Área personal ► Mis cursos ► InfoC++ ► Clase 7 ► Guía interactiva 7

Comenzado el	jueves, 27 de septiembre de 2018, 18:58
Estado	Finalizado
Finalizado en	jueves, 4 de octubre de 2018, 22:34
Tiempo empleado	7 días 3 horas
Calificación	20,00 de 20,00 (100 %)

Correcta

Puntúa 1,00 sobre 1,00

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
En una determinada sección de un programa un programador escribió lo siguiente,
determine cuales de las opciones son equivalentes.

```
const int N = 3;
double h[N] = {12.23,-54.2,120.2};
```

Seleccione una o más de una:

```
a. const int N = 5;
double h[N] = {12.23,-54.2,120.2};
```

```
b. const int N = 3;
double h[N] = {12.23,54.2,120.2};
```

```
const int N = 3;
double h[N];

c. h[0] = 12.23;
h[1] = -54.2;
h[2] = 120.2;
```

```
d. double h[] = {12.23,-54.2,120.2};
```

```
e. double h[3] = {12.23,-54.2,120.2};
```

```
f. double h[5] = {12.23,-54.2,120.2};
```

```
double h[3];

h[0] = 12.23;

h[1] = -54.2;

h[2] = 120.2;
```

```
Respuesta correcta
```

```
const int N = 3;

double h[N];

h[0] = 12.23;

h[1] = -54.2;

h[2] = 120.2;

double h[3] = {12.23, -54.2, 120.2};

double h[3];

h[0] = 12.23;

h[1] = -54.2;

h[2] = 120.2;
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 A un programador le dieron la siguiente consigna: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Un supermercado aplica descuentos en las compras de sus clientes según estos sean estudiantes o jubilados:

- O Los estudiantes tienen descuentos los días Lunes, Miércoles y Viernes del 10%, los jueves del 20% y el resto de los días del 5%
- Los jubilados tienen un 5% de descuentos los Lunes y Martes, 20% los Miércoles y un 8% el resto de los días

Escriba un programa que solicite 2 números enteros y un número flotante. Deberán ser interpretados como *tipo de cliente* (0 para estudiantes, 1 para jubilados, 2 para otro), *día de la semana* (0 es Lunes, 1 es Martes, ..., 6 es Domingo) y *monto de compra*. Al finalizar su programa deberá reportar el monto que debe abonar el cliente como indica el ejemplo de ejecución.

El programador escribió un código elegante usando arreglos, pero no funciona de manera correcta. Corrija la implementación.

Por ejemplo:

Input	Result			
0 0 100	Monto	a	abonar:	90.00
0 1 100	Monto	a	abonar:	95.00

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
    #include <iomanip>
2
3
    using namespace std;
4
5
    int main()
6 ▼
7
        double desc_estudiantes[] = {0.1,0.05,0.1,0.2,0.1,0.05,0.05};
8
        double desc_jubilados[] = {0.05,0.05,0.2,0.08,0.08,0.08,0.08,0.0
9
10
        int tipo cliente, dia;
        double monto;
11
12
13
        cin>>tipo_cliente>>dia>>monto;
14
15
        if (tipo_cliente==0)
            monto *= 1 - desc_estudiantes[dia];
16
17
        else if (tipo_cliente==1)
18
            monto *= 1 - desc_jubilados[dia];
```

	Input	Expected	Got	
√	0	Monto a abonar: 90.00	Monto a abonar: 90.00	√
	0			4/10/
	100			

Monto a abonar: 95.00 Monto a abona 1 100	
	ar: 142 07 /
Monto a abonar: 142.97 Monto a abona 1 150.5	ai. 142.91
Monto a abonar: 90.00 Monto a abona 2 100	ar: 90.00 🗸
Monto a abonar: 80.00 Monto a abona 2 100	ar: 80.00 🗸
Monto a abonar: 80.00 Monto a abona	ar: 80.00 🗸
Monto a abonar: 92.00 Monto a abona 100	ar: 92.00 🗸
✓ 0 Monto a abonar: 112.84 Monto a abona 4 125.38	ar: 112.84 🗸
Monto a abonar: 115.35 Monto a abona 4 125.38	ar: 115.35 🗸
Monto a abonar: 95.00 Monto a abona 5	ar: 95.00 🗸
Monto a abonar: 92.00 Monto a abona 5	ar: 92.00 🧹
✓ 0 Monto a abonar: 1945.71 Monto a abona 1 2048.12	ar: 1945.7 🧹
Monto a abonar: 1392.20 Monto a abona 6 0	ar: 1392.2
✓ 0 Monto a abonar: 117.16 Monto a abona 123.33	ar: 117.16 🗸
Monto a abonar: 23369.7 Monto a abona 2 1 71 71	ar: 23369. 4/10

Question author's solution:

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
                                          05};
                                          double desc_jubilados[] = \{0.05, 0.05, 0.2, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.
 .08,0.08};
                                          int tipo_cliente, dia;
                                          double monto;
                                          cin>>tipo_cliente>>dia>>monto;
                                          if (tipo_cliente==0)
                                                                                    monto *= 1 - desc_estudiantes[dia];
                                          else if (tipo_cliente==1)
                                                                                    monto *= 1 - desc_jubilados[dia];
                                         cout<<"Monto a abonar: "<< fixed << setprecision(2)<<mont</pre>
o<<endl;
                                          return 0;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

http://lev2.efn.uncor.edu/mod/quiz/review.php?a... Escriba un programa en C++ que solicte se ingrese por teclado un arreglo de 5 enteros

y luego por pantalla los valores del arreglo en el orden inverso al que fueron ingresados.

Por ejemplo:

Input	R	esu	lt		
1	3	-2	2	-1	1
-1					
2					
-2					
3					

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
6
         const int N=5;
7
         int arreglo[N];
8
9
         for(int i=0;i<N;i++)</pre>
10
11
             cin>>arreglo[i];
12
            for(int i=N-1;i>=0;i--)
13
14
15
                cout<<arreglo[i]<<" ";</pre>
16
17
18
```

	Input	Expected	Got	
✓	1 -1 2 -2 3	3 -2 2 -1 1	3 -2 2 -1 1	✓
✓	54 23 7 -1	-100 -1 7 23 54	-100 -1 7 23 54	✓
✓	703 6531 -123 2 2	2 2 -123 6531 703	2 2 -123 6531 703	✓

Question author's solution: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

```
#include <iostream>
using namespace std;

int main()
{
    const int N=5;
    int arreglo[N];

    for(int i=0; i<N; i++)
    {
        cout<<"Ingrese el elemento " << i << ": ";
        cin >> arreglo[i];
    }

    for(int i=N-1; i>=0; i--)
    {
        cout << arreglo[i] << " ";
    }
}</pre>
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/guiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado un valor n' entero mayor
que cero y menor o igual que 15, en el caso de que el valor ingresado sea incorrecto se
debe volver a solicitar tantas veces como sea necesario. Luego el programa debe
solicitar que se ingresen n valores enteros y guardarlos en un arreglo de tamaño 15.
Finalmente el programa debe mostrar por pantalla los valores del arreglo en el orden
inverso al que fueron ingresados.

