1Mb Async. FAST SRAM Specification

NETSOL RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of NETSOL. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

For updates or additional information about Netsol products, please contact to netsol@netsol.co.kr

Document Title

64Kx16 & 128Kx8 Bit Asynchronous FAST SRAM

Revision History

Rev. No.	History	Draft Date	Remark
0.0	Initial Draft	Apr. 2013	Preliminary
1.0	Final spec release	Jul. 2013	Final
1.1	Add 32sTSOP1 and 48FBGA PKG Information Add wide Vcc range support 1.65 ~ 3.6V	Sep. 2013	Final
1.2	Add 12ns speed binning Change ordering information table format Remove the ordering information of -UC(I)15, -LC(I)15, -XC(I)15	Nov. 2013	Final

64Kx16 & 128Kx8 Bit Asynchronous FAST SRAM

Features

• Fast Access Time 8, 10, 12, 15ns(Max)

 CMOS Low Power Dissipation Standby (TTL) : 10mA (Max.) (CMOS) : 6mA (Max.) Operating : 35mA (8ns, Max.)

30mA (10ns, Max.)

Single 3.3±0.3V or 5.0±0.5V Power Supply
 S6R10xxV1A: 3.3±0.3V Power Supply
 S6R10xxC1A: 5.0±0.5V Power Supply

• Wide range of Power Supply

- S6R10xxW1A: 1.65V ~ 3.6V Power Supply

· TTL Compatible Inputs and Outputs

· Fully Static Operation, No Clock or Refresh required

· Three State Outputs

Data Byte Control(x16 Mode)
 LB: I/O0~ I/O7, UB: I/O8~ I/O15

 Standard 44 TSOP2 and 48FBGA Package Pin Configuration for 64K x 16

 Standard 32sTSOP1 and 48FBGA Package Pin Configuration for 128K x 8

· ROHS compliant

· Operating in Commercial and Industrial Temperature range.

General Description

The S6R1016(V/C/W)1A and S6R1008(V/C/W)1A is a 1,048,576-bit high-speed Static Random Access Memory organized as 64K(128k) words by 16(8) bits. The S6R1016(V/C/W)1A and S6R1008(V/C/W)1A use 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle. And S6R1016(V/C/W)1A allows that lower and upper byte access by data byte control($\overline{\text{UB}}$, $\overline{\text{LB}}$). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The S6R1016(V/C/W)1A is packaged in industry standard 400mil 44-pin TSOP2 and 48FBGA.

The S6R1008(V/C/W)1A is packaged in industry standard 32sTSOP1 and 48FBGA.

1Mb Asynchronous FAST SRAM Ordering Information (64Kx16)

				Spe	eed		
Density	Org.	Part Number	Vcc (V)	tAA(ns)	tOE(ns)	Package	ТЕМР
		S6R1016V1A-UC(I)08	3.3	8	4	44 TSOP2	
		S6R1016W1A-UC(I)08	3.3	8	4	44 TSOP2	
		S6R1016W1A-UC(I)08	2.5	10	5	44 TSOP2	
		S6R1016W1A-UC(I)08	1.8	12	6	44 TSOP2	
		S6R1016V1A-XC(I)08	3.3	8	4	48 FBGA	
		S6R1016W1A-XC(I)08	3.3	8	4	48 FBGA	
		S6R1016W1A-XC(I)08	2.5	10	5	48 FBGA	
		S6R1016W1A-XC(I)08	1.8	12	6	48 FBGA	C : Commercial Temperature
1Mb	64Kx16	S6R1016C1A-UC(I)10	5.0	10	5	44 TSOP2	I : Industrial Temperature
		S6R1016V1A-UC(I)10	3.3	10	5	44 TSOP2	
		S6R1016W1A-UC(I)10	3.3	10	5	44 TSOP2	
		S6R1016W1A-UC(I)10	2.5	10	5	44 TSOP2	
		S6R1016W1A-UC(I)10	1.8	15	7	44 TSOP2	
		S6R1016V1A-XC(I)10	3.3	10	5	48 FBGA	
		S6R1016W1A-XC(I)10	3.3	10	5	48 FBGA	
		S6R1016W1A-XC(I)10	2.5	10	5	48 FBGA	
		S6R1016W1A-XC(I)10	1.8	15	7	48 FBGA	

