3.3. ПОСТРОЕНИЕ СОВЕРШЕННЫХ И МИНИМАЛЬНЫХ НОРМАЛЬНЫХ ФОРМ ЛОГИЧЕСКИХ ФУНКЦИЙ

<u>Рассмотрим методы позволяющие представлять любую логическую</u> функцию в стандартном базисе, т. е. с помощью операций \land , \lor , \neg .

<u>Конъюнктивным одночленом</u> (элементарной конъюнкцией) называется конъюнкция логических переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.

Пример. $x_1x_3x_4$ - конъюнктивный одночлен; $x_1x_3x_1$, $x_1x_3\overline{x_1}$, $x_1\overline{x_3x_4}$ - формулы, не являющиеся конъюнктивными одночленами.

<u>Дизъюнктивной нормальной формой</u> (ДНФ) булевой функции называется формула, имеющая вид дизъюнкции конъюнктивных одночленов.

При этом конъюнктивные одночлены называются членами ДНФ.

Совершенной дизъюнктивной нормальной формой (СДНФ) булевой функции называется ДНФ, в которой каждый конъюнктивный одночлен включает все переменные или их отрицания.

Пример. $\varphi(x_1, x_2, x_3) = x_1 x_3 \vee x_2 x_3$ - ДНФ, не являющаяся СДНФ; $\varphi(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_1 x_2} x_3$ - СДНФ.

<u>Дизъюнктивным одночленом</u> (элементарной дизъюнкцией) называется дизъюнкция логических переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.

Пример. $x_1 \lor \overline{x_3} \lor x_4$ - конъюнктивный одночлен; $x_1 \lor x_3 \lor x_1$, $x_1 \lor x_3 \lor \overline{x_1}$, $x_1 \lor \overline{x_3} \lor x_4$ - формулы, не являющиеся конъюнктивными одночленами.

<u>Конъюнктивной нормальной формой</u> (КНФ) булевой функции называется формула, имеющая вид конъюнкции дизъюнктивных одночленов.

При этом дизъюнктивные одночлены называются членами КНФ,

Совершенной конъюнктивной нормальной формой (СКНФ) булевой функции называется ДНФ, в которой каждый дизъюнктивный одночлен включает все переменные или их отрицания.

Пример. $\varphi(x_1, x_2, x_3) = (x_1 \vee \overline{x_3})(\overline{x_2} \vee x_3)$ - КНФ, не являющаяся СКНФ; $\varphi(x_1, x_2, x_3) = (x_1 \vee x_2 \vee \overline{x_3})(\overline{x_1} \vee \overline{x_2} \vee x_3)$ - СКНФ.

Наиболее просто СДНФ и СКНФ для логической функции $f(x_1, x_2, ..., x_n)$ строятся с помощью таблицы истинности.

Построение СДНФ:

• для каждого набора значений переменных $x_1, x_2, ..., x_n$, для которых $f(x_1, x_2, ..., x_n) = 1$ выписывается конъюнктивный одно-

член, содержащий все переменные $x_i = 1$ и отрицания всех переменных $x_i = 0$;

• все полученные конъюнктивные одночлены объединяются зна-ками дизъюнкции.

Построение СКНФ:

- для каждого набора значений переменных $x_1, x_2, ..., x_n$, для которых $f(x_1, x_2, ..., x_n) = 0$ выписывается дизъюнктивный одночлен, содержащий отрицания всех переменных $x_i = 1$ и все переменные $x_i = 0$;
- все полученные дизъюнктивные одночлены объединяются знаками конъюнкции.

Рассмотрим в качестве примера логическую функцию, описывающую принятие решения большинством голосов в коллективе из трех человек («комитете трех»):

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	Строки для	Строки для	
				построения СДНФ	построения СКНФ	
0	0	0	0		*	
0	0	1	0		*	
0	1	0	0		*	
0	1	1	1	*		
1	0	0	0		*	
1	0	1	1	*		
1	1	0	1	*		
1	1	1	1	*		

СДНФ:

$$f(x_1, x_2, x_3) = \overline{x_1} x_2 x_3 \vee x_1 \overline{x_2} x_3 \vee x_1 x_2 \overline{x_3} \vee x_1 x_2 x_3.$$

СКНФ:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3)(x_1 \lor x_2 \lor \overline{x_3})(x_1 \lor \overline{x_2} \lor x_3)(\overline{x_1} \lor x_2 \lor x_3).$$

Часто при построении СДНФ и СКНФ полученные формы содержат избыточную информацию, от которой можно избавиться и получить минимальные дизъюнктивную нормальную форму (МДНФ) и конъюнктивную нормальную форму (МКНФ).

