Introducing pmtables

Author: Metrum Research Group

Date: 2022-04-19 **pmtables**: v0.4.1.9003

Introduction: This is a simple introduction to the pmtables package for R. I hope this will be useful for those who are new to the package and those who just need a reminder on the syntax.

Contents

1	A si	mple ta	ble: stable	5
	1.1	Syntax	C	5
	1.2	Basics		5
	1.3	Annot	ate with file names	6
	1.4	Saving	gyour stable	7
	1.5	Align	columns	8
		1.5.1	Fixed column widths	9
	1.6	Manip	oulating columns and names	9
		1.6.1	Rename columns	9
		1.6.2	Hide a column name	9
		1.6.3	Don't print any table header information	10
		1.6.4	Unmask column names	10
		1.6.5	Make column names bold	10
		1.6.6	Drop a column from the table	10
	1.7	Other	customizations	11
		1.7.1	Notes	11
		1.7.2	Units	12
		1.7.3	Multi-line column headers	12
		1.7.4	Insert horizontal lines	13
		1.7.5	Clear replicate values	15
2	Gro	up tabl	e rows with panel	16
	2.1	Syntax	·	16
	2.2	Basics		16
	2.3	panel:	additional customization	17
		2.3.1	jut	19
	2.4	panel:	important points	20

3	Grou	up table columns with spanners	21
	3.1	Syntax	21
	3.2	Basics	21
	3.3	Multiple spanners	21
		3.3.1 Using pipe syntax	22
	3.4	Breaking span title	22
	3.5	Aligning span title	22
	3.6	Span created by splitting column names	24
		3.6.1 pivot_longer workflow	24
4	Tabl	les that span multiple pages: longtable	26
	4.1	Syntax	26
	4.2	Basics	26
	4.3	Inserting longtable into your latex document	26
	4.4	Writing a caption	26
		4.4.1 Method 1: in the R script	26
		4.4.2 Method 2: as a TeX macro	27
	4.5	Add a label	27
	4.6	Include a longtable in an Rmd document	27
	4.7	Page breaks	27
5	The	pipe interface	28
	5.1	Basics	28
	5.2	Simple table	29
	5.3	Long table	29
	5.4	Annotate with file names	29
	5.5	Save a table	29
	5.6	Align columns	29
	5.7	Rename columns	30
	5.8	Blank columns	30
	5.9	Drop columns	30
	5.10	Notes	30
	5.11	Units	31
	5.12	panel	31
	5.13	span	31
	5.14	hlines - at	32
	5.15	hlines - from	32
	5.16	hlines - pattern	32
	5.17	Clear replicate values	32

6	Pipe	e cheat	table	33
7	Opti	ions fo	r previewing the table	35
	7.1	st2rep	ort	35
	7.2	st2vie	wer	35
	7.3	st2arti	icle	35
	7.4	st2doo	3	35
8	A wo	ord abo	out sanitizing table contents	36
_	8.1			
	8.2		ames	
	8.3		nn names	
	8.4		table contents	
	8.5		itles	
	8.6	-	names	
	8.7		extra input	
			•	
9	pmt			38
	9.1		ples	
	9.2		ne cols	
	9.3	Data i	nventory tables	
		9.3.1	Stacked by endpoint	
		9.3.2	Paneled	41
		9.3.3	Grouped (by study)	42
		9.3.4	BQL / BLQ	43
	9.4	Wide	categorical table	44
		9.4.1	Paneled (limited utility, IMO)	45
		9.4.2	Grouped (by male / female)	46
		9.4.3	Paneled and grouped	47
		9.4.4	No summary	48
	9.5	Long	categorical table	49
		9.5.1	Ungrouped	49
		9.5.2	Grouped (by formulation)	50
		9.5.3	Summary on bottom and right	51
		9.5.4	No summary	52
	9.6	Wide	continuous table	53
		9.6.1	Ungrouped	53
		9.6.2	Paneled	54

	9.6.3	Grouped (by study)	55
	9.6.4	Paneled and grouped	56
9.7	Long	continuous table	57
	9.7.1	Ungrouped	57
	9.7.2	Paneled	58
9.8	Demo	graphics table	59
	9.8.1	With span	59
	9.8.2	No span	60
	9.8.3	No span, not paneled	61
	9.8.4	No summary	62
9.9	Custo	mized summary functions	63
	9.9.1	Continuous long table	63
	9.9.2	Continuous wide table	64

1 A simple table: stable

1.1 Syntax

Pass your data.frame into stable()

```
stable(data)
```

Other formal arguments include:

- · align to set column alignment
- panel to create groups of rows under a "panel" header
- span to group columns under a "spanner" header
- notes to create table notes
- sumrows to insert summary rows
- units that get placed below the corresponding column name
- **drop** to omit certain columns from the table
- · sizes to set different table size attributes
- escape_fun a function to sanitize table items

You can also pass a bunch of other arguments through . . . to further format the table (see ?stable for details)

1.2 Basics

stable() is the name of the workhorse function that is used to turn data.frames into TeX tables. This chapter will introduce the stable() function and how to us it to create basic tables.

To illustrate usage and features of stable(), we will use the stdata data set that comes with pmtables

```
data <- stdata()
head(data)</pre>
```

```
. # A tibble: 6 x 9
         DOSE
   STUDY
                    FORM
                                 WT
                                      CRCL AGE
                                                  ALB
                                                       SCR
   <chr>
             <chr> <chr>
                            <chr> <chr> <chr> <chr> <chr> <chr> <chr>
. 1 12-DEMO-001 100 mg tablet 80 71.4 104
                                            33.7 4.20 1.06
. 2 12-DEMO-001 150 mg capsule 16
                                 89.4 122
                                            24.4 4.63 1.12
. 3 12-DEMO-001 150 mg tablet 48 81.7 104
                                            34.4 3.83 0.910
. 4 12-DEMO-001 150 mg troche 16 94.0 93.2 27.4 4.94 1.25
. 5 12-DEMO-001 200 mg tablet 64
                                 67.9 100
                                            27.5 4.25 1.10
. 6 12-DEMO-001 200 mg troche 16
                                 76.6 99.2 22.8 4.54 1.15
```

We can turn this data frame into a TeX table by passing it into stable().

```
out <- stable(data)
head(out, n = 10)</pre>
```

```
. [1] "\\setlength{\\tabcolsep}{5pt} "
```

- . [2] "\\begin{threeparttable}"
- . [3] "\\renewcommand{\\arraystretch}{1.3}"
- . [4] "\\begin{tabular}[h]{11111111}"
- . [5] "\\hline"
- . [6] "STUDY & DOSE & FORM & N & WT & CRCL & AGE & ALB & SCR \\\"
- . [7] "\\hline"
- [8] "12-DEMO-001 & 100 mg & tablet & 80 & 71.4 & 104 & 33.7 & 4.20 & 1.06 \\\"
- . [9] "12-DEMO-001 & 150 mg & capsule & 16 & 89.4 & 122 & 24.4 & 4.63 & 1.12 \\\"
- . [10] "12-DEMO-001 & 150 mg & tablet & 48 & 81.7 & 104 & 34.4 & 3.83 & 0.910 \\\"

Note that we have shown the raw latex code that is generated by stable(). That is to say: the output from stable() is a character vector of latex code for the table. Note also that this character vector has a special class associated with it: stable. That means we can write functions that recognize this character vector as output from stable() and we can have those functions process the character vector in special ways.

We can render that table in TeX in the current Rmarkdown document by passing the text to st_asis().

```
out %>% st asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Remember to only call st_asis() when you are rendering tables inline in an Rmd document. If you are sending table code to a TeX report, then you will save them to a file and then include them into your report.

The remaining sections of this chapter will show you how to modify and enhance this output in the more basic ways. We will implement separate chapters for more complicated table manipulations.

1.3 Annotate with file names

pmtables can track and annotate your table with the filenames of the R code that generated the table (r_file) as well as the output file where you write the table .tex code (output_file).

To have pmtables annotate your table with these file names, pass them in with the r_{file} and $output_{file}$ arguments

```
out <- stable(data, r_file = "tables.R", output_file = "tables.tex")</pre>
```

When we look at the rendered table, these names will show up as annotations at the bottom of the table

```
out %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Source code: tables.R Source file: tables.tex

1.4 Saving your stable

Saving your stable can be as easy as sending it into writeLines()

```
writeLines(out, con = tempfile(tmpdir = '.', fileext = ".tex"))
```

But remember that we passed in the output_file argument to stable() and we can use that data to save the table code to the file we named in that argument.

