Trayectorias ortogonales monocromáticas ajenas

C. J. Rodrigo Guadalupe¹

¹Instituto de Matemáticas Universidad Nacional Autónoma de México

XXXV Coloquio Victor Neumann Lara, Marzo 2020

Para un punto x en el plano una línea en forma de L consistente de dos rayos, uno vertical y otro horizontal emanentes de x es llamado L-línea con $esquina\ en\ x$

Teorema 1

Sean R y B dos conjuntos ajenos de puntos rojos y azules tales que $R \cup B$ estan en posición general. Sea τ (R, B) el número de aristas xy en el cierre convexo de ($R \cup B$) tal que uno de {x, y} es rojo y el otro es azul. Entonces el número de cruces en $T_R \cup T_B$ está dado por

$$max\left\{ rac{ au(R,B)}{2},0
ight\}$$

$$\tau(R,B)=6$$

Teorema 2

Sean R y B conjuntos ajenos de puntos en el plano lattice, $R \cup B$ en posición general. Sea $\tau^*(R,B)$ el número de segmentos xy de L-líneas en la frontera de $rect(R \cup B)$ tal que uno de $\{x,y\}$ es rojo y el otro es azul. Entonces $\tau^*(R,B)$ es 0, 2 o 4 y el máximo número de cruces entre T_R y T_B es 1 cuando $\tau^*(R,B)=4$. Además si $\tau^*(R,B) \leq 2$ podemos dibujar los árboles sin cruces con $\Delta(T_R) \leq 3$ y $\Delta(T_B) \leq 3$. [Kano2013]

Polígono espiral ortogonal

Un polígono espiral ortogonal es un polígono cuya frontera consiste de dos cadenas de aristas llamadas interna y externa. Cada ángulo interno de la cadena exterior es de $\frac{\pi}{2}$ y cada ángulo externo de la cadena interna es de $\frac{3\pi}{2}$.

Lema 1

Sea P un polígono espiral ortogonal en el plano lattice y S un conjunto de puntos en posición general contenido en P y asumamos que cada arista de la cadena exterior tiene exactamente un punto y la cadena interior tambien tiene exactamente un punto o esta incluida en alguna cadena exterior. Entonces existe un arbol generador T tal que $\Delta(T) \leq 3$ y T está dentro de P.

Overview de las trayectorias

Las trayectorias que construiremos en los rectángulos no planos:

• Comienzan en el punto superior y terminan en el inferior.

Overview de las trayectorias

Las trayectorias que construiremos en los rectángulos no planos:

- Comienzan en el punto superior y terminan en el inferior.
- Pasan por todos los puntos del rectángulo.

Overview de las trayectorias

Las trayectorias que construiremos en los rectángulos no planos:

- Comienzan en el punto superior y terminan en el inferior.
- Pasan por todos los puntos del rectángulo.
- Cada segmento de L-línea xy tal que x está arriba de y empieza en x hacia un lado y termina en y por arriba.

Caso 1. $Tr_{i+1} \neq \emptyset$

Caso 2.
$$Tr_{i+1} = \emptyset$$

El arbol que construimos cumple que:

- \bullet $\Delta(T) \leq 3$
- 2 está contenido en el polígono espiral

Gracias!