Astron. Astrophys. Suppl. Ser. 84, 179-225 (1990)

The Arcetri atlas of H₂O maser sources

- G. Comoretto (3), F. Palagi (2), R. Cesaroni (1), M. Felli (3), A. Bettarini (3), M. Catarzi (3), G. P. Curioni (3), P. Curioni (3), S. Di Franco (1), C. Giovanardi (3), M. Massi (3), F. Palla (3), D. Panella (3), E. Rossi (3), N. Speroni (2) and G. Tofani (3)
- (1) Istituto di Astronomia, Largo E. Fermi 5, 50125, Firenze, Italy
- (2) C.N.R., Gruppo Nazionale Astronomia, U.d.R. Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy
- (3) Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy

Received August 28, 1989, accepted January 29, 1990

Abstract. — We report the results of a 22.2 GHz H_2O line survey of all the known maser sources north of -30 deg. Of the 509 sources observed, 203 were detected with an average detection limit of 9 Jy. The data are presented in an atlas and a table form and are intended to constitute an homogeneous reference data base for further study of the source variability. A brief description of the instrumentation is given. Comparison of the present results with those given in the literature indicates that most of the masers vary, with only 20% of the sources remaining constant, within the observational uncertainty.

Key words: atlases — masers — radio lines: molecular.

1. Introduction.

Radio emission from galactic H₂O maser sources at 22.2 GHz (the rotational transition between the 6_{16} – 5_{23} levels) was found 20 years ago, the first detection of the line being attributed to Cheung et al. (1969). Much observational and theoretical work has been done since then, as documented by the many excellent review papers on the subject (see e.g. Reid and Moran, 1981; Downes, 1985; Cohen, 1989). Soon after the discovery it was realized that H₂O maser sources were associated with two distinct classes of objects which also represent two different phases of stellar evolution: 1) regions of star formation (namely H II regions in their earlier phases) and 2) late-type stars (usually later than M5), either long period regular variables (Mira giants) or irregular variables (supergiants). Similarly, already with observations spanning only over few years, it was immediately clear that the radio emission was highly variable, both in intensity and velocity, with lines appearing and disappearing with time scales of years and, occasionally, showing more rapid outbursts (see e.g. Rowland and Cohen, 1986; Garay et al., 1989). The number of detected masers has increased steadily in these 20 years as well as the type of associated object (T Tauri, IRAS sources, Herbig-Haro objects, etc.) bringing the present number of known masers in the range of several hundreds.

To create a useful reference catalogue of all the detections scattered throughout the literature and in selected lists (see e.g. Braz and Epchtein, 1983 for non stellar masers

and Engels, 1979 for stellar ones) our group compiled an up-dated list of all the maser sources north of -30 deg, inclusive of all the possible sub-species (stellar, non-stellar or other). The list contains 526 objects, which are tentatively subdivided into 250 HII, 180 stellar, 15 HH, 2 TTauri and 79 IRAS (Cesaroni *et al.*, 1988a, hereinafter called Paper 1).

Despite this bounty of information, many aspect of the maser emission are still far from being clear. For instance: 1) there is ample debate on the possible pumping mechanism(s), 2) the variability has been studied in a systematic fashion only for a very limited sample of objects and over limited time intervals, 3) the manifestation and duration of the maser phase in the lifetime of the associated object (star forming region or late-type stars) is only vaguely known.

In this paper we present the results of observations of all galactic masers listed in Paper 1, made with the Medicina 32 m radiotelescope. The basic motivation of the present work is to provide an "instantaneous photograph" at a given epoch of all the known masers north of -30 deg, to be used as an homogeneous reference data base and as a starting list to select interesting candidates for future studies of variability. The fact that all the spectra are taken with the same instrument (i.e. same beamwidth, sensitivity, etc.) offers a unique opportunity to implement statistical studies of the properties of the entire sample.

However, although composed of homogeneous data, the present catalogue is not unbiased, in the sense that it reflects

Send offprint requests to: G. Comoretto.

the selection criteria used originally, which were based on lists of H II regions and late-type stars or sub-samples from the IRAS Point Source Catalogue.

Given the small beam size at this frequency, systematic, and possibly unbiased searches in the galactic plane have not been carried out so far, with the exception of one small strip of two square degrees in the galactic plane (Matthews et al., 1985).

The present project is the first carried out by the Arcetri Radio Astronomy Group in this field and was made possible by the availability of ample time on the Medicina 32 m VLBI radiotelescope of the Istituto di Radioastronomia-C.N.R., Bologna, Italy (see Sect. 2.1) and the Digital Autocorrelator built by the Arcetri Radio Astronomy Group (see Sect. 2.2). While this telescope, due to its limited aperture, cannot compete in sensitivity with larger ones (e.g. the Bonn 100 m telescope), it has the advantage that, given the ample available time, it can approach large, time consuming projects which would not be possible with larger radiotelescopes.

While planning the observations, it was impossible to get all the time needed to reach the observed flux density for the weakest sources in the reference catalogue. An integration time of 5 minutes, corresponding to a detection limit of 9 Jy, gave a good compromise between the detection of a significant fraction of the reference catalogue and a reasonable total observing time.

The completion of the survey took several observing runs in 1987 and 1988. During this period we begun also to patrol the emission of strong masers, to survey new lists of sources and to search for H₂O masers in selected extended areas in an unbiased way. Results for the maser associated to the Serpens molecular cloud has been given elsewhere (Palla and Giovanardi, 1989). Here, in addition to the results of the survey, we give a complete description of the instrument and of the observational procedures. Cross correlation of the data of the survey with IRAS data and other statistical analysis, as well as studies of the variability of selected sources and the results of new surveys will be the subject of future publications.

2. Observations.

In the following we give a brief technical description of the telescope and of the observational procedures.

2.1 The TELESCOPE. — The radiotelescope is primarily devoted to *VLBI* observations. Consequently the front-end is typical of such work (Comoretto, 1987; Palagi, 1987). The feed provides two outputs of circular polarization. For technical reasons only one polarization channel is available at 22.2 GHz, namely the right hand sense. The front-end amplifier is a criogenically cooled (17 K) three stage GaAsFET. In good weather conditions the system temperature is 160 K with a receiver contribution of 100 K. Down conversion to the IF bandwidths is provided according to *VLBI* configurations, namely the first local oscillator is a synthesizer with a multiplication chain locked

to the hydrogen maser frequency standard. The IF output is fed to the input of a SSB mixer whose output bandwidth can be selected from 50 MHz down to 0.78 MHz, in binary steps. The LO of the SSB is a synthesizer driven by the acquisition and control computer (HP 1000). The signal from the SSB mixer is amplified and sent to the Digital Autocorrelator.

At the water maser frequency (we used for the rest frequency of the line the value of 22.23507985 GHz), the HPBW of the telescope is 1.9' and its efficiency ranges from 10% to 17% depending on elevation. The low efficiency was due to a deviation of the main dish from the theoretical surface, as shown by holography measurements (Comoretto et al., 1988). It has been improved to 35% by resurfacing the antenna in August 1989. The gain-zenith angle curve has been determined with accurate observations of the continuum calibration sources DR 21, NGC 7027, 3C 123 and 3C 286, whose adopted flux densities are 19.0, 5.86, 3.71 and 2.55 Jy respectively (Baars, 1977).

The pointing parameters of the telescope are determined at the beginning of each observing session, by 24 hour measurements of the four intense maser sources W3OH, W51M, W49N and Orion-KL. The required signal to noise ratio is achieved using a 2 MHz bandwidth centered on the strongest maser line for each source. Residual pointing uncertainties are usually 20 arcsec rms.

2.2 The digital autocorrelator. — The Arcetri Autocorrelator (Comoretto, 1983; Catarzi et al., 1985) is used in a configuration of two quadrants of 256 channels connected in a single section for a total amount of 512 channels. Sampling and digitizing is made at two bits, three levels. Sampling rate is maintained fixed at 100 MHz, while bandwidth changes are obtained by the delay clock which is set at the Nyquist rate (2 \times bandwidth). A summary of the relevant autocorrelator parameters is reported in Table I.

TABLE I. — Autocorrelator characteristics.

Parameter	Options
IF input	Up to 4 quadrants
Type of correlation	Auto/Cross
Quantization	1/2 bit
Bandwidths	7 from 50 to 0.78 MHz
Observing mode	Total Power, Freq-switch

2.3 Data acquisition and calibration. — All the observations were made in the total power observing mode with the same integration time (usually 5 minutes) in the ON and OFF positions.

The autocorrelation function (ACF) can be edited to delete defective channels or to smooth it before the Fourier transform is applied to get the power spectrum.

The receiver noise and the passband effects are removed

using the standard relation: $T_{\rm a}(\nu) = T_{\rm off}(P_{\rm on}(\nu) - P_{\rm off}(\nu))/P_{\rm off}(\nu)$, where $T_{\rm off}$ is the average system temperature in the reference spectrum and $P_{\rm on}$, $P_{\rm off}$ are the calibrated power spectra.

The spectrum is then converted to flux density using an average gain curve for the observing period. No daily calibration has been attempted. Therefore the final error in the flux scale is about 20%.

Since it is not possible at the moment to measure the total power at the sampler input, the absolute scale of each spectrum is calibrated with a total-power integrator in a 2 MHz band at a fixed frequency adjacent to the observed bandwidth. If the receiver band is flat to a few percent, this procedure does not introduce significant errors. For very strong sources ($F_{\nu} > 10^4$ Jy), the line contribution to the total power received is not measured, and the flux density scale is underestimated for the $P_{\rm on}$. However the $P_{\rm off}$ is still correctly calibrated, and its scale can be applied to the $P_{\rm on}$, assuming that the receiver noise remains unchanged.

Both the measured ACF and the computed spectra are stored on files in a format conforming to the TOOLBOX package specifications. TOOLBOX is the line reduction package developed at the Max-Planck-Institut für Radioastronomie, Bonn (von Kap-herr, 1980; Cesaroni et al., 1988b) and kindly made available to our group.

3. The catalogue and the atlas of spectra.

The spectra, recorded on tape at the Medicina station, are analysed with a SUN3 workstation under UNIX operating system.

The data reduction with TOOLBOX consists essentially of 3 steps. First a polynomial fit to the baseline is removed in each spectrum and the rms noise is computed. Second, a suitable number of gaussians is fitted to the lines to evaluate their intensity, central velocity and width. For some sources with multiple blended components only the strongest components have been fitted. Finally the integral over the whole emission interval is computed using the Simpson approximation.

For a consistent number of sources several observations at different times were taken. We report here only the spectrum with the maximum spectral resolution (i.e. the smaller bandwidth). An exception to this rule is given by those spectra which have at some epochs one or more lines out of the velocity range covered by the smallest bandwidth used: in these cases we choose the bandwidth containing also this "high velocity" components. For spectra with the same bandwidth, the first one in time is reported.

The results of this analysis are contained in Table II and Figure 1. Since our aim was to re-observe all the sources in the catalogue of Paper 1 we tried to maintain a one to one correspondence with it. Few positions from Paper 1 are missing in the present list, because they would be undistinguishable in our observations, given the resolution of the Medicina antenna. To set a boundary to this effect,

we have followed the general rule to consider positions with a separation less than ~ 1 arcmin as a single source. As a result we observed 509 different positions out of 526 listed sources.

For one source, BFS 31, the coordinates are mistaken in Paper 1. The true coordinates are $\alpha = 03^{\rm h}21^{\rm m}11.8^{\rm s}$, $\delta = 54^{\rm o}46'51''$.

Owing to the complexity of the H_2O spectra, only the most significant parameters have been included in Table II. They are:

Columns 1 and 2: Right ascension and declination (1950),

Columns 3 and 4: name and class of the source, identical to the ones used in Paper 1. When no name is available we form it using the first digits of the galactic coordinates (e.g. 12782-0002 for a source at $l_{\rm II} = 127.817$ and $b_{\rm II} = -0.021$),

Columns 5 and 6: galactic coordinates in degrees,

Column 7: the flux density (Jy) of the strongest component in the spectrum. Sources exhibiting a single component are marked with an asterisk. Upper limits (3σ) are given for undetected sources. Note that, even though only the strongest component is given here, all components in each spectrum have been fitted and can be provided upon request. Since the flux density comes from a multiple gaussian fitting of the profile, in the case of narrow peaks sitting on top of broader features, the peak value given in Table II may be considerably smaller than the peak of the profile in Figure 1,

Column 8: the noise level σ (Jy). For strong sources like W3 OH, KL IRC 2, W49 N, etc., the fit error is much greater than the noise level and therefore the former value is given,

Column 9: velocity $(km s^{-1})$ with respect to the LSR of the peak given in column 6,

Column 10: spectral resolution (km s⁻¹) of the reported spectrum,

Columns 11 and 12: minimum and maximum velocity of the emission range (km s⁻¹) of the spectrum shown in Figure 1. For non-detections the limits of the observed range are reported,

Column 13: integrated flux (Jy km s⁻¹) computed over a velocity interval which includes all the detected components. For a few sources the integrated flux is slightly lower than the product of the peak flux density (column 7) and the line width. However, this inconsistency is removed if the errors in the fitted parameters and the noise level of the spectrum are taken into account.

Column 14: maximum observed bandwidth (MHz),

Column 15: the date (yymmdd) on which the spectrum described in columns 6-12 was observed.

Column 16: Reference codes to previous single dish measurements (See the list appended to this table). No attempt is made to list all the references dealing with each source.

The atlas of spectra of Figure 1 (flux density in Jy versus

velocity in km s⁻¹) contains only sources where at least one line was detected.

Notes to Table II:

- For very intense sources (W3 OH, KL IRC 2, W49 N, W51 N, W51 S) our spectra cover only the central portion of the emission range and the parameters listed in Table II have been corrected as described in Section 2.3.
- The maser in SERPENS is reported as an upper limit in Table II. In fact the source detected by Palla and Giovanardi (1989) is about 1.4' away from the nominal position given in Paper 1.

4. Discussion.

We now analyze the main statistical properties derived from the comparison of the present survey and the literature data contained in Paper 1, excluding three sources for which no flux density is reported in Paper 1 and which are not detected in the present survey.

The detected sources are 203. Their flux density distribution (full line) is given in Figure 2, which shows a cutoff at $\simeq 9$ Jy, which is equal to the average 3σ level computed
from Table II, column 8, excluding the fit error values. For
comparison we report the distribution of the 301 sources
from the reference catalogue having a flux density > 9 Jy
(dotted line).

The two distributions have almost the same shape, while the number of sources is significantly decreased in our survey. However, we want to remark that our 203 detections are not a subsample of the 301 reference sources with flux density > 9 Jy.

To have an indication of the flux density variability we have plotted the peak flux of the detected sources S_A (Fig. 3a) and *upper limits* (Fig. 3b), versus the peak flux of the reference catalogue S_R . Figure 3a shows that there is a large scatter around the solid line, representing the $S_A = S_R$ relationship and that several sources with $S_R < 9$ Jy have now a higher peak flux density. In figure 3b our average detection limit ($S_A < 9$ Jy) shows up clearly together with the fact that even very strong sources were not detected.

If we divide the reference catalogue sources into two groups, below and above the 9 Jy limit (Tab. III), we find that 19 have increased their flux and became observable (crosses to the left of the vertical line in Fig. 3a), while 117

sources above our average detection limit were not detected (circles to the right of the vertical line in Fig. 3b). This difference in the two numbers may partly be due to the fact that the flux densities reported in Paper 1 are the *maximum* ever observed.

Table III. — Source counts.