Note that our stable object has another attribute now called stable_file

attributes(out)

- . \$class
- . [1] "stable"

. \$stable_file

. [1] "tables.tex"

This has the value that we passed in as output_file. To save our table to stable_file, we call stable_save()

```
stable_save(out)
```

There is a dir argument to stable_save() that we can use to to select the directory where the file will be saved

```
stable_save(out, dir = tempdir())
```

And if you look at the default value for dir in ?stable_save, you'll see that this is associated with an option called pmtables.dir; you can set that option to your default output directory and your tables will be saved there until you change that

```
options(pmtables.dir = tempdir())
stable_save(out)
```

1.5 Align columns

Use the align argument to align column data to the left, center or right. Use a cols_* function to specify the default alignment for all columns

```
tmp <- tibble(AB = 1, CDEFGHIJ = 2, KL = 3)
stable(tmp, align = cols_center()) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

You can pass in exceptions to the default

```
stable(tmp, align = cols_center(CDEFGHIJ = "r")) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

Or you can pass an alignment directive and the columns that are bound by that directive

```
stable(tmp, align = cols_center(.1 = "AB,KL")) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

A special directive called .outer lets you specify the alignment of the first and last column in the table. For example, this code puts the first column to the left and the last column to the right.

```
stable(tmp, align = cols_center(.outer = "lr")) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

1.5.1 Fixed column widths

Use col_ragged(size) to force a column to be a fixed size.

```
stable(tmp, align = cols_center(AB = col_ragged(2))) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

By default, the unit is cm so that the first column (AB) has a width of 2 cm regardless of the contents.

See cols_align() help topic for more information and argument descriptions.

1.6 Manipulating columns and names

1.6.1 Rename columns

You can change the name that appears in the rendered table with cols_rename

```
data %>%
  slice(1:3) %>%
  stable(cols_rename = c(Age = "AGE", Weight = "WT")) %>%
  st_asis()
```

STUDY	DOSE	FORM	N	Weight	CRCL	Age	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

Note that the rename syntax follows the tidyselect convention of putting the new name on the left and the old name on the right.

1.6.2 Hide a column name

You can also "erase" the name of a column in the output

```
data %>%
  slice(1:3) %>%
  stable(cols_blank = "WT,ALB,SCR") %>%
  st_asis()
```

STUDY	DOSE	FORM	N		CRCL	AGE		
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

1.6.3 Don't print any table header information

```
data %>%
  slice(1:3) %>%
  stable(cols_omit = TRUE) %>%
  st_asis()
```

12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

1.6.4 Unmask column names

In tibbles, you can't have duplicate column names. The cols_split argument lets you unmask the names when duplicate names are prefixed with a tag and a delimiter

```
tmp <- tibble(a.A = 1, b.A = 2, c.A = 3)

tmp %>% stable(cols_split = '.') %>% st_asis()
```

1.6.5 Make column names bold

```
data %>% slice(1:2) %>% stable(cols_bold = TRUE) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12

1.6.6 Drop a column from the table

If we want to prevent a column from appearing in the output table (e.g. FORM)

head(data)

list the column name as drop

```
stable(data, drop = "FORM") %>% st_asis()
```

STUDY	DOSE	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	36	73.6	103	49.2	4.52	0.930

Of course some tidyverse could accomplish the same thing

```
data %>% select(-FORM) %>% stable()
```

1.7 Other customizations

1.7.1 Notes

Arbitrary notes can get added to any table using the notes argument.

```
data %>%
  slice(1:3) %>%
  stable(notes = "Showing just the first three rows") %>%
  st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

Showing just the first three rows

The appearance of the notes can be controlled by calling noteconf() and passing the result as note_config. See ?tab_notes() for more details.

1.7.2 Units

pmtables can automatically place units underneath the appropriate column. To do this, generate a list with names that match the column names you want to label with units.

```
u <- list(
    WT = "kg", CRCL = "ml/min", AGE = "year", ALB = "g/dL",
    SCR = "mg\\%"
) %>% map(~paste0("(", .x, ")"))
```

Then pass that list as units to stable()

```
stable(data, units = u) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT (kg)	CRCL (ml/min)	AGE (year)	ALB (g/dL)	SCR (mg%)
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

1.7.3 Multi-line column headers

If the column header is long, you can break it across multiple lines. By default, use . . . in the column name

```
tibble(`First line ... Second line` = 123456789) %>%
  stable() %>% st_asis()

First line
  Second line
```

123456789

The break can be introduced through the rename mechanism

```
tibble(a = 1) %>%
  stable(cols_rename = c(`First ... Second` = "a")) %>%
  st_asis()

First
  Second
```

Look at the ?tab_cols help topic for the cols_break argument; this lets you change the character sequence used for the break.

1.7.4 Insert horizontal lines

Pass hlines_at to insert horizontal lines above specific rows. This can be either logical vector with the same length as the number of rows in the table or a vector of integers.

```
stable(stdata(), hline_at = c(3,5)) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

```
stable(stdata(), hline_at = data$FORM == "tablet") %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Pass hlines_from to derive hline locations based on non-repeating values in a table column. Notice how this behaves.

```
stable(stdata(), hline_from = "DOSE") %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

See the ?tab_hlines help topic for more info. See also st_hline() for the pipe equivalent with additional feature.

1.7.5 Clear replicate values

You can create groups in a table by "clearing" replicate values

stable(stdata(), clear_reps = "STUDY") %>% st_asis()

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
	75 mg	troche	36	73.6	103	49.2	4.52	0.930

This can be combined with an hline

```
stable(stdata(), clear_reps = "STUDY", hline_from = "STUDY") %>%
   st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
	75 mg	troche	36	73.6	103	49.2	4.52	0.930

See ?tab_clear_reps for other options, including an option for clearing based on several grouping variables.

2 Group table rows with panel

2.1 Syntax

To panel a table by STUDY

```
stable(stdata(), panel = "STUDY")
```

To set a prefix for the panel header:

```
stable(stdata(), panel = as.panel("STUDY", prefix = "Study: "))
```

2.2 Basics

Paneling your table is a way to group sets of rows together into a "panel" with a panel header rendered in bold font. For example, we can panel a table of mtcars by carb. We will be working with an abbreviated version of mtcars:

```
smcars
```

```
name mpg cyl disp hp drat
                                                    wt qsec vs am gear
. Datsun 710
                Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1
                                                                    4
. Hornet 4 Drive Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0
                                                                    3
. Valiant
                   Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0
. Fiat 128
                   Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1
. Toyota Corolla Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1
. Toyota Corona Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0
               Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1
. Fiat X1-9
. Merc 240D
                  Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0
. Merc 230
                   Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0
                                                                    4
. Honda Civic
               Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1
              carb
. Datsun 710
                 1
. Hornet 4 Drive
                 1
. Valiant
. Fiat 128
                1
. Toyota Corolla
                 1
. Toyota Corona
                 1
. Fiat X1-9
                 2
. Merc 240D
. Merc 230
                 2
. Honda Civic
                 2
```

Then we pass into stable() and name the paneling column:

```
smcars %>% stable(panel = "carb") %>% st_asis()
```

name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear
1										
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3
Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	1	4
2										
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4

Now, all of the carb==1 rows are grouped with the heading 1 and similarly the carb==2 rows are grouped with the heading 2 in bold.

This is ok, but a more informative heading would be helpful. To do this, we'll call as .panel() to both name the panel column and set some options:

```
smcars %>% stable(panel = as.panel("carb", prefix = "carb: ")) %>% st_asis()
```

name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear
carb: 1										
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3
Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	1	4
carb: 2										
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4

Note that the prefix is completely specified by the user (including any spaces or a colon.

