnRMS = data.frame(k knn, error knn)
results = matrix(c(k_knn , error_knn), nrow=2, byrow=TRUE)
rownames(results) = c("k_knn", "error_knn")
cat("\n
               \n")
results
##
                  [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## k knn
             1.0 2.000 3.000 4.00 5.000 6.00 7.000 8.000 9.000 10.000 11.000
## error knn 0.1 0.112 0.092 0.08 0.084 0.08 0.088 0.084 0.084 0.088 0.088
##
             [,12] [,13] [,14] [,15]
## k knn
             12.000 13.000 14.000 15.000
## error knn 0.092 0.088 0.088 0.092
plot(k_knn, error_knn, type="o",ylab="taux de l'erreur test estimer")
```


D'après la courbe du taux d'erreur test estimer en fonction k on a trouvé que k optimal égal 4

a-2)-Reprendre la question ci-dessus en utilisant la technique de validation croisée «10-Fold CV» ou «5-Fold CV»

C'est la même chose si on choisir la technique de validation croisée «10-Fold CV» ou «5-Fold CV», dans notre cas on a choisi «10-Fold CV» pour augmenter la taille des données entrainements

«10-Fold CV»

```
set.seed(1923715)
folds = createFolds(data y, k=10)
k knn = 1:15
error_knn <- sapply(k_knn, function(k) {</pre>
          error_k <- sapply(seq_along(folds), function(i) {</pre>
             model_knn = knn(train=data_xi[ -folds[[i]], ], test=data_xi[ fol
ds[[i]], ], cl=data_y[ -folds[[i]] ], k = k)
            mean(data_y[ folds[[i]] ] != model_knn)
})
mean(error_k)
})
knnRMS = data.frame(k knn, error knn)
results = matrix(c(k_knn , error_knn), nrow=2, byrow=TRUE)
rownames(results) = c("k knn","error knn")
cat("\n
                \n")
results
##
                  [,1]
                              [,2]
                                         [,3]
                                                     [,4]
                                                                [,5]
                                                                            [,6]
             1.0000000 2.00000000 3.00000000 4.00000000 5.00000000 6.00000000
## k knn
## error knn 0.1034744 0.09962821 0.08344872 0.07928205 0.08344872 0.09114103
##
                          [8,]
                                     [,9]
                                                [,10]
                                                             \lceil ,11 \rceil
## k knn
             7.00000000 8.00000000 9.00000000 10.00000000 11.00000000
## error_knn 0.07929487 0.08746154 0.08329487 0.08712821 0.09129487
##
                           [,13]
                                       [,14]
              [,12]
                                                    [,15]
## k knn
             12.00000000 13.00000000 14.00000000 15.00000000
## error knn 0.09129487 0.08714103 0.09114103 0.08729487
plot(k_knn, error_knn, type="o",ylab="taux de l'erreur test estimer")
```


D'après la courbe du taux d'erreur test estimer en fonction k on a trouvé que k optimal égal 4

#k optimal égal 4 le taux d'erreur pour KNN: 0.07928205

a-3)-. Compte tenu des résultats ci-dessus, quelle valeur du nombre de voisins k devrait-on utiliser pour la classification des données du contexte par le KNN? Justifier brièvement.

D'après les 2 méthodes précédents on a trouvé que k optimal égal 4 c'est le résultat qui a donné le taux d'erreur le moins élevé

b) Régression logistique.

b-1). En utilisant la technique de validation croisée «LOOCV» sur les 250 observations, estimer le taux d'erreur test pour chacun des 2 modèles.

Modèle 1

```
library (boot)
glm_model1 = glm(Y ~ X1 + X2, data=data, family=binomial)
#coef(glm_model1)
cv.err_model1 = cv.glm(data,glm_model1)
# Représentation de L'erreur
cat(sprintf("le taux d'erreur test pour model1: %s", cv.err_model1$delta[1]))
## le taux d'erreur test pour model1: 0.0528246135989653
```

Modèle 2

