Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

Contrôle continu n°1 Jeudi 11 mars 2021, 16h15 – 17h45 Corrigé

Exercice 1

Soit φ l'unique morphisme d'anneaux de $\mathbf{Z}[X]$ vers \mathbf{R} qui envoie X sur $\sqrt{5}$ (on admettra que $\sqrt{5} \notin \mathbf{Q}$). Soit $\mathbf{Z}[\sqrt{5}] := \varphi(\mathbf{Z}[X])$.

1. Que vaut $\varphi(1+X+X^2)$?

Solution: Comme φ est un morphisme d'anneaux qui envoie X sur $\sqrt{5}$, on a

$$\varphi(1+X+X^2) = \varphi(1) + \varphi(X) + \varphi(X)^2 = 1 + \sqrt{5} + 5 = 6 + \sqrt{5}.$$

2. Montrer que $\mathbb{Z}[\sqrt{5}]$ est un sous-anneau de \mathbb{R} , et qu'il est intègre et isomorphe à l'anneau quotient $\mathbb{Z}[X]/\langle X^2 - 5 \rangle$.

Solution: Comme $\mathbf{Z}[\sqrt{5}]$ est (par définition) l'image de l'anneau $\mathbf{Z}[X]$ par le morphisme d'anneaux $\varphi \colon \mathbf{Z}[X] \to \mathbf{R}$, $\mathbf{Z}[\sqrt{5}]$ est un sous-anneau de \mathbf{R} . Comme \mathbf{R} est un corps, donc un anneau intègre et $\mathbf{Z}[\sqrt{5}]$ est un sous-anneau de \mathbf{R} , $\mathbf{Z}[\sqrt{5}]$ est un anneau intègre. Le morphisme φ induit par corestriction un morphisme d'anneaux surjectif (abusivement

encore noté φ) φ : $\mathbf{Z}[X] \to \mathbf{Z}[\sqrt{5}]$. Pour montrer que $\mathbf{Z}[\sqrt{5}]$ est isomorphe à l'anneau quotient $\mathbf{Z}[X]/\langle X^2 - 5 \rangle$, il suffit donc de montrer que $\ker(\varphi) = (X^2 - 5) \cdot \mathbf{Z}[X]$.

Montrons l'inclusion $(X^2 - 5) \cdot \mathbf{Z}[X] \subset \operatorname{Ker}(\varphi)$. On a $\varphi(X^2 - 5) = \varphi(X)^2 - 5 = 5 - 5 = 0$. Ainsi $X^2 - 5 \in \operatorname{Ker}(\varphi)$. Comme $\operatorname{Ker}(\varphi)$ est un idéal de $\mathbf{Z}[X]$, $\operatorname{Ker}(\varphi)$ contient donc l'idéal de $\mathbf{Z}[X]$ engendré par $X^2 - 5$, c'est-à-dire $(X^2 - 5) \cdot \mathbf{Z}[X]$.

Montrons à présent l'inclusion $\operatorname{Ker}(\varphi) \subset (X^2-5) \cdot \mathbf{Z}[X]$. Soit $P \in \operatorname{Ker}(\varphi)$. Comme l'élément $X^2-5 \in \mathbf{Z}[X]$ a un coefficient dominant égal à 1, donc inversible dans $\mathbf{Z}[X]$, la division euclidienne de P par X^2-5 dans $\mathbf{Z}[X]$ existe. Elle s'écrit $P=(X^2-5) \cdot Q+R$ où $Q,R \in \mathbf{Z}[X]$ et $\deg(R) < \deg(X^2-5) = 2$. En particulier, il existe $a,b \in \mathbf{Z}$ tels que $R=a+b\cdot X$. Appliquons le morphisme d'anneaux φ à l'égalité $P=(X^2-5)\cdot Q+R$. Sachant que P et X^2-5 sont des éléments de $\operatorname{Ker}(\varphi)$, on obtient l'égalité

$$0 = 0 \cdot \varphi(Q) + \varphi(R) = a + b\sqrt{5}.$$

Ainsi $a + b\sqrt{5} = 0$. Si a est non nul, on en tire aussitôt que $\sqrt{5} \in \mathbf{Q}$, contradiction. Donc a = 0 et $b\sqrt{5} = 0$ donc finalement b = 0 (intégrité de \mathbf{R}). Ainsi R = 0 et $P = (X^2 - 5) \cdot \mathbf{Q}$, donc $P \in (X^2 - 5) \cdot \mathbf{Z}[X]$. Ceci achève de montrer l'inclusion $\operatorname{Ker}(\varphi) \subset (X^2 - 5) \cdot \mathbf{Z}[X]$, donc l'égalité $\operatorname{Ker}(\varphi) = (X^2 - 5) \cdot \mathbf{Z}[X]$ et l'isomorphisme demandé.

