УДК 523.9, 523.98

DOI: 10.12737/szf-111202507

Поступила в редакцию 15.08.2024 Принята к публикации 02.12.2024

СУТОЧНЫЕ ВАРИАЦИИ ХАРАКТЕРИСТИК СПОРАДИЧЕСКОГО СЛОЯ \mathbf{E}_{s} НАД ИРКУТСКОМ

DIURNAL VARIATIONS IN CHARACTERISTICS OF SPORADIC LAYER \mathbf{E}_{s} OVER IRKUTSK

Е.А. Воронова

Институт солнечно-земной физики СО РАН, Иркутск, Россия, voronova_ea@iszf.irk.ru

К.Г. Ратовский

Институт солнечно-земной физики СО РАН, Иркутск, Россия, ratovsky@iszf.irk.ru

Аннотация. Проведено исследование морфологических особенностей полусуточных вариаций вероятности появления спорадического слоя E_s PE_s и высоты слоя hE_s над Иркутском (52.3° N, 104.3° E) на основе данных ионозонда DPS-4 за 2003–2021 гг. Путем усреднения за все годы рассчитываются суточные вариации PE_s и hE_s для каждого месяца. Отмечается, что PE_s достигает максимумов при спаде hE_s и что наблюдается асимметрия максимумов PE_s : утренние максимумы больше вечерних. Эти особенности интерпретируются на основе понятия оптимальной высоты образования E_s и роли фотоионизации в формировании этого спорадического слоя.

Ключевые слова: спорадический слой, суточные вариации, вероятность наблюдения, высота, полусуточные приливы.

E.A. Voronova

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, voronova_ea@iszf.irk.ru

K.G. Ratovsky

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, ratovsky@iszf.irk.ru

Abstract. We have studied the morphological features of semidiurnal variations in the occurrence of the sporadic E_s layer (PE_s) and height of the layer (hE_s), using data from the Irkutsk DPS-4 ionosonde (52.3° N, 104.3° E) for 2003–2021. By averaging over all the years, we calculate diurnal variations in PE_s and hE_s for each month. It is observed that the maximum of occurrence PE_s is achieved when the height hE_s decreases; and there is an asymmetry in the maximum of occurrence PE_s : morning maxima are larger than evening ones. These features are interpreted based on the concept of the optimal height for E_s formation and the role of photoionization in forming the sporadic layer.

Keywords: sporadic layer, diurnal variations, occurrence frequency, height, semidiurnal tides.

ВВЕДЕНИЕ

Спорадический слой E_s представляет собой тонкий плазменный слой металлических ионов, формируемый на высотах E-слоя от 90 до 130 км. Иногда E_s становится более плотным, чем регулярный E-слой или слой F2. B таких случаях слой E_s значительно влияет на распространение радиосигналов и на ионограммы F-области.

Механизм образования E_s -слоя объясняет теория ветрового сдвига: ионы сходятся сверху и снизу в результате дрейфа, вызванного встречными ветрами, например, когда зональный ветер восточного направления расположен ниже ветра западного направления. Поскольку ионно-нейтральные столкновительные силы противодействуют сближению, долгоживущие ионы металлов метеорного происхождения накапливаются в узких плотных слоях плазмы, возникающих преимущественно в зоне конвергенции ветрового сдвига.

Ветровые сдвиги, необходимые для формирования ионосферных слоев на средних широтах, обеспечиваются солнечно-синхронными приливами, преимущественно полусуточными [Forbes et al., 1995]. Тесная связь E_s -слоя с приливными ветрами в нижней термосфере объясняет наблюдаемый полусуточный характер возникновения слоев и регулярное

движение их вниз (см., например, [Гершман и др., 1976; Чавдаров и др., 1975; Mathews, 1998; Haldoupis et al., 2006; Arras et al., 2009; Fytterer et al., 2013; Oikonomou et al., 2014; Pignalberi et al., 2014]). Опускание слоя происходит в результате непрерывного процесса реформирования слоя: E_s следует за узлом конвергенции ионов, который смещается вниз с фазовой скоростью приливной волны. Теория ветрового сдвига подтверждается корреляцией между появляемостью E_s и горизонтальной компонентой геомагнитного поля [Гершман и др., 1976; Haldoupis, 2011].

