# EDA 软件设计 I

Lecture 9

## Quiz 1 讲解

• (9') BFS 遍历步骤可视化: Q 代表队列, V 代表"已访问"的节点, R代表输出结果(访问路径), 起始节点为节点3, 在下图的BFS遍历步骤中, 写出每一步对应的 Q、V、R的状态变化(**注意: 此处遵 循邻接表内读取序号小的邻居先入队列)**:



# Review:上节课重点

- DFS算法原理:
  - 1. 深入探索
  - 2. 回溯
- DFS 遍历的两种实现方式
  - 显示栈(核心: 依靠 stack 的先进后出特性)
  - 递归(核心:依靠递归调用)
  - 共同点:维护已访问的节点(避免陷入无限循环)
- DFS算法复杂度
  - 时间: ○(V + E)
  - 空间: O(V)

```
当栈 S 非空时:
从栈 S 中pop出最后进入的节点作为当前节点
对于当前节点的每个邻居:
如果邻居不在 Visited 集合中:
将邻居节点推入栈 S
将邻居节点加入 Visited 集合
将当前节点加入 Res 列表
```

```
DFS(node, visited):

如果 node 在 visited 中:

返回
将 node 标记为已访问 (加入 visited 集合)
对于 node 的每个邻居 neighbor:

如果 neighbor 不在 visited 中:

递归调用 DFS(neighbor, visited)
```

# Review:上节课重点

- 递归:
  - 定义
  - 适合解决的问题
  - 基本结构

```
递归函数(parameter):
如果满足基准情况:
返回结果
否则:
进行递归调用
返回递归调用的结果
```

```
      斐波那契数列递归计算:

      fibonacci(n):

      如果 n == 0:

      返回 0 (基准情况1)

      如果 n == 1:

      返回 1 (基准情况2)

      否则:

      返回 fibonacci(n-1) + fibonacci(n-2) (递归调用)
```

# 算法核心四要素 @ DFS



# DFS应用

- 路径遍历: 从某个起点出发,探索一条或者所有可能到达特定终点的路径
  - 在电路时序分析中:用于确保信号在给定的时间内能够正确传递到输出端。
    - 通过DFS,可以遍历电路的所有路径,计算路径延迟,检查是否满足时序要求,进而检测出**关键路径**和**时序违规**。
- 连通性检测
  - 无向图中连通的定义
  - 通过从一个节点开始DFS遍历,如果能访问所有节点,则说明图是连通的;否则,图是不连通的,可以用来找出图中的**连通分量**
- 迷宫生成

# DFS应用

- 适用于全排列问题:
  - 给定一组不重复的数字,生成它们的所有排列组合——leetcode medium难度
  - **Hint:** DFS在构建排列时,逐步选择每个元素并将其加入当前路径中,当路径构成一个完整排列时将其记录,否则在路径不满足条件时回溯
- 适用于组合问题:
  - 给定整数 n 和 k, 从 1 到 n 中选出 k 个数字的所有组合——leetcode medium 难度
  - **Hint:** DFS逐步选择数字,将其加入当前组合,递归生成后续数字。如果组合大小达到 k,则回溯。

### **Progress so far**

- BFS与DFS
  - 一个是"扫地僧", 先扫门前雪再向外扩张
  - 一个是"探险家", 一条路走到头, 无路可走后再回溯
  - •目前为止共同点:作用在无向图上
- 图模型
  - 定义:一组由节点和边组成的**数学模型**,表示<u>对象(节点)及其相互关系(边)</u>
  - 分类:
    - ・无向图和有向图
    - · 无权图和加权图

# 无向图到有向图

### 社交网络图

- 节点: 用户
- **无向图的边**: 友谊
  - 已经相互关注
  - 彼此是朋友
- 有向图的边: 关注关系
  - 包含单向关注



# 无向图到有向图

### 逻辑电路图

- 节点:不同的逻辑门(如 AND、 OR、NOT、NAND、NOR等)
- 无向图的边:单纯代表逻辑门间的连接关系
- 逻辑门之间传递电信号实现特定功能(比如逻辑运算)
- 有向图的边: 信号的传输方向性



