### Diagnostics and Remedial Measures

Zhenisbek Assylbekov

Department of Mathematics

Regression Analysis

Checking Assumptions Graphical Methods Significance Tests

Remedial Measures

Goal: identify any outlying values that could affect the appropriateness of the linear model.

Goal: identify any outlying values that could affect the appropriateness of the linear model.

Two main issues:

Goal: identify any outlying values that could affect the appropriateness of the linear model.

Two main issues:

Outliers (recall Extrapolation)

Goal: identify any outlying values that could affect the appropriateness of the linear model.

#### Two main issues:

- Outliers (recall Extrapolation)
- ▶ Dependence  $b/w x_i$  and i

Goal: identify any outlying values that could affect the appropriateness of the linear model.

#### Two main issues:

- Outliers (recall Extrapolation)
- ▶ Dependence  $b/w x_i$  and i

#### To check these we use

- Histogram and/or Boxplot
- Sequence plot

### Example

 $\verb|https://raw.githubusercontent.com/zh3nis/MATH440/main/chp03/diag_x.R| \\$ 





Checking Assumptions Graphical Methods Significance Tests

Remedial Measures

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

#### Assumptions:

1. Normality

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

- 1. Normality
- 2. Homogeneity of variance

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

- 1. Normality
- 2. Homogeneity of variance
- 3. Linearity

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

- 1. Normality
- 2. Homogeneity of variance
- 3. Linearity
- 4. Independence

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$
  
 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ 

After the model is fit, but *before* any inference or conclusions are made, the assumptions of the model need to be checked.

#### Assumptions:

- 1. Normality
- 2. Homogeneity of variance
- 3. Linearity
- 4. Independence

The assumptions are checked using the residuals  $e_i := y_i - \hat{y}_i$ . This process is sometimes referred to as **residual analysis**.



Normal Q-Q Plot

► The **empirical c.d.f.** for a r.s.  $Y_1, \ldots, Y_n$  is given by  $\hat{F}(y) = \frac{\#(Y_i \leq y)}{n} = \frac{1}{n} \sum_i \mathbb{I}[Y_i \leq y].$ 

#### Normal Q-Q Plot

- ► The **empirical c.d.f.** for a r.s.  $Y_1, \ldots, Y_n$  is given by  $\hat{F}(y) = \frac{\#(Y_i \leq y)}{n} = \frac{1}{n} \sum_i \mathbb{I}[Y_i \leq y].$
- ▶ To compare an empirical distribution  $\hat{F}(y)$  against some theoretical distribution G(y), we can scatterplot quantiles  $\hat{F}^{-1}(p)$  vs  $G^{-1}(p)$  for  $p \in [0,1]$ .

#### Normal Q-Q Plot

- ► The **empirical c.d.f.** for a r.s.  $Y_1, \ldots, Y_n$  is given by  $\hat{F}(y) = \frac{\#(Y_i \leq y)}{n} = \frac{1}{n} \sum_i \mathbb{I}[Y_i \leq y].$
- ▶ To compare an empirical distribution  $\hat{F}(y)$  against some theoretical distribution G(y), we can scatterplot quantiles  $\hat{F}^{-1}(p)$  vs  $G^{-1}(p)$  for  $p \in [0,1]$ . This is called **Q-Q plot**.

#### Normal Q-Q Plot

- ► The **empirical c.d.f.** for a r.s.  $Y_1, \ldots, Y_n$  is given by  $\hat{F}(y) = \frac{\#(Y_i \leq y)}{n} = \frac{1}{n} \sum_i \mathbb{I}[Y_i \leq y].$
- ▶ To compare an empirical distribution  $\hat{F}(y)$  against some theoretical distribution G(y), we can scatterplot quantiles  $\hat{F}^{-1}(p)$  vs  $G^{-1}(p)$  for  $p \in [0,1]$ . This is called **Q-Q plot**.

# Comparing the distribution of poverty rates vs normal distribution using a Q-Q Plot.

#### https:

//raw.githubusercontent.com/
zh3nis/MATH440/main/chp03/qq.R

#### Normal Q-Q Plot



Q-Q Plot for Residuals

Recall, that by SLR assumtions,  $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ .

Q-Q Plot for Residuals

Recall, that by SLR assumtions,  $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ . In addition to checking normality of  $y_i$ 's, we should also check normality of the residuals  $e_i$  once the model is fit.

Q-Q Plot for Residuals

Recall, that by SLR assumtions,  $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ . In addition to checking normality of  $y_i$ 's, we should also check normality of the residuals  $e_i$  once the model is fit.



raw.githubusercontent.com/zh3nis/MATH440/main/chp03/res\_plots.R

▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.

- ▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.
- ▶ In order to check this assumption a plot of the residuals  $(e_i)$  versus the fitted values  $(\hat{y}_i)$  is used.

- ▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.
- ▶ In order to check this assumption a plot of the residuals  $(e_i)$  versus the fitted values  $(\hat{y}_i)$  is used.
- ▶ We expect to see a constant spread/distance of the residuals to the 0 line across all the  $\hat{y}_i$  values.

- ▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.
- ▶ In order to check this assumption a plot of the residuals  $(e_i)$  versus the fitted values  $(\hat{y}_i)$  is used.
- ▶ We expect to see a constant spread/distance of the residuals to the 0 line across all the  $\hat{y}_i$  values.

#### Residuals vs Fitted values



- ▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.
- ▶ In order to check this assumption a plot of the residuals  $(e_i)$  versus the fitted values  $(\hat{y}_i)$  is used.
- ▶ We expect to see a constant spread/distance of the residuals to the 0 line across all the  $\hat{y}_i$  values.



▶ The same plot can be used to check the linearity assumption.

- ▶ SLR assumes that  $Var[\epsilon_i] = \sigma^2$  is constant.
- ▶ In order to check this assumption a plot of the residuals  $(e_i)$  versus the fitted values  $(\hat{y}_i)$  is used.
- ▶ We expect to see a constant spread/distance of the residuals to the 0 line across all the  $\hat{y}_i$  values.



► The same plot can be used to check the linearity assumption. If the linear model is a good fit, once expects to see the residuals evenly spread on either side of the 0 line.

Examples of Violations

## Graphical Methods: Homogeneity of Variance / Linearity Examples of Violations

#### Non-constant variance



Examples of Violations



### Graphical Methods: Independence

Time Series Plot of the Residuals

▶ To check for independence b/w  $\epsilon_i$ 's, we plot  $e_i$  vs i.

### Graphical Methods: Independence

#### Time Series Plot of the Residuals

- ▶ To check for independence  $b/w \epsilon_i$ 's, we plot  $e_i$  vs i.
- ▶ Independence is graphically checked if there is no discernible pattern in the plot.

### Graphical Methods: Independence

#### Time Series Plot of the Residuals

- ▶ To check for independence  $b/w \epsilon_i$ 's, we plot  $e_i$  vs i.
- ▶ Independence is graphically checked if there is no discernible pattern in the plot. I.e., one cannot predict  $e_i$  from  $e_{< i}$ .

### Graphical Methods: Independence

#### Time Series Plot of the Residuals

- ▶ To check for independence  $b/w \epsilon_i$ 's, we plot  $e_i$  vs i.
- ▶ Independence is graphically checked if there is no discernible pattern in the plot. I.e., one cannot predict  $e_i$  from  $e_{< i}$ .

#### Time Series Plot of the Residuals





• Write out the sequence of +/- signs of the residuals

- ightharpoonup Write out the sequence of +/- signs of the residuals
- ► Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$

- lacktriangle Write out the sequence of +/- signs of the residuals
- ► Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$
- ▶ Count u = #runs of positive and negative residuals.

- lacktriangle Write out the sequence of +/- signs of the residuals
- ► Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$
- Count u = #runs of positive and negative residuals. What is a run?

- Write out the sequence of +/- signs of the residuals
- ► Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$
- ► Count u = #runs of positive and negative residuals. What is a run? E.g., if we have the following 9 residuals:



then w have u = 5 runs with  $n_1 = 4$  and  $n_2 = 5$ .