	Referen	ce Catalo	gue Fluxes
	< 9 Jy	$\geq 9 \text{ Jy}$	Total
det.	19	184	203
und.	186	117	303
tot.	205	301	506

The distribution of the $S_{\rm A}/S_{\rm R}$ ratios for detected sources is shown in Figure 4. From the comparison of Figures 3 and 4, it is clear that variations in the peak flux density is a dominant characteristic of the maser emission. Moreover, in Figure 4 the asymmetry of the distribution shows that the number of sources with a decrease in the peak flux density is higher than those exhibiting an increase, an effect similar to the difference found above between the number of sources becoming fainter or more intense than 9 Jy. Only 38 sources (20% of the detected ones) do not show variations within our 20% measurement error.

Velocity variations are also present, but are less frequent than peak flux variations. Figures 5 and 6 report respectively the radial velocity of our survey versus the reference catalogue values and the distribution of the differences. The latter is highly peaked around zero, but there also are isolated large variations, which may be better interpreted as onset of new components at different radial velocity.

Acknowledgements.

We would like to thank Alexander von Kap-herr for the helpful suggestions in the TOOLBOX implementation. We are indebted with the Medicina technical staff for their invaluable assistance during the observations. Thanks are also due to E. Churchwell, R. I. Cohen, J. M. Moran and M. Walmsley for interesting discussions.

This work has been supported by the Ministry of Public Education (founds 40% MPI) and by the National Group of Astronomy of the Consiglio Nazionale delle Ricerche. We acknowledge the Istituto di Radioastronomia-CNR, Bologna, Italy, for the telescope time allocated to this project.

References

BAARS W. M., GENZEL R., PAULINY TOTH I.I.K., WITZEL A.: 1977, Astron. Astrophys. 61, 99.

BATCHELOR R. A., CASWELL J. L., GOSS W. M., HAYNES R. F., KNOWLES S. H., WELLINGTON K. J.: 1980, Aust. J. Phys. 33, 139.

BENSON P. J., LITTLE-MARENIN I. R.: 1987, Astrophys. J. Lett. 316, L37.

BLAIR G. N., DAVIS J. N., DICKINSON D. F.: 1978, Astrophys. J. 226, 435.

BLAIR G. N., DINGER A.S.C., DICKINSON D. F.: 1980, Astron. J. 85, 161.

BLITZ L., LADA C. J.: 1979, Astrophys. J. 227, 152.

BOWERS P. F., HAGEN W.: 1984, Astrophys. J. 285, 637.

```
Bi
```

BRAZ M. A., EPCHTEIN N.: 1983, Astron. Astrophys. Suppl. Ser. 54, 167.

CASWELL J. L., BATCHELOR R. A., FORSTER J. R., WELLINGTON K. J.: 1983a, Aust. J. Phys. 36, 401.

CASWELL J. L., BATCHELOR R. A., FORSTER J. R., WELLINGTON K. J.: 1983b, Aust. J. Phys. 36, 443.

CASWELL J. L., BATCHELOR R. A., GOSS W. M., HAYNES R. F., KNOWLES S. H., WELLINGTON K. J., BALISTER M.: 1976, Proc. Astron. Soc. Aust. 3, 61.

CASWELL J. L., BATCHELOR R. A., HAYNES R. F., HUCHTMEIER W. K.: 1974, Aust. J. Phys. 27, 417.

CATARZI M., COMORETTO G., CURIONI P., DAMIANO A., FELLI M., MASSI M., MISURI S., PANELLA D., PALAGI F., SPERONI N., TOFANI G.: 1985, Arcetri Technical Report, 18.

CATO B. T., RONNANG B. O., RYDBECK D.E.H., LEWIN P. T., YNGVESSON K. S., CARDIASMENOS A. G., SHANLEY J. F.: 1976, Astrophys. J. 208, 87.

CESARONI R., COMORETTO G., MASSI M., PALAGI F.: 1988b, Arcetri Technical Report, 5.

CESARONI R., PALAGI F., FELLI M., CATARZI M., COMORETTO G., DI FRANCO S., GIOVANARDI G., PALLA F.: 1988a, Astron. Astrophys. Suppl. Ser. 76, 445.

CESARSKY C. J., CESARSKY D. A., CHURCHWELL E., LEQUEUX J.: 1978, Astron. Astrophys. 68, 33.

CHEUNG A. C., RANK D. M., TOWNES C. H., THORNTON D. D., WELCH W. J.: 1969, Nature 221, 626.

COHEN R. I.: 1989, Rep. Progr. Phys. in press.

COMORETTO G.: 1983, J. Phys. E.: Sci. Instrum. 16, 836.

COMORETTO G.: 1987, Uso multidisciplinare degli strumenti radioastronomici della stazione di Medicina., 29, F. Mantovani and L. Padrielli Eds. (Istituto di Radioastronomia, C.N.R. Bologna).

COMORETTO G., MORRIS D., TOFANI G.: 1988, Arcetri Technical Report, 4.

CROCKER D. A., HAGEN W.: 1983, Astron. Astrophys. Suppl. Ser. 54, 405.

DICKINSON D. F.: 1976, Astrophys. J. Suppl. Ser. 30, 259.

DICKINSON D. F., BECHIS K. P., BARRETT A. H.: 1973, Astrophys. J. 180, 831.

DICKINSON D. F., BLAIR G. N., DAVIS J. H., COHEN N. L.: 1978, Astron. J. 83, 32.

DICKINSON D. F., ST. CLAIR DINGER A.: 1982, Astrophys. J. 254, 136.

DOWNES D.: 1985, Naissance et enfance des étoiles, R. Lucas, A. Omont and R. Stora Eds. (Elseveir science publishers).

DOWNES D., WINNBERG A., GOSS W. N., JOHANSSON L.E.B.: 1977, Astron. Astrophys. 44, 243.

ENGELS D.: 1979, Astron. Astrophys. Suppl. Ser. 36, 337.

ENGELS D., HABING H. J., OLNON F. M., SCHMID-BURGK J., WALMSLEY C.M.: 1984, Astron. Astrophys. 140, L9.

ENGELS D., LEWIS B. M.: 1988, private communication.

ENGELS D., SCHMID-BURGK J., WALMSLEY C. M.: 1986, Astron. Astrophys. 167, 129.

ENGELS D., SCHMID-BURGK J., WALMSLEY C. M.: 1988, Astron. Astrophys. 191, 283.

ENGELS D., SCHMID-BURGK J., WALMSLEY C. M., WINNBERG A.: 1985, Astron. Astrophys. 148, 344.

EVANS N.J. II, BECKWITH S., BROWN R. L., GILMORE W.: 1979, Astrophys. J. 227, 450.

FAZIO G. G., LADA C. J., KLEIMANN D. E., WRIGHT E. L., HO P.T.P., LOW F. J.: 1978, Astrophys. J. Lett. 221, L77.

FORSTER J. R., WELCH W. J., WRIGHT M.C.H., BAUDRY A.: 1978, Astrophys. J. 221, 137.

GARAY G., MORAN J. M., HASCHICK A. D., 1989, Astrophys. J. 338, 244.

GARCIA-BARRETO J. A., RODRIGUEZ L. F., MORAN J. M., BURKE B. F.: 1981, Rev. Mex. Astron. Astrofis. 5, 87.

GENZEL R., DOWNES D.: 1977, Astron. Astrophys. Suppl. Ser. 30, 145.

GENZEL R., DOWNES D.: 1979, Astron. Astrophys. 72, 234.

GENZEL R., DOWNES D., BIEGING J.: 1976, Mont. Not. R. Astron. Soc. 177, 101P.

GOMEZ-BALBOA A. M., LEPINE J.R.D.: 1986, Astron. Astrophys. 159, 166.

GOSS W. M., HAYNES R. F., KNOWLES S. H., BATCHELOR R. A., WELLINGTON K. J.: 1977, Mont. Not. R. Astron. Soc. 180, 518.

GUSTEN R., DOWNES D.: 1983, Astron. Astrophys. 117, 343.

GYULBUDAGHIAN A. L., RODRIGUEZ L. F., MENDOZA-TORRES E.: 1987, Rev. Mex. Astron. Astrofis. 15, 53.

HASCHICK A. D., HO P. T.: 1985, Astrophys. J. 292, 200.

HASCHICK A. D., MORAN J. M., RODRIGUEZ L. F., BURKE B. F., GREENFIELD P., GARCIA-BARRETO J. A.: 1980, Astrophys. J. 237, 26.

HASCHICK A. D., MORAN J. M., RODRIGUEZ L. F., HO P.T.P.: 1983, Astrophys. J. 265, 281.

HENKEL C., HASCHICK A. D., GUSTEN R.: 1986b, Astron. Astrophys. 165, 197.

JAFFE D.T., GUSTEN R., DOWNES D.: 1981, Astrophys. J. 250, 621.

JOHNSTON K. J., SLOANAKER R. M., BOLOGNA J. M.: 1973, Astrophys. J. 182, 67.

KLEINMANN S. G., DICKINSON D. F., SARGENT D. G.: 1978, Astron. J. 83, 1206.

KNAPP G. R., MORRIS M.: 1976, Astrophys. J. 206, 713.

KOGAN L. R., MATVEYENKO L. I., CHESALIN L. S.: 1978, Sov. Astron. 207, 551.

LADA C. J., BLITZ L., REID M. J., MORAN J. M.: 1981, Astrophys. J. 243, 769.

LADA C. J., DICKINSON D. F., GOTTLIEB C. A., WRIGHT E. L.: 1976b, Astrophys. J. 207, 113.

LADA C. J., GULL T. R., GOTTLIEB C. A., GOTTLIEB E. W.: 1976a, Astrophys. J. 203, 159.

LADA C. J., WOODEN D.: 1979, Astrophys. J. 232, 158.

LITTLE L. T., BROWN A. T., RILEY P. W., MATTHEWS N., MACDONALD G. H., VIZARD D. R., COHEN R. J.: 1983, Mon. Not. R. Astron. Soc. 203, 409.

LO K. Y., BURKE B. F.: 1973, Astron. Astrophys. 26, 487.

LO K. Y., BURKE B. F., HASCHICK A. D.: 1975, Astrophys. J. 202, 81.

MARQUES DOS SANTOS P., LEPINE J.R.D., GOMEZ BALBOA A. M.: 1979, Astron. J. 84, 787.

MATTHEWS H. E., OLNON F. M., WINNBERG A., BAUD B.: 1985, Astron. Astrophys. 149, 227.

NAKADA Y., IZUMIURA H., ONAKA T., HASHIMOTO O., UKITA N., DEGUCHI S., TANABÈ T : 1987, Astrophys. J. Lett. 323, L77.

NYMAN L-A., JOHANSSON L.E.B., BOOTH R. S.: 1986, Astron. Astrophys. 160, 352.

OLNON F. M., WINNBERG A., MAITHEWS H. E., SCHULTZ G. V.: 1980, Astron. Astrophys. Suppl. Ser. 42, 119.

PALAGI F.: 1987, Uso multidisciplinare degli strumenti radioastronomici della stazione di Medicina., 19, F. Mantovani and L. Padrielli Eds. (Istituto di radioastronomia, C.N.R. Bologna).

PALLA F., GIOVANARDI C.: 1989, Astron. Astrophys., in press.

REID M. J., MORAN J. M.: 1981, Ann. Rev. Astron. Astrophys. 19, 231.

RODRIGUEZ L. F., CANTÓ J.: 1983, Rev. Mex. Astron. Astrophys. 8, 163.

RODRIGUEZ L. F., HASCHICK A. D., TORRELLES J. M., MYERS P. C.: 1987, Astron. Astrophys. 186, 319.

RODRIGUEZ L. F., MORAN J. M., HO P.T.P., GOTTLIEB E. W.: 1980, Astrophys. J. 235, 845.

ROWLAND P. R., COHEN R. J.: 1986, Mon. Not. R. Astron. Soc. 220, 233.

SANDELL G., OLOFSSON H.: 1981, Astron. Astrophys. 99, 80.

SPENCER J. H., JOHNSTON K. J., MORAN J. M., REID M. J., WALKER R. C.: 1979, Astrophys. J. 230, 449.

STUTZKI J., UNGERECHTS H., WINNEWISSER G.: 1982, Astron. Astrophys. 11, 201.

SULLIVAN III W.T.: 1973, Astrophys. J. Suppl. Ser. 25, 393.

THUM C., BERTOUT C., DOWNES D.: 1981, Astron. Astrophys. 94, 80.

TORRELLES J. M., HO P.T.P., MORAN J. M., RODRIGUEZ L. F., CANTÓ J.: 1986, Astrophys. J. 307, 787.

VON KAP-HERR: 1980, Max Planck Institut für Radioastronomie, Bonn Technical Report, 40.

WHITE G. J., LITTLE L. T., PARKER E. A., NICHOLSON P. S., MACDONALD G. H., BALE F.: 1975, Mont. Not. R. Astron. Soc. 170, 37P.

WHITE G. J., MACDONALD G. H.: 1979, Mont. Not. R. Astron. Soc. 188, 745.

WILKING B. A., CLAUSSEN M. J.: 1987, Astrophys. J. Lett. 320, L133.

WILLSON R. F., LE BLANC D., LE BLANC J.: 1983, Mont. Not. R. Astron. Soc. 203, 1099.

WOUTERLOOT J.G.A.: 1987, private communication.

WOUTERLOOT J.G.A., BRAND J., HENKEL C.: 1987, Astron. Astrophys. 191, 323.

WOUTERLOOT J.G.A., WALMSLEY C.M.: 1986, Astron. Astrophys. 168, 237.

YNGVESSON K.S., CARDIASMENOS A. G., SHANLEY J.F., RYDBECK O.E.H., ELLDER J.: 1975, Astrophys. J. 195, 98.

ZUCKERMAN B., LO K. Y.: 1987, Astron. Astrophys. 173, 263.

List of reference codes for Table II.

- 1 Caswell et al., 1983a.
- 2 Genzel and Downes, 1977.
- 3 Genzel et al., 1976.
- 4 Forster et al., 1978.
- 5 Sullivan III, 1973.
- 6 Batchelor et al., 1980.
- 7 Knapp and Morris, 1976.
- 8 Caswell et al., 1983b.
- 9 Caswell and Haynes, 1983b.
- 10 Caswell et al., 1976.
- 11 Cato et al., 1976.
- 12 Johnston et al., 1973.
- 13 Lada et al., 1976a.
- 14 Genzel and Downes, 1979.
- 15 Fazio et al., 1978.
- 16 Caswell et al., 1974.
- 17 Yngvesson et al., 1975.
- 18 White and Macdonald, 1979.
- 19 Jaffe et al., 1981.
- 20 Goss et al., 1977.
- 21 Lada et al., 1981.
- 22 Blitz and Lada, 1979.
- 23 Lada et al., 1976b.
- 24 Cesarsky et al., 1978.
- 25 Dickinson et al., 1978.
- 26 Lo et al., 1975.
- 27 Blair et al., 1980.
- 28 Blair et al., 1978.
- 29 Stutzki et al., 1982.
- 30 White et al., 1975.
- 31 Kogan et al., 1978.

- 32 Lada and Wooden, 1979.
- 33 Lo and Burke, 1973.
- 34 Downes et al., 1977.
- 35 Haschick et al., 1983.
- 36 Haschick et al., 1980. 37 Rodriguez et al., 1980.
- 38 Gusten and Downes, 1983.
- 39 Matthews et al., 1985.
- 40 Henkel et al., 1986b.
- 41 Wouterloot and Walmsley, 1986.
- 42 Wouterloot et al., 1987.
- 43 Wouterloot, 1987.
- 44 Torrelles et al., 1986.
- 45 Spencer et al., 1979.
- 46 Thum et al., 1981..
- 47 Bowers and Hagen, 1984.
- 48 Engels et al., 1984.
- 49 Engels et al., 1986.
- 50 Engels et al., 1988.
- 51 Zuckerman and Lo, 1987.
- 52 Wilking and Claussen, 1987.
- 53 Gyulbudaghian et al., 1987.
- 54 Gomez-Balboa and Lepine, 1986. 55 Olnon et al., 1980.
- 56 Dickinson, 1976.
- 57 Dickinson et al., 1973.
- 58 Engels et al., 1985.
- 59 Evans et al., 1979.
- 60 Crocker and Hagen, 1983.
- 61 Garcia-Barreto et al., 1981.
- 62 Benson and Little-Marenin, 1987.

