파이썬익스프레스

10장 파일과 예외처리

학습 목표

- □ 텍스트 파일 읽고 쓰기를 살펴본다.
- □ 이진 파일 읽고 쓰기를 살펴본다.
- □ 정규식을 사용하는 방법을 살펴본다.
- □ CSV 파일 읽고 쓰기를 살펴본다.
- □ 예외를 처리하는 방법을 살펴본다.

이번 장에서 만들 프로그램

단어를 추측하시오: a 틀렸음! 9기회가 남았음!

단어를 추측하시오: e

```
['날짜', '지점', '평균기온(°C)', '최저기온(°C)', '최고기온(°C)']
['1980-04-01', '108', '6.5', '3.2', '11.7']
['1980-04-02', '108', '6.5', '1.4', '12.9']
['1980-04-03', '108', '11.1', '4.1', '18.4']
['1980-04-04', '108', '15.5', '8.6', '21']
...
가장 추웠던 날은 -19.2 입니다.
```

파일의 기초

프로그램에서 만든 데이터를 영구히 저장하고자 한다면 하드 디스크
 에 파일 형태로 저장하여야 한다.

파일의 개념

🗖 파일은 보조기억장치 상에서 논리적인 정보 단위이다.

파일의 논리적인 구조

□ 파일 안에는 바이트들이 순차적으로 저장되어 있고 맨 끝에는 EOF(end-of-file) 마커가 있다.

파일 입출력 함수

- read():
 - 파일 전체의 내용을 하나의 문자열로 읽어온다.
 - binary 파일도 읽을 수 있다.
- readline():
 - 한번에 하나의 라인을 읽어오는 메소드이다.
- readlines():
 - 파일 전체를 한라인 씩 읽어와서 리스트를 만들어주는 메소드이다.
 - 개행 문자인 "\n"도 같이 들어가 있기 때문에 이 부분을 제거해줄 필요도 있다.
- write()와 writelines():
 - 문자열을 쓰는 메소드
 - write() 메소드는 binary 코드에서도 사용할 수 있으며,
 - writelines()는 text 형식만 지원한다.

파일 열고 닫기

```
Syntax: 함수 정의

행식 파일객체 = open(파일이름, 파일모드)
파일객체.close()

예 infile = open("input.txt", "r")
...
infile.close() 파일의 이름(name) 파일을 여는 모드(mode)
파일 객체
```

파일 모드

파일 모드	모드 이름	설명
"r"	읽기 모드(read mode)	파일의 처음부터 읽다.
"w"	쓰기 모드(write ode)	파일의 처음부터 쓴다. 파일이 없으면 생성된다. 만약 파일이 존재하면 기존의 내용은 지원진다.
"a"	추가 모드(append mode)	파일의 끝에 쓴다. 파일이 없으면 생성된다.
"r+"	읽기와 쓰기 모드	파일에 읽고 쓸 수 있는 모드이다. 모드를 변경하려면 seek()가 호출되어야 한다.

파일의 처음 부터 읽는다.

파일의 처음 부터 쓴다. 만약 파일이 존재하면 기존의 내용이 지워진다.

파일의 끝에 쓴다. 파일이 없으면 생성 된다.

파일에서 읽기

input.txt

홍길동 김철수

```
infile = open("./input.txt", "r")
line = infile.readline()
while line != "" :
    print(line)
    line = infile.readline()
```

```
홍길동
김철수 '\n'
```

파일에서 읽기

input.txt

홍길동 김철수

홍길동 김철수

- rstrip()
- Istrip()
- strip()

파일에 쓰기

infile = open("./output.txt", "w") outfile.write("김영희\n")

output.txt

김영희

파일 닫기

```
f = open("test.txt", "w") # 파일을 연다.
# 여기서 여러 가지 작업을 한다.
f.close() # 파일을 닫는다.
```

```
try: # 예외가 발생할 가능성이 있는 작업들을 여기에 둔다.
f = open("test.txt", "w")
# 여기서 여러 가지 작업을 한다.
finally: # 예외가 발생하더라도 반드시 실행된다.
f.close()
```

```
with open("test.txt", "w") as f:
f.write("김영희\n")
f.write("최자영\n")
# 블록을 빠져나오면 자동으로 파일이 닫쳐진다.
```

Lab: 매출 파일 처리

입력 파일에 상점의 일별 매출이 저장되어 있다고 하자. 이것을 읽어서 일별 평균 매출과 총 매출을 계산한 후에 다른 파일에 출력하는 프로그램을 작성해보자.

