Particle Filters

16-833 Robot Localization and Mapping

Spring 2021 Montiel Abello

Slides adapted from Eric Westman

State Estimation

Parametric Methods

- Model state using a parametric distribution (e.g. normal distribution)
- Can give optimal estimate if assumptions hold
- Examples: Kalman filter, EKF, factor graph optimization

Non-parametric Methods

- Do not assume a particular model
- Allows tracking arbitrary distributions
- Often use particles or kernels to represent underlying distribution

Particle Filter Applications

- Localization (focus in this class)
- SLAM (e.g. FASTSLAM algorithm)
- State estimation, generally

The Big Idea

Use particles as **samples** of the distribution that represents our **belief** of the state

The Big Idea

Use particles as **samples** of the distribution that represents our **belief** of the state

Background...

Sampling

Approximate Area:

- · Sample N x; EX
- · Area = N = I(xi).a.b

Ap Assumptions

- · have indicator function · have method of drawing uniformly distributed random nos

Why is sampling nontrivial?

- · Bernoulli distribution: x = {0,13
- · Uniform distribution: xallni (0,1)
 - hardware, pseudo undon no generalors
 - allow us to sample more complex distributions

Inverse Transform Sampling Method · eg - sample O-mean Gaussian 1 find or approximate comulative distribution function CPF(x) = St P(E) dt

2) generale uniformly distributed randon no. Uf ~ Uni(0,1)

Problem: can't do this for multivariate distributions

Rejection Sampling 2

· Coal: sample from farget distribution p(1e) (concualrate, can't sample)

· Known: proposal distribution q(x) (can su-auduck, can sample) es uniform, normal

· Set up: Choose M>1 s.t. p(x) < M2(x) over entire support of p(nc)

O sample icin q(x) and uin Uni(0,1)

2) if $u_i < \frac{p(x_i)}{M_2(x_i)}$, accept x_i else go to D, raject xi

=> densely sample where p(10) elose to Mq(10) ie where probability density higher

Problem: in high dim., need UT hard to get good fix

· Notation: x ~ p(ic)

 $E[x] = \int_{\infty}^{\infty} z \, \rho(x) \, dx$

Example = 500 flapping dec

· target p(10) - can't sample

· proposal g(x) - can sample

Epril
$$[f(x)] = \int f(n) g(n) dn$$

$$= \int f(n) g(n) dn$$

$$= \int \frac{p(n)}{g(n)} f(n) g(n) dn$$
How generale samples $\pi_i = g(n)$

$$= \int \frac{p(n)}{g(n)} f(n) dn$$

$$= \int \frac{p$$

$$E_{p(x)} [f(x)] = \int_{-\infty}^{\infty} f(x) p(x) dx$$

$$= \int_{-\infty}^{\infty} f(x) p(x) \frac{q(x)}{q(x)} dx$$

$$= \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} f(x) q(x) dx$$

$$= E_{q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$$

$$E_{p(x)} [f(x)] = \int_{-\infty}^{\infty} f(x) p(x) dx$$

$$= \int_{-\infty}^{\infty} f(x) p(x) \frac{q(x)}{q(x)} dx$$

$$= \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} f(x) q(x) dx$$

$$= E_{q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$$

x

$$E_{p(x)} [f(x)] = \int_{-\infty}^{\infty} f(x) p(x) dx$$

$$= \int_{-\infty}^{\infty} f(x) p(x) \frac{q(x)}{q(x)} dx$$

$$= \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} f(x) q(x) dx$$

$$= E_{q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$$

$$E_{p(x)} [f(x)] = \int_{-\infty}^{\infty} f(x) p(x) dx$$

$$= \int_{-\infty}^{\infty} f(x) p(x) \frac{q(x)}{q(x)} dx$$

$$= \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} f(x) q(x) dx$$

$$= E_{q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$$

 \dot{x}

$$E_{p(x)} [f(x)] = \int_{-\infty}^{\infty} f(x) p(x) dx$$

$$= \int_{-\infty}^{\infty} f(x) p(x) \frac{q(x)}{q(x)} dx$$

$$= \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} f(x) q(x) dx$$

$$= E_{q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$$

Bayes' Rule $p(x|y,e) = \frac{p(y|x,e)p(x|e)}{p(y|e)}$

```
egin{array}{lll} bel(x_{0:t}) &=& p(x_{0:t} \mid u_{1:t}, z_{1:t}) \ &p(x_{0:t} \mid z_{1:t}, u_{1:t}) \ &\stackrel{	ext{Bayes}}{=} & \eta \ p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \ &\stackrel{	ext{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \ &=& \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t}) \ &\stackrel{	ext{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1}) \ \end{array}
```

