MATH2022 Take Home Quiz 3

Student ID: 480048691

May 28, 2020

1 Answer: C

We have $\langle 1 \rangle$ and $\langle -1 \rangle$ generate all of \mathbb{Z} and so \mathbb{Z} is cyclic under addition.

2 Answer: B

We can rewrite the system of equations as an augmented matrix and first work over \mathbb{Z}_3 .

It is clear that the system has no solutions over \mathbb{Z}_3 .

Now, we work over \mathbb{Z}_5 :

It appears that we have two free variables z and w, making each has 5 choices over \mathbb{Z}_5 . Therefore, there are 25 solutions over \mathbb{Z}_5 .

3 Answer: E

We have $R_{\pi/3}T_{\pi/2}R_{\pi/2} = T_{5\pi/6}R_{\pi/2} = T_{\pi/3}$, not $T_{2\pi/3}$.

4 Answer: C

Consider the group G of symmetries of a regular hexagon, generated by a rotation $\alpha = (1\ 2\ 3\ 4\ 5\ 6)$ and a reflection $\beta = (1\ 6)(2\ 5)(3\ 4)$. We have the facts

Page 2 480048691

that $\alpha^6 = \beta^2 = 1$ and $\alpha\beta = \beta\alpha^{-1} = \beta\alpha^5$. Furthermore, $\beta^{-1}\alpha^i\beta = \alpha^{-i}$ for all i and $\beta^{-1} = \beta$,

$$\beta \alpha^3 \beta^3 (\alpha^{-2}) \beta^{-3} \alpha^5 = \beta \alpha^3 \beta^3 (\beta^{-1} \alpha^2 \beta) \beta^{-3} \alpha^5$$

$$= \beta \alpha^3 (\beta^2 \alpha^2 \beta^{-2}) \alpha^5$$

$$= \beta \alpha^5 \beta^{-2} \alpha^5$$

$$= \beta \alpha^{-1} \beta^{-2} \alpha^5$$

$$= \alpha \beta \beta^{-2} \alpha^5$$

$$= \alpha \beta^{-1} \alpha^5$$

$$= \alpha \beta \alpha^5$$

$$= \alpha \alpha \beta = \alpha^2 \beta.$$

5 Answer: E

We perform row reduction on M over \mathbb{Z}_2 :

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank(M) = the number of rows with leading pivots = 4. Using the Rank-Nullity Theorem, the nullity of this matrix is equals to number of columns - rank(M) = 4 - 4 = 0. Hence, rank(M) = 4 and rank(M) = 0.

6 Answer: D

so

Let $C = \{(1,0), (0,1)\}$ be the standard basis of \mathbb{R}^2 , then it is easy to write each element of B as a linear combination of the standard basis vectors:

$$(1,-1) = 1(1,0) - 1(0,1) \text{ and } (2,-3) = 2(1,0) - 3(0,1),$$

$$\therefore [id]_C^B = \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \text{ and } [id]_B^C = \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \end{pmatrix}^{-1} = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix}$$

$$\left[\mathbf{v} \right]_B = \left[id \right]_C^B \left[\mathbf{v} \right]_C = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

Page 3 480048691

7 Answer: A

Let M be a 3 x 3 matrix with columns the vectors of the subset $\{(1,1,0),(0,1,1),(1,0,1)\}$ and row reduce over \mathbb{Z}_2 :

$$M = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the vectors from this subset are linearly dependent, they cannot form a basis for the vector space \mathbb{Z}_2^3 .

8 Answer: D

We have the ordered basis $B = \{(1,1), (1,-2)\}$ and the linear operator L(x,y) = (x+y, x-y). Observe that:

$$L(1,1) = (1+1,1-1) = (2,0) = \frac{4}{3}(1,1) + \frac{2}{3}(1,-2),$$

$$L(1,-2) = (1-2,1+2) = (-1,3) = \frac{1}{3}(1,1) - \frac{4}{3}(1,-2).$$

Hence,
$$[L]_B^B = \begin{bmatrix} \frac{4}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{4}{3} \end{bmatrix}$$
.

9 Answer: E

We have the linear operator L(x,y)=(x+2y,3x+2y). Consider the ordered basis $B=\{(-1,1),(2,3)\}$. Observe that:

$$L(-1,1) = (-1+2, -3+2) = (1, -1) = -1(-1, 1) + 0(2, 3)$$

 $L(2,3) = (2+6, 6+6) = (8, 12) = 0(-1, 1) + 4(2, 3)$

We have found that
$$\begin{bmatrix} L(-1,1) \end{bmatrix}_B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} L(2,3) \end{bmatrix}_B = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, so $\begin{bmatrix} L \end{bmatrix}_B^B = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix}$.

