Personalized Treatment for Relapsed Ovarian Cancer-What Is the Evidence?

Jonathan Ledermann, MD, FRCP

UCL Cancer Institute

University College London

London, United Kingdom

Ovarian Cancer Not One Disease

8704 patients from 7 randomized trials

Mackay HJ, et al. Int J Gynecol Cancer. 2010;20(6):945-952.

But we still give all patients the same treatment!

Survival of Patients With Ovarian Cancer and *BRCA* Mutations

Candido Dos Reis FJ, et al. Clin Cancer Res. 2014 Nov 14. [Epub ahead of print].

Examples of Predictive Cancer Biomarkers in Solid Tumors

Tumor Type Biomarker

Breast ER; HER2/neu

Colorectal EGFR; KRAS; UGT1A1

Gastric HER2/neu

GIST c-KIT

GBM EGFR; PDGFRα

Lung ALK; EGFR; KRAS; ROS1; PDL1

Medullary thyroid RET

Melanoma BRAF; PDL1

The Cancer Genome Atlas (TCGA) Project High-Grade Serous Ovarian Carcinoma

- TP53 mutations present in 96%
- Significant occurrence of mutation in 9 other genes but prevalence low
 - Including: NF1; BRCA1; BRCA2; RB1; CDK12
- Huge genomic disarray: Very high number of structural chromosomal abnormalities. Significant focal DNA copy number aberrations and promoter methylations events
- Genes involved in homologous recombination are frequently affected → suggests high sensitivity to PARP inhibitors

The HR Phenotype and the Potential of PARP Inhibitors in Sporadic Ovarian Cancer

Levine D. 2011. The Cancer Genome Atlas, Molecular Profiling of Serous Ovarian Cancer. Data retrieved from cBio Cancer Genomics Portal http://www.cbioportal.org/public-portal/. Accessed 12 August 2012.

Poly(ADP-Ribose) Polymerase

- A key regulator of DNA damage repair processes
- Involved in DNA base-excision repair (BER)
- Binds directly to DNA damage
- Produces large branched chains of poly(ADP-ribose)
- Attracts and assists BER repair effectors

PARP Inhibition and Tumor-Selective Synthetic Lethality

Slide provided with permission by Andrew Tutt

Farmer H, et al. *Nature*. 2005;434(7035):917-921. Bryant HE, et al. *Nature*. 2005;434(7035):913-917.

DSB, double-strand break; HR, homologous recombination; SSB, single-strand break

Phase I and II Studies With Olaparib, an Orally Active PARP Inhibitor

	Olaparib Phase I and <i>BRCA</i> Mutation Expansion Studies ^{1,2}	Olaparib Phase II <i>BRCA</i>	Olaparib Phase II <i>BRCA</i>
Olaparib dose	200 mg bid	400 mg bid	100 mg bid
RECIST CR/PR	14/50 (28%)	11/33 (33%)	3/24 (13%)
SD	3/50 (6%) (≥4 months)	12/33 (36%) (8 weeks)	14/24 (58%) (8 weeks)
Median duration of response	~214 d	290 d	269 d

^{1.} Fong PC, et al. N Engl J Med 2009;361(2):123-134. 2. Fong PC, et al. J Clin Oncol. 2010;28(15):2512-2519

^{3.} Audeh MW, et al. Lancet 2010;376(9737):245-251.

Olaparib in *BRCA* and Non-*BRCA* Ovarian Cancer

Gelmon KA, et al. Lancet Oncol. 2011;12(9):852-861.

Treatment Pathway for Recurrent Ovarian Cancer

Randomized Maintenance Trials

Randomized Trial of Maintenance Olaparib in Platinum-Sensitive High Grade Serous Relapsed Ovarian Cancer - 'Study 19'

Study aim and design

Patients:

- Platinum-sensitive high-grade serous ovarian cancer
- ≥2 previous platinum regimens
- Last chemotherapy was platinum-based to which they had a maintained PR or CR prior to enrolment
- Stable CA-125

Sept 2008- Feb 2010 16 countries; 82 sites 265 patients

Olaparib 400 mg PO bid

Randomized 1:1

Placebo PO bid Treatment until disease progression

Primary endpoint : Progression-free survival (PFS)

Ledermann J, et al. N Engl J Med. 2012;366(15):1382-1392.

Progression-Free Survival

Common Adverse Events*

	Olaparib 400 mg bid (n = 136)		Placebo (n = 128)	
	Percentage of Patients			
Adverse Event			Grade 1/2	Grade 3/4
Any event	61	35	70	20
Nausea	66	2	35	0
Fatigue	<mark>42</mark>	7	34	3
Vomiting	29	2	13	1
Diarrhea	21	2	20	2
Headache	18	0	11	1
Decreased appetite	18	0	13	0
Abdominal pain	16	2	23	3
Anemia	12	5	4	1
Dyspepsia	16	0	9	0

^{*}Adverse events graded according to maximum CTCAE version 3.0 grade, experienced by >15% of patients in either treatment group

Ledermann J, et al. *N Engl J Med.* 2012;366(15):1382-1392. Ledermann JA, et al. *J Clin Oncol.* 2011;29(suppl); Abstract 5003.

