MA313 : Linear Algebra I

Week 2: Subspaces

Dr Niall Madden

13 and 16 September, 2022

https://commons.wikimedia.org/wiki/File:Projectivisation_F5P^1.svg. Incnis Mrsi, via Wikimedia Commons

These slides are based on ones by Tobias Rossmann.

Outline

- 1 Announcements
- 2 Part 1: Vector Spaces
 - Eg: \mathbb{R}^n is a vector space
 - Eg: Polynomials
- 3 Part 2: Not everything is a vector space
- 4 Part 3: Subspaces
- 5 Part 4: More examples of subspaces
 - Polynomials
 - Functions
- 6 Part 5: Linear combinations
 - Building subspaces
 - Definition
- 7 Part 6: Spans
 - Examples
 - Linking spans and subspaces
- 8 Part 7: Exercises

Assignment 1

- ► The first assignment has opened. Deadline is Monday, 19 September.
- ▶ It contributes 3% to the final grade for MA313.
- Topics: addition of vectors, matrix-vector multiplication, matrix-matrix multiplication, solving linear systems by row-reduction.
- ➤ System still has a few glitches. We are working to fix them. Don't worry about time-out errors.

Communications skills

DRAFT: will be edited later

- 1. Later this week: list of topics will be posted.
- 2. End of Week 3: confirm your topic.
- 3. End of Week 7: progress report due. Will include scope, outline of structure, and major sources.
- 4. Week 12: submission of essay and slides and presentations.

Tutorials start in Week 3. When:

https://forms.office.com/r/Oya9Bp8qBU

	Mon	Tue	Wed	Thu	Fri
9 – 10					
10 – 11					
11 – 12					
12 – 1					Lecture
1 – 2		Lecture			
2 – 3					
3 – 4					
4 – 5					

Everyone who attended Friday's class was available

- ▶ Wednesday at 11.00
- Friday at 11.00

MA313 Week 2: Subspaces

Start of ...

PART 1: Definition of a Vector Space

See Section 4.1 of the text-book:

 $https://search.\ library.\ nuigalway.\ ie/permalink/f/\\ 1pmb9lf/353GAL_ALMA_DS5192067630003626$

Part 1: Vector Spaces

Definition of a vector space (1/2)

A vector space consists of

- ► a (non-empty!) set *V*, whose elements we call **vectors**,
- ▶ an operation called **addition** which assigns a vector

$$u + v \in V$$

to any two vectors $u, v \in V$, and

▶ an operation called **scalar multiplication** which assigns a vector

$$cu \in V$$

to each scalar $c \in \mathbb{R}$ and vector $u \in V$ such that the axioms on the following slides are satisfied.

Part 1: Vector Spaces

Definition of a vector space (2/2)

We require that the following conditions **V1–V8** are satisfied for all vectors $u, v, w \in V$ and scalars $c, d \in \mathbb{R}$:

V1.
$$u + v = v + u$$
 (commutativity of addition)

V2.
$$(u + v) + w = u + (v + w)$$
 (associativity of addition)

V3. There exists $\mathbf{0} \in V$, called the **zero vector** such that $u + \mathbf{0} = u$ for all $u \in V$,

V4. For each
$$u \in V$$
, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$

V5.
$$c(u+v) = cu + cv$$
 (distributivity I)

V6.
$$(c+d)u = cu + du$$
 (distributivity II)

$$V7. \ c(du) = (cd)u$$

V8.
$$1u = u$$

Example (\mathbb{R}^n is a vector space.)

We define

$$\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_1, \dots, x_n \in \mathbb{R} \right\}$$

with addition defined as
$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix} \text{ and }$$
$$\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$$

scalar multiplication defined as $c \begin{bmatrix} x_1 \\ \vdots \end{bmatrix} := \begin{bmatrix} cx_1 \\ \vdots \\ \vdots \end{bmatrix}$.

Then \mathbb{R}^n is a vector space. The proof is a quite tedious, but quite easy.

