

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re Patent Application of:

Inventor: OKA, et al

Group Art Unit: 1752

Application No.: 10/602,622

Conf. No.: 2391

Examiner: Thorl Chea

Filed: June 25, 2003

Title: PHOTOTHERMOGRAPHIC MATERIAL

DECLARATION UNDER 37 C.F.R. §1.132

Commissioner for Patents

(P.O. Box 1450

Alexandria, VA 22313-1450)

Sir:

I, Seiichi Yamamoto, do declare and state as follows:

I graduated from Tohoku University with a Master's Degree in Chemistry in March 1990;

I joined Fuji Photo Film Co., Ltd. in April 1990, and since that time I have been engaged in research and development in the field of silver halide photosensitive materials for printing, and since March 2000, in the field

of silver halide photosensitive materials for medical use
at Ashigara Laboratory;

I am a co-inventor of the subject matter disclosed and claimed in the above-identified application; and

I am familiar with the Office Action of November 23, 2005, and understand that the Examiner has rejected Claims 1-9 under 35 U.S.C. § 103(a) as being unpatentable over the combination of Okada et al (US Patent No. 5,952,167), Ikari (US Patent No. 6,482,583), Siga et al (US Patent No. 4,332,889) and Toya et al (US Patent No. 5,998,126) and Claims 10, 13-20 under 35 U.S.C. § 103(a) as being unpatentable over Ito (US Patent No. 6,376,167).

The following additional comparative experiments were carried out by me or under my supervision in order to make the advantages of the subject matter clearer.

Experiment I

Samples 3d, 3e, 5d, 5e, 6d, 6e, 7d, 7e, 8d, 8e, 9d and 9e were prepared and added to the Experiment B in the declaration dated on January 19, 2005.

Samples 3d, 3e, 5d, 5e, 6d, 6e, 7d, 7e, 8d, 8e, 9d and 9e were prepared in the same manner as in Example 4 described in Applicants' Specification, except that the doped metals

in the photosensitive halide emulsion and their amount were changed to those as shown in Table I below, so that the amount of metal used singly becomes equal to the combination of the pair.

Grains in the silver halide used in Example 4 were pure silver iodide as described in Applicants' Specification, on page 161 lines 2-6.

Samples 3d, 3e, 5d, 5e, 6d, 6e, 7d, 7e, 8d, 8e, 9d and 9e were processed and evaluated in the same manner as in Example 4 described in Applicants' Specification.

The results obtained are listed in following currently amended Table I.

TABLE I

Sample No.	First Metal	First Metal Amount mol/Ag	Second Metal	Second Metal Amount mol/Ag	Dmin	Sensitivity	Printout performance	Remarks
3a	Ir	5×10^{-4}	-	-	0.17	100	0.11	Comparative Example
3b	-	-	Fe	3×10^{-3}	0.17	103	0.10	Comparative Example
3d	-	-	Fe	5×10^{-4}	0.17	102	0.10	Comparative

								Example
3e	Ir	2.5 $\times 10^{-4}$	Fe	2.5 $\times 10^{-4}$	0.16	106	0.07	Present Invention
3'	Ir	5×10^{-4}	Fe	3×10^{-3}	0.16	107	0.07	Present Invention
10-1	Ir	5×10^{-4}	Au	3×10^{-3}	0.18	110	0.12	Comparative Example
5a	Cu	5×10^{-4}	-	-	0.17	101	0.10	Comparative Example
5b	-	-	Fe	3×10^{-3}	0.17	103	0.10	Comparative Example
5d	-	-	Fe	5×10^{-4}	0.17	102	0.10	Comparative Example
5e	Cu	2.5 $\times 10^{-4}$	Fe	2.5 $\times 10^{-4}$	0.16	104	0.07	Present Invention
5'	Cu	5×10^{-4}	Fe	3×10^{-3}	0.16	105	0.07	Present Invention
10-2	Cu	5×10^{-4}	Au	3×10^{-3}	0.18	109	0.11	Comparative Example
6a	Fe	5×10^{-4}	-	-	0.17	101	0.10	Comparative Example
6b	-	-	Pt	3×10^{-3}	0.17	102	0.10	Comparative Example
6d	-	-	Pt	5×10^{-4}	0.17	101	0.10	Comparative Example

