PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-141010

(43)Date of publication of application: 17.05.2002

(51)Int.CI.

H01J 37/06 G21K 5/04 H01J 37/147 H01J 37/28 H01L 21/66 // G01B 15/00 G01N 23/225

(21)Application number : 2000-336037

(71)Applicant: NIKON CORP

EBARA CORP

(22)Date of filing:

02.11.2000

(72)Inventor: HAMASHIMA MUNEKI

NAKASUJI MAMORU

KATO TAKAO **NOMICHI SHINJI** SATAKE TORU

(54) ELECTRON BEAM DEVICE AND MANUFACTURING METHOD OF DEVICE USING THE **SAME**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electron beam device preventing a beam from becoming out of focus due to a space-charge effect even when a beam current of multiple beams is increased.

SOLUTION: The electron beam device 1 utilizes nonaxial electron beams emitted in the direction other than axial direction out of the electron beams emitted from a thermal field emission electron gun 11, and the electron beams emitted in non-axial direction are converted into multiple electron beams and converged on a surface of a sample.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-141010 (P2002-141010A)

(43)公開日 平成14年5月17日(2002.5.17)

(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
H01J 37/06		H01J 37/06	Z 2F067
G21K 5/04		G21K 5/04	W 2G001
			C 4M106
	•		S 5C030
H01J 37/147		H 0 1 J 37/147	B 5C033
	審査請求	未請求 請求項の数5 OL	(全 6 頁) 最終頁に続く
(21)出願番号	特願2000-336037(P2000-336037)	(71)出願人 000004112	
		株式会社ニコ	ン
(22)出顧日	平成12年11月2日(2000.11.2)	東京都千代田	区丸の内3丁目2番3号
		(71)出願人 000000239	
		株式会社荏原	製作所
		東京都大田区	羽田旭町11番1号
		(72)発明者 浜島 宗樹	
			区丸の内3丁目2番3号 株
		式会社ニコン	内
		(74)代理人 100089705	
		弁理士 社本	一夫 (外5名)
			最終頁に続く

(54) 【発明の名称】 電子線装置及びその電子線装置を用いたデバイスの製造方法

(57)【要約】

【発明の課題】マルチビームのビーム電流を増加しても 空間電荷効果によるビームボケをあまり大きくさせない 電子線装置提供することである。

【解決手段】本発明の電子線装置1は、熱電界放出電子 銃11から放出される電子線のうち光軸方向以外の方向 に放出される非光軸方向電子線を利用し、前記非光軸方 向電子線を複数の電子ビームにして試料面で結像させ る。

【特許請求の範囲】

【請求項1】 電子銃から放出される電子線のうち光軸 方向以外の方向に放出される非光軸方向電子線を利用 し、前記非光軸方向電子線を複数の電子ビームにして試 料面で結像させることを特徴とした電子線装置。

【請求項2】 請求項1に記載の電子線装置において、前記電子銃のカソードを構成する材料の結晶の、光軸に直角な面方位が<100>であり、前記非光軸方向電子線が前記材料の結晶の<310>方位面から放出される電子線装置。

【請求項3】 熱電界放出型電子銃と、

前記電子銃から放出された電子線のうち光軸に対して角度を成して放出された電子線を光軸上でクロスオーバ像を結ばせるコンデンサレンズ、及び前記電子銃と前記クロスオーバ像の位置との間に設けられていて複数の開口を有する開口部材を有していて、前記開口を通過した電子ビームを縮小して試料面上に投影、走査する光学系と、を備えたことを特徴とする電子線装置。

【請求項4】 請求項3に記載の電子線装置において、 前記複数の電子ビームを試料の表面上で一方向に走査し ながら前記試料を支持するステージを前記走査の方向と 直角な方向に連続移動させながら試料の評価を行う電子 線装置。

【請求項5】 請求項1ないし4のいずれかに記載の電子線装置を用いてプロセス途中のウエハーを評価することを特徴とするデバイス製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電子線装置及びその電子線装置を用いたデバイスの製造方法に関し、詳しくは、最小線幅が0.1 µm以下のパターンを有するウエハーのような試料の欠陥検査、線幅測定、合わせ精度測定、高時間分解能電位コントラスト測定等を行う電子線装置並びにその電子線装置を用いたデバイスの製造方法に関する。

[0002]

