

A Member of the Roche Group

Mapping the Role of Citrate Transporters in Solid Tumors

Exploring the Prevalence and Predictive Power of pmCiC Expression in Cancer Cells

Author: Blake Bleier, Tyler Gustafson

Fall 2024

Citrate Uptake and Cancer Progression Process (Simplified)

- Cancer cells have a rapid growth requirement:

 Cancer cells need to grow and divide quickly, requiring large amounts of energy and building materials like lipids.
- To support this growth, cancer cells look for alternative energy sources (citrate) from external sources:

 External citrate is imported into the cell to be converted into acetyl-CoA, a key component for lipid synthesis.
- To increase citrate uptake, cancer cells alter the differential expression of pmCiC transporter, making it overactive:

Differential splicing may produce an overactive version of the pmCiC transporter, which enhances its ability to import citrate, fueling rapid growth.

Ultimately, this citrate uptake promotes the cancer progression:

The abundance of citrate allows for faster cell growth and division, contributing to the aggressiveness and progression of cancer.`

The goal of this project is to identify the prevalence of the overactive, differentially expressed pmCiC in various cancer types

Tumor Sample Count by Tissue Type

Focus on these select tissue groups, as they have a sufficient number of normal samples (greater than 30), allowing for a reasonable expectation of detecting differences between cancerous and normal samples across isoforms.

This will help us to:

- Gain clearer insights into isoform expression patterns, by comparing distributions between cancerous and normal tissues.
- Use statistical tests like Mann-Whitney U and Wilcoxon ranksum to robustly assess significant differences in isoform expression.
- Enhance the reliability of our findings by ensuring sufficient sample size for robust hypothesis testing and exploratory data analysis

Placeholder

Comparative Analysis: A high-level examination of the distributions of plasma and mitochondrial mCiC, along with its precursor, indicating variations in expression levels across normal and cancer tumor samples.

Comparative Analysis: On this double click, we observe a consistent trend where the plasma isoform and mCiC show a majority increase, while the precursor shows a decrease.

Statistical Approach (1/2): Before conducting our tests, it's important to assess the distribution and evaluate its normality to determine if it follows a Gaussian (normal) distribution. We can do this with a Shapiro-Wilk test.

Shapiro-Wilk P-Values Plasma Proportion (NM_001256534.2)

The plasma isoform distributions show a very low likelihood of normality, which is consistent with the other isoforms. As a result, it may be more appropriate to avoid using statistical tests that assume normality (i.e. parametric tests)

Statistical Approach (2/2): Now that we know the distributions are not normal, we can decide on our tests. We can proceed with a three-step approach to explore our hypothesis.

1. Are isoform expression levels significantly different between cancerous and normal samples?

(Step 1)

- What? We want to compare the expression levels of isoforms between cancerous and non-cancerous samples.
- **Implication?** This will give us a general understanding of whether there's a significant difference in expression between these two groups.
- How? Mann-Whitney U (Wilcoxon Rank-Sum)

2. Do different cancer types show variations in isoform expression?

(Step 2)

- What? Investigate if there is variation in isoform expression across different cancer types.
- **Implication?** A significant result suggests that isoform expression differs between cancer types, but it won't tell us exactly which types differ.

3. Does isoform expression differ between cancerous and non-cancerous samples in each cancer type?

(Step 3)

- What? Perform pairwise comparisons between cancerous and non-cancerous samples for each specific cancer type.
- **Implication?** This helps us understand the specific differences in isoform expression for each cancer type.
- How? Mann-Whitney U (Wilcoxon Rank-Sum) for pairwise comparisons

How? Kruskal-Wallis Test

Note: For all tests, we must account for multiple comparisons and apply a correction, such as the Benjamini-Hochberg method

Jumping ahead to the reveal... We see that our isoforms that show statistically different expression levels across the isoforms are breast and lung tissue types.

Double clicking into Breast and Lung ... Next, we'll dive into tissue-specific subgroups to explore spikes in pmCiC proportions and key phenotypic data..

Phenotypic subgroups that showed elevated pmCiC proportions within their category

	Phenotypical Category	Breast	Lung	
	Tumor Stage	N/A Not Significant Kruskal-Wallis Test: P-Value = 0.4952	Stage 2 and 3 Not Significant Kuskal-Wallis Test: P-Value = 0.34773	
	DSS Binned	8+ Years Not Significant Wilcoxon Ranked Sum Test: P-Value = 0.4952	0-3 years Mixed Significance (Potentially 0-3 years) Kuskal-Wallis Test: P-Value = 0.05801	
Subtype	Selected	Basal & Normal Mixed Significance Pairwise (Appears Both Valid) Kuskal-Wallis Test: P-Value = 0.00000001	LUAD.6, Classical, Primitive *561 (58%) missing Values	
	Immune	C3.Inflammatory &C6.TGF-Beta Dominated Mixed Significance Pairwise (Appears Valid C3) Kuskal-Wallis Test: P-Value = 0.0001	C1 (Wound Healing) Significant Wilcoxon Ranked Sum Test: P-Value = 5.526e-08	
	mRNA	Basal Duplicative info / Normal High Missing Value Counts	Classical Primitive	

