

Note that x> lucx>

Note that Tx > lu(x)

We can find x for some real value a

such that $x^n < \ln(x)$ for some x.

The "first" a with x c lu(x) for some x

must have finite x.

we have b'sb.

"We are solving x = lu(x) for a ".

Power Series:

"Power secies are infinite polynomials"

$$T(x) = \sum_{n=0}^{\infty} a_n \cdot (x-c)^n.$$

The power series have radius of convergence R, which can be zero, some positive real number, or

infinity. Inside the radius of convergence, power series are just long polynomials.

Proof on p. 577 .:

Since Son is strictly increasing and bounded above, so it has some limit 2 = lim son.

Since Some is strictly decreasing and London below, so it has some limit T = lim South.

Now:

Problem 11.3.58: Determine convergence or divergence of $\sum_{n=2}^{\infty} \frac{(\ln(n))}{n^{4/8}}$

Note that line \frac{\ln(n)}{x^a} = 0 for all a > 0 by l'Hôpitals rule. Hence x^a grows much froter

them la(14). So we can charse some N>O such that for n>N them la(x) 2 < x 16, much

In(x) < x 192. Using this, we can prove convergence. (See Office Hours for November 15).

We want to compare $\sum_{n=2}^{\infty} \frac{\ln(n)^{12}}{n^{9/8}}$ with $\sum_{n=2}^{\infty} \frac{1}{n^{p}}$

We will we that lucus < nf, so lucus 2 a 12.4. To make our life easier we can

take q= 12. r, so ln(u)12 < u12.4 = n +.

We will them divide:

$$\frac{|v|_{15}}{|v|_{15}} < \frac{|v|_{15}}{|v|_{15}} = \frac{|v$$

How to prove convergence:

Ratio test.

Root test.

Comparison and Limit comparison. Useful: p-series, geometric series, harmonic series,...

Integral test.

Divergence test.

Example 11.7.8.: J= sin(x2)dx is found by integrating team by term.

 $Sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \times 2nt!}{(2nt!)!}$, mostitute x^2 for $x : Sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \times 4nt^2}{(2nt!)!}$