Основные команды среды MATLAB для работы с нечеткими множествами. FUZZY LOGIC TOOLBOX

NEWFIS - Создание новой системы нечеткого логического вывода

Синтаксис:

fis = newfis(fis name, fis type, andMethod, orMethod, impMethod, aggMethod, defuzzMethod)

Описание:

Создает в рабочей области новую систему нечеткого логического вывода. Функция newfis может иметь до семи входных аргументов:

fis name - наименование системы нечеткого логического вывода;

fis_type - тип системы нечеткого логического вывода. Допустимые значения: 'mamdani' - система типа Мамдани (значение по умолчанию); 'Sugeno' - система типа Сугэно;

andMethod - реализация логической операции И. Значения по умолчанию: минимум ('min') - для системы типа Мамдани; произведение ('prod') - для системы типа Сугэно; **orMethod** - реализация логической операции ИЛИ. Значения по умолчанию: максимум ('max') - для системы типа Мамдани; вероятностное ИЛИ ('probor') - для системы типа Сугэно;

impMethod - реализация импликации. Значение по умолчанию - 'min' - минимум; **aggMethod** - реализация операции объединения функций принадлежности выходной переменной. Значение по умолчанию - 'max' - максимум;

defuzzMethod - метод дефаззификации. Значения по умолчанию: центр тяжести ('centroid') - для системы типа Мамдани; взвешенное среднее ("wtaver) - для системы типа Сугэно.

Пример:

a=newfis('new_fuzzy_system')

В рабочей области создается структура а, содержащая систему нечеткого логического вывода с именем 'new_fuzzy_system'. Значения всех параметров системы устанавливаются по умолчанию.

ADDVAR - Добавляет переменную в систему нечеткого логического вывода

Синтаксис:

FIS name= addvar (FIS name, varType, varName, varBound)

Описание:

Переменную можно добавить только к существующей в рабочей области MatLab системе нечеткого логического вывода. Функция addrvar имеет четыре входных аргумента:

FIS_name – идентификатор системы нечеткого логического вывода в рабочей области MatLab;

varType – тип добавляемой переменной. Допустимые значения - 'input' - входная переменная и 'output' – выходная переменная;

varName – наименование добавляемой переменной. Задается в виде строки символов;

varBound – вектор, задающий диапазон изменения добавляемой переменной.

Порядковый номер переменной в системе нечеткого логического вывода соответствует порядку добавления с помощью функции addvar, т.е. первая добавленная переменная будет иметь порядковый номер 1. Входные и выходные переменные нумеруются независимо.

Пример.

FIS_name=addrule(FIS_name, 'input', 'Poct', [155 205])

Строка добавляет в систему нечеткого логического вывода FIS_name входную переменную 'Рост', заданную на интервале [155 205].

<u>ADDMF - Добавляет функцию принадлежности к системе нечеткого логического вывода</u>

Синтаксис:

FIS_name=addmf(FIS_name, varType, varIndex, mfName, mfType, mfParams)

Описание:

Функцию принадлежности можно добавить только к существующей в рабочей области MatLab системе нечеткого логического вывода. Другими словами система нечеткого логического вывода должна быть каким-то образом загружена в рабочую область или создана с помощью функции newfis. Функция addmf имеет шесть входных аргументов: FIS_name — идентификатор системы нечеткого логического вывода в рабочей области MatLab:

varType — тип переменной, к которой добавляется функция принадлежности. Допустимые значения - 'input' - входная переменная и 'output' — выходная переменная;

varIndex – порядковый номер переменной, к которой добавляется функция принадлежности;

mfName — наименование добавляемой функции принадлежности (терм). Задается в виде строки символов;

mfType – тип (модель) добавляемой функции принадлежности. Задается в виде строки символов;

mfParams – вектор параметров добавляемой функции принадлежности.

Порядковый номер функции принадлежности в системе нечеткого логического вывода соответствует порядку добавления с помощью функции addmf, т.е. первая добавленная функция принадлежности всегда будет иметь порядковый номер 1. С помощью функции addmf невозможно добавить функцию принадлежности к несуществующей переменной. В этом случае необходимо вначале добавить переменную к системе нечеткого логического вывода с помощью функции addvar.

Пример:

```
FIS name=addmf(FIS name, 'input', 1, 'низкий', 'trapmf', [150, 155, 165, 170])
```

Строка добавляет в терм-множество первой входной переменной нечеткой системы FIS_name терм 'низкий' с трапециевидной функцией принадлежности с параметрами [150, 155, 165, 170].

