Math40002 Analysis 1

Problem Sheet 3

1.* Which of the following sequences are convergent and which are not? What is the limit of the convergent ones? Give proofs for each.

(a)
$$\frac{n+7}{n}$$

(d)
$$\frac{n^3-2}{n^2+5n+6}$$

(b)
$$\frac{n}{n+7}$$

(e)
$$\frac{1-n(-1)}{n}$$

(c)
$$\frac{n^2+5n+6}{n^3-2}$$

(a) This tends to 1. For any $\epsilon > 0$ pick $N \in \mathbb{N}$ such that $N > \frac{7}{\epsilon}$. Then for $n \geq N$, $|a_n - 1| = \frac{7}{n} \leq \frac{7}{N} < \epsilon$.

(b) This tends to 1. For any $\epsilon>0$ pick $N\in\mathbb{N}$ such that $N>\frac{7}{\epsilon}$. Then for $n\geq N$, $|a_n-1|=\frac{7}{n+7}<\frac{7}{N}<\epsilon$.

(c) This tends to 0.

Notice that for $n \geq 5$, $5n \leq n^2$ and $6 < n^2$, so $n^2 + 5n + 6 < 3n^2$. And also $2 < \frac{1}{2}n^3$ so $n^3 - 2 > \frac{1}{2}n^3$. Therefore $\frac{n^2 + 5n + 6}{n^3 - 2} < \frac{3n^2}{\frac{1}{2}n^3} = \frac{6}{n}$.

For any $\epsilon>0$ pick $N\in\mathbb{N}$ such that $N>\frac{6}{\epsilon}$ and $N\geq 5$. Then for $n\geq N$, $|a_n|<\frac{6}{n}\leq \frac{6}{N}<\epsilon$.

(d) This does not converge to any real number. Suppose for a contradiction that it converged to $a \in \mathbb{R}$. Then taking $\epsilon = 1$ we find $N \in \mathbb{N}$ such that $n \geq N \implies |a_n - a| < 1 \implies a_n < a + 1$.

But for $n \ge 2$ (so that $n^3/2 > 2$) we have $a_n > \frac{n^3 - n^3/2}{n^2 + 5n^2 + 6n^2} = n/24$. So for n > 24(a+1) we find that $a_n > a+1$, which contradicts the line above.

(e) This does not converge. Suppose for a contradiction that it converged to $a \in \mathbb{R}$. Then taking $\epsilon = \frac{1}{2}$ we find $N \in \mathbb{N}$ such that $n \geq N \implies |a_n - a| < \frac{1}{2} \implies a_n - \frac{1}{2} < a < a_n + \frac{1}{2}$.

For even $n \ge N$ this gives $a < \frac{1-n}{n} + \frac{1}{2} = \frac{1}{n} - \frac{1}{2} \le 0$ (*) while for odd $n \ge N$ it gives $a > \frac{1+n}{n} - \frac{1}{2} = \frac{1}{n} + \frac{1}{2} > 0$, contradicting (*).

2. We've defined what it means for (a_n) to converge to a real number $a \in \mathbb{R}$ as $n \to \infty$. Professor Lee Beck thinks infinity is cool, so he comes up with some definitions of $a_n \to +\infty$ as $n \to \infty$. Which are right and which are wrong? For any wrong ones, illustrate its wrongness with an example.

- (a) $\forall a \in \mathbb{R}, \ a_n \not\to a.$
- (b) $\forall \epsilon > 0 \; \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow |a_n \infty| < \epsilon$.
- (c) $\forall R > 0 \; \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow a_n > R$.
- (d) $\forall a \in \mathbb{R} \ \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \ \exists n \geq N \text{ such that } |a_n a| \geq \epsilon.$
- (e) $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \ a_n > \frac{1}{\epsilon}.$
- (f) $\forall n \in \mathbb{N}, \ a_{n+1} > a_n.$
- (g) $\forall R \in \mathbb{R}, \exists n \in N \text{ such that } a_n > R.$
- (h) $1/\max(1, a_n) \to 0$.
- (a) Wrong: eg $(-1)^n$.
- (b) Wrong: ∞ not a real number, so $|a_n \infty|$ doesn't mean anything.
- (c) Correct! However big a number (R) you give me, once I go sufficiently far $(\geq N)$ down the sequence, it is always bigger than R.

- (d) Wrong: eg $(-1)^n$.
- (e) Correct! This is equivalent to (c), with $R = \frac{1}{\epsilon}$.
- (f) Wrong: eg $1 \frac{1}{n}$.
- (g) Wrong: eg $(-1)^n n$.
- (h) Correct! The max is just there to make sure we don't divide by 0. So this definition says that $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ \text{such that} \ n \geq N \ \Rightarrow \ |1/\max(1,a_n)| < \epsilon, \ \text{which implies that} \ \max(1,a_n) > \epsilon^{-1}.$

So for all R > 1, setting $\epsilon = 1/R$ we see that $\exists N \in \mathbb{N}$ such that $n \ge N \Rightarrow \max(1, a_n) > R$ which implies that $a_n > R$ (since R > 1). Therefore this gives definition (c).

3. Let (a_n) be a sequence converging to $a \in \mathbb{R}$. Suppose (b_n) is another sequence which is different than (a_n) but only differs from (a_n) in finitely many terms, that is the set $\{n \in \mathbb{N} : a_n \neq b_n\}$ is non-empty and finite. Prove (b_n) converges to a.

Since $\{n \in \mathbb{N} : a_n \neq b_n\}$ is a finite non-empty set it has a maximum element which we call M. Now let $\epsilon > 0$. Since (a_n) converges to a there exists $M_{\epsilon} \in \mathbb{N}$ such that $n \geq M_{\epsilon} \Rightarrow |a_n - a| < \epsilon$.

Now, we take $N_{\epsilon} = \max(M_{\epsilon}, M)$ and so it follows that $n \geq N_{\epsilon} \Rightarrow |b_n - a| = |a_n - a| < \epsilon$ where the first equality holds because $n \geq M$ and the second holds because $n \geq M_{\epsilon}$. Therefore (b_n) converges to a_{ϵ} .

4. Let $S \subset \mathbb{R}$ be nonempty and bounded above. Show that there exists a sequence of numbers $s_n \in S$, $n = 1, 2, 3, \ldots$, such that $s_n \to \sup S$.

Given any $n \in \mathbb{N}$, $\sup S - \frac{1}{n}$ is not an upper bound for S, because it is less than the smallest upper bound $\sup S$. Therefore there exists an element $s_n \in S$ such that $s_n > \sup S - \frac{1}{n}$.

Of course we also have $s_n \leq \sup S$ by definition of \sup , so $|s_n - \sup S| < \frac{1}{n}$.

Given any $\epsilon > 0$, fix $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Then $n \geq N \Rightarrow |s_n - \sup S| < \frac{1}{n} \leq \frac{1}{N} < \epsilon$. So $s_n \to \sup S$.

- 5. Give without proof examples of sequences (a_n) , (b_n) with the following properties.
 - (i) Neither of a_n , b_n is convergent, but $a_n + b_n$, $a_n b_n$ and a_n/b_n all converge. Eg. $a_n = (-1)^n$, $b_n = (-1)^{n+1}$.
 - (ii) a_n converges, b_n is un bounded, but a_nb_n converges. Eg. $a_n = 0$, $b_n = n$. Or $a_n = n^{-2}$, $b_n = n$.
 - (iii) a_n converges, b_n bounded, but $a_n b_n$ diverges. Eg. $a_n = 1$, $b_n = (-1)^n$.