

M2177.003100 Deep Learning

[4: Optimization]

Electrical and Computer Engineering Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 16:57:00 on 2020/09/06)

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - ► Chapter 8: Optimization for Training Deep Models
- online resources:

 - ► Stanford CS231n: CNN for Visual Recognition ► Link

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

Optimization in deep learning

- most difficult optimization task in DL: training
 - ▶ so important and so expensive ⇒ need specialized techniques
- mainstream: stochastic gradient descent (sgd) and its variants
- more complicated methods: Not popular
 - second-order methods
 - \triangleright often too expensive to compute/store Hessian $\rightarrow \bigcirc \bigcirc \bigcirc$
 - memory-efficient techniques emerging
 - convex optimization
 - its importance greatly diminished
- for clarity: this lecture focuses on unregularized supervised case

min } J+ (2) 1

Derivatives and optimization order

- derivatives
 - ▶ first derivative (= gradient) ⇒ slope
 - ► second derivative ⇒ <u>Curvature</u>

- (Jacobian)
 - (Hessian)

- optimization
 - first-order algorithms
 - □ use only gradient (e.g. gradient descent)
 - second-order algorithms
 - ▷ also use Hessian matrix (e.g. Newton's method)

Critical points (= stationary points)

l

- points with zero slope: $\nabla_x f(x) = 0$
 - derivative gives no info about which direction to move
 - ▶ three types: maxima (− curvature), minima (+ curvature), saddle points
- a saddle point: contains both positive and negative curvature

$$f(\boldsymbol{x}) = x_1^2 - x_2^2$$

- along x_1 axis: f curves upward
 - ▶ direction of eigenvec(\boldsymbol{H}) with $\lambda > 0$
 - local minimum
- along x_2 axis: f curves downward
 - ▶ direction of eigenvec(\boldsymbol{H}) with $\lambda < 0$
 - local maximum

Use of second derivative

- 1. to characterize critical points
- 2. to measure curvature
- 3. to predict performance of an update in gradient -based optimization

- negative curvature
 - ► f decreases faster than gradient predicts
- no curvature
 - gradient predicts the decrease correctly
- positive curvature
 - ▶ f decreases slower than gradient predicts (eventually increases)

In deep learning

- our objective function has
 - many local minima + many saddle points surrounded by very flat regions
 - ⇒ makes optimization very difficult (especially in high-dim space)
- we therefore usually settle for finding a very low value of f
 - not necessarily minimal in any formal sense
- recent research (Dauphin, 2014) reports
 - in high dim: Sadde points are much more common than local minima

Outline

Introduction

Gradient-Based Optimization
Gradient Descent and its Limitations

Exponentially Weighted Average Gradient Descent with Momentum Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Method of gradient descent

- derivative: useful for minimizing a function
 - for small ϵ : $f(x \epsilon \cdot \text{sign}[f'(x)]) < f(x)$
- we can thus reduce f(x) by
 - ightharpoonup moving x in small steps with opposite sign of derivative
 - = method of gradient descent

$$\underbrace{x'}_{ ext{new}} = \underbrace{x}_{ ext{old}} - \underbrace{\epsilon}_{ ext{learning rate}}
abla_x f(x)$$

- (a) x < 0: f'(x) < 0
 - \Rightarrow can decrease f by moving rightward
- (b) x = 0: f'(x) = 0
 - ⇒ gd halts here (global min)
- (c) x > 0: f'(x) > 0
 - \Rightarrow can decrease f by moving leftward

Sgd and its variants

- probably the most used optimization algorithms for ML/DL
 - can obtain an unbiased estimate of gradient

by taking average gradient on a minibatch of m examples

Algorithm 1 gradient descent

- 1: initialize θ
- 2: while stopping criterion not met do
- 3: sample m examples: $X_m = \{(x^{(1)}, y^{(1)}), \dots (x^{(m)}, y^{(m)})\}$
- 4: compute gradient estimate: $\hat{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)}) > m$ forward props
- 5: apply update: $\theta \leftarrow \theta \epsilon \hat{g}$
- 6: end while
- three variants (N: total number of examples)
 - ightharpoonup m=1: stochastic gradient descent (sgd)
 - ▶ 1 < m < N: Mini bottch sgd

(typical m: 64, 128, 256, 512)

