笔记: Basefold 在 List Decoding 下的 Soundness 证明

- Jade Xie jade@secbit.io
- Yu Guo yu.guo@secbit.io

在上一篇文章《Basefold 在 List Decoding 下的 Soundness 证明概览》中,梳理了 [H24] 论文中 soundness 证明的思路,本篇文章将沿着这个思路深入论文中的证明细节,主要是 [H24, Lemma 1] 的证明,其证明了 Basefold 协议在 commit 阶段的 soundness error。

Lemma 1 [H24, Lemma 1] (Soundness commit phase). Take a proximity parameter $\theta=1-\left(1+\frac{1}{2\cdot m}\right)\cdot\sqrt{\rho}$, with $m\geq 3$. Suppose that a (possibly computationally unbounded) algorithm P^* succeeds the commitment phase with $r\geq 0$ rounds with probability larger than

$$\varepsilon_C = \varepsilon_0 + \varepsilon_1 + \ldots + \varepsilon_r,\tag{1}$$

where $arepsilon_0 = arepsilon(\mathcal{C}_i, M, heta)$ is the soundness error from Theorem 3, and

$$\varepsilon_i := \varepsilon(\mathcal{C}_i, 1, B_i, \theta) + \frac{1}{|F|},$$
(2)

with $arepsilon(\mathcal{C}_i,1,B_i, heta)$ being the soundness error from Theorem 4, where $B_i=rac{|D|}{|D_i|}=2^i$. Then (g_0,\dots,g_M) belongs to \mathcal{R} .

引理中提到的 [H24, Theorem 3] 就是在 list decoding 下针对 subcode 的 correlated agreement 定理,而 [H24, Theorem 4] 就是 [H24, Theorem 3] 的 weighted 版本。

关系 $\mathcal R$ 表示的含义是能得出 P^* 没有作恶,说明其承诺的多项式 (g_0,\ldots,g_M) 既离对应的编码空间距离不超过 θ ,同时也满足在 查询点 $\vec\omega=(\omega_1,\ldots,\omega_n)$ 的值与承诺的值 v_0,\ldots,v_M 是一致的,即

$$\mathcal{R} = \left\{ \begin{aligned} &\exists p_0, \dots, p_M \in \mathscr{F}[X]^{<2^n} \text{ s.t.} \\ &(g_0, \dots, g_M) : d\left((g_0, \dots, g_M), (p_0, \dots, p_M)\right) < \theta \\ &\land \bigwedge_{k=0}^M P_k\left(\omega_1, \dots, \omega_n\right) = v_k \end{aligned} \right\}. \tag{3}$$

Lemma 1 说明的就是如果 P^* 在 commit 阶段成功的概率超过了 ε_C ,那么我们能相信 P^* 没有作弊,其声称的关系 $\mathcal R$ 也是成立的。

在这里,还需要用数学语言去定义 P^* 在 commit 阶段的第 $0 \le r \le n$ 轮能成功的含义,这就是 [H24] 论文中给出的 α -good 的概念。从协议本身理解, P^* 能成功,意味着 verifier 拿到 P^* 发送过来的 $f_0,\Lambda_0,f_1,\Lambda_1,f_2,\Lambda_2,\ldots,\Lambda_{r-1},f_r$,然后进行检查,一是进行 sumcheck 的检查,另一个是在 D_0 中随机选取 x ,FRI 的折叠是正确的。首先这里的参数 $\alpha=1-\theta\in(0,1)$,即

$$\alpha = \left(1 + \frac{1}{2 \cdot m}\right) \cdot \sqrt{\rho} \tag{4}$$

用 \mathcal{F}_i 表示和 Reed-Solomon 编码 $\mathcal{C}_i=\mathrm{RS}_{2^{n-i}}[F,D_i]$ 相对应的多项式空间,其中 D_i 就是用映射 π 对 D 作用 i 次,即 $D_i=\pi^i(D), i=0,\ldots,n$ 。因此与 $\mathcal{C}_i'\subseteq\mathcal{C}_i$ 相对应的多项式子空间定义为

$$\mathcal{F}_i' = \{ p(X) \in \mathcal{F}_i : P(\omega_{i+1}, \dots, \omega_n) = 0 \}.$$
 (5)

1. sumcheck 检查正确。意味着存在 $p_r(X) \in \mathcal{F}_r$,其对应的多元多项式为 P_r 满足

$$L((\omega_1, \dots, \omega_r), (\lambda_1, \dots, \lambda_r)) \cdot P_r(\omega_1, \dots, \omega_n) = q_{r-1}(\lambda_r)$$
(6)

