

Leis de médias em análise

Silvius Klein

Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio)

A lei dos grandes números: enunciado informal

O valor esperado teórico de um experimento pode ser aproximado pela média de um número grande de amostras independentes.

valor esperado teórico \approx média empírica

A lei dos grandes números (LGN)

Seja

$$X_1, X_2, \ldots, X_n, \ldots$$

uma sequência de cópias independentes e identicamente distribuídas (i.i.d.) de uma variável aleatória escalar X. Suponha que X seja absolutamente integrável, com esperança μ .

Defina o processo de somas parciais

$$S_n := X_1 + X_2 + \ldots + X_n.$$

Então o processo de médias

$$\frac{S_n}{n} \to \mu$$
 quando $n \to \infty$.

A lei dos grandes números: enunciado formal

Seja $X_1, X_2, \ldots, X_n, \ldots$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas com a mesma esperanca μ .

Considere $S_n := X_1 + X_2 + \ldots + X_n$ o processo de somas parciais correspondentes. Então

1 (LGN fraca) $\frac{S_n}{n} \to \mu$ em probabilidade.

Ou seja, para todo $\epsilon > 0$,

$$\mathbb{P}\left\{\left|\frac{S_n}{n}-\mu\right|>\epsilon\right\}\to 0\quad \text{ quando } n\to\infty.$$

2 (LGN forte) $\frac{S_n}{n} \to \mu$ quase certamente.

It was the best of times, it was the worst of times. (Foi o melhor dos tempos, foi o pior dos tempos.)

Charles Dickens, A tale of two cities (Um conto de duas cidades)

Aplicação da LGN: o teorema do macaco infinito

Sejam X_1, X_2, \ldots variáveis aleatórias i.i.d. sorteados uniformemente de um alfabeto finito.

Então quase certamente, toda frase finita (i.e. sequência finita de símbolos do alfabeto) aparece (uma infinidade de vezes) na sequência $X_1X_2X_3...$

Aplicação da LGN: o teorema do macaco infinito

Sejam X_1, X_2, \ldots variáveis aleatórias i.i.d. sorteados uniformemente de um alfabeto finito.

Então quase certamente, toda frase finita (i.e. sequência finita de símbolos do alfabeto) aparece (uma infinidade de vezes) na sequência $X_1X_2X_3...$

yskpw,qol,all/alkmas;'.a ma;;lal;,qwmswl,;q;[;' lkle'78623rhbkbads m ,q l;,';f.w, ' fwe It was the best of times, it was the worst of times. jllkasjllmk,a s.",qjwejhns;.2;oi0ppk;q,Qkjkqhjnqnmnmmasi[oqw—qqnkm,sa;l;[ml/w/'q

Aplicação da LGN: o teorema do macaco infinito

Sejam X_1, X_2, \ldots variáveis aleatórias i.i.d. sorteados uniformemente de um alfabeto finito.

Então quase certamente, toda frase finita (i.e. sequência finita de símbolos do alfabeto) aparece (uma infinidade de vezes) na sequência $X_1X_2X_3...$

yskpw,qol,all/alkmas;'.a ma;;lal;,qwmswl,;q;[;' lkle'78623rhbkbads m ,q l;,';f.w, ' fwe It was the best of times, it was the worst of times. jllkasjllmk,a s.",qjwejhns;.2;oi0ppk;q,Qkjkqhjnqnmnmmasi[oqw—qqnkm,sa;l;[ml/w/'q

A prova formal do teorema do macaco infinito

Divida toda realização das sequência infinitas de símbolos no alfabeto

$$X_1X_2X_3\ldots X_n\ldots$$

em sequências finitas S_1, S_2, \ldots de comprimento 52 cada.

Seja E_n o evento para o qual a frase

It was the best of times, it was the worst of times.

é exatamente a n-ésima sequência finita S_n .

Esses eventos são independentes. Cada evento tem a mesma probabilidade p>0 de ocorrer.

Aplique a lei forte dos grandes números às variáveis aleatórias $X_k := \mathbb{1}_{E_k}$.

