Zhiwen Zeng, Yunfei Yin*, Member, IEEE, Zheng Yuan, Argho Dey, and Xianjian Bao

- Problem/Objective
 - Bird's Eye View Segmentation

- Contribution/Key Idea
 - Coarse to Fine progressive refinement BEV segmentation
 - Residual learning + Autoregressive
 - 향상된 결과 및 real-time capability

Arxiv 2025 (T-ITS summit)

Introduction

- Geometry-based or Learning-based 두 갈래가 존재 → 어느 쪽이든 sensor misalignment에 취약
- + remaining method는 모두 "single step end-to-end" 라는 점에 주목 (한번에 모든 픽셀 예측)
 - 이는 occlusion / long-range 등 challenging 상황에서 오류가 발생하면 복구 불가, 에러가 고착됨
 - By Depth estimation limitation / global attention error
 - + 2D → 3D 변환의 ambiguity도 한 번에 예측해서 error ↑
 - 도로 구조에서 세부 차선까지 "hierarchical(계층적) reasoning"이 부족

Arxiv 2025 (T-ITS summit)

Method - Overall

Arxiv 2025 (T-ITS summit)

• Method - Multi-Scale Ground-Truth Token Maps Decomposition

Offline 과정으로 GT를 여러 resolution으로 나누어 학습 및 저장

Algorithm 1 Multi-scale Ground Truth DecompositionInput: Original mask $GT \in \mathbb{R}^{C \times Z \times X}$, levels NOutput: Token maps $\{TP_i\}_{i=1}^N$, reconstructed \hat{GT} 1: DECOMPOSE(\mathbf{GT}, N)2: $R_1 \leftarrow \mathbf{GT}$ 3: $\hat{\mathbf{GT}} \leftarrow \mathbf{0}$ 4: $\mathbf{for}\ i = 1\ \mathbf{to}\ N - 1\ \mathbf{do}$ 5: $\mathbf{TP}_i \leftarrow \mathrm{tanh}(\mathrm{AVGPOOLConv}(R_i, (\frac{Z}{2^{N-i}}, \frac{X}{2^{N-i}}))$ 6: $\hat{\mathbf{TP}}_i \leftarrow \mathrm{BICUBIC}(\mathbf{TP}_i, (Z, X))$ 7: $R_{i+1} \leftarrow R_i - \sigma(\theta_i^{(C)}) \odot \hat{\mathbf{TP}}_i$ 8: $\hat{\mathbf{GT}} \leftarrow \hat{\mathbf{GT}} + \hat{\mathbf{TP}}_i$ 9: $\mathbf{end}\ \mathbf{for}$ 10: $\mathbf{TP}_N \leftarrow \mathrm{tanh}(R_N)$

 $\hat{\mathbf{GT}} \leftarrow \hat{\mathbf{GT}} + \mathbf{TP}_N$

return $\{\mathbf{TP}_i\}_{i=1}^N, \hat{\mathbf{GT}}$

-1~1으로 값 강제 조정하여 token map 안정성 도모

GT: $C \times Z \times X$, GT as residual R_1

Step by step:
$$Z/2^{N-i} \times X/2^{N-i}$$

learnable parameter

• Method - Encoder part + voxel encoding

Fig. 3. Voxel feature extraction: we normalize each voxel to 10 points, then extract $C \times 10$ features via point-wise encoding. Apply parallel max/attention-pooling, concatenate with original features ($3C \times 10$), and compress to C channels via MLP. Repeat twice, then max-pool for final voxel features.

(a) Lifting: Pixel-to-grid ray interaction between the camera frustum plane and 3D space

(b) Unlifting: BEV grid back-projection onto the image plane

Fig. 4. Lifting and Unlifting Visualization Based on Camera Sensor Intrinsics.

$$Y_{new}^{(i)} = Y_{gr}^{(i)} + ofst_{min} + Y_{drift}^{(i)} \cdot (ofst_{max} - ofst_{min})$$

- Ground level이 일정하지 않은 것을 고려하고 싶다.
 - o ground-proximity 영역을 학습적으로 최적화

Arxiv 2025 (T-ITS summit)

