## Geometria różniczkowa

Weronika Jakimowicz

Lato 2024/25

# Spis treści

| 1 | Początek końca |                        | 1 |
|---|----------------|------------------------|---|
|   | 25.02.2025     | Rozgrzewka             | 1 |
|   | 1.             | Krzywe na płaszczyźnie | 1 |

## 1. Początek końca

Głównym bohaterem będzie krzywizna.

## 25.02.2025 Rozgrzewka

#### 1. Krzywe na płaszczyźnie

Jakościowo opisać krzywiznę krzywej na płaszczyźnie jest łatwo. Chcemy to zrobić bardziej matematycznie.

Patrzymy na okrąg na płaszczyźnie, który powinien mieć taką samą krzywiznę w każdym punkcie. Dodatkowo, im większy okrąg tym mniejsza krzywizna.



Dla okręgu jak wyżej definiujemy krzywiznę

$$\kappa = \frac{1}{r}$$

Niech  $\gamma$  będzie różniczkowalną krzywą gładką o niezerowej pochodnej. Wyobraźmy sobie okrąg, który podróżuje po krzywej  $\gamma$  z prędkością  $\gamma'(t)$  zależną od punktu na krzywej



Na tym okręgu działa pewna siła odśrodkowa - to będzie nasza krzywizna.

## Definicja 1.1

Krzywa regularna to gładkie odwzorowanie

$$\gamma: (\mathsf{a}, \mathsf{b}) o \mathbb{R}^2$$

której pochodna jest niezerowa w każdym punkcie  $\gamma'(t) \neq 0$ .

## Lemat 1.2: o parametryzacji łukowej

Jeżeli  $\gamma:(a,b)\to\mathbb{R}^2$  jest krzywą regularną, to istnieje gładka reparametryzacja  $s:(a,b)\to(0,l)$  taka, że  $\gamma\circ s^{-1}$  jest krzywą o prędkości 1. To znaczy, że

$$|(\gamma \circ \mathsf{s}^{-1})'(\mathsf{d})| = 1$$

dla każdego  $d \in (0, l)$ .

#### Dowód

Zdefiniujmy s

$$s(t) = \int_a^t |\gamma'(u)| du.$$

Wtedy przeciwobraz krzywej s w punkcie u to droga, którą przebyliśmy od początku do teraz po krzywej  $\gamma$ :

$$\int_{a}^{a+d} |(\gamma \circ s^{-1})'(u)| du = d$$



## Przykład

Policzymy przyśpieszenie na okręgu. Wzór na okrąg to krzywa

$$\gamma(t) = (r\cos t, r\sin t), \quad t \in [0, 2\pi],$$

więc nie jest to parametryzacja łukowa (długość łuku). Prosta zmiana daje nam

$$\gamma(t) = (r\cos\frac{t}{r}, r\sin\frac{t}{r}), \quad t \in [0, 2\pi r],$$

którego pochodna to

$$\gamma'(t) = (-\sin\frac{t}{r}, \cos\frac{t}{r})$$

wektor długości 1.

Druga pochodna  $\gamma$ , czyli siła dośrodkowa, to

$$\gamma''(t) = (-\frac{1}{r}\cos\frac{t}{r}, -\frac{1}{r}\sin\frac{t}{s}),$$

której wartość

$$|\gamma''(t)| = \frac{1}{r}$$

to faktycznie krzywizna okręgu.

#### Lemat 1.3

Jeśli  $\gamma$  jest sparametryzowane długością łuku, to  $\gamma''(s)$  jest prostopadła do  $\gamma'(s)$ .

#### Dowód

Długość krzywej sparametryzowanej długością łuku

$$\langle \gamma'(\mathbf{s}), \gamma'(\mathbf{s}) \rangle = 1$$

jest funkcją stałą. Jeśli więc zróżniczkujemy ją względem s, to dostajemy

$$0=rac{ extsf{d}}{ extsf{d} extsf{s}}\langle\gamma'( extsf{s}),\gamma'( extsf{s})
angle=2\langle\gamma''( extsf{s}),\gamma'( extsf{s})
angle$$

## Definicja 1.4

Niech  $\gamma$  będzie krzywą sparametryzowaną długością łuku. Niech N(t) będzie wektorem jednostkowym ortogonalnym do  $\gamma'(t)$  i takim, że

$$(\gamma'(t), N(t))$$

jest dodatnio zorientowaną bazą  $\mathbb{R}^2$ :



Krzywizna  $\kappa_{\gamma}(t)$  (znakowana) w t jest definiowana równaniem

$$\gamma''(t) = \kappa_{\gamma}(t)N(t)$$

## Przykład

Rozważamy parabolę, czyli krzywą daną jako

$$\gamma(t) = (t, t^2).$$

Naszym celem jest policzenie krzywizny w punkcie  ${\it t}=0$ . Wzór wyżej nie jest parametryzacja długością łuku. Liczymy więc obie pochodne:

$$\gamma'(\mathbf{t}) = (1, 2\mathbf{t})$$

$$\gamma''(t) = (0, 2).$$

Zauważamy, że druga pochodna nie jest prostopadła do prędkości, co zgadza się z intuicją, bo punkt podróżujący po paraboli coraz szybciej leci w górę. Liczymy nową parametryzację:

$$s(t) = \int_0^t \sqrt{1 + 4u^2} du,$$

której nie da się w łatwy sposób scałkować.