S6R1016V1A, S6R1016C1A, S6R1016W1A S6R1008V1A, S6R1008C1A, S6R1008W1A

1M Async FAST SRAM

1Mb Asynchronous FAST SRAM Ordering Information (128Kx8)

	_			Spe	eed			
Density	Org.	Part Number	Vcc (V)	tAA(ns)	tOE(ns)	Package	TEMP	
		S6R1008V1A-LC(I)08	3.3	8	4	32 sTSOP1		
		S6R1008W1A-LC(I)08	3.3	8	4	32 sTSOP1		
		S6R1008W1A-LC(I)08	2.5	10	5	32 sTSOP1		
		S6R1008W1A-LC(I)08	1.8	12	6	32 sTSOP1		
		S6R1008V1A-XC(I)08	3.3	8	4	48 FBGA		
		S6R1008W1A-XC(I)08	3.3	8	4	48 FBGA		
		S6R1008W1A-XC(I)08	2.5	10	5	48 FBGA		
	1Mb 128Kx8	S6R1008W1A-XC(I)08	1.8	12	6	48 FBGA	- C : Commercial Temperature	
1Mb		S6R1008C1A-LC(I)10	5.0	10	5	32 sTSOP1	I : Industrial Temperature	
		S6R1008V1A-LC(I)10	3.3	10	5	32 sTSOP1	i . industrial remperature	
		S6R1008W1A-LC(I)10	3.3	10	5	32 sTSOP1		
		S6R1008W1A-LC(I)10	2.5	10	5	32 sTSOP1		
		S6R1008W1A-LC(I)10	1.8	15	7	32 sTSOP1		
		S6R1008V1A-XC(I)10	3.3	10	5	48 FBGA		
		S6R1008W1A-XC(I)10	3.3	10	5	48 FBGA		
		S6R1008W1A-XC(I)10	2.5	10	5	48 FBGA		
		S6R1008W1A-XC(I)10	1.8	15	7	48 FBGA		

Logic Block Diagram - S6R1016(V/C/W)1A (64K x 16)

Logic Block Diagram - S6R1008(V/C/W)1A (128K x 8)

44 TSOP2 Package Pin Configurations(Top View) - S6R1016(V/C/W)1A (64K x 16)

Pin Function

Pin Name	Pin Function
A0 - A15	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
LB	Lower-byte Control(I/O ₀ ~I/O ₇)
UB	Upper-byte Control(I/O8~I/O15)
I/O0 ~ I/O15	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

48FBGA - S6R1016(V/C/W)1A, 64Kx16 - Top View

PKG Pin Configurations

	1	2	3	4	5	6
Α	LB	OE	A ₀	A ₁	A ₂	NC
В	I/O ₈	UB	A ₃	A ₄	CS	I/O ₀
С	I/O ₉	I/O ₁₀	A ₅	A ₆	I/O ₁	I/O ₂
D	Vss	I/O ₁₁	NC	A ₇	I/O ₃	Vcc
E	Vcc	I/O ₁₂	NC	NC	I/O ₄	Vss
F	I/O ₁₄	I/O ₁₃	A ₁₄	A ₁₅	I/O ₅	I/O ₆
G	I/O ₁₅	NC	A ₁₂	A ₁₃	WE	I/O ₇
Н	NC	A ₈	A ₉	A ₁₀	A ₁₁	NC

