

论文分享: 超图推荐系统

Live streaming channel recommendation based on viewers 'interaction behavior: A hypergraph approach

2024-09 Decision Support Systems IF-6.7 SCI-1

导师: 黄天羽 汇报人: 罗巨鹏

2024-09-09 计算机技术

余力*

教授

中国人民大学 信息学院

大数据分析与应用、 推荐系统与智能决策、 金融科技与商务智能、 在线直播与网络营、 机器学习与数据挖掘

Wei Gong

硕士研究生

中国人民大学 信息学院

大数据分析、 深度学习、 推荐系统、 自然语言处理

Dongsong Zhang

full professor

美 北卡罗来纳大学夏洛 特分校 贝尔克商学院

社会计算、 健康 IT、 移动 HCI、 商业智能和在线社区

Eonts

01 引言和相关工作

02 观众行为理解 与前置知识补充

VIBM-hyper模型

04 实验与评估

05 知识点扩展与反思

警告

本文不是算法革新是新方法引入领域

研究背景、研究意义

客观事实:

近年来,直播流媒体因其实时交互特性而越来越受欢迎。观众可以通过发送虚拟礼物、弹幕 等方式与直播主播交互。

问题挖掘:

面对海量的主播和频道,观众需要进行筛选。信息过载问题和频繁接触不感兴趣的频道,会 影响用户体验。

相关研究:

众多研究者从视频帧和评论的关联性(内容分析)、观看历史建模(序贯决策)、用户和主 播的交互行为以及行为路径(进入、停留、离开)设计了相关的直播流推荐系统。

存在不足:

- 1. 传统推荐系统基于传统图技术对交互建模,每条边仅连接2个节点,只能模拟点对点(观 众与频道)的交互;
- 2. 单个用户和直播频道之间的交互次数相较于用户数量来说是稀疏的,进一步削弱了点对 点交互信息的可靠性。

事实基础:

同一频道多个观众的相似交互行为可能代表相似偏好

传统推荐系统关注的交互关系

事实上的交互关系

用户和频道根据交互可以进行分组(多对多):

Fig. 1. Interaction relationship between viewers and channels at a single viewer/channel level and a group level.

单个用户关注多个频道,可以视作频道组。同样多个用户关注同一频道,可以视作用户组。通过对组进行关联和刻画,可以捕捉用户和频道之间的**隐式**关联。

方法引入: 刻画多对多关系

- 超图是一种广义上的图,一条边(超边)可以连接任意数量的顶点
- 具有增强表征学习的效果,特别是在节点之间复杂关系的建模方面

研究目标:

- 1. 在群体层面上对直播平台上的用户与频道之间的关联关系进行建模,以进行频道推荐
- 2. 在群体层面上,基于用户与频道之间的交互,了解用户的偏好,并**推荐**相应的直播频道

贡献:

- 1. 新模型:提出了一种新的直播频道推荐模型VIBM-Hyper,首次探索本领域的超图技术;
- 2. 新建模:构建了两种新型的超图来增强用户和频道的表征;
- 3. 新模块:设计了超图卷积模块和行为意识注意模块,以生成用户和频道的有效表征。

直播频道 (研究主题)

- 先前研究表明,观众的行为与其对频道不同方面的偏好之间存在密切的关系(理论基础)。
- 频道中用户行为的研究有三个主要方向: 社交需求分享、直播受欢迎程度预测、用户推荐。

基于行为的推荐(方法):

利用观众的历史行为,通过预测用户对目标项目的潜在行为来增强推荐。 现有的基于行为的项目推荐工作可以根据行为的类型分为两类:

- 1. 对用户的单一交互行为进行建模,利用深度神经网络预测用户未来可能进行行为的概率;
- 2. 利用用户的多种交互类型来预测他们的行为。

超图学习(方法):

- 1. 已经从算法研究应用到推荐系统,但是尚未应用于直播领域;
- 2. 可以捕捉复杂交互关系(多个用户和多个物品之间的交互关系)。

加久 观众行为理解

与前置知识补充

数据准备:

- 抓取bilibili上: 1天内 200个频道 3000名观众 5000条行为记录/频道 5次观看/人 1小时/频道
- 频道类别:游戏唱歌日常分享;行为类别:送礼物发弹幕观看频道内容(未计时)。

分析1: 观众行为差异 分析观众行为的平均频率。 结论: 显著差异。

Fig. 2. The frequency distribution of viewer behaviors in different live streaming channels.

