Epidémiologie et Biostatistique sur un Entrepôt de Données hospitalier

03 juin 2025 Introduction à l'appariement des bases

Luca THIEBAUD & Adam REMAKI adam.remaki@centralesupelec.fr luca.thiebaud@centralesupelec.fr

Appariement probabiliste et déterministe

L'appariement (record linkage):

Déf: tâche consistant à trouver des données qui se réfèrent à la même entité à travers différentes sources de données.

Objectif:

- Lier deux bases de données de source différente en comparant des paires de dossiers patients
- Dédupliquer un identifiant censé être unique d'une base de données

L'appariement déterministe:

- Utilisation d'identifiers: variables communes aux deux bases de données
- **Match** si accord sur les identifiers (cas trivial: jointure sur une clé)
- Processus possiblement itératif
 - →match sur IPP
 - → si absent match sur NIR
 - → si absent match exact sur (prénom, nom, date de naissance)

Appariement déterministe

- ⇒ différents niveaux
- de *confiance*

L'appariement probabiliste:

- Introduction d'une probabilité de match et d'une frontière de décision
- Article princeps de Fellegi et al. [1]

Appariement probabiliste et déterministe

International Journal of Population Data Science

Journal Website: www.ijpds.org

Demystifying probabilistic linkage: Common myths and misconceptions

Doidge, JC^{1,2*} and Harron, K³

- Méthodes probabiliste et déterministes sont différentes ?
 - Pas forcément, on a équivalence entre trouver un ensemble de règles de décisions déterministes et 0 trouver des ensembles (poids / threshold) dans un contexte probabiliste
- Méthodes probabilistes basées sur la "probabilité qu'une paire soit un match"?
 - En réalité, les poids sont des scores censés être en corrélation avec cette probabilité qu'une paire soit un match, mais la probabilité exacte est souvent inconnue.
- Les méthodes probabilistes induisent plus d'erreurs ?
 - Réduisent en général la précision, mais augmentent ainsi le rappel

Précison = nombre de bons match prédits / nombre total de match prédits (bons ou mauvais) Rappel = nombre de bons match prédits / nombre total de bons match La précision peut être comprise comme une mesure de l'exactitude ou de la qualité. Le rappel est une mesure de l'exhaustivité ou de la quantité.

2 ensembles A et B

On travaille sur A x B, qui est l'union de 2 sous-ensembles disjoints

o M: sous ensemble des matchs de A x B

U : sous ensemble des non-matchs de A x B

Pour une paire issue de A x B:

- construction d'un vecteur de comparaison (one-hot encoding) en fonction de la concordance ou non sur K variables communes
- Le modèle estime ensuite le **poids** de chaque variable, en supposant leur indépendance (Naive Bayes)

Michel	SCOTT	13-10-1950	PARIS
Jean-Michel	SCOTT	13-10-1950	PARIS
0	1	1	1

$$\gamma=[0,1,1,1]$$

But: estimer $\Pr(\operatorname{record} \operatorname{match} | \gamma)$

m-probabilities et u-probabilities

Intuition

- Si une variable match, soit la paire match, soit on a une collision
- Si une variable ne match pas :
 - soit la paire match (typo, différence de format, ...)
 - soit la paire ne match pas non plus

Formalisation

m-probabilities et u-probabilities

Var. match

Var. mismatch

Intuition

- Si une variable match, soit la paire match, soit on a une collision
 - ightarrow On compare $m_{i,1} \text{ vs } u_{i,1}$
- Si une variable ne match pas :
 - soit la paire match (typo, différence de format, ...)
 - soit la paire ne match pas non plus
 - ightarrow On compare $m_{i,0} \ {
 m vs} \ u_{i,0}$