Pin Function

Pin Name	Pin Function
A0 - A15	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
LB	Lower-byte Control(I/Oo~I/O7)
UB	Upper-byte Control(I/O8~I/O15)
I/O0 ~ I/O15	Data Inputs/Outputs
Vcc	Power
Vss	Ground
NC	No Connection

32sTSOP1 Package Pin Configurations(Top View) - S6R1008(V/C/W)1A (128K x 8)

Pin Function

Pin Name	Pin Function
A0 - A16	Address Inputs
WE	Write Enable
CS	Chip Select
ŌE	Output Enable
I/O ₀ ~ I/O ₇	Data Inputs/Outputs
Vcc	Power
Vss	Ground

48FBGA - S6R1008(V/C/W)1A, 128Kx8 - Top View

PKG Pin Configurations

	1	2	3	4	5	6
Α	NC	OE	A ₂	A ₆	A ₇	NC
В	I/O ₀	NC	A ₁	A ₅	CS	I/O ₇
С	I/O ₁	NC	A ₀	A ₄	NC	I/O ₆
D	Vss	NC	NC	A ₃	NC	Vcc
Е	Vcc	NC	NC	NC	NC	Vss
F	I/O ₂	NC	A ₁₄	A ₁₁	I/O ₄	I/O ₅
G	I/O ₃	NC	A ₁₅	A ₁₂	WE	A ₈
Н	NC	A ₁₀	A ₁₆	A ₁₃	A ₉	NC

Pin Function

Pin Name	Pin Function
A0 - A16	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O ₀ ~ I/O ₇	Data Inputs/Outputs
Vcc	Power
Vss	Ground
NC	No Connection

Absolute Maximum Ratings*

Pa	arameter	Symbol	Rating	Unit
Voltage on Any Pin	3.3V Product			
Relative to VSS	5.0V Product	Vin, Vout	-0.5 to Vcc+0.5V	V
	Wide Vcc** Product			
Voltage on Vcc Supply	3.3V Product		-0.5 to 4.6	
Relative to VSS	5.0V Product	Vin, Vout	-0.5 to 7.0	V
	Wide Vcc** Product		-0.5 to 4.6	
Power Dissipation		PD	1.0	W
Storage Temperature		Tstg	-65 to 150	°C
Operating Temperature	Commercial	TA	0 to 70	°C
	Industrial	TA	-40 to 85	°C

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions* (TA=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min	Тур	Max	Unit	
Supply Voltage	5.0	Vcc	4.5	5.0	5.5		
	3.3	Vcc	3.0	3.3	3.6	V	
	Wide 2.4 ~ 3.6	Vcc	2.4	2.5/3.3	3.6		
	Wide 1.65 ~ 2.2	Vcc	1.65	1.8	2.2		
Ground		Vss	0	0	0	٧	
	5.0	Vih	2.2	-	Vcc+0.5		
Input High Voltage	3.3	ViH	2.0	-	Vcc+0.5	V	
purring.	Wide 2.4 ~ 3.6	Vih	2.0	-	Vcc+0.3		
	Wide 1.65 ~ 2.2	VIH	1.4	-	Vcc+0.2		
	5.0	VIL	-0.3	-	0.8		
Input Low Voltage	3.3	VIL	-0.3	-	0.8	V	
	Wide 2.4 ~ 3.6	VIL	-0.3	-	0.7		
	Wide 1.65 ~ 2.2	VIL	-0.2	-	0.4		

^{*} The above parameters are also guaranteed for industrial temperature range.

