Aligning sparse random graphs

Guilhem Semerjian

LPENS

11.08.2023 / Cargese

Giovanni Piccioli, GS, Gabriele Sicuro, Lenka Zdeborová, 2112.13079 Luca Ganassali, Laurent Massoulié, GS, 2209.13723 Andrea Muratori, GS, in preparation

Outline

- Introduction and main results
- A message passing algorithm
- The large degree limit
- A family of faster algorithms

Outline

- Introduction and main results
- A message passing algorithm
- The large degree limit
- 4 A family of faster algorithms

Correlated Erdős-Rényi random graphs

$$G = (V, E), G' = (V, E')$$
 $(G, G') \sim ER(n, p, s)$:

- $V = [n] = \{1, \ldots, n\}$
- for each pair i < j, independently:
 - $\{i,j\} \in E$, $\{i,j\} \in E'$ with probability ps
 - $\{i,j\} \in E$, $\{i,j\} \notin E'$ with probability p(1-s)
 - $\{i,j\} \notin E, \{i,j\} \in E'$ with probability p(1-s)
 - $\{i,j\} \notin E$, $\{i,j\} \notin E'$ with probability 1 p(2 s)

$$G \sim \mathsf{ER}(n,p), \ G' \sim \mathsf{ER}(n,p)$$

s: correlation parameter (identical for s=1, independent for s=p)

An inference problem

- $(G, G') \sim \mathsf{ER}(n, p, s)$
- choose π^* , an uniformly random permutation of V
- set $H = (G')^{\pi^*}$, re-label the vertices through π^*
- given the observation of (G, H), can one infer π*?
 i.e. can one "align" the graphs?
 Bayesian setting, the model is known to the observer

Motivations:

De-anonymization of social networks

[Narayanan, Shmatikov 08]

- Analysis of graph-structured data (e.g. biological networks)
 [Singh, Xu, Berger 08]
- benchmark problem for graph neural networks

[Nowak, Villar, Bandeira, Bruna 18]

Phase diagram in the sparse regime

 $p = \lambda/n$, $n \to \infty$, with λ fixed task : infer correctly a positive fraction of the elements of π^*

 α : Otter's constant [Otter 48]

- $\lambda s < 1 \Rightarrow$ impossible
- [Ganassali, Massoulié, Lelarge 21a]
- $\lambda s > 1 \Rightarrow$ information-theoretically possible

- [Ding, Du 22]
- "easy": polynomial-time message passing algorithm

[Ganassali, Massoulié, Lelarge 21b] [Piccioli, GS, Sicuro, Zdeborová 21]

[Ganassali, Massoulié, GS 22]

other results for $p = \Theta\left(\frac{\log n}{n}\right)$ and $p = \Theta\left(\frac{n^{\alpha}}{n}\right)$ with $\alpha \in (0,1]$ (almost) exact recovery of π^* becomes possible

[Mao, Wu, Xu, Yu 22] [Ding, Li 22]

Outline

- Introduction and main results
- A message passing algorithm
- The large degree limit
- A family of faster algorithms

goal : build $\widehat{\pi} = \widehat{\pi}(G, H)$, "as close as possible" from π^*

if $\widehat{\pi}$ is a function from [n] to [n] (not necessarily bijective), and the loss is $d(\widehat{\pi}, \pi^*) = \sum_i \mathbb{1}(\widehat{\pi}(i) \neq \pi^*(i))$

then optimal estimator : $\widehat{\pi}(i) = \operatorname{argmax}_{i'} \mathbb{P}(\pi(i) = i' | G, H)$

posterior untractable, use instead a truncation:

$$\widehat{\pi}(i) = \operatorname{argmax}_{i'} \mathbb{P}(\pi(i) = i' | G_i^{(d)}, H_{i'}^{(d)})$$
 with

- $G_i^{(d)}$, depth d neighborhood of i in G
- $H_{i'}^{(d)}$, depth d neighborhood of i' in H

 $d = O(\log n)$ in the following

$$\widehat{\pi}(i) = \operatorname{argmax}_{i'} \mathbb{P}(\pi(i) = i' | G_i^{(d)}, H_{i'}^{(d)})$$

$$\mathbb{P}(\pi(i) = i' | G_i^{(d)}, H_{i'}^{(d)}) = \frac{\mathbb{P}(\pi(i) = i', G_i^{(d)}, H_{i'}^{(d)})}{\mathbb{P}(G_i^{(d)}, H_{i'}^{(d)})} \\
= \frac{\mathbb{P}(G_i^{(d)}, H_{i'}^{(d)} | \pi(i) = i')}{\mathbb{P}(G_i^{(d)}, H_{i'}^{(d)})} \mathbb{P}(\pi(i) = i') \\
= \frac{\mathbb{P}(G_i^{(d)}, H_{i'}^{(d)} | \pi(i) = i')}{\mathbb{P}(G_i^{(d)}, H_{i'}^{(d)})} \frac{1}{n}$$

in the large n limit, ratio of the probabilities of two neighborhoods with aligned roots vs random roots