1000000 1000000 1000000 500000 1500000

summary.txt

```
총매출 = 5000000
평균 일매출 = 1000000.0
```

Sol: 매출 파일 처리

```
infilename = input("입력 파일 이름: ");
outfilename = input("출력 파일 이름: ");
infile = open(infilename, "r")
outfile = open(outfilename, "w")
sum = 0
count = 0
line = infile.readline()
while line != "":
  s = int(line)
  sum += s
  count += 1
  line = infile.readline()
outfile.write("총매출 = "+ str(sum)+"\n")
outfile.write("평균 일매출 = "+ str(sum/count ))
infile.close()
outfile.close()
```

다양한 텍스트 입출력 방법

```
infile = open("./scores.txt", "r")
for line in infile :
   print(line)
```

```
>>> s = " Hello, World!\n"
>>> s.strip()
"Hello, World!"
                                                       " Hello, World! "
>>> s = "#######this is example#####"
>>> s.strip('#')
                                                             strip()
'this is example'
>>> s = "#######this is example#####"
>>> s.lstrip('#')
                                                          "Hello, World!"
'this is example####"
>>> s.rstrip('#')
'#######this is example'
```

단어로 분리하기

단어로 분리하기

```
infill = open("proverbs.txt", "r")

for line in infile:
    line = line.rstrip() # 오른쪽 공백 문자를 없앤다.
    word_list = line.split() # 단어들로 분리 -> 리스트로 저장
    for word in word_list: # 리스트에 들어 있는 단어들을 출력한다.
    print(word);
infile.close()
```

```
All's well ... flock together.
```

파일 전체 읽기

```
infile = open("input.txt", "r")
s = infile.read()
print(s)
infile.close()
```

홍길동 김철수

```
infile = open("input.txt", "r")
lines = infile.readlines() # 리스트로 저장
for line in lines :
    print(line)
infile.close()
```

문자 단위로 읽기

```
홍
길
동
...
```

문자 출현 횟수 계산

```
counter = [0] *26
infile = open("mobydick.txt", "r")
ch = infile.read(1)
while ch != "" :
    ch = ch.upper() # 대문자->소문자
    if ch >= "A" and ch <= "Z" :
        i = ord(ch) - ord("A")
        counter[i] += 1
    ch = infile.read(1)
print(counter)
```

[79235, 17211, 23318, 38853, 119338, 21260, 21285, 63764, 66701, 1176, 8223, 43368, 23696, 66779, 70790, 17886, 1581, 53585, 65145, 89895, 27203, 8730, 22540, 1064, 17230, 638]

문자 엔코딩

- □ 최근에는 세계의 모든 문자를 나타낼 수 있는 유니코드가 사용된다.
- □ 유니코드 중에서 가장 많이 사용되는 인코딩은 UTF-8이다. UTF-8에 서는 각 문자를 1개에서 4개의 바이트로 인코딩한다.
- infile = open("input.txt", "r", encoding="utf-8")

Lab: 행맨

사용자는 한 번에 하나의 글자만을 입력할 수 있으며 맞으면 글자가 보이고 아니면 시도 횟수만 하나 증가한다.

단어를 추측하시오: a

틀렸음!

9기회가 남았음!

단어를 추측하시오: e

틀렸음!

8기회가 남았음!

