R language and data analysis: ggplot2

Qiang Shen

Jan 16, 2018

Visualization

• A picture is worth a thousand words

data visualization

- base package
- plot for summary statistics

```
library(gcookbook)
simpledat
## A1 A2 A3
```

```
## B1 A2 A3
## B1 10 7 12
## B2 9 11 6
```

library(gcookbook)
barplot(simpledat,beside=T)

library(gcookbook)
barplot(t(simpledat),beside=T)


```
## A1 A2 A3
## B1 10 7 12
## B2 9 11 6
```



```
library(gcookbook)
simpledat
barplot(simpledat,beside=T)
barplot(t(simpledat),beside=T)
plot(simpledat[1,],type='l')
lines(simpledat[2,],type='l',col='blue')
```

How is the case in ggplot2

```
library(ggplot2)
simpledat_long
```

```
Aval Bval value
##
## 1
      Α1
          B1
                10
## 2
    A1 B2
## 3
    A2 B1
## 4
    A2
        B2
             11
## 5
    A3
        B1
               12
## 6
    A3
          B2
                 6
```

ggplot(simpledat_long,aes(x=Aval,y=value,fill=Bval))+
geom_bar(stat='identity',position='dodge')

ggplot(simpledat_long,aes(x=Bval,y=value,fill=Aval))+
geom_bar(stat='identity',position='dodge')

How is the case in ggplot2

four graphics system in R.

System	Included in base installation?	Must be explicitly loaded?
base	Yes	No
grid	Yes	Yes
lattice	Yes	Yes
ggplot2	No	Yes

package requirement for the chapter

- ggplot2
- car
- gridExtra
- ggthemes

ggplot2 is an implementation of Leland Wilkinson's Grammar of Graphics—a general scheme for data visualization which breaks up graphs into semantic components such as scales and layers.

Plot = data + Aesthetics + Geometry.

- data is a data frame
- Aesthetics (aes) is used to indicate x and y variables. It can also be used to control the color, the size or the shape of a point...
- Geometry (geom) corresponds to the type of graphics (histogram, box plot, line plot, density plot, dot plot)

ggplot2 is based on the **grammar of graphics**, the idea that you can build every graph from the same few components: a **data** set, a set of **geoms**—visual marks that represent data points, and a **coordinate**

system.

Basic scatterplot

Scatter plot with additional options

```
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
  geom_point(pch=17,color="cornflowerblue",size=3)+
  geom_smooth(method="lm",color="red",se=F,linetype=1)+
labs(title="Automobile Data", x="Weight", y="MPG")
```



```
p<-ggplot(data=mtcars, aes(x=wt, y=mpg))
p+ geom_point(pch=17, color="blue", size=2)+
geom_smooth(method="lm",color="red",linetype=1)+
labs(title="Automobile Data",x="Weight",y="mpg")</pre>
```


Scatter plot with grouping and faceting

- grouping (display groups in a single plot)
- faceting (display observations in separate, side-by-side plots)
- need to be factors

Scatter plot with grouping and faceting

geometric objects (geom)

Function	Adds	Options
geom_bar()	Bar chart	color, fill, alpha
<pre>geom_boxplot()</pre>	Box plot	color, fill, alpha, notch, width
geom_density()	Density plot	color, fill, alpha, linetype
<pre>geom_histogram()</pre>	Histogram	color, fill, alpha, linetype, binwidth
geom_hline()	Horizontal lines	color, alpha, linetype, size
geom_jitter()	Jittered points	color, size, alpha, shape
geom_line()	Line graph	colorvalpha, linetype, size
<pre>geom_point()</pre>	Scatterplot	color, alpha, shape, size
geom_rug()	Rug plot	color, side
geom_smooth()	Fitted line	method, formula, color, fill, linetype, size
geom_text()	Text annotations	Many; see the help for this function
geom_violin()	Violin plot	color, fill, alpha, linetype
geom_vline()	Vertical lines	color, alpha, linetype, size

Using geoms: line

Using geoms:histogram,geom_boxplot

```
data(singer, package="lattice")
p1<-ggplot(singer, aes(x=height)) + geom_histogram()
p2<-ggplot(singer,aes(x=voice.part,y=height))+geom_boxplot
library(gridExtra);grid.arrange(p1, p2, ncol=2)</pre>
```


