Lecture Eight – Identities and Solving Trigonometric

Section 8.1 - Proving Identities

Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$
 $\cot \theta = \frac{1}{\tan \theta}$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

Ratio Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\cos\theta = \pm\sqrt{1-\sin^2\theta}$$

$$\sin\theta = \pm\sqrt{1-\cos^2\theta}$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Example

Write $\sec \theta \tan \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify.

Solution

$$\sec\theta\tan\theta = \frac{1}{\cos\theta} \cdot \frac{\sin\theta}{\cos\theta} = \frac{\sin\theta}{\cos^2\theta}$$

Example

Add
$$\frac{1}{\sin \theta} + \frac{1}{\cos \theta}$$

$$\frac{1}{\sin \theta} + \frac{1}{\cos \theta} = \frac{\cos \theta + \sin \theta}{\sin \theta \cos \theta}$$

$$\frac{1}{\sin\theta} \frac{\cos\theta}{\cos\theta} + \frac{1}{\cos\theta} \frac{\sin\theta}{\sin\theta}$$

Write: $\tan \alpha + \cot \alpha$ in terms of $\sin \alpha$ and $\cos \alpha$

Solution

$$\tan \alpha + \cot \alpha = \frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}$$

$$= \frac{\sin \alpha}{\cos \alpha} \frac{\sin \alpha}{\sin \alpha} + \frac{\cos \alpha}{\sin \alpha} \frac{\cos \alpha}{\cos \alpha}$$

$$= \frac{\sin^2 \alpha + \cos^2 \alpha}{\cos \alpha \sin \alpha}$$

$$= \frac{1}{\cos \alpha \sin \alpha}$$

Example

Prove: $\tan x + \cos x = \sin x (\sec x + \cot x)$

Solution

$$\tan x + \cos x = \frac{\sin x}{\cos x} + \cos x$$

$$= \sin x \frac{1}{\cos x} + \cos x \frac{\sin x}{\sin x}$$

$$= \sin x \sec x + \sin x \frac{\cos x}{\sin x}$$

$$= \sin x (\sec x + \cot x)$$

or

$$\sin x(\sec x + \cot x) = \sin x \left(\frac{1}{\cos x} + \frac{\cos x}{\sin x}\right)$$
$$= \frac{\sin x}{\cos x} + \sin x \frac{\cos x}{\sin x}$$
$$= \tan x + \cos x$$

Prove: $\cot \alpha + 1 = \csc \alpha (\cos \alpha + \sin \alpha)$

Solution

$$\csc \alpha \left(\cos \alpha + \sin \alpha\right) = \frac{1}{\sin \alpha} \left(\cos \alpha + \sin \alpha\right)$$
$$= \frac{1}{\sin \alpha} \cos \alpha + \frac{1}{\sin \alpha} \sin \alpha$$
$$= \cot \alpha + 1 \qquad \checkmark$$

Guidelines for Proving Identities

- 1. Work on the complicated side first (more trigonometry functions)
- 2. Look for trigonometry substitutions.
- 3. Look for algebraic operations
- 4. If not always change everything to sines and cosines
- 5. Keep an eye on the side you are not working.

Example

Prove

$$\frac{\cos^4 t - \sin^4 t}{\cos^2 t} = 1 - \tan^2 t$$

$$\frac{\cos^4 t - \sin^4 t}{\cos^2 t} = \frac{\left(\cos^2 t - \sin^2 t\right)\left(\cos^2 t + \sin^2 t\right)}{\cos^2 t}$$

$$= \frac{\left(\cos^2 t - \sin^2 t\right)(1)}{\cos^2 t}$$

$$= \frac{\cos^2 t - \sin^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t - \sin^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t}{\cos^2 t} - \frac{\sin^2 t}{\cos^2 t}$$

$$= \frac{1 - \tan^2 t}{\cos^2 t}$$

Prove:
$$1 + \cos \theta = \frac{\sin^2 \theta}{1 - \cos \theta}$$

Solution

$$\frac{\sin^2 \theta}{1 - \cos \theta} = \frac{1 - \cos^2 \theta}{1 - \cos \theta}$$

$$= \frac{(1 - \cos \theta)(1 + \cos \theta)}{1 - \cos \theta}$$

$$= \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{1 - \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{a^2 - b^2 = (a - b)(a + b)}{1 - \cos^2 \theta}$$

