

PN Преход

Преговор – ниво на Ферми в примесни полупроводници

Р-тип полупроводник

N-тип полупроводник

Какво ще стане ако вземем два различни типа полупроводникови кристали и ги доближим на растояние, съизмеримо със стъпката на кристалната решетка?

PN Преход

$$J_{nD} = qD_n \frac{dn}{dx}$$

$$J_{pD} = -qD_p \, \frac{dp}{dx}$$

Законът за дифузията е открит от Adolf Fick през 1855

Първоначално в металургичната граница има много голям градиент на концентрацията както на електрони така и на дупки. Основните токоносители в N областта (електрони) ще започнат да дифундират в P областта. Респективно, основните токоносители в P областта (дупки) ще започнат да дифундират в N областта.

Обратно на свободните токоносители, йоните никога не се движат. Те остават фиксирани във възлите на кристалната решетка поради ковалентни връзки в полупроводниковата структура.

PN Преход – Обемен Заряд

Когато електроните дифундират от Nобластта, в нея остават положително заредените донорни атоми. По същия начин тъй като дупките дифундират от P-областта, там остават отрицателно заредени акцепторни атоми.

Образува се **обемен заряд**, който индуцира електрическо поле в района близо до металургичния преход.

Това поле изтласква електроните и дупките от областта на обемния заряд, т.е. имаме дрейфово движение на токоносители. В областта непосредсвено до металургичната граница се образува обеднена област.

$$J_{pE} = qp\mu_p E \qquad J_{nE} = -qn\mu_n E$$

PN Преход – Термично Равновесие

Върху електроните и дупките действа две противодействащи си сили:

- Дифузия, причинена от градиента на концентрацията, се стреми да ги придвижи през прехода
- Дрейфът, причинен от електрическото поле създадено в обеднената област, се стреми да ги отблъсне от прехода.

Когато дифзният и дрейфовият потоци на токоносители се изравнят, настъпва равновесие и ток не тече.

$$J_{nE} + J_{nD} = 0$$

$$J_{nE} + J_{nD} = 0$$
$$J_{pE} + J_{pD} = 0$$

Зонна диаграма на PN преход в термично равновесие

$$U_0 = |\varphi_{Fp}| + |\varphi_{Fn}| = \varphi_t \ln\left(\frac{N_a N_d}{n_i^2}\right)$$

$$\varphi_t = \frac{kT}{e} = 0.0259 \, V$$
 при Т=300К

 U_0 — бариерен потенциал

 $arphi_t$ – топлинен потенциал

k — константа на Болцман

T — абсолютна температура

e — заряд на електрона

Новото на Ферми трябва да бъде едно и също за целият кристал.

При преминаване през зоната на обемен заряд, нивата на валентната зона и зоната на проводимост се огъват, защото отстоянието им от нивито на Ферми е различно за Р и N областите.

Защо U_0 се нарича "бариерен" потенциал?

Електроните в зоната на проводимост на n областта срещата "бариера" когато се опитат да преминат в зоната на проводимост на р областта. Височината на тази бариера е eU_0

При стайна температура (25 °C) бариерният потенциал за Si диоди е приблизително 0.7V.

Adolf Fick

$$J_D = -qD \frac{d\varrho}{dx}$$

Закон за дифузията

Georg Simon Ohm

$$J_E = q \varrho \mu E$$

Зако на Ом -Връзка между електрическо поле и ток

Albert Einstein

$$D=\phi_{T}.\mu$$

Връзка между коефициент на дифузия и подвижност на токоносителите.

William Shockley

$$I = I_S \left(e^{\frac{U}{\varphi_T}} - 1 \right)$$

Уравнение на идеален PN-преход

Формиране на PN преход

PN прехода се формира в полупроводников монокристал, в който една област е легирана с акцепторни примесни атоми, за да се образува р област, а съседната област е легирана с донорни атоми за образуване на п регион.

Границата, разделяща n и р областите, се нарича металургичен граница.

