CSE 4125: Distributed Database Systems Chapter – 6 (Part – B)

Optimization of Access Strategies.

Pre-requisites

• Knowledge of Chapter 5

Topics to be discussed -

- ☐ A model to describe query optimization.
- ☐ Convenient than operator tree.
- ☐ Include only *critical* operations (critical for data transmission).

☐ Unary operations are *not critical*.

- -Effect only by reducing operands and do not need data transmission.
- -These operations are collected by a program called *fragment* reducer.

- ☐ Binary operations are *critical*.
 - -When operands are not in the same site, they need data transmission.
 - -CP, DF and SJ are not considered as they are rare. JN and UN are kept which gives us a graph called **optimization** graph.

Example

Consider the following Global Relational Schema, query & corresponding Database Profile.

SUPPLY₁ (snum, pnum, deptnum, quan)

DEPT₁ (deptnum, name, area, mgrnum)

Q: **PJ** _{SNUM} (SUPPLY₁ **JN**_{DEPTNUM=DEPTNUM} (**SL** _{AREA = "Dhaka"} DEPT₁))

Optimization Graph (example)

Optimization Graph (example)

Fragment Reducer Program:

Before binary operation:

Reducer for SUPPLY₁: **PJ** _{SNUM, DEPTNUM}

Reducer for DEPT₁: **PJ** DEPTNUM **SL** AREA="Dhaka"

After binary operation:

Reducer for Result: **PJ** _{SNUM}

Optimization Graph (example)

Optimization Graph

DEPTNUM=DEPTNUM

SUPPLY₁

DEPT₁

** In Optimization Graph, nodes represent reduced fragments, joins are represented by edges between nodes which are labeled with the join specification.

*** Unions are represented by hypernodes enclosing their operands. [book-p.138]

Optimization Graph (Distributed)

What if SUPPLY₁ and DEPT₁ both have three horizontal fragments each?

SUPPLY₁₁ has three fragments -> SUPPLY₁₁, SUPPLY₁₂, and SUPPLY₁₃

 $DEPT_1$ has three fragments -> $DEPT_{11}$, $DEPT_{12}$, and $DEPT_{13}$

Optimization Graph (Distributed)

Optimization Graph (Distributed)

Fragment Reducer Program:

Before binary operation:

Reducer for SUPPLY₁₁: **PJ** _{SNUM, DEPTNUM}

Reducer for SUPPLY₁₂: **PJ** _{SNUM, DEPTNUM}

Reducer for SUPPLY₁₃: **PJ** _{SNUM, DEPTNUM}

Reducer for DEPT₁₁: **PJ** DEPTNUM **SL** AREA="Dhaka"

Reducer for DEPT₁₂: **PJ** DEPTNUM **SL** AREA="Dhaka"

Reducer for DEPT₁₃: **PJ** DEPTNUM **SL** AREA="Dhaka"

After binary operation:

Reducer for Result: **PJ** _{SNUM}

O SUPPLY ₁₁		O DEPT ₁₁
O SUPPLY ₁₂ O SUPPLY ₁₃	DEPTNUM=DEPTNUM	DEPT ₁₂ DEPT ₁₃

Exercise

Consider the following global relational schemata.

EMP (ID, NAME, SAL, AGE, MGRNUM, DEPTNUM)
DEPT (ID, AREA, DEPTNUM, MGRNUM)

Corresponding fragmentation schemata:

```
EMP_1 = SL_{SAL < 25K} EMP

EMP_2 = SL_{SAL > 25K} EMP

DEPT_1 = SL_{AREA = "North"} DEPT

DEPT_2 = SL_{AREA = "South"} DEPT
```

Consider the following query Q with the global relational and fragmentation schemata of question 4(b).

```
Q: PJ_{NAME} ((EMP JN_{DEPTNUM=DEPTNUM} SL_{MGRNUM=375} DEPT) DF
(SL_{SAL > 25000} EMP JN_{DEPTNUM=DEPTNUM} SL_{MGRNUM=375} DEPT))
```

Write a fragment reducer program for the query Q to optimize the corresponding operator tree. Draw the obtained optimization graph.

[3+1]