Title

D. Zack Garza

Friday 25th September, 2020

Contents

1 Friday, September 25

1

Friday, September 25

• For X, Y topological spaces, consider

$$Y^X = C(X, Y) = \text{hom}_{\text{Top}}(X, Y) := \left\{ f : X \to Y \mid f \text{ is continuous} \right\}.$$

- Topologize with the *compact-open* topology: $U \in \text{hom}_T(X, X)$ open iff for every $f \in U$, f(K) is open for every compact $K \subseteq X$.
 - * If Y = (Y, d) is a metric space, this is the topology of "uniform convergence on compact sets": for $f_n \to f$ in this topology iff

$$||f_n - f||_{\infty,K} := \sup \left\{ d(f_n(x), f(x)) \mid x \in K \right\} \stackrel{n \to \infty}{\to} 0 \quad \forall K \subseteq X \text{ compact.}$$

In words: $f_n \to f$ uniformly on every compact set.

- If X itself is compact and Y is a metric space, C(X,Y) can be promoted to a metric space with $d(f,g) = \sup_{x \in X} (f(x),g(x))$.
- So define $Map(X,Y) = hom_{Top}(X,Y)$ equipped with the compact-open topology.
 - Can immediately consider a lot of interesting spaces by considering Map (\cdot, Y) :

$$X = I := [0, 1] \rightsquigarrow P(Y; x_0) := \left\{ f : I \to Y \mid f(0) = x_0 \right\} = Y^I$$
$$X = S^1 \rightsquigarrow \Omega(Y; x_0) = \mathcal{L}(Y; x_0) := \left\{ f : S^1 \to Y \right\} = Y^{S^1}.$$

- Importance in homotopy theory: the path space fibration $\Omega(Y) \hookrightarrow P(Y) \xrightarrow{\gamma \mapsto \gamma(1)} Y$ (plays a role in "homotopy replacement", allows you to assume everything is a fibration and use homotopy long exact sequences).
- Adjoint property: there is a homeomorphism

$$\operatorname{Map}(X \times Z, Y) \leftrightarrow_{\cong} \operatorname{Map}(Z, \operatorname{Map}(X, Y))$$
$$H : X \times Z \to Y \iff \tilde{H} : Z \to \operatorname{Map}(X, Y)$$
$$(x, z) \mapsto H(x, z) \iff z \mapsto H(\cdot, z).$$

Categorically, $\hom(X,\,\cdot\,) \leftrightarrow (X\times\,\cdot\,)$ form an adjoint pair in Top.

- Fun fact: with some mild point-set conditions (Locally compact and Hausdorff),

$$\pi_0\mathrm{Map}(X,Y) = \left\{[f],\, \mathrm{homotopy\ classes\ of\ maps}\ f: X \to Y\right\},$$

i.e. two maps f,g are homotopic \iff there is a path in Map(X,Y) connecting them. * Proof:

$$\operatorname{Map}(I, \operatorname{Map}(X, Y)) \cong \operatorname{Map}(Y \times I, X),$$

and just check that $\gamma(0) = f \iff H(x,0) = f$ and $\gamma(1) = g \iff H(x,1) = g$.

- Now we can bootstrap up to play fun recursive games: consider
- Since these are homeomorphisms, everything is invertible, so equip with function composition to form a group.

_