RSA

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

26 de Março de 2021

Criptografia

RSA - Introdução

- Martin Hellman e Whitfield Diffie o primeiro artigo sobre criptografia assimétrica em 1976.
- Ronald Rivest, Adi Shamir e Leonard Adleman propuseram o criptosistema assimétrico RSA em 1977.
- Até agora, o RSA é o criptosistema assimétrico mais amplamente utilizado, embora a criptografia de curva elíptica (ECC) esteja se tornando cada vez mais popular.
- O RSA é usado principalmente em duas aplicações:
 - Transporte de chaves (isto é, compartilhamento de chave simétrica).
 - Assinaturas digitais.

Encriptação e Decriptação

- As operações do RSA são feitas sobre aneis inteiros Z_n (isto é, aritmética módulo n), onde $n = p \times q$, com p e q sendo primos grandes.
- A Encriptação e a decriptação não passa de exponenciação no anel.

Definition

Given the public key $(n,e) = k_{pub}$ and the private key $d = k_{pr}$ we write

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

$$x=d_{k_{pr}}(y)\equiv y^d \bmod n$$

where x, y ϵ Z_{n.} We call $e_{k_{nub}}()$ the encryption and $d_{k_{pr}}()$ the decryption operation.

Encriptação e Decriptação

- Na pratica, x,y,n e d são numeros inteiros muito grandes. (> 1023 bits).
- A segurança do esquema recai no fato de que é difícil derivar o "expoente privado" d dado a chave pública (n, e).

Geração de Chaves

 Como todos os esquemas assimétricos, o RSA tem uma fase de inicialização onde são geradas as chaves pública e privada.

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

- 1. Choose two large primes p, q
- 2. Compute n = p * q
- 3. Compute $\Phi(n) = (p-1) * (q-1)$
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n)-1\}$ such that $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key d such that $d * e \equiv 1 \mod \Phi(n)$
- **6. RETURN** $k_{pub} = (n, e), k_{pr} = d$

Geração de Chaves

- Observações:
 - A escolha de dois primos grandes e distintos p, q (no Passo 1) não é trivial.
 - $\gcd(e,\phi(n))=1$ garante que e tem um inverso e, assim, que sempre existe uma chave privada d.

RSA - Exemplo

ALICE

Message x = 4

BOB

- 1. Choose p = 3 and q = 11
- 2. Compute n = p * q = 33
- 3. $\Phi(n) = (3-1) * (11-1) = 20$
- 4. Choose e = 3
- $K_{\text{pub}} = (33,3)$ 5. $d \equiv e^{-1} \equiv 7 \mod 20$

$$y = x^e \equiv 4^3 \equiv 31 \mod 33$$

 $y^d = 31^7 \equiv 4 = x \mod 33$

Aspectos de Implementação

- O sistema criptográfico RSA usa apenas uma operação aritmética (exponenciação modular) que torna conceitualmente um esquema assimétrico simples
- Mesmo sendo conceitualmente simples, devido ao uso de números muito longos, o RSA é ordens de magnitude mais lenta do que esquemas simétricos, por exemplo, DES, AES
- Ao implementar o RSA (especialmente em um dispositivo restrito, como smartcards ou telefones celulares), deve-se prestar muita atenção à escolha correta dos algoritmos aritméticos.
- O algoritmo de quadrado e multiplicação permite uma rápida exponenciação, mesmo com números muito longos...

RSA

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

26 de Março de 2021

Criptografia