Conjuntos

Relações

Aula 2
Gregory Moro Puppi Wanderley

Pontificia Universidade Católica do Paraná (PUCPR)

Bacharelado em Ciência da Computação – 3º Período

- Estrutura discreta mais fundamental.
 - Estruturas discretas s\u00e3o utilizadas para representar objetos discretos.
- São usados para agrupar objetos, normalmente com alguma propriedade semelhante.
 - Ex.: Os estudantes de Ciência da Computação formam um conjunto.
 - Ex.: O conjunto formado pelas cidades do Brasil que são capitais.
 - Ex.: Os jogos de RPG (Role-Playing Game) formam um conjunto.

- Definição
 - "Um conjunto é uma coleção, sem repetições e sem qualquer ordenação, de zero ou mais objetos denominados elementos".
 - Elemento: objeto concreto ou abstrato.

- Notação por extensão (enumerando todos os elementos)
 - $A = \{0, 1, 2, 3\}$
 - representa o conjunto A com seus quatro elementos 0, 1, 2 e 3.
 - $B = \{0, 1\}$
 - representa o conjunto B composto pelos algarismos que formam os números binários.
 - Vogais = {a, e, i, o, u}
 - representa o conjunto Vogais com seus elementos sendo todas as vogais.

- Notação pela(s) propriedade(s) dos elementos
 - $S = \{x \mid P(x)\}$
 - todo o elemento de S tem a propriedade P e tudo o que tem a propriedade P é um elemento de S.
 - Ex.: Ímpares = {x | x é um número ímpar}
 - Ex.: $A = \{x \mid x \text{ é par e } x < 6\}$

Pertinência

- Se x é um elemento do conjunto A, então x pertence a A.
 - Notação: x ∈ A
 - Ex.: $A = \{0, 1, 2, 3\}, 0 \in A$

- Se x não é um elemento de A, então x não pertence a A.
 - Notação: x ∉ A
 - Ex.: $A = \{0, 1, 2, 3\}, 8 \notin A$

- Conjuntos importantes ("padrões")
 - Conjunto Vazio: ∅ ou { }
 - Não possui elementos.
 - Conjunto Unitário:
 - Conjunto constituído por um único elemento.
 - Ex.: $A = \{x \mid x > 0 \text{ e } x < 2\}$

- Conjuntos numéricos ("padrões")
 - N (Conjunto dos números naturais, {0, 1, 2, 3, ...})
 - Z (Conjunto dos números inteiros {..., -2, -1, 0, 1, 2, ...})
 - **Q** (Conjunto dos números racionais {..., -7/11, ..., 1/3, ...})
 - I (Conjunto dos números irracionais $\{..., 1+i\sqrt{3}, ...\}$)
 - R (Conjuntos dos números reais {..., -1,33, ..., 9,41, ...})

- Conjuntos finitos e infinitos
 - Conjunto finito: pode ser denotado enumerando todos os seus elementos (extensão).
 - Ex.: Ø
 - Ex.: $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Ex.: S = {x | x é cachorro}

- Conjuntos finitos e infinitos
 - Conjunto infinito: não é possível enumerar todos os seus elementos por extensão.
 - Ex.: R, Z
 - Ex.: $N = \{x \mid x \ge 0\}$
 - Ex.: Ímpares = {y | y = 2x + 1 e x ∈ Z}

Cardinalidade (Aula Anterior)

- A cardinalidade de um conjunto A (i.e., |A|) é o número de elementos de A.
 - Ex.: Se A = {1,8, 91, 15}, então |A| = 4.
 - Ex.: Se A = ∅, então |A| = 0.
 - Ex.: $|N| = \infty$

Subconjuntos

- A é dito um subconjunto de B se todo elemento de A é também elemento de B.
- Notação: A⊆B (A é um subconjunto de B, ou A está contido em B)
 - Ou, B⊇A (B contém A)
 - Ex.: A = {3, 7} e B = {1, 2, 3, 5, 7, 8}
 - Analogamente, A ⊄ B (A não está contido em B)
 - Ex.: A = {a, b, c} e B = {a, b, j, l, m}