- 63 Little et al., 1983.
- 64 Engels, 1979.
- 65 Willson et al., 1983.
- 66 Haschick and Ho, 1985.
- 67 Nakada et al., 1987.
- 68 Rodriguez et al., 1987.
- 69 Sandell and Olofsson, 1981.
- 70 Rodriguez and Cantò, 1983.
- 71 Dickinson and St. Clair Dinger, 1982.
- 72 Kleinmann et al., 1978.
- 73 Engels and Lewis, 1988.
- 74 Nyman et al., 1986.
- 75 Marques Dos Santos et al., 1979.

TABLE II. — Parameters of the H_2O maser spectra.

References	55,56,64,72	09	43	43	43	20,60	43	43	55	43	14	55,56,64,72	43	09	43	48	73	2	40	49	25,50,64,72	55,56,64,72	50,56,64,72	2	2,5,18	2,24	2.5	73	Ç !	47	09	43
date	806088	890129	806088	880202	870905	870613	880908	880908	806088	806088	880714	890127	806088	890127	880425	880908	000000	006000	870612	806088	880430	870904	870327	870322	870612	870612	870322	300000	00000	880504	880425	880430
$\Delta \nu$	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25	6.25	6.25	6.25	6.25	2	0.70	6.25	6.25	6.25	12.50	12.50	12.50	6.25	6.25	12 50	20.0	0.70	6.25	6.25	6.25
f(3y km/s)	25.3	18.2		13.0		21.7			17.0		94.1	18.7						1.01					258.9	553.9	1473.0	114.3	31750 0	2				
vmax	-18.2	24.1	12.1	-70.1	42.1	-58.7	22.1	24.1	-13.4	6.8-	-13.9	-2.0	-41.9	2.8	-10.9	=		-40.5	28.1	-22.2	46.5	84.3	-30.9	-33.8	-33.4	-30.7	31.9	1 0	6.71-	0.7	65.2	12.1
Vmin	-19.5	19.1	-80.1	-72.0	-42.1	-59.2	-62.1	-60.1	-25.7	-93.1	-43.0	-3.6	-126.1	-81.4	-95.1	95.3		-47.3	-56.1	-106.4	-37.7	-84.3	-47.3	-52.7	-52.0	-49.4	0.69	2 5	-91.1	-83.5	-19.0	-72.1
δv	0.165	0.165	0.165	0.165	0.165	0.082	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	165	200	0.105	0.165	0.165	0.165	0.329	0.165	0.329	0.165	0.165	0.000	100.0	601.0	0.165	0.165	0.165
v(km/s)	-18.9	19.4		-71.1		-59.0			-13.8		-28.7	-2.8					,	-40.9					-37.0	-34.3	-40.5	-39.3	0 7	0.01				
Δf_{ν}	1.7	2.9	3.5	1.3	3.6	5.6	3.6	3.6	1.6	3.9	1.5	1.7	3.8	3.2	2.2	4.7) E	7.7	3.8	3.0	5.0	4.2	2.0	3.5	9.7	3.4	677	4.6	7.6	4.6	2.1	3.3
$f_{\nu}(\mathrm{Jy})$	16.1	10.3	< 10.4	k 7.3	< 10.9	28.4	< 10.7	< 10.7		< 11.6	22.6	8.3	< 11.5			10.7			_	0.6 >	< 14.9	< 12.6	41.9	7.06	427.9	69.7	14000 0	0.060#1		_	< 6.3	< 10.0
PIIq	-6.552	-80.045	1.893	3.378	0.659	0.308	1.238			2.856	-6.306	-50.126	2.539			2 101				-0.021	-15.837	-57.980	-2.195	1.224	1.215	1.198	1 0.6 E	0.00.1	_	-62.311	4.475	-0.459
lil	116.144	39.914	118.961	120.153	121.301	121.303	121.377	121.744	122.445	122.779	123.071	128.653	124.645	127.966	125.519	105 604	100.001	125.634	126.682	127.817	135.115	167.752	134.623	133.688	133.718	133.751	120 051	100.001	134.831	187.701	133.610	135.894
Class	STAB	STAR	HII	HII	HII	STAR	HII	HII	STAR	HII	IIH	STAR	HII	STAR	HII	10 4 61	COL	нш	H	STAR	STAR	STAR	STAR	HII	ШН	HII	1111	1111	нш	STAR	STAR	нп
Name	VCAS	SY SCL	IRAS00117+6412	IRAS00211+6549	IRAS00338+6312	TY CAS	IRAS00342+6347	IRAS00379+6248	IRC+70012	IRAS00468+6527	NGC 281	CIT 3	IRAS01045+6505	IRC+30021	IRAS01123+6430	0112 645 B00	60 1 03-0110	IRAS01134+6429	S187	12782-0002	HD 11979	O CET	S PER	W3 (1)	W3 (2)	W3 (3)	110 011	ws On	IKAS02310+6133	U CET	CIT 4	IRAS02333+5930
8	55 24 21 0	-25 46 20.9	64 12 04.0	65 49 26.0	63 12 32.0	62 51 31.9	63 47 30.0	62 48 21.0	68 54 36.0	65 27 19.0	56 17 37.0	12 18 42.0	65 05 21.0	30 22 10.0	64 30 48.0		0.4 44.0	64 29 54.0	61 33 08.0	62 11 31.0	45 11 41.9	-03 12 13.0	58 21 34.0	61 53 26.0	61 52 20.0	61 50 40.0	0	0.00 00 10	61 33 15.0	-13 22 02.0	64 56 36.0	59 30 36.9
δ	00 00 45 0	00 05 03.4	00 11 44.6	00 21 09.6	00 33 53.3	00 34 05.4	00 34 16.1	00 37 58.7	00 42 50.0	00 46 51.2	00 49 29.2	01 03 49.0	01 04 35.7	01 08 30.4	01 12 24.4	6	6.01 01 10	01 13 28.1	01 19 58.0	01 30 27.6	01 55 35.0	02 16 49.0	02 19 15.1	02 21 40.8	02 21 53.3	02 22 06.1		0.2 63 11.3	02 30 55.9	02 31 19.6	02 31 43.0	02 33 20.5

References	47	43,51	43	43	20,60	t	27,43	09	43,53	43	42	က	40,43,70	43	36,40	35,36,40,69	40	36,40,69	43	56,60,64,72	43	43	20,60	42,43	43	43	55,56,64,72	43	46	2	55,56,64,72
date	870331	890127	880714	880204	880421	i d	870327	880205	870913	880205	891128	70618	880422	870619	890127	870320	870322	806088	880422	880216	880430	880430	806088	880430	880503	870619	880208	880430	870619	870330	880206
$\Delta \nu$	6.25	6.25	6.25	6.25	6.25	0	12.50	6.25	12.50	6.25	6.25	6.25	6.25	12.50	6.25	3.13	12.50	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25
f(Jy km/s)		36.8							20.0	13.6		8.2		92.9	60.5					24.3			12.4				58.4				5.1
v_{max}	6.001	6.99-	-1.9	6.8-	5.6	1	51.3	12.0	-27.2	-38.6	11.2	3.0	27.1	2.5	7.2	9.1	94.3	47.5	9.1	46.9	-10.9	-25.9	5.7	-11.9	0.1	12.1	0.2	-1.9	54.1	44.1	15.7
vmin	16.7	-72.2	-86.1	-93.1	-78.6	1	-117.3	-72.2	-29.1	-39.6	-75.2	2.3	-57.1	1.8	-15.2	-33.7	-74.3	-36.7	-75.1	30.0	-95.1	-110.1	4.6	-96.1	-84.1	-72.1	-0.7	-86.1	-30.1	-40.1	14.9
δv	0.165	0.165	0.165	0.165	0.165		0.329	0.165	0.329	0.165	0.165	0.165	0.165	0.082	0.165	0.082	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165
$v(\mathrm{km/s})$		-67.1							-28.1	-39.1		2.6		2.2	2.8					30.4			5.1				-0.3				15.3
$\Delta f_{\mathcal{L}}$	1.8	2.4	3.7	2.1	2.6		2.0	2.9	2.0	1.4	1.1	1.6	3.0	1.6	1.8	2.7	2.6	3.5	2.1	1.2	3.3	3.3	1.3	3.4	4.0	1.8	1.8	3.4	2.9	1.9	1.4
$f_{ u}(\mathrm{Jy})$	5.5	20.2	11.0	6.3	7.7	1	5.9	8.8	10.3	8.2	3.2	12.6	9.0	140.5	32.2	8.2	7.9	10.4	6.3	20.9	6.6	10.1	11.4	10.2	12.1	5.4	52.1	10.3	8.6	5.7	7.9
	V			٧	V		V 	<u> </u>	*	*	٧	*	<u> </u>	*		٧	V	<u> </u>			V	V	*	<u> </u>	<u> </u>	V	*		<u> </u>	<u> </u>	
pII	-23.710	2.796	2.269	3.002	-31.822	,	1.644	-2.258	0.200	0.676	-1.561	-21.411	1.820	-21.579	-20.564	-20.556	-20.506	-20.575	0.447	-31.403	0.630	4.004	-13.294	-0.458	2.059	-9.803	-45.344	2.189	-21.483	-20.871	-25.580
η	146.596	135.282	136.387	137.070	158.926	4	138.503	141.232	139.914	140.645	143.831	158.041	142.001	158.767	158.349	158.349	158.345	158.402	144.890	177.961	148.045	145.392	163.628	151.612	149.436	160.508	222.164	150.863	175.840	176.230	185.217
Class	STAR	HII	HII	HII	STAR		H	STAR	НН	HII	нп	HII	HII	HII	НН	нн	НН	НН	HII	STAR	HIII	НП	STAR	HII	HII	HII	STAR	HII	TT	TT	STAR
Name	R TRI	IRAS02395 + 6244	IRAS02461+6147	IRAS02541 + 6208	IRC+20052		S201	IO PER	HHL-5	IRAS03101+5821	BFS 31	IRAS03225+3034	GL 490	IRAS03245+3002	HH 7-11(B)	HH 7-11(A)	9 HH	HH 7-11(C)	IRAS03353+5550	IK TAU	IRAS03534 + 5402	IRAS03544+5431	IRC+30072	S209	IRAS04070+5411	IRAS04073 + 3800	W ERI	IRAS04146+5318	T TAU(1)	T TAU(2)	R TAU
9	34 02 50.0	62 44 16.0	61 47 34.0	62 08 29.0	21 36 24.0	1	60 16 12.0	55 32 06.0	58 19 21.0	58 22 00.0	59 58 44.0	30 34 50.0	58 36 38.0	30 02 36.0	31 05 19.0	31 05 45.0	31 08 13.0	31 03 00.0	55 49 52.0	11 15 42.0	54 02 02.9	58 19 20.9	33 21 48.0	50 52 08.0	54 11 43.0	37 59 59.0	-25 15 37.0	53 18 45.0	19 17 55.0	19 25 45.0	10 03 16.0
δ	02 34 00.0	02 39 31.0	02 46 11.7	02 54 11.1	02 58 42.1	. ;	02 59 22.4	03 03 07.0	03 03 33.2	03 10 11.7	03 13 25.4	03 22 31.0	03 23 38.6	03 24 34.0	03 25 56.6	03 25 58.0	03 26 05.6	03 26 05.9	03 35 20.5	03 50 46.0	03 53 26.9	03 54 24.0	04 06 24.3	04 06 24.7	04 07 00.6	04 07 20.0	04 09 25.7	04 14 38.4	04 16 09.0	04 19 07.0	04 25 33.3

TABLE II (continued)

References	09	42	64,72	43,51	42	4.7	ř	50,55,64,72	55,60	2	02	14,24,70	35	42	42	20,02	37		14	2,26,28,37,40,42	64,72	2,69	50,60	41	35	47,55,64	14,69	51	21,56,64,72	64,72	42	71
date	880206	890127	880207	870324	890127	9000196	071060	870331	880204	870330	806088	870401	880208	870401	870323	870330	880709	201000	971069	891204	890126	880503	870331	870618	806088	880713	806088	880713	870904	890126	880423	806088
$\Delta \nu$	6.25	6.25	6.25	12.50	6.25	20.0	0.43	6.25	6.25	6.25	6.25	3.12	6.25	3.12	12.50	6.25	6.25	200	0.43	12.50	6.25	6.25	6.25	12.50	6.25	6.25	3.12	6.25	6.25	6.25	6.25	6.25
f(Jy km/s)								4.2		165400.0	8.69	112.1		237.3	8.5	19.5				34.9		27.1		38.1		41.2	971.7		11.4			
v_{max}	36.7	1.1	-1.9	93.3	15.1	-	6.11	-10.8	84.1	25.0	10.9	10.6	50.1	-16.4	-15.7	-59.7	40.1	1 0 7	46.1	1.5	48.1	10.7	33.9	2.8	67.1	9.6-	19.4	48.7	-36.7	42.1	35.1	32.6
Vmin	-47.5	-83.1	-86.1	-75.3	-69.1	2	6.7)-	-11.3	-0.1	-10.0	7.0	9.9	-34.1	-18.1	-17.3	-61.8	-44.1	36.1	-30.1	-71.4	-36.1	8.6	-50.3	2.0	-17.1	-12.9	-8.0	-35.5	-37.8	-42.1	-49.1	-51.6
δv	0.165	0.165	0.165	0.329	0.165	20	cor.n	0.165	0.165	0.165	0.165	0.082	0.165	0.082	0.329	0.165	0.165	1010	601.0	0.329	0.165	0.165	0.165	0.329	0.165	0.165	0.082	0.165	0.165	0.165	0.165	0.165
v(km/s)								-11.1		7.5	7.4	7.5		-17.2	-16.5	-60.7				6.0		10.2		2.4		-12.3	15.9		-37.2			
Δf_{ν}	3.5	2.7	3.9	2.3	2.8	ŀ	4.1	1.8	3.3	534.1	2.9	3.8	2.9	7.7	0.5	6.0	2.9	ic	3.1	0.3	3.0	2.6	3.6	3.5	4.5	1.6	39.6	6.0	2.3	3.6	1.8	5.1
$f_{ u}(\mathrm{Jy})$	< 10.5	< 8.2	< 11.7		< 8.5		7.4.7	* 7.8	< 10.0	200900.0	44.2	152.7	8.6	238.3	* 5.4	* 9.0	> 8.7		> 9.4	8.9	< 9.1	* 28.1	< 10.7	* 39.2	< 13.5	16.5	598.7	< 17.9	* 10.2	< 10.9		< 15.2
liq	-14.078	2.590	-24.679	-13.742	0.851	- C	-32.(13	7.835	14.562	-19.385	-19.215	-19.239	-19.763	2.446	2.445	-22.299	-3.662	100.00	-19.294	2.698	0.995	-16.362	20.091	-15.485	-14.548	-0.593	-14.105	-0.852	-2.492	22.898	4.090	-20.341
III	171.388	154.349	188.447	173.853	160.263	000	200.777	156.439	148.283	208.994	208.753	208.817	210.426	173.482	173.579	217.781	183.722	1 1 1	211.505	173.718	176.967	206.566	143.434	206.008	205.455	181.759	205.110	184.958	188.717	139.397	180.875	230.462
Class	STAR	HII	STAR	IRAS	нп	G 4 TP 2	SIAR	STAR	STAR	HII	ШН	нп	HH	HII	HII	STAR	НН	ט א מנו	IKAS	III	STAR	HII	STAR	IRAS	нн	STAR	нп	IRAS	STAR	STAR	HII	STAR
Name	IRC+30087	S211	RX TAU	IRAS04361+2547	BFS 44	441	1 DEF	IRC+50137	IRC+60154	KL IRC 2	OMC(2)2	OMC 2	HH 1	S231	17358+0244	RW LEP	HH 4	0001	2115/-1929	S235	U AUR	NGC 2024	IRC+70066	20601-1548	HH 19-27	AW TAU	NGC 2071	AFGL5171	U ORI	V CAM	S241	S LEP
δ	27 23 01.0	51 06 00.0	08 13 36.0	25 47 41.0	45 30 31.0	0	0.61 86 12-	52 48 54.0	63 12 54.0	-05 24 23.0	-05 07 36.0	-05 11 28.9	-06 46 50.0	35 44 16.0	35 39 21.0	-14 04 03.0	23 49 24.0	0.1.1.0	-07 31 51.0	35 40 18.0	32 01 06.0	-01 57 30.0	69 57 15.0	-01 04 17.0	-00 09 25.9	27 06 32.0	00 20 48.0	24 14 11.0	20 10 06.0	74 30 24.0	30 14 53.9	-24 11 24.0
σ	04 28 01.5	04 32 24.0	04 35 30.0	04 36 09.8	04 48 00.0	0 0	7.64 70 60	05 07 19.6	05 15 05.0	05 32 47.0	05 32 58.2	05 32 59.8	05 33 53.2	05 35 51.3	05 36 06.3	05 36 35.6	05.37.21.8	0.00	9.05 37 50.9	05 37 31.8	05 38 55.0	05 39 13.7	05 41 07.6	05 41 18.6	05 43 35.9	05 44 19.6	05 44 31.3	05 50 41.0	05 52 51.0	05 55 58.0	06 00 40.9	06 03 41.9

