TAMING HORSES IN SINGING VOICE DETECTION

Jan Schlüter

Vienna DL Meetup

December 2, 2019

TAMING HORSES IN SINGING VOICE DETECTION

Jan Schlüter

Vienna DL Meetup

December 2, 2019

Spectrogram

Frequency scale

JYU

Magnitude scale

Designed steps

TRAINING A NETWORK FOR SINGING VOICE DETECTION

Challenge: Weak training examples

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Challenge: Weak training examples

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Baseline

100 30-second song clips with subsecond-wise annotations

Challenge: Weak training examples

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Baseline

100 30-second song clips with subsecond-wise annotations

Network Architecture

Input: a 115×80 spectrogram excerpt (1.6 s)

Output: Probability of singing voice at center of input Postprocessing: Sliding median filter, thresholding

Network Architecture

Input: a 115×372 spectrogram excerpt (1.6 s), no mel scaling

Output: Probability of singing voice at center of input Postprocessing: Sliding median filter, thresholding

Network Architecture

Input: a 115×372 spectrogram excerpt (1.6 s), no mel scaling

Output: Probability of singing voice at center of input Postprocessing: Sliding median filter, thresholding

Network Architecture

small convolutions at first

large convolution near end

Goal: Enhance variability of small training set, for fair comparison Idea: Augment training data, as common in computer vision

Catch: not invented for music yet

original

?

original

noise

original

augmented

time stretch

time stretch

Best: pitch shifting $\pm 30\%$, time stretching $\pm 30\%$, filtering $\pm 10\,\mathrm{dB}$

Starting Point

Training data

100 30-second song clips with accurate annotations:

"when is voice?"

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Training data

10,000 30-second song clips with single label each: "contains voice" or "does not contain voice"

"does not contain voice": propagate to all instances

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

"contains voice": also propagate to all instances

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Prediction on training example

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

"contains voice": use predictions of CNN- α

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Prediction on training example

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice
- C excerpt contains voice at edge

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice ✓

C excerpt contains voice at edge

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice ✓
- C excerpt contains voice at edge X

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice ✓
- C excerpt contains voice at edge X

Overshoot correction:

Check if central input frame was relevant for positive prediction

Overshoot Correction

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice ✓
- C excerpt contains voice at edge X

Overshoot Correction

- A excerpt contains voice throughout ✓
- B excerpt does not contain voice <
- C excerpt contains voice at edge ✓

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

"contains voice": use saliencies of CNN- β

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

"contains voice": use squashed saliencies of CNN-β

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Training data

10,000 30-second song clips with single label each:

"contains voice" or "does not contain voice"

Prediction on training example

Bonus: Spectral Localization

Goal

Take a song and predict when it contains voice where

Implementation

Compute saliency map, scale to match value range of input.

Bonus: Spectral Localization

Goal

Take a song and predict when it contains voice where

How does the net work?

FAILURE MODE 1

How does the net work?

How does the net fail?

photograph: Bertil Videt (CC BY-SA 3.0)

However, accuracy on unmodified data does not improve.

FAILURE MODE 2

+6 dB

Understanding the horse

Understanding the horse

Understanding the horse

photograph: Bertil Videt (CC BY-SA 3.0)

Understanding the horse

Zero-mean convolution

Log-magnitude input, turns scale into shift: $log(\beta x) = log(\beta) + log(x)$

First convolution coefficients constrained to sum to zero, removes shift

CONCLUSION

Recap and Takeaways

- 1. Trained a neural network on weakly-labeled audio recordings found recipe to reach same accuracy as using strong labels 10,000 weak examples $\hat{\approx}$ 100 strong examples 2. Network found overly sensitive to wiggly lines misses long drawn notes, mistakes e-guitars/sax for vocals data augmentation only helps against hand-drawn fakes Network found sensitive to sound level went unnoticed in standard train/test setting customized model avoids this
- ► Leave the comfort zone of your test set!

 Code: github.com/f0k/ismir2015, singing_horse, ismir2018

Recap and Takeaways

- Trained a neural network on weakly-labeled audio recordings

 found recipe to reach same accuracy as using strong labels
 10,000 weak examples ≈ 100 strong examples

 Network found overly sensitive to wiggly lines

 misses long drawn notes, mistakes e-guitars/sax for vocals
 data augmentation only helps against hand-drawn fakes

 Network found sensitive to sound level

 went unnoticed in standard train/test setting
 customized model avoids this
- If there is any bias in the data, it will be exploited
- ▶ Finding such exploits requires custom interventions
- Leave the comfort zone of your test set!

Code: github.com/f0k/ismir2015, singing_horse, ismir2018

Recap and Takeaways

- Trained a neural network on weakly-labeled audio recordings

 found recipe to reach same accuracy as using strong labels
 10,000 weak examples ≈ 100 strong examples

 Network found overly sensitive to wiggly lines

 misses long drawn notes, mistakes e-guitars/sax for vocals
 data augmentation only helps against hand-drawn fakes

 Network found sensitive to sound level

 went unnoticed in standard train/test setting
- If there is any bias in the data, it will be exploited

customized model avoids this

- Finding such exploits requires custom interventions
- ► Leave the comfort zone of your test set!

 Code: github.com/f0k/ismir2015, singing_horse, ismir2018

APPENDIX

Disadvantages of RNNs

Advantages of RNNs?

- Larger context? Infinite context?
- Make use of regularities in music?

Make use of temporal continuity?

Phase invariance

Spectral Localization Evaluation

Goal

Take a song and predict when it contains voice where

Evaluation

Compare saliency map P_{ij} to spectrogram of pure-vocal track T_{ij} .

True positives:

$$t = \sum_{i,j} \min(P_{ij}, T_{ij})$$

Recall:

$$r = \frac{t}{\sum_{i,j} T_{ij}}$$

Precision:

$$\rho = \frac{t}{\sum_{i,j} P_{ij}}$$

 F_1 -measure:

$$f = \frac{2pr}{p+r}$$

