1. Linear Regression

Definition

Linear Regression is a supervised learning algorithm used to find the relationship between a dependent variable (Y) and one or more independent variables (X) using a straight line (best fit line).

$$Y = mX + c$$

Where:

- **m** = slope of the line (regression coefficient)
- $\mathbf{c} = \text{intercept}$
- Y = predicted output

Mathematical Formula

$$m = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sum (X - \bar{X})^2}, c = \bar{Y} - m\bar{X}$$

Steps

- 1. Collect data points (X, Y).
- 2. Calculate mean of X and Y.
- 3. Compute slope (m) and intercept (c).
- 4. Form the regression equation Y = mX + c.
- 5. Predict Y for any new X value.

Advantages

- Simple to implement and interpret.
- Works well for linearly related data.

Limitations

- Only captures linear relationships.
- Sensitive to outliers.

Applications

Predicting house prices, sales, temperature, etc.

🚺 2. Multivariate Linear Regression

Definition

Multivariate Linear Regression extends simple linear regression to multiple predictors.

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

Mathematical Model

$$\mathbf{B} = (X^T X)^{-1} X^T Y$$

where **B** is the vector of coefficients.

Steps

- 1. Prepare matrix X (features) and Y (target).
- 2. Add bias term (column of 1s).
- 3. Compute coefficients using the Normal Equation.
- 4. Predict Y using Y = XB.

Advantages

- Handles multiple input variables.
- Provides stronger prediction power.

Limitations

- Assumes linearity and independence.
- Sensitive to multicollinearity.

Applications

Economic forecasting, business analytics.

3. Logistic Regression **Definition**

Logistic Regression is a classification algorithm that predicts categorical outcomes (0 or 1) using a sigmoid function.

$$P(Y = 1) = \frac{1}{1 + e^{-(wX + b)}}$$

Concept

- Converts linear regression output into probability between 0 and 1.
- Decision rule:
 - If $P \ge 0.5 \rightarrow 1$
 - Else $P < 0.5 \rightarrow 0$

Steps

- 1. Initialize weights and bias.
- 2. Compute prediction using sigmoid function.
- 3. Calculate error.
- 4. Update weights using Gradient Descent.
- 5. Repeat until convergence.

Advantages

- Simple and efficient for binary classification.
- Outputs probabilities.

Limitations

• Works only for linear decision boundaries.

Applications

• Email spam detection, disease prediction, churn analysis.

4. CART (Classification and Regression Tree)

Definition

CART builds a **decision tree** to split the data into subsets based on the best feature, creating branches until the stopping condition is met.

Concepts

- Impurity measures:
 - Gini Index: $1 \sum p_i^2$
 - \circ Entropy: $-\sum p_i \log_2(p_i)$
- For regression, splits minimize variance.

Steps

- 1. Calculate impurity for all features.
- 2. Split data at the feature giving maximum information gain.
- 3. Repeat recursively.
- 4. Stop when nodes are pure or max depth reached.

Advantages

- Easy to interpret.
- Handles both classification & regression.

Limitations

• Overfitting if tree is too deep.

Applications

Credit risk analysis, medical diagnosis, customer segmentation.

🗱 5. Bagging (Bootstrap Aggregating)

Definition

Bagging is an ensemble method that trains multiple models on random subsets of data (sampled with replacement) and averages their predictions.

Concept

- Reduces variance and improves stability.
- Common example: Random Forest (bagging of decision trees).

Steps

- 1. Create multiple bootstrap samples.
- 2. Train separate models on each sample.
- 3. Aggregate outputs (average or vote).

Advantages

- Reduces overfitting.
- Improves model accuracy.

Limitations

Increases computational cost.

Applications

Random Forests, financial risk models.

• 6. Boosting

Definition

Boosting is a sequential ensemble technique where each new model focuses on errors made by previous models.

Concept

- Combines weak learners (usually decision trees) into a strong learner.
- Each model is weighted based on its accuracy.

Steps

- 1. Initialize equal weights for all samples.
- 2. Train weak learner.
- 3. Increase weights of misclassified samples.
- 4. Repeat and combine models with weighted votes.

Advantages

- High accuracy.
- Works well with weak models.

Limitations

- Sensitive to noise.
- Slower than bagging.

