Alle Zusammengesetzen Zahlen:

$$\bigcup_{i=2}^{n-1} \bigcup_{k=2}^{n+1-i} i \cdot k = \bigcup_{i=3}^{n} \bigcup_{k=2}^{n+2-i} (i-1) \cdot k = \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} (n+2-i) \cdot k =: \varphi(n)$$

$$\bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} (i+1-k) \cdot k =: \psi(n)$$

$$zz : \varphi(n) = \psi(n) \forall n \geq 2$$

arphi(n)								
i k	3	4	5	6	7			
2	4							
2	6	4						
3		6						
2	8	6	4					
3		9	6					
3			8					
2	10	8	6	4				
3		12	9	6				
4			12	8				
5				10				
2	12	10	8	6	4			
3		15	12	9	6			
4			16	12	8			
5				15	10			
6					12			

$\psi(n)$								
i k	3	4	5	6	7			
2	4							
2	4	6						
3		6						
2	4	6	8					
3		6	9					
3			8					
2	4	6	8	10				
3		6	9	12				
4			8	12				
5				10				
2	4	6	8	10	12			
3		6	9	12	15			
4			8	12	16			
5				10	15			
6					12			

Induktion über n:

Base Case: n = 3

$$\varphi(3) = \bigcup_{i=3}^{3} \bigcup_{k=2}^{i-1} (n+2-i) \cdot k = \{4\} = \bigcup_{i=3}^{3} \bigcup_{k=2}^{i-1} (i+1-k) \cdot k = \psi(3)$$

Induktionsvorraussetzung:

$$\varphi(n-1) = \bigcup_{i=3}^{n-1} \bigcup_{k=2}^{i-1} (n+2-i) \cdot k = \bigcup_{i=3}^{n-1} \bigcup_{k=2}^{i-1} (i+1-k) \cdot k = \psi(n-1)$$

Induction Step: $n-1 \rightarrow n$

$$\psi(n) = \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} (i+1-k) \cdot k = \psi(n-1) \cup \bigcup_{k=2}^{n-1} (n+1-k) \cdot k$$

$$\varphi(n) = \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} (n+2-i) \cdot k = \varphi(n-1) \cup \bigcup_{i=3}^{n} (n+2-i) \cdot (i-1)$$

$$\bigcup_{i=3}^{n} (n+2-i) \cdot (i-1) = \bigcup_{i=2}^{n-1} (n+2-(i+1)) \cdot ((i+1)-1) = \bigcup_{i=2}^{n-1} (n+1-i) \cdot i = \bigcup_{k=2}^{n-1} (n+1-k) \cdot k$$

$$\Rightarrow \varphi(n) = \psi(n)$$

Anwendungen:

$$\pi(n) = |\{2, ..., n\} \setminus \psi(n)|$$

$$G(n) = |\{2, ..., n\} \setminus \bigcup_{b=0}^{1} \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} n + (-1)^{b} \cdot (n - (i+1-k) \cdot k)|$$

$$\psi_{c}(n) = \bigcup_{j=2-c}^{1} \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} c \cdot (i + \frac{j}{c} - k) \cdot k$$

$$\pi_{c}(n) = |\{2, ..., n\} \setminus \psi_{c}(n)|$$

$$G_{c}(n) = |\{2, ..., n\} \setminus \bigcup_{b=0}^{1} \bigcup_{j=2-c}^{1} \bigcup_{i=3}^{n} \bigcup_{k=2}^{i-1} n + (-1)^{b} \cdot (n - c \cdot (i + \frac{j}{c} - k) \cdot k)|$$

$$\pi(n) = \pi_{c}(n) \forall_{n \in \mathbb{N}}$$

Aufgabe 9

```
\begin{array}{l} f,g:\mathbb{N}\to\mathbb{R}^+\\ \text{zz:}\\ f\in\Theta(g)\iff f\in O(g)\wedge f\in\Omega(g)\\ \text{Beweis:} \end{array}
```

 \leftarrow

Sei
$$f \in O(g)$$
 und $f \in \Omega(g)$, d.h.
 $\exists c_1 \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_o \Rightarrow f(n) \le c_1 \cdot g(n))$ und
 $\exists c_2 \in \mathbb{R}^+ : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_1 \Rightarrow f(n) \ge c_2 \cdot g(n))$

Wähle $n_2 := max(n_0, n_1)$.

```
Dann gilt:
\exists c_1, c_2 \in \mathbb{R}^+ : \exists n_2 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_2 \Rightarrow c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n)) \Rightarrow f \in \Theta(g)
\Rightarrow
Sei f \in \Theta(q), d.h.
\exists c_1, c_2 \in \mathbb{R}^+ : \exists n_2 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_2 \Rightarrow c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n))
Wähle n_0 := n_2 und n_1 := n_2.
Dann gilt:
\exists c_1 \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_o \Rightarrow f(n) \le c_1 \cdot g(n)) \text{ und}
\exists c_2 \in \mathbb{R}^+ : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N} : (n \ge n_1 \Rightarrow f(n) \ge c_2 \cdot g(n))
Also f \in O(g) und f \in \Omega(g)
q.e.d.
```

Aufgabe 10

a)

```
f: \mathbb{N} \to \mathbb{R}^+, n \mapsto (n+1)^2
zz:
f \in O(n^2)
Beweis:
Wähle c := 3 und n_0 := 2
IA:
(2+1)^2 = 3^2 = 9 \le 12 = 3 \cdot 2^2
IV:
(n+1)^2 < 3 \cdot n^2
IS: n \to n+1
((n+1)+1)^2 =
(n+1)^2 + 2 \cdot (n+1) + 1 < (IV)
3n^2 + 2 \cdot (n+1) + 1 \le
3n^2 + 6 \cdot (n+1) + 1 =
3 \cdot (n+1)^2
q.e.d.
```

b)

$$f: \mathbb{N} \to \mathbb{R}^+, n \mapsto \begin{cases} n^2 + 15 & \text{, falls n gerade} \\ 16n & \text{, sonst} \end{cases}$$
 (1)

zz: $f \in O(n^2)$ Beweis: Wähle c := 2 und $n_0 := 8$ n gerade: $n^2 + 15 \le 2n^2 \Leftrightarrow 1 + \frac{15}{n^2} \le 2 \text{ (gilt für } n \ge 4)$ n ungerade: $16n \le 2n^2 \Leftrightarrow 16 \le 2n \text{ (gilt für } n \ge 8)$

Aufgabe 11

a)

q.e.d.

b)

Nein, Gegenbeispiel:

```
f_1(n) = n^2
g_1(n) = n
f_2(n) = n^2
g_2(n) = n^2
Nun gilt:
(f_1 + f_2) \in O(max(g_1, g_2))
jedoch
f_1 \notin O(g_1)
```

Aufgabe 12

a)

Definition 1.

$$O(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ | \exists c \in \mathbb{R}^+ : (\exists n_0 \in \mathbb{N} : (\forall n \in \mathbb{N} : (n \ge n_0 \Rightarrow f(n) \le c \cdot g(n))) \}$$
 (1)

 \Leftrightarrow

$$O(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ | \exists c \in \mathbb{R}^+ : (\forall n \in \mathbb{N} : (f(n) \le c \cdot g(n))) \}$$
 (2)

Beweis:

$$\begin{array}{l} 1\Rightarrow 2\\ \text{Setze }c':=\max(\frac{g(1)}{f(1)},\frac{g(2)}{f(2)},...,\frac{g(n_0)}{f(n_0)},c)\\ 2\Rightarrow 1\\ \text{Setze }n_0:=1 \end{array}$$

q.e.d.

b)