# Making graphs

#### Our data

- To illustrate making graphs, we need some data.
- Data on 202 male and female athletes at the Australian Institute of Sport.
- Variables:
  - categorical: Sex of athlete, sport they play
  - quantitative: height (cm), weight (kg), lean body mass, red and white blood cell counts, haematocrit and haemoglobin (blood), ferritin concentration, body mass index, percent body fat.
- Values separated by tabs (which impacts reading in).

# Packages for this section

library(tidyverse)

# Reading data into R

- Use read\_tsv ("tab-separated values"), like read\_csv.
- Data in ais.txt:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/c32/ais.txt"
athletes <- read_tsv(my_url)</pre>
```

```
## Parsed with column specification:
## cols(
     Sex = col character(),
##
     Sport = col_character(),
##
##
    RCC = col double(),
##
    WCC = col double(),
    Hc = col double().
##
##
    Hg = col double(),
    Ferr = col_double(),
##
    BMI = col double().
##
##
     SSF = col double(),
    `%Bfat` = col_double(),
##
##
    LBM = col double().
##
     Ht = col double(),
     Wt = col double()
##
## )
```

# The data (some)

Sport

Netball

Netball

Netball

Netball

Netball

Netball

Netball

Netball

#### athletes

female

female

female

female

female

female

female

female

Sex

| temale | Netball | 4.56 | 13.30 | 42.2 | 13.6 | 20  | 19.16 | 49.0  | 11.29 | 53.14 |
|--------|---------|------|-------|------|------|-----|-------|-------|-------|-------|
| female | Netball | 4.15 | 6.00  | 38.0 | 12.7 | 59  | 21.15 | 110.2 | 25.26 | 47.09 |
| female | Netball | 4.16 | 7.60  | 37.5 | 12.3 | 22  | 21.40 | 89.0  | 19.39 | 53.44 |
| female | Netball | 4.32 | 6.40  | 37.7 | 12.3 | 30  | 21.03 | 98.3  | 19.63 | 48.78 |
| female | Netball | 4.06 | 5.80  | 38.7 | 12.8 | 78  | 21.77 | 122.1 | 23.11 | 56.05 |
| female | Netball | 4.12 | 6.10  | 36.6 | 11.8 | 21  | 21.38 | 90.4  | 16.86 | 56.45 |
| female | Netball | 4.17 | 5.00  | 37.4 | 12.7 | 109 | 21.47 | 106.9 | 21.32 | 53.11 |
| female | Netball | 3.80 | 6.60  | 36.5 | 12.4 | 102 | 24.45 | 156.6 | 26.57 | 54.41 |

12.4

14.1

12.5

12.1

12.7

12.5

13.1

13.2

13.7

Making graphs

Hg

Ferr

~~

71

64

68

78

39

58

127

102

107

BMI

22.63

22.80

23.58

20.06

23.01

24.64

18.26

24.47

23.99

SSF

. . .

101.1

126.4

114.0

70.0

77.0

148.9

80.1

156.6

115.9

%Bfat

17.93

24.97

22.62

15.01

18.14

26.78

17.22

26.50

23.01

**LBM** 

55.97

51.62

58.27

57.28

57.30

54.18

42.96

54.46

57.20

5/17

temale 3.80 ხ.ხს 30.5 ivetbali female Netball 3.96 5.50 36.3

4.44

4.27

3.90

4.02

4.39

4.52

4.25

4.46

**RCC** 

WCC

9.70

10.60

6.30

9.10

9.60

5.10

10.70

10.90

Hc

41.4

37.7

35.9

37.7

38.3

38.8

39.5

39.7

# Types of graph

Depends on number and type of variables:

| Categorical | Quantitative | Graph                                 |
|-------------|--------------|---------------------------------------|
| 1           | 0            | bar chart                             |
| 0           | 1            | histogram                             |
| 2           | 0            | grouped bar charts                    |
| 1           | 1            | side-by-side boxplots                 |
| 0           | 2            | scatterplot                           |
| 2           | 1            | grouped boxplots                      |
| 1           | 2            | scatterplot with points identified by |
|             |              | group (eg. by colour)                 |

With more variables, might want *separate plots by groups*. This is called facetting in R.

# ggplot

- R has a standard graphing procedure ggplot, that we use for all our graphs.
- Use in different ways to get precise graph we want.
- Let's start with bar chart of the sports played by the athletes.

#### Bar chart

# ggplot(athletes, aes(x = Sport)) + geom\_bar()



### Histogram of body mass index



# Which sports are played by males and females?

#### Grouped bar chart:

```
ggplot(athletes, aes(x = Sport, fill = Sex)) +
  geom_bar(position = "dodge")
```



# BMI by gender



Making graphs

### Height vs. weight

#### Scatterplot:



Making graphs

# With regression line

```
ggplot(athletes, aes(x = Ht, y = Wt)) +
  geom_point() + geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
 125 -
 100 -
  50 -
                                   180
                                                      200
```

# BMI by sport and gender

ggplot(athletes, aes(x = Sport, y = BMI, colour = Sex)) +
 geom\_boxplot()



Making graphs 14 / 17

# Height and weight by gender

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point()
```



Making graphs

# Height by weight for each sport and gender, with facets

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point() + facet_wrap(~Sport)
```



Making graphs 16 / 17

# Filling each facet

Default uses same scale for each facet. To use different scales for each facet, this:

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point() + facet_wrap(~Sport, scales = "free")
                                                                     Netball
                               Swim
                                                                     Tennis
                                                                                 Sex
                   200
                              WPolo
                      100 -
  90 -
80 -
70 -
60 -
```

Making graphs 17 / 17