Durée: 1 heure.

Consignes:

- Veuillez ne pas répondre sur le sujet, mais sur le formulaire Forms prévu à cet effet.
- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- A la fin du QCM la dernière question sur le formulaire vous proposera de valider vos réponses. Attention le choix sera définitif et vous ne pourrez plus revenir sur vos réponses.

Bon courage!

* * * * * * * * * * * * * * * * * *

- 1. Parmi les éléments suivants le(s)quel(s) est(sont) un(des) vecteur(s)?
 - (1)Le temps
 - (2)L'accélération
 - (3) \bigcap \bigcap Les scalaires
 - (4)La vitesse
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 2. On considère les vecteurs $u = \begin{bmatrix} 0 & 2 & -1 & 5 \end{bmatrix}$ et $v = \begin{bmatrix} 3 & 1 & 2 & 0 \end{bmatrix}$. Cocher le(s) bonne(s) réponse(s).
 - (1)
 - $\begin{aligned} u \times v^T &\in M_4 \\ u \times v^T &= [0\ 0\ 0\ 0] \\ u \times v^T &\in \mathbb{R} \end{aligned}$ (2)
 - (3)
 - $_{(4)}\square$ $u^T \times v \in M_4$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 3. Parmi les ensembles suivants, lesquels sont des espaces vectoriels?
 - (1) $\mathcal{L}(\mathbb{R}^2,\mathbb{R}^3)$
 - Les solutions d'équations différentielles (2)
 - Polynômes (3)
 - (4)Matrices
 - (5)aucune des réponses précédentes n'est correcte.
- 4. Parmi les applications suivantes, lesquelles sont linéaires?
 - f([x,y]) = [2x y, y + 1](1)
 - f([x,y]) = [0,3x](2)
 - f([x,y]) = [-x,0,3x](3)
 - $f([x,y]) = \sin(x+y)$ (4)
 - aucune des réponses précédentes n'est correcte. (5)
- 5. Parmi les applications suivantes, lesquelles sont des endomorphismes?
 - (1)f([x,y]) = [2x - y, y + 1]
 - (2)f([x,y]) = [0,3x]
 - \square (3) f([x,y]) = [-x, 0, 3x]
 - $f([x,y]) = \sin(x+y)$ (4)
 - (5)aucune des réponses précédentes n'est correcte.

$\begin{array}{ll} (1) \square & f([x,y]) = [2x-y,y+1] \\ (2) \square & f([x,y]) = [0,3x] \\ (3) \square & f([x,y]) = [-x,0,3x] \\ (4) \square & f([x,y]) = \sin(x+y) \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$									
7. Soient f une application de \mathbb{R}^5 dans \mathbb{R}^2 et A sa matrice associée. Cocher les affirmations correctes.									
$_{(1)}\square$ $A\in M_{5,2}$ $_{(2)}\square$ A est carrée $_{(3)}\square$ A n'existe pas $_{(4)}\square$ A est inversible									
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.									
8. Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 , $f(e_1) = [1, 0, 2]$, $f(e_2) = [2, 1, 1]$ et $f(e_3) = [-1, 0, 1]$ et A la matrice de f . Cocher les affirmations correctes.									
$(1)\square A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad (2)\square f([x,y,z]) = [x+2y-z,y,2x+y+z] \qquad (3)\square f \in \mathcal{L}(\mathbb{R}^3,\mathbb{R}^2)$ $(4)\square A \text{ est inversible} \qquad (5)\square \text{aucune des réponses précédentes n'est correcte.}$									
(4) — 11 est miterative (5) — adequite des reponses precedentes il est correcte.									
0. Dans \mathbb{R}^2 , la matrice de passage de la base $B=\{[1,0],[0,1]\}$ à la base $B'=\{[-1,2],[-1,1]\}$ est									
$(1)^{\square}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $(2)^{\square}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $(3)^{\square}$ $\begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$ $(4)^{\square}$ $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ $(5)^{\square}$ aucune des réponses précédentes n'est correcte.									
0. On considère les bases B et B' de la question précédente. Soit $u=[3,1]$ un vecteur exprimé avec la base B . Quelles sont les coordonnées de u dans la base B' ?									
$_{(1)}\square$ $[-4,7]$ $_{(2)}\square$ $[4,-7]$ $_{(3)}\square$ $[1,2]$ $_{(4)}\square$ $[-1,-2]$									
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
11. Dans \mathbb{R}^3 , la matrice de passage de la base canonique $B = \{e_1, e_2, e_3\}$ à la base $B' = \{e_1 + e_2, e_1 - e_2 + e_3, e_1 + e_3\}$ est									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
12. On considère les bases B et B' de la question précédente. Soit $u=[1,0,-2]$ un vecteur exprimé avec la base B' . Quelles sont les coordonnées de u dans la base B ?									
$(1)^{\square}$ $[3,-2,5]$ $(2)^{\square}$ $[-1,1,-2]$ $(3)^{\square}$ $[3,3,-5]$ $(4)^{\square}$ $[1,-1,-1]$ $(5)^{\square}$ aucune des réponses précédentes n'est correcte.									
13. Soient $A \in M_4(\mathbb{R})$ et $X \in M_{4,1}(\mathbb{R})$, le système $AX = 0$ admet une unique solution si									
$ (1)\square A =0 \qquad (2)\square rg(A)=1 \qquad (3)\square rg(A)=4 \qquad (4)\square rg(A)=rg(A X) $									

