CAPITEL 13

VON DER ENTWICKELUNG DER NEGATIVEN POTESTÄTEN

370.

Es ist oben gezeigt worden, daß $\frac{1}{a}$ durch a^{-1} könne ausgedrückt werden, dahero wird auch $\frac{1}{a+b}$ durch $(a+b)^{-1}$ ausgedrückt, also daß der Bruch $\frac{1}{a+b}$ als eine Potestät von a+b, deren Exponent — 1 ist, kann angesehen werden: woher sich die oben gefundene Reihe für $(a+b)^n$ auch auf diesen Fall erstrecket.

371.

Da nun $\frac{1}{a+b}$ so viel ist als $(a+b)^{-1}$, so setze man in der oben gefundenen Formel n=-1, so wird man erstlich für die Coefficienten haben:

$$\frac{n}{1} = -1$$
, $\frac{n-1}{2} = -1$, $\frac{n-2}{3} = -1$, $\frac{n-3}{4} = -1$, $\frac{n-4}{5} = -1$ etc.

hernach für die Potestäten von a:

$$a^n = a^{-1} = \frac{1}{a}$$
, $a^{n-1} = \frac{1}{a^2}$, $a^{n-2} = \frac{1}{a^3}$, $a^{n-3} = \frac{1}{a^4}$ etc.

Dahero erhalten wir

$$(a+b)^{-1} = \frac{1}{a+b} = \frac{1}{a} - \frac{b}{a^2} + \frac{b^2}{a^3} - \frac{b^3}{a^4} + \frac{b^4}{a^5} - \frac{b^5}{a^6}$$
 etc.

welche eben diejenige Reihe ist, die schon oben [§ 300] durch die Division gefunden worden.

372.

Da ferner $\frac{1}{(a+b)^2}$ so viel ist als $(a+b)^{-2}$ so kann auch diese Formel in eine unendliche Reihe aufgelößt werden.

Man setze nemlich n = -2 so hat man erstlich für die Coefficienten:

$$\frac{n}{1} = -\frac{2}{1}, \ \frac{n-1}{2} = -\frac{3}{2}, \ \frac{n-2}{3} = -\frac{4}{3}, \ \frac{n-3}{4} = -\frac{5}{4}$$
 etc.

und für die Potestäten von a hat man

$$a^n = \frac{1}{a^2}$$
, $a^{n-1} = \frac{1}{a^3}$, $a^{n-2} = \frac{1}{a^4}$, $a^{n-3} = \frac{1}{a^5}$ etc.

daher erhalten wir

$$(a+b)^{-2} = \frac{1}{(a+b)^2} = \frac{1}{a^2} - \frac{2}{1} \cdot \frac{b}{a^3} + \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{b^2}{a^4} - \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{b^3}{a^5} + \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{b^4}{a^6} \text{ etc.}$$

Nun aber ist

$$\frac{2}{1} = 2$$
, $\frac{2}{1} \cdot \frac{3}{2} = 3$, $\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} = 4$, $\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} = 5$ etc.

Also werden wir haben

$$\frac{1}{(a+b)^2} = \frac{1}{a^2} - 2\frac{b}{a^3} + 3\frac{b^2}{a^4} - 4\frac{b^3}{a^5} + 5\frac{b^4}{a^6} - 6\frac{b^5}{a^7} + 7\frac{b^6}{a^8} \text{ etc.}$$

373

Setzen wir weiter n=-3 so bekommen wir eine Reihe für $(a+b)^{-3}$ das ist für $\frac{1}{(a+b)^3}$. Für die Coefficienten wird also seyn:

$$\frac{n}{1} = -\frac{3}{1}, \frac{n-1}{2} = -\frac{4}{2}, \frac{n-2}{3} = -\frac{5}{3}, \frac{n-3}{4} = -\frac{6}{4}$$
 etc.

für die Potestäten von a aber

$$a^n = \frac{1}{a^s}$$
, $a^{n-1} = \frac{1}{a^4}$, $a^{n-2} = \frac{1}{a^5}$ etc.

Woraus wir erhalten

$$\frac{1}{(a+b)^3} = \frac{1}{a^3} - \frac{3}{1} \frac{b}{a^4} + \frac{3}{1} \cdot \frac{4}{2} \frac{b^2}{a^5} - \frac{3}{1} \cdot \frac{4}{2} \cdot \frac{5}{3} \frac{b^8}{a^6} + \frac{3}{1} \cdot \frac{4}{2} \cdot \frac{5}{3} \cdot \frac{6}{4} \frac{b^4}{a^7} \text{ etc.}$$

$$= \frac{1}{a^3} - 3 \frac{b}{a^4} + 6 \frac{b^2}{a^5} - 10 \frac{b^3}{a^6} + 15 \frac{b^4}{a^7} - 21 \frac{b^6}{a^8} + 28 \frac{b^6}{a^9} - 36 \frac{b^7}{a^{10}} + 45 \frac{b^8}{a^{11}} \text{ etc.}$$

Last uns ferner setzen n = -4 so haben wir für die Coefficienten:

$$\frac{n}{1} = -\frac{4}{1}, \frac{n-1}{2} = -\frac{5}{2}, \frac{n-2}{3} = -\frac{6}{3}, \frac{n-3}{4} = -\frac{7}{4}$$
 etc.

für die Potestäten von a aber

$$a^n = \frac{1}{a^4}$$
, $a^{n-1} = \frac{1}{a^6}$, $a^{n-2} = \frac{1}{a^6}$, $a^{n-3} = \frac{1}{a^7}$, $a^{n-4} = \frac{1}{a^8}$ etc.

