Spatially-Coupled Codes for Side-Information Problems

Santhosh Kumar Avinash Vem Krishna Narayanan Henry Pfister

June 30, 2014

Lossy Source Coding Problem

$$X^n = (X_1, \dots, X_n), X_i \sim \text{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

Lossy Source Coding Problem

$$X^n = (X_1, \cdots, X_n), X_i \sim \text{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

Lossy Source Coding

- ▶ Compress X^n to $\hat{X}^n \in \mathcal{C}$
- ► Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left| X_i - \hat{X}_i \right|$$

Lossy Source Coding Problem

$$X^n = (X_1, \cdots, X_n), X_i \sim \mathsf{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

Lossy Source Coding

- ▶ Compress X^n to $\hat{X}^n \in \mathcal{C}$
- ► Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left| X_i - \hat{X}_i \right|$$

Rate-Distortion theory:

$$R > 1 - h(D)$$

▶ $h(\cdot)$ is binary entropy function

$$h(D) = -D \log_2 D - (1-D) \log_2 (1-D)$$

Side-Information Problems: Wyner-Ziv

Wyner-Ziv Formulation

- ► Side-information Zⁿ about Xⁿ
- ▶ Decoder additionally has Zⁿ
- ▶ Say $Z_i = X_i \oplus \operatorname{Ber}(\delta)$

Side-Information Problems: Wyner-Ziv

Wyner-Ziv Formulation

- ► Side-information Zⁿ about Xⁿ
- \triangleright Decoder additionally has Z^n
- ▶ Say $Z_i = X_i \oplus \operatorname{Ber}(\delta)$
- Wyner-Ziv theory:

$$R > I.c.e\{h(D*\delta) - h(D), (\delta, 0)\}$$

 $D * \delta = D(1-\delta) + \delta(1-D)$

Gelfand-Pinsker Formulation

- ▶ Message M^k encoded to $X^n \in \mathcal{C}$ with $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- ► Side-information Zⁿ is available only at the encoder

Gelfand-Pinsker Formulation

- ▶ Message M^k encoded to $X^n \in \mathcal{C}$ with $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- ► Side-information Zⁿ is available only at the encoder
- ▶ The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
, $\{W_i\} \sim \text{Ber}(\delta)$

Gelfand-Pinsker Formulation

- ▶ Message M^k encoded to $X^n \in \mathcal{C}$ with $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- Side-information Zⁿ is available only at the encoder
- ▶ The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
, $\{W_i\} \sim \text{Ber}(\delta)$

Capacity region by Gelfand-Pinsker:

$$R < h(p) - h(\delta)$$

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap
- Remedy via Spatial-Coupling
 - ▶ Channel coding in coupled compound codes (Kasai et al.)
 - Lossy source coding with spatially-coupled LDGM (Aref et al.)
 - Encoding with compound codes has additional challenges

Compound LDGM/LDPC Codes

- ▶ Codebook C(n, m k k')
- ► Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

▶ Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \quad x_2 = \cdots$$

Compound LDGM/LDPC Codes

- ▶ Codebook C(n, m k k')
- ► Message constraints

$$u_1\oplus u_2\oplus u_5=s_1,\quad u_1\oplus u_3\oplus u_6=0$$

ightharpoonup Codeword (x_1, \dots, x_9) :

$$x_1=u_1\oplus u_4, \quad x_2=\cdots$$

Key Properties

- Compound code is
 - a good source code under optimal encoding
 - a good channel code under optimal decoding

Good Code

"Good" source code

- ▶ Rate of the code is $R = 1 h(D) + \varepsilon$
- ▶ When this code is used to optimally encode $Ber(\frac{1}{2})$
- ► The average Hamming distortion is at most *D*

"Good" channel code

- ▶ Rate of the code is $R = 1 h(\delta) \varepsilon$
- When this code is used for channel coding on $\mathsf{BSC}(\delta)$
- ▶ Message est. under optimal decoding with error at most ε

- With message M^k , encode Z^n to \hat{Z}^n (Distortion $\approx p$)
- ► Transmit $X^n = Z^n \oplus \hat{Z}^n$

- With message M^k , encode Z^n to \hat{Z}^n (Distortion $\approx p$)
- ▶ Transmit $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^n = X^n \oplus Z^n \oplus W^n$$
$$= \hat{Z}^n \oplus W^n$$

▶ Decode \hat{Z}^n and compute M^k

- With message M^k , encode Z^n to \hat{Z}^n (Distortion $\approx p$)
- ► Transmit $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^n = X^n \oplus Z^n \oplus W^n$$
$$= \hat{Z}^n \oplus W^n$$