6e	Fe	2.5 $\times 10^{-4}$	Pt	2.5 $\times 10^{-4}$	0.16	106	0.08	Present Invention
6'	Fe	5×10^{-4}	Pt	3×10^{-3}	0.16	106	0.08	Present Invention
7a	Os	5×10^{-4}	-	-	0.17	100	0.10	Comparative Example
7b	-	-	Fe	3×10^{-3}	0.17	103	0.10	Comparative Example
7d	-	-	Fe	5×10^{-4}	0.17	102	0.10	Comparative Example
7e	Os	2.5 $\times 10^{-4}$	Fe	2.5 $\times 10^{-4}$	0.16	105	0.07	Present Invention
7'	Os	5×10^{-4}	Fe	3×10^{-3}	0.16	106	0.07	Present Invention
10-3	Os	5×10^{-4}	Au	3×10^{-3}	0.18	110	0.11	Present Invention
8a	Ru	5×10^{-4}	-	-	0.17	104	0.11	Comparative Example
8b	-	-	Fe	3×10^{-3}	0.17	103	0.10	Comparative Example
8d	-	-	Fe	5×10^{-4}	0.17	101	0.10	Comparative Example
8e	Ru	2.5 $\times 10^{-4}$	Fe	2.5 $\times 10^{-4}$	0.16	105	0.07	Present Invention
8c	Ru	5×10^{-4}	Fe	3×10^{-3}	0.17	106	0.07	Present

								Invention
9a	-	-	-	-	0.18	98	0.12	Comparative Example
9b	-	-	Cu	3×10^{-3}	0.17	101	0.11	Comparative Example
9d	-	-	Cu	5×10^{-4}	0.17	100	0.11	Comparative Example
9e	Ru	2.5×10^{-4}	Cu	2.5×10^{-4}	0.16	103	0.06	Present Invention
9c	Ru	5×10^{-4}	Cu	3×10^{-3}	0.05	104	0.06	Present Invention
10-4	-	-	Au	3×10^{-3}	0.19	109	0.12	Comparative Example
10-5	Fe	5×10^{-4}	Au	3×10^{-3}	0.19	109	0.11	Comparative Example

Note: For "Au", Potassium chloroaurate, which is typical as an Au-sensitizer, was used, and substituted at an amount of equimolar of Fe compound.

As shown in Table I, Samples 3e, 5e, 6e, 7e, 8e and 9e, the samples containing the combination of the pair metals exhibited unexpected superiority in comparison to Samples 3d, 5d, 6d, 7d, 8d and 9d, the samples containing a single metal.

Conclusions

The present invention showed unexpectedly greater improvements of the samples containing the combination of the pair metals in sensitivity, printout performance and fogging during storage than the comparative examples.

Experiment II

Samples 3a, 3b, 5a, 5b, 18a, 18b, 20a, 20b, 33a, 33b, 35a and 35b were prepared and added to the Additional comparative experiments in the declaration dated on September 13, 2005.

Samples 3a, 3b, 5a, 5b, 18a, 18b, 20a, 20b, 33a, 33b, 35a and 35b were prepared in the same manner as Samples in the declaration dated on September 13, 2005, except that the sum of the amount of the mercapto compound and the amount of the polyhalogen compound in the samples is equal.

Samples 3a, 3b, 5a, 5b, 18a, 18b, 20a, 20b, 33a, 33b, 35a and 35b were processed and evaluated sensitivity, fogging and printout performance in the same manner as in Example described in Applicants' Specification.

The results obtained are listed in following currently amended Table II.

TABLE II

Sample No.	silver halide emulsion	silver halide composite on	mercapto hetero-ring compd.	mercapto hetero-ring compd.	mercapto hetero-ring compd.	hetero-ring poly-halogen compd.	hetero-ring poly-halogen compd.	sensitivity	fogging	Printout performance Δmin	Remarks
						mol/molAg	mol/molAg				
1	No. 1	AgBr	-	-	-	-	-	100	0.21	0.21	Comparative Example
2	No. 1	AgBr	I-2	7.6×10^{-4}	-	-	-	142	0.16	0.18	Comparative Example
3	No. 1	AgBr	-	-	No. 1	1.1×10^{-3}	90	0.16	0.20	0.20	Comparative Example
3a	No. 1	AgBr	-	-	No. 1	7.6×10^{-4}	95	0.16	0.20	0.20	Comparative Example
3b	No. 1	AgBr	I-2	3.8×10^{-4}	No. 1	3.8×10^{-4}	125	0.15	0.15	0.15	Comparative Example