【従来技術】電子線を利用した欠陥検査装置において複数の電子ビーム(マルチビーム)を使用するとビームの数だけスループットが向上することは、例えば特開平10-134757号に示されるように、既に知られている。一方、ビーム電流を増加すると空間電荷効果によってビームがぼけることも知られている。

[0003]

【発明が解決しようとする課題】欠陥検査装置等のスループットを向上させるため、単一の電子銃を使用してマルチビームを作ることが望まれるが、従来の技術では、電子ビームの数を増加しビーム電流を増加すると、空間電荷効果によりボケが大きくなるため、ビーム電流を増加させることができない問題があった。

【0004】本発明が解決しようとする一つの課題は、

ビームボケを大きくすることなく単一の電子銃でマルチ ビームを形成できる電子線装置を提供することである。 本発明が解決しようとする他の課題は、マルチビームの ビーム電流を増加しても空間電荷効果によるビームボケ をあまり大きくさせない電子線装置を提供することであ る。本発明が解決しようとする別の課題は、熱電界放出 電子銃のカソードから放出される非光軸方向の電子線を 複数の電子ビームにして試料面に投影、走査することに よってビーム電流を増加してもビームボケを少なくでき る電子線装置を提供することである。本発明が解決しよ うとする更に別の課題は、上記のような電子線装置を用 いてプロセス途中の試料を評価するデバイスの製造方法 を提供することである。

[0005]

【課題を解決するための手段】本願の一つの発明は、熱電界放出電子銃から放出される電子線のうち光軸方向以外の方向に放出される非光軸方向電子線を利用し、前記非光軸方向電子線を複数の電子ビームにして試料面で結像させるように構成されている。上記の電子線装置において、前記電子銃のカソードを構成する材料の結晶の、光軸に直角な面方位が<100>であり、前記非光軸方向電子線が前記材料の結晶の<310>方位面から放出されてもよい。

【0006】本願の他の発明は、熱電界放出型電子銃と、前記電子銃から放出された電子線のうち光軸に対して角度を成して放出された電子線を光軸上でクロスオーバ像を結ばせるコンデンサレンズ、及び前記電子銃と前記クロスオーバ像の位置との間に設けられていて複数の開口を有する開口部材を有していて、前記開口を通過した電子ビームを縮小して試料面上に投影、走査する光学系と、を備えて構成されている。上記電子線装置において、前記複数の電子ビームを試料の表面上で一方向に走査しながら前記試料を支持するステージを前記走査の方向と直角な方向に連続移動させながら試料の評価を行うように構成されてもよい。本願の更に別の発明によるデバイスの製造方法は、前記電子線装置を用いてプロセス途中のウエハーを評価するように構成されている。

[0007]

【実施の形態】以下図面を参照して本発明による電子線装置の一実施例を説明する。図1において、本実施形態による電子線装置1が模式的に示されている。この実施例の電子線装置1は、一次光学系10と、二次光学系30と、検出系40とを備えている。一次光学系10は、電子線を試料Sの表面に照射する光学系で、電子線を放出する電子銃11と、電子銃11から放出された電子線を集束するコンデンサレンズすなわち静電レンズ12と、複数の小孔が形成された開口部材すなわち開口板13と、絞り開口141を画成する絞り部材14と、縮小用の静電レンズ15と、E×B型分離器16と、対物レンズとしての静電レンズ17とを備え、それらは、図1

に示されるように電子銃11を最上部にして順に、しか も電子銃から放出される電子線の光軸Oが試料Sの表面 (試料面) に鉛直になるように配置されている。

【0008】一次光学系10には、この実施形態では、 更に、開口板13と絞り部材14との間に他のブランキ ング偏向器21が配置され、静電レンズ15の試料S側 に近接して第1の走査用偏向器22が配置され、E×B 分離器16と対物レンズとしての静電レンズ17との間 には第2の走査用偏向器23が配置され、静電レンズ17と試料Sとの間には軸対称電極24が配置されてい る。

