Intro to DIY Off Grid Systems

Demand for Energy Equality

October 2017

Root source version: Version 2.0 Translation version: Version 0.1

TODO ADD IMAGE

This guide is provided under a Creative Commons BY-SA license:

Material may be freely shared and adapted under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made, and further distribution must be under the same license as the original.

Contents

Preface	5
Introduction	6
The Demand Energy Equality project	6
Using this guide	6
Disclaimer	6
Basic concepts	7
Power consumption	7
Voltage	7
Current	7
Resistance	7
Series and parallel circuits	7
What is an off grid system	7
Why 12 Volt	7
Generation	7
Solar panels	7
Wind turbines	7
Hydro-generation	7
Cycle powered generation	7
Storage	7
Batteries	7
Specifications	7
Battery types	7
How lead acid batteries work	7
Carbon intensity	7
Buying second hand batteries	7
Caring for lead acid batteries	7
Charge control	7

PWM and MPPT	7
Choosing the right charge controller	7
Discharge control	7
Other system level equipment	7
Fuses	7
Size and placement	7
Wire	7
DC voltage conversion: Step Up and Step Down	7
Connectors	7
Terminal blocks	7
Crimp connectors	7
Usage level equipment	7
Plugs and sockets	7
Switches	7
Lights	7
USB	7
Appliances	7
Using Household Appliances	7
Inverters	7
Constructing a Simple 12V Off-Grid Circuit	7
Basic system modelling	7
Designing an efficient system	7
Converting to heat	7
Converting to cold	7
Converting to mechanical	7
Inverting to 240AC	7
Planning Your System	7

Calculating your consumption	7
Calculating battery storage	7
Calculating solar generation	7
System losses	7
Additional system modelling	7
Balancing seasonal generation with battery storage	7
Time of day consumption modelling	7
Where to compromise	7
Constructing the Whole System	7
Resources	7
Useful Information for Installations	7
Other Renewable Energy Resources	7
Off grid system component suppliers	7
Appendices	7
Equipment List	7
Using a Multimeter	7

Preface

Introduction

This PDF has taken the content of the "Intro to DIY Off Grid Systems" PDF and put them into a form which can be easily corrected, improved and translated by the community using LaTeX a markdown language for technical topics.

Notes

Please note the modifications which have been made & where you can find updates.

- 1. All the content of the PDF and put them into a form which can be easily corrected, improved and translated by the community using LaTeX a markdown language for technical topics.
- to-DIY-Off-Grid-Systems so do return periodically to check if you have the latest version.

2. Any updates, corrections or translations to the PDF will be available at https://github.com/darigovresearch/Intro-

3. Modifications from the original work includes typo correction, card merging & consistency consolidation (see the commit history for [en] for the specific changes if any).

Feel free to share the PDFs and give the repository a star so more people are likely to see this work and can get the most out of it.

License

Unless otherwise specified, everything in this PDF is covered by the following licence:

This work was based on the work *Intro to DIY Off Grid Systems* by Demand Energy Equality, licensed under a Creative Commons BY-SA.

To see this work in full go to https://www.demandenergyequality.org/get-started-with-offgrid

Introduction

The Demand Energy Equality project

Using this guide

Disclaimer

Basic concepts Power consumption Voltage Current Resistance Series and parallel circuits What is an off grid system Why 12 Volt Generation Solar panels Wind turbines Hydro-generation Cycle powered generation Storage **Batteries** Specifications Battery types How lead acid batteries work Carbon intensity Buying second hand batteries Caring for lead acid batteries Charge control PWM and MPPT 7

Discharge control

Choosing the right charge controller