- Write out the sequence of +/- signs of the residuals
- Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$
- ► Count u = #runs of positive and negative residuals. What is a *run*? E.g., if we have the following 9 residuals:

$$\underbrace{-}_{1}\underbrace{+++}_{2}\underbrace{--}_{3}\underbrace{+}_{4}\underbrace{--}_{5}$$

then w have u = 5 runs with  $n_1 = 4$  and  $n_2 = 5$ .

▶ Under  $H_0$ :  $e_i$ 's are independent, the pmf of the r.v. U is

$$p(u) = \begin{cases} \frac{2\binom{n_1-1}{k-1}\binom{n_2-1}{k-1}}{\binom{n_1+n_2}{n_1}}, & u = 2k, \ k \in \mathbb{N} \\ \frac{\binom{n_1-1}{k}\binom{n_2-1}{k-1} + \binom{n_2-1}{k}\binom{n_1-1}{k-1}}{\binom{n_1+n_2}{n_1}}, & u = 2k+1, \ k \in \mathbb{N} \end{cases}$$

- Write out the sequence of +/- signs of the residuals
- Count  $n_1 = \#[e_i \ge 0]$ ,  $n_2 = \#[e_i < 0]$
- ► Count u = #runs of positive and negative residuals. What is a *run*? E.g., if we have the following 9 residuals:

$$-\frac{+++}{2}$$
  $+\frac{--}{3}$   $+\frac{--}{4}$   $+\frac{--}{5}$ 

then w have u = 5 runs with  $n_1 = 4$  and  $n_2 = 5$ .

▶ Under  $H_0$ :  $e_i$ 's are independent, the pmf of the r.v. U is

$$p(u) = \begin{cases} \frac{2\binom{n_1-1}{k-1}\binom{n_2-1}{k-1}}{\binom{n_1+n_2}{n_1}}, & u = 2k, \ k \in \mathbb{N} \\ \frac{\binom{n_1-1}{k}\binom{n_2-1}{k-1} + \binom{n_2-1}{k}\binom{n_1-1}{k-1}}{\binom{n_1+n_2}{n_1}}, & u = 2k+1, \ k \in \mathbb{N} \end{cases}$$

And p-value =  $Pr(U \le u)$ . No need to do by hand.



#### Runs Test in R

- > library(lawstat)
  > poverty = read.table("path/to/poverty.txt", h=T, sep="\t")
- > my\_model = lm(Poverty ~ Graduates, data=poverty)
- > re = my\_model\$residuals
- > runs.test(re, plot.it=TRUE)

Runs Test - Two sided

data: re

Standardized Runs Statistic = -0.13873, p-value = 0.8897



 $\blacktriangleright \ \mathrm{H}_0: \ \textit{e}_1, \ldots, \textit{e}_n \sim \mathcal{N}$ 

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- ► Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

#### where

•  $e_{(i)}$  is the *i*th smallest number in the sample

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- ► Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

- $e_{(i)}$  is the *i*th smallest number in the sample
- $(a_1,\ldots,a_n)^{\top}=\mathbf{a}=\frac{\mathbf{V}^{-1}\mathbf{m}}{\|\mathbf{V}^{-1}\mathbf{m}\|}$

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

- $e_{(i)}$  is the *i*th smallest number in the sample
- $(a_1,\ldots,a_n)^{\top}=\mathbf{a}=\frac{\mathbf{V}^{-1}\mathbf{m}}{\|\mathbf{V}^{-1}\mathbf{m}\|}$
- ▶  $\mathbf{m} = (m_1, \dots, m_n)^{\top}$  is a vector with  $m_i = \mathrm{E}[Z_{(i)}]$  where  $Z_1, \dots, Z_n \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, 1)$

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- ► Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

- $e_{(i)}$  is the *i*th smallest number in the sample
- $(a_1,\ldots,a_n)^{\top}=\mathbf{a}=\frac{\mathbf{V}^{-1}\mathbf{m}}{\|\mathbf{V}^{-1}\mathbf{m}\|}$
- ▶  $\mathbf{m} = (m_1, \dots, m_n)^{\top}$  is a vector with  $m_i = \mathrm{E}[Z_{(i)}]$  where  $Z_1, \dots, Z_n \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, 1)$
- $\mathbf{V} = \{ \text{Cov}[Z_{(i)}, Z_{(j)}] \}$

