Задание по курсу «Аналитическая механика II»

Авторы: Хоружий Кирилл

От: 4 мая 2021 г.

Содержание

1	Второе задание по аналитической механике	•
	1.1 Функция Гамильтона и канонические уравнения	
	1.2 Элементы теории детерменированного хаоса и КАМ-теории	4

 M_{M} K Φ_{M} 3 T_{E} X

1 Второе задание по аналитической механике

1.1 Функция Гамильтона и канонические уравнения

19.9

Найдём гамильтониан системы, и составим канонические уравнения движения механической системы, с лагранжианом вида

$$L = \frac{1}{2} \left((\dot{q}_1^2 + \dot{q}_2^2)^2 + a\dot{q}_1^2 t^2 \right) - a\cos q_2.$$

Что ж, выразим импульсы, через обобщенные скорости

$$\begin{cases} p_1 = \partial_{\dot{q}_1} L &= \dot{q}_1 - \dot{q}_2 + q \dot{q}_1 t^2, \\ p_2 = \dots &= \dot{q}_2 - \dot{q}_1 \end{cases} \Rightarrow \dot{q}_1 = \frac{p_1 + p_2}{at^2}, \quad \dot{q}_2 = \frac{p_1 + p_2(1 + at^2)}{at^2}.$$

И получим функцию Гамильтона

$$H = p_1\dot{q}_1 + p_2\dot{q}_2 - L = \frac{(p_1 + p_2)^2}{2at^2} + a\cos q_2 - \frac{p_2^2}{2}.$$

Канонические уравнения системы:

$$\dot{q}_1 = \frac{p_1 + p_2}{at^2},$$

$$\dot{q}_2 = \frac{p_1 + p_2}{at^2} - p_2,$$

$$\dot{p}_1 = 0,$$

$$\dot{p}_2 = a\sin(q_2).$$

19.15

Решим обраьтную задачу, попробуем найти лагранжиан механической системы, гамильтониан которой имеет вид

$$H = \frac{1}{2} \frac{p_1^2 + p_2^2}{q_1^2 + 1_2^2} + a(q_1^2 + q_2^2).$$

Для начала перейдём к обобщенным скоростям

$$\dot{q}_1 = \frac{p_1}{q_1^2 + q_2^2}, \quad \dot{q}_2 = \frac{p_2}{q_1^2 + q_2^2}, \quad \Rightarrow \quad \begin{cases} p_1 = (q_1^2 + q_2^2)\dot{q}_1, \\ p_2 = (q_1^2 + q_2^2)\dot{q}_2. \end{cases}$$

Лагранжиан же примет вид

$$L = p_1 \dot{q}_1 + p_2 \dot{q}_2 - H = \left[\frac{1}{2} \left(\dot{q}_1^2 + \dot{q}_2^2 \right) - a \right] (q_1^2 + q_2^2).$$

19.32

Найдём гамильтониан для двойного маятника, состоящего из двух одинаковых стержней массы m и для l. Координаты центар масс стержней:

$$h_1 = \frac{l}{2}\cos\alpha_1, \qquad x_1 = \frac{l}{2}\sin\alpha_1,$$

$$h_2 = l\cos\alpha_1 + \frac{l}{2}\cos\alpha_2, \qquad x_2 = l\sin\alpha_1 + \frac{l}{2}\sin\alpha_2.$$

Тогда кинетическая и потенциальная энергия системы

$$\Pi = mg(h_1 + h_2), \quad T = \frac{m}{2}l^2(\dot{\alpha}_1^2 + \dot{\alpha}_2^2) + \frac{m}{24}(\dot{x}_1^2 + \dot{h}_1^2 + \dot{x}_2^2 + \dot{h}_2^2).$$

Подставляя координаты, находим

$$T = \frac{1}{6}l^{2}m \left(4\alpha_{1}^{\prime 2} + \alpha_{2}^{\prime 2} + 3\alpha_{2}^{\prime}\alpha_{1}^{\prime} \cos(\alpha_{1} - \alpha_{2})\right),$$

$$\Pi = gm \left(\frac{3}{2}l\cos(\alpha_{1}) + \frac{1}{2}l\cos(\alpha_{2})\right),$$