Option	Specifies
color	Color of points, lines, and borders around filled regions.
fill	Color of filled areas such as bars and density regions.
alpha	Transparency of colors, ranging from 0 (fully transparent) to 1 (opaque).
linetype	Pattern for lines (1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash).
size	Point size and line width.
shape	Point shapes (same as pch , with $0 = open$ square, $1 = open$ circle, $2 = open$ triangle, and so on). See figure 3.4 for examples.
position	Position of plotted objects such as bars and points. For bars, "dodge" places grouped bar charts side by side, "stacked" vertically stacks grouped bar charts, and "fill" vertically stacks grouped bar charts and standardizes their heights to be equal. For points, "jitter" reduces point overlap.
binwidth	Bin width for histograms.
notch	Indicates whether box plots should be notched (TRUE/FALSE).
sides	Placement of rug plots on the graph ("b" = bottom, "l" = left, "t" = top, "r" = right, "bl" = both bottom and left, and so on).
width	Width of box plots.

```
Salaries <- read.csv("salaries.csv")
library(ggplot2)
ggplot(Salaries, aes(x=rank, y=salary)) +
  geom_boxplot()+ geom_point()+ geom_rug()</pre>
```



```
Salaries <- read.csv("salaries.csv")
ggplot(Salaries, aes(x=rank, y=salary)) +
geom_boxplot(fill="cornflowerblue",color="black",notch=T)+
geom_point(position='jitter',color="blue", alpha=.5)</pre>
```



```
library(ggplot2)
data(singer, package="lattice")
ggplot(singer, aes(x=voice.part,y=height))+
geom_violin(fill="lightblue")+
geom_boxplot(fill="lightgreen", width=0.2)
```


Grouping

To display data values, map variables in the data set to aesthetic properties of the geom like **size**, **color**, and **x** and **y** locations.

Grouping

color, fill, size, shape or combination.

```
Salaries <- read.csv("salaries.csv")
p<-ggplot(Salaries,aes(x=yrs.since.phd,y=salary))+geom_poin
q<-ggplot(Salaries,aes(x=yrs.since.phd,y=salary,
shape=sex,color=rank))+geom_point()
library(gridExtra);grid.arrange(p,q,ncol=2)</pre>
```


Grouping: kernal density plot

```
Salaries <- read.csv("salaries.csv")
ggplot(data=Salaries,aes(x=salary,fill=rank))+
  geom_density(alpha=.5,col='black')</pre>
```


+facet_grid(rank~.)

Grouping in base graphics

```
library(sm);Salaries <- read.csv("salaries.csv")
attach(Salaries);sm.density.compare(salary,rank)
colfill<-c(2:(2+length(levels(rank))))
legend('topright',levels(rank),fill=colfill,inset=0.02)</pre>
```


Grouping: barplot

```
a<-ggplot(Salaries, aes(x=rank, fill=sex))+
geom_bar(position="stack")+labs(title='position="stack"')
b<-ggplot(Salaries, aes(x=rank, fill=sex))+
geom_bar(position="dodge")+labs(title='position="dodge"')
c<-ggplot(Salaries, aes(x=rank, fill=sex))+
geom_bar(position="fill")+labs(title='position="fill"')
library(gridExtra);grid.arrange(a,b,c,ncol=3)</pre>
```


how to cope with summarized data:barplot

```
data<-data.frame(with(Salaries,table(sex,rank)))
a<-ggplot(data, aes(x=rank,y=Freq,fill=sex))+geom_bar(
stat='identity',position="stack")+labs(title='stack')
b<-ggplot(data, aes(x=rank,y=Freq,fill=sex))+geom_bar(
stat='identity',position="dodge")+labs(title='dodge')
c<-ggplot(data, aes(x=rank,y=Freq,fill=sex))+geom_bar(
stat='identity',position="fill")+labs(title='fill')
library(gridExtra);grid.arrange(a,b,c,ncol=3)</pre>
```


Facet:trellis graphs

side-by-side graphs vs. single graph (grouping) - facet $_$ wrap - facet $_$ grid

Syntax	Results
facet_wrap(~var, ncol=n)	Separate plots for each level of var arranged into n columns
facet_wrap(~var, nrow=n)	Separate plots for each level of var arranged into n rows
Syntax	Results
facet_grid(rowvar~colvar)	Separate plots for each combination of rowvar and colvar, where rowvar represents rows and colvar represents columns
<pre>facet_grid(rowvar~.)</pre>	Separate plots for each level of rowvar, arranged as a single column
facet_grid(.~colvar)	Separate plots for each level of colvar, arranged as a single row

Faceting: facet_wrap

```
data(singer, package="lattice")
ggplot(data=singer, aes(x=height)) +
geom_histogram() + facet_wrap(~voice.part,nrow=2)
```


Faceting: facet_grid

```
ggplot(Salaries, aes(x=yrs.since.phd, y=salary,
color=rank,shape=rank)) + geom_point() +
facet_grid(.~sex)
```


facet_grid

```
data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height, fill=voice.part))+
  geom_density()+ facet_grid(voice.part~.)
```


Adding smoothed lines

```
Salaries <- read.csv("salaries.csv")
a<-ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) +
geom_smooth() + geom_point()
b<-ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary,
linetype=sex, shape=sex, color=sex)) +
geom_smooth(method=lm, formula=y~poly(x,2),se=F,size=2)+
geom_point(size=2,alpha=0.5)# quadratic
library(gridExtra);grid.arrange(a,b,ncol=2)</pre>
```


Modifying axes

```
Salaries <- read.csv("salaries.csv")
library(ggplot2)
ggplot(Salaries,aes(x=rank, y=salary,fill=sex))+
geom_boxplot()</pre>
```


Modifying axes

Function	Options
<pre>scale_x_continuous(), scale_y_continuous()</pre>	breaks= specifies tick marks, labels= specifies labels for tick marks, and limits= controls the range of the values displayed.