Woraus gefunden wird:

$$\begin{aligned} \frac{1}{(a+b)^4} &= \frac{1}{a^4} - \frac{4}{1} \frac{b}{a^5} + \frac{4}{1} \cdot \frac{5}{2} \frac{b^2}{a^6} - \frac{4}{1} \cdot \frac{5}{2} \cdot \frac{6}{3} \frac{b^3}{a^7} + \frac{4}{1} \cdot \frac{5}{2} \cdot \frac{6}{3} \cdot \frac{7}{4} \frac{b^4}{a^8} \text{ etc.} \\ &= \frac{1}{a^4} - 4 \frac{b}{a^5} + 10 \frac{b^2}{a^6} - 20 \frac{b^3}{a^7} + 35 \frac{b^4}{a^8} - 56 \frac{b^5}{a^9} \text{ etc.} \end{aligned}$$

374.

Hieraus können wir nun sicher schließen, daß man für eine jegliche dergleichen negative Potestät auf eine allgemeine Art haben werde:

$$\frac{1}{(a+b)^m} = \frac{1}{a^m} - \frac{m}{1} \cdot \frac{b}{a^{m+1}} + \frac{m}{1} \cdot \frac{m+1}{2} \cdot \frac{b^2}{a^{m+2}} - \frac{m}{4} \cdot \frac{m+1}{2} \cdot \frac{m+2}{3} \cdot \frac{b^3}{a^{m+3}} \text{ etc.}$$

Aus welcher Formel nun alle dergleichen Brüche in unendliche Reihen verwandelt werden, wo man auch so gar für *m* Brüche annehmen kann um irrationale Formeln auszudrücken.

375.

Zu mehrerer Erläuterung wollen wir noch folgendes anführen: Da wir gefunden haben, daß

$$\frac{1}{a+b} = \frac{1}{a} - \frac{b}{a^2} + \frac{b^2}{a^3} - \frac{b^3}{a^4} + \frac{b^4}{a^5} - \frac{b^5}{a^6} \text{ etc.}$$

so wollen wir diese Reihe mit a+b multipliciren, weil alsdann die Zahl herauskommen muß 1. Die Multiplication wird aber also zu stehen kommen:

$$\frac{\frac{1}{a} - \frac{b}{a^2} + \frac{b^2}{a^3} - \frac{b^3}{a^4} + \frac{b^4}{a^5} - \frac{b^5}{a^6} \text{ etc.}}{a + b}$$

$$\frac{1 - \frac{b}{a} + \frac{b^2}{aa} - \frac{b^3}{a^3} + \frac{b^4}{a^4} - \frac{b^5}{a^5} \text{ etc.}}{+ \frac{b}{a} - \frac{b^2}{aa} + \frac{b^3}{a^3} - \frac{b^4}{a^4} + \frac{b^5}{a^5} \text{ etc.}}$$

Product 1 wie nothwendig folgen muß.

376.

Da wir ferner gefunden haben

$$\frac{1}{(a+b)^2} = \frac{1}{aa} - \frac{2b}{a^3} + \frac{3bb}{a^4} - \frac{4b^3}{a^5} + \frac{5b^4}{a^6} - \frac{6b^5}{a^7} \text{ etc.}$$

wann man diese Reihe mit $(a + b)^2$ multiplicirt, so muß ebenfals 1 herauskommen. Es ist aber $(a + b)^2 = aa + 2ab + bb$ und die Multiplication wird also zu stehen kommen:

$$\frac{1}{aa} - \frac{2b}{a^3} + \frac{3bb}{a^4} - \frac{4b^3}{a^5} + \frac{5b^4}{a^6} - \frac{6b^5}{a^7} \text{ etc.}$$

$$aa + 2ab + bb$$

$$1 - \frac{2b}{a} + \frac{3bb}{a^2} - \frac{4b^3}{a^3} + \frac{5b^4}{a^4} - \frac{6b^5}{a^5} \text{ etc.}$$

$$+ \frac{2b}{a} - \frac{4bb}{a^2} + \frac{6b^3}{a^3} - \frac{8b^4}{a^4} + \frac{10b^5}{a^5} \text{ etc.}$$

$$+ \frac{bb}{a^2} - \frac{2b^3}{a^3} + \frac{3b^4}{a^4} - \frac{4b^5}{a^5} \text{ etc.}$$

Product 1 wie die Natur der Sache erfordert

377.

Solte man aber diese für $\frac{1}{(a+b)^2}$ gefundene Reihe nur mit a+b multipliciren, so müste $\frac{1}{a+b}$ herauskommen, oder die für diesen Bruch oben gefundene Reihe $\frac{1}{a} - \frac{b}{a^2} + \frac{b^2}{a^3} - \frac{b^3}{a^4} + \frac{b^4}{a^5} - \frac{b^5}{a^6}$ etc. welches auch die folgende Multiplication bestätigen wird.

$$\frac{1}{aa} - \frac{2b}{a^3} + \frac{3bb}{a^4} - \frac{4b^3}{a^5} + \frac{5b^4}{a^6} \text{ etc.}$$

$$a + b$$

$$\frac{1}{a} - \frac{2b}{a^2} + \frac{3bb}{a^3} - \frac{4b^3}{a^4} + \frac{5b^4}{a^5} \text{ etc.}$$

$$+ \frac{b}{a^2} - \frac{2bb}{a^3} + \frac{3b^3}{a^4} - \frac{4b^4}{a^5} \text{ etc.}$$

$$\frac{1}{a} - \frac{b}{a^2} + \frac{b^2}{a^3} - \frac{b^3}{a^4} + \frac{b^4}{a^5} \text{ etc.}$$

ENDE DES ZWEYTEN ABSCHNITTS