Por ejemplo:

Result
6 -12312 21236 643

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
6
         const int N=15;
7
         int arreglo[N];
         int i, n;
8
9
10
         do
11
         {
12
            cin >> n;
13
         while(!(n>0 && n<=15)); //sale cuando es falso
14
15
16
         for(i=0;i<n;i++)</pre>
17 ▼
             cin>>arreglo[i];
18
```

Input	Expected	Got	
-1	5 4 3	5 4 3	4
0			
16			
21			
100			
-1			
0			
3			
3			
4			
5			
	-1 0 16 21 100 -1 0 3	-1 5 4 3 0 16 21 100 -1 0 3 3 3 4	-1 5 4 3 5 4 3 6 16 21 100 -1 0 3 3 3 4

	Input	Expected		het	p ://lev2.	efn.un	.cor.ec	lu/mo
✓	0	6 -12312	21236 643	6	-12312	21236	643	✓
	16 4							
	643 21236							
	-12312							
	6							
✓	5	2 2 -123	6531 703	2	2 -123	6531	703	√
	703 6531							
	-123							
	2							
	2							

Todas las pruebas superadas.

Question author's solution:

```
#include <iostream>
using namespace std;
int main()
{
    const int N=15;
    int arreglo[N];
    int n;
    do
    {
         cout << "Ingrese n: ";</pre>
         cin >> n;
    }while(n<1 || n>15);
    for(int i=0; i<n; i++)</pre>
         cout<<"Ingrese el elemento " << i << ": ";</pre>
         cin >> arreglo[i];
    }
    for(int i=n-1; i>=0; i--)
         cout << arreglo[i] << " ";</pre>
    }
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

A un programador le dieron la siguiente consigna: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Escriba un programa que solicite se ingresen caracteres hasta que se ingrese una letra minúscula o se alcance una cantidad máxima de 10 caracteres. Al finalizar su programa deberá listar los caracteres ingresados tal como se muestra en el ejemplo de ejecución.

El programador dio la implementación que aparece a continuación. Sin embargo, esta no es correcta. Corrija la implementación.

Por ejemplo:

Input	R	es	ult			
Α	Α	В				
В						
a						
А	Α	В	С	D	Е	F
В						
С						
D						
E						
F						
m						

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    #include <iomanip>
3
    using namespace std;
4
5
    int main()
6 ▼ {
7
         const int N=10;
8
         char datos[N];
9
10
         int cant = 0;
         do
11
12 v
         {
             cin>>datos[cant];
13
             cant++;
14
15
         }while((int(datos[cant-1])>=97 && int(datos[cant-1])<=122)||cant</pre>
16
17
         for(int i=0; i<cant; i++)</pre>
             if ((int(datos[i])>64 && int(datos[i])<91))</pre>
18
```

	Input	Expected	Got	
✓	Α	АВ	АВ	√
	В			
	a			

	Input	Expected	http://lev2.efn.uncor.ed	lu/mod/
1	A B C D E F	ABCDEF	ABCDEF	✓
, , , , , , , , , , , , , , , , , , ,	Q W E R T Y U O P	QWERTYUOPQ	QWERTYUOPQ	✓
	A Z z	ΑZ	ΑZ	✓
	A Z a	A Z	ΑZ	✓
] 	A B X Z	ABXZ	ABXZ	✓
√ i	a			✓
1	A B C D E F G H I	ABCDEFGHI	ABCDEFGHI	✓

Input	Expected	http://lev2.efn.uncor.ed	u/mod/quiz/review.php?a
Α	ABCDEFGH	ABCDEFGH	✓
В			
С			
D			
E			
F			
G			
н			
a			
	A B C D E F G	B C D E F G H	A A B C D E F G H B C D E F G H

Todas las pruebas superadas.

Question author's solution:

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
    const int N=10;
    char datos[N];
    int cant = 0;
    do
    {
        cin>>datos[cant];
        cant++;
    }while(cant<N && (datos[cant-1]<97 || datos[cant-1]>122));
    for(int i=0; i<cant; i++)</pre>
        if (!(datos[i]>96 && datos[i]<123))</pre>
             cout<<datos[i]<<" ";</pre>
        else
             break;
        return 0;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

A un programador le dieron la siguiente consigna: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Escriba un programa que solicite valores enteros al usuario. El programa debe permitir la carga de hasta 15 valores. La adquisición de datos finaliza ya sea por que se alcanzo la máxima cantidad de valores permitidos o el usuario ingreso 0. Al finalizar, el programa debe escribir la lista de datos ingresados o reportar que no se ingresaron datos, tal como se muestra en el ejemplo de ejecución.

El programador dio la implementación que aparece a continuación. Sin embargo, esta no es correcta. Corrija la implementación.

Por ejemplo:

Input	Result
10	Dato 0: 10
20	Dato 1: 20
0	
-10	Dato 0: -10
-20	Dato 1: -20
30	Dato 2: 30
0	
0	No se ingresaron datos

Respuesta: (penalty regime: 0 %)