Sol: 행맨

```
import random
guesses = "
turns = 10
infile = open("words.txt", "r")
lines = infile.readlines()
word = random.choice(lines)
while turns > 0:
  failed = 0
  for char in word:
     if char in guesses:
       print(char, end="")
     else:
        print("_", end="")
       failed += 1
  if failed == 0:
     print("사용자 승리")
     break
```

Sol: 행맨

```
print("")
guess = input("단어를 추측하시오: ")
guesses += guess
if guess not in word:
   turns -= 1
   print ("틀렸음!")
   print (str(turns)+ "기회가 남았음!")
   if turns == 0:
      print("사용자 패배 정답은 "+word)
```

Lab: 각 문자 횟수 세기

□ 파일 안의 각 문자들이 몇 번이나 나타나는지를 세는 프로그램을 작성하자.

```
{' ': 16, 'e': 12, 'o': 4, 'a': 7, 'u': 1, 'n': 4, 'k': 1, 'A': 1, 'r': 4, 'g': 2, 's': 7, 'b': 1, 'd': 4, 'v': 1, 'f': 5, 'w': 3, 'B': 2, 'h': 4, 'i': 2, 't': 7, 'l': 11, 'W': 1, '.': 4, "'": 1, 'c': 1}
```

Sol:

```
filename = input("파일명을 입력하세요: ").strip()
infile = open(filename, "r") # 파일을 연다.
freqs = {}
#파일의 각 줄에 대하여 문자를 추출한다. 각 문자를 사전에 추가한다.
for line in infile:
                            # 양쪽 끝의 공백 문자를 제거한다.
 for char in line.strip():
                            #문자열 안의 각 문자에 대하여
    if char in freqs:
                            # 딕셔너리의 횟수를 증가한다.
     freqs[char] += 1
                                    #처음 나온 문자이면
   else:
                            # 딕셔너리의 횟수를 1로 초기화한다.
     freqs[char] = 1
print(freqs)
infile.close()
```

Lab: CVS 파일 처리

CSV는 테이블 형식의 데이터를 저장하고 이동하는 데 사용되는 구조화된 텍스트 파일 형식이다. CSV는 Microsoft Excel와 같은 스프레드시트에 적합한 형식이다.

Lab: CVS 파일 처리

□ 날씨 정보를 읽어서 서울이 언제 가장 추웠는 지를 조사해보자.

```
weather.csv

날짜,지점,평균기온(°C),최저기온(°C),최고기온(°C)

1980-04-01,108,6.5,3.2,11.7

1980-04-02,108,6.5,1.4,12.9

1980-04-03,108,11.1,4.1,18.4

1980-04-04,108,15.5,8.6,21

1980-04-05,108,15.4,12.5,18.2

1980-04-06,108,7.1,4.3,12.5

1980-04-07,108,8.5,4.7,13.3

1980-04-08,108,10.8,8.4,15.2

...
```

Sol:

```
import csv

f = open('./weather.csv ' ) # CSV 파일을 열어서 f에 저장한다.
data = csv.reader(f)
header = next(data)
temp = 1000
for row in data:
  if temp > float(row[3]):
    temp = float(row[3])
print('가장 추웠던 날은', temp, '입니다')
f.close()
```

가장 추웠던 날은 -19.2 입니다.

Lab: 파일 암호화

□ 시저 암호를 구현하여 보자.

원문: the language of truth is simple.

암호문: wkh odqjxdjh ri wuxwk lv vlpsoh.

복호문: the language of truth is simple.