【0009】電子銃11は、体心立法の単結晶を有する タングステンを<100>方位面(通常のワイヤは<1 10>方位)が先端となるように針状に尖らせてつくっ たカソード111を備えている。カソード111をこの ようにしてつくると、図2のカソード先端部の拡大図か らも明らかなように、カソード111の先端の光軸Oに 直角となるファセットすなわち小平面112がタングス テンの結晶の<100>方位面となり、光軸から外れた 同一円周上の四つの位置に結晶の<310>方位面11 3が存在することになる。カソード111は加熱のため のタングステンフィラメント (図示せず) にスポット溶 接されている。この針状に形成されたカソードの適当な 場所にはZrを溶接し、加熱によってZrをカソードの 先端まで拡散させ、酸素雰囲気中で熱処理することによ り2rOをタングステンの結晶の<100>方位のファ セットすなわち小平面112及び<310>方位面11 3にZrOの膜を形成させてある。電子銃の上記のよう に構成したカソードから放出される電子線は、光軸方向 の<100>方位面から放出される電子線と、光軸から 外れた<310>方位面から放出される4方向の非光軸 方向電子線とがある。この<100>方位面から放出さ れる電子線は、<310>方位面から放出される非光軸 方向電子線に比べて強度が大幅に小さい。

【0010】開口板13は、図3に示されるような位置 関係に配置された、4個の小孔131を有する。この小孔131は非光軸方向電子線の強度が最も強くなる場所に位置決めされている。具体的には、小孔131は光軸 Oから等間隔の位置すなわち光軸Oを中心とする同一円 周上に、円周方向に等間隔で配置されているが、X 軸及びY 軸に関して θ だけ回転方向(図2 で反時計回り方向)にずれている。この θ は、ビーム間の間隔のX 軸に沿った方向の成分(X 成分)が全て等しくなるように決定されている。すなわち、

 $2 s i n \theta = c o s \theta - s i n \theta$

を満たすようにしてある。小孔は、例えば、2μmφの 円形に形成されている。なお、一次光学系の絞り部材1 4、静電レンズ15、E×B型分離器16、対物レンズ としての静電レンズ17、ブランキング開口部材21、 第1の走査用偏向器22、第2の走査用偏向器23並び に軸対称電極24の構造及び機能は従来のものと同じで 良いので、それらの詳細な説明は省略する。

【0011】二次光学系30は一次光学系10のE×B 型分離器16近くの焦点面FP近傍で光軸口に対して角 で傾斜している光軸O'に沿って配置された二つの拡大 レンズすなわち静電レンズ31及び32と、開口板33 とを備えている。 開口板33には開口板13に形成され た小孔131の個数(4個)及び配列に対応した個数及 び配列の開口331が形成されている。 開口板13及び 33は従来のものと同じ材料を用いて作られても良いの で詳細な説明は省略する。また静電レンズ31及び32 の構造及び機能も従来のものと同じでよいので、それら の詳細な説明は省略する。検出系40は、開口板33の 各開口33に合わせて配置された検出器41と、検出器 41に増幅器42を介して接続された画像形成回路43 とを備えている。画像形成回路43は第1の走査用偏向 器22に電気的に接続され、その走査用偏向器は第2の 走査用偏向器23に電気的に接続されている。各検出器 41はシンチレータ及びフォト・マルチプライヤ・チュ ーブを有する公知の構造のものでよい。なお、図1にお いて開口板13の小孔131及び開口板33の開口33 1は、それぞれ一直線状に配置されているように示され ているが、それらは単に説明のために一直線状に並べた だけであり、実際には図2に示されるような配置になっ ている。

【0012】次に、上記構成を有する本実施形態による 電子線装置1の動作に付いて説明する。 単一のカソード を有する電子銃11から放出された電子線は、前述のよ うに、光軸方向(この例では光軸〇上)に<100>面 から放出される電子線と、<310>面から放出される 4方向の非光軸方向電子線とから成る。これらの電子線 はコンデンサレンズすなわち静電レンズ12により絞り 部材14の位置でクロスオーバを結像するように集束さ れるが、光軸方向の電子線は開口板13により遮断さ れ、非光軸方向の電子線のみが開口板13の対応する小 孔131を通過し、4本の電子ビームとなって試料面に 向かって進む。4本の電子ビームは、縮小用静電レンズ 15及び対物レンズ17により縮小され、試料Sの表面 すなわち試料面に結像される。これと同時に、クロスオ ーバ像は静電レンズ15により拡大されて対物レンズ1 7の主面に結像される。対物レンズ17の主面での電子. ビームの強度分布は、図4に示されるように、カソード における光源位置が4本の非光軸方向電子ビームに対し ては光軸上にないため、その拡大像も光軸上では強度は 弱く、最も強度の大きい領域R1 (図4で実線の円で図 示) は開口板13の4個の小孔131の位置に対応した 四つの離れた位置に形成される。強度の少し弱い領域R 2 (図4で破線の円で図示) はR1の周囲の一定範囲に 形成されるが、この領域は隣接する他の領域R2と部分 的に重なり合い、図4に示されるようなプロファイルに

