Clases de complejidad aleatorizadas

IIC3810

Sean A, B y C tres matrices de $n \times n$ de números racionales

Sean A, B y C tres matrices de $n \times n$ de números racionales

Queremos verificar si AB = C

Sean A, B y C tres matrices de $n \times n$ de números racionales

Queremos verificar si AB = C

¿Cuántas multiplicaciones de números racionales necesitamos hacer para resolver este problema?

Sean A, B y C tres matrices de $n \times n$ de números racionales

Queremos verificar si AB = C

- ¿Cuántas multiplicaciones de números racionales necesitamos hacer para resolver este problema?
 - $O(n^3)$ con el algoritmo usual, $O(n^{2,807354})$ con el algoritmo de Strassen y $O(n^{2,372859})$ con el mejor algoritmo actual.

Sean A, B y C tres matrices de $n \times n$ de números racionales

Queremos verificar si AB = C

- ¿Cuántas multiplicaciones de números racionales necesitamos hacer para resolver este problema?
 - $O(n^3)$ con el algoritmo usual, $O(n^{2,807354})$ con el algoritmo de Strassen y $O(n^{2,372859})$ con el mejor algoritmo actual.

¿Podemos resolver este problema de manera más eficiente? ¿Con $O(n^2)$ multiplicaciones de números racionales?

Lema

Si (d_1, \ldots, d_n) y (e_1, \ldots, e_n) son dos vectores distintos en \mathbb{Q}^n , entonces:

$$\Pr_{(x_1,...,x_n)\sim\{0,1\}^n} \left[\sum_{i=1}^n d_i \cdot x_i = \sum_{i=1}^n e_i \cdot x_i \right] \leq \frac{1}{2}$$

Lema

Si (d_1, \ldots, d_n) y (e_1, \ldots, e_n) son dos vectores distintos en \mathbb{Q}^n , entonces:

$$\Pr_{(x_1,...,x_n)\sim\{0,1\}^n} \left[\sum_{i=1}^n d_i \cdot x_i = \sum_{i=1}^n e_i \cdot x_i \right] \leq \frac{1}{2}$$

Ejercicio

Demuestre el lema.

Ejercicios

- 1. Use el lema para construir un algoritmo que verifica si $A \cdot B = C$ realizando $O(n^2)$ multiplicaciones y con una probabilidad de error acotada por $\frac{1}{2}$.
- 2. Indique cómo modificar el algoritmo para que siga realizando $O(n^2)$ multiplicaciones pero su probabilidad de error está acotada por $(\frac{1}{2})^{100}$.

Algoritmos probabilísticos y Máquinas de Turing

¿Cómo podemos formalizar la idea de un algoritmo probabilístico utilizando la noción de MT?

¿Podemos definir clases de complejidad basados en los algoritmos probabilísticos?

Algoritmos probabilísticos y Máquinas de Turing

¿Cómo podemos formalizar la idea de un algoritmo probabilístico utilizando la noción de MT?

¿Podemos definir clases de complejidad basados en los algoritmos probabilísticos?

Vamos a responder a esta preguntas en las siguientes transparencias.

MT probabilística

Definición

Una MT probabilística es una tupla $M = (Q, \Sigma, \Gamma, q_0, \delta, F)$ tal que:

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ es un alfabeto finito tal que \vdash , $B \notin \Sigma$
- $ightharpoonup \Gamma$ es un alfabeto finito tal que $\Sigma \cup \{\vdash, B\} \subseteq \Gamma$
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $ightharpoonup F \subseteq Q$ es un conjunto de estados finales
- \blacktriangleright δ es una función parcial:

$$\delta : Q \times \Gamma \times \{0,1\} \to Q \times \Gamma \times \{\leftarrow, \Box, \rightarrow\}$$

MT probabilística: Funcionamiento

La entrada de una MT probabilística M consiste de un string $w \in \Sigma^*$ y un string $s \in \{0,1\}^\omega$

- w es el input que se quiere aceptar o rechazar
- ▶ s es un string infinito de símbolos 0 y 1, el cual es considerado como un string de bits aleatorios

En el estado inicial:

- ▶ M tiene en la primera cinta $\vdash wB \cdots$ y en la segunda cinta $\vdash s$
- ► M está en el estado q₀
- Las cabezas lectoras de ambas cintas están en la posición 1

MT probabilística: Funcionamiento

En cada instante la máquina se encuentra en un estado q y sus cabezas lectoras están en posiciones p_1 y p_2

