การทดลองที่ 12 วงจรนับแบบอะซิงโครนัส (Asynchronous Counter) วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรนับแบบอะซิงโครนัส
- 2. ต่อวงจรนับแบบนับขึ้นและนับลงได้
- 3. เขียนใดอะแกรมเวลาของวงจรนับขึ้น 3 บิตและนับลง 3 บิตได้ถูกต้อง

เอกสารที่เกี่ยวข้อง

วงจรนับแบบอะซิงโครนัสเป็นวงจรนับที่ใช้ฟลิปฟลอปชนิดเจเคต่ออนุกรมกันโดยป้อนเป็น สัญญาณนาฬิกา เป็นสัญญาณควบคุมให้กับฟลิปฟลอปตัวแรกและนำเอาท์พุตของฟลิปฟลอปตัวแรก ป้อนเป็นสัญญาณนาฬิกาของฟลิปฟลอป ตัวต่อไปจนครบทุกตัว เอาท์พุตที9แสดงการนับเป็น เลขฐานสองคือ Q ของฟลิปฟลอปทุกตัว โดย Q ของฟลิปฟลอปตัวแตกเป็นบิตต่ำสุดของเลขฐานสอง ทางเอาท์พุต

รูปที่ 1 แสดงวงจรนับแบบอะซิงโครนัส 4 บิตแบบนับขึ้น และไดอะแกรมเวลาแสดงเอาท์พุตของฟลิป ฟลอปแต่ละตัว

จำนวนครั้งของการนับขึ้นอยู่กับจำนวนตัวของฟลิปฟลอป เช่น วงจรนับ 4 บิต จะใช้ฟลิป ฟลอป 4 ตัวนับได้จำนวน 2⁴= 16 ครั้ง เป็นต้น ถ้าต่อ Q ของฟลิปฟลอปตัวหน้าให้กับCLK ของฟลิป ฟลอฟตัวต่อไป จะเป็นวงจรนับขึ้น เช่น ต่อฟลิปฟลอป 4 ตัวแบบขึ้น ดังรูปที่ 1 เรียกว่า วงจรนับอะ ซิงโครนัส 4 บิตแบบนับขึ้น (4 Bit Asynchronous Counter Count Up)

ถ้าทำการต่อวงจรใหม่โดยการนำ Q ของฟลิปฟลอปตัวหน้า ต่อเข้ากับ CLK ของฟลิปฟลอป ตัวต่อไปจนครบทุกตัวจะได้วงจรอะซิงโครนัสแบบนับลง เช่น ใช้ฟลิปฟลอป 1 ตัวต่อวงจร

ลำดับของสัญญาณ	ล์	าดับการนับเลขฐานส		ผลการนับ
นาฬิกา	С	В	А	เลขฐานสอง
0	1	1	1	7
1	1	1	0	6
2	1	0	1	5
3	1	0	0	4
4	0	1	1	3
5	0	1	0	2
6	0	0	1	1
7	0	0	0	0
8	1	1	1	7

รูปที่ 2 แสดงวงจรนับแบบอะซิงโครนัสนับลงขนาด 3 บิต และตารางความจริงแสดงผลการนับ

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7476
- 2. ชุดทดลองดิจิตอล

วงจรการทดลองที่ 1 วงจรนับแบบอะซิงโครนัสนับขึ้นขนาด 3 บิต

วิธีการทดลอง

- 1.1 ต่อวงจรตามรูป โดยใช้ฟลิปฟลอปชนิดเจเคเบอร์ 7474
- 1.2 ทดลองป้อนสัญญาณนาฬิกาทีละ 1 พัลส์ แล้วสังเกตการเปลี่ยนแปลงที่ไดโอดเปล่งแสงที่ต่อกับ เอาท์พุต C B และ A บันทึกผลการติด-ดับ ของไดโอดเปล่งแสงลงตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

อินพุต			เอาท์พุต	
ลำดับของสัญญาณนาฬิกา	С	В	А	เลขฐานสิบ
0	0	0	0	0
1	0	0	1	1
2	0	1	0	2
3	0	1	1	3
4	1	0	0	4
5	1	0	1	5
6	1	1	0	6
7	1	1	1	7
8	0	0	0	0

