VERTEX ALGEBRAS

github.com/danimalabares/vertex-algebras

Contents

1.	Cartan subalgebra, Cartan matrix and Serre relations	1
2.	Some infinite dimensional Lie algebras	2
3.	Kac-Moody algebras	5
4.	Affine Kac-Moody algebras	7
5.	Weyl character formula	10
References		11

1. Cartan Subalgebra, Cartan Matrix and Serre relations

Kac-Moody algebras are Lie algebras, whose definition is motivated by the structure of finite-dimensional simple Lie algebras over \mathbb{C} .

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C} . Then \mathfrak{g} has a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (abelian $+ \dots$) (see [Kac10, Definition 8.2]). Fixing $\mathfrak{h} \subset \mathfrak{g}$ gives a root space decomposition (see [Kac10, Proposition 8.5])

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\Delta}\mathfrak{g}_lpha$$

where $\Delta \subset \mathfrak{h}^*$ linear dual, and, by definition

$$\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} | [H, X] = \alpha(H)X \ \forall H \in \mathfrak{h} \}$$

Turns out the \mathfrak{g}_{α} are all 1-dimensional, though this property is lost when we go to Kac-Moody algebras.

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subset\mathfrak{g}_{\alpha+\beta}$$

The Killing form $\kappa: \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, $\kappa(x,y) = \operatorname{Tr}_{\mathfrak{g}} \operatorname{ad}(x) \operatorname{ad}(y)$ is nondegenerate. "This is kind of the definition of semisimple." (Think of \mathfrak{h} as \mathfrak{g}_0 , btw.)

 $\kappa|_{\mathfrak{g}_{\alpha}\times\mathfrak{g}_{\beta}}\neq 0$ only when $\beta=-\alpha$. $\kappa|_{\mathfrak{h}\times\mathfrak{h}}$ is non-degenerate. This gives a linear isomorphism $\mathfrak{h}\stackrel{\nu}{\to}\mathfrak{h}$ via $\nu(H)(H')=\kappa(H,H')$.

So, \mathfrak{h}^* comes with a non-degenerate bilinear form.

The reflection $r_{\alpha}: \mathfrak{h} \to \mathfrak{h}^*$ in $\alpha \in \mathfrak{h}^*$ (usually a root) is $r_{\alpha}(\lambda) = \lambda - 2\frac{(\lambda,\alpha)}{(\alpha,\alpha)} \cdot \alpha$.

"Classify root systems [...] classify semisimple Lie algebras" It is a fact that $r_{\alpha}(\Delta) = \Delta$ for all $\alpha \in \Delta$, which motivates the definition of root system (see [Kac10, Definition 15.1]) and permits classification. (See [Kac10, Lecture 17] for comments on correspondence of root systems and semisimple Lie algebras.)

Example 1.1. $\mathfrak{g} = \mathfrak{sl}_2$, $\mathfrak{h} = \text{diagonal matrices}$

$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

is a basis of \mathfrak{h} . There are 6 roots vectors

$$E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $E_{23}, E_{13}, \text{ etc.}$

Exercise 1.2.
$$[H_1, E_{12}] = 2E_{12}, [H_2, E_{12}] = -E_{12}, \alpha_{12} = (2, -1).$$

[Drawing of roots]

Notions of positive roots and simple roots (set of rank simple roots has ℓ elements, where $\ell = \dim(\mathfrak{h}^*)$. (See [Kac10, Definition 17.1].) This will also fail for Kac-Moody algebras more generally). Next write the Cartan matrix (see [Kac10, Definition 17.2])

$$A = (a_{ij}),$$
 $a_{ij} = 2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$

for $1 \le i, j \le \ell$.

Example 1.3. \mathfrak{sl}_3 . [Picture, hexagonal pattern]. $(\alpha_1, \alpha_1) = (\alpha_2, \alpha_2) = 2, (\alpha_1, \alpha_2) = -1$, so

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Example 1.4. \mathfrak{sl}_5 . [Picture, square pattern]. $|\alpha_2| = 1$, $|\alpha_1| = 2$, $(\alpha_1, \alpha_2) = -2$, so

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

Remark 1.5. Since \mathfrak{g}_{α} is 1-dimensional, set $\mathfrak{g}_{\alpha} = \mathbb{C}E_{\alpha}$ and $E_i = E_{\alpha_i}$, $i = 1, 2, \dots, \ell$ (simple root vectors). It turns out that

$$ad(E_i)^{1-a_{ij}}E_j = 0.$$

This is called a Serre relation.

