## Lecture 3 : Classification (1)

楊立偉教授

wyang@ntu.edu.tw

本投影片修改自Introduction to Information Retrieval一書之投影片 Ch 13~14

# 近年來機器學習的進展(1)

- 監督式學習 Supervised learning
  - 演算法及模型、計算複雜度及規模、巨量資料

|    | Top 10 Data Mining Algorithm (IEEE ICDM 2006)  |
|----|------------------------------------------------|
| 1  | C4.5 and Beyond 決策樹及規則                         |
| 2  | k-Means 資料分群                                   |
| 3  | Support Vector Machines (SVM) 自動分類             |
| 4  | Apriori 關聯分析                                   |
| 5  | Expectation Maximization (EM) 最大概似估計           |
| 6  | PageRank 連結分析                                  |
| 7  | AdaBoost 適應增強學習                                |
| 8  | k-Nearest Neighbor (kNN) 自動分類                  |
| 9  | Naive Bayes (NB) 自動分類                          |
| 10 | Classification and Regression Trees (CART) 決策樹 |

# 近年來機器學習的進展 (2)

Supervised learning 訓練到自動、依樣畫葫蘆、到相互對抗 Unsupervised learning 有目標,進行嘗試、給予獎勵或懲罰

#### What Machine Learning Can Do

Self-supervised learning 從資料本身學習

A simple way to think about supervised learning.

| INPUT A                       |              | RESPONSE B                         | APPLICATION            |
|-------------------------------|--------------|------------------------------------|------------------------|
| Picture                       | 臉部辨識         | Are there human faces? (0 or 1)    | Photo tagging          |
| Loan application              | 貸款核准         | Will they repay the loan? (0 or 1) | Loan approvals         |
| Ad plus user information      | 精準廣告         | Will user click on ad? (0 or 1)    | Targeted online ads    |
| Audio clip                    | 語音辨識         | Transcript of audio clip           | Speech recognition     |
| English sentence              | 機器翻譯         | French sentence                    | Language translation   |
| Sensors from hard disk, plane | engine, etc. | Is it about to fail?               | Preventive maintenance |
| Car camera and other sensors  | 自動駕駛         | Position of other cars             | Self-driving cars      |

# 近年來機器學習的進展(3)

- Neural Networks (NN) to Deep Learning (DL)
  - Backpropagation and Gradient Descent algorithm



#### Convolution Neural Networks (CNN)





#### Recurrent Neural Networks (RNN)





#### Long Short-Term Memory (LSTM) RNN



Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of a recurrent neural network.

7

## Self-attention Transformer and BERT (1)



Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Figure 1: The Transformer - model architecture.

## Self-attention Transformer and BERT (2)

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).





## **Text Classification**

#### A text classification task: Email spam filtering

```
From: ''' <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay
Anyone can buy real estate with no money down
Stop paying rent TODAY !
There is no need to spend hundreds or even thousands for
similar courses
I am 22 years old and I have already purchased 6 properties
using the
methods outlined in this truly INCREDIBLE ebook.
Change vour life NOW!
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
```

How would you write a program that would automatically detect and delete this type of message?

#### Formal definition of TC: Training

#### Given:

- A document space X
  - Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes  $C = \{c_1, c_2, \dots, c_J\}$ 
  - The classes are human-defined for the needs of an application (e.g., relevant vs. nonrelevant).
- A training set D of labeled documents with each labeled document <d, c> ∈ X × C

Using a learning method or learning algorithm, we then wish to learn a classifier Y that maps documents to classes:

$$\Upsilon: X \to C$$

#### Formal definition of TC: Application/Testing

Given: a description  $d \in X$  of a document Determine:  $\Upsilon(d) \in C$ , that is, the class that is most appropriate for d

#### Topic classification



### Example





### More examples of TC Applications

#### Assign labels to each document:

#### Labeling 貼標籤 (歸類)

- Labels are most often topics such as Yahoo-categories 主題
   e.g., "finance," "sports," "news>world>asia>business"
- Labels may be language or genres 語言或型式 e.g., "English" "Chinese" "French" e.g., "editorials" "movie-reviews" "news"
- Labels may be sentiments 情緒
   e.g., "like", "hate", "neutral"
- Labels may be domain-specific binary 是否屬於某領域 e.g., "interesting-to-me": "not-interesting-to-me" e.g., "spam": "not-spam" e.g., "contains adult language": "doesn't"



## More examples of TC Applications

- 新聞自動分類:將每日新聞自動歸類重新編排
- 專利自動分類:將申請的專利給予適當的類別以利分派審查
- 1999案件自動分類:將民眾抱怨快速分派給正確的單位做處理`
- 用文件分類預測股價走勢:出些某些文件,之後七日內該股票之 之平均收盤價走高或走低(看漲文件及看跌文件)



