Statistics 2011-2012

(1) Since the random variables follow the same distribution, the CLT gives an approximate distribution as:

(i) Observed (i) | GR SK |

East 12 28 40

West 24 36 60

36 64 100

P.	ملموم	d (E)						- 1)
L/	pere	01 ~ 7		1 9R		81	<	
			East	36×40 =	14.4	64×40	=25.6	, 40
			West	36×60	21.6	64860	= 38.1	4 60
				36			64	1100
	(8)	0-E	:10	-ti)/Ei	4 (2, 10			
East	GR	-2.4	0	0.4	(x) 0			
East	sk	2.4	0	. 225				
West	4R	2.4	1	. 267				
West	SK	-2.4	O	.149		0.2	Lan	Ь
Lances		Σ	1	1.04	/ 3.	X =	1.04	

iii) Says pair of statements but only gives I am in mach scheme??

=> a & E? Log trans form does reduce skewners.

$$|v| = \int_{1}^{b} x \, dx = \left[\frac{x^{2}}{2} \right]_{1}^{b}$$

$$1 = \frac{b^{2}}{2} - \frac{1}{2}$$

$$2 = b^{2} - 1$$

$$3 = b^{2}$$

$$-\sqrt{3} = b$$

$$\leq$$

V)
$$RBG = \frac{3}{4} \times \frac{3}{8} \times \frac{3}{4}$$

 $RGB = \frac{3}{4} \times \frac{3}{8} \times \frac{3}{4}$
 $BRG = \frac{1}{10}$
 $GRB = \frac{1}{10}$
 $GRB = \frac{1}{10}$

2i) $\ell(\theta; \alpha, \alpha_2, \dots, \alpha_n) = f(\alpha, |\theta) f(\alpha_2|\theta) \dots f(\alpha_n|\theta)$ $\ell(\mu, \sigma; \alpha, \alpha_2, \dots, \alpha_n) = f(\alpha, |\mu, \sigma) f(\alpha_2|\mu, \sigma) \dots f(\alpha_n|\mu, \sigma)$ $\ell(\mu, \sigma) = \sum_{i=1}^{n} f(\alpha_i | \mu, \sigma)$ $= \frac{1}{\sqrt{2\pi}(\sigma)} \left(\frac{\sum \alpha_i - \mu}{\sigma}\right)^2$ $f(\sigma) definition$ $f(\sigma) definition$

$$=-\frac{m}{2}\log(2\pi)-n\log(\sigma)-\sum_{i=1}^{n}\frac{(2(i-m)^2)}{2+2}$$

by brown form does reduce Sleen new

ii)
$$\frac{\partial}{\partial \mu} l(\mu, \sigma) = 0$$

$$\Rightarrow 0 = \frac{\partial}{\partial \mu} l(\mu, \sigma) = \frac{-2 \times -1 \times 2 \cdot (-1 \times -1)^{1}}{2 \cdot \pi^{2}}$$

$$0 = \frac{2 \cdot (-1 \times -1)^{1}}{\pi^{2}}$$

$$0 = \frac{2$$

$$8ia)$$
 $\times \sim 8(25, 0.2)$
 $E(x) = np = 25 \times 0.2 = 5$
 $Var(x) = npq = 25 \times 0.2 \times 0.8 = 4$

c)
$$P(x \ge 6) = 1 - P(x \le 5)$$

= $1 - [P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4)$
= $1 - [C_{0}^{25} 0.2^{\circ} 0.8^{25} + C_{1}^{25} 0.2^{\circ} 0.8^{24} + C_{2}^{25} 0.2^{\circ} 0.8^{2}]$
= $1 - [C_{0}^{25} 0.2^{\circ} 0.8^{25} + C_{4}^{25} 0.2^{4} 0.8^{21} + C_{5}^{25} 0.2^{\circ} 0.8^{2}]$
= $1 - 0.6167$
= 0.383

one rided test ->

the graph to be to sile or possible (d)

: rejection region is
$$P(x>9)$$

$$R = \{x \mid P(x \ge x) < \alpha\}$$

= $\{9, 10, ..., 25\}$

- b) 6 \$R so no significant curdence to reject mill hypotheris
- c) p(x>x8)=0.109 & closest number which is not in the rejection region.

ment scheme is kinda wierd idk.

$$(ov (X, Y) = E(XY) - E(X)E(Y)$$
= 2.5 - 1. 582×1.582
= -0.0069 (negative value indicate that $X = 0.0069$)