Applied Deep Learning Segmentation Networks

Mark Schutera

Karlsruhe Institute of Technology | ZF Friedrichshafen AG | Hochschule Ravensburg-Weingarten

Course overview

- 1. Deep Learning Foundations
- 3. Transfer Learning and Object Detection
- **5. Segmentation Networks**
- 8. Deep Reinforcement Learning
- 10. Generative Adversarial Networks

Internal

12. Recurrent Neural Networks

Course overview

One page on introduction, methods, dataset

Deadline 3. Lecture

Intermediate presentation

Ten minutes on achievements, problems, next steps

Due 7. Lecture

Final presentation

Code and results
Due 14. Lecture

Final documentation

Paper and code on github or jupyter notebook

Deadline 14. Lecture

Course features

Sli.do

Every question matters.

Get the app.

Ask questions (with slide number) or vote on other students' questions during the lecture.

And give direct feedback.

#TOBEDETERMINED

Questions will be covered immediately or in the next lecture in more depth.

Github

Find slides, tutorials, flashcards and references on Github.

https://github.com/schutera/ DeepLearningLecture Schutera

You found typos, additional material such as links, algorithms, papers, literature or want to contribute to the slides and lecture notes..

..Feel free to contribute, e-mail me.

Course features

Sli.do

Every question matters.

Get the app.

Ask questions (with slide number) or vote on other students' questions during the lecture.

#TOBEDETERMINED

Questions will be covered directly or in the next lecture in more depth.

Github

Typos, additional material such as links, algorithms, paper, literature, lecture notes..

..Feel free to contribute.

Grade Bonus .3

Prepare flashcards based on Ian Goodfellow's Deep Learning Book

- Commit to flashcard set by emailing me, first come first serve
- Must be comprehensive

This lecture in one slide

Introduction to segmentation

Segmentation a problem statement Applications for segmentation Conventional segmentation approaches

Segmentation with neural networks

Introduction – Segmentation a problem statement

Classification

Classification + Localization

Object Detection

Object Tracking

Introduction – Segmentation a problem statement

Segmentation is classification on pixel-level, which results in super-pixels or segments or groups of pixels based on some criteria.

Semantic Segmentation

Instance Segmentation

Introduction – Applications for segmentation

Autonomous Driving

- Scene understanding
- Understanding of shapes
- Supports sensor fusion with point cloud sensors
- Free space detection

Geo Analytics Medical Imaging

https://www.cityscapes-dataset.com/

Introduction – Applications for segmentation

Autonomous Driving

Geo Analytics

- Building structures
- Road network analysis
- Wildfire detection
- Water supply tracking
- Real time crisis management
- Weather prediction

https://github.com/mapbox/robosat

Internal

Medical Imaging

Introduction – Applications for segmentation

Autonomous Driving Geo Analytics

Medical Imaging

- Tissue localization and analysis
- Volume approximations
- Surgery planning
- Temporal tumor or tissue development
- Tooling for drug testing

https://osf.io/snb6p/

Image segmentation is a well researched field.

In order to design neural networks it is a good thing to really understand the task at hand.

Thresholding
Edge detection
Clustering
Region growing

Thresholding

The simplest method of image segmentation is called the thresholding method.

This method is based on a threshold value to turn a gray-scale image into a binary image (mask).

Usually this is just one step of many.

Edge detection Clustering Region growing

Thresholding on Zebrafish for eye segmentation

Lena Test image

Lena, the 'hello world!' of image processing. 330x330

Cover photo of 1972 Playboy magazine of the Swedish model Lena Söderberg.

Since then Lena was a guest at several IEEE conferences. The image also sparked discussions on gender-equality in the male-dominated field of engineering.

It is a good test image because of its detail, flat regions, shading, and texture.

https://en.wikipedia.org/wiki/Lenna

Thresholding

Edge detection

Segment boundaries and edges are closely related.

Since there is often a large gradient at the segment boundaries.

Canny Edge Detection

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Clustering
Region growing

Sobel Operators for Edge Detection

Thresholding

Edge detection

Often edge detectors are combined with morphological operators to close the detected edges.

Clustering
Region growing

Edge Detection for segmentation

Thresholding Edge detection

Clustering (Color quantization)

K-means with 3 features (R,G,B) and K centroids.

The centroids are iteratively adjusted until convergence.

After the clustering, the centroid values are applied to the pixels in their cluster.

