Nonlinear Fit

Kinzel	Python
$f[t_{-}] := a Sin[om t + phi] Exp[-b t]$	def f(t, a, om, phi, b):
	return a*np.sin(om*t +
2 - (1 1 0 0 1)	phi)*np.exp(-b*t)
<pre>a = {1,1,0,0.1} data = Table[{t, Sin[t]Exp[-t/10.] +</pre>	y = f(t,1,1,0,0.1) t = np.arange(0, 3*np.pi+0.1, 0.3*np.pi)
0.4*Random[] - 0.2}//N, {t,0,3Pi,0.3Pi}]	
0.2j//ii, [e,0,3i1,0.3i1]	Note that arange returns points in the half-
	open interval $[a,b)$.
	noise = 0.4*random.random() - 0.2
	data = y + noise
NonlinearRegress[data, f[t], t,	<pre>popt,pcov = scipy.optimize.curve_fit(f,</pre>
{{a,1.1}, {om,1.1}, {phi,.1}, {b,.2}},	t, data)
<pre>ShowProgress -> True] Quantile[ChiSquareDistribution[7], 0.95]</pre>	<pre>print(popt) scipy.stats.chi2.ppf(0.95, df=7))</pre>
limit[x_] =	def limit(x):
Quantile[ChiSquareDistribution[7], x]	return scipy.stats.chi2.ppf(x,
	df=7)
	To get the distribution, use
	scipy.stats.chi2.pdf()
y 5 ()2 ²	dof chiOoguarad(v f).
$\chi_0^2 = \sum_{i=1}^{N} \left[\frac{Y_i - g(\mathbf{a_0}, t_i)}{\sigma_i} \right]^2$	<pre>def chi0squared(y,f): return sum((data -</pre>
$\lambda_0 - \underline{\lambda}_{i=1} \begin{bmatrix} \sigma_i \end{bmatrix}$	f(t,*popt))/(2/150))**2
	(1)
where $a_0 = popt$	
$\chi^{2}(\boldsymbol{a}) = \sum_{i=1}^{N} \left[\frac{Y_{i} - g(\boldsymbol{a}, t_{i})}{\sigma_{i}} \right]^{2}$	For 1 st contour plot (<i>ab</i> -space):
$\chi^{2}(a) = \sum_{i=1}^{n} \left \frac{\sigma_{i}}{\sigma_{i}} \right $	defende and a december of the first
, 2[,]	<pre>def chisquared(y,f): return sum((data - f(t, A,</pre>
	popt[1], popt[2], B))/(2/150))**2
	where A & B are the corresponding
	meshgrids. Note that popt is a vector of the
	best fit parameters in the same order as
	defined by the fitting function f
$P_M(\chi^2)$	<pre>def P(chisquared,M):</pre>
	return sps.chi2.cdf(chisquared,
	df=M)
	Or, alternatively:
	or, anomalivory.
	<pre>def P(chisquared,M):</pre>
	return
	scipy.special.gammainc(chisquared/2,
	M/2)