^{**} Wide Vcc Range is 1.65V ~ 3.6V

DC and Operating Characteristics*(TA=0 to 70°C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	lu	VIN=Vss to Vcc		-2	2	μΑ
Output Leakage Current	lLO	CS=VIH or OE=VIH or WE=VIL Vout=Vss to Vcc	-2	2	μΑ	
Operating Current**	I _{CC}	Min. Cycle, 100% Duty	8ns	-	35	mA
		CS=VIL, VIN=VIH or VIL, IOUT=0mA	10ns	-	30	
			12ns		28	
			15ns		25	
Standby Current	tandby Current ISB Min. Cycle, $\overline{\text{CS}}$ =VIH			-	10	mA
	ISB1	f=0MHz, CS ≥Vcc-0.2V, Vın≥Vcc-0.2V or Vın≤0.2V	-	6		
Output Low Voltage Level	Vol	Vcc=4.5V, IoL=8mA, 5.0V Product		-	0.4	V
		Vcc=3.0V, IoL=8mA, 3.3V Product & Wide Vcc**	Product	-	0.4	
		Vcc=2.4V, IoL=1mA, Wide Vcc** Product			0.4	
		Vcc=1.65V, IoL=0.1mA, Wide Vcc** Product		-	0.2	
Output High Voltage Level	Vон	Vcc=4.5V, IoH=-4mA, 5.0V Product			-	V
		Vcc=3.0V, IoH=-4mA, 3.3V Product & Wide Vcc** Product			-	
		Vcc=2.4V, IoH=-1mA, Wide Vcc** Product			-	
		Vcc=1.65V, IoH=-0.1mA, Wide Vcc** Product			-	

^{*} The above parameters are also guaranteed for industrial temperature range.

Capacitance*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/Output Capacitance	CI/O	V _{I/O} =0V	-	8	pF
Input Capacitance	Cin	V _{IN} =0V	-	6	pF

^{*} Capacitance is sampled and not 100% tested.

^{**} Wide Vcc Range is $1.65V \sim 3.6V$

Test Conditions*

Value
0 to 3.0V (Vcc=3.3V or 5.0V)
0 to 2.5V (Vcc=2.5V)
0 to 1.8V (Vcc=1.8V)
1V/1ns
1.5V (Vcc=3.3V or 5.0V)
1/2Vcc (Vcc= 1.8V or 2.5V)
See Fig. 1

^{*} The above parameters are also guaranteed at industrial temperature range.

Output Load(B) (for thz, tz, twhz, tolz & tohz)

Vcc	5.0V	3.3V	2.5V	1.8V
R1	480 Ω	319Ω	1909Ω	13500 Ω
R2	255 Ω	353 Ω	1105 Ω	10800 Ω

Overshoot Timing

Undershoot Timing

* Including Scope and Jig Capacitance

Fig. 2

Functional Description (x8 Mode)

cs	WE	OE	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	ISB, ISB1
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	Dout	Icc
L	L	Х	Write	Din	Icc

^{*} X means Don't Care.

Functional Description (x16 Mode)

cs	WE	OE.	LB**	UB**	Mode	I/O	Pin	Supply Current
CS	VV C	OL	LB	ОВ	Wode	I/O ₀ ~I/O ₇	I/O8~I/O15	Supply Current
Н	Х	X*	X	X	Not Select	High-Z	High-Z	ISB, ISB1
L	Н	Н	Х	Х	Output Disable	High-Z	High-Z	Icc
L	Х	Х	Н	Н				
			L	Н		D оит	High-Z	
L	Н	L	Н	L	Read	High-Z	D out	Icc
			L	L		Dout	D ouт	
			L	Н		DIN	High-Z	
L	L	X	Н	L	Write	High-Z	DIN	Icc
			L	L		DIN	DIN	

^{*} X means Don't Care.

Data Retention Characteristics* (TA=0 to 70°C)

Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for	5.0V Product	5.0		CS ≥Vcc - 0.2V	2.0	-	5.5	
Data Retention	3.3V Product	3.3	VDR		2.0	-	3.6	V
	Wide 2.4V ~ 3.6V	2.5/3.3	VDR		2.0	-	3.6	V
	Wide 1.65V ~ 2.2V	1.8			1.5	-	3.6	
	5.0V Product	5.0		Vcc=2.0V CS≥Vcc - 0.2V VIN≥Vcc - 0.2V or VIN≤0.2V	-	-	5	
Data Retention Current	3.3V Product	3.3			-	-	5	
Current	Wide 2.4V ~ 3.6V	2.5/3.3	IDR		-	-	6	mA
	Wide 1.65V ~ 2.2V	1.8		Vcc=1.5V CS≥Vcc - 0.2V Vin≥Vcc - 0.2V or Vin≤0.2V	-	-	6	
Data Retention	Data Retention Set-Up Time			See Data Retention	0	-	-	ns
Recovery Time	·	trdr	Wave form(below)	5	-	-	ms	

