Dimensionality Reduction

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

 $\begin{array}{c} \text{Department of Electronic Systems} \\ \text{NTNU} \end{array}$

HT2020

Real Dimensionality of Data: Manifolds

- intrinsic dimension of the data
- independent of representation (features)
- manifold: low dimensional topological space embedded in feature space
- can be non-linear (but locally Euclidean)
- if linear they are subspaces

Example: Images

- one single digit example from MNIST
- transsations (2 degrees of freedom)
- rotations (1 degree of freedom)
- $100 \times 100 = 10,000$ pixels (dimensions)

Continuous Latent Variables

- discrete $z \rightarrow$ mixture models
- \bullet continuous $z \to {\rm dimensionality}$ reduction

Different Models

Principal Component Analysis (PCA)

- \bullet z and x are Gaussian
- linear Gaussian dependency between x and z

Independent Component Analysis (ICA)

non Gaussian

Autoencoders, Isomap, t-SNE, ...

non-linear

- data in D dimensions
- ullet sub-space with M < D dimensions
- start with M=1
- unit vector \mathbf{u}_1 ($\mathbf{u}_1^\mathsf{T}\mathbf{u}_1=1$)
- ullet \mathbf{x}_n is projected onto $\tilde{\mathbf{x}}_n = \mathbf{u}_1^\mathsf{T} \mathbf{x}_n$

• mean: $\mathbf{u}_1^\mathsf{T} \bar{\mathbf{x}}_n$, with

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• projected variance:

$$\frac{1}{N}\sum^{N}\left\{\mathbf{u}_{1}^{\mathsf{T}}\mathbf{x}_{n}-\mathbf{u}_{1}^{\mathsf{T}}\bar{\mathbf{x}}_{n}\right\}^{2}=\mathbf{u}_{1}^{\mathsf{T}}\mathbf{S}\mathbf{u}_{1}$$

• with covariance matrix S:

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^{\mathsf{T}}$$

- maximize projected variance $\mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1$
- ullet with constraint that $\mathbf{u}_1^\mathsf{T}\mathbf{u}_1=1$
- solution:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$

- \bullet \mathbf{u}_1 is eigenvector of \mathbf{S}
- left-multiply by \mathbf{u}_1^T :

$$\mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1 = \lambda_1 \mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = \lambda_1$$

- find maximum eigenvalue of S
- the corresponding eigenvector is the principal component
- $\bullet \ \, \mbox{find} \, \, M \, \, \mbox{principal components} \\ \mbox{incrementally}$

$$\mathbf{u}_1, \ldots, \mathbf{u}_M,$$
 μ_1, \ldots, μ_M

- computational cost of eigenvector decomposition $D \times D$ is $O(D^3)$
- power method $O(MD^2)$

- alternative view: minimize projection square error
- same solution

PCA Applications

Compression:

- principal components $\mathbf{u}_1, \dots, \mathbf{u}_M$ ($M \times D$ parameters)
- mixing weights: $\tilde{\mathbf{x}}_n = \sum_{i=1}^M \alpha_{ni} \mathbf{u}_i$ (M parameters)
- ullet if N points, $M \times D + N \times M$ instead of $N \times D$

Visualization:

- usually M=2, sometimes M=3
- no big concern on reconstruction error

PCA Applications

Mean

$$\lambda_1 = 3.4 \cdot 10^5$$

$$\lambda_2 = 2.8 \cdot 10^5$$

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

PCA Applications

PCA Reconstruction

M = 1

M = 10

M = 50

M = 250

- example D = 10,000, N = 1,000,000
- ullet original: $N \times D = 10,000,000,000$ parameters
- PCA (M=10)): $M\times D + N\times M = 100,000 + 10,000,000 = 10,100,000,$ reduction 990 times
- PCA (M=250)): $M \times D + N \times M = 2,500,000 + 250,000,000 = 252,500,000$, reduction 39 times

Eigenfaces

 64×73 pixels = 4672 dimensions!

Faces from the FERET database

Eigenfaces

Eigenfaces
mean PC1 PC2 PC3
PC4 PC5 PC6

from 4672 dimensions to a small basis

Faces from the FERET database

PCA for high-dimensional data

- ullet N points in D-dimensional space, with N < D
- ullet they define a subspace of at most N-1 dimensions
- example: 2 points always on a line, 3 points always on a plane. . .
- D-N+1 eigenvalues are zero!
- in the direction of the corresponding eigenvector: zero variance
- ullet we can reformulate the eigenvector equation with a $N \times N$ matrix

Probabilistic PCA

- probabilistic latent variable model
- solve with maximum likelihood

Model:

- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$
- $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I})$
- with \mathbf{W} $D \times M$ matrix spanning the linear (principal) subspace

Probabilistic PCA: Generative View

- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$
- $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I})$
- $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$

Probabilistic PCA: Advantages

- can be used to constrain the number of parameters in multivariate Gaussian
- can be solved with EM (computationally efficient)
- can deal with missing values
- we can extend it to mixture of PCA models
- Bayesian version can estimate the number of principal components
- likelihood function: points that are close to principal subspace but far from data distribution
- can create class-conditional densities (classification)
- can be used to generate (sample) data.

Maximum Likelihood PCA

- there exist a closed form solution to ML
- predictive distribution $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I})$ is redundant: rotations of \mathbf{W} give the same distribution
- ullet λ_i variance in principal direction i
- ullet σ^2 variance orthogonal to principal subspace
- statistical nonidetifiability

EM algorithm for PCA

- convenient in high dimensional space (iterative instead of sample covariance matrix)
- missing values (if missing at random)
- works even for sigma square to zero (EM for standard PCA)

EM for PCA: Physical Interpretation (rod and springs)

Bayesian version can find the intrinsic dimensionality

- solution intractable
- can be approximated

Factor Analysis

•
$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

ullet Ψ diagonal (in PCA it was $\Psi=\sigma^2\mathbf{I}$)

Independent Component Analysis (ICA)

- latent distribution $p(\mathbf{z})$ is non-Gaussian
- \bullet if $p(\mathbf{z})$ factorizes into $\prod_{j=1}^M p(z_j)$ then ICA

Example: blind source separation

Blind Source Separation (Speech)

- ullet N voices picked up by M microphones
- usually M=N
- each microphone picks up a linear combination of the two
- ignoring room acoustic and relative movements of sources and mics
- ICA can separate the voices perfectly

http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html

Blind Source Separation (Images)

source Wikipedia

Autoencoders (linear manifolds)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{x}_n||^2$$

- if linear activations, then global minimum
- similar to PCA, but not orthogonal and normalized PCs
- still linear subspace even for nonlinear activations

Autoencoders (non-linear manifolds)

Autoencoders: mapping illustration

Isometric Feature Mapping (Isomap)

Using geodesic distances https://chart-studio.plotly.com/~empet/14345.embed

Isomap Examples

t-SNE (not in the book)

t-distributed stochastic neighbor embedding

- works best for visualization (2-3 dim)
- similar groups of points are close
- probability distribution over pairs of points in high dim (pairs of more similar points have higher probability)
- probability distribution over pairs of points in low dimensions
- minimize KL divergence

van der Maaten, L. and Hinton, G. E. (2008). Visualizing data using t-SNE. J. Machine Learning Res., 9 . 473 , 516