机械原理

平面机构结构分析

自由度计算

计算公式

$$F = 3n - 2P_L - 2P_H$$

其中F为自由度, P_L 为低副个数, P_H 为高副个数,n为活动构件个数

低副

常见的低副为移动副与转动副

移动副	
转动副	L 6, 1

固定构件

构件分为活动构件和固定构件(机架)。常见的机架:

 固定铰链
 定块

 固定圆弧杆

 固定杆
 固定导路

*该图与上图定块十分类似,但是下面的图滑块是可以运动的,而上面图的定块是固定构建不可运动。

活动构件

线条连续即为同一构件。

上图所有三角形等价。其中拐角的阴影代表焊接,实心的阴影代表桁架。

高副

常见的高副为齿轮副,凸轮副,圆弧高副和滚子高副

齿轮

两齿轮接触点为高副。

凸轮

左图 1 虽然线条连续但是明显是分开的(否则转起来断掉了)所以不能认为是一个构件。

圆弧和滚子

基础机构

机构的运动

机构原动件数目等于机构的自由度数目且自由度大于 0 时具有确定运动。

如果机构的原动件数小于机构的自由度, 机构的运动将不确定; 如果原动件数大于机构的自由度, 将导致机构中最薄弱环节的损坏。

因此题目中自由度大部分为1或2。

复合铰链

图中的 C 点看似是一个转动副,实际上画成俯视图为两个转动副。

当n构件在同一点形成转动副时,转动副的数目应为n-1。注意,这里的n是包括机架(固定构件)的

注意: 右图不是复合铰链, 因为转动副只连接了两个构件

局部自由度

不影响其他构件运动,仅与其自身的局部运动有关的自由度称为局部自由度。

局部自由度的表现形式一般为滚子构件。在计算机构自由度时应将局部自由度去除,即将滚子和与其通过转动副连接的一个构件焊在一起再进行计算。

虚约束

在机构中不起独立限制作用的重复约束称为虚约束。

距离不变虚约束

移动副导路平行虚约束

此类虚约束计算自由度时需要去掉一个移动副。

构件重复虚约束

对称虚约束

图中红色部分可以去除,效果不变。

高副公法线重合虚约束

若高副公法线重合, 保留两处高副中的一处即可。

轨迹重合虚约束

去掉移动副之后仍与先前轨迹重合,故为轨迹重合虚约束。

如上二图所示。

高副低代

在含有高副的机构中,将高副虚拟地用低副替代称为高副低代。机构中常见的几类高副低代方法分述如下。

曲面高副接触

凸轮

尖底凸轮

滚子凸轮

平底凸轮

滚子

滚子在曲面上运动时类似曲面高副接触的情况。

齿轮

此处两个红色角都为直角

杆组拆分

基本杆组

自由度为零且不能再拆分的构件系统称为基本杆组。最简单的基本杆组由两个构件和三个运动副组成,称为 II 级杆组。

四个构件和六个运动副构成的基本杆组为 III 级组

机构的级别即为机构中基本杆组的最高级别。

三角架拆分

基本步骤

- (1) 首先去除机构中的虚约束并对局部自由度进行处理
- (2) 计算机构的自由度并确定原动件;
- (3) 然后对机构进行高副低代;
- (4) 拆分时先将原动件拆下,之后从原动件部分开始试拆杆组,首先考虑 II 级组,拆下的杆组是自由度为零的基本杆组。
- 注: 机构中仅原动件的机架需要保留。

注意: 该题中 E 点为复合铰链, 拆分时要记为两个转动副

机构运动简图绘制

基本步骤

- 1. 找出图中的机架
- 2. 找到与机架直接相连的构件 1、2, 判定其与机架通过转动副还是移动副连接
- 3. 抽象、简化构建1、2, 画出相应的运动副
- 4. 找到跟构件 1、2 直接相连的构件 3、4、并重复上述步骤 2。