 $\triangleright \epsilon$: learning rate

ightharpoonup m=N: batch gradient descent

Properties of sgd: good ones

• property #1:

computation time per update does not grow with # of training examples

- most important property of sgd/minibatch/online gradient-based optimization
- \Rightarrow allows convergence even when # of training examples becomes large
- property #2 (see textbook):

sgd works better in practice than its theoretical analysis says

some benefits of sgd: obscured in asymptotic analysis

Properties of sgd: bad ones

- sgd may suffer in the following situations:
 - local minima/saddle points

gradient noise

zero gradient

 $\Rightarrow \mathsf{gradient} \ \mathsf{descent} \ \mathsf{gets} \ \mathsf{stuck}$

image sources: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html; https://wikidocs.net/3413; I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016

Ravine

• Chloe Kim (2018 Olympic Champion, Women's Snowboard Halfpipe)

image source: Sean M. Haffey (Getty Images)

Poor conditioning of $oldsymbol{H}$

- consider a point x in multiple dimensions:
 - different second derivative for each direction
- ullet condition number of Hessian H at x
 - ▶ measures how much the second derivatives differ from each other
 - recall: condition number of a matrix with eigenvalues $\{\lambda\}$:

$$\max_{i,j} \left| rac{\lambda_i}{\lambda_j}
ight|$$

- when H has a large condition number ("poorly conditioned")
 - 1. gradient descent performs poorly
 - in a direction, derivative increases rapidly; in another, it increases slowly
 - gradient descent¹ is unaware of this change in the derivative
 - 2. it is difficult to choose a good step size ϵ

¹it does not know it needs to explore preferentially in the direction where derivative remains negative for longer

example:

- assume: Hessian H has condition number 5
 - most curvature: 5 times more curvature than least (a long canyon)
 - most curvature: direction [1,1]
 - least curvature: direction $[1,-1] \searrow$

- gradient descent (red lines): slow (zig-zag)
- ullet by contrast: methods considering H
 - ▶ can predict: the steepest direction is not promising (large $\lambda > 0 \Rightarrow$ large positive curvature \Rightarrow bad; see page 8)
- how to handle poor conditioning $\frac{\text{without}}{\text{directly considering } H$?

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations

Exponentially Weighted Average

Gradient Descent with Momentum Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Exponentially weighted moving average (EWMA)

- given: time series g_1, g_2, \ldots
- EWMA defined as:

$$v_t = \begin{cases} g_1 & t = 1\\ \alpha v_{t-1} + (1 - \alpha)g_t & t > 1 \end{cases}$$

- $ightharpoonup v_t$: EWMA at time t
- $ightharpoonup g_t$: observation at t
- $m{lpha} \in [0,1]$: degree of weighting decrease (constant Smoothing factor)

- example: gas price over time
 - ▶ blue dot: gas price g
 - ▶ red curve: EWMA v

$$v_t = \alpha \cdot \underbrace{v_{t-1}}_{\text{previous}} + (1 - \alpha) \cdot \underbrace{g_t}_{\text{current}}$$

Properties of EWMA

• effective weighting decreases exponentially over time:

$$\begin{aligned} v_t &= \alpha v_{t-1} + (1-\alpha)g_t \\ &= \alpha \left[\alpha v_{t-2} + (1-\alpha)g_{t-1}\right] + (1-\alpha)g_t \\ &\vdots \\ &= \alpha^k v_{t-k} + (1-\alpha) \underbrace{\left[g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \dots + \alpha^{k-1} g_{t-k+1}\right]}_{\text{weight exponentially decreases toward the past}} \end{aligned}$$

⇒ thus called "exponentially weighted"

approximation²

$$\begin{aligned} v_t &= (1 - \alpha)g_t + \alpha v_{t-1} \\ &= (1 - \alpha)\left[g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \alpha^3 g_{t-3} + \cdots\right] \\ &= \frac{g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \cdots}{1 + \alpha + \alpha^2 + \cdots} \quad \Rightarrow \quad \text{weighted average formula} \end{aligned}$$

▶ in such a formula, denominator = effective number of observations:

$$1 + \alpha + \alpha^2 + \dots = \frac{1}{1 - \alpha}$$

bottom line:

e.g.
$$\alpha = 0.9 \Rightarrow$$
 average over $1/(1-0.9) = 10$ points $\alpha = 0.98, 0.5 \Rightarrow$ average over $50, 2$ points, respectively

²recall: $\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \cdots$

Effect of smoothing factor α

- higher α (= more weight to past, less weight to present)
 - smoother curve

← averaging over more days

shifted further

- ← averaging over larger window
- \Rightarrow curve adapts more slowly to changes with more latency

Bias correction

- first few iterations: inaccurate average (have not seen enough samples)
 - ightharpoonup instead of v_t , we thus use:

$$\frac{v_t}{1 - \alpha^t}$$

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations Exponentially Weighted Average

