

Corso Base Modalità matematica: parte I

Jonathan Franceschi

Corso di Laurea in Matematica

5 novembre 2019

In percentuale, quanti articoli di Matematica vengono scritti in LATEX?

In percentuale, quanti articoli di Matematica vengono scritti in LATEX?

97%*

2 / 27

^{*}Dati del 2009

Modalità matematica

La composizione di oggetti matematici come formule e simboli avviene separatamente dalla composizione del testo ordinario, all'interno della modalità matematica. Le principali caratteristiche sono:

- Ogni carattere scritto in modalità matematica verrà composto in corsivo matematico (Confrontare 'formula' con 'formula').
- Tutti gli spazi nell'input sono ignorati, LATEX stabilisce gli spazi nell'output automaticamente:

$$x + y = 4 5$$

$$x + y = 45$$

• Le righe vuote non sono ammesse.

La modalità matematica si divide tra in linea e in display.

In linea vs in display

\1

Equazione in linea, x = y + 1, incorporata nel testo.

Equazione in display,
separata e con indentazione
propria:
\[
x = y + 1

Equazione in linea, x=y+1, incorporata nel testo.

Equazione in display, separata e con indentazione propria:

$$x = y + 1$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

(a) Formula in linea

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

(b) Formula in display

Matematica in linea

Viene attivata dai seguenti comandi:

•
$$formula$$

• \begin{math}\\formula\\end{math} (ATEX)

Sono praticamente equivalenti, generalmente la scelta migliore è:

$$\alpha$$

Matematica in linea

La modalità in linea è indicata per formule brevi e dall'altezza contenuta:

della serie:
\$\lim_{n\to\infty}\sum_{k=1}^n
\frac{1}{k^2}\$ era il fulcro
del famoso problema di Basilea.

Calcolare esattamente la somma

Calcolare esattamente la somma della serie: $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2}$ era il fulcro del famoso problema di Basilea.

Scrivere una formula in linea molto estesa verticalmente comporta l'incremento dello spazio tra le righe del capoverso: una formula come $\frac{\left(\mathrm{e}^{x_1^2}+1\right)^2}{\left(\|x_2^2\|+1\right)^2}$, per esempio, dà un risultato estetico non ottimale, come si vede confrontando l'interlinea utilizzata nelle righe circostanti la formula con quella standard assegnata dalla classe del documento.

Viene attivata dai seguenti comandi:

- Senza numerazione
 - \$\$ \(\langle formula \rangle \)\$\$
 - \[\langle formula \]

 - $\operatorname{begin}\{\operatorname{equation*}\}\langle \operatorname{formula}\rangle \setminus \operatorname{end}\{\operatorname{equation*}\}$
- Con numerazione
 - $\begin{equation} \langle formula \rangle \setminus end{equation}$

(LATEX/ $A_{\mathcal{M}}S$ math)

 $(A_{\mathcal{M}}Smath)$

(LATEX/AMSmath)

 $(T_{F}X)$

Jonathan Franceschi (Unife)

Senza numerazione

In questo caso non è consigliabile usare la sintassi T_EX : \$\$ non è ufficialmente supportato da \LaTeX e non genera una spaziatura consistente, per esempio se usato all'inizio del capoverso:

$$1 + 1 = 2$$

(a)
$$$$ 1 + 1 = 2 $$$$

$$1 + 1 = 2$$

(b)
$$\setminus [1 + 1 = 2 \setminus]$$

Senza numerazione

In questo caso non è consigliabile usare la sintassi T_EX : \$\$ non è ufficialmente supportato da \LaTeX e non genera una spaziatura consistente, per esempio se usato all'inizio del capoverso:

$$1+1=2$$
$$1+1=2$$

$$1 + 1 = 2$$

(a)
$$$$ 1 + 1 = 2 $$$$

(b)
$$\setminus [1 + 1 = 2 \setminus]$$

Senza numerazione

Inoltre opzioni di classe come fleqn e alcuni comandi dei pacchetti $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ non funzionano con \$\$.