• Method - Residual Auto-regressive Fusion

RAF (Rsidual Auto-regressive Fusion)

● Driver-T / Modifier-T 구조 동일

$$GT = \sigma(\theta_0) \cdot TP_0 + \sigma(\theta_1) \cdot TP_1 + \sigma(\theta_2) \cdot TP_2 + TP_3$$
 (3)

Fig. 5. Architecture of Driver/Modifier Transformer decoders. Cascaded decoders process learnable 3-layer f_{bev} , where Cross Deformable Attention enables BEV-to-multi-view semantic interaction. Modifier stages maintain independent cross-attention modules while sharing other components.

• Method - Overall training loss

$$\mathcal{L}_{TP_s} = \begin{cases} \frac{1}{ZX} \sum_{z,x} \|TP_i - \hat{TP}_i\|_p & \text{(Spatial-wise)} \\ \frac{1}{BC} \sum_{b,c} \|TP_i - \hat{TP}_i\|_p & \text{(Channel-wise)} \end{cases}$$

$$\mathcal{L}_{seg} = \frac{1}{C} \sum_{c=1}^{C} w_c \left(1 - \frac{2 \sum p_c \cdot g_c + \epsilon}{\sum p_c + \sum g_c + \epsilon} \right)$$

where $p_c = \sigma(\hat{y}_c)$ is the sigmoid-normalized prediction logits probability for class c, g_c denotes the original binary value of GT, and $\frac{w_c}{c} = \frac{1 - f_c}{\frac{1}{C} \sum (1 - f_c)}$ is the adaptive weight for class c, with f_c being class frequency. The smoothing term $\epsilon = 10^{-5}$ ensures numerical stability.

Experiment -

TABLE I
PERFORMANCE COMPARISON ON NUSCENES DATASET

Method	Modalities	Resolution	Backbone	Segmentation (IoU%) ↑			mIoII% +	Donomoton	EDC A
				Drivable Area	Vehicle	Lane Divider	- mIoU% ↑	Parameter	FPS ↑
Camera-Only Method	's								
LSS [15] [†]	C	128×352	EfficientNet-B0	72.94	32.07	19.96	52.51 / 41.66	14.3M	25.0
CVT [35]	C	224×448	EfficientNet-B4	52.66	24.30	_	38.48 / -	4.3M	34.0
BEVFormer [2] [†]	C	900×1600	ResNet-101	77.50	46.70	23.90	62.10 / 49.37	75.0M	1.7
BEVFormer-S [2] [†]	C	900×1600	ResNet-101	80.70	43.20	21.30	61.95 / 48.40	68.7M	_
Camera+Radar Methe	ods								
Simple-BEV [23]	C+R	448×800	ResNet-101	_	53.17	_	-/-	42.2M	7.6
CRN [25]	C+R	224×480	R50	80.42	55.30	_	67.86 / –	76.0M	25.0
BEVGuide [26] [†]	C+R	224×480	EfficientNet	76.70	59.20	44.20	67.95 / 60.03	_	24.0
BEVCar [11]	C+R	448×672	ViT-B/14	80.60	55.70	43.90	68.15 / 60.06	137.0M	2.6
Our Approach									
RESAR-Camera	C	448×672	ResNet-101	76.88	46.60	40.20	61.74 / 54.56	30.8M	17.1
RESAR-E2E	C+R	448×672	ResNet-101	77.10	52.90	41.50	65.00 / 57.17	31.0M	15.5
RESAR-Standard	C+R	448×672	ResNet-101	83.53	56.87	44.43	70.20 / 61.61	31.9M	14.6

Abbr.: C: Camera, R: Radar; †: Results reproduced from official implementations; Bold: Best performance in each category; †/ higher/lower are better.

We evaluate RESAR-BEV against Camera-only and Camera-Radar unidirectional end-to-end baseline models on the nuScenes validation set. To account for variations across different approaches, we evaluate three key autonomous driving segmentation tasks: Drivable Area, Vehicle, and Lane Divider using both individual IoU and mIoU (left: first two categories' average; right: all three). We Also compare model parameters and inference speed (FPS on Nvidia A100 GPU) for assessing real-time performance in autonomous driving systems. Ablation studies validate RESAR's camera-only and end-to-end configurations.

