
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=1; day=29; hr=18; min=8; sec=22; ms=760;]

Validated By CRFValidator v 1.0.3

Application No: 10774378 Version No: 3.1

Input Set:

Output Set:

Started: 2008-01-29 18:07:15.608

Finished: 2008-01-29 18:07:16.570

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 962 ms

Total Warnings: 3

Total Errors: 0

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Error code		Error Description											
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)		
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)		
W	213	Artificial	or	Unknown	found	in	<213>	in	SEO	TD	(11)		

SEQUENCE LISTING

- <110> Ono Pharmaceutical Co., Ltd.
- <120> Novel Polypeptides, DNAs encoding the polypeptides, and utility of the Polypeptides
- <130> Q79834
- <140> 10774378
- <141> 2004-02-10
- <150> 09/380,276
- <151> 1999-08-27
- <150> JP 9-43143
- <151> 1997-02-27
- <150> PCT/JP98/00799
- <151> 1997-02-27
- <160> 15
- <170> PatentIn version 3.0
- <210> 1
- <211> 1251
- <212> DNA
- <213> Homo Sapiens
- <400> 1

atggctttaa	aagtgctact	agaacaagag	aaaacgtttt	tcactctttt	agtattacta	60
ggctatttgt	catgtaaagt	gacttgtgaa	acaggagact	gtagacagca	agaattcagg	120
gatcggtctg	gaaactgtgt	tccctgcaac	cagtgtgggc	caggcatgga	gttgtctaag	180
gaatgtggct	tcggctatgg	ggaggatgca	cagtgtgtga	cgtgccggct	gcacaggttc	240
aaggaggact	ggggcttcca	gaaatgcaag	ccctgtctgg	actgcgcagt	ggtgaaccgc	300
tttcagaagg	caaattgttc	agccaccagt	gatgccatct	gcggggactg	cttgccagga	360
ttttatagga	agacgaaact	tgtcggcttt	caagacatgg	agtgtgtgcc	ttgtggagac	420
cctcctcctc	cttacgaacc	gcactgtgcc	agcaaggtca	acctcgtgaa	gatcgcgtcc	480
acggcctcca	gcccacggga	cacggcgctg	gctgccgtta	tctgcagcgc	tctggccacc	540
gtcctgctgg	ccctgctcat	cctctgtgtc	atctattgta	agagacagtt	tatggagaag	600
aaacccagct	ggtctctgcg	gtcacaggac	attcagtaca	acggctctga	gctgtcgtgt	660
cttgacagac	ctcagctcca	cgaatatgcc	cacagagcct	gctgccagtg	ccgccgtgac	720
tcagtgcaga	cctgcgggcc	ggtgcgcttg	ctcccatcca	tgtgctgtga	ggaggcctgc	780

agccccaacc cggcgactct tggttgtggg gtgcattctg cagccagtct tcaggcaaga 840

aacgcaggc	c cagccgggga	gatggtgccg	actttcttcg	gatccctcac	gcagtccatc	900
tgtggcgag	t tttcagatgc	ctggcctctg	atgcagaatc	ccatgggtgg	tgacaacatc	960
tctttttgt	g actcttatcc	tgaactcact	ggagaagaca	ttcattctct	caatccagaa	1020
cttgaaagc	t caacgtcttt	ggattcaaat	agcagtcaag	atttggttgg	tggggctgtt	1080
ccagtccag	t ctcattctga	aaactttaca	gcagctactg	atttatctag	atataacaac	1140
acactggta	g aatcagcatc	aactcaggat	gcactaacta	tgagaagcca	gctagatcag	1200
gagagtggc	g ctatcatcca	cccagccact	cagacgtccc	tccaggaagc	t	1251

<210> 2

<211> 1704

<212> DNA

<213> Homo sapiens

<400> 2

60 gggaacgtag aactctccaa caataaatac atttgataag aaagatggct ttaaaagtgc 120 tactagaaca agagaaaacg tttttcactc ttttagtatt actaggctat ttgtcatgta 180 aagtgacttg tgaaacagga gactgtagac agcaagaatt cagggatcgg tctggaaact 240 gtgttccctg caaccagtgt gggccaggca tggagttgtc taaggaatgt ggcttcggct atggggagga tgcacagtgt gtgacgtgcc ggctgcacag gttcaaggag gactggggct 300 tccagaaatg caagccctgt ctggactgcg cagtggtgaa ccgctttcag aaggcaaatt 360 420 gttcagccac cagtgatgcc atctgcgggg actgcttgcc aggattttat aggaagacga 480 aacttgtcgg ctttcaagac atggagtgtg tgccttgtgg agaccctcct cctccttacg 540 aaccgcactg tgccagcaag gtcaacctcg tgaagatcgc gtccacggcc tccagcccac gggacacggc gctggctgcc gttatctgca gcgctctggc caccgtcctg ctggccctgc 600 tcatcctctg tgtcatctat tgtaagagac agtttatgga gaagaaaccc agctggtctc 660 720 tgcggtcaca ggacattcag tacaacggct ctgagctgtc gtgtcttgac agacctcagc 780 tccacgaata tgcccacaga gcctgctgcc agtgccgccg tgactcagtg cagacctgcg 840 ggccggtgcg cttgctccca tccatgtgct gtgaggaggc ctgcagcccc aacccggcga 900 ctcttggttg tggggtgcat tctgcagcca gtcttcaggc aagaaacgca ggcccagccg 960 gggagatggt gccgactttc ttcggatccc tcacgcagtc catctgtggc gagttttcag 1020 atgcctggcc tctgatgcag aatcccatgg gtggtgacaa catctcttt tgtgactctt