$$b_{i,1}=rac{m_{i,1}}{u_{i,1}}$$

 $b_{i,0} = 0$

<u>Formalisation</u> → Introduction du Bayes Factor

Michel	SCOTT	13-10-1950	PARIS
Jean-Michel	SCOTT	13-10-1950	PARIS
0	1	1	1

$$\gamma = [0,1,1,1]$$

Pour une variable i, calcul de la probabilité à posteriori

Pour le vecteur de comparaison γ

Michel	SCOTT	13-10-1950	PARIS		
Jean-Michel	SCOTT	13-10-1950	PARIS		
0 1 1 1					
. [0 1 1 1]					

$$\gamma = [0,1,1,1]$$

Pour une variable i, calcul de la probabilité à posteriori

$$egin{aligned} \Pr(ext{records match} \mid \gamma_i) &= rac{\Pr(\gamma_i \mid ext{records match}) \Pr(ext{records match})}{\Pr(\gamma_i)} \ &= rac{m_{i,l} \lambda}{m_{i,l} \lambda + u_{i,l} (1 - \lambda)} \end{aligned}$$

$$ext{with} egin{cases} \lambda &= \operatorname{Pr}(\operatorname{records\ match}) \ l = 0 ext{ if } \gamma_i = 0 \ l = 1 ext{ if } \gamma_i = 1 \end{cases}$$

Pour le vecteur de comparaison y

Michel	SCOTT	13-10-1950	PARIS		
Jean-Michel	SCOTT	13-10-1950	PARIS		
0 1 1 1					
$\alpha = [0 \ 1 \ 1 \ 1]$					

$$\gamma = [0,1,1,1]$$

Pour une variable i, calcul de la probabilité à posteriori

$$egin{aligned} \Pr(ext{records match} \mid \gamma_i) &= rac{\Pr(\gamma_i \mid ext{records match}) \Pr(ext{records match})}{\Pr(\gamma_i)} \ &= rac{m_{i,l} \lambda}{m_{i,l} \lambda + u_{i,l} (1 - \lambda)} \end{aligned}$$

$$ext{with} egin{cases} \lambda &= \Pr(ext{records match}) \ l = 0 ext{ if } \gamma_i = 0 \ l = 1 ext{ if } \gamma_i = 1 \end{cases}$$

Pour le vecteur de comparaison y

$$egin{aligned} \Pr(ext{records match} \mid \gamma) &=& \Pr(ext{records match} \mid \gamma_1, \dots, \gamma_K) \ &=& rac{\prod_{i=1}^K \Pr(\gamma_i \mid ext{records match}) \cdot \Pr(ext{records match})}{\Pr(\gamma_1, \dots, \gamma_K)} \; ext{par indépendance} \ &=& rac{\lambda m_{1,l} \cdot m_{2,l} \dots m_{K,l}}{\lambda m_{1,l} \cdot m_{2,l} \dots m_{K,l} + (1-\lambda) u_{1,l} \cdot u_{2,l} \dots u_{K,l}} \end{aligned}$$

$$egin{aligned} ext{odds} &= rac{p}{1-p} \ &= rac{\lambda}{1-\lambda} \cdot rac{\prod m_{i,l}}{\prod u_{i,l}} \ &= rac{\lambda}{1-\lambda} \cdot b_{1,l} \dots b_{K,l} \end{aligned}$$

$$egin{aligned} ext{odds} &= rac{p}{1-p} \ &= rac{\lambda}{1-\lambda} \cdot rac{\prod m_{i,l}}{\prod u_{i,l}} \ &= rac{\lambda}{1-\lambda} \cdot b_{1,l} \dots b_{K,l} \end{aligned}$$

$$\log_2\left(ext{odds}
ight) = \log_2\left(rac{\lambda}{1-\lambda}
ight) + \log_2\left(b_{1,l}
ight) + \ldots + \log_2\left(b_{K,l}
ight)$$

$$egin{aligned} ext{odds} &= rac{p}{1-p} \ &= rac{\lambda}{1-\lambda} \cdot rac{\prod m_{i,l}}{\prod u_{i,l}} \ &= rac{\lambda}{1-\lambda} \cdot b_{1,l} \dots b_{K,l} \end{aligned}$$