Gradient Descent with Momentum

Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Method of momentum

- sgd: very popular but sometimes slow
- method of momentum (Polyak, 1964):
 - designed to accelerate learning, especially in the face of

 - high curvature
 small but consistent gradients
 noisy gradients
 - can be combined to existing sgd variants
- common algorithm
 - ► accumulates exponentially decaying moving average of past gradients
 - then continues to move in their direction

Gradient descent with momentum

- idea: compute EWMA of gradients and use it to update weights
 - works almost always faster than standard gradient descent
- in physics
 - ▶ momentum = mass · velocity
 - ► for unit mass: momentum = Velocity
 - ightharpoonup smoothing factor α : friction
- sometimes
 - ightharpoonup smoothing factor lpha
 - ⇒ called momentum (misnomer)

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Three (equivalent) forms of sgd + momentum

• let $g \triangleq \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

(θ represents W and b altogether)

• bottom line: θ is updated by linear $\frac{\text{Combination}}{\text{of gradient}}$ of gradient and velocity

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \epsilon \left(oldsymbol{\underbrace{oldsymbol{g}}}_{ ext{gradient}} + \operatorname{constant} \cdot oldsymbol{\underbrace{oldsymbol{v}}}_{ ext{velocity}}
ight)$$

 $^{^{3}\}tilde{\epsilon} \triangleq \epsilon(1-\alpha)$

Nesterov momentum

- difference from standard momentum:
 - $lacksymbol{ iny}$ where gradient $oldsymbol{g} =
 abla_{oldsymbol{ heta}} J$ is evaluated

standard momentum	Nesterov momentum
g evaluated at current position $ heta$ (red circle)	$oldsymbol{g}$ evaluated at "lookahead" position $oldsymbol{ heta} + lpha oldsymbol{v}$ (green circle)

- rationale: momentum is about to carry us to a new position
 - make sense to evaluate g at new position instead of "old/stale" position

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

• Nesterov momentum update rule:

$$v \leftarrow \alpha v - \epsilon \nabla_{\theta} J(\theta + \alpha v)$$
$$\theta \leftarrow \theta + v$$

- Nesterov momentum
 - gradient is evaluated after the current velocity is applied
 - ⇒ interpreted as adding a Correction factor to standard momentum
- advantages
 - stronger theoretical converge guarantees for convex functions
 - consistently works slightly better than standard momentum

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Outline

Introduction

Gradient-Based Optimization

Gradient Descent and its Limitations Exponentially Weighted Average Gradient Descent with Momentum

Per-Parameter Adaptive Learning Rates

Additional Topics

Summary

Per-parameter adaptive learning rates

- optimization methods explained so far
 - \blacktriangleright set learning rate ϵ globally and equally for all parameters
- methods presented now: AdaGrad, RMSProp, Adam
 - adaptively tune ϵ for each parameter

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Motivation

recall: limitation of gradient descent

- goal: move horizontally
- problem: huge vertical oscillations
- solution: we want to
 - slow down learning vertically
 - speed up (or at least not slow down) learning horizontally
- how to implement this idea (without relying on \underline{H} explicitly)?

image modified from: Ng, Deep Learning (Coursera), https://www.coursera.org/specializations/deep-learning

AdaGrad

- individually adapts learning rate of each direction (i.e. each parameter)
 - **steep** direction (large $\frac{\partial J}{\partial \theta_i}$): slow down learning
 - ▶ gently sloped direction (small $\frac{\partial J}{\partial \theta_i}$): speed up learning
- adjusts learning rates per parameter:

$$\epsilon_j = \frac{\epsilon}{\sqrt{\sum_{\text{all previous iterations}} (g_j \cdot g_j)}}$$

- ightharpoonup ϵ : global learning rate
- $ightharpoonup \epsilon_j$: learning rate of dimension j (parameter θ_j)
- $g_j = \frac{\partial J(\theta)}{\partial \theta_i}$: gradient wrt dimension j
- net effect:
 - ► greater progress in more gently sloped directions

- downside (esp in deep learning)
 - ightharpoonup monotonically decreasing ϵ : too aggressive
 - ⇒ stops learning too early
- TF: AdagradOptimizer
 - but do not use it for neural nets
- Adadelta: an extension of Adagrad
 - restricts the window of accumulated past gradients to some fixed size
 - ⇒ reduces aggressive, monotonically decreasing learning rate

RMSProp (root-mean-square prop)

- modifies AdaGrad to perform better in non-convex setting
 - changes gradient accumulation to EWMA
- use of exponentially decaying average allows RMSprop to
 - ► discard history from **extreme** past
 - ⇒ converge rapidly after finding a convex bowl
- comparison (r: accumulation variable)