Спорадические слои формируются преимущественно на больших высотах области Е, поскольку вертикальная конвергенция ионов там происходит намного быстрее и, следовательно, более эффективно. На более низких высотах области Е усиленные ионно-нейтральные столкновения уменьшают вертикальное движение ионов и в результате замедляют накопление ионов металлов. Подробно физический механизм формирования слоев и их опускания описан в обзорах [Гершман и др., 1976; Чавдаров и др., 1975; Haldoupis, 2011].

Суточные вариации вероятности наблюдения $E_{\rm s}$ $PE_{\rm s}$ для различных станций исследовались в многочисленных работах. Анализ предыдущих исследо-

ваний показал, что суточные вариации PE_s можно разделить на три типа. Первый тип — это вариации PE_s с доминирующей полусуточной составляющей с двумя хорошо выраженными максимумами в утреннее и вечернее время. Второй тип — это вариации PE_s с приблизительно постоянным уровнем в светлое время и уменьшением в темное время (от первого типа отличаются отсутствием хорошо выраженного минимума в светлое время). Третий тип — это вариации PE_s с доминирующей суточной составляющей с хорошо выраженным максимумом в светлое время.

Вариации первого типа, как правило, наблюдаются в средних широтах в летнее время. Этот тип вариаций представлен в данных ионозондов вертикального зондирования в Южной Корее на ст. «Чеджу» (33.4° N, 126.3° E) и «Ичхон» (37.1° N, 127.5° E) [Jo et al., 2019]; в Австралии и Новой Зеландии на ст. «Канберра» (35.3° S, 149.0° E), «Хобарт» (42.9° S, 147.3° E) и «Крайстчерч» (43.4° S, 172.4° E) [Baggaley, 1989]; в Италии на ст. «Гибильманна» (37.9° N, 14.0° E) и «Рим» (41.8° N, 12.5° E) [Pignalberi et al., 2014]. В работе [Arras et al., 2009] вариации PE_s первого типа были получены также по данным GPS-приемников на спутниках CHAMP, GRACE и FORMOSAT-3/COSMIC с усреднением по широтной зоне 50°-55° N, а в работе [Maeda, Heki, 2015] по данным наземных GPS-приемников в центральной части Японии. Следует отметить, что в работе [Arras et al., 2009] вариации первого типа наблюдались в июле, в апреле и в январе. С апреля по июнь и в сентябре-октябре вариации PE_s первого типа наблюдались также по данным ионозонда в Тайване (24°58′ N, 121°11′ E) [Lee et al., 2003].

Вариации $P_{\rm Es}$ второго типа наблюдаются на ионограммах вертикального зондирования в летнее время на различных широтах — от полярных до тропических: на Антарктическом п-ове (65°15′ S, 64°16′ W) [Зализовский, 2008]; в Новосибирске (54.8° N, 82.2° E) [Белинская и др., 2022]; Тайване (24°58′ N, 121°11′ E) [Lee et al., 2003]; Норфолке (29.0° S, 167.9° E) и Таунсвилле (19.6° S, 146.8° E) [Baggaley, 1989]. Интересно, что в монографии [Чавдаров и др., 1975] в качестве типичных суточных вариаций PE_s в летнее время приведены вариации первого типа, тогда как в монографии [Гершман и др., 1976] — вариации второго типа. При разделении спорадических слоев по типам [Кокоуров и др., 2003] суточные вариации Е_s типа С в освещенное время суток являются вариациями первого типа, E_s типа F наблюдается в ночное время, а E_s типа L — в утренние и вечерние часы.

Вариации PE_s третьего типа можно разделить на два подтипа. Для вариаций первого подтипа характерен максимум PE_s вблизи полудня во все месяцы, включая летний период. Такие вариации PE_s наблюдались на китайских станциях «Чжанье» (39.2° N, 100.5° E) и «Пекин» (40.3° N, 116.3° E) [Wang et al., 2022], а также на австралийских станциях «Мундаринг» (32.0° S, 116.2° E) и «Брисбен» (27.5° S, 152.9° E) [Baggaley, 1989]. В вариациях второго подтипа при переходе от лета к зиме происходит ослабление вечернего максимума PE_s и в зимние месяцы единственный максимум PE_s наблюдается в утреннее время. Подобные вариации наблюдались на сред-

неширотных станциях [Baggaley, 1989; Jo et al., 2019; Зализовский, 2008; Белинская и др., 2022] и на низкоширотной станции «Тайвань» [Lee et al., 2003]. Подробнее такой переход будет рассмотрен далее на примере данных иркутского ионозонда.