	No. 1	AgBr	I-2	7.6×10^{-4}	No. 1	1.1×10^{-3}	120	0.15	0.14	Comparative Example
4	No. 1	AgBr	I-2	7.6×10^{-4}	No. 2	1.1×10^{-3}	89	0.16	0.15	Comparative Example
5	No. 1	AgBr	-	-	No. 2	1.1×10^{-3}	93	0.16	0.16	Comparative Example
5a	No. 1	AgBr	-	-	No. 2	7.6×10^{-4}	93	0.16	0.16	Comparative Example
5b	No. 1	AgBr	I-2	3.8×10^{-4}	No. 2	3.8×10^{-4}	129	0.15	0.15	Comparative Example
6	No. 1	AgBr	I-2	7.6×10^{-4}	No. 2	1.1×10^{-3}	125	0.15	0.16	Comparative Example
7	No. 1	AgBr	-	-	No. 5	1.1×10^{-3}	88	0.16	0.15	Comparative Example
8	No. 1	AgBr	I-2	7.6×10^{-4}	No. 5	1.1×10^{-3}	128	0.15	0.13	Comparative Example

No.	No. 1	AgBr	-	-	No. 6	1.1×10^{-3}	106	0.16	0.14	Comparative Example
10	No. 1	AgBr	I-2	7.6×10^{-4}	No. 6	1.1×10^{-3}	94	0.15	0.13	Comparative Example
11	No. 1	AgBr	I-5	7.6×10^{-4}	-	-	138	0.17	0.16	Comparative Example
12	No. 1	AgBr	I-5	7.6×10^{-4}	No. 1	1.1×10^{-3}	106	0.15	0.15	Comparative Example
13	No. 1	AgBr	I-5	7.6×10^{-4}	No. 2	1.1×10^{-3}	105	0.15	0.15	Comparative Example
14	No. 1	AgBr	I-5	7.6×10^{-4}	No. 5	1.1×10^{-3}	104	0.15	0.15	Comparative Example
15	No. 1	AgBr	I-5	7.6×10^{-4}	No. 6	1.1×10^{-3}	103	0.15	0.15	Comparative Example
16	No. 1a	AgBr90110	-	-	-	-	98	0.20	0.16	Comparative Example

	No.	Example	Comparative Example
17	No. 1a	AgBr90I10 I-2 7.6x10 ⁻⁴ -	140 0.16 0.15
18	No. 1a	AgBr90I10 -	No. 1 1.1x10 ⁻³ 85 0.16 0.14
18a	No. 1a	AgBr90I10 -	No. 1 7.6x10 ⁻⁴ 95 0.16 0.15
18b	No. 1a	AgBr90I10 I-2 3.8x10 ⁻⁴	No. 1 3.8x10 ⁻⁴ 140 0.14 0.08
19	No. 1a	AgBr90I10 I-2 7.6x10 ⁻⁴	No. 1 1.1x10 ⁻³ 137 0.14 0.08
20	No. 1a	AgBr90I10 -	No. 2 1.1x10 ⁻³ 84 0.13 0.14
20a	No. 1a	AgBr90I10 -	No. 2 7.6x10 ⁻⁴ 97 0.14 0.15

No.	No. 1a	AgBr90I10	I-2	3.8×10^{-4}	No. 2	3.8×10^{-4}	140	0.14	0.07	Present	Invention
21	No. 1a	AgBr90I10	I-2	7.6×10^{-4}	No. 2	1.1×10^{-5}	138	0.14	0.07	Present	Invention
22	No. 1a	AgBr90I10	-	-	No. 5	1.1×10^{-5}	83	0.13	0.13	Comparative	Example
23	No. 1a	AgBr90I10	I-2	7.6×10^{-4}	No. 5	1.1×10^{-3}	136	0.14	0.08	Present	Invention
24	No. 1a	AgBr90I10	-	-	No. 6	1.1×10^{-2}	85	0.13	0.13	Comparative	Example
25	No. 1a	AgBr90I10	I-2	7.6×10^{-4}	No. 6	1.1×10^{-1}	136	0.15	0.07	Present	Invention
26	No. 1a	AgBr90I10	I-5	7.6×10^{-4}	-	-	138	0.13	0.13	Comparative	Example
27	No. 1a	AgBr90I10	I-5	7.6×10^{-4}	No. 1	1.1×10^{-3}	135	0.14	0.08	Present	