Conjunto Potência (Aula Anterior)

- Seja A um conjunto, o conjunto potência ou conjunto das partes de A, P(A), é o conjunto cujos elementos são todas as partes de A.
 - Ex.: $A = \{1, 2\}$
 - $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
 - Se A é finito, então P(A) é finito contendo 2ⁿ elementos.
 - Ex.: $A = \{1\}$
 - P(A) = 2¹ elementos = {∅, {1}}

- Conjunto universo (U)
 - Contém todos os conjuntos considerados no contexto em questão.
 - Definido U, para qualquer outro conjunto A:
 - $A \subseteq U$
 - Ex.: Conjunto N como base num dado contexto, U = N
 - Então, outros conjuntos podem ser derivados:
 - ex.: conjunto dos Pares = $\{y \mid y = 2x \in X \in \mathbb{N}\}$

- Igualdade de conjuntos
 - Dois conjuntos A e B são iguais (A = B) se, e somente se, todo o elemento de A pertencer a B e todo o elemento de B pertencer a A.
 - $A \subseteq B$ e $B \subseteq A$
 - Ex.: Se A = {1, 2, 4, 7} e B = {4, 7, 2, 1}, então A = B
 - Ex.: Se A = {1, 5, 3} e B = {1, 3, 5}, então A = B

- Subconjunto vs. Pertinência
 - Distinguir entre subconjunto (contido) e pertinência.
 - Dado o conjunto A = {3, 4, 5, ∅, {a}, {b, c}}
 - {4}∉A
 - \circ $\varnothing \in A$
 - {a}∈A
 - {b, c}∈A
 - {1, 2, 3}∉A
 - Ø⊆A
 - {3}⊆A
 - {3, 4, 5}⊆A

União (Aula Anterior)

- A união de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A ou x∈B.
 - $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
 - Ex.: A = {a, b, e}, B = {b, c, d}
 - $A \cup B = \{a, b, c, d, e\}$
 - Ex.: A = $\{x \in \mathbb{N} \mid x \in \mathbb{N}\}$, B = $\{x \in \mathbb{N} \mid x \in \mathbb{N}\}$
 - $A \cup B = N$

Interseção (Aula Anterior)

- A interseção de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A e x∈B.
 - $A \cap B = \{x \mid x \in A \in x \in B\}$
 - Ex.: A = {1, 2}, B = {2, 3, 4, 5}, C = {4, 5}
 - $A \cap B = \{2\}$
 - A ∩ C = Ø (A e C são ditos disjuntos)
 - B \cap C = {4, 5}
 - $A \cap A = \{1, 2\} = A$

Complemento (Aula Anterior)

- Seja A uma parte de U (conjunto universo).
 - O complemento de A em relação a U, dito U \ A ou A^c, é formado por todos os elementos x de U, tais que x ∉ A.
 - $U \setminus A = A^C = \{x \in U \mid x \notin A\}$
 - Ex.: U = {1, 2, 3, 4, 5}, A = {2, 3}
 - $A^c = \{1, 4, 5\}$
 - Ex.: U = N, A = {x ∈ N | x é ímpar}
 - $A^c = \{x \in \mathbb{N} \mid x \in \mathbb{N}\}$

Diferença (Aula Anterior)

- Sejam A e B duas partes de U (conjunto universo).
 - A diferença entre A e B, dito A B, é o conjunto dos elementos x tais que x ∈ A e x ∉ B.
 - $A B = \{x \in U \mid x \in A \in x \notin B\}$
 - Ex.: A = {1, 2, 3}, B = {3, 9}
 - $A B = \{1, 2\}$
 - $B A = \{9\}$
 - $\bullet \quad \mathsf{A} \mathsf{A} = \varnothing$

