

Carnegie Mellon CyLab 4616 HENRY STREET PITTSBURGH, PA 15213 PH: (412) 268-7195 FX: (412) 268-7196

www.cylab.cmu.edu

## **SCION:**

# Scalability, Control and Isolation On Next-Generation Networks

Current main team: Soo Bum Lee, Hsu-Chun Hsiao, Hyun Jin Kim, Yue-Hsun Lin, Sangjae Yoo, Adrian Perrig, Virgil Gligor

Previous members: Xin Zhang, Geoff Hasker, Haowen Chan, David Andersen



# **Fundamental (S-)BGP Limitations**

- Lack of routing isolation
  - A failure/attack can have global effects
  - Global visibility of paths is not scalable
- Source / destination lack path control
- Slow convergence / route oscillation
- Route inconsistencies
  - Forwarding state may be different from announced state
- Large routing tables
  - Multi-homing / flat namespaces prevent aggregation
- Lack of route freshness

Notethanthelessessing fundamental old (94) BGP, they cannot be easily fixed by small changes!





#### **S-BGP Limitations**

- Slow convergence
- Router outage causes high overhead
- Circular dependency between UPDATE message and connectivity with RPKI server
  - Route Origin Authentication (ROA), prefix certificate and BGPSEC router certificate needs to be downloaded to validate UPDATE message!
  - Rebooting Internet would be very slow as initial UPDATE messages cannot be validated
- Route flap dampening can be misused
  - Ensure an AS's updates are ignored
  - Prevent updates to fix a path
  - Potential to create a loop that persists



### **SCION Architectural Goals**

- High availability, even for networks with malicious parties
  - Communication should be available if attacker-free path exists
- Explicit trust for network operations
- Minimal TCB: minimize trusted entities for any operation
  - Strong isolation from untrusted parties
- Operate with mutually distrusting entities
  - No single root of trust
- Balanced route control for ISPs, receivers, senders
- No circular dependencies during setup: enable rebootability
- Simplicity, efficiency, flexibility, and scalability



#### **SCION Architecture Overview**

Trust domain (TD)s

Isolation and scalability

Enforceable accountability

- Path construction
  - Path construction beacons (PCBs)
- Path resolution
  - Control
  - Explicit trust
- Route joining (shortcuts)
  - Efficiency, flexibility





# **Trust Domain Decomposition**

- Global set of TD (Trust Domains)
  - Map to geographic, political, legal boundaries
  - Usually corresponds to a jurisdiction
  - Provide enforceable accountability
- TD Core: set of top-tier ISPs that manage TD
  - Route to other TDs
  - Initiate path construction beacons
  - Manage Address and Path Translation Servers
  - Handle TD membership
  - Root of trust for TD: manage root key and certificates
- AD: Autonomous Domain
  - Transit AD or endpoint AD



# **Part 1: Implementation**



# **SCION Components**

- Certificate Server
  - Certificate, Policy, Topology, Key management
- Beacon Server
  - Path Construction (PCB propagation, Path selection/registration (req), Path distribution)
- Path Server
  - Path registration/resolution
- Border Router
  - Opaque Field verification, packet forwarding
- Switch
  - Abstract intra-domain routing
- Gateway
  - Backward compatibility



#### **Root Of Trust File**

```
<ROT>
         <header>
                  <policyNumber> "Policy Number" </policyNumber>
                 <TDID> "Trust Domain ID" </TDID>
                  <policyThreshold> "Policy Threshold" </policyThreshold>
                 <certificateThreshold> "Certificate Threshold" </certificateThreshold>
         </header>
         <coreADs>
                  <coreAD>
                           <AID>"AID"</AID>
                          <publicKey>"Public Key"</publicKey>
                  </coreAD>
                  <coreAD>
                           <AID>"AID"</AID>
                          <publicKey>"Public Key"</publicKey>
                  </coreAD>
        </coreADs>
         <signatures>
                  <coreAD>
                           <AID>"AID"</AID>
                          <sign>"Signature"</sign>
                  </coreAD>
                  <coreAD>
                          <AID>"AID"</AID>
```

<sign>"Signature"</sign>



# **Topology File**

```
<TDID> "TD ID" </TDID>
<ADID> "AD ID" </ADID>
<Topology>
        <Servers>
                 <BeaconServer> "AID" </BeaconServer>
                 <PathServer> "AID" </PathServer>
                 <CertificateServer> "AID" </CertificateServer>
        </Servers>
        <BorderRouters>
                 <Router>
                          <AID>"AID"</AID>
                          <Interface>
                                  <IFID>"Interface ID"</IFID>
                                  <NeighborAD>"AD ID"</NeighborAD>
                                  <NeighborType>"NeighborType"</NeighborType>
                          <Interface>
                                  <IFID>"Interface ID"</IFID>
                                  <NeighborAD>"AD ID"</NeighborAD>
                                  <NeighborType>"NeighborType"</NeighborType>
                          </Router>
        </BorderRouters>
        <Gateways>
                 <Gateway>
                          <AID>"AID"</AID>
```