- ▶  $H_0: e_1, \ldots, e_n \sim \mathcal{N}$
- Test statistic

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} e_{(i)}\right)^{2}}{\sum_{i=1}^{n} (e_{i} - \bar{e})^{2}}$$

- $e_{(i)}$  is the *i*th smallest number in the sample
- $(a_1,\ldots,a_n)^{\top}=\mathbf{a}=\frac{\mathbf{V}^{-1}\mathbf{m}}{\|\mathbf{V}^{-1}\mathbf{m}\|}$
- ▶  $\mathbf{m} = (m_1, \dots, m_n)^{\top}$  is a vector with  $m_i = \mathrm{E}[Z_{(i)}]$  where  $Z_1, \dots, Z_n \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0, 1)$
- $\mathbf{V} = \{ \text{Cov}[Z_{(i)}, Z_{(j)}] \}$
- No name for the distribution of W under  $H_0$ . Its critical values are calculated through Monte-Carlo simulations.

### Shapiro-Wilk Test in R

### Shapiro-Wilk Test in R

Hence, FTR normality of the residuals in the Graduation–Poverty example.

If the response can be split into t distinct groups, the we use Levene's Test for  $H_0$ :  $\sigma_1^2 = \ldots = \sigma_t^2$ 

- If the response can be split into t distinct groups, the we use Levene's Test for  $H_0$ :  $\sigma_1^2 = \ldots = \sigma_t^2$
- ▶ If the response is numerical (which is what we have in regression), we can artificially split responses into groups bases on predictor values.

- If the response can be split into t distinct groups, the we use Levene's Test for  $H_0$ :  $\sigma_1^2 = \ldots = \sigma_t^2$
- ▶ If the response is numerical (which is what we have in regression), we can artificially split responses into groups bases on predictor values.
- Test statistic is tedious to calculate and left for software.
   However,

T.S. 
$$\overset{\mathrm{H_0}}{\sim} F_{t-1,n-t}$$

where t = #(groups), and n = #(observations).

- If the response can be split into t distinct groups, the we use Levene's Test for  $H_0$ :  $\sigma_1^2 = \ldots = \sigma_t^2$
- ▶ If the response is numerical (which is what we have in regression), we can artificially split responses into groups bases on predictor values.
- Test statistic is tedious to calculate and left for software.
   However,

T.S. 
$$\overset{\mathrm{H_0}}{\sim} F_{t-1,n-t}$$

where t = #(groups), and n = #(observations).

▶ The p-value =  $Pr(F_{t-1,n-t} \ge T.S.)$ .

#### Levene's Test in R.

https://raw.githubusercontent.com/zh3nis/MATH440/main/chp03/levene\_test.R

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median

```
data: re
Test Statistic = 0.39829, p-value = 0.6737
```

#### Levene's Test in R

https://raw.githubusercontent.com/zh3nis/MATH440/main/chp03/levene\_test.R

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median

```
data: re
Test Statistic = 0.39829, p-value = 0.6737
```

FTR homogeneity of variance.

### Diagnostics for Predictor Variable

Checking Assumptions
Graphical Methods
Significance Tests

Nonlinear Relation:

Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance:

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- ► Non-Constant Variance: Weighted Least Squares, transform *x* and/or *y*, or fit Generalized Linear Model

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- ► Non-Independence of Errors:

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- ▶ Non-Independence of Errors: Transform y or use Generalized Least Squares, or fit Generalized Linear Model with correlated errors.

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- ▶ Non-Independence of Errors: Transform y or use Generalized Least Squares, or fit Generalized Linear Model with correlated errors.
- Non-Normality of Errors:

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- Non-Independence of Errors: Transform y or use Generalized Least Squares, or fit Generalized Linear Model with correlated errors.
- Non-Normality of Errors: Box-Cox transformation, or fit Generalized Linear Model.

