Lecture #5 Discrete Random Variable (2)

Quiz 2.3

- Each time modem transmits one bit, the receiver analyzes whether the bit is 0 or 1.
- The transmitted bit is error with Prob = p
 - If transmission until receiving the 1st error
 - p=0.1, P[X=x]=?
 - Transmitting 100 bits, and number of error is equal to y bits
 - $p=0.01, P[Y \le 2]=?$
 - Transmission continue until find 3 errors
 - p=0.25, P[Z=12]=?

Poisson Random Variable

- · Occur randomly in a time period
- Known the average number of occurrences per unit time
- Example:
 - Arrival of packets at each station
 - Initiation of telephone calls
 - Query rate in Search Engine

3

Poisson Random Variable

Definition: X is a Poisson Random Variable if the PMF of X, $P_X(x)$, has the form:

$$P_X(x) = \begin{cases} \frac{(\lambda T)^x e^{-(\lambda T)}}{x!} & x = 0,1,2... \\ 0 & \text{Otherwise} \end{cases}$$

 λ = average arrival rate in a time interval

T= time interval

Poisson RV Example

- Call arrive at the telephone office at rate of 0.25 call per second.
- Find the PMF of the number of calls that arrive in any 20 second interval
- $\lambda T = 0.25 * 20 = 5$

$$P_{J}(j) = \begin{cases} \frac{(5)^{j}e^{-(5)}}{j!} & j = 0,1,\dots \\ 0 & \text{Otherwise} \end{cases}$$

Cumulative Distribution Function (CDF)

• Definition:

$$F_X(x) = P[X \le x]$$

- Contain complete information about the probability model of the random variable
- PMF CDF

CDF Theorem

Theorem: For a discrete random variable X

with
$$S_X = \{x_1, x_2, ...\}$$
 & $x_1 \le x_2 \le ...$

- 1) $F_x(-\infty) = 0$ and $F_x(\infty) = 1$ \rightarrow From 0 to 1
- 2) $\forall x' \ge x$, $F_x(x') \ge F_x(x)$ \rightarrow Monotonic Increasing
- 3) For $x_i \in S_x$ and $\varepsilon = +\text{small number}$ $F_x(x_i) F_x(x_i \varepsilon) = P_x(x_i) \rightarrow \text{Discontinuity} = P_x(x_i)$
- 4) $F_x(x) = F_x(x_i)$ $\forall x, x_i \le x < x_{i+1} \rightarrow \text{Horizon line}$

9

CDF Example

 For a binomial RV, # of fail programs in 5 tests with p = 0.2

$$P_{K}(k) = \begin{cases} 5 \\ k \end{cases} (0.2)^{k} (0.8)^{5-k} & k = 0, 1, 2, ..., 5 \\ 0 & \text{Otherwise} \end{cases}$$

Average

- Study RV → average
- What is the average of an RV?
 - A single number that describes the RV
 - An example of statistic
- What is Statistic?
 - Numbers that collect all information of things under our interesting
 - Averages: mean, mode, and median

Average

- Mean:
 - Sum / #terms
- Mode:
 - Most common value

$$-P_X(x_{mod}) \ge P_X(x) \quad \forall x$$

- Median:
 - The middle of the data set
 - $-P[X < x_{med}] = P[X > x_{med}]$

14

Mean → **Expected Value**

• Adding all measurements / #terms

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x)$$

Expected Value

- Experiment \rightarrow Random Variable X
- Perform n independent trials
- The value X takes on i^{th} trial $\rightarrow x(i)$

The average

$$m_n = \frac{1}{n} \sum_{i=1}^{n} x(i)$$

17

Expected Value

- Each x(i) take values in the set S_x
- Out of n trials, assume $x \in S_X$ occurs N_X times

Expected Value

$$m_n = \frac{1}{n} \sum_{i=1}^{n} x(i)$$

$$m_n = \frac{1}{n} \sum_{x \in S_x} N_x x = \sum_{x \in S_x} \frac{N_x}{n} x$$

$$P[A] = \lim_{n \to \infty} \frac{N_A}{n} \qquad \longrightarrow \qquad P_X(x) = \lim_{n \to \infty} \frac{N_X}{n}$$

$$\lim_{n\to\infty} m_n = \sum_{x\in S_x} P_X(x)$$

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

19

Expected Value

$$E[X] = \sum_{x \in S_X} x P_X(x)$$

• Example:

$$P_{T}(t) = \begin{cases} 1/4 & t = 0\\ 3/4 & t = 2\\ 0 & Otherwise \end{cases}$$