- ▶ Decode \hat{Z}^n and compute M^k
- $R = \frac{k}{n} \approx h(p) h(\delta)$

Remarks

- Need codes that are simultaneously good for channel and source coding
- Use message-passing algorithms instead of optimal
- Use spatial-coupling for goodness of codes under message-passing

Decoding in Spatially-Coupled Compound Codes

Remarks

- Standard message-passing algorithm
- Threshold saturation proven for SC compound codes on BEC
- Empirically observed for BMS channels

Encoding in Spatially-Coupled Compound Codes

$$(-1)^{x_i} \tanh \beta$$

$$x_i \longrightarrow L = L_1 + \dots + L_k$$

$$\vdots \longrightarrow \tanh L = (-1)^s \cdot \tanh L_1 \dots \tanh L_k$$

Remarks

- ▶ Inverse temperature parameter β
- ▶ Message-passing rules are the same
- However, a crucial decimation step is needed

Encoding in SC Compound Codes: BPGD Algorithm

```
while There are active LDPC bit-nodes do
  for t = 1 to T do
     Run the BP equations
  end for
  Evaluate LLRs m; for each LDPC bit-node
  Choose max. of |m_i| in left-most w active sections
  if |m_{i^*}| = 0 then
     Set u_{i*} to 0 or 1 uniformly randomly
  else
     Set u_{i^*} to 0 or 1 with prob. \frac{1+\tanh m_{i^*}}{2} or \frac{1-\tanh m_{i^*}}{2}
  end if
  Decimate (remove) LDPC bit-node i* and update parities
end while
If \{u_i\} fail to satisfy LDPC checks, then re-encode
```

Encoding in SC Compound Codes: Remarks

- ▶ Randomization in setting u_{i*} is crucial
- BPGD applied to uncoupled code always failed
- Spatially-coupled structure is crucial for successful encoding
 - ► In addition, distortion is close to optimal thresholds
 - Does not encode if decimated from both left and right
 - Does not encode if both left and right boundary is set to 0

Encoding in SC Compound Codes: Numerical Example

Block length (n)	4-cycles	Attempts $1/2/3/4/ \geq 5$
9000	yes	5/3/5/2/35
9000	no	21/12/5/3/9
27000	no	35/15/0/0/0
45000	no	40/9/0/0/1
63000	no	44/6/0/0/0
81000	no	50/0/0/0/0

Remarks

- \blacktriangleright # Attempts to encode 50 seq. in (6,3) LDGM / (3,6) LDPC
- L = 20, w = 4, $\beta = 0.65$, T = 10
- Removing 4-cycles dramatically improves success
- ► How much do 6-cycles matter?

Numerical Results: Wyner-Ziv

LDGM	LDPC	(L, w)	(D_*,δ_*)	(D,δ)
(d_v,d_c)	$(d_{v}^{\prime},d_{c}^{\prime})$			
(6,3)	(3,6)	(20,4)	(0.111, 0.134)	(0.1174, 0.122)
(8,4)	(3,6)	(20,4)	(0.111, 0.134)	(0.1149, 0.120)
(10,5)	(3,6)	(20,4)	(0.111,0.134)	(0.1139,0.122)

Remarks

▶ D_* and δ_* are calculated based on the rate of the respective code:

$$D_* = h^{-1}(1 - R1)$$
 $\delta_* = h^{-1}(1 - R2)$

▶ $n \approx 140000$, $\beta = 1.04$, T = 10

Numerical Results: Gelfand-Pinsker

LDGM	LDPC	(L, w)	(p_*,δ_*)	(p, δ)
(d_v,d_c)	$(d_{v}^{\prime},d_{c}^{\prime})$			
(6,3)	(3,6)	(20,4)	(0.215, 0.157)	(0.2200, 0.152)
(8,4)	(3,6)	(20,4)	(0.215, 0.157)	(0.2230, 0.151)
(10,5)	(3,6)	(20,4)	(0.215,0.157)	(0.2200,0.151)

Remarks

▶ p_* and δ_* are calculated based on the rate of the respective code:

$$p_* = h^{-1}(1 - R1)$$
 $\delta_* = h^{-1}(1 - R2)$

▶ $n \approx 140000$, $\beta = 0.65$, T = 10

Concluding Remarks

Conclusion

- Spatially-coupled codes achieve the rate regions of Wyner-Ziv and Gelfand-Pinsker problems
- Coupling structure is also crucial
 - to achieve optimum thresholds
 - for encoding to succeed with decimation

Open Questions

- ▶ Effect of degree profiles, short-cycles on encoding success
- Precise trade-offs with polar codes