Astrochemical simulations: 星間化学モデルの現状と課題

筑波大学計算科学研究センター 古家 健次

Chemical scenario: from simple molecules to complex molecules

Chemical processes in star-forming regions

Gas-phase

- イオンー分子反応を中心とした反応系
- 不飽和分子ができやすい

- Cosmic-ray ionization
- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc...

$$(cf.)$$
 AB + C \rightarrow A + BC

Adsorption

Desorption (thermal/non-thermal)

Grain-surface

-飽和分子、大型分子ができやすい

- Hydrogenation: A +H → AH
- Reaction among heavy-element species
 - \bigcirc AB + C \rightarrow ABC
 - Concentration of heavy-element species

Chemical and dynamical time scale

(based on Bergin & Tafalla 2007)

• 反応速度式:
$$\frac{dn(i)}{dt} = \sum_{j} \alpha_{ij}(T, F_{\text{UV}}) n(j) + \sum_{j,k} \beta_{ijk}(T, F_{\text{UV}}) n(j) n(k)$$

$$\beta = AT^{B} \exp\left(-\frac{E_{act}}{T}\right)$$
 反応障壁

● UMIST, kida 気相反応ネットワーク

分子種:~500 (cf. ~160種が検出)

反応数:~5000

collision rate×分岐比

実験・計算に基づくものは 1/3程度

(Figure by C. Walsh)

(Agundez & Wakelam 2013)

不定性の解析(気相)

- 計算/実験データのない反応 について反応速度係数を 変えた計算
 - ⇒ 系全体もしくは興味ある 分子に影響を与える反応 を抽出
 - ⇒計算/実験

Table 1. Standard dense cloud model.

Parameter	Value
T	10 K
$n_{ m H}$	$2 \times 10^4 \text{ cm}^{-3}$
A_V	10
ζH	$1.3 \times 10^{-17} \text{ s}^{-1}$
Initial abundances	atomic except for 100% H2
Rate coefficients	osu.03.2008

Table 2. Elemental abundances with respect to total hydrogen nuclei.

Table 3. Variational ranges of the parameters.

Parameter	Range	N runs
Reaction rate coefficients	Uncertainty Factor	2500
Temperature*	5-15 K	2500
H density*	$(1-3) \times 10^4 \text{ cm}^{-3}$	_
Elemental abundances	±50%	2000
Cosmic-ray ionization rate (ζ)	$(0.5-5.0) \times 10^{-17} \text{ s}^{-1}$	1000
Initial Concentrations	see text	3500

Notes. (*) Varied together.

ダスト表面化学の数値計算

Rate equation method

$$\frac{dn(i)}{dt} = \sum_{j} \alpha_{ij}(T, F_{\text{UV}})n(j) + \sum_{j,k} \beta_{ijk}(T, F_{\text{UV}})n(j)n(k)$$

- Adv. : can be coupled with realistic dynamical models
- Disadv.: not very accurate(e.g., back-diffusion, single binding energy)

(Al-halabi & van Dishoeck 2007)

- Microscopic Monte Carlo method
 - Adv. : accurate
 - Disadv. : computationally expensive

 星間氷の主要構成分子については (Cupp rate eq.でもfactor ~2以内で観測を再現可。COMs?

(Cuppen et al. 2013)

Modeling of gas-ice chemistry w/ rate eqs.

(Hasegawa & Herbst 1992)

- Gas
- Homogenous reactive ice mantle

- (2+n)-phase model (Furuya et al. 2017)
 - Gas
 - Icy grain surface
 - Inhomogenous bulk ice mantle (distinct *n* phases)

非一様な氷マントル

・ 氷マントルは非一様な 構造を持つ

• バルク組成よりも 層構造の理解が重要?

(Furuya et al. 2016)

最近の原始星コアの観測より (preliminary)
 D/H(COMs) ~ D/H(CH₃OH) ~ D/H(H₂CO) >> D/H(H₂O)

(Demyk+ 2010, Coutens+ 2016, Jorgensen+ 2016, 2017, Persson+ 2017)

まとめ

- 星形成領域の化学非平衡→反応速度式
- 反応係数、生成物の分岐比、etc.パラメータの 決定がモデルの改善に重要

• 星間氷は層構造を持つ