

a la Universitat

Contesta una opció de les dues proposades. Utilitza la taula periòdica adjunta. Pots usar la calculadora.

La puntuació màxima de cada pregunta està indicada a l'inici de la pregunta. La nota de l'examen és la suma de les puntuacions.

OPCIÓ A

1. (1 punt) El BaSO₄ és un compost poc soluble en aigua que s'utilitza de forma habitual en l'anàlisi per raigs X del tracte intestinal. Hi ha estudis que demostren que devers un 2% de la població és al·lèrgica al Ba²⁺_(aq) que prové del següent equilibri químic:

$$BaSO_{4(s)} \rightleftharpoons Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

Respon de manera raonada a les preguntes següents:

- a) En cas que un pacient sigui lleugerament al·lèrgic al Ba²⁺(aq), què faries per disminuir els efectes de l'al·lèrgia quan ha d'ingerir una suspensió de BaSO4: afegiries Na₂SO₄, que és un compost molt soluble, o afegiries més BaSO₄ a la suspensió?
- b) Quina dissolució produirà major al·lèrgia deguda al catió Ba²⁺, una de BaCO₃ o una de BaSO₄?

Figura 1. Suspensió comercial de sulfat de bari (BaSO₄).

Taula 1. Valors del producte de solubilitat (K_S) d'algunes sals insolubles de bari a 25 °C.

Compost	Ks
BaCO₃	3,20·10 ⁻⁹
BaSO ₄	1,10·10 ⁻¹⁰

2. (2,5 punts) Donada la següent reacció no ajustada:

$$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

- a) Ajusta la reacció iònica pel mètode de l'ió-electró.
- b) Quina espècie química actua d'oxidant? Raona la resposta.
- c) Anomena els composts següents: HNO₃ i NO₂.
- 3. (2,5 punts) Donats els composts següents: PH₃, BH₃ i NaCl.
 - a) Dedueix l'estructura de Lewis del PH₃ i indica la seva geometria.
 - b) Es pot afirmar que el BH₃ és un compost polar? Raona la resposta.
 - c) És cert que el NaCl condueix el corrent elèctric en estat sòlid? Raona la resposta.
 - d) Quin dels dos elements té major potencial d'ionització, el Cl o el Na? Raona la resposta.

1/3

4. (2,5 punts)

a la Universitat

- a) Determina el nombre de mols d'ió clorur presents en 100 mL d'una dissolució de HCl de pH 3,0.
- b) Calcula el volum necessari d'una dissolució de NaOH 0,1 M per neutralitzar 25 mL d'una dissolució 0,01 M de HCl. Sense fer cap càlcul numèric, raona si la dissolució en el punt d'equivalència tindrà un pH àcid, bàsic o neutre.
- c) Si es preparàs una dissolució aquosa d'un àcid feble de la mateixa concentració que la de l'àcid de l'apartat a), sense fer cap càlcul, indica si el pH de la dissolució seria major o menor que 3,0.
- **5.** (1,5 punts) Indica raonadament si són certes les afirmacions següents:
 - a) Les constants cinètiques o de velocitat, k, depenen de la concentració dels reactius.
 - b) En general, els catalitzadors augmenten la velocitat dels processos químics perquè augmenten les energies d'activació del mecanisme de reacció.
 - c) Les reaccions entre reactius que es troben en estats d'agregació sòlid o líquid donen lloc a cinètiques més ràpides que les reaccions entre reactius que es troben en estat gasós.

Convocatòria 2017

OPCIÓ B

a la Universitat

1. (2,5 punts)

En un recipient tancat i buit de 2,0 L s'introdueix 1,0 mol de $I_{2(g)}$. Després, es manté la temperatura a 300 °C fins a assolir el següent equilibri químic:

$$I_{2(g)} \ \rightleftarrows \ 2 I_{(g)} \ \text{sent} \ K_c = 5,0 \cdot 10^{-2} \ \text{M}.$$

- a) Calcula la concentració de l_{2(g)} a l'equilibri químic.
- b) Com afecta a l'equilibri químic un augment de la concentració de l_{2(g)}?
- c) S'ha observat que la concentració de $I_{2(g)}$ disminueix quan augmenta la temperatura. Amb aquesta informació, podríem afirmar que la reacció de dissociació del $I_{2(g)}$ és un procés exotèrmic? Raona la resposta.
- d) Calcula el valor de K_c per al següent equilibri químic: $2 I_{(g)} \rightleftarrows I_{2(g)}$

2. (2 punts)

Donats els següents potencials de reducció: $E^0(Na^+/Na) = -2,71 \text{ V}; E^0(Cl_2/Cl^-) = +1,36 \text{ V}; E^0(K^+/K) = -2,92 \text{ V}; E^0(Cu^{2+}/Cu) = +0,34 \text{ V}, justifica la resposta a les qüestions següents:}$

- a) Quina combinació d'elèctrodes ens permetrà construir una pila de major voltatge? Indica el seu valor i la reacció redox que té lloc ajustada.
- b) Si s'introdueix una barra de Cu dins una dissolució de NaCl, es produirà qualque procés redox?
- c) Defineix el procés d'electròlisi.

