"Numero F" (f/#)

O número F(f/#) é a razão entre o comprimento focal e o diâmetro duma lente

Irradiância num pixel
$$\infty$$
 ângulo sólido dos raios incidentes ∞ $(d/f)^2 = \left(\frac{1}{f/\#}\right)^2$

Lentes maiores (f/# menores) captam mais luz.

Profundidade do campo

Apenas um plano do objeto é conjugado com um dado plano de imagem. Mas planos próximos do plano do objeto dão uma imagem mais ou menos nítida.

A gama das distâncias que se resultam numa imagem aceitável é conhecido com a profundidade do campo.

A profundidade do campo varia com a extensão da lente que é usada (abertura)

Profundidade do campo

Quanto menor a abertura, tanto maior a profundidade do campo.

Variação da profundidade do campo com f/#

As vezes pouco profundidade do campo é desejada

Requer lentes grandes Podem custar vários k€

Optometristas

Optometristas medem acuidade visual em salas com pouca luz. A pupila fica maior e existe menos profundidade do campo

Apertar os olhos pode diminuir o tamanho da pupila e melhorar a visão

	1	20/200
FP	2	20/100
TOZ	3	20/70
LPED	4	20/50
PECFD	5	20/40
EDFCZP	6	20/30

Microscópios

Agora o problema é de ampliar algo que esteja perto. (Também em geral não há dificuldade e coletar a luz)

- A objetiva forma uma imagem real com ampliação $-\frac{{S_o}'}{} \approx -\frac{f_o + L}{}$
- A lente ocular serve como uma lupa

$$-\frac{s_o'}{s_o} \approx -\frac{f_o + L}{f_o}$$

Tipicamente entre 5-100x

Microscópios - Resolução

Na microscopia a resolução é de importância primária.

O Limite da resolução num microscópio convencional é determinado pelos efeitos de difração.

$$\Delta d \sim \left(\frac{\lambda_0}{n}\right) \frac{f}{d} \sim f / \#$$

É comum o uso dum óleo para aumentar a abertura numérica

Na microscopia o parâmetro usado é a abertura numérica (Numerical aperture ou N.A.)

$$NA = n \sin(\alpha)$$

 α é o angulo do raio marginal

Microscópio confocal

Planos Principais - o conceito

A propagação dos raios dentro dum sistema ótica pode ser complicado

Mais dentro da aproximação paraxial podemos sempre calcular uma matriz, M, do sistema

O efeito global num raio paralelo será equivalente á ação duma lente fina efetiva colocado no primeiro plano principal

Alguns cálculos

$$\begin{bmatrix} x_{im} \\ \theta_{im} \end{bmatrix} = \begin{bmatrix} 1 & d_{im} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 1 & d_{ob} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{ob} \\ \theta_{ob} \end{bmatrix}$$
$$= \begin{bmatrix} A + Cd_{im} & Ad_{ob} + B + Cd_{ob}d_{im} + Dd_{im} \\ C & Cd_{ob} + D \end{bmatrix} \begin{bmatrix} x_{ob} \\ \theta_{ob} \end{bmatrix}$$

Condição dos planos conjugados

$$Ad_{ob} + B + Cd_{ob}d_{im} + Dd_{im} = 0$$

$$d_{ob} = \frac{-(B + Dd_{im})}{A + Cd_{im}} \qquad d_{im} = \frac{-(Ad_{ob} + B)}{Cd_{ob} + D}$$

Distâncias focais

Condição dos planos conjugados

$$d_{ob} = \frac{-(B+Dd_{im})}{A+Cd_{im}} \qquad d_{im} = \frac{-(Ad_{ob}+B)}{Cd_{ob}+D}$$

Planos principais

Os planos principais são planos conjugados com ampliação lateral unitária

$$\begin{bmatrix} x_{im} \\ \theta_{im} \end{bmatrix} = \begin{bmatrix} A + Cd_{im} & 0 \\ C & Cd_{ob} + D \end{bmatrix} \begin{bmatrix} x_{ob} \\ \theta_{ob} \end{bmatrix}$$

$$\frac{x_{im}}{x_{ob}} = 1 = A + Cd_{P'} \qquad d_{P'} = \frac{1 - A}{C}$$

$$d_{ob} = \frac{-(B + Dd_{im})}{A + Cd_{im}} \qquad d_{P} = \frac{-(B + \frac{D}{C} - \frac{AD}{C})}{A + (1 - A)} = \frac{-1}{C}(BC + D - AD) = \frac{(1 - D)}{C}$$

