Lezione 4

Ugo Vaccaro

Iniziamo con l'introdurre la notazione Ω , che ci sarà utile quando vorremo valutare limitazioni inferiori al tempo di esecuzione di algoritmi (useremo invece la notazione O quando vorremo valutare limitazioni superiori al tempo di esecuzione di algoritmi).

Date funzioni $f: n \in \mathbb{N} \to f(n) \in \mathbb{R}_+, g: n \in \mathbb{N} \to g(n) \in \mathbb{R}_+,$ diremo che $f(n) = \Omega(g(n))$ se e solo se esistono costanti c > 0 e $n_0 \in \mathbb{N}$ tale che $f(n) \ge cg(n)$, per ogni $n \ge n_0$.

Informalmente, $f(n) = \Omega(g(n))$ se la funzione f(n) cresce tanto velocemente almeno quanto cresce la funzione g(n). Graficamente, abbiamo una situazione siffatta, ovvero il grafico della funzione f(n), dal punto n_0 in poi, si trova sempre sopra il grafico della funzione cg(n), per qualche costante c > 0

Vediamo un esempio. Sia $f(n) = n^2 - 2n$, $g(n) = n^2$ e vogliamo provare che $n^2 - 2n = \Omega(n^2)$. In accordo alla definizione, occorrerà provare che esiste una costante c > 0 ed un numero intero n_0 tale che $n^2 - 2n \ge cn^2$, per ogni $n \ge n_0$. Osserviamo che

$$n^2 - 2n \ge cn^2 \Leftrightarrow n^2 - cn^2 \ge 2n \Leftrightarrow n^2(1-c) \ge 2n \Leftrightarrow n(1-c) \ge 2 \Leftrightarrow n \ge 2/(1-c),$$

per cui basterà scegliere c come un qualsiasi valore < 1. Ad esempio, potremmo scegliere c = 1/2 ed avremmo quindi che $n^2 - 2n \ge cn^2$ per ogni valore di $n \ge 4$.

Osserviamo ora che valgono le seguenti relazioni

$$\begin{split} f(n) &= \Omega(g(n)) \Leftrightarrow \exists c, n_0 : f(n) \geq cg(n), \ \forall n \geq n_0 \\ &\Leftrightarrow \exists c, n_0 : g(n) \leq \frac{1}{c} f(n), \ \forall n \geq n_0 \\ &\Leftrightarrow g(n) = O(f(n)). \end{split}$$

Pertanto, per provare che $f(n) = \Omega(g(n))$ basterà provare che g(n) = O(f(n)). Sulla base, quindi, di quanto già provato per la notazione asintotica O, possiamo dire che

$$\sqrt{n} = \Omega(\log n), \ n = \Omega(\sqrt{n}), \ n^{k+1} = \Omega(n^k), \ 2^n = \Omega(n^k), \ n! = \Omega(2^n), \ n^n = \Omega(2^n).$$

Ad esempio, se volessimo provare che $n^2 - \sqrt{n} \log n = \Omega(n^2)$, dovremmo provare che $\exists c, n_0$ tale che $n^2 - \sqrt{n} \log n \ge cn^2$, $\forall n \ge n_0$. A tal fine, osserviamo che

$$n^2 - \sqrt{n}\log n \ge n^2 - \sqrt{n}\sqrt{n} = n^2 - n \ge n^2 - \frac{1}{2}n^2 = \frac{1}{2}n^2, \ \forall n \ge 2.$$

Useremo infine la notazione asintotica Θ se f(n) e g(n) crescono alla stessa velocità. Più precisamente

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \& f(n) = \Omega(g(n))$$

$$\Leftrightarrow \exists c_1, c_2, n_0 : c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0.$$

Graficamente

Vediamo un esempio. Cerchiamo di provare che $4n^2 + \log n = \Theta(n^2)$. Osserviamo innanzitutto che $4n^2 + \log n = \Omega(n^2)$ in quanto $4n^2 + \log n \ge n^2$. Inoltre, $4n^2 + \log n = O(n^2)$ in quanto $4n^2 + \log n \le 4n^2 + n \le 5n^2$.

Utilizzeremo la notazione asintotica Θ quando saremo in grado di dare una valutazione precisa della velocità di crescita di una funzione. Quindi, sarà sicuramente corretto dire che, ad esempio, $n^2 + n = O(n^2)$, ma sarà preferibile dire (in quanto è una affermazione più precisa) che $n^2 + n = \Theta(n^2)$, in quanto sappiamo che vale sia $n^2 + n = O(n^2)$ che $n^2 + n = \Omega(n^2)$.

Vediamo qualche esercizio.

