CSE 250B: Section 8 - Sharad Vikram

1. k-medians Clustering

Instead of calculating the mean for each cluster to determine its centroid, k-medians clustering calculates the median, where the median of a set of data $D = \{x_1, \ldots, x_n\}$ is

$$\underset{y \in \mathbb{R}^d}{\arg\min} \sum_{i=1}^n ||x_i - y||_1$$

(a) Please write down the objective function for k-medians clustering. Suppose you have data $\{x_i\}_{i=1}^N$ and cluster centers $\{z_k\}_{k=1}^K$.

Solution: The objective function is

$$L = \sum_{k=1}^{K} \sum_{x_i \in S_k} ||x_i - z_k||_2$$

(b) What is the iterative algorithm to solve the clustering problem.

Solution: The iterative algorithm is

- Random pick K points as centroid z_k .
- Assign cluster labels for each data based on $\arg\min_{k} ||x_i z_k||_2$.
- Reassign the centroid as the median of the cluster.
- Repeat 1-3 until convergence.

2. Kernelized k-means

Suppose we have a dataset $\{x_i\}_{i=1}^N$, $x_i \in \mathbb{R}^d$ that we want to split into K clusters. Furthermore, suppose we know a priori that this data is best clustered in a large feature space \mathbb{R}^m , and that we have a feature map $\phi : \mathbb{R}^d \to \mathbb{R}^m$. How should we perform clustering in this space?

(a) Write the objective for k-means clustering in the feature space (using the squared L_2 norm in the feature space). Do so by explicitly constructing cluster centers $\{\mu_k\}_{k=1}^K$ with all $\mu_k \in \mathbb{R}^m$.

Solution:

$$L = \sum_{k=1}^{K} \sum_{x_i \in S_k} \|\phi(x_i) - \mu_k\|^2$$

(b) Write an algorithm that minimizes the objective in (a).

Solution:

- 1. Compute $\phi(x_i)$ for every point x_i .
- 2. Do the standard k-means on $\{\phi(x_i)\}$.
- (c) Write an algorithm that minimizes the objective in (a) without explicitly constructing the cluster centers $\{\mu_k\}$. Assume you are given a kernel function $\kappa(x,y) = \phi(x)^T \phi(y)$.

Hint: the cluster assignment for data point x_i can be written as $\arg\min_k f(x_i, k) = ||\phi(x_i) - \mu_k||_2^2$ and the cluster center can be written as a function of data points, i.e.

$$\mu_k = \frac{1}{|S_k|} \sum_{x \in S_k} \phi(x)$$

Solution:

We proceed by coordinate descent on the objective in (a). First, given a clustering, the setting of μ_i that minimizes L is

$$\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} \phi(x)$$

Second, given a setting of the μ 's, the optimal clustering is given by assigning x_i to the cluster $\min_{1 \le k \le K} f(i, k)$, where

$$f(i,k) = \|\phi(x_i) - \mu_k\|^2$$

To kernelize this, we write

$$f(i,k) = \phi(x_i) \cdot \phi(x_i) - 2\phi(x_i) \cdot \mu_k + \mu_k \cdot \mu_k$$

Substituting the setting of μ_k ,

$$= \phi(x_i) \cdot \phi(x_i) - \frac{2}{|S_k|} \sum_{x_j \in S_k} \phi(x_i) \cdot \phi(x_j) + \frac{1}{|S_k|^2} \sum_{x_j, x_l \in S_k} \phi(x_j) \cdot \phi(x_l)$$

Now we can replace the inner products with kernel evaluations

$$= \kappa(x_i, x_i) - \frac{2}{|S_k|} \sum_{x_j \in S_k} \kappa(x_i, x_j) + \frac{1}{|S_k|^2} \sum_{x_j, x_l \in S_k} \kappa(x_j, x_l)$$

This yields the following algorithm:

- 1. Compute the kernel matrix $G_{ij} = \kappa(x_i, x_j)$.
- 2. Start with an initial clustering $\{S_k\}$.
- 3. Compute the new cluster index for each x_i as $\arg\min_{1 \le k \le K} f(i, k)$.
- 4. Assign the points to their new clusters.
- 5. Repeat steps (3) and (4) until convergence.

3. Derivation of PCA

In this question we will derive PCA. PCA aims to find the direction of maximum variance among a dataset. You want the line such that projecting your data onto this line will retain the maximum amount of information. Thus, the optimization problem is

$$\max_{u:||u||_2=1} \frac{1}{n} \sum_{i=1}^n (u^T x_i - u^T \bar{x})^2$$

where n is the number of data points and \bar{x} is the sample average of the data points.

(a) Show that this optimization problem can be massaged into the form

$$\max_{u:||u||_2=1} u^T \Sigma u$$

where
$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$
.

Solution:

We can massage the objective function (left's call if $f_0(u)$ in this way:

$$f_0(u) = \frac{1}{n} \sum_{i=1}^n (u^T x_i - u^T \bar{x})^2$$

$$= \frac{1}{n} \sum_{i=1}^n ((x_i - \bar{x})^T u)^2$$

$$= \frac{1}{n} \sum_{i=1}^n (u^T (x_i - \bar{x}))((x_i - \bar{x})^T u)$$

$$= u^T \left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})^T\right) u$$

$$= u^T \Sigma u$$

(b) Show that the maximizer for this problem is equal to v_1 , where v_1 is the eigenvector corresponding to the largest eigenvalue λ_1 of Σ . Also show that optimal value of this problem is equal to λ_1 .

Solution:

We start by invoking the spectral decomposition of $\Sigma = V\Lambda V^T$, which is a symmetric positive semi-definite matrix.

$$\begin{aligned} \max_{u:\|u\|_2 = 1} u^T \Sigma u &= \max_{u:\|u\|_2 = 1} u^T V \Lambda V^T u \\ &= \max_{u:\|u\|_2 = 1} (V^T u)^T \Lambda V^T u \end{aligned}$$

Here is an aside: note through this one line proof that left-multiplying a vector by an orthogonal (or rotation) matrix preserves the length of the vector:

$$||V^T u||_2 = \sqrt{(V^T u)^T (V^T u)} = \sqrt{u^T V V^T u} = \sqrt{u^T u} = ||u||_2$$

I define a new variable $z = V^T u$, and maximize over this variable. Note that because V is invertible, there is a one to one mapping between u and z. Also note that the constraint is the same because the length of the vector u does not change when multiplied by an orthogonal matrix.

$$\max_{z:\|z\|_2=1} z^T \Lambda z = \max_z \sum_{i=1}^d \lambda_i z_i^2 : \sum_{i=1}^d z_i^2 = 1$$

From this new formulation, it is obvious to see that we can maximize this by throwing all of our eggs into one basket and setting $z_i^* = 1$ if i is the index of the largest eigenvalue, and $z_i^* = 0$ otherwise. Thus,

$$z^* = V^T u^* \implies u^* = V z^* = v_1$$

where v_1 is the "principle" eigenvector, and corresponds to λ_1 . Plugging this into the objective function, we see that the optimal value is λ_1 .