• if $i' = \pi^*(i)$, $G_i^{(d)}$ and $H_{i'}^{(d)}$ are correlated Galton-Watson trees

three types of offsprings, Poisson laws of parameters λs , $\lambda (1-s)$, $\lambda (1-s)$

joint law of the neighborhoods : $P_1^{(d)}(T, T')$

• otherwise they are (essentially) independent Galton-Watson trees, offsprings Poisson of mean λ neighborhoods have law $P_0^{(d)}(T)P_0^{(d)}(T')$

if $P_1^{(d)}$ is sufficiently distinct from $P_0^{(d)} \otimes P_0^{(d)}$ when d grows, one can pick the right i'

$$L^{(d)}(T,T')=rac{P_1^{(d)}(T,T')}{P_0^{(d)}(T)P_0^{(d)}(T')}$$
 likelihood ratio, recursive computation :

 ℓ : degree of the root of T, $T = (T_1, \dots, T_\ell)$

idem for $T'=(T'_1,\ldots,T'_{\ell'})$

$$L^{(d)}(T,T') = f(\{L^{(d-1)}(T_i,T'_{i'})\}_{i\in[\ell]}^{i'\in[\ell']})$$

$$f(\{L_{i,i'}\}) = \sum_{k=0}^{\min(\ell,\ell')} e^{\lambda s} (1-s)^{\ell+\ell'} \left(\frac{s}{\lambda(1-s)^2}\right)^k \sum_{I,I',\sigma} \prod_{i \in I} L_{i,\sigma(i)} ,$$

with |I| = |I'| = k and $\sigma : I \to I'$ bijective generalized permanent of the $\ell \times \ell'$ matrix,

computational cost grows factorially with the degrees

can be turned into a message passing algorithm:

- compute the "scores" $L_{ii'}^{(d)} = L^{(d)}(G_i^{(d)}, H_{i'}^{(d)})$ for all pairs of vertices
- from messages $L_{ii' \to jj'}^{(t)}$ with $t = 1, \dots d$ (likelihood ratio between the neighborhood of i deprived from its neighbor j in G and the neighborhood of i' deprived from its neighbor j' in H)
- return $\widehat{\pi}(i) = \operatorname{argmax}_{i'} L_{ii'}^{(d)}$

quadratic number of messages, with update cost factorial in the degrees, $\ell_{\max} = \Theta\left(\frac{\log n}{\log\log n}\right)$ hence still $\operatorname{poly}(n)$

if $P_1^{(d)}$ is sufficiently distinct from $P_0^{(d)}\otimes P_0^{(d)}$ when d grows, $L_{i\pi^*(i)}^{(d)}\gg L_{ii'}^{(d)}$ for $i'\neq\pi^*(i)$ (with positive probability), hence $\pi^*(i)$ can be recovered

more formally:

[Ganassali, Massoulié, Lelarge 21b]

if for some value of (λ, s) , as $d \to \infty$

$$\mathsf{KL}(P_1^{(d)}||P_0^{(d)}\otimes P_0^{(d)}) = \mathbb{E}_1[\log L^{(d)}(T,T')] \to \infty$$

then the partial recovery of π^* is feasible in polynomial time (with a slightly different algorithm)

corresponds to the one-sided feasibility of the hypothesis testing problem on trees

graphs of size n = 2048

crossover around $s \approx 0.6$ for most of these λ

from the study of the tree problem, divergence of $KL(P_1^{(d)}||P_0^{(d)}\otimes P_0^{(d)})$, phase diagram :

dot-dashed line at $\sqrt{\alpha}\approx$ 0.58, limit of the transition line for $\lambda\to\infty$? this Otter threshold appeared before in the detection problem

[Mao, Wu, Xu, Yu 21]

Outline

- Introduction and main results
- A message passing algorithm
- The large degree limit
- 4 A family of faster algorithms

definition of Otter's constant α : $\alpha^{-1} = \lim_{n \to \infty} \frac{1}{n} \log(A_n)$

with A_n the number of rooted, unlabelled trees, on n vertices

- for all $s < \sqrt{\alpha}$, all λ , $\limsup \mathsf{KL}(P_1^{(d)}||P_0^{(d)} \otimes P_0^{(d)}) < \infty \text{ as } d \to \infty$ for all $s > \sqrt{\alpha}$, all $\lambda > \lambda_{\mathsf{c}}(s)$, $\mathsf{KL}(P_1^{(d)}||P_0^{(d)} \otimes P_0^{(d)}) \to \infty \text{ as } d \to \infty$
- [Ganassali, Massoulié, GS 22]