It would take too long to show that \mathbb{R}^n satisfies each of the 8 axioms. So we'll just verify the three of them.

V1.
$$u + v = v + u$$
 (commutativity of addition)

Part 1: Vector Spaces

Eg: \mathbb{R}^n is a vector space

V3. There exists $\mathbf{0}$, called the **zero vector**, such that $u + \mathbf{0} = u$ for all $u \in V$.

Part 1: Vector Spaces

Eg: \mathbb{R}^n is a vector space

V4. For each $u \in V$, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$.

For an integer $n \ge 0$, let \mathbb{P}_n consist of all polynomials

$$p(t) = a_0 + a_1 t + \cdots + a_n t^n$$

of degree at most n, where $a_0, \ldots, a_n \in \mathbb{R}$.

We can add polynomials in \mathbb{P}_n in the usual way:

$$(a_0 + a_1t + \dots + a_nt^n)$$

 $+ (b_0 + b_1t + \dots + b_nt^n)$
 $= (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n.$

Also,

$$cp(t) = ca_0 + ca_1t + \cdots + ca_nt^n$$

where $c \in \mathbb{R}$.

Claim: These operations turn \mathbb{P}_n into a vector space.

The reasoning again just boils down to to properties of real numbers.

Example

Function spaces Let \mathbb{D} be an arbitrary set.

Let *V* be the set of **all** functions $f: \mathbb{D} \to \mathbb{R}$.

Given $f,g\in V$ and $c\in\mathbb{R}$, we define $f+g\in V$ and $cf\in V$ via

$$(f+g)(x) := f(x) + g(x)$$

and

$$(cf)(x) := cf(x)$$

for $x \in \mathbb{D}$.

Claim: These operations turn V into a vector space.

Part 2: Not everything is a vector space

MA313 Week 2: Subspaces

Start of ...

PART 2: Not everything is a vector space

Part 2: Not everything is a vector space

So far, all of the examples we have looked at correspond to vector spaces. But not every set equipped with addition and scalar multiplication is a vector space.

Here are a few examples of things that are not vector spaces.

1. The set of vectors in \mathbb{R}^2 with strictly positive entries.

2. The set of vectors in \mathbb{R}^2 with non-negative entries.

Part 2: Not everything is a vector space

3. The set of polynomials of degree **exactly** 3.

MA313 Week 2: Subspaces

Start of ...

PART 3: Subspaces

One of the key concepts of vector spaces is that, given an example of a vector space, we can usually construct another, smaller one from it. These new smaller ones are called **subspaces**.

Definition (Subspace)

Let V be a vector space. A *subspace* of V is a subset of V which forms a vector space with respect to the same addition and scalar multiplication operations in V.

Example (The boring examples)

The "boring" subspaces of a vector space V are

- ▶ {0} and
- ▶ *V* itself.

Our definition said that, if H is a subspace of V then everything in H is also in V, and also that H is a subspace in its own right. However, we don't have to check if all eight axioms hold for H.

Fact

Let H be a subset of V. Then H is a subspace of V if and only if the following conditions are all satisfied:

- **▶ 0** ∈ *H*.
- ▶ H is closed under addition operation in V, i.e., for all $u, v \in H$, we have $u + v \in H$.
- ▶ H is closed under multiplication by scalars, i.e. for all $u \in H$ and $c \in \mathbb{R}$, we have $cu \in H$.

Example

Let

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \text{ with } x_1 + x_2 = \mathbf{0} \right\}.$$

Then H is a subspace of \mathbb{R}^2 .

Example

Decide (with justification) whether

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 + x_2 = \mathbf{1} \right\}$$

is a subspace of \mathbb{R}^2 .