分析2: 观众行为相关性

检验观众的某种行为是否与其他行为相关,为交互超图和感知注意力模块提供理论依据。

结论:

表面: 购物者可能送礼, 弹幕者可能订阅。

深层:不同的条件概率表明不同行为间相关性不同。

综合结论:

- 1. 不同频道观众行为的发生频率不同;
- 2. 不同行为间有一定程度的相关性。 频道推荐时有必要考虑不同类型的交互行为, 以捕获观众对频道不同方面的偏好。

Fig. 3. Visualization of Conditional Probabilities P(A|B) of Viewer Behaviors.

並 前置知识补充: 推荐系统

应用场景:

基于用户维度的推荐:根据用户的历史行为和兴趣进行推荐,比如淘宝首页的猜你喜欢、 抖音的首页推荐等。

基于物品维度的推荐:根据用户当前浏览的物品进行推荐,比如打开拼多多的商品详情页,

概念界定:

频道: c:channel=live streamer channel, C:一组c的集合

观众: u :viewer,U:一组u的集合

交互行为: b:behavior, B:c中所有u的b集合

S 是u进行了b的一组C集合(交互历史)

行为子类: 根据强度进一步划分, 如送礼价值、弹幕数量

面向频道的行为组: CBG。表示u对c的共享偏好

面向观众的行为组: VBG。表示u兴趣组之间的关系

面向频道的超图: CBH。

超边连接了在c中进行了相同类型b的u,一个频道若干观众

面向观众的超图: VBH。

超边连接了那些u进行了特定类型b的c,一个观众若干频道

Table 2
Notations and definitions.

Notations	Concepts							
U	The viewer Set							
и	A viewer u							
C	The live streaming channel Set							
c	A live streaming channel c							
В	The viewer Behavior Set							
b	A behavior b and its corresponding behavior subcategories							
S_u^b	History of interaction behaviors of viewer under behavior							
CBG_c^b	Channel-oriented Behavior Group (CBG)							
VBG_{ij}^{b}	Viewer-oriented Behavior Group (VBG)							
CBH _c	Channel-oriented Behavior Hypergraph (CBH)							
VBH,	Viewer-oriented Behavior Hypergraph (VBH)							
E _c	The final representation of channel c							
E_{cb}	The representation of channel c based on behavior b							
E_c^p	The profile embedding of channel c							
E_c^B	The behavior-aware embedding of channel c							
E _u	The final representation of viewer u							
E_u^p	The profile embedding of viewer u							
E_u^B	The behavior-aware embedding of viewer u							
d_c	The embedding dimension of Ec							
d_u	The embedding dimension of E_u							
n_{bs}	The number of behavior categories							

设计原理:

- 1. 在组级别捕获多观看者和多渠道之间的交互关系,以模拟观看者偏好。
- 2. 从渠道和观众的角度对观众的交互行为进行建模。
- 3. 权衡不同行为对观众和渠道表现的贡献。

通过行为集合 S_u^b 构建超图:

- 找出哪些u在c进行了相同的行为,得到CBH图a
- 直接基于 S_u^b 构建VBH 图b

a) Channel-oriented Behavior Hypergraph

b) Viewer-oriented Behavior Hypergraph

Fig. 5. The Channel-oriented Behavior Hypergraph (CBH) and Viewer-oriented Behavior Hypergraph (VBH).

