

Lecture 7 MapReduce Algorithms

SE-808 Cloud Application Development (supported by Google) http://my.ss.sysu.edu.cn/courses/cloud/

School of Software, Sun Yat-sen University

Outline

- Basic MapReduce Algorithms
 - Sort/Search
- MapReduce algorithm design
 - Managing dependencies
 - Coordinating mappers and reducers
- Case study #1: inverted index
- Case study #2: pairwise similarity comparison

Part of the slides are adapted from Jimmy Lin's cloud course slides: http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/index.html

MapReduce Jobs

- Tend to be very short, code-wise
 - IdentityReducer is very common
- "Utility"jobs can be composed

Represent a data flow, more so than a procedure

Sort: Inputs

- A set of files, one value per line.
- Mapper key is file name, line number.
- Mapper value is the contents of the line.

Sort Algorithm

- Takes advantage of reducer properties:
 - (key, value) pairs are processed in order by key;
 - reducers are themselves ordered •
- Mapper
 - Identity function for value (k, v) → (v, _)
- Reducer
 - Identity function (k', _) -> (k', "")

Sort: The Trick

- (key, value) pairs from mappers are sent to a particular reducer based on hash(key)
- Must pick the hash function for your data such that
 - k< k=> hash(k) < hash(k)</p>

Final Thoughts on Sort

- Used as a test of Hadoop's raw speed
- Essentially "IO drag race"
- Highlights utility of GFS

 Yahoo: Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds, 3800 nodes, May 2009.

Search: Inputs

- A set of files containing lines of text
 - A search pattern to find
 - Mapper key is file name, line number
 - Mapper value is the contents of the line
- Search pattern sent as special parameter

Search Algorithm

Mapper:

Given (filename, some text) and "pattern", if "text" matches "pattern" output (filename, _)

Reducer:

Identity function

Exercise 1: Graph reversal

Given a directed graph as an adjacency list:

```
src1: dest11, dest12, ... src2: dest21, dest22, ...
```

Construct the graph in which all the links are reversed

Exercise 2: Frequent Pairs

- Given a large set of market baskets, find all frequent pairs
 - Frequent pairs are item pairs with counts greater than a given threshold

MapReduce Algorithm Design

Managing Dependencies

- Remember: Mappers run in isolation
 - You have no idea in what order the mappers run
 - You have no idea on what node the mappers run
 - You have no idea when each mapper finishes
- Tools for synchronization:
 - Ability to hold state in reducer across multiple key-value pairs
 - Sorting function for keys
 - Partitioner
 - Cleverly-constructed data structures

Motivating Example

- Term co-occurrence matrix for a text collection
 - M = N x N matrix (N = vocabulary size)
 - M_{ij} : number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)
- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks

"You shall know a word by the company it keeps" (Firth, 1957)

e.g., Mohammad and Hirst (EMNLP, 2006)

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of events (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) → count
- Reducers sums up counts associated with these pairs
- Use combiners!

Note: in all these slides, a key-value pair denoted as $k \rightarrow v$

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)

Another Try: "Stripes"

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit a → { b: count_b, c: count_c, d: count_d ... }
- Reducers perform element-wise sum of associative arrays

$$a \rightarrow \{ b: 1, d: 5, e: 3 \}$$

+ $a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \}$
 $a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}$

"Stripes" Analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object is more heavyweight
 - Fundamental limitation in terms of size of event space

Efficiency comparison of approaches to computing word co-occurrence matrices

percentage of the APW sub-corpora of the English Gigaword

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Conditional Probabilities

How do we compute conditional probabilities from counts?

$$P(B \mid A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

P(B|A): "Pairs"

 $(a, *) \rightarrow 32$ Reducer holds this value in memory

$$(a, b_1) \rightarrow 3$$
 $(a, b_1) \rightarrow 3 / 32$
 $(a, b_2) \rightarrow 12$
 $(a, b_2) \rightarrow 12 / 32$
 $(a, b_3) \rightarrow 7$
 $(a, b_3) \rightarrow 7 / 32$
 $(a, b_4) \rightarrow 1$
 $(a, b_4) \rightarrow 1 / 32$

- For this to work:
 - Must emit extra (a, *) for every b_n in mapper
 - Must make sure all a's get sent to same reducer (use partitioner)
 - Must make sure (a, *) comes first (define sort order)
 - Must hold state in reducer across different key-value pairs

P(B|A): "Stripes"

$$a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$$

- Easy!
 - One pass to compute (a, *)
 - Another pass to directly compute P(B|A)

Synchronization in Hadoop

- Approach 1: turn synchronization into an ordering problem
 - Sort keys into correct order of computation
 - Partition key space so that each reducer gets the appropriate set of partial results
 - Hold state in reducer across multiple key-value pairs to perform computation
 - Illustrated by the "pairs" approach
- Approach 2: construct data structures that "bring the pieces together"
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead
- Combiners make a big difference!
 - RAM vs. disk and network
 - Arrange data to maximize opportunities to aggregate partial results

Questions?