Toxicity and Tolerability

	Olaparib 400 mg bid n = 136	Placebo n = 128
Discontinuations due to AEs, n (%)	3 (2)	1 (1)
Dose interruptions due to AEs, n (%)	41 (30)	12 (9)
Dose reductions due to AEs, n (%)	26 (19)	3 (2)
Median treatment duration, days	207	141

No detrimental impact on HRQoL (Treatment Outcome Index of FACT-0) compared with placebo

- Overall study population and patients with a BRCAm

Overall Survival (OS): Interim Analysis*

*Performed at 38% maturity

BRCA Status

Size of circle is proportional to number of events Purple band represents 95% CI for overall population

BRCAm status was not required for study entry, but was known for 97/265 patients (36.6%)

	Olaparib (n = 136)	Placebo (n = 129)
BRCA mutation status, n (%)*		
BRCA1	25 (18)	20 (16)
BRCA2	6 (4)	7 (5)
BRCA1 & BRCA2	0	1 (1)
Known negative	18 (13)	20 (16)
Unknown	87 (64)	81 (63)

Ledermann J, et al. N Engl J Med. 2012;366(15):1382-1392.

PFS in Patients With a BRCA Mutation*

- 136 (51.3%) patients had a known deleterious BRCAm (BRCAm dataset)
- 118 (44.5%) patients were defined as *BRCA1/2wt* for this analysis
- 11 (4.2%) patients had neither a tumor nor a germline result available

BRCAwt, BRCA wildtype

^{*}Includes patients with germline and/or somatic mutations; †patients were treated until disease progression Ledermann J, et al. Lancet Oncol. 2014;15(8):852-861.

PFS in BRCAwt Patients

BRCAwt includes patients with no known BRCAm or a mutation of unknown significance †Patients were treated until disease progression

Ledermann J, et al. Lancet Oncol. 2014;15(8):852-861.

OS in Patients With a BRCA1/2 Mutation*

- An interim OS analysis was performed after 154 deaths (58% maturity)
- No statistically significant benefit was observed in the overall population (HR = 0.88, 95% Cl, 0.64-1.21, P = .442) or in patients with a *BRCA*m

^{*}Includes patients with germline and/or somatic mutations; †patients were treated until disease progression Ledermann J, et al. *Lancet Oncol.* 2014;15(8):852-861.

Time to Second Subsequent Therapy – A New Exploratory Endpoint

- TSST (time from randomization to second subsequent therapy or death)
- PFS2 (time from randomization to second objective disease progression or death)

All patients who received treatment were included in exploratory endpoint analyses

Time to Second Subsequent Therapy – A New Exploratory Endpoint

- TSST (time from randomization to second subsequent therapy or death)
- PFS2 (time from randomization to second objective disease progression or death)

All patients who received treatment were included in exploratory endpoint analyses

TSST in Patients With a BRCA1/2 Mutation*

^{*}Includes patients with germline and/or somatic mutations; †patients were treated until disease progression Ledermann J, et al. *Lancet Oncol.* 2014;15(8):852-861.

Overview of Efficacy Analyses in Patients With a *BRCA1/2* Mutation

Ledermann J, et al. Lancet Oncol. 2014;15(8):852-861.

SOLO-1 & SOLO 2 Program BRCAm Population Only

First-line maintenance or maintenance in 'platinum-sensitive' setting

SOLO-1 344 patients 2 years

PFS/PFS2/OS + QoL

SOLO-2 264 patients to progression

PFS/PFS2/OS + QoL

NOVA and ARIEL3 Program

Both studies include a *BRCA*m and high-grade serous wildtype subsets

Platinum-sensitive ovarian cancer responding to platinum-based therapy

Niraparib

360 patients 2 cohorts - *BRCAm*

& BRCAwt

Rucaparib

540 patients

2 cohorts – BRCAm

& BRCAwt

Identification of companion diagnostic marker to select patients with HRD, most likely to benefit

Maintenance PARP Inhibitor Therapy

- PARP inhibitor maintenance therapy
 - Marked effect on delaying progression of patients with 'platinum-sensitive' disease, especially in BRCAm population
 - Significant but lesser effect in BRCAwt patients with high-grade serous cancer
- Prolonged exposure does not impair QoL; well tolerated by most patients
- Ongoing trials of 3 different PARP inhibitors as maintenance therapy for ovarian cancer

Olaparib

- Now licensed by the European Medicines Agency (EMA) for maintenance therapy of relapsed high grade serous ovarian/ tubal/peritoneal cancer after a response to platinum-based chemotherapy in BRCAmutated ovarian cancer
- First target specific therapy in ovarian cancer
- Testing for a BRCA mutation in all patients is now essential. Mutations are seen in ~20% of high-grade serous disease and a significant number of BRCAm-positive patients do not have a family history of breast/ovarian cancer

Integrating New Therapies
Into Ovarian Cancer
Management: Does

BRCA Status Matter?