#### **Path Construction**

Goal: each endpoint learns multiple verifiable paths to its core

- Discovering paths via Path Construction Beacons (PCBs)
  - TD Core periodically initiates PCBs
  - ADs asynchronously propagate PCBs
- ADs perform the following operations
  - Collect PCBs
  - For each customer/peer AD, select which k PCBs to forward
  - Update cryptographic information in PCBs
- Endpoint AD receives at least k PCBs from each provider AD, selects k downpaths to advertise



## **SCION Component: Beacon Server**



Only **Opaque Field** is included in the data packet header

<sup>\*</sup> Additional Path Info: bandwidth, policy, pricing...



## **SCION Component: Cert. Server**





# **SCION Component: Path Server**





### **End-to-End Path Construction**





# **SCION Component: Border Router**





#### **SCION Packet Format (PCB)**





AD [n]

#### AD AID n

AD AID: authenticated ID of AD; e.g., ASN; if Egress IF is 0, this field indicates peer AD

Ingress IF (14bits): ingress interface id (internal use)

Egress IF (14bits): egress interface id (internal use) or egress interface id of peering link if the OF is for the peering link (for peering link, Egress IF is same as that of previous OF because they are marked by the same AD)

EXP: lifetime, current assignment: 0x00-6HR, 0x01-12HR, 0x02-18HR, 0x03-24HR

LSign: Signature length (e.g., 1024 bits, 2048 bits)

Block Size: total marking block size of AD[i], which includes all peering links

MAC: Massage Authentication Code, MAC(i) = AES-CBC-MAC, (Ingress IF | Egress IF | OF(i-1) | AIDi+1)

TD ID: Trusted Domain ID, only for Inter-TD peering link

BW Alloc: bandwidth allocation for STRIDE

Certificate ID: ID of the certificate used for signature generation; used for informing public key change to downstream ADs

Signature: RSA Signature signed by AD[i] over its marking (including chaining)

CLS: Bandwidth Class (Static, Dynamic, BE)



#### **SCION Packet Format (Data)**

|                                    |                                     |                                   |           | ı       |                 |             |           |           |  |  |
|------------------------------------|-------------------------------------|-----------------------------------|-----------|---------|-----------------|-------------|-----------|-----------|--|--|
| Common<br>Header                   | 0-7                                 | 8-15                              | 16-23     | 24-31   | 32-39           | 40-47       | 48-55     | 56-63     |  |  |
|                                    | Туре                                | HDR Len                           | Total Len |         | TS*             | Src Len     | Dst Len   | Flag      |  |  |
|                                    | Curr OF*                            | # OF                              | L4 Proto  | nRetCAP | CAP Req<br>Info | New<br>CAP* | Path Val* | Src Auth* |  |  |
|                                    | Source Address (variable size)      |                                   |           |         |                 |             |           |           |  |  |
|                                    | Destination Address (variable size) |                                   |           |         |                 |             |           |           |  |  |
| Special OF                         | Info                                |                                   | Times     | stamp   |                 | TDID        |           | reserved  |  |  |
| Regular OFs                        | Opaque Field (0)                    |                                   |           |         |                 |             |           |           |  |  |
| for <b>up-path</b><br>forwarding   |                                     |                                   |           |         |                 |             |           |           |  |  |
| Special OF                         | Info                                |                                   | Times     | stamp   | TDID            |             | reserved  |           |  |  |
| Regular OFs                        | Opaque Field (0)                    |                                   |           |         |                 |             |           |           |  |  |
| for <b>down-path</b><br>forwarding |                                     |                                   |           |         |                 |             |           |           |  |  |
| Return                             |                                     | Times                             | tamp      |         | CAP*            | Dat CAD     |           |           |  |  |
| Capabilities                       | Ret CAP                             |                                   |           |         |                 |             |           |           |  |  |
|                                    |                                     | Source Validation (variable size) |           |         |                 |             |           |           |  |  |
|                                    | Path Validation (variable size)     |                                   |           |         |                 |             |           |           |  |  |
| New                                |                                     | Times                             | tamp      |         | CAP*            | Now CAD     |           |           |  |  |
| Capabilities                       | New CAP                             |                                   |           |         |                 |             |           |           |  |  |