Метод Квайна включает два этапа:

- 1) переход от СДНФ (СКНФ) к сокращенной форме;
- 2) переход от сокращенной формы к МДНФ (МКНФ).

Реализацию метода Квайна опишем на примере.

Пусть дана логическая функция $f(x_1, x_2, x_3)$, заданная таблицей истинности

No	x_1	x_2	x_3	$f(x_1,x_2,x_3)$
стр.				
1	0	0	0	1
2	0	0	1	1
3	0	1	0	0
4	0	1	1	1
5	1	0	0	0
6	1	0	1	1
7	1	1	0	1
8	1	1	1	0

1. Рассмотрим способ построения МДНФ с помощью метода Квайна.

В соответствии с правилом построения СДНФ используются строки \mathbb{N}_{2} 7, 6, 4, 2 и 1: $f(x_{1}, x_{2}, x_{3}) = (x_{1}x_{2}\overline{x_{3}}) \lor (x_{1}\overline{x_{2}}x_{3}) \lor (\overline{x_{1}}x_{2}x_{3}) \lor (\overline{x_{1}}\overline{x_{2}}x_{3}) \lor (\overline{x_{1}}\overline{x_{2}}x_{3})$.

Найдем все склеивающиеся пары:

2 и 4:
$$(x_1\overline{x_2}x_3) \lor (\overline{x_1}\overline{x_2}x_3) = \overline{x_2}x_3$$
,

3 и 4:
$$(\overline{x_1}x_2x_3) \lor (\overline{x_1}\overline{x_2}x_3) = \overline{x_1}x_3$$
,

4 и 5:
$$(\overline{x_1} \overline{x_2} \overline{x_3}) \lor (\overline{x_1} \overline{x_2} \overline{x_3}) = \overline{x_1} \overline{x_2}$$
.

Результаты операции склеивания вводим в выражение функции. Это не изменит ее значения.

 $f(x_1, x_2, x_3) = (x_1 x_2 \overline{x_3}) \lor (x_1 \overline{x_2} x_3) \lor (\overline{x_1} x_2 x_3) \lor (\overline{x_1} \overline{x_2} x_3) \lor (\overline{x_1} \overline{x_2} \overline{x_3}) \lor \overline{x_2} \overline{x_3} \lor \overline{x_1} \overline{x_2}$ Проведем операцию поглощения новыми членами старых членов нормальной формы:

Тогда
$$f(x_1, x_2, x_3) \lor \overline{(x_1 x_2} x_3) \lor \overline{x_2} x_3 = \overline{x_2} x_3,$$

$$(\overline{x_1} x_2 x_3) \lor \overline{x_1} x_3 = \overline{x_1} x_3, \qquad (\overline{x_1} x_2 x_3) \lor \overline{x_1} \overline{x_2} = \overline{x_1} \overline{x_2}.$$

Дальнейшее проведение операций склеивания и поглощения невозможно, следовательно, мы получили сокращенную форму.

Построим импликантную таблицу, в которой символом «*» отмечены возможности поглощения членов СДНФ простыми импликантами, а символом «!» - простые импликанты, входящие в ядро:

Простые	Члены СДНФ						
импликанты	$x_1x_2\overline{x_3}$	$x_1 \overline{x_2} x_3$	$\frac{-}{x_1}x_2x_3$	$\overline{x_1} \overline{x_2} x_3$	$\overline{x_1}\overline{x_2}\overline{x_3}$		
$\overline{x_1x_2}\overline{x_3}!$	*						
$\overline{x_2}x_3!$		*		*			
$\overline{x_1}x_3!$			*	*			
$\overline{x_1}\overline{x_2}$!				*	*		

Ни один из членов сокращенной формы не может быть исключен из так, чтобы обеспечить поглащение всех членов СДНФ. Следовательно, МДНФ совпадает с сокращенной формой:

МДНФ:
$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_2} x_3 \vee \overline{x_1} x_3 \vee \overline{x_1} \overline{x_2}$$
.

2. Рассмотрим СКНФ.

В соответствии с правилом построения СКНФ используются строки N_{2} 1, 4, 6:

$$f(x_1, x_2, x_3) = \left(x_1 \vee \overline{x_2} \vee x_3\right) \left(\overline{x_1} \vee x_2 \vee x_3\right) \left(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}\right).$$

Поскольку в данном выражении отсутствуют склеивающиеся пары, то оно является минимальной конъюнктивной нормальной формой записи.