$$\frac{ds}{dt}|_{t=0} = 1$$

z różniczkowania funkcji odwrotnej

$$\frac{dt}{ds}|_{s=0} = \frac{1}{\frac{ds}{dt}}|_{t=0} = 1$$

Krzywizna to będzie

$$\frac{d}{ds}(\gamma \circ s^{-1})(s) = \frac{d}{ds}\gamma(t(s)) = \frac{d\gamma}{dt}(t(s)) \cdot \frac{dt}{ds}(s)$$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}\gamma(\mathsf{t}(\mathsf{s})) = \frac{\mathrm{d}^2\gamma}{\mathrm{d}t^2}\cdot\left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^2 + \frac{\mathrm{d}\gamma}{\mathrm{d}t}\cdot\frac{\mathrm{d}^2t}{\mathrm{d}s^2} = (0,2)\cdot 1 + (1,0)\frac{\mathrm{d}^2t}{\mathrm{d}s^2}$$

i  $\frac{d^2t}{ds^2}$  nie da się łatwo policzyć, więc korzystamy z faktu, że  $(1,0)\frac{d^2t}{ds^2}$  jest prostopadłe do  $\gamma'(0)=(1,0)$ , jeśli  $\gamma'$  jest sprametryzowane długością łuku, ale tutaj nie musimy uważać, bo pierwsza pochodna jest taka sama z dokładnością do mnożenia przez stałą bez względu na jej parametryzację. Stąd wiemy, że

$$\frac{d^2t}{ds^2}=0,$$

bo iloczyn skalarny jest temu równy (z dokładnością do stałej).

#### Lemat 1.5: równania Freneta

Niech  $\gamma$  będzie sparametryzowana długością łuku i niech (T(s), N(s)) będzie bazą ortonormalną dodatnio zorientowaną, gdzie  $T(s) = \gamma'(s)$ . Wtedy:

$$T' = \kappa \cdot N$$

$$N' = -\kappa T$$

#### Dowód

Pierwsze równanie to definicja krzywizny. W drugim równaniu trzeba zróżniczkować N.

$$0 = \frac{d}{ds} \langle N, N \rangle = 2 \langle N', N \rangle,$$

czyli  $N' = \alpha T$ , gdzie

$$\alpha = \langle N', T \rangle = \langle N, T \rangle' - \langle N, T' \rangle$$

## Twierdzenie 1.6: podstawowe twierdzenie teorii krzywych

Dla dowolnych  $(x_0, y_0) \in \mathbb{R}^2$ , jednostkowego wektora  $\mathbf{v} \in \mathbb{R}^2$  i gładkiej funkcji  $\kappa : [0, b] \to \mathbb{R}^2$  istnieje dokładnie jedna krzywa  $\gamma : [0, b] \to \mathbb{R}$  sparametryzowana długością łuku taka, że  $\gamma(0) = (x_0, y_0)$ ,  $\gamma'(0) = \mathbf{v}$ ,  $\kappa_{\gamma} = \kappa$ .

#### Dowód

Niech  $T = (T_1, T_2)$  i T(0) = v i  $N = (-T_2, T_1)$  będzie ramką Freneta. Wtedy

$$\begin{pmatrix} T_1' \\ T_2' \end{pmatrix} = \begin{pmatrix} -\kappa T_2 \\ \kappa T_1 \end{pmatrix} = \begin{pmatrix} 0 & -\kappa \\ \kappa & 0 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$

jest jedynym rozwiązaniem

$$\gamma(s) = \int_0^s T(u)dy + (x_0, y_0).$$

Wiemy,  $\dot{z}e |T| = 1$ , bo

$$\frac{d}{ds}|T|^2 = \frac{d}{ds}\langle T, T \rangle = 2\langle T', T \rangle = 0$$

## Definicja 1.7

Niech krzywa  $\gamma$  będzie sparametryzowana długością łuku i niech  $\eta$  będzie okręgiem sparametryzowanym długością łuku stycznym do  $\gamma$  (wektory prędkości się pokrywają) w punkcie  $\gamma(t_0)$ . Wtedy jest **okręgiem ściśle stycznym**, jeżeli  $\eta''(t_0) = \gamma''(t_0)$ .

#### Definicja 1.8

**Ewolutą krzywej**  $\gamma$  nazywamy krzywą utworzoną ze środków okręgów ściśle do niej stycznych.

$$c = \gamma + \frac{1}{\kappa} N$$

W punktach przegięcia albo ignorujemy je i wymagamy, aby  $\gamma''(t) \neq 0$ , albo mówimy, że w punkcie przegięcia okrąg ściśle styczny to prosta.

#### **Fakt 1.9**

Niech  $\gamma$  będzie krzywą sparametryzowaną długością łuku taką, że  $\kappa'(t) \neq 0$ , to okręgi ściśle styczne są parami rozłącznew otoczeniu t.

#### Dowód

Niech c będzie ewolutą krzywej  $\gamma$ . Weźmy dwa punkty  $t_1$  i  $t_2$  w otoczeniu punktu t z twierdzenia. Naszym celem będzie pokazanie, że długość drogi  $c(t_1)$  a  $c(t_2)$  jest nie większa niż różnica promieni:

$$\int_{t_0}^{t_1} |c'(u)| du = \left| \frac{1}{R(t_0)} - \frac{1}{R(t_1)} \right|,$$

gdzie  $R(t_i)$  to promień okręgu ściśle stycznego do  $\gamma$  w punkcie  $t_i$ .

$$c' = \gamma' + \frac{1}{\kappa}N' + \left(\frac{1}{\kappa}\right)'N = T + \frac{1}{\kappa}(-\kappa T) + \left(\frac{1}{\kappa}\right)'N$$
,

czyli

$$\int_{t_0}^{t_1} |c'(u)| du = \int_{t_0}^{t_1} \left| \left(\frac{1}{\kappa}\right)' \right| du = \left| \frac{1}{R(t_0)} - \frac{1}{R(t_1)} \right|.$$