что не так плохо, как могло бы быть. Для консервативной системы с адекваными связями

$$H=E=T+\Pi, \qquad L=T-\Pi, \qquad \begin{aligned} p_1&=\partial_{\dot{q}_1}L, \\ p_2&=\partial_{\dot{q}_2}L. \end{aligned}$$

 Φ_{M} ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{M}}$ К

Ну, подставляя координаты, находим

$$p_{1} = \frac{1}{6}l^{2}m\left(8\dot{\alpha}_{1} + 3\dot{\alpha}_{2}\cos\left(\alpha_{1} - \alpha_{2}\right)\right), \qquad \dot{\alpha}_{1} = \frac{12\left(3p_{2}\cos\left(\alpha_{1} - \alpha_{2}\right) - 2p_{1}\right)}{l^{2}m\left(9\cos\left(2\left(\alpha_{1} - \alpha_{2}\right)\right) - 23\right)},$$

$$p_{2} = \frac{1}{6}l^{2}m\left(2\dot{\alpha}_{2} + 3\dot{\alpha}_{1}\cos\left(\alpha_{1} - \alpha_{2}\right)\right), \qquad \dot{\alpha}_{2} = \frac{12\left(3p_{1}\cos\left(\alpha_{1} - \alpha_{2}\right) - 8p_{2}\right)}{l^{2}m\left(9\cos\left(2\left(\alpha_{1} - \alpha_{2}\right)\right) - 23\right)}.$$

Возможно, после подтстановки станет в гамильтониан станет лучше

$$H = -mg\frac{l}{2}\left[3\cos(\alpha_1) - \cos(\alpha_2)\right] + \frac{1}{ml^2} \frac{6\left(p_1^2 - 3p_1p_2\cos(q_1 - q_2) + 4p_2^2\right)}{\left(9\sin^2(q_1 - q_2) + 7\right)}$$

И канонические уравнения ($\alpha_1 = q_1, \, \alpha_2 = q_2$):

$$\begin{split} \dot{q}_1 &= \frac{12(3p_2\cos(q_1-q_2)-2p_1)}{l^2m(9\cos(2(q_1-q_2))-23)}, \\ \dot{q}_2 &= \frac{12(3p_1\cos(q_1-q_2)-8p_2)}{l^2m(9\cos(2(q_1-q_2))-23)}, \\ \dot{p}_1 &= -\frac{3}{2}glm\sin(q_1) - \frac{36\sin(q_1-q_2)\left(p_1p_2(9\cos(2(q_1-q_2))+41)-12\left(p_1^2+4p_2^2\right)\cos(q_1-q_2)\right)}{l^2m(23-9\cos(2(q_1-q_2)))^2} \\ \dot{p}_2 &= -\frac{1}{2}glm\sin(q_2) - \frac{36\sin(q_1-q_2)\left(12\left(p_1^2+4p_2^2\right)\cos(q_1-q_2)-p_1p_2(9\cos(2(q_1-q_2))+41)\right)}{l^2m(23-9\cos(2(q_1-q_2)))^2} \end{split}$$

Гамильтониан сходится с приведенным в ответах, что не может не радовать.

19.69

Тяжелое колечко массы m скользит по гладкой проволочной окружности массы M и радуса r, которая может вращаться вокруг своего вертикального диаметра. Составим уравнения движения системы в форме уравнений Рауса (выбрав такие обобщенные скорости, чтобы всё сошлось):

$$\Pi = mgR\cos\psi, \qquad T = \frac{m}{2}\left((\dot{\varphi}R\sin\psi)^2 + (\dot{\psi}R)^2\right) + \frac{MR^2}{2}\frac{\dot{\varphi}^2}{2}.$$

