Chapter 2:

The Database Development Process

Objectives

- Definition of terms
- Describe system development life cycle
- Explain prototyping approach
- Explain agile software development approach
- Explain roles of individuals
- Explain three-schema approach
- Explain role of packaged data models
- Explain three-tiered architectures
- Explain scope of database design projects
- Draw simple data models

Enterprise Data Model

- First step in database development
- Specifies scope and general content
- Overall picture of organizational data at high level of abstraction
- Entity-relationship diagram
- Descriptions of entity types
- Relationships between entities
- Business rules

Figure 2-1 Segment from enterprise data model

Lecture 2

Enterprise data model describes the high-level entities in an organization and the relationship between these entities

Information Systems Architecture (ISA)

- Conceptual blueprint for organization's desired information systems structure
- Consists of:
 - Data (e.g. Enterprise Data Model–simplified ER Diagram)
 - Processes-data flow diagrams, process decomposition, etc.
 - People-people management using project management tools (Gantt charts, etc.)
 - Events and points in time (when processes are performed)

Lecture 2

Reasons for events and rules (e.g., decision tables)

Information Engineering

- A data-oriented methodology to create and maintain information systems
- Top-down planning—a generic IS planning methodology for obtaining a broad understanding of the IS needed by the entire organization

- Four steps to Top-Down planning:
 - Planning
 - Analysis
 - Design
 - Implementation

STEP	Explanation	
1.	Identify strategic planning factors a. Goals b. Critical success factors c. Problem areas	Table 2-1 Information Engineering Planning Phase
2.	Identify corporate planning objects a. Organizational units b. Locations c. Business functions d. Entity types	
3.	Develop an enterprise model a. Functional decomposition b. Entity-relationship diagram c. Planning matrixes	

Identify Strategic Planning Factors (Table 2-2)

- Organization goals—what we hope to accomplish
- Critical success factors—what MUST work in order for us to survive

Lecture 2

Problem areas—weaknesses we now have

Identify Corporate Planning Objects (Table 2-3)

- Organizational units—departments
- Organizational locations
- Business functions—groups of business processes
- Entity types—the things we are trying to model for the database

Lecture 2

Information systems—application programs

Develop Enterprise Model

- Functional decomposition
 - Iterative process breaking system description into finer and finer detail

Lecture 2

Enterprise data model

- Planning matrixes
 - Describe interrelationships between planning objects

Figure 2-2 Example process decomposition of an order fulfillment function (Pine Valley Furniture Company)

Planning Matrixes

Describe relationships between planning objects in the organization

- Types of matrixes:
 - Location-to-function
 - Unit-to-function
 - IS-to-data entity
 - Supporting function-to-data entity
 - IS-to-business objective

Example Business Function-to-Data Entity Matrix (Fig. 2-3)

Data Entity Types Business Functions	Customer	Product	Raw Material	Order	Work Center	Work Order	Invoice	Equipment	Employee
Business Planning	Х	Χ						Х	Х
Product Development		Х	Х		Х		25	Х	
Materials Management		Х	Х	Х	Х	Х		Х	
Order Fulfillment	Х	Χ	Х	Х	Х	Х	Х	Х	Χ
Order Shipment	Х	Χ		Х	Х		Х		Χ
Sales Summarization	Х	Χ		Х			Х		Χ
Production Operations		Χ	Х	Х	Х	Х		Х	Х
Finance and Accounting	Х	Х	Х	Х	Х		Х	Х	Х

X = data entity (column) is used within business function (row)

Two Approaches to Database and IS Development

SDLC

- System Development Life Cycle
- Detailed, well-planned development process
- Time-consuming, but comprehensive
- Long development cycle

Prototyping

- Rapid application development (RAD)
- Cursory attempt at conceptual data modeling
- Define database during development of initial prototype
- Repeat implementation and maintenance activities with new prototype versions

Figure 2-6 The prototyping methodology and database development process

CASE

- Computer-Aided Software Engineering (CASE)—software tools providing automated support for systems development
- Three database features:
 - Data modeling—drawing entity-relationship diagrams
 - Code generation—SQL code for table creation
 - Repositories–knowledge base of enterprise information

Packaged Data Models

 Model components that can be purchased, customized, and assembled into full-scale data models

- Advantages
 - Reduced development time
 - Higher model quality and reliability
- Two types:
 - Universal data models
 - Industry-specific data models

Managing Projects

- Project—a planned undertaking of related activities to reach an objective that has a beginning and an end
- Involves use of review points for:
 - Validation of satisfactory progress
 - Step back from detail to overall view
 - Renew commitment of stakeholders
- Incremental commitment—review of systems development project after each development phase with rejustification after each phase

Managing Projects: People Involved

- Business analysts
- Systems analysts
- Database analysts and data modelers
- Users
- Programmers
- Database architects
- Data administrators
- Project managers
- Other technical experts

Gantt Chart

Database Schema

- External Schema
 - User Views
 - Subsets of Conceptual Schema
 - Can be determined from business-function/data entity matrices

- DBA determines schema for different users
- Conceptual Schema
 - E-R models—covered in Chapters 3 and 4
- Internal Schema
 - Logical structures—covered in Chapter 5
 - Physical structures—covered in Chapter 6

Figure 2-9 Three-tiered client/server database architecture

Pine Valley Furniture

Segment of project data model (Figure 2-11)

Figure 2-12 Four relations (Pine Valley Furniture)

(a) Order and Order Line tables

Figure 2-12 Four relations (Pine Valley Furniture) (cont.)

Lecture 2

(b) Customer table

(c) Product table