[Mao, Wu, Xu, Yu 22]

Some ideas of the proof:

- $\lambda \to \infty$ (after $n \to \infty$) should bring some Gaussianity
- for $d=1, T\equiv \ell$ (degree of the root)

$$rac{\mathsf{Po}(\lambda) - \lambda}{\sqrt{\lambda}} \overset{\mathrm{d}}{\underset{\lambda o \infty}{\longrightarrow}} \mathcal{N}(0, 1)$$

$$\begin{split} \mathsf{KL}(P_1^{(1)}||P_0^{(1)}\otimes P_0^{(1)}) &\underset{\lambda \to \infty}{\longrightarrow} \\ \mathsf{KL}\left(\mathcal{N}\left(0,\begin{pmatrix}1&s\\s&1\end{pmatrix}\right) \middle| \middle| \mathcal{N}\left(0,\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)\right) = -\frac{1}{2}\log(1-s^2) \end{split}$$

• for larger d:

 $\chi_d = \{ \text{rooted unlabelled trees of depth at most } d \}$

 $\chi_{d+1} = \mathbb{N}^{\chi_d}$: number of copies of subtrees under the root

$$T \in \chi_{d+1} = \{T_t\}_{t \in \chi_d}$$

Example:

shift, rescale and rotate :
$$y_{\beta} = \sum_{t \in \chi_d} f_{\beta}^{(d)}(t) \frac{T_t - \lambda \mathbb{P}_0^{(d)}(t)}{\sqrt{\lambda}}$$
 $\beta \in \chi_d$

(y,y') becomes (infinite-dimensional) Gaussian vector as $\lambda \to \infty$ with covariance :

- diagonal under $P_0^{(d+1)} \otimes P_0^{(d+1)}$
- 2 × 2 block-diagonal under $P_1^{(d+1)}$

$$\mathsf{KL}(P_1^{(d+1)}||P_0^{(d+1)}\otimes P_0^{(d+1)})\underset{\lambda\to\infty}{\longrightarrow} -\tfrac{1}{2}\underset{\beta\in\chi_d}{\sum}\log(1-s^{2|\beta|})$$

with $|\beta|$ the number of vertices in the ("dual") tree β

when $d \to \infty$, the sum diverges if $s^2 \alpha > 1$

the $f_{\beta}^{(d)}(t)$ are orthogonal polynomials (with respect to the Galton-Watson measure P_0), generalizing the Charlier polynomials, defined by recursion on d

Outline

- Introduction and main results
- A message passing algorithm
- The large degree limit
- A family of faster algorithms

[Muratori, GS in preparation]

the orthogonal polynomials $f_{\beta}^{(d)}(t)$ "diagonalize" the likelihood ratio :

$$L^{(d)}(t,t') = \sum_{eta \in \chi_d} \mathbf{s}^{|eta|-1} f_eta^{(d)}(t) f_eta^{(d)}(t')$$

recall that $\chi_d = \{\text{rooted unlabelled trees of depth at most } d\}$

inspired by the "low degree polynomial method", introduce for $m \ge 2$

$$L_m^{(d)}(t,t') = \sum_{eta \in \chi_{d,m}} s^{|eta|-1} f_eta^{(d)}(t) f_eta^{(d)}(t')$$

in $\chi_{d,m}$, restrict the number of offsprings (of the dual trees β) to be $\leq m$ discards some information, not ≥ 0 anymore

recursive nature of $\chi_{d,m}$ translates into recursive computation of $L_m^{(d)}$:

$$L_m^{(d)}(T,T') = f_m(\{L_m^{(d-1)}(T_i,T'_{i'})\}_{i\in[\ell]}^{i'\in[\ell']})$$

$$f(\{L_{i,i'}\}) = \sum_{k=0}^{\min(\ell,\ell')} e^{\lambda s} (1-s)^{\ell+\ell'} \left(\frac{s}{\lambda(1-s)^2}\right)^k \sum_{I,I',\sigma} \prod_{i \in I} L_{i,\sigma(i)} ,$$

 $f_m = f$ truncated to order s^m : much faster to compute (in O(II')) operations for m=2,3)

Otter's modified constant on the growth of the number of trees with offspring < m:

$$\sqrt{\alpha_2} \approx 0.63, \sqrt{\alpha_3} \approx 0.60$$

not so far from $\sqrt{\alpha} \approx 0.58$

[Otter 48]

not so far from $\sqrt{\alpha} \approx 0.58$

expected phase transition for the simplified algorithm at level *m*:

some preliminary numerical results:

•
$$n = 512$$
, $\lambda = 1.2$:

some preliminary numerical results:

• n = 1024, threshold 0.05 on the overlap:

