F61: NMR-Spectroscopy

T. Gierlich and A. Impertro

May 26th, 2017

Outline

Introduction and Theoretical Concepts

Part I: Relaxation Times

Part II. Chemical shift

Theory

Measurements

Imaging with NMR

Theory

Experiments

Introduction

Introduction

Detection of substances

Figure: Carl Nave, Hyperphysics, hyperphysics.phy-astr.gsu.edu

Multidimensional imaging

Figure: Sierra Vista Diagnostics, svdrads.com

Figure: Magnetization

- Nuclei with spin I have a magnetic moment μ
- ightharpoonup Ensemble of many nuclei: Measurable magnetization \vec{M}
- lacktriangleright Minimal energy ightarrow Dipole aligned parallel to B-field
- Ground state $\rightarrow M_{\perp} = 0$

Figure: Magnetization

Figure: Larmor-Precession of M_{\perp}

- \blacktriangleright Nuclei with spin I have a magnetic moment μ
- ▶ Ensemble of many nuclei: Measurable magnetization \vec{M}
- lacktriangle Minimal energy ightarrow Dipole aligned parallel to B-field
- ▶ Ground state $\rightarrow M_{\perp} = 0$
- Excited states have a component $M_{\perp} \neq 0$
- $ightharpoonup M_{\perp}$ precesses around the field lines with the Larmor frequency

$$\omega_L = \gamma B_0 \tag{1}$$

 $\triangleright \omega_L$ can be measured!

How can we create an excited state?

An oscillating B-Field $\vec{B_1}$ rotates the magnetization \vec{M} by an angle

$$\alpha = \gamma B_1 \Delta t \tag{2}$$

Figure: Rotation of M due to an HF-Pulse

How can we create an excited state?

An oscillating B-Field $\vec{B_1}$ rotates the magnetization \vec{M} by an angle

$$\alpha = \gamma B_1 \Delta t \tag{2}$$

Figure: Rotation of *M* due to an HF-Pulse

- ▶ By choosing Δt , we can create:
 - ► A perpendicular magnetization (90°-Pulse)
 - ► An anti-parallel magnetization (180°-Pulse)

Setup and Measurement Principle

Figure: McGraw Hill Higher Education, mhhe.com

Theory of Relaxation

Excited states decay into the Ground State on a characteristic timescale.

The decay is of exponential nature and described in the Bloch equations:

$$\frac{dM_{\perp}(t)}{dt} = -\frac{M_{\perp}(t)}{T_2} \tag{3}$$

$$\frac{dM_{\parallel}(t)}{dt} = -\frac{M_{\parallel}(t) - M_0}{T_1} \tag{4}$$

- ▶ T₂: Spin-Lattice Relaxation
- ► T₁: Spin-Spin Relaxation

Spin-Echo principle

Figure: Principle of the spin-echo method

Spin-Echo principle

Figure: Principle of the spin-echo method

Pulse sequence

Figure: Spin-Echo measurement with au=10 ms

Spin-Echo principle

Figure: Principle of the spin-echo method

Pulse sequence

Figure: Spin-Echo measurement with au=10 ms

Disadvantage: Dephasing for long measurement times!

Figure: T2-Measurement Sample 1 with fit.

Figure: T2-Measurement Sample 3 with fit.

T_2 -Measurement: Carr-Purcell Sequence

Improve dephasing problem of spin-echo method:

- ▶ Inject a 180°-Pulse on odd multiples of a time τ .
- ▶ The system is phase coherent on even multiples of a time τ .

T₂-Measurement: Carr-Purcell Sequence

Improve dephasing problem of spin-echo method:

- ▶ Inject a 180°-Pulse on odd multiples of a time τ .
- ▶ The system is phase coherent on even multiples of a time τ .

Figure: T2-Measurement using Carr-Purcell, Sample 1. with fit.

Figure: T2-Measurement using Carr-Purcell, Sample 3, with fit.

T_1 -Measurement

Start with a 180° -Pulse (Anti-parallel Magnetization) and probe the magnetization after time τ with a 90° -Pulse

T_1 -Measurement

Start with a 180° -Pulse (Anti-parallel Magnetization) and probe the magnetization after time τ with a 90° -Pulse

Figure: T1-Measurement Sample 1 with fit.

Figure: T1-Measurement Sample 3 with fit.

