Trường: ĐH CNTP TP.HCM

Khoa: Công nghệ Thông tin

Bộ môn: Mạng máy tính – Truyền thông

MH: TH Hệ điều hành

MSMH:

BÀI 6. TẮC NGHỄN

A. MỤC TIÊU

Sau khi hoàn thành bài thực hành này, sinh viên sẽ đạt được các kỹ năng sau:

- Viết được chương trình minh họa việc thực thi của các giải thuật quản lý tắc nghẽn như: Tránh tắc nghẽn, dò tìm tắc nghẽn, ngăn chặn tắc nghẽn bằng ngôn ngữ C.
- Áp dụng được các ngôn ngữ lập trình khác nhau để viết minh họa giải thuật.
- Hình thành tư duy xử lý bài toán lập trình.

B. DỤNG CỤ - THIẾT BỊ THỰC HÀNH CHO MỘT SINH VIÊN:

STT	Chủng loại – quy cách vật tư	Số lượng	Đơn vị	Ghi chú
1	Computer	1	Bộ	

C. NỘI DUNG THỰC HÀNH

1. Tóm tắt lý thuyết

Bài thực hành liên quan đến các vấn đề lý thuyết về giải quyết tắc nghẽn trong hệ điều hành, cụ thể như sau:

- Giải thuật phát hiện tắc nghẽn
- Giải thuật tránh tắc nghẽn
- Giải thuật ngăn chặn tắc nghẽn

2. Bài thực hành trên lớp

2.1. Bài tập mẫu

<u>Yêu cầu:</u> Viết chương trình C minh họa việc thực thi giải thuật Banker tránh tắc nghẽn?

Chương trình mẫu:

```
1 - /*
  2 CHƯƠNG TRÌNH MINH HỌA GIẢI THUẬT BANKER
3 MÔN: THỰC HÀNH HỆ ĐIỀU HÀNH
  4 BỘ MÔN: MẠNG MÁY TÍNH VÀ TRUYỀN THÔNG
      KHOA: CNTT - DH CNTP
  6
      #include <stdio.h>
  8
     int main()
  9 + {
 10
           // P0, P1, P2, P3, P4 Tên của các tiến trình minh họa
 11
           int n, m, i, j, k;
n = 5; // Số tiến trình
m = 3; // Số tài nguyên
 12
 13
 14
           int alloc[5][3] = { { 0, 1, 0 }, // P0 // Ma trận Allocation { 2, 0, 0 }, // P1 { 3, 0, 2 }, // P2
 15
 16
 17
                                    { 2, 1, 1 }, // P3 
{ 0, 0, 2 } }; // P4
 18
 19
 20
           21
 22
 23
                               { 2, 2, 2 }, // P3
 24
                               { 4, 3, 3 } }; // P4
 25
 26
 27
            int avail[3] = { 3, 3, 2 }; // Tài nguyên sẵn hiện tại có của hệ thống
 28
 29
            int f[n], ans[n], ind = 0;
 30 +
            for (k = 0; k < n; k++) {
 31
                f[k] = 0;
 32
 33
            int need[n][m];
 34 -
            for (i = 0; i < n; i++) {
 35
                for (j = 0; j < m; j++)
                    need[i][j] = max[i][j] - alloc[i][j];
 36
 37
 38
            int y = 0;
            for (k = 0; k < 5; k++) {
  for (i = 0; i < n; i++) {
    if (f[i] == 0) {
 39 +
 40 -
 41 +
 42
                          int flag = 0;
for (j = 0; j < m; j++) {
   if (need[i][j] > avail[j]){
 43
 44 -
 45 +
                                    flag = 1;
 46
 47
                                    break;
 48
                               }
 49
                          }
 50
 51 +
                          if (flag == 0) {
                               ans[ind++] = i;
for (y = 0; y < m; y++)
 52
 53
                                    avail[y] += alloc[i][y];
 54
 55
                               f[i] = 1;
 56
 57
                     }
 58
                 }
 59
 60
 61
            printf("Chuoi an toan la:\n");
           for (i = 0; i < n - 1; i++)
    printf(" P%d ->", ans[i]);
printf(" P%d", ans[n - 1]);
 62
 63
 64
 65
 66
            return (0);
 67
 68
 69
      }
 70
```

Kết quả chạy chương trình:

Chuoi an toan la: P1 -> P3 -> P4 -> P0 -> P2

2.2. Bài tập luyện tập

Bài tập 1. Viết chương trình C minh họa việc thực thi giải thuật Banker dò tìm tắc nghẽn?

Bài tập 2. Viết chương trình C minh họa việc thực thi giải thuật Banker ngăn chặn tắc nghẽn?

3. Bài thực hành ở nhà

Hãy thực hiện lại các bài tập sau bằng Windows Form. Yêu cầu: Nộp lại source code vào thư mục trên kênh học tập Google Classroom.

o Bài tập 1. Viết chương trình C minh họa việc thực thi giải thuật Banker?

Ví dụ giao diện Giải thuật