Отчет по лабораторной 6

Архитектура вычислительных сисетем

Ким Эрика Алексеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	19

Список иллюстраций

3.1	Текст		•	•					•		•									•	•	8
3.2	проверка .																					8
3.3	исправляем																					9
3.4	проверка .																					9
3.5	файл																					10
3.6	mc																					10
3.7	текст		•						•													11
3.8	проверка .		•						•	•	•										•	11
3.9	исправляем		•						•	•	•										•	12
3.10	проверка .	•	•	•	•	•		•	•	•		•	•	•	•		•			•		12
3.11	исправляем	•	•	•	•	•		•	•	•		•	•	•	•		•			•		12
3.12	каталог	•		•		•		•		•				•		•			•	•		13
3.13	проверка .		•			•			•	•	•			•	•						•	13
3.14	текст	•	•	•	•	•		•	•	•		•	•	•	•		•			•		14
3.15	исправляем		•			•			•	•	•			•	•						•	14
3.16	исправляем		•			•			•	•	•			•	•						•	15
3.17	команда .	•	•	•	•	•		•	•	•		•	•	•	•		•			•		15
3.18	файл	•	•	•	•	•		•	•	•		•	•	•	•		•			•		15
3.19	проверка .	•		•		•		•		•				•		•			•	•		16
3.20	текст		•			•			•	•	•			•	•						•	16
3.21	ввод данных																					17

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

Написать программу вычисления выражения

■ = ■(■). Программа должна выводить выражение для вычисления, выводить запрос на ввод значения

м, вычислять заданное выражение в зависимости от введенного

м, выводить результат вычислений. Вид функции

м(■) выбрать из таблицы 6.3 вариантов заданий в соответствии с номером полученным при выполнении лабораторной работы. Создайте исполняемый файл и проверьте его работу для значений

м1 и м2 из 6.3

3 Выполнение лабораторной работы

1. Создаем каталог, переходим в него и создаем файл lab6-1.asm

[каталог] (image/рис1.png){ #fig:001 width=90% }

2. Открываем тс и проверяем

mc

3. Вставляем заданные текст

```
LbDG:rmc — Konsole

✓ Файл Правка Вид Закладки Модули Настройка Справка

[**] Новая вкладка , [**] Разделить окно , [**] Копировать [**] Вставить Q На

/ afs/, dk.scl.pfu.edu.ru/home/e/a/eakiml/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab66/lab6-1.asm

SECTION , bas
buff; rese 80

SECTION at the start obs. 4**

dustal _ start _ start _ start _ at arch _ start _
```

Рис. 3.1: Текст

4. Проверяем работает ли команда

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-1.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-1 j eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ [
```

Рис. 3.2: проверка

5. Исправляем текст

```
lab06:mc—Konsole

    Файл Правка Вид Закладки Модули Настройка Справка

    Пновая вкладка Правделить окно
    Пь Колировать Втавить Он на
    пъвът при на при
```

Рис. 3.3: исправляем

6. Проверяем

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-1.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-1 eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $
```

Рис. 3.4: проверка

7. Создаем файл lab6-2.asm

Рис. 3.5: файл

8. Открываем тс и проверяем создался ли файл

Рис. 3.6: тс

9. Вставляем текст

```
Xinclude 'in_out.asm'
Secritor .text
GLOBAN_start
_start:

mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 3.7: текст

10. Проверяем работает ли команда

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-2.asm
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-2
l06
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ |
```

Рис. 3.8: проверка

11. Исправляем текст во втором файле

```
L; новая вкладка цц газделить окно цт колировать д вставить ж наити
...k.sci.pfu.edu.ru/home/e/a/eakim1/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06/lab6-2.asm Изменён
scilon .text
clobAL _start
_start:

mov eax,6
mov ebx,4
add eax,ebx
call iprintLF

call quit
```

Рис. 3.9: исправляем

12. Проверяем команду

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-2.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-2 lo eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $
```

Рис. 3.10: проверка

13. Исправляем iprintLF на iprint

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-2.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-2 loeakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $
```

Рис. 3.11: исправляем

14. Создаем каталог lab6-3.asm

Рис. 3.12: каталог

15. Проверяем создался ли каталог в тс

Рис. 3.13: проверка

16. Вставляем текст

```
: Программа вычисления выражения
%include 'in_out.asm' ; подключение внешнего файла
 div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
 SECTION .text
GLOBAL _start
_start:
 ; ---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
 ; ---- Вывод результата на экран
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
 mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 3.14: текст

17. Проверяем команду

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-3.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-3 Peзультат: 4
Остаток от деления: 1 eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ...
```

Рис. 3.15: исправляем

18. Исправляем текст

```
Файл Правка Вид Закладки Модули Настройка Справка
🗖 Новая вкладка 🏻 🗓 Разделить окно 🔋
                                                                                                                               Копировать
Вставить
Q Найти
 /afs/.dk.sci.pfu.edu.ru/home/e/a/eakim1/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06/lab6-3.asm
  Программа вычисления выражения
%include 'in_out.asm' ; подключение внешнего файла
             'Результат: ',0
        DB 'Результат: ',0
DB 'Остаток от деления: ',0
           _start
; ---- Вычисление выражения
mov eax,4 ; EAX=5
mov ebx,6 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX*3
xor edx,edx ; обнуляем EDX для корректной ра
mov ebx,5 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
 ; ---- Вычисление выражения
 mov edi,eax ; запись результата вычисления в 'edi'
    ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
 call quit ; вызов подпрограммы завершения
```

Рис. 3.16: исправляем

19. Выводим команду

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf lab6-3.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./lab6-3 Результат: 5 Остаток от деления: 1 eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $
```

Рис. 3.17: команда

20. Создаем файл variant

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ touch variant.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ mc
```

Рис. 3.18: файл

21. Проверяем в mc создался ли файл

Рис. 3.19: проверка

22. Вводим текст

```
; Программа вычисления варианта
%include 'in_out.asm'
    ION .data
        'Введите No студенческого билета: ',0
     ов введите ...
ов ваш вариант: ',0
       .bss
       80
       _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.20: текст

23. Проверяем команду и вводим данные

```
eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ nasm -f elf variant.asm eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ld -m elf_i386 -o variant variant.o eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $ ./variant Введите No студенческого билета: 1132229054 Ваш вариант: 15 eakim1@dk8n56 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab06 $
```

Рис. 3.21: ввод данных

Вопросы

1. Какие строки листинга 7.4 отвечают за вывод на экран сообщения 'Ваш вариант:'?

Ответ: mov eax,rem call sprint

2. Для чего используется следующие инструкции? nasm mov ecx, x mov edx, 80 call sread

Ответ: nasm - переход к языку ассемблера mov есх, х - присвоение значения х переменной есх mov edx, 80 - присвоение значение 80 переменной edx call sread - для считывания в перемнную какого то числа

- 3. Для чего используется инструкция "call atoi"? Ответ: Конвертирует строку, на которую указывает параметр str, в величину типа int
- 4. Какие строки листинга 7.4 отвечают за вычисления варианта?

Ответ: xor edx,edx mov ebx,20 div ebx inc edx

5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"?

Ответ: Остаток запишется в регистр dx

6. Для чего используется инструкция "inc edx"?

Ответ: Это инкремент для прибавления единицы к переменной

7. Какие строки листинга 7.4 отвечают за вывод на экран результата вычислений?

Ответ: mov eax,rem call sprint mov eax,edx call iprintLF

4 Выводы

Освоили арифметические инструкции языка ассемблера NASM.