Computer spectrometer readings for the ionisation energies of atoms up to carbon

Nike Dattani (Dated: 18th June 2018)

Table I. Ionisation energies in cm⁻¹ listed according to order of appearance in the QED/QFD/QCD expansion in powers of the fine structure constant $\alpha_{\rm FS}=1/137.035\,999\,074$. Carbon energies were done in this work using FCIQMC with orbitals (CBS extrapolation using aug-cc-pCV7Z and aug-cc-pCV8Z), whereas the Li, Be, and B energies were calculated by Puchalski using explicitly correlated N-electron wavefunctions.

	Li	Be	В	С	Hamiltonian
$mlpha_{ m FS}^2 \ mlpha_{ m FS}^4 \ mlpha_{ m FS}^5 \ mlpha_{ m FS}^6 \ mlpha_{ m FS}$	43 488.220 301(6) 2.810 879 -0.243 995 -0.007 57 0.000 671 7	75 190.543(4) 7.4140(8) -0.5577(3) -0.025(5)	66 936.15(5) -10.131(2) 1.59(20) 0.10(3)	90 863.037(800) -32.540(050) 2.560(050) 0.200(100)	SFDC D1,D2,AS
$ \begin{pmatrix} \frac{m^2}{m+m_N} \end{pmatrix} \alpha_{\rm FS}^2 $ $ \begin{pmatrix} \frac{m^2}{m+m_N} \end{pmatrix} \alpha_{\rm FS}^4 $ $ \begin{pmatrix} \frac{m^2}{m+m_N} \end{pmatrix} \alpha_{\rm FS}^5 $ $ \begin{pmatrix} \frac{m^2}{m+m_N} \end{pmatrix} \alpha_{\rm FS}^6 $	-3.621 708 -0.000 012 0.000 013 0.000 002	4.67565	-0.2076(0)	-0.270(010)	DBOC
$\left(\frac{m^2}{m+m_N}\right)^2 \alpha_{\rm FS}^2$	0.000 316				
Total	43 487.159 0(8)	75 192.699(007)	66 927.91(21)	90832.987(811)	
Experiment	43 487.159 40(18)	75 192.64(06)	66 928.036(022)	90833.021(009)	
Obs-Calc	0.0004	-0.059	0.126	0.034	

Table II. $m\alpha_{\rm FS}^4$ corrections to the ionisation energies in cm⁻¹. Perturbative calculation is $\langle \psi | H_{\rm Breit-Pauli} | \psi \rangle$, where $\psi \equiv \psi_{\rm Non-Relativistic}$. Effective Hamiltonian is the spin-free Dirac-Coulomb Hamiltonian, which is diagonalized directly rather than first diagonalizing a simpler Hamiltonian and using the wavefunction for a perturbative treatment. The 4-component calculation is the benchmark.

	Perturbatio	n Theory	Effective Hamiltonian	Proper 4-component Calculation
Element	ECGs	Orbitals		Troper reempenent carearation
	(Puchalski $et~al.$)	(Lesiuk $et \ al.$)	(Dattani & Cheng)	(Anderson & Booth)
Lithium	2.810 879			
Beryllium	$7.414\ 0(8)$			
Boron	-20.325(2)	-20.30(12)		
Carbon	Not Possible	-36.71(14)	-32.540(50)	