# Robust Physical-World Attacks on Deep Learning Visual Classification

By Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, Dawn Song

Publication Type: Proceeding

Publication: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR)

**Year:** 2018, pp. 1625-1634

**Cited by 1582** 





- Deep Neural Networks (DNNs) เป็น state-of-the-art ในหลายงาน และบางครั้งก็สามารถแข่งขันกับมนุษย์ได้ในงานด้าน computer vision จำนวนมาก.
- จากความสำเร็จเหล่านี้ มีการนำ Computer Vision ไปใช้มากขึ้น โดยเป็นส่วนหนึ่งของ pipelines ในส่วน physical systems เช่น รถ, อากาศยานไร้คนขับ และและหุ่นยนต์





### Deep Neural Networks are Useful, But Vulnerable



+ 8





Image Credit: OpenAl

"panda" 57.7% confidence

**"gibbon"** 99.3% confidence



- งานนี้มีส่วนช่วยในการทำความเข้าใจ DNN กับตัวอย่างชุดข้อมูลที่มีการเพิ่มสิ่งรบกวนทางกายภาพให้กับวัตถุ
  โดยเลือกการจำแนกประเภทป้ายจราจรเป็นโดเมนเป้าหมาย <u>เหตุผล คือ</u>
- 1. ป้ายจราจรเป็นวัตถุที่เรียบ สามารถมองเห็นชัดเจน ทำให้ยากต่อการซ่อนสิ่งรบกวน
- 2. ป้ายจราจรมีอยู่ในสภาพแวดล้อมที่ไม่มีข้อจำกัดและเงื่อนไขทางกายภาพที่เปลี่ยนแปลงอย่างเช่นระยะทางและมุมของ กล้อง
- 3. ป้ายจราจรมีบทบาทสำคัญในความปลอดภัยในการขนส่ง
- 4. Threat model for transportation ที่สมเหตุสมผล คือ Attacker อาจไม่สามารถควบคุมระบบของยานพาหนะได้แต่ สามารถปรับเปลี่ยนหรือรบกวนวัตถุทางกายภาพที่ยานพาหนะอาจต้องพึ่งพาเพื่อทำการตัดสินใจด้านความปลอดภัย

- ความท้าทายหลักในการสร้างสิ่งรบกวนทางกายภาพ คือความแปรปรวนของสิ่งแวดล้อม
- ความท้าทายในการใช้งานจริงอื่นๆ:
- 1. การรบกวนในโลกดิจิทัลอาจมีขนาดเล็กมากจนเป็นไปได้ว่ากล้องจะไม่สามารถรับรู้สิ่งเหล่านั้นได้เนื่องจากความไม่ สมบูรณ์ของเซ็นเซอร์
- 2. เป็นการยากมากที่จะสร้างสิ่งรบกวนให้กับวัตถุด้วยการปรับเปลี่ยนพื้นหลัง เนื่องจากวัตถุจริงสามารถมีพื้นหลังที่

Speed Limit 45

- แตกต่างกันได้ขึ้นอยู่กับมุมมอง
- กระบวนการผลิต (เช่น การพิมพ์/สร้าง สิ่งรบกวน) ไม่สมบูรณ์

# Contributions



นำเสนอ Robust Physical Perturbations (RP2) เพื่อสร้างการรบกวน ทางกายภาพสำหรับวัตถุทางกายภาพที่สามารถทำให้เกิดการจำแนก ประเภทที่ไม่ถูกต้องใน DNN-based classifier ภายใต้สภาวะทาง กายภาพแบบไดนามิก รวมถึงมุมมองและระยะทางที่แตกต่างกัน



ประเมินการโจมตี/การสร้างสิ่งรบกวนให้กับ Input ให้กับตัวแบบ จำแนกประเภทที่สร้างขึ้น: LISA-CNN ที่มีความแม่นยำ 91% ในชุด ทดสอบ LISA และ GTSRB-CNN ที่มีความแม่นยำ 95.7% ในชุด ทดสอบ GTSRB



เนื่องจากขาดวิธีการที่เป็นมาตรฐานในการประเมินการรบกวนทาง กายภาพ จึงเสนอวิธีการประเมินเพื่อศึกษาประสิทธิภาพของการ รบกวนทางกายภาพในสถานการณ์จริง