Пример: добавление переменной 'возраст' с термами (функциями принадлежности) 'молодой', 'средний' и 'старый'.

```
r=newfis('MY_FIS_name');
r=addvar(r, 'input', 'возраст', [0 90]);
r=addmf(r, 'input', 1, 'молодой', 'trapmf', [0 0 20 30]);
r=addmf(r, 'input', 1, 'средний', 'trapmf', [20 30 50 60]);
r=addmf(r, 'input', 1, 'старый', 'trapmf', [50 60 90 90]);
```

RMMF - Удаление терма из системы нечеткого логического вывода

Синтаксис:

```
fis = rmmf (fis, varType, varIndex, 'mf', mfIndex)
```

Описание:

Удаление терма из системы нечеткого логического вывода. Функция rmmf имеет 5 входных аргументов:

```
fis – система нечеткого логического вывода;
```

varType — тип переменной. Допустимые значения: 'input' — входная переменная; '**output'** — выходная переменная;

varIndex – порядковый номер переменной. Порядковые номера входных и выходных переменных независимы;

'mf'- константа;

mfIndex –порядковый номер удаляемого терма, используемого для лингвистической оценки переменной с порядковым номером varIndex.

При попытке удаления терма, используемого в базе знаний, появится окно с запросом на подтверждение удаления.

Пример:

```
a=readfis('tipper');
b=rmmf(a, 'input', 1, 'mf', 3)
```

Удаление терма "excellent" из терм-множества, используемого для лингвистической оценки входной переменной "service" в демонстрационной системе нечеткого логического вывода "Tipper".

ADDRULE - Добавляет правила в базу знаний системы нечеткого логического вывода

Синтаксис:

FIS name= addrule (FIS name, ruleList)

Описание:

Правила можно добавить только к существующей в рабочей области MatLab системе нечеткого логического вывода. Функция addrule имеет два входных аргумента:

FIS_name – идентификатор системы нечеткого логического вывода в рабочей области MatLab;

ruleList – матрица добавляемых правил.

Матрица правил должна быть задана в формате indexed. Количество строк матрицы ruleList равно количеству добавляемых правил, т.е. каждая строка матрицы соответствует одному правилу. Количество столбцов матрицы равно m+n+2, где m (n) – количество входных (выходных) переменных системы нечеткого логического вывода.

Первые m столбцов соответствуют входным переменным, т.е. задают ЕСЛИ-часть правил. Элементы этих столбцов содержат порядковые номера термов, используемых для лингвистической оценки соответствующих входных переменных. Значение 0 указывает, что соответствующая переменная в правиле не задана, т.е. ее значение равно none.

Следующие п столбцов соответствуют выходным переменным, т.е. задают ТО-часть правил. Элементы этих столбцов содержат порядковые номера термов, используемых для лингвистической оценки соответствующих выходных переменных.

Предпоследний столбец матрицы содержит весовые коэффициенты правил. Значения весовых коэффициентов должны быть в диапазоне [0, 1].

Последний столбец матрицы задает логические связки между переменными внутри правил. Значение 1 соответствует логической операции И, а значение 2 – логической операции ИЛИ.

Пример.

```
FIS name=addrule(FIS name, [1 1 1 1 1; 1 2 2 0.5 1])
```

Строка добавляет в базу знаний системы FIS_name два правила, которые интерпретируются следующим образом:

```
Если вход1=MF1 и вход2=MF1, то выход1=MF1 с весом 1,
Если вход1=MF1 и вход2=MF2, то выход1=MF2 с весом 0.5,
```

где MF1 (MF2) – терм с порядковым номером 1 (2).

<u>PLOTMF - Вывод графиков функций принадлежности термов одной</u> переменной

Синтаксис:

```
plotmf (fis, varType, varIndex, numPts)
[x, y] = plotmf (fis, varType, varIndex, numPts)
```

Описание:

Функция plotmf рисует графики функций принадлежности термов одной переменной системы нечеткого логического вывода. Функция plotmf может иметь 3 или 4 входных аргумента:

fis – система нечеткого логического вывода;

varType – тип переменной. Допустимые значения: 'input' – входная переменная; '**output'** – выходная переменная;

varIndex – порядковый номер переменной. Порядковые номера входных и выходных переменных независимы.

numPts – количество дискрет, по которым строятся графики функций принадлежности. Значение по умолчанию – 181.

Функция plotmf может иметь два выходных аргумента:

х - матрица значений дискрет по оси абцисс для всех графиков функций принадлежности;

у - матрица значений функций принадлежности, соответствующих вектору х.

