PATENT Attorney Docket 056159-5241-US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventors: Steven COLLIVER et al.)	
U.S. National Phase of PCT/EP03/01465)	Art Unit: Not Assigned
International Filing Date: February 13, 2003)	Examiner: Not Assigned
For: NUTRITIONALLY ENHANCED PLANTS)	

Commissioner for Patents Washington, D.C. 20231

STATEMENT ACCOMPANYING SEQUENCE LISTING

The undersigned hereby states upon information and belief that the Sequence Listing submitted concurrently herewith does not include matter which goes beyond the content of the application as filed and that the information recorded on the diskette submitted concurrently herewith is identical to the written Sequence Listing submitted herewith.

Dated: August 20, 2004 Morgan, Lewis & Bockius LLP

Customer No. 09629

1111 Pennsylvania Avenue, NW

Washington, D.C. 20004 Telephone: (202) 739-3000 Facsimile: (202) 739-3001 Respectfully submitted,

Morgan, Lewis & Bockius LLP

Robert Smyth

Registration No. 50,801

SEQUENCE LISTING

<110>	DOBE	Roy Thoma der HIJDEN	as	Theodorus 1	Wilhelmus Ma	aria	
<120>	PROD	DUCTION OF I	DADZEIN IN '	TRANSGENIC	PLANTS		
<130>	5615	59-5241					
<150> <151>		/EP03/01465 B-02-13					
<150> <151>)2251404.6 2-02-28					
<160> 5	59						
<170> F	Pater	ntIn version	n 3.2				
<210> 1 <211> 9 <212> 1 <213> 1	946 ONA	n sativum					
<400> 1 atgggta	_	ttgaaatccc	aacaaaggtg	cttaccaaca	catctgctca	aattaagatg	60
cctgttq	gttg	gaatgggatc	agcacctgac	ttcacatgca	agaaagacac	taaagaagca	120
atcatco	gaag	ccatcaaaca	aggttacaga	cactttgata	ctgctgctgc	ttatggatcc	180
gaacaag	gctc	ttggtgaggc	tttgaatgag	gctattcaac	ttggtcttgt	cactagagaa	240
cagcttt	tttg	ttacttctaa	actttgggtt	actgaaaatc	atcctcacct	tgttcttcct	300
gctctad	caaa	aatctctcaa	gactcttcag	ttggattact	tggatttgta	tttgattcat	360
tggccad	ctta	gttctcagcc	cggaaagttt	tcatttccaa	ttgatgtggc	tgatctattg	420
ccattt	gatg	taaaaggtgt	gtgggaatcc	atggaagagg	ctttgagact	tggactcacg	480
aaagcta	attg	gtgtcagtaa	cttctctgtc	aagaaacttc	aaaagctact	atctgttgcc	540
actgtto	cttc	ctgctgttaa	tcaagtagag	atgaaccttg	catggcaaca	aaagaagcta	600
agagaat	tttt	gcaatgaaaa	tggaatagtg	ttgactgcat	tttcaccgtt	gaggaaaggc	660
gccagco	cgag	gagcaaatga	ggttatggag	aatgatatgc	ttaaacagat	tgcagatgct	720
catggaa	aagt	ctattgcaca	aatttctctg	agatggttat	atgaacaagg	aatcactttt	780
gttccaa	aaga	gctatgataa	ggagagaatg	agtcaaaatt	tgagaatctt	tgattggaca	840
ctgacaa	aagg	aggatcatga	gaaaattgat	caaattaagc	agaatcgttt	gatccctgga	900
ccaacca	aagc	caagtctcaa	tgatctttgg	gatgatgaaa	tataag		946

