COMPILANDO CONOCIMIENTO

Análisis Vectorial

CÁLCULO

Alan Enrique Ontiveros Salazar

Enero 2018

Índice general

Ι	Int	rodu	cción a los Vectores sobre $\mathbb R$	6		
1.	Con	Conceptos Básicos				
	1.1.	Defini	ción de Escalar	8		
	1.2.	Defini	ción de Vector	8		
		1.2.1.	Punto de Vista Geométrico	8		
		1.2.2.	Punto de Vista Algebráico	8		
	1.3.	Relaci	ones entre Puntos y Vectores	9		
		1.3.1.	Vector Posición	9		
		1.3.2.	Vector Desplazamiento	9		
2.	Álgo	ebra V	vectorial	10		
	2.1.	Opera	ciones Básicas	11		
		2.1.1.	Igualdad de Vectores	11		
		2.1.2.	Suma y Resta	11		
		2.1.3.	Multiplicación por Escalar y Propiedades	12		
	2.2.	Propie	edades de Operaciones	13		
2.3. Magnitud		tud	15			
	2.4.	Vector	Unitario	16		
		2.4.1.	Normalización	16		
		2.4.2.	Representación en Vectores Unitarios	17		
	2.5.	Depen	dencia e independencia lineal	18		
		2.5.1.	Ideas Importantes	18		
		2.5.2.	Cómo saber si mi conjunto de vectores es l.i. o l.d.?	19		

	2.6.	Produ	ctos entre vectores	20
		2.6.1.	Producto punto	20
		2.6.2.	Producto cruz	20
		2.6.3.	Producto triple	20
		2.6.4.	Propiedades útiles	20
3.	Apl	icacion	nes a la geometría	21
	3.1.	Ecuaci	ión del plano	21
	3.2.	Ecuaci	ión de la recta	21
	3.3.	Ecuaci	ión de la esfera	21
	3.4.	Distan	cia punto-recta y punto-plano	21
	3.5.	Rotaci	ones en el espacio	21
	3.6.	Demos	straciones geométricas mediante vectores	21
II	\mathbf{C}			22
		ciones	de varias variables	23
	Fun		de varias variables sentación como superficies	23
	Fun	Repres		23 24
	Fun 4.1.	Repres 4.1.1.	sentación como superficies	23 24
	Fun 4.1.	Repres 4.1.1. Límite	sentación como superficies	23 24 24 24
	Fun 4.1.	Repres 4.1.1. Límite 4.2.1.	sentación como superficies	23 24 24 24 24
	Fun 4.1.	Repres 4.1.1. Límite 4.2.1. 4.2.2.	sentación como superficies	23 24 24 24 24 24 24
	Fun 4.1. 4.2.	Represe 4.1.1. Límite 4.2.1. 4.2.2. Contin	sentación como superficies	23 24 24 24 24 24 24
	Fun 4.1. 4.2.	Representation 4.1.1. Límite 4.2.1. 4.2.2. Continuation Derivation	sentación como superficies	23 24 24 24 24 24 24
	Fun 4.1. 4.2.	Representation A.1.1. Límite 4.2.1. 4.2.2. Continuation Deriva 4.4.1.	sentación como superficies	23 24 24 24 24 24 24 24
	Fun 4.1. 4.2.	Represe 4.1.1. Límite 4.2.1. 4.2.2. Continu Deriva 4.4.1. 4.4.2.	sentación como superficies	23 24 24 24 24 24 24 24 24
	Fun 4.1. 4.2.	Represe 4.1.1. Límite 4.2.1. 4.2.2. Continu Deriva 4.4.1. 4.4.2. 4.4.3.	Sentación como superficies Curvas de nivel y de contorno Definición intuitiva Definición formal das parciales Plano tangente a una superficie Diferenciabilidad	23 24 24 24 24 24 24 24 24 24
	Fun 4.1. 4.2. 4.3. 4.4.	Represe 4.1.1. Límite 4.2.1. 4.2.2. Continu Deriva 4.4.1. 4.4.2. 4.4.3. Gradie	Sentación como superficies Curvas de nivel y de contorno S	23 24 24 24 24 24 24 24 24 24 24
	Fun 4.1. 4.2. 4.3. 4.4.	Represe 4.1.1. Límite 4.2.1. 4.2.2. Continu Deriva 4.4.1. 4.4.2. 4.4.3. Gradie Regla	Sentación como superficies	23 24 24 24 24 24 24 24 24 24 24