```
1
    #include <iostream>
2
    #include <iomanip>
3
    using namespace std;
4
5
    int main()
6 ▼
7
         const int N = 15;
8
         int indice=0;
9
         int datos[N];
10
11
         do
12 ▼
         {
13
             cin>>datos[indice];
14
             indice++;
15
         }while( indice<15 || datos[indice-1] != 0);</pre>
16
17
         if (datos [0]== 0)
18
             cout<< "No se ingresaron datos"<<endl;</pre>
```

	Input	Expected	Got	
√	10	Dato 0: 10	Dato 0: 10	√
	20	Dato 1: 20	Dato 1: 20	
	Θ			
√	-10	Dato 0: -10	Dato 0: -10	✓
	-20	Dato 1: -20	Dato 1: -20	
	30	Dato 2: 30	Dato 2: 30	
	0			4

		T. I.	// 2 · C · · · · · · 1 / · · · 1/·	. ,
	Input	Expected http:	/ /gov 2.efn.uncor.edu/mod/qu	11z/re
√	0	No se ingresaron datos	No se ingresaron datos	√
√	1	Dato 0: 1	Dato 0: 1	4
	15	Dato 1: 15	Dato 1: 15	,
	28	Dato 2: 28	Dato 2: 28	
	-10101	Dato 3: -10101	Dato 3: -10101	
	3294	Dato 4: 3294	Dato 4: 3294	
	Θ			
√	213	Dato 0: 213	Dato 0: 213	4
	34	Dato 1: 34	Dato 1: 34	
	66	Dato 2: 66	Dato 2: 66	
	812	Dato 3: 812	Dato 3: 812	
	45	Dato 4: 45	Dato 4: 45	
	120	Dato 5: 120	Dato 5: 120	
	Θ			
\	1	Dato 0: 1	Dato 0: 1	4
	2	Dato 1: 2	Dato 1: 2	
	3	Dato 2: 3	Dato 2: 3	
	4	Dato 3: 4	Dato 3: 4	
	5	Dato 4: 5	Dato 4: 5	
	6	Dato 5: 6	Dato 5: 6	
	7	Dato 6: 7	Dato 6: 7	
	8	Dato 7: 8	Dato 7: 8	
	9	Dato 8: 9	Dato 8: 9	
	10	Dato 9: 10	Dato 9: 10	
	11	Dato 10: 11	Dato 10: 11	
	12	Dato 11: 12	Dato 11: 12	
	13	Dato 12: 13	Dato 12: 13	
	14	Dato 13: 14	Dato 13: 14	
	0			

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
    const int N = 15;
    int indice=0;
    int datos[N];
    do
    {
        cin>>datos[indice];
        indice++;
    }while( indice<15 && datos[indice-1] != 0);</pre>
    if (indice-1 == 0)
        cout<< "No se ingresaron datos"<<endl;</pre>
    else
    {
        int i=0;
        while(i<15 && datos[i]!=0)
             cout<<"Dato "<< i <<": " << datos[i]<<endl;</pre>
             i++;
        }
    }
        return 0;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Guía interagtiva 7

Correcta

Puntúa 1,00 sobre 1,00

A un programador le dieron la siguiente consigna: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Escriba un programa que solicite 10 caracteres al usuario. Al finalizar debe escribir una lista que contenga las letras vocales mayúsculas, en el orden inverso al ingresado por el usuario.

El programador dio la implementación que aparece a continuación. Sin embargo, esta no es correcta. Corrija la implementación.

Por ejemplo:

Input	Result				
Α	[Ι	Ε	Α]
В					
С					
D					
E					
F					
G					
н					
I					
J					

```
Respuesta: (penalty regime: 0 %)
```

```
#include <iostream>
    #include <iomanip>
2
3
    using namespace std;
4
5
    int main()
6 ▼
7
         const int N = 10;
8
         char datos[N];
9
         for(int i=0; i<N; i++)</pre>
10
             cin>>datos[i];
11
         cout<<"[ ";
12 ▼
13
         for(int i=N; i>=0; i--)
             if(datos[i]=='A' || datos[i]=='E' || datos[i]=='I' || datos[
14
                  cout<<datos[i]<<" ";</pre>
15
         cout<<"]"<<endl;</pre>
16
17
         return 0;
18
```

	Input	Expected	Got	
4	А	[IEA]	[IEA]	√
	В			
	С			
	D			
	E			
	F			
	G			
	Н			
	I			
	J			

In	put	Expected	Got http://lev	2.efn	uncor.edu/mod/quiz/review.p
	12 24		[UOIEA]		
✓ Q A		[UUIEA]		 	
P					
E					
R					
I					
В					
О					
V					
U					
√ Q		[]	[]		
W		L J	L J	 	
R					
T					
Υ					
Р					
s					
D					
F					
G					
/ P		[E A]	[E A]	/	
Q					
K					
Α					
E					
K					
N					
S					
С					
/ L		[0]	[0]	✓	
M					
N					
P					
Q					
R					
S					
T					
Y					
0					

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
    const int N = 10;
    char datos[N];
    for(int i=0; i<N; i++)</pre>
        cin>>datos[i];
    cout<<"[ ";
    for(int i=N-1; i>=0; i--)
        if(datos[i]=='A' || datos[i]=='E' || datos[i]=='I' || dat
os[i]=='0' || datos[i]=='U')
             cout<<datos[i]<<" ";</pre>
    cout<<"]"<<endl;</pre>
        return 0;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

19 de 61

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a... En una determinada sección de un programa un programador escribio lo siguiente.

Asumiendo que A es un arreglo de enteros de longitud N determine cuales de las opciones son correctas:

```
int prod = 1;
for(int i=0; i<N; i++)
{
    if(i%2==0)
    {
        prod *= A[i];
    }
}</pre>
```

Seleccione una o más de una:

```
a. Es equivalente a:
    int prod = 1;
    for(int i=0; i<N; i+=2)
    {
        prod *= A[i];
    }
}</pre>
```

b. Es equivalente a:

```
int prod = 1;
for(int i=N; i>0; i--)
{
    if(i%2==0)
    {
        prod *= A[i];
    }
}
```

c. Es equivalente a:

```
int prod = 1;
for(int i=N-1; i>=0; i++)
{
    if(i%2==0)
    {
        prod *= A[i];
    }
}
```

d. La sección de código calcula la productoria de los elementos de A que se encuentran en posiciones cuyos índices son pares

- e. La sección de código calcula la productoria de los elementos de A que se encuentran en posiciones cuyos índices son impares
- f. La sección de código calcula la productoria de los elementos de A que son pares
- g. Si N es 1, entonces la productoria dará como resultado 1
- h. Si N es 2, entonces la productoria será igual a A[0] 🧹

Respuesta correcta 4/10/18 22:36

```
int prod = 1;
for(int i=0; i<N; i+=2)
{
    prod *= A[i];
}

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
, La sección de código calcula la
}</pre>
```

productoria de los elementos de A que se encuentran en posiciones cuyos índices son pares, Si N es 2, entonces la productoria será igual a A[0]

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado los 15 valores de un arreglo X de tipo double. Luego calcular la sumatoria de los 15 elementos y mostrarla por pantalla.

Por ejemplo:

Input	Result
-13.611	-163.504
-20.469	
-37.472	
-29.469	
-13.257	
10.88	
29.505	
42.19	
-26.423	
10.376	
17.932	
-46.911	
-36.964	
-27.157	
-22.654	

Respuesta: (penalty regime: 0 %)

