Prediction Of Patient Risk Of Heart Disease within 10 years

Problem Statement

World Health Organization has estimated 12 million deaths occur worldwide, every year due to Heart diseases. Half the deaths in other developed countries are due to cardio vascular diseases.

As a Cardiologist, the early prognosis of cardiovascular diseases can aid in making decisions on lifestyle changes in high risk patients and in turn reduce the complications.

Base on the most relevant/risk factors of heart disease to make prediction on the overall risk of Heart disease within 10 years using Machine Learning Algorithm.

Mata Preparation

Data Source : Kaggle Heart Disease datasets Data At A Glance

Gender	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	TenYearCHD
1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	80.0	77.0	0
0	46	2.0	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	95.0	76.0	0
1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	75.0	70.0	0
0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	65.0	103.0	1
0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	85.0	85.0	0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4240 entries, 0 to 4239
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype			
0	Gender	4240 non-null	int64			
1	age	4240 non-null	int64			
2	education	4135 non-null	float64			
3	currentSmoker	4240 non-null	int64			
4	cigsPerDay	4211 non-null	float64			
5	BPMeds	4187 non-null	float64			
6	prevalentStroke	4240 non-null	int64			
7	prevalentHyp	4240 non-null	int64			
8	diabetes	4240 non-null	int64			
9	totChol	4190 non-null	float64			
10	sysBP	4240 non-null	float64			
11	diaBP	4240 non-null	float64			
12	BMI	4221 non-null	float64			
13	heartRate	4239 non-null	float64			
14	glucose	3852 non-null	float64			
15	TenYearCHD	4240 non-null	int64			
dtypes: float64(9), int64(7)						

EDA & Data Processing

Missing Data: 489 rows, constitute about 12% of entire dataset as shown below. Will drop the missing data

Drop Column: 'education' column is drop as not a important variable

Gender	0
age	0
education	105
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	50
sysBP	0
diaBP	0
BMI	19
heartRate	1
glucose	388
TenYearCHD	0
dtype: int64	

EDA & Data Processing

Imbalance Class Target Problem:

Class variable is skewed towards the '0' class.

Imbalance Class Problem

SMOTE Oversampling

Counter({0: 3179, 1: 3179})
<BarContainer object of 2 artists>

Data Preparation, Training and Testing

Divide Independent and dependent variable into separate variable, set y as 'TenYearCHD' and rest as x.

Hyperparameter fine tuning GridSearchCV technique for 4 ML models, Logistic Regression, KNN, DecisionTree and Random Forest before training the models.

Use Best estimator from GridSearchCV
To train the models

Test the model by making prediction on test data

Model Evaluation

Model scoring metrics base on Classification report and Confusion matrix.

Summary of model scoring as shown.

	Logi		K Ne	bors			
Target	precision	recall	f1 score	Target	precision	recall	f1 score
0	1.00	1.00	1.00	0	1.00	1.00	1.00
1	0.93	0.92	0.96	1	0.92 0.92		0.92
	Accuracy S	core (Test)	0.97		Accuracy S	0.97	
	D		Ra	st			
Target	precision	recall	f1 score	Target	precision	recall	f1 score
0	1.00	1.00	1.00	0	1.00	1.00	1.00
1	0.93	1.00	0.96	1	0.93	1.00	0.96
	Accuracy S	core (Test)	0.97		Accuracy S	0.97	

Conclusion

Base on scoring metrics, Random Forest Model serve the best ML model to make prediction on the patient's risk of Heart Disease within 10 years

Features that are of great importance in Random Forest classification model is glucose (feature 14) follow by current smoker (feature 3)

Future Opportunities

If I have more time......

I would probably choose stocks that are of great potential for growth and predict the price growth