Example

Prove:
$$\tan^2 \alpha \left(1 + \cot^2 \alpha\right) = \frac{1}{1 - \sin^2 \alpha}$$

Solution

$$\tan^{2}\alpha \left(1 + \cot^{2}\alpha\right) = \tan^{2}\alpha + \tan^{2}\alpha \cot^{2}\alpha$$

$$= \tan^{2}\alpha + \tan^{2}\alpha \frac{1}{\tan^{2}\alpha}$$

$$= \tan^{2}\alpha + 1 \qquad \tan^{2}\alpha + 1 = \sec^{2}\alpha$$

$$= \sec^{2}\alpha$$

$$= \frac{1}{\cos^{2}\alpha} \qquad \cos^{2}\alpha = 1 - \sin^{2}\alpha$$

$$= \frac{1}{1 - \sin^{2}\alpha} | \checkmark$$

Example

Prove:
$$\frac{\sin \alpha}{1 + \cos \alpha} + \frac{1 + \cos \alpha}{\sin \alpha} = 2 \csc \alpha$$

$$\frac{\sin \alpha}{1 + \cos \alpha} + \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{\sin \alpha} \cdot \frac{\sin \alpha}{1 + \cos \alpha} + \frac{1 + \cos \alpha}{\sin \alpha} \cdot \frac{1 + \cos \alpha}{1 + \cos \alpha}$$

$$= \frac{\sin^2 \alpha + (1 + \cos \alpha)^2}{\sin \alpha (1 + \cos \alpha)}$$

$$= \frac{\sin^2 \alpha + 1 + \cos^2 \alpha + 2\cos \alpha}{\sin \alpha (1 + \cos \alpha)}$$

$$= \frac{2 + 2\cos\alpha}{\sin\alpha(1 + \cos\alpha)}$$

$$= \frac{2(1 + \cos\alpha)}{\sin\alpha(1 + \cos\alpha)}$$

$$= \frac{2}{\sin\alpha}$$

$$= 2\csc\alpha \quad \checkmark$$

Prove
$$\frac{1+\sin t}{\cos t} = \frac{\cos t}{1-\sin t}$$

Solution

$$\frac{1+\sin t}{\cos t} = \frac{1+\sin t}{\cos t} \cdot \frac{1-\sin t}{1-\sin t}$$

$$= \frac{1-\sin^2 t}{\cos t(1-\sin t)}$$

$$= \frac{\cos^2 t}{\cos t(1-\sin t)}$$

$$= \frac{\cos t}{1-\sin t}$$

Example

Show that $\cot^2 \theta + \cos^2 \theta = \cot^2 \theta \cos^2 \theta$ is not an identity by finding a counterexample

$$\cot^{2}\frac{\pi}{4} + \cos^{2}\frac{\pi}{4} = \cot^{2}\frac{\pi}{4}\cos^{2}\frac{\pi}{4}$$

$$1^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} = 1^{2}\left(\frac{1}{\sqrt{2}}\right)^{2}$$