<210> 2

<211> 314

<212> PRT

<213> Pisum sativum

<400> 2

Met Gly Ser Val Glu Ile Pro Thr Lys Val Leu Thr Asn Thr Ser Ala 1 5 10 15

Gln Ile Lys Met Pro Val Val Gly Met Gly Ser Ala Pro Asp Phe Thr 20 25 30°

Cys Lys Lys Asp Thr Lys Glu Ala Ile Ile Glu Ala Ile Lys Gln Gly 35 40 45

Tyr Arg His Phe Asp Thr Ala Ala Ala Tyr Gly Ser Glu Gln Ala Leu 50 55 60

Gly Glu Ala Leu Asn Glu Ala Ile Gln Leu Gly Leu Val Thr Arg Glu 65 70 75 80

Gln Leu Phe Val Thr Ser Lys Leu Trp Val Thr Glu Asn His Pro His
85 90 95

Leu Val Leu Pro Ala Leu Gln Lys Ser Leu Lys Thr Leu Gln Leu Asp 100 105 110

Tyr Leu Asp Leu Tyr Leu Ile His Trp Pro Leu Ser Ser Gln Pro Gly 115 120 125

Lys Phe Ser Phe Pro Ile Asp Val Ala Asp Leu Leu Pro Phe Asp Val . 130 135 140

Lys Gly Val Trp Glu Ser Met Glu Glu Ala Leu Arg Leu Gly Leu Thr 145 150 155 160

Lys Ala Ile Gly Val Ser Asn Phe Ser Val Lys Lys Leu Gln Lys Leu 165 170 175

Leu Ser Val Ala Thr Val Leu Pro Ala Val Asn Gln Val Glu Met Asn 180 185 190

Leu Ala Trp Gln Gln Lys Lys Leu Arg Glu Phe Cys Asn Glu Asn Gly 195 200 205

Ile Val Leu Thr Ala Phe Ser Pro Leu Arg Lys Gly Ala Ser Arg Gly 210 215 220

Ala Asn Glu Val Met Glu Asn Asp Met Leu Lys Gln Ile Ala Asp Ala 225 230 235 240

His Gly Lys Ser Ile Ala Gln Ile Ser Leu Arg Trp Leu Tyr Glu Gln 245 250 255

Gly Ile Thr Phe Val Pro Lys Ser Tyr Asp Lys Glu Arg Met Ser Gln 260 265 270

Asn Leu Arg Ile Phe Asp Trp Thr Leu Thr Lys Glu Asp His Glu Lys 275 280 285

Ile Asp Gln Ile Lys Gln Asn Arg Leu Ile Pro Gly Pro Thr Lys Pro 290 295 300

Ser Leu Asn Asp Leu Trp Asp Asp Glu Ile 305 310

<210> 3

<211> 1567

<212> DNA

<213> Glycine max

<400> 3

atggtgcttg aacttgcact tggtttattg gttttggctc tgtttctgca cttgcgtccc 60 120 acacccactg caaaatcaaa agcacttcgc catctcccaa acccaccaag cccaaagcct 180 cgtcttccct tcataggaca ccttcatctc ttaaaagaca aacttctcca ctacgcactc ategacetet ccaaaaaaca tggtccetta ttetetetet aetttggete catgccaace 240 300 gttgttgcct ccacaccaga attgttcaag ctcttcctcc aaacgcacga ggcaacttcc 360 ttcaacacaa ggttccaaac ctcagccata agacgcctca cctatgatag ctcagtggca atggttccct tcgggcccta ctggaagttc gtgaggaagc tcatcatgaa cgaccttctc 420 aacqccacca ctqtaaacaa qttqaqqcct ttqaqqaccc aacaqacqcg taaqttcctt 480 agggttatgg cccaaggcgc agaggcacag aagccccttg acttgaccga ggagcttctg 540 600 aaatggacca acagcaccat ctccatgatg atgctcggcg aggctgagga gatcagagac

atcgctcgcg aggttcttaa gatctttggc gaatacagcc tcactgactt catctggcca 660 ttgaagcatc tcaaggttgg aaagtatgag aagaggatcg acgacatctt gaacaagttc 720 gaccctgtcg ttgaaagggt catcaagaag cgccgtgaga tcgtgaggag gagaaagaac 780 ggagaggttg ttgagggtga ggtcagcggg gttttccttg acactttgct cgagttcgct 840 qaqqatqaqa ctatqqaqat caaaatcacc aaqqaccaca tcaaqqqtct tqttqtaqac 900 tttttctcgg caggaacaga ctcaacagcg gtggcaacag agtgggcatt ggcagaactc 960 atcaacaatc ctaaggtgtt ggaaaaggct cgtgaggagg tctacagtgt tgtgggaaag 1020 1080 qacaqacttq tqqacqaaqt tqacactcaa aaccttcctt acattaqaqc aatcqtgaaq 1140 gagacattcc gcatgcaccc gccactccca gtggtcaaaa gaaagtgcac agaagagtgt gagattaatg gatatgtgat cccagaggga gcattgattc tcttcaatgt atggcaagta 1200 1260 ggaagagacc ccaaatactg ggacagacca tcggagttcc gtcctgagag gttcctagag 1320 acaggggctg aaggggaagc agggcctctt gatcttaggg gacaacattt tcaacttctc ccatttgggt ctgggaggag aatgtgccct ggagtcaatc tggctacttc gggaatggca 1380 acacttettg catetettat teagtgette gaettgeaag tgetgggtee acaaggaeag 1440 atattgaagg gtggtgacgc caaagttagc atggaagaga gagccggcct cactgttcca 1500 1560 agggcacata gtcttgtctg tgttccactt gcaaggatcg gcgttgcatc taaactcctt 1567 tcttaag