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- Non-Independence of Errors: Transform y or use Generalized Least Squares, or fit Generalized Linear Model with correlated errors.
- Non-Normality of Errors: Box-Cox transformation, or fit Generalized Linear Model.
- Outliers:

- Nonlinear Relation: Add polynomials or transform x and/or y (more emphasis on x)
- Non-Constant Variance: Weighted Least Squares, transform x and/or y, or fit Generalized Linear Model
- Non-Independence of Errors: Transform y or use Generalized Least Squares, or fit Generalized Linear Model with correlated errors.
- Non-Normality of Errors: Box-Cox transformation, or fit Generalized Linear Model.
- ▶ Outliers: Robust Regression or Nonparametric Regression

Transforms the variable w as

$$w^{(\lambda)} = \begin{cases} \frac{w^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln(w) & \text{if } \lambda = 0 \end{cases}$$

Transforms the variable w as

$$w^{(\lambda)} = \begin{cases} \frac{w^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln(w) & \text{if } \lambda = 0 \end{cases}$$

It can be applied to the response:

$$Y_i^{(\lambda)} = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \text{with } \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Transforms the variable w as

$$w^{(\lambda)} = \begin{cases} \frac{w^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln(w) & \text{if } \lambda = 0 \end{cases}$$

It can be applied to the response:

$$Y_i^{(\lambda)} = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \text{with } \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Or it can be applied to the predictor:

$$Y_i = \beta_0 + \beta_1 x_i^{(\lambda)} + \epsilon_i, \quad \text{with } \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$



Transforms the variable w as

$$w^{(\lambda)} = \begin{cases} \frac{w^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln(w) & \text{if } \lambda = 0 \end{cases}$$

It can be applied to the response:

$$Y_i^{(\lambda)} = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \text{with } \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Or it can be applied to the predictor:

$$Y_i = \beta_0 + \beta_1 x_i^{(\lambda)} + \epsilon_i, \quad \text{with } \epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Software is used to estimate the  $\lambda$ .

### Example: Recalling Items

In an experiment 13 people are asked to memorize a list of disconnected items. Asked to recall them at various times up to a week later.

### Example: Recalling Items

In an experiment 13 people are asked to memorize a list of disconnected items. Asked to recall them at various times up to a week later.

- ▶ *Y* proportion of items recalled correctly
- ▶ *x* time, in minutes, since initially memorized the list.

### Example: Recalling Items

In an experiment 13 people are asked to memorize a list of disconnected items. Asked to recall them at various times up to a week later.

- ▶ *Y* proportion of items recalled correctly
- ▶ *x* time, in minutes, since initially memorized the list.

| X | 1    | 5    | 15   | 30   | 60   | 120   | 240 |
|---|------|------|------|------|------|-------|-----|
| Y | 0.84 | 0.71 | 0.61 | 0.56 | 0.54 | 0.47  | .45 |
| X | 480  | 720  | 1440 | 2880 | 5760 | 10080 |     |
| Y | 0.38 | 0.36 | 0.26 | 0.20 | 0.16 | 0.08  |     |

#### Box-Cox Transformation in R.

bcPower Transformation to Normality

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd

recall\$time 0.0617 0 -0.1514 0.2748

Likelihood ratio test that transformation parameter is equal to 0 (log transformation)

LRT df pval LR test, lambda = (0) 0.327992 1 0.56684

### Box-Cox Transformation in R

bcPower Transformation to Normality

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd recall\$time 0.0617 0 -0.1514 0.2748

Likelihood ratio test that transformation parameter is equal to 0 (log transformation)

LRT df pval LR test, lambda = (0) 0.327992 1 0.56684

 $\Rightarrow$  Log transformation of x seems a good choice.

### Box-Cox Transformation in R

bcPower Transformation to Normality

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd recall\$time 0.0617 0 -0.1514 0.2748

Likelihood ratio test that transformation parameter is equal to 0 (log transformation)

LRT df pval LR test, lambda = (0) 0.327992 1 0.56684

 $\Rightarrow$  Log transformation of x seems a good choice.



# Graphical Diagnostics for $\hat{Y}_i = \beta_0 + \beta_1 x_i$

https://github.com/zh3nis/MATH440/blob/main/chp03/recall.R



# Graphical Diagnostics for $\hat{Y}_i = \beta_0 + \beta_1 \ln(x_i)$

https://github.com/zh3nis/MATH440/blob/main/chp03/recall\_boxcox.R