ИСПОЛЬЗУЕМЫЕ ДАННЫЕ

Использовались данные с временным разрешением 15 мин за 2003-2021 гг. ионозонда вертикального зондирования DPS-4, установленного в пункте с координатами 52.3° N, 104.3° Е (Иркутск). В качестве характеристик спорадического слоя были выбраны действующая высота hE_s , полученная усреднением значений для данного месяца и местного времени за 2003-2021 гг., и вероятность наблюдения PE_s, рассчитанная как отношение количества наблюдений E_s к полному количеству измерений за 2003-2021 гг. для данного месяца и местного времени. Действующие высоты Е, близки к истинным высотам для E_s типов F и L, а также для E_s типа С в случаях, когда разница критических частот спорадического и регулярного слоев Е не менее 2 МГц [Чавдаров и др., 1975].

СУТОЧНЫЕ ВАРИАЦИИ ВЕРОЯТНОСТИ НАБЛЮДЕНИЯ И ВЫСОТЫ

На рис. 1, 2 представлены суточные вариации для всех месяцев вероятности наблюдения PE_s и высоты hE_s соответственно.

На рис. 1, 2 видно доминирование полусуточной составляющей для hE_s с февраля по ноябрь и для PE_s с апреля по сентябрь и в феврале. По всей видимости, доминирование полусуточной составляющей в суточных вариациях hE_s является следствием полусуточных приливов в вариациях нейтрального ветра [Haldoupis, 2011]. При этом причина доминирования полусуточной составляющей в суточных вариациях PE_s в настоящее время остается неясной. Для выявления связи полусуточных составляющих hE_s и PE_s будут рассмотрены более детально суточные вариации hE_s и PE_s в летнее время, когда вероятности наблюдения слоя E_s максимальны (таблица, рис. 3).

ОБЪЯСНЕНИЕ СУТОЧНЫХ ВАРИАЦИЙ ВЕРОЯТНОСТИ НАБЛЮДЕНИЯ СПОРАДИЧЕСКОГО СЛОЯ \mathbf{E}_{s} НАЛИЧИЕМ ОПТИМАЛЬНОЙ ВЫСОТЫ

На рис. З показаны суточные вариации $h\rm E_s$ и $P\rm E_s$ для июня и июля. Летние суточные вариации $h\rm E_s$ и $P\rm E_s$ характеризуются наличием как полусуточной (максимумы в утреннее и вечернее время), так и суточной составляющей (дневные значения превышают ночные). На рис. З видно, что суточные минимумы $P\rm E_s$ наблюдаются на фазах роста $h\rm E_s$, а суточные максимумы $P\rm E_s$ — на фазах спада $h\rm E_s$. Утренний и вечерний пики $h\rm E_s$ близки по величине, тогда как утренний пик $P\rm E_s$ больше, чем вечерний пик $P\rm E_s$. Как вариации

 $Puc.\ 1.\$ Суточные вариации вероятности наблюдения $PE_{\rm s}$ спорадического слоя E

 $Puc.\ 2.$ Суточные вариации высоты hE_s спорадического слоя E

 $h{\rm E_s}$, так и вариации $P{\rm E_s}$ имеют хорошо выраженную полусуточную составляющую (максимумы в утреннее и вечернее время), однако сами вариации $h{\rm E_s}$ и $P{\rm E_s}$ не совпадают, демонстрируя запаздывание $P{\rm E_s}$ относительно $h{\rm E_s}$.

В таблице приведено местное время, соответствующее восходу и закату, утренним и вечерним максимумам $hE_{\rm s}$ и $PE_{\rm s}$, а также $hE_{\rm s}$ и $PE_{\rm s}$, наблюдаемые в момент максимума $PE_{\rm s}$. Из таблицы следует, что утренние максимумы высоты $E_{\rm s}$ наблюдаются через ~1–1.5 ч после восхода, разброс времен между различными месяцами составляет 25 мин. Утренние максимумы вероятности появления $E_{\rm s}$ наблюдаются

через \sim 2–3 ч после утренних максимумов hE_s (разброс 49 мин), через \sim 4–5 ч после восхода (разброс 51 мин).