$$1 + \frac{1}{2} = \frac{1}{2}$$

$$\frac{3}{2} \neq \frac{1}{2}$$

Exercises Section 8.1 – Proving Identities

(1–80) Prove the identity

1.
$$\cos\theta\cot\theta + \sin\theta = \csc\theta$$

2.
$$\sec \theta \cot \theta - \sin \theta = \frac{\cos^2 \theta}{\sin \theta}$$

3.
$$\frac{\csc\theta\tan\theta}{\sec\theta} = 1$$

4.
$$(\sin\theta + \cos\theta)^2 = 1 + 2\sin\theta\cos\theta$$

5.
$$\sin \theta (\sec \theta + \cot \theta) = \tan \theta + \cos \theta$$

6.
$$\cos\theta(\csc\theta + \tan\theta) = \cot\theta + \sin\theta$$

7.
$$\cot \theta + \tan \theta = \csc \theta \sec \theta$$

8.
$$\tan x(\cos x + \cot x) = \sin x + 1$$

9.
$$\frac{1-\cos^4\theta}{1+\cos^2\theta}=\sin^2\theta$$

10.
$$\frac{1-\sec x}{1+\sec x} = \frac{\cos x - 1}{\cos x + 1}$$

$$11. \quad \frac{\cos x}{1+\sin x} - \frac{1-\sin x}{\cos x} = 0$$

12.
$$\frac{1+\cot^3 t}{1+\cot t} = \csc^2 t - \cot t$$

13.
$$\tan x + \cot x = \sec x \csc x$$

14.
$$\frac{\tan x - \cot x}{\sin x \cos x} = \sec^2 x - \csc^2 x$$

15.
$$\frac{\sec x + \tan x}{\sec x - \tan x} = \frac{1 + 2\sin x + \sin^2 x}{\cos^2 x}$$

16.
$$\sin^2 x - \cos^2 x = 2\sin^2 x - 1$$

17.
$$\sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x$$

18.
$$\frac{\cos \alpha}{1 + \sin \alpha} = \sec \alpha - \tan \alpha$$

19.
$$\frac{\sin \alpha}{1 - \sin \alpha} - \frac{\cos \alpha}{1 - \sin \alpha} = \frac{1 - \cot \alpha}{\csc \alpha - 1}$$

20.
$$\frac{\frac{1}{\tan x} + \cot x}{\frac{1}{\tan x} + \tan x} = \frac{2}{\sec^2 x}$$

21.
$$\frac{\cot^2\theta + 3\cot\theta - 4}{\cot\theta + 4} = \cot\theta - 1$$

22.
$$\frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$$

23.
$$\tan x(\csc x - \sin x) = \cos x$$

24.
$$\sin x (\tan x \cos x - \cot x \cos x) = 1 - 2\cos^2 x$$

25.
$$(1 + \tan x)^2 + (\tan x - 1)^2 = 2\sec^2 x$$

26.
$$\sec x + \tan x = \frac{\cos x}{1 - \sin x}$$

27.
$$\frac{\tan x - 1}{\tan x + 1} = \frac{1 - \cot x}{1 + \cot x}$$

28.
$$7\csc^2 x - 5\cot^2 x = 2\csc^2 x + 5$$

29.
$$1 - \frac{\cos^2 x}{1 - \sin x} = -\sin x$$

30.
$$\frac{1-\cos x}{1+\cos x} = \frac{\sec x - 1}{\sec x + 1}$$

31.
$$\frac{\sec x - 1}{\tan x} = \frac{\tan x}{\sec x + 1}$$

$$32. \quad \frac{\cos x}{\cos x - \sin x} = \frac{1}{1 - \tan x}$$

33.
$$(\sec x + \tan x)^2 = \frac{1 + \sin x}{1 - \sin x}$$

$$34. \quad \frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \cos x - \sin x$$

35.
$$\frac{\cot x + \csc x - 1}{\cot x - \csc x + 1} = \csc x + \cot x$$

36.
$$\frac{\tan x + \cot x}{\tan x - \cot x} = \frac{1}{\sin^2 x - \cos^2 x}$$

37.
$$\frac{1-\cot^2 x}{1+\cot^2 x} + 1 = 2\sin^2 x$$

38.
$$\frac{1+\cos x}{1-\cos x} - \frac{1-\cos x}{1+\cos x} = 4\cot x \csc x$$

39.
$$\frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 1 + \sin x \cos x$$

40.
$$1 + \sec^2 x \sin^2 x = \sec^2 x$$

$$41. \quad \frac{1+\csc x}{\sec x} = \cos x + \cot x$$

42.
$$\tan^2 x = \sec^2 x - \sin^2 x - \cos^2 x$$

$$43. \quad \frac{\sin x}{1-\cos x} + \frac{\sin x}{1+\cos x} = 2\csc x$$

44.
$$\frac{\tan x + \sec x}{\sec x} - \frac{\tan x + \sec x}{\tan x} = -\cos x \cot x$$

