SW-AI 융합 우수성과 발표회

기획

개발

테스트

마무리

작품명 및 개요

num	wqdt	bCod	bSs	bTn
0	2019-01-01	3.5	2.0	10.370
1	2019-01-02	2.8	1.6	10.181
2	2019-01-03	2.9	1.2	9.746
3	2019-01-04	3.6	1.6	8.880
4	2019-01-05	4.4	1.6	9.691
중략				
1215	2022-04-27	2.3	1.0	3.756
1216	2022-04-28	2.3	1.8	3.898
1217	2022-04-29	3.6	1.2	5.870
1218	2022-04-30	2.1	1.6	4.330

예측모델 개발

EL 소가 6월 (June) 7월 (July) 지 선정 데이터 전체리 15 ~ 19 Transformer GRU Bayesian LSTM GRU 모델링 보고서 작성 김소은 1~ 5

데이터 전처리 Bayesian LSTM 모델링 김서린

작품배경, 동기 및 목표

목적 2030 지속가능발전 Agenda (UN-SDGs)

목표 Goal 6. Clean Water & Sanitation

설명 모두를 위한 물과 위생의 이용가능성과 지속가능한 관리 보장

코드 정리 보고서 작성

목적 하수처리시설의 효율적 관리를 위해 하수처리시설의 수질 예측

8 ~ 10

시스템 설계 구형, 평가 및 결과

작품 사진

COD MSE: 0.52 COD R2 Score: 0.76

TN MSE: 0.54 TN R2 Score: 0.51

기대효과 및 발전방향/계획

<기대효과 및 발전방향>

- 1. 수질 관리를 위한 구체적인 운전전략 마련이 가능
- → 예측값이 일정 기준보다 초과될 경우 하수처리장 운전조건 재설정
- 2. 기존의 방식인 운전자의 경험적 지식에 의존하여 하수처리장을 운영함으로써 발생하는 **신뢰성**, **객관성 등의 문제를 해결**

< 계획 >

향후 연구 진행 시, 기상 데이터 등 여러 예측 변수를 추가하여, **변수들 간의 교호작용** 등을 알아보고 이들이 최종적으로 하수처리장 수질에 미치는 영향을 알아본다. 기존 예측 변수인 COD, TN과의 상관계수를 토대로 **예측 변수를 추가**하도록 한다.

