# ANALYSIS ON CLIMATE CHANGE AND IMPACT OF GREENHOUSE GAS EMISSION

Vijay Rama Raju Penmetsa

Aryama Ray

Vaishnavi Mocherla

Sai Sahithi Bethapudi

Ananya Varma Mudunuri

#### Abstract—

The primary aim of this project is to create a model that will be useful in predicting the patterns in environmental change in different areas of the world in the coming years and to utilize this data to study weather conditions, explicitly as to temperature, precipitation, and irregularities. We will also analyze the connection between the current shift in weather patterns and the historical production of carbon emissions by various countries. By expanding our understanding of climate change, extreme weather, and regional variations, the project aims to advance climate science. This will assist with asset portion, debacle planning, and environment variation independent direction, eventually encouraging strength and maintainability.

#### I. PROBLEM STATEMENT

The influence of human civilization on the climate is quite evident and at this point it is undeniable. Serious actions should be taken before it goes out of our hands and effect our future generations. The initial step is to analyze how is the climate being changing rapidly with respect to harmful gas emissions by humans. There are few long-term shift in temperature and weathers, these are called climate change. Whereas drastic change in climate due to greenhouse gas emissions like carbon dioxide and methane are the cause of human civilization.

# II. SOLUTION REQUIREMENT

The approach of this project is that it provides this platform where all kinds of analyzing are readily available to understand and predict the climate changes. Here, we are going develop a predictive model using a pipeline with various google cloud services that helps in transforming the data, including real-time data into the warehouse and finally create a predictive model.

Pipeline using the google cloud services:



The data is first present in the VPC which is then sent to the big query using the data stream. Now this data is stored in the staging database in the big query. The warehouse is created using this staging database. On the other hand, the real-time data is sent through the API which is processed and scheduled to various transformations using airflow. This ETL is runned in cloud composer. This data is scheduled on daily basis and send to the warehouse. Now that the data is stored in the warehouse, we can perform various analysis and create a model to predict the future climate conditions. This data can be even used to perform visualizations using tableau.

#### III. DATA

There are two different types of data sources for this project. One is the archived data which is extracted from various websites. The other data source is real-time data which is updated on daily bases.

#### Cities

This table has all the data related to cities and their respective weather stations.

The station id provides the unique code to represent the station of the city. City, country and state has the names, iso2 and iso3 are the two letter and three letter country code. Longitude and latitude hold the values corresponding to the city.

| station_id | city_name        | country     | state            | iso2 | iso3 | latitude    | longitude    |
|------------|------------------|-------------|------------------|------|------|-------------|--------------|
| 41515      | Asadabad         | Afghanistan | Kunar            | AF   | AFG  | 34.86600004 | 71.15000459  |
| 38954      | Fayzabad         | Afghanistan | Badakhshan       | AF   | AFG  | 37.12976076 | 70.57924719  |
| 41560      | Jalalabad        | Afghanistan | Nangarhar        | AF   | AFG  | 34.44152692 | 70.43610347  |
| 38947      | Kunduz           | Afghanistan | Kunduz           | AF   | AFG  | 36.72795066 | 68.8725296   |
| 38987      | Qala i Naw       | Afghanistan | Badghis          | AF   | AFG  | 34.98300013 | 63.13329964  |
| 38915      | Sheberghan       | Afghanistan | Jawzjan          | AF   | AFG  | 36.65798077 | 65.7383023   |
| 13577      | Peshkopi         | Albania     | Dibër            | AL   | ALB  | 41.6833021  | 20.4333034   |
| 13461      | Shkodër          | Albania     | Shkodër          | AL   | ALB  | 42.06845156 | 19.5188496   |
| 13615      | Tirana           | Albania     | Durrës           | AL   | ALB  | 41.32754071 | 19.8188830   |
| 60620      | Adrar            | Algeria     | Adrar            | DZ   | DZA  | 27.86999005 | -0.289967083 |
| 60369      | Algiers          | Algeria     | Alger            | DZ   | DZA  | 36.7630648  | 3.0505525    |
| 60360      | Annaba           | Algeria     | Annaba           | DZ   | DZA  | 36.92000612 | 7.75998083   |
| 60468      | Batna            | Algeria     | Batna            | DZ   | DZA  | 35.56995933 | 6.17000036   |
| 60525      | Biskra           | Algeria     | Biskra           | DZ   | DZA  | 34.85997683 | 5.73002722   |
| 60444      | Bordj Bou Arréri | Algeria     | Bordj Bou Arreri | DZ   | DZA  | 36.05900401 | 4.629996466  |
| 60571      | Béchar           | Algeria     | Béchar           | DZ   | DZA  | 31.61110537 | -2.23000370  |
| 60402      | Béjaïa           | Algeria     | Béjaïa           | DZ   | DZA  | 36.76037762 | 5.07001582   |

