I Lineare Gleichungsgysteme

$$A \times = b'$$
 mit $b = \begin{pmatrix} 32,1 \\ 22,5 \\ 33,1 \\ 30,9 \end{pmatrix} \Rightarrow \times = \begin{pmatrix} 9,2 \\ -12,6 \\ 4,5 \\ -1,1 \end{pmatrix}$

~> relative Anderung in
$$b \sim \frac{1}{10} \cdot \frac{1}{23} \approx \frac{1}{100}$$

A'
$$\times$$
 = b mit A = $\begin{pmatrix} 10 & 7 & 8.1 & 7.2 \\ 7.08 & 5.04 & 6 & 5 \\ 8 & 5.98 & 9.83 & 9.0 \\ 6.99 & 4.99 & 9 & 9.58 \end{pmatrix}$ \Rightarrow \times = $\begin{pmatrix} -81 \\ 137 \\ -34 \\ 22 \end{pmatrix}$

Eigenwerte van A:
$$\lambda_1 \approx 0.01$$
, $\lambda_2 \approx 0.83$, $\lambda_3 \approx 3.86$, $\lambda_4 \approx 30.29$

$$\frac{\lambda_4}{\lambda_1} \approx 2984$$

Vektor- und Matrixnomen

Bsp. Sei $\times \times X + 1K^{N}$ mit $N \in \mathbb{N}$ 1) Betragssummennorm $= 11 \times 11_{1} + \sum_{n=1}^{N} 1 \times n \cdot 1_{2}$ 2) eaklidische Norm $= 11 \times 11_{2} + (\sum_{n=1}^{N} 1 \times n \cdot 1_{2})^{\frac{1}{2}}$ 3) Maximumsnorm $= 11 \times 11_{2} + \max(1 \times n \cdot 1_{2})$ Verifikation der $\Delta - \neq f$ ür $= 11 \cdot 11_{2} + 11 \cdot 11_{2}$

Beweis: $||x|| > ||(x-y)+y|| \le ||x-y|| + ||y|| \Rightarrow ||x|| - ||y|| \le ||x-y||$ we obtain the num |x|| and $|y|| \cdot ||y|| \le ||y-x|| = ||x-y||$

Insbesondere hängt der Konvergenzbegriff in IK nicht von der Wahl

der Norm ab und ist immer äquivalent zur komponentenweisen Konv

Beweis (der Prop.): Es genügt IIII, = II:II zu betrachten (betrachte dann

den Satz zweimal). Die Menge {xelK*: IIxII, = 1} ist abgeschlossen

und bejohnantt, also nach Heine-Borel kompakt. (bzgl. der eutl. Norm)

Außerdem ist für $x = \sum_{n=1}^{\infty} x_n e_n$ (en Basisvektoren für |K'| $|K'| = \sum_{n=1}^{\infty} ||x_n e_n||^2 = \sum_{n=1}^{\infty} ||x_n||^2 = \sum_{n=1}^{\infty} ||x_n$