2.3 panel: additional customization

See the ?rowpanel help topic for arguments to rowpanel() that can be passed to customize the panel. Some of the customizations include

1. add a prefix to the panel title

- 2. skip making panels for certain data in the panel column
- 3. make the panel title bold
- 4. make the panel title italics
- 5. opt out from drawing hline above panels
- 6. jut the panel titles so that the rows under the panel header are indented (available starting with version 0.4.1)

2.3.1 jut

We recommend an value more than 1, otherwise the table looks mis-aligned rather than creating offset between panel row and underlying data.

```
stable(
  stdata(),
  panel = as.panel("STUDY", jut = 1)
) %>% st_asis()
```

DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO)-001						
100 mg	tablet	80	71.4	104	33.7	4.20	1.06
150 mg	capsule	16	89.4	122	24.4	4.63	1.12
150 mg	tablet	48	81.7	104	34.4	3.83	0.910
150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
200 mg	tablet	64	67.9	100	27.5	4.25	1.10
200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO)-002						
100 mg	capsule	36	61.3	113	38.3	4.04	1.28
100 mg	tablet	324	77.6	106	29.9	4.31	0.981
50 mg	capsule	36	74.1	112	37.1	4.44	0.900
50 mg	tablet	324	71.2	106	34.1	4.63	0.868
75 mg	capsule	36	72.4	105	38.2	3.89	0.900
75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
75 mg	troche	36	73.6	103	49.2	4.52	0.930

This feature requires pmtables 0.4.1 or greater.

2.4 panel: important points

- 1. Most of the time, the data frame should be sorted by the panel column
- 2. pmtables creates panels by non-repeating values in the panel column; there will be an error if duplicate panel names are found and this can be overridden by passing duplicates_ok to as.panel().

3 Group table columns with spanners

3.1 Syntax

Set the span argument to the output of as.span(). The key arguments for as.span() are the spanner title and the names of the columns over which you want the spanner to run

```
stable(stdata(), span = as.span("Covariates", WT:SCR))
The equivalent pipe syntax is
st_new(stdata()) %>% st_span("Covariates", WT:SCR)
```

3.2 Basics

A column spanner puts a horizontal line over a sequence of column names and places a title above that line forming a column group.

As a trivial example:

```
data <-
  tibble(
   Tariffville = "06081", Connecticut= "CT",
   Minnesota = "MN", Minneapolis = "55455"
)
data %>% stable(span = as.span("States", Connecticut:Minnesota)) %>% st_asis()
```

	Stat		
Tariffville	Connecticut	Minnesota	Minneapolis
06081	CT	MN	55455

3.3 Multiple spanners

Multiple spanners can be added to a table by specifying the level for any spanner that you want to be placed above the lowest level spanner. For example,

```
sp <- list(
  as.span("States", Connecticut:Minnesota),
  as.span("Important Locations", Tariffville:Minneapolis, level = 2)
)
data %>% stable(span = sp) %>% st_asis()
```

Important Locations					
	Stat	States			
Tariffville	Connecticut	Minnesota	Minneapolis		
06081	CT	MN	55455		

Note that to specify multiple spanners, we pass a list of span objects. I've simplified the code a bit here by creating that list as a standalone object and then passing the whole list as span.

3.3.1 Using pipe syntax

For problems like this, it might be preferable to use the pipe syntax

```
data %>%
  st_new() %>%
  st_span("States", Connecticut:Minnesota) %>%
  st_span("Important Locations", Tariffville:Minneapolis, level = 2) %>%
  stable() %>%
  st_asis()
```

Important Locations					
States					
Tariffville	Connecticut	Minnesota	Minneapolis		
06081	СТ	MN	55455		

3.4 Breaking span title

We can make the title of the span break across multiple lines by using . . .

```
stable(data, span = as.span("Important ... States", Connecticut:Minnesota)) %>%
    st_asis()
```

	Impoi Stat		
Tariffville	Connecticut	Minnesota	Minneapolis
06081	CT	MN	55455

3.5 Aligning span title

Beginning with version 0.4.1, the span title can be left or right justified in addition to the default centering

```
stable(
  stdata(),
  span = as.span("Covariates", WT:SCR, align = 'l')
) %>% st_asis()
```

				Covariates				
STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

3.6 Span created by splitting column names

colsplit() is a way to create column spanners which are encoded into the column names of the input data frame; the names are split on a separator character (like .) and either the left or right side are taken as the title and the other is taken as the column name.

Consider this data

```
. A.first A.second B.third B.fourth . 1 \phantom{0} 1 \phantom{0} 2 \phantom{0} 3 \phantom{0} 4
```

Notice the natural grouping between A.first and A.second; we want first and second grouped together with the title A. Similar setup for third and fourth under the title B.

We can make table with spanners by passing a call to colsplit() as span_split

```
dd %>% stable(span_split = colsplit(sep = '.')) %>% st_asis()
```

	A	В		
first	second	third	fourth	
1	2	3	4	

3.6.1 pivot_longer workflow

This is pattern is convenient when summarizing data in a long format. To to demonstrate, we'll calculate summary statistics for WT and AGE by STUDY

```
summ <-
  pmt_first %>%
  pivot_longer(cols = c("WT", "AGE")) %>%
  filter(!is.na(value)) %>%
  group_by(STUDYf, name) %>%
  summarise(Mean = mean(value), Sd = sd(value), N = n(), .groups = "drop") %>%
  mutate(across(Mean:N, sig)) %>% mutate(across(Mean:N, as.character))
summ
```

```
. # A tibble: 8 x 5
   STUDYf name Mean Sd
                              N
         <chr> <chr> <chr> <chr>
. 1 12-DEMO-001 AGE 32.0 9.19 30
. 2 12-DEMO-001 WT
                   72.2 14.3 29
. 3 12-DEMO-002 AGE 35.0 8.20 50
. 4 12-DEMO-002 WT
                   72.4 11.5 49
. 5 11-DEMO-005 AGE 32.8 8.48 40
. 6 11-DEMO-005 WT
                   68.9 14.5 39
. 7 13-DEMO-001 AGE
                   34.2 9.67 40
. 8 13-DEMO-001 WT
                   69.4 11.6 40
```

Now take 2 (or 3) more steps to get the table in the right shape to feed into stable(). **First**, pivot this longer using the summary stat name

```
long <- pivot_longer(summ, cols = c("Mean", "Sd", "N"), names_to = "stat")
head(long)</pre>
```

```
. # A tibble: 6 x 4
. STUDYf name stat value
. <fct> <chr> <chr> <chr> <fct> <chr> <chr> <1 12-DEMO-001 AGE Mean 32.0
. 2 12-DEMO-001 AGE Sd 9.19
. 3 12-DEMO-001 AGE N 30
. 4 12-DEMO-001 WT Mean 72.2
. 5 12-DEMO-001 WT Sd 14.3
. 6 12-DEMO-001 WT N 29
```

Second, we'll make name more appealing / informative

```
long <- mutate(long, name = recode(name, WT = "Weight (kg)", AGE = "Age (years)"))</pre>
```

Third, pivot this wider using the covariate name and stat

```
wide <- pivot_wider(long, names_from = c("name", "stat"), names_sep = "---")
wide</pre>
```

```
. # A tibble: 4 x 7
   STUDYf Age (years)---` Age (years)---` `Weight (kg)---`
          <chr>
                        <chr>
   <fct>
                                       <chr>
                                                      <chr>
                                                      72.2
. 1 12-DEMO-0~ 32.0
                        9.19
                                        30
. 2 12-DEMO-0~ 35.0
                        8.20
                                       50
                                                      72.4
. 3 11-DEMO-0~ 32.8
                        8.48
                                       40
                                                     68.9
. 4 13-DEMO-0~ 34.2
                         9.67
                                        40
                                                      69.4
. # ... with 2 more variables: `Weight (kg)---Sd` <chr>, `Weight (kg)---N` <chr>
```

Now we have column names set up to create the spanners

```
wide %>% stable(span_split = colsplit(sep = "---")) %>% st_asis()
```

	Age	(years)	Wei	ght (kg)
STUDYf	Mean	Sd	N	Mean	Sd	N
12-DEMO-001	32.0	9.19	30	72.2	14.3	29
12-DEMO-002	35.0	8.20	50	72.4	11.5	49
11-DEMO-005	32.8	8.48	40	68.9	14.5	39
13-DEMO-001	34.2	9.67	40	69.4	11.6	40

This workflow takes several steps to complete, but once you identify the pattern it can be just an extra step or two beyond what you're already doing to get a nice table.

