## 14.8. Lagrange multipliers

\* Thm (Method of Lagrange multipliers)

Given a differentiable function f(x,y,z) with a constraint g(x,y,t) = 0, the extreme values can be found as follows if they exist.

Step 1. Solve the equations  $\nabla f = \lambda \nabla g$  and g = 0.

Step 2. Evaluate fixig, 21 at all solutions.

Step 3. Compare all values from Step 2.

maximum = the largest of these values minimum = the smallest of these values

\* Explanation

At extrema, level curves cor surfaces)

of f and g must be tangent f=1  $\Rightarrow$   $\forall f$  and  $\forall g$  are parallel f=0  $\Rightarrow$   $\forall f=1$   $\forall f=1$ 

Note (1) In Math 215, you can always assume that extreme values exist. In general, however, there may be no extreme values

(2) Step 1 often involves heavy algebra.

Ex Find the minimum value of  $x^2+y^2+2$  on the plane 2x+2y+2=9

## Sol 1 (Lagrange multipliers)

Constraint: 2x+2y+2=9 - 2x+2y+2-9=0

Set  $f(x,y,z) = x^2+y^2+z$  and g(x,y,z) = 2x+2y+z-9.

Solve  $\nabla f = \lambda \nabla g$  and g = 0

 $\Rightarrow$  (2x,29,1) =  $\lambda$ (2,2,1) and 2x+2y+2-9=0

 $\sim 12x = 2\lambda$ ,  $2y = 2\lambda$ ,  $1 = \lambda$ , 2x + 2y + 2 = 9

 $\Rightarrow \lambda = 1, x = 1, y = 1, z = 9 - 2x - 2y = 5$ 

The minimum value is f(2,2,5) = 7

## Sol 2 (Removing the constraint)

 $2x+2y+2=9 \rightarrow 2=9-2x-2y$ 

 $\Rightarrow$   $x^2 + y^2 + 2 = x^2 + y^2 + 9 - 2x - 2y$ .

We find the minimum of  $N(x,y) = x^2 + y^2 + 9 - 2x - 2y$  on  $\mathbb{R}^2$ .

Since IR2 is open, the minimum is at a critical point.

 $\Rightarrow \nabla h = (0,0) \Rightarrow (2X-2,2y-2) = 0 \Rightarrow X=1, y=1.$ 

=) The minimum is h(1,1) = 5

Note It's not always possible to remove the constraint in this way.

Ex Find the shortest distance from the origin to the Surface  $2x + 4y + 2^2 = 20$ .

Sol Distance from the origin is  $\sqrt{x^2+y^2+z^2}$ .

We find the minimum of  $x^2+y^2+z^2$  subject to the constraint  $2x+4y+z^2-20=0$ 

Set  $f(x, y, z) = x^2 + y^2 + z^2$  and  $g(x, y, z) = 2x + 4y + z^2 - 20$ Solve  $\nabla f = \lambda \nabla g$  and g = 0

 $\Rightarrow$  (2x,29,27) =  $\lambda$ (2,4,27) and 2x+4y+2<sup>2</sup>-20=0

 $\sim 2x = 2\lambda$ ,  $2y = 4\lambda$ ,  $2z = 2\lambda z$ ,  $2x + 4y + z^2 = 20$ 

Case 1 2=0:  $x=\lambda$ ,  $y=2\lambda$ , 2x+4y=20

 $\Rightarrow 2\lambda + 4 \cdot 2\lambda = 20 \Rightarrow 10\lambda = 20 \Rightarrow \lambda = 2$ 

 $\Rightarrow$  x = 2, y = 4, z = 0.

Case 2  $7 \neq 0$ :  $2 \neq 2 \lambda \neq \lambda \neq \lambda = 1$ .

 $2x = 2\lambda = 2 \Rightarrow x = 1$ ,  $2y = 4\lambda = 4 \Rightarrow y = 2$ 

 $2x+4y+2^2=20 \Rightarrow 10+2^2=20 \Rightarrow 2=\pm \sqrt{10}$ 

=> x=1, y=2, ≥=±√10.

f(2,4,0) = 20,  $f(1,2,\sqrt{10}) = f(1,2,-\sqrt{10}) = 15$ 

 $\Rightarrow$  The minimum of fox, y, z) =  $x^{2}+y^{2}+z^{2}$  is 15.

=> The shortest distance is Jis

Ex Find the extreme values of 6x + 8y on the domain given by  $x^2 + y^2 \le 25$ .



D is closed and bounded.

With f(x,y) = 6x + 8y

Step 1. Evaluate fixing at all critical points.

 $\nabla f = (6.8) \neq (0.0) \Rightarrow \text{no critical points}$ 

Step 2. Find the extrema of fixing on the boundary

Set  $g(x,y) = x^2 + y^2 - 25 \Rightarrow g(x,y) = 0$  on the boundary.

Solve  $\nabla f = \lambda \nabla g$  and g=0

 $\Rightarrow$  (6,8) =  $\lambda$  (2x, 2y) and  $x^{2}+y^{2}-25=0$ 

 $\sim 6 = 2\lambda x$ ,  $8 = 2\lambda y$ ,  $x^2 + y^2 = 25$ 

 $\lambda \neq 0 \Rightarrow \chi = \frac{3}{\lambda}, \ \gamma = \frac{4}{\lambda}$ 

 $\chi^{2}+y^{2}=25 \sim \frac{9}{\lambda^{2}}+\frac{16}{\lambda^{2}}=25 \sim 25=25\lambda^{2} \sim \lambda=\pm 1$ 

 $\lambda = 1 \xrightarrow{3} x = 3, y = 4, \lambda = -3, y = -4.$ 

f(3,4) = 50, f(-3,-4) = -50

Step 3. Compare all values from steps 1 and 2.

Maximum = 50, minimum = -50

Ex Find the minimum surface area of a rectangular box with volume 1.

Width X, length Y, height  $\frac{2}{3}$   $\Rightarrow$ Volume = xyz = 1Surface area = 2xy + 2yz + 2zx

Set f(x,y,t) = 2xy + 2yz + 2tx and g(x,y,t) = xyt - 1. Solve  $\nabla f = \lambda \nabla g$  and g = 0

=) (2y+2t, 2x+2t, 2x+2y) = \(\(\gamma\)t, \(\frac{2}{2}\), \(\chi\) and \(\chi\)

~ 29+22= λ42, 2x+22= λ2x, 2x+29 = λxy, xyz=1.

 $\Rightarrow \lambda xyz = x(2y+2z) = y(2x+2z) = z(2x+2y)$ 

= 2xy + 2x2 = 2xy + 2y2 = 2x2+ 2y2

 $\Rightarrow \chi J = J = \pm \chi \Rightarrow \frac{\chi J}{\chi J} = \frac{\chi J}{\chi J} = \frac{\chi J}{\chi J} = \frac{\chi J}{\chi J} \Rightarrow \chi = J = \xi.$ 

 $x45 = 1 \Rightarrow x=2=5=1$ 

The minimum is f(1,1,1) = 6

Note Alternatively, you can remove the constraint xyz=1 by writing  $z=\frac{1}{xy}$  and considering  $2xy+2yz+2zx=2xy+2y\cdot\frac{1}{xy}+\frac{2}{xy}\cdot x=2xy+\frac{2}{x}+\frac{2}{y}$  on the domain x,y>0.