

Statistical Multiplexing & Queuing Analysis

A/PROF. DUY NGO

Statistical Multiplexing

Tradeoff Delay for Efficiency

Dedicated lines involve not waiting for other users, but lines are used inefficiently when user traffic is bursty

Shared lines concentrate packets into shared line; packets buffered (delayed) when line is not immediately available

Multiplexers inherent in Packet Switches

- ➤ Packets/frames forwarded to buffer prior to transmission from switch
- ➤ Multiplexing occurs in these buffers

Multiplexer Modeling

- ➤ Arrivals: what is the packet interarrival pattern?
- Service time: how long are the packets?
- Service discipline: what is order of transmission?
- ➤ Buffer discipline: if buffer is full, which packet is dropped?
- > Performance measures:
- ➤ Delay distribution; packet loss probability; line utilization

Delay = Waiting + Service Times

- ➤ Waiting time: from arrival instant to beginning of service
- Service time: time to transmit packet
- ➤ Delay: total time in system = waiting time + service time

Fluctuations in Packets in the System

Packet Lengths & Service Times

- >R bits per second transmission rate
- ►L = # bits in a packet
- \rightarrow X = L/R = time to transmit ("service") a packet
- ➤ Packet lengths are usually variable
 - ➤ Distribution of lengths → dist. Of service times
 - > Common models:
 - Constant packet length (all the same)
 - > Exponential distribution
 - Internet measured distributions fairly constant

Basic Queuing Theory

- ➤One of the most important measure of performance of a data network is the average delay required to deliver a packet from origin to the destination
- ➤ It is important to understand the nature and mechanism of delay, and the manner in which it depends on the characteristics of a network
- ➤ Queuing theory is the primary methodological framework for analyzing network delay.
- ➤ Queuing analysis mostly applies to a *delay* system where call requests are could be queued when a system is unable to offer any capacity

Queuing System

- ➤ We are interested in the following performance parameters:
 - ➤ Time spent in the system/queue
 - ➤ Number of packets in the system: *n(t)*
 - > Fraction of arriving packets/calls that are lost or blocked
 - ➤ Average throughput

Arrival Rates and Traffic Load

- Let *A(t)* be the number of packet arrivals at the system in the interval of 0 to t.
- \triangleright Let B(t) be the number of blocked packets and D(t) be the number of departed packets
- The number of packets in the queue is N(t) = A(t) D(t) B(t)
- Assuming the system is empty at t=0, the long term (steady state) arrival rate is given by:

 $\lambda = Lt \frac{A(t)}{t}$

The throughput of the system is equal to the long term departure rate, which is given by:

$$throughput = Lt \frac{D(t)}{t} calls / \sec$$

Arrival Rates and Traffic Load

➤ The average no. of packets in the system is given by:

$$E[N] = Lt \int_{t \to \infty}^{1} \int_{0}^{t} N(t')dt'$$

➤ The fraction of blocked packets is given by:

$$P_b = Lt \frac{B(t)}{A(t)}$$

➤ Long time arrival rate is given by:

$$\lambda = Lt \frac{n}{n \to \infty} \frac{1}{\tau_1 + \tau_2 + \dots + \tau_n} = Lt \frac{1}{(\tau_1 + \tau_2 + \dots + \tau_n)/n}$$

$$=\frac{1}{E[\tau]}$$

Little's Formula

- Considering a system where calls or packets (for data network) arrive in random to obtain network services. Service time of a packet is *L/C* where *L* is the packet length and *C* is the transmission rate (service rate).
- Little's theorem could be used to estimate following quantities:
 - Average no. of calls/packets in a system
 - Average delay to service a call or a packet
- ➤ Using the simplistic form of the little's theorem, number of calls in a system can be calculated:

➤ Probabilistic form is:

$$N = \lambda T$$

$$E[N] = \lambda E[T]$$

Basic Queuing Model

> A simple queue model

Packet Arrival/Departure: FIFO

Little's Formula: FIFO System

➤ Time average number of calls in a system up to time is :

$$\frac{1}{t_o} \int_{0}^{t_o} N(t') dt' = \frac{1}{t_o} \left\{ \sum_{j=1}^{A(t_o)} T_j \right\}$$

 \triangleright Dividing both sides by $A(t_o)$

$$\frac{1}{t_o} \int_{0}^{t_o} N(t') dt' = \frac{A(t_o)}{t_o} \left\{ \frac{1}{A(t_o)} \sum_{j=1}^{A(t_o)} T_j \right\}$$

The first term on the left side of the equation is the average arrival time and the second term is the expected time spent by calls

Little's Formula: FIFO System

 \triangleright Considering a system where some calls could be blocked, the little's formula is modified as below, where P_b is the probability of blocking

$$E[N] = \lambda (1 - P_b) E[T]$$

Little's formula can be extended for a network where a link consists of M multiplexers or switches

$$E[N_{net}] = \lambda_{net} E[T_{net}] = \sum \lambda_m E[T_m]$$

$$E[T_{net}] = \frac{E[N_{net}]}{\lambda_{net}} = \frac{1}{\lambda_{net}} \sum_{m} \lambda_m E[T_m]$$

Basic Queuing Model

- Work done by A. K. Erlang, a famous Dutch telecommunications engineer lead to the fundamental development of models to analyse resources sharing systems such multiplexers, switches, etc.
- In a telecommunication system calls/packets arrives randomly and use resources for a random period of time. In a delay system when all system resources are busy, new arrived calls are kept in a 'queue' until a suitable resource is available.