45.
$$\cos^2(\alpha-\beta)-\cos^2(\alpha+\beta)=\sin^2(\alpha+\beta)-\sin^2(\alpha-\beta)$$

$$46. \quad \tan x \csc x - \sec^2 x \cos x = 0$$

47.
$$(1 + \tan x)^2 - 2\tan x = \frac{1}{(1 - \sin x)(1 + \sin x)}$$

48.
$$\frac{3\csc^2 x - 5\csc x - 28}{\csc x - 4} = \frac{3}{\sin x} + 7$$

49.
$$\left(\sec^2 x - 1\right) \left(\sec^2 x + 1\right) = \tan^4 x + 2\tan^2 x$$

$$50. \quad \frac{\csc x}{\cot x} - \frac{\cot x}{\csc x} = \frac{\sin x}{\cot x}$$

51.
$$\frac{1 - \cos^2 x}{1 + \cos x} = \frac{\sec x - 1}{\sec x}$$

$$52. \quad \frac{\cos x}{1 + \cos x} = \frac{\sec x - 1}{\tan^2 x}$$

53.
$$\frac{1 - 2\sin^2 x}{1 + 2\sin x \cos x} = \frac{\cos x - \sin x}{\cos x + \sin x}$$

54.
$$(\cos x - \sin x)^2 + (\cos x + \sin x)^2 = 2$$

$$55. \quad \frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$$

$$56. \quad \frac{\sin x + \tan x}{\cot x + \csc x} = \sin x \tan x$$

57.
$$\csc^2 x \sec^2 x = \sec^2 x + \csc^2 x$$

58.
$$\cos^2 x + 1 = 2\cos^2 x + \sin^2 x$$

$$59. \quad 1 - \frac{\cos^2 x}{1 + \sin x} = \sin x$$

60.
$$\cot^2 x = (\csc x - 1)(\csc x + 1)$$

$$61. \quad \frac{\csc x + \cot x}{\tan x + \sin x} = \csc x \cot x$$

$$62. \quad \frac{1-\sec x}{\tan x} + \frac{\tan x}{1-\sec x} = -2\csc x$$

63.
$$\csc x - \sin x = \cos x \cot x$$

$$64. \quad \cot^3 x = \cot x \left(\csc^2 x - 1\right)$$

$$65. \quad \frac{\cot^2 x}{\csc x - 1} = \frac{1 + \sin x}{\sin x}$$

66.
$$\cot^2 x + \csc^2 x = 2\csc^2 x - 1$$

$$67. \quad \frac{\cot^2 x}{1 + \csc x} = \csc x - 1$$

68.
$$\sec^4 x - \tan^4 x = \sec^2 x + \tan^2 x$$

69.
$$\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2\sec x$$

70.
$$\frac{\sin x + \cos x}{\sin x - \cos x} = \frac{1 + 2\sin x \cos x}{2\sin^2 x - 1}$$

71.
$$\frac{\csc x - 1}{\csc x + 1} = \frac{\cot^2 x}{\csc^2 x + 2 \csc x + 1}$$

72.
$$\csc^4 x - \cot^4 x = \csc^2 x + \cot^2 x$$

73.
$$\tan\left(\frac{\pi}{4} + x\right) = \cot\left(\frac{\pi}{4} - x\right)$$

74.
$$\frac{\sin \theta}{1 + \sin \theta} - \frac{\sin \theta}{1 - \sin \theta} = -2 \tan^2 \theta$$

75.
$$\csc^2 x - \cos^2 x \csc^2 x = 1$$

76.
$$1 - 2\sin^2 x = 2\cos^2 x - 1$$

77.
$$\csc^2 x - \cos x \sec x = \cot^2 x$$

78.
$$(\sec x - \tan x)(\sec x + \tan x) = 1$$

79.
$$(1 + \tan^2 x)(1 - \sin^2 x) = 1$$

80.
$$10\csc^2 x - 6\cot^2 x = 4\csc^2 x + 6$$