วงจรการทดลองที่ 2 วงจรนับแบบอะซิงโครนัสนับลงขนาด 3 บิต

วิธีการทดลอง

- 2.1 ต่อวงจรตามรูปโดยใช้ฟลิปฟลอปชนิดเจเคเบอร์ 7476
- 2.2 ป้อนสัญญาณนาฬิกาตามลำดับที่กำหนดไว้ในตารางครั้งละ 1 พัลส์ และสังเกตการ เปลี่ยนแปลง บันทึกผลลงตารางบันทึกผลการทดลองที่ 2

ตารางบันทึกผลการทดลองที่ 2

อินพุต			เอาท์พุต	
ลำดับของสัญญาณนาฬิกา	С	В	А	เลขฐานสิบ
0	1	1	1	7
1	1	1	0	6
2	1	0	1	5
3	1	0	0	4
4	0	1	1	3
5	0	1	0	2
6	0	0	1	1
7	0	0	0	0
8	1	1	1	7
9	1	1	0	6

วิเคราะห์ผลการทดลองที่ 1

จากผลการทดลองแบบอะซิงโครนัสนับขึ้นขนาด 3 บิต ผลเป็นไปตามตารางค่าความจริง คือ นับขึ้นไปที่ล่ะ 1 ตามสัญญาณนาฬิกา จดไปจุดสูงสุดที่ 7 แล้วเริ่มนับใหม่

วิเคราะห์ผลการทดลองที่ 2

จากผลการทดลองแบบอะซิงโครนัสนับลงขนาด 3 บิต ผลเป็นไปตามตารางค่าความจริง คือ นับลงไปที่ล่ะ 1 ตามสัญญาณนาฬิกาเริ่มจาก 7 จดไปจุดต่ำสุดที่ 0 แล้วเริ่มนับใหม่

สรุปผลการทดลอง

วงจรนับแบบอะซิงโครนัสไมตอกับสัญญาณนาฬิกาทั้งหมด ทำใหการเปลี่ยนสถานะลอจิก เกิดขึ้นไมพรอมกับสัญญาณนาฬิกาที่ปอนเขา ดั้งนั้นตอนที่อ่านค่า เราจึงนับที่สัญญาณนาฬิกาลงที่ 0

คำถามท้ายปฏิบัติการทดลอง

จงเขียนไดอะแกรมเวลาแสดงผลของเอาท์พุต QA QB และ QC ของวงจรการทดลองที่ 1
ตอบ

ไดอะแกรมวงจรการทดลองที่ 1

2. ไดอะแกรมเวลาของการทดลองที่ 2 วงจรนับลง 3 บิต

<u>ตอบ</u>

ไดอะแกรมวงจรการทดลองที่ 2

3. จงออกแบบวงจรนับแบบอะซิงโครนัสนับขึ้นที่นับเลขที่ ตามลำดับดังนี้

 $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4$

โดยใช้วงจรรวมเบอร์ 7476 และเกตอื่น ๆ ตามความจำเป็น

<u>ตอบ</u>

การทดลองที่ 13 วงจรนับแบบซิงโครนัส (Synchronous Counter) วัตถุประสงค์

- 1. ต่อวงจรนับแบบซิงโครนัสแบบต่างๆได้
- 2. ออกแบบวงจรนับแบบซิงโครนัสให้นับขึ้นและนับลงได้
- 3. ออกแบบวงจรนับแบบซิงโครนัสที่สามารถนับเลขข้ามได้

เอกสารที่เกี่ยวข้อง

วงจรนับแบบซิงโครนัส สร้างขึ้นมาเพื่อแก้ไขปัญหาในการออกแบบวงจรนับเลขฐานสอง หลาย ๆ บิต ถ้าใช้วงจรนับแบบอะซิงโครนัสซึ่งเป็นวงจรที่นำฟลิปฟลอปมาต่ออนุกรมกัน จะใช้เวลา ในการทำงานสูงขึ้น ทำให้ระบบดิจิตอลทำงานช้าลงวงจรนับแบบซิงโครนัสจะใช้ฟลิปฟลอปต่อกับ สัญญาณนาฬิกาเพื่อควบคุมการทำงานโดยต่อขนานกัน และจำนวนครั้งของการนับขึ้นอยู่กับจำนวน ตัวของฟลิปฟลอฟ คือ จำนวนครั้งของการนับเท่ากับ 2ⁿ (เมื่อ n คือ จำนวนตัวฟลิปฟลอป) ดังรูปที่ 1

รูปที่ 1 แสดงการต่อสัญญาณนาฬิกาให้กับวงจรนับ 3 บิตแบบซิงโครนัส

วงจรนับแบบซิงโครนัสสามารถออกแบบให้นับได้ทั้งนับขึ้นและนับลง โดยใช้ตารางควบคุม การทำงานของฟลิปฟลอปชนิดเจเค ตารางนี้ คือ Exciting Table