Page 4 480048691

10 Answer: D

We have V be the vector space of functions spanned by $B = \{cos(x) + sin(x), cos(x) - sin(x)\}$ and the linear operator $D: V \to V$ that maps a function to its derivative. Observe that

$$D(\cos(x) + \sin(x)) = (\cos(x) + \sin(x))' = \cos(x) - \sin(x)$$

$$= 0(\cos(x) + \sin(x)) + 1(\cos(x) - \sin(x))$$

$$D(\cos(x) - \sin(x)) = (\cos(x) - \sin(x))' = -(\cos(x) + \sin(x))$$

$$= -1(\cos(x) + \sin(x)) + 0(\cos(x) - \sin(x))$$
Hence, $[D]_B^B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

11 Answer: A

Performing row reduction on M over \mathbb{Z}_5 :

$$M = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x + 4y + 3z = 0 \\ y = y \iff \begin{cases} x = y + 2z \\ y = y & \therefore null(M) = \begin{cases} y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \middle| \quad y, z \in \mathbb{Z}_5 \end{cases},$$

$$z = z$$

Hence the basis of $null(M) = \{(1, 1, 0), (2, 0, 1)\}.$

12 Answer: B

Consider $B = \{(1,1), (2,3)\}$ and $D = \{(2,1), (3,4)\}$ ordered bases of \mathbb{Z}_7^2 . We need to write each elements of B as a linear combination of the elements of D. We solve the following equations over \mathbb{Z}_7^2 .

$$\begin{cases} (1,1) = \alpha_1(2,1) + \alpha_2(3,4) & \therefore & \alpha_1 = 3, \alpha_2 = 3 \\ (2,3) = \beta_1(2,1) + \beta_2(3,4) & \therefore & \beta_1 = 4, \beta_2 = 5 \end{cases}$$

Hence,
$$[(1,1)]_D = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 and $[(2,3)]_D = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\therefore [id]_D^B = \begin{bmatrix} 3 & 4 \\ 3 & 5 \end{bmatrix}$.

Page 5 480048691

13 Answer: E

We have matrix $M = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ with entries over \mathbb{Z}_5 .

Observe that

$$det(\lambda I - M) = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 1 \end{vmatrix} - 2 \begin{vmatrix} 0 & -2 \\ \lambda - 2 & 0 \end{vmatrix}$$
$$= (\lambda - 1)^2 (\lambda - 2) - 4(\lambda - 2)$$
$$= \lambda^3 - 4\lambda^2 + \lambda + 6.$$

Applying the Cayley-Hamilton Theorem, we have:

$$\chi(M) = M^3 - 4M^2 + M + 6I = 0$$

$$M^3 - 4M^2 + M = -6I$$

$$M(M^2 - 4M + I) = -6I$$

$$M\frac{-1}{6}(M^2 - 4M + I) = I$$

Hence, over \mathbb{R} , $M^{-1} = \frac{-1}{6}(M^2 - 4M + I)$. Working over \mathbb{Z}_5 :

$$M^{-1} = 4M^2 + 4M + 4I$$

14 Answer: B

We have

$$\alpha = (1 \ 3)(2 \ 4)(5 \ 6),$$

 $\beta = (a \ b)(c \ d)(e \ f).$

Firstly, the product of disjoint cycles are commutative so we can arrange the 2-cycles in 3!=6 ways. Furthermore, each of the can be written in two ways, irrespective of the cycle notation. In total, there are $3! \times 2 \times 2 \times 2 = 48$ permutations of γ such that β is the conjugate of α by γ .

Page 6 480048691

15 Answer: C

We learned from the concepts of 8-puzzle is that one configuration is reachable from another if they are an even number of permutations away. Considering each given statements and their corresponding configuration

	4	8	1		4	8	3
a = 1, c = 2 gives A =	6		3	c = 1, b = 2 gives B =	6		2
	5	7	2		5	7	1
$c = 2, b = 1$ gives $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	4	8	3		4	8	2
	6		1	a = 2, c = 3 gives D =	6		1
	5	7	2		5	7	3
	4	8	2				
c = 3, b = 1 gives $E =$	6		1				
	5	7	3				

It appears that configurations A, B, D, and E can be reached within each other since they are all an even number of permutations away from each other. Indeed,

- A can reach B by performing (1 3)(1 2) (reverse can also be done),
- A can reach D and E by performing (2 3)(2 1) since D and E are the same configuration (reverse can also be done),
- B can reach D and E by performing (1 3)(1 2) (reverse can also be done),
- D and E are identical which we can also say identity permutation has been performed (which is even).

This means that, if one of the configurations from the set $\{A, B, D, E\}$ has been reached by moving squares in and out, the other configurations from this set can also be reached. However, this would let a, b, and c attain more than one value from $\{1, 2, 3\}$ at once, which is impossible. Therefore, the only possible statement from above is $c = 2 \implies b = 1$. We can check the configuration of C

4	8	3		4	8	3
6		1	can be transformed into	6	1	2
5	7	2		5	7	

which corresponds to (1 5 7 8 2 6 4) which is a product of 6 transpositions.