Region growing

Clustering for K=4 (top) and K=8 (bottom)

Thresholding
Edge detection
Clustering

Thresholding, Find valleys, Region growing for Segmentation

Region growing

Any image can be viewed as a topographic surface due to the gradients in the image. You start by finding valleys and filling them with different colored water (labels). As the water rises, depending on the peaks (gradients) nearby, water from different valleys, will get in contact, that is where you build barriers. The barriers give the resulting segmentation

References

- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
- [2] Andrej Karpathy. Cs231n: Convolutional neural networks for visual recognition. http://cs231n.github.io/neural-networks-3/, 2018. Zugriff: 20.01.2018.
- [3] Schutera, Mark, Steffen Just, Jakob Gierten, Ralf Mikut, Markus Reischl, and Christian Pylatiuk. 2019. "Machine Learning Methods for Automated Quantification of Ventricular Dimensions." OSF. March 28. osf.io/snb6p.
- [4] Mark Schutera, Thomas Dickmeis, Marina Mione, Ravindra Peravali, Daniel Marcato, Markus Reischl, Ralf Mikut, and Christian Pylatiuk. Automated phenotype pattern recognition of zebrafish for high-throughput screening. *Bioengineered*, 7(4):261–265, 2016.
- [5] Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

This lecture in one slide

Introduction to segmentation

Segmentation with neural networks

Basic structure
Overview state-of-the-art
Datasets and benchmarking
Deep dive U-Net

Why classical segmentation approaches

- Interpretability
- Only a few samples needed
- No labeling needed
- No training needed
- Usually better runtime during inference

Why not?

https://osf.io/snb6p/

Why classical segmentation approaches

Why segmentation by neural networks?

- Do generalize better
- Feature engineering has a limited capacity to capture semantics
- Feature engineering is expensive and time consuming

https://osf.io/snb6p/

Feature Representation by Convolution

Idea is to classify each pixel of an input image by representation learning

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

A convolutional layer is not fully connected, but has a narrowed down receptive field (e.g. 3x3).

The parameters of each filter are spatially shared: A feature that is useful in one place, ought to be useful in another, too.

Downsampling
Upsampling
Parameter sharing

- Depth: number of filters
- Stride: filter step size (when we "slide" it)
- Padding: zero-pad the input

https://selfdrivingcars.mit.edu/

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Zero-Padding is adding zero-valued pixel to the image border (gray area).

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

0	0	-1	
-1	0	0	
-1	-1	-1	Filte

Bias

-4	-4	0	
-3	-4	ကု	
0	-3	-1	Ou

Output

Zero-padded image

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

0	0	-1					
-1	0	0					
-1	-1	-1	Filter				
0 Bias							

0 0 0 0 0 0 0 0 Amount of filters or convolution depth: 1Filter step size or Stride: 2Zero-padded image

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. We want a lot of filters!

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. And we want to go deep!

Convolutions

Downsampling

Convolutions at original image resolution are computational expensive: Filter dimensions x image dimensions x number of filters x number of input channels.

Motivating a convolutional encoder-decoder structure and Downsampling.

Upsampling Parameter sharing

Convolutions

Downsampling

Convolutions at original image resolution are computational expensive: Filter dimensions x image dimensions x number of filters x number of input channels.

Motivating a convolutional encoder-decoder structure and Downsampling.

Low-res: $D_{2} \times H/4 \times W/4$ High-res: High-res: $D_1 \times H/2 \times W/2$ D₄ x H/2 x W/2 Parameter sharing

http://cs231n.github.io/

Med-res:

 $D_0 \times H/4 \times W/4$

Med-res:

D₂ x H/4 x W/4

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Stride 1

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Stride 1

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Convolutions

Downsampling

Max Pooling

Max Pooling 3x3 Stride 3

Upsampling Parameter sharing

Convolutions

Downsampling

Max Pooling

Intuition is to decrease the resolution while keeping the strongest features of each channel.

Introducing a location invariance.

Upsampling Parameter sharing

https://selfdrivingcars.mit.edu/

Convolutions Downsampling

Upsampling

Classification needs to happen in original image resolution

Motivating Upsampling inside the network structure.

Parameter sharing

Convolutions Downsampling

Upsampling

Nearest neighbor

3x3 Stride 3

6	6	6	7	7	7
6	6	6	7	7	7
6	6	6	7	7	7
9	9	9	8	8	8
9	9	9	8	8	8
9	9	9	8	8	8

Convolutions Downsampling

Upsampling

Bed of Nails

3x3 Stride 3

6	0	0	7	0	0
0	0	0	0	0	0
0	0	0	0	0	0
9	0	0	8	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Convolutions Downsampling

Upsampling

Max Unpooling

Corresponding pairs of downsampling and upsampling layers.

Use position of pooling layer for unpooling

5	4	3	3	1	7
3	4	1	6	4	4
6	2	5	6	6	4
2	6	9	7	6	3
4	8	5	6	8	2
3	1	7	7	6	3

4	5	
7	2	

6	7	
9	8	

0	0	0	0	0	5
0	0	0	0	0	0
4	0	0	0	0	0
0	0	7	0	0	0
0	0	0	0	2	0
0	0	0	0	0	0

Convolutions Downsampling

Upsampling

Transpose convolution

Learnable Upsampling, also known as: Upconvolution, or Deconvolution (bad terminology)

Stride: 3

Padding: 1

Convolutions
Downsampling
Upsampling

Skip connections

Trade-off between classification and localization

- High level features from later in the network, enable high classification performance, since they are more discriminative and contain more useful semantic information.
- On the other hand, those deep features have low resolution and, thus pose a problem for localization performance.