<210> 4

<211> 521

<212> PRT

<213> Glycine max

<400> 4

Met Val Leu Glu Leu Ala Leu Gly Leu Leu Val Leu Ala Leu Phe Leu 1 5 10 15

His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His Leu
20 25 30

Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu 35 40 45

His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser 50 55 60

Lys Lys His Gly Pro Leu Phe Ser Leu Tyr Phe Gly Ser Met Pro Thr Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg Arg Leu Thr Tyr Asp Ser Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Thr Arg Lys Phe Leu Arg Val Met Ala Gln Gly Ala Glu Ala Gln Lys Pro Leu Asp Leu Thr Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Leu Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys His Leu Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn Lys Phe Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu Val Ser Gly Val Phe Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu Ile Lys

Ile	Thr 290	Lys	Asp	His	Ile	Lys 295	Gly	Leu	Val	Val	Asp 300	Phe	Phe	Ser	Ala
Gly 305	Thr	Asp	Ser	Thr	Ala 310	Val	Ala	Thr	Glu	Trp 315	Ala	Leu	Ala	Glu	Leu 320
Ile	Asn	Asn	Pro	Lys 325	Val	Leu	Glu	Lys	Ala 330	Arg	Glu	Glu	Val	Tyr 335	Ser
Val	Val	Gly	Lys 340	Asp	Arg	Leu	Val	Asp 345	Glu	Val	Asp	Thr	Gln 350	Asn	Leu
Pro	Tyr	Ile 355	Arg	Ala	Ile	Val	Lys 360	Glu	Thr	Phe	Arg	Met 365	His	Pro	Pro
Leu	Pro 370	Val	Val	Lys	Arg	Lys 375	Cys	Thr	Glu	Glu	Cys 380	Glu	Ile	Asn	Gly
Tyr 385	Val	Ile	Pro	Glu	Gly 390	Ala	Leu	Ile	Leu	Phe 395	Asn	Val	Trp	Gln	Val 400
Gly	Arg	Asp	Pro	Lys 405	Tyr	Trp	Asp	Arg	Pro 410	Ser	Glu	Phe	Arg	Pro 415	Glu
Arg	Phe	Leu	Glu 420	Thr	Gly	Ala	Glu	Gly 425	Glu	Ala	Gly	Pro	Leu 430	Asp	Leu
Arg	Gly	Gln 435	His	Phe	Gln	Leu	Leu 440	Pro	Phe	Gly	Ser	Gly 445	Arg	Arg	Met
Cys	Pro 450	Gly	Val	Asn	Leu	Ala 455	Thr	Ser	Gly	Met	Ala 460	Thr	Leu	Leu	Ala
Ser 465	Leu	Ile	Gln	Cys	Phe 470	Asp	Leu	Gln	Val	Leu 475	Gly	Pro	Gln	Gly	Gln 480
Ile	Leu	Lys	Gly	Gly 485	Asp	Ala	Lys	Val	Ser 490	Met	Glu	Glu	Arg	Ala 495	Gly
Leu	Thr	Val	Pro 500	Arg	Ala	His	Ser	Leu 505	Val	Cys	Val	Pro	Leu 510	Ala	Arg

