Ccole d'Ingénieur de Chimie ∌ékin

Année 2019-2020

Corrigé

Exercice 1 (Sous-espaces vectoriels de dimension finie).

Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension n > 0. Soient U, V, W trois sous-espaces vectoriels de \mathbb{E} .

1- Montrer que si $\dim U + \dim V > n$, alors $U \cap V$ n'est pas réduit à $\{0_{\mathbb{E}}\}$ Corrigé : D'après la formule de Grassman, on a $\dim(U+V) = \dim U + \dim V - \dim(U\cap V)$. Comme U+V est un sous-espace vectoriel de \mathbb{E} , on a nécessairement $\dim(U+V) \leq n$. D'où :

$$\dim(U \cap V) = \dim U + \dim V - \dim(U + V) > n - n \geqslant 0$$

Donc $U \cap V$ n'est pas réduit à $\{0_{\mathbb{E}}\}.$

2- On suppose que $\dim U + \dim V + \dim W > 2n$, que dire de $U \cap V \cap W$?

Corrigé: D'après la formule de Grassman, et le fait que $\dim(U+V) \leq n$, on a $\dim(U\cap V) \geq \dim U + \dim V - n$. Donc

$$\dim(U \cap V) + \dim W \geqslant \dim U + \dim V + \dim W - n > n$$

On peut donc appliquer la question 1 avec $U \cap V$ d'une part et W d'autre part, ce qui donne :

$$\dim(U \cap V \cap W) > 0$$

Et donc $U \cap V \cap W$ n'est pas réduit à $\{0_{\mathbb{E}}\}$.

Exercice 2 (Supplémentaires).

Soit \mathbb{E} un \mathbb{C} -espace vectoriel de dimension n > 0. Soient \mathbb{F}_1 et \mathbb{F}_2 deux sous-espaces-vectoriels de \mathbb{E} .

1- On suppose que $\dim \mathbb{F}_1 = \dim \mathbb{F}_2$. On veut montrer qu'il existe un sous-espace vectoriel \mathbb{G} de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

a) Que dire si $\mathbb{F}_1 = \mathbb{F}_2$?

Corrigé : D'après le cours, pour tout sous-espace vectoriel, il existe un supplémentaire. Donc, $\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{E}$. Comme $\mathbb{F}_1 = \mathbb{F}_2$, on a immédiatement

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

b) Que dire si dim $\mathbb{F}_1 = n$?

Corrigé : Si dim $\mathbb{F}_1 = n$, alors $\mathbb{F}_1 = \mathbb{E}$. Comme on a dim $\mathbb{F}_1 = \dim \mathbb{F}_2$, on a alors aussi $\mathbb{F}_2 = \mathbb{G}$. En posant $\mathbb{G} = \{0_{\mathbb{E}}\}$, on a directement

$$\exists \mathbb{G} \ / \ \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

c) Si $\mathbb{F}_1 \neq \mathbb{F}_2$ et dim $\mathbb{F}_1 < n$, montrer qu'il existe un vecteur x de \mathbb{E} tel que \mathbb{F}_1 soit en somme directe avec $\mathrm{Vect}(x)$, et \mathbb{F}_2 également.

Corrigé : Puisque $\mathbb{F}_1 \neq \mathbb{F}_2$, et que ces espaces sont de même dimension, on peut dire que

 $\mathbb{F}_1 \nsubseteq \mathbb{F}_2$ et $\mathbb{F}_2 \nsubseteq \mathbb{F}_1$ (autrement, on aurait alors $\mathbb{F}_1 = \mathbb{F}_2$...). Donc:

$$\exists x_1 \in \mathbb{E} / x_1 \in \mathbb{F}_1 \text{ et } x_1 \notin \mathbb{F}_2$$

et
$$\exists x_2 \in \mathbb{E} / x_2 \notin \mathbb{F}_1 \text{ et } x_2 \in \mathbb{F}_2$$

Prenons alors le vecteur $x=x_1+x_2$. Si $x\in\mathbb{F}_1$, alors $x-x_1=x_2\in\mathbb{F}_1$ par stabilité des espaces vectoriels par combinaison linéaire, ce qui est absurde. Donc $x\notin\mathbb{F}_1$. De même, on montre $x\notin\mathbb{F}_2$.