Convolutions
Downsampling
Upsampling

Skip connections

Combining low-level features, which have high localization accuracy

With the high-level features, which have are descriptive but low-resolution.

http://cs231n.github.io/

Last layer

Last Layer results in a tensor with H x W image resolution and a depth of C: Number of classes to segment.

The last layer should encode the values into a range of values of (0;1). Either by softmax or sigmoid function.

http://cs231n.github.io/

Cross-entropy
Dice-coefficient

Neural Network Activation Functions - Review

Sigmoid

$$f(z) = 1 - \frac{1}{1 + e^{-x}}$$
$$f'(z) = (1 - f(z))f(z)$$

Binary classification only.

The probability sum does not need to be one.

http://cs231n.github.io/neural-networks-1/

Neural Network Activation Functions - Review

Softmax

Normalized exponential function

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Used for multi-class segmentation.

Probability sum will be 1.

oefore	after		
2.0	0.7		
1.0	0.2		
0.1	0.1		

Last layer

Binary Cross-entropy

$$J= \ -rac{1}{N}\sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight].$$

Heavily penalizes opposing predictions.

And gives rise to the problem of imbalanced classes.

Dice-coefficient

Last layer

Binary Cross-entropy

$$J= \ -rac{1}{N}\sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

Heavily penalizes opposing predictions.

And gives rise to the problem of imbalanced classes.

Dice-coefficient

Last layer Binary Cross-entropy

dice
$$loss = 1 - \frac{2\sum(\tilde{\mathbf{y}} \odot \mathbf{y}_{seg}) + 1}{\sum(\tilde{\mathbf{y}}^2) + \sum(\mathbf{y}_{seg}^2) + 1}$$
.

Dice-coefficient

Similar to the IoU (Intersection over union), and thus easy to interpret.

+1 is a smoothing factor for numeric stability.

More robust with respect to imbalanced classes.

Last layer Binary Cross-entropy

dice
$$loss = 1 - \frac{2\sum(\tilde{\mathbf{y}} \odot \mathbf{y}_{seg}) + 1}{\sum(\tilde{\mathbf{y}}^2) + \sum(\mathbf{y}_{seg}^2) + 1}$$
.

Dice-coefficient

Similar to the IoU (Intersection over union), and thus better interpretability.

More robust with respect to imbalanced classes.

error 0.38

Thought experiment

Assumption:

The maximum number of class 1 pixels in a single sample is 1.

This simulates an extreme class imbalance ratio of 1 to 8.

Thought experiment

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single pixel of class 1 and fails?

Thought experiment

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single pixel of class 1 and fails?

BCE 0.22

Internal

DL 0.66

Thought experiment

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single class 1?

What is the maximal expected error if the model predicts class 2 only?

Thought experiment

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single class 1?

What is the maximal expected error if the model predicts class 2 only?

BCE 0.11 DL 0.5

Thought experiment

How high is the pressure to get locked in a local minimum if predictions are initially random?

Thought experiment

How high is the pressure to get locked in a local minimum if predictions are initially random?

43 %

Thought experiment

How high is the pressure to get locked in a local minimum if predictions are initially random?

How to deal with imbalanced classes

Choose dice-loss over cross-entropy.

How to deal with imbalanced classes

Choose dice-loss over cross-entropy.

Balance your cross-entropy according to the class imbalance.

In our case
$$\beta = 7/8$$

$$ext{BCE}\left(p,\hat{p}
ight) = -\left(eta p \log(\hat{p}) + (1-eta)(1-p) \log(1-\hat{p})
ight)$$

How to deal with imbalanced classes

Choose dice-loss over cross-entropy.

Balance your cross-entropy according to the class imbalance.

Extend the dice-loss to the Tverski loss. Which weighs the influence of the False Positives and False Negative.

$$\mathrm{DL}\left(\mathbf{p},\mathbf{\hat{p}}\right) = \frac{\langle \mathbf{p},\mathbf{\hat{p}}\rangle}{\langle \mathbf{p},\mathbf{\hat{p}}\rangle + \beta\langle \mathbf{1} - \mathbf{p},\mathbf{\hat{p}}\rangle + (1-\beta)\langle \mathbf{p},\mathbf{1} - \mathbf{\hat{p}}\rangle}$$

In our case $\beta = 1/8$

PASCAL Visual Object Classes

Pixel-wise segmentation of objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects).

Annotations

Person, animals, vehicles, indoor.

Number of samples

6929 Pixel-wise instance level annotations.

Metric

Mean Intersection over Union.

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

Common Objects in Context

COCO-Stuff augments 164K images with pixel-level stuff annotations for semantic segmentation.

Annotations

91 stuff classes (wall, grass, etc.) and 80 thing classes (person, elephant, etc.), as well as captions.

