

Programas usando el lenguaje ensamblador

Ejemplo 1. Realizar un programa que genere un contador a partir del numero 7 y se incremente de uno en uno. El resultado del contador debe colocarse en la dirección de memoria 5. Observemos el diagrama de flujo de la figura 1.

Figura 1: Ejemplo1 - contador

El programa que implementa el diagrama de flujo de la figura 1 se muestra en la tabla 1.

Instrucciones	Significado	Dir	14	13	12	11	10	9 8	3 7	5 5 4	3 2 1 0	Т
LI R0, #1	R0 = 1	0		C	000	1		00		00001	ı	
LI R1, #7	R1 = 7	1		C	000	1		01		00111	ı	
CICLO: ADD R1, R1, R0	R1 = R1 + R0	2	00000					01	01	. 00	0000	R
SWI R1, 5	Mem[5] = R1	3	00011					01 0000010			00101	I
B CICLO	PC = 2	4	00110					XX		0000	00010	J

Tabla 1: Formatos de instrucción del programa del ejemplo 1

Ejemplo 2. Realizar un programa que obtenga los primeros **12 términos** de la serie de Fibonacci. Los valores iniciales de la serie son 0 y 1 y se colocan en R0=0 y R1=1. Cada término de la serie se obtiene sumando los 2 números anteriores. Además, el término de la serie calculado debe colocarse en la dirección de memoria 72. Observemos el diagrama de flujo de la figura 2.

1er término	20 término	3er término	4o término	5o término	6o término	7o término	8o término
0	1	1	2	3	5	8	13
R0	R1	R0	R1	R0	R1	R0	R1

Figura 2: Ejemplo 2- Serie de Fibonacci

El programa que implementa el diagrama de flujo de la figura 2 se muestra en la tabla 2.

Instituto Politécnico Nacional Escuela Superior de Cómputo

Instrucciones	Significado	Dir	14	13	12	11	10	9 8	3 7	6	5 4	3 2 1 0	T
LI R0, #0	R0 = 0	0	00001					00		I			
LI R1, #1	R1 = 1	1	00001					01		00001	ı		
LI R2, #0	R2 = 0	2	00001					10		00000	I		
CICLO: ADD R0, R0, R1	R0 = R0 + R1	3	00000					00	00 01 0			0000	R
SWI R0, 72	Mem[72] = R0	4	00011					00	01001000			I	
ADD R1, R0, R1	R1 = R0 + R1	5	00000				01	0	0	01	0000	R	
SWI R1, 72	Mem[72] = R0	6		C	0001	1		01	01001000			I	
ADDI R2, R2, #2	R2 = R2 + 2	7		C	010	0		10	10	0	C	000010	I
CPI R2, #12	R2 - 12	8		C	011	1		10	00001100				I
BNEQ CICLO	PC=(Z==0)?3:10	9		C	100	1		XX		(0000	00011	J
FIN:		10		C)111	0		XX	X	X	XX	XXXX	
NOP													
B FIN	PC = 10	11	00110					XX	00001010			1010	J

Tabla 2: Formatos de instrucción del programa del ejemplo 2

Ejemplo 3. Realizar un programa que genere un contador a partir del numero **cero** y se incremente de uno en uno. Determinar si el resultado del contador es un número par o impar. Si el número es par, colocar el código F0H en la dirección de memoria AH, si es impar colocar el código 0FH en la misma dirección. Observemos el diagrama de flujo de la figura 3.

Número par = 10

	7	6	5	4	3	2	1	0				
Número = 10	0	0	0	0	1	0	1	0				
Máscara = 1	0	0	0	0	0	0	0	1				
Resultado AND	0	0	0	0	0	0	0	0				
Número impar = 13												
	7	6	5	4	3	2	1	0				
Número = 13	0	0	0	0	1	1	0	1				
Máscara = 1	0	0	0	0	0	0	0	1				
Resultado AND	0	0	0	0	0	0	0	1				

Para identificar si un número es par o impar se realiza una operación lógica AND entre el número a verificar y la máscara 0x01, si el resultado de la operación lógica es CERO, se trata de un número PAR, por el contrario, si resultado de la operación lógica es UNO, se trata de un número IMPAR.

AUTOR: VICTOR HUGO GARCÍA ORTEGA

Figura 3: Ejemplo3 - Números pares e impares

El programa que implementa el diagrama de flujo de la figura 3 se muestra en la tabla 3.

Instrucciones	Significado	Dir	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0	Т
XOR R0, R0, R0		0															
CICLO: ADDI R0, R0, #1		1															
LI R1, #01H		2															
AND R1, R0, R1		3															
BEQ PAR		4															
LI R1, #0FH		5															
SWI R1, 0AH		6															
B CICLO		7															
PAR:		8															
LI R1, #F0H																	
SWI R1, 0AH		9															
B CICLO		10															

Tabla 3: Formatos de instrucción del programa del ejemplo 3.

AUTOR: VICTOR HUGO GARCÍA ORTEGA

Ejemplo 4. Realizar un programa que compare 3 números colocados en los registros R0, R1 y R2 y guarde el mayor de los 3 en la dirección de memoria 0x20. Considere los 3 números diferentes. Observemos el diagrama de flujo de la figura 4.

Figura 4: Ejemplo 4 Comparación de números.

El programa que implementa el diagrama de flujo de la figura 4 se muestra en la tabla 4.

Instrucciones	Significado	Dir	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Т
LI R0, #23		0										•		•	•			
LI R1, #-45		1																
LI R2, #165		2																
CP R0, R1		3																
BGT CR0R2		4																
ADDI R0, R1, #0		5																
CR0R2:		6																
CP R0, R2																		
BGT R0MAY		7																
ADDI R0, R2, #0		8																
R0MAY:		9																
SWI R0, 20H																		
B R0MAY		10																

Tabla 4: Formatos de instrucción del programa del ejemplo 4.

AUTOR: VICTOR HUGO GARCÍA ORTEGA