TABLE II (continued)

References	2,34,70	2,34	14,21,32	9	42	37,70	40	2 6 18 26 28 33 40	21,00,00,00,00,00	- 0	40	2,6,14,18,26,33,40,42	42	42	42	20	50,60,64,72,74	51	42	50,60,64,72	2,24,69	42	42	55	42	22,60	16,56,64,72	53	47	42	42
date	870401	880430	870612	870330	880423	870617	870617	870320	901008	021060	870617	606088	870612	870331	870331	870331	880204	881014	870331	870401	870322	880907	881015	880426	881016	881015	870904	871106	880420	870613	881015
$\Delta \nu$	1.56	6.25	3.12	6.25	6.25	12.50	12.50	8.05	9.0	0.20	12.50	6.25	6.25	6.25	6.25	6.25	3.12	6.25	6.25	6.25	12.50	12.50	6.25	6.25	6.25	6.25	6.25	12.50	6.25	12.50	6.25
f(3y km/s)	27.4	92.8	6.06	53.8				8 09	2			127.5	5.5				86.2			115.7			25.4				2434.0	11.5			10.0
vmax	12.0	18.3	22.1	8.5	67.1	72.3	89.3	14.0	10.0	49.1	95.4	20.9	11.6	77.1	63.1	35.4	-18.5	-17.1	99.1	-8.7	94.3	127.3	34.4	22.1	91.1	85.1	30.3	8.9	84.4	120.3	73.6
vmin	11.5	17.8	8.8	-3.7	-17.1	-96.3	-79.3	0.0	7.0-	-35.1	-73.2	16.0	11.1	-7.1	-21.1	-48.8	-33.9	-101.3	14.9	-17.7	-74.3	-41.3	32.8	-62.1	6.9	6.0	-4.0	6.3	0.5	-48.3	72.2
δv	0.041	0.165	0.082	0.165	0.165	0.329	0.329	10.0	201.0	01.U	0.329	0.041	0.165	0.165	0.165	0.165	0.082	0.165	0.165	0.165	0.329	0.329	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.329	0.165
v(km/s)	11.8	18.1	9.5	8.3				-	7:-			19.4	11.3				-33.2			-14.4			33.6				20.9	6.5			72.9
Δf_{ν}	2.3	2.6	1.3	2.8	2.2	4.0	3.4	7 6	7.7	χ. Χ.	3.7	61.1	1.4	2.7	2.9	2.4	0.4	33	4.2	1.7	3.7	0.2	1.7	2.5	5.0	2.0	9.7	2.4	3.6	2.8	1.3
$f_{\nu}(\mathrm{Jy})$	38.2	173.8	89.3	39.2		11.9					11.1	150.4	9.9		8.7		30.9					9.0	.11.1				244.3	33.0	10.8		
bii	+12.617 *	-12.597 *	0.347	0.889	-3.101 <	-11.829	-0 173			-11.410 <	0.153 <	-1.680	-1.254 *	-0.568	-0.212 <	14.122 <	21.517	> 080 9-			2.055 <	-1.229	-1.104 *		-1.370 <		-5.066	-4.177 *	4.893 <	> 681.0-	
lii	213.702		189.778	188.947	197.139	213.879	192 605	100 600	192.000	214.134	192.980	196.455	196.162	195.823	195.820	174.115	154.311	215 517	210 793	155.659	203.322	211.894	212.249	205.574	217.329	224.344	239.352	238.479	222.070	233.678	235.685
Class	HII	III	HII	HII	НІІ	НН	н		1111	нн		HII	HII	III	нп	STAR	STAR	IRAS	HII	STAR	нп	НП	HII	STAR	HII	нп	STAR	НН	STAR	HII	III
Name	MON R2	MON R2 IRS3	S252 A	18895+0089	S270	HH 12-15	8026	5, 1100	1/0070	ин 16-1 <i>7</i>	S255 B	S269	S269 B	S266	19582-0021	IRC+40156	IRC+60169	A FGL 5202	5283	ii LYN	NGC 2264	S284	21225-0110	GX MON	S286	CRL 1074	VY CMA	HHL-50	TT MON	S305	BBW 33
8	-06 22 47.9	-06 22 35.0	20 39 44.0	21 39 09.0	12 33 25.0	-06 10 49.0	17 56 24 9	0.43.00	18 00 17.0	-06 12 54.9	17 46 09.9	13 50 31.0	14 18 12.0	14 55 47.0	15 06 09.0	40 45 07.0	60 58 50.0	-05 01 13 0	00 47 20 0	59 54 49.0	09 32 12.0	00 22 00.0	00 09 34.0	08 29 03.0	-04 28 22.0	-10 39 17.9	-25 40 11.9	-24 28 58.0	-05 45 00.9	-18 21 41.0	-20 37 45.1
δ	06 05 16.9	06 05 21.7	06 05 36.6	06 05 53.7	06 08 01.0	06.08.25.6	06 00 31 4	4.16 60 00	2.86 80 90	06 10 23.0	06 11 29.0	06 11 46.3	06 12 43.9	06 14 32.8	06 15 50.0	06 29 45.0	9.00 00: 90	06 31 58 4	06 35 54 6	06.36.19.2	06 38 25.5	06 42 36.0	06 43 41 7	06 50 02.0	06 52 06.1	07 05 28.5	07 20 54.6	07 22 33.4	07 23 13.1	07 27 43.1	07 27 54.9

TABLE II (continued)

References	55,56,64,72	51	2,50	20	47,50	64.74	11,12	20,60	47	09	50,56,64,72	55,56,64,72	55.60.64.72	55,56,64,72	64,72	47,50		47,50	20,60	50,56,64,72	60,71	57,64	64,72	47	47,50,60	47,50,55	47,50	20	55,56,64,72	64,72	45,56,64,72,74	50,60
date	880205	871108	870326	870331	870331	880420	071000	870622	870612	880205	870330	880502	880426	880205	880206	870621		870330	870616	870401	880423	880206	880207	870612	870612	870330	870401	870612	880207	880207	870401	891202
$\Delta \nu$	6.25	12.50	12.50	6.25	6.25	6.05	0.4.0	12.50	12.50	6.25	6.25	6.25	6.25	6.25	6.25	12.50		6.25	12.50	6.25	6.25	6.25	6.25	12.50	12.50	12.50	6.25	12.50	6.25	6.25	6.25	12.50
f(Jy km/s)	29.2	9.7						23.5			6.6	16.1							29.9	846.0			9.89			10.9			4.1	5.8	391.5	
vmax	-1.0	-4.8	105.4	134.4	57.7	87.1	1.10	7.4	113.4	54.2	28.0	-0.1	87.7	41.1	15.1	122.0		7.78	-50.2	15.7	45.9	62.1	41.7	81.8	80.3	9.7	-46.0	64.8	-22.3	28.3	25.0	178.1
vmin	-2.7	-5.5	-63.2	50.3	-26.5	c	6.7	2.7	-55.2	-30.0	26.4	-1.5	3.5	-43.1	-69.1	-46.6		3.5	-51.1	3.2	-38.3	-22.1	39.3	-86.8	-88.2	6.9	-130.2	-103.8	-22.8	56.9	8.4	9.5
δv	0.165	0.329	0.329	0.165	0.165	165	601.0	0.329	0.329	0.165	0.165	0.165	0 165	0.165	0.165	0.329		0.165	0.082	0.082	0.165	0.165	0.165	0.329	0.329	0.165	0.165	0.329	0.165	0.165	0.082	0.329
$v(\mathrm{km/s})$	-1.9	-5.2						5.0			27.2	-0.8							-50.7	3.7			40.5			7.2			-22.5	27.6	13.6	
Δf_{ν}	1.1	1.5	1.8	2.7	3.2		D. 1	0.5	2.5	4.8	1.0	1.2	96	2.6	, r.	1.6		2.3	1.4	3.2	1.7	4.5	1.4	5.6	1.9	1.4	2.4	1.6	1.2	1.1	2.3	0.5
$f_{\nu}(\mathrm{Jy})$		7.9	5.5	8.0	2.6	-	11.3	2.6	9.2 >	,		11.4	2 2		10.0			< 7.0	27.6	398.0	5.1	< 13.6	19.9	7.7	> 5.8		< 7.1	4.9	6.7	4.1	106.9	> 1.6
PII	* 989.0-	21.898 *	_	21.331	24.139	900	10.090	16.475 *	40.669			49.772						59.427	42.509	37.196	67.183		52.481 *	50.683	76.316	\$5.660 *	57.538	58.569	78.720	85.692	868.19	52.887
l _{II}	235.905	188.799	231.836	196.676	211.751	000	776.667	245.433	201.881	253.999	248.146	190.603	255 796	223.721	211 886	138.364	•	233.022	134.721	269.269	240.366	286.011	278.593	282.850	248.030	286.552	126.492	126.061	127.053	325.565	310.358	310.334
Class	STAR	IRAS	STAR	STAR	STAR	υ. 1	SIAR	STAR	STAR	STAR	STAR	STAR	STA B	STAR	STAB	STAR		STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR
Name	Z PUP	AFGL 1141	23184 + 0422	SGEM	R CNC	140	CKL 12/4	IRC-20176	W CNC	IRC-20188	х нүа	B.LMI	TRC 20107	R LEO	V LEO	R IIMA		W LEO	VX UMA	R CRT	AF LEO	IRC-30182	S CRT	SV VIR	R COM	T VIR	T UMA	RS UMA	U CVN	T COM	RT VIR	IRC-10278
9	-20 32 58.8	30 37 13.0	-14 35 43.0	23 34 07.0	11 52 50.0	0	-10 13 41.8	-19 01 53.9	25 27 12.0	-23 47 37.9	-14 28 01.9	34 44 18.0	91 48 05 8	11 39 44 0	21 31 42 0	69 02 22 0	1	13 58 54.0	72 08 13.0	-18 03 21.0	15 25 19.9	-26 28 47.9	-07 18 59.9	-09 54 24.9	19 03 42.0	-05 45 29.0	59 45 42.0	58 45 29.0	38 38 53.0	23 24 36.0	05 27 22.1	-09 27 29.0
δ	07 30 27.6	07 30 47.6	07 39 58.9	07 40 02.5	08 13 48.5		08 35 43.8	08 53 26.7	09 06 56.9	09 23 35.8	09 33 06.0	09 42 35.0	00 40 55 8	09 44 52 6	0.25 44 02.0	10 41 07 5	1	10 50 59.0	10 52 08.0	10 58 06.0	11 25 16.4	11 46 13.0	11 50 12.0	11 57 47.2	12 01 41.7	12 12 02.5	12 34 07.2	12 36 42.0	12 44 56.7	12 56 12.0	13 00 05.7	13 06 54.5

TABLE II (continued)

	_								_	-																					
References	64,72	09	64,72	50	45,56,72	Y.		64,72	56,64,72	45,64,56,50,72,73	60,64,56,72	47	73	47,50	25	64,72	55,64,50,72,73	09	55,56,64,72	73	50,60,73	64,72	20,60	50,60	73	50,56,64,72,73	52	60,56,64,72,73	52	50,60	47
date	880206	880207	880207	870613	870401	870396	0.000	880206	880207	870402	880205	870613	880708	870331	880206	880206	870402	880205	880502	880713	870617	880205	870617	870617	880713	870331	880205	880205	880205	870611	870615
$\Delta \nu$	6.25	6.25	6.25	12.50	6.25	1250	00.71	6.25	6.25	12.50	6.25	12.50	6.25	12.50	6.25	6.25	12.50	6.25	6.25	6.25	12.50	6.25	12.50	12.50	6.25	12.50	6.25	6.25	6.25	6.25	12.50
f(Jy km/s)					107.4		1	5.3	11.9	301.1	53.4		42.2	35.6		17.2	57.0		20.7					39.7		37.4	268.3		1808.0		
v_{max}	41.2	33.1	57.1	84.5	43.1	7.2		48.7	-3.1	4.7	-13.3	40.4	3.0	14.8	64.3	22.2	4.5	39.2	8.8	87.5	105.6	66.1	66.4	-2.3	81.8	-14.1	-14.9	86.7	7.2	35.2	-35.2
vmin	-43.0	-51.1	-27.1	-84.1	39.8	104 0	6.171-	48.0	-4.1	1.7	-16.4	-128.2	-13.8	11.0	-19.9	20.3	0.1	-44.7	9.7	3.3	-63.0	-18.1	-102.2	-6.4	-2.4	-18.1	-15.5	2.2	-1.9	-49.0	-203.8
ag	0.165	0.165	0.165	0.329	0.082	0 300	676.0	0.165	0.165	0.041	0.165	0.329	0.165	0.165	0.165	0.165	0.082	0.165	0.165	0.165	0.329	0.165	0.329	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.329
$v(\mathrm{km/s})$					42.7			48.4	-3.6	2.4	-13.8		-13.5	11.4		21.2	1.7		8.2					-4.4		-14.5	-15.2		8.9		
$\Delta f_{ u}$	2.1	1.8	3.8	2.4	1.8	9	0.1	2.5	2.2	1.8	7.0	2.3	1.5	1.6	2.3	1.0	3.1	2.7	1.4	3.6	2.4	3.2	1.5	0.7	5.0	1.5	3.8	3.0	8.7	2.2	1.3
$f_{ u}(\mathrm{Jy})$	< 6.3	< 5.5	_	< 7.3	21.5	~			15.2	173.0	23.6	< 6.8	15.7	31.2	6.9	7.5	34.8	< 8.1	11.1	10.7	< 7.1	9.6	4.5	7.5	15.0	26.1	365.6	9.1	2270.0	9.9	
pII	70.773	38.748	54.231	43.343	32.812	62 043		* 287.78	30.795	69.213	57.972	66.468	53.268	42.589	53.372	52.780 *	57.174	31.400	53.476 *	45.840 <	44.985	46.762	30.067 <	29.523 *	43.995 <	40.350	16.565	43.530 <	15.840	36.238 <	38.235 <
lıı	107.894	314.228	320.760	118.716	318.026	336 607		358.763	323.379	34.279	352.677	38.070	11.025	353.829	20.349	20.493	49.473	345.705	29.512	8.105	8.652	26.236	357.104	358.441	50.765	35.346	353.031	56.374	353.937	105.013	98.533
Class	STAR	STAR	STAR	STAR	STAR	STAB	STAIL	STAR	STAR	STAR	STAR	STAR	IRAS	STAR	STAR	STAR	STAR	STAR	STAR	IRAS	STAR	STAR	STAR	STAR	IRAS	STAR	IRAS	STAR	IRAS	STAR	STAR
Name	V CVN	R HYA	S VIR	T UMI	W HYA	AV VIB	711 7110	Z BOO	RU HYA	RX B00	RS VIR	R BOO	IRAS15060+0947	Y LIB	SSER	SSER	S CRB	IRC-20285	WX SER	IRAS15262+0400	WW SER	R SER	SW LIB	FS LIB	IRAS16211+3057	U HER	YLW 16	IRC+30292	IRAS16293-2422	R UMI	R DRA
δ	45 47 24.0	-23 01 30.0	-06 56 24.0	73 41 05.0	-28 07 06.0	03 25 48 0	0.01 0.00	13 43 18.0	-28 38 24.0	25 55 48.0	04 54 09.0	26 57 09.0	09 47 43.0	-05 49 18.9	14 40 24.0	14 29 12.0	31 32 46.0	-18 29 19.0	19 44 06.0	04 00 02.0	03 48 32.0	15 17 06.0	-12 42 22.0	-12 12 30.0	30 57 56.0	19 00 18.0	-24 32 52.9	34 54 43.0	-24 22 15.9	72 23 08.0	66 51 28.0
δ	13 17 17.0	13 26 59.0	13 30 23.0	13 33 38.0	13 46 12.2	13 40 16 0	0.01 62 61	14 04 04.0	14 08 42.0	14 21 56.6	14 24 46.0	14 34 59.3	15 06 00.2	15 09 02.4	15 16 59.0	15 19 20.0	15 19 21.3	15 19 28.2	15 25 32.0	15 26 13.6	15 29 54.3	15 48 23.0	15 52 46.7	15 57 37.0	21	16 23 34.9	16 24 26.0	16 26 00.0	16 29 20.9	16 30 38.1	16 32 31.2

