Part 2: Trainable Networks

•••

Mikhail Romanov

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_N \end{bmatrix}$$

Cat

Was parametrised!

Cat

Cat Dog

Elephant

Dependency Reconstruction

Tuning the network

Shaping the sigmoid

Sigmoid

$$\sigma(z) = \frac{1}{1 + \exp(-z)} \qquad y = w'\sigma(wx+b) + b'$$

Two Layer Neural Net

Two Layer Neural Net

$$y = w'_1 \sigma(w_1 x + b_1) + b'_1$$

$$+ w'_2 \sigma(w_2 x + b_2) + b'_2$$

$$\hat{y} = b^{out} + \sum_{i=1}^{N} w_i^{out} \sigma(w^i x + b^i)$$

Two Layer Neural Net

$$y = w'_1 \sigma(w_1 x + b_1) + b'_1$$
$$+ w'_2 \sigma(w_2 x + b_2) + b'_2$$

$$(b_2) + b_2'$$

$$+w_3'\sigma(w_3x+b_3)+b_3'$$

$$\hat{y} = b^{out} + \sum_{i=1}^{N} w_i^{out} \sigma(w^i x + b^i)$$

$$\hat{\mathbf{y}} = \mathbf{b}_{out} + \sum_{i=1}^{N} \mathbf{W}_{out} \sigma(\mathbf{W}_{in} \mathbf{X} + \mathbf{b}_{in})$$

Linear Combination of Sigmoids is Full System!

Loss function

The simplest loss function is Mean Squared Error (MSE)

$$MSE(y, \hat{y}) = \frac{1}{N} \sum_{s=1}^{S} (y_s - \hat{y}_s)^2$$

Metrica

Example: Epsilon-precision

$$Acc_{\epsilon} = \frac{1}{N} \sum_{i=1}^{N} \left[y_i - \hat{y}_i < \epsilon \right]$$

We want to arrive here
$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \end{bmatrix}$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_0} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$\mathbf{w}^{t=1} = \mathbf{w}^{t=0} - \alpha \nabla_{\mathbf{w}} L_{total}^{t=0}$$

$$L_{total}^{t=0} = \frac{1}{S} \sum_{s=1}^{S} L(Net_{\mathbf{w^{t=0}}}(x_s), y_s)$$

We want to arrive here
$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \end{bmatrix} \qquad \nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_0} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$
$$\mathbf{w}^{t=1} = \mathbf{w}^{t=0} - \alpha \nabla_{\mathbf{w}} L_{total}^{t=0}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

 $\mathbf{w}^{t=2} = \mathbf{w}^{t=1} - \alpha \nabla_{\mathbf{w}} L_{total}^{t=1}$

$$L_{total}^{t=0} = \frac{1}{S} \sum_{s=1}^{S} L(Net_{\mathbf{w^{t=0}}}(x_s), y_s)$$

What is missing?

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$abla_{\mathbf{w}} L = egin{bmatrix} rac{\partial}{\partial} \ rac{\partial}{\partial} \ \end{pmatrix}$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L}{\partial w_2}$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \frac{\partial f_4}{\partial x} \frac{\partial f_2}{\partial x}$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_4} \frac{\partial f_4}{\partial y_2} \frac{\partial f_2}{\partial w_2}$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \overline{\partial w_1} \\ \underline{\partial L} \\ \overline{\partial w_1} \\ \vdots \\ \underline{\partial L} \\ \overline{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_4} \frac{\partial f_4}{\partial y_2} \frac{\partial f_2}{\partial y_1} \frac{\partial f_1}{\partial w_1} + \frac{\partial L}{\partial y_4} \frac{\partial f_4}{\partial y_3} \frac{\partial f_3}{\partial y_1} \frac{\partial f_1}{\partial w_1}$$

$$\frac{\partial L_{total}}{\hat{y}_s} \neq 0$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \, \nabla_{\mathbf{w}} L_{total}^t$$

$$\nabla_{\mathbf{w}} L = \begin{bmatrix} \overline{\partial w_1} \\ \underline{\partial L} \\ \overline{\partial w_1} \\ \vdots \\ \underline{\partial L} \\ \overline{\partial w_p} \end{bmatrix}$$

$$L\left(f_4\left(f_3\left(f_1(x)\right), f_2\left(f_1(x)\right)\right)\right)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_4} \frac{\partial f_4}{\partial y_2} \frac{\partial f_2}{\partial y_1} \frac{\partial f_1}{\partial w_1} + \frac{\partial L}{\partial y_4} \frac{\partial f_4}{\partial y_3} \frac{\partial f_3}{\partial y_1} \frac{\partial f_1}{\partial w_1}$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_4} \left(\frac{\partial f_4}{\partial y_2} \frac{\partial f_2}{\partial y_1} + \frac{\partial f_4}{\partial y_3} \frac{\partial f_3}{\partial y_1} \right) \frac{\partial f_1}{\partial w_1}$$

Summary

- Example: dependency reconstruction
- Training philosophy
- Training cycle
- Two-layer FCNN and its awesomeness! ARCHITECTURE
- MSE LOSS
- Accuracy METRICS
- Gradient Descent— OPTIMISER
- Backpropagation —Gradient calculation method