Identification

 V_7 has 3 inversions: in the 1st inversion, the 3rd is in bass; in the 2nd, the 5th; in the 3rd, the 7th.

In the 1st inversion, V_5^6 , the figures represent the intervals of the root (6) and 7th (5) above bass.

In the 2^{nd} inversion, V_3^4 , the figures represent the intervals of the root (4) and 7^{th} (3) above bass. The figure 6 with a slash is used in a minor mode to indicate the alteration of the leading tone. A slash through a figure means that the note is to be raised a half step.

In the 3^{rd} inversion, V_2 , the figure represents the interval of the root (2) above bass. The figure 4 with a slash is used in a minor mode to indicate the alteration of the leading tone.

Resolutions of the Inversions

The inversions of V_7 are usually used in a *complete form* and resolve to I in the way similar to the resolution of the root position V_7 , with only *one* difference:

- 1) the 7th and 5th move by step down;
- 2) the 3rd moves by step up;
- 3) the root remains stationary.

As seen from the examples, V_5^6 and V_3^4 normally resolve to I; V_2 resolves to I_6 .

Preparation and Use

The inversions of V_7 are used in the same way as V_7 in root position; the 7^{th} may be approached smoothly (passing, prepared) or with a leap. The passing 7^{th} is usual for V_5^6 and V_2 .

In such case, V_5^6 is used after V_6 in which the root is doubled (the passing 7^{th} is in upper voices, more often in soprano).

Haydn, Piano Sonata in C major, Hob. XVI: 35, III

V₂ is often used after V or cadential (rarely after passing) I⁶₄ (passing 7th in bass).

The 7^{th} is *prepared* if there is the harmonic connection of IV with any inversion of V_7 .

The 7th may be approached with a *leap* if V is used. A leap in bass when connecting $V-V_2$ or a leap in upper voices (often in soprano) when connecting $V_6-V_5^6$ are all not rare.

The use of the inversions of V_7 significantly increases the possibilities of the melodic behavior of each voice (especially the bass line). Thus, it is recommended to use the inversions of V_7 as much as possible while saving V_7 in its root position mostly for cadences.

Passing V_3

 V^4_3 is often used as a *passing chord* (instead of V^6_4) between I and I₆ (or vice versa). In order to avoid doubling of the 3^{rd} in I₆ in $I-V^4_3-I_6$ progression, the 7^{th} moves up parallel to bass. Such progression with the unresolved 7th became acceptable due to its characteristic motion of parallel 3rd,'s (or 10th,'s) between bass and an upper voice (often soprano).

In open spacing, a diminished 5th would move to a perfect 5th (or vice versa). These 5th's are *not* considered to be parallel and are *allowed*.

Interchange of the Chords

Like any triad, V₇ and its inversions can be interchanged. It is always better to keep the 7th in the same voice. It is not allowed to move the 7th by step up.

In rare cases it is possible to *exchange* the 7th with the 5th.

Beethoven, Symphony No. 7, Op. 92, III

Exercises

1. Analyze the following music.

a)

b)

2. Realize the following figured basses and harmonize the melodies.

Leaps when Resolving the Dominant Seventh Chord and its Inversions

There are some exceptional ways to resolve V_7 and its inversions to I which are somewhat different from the mentioned ones in the previous topics.

Leaps in V₂–I₆ Resolution

It is sometimes possible to find resolutions of V_2 to I_6 in which the 5^{th} of V_2 would *leap* to the 5^{th} of I_6 (instead of the normal stepwise resolution of the note). Such upward leap of a perfect 4^{th} can be often found in soprano.

Beethoven, Piano Sonata No. 8, Op. 13, No. 2, II

Sometimes, V₂–I₆ chord progression may also use the leap of the root to the root.

Double Leaps in V₂–I₆ Resolution

It is also possible to find leaps of both the *root* and 5^{th} at the same time in the two upper voices. In such case the root would be placed above the 5^{th} , otherwise parallel 5^{th} 's would occur.

In some rare cases, the leaps may be by *contrary* motion of the upper and middle voices or by *downward* motion of *parallel fourths* in the inner voices.

Leaps in V^4_3 –I and V^6_5 –I Resolutions

 V_3^4 may also resolve to the *complete* or *incomplete* I with the leap from the root of V_3^4 to the root of I (the voice leading in this case is similar to the resolution of the root position V_7 to I).

Sometimes one can find leaps in V⁶5–I chord progression as well.

Contrary and Parallel Octaves in Cadences

In order to have a perfect cadence at the end of a unit (phrase, period), an *incomplete* (sometimes complete) V_7 may resolve to I with *contrary* and sometimes even *parallel octaves* in the outer voices. Such parallel or contrary octaves are accepted and *not* considered to be wrong.

Exercises

Harmonize the following sopranos and realize the figured basses using leaps when resolving V_7 in root position and its inversions where appropriate.

