Sample Solution for Problem Set 7

Data Structures and Algorithms, Fall 2021

November 22, 2021

Contents

1	Problem 1	2
	1.1 a	
	1.2 b	
	1.3 c	
	1.4 d	3
2	Problem 2	4
3	Problem 3	5
4	Problem 4	6
5	Problem 5	7

1.1 a

$$Q_{k} = \binom{n}{k} \left(\frac{1}{n}\right)^{k} \left(1 - \frac{1}{n}\right)^{n-k}$$

$$\leq \binom{n}{k} \frac{1}{n^{k}}$$

$$= \frac{n!}{(n-k)!n^{k}} \frac{1}{k!}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{n^{k}} \frac{1}{k!}$$

$$\leq \frac{1}{k!}$$

$$\leq \frac{e^{k}}{k^{k}} \quad \left(\text{Stirling's approximation: } k! \geq \left(\frac{k}{e}\right)^{k}\right)$$

1.2 b

Let $q_k^{(i)}$ denote the event that exactly k keys hash to slot i and no other slot has more keys than it. Obviously, $\Pr[q_k^{(i)}] \leq Q_k$

$$\begin{split} P_k &= \Pr[\bigcup_{i=1}^n q_k^{(i)}] \\ &\leq \sum_{i=1}^n \Pr[q_k^{(i)}] \quad \text{(Union bound)} \\ &\leq nQ_k \end{split}$$

1.3 c

From (a) and (b), we only need

$$\left(\frac{e}{k}\right)^k < \frac{1}{n^3}$$

that is,

$$k(\lg e - \lg k) < -3\lg n$$

substitute $k \ge (c \lg n) / \lg \lg n$,

$$3 < c \left(\frac{\lg\lg n - \lg\lg\lg n + \lg c - \lg e}{\lg\lg n} \right)$$

for sufficient large n, $\left(\frac{\lg\lg n - \lg\lg\lg n + \lg c - \lg e}{\lg\lg n}\right) \to 1$. So c=3 is enough.

1.4 d

Let $k_0 = c \lg n / \lg \lg n$

$$E[M] = \sum_{k=0}^{n} k \times \Pr\{M = k\}$$

$$= \sum_{k=0}^{k_0} k \times \Pr\{M = k\} + \sum_{k=k_0+1}^{n} k \times \Pr\{M = k\}$$

$$\leq \sum_{k=0}^{k_0} k_0 \times \Pr\{M = k\} + \sum_{k=k_0+1}^{n} n \times \Pr\{M = k\}$$

$$= k_0 \sum_{k=0}^{k_0} \Pr\{M = k\} + n \sum_{k=k_0+1}^{n} \Pr\{M = k\}$$

$$\leq k_0 \times 1 + n \times \sum_{k=k_0+1}^{n} \frac{1}{n^2}$$

$$\leq k_0 \times 1 + n \times \sum_{k=k_0+1}^{n} \frac{1}{n^2}$$

$$\leq k_0 + 1$$

$$= O(\frac{\lg n}{\lg \lg n})$$

- (a) We will show that each string hashes to the sum of it's digits $\mod 2^p 1$. We will do this by induction on the length of the string. As a base case, suppose the string is a single character, then the value of that character is the value of k which is then taken $\mod m$. For an inductive step, let $w = w_1w_2$ where $|w_1| \ge 1$ and $|w_2| = 1$. Suppose $h(w_1) = k_1$. Then, $h(w) = h(w_1)2^p + h(w_2) \mod 2^p 1 = h(w_1) + h(w_2) \mod 2^p 1$. So, since $h(w_1)$ was the sum of all but the last digit $\mod m$, and we are adding the last digit $\mod m$, we have the desired conclusion.
- (b) let $h_2(k) = x \cdot d$, $m = y \cdot d$, and x, y are co-prime. Let we prove that y is cycle period for $h(k) \pmod{m}$.

$$h(k,y) = h_1(k) + y \cdot h_2(k) \pmod{m}$$
$$= h_1(k) + y \cdot d \cdot x \pmod{m}$$
$$\equiv h_1(k) \pmod{m} = y \cdot d$$
$$= h(k,0) \pmod{m}$$

Because x, y are co-prime, so $x \cdot y \cdot d$ is the least common multiple of $h_2(k) = x \cdot d$ and $m = y \cdot d$, so the smaller cycle period is impossible.