# Countries

Like the city table, the country table also has information such as country name, language, iso2 and iso3 like the cities table iso and iso3. The population of the country, the area in square kilometers of the country, capital name, along with its latitude and longitude and finally the region of the country along with its continent.

| country         | native_name     | iso2 | iso3 | population | area    | capital      | capital_lat | capital_Ing | region           |
|-----------------|-----------------|------|------|------------|---------|--------------|-------------|-------------|------------------|
| Afghanistan     | افغانستان       | AF   | AFG  | 26023100   | 652230  | Kabul        | 34.526011   | 69.177684   | Southern and C   |
| Albania         | Shqipëria       | AL   | ALB  | 2895947    | 28748   | Tirana       | 41.326873   | 19.818791   | Southern Europ   |
| Algeria         | الجزائر         | DZ   | DZA  | 38700000   | 2381741 | Algiers      | 36.775361   | 3.060188    | Northern Africa  |
| American Samo   | American Samo   | AS   | ASM  | 55519      | 199     | Pago Pago    | -14.275479  | -170.70483  | Polynesia        |
| Angola          | Angola          | AO   | AGO  | 24383301   | 1246700 | Luanda       | -8.82727    | 13.243951   | Central Africa   |
| Anguilla        | Anguilla        | Al   | AIA  | 13452      | 91      | The Valley   | 41.559572   | -98.980548  | Caribbean        |
| Antigua and Bar | Antigua and Bar | AG   | ATG  | 86295      | 442     | Saint John's | 47.561701   | -52.715149  | Caribbean        |
| Argentina       | Argentina       | AR   | ARG  | 42669500   | 2780400 | Buenos Aires | -34.607568  | -58.437089  | South America    |
| Armenia         | Հայաստան        | AM   | ARM  | 3009800    | 29743   | Yerevan      | 40.177612   | 44.512585   | Middle East      |
| Aruba           | Aruba           | AW   | ABW  | 101484     | 180     | Oranjestad   | 12.526874   | -70.035684  | Caribbean        |
| Australia       | Australia       | AU   | AUS  |            | 7692024 | Canberra     | -35.297591  | 149.101268  | Australia and Ne |
| Austria         | Österreich      | AT   | AUT  | 8527230    | 83871   | Vienna       | 48.208354   | 16.372504   | Western Europe   |
| Azerbaijan      | Azərbaycan      | AZ   | AZE  | 9552500    | 86600   | Baku         | 40.375443   | 49.832675   | Middle East      |
| Bahrain         | البحرين         | вн   | BHR  | 1316500    | 765     | Manama       | 26.223504   | 50.582244   | Middle East      |
| Bangladesh      | वांश्लास्म      | BD   | BGD  | 157486000  | 147570  | Dhaka        | 23.759357   | 90.378814   | Southern and C   |
| Belarus         | Белару́сь       | BY   | BLR  | 9475100    | 207600  | Minsk        | 53.902334   | 27.561879   | Eastern Europe   |
| Belgium         | België          | BE   | BEL  | 11225469   | 30528   | Brussels     | 50.846557   | 4.351697    | Western Europe   |
| Belize          | Belize          | BZ   | BLZ  | 349728     | 22966   | Belmopan     | 17.250199   | -88.770018  | Central America  |

#### Daily Weather

This table provides the weather data of the countries daily, an archived dataset. These tables have all kinds of data like the station id, city name, date, season, average temperature that day along with the minimum and maximum temperature. It also documents the precipitation, the snow death, and other kinds of weather reports like these.