2. Some infinite dimensional Lie algebras

Let g be a finite-dimensional semisimple Lie algebra, and define the loop algebra

$$\begin{split} L\mathfrak{g} &= \mathfrak{g}[t,t^{-1}], \text{ (with basis } at^m|^{a \in \text{a basis of } \mathfrak{g}} \text{)} \\ &= \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[t,t^{-1}] \end{split}$$

with the Lie bracket

$$[at^m, bt^n] = [a, b]t^{m+n}.$$

"This construction is absurdely general — we don't need ${\mathfrak g}$ to be semisimple $[\dots]$ "

Take $\mathfrak{g} = \mathfrak{sl}_2$. Recall that

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

[Picture with $F, H, E, Ft, Ht, Et, Et^2...$] E was a root vector, corresponding to the unique root in \mathfrak{sl}_2 , call it α_1 . We seem to have a second simple root α_0 , corresponding to Ft.

This looks like it wants to have a Cartan matrix

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

We will indeed recover (a variant of) $L\mathfrak{g}$ as a Lie algebra "built from" $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$, a Kac-Moody algebra. But note first, $\mathfrak{h} = \mathbb{C}H$ is too small. "Problem with α_0 and α_1 being linearly independent ..."

Exercise 2.1. Consider $L\mathfrak{g} \oplus \mathbb{C}d$, and set $[d, at^m] = mat^m$, [d, d] = 0. Check this defines a Lie algebra.

Proof. Skew-commutativity, i.e. for all $x \in L\mathfrak{g} \oplus \mathbb{C}d$,

$$[x, x] = 0,$$

is immediate from skew commutativity in $L\mathfrak{g}$ and the hypothesis that [d,d]=0. To confirm Jacobi identity, i.e. that for all $x, y, z \in L\mathfrak{g} \oplus \mathbb{C}d$

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,$$

notice that since this is a cyclic sum on x, y, z we only need to consider three elements in $L\mathfrak{g} \oplus \mathbb{C}d$ up to cyclic permutation. The cases in which the three elements are either in $L\mathfrak{g}$ or in $\mathbb{C}d$ are obvious, so that there are only two interesting possibilities:

$$(2.1.3) x = d, y = at^m, z = bt^m$$

(2.1.3)
$$x = d, y = at^m, z = bt^n$$

(2.1.4) $x = d, y = d, z = at^n$

Case 2.1.3 gives

$$\begin{split} &[d,[at^m,bt^n]] + [at^m,[bt^n,d]] + [bt^n,[d,at^m]] \\ &= [d,[a,b]t^{m+n}] + [at^m,-nbt^n] + [bt^n,mat^m] \\ &= (m+n)[a,b]t^{m+n} - n[a,b]t^{m+n} + m[b,a]t^{m+n} \\ &= (m+n)[a,b]t^{m+n} - n[a,b]t^{m+n} - m[a,b]t^{m+n} \\ &= (m+n)[a,b]t^{m+n} - (m+n)[a,b]t^{m+n} = 0. \end{split}$$

Case 2.1.4 gives

$$\begin{split} &[d,[d,at^m]] + [d,[at^m,d]] + [at^m,[d,d]] \\ &= [d,mat^m] + [d,-mat^m] = 0. \end{split}$$

The Kac-Moody algebra turns out to be, not quite this, but slightly larger still. Recall that an invariant bilinear form (\cdot,\cdot) on a Lie algebra \mathfrak{g} is a bilinear form such that

(2.1.5)
$$([a, b], c) = (a, [b, c]) \quad \forall a, b, c \in \mathfrak{g}.$$

Definition 2.2. Given \mathfrak{g} simple, with $(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ invariant bilinear form, the affine Lie algebra is

$$\hat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K$$
,

with
$$[K, \hat{\mathfrak{g}}] = 0$$
, and $[at^m, bt^n] = [a, b]t^{m+n} + m(a, b)\delta_{m,-n}K$.

"For the construction to work it doesn't actually have to be nondegenerate."

Exercise 2.3. Check that the affine Lie algebra $\hat{\mathfrak{g}}$ is a Lie algebra.

