Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

## **Advanced Mixed Effects Modelling**

Mariel Finucane, PhD

Gladstone Bioinformatics Core November 5, 2013

Mariel

#### Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### **PS**

Nonlinear time effects Bayesian p-values

Conclusions

### Goals

- 1 How to use *indicator variables* to describe a mixed effects model with multiple groups?
  - (a) Write down the regression equation
  - (b) Fit and plot the regression in R.
  - (c) Interpret the regression output.
- 2 What to do when time trends are not linear?
- 3 What to do if your reviewer doesn't like the default method of calculating p-values?

#### Mariel

#### Goals

#### Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

Nonlinear time effects Bayesian p-values

Conclusions

### Mixed = fixed + random

- Fixed effects  $(\alpha, \beta)$ 
  - Population characteristics
  - Shared by all individuals
  - Describe the mean response trajectory in the population
  - Useful to epidemiologists
- Random effects (a, b)
  - Subject-specific effects
  - Vary from one individual to another
  - Describe individuals' response trajectories
  - Useful to clinicians

Mariel

Goals

Review

Random Intercepts

Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

# The simplest case: a random intercept model

$$y = \alpha + \beta x + a + \varepsilon$$
$$= (\alpha + a) + \beta x + \varepsilon$$

- ullet  $\alpha$  is the fixed, population-level intercept
- ullet  $\beta$  is the fixed, population-level time slope
- a is the random, subject-specific intercept:
   By how much does each individual deviate from the population average?
- $\varepsilon$  is the error term

Mariel

Goals

Review

Random Intercepts

Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

## Random intercept model



Mariel

Goals

Review

Random Intercepts

Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

# The more common scenario: a random intercept and slope model

$$y = \alpha + \beta x + a + bx + \varepsilon$$
$$= (\alpha + a) + (\beta + b)x + \varepsilon$$

- ullet  $\alpha$  is the fixed, population-level intercept
- ullet  $\beta$  is the fixed, population-level time slope
- a is the random, subject-specific intercept:
   By how much does each individual deviate from the population average?
- b is the random, subject-specific time slope:
   By how much does the effect of time on each individual deviate from the population-average effect?
- $\varepsilon$  is the error term

Mariel

Goals

Review

Random Intercepts

Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

## Random intercept and slope model



Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

# To include multiple groups, we need indicator variables

Consider an experiment with two groups of interest:

- Some subjects receive a placebo,
- Others receive a drug.

To describe this experiment statistically, we use an **indicator** (a.k.a. **dummy**) variable:

$$z = \begin{cases} 0 & \text{if the subject received the placebo} \\ 1 & \text{if the subject received the drug} \end{cases}$$

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

**PS** 

Nonlinear time effects Bayesian p-values

Conclusions

### An extension: two groups

| Model    | $y = \alpha + \beta x + \delta z + \gamma xz + a + bx + \varepsilon$  |
|----------|-----------------------------------------------------------------------|
| IVIOGEI  | $= (\alpha + \delta z + a) + (\beta + \gamma z + b)x + \varepsilon$   |
| Placebo  | $y = (\alpha + \delta 0 + a) + (\beta + \gamma 0 + b)x + \varepsilon$ |
| I lacebo | $= (\alpha + a) + (\beta + b)x + \varepsilon$                         |
| Drug     | $y = (\alpha + \delta 1 + a) + (\beta + \gamma 1 + b)x + \varepsilon$ |
| Diug     | $= (\alpha + \delta + a) + (\beta + \gamma + b)x + \varepsilon$       |

- ullet  $\alpha$  is the fixed, population-level intercept
- ullet is the fixed, population-level time slope
- ullet  $\delta$  is the fixed, population-level effect of the drug
- $\gamma$  is the fixed, population-level effect of the drug on the time slope
- a is the random, subject-specific intercept
- *b* is the random, subject-specific time slope effect?
- $\varepsilon$  is the error term

Mariel

#### Goals

Review

Random Intercepts Random Intercepts and Slopes

## Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

## A further extension: 3+ groups

Consider an experiment with **four groups** of interest (e.g. diets 1, 2, 3, and 4). To describe this experiment statistically, we use **3** indicator variables:

$$z_2 = \begin{cases} 1 & \text{if the subject received diet 2} \\ 0 & \text{otherwise} \end{cases}$$
 $z_3 = \begin{cases} 1 & \text{if the subject received diet 3} \\ 0 & \text{otherwise} \end{cases}$ 
 $z_4 = \begin{cases} 1 & \text{if the subject received diet 4} \\ 0 & \text{otherwise} \end{cases}$ 

