

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Ecuaciones Diferenciales Ordinarias - MAT2500 Fecha de Entrega: 2019-08-30 Agradecimientos a las siguientes personas: Maximiliano Norbu, Agustín Oyarce, Paulina Vega, Darwin Sanhueza, Francisco Monardes, Luciano Sciaraffia

${\bf \acute{I}ndice}$

Problema 1	1
Problema 2	1
Problema 3	2
Problema 4	3
Problema 5	5
Problema 6	7
Problema 7	7
Problema 8	8

Problema 1:

Sean $\phi_1(t), \phi_2(t), \dots, \phi_{n-1}(t)$ soluciones del sistema homogéneo $\dot{x} = A(t)x$, y sea x una solución del sistema no homogéneo $\dot{x} = A(t)x + g(t)$, donde A(t) y g(t) son continuas sobre el intervalo I. Pruebe que $Z = \det(\phi_1, \dots, \phi_{n-1}, x)$ satisface la Formula no homogénea de Abel

$$\dot{Z} = \operatorname{tr}(A(t))Z + \det(\phi_1, \dots, \phi_{n-1}, g)$$

Solución problema 1: Dado la definición de Z, y la multilinealidad del determinante se tiene lo siguiente:

$$\dot{Z} = \det \left(\dot{\phi}_1, \dots, \phi_{n-1}, x \right) + \dots + \det \left(\phi_1, \dots, \phi_{n-1}, \dot{x} \right)
= \det \left(A(t) \phi_1, \dots, \phi_{n-1}, x \right) + \dots + \det \left(\phi_1, \dots, \phi_{n-1}, A(t) x + g(t) \right)
= \det \left(A(t) \phi_1, \dots, \phi_{n-1}, x \right) + \dots + \det \left(\phi_1, \dots, \phi_{n-1}, A(t) x \right) + \det \left(\phi_1, \dots, \phi_{n-1}, g(t) \right)$$

Por propiedades del determinante se tiene la siguiente identidad para cualquier conjunto de vectores v_1, \ldots, v_n :

$$\det (A(t)v_1,\ldots,v_n) + \cdots + \det (v_1,\ldots,A(t)v_n) = c \cdot \det (v_1,\ldots,v_n)^{1}$$

Ahora, tomando la base canónica, claramente se ve que c = tr(A(t)), ya que $A(t)e_i = A_{i,i}(t)$. Con esto se llega a lo siguiente:

$$\dot{Z} = \operatorname{tr}(A(t))z + \det(\phi_1, \dots, \phi_{n-1}, g)$$

Problema 2:

Sea A la matriz constante asociada a la EDO homogénea de orden n:

$$x^{(n)} + q_{n-1}x^{(n-1)} + \dots + q_1\dot{x} + q_0x = 0$$

(tal que el sistema equivalente de primer orden es $\dot{y} = Ay$, donde $y = (x, \dot{x}, \dots, x^{(n-1)})^T$).

(a) Demuestre que el polinomio característico de A es

$$\chi(z) := \det(zI - A) = z^n + q_{n-1}z^{n-1} + \dots + q_1z + q_0$$

 $^{^{1}}$ El c no depende del conjunto de vectores

- (b) Pruebe que la multiplicidad geométrica de cada valor propio de A es 1, i.e. cada valor propio de A es asociado con sólo un bloque de Jordan.
- (c) Demuestre que la ecuación, o equivalentemente, el sistema $\dot{y} = Ay$ es estable si y sólo si todos los valores propios tienen parte real no positiva, y todos los valores propios imaginarios son simples.