```
1
    #include <iostream>
2
    #include <cmath>
3
    using namespace std;
4
5
    int main()
6 ▼
7
         const int N=15;
8
         double X[N];
         double suma;
9
         for(int i=0;i<N;i++)</pre>
10
11
12
            cin>> X[i];
13
14
         suma=0;
15
         for(int i=0;i<N;i++)</pre>
16 ▼
17
         suma+= X[i];
18
         }
```

Input Expected Got	
--------------------	--

	Input	Expected	Got h	ttp://l
√	-13.611	-163.504	-163.504	✓
	-20.469			
	-37.472			
	-29.469			
	-13.257			
	10.88			
	29.505			
	42.19			
	-26.423			
	10.376			
	17.932			
	-46.911			
	-36.964			
	-27.157			
	-22.654			
	500 440	0.450.00	0.450.00	
~	533.118	6450.29	6450.29	~
	595.464			
	260.352			
	230.153			
	788.689			
	315.198			
	656.389			
	152.137			
	582.696			
	724.271			
	876.762			
	243.278			
	-33.035			
	463.001			
	61.818			
./	5239.049	77363.2	77363.2	./
~	5091.247	11303.2	77303.2	~
	5108.956			
	5205.611			
	5205.611			
	5057.665			
	5057.665			
	5103.051			
	5095.308			
	5218.905			
	5200.719			
	5061.425			
	5273.763			
	5068.973			
	5182.723			

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    const int N=15;
    double X[N];
    double suma;
    for(int i=0; i<N; i++)</pre>
        cout<<"Ingrese el elemento X[" << i << "]: ";</pre>
        cin >> X[i];
    }
    suma = 0;
    for(int i=0; i<N; i++)</pre>
        suma += X[i];
    cout << suma;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado los 15 valores de un

escriba un programa en C++ que solicite se ingrese por teciado los 15 valores de un arreglo X de tipo double. Luego se debe calcular y mostrar por pantalla el valor medio μ y la desviación estándar Σ de los 15 valores, se deben mostrar los dos valores separados por coma. Suponiendo que n=15 μ y Σ quedan definidos por:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\Sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}}$$

Por ejemplo:

Input	Result
-13.611	-10.9003,25.7996
-20.469	
-37.472	
-29.469	
-13.257	
10.88	
29.505	
42.19	
-26.423	
10.376	
17.932	
-46.911	
-36.964	
-27.157	
-22.654	

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    #include <cmath>
3
    using namespace std;
4
5
    int main()
6 ▼
7
         const int N=15;
8
         double X[N];
         double mu, sigma, sum2, sum; //mu=valor medio, sigma= desviacion e
9
10
         for(int i=0; i<N; i++)</pre>
11
12 •
13
            cin>> X[i];
14
         for(int i=0; i<N; i++)</pre>
15
            sum+=X[i];
16
17
            mu = (1./N)* sum;
18
         for(int i=0;i<N;i++)</pre>
```

Input	Expected	Got	
•	•		

	Input	Expected	http://lev2.efn.uncor	.edu/	mod/quiz/review.php?a
✓	-13.611 -20.469 -37.472 -29.469 -13.257 10.88 29.505 42.19 -26.423 10.376 17.932 -46.911 -36.964 -27.157 -22.654	-10.9003,25.7996	-10.9003,25.7996	✓	
✓	533.118 595.464 260.352 230.153 788.689 315.198 656.389 152.137 582.696 724.271 876.762 243.278 -33.035 463.001 61.818	430.019,267.389	430.019,267.389	✓	
✓	5239.049 5091.247 5108.956 5205.611 5226.902 5057.665 5228.867 5103.051 5095.308 5218.905 5200.719 5061.425 5273.763 5068.973 5182.723	5157.54,72.7001	5157.54,72.7001	✓	

Todas las pruebas superadas. 🗸

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    const int N=15;
    double X[N];
    double mu, sigma;
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento X[" << i << "]: ";</pre>
         cin >> X[i];
    }
    mu = 0;
    for(int i=0; i<N; i++)</pre>
        mu += X[i];
    }
    mu /= N;
    sigma = 0;
    for(int i=0; i<N; i++)</pre>
         sigma += pow(X[i] - mu, 2.0);
    sigma = sqrt(sigma/N);
    cout << mu << "," <<sigma;</pre>
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

de un arreglo llamado A y los 5 valores de un arreglo de flotantes llamado B. Luego se debe calcular la suma elemento a elemento de A con B. El resultado debe guardarse en un arreglo C y se debe mostrar por pantalla sus elementos separados por un espacio.

$$C = A + B$$

$$c_i = a_i + b_i$$

Por ejemplo:

Input	Result
1.12	7.24 2.46 6.67278 6.01 10.32
-1.21	
2.672	
-2.09	
3.123	
6.12	
3.67	
4.00078	
8.1	
7.2	

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
6
         const int N=5;
7
         float A[N],B[N],C[N];
8
9
         for(int i=0;i<5;i++)</pre>
10
            cin>> A[i];
11
         for(int i=0;i<5;i++)</pre>
12
            cin>> B[i];
13
14
         for(int i=0;i<5;i++)</pre>
15
16 ▼
             C[i]=A[i]+B[i];
17
             cout<< C[i]<< " ";
18
```

Input Expected Got

Input	Expected	http://lev	/2 gef n.uncor.edu/mod/quiz/re	view
1.12 -1.21 2.672 -2.09 3.123 6.12 3.67 4.0007 8 8.1 7.2	7.24 2.46 6.67278 0.32	6.01 1	7.24 2.46 6.67278 6.01 10.323	✓
54.54 23.243 7.1 -1.2 -100.3 336 1235.4 35 243 72.212 3 87.467 -122.7	1289.98 266.243 79 86.267 -223.034	9.3123	1289.98 266.243 79.312 3 86.267 -223.034	•
703.12 6531.6 34 -123.3 2.5 2 7.73 2.45 546 -123.2 34 4.76	710.85 6534.08 422 0.734 6.76	2.7 -12	710.85 6534.08 422.7 - 120.734 6.76	~

Todas las pruebas superadas. 🗸