atcctgaact	cactggagaa	gacattcatt	ctctcaatcc	agaacttgaa	agctcaacgt	1080
ctttggattc	aaatagcagt	caagatttgg	ttggtggggc	tgttccagtc	cagtctcatt	1140
ctgaaaactt	tacagcagct	actgatttat	ctagatataa	caacacactg	gtagaatcag	1200
catcaactca	ggatgcacta	actatgagaa	gccagctaga	tcaggagagt	ggcgctatca	1260
tccacccagc	cactcagacg	tccctccagg	aagcttaaag	aacctgcttc	tttctgcagt	1320
agaagcgtgt	gctggaaccc	aaagagtact	cctttgttag	gcttatggac	tgagcagtct	1380
ggaccttgca	tggcttctgg	ggcaaaaata	aatctgaacc	aaactgacgg	catttgaagc	1440
ctttcagcca	gttgcttctg	agccagacca	gctgtaagct	gaaacctcaa	tgaataacaa	1500
gaaaagactc	caggccgact	catgatactc	tgcatctttc	ctacatgaga	agcttctctg	1560
ccacaaaagt	gacttcaaag	acggatgggt	tgagctggca	gcctatgaga	ttgtggacat	1620
ataacaagaa	acagaaatgc	cctcatgctt	attttcatgg	tgattgtggt	tttacaagac	1680
tgaagaccca	gagtatactt	tttc				1704

```
<210> 3
<211> 1704
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Origin: human bone marrow stromal cell line HAS303
<220>
<221> CDS
<222> (45)..(1295)
<220>
<221>
     sig_peptide
<222>
    (45)..(119)
<220>
<221>
     mat_peptide
<222>
     (120)..(1295)
<400> 3
Met Ala Leu Lys
                                       -25
```

gtg cta cta gaa caa gag aaa acg ttt ttc act ctt tta gta tta cta

Val Leu Leu Glu Glu Lys Thr Phe Phe Thr Leu Leu Val Leu Leu

-10

-15

-20

56

		ttg Leu			Lys											152
		ttc Phe														200
		ggc Gly 30														248
		cag Gln														296
		cag Gln														344
		aag Lys														392
		cca Pro														440
		tgt Cys 110														488
		agc Ser														536
		gac Asp	_		_	_	Ō	_		_	_	_		_		584
_		ctg Leu	_	_				_	_			_	_	_	_	632
	_	gag Glu	_			_			_			_	_		_	680
		ggc Gly 190														728
		cac His														776
tgc	ggg	ccg	gtg	cgc	ttg	ctc	cca	tcc	atg	tgc	tgt	gag	gag	gcc	tgc	824

