MATH 407 — Complex Variables

Notes taken by Lukas Zamora

Fall 2018

Introduction to complex numbers, the complex plane, point sets in the plane, stereographic projection; the extended complex plane, curves and regions. [1]

Functions of a Complex Variable

Functions and limits, differentiability and analyticity, the Cauchy-Riemann conditions, linear fractional transformations, transcendental functions, Riemann surfaces. [2]

Integration in the Complex Plane

Line integrals, Cauchy's theorem, Cauchy formulas, Maximum Modulus Principle. [3]

Sequences and Series

Sequences of complex numbers; functions, infinite series, power series, analytic continuation, Laurent series, Double series, infinite products, improper integrals, the Gamma function. [4]

Residue Calculus

The Residue theorem, evaluation of real integrals, the principle of the argument, meromorphic functions, entire functions. [5]

Contents

1 The Complex Numbers

3

1 The Complex Numbers

Question: Does $x^2 + 1 = 0$ have any solutions?

- No: If we look for real solutions
- Yes: If we have a more general notion of numbers

We introduce i so that $i^2 = -1$.

Definition. \mathbb{C} is the set of complex numbers formed as z = x + iy, $x, y \in \mathbb{R}$. The *real part*, x, is written as Re(z), and the *imaginary part*, y, is written as Im(z).

Note. We can identify \mathbb{C} with points in \mathbb{R}^2 by the correspondence $(x+iy) \leftrightarrow (x,y)$.

Definition (Addition/Subtraction). We add/subtract complex numbers by their real and imaginary components respectively.

$$(a+ib) \pm (c+id) = (a \pm c) + i(b \pm d)$$

Definition. The *Modulus* (absolute value) of z = x + iy is the length of the vector (x, y) which is $\sqrt{x^2 + y^2}$, and is denoted as |z|.

Definition (Triangle Inequality). For vectors, we have the triangle inequality

$$|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$$

For \mathbb{C} , this translates to

$$|z_1 + z_2| \le |z_1| + |z_2|$$

There is also a useful variant:

Apply to z = (z - w) + w, where $z, w \in \mathbb{C}$.

$$\begin{aligned} |z| &\leq |z-w| + |w| \\ |z-w| &\geq |z| - |w| \\ |w| - |z| &\leq |w-z| = |z-w| \\ \Rightarrow |z-w| &\geq ||z| - |w|| \end{aligned}$$

Definition (Multiplication). For multiplying two complex numbers, we expand each binomial and collect the real and imaginary parts respectively.

$$(a+ib)(c+id) = (ac-bd) + i(bc+ad)$$

The usual algebraic rules still apply for complex numbers.

$$(z_1z_2)z_3=z_1(z_2z_3)$$
 associative $z_1z_2=z_2z_1$ commutative $z_1(z_2+z_3)=z_1z_2+z_1z_3$ distributive

Example (Proof of commutative).

Proof.

$$(a+ib)(c+id) = (ac-bd) + i(bc+ad)$$

 $(c+id)(a+ib) = (ca-db) + i(cb+da)$

Definition (Complex conjugate). If z = x + iy, then its complex conjugate, denoted as \bar{z} , is $\bar{z} = x - iy$.

Example. If we compute $z\bar{z}$, we get

$$(z+iy)(z-iy) = x^2 + y^2 + i(yx - xy)$$
$$= x^2 + y^2$$
$$= |z|^2$$

i.e $z\bar{z} = |z|^2$.

Some other useful properties:

$$\overline{(z+w)} = \bar{z} + \bar{w}$$
$$\overline{zw} = \bar{z}\bar{w}$$
$$|\bar{z}| = |z|$$

Note. $z + \bar{z}/2 = x$, $z - \bar{z}/2i = y$.

Definition (Inverses). If $z \neq 0$, then 1/z exists as a complex number. We have

$$z\bar{z} = |z^2|$$

or

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}$$

Definition (Division). It follows from the definition of a complex inverse,

$$\frac{z}{w} = \frac{z\bar{w}}{w\bar{w}} = \frac{z\bar{w}}{|w|^2}$$

Theorem (Fundamental Theorem of Algebra). Every polynomial can be expressed as a product of linear factors over \mathbb{C} . This is equivalent to the statement that every polynomial equation p(z) = 0 has a solution.

Proof. Suppose a polynomial p(z) factors as $(z-z_1)(z-z_2)...(z-z_n)$, then we have solutions $z_1,...,z_n$ for p(z)=0.

Suppose all equations p(z) = 0 have solutions. We want all p(z)'s to factor. Do induction on the degree of p(z).

If deg p(z) = 1, then $p(z) = (z - z_1)$, so it factors. Suppose polynomials of deg n - 1 factor, and consider an n degree polynomial p(x), so p(z) = 0 has a solution. So there is z_1 with $p(z_1) = 0$. We can write

$$p(z) = (z - z_1)q(z)$$

with deg q(z) = n - 1. Then q(z) factors as $(z - z_1)(z - z_2) \dots (z - z_n)$, so p(z) factors.

Remark. If the Fundamental Theorem is true, then for any complex number w, the equation $z^n - w = 0$ has a solution, i.e all complex numbers have n^{th} roots.

Polar Form

Sometimes, working in a different coordinate system helps simplify things. We introduce the polar coordinate system, where r is the distance from the point to the origin, and θ is the angle from the point to the x-axis.

To convert from Cartesian to polar and back, we use the following formulas

$$x = r\cos\theta$$
 $y = r\sin\theta$

We also adopt the convention that $-\pi \le \theta \le \pi$.

Definition (Argument). We define the argument of z to be all θ 's so that $z = r \cos \theta + ir \sin \theta$. We write this as arg z. There is always one value in $(-\pi, \pi]$ and this the *principal value*, written as Arg z. We then have that

$$\arg z = \{ \operatorname{Arg} z + 2\pi n \, | \, n \in \mathbb{Z} \}$$

Example.

a.)
$$Arg(-1) = \pi$$
, $arg(-1) = \{(2n+1)\pi \mid n \in \mathbb{Z}\}.$

b.)
$$Arg(i) = \pi/2$$
, $arg(i) = \{(2n + \frac{1}{2})\pi \mid n \in \mathbb{Z}\}.$

In Calculus, we have the following Taylor Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$
$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots$$

This suggests

$$\begin{split} e^{i\theta} &= 1 + i\theta + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \frac{i^4\theta^4}{4!} + \dots \\ &= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots\right) \\ &= \cos\theta + i\sin\theta \end{split}$$

Since any z can be written in polar as $z=r\cos\theta+ir\sin\theta$, we can write this as $z=re^{i\theta}$.