| station_id | city_name  | date             | season | avg_temp_c | min_temp_c | max_temp_c | precipitation_mn snow_ | depth_mn avg_wind_ | dir_di avg_win | d_speec peak_win | d_gust avg_sea | _level_r sunshin |
|------------|------------|------------------|--------|------------|------------|------------|------------------------|--------------------|----------------|------------------|----------------|------------------|
| 4151       | 5 Asadabad | 6/30/1957, 5:00  | Summer | 27         | 21.1       | 35.6       | 0 -                    |                    |                | -                | -              | -                |
| 4151       | 5 Asadabad | 7/1/1957, 5:00:0 | Summer | 22.8       | 18.9       | 32.2       | 0 -                    | -                  | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/2/1957, 5:00:0 | Summer | 24.3       | 16.7       | 35.6       | 1 -                    |                    |                | -                | -              | -                |
| 4151       | 5 Asadabad | 7/3/1957, 5:00:0 | Summer | 26.6       | 16.1       | 37.8       | 4.1 -                  |                    | -              | -                | -              |                  |
| 4151       | 5 Asadabad | 7/4/1957, 5:00:0 | Summer | 30.8       | 20         | 41.7       | 0 -                    | -                  | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/5/1957, 5:00:0 | Summer | 30.2       | 22.8       | 41.1       | 0 -                    |                    | -              | -                | -              |                  |
| 4151       | 5 Asadabad | 7/6/1957, 5:00:0 | Summer | 31         | 24.4       | 39.4       | 0 -                    |                    |                | -                | -              | -                |
| 4151       | 5 Asadabad | 7/7/1957, 5:00:0 | Summer | 30.9       | 24.4       | 38.9       | 0 -                    |                    | -              | -                | -              | -                |
| 4151       | 5 Asadabad | 7/8/1957, 5:00:0 | Summer | 26.1       | 21.1       | 34.4       | 2 -                    |                    | -              | -                | -              |                  |
| 4151       | 5 Asadabad | 7/9/1957, 5:00:0 | Summer | 26         | -          | 35.6       | 0.3 -                  |                    |                | -                | -              | -                |
| 4151       | 5 Asadabad | 7/10/1957, 5:00  | Summer | 26.3       | 17.2       | 36.1       | 2 -                    |                    | -              | -                |                |                  |
| 4151       | 5 Asadabad | 7/11/1957, 5:00: | Summer | 28.8       | 21.7       | 36.7       | 0 -                    |                    |                | -                | -              |                  |
| 4151       | 5 Asadabad | 7/12/1957, 5:00  | Summer | 27.2       | 21.1       | 36.1       | 0 -                    |                    | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/13/1957, 5:00  | Summer | 28         | 20.6       | 36.1       | 0.3 -                  |                    |                | -                | -              |                  |
| 4151       | 5 Asadabad | 7/14/1957, 5:00  | Summer | 28.6       | 21.1       | 37.2       | 0 -                    |                    | -              | -                | -              |                  |
| 4151       | 5 Asadabad | 7/15/1957, 5:00  | Summer | 31.7       | 22.8       | 41.7       | 0 -                    | -                  | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/16/1957, 5:00  | Summer | 33.1       | 23.3       | 46.1       | 0 -                    |                    |                | -                | -              |                  |
| 4151       | 5 Asadabad | 7/17/1957, 5:00  | Summer | 33.3       | 26.1       | 41.1       | 0 -                    |                    | -              | -                |                |                  |
| 4151       | 5 Asadabad | 7/18/1957, 5:00  | Summer | 30.1       | 25         | 35.6       | 1 -                    | -                  | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/19/1957, 5:00  | Summer | 27.6       | 21.1       | 34.4       | 3 -                    |                    | -              | -                | -              | -                |
| 4151       | Asadabad   | 7/20/1957, 5:00  | Summer | 28.8       | 22.2       | 35         | 0 -                    |                    |                | -                | -              | -                |
| 4151       | 5 Asadabad | 7/21/1957, 5:00  | Summer | 27.4       | 21.7       | 33.9       | 0.3 -                  | -                  |                | -                | -              | -                |

#### Cumulative greenhouse gas emission

This data is extracted from the website that has data related to greenhouse gas emission.