- Si el símbolo en la posición p_i (i = 1, 2) es a_i y $\delta(q, a_1, a_2) = (q', b, X)$, entonces:
 - La máquina escribe el símbolo *b* en la posición *p*₁ de la primera cinta
 - Cambia de estado desde q a q'
 - Mueve la cabeza lectora de la primera cinta a la posición p_1-1 si X es \leftarrow , y a la posición p_1+1 si X es \rightarrow . Si X es \square , entonces esta cabeza lectora permanece en la posición p_1

MT probabilística: Funcionamiento

En cada instante la máquina se encuentra en un estado q y sus cabezas lectoras están en posiciones p_1 y p_2

- Si el símbolo en la posición p_i (i = 1, 2) es a_i y $\delta(q, a_1, a_2) = (q', b, X)$, entonces:
 - ► La máquina escribe el símbolo b en la posición p₁ de la primera cinta
 - Cambia de estado desde q a q'
 - Mueve la cabeza lectora de la primera cinta a la posición p_1-1 si X es \leftarrow , y a la posición p_1+1 si X es \rightarrow . Si X es \Box , entonces esta cabeza lectora permanece en la posición p_1
 - Mueve la cabeza lectora de la segunda cinta a la posición $p_2 + 1$

La entrada de una MT probabilística M con alfabeto Σ consiste de dos strings $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$

- \blacktriangleright Utilizamos la notación M(w,s) para indicar las entradas de M
- ▶ Decimos que M(w, s) acepta si M con entrada (w, s) se detiene en un estado final
 - El caso en que M(w,s) rechaza se define de forma similar

La entrada de una MT probabilística M con alfabeto Σ consiste de dos strings $w\in \Sigma^*$ y $s\in \{0,1\}^\omega$

- \blacktriangleright Utilizamos la notación M(w,s) para indicar las entradas de M
- Decimos que M(w, s) acepta si M con entrada (w, s) se detiene en un estado final
 - ightharpoonup El caso en que M(w,s) rechaza se define de forma similar

Primer supuesto

Consideramos una MT probabilística M que se detiene en todas sus entradas (w, s)

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Definimos $tiempo_M(w, s)$ como el número de pasos ejecutados por M con entrada (w, s)

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Definimos tiempo_M(w, s) como el número de pasos ejecutados por M con entrada (w, s)

Segundo supuesto

Existe una función $f: \Sigma^* \to \mathbb{N}$ tal que para cada $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$: $\frac{tiempo_M(w,s)}{s} \leq f(w)$

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Definimos $tiempo_M(w,s)$ como el número de pasos ejecutados por M con entrada (w,s)

Segundo supuesto

Existe una función
$$f: \Sigma^* \to \mathbb{N}$$
 tal que para cada $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$:
$$\frac{tiempo_M(w,s)}{s} \leq \frac{f(w)}{s}$$

Vale decir, hay una cantidad máxima de bits aleatorios que deben ser utilizados con entrada w, la cual sólo depende de w

Para estudiar el peor caso necesitamos la siguiente definición:

$$tiempo_M(w) = máx\{tiempo_M(w,s) \mid s \in \{0,1\}^{\omega}\}$$

Para estudiar el peor caso necesitamos la siguiente definición:

$$tiempo_M(w) = máx\{tiempo_M(w,s) \mid s \in \{0,1\}^{\omega}\}$$

Con esto tenemos que el tiempo de funcionamiento de M en el peor caso es definido por la función t_M :

$$t_M(n) = \max\{tiempo_M(w) \mid w \in \Sigma^* \text{ y } |w| = n\}$$

1:

La probabilidad de aceptar en una MT probabilística

Tercer supuesto

Si para una MT probabilística M con alfabeto Σ se tiene que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$, entonces suponemos que las entradas de M son de la forma (w,s) con $w \in \Sigma^*$, $s \in \{0,1\}^*$ y |s| = g(n).

Dado el tiempo de ejecución de M no podemos usar más de g(n) bits aleatorios para una entrada w de largo n.

La probabilidad de aceptar en una MT probabilística

Sea M una MT probabilística con alfabeto Σ y tal que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$.

La probabilidad de aceptar en una MT probabilística

Sea M una MT probabilística con alfabeto Σ y tal que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$.