Cys Gly Pro Val Arg Leu Leu Pro Ser Met Cys Cys Glu Glu Ala Cys 220 235	
agc ccc aac ccg gcg act ctt ggt tgt ggg gtg cat tct gca gcc agt Ser Pro Asn Pro Ala Thr Leu Gly Cys Gly Val His Ser Ala Ala Ser 240 250	872
ctt cag gca aga aac gca ggc cca gcc ggg gag atg gtg ccg act ttc Leu Gln Ala Arg Asn Ala Gly Pro Ala Gly Glu Met Val Pro Thr Phe 255 260 265	920
ttc gga tcc ctc acg cag tcc atc tgt ggc gag ttt tca gat gcc tgg Phe Gly Ser Leu Thr Gln Ser Ile Cys Gly Glu Phe Ser Asp Ala Trp 270 275 280	968
cct ctg atg cag aat ccc atg ggt ggt gac aac atc tct ttt tgt gac Pro Leu Met Gln Asn Pro Met Gly Gly Asp Asn Ile Ser Phe Cys Asp 285 290 295	1016
tct tat cct gaa ctc act gga gaa gac att cat tct ctc aat cca gaa Ser Tyr Pro Glu Leu Thr Gly Glu Asp Ile His Ser Leu Asn Pro Glu 300 305 315	1064
ctt gaa agc tca acg tct ttg gat tca aat agc agt caa gat ttg gtt Leu Glu Ser Ser Thr Ser Leu Asp Ser Asn Ser Ser Gln Asp Leu Val 320 325 330	1112
ggt ggg gct gtt cca gtc cag tct cat tct gaa aac ttt aca gca gct Gly Gly Ala Val Pro Val Gln Ser His Ser Glu Asn Phe Thr Ala Ala 335	1160
act gat tta tct aga tat aac aac aca ctg gta gaa tca gca tca act Thr Asp Leu Ser Arg Tyr Asn Asn Thr Leu Val Glu Ser Ala Ser Thr 350 355 360	1208
cag gat gca cta act atg aga agc cag cta gat cag gag agt ggc gct Gln Asp Ala Leu Thr Met Arg Ser Gln Leu Asp Gln Glu Ser Gly Ala 365 370 375	1256
atc atc cac cca gcc act cag acg tcc ctc cag gaa gct taaagaacct Ile Ile His Pro Ala Thr Gln Thr Ser Leu Gln Glu Ala 380 385 390	1305
gcttctttct gcagtagaag cgtgtgctgg aacccaaaga gtactccttt gttaggctta	a 1365
tggactgagc agtctggacc ttgcatggct tctggggcaa aaataaatct gaaccaaact	1425
gacggcattt gaagcctttc agccagttgc ttctgagcca gaccagctgt aagctgaaac	1485
ctcaatgaat aacaagaaaa gactccaggc cgactcatga tactctgcat ctttcctaca	a 1545
tgagaagctt ctctgccaca aaagtgactt caaagacgga tgggttgagc tggcagccta	a 1605
tgagattgtg gacatataac aagaaacaga aatgccctca tgcttatttt catggtgatt	1665
gtggttttac aagactgaag acccagagta tactttttc	1704

```
<210>
<211>
       417
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      misc_feature
       Origin: human bone marrow stromal cell line HAS303
<223>
<400> 4
Met Ala Leu Lys Val Leu Leu Glu Gln Glu Lys Thr Phe Phe Thr Leu
-25
                                        -15
                                                            -10
                    -20
Leu Val Leu Leu Gly Tyr Leu Ser Cys Lys Val Thr Cys Glu Thr Gly
                                -1 1
                -5
Asp Cys Arg Gln Glu Phe Arg Asp Arg Ser Gly Asn Cys Val Pro
        10
                            15
                                                20
Cys Asn Gln Cys Gly Pro Gly Met Glu Leu Ser Lys Glu Cys Gly Phe
    25
                                            35
                        30
Gly Tyr Gly Glu Asp Ala Gln Cys Val Thr Cys Arg Leu His Arg Phe
40
                    45
                                                            55
                                        50
Lys Glu Asp Trp Gly Phe Gln Lys Cys Lys Pro Cys Leu Asp Cys Ala
                60
                                    65
                                                        70
Val Val Asn Arg Phe Gln Lys Ala Asn Cys Ser Ala Thr Ser Asp Ala
            75
                                80
                                                    85
Ile Cys Gly Asp Cys Leu Pro Gly Phe Tyr Arg Lys Thr Lys Leu Val
        90
                            95
                                                100
Gly Phe Gln Asp Met Glu Cys Val Pro Cys Gly Asp Pro Pro Pro
    105
                        110
                                            115
Tyr Glu Pro His Cys Ala Ser Lys Val Asn Leu Val Lys Ile Ala Ser
                                        130
120
                    125
                                                            135
Thr Ala Ser Ser Pro Arg Asp Thr Ala Leu Ala Ala Val Ile Cys Ser
```

145

150

Ala	Leu	Ala	Thr 155	Val	Leu	Leu	Ala	Leu 160	Leu	Ile	Leu	Cys	Val 165	Ile	Tyr
Cys	Lys	Arg 170	Gln	Phe	Met	Glu	Lys 175	Lys	Pro	Ser	Trp	Ser 180	Leu	Arg	Ser
Gln	Asp 185	Ile	Gln	Tyr	Asn	Gly 190	Ser	Glu	Leu	Ser	Cys 195	Leu	Asp	Arg	Pro
Gln 200	Leu	His	Glu	Tyr	Ala 205	His	Arg	Ala	Cys	Cys 210	Gln	Cys	Arg	Arg	Asp 215
	Val			220					225					230	_
	Glu		235					240					245		
	Ala	250					255					260			
	265 Asp					270					275				
280	Phe				285					290		_			295
	Asn	_	_	300	_				305					310	
Gln	Asp	Leu	315 Val	Gly	Gly	Ala	Val	320 Pro	Val	Gln	Ser	His	325 Ser	Glu	Asn
Phe	Thr	330 Ala	Ala	Thr	Asp	Leu	335 Ser	Arg	Tyr	Asn	Asn	340 Thr	Leu	Val	Glu
Ser	345 Ala	Ser	Thr	Gln	Asp	350 Ala	Leu	Thr	Met	Arg	355 Ser	Gln	Leu	Asp	Gln
360					365					370					375