6. Parmi les applications suivantes, lesquelles sont des automorphismes?

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

14.		•		-	$ext(sont) ext{ vr}$	-	uations à p	inconn	ues avec $n < p$. Parmi les	
	(1) \square Si $rg(A) = rg(A B)$, s a une unique solution. (2) \square Si $rg(A) = rg(A B)$, s est de Cramer. (3) \square Si $rg(A) \neq rg(A B)$, s a une infinité de solutions. (4) \square Si $rg(A) = n$, s a une unique solution. (5) \square aucune des réponses précédentes n'est correcte.									
	Pour les 4 questions suivantes, on considère les vecteurs $u=[1,-2,1],\ v=[3,2,0],\ w=[1,6,-2]$ et $z=[2,-1,2]$ dans \mathbb{R}^3 .									
15.	. Parmi les familles suivantes, cocher celle(s) qui est(sont) liée(s).									
		(1)	$\{u,v\}$	(2)	$\{u,v,w\}$	(3)	$\{u,v,z\}$	₍₄₎	$\{u,v,w,z\}$	
			$_{(5)}\square$	aucun	e des répons	es préc	édentes n'est	t correc	te.	
16.	16. Parmi les familles suivantes, cocher celle(s) qui est(sont) libre(s).									
		₍₁₎	$\{u,v\}$	(2)	$\{u,v,w\}$	\Box	$\{u,v,z\}$	(4) [□]	$\{u,v,w,z\}$	
			$_{(5)}\square$	aucun	e des répons	es préc	édentes n'est	t correc	te.	
17.	17. Parmi les familles suivantes, cocher celle(s) qui est(sont) génératrice(s).									
		(1)	$\{u,v\}$	(2)	$\{u,v,w\}$	(3)	$\{u,v,z\}$	(4)	$\{u,v,w,z\}$	
			$_{(5)}\square$	aucun	e des répons	es préc	édentes n'est	t correc	te.	
18.	18. Parmi les familles suivantes, cocher celle(s) qui est(sont) base(s).									
		$_{(1)}\square$	$\{u,v\}$	(2)	$\{u,v,w\}$	(3)	$\{u,v,z\}$	$_{(4)}\square$	$\{u,v,w,z\}$	
			$_{(5)}\square$	aucun	e des répons	es préc	édentes n'est	t correc	te.	
19.	On considère un système linéaire de 3 équations et 4 inconnues. Le rang de la matrice associée au système est 2. Sa matrice augmentée a pour rang 2. Le système a									
	$ \begin{array}{c c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	une uni deux so aucune	solution	on	cédentes n'es	st corre	cte.			
20.	Soit $A \in M$	$I_{3,4}(\mathbb{R})$. L	e rang de	<i>A</i>						
	,	(1) \Box ra	(A) = 3	(a) []	ra(A) = 4	(2)	l est le non	nbre de	vecteurs libres de A	
					nulles de A	(3)— (5)□			uses précédentes n'est correcte	
	\-/		J			(0)		•	-	