	4.8.	. Puntos críticos				
		4.8.1.	Máximos, mínimos y puntos silla	24		
		4.8.2.	Criterio del hessiano	24		
	4.9.	Multip	olicadores de Lagrange	24		
5.	Fun	ciones	vectoriales	2 5		
	5.1.	Curvas	s en forma paramétrica	26		
		5.1.1.	Reglas de derivación	26		
		5.1.2.	Velocidad y aceleración	26		
		5.1.3.	Longitud de arco	26		
		5.1.4.	Parametrización por longitud de arco	26		
		5.1.5.	Geometría diferencial	26		
	5.2.	Campo	os vectoriales	26		
		5.2.1.	Líneas de campo	26		
		5.2.2.	Derivadas parciales	26		
	5.3.	Opera	dor nabla	26		
		5.3.1.	Gradiente	26		
		5.3.2.	Divergencia	26		
		5.3.3.	Rotacional	26		
		5.3.4.	Laplaciano	26		
		5.3.5.	Propiedades	26		
ΙΙ	I	Cálcul	o integral vectorial	27		
6.	Inte	grales	multivariable	28		
	6.1.	Region	nes	29		
		6.1.1.	Regiones del plano y tipos	29		
		6.1.2.	Regiones del espacio y tipos	29		
	6.2.	Integra	ales iteradas	29		
	6.3.	Integra	ales dobles	29		
		6.3.1.	Integración sobre regiones arbitrarias	29		

		6.3.2.	¿Cómo hallar los límites de integración?	29
		6.3.3.	Teorema de Fubini	29
	6.4.	Integra	ales triples	29
		6.4.1.	Integración sobre regiones arbitrarias	29
		6.4.2.	¿Cómo hallar los límites de integración?	29
	6.5.	Cambi	o de variable en 2 y 3 dimensiones	29
		6.5.1.	Transformación de coordenadas	29
		6.5.2.	Jacobiano	29
	6.6.	Aplica	ciones	29
		6.6.1.	Valor promedio	29
		6.6.2.	Centro de masa	29
		6.6.3.	Momento de inercia	29
7	Inte	orales	de funciones vectoriales	30
••		O		31
	1.1.	7.1.1.		31
		7.1.2.		31
				31
	7.2.		1	31
		7.2.1.	•	31
		7.2.2.	•	31
		7.2.3.		31
	7.3.	Integra		31
		_		31
			·	31
	7.4.	Consej	jos para parametrizar y definir límites	31
		-		
8.	Teo	remas	O .	32
	8.1.			32
		8.1.1.	Cálculo de áreas dado el contorno	32
	8.2.	Teorem	na de Stokes	32

		8.2.1.	Frontera de una superficie	32
	8.3.	Teorer	na de la divergencia de Gauss	32
		8.3.1.	Superficie cerrada	32
I	/ (Coord	enadas curvilíneas	33
9.	Coo	rdena	das curvilíneas generalizadas	34
	9.1.	Transf	formación de coordenadas	35
	9.2.	Sistem	nas ortogonales	35
	9.3.	Vector	res unitarios	35
		9.3.1.	Factores de escala	35
	9.4.	Integra	ación	35
		9.4.1.	Elemento de línea	35
		9.4.2.	Elemento de longitud de arco	35
		9.4.3.	Elemento de área	35
		9.4.4.	Elemento de volumen	35
	9.5.	Opera	dor nabla	35
		9.5.1.	Gradiente	35
		9.5.2.	Divergencia	35
		9.5.3.	Rotacional	35
		9.5.4.	Laplaciano	35
	9.6.	Sistem	nas comunes de coordenadas	35
		9.6.1.	Cilíndricas	35
		962	Esféricas	35

Parte I

Introducción a los Vectores sobre $\mathbb R$

Conceptos Básicos

1.1. Definición de Escalar

Definiremos a los escalares como elementos de \mathbb{R} , es decir, cualquier número de la recta real. Reciben ese nombre porque al ser multiplicados por un vector, como veremos más adelante, lo pueden aumentar o disminuir de tamaño, es decir, los escalan.

Son usados para describir cantidades que solo dependen de un número (y posiblemente una unidad en Física por ejemplo) para ser descritas completamente, por ejemplo, masa, volumen, temperatura, longitud, etc.