Produto cartesiano (Aula Anterior)

- O produto cartesiano de dois conjuntos A e B, denotado por A×B:
 - É o conjunto de pares ordenados formados por um elemento de A e por um elemento de B de todas as maneiras possíveis.
 - $A \times B = \{(a, b) \mid a \in A \in b \in B\}$
 - Ex.: A = {1, 2, 3}, B = {a, b}
 - $A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$
 - $B \times A = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$
 - $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - $B \times B = \{(a,a), (a,b), (b,a), (b,b)\}$

Diagramas de Venn (Aula Anterior)

- Representação gráfica de conjuntos finitos.
 - Exemplo
 - U = {a, b, c, ..., n}, A = {b, c, d, e, f}, B = {e, f, g, h}, C = {I, m}

Diagramas de Venn (Aula Anterior)

Diagramas de Venn (Aula Anterior)

Plano de Aula

- Relações Binárias em Conjuntos
- Relações de Equivalência
- Ordenações Parciais
- Relações n-árias

- Distinguir determinados pares ordenados
 - Seus elementos satisfazem alguma relação que os componentes dos demais pares, em geral, não satisfazem.

- Distinguir determinados pares ordenados
 - Seus elementos satisfazem alguma relação que os componentes dos demais pares, em geral, não satisfazem.
 - Ex.: Sejam A = {1, 4} e B = {4, 5}
 - $A \times B = \{(1, 4), (1, 5), (4, 4), (4, 5)\}$
 - $R_1 = \{(x, y) \mid x = y\} = \{(4, 4)\}$
 - $R_2 = \{(x, y) \mid x \text{ for par}\} = \{(4, 4), (4, 5)\}$
 - $R_3 = \{(x, y) \mid x \le y\} = \{(1, 4), (1, 5), (4, 4), (4, 5)\}$
 - •

- Definição
 - Dados os conjuntos A e B, uma relação binária R em A e B é um subconjunto de A × B.
 - $x R y \Leftrightarrow (x, y) \in R$

Definição

- Dados os conjuntos A e B, uma relação binária R em A e B é um subconjunto de A × B.
 - $x R y \Leftrightarrow (x, y) \in R$
 - Exemplo
 - Alunos = {João, Maria, Ana, ...}
 - Disciplinas = {Res-Probl-ND, Constr-Interpretadores, ...}
 - R = {(x, y) | x está matriculado em y} =
 - {(João, Res-Probl-ND), (João, Constr-Interpretadores),
 (Maria, Constr-Interpretadores), ...}

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), (3, 1), (9, 3), (4, 2)

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), (3, 1), (9, 3), (4, 2)

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), <u>(3, 1)</u>, <u>(9, 3)</u>, (4, 2)
 - $R = \{(x, y) \mid x \text{ divide } y\}$
 - **•** (2, 4), (1, 8), (0, 9), (2, 5)

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), (3, 1), (9, 3), (4, 2)
 - R = {(x, y) | x divide y}
 - (2, 4), (1, 8), (0, 9), (2, 5)

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), (3, 1), (9, 3), (4, 2)
 - R = {(x, y) | x divide y}
 - <u>(2, 4), (1, 8), (0, 9), (2, 5)</u>
 - R = $\{(x, y) | x > y^2\}$
 - **•** (1, 2), (2, 1), (5, 2)

- Para cada uma das relações binárias R em N × N, determine quais dos pares ordenados pertencem a R.
 - $R = \{(x, y) \mid x = y*3\}$
 - (1, 5), (3, 1), (9, 3), (4, 2)
 - R = {(x, y) | x divide y}
 - <u>(2, 4), (1, 8), (0, 9), (2, 5)</u>
 - R = $\{(x, y) | x > y^2\}$
 - (1, 2), <u>(2, 1)</u>, <u>(5, 2)</u>