Proof. (Skew-commutativity.) Since $[K, \hat{\mathfrak{g}}] = 0$ and $K \in \hat{\mathfrak{g}}$, it is immediate that [K, K] = 0. For the case of an element in $L\mathfrak{g}$, we see that $[at^m, at^m] = 0$ by skew-commutativity of the bracket in \mathfrak{g} and the Kronecker delta.

(Jacobi identity.) As in Exercise 2.1, any choice of x,y,z involving K is immediate by $[K,\hat{\mathfrak{g}}]=0$. Thus the only interesting case is for Jacobi identity consider the cases

$$\begin{split} &[at^m,[bt^n,ct^\ell]] + [bt^n,[ct^\ell,at^m]] + [ct^\ell,[at^m,bt^n]] \\ &= [at^m,[b,c]t^{n+\ell} + n(b,c)\delta_{n,-\ell}K] \\ &+ [bt^n,[c,a]t^{\ell+m} + \ell(c,a)\delta_{\ell,-m}K] \\ &+ [ct^\ell,[a,b]t^{m+n} + m(a,b)\delta_{m,-n}K] \\ &= [at^m,[b,c]t^{n+\ell}] + [at^m,n(b,c)\delta_{n,-\ell}K] \\ &+ [bt^n,[c,a]t^{\ell+m}] + [bt^n,\ell(c,a)\delta_{\ell,-m}K] \\ &+ [ct^\ell,[a,b]t^{m+n}] + [ct^\ell,m(a,b)\delta_{m,-n}K] \\ &= [a,[b,c]]t^{m+(n+\ell)} + m(a,[b,c])\delta_{m,-(n+\ell)}K \\ &+ [b,[c,a]]t^{n+(\ell+m)} + n(b,[c,a])\delta_{n,-(\ell+m)}K \\ &+ [c,[a,b]]t^{\ell+(m+n)} + \ell(c,[a,b])\delta_{\ell,-(m+n)}K = 0 \end{split}$$

It is clear that we obtain a Jacobi equation on \mathfrak{g} . To see that the remaining terms vanish, notice that the condition on the Kronecker delta in its three appearances is the same, namely, $m+n+\ell=0$. In this case, we only need to check that (a,[b,c])=(b,[c,a])=(c,[a,b]) to conclude. This follows from the invariance of (\cdot,\cdot) (and using that invariance implies it is symmetric).

We also have

Definition 2.4. The extended affine Lie algebra is

$$\tilde{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K \oplus \mathbb{C}d,$$

with $[d, at^m] = mat^m$ as before, and [K, d] = 0.

The extended affine Lie algebra is an example of a Kac-Moody algebra.

Exercise 2.5 (For those who like geometry). Let $R = \mathbb{C}[t,t^{-1}]$. If $D \in \operatorname{Der}(R)$, then $L\mathfrak{g} \oplus \mathbb{C}d$ is a Lie algebra with $[d,a\otimes r]=a\otimes D(r)$. Is $(\mathfrak{g}\otimes R)\oplus \operatorname{Der}(R)$ a Lie algebra? (The Lie alegra $L\mathfrak{g} \oplus \mathbb{C}d$ from Exercise 2.1 is a particular case, for $D=t\frac{d}{dt}$.)

Proof. It is. Checking that $L\mathfrak{g} \oplus \mathbb{C}d$ is a Lie algebra with $[d, a \otimes r] = a \otimes D(r)$ is similar to Exercise 2.1: skew-commutativity is immediate from skew-commutativity in each of the components, while Jacobi identity is verified in two cases. For x = y = d and $z = a \otimes r$ we quickly obtain

$$\begin{split} &[x,[y,z]] + [y,[z,x]] + [z,[x,y]] \\ &= [d,[d,a\otimes r]] + [d,[a\otimes r,d]] + [a\otimes r,[d,d]] \\ &= [d,a\otimes D(r)] + [d,-a\otimes D(r)] \\ &= a\otimes D(D(r)) - a\otimes D(D(r)) = 0 \end{split}$$