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

Nonlinear time effects Bayesian p-values

Conclusions

### Let's look at some data

- > # install packages('arm')
- > library(arm)
- > head(ChickWeight)

INSTALL AND LOAD A PACKAGE CALLED "Arm" THAT CONTAINS SOME OF THE FUNCTIONS WE'LL BE USING.

```
SHOW ME THE "head" OF
Grouped Data: weight ~ Time | Chick
  weight Time Chick Diet
                                                THE DOTOSET COLLED
       42
                                                "Chick Weight".
       51
3
       59
4
       64
5
       76
6
       93
             10
```

> attach(ChickWeight)

GIVE MYE OCCESS TO THE VOR 108LES IN THE DOTTOSET "ChickWeight".

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions



Mariel

#### Goals

#### Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

Nonlinear time effects Bayesian p-values

Conclusions

# Fitting a mixed effects model

> model (-) lmer (weight ~ Time + Diet + Time\*Diet + (1+Time|Chick)) 
$$y = \alpha + \beta x + \delta z + \gamma xz + a + bx + \varepsilon$$
 and Put into it] 
$$8 \text{ "L"INEAR MIXED EFFECTS RECRESSION.}$$

Mariel

#### Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

Nonlinear time effects Bayesian p-values

Conclusions



# Extracting fixed/random effects

> fixef(model)

(Intercept) Time Diet2
33.661 6.277 -5.028
Time:Diet2 Time:Diet3 Time:Diet4
2.332 5.146 3.255

SHOW ME THE "ROAD OF THE "CHICK-SPECIFIC "RONDOM

Diet4

-1.750

Diet3

-15.411

> head(ranef(model)\$Chick)

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects Bayesian p-values

Conclusions

## Plotting the fitted model



# Summarizing the fitted model

#### Mariel

#### Goals

#### Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

#### Let's do it!

#### PS

Nonlinear time effects Bavesian p-values

#### Conclusions

```
lmer(formula = weight ~ Time + Diet + Time * Diet + (1 + Time |
```

```
Chick))
             coef.est coef.se
(Intercept)
             33.66 ₭
                        2.92
               6.28 3
                        0.76
Time
Diet2
              -5.03 8, 5.01
Diet3
             -15.41 \delta_{i} 5.01
              -1.75  \delta_{\bullet} 5.02
Diet4
Time:Diet2
            2.33 8
                       1.30
Time:Diet3
               5.15 % 1.30
Time:Diet4
               3.25 X4
                        1.31
```

```
Error terms:
```

> display(model)

```
STANDARD DEVIATION OF ES]
                       Std Dev. Corr
Groups
          Name
                                          [ STONDORD DEVISITION OF bs ]
          (Intercept) 10.81
Chick
          Time
                        3.30
                                 -0.97
Residual
```

```
number of obs: 578, groups: Chick, 50
AIC = 4805.5, DIC = 4820
deviance = 4800.5
```

Mariel

#### Goals

#### Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### P5

Nonlinear time effects Bayesian p-values

Conclusions

## Summarizing the fitted model

```
> # install.packages('car')
> library(car)
> Anova(model)
                                                CALCULATED SCOORDING TO THE
                                                 PRINCIPLE OF MORSINGLITY,
Analysis of Deviance Table (Type II tests)
                                                 TESTING ESCH TERM SETER
Response: weight
                                                 ALL OTHERS EXCEPT IGNORING
          Chisq Df Pr(>Chisq)
                                                  THE TERMS HIGHER-PROFR
Time
          314.1
                      < 2e-16 ***
                                                  RELATIVES
Diet
           15.6
                      -0.00136 **
                       0.00068 ***
Time:Diet 17.1
___
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

**PS** 

Nonlinear time effects Bayesian p-values

**Conclusions** 

## Interpreting the R output

- For your Methods section:
  - "We fit a linear mixed effects model of chick weight on time, including fixed intercepts and slopes for each of the four diets, and random intercepts and slopes for each chick."
  - "We assessed differences in the time effect across diets using a Wald chi-square test."
- For your Results section:
  - "We found a significant difference in the rates of weight gain across diets (p<0.001), with chicks on diets 1, 2, 3, and 4 gaining 6.3, 8.6, 11.4, and 9.5 g/day, respectively."
  - "Chicks varied in their baseline weight (SD=10.8) and in their rates of weight gain over time (SD=3.3)."

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects

Bayesian p-values

Conclusions

Postscript 1 – Nonlinear time effects

> model2 <- lmer(weight ~ Time + I(Time^2) + Diet + Time\*Diet + I(Time^2)\*Diet + (1+Time+I(Time^2)|Chick))  $y = \alpha + \beta x + \varphi x^2 + \delta z + \gamma xz + \zeta x^2 z + a + bx + cx^2 + \varepsilon$ 

#### Mariel

#### Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

#### Nonlinear time effects

Bayesian p-values

Conclusions

## Extracting fixed/random effects

#### > fixef(model2)

