Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Tuesday 7 May 2	2019
Afternoon (Time: 1 hour 20 minutes)	Paper Reference WCH13/01
Chemistry International Advanced Sub Unit 3: Practical Skills in Che	•
Candidates must have: Scientific calc Ruler	ulator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back page of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

1 The use of ammonium carbonate in smelling salts is due to the formation of ammonia which counters the effects that cause fainting.

When ammonium carbonate is heated gently, it decomposes to form ammonia, water and carbon dioxide.

(a) Write the equation for the decomposition of ammonium carbonate. State symbols are not required.

(1)

(b) Complete the table, giving a **chemical** test, not involving indicators, and its result for each of the products of the decomposition of ammonium carbonate.

(6)

Product	Chemical test	Result of test
ammonia		
water		
carbon dioxide		

(c) Complete the diagram to show how you would collect the carbon dioxide obtained by heating ammonium carbonate, using another test tube as the **only** additional apparatus.

(1)

(d) A sample of ammonium carbonate was dissolved in distilled water and the solution tested.

Complete the table to give the expected observations and the identity of the observed products.

	Test	Observation	Observed product	
(i)	About 1 cm ³ of barium chloride solution was added to 5 cm ³ of the			
	ammonium carbonate solution			(2
(ii)	About 5 cm ³ of hydrochloric acid was			
	added to the mixture from (i)			(2
				(-

(Total for Question 1 = 12 marks)

- **2** A group of students was asked to investigate a liquid organic compound **A**. They were told that it was an alcohol with molecular formula $C_4H_{10}O$.
 - (a) A chemical test may be used to confirm the presence of the hydroxyl group in **A**. Identify a suitable reagent for this test, giving the positive result.

(2)

(b) The students suggested that oxidation of **A** would help to identify it. The sets of apparatus shown below were provided for the students' use.

(i) Identify the reagent mixture that can be used to oxidise ${\bf A}$.

(1)

Identify which apparatus Justify your answer.	(1, 2 or 3) should be used for	this oxidation.	
			(2)
	ised to confirm the presence o		(2)
	ositive result for the test in (b) d allow the alcohol A to be ide		
			(1)
(v) Another student said tha oxidising it to the corresp	t if A was a secondary alcohol oonding ketone.	this could be shown by	
Identify which apparatus Justify your answer.	(1, 2 or 3) should be used for	this oxidation.	(2)

(c) In a further experiment, the students passed the vapour of **A** over heated aluminium oxide to form an alkene.

The apparatus used is shown.

(i)	Give two	reasons	for the	use o	of the	mineral	WOO	ɔ١
(1)	CIVC CVVC	1 Cu3O113	TOT LITE	usc c	JI 1111C	minician	VV	\sim

(2)

(ii)	Explain why it is necessary to remove the delivery tube from the heated tube
	immediately when heating stops.

(2)

	e alkene formed in (c) was reacted with a small amount of bromine giving a mpound with molecular formula $C_4H_8Br_2$.	
(i)	State the colour change when the alkene reacts with bromine.	(1)
(ii)	The mass spectrum of $C_4H_8Br_2$ had a pair of peaks at $m/z=107$ and $m/z=109$ and also peaks at $m/z=79$ and $m/z=81$ due to the isotopes of bromine.	
	One student suggested that these peaks showed that alcohol A must be butan-2-ol.	
	Explain how these peaks support the student's suggestion.	(3)
	(Total for Question 2 = 18 mar	rks)

BLANK PAGE

3 A group of students carried out a thermochemistry experiment to determine the relative atomic mass of a metal, **M**.

Procedure

- Step **1** Transfer 50.0 cm³ of a 1.35 mol dm⁻³ solution of copper(II) sulfate to an expanded polystyrene cup placed in a glass beaker.
- Step 2 Weigh out, as accurately as possible, a known mass of the finely powdered metal **M**.
- Step 3 Measure the temperature of the copper(II) sulfate solution.
- Step **4** Quickly add all of the powdered metal, stir the mixture continuously and note the highest temperature reached.

- (a) Each student carried out the experiment using a different mass of the metal.
 - (i) Give a reason, other than preventing heat loss, for placing the polystyrene cup in a glass beaker.

(ii) Name the piece of apparatus suitable for measuring 50.0 cm³ of copper(II) sulfate solution.

(1)

(1)

(iii) Powdered metal reacts much faster than filings or granules.

Suggest why this is important in this experiment.

(1)

(b) The students' results were collected in a table.

Mass of metal / g	Initial temperature / °C	Final temperature / °C	Temperature change / °C
0.50	20.0	27.0	7.0
1.10	20.0	34.0	14.0
2.00	21.0	58.0	37.0
3.10	20.0	58.5	38.5
3.80	20.5	70.5	50.0
5.10	19.0	74.5	55.5
6.00	20.0	74.0	54.0
7.00	21.0	76.0	55.0
8.30	20.0	75.0	55.0

(i) Plot a labelled graph of mass of metal on the horizontal axis against temperature change on the vertical axis.

(3)

(ii) Determine the mass of metal **M** that reacts exactly with 50.0 cm³ of 1.35 mol dm⁻³ copper(II) sulfate by drawing appropriate best-fit straight lines. You **must** show your working on the graph.

(2)

Mass of metal **M**

(iii) The equation for the reaction of **M** with copper(II) sulfate is

$$M(s) + CuSO_4(aq) \rightarrow MSO_4(aq) + Cu(s)$$

Use the equation and your answer to (b)(ii) to calculate the relative atomic mass of **M**.