Example (MA313 21/22 Semester 1 Exam, Q1(a)(i))

Decide, with justification, whether

$$H_1=\left\{egin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}\in\mathbb{R}^3: x_1=x_2, x_3=0
ight\} ext{ is a subspace of}\mathbb{R}^3.$$

(Note: we didn't do this one in class). Answer: Yes it is. To check

- (i) $\mathbf{0}$ is in H_1 , since, if $x_1 = x_2 = x_3 = 0$ then we have $x_1 = x_2$ and $x_3 = 0$ as needed.
- (ii) If $u \in H_1$ and $v \in H_1$, we can write $u = \begin{bmatrix} u_1 \\ -u_1 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ -v_1 \\ 0 \end{bmatrix}$. Then, if w = u + v we get $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ -u_1 v_1 \\ 0 \end{bmatrix}$. So $w_1 + w_2 = (u_1 + v_1) + (-u_1 v_1) = (u_1 u_1) + (v_1 v_1) = 0$, and $w_3 = 0$.
- (iii) Similarly, can show $cu \in H_1$.

Example (MA313 Semester 1 Exam, Q1(a)(ii))

Decide, with justification, whether

$$H_2 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 > 0 \right\}$$

is a subspace of \mathbb{R}^3 .

Example (MA313 Semester 1 Exam, Q1(a)(iii))

Decide, with justification, whether

$$H_3 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : x_1 + x_2 \ge 0, x_3 = 0 \right\}$$

is a subspace of \mathbb{R}^3 .

Part 4: More examples of subspaces

MA313 Week 2: Subspaces

Start of ...

PART 4: More examples of subspaces

Recall

 $\mathbb{P}_n = \{a_0 + a_1t + \dots + a_nt^n : a_0, \dots, a_n \in \mathbb{R}\}$ is the vector space of polynomials of degree at most n in the variable t.

Definition (All the polynomials)

$$\mathbb{P}:=\bigcup_{n=0}^{\infty}\mathbb{P}_n=\{p(t)=a_0+a_1t+\cdots+a_nt^n:n\geqslant 0;\ a_0,\ldots,a_n\in\mathbb{R}\}$$
 is the vector space of *all* polynomials in t (without any bounds on the degree!).

Here, the addition and scalar multiplication in $\mathbb P$ are just the usual operations: we add and multiply as expected.

We now see that...

- ▶ \mathbb{P}_m is a subspace of \mathbb{P}_n if and only if $m \leq n$.
- ▶ \mathbb{P}_n is a subspace of \mathbb{P} for all $n \ge 0$.

Note that

$$\mathbb{P}_0 = \mathbb{R} = ext{constant polynomials}$$

$$= \{ p(t) \in \mathbb{P} : p'(t) = 0 \}$$

where the **derivative** of $p(t) = a_0 + a_1 t + \cdots + a_n t^n$ is

$$p'(t) = a_1 + 2a_2t + \cdots + na_nt^{n-1}.$$

More generally, we can define \mathbb{P}_n by

$$\mathbb{P}_n = \left\{ p(t) \in \mathbb{P} : p^{(n+1)}(t) = 0 \right\}.$$

That is, *another* approach to describing the subspaces \mathbb{P}_n of \mathbb{P} is to look at the space of solutions of certain equations.

Example (Continuous functions)

Let $\mathbb{D}\subseteq\mathbb{R}$ be a subset. Let V be the vector space of all functions $\mathbb{D}\to\mathbb{R}$ from Week 1, where, as we said

$$(f+g)(x) = f(x) + g(x) \text{ for } f,g \in V \text{ and } x \in \mathbb{D}$$

▶
$$(cf)(x) = cf(x)$$
 for $f \in V$ and $c \in \mathbb{R}$

Let

$$C(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{R} : f \text{ is continuous}\} \subseteq V.$$

With a little calculus, one can show that $C(\mathbb{D})$ is a subspace of V.

Part 5: Linear combinations

MA313 Week 2: Subspaces

Start of ...

PART 5: Linear combinations

Part 5: Linear combinations

A question

So far we have been able to check if a given space is indeed a subspace of some other vector space.

It is natural to wonder: how can we make those subspaces in the first place?

Equivalently: How can we describe all subspaces of a given vector space?