Glu Ser Gly Ala Ile Ile His Pro Ala Thr Gln Thr Ser Leu Gln Glu

380 385 390

Ala

<210> 5
<211> 1269
<212> DNA
<213> Homo sapiens
<400> 5
atggctttaa aagtgctaa
ggctatttgt catgtaaaa

ggttccctg

atggctttaa aagtgctact agaacaagag aaaacgtttt tcactctttt agtattacta 60 120 ggctatttgt catgtaaagt gacttgtgaa acaggagact gtagacagca agaattcagg gatcggtctg gaaactgtgt tccctgcaac cagtgtgggc caggcatgga gttgtctaag 180 240 gaatgtggct tcggctatgg ggaggatgca cagtgtgtga cgtgccggct gcacaggttc 300 aaggaggact ggggcttcca gaaatgcaag ccctgtctgg actgcgcagt ggtgaaccgc tttcagaagg caaattgttc agccaccagt gatgccatct gcggggactg cttgccagga 360 420 ttttatagga agacgaaact tgtcggcttt caagacatgg agtgtgtgcc ttgtggagac cctcctcctc cttacgaacc gcactgtgcc agcaaggtca acctcgtgaa gatcgcgtcc 480 540 acggcctcca gcccacggga cacggcgctg gctgccgtta tctgcagcgc tctggccacc gtcctgctgg ccctgctcat cctctgtgtc atctattgta agagacagtt tatggagaag aaacccagct ggtctctgcg gtcacaggac attcagtaca acggctctga gctgtcgtgt 660 720 cttgacagac ctcagctcca cgaatatgcc cacagagcct gctgccagtg ccgccgtgac 780 tcagtgcaga cctgcgggcc ggtgcgcttg ctcccatcca tgtgctgtga ggaggcctgc 840 agccccaacc cggcgactct tggttgtggg gtgcattctg cagccagtct tcaggcaaga aacgcaggcc cagccgggga gatggtgccg actttcttcg gatccctcac gcagtccatc 900 tgtggcgagt tttcagatgc ctggcctctg atgcagaatc ccatgggtgg tgacaacatc 960 1020 tctttttgtg actcttatcc tgaactcact ggagaagaca ttcattctct caatccagaa cttgaaagct caacgtcttt ggattcaaat agcagtcaag atttggttgg tggggctgtt 1080 ccagtccagt ctcattctga aaactttaca gcagctactg atttatctag atataacaac 1140 acactggtag aatcagcatc aactcaggat gcactaacta tgagaagcca gctagatcag 1200 1260 gagagtggcg ctatcatcca cccagccact cagacgtccc tccaggtaag gcagcgactg

<210> 6

<211> 1496

<212> DNA

<213> Homo sapiens

<400> 6

gggaacgtag aactctccaa caataaatac atttgataag aaagatggct ttaaaagtgc 60 120 tactagaaca agagaaaacg tttttcactc ttttagtatt actaggctat ttgtcatgta 180 aagtgacttg tgaaacagga gactgtagac agcaagaatt cagggatcgg tctggaaact gtgttccctg caaccagtgt gggccaggca tggagttgtc taaggaatgt ggcttcggct 240 300 atggggagga tgcacagtgt gtgacgtgcc ggctgcacag gttcaaggag gactggggct 360 tccagaaatg caagccctgt ctggactgcg cagtggtgaa ccgctttcag aaggcaaatt 420 gttcagccac cagtgatgcc atctgcgggg actgcttgcc aggattttat aggaagacga 480 aacttgtcgg ctttcaagac atggagtgtg tgccttgtgg agaccctcct cctccttacg 540 aaccgcactg tgccagcaag gtcaacctcg tgaagatcgc gtccacggcc tccagcccac 600 gggacacggc gctggctgcc gttatctgca gcgctctggc caccgtcctg ctggccctgc 660 tcatcctctg tgtcatctat tgtaagagac agtttatgga gaagaaaccc agctggtctc 720 tgcggtcaca ggacattcag tacaacggct ctgagctgtc gtgtcttgac agacctcagc tccacgaata tgcccacaga gcctgctgcc agtgccgccg tgactcagtg cagacctgcg 780 ggccggtgcg cttg