| CNTR_NAME   | ISO3 | Gas   | Component | Year | Data           | Unit           |    |
|-------------|------|-------|-----------|------|----------------|----------------|----|
| Afghanistan | AFG  | 3-GHG | Fossil    | 1851 | 0.000454704258 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1852 | 0.000913130773 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1853 | 0.001375296509 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1854 | 0.00184121966  | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1855 | 0.002310915871 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1856 | 0.002784399916 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1857 | 0.003261685269 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1858 | 0.003742784294 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1859 | 0.004227706791 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1860 | 0.004716465229 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1861 | 0.005209240717 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1862 | 0.005706055559 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1863 | 0.006206932533 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1864 | 0.006711894976 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1865 | 0.007220965284 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1866 | 0.007734169018 | Pg~CO[2]*-e[10 | 0] |
| Afghanistan | AFG  | 3-GHG | Fossil    | 1867 | 0.008251530954 | Pg~CO[2]*-e[10 | 0] |

#### Real time data

There is also real time data that is in json format that is going to be used for this project.

This data has information like city name, date, season, average, minimum and maximum temperature of the date. As well as related data about precipitation, wind sea level and finally sunshine time. All these data are real-time, meaning they get updated regularly and in this case daily.

| Helena         | 2023-12-03 | Winter | 2.43  | -2.49 | 4.54  | 0     | 249 | 26.712 | 66.744 | 1013 | 528.1333333 |
|----------------|------------|--------|-------|-------|-------|-------|-----|--------|--------|------|-------------|
| Montpelier     | 2023-12-03 | Winter | 3.53  | 1.34  | 3.53  | 0.99  | 169 | 8.244  | 29.808 | 1014 | 544.5333333 |
| Bismarck       | 2023-12-03 | Winter | 3.51  | -2.36 | 4.28  | 0     | 295 | 18.036 | 25.74  | 1006 | 526.6       |
| Saint Paul     | 2023-12-03 | Winter | 1.79  | -1.3  | 2.18  | 0     | 141 | 9.108  | 24.588 | 1010 | 539.85      |
| Cheyenne       | 2923-12-03 | Winter | -0.34 | -3.81 | 3.3   | 0     | 267 | 63.036 | 95.4   | 1014 | 563.9633333 |
| Madison        | 2023-12-03 | Winter | 15.53 | 9.59  | 16.23 | 0.55  | 272 | 17.676 | 27.828 | 1014 | 598.35      |
| Denver         | 2023-12-03 | Winter | 3.75  | 2.67  | 5.49  | 0     | 284 | 23.616 | 57.708 | 1013 | 572.0666667 |
| Des Moines     | 2023-12-03 | Winter | 5.36  | -1.36 | 5.42  | 0     | 212 | 11.952 | 15.84  | 1009 | 561.2666667 |
| Indianapolis   | 2023-12-03 | Winter | 7.1   | 2.48  | 7.42  | 0     | 242 | 23.004 | 42.372 | 1008 | 571.9666667 |
| Lincoln        | 2023-12-03 | Winter | 4.94  | -2.95 | 5.97  | 0     | 345 | 17.748 | 29.592 | 1007 | 566         |
| Boise          | 2023-12-03 | Winter | 3.49  | 1.78  | 5.44  | 13.19 | 112 | 13.392 | 21.564 | 1020 | 548.6166667 |
| Albany         | 2023-12-03 | Winter | 4.79  | 3.87  | 5.31  | 18.82 | 149 | 14.364 | 39.132 | 1011 | 555.2166667 |
| Topeka         | 2023-12-03 | Winter | 7.87  | -1.03 | 8.46  | 0     | 323 | 22.536 | 42.156 | 1008 | 575.9666667 |
| Columbus       | 2023-12-03 | Winter | 10.98 | 5.88  | 11.79 | 0.56  | 249 | 26.532 | 53.244 | 1007 | 570.8833333 |
| Springfield    | 2023-12-03 | Winter | 9.68  | -0.82 | 10.9  | 0     | 262 | 28.764 | 51.48  | 1012 | 585.8166667 |
| Jefferson City | 2023-12-03 | Winter | 6.04  | 3.41  | 9.42  | 0     | 268 | 19.548 | 37.008 | 1013 | 578.55      |
| Frankfort      | 2023-12-04 | Winter | 32.31 | 16.67 | 34.36 | 0     | 316 | 18.972 | 33.984 | 1011 | 825.3166667 |

#### **IV: ELT PROCESS**

The VPC is a virtual private cloud. Our archived data is present in this VPC. This provides a cloud portion which acts like traditional offline data center network. The VPC is first created. In which the SQL cloud instance is put. Now we can connect this to the big Query using the Data Stream.

