

Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica

Microcontroladores

Materia

Práctica No. 1

Miguel Ángel González Escalona, Roberto López Arce, Ramiro Lázaro Bonilla, Alfredo Camarillo Bautista

Integrantes del equipo

Ingeniería en mecatrónica

Carrera

Ricardo Álvarez González

Docente

08 de febrero de 2020

Fecha de entrega

Marco teórico

El pic 18f4550 es un microcontrolador de 8 bits de la empresa Microchip. Este microcontrolador cuenta con una gran cantidad de memoria RAM, diferentes módulos de comunicación, una gran cantidad de pines de entrada y salida y algunas otras grandes cualidades. Algunas de sus características son:

- 40 pines tipo DIP
- Interfaz USB 2.0 de alta velocidad, EEPROM 256 bytes
- Memoria RAM 2048 bytes, EEPROM 256 bytes
- Memoria de programa (memoria flash) 32 kb
- Voltaje de operación 2 a 5.5 V
- Frecuencia máxima 48 MHz
- 35 pines de entrada / salida

Las instrucciones utilizadas en la práctica se enlistarán y explicarán a continuación.

,	T			
Instrucción	Sintaxis	Operación	Palabras y Ciclos	Descripción
Bcf	[label] BCF f,b[,a]	0 -> f 	1 palabra	El bit 'b' en el registro 'f' es
			1 ciclo	limpiado. Si 'a' es 0, el Access
				bank será seleccionado, sobre
				escribiendo el valor de BSR. Si
				'a' es 1, entonces el banco será
				seleccionado según el valor de
				BSR (default).
Bra	[label] BRA n	(PC) + 2 +	1 palabra	Suma el complemento a 2 '2n'
		2n -> PC	2 ciclos	al pc
Bsf	[label] BSF f,b[a]	1 -> f 	1 palabra	El bit 'b' en el registro 'f' es
			1 ciclo	colocado. Si 'a' es 0 el Access
				bank será seleccionado, sobre
				escribiendo el valor de BSR. Si
				'a' es 1, entonces el banco será
				seleccionado según el valor de
				BSR (default).
Btfss	[label] BTFSS	Skip if	0 palabras	Si el bit 'b' en el registro 'f' es
	f,b[,a]	(f) = 1	0 ciclos	1, entonces la siguiente
				instrucción es omitida. Si el bit
				'b' es 1, entonces la siguiente
				instrucción traída durante la
				instrucción ejecutada
				actualmente.
Call	[label] CALL k[,s]	$ \begin{array}{c} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1>, \end{array} $	0 palabras	Es un llamado de subrutina de
		if $s = 1$ (W) \rightarrow WS,	0 ciclos	un rango de memoria de 2
		(STATUS) → STATUSS, (BSR) → BSRS		Mbytes.
Clrf	[label] CLRF f[,a]	00h -> f	1 palabra	Limpia el contenido de un
		1 -> Z	1 ciclo	registro especificado.

Decfsz	[label] DECFSZ f[,d[,a]]	(f) - 1 -> dest, skip if result = 0	O palabras O ciclos	Decrementa un valor al registro seleccionado, salta si es 0
Movlw	[label] MOVLW k	K -> W	1 palabra 1 ciclo	Mueve el valor literal de K al working register
Movwf	[label] MOVWF f[,a]	W -> f	0 palabras 0 ciclos	Mueve el valor de W al registro seleccionado
Nop	[label] NOP	Ninguna operación	1 palabra 1 ciclo	Ocupa simplemente el tiempo de 1 palabra y 1 ciclo
Return	[label] RETURN [s]	(TOS) → PC, if s = 1 (WS) → W, (STATUSS) → STATUS, (BSRS) → BSR, PCLATU, PCLATH are unchanged	0 palabras 0 ciclos	Regresa de la subrutina
RIncf	[label] RLNCF f[,d[,a]	(f <n>) -> dest <n+1> (f<7>) -> dest<0></n+1></n>	N, Z	El contenido del registro f rota un bit hacia la izquierda
Rrncf	[label] RRNCF f[,d[,a]	(f <n>) -> dest <n-1> (f<0>) -> dest<7></n-1></n>	N, Z	El contenido del registro f rota un bit hacia la derecha

Desarrollo práctico

Para la práctica realizada se utilizaron los siguientes materiales a enlistar.

Cantidad	Concepto
1	Pic 18F4550
1	Laptop
8	LEDS
1	Display de 7 segmentos cátodo común
8	Resistencias de 330 Ohms
1	Software MPLAB v8.92
1	Datasheet del PIC 18F4550

Lo primero a realizar fue la decisión de que secuencia iban a realizar los LEDS en nuestra práctica para después poder escribir el código en lenguaje ensamblador.

Imagen 1. Parte 1 del código en mplab

```
bra checau
checau
therefore port of the checau
checau
therefore port of the checau
checau
therefore port of the checau
therefore por
```

Imagen 2. Parte 2 del código en mplab

Imagen 3. Parte 3 del código en mplab

Cálculos

Los cálculos que se realizaron en la realización de esta práctica fueron utilizados para aproximar el tiempo que duraría la instrucción de retardo a 1 segundo. Sabemos que:

$$F_{oscilación}=32~KHz, T_{oscilación}=125~\mu segundos$$
 $Tiempo=(Ciclos~de~m\'aquina)(F_{oscilación})
ightarrow 1~segundo=Ciclos~(125~\mu segundos)$ $Ciclos=rac{1~segundo}{125~ imes 10^{-6}segundos}=8000~Ciclos$

La duración de la rutina "retardo" y "nada" tiene 1029 ciclos de máquina, para aproximar los ciclos a 8000 y no alterar la lógica de la rutina simplemente se aumentaron más instrucciones "nop".

Rutina			Ciclos de máquina (Tcy)
Retardo	movlw Movwf	0xff cont, 0	1 1
Nada	nop Decfsz Bra Return	cont, 1, 0 nada	1,1 2 2 2+(1+1+2)256+3=5+1024=1029 ciclos de máquina. Si aumentamos la cantidad de instrucciones "nop" para lograr 8000 ciclos, tendríamos que hacer los siguientes cálculos.

$$(x + 1 + 2)256 = 8000 \rightarrow (x + 3)256 = 8000 \rightarrow x + 3 = \frac{8000}{256} \rightarrow x + 3 = 31.25 \rightarrow x$$

= 28.25

Por lo tanto, tendríamos que agregar 28 o 29 instrucciones "nop" aproximadamente para lograr que sea un retardo de 1 segundo.

Simulación

Imagen 4. Simulación en proteus

Imagen 5. Simulación en mplab

Resultados

Imagen 6. Funcionamiento del código de la práctica implementado en la tarjeta de desarrollo miuva.

Conclusiones

De la práctica pudimos aprender la estructura básica para realizar un código en lenguaje ensamblador que nos permita poder establecer algunos pines como salida de datos, además de que se aprendieron las instrucciones básicas (o al menos unas de las más comunes) dentro del lenguaje ensamblador.

Bibliografía

Microchip PIC18F Instruction Set. (2021). Retrieved 9 February 2021, from http://technology.niagarac.on.ca/staff/mboldin/18F_Instruction_Set/