```
(Intercept)
                            Time
                                        I(Time^2)
      37.519476
                        5.123906
                                         0.046931 4
          Diet.2
                           Diet3
                                            Diet.4
       0.160646
                        1.304480
                                        -1.700774
     Time:Diet2
                      Time:Diet3
                                       Time:Diet4
       0.686292
                       -0.066387
                                         3.262591
I(Time^2):Diet2 I(Time^2):Diet3 I(Time^2):Diet4
       0.083358 %
                        0.249372 5
                                         0.003115 %
```

#### > head(ranef(model2)\$Chick)

|    | (Intercept) | Time    | I(Time^2)  |
|----|-------------|---------|------------|
| 18 | 1.4061      | -0.8994 | 0.0113795  |
| 16 | 4.8281      | -3.0882 | -0.1241312 |
| 15 | 0.3046      | -0.1948 | -0.2359140 |
| 13 | 4.2501      | -2.7185 | -0.0498864 |
| 9  | -3.1273     | 2.0003  | -0.2422971 |
| 20 | 3.7762      | -2.4154 | 0.0001437  |

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS.

Nonlinear time effects

Bayesian p-values

Conclusions

## Plotting the fitted model



Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

PS

Nonlinear time effects

Bayesian p-values

Conclusions

# Postscript 2 – Bayesian Inference

- Most reviewers would be fine with the Wald chi-square test given here, but a small minority (myself included, to be honest) would argue that the Wald tests may be anti-conservative, especially for small datasets. (Dempster, Rubin, & Tsutakawa (1981). Estimation in covariance components models. JASA, 76(374), 341-353.)
- An alternative, which requires some extra statistical programming, is Bayesian inference.

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

**PS** 

Nonlinear time effects

Bayesian p-values

Conclusions

# Postscript 2 – Bayesian Inference

For example: "Do chicks on diet 2 gain weight significantly faster than chicks on diet 1?"

- For your Methods Section:
  - "We obtained 5000 draws of the difference in time effects between diets 1 and 2, and we estimated a 95% confidence interval (CI) as the 2.5th and 97.5th quantiles of these draws. We calculated a p-value for this difference by inverting the simulated confidence interval."
- For your Results Section:
  - "Mice on diet 2 gain 2.3 more g/day than mice on diet 1 (95% CI -0.1, 4.9, p=0.07)."

Mariel

#### Goals

#### Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

#### PS

Nonlinear time effects

Bayesian p-values

Conclusions

0.07363

# Postscript 2 – Bayesian Inference

```
> sims <- sim(model, 5000)
                                                        OBTAIN SOOD DRAWS.
> fixefs <- fixef(sims)</pre>
                                                        OR "SIMULATIONS"
> m <- fixef(model)['Time:Diet2']
> quantile(fixefs[,'Time:Diet2'], c(.025, .975))
                                                       ESTIMATE THE 95% CI.
   2.5%
         97.5%
-0.1475
         4.9553
> se <- sd(fixefs[, Time:Diet2'])</pre>
> z <- abs(m/se)
> p <- (1-pnorm(z))*2
> p
Time:Diet2
```

Mariel

Goals

Review

Random Intercepts Random Intercepts and Slopes

Multiple groups

Let's do it!

**PS** 

Nonlinear time effects Bayesian p-values

**Conclusions** 

### Conclusions

If your outcome is continuous, but your observations are not independent:

- 1 Don't use repeated measures ANOVA!
- 2 Linear mixed effects models offer a flexible, powerful alternative.
- 3 You should now feel comfortable fitting a simple mixed effects model in R.
- 4 If your data are complex (e.g. multi-level hierarchy, extra-quadratic non-linearity) or your hypotheses are complex (e.g. comparisons at time x, predictions), please don't hesitate to drop me a line.