Най-често, легирането се извършва посредством йонна имплантация.

Резюме

При допирането на Ри N полипроводници:

- Дифузният ток започва да тече
- Това създава обеднена област от фиксирани йони
- Тази област създава електрическо поле, което причинява дрейфов ток
- Равновесие се постига кодато дрейфовият ток се изравнява с дифузният
- Това състояние се представя чрез изравняване на нивата на Ферми и чрез бариерен потенциял

В следващата лекция ще видим какво се случва когато приложим външно напрежение към PN преход намиращ се равновесие. Как можем да понижим потенциалната бариера и през PN прехода да протече ток или да я направим по висока. Ще видим как работи диодът.

Обратно включване на pn преход

Ако приложим потенциал U_R между областите P и N, ще се наруши условието за равновесие — **нивото на Ферми вече няма да бъде постоянно през кристала**.

Бариерният потенциал се повишава до U_o + U_R

Обеднената област действа като изолатор, предотвратявайки значителен поток на електрически ток (освен ако външен източник на екергия – например светлина – не предизвиква генериране на двойки електрон-дупка).

Пробив

Обратното напрежение не може да бъде увеличавано неограничено – при определено напрежение обратният ток ще се увеличи бързо.

Приложеното напрежение в тази точка се нарича напрежение на пробив.

Съществуват няколко механизма на пробив:

1. Пробивът на Zener се обяснява с тунелиране на токоносители през PN прехода.

В силно легиран преход, енергийните зони от двете страни на прехода са достатъчно близки една до друга.

Електроните могат да тунелират директно от валентната зона на Р областта в зоната на проводимост на N областта.

Лавинен пробив

2. Лавинният пробив възниква, когато електрони или дупки, движейки се в областта на обемния заряд, придобиват достатъчно енергия от електрическото поле, за да създадат двойки електрон-дупка чрез сблъсък с електроните на неутрални атоми.

Топлинен пробив

3. Ако продължим да увеличаваме обратното напрежение върху PN прехода ще се увеличава и обратния ток.

Протичането на ток води до отделяне на **топлина** и до повишаване на **температурата**.

Рано или късно, това ще доведе до необратимо разрушаване на PN прехода.

Право включване на pn преход

Право включване

Прилагаме положително напрежение към Р областта и отрицателно към N областта.

Нивото на Ферми в Р-областта сега е по-ниско от това в Nобластта. Общата потенциална бариера вече е намалена:

$$E = e(U_0 - U_F)$$

Намаленият бариерен потенциал вече не е в състояние да спре дифузията на токоносители:

- Дупки от Р-областта в N-областта
- Електрони от N-областта в P-областта

През PN прехода ще протече ток в права посока: P -> N.

Обратно включване

Право включване

$$I = I_S \left(e^{\frac{U}{\varphi_T}} \right) - 1$$

I- ток през диода

 Is – ток на насищане

U- напрежение върху диода

 $arphi_t$ – топлинен потенциал

John Bardeen(I), William Shockley and Walter Brattain(r), 1948

1956 Нобелова награда по физика за изследване свойствата на полупроводниците и откриване на транзистора.

Влияние на температурата

Влияние на температурата - обратно включване

Figure 2. Typical Reverse Current

Токът на насищане I_s се удвоява на всеки 10 ^{o}C увеличение на температурата.

Тъй като обратният ток се формира от топлинно генерирани неосновни токоносители, той силно зависи от изменението на температурата.

Влияние на температурата – право включване

$$TKU_F = \frac{dU}{dT} \approx \frac{\Delta U}{\Delta T} | I = const$$

$$TKU_F \approx -2 \ mV/^{\circ}C$$

Ако $T \uparrow mo U \downarrow при I=const$

Figure 1. Typical Forward Voltage

Диодът има **отрицателен температуран коефициент** на напрежението U_{F} Това позволява диодите да се използват като датчици за температура, както и за температурна компенсация.

