Hence we can conclude that it holds: Orthonormality with verpent to meet's distribution
$\int_{\mathcal{B}(x)}^{L} \varphi_{r}(x) \varphi_{s}(x) dx = \delta_{rs} \left(\text{Orthonormality condition} \right)$
where ors=1 if r=s, and ors=0 if r≠s. Now let's go buch to
either one of relations (93) or (94), say (93), multiply it by
where $\delta_{rs} = 1$ if $r = s$, and $\delta_{rs} = 0$ if $r \neq s$. Now let's go buch to either one of relations (9s) or (9b), say (9s), multiply it by $G_s(x)$ and integrate from 0 to L with respect to $x \Rightarrow 0$
$(L_1 L_1 + d_2(x)) = (x x y y y y y y y y $
$\Rightarrow \int_{0}^{L} \frac{d}{dx} \left[A(x) \frac{d\varphi_{r}(x)}{dx} \right] \varphi_{s}(x) dx = -\omega_{r}^{2} \delta_{rs} , v=1,2,, s=1,2, (11)$
We can simply this more by integrating by part the left-hand-ride =
$\Rightarrow A(x) \frac{dG(x)}{dx} G_S(x) \Big _{0}^{L} - \int_{0}^{L} A(x) \frac{dG_r(x)}{dx} \frac{dG_s(x)}{dx} \frac{dx}{dx} = -\omega_{r}^{2} \frac{dr_{s}}{dr} \Rightarrow A(x) \frac{dG_r(x)}{dx} \frac{dG_r(x)}$
O For 'shaple' BCs (4c) \Rightarrow $A(x) G_r(x)G_s(x)dx = \omega_r^2 f_{rs} V_s = 1, z,(12)$

Note that these ofthogonality carditions are to sumple BCs only!

By conditions (10) and (11) or (12) the eigenfunctions are defendined uniquely, so there are no multiplicative another in them => Eigenfunctions for systems with simple BCs that we athonormalized according to (10), (11) or (11) will be called mass-orthonormalized moder. So now let's vecansider the general rolution of (1) and let's assume all of that there is external distributed facing: $\frac{\partial}{\partial x} \left[A(x) \frac{\partial u}{\partial x} \right] + F(x,t) = B(x) \frac{\partial u}{\partial t^2} , \quad 0 < x \le L \quad (43)$ with bound any conditions (12) and inital auditions (16). The first thing we do it to neglect for the moment the applied fore and the initial conditions med formulate and solve the vesulting boundary value problem - Obtaint autable infinity of named moder of vibration of cur, gray, v=12... mass orthonamalized They, we use the principle of linear superposition and express the general forced response of (13) in terms of modal responses:

Let's substitute (14) into (13)
$$\Rightarrow$$
 $\Rightarrow B(x) \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \varphi_i(x) = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \frac{d}{dx} \left[A(x) \frac{d\varphi_i(x)}{dx} \right] + F(x,t)$

We pick an arbitrary but fixed index j and multiply both vides of the above equation by $\varphi_i(x)$, and then integrate both rider with velpect to x from 0 to $L \Rightarrow$
 $\Rightarrow \int_0^x B(x) \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \varphi_i(x) \varphi_j(x) dx = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \stackrel{?}{\underset{i=1}{\sum}} (A(x) \frac{d\varphi_i(x)}{dx}) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) \varphi_j(x) dx = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \stackrel{?}{\underset{i=1}{\sum}} (A(x) \frac{d\varphi_i(x)}{dx}) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) \varphi_j(x) dx = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \stackrel{?}{\underset{i=1}{\sum}} (A(x) \frac{d\varphi_i(x)}{dx}) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) \varphi_j(x) dx = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \stackrel{?}{\underset{i=1}{\sum}} (A(x) \frac{d\varphi_i(x)}{dx}) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) \varphi_j(x) dx = \stackrel{?}{\underset{i=1}{\sum}} \eta_i(t) \stackrel{?}{\underset{i=1}{\sum}} (A(x) \frac{d\varphi_i(x)}{dx}) \varphi_j(x) dx + \frac{d\varphi_i(x)}{dx} \varphi_j(x) dx + \frac{d\varphi_i($

But what about initial conditions? Consider the initial anditions at the publicum, velations (16). $u(x,0) = g(x) = Z y_i(0) g_i(x)$ $du(x,0) = h(x) = Z y_i(0) g_i(x)$ $du(x,0) = h(x) = Z y_i(0) g_i(x)$ Now consider the first of the above relations and multiply it by Gi(x) where j'is aubitrary but fixed => g(x) (gi(x) = = = 7: (0) (i (x) (x) =) Integrate wrt X $\Rightarrow \int_{\mathcal{B}(x)g(x)} g(x) g(x) dx = \frac{2}{i-1} y_i(0) \int_{\mathcal{D}(x)} g(x) g(x) dx = y_i(0) \Rightarrow$ $y_{j}(0) = \int_{0}^{\infty} B(x)g(x)\varphi_{j}(x)dx \int_{0}^{\infty} j=1/2,...$ Similarly we can compute the j-th initial moder velocity 4 $i_j(0) = \int_0^L B(x)h(x)g_j(x)dx$ j=1/2...