Solución problema 2:

(a) Usando la fórmula de Laplace se tiene lo siguiente:

$$\det(zI - A) = \begin{vmatrix} z & -1 & \dots & 0 \\ 0 & z & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ q_0 & q_1 & \dots & z + q_{n-1} \end{vmatrix}$$

$$= qq_0(-1)^{n+1}(-1)^{n-1} + z^{n-1}(z + q_{n-1}) + \sum_{k=1}^{n-2} q_k(-1)^{k+n} \det M_{n,k}$$

$$= q_0 + z^n + z^{n-1}q_{n-1} + \sum_{k=1}^{n-2} q_k(-1)^{k+n} \det M_{n,k}$$

Se nota que det $M_{n,k} = z^k(-1)^{n-k}$, por lo que se tiene la siguiente igualdad:

$$\det(zI - A) = q_0 + z^n + z^{n-1}q_{n-1} + \sum_{k=1}^{n-2} q_k (-1)^{k+n} (-1)^{n-k} z^k$$

$$= q_0 + z^n + z^{n-1}q_{n-1} + \sum_{k=1}^{n-2} q_k z^k (-1)^{2n}$$

$$= z^n + q_{n-1} z^{n-1} + \dots + q_1 z + q_0$$

Problema 3:

Considere el sistema lineal homogéneo $\dot{x} = A_b x$, donde $A_b = \begin{pmatrix} b & 3 \\ -3 & 2 \end{pmatrix}$.

- (a) Encuentre la solución general del sistema cuando b=-4 y dibuje el retrato de fase.
- (b) Determine los valores de b para los cuales el origen es, respectivamente, una fuente, una fuente espiral, un sumidero, un sumidero espiral, una silla y un centro.

Solución problema 3:

(a) Se calcula el polinomio característico $p_{A_{-4}}(\lambda) = (\lambda + 1)^2$, con lo que se tiene que la matriz de Jordan es la siguiente:

$$J = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

Como A_{-4} es una matriz constante se tiene que la solución general del sistema es la siguiente:

$$x(t) = S \exp(tJ) S^{-1} x_0$$

Donde x_0 es la condición inicial y donde S es la matriz tal que $A_{-4} = SJS^{-1}$. Luego por lo que se vio en el Teschl se tiene que $\exp(J) = \begin{pmatrix} 1/e & 1/e \\ 0 & 1/e \end{pmatrix}$, y calculando $S = \begin{pmatrix} 1 & -\frac{1}{3} \\ 1 & 0 \end{pmatrix}$ se tiene que la solución general es de la siguiente manera:

$$x(t) = \exp(t) \begin{pmatrix} -\frac{2}{e} & \frac{3}{e} \\ -\frac{3}{e} & \frac{4}{e} \end{pmatrix}$$

(b) Se ve el polinomio característico $p_{A_b}(t) = \lambda^2 - \lambda(b+2) + 9 + 2b$, se nota que solo si b = -2 se tiene que los valores propios son completamente imaginarios, por lo que el origen es un centro. Para los otros casos se verá cuando los valores propios son completamente reales y cuando son complejos, para esto se verá el signo del discriminante del polinomio característico:

$$\Delta = (b+2)^2 - 4 \cdot (9+2b) = (b+4)(b-8)$$

Por lo que para $b \in (-4,8)$ se tiene que $\Delta < 0$, y en otro caso $\Delta \geq 0$, además se quiere ver cuando la parte real es positiva o negativa, lo cual tiene dos casos, si $\sqrt{\Delta}$ es imaginario o si es real. Comenzando por el primer caso, se nota que se depende del signo de b+2. En el segundo caso, se nota que si $b \geq 8$ ambos valores propios son siempre positivos²

Problema 4:

Encuentre la solución general de

$$^2b + 2 > \sqrt{\Delta}$$

(a)
$$\dot{x} = Ax$$
, donde $A = \begin{pmatrix} 5 & 2 & 4 \\ 0 & 1 & 0 \\ -8 & -1 & -7 \end{pmatrix}$;

(b)
$$\ddot{x} + x = 2\sin(2t)$$

(c)
$$\ddot{x} - 2\dot{x} = -x + t - 1 + 2\exp(t)$$

(d)
$$t\ddot{x} - 2(t+1)\dot{x} + (t+2)x = 0$$
, $\phi_1(t) = \exp(t)$

Solución problema 4:

(a) Se sabe que para matrices constantes la solución general de este sistema es de la forma:

$$x = \exp(tA)x_0$$

Para calcular esta solución se ve el polinomio característico $p_A(\lambda) = (\lambda - 1)^2(\lambda - 3)$ y se calcula la forma de Jordan:

$$J = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Además se calcula S tal que $A = SJS^{-1}$:

$$S = \begin{pmatrix} -1 & -1 & -\frac{1}{12} \\ 0 & 0 & -\frac{1}{3} \\ 2 & 1 & 0 \end{pmatrix}$$

Juntando todo se tiene que la solución general es de la siguiente forma:

$$x = \exp(t) \begin{pmatrix} \frac{-1+2e^4}{e^3} & \frac{1+11e^4}{4e^3} & \frac{-1+e^4}{e^3} \\ 0 & e & 0 \\ -\frac{2(-1+e^4)}{e^3} & \frac{-1-5e^4}{2e^3} & \frac{2-e^4}{e^3} \end{pmatrix} x_0$$

(b) Se nota que $-\frac{2}{3}\sin(2t)$ es solución particular. Además se ve que la matriz correspondiente al sistema homogéneo tiene polinomio característico $\lambda^2 + 1$, junto con que la matriz es de 2×2 se tiene que la solución general es de la siguiente forma:

$$x = c_1 \sin(t) + c_2 \cos(t) - \frac{2}{3} \sin(2t)$$

- (c) Se reescribe la EDO, $\ddot{x} 2\dot{x} + x = t 1 + 2\exp(t)$,
- (d) Ya que se tiene una solución, ϕ_1 , se elige la siguiente función $\phi_2 = v \cdot \phi_1$ para una posible solución:

$$t(\ddot{v}\phi_1 + 2\dot{v}\dot{\phi}_1 + v\ddot{\phi}_1) - 2(t+1)(\dot{v}\phi_1 + v\dot{\phi}_1) + (t+2)(v\phi_1) = t(\ddot{v}\phi_1 + 2\dot{v}\dot{\phi}_1) - 2(t+1)\dot{v}\phi_1$$

$$= 0$$

Esto nos da una nueva EDO sobre de orden 1 sobre \dot{v} , pero es una EDO separable, por lo que su solución es la siguiente:

$$\dot{v} = \frac{1}{t^2}$$

Por lo que $v=-\frac{1}{t}$, con lo que se ve que $\phi_2=-\frac{1}{t}\exp(t)$ es solución, y la solución general a la EDO es de la forma $x=c_1\phi_1+c_2\phi_2$.

Problema 5:

Considere el sistema lineal homogéneo $\dot{x} = A(t)x$, para t > 0, donde

$$A(t) = \begin{pmatrix} 3/t & -1\\ 2/t^2 & -1/t \end{pmatrix}$$

(a) Verifique que

$$x_1(t) = \begin{pmatrix} t^2 \\ t \end{pmatrix}$$

resuelve el sistema para t > 0.

- (b) Sea $x_2(t)$ otra solución, tal que el Wronskiano $W(t) := \det(x_1, x_2)$ satisface W(1) = 1. Encuentre W(t).
- (c) Use el de conocimiento de W(t) para determinar una posible solución x_2 .
- (d) Resuelva el problema de valor inicial

$$\dot{x} = A(t)x + \begin{pmatrix} 0 \\ -2t \end{pmatrix}, \quad t > 0 \quad \text{con} \quad x(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Solución problema 5:

(a) Se ve la siguiente igualdad:

$$A(t)x_1 = \begin{pmatrix} 3/t & -1\\ 2/t^2 & -1/t \end{pmatrix} \begin{pmatrix} t^2\\ t \end{pmatrix} = \begin{pmatrix} 3t-t\\ 2-1 \end{pmatrix} = \begin{pmatrix} 2t\\ 1 \end{pmatrix} = \dot{x_1}$$

