1. Theoretical background

- Stands for "transform library"
- A robotic system typically has many 3D coordinate frames that change over time, such as a world frame, base frame, gripper frame, head frame, etc.
- tf2 keeps track of the poses of all these frames over time in a tree structure (parent-son)
- The pose is represented using quaternions
- Is used for:
 - Transform vectors relative to a frame to another
 - Keep a temporal track (schedule) of the frames poses (transforms)

- Get the information necesary for a kinematic analysis

2. Tf boadcasters and listeners

2.1 Definitions

- Broadcast: To publish all the transforms of a robotic system
- Listen: To subscribe and read all the transforms of a robotic system
- Broadcaster
 - Node that broadcast the relative time-changing poses of the frames of a robot to the /tf topic

 A single robotic system can use several broadcasters for different parts of its structure

Static broadcaster:

- Broadcast the pose of frames that don't chage over time to the tf_static topic, for instance: sensors, and non-moving parts relative to the robot base.
- They are published once (non-periodically publishing)
- This saves storage and lookup time
- The default build-in ROS static broadcaster is static_transform_publisher
 - It can be used both in a node and at the CLI

Listener:

 Node that listen to a tf broadcaster at the /tf and /tf_static topics

2.2 robot_state_publisher

- The robot_state_publisher is a node that broadcast both the static and non-static poses of a robot:
 - It subscribes to the /joint_states topic to get the joint vector of the robot. Then it calculates the forward kinematcs to get the robot transformations
 - It publishes the transformations of the robot to both the /tf and the /tf_static topics
 - It also reads the URDF file and publish it once (non-periodically)

to the /robot_description topic

The robot_state_publisher can be installed as:

```
sudo apt install ros-<distro>-robot-state-
publisher
```

- The /joint_states topic contains the joint vector of the robot readed by the sensors. Nevertheless, it can be published by several sources:
 - Physical sensors feedback
 - Simulated sensors feedback: From simulators such as Gazebo
 - joint_state_publisher and joint_state_publisher_gui nodes: To facilitate the running of tests at early development stages without the necesity of sensors.
 - The joint_state_publisher can be installed as:

Python

C++

C++ API

3. CLI utilities

Utilities intallation

```
sudo apt install ros-<distro>-tf2-tools ros-<distro>-tf-
transformations
```

 Generate a tree-like view of the transforms published at the /tf topic(in a pdf):

```
ros2 run tf2_tools view_frames
```

• Echo the pose of a frame relative to another:

```
ros2 run tf2_ros tf2_echo <reference_frame>
<target_frame>
```

Information sources

- 2. Official description
- 3. Official tutorials