3. Montrer que l'application qui à $(a,b) \in \mathbf{Z}^2$ associe $a+b\sqrt{5}$ est une bijection de \mathbf{Z}^2 sur $\mathbf{Z}[\sqrt{5}]$.

Solution: Soit $a, b \in \mathbf{Z}$. On $a \ a + b\sqrt{5} = \varphi(a + bX)$, donc $a + b\sqrt{5} \in \varphi(\mathbf{Z}[X]) = \mathbf{Z}[\sqrt{5}]$. Ainsi la formule de l'énoncé définit bien une application $\theta \colon \mathbf{Z}^2 \to \mathbf{Z}[\sqrt{5}]$. Montrons que θ est injective. Soit $a, b, a', b' \in \mathbf{Z}$ tels que $\theta(a, b) = \theta(a', b')$. On a donc $a + b\sqrt{5} = a' + b'\sqrt{5}$ soit $(a - a') + (b - b')\sqrt{5} = 0$. En raisonnant comme à la question précédente, on en tire a - a' = 0 et b - b' = 0 soit a = a' et b = b'. Donc θ est injective.

Montrons à présent que θ est surjective, ce qui permettra de conclure. Soit $\alpha \in \mathbf{Z}[\sqrt{5}]$ et $P \in \mathbf{Z}[X]$ tel que $\alpha = \varphi(P)$. Soit $P = (X^2 - 5) \cdot Q + a + b \cdot X$ où $Q \in \mathbf{Z}[X]$ et $a, b \in \mathbf{Z}$ la division euclidienne de P par $X^2 - 5$ dans $\mathbf{Z}[X]$ (cf. question précédente) En appliquant φ à l'égalité précédente, on obtient $\varphi(P) = a + b\sqrt{5}$ soit $\alpha = \theta(a, b)$. Donc θ est bien surjective.

4. Soit x ∈ Z[√5] et (a, b) ∈ Z² tel que x = a+b√5; on pose alors N(x) := (a+b√5)(a-b√5). Montrer que N(x) ∈ Z. Pour tous x, y ∈ Z[√5], montrer qu'on a N(xy) = N(x)N(y). Solution : Notons que la question précédente montre que le couple (a, b) ∈ Z² de l'énoncé est uniquement déterminé et donc que N(x) est bien défini. Par un calcul rapide, on obtient la relation N(x) = a² - 5b². Comme a, b ∈ Z, on déduit aussitôt de cette expression qu'on a bien N(x) ∈ Z.
Soit x ∈ Z[√5] (a, b) ∈ Z² tel que x = a + b√5, et (a', b') ∈ Z² tel que x = a' + b'√5. Un

Soit $x \in \mathbf{Z}[\sqrt{5}]$, $(a,b) \in \mathbf{Z}^2$ tel que $x = a + b\sqrt{5}$ et $(a',b') \in \mathbf{Z}^2$ tel que $y = a' + b'\sqrt{5}$. Un calcul immédiat montre qu'on a

$$xy = (aa' + 5bb') + (ab' + a'b)\sqrt{5}.$$

Comme $aa' + 5bb' \in \mathbf{Z}$ et $ab' + a'b \in \mathbf{Z}$, cette expression montre qu'on a

$$N(xy) = [(aa' + 5bb') + (ab' + a'b)\sqrt{5}][(aa' + 5bb') - (ab' + a'b)\sqrt{5}]$$

or

$$(aa' + 5bb') + (ab' + a'b)\sqrt{5} = (a + b\sqrt{5})(a' + b'\sqrt{5})$$

et $(aa' + 5bb') - (ab' + a'b)\sqrt{5} = (a - b\sqrt{5})(a' - b'\sqrt{5})$

Ainsi in a bien N(xy) = N(x)N(y).

