COMPUTER ORGANIZATION AND ARCHITECTURE

[Revised Credit System]

(Effective from the academic year 2018-19)

SEMESTER - III

Subject Code	CSE 2151	IA Marks	50
Number of Lecture Hours/Week	04	Exam Marks	50
Total Number of Lecture Hours	48	Exam Hours	03

CREDITS - 04

Course objectives: This course will enable students to

- Summarize the fundamental concepts of the organization and architecture of a computer.
- Analyze taxonomy of Execution, Processor, Memory and I/O Units.
- Explain the pipelining principles, Data dependencies and hazards, SIMD and Multiprocessor concepts.

Module -1	Teaching
	Hours
BASIC STRUCTURE OF COMPUTERS:	5 Hours
Computer types, Functional units, Basic operational concepts, Number	
Representation and Arithmetic Operations, Character Representation, Problems.	
Text Book 1: Chapter 1: 1.1, 1.2, 1.3, 1.4, 1.5, 1.9	

Module -2

INSTRUCTION SET ARCHITECTURE:	5 Hours
Memory locations and addresses, Memory operations, Instructions and	
Instruction Sequencing, Addressing modes, CISC Instruction Sets, RISC and	
CISC Styles, Example Programs.	
Text Book 1: Chapter 2: 2.1, 2.2, 2.3, 2.4, 2.10, 2.11, 2.12, 2.15	

Module – 3

ARITHMETIC AND LOGIC UNIT:	7 Hours
Hardware for addition and subtraction, Multiplication, Hardware implementation,	
Booth's algorithm, Division, Floating point representation, IEEE standard floating	
point representation, Floating point arithmetic.	

Text Book 2: Chapter 10: 10.3, 10.4, 10.5	
Module-4	
CONTROL UNIT:	10 Hours
Basic concepts, buses-bidirectional, single bus, 2 bus, 3 bus organization design	
methods-comparison of hardwired and micro-programmed approach, hardwired	
control design, Booths multiplier design, processing section design of booths	
multiplier, Booths multiplier controller, sequence controller design, Micro-	
programmed control unit: Micro-programmed control organization, Micro-	
programmed multiplier control unit for booths multiplier.	
Text Book 3: Chapter 4: 4.1 to 4.3.2	
Module-5	I
MEMORY SYSTEMS:	10 Hours
Basic concepts, Internal organization of memory chips, Structure of Larger	
Memories, Memory Hierarchy, Cache memories-mapping functions, Placement	
strategies, Replacement algorithms, Performance considerations, Virtual	
memories, Magnetic hard disk	
Text Book 1: Chapter 8: 8.1, 8.2.1, 8.2.5, 8.5, 8.6, 8.6.1, 8.7, 8.8, 8.10, 8.10.1, 8.12	
Text Book 3: Chapter 5: 5.8	
Module-6	
INPUT/OUTPUT ORGANIZATION:	3 Hours
Accessing I/O devices, I/O Device Interface, Program-Controlled I/O, Interrupts,	
Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling I/O	
Device Behavior, Processor Control Registers, Direct Memory Access.	
Text Book 1: Chapter 3: 3.1, 3.1.1, 3.1.2, 3.2, Chapter 8: 8.4	
Module-7	
INTRODUCTION TO PARALLEL ARCHITECTURE:	8 Hours
Pipelining- Basic Concept, Pipeline Organization, Pipelining Issues, Data	
Dependencies, Operand Forwarding, Handling Data Dependencies in Software,	
Memory Delays, Branch Delays, Unconditional Branches, Conditional Branches,	
The Branch Delay Slot, Hardware Multithreading, Vector (SIMD) Processing,	
The Branch Berny Bres, real ward responses,	

Interconnection Networks, Cache Coherence, Write-Through Protocol, Write-Back protocol, Snoopy Caches, Directory-Based Cache Coherence

Text Book 1: Chapter 6: 6.1 – 6.6, Chapter 12: 12.1 – 12.4

Course outcomes:

After studying this course, students will be able to:

- 1. Describe the functionalities of the various units of computers and the instruction set architecture. .
- 2. Appreciate the hardware implementation of addition, subtraction, multiplication and division and perform arithmetic operations. .
- 3. Design the control unit for simple algorithms.
- 4. Explain basics of memory system such as cache memories, mapping functions, replacement algorithms and virtual memory concept and design simple memory systems.
- 5. Outline the I/O handling techniques and realize the improvement in performance using the concepts of pipelining and parallel processing.

Text Books:

- 1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, *Computer Organization and Embedded Systems*, (6e), McGraw Hill Publication, 2012.
- 2. William Stallings, *Computer Organization and Architecture Designing for Performance*, (9e), PHI, 2015.
- 3. Mohammed Rafiquzzaman and Rajan Chandra, *Modern Computer Architecture*, Galgotia Publications Pvt. Ltd., 2010.

Reference Books:

- 1. D.A. Patterson and J.L.Hennessy, *Computer Organization and Design-The Hardware/Software Interface*, (5e), Morgan Kaufmann, 2014.
- 2. J.P.Hayes, Computer Architecture and Organization, McGraw Hill Publication, 1998.