FdE nº 11 - Produit vectoriel

- 1. Soit
 - (a) a = (1, -1, 2), b = (1, 1, -1)
 - (b) a = (1, 0, 0), b = (0, 1, 0)
 - (c) a = (1, 1, 1), b = (0, 1, 1)

Dans chacun de ces cas:

- (i) calculer le produit vectoriel $c = a \times b$;
- (ii) calculer l'aire du parallélogramme engendré par a et b;
- (iii) trouver la matrice $L_c \in M_3(\mathbb{R})$ telle que $L_c x = c \times x$ pour tout $x \in \mathbb{R}^3$.
- 2. Soit e_1 , e_2 , e_3 la base canonique de \mathbb{R}^3 .
 - (i) Que vaut $e_1 \times e_2$, $e_2 \times e_3$, $e_3 \times e_1$?
 - (ii) Trouver les matrices L_1 , L_2 , L_3 telles que $e_1 \times a = L_1 a$, $e_2 \times a = L_2 a$, $e_3 \times a = L_3 a$ pour tout $a \in \mathbb{R}^3$. Que vaut $[L_1, L_2]$, $[L_2, L_3]$, $[L_3, L_1]$? (On rappelle que [A, B] = AB BA).
 - (iii) Soit $\phi \in \mathbb{R}$. Calculer $\exp(\phi L_1)$, $\exp(\phi L_2)$, $\exp(\phi L_3)$ et décrire leur action sur \mathbb{R}^3 .
 - (iv) Soit $n \in \mathbb{R}^3$, |n| = 1, et soit $\phi \in \mathbb{R}$. En citant le théorème du cours, calculer $\exp(\phi L_n)$ et décrire son action sur \mathbb{R}^3 .
 - (v) Trouver une matrice de rotation qui fait tourner a = (1, -1, 2) vers b = (1, 1, -1).
- 3. Soit e_1 , e_2 , e_3 la base canonique de \mathbb{R}^3 . Résoudre le système

$$\dot{y}(t) = e_1 \times y(t), \quad y(0) = e_2.$$

- 4. Soit $a, b \in \mathbb{R}^3$. Montrer que $|a \times b|^2 + |a \cdot b|^2 = |a|^2 |b|^2$.
- 5. Soit A(3,5,4), B(2,1,3), C(8,5,5) les points dans \mathbb{R}^3 . Calculer le produit vectoriel $\overrightarrow{AB} \times \overrightarrow{AC}$ et en déduire l'aire du triangle $\triangle ABC$ et la mesure de l'angle $\angle BAC$ en radians.
- 6. (i) Ecrire la matrice de rotation d'angle $\frac{3\pi}{4}$ dans le sens antihoraire dans le plan \mathbb{R}^2 .
 - (ii) Ecrire la matrice de réflection par rapport à la droite 2x + y = 0 dans \mathbb{R}^2 .
- 7. (i) Ecrire la matrice de rotation d'angle $\frac{\pi}{3}$ dans le sens horaire d'axe orienté par (1,0,0) dans \mathbb{R}^3 .
 - (ii) Ecrire la matrice de rotation d'angle $\frac{\pi}{4}$ dans le sens antihoraire d'axe orienté par (1,1,1) dans \mathbb{R}^3 .