Relação em um Conjunto

Definição

- Uma relação binária num conjunto A é um subconjunto de A²
 (A × A).
 - Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x < y\} = \{(1, 2), (1, 3), (2, 3)\}$
 - $R = \{(x, y) \mid x \ge y\} = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$
 - $R = \{(x, y) \mid x+y \le 3\} = \{(1, 1), (1, 2), (2, 1)\}$

Relação em um Conjunto

Definição

- Uma relação binária num conjunto A é um subconjunto de A² $(A \times A)$.
 - Ex.: A = {1, 2, 3}
 - $R = \{(x, y) \mid x < y\} = \{(1, 2), (1, 3), (2, 3)\}$
 - $R = \{(x, y) \mid x \ge y\} = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$
 - $R = \{(x, y) \mid x+y \le 3\} = \{(1, 1), (1, 2), (2, 1)\}$
 - Ex.: Alunos = {José, Maria, Ana, Antônio}
 - R = {(x, y) | x estuda com y} = {(Maria, Antônio), (José, Ana)}

- Usadas para classificar as relações num conjunto.
- Relação reflexiva
 - Uma relação R é reflexiva se ela contém todos os pares da forma (x, x)
 - \bullet ∀x ((x, x) ∈ R)

- Usadas para classificar as relações num conjunto.
- Relação reflexiva
 - Uma relação R é reflexiva se ela contém todos os pares da forma (X, X)
 - $\bullet \forall x ((x, x) \in R)$
 - Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x \le y\} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - Ex: N > 0
 - $R = \{(x, y) \mid x \text{ divide } y\} = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$
 - Ex.: Pessoas = {pessoa_1, pessoa_2, ..., pessoa_n}
 - R = {(x, y) | x possui o mesmo pai e a mesma mãe que y}

- Relação simétrica
 - Uma relação R em um conjunto A é simétrica se ela contém todos os pares da forma (x, y) e (y, x) para quaiquer x, y ∈ A
 - $\forall x \forall y ((x, y) \in \mathbb{R} \rightarrow (y, x) \in \mathbb{R})$

Relação simétrica

- Uma relação R em um conjunto A é simétrica se ela contém todos os pares da forma (x, y) e (y, x) para quaiquer $x, y \in A$
 - $\bullet \forall x \forall y ((x, y) \in \mathbb{R} \rightarrow (y, x) \in \mathbb{R})$
- Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x = y\}$
 - $R = \{(1, 1), (2, 2), (3, 3)\}$
 - $R = \{(x, y) \mid x+y \le 3\}$
 - $R = \{(1, 1), (1, 2), (2, 1)\}$

- Relação anti-simétrica
 - Uma relação R em um conjunto A é anti-simétrica, se (x, y) ∈R e
 (y, x)∈R, então x = y.
 - $\forall x \ \forall y \ (((x, y) \in R \ \land \ (y, x) \in R) \rightarrow (x = y))$

- Relação anti-simétrica
 - Uma relação R em um conjunto A é anti-simétrica, se (x, y)∈R e $(y, x) \in \mathbb{R}$, então x = y.
 - $\forall x \forall y (((x, y) \in R \land (y, x) \in R) \rightarrow (x = y))$
 - Ex.: A = {1, 2, 3}
 - $R = \{(x, y) \mid x = y\}$
 - $R = \{(1, 1), (2, 2), (3, 3)\}$
 - $R = \{(x, y) \mid x > y\}$
 - $R = \{(2, 1), (3, 1), (3, 2)\}$

- Relação transitiva
 - Uma relação R em um conjunto A é transitiva, sempre que (x, y)∈R
 e (y, z)∈R, então (x, z) ∈ R, para todo x, y, z∈A.
 - $\forall x \forall y \forall z (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$