Table II (continued)

References	09	73	73	60,64,72	71,73	09	09	7.3	200	00,10	-	1	38	-	38	-	38		2,3,4,5	-	7	-	55,60	49		73	09	09	2,8,10,11,12	73	2	73
date	880503	880713	880709	880209	206088	880205	880206	80708	920616	910000	907088	880503	880504	880501	880501	870331	880501	10000	870616	880203	870322	870331	880504	880504	870331	880907	880504	880504	870331	880708	870331	880907
$\Delta \nu$	6.25	6.25	6.25	6.25	6.25	6.25	6.25	20.0	0.43	16.30	67.0	6.25	6.25	6.25	6.25	6.25	6 25	0 0	6.25	6.25	12.50	6.25	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25	6.25	6.25
f(Jy km/s)	18.7	- 100		36.3				71.2	C.14	7	477.0					120.0			6105.0	8.99	1440.0								95.2	27.8	36.6	
v_{max}	-47.1	36.5	-35.1	11.4	50.8	41.9	04.7	20.1	1.00-	110.3	1.0	-18.0	55.1	55.1	65.7	40.1	101	1.71	74.9	20.7	81.8	104.1	22.4	36.0	50.1	131.1	98.4	24.6	20.8			57.4
v_{min}	-47.9	-47.7	-119.3	6.9	-33.4	-42.3	10.5	0.00	50.9	-08.3	-11.0	-100.0	-29.1	-29.1	-18.6	37.4	10.1	1.71-	21.7	19.5	-5.0	19.9	-61.8	-48.2	-34.1	46.9	14.2	-59.6	8.6	1.8	-17.3	-26.8
δv	0.165	0.165	0.165	0.165	0.165	0.165	0 165	100	001.0	675.0	0.165	0.165	0.165	0.165	0.165	0.165	1,00	0.100	0.165	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165
$v(\mathrm{km/s})$	-47.5			7.3				30 E	-90.9	,	-1.8					37.9		1	65.8	20.1	17.0								∞. ∞.	2.6	-16.6	
$\Delta f_ u$	2.9	5.0	1.7	1.3	4.3	2.5	4.0	-	#: -	o. 7	3.5	2.8	6.4	4.1	3.3	6.2	0	F. 5	35.2	3.3	9.7	5.1	4.6	5.1	4.9	4.0	4.0	3.7	3.8	0.8	2.1	4.3
$f_{ u}(\mathrm{Jy})$	25.4		5.0	28.1			11 0	'	1 0	ř	138.7	8.5	19.2			82.4			3422.0	52.5	208.8		13.8	15.2			11.9	11.0	-	14.2	10.7	
PIIq	* 28.779	34.454 <	30.522 <	25.615	26.455 <	14.536 <			* 000.61		97.0	-0.107	> 980.0-	-0.250	0.002	0.040	2,	/ 01.0-	-0.033	-0.462 *	-0.850	> 200.0	9.519 <					7 188 /		21.334 *	0.057	14.838 <
III	23.691	43.095	37.696	29.944	32.131	10.970	19 954	100.01	610.62	27.818	359.139	359.436	359.866	359.619	0.214	0.375	000	0.100	0.668	359.972	0.547	2.142	18.754	2.584	3.916	37.299	9.588	36 909	5.883	49.353	7.469	34.943
Class	STAR	IRAS	IRAS	STAR	STAR	STAR	STAB	10 4 61	CHAI	SIAR	ПН	HII	HII	HII	HII	HII	1111	H	HII	HII	HII	HII	STAR	STAR	HII	IRAS	STAR	STAB	HII	IRAS	HIIH	IRAS
Name	RX OPH	IRAS16560+2252	IRAS17050+1714	IRC+10322	V438 OPH	RV SER	нао н	TD A C17000 1 0110	IRAS11230+0113	1725+050 PU8	35914+0003	35944-0011	35987-0009	35962-0025	00021+0000	00038+0004	2100 01000	0.0010-001	SGR B2M	35997-0046	RCW 142	00214+0001	IRC-10381	00258-0043	00392-0001	IRAS17528+1144	VV SGR	вт орн	W28 A2(2)	IR AS17579+2355	00747+0006	IRAS17594+0826
δ	05 29 24.0		17 14 14.0	08 59 25.0	11 07 30.0	-11 56 21.0	03 01 21 0	0.12.10.00	01 13 39.0	05 04 42.0	-29 38 07.9	-29 27 13.1	-29 04 38.9	-29 22 25.1	-28 44 04.9	-28 34 40.0	0 00	0.60 66 02-	-28 21 59.9	-29 11 02.9	-28 53 38.9	-27 05 12.0	-08 00 41.9	-26 56 00.0	-25 34 19.0	11 44 12.0	-19 19 54.0	11 10 30 0	-24 04 12.1	23 35 40.0	-22 28 13.0	08 26 58.0
δ	16 50 20.0	16 56 05.8	17 05 03.8	17 11 55.8	17 12 18.9	17 15 03.0	17 99 58 4	17 00 00 4	17 23 04.0	17 25 39.9	17 40 15.4	17 41 29.7	17 42 27.2	17 42 29.9	17 42 56.9	17 43 11.0	0	1/ 43 19.7	17 44 09.9	17 44 10.3	17 47 03.4	17 47 28.3	17 48 28.0	17 50 10.8	17 51 35.6	17 52 53.7	17 54 05.9	17 54 11 3	17 57 26 8	17 57 59 2	17 59 11.7	17 59 25.7

TABLE II (continued)

References	2	55,56,57,64,72	13	64,72	8,14	8,14	,	00	50,56,64,72	49	49	3	,	14,8	50,73	2,8,15,16,18	50,73	61	0 0	61	000	19	2,19,20	2,8,59	2,8,10,12,18,19	2,19	2,19	2,19	2,8,19,59	19	8,19	49	49
date	870402	802088	870331	880708	870322	870402	201009	171069	870328	870621	880907	870402		870328	870326	870331	880504	870402	001010	8.0402	870402	870619	870620	880504	870620	870402	870402	891204	870331	870402	870401	870621	870617
Δν	3.13	6.25	6.25	6.25	12.50	6.25	30.3	0.70	12.50	12.50	6.25	6.25		12.50	12.50	6.25	6.25	6.25		6.25	6.25	3.13	12.50	6.25	12.50	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25
f(Jy km/s)		23.9		68.7	23.5	290.8	200	7.97	596.4			789 1		68.1		902.8				61.9			768.0	271.5	251.9		24.3	94.2			362.0		8.3
v_{max}	35.1	21.0	53.1	20.9	5.8	33.7	300	0.02	19.4	115.5	106.3	70.5		13.1	58.2	3.9	57.7	52.1	1.70	31.8	82.1	43.1	33.9	27.0	61.5	21.3	34.7	-25.8	80.1	50.1	62.3	85.3	-72.5
Vmin	-7.1	-1.5	-31.1	-1.5	4.6	32.7	3 0 1	19.0	-4.3	-53.1	22.1	7 9 9	1 1	10.5	-110.4	-15.4	-26.5	-30 1	1.70	9.62	-2.1	6.0	-7.7	-0.1	55.6	-63.0	32.6	-47.5	-4.1	-34.1	34.1	-82.3	6.97-
δv	0.082	0.165	0.165	0.165	0.329	0.165	391.0	0.102	0.165	0.329	0.165	0 165	001.0	0.329	0.329	0.165	0.165	0 165	001.0	0.165	0.165	0.082	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.329	0.165
$v(\mathrm{km/s})$		-1.0		-1.0	5.2	33.2	1.00	20.1	-1.3			603	7.00	11.8		-0.5				31.6			22.6	26.7	61.1		33.7	-26.3			48.2		-76.4
Δf_{ν}	9.9	1.4	3.7	2.0	1.7	2.7	-	7.7	2.9	2.2	5.7	2	5	1.7	3.5	2.8	3.4	7	1 1	4.1	3.9	3.8	2.1	3.2	5.0	3.9	1.6	0.7	3.6	3.7	3.2	1.8	2.0
$f_{\nu}(\mathrm{Jy})$	19.7	8.9	11.1	14.8	8.9	259.0			126.4		17.2	146.2	0.011		9.01	147.2	10.1	19.4		41.7		11.3	65.4	6.69	92.7		7.1	16.5	10.7	11.2	88.2	5.4	15.3
pIIq	0.224 <	0.769	-1.299 <	-0.022	0.194 *	-0.363		* - 500.0	-1.004	> 260.0-	0.003 <	0.007	0.0	0.063 *	13.503 <	-0.385	23.165 <	0 501		0.480	-0.143 <	0.331	-0.102	-0.120	-0.182	0.045	-0.197 *	0.283	-0.261 <	> 2000	-0.059	0.774 <	-0.894
lıı	8.137	9.540	5.949	8.939	9.620	8.679	00700	20.460	8.343	10.077	10.428	10.479	0.1.01	11.034	36.476	10.622	61.473	19 410	77.77	12.889	11.903	12.761	12.209	12.215	12.682	13.194	12.811	13.874	12.906	14.106	14.166	15.703	12.817
Class	HII	STAR	HII	STAR	HII	нш	G. A. T. S.	SIAR	STAR	STAR	STAR		-	HII	STAR	HII	STAR	н		HIII	HIII	HII	нп	НШ	HII	HII	HII	HII	НІІ	HII	HII	STAR	STAR
Name	00814+0022	IRC-20424	M8	IRC-20427	00962+0019	00868-0036	10000	IRC-10395	VX SGR	01008-0009	01043+0000	(1)	(1)	01103 + 0006	1806+091 P08	W31 (2)	1807+347 P08	01949+0050	0000171710	01289 + 0049	01190-0014	S40	01221-0010	01222-0012	W33 B	01319 + 0005	W33 CONT.	01387+0028	W33 A	01411+0009	01417-0006	01570+0077	01282-0089
8	-21 48 29.1	-20 19 11.9	-24 27 49.9	-21 13 59.9	-20 32 01.0	-21 37 39 9	0.00	-08 13 35.9	-22 14 05.9	-20 16 40.0	-19 55 24.9	10 60 03 0	0.04 40 61-	-19 21 55.9	09 11 42.0	-19 56 37.9	34 45 45.0	17 56 37 0	0.10 00 11-	-17 32 16.0	-18 42 25.0	-17 43 34.9	-18 25 08.9	-18 25 24.9	-18 02 40.9	-17 29 12.9	-17 56 21.1	-16 46 33.9	-17 53 09.1	-16 39 58.9	-16 41 03.0	-14 56 10.9	-18 16 07.0
ď	18 00 00.2	18 00 57.9	18 01 02.0	18 02 37.9	18 03 16.0	18 03 21.5	0.11.00	18 03 59.3	18 05 03.2	18 05 18.0	18 05 40.0	10 05 40 4	10.02.00	18 06 42.2	18 06 56.0	18 07 30.7	18 07 37.0	19 07 56 3	10 01 00.0	_	18 09 15.2			18 09 48.5	18 10 59.2	18 11 11.5	18 11 18.3	18 11 41.5	18 11 44.0	18 12 52.5	18 13 31.9	18 13 33.7	18 13 53.2

TABLE II (continued)

References	19	19	2,19	19	19	19	22	1 1	1.6	19	37	19	iĉ	77	2,8,10,12,16,18,19,23	2,19,23	75	24	19	8	8	21,64,72	73	14.39	0 0 10	2,8:10	43	39,43	49,55	39	39	39	73
date	870402	870402	810018	819028	870618	870620	870402	00,010	870402	870620	880708	870323	00000	880108	870402	870611	880709	870612	870615	880907	880907	870402	880907	870402	101010	010331	1700/9	880907	880907	880907	880907	870613	880907
40	6.25	6.25	12.50	12.50	12.50	12.50	6.25	0.00	6.25	6.25	6.25	12.50		0.70	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.05	2 2	0.4.0	06.21	6.25	6.25	6.25	6.25	12.50	6.25
f(Jy km/*)		55.3	102.2	39.6	135.0	17.7	0 200	4 64		13.2					14.4	50.8				39.2		132.6			Ç,	410.0						18.3	
v_{max}	60.1	-34.3	25.2	37.6	51.6	34.7	61.0	0.10	67.1	23.2	-30.9	110 3	200	60.1	14.9	0.3	32.1	60.5	89.1	6.09	85.0	48.7	27.5	00 1	1 7	1.00.1	157.9	84.1	55.1	72.1	101.1	37.2	3.7
Vmin	-24.1	-36.7	17.9	36.4	43.5	32.5	65.0	4.00-	-17.1	22.4	-115.1	ox Ox		-74.1	13.8	-3.7	-52.1	-10.2	4.9	59.6	5.0	32.2	-56.7	7 0		0.02	-10.7	-0.1	-29.1	-12.1	16.9	35.4	-80.5
δv	0.165	0.165	0.329	0.329	0.329	0.329	165	001.0	0.165	0.165	0.165	0 3 3 0	20.0	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	165	2 5	0.100	0.329	0.165	0.165	0.165	0.165	0.329	0.165
v(km/s)		-35.5	20.8	37.0	51.2	33.6	1 79	T-2-1	•	22.8					14.3	-0.3				60.3		41.0			t	21.3						36.3	
$\Delta f_{ u}$	4.2	1.5	2.4	1.9	2.7	1.3	0 1	7.7	4.2	3.6	2.7	0 0	3 1	I.8	2.2	2.2	1.5	3.7	2.3	2.5	1.3	2.6	4.1	2.6	- c	7.7	1.9	2.8	4.1	4.1	4.3	1.7	4.1
$f_{\nu}(\mathrm{Jy})$	< 12.6		41.6	* 11.0	49.2	11.0	V 22			* 12.1	> 8.0	α α		< 5.4	* 11.1	11.4	< 4.5	< 11.0	8.9	k 27.2	< 3.9	46.5	12.4	:::		7	2.6	< 8.4	< 12.2			* 7.6	_
PIIq	0.012		0.016	-0.105	-0.602	-0.511	1100		0.799	-0.642	-2.596	0 576			-0.666	969.0-	-1.900	-0.622	-0.627	-0.050		-0.126	9 786		_		0.240	-0.130	-0.048				_
III	14.494	12.430	14.605	14.452	13.659	14 228	16.097	10.921	16.983	14.331	10.847	14 691	14.001	17.131	15.035	14.987	12.801	15.182	15.197	16.584	16.608	17.552	38 036	10.619	19.019	19.612	20.672	20.084	20.274	20.725	20.776	21.041	33.538
Class	III	HII	HII	HII	HII	H		1111	HII	HII	нн	пп	1111	нп	HII	HII	STAR	HII	HII	HII	HII	НП	IRAS	1111	1111	HII	STAR	нп	STAR	HII	Н	H	IRAS
Name	01449+0001	S39	01460+0002	01445-0010	01366-0060	01423-0051	Mic	M 10 A	W37	01433-0064	HH 27-28	0300 637 10	01402-0030	M16 B	M17 (2,3,4)	M17 (1)	OH 12.8-1.9	M17 (5)	M17 (6)	01658-0005	01661-0005	IRC-10414	IB A S 18231 ± 0855	000010010	01301-0013	01961-0023	02067 + 0024	02008-0013	OH 20.2-0.1	02073-0005	02078-0005	02104-0006	IRAS18270+0326
9	-16 21 46.0	-18 42 56.9	-16 15 46.0	-16 27 20.0	-17 23 21.9	16 50 47 1	13 46 30 0	-13 40 30.0	-13 47 59.9	-16 49 05.9	-20 48 40.9	0 00 10 01	-10 of -	-13 42 23.9	-16 12 40.9	-16 16 02.9	-18 45 46.0	-16 03 39.9	-16 03 01.0	-14 33 19.0	-14 32 11.0	-13 44 22.0	08 55 02 0	0.00	0.62 cc 11-	-11 58 21.9	-10 48 53.9	-11 30 29.9	-11 18 05 0	-10 54 14.9	-10 51 35 0	-10 37 49 0	03 26 08.0
ď	18 13 55.5	18 13 56.1	18 14 08.0	18 14 16.4	18 14 30.3	18 15 18 8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	18 15 19.4	18 15 59.9	18 15 59.9	18 16 14.6	0	7.17 01 01	18 16 33.8	18 17 29.2	18 17 30.0	18 17 35.1	18 17 37.0	18 17 40.0	18 18 17.7	18 18 21.3	18 20 27.9	18 23 10 4		10 24 20.4	18 24 50.0	18 25 09.8	18 25 22.2	18 25 26 2	92	18 26 24 2	18 26 56 9	18 27 04.6

TABLE II (continued)

References	35,37	49,74	14,39	39	14	49		7		8	14	14	2,8,10,14	49,55,74	56,64.72	61	47	- !	49	73	49	09	8,14	27	43	39	49,74	55	2,39	39	55,74	73
date	890127	870401	870323	870401	870402	880907	02070	704010	870402	870331	870402	880907	870322	880907	880907	880907	880504	10000	880907	880907	870621	880504	870322	880907	880907	880907	880907	880907	870401	870613	880504	880907
Δν	6.25	6.25	12.50	6.25	6.25	6.25	20.0	0.43	6.25	6.25	6.25	6.25	12.50	6.25	6.25	6.25	6.05	0.4.0	6.25	6.25	12.50	6.25	12.50	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25	6.25
f(Jy km/s)			74.1	114.4					17.4	129.4			555.9		50.6							48.1	177.7	40.0			49.5		94.4	28.1	16.8	
v_{max}	82.1	7.66	26.0	9.68	95.1	21.8		1.4.1	103.7	82.3	158.1	147.1	112.9	77.1	-40.6	48.7	بر	0.01-	26.2	111.0	139.7	65.2	106.8	-19.5	127.1	-8.9	59.1	97.1	97.3	35.8	-20.9	30.7
vmin	-2.1	15.5	24.2	85.6	10.9	-62.4		33.3	101.0	75.4	73.9	62.9	44.3	-7.1	-43.2	-35.5	00 1	0.00	-58.0	26.8	-28.9	62.1	91.5	-28.1	42.9	-93.1	30.2	12.9	96.0	34.2	-21.7	-53.5
δv	0.165	0.165	0.329	0.165	0.165	0.165	1	0.100	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165	0 165	001.0	0.165	0.165	0.329	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.165
v(km/s)			25.1	89.0					101.3	77.2			107.5		-42.7							63.7	91.9	-20.5			57.8		6.7	35.0	-21.3	
Δf_{ν}	2.1	3.9	1.9	5.2	3.8	4.2		y. y	3.1	2.0	3.8	4.3	1.1	4.2	2.7	4.2	•). *	4.4	4.7	2.0	1.5	3.1	1.6	4.3	4.3	1.0	4.2	2.2	1.4	2.1	4.5
$f_{ u}(\mathrm{Jy})$	6.2	11.6	11.8	22.2	11.3	12.6	0 0	11.8	22.0	33.3	11.2	12.9	35.7	12.5	44.7	12.6	0	6.11	13.1	14.2	6.1	14.8	8.68	16.2	12.9	13.0	8.4	12.5	65.2	10.8	18.7	13.6
	V	· V	*	2	\ \	V		٧			>	٧ 	4	٧ «		× ∞		_		<u> </u>	_			9	× 			× 	*	*	*	> 2
pII	5.365	-2.029	0.017	0.065	-0.611	-1.523		0.155	-0.183	-0.411	-0.037	-0.153	0.084	0.623	7.835	-0.208	8 005	0.30	0.181	4.917	-0.588	0.811	0.066	8.026	-0.253	0.100	-0.578	0.423	-0.009	-0.048	19.406	11.072
lıı	31.594	17.684	21.882	22.356	21.368	20.280		79.307	23.440	23.011	24.493	24.294	24.790	26.544	40.678	25.363	20.250	000.60	26.298	36.288	26.209	29.421	28.860	44.557	28.828	29.976	28.719	30.716	29.949	29.914	72.841	52.495
Class	HH	STAR	HII	нц	ІІН	STAR	1111	HII	HII	HII	нп	HII	HII	STAR	STAR	HH	CTA D	THIC	STAR	IRAS	STAR	STAR	HII	STAR	HII	HII	STAR	STAR	HII	HII	STAR	IRAS
Name	SERPENS	01768-0203	RCW 169	02236 + 0006	02137-0061	02028-0152	7000 10000	07332+0016	02344-0018	02301-0041	02449-0004	02429-0015	W42	OH 26.5+0.6	IRC+10365	W42(3A)	пасх	A OF II	02630 + 0018	IRAS18375+0510	02621-0059	IRC+00364	02886+0007	IRC+10374	02883-0025	02998+0010	02872-0058	OH 30.7+0.4	W43 S	02991-0005	RW LYR	IRAS18441+2216
9	01 13 20.0	-14 31 03.9	-09 51 01.0	-09 24 31.0	-10 35 52.9	-11 59 08 0	0.00 10 10	6.01 16.10-	-08 33 54.0	-09 03 03.9	-07 33 54.0	-07 47 40.0	-07 14 41.9	-05 26 28.9	10 23 00.0	-06 52 24.0	0 00 47 90 0	0.02 14 00	-05 51 51.0	05 10 23.0	-06 17 55.0	-02 48 12.9	-03 38 40.9	13 54 30.0	-03 49 12.9	-02 38 20.0	-04 04 02.0	-01 49 59.9	-02 42 48.0	-02 45 42.0	43 34 51.0	22 16 52.0
δ	18 27 21.5	27 39	18 28 16.1	18 28 59.6	18 29 33.0	18 30 46 4	1.01.00.01	18 31 40.8	18 31 55.5	18 31 56.2	18 33 22.7	18 33 25.4	33	18 34 51.3	18 34 59.0	18 35 37.0	7 22 26 61	10 00 01.4	18 35 58.3	18 37 32.0	18 38 33.0	18 39 31.2	18 41 07.9	18 41 17.0	18 42 12.5	18 43 04.3	18 43 09.8	18 43 17.3	18 43 24.6	18 43 29.0	18 43 39.2	18 44 06.0

TABLE II (continued)

References	39	39	49,64,72	39	43	39	39	63	2	2,11,17,39	39	2,39	2,10,39	2,11,39,60	39	8.14.39	25 56 64 73	31,40,00,02	66,0	0,0	25	. 7	14	39	39	3	8,39	49	25,64,72	2,8,12,25	25,40,56,64,72.74
date	880907	806088	806088	806088	806088	880908	806088	870322	806088	870613	870613	881015	870331	806088	891130	870322	800008	950300	800008	onenco	606088	606088	806088	870401	870613	606088	870612	806088	606088	870331	806088
Δν	6.25	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25	12.50	12.50	25.00	6.25	6.25	6.25	12.50	20.0	0.4.0	0.23	0.70	6.25	6.25	6.25	6.25	12.50	6.25	6.25	6.25	6.25	6.25	6.25
f(Jy km/s)								263.2	49.8			73.4	793.8	33.5					2444.0			30.5	18.2	142.8		23.0	66.2				
v_{max}	6.6-	45.1	103.2	82.1	82.1	66.1	85.0	102.3	50.1	144.3	81.3	128.2	120.5	97.3	116.1	190.3	1001	1.67.1	21.1	3.1	7.1	94.2	92.8	95.5	130.3	16.9	33.2	112.0	118.6	117.1	90.1
vmin	-94.1	-39.1	19.0	-2.1	-2.1	-18.1	-5.0	94.9	42.5	-24.3	-87.3	-59.0	78.3	92.2	31.9	21.7		11.3	10.4	-01.1	-77.1	93.0	9.68	97.6	-38.3	11.7	32.5	27.8	34.4	32.9	5.9
δv	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.329	0.329	0.658	0.165	0.165	0.165	0330	37.0	0.100	0.100	0.100	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.165
$v(\mathrm{km/s})$								8.86	48.0			117.6	99.2	94.8				6	10.0			93.6	92.5	95.3		16.4	32.9				
$\Delta f_{ u}$	4.1	4.7	4.0	4.0	4.0	4.3	2.3	8	6.0	3.8	2.6	2.7	3.2	8.0	1.2	3.6	•	7.7	7.67	4.3	4.1	2.1	1.9	3.9	2.7	1.6	3.7	3.9	4.3	4.0	3.7
$f_{ u}(\mathrm{Jy})$					12.0	12.9	6.9		7.6	_	7.8	27.3	207.2				10.0	ć	2		12.4	24.6	16.3	52.6		10.4	83.2				
pII	0.101 <	-0.144 <	-0.232 <	0.125 <	-0.044	0.100			-0.057	-0.050 <	0.092 <	0.032	-0.058	-0.156 *	-0.074 <					-0.179 V	-0.219	-0.256	0.134	0.058	-0.075 <	0.190	* 920.0-	> 06.790		-0.091	
lıı	30.672	30.234	30.136	30.877	30.596	30.901	30.963	31.413	30.743	30.763	31.061	30.947	30.816	30.824	31.001	31 291	30.000	060.06	31.244	31.213	31.136	31.396	32.152	32.045	32.103	32.799	32.744	31.715	33.173	33.132	32.829
Class	IIH	НП	STAR	HII	HII	HII	HII	ШН	HIII	HII	HII	HII	НШ	HII	IIH	ШН	CT.	SIAR	THII TITL	III	нп	HII	HII	HII	III	нп	HII	STAR	STAR	HII	STAR
Name	03067 + 0010	03023-0014	03014-0023	03088 + 0013	03060-0004	03090+0010	03096+0008	03141+0031	W43 (M2)	W43 (M1)	03106+0009	W43 OH	W43 (M3)	W43 (M4)	03100-0007	03199±0007	0300 0000	03003-0000	03124-0011	03121-0018	03114-0022	03140-0026	03215+0013	03204+0006	03210-0008	03280 + 0019	03274-0008	03172-0079	OH 33.2-0.1	03313-0009	OH 32.8-0.3
8	-02 01 14.9	-02 31 19.9	-02 39 00.0	-01 49 39.9	-02 09 17.0	-01 49 04.9	-01 46 19.0	-01 16 07 0	-02 01 49.9	-02 00 34.9	-01 40 48.0	-01 48 31.0	-01 57 57.0	-02 00 17.0	-01 48 35.0	01 29 12 0	00 53 54 0	-0.20 04.0	-01 36 38.0	-01 40 10.0	-01 45 24.0	-01 32 32.9	-00 41 29.9	-00 49 18.9	-00 49 52.9	-00 05 27.9	-00 15 45.9	-01 30 17.9	00 07 18.0	00 04 30.0	-00 17 47.9
α	18 44 21.2	18 44 24.9	18 44 32.8	18 44 38.7	18 44 43.7	18 44 46.7	18 44 57.5	18 44 59 5	18 45 02.8	18 45 03.3	18 45 06.0	18 45 06.3	18 45 11.0	18 45 32.8	18 45 34.9	18 45 36 7	100001	10 40 03.9	18 46 09.7	18 40 20.7	18 46 20.7	18 46 57.4	18 46 57.7	18 47 02.0	18 47 36.8	18 47 57.2	18 48 47.9	18 49 26.4	18 49 33.7	18 49 34.0	18 49 48.0

TABLE II (continued)