แสดง Exciting Table ของฟลิปฟลอปชนิดเจเค

Action	J	К
0 0	0	d
0 0	1	d
1 1	d	1
1 1	d	0

วิธีการใช้งานโดยการนำ Exciting Table มาสร้างวงจรเกตเพื่อควบคุมอินพุต J และ K ของ ฟลิปฟลอปทุกตัวที่ใช้ในวงจรนับแบบซิงโครนัส เพื่อให้วงจรนับแบบซิงโครนัสนับเลขจ่าง ๆ ได้ตามที่ ผู้ออกแบบกำหนด

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7476 7408
- 2. ชุดทดลองดิจิตอล

วงจรการทดลองที่ 1 วงจรนับแบบซิงโครนัสนับขึ้น 3 บิต (นับ 0-7)

วิธีการทดลอง

1.1 ต่อวงจรตามรูปและทำการป้อนสัญญาณนาฬิกาทีละพัลส์ สังเกตการณ์เปลี่ยนแปลง การติดดับ ของไดโอดเปล่งแสง C B และ A บันทึกผลการทดลองลงในตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

ลำดับสัญญาณนาฬิกา	ลำดับเ	าารนับเลขฐา	านสอง	ผลการนับเลขฐานสิบ
ម សេកមសិលិ ខេម្ភ។ សេក។	С	В	А	พถกางนบเถางู านถบ
0	0	1	0	2
1	0	0	1	1
2	0	0	0	0
3	0	0	1	1
4	0	0	0	0
5	0	1	1	3
6	1	1	0	6
7	1	0	1	5
8	1	0	0	4
9	1	1	1	7

วงจรการทดลองที่ 2 วงจรนับแบบซิงโครนัสนับ 5

วิธีการทดลอง

2.1 ต่อวงจรการทดลองที่ 2 ทำการป้อนสัญญาณนาฬิกาทีละพัลส์และสังเกตการณ์ติดดับ ของ ไดโอดเปล่งแสงที่เอาท์พุต C B และ A บันทึกผลการทดลองลงในตารางบันทึกผลการทดลอง ที่ 2

ตารางบันทึกผลการทดลองที่ 2

รีเซต	ลำดับของสัญญาณนาฬิกา	ลำดับก	ารนับเลขฐ	ุานสอง	ผลการนับเลขฐานสิบ	
9 P.O.N.I	ยามการคายก็ติ เซร เพเบ	С	В	А	พยบบาน แกะยากัสั เทยเก	
0	0	1	1	1	7	
1	1	0	0	0	0	
1	2	0	0	1	1	
1	3	0	1	0	2	
1	4	0	1	1	3	
1	5	1	0	0	4	
1	6	0	0	1	1	
1	7	0	1	0	2	

วิเคราะห์ผลการทดลองที่ 1

สังเกตจากผลการทดลองวงจรนับแบบซิงโครนัสนับขึ้น 3 บิต (นับ 0-7) ผลที่ได้ออกมาเลขจะ ไม่เรียงกันเนื่องจาก J และ K มีการควบคุมที่ต้องใช้ตาราง Excitation แต่ค่าที่ได้จะมีค่า 0- 7

วิเคราะห์ผลการทดลองที่ 2

สังเกตจากผลการทดลองวงจรนับแบบซิงโครนัสนับ 5 ผลที่ได้ออกมาเลขจะไม่เรียงกัน เนื่องจาก J และ K มีการควบคุมที่ต้องใช้ตาราง Excitation แต่ค่าที่ได้จะมีค่า 0- 5

สรุปผลการทดลอง

วงจรนับแบบซิงโครนัสจะต่อขาสัญณาณนาฬิกาควบคุมฟลิปฟลอปทุกตัวในวงจรให้ทำงาน พร้อมกันแต่การแสดงผลขึ้นอยู่กับการออกแบบวงจรควบคุมอินพุต J และ K ของฟลิปฟลอปแต่ละตัว

คำถามท้ายปฏิบัติการทดลอง

1. จงแสดงวิธีการออกแบบและสร้างวงจรนับแบบซิงโครนัสให้ทำงานเป็นวงจรนับขึ้นขนาด 3 บิต (นับ 0-7)