超图卷积模块

使用谱超图卷积方法 对超图进行卷积:获得频道和观众的表征

• 生成超图关联矩阵 H (Incidence Matrix), 馈送到超图卷积网络。

• $X^{(l+1)} = \sigma \left(\mathbf{D}_{v}^{-\frac{1}{2}} \mathbf{H} \mathbf{W} \mathbf{D}_{e}^{-1} \mathbf{H}^{T} \mathbf{D}_{v}^{-\frac{1}{2}} X^{(l)} \mathbf{\Theta}^{(l)} \right)$

激活函数

节点嵌入矩阵

 $D_v D_b$ 顶点和超边的度矩阵

关联矩阵 H

层之间的权重矩阵 0

Hypergraph convolution module

行为感知注意力模块

部署一种<u>自注意力</u>机制来推导: behavior-aware的频道和观众的表征

• 频道c的平均特征: $\bar{E}_c^B = \frac{1}{|B|} \sum_b E_{cb}^B$

• 行为-频道相关性分数: $s(b,c) = E_{cb}^{BT} \cdot \bar{E}_{c}^{B}$

内部注意力权重: $w(b,c) = softmax(s(b,c)) = \frac{\exp s(b,c)}{\sum_{b \in B} \exp s(b,c)}$

频道c的最终表征: $E_c^B = \sum_{b \in B} w(b,c) \cdot E_{cb}^B$

观众行为总数 |B|超图卷积生成的频道表示 E_{cb}

注意 均在行为感知B的前提下

顷测与优化模块

静态表征:观众profile;频道类型、标题、描述 动态表征:基于行为的(超图卷积+注意力)表征

固定不变的 随观众变化

• Word2Vec图嵌入向量: $E_u^p E_c^p$

道间的相关性矩阵

- 最终表征: $E_u = E_u^p + E_u^B$, $E_c = E_c^p + E_c^B$
- 观众-频道相关性分数: $\hat{y}_1(u,c) = \frac{E_u \cdot E_c}{\|E_u\| \cdot \|E_c\|}$
- 频道-历史交互频道相关性分数: $\hat{y}_2(u,c) = \sum_{b^* \in B} \sum_{c_j \in N_{b^*}(u)} E_{cb^*}^{B^T} \cdot \mathbf{M}_{b^*} \cdot E_{c_ib^*}^{B}$
- 评分函数 (总相关性分数) : $\hat{y}(u,c) = \lambda \cdot \hat{y}_1(u,c) + (1-\lambda)\hat{y}_2(u,c)$

 $\hat{y}_1(u,c)$ 衡量候选频道u对观众c的兴趣程度(余弦相似度) $\hat{y}_2(u,c)$ 衡量候选频道u与观众c交互过的历史频道的相似性 $N_{h^*}(u)$ 观众u执行 过行为b*的频道集合, $M_{b^*} \in R^{d' \times d'}$, $d' = d \times (L+1)$ 度量发生行为b*的两个频

嵌入向量的维度,决定每个节点在向量空间中表示的丰富程度

超图卷积的层数 L ,影响信息在超图结构中传播的深度

允许在计算相关性时考虑到从输入层到卷积的每层变换。即不仅能够处 理原始的嵌入空间,还能够处理经过超图卷积变换后的空间。

Prediction and optimization module

预测与优化模块

为了学习超参数,用贝叶斯个性化排序(BPR)损失来优化VIBM - Hyper模型: 强调观察到的用户-项目交互和未观察到的用户-项目交互之间的相对顺序,正样本应该被赋 予比负样本更高的预测评分以更好地学习观众偏好:

• parawise的损失函数: $Loss = \sum_{(u,c,c') \in O} -\ln \sigma (\hat{y}(u,c) - \hat{y}(u,c')) + \beta \cdot \|\mathbf{\Theta}\|^2$

 $O = \{(u, c, c') | (u, c') \in S^+, (u, c') \in S^-\}$ 一组目标 行为训练数据(成对儿)