Then we can solve completely, the j-th modal response: 7; (+) = y. (0) cosw; t+ 3; (0) suw; t+ 1 [N; (=) suw; (t-=) de For the forced solution of our original problem (1) $u(x,t) = \sum_{i=0}^{\infty} \left[\gamma_{i}(0) \cos \omega_{i} t + \frac{\gamma_{i}(0)}{\omega_{i}} \sin \omega_{i} t + \frac{1}{\omega_{i}} \left[N_{i}(\tau) \sin \omega_{i} (t-\tau) d\tau \right] \right]$ Rem Wh Luert'x outhonormalital Suppose that we have zero initial conditions eigensmations. and the applied face distribution is a review of point loads, i.e., F(x,t) = = = P. (+) S(x-xi) => $\exists u(x,t) = \sum_{i=1}^{\infty} \left[\frac{1}{\omega_i} \int_{N_i}^{t} (z) sm\omega_i (t-z) dz \right] G_i(x)$ $t N_j(x) = \int_{0}^{\infty} \sum_{i=1}^{K} P_i(t) \delta(x-x_i) G_j(x) dx = \sum_{i=1}^{K} P_i(t) \int_{0}^{t} (x-x_i) G_j(x) dx$

$$N_{j}(x) = \int_{0}^{L} \sum_{i=1}^{k} P_{i}(t) \, \delta(x-x_{i}) \varphi_{j}(x) dx =$$

$$= \sum_{i=1}^{k} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i})$$

$$= \int_{0}^{L} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i})$$

$$= \int_{0}^{L} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i})$$

$$= \int_{0}^{L} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i})$$

$$= \int_{0}^{L} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i})$$

$$= \int_{0}^{L} P_{i}(t) \int_{0}^{L} \delta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x_{i}) \int_{0}^{L} \beta(x-x_{i}) \varphi_{j}(x) dx \Rightarrow$$

$$\varphi_{j}(x) \int_{0}$$

Solution puccess $\frac{\partial}{\partial x} \left[A(x) \frac{\partial u}{\partial x} \right] + F(x,t) = B(x) \frac{\partial^2 u}{\partial t^2} + BCs + ICs$ $\frac{\partial}{\partial x}\left[A(x)\frac{\partial u}{\partial x}\right] = B(x)\frac{\partial u}{\partial t} + BCs \Rightarrow \left\{\alpha_{r}, \varphi_{r}(x)\right\}$ Remarks $u(x,t) = \sum_{i=1}^{N} \gamma_i(t) \varphi_i(x)$ 2) BCs should give district Infinity of uncoupled moder/ osaillatas I ICs -> Denve the winter andition for there model oscillators

Free osullations of elastodynamic system with 'complex' boundary
conditions
We will demonstrate the methodology through on example.
String String X=L July X=0 X=L July Mz Kz
The X
k t I
then, the governing partial differential equation would by, $\frac{d}{dx} \left[A(x) \frac{du}{dx} \right] = B(x) \frac{du}{dt^2} , 0 < X < L$
ax [AQ) ax]= BQ) at 100/100
with bound any conditions:
$A(0) \frac{\partial u(0,t)}{\partial x} - K_1 u(0,t) - M_1 \frac{\partial u(0,t)}{\partial t^2} = 0 $ (1d)
$A(L) \frac{\partial u(L,t)}{\partial x} + k_2 u(L,t) + M_2 \frac{\partial^2 u(L,t)}{\partial t^2} = 0$ (16)

Seek again syndhonous viboshous where $u(x,t) = f(t)\phi(x) \Rightarrow$ $\Rightarrow \text{Substituting into the first bound any conditions,} \qquad Then f(t)$ Then f(+)+wff)= A(0) & (0) f(+) - K, & (0) f(+) - M, & (0) f(+)=0= $-\omega^2 f(+)$ Remarks. => A(0) 6(0) - K16(0) + WM, 6(0) = 0 => 1) If M,=M2=0 We => A(0) 6'(0) - (K1-wM1) 6(0)=0 get stiffness & Cr Similarly at X=L we get the bound any andition, 2)If Ki→m→ → G(0) → 0,50 A(L) G(L)+ (K2-wM2) G(L)=0 we recover fixed Recall general ergenvalue analyris in the system with simple boundary anditions; then we got the 3) If Ki-> 0 and M, -> 0 => A60,660>0 vecaer hee BC. erganlue problem $\frac{d}{dx}\left[A(x)\frac{d\varphi(x)}{dx}\right] = -\omega^2B(x)\varphi(x) \Rightarrow \varphi(x,\omega) = C, \varphi, (x,\omega) + C_2\varphi_2(x,\omega)$ Two Ilnearly Then substituting this Idution into (22) and (26) we get:

(23) => A(0) [C16/(0,00) + C26/2(0,00)] - (k1-w2M1)[C16/(0,00)+C26/2(0,00)]=0 (2b)= A(L)[C16/(L,w)+C26/(L,w)]+(k2-wM2)[C16/(L,w)+C262(L,w)]=0 Henre we have that TA(0) 6/(0,00)-(ky-wM1) 6, (0,00) A(L) 6, (L, w) + (K2-wM2) 6, (4a) Set determinant of coefficient) = 0 => = 4 (a)=0= anar... and aderthem such that ozwi, zwizwiz... They substitute w= wr, say, back unto mathex-equation and compute te vatio (1/C2) which determines the y-th eigenfunction (x). Now look at athogonality anditions. Suppose that we pick the yearder