EXHIBIT A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Cupp et al. Appl. No.: 10/037,941 Conf. No.: 7917

Filed:

January 3, 2002

Title:

DENTAL DIET FOR REDUCING TARTAR

Art Unit:

1761

Examiner:

K. Hendricks

Docket No.: 115808-330

SUPPLEMENTAL AFFIDAVIT UNDER 37 C.F.R. § 1.132

Sir:

I, Carolyn J. Cupp, hereby state as follows:

- 1. I am one of the named inventors of the above-identified patent application and am therefore familiar with the inventions disclosed therein.
- 2. This Affidavit supplements the previously submitted Affidavit under 37 C.F.R. § 1.132 signed by me on January 26, 2006 (the "Affidavit") and submitted along with a response to the Patent Office on February 1, 2006, which is hereby incorporated by reference.
- 3. The present claims are directed to, in part, a dry pet food that will reduce tartar when chewed by the pet. It has been surprisingly found that an unstriated pet food in accordance with the present invention having a density that ranges from about 16.8 lbs/ft³ to about 20 lbs/ft³ increases the removal of plaque and tartar build-up.
- 4. As one having ordinary skill in the art, I believe that *Collings* fails to disclose or suggest a pet food product having a density that ranges from about 16.8 lbs/ft³ to about 20 lbs/ft³. Instead, I believe *Collings* is directed to an expanded pet food product having a low density texture.

Appl. No. 10/037,941

- 5. Approximate calculations to arrive at the density of the pet food product taught by Collings were performed based on information derived from Example 1 in Collings along with reasonable estimates by one skilled in the art of the type of product container and filling of the pet food not explicitly given by Collings. A copy of the calculations based on different the assumptions of the type of product container and filling of the pet food is attached hereto as Exhibit B.
- 6. Pet food density calculations were performed using several assumed values regarding the weight and thickness of the container holding the pet food in Example 1 in Collings. The assumed values for the containers were based on the typical pet food containers used to hold the category of pet food as taught by Collings. Accordingly, the dimensions of an applicable pet food package described by Collings having good stacking capabilities, recloseable lid and good barrier properties were used. Pet food density calculations were also performed using a reasonably assumed void space of 10% for the filled product in the container. As observed in Exhibit B, all of the calculations give Collings' pet food product a density at or below 12 lbs/ft³.
- 7. For the foregoing reasons, as one having ordinary skill in the art, I believe that Collings fails to disclose or suggest a pet food product having a density that ranges from about 16.8 lbs/ft³ to about 20 lbs/ft³.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001, Title 18, United States Code, and that willful false statements may jeopardize the validity of this patent and any patent issuing therefrom.

Date: 8-1-06

Carolyn J Cupp

Name: Carolyn J. Cupp

EXHIBIT B

Density Calculations for Collings Patent

<u>External</u>	Inches	cm	m		
Diameter	5	12.70	0.1270		
Height	8	20.32	0.2032		
	in^3	cm^3	m^3	ft^3	
Calculated Volume	157.08	2574.07	0.00257	0.091	
Reported Weight of	Pounds	grams	kilograms		
Filled Container	1.1	500	0.5		
	lb/ft^3	g/cm^3	kg/m^3	g/l	
Average Density	12.10	0.194	194.24	194.24	
Scenario 1					
What if	Pounds	grams	kilograms		
Weight of Container	0.28	127.84	0.13		
Weight of Product	0.82	372.16	0.37		
	lb/ft^3	g/cm^3	kg/m^3	g/l	
Density of product	9.01	0.145	144.58	144.58	
Scenario 2					
What if	Pounds	grams	kilograms		
Weight of Container	0.27	120.74	0.12		
Weight of Product	0.83	379.26	0.38		
	lb/ft^3	g/cm^3	kg/m^3	g/l	
Density of product	9.18	0.147	147.339	147.34	

Now, what if ...

Calculated volume is too high in being based on externa	l dimensions?
Lets assume the container has a thickness =	4 mm
_	1.57E-01 inches

Scenario 1	Pounds	grams	kilograms	
Calculated Volume	132.48	2171.02	0.00217	0.077
	in^3	cm^3	m^3	ft^3
Height	7.69E+00	19.52	0.1952	
Diameter	4.69E+00	11.90	0.1190	
Then Inner dimensions	Inches	cm	m	
		_	1.012-01	inches

Scenario 1 Weight of product	Pounds 0.81875	grams 372.16	kilograms 0.372159091		
	lb/ft^3	g/cm^3	kg/m^3	g/l	

Average Density	10.68	0.171	171.42	171.42	
Scenario 2	Pounds	grams	kilograms		
Weight of product	0.834375	379.26	0.379261364		
	lb/ft^3	g/cm^3	kg/m^3	g/l	
Average Density	10.88	0.175	174.69	174.69	

Scenario 1A

Suppose the container contains about v% voidage and has been evacuated (not said by Collings) Then the true density of the product alone can be estimated as follows:

Void space "v"	10%			
	in^3	cm^3	m^3	ft^3
Calculated Volume	119.24	1953.92	0.002	0.07

Scenario 1A Weight of product	Pounds 0.819	grams 372.159	kilograms 0.372		
Product Density	lb/ft^3 11.87	g/cm^3 0.190	kg/m^3 190.47	g/l 190.47	

Scenario 1B

Suppose the container contains about v% voidage and has been evacuated (not said by Collings)
Then the true density of the product alone can be estimated as follows:

Void space "v"

10%

voia space "v"	10%			
	in^3	cm^3	m^3	ft^3
Calculated Volume	119.24	1953.92	0.00	0.07

Scenario 1A Weight of product	Pounds 0.834	grams 379.261	kilograms 0.379		
Product Density	lb/ft^3 12.09	g/cm^3 0.194	kg/m^3 194.10	g/l 194.10	