

IEEE 802.11?

	802.11	802.11b	802.11a	802.11g	??
Year	1997	1999	2001	2002	??
Speed	1-2Mbps	5/11 Mbps	<54 Mbps	??	??
Freq.	2.4 GHz	2.4 GHz	??	2.4 GHz	??
Chan.	FHSS-75 DSSS-14	??	12 (3 n- over)	3 n-over	??
Range	-	100 m	30 m	100 m	??

3

tools

• Wifi Analyzer

• Vistumbler

Discovery - Closed Network

15

User authentication

- ตามมาตรฐาน 802.11 กำหนดรูปแบบของการ Authentication ไว้ 2 รูปแบบคือ
 Open System Authentication และ Share-Key Authentication:
- Open System authentication
 - ทำการ Authentication ให้กับทุกคนที่ Request
 - ไม่มีการกำหนดรหัสผ่าน

Device Authentication request
Access Point
Authentication response

User authentication

- ▶ Shared-Key authentication
 - o มี Key ในการ Authentication เพื่อเข้าใช้งานระบบ
 - 🍳 ข้อเสียคือสามารถดักจับข้อมูลดังกล่าว และมีกระบวนการเพื่อหาคีย์ได้

17

Wire Equivalent Privacy (WEP) ใน 802.11b

- Confidentiality
 - ใช้คีย์ขนาด 40-bit ในการเข้ารหัส (เพิ่มเป็น 104-bit ใน WEP2)
 - o ใช้ RC4 algorithm
- Access Control
 - o ใช้ Shared key authentication + Encryption
- ▶ Data Integrity
 - o มีการสร้าง checksum ในทุกๆ messages

พัฒนาการของ 802.11

- ▶ ปี 2003 : Wi-Fi ประกาศใช้ Wi-Fi Protected Access (WPA).
 - o เพื่อแก้ไขปัญหาเบื้องต้นของ WEP
 - เป็นส่วนหนึ่งของมาตรฐาน IEEE 802.11i ที่มีการพัฒนาในขณะนั้น
- ▶ ปี 2004 : ประกาศใช้ WPA2
 - o การทำงานตรงตามมาตรฐาน IEEE 802.11i

23

Wi-Fi Protected Access (WPA)

- แก้ไขช่องโหว่ต่างๆ เบื้องต้นใน WEP
- ▶ ใช้งานกับอุปกรณ์ตามมาตรฐาน 802.11 เดิมได้ แต่ต้อง update firmware
- เป้าหมายคือการเพิ่มความสามารถในการเข้ารหัสข้อมูลและการทำ User
 Authentication
- มีการทำงาน 2 โหมด
 - WPA Enterprise : TKIP/MIC ; 802.1X/EAP
 - WPA Personal : TKIP/MIC ; PSK

WPA: Enterprise Mode

- ▶ Authentication ใช้มาตรฐาน IEEE 802.1X/EAP
 - o มีการบริหารจัดการ user credentials แบบรวมศูนย์
 - ° มีการใช้อุปกรณ์เพิ่มต้มคือ AAA Server
- ▶ ใช้ RADIUS protocols ในการทำ AAA และการแจกจ่ายคีย์
 - o รองรับกระบวนการทำ Authentication ที่หลากหลาย
 - o ส่วนใหญ่ใช้รหัสผ่านและ digital Certificates.
- ยกตัวอย่างเช่น
 - TLS, TTLS: Certificates based methods.
 - PEAP, LEAP: Password based methods.

25

Encryption: TKIP

- ออกแบบให้ครอบการทำงานของ WEP
- ▶ ใช้ RC4-Engine เหมือนใน WEP
- ป้องกันการ Spoof ข้อมูลได้

ประโยชน์ของ TKIP

- lช้ Key ในการเข้ารหัสแต่ละ Packet แยกกัน
- Key มีความยาวมากขึ้น
- ▶ จำนวนคีย์ที่เป็นไปได้มากถึง 280 trillion
- IV ขนาด 48bit โดยขั้นตอนมีการลดการใช้งาน IV ซ้ำ
- ส่งข้อมูล IV แบบเข้ารหัส
- ▶ ใช้ MIC แทน CRC-Check ซึ่งปลอมแปลงได้ยากมากกว่า
- ▶ สามารถ upgrade ใน firmware ที่ใช้งาน WEP ได้

27

WPA2 / 802.11 Task Group i

- \rightarrow WPA2 = 802.11i
- 802.11i ใช้หลักการของ Robust Security Network (RSN)
- การปรับปรุงหลักจาก WPA คือการใช้ AES ในการเข้ารหัส มักใช้ Hardware ในการ เข้ารหัส AES
- มีการทำงานเป็น 2 โหมดเหมือน WPA:
 - Enterprise Mode: authentication ใช้ 802.1X/EAP และ encryption ใช้ AES-CCMP
 - ° Personal Mode: authentication ใช้ PSK และ encryption ใช้ AES-CCMP

WPA2 / 802.11i AES-CCMP

- AES เป็นการเข้ารหัสแบบ symmetric key-cipher
- ▶ มี block-Size ขนาด 128bits และ key มีความยาว 128bits.
- การเข้ารหัสแต่ละรอบมีการทำงาน 4 ขั้นตอน จำนวนรอบจะเป็น 10,12 หรือ 14 รอบขึ้นอยู่กับจำนวนบิต ซึ่งใน WPA2 จะมีการทำเท่ากับ 10 รอบ
- ▶ AES ใช้โพรโตคอล Counter-Mode/CBC-Mac Protocol (CCMP)
- ▶ CCMP ถูกออกแบบมาเป็นพิเศษสำหรับ 802.11i

29

Authentication Overview STA AP STA 802.1X blocks port for data traffic B02.1X/EAP-Response Identity (EAP type specific) B02.1X/EAP-Response Identity (EAP type specific) B02.1X/EAP-SUCCESS 802.1X Source: Cam-Winget, Moore, Stanley and Walker

_		WEP	WPA	WPA2
•	Cipher	RC4	RC4	AES
•	Key Size	40 or 104bits	104bits perPack	128bits encry.
•	Key Life	24bit IV	48bit IV	48bit IV
•	Packet Key	Concatenation	TwoPhaseMix	Not Needed
•	Data Integrity	CRC32	Michael MIC	ССМ
•	Key Management	None	802.1X/EAP/PSK	802.1X/EAP/PSI
		Security Level		

นักศึกษาคิดว่า.. เทคโนโลยีการรักษาความปลอดภัยของ
802.11 ในระดับสูงสุด .. จะไม่สามารถจัดการกับปัญหา
อะไรได้บ้าง