根据 $q_i(X)$ 与 $\Lambda_i(X)$ 之间的关系,可以得到 P_r 需要满足

$$L((\omega_1, \dots, \omega_r), (\lambda_1, \dots, \lambda_r)) \cdot P_r(\omega_{r+1}, \dots, \omega_n) = q_{r-1}(\lambda_r)$$

$$= L((\omega_1, \dots, \omega_r), (\lambda_1, \dots, \lambda_r)) \cdot \Lambda_{r-1}(\lambda_r)$$
(1)

2. 折叠正确。需要满足

$$\left|\left\{x \in D_0: \begin{array}{c} (f_0, \dots, f_r) \text{ satisfy all folding checks along } x \\ \wedge f_r(\pi^r(x)) = p_r(\pi^r(x)) \end{array}\right\}\right| \geq \alpha \cdot |D_0| \tag{2}$$

这里只有当在 D_0 中满足 folding check 的 x 的比例大于 α , 经过 π^r 映射,到最后 verifier 才会通过。

当满足 1 和 2 两个条件时,就说这样的 $(f_0, \Lambda_0, f_1, \Lambda_1, f_2, \Lambda_2, \dots, \Lambda_{r-1}, f_r)$ 对于 $(\lambda_0, \dots, \lambda_r)$ 来说 α -good 的。

Lemma 1 证明

Lemma 1 的证明采用的是数学归纳法,先证明当 r=0 时结论是成立的,这里用到了 [H24, Therorem 3]。接着假设 Lemma 1 在 $0 \le r < n$ 时成立,证明 Lemma 1 在 r+1 时结论也成立,在这个过程中就用到了带权重的 [H24, Theorem 4] ,其证明思路与上篇文章介绍的思路类似。例如在第 r+1 轮,用随机数 λ_{r+1} 折叠之后得到 f_{r+1} 满足的条件入手,其离对应的编码空间距离比较近,并满足 sumcheck 约束,先推导出对应的 f'_{r+1} 满足一些条件,这样就能使用针对 subcode 的 correlated agreement 定理了。应用定理的结论,进而得到在折叠之前的 $f_{r,0}$ 与 $f_{r,1}$ 满足的性质,以此再得出 f_r 满足的性质。此时应用归纳假设,能得到在第 r 轮满足引理的条件,从而得出在第 r 轮的结论成立,也就证明了在第 r+1 轮引理成立。

证明:首先证明当 r=0 时引理是成立的。已知的条件是 P^* 在 commit 阶段成功的概率大于 $\varepsilon(\mathcal{C}_0,M,\theta)$,想证明得到的结论是 $(g_1,\ldots,g_M)\in\mathcal{R}$ 。根据条件以及 α -good 的定义,可以得到以大于 $\varepsilon(\mathcal{C}_0,M,\theta)$ 的概率 P^* 提供的 f_0 对 λ_0 来说是 α -good 的,那么对于考虑折叠之前的多项式 $g_k'=g_k-v_k$,距离对应的 subcode $\mathcal{C}_0'\subseteq\mathcal{C}_0$ 不超过 θ (也就说明一致的地方大于 α)的概率为

$$\Pr\left[\lambda_0: \exists p_0' \in \mathcal{F}_0' \text{ s.t. agree}\left(\sum_{k=0}^M g_k' \cdot \lambda_0^k, p_0'(X)\right) \geq \alpha\right] > \varepsilon(\mathcal{C}_0, M, \theta) \tag{7}$$

这里考虑的是多项式 $g_k'=g_k-v_k$ 而不是 g_k 的目的是,能让我们的分析进入线性子码 \mathcal{C}_0' 的范围内,这样我们就能用 [H24, Theorem 3] ,得到存在多项式

$$p_0'(X), \dots, p_M'(X) \in \mathcal{F}_0' \tag{8}$$

以及存在集合 $D_0'\subseteq D$,满足

- 1. $|D_0'|/|D| \ge \alpha$
- 2. $p'_k(X)|_{D'_0} = g'_k(X)|_{D'_0}$

现在找到了多项式 $p_0'(X), \ldots, p_M'(X)$, 那么对于多项式

$$p_0'(X) + v_0, \dots, p_M'(X) + v_M \in \mathcal{F}_0$$
 (9)