Relação transitiva

- Uma relação R em um conjunto A é transitiva, sempre que (x, y)∈R
 e (y, z)∈R, então (x, z) ∈ R, para todo x, y, z∈A.
 - $\forall x \forall y \forall z (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$
- Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x \le y\}$
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - $R = \{(x, y) \mid x = y\}$
 - $= \{(1, 1), (2, 2), (3, 3)\}$

- Reflexivas, simétricas, anti-simétricas, transitivas?
 - $A = \{1, 2, 3, 4\}$
 - $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$
 - $R_2 = \{(1, 1), (1, 2), (2, 1)\}$
 - $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$
 - $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$
 - $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$
 - $R_6 = \{(3, 4)\}$

- Reflexivas, simétricas, anti-simétricas, transitivas?
 - A = {1, 2, 3, 4}
 - $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$
 - $R_2 = \{(1, 1), (1, 2), (2, 1)\}$ Simétrica

- $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ Reflexiva,
- $R_{4} = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ Anti-simétrica, transitiva
- $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (2, 4), (3, 3), (3, 4), (4,$ (4, 4)}Reflexiva, anti-simétrica, transitiva
- $R_6 = \{(3, 4)\}$ Anti-simétrica, transitiva

Plano de Aula

- Relações Binárias em Conjuntos
- Relações de Equivalência
- Ordenações Parciais
- Relações n-árias

- Definição
 - Relação binária num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, simétrica e transitiva.
 - Dois elementos x e y relacionados por uma relação de equivalência são ditos equivalentes.

- Definição
 - Relação binária num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, simétrica e transitiva.
 - Dois elementos x e y relacionados por uma relação de equivalência são ditos equivalentes.
 - Ex.: A = {0, 1, 2, 3, 4}
 - $R = \{(x, y) \mid x = y\}$
 - $R = \{(1, 1), (0, 0), (2, 2), (3, 3), (4, 4)\}$
 - $R = \{(x, y) \mid x + y \in par\}$
 - $R = \{(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (2, 4), \ldots\}$

- Classe de equivalência
 - Seja R uma relação de equivalência num conjunto A.
 - O conjunto de todos os elementos que estão relacionados a um elemento x de A é denominado classe de equivalência de x.

- Classe de equivalência
 - Seja R uma relação de equivalência num conjunto A.
 - O conjunto de todos os elementos que estão relacionados a um elemento x de A é denominado classe de equivalência de x.
 - Classe de equivalência de x relativa a R: [x]_R ou [x] (se apenas uma relação é considerada).
 - $[x] = \{y \mid y \in A \land (x, y) \in R\}$

- Classe de equivalência
 - Seja R uma relação de equivalência num conjunto A.
 - O conjunto de todos os elementos que estão relacionados a um elemento x de A é denominado classe de equivalência de x.
 - Classe de equivalência de x relativa a R: [x]_R ou [x] (se apenas uma relação é considerada).
 - $[x] = \{y \mid y \in A \land (x, y) \in R\}$
 - Se y∈[x] então y é dito representante dessa classe de equivalência.

- Exemplo
 - Conjunto Alunos ; R = {(x, y) | x senta na mesma mesa que y}
 - Se José, Maria, Cláudio, Ana, Paula sentam na mesa 1, então:
 - A classe de equivalência da mesa 1 é:
 - [José] = {José, Maria, Cláudio, Ana, Paula}

Exemplo

- Conjunto Alunos ; R = {(x, y) | x senta na mesma mesa que y}
 - Se José, Maria, Cláudio, Ana, Paula sentam na mesa 1, então:
 - A classe de equivalência da mesa 1 é:
 - [José] = {José, Maria, Cláudio, Ana, Paula}
 - Se Maria é a representante da classe:
 - [Maria] = {José, Maria, Cláudio, Ana, Paula}

Plano de Aula

- Relações Binárias em Conjuntos
- Relações de Equivalência
- Ordenações Parciais
- Relações n-árias

- Objetivo: ordenar alguns ou todos os elementos de conjuntos.
- Definição
 - Relação binária R num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, anti-simétrica e transitiva.