เพื่อแสดงถึงแนวทางในลักษณะทั่วไปในงานนี้ ได้สร้างสิ่งรบกวนกับ วัตถุทางกายภาพทั่วไป เช่น ไมโครเวฟ ที่แสดงให้เห็นว่า pre-trained Inception-v3 classifier จำแนกประเภทไมโครเวฟเป็น "โทรศัพท์" ผิดโดยเพิ่มสติกเกอร์เดียว





# Adversarial Examples for Physical Objects



### Robust Physical Perturbation (RP2)



ค้นหาการรบกวน  $oldsymbol{\delta}$  ที่จะเพิ่มลงในอินพุต  $oldsymbol{x}$ 

โดยที่อินสแตนซ์ที่รบกวน  $\acute{x}=x+oldsymbol{\delta}$  ถูกจำแนกประเภทโดย Target Classifier  $f_{oldsymbol{ heta}}(\cdot)$ 

# **Optimizing Spatial Constraints**



Subtle Poster

Camouflage Sticker

10

Approximate vandalism



## How To Choose A Mask?



Possibility: Mask surface area should be large or should be focused on "sensitive"

Use L-1

regions



 $\underset{\delta}{\operatorname{argmin}} \ \lambda || M_x \cdot \delta ||_p$ 

 $+ \mathbb{E}_{x_i \sim X^V} J(f_{\theta}(x_i + T_i(M_x \cdot \delta)), y^*)$ 

# Process of Creating a Useful Sticker Attack



L-1 Perturbation

Result Mask

Sticker Attack!



# Experiments



# Experimental Design

#### Attack the LISA-CNN and GTSRB-CNN

91% accuracy on test-set

### LISA-CNN

ฝึกอบรมตัวแบบด้วยชุดช้อมูล *U.S.*<u>traffic sign</u> ประกอบด้วย 17 ป้ายจราจร
ที่พบบ่อยที่สุด

95.7% accuracy on test-set

### GTSRB-CNN

ฝึกอบรมตัวแบบด้วยชุดช้อมูล<u>ป้าย</u>

<u>จราจรของประเทศเยอมัน</u> และ<u>ภาพ</u>

<u>U.S. Stop sign</u> จากชุดช้อมูลที่ใช้
ฝึกอบรมในตัวแบบ LISA-CNN

# Results for LISA-CNN

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

| Distance/Angle         | Subtle Poster | Subtle Poster<br>Right Turn | Camouflage<br>Graffiti | Camouflage Art<br>(LISA-CNN) | Camouflage Ar<br>(GTSRB-CNN) |
|------------------------|---------------|-----------------------------|------------------------|------------------------------|------------------------------|
| 5′ 0°                  | STOP          |                             | STOP                   | STOP                         | STOP                         |
| 5′ 15°                 | STOP          |                             | STOP                   | STOP                         | STOP                         |
| 10' 0°                 | Sign          |                             | STOP                   | STOP                         | STOP                         |
| 10′ 30°                |               |                             | Sign                   | STOP                         | STOP                         |
| 40' 0°                 | Law (         |                             |                        |                              |                              |
| argeted-Attack Success | 100%          | 73.33%                      | 66.67%                 | 100%                         | 80%                          |

➤ The attack's target class <u>Speed Limit 45</u>

### Results for LISA-CNN

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack. Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

