- 4. (10 total points) Let \mathscr{R} be the region which is bounded on the left by the curve $x = \sqrt{y}$, bounded on the right by the line $y = -\frac{1}{2}x + 5$, and bounded below by the *x*-axis.
 - (a) (5 points) Set up a definite integral (or integrals) with respect to x for the area of the region \mathcal{R} , and evaluate your integral(s). Give your answer in exact form.

(b) (5 points) Set up a definite integral (or integrals) with respect to y for the area of the region \mathcal{R} , and evaluate your integral(s). Give your answer in exact form.

[4] (10 points) Compute the total area bounded by the curves $y = x^2$ and $y = x^3 - 6x^2 + 10x$.

- 5. (10 total points) Let \mathscr{R} be the region in the first quadrant bounded by the curves $y=2+x^2$ on the right, y=5 on top, and y=3x+2 on the left.
 - (a) (5 points) Find the area of the region \mathcal{R} .

(b) (5 points) The line through (0,2) and (b,5) divides \mathcal{R} into two regions of equal area. Find b.