就满足

$$(p'_k(X) + v_k)|_{D'_0} = (g'_k(X) + v_k)|_{D'_0} = g_k(X)|_{D'_0} \quad 0 \le k \le M$$
(10)

 $p_0'(X)+v_0$ 对应的多元线性多项式 $P_k\in F[X_1,\ldots,X_n]$ 也满足 $P_k(ec{\omega})=v_k$, 因此 $(g_1,\ldots,g_M)\in\mathcal{R}$ 。

现在假设引理在 $0 \le r < n$ 时是成立的,想证明在 r+1 时引理依然成立。根据引理的条件,在第 r+1 轮, P^* 在 commit 阶段 成功的概率超过 $(\varepsilon_0+\varepsilon_1+\ldots+\varepsilon_r)+\varepsilon_{r+1}$ 。记 $\mathrm{tr}_r=(\lambda_0,f_0,\Lambda_0,\ldots,\lambda_r,f_r,\Lambda_r)$ 组成的集合为 $\mathfrak T$,因此在

$$\Pr[\mathfrak{T}] > \varepsilon_0 + \ldots + \varepsilon_r \tag{11}$$

的条件下, P^* 成功的概率大于 ε_{r+1} ,即

$$\Pr\left[\lambda_{r+1}: \frac{\exists f_{r+1} \text{ s.t. } (\lambda_0, f_0, \Lambda_0, \dots, \lambda_r, f_r, \Lambda_r, f_{r+1})}{\text{is } \alpha\text{-good for } (\lambda_0, \dots, \lambda_{r+1})}\right] > \varepsilon_{r+1}$$
(12)

由 lpha - good 的定义可以得到,对于满足 lpha -good 的 λ_{r+1} ,存在一个满足 sumcheck 约束的多项式 $p_{r+1}\in\mathcal{F}_{r+1}$,使得

$$agree_{\nu}((1 - \lambda_{r+1}) \cdot f_{r,0} + \lambda_{r+1} \cdot f_{r,1}, p_{r+1}) \ge \alpha \tag{3}$$

这里的 u_r 是一个子概率测度,其 density 函数定义为,对 $y\in D_{r+1}$ 有

$$\delta_r(y) := \frac{|\{x \in \pi^{-(r+1)}(y) : (f_0, \dots, f_r) \text{ satisfies all folding checks along } x\}|}{|\pi^{-(r+1)}(y)|}$$

$$(13)$$

这里解释下式 (3) 表示的实质上就是 α -good 定义中的式 (2) 。根据 agree 函数的定义,式 (3) 等价于

$$\frac{\nu_r(\{y \in D_{r+1} : ((1 - \lambda_{r+1}) \cdot f_{r,0} + \lambda_{r+1} \cdot f_{r,1})(y) = p_{r+1}(y)\})}{|D_{r+1}|} \ge \alpha \tag{14}$$

先将在 D_{r+1} 中满足折叠关系的 y 组成一个集合,记为 S_{r+1} ,再用 ν_r 函数对这个集合进行计算。

$$\nu_{r}(S_{r+1}) = \sum_{y \in S_{r+1}} \delta_{r}(y)$$

$$= \sum_{y \in S_{r+1}} \frac{|\{x \in \pi^{-(r+1)}(y) : (f_{0}, \dots, f_{r}) \text{ satisfies all folding checks along } x\}|}{|\pi^{-(r+1)}(y)|}$$

$$= \sum_{y \in S_{r+1}} \frac{|\{x \in \pi^{-(r+1)}(y) : (f_{0}, \dots, f_{r}) \text{ satisfies all folding checks along } x\}|}{2^{r+1}}$$

$$:= \sum_{y \in S_{r+1}} \frac{|S_{y,0}|}{2^{r+1}}$$

$$= \frac{\sum_{y \in S_{r+1}} |S_{y,0}|}{2^{r+1}}$$

$$= \frac{\sum_{y \in S_{r+1}} |S_{y,0}|}{2^{r+1}}$$
(15)

