Esercitazione di laboratorio n. 0

(Caricamento sul portale non richiesto)

Esercizio n. 1: Medie per riga e per colonna

Competenze: lettura di file, manipolazioni matematiche iterative di dati scalari Classificazione: problemi numerici iterativi su dati scalari (*Dal problema al programma: 3.1*)

Un file di testo contiene un numero indefinito di righe contenenti 5 interi.

Ogni riga è nel formato: n₁ n₂ n₃ n₄ n₅

Si scriva un programma C che, a partire dal contenuto del file, il cui nome (massimo 10 caratteri) è letto da tastiera, determini e visualizzi la media dei contenuti del file per righe e per colonne.

Esempio:

Contenuto del file di ingresso:

1	2	6	5	4
5	4	2	5	7
1	3	8	99	6
-2	3	5	8	2
35	6	1	6	8

Output del programma:

Media	riga	1		3.6
Media	riga	2		4.6
Media	riga	3		23.4
Media	riga	4		3.2
Media	riga	5		11.2
Media	color	nna	1	8.0
Media	color	nna	2	3.6
Media	color	nna	3	4.4
Media	color	nna	4	24.6
Media	color	nna	5	5.4

Esercizio n. 2: manipolazione di stringhe

Competenze: lettura/scrittura di file, uso di funzioni su stringhe.

Classificazione: problemi di selezione iterativi su dati scalari (Dal problema al programma: 3.4)

Un file di testo contiene informazioni con il seguente formato:

- la prima riga del file contiene un intero N e una parola P (massimo di 20 caratteri)
- ciascuna delle N righe successive contiene una parola per riga (massimo 20 caratteri).

Si scriva un programma C che:

• legga i dati da un file di ingresso

03MNO ALGORITMI E PROGRAMMAZIONE CORSO DI LAUREA IN INGEGNERIA INFORMATICA A.A. 2017/18

- scriva su un secondo file le parole che seguono P nell'ordine alfabetico (ordine della strcmp)
- scriva su un terzo file le parole che hanno più consonanti di quelle contenute nella parola P.

I nomi dei file (massimo 10 caratteri) sono letti da tastiera. Il conteggio delle consonanti deve essere realizzato mediante apposita funzione.

Esempio:

Contenuto del file di ingresso:

5 Matteo Nicola Alessandra Marta Sara Antonino

Contenuto del secondo file:

Nicola Sara

Contenuto del terzo file:

Alessandra Antonino

Esercizio n. 3: Integrazione numerica mediante metodo dei rettangoli

Competenze: uso di funzioni, passaggio di parametri a funzioni, lettura/scrittura di file. Classificazione: problemi numerici iterativi (*Dal problema al programma: 3.1, 4.1*)

Dato un polinomio p(x) di grado n e gli estremi di integrazione a e b, il suo integrale definito

$$\int_{a}^{b} p(x) dx$$

può essere calcolato approssimativamente mediante la regola dei rettangoli. L'intervallo di integrazione [a, b] viene suddiviso in M sottointervalli di ampiezza uniforme $h = \frac{b-a}{M}$. Detto \hat{x}_k il punto medio del k-esimo intervallo (0 \leq k < M), vale:

$$\int_a^b p(x)dx = = h \sum_{k=0}^{M-1} p(\hat{x}_k)$$

In figura è riportato un esempio per la funzione $p(x) = x^3 - 9x^2 + 12x + 46$ la cui area sottesa nell'intervallo [0, 10] vale 560, considerando quattro diversi gradi di approssimazione (M =10, 20, 30 o 40).

03MNO ALGORITMI E PROGRAMMAZIONE CORSO DI LAUREA IN INGEGNERIA INFORMATICA A.A. 2017/18

Si scriva un programma C che:

- acquisisca da tastiera il grado n (n \leq 10) del polinomio p(x) e i suoi n+1 coefficienti reali C_i .
- acquisisca da tastiera gli estremi di integrazione (interi) a e b
- acquisisca da tastiera il numero M di sottointervalli
- calcoli e visualizzi il valore di $\int_a^b p(x)dx$.

Si noti l'uso dell'eventuale vettore introdotto come contenitore di dati, con corrispondenza indice dato (*Dal problema al programma: 4.1*)

Dato un polinomio $p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_2 x^2 + c_1 x + c_0$, si realizzi una funzione, di prototipo

che lo valuta per un valore di x dato mediante il metodo di Horner, che evita il calcolo (costoso) delle potenze di x:

$$p(x) = c_n x^n + c_{n\text{-}1} x^{n\text{-}1} + \ \dots \ + c_2 x^2 + c_1 x + c_0 = \big(\dots \, ((c_n x + c_{n\text{-}1}) x + c_{n\text{-}2}) \, \dots \big) x + c_0 \big)$$

Esempio: il polinomio $p(x) = c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0$ viene espresso e poi valutato come:

$$p(x) = ((((c_4x + c_3)x + c_2)x + c_1)x + c_0)$$