1.2. Definición de Vector

Probablemente el concepto de vector es el que más definiciones tiene dependiendo de qué punto de vista se estudien.

Aquí solo veremos cómo definirlos sobre el plano de \mathbb{R}^2 y el espacio de \mathbb{R}^3 .

También existen muchas formas de escribirlos, aquí usaremos de manera general una flecha arriba de la variable: \vec{a} , aunque también nos dará la gana y podemos poner la variable en negritas: $\bf a$

1.2.1. Punto de Vista Geométrico

Podemos extender el concepto de un punto en el espacio y definir a un vector como la flecha que apunta desde el origen hasta ese punto.

De esta forma vemos que un vector tiene **magnitud** (la longitud desde el origen hasta el punto), **dirección** (es decir la recta que pasa por el origen y ese punto) y **sentido** (hacia dónde apunta la flecha).

1.2.2. Punto de Vista Algebráico

Un vector \vec{a} es un elemento de \mathbb{R}^2 o de \mathbb{R}^3 , y escribimos $\vec{a} = (a_1, a_2, a_3)$, donde $a_1, a_2, a_3 \in \mathbb{R}$ son sus **coordenadas** o **componentes**.

Por lo tanto no es más que un simple par o terna ordenada de números. De una manera similiar (aunque no lo veremos ahora, podemos ampliar la idea de vectores sobre \mathbb{R} (o sobre cualquier campo) como un tupla de n-reales).

Si pasa que $a_3 = 0$, simplemente podemos escribir (a_1, a_2) para un vector en el plano. De forma similar, las propiedades que se cumplan para un vector en \mathbb{R}^3 se cumplen para vectores en \mathbb{R}^2 ignorando la tercera componente.

1.3. Relaciones entre Puntos y Vectores

En esencia un vector y un punto son lo mismo, pero un punto solo indica una posición en el espacio, mientras que un vector indica un **desplazamiento**. Lo veremos a continuación.

1.3.1. Vector Posición

Dado un punto P, definimos al vector posición de P respecto de un origen O como el vector \overrightarrow{OP} , que tendrá las mismas coordenadas del punto P.

1.3.2. Vector Desplazamiento

Dados dos puntos P y Q, definimos al vector desplazamiento de P a Q como el vector \overrightarrow{PQ} , en donde el origen de la flecha está en P y la punta en Q. De esta forma vemos que los vectores no necesariamente comienzan en el origen, sino en donde queramos. Es muy importante comprender y recordar esto a lo largo de este librito.

Ahora, supón 2 puntos $P = (x_1, y_1, z_2) \in \mathbb{R}^2$ y $Q = (x_1, y_1, z_2) \in \mathbb{R}^3$.

Entonces tenemos que las coordenadas del vector \overrightarrow{PQ} se puede ver como: $PQ = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

Álgebra Vectorial

2.1. Operaciones Básicas

2.1.1. Igualdad de Vectores

Definición 2.1.1 (Igualdad de 2 Vectores) Decimos que dos vectores son iguales si y solo si sus componentes correspondientes son iguales.

Es decir, si tenemos $\vec{a} = (a_1, a_2, a_3)$ y $\vec{b} = (b_1, b_2, b_3)$, entonces $\vec{a} = \vec{b}$ si y solo si $a_1 = b_1$, $a_2 = b_2$ y $a_3 = b_3$.

2.1.2. Suma y Resta

Definición 2.1.2 (Suma de Vectores) Decimos que $\vec{a} + \vec{b}$ es la suma de \vec{a} con \vec{b} si y solo si cada componente de $\vec{a} + \vec{b}$ es la suma de los correspondientes componentes de \vec{a} y \vec{b} . O sea, simplemente sumamos componente a componente.

Sean
$$\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3 \text{ y } \vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3.$$

Entonces decimos que:

$$\vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

Geométricamente, para sumar \vec{a} con \vec{b} colocamos el principio de \vec{b} junto a la punta de \vec{a} . El vector $\vec{a} + \vec{b}$ será el vector que comienza en donde comienza \vec{a} y termina en donde termina \vec{b} .