AdaGrad	RMSprop
$r \leftarrow r + g \odot g$	$m{r} \leftarrow ho m{r} + (1 - ho) m{g} \odot m{g}$
$\Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta+r}}\odot oldsymbol{g}$	$\Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta+r}}\odot oldsymbol{g}$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$	$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$

 \triangleright decay rate ρ : hyperparameter (typically 0.9, 0.99, 0.999)

Adam (adaptive moment estimation)

- idea: RMSProp + momentum
 - with bias correction
- for each iteration:
 - \bigcirc compute gradient g
 - ② update first moment: $s \leftarrow \rho_1 s + (1 \rho_1) g$
 - $oldsymbol{3}$ update second moment: $oldsymbol{r} \leftarrow
 ho_2 oldsymbol{r} + (1ho_2) oldsymbol{g} \odot oldsymbol{g}$
 - 4 bias correction:

$$\hat{m{s}} \leftarrow rac{m{s}}{1-
ho_1^t}, \qquad \hat{m{r}} \leftarrow rac{m{r}}{1-
ho_2^t}$$

⑤ update parameter:

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \epsilon rac{\hat{oldsymbol{s}}}{\sqrt{\hat{oldsymbol{r}} + \delta}}$$

← "momentum"

← "RMSProp"

Algorithm 2 Adam optimizer

Require:

- ightharpoonup step size ϵ
- \blacktriangleright exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1)
- \blacktriangleright small constant δ used for numerical stabilization
- ightharpoonup initial parameters heta
- 1: initialize 1st and 2nd moment variables s=0, r=0
- 2: initialize time step t = 0
- 3: while stopping criterion not met do
- 4: sample a minibatch $\{x^{(1)},\ldots,x^{(m)}\}$ with corresponding targets $y^{(i)}$
- 5: compute gradient: $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$
- 6: $t \leftarrow t + 1$
- 7: update biased first moment estimate: $s \leftarrow \rho_1 s + (1 \rho_1) g$
- 8: update biased second moment estimate: $r \leftarrow \rho_2 r + (1 \rho_2) g \odot g$
- 9: correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$
- 10: correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$
- 11: compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r} + \delta}}$ (operations applied element-wise)
- 12: apply update: $\theta \leftarrow \theta + \Delta \theta$
- 13: end while

- recommended values in the paper
 - ▶ learning rate ϵ : needs tuning (suggested default: 0.001)
 - for momentum ρ_1 : 0.9
 - for RMSProp ρ_2 : 0.999
 - for stability δ : 10^{-8}
- Adam: often works better than RMSProp
 - recommended as the default algorithm to use
 - ▶ alternative to Adam worth trying: sgd + Nestrov momentum

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Comparison

• more information: Link

image sources: http://ruder.io/optimizing-gradient-descent, http://cs231n.github.io/neural-networks-3

Outline

Introduction

Gradient-Based Optimization

Additional Topics
Learning Rate Scheduling
Second-Order Optimization

Summary

Learning rate

- hyperparameter for many gradient-based algorithms
 - ▶ sgd, sgd + momentum, AdaGrad, RMSProp, Adam
- need to gradually _____ learning rate over time
 - \Rightarrow now denote ϵ_k : learning rate at iteration k (ϵ_0 : initial)
 - more critical with sgd + momentum (less common with Adam)

image source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

How to decay learning rate

• linear decay (until τ , and then constant)

$$\epsilon_k = \left(1 - \frac{k}{\tau}\right)\epsilon_0 + \frac{k}{\tau}\epsilon_\tau$$

- step decay
 - discrete staircase

- exponential decay: e.g. $\epsilon = \epsilon_0 (0.95)^k$
- 1/k or $1/\sqrt{k}$ decay:

• also popular: Manual decay (by trial-and-error or monitoring learning curve)

How to set initial learning rate

- typically:
 - optimal $\epsilon_0 > \underbrace{\epsilon_{\sim 100}^*}_{\uparrow}$

learning rate that yields best performance after first 100 iterations or so

- advice: monitor the first several iterations and
 - use a learning rate that is
 - ightharpoonup higher than best-performing ϵ at this time
 - but not so high that it causes severe instability

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Learning Rate Scheduling

Second-Order Optimization

Summary

Idea behind Newton's method

- consider a second-order Talyor series approximation
 - lacktriangle to function $f(oldsymbol{x})$ around the current point $oldsymbol{x}^{(0)}$:

$$f(m{x}) pprox f(m{x}^{(0)}) + (m{x} - m{x}^{(0)})^{ op} m{g} + rac{1}{2} (m{x} - m{x}^{(0)})^{ op} m{H} (m{x} - m{x}^{(0)})^{ op}$$