Give your answer to an appropriate number of significant figures.

(3)

(iv) One mass of ${\bf M}$ in the experiment gave an anomalous data point. Suggest a reason, other than measurement error, for this anomaly.

(1)

(Total for Question 3 = 12 marks)

BLANK PAGE

4 Solid sodium hydroxide absorbs water from the air.

The purity of a sample of sodium hydroxide may be determined by titration.

Procedure

- Step 1 Weigh a sample of sodium hydroxide in a beaker.
- Step 2 Dissolve the sodium hydroxide in distilled water and transfer the solution and washings to a 250.0 cm³ volumetric flask. Make the solution up to the mark with distilled water and mix thoroughly.
- Step **3** Pipette 25.0 cm³ of the sodium hydroxide solution into a conical flask and add a few drops of methyl orange indicator.
- Step **4** Titrate the sodium hydroxide solution with hydrochloric acid of known concentration. Repeat the titration until concordant results are obtained.

Results

Mass of solid sodium hydroxide = 0.95 g

Concentration of hydrochloric acid = $0.0950 \, \text{mol dm}^{-3}$

Titration Results

Burette readings	Rough	1	2	3
Final reading / cm ³	25.05	26.10	24.70	29.30
Initial reading / cm³	0.00	2.00	1.00	5.00
Titre / cm ³	25.05	24.10	23.70	24.30

/ \	C		. 1 .1	. /	1 .	Tr
(a)	State wr	nat is mear	it by the	term c	oncordant	results

(1)

(b) Using appropriate titres, calculate the mean titre.

(1)

(c) State the colour **change** at the endpoint of the titration.

(2)

From

(d) The equation for the reaction is

$$NaOH(aq) + HCI(aq) \rightarrow NaCI(aq) + H_2O(I)$$

Calculate the purity of the sodium hydroxide, NaOH, as a percentage by mass.

(4)

(Total for Question 4 = 8 marks)

TOTAL FOR PAPER = 50 MARKS

	2
+	2
200	11
÷	۲
2	=
(Ų
L	j
4	_
4	2
C	b
2	₹
÷	=
Ľ	2
,	
.;	2
1	J
Vicoria.	2
ï	Ξ
2	U
	-
0	D
2	ש
H	_

reported	[210] [222] At Rn astatine radon 85 86	126.9 131.3 I Xe todine xenon 53 54	r Kr nine krypton 5 36	2 7 7 7	0 (8)		
ave been			9.79.9 Br Num bromine 35		1		
Lements with atomic numbers 112-116	Po Po Potonium 84	127.6 Te Te	Se selenium 34	(16) 16.0 0 0 0 8 8 32.1 S S	9		
umbers 1 fully aut	209.0 Bi bismuth 83	121.8 Sb antimony 51	AS As arsenic	(15) 14.0 N nitrogen 7 31.0 P phosphorus 15	S		
atomic ni but not	207.2 Pb tead 82	118.7 Sn tin 50	72.6 Ge germanium 32	(14) 12.0 C carbon 6 6 5 Si Silicon 14	4		
nents with	204.4 Tl thallium 81	114.8 In indium 49	69.7 Ga gallium 31	(13) 10.8 B boron 5 27.0 Al atuminium 13	m		
Elen	Hg mercury 80	112.4 Cd cadmium 48	65.4 Zn zinc 30	(12)			
[272] Rg	197.0 Au gold 79	Ag silver 47	63.5 Cu copper 29	ω			
	195.1 Pt platinum 78	106.4 Pd palladium 46	58.7 Ni nickel 28	(01)			
[268] [271] Mt Ds meitnerium damstadtum	192.2 Ir iridium 77	102.9 Rh rhodium 45	58.9 Co cobalt 27	(6)			
[277] Hs	190.2 Os osmium 76	Ru Ru ruthentum 44	55.8 Fe iron 26	1.0 Hydrogen 1			
[264] Bh bohrium	Re rhenium 75		Mn Manganese 25				
Sg seaborgium	183.8 W tungsten 74	95.9 [98] Mo Tc molybdenum technetium 42 43	50.9 52.0 54.9 V Cr Mn vanadium chromium manganese 23 24 25	mass bol umber (6)			
[262] Db dubnium	180.9 Ta tantalum 73	92.9 Nb niobtum 41	50.9 V vanadium 23	relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6)			
[261] Rf nutherfordium	178.5 Hf hafnium 72	91.2 Zr zirconium 40	47.9 Ti titanium 22	relativatoric atomic (4)			
Ac*	138.9 La* lanthanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21	(3)			
Ra radium	137.3 Ba barium 1 56	87.6 Sr strontium 38	40.1 Ca calcium 20	(2) 9.0 Be beryllium 4 24.3 Mg magnesium	7		
[223] Fr francium	132.9 Cs caesium 55	85.5 Rb rubidium 37	39.1 K potassium 19	(1) 6.9 Li 13 3 3 23.0 Na sodium r	-		

* Lanthanide series

* Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
Ge	ď	PN	Pm	Sm	Eu	PS	10	ò	유	ŭ	Tm	ΛÞ	3
erium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
Ŧ	Pa)	å	Pu	Am	5	Bk	້ວ	Es	Fm	PW	N _o	۲
horium	protactinium	uranium	neptunium	plutonium	americium	anium	berkelium	californium	einsteinlum	fermium	mendelevium	nobelium	lawrencium
06	16	- 92	93	94	95	96	16	86	66	100	101	102	103