CS 5402 - HW 2 Will Weidler 2/26/25

Q1. Given the confusion matrix for 5 classes as below:

		Predicted label						
		c_1	c_2	c_3	c_4	c_5		
Ground Truth	c_1	52	3	7	2	2		
	c_2	2	28	0	2	3		
	c_3	5	2	25	7	7		
	<i>c</i> ₄	1	3	6	40	5		
	c_5	1	2	1	3	17		

What is the Accuracy and F1-score for class c_1 , c_2 , c_3 , c_4 , c_5 ?

NOTES:

$$c_1$$
:

$$TN = 28+0+2+3+2+25+7+7+3+6+40+5+2+1+3+17 = 151$$

$$FN = 3+7+2+2 = 14$$

Accuracy =
$$\frac{151+52}{151+9+14+52}$$
 = 0.8982300885

Recall =
$$\frac{52}{14+52}$$
 = 0.7878787879

Precision =
$$\frac{52}{9+52}$$
 = 0.8524590164

F-1 Score =
$$2 * \frac{0.8524590164*0.7878787879}{0.8524590164+0.7878787879} = 0.8188976378$$

$$c_2$$
:

$$FN = 2+0+2+3 = 7$$

Accuracy =
$$\frac{181+28}{181+10+7+28}$$
 = 0.9247787611

Recall =
$$\frac{28}{7+28}$$
 = 0.8

Precision =
$$\frac{28}{10+28}$$
 = 0.7368421053

F-1 Score =
$$2 * \frac{0.7368421053*0.8}{0.7368421053+0.8} = 0.7671232877$$

$$c_3$$
:

$$TN = 52+3+2+2+2+2+2+3+1+3+40+5+1+2+3+17 = 166$$

Accuracy =
$$\frac{166+25}{166+14+21+25}$$
 = 0.8451327434

Recall =
$$\frac{25}{21+25}$$
 = 0.5434782609

Precision =
$$\frac{25}{14+25}$$
 = 0.641025641

F-1 Score =
$$2 * \frac{0.641025641*0.5434782609}{0.641025641+0.5434782609} = 0.5882352941$$

$$c_4$$
:

Accuracy =
$$\frac{157+40}{157+14+15+40}$$
 = 0.8716814159

Recall =
$$\frac{40}{15+40}$$
 = 0.7272727273

Precision =
$$\frac{40}{14+40}$$
 = 0.7407407407

F-1 Score =
$$2 * \frac{0.7407407407407*0.727272727}{0.7407407407+0.7272727273} = 0.7339449541$$

$$c_5$$
:

$$TN = 52+3+7+2+2+28+0+2+5+2+25+7+1+3+6+40 = 185$$

$$TP = 17$$

Accuracy =
$$\frac{185+17}{185+17+7+17}$$
 = 0.8938053097

Recall =
$$\frac{17}{7+17}$$
 = 0.7083333333

Precision =
$$\frac{17}{17+17}$$
 = 0.5

F-1 Score =
$$2 * \frac{0.7407407407*0.7272727273}{0.7407407407+0.7272727273} = 0.5862068965$$

- Q2. Given the following sample dataset that represents whether or not to play tennis based on different features:
 - Calculate the Information Gain for each feature: G(D, Outlook), G(D, Temperature), G(D, Humidity), G(D, Wind).
 - Based on the Information Gain for each feature, which feature should be used first to split the dataset when creating a decision tree?

Outlook	Temperature	Humidity	Wind	Play Tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	No
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

OUTLOOK:

$$\mathsf{H}(\mathsf{Y}) = -\sum_{y \in Y} p(y) \log_2 p(y) \ = - \ (\frac{8}{14} \log_2 \frac{8}{14} + \frac{6}{14} \log_2 \frac{6}{14}) = 0.985228136034$$

Sunny:

$$P(Y|Sunny) = \frac{2}{5}$$

$$P(N|Sunny) = \frac{3}{5}$$

$$H(Y|Sunny) = -(\frac{2}{5}log_2\frac{2}{5} + \frac{3}{5}log_2\frac{3}{5}) = 0.970950594455$$

Overcast:

$$P(Y|Overcast) = \frac{3}{4}$$

$$P(N|Overcast) = \frac{1}{4}$$

$$H(Y|Overcast) = -(\frac{3}{4}log_2\frac{3}{4} + \frac{1}{4}log_2\frac{1}{4}) = 0.811278124459$$

Rainy:

$$P(Y|Rainy) = \frac{3}{5}$$

$$P(N|Rainy) = \frac{2}{5}$$

$$H(Y|Rainy) = -(\frac{3}{5}log_2\frac{3}{5} + \frac{2}{5}log_2\frac{2}{5}) = 0.970950594455$$

$$\begin{split} \mathsf{H}(\mathsf{Y}|\mathsf{Outlook}) &= -\sum_{y \in Y} \sum_{o \in O} p(y,O) log_2 p(y|O) = \\ &\frac{5}{14} H(Y|Sunny) + \frac{4}{14} H(Y|Overcast) + \frac{5}{14} H(Y|Rainy) = \\ &\frac{5}{14} \left(0.97095059445\right) + \frac{4}{14} \left(0.811278124459\right) + \frac{5}{14} \left(0.970950594455\right) \\ &= 0.925329888742 \end{split}$$

