MAT 201

Larson/Edwards – Section 1.4 Continuity and One-Sided Limits

When one says that "a function is continuous at x = c" or "a function is continuous on an open interval", what conclusions can we draw about the function?

Definition of Continuity:

Continuity at a Point: A function *f* is continuous at *c* if the following three conditions are met:

- 1. f(c) is defined
- 2. $\lim_{x \to c} f(x)$ exists
- $\lim_{x \to c} f(x) = f(c)$

Continuity on an Open Interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty, \infty)$ is everywhere continuous.

Note: Polynomial functions are continuous at every point x. Rational functions are continuous at every point x where the denominator does not equal 0.

<u>Discontinuity</u>: If a function f is defined on an open interval containing a real number c, and f is not continuous at c, then f is said to have a discontinuity at c. Discontinuities come in two categories:

1. Removable: A discontinuity at x = c is called removable if f can be made continuous by appropriately defining (or redefining) f(c).

When one says that "a function is continuous at x = c" or "a function is continuous on an open interval", what conclusions can we draw about the function?

You can draw the function on that open interval without lifting your pencil.

a. Ex: The function
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 is discontinuous at $x = 2$ (or the point (2, 4)), but it is removable since we can reduce or redefine the function to $f(x) = x + 2$

- 2. *Nonremovable*: A discontinuity at x = c is called nonremovable if the function cannot be made continuous at x = c by defining (or redefining) f(c).
 - a. Ex: The function $f(x) = \frac{x-2}{x+3}$ is discontinuous at x = -3 and it is nonremovable since we cannot redefine the function by reducing.

Ex: Consider the following function that is defined on all real numbers:

Use the definition of continuity to show why the function is discontinuous at x = -3.

<u>Properties of Continuity</u>: If b is a real number and f and g are continuous at x = c, then the following functions are also continuous at c.

- 1. Scalar Multiple: bf
- 2. Sum or Difference: $f \pm g$
- 3. Product: fg
- 4. Quotient: f/g, if $g(c) \neq 0$

Ex: Consider the following function that is defined on all real numbers:

Use the definition of continuity to show why the function is discontinuous at x = -3.

V1)
$$f(-3)$$
 is defined = 2
V2) $\lim_{x\to -3} f(x) = 4$
X3) $\lim_{x\to -3} f(x) \stackrel{?}{=} f(-3)$
 $\lim_{x\to -3} f(x) \stackrel{?}{=} f(-3)$

One sided limits:

- 1. The function f has the **right-hand limit** L as x approaches c from the right, written $\lim_{x \to c^+} f(x) = L$ if the values f(x) can be made as close to L as we please by taking x sufficiently close to (but not equal to) c and greater than c.
- 2. The function f has the *left-hand limit* L as x approaches c from the left, written $\lim_{x \to c^{-}} f(x) = L$ if the values f(x) can be made as close to L as we please by taking x sufficiently close to (but not equal to) c and less than c.

Existence of a Limit: Let f be a function and let c and L be real numbers. The limit of f(x) as x approaches c is L if and only if

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L$$

What does this say?

Ex: Use the graph and the definition for the existence of a limit to determine if the limit exists, and if it exists find the limit:

Ex: Use the graph and the definition for the existence of a limit to determine if the limit exists, and if it exists find the limit:

a) $\lim_{x \to 2} f(x)$

 $\lim_{x\to a^+} f(x) = \frac{3}{4}$

Limit exists $\frac{1}{5}$ $\lim_{x\to 2} f(x) = 3$

Ex: Find the limit, if it exists.

a)
$$\lim_{x \to 4^+} \frac{4-x}{x^2-16}$$

b)
$$\lim_{x \to 1} f(x)$$
, where $f(x) = \begin{cases} x^3 - 3x, & x \le 1 \\ x^2 + 2x - 5, & x > 1 \end{cases}$

Definition of Continuity on a Closed Interval:

A function f is continuous on the closed interval [a, b] if it is continuous on the open interval (a, b) and

$$\lim_{x \to a^{+}} f(x) = f(a) \text{ and } \lim_{x \to b^{-}} f(x) = f(b).$$

The function f is continuous from the right at a and continuous from the left at b.

Intermediate Value Theorem:

If f is continuous on the closed interval [a, b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

What does the Intermediate Value Theorem (IVT) mean?

Ex: Explain why the function $f(x) = x^2 - 2 - \cos x$ has a zero in the interval $[0, \pi]$.

Intermediate Value Theorem:

If f is continuous on the closed interval [a, b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

What does the Intermediate Value Theorem (IVT) mean?

Ex: Find the limit, if it exists.

$$\lim_{x \to 4^{+}} \frac{4 - x}{x^{2} - 16} = \lim_{x \to 4^{+}} \frac{4 - x}{x^{2} - 16} = \lim_{x \to 4^{+}} \frac{-1}{x + 4}$$

$$= \lim_{x \to 4^{+}} \frac{-1}{x + 4}$$

a)
$$\lim_{x \to 1} f(x), \text{ where} \qquad f(x) = \begin{cases} x^3 - 3x, & x \le 1 \\ x^2 + 2x - 5, & x > 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = (1)^3 - 3(1) = -2$$

$$|\lim_{x \to 1} f(x)| = (1)^2 + 2(1) - 5 = -2$$

$$|\lim_{x \to 1} f(x)| = (1)^2 + 2(1) - 5 = -2$$

$$|\lim_{x \to 1} f(x)| = (1)^2 + 2(1) - 5 = -2$$

Ex: Explain why the function $f(x) = x^2 - 2 - \cos x$ has a zero in the interval $[0, \pi]$. cont.

Is f(x) continuous on $[0, \pi]$? Continuous Since all the parent functions lisked being Subtracted are continuous on $[0, \pi]$.

Does $f(a) \neq f(b)$? f(0) = -3 $f(0) \neq f(\pi)$ $f(\pi) = \pi^2 - 1 \approx 8.86$ Is 0 between $-3 \nmid 8.86$? Yes!

(By I.V.T)

There exists at least one value x = c in $[0, \pi]$ s.t. f(c) = 0.