

By Team Outlander

"Boldly going where no algorithm has gone before."

Inspiration

Our project draws inspiration from the spirit of exploration found in Star Trek and the logic of Vulcan philosophy. The name S'kai means "discovery" in the Vulcan language — a perfect symbol of our mission to seek new worlds through science and reason. By combining NASA's real exoplanet data with AI, we imagined how future Starfleet-like technologies could identify habitable planets beyond our solar system. S'kaiNet is our bridge between imagination and science — where curiosity meets logic in the pursuit of discovery.

Our Solution

Full pipeline: load \rightarrow clean \rightarrow engineer features \rightarrow grouped CV \rightarrow train ensembles \rightarrow evaluate \rightarrow threshold tuning \rightarrow interpretability.

- Group-aware validation by `kepid` to prevent leakage across KOIs from the same star.
- Astrophysical features: ratios, geometry, SNR proxies, uncertainty-aware measures.
- Strong tabular learners: XGBoost, LightGBM, CatBoost, RandomForest.
- Advanced training modes:
- **Stacking Ensemble** blend your base learners with a Logistic Regression meta-learner
- **Multi-Step (Hierarchical) Pipeline** high-recall planet filter (MLP) → high-precision planet type (XGBoost)
- Binary Planet Model simplified CONFIRMED vs FALSE POSITIVE experiment
- **Planet-centric metrics** and **per-class threshold optimization** to increase planet recall under constraints.

Contributions

• Label leakage → inflated accuracies

Inclusion of post-hoc or human-informed fields (e.g., `kepler_name`, `koi_pdisposition`, `koi_score`, and KOI false-positive flags) leaks disposition information into training, producing unrealistically high metrics that won't hold in deployment.

Split strategies that don't respect astrophysical grouping

Random/stratified CV that ignores `kepid` allows KOIs from the same star to appear in both train and validation, letting models memorize star-specific quirks.

Single-stage argmax decisions

Using plain `argmax` on multiclass probabilities under-controls discovery/false-alarm trade-offs—especially harmful when **planet recall** is the scientific priority.

Limited feature engineering

Raw KOI columns miss physically motivated relationships (geometry, SNR normalization, uncertainty ratios) that help separate real transits from systematics.

Class imbalance not explicitly handled

Without class weighting, minority classes (planets) can be under-served by decision rules and selection metrics.

Reproducibility gaps

Absent or inconsistent feature lists, seed handling, and fold definitions make results hard to replicate or compare fairly.

Results and Performance

Dataset:

- Trained on **Kepler KOI dataset** 9,564 valid samples
- **67 total features**: 36 existing + 31 newly engineeded

Binary Classification Model:

- Default: 95.3% Accuracy, 92.1% Recall, 92.7% Precision
- Planet Detection (Confirmed + Candidate): 96.7% Recall, 96.4% Precision

Multistep Model (MLP + XGBoost):

- Default: 88% Accuracy, 88% Recall, 87.5% Precision
- Without dropping koi_fpflag_ columns: 91.2% Accuracy, 91.2% Recall, 91.1% Precision

Ensemble Models:

- XGBoost: 78% Accuracy, 78% Recall, 78.2% Precision, 91.9% Train Accuracy
- LightGBM: 77.7% Accuracy, 77.7% Recall, 78% Precision, 92.9% Train Accuracy
- CatBoost: 73.6% Accuracy, 73.6% Recall, 77.6% Precision, 87.4% Train Accuracy
- RandomForest: 77.4% Accuracy, 77.4% Recall, 77% Precision, 92.7% Train Accuracy

Stacked Ensemble Model:

- Default: 78.6% Accuracy, 79% Recall, 77% Precision

Our Team

Jemshit Iskanderov

Nurmyrat Amanmadov

Tarlan Abdullayev

Parahat Iljanov

Links

App: https://skainetweb.vercel.app/

GitHub: https://github.com/jemshit/NASA_exoplanet_detection

