DIGITÁLIS MÉRÉSTECHNIKA

Hangfeldolgozás 2 jegyzőkönyv

Mérést végezte: Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.23

Jegyzőkönyv leadásának időpontja: 2023.12.01

1. Háttér felvétele

A feladat során mind a hét mikrofont felhasználva rögzítettem egy jelet a háttérzajról, melyeken a következő vizsgálatokat végeztem el:

1.1. Amplitudóeloszlás

A jegyzet alapján feltételezhetjük, hogy a háttérzaj normáleloszlást követ, és a mért adatok segítségével ezt alá is tudom támasztani.

1.2. Átlagteljesítmény

Az átlagteljesítmény számolásához a következő képletet alkalmaztam:

$$P = \frac{1}{N} \sum_{i=0}^{N} f(t)^2$$

mikrofon sorszáma:	1.	2.	3.	4.	5.	6.	7.
átlagos teljesítmény [W]	2999.47	3955.05	1755.52	2454.32	3164.84	2067.41	1737.34

A teljesítmények nagyságrendileg megegyeznek, de természetesen kisebb eltéréseket tapasztalhatunk a mikrofonok között. Ennek oka lehet a zajforrástól való különböző távolságuk, valamint gyártási hiba is, hisz nem tudunk tökéletesen ugyan olyan érzékenységű mikrofonokat készíteni.

1.3. Teljesítmény spektrum

Ebből azt állapíthajuk meg, hogy a háttérzaj döntően mélyebb hangokból áll.

1.4. Szakaszokra bontás

Ezt követően mind a 7 mikrofonnal rögzített hangfájlt hét-hét szakaszra bontottam és kiszámoltam az egyes szakaszokra eső átlagteljesítményeket.

Ezen az ábrán szerintem jól látszik, a mikrofonok térbeli elhelyezkedése. A mikrofonok egymáshoz képest lévő, és az alapzaj forrássaihoz képest való elhelyezkedésük megállapítható abból, hogy mennyire hasonlít a hozzájuk tartozó energiák karakteresztikája egymásra.

2. Kopogtató jele

A feladat során egy 10 kopogásból álló sorozat jelét rögzítettem, mind a hét mikrofon segítségével. A következő ábra segítségével szemléltetem az egyes csatornán belüli koppanások közti jelteljesítmény ingadozását.

Ezt követően közösen ábrázoltam a háttér és a kopogtatások spektrumát.

Az ábrák alapján kijelenthetjük, hogy egyértelműen elkülöníthető a kopogás a háttérzajtól, hisz a teljesítménye jelentősen meghaladja azt.

3. A terem hőmérsékletének becslése

A méréshez két mikrofont használtam. A mikrofonok távolságát változtatgatva kitöltöttem az alábbi táblázatot.

Mérés	n	$\langle \Delta s \rangle$	$\sigma(s)$	Δl [cm]	$\sigma(l)$
1	8	0.00049415212797137	0.00030427500954490145	7	1
2	13	0.0009504095515757324	0.00030427500954490145	10	1
3	18	0.0013669674672590125	0.00030427500954490145	14	1
4	21	0.0015947953784688478	0.00030427500954490145	16	1
5	26	0.0018271029046539248	0.00030427500954490145	19	1
6	29	0.0019063882847167588	0.00030427500954490145	22	1
7	34	0.0021772440495472565	0.00030427500954490145	26	1
8	36	0.0026114859549261882	0.00030427500954490145	29	1
9	47	0.0030630560311804235	0.00030427500954490145	37	1
10	55	0.004052071924763858	0.00030427500954490145	43	1

1. táblázat. A mért és számolt értékek

A mért adatokra a következő lineáris modellt illesztettem:

$$l = c \cdot t$$

Mind az idő és mind a távolság adatsor elejére beszúrtam egy 0-0 értéket, hisz 0 másodperc alatt 0 métert tesz meg a hang. Ezzel ki tudtam küszöbölni a modellből a konstans paramétert és pontosabb illesztéshez jutottam.

pa	araméter	$c\left[\frac{cm}{s}\right]$	$c\left[\frac{m}{s}\right]$
	érték	35824.75	358.25
	hiba	1489.65	14.9

2. táblázat. Az illesztésből származó értékek

A meghatározott hangsebesség tehát 358.25 $\frac{m}{s}$. A hőmérséklet meghatározására a hangsebesség wikipédia oldalán található közelítő képletet használtam:

$$c = (331.5 + 0.6 \cdot T)$$

Az egyenletet átalakítva, és a kapott hangsebességet behelyettesítve megkaphatjuk a hőmérséklet becsült értékét:

$$T = \frac{c - 331.5}{0.6} = \frac{358.25 - 331.5}{0.6} \approx 44.58$$

A mérést nem mondhatom igazán sikeresnek, hisz ugyan meleg volt, de a 44.58 $^{\circ}C$ fokot biztosan nem érte el.

4. Mikrofonkarakterisztika

ldő hiányában sajnos csak egy távolságról tudtam elvégezni a mérést. A szögek úgy értendők, hogy a 90 $^{\circ}$ esetén a mikrofon hegye pont a hangfal felé néz, míg 0 $^{\circ}$ és 180 $^{\circ}$ esetén pont merőleges rá. A 0 $^{\circ}$ -hoz tartozó mérés nem valós adat, csak a szebb ábárzolás érdekében generáltam úgy, hogy feltételeztem, hogy a mikrofon mind két oldala ugyan olyan értéket venne fel.

Véleményem szerint ezt úgy értelmezhetjük, hogy akkor a legnagyobb a hangintenzitás, mikor a mikrofon több oldalát egységesen éri a hang.

5. Források

• A hang hőmérsékletfüggésének közelítő képlete: https://hu.wikipedia.org/wiki/Hangsebess%C3%A9g