* Chinese remainder theorem

b (modn)

$$x = 1 \pmod{3}$$
 $x = 1 \pmod{3}$
 $x = 2 \pmod{5}$
 $x = 2 \pmod{5}$
 $x = 2 \pmod{5}$
 $x = 2 \pmod{5}$
 $x = 3 \pmod{7}$
 $x =$

$$39 = 6 \pmod{5}$$

 $9 = 2 \pmod{5}$
 $9 = 2 \pmod{5}$
 $9 = 2 + 5 \pmod{5}$
 $9 =$

$$|s| < = 15 \pmod{7}$$

 $|C = 3 \pmod{7}|$
 $|C = 3 \pmod{7}|$
 $|C = 3 + 7,5|$
 $|C = 7 + 15 \pmod{3 + 7,5}|$
 $|C = 7 + 15 \pmod{3 + 7,5}|$
 $|C = 52 \pmod{6.5}|$
 $|C = 52 \pmod{6.5}|$

$$(i \chi = 1 \text{ (mod3) i}) = 35$$
 $(i \chi = 1 \text{ (mod3) i}) = 35$
 $(i \chi = 2 \text{ (mod5) i}) = 21$
 $(i \chi = 2 \text{ (mod5) i}) = 35$
 $(i \chi = 3 \text{ (mod4) i}) = 35$
 $(i \chi = 3 \text{ (mod3) i}) = 35$
 $(i \chi = 3 \text{ (mod3) i}) = 35$
 $(i \chi = 3 \text{ (mod3) i}) = 35$
 $(i \chi = 3 \text{ (mod3) i}) = 35$
 $(i \chi = 3 \text{ (mod3) i}) = 35$

935 xi= 1 (mod3) $2\lambda_1 = 1 \quad (m \text{ od} 3)$ 2 X1 = 4 (mod3) $\chi_1 \equiv 2 \pmod{3}$ $(5)_2 | \chi_2 = 1 \pmod{5}$ $\chi_z = 1 \pmod{s}$ (c) 1525 = 1 (mod 7) $\chi_1 = 1 (m_0 d_7)$

$$X = (1.35.2) + (2.21.1) + (3.15.1) (modlos)$$
 $X = | 57 (modlos)$
 $X = 52 (modlos)$
 $X = 52$

(b)
$$\chi = 5 \pmod{11}$$
, $N_1 = 899$
 $\chi = 10 \pmod{29}$, $N_2 = 341$
 $\chi = 10 \pmod{29}$, $N_2 = 341$
 $\chi = 10 \pmod{29}$, $N_3 = 319$

(b) $\chi = 10 \pmod{29}$, $\chi = 10 \pmod{11}$

(c) $\chi = 10 \pmod{29}$

(d) $\chi = 10 \pmod{11}$

(e) $\chi = 10 \pmod{11}$

(f) $\chi = 10 \pmod{11}$

(g) $\chi = 10 \pmod{11}$

 $8\chi = 1 (mrd11)$ $8 \chi_1 = 56 \ (mod 11)$ 21 = 7 (mod 11) (3) $3412z = 1 \pmod{29}$ g(d(341,29),341=11.29+22= g(d(29,2-),29=22+7

790d(22)7)122=3.7+1

$$1 = 22 - 3.7$$

$$1 - 22 - 3.(79 - 22)$$

$$1 = 4.22 - 3.29$$

$$1 = 4(341 - 11.29) - 3.29$$

$$1 - (9)341 - 47.29$$

$$0x = b (modn)$$

$$9(d(a,n) = 1 1 = mn + ds)$$

$$x = b.s (modn)$$

$$\chi_{2} = 4 (mod29)$$
 $21 \chi_{2} = 1 (mod29)$
 $22 \chi_{2} = 88 (mod29)$
 $\chi_{3} = 4 (mod29)$
 $319 \chi_{3} = 1 (mod31)$