Autre argument plus conceptuel : l'unique morphisme d'anneaux $\mathbf{Z}[X] \to \mathbf{Z}[i\sqrt{5}]$ qui envoie X sur $-\sqrt{5}$ a un noyau qui contient $X^2 - 5$, et se factorise donc en un morphisme $\tau : \mathbf{Z}[X]/\langle X^2 - 5 \rangle \to \mathbf{Z}[\sqrt{5}]$. En identifiant $\mathbf{Z}[X]/\langle X^2 - 5 \rangle$ à $\mathbf{Z}[i\sqrt{5}]$ via l'isomorphisme de la question précédente, on voit que le morphisme τ est l'application qui pour tout $(a,b) \in \mathbf{Z}^2$ envoie $a + b\sqrt{5}$ sur $a - b\sqrt{5}$. Ainsi pour tout $x \in \mathbf{Z}[\sqrt{5}]$ on a $N(x) = x \cdot \tau(x)$ et comme τ est un morphisme d'anneaux la propriété demandée pour N s'en déduit aussitôt.

- 5. Soit x ∈ Z[√5]. Déduire de la question précédente que x ∈ Z[√5][×] si et seulement si N(x) ∈ {1, -1}.
 Solution : Supposons que'on a x ∈ Z[√5][×]. Soit y ∈ Z[√5] tel que xy = 1. On a donc N(xy) = N(1). D'après la question précédente, on a donc N(x)N(y) = 1² = 1. Comme N(x) et N(y) sont dans Z, cette relation impose N(x) ∈ {1, -1}.
 Réciproquement, supposons qu'on a N(x) ∈ {1, -1}. Soit a, b ∈ Z tel que x = a + b√5. Soit y = a b√5. On a y ∈ Z[√5] (et donc également -yZ[√5] et d'après l'hypothèse sur N(x), on a xy = 1 ou xy = -1 soit x(-y) = 1 dans la deuxième éventualité. Dans les deux cas, on en déduit bien que x ∈ Z[√5][×].
- 6. Existe-t-il des éléments $n \in \mathbf{Z}$ tels que $n^2 = 2 \pmod{5}$? Existe-t-il des éléments $x \in \mathbf{Z}[\sqrt{5}]$ tels que N(x) = 2?

 Solution: Soit $n \in \mathbf{Z}$. Alors il existe $a \in \{0, 1, 2, 3, 4\}$ tel que $n = a \pmod{5}$, d'où $n = a^2 \pmod{5}$. Mais $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 4 \pmod{5}$ et $4^2 = 1 \pmod{5}$. Aucune des valeurs obtenues n'étant congrue à 2 modulo 5, on en déduit qu'on ne peut pas avoir $n^2 = 2 \pmod{5}$; au passage, on en déduit également qu'on ne peut pas avoir $n^2 = -2 \pmod{5}$, autrement dit $n^2 = 3 \pmod{5}$.

Supposons qu'il existe $x \in \mathbf{Z}[\sqrt{5}]$ tel que N(x) = 2. Soit $a, b \in \mathbf{Z}$ tel que $x = a + b\sqrt{5}$. On a donc $a^2 - 5b^2 = 2$, d'où en particulier $a^2 = 2 \pmod{5}$. D'après la question précédente, c'est impossible. Ainsi il n'existe pas d'élément $x \in \mathbf{Z}[\sqrt{5}]$ tel que N(x) = 2.

7. Montrer que $3 + \sqrt{5}$ est un élément irréductible de $\mathbf{Z}[\sqrt{5}]$. Solution : On a $N(3 + \sqrt{5}) = 3^2 - 5 = 4$. D'après la question 5, $3 + \sqrt{5} \notin \mathbf{Z}[\sqrt{5}]^{\times}$. Soit $x, y \in \mathbf{Z}[\sqrt{5}]$ tels que $3 + \sqrt{5} = xy$. Montrons que x ou y est un élément de $\mathbf{Z}[\sqrt{5}]^{\times}$, ce qui permettra de conclure. On a $N(3 + \sqrt{5}) = N(xy)$ soit, d'après la question 4, 4 = N(x)N(y). Comme N(x) et N(y) sont des entiers, on a

