Exercícios de Probabilidade e Estatística

06 - Medidas de posição

1 – Considere a seguinte distribuição conjunta de X e Y:

XY	-2	-1	4	5
1	0,1	0,2	0	0,3
2	0,2	0,1	0,1	0

- a) achar as distribuições marginais de X e Y;
- b) calcular E[X], E[Y) e E[XY].
- 2 Sejam M e N duas variáveis aleatórias com as seguintes distribuições:

N	5	10	12
P (N)	0,3	0,5	0,2

- a) achar a distribuição conjunta de (M,N);
- b) calcule E[M]e E[N].
- 3 Dada a seguinte função densidade conjunta de (X,Y):

$$f(x,y) = \begin{cases} 3x^2y + 3y^2x & para \ 0 \le x \le 1 \ ; \ 0 \le y \le 1 \\ 0 & para \ outros \ valores \end{cases}$$

- a) determinar as funções densidades marginais de X e Y;
- b) calcular E[X] e E[Y].
- 4 Suponha que (X,Y) tenha a seguinte função densidade de probabilidade:

$$f(x,y) = \begin{cases} x + y & para \ 0 < x < 1 \ ; \ 0 < y < 1 \\ 0 & para \ outros \ valores \end{cases}$$

- a) calcule as distribuições marginais de X e de Y;
- b) calcule E[Y];
- c) calcule E[X].

Respostas

Y	-2	-1	4	5
P(Y)	0,3	0,3	0,1	0,3

b) 1,4; 1; 0,9

600	- 1
12	01
See a	CL I
-	

MN	5	10	12	
1	0,18	0,30	0,12	
3	0,12	0,20	0,08	

b) 1,8; 8,9

3. a)
$$g(x) = \frac{3}{2} x^2 + x$$
 $h(y) = \frac{3}{2} y^2 + y$

$$h(y) = \frac{3}{2}y^2 + y$$

b)
$$\frac{17}{24}$$
; $\frac{17}{24}$

4. a)
$$g(x) = x + \frac{1}{2}$$
 $h(y) = y + \frac{1}{2}$

$$h(y) = y + \frac{1}{6}$$

b)
$$\frac{7}{12}$$
 c) $\frac{7}{12}$

c)
$$\frac{7}{12}$$

XY	-2	/ -1	4	15
(1	0,1	0,2	0	0,3
2	0,2	0,1	0,1	(0)

$$E(x) = \sum_{i=1}^{\frac{1}{2}} x_i e_i = 1.0,6 + 2.0,4 = \begin{bmatrix} 1,4 \\ 1,4 \end{bmatrix}$$

$$E(y) = \sum_{i=1}^{2} x_i e_i = -2.0,3 + (-1.0,3) + 0.0 + 14.0,9 + 5.0,5$$

b.)
$$E(\chi) = \int_{\infty}^{\infty} x \cdot F(\chi) doC = \int_{0}^{\infty} g(\chi) doC = \int_{0}^{\infty} \frac{3 \chi^{2}}{2} t \chi = \int_{0}^{\sqrt{2}} \frac{1}{2} \chi dx$$

$$E(\chi) = \int_{0}^{\infty} y \cdot F(\chi) dy = \int_{0}^{\infty} h(\chi) dy = \int_{0}^{\infty} \frac{3 \chi^{2}}{2} t \gamma = \int_{0}^{\sqrt{2}} \frac{1}{2} \frac{1$$

$$0 = \int_{0}^{1} |y| dy = \int_{0}^{1} |x + y| dy = \int_{0}^{1} |x + y| dy = \int_{0}^{1} |x + y| dx = \int_{0}^{1} |x + y| dx$$

b-) E(Y) =
$$\int_{0}^{1} h(y) dy = \int_{0}^{1} \frac{1}{2} + y = \frac{7}{12}$$

E(X) = $\int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{1}{2} + X = \frac{7}{12}$