§ 3.3 分波前干涉

1) 菲涅耳双面镜实验:

虚光源
$$S_1$$
、 S_2 $\overline{S_1S_2}$ 平行于 $\overline{WW'}$ $d << D$

屏幕上0点在两个虚光源连线的垂直平分线 上,屏幕上明暗条纹中心对0点的偏离x为:

$$x = k\lambda \frac{D}{d}$$
 明条纹中心的位置

$$x = \frac{2k+1}{2}\lambda \frac{D}{d}$$

暗条纹中心的位置

$$k = 0, \pm 1, \pm 2 \cdots$$

结论:它也是 分波前双光束 干涉,是不定 域干涉。

当屏幕W移至B处, 从S和S'到B点的 光程差为零,但是 观察到暗条纹,验 证了反射时有半波 损失存在。

结论:它们也是分波前双光束干涉。是不定域干涉。

3) 菲涅耳双棱镜实验

结论:它们也是分波前双光束干涉。是不定域干涉。

§ 3.3 分波前干涉

杨氏双缝花样

双棱镜花样

洛埃镜花样

§ 3.4 空间相干性

■ 1. 光源宽度对干涉条纹的影响

实际的光源有一定的大小,它一定会影响干涉条纹

b 内各点均可视为点光源而在屏幕上形成一套干涉 条纹,总的效果等效于各套干涉条纹的非相干叠加

对A',条纹下移:

$$OP = -Db/(2R)$$

对B',条纹下移:

$$OP' = Db/(2R)$$

即由宽b的光源形成的干涉,零级极大的宽度为:

$$\Delta x' = Db/R$$

光源变大,干涉条纹变宽

■ 点光源双缝干涉中条纹的宽度为: $\Delta x = \frac{D\lambda}{d}$

当 $\Delta x' > \Delta x$ 时,将无法观察到干涉条纹。

有限的b值必须满足 $\Delta x' < \Delta x$, 即:

 $Db/R < D\lambda/d$

$$b \equiv b_0 = \frac{R}{d}\lambda$$
 ——光源的极限宽度

 $b < b_0$ 时,才能观察到干涉条纹。 为观察到较清晰的干涉条纹通常取 $b \le b_0/4$

■ 2. 相干间隔和相干孔径角

i。相干间隔

由
$$b < b_0 = \frac{R}{d}\lambda$$
, 若 b 和 R 一定,

则要得到干涉条纹, 必须 $d < \frac{R}{b} \lambda$

$$d_0 = \frac{R}{b}\lambda$$

——相干间隔

R一定时, d_0 越大,光场的空间相干性越好。

