Instructions for RC Circuits I Lab

We are doing the following parts today:

- Part A: (Q-1) and (Q-2) only.
- Part B: (Q-4) only.
- Part C: (Q-8), (Q-9), (Q-10), and (Q-11).

For Part A, you will make 3 graphs on one page, stacked one on top of the other (equal times line up), just like last week's Diode Lab.

For Part B, you need only verify the "half-life" property for the V_C vs. t graph. Check both the charging and discharging part of the graph. You do not need to make a separate graph.

For Part C:

- Make an accurate plot of V_C vs. t in your lab notebook (discharging curve only, full page), and use this graph to determine τ_1 and calculate C_1 .
- With C_1 still in the circuit, use cursors to determine τ_1 , and compare this value with the value you obtained using your graph. Don't use the discrepancy test you simply need to convince yourself (and me) that you are measuring the time constant correctly.
- Now exchange C_1 for C_2 in the circuit and use cursors to determine τ_2 and calculate C_2 . You do not have to plot a graph for this part.
- Now put C_1 and C_2 in parallel and use cursors to determine τ_{12} and calculate C_{12} . You do not have to plot a graph for this part.
- Compare C_{12} with the appropriate combination of C_1 and C_2 using a percent difference. The percent difference should be less than 5%.

Next week's RC Circuits II Lab will be replaced by the completion of Oscilloscope I (parts C, D, and E).