Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №3 з дисципліни «Теорія електричних та магнітних кіл» на тему: «Дослідження нерозгалуженого електричного кола синусоїдного струму»

> Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Молчанов О. В.

1 Мета роботи

- 1. Використовуючи вимірювальні прилади, набути навички визначення параметрів ланцюга змінного струму, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора.
- 2. Дослідити різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора.
- 3. Дослідити резонанс у послідовному контурі.

2 Короткі теоретичні відомості

Для того, щоб визначити значення опорів різних елементів електричних ланцюгів, необхідно виміряти за допомогою приладів значення напруги, прикладеної до елемента, значення струму, який по ньому протікає, а також активну потужність, що виділяється, та кут зсуву фази. Ці величини вимірюються за допомогою вольтметра, амперметра, ватметра, фазометра.

Значення активного опору резистора визначається за законом Ома:

$$R = \frac{U}{I}$$
.

Потужність, споживана елементом, виділяється у вигляді тепла тільки на активних резисторах і вимірюється ватметром. Тому опір активного резистора можна визначити ще й за формулою:

$$R = \frac{P}{I^2}.$$

Щоб визначити значення активного опору реальних котушки індуктивності і конденсатора за допомогою вольтметра, амперметра і ватметра, використовуємо формули, що отримуємо з трикутника опорів:

$$Z = \sqrt{R^2 + X^2},$$

де $Z = \frac{U}{I}$ — модуль повного опору кола (Ом), R — повний активний опір кола (Ом), X — повний реактивний опір кола (Ом), U — діюче значення синусоїдної напруги (В), I — діюче значення синусоїдного струму (А).

$$X = X_K - X_C = \omega L - \frac{1}{LC},$$

де X_K — реактивний індуктивний опір кола (Ом), X_C — реактивний ємністний опір кола (Ом), L — індуктивність котушок кола (Гн), C — ємність конденсаторів кола Φ , ω — кутова частота (рад c^{-1}).

$$\omega = 2\pi f$$

f — циклічна частота (Гц).

3 Порядок виконання роботи

Зібрати вимірювальну частину схеми (рис. 1), використовуючи амперметр, фазометр, мультиметр і, підключаючи по черзі (лабораторний блок №8) резистор, котушку індуктивності і конденсатор, зробити необхідні вимірювання і занести їх в табл. 1.

Рис. 1: Вимірювальна частина схеми

Коло	Виміряти							Обчислити опір, Ом				
	$\overline{U, B}$	I, A	φ , $^{\circ}$	U_R , B	U_K , B	U_C , B	\overline{R}	R_K	R_C	X_K	X_C	
R	10,1	157 · 10-	3 0	10,1	_	_	0,06	_	_	_	_	
L	11,0	$76 \cdot 10^{-1}$	³ 77	_	11,1	_	_	0,14	_	*	_	
C	11,3	$62 \cdot 10^{-1}$	³ 90			11,3	_		0,18		_	

Табл. 1: Вимірювання 1

Використовуючи виміряні величини, обчислити значення активного опору резистора, активного і реактивного опорів котушки індуктивності і конденсатора. Отримані значення занести в табл. 1.

Підключаючи послідовно до вимірювальної частини схеми комбінації елементів RL, RC, RLC, зробити необхідні вимірювання та занести їх в табл. 2.

Коло	U, B	I, A	φ , °	U_R , B	U_K , B	U_C , B	$U_R + U_K$, B	$U_R + U_C$, B
RL	10,9	$39 \cdot 10^{-3}$	+33	7,7	6,2		_	_
RC	10,9	$28 \cdot 10^{-3}$	-34	8,8		6,4		
RLC	10,8	$31 \cdot 10^{-3}$	-9	9,5	5,2	6,9	5,3	11,8

Табл. 2: Вимірювання 2

Підключити до вимірювальної частини схеми тільки котушку індуктивності (лабораторний блок №8) і конденсатор (магазин ємності). Знаючи величину реактивного опору котушки, визначити значення резонансної ємності, встановити на вході схеми напругу $5\,B-7\,B\,i$, змінюючи ємність конденсатора у діапазоні $0\,\text{мк}\Phi-99,5\,\text{мк}\Phi$, виміряти величини, вказані в табл. 3.

$N_{\overline{0}}$	U, B	I, A	$arphi,^{\circ}$	U_K , B	U_C , B	C , мк Φ
1	10,0	$80,9 \cdot 10^{-3}$	+29	10,0	0	0
2	10,0	$19,6 \cdot 10^{-3}$		2,3	12,7	5
3	10,0	$44,9 \cdot 10^{-3}$	-31	5,4	15,7	9
4	10,0	$72,1 \cdot 10^{-3}$	-32	9,0	19,1	12
5	10,0	$361 \cdot 10^{-3}$	-16	47,7	53,6	22,6
6	10,0	$485 \cdot 10^{-3}$		59,9	59,5	27,9
7	10,0	$202 \cdot 10^{-3}$	+28	28,2	18,6	37,9
8	10,0	$141 \cdot 10^{-3}$	+34	20,5	10,4	47,9
9	10,0	$119 \cdot 10^{-3}$		17,3	7,4	57,9
10	10,0	$87 \cdot 10^{-3}$	+39	13,2	3,1	99,5

Табл. 3: Вимірювання 3

Кількість змін значення ємності дорівнює десяти, причому п'яте значення ємності змінного конденсатора має дорівнювати значенню резонансної ємності.