Number of samples

164000 dense pixel-level annotations and instance level annotations for things.

Metric

Mean Intersection over Union.

https://github.com/nightrome/cocostuff

MedakaHeart

Dataset to enable heart ventricle segmentation in Medaka fish for quantification of ventricular dimensions.

Annotations

Medaka heart ventricle.

Number of samples

1725 binary pixel-level annotations.

Metric

Dice coefficient, ventricular dimensions.

https://osf.io/snb6p/

Cityscapes

The Cityscapes Dataset focuses on semantic understanding of urban street scenes.

Annotations

City scene semantic and instance-wise pixel annotations (road, person, pole, etc.).

Number of samples

30 classes in 5000 fine and 20000 coarse annotated images.

https://www.cityscapes-dataset.com/

Metric

Mean Intersection over Union and Instance Intersection over Union.

ISBI Segmentation Challenge

Goals is the automatic segmentation of neural structure.

Annotations

Transmission Electron Microscopy (ssTEM) of the Drosophila first instar larva ventral nerve cord (VNC).

Number of samples

30 consecutive images and the labelled boundary map.

http://brainiac2.mit.edu/isbi_challenge/

Metric

Rand Scoring (similarity measurement between partitions).

So how many samples do we need for segmentation?

So how many samples do we need for segmentation?, **Is an ill-posed question.**

So how many samples do we need for segmentation?, Is an ill-posed question.

Variance of the dataset

If your data is sequential or otherwise very similar you will need more samples.

http://brainiac2.mit.edu/isbi_challenge/

Instances per sample Complexity of the task

So how many samples do we need for segmentation?, Is an ill-posed question.

Variance of the dataset

Instances per sample

Data augmentation approaches, such as cropping can harness the availability of multiple instances in one sample.

http://brainiac2.mit.edu/isbi_challenge/

https://osf.io/snb6p/

Complexity of the task

So how many samples do we need for segmentation?, Is an ill-posed question.

Variance of the dataset Instances per sample

Complexity of the task

The more complex the task, such as variance in shape, orientation, or intra sample variance, the more data is necessary to generalize well enough.

http://brainiac2.mit.edu/isbi_challenge/

https://osf.io/snb6p/

Architectures over time

Fully Convolutional Network	2015
ParseNet	2015
Convolutional and Deconvolutional Networks	2015
U-Net	2015
Feature Pyramid Network	2016
Mask R-CNN	2017
DeepLab	2017

Fully Convolutional Network

First end-to-end trained Fully Convolutional Network for image segmentation.

Transfer Learning approach, modifying well known architectures (such as VGG16).

Ending with an upsampling layer with one channel per class.

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell
UC Berkeley
{jonlong, shelhamer, trevor}@cs.berkeley.edu

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

TensorFlow Hub

A library *tensorflow_hub* for reusable machine learning modules in TensorFlow.

Such as text embedding, image feature vectors, and video classification.

https://tfhub.dev/

```
import tensorflow hub as hub
def create module graph (module spec):
     height, width = hub.get expected image size(module spec)
     with tf.Graph().as default() as graph:
       resized input tensor = tf.placeholder(tf.float32, [None, height, width, 3])
       m = hub.Module(module spec)
       bottleneck tensor = m(resized input tensor)
       wants quantization = any(node.op in FAKE QUANT OPS
                                for node in graph.as graph def().node)
     return graph, bottleneck tensor, resized input tensor, wants quantization
```

ParseNet

The global context of an image helps segmentation.

This is done by depicting the context in a global feature, which is later combined with the feature map.

https://arxiv.org/pdf/1506.04579.pdf

Convolutional and Deconvolutional Networks

Introducing a encoder-decoder architecture.

From the convolutional encoding, the deconvolution branch generates a dense pixel-wise class probability map, by successive:

Unpooling, deconvolutions, and rectifications.

https://arxiv.org/pdf/1505.04366.pdf

Feature Pyramid Network

Introducing a bottom-up pathway to generate features at different scales.

Combined with a top-down pathway doing the upsampling, while infusing the high-level features through lateral connections.

On each stage of the pyramid a segmentation mask is predicted.

https://arxiv.org/pdf/1612.03144.pdf

Mask R-CNN

Using a Region Proposal Network to extract a manageable number of regions of interest.

A multi-task loss, combining losses for the bounding box coordinates, the class prediction and the segmentation mask improve the performance.

https://arxiv.org/pdf/1703.06870.pdf

DeepLabv3

Combining Atrous Convolutions (dilated convolutions) with a pyramidal architecture.

Atrous convolutions replace a combination of pooling, convolution and unpooling.

https://arxiv.org/pdf/1706.05587.pdf

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate or rate.

Defining a spacing between the values in a filter map.

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate or rate.

Defining a spacing between the values in a filter map.

Filter 3x3

Dilation rate: 2

Stride: 1

Padding: 1

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate or rate.