Pertanto, per una formula in display senza numerazione le scelte migliori sono:

- \[\langle formula \]
- $\operatorname{begin}\{\operatorname{equation*}\}\ \langle formula\rangle \setminus \operatorname{end}\{\operatorname{equation*}\}\$

Per migliorare la leggibilità del codice è consigliabile scrivere il testo di apertura e di chiusura della formula in display su righe separate:

```
\begin{equation*} \\ \langle formula \rangle & \langle formula \rangle \\ \\ \begin{equation*} \\ \begin{equat
```

Con numerazione

Una formula in display con numerazione si ottiene di norma con:

```
\begin{equation} \langle formula \rangle \backslash end{equation},
```

ambiente nativo di LATEX che viene modificato se si carica il pacchetto $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \tag{1}$$

Normalmente valgono le seguenti condizioni:

- La formula è centrata orizzontalmente;
- La numerazione è mostrata in numeri arabi e posta a destra della formula tra due parentesi tonde.

Le quattro operazioni

- Addizione e sottrazione si scrivono tramite i caratteri usuali + e sulla tastiera.
- Il segno di moltiplicazione può essere \times, che produce $a \times b$, oppure \cdot, che produce $a \cdot b$.
- Il segno di divisione può essere /, che produce a/b, oppure :, che produce a:b.

Gli spazi tra a/b e a:b sono leggermente diversi in quanto / è definito in LATEX come carattere ordinario, mentre : ha lo status di *simbolo di relazione*. Per usare i due punti come segno di interpunzione come in $f:\mathbb{C}\to\mathbb{R}$, si può usare il comando \colon:

\colon $a: b \neq a: b$:

Esponenti e indici

I caratteri ^ e _ valgono esclusivamente in modalità matematica e producono rispettivamente apici e pedici agendo sul primo carattere che segue (l'ordine è ininfluente):

$$x_n^2 \quad x^2_n$$

$$x_n^2 \quad x_n^2$$

TEX proibisce scritture come x_a_b o x^a^b; in ogni caso in cui siano coinvolti apici/pedici multipli o gli indici coinvolgano più di un carattere è necessario inserirli in un gruppo:

$$x_{ab} \quad \{x_a\}_b \quad x_{a_b} \quad x_{a_b} \quad x_{ab^c} \quad x_{$$

Frazioni e radici

Le frazioni si ottengono con il comando \frac e alcune sue varianti.

Abbiamo visto prima che le frazioni in linea sono più piccole e più schiacciate rispetto a quelle in display. Questa doppia variante è comune anche ad altri simboli, come sommatorie, produttorie e integrali. Per cambiare versione si può cambiare lo stile del font con le dichiarazioni \displaystyle o \textstyle, oppure, per le frazioni, si possono rispettivamente usare i comandi \dfrac e \tfrac (AMSmath). In generale, la sintassi per un comando di frazione è:

 $\frac{\langle \text{numeratore} \rangle}{\langle \text{denominatore} \rangle}$

$$\frac{\frac{1}{x+y^3}}{\frac{1}{x+y^3}}$$

$$\frac{x_n+2}{5}$$

$$\frac{x_n+2}{5}$$

In modalità matematica esistono le seguenti dichiarazioni per dimensioni del font:

- \displaystyle;
- \textstyle;
- \scriptstyle;
- \scriptscriptstyle.

Si possono vedere tutti assieme in questo esempio:

$$\frac{x+0}{1+\frac{x+1}{2+\frac{x+2}{3+\frac{x+3}{x+4}}}}$$

Le radici si ottengono con il comando \sqrt , la cui sintassi è $\sqrt[\langle indice \rangle] \{\langle radicando \rangle\}$

$$\sqrt{x}$$
 $\sqrt[3]{2}$ $\sqrt{\frac{a}{b}}$

Barre e graffe orizzontali

Per sottolineare o sopralineare del testo si usano rispettivamente i comandi \underline e \underline , ricordando che scrivendo \underline {x} stiamo indicando un operatore applicato a x (per esempio il coniugio complesso).