3. (1,5 punts) Respon, de manera raonada, a les preguntes següents:

- a) Indica el nombre d'electrons desaparellats que presenta, en el seu estat fonamental, l'àtom de Se (Z=34).
- b) Un electró que s'allotja en un orbital 3d, podria tenir el següent conjunt de nombres quàntics (3,2,3,-1/2)?
- c) Quin dels dos elements té major radi atòmic, el S o el Se?

4. (2,5 punts)

En un laboratori es dissolen 0,01 g de NaOH i 0,01 g de KOH dins 500 mL d'aigua destil·lada.

- a) Determina el pH de la dissolució resultant.
- b) Explica com prepararies al laboratori 100 mL d'una dissolució de NaOH de concentració 0,01 g/mL i indica el material de vidre que utilitzaries.
- c) A la fitxa de seguretat química del NaOH apareix el pictograma següent. Indica'n el significat.

5. (1,5 punts)

- a) Siguin els següents composts: CH₄ i CH₃Cl. Quin compost és soluble en aigua? Raona la resposta.
- b) Formula i anomena un isòmer de funció de l'1-propanol.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		la	lla	IIIb	IVb	Vb	VIb	VIIb		VIII		lb	IIb	IIIa	IVa	Va	Vla	VIIa	0
	-	1																	2
1		Н																	He
		,00794													-		_	_	4,0026
		3	4											5	6	7	8	9	10
2	2	Li	Be											В	C	N	O	F	Ne
	(5,941	9,0122											10,811	12,0107	14,0067	15,9994	18,9984	20,1797
		11	12											13	14	15	16	17	18
3	3	Na	Mg											Αl	Si	Р	S	Cl	Ar
	1	22,9898	24,3050											26,9815	28,0855	30,9738	32,066	35,4527	39,948
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	ŀ	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	3	39,0983	40,078	44,9559	47,867	50,9415	51,9961	54,9380	55,845	58,9332	58,6934	63,546	65,39	69,723	72,61	74,9216	78,96	79,904	83,80
	į	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	8	35,4678	87,62	88,9059	91,224	92,9064	95,94	(98,9063)	101,07	102,905	106,42	107,8682	112,411	114,818	118,710	121,760	127,60	126,9045	131,29
	ļ	55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	5 (Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	1	32,905	137,327	138,906	178,49	180,948	183,84	186,207	190,23	192,217	195,078	196,967		204,383	207,2	208,980	(208,98)	(209,99)	(222,02)
	8	87	88	89 *	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	((223,02)	(226,03)		(261,11)	(262,11)	(263,12)		(265,13)		(269)	(272)	(277)	()	(285)	()	(289)	()	(293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140,116	140,908	144,24	(144,913)	150,36	151,964	157,25	158,925	162,50	164,930	167,26	168,934	173,04	174,967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232,038	231,036	238,029	(237,048)	(244,06)	(243,06)	(247,07)	(247,07)	(251,08)	(252,08)	(257,10)	(258,10)	(259,10)	(262,11)

Constants: R = 0,082 atm L mol⁻¹ $K^{-1} = 8,3$ J mol⁻¹ K^{-1}

SOLUCIONS

a la Universitat

OPCIÓ A

1. (1 punt)

 $BaSO_4(s) \leq Ba^{2+}(aq) + SO_4^{2-}(aq).$

- a) Na₂SO₄(aq) → 2 Na⁺(aq) + SO₄²⁻(aq). **O,5 punts**Si afegim sulfat de sodi, augmentam la concentració de sulfat, i aplicant el principi de Le Chatelier, l'equilibri es desplaçarà cap a l'esquerra i disminuirà la concentració de Ba²⁺ a la dissolució. Si afegim BaSO₄ es produirà més Ba²⁺. Per tant, la resposta correcta és afegir sulfat de sodi a la suspensió.
- b) El valor de Ks del carbonat de bari és major que el del sulfat de bari, per tant, serà més soluble i augmentarà la concentració de Ba²⁺. En conclusió, augmentarà els efectes de l'al·lèrgia. **0,5 punts**

2. (2,5 punts)

a)
$$Cu(s) + HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + NO_2(g) + H_2O(l)$$

- b) L'espècie oxidant és la que es redueix, per tant, HNO₃ **0,50 punts**
- c) HNO₃: àcid nítric / hidroxidioxidnitrogen / hidrogen(trioxidnitrat)

 NO₂: diòxid de nitrogen / òxid de nitrogen(IV) **0,50 punts 0,50 punts**

3. (2,5 punts)

a) PH₃

$$Z(P) = 15 1s^2 2s^2 2p^6 3s^2 3p^3$$

Estructura de Lewis: 0,5 punts Geometria piramidal: 0,5 punts

b) BH₃. B Z = 5:
$$1s^2 2s^2 2p^1$$

a la Universitat

Geometria trigonal plana, la suma vectorial dels vectors d'enllaç és nul·la. Per tant, es tracta d'un compost apolar **0,5 punts**

- c) Fals. El NaCl és un compost iònic i únicament condueix el corrent en estat fos o en dissolució. **0,5 punts**
- d) En un mateix període, d'esquerra a dreta augmenta la càrrega nuclear efectiva, l'atracció i el potencial d'ionització. El Cl presenta un major potencial d'ionització que el Na.