4 Tables that span multiple pages: longtable

4.1 Syntax

To create a long table from a data frame

```
stable_long(stdata())
```

To create a long table from pipeline

```
st_new(data) %>% stable_long()
```

To create a long table from pmtable

```
pt_cont_long(data, cols = "WT,EGFR") %>% stable_long()
```

4.2 Basics

You can create longtables that span multiple pages of your pdf document. Tables using thelongtable environment are very different than the basic table from stable() which are built using tabular environment.

4.3 Inserting longtable into your latex document

Once you have written your long table out to a file, you can source it into your latex document with a simple input command

```
\input{my-table.tex}
```

IMPORTANT

- Do not wrap the input in \begin{table} / \end{table}; the table will not show up properly that way
- Do not include any \caption{...} statement; the caption must be provided in a special way (see below)

4.4 Writing a caption

Longtable is different than regular tabular table in that the caption (and label) need to be included in the longtable environment. This means that you have to enter this information **when you create the table**.

4.4.1 Method 1: in the R script

stable_long() has an argument called lt_cap_text that will allow you to provide the text for the caption. This
text must be passed to the stable_long() call (or st_make())

```
out <- stable_long(data, lt_cap_text = "A long table (example 3)")</pre>
```

You will see in the TeX code that a caption is included in the longtable environment.

4.4.2 Method 2: as a TeX macro

Rather than passing the text for the caption, you can name a macro that should (will) be defined at the time the table is rendered in the TeX document.

Use the lt_cap_macro argument:

```
out <- stable_long(data, lt_cap_macro = "ltexfourcap")</pre>
```

Now, there is a call to that macro in the table and you **must** define that macro prior to sourcing in your tex document.

```
\newcommand{\ltexfourcap}{
  Another long table - example 4
}
\input{example4.tex}
```

4.5 Add a label

To add a label, pass in a caption (either as text or as a macro) and then use the lt_cap_label argument:

```
data %>%
  stable_long(lt_cap_label = "tab:example", lt_cap_macro = "example")
```

4.6 Include a longtable in an Rmd document

If you want to dump a table into an R markdown document, pass it to st_asis(). There is a method for stable_long() and it will wrap the table properly.

```
out <- stable_long(data) %>% st_asis()
```

4.7 Page breaks

Starting with version 0.4.1, pmtables will modify longtables so that panel headers are kept on the same page as the first row of data underneath the panel row.

5 The pipe interface

5.1 Basics

Mostly working with this data; but some others come in later to illustrate certain features.

```
data <- pmt_summarized
head(data)</pre>
```

```
. # A tibble: 6 x 9
   STUDY
             DOSE FORM
                                       CRCL AGE
                                                   ALB
           <chr> <chr>
   <chr>
. 1 12-DEMO-001 100 mg tablet 80 71.4 104
                                             33.7 4.20 1.06
. 2 12-DEMO-001 150 mg capsule 16 89.4 122
                                             24.4 4.63 1.12
. 3 12-DEMO-001 150 mg tablet 48 81.7 104
                                             34.4 3.83 0.910
. 4 12-DEMO-001 150 mg troche 16 94.0 93.2 27.4 4.94 1.25
. 5 12-DEMO-001 200 mg tablet 64 67.9 100 27.5 4.25 1.10
. 6 12-DEMO-001 200 mg troche 16 76.6 99.2 22.8 4.54 1.15
```

You start out a pipeline by passing your data frame into st_new()

```
data %>% st_new() %>% class
```

```
. [1] "stobject" "environment"
```

This creates an object that gets revised by subsequent steps in the pipeline, adding features and styling as you go.

For the final step in the pipeline, we'll send the object to stable() to create the table

```
data %>% st_new() %>% stable() %>% head(n=9)
```

- . [1] "\\setlength{\\tabcolsep}{5pt} "
- . [2] "\\begin{threeparttable}"
- . [3] "\\renewcommand{\\arraystretch}{1.3}"
- . [4] "\\begin{tabular}[h]{llllllll}"
- . [5] "\\hline"
- . [6] "STUDY & DOSE & FORM & N & WT & CRCL & AGE & ALB & SCR \\\"
- . [7] "\\hline"
- . [8] "12-DEMO-001 & 100 mg & tablet & 80 & 71.4 & 104 & 33.7 & 4.20 & 1.06 \\\"
- . [9] "12-DEMO-001 & 150 mg & capsule & 16 & 89.4 & 122 & 24.4 & 4.63 & 1.12 \\\"

5.2 Simple table

You can terminate the pipeline and create a tabular table by sending to stable()

```
data %>% st_new() %>% stable()
```

Equivalent call

```
data %>% stable()
```

5.3 Long table

You can also pipe to stable_long() to make a long table

```
data %>% st_new() %>% stable_long()
```

5.4 Annotate with file names

```
st_new(data) %>% st_files(r = "foo.R", output = "foo.tex")
```

Equivalent call

```
stable(data, r_file = "foo.R", output_file = "foo.tex")
```

Note that in the pipe version, we already have file in the function name so that gets dropped from the argument name.

5.5 Save a table

First convert with stable() or stable_long() then save with stable_save()

```
st_new(data) %>%
st_files(output = "foo.tex") %>%
stable() %>%
stable_save()
```

5.6 Align columns

```
• st_center(...)
• st_left(...)
• st_right(...)
• st_align(...)

st_new(data) %>%
    st_center() %>%
    stable()
```

Equivalent call

```
stable(data, align = cols_center())
```

5.7 Rename columns

```
st_new(data) %>%
st_rename(Weight = "WT") %>%
stable()
```

Equivalent call

```
stable(data, cols_rename = c(Weight = "WT"))
```

5.8 Blank columns

```
st_new(data) %>% st_blank(WT, ALB, DOSE) %>% stable()
```

Equivalent call

```
stable(data, cols_blank = "WT,ALB,DOSE")
```

5.9 Drop columns

```
st_new(data) %>% st_drop(WT, ALB, DOSE) %>% stable()
```

Equivalent call

```
stable(data, drop = "WT, ALB, DOSE")
```

5.10 Notes

• Multiple calls are allowed; notes will accumulate

```
st_new(data) %>%
st_notes("first note") %>%
st_notes("second note") %>%
stable()
```

Equivalent call

```
stable(
  data,
  notes = c("first note", "second note")
)
```

5.11 Units

```
st_new(data) %>%
st_units(WT = "kg", AGE = "years") %>%
stable()
```

Note that $st_units()$ will automatically add parens to your units; this can be suppressed with the parens argument.

Units can also be added as a list

```
u <- list(WT = "kg", AGE = "years")
st_new(data) %>%
st_units(u) %>%
stable()
```

Equivalent call

```
stable(data, units = u)
```

5.12 panel

```
st_new(data) %>%
st_panel("STUDY") %>%
stable()
```

Equivalent call

```
stable(data, panel = "STUDY")
```

5.13 span

```
st_new(data) %>%
st_span("Covariates", c(WT, ALB, EGFR)) %>%
stable()
```

Equivalent call

```
stable(data, span = as.span("Covariates", c(WT, ALB, EGFR)))
```

5.14 hlines - at

To put horizontal lines at specific rows

```
st_new(data) \%\% st_hline(at = c(2,4,6))
```

Equivalent call

```
stable(data, hline_at = c(2,4,6))
```

5.15 hlines - from

To calculate hlines based on data frame column values (for example, to break the table by changing values of STUDYf)

```
st_new(data) %>% st_hline(from = "STUDYf")
```

Equivalent call

```
stable(data, hline_from = "STUDYf")
```

5.16 hlines - pattern

To search the table for a pattern and add hlines above matches

```
st_new(data) %>% st_hline(pattern = "All", cols = "Summary")
```

The cols argument limits the search to the Summary column; omit this argument to search the whole table.

There is no equivalent call for this using straight stable().