$$(N(x), N(y)) \in \{(1,4), (-1,-4), (4,1), (-4,-1), (2,2), (-2,-2)\}$$

D'après la question, (N(x), N(y)) = (2, 2) est exclu. Par un raisonnement similaire à celui de la question, (N(x), N(y)) = (-2, -2) est également exclu. Donc nécessairement

$$(N(x), N(y)) \in \{(1, 4), (-1, -4), (4, 1), (-4, -1)\}$$

Dans tous les cas, on a donc soit $N(x) \in \{1, -1\}$, soit $N(y) \in \{1, -1\}$ D'après la question 5, on a donc $x \in \mathbf{Z}[\sqrt{5}]^{\times}$ ou $y \in \mathbf{Z}[\sqrt{5}]^{\times}$.

8. (*) L'idéal de Z[√5] engendré par 3 + √5 est-il premier?
Solution: Soit I l'idéal en question. On a (3 + √5)(3 - √5) = 4 = 2.2. En particulier 2.2 ∈ I. Si on montre que 2 ∉ I, on pourra en déduire que I n'est pas premier. Supposons qu'on a 2 ∈ I. Il existe donc x ∈ Z[√5] tel que 2 = (3 + √5)x. Mais par ailleurs il existe un unique x réel qui vérifie la relation précédente, à savoir

$$x = \frac{2}{3 + \sqrt{5}} = \frac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \frac{2(3 - \sqrt{5})}{4} = \frac{3 - \sqrt{5}}{2}.$$

Si on avait $x \in \mathbf{Z}[\sqrt{5}]$, on pourrait donc trouver $a, b \in \mathbf{Z}$ tels que $2(a + b\sqrt{5}) = 3 - \sqrt{5}$, soit en particulier 2a = 3, ce qui est une contradiction. Finalement $2 \notin \mathcal{I}$, et \mathcal{I} n'est pas un idéal premier de $\mathbf{Z}[\sqrt{5}]$.

Autre argument : En utilisant l'un des théorèmes d'isomorphismes du cours et l'isomorphisme entre $\mathbf{Z}[\sqrt{5}]$ et $\mathbf{Z}[X]/\langle X^2-5\rangle$, on voit que le quotient $\mathbf{Z}[\sqrt{5}]/(3+\sqrt{5})\mathbf{Z}[\sqrt{5}]$ est isomorphe au quotient $\mathbf{Z}[X]/\langle 3+X,X^2-5\rangle$. De l'égalité $X^2-5=(X+3)(X-3)+4$, on déduit l'égalité d'idéaux $\langle 3+X,X^2-5\rangle=\langle 3+X,4\rangle$ dans $\mathbf{Z}[X]$. D'après l'un des théorèmes d'isomorphismes du cours, $\mathbf{Z}[X]/\langle 4,3+X\rangle$ est isomorphe à $\mathbf{Z}/4\mathbf{Z}[X]/\langle X+[3]_4\rangle$. Mais pour n'importe quel anneau A et n'importe quel $a\in A$, l'anneau quotient $A[X]/\langle X-a\rangle$ est isomorphe à A. En effet le morphisme $A[X]\to A$ d'évalution en a est surjectif de noyau $\langle X-a\rangle$ (cf. le corollaire 42 du chapitre 2). Ainsi $\mathbf{Z}[\sqrt{5}]/(3+\sqrt{5})\mathbf{Z}[\sqrt{5}]$ est isomorphe à $\mathbf{Z}/4\mathbf{Z}$. Comme 4 n'est pas premier, $\mathbf{Z}/4\mathbf{Z}$ n'est pas intègre et donc $(3+\sqrt{5})\mathbf{Z}[\sqrt{5}]$ n'est pas un idéal premier de $\mathbf{Z}[\sqrt{5}]$.