- Objetivo: ordenar alguns ou todos os elementos de conjuntos.
- Definição
 - Relação binária R num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, anti-simétrica e transitiva.
 - O conjunto A junto com R é dito parcialmente ordenado ou poset, i.e., (A,≼), onde ≼ representa R.

- Objetivo: ordenar alguns ou todos os elementos de conjuntos.
- Definição
 - Relação binária R num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, anti-simétrica e transitiva.
 - O conjunto A junto com R é dito parcialmente ordenado ou poset, i.e., (A, \leq) , onde \leq representa R.
- Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x \le y\}$
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - R = {(x, y) | x divide y}
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$

- Objetivo: ordenar alguns ou todos os elementos de conjuntos.
- Definição
 - Relação binária R num conjunto A, a qual é ao mesmo tempo:
 - Reflexiva, anti-simétrica e transitiva.
 - O conjunto A junto com R é dito parcialmente ordenado ou poset, i.e., (A, \leq) , onde \leq representa R.
- Ex.: $A = \{1, 2, 3\}$
 - $R = \{(x, y) \mid x \le y\}$ Ré uma Ordem parcial
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - R = {(x, y) | x divide y} → R é uma Ordem parcial
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$

 Os elementos x e y de um poset (A, ≼) são ditos comparáveis, se ou x≼y ou y≼x. Caso contrário x e y são ditos incomparáveis.

- Os elementos x e y de um poset (A, ≼) são ditos comparáveis, se ou x≼y ou y≼x. Caso contrário x e y são ditos incomparáveis.
 - Ex.: No poset ({1, 2, 3}, x divide y):
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$
 - Os naturais 1 e 2 são comparáveis?
 - Os naturais 2 e 3 são comparáveis?

- Os elementos x e y de um poset (A, ≼) são ditos comparáveis, se ou x≼y ou y≼x. Caso contrário x e y são ditos incomparáveis.
 - Ex.: No poset ({1, 2, 3}, x divide y):
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$
 - Os naturais 1 e 2 são comparáveis? —— Sim. 1 divide 2
 - Os naturais 2 e 3 são comparáveis? Não. 2 não divide 3 e
 3 não divide 2

- Um poset (A, ≼) é dito totalmente ordenado se quaisquer dois elementos x e y de A forem comparáveis.

- Um poset (A, ≼) é dito totalmente ordenado se quaisquer dois elementos x e y de A forem comparáveis.

 - Ex.: O poset (N, ≤) é totalmente ordenado, pois x ≤ y ou y ≤ x:
 - **•** {0, 1, 2, 3, 4, 5, 6, 7, ...}

- Um poset (A, ≼) é dito totalmente ordenado se quaisquer dois elementos x e y de A forem comparáveis.
 - ≼ é chamada de ordem total.
 - Ex.: O poset (N, ≤) é totalmente ordenado, pois x ≤ y ou y ≤ x:
 - **•** {0, 1, 2, 3, 4, 5, 6, 7, ...}
 - Ex.: O poset ({1, 2, 3}, x divide y) **não é totalmente ordenado**, pois contém elementos incomparáveis (e.g., 2 e 3).

- Ordem alfabética ou do dicionário.
- Conjunto do alfabeto: A = {a, b,c, ..., z}
- $A_1 \times A_2 \times A_3 \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n), \dots, (c, a, s, a), \dots\}$
- $(a_1, a_2, a_3, ..., a_n) \leq (b_1, b_2, b_3, ..., b_n)$, se:

- Ordem alfabética ou do dicionário.
- Conjunto do alfabeto: A = {a, b,c, ..., z}
- $A_1 \times A_2 \times A_3 \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n), \dots, (c, a, s, a), \dots\}$
- $(a_1, a_2, a_3, ..., a_n) \leq (b_1, b_2, b_3, ..., b_n)$, se:
 - $a_1 \leq b_1$ ou se existir um i > 0, tal que $a_1 = b_1, ..., a_i = b_i$, e $a_{i+1} \leq b_{i+1}$