5.17 Clear replicate values

To create groups by "clearing" replicate values in a column

```
st_new(data) %>% st_clear_reps(STUDY) %>% stable()
```

Equivalent call

```
stable(data, clear_reps = "STUDY")
```

6 Pipe cheat table

Call	Arguments	Description
st_new()	data 	Create an 'st' object.
st_data()	data 	Create an 'st' object.
st_files()	r output esc	Add file name information to an 'st' object.
st_sizes()		Resize various table elements.
st_space()	row col	Add row and column spacing information to 'st' object.
st_panel()		Add panel (row group) information to 'st' object.
st_hline()	pattern cols n at from nudge	Add horizontal lines to the table.
newline Use pattern to search a column for the location.		
newline Use at to indicate row numbers or a logical vector indicating rows.		
st_span()	 split	Add spanner (column group) information to 'st' object.
st_span_split()	 split	Add spanner data by splitting column names.
st_sumrow()	pattern cols rows	Identify a summary row for the table.
st_rename()	 .list	Rename table columns.
st_drop()		Drop entire columns from the table.
st_blank()		Clear specific column names from the table header.
st_units()	 parens	Add unit information to table header.
st_clear_reps()	 .now	Clear replicate data within a column.

continued on next page

Call	Arguments	Description
st_left()		Make columns left aligned.
st_right()		Make columns right aligned.
st_center()		Make columns centered.
st_align()		Pass general alignment information.
st_notes()	 esc config collapse	Add note information to an 'st' object.
st_noteconf()		Add note configuration information to an 'st' object.
st_select()		Select columns in an 'st' object.
st_mutate()		Mutate columns in an 'st' object.
st_edit()		Edit table contents.
st_bold()	cols pattern	Render table data in bold font.
st_it()	cols pattern	Render table data in italic font.
st_args()		Pass other arguments to 'stable()'.
stable()	data 	Render table in tabular environment.
stable_long()	data 	Render table in longtable environment.

7 Options for previewing the table

7.1 st2report

Take a table or a list of tables and render them in a report-like document with a table of contents and a (faux) caption for each table

```
data %>% stable() %>% st2report()
```

You might try passing ntex to force the document to build more than once (sometimes the layout settles down after the second build

```
data %>% stable() %>% st2report(ntex = 2)
```

Pass in a list of tables and you will get one table on each page with a listing of tables in the table of contents

```
list(table1, table2, table3) %>% st2report()
```

7.2 st2viewer

This function relies on texPreview() to render your table and display it as a graphic in the viewer window

```
data %>% stable() %>% st2viewer()
```

This method is more convenient because the tables always go to the viewer. But the rendering will not be like what you will see in the report.

7.3 st2article

Like st2report() but less report-like. You should use st2report() instead.

```
data %>% stable() %>% st2article()
```

7.4 st2doc

The original. Rather than building a TeX article, it runs the table in a Rmd document via pandoc. Not recommended; it is much slower to get the preview because there has to be a call to pandoc

```
data %>% stable() %>% st2doc()
```

8 A word about sanitizing table contents

8.1 Notes

```
x <- ptdata() %>% st_new(notes = "EDA_summary = TRUE") %>%
  st_make(inspect = TRUE) %>%
  get_stable_data()
x$notes
```

. [1] "EDA_summary = TRUE"

8.2 File names

```
x <- ptdata() %>% st_new() %>%
  st_files(r = "my_script.R") %>%
  st_make(inspect = TRUE) %>%
  get_stable_data()

x$notes
```

. [1] "Source code: my_script.R"

8.3 Column names

```
out <-
  tibble(a_1 = 5) %>%
  stable(inspect = TRUE) %>%
  get_stable_data()

out$cols_tex
```

. [1] "a_1 \\\\"

8.4 Main table contents

```
out <-
  tibble(a = "5_2") %>%
  stable(inspect = TRUE) %>%
  get_stable_data()
out$tab
```

. [1] "5_2 \\\\"

8.5 Span titles

```
out <-
  ptdata() %>%
  stable(inspect = TRUE, span = colgroup("foo_this", WT:SCR)) %>%
  get_stable_data()
out$span_data$tex
```

- . [1] "\\multicolumn{4}{c}{} & \\multicolumn{5}{c}{foo}_this} \\\\"
- $[2] "\cmidrule(lr){5-9}"$

8.6 Panel names

- . [1] "\\multicolumn{1}{1}{\\textbf{a_1}}\\\\\"--pmtables-insert-panel"
- . [2] "\hline \\multicolumn $\{1\}\{1\}\{\\text{a}_2\}\}\$ \\\%--pmtables-insert-panel"

8.7 cols_extrainput

```
x <- letters[1:5]
data <- tibble(a = x, b = x, c = x)
xtra <- tibble(a = "foo%", b = "$\\mu$g", c = "1234 \\% %")
out <- stable(data, cols_extra = xtra)
out[grepl("%", out, fixed = TRUE)]</pre>
```

. [1] "foo\\% & \$\\mu\$g & 1234 \\% % \\\\"

9 pmtable

Some setup

```
units = yspec::ys_get_unit(yspec::ys_help$spec(), parens = TRUE)

data <- pmt_first
data_pk <- pmt_pk
data_all <- pmt_obs</pre>
```

9.1 Principles

These functions expect that the user passes in all data that is to be summarized and nothing more. We will not filter your data.

9.2 Rename cols

When you select columns to summarize, you can generally pass in alternate (nicer) names that you want to show up in the table. For example, if I have a column called WT in the data frame and I want it to show up as Weight this can be accomplished during the call

Alternatively, you can use the table argument to enter rename info. Note that table is a list that should have names that match up with columns in the data frame and values that are the new names

```
tab <- list(SEXf = "Sex", ASIANf = "Race group")

pt_cat_wide(data, cols = "SEXf, ASIANf", table = tab) %>%
  stable() %>% st_asis()
```

	Se	ex	Race group		
n	male	male female		non-Asian	
160	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)	

Summary is count (percent) n: number of records summarized

9.3 Data inventory tables

- · Count number of
 - individuals

- observations
- BQL observations
- missing values
- Calculate the percent of observations or BQL in different sub groups

9.3.1 Stacked by endpoint

• The stacked plot creates multiple independent tables to summarize different endpoints; there is no single overall summary for the table because we are summarizing different endpoints

```
out <- pt_data_inventory(
  data_all,
  by = c(Study = "STUDYf"),
  panel = as.panel("SEQf", prefix = "Endpoint: "),
  stacked = TRUE
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Num		Percent			
Study	SUBJ	MISS	OBS	BQL	OBS	BQL	
Endpoint: DEMO PK							
12-DEMO-001	30	8	427	15	13.4	0.5	
12-DEMO-002	50	10	1152	38	36.3	1.2	
11-DEMO-005	40	10	920	30	29.0	0.9	
13-DEMO-001	40	7	582	11	18.3	0.3	
Group Total	160	35	3081	94	97.0	3.0	
Endpoint: EST	RDIOL						
11-DEMO-005	40	0	40	0	50.6	0.0	
13-DEMO-001	40	1	39	0	49.4	0.0	
Group Total	80	1	79	0	100.0	0.0	
Endpoint: BMI)						
11-DEMO-005	40	9	111	0	49.1	0.0	
13-DEMO-001	40	5	115	0	50.9	0.0	
Group Total	80	14	226	0	100.0	0.0	

SUBJ: subjects

BQL: below quantification limit

MISS: missing observations (non-BQL)

OBS: observations Source code: test.R Source file: test.tex

9.3.2 Paneled

• Just summarize a single endpoint

```
out <- pt_data_inventory(
  data_pk,
  by = c(Study = "STUDYf"),
  panel = "ASIANf"
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Number			Group percent		Overall percent		
Study	SUBJ	MISS	OBS	BQL	OBS	BQL	OBS	BQL
Asian								
12-DEMO-001	17	4	241	10	18.8	8.0	7.6	0.3
12-DEMO-002	18	4	414	14	32.3	1.1	13.0	0.4
11-DEMO-005	16	5	366	13	28.6	1.0	11.5	0.4
13-DEMO-001	15	3	218	4	17.0	0.3	6.9	0.1
non-Asian								_
12-DEMO-001	13	4	186	5	9.8	0.3	5.9	0.2
12-DEMO-002	32	6	738	24	38.9	1.3	23.2	8.0
11-DEMO-005	24	5	554	17	29.2	0.9	17.4	0.5
13-DEMO-001	25	4	364	7	19.2	0.4	11.5	0.2
All data	160	35	3081	94	_	_	97.0	3.0

SUBJ: subjects

BQL: below quantification limit

MISS: missing observations (non-BQL)