A lei dos grandes números

Vimos que se

$$X_1, X_2, \ldots, X_n, \ldots$$

é uma sequência de cópias independentes e identicamente distribuídas (i.i.d.) de uma variável aleatória escalar *X*, e se denortamos o processo de soma correspondente por

$$S_n := X_1 + X_2 + \ldots + X_n$$
,

então, quase certamente, o processo de médias

$$\frac{S_n}{n} \to \mathbb{E}X$$
 quando $n \to \infty$.

Um sistema bastante determinístico: rotação do círculo

Seja S o círculo unitário no plano (complexo).

Existe uma medida natural λ em $\mathbb S$ (i.e. a extensão do comprimento de arco).

Seja $2\pi\alpha$ um ângulo, e denote por R_{α} a rotação por α em \mathbb{S} .

Ou seja, considere a transformação

$$R_{\alpha}\colon \mathbb{S} \to \mathbb{S}$$
,

que a cada $z=e^{2\pi\,i\,x}\in\mathbb{S}$ associa

$$R_{\alpha}(z) = e^{2\pi i (x+\alpha)} = z \cdot \omega,$$

onde denota-se $\omega := e^{2\pi i \alpha}$.

Note que R_{α} preserva a medida λ .

Iterações da rotação do círculo

Seja $2\pi\alpha$ um ângulo.

Comece com um ponto $\mathbf{z}=e^{2\pi\,i\,x}\in\mathbb{S}$ e considere aplicações sucessivas da transformação de rotação R_{α} :

$$\begin{array}{ll} R^1_\alpha(z) = R_\alpha(z) & = e^{2\pi\,i\,(x+\alpha)} \\ R^2_\alpha(z) = R_\alpha \circ R_\alpha(z) & = e^{2\pi\,i\,(x+2\alpha)} \\ & \vdots \\ R^n_\alpha(z) = R_\alpha \circ \ldots \circ R_\alpha(z) = e^{2\pi\,i\,(x+n\alpha)} \\ & \vdots \end{array}$$

As transformações R_{α}^{1} , R_{α}^{2} , ..., R_{α}^{n} , ... são as iterações de R_{α} .

Dado um ponto $z \in \mathbb{S}$, o conjunto

$$\{R^1_{\alpha}(z), R^2_{\alpha}(z), \ldots, R^n_{\alpha}(z), \ldots\}$$

é dito a órbita de z.

Uma órbita da rotação do círculo

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional.

Escolha um ponto z no círculo \mathbb{S} .

A órbita de z (ou ainda um subconjunto dela).

Uma órbita da rotação do círculo

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional.

Escolha um ponto z no círculo \mathbb{S} .

A órbita de z (ou ainda um subconjunto dela).

A órbita de cada ponto é densa no círculo.

Essa transformação satisfaz uma forma muito fraca de independência dita ergodicidade.

Oberváveis no círculo unitário

Qualquer função mensurável $f: \mathbb{S} \to \mathbb{R}$ é dita um observável (escalar) do espaço de medidda $(\mathbb{S}, \mathcal{B}, \lambda)$.

Consideraremos observáveis absolutamente integráveis.

Um exemplo básico de um observável: $f = \mathbb{1}_I$, onde I é um arco (ou qualquer conjunto mensurável) do círculo.

"Observações" de pontos de uma órbita da rotação do círculo.

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional . Seja I um arco no círculo.

Os primeiros n pontos de uma órbita de R_{α} e suas visitas à I.

O número médio de visitas à *I*:

$$\frac{\#\left\{j\in\{1,2,\ldots,n\}\colon R_{\alpha}^{j}(z)\in I\right\}}{n}$$

O que ocorre com estes números médios para *n* suficientemente grande?

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional . Seja I um arco no círculo.

Os primeiros n pontos de uma órbita de R_{α} e suas visitas à I.

Quando $n \to \infty$, o número médio de visitas à *I*:

$$rac{\#\left\{j\in\{1,2,\ldots,n\}\colon R^j_lpha(oldsymbol{z})\in oldsymbol{I}
ight.
ight\}}{n}
ightarrow\lambda(I)$$
 ,

para todo ponto $z \in \mathbb{S}$.

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional . Seja I um arco no círculo.