Case study #1: Inverted Index

Inverted Index

Term	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7	Doc 8
aid	0	0	0	1	0	0	0	1
all	0	1	0	1	0	1	0	0
back	1	0	1	0	0	0	1	0
brown	1	0	1	0	1	0	1	0
come	0	1	0	1	0	1	0	1
dog	0	0	1	0	1	0	0	0
fox	0	0	1	0	1	0	1	0
good	0	1	0	1	0	1	0	1
jump	0	0	1	0	0	0	0	0
lazy	1	0	1	0	1	0	1	0
men	0	1	0	1	0	0	0	1
now	0	1	0	0	0	1	0	1
over	1	0	1	0	1	0	1	1
party	0	0	0	0	0	1	0	1
quick	1	0	1	0	0	0	0	0
their	1	0	0	0	1	0	1	0

Map Reduce Algorithm: Inverted Index

SUN YAT-SEN UNIVERSITY

Questions?

Case study #2: pairwise similarity comparison

Pairwise Document Similarity

- Applications:
 - Clustering
 - Cross-document coreference resolution
 - "more-like-that" queries

Problem Description

Consider similarity functions of the form:

$$sim(d_i, d_j) = \sum_{t \in V} w_{t, d_i} w_{t, d_j}$$

But, actually...

$$sim(d_i, d_j) = \sum_{t \in d_i \cap d_j} w_{t, d_i} w_{t, d_j}$$

- Two step solution in MapReduce:
 - 1. Build inverted index
 - 2. Compute pairwise similarity from postings

Building the Inverted Index

SUN YAT-SEN UNIVERSITY

Computing Pairwise Similarity

Analysis

- Main idea: access postings once
 - O(df²) pairs are generated
 - MapReduce automatically keeps track of partial weights
- Control effectiveness-efficiency tradeoff by dfCut
 - Drop terms with high document frequencies
 - Has large effect since terms follow Zipfian distribution

Exercise 3: TF-IDF

- Term Frequency
 - Inverse Document Frequency
 - Relevant to text processing
 - Common web analysis algorithm

The Algorithm, Formally

$$tf_i = \frac{n_i}{\sum_k n_k}$$

$$idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}$$

$$tfidf = tf \cdot idf$$

- D the set of documents
- |D| the number of documents

Information We Need

- Number of times term X appears in a given document
- Number of terms in each document
- Number of documents X appears in
- Total number of documents

Job 1: Word Frequency in Doc

- Mapper
 - Input: docname → contents
 - Output: (word, docname) →1
- Reducer –Sums counts for word in document
 - Outputs: (word, docname) → n
- Combiner is same as Reducer

Job 2: Word Counts For Docs

Mapper

- Input: (word, docname)→ n
- Output: docname → (word, n)

Reducer

- Sums frequency of individual n's in same doc
- –Feeds original data through
- Outputs (word, docname)→ (n, N)

Job 3: Word Frequency in Corpus

Mapper

- –Input: ((word, docname), (n, N))
- Output: (word, (docname, n, N, 1))

Reducer

- Sums counts for word in corpus
- Outputs ((word, docname), (n, N, m))

Thoughts on TF-IDF

- Several small jobs add up to full algorithm
- Lots of code reuse possible
 - Stock classes exist for aggregation, identity
- Jobs 3 and 4 can really be done at once in same reducer, saving a write/read cycle
- Very easy to handle medium-large scale, but must take care to ensure flat memory usage for largest scale

Job 4: Calculate TF-IDF

- Mapper
 - –Input: ((word, docname), (n, N, m))
 - –Assume D is known (or, easy MR to find it)
 - –Output ((word, docname), TF*IDF)
- Reducer
 - –Just the identity function

Whatever the good tools you have, algorithms are always the KEY.