```
library (boot)

glm_model2 = glm(Y ~ X1 + X2 + I(X1^2) + I(X2^2), data=data, family=binomial)
#coef(glm_model2)
cv.err_model2 = cv.glm(data,glm_model2)
# Représentation de l'erreur
cat(sprintf("le taux d'erreur test pour model2: %s", cv.err_model2$delta[1]))
## le taux d'erreur test pour model2: 0.0556619688814797
```

b-2. Reprendre la question ci-dessus en utilisant une des techniques de validation croisée «5-Fold CV» ou «10-Fold CV» de votre choix. Justifier brièvement votre choix.

C'est la même chose si on choisir la technique de validation croisée «10-Fold CV» ou «5-Fold CV», dans notre cas on a choisi «10-Fold CV» pour augmenter la taille des données entrainements

«10-Fold CV»

Modele1

```
library (boot)
set.seed(1923715)

glm.10f_model1 = glm(Y ~ X1 + X2, data=data, family=binomial)
#coef(glm.10f_model1)
cv10f.err_model1 = cv.glm(data,glm.10f_model1, K=10)
# Représentation de L'erreur
```

```
cat(sprintf("le taux d'erreur test pour modele1: %s",cv10f.err_model1$delta[1
]))
## le taux d'erreur test pour modele1: 0.0529639985972981
```

Modele2

```
library (boot)
set.seed(1923715)

glm.10f_model2 = glm(Y ~ X1 + X2 + I(X1^2) + I(X2^2), data=data, family=binom
ial)
#coef(glm.10f_model2)
cv10f.err_model2 = cv.glm(data,glm.10f_model2, K=10)
# Représentation de l'erreur
cat(sprintf("le taux d'erreur test pour modele2: %s",cv10f.err_model2$delta[1
]))
## le taux d'erreur test pour modele2: 0.0556930958137126
```

b-3). Compte tenu des résultats ci-dessus, lequel des 2 modèles de régression logistique devraiton utiliser pour la classification des données du contexte ? Justifier brièvement.

On remarque que le taux d'erreur test estimer pour le modelé 1 est meilleur par rapport le modèle 2 le taux d'erreur test pour model1: 0.052 le taux d'erreur test pour model2: 0.055 et aussi on remarque que le modèle 1 est plus simple donc prendre le premier modèle (modèle 1)

c) Analyse discriminante.

c-1). En utilisant la technique de validation croisée «LOOCV» sur les 250 observations, estimer le taux d'erreur test de l'analyse discriminante linéaire (LDA) et celui de l'analyse discriminante quadratique (QDA).

LDA

```
library (MASS)
library (boot)
set.seed(1923715)
# LDA à déjà un parametre pour faire la LOOCV (CV=TRUE)
model_lda = lda(Y ~ X1 + X2, data=data, CV=TRUE)
# On utilise $class parce que c'est la prédiction qu'on va comparer avec les données
```

```
error_lda = mean(model_lda$class != data$Y )
# Représentation de l'erreur
cat(sprintf("le taux d'erreur: %s\n",error_lda))
## le taux d'erreur: 0.08
```

QDA

```
library (MASS)
library (boot)
set.seed(1923715)

# QDA à déjà un parametre pour faire La LOOCV (CV=TRUE)
model_qda = qda(Y ~ X1 + X2, data=data, CV=TRUE)

# On utilise $class parce que c'est la prédiction qu'on va comparer avec les
données
error_qda = mean(model_qda$class != data$Y )
# Représentation de l'erreur
cat(sprintf("Taux d'erreur: %s\n",error_qda))

## Taux d'erreur: 0.08
```

c-2). Reprendre la question ci-dessus en utilisant une des techniques de validation croisée «5-Fold CV» ou «10-Fold CV» de votre choix. Justifier brièvement votre choix.

Dans cette partie lorsque j'ai utilisé la technique de validation croisée «10-Fold CV» j'ai trouvé le même Taux d'erreur estimer pour les deux méthode d'analyse discriminante LDA et QDA, donc j'ai choisi la technique de validation croisée «5-Fold CV» pour simplifier la comparaison

5-fold

LDA

```
library (MASS)
library(caret)
library (boot)
set.seed(1923715)

folds = createFolds(data_y, k=5)
error_lda <- sapply(seq_along(folds), function(i) {
model_lda = lda(Y ~ X1 + X2, data=data[-folds[[i]], ])
pred_lda = predict(model_lda, data[folds[[i]], ])
mean(pred_lda$class != data$Y[folds[[i]]] )
})</pre>
```