OBS: observations Source code: test.R Source file: test.tex

9.3.3 Grouped (by study)

```
out <- pt_data_inventory(
  data_pk,
  by = c(Study = "STUDYf")
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Num	Percent			
Study	SUBJ	MISS	OBS	BQL	OBS	BQL
12-DEMO-001	30	8	427	15	13.4	0.5
12-DEMO-002	50	10	1152	38	36.3	1.2
11-DEMO-005	40	10	920	30	29.0	0.9
13-DEMO-001	40	7	582	11	18.3	0.3
All data	160	35	3081	94	97.0	3.0

SUBJ: subjects

BQL: below quantification limit

MISS: missing observations (non-BQL)

OBS: observations Source code: test.R Source file: test.tex

9.3.4 BQL / BLQ

Beginning with version 0.4.1, pmtables can accommodate either BQL or BLQ as the name of the column indicating that observations were below the limit of quantitation. Table notes and output column headers will be adjusted based on the input.

For example

```
data_ql <- pmt_obs
data_lq <- dplyr::rename(pmt_obs, BLQ = BQL)

pt_data_inventory(data_ql, by = "STUDYf") %>%
    st_asis()
```

		Num	Percent			
STUDYf	SUBJ	MISS	OBS	BQL	OBS	BQL
12-DEMO-001	30	8	427	15	12.3	0.4
12-DEMO-002	50	10	1152	38	33.1	1.1
11-DEMO-005	40	19	1071	30	30.8	0.9
13-DEMO-001	40	13	736	11	21.1	0.3
All data	160	50	3386	94	97.3	2.7

SUBJ: subjects

BQL: below quantification limit

MISS: missing observations (non-BQL)

OBS: observations

```
pt_data_inventory(data_lq, by = "STUDYf") %>%
    st_asis()
```

		Num	Percent			
STUDYf	SUBJ	MISS	OBS	BLQ	OBS	BLQ
12-DEMO-001	30	8	427	15	12.3	0.4
12-DEMO-002	50	10	1152	38	33.1	1.1
11-DEMO-005	40	19	1071	30	30.8	0.9
13-DEMO-001	40	13	736	11	21.1	0.3
All data	160	50	3386	94	97.3	2.7

SUBJ: subjects

BLQ: below limit of quantification MISS: missing observations (non-BLQ)

OBS: observations

9.4 Wide categorical table

- Summary of categorical data in wide format
- The summary is number (percent within group)
- Wide refers to the fact that the covariates go across the table

9.4.0.1 Ungrouped

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Formulation			Se	ex	Race group		
n	tablet	capsule	troche	male	female	Asian	non-Asian	
160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)	

Summary is count (percent)

n: number of records summarized

9.4.1 Paneled (limited utility, IMO)

• Provided here for completeness

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: ")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Fo	Formulation			ex	Race group		
n	tablet	capsule	troche	male	female	Asian	non-Asian	
Stud	y: 12-DEM()-001						
30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)	
Study: 12-DEMO-002								
50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)	
Stud	y: 11-DEM()-005						
40	30 (75.0)	3 (7.5)	7 (17.5)	29 (72.5)	11 (27.5)	16 (40.0)	24 (60.0)	
Stud	y: 13-DEM()-001						
40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)	
All d	ata							
160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)	

Summary is count (percent)

n: number of records summarized

9.4.2 Grouped (by male / female)

```
out <- pt_cat_wide(
  data = data,
  by = c(Sex = "SEXf"),
  cols = vars(Formulation = FORMf, "Race group" = ASIANf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	ormulation	Race	group	
Sex	n	tablet	capsule	troche	Asian	non-Asian
male	80	62 (77.5)	7 (8.8)	11 (13.8)	28 (35.0)	52 (65.0)
female	80	68 (85.0)	8 (10.0)	4 (5.0)	38 (47.5)	42 (52.5)
All data	160	130 (81.2)	15 (9.4)	15 (9.4)	66 (41.2)	94 (58.8)

Summary is count (percent)

n: number of records summarized

9.4.3 Paneled and grouped

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: "),
  by = c("RF Group" = "RFf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	Formulation		So	ex	Race group	
RF Group	n	tablet	capsule	troche	male	female	Asian	non-Asian
Study: 12-DEMO-001								
normal	30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)
Study: 12-	DEM()-002						
normal	50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)
Study: 11-DEMO-005								
normal	10	9 (90.0)	0 (0.0)	1 (10.0)	7 (70.0)	3 (30.0)	3 (30.0)	7 (70.0)
mild	10	7 (70.0)	2 (20.0)	1 (10.0)	7 (70.0)	3 (30.0)	5 (50.0)	5 (50.0)
moderate	10	6 (60.0)	0 (0.0)	4 (40.0)	8 (80.0)	2 (20.0)	6 (60.0)	4 (40.0)
severe	10	8 (80.0)	1 (10.0)	1 (10.0)	7 (70.0)	3 (30.0)	2 (20.0)	8 (80.0)
Study: 13-DEMO-001								
normal	40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)
All data	160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)

Summary is count (percent)

n: number of records summarized

9.4.4 No summary

```
out <- pt_cat_wide(
  data = data,
  summarize = "none",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: "),
  by = c("RF Group" = "RFf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	Formulation		Se	ex	Race	group
RF Group	n	tablet	capsule	troche	male	female	Asian	non-Asian
Study: 12-	DEM	O-001						
normal	30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)
Study: 12-DEMO-002								
normal	50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)
Study: 11-	DEM	O-005						
normal	10	9 (90.0)	0 (0.0)	1 (10.0)	7 (70.0)	3 (30.0)	3 (30.0)	7 (70.0)
mild	10	7 (70.0)	2 (20.0)	1 (10.0)	7 (70.0)	3 (30.0)	5 (50.0)	5 (50.0)
moderate	10	6 (60.0)	0 (0.0)	4 (40.0)	8 (80.0)	2 (20.0)	6 (60.0)	4 (40.0)
severe	10	8 (80.0)	1 (10.0)	1 (10.0)	7 (70.0)	3 (30.0)	2 (20.0)	8 (80.0)
Study: 13-	DEM	O-001						
normal	40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)

Summary is count (percent)

n: number of records summarized

9.5 Long categorical table

- Categorical table in long format
- Long indicates that the covariates go down the table

9.5.1 Ungrouped

```
out <- pt_cat_long(
  data = data,
  cols = vars(Study = STUDYf, Sex = SEXf, "Race group" = ASIANf, "Child-Pugh" = CPf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Summary $n = 160$
Study	
12-DEMO-001	30 (18.8)
12-DEMO-002	50 (31.2)
11-DEMO-005	40 (25.0)
13-DEMO-001	40 (25.0)
Sex	
male	80 (50.0)
female	80 (50.0)
Race group	
Asian	66 (41.2)
non-Asian	94 (58.8)
Child-Pugh	
Score=0	130 (81.2)
Score=1	10 (6.2)
Score=2	10 (6.2)
Score=3	10 (6.2)
C	+ (

Summary is count (percent) n: number of records summarized

9.5.2 Grouped (by formulation)

```
out <- pt_cat_long(
  data = data,
  cols = vars(Study = STUDYf,Sex = SEXf,"Race group" = ASIANf, "Child-Pugh" = CPf),
  span = c(Formulation = "FORMf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	F	Formulation				
	tablet n = 130	capsule n = 15	troche n = 15	$\begin{array}{c} Summary \\ n = 160 \end{array}$		
Study						
12-DEMO-001	25 (19.2)	3 (20.0)	2 (13.3)	30 (18.8)		
12-DEMO-002	42 (32.3)	6 (40.0)	2 (13.3)	50 (31.2)		
11-DEMO-005	30 (23.1)	3 (20.0)	7 (46.7)	40 (25.0)		
13-DEMO-001	33 (25.4)	3 (20.0)	4 (26.7)	40 (25.0)		
Sex						
male	62 (47.7)	7 (46.7)	11 (73.3)	80 (50.0)		
female	68 (52.3)	8 (53.3)	4 (26.7)	80 (50.0)		
Race group						
Asian	53 (40.8)	7 (46.7)	6 (40.0)	66 (41.2)		
non-Asian	77 (59.2)	8 (53.3)	9 (60.0)	94 (58.8)		
Child-Pugh						
Score=0	106 (81.5)	12 (80.0)	12 (80.0)	130 (81.2)		
Score=1	7 (5.4)	1 (6.7)	2 (13.3)	10 (6.2)		
Score=2	8 (6.2)	1 (6.7)	1 (6.7)	10 (6.2)		
Score=3	9 (6.9)	1 (6.7)	0 (0.0)	10 (6.2)		

Summary is count (percent)

n: number of records summarized

9.5.3 Summary on bottom and right

