Důkaz, že jazyk $L = \{a^jb^jca^jb^j \mid j \in \mathbb{N}\}$ není bezkontextový:

- Necht $n \in \mathbb{N}$ je libovolné, dále pevné číslo.
- Zvolíme $z = a^n b^n c a^n b^n$ z jazyka L tak, že $|z| = 4n + 1 \ge n$.
- Uvažme libovolné rozdělení slova z na 5 podslov $u,v,w,x,y\in\Sigma^*$, pro která platí $z=uvwxy,\ |vwx|\le n$ a $vx\ne\varepsilon$. Pro libovolné takové rozdělení rozlišme následující případy podle toho, ve kterém z podslov se nachází písmeno c:

Písmeno c se nachází v podslově y (tedy $vx = a^k b^l$, přičemž $k + l \ge 1$).

Zvolíme i=0, pak $uv^iwx^iy=a^{n-k}b^{n-l}ca^nb^n$ a jelikož je pumpovaná část neprázdná, tak jsme zkrátili část slova před znakem c, a tedy $uv^iwx^iy\notin L$.

Písmeno c se nachází v podslovech v nebo x. Zvolíme i=0, pak uv^iwx^iy neobsahuje c, tedy není tvaru $a^jb^jca^jb^j$, a tedy $uv^iwx^iy \notin L$.

Písmeno c se nachází v podslově w (tedy $vx = b^k a^l$, přičemž $k + l \ge 1$).

Zvolíme i = 0, pak $uv^i w x^i y =$

Písmeno c se nachází v podslově u (tedy $vx = a^k b^l$, přičemž $k + l \ge 1$).

Celkově jsme pro každé přirozené číslo n našli slovo z z jazyka L délky větší než n takové, že pro libovolné jeho rozdělení na pět slov u,v,w,x,y splňujících podmínky z lemmatu o vkládání existuje nezáporné celé číslo i takové, že uv^iwx^iy není v jazyce L, a tedy z lemmatu o vkládání pro bezkontextové jazyky vyplývá, že jazyk L není bezkontextový.

Důkaz, že jazyk $L=\{a^jb^jca^jb^j\mid j\in\mathbb{N}\}$ není bezkontextový:

- Nechť $n \in \mathbb{N}$ je libovolné, dále pevné číslo.
- Zvolíme $z=a^{\lceil\frac{n}{2}\rceil}b^{\lceil\frac{n}{2}\rceil}ca^{\lceil\frac{n}{2}\rceil}b^{\lceil\frac{n}{2}\rceil}$ z jazyka L, délka z je větší než n.
- Uvažme libovolné rozdělení slova z na 5 podslov $u,v,w,x,y\in\Sigma^*$, pro která platí $z=uvwxy,\,|vwx|\leq n$ a $vx\neq\varepsilon$:

Celkově jsme pro každé přirozené číslo n našli slovo z z jazyka L délky větší než n takové, že pro libovolné jeho rozdělení na pět slov u, v, w, x, y splňujících podmínky z lemmatu o vkládání existuje nezáporné celé číslo i takové, že uv^iwx^iy není v jazyce L, a tedy z lemmatu o vkládání pro bezkontextové jazyky vyplývá, že jazyk L není bezkontextový.

Důkaz, že jazyk $L = \{ucv \mid u, v \in \{a, b\}^*, \#_a(u) = \#_b(v) \text{ a } \#_b(u) = \#_a(v)\}$ není bezkontextový:

- Nechť $n \in \mathbb{N}$ je libovolné, dále pevné číslo.
- Zvolíme slovo z =
- Uvažme libovolné rozdělení slova z na 5 podslov $u,v,w,x,y\in\Sigma^*$, pro která platí $z=uvwxy, |vwx|\leq n$ a $vx\neq\varepsilon$:

Celkově jsme pro každé přirozené číslo n našli slovo z z jazyka L délky větší než n takové, že pro libovolné jeho rozdělení na pět slov u, v, w, x, y splňujících podmínky z lemmatu o vkládání existuje nezáporné celé číslo i takové, že uv^iwx^iy není v jazyce L, a tedy z lemmatu o vkládání pro bezkontextové jazyky vyplývá, že jazyk L není bezkontextový.

Důkaz, že jazyk $L = \{a^j b^k c^l \mid j < k < l\}$ není bezkontextový: