LE RETI LOCALI, METROPOLITANE E GEOGRAFICHE

- LAN (Local Area Network)
- MAN (Metropolitan Area Network)
- WAN (Wide Area Network)

LAN

- Piccola estensione geografica (area private non soggetta a vincoli di legge)
- Alta velocità (1-10 Gb/s)
- Basso tasso d'errore
- Flessibilità (collegano computer di tutti i tipi e trasportano qualsiasi tipo di traffico)
- Modularità (possono essere realizzate con componenti di costruttori diversi)
- Scalabilità (possono fornire una crescita graduale nel tempo)
- Basso costo

Topologia:

- Anello
- Stella (router)
- Stella estesa (nel caso ci siano switch a fare da centro-stella)

Le reti locali (LAN) che usano connessioni senza fili sono dette Wireless Lan o WLAN, lo standard più diffuso è quello Wi-Fi

Metodi di trasmissione:

unicast: trasmissione uno - uno, un solo destinatario, risorsa inviata più volte

multicast: trasmissione uno - molti, più destinatari, risorsa inviata una sola volta a tutti

broadcast: trasmissione uno - tutti, tutti ricevono, risorsa inviata anche a chi non serve

Dominio di collisione:

È un'area in cui può verificarsi una collisione

Dominio di broadcast:

È l'insieme degli host che ricevono un messaggio trasmesso in broadcast da uno di essi

Collisione: sovrapposizione di 2 segnali su un canale di trasmissione, le collisioni si verificano nelle comunicazioni half-duplex e NON in quelle full-duplex

APPARATO	DOMINIO DI COLLISIONE	DOMINIO DI BROADCAST
hub	uno per tutte le porte	uno per tutte le porte
switch	uno per ogni porta	uno per tutte le porte
router	uno per ogni porta	uno per ogni porta

La presenza in una rete LAN di molti switch aumenta la dimensione del dominio di broadcast e di conseguenza il traffico in rete; perciò, si possono creare le **VLAN** (Virtual LAN) andando a suddividere una rete in sottoreti virtuali.

MAN

- Elevata velocità di trasmissione
- In grado di recuperare la propria funzionalità in caso di anomalie nella rete
- Utilizzano la fibra ottica
- Possono essere configurate dinamicamente per servire servizi agli utenti
- Gli apparati di internetworking sono gli switch ottici

Internetworking: collegare tra di loro più computer, locali o geografiche autonome, in modo che un host su una rete possa scambiare messaggi con un host su un'altra rete

Topologia:

Anello

MAN: parte centrale (Metro Core Network) + molte reti di accesso

MAN Metro Ethernet:

Una dele più recenti realizzazioni di rete MAN, il provider crea una connessione Ethernet tra 2 località in modalità point-to-point

Le MAN Metro Ethernet servono per esempio per connettere più servizi di un'azienda con località distanti fra loro (restando in un ambito metropolitano o regionale)

Reti wireless metropolitane (WiMAX):

Si possono realizzare le cosiddette broadband wireless MAN, le reti metropolitane senza fili a larga banda offrono connessioni veloci su lunghe distanze anche difficili da raggiungere via cavo (EOLO)

Frequenza: 3,4 GHz – 3,6 GHZ → frequenze a pagamento

- Base Station: può essere un ripetitore o può essere direttamente connessa ad internet
- CPE (Customer Premises Equipment): si college alla BS per usufruire dell'accesso a internet

Segnali radio:

- LOS (Line Of Sight) → il segnale radio viaggia sull'aria in una traiettoria diretta
- NLOS (Non Line Of Sight) → il segnale attraversa ostacoli e viene riflesso

NLOS comporta segnali che arrivano in tempi diversi con intensità diversa

LE ORIGINI DI ETHERNET

1971 nasce ALOHAnet → prima rete dati a commutazione di pacchetto senza fili

1973 Xerox Alto Aloha Network → si ispirava alla rete ALOHA sviluppata qualche anno prima nell'Università delle Hawaii

Viene usato lo stesso sistema del 1971 per realizzare una rete dati internazionale via satellite (**PacNet**) che collegò la sede della NASA in California con 5 università in Stati Uniti, Giappone e Australia

1974 ALOHAnet viene connessa alla rete **ARPANET** (antenata dell'attuale internet) con un canale satellitare

MODELLI E ARCHITETTURE DI RETE

Architettura di rete: definisce le specifiche con cui viene realizzata una rete, nei suoi componenti hardware e software (Es. architettura TCP/IP)

Modello di rete: definisce le modalità per interconnettere le entità che devono comunicare. Un modello non specifica i protocolli ma solo i servizi che devono essere offerti dalla rete. (Es. modello OSI definito dall'ISO)

I progettisti architetture di rete usano come riferimento il modello di rete a strati (o a livelli) per suddividere la complessità della comunicazione tra sistemi in funzioni elementari, assegnate a strati diversi.

Top-down → suddivisione del problema in sottoproblemi più semplici

- 1 LV → LIVELLO FISICO → connesso al mezzo fisico
- ULTIMO LV → LIVELLO APPLICAZIONE → risultato finale
- o **Peer level:** il livello N del mittente comunica con il livello N del destinatario
- o **Entità**: ogni elemento attivo (in grado di inviare/ricevere informazioni)
- o Peer entity: le entità paritarie
- o Interfaccia: comunicazione di un livello con quelli adiacenti

Un protocollo è un insieme di regole che definiscono la comunicazione tra due peer entity

Alcune problematiche:

- Identificazione peer entity
- Modalità di trasferimento dei dati
 - Simplex (es. megafono)
 - Half-duplex (es. walking talking)
 - o Full-duplex (es. telefono)
- Controllo degli errori di trasmissione
- Mantenimento dell'ordine dei dati inviati
- Adattamento della velocità della connessione
- Gestione della dimensione dei pacchetti
- Instradamento dei pacchetti

Ogni livello fornisce un **servizio** più astratto man mano che si procede dal basso (hardware) verso l'alto (software), svolgendo ciascuno compiti diversi tutti insieme permettono la **comunicazione tra i sistemi**

Servizio: simile al rapporto client-server (cliente = LV superiore, server = LV precedente)

Due modalità di connessione:

- Comunicazione logica tra peer entity (messaggio trasmesso al suoi pari tramite i LV inferiori)
- Comunicazione fisica tra livelli adiacenti (ogni strato interagisce solo con quelli adiacenti)
 - In trasmissione: N riceve da N+1, elabora, spedisce a N-1
 - In ricezione: N riceve da N -1, elabora, spedisce a N+1

L'interfaccia di comunicazione tra 2 strati definisce le regole secondo le quali un livello accede ai servizi offerti dal livello sottostante

Reti **modulari:** è possibile intervenire sulle caratteristiche specifiche di uno strato senza dover modificare anche gli altri, perché l'interfaccia resti immutata

Vantaggi:

- Riduzione della complessità
- Indipendenza dei vari strati
- Interazione tramite servizi
- Possibilità di sviluppare un progetto modulare
- Utilizzo di differenti protocolli

Architettura di rete:

- Modello di riferimento (numero di strati, funzioni)
- Servizio (cosa viene fornito da ciascuno strato)
- Specificare i protocolli e le interfacce

MESSAGGIO = **PDU** (Protocol Data Unit)

Le primitive:

- **Connect Request:** richiesta del servizio di connessione, specifica alcuni parametri come l'host a cui connettersi e la dimensione massima dei pacchetti
- **Connect Indication:** segnalazione che riceve l'host destinatario di richiesta di connessione
- Connect Response: specifica se il destinatario ha accettato o meno la connessione
- Connect Confirm: segnalazione ricevuta dall'host sorgente che riporta l'esito della richiesta di connessione
- Funzioni → operazioni svolte all'interno di un livello
- Servizi → offerti su un'interfaccia tra livelli adiacenti
- Primitive → permettono di attivare i servizi

ISO (International Organization for Standardization) organismo di standardizzazione che per primo cercò di interconnettere i computer.

Nel 1978 → specifico modello chiamato **OSI** (Open System Interconnection)

Il modello ISO/OSI è un modello a strati formato da 7 livelli

TCP (Transfer Control Protocol) → LIV. TRASPORTO (come UDP)

IP (Internet Protocol) → LIV. RETE

UDP (User Data Protocol) → non garantisce un servizio affidabile → uso per DNS e VOIP

CONNECTION ORIENTED (3 fasi):

instaurazione della connessione, invio dei dati da trasmettere, chiusura della connessione

bit utilizzati: MAC ADDRESS: 48bit IPV4: 32bit (4 MLD, esauriti) IPV6: 128bit

17 LIVELLI DEL MODELLO OSI

1- PHYSICAL LAYER

Trasmissione di una sequenza di bit attraverso un mezzo fisico

Compiti:

- Definire le caratteristiche fisiche delle interfacce, degli apparati e del mezzo fisico
- Rappresentare i bit (sequenze di 0/1)
- Definire la velocità di trasmissione → sincronizzazione mittente/destinatario
- Realizzare la topologia fisica della rete

Apparati:

- Schede di rete (NIC)
- Hub

2- DATA LINK LAYER

Trasmissione tra 2 host della stessa rete utilizzando l'indirizzamento fisico (MAC address)

Compiti:

- Suddividere il flusso di bit in PDU dette frame aggiungendo a ciascuna l'header
- Controllare il flusso → previene la congestione del dispositivo
- Controllare gli errori → garantisce affidabilità
- Controllare l'accesso al mezzo trasmissivo (nel caso di più dispositivi sul canale)

Apparati:

- Bridge
- Switch

3- NETWORK LAYER

Instradamento verso il destinatario del pacchetto attraverso reti diverse

Compiti:

- Suddividere il messaggio in PDU dette packet o datagram
- Gestire l'indirizzamento logico → indirizzo IP
- Instradare i pacchetti (routing)

Apparati:

Router

4- TRASNPORT LAYER

Consegna dell'intero messaggio al destinatario con comunicazione end-to-end (E2E)

Compiti:

- Consegnare il messaggio al processo destinatario → numeri di porta
- Segmentare e riassemblare il messaggio
- Controllo di connessione (nel caso di connection-oriented SI, connectionless NO)
- Controllo di flusso (tra host mittente e host ricevente)

• Controllo d'errore (si assicura che arrivi l'intero messaggio senza errori)

5- **SESSION LAYER**

Controllore del dialogo svolto in rete

Compiti:

- Controllo del dialogo → dialogo suddiviso in unità logiche dette sessioni
- Sincronizzazione → inserimento di checkpoint (punti di sincronizzazione)

6- PRESENTATION LAYER

Controllo della correttezza sintattica e semantica delle informazioni scambiate

Compiti:

- Traslazione → sequenze convertite in flussi di bit
- Crittografia → crittografare i dati prima di inviarli e decrittografazione all'arrivo
- Compressione → ridurre la quantità dei bit da inviare

7- APPLICATION LAYER

Interfaccia utente con la rete

Compiti:

- Fornisce il supporto ai servizi di rete (posta elettronica, trasferimento file, ...)
- La PDU è detta message