При вызове функции plotmf в формате с выходными аргументами графики функций принадлежности не выводятся.

Пример:

```
a=readfis('tipper');
plotmf(a, 'input', 1)
```

EVALMF - Вычисление значений произвольной функции принадлежности

Синтаксис:

```
y = evalmf(x, params, type)
```

Описание:

Позволяет вычислить значения произвольной функции принадлежности Функция evalmf иметь три входных аргумента:

 ${f x}$ – вектор, для координат которого необходимо рассчитать степени принадлежности; ${f params}$ – вектор параметров функции принадлежности, порядок задания которых определяется ее типом;

type – тип функции принадлежности. Значение типа функции принадлежности может быть задано в виде строчки символов или числом:

- 1 'trimf';
- 2 'trapmf';
- 3 'gaussmf';
- 4 'gauss2mf';
- 5 'sigmf';

```
6 - 'dsigmf';
7 - 'psigmf';
8 - 'gbellmf';
9 - 'smf';
10 - 'zmf';
11 - 'pimf'.
```

При задании другого типа функции принадлежности предполагается, что она определена пользователем и задана соответствующим m-файлом.

Функция evalmf возвращает выходной аргумент у, содержащий степени принадлежности координат вектора х.

Пример:

```
x = 0: 0.1: 10;y = \text{evalmf}(x, [0 \ 3 \ 9], 1);plot (x, y)title ('Triangular membership function with parameters [0 \ 3 \ 9]')
```

Построение графика треугольной функции принадлежности с параметрами [0 3 9] на интервале [0, 10].

EVALFIS - Выполнение нечеткого логического вывода

Синтаксис:

```
output = evalfis(input, fis)
output = evalfis(input, fis, numPts)
[output, IRR, ORR, ARR] = evalfis(input, fis)
[output, IRR, ORR, ARR] = evalfis(input, fis, , numPts)
```

Описание:

Выполняет нечеткий логический вывод. Функция evalfis может иметь три входных аргумента, первые два из которых обязательные:

input — матрица значений входных переменных, для которых необходимо выполнить нечеткий логический вывод. Матрица должна иметь размер M х N, где N — количество входных переменных; М — количество входных данных. Каждая строчка матрицы представляет один вектор значений входных переменных;

fis – идентификатор системы нечеткого логического вывода;

numPts — необязательный входной аргумент, задающий количество точек дискретизации функций принадлежности. Значение по умолчанию равно 101. Это означает, что все нечеткие множества представляются в виде 101 пары чисел "элемент универсального множества — степень принадлежности". При уменьшении точек дискретизации возрастает скорость выполнения логического вывода и уменьшается точность вычислений, и наоборот.

Функция evalfis может иметь четыре выходных аргумента:

output — матрица значений выходных переменных, получаемая в результате нечеткого логического вывода для вектора входных значений input. Матрица имеет

размер $M \times L$, где M – количество входных данных; L – количество выходных переменных в fis;

IRR – матрица размером NR х N, где NR – количество правил в fis; N – количество входных переменных. Матрица содержит степени принадлежности входных значений термам, входящих в базу знаний;

ORR — матрица размером numPts x (NR*L), где numPts — количество точек дискретизации; NR — количество правил в fis; L — количество выходных переменных в fis. Каждый столбец матрицы содержит функцию принадлежности выходной переменной, получаемую в результате вывода по одному правилу. Функция принадлежности дискретизируется на numPts точках и представляется в виде множества степеней принадлежности;

ARR – матрица размером numPts x L, где numPts – количество точек дискретизации; L – количество выходных переменных в fis. Матрица содержит функции принадлежности выходных переменных, получаемые в результате нечеткого логического вывода по всей базе знаний. Функции принадлежности дискретизируются на numPts точках и представляются в виде множества степеней принадлежности.

Аргументы IRR, ORR и ARR являются необязательными, они содержат промежуточные результаты нечеткого логического вывода. В случае задания нескольких входных данных значения аргументов IRR, ORR и ARR будут рассчитаны только для последнего вектора входных данных. Эти аргументы используются когда необходимо отследить процесс логического вывода или когда необходимо реализовать нестандартную процедуру нечеткого вывода.

Пример.

Первая строчка загружает демо-систему нечеткого логического вывода tipper, предназначенную для определения процента чаевых в ресторане. Вторая строчка рассчитывает размер чаевых, в случае если service=3 и food=8.

```
fis = readfis('tipper');
tip = evalfis([3 8], fis)
```