Definición 2.1.3 (Resta de Vectores) Decimos que $\vec{a} - \vec{b}$ es la resta de \vec{a} menos \vec{b} si y solo si cada componente de $\vec{a} - \vec{b}$ es la resta de los correspondientes componentes de \vec{a} y \vec{b} . O sea, simplemente restamos componente a componente.

Sean
$$\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$$
 y $\vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$.

Entonces decimos que:

$$\vec{a} - \vec{b} := (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Con esta definición, podemos decir que el vector desplazamiento del punto P al punto Q es el vector $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$.

2.1.3. Multiplicación por Escalar y Propiedades

Definición 2.1.4 (Producto de un Vector por un Escalar) Decimos que $k\vec{a}$ es el producto escalar de a con k si y solo si cada componente de $k\vec{a}$ es la el producto del correspondiente componente de \vec{a} multiplicada por k.

Es decir, solo multiplicamos cada componente (que son escalares) por el escalar k.

Sea $\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$ un vector y $k \in \mathbb{R}$ un escalar.

Entonces decimos que:

$$k\vec{a} = (ka_1, ka_2, ka_3)$$

Geométricamente, multiplicar un vector por un escalar es de agrandarlo o reducirlo pero sin cambiar su dirección (su sentido se invierte si k < 0, se queda igual si k > 0 y obtenemos el cero vector si k = 0).

Expresar en coordenadas

Definición de suma de vectores

Definición de suma a la inversa

Volvemos a armar a los vectores

Propiedad conmutativa de los reales

2.2. Propiedades de Operaciones

Las operaciones anteriores cumplen con las siguientes propiedades, donde $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ y $\alpha, \beta \in \mathbb{R}$. Vemos que todas se heredan de las ya conocidas propiedades de los números reales:

• Conmutativa: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.

Demostración:

Se sigue inmediatamente de la propiedad conmutativa de los números reales:

$$\vec{a} + \vec{b} = (a_1, a_2, a_3) + (b_1, b_2, b_3)$$

$$= (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$= (b_1 + a_1, b_2 + a_2, b_3 + a_3)$$

$$= (b_1, b_2, b_3) + (a_1, a_2, a_3)$$

$$= \vec{b} + \vec{a}$$

• Asociativa: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

Idea de Demostración:

Exactamente la misma que la anterior, solo que usando la propiedad asociativa en los reales.

Como ambas expresiones son iguales, podemos escribir sin ambigüedad que:

$$\vec{a} + \left(\vec{b} + \vec{c}\right) = \left(\vec{a} + \vec{b}\right) + \vec{c} = \vec{a} + \vec{b} + \vec{c}$$

■ Neutro Aditivo: Existe $\vec{0} \in \mathbb{R}^3$ (el cero vector) tal que $\vec{a} + \vec{0} = \vec{a}$.

Ideas

¿Quién crees que sea ese cero vector? Exacto, $\vec{0} = (0,0,0)$ Este vector es el único que no tiene una dirección ni un sentido bien definidos.

■ Inverso Aditivo: Existe $-\vec{a} \in \mathbb{R}^3$ tal que $\vec{a} + (-\vec{a}) = \vec{0}$.

Ideas:

Justamente las coordenadas de $-\vec{a}$ son los inversos aditivos en los reales de sus coordenadas: $-\vec{a} = (-a_1, -a_2, -a_3)$

■ Distributiva sobre Escalares: $(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$

Demostración:

$$(\alpha + \beta)\vec{a} = (\alpha + \beta)(a_1, a_2, a_3)$$
 Expresar en coordenadas
$$= ((\alpha + \beta)a_1, (\alpha + \beta)a_2, (\alpha + \beta)a_3)$$
 Definición de producto por escalar
$$= (\alpha a_1 + \beta a_1, \alpha a_2 + \beta a_2, \alpha a_3 + \beta a_3)$$
 Propiedad distributiva en los reales
$$= (\alpha a_1, \alpha a_2, \alpha a_3) + (\beta a_1, \beta a_2, \beta a_3)$$
 Definición de suma a la inversa
$$= \alpha (a_1, a_2, a_3) + \beta (a_1, a_2, a_3)$$
 Definición de producto a la inversa
$$= \alpha \vec{a} + \beta \vec{a}$$
 Volvemos a armar a los vectores

 \bullet Distributiva sobre Vectores: $\alpha \vec{a} + \vec{b} = \alpha \vec{a} + \alpha \vec{b}$

Idea de Demostración: Usa la definición de suma de vectores y la de multiplicación por escalar, debería de quedarte al primer intento.

