Math 435 09/08/2025 Notes

September 8, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. A topological space is a pair (X, \mathcal{U}) , (often (X, τ)), where X is a set, and \mathcal{U} is a collection of subsets of X such that

- 1. $\emptyset, X \in \mathscr{U}$
- 2. W is closed under arbitrary union
- 3. \mathcal{U} is closed under finite intersection.

The elements of \mathcal{U} are called open sets. Note: 'open set' here really just means that a set belongs to \mathcal{U} .

Today

- We can make a basis of a set
- The basis of a set induces a topology
- Every topology has a basis

Additional notes: our first exam is next Monday.

Definition 2. Let $\mathcal{U}_1, \mathcal{U}_2$ be topologies on X. If $\mathcal{U}_1 \subseteq \mathcal{U}_2$ we say that \mathcal{U}_2 is finer than \mathcal{U}_1 , and \mathcal{U}_1 is coarser than \mathcal{U}_2 .

Definition 3. A collection \mathcal{B} of subsets of a set X is called a basis if

- 1. The sets in \mathscr{B} cover X, i.e., $\forall x \in X$ there exists $B \in \mathscr{B}$ with $x \in B$.
- 2. If $B_1, B_2 \in \mathscr{B}$ and if $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathscr{B}$ such that $X \in B_3 \subseteq B_1 \cap B_2$.

Proposition 1. Given a basis \mathscr{B} of X, the collection of sets obtained by taking arbitrary unions of elements of \mathscr{B} is a topology. (This is called the topology generated by \mathscr{B} .)

Proposition 2. Intermediate Lemma: For any basis \mathscr{B} on X, let $B_1 \ldots B_n \in \mathscr{B}$, and if $x \in \bigcap_{i=1}^n B_i$, then there exists $B' \in \mathscr{B}$ with $x \in B' \subseteq \bigcap_{i=1}^n B_i$.

Proof of Proposition 1: We claim the collection \mathscr{U} of all unions of elements of \mathscr{B} is a topology. We know that $X \in \mathscr{U}$ since we assume the sets in \mathscr{B} cover X. We also know that $\emptyset \in \mathscr{U}$, since we can take arbitrary unions over the empty set. This satisfies requirement one.

For requirement two, we know that an arbitrary union of elements of \mathscr{U} is again an arbitrary union of elements of \mathscr{B} .

For requirement three, we want to show that \mathscr{U} is closed under finite intersection. Let $V = \bigcap_{i=1}^n U_i$ be the finite intersection of $U_i \in \mathscr{U}$. We want to show that $V = \bigcup_{i=1}^k B_i$, for elements of the basis $B_i \in \mathscr{B}$. If any $U_i = \emptyset$, then $V = \emptyset$. Otherwise, let each U_i be non-empty. So each $U_i = \bigcup B_i \in \mathscr{B}$. Now given $x \in V$, $x \in U_i$ for all i. Hence, for each i, there exists some $B_i \subseteq U_i$ with $x \in B_i$. Thus, $x \in \bigcap_{i=1}^n B_i$. By intermediate lemma, there exists B' such that $x \in B'_x$ with $x \in B'_x \subseteq \bigcap_{i=1}^n B_i \subseteq \bigcap_{i=1}^n U_i \subseteq V$. Since $x \in V$ was arbitrary, then we can find some subset $B'_x \subseteq V$. So $V = \bigcup_{x \in V} B'_x$, as desired.

Proposition 3. Every topology has a basis.

Proposition 4. The collection of open balls in a metric space is a basis for the topology induced by the metric. (Called the metric topology).

Definition 4. If you can find a metric on a topology such that the topology induced by the metric is equivalent to the original topology, then that topology is metrizable.

Example 1. An example of this is the notion of a finite simplicial complex.