On en déduit que \mathbb{F}_1 et $\mathrm{Vect}(x)$ sont en somme directe, et \mathbb{F}_2 est aussi en somme directe avec $\mathrm{Vect}(x)$. (Si vous en doutez, utilisez la proposition 6 du chapitre 2 d'algèbre linéaire et le fait que $x \notin \mathbb{F}_1 \ldots$).

d) Conclure avec une récurrence.

Corrigé : On va faire une récurrence (finie) sur $p = n - \dim \mathbb{F}_1$, la dimension d'un supplémentaire de \mathbb{F}_1 (qui est donc, la dimension d'un supplémentaire de \mathbb{F}_2).

Initialisation : Si p = 0, on a donc dim $\mathbb{F}_1 = n = \dim \mathbb{F}_2$. On a montré dans la question 1-b) qu'alors

$$\exists \mathbb{G} \; / \; \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

Hypothèse de récurrence : On pose (H_p) : si dim $\mathbb{F}_1 = \dim \mathbb{F}_2 = n - p$, alors $\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$.

Démonstration de récurrence : On suppose que (H_p) est vraie. Soient \mathbb{F}_1 et \mathbb{F}_2 deux sous-espaces vectoriels de \mathbb{E} de dimension n-(p+1)=n-p-1 (on prend, naturellement, p< n.

• Soit $\mathbb{F}_1 = \mathbb{F}_2$, et alors d'après la question 1-a, on a :

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

• Soit $\mathbb{F}_1 \neq \mathbb{F}_2$, et alors d'après la question 1-c, on a :

$$\exists x \in \mathbb{E} / \mathbb{F}'_1 = \mathbb{F}_1 \oplus \operatorname{Vect}(x) \text{ et } \mathbb{F}'_2 = \mathbb{F}_2 \oplus \operatorname{Vect}(x)$$

Alors \mathbb{F}_1' et \mathbb{F}_2' sont des espaces vectoriels de dimension n-p-1+1=n-p, je peux donc appliquer l'hypothèse de récurrence (H_p) , donc :

$$\exists \mathbb{G}' \ / \ \mathbb{F}'_1 \oplus \mathbb{G}' = \mathbb{F}'_2 \oplus \mathbb{G}' = \mathbb{E}$$

En posant $\mathbb{G} = \mathbb{G}' \oplus \operatorname{Vect}(x)$, j'obtiens :

$$\exists \mathbb{G} \ / \ \mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

C'est à dire (H_{p+1})

Conclusion : Comme (H_0) est vraie et $\forall p \in [0; n-1]$, $(H_p) \implies (H_{p+1})$, on a donc $\forall p \in [1; n]$, (H_n) est vraie, ce qu'on voulait démontrer.

2- On suppose que $\dim \mathbb{F}_1 < \dim \mathbb{F}_2$. Montrer qu'il existe deux sous-espace vectoriel \mathbb{G}_1 et \mathbb{G}_2 de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G}_1 = \mathbb{F}_2 \oplus \mathbb{G}_2 = \mathbb{E} \text{ et } \mathbb{G}_2 \subset \mathbb{G}_1$$

Corrigé : D'après le théorème de la base incomplète, je peux compléter \mathbb{F}_1 en un sous-espace vectoriel \mathbb{F}'_1 de \mathbb{E} qui soit de même dimension que \mathbb{F}_2 . Définissons donc \mathbb{G}_0 tel que $\mathbb{F}'_1 = \mathbb{F}_1 \oplus \mathbb{G}_0$. On applique alors la question 1-d aux espaces \mathbb{F}'_1 et \mathbb{F}_2 , de même dimension :

$$\exists \mathbb{G} / \mathbb{F}'_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

C'est-à-dire :

$$\exists \mathbb{G} / \mathbb{F}_1 \oplus \mathbb{G}_0 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

On pose alors $\mathbb{G}_2 = \mathbb{G}$ et $\mathbb{G}_1 = \mathbb{G} \oplus \mathbb{G}_0$, ce qui répond à la question posée.