Per mettere in risalto uno o più caratteri in una formula si possono usare i comandi \underbrace e \overbrace:

$$\ \$$
 \underbrace $\{x^2+y^2\}_{z^2} \$ \quad \overbrace $\{x^2+y^2\}_{z^2}$ \$

$$\underbrace{x^2 + y^2}_{z^2} \quad \underbrace{x^2 + y^2}_{}$$

Scrivere sopra/sotto a un simbolo

I comandi \overset e \arrangle di \arrangle math permettono di scrivere rispettivamente sopra e sotto a un simbolo:

$$x^2 + 4 \quad x \stackrel{\mathsf{def}}{=} 1$$

Il comando \overset sostituisce il comando nativo di LATEX \stackrel che non è ottimizzato per la spaziatura:

\stackrel
$$x \stackrel{\mathsf{def}}{=} y \quad x \stackrel{\mathsf{def}}{=} y$$

Non sempre però i risultati sono quelli sperati:

$$x^2 \operatorname{verset}\{x \to 0\}\{\to 0$$

$$x^2 \stackrel{x \to 0}{\to} 0$$

o anche

$$x_n^2\$$
 {\longrightarrow} (\pi + 1)^2\$

$$x_n^2 \underset{x_n \to \pi+1}{\longrightarrow} (\pi+1)^2$$

Per le frecce, il pacchetto $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math mette a disposizione i comandi \xrightarrow e \xleftarrow:

$$x^2 \xrightarrow{x \to 0} 0$$
 $x_n^2 \xrightarrow[x_n \to \pi+1]{} (\pi+1)^2$

Parentesi

Per ingrandire le parentesi:

manualmente Comandi della famiglia $\$ big con le rispettive versioni di apertura e chiusura (1 = left, r = right);

automaticamente Comandi \left e \right, che devono essere sempre usati in coppia. I comandi devono essere sempre anteposti a delle parentesi, come ad esempio quelle in tabella. Nel caso di \left ... \right, il punto . può essere usato come parentesi invisibile.

Figura: Parentesi

$$\frac{\sum_{n} \frac{1}{n^2}}{\sum_{n} \frac{1}{n^3}} \right)^2$$

$$(\sum_{n} \frac{x^{2}}{n}) \qquad (\sum_{n} \frac{x^{2}}{n}) \qquad (\sum_{n} \frac{x^{2}}{n}) \qquad (\sum_{n} \frac{x^{2}}{n})$$

$$(\dots) \quad \langle \text{bigl}(\dots \backslash \text{bigr}) \quad \langle \text{biggl}(\dots \backslash \text{biggr}) \rangle$$

$$(\sum_{n} \frac{x^{2}}{n})$$

$$(\sum_{n} \frac{x^{2}}{n})$$

$$\langle \text{Biggl}(\dots \backslash \text{Biggr}) \rangle$$

Figura: Comandi manuali per le parentesi

I comandi \left e \right hanno una spaziatura che può risultare eccessiva:

$$\cos(\theta)$$
 $\cos(\theta)$

Il pacchetto *mathtools* offre il comando \DeclarePairedDelimiter per definire parentesi personalizzate.

Per esempio, scrivendo \DeclarePairedDelimiter{\norma}{\lVert} {\rVert} per ottenere la norma abbiamo:

Vettori e matrici

I vettori di solito vengono rappresentati in due modi:

- In neretto, per cui LATEX mette a disposizione il comando \mathbf, che è in tondo e non agisce su lettere greche minuscole e altri simboli. AMSmath fornisce il comando \boldsymbol, mentre il pacchetto bm propone \bm:

```
\label{lem:continuous} $$ \mathbf{beta+v=\Gamma \Lambda} = \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} = \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} = \mathbf{A} \quad \beta+v=\Gamma \times \mathbf{A} = \mathbf
```

Figura: Matrici (AMSmath)

```
$\bordermatrix{%
& 0 & 1 & 2 \cr
0 & A & B & C \cr
1 & d & e & f \cr
2 & 1 & 2 & 3 \cr} \quad
\left(\begin{array}{ccc}
x_1 & x_2 & \ldots \\
x_3 & x_4 & \ldots \\
\vdots & \vdots & \ddots
\end{array} \right)$
```

Il comando $\hdotsfor{\langle num \rangle}$ ($\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math) riempie di punti la riga della matrice per $\langle num \rangle$ colonne:

```
$\begin{pmatrix}
x_1 & \hdotsfor{2} & x_2\\
x_3 & \hdotsfor{2} & x_4\\
x_5 & \ldots & \ldots & x_6
\end{pmatrix}$
```

```
\begin{pmatrix} x_1 & \dots & x_2 \\ x_3 & \dots & x_4 \\ x_5 & \dots & x_6 \end{pmatrix}
```

L'ambiente smallmatrix (A_MS math), consente di scrivere una piccola matrice in linea:

```
Sia
$\bigl(\begin{smallmatrix}
1 & 2\\
3 & 4
\end{smallmatrix}\bigr)$
una matrice invertibile.
```

Sia $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ una matrice invertibile.