$$g(d(319131)=319=10.31+9)$$

$$=g(d(3119)=3)=3.9+4$$

$$=g(d(9)4)=9=2.4+1$$

$$1=9-2.4$$

$$1=9-2(31-3.9)$$

$$1=7-9-2.31$$

$$1=7(319-10.31)-2.31$$

$$0=23=7 (m.d.31)$$

3/9 /3 = 1 (mod 31) 9 23 = 1 (m.d31) 92/3 = 63 (mod31) 23 = 7 (mods1)

$$\chi_1 = 7$$
, $N_1 = 899$, $q_1 = 5$
 $\chi_2 = 4$, $N_2 = 34$, $q_2 = 14$, $n = 9889$
 $\chi_3 = 7$, $N_3 = 319$, $q_3 = 15$
 $\chi = (7 \cdot 5.899) + (4.341.14) + (7.15.319)$
 $(m \circ d(9889))$
 $\chi = 84056 \pmod{9889}$
 $\chi = 4944 \pmod{9889}$
 $\chi = 4944 \pmod{9889}$

X = 9.100 + 23.36.16 (mod 900) X= 14048 (mod 900) X= 548 (mod 900)

 $\chi = 3 (m-d/7)(1)$ $\chi = |c(mod/6)(2)$ $\chi = o(modls)(3)$ 2=3+17K 3+17K=10 (mod/r) 171<=7 (mod16) = 7 mod16

$$(2-7+169)$$

 $\chi = 3+17(7+169)$
 $\chi = 122+27291$
 $122+27297 = 0 \text{ (mod/s)}$
 $27297 = -122 \text{ (mod/s)}$
 $297 = 13 \text{ (mod/s)}$
 $297 = 28 \text{ (mod/s)}$

$$Q = 14 \text{ (mod 15)}$$
 $Q = 14 \text{ (mod 15)}$
 $Q = 14 + 15 \text{ S}$
 $Q =$

1 X E [1/200] $\chi = (1) (m \cdot d 9) N_1 = 143$ $\chi = (m \cdot d 11) N_2 = 117$ x = 6 (mod/3), N3=99 n=1787 1432=1 (mod9) $8\chi = 1 (modo)$ $8\chi_1 \equiv G(mod9)$ $\chi_1 \equiv g(mod9)$

$$11772 = 1 (mod 11)$$
 $7xz = 1 (mod 11)$
 $7xz = 56 (mod 11)$
 $2xz = 8 (mod 11)$
 $2xz = 8 (mod 13)$
 $3xz = 1 (mod 13)$

$$\chi = [1.143.8 + 2.117.8]$$

$$+ 6.99 - 5] (mod 1287)$$

$$\chi = 5986 (mod 1287)$$

$$\chi = 838 (mod 1287)$$

$$X = 1 \pmod{9}$$
 (T
 $X = 7 \pmod{11}$ (D
 $X = 6 \pmod{13}$ (S)
 $X = 1 + 9 \times (mod 1)$
 $1 + 9 \times (mod 1)$
 $9 \times (mod 1)$
 $9 \times (mod 1)$
 $9 \times (mod 1)$

$$Y=5+110$$

 $X=1+9(5+119)$
 $X=46+999$
 $16+999=6(mod/3)$
 $999=-40(mod/3)$
 $999=12(mod/3)$
 $89=12(mod/3)$

$$29 = 3 \pmod{3}$$

 $29 = 16 \pmod{3}$
 $9 = 8 \pmod{3}$
 $9 = 8 \pmod{3}$
 $9 = 8 + 13$
 $13 + 13$
 $13 = 8$
 $13 = 8$
 $13 = 8$
 $13 = 8$
 $13 = 8$

$$34|\chi_{2}=1 \pmod{29}$$

 $-\chi_{2}=|364(\text{mod}^{2})|$
 $2\chi_{2}=|3(\text{mod}^{2})|$
 $2\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$
 $\chi_{2}=|3(\text{mod}^{2})|$

$$\frac{341}{1+29} \chi_{2} = 1 \pmod{79}$$

$$\frac{1+29}{341} \text{ scalc } x=8 \frac{233}{341}$$

$$\frac{341}{341} + 12 \frac{849}{341}$$