Defining a spacing between the values in a filter map.

This enhances the field of view while keeping the computational cost low.

Machine Learning Methods for Automated Quantification of Ventricular Dimensions

Mark Schutera¹, Steffen Just², Jakob Gierten^{3, 4}, Ralf Mikut¹, Markus Reischl¹, Christian Pylatiuk^{1*}

- 1 Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein, Germany
- 2 Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- **3** Department of Pediatric Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- 4 Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

Machine Learning Methods for Automated Quantification of Ventricular Dimensions

Project Description

Data Recording

Data Annotation

Data Augmentation

Deep Dive U-Net

Ventricular Dimensions

Results

Discussion

Project Description

Medaka fish contribute to the understanding of human cardiovascular diseases. In this context the quantification of cardiac functional parameters is fundamental.

Project Description

Medaka fish contribute to the understanding of human cardiovascular diseases.

In this context the quantification of cardiac functional parameters is fundamental.

Medaka prove to be a valuable whole organismbased in vivo model due to the visibility of the heart and other organs.

Project Description

Medaka fish contribute to the understanding of human cardiovascular diseases. In this context the quantification of cardiac functional parameters is fundamental.

Medaka prove to be a valuable whole organism-based in vivo model due to the visibility of the heart and other organs.

Automated screening pipelines are thus invaluable for biomedical research.

Development of a pipeline for automated measurement and quantification of important cardiac functional parameters.

Project Description

Data Recording

Medaka larvae were imaged 1-2 days after hatching.

http://mepd.cos.uni-heidelberg.de/mepd/forms/developmentalStages.jsf

Medaka image sequence

Manual ventricle segment annotation

Data Recording

Hatchlings were immobilized in 3% methylcellulose and recorded at room temperature on a stereomicroscope SMZ18 (Nikon) from ventral and lateral

Stage 40 mt ventral

Medaka image sequence

Manual ventricle segment annotation

http://mepd.cos.uni-heidelberg.de/mepd/forms/developmentalStages.jsf

Data Recording

At zoom magnification of 6x with 640x480 pixels (1 px = 1,115 μ m) and 15 frames per second (fps).

Medaka image sequence

Manual ventricle segment annotation

Data Recording

To reduce the computing effort, the images are converted to grayscale

Medaka image sequence

Manual ventricle segment annotation

Data Recording

To reduce the computing effort, the images are converted to grayscale and rescaled to 256×256 px (.tif).

Medaka image sequence

Manual ventricle segment annotation

Data Recording

The data is extracted from 63 videos in total comprising approx. 115 sec of image sequences or 1725 frames.

Medaka image sequence

Manual ventricle segment annotation

Data Recording

The data is extracted from 63 videos in total comprising approx. 115 sec of image sequences.

Training and Validation Set

725 frames from 29 ventral sequences 500 frames from 20 lateral sequences

Medaka image sequence

Manual ventricle segment annotation

Data Recording

The data is extracted from 63 videos in total comprising approx. 115 sec of image sequences.

Test Set Ventral

150 consecutive frames from a single sequence 5x25 consecutive frames from 5 sequences

Medaka image sequence

Manual ventricle segment annotation

Data Recording

The data is extracted from 63 videos in total comprising approx. 115 sec of image sequences.

Training Set Lateral

150 consecutive frames from a single sequence 5x25 consecutive frames from 5 sequences

Medaka image sequence

Manual ventricle segment annotation

Data Annotation

Each frame of the dataset has been annotated individually by manually labeling the present heart segment / ventricle, using the brush-tool of the pixel annotation tool v1.3.1.

https://github.com/abreheret/PixelAnnotationTool

Medaka image sequence

Manual ventricle segment annotation

Data augmentation

Data Annotation

The annotations are binary image masks (.tiff) whereas ground truth pixels are assigned to 1 and background pixels to 0.

https://osf.io/snb6p/

Medaka image sequence

Manual ventricle segment annotation

Data augmentation

Data Annotation

The annotations are binary image masks (.tif) whereas ground truth pixels are assigned to 1 and background pixels to 0.

Time devoted per frame **25 seconds**

Time devoted for the dataset **14 hours**

https://osf.io/snb6p/

Medaka image sequence

Manual ventricle segment annotation

augmentation

Data Augmentation

Confronted with the great effort required for data annotation, and the subsequent low amount of available ground truth (1225 frames),

data augmentation methods are applied.

Manual ventricle segment annotation

Data augmentation

> Train egmentation network

Data Augmentation

The samples and the according ground truth are randomly augmented during training, by applying a set of augmentation methods.

Manual ventricle segment annotation

horizontal flips vertical flips Zoom [0;0.1]

Data augmentation

Train segmentation network

Data Augmentation

The samples and the according ground truth are randomly augmented during training, by applying a set of augmentation methods.