Вечерние максимумы высоты E_s наблюдаются за \sim 2–3 ч до заката (разброс 49 мин). Вечерние максимумы вероятности появления E_s привязаны скорее к закату, чем к вечерним максимумам hE_s . Максимумы PE_s наблюдаются за 42–51 мин до заката (разброс 9 мин), при этом разброс относительно вечерних максимумов hE_s составляет 75 мин. Можно заметить также, что разница между вечерними максимумами PE_s и hE_s на \sim 1 ч меньше, чем между утренними максимумами PE_s и hE_s . Высоты E_s , соответствующие

				5 5,			-			
Месяц	Восход	$LT(hE_s)$	$LT(PE_s)$	h Е $_{s}$, км	<i>P</i> E _s , %	Закат	$LT(hE_s)$	LT(PE _s)	h Е $_{s}$, км	<i>P</i> E _s , %
Май	04:06	05:30	08:30	110	83	19:51	17:00	19:00	115	78
Июнь	03:40	05:00	08:45	107	94	20:26	18:00	19:45	111	89
Июль	03:59	05:15	08:45	107	95	20:17	18:15	19:30	112	90
Август	04:46	05:45	09:00	106	91	19:27	18:00	18:75	113	71

Моменты местного времени, соответствующие восходу и закату, утренним и вечерним максимумам hE_s и PE_s , а также hE_s и PE_s , наблюдаемые в момент максимума PE_s

 $Puc.\ 3$. Суточные вариации hE_s (вверху) и PE_s (внизу) для июня и июля, фазы роста hE_s заштрихованы красным, фазы спада hE_s — синим. Прямоугольниками показаны: вверху — диапазоны высот, соответствующие $13:00-14:00\ LT$ (вблизи дневного минимума hE_s); внизу — диапазоны изменения PE_s , соответствующие интервалам пересечения hE_s диапазона высот, отмеченного на верхних панелях

временам максимумов PE_s , варьируют от 107 до 110 км в утром и от 111 до 115 км вечером.

Подобная тенденция задержек максимумов PE_s относительно максимумов hE_s справедлива для большинства месяцев (рис. 4), где достаточно хорошо выражена полусуточная составляющая PE_s (см. рис. 1, 2). С февраля по ноябрь имеет место следующая последовательность: рассвет — утренний максимум hE_s — утренний максимум PE_s — вечерний максимум PE_s — вечерний максимум PE_s — закат, исключением являются январь и декабрь.

Для объяснения закономерности следования максимумов hE_s и PE_s рассмотрим факторы влияния высоты hE_s на эффективность образования E_s [Haldoupis et al., 2023].

- 1. С ростом высоты уменьшается скорость рекомбинации металлических ионов, что способствует повышению эффективности образования E_s .
- 2. С ростом высоты уменьшается эффективность столкновений и нейтралов, препятствующих сближению ионов, что также способствует повышению эффективности образования E_s .

3. Процесс термоабляции атомов и ионов металлов (высвобождения за счет интенсивного фрикционного нагрева) происходит преимущественно на высотах от 80 до 110 км, что способствует понижению эффективности образования $E_{\rm s}$ с ростом высоты.

С учетом всех трех факторов можно предположить, что существует оптимальная высота образования спорадического слоя Е. Исходя из таблицы, можно предположить, что такая высота находится в диапазоне 107–110 км в утреннее время и в диапазоне 111–115 км в вечернее время.

Существование оптимальной высоты образования E_s объясняет поведение PE_s на фазе спада hE_s : сначала hE_s , уменьшаясь, приближается к оптимальной высоте образования слоя и, как следствие, PE_s увеличивается; затем, продолжая уменьшаться, hE_s удаляется от оптимальной высоты и PE_s уменьшается. Тем не менее предположение о существовании оптимальной высоты не объясняет минимумы PE_s на фазах роста hE_s . Для прояснения этого вопроса рассмотрим суточное поведение hE_s в июне 2005 г. без усреднения (рис. 5).