So, we should search for $y=\frac{m}{d}$ steps, and d=1 is a special case that we need to search the whole hash table.

Assume $m \ge n$, as otherwise, finding a perfect hash function is impossible.

(a)

$$\mathbb{E}[\text{\# collisions}] = \binom{n}{2} \cdot \frac{1}{m} = \frac{n(n-1)}{2m}$$

(b)

The exact probability that a random hash function is perfect is $\frac{\binom{m}{n} \cdot n!}{m^n}$. For convenience, we define $p = \frac{\binom{m}{n} \cdot n!}{m^n}$.

(c)

Let r.v. X be the number of random hash functions we have to test until we find a perfect hash function. We have $X \sim G(p)$. Then, $\mathbb{E}[X] = \frac{1}{p}$. The exact expected number of random hash functions we have to test before we find a perfect hash function is $\frac{1}{p} - 1$.

(d)

The exact probability that none of the first N random hash functions we try is perfect is $(1-p)^N$.

(e)

Suppose we have to test N ideal random hash functions to find a perfect hash function with high probability. We have $1-(1-p)^N \geq 1-\frac{1}{n}$. We thus have $N \geq \log_{1-p}\frac{1}{n}$. We have to test (at least) $\lceil \log_{1-p}\frac{1}{n} \rceil$ ideal random hash functions to find a perfect hash function with high probability.

Note that, the total cost is bounded by

$$\sum_{i=0}^{\lceil \log_2 n \rceil} 2^i + n \le 5n.$$

Let $\Phi: \mathbb{N}^2 \to \mathbb{R}_{\geq 0}$ be the potential function defined as follows:

$$\Phi(\{cur, size\}) = 100 \left| cur - \frac{3 \times size}{8} \right|,$$

where cur denotes the elements in the hash table, and size denotes the size of hash table. We conclude our proof by checking the following cases.

Case 1: insert x without resizing after insertion

In this case,

$$T_{\mathbf{amortized}}(op) = T_{\mathbf{actual}}(op) + \Phi(\{cur + 1, size\}) - \Phi(\{cur, size\}) \leq 101.$$

Case 2: insert x with resizing after insertion

In this case,

$$T_{\mathbf{amortized}}(op) = T_{\mathbf{actual}}(op) + \Phi(\{cur + 1, 2 \times size\}) - \Phi(\{cur, size\}) \leq 101.$$

The last inequality follows from the fact that $\frac{3 \times size}{4} - 1 < cur \le \frac{3 \times size}{4}$.

Case 3: remove x without resizing after removal

In this case,

$$T_{\mathbf{amortized}}(op) = T_{\mathbf{actual}}(op) + \Phi(\{cur - 1, size\}) - \Phi(\{cur, size\}) \leq 101.$$

Case 4: remove x with resizing after removal

In this case,

$$T_{\mathbf{amortized}}(op) = T_{\mathbf{actual}}(op) + \Phi(\{cur - 1, \frac{size}{2}\}) - \Phi(\{cur, size\})$$

$$\leq 1 + 100 \left(\left| cur - 1 - \frac{3 \times size}{16} \right| - \left| cur - \frac{3 \times size}{8} \right| \right)$$

$$\stackrel{(\star)}{\leq} 1 + 100 \left(\frac{size}{16} - \frac{size}{8} + 1 \right)$$

$$\leq 101,$$

where (\star) follows from the fact that $\frac{size}{4} \leq cur < \frac{size}{4} + 1$.