<u>ตอบ</u>

2. จงออกแบบและสร้าง ให้นับเลขต่อไปนี้

<u>ตอบ</u>

การทดลองที่ 14 วงจรเลื่อนข้อมูล (Shift Register)

วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรเลื่อนข้อมูลแบบ SISO SIPO PISO และ PIPO
- 2. เลือกใช้วงจรรวมที่เป็นวงจรเลื่อนข้อมูลในการส่งผ่านข้อมูลแต่ละแบบได้อย่างเหมาะสม

เอกสารที่เกี่ยวข้อง

วงจรเลื่อนข้อมูลใช้กันอย่างแพร่หลายทั้งในเค่ื่องคอมพิวเตอร์ เค่ื่องคำนวณอิเล็กทรอนิกส์ เค่่องพิมพ์แบบต่าง ๆ เป็นตัวกลางในการส่งผ่านข้อมูลสัญญาณทางดิจิตอล วงจรเลือนข้อมูลจึงเป็น อุปกรณ์ สำคัญมากในระบบดิจิตอล ใช้ในวงจรที่ต้องการส่งข้อมูลผ่านเข้าและออกจากระบบดิจิตอล ในลักษณะ ของข้อมูลแบบขนานหรือแบบอนุกรม มีการทำงานแบ่งออกเป็น B ลักษณะ คือ

- 1. อนุกรมเข้าอนุกรมออก (SISO)
- 2. อนุกรมเข้าขนานออก (SIPO)
- 3. ขนานเข้าอนุกรมออก (PISO)
- 4. ขนานเข้าขนานออก (PIPO)

โครงสร้างภายในวงจรเลื_อนข้อมูลทำจากฟลิปฟลอป เช่น ฟลิปฟลอปชนิดดีหรือฟลิปฟลอป ชนิดเจเค โดยใช้ฟลิปฟลอป 1 ตัวต่อข้อมูล 1 บิต ตัวอย่างการทำงานของวรจรเฎื่อน ข้อมูลขนาด 8 บิตทั้ง 4 แบบ แสดงในรูปที่ 1

รูปที่ 1 แสดงโครงสร้างของวงจรเลื่อนข้อมูลทั้ง 4 แบบ

วงจรรวมที่ ทำงานเป็นวงจรเลื่อนข้อมูลเบอร์ที่นิยมใช้มากคือ 74194 (4 Bit - Universal Shift Register) เพราะว่าสามารถใช้สร้างเป็นวงจรเลือนข้อมูลได้หลาย ๆ แบบ เช่น สร้าง เป็น PIPO SIPO และ SISO เป็นต้น และสามารถต่อขยายเป็นวงจรเลื่อนข้อมูลขนาด 8 บิตหรือ มากกว่า ได้เช่นกันวงจรรวมเบอร์ 74194 มีการจัดวางขาและตารางการทำงานดังแสดงในรูปที่ 2

	อินพุต										เอาต์พุต			
	Mo	ode		Serial			Par	allel						
Clear	S	S.	Clock	Left	Right	A	A B C		D	Q,	Q _B	$\mathbf{Q}_{_{\mathbf{C}}}$	Q _n	
L	Х	Х	Х	Х	Х	x	×	Х	Х	L	L	L	L	
Н	X	Х	L	X	X	x	Х	Х	Х	Q	Q _{BO}	Q _{co}	Q	
Н	H	н	↑	×	X	a	b	С	d	a a	ь Б	C	d d	
Н	L	н	1	×	Н	x	Х	Х	х	Н	Q	Q	Q _{Cn}	
Н	L	н	↑	x	L	x	Х	X	х	L	Q.	Ten O	Cn Q	
Н	н	L	1	н	X	х	Х	X	x	Q _{Bn}	Aπ	Q Q	Q H	
Н	н	L	↑	L	Х	x	X	X	x	Q _{Bn}	Q_{cn}	Dn	1	
Н	L	Ļ	X	Х	Χ	Х	X	X	x	Q _{A0}	Q _{B0}	Q _{Dn} Q _{Co}	Q _∞	

รูปที่ 2 แสดงตารางการทำงานของวงจรรวมเบอร์ 74194

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7474 74194
- 2. ชุดทดลองดิจิตอล

วงจรการทดลองที่ 1 วงจรเลื่อนข้อมูลขนาด 3 บิต แบบ SISO และ PIPO

วิธีการทดลอง

1.1 ป้อนข้อมูลอินพุต (Data) ตามตาราง และบันทึกผลของข้อมูลเอาท์พุต $Q_A \ Q_B \ Q_C \$ ที่เกิดขึ้น หลังจากป้อนสัญญาณนาฬิกาลงในตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