Sol:

```
key = 'abcdefghijklmnopqrstuvwxyz'
# 평문을 받아서 암호화하고 암호문을 반환한다.
def encrypt(n, plaintext):
  result = "
  for I in plaintext.lower():
    try:
       i = (key.index(I) + n) \% 26
       result += key[i]
    except ValueError:
       result += I
  return result.lower()
```

Sol

```
# 암호문을 받아서 복호화하고 평문을 반환한다.
def decrypt(n, ciphertext):
  result = "
  for I in ciphertext:
     try:
       i = (key.index(I) - n) \% 26
       result += key[i]
     except ValueError:
       result += I
  return result
n = 3
text = 'The language of truth is simple.'
encrypted = encrypt(n, text)
decrypted = decrypt(n, encrypted)
print ('평문: ', text)
print ('암호문: ', encrypted)
print ('복호문: ', decrypted)
```

디렉토리 작업

디렉토리 작업

```
작업 디렉토리를 얻으려면 다음과 같은 함수 호출을 사용한다.
>>> dir = os.getcwd()
작업 디렉토리를 변경할 수 있다.
>>> subdir = "data"
>>> os.chdir(subdir)
작업 디렉토리 안에 있는 파일들의 리스트를 얻으려면 listdir() 함수를 사용
한다.
>>> for filename in os.listdir():
       print(filename)
파일만 처리하려면 다음과 같이 isfile() 함수를 사용한다.
>>> if os.path.isfile(filename):
       print("파일입니다.")
```

작업 디렉토리에서 확장자가 ".ipg"인 파일을 전부 찾아서 파일 이름을 출력하는 프로그램

```
DSC04886_11.jpg
DSC04886_12.jpg
DSC04886_13.jpg
```

Lab: 디렉토리 안의 파일 처리

□ 파일 중에서 "Python"을 포함하고 있는 줄이 있으면 파일의 이름과 해당 줄을 출력한다.

file.py: if "Python" in e:

summary.txt: The joy of coding Python should be in seeing short

summary.txt: Python is executable pseudocode.

Sol:

```
import os arr = os.listdir()

for f in arr:
    infile = open(f, "r", encoding="utf-8")
    for line in infile:
        e = line.rstrip() # 오른쪽 줄바꿈 문자를 없앤다.
        if "Python" in e:
            print(f, ":", e)
    infile.close()
```

이진 파일

이진 파일에서 읽기

이진 파일에서 데이터를 읽으려면 다음과 같이 파일을 열어야 한다.

>>> infile = open(filename, "rb")

입력 파일에서 8 바이트를 읽으려면 다음과 같은 문장을 사용한다.

>>> bytesArray = infile.read(8)

첫 번째 바이트를 꺼내려면 다음과 같은 문장을 사용하면 된다.

>>> byte1 = bytesArray[0]

이진 파일에 바이트들을 저장하려면 다음과 같이 한다.

- >>> outfile = open(filename, "wb")
- >>> bytesArray = bytes([255, 128, 0, 1])
- >>> outfile.write(bytesArray)

순차접근과 임의접근

임의접근의 원리

□ 파일 포인터는 읽기와 쓰기 동작이 현재 어떤 위치에서 이루어지는 지를 나타낸다.

텍스트 파일에서 몇 개의 문자를 읽은 후에 seek()를 이용하여 다시 파일의 처음으로 돌아가 보자.

```
infile = open("test.txt", "r+")
str = infile.read(10);
print("읽은 문자열:", str)
position = infile.tell();
print("현재 위치: ", position)

position = infile.seek(0, 0);
str = infile.read(10);
print("읽은 문자열:", str)
infile.close()
```

```
읽은 문자열 : abcdefghij
현재 위치: 10
읽은 문자열 : abcdefghij
```

Lab: 이미지 파일 복사하기

하나의 이미지 파일을 다른 이미지 파일로 복사하는 프로그램을 작성하여 보자.

Sol:

```
infile = open("123.png", "rb")
outfile = open("kkk.png", "wb")
# 입력 파일에서 1024 바이트씩 읽어서 출력 파일에 쓴다.
while True:
  copy_buffer = infile.read(1024)
  if not copy_buffer:
     break
  outfile.write(copy_buffer)
infile.close()
outfile.close()
print(filename1+"를 " +filename2+"로 복사하였습니다. ")
```

객체 입출력

□ pickle 모듈의 dump()와 load() 메소드를 사용하면 객체를 쓰고 읽을 수 있다.


```
import pickle

file = open( "d:\\save.p", "rb" ) # 이진 파일 오픈
obj = pickle.load( open( "save.p", "rb" ) ) # 피클 파일에 딕션너리를 로
print(obj)
```

```
{'WeaponList': ['gun', 'missile', 'knife'], 'Money': 100000, 'VideoQuality': 'HIGH', 'Sound': 8}
```

정규식

□ **정규식(regular expression)**이란 특정한 규칙을 가지고 있는 문자열 들을 메타 문자를 이용하여 표현하는 수식이다.