```
out <- pt_cat_long(
  data = data,
  summarize = "both",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  span = vars(Study = STUDYf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Study				
	12-DEMO-001 n = 30	12-DEMO-002 n = 50	11-DEMO-005 n = 40	13-DEMO-001 n = 40	$\begin{array}{c} Summary \\ n = 160 \end{array}$
Formulatio	on				
tablet	25 (83.3)	42 (84.0)	30 (75.0)	33 (82.5)	130 (81.2)
capsule	3 (10.0)	6 (12.0)	3 (7.5)	3 (7.5)	15 (9.4)
troche	2 (6.7)	2 (4.0)	7 (17.5)	4 (10.0)	15 (9.4)
Sex					
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)	80 (50.0)
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)	80 (50.0)
Race group					
Asian	17 (56.7)	18 (36.0)	16 (40.0)	15 (37.5)	66 (41.2)
non-Asian	13 (43.3)	32 (64.0)	24 (60.0)	25 (62.5)	94 (58.8)

Summary is count (percent)

n: number of records summarized

9.5.4 No summary

```
out <- pt_cat_long(
  data = data,
  summarize = "none",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  span = vars(Study = STUDYf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Study				
	12-DEMO-001	12-DEMO-002	11-DEMO-005	13-DEMO-001	
Formulatio	on				
tablet	25 (83.3)	42 (84.0)	30 (75.0)	33 (82.5)	
capsule	3 (10.0)	6 (12.0)	3 (7.5)	3 (7.5)	
troche	2 (6.7)	2 (4.0)	7 (17.5)	4 (10.0)	
Sex					
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)	
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)	
Race group	1				
Asian	17 (56.7)	18 (36.0)	16 (40.0)	15 (37.5)	
non-Asian	13 (43.3)	32 (64.0)	24 (60.0)	25 (62.5)	

Summary is count (percent)

n: number of records summarized

9.6 Wide continuous table

- Continuous table in wide format
- Wide means that the covariates go across the table

9.6.1 Ungrouped

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  units = units
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

WT	SCR	AGE	ALB	HT
(kg)	(mg/dL)	(years)	(g/dL)	(cm)
70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]

Summary is mean (sd) [count]

9.6.2 Paneled

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  panel = c(Study = "STUDYf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

WT (kg)	SCR (mg/dL)	AGE (years)	ALB (g/dL)	HT (cm)
		(years)	(g/ uL)	(CIII)
Study 12-DEMO	-001			
72.2 (14.3) [29]	1.03 (0.155) [30]	32.0 (9.19) [30]	4.28 (0.474) [29]	180 (19.3) [30]
Study 12-DEMO	-002			
72.4 (11.5) [49]	0.971 (0.161) [50]	35.0 (8.20) [50]	4.47 (0.468) [50]	182 (15.4) [50]
Study 11-DEMO	-005			
68.9 (14.5) [39]	2.52 (1.43) [40]	32.8 (8.48) [40]	4.41 (0.537) [39]	175 (19.2) [40]
Study 13-DEMO	-001			
69.4 (11.6) [40]	0.950 (0.165) [40]	34.2 (9.67) [40]	3.58 (1.15) [38]	179 (17.2) [40]
All data				
70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]

Summary is mean (sd) [count]

9.6.3 Grouped (by study)

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  by = c(Study = "STUDYf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Study	WT (kg)	SCR (mg/dL)	AGE (years)	ALB (g/dL)	HT (cm)
12-DEMO-001	72.2 (14.3) [29]	1.03 (0.155) [30]	32.0 (9.19) [30]	4.28 (0.474) [29]	180 (19.3) [30]
12-DEMO-002	72.4 (11.5) [49]	0.971 (0.161) [50]	35.0 (8.20) [50]	4.47 (0.468) [50]	182 (15.4) [50]
11-DEMO-005	68.9 (14.5) [39]	2.52 (1.43) [40]	32.8 (8.48) [40]	4.41 (0.537) [39]	175 (19.2) [40]
13-DEMO-001	69.4 (11.6) [40]	0.950 (0.165) [40]	34.2 (9.67) [40]	3.58 (1.15) [38]	179 (17.2) [40]
All data	70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]

Summary is mean (sd) [count]

9.6.4 Paneled and grouped

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  by = c(Study = "STUDYf"),
  panel = c(Formulation = "FORMf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Study	WT (kg)	SCR (mg/dL)	AGE (years)	ALB (g/dL)	HT (cm)	
	Formulation tablet					
12-DEMO-001	71.0 (14.2) [24]	1.01 (0.157) [25]	32.6 (9.23) [25]	4.22 (0.459) [24]	179 (19.7) [25]	
12-DEMO-002	72.2 (11.8) [41]	0.966 (0.166) [42]	34.0 (7.93) [42]	4.49 (0.495) [42]	182 (15.9) [42]	
11-DEMO-005	68.8 (15.2) [29]	2.48 (1.47) [30]	33.2 (8.73) [30]	4.37 (0.568) [29]	173 (19.7) [30]	
13-DEMO-001	69.4 (11.0) [33]	0.967 (0.163) [33]	33.7 (9.67) [33]	3.53 (1.14) [31]	178 (16.5) [33]	
Formulation ca	psule					
12-DEMO-001	72.9 (17.3) [3]	1.12 (0.0700) [3]	32.2 (12.0) [3]	4.49 (0.593) [3]	184 (23.0) [3]	
12-DEMO-002	70.9 (10.3) [6]	1.03 (0.146) [6]	37.7 (7.59) [6]	4.38 (0.354) [6]	181 (15.4) [6]	
11-DEMO-005	73.9 (11.1) [3]	3.06 (2.19) [3]	31.8 (4.99) [3]	4.65 (0.240) [3]	181 (16.4) [3]	
13-DEMO-001	58.4 (4.04) [3]	0.973 (0.195) [3]	36.5 (6.69) [3]	3.09 (1.50) [3]	167 (8.88) [3]	
Formulation tr	oche					
12-DEMO-001	85.3 (12.4) [2]	1.20 (0.0707) [2]	25.1 (3.28) [2]	4.74 (0.283) [2]	194 (0.163) [2]	
12-DEMO-002	79.7 (8.61) [2]	0.910 (0.0283) [2]	48.0 (1.79) [2]	4.49 (0.0354) [2]	182 (10.9) [2]	
11-DEMO-005	66.8 (13.9) [7]	2.45 (1.05) [7]	31.4 (9.34) [7]	4.49 (0.509) [7]	177 (19.8) [7]	
13-DEMO-001	77.4 (15.9) [4]	0.795 (0.0777) [4]	37.3 (12.9) [4]	4.32 (0.994) [4]	193 (22.4) [4]	
All data	70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]	

Summary is mean (sd) [count]

9.7 Long continuous table

- Continuous summary table in long format
- Long indicates that covariates go down the table

9.7.1 Ungrouped