```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
using namespace std;
int main()
{
    const int N=5;
    float A[N],B[N],C[N];
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento A[" << i << "]: ";</pre>
         cin >> A[i];
    }
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento B[" << i << "]: ";</pre>
         cin >> B[i];
    }
    for(int i=0; i<N; i++)</pre>
         C[i] = A[i] + B[i];
    }
    for(int i=0; i<N; i++)</pre>
         cout << C[i] << " ";
    }
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Escriba un programa en C++ que solicite se ingrese por teclado los 5 valores enteros de un arreglo llamado A. Luego se debe calcular la combinación lineal de A con el arreglo B = {1,2,3,4,5} con los coeficientes c1 = 3 y c2 = 1. El resultado debe guardarse en un arreglo C y se debe mostrar por pantalla sus elementos separados por un espacio.

$$\mathbf{C} = c1 \cdot \mathbf{A} + c2 \cdot \mathbf{B}$$

Por ejemplo:

Input	Result							
1	4	-1	9	-2	14			
-1								
2								
-2								
3								

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
6
         const int N=5;
7
         int A[N],B[N]=\{1,2,3,4,5\},C[N];
8
         int c1 = 3, c2 = 1;
9
10
         for(int i=0;i<5;i++)</pre>
            cin>> A[i];
11
12
13
         for(int i=0;i<5;i++)</pre>
14 v
15
            C[i]=c1*A[i]+c2*B[i];
            cout<< C[i]<< " ";
16
17
18
         return 0;
```

	Input	Expected	Got	
✓	1 -1 2 -2 3	4 -1 9 -2 14	4 -1 9 -2 14	✓
✓	54 23 7 -1	163 71 24 1 -295	163 71 24 1 -295	✓

	Input	Expe	cted			h	tt Göt le	ev2.efn.	uncor	:edı	ı/mo	d/qu
~	703	2110	19595	-366	10	11	2110	19595	-366	10	11	4
	6531											
	-123											
	2											
	2											

Todas las pruebas superadas. 🗸

Question author's solution:

```
#include <iostream>
using namespace std;
int main()
    const int N=5;
    int A[N], B[N] = \{1, 2, 3, 4, 5\}, C[N];
    int c1 = 3, c2 = 1;
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento " << i << ": ";</pre>
         cin >> A[i];
    }
    for(int i=0; i<N; i++)</pre>
         C[i] = c1 * A[i] + c2 * B[i];
    }
    for(int i=0; i<N; i++)</pre>
         cout << C[i] << " ";
    }
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

A un programador le solicitaron que escriba un programa que solicite 10 números reales

que deberán ser interpretados como dos vectores de R⁵ y que calcule y reporte la distancia que existe entre ambos.

El programador dio la implementación que aparece a continuación. Sin embargo, esta no es correcta. Corrija la implementación.

Asumir que la distancia es la distancia euclideana, definida para dos vectores $P=(p_1,p_2,\ldots,p_n)$ y $Q=(q_1,q_2,\ldots,q_n)$ en \mathbb{R}^n como:

$$d_E(P,Q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

Por ejemplo:

Input	Result
1 2 3	La distancia entre (1,2,3,4,5) y (-1,-2,-3,-4,-5) es 14.83
4 5	
-1 -2	
-3 -4 -5	
1 2 3 4 5 1 2 3	La distancia entre (1,2,3,4,5) y (1,2,3,4,5) es 0.00
5	

```
Respuesta: (penalty regime: 0 %)
```

```
#include <iostream>
2
    #include <iomanip>
    #include <cmath>
3
4
    using namespace std;
5
6
    int main()
7 ▼
         double v1[5], v2[5];
8
9
         double dist = 0;
10
11
         //ingreso v1
12
         for(int i=0; i<5; i++)
13
             cin>>v1[i];
14
         //ingreso v2
15
         for(int i=0; i<5; i++)
16
             cin>>v2[i];
                                                                       4/10/18 22:36
17
         //calculo distancia
         for(int i=0; i<5; i++)</pre>
18
```

	Input	Expected	Got	
✓	1 2 3 4 5 -1 -2 -3 -4	La distancia entre (1,2,3,4,5) y (-1,-2,-3,-4,-5) es 14.83		√
✓	1 2 3 4 5 1 2 3 4 5	La distancia entre (1,2,3,4,5) y (1,2,3,4,5) es 0.00	La distancia entre (1,2,3,4,5) y (1,2,3,4,5) e s 0.00	√
√	2.5 3.4 2.8 12.6 5 23.5 -1.5 -100 2.2 25.6 24.3 11.2	La distancia entre (2.5,3.4,2.8,12.65,23.5) y (-1.5,-1002.2,25.6,24.3,11.24) es 1006.01	,3.4,2.8,12.65,23.5) y	✓
✓	2 4 6 8 10 1 1 1 1	La distancia entre (2,4,6,8,10) y (1,1,1,1,1) es 12.85		✓

	Input	Expected http://lev	/2gof n.uncor.edu/mod/quiz/rev	riew.php
√	2.5	La distancia entre (2.5,4.3	La distancia entre (2.5	√
Ì	4.3	,2.8,100.2,105.34) y (-1.4,	,4.3,2.8,100.2,105.34)	
	2.8	-234,-3.45,-5,-8.77) es 284	y (-1.4,-234,-3.45,-5,-	
	100.	. 48	8.77) es 284.48	
	2			
	105.			
	34			
	-1.4			
	-234			
	-3.4			
	5			
	-5			
	-8.7			
	7			

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
        double v1[5], v2[5];
        double dist = 0;
        //ingreso v1
        for(int i=0; i<5; i++)
            cin>>v1[i];
  //ingreso v2
  for(int i=0; i<5; i++)
    cin>>v2[i];
        //calculo distancia
        for(int i=0; i<5; i++)
            dist += pow(v1[i]-v2[i], 2);
        //Imprimo mensaje de resultado
  cout<<"La distancia entre (";</pre>
        for(int i=0; i<4; i++)
            cout<<v1[i]<<",";
  cout<<v1[4]<<") y (";
        for(int i=0; i<4; i++)
            cout<<v2[i]<<",";
        cout << v2[4] << ") es " << fixed << setprecision(2) << sq
rt(dist)<<endl;
        return 0;
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado los 5 valores enteros de un arreglo llamado A y los 5 valores enteros de un arreglo llamado B. Luego se debe calcular y mostrar por pantalla la cantidad de elementos iguales (mismo valor y misma

Por ejemplo:

posición).