9. (*) Le groupe Z[√5]× est-il fini? (on pourra considérer l'élément 2 + √5)
Solution : On a N(2 + √5) = 2² - 5 = -1 donc d'après la question 5, 2 + √5 est un élément de Z[√5]×. Si le groupe Z[√5]× était fini, on pourrait trouver un entier strictement positif n tel que (2 + √5)ⁿ = 1. Mais par ailleurs on sait que l'équation xⁿ = 1, x ∈ R a comme ensemble de solutions {1} ou {1, -1}. Or, d'après la question 3, on a 2 + √5 ≠ 1 et 2 + √5 ≠ -1. Donc le groupe Z[√5]× est infini, et plus précisément le sous-groupe de Z[√5]× engendré par 2 + √5 est infini.

Exercice 2

1. Soit A un anneau, $\mathcal I$ un idéal de A. Donner la définition de « $\mathcal I$ est un idéal maximal de A ».

Solution: Selon le cours : \mathcal{I} est un idéal maximal de A si c'est un idéal propre de A et tout idéal \mathcal{J} de A contenant \mathcal{I} est soit égal à \mathcal{I} , soit égal à A.

- 2. Soit A et B des anneaux, $\varphi \colon A \to B$ un morphisme d'anneaux surjectif.
 - (a) Compléter la phrase suivante : « l'application $\mathcal{J} \mapsto \varphi^{-1}(\mathcal{J})$ est une bijection de l'ensemble des idéaux de B sur $[\dots]$, de bijection réciproque $\mathcal{I} \mapsto \varphi(\mathcal{I})$ » (pas de justification demandée).

Solution: Selon le cours : l'application $\mathcal{J} \mapsto \varphi^{-1}(\mathcal{J})$ est une bijection de l'ensemble des idéaux de B sur l'ensemble des idéaux de A contenant $\operatorname{Ker}(\varphi)$, de bijection réciproque $\mathcal{I} \mapsto \varphi(\mathcal{I})$.

- (b) Soit \$\mathcal{J}\$ un idéal maximal de \$B\$. Montrer que \$\varphi^{-1}(\mathcal{J})\$ est un idéal maximal de \$A\$. Solution: Comme \$\mathcal{J}\$ un idéal maximal de \$B\$, on a \$\mathcal{J} ≠ B\$. D'après la question précédente, on a donc \$\varphi^{-1}(\mathcal{J}) ≠ \varphi^1(B)\$. Or \$\varphi^{-1}(B) = A\$. Donc \$\varphi^{-1}(\mathcal{J})\$ est un idéal propre de \$A\$. Soit \$\mathcal{I}\$ un idéal de \$A\$ contenant \$\varphi^{-1}(\mathcal{J})\$ et distinct de \$\varphi^{-1}(\mathcal{J})\$. Il s'agit de montrer que \$\mathcal{I} = A\$. Comme \$\varphi^{-1}(\mathcal{J})\$ contient \$\mathcal{Ker}(\varphi)\$, il en est de même de \$\mathcal{I}\$. D'après la question précédente, il suffit donc de montrer que \$\varphi(\mathcal{I}) = \varphi(A)\$ autrement dit que \$\varphi(\mathcal{I}) = B\$. Comme \$\mathcal{I}\$ contient strictement \$\varphi^{-1}(\mathcal{J})\$, d'après la question précédente et propriété de l'image directe, \$\varphi(\mathcal{I})\$ contient strictement \$\varphi^{-1}(\mathcal{J})\$. Toujours d'après la question précédente, on a \$\varphi(\varphi^{-1}(\mathcal{J})) = \mathcal{J}\$. Comme \$\varphi(\mathcal{I})\$. Toujours d'après la question précédente, on a \$\varphi(\varphi^{-1}(\mathcal{J})) = \mathcal{J}\$. Comme \$\varphi(\varphi)\$ contient strictement \$\mathcal{J}\$ et \$\mathcal{J}\$ est un idéal maximal de \$B\$, on a \$\varphi(\mathcal{I}) = A\$, ce qui permet de conclure.