Puc.~4. Время рассвета и заката, а также максимумов $PE_{\rm s}$ и $hE_{\rm s}$ и для каждого месяца

Puc. 5. Суточное поведение hEs (вверху) и PEs (внизу) в июне 2005 г.: синие линии — средние величины за все июни с 2003 по 2021 гг.; черные — средние величины за июнь 2005 г.; розовой заливкой обозначены фазы роста hEs, голубой — фазы спада hEs. На верхней панели синими точками показаны наблюдавшиеся значения hEs.

На рис. 5 синими точками представлены высоты hE_s в различные дни июня 2005 г. для данного местного времени. Из рис. 5 видно, что на фазах роста hE_s имеют место отражения как бы от верхнего и нижнего спорадического слоя (в отдельные дни — от нижнего слоя, в отдельные дни — от верхнего слоя). Наличие верхнего и нижнего спорадических слоев будет рассмотрено ниже более детально. Рост средней высоты E_s -слоя обусловлен постепенным превалированием отражений от верхнего слоя. Начало фазы роста hE_s приблизительно совпадает с началом

появлений отражений от верхнего слоя, а конец фазы роста $hE_{\rm s}$ — с окончанием появления отражений от нижнего слоя. На фазе роста преимущественно происходят отражения от слоев, наиболее отдаленных от оптимальной высоты (как вниз, так и вверх), что объясняет минимумы $PE_{\rm s}$ на фазах роста $hE_{\rm s}$.

Наличие верхнего и нижнего спорадических слоев иллюстрируют рис. 6 и 7, на которых показаны вероятности наблюдения Е_s как функции высоты и местного времени для всех июней и июлей с 2003 по 2021 г. На фазе роста усредненной высоты, когда наблюдается минимум PE_s , слои E_s преимущественно регистрируются на высотных интервалах либо 95-105 км, либо 115-125 км. На фазе спада усредненной высоты и максимума вероятности появления E_s-слои наблюдаются в высотном диапазоне 105-115 км — вблизи оптимальной высоты образования спорадического слоя Е. Заметим, что времена наблюдения верхнего и нижнего спорадических слоев соответствуют временам наблюдения спорадического слоя типа CL, обозначающего одновременное наблюдение слоев типа С и L [Кокоуров и др., 2003].

Ионозондом, как правило, наблюдается только один слой (наличие двух слоев является следствием наблюдений в разные дни). Два слоя одновременно регистрируются ионозондом в редких случаях. В то же время данные радара некогерентного рассеяния в Arecibo демонстрируют регулярное одновременное присутствие как минимум двух спорадических слоев [Christakis et al., 2009].

РОЛЬ ФОТОИОНИЗАЦИИ

Суточная составляющая PE_s (дневные значения превышают ночные) может быть объяснена суточной составляющей hE_s (дневные значения превышают ночные), однако, наш взгляд, существуют факторы, для объяснения которых необходимо привлекать фотоионизацию металлических атомов. На рис. 3 видно, что для приблизительно одного и того же диапазона hE_s дневные значения PE_s заметно превышают ночные. В июне диапазон hE_s 102–103 км соответствует 13–14 и 23–23:30 LT, при этом в дневное время PE_s изменяется от 72 до 79 %, а в ночное время составляет ~62 %. В июле hE_s ~102 км соответствует 13–14

Puc.~6. Вероятность наблюдения PE_s как функция высоты (с шагом 1 км) и местного времени (LT=UT+7) для всех июней за 2003–2021 гг.

Puc. 7. Вероятность наблюдения PE_s как функция высоты (с шагом 1 км) и местного времени (LT=UT+7) для всех июлей за 2003–2021 гг.

и 23:30—23:45 LT, при этом $PE_{\rm s}$ в дневное время изменяется от 57 до 60 %, а в ночное время составляет ~50 %. Другим фактором, объясняемым эффектом фотоионизации, является асимметрия утреннего и вечернего максимумов $PE_{\rm s}$. Максимумы $PE_{\rm s}$ больше утром, чем вечером, а высоты, соответствующие максимумам $PE_{\rm s}$, больше вечером, чем утром (см. таблицу). Данная асимметрия может объясняться тем, что утренний спад $hE_{\rm s}$ приходится на рост фотоионизации, а вечерний спад $hE_{\rm s}$ — на спад фотоионизации.