#### **DATA STREAM**

This data stream is an end-to-end connection which basically means it has end to end encryption so there are not going to be any attacks or loss of data through the process of data transfer from the VPC to the Big Ouery.

This is important to remember to set up security authorizations to the allow DataStream to push data into the big query. Before we initialize the data stream, it is advisable to create a replication data stream process to completely understand if the stream is facing with any issues and resolve them so that these errors can be avoided in the actual data stream and let the data be pushed to the Big Query in a smoothy without any errors since the initialization.

After the initialization, we will be able to load the data, which is considered as raw data into the Big Query. In this big query, we will create a staging database in which the raw data is temporarily stored.

#### V.AIRFLOW

#### **ETL Processing**

Since the real-time data is huge and constantly keep changing, it is important to handle this data. This kind of data needs some scheduling and transformations whenever the API is updated with new data.

The Apache airflow is a type of service that can orchestrate the workflows that are complex. It is a powerful tool that helps in scheduling various tasks, manage data pipeline basically using DAGs.

For this project, the Apache airflow is used to create DAGs to define, schedule and execute a few tasks which basically form a pipeline.



#### This DAG perform various tasks:

Pulling data: It extracts the data from openweather API for a particular list of cities. Now this data is then stored in weather\_data\_all which is Xcom to be used in subsequent tasks.

Validate Data: This task basically validates the retrieved data, checks if there are any missing or errors in the data. It then processes the data after either correcting or filling of the data, subsequently updates the table in Big Query with the number of records or missing records.

Transform Data: This raw data is then structured into a data frame including changing few column datatypes to appropriate types. Which is then pushed into weather df to Xcom.

#### Load Data:

Now this task is used to load the data into Big Query. This defines the schema data-225-group-project. climate\_.real\_time\_data while converting to appropriate datatypes. This is loaded into a staging database.

#### Staging:

Small transformations are performed on the data where duplicates are dropped and the data is loaded inot the warehouse This pipeline is schedules to run daily since the API is updated daily. This whole ETL is run using cloud composer.

#### VI. DATAWAREHOUSE

#### Datawarehouse:

Datawarehouse is one of the most important storing techniques used for any kind of efficient project that specifically have lot of data to work with. It helps in storing the data that is centralized and can intergrade different kinds of data. It is also mostly used to store historical data on which analytics are performed. One can decide in which structure to store the data in, for example in snowflake or star schema.

There are various Datawarehouse tools in GCP in which BigQuery is used for this project because of its infrastructure to store data and retrieve it to form various analytics.

Big Query is a GCP which provides a cloud-based warehouse that can be used for storing the data and using this data for further analysis. It can help in providing analysis for real time data in huge volumes.

For Big Query, the schema structured is used star scheme, which is one of the most famous techniques for structuring the data in warehouse. In a star scheme, there is a central table called fact table which basically connects with other tables called dimensions table with the help of foreign keys. This structure is called a start schema because of its representation which looks like a star with tables connecting to one fact table.

The raw data which is sent through the data stream is fetched and saved under one dataset called climate-data-staging. From this dataset, the data is transformed into star schema, performing various operations like changing the datatypes of the columns, expanding the date column and so on.

For this project, we have converted the data into start schema structure this way:

#### climate fact:

This table is a fact table which consist of attributes like

Station id, record date, minimum, maximum, average temperature, snow information, precipitation, wind data, sunshine level and the greenhouse gas data

| Field name             | Туре   | Mode     |
|------------------------|--------|----------|
| stationid              | STRING | NULLABLE |
| record_date            | DATE   | NULLABLE |
| avg_temp_c             | FLOAT  | NULLABLE |
| min_temp_c             | FLOAT  | NULLABLE |
| max_temp_c             | FLOAT  | NULLABLE |
| precipitation_mm       | FLOAT  | NULLABLE |
| snow_depth_mm          | FLOAT  | NULLABLE |
| avg_wind_dir_deg       | FLOAT  | NULLABLE |
| avg_wind_speed_kmh     | FLOAT  | NULLABLE |
| peak_wind_gust_kmh     | FLOAT  | NULLABLE |
| avg_sea_level_pres_hpa | FLOAT  | NULLABLE |
| sunshine_total_min     | FLOAT  | NULLABLE |
| ghgas_data             | FLOAT  | NULLABLE |

There are 4 primary dimension tables created.