因此

$$\operatorname{agree}_{\nu_{r}}((1 - \lambda_{r+1}) \cdot f_{r,0} + \lambda_{r+1} \cdot f_{r,1}, p_{r+1}) = \frac{\nu_{r}(S_{r+1})}{|D_{r+1}|}$$

$$= \frac{\sum_{y \in S_{r+1}} |S_{y,0}|}{2^{r+1} \cdot |D_{r+1}|}$$

$$= \frac{\sum_{y \in S_{r+1}} |S_{y,0}|}{|D_{0}|}$$

$$(16)$$

上式中分子 $\sum_{y\in S_{r+1}}|S_{y,0}|$ 表示的含义正是在 D_0 中满足第 r+1 次折叠正确,同时 (f_0,\ldots,f_r) 折叠检查也是正确的。(3) 式就变为

$$\sum_{y \in S_{r+1}} |S_{y,0}| \ge \alpha \cdot |D_0| \tag{17}$$

这与 α -good 定义中式 (2) 是完全一致的。接下来根据在上篇文章中介绍的 soundness 证明思路,由于 $p_{r+1}(X)$ 对应的多元线性 多项式 P_{r+1} 满足 sumcheck 约束,因此满足

$$L((\omega_1, \dots, \omega_{r+1}), (\lambda_1, \dots, \lambda_{r+1})) \cdot P_{r+1}(\omega_{r+2}, \dots, \omega_n) = q_r(\lambda_{r+1})$$

$$= L((\omega_1, \dots, \omega_{r+1}), (\lambda_1, \dots, \lambda_{r+1})) \cdot \Lambda_r(\lambda_{r+1})$$
(18)

推出

$$L((\omega_1, \dots, \omega_r), (\lambda_1, \dots, \lambda_r)) \cdot L(\omega_{r+1}, \lambda_{r+1}) \cdot P_{r+1}(\omega_{r+2}, \dots, \omega_n)$$

$$= L((\omega_1, \dots, \omega_r), (\lambda_1, \dots, \lambda_r)) \cdot L(\omega_{r+1}, \lambda_{r+1}) \cdot \Lambda_r(\lambda_{r+1})$$

$$(19)$$

对于 λ_{r+1} 的选择,有 1/|F| 的概率使得 $L(\omega_{r+1},\lambda_{r+1})=0$,得出上式成立。因此除了 1/|F| 的概率,依然有超过

$$\varepsilon_{r+1} - \frac{1}{|F|} = \varepsilon(\mathcal{C}_{i+1}, 1, B_{r+1}, \theta) \tag{20}$$

的概率,使得多项式 $p'_{r+1}=p_{r+1}-\Lambda_r(\lambda_{r+1})\in \mathcal{F}'_{r+1}$,以及 $f'_{r,0}=f_{r,0}-\Lambda_r(0)$, $f'_{r,1}=f_{r,1}-\Lambda_r(1)$ 满足

$$\operatorname{agree}_{\nu_r}((1 - \lambda_{r+1}) \cdot f'_{r,0} + \lambda_{r+1} \cdot f'_{r,1}, p'_{r+1}) \ge \alpha \tag{21}$$

上面满足的条件可以写为

$$\Pr\left[\lambda_{r+1}: \frac{\exists p'_{r+1} \in \mathcal{F}'_{r+1} \text{ s.t.}}{\text{agree}_{\nu_r}((1-\lambda_{r+1}) \cdot f'_{r,0} + \lambda_{r+1} \cdot f'_{r,1}, p'_{r+1}) \ge \alpha}\right] > \varepsilon(\mathcal{C}_{i+1}, 1, B_{r+1}, \theta)$$
(22)

这也就满足了 [H24, Theorem 4] 带权重的 correlated agreement 定理的条件,因此可以得到存在多项式 $p'_{r,0}(X), p'_{r,1}(X) \in \mathcal{F}'_{r+1}$,以及集合 $A_{r+1} \subseteq D_{r+1}$ 满足:

1. $\nu_r(A_{r+1}) \geq 1 - \theta$

2.
$$p'_{r,0}(X)|_{A_{r+1}} = f'_{r,0}(X)|_{A_{r+1}}$$
, $p'_{r,1}(X)|_{A_{r+1}} = f'_{r,1}(X)|_{A_{r+1}}$

现在已经找到了多项式 $p'_{r,0}(X), p'_{r,1}(X)$, 因此存在多项式

$$p_{r,0}(X) = p'_{r,0}(X) + \Lambda_r(0), \quad p_{r,1}(X) = p'_{r,1}(X) + \Lambda_r(1) \in \mathcal{F}_{r+1}$$
 (23)

而

$$f_{r,0}(X) = f'_{r,0}(X) + \Lambda_r(0), \quad f_{r,1}(X) = f'_{r,1}(X) + \Lambda_r(1)$$
 (24)