## Classification Methods (1)

- Manual classification 人工分類
  - Used by Yahoo, ODP, PubMed
  - Very accurate when job is done by experts靠領域與分類專家,所以很準
  - Consistent when the problem size and team is small
     當資料量大,用人工判斷會有主觀不一致的問題
  - Difficult and expensive to scale
     need automatic methods for classification

註:ODP - Open Directory Project 開放分類目錄計劃



## Classification Methods (2)

- Rule-based systems 規則式分類
  - Google Alerts is an example of rule-based classification
  - Assign category if document contains a given boolean combination of words
    - 使用布林條件,例如(文化創意 | 文創)→歸於文化類
  - Accuracy is often very high if a rule has been carefully refined over time by a subject expert
  - Building and maintaining these rules is cumbersome and expensive
    - 例如 (文化創意 | 文創 | 電影 | 工藝 | 藝術....) → 歸於文化類 需要很多的列舉與排除



## Classification Methods (3)

- Statistical/Probabilistic systems 統計機率式
- Text classification as a learning problem
  - (i) Supervised learning of a the classification function Υ and
  - (ii) its application to classifying new documents
- Examples
  - Naive Bayes (simple, common method)
  - k-Nearest Neighbors (simple, powerful)
  - Support-vector machines (new, more powerful)
- No free lunch: requires hand-classified training data
  - But data can be built up (and refined) by non-experts

# Naïve Bayes

#### Overview

- The Naive Bayes classifier is a probabilistic classifier. 基於機率學的貝氏定理
- Build a generative model that approximates how data is produced
- Uses prior probability (事前機率; 先天機率) of each category given no information about an item.
- Categorization produces a *posterior* probability (事後機率; 條件機率) distribution over the possible categories given a description of an item.

訣竅:將條件機率展開成可以計算的機率,然後計算之



## Posterior probability 條件機率

• 條件機率

年齡

| 性別 | 20歲 | 非20歲 | 和  |
|----|-----|------|----|
| 男  | 14  | 6    | 20 |
| 女  | 21  | 9    | 30 |
| 和  | 35  | 15   | 50 |

A:20歲 B:女性

已知學生為20歲中女性之機率

P(B|A)=21/35=0.6

或利用公式 P(B|A) = P(A∩B) / P(A) = 0.42/0.7 = 0.6



## Bayes' Rule

$$P(C, X) = P(C | X)P(X) = P(X | C)P(C)$$

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

## Naive Bayes Classifiers (1)

- Task: Classify a new instance D based on a tuple of attribute values into one of the classes  $c_i \in C$
- Naive Bayes classification is to find the "best" class (the most likely or maximum a posteriori (MAP) class C<sub>map</sub>)

$$D = \langle x_1, x_2, \dots, x_n \rangle$$

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

$$= \underset{c_j \in C}{\operatorname{argmax}} \frac{P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)}{P(x_1, x_2, \dots, x_n)}$$

as *P(D)* is constant

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)$$



## Naive Bayes Classifiers (2)

- $P(c_j)$ 
  - Can be estimated from the frequency of classes in the training examples. 可以由訓練資料中計算而得
- $P(x_1, x_2, ..., x_n/c_j)$ 
  - Could be estimated if a very large number of training examples was available.
  - applying Naïve Bayes Conditional Independence Assumption



#### Naïve Bayes Assumption



Conditional Independence Assumption:

Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities P(xi|cj).

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$



#### Exercise



共8+4+3+2+7+6+2+3+7+6=48 共4+5+8+3+2+4+8+5+3=42



#### Exercise (cont.)

- $P(c_i)$ 
  - P(AI)=10/20, P(Programming)=6/20
- $P(x_1, x_2, ..., x_n/c_j)$ 
  - P(intelligence|AI)=4/48, P(planning|AI)=6/48, P(language|AI)=6/48,
  - P(language | Programming)=8/42, P(proof | Programming)=3/42

若不做smoothing 並以相加(不取log)取代相乘的近似算法

AI: 10/20\*(4/48+6/48+6/48)=0.167 ←歸類為AI類

Programming: 6/20\*(8/42+3/42)=0.078



### Naïve Bayes: Learning

- From training corpus, extract Vocabulary 先取出所有可能的詞
- Calculate required  $P(c_i)$  and  $P(x_k \mid c_i)$  能算的先算
  - For each  $c_i$  in C do
    - $docs_i \leftarrow$  subset of documents for which the target class is  $c_i$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Concatenate all  $docs_i$  into a single document  $Text_i$ 
  - for each word  $x_k$  in Vocabulary $n_k \leftarrow$  number of occurrences of  $x_k$  in  $Text_i$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$
 調整項:Smoothing to avoid

over-fitting (avoid zero)



