TREES

INORDER SUCCESSOR OF BINARYTREE

Exchange the Leaf Nodes
Sum of the Longest Bloodline of a Tree
Remove Half Nodes
Leaves to DLL
Check if Tree is Isomorphic
***Vertical sum (Special Algo)

http://www.geeksforgeeks.org/lowest-common-ancestor-in-a-binary-search-tree/

http://www.geeksforgeeks.org/diagonal-sum-binary-tree/

http://www.geeksforgeeks.org/diameter-of-a-binary-tree/ Serialize and Deserialize a Binary Tree

*****Diameter of tree

Views of tree:

https://www.geeksforgeeks.org/print-right-view-binary-tree-2/
https://www.geeksforgeeks.org/print-nodes-top-view-binary-tree/
https://www.geeksforgeeks.org/bottom-view-binary-tree/
https://www.geeksforgeeks.org/print-left-view-binary-tree/
https://www.geeksforgeeks.org/print-binary-tree-vertical-order/
Diagonal Traversal of tree

- 1. Maximum sum path
- 2. Root to leaf paths sum
- 3. http://www.geeksforgeeks.org/find-maximum-path-sum-two-leaves-binary-tree/

Enumeration of Binary Trees

A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabeled if nodes are not assigned any label.

Below two are considered same unlabeled trees

Below two are considered different labeled trees

How many different Unlabeled Binary Trees can be there with n nodes?

For n = 1, there is only one tree o

For n = 2, there are two trees

For n = 3, there are five trees

The idea is to consider all possible pair of counts for nodes in left and right subtrees and multiply the counts for a particular pair. Finally add results of all pairs.

For example, let T(n) be count for n nodes.

T(0) = 1 [There is only 1 empty tree]

$$T(1) = 1$$

$$T(2) = 2$$

$$T(3) = T(0)*T(2) + T(1)*T(1) + T(2)*T(0) = 1*2 + 1*1 + 2*1 = 5$$

$$T(4) = T(0)*T(3) + T(1)*T(2) + T(2)*T(1) + T(3)*T(0)$$

= 1*5 + 1*2 + 2*1 + 5*1
= 14

The above pattern basically represents n'th Catalan Numbers.

SERIES

First few catalan numbers are 1125144213242914304862,...

$$T(n) = \sum_{i=1}^{n} T(i-1)T(n-i) = \sum_{i=0}^{n-1} T(i)T(n-i-1) = C_n$$

Here,

T(i-1) represents number of nodes on the left-sub-tree T(n-i-1) represents number of nodes on the right-sub-tree n'th Catalan Number can also be evaluated using direct formula.

```
T(n) = (2n)! / (n+1)!n!
class Solution {
public:
  int numTrees(int n) {
     int g[n+1];
     for(int i=0; i< n+1; i++){
        g[i]=0;
     }
     g[0]=1;
     g[1]=1;
     for(int i=2; i< n+1; i++){
        for(int j=0; j< i; j++){
           g[i] += g[i] * g[i-j-1];
        }
     }
     return g[n];
  }
};
```