Construction itérative de la probabilité de match

$$\log_2\left(\mathrm{odds}\right) = \log_2\left(rac{\lambda}{1-\lambda}
ight) + \log_2\left(b_{1,l}
ight) + \ldots + \log_2\left(b_{K,l}
ight)$$

 L'idée générale du modèle est donc d'utiliser une estimation du poids relatif de chaque variable

	m		b
Date de naissance 0.95		0.001	950
Nom	0.9	0.01	90
Sexe	0.95	0.5	1.9

Limites:

- Concordance binaire
- Indépendance des variables
- \circ Comment estimer m et u ? \rightarrow Empiriquement ou bien via un algorithme EM

A retenir:

- Certaines variables ont un poids (bien) plus importants pour déterminer le statut d'une paire
- Variable clé: Date de naissance
- Nécessité d'une étape de blocking: présélectionner des candidats pour limiter le nombre de comparaisons

Cas d'usage: déduplication d'une base de N = 10M de patients

- Approche naïve: comparaison complète
 - N^2 paires de patient \rightarrow **100 billiards ici**
 - Il faut présélectionner des candidats

- Standard Blocking: utilisation d'une clé
 - Par exemple: initiale du nom, année de naissance
 - Avec b blocs, le nombre de comparaisons est alors en $\mathcal{O}\left(\frac{N^2}{h}\right)$
 - Attention à la taille des blocs
 - Attention au choix de la clé

Le choix d'une technique de blocking adaptée est essentiel

- 2 métriques classiques pour mesurer la qualité du blocking:
 - O Pairs Completeness: $PC = \frac{Card(\text{matches détectés})}{Card(\text{matches existants})}$
 - \circ Pairs Quality: $PQ = \frac{Card(\text{matches détectés})}{Card(bloc)}$

- Tradeoff entre
 - Optimisation du temps de calcul
 - Optimisation de la procédure d'appariement

- En sortie d'algorithme, on a un ensemble de paires de matches
- De cet ensemble, il est possible de créer un graphe
 - Les noeuds sont les patients
 - Les arêtes déterminent si 2 patients sont appariés
- On en retire alors les composantes connexes

Α	В
Α	С
В	D
Е	F

Composantes connexes

- En sortie d'algorithme, on a un ensemble de paires de matches
- De cet ensemble, il est possible de créer un graphe
 - Les noeuds sont les patients
 - Les arêtes déterminent si 2 patients sont appariés

On en retire alors les composantes connexes

Α	В
Α	С
В	D
Е	F

Un exemple d'algorithme: Déduplication des patients de l'EDS

- But de l'algorithme:
 - Proposer un 1ère version d'un algorithme de dédoublonnage moins conservateur que le l'algorithme existant (destiné au soin) à destination de la recherche
 - O Doit tourner sur les ~13M de patients de l'EDS en un temps court / avec des ressources raisonnables
- Fonctionnement global
 - Utilisation des variables avec une complétude élevée
 - Blocking sur la date de naissance
 - On passe de 6.4x10¹³ à 2.2x10⁹ comparaisons
 - Fuzzy-matching sur les patronymes
 - Métrique de Jaro-Winkler
 - Détermination du threshold via une campagne d'annotation

9			-	-		
8		~~		}	4	
7		1			7	
6	1		-	Precision	1	
5 -			.90 O.	Recall F1Score		0.98 1.00

		Colonne	Entrées non-nulles (%)
ĺ	1	nom	99.999373
l	0	prenom	99.994017
	5	dt_nais	91.531307
	3	cd_genre	90.703285
	2	nom_nais	65.168952
	4	lieu_nais	20.267825