And for x = d, $y = a \otimes r$ and $z = b \otimes s$, we get

$$(2.5.1) \begin{bmatrix} [x,[y,z]] + [y,[z,x]] + [z,[x,y]] \\ = [d,[a\otimes r,b\otimes s]] + [a\otimes r,[b\otimes s,d]] + [b\otimes s,[d,a\otimes r]] \\ = [d,[a,b]\otimes rs] + [a\otimes r,-b\otimes D(s)] + [b\otimes s,a\otimes D(r)] \\ = [a,b]\otimes D(rs) - [a,b]\otimes rD(s) + [b,a]\otimes sD(r) = 0.$$

To check that $(\mathfrak{g} \otimes R) \oplus \operatorname{Der}(R)$ is a Lie algebra first put the Lie bracket on $\operatorname{Der}(R)$ as $[D, D_1] = DD_1 - D_1D$. It is clear that this bracket is skew-commutative. Jacobi identity reads

$$\begin{split} &[D,[D_1,D_2]]+[D_1,[D_2,D]]+[D_2,[D,D_1]]\\ &=[D,D_1D_2-D_2D_1]+[D_1,D_2D-DD_2]+[D_2,DD_1-D_1D]\\ &=D(D_1D_2-D_2D_1)-(D_1D_2-D_2D_1)D+D_1(D_2D-DD_2)\\ &-(D_2D-DD_2)D_1+D_2(DD_1-D_1D)-(DD_1-D_1D)D_2\\ &=DD_1D_2-DD_2D_1-D_1D_2D+D_2D_1D+D_1D_2D-D_1DD_2\\ &-D_2DD_1+DD_2D_1+D_2DD_1-D_2D_1D-DD_1D_2+D_1DD_2=0. \end{split}$$

Now put the bracket on $(\mathfrak{g} \otimes R) \oplus \operatorname{Der}(R)$ as $[D, a \otimes r] = a \otimes D(r)$. Skew-commutativity is immediate. Jacobi identity for $x = D, y = a \otimes r$ and $z = b \otimes s$ is identical to the computation 2.5.1. In the case $x = D, y = D_1$ and $z = a \otimes r$, we get

$$[D, [D_1, a \otimes r]] + [D_1, [a \otimes r, D]] + [a \otimes r, [D, D_1]]$$

= $[D, a \otimes D_1(r)] + [D_1, -a \otimes D(r)] + [a \otimes r, [D, D_1]]$
= $a \otimes DD_1(r) - a \otimes D_1D(r) + a \otimes [D, D_1](r) = 0.$

3. Kac-Moody algebras

Recall the notion of the free Lie algebra on a vector space V of generators (or a set X, think of V as a vector space with basis X):

Definition 3.1. The *free Lie algebra* on V is characterized by the universal property

That is, for any linear map $f: V \to \mathfrak{g}$ with \mathfrak{g} Lie algebra, there exists a unique \tilde{f} homomorphism of Lie algebras $F(V) \to \mathfrak{g}$ such that $\tilde{f} \circ i = f$.

$$\operatorname{Hom}_{\operatorname{Lie}}(F(V), \mathfrak{g}) = \operatorname{Hom}_{\operatorname{Vec}}(V, \mathfrak{g})$$

naturally.

That is, F and the forgetful functor $G: \text{Lie} \to \text{Vec}$ are adjoint:

$$\operatorname{Hom}_{\underline{\operatorname{Lie}}}(F(V),\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Hom}_{\underline{\operatorname{Vec}}}(V,G(\mathfrak{g}))$$

A realisation of F(V). Let

$$T(V) = \mathbb{C} \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$$

be the tensor algebra of V.

Then inside T(V) consider F(V) the span of iterated commutators of elements of V.

Proposition 3.2. This realises the free Lie algebra.

Proof. In online notes.

In the finite dimensional simple case, we had

$$a_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)},$$

which we think also as $\alpha_i, \alpha_j \in \mathfrak{h}^*$, and $\alpha_i^{\vee} = \frac{2}{(\alpha_i, \alpha_i)} \nu^{-1}(\alpha_i) \in \mathfrak{h}$.

Clearly, $\alpha_{ii} = 2$ for all i. a_{ij} misht not equal a_{ji} , but certainly $a_{ij} = 0 \iff a_{ji} = 0$. And $\forall i \neq j, a_{ij} \leq 0$.