# **Incremental Deployment**

- Current ISP topologies consistent with SCION TDs
- Minor changes for ISPs
  - SCION edge router deployment
  - Beacon / certificate / path server deployment (inexpensive commodity hardware)
  - Regular MPLS forwarding internally
  - IP tunnels connect SCION edge routers in different ADs
- Minor changes in end-domains
  - IP routing used for basic connectivity
  - SCION gateway enables legacy end hosts to benefit from SCION network





<sup>\*</sup> Destination sets the default gateway to G4 in order to use SCION network



## **Part 2: STRIDE**



#### Wishlist for DDoS Resilience

- Multi-path routing and re-route-ability
  - SCION provides  $k^2$  end-to-end path diversity
- Real-time congestion information
  - SCION symmetric paths support the use of capabilities
  - Capabilities can carry real-time congestion information

- Precise bandwidth guarantees
  - SCION top-down topology discovery enables tree-based bandwidth allocation



#### **STRIDE**

#### Sanctuary Trail: Rescue from Internet DDoS Entrapment

- Precise Bandwidth Guarantees
  - Connection setup guarantees
  - Flow bandwidth guarantees
- Flexible Route Control
  - Inbound/outbound path control
  - Selective path disclosure; e.g., public/private paths
- Robustness and Efficiency
  - Separation of control and data plane
  - Efficient router operation; e.g., packet forwarding



# **STRIDE Bandwidth Spectrum**

- Bandwidth Classes
  - Static class
    - Long-term bandwidth guarantees
    - Connection setup in capability protocols
    - 10-15% of link bandwidth
  - Dynamic class
    - Short-term bandwidth guarantees
    - Per-flow bandwidth allocation and guarantees
    - 60% of link bandwidth
  - Best-effort class
    - No bandwidth guarantees
    - Basic class given correct SCION path
    - 25-30% of link bandwidth



#### **STRIDE**

- Bandwidth guarantees for half-paths
  - When up- and down-paths are constructed, SCION provides bandwidth guarantees for these paths
  - Use a three-way handshake approach
  - Bandwidth guaranteed half-path on Static Class
- End-to-end bandwidth guaranteed paths
  - Destinations control which paths to disclose to which sources
  - Source selects which paths to send traffic
  - Static Channel: bandwidth guaranteed end-to-end path on Static Class
- End-to-end flow bandwidth guarantees
  - STRIDE allocates bandwidth to capabilities to protect end-to-end communication
  - Dynamic Channel: bandwidth guaranteed end-to-end flow on Dynamic Class



### **Bandwidth Guarantees for Half Paths**

- Step 1: Path announcement annotated with bandwidth
  - Provider splits upstream bandwidth to customers
  - Bandwidth overbooking for maximal bandwidth utilization
  - Endpoint ADs obtain bandwidth guarantees for half paths
- Step 2: Activation and allocation
  - Endpoint ADs activate selected paths
  - Providers handle overbooking
- Step 3: Confirmation
  - Static half-path



# **Step 1: Bandwidth Allocation**

- Provider splits bandwidth along PCBs
  - Lower-bound guarantee
  - PCBs contain temporary opaque fields
    - Switched to long-term ones after activation





# Step 2: Path Activation/Bandwidth Allocation

- Increase utilization / prevent path misuse Provider ADs
  - Overbook bandwidth

Not all announced paths would be used

Increase per-path bandwidth allocation

- Prevent bandwidth overuse
  - Malicious nodes cannot use an excessive number of paths





# **Step 3: Confirmation**

- If path activation is accepted:
  - TD Core issues a confirmation message along that path
  - ADs in the path embed the long-term, activated opaque fields
- Path activation may be rejected if:
  - Endpoint AD activated more than k paths
  - All announced paths are activated at a provider AD
  - Path is not compliant with a provider
     AD's routing policies





#### **End-to-End Static Channel**

- AD to Path Resolution
  - Source nodes obtain the downpaths annotated with bandwidth guarantees
  - Source follows preferences to select down-path





#### **End-to-end Static Channel**

- Source AD combines static up-path and static down-path
  - Resulting path turns into Static Channel
- Initial packet (capability request)
  •Forwarded through a Static or Best-

#### **Effort Channel**

- •Transit ADs provide real-time bandwidth allocation to capabilities
- Transit ADs set congestion bit to capabilities
- Static or BE Ch → Dynamic Channel
- Following packets
  - Capability-carrying packets use Dynamic

#### Channel

- Capabilities are periodically renewed (i.e., short-term bandwidth guarantees)
- Transit ADs perform stateless accounting