Planos nodias

Os planos nodais são planos conjugados com ampliação angular unitária

$$\begin{bmatrix} x_{im} \\ \theta_{im} \end{bmatrix} = \begin{bmatrix} A + Cd_{im} & 0 \\ C & Cd_{ob} + D \end{bmatrix} \begin{bmatrix} x_{ob} \\ \theta_{ob} \end{bmatrix}$$

$$1 = Cd_N + D$$
 $d_N = \frac{(1-D)}{C} = d_P$ $d_{N'} = d_{P'}$

Resumo

Quando o índice de refração do espaço do objeto é igual ao espaço de imagem

Sistema se comporta como uma lente delgada + "teleportação" entre os planos principais

Lente delgada + teleportação entre os planos principais

Os raios comportam como fossem refratados por uma lente delgada situado no plano principal + "teleportação" entre os planos principais

Olympus PLN 10X Objective

Stock #86-813 €350.00

> Qty 1-2 Qt €350.00 €33

♣ eDrawings: eprt

₹ 10

44.9 mm P' 10.6 mm

Regulatory Compliance

RoHS: Not Compliant

Aberração cromática

Devida dispersão no índice de refração nem todos os cores vão ter o mesmo comprimento focal

$$\frac{1}{f(\lambda)} = [n(\lambda)-1](1/R_1-1/R_2)$$

È possível tomar em conta este efeito no traçados dos raios, mas têm ser feita uma cor cada vez.

Minimizar aberrações cromáticas

Lentes acromáticas são combinações de duas lentes

A segunda lente cancela a dispersão da primeira.

A dispersão é positiva para ambos os vidros, mas como a segunda lente é negativa o efeito é ao contrário

Aberrações monocromáticas

Na aproximação paraxial só consideramos termos até a primeira ordem

$$\sin\theta \approx \theta - \frac{1}{3!}\theta^3 + \dots$$

Sem aberrações a frente da onda transmitida pela lente é uma onda esférica que converge no ponto da imagem h .Imagem paraxial no ponto (h,0)

Aberrações possam desviar as frentes de ondas

$$\Delta R = \Delta R(\boldsymbol{\rho}, \mathbf{h})$$

Que introduzem desvios nos raios ($\delta x, \delta y$)

Aberrações principais

~ 300 páginas Polirmos de Zernike

$$\begin{split} W(\rho,\,\theta') &= Z_0 - Z_3 + Z_8 & \text{piston} \\ &+ \rho \sqrt{(Z_1 - 2Z_6)^2 + (Z_2 - 2Z_7)^2} \\ &\times \cos\left[\theta' - \tan^{-1}\left(\frac{Z_2 - 2Z_7}{Z_1 - 2Z_6}\right)\right] & \text{tilt} \\ &+ \rho^2 (2Z_3 - 6Z_8 \pm \sqrt{Z_4^2 + Z_5^2}) & \text{focus} \\ &\pm 2\rho^2 \sqrt{Z_4^2 + Z_5^2} \cos^2\left[\theta' - \frac{1}{2}\tan^{-1}\left(\frac{Z_5}{Z_4}\right)\right] & \text{astigmatism} \\ &+ 3\rho^3 \sqrt{Z_6^2 + Z_7^2} \cos\left[\theta' - \tan^{-1}\left(\frac{Z_7}{Z_6}\right)\right] & \text{coma} \\ &+ 6\rho^4 Z_8. & \text{spherical} \end{split}$$

Frtiz Zernike Nobel 1953

Aberração esférica

Também acontece nos espelhos

Spherical surface

Paraboloidal surface

Uma superfície parabólica compensa os erros

Aberração Esférica no HST

HST Primary Figuring Error

Before COSTAR fix

After COSTAR fix

Coma

Numa imagem fora do eixo ótico os raios que vem de zonas diferentes da lente sofrem desvios diferentes. (Essencialmente acumulação de aberrações esféricas fora do eixo ótico)

Off-Axis Comatic Aberration

Variação de coma ao longo do eixo ótico

Rays from a comatic wavefront

Claire Max UC Santa Cruz

Through-focus spot diagram for coma

Astigmatismo (acentuada nos raio fora do eixo)

Astigmatismo

Astigmatismo

Curvatura do campo

Para os raios fora do eixo ótico, o comprimento focal da lente efetiva é diferente.

Pode ser vantajosa se o detetor está numa superfície curvada (como a retina)

Barrel Distortion

Pincushion Distortion

