

Analysing Metabolic Networks in Gradoop

Anja Neumann & Christoph Georgi

Universität Leipzig

31.07.2017

- 1 BiGG Models Datenquelle
- 2 JSON-Konverter
- 3 Analyse mit Gradoop und Visualisierung
- Ausblick

- 1 BiGG Models Datenquelle
- 2 JSON-Konverter
- 3 Analyse mit Gradoop und Visualisierung
- 4 Ausblick

- BiGG Models Datenquelle
- 2 JSON-Konverter
- 3 Analyse mit Gradoop und Visualisierung
- Ausblick

- BiGG Models Datenquelle
- 2 JSON-Konverter
- 3 Analyse mit Gradoop und Visualisierung
- 4 Ausblick

Datenquelle

- "BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions."
- mehr als 70 veröffentlichte Datensätze
- für den nicht-kommerziellen Gebrauch frei verfügbar.
- Das Hosting und die Pflege durch das System Biology Research Group an der University of California, San Diego.

- "BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions."
- mehr als 70 veröffentlichte Datensätze
- für den nicht-kommerziellen Gebrauch frei verfügbar.
- Das Hosting und die Pflege durch das System Biology Research Group an der University of California, San Diego.

- "BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions."
- mehr als 70 veröffentlichte Datensätze
- für den nicht-kommerziellen Gebrauch frei verfügbar
- Das Hosting und die Pflege durch das System Biology Research Group an der University of California, San Diego.

- "BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions."
- mehr als 70 veröffentlichte Datensätze
- für den nicht-kommerziellen Gebrauch frei verfügbar.
- Das Hosting und die Pflege durch das System Biology Research Group an der University of California, San Diego.

- "BiGG Models is a knowledgebase of genome-scale metabolic network reconstructions."
- mehr als 70 veröffentlichte Datensätze
- für den nicht-kommerziellen Gebrauch frei verfügbar.
- Das Hosting und die Pflege durch das System Biology Research Group an der University of California, San Diego.

Testdatensatz - 'iAB_RBC_283.json'

• Organismus: Homo sapiens

• Metabolite: 342

Reaktionen: 469

• Gene: 346

Reaktionsorte: Cytoplasma, Interzellularraum

Subsysteme: 42

JSON-Konverter

JSON-Konverter

Gradoop-Format

https://www.scads.de/images/scads_ringvorlesung/rv-graphs-rahm.pdf

Zielformat

reaction blank node

ld: string label: string

reaction edge

- id : string
- label : string
- source : string
- target : string
- quantity: int

metabolit node

- label : string
- name : string

gen node

- index : string - name : string

gen edge

- id : string
- source : string
- target : string

logic graphs

reaction graph

compartment graph

Zielformat

Zielformat

Analyse mit Gradoop und Visualisierung

Analyse mit Gradoop und Visualisierung

Zielformat - Gradoop Visualisierung

Visualisierung mit GradoopVis

- Entwickler: Martin Junghanns & Mohammad Ali Rostami
- Status: Entwicklungsphase
- genutzte Feature:
 - Clustering mittels ClusterId
 - Anzeigen der Labels
 - Einfärben von Knoten nach Label oder Property

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

- Aggregation (Zählen von Kanten (2456) und Knoten (1082))
- Selektion (Subsysteme, Reaktionen)
- Grouping
- Transformation (Label, Property verändern)
- Pattern Matching (activ transport reactions)

Aggregation (Suche nach Hubs)

Aggregation (Suche nach Hubs)

Metabolit	Anzahl Kanten	Edukt	Produkt
H2O	124	114	10
CO2	13	3	10
ATP	81	79	2
ADP	68	1	67
Phosphate	70	8	62
H+	202	44	158

Selektion

Live-Präsentation

Grouping nach Subsystemen

Transformation

Pattern Matching (activ transport reactions)

Pattern Matching (activ transport reactions)

Ausblick

- alle Bigg Model in Gradoop einlesbar + visualisierbar
- Suche nach größten Zyklen per Pattern Matching
- Suche nach häufig vorkommenden Strukturen per Frequent Subgraph Mining

Helicobacter 'ilT341.json'

Danke für ihre Aufmerksamkeit

Quellen

- 'Verteilte Graphanalyse mit Gradoop' von Junghanns und Petermann (2016)
- 'graph-based data integration and analysis for big data' von Prof. Dr. Erhard Rahm (ScaDS-Ringvorlesung) (2017)
- Datenquelle: http://bigg.ucsd.edu