单摆测重力加速度实验报告

学号: 2113662 姓名: 张丛 专业: 工科试验班

一、实验目的:

1. 掌握停表的使用。

2. 学习用单摆测定重力加速度的方法。

3. 根据给定仪器确定周期的测量方案, 使测定重力加速度的相对标准不确定度小于 0.20%:

二、实验原理:

一根细线上端固定,下端系一金属小球,当细线的质量与小球的质量 m 相比可以忽略,球的直径又比细线的长度小得多,即可与质点近似时,这种装置就构成单摆一种数学摆的近似装置。

设摆长 I, 重力加速度 g, 则其运动方程由转动定理可知:

$$ml^2\beta + mglsin\theta = 0$$

当摆角很小时 (例如 0 < 5°), 有:

$$\theta = \theta_0 \cos(\omega t + \alpha)$$

上式中、 θ 及 α 取决于初始条件。且单摆周期 T 为

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}}$$

可见,单摆周期T只与摆长和重力加速度有关。若测得摆长和周期,即可求出当地的重力加速度:

$$g = \frac{4\pi^2 l}{T^2}$$

若改变摆长测出相应的周期,即可用作图法或最小二乘原理验证上式并可求出当地的重力加速度 q。

三、仪器用品:

平面镜, 直尺, 细线, 重物, 手机计时器

四、实验步骤及数据:

(1) 常规单摆实验:

1、利用重物和细线自制单摆;

- 2、利用平面镜判断单摆开始计时的位置,使用累加的方法测量单个周期 T,即一次测量 30 个周期的总时间 t,然后得到单个周期 T 的时间。实验中应使摆角小于 5°,保证实验过程中单摆系在同一铅垂面内摆动,且待其摆稳后再予记录。测量单摆周期时应从平衡位置开始和停止。
- 3、多次测量,以悬点到重物中心的距离作为摆长,通过改变摆线的长度,测量多组和对应的周期 T,然后画出l-T²图线,然后在图线上选取 A、B 两个点,然后利用公式计算重力加速度。

摆长测量:

		摆长	不确定度	平均值		
				/cm		
1	70.71	70.68	70.72	70.65	0.02	70.69
2	66.35	66.30	66.44	66.57	0.10	66.42
3	57.67	57.28	56.86	57.55	0.31	57.34
4	50.60	50.33	50.96	51.04	0.29	50.73

周期测量:

		30 次)	周期/s	不确定	平均值	周期	
					度		T/s
1	50.10	50.13	50.53	50.12	0.18	50.22	1.674
2	49.06	50.21	48.36	49.66	0.68	49.32	1.644
3	45.68	44.36	44.28	46.47	0.92	45.19	1.506
4	42.87	43.36	42.51	42.96	0.30	42.92	1.431

最小二乘法数据汇总:

l/m	0.7069	0.6642	0.5734	0.5073
T^2/s^2	2.802	2.702	2.268	2.048

斜率 a_1 =0.2503 截距 a_0 =-0.0017

则:

$$g = 4\pi^2 a_1 = 9.88 \text{ m/s}^2$$

计算斜率和重力加速度不确定度如下:

最终结果:

$$g = 9.88 \pm 0.39$$
 m/ s^2

(2) Phyphox 软件测重力加速度:

软件截图如下:

五、思考题:

1. 摆幅不得大于多少? 摆角为什么不能太大?

答:不得大于 5°,摆角太大不满足 $\theta = \theta_0 \cos(\omega t + \alpha)$,继而不满足重力加速度 g 与 斜率 k 的关系。

2. 测量周期时,有人说,单摆通过平衡位置时走得太快,计时不准,而达到最大摆幅位置时走得慢,容易计准。这种看法正确吗?从理论和实际测量中加以说明。

答:不正确。单摆通过平衡位置时测量数据更接近真实值。

采取累加的方法测量周期 T,即一次测量 30 个周期的总时间 t,然后得到单个周期 T 的时间,这种方法减小了速度快慢带来的误差。且从单摆经过平衡位置时开始和结束计数。

3. 为什么测量时应保证单摆在同一铅垂面内摆动?

答:不在同一平面内摆动的话,就式在做圆锥摆运动,而圆锥摆运动的周期和单摆的周期是不相同的,因此测量结果会出现系统误差。

且不在同一铅垂面内不满足

$$g = \frac{4\pi^2 l}{T^2}$$