Полусуточная составляющая hE_s (максимумы в утреннее и вечернее время) объясняется полусуточными вариациями положения узла конвергенции ветрового сдвига, в свою очередь обусловленными полусуточной составляющей нейтрального ветра. Суточная составляющая hE_s (дневные значения превышают ночные) может быть связана с эффектом фотоионизации. На рис. 3 видно, что минимальные значения hE_s приблизительно одинаковы в дневное и ночное время. Более высокие средние значения hE_s в дневное время связаны с появлением отражений от верхнего слоя при $hE_s \sim 102-103$ км, тогда как в ночное время отражения от верхнего слоя появляются при $hE_s \sim 100$ км. Это различие может быть связано с тем, что в ночное время отражения от верхнего

го слоя появляются только с наступлением рассвета и началом процесса фотоионизации. Альтернативным объяснением является то, что ночные $h\rm E_s$ могут быть узлами конвергенции ветрового сдвига, обусловленными суточной составляющей нейтрального ветра.

ЗАКЛЮЧЕНИЕ

На основе данных Иркутского ионозонда DPS-4 (52.3° N, 104.3° E) за 2003–2021 гг. осуществлен морфологический анализ высоты и вероятности наблюдения слоя E_s . Выявлено доминирование полусуточной составляющей как для высоты, так и для вероятности наблюдения E_s . Доминирование полусуточной составляющей в суточных вариациях hE_s является следствием полусуточных приливов в нейтральном ветре [Haldoupis, 2011].

Для интерпретации доминирования полусуточной составляющей в суточных вариациях вероятности наблюдения E_s предложена концепция оптимальной высоты образования спорадического слоя. Максимум PE_s наблюдается на фазе спада высоты E_s , когда hE_s соответствует оптимальной высоте образования спорадического слоя. На фазе роста усредненной высоты E_s преимущественно происхо-

дят отражения от слоев, наиболее отдаленных от оптимальной высоты (как вниз, так и вверх), что объясняет минимумы вероятности появления $E_{\rm s}$ на фазах роста высоты слоя.

Дополнительным фактором, влияющим на суточные вариации вероятности наблюдения E_s , является фотоионизация металлических атомов (вероятность образования E_s пропорциональна фотоионизации).

Работа выполнена при финансовой поддержке Минобрнауки России (субсидия № 075-ГЗ/Ц3569/278). Результаты получены с использованием оборудования Центра коллективного пользования «Ангара» [http://ckp-rf.ru/ckp/3056/].

СПИСОК ЛИТЕРАТУРЫ

Белинская А.Ю., Ковалев А.А., Карлин В.Э. Вариации слоя E_s над Новосибирском в 23 и 24 солнечных циклах. Динамические процессы в геосферах. 2022. Т. 14, № 1. С. 93–100.

Гершман Б.Н., Игнатьев Ю.А., Каменецкая Г.Х. Механизмы образования ионосферного спорадического слоя E_s на различных широтах. М.: Наука, 1976. 108 с.

Зализовский А.В. Роль тропосферных процессов в формировании спорадических слоев Е-области ионосферы над Антарктическим полуостровом. *Радиофизика и радиоастрономия*. 2008. Т. 13, № 1. С. 26–38.

Кокоуров В.Д., Петрухин В.Ф., Пономарев Е.А., Сутырин Н.А. Климатические особенности области Е ионосферы. *Солнечно-земная физика*. 2003. Вып. 3. С. 24–27. (Kokourov V.D., Petrukhin V.F., Ponomarev E.A., Sutyrin N.A. Climatic features of the ionosphere E region. *Solar-Terr. Phys.* 2003. Iss. 3. P. 24–27. (In Russian)).

Чавдаров С.С., Часовитин Ю.К., Чернышева С.П., Шефтель В.М. *Среднеширотный спорадический слой Е ионосферы*. М.: Наука, 1975. 148 с.

Arras C., Jacobi C., Wickert J. Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes. *Ann. Geophys.* 2009. Vol. 27, no. 6. P. 2555–2563. DOI: 10.5194/angeo-27-2555-2009.