Manual ventricle segment annotation

height and width shift [0;0.05]

Data augmentation

Train segmentation network

Deep Dive U-Net

The U-Net is a symmetric, deep convolutional neural network.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Data gmentation

Train segmentation network

Ventricular dimension estimation

Deep Dive U-Net

The down sampling path computes high-level features with semantic information.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Data Igmentation

Train segmentation network

Ventricular dimension estimation

Deep Dive U-Net

The up sampling path computes spatially localizes patterns in the image.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Data Igmentation

Train segmentation network

Ventricular dimension estimation

Deep Dive U-Net

Both paths are brought together by skip connections.

Combining semantic patterns with localization information.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Data gmentation

Train segmentation network

Training Parameters

Adam optimizer with a learning rate of $\epsilon=1e^{-5}$ Batch size of 8 Training schedule 60 epochs 300 iterations per epoch

Data augmentation

Batch normalization in the convolution layers

Dropout in the bottleneck layers

Data ugmentation

Train segmentation network

Dice loss

Similar to the IoU (Intersection over union), and thus easy to interpret.

+1 is a smoothing factor for numeric stability.

Robust with respect to imbalanced classes.

dice
$$loss = 1 - \frac{2\sum(\tilde{\mathbf{y}} \odot \mathbf{y}_{seg}) + 1}{\sum(\tilde{\mathbf{y}}^2) + \sum(\mathbf{y}_{seg}^2) + 1}.$$

Data mentation

Train segmentation network

Ventricular dimensions

Heart rate Ventricular volumes Fractional shortenings

are linked to the **cardiovascular cycle**.

Train segmentatior network

To estimate the ventricular dimensions, the frame-based predicted segments have to be **transferred into the temporal domain.**

Train segmentation network

Ventricular dimension estimation

To estimate the ventricular dimensions, the frame-based predicted segments have to be transferred into the temporal domain.

And we need to determine the cardiovascular cycle frequency.

For example through a feature such as the **segment area** *a* **in px over time**

$$a^{(t)} = \sum_{u=0}^{image} \sum_{v=0}^{image} (\mathbf{y}_{seg}(u, v))^{(t)}$$

Train segmentation network

To estimate the ventricular dimensions, the frame-based predicted segments have to be transferred into the temporal domain.

Train segmentation network

And we need to determine the cardiovascular cycle frequency.

For example through a feature such as the **segment area** *a* **in px over time**

Ventricular dimension estimation

$$a^{(t)} = \sum_{u=0}^{image} \sum_{v=0}^{image} (\mathbf{y}_{seg}(u, v))^{(t)}$$

Other features could be minor axis, major axis, equivalent diameter, and so on

To estimate the ventricular dimensions, the frame-based predicted segments have to be transferred into the temporal domain.

And we need to determine the cardiovascular cycle frequency.

And a sliding window approach for **segment area peak detection**

Train segmentation network

What do the peaks mean?

Diastolic frame: Maximum heart relaxation with maximal heart volume

Systolic frame: Maximum heart tension with minimal heart volume

ground truth

ground truth

diastolic frame

D1

major axis

minor axis

minor axis

minor axis

prediction

9k px

9k px

5x

9k px

9

Train segmentation network

Heart rate

The heart rate (HR) is consequently estimated from, offset o the amount of frames between two systolic or diastolic frames, which correspond to one heartbeat.

The beats per frame are subsequently transformed into the time space by compensating for the sample frequency f = 15fps.

$$HR = \frac{f}{o}$$

Ventricular volumes Fractional shortenings Train segmentation network

Ventricular dimension estimation

Heart rate

Ventricular volumes

D1
major axis
minor axis

Train segmentation network

Ventricular dimension estimation

are approximated by a prolate spheroidal shape, based on the major and minor axis of the predicted heart segment. The minor axis e_{minor} and major axis e_{major} serve as semi-diameter:

$$V = \frac{1}{6} \pi e_{minor}^2 e_{major}$$

Fractional shortenings

Heart rate Ventricular volumes Train segmentation network

Fractional shortenings

is the fraction of a diastolic dimension (D_{dia}) that is lost in systole (D_{sys}).

The most important fractional shortening is the shortening of the ventricles volume, or ejection fraction is thus given by the percentage of volume change between a diastolic frame and its subsequent systolic frame.

Ventricular dimension estimation

$$V = \frac{V_{dia} - V_{sys}}{V_{dia}}$$

Results

Automated heart segmentation

Detection rate for diastolic / systolic frame pairs is 100%.

Mean error 0.53 frames and max error is 1.0 frames.