Input	Result
1	1
2	
3	
4	
5	
2	
3	
4	
4	
6	

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
         const int N=5;
6
7
         float A[N],B[N];
         int cant;
8
9
         cant=0;
10
11
             for(int i=0;i<5;i++)</pre>
12 1
                 cin>> A[i];
13
14
15
                 for(int i= 0;i<5;i++)</pre>
16 v
                    cin>> B[i];
17
                    if(A[i]==B[i])
18
```

1	1	1	√
2			,
3			
4			
5			
2			
3			
4			
4			
6			
	3 4 5 2 3 4 4	3 4 5 2 3 4 4	3 4 5 2 3 4 4

	Input	Expected	Got	
✓	100	2	2	~
	2			
	5			
	7			
	1			
	-12			
	2			
	5			
	54			
	12			
/	-1	3	3	/
·	2			,
	-3			
	4			
	-5			
	1			
	-2			
	-3			
	4			
	-5			

http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
using namespace std;
int main()
{
    const int N=5;
    float A[N], B[N];
    int cant;
    for(int i=0; i<N; i++)</pre>
         cin >> A[i];
    }
    for(int i=0; i<N; i++)</pre>
         cin >> B[i];
    }
    cant =0;
    for(int i=0; i<N; i++)</pre>
             if(A[i] == B[i])
             {
                  cant++;
             }
    }
    cout << cant;
```

Correcta

}

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Asumiendo que A es un arreglo de enteros de longitud N determine cuales de las opciones son correctas:

```
bool hay_negativos = false;
for(int i=0; i<N; i++)
{
    if(A[i] < 0)
      {
        hay_negativos = true;
    }
}
if(hay_negativos)
    cout << "Hay negativos"</pre>
```

Seleccione una o más de una:

```
a. Es equivalente a:
bool hay_negativos = false;
for(int i=0; i<N; i++)
{
    if( i < 0)
        {
        hay_negativos = true;
    }
}
if(hay_negativos)
    cout << "Hay negativos"</pre>
```

b. Es equivalente a:

```
bool hay_negativos = false;
for(int i=0; i<N; i++)
{
    if(A[i] < 0)
    {
       hay_negativos = true;
       break;
    }
}
if(hay_negativos)
    cout << "Hay negativos"</pre>
```

c. Es equivalente a:

```
bool hay_negativos = false;
for(int i=0; i<N; i++)
{
    if(A[i] <= 0)
    {
        hay_negativos = true;
        break;
    }
}
if(hay_negativos)
    cout << "Hay negativos"</pre>
```

d. Es equivalente a:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
int cant = 0;
for(int i=0; i<N; i++)</pre>
    if(A[i] < 0)
         cant++;
if(cant>0)
    cout << "Hay negativos"
e. Es equivalente a:
int cant=0;
for(int i=0; i<N; i++)</pre>
    if(A[i] >= 0)
         cant++;
    }
if(cant==N)
    cout << "Hay negativos"
f. La sección encuentra si existen números negativos en el arreglo A. 🗸
g. Si N es 0 entonces se mostrará el mensaje "Hay negativos"
h. Es suficiente que exista un número negativo para que se muestre el mensaje.
```

Respuesta correcta

Las respuestas correctas son: Es equivalente a:

```
bool hay_negativos = false;
for(int i=0; i<N; i++)
{
    if(A[i] < 0)
    {
        hay_negativos = true;
        break;
    }
}
if(hay_negativos)
    cout << "Hay negativos"

int cant = 0;
for(int i=0; i<N; i++)
{
    if(A[i] < 0)
    {
        cant++;
    }
}
if(cant>0)
    cout << "Hay negativos"</pre>
, La sección encuentra si existen números
}
```

negativos en el arreglo A., Es suficiente que exista un número negativo para que se muestre el mensaje.

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

http://lev2.efn.uncor.edu/mod/quiz/review.php?a... Escriba un programa en C++ que solicite se ingrese por teclado los 15 valores de un arreglo X de tipo double. Luego se debe encontrar y mostrar el mínimo valor del arreglo.

Por ejemplo:

Input	Result
-13.611	-46.911
-20.469	
-37.472	
-29.469	
-13.257	
10.88	
29.505	
42.19	
-26.423	
10.376	
17.932	
-46.911	
-36.964	
-27.157	
-22.654	

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼ {
         const int N=15;
6
7
         double X[N];
         double min;
8
9
         cin>>X[0];
10
11
         min=X[0];
         for(int i=1; i<15; i++)
12
13 ▼
             cin>> X[i];
14
             if(X[i]<=min)</pre>
15
16 v
               min= X[i];
17
18
```

Input	Expected	Got	
-------	----------	-----	--

	Input	Expected	Got	http:
✓	-13.611	-46.911	-46.911	~
	-20.469			
	-37.472			
	-29.469			
	-13.257			
	10.88			
	29.505			
	42.19			
	-26.423			
	10.376			
	17.932			
	-46.911			
	-36.964			
	-27.157			
	-22.654			
~	533.118	-33.035	-33.035	
	595.464			
	260.352			
	230.153			
	788.689			
	315.198			
	656.389			
	152.137			
	582.696			
	724.271			
	876.762			
	243.278			
	-33.035			
	463.001			
	61.818			
√	5239.049	5057.66	5057.66	1
	5091.247			
	5108.956			
	5205.611			
	5226.902			
	5057.665			
	5228.867			
	5103.051			
	5095.308			
	5218.905			
	5200.719			
	5061.425			
	5273.763			
	5068.973			
	5000.973			

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
using namespace std;
int main()
{
    const int N=15;
    double X[N];
    double min;
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento X[" << i << "]: ";</pre>
         cin >> X[i];
    }
    min = X[0];
    for(int i=0; i<N; i++)</pre>
         if(X[i]<min)</pre>
             min = X[i];
         }
    }
    cout << min;</pre>
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado los 15 valores de un
arreglo X de tipo double. Luego se debe encontrar y mostrar el máximo valor del
arreglo.