One further property. Set

$$\varepsilon_i = \frac{2}{(\alpha_i, \alpha_i)}, \quad \text{and} \quad D = \frac{\text{diagonal matrix}}{\text{with entries } \varepsilon_i}$$

Then A = DB, where $B = ((\alpha_i, \alpha_j))$ is symmetric. If a matrix A is equal to (diag)(symm), we call it *symmetrizable*.

Definition 3.3. A generalized Cartan matrix is an integer matrix $A = (a_{ij})$ which is

- symmetrizable,
- $a_{ii} = 2$ for all i,
- $\bullet \ a_{ij} = 0 \iff a_{ji} = 0,$
- $a_{ij} \leq 0$ for $i \neq j$.

Definition 3.4. A realisation of a generalized Cartan matrix is a complex vector space \mathfrak{h} , and two sets

$$\Pi^{\vee} = \{\alpha_1^{\vee}, \alpha_2^{\vee}, \dots, \alpha_n^{\vee}\}, \quad \text{and},$$

$$\Pi = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

such that $\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}, 1 \leq i, j \leq n$.

Exercise 3.5. $\dim(\mathfrak{h}) \geq 2n - \operatorname{rank}(A)$.

Proof. For
$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
, a realisation is given by
$$\Pi^{\vee} = \{H_1, H_0\}, \qquad \Pi = \{\alpha_0, \alpha_1\}$$

$$\mathfrak{h} = \mathbb{C}H, \mathbb{C}d, \mathbb{C}K,$$

$$\mathfrak{h}^* = \mathbb{C}\alpha_1 + \mathbb{C}\delta + \mathbb{C}\Lambda_0$$

(Canonical dual, $\langle \alpha_1, H \rangle = 2$, $\langle \delta, d \rangle = 1 = \langle \Lambda_0, K \rangle$, every other pairing 0.)

Then

$$\begin{cases} \alpha_1 = \alpha_1 \\ \alpha_0 = \delta - \alpha_1 \end{cases} \qquad \begin{cases} \alpha_1^{\vee} = H \\ \alpha_0^{\vee} = K - H \end{cases}$$

So we obtain

$$\langle \alpha_0^{\vee}, \alpha_1 \rangle = \langle K - H, \alpha_1 \rangle = 2$$
$$\langle \alpha_1^{\vee}, \alpha_0 \rangle = \langle H, \delta - \alpha_1 \rangle = -2$$
$$\langle \alpha_0^{\vee}, \alpha_0 \rangle = \langle K - H, \delta - \alpha_1 \rangle = +2$$

Finally let's define Kac-Moody algebras.

Let A be a generalized Cartan matrix. Let

$$\tilde{\mathfrak{n}}_+ = F(e_1, \dots, e_n),$$

the free Lie algebra on n generators, and similarly

$$\tilde{\mathfrak{n}}_- = F(f_1, \ldots, f_n).$$

Let \mathfrak{h} be a realisation of A. Set $\tilde{\mathfrak{g}}(A) = \tilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \tilde{\mathfrak{n}}_+$.

Make $\tilde{\mathfrak{g}}(A)$ a Lie algebra by defining

- $[\mathfrak{h}, \mathfrak{h}] = 0$,
- $\forall H \in \mathfrak{h}, [H, e_i] = \langle \alpha_i, H \rangle e_i = \alpha_i(H)e_i$. And similarly, $[H, f_i] = -\alpha_i(H)f_i$.
- $[e_i, f_i] = \delta_{ij} \alpha_i^{\vee}$.

Then $\tilde{\mathfrak{g}}(A)$ is a Lie algebra (though not yet the Kac-Moody algebra). See Kac, [Kac90, Thorem 1.2].

Remark 3.6. In h we have a lattice

$$Q^{\vee} = \mathbb{Z}\alpha_1^{\vee} + \ldots + \mathbb{Z}\alpha_n^{\vee}, \quad \text{and} \quad Q = \mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_n \text{ in } \mathfrak{h}^*$$

(root and coroot lattices). $\tilde{\mathfrak{g}}(A)$ is naturally Q-graded, with

$$\tilde{\mathfrak{g}}(A)_{\beta} = \operatorname{span}\{\operatorname{commutators of } e_i \text{ with } \sum \alpha_i = \beta\}.$$

 $\tilde{g}(A) = \mathfrak{h}.$

Theorem 3.7 (Gabber-Kac). Denote by $I \subset \tilde{\mathfrak{g}}(A)$ the maximal Q-graded ideal, such that $I \cap \mathfrak{h} = \{0\}$. Then I is generated by the Serre relations

$$ad(e_i)^{1-a_{ij}}e_i$$
 and $ad(f_i)^{1-a_{ij}}f_i$, $i \neq j$.

