

What is Uncloneable Crypto?

- Secrecy/ Authenticity is not always sufficient
- Multiplicity of authorized sources is the problem

GOAL: Control ability of users to 'copy' info!

Need for Uncloneability

- Watermarking type applications
- Associates naturally with minting of digital currencies!
- Very close to what NFTs set out to do

Overview

- Two major themes:
 - Quantum state-based constructions
 - Polymer-based constructions
- Our contributions:
 - Classification of Uncloneable Primitives
 - Comparison and identifying properties unique to either setting
 - New constructions in the polymer setting
 - Directions for Future Work

Uncloneability from Quantum States

- Money states verifiable by a (publicly accessible) interface
- Only bank mints currency
- Cannot create new money from existing notes

How Quantum Money Works

Uncloneable Crypto from Quantum States

- Quantum Money
- One-Shot Signatures/ Tokenized Signatures
- Uncloneable Encryption
- Secure Software Leasing
- Copy Protected Programs
- Typically, we need (alongside standard crypto/QROM etc):
 - Information-theoretic No-Cloning theorem
 - Post Quantum Indistinguishability obfuscation

Uncloneability from Polymer Constructs

Consumable Memory Tokens

ACGEM+22

Assured deletion

How Memory Tokens work (roughly)

Key - matching errors

(1,n): Adversary power gap

- Data unrecoverable without correct key!
- Data is destroyed in read attempts
- Protein sample cannot be cloned (Central Dogma of molecular biology)

Uncloneable Crypto from Polymers

- Consumable Memory Tokens
- Digital Lockers
- Bounded Execution/ k-time Programs
- Typically, we need (alongside standard crypto/QROM etc):
 - Hardness of Protein Reading
 - Impossibility of cloning proteins (Central Dogma)
 - Indistinguishability Obfuscation

Tier 1: Uncloneable Entities

Metadata is procedure induced and not in explicit control of generator (e.g. generation randomness)

Primitives:

- Quantum Money
- Signature Tokens

Can only really use for verification

Tier 2: Uncloneable Data

Primitives:

- Uncloneable Encryption
- Digital Lockers

message by revoking uncloneability

Tier 3: Uncloneable Programs

Program is explicitly defined in the encoding. Inputs need to be appropriately encoded as well.

Typically requires some sort of obfuscation

Primitives:

- Secure Software Leasing
- Copy Protected Programs

Setting	Paradigm	Existing Primitives	Additional Assumptions
Quantum	Unclonable states	Quantum money	q OWF, $qi\mathcal{O}$, q LWE
	Unclonable programs	Copy protection	$qi\mathcal{O}, q\text{OWF}, q\text{LWE}$
	Unclonable programs	Secure software leasing	CRS, $qi\mathcal{O}$, $qLWE$
	Unclonable states	One-shot signatures	$qi\mathcal{O}$, any secure classic signa-
			ture scheme
	Unclonable data	Unclonable encryption	q OWF, $qi\mathcal{O}$, q ROM
	Unclonable programs	Unclonable decryption	$qi\mathcal{O}, q\text{OWF}, q\text{LWE}$
Polymers	Unclonable data	Digital lockers	ROM
	Unclonable programs	(1, n)-time programs	$OWF, i\mathcal{O}$

Contrasting the two paradigms

Quantum Model

- Persistence > Reusable constructions
- Typically requires oracles
- Requirement: Quantum Computers/ Networks

Polymer Model

- Guaranteed destruction →
 Bounded # of execs
- Uncloneability is direct
- Requirements: (Ongoing)
 Biochemical techniques,
 physical devices

Comparing the two paradigms

- Protein
 — Quantum: Difficult to get Guaranteed Deletion
- (Lower bounds: Bdd Exec Programs [even w/ power gap] need hardware assumptions even w/ quantum computing)
- Quantum

 Protein: Possible, but with caveats: based around (limited) Bdd exec programs.
- Need to account for adversary power gap (1 vs n tries).
- Persistent applications (e.g., copy protection) are also not yet achievable through proteins.

Primitive to realize	Using k -time programs?	Using $(1, n)$ -time programs?
Quantum money	Yes (with $k = 1$)	No—a coin can be spent n times
	functions)—but a program	Yes—but permitting domain splitting attacks and the power gap between the honest party and the adversary
One-shot signatures	Yes (with $k = 1$)	No—an attacker can sign up to n messages instead of one
Unclonable encryption	Yes	Yes—but a weaker security notion covering $n+1$ attackers instead of two
Unclonable decryption	Yes	Yes—same constraint as above
Digital lockers	Yes— k trials for honest party	Yes

Directions for Future Work

- Q1: Strengthening the polymer-based model.
- Caveat: realizes very strong primitives like non-interactive oblivious transfer.
- Q2: Combining both approaches in a 'Hybrid Model'.
- Are there stronger primitives we can get from combining both kinds of assumptions?
- No obvious obstacles or caveats to doing this.
- Both approaches are speculative, requires further work.