Лагранжиан знаем, как $L=T-\Pi$, функцию Рауса через

$$R(\psi, \varphi, \dot{\psi}, p_{\varphi}) = p_{\varphi}\dot{\varphi} - L(\psi, \varphi, \dot{\psi}, p_{\varphi}),$$

Находя из $p_{\varphi} = \partial_{\dot{\varphi}} L$ значение $\dot{\varphi}$, находим функцию Рауса

$$\dot{\varphi} = \frac{2p_{\varphi}}{r^2(M + 2m\sin^2\psi)}, \quad \Rightarrow \quad R = mgR\cos\psi - \frac{mR^2}{2}\dot{\psi}^2 + \frac{p_{\varphi}^2}{R^2(M + 2m\sin^2\psi)}.$$

19.70

В сферических координатах лагранжиан релятивистской частицы в поле тяготения имеет вид

$$L = -m_0 c^2 \sqrt{1 - \frac{\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2 \theta}{c^2}} + \frac{G}{r}.$$

Найдём соответствующую функцию Рауса. Аналогично предыдущей задачи, из $p_{\varphi} = \partial_{\dot{\varphi}} L$ находим $\dot{\varphi}$:

$$\dot{\varphi} = \pm \frac{p_{\varphi}}{r\sin\theta} \sqrt{\frac{c^2 - \dot{r}^2 - \dot{\theta}^2 r^2}{p_{\varphi}^2 + c^2 m^2 r^2 \sin^2\theta}},$$

что подставляем в выражение для функции Рауса $R = p_{\varphi}\dot{\varphi} - L$, откуда получаем

$$R = m_0 c^2 \sqrt{\left(1 - \frac{\dot{r}^2 + r^2 \dot{\theta}^2}{c^2}\right) \left(1 + \frac{p_{\varphi}^2}{m_0^2 c^2 r^2 \sin^2 \theta}\right) - \frac{G}{r}}.$$

19.72

Для системы с лагранжианом вида

$$L = \frac{\dot{q}_1^2 + \dot{q}_2^2 + q_1^2 \dot{q}_3^2}{2} - \frac{q_1^2 + q_2^2}{2}.$$

 $\mathcal{K}_{\mathsf{H}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

Сразу перепишем это в терминах (q, p) разбив на кинетическую и потенциальную энергии:

$$T = \frac{p_1^2 + p_2^2 + p_3^2/q_1^2}{2}, \quad \Pi = \frac{q_1^2 + q_2^2}{2}.$$

Осталось сказать, что $T+\Pi=H=h=\mathrm{const},$ и найти

$$p_3 = K = \pm q_1 \sqrt{2h - (p_1^2 + p_2^2) - (q_1^2 + q_2^2)}.$$

Теперь выпешем уравнения Гамильтона

$$\dot{q}_1 = \partial_{p_1} H, \quad \dot{p}_1 = -\partial_{q_1} H, \\ \dot{q}_i \qquad \qquad = \partial_{p_i} H, \quad \dot{p}_i = -\partial_{q_i} H.$$

Тогда

$$\frac{dq_2}{dq_1} = \frac{\partial K}{\partial p_2} = -\frac{p_2 q_1}{\sqrt{2h - p_1^2 - p_2^2 - q_1^2 - q_2^2}},$$

$$\frac{dp_2}{dq_1} = -\frac{\partial K}{\partial q_2} = \frac{q_1 q_2}{\sqrt{2h - p_1^2 - p_2^2 - q_1^2 - q_2^2}}.$$

1.2 Элементы теории детерменированного хаоса и КАМ-теории

T19

Для гамильтоновой системы $H_0=7I_1-I_2$ найдём уравнения движения $x(t)=\sqrt{2I_1}\cos\varphi_1,\ y=\sqrt{2I_1}\sin\varphi_1,$ при наложении возмущения εH_1 , с

1)
$$H_1 = \sqrt{2I_1}\cos\varphi_1\cos6\varphi_2 = \frac{\sqrt{2I_1}}{2}\left[\cos(\varphi_1 + 6\varphi_2) + \cos(\varphi_1 - 6\varphi_2)\right]$$