Побудувати в масштабі векторні діаграми напруг для кожної комбінації включення елементів. Побудувати в масштабі трикутники напруг і опорів для кожного випадку.

Побудувати в масштабі характеристики $I=f(C),\,U_K=f(C),\,U_C=f(C),\,\varphi=f(C)$ в одній координатній сітці.

4 Графічний матеріал

4.1 Коло *RL*

За виміряними даними будуємо векторну діаграму напруг для кола *RL* (рис. 2).

Рис. 2: Векторна діаграма напруг для кола *RL*

Оскільки $\angle \varphi > 0$, трикутники будуть називатись активно-індуктивними. Знайдемо сторони трикутника напруг:

$$U_P = U \sin \varphi = 10.9 \text{ B} \cdot \sin 33^\circ = 5.93 \text{ B},$$

 $U_A = U \cos \varphi = 10.9 \text{ B} \cdot \cos 33^\circ = 9.14 \text{ B}.$

Також обчислимо сторони трикутника опорів:

$$Z = \frac{U}{I} = \frac{10,9 \text{ B}}{39 \cdot 10^{-3} \text{ A}} = 279,6 \text{ Om},$$
 $X_P = \frac{U_P}{I} = \frac{5,93 \text{ B}}{39 \cdot 10^{-3} \text{ A}} = 152,1 \text{ Om},$
 $R = \frac{U_A}{I} = \frac{9,14 \text{ B}}{39 \cdot 10^{-3} \text{ A}} = 234,4 \text{ Om}.$

Для трикутника потужностей:

$$P = I^2 R = UI = 10.9 \text{ B} \cdot 39 \cdot 10^{-3} \text{ A} = 0.43 \text{ BT},$$

 $Q = \operatorname{tg} \varphi \cdot P = 0.649 \cdot 0.43 \text{ BT} = 0.279 \text{ Bap},$
 $S = \frac{Q}{\sin \varphi} = \frac{0.279 \text{ Bap}}{0.545} = 0.512 \text{ BA}.$

Отримані в результаті розрахунків значення дозволяють побудувати відповідні характеристичні трикутники для кола RL (рис. 3).

Рис. 3: Трикутники кола *RL*: а — напруг, б — опорів, в — потужностей

4.2 Коло *RC*

За виміряними даними будуємо векторну діаграму напруг для кола RC (рис. 4). Оскільки $\angle \varphi < 0$, трикутники будуть називатись активно-ємнісними. Знайдемо сторони трикутника напруг:

$$U_P = U \sin \varphi = 10.9 \text{ B} \cdot \sin -34^\circ = -6.10 \text{ B},$$

 $U_A = U \cos \varphi = 10.9 \text{ B} \cdot \cos -34^\circ = -9.04 \text{ B}.$

Рис. 4: Векторна діаграма напруг для кола *RC*

Також обчислимо сторони трикутника опорів:

$$Z = \frac{U}{I} = \frac{10,9 \text{ B}}{28 \cdot 10^{-3} \text{ A}} = 389,3 \text{ Om},$$
 $X_C = \frac{U_P}{I} = \frac{6,10 \text{ B}}{39 \cdot 10^{-3} \text{ A}} = 217,9 \text{ Om},$
 $R = \frac{U_A}{I} = \frac{9,04 \text{ B}}{39 \cdot 10^{-3} \text{ A}} = 322,9 \text{ Om}.$

Для трикутника потужностей:

$$P = I^2 R = UI = 10.9 \text{ B} \cdot 28 \cdot 10^{-3} \text{ A} = 0.31 \text{ Bt},$$

 $Q = \operatorname{tg} \varphi \cdot P = 0.675 \cdot 0.31 \text{ Bt} = 0.209 \text{ Bap},$
 $S = \frac{Q}{\sin \varphi} = \frac{0.209 \text{ Bap}}{0.559} = 0.374 \text{ BA}.$

Отримані в результаті розрахунків значення дозволяють побудувати відповідні характеристичні трикутники для кола RC (рис. 5).

Рис. 5: Трикутники кола RC: а — напруг, б — опорів, в — потужностей

5 Характеристики контура

За отриманими експериментальними даними були побудовані характеристики контура (рис. 6): $I = f(C), U_K = f(C), U_C = f(C), \varphi = f(C)$.

Рис. 6: Характеристики контура

6 Висновки

Під час виконання даної лабораторної роботи ми набули навички визначення параметрів ланцюга змінного струму за допомогою вимірювальних приладів, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора; дослідили різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора; дослідили резонанс у послідовному контурі.