Applications

AdaBoost, Gradient Boosting, XGBoost.

7. Support Vector Machine (SVM)

Definition

SVM finds an optimal hyperplane that separates data points of different classes with maximum margin.

Mathematical Model

$$f(x) = w^T x + b$$

Margin = distance between hyperplane and closest points (support vectors).

Concept

- Maximizes separation margin.
- Uses **kernel trick** for non-linear data (e.g., RBF, polynomial).

Advantages

Effective in high-dimensional space.

Works well for clear margins.

Limitations

Computationally expensive for large datasets.

Applications

Image recognition, text classification, handwriting detection.

8. Graph-Based Clustering

Definition

Graph-based clustering represents data as a graph where nodes = data points and edges = similarities.

Concept

- Clusters are found by removing weak edges or finding **connected components**.
- Example: **Spectral Clustering** uses eigenvalues of Laplacian matrix.

Steps

- 1. Compute similarity (adjacency) matrix.
- 2. Build graph.
- 3. Apply partitioning (e.g., K-means on eigenvectors).
- 4. Extract clusters.

Advantages

- Works for non-convex shapes.
- Can detect complex cluster structures.

Limitations

- Requires similarity threshold.
- Computationally expensive.

Applications

Image segmentation, social network analysis.

9. DBSCAN

Definition

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clusters points based on density connectivity.

Concept

- Core point: Has \geq MinPts within ϵ distance.
- **Border point:** Fewer neighbors but close to a core.
- Noise: Not reachable from any core.

Steps

- 1. Choose ε and MinPts.
- 2. Visit each point:
 - o If unvisited \rightarrow find neighbors within ϵ .
 - If neighbors \geq MinPts \rightarrow form cluster.
- 3. Expand cluster recursively.

Advantages

- Can find clusters of any shape.
- Detects noise/outliers.

Limitations

- Sensitive to ε and MinPts.
- Not ideal for varying density datasets.

Applications

• GPS data clustering, anomaly detection.

10. PCA (Principal Component Analysis)

Definition

PCA is a **dimensionality reduction** technique that transforms correlated features into uncorrelated **principal components**.

Concept

- Finds directions (eigenvectors) capturing maximum variance.
- First component explains most variance.

$$Z = XW$$

where W = eigenvectors of covariance matrix.

Steps

- 1. Standardize data.
- 2. Compute covariance matrix.
- 3. Find eigenvalues & eigenvectors.
- 4. Sort by descending eigenvalues.
- 5. Project data onto top k components.

Advantages

- Reduces dimensions while preserving information.
- Removes multicollinearity.

Limitations

- Loses interpretability.
- Assumes linear relationships.

Applications

• Image compression, noise reduction, data visualization.

11. LDA (Linear Discriminant Analysis)

Definition

LDA is a supervised dimensionality reduction technique that maximizes class separability.

Concept

• Maximizes between-class variance and minimizes within-class variance.

$$S_W^{-1}S_B$$

is used to compute discriminant directions.

Steps

- 1. Compute class means.
- 2. Compute Within-class scatter (SW).
- 3. Compute Between-class scatter (SB).
- 4. Solve eigenvalue problem $S_W^{-1}S_B$.
- 5. Select top eigenvectors and project data.

Advantages

• Good for classification.

• Works even with small datasets.

Limitations

- Assumes normal distribution.
- Requires labeled data.

Applications

• Face recognition, medical diagnostics.

12. SVD (Singular Value Decomposition)

Definition

SVD decomposes a matrix A into three components:

$$A = U\Sigma V^T$$

Where:

- $U \rightarrow Left singular vectors$
- $\Sigma \rightarrow$ Diagonal matrix of singular values
- $V^T \rightarrow Right singular vectors$

Concept

- Captures essential information with fewer dimensions.
- Used in data compression, noise reduction, and latent factor analysis.

Steps

- 1. Compute $U, \Sigma, V^T = svd(A)$.
- 2. Keep top k singular values.
- 3. Reconstruct approximation $A' = U\Sigma V^T$.

Advantages

- Robust and stable.
- Reveals hidden structure in data.

Limitations

• Computationally expensive for large matrices.

Applications

• Image compression, recommender systems, NLP (Latent Semantic Analysis).