## Naïve Bayes: Classifying

- positions ← all word positions in current document which contain tokens found in *Vocabulary*
- Return  $c_{NB}$ , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

取機率最大的類別

有出現的詞,其機率相乘



## Smoothing to avoid over-fitting

- If a document contains a term x which never appears in the category c, the p(x|c) will always be zero, and the product will be zero, too.
- to add one smoothing to avoid zeros :

Before 
$$P(x_k \mid c_j) \leftarrow \frac{n_k}{n}$$

After 
$$P(x_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

#### Naive Bayes: Training

```
TrainMultinomialNB(\mathbb{C}, \mathbb{D})
  1 V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
       do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)
  5
           prior[c] \leftarrow N_c/N
            text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
  6
           for each t \in V
           do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
  8
           for each t \in V
           do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
 10
 11
       return V, prior, condprob
```

#### Naive Bayes: Testing

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 for each c \in \mathbb{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in W

5 do score[c] + = \log condprob[t][c] 由相乘積轉成log相加

6 return arg \max_{c \in \mathbb{C}} score[c]
```

# Naïve Bayes: discussion

#### Violation of NB Assumptions

- Conditional independence
  - 是否可以假設兩詞的出現為獨立事件?
  - 與 VSM 的問題類似:向量空間之兩兩詞間是否為正交?
- Conclusion
  - Naive Bayes can work well even though conditional independence assumptions are badly violated
  - Because classification is about predicting the correct class
     and not about accurately estimating probabilities.

## NB with Feature Selection (1)

- Text collections have a large number of features
  - 10,000 1,000,000 unique words ... and more

### Feature (文件或類別的特徵) 若是選得好

- Reduces training time
  - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
  - Eliminates noise features
  - Avoids over-fitting



# NB with Feature Selection (2)

- 2 ideas beyond TF-IDF 兩種評估好壞的指標
  - Hypothesis testing statistics:
    - Are we confident that the value of one categorical variable is associated with the value of another
    - Chi-square test 卡方檢定
  - Information theory:
    - How much information does the value of one categorical variable give you about the value of another
    - Mutual information
- They're similar, but  $\chi^2$  measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)



## Naive Bayes is not so naive

- Naive Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast: Learning with one pass over the data; testing linear in the number of attributes, and document collection size
- Low storage requirements

Naïve Bayes: evaluation

### **Evaluation on Reuters**



## Example: The Reuters collection

| symbol               | statistic |            |                                     | value   |
|----------------------|-----------|------------|-------------------------------------|---------|
| Ν                    | docu      | ments      | 800,000                             |         |
| L                    | avg.      | # word to  | kens per document                   | 200     |
| Μ                    | word      | types      |                                     | 400,000 |
|                      | avg.      | # bytes p  | er word token (incl. spaces/punct.) | 6       |
|                      | avg.      | # bytes p  | 4.5                                 |         |
|                      | avg.      | # bytes p  | 7.5                                 |         |
|                      | non-      | positional | 100,000,000                         |         |
| type of class number |           | number     | examples                            |         |
| region 366           |           | 366        | UK, China                           |         |
| industry             |           | 870        | poultry, coffee                     |         |
| subject area         |           | 126        | elections, sports                   |         |

### A Reuters document



### **Evaluating classification**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall,  $F_1$ , classification accuracy

### Precision P and recall R

|                                  | in the class         | not in the class     |