Definición

Para cada $w \in \Sigma^*$ tal que |w| = n, la probabilidad de que M acepte w es definida de la siguiente forma:

$$\mathbf{Pr}_s(M \ acepte \ w) = \frac{|\{s \in \{0,1\}^* \ | \ |s| = g(n) \ y \ M(w,s) \ acepta\}|}{2^{g(n)}}$$

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en RP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces Pr(M acepte w) = 0

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en RP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces Pr(M acepte w) = 0

Vale decir, para los lenguaje en RP tenemos algoritmos probabilísticos que pueden cometer errores sólo para los elementos que están en L

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

Lema de amplificación

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathsf{RP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge 1 \frac{1}{4^{\ell}}$
- ▶ Si $w \notin L$, entonces Pr(M acepte w) = 0

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

Lema de amplificación

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathbb{RP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge 1 \frac{1}{4^{\ell}}$
- ▶ Si $w \notin L$, entonces Pr(M acepte w) = 0

Ejercicio

Demuestre el lema de amplificación.

¿Dónde está la clase RP?

Teorema

 $P\subseteq RP\subseteq NP$

¿Dónde está la clase RP?

Teorema

 $P \subseteq RP \subseteq NP$

Ejercicio

Demuestre el teorema.

¿Dónde está la clase RP?

Teorema

 $P \subseteq RP \subseteq NP$

Ejercicio

Demuestre el teorema.

Corolario

 $P \subseteq co$ - $RP \subseteq co$ -NP

¿Qué sabemos sobre RP y co-RP?

Son problemas abiertos si $\mathsf{P} = \mathsf{RP}$ o $\mathsf{RP} = \mathsf{co}\text{-}\mathsf{RP}$

¿Qué sabemos sobre RP y co-RP?

Son problemas abiertos si P = RP o RP = co-RP

Pero se cree que P = RP

- Puesto que si $L \in RP$, entonces hay un algoritmo para resolver L puede ser usado en la *práctica* como un algoritmo de tiempo polinomial
- ▶ De esto se concluiría que RP = co-RP = P

Una clase de complejidad probabilística más general

Una clase de complejidad probabilística más general

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ► Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces $Pr(M \text{ acepte } w) \leq \frac{1}{4}$

Teorema

BPP = co-BPP

Teorema

BPP = co-BPP

Ejercicio

Demuestre el teorema.

Teorema

BPP = co-BPP

Ejercicio

Demuestre el teorema.

Corolario

 $RP \subseteq BPP \ y \ co-RP \subseteq BPP$

Es un problema abierto si $\mathsf{P} = \mathsf{BPP}$

Es un problema abierto si P = BPP

▶ De esto se concluiría que BPP = RP = co-RP = P

Es un problema abierto si P = BPP

▶ De esto se concluiría que BPP = RP = co-RP = P

Vamos a demostrar que BPP está contenida en la jerarquía polinomial.

 En esta demostración vamos a considerar una versión equivalente pero más simple de la definición de BPP

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Dado $w \in \Sigma^*$ y $s \in \{0,1\}^*$ tal que $t_M(|w|) \le |s|$, decimos que M(w,s) es incorrecto si:

$$w \in L$$
 y $M(w, s)$ rechaza o $w \notin L$ y $M(w, s)$ acepta

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Dado $w \in \Sigma^*$ y $s \in \{0,1\}^*$ tal que $t_M(|w|) \le |s|$, decimos que M(w,s) es incorrecto si:

$$w \in L$$
 y $M(w, s)$ rechaza o $w \notin L$ y $M(w, s)$ acepta

Vamos a utilizar esta noción para dar una definición más simple de BPP

Una definición equivalente de BPP

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \frac{1}{4}$$

Un lema de amplificación para BPP

Al igual que para el caso de RP, el valor $\frac{1}{4}$ en la definición de BPP pueden ser reemplazado por un valor arbitrariamente más pequeño.

Un lema de amplificación para BPP

Al igual que para el caso de RP, el valor $\frac{1}{4}$ en la definición de BPP pueden ser reemplazado por un valor arbitrariamente más pequeño.

Lema de amplificación para BPP

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathsf{BPP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \left(\frac{3}{4}\right)^{\ell}$$

23

Un lema de amplificación para BPP

Al igual que para el caso de RP, el valor $\frac{1}{4}$ en la definición de BPP pueden ser reemplazado por un valor arbitrariamente más pequeño.

Lema de amplificación para BPP

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathsf{BPP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \left(\frac{3}{4}\right)^{\ell}$$

Ejercicio

Demuestre el lema de amplificación para BPP.