Os primeiros n pontos de uma órbita de R_{α} e suas visitas à I.

$$\#\left\{j\in\{1,2,\ldots,n\}\colon R^{j}_{\alpha}(z)\in I\right\} = \sum_{i=1}^{n}\,\mathbb{1}_{I}\,(R^{j}_{\alpha}(z)).$$

Então o número médio de visitas à I pode ser escrito como:

$$\frac{\mathbb{1}_{I}\left(R^{1}_{\alpha}(z)\right)+\mathbb{1}_{I}\left(R^{2}_{\alpha}(z)\right)+\ldots+\mathbb{1}_{I}\left(R^{n}_{\alpha}(z)\right)}{n}\rightarrow\lambda(I)$$

Seja R_{α} a rotação do círculo pelo ângulo $2\pi\alpha$, onde α é um número irracional. Seja I um arco no círculo.

Os primeiros n pontos de uma órbita de R_{α} e suas visitas à I.

$$\#\left\{j\in\{1,2,\ldots,n\}\colon R^{j}_{\alpha}(z)\in I\right\} = \sum_{i=1}^{n}\,\mathbb{1}_{I}\,(R^{j}_{\alpha}(z)).$$

Então o número médio de visitas à I pode ser escrito como:

$$\frac{\mathbb{1}_{I}\left(R^{1}_{\alpha}(\mathbf{z})\right)+\mathbb{1}_{I}\left(R^{2}_{\alpha}(\mathbf{z})\right)+\ldots+\mathbb{1}_{I}\left(R^{n}_{\alpha}(\mathbf{z})\right)}{n}\rightarrow\lambda(I)=\int_{\mathbb{S}}\mathbb{1}_{I}\,d\lambda\,.$$

Sistemas dinâmicos que preservam medida

Um espaço de probabilidade (X, \mathcal{B}, μ) juntamente com uma transformação $T \colon X \to X$ definem um sistema dinâmico que preserva medida se T é mensurável e preserva a medida de qualquer conjunto \mathcal{B} -mensurável:

$$\mu(T^{-1}A) = \mu(A)$$
 for all $A \in \mathcal{B}$.

Sistema dinâmico ergódico. Dado qualquer conjunto \mathcal{B} -mensurável A, com $\mu(A) > 0$, as iterações

$$T^{-1}A, T^{-2}A, \ldots, T^{-n}A, \ldots$$

preenchem o espaço todo X, exceto, possivelmente, por um conjunto de medida zero.

Ergodicidade, então, conduz à uma forma muitíssimo fraca de independência.

Alguns exemplos de sistemas dinâmicos ergódicos

- O deslocamento de Bernoulli, que codifica sequências de variáveis aleatórias independentes e identicamente distrubuídas.
- 2 A rotação do círculo por um ângulo irracional.
- 3 Transformações expansoras lineares, por exemplo

$$T: [0, 1] \to [0, 1], \quad Tx = 10x \mod 1.$$

:

O teorema ergódico pontual de Birkhoff

Dados:

um sistema dinâmico ergódico (X, \mathcal{B}, μ, T) , e um observável absolutamente integrável $f \colon X \to \mathbb{R}$,

defina a n-ésima soma de Birkhoff por

$$S_n f(x) := f(Tx) + f(T^2x) + \ldots + f(T^nx).$$

Então quando $n \to \infty$, a média de Birkhoff

$$\frac{1}{n}S_nf(x) \rightarrow \int_X f d\mu$$
 para μ - q.t.p. $x \in X$.

A lei dos grandes números

Vimos que se

$$X_1, X_2, \ldots, X_n, \ldots$$

é uma sequência de cópias independentes e identicamente distribuídas (i.i.d.) de uma variável aleatória escalar X, e se denortamos o processo de soma correspondente por

$$S_n := X_1 + X_2 + \ldots + X_n,$$

então quando $n \to \infty$, o processo de médias

$$\frac{1}{n}S_n o \int X$$
 quase certamente.

Uma aplicação imediata do teorema ergódico

Seja (X, \mathcal{B}, μ, T) um sistema dinâmico ergódico. Tome $x \in X$, e considere sua órbita

$$Tx$$
, T^2x , ..., T^nx , ...