| Distance & Angle | Poster-Printing |            | Sticker             |             |                |            |
|------------------|-----------------|------------|---------------------|-------------|----------------|------------|
|                  | Subtle          |            | Camouflage-Graffiti |             | Camouflage-Art |            |
| 5′ 0°            | SL45 (0.86)     | ADL (0.03) | STP (0.40)          | SL45 (0.27) | SL45 (0.64)    | LE (0.11)  |
| 5′ 15°           | SL45 (0.86)     | ADL (0.02) | STP (0.40)          | YLD (0.26)  | SL45 (0.39)    | STP (0.30) |
| 5′ 30°           | SL45 (0.57)     | STP (0.18) | SL45 (0.25)         | SA (0.18)   | SL45 (0.43)    | STP (0.29) |
| 5′ 45°           | SL45 (0.80)     | STP (0.09) | YLD (0.21)          | STP (0.20)  | SL45 (0.37)    | STP (0.31) |
| 5′ 60°           | SL45 (0.61)     | STP (0.19) | STP (0.39)          | YLD (0.19)  | SL45 (0.53)    | STP (0.16) |
| 10' 0°           | SL45 (0.86)     | ADL (0.02) | SL45 (0.48)         | STP (0.23)  | SL45 (0.77)    | LE (0.04)  |
| 10′ 15°          | SL45 (0.90)     | STP (0.02) | SL45 (0.58)         | STP (0.21)  | SL45 (0.71)    | STP (0.08) |
| 10′ 30°          | SL45 (0.93)     | STP (0.01) | STP (0.34)          | SL45 (0.26) | SL45 (0.47)    | STP (0.30) |
| 15′ 0°           | SL45 (0.81)     | LE (0.05)  | SL45 (0.54)         | STP (0.22)  | SL45 (0.79)    | STP (0.05) |
| 15′ 15°          | SL45 (0.92)     | ADL (0.01) | SL45 (0.67)         | STP (0.15)  | SL45 (0.79)    | STP (0.06) |
| 20′ 0°           | SL45 (0.83)     | ADL (0.03) | SL45 (0.62)         | STP (0.18)  | SL45 (0.68)    | STP (0.12) |
| 20' 15°          | SL45 (0.88)     | STP (0.02) | SL45 (0.70)         | STP (0.08)  | SL45 (0.67)    | STP (0.11) |
| 25′ 0°           | SL45 (0.76)     | STP (0.04) | SL45 (0.58)         | STP (0.17)  | SL45 (0.67)    | STP (0.08) |
| 30′ 0°           | SL45 (0.71)     | STP (0.07) | SL45 (0.60)         | STP (0.19)  | SL45 (0.76)    | STP (0.10) |
| 40′ 0°           | SL45 (0.78)     | LE (0.04)  | SL45 (0.54)         | STP (0.21)  | SL45 (0.68)    | STP (0.14) |

### Results for GTSRB-CNN

Table 3: A camouflage art attack on GTSRB-CNN. See example images in Table 1. The targeted-attack success rate is 80% (true class label: Stop, target: Speed Limit 80).

| Distance & Angle                       | Top Class (Confid.)                                                              | Second Class (Confid.)                                                              |
|----------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 5′ 0°                                  | Speed Limit 80 (0.88)                                                            | Speed Limit 70 (0.07)                                                               |
| 5′ 15°                                 | Speed Limit 80 (0.94)                                                            | Stop (0.03)                                                                         |
| 5′ 30°                                 | Speed Limit 80 (0.86)                                                            | Keep Right (0.03)                                                                   |
| 5′ 45°                                 | Keep Right (0.82)                                                                | Speed Limit 80 (0.12)                                                               |
| 5' 60°<br>10' 0°<br>10' 15°<br>10' 30° | Speed Limit 80 (0.55)  Speed Limit 80 (0.98)  Stop (0.75)  Speed Limit 80 (0.77) | Stop (0.31)  Speed Limit 100 (0.006)  Speed Limit 80 (0.20)  Speed Limit 100 (0.11) |
| 15′ 0°                                 | Speed Limit 80 (0.98)                                                            | Speed Limit 100 (0.01)                                                              |
| 15′ 15°                                | Stop (0.90)                                                                      | Speed Limit 80 (0.06)                                                               |
| 20′ 0°                                 | Speed Limit 80 (0.95)                                                            | Speed Limit 100 (0.03)                                                              |
| 20′ 15°                                | Speed Limit 80 (0.97)                                                            | Speed Limit 100 (0.01)                                                              |
| 25′ 0°                                 | Speed Limit 80 (0.99)                                                            | Speed Limit 70 (0.0008)                                                             |
| 30′ 0°                                 | Speed Limit 80 (0.99)                                                            | Speed Limit 100 (0.002)                                                             |
| 40′ 0°                                 | Speed Limit 80 (0.99)                                                            | Speed Limit 100 (0.002)                                                             |

➤ The attack's target class <u>Speed Limit 80</u>

# Results for Inceptionv3



Figure 3: Physical adversarial example against the Inceptionv3 classifier. The left shows the original cropped image identified as microwave (85.2%) while the right shows the cropped physical adversarial example identified as phone (77.8%). ฝึกอบรมตัวแบบบนข้อมูลImageNet

# Run the code



Official: https://github.com/evtimovi/robust\_physical\_perturbations.git

# Run the code



Official: https://github.com/shangtse/robust-physical-attack.git