#### Location dimension:

This table is extracted from the city and country tables and has all the information related to the location, hence its name.

| Field name | Туре   | Mode     |
|------------|--------|----------|
| station_id | STRING | NULLABLE |
| city_name  | STRING | NULLABLE |
| state      | STRING | NULLABLE |
| country    | STRING | NULLABLE |
| iso3       | STRING | NULLABLE |
| capital    | STRING | NULLABLE |
| region     | STRING | NULLABLE |
| continent  | STRING | NULLABLE |

#### **Date Dimension:**

This tables is extracted from daily-weather dataset and after apply various transactions on the data like extracting month, year, date from record date column.

| Field name     | Туре    | Mode     |
|----------------|---------|----------|
| date_id        | INTEGER | NULLABLE |
| record_date    | DATE    | NULLABLE |
| record_week    | INTEGER | NULLABLE |
| record_month   | INTEGER | NULLABLE |
| record_quarter | INTEGER | NULLABLE |
| record_year    | INTEGER | NULLABLE |
| season         | STRING  | NULLABLE |

#### Greenhouse gas emission Dimension:

This tables are completely extracted from the greenhouse gas dataset.

| Field name    | Туре    | Mode     |
|---------------|---------|----------|
| ghgas_id      | INTEGER | NULLABLE |
| ghgas_country | STRING  | NULLABLE |
| Gas           | STRING  | NULLABLE |
| Component     | STRING  | NULLABLE |
| Year          | INTEGER | NULLABLE |

# Real Time Data:

This consist of data from the API, which provides the real-time data, that gets updated on daily basis.

| Field name             | Type   | Mode     |
|------------------------|--------|----------|
| city_name              | STRING | NULLABLE |
| date                   | DATE   | NULLABLE |
| season                 | STRING | NULLABLE |
| avg_temp_c             | FLOAT  | NULLABLE |
| min_temp_c             | FLOAT  | NULLABLE |
| max_temp_c             | FLOAT  | NULLABLE |
| precipitation_mm       | FLOAT  | NULLABLE |
| avg_wind_dir_deg       | FLOAT  | NULLABLE |
| avg_wind_speed_kmh     | FLOAT  | NULLABLE |
| peak_wind_gust_kmh     | FLOAT  | NULLABLE |
| avg_sea_level_pres_hpa | FLOAT  | NULLABLE |
| sunshine_total_min     | FLOAT  | NULLABLE |
|                        |        |          |

#### **Data Tracking**

This table basically records the real time on how many records are being transferring or missing. This is for the monitoring of real time data only.

| Field name      | Туре     | Mode     |
|-----------------|----------|----------|
| Date            | DATETIME | NULLABLE |
| Recorded        | INTEGER  | NULLABLE |
| Missing_records | INTEGER  | NULLABLE |

#### VII. DATAWAREHOUSE

Various data analysis can be performed using this data like:

1-Top Cities by Average Temperature
SELECT
city\_name,
AVG(avg\_temp\_c) AS avg\_temperature
FROM
`data-225-group-project.climate\_dwh.climate\_fact`

fact JOIN

 $\verb|`data-225-group-project.climate_dwh.location_dim'| location|$ 

ON

fact.stationid = location.station\_id

**GROUP BY** 

city\_name

ORDER BY

avg\_temperature DESC

LIMIT 20;

| Row | city_name ▼   | avg_temperature |
|-----|---------------|-----------------|
| 1   | Honolulu      | 24.89408247489  |
| 2   | Phoenix       | 22.91001673478  |
| 3   | Austin        | 20.45615246291  |
| 4   | Tallahassee   | 19.85505529485  |
| 5   | Montgomery    | 18.47826236387  |
| 6   | Columbia      | 17.68848571724  |
| 7   | Little Rock   | 17.07175005845  |
| 8   | Atlanta       | 16.77345754785  |
| 9   | Sacramento    | 15.70770115343  |
| 10  | Oklahoma City | 15.67218438621  |
| 11  | Raleigh       | 15.49904015468  |