Operatori

In tipografia, le funzioni come log (\log) si distinguono dal resto del testo:

- Sono rese in tondo: log invece di *log*;
- Richiedono una spaziatura particolare prima e dopo, inserita automaticamente da LATEX:

$$\log\log 2x \quad 2(\log(x+y)+1)$$

Dal punto di vista di LATEX, si chiamano operatori o 'log-like functions'.

min	\min	max	\max	inf	\inf	sup	\sup
\sin	\sin	cos	\cos	tan	\tan	\cot	\cot
\sec	\sec	\csc	\csc	\sinh	\sinh	\cosh	\cosh
tanh	\tanh	\coth	\coth	arcsin	\arcsin	arccos	\arccos
arctan	\arctan	\log	\log	\lg	\lg	\ln	\ln
lim	\lim	lim inf	\liminf	\limsup	\limsup	\deg	\deg
ker	\ker	Pr	\Pr	arg	\arg	\exp	\exp
\dim	\dim	hom	\hom	gcd	\gcd	det	\det

Figura: log-like functions predefinite. In giallo quelle con limiti.

Alcuni operatori presentano indici sopra o sotto al testo, hanno cioè dei *limiti*. Tutti i grandi operatori (*'Big operators'*) (con l'eccezione dei segni di integrale) hanno i limiti se composti in \displaystyle. Negli altri casi gli indici vengono posti ad apice e/o pedice.

LATEX fornisce i comandi \limits e \nolimits per dotare o privare un operatore di limiti:

```
\[
\lim_{h \to 0} f(x+h)=f(x) +
\int_x^{x+h}f'(t)\, \mathrm{d}t
\]
$\sup_{x>0}\displaystyle\int%\limits_\mathbb{R}g(x)\,\mathrm{d}x\quad \lim\nolimits_{h \to 0}\\sin(h)=0$
```

$$\lim_{h \to 0} f(x+h) = f(x) + \int_{x}^{x+h} f'(t) dt$$

$$\sup_{x>0} \int_{\mathbb{R}} g(x) dx \quad \lim_{h \to 0} \sin(h) = 0$$

Figura: Big operators

Per definire un nuovo operatore, AMSmath mette a disposizione il comando \DeclareMathOperator, la cui versione asteriscata dota l'operatore di limiti; altrimenti, per rendere una funzione un operatore in maniera estemporanea si può usare \operatorname, anch'esso disponibile in versione asteriscata per i limiti. Scrivendo ad esempio nel preambolo

```
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator*{\argmax}{arg\,max}
```

otteniamo:

```
\[
\supp f \quad \argmax_{x<0} g(x)
\quad \operatorname{diag} A\to 1
\]</pre>
```

$$\operatorname{supp} f \quad \underset{x < 0}{\operatorname{arg\,max}} g(x) \quad \operatorname{diag} A \to 1$$

Infine, per l'operatore modulo i due comandi più usati sono:

$$a \mod b \quad 7 \equiv 1 \pmod{3}$$

Lettere greche

α	\alpha	κ	\kappa	ς	\varsigma
β	\beta	λ	\lambda	au	\tau
γ	\gamma	Λ	\Lambda	v	\upsilon
Γ	\Gamma	μ	\mu	Υ	\Upsilon
δ	\delta	ν	\nu	ϕ	\phi
Δ	\Delta	ξ	\xi	Φ	\Phi
ϵ	\epsilon	Ξ	\Xi	φ	\varphi
ε	\varepsilon	π	\pi	χ	\chi
ζ	\zeta	Π	\Pi	ψ	\psi
η	\eta	ϖ	\varpi	Ψ	\Psi
θ	\theta	ρ	\rho	ω	\omega
Θ	\Theta	ϱ	\varrho	Ω	\Omega
ϑ	\vartheta	σ	\sigma		
ι	∖iota	Σ	\Sigma		

