Name:		
Roll Number:	_	

Final Exam

$\operatorname{MTH302A}$ - Set Theory and Mathematical Logic

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) There exists a countable $X \subseteq \omega_1$ such that $\sup(X) = \omega_1$.
- (ii) There exists a bijection $f: \mathbb{R}^7 \to \mathbb{R}^9$ satisfying: For every x, y in \mathbb{R}^7 , f(x-y) = f(x) f(y).
- (iii) If $f: \omega \to \omega$ is a strictly increasing computable function, then range(f) is computable.
- (iv) The set of all subsets of ω that are definable in $\mathcal{N}=(\omega,0,S,+,\cdot)$ is countable.
- (v) TA is ω -categorical.

Page 3 MTH302A

Question 2. [10 Points]

- (a) [5 Points] Let \mathcal{F} be the set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$. Show that $|\mathcal{F}| = \mathfrak{c}$.
- (b) [5 Points] Let \mathcal{E} be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Show that $|\mathcal{E}| > \mathfrak{c}$.

Page 4 MTH302A

Question 3. [10 Points]

Using transfinite recursion, construct a function $f: \mathbb{R} \to \mathbb{R}$ such that for every interval $(a, b) \subseteq \mathbb{R}$ and $y \in \mathbb{R}$, there exists an **irrational** $x \in (a, b)$ such that f(x) = y.

Page 5 MTH302A

Question 4. [10 Points]

Recall that DLO is the theory of dense linear orderings without end-points.

- (a) [2 Points] Show that $(\mathbb{Z}, <)$ is not an elementary submodel of $(\mathbb{Q}, <)$. Here \mathbb{Z} is the set of all integers and \mathbb{Q} is the set of all rationals.
- (b) [8 Points] Let $M \subseteq \mathbb{R}$ be countable. Assume that $(M, <) \models DLO$. Show that (M, <) is an elementary submodel of $(\mathbb{R}, <)$.

Page 6 MTH302A

Question 5. [10 Points]

- (a) [5 Points] Let $W \subseteq \omega$ be an infinite c.e. set. Show that there is an infinite $X \subseteq W$ such that X is computable.
- (b) [5 Points] Show that $\omega \setminus True_{\mathcal{N}}$ (defined on Slide 199) is not c.e.

Page 7 MTH302A

Question 6. [10 Points]

Let T be a computable \mathcal{L}_{PA} -theory such that $PA \subseteq T \subseteq TA$. For $f : \omega \to \omega$, we say that f is **numeralwise** representable in T iff there is an \mathcal{L}_{PA} -formula $\psi(y,x)$ such that for every $(m,n) \in \omega^2$,

- (i) If f(m) = n, then $T \vdash \psi(\overline{n}, \overline{m})$.
- (ii) If $f(m) \neq n$, then $T \vdash \neg \psi(\overline{n}, \overline{m})$.
- (a) [4 Points] Let $f: \omega \to \omega$. Show that f is numeralwise representable in T iff f is computable.
- (b) [6 Points] Show that T is undecidable.

Page 8 MTH302A

Bonus Question [5 Points]

Let $\langle X_n : n < \omega \rangle$ be a sequence of **uncountable** sets. Show that there exists $\langle Y_n : n < \omega \rangle$ such that

- (a) For every $n < \omega, \, Y_n$ is uncountable and $Y_n \subseteq X_n.$
- (b) For every $m < n < \omega$, $Y_n \cap Y_m = \emptyset$.