```
#error_lda
cat(sprintf("Taux d'erreur: %s\n",mean(error_lda)))
## Taux d'erreur: 0.076
```

QDA

```
library (MASS)
library(caret)
library (boot)
set.seed(1923715)

folds = createFolds(data_y, k=5)
error_Qda <- sapply(seq_along(folds), function(i) {
    model_Qda = qda(Y ~ X1 + X2, data=data[-folds[[i]], ])
    pred_Qda = predict(model_Qda, data[folds[[i]], ])
    mean(pred_Qda$class != data$Y[folds[[i]]])
})
#error_Qda
cat(sprintf("Taux d'erreur: %s\n", mean(error_Qda)))
## Taux d'erreur: 0.084</pre>
```

C-3). Compte tenu des résultats ci-dessus, laquelle des deux analyses discriminantes devrait-on utiliser pour la classification des données du contexte ? Justifier brièvement.

On remarque que le taux d'erreur test estimer pour le modèle LDA est meilleur par rapport le modèle QDA lorsque on a utilisé la technique de validation croisée «5-Fold CV» le taux d'erreur test pour modèle LDA: 0.076 le taux d'erreur test pour modèle QDA: 0.084 et aussi on remarque que le modèle LDA est plus simple donc on prendre le premier modèle (modèle LDA)

d) Résumé graphique et comparaison des méthodes.

Tracer le nuage des 250 points (2 couleurs de votre choix) et ajouter au graphique les courbes (trois en tout, similaires à celles de la figure 5.7 page 185 dans ISL) séparant les deux classes dans chacun des cas suivants :

```
library(class)
#on trace La plateforme de knn
minx1= min(data[,1])
maxx1= max(data[,1])
x1 <- seq(from = minx1, to = maxx1,length.out=150)
minx2=min(data[,2])
maxx2=max(data[,2])</pre>
```

```
x2 <- seq(from = minx2, to = maxx2,length.out=100)
gd <- expand.grid(x1 = x1, x2 = x2)

#On calcule Le modéle knn avec K optimal 4.
model.knn_opt=knn(train=data_xi,test=gd,cl=data_y,k=4,prob=TRUE)
probabilite <- attr(model.knn_opt, "prob")
probabilite <- ifelse(model.knn_opt=="1", probabilite, 1-probabilite)
probabiliteopt <- matrix(probabilite, length(x1), length(x2))

##### plot knn & LDA & Logic #####
# plot knn
contour(x1, x2, probabiliteopt, levels=0.5, labels="", xlab="", ylab="", main = "KNN")

points(gd, pch=".", cex=1.2, col=ifelse(probabiliteopt >=0.5, "cornflowerblue", "darkseagreen1"))
points(data_xi,pch=19, col=ifelse(data_y==1, "forestgreen", "darkslateblue"))
box()
```

KNN


```
#Logistic Regression

colnames(gd)=c("X1","X2")

model_glm = glm(Y ~ X1 + X2, data=data, family=binomial)
probabiliteglm = predict(model_glm, gd, type="response")
probabiliteoptglm= matrix(probabiliteglm, length(x1), length(x2))

contour(x1, x2, probabiliteoptglm, levels=0.5, main="Logistic Regression (Mod el 1)", col="red",axes=FALSE)

points(gd, pch=".", cex=1.2, col=ifelse(probabiliteoptglm >=0.5, "cornflowerb lue", "darkseagreen1"))
points(data_xi,pch=19, col=ifelse(data_y==1, "forestgreen", "darkslateblue"))
box()
```

Logistic Regression (Model 1)


```
#Analyse discriminante LDA

colnames(gd)=c("X1","X2")

model_lda = lda(Y ~ X1 + X2, data=data)
probabilitelda = predict(model_lda, gd, type="response")
prob=probabilitelda$posterior
probabiliteoptlda= matrix(prob, length(x1), length(x2))
```

```
contour(x1, x2, probabiliteoptlda, levels=0.5, main="Analyse discriminante LD
A", col="darkmagenta",axes=FALSE)

points(gd, pch=".", cex=1.2, col=ifelse(probabiliteoptlda <=0.5, "cornflowerb
lue","darkseagreen1"))
points(data_xi,pch=19, col=ifelse(data_y==1, "forestgreen", "darkslateblue"))
box()</pre>
```

Analyse discriminante LDA