2)
$$H_1 = \sqrt{2I_1}\cos\varphi_1\cos 7\varphi_2 = \frac{\sqrt{2I_1}}{2}\left[\cos(\varphi_1 + 7\varphi_2) + \cos(\varphi_1 - 7\varphi_2)\right].$$

Система является вырожденной в терминах

$$\left| \frac{\partial^2 H_0}{\partial I_i \partial I_j} \right| = 0$$

т.к. $\omega_1=\partial_{I_1}H_0=7={
m const.}$ $\omega_2=\partial_{I_2}H_0=-1={
m const.}$ По аналогичным причинам

$$\det \begin{bmatrix} \frac{\partial^2 H_0}{\partial \boldsymbol{I}^T \partial \boldsymbol{I}} & \boldsymbol{\omega} \\ \boldsymbol{\omega}^T & 0 \end{bmatrix} = 0,$$

то есть ω_2/ω_1 не зависит I_1 , I_2 .

Первый случай. Так как возмущение явно периодично, то можем попробовать найти новые хорошие переменные через производящую функцию S, вида

$$S = \mathbf{I} \cdot \boldsymbol{\varphi} + \varepsilon S_1, \quad \Rightarrow \quad \begin{cases} \psi = \varphi + \varepsilon \, \partial_I S \\ J = I + \varepsilon \, \partial_{\varphi} S \end{cases}$$

Саму функцию ищем в виде

$$S = \sum_{i} S_i \exp(i\mathbf{k}_i \cdot \boldsymbol{\varphi}) = S_1 \sin(\varphi_1 + 6\varphi_2) + S_2 \sin(\varphi - 6\varphi_2).$$

Вспоминая, что $\partial_I H_0 \cdot \partial_{\varphi} S = -\left[H_1(I,\varphi)\right]_{\text{период}}$, находим

$$S_1 = \frac{\sqrt{2I_1}}{2(7-6)}, \quad S_2 = \frac{\sqrt{2I_1}}{2(7+6)}.$$

Теперь можем найти новые переменные

$$\psi_1 = \varphi_1 + \frac{\varepsilon}{2\sqrt{2I_1}}\sin(\varphi_1 + 6\varphi_2) + \varepsilon\frac{\sqrt{2I_1}}{26}\sin(\varphi_1 - 6\varphi_2),$$

$$J_1 = I_1 + \frac{\varepsilon\sqrt{2I_1}}{2}\cos(\varphi_1 + 6\varphi_2) + \frac{\varepsilon\sqrt{2I_1}}{26}\cos(\varphi_1 - 6\varphi_2),$$

с новым гамильтонианом $\hat{H}=7J_1-J_2+o(\varepsilon),\ J_1,J_2={\rm const},\ {\rm i}\ \psi_1=7t+C_1,\ \psi_2=-t+C_2.$ Выражение для второго интеграла системы содержит I_2 , поэтому нам неинтересно.

 $\Phi_{ extsf{M}}$ З $extsf{T}_{ extsf{E}}$ Х Ж

Осталось выразить I_1 и φ_1 в терминах x,y:

$$\varphi_1 = \operatorname{arctg} \frac{y}{x}, \quad x^2 + y^2 = 2I_1,$$

а также (считая константы нулевыми), подставляя x, y в уравнения

$$\psi_1 = \varphi_1 + \frac{\varepsilon}{4I_1} \left(\frac{14}{13} y \cos 6t - \frac{12}{13} x \sin 6t \right) = \arctan \frac{y}{x} + \frac{\varepsilon}{13} \frac{1}{x^2 + y^2} \left[7y \cos(6t) - 6x \sin(6t) \right].$$

Аналогично для выражения J_1 :

$$J_1 = I_1 + \frac{\varepsilon}{13} [7x \cos(6t) + 6y \sin(6t)].$$

Итогвая система для x(t) и y(t) получилась вида

$$J_{1} = \frac{x^{2} + y^{2}}{2} + \frac{\varepsilon}{13} \left[7x \cos(6t) + 6y \sin(6t) \right],$$

$$7t = \operatorname{arctg} \frac{y}{x} + \frac{\varepsilon}{13} \frac{1}{x^{2} + y^{2}} \left[7y \cos(6t) - 6x \sin(6t) \right],$$

которую можно уже и не разрешать.

