

X3-Class HiPerFET™ Power MOSFET

IXFN210N30X3

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	300V
I _{D25}	=	210A
R _{DS(on)}	≤	4.6 m Ω

miniBLOC, SOT-227 E153432

G = Gate	D = Drain
S = Source	

Symbol	Test Conditions	Test Conditions $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$		Maximum Ratings		
V _{DSS} V _{DGR}				V		
V _{GSS} V _{GSM}	Continuous Transient		± 20 ± 30	V V		
I _{D25} I _{L(RMS)}	$T_{c} = 25^{\circ}C$ External Lead Current Limit $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}		210 200 650	A A A		
I _A E _{AS}	T _c = 25°C T _c = 25°C		105 3	A J		
\mathbf{P}_{D}	T _c = 25°C		695	W		
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$		50	V/ns		
T _J T _{JM} T _{stg}			-55 +150 150 -55 +150	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1mA	t = 1 minute t = 1 second	2500 3000	V~ V~		
M _d	Mounting Torque Terminal Connection Torque		1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in		
Weight			30	9		

Symbol Test Conditions Characteristic Values (T_J = 25°C Unless Otherwise Specified) Min. Max. Typ. $\mathbf{BV}_{\mathrm{DSS}}$ $V_{GS} = 0V, I_{D} = 3mA$ 300 $V_{DS} = V_{GS}, I_{D} = 8mA$ 2.5 V_{GS(th)} 4.5 $V_{GS} = \pm 20V, V_{DS} = 0V$ ± 200 nΑ l_{gss} $V_{DS} = V_{DSS}, V_{GS} = 0V$ 25 I_{DSS} μΑ T_J = 125°C 2.5 mΑ $V_{_{\mathrm{GS}}}$ = 10V, $I_{_{\mathrm{D}}}$ = 0.5 • $I_{_{\mathrm{DSS}}}$, Note 1 3.8 $4.6~\text{m}\Omega$ R_{DS(on)}

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500V~
- High Current Handling Capability
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions		Characteristic Values		
$(T_J = 25^{\circ}C, l)$	Unless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	84	140	S
R_{Gi}	Gate Input Resistance		2	Ω
C _{iss}			24.2	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.1	nF
C _{rss}			7.7	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\bigvee_{GS} = 0V$		1100	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		4600	pF
t _{d(on)} Resistive Switching	Resistive Switching Times		38	ns
t _r	. Theologive entitioning range		40	ns
t _{d(off)}			210	ns
- 1			15	ns
$Q_{g(on)}$			375	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{DSS}$		107	nC
Q _{gd}			100	nC
R _{thJC}				0.18 °C/W
R _{thCS}			0.05	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			210	Α
SM	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			840	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_{_{\rm F}} = 105 {\rm A}, \; -{\rm di}/{\rm dt} = 100 {\rm A}/{\rm \mu s}$ $V_{_{\rm R}} = 100 {\rm V}$		190 1.4 15		ns μC Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

IXFN210N30X3

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.