Proof. [Kac90, Theorem 9.11].

(The existence of the ideal I does not need the theorem; the importance of the theorem is providing an expression for the generators.)

Definition 3.8. The Kac-Moody algebra $\mathfrak{g}(A)$ is $\tilde{\mathfrak{g}}(A)/I$.

4. Affine Kac-Moody algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, with $(\cdot,\cdot):\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$ invariant bilinear form,

$$([x,y],z) = (z,[y,z]) \quad \forall x,y,z \in \mathfrak{g}$$

(Eg. the Killing form $\kappa(x,y) = \text{Tr}_{\mathfrak{g}} \text{ad}(x) \text{ad}(y)$ is invariant.)

Typically we normalise (\cdot, \cdot) so that $(\alpha, \alpha) = 2$ for the long roots of \mathfrak{g} .

Then $\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ (affine Lie algebra),

$$[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m,-n}(a, b)K, \qquad [K, \hat{\mathfrak{g}}] = 0$$

and $\tilde{\mathfrak{g}} = \hat{\mathfrak{g}} \oplus \mathbb{C}d$, [d, K] = 0, $[d, at^m] = mat^m$, (affine Kac-Moody algebra or "extended affine Lie algebra")

Theorem 4.1. $\tilde{\mathfrak{g}}$ is a Kac-Moody algebra.

Let
$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$$
, $(\mathfrak{g}_{\alpha} = \mathbb{C}E_{\alpha})$

The simple roots and coroots. $\tilde{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}d$. We identify $\tilde{\mathfrak{h}}^*$ with $\mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$ where

$$\Lambda_0(\mathfrak{h}) = \delta(\mathfrak{h}) = 0$$

$$\Lambda_0(d) = \delta(K) = 0$$

$$\Lambda_0(K) = \delta(d) = 1$$

The real coroots are

$$\hat{\Delta}^{V,re} = \{ E_{\alpha} t^m | \alpha \in \Delta, m \in \mathbb{Z} \}$$

and there are also imaginary roots and coroots

$$\hat{\Delta}^{V,im} = \{Ht^m | H \in \mathfrak{h}, m \in \mathbb{Z} \setminus \{0\}\}\$$

Roots:

$$\begin{split} \hat{\Delta}^{re} &= \{\alpha + m\delta | \alpha \in \Delta, m \in \mathbb{Z} \} \\ \hat{\Delta}^{im} &= \{m\delta | m \neq 0 \} \end{split}$$

 Xt^m :

$$\begin{split} [H,Xt^m] &= [H,x]t^m, \qquad H \in \mathfrak{h} \\ [K,xt^m] &= 0 \\ [d,xt^m] &= mxt^m \end{split}$$

so it $x \in \mathfrak{g}_{\alpha}$, $xt^m \in \tilde{\mathfrak{g}}_{\alpha+m\delta}$.

The invariant bilinear form (\cdot,\cdot) from $\mathfrak{g} \times \mathfrak{g}$ extends uniquely to $(\cdot,\cdot): \tilde{\mathfrak{g}} \times \tilde{\mathfrak{g}} \to \mathbb{C}$. $(d,d)=(K,K)=0, \ (d,K)=1 \ \text{and} \ (d,\mathfrak{h})=(K,\mathfrak{h})=0$.

So, in $\tilde{\mathfrak{h}}^*$:

$$(\Lambda_0, \Lambda_0) = (\delta, \delta) = 0$$
$$(\Lambda_0, \mathfrak{h}^*) = (\delta, \mathfrak{h}^*) = 0$$
$$(\Lambda_0, \delta) = 1.$$

Hence, $|\alpha + m\delta|^2 = |\alpha|^2$, $|m\delta|^2 = 0$.

Example 4.2. $\widetilde{\mathfrak{sl}}_2, \widetilde{\mathfrak{h}}^* = \operatorname{span}\{\alpha, \Lambda_0, \delta\}$ with Gram matrix . . .