例题: 唧筒机构

如图 1, 先找到机架为 4, 其与 1 通过转动副连接, 与 3 通过移动副连接且始 终与 3 的方向位于同一直 线,可抽象为图 2。最后再 来看与 1、3 相连的构件 2. 可知 2 与 1、3 都通过转动 副连接,最终抽象为图 3。

例题: 偏心油泵

右图偏心油泵中间部分的运动形式与下图机构相同 (当 A 点是机架而 C 点不是)

- 1. 圆球球心绕 A 运动
- 2. 直杆所在直线上固定一点为球心 A 点为机架,圆 AC(原图的 AB)可以简化为杆,通过转动副与直杆相连,直杆通过移动副与构件3相连,3通过转动副与机架相连。

得到最终答案(右图)。

平面机构运动分析

速度瞬心法

速度瞬心

相对速度瞬心是两构件上相对速度为 0 的重合点, 或者说是瞬时绝对速度相同的重合点。绝对速度瞬心就是构件上绝对速度为 0 的点。

构件i和构件j的相对速度瞬心一般用符号 P_{ii} 表示

对于直接接触的形成转动副的二构件,由定义可知其速度瞬心为转动副。如图(a)。

对于移动副, 其速度瞬心在垂直于移动副导路的无穷远处。移动副的瞬心可以进行平移, 效果相同。

对于纯滚动的高副,两构件的接触点即为两构件的瞬心。

对于滚动兼滑动的高副,瞬心在两构件接触点的公法线上,但不能确定其具体位置。

一般默认高副为滚动兼滑动的。齿轮一般为纯滚动、凸轮一般为滚动兼滑动。

三心定理

作平面平行运动的三个构件共有三个瞬心,它们位于同直线上。

瞬心法求解速度和角速度

已知 ω_1 , 求 ω_3

瞬心的定义是两构件上速度相同的点。

$$v_{P_{13}} = \omega_1 |P_{13}P_{14}| = \omega_3 |P_{13}P_{34}|$$

即可求出。

从而我们可以得到一个普遍性的公式

对于任意两活动构件 1,2,以及机架 3 有

$$\frac{\omega_1}{\omega_2} = \frac{|P_{12}P_{23}|}{|P_{12}P_{13}|}$$

已知 ω_1 ,求图示凸轮机构中构件2的运动速度

显然
$$v_2 = v_{P_{12}} = \omega_1 \cdot |AP_{12}|$$

相对运动图解法 (矢量图解法)

同一构件

在理论力学中我们学过,对于同一刚体(构件)上两点 A, B,其速度的关系为

$$\mathbf{v}_{\mathbf{B}} = \mathbf{v}_{\mathbf{A}} + \mathbf{v}_{\mathbf{B}\mathbf{A}}$$

加速度的关系为

$$\mathbf{a}_{\mathrm{B}}^{\mathrm{t}} + \mathbf{a}_{\mathrm{B}}^{\mathrm{n}} = \mathbf{a}_{\mathrm{A}}^{\mathrm{t}} + \mathbf{a}_{\mathrm{A}}^{\mathrm{n}} + \mathbf{a}_{\mathrm{BA}}^{\mathrm{t}} + \mathbf{a}_{\mathrm{BA}}^{\mathrm{n}}$$

移动副两构件上瞬时重合点

在理论力学中我们学过,绝对运动是相对运动和牵连运动的矢量和,体现在移动副两构件上瞬时重合点间的运动关系即为

$$\mathbf{v}_{\rm B2} = \mathbf{v}_{\rm B1} + \mathbf{v}_{\rm 21}^{\rm r}$$

加速度的关系为

$$a_{B2}^t + a_{B2}^n = a_{B1}^t + a_{B1}^n + a_{21}^r + a_{21}^k$$

其中 \mathbf{a}_{21}^{k} 为科氏加速度

$$a^k = 2\omega \times v^r$$

其中 ω 为动系绕定轴转动的角速度矢量(这里就是杆的角速度矢量)。

也可以这么说: $\mathbf{a}^{\mathbf{k}}$ 的大小是 $2\omega v'$,方向为v'沿着 ω (顺/逆时针)的方向旋转 90° 。 当两构件通过移动副连接时,则这两个构件的角速度和角加速度大小和方向均相同。