■ Asociativa sobre Escalares: $\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a} = \beta(\alpha \vec{a})$

Idea de Demostración: Las mismas técnicas que las anteriores. Ya no quiero hacer más demostraciones :o

Todas las propiedades anteriores se pueden generalizar perfectamente a vectores en cualquier dimensión, es decir, que pertenezcan a \mathbb{R}^n .

VE AL ÍNDICE

2.3. Magnitud

Definición 2.3.1 (Magnitud de un Vector) Sea $\vec{a} \in \mathbb{R}^3$. Definimos a la magnitud o al módulo de \vec{a} como:

$$\|\vec{a}\| := \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}$$

Geométricamente es la distancia del origen a la punta del vector debido al teorema de Pitágoras. A veces se usa la notación $|\vec{a}|$ o simplemente el vector sin flecha a para referirse a su magnitud, pero aquí usaremos dobles barras.

Propiedades

• Si k es un escalar y \vec{a} es un vector entonces: $||k\vec{a}|| = |k| \, ||\vec{a}||$

Demostración:

Es decir, la magnitud del producto de un escalar por un vector es igual al valor absoluto del escalar por la magnitud del vector, por lo que de alguna forma podemos "sacar" el escalar.

$ k\vec{a} = k(a_1, a_2, a_3) $	Representación en Coordenadas
$= \ (ka_1, ka_2, ka_3)\ $	Definición de multiplicación por escalar
$= \sqrt{(ka_1)^2 + (ka_2)^2 + (ka_3)^2}$	Definición de magnitud
$= \sqrt{k^2(a_1)^2 + k^2(a_2)^2 + k^2(a_3)^2}$	Propiedad de los exponentes en los reales
$=\sqrt{k^2(a_1^2+a_2^2+a_3^2)}$	Factorización
$= \sqrt{k^2} \sqrt{a_1^2 + a_2^2 + a_3^2}$	Se distribuye sobre el producto de reales
$= k \ \vec{a}\ $	Propiedad de raíz y definición de magnitud

2.4. Vector Unitario

Definición 2.4.1 (Vector Unitario) Si un vector \vec{v} cumple que $||\vec{v}|| = 1$, decimos que es un vector unitario y usualmente se denota como \hat{v} .

Recordando a la propiedad de que $||k\vec{a}|| = |k| ||\vec{a}||$ lo anterior nos motiva a que, dado un vector cualquiera $\vec{v} \neq \vec{0}$, queramos obtener su equivalente unitario \hat{v} , es decir, el vector con su misma dirección y sentido pero con magnitud 1.

Dicho proceso se conoce como normalización.

2.4.1. Normalización

Teorema 2.4.1 (Normalización) Sea \vec{v} un vector entonces podemos obtener su vector unitario como:

$$\hat{v} = \frac{1}{\|\vec{v}\|} \; \vec{v}$$

Demostración:

Es fácil ver que la magnitud del vector propuesto es 1, usando lo que ya sabemos:

$$\|\hat{v}\| = \left\| \frac{1}{\|\vec{v}\|} \vec{v} \right\|$$

$$= \left| \frac{1}{\|\vec{v}\|} \right| \|\vec{v}\|$$

$$= \frac{1}{\|\vec{v}\|} \|\vec{v}\|$$

$$= 1$$

Y obviamente \hat{v} tiene la misma dirección y sentido que \vec{v} , pues $\frac{1}{\|\vec{v}\|}$ siempre es positivo y está multiplicando a \vec{v} .

2.4.2. Representación en Vectores Unitarios

Definición 2.4.2 (Vectores Unitarios Canónicos) Introducimos a los siguientes vectores:

$$\hat{i} = (1, 0, 0)$$
 $\hat{j} = (0, 1, 0)$ $\hat{k} = (0, 0, 1)$

¿Para qué nos sirve tener a esos vectores?

