Binary Blah Blah!

- The Binary system comprises only two numbers viz. 0 and 1.
- Numbers could be of the form:
- 00, 01, 10, 11

(meaning 0, 1, 2, 3 in decimal)

Thus,

$$(0101)_2 = 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

Similarly,

$$(110.01)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 0x2^{-1} + 1x2^{-2}$$

Bits, Nibbles and Bytes!

- Bit: Binary digiT
- 4 bits make a Nibble e.g.1011
- <u>o 8 bits</u> make a <u>Byte</u> e.g. 11001101
- OUsing 2 bits we can generate 4 combinations viz. 00, 01, 10, 11 standing for 0, 1, 2 and 3 in the decimal system
- Thus, using n bits we can generate 2% combinations

Thinking in terms of 0s and

The Truth Table

The buzzer P is activated only under this condition -

A is TRUE AND B is TRUE AND C is

Observe that there is some logic that drives P

Tuesday, March 9, 2021

Active

LOGIC GATES

- A logic gate is an electronic component whose output is computed based on a function of the inputs.
- A gate can have one or more inputs.
- Inputs may be given directly as (LOW VOLTAGE*) or 1 (HIGH VOLTAGE*) or they could be derived from the output of other logic gates.
- * LOW generally means 0V and HIGH generally means 3V or 5V.
- Computers use a very large number of such interconnected gates.

LOGIC GATES: AND

 In order for current to flow & the lamp light up, both switches must be closed

Logic notation A•B = C

LOGIC GATES: OR

- Current flows if either switch is closed
 - Logic notation A + B = C

* A	В	C
0	0	0
0	_1	1.
1 .	0	1
1	1	1

GATES: Inversion (NOT)

Logic: Q = A'

A	Q
_ 0 _	1
1	0_

Q is said to be the complement of A and is denoted as either \overline{A} or A'

GATES: Exclusive OR (XOF

Either A or B, but not both, should be TRUE

This is sometimes called the inequality detector, because the result will be 0 when the inputs are the same and 1 when they are different.

Α	В	S	
0	0	-0	
1	0	1	
0=	1	_1_	
-1	1	-0	

Using Logic Gates

How can we realize a function say, F = A.B' + A'B using such logic gates?

AND OR AND

NOT NOT

Requirement:

2 AND

2 NOT

1 OR

Guess which truth table thi circuit satisfies?

Fill the rest of the entries accordingly to find what it satisfies.

Scanned with CamScanner

A quick peek into other logi gates

A	В	(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

	Α	В	(A+B)'
	0	0	1
	0	1	0
•	1	0	0
	1	1	0

Tuesday, March 9, 2021

Scanned with CamScanner