Ile Gly Val Ala Ser Lys Leu Leu Ser 515 520

<210> 5 <211> 670 <212> DNA

<213> Lotus corniculatus

<400> 5 atggctgcat ccctcacccc aatccaggtc gagaaccttc aatttcctgc gtctgtcacc 60 tetecageea eegeeaagte ttattteete ggtggtgeag gggagagagg gttgaegatt 120 qaqqqqaaqt tcataaaatt cactgqcata qqaqtqtatt tqqaaqatac aqcaqtqqat 180 tcactcgcca ccaagtggaa gggtaagagt tcacaagagc tgcaggactc ccttgacttc 240 ttcaqaqaca tcatttcaag tccctctqag aagttaattc gagggtccaa gctgaggcca 300 ttgagtggcg tggagtattc aagaaaggtg atggagaatt gtgtggcaca catgaagtct 360 420 gctggaactt atggtgaagc agaggccaca gccattgaaa aatttgcaga agccttcagg 480 aaggtggatt ttccaccagg ttcctctgtt ttctaccgac aatcaacaga tggaaaatta 540 gggcttagtt tctctttgga tgacacgata ccagaagaag aggctgtagt tatagagaac aaggcactct cagaggcagt gttagagacc atgattggcg agcatgctgt ttcccctgat 600

660

670

<210> 6

<211> 222

ggaaactgat

<212> PRT

<213> Lotus corniculatus

<400> 6

Met Ala Ala Ser Leu Thr Pro Ile Gln Val Glu Asn Leu Gln Phe Pro 1 5 10 15

ttgaagcgtt gtttggctga aaggttgcct attgtgatga accagggtct tctcctcact

Ala Ser Val Thr Ser Pro Ala Thr Ala Lys Ser Tyr Phe Leu Gly Gly 20 25 30

Ala Gly Glu Arg Gly Leu Thr Ile Glu Gly Lys Phe Ile Lys Phe Thr 35 40 45

Gly Ile Gly Val Tyr Leu Glu Asp Thr Ala Val Asp Ser Leu Ala Thr 50 55 60

Lys Trp Lys Gly Lys Ser Ser Gln Glu Leu Gln Asp Ser Leu Asp Phe 65 70 75 80

Phe Arg Asp Ile Ile Ser Ser Pro Ser Glu Lys Leu Ile Arg Gly Ser 85 90 95

Lys Leu Arg Pro Leu Ser Gly Val Glu Tyr Ser Arg Lys Val Met Glu
100 105 110

Asn Cys Val Ala His Met Lys Ser Ala Gly Thr Tyr Gly Glu Ala Glu 115 120 125

Ala Thr Ala Ile Glu Lys Phe Ala Glu Ala Phe Arg Lys Val Asp Phe 130 135 140

Pro Pro Gly Ser Ser Val Phe Tyr Arg Gln Ser Thr Asp Gly Lys Leu 145 150 155 160

Gly Leu Ser Phe Ser Leu Asp Asp Thr Ile Pro Glu Glu Glu Ala Val 165 170 175

Val Ile Glu Asn Lys Ala Leu Ser Glu Ala Val Leu Glu Thr Met Ile 180 185 190

Gly Glu His Ala Val Ser Pro Asp Leu Lys Arg Cys Leu Ala Glu Arg 195 200 205

Leu Pro Ile Val Met Asn Gln Gly Leu Leu Leu Thr Gly Asn 210 215 220

<210> 7

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:conserved
 regions of various known CHR's