Experiment -

TABLE II
PERCEPTION RANGE PERFORMANCE COMPARISON

Method	Modality	0-50m	Range Intervals (m)			
Method	Modanty	0-50III	0-20m	20-35m	35-50m	
CVT	С	24.3	37.4	25.0	10.5	
Simple-BEV	C+R	53.2	71.9	52.8	34.8	
CRN	C+R	55.3	82.1	47.6	36.1	
BEVCar	C+R	55.7	75.3	52.2	39.6	
RESAR	С	46.6	69.2	44.9	25.5	
RESAR-E2E	C+R	52.9	74.0	47.8	36.8	
RESAR	C+R	56.9	77.6	52.2	40.8	

Abbr.: C: Camera; R: Radar; All values represent mIoU (%).

TABLE III
PERFORMANCE COMPARISON UNDER
DIFFERENT WEATHER CONDITIONS

Method	Categories							
	D.A.	P.C.	W.W.	S.L.	R.L.	L.D.	V.H.	
Sunny Co	nditions							
BEVCar	82.3	51.9	62.5	41.7	44.2	46.2	55.8	
Us-E2E	78.4	47.3	61.2	41.0	44.5	42.1	53.2	
RESAR	84.5	50.7	65.3	43.2	48.5	45.9	57.9	
Rainy Cor	nditions							
BEVCar	82.6	48.5	58.0	35.4	41.8	45.3	56.9	
Us-E2E	79.6	44.7	58.6	37.8	39.9	41.5	55.3	
RESAR	86.9	47.5	62.5	40.8	46.7	44.1	59.5	
Night Con	ditions							
BEVCar	76.9	40.2	50.1	31.5	35.7	40.2	54.3	
Us-E2E	73.2	40.0	48.2	32.1	33.0	40.3	49.5	
RESAR	79.2	42.5	53.8	38.2	40.5	42.8	53.1	

Abbr.: D.A.: Drivable Area, P.C.: Pedestrian Crossing, W.W.: Walkway, S.L.: Stop Line, R.L.: Road Divider, L.D.: Lane Divider, V.H.: Vehicle; All values represent mIoU (%).

Experiment -

TABLE IV
MODULE & HYPERPARAMETER ABLATION STUDIES

Category	Variant	Categories			
Category	variant	FPS	Param.	mIoU	
Module Ab	lations				
1	Camera Only	17.1	30.8M	44.2	
2	Pyramid or Residual	15.1	31.9M	47.8	
3	End to End	15.5	31.0M	49.6	
4	VFE Attention	15.2	31.8M	51.0	
Hyperparan	neter Ablations				
5	Voxel, Residual-gate	14.9	31.9M	49.3	
6	Learnable Height Offset	14.8	31.9M	48.8	
7	4 Driver-Modifier Layers	9.9	33.1M	54.4	
8	Full Model	14.6	31.9M	54.0	

Abbr. : FPS: Frames Per Second, Param.: Parameters (in millions), mIoU: mean Intersection over Union (%) .

Fig. 6. Training and validation mIoU trajectories for complete RESAR-BEV model versus two ablated models across iterations (32 batches/iteration). The semi-transparent bands indicate performance gaps between training and validation sets.

train/validation gap이 크지 않음 (오버피팅 적고, 모델 일반화 성능 좋음)

김범준

Experiment -

Fig. 7. Progressive Multi-modal BEV Semantic Segmentation via Residual Auto-regression Across Diverse Environmental Conditions. The model integrates synchronized inputs from six surround-view cameras and six consecutive frames of radar point clouds through four-step residual auto-regression (shown as accumulated residuals), outputting seven-class BEV segmentation.

Experiment -

Abbr.: R: Residual stage; L: Image feature level; H: Attention head; S: Driver-T/Modifier-T Decoder layer.

Fig. 8. The visualization of cross-modal attention weights in Driver-T and Modifier-T under the image view, demonstrating a distinct vertical and road-category hierarchical attention pattern across different residual modules, image feature layers, attention heads, and decoder module levels.