

planetmath.org

Math for the people, by the people.

table of Laplace transforms

Canonical name TableOfLaplaceTransforms

Date of creation 2014-03-10 19:51:28 Last modified on 2014-03-10 19:51:28

Owner CWoo (3771) Last modified by pahio (2872)

Numerical id 57

Author CWoo (2872) Entry type Feature Classification msc 44A10

Related topic LaplaceTransformOfIntegralSine

Related topic TelegraphEquation

Related topic InverseLaplaceTransformOfDerivatives

Related topic Integral Tables

Related topic Using Laplace Transform To Initial Value Problems

Related topic RulesForLaplaceTransform

Related topic ExponentialIntegral

 $Related\ topic \qquad Integration Of Laplace Transform With Respect ToParameter$

Related topic Lapla

Below are tables of http://planetmath.org/LaplaceTransformLaplace transforms; one lists some of the common properties, and the other lists some common examples.

Properties

Original	Transformed	comment	
af(t) + bg(t)	$a\mathcal{L}{f(t)} + b\mathcal{L}{g(t)}$	linearity	
f(t) * g(t)	$\mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\}$	convolution property	
$\int_{a}^{b} f(t, x) dx$	$\int_{a}^{b} \mathcal{L}\{f(t,x)\} dx$	integration with respect to a parametre	http://pla
$\frac{\partial}{\partial x}f(t,x)$	$\frac{\partial}{\partial x} \mathcal{L}\{f(t,x)\}$	diffentiation with respect to a parameter	http://plane
$f(\frac{t}{a})$	aF(as)	$\mathcal{L}\{f(t)\} = F(s)$	
$e^{at}f(t)$	F(s-a)	$\mathcal{L}\{f(t)\} = F(s)$	
f(t-a)	$e^{-as}F(s)$	$\mathcal{L}\{f(t)\} = F(s)$	
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	$\mathcal{L}\{f(t)\} = F(s)$	
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$	$\mathcal{L}\{f(t)\} = F(s)$	
$\int_0^t f(u) du$	$\frac{F(s)}{s}$	$\mathcal{L}\{f(t)\} = F(s)$	
f'(t)	$sF(s) - \lim_{x \to 0+} f(x)$	$\mathcal{L}\{f(t)\} = F(s)$	
f''(t)	$s^{2}F(s) - s \lim_{x \to 0+} f(x) - \lim_{x \to 0+} f'(x)$	$\mathcal{L}\{f(t)\} = F(s)$	

Examples

f(t)	$\mathcal{L}\{f(t)\}$	conditions	explanation	
e^{at}	$\frac{1}{s-a}$	s > a		
$\cos at$	$\frac{s}{s^2 + a^2}$	s > 0		http://planetmath.
$\sin at$	$\frac{a}{s^2 + a^2}$	s > 0		http://planetmath.
$\cosh at$	$\frac{s}{s^2 - a^2}$	s > a		http://planetmath.
$\sinh at$	$\frac{a}{s^2 - a^2}$	s > a		http://planetmath.
$\frac{\sin t}{t}$	$\arctan \frac{1}{s}$	s > 0	See sinc function	http://planetmath.
t^r	$\frac{\Gamma(r+1)}{s^{r+1}}$	r > -1, s > 0	gamma function Γ	http://planetmath.
$e^{a^2t}\operatorname{erf} a\sqrt{t}$	$\frac{a}{(s-a^2)\sqrt{s}}$	$s > a^2$	See error function	http://planetmath.org/
$e^{a^2t}\operatorname{erfc} a\sqrt{t}$	$\frac{1}{(a+\sqrt{s})\sqrt{s}}$	s > 0	See error function	http://planetmath.org/
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$	s > 0		http://planetmath.
$J_0(at)$	$\frac{1}{\sqrt{s^2 + a^2}}$	s > 0	Bessel function J_0	http://planetmath.org
e^{-t^2}	$\frac{\sqrt{\pi}}{2}e^{\frac{s^2}{4}}\operatorname{erfc}\left(\frac{s}{2}\right)$	s > 0	See error function	http://planetmath.or
$\ln t$	$-\frac{\gamma + \ln s}{s}$	s > 0	Euler's constant γ	http://planetmat
$\delta(t)$	1		Dirac delta function	http://planetmath

Rational Functions

f(t)	$\mathcal{L}\{f(t)\}$	conditions	explanation	(
1	$\frac{1}{s}$			
t	$\frac{1}{s^2}$			http://planetmath.org/
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$			http://planetmath.org/
$\frac{1}{t+a}$	$e^{as}\mathrm{E}_{1}(as)$	a > 0	exponential integral E_1	http://planetmath.d
$\frac{1}{(t+a)^2}$	$\frac{1}{a} - se^{as} \mathbf{E}_1(as)$	a > 0		http://planetmath.c
$\frac{1}{(t+a)^n}$	$a^{1-n}e^{as}E_n(as)$	$a > 0, n \in \mathbb{N}$?	
$L_n(t)$	$\frac{1}{s} \left(\frac{s-1}{s} \right)^n$	s > 0	Laguerre polynomial L_n	