مرحله اول

Tom	will	Mark	Watch	Will	Can	Mark	Watch	Can	Tom	Watch	Mark	Can	Watch
N	M	V	N	N	M	V	N	M	N	V	N	M	V

Emission probabilities:

Word/Tag	Noun	Verb	Modal
Tom	2/6	0	0
Will	1/6	0	1/4
Mark	1/6	2/4	0
Watch	2/6	2/4	0
Can	0	0	3/4

مرحله دوم

Transition probability

	Noun	Verb	Modal	< E >
<\$>	3/4	0	1/4	0
Noun	0	1/6	3/6	2/6
Verb	2/4	0	0	2/4
Modal	1/4	0	3/4	0

مرحله سوم **گراف**

Can Tom mark watch?

• گراف اولیه

• حذف راس های صفر

• حذف یال های صفر و راس هایی که به <E> نمی رسند

• احتمال جمله

$$P(\text{Can Tom mark watch}) = \frac{1}{4} \times \frac{3}{4} \times \frac{1}{4} \times \frac{2}{6} \times \frac{1}{6} \times \frac{2}{4} \times \frac{2}{4} \times \frac{2}{6} \times \frac{2}{6} = 7.23 \times 10^{-5}$$

0.9241 .Y

John	Eats	Pie	With	Cream	
N (0.2), NP	S (0.00384)	S (0.000058)	-	S	John
(0.04)				(0.00000041472)	
	V (0.3), VP	VP (0.018)	-	VP (0.000013)	Eats
	(0.12)				
		N (0.1), NP	_	NP (0.000144)	Pie
		(0.02)			
			P (0.6)	PP (0.036)	With
				N (0.3), NP	Cream
				(0.06)	

John

- Noun \rightarrow John = 0.2
- NP \rightarrow Noun \rightarrow John = (0.2)(0.2) = 0.04

Eats

- Verb \rightarrow eats = 0.3
- VP \rightarrow Verb \rightarrow eats = (0.4)(0.3) = 0.12

Pie

- Noun \rightarrow Pie = 0.1
- NP \rightarrow Noun \rightarrow Pie = (0.2)(0.1) = 0.02

With

• $P \rightarrow \text{with} = 0.6$

Cream

- Noun \rightarrow Cream = 0.3
- NP \rightarrow Noun \rightarrow Cream = (0.2)(0.3) = 0.06

John eats

• $S \rightarrow NP VP = (0.8)(0.04)(0.12) = 0.00384$

Eats pie

• VP \rightarrow Verb NP = (0.3)(0.3)(0.02) = 0.0018

With cream

• $PP \rightarrow PNP = (1)(0.6)(0.06) = 0.036$

John eats pie

• $S \rightarrow NP VP = (0.8)(0.04)(0.0018) = 0.000058$

Pie with cream

• NP \rightarrow NP PP = (0.2)(0.02)(0.036) = 0.000144

Eats pie with cream

- VP \rightarrow Verb(eats) NP (pie with cream) = (0.3)(0.3)(0.000144) = 0.00001296
- VP \rightarrow VP(eats pie) PP (with cream) = (0.2)(0.018)(0.036) = 0.00001296

John eats pie with cream

• $S \rightarrow NP VP = (0.8)(0.04)(0.000013) = 0.00000041472$

۳.

محدودیت های PCFG

۱. احتمال قوانین همیشه ثابت در نظر گرفته می شود. با اینکه با توجه به کلمات بکار رفته و اطلاعات .در Lexcalized PCFG احتمال قانون به کلمات نیز

بستگی دارد. برای مثال، در قانون $VP o Verb \, NP \, NP$ ، احتمال به اینکه چه فعلی در V استفاده شده باشد، بستگی دارد. مثلا، احتمال در صورت استفاده از give متفاوت از run است.

7. از دیگر معایب ثابت بودن احتمال قوانین، استفاده از قوانین در مکان های مختلف است. ممکن است استفاده از یک قانون در ابتدای جمله با انتهای جمله احتمال متفاوتی داشته باشد. در Lexicalized نیز این محدودیت وجود دارد، مگر اینکه علاوه بر اطلاعات Lexical خود قانون و کلماتش، اطلاعات قوانین قبل و بعد را نیز در نظر بگیریم.

سوال عملي

دقت رده بند با آموزش روی ۵۰ هزار داده، ۹۲۴۱ ر ۰ است.

با توجه به ایمپورت های نوت بوک، برای ساخت رده بند، از DictVectorizer ،Pipeline و درخت تصمیم استفاده شد. یک تابع برای تهیه فیچرها از کلمات برای درخت نوشته شد. از تابع برای تهیه فیچرها از کلمات برای درخت نوشته شد. از تابع برای تهیه فیچرها از کلمات برای درخت نوشته شد. از تابع برای داده آموزش و تست استفاده شد.

در آخر تابع pos_tag نوشته شد تا تگ هارا پیش بینی کند و به صورت خواسته شده برگرداند.