(Ground truth is in brackets)

Current hear	diastolic frame;	heart rate $[bps]$	minor fractional	major fractional
beat	systolic frame		shortening [%]	shortening [%]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	2; 6 (2; 7) 11; 15 (11; 16) 19; 23 (19; 24) 28; 31 (28; 32) 36; 42 (36; 40) 45; 49 (45; 49) 53; 59 (54; 58) 62; 65 (62; 66) 70; 74 (70; 76) 78; 84 (79; 84) 87; 92 (88; 93) 96; 100 (96; 101) 104; 109 (104; 109) 112; 118 (113; 117) 121; 126 (122; 125) 130; 134 (130; 135) 138; 143 (139; 143) 146; 151 (147; 153)	1.50 (1.50) 1.67 (1.67) 1.58 (1.58) 1.46 (1.67) 1.69 (1.50) 1.52 (1.50) 1.82 (1.67) 1.58 (1.52) 1.52 (1.58) 1.58 (1.50) 1.58 (1.67) 1.58 (1.67) 1.58 (1.58) 1.58 (1.58) 1.58 (1.58) 1.58 (1.52) 1.58 (1.52) 1.58 (1.52) 1.58 (1.52) 1.58 (1.52) 1.59 (1.50)	41.33 (47.29) 40.87 (30.90) 28.57 (48.92) 29.37 (43.21) 42.56 (45.43) 39.36 (42.56) 33.81 (45.71) 38.61 (47.74) 50.33 (43.99) 44.15 (49.85) 39.93 (45.48) 44.27 (47.76) 47.96 (42.90) 38.71 (46.30) 41.75 (44.24) 20.39 (52.80) 43.92 (48.11) 35.01 (36.93)	52.18 (38.80) 57.58 (38.69) 53.46 (34.57) 47.16 (28.68) 60.73 (41.05) 58.66 (31.75) 61.26 (34.37) 58.32 (49.29) 53.06 (37.22) 55.30 (37.22) 55.30 (34.15) 59.27 (41.57) 64.93 (20.96) 55.37 (22.83) 59.46 (37.15) 52.80 (37.61) 56.59 (35.89)
mean		1.59 (1.57)	38.93 (45.01)	55.98 (35.85)
std		0.08 (0.07)	7.10 (4.65)	4.98 (6.62)
median		1.59 (1.58)	38.93 (45.59)	55.98 (37.19)
lower quartil		1.53 (1.50)	7.10 (43.40)	4.98 (32.41)
upper quartil		1.58 (1.65)	7.10 (47.75)	4.98 (39.35)

Results

Automated heart segmentation Detection rate 100% Max detection error is 1 frame

Ventricular dimension estimation is robust over multiple cardiovascular cycles.

Current heart beat	diastolic frame; systolic frame	heart rate $[bps]$	minor fractional shortening [%]	major fractional shortening [%]
1.	2; 6 (2; 7)	1.50 (1.50)	41.33 (47.29)	52.18 (38.80)
2.	11; 15 (11; 16)	1.67 (1.67)	40.87 (30.90)	57.58 (38.69)
3.	19; 23 (19; 24)	1.58 (1.58)	28.57 (48.92)	53.46 (34.57)
4.	28; 31 (28; 32)	1.46 (1.67)	29.37 (43.21)	47.16 (28.68)
5.	36; 42 (36; 40)	1.69 (1.50)	42.56 (45.43)	60.73 (41.05)
6.	45; 49 (45; 49)	1.52(1.50)	39.36 (42.56)	58.66 (31.75)
7.	53; 59 (54; 58)	1.82 (1.67)	33.81 (45.71)	61.26 (34.37)
8.	62; 65 (62; 66)	1.58 (1.52)	38.61 (47.74)	58.32 (49.29)
9.	70; 74 (70; 76)	1.52 (1.58)	50.33 (43.99)	53.06 (37.22)
10.	78; 84 (79; 84)	1.58 (1.50)	44.15 (49.85)	55.30 (31.20)
11.	87; 92 (88; 93)	1.58 (1.67)	39.93 (45.48)	43.54 (39.53)
12.	96; 100 (96; 101)	1.58 (1.67)	44.27 (47.76)	58.00 (44.15)
13.	104; 109 (104; 109)	1.58 (1.58)	47.96 (42.90)	59.27 (41.57)
14.	112; 118 (113; 117)	1.58 (1.58)	38.71 (46.30)	64.93 (20.96)
15.	121; 126 (122; 125)	1.58 (1.52)	41.75 (44.24)	55.37 (22.83)
16.	130; 134 (130; 135)	1.58 (1.58)	20.39 (52.80)	59.46 (37.15)
17.	138; 143 (139; 143)	1.67(1.52)	43.92 (48.11)	52.80 (37.61)
18.	146; 151 (147; 153)	1.50 (1.50)	35.01 (36.93)	56.59 (35.89)
mean		1.59 (1.57)	38.93 (45.01)	55.98 (35.85)
std		0.08 (0.07)	7.10 (4.65)	4.98 (6.62)
mearan		1.59 (1.58)	38.93 (40.09)	55.98 (57.19)
$lower\ quartile$		1.53(1.50)	7.10 (43.40)	4.98 (32.41)
$upper\ quartile$		1.58 (1.65)	7.10 (47.75)	4.98 (39.35)

.....

Results

Automated heart segmentation Detection rate 100%

Max detection error is 1 frame

Ventricular dimension estimation is robust over multiple cardiovascular cycles.