|----------------------------------|----------------------|----------------------|
| predicted to be in the class     | true positives (TP)  | false positives (FP) |
| predicted to not be in the class | false negatives (FN) | true negatives (TN)  |

P = TP / (TP + FP)R = TP / (TP + FN) ↑ also known as confusion matrix

# 參考 Terminology

#### 真陽性 (TP, true positive)

- 正確的肯定
- 又稱:命中 (hit)

#### 真陰性 (TN, true negative)

- 正確的否定
- 又稱:正確拒絕 (correct rejection)

#### 偽陽性 (FP, false positive)

- 錯誤的肯定。
- 又稱:假警報 (false alarm),第一型錯誤
   偽陰性 (FN, false negative)
- 錯誤的否定
- 又稱:未命中 (miss),第二型錯誤

#### 真陽性率 (TPR, true positive rate)

- 又稱:命中率 (hit rate)、敏感度(sensitivity)
- TPR = TP / P = TP / (TP+FN)
- 即為 Recall

#### 偽陽性率(FPR, false positive rate)

- 又稱:錯誤命中率,假警報率 (false alarm rate)
- FPR = FP / N = FP / (FP + TN)

#### 準確度 (ACC, accuracy)

- ACC = (TP + TN) / (P + N)
- 即:(真陽性+真陰性)/總樣本數

#### 真陰性率 (TNR)

- 又稱:特異度 (SPC, specificity)
- SPC = TN / N = TN / (FP + TN) = 1 FPR



# 參考 ROC Curve and AUC

- 對一個二元分類器,給予不同閥值參數,依 X=FPR, Y=TPR 所 繪製出的曲線,稱為 receiver operating characteristic curve
  - 閥值最嚴時,沒有樣本被預測為陽性,FPR及TPR均為0,即 (0,0)
  - 閥值最鬆時,全部樣本被預測為陽性,FPR及TPR均為1,即 (1,1)
  - 對角線為隨機分類,對角線以上表示勝過 隨機分類;對角線以下表示略於隨機分類
- ROC Curve下的面積稱AUC
  - Area under the Curve of ROC
  - 因為是1x1方格,AUC面積必在0~1之間
  - AUC值越大的分類器,正確率越高



### A combined measure: F

•  $F_1$  allows us to trade off precision against recall.

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P + R}$$

• This is the harmonic mean of P and R:  $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$ 

### Averaging: Micro vs. Macro

- We now have an evaluation measure  $(F_1)$  for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- Macroaveraging
  - Compute F<sub>1</sub> for each of the C classes
  - Average these C numbers
- Microaveraging
  - Compute TP, FP, FN for each of the C classes
  - Sum these C numbers (e.g., all TP to get aggregate TP)
  - Compute F<sub>1</sub> for aggregate TP, FP, FN

#### Exercise

|                          | Class A                         | Class B |
|--------------------------|---------------------------------|---------|
| # of records             | 800                             | 200     |
| accuracy %               | 80%                             | 60%     |
| macro average accuracy % | (80%+60%)/2=70%                 |         |
| micro average accuracy % | (800*80%+200*60%)/(800+200)=76% |         |

若類別A及B的資料筆數相同,則macro avg.等於micro avg. micro avg.可視為依類別大小加權後的平均數

### Naive Bayes vs. other methods

| (a) |                           | NB | Rocchio | kNN |       | SVM |
|-----|---------------------------|----|---------|-----|-------|-----|
| ,   | micro-avg-L (90 classes)  | 80 | 85      | 86  |       | 89  |
|     | macro-avg (90 classes)    | 47 | 59      | 60  |       | 60  |
|     |                           |    |         |     |       |     |
| (b) |                           | NB | Rocchio | kNN | trees | SVM |
| ,   | earn                      | 96 | 93      | 97  | 98    | 98  |
|     | acq                       | 88 | 65      | 92  | 90    | 94  |
|     | money-fx                  | 57 | 47      | 78  | 66    | 75  |
|     | grain                     | 79 | 68      | 82  | 85    | 95  |
|     | crude                     | 80 | 70      | 86  | 85    | 89  |
|     | trade                     | 64 | 65      | 77  | 73    | 76  |
|     | interest                  | 65 | 63      | 74  | 67    | 78  |
|     | ship                      | 85 | 49      | 79  | 74    | 86  |
|     | wheat                     | 70 | 69      | 77  | 93    | 92  |
|     | corn                      | 65 | 48      | 78  | 92    | 90  |
|     | micro-avg (top 10)        | 82 | 65      | 82  | 88    | 92  |
|     | micro-avg-D (118 classes) | 75 | 62      | n/a | n/a   | 87  |

Evaluation measure:  $F_1$  Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

### Alternative measurement

Classification accuracy: c/n

n: the total number of test instances

c: the number of test instances correctly classified by the system.

- 富各類別大小差異大時, Classification accuracy 易受影響
  - Ex. Class A有800筆、Class B有200筆,則全部猜A的accuracy至少有80%
  - 此時仍應檢視各類別的Precision及Recall

## Case study: WebKB Experiment

- Classify webpages from CS departments into:
  - student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
  - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)
  - for testing



#### Results:

|           | Student | Faculty | Person | Project | Course | Departmt |
|-----------|---------|---------|--------|---------|--------|----------|
| Extracted | 180     | 66      | 246    | 99      | 28     | 1        |
| Correct   | 130     | 28      | 194    | 72      | 25     | 1        |
| Accuracy: | 72%     | 42%     | 79%    | 73%     | 89%    | 100%53   |



# **NB Model Comparison**



| associate | 0.00417 |  |  |  |
|-----------|---------|--|--|--|
| chair     | 0.00303 |  |  |  |
| member    | 0.00288 |  |  |  |
| рh        | 0.00287 |  |  |  |
| director  | 0.00282 |  |  |  |
| fax       | 0.00279 |  |  |  |
| journal   | 0.00271 |  |  |  |
| recent    | 0.00260 |  |  |  |
| received  | 0.00258 |  |  |  |
| award     | 0.00250 |  |  |  |

#### Students

| resume    | 0.00516 |  |  |
|-----------|---------|--|--|
| advisor   | 0.00456 |  |  |
| student   | 0.00387 |  |  |
| working   | 0.00361 |  |  |
| stuff     | 0.00359 |  |  |
| links     | 0.00355 |  |  |
| homepage  | 0.00345 |  |  |
| interests | 0.00332 |  |  |
| personal  | 0.00332 |  |  |
| favorite  | 0.00310 |  |  |

#### Courses

| Connen      |         |  |  |  |
|-------------|---------|--|--|--|
| homework    | 0.00413 |  |  |  |
| syllabus    | 0.00399 |  |  |  |
| assignments | 0.00388 |  |  |  |
| exam        | 0.00385 |  |  |  |
| grading     | 0.00381 |  |  |  |
| midterm     | 0.00374 |  |  |  |
| pm          | 0.00371 |  |  |  |
| instructor  | 0.00370 |  |  |  |
| due         | 0.00364 |  |  |  |
| final       | 0.00355 |  |  |  |

#### Departments

| departmental | 0.01246 |
|--------------|---------|
| colloquia    | 0.01076 |
| epartment    | 0.01045 |
| seminars     | 0.00997 |
| schedules    | 0.00879 |
| webmaster    | 0.00879 |
| events       | 0.00826 |
| facilities   | 0.00807 |
| eople        | 0.00772 |
| postgraduate | 0.00764 |

#### Research Projects

| Mesearch Frolects |         |  |  |  |
|-------------------|---------|--|--|--|
| investigators     | 0.00256 |  |  |  |
| group             | 0.00250 |  |  |  |
| members           | 0.00242 |  |  |  |
| researchers       | 0.00241 |  |  |  |
| laboratory        | 0.00238 |  |  |  |
| develop           | 0.00201 |  |  |  |
| related           | 0.00200 |  |  |  |
| arpa              | 0.00187 |  |  |  |
| affiliated        | 0.00184 |  |  |  |
| project           | 0.00183 |  |  |  |

#### **Others**

| ♥ encre |         |  |  |  |
|---------|---------|--|--|--|
| type    | 0.00164 |  |  |  |
| jan     | 0.00148 |  |  |  |
| enter   | 0.00145 |  |  |  |
| random  | 0.00142 |  |  |  |
| program | 0.00136 |  |  |  |
| net     | 0.00128 |  |  |  |
| time    | 0.00128 |  |  |  |
| format  | 0.00124 |  |  |  |
| access  | 0.00117 |  |  |  |
| begin   | 0.00116 |  |  |  |



## Case study: Apache SpamAssassin

- Naïve Bayes classifier for spam filtering
  - Widely used in spam filters
    - Classic Naive Bayes superior when appropriately used
    - 有很多衍生版本
- Many email filters use NB classifiers
  - But also many other things: black hole lists, etc.
    - 同時混用很多其它技巧,如黑名單

# Naïve Bayes on spam email



kNN: K Nearest Neighbors

### Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region. 同類別文件在空間中較相近
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.
  不同的類別間可找出一個分割線或(超)平面

# Classes in a Vector Space



### Test Document = Government





## k Nearest Neighbor Classification

- To classify document *d* into class c
- Define k-neighborhood N as k nearest neighbors of d
- Count number of documents i in N that belong to c
- Estimate P(c|d) as i/k
- Choose as class argmax<sub>c</sub> P(c|d) [ = majority class]

訣竅:挑最近的 k 個鄰居出來統計 (投票), 看最多人屬哪一類,自己標成那一類

# Example: k=5 (5NN)



P(science | ♦ )?

P(Government | ♦ )?

- Government
- Science
- Arts



## Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x:
  - Compute similarity between x and all examples in D.
     計算文件 x 與其它訓練文件的相似度
  - Assign x the category of the most similar example in D.
     決定文件 x 的類別
- Does not explicitly compute a generalization or category
- Also called: 此方法又稱為
  - Case-based learning
  - Memory-based learning
  - Lazy learning



### kNN algorithm