								Invention		
	No. 1a	AgBr90I10	I-5	7.6x10 ⁻⁴	No. 2	1.1x10 ⁻³	139	0.14	0.08	Present
28										Invention
29	No. 1a	AgBr90I10	I-5	7.6x10 ⁻⁴	No. 5	1.1x10 ⁻³	140	0.14	0.08	Present
30	No. 1a	AgBr90I10	I-5	7.6x10 ⁻⁴	No. 6	1.1x10 ⁻³	137	0.14	0.08	Present
31	No. 1b	AgBr10I90	-	-	-	-	95	0.17	0.12	Comparative Example
32	No. 1b	AgBr10I90	I-2	7.6x10 ⁻⁴	-	-	141	0.15	0.11	Comparative Example
33	No. 1b	AgBr10I90	-	-	No. 1	1.1x10 ⁻³	82	0.13	0.11	Comparative Example
33a	No. 1b	AgBr10I90	-	-	No. 1	7.6x10 ⁻⁴	95	0.14	0.12	Comparative Example

	No. 1b	AgBr10I90	I-2	3.8×10^{-4}	No. 1	3.8×10^{-4}	144	0.14	0.06	Present	Invention
34	No. 1b	AgBr10I90	I-2	7.6×10^{-4}	No. 1	1.1×10^{-3}	141	0.14	0.06	Present	Invention
35	No. 1b	AgBr10I90	-	-	No. 2	1.1×10^{-3}	84	0.13	0.11	Comparative	Example
35a	No. 1b	AgBr10I90	-	-	No. 2	7.6×10^{-4}	97	0.14	0.12	Comparative	Example
35b	No. 1b	AgBr10I90	I-2	3.8×10^{-4}	No. 2	3.8×10^{-4}	143	0.14	0.06	Present	Invention
36	No. 1b	AgBr10I90	I-2	7.6×10^{-4}	No. 2	1.1×10^{-3}	140	0.14	0.06	Present	Invention
37	No. 1b	AgBr10I90	-	-	No. 5	1.1×10^{-3}	83	0.13	0.11	Comparative	Example
38	No. 1b	AgBr10I90	I-2	7.6×10^{-4}	No. 5	1.1×10^{-3}	139	0.14	0.07	Present	

								Invention
	No. 1b	AgBr10I90	-	-	No. 6	1.1×10^{-3}	B5	Comparative Example
39	No. 1b	AgBr10I90	-	-	No. 6	1.1×10^{-3}	B5	0.13 0.11
40	No. 1b	AgBr10I90	I-2	7.6×10^{-4}	No. 6	1.1×10^{-3}	138	0.15 0.07
41	No. 1b	AgBr10I90	I-5	7.6×10^{-4}	-	-	140	0.13 0.11
42	No. 1b	AgBr10I90	I-5	7.6×10^{-4}	No. 1	1.1×10^{-3}	141	0.14 0.06
43	No. 1b	AgBr10I90	I-5	7.6×10^{-4}	No. 2	1.1×10^{-3}	142	0.14 0.05
44	No. 1b	AgBr10I90	I-5	7.6×10^{-4}	No. 5	1.1×10^{-3}	143	0.14 0.06
45	No. 1b	AgBr10I90	I-5	7.6×10^{-4}	No. 6	1.1×10^{-3}	142	0.14 0.07

Sensitivity is shown as a relative value taking the sensitivity of Sample No. 1 to be 100.

As seen in Table II above, the combination of the silver halide emulsion, the mercapto hetero-ring compound and the hetero-ring polyhalogen compound of the present invention were unexpectedly superior in fogging and printout performance (ΔD_{min}) in comparison to the comparative examples, while maintaining high sensitivity.

In the combinations of mercapto hetero-ring compound and hetero-ring polyhalogen compound in the examples of the present invention, ΔD_{min} decreases by 0.06-0.08, and ΔD_{min} is lower than 0.1.

Conclusions

The present invention showed unexpectedly greater improvements of the samples containing the combination of the mercapto hetero-ring compound and hetero-ring polyhalogen compound in sensitivity, printout performance and fogging during storage than the comparative examples.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further, that these statements were made with the knowledge that willful false statements and like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

DATE: April 7, 2006

Seiichi Yamamoto

SEIICHI YAMAMOTO