

Instituto Federal De Educação, Ciência e Tecnologia Da Paraíba

MAXTERMOS E MINTERMOS

Grupo:

José Eduardo de Freitas Batista Victor Emanuel de Oliveira Gomes Victor Ramalho Nunes Palitot Disciplina: Circuitos lógicos

Professor: Me. Marcos Meira

Sumário

- 1. Introdução
- 2. Mintermos
 - 2.1 Definição
 - 2.2 Tabela verdade
 - 2.3 Circuito
 - 2.4 Expressão canônica

3. Maxtermos

- 3.1 Definição
- 3.2 Tabela verdade
- 3.3 Circuito
- 3.4 Expressão canônica

4. Aplicações

- 4.1 Inversão de portas lógicas and e or
- 4.2 Simplificação
- 5. Referências

1 - INTRODUÇÃO

1 - Maxtermos e mintermos?

Maxtermos e mintermos são formas de representar expressões booleanas a fim de simplificar as mesmas. Essa simplificação tem como objetivo reduzir o número de portas lógicas do circuito final.

Além disso, optar por uma técnica ou outra dependerá de fatores externos que serão abordados no final.

É importante destacar que ambas as formas possuem o mesmo valor lógico.

2 - MINTERMO

2.1 - Definição (mintermo)

Podemos definir um **mintermo** como a soma dos produtos. Para representar uma expressão booleana dessa forma devemos seguir os seguintes passos:

- I. Montar expressão apenas para valores lógicos de saída igual a um
- II. Todas variáveis de uma linha aparecem como produtos
- III. Todas variáveis iguais a zero serão barradas
- IV. Todos os produtos serão somados gerando a expressão final

2.2 - Tabela verdade (mintermo)

$$S = (\bar{A} \cdot B) + (A \cdot B)$$

- . Olhamos as saídas igual a 1
- II. Todas variáveis aparecem como produtos
- III. Todas variáveis 0 são barradas
- IV. A expressão final é a soma desses produtos

SOP é a sigla em inglês para sum of products, ou seja, soma dos produtos!

2.3 - Circuito (mintermo)

\boldsymbol{A}	В	S	SOP
0	0	0	
0	1	1	$(ar{A}\cdot B)$
1	0	0	
1	1	1	$(A \cdot B)$

$$S = (\bar{A} \cdot B) + (A \cdot B)$$

Circuito final

2.4 - Expressão canônica

$$S = (\bar{A} \cdot B) + (A \cdot B)$$

$$S = (\bar{A} \cdot B) + (A \cdot B)$$

 $S = m_1 + m_3$
 $S = \Sigma(m_1, m_3)$

$$S = \Sigma_m(1,3)$$

$$S = \Sigma_m(1,3)$$

3 - MAXTERMO

3.1 - Definição (Maxtermo)

Podemos definir um **maxtermo** como o produto das somas. Para representar uma expressão booleana dessa forma devemos seguir os seguintes passos:

- I. Montar expressão apenas para valores lógicos de saída igual a zero
- II. Todas variáveis de uma linha aparecem como somas
- III. Todas variáveis iguais a um serão barradas
- IV. Todos as somas vão compor um produto gerando a expressão final

3.2 - Tabela verdade (Maxtermo)

$$S = (A + B) \cdot (\bar{A} + B)$$

- III. Todas variáveis 1 são barradas
- IV. A expressão final é um produto dessas somas

POS é a sigla em inglês para product of sums, ou seja, produto das somas!

3.3 - Circuito (Maxtermo)

A	В	S	POS
0	0	0	(A+B)
0	1	1	
1	0	0	$(\bar{A}+B)$
1	1	1	

$$S = (A+B) \cdot (\bar{A}+B)$$

Circuito final

3.4 - Expressão canônica

$$S = (A+B) \cdot (\bar{A}+B)$$

4 - APLICAÇÕES

4.1 - Inversão and-or

\boldsymbol{A}	В	S	
0	0	0	(A+B)
0	1	1	$(ar{A}\cdot B)$
1	0	0	$(\bar{A}+B)$
1	1	1	$(A \cdot B)$

$$s = (\overline{A} \cdot B) + (A \cdot B)$$

 $s = (A + B) \cdot (\overline{A} + B)$

Ambas expressões são equivalentes, no entanto, maxtermos utilizam bem mais *portas or* do que expressão mintermo

$$(\overline{A}\cdot\overline{C})+(B\cdot D)$$

$$(\overline{A}\cdot\overline{C})+(B\cdot D)+(B\cdot\overline{C})$$

$$(\overline{A} \cdot \overline{C}) + (B \cdot D) + (B \cdot \overline{C}) + (\overline{A} \cdot D)$$

$$(C \cdot \overline{D}) + (A \cdot \overline{B})$$

$$\overline{(\boldsymbol{C}\cdot\overline{\boldsymbol{D}})+(\boldsymbol{A}\cdot\overline{\boldsymbol{B}})}$$

$$\overline{(C \cdot \overline{D})} \cdot \overline{(A \cdot \overline{B})}$$

$$(\overline{C} + D) \cdot (\overline{A} + B)$$

$$s = (B \cdot \overline{C}) + (\overline{A} \cdot \overline{C}) + (\overline{A} \cdot D) + (B \cdot D)$$

$$s = (\overline{A} + B) \cdot (\overline{C} + D)$$

29/31

5 - Referências

- Fernanda Lima Kastensmidt, Técnicas digitais para computação.
 Disponível em: http://www.inf.ufrgs.br/~fglima/TD/TD09.pdf.
 Acesso em: 06/11/2019.
- All About Circuits, Vol. IV Digital. Disponível em: https://www.allaboutcircuits.com/textbook/digital/chpt-8/minterm-maxterm-solution/. Acesso em: 08/11/2019.
- Software, NI Multisim™ 14. Acesso em: 11/11/2019.

Obrigado!

- freitas.eduardo@academico.ifpb.edu.br
- gomes.victor@academico.ifpb.edu.br
- victor.nunes@academico.ifpb.edu.br