식	기능	설명
^	시작	문자열의 시작을 표시
\$	끝	문자열의 끝을 표시
	문자	한 개의 문자와 일치
\d	숫자	한 개의 숫자와 일치
\w	문자와 숫자	한 개의 문자나 숫자와 일치
\s	공백문자	공백, 탭, 줄바꿈, 캐리지리턴 문자와 일치
\S	공백문자제외	공백 문자를 제외한 모든 문자
*	반복	0번 이상 반복
+	반복	1번 이상 반복
[abc]	문자 범위	[abc]는 a 또는 b 또는 c를 나타낸다.
[^abc]	문자 범위	[^abc]는 a,b,c가 아닌 어떤 문자

정규식에서 점과 별표의 의미

"X-Men: First Class", "X-Men: Days of Future Past", "X-Men Origins: Wolverine"

 미국 헌법에서 숫자로 시작되는 줄만을 출력하는 프로그램은 다음과 같다.

- 1. Neither slavery nor involuntary servitude, except as a punishment for crime
- 2. Congress shall have power to enforce this article by appropriate

...

Lab: 정규식 이용하기

□ 위의 텍스트는 "[수강 번호][수강 코드][과목 이름]" 형식으로 되어 있다. 위의 텍스트에서 코스 번호만을 추출해보자.

101 COM PythonProgramming

102 MAT LinearAlgebra

103 ENG ComputerEnglish

['101', '102', '103']

Sol:

print(s)

```
text="""101 COM PythonProgramming
102 MAT LinearAlgebra
103 ENG ComputerEnglish"""

import re
s = re.findall("\d+", text)
```

Lab: 패스워드 검사 프로그램

- □ 사용자가 입력한 패스워드를 검증하는 프로그램을 작성해보자.
 - ▶ 최소 8글자
 - > 적어도 하나의 대문자
 - ▶ 적어도 하나의 숫자
 - 적어도 하나의 특수문자[,@,\$]

Sol:

```
import re
password = input("패스워드를 입력하세요");
flag = 0
while True:
  if (len(password)<8):
    flag = -1
     break
  elif not re.search("[a-z]", password):
    flag = -1
     break
  elif not re.search("[A-Z]", password):
    flag = -1
     break
```

Sol:

```
elif not re.search("[0-9]", password):
    flag = -1
    break
  elif not re.search("[_@$]", password):
    flag = -1
    break
  else:
    flag = 0
    print("유효한 패스워드")
    break
if flag ==-1:
  print("유효한 패스워드가 아닙니다.")
```

예외처리

 사용자들은 잘못된 데이터를 입력할 수도 있고, 우리가 오픈하고자 하는 파일이 컴퓨터에 존재하지 않을 수도 있으며 인터넷이 다운될 수도 있다.

```
>>> (x, y)=(2, 0)
>>> z=x/y
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
    z=x/y
ZeroDivisionError: division by zero
>>>
```


예외처리

오류가 발생했을 때 오류를 사용자에게 알려주고 모든 데이터를 저장하게 한 후에 사용자가 우아하게(gracefully) 프로그램을 종료할수 있도록 하는 것이 바람직

예외 처리는 프로그램의 실행을 계속할 수 있는 다른 경로를 제공한다.

