Esperienza 13: Semaforo

Gruppo BN Lisa Bedini, Federico Belliardo, Marco Costa

26 aprile 2017

1 Scopo dell'esperienza

Lo scopo dell'esperienza realizzare un semaforo come macchina a stati finiti tale che

- nello stato ENABLED esegua un ciclo in cui si abbiano accesi (per la durata di un colpo di clock e nel seguente ordine) Led verde, Led verde e giallo, Led rosso.
- nello stato NOT ENABLED faccia lampeggiare il Led giallo (sincronamente col clock.

Il semaforo va realizzato sia tramite circuiti integrati, sia programmando Arduino.

2 Materiale a disposizione

- SN74LS00 Quad NAND gate
- SN74LS94 4-bit binary counter
- SN74LS74 Dual D-Latch
- SN74LS86 Quad XOR gate
- DIP switch
- 4 LED

3 Stato Enabled

Per realizzare il solo stato enabled abbiamo optato per una macchina di Moore non essendoci alcun tipo di input. In figura 1 abbiamo disegnato le transizioni e la codifica dei vari stati. Abbiamo deciso di usare solo 2 FF in quanto due bit erano sufficienti per codificare i tre stati richiesti. Indicheremo SEMPRE (anche nei punti successivi della relazione) Q_2 il bit pi significativo, mentre Q_1 sarmpre il bit meno significativo. Abbiamo codificato gli stati in modo che i Led verde e giallo siano pilotati da due bit distinti, rispettivamente Q_2 e Q_1 nel nostro caso. Cos sar facile in seguito poter far lampeggiare il solo Led giallo. Si osservi inoltre che lo stato 01 sociato al solo Led giallo acceso: questo puadere solo nella eventualite i FF si accendano in questo stato. Salvo questa eventualito stato 01 non compare pi nei cicli successivi. Le tabelle di transizione sono riportate in tabella 1.

$Q_{2,n}$	$Q_{1,n}$	$Q_{2,n+1} = D_2$	$Q_{1,n+1} = D_1$
0	0	1	0
0	1	X	X
1	1	0	0
1	0	1	1

Tabella 1: Tabella di veritla funzione di transizione fra stato n e il successivo n+1 dei due D-FF

Con un rapido studio tramite mappe di Karnaugh ci si convince facilmente che ponendo i due don't care¹ pari a 0 si ottiene che la funzione richiesta $Q_{2,n+1} = Q_{1,n}^{-}$ $Q_{1,n+1} = Q_{1,n}^{-} + Q_{2,n}(0)$ COs ha che lo stato non richiesto 01 ("solo giallo acceso"), transisce nello stato 00 ("solo rosso acceso").

¹cito assegnare a questi don't care tutte le combinazione tranne 01: in questo caso infatti la macchina resterebbe perpetuamente in questo stato

Figura 1: Diagramma dello stato Enabled

Una volta codificati gli stati, idente che i Led devono essereabbiamo assegnato alle uscite L_V (Led Verde), L_G (Led giallo), L_R (Led rosso) i seguenti valori:

$$L_V = Q_2 \qquad L_G = Q_1 \qquad L_R = \bar{Q}_1 \cdot \bar{Q}_2 \tag{1}$$

Questo era in effetti il modo pi semplice per realizzare i collegamenti fra i FF e le uscite (non abbiamo riportato le mappe di Karnaugh per non appesantire troppo la relazione)

4 Semaforo completo

Abbiamo optato di usare una macchina di Mealy per realizzare il semaforo completo.

5 Semaforo con Arduino

6 Conclusioni