Второй случай. Если повторить рассуждения первого случая, то увидим деление на 0 в выражение для S_1 , однако производящую функцию вида

$$S = \mathbf{I} \cdot \boldsymbol{\varphi} + S_2, \qquad S_2 = \frac{\sqrt{2I_1}}{28},$$

всё можем рассмотреть, чтобы избавиться от одной из возмущающих гармоник.

Новые переменные будут вида

$$\psi_1 = \varphi_1 + \frac{\varepsilon}{28\sqrt{2I_1}} \sin(\varphi_1 - 7\varphi_2),$$

$$\psi_2 = \varphi_2,$$

$$J_1 = I_1 + \frac{\varepsilon\sqrt{2I_1}}{28} \cos(\varphi_1 - 7\varphi_2),$$

$$J_2 = I_2 - \frac{\varepsilon\sqrt{2I_1}}{4} \cos(\varphi_1 - 7\varphi_2),$$

с новым гамильтонианом вида

$$\hat{H} = 7J_1 - J_2 + \frac{\varepsilon\sqrt{2J_1}}{2}\cos(\psi_1 + 7\psi_2) + o(\varepsilon).$$

В таком случае уравнения движения могут быть записаны, как

$$\dot{\psi}_1 = \partial_{J_1} \hat{H} = 7 + \frac{\varepsilon}{2\sqrt{2J_1}} \cos(\psi_1 + 7\psi_2),$$

$$\dot{\psi}_2 = -1,$$

$$\dot{J}_1 = \varepsilon \frac{\sqrt{2I_1}}{2} \sin(\psi_1 + 7\psi_2),$$

а J_2 нас как и раньше не интересует.

Пристально взглянув на систему понимаем, что хорошая затея ввеси переменные $\gamma = \psi_1 + 7\psi_2$ и $\varkappa = \sqrt{2J_1}$, что приводит к системе замечательного вида

$$\begin{cases} \dot{\gamma} = \frac{\varepsilon}{2\varkappa}\cos\gamma, \\ \dot{\varkappa} = \frac{\varepsilon}{2}\sin\gamma, \end{cases} \Rightarrow \frac{d\gamma}{d\varkappa} = \frac{1}{\varkappa\operatorname{tg}\gamma}, \Rightarrow \ln\varkappa = -\ln\cos\gamma + \tilde{C}, \Rightarrow \boxed{\varkappa = \frac{C}{\cos\gamma}}.$$

Подставляя это в уравнения движения, находим

$$\varkappa = C\sqrt{1 + \left(\frac{\varepsilon}{2C}t\right)^2}, \qquad \operatorname{tg} \gamma = \left(\frac{\varepsilon}{2C}t\right).$$

Теперь можно пройти обратную цепочку $\{\gamma, \varkappa\} \to \{J_1, \psi_1\} \to \{I_1, \varphi_1\} \to \{x(t), y(t)\}$, и найти искомые решения уравнений движения.

T20

Для следующих четырёх гамильтоновых систем оценим меру устойчивых, или неустойчивых траекторий к возмущениям εH_1 при малых $(0<\varepsilon\ll 1)$. Также построим графики линий уровня $H_0(I_1,I_2)$ и отложим на них $\omega\colon\omega_2=\mathrm{const.}$

 $W_{n}K$ $\Phi_{\rm M}$ 3 $T_{\rm F}$ X

Первый случай. Для гамильтониана и возмущения

$$H_0 = 42I_1^2 + I_1I_2 + 42I_2^2$$
, $H_1 = 2I_1\sin(3\varphi_1 - 18\varphi_2)$,

можем перейти к переменным $J,\; \psi$ через производящую функцию вида

$$S + \mathbf{I} \cdot \boldsymbol{\varphi} + \varepsilon \frac{18}{5} \frac{2I_1}{84I_1 + I_2} \cos(3\varphi_1 - 18\varphi_2),$$

к гамильтониану $\hat{H} = H_0(J_1, J_2)$, и, соответсвенно ограниченными I_1, I_2 .