Relaxation Times: Evaluation

Table: Relaxation times - Measured values

Time	T ₁ [ms]	$T_2~\mathrm{[ms]}$	$T_2~\mathrm{[ms]}$ Carr-Purcell	
Method	180°-90°	Spin-Echo		
Sample 1 (Gd 1:500) Sample 3 (Gd 1:600)	$(125,5\pm0,6)\ (150,5\pm1,2)$, ,	$(140, 1 \pm 0, 4) \ (166, 9 \pm 0, 4)$	

Chemical shift – theory

Aim: structure determination of chemical substances

Chemical shift – theory

Aim: structure determination of chemical substances

 \triangleright electron orbitals contribute to B_0 :

$$\delta \vec{B} = \sigma \vec{B_0}$$

modification of the Larmor frequency:

$$\omega_i = \omega_L (1 - \sigma_i)$$

Chemical shift – theory

Aim: structure determination of chemical substances

• electron orbitals contribute to B_0 :

$$\delta \vec{B} = \sigma \vec{B_0}$$

modification of the Larmor frequency:

$$\omega_i = \omega_L (1 - \sigma_i)$$

► reference substance: TMS (Tetra-Methyl-Silan) CH₃

relative chemical shift in ppm:

$$\delta_i = \sigma_i - \sigma_{TMS} = \frac{\omega_{TMS} - \omega_i}{\omega_I}$$

Chemical shifts δ_i of compounds relative to TMS

T. Gierlich und A. Impertro

Measurements

- five chemical substances, with and without TMS
- inhomogeneities and diffusion processes reduce resolution
 ⇒ thin glass tube, put into rotation with pressure air
- result:
 - without rotation:

$$FWHM = 200 Hz, I = 0.25$$

with rotation:

$$FWHM = 20 Hz, I = 1.9$$

energy resolution:

$$\Delta E_{NMR} = h \cdot \Delta \nu = 8,28 \cdot 10^{-14} \, \text{eV}$$

Probe C: acetic acid CH₃ — COOH

Peaks of C+ [ppm]	Peaks of C [ppm]	Chem. shift.	
$p_1 = 16, 7$ $p_2 = 26, 2$	$egin{aligned} ho_1 &= 17,0 \ ho_2 &= 26,6 \end{aligned}$	$\delta_i = 11, 6$ $\delta_i = 2, 1$	COOH-group Methyl group CH ₃
$p_3 = 28, 3$	_	_	TMS

Peaks of B+ [ppm]	Peaks of B [ppm]	Chem. shift	
$p_1 = 22,7$ $p_2 = 27,5$	$p_1 = 22,7$ $p_2 = 27,5$	$\delta_i = 7, 0$ $\delta_i = 2, 2$	Benzene group Methyl group, Peak twice as high as p_1
$p_3 = 29,7$	_	-	TMS

Probe E: toluol CH3—

Peaks of E+ [ppm]	Peaks of E [ppm]	Chem. shift	
$egin{aligned} ho_1 &= 19,5 \ ho_2 &= 24,4 \end{aligned}$	$egin{aligned} p_1 &= 23, 1 \ p_2 &= 23, 1 \end{aligned}$	$\delta_i = 7, 3$ $\delta_i = 2, 4$	Benzene group Methyl group, peaks have same hight
$p_3 = 26, 8$	_	_	TMS

Probe A: fluoroaceton ${\rm FCH_2-CO-CH_3}$

Peaks of A+ [ppm]	Peaks of A [ppm]	Chem. shift	
$p_1 = 22, 2$ $p_2 = 24, 6$	$p_1 = 23, 8$ $p_2 = 21, 4$	$\delta_i = 6, 3$ $\delta_i = 3, 9$	FCH ₂ -group
$p_3 = 26, 4$ $p_4 = 28, 5$	$p_3 = 19, 6$	$\delta_i = 2, 1$	Methyl group CH ₃ TMS

Probe D: fluoroacetonitril FCH₂ - CN

Peaks of D+ [ppm]	Peaks of D [ppm]	Chem. shift	
$p_1 = 30, 8$	-	-	TMS
$p_2 = 34, 8$	$p_2 = 26, 6$	$\delta_i = 6, 4$ $delta_i = 4, 0$	FCH ₂ group
$p_3 = 37, 2$	$p_3 = 24, 2$	$delta_i = 4,0$. 5. 12 8. бар

one dimensional imaging - theory

- position dependent magnet fields
- ► Superposition of the static field $\vec{B_0}$ with gradient fields $\vec{B^x}$, $\vec{B^y}$, $\vec{B^z}$
- ▶ two techniques:

frequency coding

- Larmor frequency $\omega_L = \gamma (B_0 + G^z \cdot z) = \omega_L^0 + \omega_z$
- ▶ measured NMR signal S(t) is Fourier transform of $M_{\perp}^{rot}(z)$

phase coding

- apply gradient field, increase strength
- phase rotates: $\phi(z) = (\gamma G^z T_{Ph})z = k_z z$

two dimensional imaging – theory

One dimensional imaging measurements

- ► Bruker[®] NMR analyzer mq7.5
- ► Glass tube filled with 15 mm of oil
- ► Glass tube filled with 50 mm of water
- glass tube with teflon structure
- examination of an inflitration process: Fick's second law: $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial v^2}$

two dimensional imaging measurements

Figure: teflon structure

Figure: olive

two dimensional imaging measurements

Figure: peanut shell

Figure: aloe vera