We can make a choice of positive roots,

$$\hat{\Delta}_{+} = \{\alpha + m\delta | \alpha \in \Delta, m > 0\} \cup \{m\delta | m > 0\} \cup \Delta_{+}$$

Obviously, if $\alpha \in \Delta_+$ is simple, $\alpha \in \hat{\Delta}_+$ is simple.

Notation. Let $\theta \in \Delta_+$ be a the highest root. ($\not\exists \alpha \in \Delta_+$ such that $\alpha - \theta \in \mathbb{Z}_+\Delta_+$.) and $\alpha = \delta - \theta$.

Then $\alpha_0 \in \hat{\Delta}_+$ is simple and the set of simple roots is $\hat{\Pi} = \{\alpha_0, \underbrace{\alpha_1, \dots, \alpha_\ell}_{\text{the finite simple roots}}\}$.

where $\ell = \operatorname{rank}(\mathfrak{g})$.

The coroot corresponding to α_0 is

$$\alpha_0^{\vee} = K - \theta^{\vee}, \qquad \theta^{\vee} = \frac{2}{(\theta, \theta)} \nu^{-1}(\theta) \in \mathfrak{h}$$

and $E_{\alpha_0} = E_{-\theta} t.$

Now, in any Kac-Moody algebra, we have

roots
$$\Pi = \{\alpha_1, \dots, \alpha_\ell\} \subset \mathfrak{h}^*$$
 coroots
$$\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_\ell^{\vee}\} \subset \mathfrak{h},$$

and reflections $r_i \in GL(\mathfrak{h}^*)$, defined by

$$r_i(\lambda) = \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i$$
.

One can check that

$$(r_i\lambda, r_i\mu) = (\lambda, \mu) \qquad \forall \lambda, \mu \in \mathfrak{h}^*$$

The Weyl group W is $\langle r_i | i = 1, ..., \ell \rangle \subset GL(\mathfrak{h}^*)$.

Example 4.3. For $\widetilde{\mathfrak{sl}_2}$, r_1 is easy,

$$r_1(\alpha) = -\alpha$$
 (as in \mathfrak{sl}_2)
 $r_1(\delta) = \delta$, $r_1(\Lambda_0) = \Lambda_0$.

To compute r_0 take an arbitrary element $m\alpha_1 + k\Lambda_0 + f\delta$ and do:

$$r_0(m\alpha_1 + k\Lambda_0 + f\delta) = m\alpha_1 + k\Lambda_0 + f\delta - \langle \alpha_0^{\vee}, m\alpha_1 + k\Lambda_0 + f\delta \rangle \alpha_0$$
$$\alpha_0 = \delta - \alpha_1, \qquad \alpha_0^{\vee} = K - \alpha^{\vee}$$

so we obtain

$$= m\alpha_1 + k\Lambda_0 + f\delta - (k - 2m)(\delta - \alpha_1)$$
$$(k - m)\alpha_1 + k\Lambda_0 + (f - k + 2m)\delta.$$

Relative to basis $\{\alpha_1, \Lambda_0, \delta\}$.

$$r_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, r_{0} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} m \\ k \\ f \end{pmatrix}$$
$$t = r_{1}r_{0} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

Notice that δ is fixed by all r_i . Also $m\alpha + k\Lambda_0 + f\delta$, the **coefficient** of Λ_0 is fixed by all r_i .

Then

$$t(m\alpha_1 + k\Lambda_0 + f\delta) =$$

$$= (m - k)\alpha_1 + k\Lambda_0 + (f - k + 2m)\delta$$

Think of t as a translation.

The number k in

$$\mathfrak{h}^* \ni \hat{\lambda} = \lambda + k\Lambda_0 + f\delta$$

is called the *level* of $\hat{\lambda}$.

 $\hat{\mathfrak{h}} = \text{union of (hyper)planes of constant level which are stable under } W$. The roots α are all of level 0.

