Pohyby v homogenním tíhovém poli Země

Pokud se tělesa budou pohybovat v blízkosti povrchu Země a jejich trajektorie bude vzhledem k rozměrům Země velmi malá, tak tento pohyb lze považovat za pohyb v homogenním tíhovém poli.

Pro jednoduchost budeme přepokládat, že na těleso kromě tíhové síly $\overrightarrow{F_G}$ žádné další síly nepůsobí. Zanedbáme tedy i odpor vzduchu. Pohyb v odporujícím prostředí bude tématem další aplikace v projektu "Hrátky s fyzikou."

Nejjednodušším pohybem v homogenním tíhovém poli je volný pád. Složitějšími pohyby jsou vrhy, kdy je těleso vrženo nenulovou počáteční rychlostí $\overrightarrow{v_0}$ a zároveň padá volným pádem ve směru zrychlení \overrightarrow{g} .

1. Volný pád

Nejjednodušší pohyb v homogenním tíhovém poli Země je volný pád. Je to rovnoměrně zrychlený přímočarý pohyb s nulovou počáteční rychlostí a stálým tíhovým zrychlením \vec{g} .

Pro velikost okamžité rychlosti v a pro dráhu s v čase t platí vztahy v=gt a $s=\frac{1}{2}gt^2$.

Pokud bude těleso padat z výšky h, lze určit dobu pádu t_d i rychlost dopadu v_d .

$$h=rac{1}{2}gt_d^2$$
, odtud vyjádříme $t_d=\sqrt{rac{2h}{g}}$

$$v_d=gt_d$$
, odtud vyjádříme $v_d=g\sqrt{rac{2h}{g}}$ a po úpravě $v_d=\sqrt{2gh}$

2. Svislý vrh

Pohyb, kdy je těleso vrženo počáteční rychlostí $\overrightarrow{v_0}$, která má opačný směr než je směr tíhového zrychlení \overrightarrow{g} , nazveme svislý vrh (nebo svislý vrh vzhůru).

V první polovině pohybu se těleso pohybuje rovnoměrně zpomaleným přímočarým pohybem. Velikost rychlosti v se zmenšuje a v nejvyšším bodě trajektorie je nulová. V druhé polovině pohybu se těleso pohybuje volným pádem, tedy rovnoměrně zrychleným přímočarým pohybem.

Velikost okamžité rychlosti v při stoupání v čase t je dána vztahem po výpočet okamžité rychlosti rovnoměrně zpomaleného pohybu $v=v_0-gt$, kde v_0 je velikost počáteční rychlosti, g velikost tíhového zrychlení a gt je velikost rychlosti volného pádu.

Okamžitou výšku y tělesa v čase t určíme ze vztahu $y=v_0t-\frac{1}{2}gt^2$, kde v_0t je dráha rovnoměrného pohybu při stálé rychlosti v_0 a $\frac{1}{2}gt^2$ je dráha volného pádu.

Odvodíme si vztah po výpočet maximální výšky, které těleso při svislém vrhu dosáhne. Tuto výšku budeme značit h a nazývat výška vrhu. V této výšce je okamžitá rychlost nulová. Čas potřebný k dosažení výšky vrhu nazveme doba výstupu t_v .

$$v_0-gt_v=0$$
, odtud vyjádříme $t_v=rac{v_0}{g}$

$$h=v_0t_v-rac{1}{2}gt_v^2$$
, po dosazení t_v a úpravách $h=rac{v_0^2}{2g}$

Z výšky h těleso padá volným pádem k zemi a dopadne za dobu t_d (doba dopadu). Výška $h=\frac{1}{2}gt_d^2$.

$$t_d = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2}{g} \cdot \frac{v_2^2}{2g}} = \frac{v_0}{g} = t_v$$

Doba volného pádu t_d je stejně velká jako doba výstupu t_v . Čas pohybu tělesa t_p by tak šel vypočítat ze vztahu $t_p=\frac{2v_0}{a}$.

Když je doba volného pádu t_d stejně velké jako doba výstupu t_v , můžeme odvodit i velikost rychlosti dopadu $v_d=gt_d=gt_v=g\frac{v_0}{g}=v_0$.

Těleso tedy dopadne stejně velkou rychlostí, jakou bylo vrženo vzhůru.

3. Vodorovný vrh

Udělíme-li tělesu počáteční rychlost $\overrightarrow{v_0}$ ve vodorovném směru a během pohybu bude na těleso působit pouze tíhová síla ve směru tíhového zrychlení \overrightarrow{g} , tak bude konat tzv. vodorovný vrh.

Složením rovnoměrného pohybu ve vodorovném směru $\overrightarrow{v_0}$ a volného pádu ve směru \overrightarrow{g} vznikne pohyb, jehož trajektorií je část paraboly s vrcholem v místě vrhu.

Pro popis vodorovného vrhu umístíme těleso na počátku pohybu do souřadnic $x_0=0$, $y_0=h$, kde h je výška, ze kterého je těleso vrženo. Souřadnice bodu, ve kterém se těleso nachází v čase t od vrhu, jsou $x=v_0t$, $y=h-\frac{1}{2}gt^2$.