Figura: Lettere greche

Accenti matematici, simboli logici, ellissi

```
\bar{x}
                        \hat{x}
                               \hat{x}
                                                                \tilde{x}
\bar{x}
                                                         \ddot{x}
                        \ddot{x}
     \det\{x\}
                               \dot{x}
                                                                \dot{x} (A_MSmath)
\check{x}
     \check{x}
                       \widehat{xyz}
                               \widehat{xyz}
                                                       \widetilde{xyz}
                                                                \widetilde{xyz}
```

Figura: Accenti matematici

Figura: Simboli logici

```
\cdots \lambda \ldots \dots \dot
```

Figura: Ellissi

[†]Disponibile anche in modalità testuale.

Frecce

\leftarrow	\leftarrow o \gets	\leftarrow	\longleftarrow
\rightarrow	\rightarrow o \to	\longrightarrow	\longrightarrow
\leftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow
\Leftarrow	\Leftarrow	\iff	\Longleftarrow
\Leftrightarrow	\Leftrightarrow	\iff	\Longleftrightarrow
\Rightarrow	\Rightarrow	\Longrightarrow	\Longrightarrow
\mapsto	\mapsto	\longmapsto	\longmapsto
\leftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
\uparrow	\uparrow	\uparrow	\Uparrow
\downarrow	\downarrow	\Downarrow	\Downarrow
	\updownarrow	\$	\Updownarrow
7	\nearrow	,	\searrow
<	\swarrow	_	\nwarrow
⊭	$\verb leftleftarrows (A_{\mathcal{M}}\mathcal{S}math) $	\Rightarrow	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Figura: Frecce

Simboli di relazione e insiemistici

```
<
   \neq
                                    \ne o \neq
«
                \gg
    \11
                                    \equiv
                    \gg
    \sim
                \approx
                    \approx
                                    \cong
                                    \notin
\in
    \in
                    \ni
                                ∉
    \subset
                    \subseteq
                                  \subsetneq (A_MSmath)
                ⊇ \supseteq
    \supset
                                  \supsetneq (A_MSmath)
    \parallel
                    \perp
                                   \nparallel (AMSmath)
    \setminus
                    \mid
                                    \mbox{nmid} (A_MS \mbox{math})
```

Figura: Simboli di relazione

Figura: Altri simboli insiemistici

Stili dei font matematici

Stile	Codice	Risultato
Tondo	\mathrm{ABcd12\alpha\beta\Gamma\Delta}	$ABcd12\alpha\beta\Gamma\Delta$
Corsivo	\mathit{ABcd12\alpha\beta\Gamma\Delta}	$ABcd12\alpha\beta\Gamma\Delta$
Neretto	\mathbf{ABcd12\alpha\beta\Gamma\Delta}	$\mathbf{ABcd12} \alpha \beta \Gamma \mathbf{\Delta}$
Dattilografico	<pre>\mathtt{ABcd12\alpha\beta\Gamma\Delta}</pre>	$\mathtt{ABcd12} \alpha \beta \Gamma \mathtt{\Delta}$
Senza grazie	ABcd12\alpha\beta\Gamma\Delta	ABcd $12αβ$ Γ Δ
Calligrafico	<pre>\mathcal{ABcd12\alpha\beta\Gamma\Delta}</pre>	\mathcal{AB} $[\infty \in \alpha\beta - \cdot$
Nero da lavagna [‡]	<pre>\mathbb{ABcd12\alpha\beta\Gamma\Delta}</pre>	$ABF \not\models \alpha\beta \leqq \geqq$
Gotico [‡]	<pre>\mathfrak{ABcd12\alpha\beta\Gamma\Delta}</pre>	$\mathfrak{ABcd12} \alpha \beta \mathfrak{dd}$
Manoscritto§	<pre>\mathscr{ABcd12\alpha\beta\Gamma\Delta}</pre>	$\mathscr{A}\mathscr{B}\alpha\beta$

Tabella: Stili dei font matematici.

[‡]Dal pacchetto amssymb, §Dal pacchetto mathrsfs