	อินพุต		เอาท์พุต			
เคลียร์	ข้อมูลอินพุต	สัญญาณนาฬิกา	Q _A	Q _B	Q _C	
0	0	0	0	0	0	
1	1	0	0	0	0	
1	1	1	1	1	1	
1	1	2	1	1	1	
1	0	3	0	1	1	
1	0	4	0	1	1	
1	0	5	0	1	1	
1	1	6	0	0	0	
1	1	7	1	0	1	
1	1	8	1	1	1	
1	0	9	0	1	1	
1	0	10	0	1	1	
1	0	11	0	1	1	

วงจรการทดลองที่ 2 ตัวเลื่อนข้อมูล 4 บิต เบอร์ 74194

การทดลองที่ 2.1 วงจรเลื่อนข้อมูลแบบ SISO และ SIPO ขนาด 4 บิต (เลื่อนซ้าย)

วิธีการทดลอง

หมายเหตุ

- (1) กรณีทำงานเป็น SISO ให้สังเกตเอาท์พุตเฉพาะ $Q_{\mathbb{D}}$ เท่านั้น
- (2) กรณีทำงานเป็น SIPO ให้สังเกตเอาท์พุตทั้ง 4 บิต คือ Q_A Q_B Q_C Q_D ตามลำดับข้อมูลจะเลื่อนจาก Q_D ไปทาง Q_A
- 2.1 ต่อวงจรตามรูปการทดลองที่ 2.1 ทดลองป้อนข้อมูลเข้าที ขา**SL**ตามตาราง ป้อนสัญญาณ นาฬิกาด้วยมือครั้งละ 1 พัลส์ สังเกตและบันทึกผลการเลื่อนข้อมูลที่เอาท์พุตในตารางบันทึก ผลการทดลองที่ 2.1

ตารางบันทึกผลการทดลองที่ 2.1

		ยิ	เอาท์พุต						
เคลียร์	โหมดควบคุม		CLK	SL	SR	Q_A	Q_B	Q_{C}	0
611610 9	S_0	S ₁	CLIX	5	211	Y	Ув	y	Q_D
0	X	X	X	X	X	0	0	0	0
1	0	1	> -	1	X	0	0	0	1
1	0	1		1	×	0	0	1	1
1	0	1		1	X	0	1	1	1
1	0	1		1	X	1	1	1	1
1	0	1		0	X	1	1	1	0
1	0	1		0	X	1	1	0	0
1	0	1		1	X	1	0	0	1
1	0	1		1	X	0	0	1	1
0	0	1		1	X	0	0	0	0

การทดลองที่ 2.2 วงจรเลื่อนข้อมูลแบบ SISO และ SIPO ขนาด 4 บิต (เลื่อนซ้าย)

วิธีการทดลอง

หมายเหตุ

- (1) กรณีทำงานเป็น SISO ให้สังเกตเอาท์พุตเฉพาะ $Q_{\scriptscriptstyle A}$ เท่านั้น
- (2) กรณีทำงานเป็น SIPO ให้สังเกตเอาท์พุตทั้ง 4 บิต คือ Q_A Q_B Q_C Q_D ตามลำดับข้อมูลจะเลื่อนจาก Q_A ไปทาง Q_D
- 2.2 ต่อวงจรตามรูปการทดลองที่ 2.2 ทดลองป้อนข้อมูลเข้าที ขา SR ตามตาราง ป้อนสัญญาณ นาฬิกาด้วยมือครั้งละ 1 พัลส์ สังเกตและบันทึกผลการเลื่อนข้อมูลที่เอาท์พุตในตารางบันทึก ผลการทดลองที่ 2.2

ตารางบันทึกผลการทดลองที่ 2.2

		อิ	เอาท์พุต							
เคลียร์	โหมดควบคุม		CLK	CI	SR	0	0	0	0	
PL1810 1	S ₀	S ₁	CLK SL S		SN	Q _A	Q_B	Q_{C}	Q_D	
0	×	×	×	X	X	0	0	0	0	
1	1	0		×	1	1	0	0	0	
1	1	0		×	1	1	1	0	0	
1	1	0		×	1	1	1	1	0	
1	1	0		×	1	1	1	1	1	
1	1	0		X	0	0	1	1	1	
1	1	0		×	0	0	0	1	1	
1	1	0		×	1	1	0	0	1	
1	1	0		X	1	1	1	0	0	
0	1	0		X	1	0	0	0	0	