References	2	2,8,16,17,59	14	*	73	73	27,40	27,40	2,8,12,59	73	73	63	73	6,8,63	49,74	73	2,8,59	73	8,59	73	45,56,72	73	56,64,72	73	49,55,73,74	73	49,73	5,8	2,8,12	73
date R	606088	870322	870622	806088	606088	806088	870622	606088	870322	806088	606088	880713	806088	870401	870331	606088	870331	880907	870401	880907	870622	880907	880712	880907	880907	880907	870622	880712	870331	880907
Δν	6.25 8	12.50 8	6.25 8	6.25 8	6.25 8	6.25	$12.50 \mid 8$	6.25	12.50 8	6.25 8	6.25	6.25 8	6.25 8	6.25 8	6.25 8	6.25					25.00 8	6.25	6.25	6.25	6.25	6.25		6.25 8	6.25	6.25
f(Jy km/s)		2413.0					30.0	301.5	200.9					197.2			12.2				70.5		-					111000.0	14960.0	
vmax	151.1	64.5	80.1	105.0	71.1	77.1	-3.2	39.3	59.4	127.9	51.5	77.1	86.0	36.4	49.1	79.3	44.8	140.7	77.1	37.7	48.0	6.92	53.0	77.1	119.1	53.3	83.3	52.0	52.0	51.7
vmin	6.99	39.5	-4.1	25.0	-13.1	-7.1	-5.3	24.1	49.3	43.7	-32.7	-7.1	1.8	27.1	-35.1	-4.9	43.5	56.5	-7.1	-46.5	46.4	-7.3	-31.2	-7.1	34.9	-30.9	-85.3	-32.0	-32.0	-32.5
ag	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165
$v(\mathrm{km/s})$		54.1					-3.6	31.7	49.7					36.1			43.8				47.2							10.2	11.2	
Δf_{ν}	4.0	14.1	3.5	2.3	3.6	4.2	3.9	3.5	3.5	3.9	3.7	4.9	4.1	3.0	4.0	2.9	2.9	4.4	4.1	4.5	1.8	4.4	3.3	4.2	4.0	4.5	2.0	534.1	79.8	4.2
$f_{ u}(\mathrm{Jy})$	12.1	671.8			10.8	< 12.6	15.2	101.7	85.7	< 11.7	< 11.0	< 14.8	< 12.2	241.1	12.0	8.6	13.7	< 13.2			40.7	13.1	6.6	< 12.6	< 12.1	< 13.6	0.9 >	29980.0	1794.0	< 12.7
pIIq	0.115 <	0.152		0.350 <		2.420	2.589	2.538	-0.029	0.277	2.863	-0.750 <	2.294	-0.741	1.495	-1.703	-1.735				0.455 *	1.302	-13.615 <	1.160	-0.132	0.324	0.517	0.011	-0.029	
l _{II} 1	33.913	34.258	33.810	35.029	42.452	40.130	40.479	40.499	35.577	36.288	41.762	35.148	41.038	35.197	39.713	33.945	35 201	38.204	40.622	42.159	41.953	43.780		44.458	42.311	43.285	43.762	43.167	43.165	38.291
Class	III	H	HIII	HIII	IRAS	IRAS	HII	HII	HII	IRAS	IRAS	HII	IRAS	HIII	STAR	IRAS	нп	IRAS	HIII	IRAS	STAR	IRAS	STAR	IRAS	STAR	IRAS	STAR	HII	HIII	IRAS
Name	03391+0012	W44	03381-0019	03503+0035	IRAS18520+1014	IRAS18535+0726	M 928	S76 E	03558-0003	IRAS18540+0302	IRAS18549+0905	03515-0075	IRAS18556+0811	03520-0074	03971+0150	TR A S18567+0003	W48	IR AS19017+0412	04062-0014	IRAS19037+0824	R AQL	IRAS19043+1009	IRC-20540	IRAS19061+1041	OH 42.3-0.2	IRAS19069+0916	04376+0052	W49 N	W49 S	IRAS19087+0323
9	00 51 45.0	01 11 10.0	00 37 59.0	01 57 43.0	10 14 09.0	07 26 31.0	07 49 45.0	07 49 26.0	02 16 27.0	03 02 46.0	09 05 37.0	01 33 40.0	08 11 22.0	01 36 30.0	06 38 49.0	00 03 14 0	01 09 13 0	04 12 27 0	06 41 55.0	08 24 27.0	08 09 10.0	10 09 51.0	-22 19 12.0	10 41 53.0	08 11 48.0	09 16 16.0	09 47 00.0	09 01 17.0	09 00 03.0	03 23 21.0
δ	18 50 16.3	18 50 46.4	18 51 09.0	18 51 29.5	18 52 03.5	18 53 31.4	18 53 33.9	18 53 47.0	18 53 51.0	18 54 04.4	18 54 57.5	18 55 37.0	18 55 39.6	18 55 40.7	18 56 03.9	18 56 47 2	18 59 19 7	19 01 45 7	19 03 34.9	19 03 47.3	19 03 57.5	19 04 21.0	19 05 56.0	19 06 08.5	19 06 43.7	19 06 55.8	19 07 08.4	19 07 49.8	19 07 58.2	19 08 47.0

TABLE II (continued)

References	73	2,8,25,59	47	2,8,26	73	2,8	14	9686	00000	8,0	48,50,73	73	73	2.8.12.59	73	49	c	7	2,10,12	2,4,5,8,10,12,14	09	58	73	73	09	73	56,64,72	48	48	50,73	50	21
date	880907	880910	890127	870401	806088	870401	870401	870401	070401	8/0401	870622	880909	806088	870401	880909	870623	010000	079078	870620	870621	880502	890127	880907	880907	880909	806088	880708	806088	880909	890128	890128	870401
Δν	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	9 0	0.75	12.50	6.25	6.25	6.25	6.25	12.50	Š	0.79	25.00	25.00	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25
f(Jy km/*)		2756.0		909.2										127.2			1	ç.) ,	16590.0	18240.0	14.4				15.5		20.4					623.9
Vmax	73.0	49.1	57.8	64.0	111.9	87.1	105.1	1001	1.001	1.001	70.2	94.1	56.5	38.5	8.4	-0.4	(L	5.60	170.0	170.0	13.7	65.8	19.1	36.3	-24.6	174.6	-29.3	34.7	95.2	37.0	96.0	30.3
Vmtn	-11.2	34.2	-26.4	53.3	27.7	2.9	20.9	15.0	2 2	15.9	-100.0	6.6	-27.7	10.2	-75.8	-169.0	1	51.5	-30.0	-30.0	11.9	-18.4	-65.1	-47.9	-25.5	90.4	-30.2	-49.5	11.0	-47.2	11.8	18.1
δv	0.165	0.082	0.165	0.165	0.165	0.165	0.165	0 165	0.100	0.165	0.329	0.165	0.165	0.165	0.165	0.329	1	0.165	0.658	0.658	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0 165	0.165	0.165	0.165	0.165
v(km/s)		42.3		60.1										34.1				52.1	55.7	55.6	12.2				-25.0		-29.8	_				26.4
$\Delta f_{ u}$	4.3	8.3	2.9	5.4	4.1	4.3	4.2		# C	4.0	9.0	4.1	3.7	1.9	4.1	1.8	,	1.3	56.4	201.7	3.4	2.4	4.6	4.3	1.8	6.5	1.3	4	4.2	4.0	3.6	3.3
$f_{ u}(\mathrm{Jy})$		2199.0		41.0	12.2	12.9		13.0		_	1.6	12.4					,	11.9	1398.0	2460.0	7.4		13.7	12.9				12.3	12.4		10.9	4
pIIq	0.945 <	-0.128	13.895 <	0.133	2.058 <	0.134 <					4.642 <	-2.297 <	5.116		> 690.5		,	-0.301	-0.370	-0.387	23.178	2.096	5.280 <	-1.557 <				-3.504	-3 406 <		-3.540 <	
lıı	45.469	43.798	72.516	45.071	49.069	45.473	45 492	45 443	47.400	45.466	54.867	43.142	57.124	48.606	39.325	44.795	0	49.369	49.490	49.491	103.156	56.095	63.482	51.815	37.668	38.527	48.698	52 124	52.299	52.219	52.437	59.781
Class	IRAS	HII	STAR	HII	IRAS	HII	н	н		ПП	STAR	IRAS	IRAS	Н	IRAS	STAR		ПП	HII	HII	STAR	нп	IRAS	IRAS	STAR	IRAS	STAR	18 A.S.	IRAS	STAR	STAR	HII
Name	IRAS19088+1129	OH 43.8-0.1	RU LYR	04507+0013	IRAS19116+1511	K 47	04549±0013	04544+0007	1000 - 27170	04547+0005	1913+215 P09	IRAS19160+0755	IRAS19161+2343	04861+0002	IRAS19186+0315	04479-0231		w 21 w	W51 N	W51 M	YZ DRA	K3-35	IRAS19288+2923	IRAS19303+1553	IRC+00446	IRAS19344+0016	RT AQL	1938±159 D09	1938+154 Pn9	1938+152 P09	1938+154 P09	05978+0006
9	11 29 35.0	09 30 51.0	41 12 56.0	10 45 42.0	15 11 42.0	11 07 03.0	11 07 47 0	11 02 23 0	11 05 05.0		21 31 12.0	07 55 04.0	23 43 55.0	13 49 44.0	03 15 12.0	09 22 12.0	6	14 20 47.0	14 25 13.0	14 24 44.0	71 35 15.0	21 23 53.0	29 23 34.0	15 53 09.0	-00 33 32.9	00 16 22.0	11 36 18.0	15 12 00 0	15 24 00 0	15 13 16 0	15 27 12.0	23 36 42.0
σ	19 08 50.0	19 09 31.2	19 10 40.7	19 11 00.2	19 11 41.8	19 11 46.0	19 11 50 0	10 11 66 0	19 11 30.0	19 12 02.6	19 13 26.0	19 16 01.9	19 16 08.6	19 18 13 0	19 18 40.9	19 19 13.2	6	19 20 53.2	19 21 22.4	19 21 26.2	19 24 19.5	19 25 34.0	19 28 51.4	19 30 19.6	19 33 29.2	19 34 25.9	19 35 36.0	10 38 00 0	19 38 00 0	19 38 38 0	19 38 46.0	19 41 04.2

TABLE II (continued)

References	27,40	28	40	73	48	73	- 1	49,73	73	73	73	48	73	64,72	09	45,56,64,72	51	2	2	55,56,64,72	55,56,64,72	2,4,5,18	73	11	73	51	73	2,4,11,18	2,4,11,12	64,72	73
date	870323	880713	870326	880908	606088	800088		870331	880909	806088	606088	880908	880909	890128	890127	870612	880713	870614	870614	880713	880713	870904	806088	880910	880908	871106	606088	870904	870322	880504	806088
Δν	12.50	3.13	12.50	6.25	6.25	6.25	0.4.0	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	3.13	6.25	6.25	25.00	6.25	6.25	6.25	12.50	6.25	6.25	12.50	6.25	6.25
f(Jy km/s)															8.5	139.1	11.1	23.4	,	21.6	30.7	318.5				6.6		81.0	316.9	28.8	
v_{max}	110.3	51.1	94.4	-36.1	-2.9	76.6	7.0¥	12.1	84.5	42.5	36.7	28.5	96.5	127.1	-45.1	31.6	-41.1	-18.3	2.1	-147.5	-47.4	16.9	13.9	9.0	-25.8	-76.2	91.3	3.2	2.8	-11.7	49.1
vmin	-58.3	8.9	-74.2	-120.3	-87.1	376	0.00	-72.1	0.3	-41.7	-47.5	-55.7	12.3	42.9	-45.5	27.7	-41.5	-35.7	-40.1	-148.2	-48.3	-70.5	-70.3	-83.6	-110.0	-76.9	7.1	-9.4	-1.0	-12.3	-35.1
δv	0.329	0.082	0.329	0.165	0.165	0 165	201.0	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.082	0.165	0.165	0.329	0.165	0.165	0.165	0.329	0.165	0.082	0.329	0.165	0.165
$v(\mathrm{km/s})$		-													-45.3	31.3	-41.3	-19.4		-147.8	-47.9	15.1				-76.6		2.7	2.4	-12.0	
$\Delta f_{ u}$	2.6	3.5	2.3	4.2	3.9	_		1.3	4.2	3.9	4.3	3.9	4.2	5.9	2.2	3.7	2.4	0	2.8	1.9	2.4	3.6	4.2	3.1	3.9	2.4	4.3	2.6	2.3	2.2	4.0
$f_{ u}(\mathrm{Jy})$	< 7.9	< 10.4	8.9	< 12.7	< 11.8	1 0		< 4.0	< 12.6	> 11.6	< 12.9	< 11.6	< 12.5			61.7	* 23.1	11.2	8.5	.4	k 29.8	104.6	< 12.7	> 9.3	< 11.8	* 13.2	< 12.9	86.3	266.1	48.5	< 12.0
IIq	-0.131	860.0	960.0	-2.942	-1.631	7 7 2	_	1.249	-9.238			0.135	-4.220		2.283	-15.561	2.685	1.600			-10.309	-0.975		8.355	-3.495	0.195	-4.725	0.340	0.343	0.183	-5.708
III	60.883	61.465	61.476	56.731	59.137	50.463	23.402	65.439	47.755	59.173	63.826	64.724	57.648	11.840	68.951	38.913	70.775	70 292	70.329	84.441	53.366	69.540	52.563	84.900	67.931	73.652	67.437	75.760	75.782	77.004	68.965
Class	HIII	HII	HII	IRAS	IRAS	TP AC	CWIII	STAR	IRAS	IRAS	IRAS	IRAS	IRAS	STAR	STAR	STAR	IRAS	нш	E	STAR	STAR	IIH	IRAS	STAR	IRAS	IRAS	IRAS	HII	HII	STAR	IRAS
Name	287	S88	S88 B	IRAS19456+1927	1946+222 P09	TP A C10469 1 2222	7677±704616WUI	06544 + 0125	IRAS19495+0835	IRAS19499+2141	IRAS19508+2659	1952+279 P09	IRAS19522+1935	RR SGR	V468 CYG	RR AQL	IRAS1956+3423	K3-50	ON 3	ZCYG	SY AQL	ON 1	IRAS20097+1107	AC CYG	IRAS20137+2838	IRAS2014+3526	IRAS20171+2732	ON 2 S	ON 2 N	KY CYG	IRAS20246+2813
8	24 27 58.0	25 05 00.0	25 05 30.0	19 27 50.0	22 12 00.0	0 60 06 00	0.67 76 77	29 05 15.0	08 35 10.0	21 41 43.0	26 59 52.0	27 54 00.0	19 35 44.9	-29 19 23.9	32 37 32.9	-02 01 33.9	34 23 20.0	33 24 17 0	33 25 47.0	49 54 10.0	12 48 18.0	31 22 42.0	11 07 48.0	49 17 54.0	28 38 36.0	35 26 47.0	27 32 42.0	37 15 52.0	37 17 01.0	38 11 17.9	28 13 58.0
σ	19 44 14.0	19 44 40.0	19 44 41.9	19 45 36.5	19 46 00.0	10 46 16 7	13 40 10.1	19 49 20.6	19 49 33.1	19 49 57.7	19 50 53.9	19 52 00.0	19 52 15.4	19 52 49.9	19 53 41.7	19 55 00.1	19.56.38.0	19 59 50 0	19 59 58 4	20 00 02.0	20 04 44.7	20 08 09.9	20 09 46.3	20 11 21.0	20 13 44.0	20 14 27.5	20 17 05.9	20 19 48.9	20 19 51.8	20 24 06.0	20 24 41.0

TABLE II (continued)