# 2-Top Cities with the Most Extreme Weather Events

```
SELECT
  l.city name,
  COUNT(*) AS extreme events count
FROM
  'data-225-group-project.climate dwh.climate fact'
JOIN
  'data-225-group-project.climate dwh.location dim'
1
ON
  c.stationid = 1.station id
  c.max temp c > 35 OR c.min temp c < 0 OR
c.precipitation mm > 100
GROUP BY
  l.city name
ORDER BY
  extreme events count DESC
LIMIT 10;
```

| 1  | Montpelier  | 20760 |
|----|-------------|-------|
| 2  | Cheyenne    | 17977 |
| 3  | Helena      | 14539 |
| 4  | Bismarck    | 14457 |
| 5  | Carson City | 14426 |
| 6  | Concord     | 13664 |
| 7  | Springfield | 13483 |
| 8  | Saint Paul  | 12669 |
| 9  | Denver      | 12603 |
| 10 | Madison     | 12417 |

# 3-Extreme Climate Events by City with Corresponding Dates

```
WITH ExtremeDates AS (
 SELECT
  stationid.
  MAX(max temp c) AS max temperature,
  MIN(min temp c) AS min temperature,
  MAX(peak wind gust kmh) AS max wind speed,
  MAX(precipitation mm) AS max precipitation
 FROM
  'data-225-group-project.climate dwh.climate fact'
 GROUP BY
  stationid
)
SELECT
  location.city name,
  dates.record date AS date max temperature,
  dates min.record date AS date min temperature,
  dates wind.record date AS date max wind speed,
  dates precipitation.record date AS
date max precipitation,
  extreme dates.max temperature,
  extreme dates.min temperature,
  extreme dates.max wind speed,
  extreme dates.max precipitation
FROM
  ExtremeDates extreme dates
JOIN
  'data-225-group-project.climate dwh.climate fact'
dates
  ON extreme dates.stationid = dates.stationid
  AND extreme dates.max temperature =
dates.max temp c
JOIN
  'data-225-group-project.climate dwh.climate fact'
  ON extreme dates.stationid = dates min.stationid
  AND extreme dates.min_temperature =
dates min.min temp c
JOIN
   'data-225-group-project.climate dwh.climate fact'
dates wind
  ON extreme dates.stationid = dates wind.stationid
  AND extreme dates.max wind speed =
dates wind.peak wind gust kmh
JOIN
   'data-225-group-project.climate dwh.climate fact'
dates precipitation
  ON extreme dates.stationid =
dates precipitation.stationid
```

AND extreme dates.max precipitation =

dates precipitation.precipitation mm

**JOIN** 

`data-225-group-project.climate\_dwh.location\_dim` location

ON extreme dates.stationid = location.station id;

| city_name * | 1 | date_max_temperaty | date_min_temperaty | date_max_wind_spey | date_max_precipitati | max_temperature • | min_temperature • | max_wind_speed • | max_precipitation |
|-------------|---|--------------------|--------------------|--------------------|----------------------|-------------------|-------------------|------------------|-------------------|
| Des Moines  |   | 1983-08-16         | 1996-02-03         | 1993-07-24         | 1975-08-27           | 42.2              | -32.2             | 133.2            | 157.0             |
| Springfield |   | 1954-07-14         | 1905-02-13         | 1975-11-29         | 2016-08-12           | 44.4              | -31.1             | 122.0            | 142.0             |
| Boston      |   | 2011-07-22         | 1943-02-15         | 1954-08-31         | 1955-08-19           | 39.4              | -25.6             | 160.9            | 179.3             |
| Concord     |   | 1966-07-03         | 1943-02-16         | 1995-04-05         | 2006-05-13           | 38.9              | -38.3             | 97.9             | 130.0             |
| Jackson     |   | 2012-06-29         | 1985-01-21         | 1985-12-01         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1985-01-21         | 1988-02-15         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1985-01-21         | 1993-06-04         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1985-01-20         | 1985-12-01         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1985-01-20         | 1988-02-15         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1985-01-20         | 1993-06-04         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |
| Jackson     |   | 2012-06-29         | 1994-01-19         | 1985-12-01         | 2015-04-03           | 40.0              | -27.8             | 96.1             | 109.0             |

