Курсовая работа

на тему: «Нейросетевые методы поиска и сегментации объектов в данных современных космических обзоров (eROSITA, ART-XC)»

Выполнила: студентка гр. 320

Немешаева Алиса

Содержание

Aı	нотация	1
В	ведение	2
1	Постановка задачи	3
2	Обзор существующих решений рассматриваемой задачи или её модификаций	4
3	Исследование и построение решения задачи	5
4	Описание практической части	6
За	ключение	7
Сі	писок использованных источников	8
Α	Первое Приложение	Ç

Аннотация

Данная работа рассматривает возможность применения нейросетевых методов к решению проблемы сегментации и детекции объектов по многоволновым данным космических телескопов(в данном случае оптического, инфракрасного и рентгеновского диапазонов). В качестве основы для нейросетевой архитектуры использовалась модель U-net. [Добавить результаты потом]

Введение

В 2019 году произошел запуск космической обсерватории СРГ (Спектр-Рентген-Гамма) с телескопами eROSITA и ART-XC на борту. Основной задачей этих телескопов является создание обзора всего неба в рентгеновском диапазоне. Данные, полученные от этих телескопов будут использоваться для обнаружения астрономических объектов трёх категорий:

- а) Скопления галактик.
- б) Сверхмассивные чёрные дыры.
- в) Рентгеновские звёзды в галактике Млечный путь.

Полные обзоры неба, полученные телескопом eROSITA, появятся к июню 2020 года, поэтому на данный момент есть возможность подготовить модели для сегментации данных на примере других диапазонов.

В первую очередь будут использоваться данные оптического диапазона. Видимое излучение — тот диапазон частот, что доступен глазу человека. На текущий момент существует большое количество оптических телескопов, и, как следствие, большое количество данных, извлеченных с их помощью. В данной работе будут использоваться данные телескопа Pan-STARRS1, который является частью системы телескопов Pan-STARRS (Panoramic Survey Telescope and Rapid Response System). Этот телескоп построен на вершине гавайского вулкана Халеакала. На 2007 год он обладал самой большой светочувствительной матрицей в мире. Кроме того, его данные находятся в общем доступе.

1 Постановка задачи

Эта работа во многом является повторением исследования из статьи о детекции эффекта Сюняева-Зельдовича, с той разницей, что здесь будут использоваться оптические данные, в то время как в упомянутой статье использовались данные микроволнового диапазона.

2 Обзор существующих решений рассматриваемой задачи или её модификаций

3 Исследование и построение решения задачи

4 Описание практической части

Заключение

Текст заключения

Список использованных источников

1. V.~Bonjean Deep learning for Sunyaev–Zel'dovich detection in Planck Astronomy & Astrophysics

Приложение А Первое Приложение