例题1(展示一般求解过程)

已知一机构如图所示,已知原动件等角速度转动且转动角速度为 $\omega_1 = 10 rad / s$,试求 $\omega_2, \omega_3, \alpha_2, \alpha_3$ 的大小与方向。

经过测量可以得出

$$\overline{AB} = 25mm, \overline{BC} = 40mm, \overline{AD} = 65mm, \overline{CD} = 50mm$$
 (假设是这样)
也即

$$l_{AB} = 0.025m, l_{BC} = 0.04m, l_{AD} = 0.065m, l_{CD} = 0.05m$$

$$v_B = \omega_1 l_{AB} = 0.25 m / s$$

$$\boldsymbol{v}_{C} = \boldsymbol{v}_{B} + \boldsymbol{v}_{CB}$$

	$\mathbf{v}_{\mathbf{c}}$	$\mathbf{v}_{\mathbf{B}}$	v _{CB}
方向	\perp CD	$\perp AB$	\perp BC
大小	$\omega_{\scriptscriptstyle 3} l_{\scriptscriptstyle CD}$	0.25m/s	$\omega_{\scriptscriptstyle 2} l_{\scriptscriptstyle BC}$

据此可以画出速度矢量图(右图)

点 p 为画图的起点,也称为**极点,**由 p 出发的指向 b 的

有向线段即为B点的速度,以此类推。

由图可知

$$v_C = \mu_v \, \overline{pc} = 0.2329 m / s$$

$$v_{CB} = \mu_{v} \overline{bc} = 0.1446 m / s$$

可以求得

$$\omega_2 = \frac{v_{CB}}{l_{BC}} = 3.615 rad / s$$
,方向为顺时针

$$\omega_3 = \frac{v_C}{l_{CD}} = 4.658 rad / s$$
 ,方向为逆时针

$$\boldsymbol{a}_{C}^{n} + \boldsymbol{a}_{C}^{t} = \boldsymbol{a}_{B} + \boldsymbol{a}_{CB}^{n} + \boldsymbol{a}_{CB}^{t}$$

	$\mathbf{a}_{\mathrm{C}}^{\mathrm{n}}$	$\mathbf{a}_{\mathrm{C}}^{\mathrm{t}}$	$\mathbf{a}_{_{\mathbf{B}}}$	a _{CB}	$\mathbf{a}_{\mathrm{CB}}^{\mathrm{t}}$
方向	CD	\perp CD	AB	BC	\perp BC
大小	$\omega_3^2 l_{CD}$	$lpha_{\scriptscriptstyle 3} l_{\scriptscriptstyle CD}$	$\omega_{\!\scriptscriptstyle 1}^2 l_{\scriptscriptstyle AB}$	$\omega_2^2 l_{BC}$	$lpha_{\scriptscriptstyle 2} l_{\scriptscriptstyle BC}$

可以求得

$$a_C^n = \omega_3^2 l_{CD} = 1.08 m / s^2$$

$$a_B = \omega_1^2 l_{AB} = 2.5 m / s^2$$

$$a_{CB}^n = \omega_2^2 l_{BC} = 0.52 m / s^2$$

据此可以画出加速度矢量图 (右图)

(这里认为c",c"两点都是求c'的过程量因此这样标) 量出

$$a_{CB}^{t} = \mu_{a} \overline{c'c''} = 0.896m/s^{2}$$

 $a_{C}^{t} = \mu_{a} \overline{c'c'''} = 1.763m/s^{2}$

$$lpha_2=rac{a_{CB}^t}{l_{BC}}=22.4rad/s^2$$
 方向都为逆时针 $lpha_3=rac{a_C^t}{l_{CD}}=35.26rad/s^2$