なると予測される。このように、電子ビームの強度が最大になる領域が4本のビームについて互いに重なり合わないので、空間電荷効果によるビームボケが大きくなることはなく、4本の電子ビームの合計のビーム電流を大きくできる。

【0013】上記のようにして形成された4本の電子ビ ームは、偏向器22及び23によって試料面上でX方向 (図1及び図3において左右方向)に走査され、試料か ら放出された二次電子は対物レンズ17で拡大されて位 置P1に結像される。この結像された二次電子はE×B 分離器16により二次光学系30の光軸O'に偏向され て拡大レンズすなわち静電レンズ31及び32により拡 大されて開口板33の対応する開口331に結像され る。この結像された二次電子の像は各開口331に対応 して配置された検出器41により検出され、その検出信 号を電気信号として出力する。検出器41からの出力信 号はそれぞれの増幅器42により増幅されて画像形成回 路43に入力される。この画像形成回路により二次電子 による試料面の画像が偏向器22及び23の動作と同期 させて形成される。この画像に基づいて欠陥検査、試料 面に形成されたパターンの線幅測定、合わせ精度の測 定、高時間分解能電位コントラストの測定等を行う。

【0014】上記実施形態では熱電界放出電子銃のカソード材料としてタングステンにZrOを被覆したものを使用した例を示したが、カソード材料として炭化タンタルを用いれば、結晶の<310>方位面での電子線の放出が前記材料を使用した場合より更に大きくなることが実験的に証明されている。この炭化タンタルのカソードは、<110>方位の単結晶のタンタルを細く尖らせ、炭化させることによってつくられている。このカソードは融点がタングステンよりも高いので、タングステンにZrOを被覆したカソードの場合より更に悪い真空圧(1×10⁻¹torrないし2×10⁻⁶torr)でも安定して動作する。カソード材料としては、上記の他、遷移金属の炭化物、窒化物又はホウ化物でもよい。

【0015】本発明の電子線装置を用いて4本の電子ビームをX方向に走査させながら試料面に照射させ、試料を支持する試料台をX方向と直角のY方向に移動させながら試料面の検査等を行えば、単一の電子ビームを用いた場合より4倍のスループットが得られることになる。したがって、本発明の電子線装置を用いれば高いスループットで試料面の欠陥検査、試料面に形成されたパターン等の線幅検査、或いは試料の合わせ精度測定等を行うことができる。

【0016】次に<u>図5</u>及び<u>図6</u>を参照して本発明による 半導体デバイスの製造方法の実施例を説明する。<u>図5</u> は、本発明による半導体デバイスの製造方法の一実施例 を示すフローチャートである。この実施例の製造工程は 以下の主工程を含んでいる。

(1) ウエハを製造するウエハ製造工程(又はウエハを

準備するウエハ準備工程)

- (2) 露光に使用するマスクを製造するマスク製造工程 (又はマスクを準備するマスク準備工程)
- (3) ウエハに必要な加工処理を行うウエハプロセッシングT程
- (4) ウエハ上に形成されたチップを1個ずつ切り出 し、動作可能にならしめるチップ組立工程
- (5) できたチップを検査するチップ検査工程 なお、上記のそれぞれの主工程は更に幾つかのサブ工程 からなっている。
- 【0017】これらの主工程中の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウエハプロセッシング工程である。この工程では、設計された回路パターンをウエハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウエハプロセッシング工程は以下の各工程を含んでいる。
- (1) 絶縁層となる誘電体薄膜や配線部、或いは電極部 を形成する金属薄膜等を形成する薄膜形成工程 (CVD やスパッタリング等を用いる)
- (2) この薄膜層やウエハ基板を酸化する酸化工程
- (3) 薄膜層やウエハ基板等を選択的に加工するためにマスク (レチクル) を用いてレジストパターンを形成するリソグラフィー工程
- (4) レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
- (5) イオン・不純物注入拡散工程
- (6)レジスト剥離工程
- (7) 更に、加工されたウエハを検査する工程 なお、ウエハプロセッシング工程は必要な層数だけ繰り 返し行い、設計通り動作する半導体デバイスを製造す る。
- 【0018】 図6は、図5のウエハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。このリソグラフィー工程は以下の各工程を含む。
- (1) 前段の工程で回路パターンが形成されたウエハ上 にレジストをコートするレジスト塗布工程
- (2) レジストを露光する露光工程
- (3) 露光されたレジストを現像してレジストのパターンを得る現像工程
 - (4) 現像されたレジストパターンを安定化するための アニール工程