<400> 7

Met Pro Val Val Gly Met Gly Ser Ala 1 5

<210> 8

```
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:conserved
      regions of various known CHR's
<400> 8
Ala Ile Ile Glu Ala Ile Lys Gln
<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 9
                                                                        21
atgttgctgg aacttgcact t
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 10
                                                                        24
ttagaaagga gtttagatgc aacg
<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 11
tgtttctgca ttgcgtccca c
                                                                        21
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Description of Artificial Sequence:primer

<400> 12 ccgatccttg caagtggaac ac	22
<210> 13 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 13 ttgtccagat agcccagtag ctg	23
<210> 14 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 14 cgacaatctg atcatgagcg gag	23
<210> 15 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 15 cgacaatctg atcatgagcg gag	23
<210> 16 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 16 gcatcacgca gttcaacgct g	21
<210> 17 <211> 24 <212> DNA <213> Artificial Sequence	

<220> <223> Description of Artificial Sequence:primer	
<400> 17 ggaaacagct atgaccatga ttac	24
<210> 18 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 18 aaggatccgt cgacatc	17
<210> 19 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 19 agtcccccat ggtacgtcct gtagaaacc	29
<210> 20 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 20 cgttttcgtc ggtaatcacc attcc	25
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 21 tttcccagtc acgacgttgt	20

<210> 22

<211> <212> <213>		
<220> <223>	Description of Artificial Sequence:primer	
<400> gacato	22 cgata atacgac	17
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence:primer	
<400> tgcta	23 cetet agagaattte eeeg	24
<210><211><211><212><213>	30	
<220> <223>	Description of Artificial Sequence:primer	
<400> ctaag	24 cccct aagtattcca tcaggtgatt	30
<210><211><211><212><213>	34	
<220> <223>	Description of Artificial Sequence:primer	
<400> ccaggi	25 tggaa aattacacat gtgcttgaaa gagc	34
<210><211><211><212><213>	30	
<220> <223>	Description of Artificial Sequence:primer	
<400>	26 Baagt ctaataacga gggtcagaag	30

<210> <211> <212> <213>	33	
<220> <223>	Description of Artificial Sequence:primer	
<400> tactca		33
<210><211><211><212><213>	64	
<220> <223>	Description of Artificial Sequence:primer	
<400> cgcgag	28 gctca tgtaccccgg gatttccact agtttaaggg ttaactacat ggtcgacgta	60
cata		64
<210><211><211><212><213>	70	
<220> <223>	Description of Artificial Sequence:primer	
<400> agctta		60
agctcg	gcgat	70
<210><211><211><212><213>	60	
<220> <223>	Description of Artificial Sequence:primer	
<400> aattcg	30 gaget catgtacece gggattteca etagtttaag ggttaaetae atggtegaeg	60
<210><211><211><212>	60	

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 31 ctagcgtcga ccatgtagtt aacccttaaa ctagtggaaa tcccggggta catgagctcg	60
<210> 32 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 32 catggatgcg tagttaagcc t	21
<210> 33 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 33 ctagaggctt acatacgcat c	21
<210> 34 <211> 72 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 34 aattcatgta cgagctcaat tcccccggga taggcactag tgctgctgtt aactacatgg	60
tcgacttatt aa	72
<210> 35 <211> 72 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 35 aggtttaata agtcgaccat gtagttaaca gcagcactag tgcctatccc gggggaattg	60

agctcgtaca tg	72
<210> 36 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 36 gaacaccatg gtgcttgaac ttgc	24
<210> 37 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 37 tccagtaggg cccgaaggga accattgcca c	31
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<400> 38 ccttcgggcc ctactggaag	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 39 cagcgaactc gagcaaagtg	20
<210> 40 <211> 79 <212> DNA <213> Artificial Sequence	

<220> <223> Description of Artificial Sequence:primer	
<400> 40 cactttgctc gagttcgctg aggatgagac tatggagatc aaaatcacca aggaccacat	60
caagggtctt gttgtagac	79
<210> 41 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 41 atgacgagct agcttattaa gaaaggag	28
<210> 42 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 42 ggtgtgtggg gatccatgga agaggctttg	30
<210> 43 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 43 cctcggctcg cgcctttcct caacggtgaa aatgcagtca acac	44
<210> 44 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 44 caacaaccca tgggtagtgt tgaaatccca acaaaggtgc ttacc	45

```
<210> 45
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
agcaactgct agcttatatt tcatcatccc aaagatc
                                                                        37
<210> 46
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 46
                                                                        42
tagattgcca tggctgcatc cctcacccca atccaggtcg ag
<210> 47
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
                                                                        39
aaactttgct agcttatcag tttccagtga ggagaagac
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 48
gcttgttcgg atccataagc agc
                                                                        23
<210> 49
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 49
```

tgcttatgga tccgaacaag ctcttggtga ggctttgaat g	41
<210> 50 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 50 cagccacatc aattggaaat g	21
<210> 51 <211> 78 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 51 tcatttccaa ttgatgtggc tgatctattg ccatttgatg taaaaggtgt gtgggaatcc	60
atggaagagg ctttgaga	78
<210> 52 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 52 cacaagagct gcaggactcc cttga	25
<210> 53 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 53 gggagtcctg cagctcttgt gaac	24
<210> 54 <211> 38 <212> DNA <213> Artificial Sequence	

<220> <223> Description of Artificial Sequence:primer	
<400> 54 agctgcgatc gcaagcttgg taccgggaat tctctaga	38
<210> 55 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 55 aatttctaga gaattcccgg taccaagctt gcttgcgatc gc	42
<210> 56 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 56 tegacecatg geoegetage caattggage t	31
<210> 57 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 57 ccaattggct agcgggccat ggg	23
<210> 58 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 58 ccacccacga gggaacatcg tg	22

<210> 59

<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 59
gaattcccat ggtttacact cgaggtcctc tccaaatga

39