Function	Options
<pre>scale_x_discrete(), scale_y_discrete()</pre>	breaks= places and orders the levels of a factor, labels= specifies the labels for these levels, and limits= indicates which levels should be displayed.
coord_flip()	Reverses the x and y axes.

Modifying axes

```
Salaries <- read.csv("salaries.csv")
library(ggplot2)
ggplot(data=Salaries, aes(x=rank, y=salary,fill=sex)) +
  geom boxplot() +
  scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof
                   labels=c("Assistant\nProfessor",
                            "Associate\nProfessor".
                            "Full\nProfessor")) +
  scale y continuous(breaks=c(50000, 100000, 150000, 200000
                     labels=c("$50K", "$100K", "$150K", "$2
  labs(title="Faculty Salary by Rank and Sex", x="", y="")
```


Legends

```
Salaries <- read.csv("salaries.csv")</pre>
ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
  geom boxplot() +
scale x discrete(breaks=c("AsstProf", "AssocProf", "Prof")
                   labels=c("Assistant\nProfessor".
                             "Associate\nProfessor".
                             "Full\nProfessor")) +
  scale_y_continuous(breaks=c(50000, 100000, 150000, 200000
                     labels=c("$50K", "$100K", "$150K", "$2
  labs(title="Faculty Salary by Rank and Gender",
       x="", v="", fill="Gender") +
  theme(legend.position=c(.15,.8))
```

Scale

```
# table(mtcars$disp)
ggplot(mtcars, aes(x=wt, y=mpg, size=disp)) +
  geom_point(shape=21, color="black", fill="cornsilk") +
  labs(x="Weight", y="Miles Per Gallon",
  title="Bubble Chart", size="Engine\nDisplacement")
```


Scales

```
Salaries <- read.csv("salaries.csv")
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=
   geom_point(size=2)+
   scale_color_manual(values=c("orange", "olivedrab", "navy")</pre>
```


Scales

```
Salaries <- read.csv("salaries.csv")</pre>
ggplot(Salaries,aes(x=yrs.since.phd,y=salary,color=rank))+
scale_color_brewer(palette="Set1")+
geom_point(size=2)
```


Scales

library(RColorBrewer);display.brewer.all()

Themes

```
library(ggthemes)
p1<-ggplot(mtcars, aes(x = wt, y = mpg)) +
    geom_point() +labs(title='Cars')
p2<-ggplot(mtcars, aes(wt, mpg)) +
geom_point() + geom_rangeframe() +
theme_tufte()
library(gridExtra);grid.arrange(p1,p2,ncol=2)</pre>
```


Economist template

```
p<-ggplot(iris,aes(Sepal.Length,Sepal.Width,colour
= Species))+ geom_point(size=1.3)
p + theme_economist() +
scale_color_economist()+
ggtitle("Iris data sets")</pre>
```


Wall Street Journal template

```
p<-ggplot(iris,aes(Sepal.Length,Sepal.Width,colour
= Species))+ geom_point(size=1.3)
p + theme_wsj()+ scale_colour_wsj("colors6")+
ggtitle("Iris data")# rgby, red_green, black_green, dem_rej</pre>
```

Iris data

Google Docs

```
p<-ggplot(iris,aes(Sepal.Length,Sepal.Width,colour
= Species))+ geom_point(size=2)
p + theme_calc()+ scale_colour_calc()+
ggtitle("Iris data")</pre>
```


Highcharts JS

```
p<-ggplot(iris,aes(Sepal.Length,Sepal.Width,colour</pre>
= Species))+ geom_point(size=2)
p + theme_hc()+ scale_colour_hc()
  4.5 -
  4.0 -
Sepal.Width
  2.5 -
  2.0-
                                  Sepal.Length
```

Stata template

```
p<-ggplot(iris,aes(Sepal.Length,Sepal.Width,colour= Species
p + theme_stata() + scale_color_stata() +
ggtitle("Iris data")</pre>
```


summary

- Plot = data + Aesthetics + Geometry.
- grouping (aes)
- facet (facet_wrap, facet_grid)
- appearance of ggplot2 graphs (axes, legend, scale, theme)
- combine and save the figures

ggplot2 books

- R Graphics Cookbook (Winston Chang)
- ggplot2: Elegant Graphics for Data Analysis (Hadley Wickham)