上記の半導体デバイス製造工程、ウエハプロセッシング 工程、リソグラフィー工程については、周知のものであ りこれ以上の説明を要しないであろう。上記(7)の検 査工程に本発明に係る電子線装置を利用した欠陥検査方 法、欠陥検査装置を用いると、微細なパターンを有する 半導体デバイスでも、スループット良く検査できるの で、全数検査が可能となり、製品の歩留まりの向上、欠 陥製品の出荷防止が可能と成る。また、電子線装置を利用した線幅測定方法及び装置によれば、高い精度でスループット良く試料面に形成されたパターンの線幅を測定できる。更に、上記電子線装置を利用した合わせ精度測定方法及び装置或いは高時間分解能電位コントラスト測定方法及び装置を使用して合わせ精度の測定或いは電位コントラストの測定も可能である。更にまた、上記電子線装置を利用した欠陥レビュー方法及び装置によれば、高い精度で欠陥を監視できる。

[0019]

【発明の効果】本発明によれば、次のような効果を奏することが可能である。

(イ) 光軸方向への放出される電子線よりも高輝度の非 光軸方向の電子線を利用するので、同一のビーム径でよ り大きいビーム電流が得られる。

(ロ) 最終の対物レンズ主面におけるクロスオーバが4本の電子ビームにより光軸から外れた位置にできるので、空間電荷効果が低減され大きいビーム電流が得られる

【図面の簡単な説明】

【<u>図1</u>】本発明による電子線装置の一実施例の模式図である。

【図2】図1の電子線装置に使用されている電子銃のカ

ソードの先端の拡大図である。

【<u>図3】図1</u>に示される開口板に形成される小孔の配置を示す平面図である。

【<u>図4</u>】対物レンズ主面における開口板の小孔のクロスオーバを示す拡大図である。

【<u>図5</u>】本発明による半導体デバイスの製造方法の一実施例を示すフローチャートである。

【<u>図6</u>】図5のウエハプロセッシング工程の中核をなす リソグラフィー工程を示すフローチャートである。

【符号の説明】

1 電子線装置

回路

10 一次光学系	1 1	電子銃
12、15 静電レンズ	1 3	開口板
14 絞り部材	16	E×B偏
向器		
17 静電レンズ	2 1	ブランキ
ング偏向器		
22、23 静電レンズ	2 4	軸対象電
極		
30 二次光学	23	開口板
40 検出系	4 1	検出器
4 2 増幅器	43	信号処理

| 図2 | 図2 | 図3 | 131

[図5]

フロントページの続き

(51) Int. Cl.	就別記号 職別記号		FΙ			テーマコート'(参え	岑)
H01J	37/28		H01J	37/28		Α	
H01L	21/66		H 0 1 L	21/66		J	
// G01B	15/00		G 0 1 B	15/00		В	
G 0 1 N	23/225		G 0 1 N	23/225			
(72)発明者	中筋 護東京都大田区羽田旭町11番1号	荏原マイ	(72)	発明者	佐竹 徹 東京都太田	区羽田旭町11番1号	· 株式会社
	スター株式会社内	II//N			在原製作所		DEPOT II
(72)発明者	加藤 隆男		FЯ	'ーム(参	考) 2F067	AA26 AA54 AA62 BB0	1 BB04
	東京都大田区羽田旭町11番1号	株式会社				СС17 ННО6 НН13 ЈЈО	5 KK04

 東京都大田区羽田旭町11番1号
 株式会社
 CC17 HH06 HH13 JJ05 KK04

 住原製作所內
 LL02 LL16 MM07 QQ02

 (72)発明者
 野路 伸治
 2G001 AA03 BA07 CA03 DA02 DA06

 東京都大田区羽田旭町11番1号
 株式会社
 DA08 EA04 GA01 GA06 GA13

 往原製作所內
 HA13 JA02 JA03 LA11 MA05

 4M106 AA01 BA02 CA08 CA39 CA41 CA45 DB05 DB30
 CA46 DB05 DB30

 5C030 BB02
 BB02

5C030 BB02 5C033 FF03 TT01