速度影像法

机构中某个构件上的点形成的图形,与速度和加速度矢量图中的图形应该是对应相似的。

如果上题中构件 2 不是杆而是如右图所示的三角形 BCE,那么会有速度三角形中 $\triangle BCE \sim \triangle bce$

不妨看看右图,对于相似三角形,e点有 e_1,e_2,e_3,e_4

四种可能。其中从BE 对应be 就可以排除掉 e_2,e_4 ,速度影像法还要求顺时针读顶点的顺序一样,原图中顺时针读为BEC,速度矢量图中e 点若在 e_3 则顺序为 bce_3 ,与上述不符。而 e_1 则满足题意。从而得到了正确的速度矢量图。

对线段上的点也适用。某个构件 AB 上某个点 C 在速度矢量图中有 $\frac{AC}{BC} = \frac{ac}{bc}$,可以认为是三角形的极限情况。

重合点的选取

取C为重合点

$$\mathbf{v}_{C3} = \mathbf{v}_{C4} + \mathbf{v}_{34}$$

大小 ? ? ? 方向 ? ✓ ✓

取构件3为研究对象

$$\mathbf{v}_{C3} = \mathbf{v}_{B3} + \mathbf{v}_{CB}$$

大小 ? ✓ ? 方向 ? ✓ ✓

将构件4扩大至包含B点,取B点为重合点

$$v_{B4} = v_{B3} + v_{43}$$

大小 ? \checkmark ?
方向 \checkmark \checkmark

例题 2

已知各杆长,构件1逆时针匀速转动,其角速度已知。求此时构件5的速度。

思路: 求构件 5 的速度就是求 E 的速度,找到构件 3 的绝对瞬心 (P_{36}) ,从而问题转化为求解构件 3 的角速度。

失量方程: $v_{B3} = v_{B2} + v_{32}^r$ 方向: $\triangle BP_{36} \triangle AB$ 沿BC 大小: $\omega_3 l_{BP36} \omega_1 l_{AB} v_r$

平面机构力分析

运动副中的反力

移动副

构件 2 对构件 1 的力与速度方向成 90° + φ 角

即 \mathbf{v}_{12} 与 \mathbf{R}_{21} 成 90° + φ 角 其中 φ = $\arctan \mu$ 为摩擦角

转动副

构件 2 对构件 1 的力切于摩擦圆 其中摩擦圆半径 $\rho = f_v r$

f_v 为当量摩擦系数

 R_{21} 是发生转动时阻碍转动副转动的力,也就是说,其产生

力矩与 ω_{12} 的方向应该相反。也可以说 \mathbf{R}_{12} 产生的力矩与 ω_{12} 方向相同(下标相同,方向相同)

二力杆

例题 1

已知各构件的尺寸、各转动副的半径r 和当量摩擦系数 f_v 、作用在构件 3 上的工作阻力 G 及其作用位置,求作用在曲柄 1 上的驱动力矩 M_d (不计重力和惯性力)。

解:

- 1. 根据已知条件画摩擦圆。
- 2. 作二力杆反力的作用线

由二力杆的性质,可以知道 F_{R12} , F_{R32} 等大反向,只能是在与两摩擦圆同时相切的一条直线上。由 ω_{14} 的方向可以

写出 ω_{21} 的方向,由 F_{R12} 产生力矩的方向与 ω_{21} 相反就可以找到 F_{R12} 的确切方向,如图。

- 3. 分析其它构件的受力状况
- 4. 由G求出 F_{R23} (绘图)

$$F_{R23} = F_{R32} = F_{R12} = F_{R21} = F_{R41}$$

 $M_d = F_{R21}l$ '即可求出。

高副

高副的情况与移动副相同。

一般研究顺序如下: 二力杆、三力构件、带有力矩的构件。

机械效率

在机械运转时,设作用在机械上的驱动功(输入功)为 W_d ,有效功(输出功)为 W_r ,损失功为 W_f 则 在机械稳定运转时,有

$$W_d = W_r + W_f$$

机械的输出功与输入功之比称为机械效率 η

$$\eta = \frac{W_r}{W_d} = 1 - \frac{W_f}{W_d}$$

按机械匀速运转考虑, 也可以用功率表示

$$\eta = \frac{P_r}{P_d} = \frac{F_r v_r}{F_d v_D}$$

简化机械装置如右图: \mathbf{F} 为驱动力, \mathbf{G} 为生产阻力, \mathbf{v}_F 和 \mathbf{v}_G 分别为 \mathbf{F} 和 \mathbf{G} 的作用点沿该力作用线方向的分速度。