Por ejemplo:

Input	Result
-13.611	42.19
-20.469	
-37.472	
-29.469	
-13.257	
10.88	
29.505	
42.19	
-26.423	
10.376	
17.932	
-46.911	
-36.964	
-27.157	
-22.654	

Respuesta: (penalty regime: 0 %)

```
#include <iostream>
1
2
    using namespace std;
3
4
    int main()
5 ▼
        const int N=15;
6
7
        double X[N];
8
         double max;
9
         cin>>X[0];
10
        max=X[0];
11
         for(int i=1; i<15; i++)
12
13 v
             cin>> X[i];
14
15
             if(X[i]>=max)
16 ▼
17
               max= X[i];
18
```

Input Expected Got	
--------------------	--

	Input	Expected	Got	http:/
√	-13.611	42.19	42.19	4
	-20.469			
	-37.472			
	-29.469			
	-13.257			
	10.88			
	29.505			
	42.19			
	-26.423			
	10.376			
	17.932			
	-46.911			
	-36.964			
	-27.157			
	-22.654			
√	533.118	876.762	876.762	4
	595.464			
	260.352			
	230.153			
	788.689			
	315.198			
	656.389			
	152.137			
	582.696			
	724.271			
	876.762			
	243.278			
	-33.035			
	463.001			
	61.818			
		F272 76	5273.76	
~	5239.049 5091.247	5273.76	3213.10	~
	5108.956			
	5205.611			
	5226.902 5057.665			
	5228.867			
	5103.051			
	5095.308			
	5218.905			
	5200.719			
	5061.425			
	5273.763			
	5068.973			
	5182.723			

Todas las pruebas superadas. 🗸

Question author's solution:

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
using namespace std;
int main()
{
    const int N=15;
    double X[N];
    double max;
    for(int i=0; i<N; i++)</pre>
         cout<<"Ingrese el elemento X[" << i << "]: ";</pre>
         cin >> X[i];
    }
    max = X[0];
    for(int i=0; i<N; i++)</pre>
         if(X[i]>max)
             max = X[i];
         }
    }
    cout << max;</pre>
}
```

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
Escriba un programa en C++ que solicite se ingrese por teclado los 15 valores de un

arreglo X de tipo double. Luego se debe normalizar cada valor para que pertenezca al rango (0,1).

La normalización de cada valor X[i] se puede calcular como (X[i]-min)/(max-min)

Por ejemplo:

Input	Result
-13.6	0.373733 0.296764 0.105936 0.195755 0.377706 0.648601 0.857
11	633 1 0.229941 0.642945 0.727747 0 0.111637 0.221703 0.2722
-20.4	42
69	
-37.4	
72	
-29.4	
69	
-13.2	
57	
10.88	
29.50	
5	
42.19	
-26.4	
23	
10.37	
6	
17.93	
2	
-46.9	
11	
-36.9	
64	
-27.1	
57	
-22.6	
54	

```
Respuesta: (penalty regime: 0 %)
```

```
#include <iostream>
    #include <cmath>
2
3
    using namespace std;
4
5
    int main()
6 ▼
7
        const int N=15;
8
        double X[N];
9
        double suma, min, max;
10
11
        cin>>X[0];
        max=X[0];
12
        min=X[0];
13
        for(int i=1; i<15; i++)
14
                                                                      4/10/18 22:36
15 ▼
            cin>> X[i];
16
```

	Input	Expected	Got	
✓	-13.	0.373733 0.296764 0.105936	0.373733 0.296764 0.105	✓
	611	0.195755 0.377706 0.648601	936 0.195755 0.377706 0	
	-20.	0.857633 1 0.229941 0.64294	.648601 0.857633 1 0.22	
	469	5 0.727747 0 0.111637 0.221	9941 0.642945 0.727747	
	-37.	703 0.272242	0 0.111637 0.221703 0.2	
	472		72242	
	-29.			
	469			
	-13.			
	257			
	10.8			
	8			
	29.5			
	05			
	42.1			
	9			
	-26.			
	423			
	10.3			
	76			
	17.9			
	32			
	-46.			
	911			
	-36.			
	964			
	-27.			
	157			
	-22.			
	654			

	Input	Expected http://lev	2 Go n.uncor.edu/mod/quiz/rev	iew	.php?a.
✓	533. 118 595. 464 260. 352 230. 153 788. 689 315. 198 656. 389 152. 137 582. 696 724.	Expected 0.622285 0.690812 0.322475 0.289282 0.903195 0.382759 0.757778 0.203531 0.676778 0.83239 1 0.303708 0 0.5452 16 0.104257	2ch .uncor.edu/mod/quiz/rev 0.622285 0.690812 0.322 475 0.289282 0.903195 0 .382759 0.757778 0.2035 31 0.676778 0.83239 1 0 .303708 0 0.545216 0.10 4257	riew •	.php?a.
	724. 271 876. 762 243. 278 -33. 035 463. 001 61.8 18				

49 de 61 4/10/18 22:<mark>3</mark>6

	Input	Expected http://lev	2 con .uncor.edu/mod/quiz/rev	iew.ŗ	ohp?a
√	5239	0.83936 0.155402 0.237351 0	0.83936 0.155402 0.2373	✓	
	.049	.684625 0.783149 0 0.792242	51 0.684625 0.783149 0		
	5091	0.210025 0.174194 0.746143	0.792242 0.210025 0.174		
	.247	0.661987 0.0173995 1 0.0523	194 0.746143 0.661987 0		
	5108	281 0.57871	.0173995 1 0.0523281 0.		
	.956		57871		
	5205				
	.611				
	5226				
	.902				
	5057				
	.665				
	5228				
	.867				
	5103				
	.051				
	5095				
	.308				
	5218				
	.905				
	5200				
	.719				
	5061				
	.425				
	5273				
	.763				
	5068				
	.973				
	5182				
	.723				

Todas las pruebas superadas. 🗸