0,5 punts

4. (2,5 punts)

a)
$$HCI + H_2O \rightarrow CI^- + H_3O^+$$

$$pH = 3.0 \ [H_3O^+] = 10^{-3.0} \ C_0 = 1.0 \cdot 10^{-3} \ M$$

0,5 punts

$$100mL \frac{1,010^{-3} \, mols}{1000mL} = 1,010^{-4} \, mols \, Cl^{-1}$$

0,5 punts

NaOH 0,1 M.
$$0,01 \cdot 25 = V \cdot 0,1$$
 $V = 2,5$ mL

0,5 punts

El pH en el punt d'equivalència serà neutre, ja que la sal prové d'una base forta i un àcid fort

0,5 punts

c) Si fos un àcid feble, no estaria completament dissociat. Per tant, hi hauria una menor concentració de protons. El pH seria superior a 3,0 **0,5 punts**

5. (1,5 punts) 0,5 cada apartat

- a) Fals. Les constants cinètiques no depenen de la concentració. És la velocitat que depèn de la concentració de reactius o productes.
- b) Fals. Els catalitzadors disminueixen les energies d'activació i augmenta la velocitat.
- c) Fals. Si el reactiu està en estat sòlid únicament reaccionen les molècules de la superfície. El nombre de xocs és més elevat si els reactius estan en estat gasós.

OPCIÓ B

1. (2,5 punts)

a)
$$I_2$$
 (g) $\rightleftharpoons 2 I$ (g) sent $Kc = 5,0 \cdot 10^{--2} M$.
1,0 0
1,0-x 2x

$$2 x^2 + 5,0.10^{-2}x - 5,0.10^{-2} = 0$$
 $x = 0,146 \text{ mol}$

0,75 punts

a la Universitat

$$[I_2] = \frac{1 - 0.146}{2} = 0.43M$$

0,25 punts

b) Si augmenta la [l2], l'equilibri es desplaçarà cap a la dreta.

0,5 punts

c) Si augmenta la temperatura, s'observa que disminueix la concentració de l₂, per tant, d'esquerra a dreta la reacció és endotèrmica. L'afirmació és falsa. **0,5 punts**

d)
$$K_{eq}^{i} = \frac{[I_2]}{[I]^2} = \frac{1}{K_{eq}} = \frac{1}{5,010^{-2}} = 20$$

0,5 punts

2. (2 punts)

a) Pila de major voltatge: combinació del més oxidant amb el més reductor

$$Cl_2/Cl$$
- i K+/K. E = 1,36-(-2,92) = 4,28 V

0,5 punts

0,5 punts

b) E_T < 0 no reacciona

0,5 punts

c) Electròlisi: aplicació d'una energia, corrent elèctric, a un sistema per produir una reacció química (redox) no espontània **O,5 punts**

3. (1,5 punts) 0,5 cada apartat

a) Se
$$(Z = 34)$$
 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁴

 $(\downarrow\uparrow,\uparrow,\uparrow)$ 2 electrons desaparellats

- b) Fals. N = 3, I = 2 m = 3 m = -1, o, I m no pot ser superior a I
- c) Quan augmenta el període dins el mateix grup, augmenta el nombre de capes externes i els electrons es troben més enfora del nucli; hi ha menor atracció i, per tant, major radi. El Se té major radi que el S.

4. (2,5 punts)

a)
$$0.01g \cdot NaOH \frac{1mol}{40.0g} = 2.5 \cdot 10^{-4}$$
 mols NaOH

0,25 punts

$$0.01g \cdot KOH \frac{1mol}{56.10g} = 1.78 \cdot 10^{-4} \text{ mols KOH}$$

0,25 punts

Proves d'accés a la Universitat Química Model 1

$[OH] = \frac{4.28 \cdot 10^{-4}}{0.5L} = 8.56 \cdot 10^{-4} \text{ M}$	0,25 punts
---	------------

pOH = 3,07 pH = 10,90 **0,25 punts**

b) Pesa-substàncies, vareta de vidre, matràs aforat Procediment O,5 punts O,5 punts

c) Substància corrosiva **0,5 punts**

5. (1,5 punts)

a) La molècula de metà és apolar, mentre que la de CH₃Cl és polar. L'únic compost soluble dins un dissolvent polar com l'aigua és el CH₃Cl. **0,5 punts**

b) CH₃CH₂-O-CH₃ **0,5 punts** etil, metil – èter **0,5 punts**