# 4-Total Greenhouse Gas Emissions by Country

#### **SELECT**

ghgas\_country,

SUM(ghgas id) AS total emissions

**FROM** 

`data-225-group-project.climate\_dwh.ghgas\_dim`

**GROUP BY** 

ghgas country

**ORDER BY** 

total emissions DESC;

| Row | ghgas_country ▼      | total_emissions ▼ |
|-----|----------------------|-------------------|
| 1   | Zimbabwe             | 419699886         |
| 2   | Zambia               | 418727198         |
| 3   | Yemen                | 417754510         |
| 4   | Viet Nam             | 416568318         |
| 5   | Venezuela            | 415595630         |
| 6   | Vanuatu              | 414622942         |
| 7   | Uzbekistan           | 413650254         |
| 8   | USA                  | 412677566         |
| 9   | Uruguay              | 411704878         |
| 10  | United Kingdom       | 410732190         |
| 11  | United Arab Emirates | 409759502         |

# 5-Gas Component Distribution

#### **SELECT**

Gas,

COUNT (\*) AS component count

**FROM** 

`data-225-group-project.climate\_dwh.ghgas\_dim` GROUP BY

Gas;

| Gas ▼  | component_count |
|--------|-----------------|
| CH[4]  | 121152          |
| CO[2]  | 126744          |
| N[2]*O | 121152          |

6-Years with the most gas emission in USA

#### **SELECT**

Year.

SUM(ghgas id) AS total emissions

#### FRON

`data-225-group-project.climate\_dwh.ghgas\_dim` WHERE

ghgas\_country = 'USA' -- Adjust this condition based on your actual data

**GROUP BY** 

Year

ORDER BY

total\_emissions DESC

# LIMIT 10;

| Year ▼ | /    | total_emissions ▼ |
|--------|------|-------------------|
|        | 2021 | 2175560           |
|        | 2020 | 2175551           |
|        | 2019 | 2175542           |
|        | 2018 | 2175533           |
|        | 2017 | 2175524           |
|        | 2016 | 2175515           |
|        | 2015 | 2175506           |
|        | 2014 | 2175497           |
|        | 2013 | 2175488           |
|        | 2012 | 2175479           |

#### VIII. VISUALIZATION



The graphic consists of three graphs that display temperature data for several American cities, states, and years. The first graph shows a map of the US with various cities represented by blue dots. The dots' sizes reflect the temperature in the city. The second graph shows a map of the US with the highest temperatures in each state indicated by shades of blue and green. The temperature in such state is reflected in the shade's intensity. The average temperature is displayed on a line graph in the third graph, which spans the years 1940 through



This is a data visualization image that shows the top 10 cities with the highest temperature and the monthly average temperature trends by station. The image is divided into three sections: the top left section shows a table of the top 10 cities with the highest temperature, the top right section shows a bar graph of the average precipitation of each city by maximum temperature, and the bottom section shows a table of the monthly average temperature trends by station.

# IX. MACHINE LEARNING IN BIG QUERY

From the data we can perform various kinds of techniques such as time series, linear regression modeling, etc.

For this project, we were able to perform time series to predict the future weather reports based on the archived data information.

#### ARIMA model

In Big Query, with the Machine learning functions we can perform time series analysis. Using max\_temp\_c as the target variable and the record date as the timestamp, AutoRegressive Integrated moving average

#### time series can be performed.



Based on the maximum temperature in Arizona since 1950



This model can be evaluated by calculation different types of metrices like mean absolute error , mean squared error , etc



We can also retrieve the correlation of the model along with the autoregressive and moving average (MA) coefficient



#### Results:

Model results can be seen using trained ARIMA model.

To display these results, we've used Arizona data from the year 1950 to August 2023 and tried predicting the weather of the next 30 days using the model.



Here, the results indicate the weather predictions of the next 30 days using the ARIMA model.



#### X. CONCLUSION

This is how we can use google cloud services to predict the weather change in the future. However, this project is only centered to the cities in USA. This is because of the limitation with the cloud storage for the version being used. Furthermore, the data in the archive data and real-time data are not consistent which led us to extract only 101 cities in USA.

The future scope of this project could be that, instead of predicting just for few cities in United Sates, it can be used for predicting globally.