- $ho \ oldsymbol{g} riangleq
 abla_{oldsymbol{x}} f(oldsymbol{x}^{(0)}) : ext{gradient of } f ext{ at } oldsymbol{x}^{(0)}$
- $ightharpoonup H \triangleq H(f)(x^{(0)})$: Hessian of f at $x^{(0)}$
- solving for the critical point of f gives Newton's update rule:

$$m{x}^* = m{x}^{(0)} - m{H}^{-1} m{g}$$

pros: (in theory) no hyperparemter

- (i.e. learning rate)
- lacktriangleright cons: $(m{H}\ \text{has}\ O(n^2)\ \text{elements and takes}\ O(n^3)\ \text{for inverting})$
- * Levenberg-Marquardt algorithm
 - switches between Newton's and gradient descent

Comparison (1D)

- Newton's method: second-order
 - zero-finding

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}$$

minimization/maximization

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

- gradient descent: first-order
 - minimization/maximization

$$x_{t+1} = x_t - \epsilon f'(x_t)$$

Comparison (2D)

- Newton's method for optimization
 - ▶ idea: get a <u>Second</u>-order approximation and minimize it
 - ⇒ faster than gradient descent

Quasi-Newton methods

- idea: avoid directly inverting H
 - ightharpoonup approximate $oldsymbol{H}^{-1}$ with matrix $oldsymbol{M}_t$
 - $ightharpoonup M_t$: iteratively refined by low-rank updates
 - lackbox determine direction of descent by $oldsymbol{
 ho}_t = oldsymbol{M}_t oldsymbol{g}_t$ and update:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \epsilon \boldsymbol{\rho}_t$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
 - most popular quasi-Newton method
 - still requires $O(n^2)$ memory to store \boldsymbol{H}^{-1}
- ullet L-BFGS (limited memory BFGS): does not form/store full $oldsymbol{H}^{-1}$
 - usually works very well in full batch/deterministic mode
 - but performs poorly in minibatch/stochastic setting (research topic)

Practical advice on choosing optimizer in DL

- Adam
 - a good default choice in many cases
- sgd + momentum + learning rate decay
 - often outperforms Adam
 - but requires more <u>tuning</u>
- L-BFGS
 - try it if you can afford to do full batch updates
 - but should disable all sources of noise

source: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html

Outline

Introduction

Gradient-Based Optimization

Additional Topics

Summary

Summary

- optimization in deep learning
 - mostly sgd and its variants
- gradient estimate

$$\hat{\boldsymbol{g}} = \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$$

stochastic gradient descent (sgd)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}$$

• method of momentum ($\alpha \in [0,1)$)

$$egin{aligned} oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon \hat{oldsymbol{g}} \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v} \end{aligned}$$

Nesterov momentum (corrected momentum)

$$v \leftarrow \alpha v - \epsilon \nabla_{\theta} \left[\frac{1}{m} \sum_{i=1}^{m} L\left(f(x^{(i)}; \theta + \alpha v), y^{(i)} \right) \right]$$
$$\theta \leftarrow \theta + v$$

AdaGrad (r: for gradient accumulation)

$$egin{aligned} r \leftarrow r + \hat{g} \odot \hat{g} \ \Delta oldsymbol{ heta} \leftarrow -rac{\epsilon}{\sqrt{\delta + r}} \odot \hat{g} \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta} \end{aligned}$$

RMSProp (gradient accumulation by EWMA)

$$egin{aligned} r &\leftarrow
ho r + (1-
ho) \hat{g} \odot \hat{g} \ \Delta oldsymbol{ heta} &\leftarrow -rac{\epsilon}{\sqrt{\delta+r}} \odot \hat{g} \ oldsymbol{ heta} &\leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta} \end{aligned}$$

• Adam (a reasonable default choice)

$$s \leftarrow
ho_1 s + (1-
ho_1)\hat{g}$$
 (momentum) $r \leftarrow
ho_2 r + (1-
ho_2)\hat{g} \odot \hat{g}$ (RMSProp) $\hat{s} \leftarrow \frac{s}{1-
ho_1^t}, \quad \hat{r} \leftarrow \frac{r}{1-
ho_2^t}$ (bias correction) $\theta \leftarrow \theta - \epsilon \frac{\hat{s}}{\sqrt{\hat{r}+\delta}}$