Simple, para poder escribir cualquier vector $\vec{a} \in \mathbb{R}$ como combinación lineal de ellos en vez de usar la tupla. Veamos cómo:

$$\begin{split} \vec{a} &= (a_1, a_2, a_3) & \text{Representación en coordenadas} \\ &= (a_1 + 0 + 0, 0 + a_2 + 0, 0 + 0 + a_3) & \text{Sumamos ceros convenientemente} \\ &= (a_1, 0, 0) + (0, a_2, 0) + (0, 0, a_3) & \text{Definición de suma} \\ &= a_1(1, 0, 0) + a_2(0, 1, 0) + a_3(0, 0, 1) & \text{Factorización del escalar} \\ &= \mathbf{a_1}\hat{\mathbf{i}} + \mathbf{a_2}\hat{\mathbf{j}} + \mathbf{a_3}\hat{\mathbf{k}} & \text{Definición de los vectores canónicos} \end{split}$$

Es fácil ver que los tres vectores propuestos son unitarios, y la expresión anterior quiere decir que nos estamos desplazando a_1 unidades en dirección al eje \mathbf{x} , a_2 unidades en dirección al eje \mathbf{y} y a_3 unidades en dirección al eje \mathbf{z} .

De esta forma, el desplazamiento total será justamente el vector \vec{a} .

2.5. Dependencia e independencia lineal

Este es un concepto importante antes de pasar a otras operaciones que podemos hacer con los vectores.

Definición 2.5.1 Sean $k_1, k_2, \ldots, k_n \in \mathbb{R}$ escalares $y \ \vec{v_1}, \vec{v_2}, \ldots, \vec{v_n} \in \mathbb{R}^3$ vectores.

Decimos que dichos vectores son linealmente independientes si y solo si:

$$\sum_{i=1}^{n} k_i \vec{a_i} = \vec{0} \quad implica \quad k_1 = k_2 = \dots = k_n = 0$$

En caso contrario decimos que los vectores son linealmente dependientes.

2.5.1. Ideas Importantes

La definición anterior es realmente interesante, porque si la tomamos a la inversa, es decir, asumiendo que todos los escalares k_1, k_2, \ldots, k_n valen cero, entonces la combinación lineal de los vectores siempre daría $\vec{0}$, lo cual no es de mucha utilidad.

Ahora veamos cómo entenderla. Si tenemos n vectores, que son $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$, son linealmente independientes (l.i. para abreviar) si la única forma de obtener el cero vector $\vec{0}$ al multiplicarlos cada uno por un escalar y luego sumar todo es que dichos escalares sean todos 0. Si somos capaces de encontrar algunos otros escalares para esta tarea y el resultado también es $\vec{0}$, los vectores son linealmente dependientes (l.d.).

Una consecuencia de lo anterior es que si los vectores son l.d., entonces alguno de ellos se puede escribir como combinación lineal de los otros. Geométricamente, tomando dichos otros vectores multiplicados por algún escalar como suma de desplazamientos, llegaremos a obtener el vector inicial. Si los vectores fueran l.i. esto no sería posible, nunca podríamos obtener un vector como la suma de desplazamientos de los otros.

Teorema 2.5.1 Sean $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \in \mathbb{R}^3$ vectores linealmente dependientes.

Entonces existe j tal que $1 \le j \le n$ y escalares $l_1, l_2, \ldots, l_{n-1} \in \mathbb{R}$ tales que:

$$\vec{v_j} = \sum_{i=1}^{n-1} l_i \vec{v_i}$$

Idea de la Demostración: Como los vectores son l.d., entonces tiene que haber algún escalar tal que $k_j \neq 0$. Encuentra el vector $\vec{v_j}$ y simplemente despéjalo, eso será posible pues su escalar es distinto de cero.

2.5.2. ¿Cómo saber si mi conjunto de vectores es l.i. o l.d.?

Sigamos la definición, propongamos los escalares $k_1, k_2, \dots, k_n \in \mathbb{R}$ tales que $\sum_{i=1}^n k_i \vec{a_i} = \vec{0}$.

Esto nos llevará a un sistema de n ecuaciones lineales luego de igualar las componente del vector resultante con 0. Si logramos demostrar que dicho sistema tiene como **única** solución $k_1 = k_2 = \cdots k_n = 0$, los vectores son l.i.

Si aparte de esa encontramos otra solución (de hecho si hay más que la solución trivial habrá infinitas soluciones), los vectores son l.d.