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

 $BPP \subseteq \Sigma_2^P \cap \Pi_2^P$

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Como sabemos que BPP = co-BPP, nos basta demostrar que BPP $\subseteq \Sigma_2^P$

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Como sabemos que BPP = co-BPP, nos basta demostrar que BPP $\subseteq \Sigma_2^P$

 Antes de realizar esta demostración vamos a ver dos ingredientes necesarios para ella

Primer ingrediente: una caracterización de Σ_2^P

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en Σ_2^P si y sólo si existe un lenguaje $B \subseteq \Sigma^* \times \Sigma^* \times \Sigma^*$ y un polinomio q(n) tales que $B \in P$ y para todo $u \in \Sigma^*$:

$$u \in L$$
 si y sólo si
$$(\exists v_1 \in \Sigma^*, |v_1| = q(|u|))(\forall v_2 \in \Sigma^*, |v_2| = q(|u|)) : (u, v_1, v_2) \in \mathcal{B}$$

Primer ingrediente: una caracterización de Σ_2^P

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en Σ_2^P si y sólo si existe un lenguaje $B \subseteq \Sigma^* \times \Sigma^* \times \Sigma^*$ y un polinomio q(n) tales que $B \in P$ y para todo $u \in \Sigma^*$:

$$\begin{aligned} u \in L \ \ \textit{si y s\'olo s\'i} \\ & (\exists v_1 \in \Sigma^*, |v_1| = q(|u|))(\forall v_2 \in \Sigma^*, |v_2| = q(|u|)): (u, v_1, v_2) \in B \end{aligned}$$

Ejercicio

¿Cómo se concluye que esta caracterización es cierta?

Segundo ingrediente: una versión más fuerte del lema de amplificación

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Si L \in BPP, entonces existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$Pr_s(M(w,s) \text{ es incorrecto}) \leq \frac{1}{3t_M(|w|)}$$

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Por lema de amplificación existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Por lema de amplificación existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Además podemos suponer que $t_M(n)>0$ para cada $n\in\mathbb{N}$

► ¿Por qué?

Notación

Dados a y b en $\{0,1\}$, la operación $a \oplus b$ es definida como (a+b) mod 2

► Vale decir, ⊕ es el o exclusivo

Dados $x, y \in \{0, 1\}^m$ con $x = a_1 a_2 \cdots a_m$ e $y = b_1 b_2 \cdots b_m$, la operación $x \oplus y$ da como resultado el siguiente string en $\{0, 1\}^m$:

$$(a_1 \oplus b_1)(a_2 \oplus b_2) \cdots (a_m \oplus b_m)$$

Defina el lenguaje A de la siguiente forma:

```
A = \{(w, y_1, \dots, y_m, z) \mid w \in \Sigma^*, m = t_M(|w|),
y_i \in \{0, 1\}^m \text{ para cada } i \in \{1, \dots, m\}, z \in \{0, 1\}^m
y \ M(w, y_i \oplus z) \text{ acepta para algún } j \in \{1, \dots, m\} \}
```

Defina el lenguaje A de la siguiente forma:

```
A = \{(w, y_1, \dots, y_m, z) \mid w \in \Sigma^*, m = t_M(|w|), \\ y_i \in \{0, 1\}^m \text{ para cada } i \in \{1, \dots, m\}, z \in \{0, 1\}^m \\ y \ M(w, y_i \oplus z) \text{ acepta para algún } j \in \{1, \dots, m\} \}
```

Ejercicio

Demuestre que $A \in P$

Dada la caracterización de Σ_2^P en las transparencias anteriores, para demostrar que $L \in \Sigma_2^P$ basta demostrar la siguiente condición:

Para cada $w \in \Sigma^*$ tal que $t_M(|w|) = m$:

$$w \in L$$
 si y sólo si

$$\exists y_1 \in \left\{0,1\right\}^m \cdots \exists y_m \in \left\{0,1\right\}^m \forall z \in \left\{0,1\right\}^m \left(w,y_1,\ldots,y_m,z\right) \in A$$

Dada la caracterización de Σ_2^P en las transparencias anteriores, para demostrar que $L \in \Sigma_2^P$ basta demostrar la siguiente condición:

Para cada
$$w \in \Sigma^*$$
 tal que $t_M(|w|) = m$:
$$w \in L \text{ si y sólo si}$$

$$\exists y_1 \in \{0,1\}^m \cdots \exists y_m \in \{0,1\}^m \, \forall z \in \{0,1\}^m \, (w,y_1,\ldots,y_m,z) \in A$$

Para hacer esta demostración vamos a utilizar el método probabilístico.

