Appello di Ingegneria Informatica del 9.01.2020: Compito B		(AULA 204 – ADAMO – DUE ORE)		
Nome	Cognome	Matricola		

Domanda 1	[2+3 punti]
-----------	-------------

- (i) Dare una definizione di limite per una successione di numeri reali;

a.
$$a_n = (-1)^n \frac{\cos n}{1 - \frac{n^2}{2}}$$

(ii) Calcolare il
$$\lim_{n\to\infty} a_n$$
:
a. $a_n = (-1)^n \frac{\cos n}{1-\frac{n^2}{2}}$
b. $a_n = \binom{n}{n-2}/(n^2+n)$
c. $a_n = \frac{2^{n+3}-n^2+5\sqrt{n}}{3^{n^n}+7n^2}$

c.
$$a_n = \frac{2^{n+3} - n^2 + 5\sqrt{n}}{3^{n} + 7n^2}$$

Risposta

(i)	 		
(ii)			

Domanda 2 [2+3 punti]

- Enunciare il teorema del Valor Medio per gli integrali; (i)
- Calcolare il valore medio di $f(x) = x 2x^2$ su [0,3] e di $g(x) = (\cos x)^2$ su [0, π] (ii)

Risoluzione

(i)			

Sia f: $\mathbb{R} \to \mathbb{R}$ la funzione da f(x) = $x^2 e^{-x^2}$, allora	
 a. f ha massimo assoluto e minimo assoluto; b. f ha minimo assoluto ma non massimo assoluto; c. f ha massimo assoluto ma non minimo assoluto; d. i limiti lim _{x→±∞} f(x) sono differenti. 	
Risoluzione (giustificare la risposta)	
Esercizio 2	[3 punti]
Si consideri la serie $\sum_{n=2}^{\infty} \left[\sin \left(\sin \left(\frac{1}{n^2} \right) \right) - \sin \left(\sin \left(\frac{1}{n^2} \right) \right) \right) \text{allora:}$	
a. è divergente a +∞;	
b. il termine generico non è infinitesimo;	
c. è a termini positivi;	
d. nessuna delle precedenti.	
Risoluzione (giustificare la risposta)	
	
Esercizio 3	[3 punti]
Sia $z = 1 + i \in \mathbb{C}$ allora $\log (1 + i)$	
a. è un insieme limitato del piano complesso;	
b. non esiste;	
c. è un insieme numerabile;	
d. ha parte reale pari a $log2$	
Risoluzione (giustificare la risposta)	
	·

[3 punti]

Esercizio 1

Esercizio 4 [4 punti]

Studiare la continuità, la derivabilità e la differenziabilità su \mathbb{R}^2 della funzione

$$f(x,y) = \begin{cases} \frac{x^6 - y^6}{x^4 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

	(0	(x,y)=(0,0)	,0)	
Risoluzione				
Esercizio 5				[4 punti]
Risolvere il problema di Cauchy				
f(:	$(x,y) = \begin{cases} y''(x) \\ y''(x) \end{cases}$	$y(0) + 4y = 8x + e^{\alpha x}$ $y(0) = 0$ $y'(0) = 0$	x	
al variare del parametro $lpha \in \mathbb{R}$.				
Risoluzione				

Esercizio 6	[5 punti
Esercizio 6	[5 punt

Calcolare l'integrale doppio

$$\iint_D xy \, dx dy$$

in
$$D = \{(x, y) \in \mathbb{R}^2 : (x+1)^2 + (y-1)^2 \le 1, y \ge x+1\}.$$

Risoluzione					
	 				