```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    const int N=15;
    double X[N];
    double min, max;
    for(int i=0; i<N; i++)</pre>
        cout<<"Ingrese el elemento X[" << i << "]: ";</pre>
        cin >> X[i];
    }
    min = max = X[0];
    for(int i=0; i<N; i++)</pre>
    {
        if(X[i]<min)</pre>
         {
             min = X[i];
        if(X[i]>max)
             max = X[i];
        }
    }
    for(int i=0; i<N; i++)</pre>
    {
        X[i] = (X[i]-min)/(max-min);
    }
    for(int i=0; i<N; i++)</pre>
    {
        cout << X[i] << " ";
    }
```

Correcta

}

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00

A un programador le dieron la siguiente consigna: http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

Escriba un programa que solicite 10 números enteros en el rango [1,10]. Al finalizar debe escribir:

- "La colección tiene una única moda", si la colección ingresada tiene una único valor que se repite mas veces que el resto de los valores ingresados
- "La colección es polimodal", si la colección tiene 2 o mas valores que se repiten el número máximo de veces (considerando únicamente los valores ingresados)
- "La colección es amodal", si todos los valores ingresados tienen la misma frecuencia

El programador dio la implementación que aparece a continuación. El esquema de la solución propuesta es correcto, pero contiene algunos errores. Corrija la implementación

Por ejemplo:

Input	Result
1	La coleccion es modal
2	
3	
1	
2	
3	
1	
1	
1	
2	
5	La coleccion es polimodal
5	
5	
4	
4	
4	
2	
1	
9	
8	
4	La coleccion es amodal
4	
4	
4	
4	
9	
9	
9	
9	
9	

- #include <iostream>
- 2 #include <cmath>
- 3 using namespace std;

|--|

	Input	Expected	Got	
√	1	La coleccion es amodal	La coleccion es amodal	√
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
	10			
✓	1	La coleccion es modal	La coleccion es modal	√
	2			
	3			
	1			
	2			
	3			
	1			
	1			
	1			
	2			
✓	5	La coleccion es polimoda	La coleccion es polimoda	√
	5	1	1	,
	5			
	4			
	4			
	4			
	2			
	1			
	9			
	8			

53 de 61 4/10/18 22:<mark>3</mark>6

	Input	Expected	http:/	/l ex d.efn.uncor.edu/mod/quiz/r	eviev
✓	2 4 6 8 10 1 1 1	La coleccion	es modal	La coleccion es modal	~
✓	4 4 4 4 9 9 9 9	La coleccion	es amodal	La coleccion es amodal	✓
✓	6 2 5 5 10 8 5 10 3 6	La coleccion	es modal	La coleccion es modal	✓
✓	10 5 10 9 1 9 8 6 5	La coleccion	es polimoda	La coleccion es polimoda l	✓

	Input	Expected	http:/	/l eo₁ .efn.uncor.	edu/mod/quiz/r	eviev
√	10	La coleccion	es modal	La coleccion	es modal	4
	5					
	5					
	7					
	8					
	4					
	5					
	7					
	2					
	5					
√	1	La coleccion	es amodal	La coleccion	es amodal	4
	1					
	2					
	2					
	3					
	3					
	4					
	4					
	5					
	5					

Todas las pruebas superadas. 🗸

Question author's solution:

#include <iostream> #include <cmath> using namespace std;

*/

{

}

n numero

de veces

valor/valores

ocurre.

for(int i=0; i<10; i++) coleccion[i] = 0;

while(cant<10)

{

cant++; }

cin>>num;

int cant=0, num;

int main()

/*

{

```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
En coleccion[i] voy a contar
la cantidad de veces que el usuario
ingrese el numero i-1
double colection[10];
//Inicializo coleccion con todas sus posiciones en 0
//Solicito los valores al usuario
    if (num>0 && num<=10)
                //Tomo nota que el usuario ingreso num
        coleccion[num-1]++;
//Calculo cual es la cantidad maxima de repeticiones de u
int max = coleccion[0];
for(int i=1; i<10; i++)
         if (coleccion[i]>max)
                        max=coleccion[i];
//Cuento cuantos numeros se repitieron la cantidad maxima
```

```
int num_{modas} = 0;
for(int i=0; i<10; i++)
        if (colection[i]==max)
                num_modas++;
//Informo el resultado
if (num\_modas * max == 10)
        /*
```

Para que exista moda/s debe/n existir un

que se repita/n mas veces que el resto.

Esta condicion es verdadera cuando eso₄/10/18 22:36

Correcta

Puntos para este envío: 1,00/1,00.

Correcta

Puntúa 1,00 sobre 1,00 http://lev2.efn.uncor.edu/mod/quiz/review.php?a...

de un arreglo. Se debe garantizar que el arreglo no tenga valores repetidos, por lo tanto si se ingresa un valor que ya fue ingresado previamente se debe solicitar nuevamente hasta que se ingrese un valor nuevo.

Por ejemplo:

Input	R	esu	lt							
0	0	16	7	23	5	87	2	4	643	21236
16										
16										
16										
16										
16										
16										
16										
7										
23										
5										
87										
2										
4										
643										
2										
2										
2										
2										
21236										

Respuesta: (penalty regime: 0 %)

```
1
    #include <iostream>
2
    using namespace std;
3
4
    int main()
5 ▼
         const int N=10;
6
7
         int arreglo[N];
8
         int i, j;
9
         i=0;
         while(i<10)
10
11
            cin>>arreglo[i];
12
13
            j=0;
            for(int n=0;n<i;n++)</pre>
14
15
               if(arreglo[i]==arreglo[n])
16
17
                  j++;
18
               }
```

Input Expected Got

			http://	ക്രൂfefn.uncor.edu/mod/quiz/reviev
	Input	Expected	11ttp://	eg6tem.uncor.edu/mod/quiz/reviev
√	-1	-1 0 16 21 100	3 4 5 64	-1 0 16 21 100 3 4 5 64
	Θ	1		1
	16			
	21			
	100			
	-1			
	0			
	3			
	3 4			
	5			
	5			
	64			
	1			
	0	0 16 7 23 5 87	2 4 642 2	0 16 7 23 5 87 2 4 643 2
~	16	1236	2 4 U43 Z	0 16 7 23 5 87 2 4 643 2 1236
	16	1230		1230
	16			
	16			
	16			
	16			
	16			
	7			
	23			
	5			
	87			
	2			
	4			
	643			
	2			
	2			
	2			
	2			
	2123			
	6			

59 de 61 4/10/18 22:<mark>3</mark>6

	Input	E	хр	ес	tec	b						http:	//lq	Ğ	te	fn.	.u	nc	or.	ed	u/ı	mc	d/q	uiz/r	eviev
<u> </u>	1	1	2	3	4	5	6	7	8	9	10			1 2	2	3	4	5	6	7	8	9	10		4
	1																								
	1																								
	2																								
	2																								
	2																								
	2																								
	2																								
	2																								
	3																								
	3																								
	3																								
	3																								
	3																								
	3																								
	3																								
	4																								
	4																								
	5																								
	6																								
	6																								
	6																								
	6																								
	6																								
	7																								
	7																								
	7																								
	8																								
	8																								
	9																								
	9																								
	9																								
	10																								

Todas las pruebas superadas. 🗸


```
http://lev2.efn.uncor.edu/mod/quiz/review.php?a...
#include <iostream>
using namespace std;
int main()
{
     const int N=10;
     int A[N];
     for(int i=0; i<N; i++)</pre>
     {
         bool es_nuevo;
          do{
              cout << "Ingrese A["<<i<<"]: ";</pre>
              cin>>A[i];
              es_nuevo=true;
              for(int j=0; j<i; j++)</pre>
                   if(A[i] == A[j])
                   {
                       es_nuevo = false;
                       break;
                   }
          }while(!es_nuevo);
     }
     for(int i=0; i<N; i++)</pre>
         cout << A[i] << " ";
     }
}
Correcta
```

Puntos para este envío: 1,00/1,00.

■ Recursos adicionales clase 6

Ir a...

Guía de Ejercicios 7 ▶