 Autre démonstration: Le morphisme \$\varphi\$ étant surjectif, par l'un des théorèmes d'isomorphisme du cours, les anneaux quotients \$B/\mathcal{J}\$ et \$A/\varphi^{-1}(\mathcal{J})\$ sont isomorphes, \$A/\varphi^{-1}(\mathcal{J})\$ est un corps. Comme les anneaux quotients \$B/\mathcal{J}\$ et \$A/\varphi^{-1}(\mathcal{J})\$ sont isomorphes, \$A/\varphi^{-1}(\mathcal{J})\$ est aussi un corps. Donc \$\varphi^{-1}(\mathcal{J})\$ est un idéal maximal de \$A\$.
- 3. Soit A un anneau. On définit le radical de Jacobson de A comme l'intersection de tous les idéaux maximaux de A. Déterminer le radical de Jacobson dans les cas suivants : A est un corps, $A = \mathbf{Z}$, p est un nombre premier et $A = \mathbf{Z}/p^2\mathbf{Z}$. Exhiber un anneau dont le radical de Jacobson n'est pas l'idéal nul.

Solution : Notons que comme l'idéal nul est contenu dans n'importe quel idéal, le radical de Jacobson contient toujours l'idéal nul.

Si A est un corps, le seul idéal maximal de A est l'idéal nul. On en déduit aussitôt que le radical de Jacobson de A est l'idéal nul.

Si $A = \mathbf{Z}$, les idéaux maximaux de A sont les $p \cdot \mathbf{Z}$, où p est premier. Soit x un élément du radical de Jacobson de A. Pour tout nombre premier p, x appartient à $p \cdot \mathbf{Z}$. En d'autres termes, pour tout nombre premier p, x est divisible par p. Nécessairement x = 0. On en déduit que le radical de Jacobson de A est l'idéal nul.

Soit p un nombre premier et $A = \mathbf{Z}/p^2\mathbf{Z}$. Soit $\pi \colon \mathbf{Z} \to \mathbf{Z}/p^2\mathbf{Z}$ le morphisme quotient, qui est surjectif. Soit \mathcal{J} un idéal maximal de A. D'après la question précédente, $\pi^{-1}(\mathcal{J})$ est un idéal maximal de \mathbf{Z} contenant $p^2\mathbf{Z}$. D'après la description des idéaux maximaux de \mathbf{Z} , on a nécessairement $\pi^{-1}(\mathcal{J}) = p\mathbf{Z}$. Toujours d'après la question précédente, on a nécessairement $\mathcal{J} = \pi(p\mathbf{Z})$. Ainsi, A possède un seul idéal maximal, à savoir $\pi(p\mathbf{Z})$, et le radical de Jacobson de A est égal à cet idéal maximal. Comme $\pi(p) = [p]_{p^2}$ n'est pas nul,

ceci donne un exemple d'un anneau dont le radical de Jacobson n'est pas l'idéal nul.

- 4. (*) Soit A un anneau et $a \in A$. Montrer que les conditions suivantes sont équivalentes :
 - (a) a appartient au radical de Jacobson de A
 - (b) pour tout élément b de A, $1_A ab \in A^{\times}$

Solution: Démonstration de $(a) \Rightarrow (b)$: on raisonne par contraposition; on suppose donc qu'il existe un élément b de A tel que $1_A - ab \notin A^{\times}$. L'idéal de A engendré par $1_A - ab$ est donc un idéal propre, qui est donc contenu dans un idéal maximal \mathfrak{M} de A (en particulier $1_A - ab \in \mathfrak{M}$). Montrons que $a \notin \mathfrak{M}$. Si a était un élément de \mathfrak{M} , comme $1_A = (1_A - ab) + ab$, on obtiendrait que $1_A \in \mathfrak{M}$, ce qui contredit le fait que \mathfrak{M} est un idéal propre de A. Donc $a \notin \mathfrak{M}$, ce qui montre que a n'est pas un élément du radical de Jacobson de A. Démonstration de $(b) \Rightarrow (a)$: on raisonne par contraposition; on suppose donc qu'il existe un idéal maximal \mathfrak{M} de A tel que $a \notin \mathfrak{M}$. Comme $a \notin \mathfrak{M}$, l'idéal a de a engendré par a0 et a1 contient strictement l'idéal a2. Comme a3 est un idéal maximal, on a a4 en particulier a4 est l'idéal de a4 engendré par a5 est l'idéal de a4 engendré par a6 est un idéal propre, on a a6 est un idéal propre, on a a7 est l'idéal de a8 engendré par a9. En particulier, comme a9 est un idéal propre, on a a7 est l'idéal de a8 en qui conclut.