Math 5110 – Real Analysis I– Fall 2024 w/Professor Liu

Paul Carmody Homework #5 – December 11, 2024

I. Section 7.4, Problem 10. Exercise 7.4.10. Let $A \subseteq B \subseteq \mathbb{R}^n$. Show that if B is Lebesque measurable with measure zero, then A is also Legesque measurable with measure zero.

Assuming that \mathbb{R}^n forms a complete measure space, $A \subseteq B$ implies that A is measurable Recall the measure of a set is always non-negative

$$A \subseteq B \to m(A) \le m(B) = 0$$

$$\therefore m(A) = 0$$

II. Section 7.5, problem 5

Exercise 7.5.5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be Legesque measurable, and let $g: \mathbb{R}^n \to \mathbb{R}$ be a function which agrees with f outside of a set of measure zero, thus there exists a set $A \subseteq \mathbb{R}^n$ of measure zero that f(x) = g(x) for all $x \in \mathbb{R}^n \setminus A$. Show that g is also Lebesque measurable. (Hint: Use Exercise 7.4.10)

Let $B \subseteq \mathbb{R}$. Then,

$$g^{-1}(B) = (g^{-1}(B) \cap \mathbb{R}^n \backslash A) \cup (g^{-1}(B) \cap A)$$

we know that $f(x) = g(x), x \in \mathbb{R}^n \backslash A$ so

$$g^{-1}(B) \cap \mathbb{R}^n \backslash A = f^{-1}(B) \cap \mathbb{R}^n \backslash A$$

and $f^{-1}(B) \cap \mathbb{R}^n \setminus A$ is measurable. Also, $g^{-1}(B) \cap A$ is also measurable because A is measurable. Therefore, $g^{-1}(B)$ is measurable as it is the union of two measurable sets. Hence g is a measurable function.

III. Let $f: \Omega \to [0, \infty)$ be measurable, $\Omega = \bigcup_{k=1}^{\infty} \Omega_k \in \mathcal{M}, \Omega_k \subseteq \Omega_{k+1}$ for all k. Then

$$\int_{\Omega} f = \lim_{k \to \infty} \int_{\Omega_k} f$$

Remark: If f is simple, then the result is precisely Lemma 4.27.

IV. Show that

$$\lim_{n\to\infty}\int_{[0,n]}\left(1+\frac{x}{n}\right)^ne^{-2x}dx=\int_{[0,\infty]}e^{-x}dx$$

.

$$\lim_{n \to \infty} \int_{[0,n]} \left(1 + \frac{x}{n} \right)^n e^{-2x} dx = \lim_{n \to \infty} \int_{[0,n]} \lim_{k \to \infty} \left(1 + \frac{x}{k} \right)^k e^{-2x} dx$$

$$= \lim_{n \to \infty} \int_{[0,n]} e^{-x} dx$$

$$= \int_{[0,\infty]} e^{-x} dx$$

V. If $f \in L(\Omega)$, then

$$\lim_{r \to \infty} \int_{\Omega \backslash B_r} f = 0$$

Note: Recall B_r is a the r-ball at the origin. If Ω is bounded then eventually $\Omega \backslash B_r = \emptyset$ (in this case integral is regarded to be zero) but our Ω maybe unbounded.

Choose n such that $\{g > n\} \subseteq \Omega \backslash B_r$. Then, we have

$$m(\{g > n\}) \le m(\Omega \backslash B_r)$$

As $r \to \infty$ continue to choose higher values of n, eventually $n \to \infty$ and we know that $\lim_{n \to \infty} m(\{g > k\}) = 0$ thus $m(\Omega \setminus B_r) \to 0$.

VI. skip

VII. (a) Let $f \geq 0$ be integrable on [a, b]. Prove that the function

$$F(x) = \int_{a}^{x} f(t)dt$$

is continuous on [a, b]. (Hint: for fixed x, use the Dominated Convergence Theorem to show that $F(x+1/n) = F(x) \to 0$ and $F(x-1/n) - F(x) \to 0$ as $n \to \infty$. Then use this to prove continuity of F at x.)

- (b) Assume f is Riemann integrable on [a, b], and let F be defined as in (a). Show that F is differentiable almost everywhere, and the equality F'(x) = f(x) is true almost everywhere. (The same is true for any (Lebesque) integrable function f, but this is harder to prove.)
- VIII. Find an example of a uniformly bounded sequence of functions $f_n : \mathbb{R} \to [0, \infty)$ so that each f_n is Riemann integrable, but f_n converges pointwise to a function that is not Riemann integrable.

(We know this problem can't occur with the Lebesque integral, because a pointwise limit of measurable functions is measuable.)

Step 1: divide [0,1] into thirds then $f_1 = 1$ for the middle third and zero otherwise.

Step 2: divide each subinterval of Step 1 into thirds then $f_2 = 1$ for the middle of each of these subintervals

Step 3: repeat step 2 using in the subintervals of Step 2 defining f_3 accordingly

Repeat: Each f_n is Rieman Integral. $f_n \to f$ is not.

IX. Suppose $\rho:[0,\infty)\to\mathbb{R}$ is decreasing and continuous, $m(E)=m(B_r)$, where E is a measurable subset of \mathbb{R}^n and $B_r\subset\mathbb{R}^n$ is the r-ball at the origin. Show that

$$\int_{E} \rho(|x|) dx \le \int_{B_R} \rho(|x|) dx.$$