[Picture] " r_1 changes the sign of the finite path". And $t=r_1r_0$ is a sort of translation. Indeed, in general we can consider $t_{\alpha_i}=r_{\alpha_i}\circ r_0\in W$,

$$t_{\alpha}(\beta + m\delta) = \beta + (m + (\beta, \alpha_i))\delta$$

One can describe the action of t_{α} on $\hat{\lambda}$ in general (e.g. see [Kac90, Chapter 6])

Proposition 4.4. For the affine Kac-Moody algebra $\hat{\mathfrak{g}}$ with $\hat{W} = \langle r_0, r_1, \ldots, r_\ell \rangle$ its Weyl group (and $W = \langle r_1, \ldots, r_\ell \rangle \subset \hat{W}$ the Weyl group of \mathfrak{g}), then $\hat{W} \simeq W \times t_{Q^\vee}$ (where it should be semidirect product instead of $\times \ldots$) where Q^\vee is the coroot lattice of \mathfrak{g} .

Remark 4.5. For general Kac-Moody algebras, the Weyl groups are much larger, hyperbolic reflection groups.

In the affine case, \hat{W} fixes level k, and $|\hat{\lambda}|$. One gets, in the intersection, paraboloids [Picture of section of hyperboloid that is a parabola].

5. Weyl character formula

Highest weight representations of Kac-Moody algebras. Let $\lambda \in \mathfrak{h}^*$, wheere $\mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ is a Kac-Moody algebra. We define a Verma module

$$M(\Lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h} + \mathfrak{n}_+} \mathbb{C} v_{\Lambda}$$

where $\mathfrak{h} + \mathfrak{n}_+$ acts on V_{Λ} by:

$$Xv_{\Lambda} = 0, \quad \forall x \in \mathfrak{n}_{+}, Hv_{\Lambda} \qquad = \Lambda(H)v_{\Lambda}, \quad \forall H \in \mathfrak{h}$$

So $\mathbb{C}v_{\Lambda}$ is a $U(\mathfrak{h} + \mathfrak{n}_{+})$ -module,

By the PBW theorem, $M(\Lambda)$ has a linear C-basis.

Let $\{F_{\alpha,i}: i=1,\ldots,\dim\mathfrak{g}_{\alpha}\}$ be a basis of $\mathfrak{g}_{-\alpha}$, $\forall \alpha\in\Delta_{+}$. Also choose a total order on Δ_{+} . (Some sort of lexicographical order that takes longer to write than to say.)

$$\begin{split} F_{\alpha_1,i_1},F_{\alpha_2,i_2},\dots,F_{\alpha_s,i_s},v_{\Lambda}\\ \alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_2 \text{ and if } \alpha_p = \alpha_{p+1},i_p \leq i_{p+1} \end{split}$$

We have $M(\Lambda)_{\lambda} = \{m|Hm = \lambda(H)m\}$ weight spaces.

$$M(\Lambda) = \bigoplus_{\lambda \in \mathfrak{h}^*} M(\Lambda)_{\lambda}$$

The vector v_{Λ} is in $M(\Lambda)_{\Lambda}$ by definition,

$$F_{\alpha,i}V_{\Lambda} \in M(\Lambda)_{\Lambda-\alpha}$$

$$H(Fv_{\Lambda}) = \underbrace{[H,F]v_{\Lambda}}_{=-\alpha(H)Fv_{\Lambda}} \underbrace{FHv_{\Lambda}}_{=\Lambda(H)FV_{\Lambda}}$$

So $\chi_{M(\Lambda)} = \sum_{\lambda \in \mathfrak{h}^*} \dim M(\Lambda)_{\lambda} e^{\lambda}$ is computed by counting monomials y with fixed $\sum_i \alpha_i$.

$$\chi_{M(\Lambda)} = e^{\Lambda} \prod_{\alpha \in \Delta_+} \frac{1}{(1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}.$$

Exercise 5.1. Convince yourself of this.

For example, $\mathfrak{g} = \mathfrak{sl}_2$,

$$\chi_{M(\Lambda)} = e^{\Lambda} + e^{\Lambda - \alpha} + e^{\Lambda - 2\alpha} + \dots$$
$$= e^{\Lambda} (1 + e^{-\alpha} + e^{-2\alpha} + \dots$$
$$= e^{\Lambda} \frac{1}{1 - e^{-\alpha}}.$$

Next week: the Weyl character formula.

References

- [Kac90] V.G. Kac, Infinite-dimensional lie algebras, Progress in mathematics, Cambridge University Press, 1990.
- [Kac10] Victor Kac, Lecture notes of 18.745 introduction to lie algebras (fall 2010), https://math.mit.edu/classes/18.745/classnotes.html, 2010, Lecture notes, MIT.