- Ordem alfabética ou do dicionário.
- Conjunto do alfabeto: A = {a, b,c, ..., z}
- $A_1 \times A_2 \times A_3 \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n), \dots, (c, a, s, a), \dots\}$
- $(a_1, a_2, a_3, ..., a_n) \leq (b_1, b_2, b_3, ..., b_n)$, se:
 - $a_1 \leq b_1$ ou se existir um i > 0, tal que $a_1 = b_1, ..., a_i = b_i$, e $a_{i+1} \leq b_{i+1}$

- Ordem alfabética ou do dicionário.
- Conjunto do alfabeto: A = {a, b,c, ..., z}
- $A_1 \times A_2 \times A_3 \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n), \dots, (c, a, s, a), \dots\}$
- $(a_1, a_2, a_3, ..., a_n) \leq (b_1, b_2, b_3, ..., b_n)$, se:
 - $a_1 \leq b_1$ ou se existir um i > 0, tal que $a_1 = b_1, ..., a_i = b_i$, e $a_{i+1} \leq b_{i+1}$
 - Uma sequência a é menor do que uma b, se a primeira letra de a vem antes da letra de b nesta posição. Ou,
 - a e b coincidem em todas as posições, mas b tem mais letras.

Plano de Aula

- Relações Binárias em Conjuntos
- Relações de Equivalência
- Ordenações Parciais
- Relações n-árias

- Definição
 - Relação entre elementos de mais de dois conjuntos.
 - Sejam os conjuntos A₁, A₂, ..., A_n. Uma relação n-ária R nesses conjuntos é um subconjunto de A₁ × A₂ × ... × A_n.

Definição

- Relação entre elementos de mais de dois conjuntos.
 - Sejam os conjuntos A₁, A₂, ..., A_n. Uma relação n-ária R nesses conjuntos é um subconjunto de A₁ × A₂ × ... × A_n.
 - Os conjuntos A₁, A₂, ..., A_n são chamados de domínios da relação.

Definição

- Relação entre elementos de mais de dois conjuntos.
 - Sejam os conjuntos A₁, A₂, ..., A_n. Uma relação n-ária R nesses conjuntos é um subconjunto de A₁ × A₂ × ... × A_n.
 - Os conjuntos A₁, A₂, ..., A_n são chamados de domínios da relação.
 - Ex.: N × N × N
 - $R = \{(x, y, z) \mid x < y \land y < z\}$
 - $(1, 2, 3) \in \mathbb{R}$; $(1, 5, 3) \notin \mathbb{R}$

- Banco de Dados Relacional (Exemplo)
 - C = companhia aérea
 - N = número do vôo
 - P = local de partida
 - D = local de destino
 - H = horário de partida

- Banco de Dados Relacional (Exemplo)
 - C = companhia aérea
 - N = número do vôo
 - P = local de partida
 - D = local de destino
 - H = horário de partida
 - Um vôo é uma relação R = (C, N, P, D, H)
 - Ex.: (FlyExpress, 1453, São Paulo, Barcelona, 16h32) ∈ R

- Diagrama simples representando o exemplo
 - Um vôo é uma relação R = (C, N, P, D, H)
 - Ex.: (FlyExpress, 1453, São Paulo, Barcelona, 16h32)∈R

 Utilize como base o diagrama abaixo e implemente o banco de dados correspondente em Python.

Dúvidas?

Síntese da Aula

- Relação Binária
- Propriedades das Relações
 - Reflexiva
 - Simétrica
 - Transitiva
 - Anti-simétrica
- Relações de Equivalência
- Ordenação Parcial
- Relação N-ária

Próxima Aula

- TDE01
 - Funções em conjuntos.
- Trabalho 1