Reported human performance is between 5% to 12% on fractional shortenings.

Current heart beat	diastolic frame; systolic frame	heart rate $[bps]$	minor fractional shortening $[\%]$	major fractional shortening [%]
1.	2; 6 (2; 7)	1.50 (1.50)	41.33 (47.29)	52.18 (38.80)
2.	11; 15 (11; 16)	1.67 (1.67)	40.87 (30.90)	57.58 (38.69)
3.	19; 23 (19; 24)	1.58 (1.58)	28.57 (48.92)	53.46 (34.57)
4.	28; 31 (28; 32)	1.46 (1.67)	29.37 (43.21)	47.16 (28.68)
5.	36; 42 (36; 40)	1.69 (1.50)	42.56 (45.43)	60.73 (41.05)
6.	45; 49 (45; 49)	1.52 (1.50)	39.36 (42.56)	58.66 (31.75)
7.	53; 59 (54; 58)	1.82 (1.67)	33.81 (45.71)	61.26 (34.37)
8.	62; 65 (62; 66)	1.58 (1.52)	38.61 (47.74)	58.32 (49.29)
9.	70; 74 (70; 76)	1.52(1.58)	50.33 (43.99)	53.06 (37.22)
10.	78; 84 (79; 84)	1.58 (1.50)	44.15 (49.85)	55.30 (31.20)
11.	87; 92 (88; 93)	1.58 (1.67)	39.93 (45.48)	43.54 (39.53)
12.	96; 100 (96; 101)	1.58 (1.67)	44.27 (47.76)	58.00 (44.15)
13.	104; 109 (104; 109)	1.58 (1.58)	47.96 (42.90)	59.27 (41.57)
14.	112; 118 (113; 117)	1.58 (1.58)	38.71 (46.30)	64.93 (20.96)
15.	121; 126 (122; 125)	1.58(1.52)	41.75 (44.24)	55.37 (22.83)
16.	130; 134 (130; 135)	1.58 (1.58)	20.39 (52.80)	59.46 (37.15)
17.	138; 143 (139; 143)	1.67(1.52)	43.92 (48.11)	52.80 (37.61)
18.	146; 151 (147; 153)	1.50 (1.50)	35.01 (36.93)	56.59 (35.89)
mean		1.59 (1.57)	38.93 (45.01)	55.98 (35.85)
std		0.08 (0.07)	7.10 (4.65)	4.98 (6.62)
meaian		1.59 (1.58)	38.93 (45.59)	əə.98 (ə <i>1</i> .19)
$lower\ quartile$		1.53(1.50)	7.10 (43.40)	4.98 (32.41)
$upper\ quartile$		1.58 (1.65)	7.10 (47.75)	4.98 (39.35)

Results

Automated heart segmentation Detection rate 100%

Max detection error is 1 frame Ventricular dimension estimation is robust

Errors are largest for systolic frames, this is when humans also fail to label precisely.

Results

Data-driven end-to-end automated heart segmentation from ventral view and lateral view. Robust estimation of ventricular dimensions.

Neural Network Segmentation - Take it from here

Codebase

https://osf.io/snb6p/

Estimation of further ventricular dimensions seems feasible

Want to get your hands dirty? Let me know.

Journal Paper Tutorial

Machine Learning Methods for Automated Quantification of Ventricular Dimensions

Contributors: Mark Schutera, Steffen Just, Jakob Gierten, Ralf Mikut, Markus Reischl, Christian Pylatiuk

Date created: 2019-03-24 02:53 AM | Last Updated: 2019-05-29 11:47 PM

Create DOI

Category: Project

Description:

Machine learning methods for automated quantification of ventricular dimensions (for further details see Wiki bellow or take a closer look on our paper). License: GNU General Public License (GPL) 3.0

Neural Network Segmentation - Take it from here

Codebase
Journal Paper

Tutorial

Kudos to Hendrik Vogt

References

- [6] Lex Fridman. MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu/, 2019. Zugriff: 20.06.2019.
- [7] * Sørensen, T. (1948). "A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons". *Kongelige Danske Videnskabernes* Selskab. 5 (4): 1–34.
- [8] A guide to convolution arithmetic for deep learning. V. Dumoulin, and F. Visin. (2016) arxiv:1603.07285.
- [9] Deep learning. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature volume521, pages436–444 (2015)
- [10] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. *CoRR*, abs/1409.1556, 2014. 1, 2, 3, 5

- [11] A. Bréhéret. Pixel annotation tool. GitHub Repository, 2017.
- [12] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
 Medical Image Computing and Computer-Assisted Intervention, 9351:234–241, 2015.
- [13] T. Hoage, Y. Ding, and X. Xu. Quantifying cardiac functions in embryonic and adult zebrafish. *Cardiovascular Development*, 843:11–20, 2012.

Thanks for your time Questions?

Contact! mark.schutera@kit.edu