生产阻力一定

对于没有摩擦的理想机械, 生产阻力一定时, 有

$$\eta_0 = \frac{P_r}{P_d} = \frac{Gv_G}{F_0 v_F} = 1$$

这里 F_0 被称为理想驱动力。

实际的机械效率:

$$\eta = \frac{P_r}{P_d} = \frac{Gv_G}{Fv_F} = \frac{F_0v_F}{Fv_F} = \frac{F_0}{F}$$

即机械效率等于不计摩擦时克服生产阻力所需的理想驱动力 F_0 与克服同样生产阻力(连同克服摩擦力)时该机械实际所需的驱动力F之比。

驱动力一定

对于没有摩擦的理想机械, 驱动力一定时, 有

$$\eta_0 = \frac{P_r}{P_L} = \frac{G_0 v_G}{F v_E} = 1$$

这里 G_0 被称为理想生产阻力。

实际的机械效率:

$$\eta = \frac{P_r}{P_d} = \frac{Gv_G}{Fv_F} = \frac{Gv_G}{G_0 v_G} = \frac{G}{G_0}$$

斜面的机械效率

滑块向上匀速滑动时

重力Q在斜面上的分力为生产阻力且不变,施加的力P在斜面上的分力为驱动力。

根据以上理论,

$$\eta = \frac{P_0 \cos \alpha}{P \cos \alpha} = \frac{P_0}{P} = \frac{Q \tan \alpha}{Q \tan(\alpha + \varphi)} = \frac{\tan \alpha}{\tan(\alpha + \varphi)}$$

滑块向下匀速滑动时

重力Q在斜面上的分力变为**驱动力**且不变,施加的力P在斜面上的分力为生产阻力。根据以上理论,

$$\eta = \frac{P\cos\alpha}{P_0\cos\alpha} = \frac{P}{P_0} = \frac{Q\tan(\alpha - \varphi)}{Q\tan\alpha} = \frac{\tan(\alpha - \varphi)}{\tan\alpha}$$

机械效率的串联与并联

● 串联时

● 并联时

$$\eta = \frac{P_r}{P_d} = \frac{P_1 \eta_1 + P_2 \eta_2 + \dots + P_k \eta_k}{P_1 + P_2 + \dots + P_k}$$

机械的自锁

由于摩擦的存在,会出现无论驱动力如何增大,也无法使机械运动的现象,这种现象称为机械的自锁。

移动副

在移动副中滑块上的驱动力作用在其摩擦角之内(即 $\beta \le \varphi$)则发生自锁。

转动副

转动副发生自锁的条件为:作用在轴颈上的驱动力为单力 F ,且作用于摩擦圆之内,即 $a \le \rho$ 。

任意机械

任意机械发生自锁的条件机械效率 $\eta \leq 0$ 。

平面连杆机构

铰链四杆机构基本概念

连架杆

直接与机架相连的杆件

连杆

除机架外的非连架杆

曲柄

机构中可以360°转动的杆件

摇杆

机构中不能360°转动的杆件

周转副/整转副

曲柄两端的转动副称为周转副

摆转副

摇杆两端的转动副称为摆转副

铰链四杆机构的形式

曲柄摇杆机构

两根连架杆一根是曲柄, 一根是摇杆

双曲柄机构

两根连架杆都是曲柄

双摇杆机构

两根连架杆都是摇杆

铰链四杆机构运动特性

杆长条件

铰链四杆机构中

最短杆长度+最长杆长度≤其余两杆长度之和

周转副的充要条件

铰链四杆机构中某回转副成为整转副的充要条件是:

- 1) 各杆长度满足杆长条件。
- 2) 构成此回转副的两构件中有一个为最短构件。

判断铰链四杆机构类型

- 1. 判断是否满足杆长条件。如果不满足杆长条件则没有周转副,必为双摇杆机构
- 2. 若满足杆长条件,由周转副的充要条件易知,当最短边为机架时机架相连的两转动副都是周转副,为双曲柄机构。
- 3. 当满足杆长条件,且最短边为连架杆时,机构为曲柄摇杆机构
- 4. 当满足杆长条件,且最短边为连杆时,机构为双摇杆机构
- 5. 当有两杆最短时以同样的方法判断周转副即可。
- 6. 四杆最短时显然必为双曲柄。

曲柄摇杆机构的运动特性

极位

摇杆运动到两极限位置时机构的运动状态。 对于右图所示曲柄摇杆机构而言,记 $l_{AB}=a, l_{BC}=b$,则有 $b-a\leq l_{AC}\leq a+b$,等

号在A,B,C三点共线的两个位置取。

摆角

摇杆的极位之间的夹角 \(\psi\) 即为摆角

极位夹角

曲柄在两极位的夹角 θ 即为极位夹角

快慢行程与行程数比系数

当曲柄从 AB_1 运动到 AB_2 时,转过的角度为 $180^\circ+\theta$,从 AB_2 运动到 AB_1 时,转过的角度为 $180^\circ-\theta$ 。曲柄通常是原动件,匀速转动,因此从 AB_1 运动到 AB_2 的行程为慢行程,从 AB_2 运动到 AB_1 的行程为快行程。

行程数比系数 K 为快行程与慢行程平均速度的比值。

$$K = \frac{180^{\circ} + \theta}{180^{\circ} - \theta}$$

从而有

$$\theta = 180^{\circ} \times \frac{K-1}{K+1}$$

如何计算极位夹角与摆角

 $\theta = \angle C_2 AD - \angle C_1 AD$,两角都可以通过余弦定理解出。

同理, $\psi = \angle C_1 DA - \angle C_2 DA$ 。

压力角与传动角

假设曲柄 AB 为原动件,由于 BC 为二 力杆,可知 BC 对 CD 的力的方向在 BC 直线上。将这个力分解为 CD 方向 及其法向,那么其中的使 CD 运动起来 的压力 F, 与合力 F 的夹角即为压力角,它的余角为传动角 γ 。即

最大压力角

由定义易知

 $\gamma + \alpha = 90^{\circ}$

$$\gamma = \begin{cases} \angle BCD & \angle BCD \le 90^{\circ} \\ 180^{\circ} - \angle BCD & \angle BCD > 90^{\circ} \end{cases}$$

由余弦定理

$$\cos \angle BCD = \frac{b^2 + c^2 - l_{BD}^2}{2bc}$$

其中只有 l_{BD} 在变化。由三角形两边之和大于第三边

$$d - a \le l_{RD} \le d + a$$

如上图中红色和蓝色两个位置。

由余弦函数性质, $\angle BCD$ 在红色位置最大,在蓝色位置最小。

可知 $\gamma_{max} = 90^{\circ}$, $\gamma_{min} = min\{\gamma_1, \gamma_2\}$, 其中 γ_1, γ_2 为两个极限位置(不是极位,注意区分)

也就有 $\alpha_{max} = \max\{\alpha_1, \alpha_2\}$ 。

死点

压力角为90°的位置即为死点。此时主动件给从动件的压力与从动杆的方向完全相同,从动杆无法转动。曲柄摇杆机构的死点在摇杆为主动件时为**原来当曲柄为主动件时的极位**,同时当曲柄为主动件时机构不存在死点。

曲柄滑块机构的运动特性

极位

滑块运动到两极限位置时机构的状态 即为极位。