References	22,24,28,29,70	18,26,30	29	73	2,11,12,17	,	2,11	2	2,4,11,18	2	73		71	50,56,64,72	44 68	73	07	99		74	55,56,64,72,74	51	89	73		73	64,72	42	42	42,66		42,66	21,68	09	42	37,69	
date	890127	870331	806088	806088	870322		880714	870331	870322	870614	806088		806088	870326	870612	710000	606089	890130		880709	880504	890130	870330	880908		806088	880504	870613	870613	880714		890128	890129	890129	870613	880503	
$\Delta \nu$	6.25	6.25	6.25	6.25	12.50		3.12	6.25	12.50	3.12	6.25		6.25	12.50	6.05	3 6	0.70	6.25		6.25	6.25	6.25	6.25	6.25		6.25	6.25	12.50	12.50	12.50		6.25	6.25	6.25	12.50	6.25	
f(Jy km/s)		158.8			759.8		8.09		303.6	134.2		-		217.5							94.2									564.5		151.4	75.5	6.09		15.4	
vmax	30.1	4.5	25.2	56.3	25.4		6:0	35.0	9.9	5.	16.1	1	13.9	5.1	37.1	1.00	0.88	38.5		-12.9	7.8	-32.9	44.1	9.99		-36.9	64.1	17.3	14.3	-68.3		-70.5	-43.0	-49.9	76.3	-2.0	
Vmin	-54.1	-25.5	-59.0	-27.9	-3.4		-8.0	-45.0	-14.2	-2.2	-681	:	-70.3	-21.1	17.1	1.11-	×.×	-45.7		-97.1	-6.8	-117.1	-40.1	-17.6		-121.1	-20.1	-151.3	-154.3	-88.7		-75.2	-50.5	-50.7	-92.3	-3.0	
δv	0.165	0.165	0.165	0.165	0.082		0.082	0.165	0.329	0.082	0 165	201.0	0.165	0.329	1210	601.0	0.165	0.165		0.165	0.165	0.165	0.165	0.165		0.165	0.165	0.329	0.329	0.082		0.165	0.165	0.165	0.329	0.165	
v(km/s)		-8.8			12.3		0.5		-2.3		2			-18.5	!						-2.7									-70.8		-71.0	-46.1	-50.3		-2.5	
$\Delta f_{ u}$	4.1	1.7	2.9	4.3	8.9		1.7	1.6	8	10.9	8.6	9	3.8	1.2		4.1	4.1	3.2		1.7	1.4	2.8	2.6	4.3		4.1	4.0	2.7	2.0	3.2		1.9	1.0	2.3	2.0	1.4	
$f_{ u}(\mathrm{Jy})$	< 12.2	28.4		< 12.8	792.4		22.5	5.8		107.7			11.5			< 12.3	_	9.6		< 5.2	24.8			< 13.0		< 12.3		8.1		18		69.7	43.5	59.5	6.0		
bII	-0.618	0.709				•	0.591	0.538	0.572	2.0.0	6 343	o#6.0-	-24 181	-1 921		_	-6.605	0.154	-	-0.900	-9.409		_			-21.674	_					3.172	-1.796	17.556			
lıı	76.382	78.87	95.762	75.136	81.872		81.743	81.677	81 720	91.10	72 613	610.61	49.338	80.798	0000	102.973	76.200	84.599		83.399	74.344	51.364	85.459	58.518		68.202	64.324	97.315	97 342	97.533		97.525	94.606	112,449	105 395	105.371	
Class	HII	I	STAB	IRAS	HII		HII	HII	III	IIII H	110 4 C	CVUI	STAB	STAR	11111	ПП	IRAS	HII		STAR	STAR	IRAS	STAB	IRAS		IRAS	STAR	HII	Н	HIII	1	НП	HII	STAB	HII	HH	
Name	S106	GI, 2591	V778CVG	IR AS20363+3401	W75 N		W75 S(1)	DR. 21 S	W75 OH	W 15 CH	TD A C20402 1 2142	INAS20403+3143	V AOR	NMI CVG	MML OIG	PV CEPHEI	IRAS20482+3325	PELICAN		08340-0090	UX CYG	U EQU	V1057CVG	IRAS21120+0736		IRAS21174+1747	UU PEG	\$128	09734±0325	09753+0319	0.00	09753+0317	GI, 2789	AM CED	BFS 11. A	HH 32-35[1]	f_1,, =, ****
9	37 12 54 0	40 01 16 0	59 54 56 0	34 01 46 0	42 27 01.0		42 13 57.0	42.08.52.0	0.20 00 21	42 12 11.0	91 42 41 0	31 43 41.0	0.9 15 19 0	30 55 57 0	0.10 00 60	67 46 36.1	33 25 17.0	44 11 15.0		42 35 27.0	30 13 20.0	02 47 10 0	44 03 45 7	07 36 05 0		17 47 49.0	10.56.18.0	55 35 57 0	55 35 40 0	55 40 36 0	ř	55 39 37.0	50 00 42 0	76 00 27 0	65 52 02 0	65 49 39 0	1
ŏ	20 25 32 8	0.25 62 02	20 35 04 0	0.10 36 02	20 36 50.5		20 37 13.3	20 37 13 7	20 00 10.1	1.61 1.6 0.0	20 37 16.6	20 40 18.2	0 44 10 0	20 44 33 6	0.00 44 07	20 45 23.0	20 48 17.1	20 48 54.0		20 49 08.4	20 53 00 2	20 50 50.2	0.11 10 02	20 31 00.2	1	21 17 25.4	21 28 38 0	21 29 01 2	7 30 18 7	21 29 16.1	0.10 00 12	21.30.38.5	21 38 10 6	0.01 00 12	21 41 20.9	21 41 51 0	^:TO TT

TABLE II (continued)

References	69	37,42,68,69,70	53	43	43	42	1 5	43	43	43	56,64,72	50,64,72	43	43	26	43	14 18 24 70	0.1101	49,74	43	43	09	43	43	43	73	28,40	41	27,60,73	25,64,72	41	41
date	880503	870613	871106	880501	880503	870613	1000	106088	880503	880501	880504	870614	880502	880503	880504	606088	870327		870614	606088	606088	880504	606088	606088	606088	806088	870331	880205	880504	606088	870613	606088
Δν	6.25	12.50	12.50	6.25	6.25	12.50	1	6.75	6.25	6.25	6.25	12.50	6.25	6.25	6.25	6.25	12.50	000	12.50	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	12.50	6.25
f(Jy km/s)	32.9	3.8				6.3)		8.8					146.8			25.8	2					20.0				10.9	433.7		38.8		
vmax	9.91-	-14.6	82.3	6.7-	-20.9	-70.0		6.4-	-89.3	-27.9	34.3	89.3	30.1	-19.9	44.0	-2.9	7-	- :	68.4	-18.9	-17.9	102.6	-52.6	6.9-	-11.9	-63.0	-54.0	-41.8	40.3	-46.6	37.3	6.1
vmin	-31.5	-15.3	-86.3	-92.1	-105.1	-70.6		-89.1	8.68-	-112.1	-49.9	-79.3	-54.1	-38.7	-40.2	-87.1	ر بر	0.01-	-100.2	-103.1	-102.1	18.4	-53.5	-91.1	-96.1	-147.2	-54.7	9.09-	-43.9	-63.6	-131.3	-78.1
δv	0.165	0.329	0.329	0.165	0.165	0.329	1 0	0.165	0.165	0.165	0.165	0.329	0.165	0.165	0.165	0.165	0 165	001.0	0.329	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.082	0.165	0.165	0.329	0.165
v(km/s)	-31.2	-14.9				-703			9.68-					-20.5			л 4	F. 6					-53.0			,	-54.4	-48.3		-47.0		
$\Delta f_{ u}$	1.5	1.9	1.9	2.7	2.4	6	1	7.5	1.9	2.5	3.4	2.2	5.6	1.4	3.4	3.1	-	H :	2.2	3.3	3.6	2.3	2.2	3.7	3.7	4.3	1.4	1.6	4.1	1.5	1.9	4.0
$f_{ u}(\mathrm{Jy})$	31.1	10.1	5.8		7.2	o.	1		18.5		10.3	6.7	7.8	61.5		9.4	A 7.0	•			10.7	8.9	26.2	11.2	11.0	12.8	11.4	288.8	12.4	7.4	5.6	_
pii	698.6	* 618.6	-4.382		1.667 <	2.563			3.637 *	2.809	-21.512 <	-16.285 <	1.858 <	-3.579	-17.622 <	-0.722 <	5 310			0.431 <	0.406	-10.278 <	0.228 *	0.339 <	> 0.020	-40.723 <	* 685.0	0.492	-44.116 <	1.116	0.248 <	-1.287 <
III	105.404	105.418	93.486	100.215	100.165	101 003	1000	100.257	102.355	101.767	83.779	88.714	103.876	100.381	90.610	102.805	106 800	700.000	104.912	103.689	103.807	98.728	105.511	105.631	106.319	79.341	108.206	108.595	80.577	109.159	108.787	108.216
Class	HII	HII	НН	H	HII	нп		нп	HII	HII	STAR	STAR	HII	HII	STAR	HII	ШН	1111	STAR	HII	HII	STAR	HII	HII	HII	IRAS	HIII	IRAS	STAR	STAR	IRAS	IRAS
Name	BS40[2]	BFS 11-B	HHL-73	IRAS21512+5625	IRAS21519+5613	BFS 10	01111	IKAS21542+5558	IRAS21558+5907	IRAS21561+5806	TW PEG	SV PEG	IRAS22134+5834	IRAS22142+5206	SV PEG	IRAS22172+5549	8140	0.10	10491 + 0241	IRAS22181+5716	IRAS22189+5719	IRC+50434	IRAS22305+5803	IRAS22308+5812	IRAS22365+5818	IRAS22402+1045	S146	10860+0049	IRC+10523	MY CEP	10879+0025	10822-0129
8	65 52 10.0	65 53 10.0	47 19 15.0	56 25 41.0	56 13 41.0	57 27 00 0		55 58 41.9	59 07 35.9	58 06 44.9	28 06 30.0	35 06 17.0	58 34 13.0	52 06 32.9	35 06 39.0	55 49 40.0	63 03 43 0	0.01	59 36 16.0	57 16 35.0	57 19 09.0	45 34 46.0	58 03 30.0	58 12 53.0	58 18 42.0	10 45 07.0	59 39 43.0	59 44 50.0	08 38 10.0	60 33 18.0	59 36 40.0	57 58 48.0
σ	21 41 54.9	21 41 57.0	21 43 14.0	21 51 16.7	21 51 57.7	21 52 42 9		21 54 11.9	21 55 48.4	21 56 05.9	22 01 41.0	22 03 31.0	22 13 22.7	22 14 14.5	22 14 31.0	22 17 17.7	99 17 41 9	7:T 177	22 17 42.8	22 18 07.0	22 18 57.0	22 27 46.3	22 30 31.1	22 30 52.9	22 36 29.1	22 40 17.3	22 47 31.0	22 50 37.0	22 51 40.4	22 52 31.0	22 52 49.6	22 53 56.0

TABLE II (continued)

References	21,22,37,70	14,18,26,40,46	41	41	43	41	41	41	41	56,64,72	2,4,17	2,4,11,12,18,31	2	41	41,51	t	47,50	62	09	09	41	09		43	43	56,64,72	09	09	09	71	55,64.72
date	880205	870331	870613	870331	880207	606088	870613	870617	870614	880207	881013	870322	870401	870612	606088		87.0614	606088	880207	890127	870613	300008	000000	880808	606088	606088	806088	606088	880207	806088	870910
Δν	12.50	6.25	12.50	12.50	6.25	6.25	12.50	12.50	12.50	6.25	6.25	12.50	6.25	6.25	6.25		12.50	6.25	6.25	6.25	12.50	9 1 9	01.0	67.9	6.25	6.25	6.25	67.9	6.25	6.25	6.25
f(Jy km/s)	534.3	43.9	57.4	9.5	29.2	,					 208.7	162.1	7.1	189.4	37.0																53.9
v_{max}	13.9	-51.6	-46.3	-59.2	-50.1	46.1	32.3	31.3	70.3	66.1	-46.2	-54.2	-43.6	-39.3	-53.1	į	67.3	12.7	43.1	38.4	58.3	Ċ	7.7	6.7-	-11.9	-4.5	9.0-	21.0	-18.4	44.6	27.7
v_{min}	-11.3	-58.3	-59.3	-60.1	-52.3	-38.1	-1363	137.3	2.101-	-18.1	-81.8	-68.8	-45.6	-55.4	-54.3	0	-100.3	-71.5	-41.1	-45.8	-110.3	0 0 7	-40.0	-92.1	-96.1	-88.7	-84.8	-63.2	-102.6	-39.6	27.0
δv	0.165	0.165	0.329	0.165	0.165	0.165	0330	0 320	0.300	0.165	0.165	0.329	0.165	0.165	0.165	0	0.329	0.165	0.165	0.165	0.329	000	900.0	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165
$v({ m km/s})$	-10.8	-52.4	-46.6	-59.6	-50.4						-60.0	-54.9	-44.0	-55.1	-53.7																27.3
$\Delta f_{ u}$	4.7	1.4	2.4	1.8	2.9	3.8	2.1		0.5	4.4	1.8	5.6	8.0	2.4	2.0	0	7.7	2.2	3.8	3.4	2.1	и	0.0	3.9	3.8	4.2	3.4	4.1	4.3	2.5	2.6
$f_{ u}(\mathrm{Jy})$	327.1	16.9	29.8	* 9.4	32.5	> 11.4	. 9			-	126.4	52.4	8.9	55.5	* 28.3		- c.o >	9.9	< 11.4	< 10.2	< 6.2	7 31	•	× 11.8	< 11.3	< 12.6	< 10.1	< 12.2	< 12.9	< 7.5	9
pIIq	2.114	-0.863	-0.941	-0.983	-2.825	1.480					 0.777	0.757	699.0-	-0.769	-1.238			-12.828	-19.976	-20.087	-2.203	200		-0.615	-0.544	-0.044	-17.337	-0.265	4.385	-13.200	
lıı	109.873	108.662	108.770	108.761	108.470	110.480	109 997	110.096	111 080	85.405	111.544	111.536	111.284	111.257	111.238	i	98.576	107.247	104.493	105.115	112.247	00 750	90.1.06	113.609	114.534	115.066	110.486	115.984	117.082		
Class	HII	STAR	IRAS	IRAS	HII	IRAS	IRAS	IRAS	IRAS	STAR	HII	HII	HII	IRAS	IRAS	6	SIAR	STAR	STAR	STAR	IRAS	стар	NIVIO	HII	HII	STAR	STAR	STAR	STAR	STAR	STAR
Name	CEP A	S152 (AS501)	10877-0094	10876-0098	IRAS23004+5642	11048+0148	11000-0038	11010-0007	11108-0001	R PEG	S158	S158	S157	11126-0077	IRAS2315+5912		W PEG	EU AND	RY AND	BU AND	11225-0220	70201 701	IIC+Tags	IRAS23314+6033	IRAS23385+6053	PZ CAS	EY AND	IRC+60427	IRC+70202	RS AND	R CAS
9	61 45 44.0	58 33 08.0	58 31 40.0	58 29 06.0	56 41 14.0	61 26 11.0	50 37 40 0	50 51 550	62 13 50 0	10 16 24.0	61 11 49.0	61 10 30.0	59 45 18.0	59 39 06.0	59 12 25.0	0	76 00 18.0	46 58 00.0	39 20 48.0	39 27 12.0	58 38 13.0	0 00 10 90	0.77 10 00	60 33 55.0	60 53 41.0	61 31 00.0	43 38 47.0	 $61\ 31\ 31.0$	66 18 09.1	48 21 36.0	51 06 36.0
α	22 54 18.9	22 55 38.2	22 56 38.3	22 56 42.7	23 00 23.6	23 01 10.0	93 03 16 0	22 03 10.3	23 03 19.1	23 04 08.0	23 11 36.0	23 11 36.1	23 13 53.0	23 13 58.3	23 15 08.6		23 17 22.0	23 17 41.0	23 18 13.0	23 21 15.0	23 25 00.9	7110	0.41 16 67	23 31 24.8	23 38 30.2	23 41 40.9	23 42 33.0	23 49 36.0	23 49 41.6	23 52 50.0	23 55 53.0

FIGURE 1. — Spectra of all the detected sources. The horizontal scale is the velocity with respect to the LSR in km s⁻¹. The vertical scale is the flux density in Jy. The coordinates and the names given on top of each spectrum are those of columns 1, 2 and 3 of Table II.

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 1 (continued)

FIGURE 2. — Peak flux density distribution for detected sources S_A (solid line), compared with the same distribution for sources in Paper 1 having flux density $S_R > 9$ Jy (dashed line).

FIGURE 3. — Observed peak flux density S_A vs. catalogue flux density S_R for the detected (Fig. 3a) and not detected (Fig. 3b) sources. S_R is derived from Paper 1. The vertical line marks our detection limit of 9 Jy.

FIGURE 4. — Distribution of the ratios S_A/S_R , for the detected sources. The bin value equals the relative error of the present survey.

FIGURE 5. — Observed peak velocities $V_{\rm A}$ vs. catalogue velocities $V_{\rm R}$.

FIGURE 6. — Distribution of peak velocity variations between this work, V_A , and Paper 1, V_R .