Looking at breast tissue type data (1/2)... Here we will conduct the appropriate statistical tests with corrections as needed for the phenotype groups that showed potentially elevated expressed relationships

Breast Phenotypic Data

Both subtype-selected and subtype-immune demonstrated statistically significant elevation amongst the highlighted categories

Looking at breast tissue type data (2/2)... for both subtype selected and immune we needed to do additional pairwise testing to determine the significant categories

Breast Phenotypic Data

Subtype – Immune Pairwise Double Click (P-Values)

Number of pairwise comparisons (Bonferroni dividing by): 15

	Wound Healing (C1)	IFN-gamma Dominant (C2)	Inflammatory (C3) (High Expression)	Lymphocyte Depleted (C4)	TGF-beta Dominant (C6) (High Expression)	Unknown
Wound Healing (C1)	-	1.000000	0.014793*	1.000000	1.000000	1.000000
IFN-gamma Dominant (C2)	1.000000	-	0.001802**	1.000000	0.529852	0.924975
Inflammatory (C3)	0.014793*	0.001802**	-	0.003725**	1.000000	1.000000
Lymphocyte Depleted (C4)	1.000000	1.000000	0.003725**	-	0.182472	0.390205
TGF-beta Dominant (C6)	1.000000	0.529852	1.000000 (Also elevated)	0.182472	-	1.000000
Unknown	1.000000	0.924975	1.000000 (Also elevated)	0.390205	1.000000	-

Statistically Significant (p < 0.05)</p>

Subtype – Selected Pairwise Double Click (P-Values)

Number of pairwise comparisons (Bonferroni dividing by): 10

	Basal (High Expression)	Her2 (Mid Expression)	LumA (Lower Expression)	LumB (Lower Expression)	Normal (High Expression)
Basal	-	0.002403**	0.862225	0.000003***	1.000000 (Also elevated)
Her2	0.002403**	-	0.039695*	1.000000	0.013366*
LumA	0.862225	0.039695*	-	0.000038***	0.769803
LumB	0.000003***	1.000000	0.000038***	-	0.002055**
Normal	1.000000 (Also elevated)	0.013366*	0.769803	0.002055**	-

^{*} Statistically Significant (p < 0.05)

We observe that C3, Basal, and Normal exhibit statistically significant elevation compared to the other categories.

^{**} Highly Significant (p < 0.01)

^{***} Very Highly Significant (p < 0.001)

^{**} Highly Significant (p < 0.01)

^{***} Very Highly Significant (p < 0.001)

Looking at lung tissue type data (1/2)... Here we will conduct the appropriate statistical tests with corrections as needed for the phenotype groups that showed potentially elevated expressed relationships

Lung Phenotypic Data

Both C1 and potentially DSS_Binned 0-3 years demonstrated statistically significant elevation amongst the highlighted categories

Lung Phenotypic Data

DSS Binned Pairwise Double Click (P-Values)

Number of pairwise comparisons (Bonferroni dividing by):3

	0-3 years (Elevated)	4-7 years (Low)	8+ years (Elevated)
0-3 years	-	0.053577	1.000000 (Also Elevated)
4-7 years	0.053577 (Significant with no correction)	-	0.671054
8+ years	1.000000 (Also Elevated)	0.671054	-

^{*} Statistically Significant (p < 0.05)

We observe that 0-3 years may exhibit statistically significant elevation compared to the other categories (depending on the Bonferroni correction)

^{**} Highly Significant (p < 0.01)

^{***} Very Highly Significant (p < 0.001)

Survival Analysis... Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Breast Phenotypic Data

Visual

Highest to lowest pmCIC ratio:

Normal > Basal > LumA > Her2 > LumB

Longest to shortest survival:

Normal ~ Basal > LumA ~ Her2 ~ LumB

Stat Sig

Mantel-Cox (log-rank) significant w/ Bonferroni: LumA vs Her2 (p=0.018)

Lung Phenotypic Data

Highest to lowest pmClC ratio: C1 > C2 ~ C3 > C4 ~ C6 Longest to shortest survival: C1 > C2 ~ C3 ~ C6 > C4

Mantel-Cox (log-rank) significant w/ Bonferroni: C3 vs C4 (p=0.029)

Using regression to break down gene expression by cell type, with e_stroma showing expected expression in stromal cells and e_cancer for cancer cells, helping us see how expression changes with tumor purity

Breast | C3 - Inflammatory

Breast (C3 - Inflammatory): Although e_stroma (1.46) is higher than e_cancer (-0.17) as anticipated, the low R2=0.05 highlights a weak association between purity and expression, pointing to other influential factors in inflammatory breast tissue.

Lung | C1 – Wound Healing

Lung (C1 - Wound Healing): With a low R2=0.05, e_cancer (2.91) unexpectedly exceeds e_stroma (1.34), suggesting that factors beyond purity may drive gene expression in wound healing within lung tissue