 $[\]ensuremath{^{\star}}$ The above parameters are also guaranteed at industrial temperature range.

Data Retention Wave Form

1M Async FAST SRAM

Read Cycle*

Parameter	Symbol	81	8ns		10ns		12ns		15ns	
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	trc	8	-	10	-	12	-	15	-	ns
Address Access Time	taa	-	8	-	10	-	12	ı	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid Output	toe	-	4	-	5	-	6	1	7	ns
UB, LB Access Time **	tва	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z Output	tLZ	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	0	-	ns
UB, LB Enable to Low-Z Output **	tBLZ	0	-	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	4	0	5	0	6	0	7	ns
Output Disable to High-Z Output	tonz	0	4	0	5	0	6	0	7	ns
UB, LB Disable to High-Z Output **	tвнz	0	4	0	5	0	6	0	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	3	-	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	0	-	0	-	ns
Chip Selection to Power DownTime	tpp	-	8	-	10	-	12	-	15	ns

^{*} The above parameters are also guaranteed for industrial temperature range.

Write Cycle*

Parameter	Symbol	8ns		10ns		12ns		15ns		Unit
	,	Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	8	-	10	-	12	-	15	-	ns
Chip Select to End of Write	tcw	6	-	7	-	9	-	12	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	6	-	7	-	9	-	12	-	ns
Write Pulse Width(OE High)	twp	6	-	7	-	9	-	12	-	ns
Write Pulse Width(OE Low)	twp1	8	-	10	-	12	-	15	-	ns
UB, LB Valid to End of Write **	tвw	6	-	7	-	9	-	12	-	ns
Write Recovery Time	twr	0	-	0	-	0	-	0	-	ns
Write to Output High-Z	twnz	0	4	0	5	0	6	0	7	ns
Data to Write Time Overlap	tow	4	-	5	-	7		8	-	ns
Data Hold from Write Time	tDH	0	-	0	-	0	-	0	-	ns
End of Write to Output Low-Z	tow	3	-	3	-	3	-	3	-	ns

^{*} The above parameters are also guaranteed for industrial temperature range.

Timing Diagrams

Timing Waveform Of Read Cycle(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB, LB=VIL**)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Read Cycle(2) (WE=VIH)

NOTES(Read Cycle)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or VOL levels.
- 4. At any given temperature and voltage condition, thz(Max.) is less than ttz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. 6. Device is continuously selected with CS=ViL.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(1) (OE Clock)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(2) (OE=Low fixed)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(3) (CS=Controlled)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(4) (UB, LB Controlled)

NOTES(Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of $\overline{\text{CS}}$ going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output
- must not . be applied because bus contention can occur.

 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address.
- 10. When $\overline{\text{CS}}$ is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

^{**} Those parameters are applied for x16 mode only.

Package Dimensions

44-TSOP2-400BF

Package Dimensions

32sTSOP1

Units:millimeters

Package Dimensions

48-FBGA

6mm x 8mm Body, 0.75mm Bump Pitch, 6 x 8 Ball Grid Array

Symbol	Value	Units	Note	Symbol	Value	Units	Note
Α	6 ± 0.1	mm		E	0.75	mm	
В	8 ± 0.1	mm		F	5.25	mm	
С	1.1 ± 0.1	mm		G	3.75	mm	
D	0.25 ± 0.05	mm		Н	0.35 ± 0.05	mm	

