

Lecture 8.5 - Supervised Learning Neural Networks

Erik Bekkers

(Bishop 5.3)

Multi-dimensional chain rule (Recall "NNCX) = h o a o h o a (X)

Let $f: \mathbb{R}^D \mapsto \mathbb{R}$ be a differentiable function of D variables.

Let $g_1, ..., g_D: \mathbb{R} \mapsto \mathbb{R}$ be differentiable functions, the inputs of $f: (g_1(x), ..., g_D(x)) \mapsto f(g_1(x), ..., g_D(x))$

Then the multi-dimensional chain rule tells us the derivative to x is

$$\frac{\partial f(g_1(x), ..., g_D(x))}{\partial x} = \sum_{d=1}^{D} \frac{\partial f(g_1(x), ..., g_D(x))}{\partial g_d(x)} \frac{\partial g_d(x)}{\partial x}$$

Use
$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$
Final Evaluate $\frac{\partial E_n(\mathbf{w})}{\partial \mathbf{w}}$

- For general feed-forward network:

- Output/hidden units: $z_i^{(l)} = h^{(l)}(a_i^{(l)})$
- Forward propagation: Compute all a_i and z_i
- Back propagation: Compute all derivatives $\frac{\partial E_n}{\partial w_{ji}^{(l)}}$

> Back propagation: Compute all derivatives $\frac{\partial E_n}{\partial w_{ji}^{(l)}}$ corresponding to input X_n

$$\frac{\partial E_n}{\partial w_{ji}^{(l)}}$$

• E_n only depends on w_{ji} through activation: $a_j^{(l)} = \sum w_{ji}^{(l)} z_i^{(l-1)}$

$$\frac{\partial E_n}{\partial w_{ji}^{(l)}} = \frac{\partial E_n}{\partial a_j^{(l)}} \frac{\partial a_j^{(l)}}{\partial w_{ji}^{(l)}}$$

Define "node error"

Then

- Then update all derivatives $\frac{\partial E_n}{\partial w_{ji}} = \int_0^\infty \frac{\partial A_j}{\partial w_{ji}}$
- We now omit layer indices and identify the layers with the indices i, j, and k

$$z_i^{(l-2)} = z_i$$

$$z_j^{(l-1)} = z_j$$

$$z_k^{(l)} = z_k$$

Now let's compute

- Back propagation: First compute all δ_i

- Then update all derivatives
$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial z}$$

- · We now omit layer indices and identify the layers with the indices i, j, and k
- Now let's compute

$$\delta_{j} \equiv \frac{\partial E}{\partial a_{j}} = \sum_{k} \frac{\partial \mathcal{F}}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}$$

$$= \sum_{k} \frac{\partial a_{k}}{\partial a_{j}}$$

 $E(a_1, \ldots, a_K)$ depends on output activations a_k Outputs $a_k(a_1,\ldots,a_J)$ in turn depend on a_i of previous layer

Use multi-dimensional chain rule!

- Pack propagation: First compute all δ_j Then update all derivatives $\frac{\partial E_n}{\partial w_{ii}}$ = δ_j 2 :
- We now omit layer indices and identify the layers with the indices i,j, and k
- So $\delta_{j} = \sum_{k} \delta_{k} \frac{\partial a_{k}}{\partial a_{j}}$, then let's compute $\frac{\partial a_{k}}{\partial a_{j}}$ (Recall: $a_{k} = \sum_{j} z_{j} w_{k} j$) $\frac{\partial a_{k}}{\partial a_{j}} = \frac{\partial}{\partial a_{j}} \left(\sum_{j} W_{k,j} h(a_{j}) \right) \left(a_{j} \right)$ Thus $\delta_{j} = h'(a_{j}) \geq \delta_{k} W_{k,j}$ $\delta_{j} = h'(a_{j}) \geq \delta_{k} W_{k,j}$

Forward and Backward Propagation

Forward propagation:

For input \mathbf{x}_n compute all hidden and output activations a_k and units z_k .

Backward propagation:

• Compute δ_k for all output units.

$$S_{k} = \frac{\partial G}{\partial y_{k}} = (y_{k} - G_{k})$$

- Compute δ_i for all hidden units through back-prop

(Careful with skip connections!)
$$S_i = h'(a_i) \leq w_{ki} S_k$$

Compute derivatives

<u>Iterative weight updates</u>:

$$W_{j:}^{(t+1)} = W_{j:}^{(t)} - \eta \delta_{j} \delta_{i}$$

where Oi denotes the set of (out going) node connections to node i, and whi the corresponding weights:

$$S_i = h'(a_i) \sum_{n \in O_i} S_n w_{ni}$$

Starting the backpropagation

For regression: $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$

$$y(\mathbf{x}_n, \mathbf{w}) = y_n = a^{out}$$

$$\delta^{\text{out}} = \frac{\partial E_n}{\partial a^{\text{out}}} = y_n - t_n$$

For classification with K classes: $E(\mathbf{w}) = -\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} t_{nk} \ln y_k(\mathbf{x}_n, \mathbf{w})$

$$y_k(\mathbf{x}_n, \mathbf{w}) = y_{kn} = \frac{\exp(a_k^{\text{out}})}{\sum_{j=1}^K \exp(a_j^{\text{out}})}$$

$$\delta_k^{\text{out}} = \frac{\partial E_n}{\partial a_k^{\text{out}}} = y_{kn} - t_{kn}$$

Example: Backpropagation with tanh

Two layer neural network:

- Regression with K outputs: $y_k = a_k^{(2)}$
- Hidden units: $z_j = h(a_j) = \tanh(a_j^{(1)})$
- , Activation function $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- Has derivative $h'(a) = 1 h(a)^2$
- Error function $E = \sum_{k} (y_k t_k)^2$
- After forward propagation, compute:

$$\delta_k^{out} = y_k - t_k$$

Backpropagate using:

$$\delta_j = (1 - z_j^2) \sum_{k=1}^K w_{kj}^{(2)} \delta_k^{out}$$

Update weights in first and second layer using:

$$\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \delta_j x_i \quad \text{and} \quad \frac{\partial E_n}{\partial w_{kj}^{(2)}} = \delta_k^{out} z_j$$