```
TRAIN-KNN(\mathbb{C}, \mathbb{D})

1 \mathbb{D}' \leftarrow \operatorname{Preprocess}(\mathbb{D})

2 k \leftarrow \operatorname{Select-k}(\mathbb{C}, \mathbb{D}')

3 \operatorname{return} \mathbb{D}', k

Apply-knn(\mathbb{D}', k, d)

1 S_k \leftarrow \operatorname{ComputeNearestNeighbors}(\mathbb{D}', k, d)

2 \operatorname{for} \operatorname{each} c_j \in \mathbb{C}(\mathbb{D}')

3 \operatorname{do} p_j \leftarrow |S_k \cap c_j|/k

4 \operatorname{return} \operatorname{arg} \max_i p_j
```

### Time complexity of kNN

- kNN test time proportional to the size of the training set
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

kNN: discussion

### kNN classification

- kNN classification is vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and others.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- . . . and you don't care about efficiency that much . . .
- ... use kNN.

## Discussion of kNN (1)

- No training necessary
  - But linear preprocessing of documents is as expensive as training Naive Bayes.
  - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
  - kNN Is Close to Optimal (ref. Cover and Hart, Nearest neighbor pattern classification, 1967)
  - But kNN can be very inaccurate if training set is small.
- kNN scores is hard to convert to probabilities

## Discussion of kNN (2)

- Using only the closest example to determine the categorization is subject to errors due to:
   k 若只取一個易受下列影響
  - A single atypical example. 特例
  - Noise (i.e. error) in the category label of a single training example. 同類別中的雜訊
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples. 選 k 個再用投票多數是較穩當的做法
- Value of k is typically odd to avoid ties; 3 and 5 are most common. 通常 k 要取單數, 常見的是3或5個

## Nearest Neighbor with Inverted Index

- Finding nearest neighbors requires a linear search through |D| documents in collection
- Determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
  - 查詢結果前 k 名投票即可得
  - 配合使用Inverted Index可提升實作效率



# Support Vector Machine (SVM)

#### Support Vector Machine (1)

- A kind of large-margin classifier
  - From Intensive machine-learning research in the last two decades to improve classifier effectiveness
- Vector space based machine-learning method aiming to find a decision boundary between two classes that is maximally far from any point in the training data
  - possibly discounting some points as outliers or noise

#### Support Vector Machine (2)

- 2-class training data
- decision boundary
  - → linear separator
- criterion: being maximally far away from any data point
  - → determines classifier margin
- linear separator position defined by support vectors



#### Why maximize the margin?

Points near decision surface

→ uncertain classification decisions

A classifier with a large margin makes certainty classification decisions.

 to reduce errors in measurement or doc. variation



#### Linear programming



## Which Hyperplane?



### Which Hyperplane?

- Lots of possible solutions for *a,b,c*.
- Some methods find a separating hyperplane, but not the optimal one, while the other methods find an optimal separating hyperplane
- Which points should influence optimality?
  - All points 用全部的點去求最佳解
    - Linear regression
  - Only "difficult points" close to decision boundary 只用邊界附近的困難點
    - Support vector machines (SVM)



### Which Hyperplane?

 If you have to place a fat separator between classes, you have less choices, and so the capacity of the model has been decreased



#### Formalize an SVM with algebra

- Hyperplane: an n-dimensional generalization of a plane
- Decision hyperplane :
  - given a normal vector w (weight vector) which is perpendicular to the hyperplane
  - all points x on the hyperplane satisfy  $w^T x + b = 0$
  - any point in two training set will individually satisfy

$$w^{T} x + b = +1$$

$$w^{T} x + b = -1$$

#### Geometric Margin

- Distance from example to the separator is  $r = y \frac{\mathbf{w} \cdot \mathbf{x} + r}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- *Margin*  $\rho$  of the separator is the width of separation between support vectors of classes.



#### Linear Support Vector Machine

Hyperplane

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b} = \mathbf{0}$$

This implies:

$$w^{T}(x_{a}-x_{b}) = 2$$
  
 $\rho = ||x_{a}-x_{b}|| = 2/||w||$ 



### Soft Margin Classification

- If the training set is not linearly separable, slack variables  $\xi_i$  can be added to allow misclassification of difficult or noisy examples.
- Make it allow some errors.



#### **SVM** Resources

- SVM Light, Cornell University
  - http://svmlight.joachims.org/
- libSVM, National Taiwan University
  - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  - Reference
    - http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/libsvm.pdf