Equidistribuição de pontos da órbita. Para qualquer conjunto \mathcal{B} -mensurável A, o número médio de pontos da órbita que visitam A, converge quando $n \to \infty$.

$$\frac{\#\left\{j\in\{1,2,\ldots,n\}\colon\, T^jx\in A\right\}}{n}\to \mu(A)\,.$$

para μ quase todo ponto $x \in X$.

Prova. Simplesmente aplique o teorema ergódico pontual ao observável

$$f = 1_A$$
,

e note que a contagem de pontos da órbita acima é igual a *n*-ésima soma de Birkhoff desse observável.

Outra simples aplicação do teorema ergódico

Considere a representação decimal de um número real $x \in [0, 1)$.

$$x=0.x_1x_2\ldots x_n\ldots,$$

onde os dígitos $x_k \in \{0, 1, 2, ..., 9\}.$

Questão. Qual é a frequência (ocorrência média) de cada dígito na representação decimal de um número real "típico" $x \in [0, 1]$?

Outra simples aplicação do teorema ergódico

Considere a representação decimal de um número real $x \in [0, 1)$.

$$x=0.x_1x_2\ldots x_n\ldots,$$

onde os dígitos $x_k \in \{0, 1, 2, ..., 9\}.$

Questão. Qual é a frequência (ocorrência média) de cada dígito na representação decimal de um número real "típico" $x \in [0, 1]$?

$$rac{\#\left\{j\in\{1,2,\ldots,n\}\colon x_j=7
ight\}}{n} pprox ? \quad ext{quando} \ n o\infty.$$

Outra simples aplicação do teorema ergódico

Questão. Qual é a frequência (ocorrência média) de cada dígito na representação decimal de um número real "típico" $x \in [0, 1]$?

$$\frac{\#\left\{j\in\{1,2,\ldots,n\}\colon x_j=7\right\}}{n} \approx ? \quad \text{quando} \ n\to\infty.$$

Solução. Considere o sistema dinâmico dado pela transformação: $T\colon [0,1) \to [0,1), \quad Tx = 10x \mod 1.$ Seja $f\colon [0,1) \to \mathbb{R}$ o observável definido por

$$f(x) = \begin{cases} 1 & \text{se } x_1 = 7 \\ 0 & \text{caso contrário .} \end{cases}$$

A lei dos grandes números

Vimos que se

$$X_1, X_2, \ldots, X_n, \ldots$$

é uma sequência de variáveis aleatórias escalares, independentes e identicamente distribuídas, e se denotamos o processo de soma correspondente por

$$S_n := X_1 + X_2 + \ldots + X_n,$$

então as médias aritméticas

$$\frac{1}{n}S_n$$
 convergem quase certamente quando $n \to \infty$.

Matrizes aleatórias e médias geométricas

Considere a sequência

$$M_1, M_2, \ldots, M_n, \ldots$$

de matrizes aleatórias. Suponha que esta sequência é independente e identicamente distribuída.

Considere o processo de produtos parciais:

$$\Pi_n = M_n \cdot \ldots \cdot M_2 \cdot M_1 .$$

Matrizes aleatórias e médias geométricas

Considere a sequência

$$M_1, M_2, \ldots, M_n, \ldots$$

de matrizes aleatórias.
Suponha que esta sequência é independente e identicamente distribuída.

Considere o processo de produtos parciais:

$$\Pi_n = M_n \cdot \ldots \cdot M_2 \cdot M_1 .$$

O teorema de Furstenberg-Kesten. Quase certamente, quando $n \to \infty$, as "médias geométricas"

$$\frac{1}{n} \log \|\Pi_n\|$$
 convergem para uma constante.

Essa constante é chamada o expoente de Lyapunov do processo multiplicativo.

Se gostaram disso ...

...então o nosso departamento tem vários cursos e programas relacionados.

Teoria das probabilidades: MAT2303, 2304, 2305

Um macaco digitando palavras aleatórias.

Teoria de medida: MAT2621 e outros cursos de análise

Um dos principais objetivos do curso é entender essa imagem.

Sistemas dinâmicos e teoria ergódica: MAT2920, MAT2921, MAT2922, MAT2923

A transformação de gato.