Basic Queuing Model

- Arrival process is very important in communication network. Traffic arrival could be deterministic when the interarrival times are equal and constant
- Arrival process is considered to be exponential, if the inter-arrival times are exponential random variables with mean $E[\tau] = 1/\lambda$. Exponential process is described by the following equation.

$$P[\tau > t] = e^{-t/E[\tau]} = e^{-\lambda t}$$

For exponential interarrival times, the number of arrivals A(t) in an interval of length t is given by a Poisson random variable with mean $E[A(t)] = \lambda t$:

$$P[A(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Poisson Arrivals

- \triangleright Average arrival rate: λ packets per second
- Arrivals are equally-likely to occur at any point in time
- > Time between consecutive arrivals is an exponential random variable with mean 1/ λ
- Number of arrivals in interval of time t is a poisson random variable with mean λt

$$P[\text{ k arrivals in t seconds}] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Exponential Distribution

$$P[X > t] = e^{-t/E[X]} = e^{-\lambda t}$$
 for $t > 0$.

Performance of a Packet Statistical Multiplexer

- \triangleright Let λ packets/sec be the average packet arrival rate to a multiplexer
- \triangleright If $\lambda > \mu$, then the buffer build up and packets could be lost
- ► If $\lambda < \mu$, number of packets can fluctuate and transmission of long packets may cause buffer overflow
- Buffer overflow can be prevented by increasing the buffer size
- ► Load is defined as $\rho = \lambda/\mu$, when $\lambda < \mu$ then $\rho < 1$
- ➤ Statistical multiplexing technique can be analyzed for different queuing system
- ➤ Book describe the performance of a statistical multiplexer using M/M/1/K queuing system

Queuing System: Kendall's Notation

Input specifications:

- G: general (no assumptions)
- M: purely random

Service time distribution:

- G: general (no assumptions)
- M: negative exponential service time distribution
- D: constant

N: number of servers (finite number)

L: number of sources (finite length)

∞: queue length (infinite length)

M/M/1/K Queueing Model

At most K packets allowed in system

- \triangleright 1 packet served at a time; up to K-1 can wait in queue
- \triangleright Mean service time E[X] = $1/\mu$
- \triangleright Key parameter load: $\rho = \lambda/\mu$
- When $\lambda << \mu$ ($\rho \approx 0$), packets arrive infrequently and usually find system empty, so delay is low and loss is unlikely
- \triangleright As λ approaches μ (ρ \rightarrow 1) , packets start bunching up and delays increase and losses occur more frequently
- When $\lambda > \mu$ ($\rho > 0$), packets arrive faster than they can be processed, so most packets find system full and those that do enter have to wait about K-1 service times

State Model of a Buffer

M/M/1/K Performance Equations

Probability of Overflow:

$$P_{loss} = \frac{(1-\rho)\rho^{K}}{1-\rho^{K+1}}$$

Average number of packets in the queue:

$$E[N] = \frac{\rho}{1 - \rho} - \frac{(K+1)\rho^{K+1}}{1 - \rho^{K+1}}$$

Average packet delay

$$E[T] = \frac{E[N]}{\lambda(1 - P_K)}$$

M/M/1/10 Queue Performance

- Maximum 10 packets allowed in system
- Minimum delay is 1 service time
- Maximum delay is 10 service times
- ➤ At 70% load delay & loss begin increasing
- ➤ What if we add more buffers?

M/M/1 Queue Model

Unlimited number of packets allowed in system

- P_b =0 Since packets are never blocked
- Average time in system E[T] = E[W] + E[X]
- \triangleright When $\lambda \ll \mu$, calls/packets arrive infrequently and delays are low
- \triangleright As λ approaches μ ; packets start bunching up and average delays increase
- When $\lambda > \mu$; packets arrive faster than they can be processed and queue grows without bound (unstable)

Avg. Delay in M/M/1 & M/D/1 Systems

$$E[T_M] = \frac{1}{\lambda} \left[\frac{\rho}{1 - \rho} \right] = \left[\frac{1}{1 - \rho} \right] \frac{1}{\mu} = \left[\frac{\rho}{1 - \rho} \right] \frac{1}{\mu} + \frac{1}{\mu} \quad \text{for M/M/1} \quad \text{model.}$$

$$E[T_D] = \left[1 + \frac{\rho}{2(1 - \rho)} \right] \frac{1}{\mu} = \left[\frac{\rho}{2(1 - \rho)} \right] \frac{1}{\mu} + \frac{1}{\mu} \quad \text{for M/D/1 system.}$$