

MAT1512

October/November 2012

CALCULUS A

Duration 2 Hours

100 Marks

EXAMINERS

FIRST SECOND PROF SJ JOHNSTON PROF I NAIDOO

MRS SB MUGISHA

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages

ANSWER ALL THE QUESTIONS.

Outline

Question 1 Limits and continuity

Question 2 Derivatives

Question 3 Integrals

Question 4. Differential equations

QUESTION 1

(a) Determine the following limits (if they exist)

(1)
$$\lim_{t \to 2} \frac{t^2 - 4}{t^3 - 8}$$
 (3)

(11)
$$\lim_{x \to 2} \frac{\sin(x^2 - 4)}{x - 2}$$
 (4)

(iii)
$$\lim_{x \to 2} 2 \frac{\sqrt{x} - \sqrt{2}}{x - 2}$$
 (4)

(iv)
$$\lim_{x \to \infty} \frac{8x^2 - 9x + 1}{3x^2 + 9x - 3}$$
 (3)

(b) If
$$1 \le f(x) \le x^2 + 6x + 6$$
 for all x , find $\lim_{x \to -1} f(x)$ (3)

[TURN OVER]

(c) Let
$$f(x) = \begin{cases} \sqrt{-x} & \text{if } x < 0 \\ 3 - x & \text{if } 0 \le x < 3 \\ (3 - x)^2 & \text{if } x > 3 \end{cases}$$

Determine at which value(s) of x is f(x) discontinuous

[23]

(6)

QUESTION 2

- (a) Differentiate $f(x) = x^2 2x 15$ from first principles (5)
- (b) Find the derivatives of the following functions by using the appropriate rules for differentiation

$$(1) \quad y = \sqrt{x} \cos \sqrt{x} \tag{4}$$

$$(11) f(x) = \frac{2\sin x}{\sin \pi x}$$
 (4)

(ii)
$$h(x) = -\int_{\sqrt{x}}^{1} \frac{2z^2}{z^4 + 1} dz$$
 (4)

(c) Find the first and second derivatives of the function

$$y = \sqrt{2x + 1} \tag{3}$$

(d) Given $y \sin 2x = x \cos 2y$, find

(i)
$$\frac{dy}{dx}$$
 implicitly (5)

(11) the equation of the normal line to the curve $y \sin 2x = x \cos 2y$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ (5)

[30]

QUESTION 3

(a) Use the appropriate substitution to evaluate the following integrals

(i)
$$\int \frac{4+6x}{\sqrt{6+4x+3x^2}} dx$$
 (3)

$$(11) \int \frac{x}{1-x} \, dx \tag{3}$$

[TURN OVER]

$$(III) \int e^{\sin x} \cos x \, dx \tag{3}$$

(b) Determine the exact values for the following integrals (Use substitution if necessary)

$$(1) \int_{-4}^{3} \left| 2x - x^2 \right| \, dx \tag{10}$$

(11)
$$\int_{-1}^{0} \frac{2r}{\sqrt{1-r^2}} dr$$
 (4)

(c) Determine the area of the region enclosed by the curve $y = x^2 - 2x$ and the line y = x + 4 (7) Hint Sketch the graphs on the same set of axis

[30]

QUESTION 4

(a) Solve the following Initial Value Problem

$$\frac{du}{dt} = \frac{2t + \sec^2 t}{2u}, \quad u(0) = -5$$

(6)

(b) Let $G(x, y) = x^2y^4 - 3x^4y$

(i) Find the first partial derivatives G_x and G_y (3)

(11) Using (1) above, find
$$\frac{dy}{dx}$$
 (3)

(111) If G(x, y) = 0, confirm your answer in part (11) above by finding $\frac{dy}{dx}$ using implicit differentiation (5)

[17]

TOTAL: [100]