Part 5: Linear combinations

Example (Subspaces of \mathbb{R}^2)

There are precisely three *types* of subspaces of \mathbb{R}^2 :

- **▶** {0},
- $ightharpoonup \mathbb{R}^2$,
- ▶ lines through the origin.

How we build subspaces?

There are two possible approaches.

- ► **Top down:** start with the full space, and look at all vectors that have "suitable properties".
- ▶ **Bottom up:** start with some collection of vectors and consider the subspace that they "span".

Definition (Linear combinations)

A **linear combination** of vectors u_1, \ldots, u_p in some vector space is a vector of the form

$$c_1u_1+\cdots+c_pu_p$$

for scalars $c_1, c_2, \ldots, c_p \in \mathbb{R}$.

Example

In \mathbb{R}^2 , $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example

Show that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is **not** linear combination of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -6 \end{bmatrix}$ in \mathbb{R}^2 .

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$?

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = 2t$?

Define the 2×3 matrix

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}.$$

For any vector

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix},$$

the vector Ax is a linear combination of the vectors

$$\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \quad \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \quad \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

MA313 Week 2: Subspaces

Start of ...

PART 6: Spans

Definition (SPAN)

Given vectors u_1, \ldots, u_p in some vector space V, their **span** is

$$\mathrm{span}\{u_1,\ldots,u_p\} := \{c_1u_1 + \cdots + c_pu_p : c_1,\ldots,c_p \in \mathbb{R}\}.$$

In other words, $\operatorname{span}\{u_1,\ldots,u_p\}$ is the set of all linear combinations of u_1,\ldots,u_p within V.

Theorem

 $\operatorname{span}\{u_1,\ldots,u_p\}$ is a subspace of V.

In fact, more than this is true: one can show that $\mathrm{span}\{u_1,\ldots,u_p\}$ is the "smallest" subspace of V which contains each of u_1,\ldots,u_p .

Immediate consequences

- Every choice of vectors u₁,..., u_p provides us with an example of a subspace of V. (However, different sequences of vectors may well span the same subspace!)
- ▶ If we can show a *subset* of *V* is the a **span of some set of vectors**, then we we have shown it is a subspace!

Show that
$$H = \left\{ \begin{vmatrix} a - 3b \\ b - a \\ a \\ b \end{vmatrix} : a, b \in \mathbb{R} \right\}$$
 is a subspace of \mathbb{R}^4 .

Example (From 2018/2019 exam paper)

Find vectors $u, v, w \in V$ with $V = \operatorname{span}\{u, v, w\}$, where V is the subspace of \mathbb{R}^4 consisting of all vectors of the form

$$\begin{bmatrix} 2a - c \\ -a \\ b + c \\ a - b \end{bmatrix}$$

for $a, b, c \in \mathbb{R}$.

Example: Care is required!

Is
$$H = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 .

We now know that the span of any subset of vectors in a vectors space is itself a subspace (and, so, is a vector space). But...

Question

Is every subspace the span of some (collection of) vectors?

Part 7: Exercises

Q1. Let $M_{m \times n}$ be the set of $m \times n$ matrices with real entries. Then $M_{m \times n}$ is a vector space with respect to the following operations:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} & \ddots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ b_{m1} & \ddots & b_{mn} \end{bmatrix}$$

$$:= \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} + b_{m1} & \ddots & a_{mn} + b_{mn} \end{bmatrix}$$

$$c \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} := \begin{bmatrix} ca_{11} & \dots & ca_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ ca_{m1} & \dots & ca_{mn} \end{bmatrix}$$

Part 7: Exercises

These are just the usual operations of adding matrices and multiplying a matrix by a scalar. Verify that the axioms V1–V8 are really satisfied.

Q2. For each of the following sets, determine, with justification, if it is a subspace of \mathbb{R}^2 .

$$H_1 = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 x_2 \ge 0 \right\}$$

$$H_2 = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 x_2 \ge 0 \right\}$$

$$H_3 = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 = 0 \right\}$$