Zadanie 9. (0-1)

Proste o równaniach y = 3x - 5 oraz $y = \frac{m-3}{2}x + \frac{9}{2}$ są równoległe, gdy

A. m = 1

B. m = 3

C. m = 6

D. m = 9

Zadanie 10. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{x^2}{2x-2}$ dla każdej liczby rzeczywistej $x \neq 1$. Wtedy dla argumentu $x = \sqrt{3} - 1$ wartość funkcji f jest równa

A. $\frac{1}{\sqrt{3}-1}$

B. −1

C. 1

D. $\frac{1}{\sqrt{3}-2}$

Zadanie 11. (0-1)

Do wykresu funkcji f określonej dla każdej liczby rzeczywistej x wzorem $f(x) = 3^x - 2$ należy punkt o współrzędnych

A. (-1, -5)

B. (0,-2) **C.** (0,-1) **D.** (2,4)

Zadanie 12. (0-1)

Funkcja kwadratowa f określona wzorem f(x) = -2(x+1)(x-3) jest malejąca w przedziale

A. $\langle 1, +\infty \rangle$

B. $(-\infty, 1)$ **C.** $(-\infty, -8)$ **D.** $(-8, +\infty)$

Zadanie 13. (0-1)

Trzywyrazowy ciąg $\left(15,\ 3x,\ \frac{5}{3}\right)$ jest geometryczny i wszystkie jego wyrazy są dodatnie. Stąd wynika, że

A. $x = \frac{3}{5}$ **B.** $x = \frac{4}{5}$ **C.** x = 1

Zadanie 14. (0-1)

Ciąg (b_n) jest określony wzorem $b_n=3n^2-25n$ dla każdej liczby naturalnej $n\geq 1$. Liczba $\underline{\text{niedodatnich}}$ wyrazów ciągu (b_n) jest równa

A. 14

B. 13

C. 9

D. 8