```
##### plot knn & Analyse discriminante LDA & Logistic Regression (Model 1)

library(class)
#on trace la plateforme
minx1= min(data[,1])
maxx1= max(data[,1])
x1 <- seq(from = minx1, to = maxx1,length.out=150)

minx2=min(data[,2])
maxx2=max(data[,2])
x2 <- seq(from = minx2, to = maxx2,length.out=100)

gd <- expand.grid(x1 = x1, x2 = x2)

#On calcule le modéle knn avec K optimal 4.
model.knn_opt=knn(train=data_xi,test=gd,cl=data_y,k=4,prob=TRUE)
probabilite <- attr(model.knn_opt, "prob")</pre>
```

```
probabilite <- ifelse(model.knn_opt=="1", probabilite, 1-probabilite)</pre>
probabiliteopt <- matrix(probabilite, length(x1), length(x2))</pre>
# plot knn
contour(x1, x2, probabiliteopt, levels=0.5, labels="", xlab="", ylab="", main
= "KNN & Logistic Regression (Model 1) & Analyse discriminante LDA")
# plot glm
colnames(gd)=c("X1","X2")
model_glm = glm(Y ~ X1 + X2, data=data, family=binomial)
probabiliteglm = predict(model_glm, gd, type="response")
probabiliteoptglm= matrix(probabiliteglm, length(x1), length(x2))
par(new=TRUE)
contour(x1, x2, probabiliteoptglm, levels=0.5, col="red",axes=FALSE)
# plot lda
model lda = lda(Y \sim X1 + X2, data=data)
probabilitelda = predict(model_lda, gd, type="response")
prob=probabilitelda$posterior
probabiliteoptlda= matrix(prob, length(x1), length(x2))
par(new=TRUE)
contour(x1, x2, probabiliteoptlda, levels=0.5, col="darkmagenta",axes=FALSE)
points(gd, pch=".", cex=1.2, col=ifelse(probabiliteopt >=0.5, "cornflowerblue")
", "darkseagreen1"))
points(data xi,pch=19, col=ifelse(data y==1, "forestgreen", "darkslateblue"))
legend(11.7, 11, legend=c("KNN", "R. Logistique", "LDA"), col=c("black", "red"
, "darkmagenta"), lty=1, cex=0.8)
box()
```

KNN & Logistic Regression (Model 1) & Analyse discriminante LDA

QUESTION N°2

a) Donner une estimation ponctuelle thêta estimer

```
library(boot)
set.seed(1923715)
library(boot)
thetafct <- function(dd, index){</pre>
  X1<-dd$area[index]
  X2<-dd$peri[index]</pre>
  X3<-dd$shape[index]
  X4<-dd$perm[index]
  return(cor(log(abs(X1-3*X2)),pmax(250*X3,X4)))}
thetafct(rock, 1:48)
## [1] -0.1986994
thetaboot=boot(rock,thetafct,R=2000)
thetaboot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
```

```
## Call:
## boot(data = rock, statistic = thetafct, R = 2000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -0.1986994 -0.007334332 0.1336759
```

b) Déduire des résultats qui précèdent un intervalle de confiance pour theta au niveau de confiance 95%. Commenter brièvement.

```
boot.ci(thetaboot, type="norm")

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 2000 bootstrap replicates

##

## CALL:

## boot.ci(boot.out = thetaboot, type = "norm")

##

## Intervals:

## Level Normal

## 95% (-0.4534, 0.0706)

## Calculations and Intervals on Original Scale
```

On remarque que notre thêta estimer se trouve dans notre intervalle de confiance