# 加权图(weighted graph)

### 轨道交通图

- 节点: 车站或者交叉路口
- 边: 地铁线路
- 边上的权重:
  - ◆距离
  - ◆时间
  - ◆费用



无向无权图:表示相对基础的连接关系、拓扑结构

**有向图、加权图**:能描述对象(节点)之间的更加丰富的关系结构

- 具有方向性的关系(有向图)
- 描述关系的强度、成本、容量等(加权图)

一种重要的有向图: 有向无环图

# 有向无环图 (DAG)

- DAG: directed acyclic graph
- 环的定义: **一条起点和终点相同的** 路径
  - 在无向图中: 从某节点出发,通过若干边,回到该节点
  - 在有向图中: 从某节点出发, 通过若干有向边, 回到该节点
- 无环性:在图中**不存在任何**从某个顶点 u 出发,沿着有向边经过若干个顶点最终又回到 u 的路径



### Why Study DAG? (DAG适用性)

#### 大部分流程化的过程都可以被建模成有 向无环图——芯片设计全流程

- 有向性:流程的每一步通常都有一个明确的方向,即每个步骤都会有前驱和后继任务。
  - 例如,逻辑设计必须在功能验证之前完成
- 无环性: 大部分流程化过程是没有循环的,即如果步骤A是步骤B的前驱,那步骤A通常就不会是步骤B的后继



### Why Study DAG? (DAG适用性)

#### 大学选课系统

- Prerequisite: 前置必修课程
- 假设你是某大学的学生并且想选 修 Class H, 那你必须先修过 Class A、B、D、E作为 prerequisites
- 选课系统成一个有向无环图:
  - 有向边: 先修课程的依赖关系
  - 无环性:不存在循环依赖,否则系统陷入矛盾状态,形成"**死锁** (Deadlock)"



### Why Study DAG? (DAG实用性)

### 程序构建依赖关系

- 节点: 程序或模块
- 有向边: 模块之间的 依赖关系
- 无环性:模块之间不存在相互依赖的关系



### Why Study DAG? (DAG实用性)

### 逻辑电路图

- 节点:不同的逻辑门 (如 AND、OR、NOT、 NAND、NOR等)
- 有向边:每条边表示信号传递的方向性
- 无环性:信号的传递是单向的



| 领域         | DAG 应用    | In detail                                              |
|------------|-----------|--------------------------------------------------------|
| 数据处理与工作流管理 | 大规模数据处理   | 在分布式计算框架中(如<br>Hadoop、Spark 等),DAG 常用<br>来表示数据处理的依赖关系。 |
|            | 工作流管理     | 在自动化工作流管理中,DAG 用于描述任务之间的依赖关系和执行顺序。                     |
| 版本控制       | Git版本控制系统 | Git 的分支管理和合并过程可以用<br>DAG 来表示。                          |
| 电路设计与分析    | 时序分析      | DAG 用于分析电路中的信号路径,<br>确保信号传输在规定的时钟周期<br>内完成。            |
| 数据库和查询优化   | 查询计划优化    | 在数据库中,DAG 可以用于表示<br>SQL 查询的执行计划。                       |
| 机器学习和深度学习  | 神经网络架构    | DAG 可用于描述神经网络的前向<br>传播过程。                              |
| 区块链和加密货币   | 区块链       | 某些区块链系统(如 IOTA)使用<br>DAG 来替代传统的线性区块链结<br>构。            |

# 有向图与无向图存储的区别

### 无向图的邻接矩阵:

是一个对称矩阵 M, M[u][v] = 1
 和 M[v][u] = 1, 表示u和v之间
 有无向边

### 无向图的邻接表:

• 对于每个节点 u , 它的邻接列 表包含所有与它相连的节点 v

#### 示例无向图:

#### 邻接矩阵:

A B C A 0 1 1 B 1 0 1 C 1 1 0

#### 示例邻接表:

A: B, C B: A, C C: A, B

# 有向图与无向图存储的区别

### 有向图的邻接矩阵:

- M[u][v] = 1 表示有从节点 u 到 节点 v 的有向边。
- 如果图中没有 v → u 的反向边,
   则 M[v][u] = 0。

### 有向图的邻接表:

• 只存储从当前节点**出边**。对于每个节点 u ,邻接表只包含所有被 u 指向的节点 v



示例邻接表: A: B, C

В:

C:

# Natural question: 如何判定一个有向图为为DAG?