- 1. Sia $g(n) = n + 2n^3 3n^4 + 4n^5$. Dire quali delle seguenti affermazioni sono vere e quali sono false.
 - (a) $q(n) = \Omega(n \log n)$ Vero
 - (b) $g(n) = \Theta(5n^6)$ Falso
 - (c) $g(n) = O(n^{10})$ Vero
 - (d) $q(n) = \Omega(n^5)$ Vero
- 2. Sia $g(n) = n \log n + 2n^3 3n^2$. Dire quali delle seguenti affermazioni sono vere e quali sono false.

- (a) $g(n) = O(n \log n)$ Falso
- (b) $g(n) = O(n^3)$ Vero
- (c) $g(n) = O(n^2)$ Falso
- (d) $g(n) = O(n^4)$ Vero
- 3. Sia $f(n) = 4n^2 + n + 3$. Dire quali delle seguenti affermazioni sono vere e quali sono false.
 - (a) $f(n) = O(n^2)$ Vero
 - (b) $f(n) = O(3n^2 + n + 3)$ Vero
 - (c) $f(n) = \Omega(5n^2 + n + 3)$ Vero
 - (d) $f(n) = \Omega(n^2)$ Vero
- 4. (a) Trovare una funzione g(n) tale che la funzione $f(n) = n^3 \log n^4 + 2n^4 + 80$ sia f(n) = O(g(n)). Si dimostri che la funzione scelta soddisfi il requisito.
 - (b) Trovare una funzione g(n) tale che la funzione $f(n) = n + 3n^2 + 4n^3$ sia $f(n) = \Omega(g(n))$. Si dimostri che la funzione scelta soddisfi il requisito.
- 5. (a) Trovare una funzione g(n) tale che la funzione $f(n) = n^3 \log n^4 + 2n^4 + 80$ sia f(n) = O(g(n)). Si dimostri che la funzione scelta soddisfi il requisito.
 - (b) Trovare una funzione g(n) tale che la funzione $f(n) = n + 3n^2 + 4n^3$ sia $f(n) = \Omega(g(n))$. Si dimostri che la funzione scelta soddisfi il requisito.
- 6. (a) **Dimostrare** che la funzione $f(n) = n \log n^2 + 2n + 3 \in O(n^2)$.
 - (b) **Dimostrare** che la funzione $f(n) = 2n^3 + n^2 \log n$ è $\Omega(n^2)$.
- 7. Dire quali delle seguenti quattro affermazioni sono vere (non è necessario giustificare la risposta):
 - (a) $0.003n^3 + 982n^2 + 3n = O(n^2)$
 - (b) $n = O(n^5)$
 - (c) $n^2 = \Omega(n)$
 - (d) $n^3 = \Omega(4n^3)$
- 8. Dimostrare che la funzione $f(n) = 7n^2 + 5n + 4 \in \Theta(n^2)$.
- 9. Per ciascuna delle seguenti affermazioni, dire se essa è vera o falsa.

$$\begin{array}{ll} 7n^4 - 8n^3 + 5 = O(n^4) & \text{Vero} \\ 7n^4 - 8n^3 + 5 = O(n^3) & \text{Falso} \\ 7n^4 - 8n^3 + 5 = O(n^5) & \text{Vero} \\ 7n^4 - 8n^3 + 5 = \Omega(n^4) & \text{Vero} \\ 7n^4 - 8n^3 + 5 = \Omega(n^3) & \text{Vero} \\ 7n^4 - 8n^3 + 5 = \Omega(n^5) & \text{Falso} \\ 7n^4 - 8n^3 + 5 = \Theta(n^4) & \text{Vero} \\ 7n^4 - 8n^3 + 5 = \Theta(n^3) & \text{Falso} \\ 7n^4 - 8n^3 + 5 = \Theta(n^5) & \text{Falso} \\ 7n^4 - 8n^3 + 5 = \Theta(n^5) & \text{Falso} \\ \end{array}$$

Esempi di analisi di algoritmi.

Tempo logaritmico: Il tempo di esecuzione dell'algoritmo è al più un fattore costante per il logaritmo della dimensione dell'input.

```
\begin{aligned} & \texttt{Algoritmo}(n) \\ & x = 0; y = 1 \\ & \texttt{WHILE}(y < n+1) \{ \\ & x = x+1 \\ & y = 2 \times y \\ & \} \\ & \texttt{RETURN} \ x \end{aligned}
```

Osserviamo che dopo la prima iterazione del ciclo WHILE vale che $y=2^1$, dopo la seconda iterazione vale che $y=2^2$, dopo la terza iterazione vale che $y=2^3,\ldots$, e così via. Pertanto, la iterazione *i*-esima in cui terminiamo sarà tale che $2^i \le n < 2^{i+1}$, ovvero $i \le \log n$. Poichè in ogni iterazione del ciclo WHILE eseguiamo un numero costante di operazioni, ne segue che la complessità T(n) dell'algoritmo sarà $T(n) = O(\log n)$.