```
[-0.4534, 0.0706]
```

Et on remarque que la corrélation de notre modèle peut avoir une valeur négative

Question 3

$$\frac{Q}{-\frac{1}{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times$$

b -

on a

$$P(B) = \frac{1}{2b} \exp(-\frac{1BI}{b}), |B| = \sum_{j=1}^{p} |B_{i}|$$

- la portérieur à double exponentielle auec moyenne 0 et paramètre b : ISL P226

#--- &(BIX,Y) a. & (Y/X,B) P(BIX) = &(Y/X,B)P(B)

d'après la formule de la question (a) et #):

$$\begin{cases} (Y/\theta) P(B) = f(Y/X,B)P(B) \\
= \left(\frac{1}{12\pi 6^{2}}\right) exp\left[-\frac{1}{26^{2}}, \sum_{i=1}^{n} (Y_{i} - (B_{i} + \sum_{j=1}^{n} P_{j} X_{ij}))\right] \\
= \left(\frac{1}{26} exp(-\frac{1}{6})\right)$$

$$S(Y|X,B)P(B) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)\left(\frac{1}{2b}\right) \cdot \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}\left(Y_i - \left(P_2 + \sum_{b=1}^{n}X_{ib}\right) - \frac{P_1}{b}\right)\right]$$

<u>C</u>-

Montrant que l'extimation de lors à pour B est le mode sous cette distribution postérieure, c'est la même que de montrer que la valeur la plus probable de B. est donnée par la solution

- on prendre l'equation. Le distribution postérieure Trouver In (S(Y.1X,B)P(B)) = ln[(1/2102) (1/26).exp = 202 (4:-(B+2PX)) = ln[(1/2102) (1/26).exp = 202 (4:-(B+2PX)) = 1/26) dans la question (b), et on met le ln()

 $= \ln \left[\left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \left(\frac{1}{2b} \right) \right] - \left[\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(Y_i - \left(P_0 + \sum_{j=1}^{n} P_j X_{i,j} \right) \right)^2 + \frac{|B|}{b} \right]$

la porteriore. In Vent maximiser

B= argmax. g(B/X,Y)

= argmax ln \[\left(\frac{1}{\frac{1}{2\to 2}}\right)\right(\frac{1}{2\to 2}\right)\right)\right(\frac{1}{2\to 2}\right)\right)\right(\frac{1}{2\to 2}\right)\right)

- on nomarque que la maximisation de f(B/x, Y) à équivalant de minimiser la 2 en Terme (on a me sustraction) donc on a:

= arg min
$$\begin{cases} \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \frac{$$

- d'apres. l'Équation. de Lasso, la porteriore provient d'une. distribution de laplace anec. moyen o et me. échelle commune b., le made. pour B est donné par la solution de Lasso. lorsque. $\lambda = \frac{2+2}{b}$

one
$$\beta_i \sim N(o,c) P(B_i) = \frac{1}{\sqrt{2\pi c}} exp\left(-\frac{B_i^2}{2c}\right)$$

$$P(B) = \frac{P}{(B)} = \frac{P}{(B)}$$

d'après laquestion (al:

$$\frac{g(Y/X,\beta)P(\beta)}{=(\frac{1}{\sqrt{2\pi\sigma^2}})^n exp^{-\frac{1}{2\sigma^2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

- c'est comme. la quertion (C)., on montre que la valeur la plus perobable. Le B. donnée par la solution de Ridge plus perobable de B.

- on premotor l'equotion. Trouver dans (d).

ln (f(y/x, B) p(B)) = ln((\frac{1}{42002})(\frac{1}{4200

= ln [(1) (1) - [1 2] - [1

- on vent maximiser la porterioré!

ang.mox &(B/X,Y)

= org max ln [(1) (1) (1) [[1] [Yi-[] = 2 [Yi-[] = 3] [Yi

- on remorque que le maximisation de S(B/X,Y) à Équinolont de minimiser le gen Terme (ona me sustemution (-1)

= ang ming 1 = 1 [4:- (B=+ \frac{1}{8}) \frac{1}{8} \times \times \frac{1}{2} \times \frac{1}{2} \frac

= ang min d (1) [Yi- (Bot \ Fox Xi i)] + [2] \ [Yi- (Bot \ Fox Xi i)] + [2] \ [2] \ [3] \]

on pose $J = \frac{J^2}{C}$: = .org min $\left(\frac{1}{2}d\cdot z\right)$ of $\sum_{i=1}^{n} \left[Y_i - \left(\beta_e + \sum_{i=1}^{n} \beta_i X_{ii}\right)\right] + 1\sum_{i=1}^{n} \beta_i^2$ = org min $RSS + 1 \cdot \sum_{i=1}^{n} \beta_i^2$ - d'après l'ésquation de Riolge, le portenieur provient

d'une distribution normale, anec moyen o et variance C, le mode pour Best donné par la solution de Ridoje. lorsque 2= 52

pinsque. le portérieur est gaussien, nous avons aussi que c'est le moyen postérieur.