

Algebra Lineal: Vectores

Cristian Guarnizo-Lemus, PhD

Outline

- 1 Vectores
- 2 Espacio Vectorial
- 3 Generadores de espacio o Span

Outline

- 1 Vectores
- 2 Espacio Vectorial
- 3 Generadores de espacio o Span

Vector

Se asocia a una tupla de componentes, la cual se puede representar como,

$$\mathbf{v} = \left[\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array} \right],$$

donde v_i es un escalar y se denomina la i-ésima componente de v. Un vector es un elemento de un espacio lineal o un espacio vectorial.

Outline

Institución Universitaria

- 2 Espacio Vectorial

Espacio Vectorial

Un conjunto de vectores V se denomina espacio vectorial o lineal sobre un cuerpo algebráico \mathbb{F} (\mathbb{R} o \mathbb{C}) si,

- para una operación de adición vectorial en V, denotada x + y, con $x, y \in V$ se cumple que $(V, \{+\})$ es un grupo abeliano.
- para una operación de multiplicación escalar en V, denotada como $a\mathbf{x}$, con $\mathbf{x}, \mathbf{y} \in \mathbb{V}$,
 - $a\mathbf{x} \in \mathbb{V}$.
 - $\mathbf{a}(b\mathbf{x}) = (ab)\mathbf{x}$
 - $\mathbf{I}\mathbf{x} = \mathbf{x}$
 - $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$

Combinación lineal

Un vector $\mathbf x$ es combinación lineal de los vectores $\mathbf x_1, \mathbf x_2, \ldots, \mathbf x_k$ si existen escalares $\alpha_1, \alpha_2, \ldots, \alpha_k$ tales que

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k. \tag{1}$$

Con $\alpha_i \in \mathbb{F}$.

Independencia Lineal

El conjunto $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \subset \mathbb{V}$ es:

- linealmente dependiente si algún x_i es una combinación lineal de otros elementos de \mathcal{X} .
- linealmente independiente si $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \cdots + \alpha_n \mathbf{x}_n = 0$ sólo con $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.
- Todo subconjunto de un sistema libre es también libre.
- El número máximo de vectores de un sistemas linealmente independiente es igual a la dimensión de dichos vectores.

Combinación lineal

Solución única

3x + 2y = 7x - y = -1

Sin solución

3x + 2y = 4

Infinitas soluciones

Outline

- 2 Espacio Vectorial
- Generadores de espacio o Span

Generadores de espacio

Un espacio vectorial V es generado por el conjunto de vectores

$$\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \subset \mathbb{V}$$

si contiene todas las combinaciones lineales de los vectores de \mathcal{X} . Si se cumple lo anterior, se dice que \mathcal{X} es el conjunto generador del espacio.

- \mathcal{U} es una **base** de \mathbb{V} si los vectores generadores $\mathbf{u}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal V posee al menos una base.

Base

- Si existen varias bases, todas contienen el mismo número de vectores generadores.
- Este número de vectores de la base es la dimensión del espacio lineal.

Teorema fundamental de algebra lineal

Para un espacio vectorial \mathbb{V} con n dimensiones

- Toda base de V tiene exactamente n elementos.
- Todo subconjunto linealmente independiente de V tiene a lo sumo n elementos y corresponde a una base de \mathbb{V} .
- Cualquier subconjunto de V que actua como conjunto generador de \mathbb{V} debe tener al menos n elementos y es una base si y sólo si tiene exactamente n elementos.
- Si los elementos de una determinada base en V se toman en un **orden determinado**, cualquier elemento de V puede entonces ser representado por una suseción única de coordenadas.

Vectores

Vector de n dimensiones

Institución Universitaria

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Vector columna

Vectores

Vector de *n* dimensiones

Institución Universitaria

Arreditada en Alta Calidad

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Vector columna

$$\mathbf{x}^{\top} = \left[\begin{array}{cccc} x_1 & x_2 & \dots & x_n \end{array} \right]$$

Vector fila

Norma de un vector

La norma de un vector $\mathbf{x} \in \mathbb{R}^n$, denotada como $\|\mathbf{x}\|$, es la raíz cuadrada de la suma de los cuadrados de sus componentes

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^{m} x_i^2}.$$

Producto punto entre vectores

El producto de punto entre dos vectores x y y está definido como.

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

y su resultado es un escalar.

- El producto punto también es denotado como $\langle \mathbf{x}, \mathbf{y} \rangle$.
- También es llamado producto escalar, interno o interior.
- Se puede observar,

$$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{x} = \sum_{i=1}^{n} x_i^2 = \|\mathbf{x}\|^2$$

Ortogonalidad

- Dos vectores x y y en \mathbb{R}^n son ortogonales o perpendiculares (es decir $\mathbf{x} \perp \mathbf{y}$) si $\mathbf{x}^{\mathsf{T}} \mathbf{y} = 0$
- Un conjunto de vectores $\mathbf{x}_1, \dots, \mathbf{x}_p$ es ortogonal si cada par de vectores en el conjunto es ortogonal.
- \blacksquare Dos subespacios \mathbb{V} y \mathbb{W} en \mathbb{R}^n son ortogonales si cada vector de V es perpendicular a cada vector de W.

Producto externo entre vectores

El producto externo entre dos vectores x y y está definido como,

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_m \\ x_2y_1 & x_2y_2 & \cdots & x_2y_m \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_m \end{bmatrix},$$

donde x es de tamaño $n \times 1$ y y es de tamaño $m \times 1$. El resultado del producto externo es una matriz de tamaño $n \times m$.

Recta

Podemos definir la ecuación de una recta como

$$L = \{ \mathbf{x} + t\mathbf{v} | t \in \mathbb{R} \}.$$

Producto matriz-vector I

El producto matriz-vector,

$$\mathbf{y} = \mathbf{A}_{n imes n} \mathbf{x}_{n imes 1} = \left[egin{array}{cccc} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight]$$

donde a_i es un vector columna de la matriz A.

Producto matriz-vector II

El producto matriz-vector,

$$\mathbf{y}^\top = \mathbf{x}^\top \mathbf{A}^\top$$

donde a_i y x son vectores columna.

El espacio nulo de una matriz

El espacio nulo de la matriz A es el conjunto de soluciones de la ecuación homogénea Ax = 0.