    - http://ntu.csie.org/~piaip/svm/svm\_tutorial.html

#### Reference

- 支持向量機教學文件(中文版)
  - http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM1.pdf
- Support Vector Machines 簡介
  - http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM2.pdf
- Support Vector Machine 簡介
  - http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM3.pdf

#### Classification with SVMs

- Given a new point score its projection onto the hyperplane:
  - compute score: wx + b
  - set confidence threshold t.

#### 計算離哪邊較近,並給予門檻值

Score > t: yes

Score < -t: no

Else: don't know



SVM: discussion

#### Multiclass SVMs

SVMs: inherently two-class classifiers.

- Most common technique in practice: build |C| one-versusrest classifiers (commonly referred to as "one-versus-all" or OVA classification), and choose the class which classifies the test data with greatest margin
- Another strategy: build a set of one-versus-one classifiers,
   and choose the class that is selected by the most classifiers.
  - this involves building |C|(|C| 1)/2 classifiers
  - use binary decision tree or majority votes.

#### Exercise

用二元分類器模擬多分類效果,假設有政治、娛樂、科技三類

- 建立政治-其他、娛樂-其他、科技-其他三個分類器,再 取離得最近的當作分類結果;若有n個類別,需要建立n 個分類器
- 任二類建立一個分類器,最後採總積分制決定分類結果。 例如

政治-娛樂 歸類為政治

政治-科技 歸類為科技

娛樂-科技 歸類為科技

若採積分制,最後結果為科技>政治>娛樂 若有n個類別,需要建立 $C_2^n$ 個分類器

#### Non-linear SVMs

Datasets that are linearly separable (with some noise) work out great:



• But what are we going to do if the dataset is just too hard? 分不開怎麼辦



How about ... mapping data to a higher-dimensional space:

想辦法映射到不同空間



#### Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



#### SVM is good for Text Classification

- Documents are zero along almost all axes
- Most document pairs are very far apart (i.e., not strictly orthogonal, but only share very common words and a few scattered others)

其實文件很多軸上的值是 0;

在空間軸上離很開



 Virtually all document sets are separable, for most any classification. This is why linear classifiers are quite successful in this domain

文件混在一起的情況不多,

所以用Linear分類器,在文件分類上很適合

### Issues in Text Classification

#### (1) What kind of classifier to use

- Document Classification is useful for many commercial applications
- What kind of classifier to use ?
  - How much training data do you have?需要準備多少訓練資料
    - None
    - Very little
    - Quite a lot
    - A huge amount and its growing



## If you have no labeled training data

- Try hand-written rules solution 人工規則
  - If (Baseball OR Basketball) then categorize as Sport
- In practice, rules get a lot bigger than this 通常規則很多
- With careful crafting (human tuning on development data)
   performance is high: 但是效果很好
- Amount of work required is huge 但仍大量人工檢查與維護

#### If you have fairly little data?

- Naïve Bayes should do well in such circumstances (Ng and Jordan 2002 NIPS) 適合訓練用文件只有很少的時候
- The practical answer is to get more labeled data as soon as you can
  - How to let people be willing to label data for you?

可思考如何運用網路上的資料

Ex. 信件分類、書籤、Social Tagging

## If you have a huge amount of data?

- Great in theory for doing accurate classification
- But expensive methods like SVMs (train time) or kNN (test time) are quite impractical
   運算量大的演算法不合用
- Try Naïve Bayes again.

#### (2) Large and difficult categories

- Easy for small number of well-separated categories
- Accurate classification over large sets of closely related classes is inherently difficult.
  - Ex. Web directories (e.g. the Yahoo! Directory consists of over 200,000 categories or the Open Directory Project)
  - Ex. library classification schemes (Library of Congress)
  - Classifier combination is a useful technique
    - Voting of multiple classifiers
  - Use a hybrid automatic/manual solution



## (3) Other techniques

- Try differentially weighting contributions from different document zones:
  - Upweighting title words helps (Cohen & Singer 1996) 提高標題權重
  - Upweighting the first sentence of each paragraph helps (Murata, 1999) 提高每段的第一句權重
  - Upweighting sentences that contain title words helps (Ko et al, 2002)
     提高包含標題之句子的權重
  - Summarization as feature selection for text categorization (Kolcz,
     Prabakarmurthi, and Kolita, CIKM 2001) 先做自動摘要

## (4) Problem of Concept drift

- Categories change over time 類別是會隨時間變的
- Example: "president of the united states"
  - 1999: clinton is great feature
  - 2002: clinton is bad feature 已經不是總統了
- One measure of a text classification system is how well it protects against concept drift.
  - 多久需要檢視訓練資料,並重新訓練?

#### Dumais et al. 1998: Reuters - Accuracy

| (a) |                           | NB  | Rocchio  | kNN  |       | SVM   |
|-----|---------------------------|-----|----------|------|-------|-------|
|     | micro-avg-L (90 classes)  | 80  | 85       | 86   |       | 89    |