오류의 종류

- 사용자 입력 오류: 사용자가 정수를 입력하여야 하는데 실수를 입력 할 수 있다.
- □ 장치 오류: 네트워크가 안 된다거나 하드 디스크 작동이 실패할 수 있다.
- □ 코드 오류: 잘못된 인덱스를 사용하여서 배열에 접근할 수 있다.
 - ▶ IOError: 파일을 열 수 없으면 발생한다.
 - ▶ importError: 파이썬이 모듈을 찾을 수 없으면 발생한다.
 - ValueError: 연산이나 내장 함수에서 인수가 적절치않은 값을 가지고 으면 발생한다.
 - ➤ KeyboardInterrupt: 사용자가 인터럽트 키를 누르면 발생한다. (Control-C나 Delete)
 - ▶ EOFError: 내장 함수가 파일의 끝을 만나면 발생한다.

Try-catch 구조

Try-catch 구조

```
(x,y) = (2,0)
try:
  z = x/y
except ZeroDivisionError:
  print ("0으로 나누는 예외")
```

0으로 나누는 예외

```
(x,y) = (2,0)
try:
   z = x/y
except ZeroDivisionError as e:
   print (e)
```

division by zero

```
while True:
    try:
    n = input("숫자를 입력하시오 : ")
    n = int(n)
    break
    except ValueError:
    print("정수가 아닙니다. 다시 입력하시오. ")
print("정수 입력이 성공하였습니다!")
```

```
숫자를 입력하시오 : 23.5
정수가 아닙니다. 다시 입력하시오.
숫자를 입력하시오 : 10
정수 입력이 성공하였습니다!
```

```
try:
fname = input("파일 이름을 입력하세요: ")
infile = open(fname, "r")
except IOError:
print("파일 " + fname + "을 발견할 수 없습니다.")
```

파일 이름을 입력하세요: kkk.py 파일 kkk.py을 발견할 수 없습니다.

try/execpt 블록에서의 실행 흐름

```
try:
result = 10 / 20

except ZeroDivisionError:
print("오류발생")

예외가 발생하지 않은 경우
```

```
try:
result = 10 / 0
except ZeroDivisionError:
print("오류발생")
```

예외가 발생하은 경우

다중 예외 처리 구조

```
try:
   fh = open("testfile", "w")
   fh.write("테스트 데이터를 파일에 씁니다!!")
except IOError:
   print("Error: 파일을 찾을 수 없거나 데이터를 쓸 수 없습니다. ")
else:
   print("파일에 성공적으로 기록하였습니다. ")
fh.close()
```

파일에 성공적으로 기록하였습니다.

finally 블록

```
try:
result = 10 / 20

except ZeroDivisionError:
print("오류발생")

finally:
print("try 블록 통과")

예외가 발생하지 않은 경우
```

```
try:
result = 10 / 0

except ZeroDivisionError:
print("오류발생")

finally:
print("try 블록 통과")
```

예외가 발생하는 경우

finally 블록의 사용예

```
try:
    f = open("test.txt", "w" )
    f.write("테스트 데이터를 파일에 씁니다!!")
    ... # 파일 연산을 수행한다.
except IOError:
    print("Error: 파일을 찾을 수 없거나 데이터를 쓸 수 없습니다. ")
finally:
    f.close()
```

예외 발생하기

□ 파이썬에서는 오류가 감지되면 raise 문을 사용하여 예외를 생성한다.

>>> raise NameError('Hello')
Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: Hello

이번 장에서 배운 것

- 파일을 읽을 때는 파일을 열고, 데이터를 읽은 후에, 파일을 닫는 절차가 필요하다.
- 파일 모드에서 "r", "w", "a"가 있다. 각각 읽기모드, 쓰기모드, 추가모드 를 의미한다.
- 파일은 텍스트 파일과 이진 파일로 나누어진다.
- 파일에서 데이터를 읽거나 쓰는 함수는 read()와 write() 함수이다. 텍스트 파일에서 한 줄을 읽으려면 for 루프를 사용한다.
- 예외 처리는 오류가 발생했을 때 프로그램을 우아하기 종료하는 방법이다.try 블록과 except 블록으로 이루어진다.

Q & A