Tempo Lineare: Il tempo di esecuzione dell'algoritmo è al più un fattore costante per la dimensione dell'input.

Esempio: Calcolo del massimo di n numeri a_1, a_2, \ldots, a_n

```
\begin{aligned} \max &= a_1 \\ \text{FOR}(i=2; i < n+1; i=i+1) \{ \\ \text{IF}(a_i > \max) \{ \\ \max &= a_i \\ \} \\ \} \\ \text{RETURN max} \end{aligned}
```

Esempio: Merge. Trasforma due liste **ordinate** $A = a_1, \ldots, a_n$ e $B = b_1, \ldots, b_n$, in cui $a_1 \leq \ldots \leq a_n$ e $b_1 \leq \ldots \leq b_n$ in un'unica lista ordinata L.

```
\begin{split} & \operatorname{Merge}(A,B) \\ & L = \emptyset \\ & i = 1, j = 1 \\ & \operatorname{WHILE}(\operatorname{entrambe le liste } A, B \text{ non sono vuote}) \{ \\ & \operatorname{IF}(a_i \leq b_j) \{ \\ & \operatorname{appendi } a_i \text{ alla lista L, } i = i + 1 \\ & \operatorname{ELSE} \operatorname{appendi } b_j \text{ alla lista L, } j = j + 1 \\ & \} \\ & \operatorname{appendi il resto della lista non vuota, tra } A \in B \text{, ad L} \end{split}
```


Tempo quadratico. L'algoritmo esamina tutte le coppie di dati elementi

Esempio: Dati n punti, di coordinate $(x_1, y_1), \ldots, (x_n, y_n)$, si vuole determinare la coppia di punti più vicina

```
1. \min = (x_1 - x_2)^2 + (y_1 - y_2)^2

2. \operatorname{FOR}(i = 1, i < n + 1; i = i + 1) \{

3. \operatorname{FOR}(j = i + 1, j < n + 1; j = j + 1) \{

4. d = (x_i - x_j)^2 + (y_i - y_j)^2

5. \operatorname{IF}(d < \min) \{

6. \min = d

}

RETURN \min
```

Analisi: il FOR delle linee 3.–5. esegue la prima volta c(n-1) operazioni, la seconda volta c(n-2) operazioni, la terza volta c(n-3) operazioni, ... In totale, l'algoritmo esegue $c(n-1)+c(n-2)+c(n-3)+\ldots+c\cdot 1=c\sum_{k=1}^{n-1}k=O(n^2)$ operazioni

Tempo cubico : $O(n^3)$

L'algoritmo esamina tutte le triple di dati elementi

Esempio: Dati n insiemi S_1, \ldots, S_n , ciascuno di essi sottoinsieme di $\{1, \ldots, n\}$, esiste una coppia (S_i, S_j) tale che $S_i \cap S_j = \emptyset$?

```
1. FOR(i=1,i< n+1,i=i+1){
2. FOR(j=i+1,j< n+1,j=j+1){
3. FOR(ogni elemento x\in S_i){
4. determina se x appartiene anche a S_j
}
5. IF(nessun elemento di S_i appartiene anche a S_j){
6. RETURN(S_i ed S_j sono disgiunti)
}
7. RETURN(non esistono insiemi disgiunti)
```

Analisi: il FOR delle linee 3.–6 esegue O(n) operazioni, il FOR delle linee 2.–6 esegue $O(n^2)$ operazioni, In totale, l'algoritmo esegue $O(n^3)$ operazioni

Per introdurre l'ultimo esempio, diamo la seguente definizione. Un insieme di punti è detto **indipendente** se nessuna coppia di suoi elementi è unita da archi.

L'insieme $\{1,3,5\}$ è indipendente, l'insieme $\{2,4,6\}$ non è indipendente,

Problema: trovare il più grande insieme indipendente in un grafo con n punti (vertici).

Tempo esponenziale : $O(c^n)$

L'algoritmo esamina tutte le possibili soluzioni per trovare la "migliore"

```
1. S^* = \emptyset
2. for ogni sottoinsieme di vertici S
3. controlla se S è indipendente
4. if (S è il sottoinsieme indipendente più grande trovato finora)
5. aggiorna S^* = S
6. return(S^*)
```

Analisi: il for delle linee 2.–5. viene eseguito 2^n volte (tanti sono tutti i sottoinsiemi di n vertici), controllare se un sottoinsieme S è indipendente richiede $O(n^2)$ operazioni (per ogni coppia di vertici in S occorre controllare se vi è un arco tra di loro).