根据 correlated agreement 给出的结论 2 ,可以得到

$$p_{r,0}(X)|_{A_{r+1}} = f_{r,0}(X)|_{A_{r+1}}, \quad p_{r,1}(X)|_{A_{r+1}} = f_{r,1}(X)|_{A_{r+1}}$$
 (25)

对于 $p_{r,0}(X), p_{r,1}(X)$ 相对应的多元线性多项式 $P_{r,0}$ 以及 $P_{r,1}$,根据 \mathcal{F}'_r 的定义,可以得到

$$P_{r,0}(\omega_{r+2},\ldots,\omega_n) = \Lambda_r(0)$$

$$P_{r,1}(\omega_{r+2},\ldots,\omega_n) = \Lambda_r(1)$$
(26)

将集合 A_{r+1} 中的点通过 π 的逆映射得到 $A_r=\pi^{-1}(A_{r+1})\subseteq D_r$,在这些点一定满足 f_r 和

$$p_r(X) = p_{r,0}(X^2) + X \cdot p_{r,1}(X^2) \in \mathcal{F}_r \tag{27}$$

是一致的。对于与 $p_r(X)$ 相对应的多元线性多项式 P_r ,其满足

$$P_{r}(\omega_{r+1}, \omega_{r+2}, \dots, \omega_{n}) = (1 - \omega_{r+1}) \cdot P_{r,0}(\omega_{r+2}, \dots, \omega_{n}) + \omega_{r+1} \cdot P_{r,1}(\omega_{r+2}, \dots, \omega_{n})$$

$$= (1 - \omega_{r+1}) \cdot \Lambda_{r}(0) + \omega_{r+1} \cdot \Lambda_{r}(1)$$

$$= L(\omega_{r+1}, 0) \cdot \Lambda_{r}(0) + L(\omega_{r+1}, 1) \cdot \Lambda_{r}(1)$$
(28)

由此可以得到在第r轮的 sumcheck 是满足的:

$$L(\omega_{1}, \dots, \omega_{r}, \lambda_{1}, \dots, \lambda_{r}) \cdot P_{r}(\omega_{r+1}, \omega_{r+2}, \dots, \omega_{n})$$

$$= L(\omega_{1}, \dots, \omega_{r}, \lambda_{1}, \dots, \lambda_{r}) \cdot L(\omega_{r+1}, 0) \cdot \Lambda_{r}(0)$$

$$+L(\omega_{1}, \dots, \omega_{r}, \lambda_{1}, \dots, \lambda_{r}) \cdot L(\omega_{r+1}, 1) \cdot \Lambda_{r}(1)$$

$$= q_{r}(0) + q_{r}(1)$$

$$= q_{r-1}(\lambda_{r})$$

$$(29)$$

现在得到了在第r轮的 sumcheck 是满足的,接下来需要考虑折叠关系是否满足。考虑 $x \in \pi^{-1}(A_r)$,有

$$|\{x\in\pi^{-r}(A_r): ext{all folding checks hold for } f_0,\ldots,f_r\}|$$

$$|D_{0}|$$

$$= \frac{1}{|D_{0}|} \cdot \sum_{y \in A_{r+1}} \delta(y) \cdot |\pi^{-(r+1)}(y)|$$

$$= \frac{2^{r+1}}{|D_{0}|} \cdot \sum_{y \in A_{r+1}} \delta(y)$$

$$= \frac{1}{|D_{r+1}|} \cdot \sum_{y \in A_{r+1}} \delta(y)$$

$$= \nu_{r}(A_{r+1})$$
(30)

前面通过 correlated agreement 定理已经得到 $\nu_r(A_{r+1})\geq \alpha$,因此在 D_0 中的 x 能满足 folding check 的比例超过 α 。综合在 第 r 轮的 sumcheck 约束以及折叠关系,得到 $(f_0,\Lambda_0,\ldots,f_r,\Lambda_r)$ 对于 $(\lambda_0,\ldots,\lambda_r)$ 是 α -good 的。由于产生这样的 trace 的集合的概率

$$\Pr[\mathfrak{T}] > \varepsilon_0 + \ldots + \varepsilon_r \tag{31}$$

因此其满足引理的条件,由归纳假设,在第r轮引理成立,因此可以得到结论, $(g_0,\ldots,g_M)\in\mathcal{R}$,至此就证明了在第r+1轮引理也是成立的。从而得证引理成立。

References

• [H24] Ulrich Haböck. "Basefold in the List Decoding Regime." *Cryptology ePrint Archive*(2024).