การทดลองที่ 2.3 วงจรเลื่อนข้อมูล PIPO ขนาด 4 บิต

วิธีการทดลอง

หมายเหตุ

- (1) ขาอินพุต SL และ SR ไม่ใช้
- (2) ควบคุมให้ S0= "1" และ S1 = "1"
- (3) อินพุตเข้า 4 บิต ที่ขา A B C D และเอาท์พุตออก 4 บิตเข้าที่อินพุตแบบขนาน (A B C D ที่ขา 3 4 5และ 6 ดังตาราง ป้อนพัลส์สัญญาณนาฬิกาครั้งละ 1 พัลส์ และสังเกตการณ์เปลี่ยนแปลงของข้อมูลที่เอาท์พุต บันทึกผล ลงในตารางบันทึกผล การทดลองที่ 4

ตารางบันทึกผลการทดลองที่ 2.3

	อินพุต											เอาท์พุต			
	โหมดการ					ข้อ	ข้อมูลขนานเข้า								
เคลียร์	ทำ	าน	CLK	SL	SR		4	บิต		Q _A	Q _B	Q_{C}	Q_D		
	S ₀	S ₁				Α	В	С	D						
0	Х	X	×	Х	×	0	0	0	0	0	0	0	0		
1	1	1		Х	X	0	0	0	0	0	0	0	0		
1	1	1		Х	Х	0	0	0	1	0	0	0	1		
1	1	1		Х	×	0	0	1	0	0	0	1	0		
1	1	1		Х	X	0	0	1	1	0	0	1	1		
1	1	1		Х	X	0	1	1	1	0	1	1	1		
1	1	1		Х	Х	1	0	0	0	1	0	0	0		
1	1	1		Х	Х	1	0	0	1	1	0	0	1		
0	1	1		Х	Х	1	1	1	1	0	0	0	0		

วิเคราะห์ผลการทดลองที่ 1

จากผลการทดลองการทำงานของตัวเลื่อนข้อมูลมีลักษณะเข้าแบบอนุกรมแล้วออกแบบ ขนาน

วิเคราะห์ผลการทดลองที่ 2

จากการทดลองทั้ง3ที่ผ่านมาทั้งเป็นไปตามทฤษฎี

สรุปผลการทดลอง

วงจรเลื่อนข้อมูลจะมีการทำงานแตกต่างกันไปตามลักษณะการต่อโดยการทำจะมีอยู่ 4 แบบ คือ SISO SIPO PISO และPIPO

คำถามท้ายปฏิบัติการทดลอง

1. วงจรรวมเบอร์ 74194 สามารถสร้างเป็นวงจรเลื่อนข้อมูลแบบขนานเข้าอนุกรมออก (PISO) ได้ หรือไม่ถ้าได้จงเขียนวงจรและอธิบายการทำงานได้ควรเลือกใช้วงจรรวมเบอร์ใดถ้าไม่ จง นำเสนอข้อมูลโดยละเอียด

ตอบ ได้ ทำงานเป็น SIPO ให้สังเกตเอาท์พุตทั้ง 4 บิต คือ Q_A Q_B Q_C Q_D ตามลำดับข้อมูล จะเลื่อนจาก Q_A ไปทาง Q_D

2. จงใช้ฟลิปฟลอปชนิดดี สร้างเป็นวงจรเลื่อนข้อมูล 4 บิตแบบ SIPO จงเขียนวงจรและอธิบาย การทำงานโดยละเอียด

อ้างอิง

เอกสารปฏิบัติการทดลองที่ 12 เรื่อง วงจรนับแบบอะซิงโครนัส (Asynchronous Counter)
เอกสารปฏิบัติการทดลองที่ 13 เรื่อง วงจรนับแบบซิงโครนัส (Synchronous Counter)
เอกสารปฏิบัติการทดลองที่ 14 เรื่อง วงจรเลื่อนข้อมูล (Shift Register)
เว็บไซต์ http://somyut.krutechnic.com/unit86.html
เว็บไซต์ http://digitalm6.blogspot.com/2012/09/shift-register.html
เว็บไซต์
https://th.wikipedia.org/wiki/%E0%B8%A7%E0%B8%87%E0%B8%88%E0%B8%
A3%E0%B8%99%E0%B8%B1%E0%B8%9A
โปรแกรมวาดวงจรลอจิก https://www.circuitlab.com/editor/#?id=7pq5wm