|     | macro-avg (90 classes)    | 47  | 59       | 60   |       | 60    |
| (h) |                           | LND | Da sabia | LANN | +     | C)/// |
| (b) |                           | NB  | Rocchio  | kNN  | trees | SVM   |
|     | earn                      | 96  | 93       | 97   | 98    | 98    |
|     | acq                       | 88  | 65       | 92   | 90    | 94    |
|     | money-fx                  | 57  | 47       | 78   | 66    | 75    |
|     | grain                     | 79  | 68       | 82   | 85    | 95    |
|     | crude                     | 80  | 70       | 86   | 85    | 89    |
|     | trade                     | 64  | 65       | 77   | 73    | 76    |
|     | interest                  | 65  | 63       | 74   | 67    | 78    |
|     | ship                      | 85  | 49       | 79   | 74    | 86    |
|     | wheat                     | 70  | 69       | 77   | 93    | 92    |
|     | corn                      | 65  | 48       | 78   | 92    | 90    |
| ·   | micro-avg (top 10)        | 82  | 65       | 82   | 88    | 92    |
|     | micro-avg-D (118 classes) | 75  | 62       | n/a  | n/a   | 87    |

Evaluation measure:  $F_1$  Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

# Results for Kernels (Joachims 1998)

|                        |       |         |      |      | SVM (poly)   |      |                |      | SVM (rbf)        |      |      |                        |      |
|------------------------|-------|---------|------|------|--------------|------|----------------|------|------------------|------|------|------------------------|------|
|                        |       |         |      |      | degree $d =$ |      |                |      | width $\gamma =$ |      |      |                        |      |
|                        | Bayes | Rocchio | C4.5 | k-NN | 1            | 2    | 3              | 4    | 5                | 0.6  | 0.8  | 1.0                    | 1.2  |
| earn                   | 95.9  | 96.1    | 96.1 | 97.3 | 98.2         | 98.4 | 98.5           | 98.4 | 98.3             | 98.5 | 98.5 | 98.4                   | 98.3 |
| acq                    | 91.5  | 92.1    | 85.3 | 92.0 | 92.6         | 94.6 | 95.2           | 95.2 | 95.3             | 95.0 | 95.3 | 95.3                   | 95.4 |
| money-fx               | 62.9  | 67.6    | 69.4 | 78.2 | 66.9         | 72.5 | 75.4           | 74.9 | 76.2             | 74.0 | 75.4 | 76.3                   | 75.9 |
| grain                  | 72.5  | 79.5    | 89.1 | 82.2 | 91.3         | 93.1 | 92.4           | 91.3 | 89.9             | 93.1 | 91.9 | 91.9                   | 90.6 |
| crude                  | 81.0  | 81.5    | 75.5 | 85.7 | 86.0         | 87.3 | 88.6           | 88.9 | 87.8             | 88.9 | 89.0 | 88.9                   | 88.2 |
| $\operatorname{trade}$ | 50.0  | 77.4    | 59.2 | 77.4 | 69.2         | 75.5 | 76.6           | 77.3 | 77.1             | 76.9 | 78.0 | 77.8                   | 76.8 |
| interest               | 58.0  | 72.5    | 49.1 | 74.0 | 69.8         | 63.3 | 67.9           | 73.1 | 76.2             | 74.4 | 75.0 | 76.2                   | 76.1 |
| $_{ m ship}$           | 78.7  | 83.1    | 80.9 | 79.2 | 82.0         | 85.4 | 86.0           | 86.5 | 86.0             | 85.4 | 86.5 | 87.6                   | 87.1 |
| wheat                  | 60.6  | 79.4    | 85.5 | 76.6 | 83.1         | 84.5 | 85.2           | 85.9 | 83.8             | 85.2 | 85.9 | 85.9                   | 85.9 |
| corn                   | 47.3  | 62.2    | 87.7 | 77.9 | 86.0         | 86.5 | 85.3           | 85.7 | 83.9             | 85.1 | 85.7 | 85.7                   | 84.5 |
| microavg.              | 72.0  | 79.9    | 79.4 | 82.3 | 84.2         | l    | 85.9<br>oined: | I    | 85.9             | 1    | I 1  | 86.3<br>ed: <b>8</b> 6 | l    |

#### Yang & Liu: SVM vs. Other Methods

Table 1: Performance summary of classifiers

| method | miR   | $\mathrm{miP}$ | miF1  | maF1  | error  |
|--------|-------|----------------|-------|-------|--------|
| SVM    | .8120 | .9137          | .8599 | .5251 | .00365 |
| KNN    | .8339 | .8807          | .8567 | .5242 | .00385 |
| LSF    | .8507 | .8489          | .8498 | .5008 | .00414 |
| NNet   | .7842 | .8785          | .8287 | .3765 | .00447 |
| NB     | .7688 | .8245          | .7956 | .3886 | .00544 |

miR = micro-avg recall; miP = micro-avg prec.; miF1 = micro-avg F1; maF1 = macro-avg F1.

#### Text Classification: conclusion

- Choose a approach
  - Do no classification 不分類
  - Do it all manually 人工分類
  - Do it all with an automatic classifier 全自動分類
    - Mistakes have a cost 要挑出錯也要成本
    - Do it with a combination of automatic classification and manual review of uncertain/difficult/"new" cases
- Commonly the last method is most cost efficient and is adopted

## **Discussions**