Para demostrar que un objeto con ciertas propiedades existe, en lugar de construirlo demostramos que la probabilidad de que exista es mayor que 0

Suponga que $w \in L$ y $t_M(|w|) = m$

Suponga que $w \in L$ y $t_M(|w|) = m$

Tenemos que:

$$\begin{aligned} \mathbf{Pr}_{y_1,...,y_m} \bigg(\exists z \in \{0,1\}^m \bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) \; \leq \\ & \sum_{z \in \{0,1\}^m} \mathbf{Pr}_{y_1,...,y_m} \bigg(\bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) \; = \\ & \sum_{z \in \{0,1\}^m} \prod_{i=1}^m \mathbf{Pr}_{y_i} \bigg(M(w,y_i \oplus z) \; \text{rechaza} \bigg) \end{aligned}$$

31

Dado $a \in \{0,1\}^m$, la función $f: \{0,1\}^m \to \{0,1\}^m$ definida como $f(x) = x \oplus a$ es inyectiva

Dado $a \in \{0,1\}^m$, la función $f: \{0,1\}^m \to \{0,1\}^m$ definida como $f(x) = x \oplus a$ es inyectiva

Por lo tanto dado que $w \in L$, concluimos que:

$$\Pr_{y_i}\left(M(w,y_i\oplus z) \text{ rechaza}\right) \leq \frac{1}{3m}$$

Dado que m > 0 concluimos que:

$$\begin{aligned} \mathbf{Pr}_{y_1,...,y_m} \bigg(\exists z \in \{0,1\}^m \bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) &\leq \\ &\sum_{z \in \{0,1\}^m} \prod_{i=1}^m \mathbf{Pr}_{y_i} \bigg(M(w,y_i \oplus z) \; \text{rechaza} \bigg) &\leq \\ &\sum_{z \in \{0,1\}^m} \prod_{i=1}^m \frac{1}{3m} &= \\ &\sum_{z \in \{0,1\}^m} \frac{1}{(3m)^m} &= \\ &\frac{2^m}{(3m)^m} &< 1 \end{aligned}$$

33

Por lo tanto existen $y_1 \in \{0,1\}^m, \ldots, y_m \in \{0,1\}^m$ tales que la siguiente condición es cierta:

$$\forall z \in \{0,1\}^m \bigvee_{i=1}^m M(w,y_i \oplus z)$$
 acepta

Por lo tanto existen $y_1 \in \{0,1\}^m, \ldots, y_m \in \{0,1\}^m$ tales que la siguiente condición es cierta:

$$orall z \in \{0,1\}^m igvee_{i=1}^m M(w,y_i \oplus z)$$
 acepta

Concluimos que:

$$\exists y_1 \in \{0,1\}^m \cdots \exists y_m \in \{0,1\}^m \, \forall z \in \{0,1\}^m \, (w,y_1,\ldots,y_m,z) \in A$$

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Además, suponga que $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Además, suponga que $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$

Dado que $w \notin L$ y m > 0 tenemos que:

$$\Pr_{z}\left(\bigvee_{i=1}^{m}M(w,y_{i}\oplus z)\text{ acepta}\right) \leq \sum_{i=1}^{m}\Pr_{z}\left(M(w,y_{i}\oplus z)\text{ acepta}\right)$$

$$\leq \sum_{i=1}^{m}\frac{1}{3m}$$

$$= \frac{m}{3m}$$

$$= \frac{1}{3}$$

Se concluye que:

$$\mathsf{Pr}_zigg(igwedge_{i=1}^m M(w,y_i\oplus z) \; \mathsf{rechaza}igg) = 1 - \mathsf{Pr}_zigg(igvee_{i=1}^m M(w,y_i\oplus z) \; \mathsf{acepta}igg)$$
 $\geq 1 - rac{1}{3}$
 $= rac{2}{3}$

Se concluye que:

$$\mathbf{Pr}_zigg(igwedge_{i=1}^m M(w,y_i\oplus z) \ \mathrm{rechaza}igg) = 1 - \mathbf{Pr}_zigg(igvee_{i=1}^m M(w,y_i\oplus z) \ \mathrm{acepta}igg)$$

$$\geq 1 - \frac{1}{3}$$

$$= \frac{2}{3}$$

Por lo tanto tenemos que existe $z \in \{0,1\}^m$ tal que $M(w,y_i \oplus z)$ rechaza para cada $i \in \{1,\ldots,m\}$

Dado que y_1, \ldots, y_m son elementos arbitrarios en el conjunto $\{0,1\}^m$, tenemos finalmente que:

$$\forall y_1 \in \{0,1\}^m \cdots \forall y_m \in \{0,1\}^m \exists z \in \{0,1\}^m (w, y_1, \dots, y_m, z) \notin A$$

37

Las clases de complejidad probabilísticas en una figura