Odvodíme si vztah pro délku vrhu d, což je největší vzdálenost od místa vrhu ve vodorovném směru. V této vzdálenosti ukončuje těleso svůj pohyb a má souřadnice x=d a y=0. Dobu pohybu tělesa si označíme t_d .

$$h-\frac{1}{2}gt_d^2=0$$
, odtud vyjádříme $t_d=\sqrt{\frac{2h}{g}}$

Po dosazení do vztahu
$$x=v_0t_d$$
 je $d=v_0\sqrt{\frac{2h}{g}}$

Ze vztahu vyplývá, že délka vrhu závisí na velikosti počáteční rychlosti v_0 a na výšce h, ze které bylo těleso vrženo.

4. Šikmý vrh

Pokud tělesu udělíme počáteční rychlost $\overrightarrow{v_0}$ ve směru, která svírá s vodorovným směrem ostrý úhel α , a během pohybu na těleso bude působit pouze tíhová síla ve směru tíhového zrychlení \overrightarrow{g} , bude konat šikmý vrh. Úhel α budeme nazývat elevační úhel.

Rovnoměrný přímočarý pohyb ve směru rychlosti $\overrightarrow{v_0}$ se skládá s volným pádem ve směru tíhového zrychlení \overrightarrow{g} . Těleso se bude pohybovat tak, že v čase t se od původní směru odchýlí ve směru \overrightarrow{g} (proti směru osy y) o dráhu volného pádu $s=\frac{1}{2}gt^2$. Trajektorií šikmého vrhu je parabola, která bude mít vrchol v nejvyšším bodě trajektorie.

Pro popis šikmého vrhu umístíme těleso na počátku pohybu do souřadnic $x_0=0$ a $y_0=0$. Složky počáteční rychlosti mají velikosti $v_{0x}=v_0\cos\alpha$ a $v_{0y}=v_0\sin\alpha$.

V čase t pak mají složky rychlosti velikosti $v_x=v_0\cos\alpha$ a $v_y=v_0\sin\alpha-gt$, souřadnice pak $x=v_0t\cos\alpha$ a $y=v_0t\sin\alpha-\frac{1}{2}gt^2$

Odvodíme si vztah pro délku vrhu d. V okamžiku dopadu má těleso souřadnice x=d, y=0, doba pohybu tělesa t_d .

$$v_0 t_d \sin \alpha - \frac{1}{2} g t_d^2 = 0$$

$$v_0 t_d \sin \alpha = \frac{1}{2} g t_d^2$$

$$t_d = \frac{2v_0 \sin \alpha}{g}$$

Po dosazení do vztahu pro souřadnici $x = v_0 t \cos \alpha$ dostáváme vztah

$$d = \frac{2v_0 \sin \alpha \cos \alpha}{g} = \frac{v_0^2 \sin^2 \alpha}{g}$$

Ze vztahu vyplývá, že délka vrhu závisí na velikosti počáteční rychlosti v_0 a na elevačním úhlu α . Při stejných počátečních rychlostech dostáhne největší délky vrhu při elevačním úhlu 45°.

Můžeme též odvodit vztah pro výšku vrhu h. Nachází-li se těleso v nejvyšším bodě trajektorie, má velikost rychlosti ve směru osy y nulovou hodnotu. Dobu potřebnou k dosažení nejvyššího bodu označíme t_h .

$$v_0 \sin \alpha - gt_h = 0$$

$$t_h = \frac{v_0 \sin \alpha}{a} = \frac{t_d}{2}$$

Dosazením do vztahu pro souřadnici $y=v_0t\sin\alpha-\frac{1}{2}gt^2$ dostáváme vztah

$$h = \frac{v_0^2 \sin^2 \alpha}{2g}$$

Ilustrační příklad šikmého vrhu a vodorovného vrhu → Vyzkoušej mě!

Použité zdroje

SVOBODA, Emanuel, BEDNAŘÍK, Milan a ŠIROKÁ, Miroslava. Fyzika pro gymnázia. 5., přepracované vydání. Praha: Prometheus, 2013. ISBN 978-80-7196-431-5.

Volný pád :: MEF. Fyzika :: MEF [online]. Copyright © 2006 [cit. 04.02.2020]. Dostupné z: http://fyzika.jreichl.com/main.article/view/63-volny-pad

Svislý vrh vzhůru :: MEF. Fyzika :: MEF [online]. Copyright © 2006 [cit. 04.02.2020]. Dostupné z: http://fyzika.jreichl.com/main.article/view/65-svisly-vrh-vzhuru

Vodorovný vrh :: MEF. Fyzika :: MEF [online]. Copyright © 2006 [cit. 04.02.2020]. Dostupné z: http://fyzika.jreichl.com/main.article/view/67-vodorovny-vrh

Vrh šikmý :: MEF. Fyzika :: MEF [online]. Copyright © 2006 [cit. 04.02.2020]. Dostupné z: http://fyzika.jreichl.com/main.article/view/68-vrh-sikmy