120A Practice Final

Botao Jin

University of California, Santa Barbara — February 27, 2025

- 1. Suppose that X_1 and X_2 are independent random variables, and X_1 and X_2 have the exponential distribution with parameters β_1 and β_2 , respectively. Then,
 - (a) Identify the joint density function $f(x_1, x_2)$ of X_1 and X_2 .
 - (b) Use part a to show that the probability

$$P(X_1 > X_2) = \frac{\beta_2}{\beta_1 + \beta_2}$$

- 2. Suppose that a sequence of independent tosses are made with a coin for which the probability of obtaining a head on each given toss is 1/30.
 - (a) What is the expected number of tosses that will be required in order to obtain five heads?
 - (b) What is the variance of the number of tosses that will be required in order to obtain five heads?
- 3. Suppose a book contains n pages, and on average there are λ misprints per page. The number of misprints on each page is independent of the others. What is the probability that at least one page contains no misprints?
- 4. Let X be a discrete uniform random variable with support $S_X = \{-2, -1, 0, 1, 4, 6\}$, i.e. $P_X(k) = \frac{1}{6}$ for all $k \in S_X$. Find the Moment generating function of $(X+1)^2$.
- 5. Suppose that Y is a random variable with mean 10 and standard deviation 2. Let X be a Bernoulli random variable with $p = \frac{1}{2}$, independent of Y. Now, consider a random variable Z = X + Y.
 - (a) Let M(t) be the moment generating function (MGF) of Y, calculate the moment generating function of Z, denoted as $M_Z(t)$.
 - (b) Using the result from part a, derive the mean and variance of Z.
- 6. Let the random variables X, Y have joint density

$$f(x,y) = \begin{cases} 3(2-x)y & \text{if } 0 < y < 1 \text{ and } y < x < 2-y \\ 0 & \text{otherwise} \end{cases}$$

- (a) Verify that it is a valid joint density function.
- (b) Derive the marginal density for X.
- (c) Calculate

$$P(X+Y<1)$$

7. Suppose that 20 percent of the students who took a certain test were from school A and that the arithmetic average of their scores on the test was 80. Suppose also that 30 percent of the students were from school B and that the arithmetic average of their scores was 76. Suppose, finally, that the other 50 percent of the students were from school C and that the arithmetic average of their scores was 84. If a student is selected at random from the entire group that took the test, what is the expected value of her score? Hint: Use conditional expectation.

Note: This study guide is used for Botao Jin's sections only. Comments, bug reports: b jin@ucsb.edu