- Exemple de biais identifié sur les dates de naissance
 - Sur-représentation du 1er Janvier et 31 décembre
 - Origine identifiée
 - 1er Janvier: attribuée par défaut par l'état civil en l'absence de date précise
 - 31 décembre: attribuée par défaut à l'arrivée à l'AP-HP si absence de papiers
 - Sur-représentation des décennies
 - Cause de FP importante, visible dans les "grands" composants

- Gestion des valeurs manquantes
 - Approches classiques:
 - éliminer les patients avec au moins 1 valeur manquante du processus d'appariement
 - Considérer qu'une valeur manquante correspond à un match exact sur cette valeur
 - Considérer qu'une valeur manquante correspond à un non-match total sur cette valeur

And... what about ML and DL?

- Peu de recherche à ce niveau!
- Pourtant, [1] montre qu'un simple MLP est meilleur que le Naive Bayes présenté précédemment.
- Dans le futur, usage d'embeddings et de réseaux siamois [2] ?
- [1] Wilson et al, Beyond probabilistic record linkage: Using neural networks and complex features to improve genealogical record linkage
- [2] Anna Jurek-Loughrey; (2020). Siamese Neural Network for Unstructured Data Linkage

Exercice 2 – Déduplication

des identités

Application – Déduplication

- Pull le sujet de l'exercice 2 depuis le repo GitHub
- Ouvrir le notebook exercises/exercise-2
 - Contexte:
 - Mise à disposition d'une table de déduplication déterministe pour les patients
 - Mise à disposition d'une table de déduplication probabiliste pour les patients
 - Objectif: Comparer l'impact de la déduplication sur les résultats

Application - Schéma de la base

Schéma de la base mise à disposition

Projet

Projet – Exploration des données

Question scientifique

- Identification des facteurs de risque associés au cancer du sein
- □ Analyse rétrospective à partir des données de l'EDS

■ Objectifs globaux

- Synthèse de la littérature sur le sujet
- Construction des objectifs techniques pour répondre à la question scientifique
- □ Nettoyage/Traitement de la BDD mise à disposition
- Analyses statistiques
- □ Restitution
 - Court article scientifique (~1500 mots)
 - Notebook reproductible

Projet – Exploration des données

■ Objectifs première journée

- Lecture de la base
- Exploration & mapping des données
- □ Revue documentaire (introduction de l'article scientifique)
- □ Elaboration d'un patient set et des facteurs de risques à évaluer

Objectifs seconde journée

- Implémenter la déduplication du patient set
- Analyse comparative des premiers facteurs de risques

Bibliographie

- Kohane, Isaac S, Bruce J Aronow, Paul Avillach, Brett K Beaulieu-Jones, Riccardo Bellazzi, Robert L Bradford, Gabriel A Brat, et al. « What Every Reader Should Know About Studies Using Electronic Health Record Data but May Be Afraid to Ask ». Journal of Medical Internet Research 23, n° 3 (2 mars 2021): e22219. https://doi.org/10.2196/22219.
- Agniel, Denis, Isaac S Kohane, et Griffin M Weber. « Biases in Electronic Health Record Data Due to Processes within the Healthcare System: Retrospective Observational Study ». BMJ, 30 avril 2018, k1479. https://doi.org/10.1136/bmj.k1479.
- Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy, Steven H. D. Haddock, et al. « Best Practices for Scientific Computing ». Édité par Jonathan A. Eisen. PLoS Biology 12, n° 1 (7 janvier 2014): e1001745. https://doi.org/10.1371/journal.pbio.1001745.
- Benchimol, Eric I., Liam Smeeth, Astrid Guttmann, Katie Harron, David Moher, Irene Petersen, Henrik T. Sørensen, Erik von Elm, Sinéad M. Langan, et RECORD Working Committee. « The REporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) Statement ». PLOS Medicine 12, n° 10 (6 octobre 2015): e1001885. https://doi.org/10.1371/journal.pmed.1001885.