Преход метал-полупроводник Преход на Шотки

Зонна диаграма

Преди контакт:

нивото на Ферми в N-полупроводникът е над това в метала.

След осъществяване на контакт:

За да може нивото на Ферми да е постояно в цялата система, електрони от полупроводника преминават в по-ниските енергийни състояния в метала.

Положително заредени донорни атоми остават в полупроводника, създавайки област на пространствен заряд

 $arphi_m$ - работна функция на метала $arphi_s$ - работна функция на полупроводника χ — електронен афинитет на полупроводника

 $arphi_{B0} = arphi_m - \chi$ – бариера на Шотки

 $U_0 = arphi_{B0} - arphi_n$ - бариерен потенциал

Зонна диаграма – право и обратно включване

Зонните диаграми при право и обратно включване на прехода на Шотки са подобни на тези при рп прехода. Подобна е и волт-амперната карактеристика.

Съществена разлика, е че токът в прехода на Шотки се формира само от електрони – т.е. от основни токоносители.

Сравнение на PN преход и преход метал-полупроводник

	PN преход	Преход метал-полупроводник
компоненти	Р-тип полупроводник и N-тип полупроводник	Метал и полупроводник (N или P тип)
Формиране на преход	Причинява се от градиент на концентрацията. Електроните дуфундират от N към P, дупките от P към N, създавайки обеднена област от двете страни на прехода	Причинява се от разликата в работните функции на метал и полупроводник. Обеднената област се намира от страната на полупроводника.
Токоносители	Биполярно устройство: както основните така и неосновните токоносители са съществени. Токът в права посока се образува от неосновни токоносители.	Еднополярно устройство: Проводимостта се обуславя само от основните токонсители.
Пад на напрежени в права посока	Напрежението необходимо да преодолее бариерният потенциал и да започне инжектирана на неосновни токоносители. ~0.6V - 0.9V за силиций	Височината на бариерата е по-ниска. Падът на напрежението в права посока е ~0.2V - 0.4V
Скорост на превключване	По-ниска. Определя се от времето за разнасяне на неосновните токоносители – trr	По-висока. Няма неосновни токоносители, които да трябва да бъдат разнасяни. Скоростта е ограничена само от капацитета на прехода.
Обратен ток	Много малък – наноампери са силиций	По-висок от този на PN прехода поради по-ниската потенциална бариера.
Поведения	Изправител (диод с PN преход)	Изправител (диод на Шотки) или омичен контакт. Зависи от легирането на полупроводника

Шотки Преход или Омичен Контакт?

Поведението на преход метал-полупроводник се определя от работните функции на метала и полупроводника. Работната функция представлява енергията необходима за преместване на електрон от материала във вакум.

Шотки преход

Условие: Работната функция на метала е по-голяма от тази на полупроводника.

Какво се случва: Електроните преминават от **полупроводника в метала** докато нивата на Ферми се изравнят.

Резултат: Потокът от електрони остава фиксиран положителен заряд в полупроводника, създавайки обеднена област и енергийна бариера. Тази бариера възпрепятства движението на електрони от полупроводника към метала.

Поведение: Преходът се държи като диод. Малко напрежелие, приложено в права посока, преодолява париерния потенциал и позволява протичането на ток. Напрежение, приложено в обратна посока, повишава бариерния потенциал и възпрепятства протичане на ток. Това е **диод на Шотки**.

Шотки Преход или Омичен Контакт?

Омичен преход

Условие: Работната функция на метала е по-малка от тази на полупроводника.

Какво се случва: Електроните преминават **от метала в полупроводника** докато нивата на Ферми се изравнят.

Резултат: Потокът от електрони създава излишък от електрони в полупроводника. Не се създава обеднена област и енергийна бариера, която да възпрепятства движението на електрони.

Поведение: Преходът се държи като обикновен проводник. Токът може да протича безпрепятствео и в двете посоки. Това е **омичен контакт**.

Дали ще се получи диод на Шотки или омичен контакт, зависи от концентрацията на примесите в полупроводника