- (b) Se sabe que $W(t) = W(t_0) \exp(\int_{t_0}^t \operatorname{tr}(A(t)) dt)$, se calcula la traza $\operatorname{tr}(A(t)) = \frac{2}{t}$ y se toma $t_0 = 1$. Con lo anterior se llega a que $w(t) = t^2$
- (c) Considerando el siguiente cambio de variable:

$$y(t) = M^{-1}(t)x(t)$$

Donde

$$M(t) = \begin{pmatrix} t^2 & 0 \\ t & 1 \end{pmatrix}$$

Se ve el sistema después del cambio:

$$\dot{y} = M^{-1} \left(AM - \dot{M} \right) y$$
$$= M^{-1} A \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} y$$
$$= \begin{pmatrix} 0 & -1/t^2 \\ 0 & 0 \end{pmatrix} y$$

Dado esto se ve que $\dot{y}_1 = -1/t^2y_2$ y $\dot{y}_2 = 0$, por lo que $y_2 = c$, por ende $y_1 = \frac{c}{t}$. Con esto se tiene lo siguiente:

$$x = \begin{pmatrix} t^2 & 0 \\ t & 1 \end{pmatrix} \begin{pmatrix} \frac{c}{t} \\ c \end{pmatrix} = \begin{pmatrix} tc \\ 2c \end{pmatrix}$$

Juntando esto con la otra solución, y con el Wronskiano, se tiene lo siguiente:

$$w(t) = \begin{vmatrix} t^2 & tc \\ t & 2c \end{vmatrix}$$
$$= t^2c$$
$$= t^2 \text{ Por 5b}$$

Con lo anterior se tiene que c=1, con eso se tiene la otra solución $x_2=\begin{pmatrix}t\\2\end{pmatrix}$

Problema 6:

(a) Dado el sistema $\dot{x} = A(t)x$, donde A(t) es continua y periódica con periodo T. Demuestre que la transformación $y(t) = P(t, t_0)^{-1}x(t)$ traduce el sistema a uno con coeficientes constantes:

$$\dot{y} = Q(t_0)y$$

Donde $\Pi(t, t_0) = P(t, t_0) \exp((t - t_0)Q(t_0)),$

(b) Considere la EDO no homogénea

$$\dot{x} = A(t)x + g(t)$$

donde A(t) y g(t) son periódicas de periodo T. Muestre que esta EDO tiene una solución periódica única de periodo T si y solo si 1 no es un valor propio de la matriz de monodronía $M(t_0)$.

Solución problema 6:

Problema 7:

Considere el sistema homogéneo $\dot{x} = A(t)x$, donde

$$A(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$$

y a, b, c, d son funciones reales continuas con periodo 1. Suponga que a(t) > 0 y d(t) > 0. Demuestre que para todo entero k > 2 el sistema no puede tener una solución periódica x(t) con periodo mínimo igual a k.

Solución problema 7: Usando el cambio de coordenadas del problema 6(a) se nota que el periodo de una solución depende del periodo de $P(t, t_0)$, pero por el corolario 3.16 y por el teorema de Floquet, se tiene que el periodo de $P(t, t_0)$ es el mismo o el doble que el de A(t), por lo que el sistema no puede tener una solución periódica con periodo mayor a 2.

7

Problema 8:

Demuestre que la ecuación lineal

$$\ddot{x} + (1 + \exp(-t))x = 0$$

es estable, es decir, que todas sus soluciones permanecen acotadas para $t \geq 0$

Solución problema 8: Se nota que la EDO se puede escribir de esta forma $(\ddot{x} + x) + \exp(-t)x = 0$, más específicamente denotando $x = \begin{pmatrix} x \\ y \end{pmatrix}$ se tiene lo siguiente:

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 & 0 \\ \exp(-t) & 0 \end{pmatrix} x$$

Tomando A(t) como la primera matrix y B(t) como la segunda, se nota que $||B(t)|| = \exp(-t)$ y que los valores propios de A(t) son $\pm i$, como $A(t) \in M_{2\times 2}$ todas las multiplicidades de los valores propios son iguales, específicamente son 1. Notando que $\int_0^\infty ||B(t)|| dt = 1 < \infty$, por el corolario 3.24 se tiene que toda solución del sistema es estable, por lo que se tiene lo pedido.