Система с H_0 является невырожденной

$$\left| \frac{\partial^2 H}{\partial I_i \partial I_j} \right| = \begin{pmatrix} 84 & 1\\ 1 & 84 \end{pmatrix} \neq 0,$$

а также изоэнергетически невырожденной

$$\det\begin{bmatrix} \frac{\partial^2 H_0}{\partial \boldsymbol{I}^T \partial \boldsymbol{I}} & \boldsymbol{\omega} \\ \boldsymbol{\omega}^T & 0 \end{bmatrix} = \begin{pmatrix} 84 & 1 & 84I_1 + I_2 \\ 1 & 84 & 84I_2 + I_1 \\ 84I_1 + I_2 & 84I_2 + I_1 & 0 \end{pmatrix} = 14110(42I_1^2 + I_1I_2 + 42I_2^2) \sim H_0 > 0.$$

Таким образом мера траекторий, неустойчивых к возмущениям, равна нуля (а вообще выше мы показали, что их здесь нет).

Второй случай.

T22

Вычислим хаусдорфову размерность для обобщения кривой Коха, с углом между линиями θ . Примеры построения кривой на разных шагах приведены на рисунке 1. Для начала поймём, что на n-ном шаге всего

Рис. 1: Кривая из T22 при разных параметрах θ, n

будет $N=4^n$ звеньев, длины ρ каждый. Понятно, что

$$\sin\frac{\theta}{2} = \left(\frac{\rho_n - 2\rho_{n+1}}{2}\right) / \rho = \frac{\rho_n}{2\rho_{n+1}} - 1, \quad \Rightarrow \quad \rho_n = \frac{\rho_0}{\left[2 + 2\sin(\theta/2)\right]^n}.$$

Длину кривой мы можем найти, как
$$N(\varepsilon)$$
 отрезков длины $\varepsilon = \rho$, тогда искомая размерность кривой
$$\dim(\theta) = \lim_{n \to \infty} \frac{\ln N(\varepsilon)}{\ln(1/\varepsilon)} = \lim_{n \to \infty} \frac{\ln 4^n}{\ln\left[2(1+\sin\theta/2)\right]^n} = \frac{\ln 4}{\ln 2 + \ln\left[1+\sin\frac{\theta}{2}\right]},$$

что любопытно рассмотреть на некоторых частных случаях.

В частности, что также видно из построения, при $\theta = 0$ кривая превратиться в некоторое покрытие плоскости умельчающейся сеткой, и $\dim(\theta=0)=2$. При $\theta=\pi/3$ мы придём к кривой Коха, с размерностью $\dim(\theta=\pi/3)=$ $\ln 4 / \ln 3 \approx 1.26$, рисунок которой приведен посередине (1). Наконец, при $\theta = \pi$ мы после каждой итерации будем получать прямую, и $\dim(\theta = \pi) = 1$.

В случае, если мы будем говорить о размерности фигуры под рассматриваемой кривой, то обнаружим, что площадь на n-ной итерации может быть найдена, как

$$S_n = \frac{1}{2}\rho_0^2 \sin \theta \left[\frac{1}{4^2} + \frac{1}{4^3} + \dots + \frac{1}{4^n} \right], \qquad \lim_{n \to \infty} S_n = \frac{1}{24}\rho_0^2 \sin \theta,$$

таким образом нас интересует размерность плоской фигуры конечной площади, $N(\varepsilon)\sim \varepsilon^{-2}\Rightarrow \dim=2.$