Baggaley W.J. Ionospheric E_s in southern hemiosphere temperate zone. Seasonal characteristics for f_oE_s , Au_s . *J. Phys.* 1989. Vol. 42, no. 4. P. 451–464. DOI: 10.1071/PH890451.

Christakis N., Haldoupis C., Zhou Q., Meek C. Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. *Ann. Geophys.* 2009. Vol. 27, iss. 3. P. 923–931. DOI: 10.5194/angeo-27-923-2009.

Forbes J.M., Makarov N.A., Portnyagin Yu.I. First results from the meteor radar at South Pole: A large 12-hour oscillation with zonal wavenumber one. *Geophys. Res. Lett.* 1995. Vol. 22, no. 23. P. 3247–3250. DOI: 10.1029/95GL03370.

Fytterer T., Arras C., Jacobi C. Terdiurnal signatures in sporadic E layers at midlatitudes. *Adv. Radio Sci.* 2013. Vol. 11. P. 333–339. DOI: 10.5194/ars-11-333-2013.

Haldoupis C. A Tutorial Review on Sporadic E Layers. Aeronomy of the Earth's Atmosphere and Ionosphere. New York: Springer, 2011. P. 381–389.

Haldoupis C., Meek C., Christakis N., et al. Ionogram height time intensity observations of descending sporadic E layers at mid-latitude. *J. Atmos. Solar-Terr. Phys.* 2006. Vol. 68, no. 3-5. P. 539–557. DOI: 10.1016/j.jastp.2005.03.020.

Haldoupis C., Haralambous H., Meek C., Mathews J.D. Understanding the diurnal cycle of midlatitude sporadic E. The role of metal atoms. *J. Geophys. Res.: Space Phys.* 2023. Vol. 128, no. 4. e2023JA031336. DOI: 10.1029/2023JA031336.

Jo E., Kim Y.H., Moon S., Kwak Y.S. Seasonal and local time variations of sporadic E layer over South Korea. *J. Astron. Space Sci.* 2019. Vol. 36, no. 2. P. 61–68. DOI: 10.5140/JASS. 2019.36.2.61.

Lee C.-C., Liu J.-Y., Pan C.-J., Hsu H.-H. The intermediate layers and associated tidal motions observed by a digisonde in the equatorial anomaly region. *Ann. Geophys.* 2003. Vol. 21, no. 4. P. 1039–1045. DOI: 10.5194/angeo-21-1039-2003.

Maeda J., Heki K. Morphology and dynamics of daytime midlatitude sporadic-E patches revealed by GPS total electron content observations in Japan. *Earth, Planets and Space*. 2015. Vol. 67, no. 89. DOI: 10.1186/s40623-015-0257-4.

Mathews J.D. Sporadic E: current views and recent progress. *J. Atmos. Solar-Terr. Phys.* 1998. Vol. 60, no. 4. P. 413–435. DOI: 10.1016/S1364-6826(97)00043-6.

Oikonomou C., Haralambous H., Haldoupis C., Meek C. Sporadic E tidal variabilities and characteristics observed with the Cyprus digisonde. *J. Atmos. Solar-Terr. Phys.* 2014. Vol. 119. P. 173–183. DOI: 10.1016/j.jastp.2014.07.014.

Pignalberi A., Pezzopane M., Zuccheretti E. Sporadic E layer at mid-latitudes: average properties and influence of atmospheric tides. *Ann. Geophys.* 2014. Vol. 32, no. 11. P. 1427–1440. DOI: 10.5194/angeo-32-1427-2014.

Wang W., Jiang C., Wei L., et al. Comparative study of the E_s layer between the plateau and plain regions in China. *Remote Sens.* 2022. Vol. 14, no. 12. Id. 2871. DOI: 10.3390/rs14122871.

URL: http://ckp-rf.ru/ckp/3056/ (дата обращения 5 ноября 2024 г.).

Как цитировать эту статью:

Воронова Е.А., Ратовский К.Г. Суточные вариации характеристик спорадического слоя E_s над Иркутском. *Солнечно-земная физика*. 2025. Т. 11, № 1. С. 63–69. DOI: 10.12737/szf-111202507.