TEMPERATURE:

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y) = -\left(\frac{8}{14} \log_2 \frac{8}{14} + \frac{6}{14} \log_2 \frac{6}{14}\right) = 0.985228136034$$

Hot:

$$P(Y|Hot) = \frac{2}{4}$$

$$P(N|Hot) = \frac{2}{4}$$

$$H(Y|Hot) = -(\frac{1}{2}log_2\frac{1}{2} + \frac{1}{2}log_2\frac{1}{2}) = 1$$

Mild:

$$P(Y|Mild) = \frac{3}{6}$$

$$P(N|Mild) = \frac{3}{6}$$

$$H(Y|Mild) = -(\frac{1}{2}log_2\frac{1}{2} + \frac{1}{2}log_2\frac{1}{2}) = 1$$

Cool:

$$P(Y|Cool) = \frac{3}{4}$$

$$P(N|Cool) = \frac{1}{4}$$

$$H(Y|Cool) = -(\frac{3}{4}log_2\frac{3}{4} + \frac{1}{4}log_2\frac{1}{4}) = 0.811278124459$$

H(Y|Temperature) =
$$-\sum_{y \in Y} \sum_{o \in O} p(y, O) \log_2 p(y|O) = \frac{4}{14} H(Y|Hot) + \frac{6}{14} H(Y|Mild) + \frac{4}{14} H(Y|Cool) = \frac{5}{14} (1) + \frac{4}{14} (1) + \frac{5}{14} (0.811278124459) = 0.946079464131$$

G(D, Temperature) = H(Y) - H(Y|Temperature) = 0.985228136034 - 0.946079464131 = 0.039148671903

HUMIDITY:

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y) = -\left(\frac{8}{14} \log_2 \frac{8}{14} + \frac{6}{14} \log_2 \frac{6}{14}\right) = 0.985228136034$$

High:

$$P(Y|High) = \frac{2}{7}$$

$$P(N|High) = \frac{5}{7}$$

$$H(Y|High) = -(\frac{2}{7}log_2\frac{2}{7} + \frac{5}{7}log_2\frac{5}{7}) = 0.863120568567$$

Normal:

$$P(Y|Normal) = \frac{6}{7}$$

$$P(N|Normal) = \frac{1}{7}$$

$$H(Y|Normal) = -\left(\frac{6}{7}log_2\frac{6}{7} + \frac{1}{7}log_2\frac{1}{7}\right) = 0.591672778582$$

$$H(Y|Humidity) = -\sum_{y \in Y} \sum_{o \in O} p(y, O)log_2 p(y|O) = \frac{1}{2}H(Y|High) + \frac{1}{2}H(Y|Normal) = \frac{1}{2}\left(0.863120568567\right) + \frac{1}{2}\left(0.591672778582\right) = 0.727396673574$$

G(D, Humidity) = H(Y) - H(Y|Humidity) = 0.985228136034 - 0.727396673574 = 0.25783146246

WIND:

$$\begin{split} \mathsf{H}(\mathsf{Y}) &= -\sum_{y \in \mathsf{Y}} p(y) log_2 p(y) \ = - \ (\frac{8}{14} log_2 \frac{8}{14} + \frac{6}{14} log_2 \frac{6}{14}) = 0.985228136034 \end{split}$$
 Weak:
$$\mathsf{P}(\mathsf{Y}|\mathsf{Weak}) &= \frac{6}{8}$$

$$\mathsf{P}(\mathsf{N}|\mathsf{Weak}) &= \frac{2}{8}$$

$$\mathsf{H}(\mathsf{Y}|\mathsf{Weak}) &= - \ (\frac{3}{4} log_2 \frac{3}{4} + \frac{1}{4} log_2 \frac{1}{4}) = 0.811278124459 \end{split}$$
 Strong:
$$\mathsf{P}(\mathsf{Y}|\mathsf{Strong}) &= \frac{2}{6}$$

$$\mathsf{P}(\mathsf{N}|\mathsf{Strong}) &= \frac{4}{6}$$

$$\mathsf{H}(\mathsf{Y}|\mathsf{Strong}) &= - \ (\frac{1}{3} log_2 \frac{1}{3} + \frac{2}{3} log_2 \frac{2}{3}) = 0.918295834054 \end{split}$$

$$\mathsf{H}(\mathsf{Y}|\mathsf{Wind}) &= -\sum_{y \in \mathsf{Y}} \sum_{o \in O} p(y, O) log_2 p(y|O) =$$

$$\frac{5}{14}H(Y|Weak) + \frac{4}{14}H(Y|Strong) =$$

$$\frac{8}{14}(0.811278124459) + \frac{6}{14}(0.918295834054)$$

$$= 0.864786979257$$

G(D, Wind) = H(Y) - H(Y|Wind) = 0.985228136034 - 0.864786979257 = 0.120441156777

Based on the Information Gain for each feature, Humidity should be used first to split the dataset when creating a decision tree.