2.6. Productos entre vectores

2.6.1. Producto punto

Ángulo entre vectores

Proyección de un vector sobre otro

Desigualdad de Cauchy-Schwarz

Desigualdad del triángulo

2.6.2. Producto cruz

Área de un paralelogramo

2.6.3. Producto triple

Volumen de un paralelepípedo

2.6.4. Propiedades útiles

Aplicaciones a la geometría

- 3.1. Ecuación del plano
- 3.2. Ecuación de la recta
- 3.3. Ecuación de la esfera
- 3.4. Distancia punto-recta y punto-plano
- 3.5. Rotaciones en el espacio
- 3.6. Demostraciones geométricas mediante vectores

Parte II Cálculo diferencial vectorial

Funciones de varias variables

- 4.1. Representación como superficies
- 4.1.1. Curvas de nivel y de contorno
- 4.2. Límites
- 4.2.1. Definición intuitiva
- 4.2.2. Definición formal
- 4.3. Continuidad
- 4.4. Derivadas parciales
- 4.4.1. Plano tangente a una superficie
- 4.4.2. Diferenciabilidad
- 4.4.3. Derivadas de orden superior

Teorema de Clairaut

4.5. Gradiente

4.6. Regla de la cadena

17 Denived dinecional

COMPILANDO CONOCIMIENTO

Funciones vectoriales

- 5.1. Curvas en forma paramétrica
- 5.1.1. Reglas de derivación
- 5.1.2. Velocidad y aceleración
- 5.1.3. Longitud de arco
- 5.1.4. Parametrización por longitud de arco
- 5.1.5. Geometría diferencial

Vector tangente, normal y binormal

Curvatura y torsión

Velocidad y aceleración

Ecuaciones de Frenet-Serret

- 5.2. Campos vectoriales
- 5.2.1. Líneas de campo
- 5.2.2. Derivadas parciales

5.3. Operador nabla

Divergencia

COMPILANDO CONOCIMIENTO

26

VE AL ÍNDICE

5.3.2.

Parte III Cálculo integral vectorial

Integrales multivariable

α	D .	
6.1.	Region	es

- 6.1.1. Regiones del plano y tipos
- 6.1.2. Regiones del espacio y tipos
- 6.2. Integrales iteradas
- 6.3. Integrales dobles
- 6.3.1. Integración sobre regiones arbitrarias
- 6.3.2. ¿Cómo hallar los límites de integración?
- 6.3.3. Teorema de Fubini
- 6.4. Integrales triples
- 6.4.1. Integración sobre regiones arbitrarias
- 6.4.2. ¿Cómo hallar los límites de integración?
- 6.5. Cambio de variable en 2 y 3 dimensiones

6.5.1. Transformación de coordenadas

OSCAR ROSAS Y ALAN ONTIVEROS

6.6. Aplicaciones

29

VE AL ÍNDICE

Integrales de funciones vectoriales

- 7.1. Integrales de línea
- 7.1.1. Función escalar
- 7.1.2. Función vectorial
- 7.1.3. Campos conservativos

Potencial

- 7.2. Integrales de superficie
- 7.2.1. Superficies en forma paramétrica

Vector normal

Relación con el Jacobiano

Cálculo a través del gradiente

- 7.2.2. Función escalar
- 7.2.3. Función vectorial
- 7.3. Integrales de volumen

7.3.1. Regiones del espacio en forma paramétrica

OSCAR ROSAS Y ALAN ONTIVEROS

31

VE AL ÍNDICE

Teoremas de integración

- 8.1. Teorema de Green
- 8.1.1. Cálculo de áreas dado el contorno
- 8.2. Teorema de Stokes
- 8.2.1. Frontera de una superficie
- 8.3. Teorema de la divergencia de Gauss
- 8.3.1. Superficie cerrada

Parte IV Coordenadas curvilíneas

Coordenadas curvilíneas generalizadas

0.1	Thomas	magián da	acandana	مام
9.1.	Iransior	mación de	-coordena	.ตลร

- 9.2. Sistemas ortogonales
- 9.3. Vectores unitarios
- 9.3.1. Factores de escala
- 9.4. Integración
- 9.4.1. Elemento de línea
- 9.4.2. Elemento de longitud de arco
- 9.4.3. Elemento de área
- 9.4.4. Elemento de volumen
- 9.5. Operador nabla
- 9.5.1. Gradiente
- 9.5.2. Divergencia

9.5.3. Rotacional

OSCAR ROSAS Y ALAN ONTIVEROS

35

9.6. Sistemas comunes de coordenadas

VE AL ÍNDICE