Bayes' Rule $p(x|y,e) = \frac{p(y|x,e)p(x|e)}{p(y|e)}$

$$egin{array}{lll} bel(x_{0:t}) &=& p(x_{0:t} \mid u_{1:t}, z_{1:t}) \ p(x_{0:t} \mid z_{1:t}, u_{1:t}) \ &\stackrel{ ext{Bayes}}{=} & \eta \ p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \ &\stackrel{ ext{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t}) \ &=& \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t}) \ &\stackrel{ ext{Markov}}{=} & \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1}) \ \end{array}$$

$$P(A,B) = P(A \mid B) P(B)$$

$$P(A,B \mid C) = P(A \mid B,C) P(B \mid C)$$

Bayes' Rule
$$p(x|y,e) = \frac{p(y|x,e)p(x|e)}{p(y|e)}$$

```
bel(x_{0:t}) = p(x_{0:t} \mid u_{1:t}, z_{1:t})
p(x_{0:t} \mid z_{1:t}, u_{1:t})
     Bayes
                  \eta \ p(z_t \mid x_{0:t}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t})
    Markov
                  \eta \ p(z_t \mid x_t) \ p(x_{0:t} \mid z_{1:t-1}, u_{1:t})
                  \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t})
    Markov
                  \eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})
                                                                        bel(x_{0:t-1}) Recursion!
```

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})$$

Recall importance weighting

$$w_t^{[m]} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})$$

Recall importance weighting

$$w_t^{[m]} = \frac{\text{target distribution}}{\text{proposal distribution}} \stackrel{bel(x_{0:t})}{\longleftarrow}$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})$$

Recall importance weighting

$$w_t^{[m]} = \frac{\text{target distribution}}{\text{proposal distribution}} \stackrel{bel(x_{0:t})}{\longleftarrow p(x_t \mid x_{t-1}, u_t) \ bel(x_{0:t-1})}$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})$$

Recall importance weighting

$$w_t^{[m]} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

We don't know this (don't have samples... yet)

$$\begin{array}{c} \longleftarrow (bel(x_{0:t})) \\ \longleftarrow (p(x_t \mid x_{t-1}, u_t) \ bel(x_{0:t-1})) \end{array}$$

We do know this (can generate samples)

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})$$

Recall importance weighting

$$w_t^{[m]} = \frac{\text{target distribution}}{\text{proposal distribution}} \stackrel{bel(x_{0:t})}{\longleftarrow} p(x_t \mid x_{t-1}, u_t) \text{ bel}(x_{0:t-1})$$

$$= \frac{\eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})}{p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{0:t-1}, u_{0:t-1})}$$

$$= (\eta p(z_t \mid x_t))$$

But we know the ratio!

Particle Filter Algorithm

```
p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})
```

