Solución de la Práctica dirigida 1 de Análisis de Regresión

Estrella Guerra, Danilo David

2024-09-05

Caso: Zoológico de Australia Se hizo un experimento en un zoológico de Australia para analizar distintas temperaturas en o C (X) de un recinto cerrado y los correspondientes ritmos cardiacos en latidos/minuto (Y) de una especie de lagarto:

Análisis de Correlación

a) Elabore el gráfico de dispersión

Para elaborar un grafico de dispersión vamos a usar la libreria plot (la función plot es una función genérica para la representación gráfica de objetos en R)

Diagrama de Dispersión

Se puede apreciar una relación directa entre la temperatura o C del recinto y la cantidad de latidos/minuto de los lagartos.

b) Estime el coeficiente de correlación

La función cor() en R se utiliza para calcular el coeficiente de correlación entre dos variables. Este coeficiente mide la fuerza y la dirección de la relación lineal entre las dos variables.

```
cor(PD1$X,PD1$Y,method="p")
```

```
## [1] 0.9721215
```

Hay una fuerte asociación lineal directa entre la temperatura del recinto y la cantidad de latidos/minuto del lagarto.

c) Pruebe la significancia del coeficiente de correlación

```
1) H_0: \rho = 0 H_1: \rho \neq 0 2) \alpha = 0.02 3)
```

```
cor.test(PD1$X,PD1$Y,method="p",alternative = "t")
```

```
##
##
   Pearson's product-moment correlation
##
## data: PD1$X and PD1$Y
## t = 17.59, df = 18, p-value = 8.732e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9294241 0.9891331
## sample estimates:
##
         cor
## 0.9721215
del anterior codigo hemos obtenido el valor de:
t = 17.59, p - value = 8.732e - 13 \approx 0.000 < \alpha se rechaza H_0
  4)
```

Distribución t con Zonas de Rechazo

qt(0.02/2,18)

[1] -2.55238

qt(c(0.02/2,1-0.02/2),18)

[1] -2.55238 2.55238

5) Conclusión

A un $\alpha=0.02$, se puede afirmar que existe correlación significativa entre la temperatura del recinto y el número de latidos/minuto de los lagartos.

d) Obtenga un intervalo del 98% de confianza para el coeficiente de correlación

```
## [1] 0.9162722 0.9908944
## attr(,"conf.level")
## [1] 0.98
```

 $IC(\rho) = [0.9162722, 0.9908944]$

El intervalo que va de 0.916 a 0.991 brinda un 98% de confianza de contener a la correlación entre la temperatura del recinto y el número de latidos/minuto de los lagartos.

Análisis de Regresión Lineal Simple

e) Obtenga la ecuación de regresión estimada. Interprete los coeficientes estimados.

```
modelo<-lm(Y~X,data=PD1)
print(modelo)
##</pre>
```

$$\hat{Y} = 1.4591 + 0.9545x$$

El código $lm(Y \sim X, data = PD1)$ nos permite conocer los coeficientes de nuestro modelo.

- $b_o = 1.4591$ No tiene interpretación
- $b_1 = 0.9545$ Al aumentarse la temperatura en un grado o C, se espera que el número medio de latidos se incremente en 0.9545 latidos/minuto.

fyh

- f) Realice el Análisis de Varianza. Use $\alpha=0.02$
- g) Pruebe la significancia individual de β_1 . Use $\alpha = 0.02$

1a)

$$H_0: \rho = 0$$
$$H_1: \rho \neq 0$$

2a)

$$\alpha = 0.02$$

3a) Prueba estadística

$$F = \frac{CMReg}{CME} \sim F_{(1,n-2)}$$

4a) Desarrollo de la prueba

anova(modelo)

F = 309.39, p-valor = 0.00000000000008732

5a) Región Crítica 1b)

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

2b)

$$\alpha = 0.02$$

3b) Prueba estadística

$$t = \frac{\hat{\beta}_1}{EE(\hat{\beta}_1)} \sim t_{(n-2)}$$

4b) Desarrollo de la prueba

summary(modelo)

```
##
## Call:
## lm(formula = Y ~ X, data = PD1)
##
## Residuals:
##
                1Q Median
       Min
                                ЗQ
                                       Max
## -3.4227 -0.7432 0.0136 1.0000
                                    2.0773
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.45909
                           1.71094
                                     0.853
                                              0.405
## X
                0.95455
                           0.05427
                                   17.590 8.73e-13 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.394 on 18 degrees of freedom
## Multiple R-squared: 0.945, Adjusted R-squared: 0.942
## F-statistic: 309.4 on 1 and 18 DF, p-value: 8.732e-13
t_{cal} = 17.590, p-valor = 8.73e-13
5b) Región Crítica
```

A un $\alpha=0.02$, se puede afirmar que el número de latidos/minuto es explicado por la temperatura en el recinto.

g) Halle intervalos del 98% de confianza para β_0 y β_1

```
confint(modelo,level = 0.98)
```

$$IC(\beta_1) = [0.8160338, 1.093057]$$

El intervalo va de 0.816 a 1.093 brinda un 98% de confianza de contener a β_1

i) Halle un intervalo del 98% de confianza para σ_{ε}^2

$$IC(\sigma_{\varepsilon}^{2}) = \left[\frac{(n-2)CMRes}{x_{(1-\alpha/2,n-2)}^{2}}, \frac{(n-2)CMRes}{x_{(\alpha/2,n-2)}^{2}}\right]$$

```
sig<-summary(modelo)$sigma
n<-nrow(PD1)
LI<-(n-2)*sig^2/qchisq(1-0.02/2,n-2)
LS<-(n-2)*sig^2/qchisq(0.02/2,n-2)
c(LI,LS)</pre>
```

[1] 1.005202 4.987428

El intervalo que va de 1.005 a 4.987 brinda un 98% de confianza de contener a σ_{ε}^2

j) Halle e interprete el coeficiente de determinación

```
summary(modelo)$r.sq*100
```

[1] 94.50203

$$r^2 = 94.5$$

El 94.5% de la variabilidad del número de latidos/minuto es explicado por la temperatura en el recinto.

k) Halle un intervalo del 98% de confianza para el número medio de latidos por minuto a una temperatura de 33 °C

```
predict(modelo, data.frame(X = 33), level = 0.98, interval = "confidence")
```

fit lwr upr ## 1 32.95909 32.11656 33.80162

$$IC(U_{y/x}) = [32.116, 33.801]$$

El intervalo que va de 32.116 a 33.801 brinda un 98% de confianza de contener al número medio de latidos/minuto cuando el recinto tiene una temperatura de 33^{o} C

l) Halle un intervalo del 98% de confianza para el número de latidos por minuto, de un recinto que tiene 39 °C

```
predict(modelo, data.frame(X = 33), level = 0.98, interval = "prediction")

## fit lwr upr
## 1 32.95909 29.30228 36.6159

IC(Y) = [34.874, 42.497]
```