IPv4 and IPv6

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Imagine Building IP

Common protocol for all networks
Must be very simple
Must last 40+ years

IPv4 Header Format

- header length: 20 bytes min.
- ToS: early attempt to route packets along paths with low delay or high bandwidth
- fragmentation: identifier, flags, offset

IPv4 Header Format

- TTL: used to literally be time (at least one second), now hops
- protocol: deliver to this protocol at destination
- options: includes timestamp, record route, source route

IPv4 Addresses

- 32 bits
- dotted-decimal notation: each part is 8 bits
- identifies an interface/link on a host or router

Subnets

- IP address can be divided into subnet part (high-order bits) and host part (loworder bits)
- prefix notation: 223.1.1.0/24 indicates that the subnet is the high-order 24 bits
- interfaces whose IP addresses are on the same subnet can physically reach each other without a router

Forwarding Process

- check the destination address
 - is this one of my addresses?
 - send to next protocol specified in IP header
 - is this one of my subnets?
 - send to link layer to forward to the destination
 - do I have a route?
 - send to link layer to forward to next IP hop
 - destination unknown!
 - send an ICMP error to the source of the IP packet

IPv4 Fragmentation and Reassembly

- each link has an MTU (maximum transfer unit) defining largest link-layer frame
- IP packets larger than the MTU must be fragmented
- reassembly only occurs at final destination
- uses IP fragmentation fields

IPv4 Fragmentation Example

- 4000 byte datagram, 1500 byte MTU
- how long will the fragmented packets be?
 - need 20 byte header
 - first two packets 1480 bytes
 - last packet is 3980 2*1480
 + 20 = 1040
- what will the offsets be?
 - byte position in file / 8
- MF (more fragments) flag is set to 1 in all fragments except last
- ID must be unique to sender

Original Packet

length 4000	D MI × 0	F offset 0	
---------------	-------------	---------------	--

Fragments

length ID	MF	offset
1500 x	1	0

length	ID	MF	offset
1500	х	1	185

length	ID	MF	offset
1040	Х	0	370

ICMP

ICMP: Internet Control Message Protocol

- error reporting, ping
- network layer above IP: ICMP messages carried in IP datagrams
- ICMP message: type, code, checksum, message-specific data (RFC 792)

ICMP Type	Code	Description	
0	0	echo reply (to ping)	
3	0	destination network unreachable	
3	1	destination host unreachable	
3	2	destination protocol unreachable	
3	3	destination port unreachable	
3	6	destination network unknown	
3	7	destination host unknown	
4	0	source quench (congestion control)	
8	0	echo request	
9	0	router advertisement	
10	0	router discovery	
11	0	TTL expired	
12	0	IP header bad	

Traceroute and ICMP

- source sends UDP segments to destination
 - start with TTL = 1
 - increment TTL by one
 - use unlikely port number
- when nth datagram arrives at nth router
 - discard datagram (TTL expired)
 - send ICMP TTL expired message to source
 - message includes IP header, 64 bits of original datagram
- when ICMP message arrives, source calculates RTT for that hop
- traceroute takes 3 samples for each hop
- stop when ICMP returns a host unreachable packet, code 3 = port unreachable

DHCP

DHCP

- IP addresses can be assigned manually
 - hard-coded into a configuration file
 - e.g. Gentoo: /etc/conf.d/net
- DHCP: dynamically get address from server

DHCP Transaction

NAT

NAT: Network Address Translation

Figure 4.22 • Network address translation

- use public port numbers to map to private connections
- can support 60,000+ connections with a single IP address

NAT: the Good ...

- conserves IP address space: private network only needs one IP address
- can change private IP addresses without notifying rest of Internet (DNS)
- can change ISP without changing IP addresses
- acts as a type of firewall only reachable ports are those that you open first

...and the Bad

- layer violation: routers should only process IP, ports are in TCP/UDP
- violates end-to-end nature of Internet: any host can open a connection to any other host – makes running local servers and peer-to-peer applications hard
- address shortage should be resolved by IPv6
- individual computers should be made as secure as possible, rather than relying on firewalls or NAT boxes
- prevents many peer-to-peer applications from working
 - note: many emerging hacks and standards, including UPnP, that allow an application to create a mapping for a server running behind the NAT

Classful IP Addressing

- used in early days of Internet to assign addresses to organizations
- led to waste: organizations want at least a B (65,000 addresses), even if they have 1000 machines (4 class Cs)
- early Internet users even got a class A (Stanford was 36.0.0.0)
- quickly ran out of addresses

CIDR: Classless InterDomain Routing

- subnet portion of address has an arbitrary length
- address format: a.b.c.d/x, where x is number of bits in subnet portion
- example:
 - 11001000 00010111 00010000 00000000
 - 200.23.16.0/23
- enables conservation of IP address space, efficient routing
- IANA required organizations to return Class A, B addresses and re-number

Using CIDR Addresses

- each ISP has an assigned address space, from ICANN
- e.g 11001000 00010111 00010000 00000000 200.23.16.0/20
- can allocate to its customers
 - 11001000 00010111 00010000 00000000 200.23.16.0/23
 - 11001000 00010111 00010010 00000000 200.23.18.0/23
 - 11001000 00010111 0001<mark>010</mark>0 00000000 200.23.20.0/23
 - ..
 - 11001000 00010111 00011110 00000000 200.23.30.0/23

CIDR and Route Aggregation

using CIDR allows routes to be aggregated

Breaking Route Aggregation

 changing ISPs (and keeping IP addresses) breaks route aggregation

IPv6

Motivation: 32-bit address space running out

- short-term solutions
 - CIDR. reclaim class A addresses
 - NAT
- IETF coordinated design process, many proposals
 - discussion on big-internet and IPng lists
 - CATNIP variable length addresses, interoperability among many protocols
 - NIMROD variable length, hierarchical addresses, separate host identification (naming) from host location (routing)
 - TUBA use CLNP for network layer, with OSI-specified big addresses
 - SIPP: Simple Internet Protocol Plus (Steve Deering) 64-bit addresses, remove unneeded functionality
- and the winner is ...

Motivation: 32-bit address space running out

- short-term solutions
 - CIDR. reclaim class A addresses
 - NAT
- IETF coordinated design process, many proposals
 - discussion on big-internet and IPng lists
 - CATNIP variable length addresses, interoperability among many protocols
 - NIMROD variable length, hierarchical addresses, separate host identification (naming) from host location (routing)
 - TUBA use CLNP for network layer, with OSI-specified big addresses
 - SIPP: Simple Internet Protocol Plus (Steve Deering) 64-bit addresses, remove unneeded functionality
- and the winner is ...
 - SIP \Rightarrow SIPP (SIP + PIP + IPAE) \Rightarrow IPv6

How Big Is Big Enough?

- proposals
 - fixed length, 64 bits
 - variable length, up to 160 bits
 - compromise: 128 bits
- theoretically perfect allocation
 - 128 bits = $3.4 * 10^{38}$ addresses
 - $7*10^{27}$ atoms in your body, so $4.86*10^{10}$ addresses per atom
 - 6 billion people in the world
 - 8 billion addresses per atom in your body
- in reality ...
 - prefix (address type): 3 bits
 - registry ID: n bits
 - provider ID: m bits
 - subscriber ID: o bits
 - intra-subscriber ID : 125 n m o bits
- address space can always be wasted

As Long As We're Designing a New Version of IP ...

- simplify IP header
 - get rid of functionality not used or needed in IPv4
 - speed processing/forwarding
 - no checksum
 - no fragmentation
 - fixed 40-byte header, no options
- support emerging QoS proposals
 - traffic class, flow label

IPv6 Header

- traffic class: enable routers to map traffic into classes (delay, loss guarantees, etc)
- flow label: uniquely identify all packets for a particular flow/application, used for QoS
- Next Header: upper layer protocol or option

What Happened to IPv5?

- 0-3: unassigned
- 4 : IPv4
- 5 : ST (Stream Protocol), not used
- 6 : IPv6 (was SIP, then SIPP)
- 7 : CATNIP
- 8 : PIP
- 9: TUBA
- 10-15 : not assigned

IPv6 Transition

- can't upgrade all routers at the same time or on the same day
- must interoperate between IPv4 and IPv6
 - dual-stack: support both IPv4 and IPv6 in a single host/router
 - can deliver native IPv6 traffic where supported
 - loses IPv6 information when translating to IPv4

IPv6 Tunnels

- tunnels: IPv6 carried as payload in IPv4 packet
 - can carry IPv6 packets end-to-end
 - requires configuration

The End is Near!

- some regional registries have already run out of addresses
- Geoff Huston
- ► Wikipedia Page