The multiplicative group modulo p: a primer for dummies

What is a group?

→ (G, ∘)

 \Rightarrow G = set of elements (group members)

 $\Rightarrow \circ$ = operation (group operation)

→ 4 properties:

⇒ Closure: for any g_1 , g_2 : $g_x = g_1 \circ g_2$ must be a group member

 \Rightarrow **Identity**: there is a group member I such that $g \circ I = I \circ g = g$

⇒ **Inverse**: for any g, there is g^{-1} such that $g \circ g^{-1} = I$

 \Rightarrow **Associativity**: for any g_1 , g_2 , g_3 : $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

→ If also commutative → Abelian Group

The Zp* group

→ multiplicative group modulo prime p

- \Rightarrow Set of p-1 elements $\{1,2,...,p-1\} \rightarrow$ finite group
- ⇒ Multiplicative = we only care about multiplications mod p!!
 - \rightarrow Forget the sum, here (otherwise you would have a field T_p)

→ Group properties:

- ⇒ Closure: obvious
- ⇒ Identity: obvious
- ⇒ Associativity: obvious
- ⇒ Commutativity → Abelian group → also obvious
- ⇒ What about inverse???
 - \rightarrow If mod N, then x has inverse if and only if gcd(x,N)=1
 - \rightarrow If N=p=prime, then all elements have inverse!
 - » Note that 0 is not an element of the group!

Example: Z_{11}^*

 \rightarrow Elements: $\{1,2,3,4,5,6,7,8,9,10\}$

→Inverses:

 $\Rightarrow 1 \rightarrow 1$

 $\Rightarrow 2 \rightarrow 6$ $6 \rightarrow 2$

 $\Rightarrow 3 \rightarrow 4$ $4 \rightarrow 3$

 $\Rightarrow 5 \rightarrow 9$ $9 \rightarrow 5$

 $\Rightarrow 7 \rightarrow 8$ $8 \rightarrow 7$

 $\Rightarrow 10 \rightarrow 10$ (analogous to -1)

→ How to compute inverses for large groups?

⇒Extended euclidean algorithm

Back to multiplicative groups: exponentiation

- \rightarrow $x^k = x \circ x \circ x \circ ... \circ x (k times)$
- →Generator of group of order m
 - \Rightarrow exists g such that $\{g^0,g^1,...g^{m-1}\}$ = all m group members
- → Prime-order group:
 - ⇒If m is prime, any member is generator

 →Except the identity
- →Is Zp* a prime order group? NO!!
 - \Rightarrow |Zp*| = p-1 CANNOT be prime \Rightarrow p is prime \Rightarrow p-1 is even

Example: Z_{11}^*

 \rightarrow Elements: $\{1,2,3,4,5,6,7,8,9,10\}$

```
→ Generators? \{g^1,g^2,g^3,...,g^{10}\}=?
```

```
\Rightarrow g=2 \rightarrow {2,4,8,5,10,9,7,3,6,1} OK, generator
```

$$\Rightarrow$$
 g=3 \rightarrow {3,9,5,4,1,3,9,5,4,1} NO! Subgroup order 5

$$\Rightarrow$$
 g=4 \rightarrow {4,5,9,3,1,4,5,9,3,1} NO! Subgroup order 5

$$\Rightarrow$$
 g=5 \rightarrow {5,3,4,9,1,5,3,4,9,1} NO! Subgroup order 5

$$\Rightarrow$$
 g=6 \rightarrow {6,3,7,9,10,5,8,4,2,1} OK, generator

$$\Rightarrow$$
 g=7 \rightarrow {7,5,2,3,10,4,6,9,8,1} OK, generator

$$\Rightarrow$$
 g=8 \rightarrow {8,9,6,4,10,3,2,5,7,1} OK, generator

$$\Rightarrow$$
 g=9 \rightarrow {9,4,3,5,1,9,4,3,5,1} NO! Subgroup order 5

$$\Rightarrow$$
 g=10 \rightarrow {10,1,10,1,10,1,10,1,10,1} NO! Subgroup order 2

→ Take home:

- ⇒ either g is a generator
- ⇒ Or generates a SUBGROUP → order = factor of |G|
- ⇒ And Zp* as well as all subgroups are cyclic!

Giuseppe Bianchi

Strong primes

- →Prime p such that p = 2q +1 being q also prime!
- →Order of Zp*: p-1 p-1 = 2q
- → Hence, any member x (except 1 and p-1) either
 - 1. Generates the whole group, or
 - 2. Generates subgroup of prime order q
- →Both large if p and q large!
 - Note the difference when Zp* uses «just» a large prime p: p-1 can factor down in small numbers!

Quadratic residue subgroup

 $\Rightarrow x \in Z_p^*$ is a quadratic residue if it admits square root in Z_p^*

 \Rightarrow i.e., there exists a such that $a^2 \mod p = x$

 \rightarrow QR form subgroup of order $\frac{p-1}{2}$

 \Rightarrow 2 \rightarrow 1 mapping: $x \rightarrow x^2 \rightarrow x^2$

→QR test: legendre symbol

 $\Rightarrow a \in QR \text{ if } a^{\frac{p-1}{2}} \mod p = 1 \text{ (otherwise -1)}$

Example for Z_{11}^* : $QR_{11} = \{1, 3, 4, 5, 9\}$

⇒If p strong prime, QR_p has prime order q!