•
$$E[T] = ?$$

= $0(1/4) + 2(3/4) = 3/2$

Geometric Expected Value

$$P_X(x) = \begin{cases} p(1-p)^{x-1}, & x = 1,2,3,... \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{E[X]} = \sum_{\mathbf{x} \in \mathbf{S}_{\mathbf{X}}} \mathbf{x} \mathbf{P}_{\mathbf{X}}(\mathbf{x})$$

$$= \sum_{\mathbf{x} = 1}^{\infty} \mathbf{x} \mathbf{p} (1 - \mathbf{p})^{\mathbf{x} - 1} = \sum_{\mathbf{x} = 1}^{\infty} \mathbf{x} \mathbf{p} \mathbf{q}^{\mathbf{x} - 1}$$

$$= \mathbf{p} \left(\sum_{\mathbf{x} = 1}^{\infty} \mathbf{x} \mathbf{q}^{\mathbf{x} - 1} \right)^{\mathbf{y}} \qquad \mathbf{E[X]} = \frac{1}{\mathbf{p}}$$

23

Geometric Series

$$\begin{split} S_n &= \sum_{x=1}^n xq^{x-1} \\ S_n &= 1 + 2q + 3q^2 + 4q^3 + \ldots + nq^{n-1} \\ q \, S_n &= q + 2q^2 + 3q^3 + \ldots + (n-1)q^{n-1} + nq^n \\ (1-q) \, S_n &= 1 + q + q^2 + q^3 + \ldots + q^{n-1} - nq^n \\ q(1-q) \, S_n &= q + q^2 + q^3 + \ldots + q^{n-1} - nq^n \\ (1-q)^2 \, S_n &= 1 - (n+1)q^n + nq^{n+1} \\ S_n &= \frac{1}{(1-q)^2} - \frac{(n+1)q^n}{(1-q)^2} + \frac{nq^{n+1}}{(1-q)^2} \\ S_\infty &= \frac{1}{p^2} \end{split}$$

Geometric Expected Value

• From example:

Find the number of tests until find a fail program

- We have p = 0.2
 - \rightarrow 2/10 \rightarrow 1/5
- E[X] = 1/p = 5
- Intuitively, on average, we will find the fail program after 5 tests.

25

Poisson Expected Value

$$P_{X}(x) = \begin{cases} \frac{\alpha^{x}e^{-\alpha}}{x!}, & x = 0,1,2...\\ 0, & \text{otherwise} \end{cases}$$

$$E[X] = \sum_{x=0}^{\infty} x P_{X}(x) = \sum_{x=0}^{\infty} x \frac{\alpha^{x}}{x!} e^{-\alpha}$$

$$= \alpha \sum_{x=1}^{\infty} \frac{\alpha^{x-1}}{(x-1)!} e^{-\alpha} = \alpha \sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!} e^{-\alpha}$$

$$= \alpha e^{\alpha} e^{-\alpha} \qquad E[X] = \alpha$$

Discrete RV Summary			
Uniform Equiprobable outcomes	1/(j-k+1) 0	x = k, k+1, k+2,, j Otherwise	$E[X] = \frac{(j+k)}{2}$
Bernoulli Pass/Fail	$\begin{cases} 1-p \\ p \\ 0 \end{cases}$	x = 0 $x = 1$ $Otherwise$	E[X] = p
Geometric # tests until fail	$\begin{cases} p(1-p)^{x-1} \\ 0 \end{cases}$	$1 x = 1, 2, 3, \dots$ Otherwise	$\boxed{E[X] = 1/p}$

Binomial → **Poisson**

Theorem: Let $p = \alpha/n$ $(\alpha > 0 \text{ and } n > \alpha)$ Binomial PMF \rightarrow Poisson PMF (parameter α)

$$P_{X}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x=0,1,2,...,n \\ 0 & \text{Otherwise} \end{cases}$$