```
out <- pt_cont_long(
  data = data,
  cols = "WT,SCR,AGE",
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Variable	n	Mean	Median	SD	Min / Max
WT (kg)	157	70.7	70.0	12.8	43.6 / 97.2
SCR (mg/dL)	160	1.36	1.04	0.986	0.710 / 5.59
AGE (years)	160	33.7	33.4	8.83	18.9 / 49.5

n: number of records summarized

SD: standard deviation

Min: minimum; Max: maximum

9.7.2 Paneled

```
out <- pt_cont_long(
  data = data,
  cols = "WT,SCR,AGE",
  panel = vars(Study = STUDYf),
  units = units
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Variable	n	Mean	Median	SD	Min / Max
Study 12-DEM	10-00	1			
WT (kg)	29	72.2	70.0	14.3	50.9 / 97.2
SCR (mg/dL)	30	1.03	1.04	0.155	0.740 / 1.30
AGE (years)	30	32.0	28.0	9.19	19.9 / 47.8
Study 12-DEM	10-00	2			
WT (kg)	49	72.4	72.1	11.5	51.5 / 96.6
SCR (mg/dL)	50	0.971	0.970	0.161	0.720 / 1.30
AGE (years)	50	35.0	36.0	8.20	20.3 / 49.2
Study 11-DEM	10-00	5			
WT (kg)	39	68.9	65.4	14.5	43.6 / 92.8
SCR (mg/dL)	40	2.52	2.33	1.43	0.720 / 5.59
AGE (years)	40	32.8	33.4	8.48	19.2 / 49.5
Study 13-DEM	10-00	1			
WT (kg)	40	69.4	68.1	11.6	50.7 / 96.6
SCR (mg/dL)	40	0.950	0.975	0.165	0.710 / 1.26
AGE (years)	40	34.2	35.2	9.67	18.9 / 49.5
All data					
WT (kg)	157	70.7	70.0	12.8	43.6 / 97.2
SCR (mg/dL)	160	1.36	1.04	0.986	0.710 / 5.59
AGE (years)	160	33.7	33.4	8.83	18.9 / 49.5

n: number of records summarized

SD: standard deviation

Min: minimum; Max: maximum

9.8 Demographics table

A demographics table summarizes both continuous and discrete data in a single table.

- Both continuous columns (cols_cont) and discrete (cols_cat) are required
- You can specify a span column (the table is pretty skinny without that)
- You can opt out of the paneling too with paneled argument (the also makes the table wider
- An All data summary is provided on the left (opt out with summarize_all)

9.8.1 With span

```
pt_demographics(
  pmt_first,
  cols_cont = "WT, CRCL",
  cols_cat = "SEXf, CPf",
  span = c(Study = "STUDYf")
) %>% st_asis()
```

	Study				
Statistic	12-DEMO-001 n = 30	12-DEMO-002 n = 50	11-DEMO-005 n = 40	13-DEMO-001 n = 40	Summary $n = 160$
WT					
Mean (SD)	72.2 (14.3)	72.4 (11.5)	68.9 (14.5)	69.4 (11.6)	70.7 (12.8)
Min / Max	50.9 / 97.2	51.5 / 96.6	43.6 / 92.8	50.7 / 96.6	43.6 / 97.2
Missing	1	1	1	0	3
CRCL					
Mean (SD)	106 (9.46)	103 (8.35)	58.8 (29.7)	102 (8.19)	92.1 (25.5)
Min / Max	93.2 / 126	90.6 / 121	15.4 / 103	90.7 / 119	15.4 / 126
Missing	1	1	1	3	6
SEXf					
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)	80 (50.0)
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)	80 (50.0)
CPf					
Score=0	30 (100.0)	50 (100.0)	40 (100.0)	10 (25.0)	130 (81.2)
Score=1	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)	10 (6.2)
Score=2	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)	10 (6.2)
Score=3	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)	10 (6.2)

Categorical summary is count (percent)

n: number of records summarized

SD: standard deviation

9.8.2 No span

• This table is skinny

```
mini <- noteconf(type = "minipage", width = 0.5)
pt_demographics(
  pmt_first,
  cols_cont = "WT, CRCL, AGE",
  cols_cat = "SEXf, CPf"
) %>% stable(note_config = mini) %>% st_asis()
```

Statistic	$\begin{array}{l} Summary \\ n = 160 \end{array}$
WT	
Mean (SD)	70.7 (12.8)
Min / Max	43.6 / 97.2
Missing	3
CRCL	
Mean (SD)	92.1 (25.5)
Min / Max	15.4 / 126
Missing	6
AGE	
Mean (SD)	33.7 (8.83)
Min / Max	18.9 / 49.5
Missing	0
SEXf	
male	80 (50.0)
female	80 (50.0)
CPf	
Score=0	130 (81.2)
Score=1	10 (6.2)
Score=2	10 (6.2)
Score=3	10 (6.2)

Categorical summary is count (percent)

n: number of records summarized

SD: standard deviation

9.8.3 No span, not paneled

• Opting out of the paneling also makes it wider

Covariate	Statistic	Summary n = 160
Weight (kg)	Mean (SD)	70.7 (12.8)
	Min / Max	43.6 / 97.2
	Missing	3
CLCR (ml/min)	Mean (SD)	92.1 (25.5)
	Min / Max	15.4 / 126
	Missing	6
Age (years)	Mean (SD)	33.7 (8.83)
	Min / Max	18.9 / 49.5
	Missing	0
Sex	male	80 (50.0)
	female	80 (50.0)
Child-Pugh	Score=0	130 (81.2)
	Score=1	10 (6.2)
	Score=2	10 (6.2)
	Score=3	10 (6.2)

Categorical summary is count (percent)

 $n: number \ of \ records \ summarized$

SD: standard deviation

9.8.4 No summary

```
pt_demographics(
  pmt_first,
  cols_cont = "WT, CRCL, AGE",
  cols_cat = "SEXf, CPf",
  span = c(Study = "STUDYf"),
  summarize_all = FALSE
) %>% st_asis()
```

	Study			
Statistic	12-DEMO-001 n = 30	12-DEMO-002 n = 50	11-DEMO-005 n = 40	13-DEMO-001 n = 40
WT				
Mean (SD)	72.2 (14.3)	72.4 (11.5)	68.9 (14.5)	69.4 (11.6)
Min / Max	50.9 / 97.2	51.5 / 96.6	43.6 / 92.8	50.7 / 96.6
Missing	1	1	1	0
CRCL				
Mean (SD)	106 (9.46)	103 (8.35)	58.8 (29.7)	102 (8.19)
Min / Max	93.2 / 126	90.6 / 121	15.4 / 103	90.7 / 119
Missing	1	1	1	3
AGE				
Mean (SD)	32.0 (9.19)	35.0 (8.20)	32.8 (8.48)	34.2 (9.67)
Min / Max	19.9 / 47.8	20.3 / 49.2	19.2 / 49.5	18.9 / 49.5
Missing	0	0	0	0
SEXf				
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)
CPf				
Score=0	30 (100.0)	50 (100.0)	40 (100.0)	10 (25.0)
Score=1	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)
Score=2	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)
Score=3	0 (0.0)	0 (0.0)	0 (0.0)	10 (25.0)

Categorical summary is count (percent)

n: number of records summarized

SD: standard deviation

9.9 Customized summary functions

pmtables will summarize continuous data using a built-in function, producing standard summaries (e.g. mean, median, etc). Users can pass a function to replace this default, allowing totally customized summaries.

Custom summary functions are not currently allowed for categorical data.

9.9.1 Continuous long table

You can pass a custom summary function via fun. This function should have a first argument called value and should be able to absorb extra arguments via The function should return a data.frame, with a single row and summaries going across in the columns.

For example, we can have pt_cont_long() return the geometric mean and variance by passing the following function

```
cont_long_custom <- function(value, ...) {
  value <- na.omit(value)
  ans <- data.frame(
    GeoMean = exp(mean(log(value))),
    Variance = var(value)
  )
  mutate(ans, across(everything(), sig))
}</pre>
```

Test the function by passing some test data

```
cont_long_custom(c(1,2,3,4,5))
```

```
. GeoMean Variance . 1 2.61 2.50
```

Then, pass this as fun

```
pt_cont_long(
  data = pmt_first,
  cols = c("WT", "ALB", "AGE"),
  fun = cont_long_custom
)$data
```

See pmtables:::cont_long_fun (the default) for an example.

9.9.2 Continuous wide table

You can pass a custom summary function via fun. This function should have a first argument called value and should be able to absorb extra arguments via The continuous, wide table must return a data.frame with a single row and a single column named summary

```
cont_wide_custom <- function(value, ...) {
  value <- na.omit(value)
  geo_mean <- sig(exp(mean(log(value))))
  variance <- sig(var(value))
  n <- length(value)
  ans <- paste0(geo_mean, " [", variance, "] (", n, ")")
  data.frame(summary = ans)
}</pre>
```

You can test the function by passing some test data

Then, pass this as fun

```
pt_cont_wide(
  data = pmt_first,
  cols = c("WT", "ALB", "AGE"),
  fun = cont_wide_custom
)$data
```

See pmtables:::cont_wide_fun (the default) for an example.