2017-2018 学年第二学期《大学物理 I》(课内)期末试卷 A 卷 (物联网工程学院 2017 級)

膜号	-	=			总分	审核
		1	2	3	起勿	中极
題分	54	16	16	14		-
得分						
	大气压=1.013	5×10 ⁵ pa, 0°C	= 273.15K,	R = 8.31J/n	nol.K, $k = 1.3$	8×10 ⁻²

、填空题(每空2分,共54分)	阅卷	得分
1、一个质量为 2kg 的物体在外力作用下, 其的运动方程为		
$\vec{r}=t^{\gamma}\vec{i}+\left(t^2+t-2\right)\vec{j}$ (m)。则该物体在 $t=1s$ 时速度 $\vec{v}=$		_m/s m·s·1, 加
速度 $\bar{a}=$	m/s	及法向加速度
大小 $a_n =$	Ī =	N·s,
外力对其做功 $A =$		

				-	
4、两个同方	向同频率的简谐振动,	其振动表达:	式分别为 x ₁ =2×	$10^{-2}\cos(5t+\frac{\pi}{2})$)(SI), x ₂ =4
	的它们的合振动的振幅为				
5、一個强系	数 k 的轻弹簧连一质量	为 m 的物体组织	戏的弹簧振子: 今	·将弹簧压缩xi	。长度后放
	以放手时刻作为计时起。				
方向为坐标轴面	E方向。则物体做简谐	振动的振幅为	, [0]	初为	初相
	人起始位置运动到弹簧件				
6、图示为 ² 质中的传播速度	平面简谐波在 x=0m 处别 [为 10 m/s;	新点的振动图像	,设此简谐波在介	0.40 0.20 0 5.0	\\ \
(1) 若该	波沿 x 轴正向传播。则证	(简谐波的波函)	数为		
(2) 若该治	皮沿 x 轴正向传播, 则该	简谐波的波函数	坎为		
	为o. 摩尔质量为 M 的理			***************************************	
速率为 ν _ρ , 则	此气体的压强为	: 该气体:	分子的平均平动动	能为	
8、假设某种	种气体的分子速率分布函	数f(v)与速率;	n的关系如图所示。	, ↑f(v)	
分子总数为	仲气体的分子速率分布函 N, 则 k =	: 而]	f(v)dv 的意义	x *	
是		:		0	3 <i>t</i> ₀ /2 <i>v</i>
9、一气放 则气体内能的	I内储有 Smol 的双原子理 增量ΔE =	想气体,在压缩 气体吸收	过程中外界做功 1 热量 Q=	50J. 气体温度	升高了 1K, 此过程摩尔

热容 C=_____。

二、计算题(46分)

1、(16分)如图所示, 电梯中绕过一个定滑轮的轻质细绳两端系 着质量为 m₁ 和 m₂ 的两个物体,已知定滑轮是一个半径为 R, 质量为 M 的匀质圆盘, 轴承间的摩擦忽略可以不计, 细绳与滑轮无相对滑动。

求; (1) 若电梯静止,两个物体对地面的加速度; (10分)

85191825 1840 85191849 85191910

EK B.

E/EK 8(204) E/EX #(206)

REEL

DAY UZZ

(2) 若电梯以 a₀ 的加速度上升,则两个物体对地面的加速度又各为多少。(6分)

2、(16分) 如图所示, x=0m 处有一运动方程为 v=0.1cos2πt

阅卷 得分

WINEK WINE

的平面波波源,产生的波沿x 轴以 $10 \frac{m}{s}$ 的速度正向传播;在x=15 m

处为波密介质的反射面。求; (1) 波涛所发射的波的波函数 (6分); (2) 反射波的波函数(6分); (3) 在波源与反射面间形成样波的波节和波雕的位置 (4分)。

3、(14分) 5mol 氦气经历如图所示的循环过程。其中 ca 是绝热 过程。 阅卷 得分

(1)写出a,b,c三个状态点的压强、温度(5分);(2)计算各分过程吸收的热量(5分);(3)求此循环的效率(4分)。