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
2:
                 \mathcal{X}_t = \mathcal{X}_t = \emptyset
3:
                 for m=1 to M do
                       sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]}) — motion model
4:
                      w_t^{[m]} = p(z_t \mid x_t^{[m]})
                                                       ← sensor model
5:
                       \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                 endfor
8:
                 for m=1 to M do
                      draw i with probability \propto w_t^{[i]} ---- importance sampling
9:
                      add x_t^{[i]} to \mathcal{X}_t
10:
                 endfor
                                                                                 \mathcal{X}_{t-1} - previous particle set
11:
12:
                 return \mathcal{X}_t
                                                                                 \mathcal{X}_t - output particle set
```


Measurement Z:

p(zt xt)

Motion u

What should the motion model look like?

- Needs to be a distribution from which we can draw samples
- Usually use a normal distribution with odometry measurement as mean

Sampling from the motion model

Sampling from the motion model

Sampling from the motion model

State uniformly distributed initially

• Sensor model, update weights

Motion model, resample particles

• Sensor model, update weights

Initially particles uniformly distributed

Sensor model, update weights, resample

Propagate with motion model

Get measurements

Get measurements

Resample

Propagate with motion model

Get measurements

Get measurements

Resample

Resample

2D example

Propagate with motion model

2D example

Get measurements

and so forth...

What should the sensor model look like?

- Depends on the sensor
- Previous example uses a laser range finder (LRF), which sends out lasers at known angles and measures the range
- Therefore we have a 1-dimensional measurement which is conditioned on the estimated state and the map

- Gives likelihood of seeing measurement z_t, given:
 - State x_t
 - Map m

Superposition of:

- Gaussian centered at predicted range according to map + particle
- Uniform at end-of-range
- Exponential decay
- Maybe another uniform over entire range
- ...

(a) Gaussian distribution p_{hit}

(c) Uniform distribution p_{\max}

(b) Exponential distribution $p_{\rm short}$

(d) Uniform distribution $p_{\rm rand}$

Superposition of:

- Gaussian centered at predicted range according to map + particle
- Uniform at end-of-range
- Exponential decay
- Maybe another uniform over entire range
- ...

Particle Filter Algorithm

```
p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})
```

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
2:
                 \mathcal{X}_t = \mathcal{X}_t = \emptyset
3:
                 for m=1 to M do
                       sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]}) — motion model
4:
                      w_t^{[m]} = p(z_t \mid x_t^{[m]})
                                                       ← sensor model
5:
                       \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                 endfor
8:
                 for m=1 to M do
                      draw i with probability \propto w_t^{[i]} ---- importance sampling
9:
                      add x_t^{[i]} to \mathcal{X}_t
10:
                 endfor
                                                                                 \mathcal{X}_{t-1} - previous particle set
11:
12:
                 return \mathcal{X}_t
                                                                                 \mathcal{X}_t - output particle set
```

Implementation problems

- Stationary robot
 - No motion or sensor data
 - Converges to one particle (likely incorrect)
- Particle deprivation
 - Too few particles
 - "Correct" particles die out
- Very precise sensor models can result in poor performance
 - Accurate odometry, poor range sensor?
 - Poor odometry, accurate range sensor?

Tips & Tricks

Low variance resampling

- Store logs of weights
- Experiment with different sensor models

Tips & Tricks

Low variance resampling

- Store logs of weights
- Experiment with different sensor models

Tips & Tricks

Low variance resampling

Figure 4.3 Principle of the low variance resampling procedure. We choose a random number r and then select those particles that correspond to $u = r + (m-1) \cdot M^{-1}$ where $m = 1, \ldots, M$.

- Store logs of weights
- Experiment with different sensor models

FastSLAM

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space < x, y, θ>
- SLAM: state space < x, y, θ, map>
 - o for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = < c₁₁, c₁₂, ..., c_{1n}, c₂₁, ..., c_{nm} >
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

Localization:

```
p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) p(x_{0:t-1} \mid z_{1:t-1}, u_{1:t-1})
```

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks)

Does this help to solve the problem?

Factorization first introduced by Murphy in 1999

Mapping using Landmarks

Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM - Action Update

FastSLAM - Sensor Update

FastSLAM - Sensor Update

FastSLAM Complexity

 Update robot particles based Constant time per particle on control u_{t-1} O(N)
Constant time per particle

Incorporate observation z_t into Kalman filters

O(N•log(M))
log time per particle

Resample particle set

O(N•log(M))
log time per particle

O(N•log(M))
log time per particle

N = Number of particles

M = Number of map features

Results - Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS
Yellow = FastSLAM

Dataset courtesy of University of Sydney

Results - Number of Particles

Results - Motion Uncertainty

FastSLAM slides courtesy of

Sebastian Thrun, Wolfram Burgard, Dieter Fox

Publicly available at www.probabilistic-robotics.org