Überschrift

 $V(f) := \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \in \mathfrak{p} \}$

 $V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A \mid S \subseteq \mathfrak{p} \}$

 $D(f) := {\mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p}} = V(f)^C$

Obcidentite	
Abstrakt	

Anschaulich $A := \mathcal{C}(X)$ mit X top. Raum

	Abstrakt
Primideale $\mathrm{Spec}A$	Für $\mathfrak{p}\subseteq A$ Ideal gilt:
	$\mathfrak{p} \in \mathrm{Spec}A : \iff \forall pq \in \mathfrak{p} : p \in \mathfrak{p} \lor q \in \mathfrak{p}$

Verschwindungsmenge

Standard offene Mengen

Zu $f \in A$ ist V(f)

 $\operatorname{\mathsf{Zu}} S \subseteq A \text{ ist } V(S)$

 $\operatorname{\mathsf{Zu}} f \in A \text{ ist } D(f)$

 $I_x:=\{f\in\mathcal{C}(X)\mid f(x)=0\} \text{ für } x\in X \text{ also alle Funktionen, die am Punkt } x$ verschwinden. Damit ist $\mathrm{Spec}\mathcal{C}(X)\cong X$

 $V(f) = \{x \in X \mid f \in I_x\} = \{x \in X \mid f(x) = 0\} = \text{supp}(f)^C$

 $D(f) := \{x \in X \mid f \notin I_x\} = \{x \in X \mid f(x) \neq 0\} = \text{supp}(f)$

 $V(S) = \{x \in X \mid S \subseteq I_x\} = \{x \in X \mid \forall f \in S : f(x) = 0\}$