# **End-to-end Dynamic Channel**

- End-to-end dynamic channel can be derived from:
  - Static Channel
  - Static up-path + Best-effort down-path
  - Best-effort up-path + Static down-path
  - Best-effort channel
- Private path can be used to circumvent congested paths
   Options
  - Set path disclosure policy: provide paths only to designated source nodes
  - Register encrypted paths and disclose keys to selected source nodes
  - Use unregistered Best-Effort private channel



#### **Enforcement**

- Each bandwidth class has defined bw subclasses.
  - E.g., 512kbps, 1Mbps, 2Mbps, ...
- Each capability is associated with a given subclass
- Each AD on path and receiver approve bw requested, or indicate max bw available
- Each AD uses "Elephant detector" within each bw subclass
  - Fixed state required for each Elephant detector
  - No per-flow state!
  - Blacklist with flows that overstepped their allocation determines preferential packet drop
- Per-flow state only required for flow admission, initial capability



# **Traffic Priority of Capability Requests**

- Priority of Capability Request packet on best-effort downpath
  - If static downpath available, packet arrival is guaranteed

| Priority | Up-path     | Bits set   | Notes                                                         |
|----------|-------------|------------|---------------------------------------------------------------|
| 1        | Static      | -          | Uppath used within allocated bw                               |
| 2        | Best-effort | -          | Best-effort is preferred if it is sent over uncongested links |
| 3        | Static      | Overuse    | Uppath used beyond allocated bw                               |
| 4        | Best-effort | Congestion | Experienced congestion on uppath                              |
| 5        | Outside TD  | -          | Outside TD is de-prioritized                                  |



# Part 3: SCION over XIA (XION) Future Work



#### XIA+SCION=XION

- SCION offers interdomain routing and forwarding for XIA → XION
- XION is a new principal type, which offers forwarding along a path segment in a DAG



#### **XION as Alternate Path**

If Source needs Explicit Trust on the Path (Network) to HID

**SCOPING** in XIA terminology?





### **XION** as Alternate Path





### **SCION + XIA Breakout Notes**



### **XION Principal Type:**

#### Point to SCION Header in XIA Extension Hdr





# DAGs using XION paths can match pure XIA DAG semantics, e.g.:





before AD<sub>1</sub> may.

# Complex DAGs might require multiple XION nodes



Multiple SCION headers in one packet means lots of overhead! Hopefully this is rare.



# Fill in XION Path for Fast Forwarding on Return Path





Source



Initially empty; filled in by SCION-aware routers as request packet moves toward content.



# **Summary**



## **SCION Advantages**

#### Security

- Isolation of data plane from control plane
  - Data plane still usable even if control plane disrupted
- Cryptographic validation of forwarding information
- Trust agility: local & selectable roots of trust (no global root of trust)
- Avoidance of BGP / IP attacks (blackhole, wormhole, etc.)
- No single point of failure
- Explicit trust for packet forwarding, small Trusted Computing Base (TCB)

#### Reliability

- Isolation between mutually untrusted network domains
- Multi-path forwarding, dozens of potential paths available
- ISP / sender / receiver controllable paths
- Instant convergence of routing protocol
- No route-flap dampening necessary

#### Efficiency

Scalability: routing overhead independent on # of destinations



## **SCION** Disadvantages

- New protocols, new equipment
- Packet header larger than IP
- Static path binding
  - No automated route failure recovery



# **SCION Security Benefits**

|              | S-BGP + DNSSec                                                                             | SCION                                                                      |
|--------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Isolation    | No collusion/wormhole attacks poor path freshness path replay attacks single root of trust | Yes no cross-TD attacks path freshness scalability no single root of trust |
| ТСВ          | The whole Internet                                                                         | TD Core and on-path ADs                                                    |
| Path Control | Too little (dst) or too much (src), empowering DDoS attacks                                | Balanced control enabling DDoS defenses                                    |



#### **SCION Stakeholder Pros and Cons**

- Manufacturers
  - Sale of additional equipment
  - Commoditization: routers become simple and inexpensive
- ISPs
  - New revenue streams through service differentiation
  - High-availability service offerings, powerful DDoS defenses
  - Resilient to attacks and configuration errors
  - Incremental update, only new edge routers needed, inexpensive routers
  - New equipment, new protocols
- Consumers
  - High reliability and availability
  - Differentiated services, path choice, trading off quality and price
  - Trust agility
  - Software / HW upgrade
- Government



## **SCION Summary**

- Basic architecture design for a nextgeneration network that emphasizes isolation, control and explicit trust
- Highly efficient, scalable, available architecture
- Enables numerous additional security mechanisms, e.g., network capabilities, DoS defenses