 S^+S^- 观察/未观察到的交互集合(即交互历史中没有)

σ Sigmoid函数

 β L_2 正则化系数,防止过拟合

Θ 所有可训练的参数

实验与评估

数据集与预设问题

提出问题:

- 1. 与最先进的模型相比,VIBM-Hyper在推荐直播频道方面表现如何?(纵向)
- 2. 观众的多种交互行为是否比单一交互行为更能提高频道推荐的性能?(横向)
 - 与非基于超图的基线方法相比,超图建模方法是否有助于VIBM-Hyper提高通道推荐的性能? (消融)

网站	内容	观众数	频道 数	交互数	人均 观看	稀疏度	记录 时长	频道 类数	行为 类数
B立占V区	虚拟直播	21,040	1040	163,200	7	99.25%	31天	3	3
蘑菇街	购物直播	186,539	2620	7,165,582	38	99.99%	19天	3	4

回答问题:

- 1. 选择6个单行为基线模型和5个多行为基线模型(包括一个超图)
- 2. 把数据集划分为质保函某种行为的若干子集
- 3. 把超图构造模块替换成传统图结构

Table 6Comparisons results with the Bilibili-VTuber.

Categories	Methods	TopK = 20		TopK = 40		TopK = 80	
		Recall	NDCG	Recall	NDCG	Recall	NDCG
Marian Salaman Made	UPC	0.040	0.012	0.059	0.020	0.084	0.031
ngle-behavior models	LiveRec	0.059	0.013	0.069	0.028	0.091	0.034
	ADARM	0.044	0.016	0.071	0.028	0.099	0.032
	n-MSN	0.053	0.010	0.069	0.030	0.103	0.033
	Recall NDCG Recall	0.075	0.030	0.105	0.036		
	LightGCN	0.060	0.010	0.072	0.029	0.104	0.034
	NMTR	0.045	0.017	0.080	0.030	0.109	0.038
ngle-behavior models	MC-BPR	0.065	0.018	0.079	0.037	0.108	0.040
	GraphSAGE	0.062	0.022	0.081	0.031	0.108	0.039
ngle-behavior models		0.069	0.023	0.092	0.035	0.114	0.041
	DualHGCN	0.065	0.022	0.088	0.033	0.110	0.038
	VIBM-Hyper	0.082	NDCG Recall 0.012 0.059 0.013 0.069 0.016 0.071 0.010 0.069 0.011 0.075 0.010 0.072 0.017 0.080 0.018 0.079 0.022 0.081 0.023 0.092 0.022 0.088 0.031 0.103	0.040	0.121	0.046	
ingle-behavior models	Improvement	18.98% *			9.28% **	6.32% ***	13.01% ***

Note: 1)*p<0.1, **p<0.05, ***p<0.01; 2) The last line is the percentage improvement achieved by VIBM-Hyper over the best baseline method marked in bold and italics.

Table 7
Performance of VIBM-Hyper w.r.t different behaviors.

Table 8

Results for Ablation Test of hypergraphs under Recall@20/NDCG@20.

Analytic at the second of the second o

Methods	Bilibili-VTube	Bilibili-VTuber			Architecture	Bilibili-VTub	er	MOGU		
	Recall@20 NDCG@2		Recall@20	NDCG@20		Recall@20	NDCG@20	Recall@20	NDCG@20	
VIBM-Hyper	0.082	0.031	0.061	0.027	(1) VIBM-Hyper	0.082	0.031	0.061	0.027	
VIBM-Hyper_CS	0.075	0.019	0.040	0.012	(2) Remove hypergraph	0.064	0.020	0.052	0.019	
VIBM-Hyper_GP	0.077	0.026	0.050	0.021						
VIBM-Hyper DF	0.072	0.021	0.044	0.017						

补充研究:

• 评估Hypergraph 卷积层的数量对推荐性能的影响 卷积层数为1: 只聚合邻居节点信息, 效果不佳;

卷积层数从1到3:从多种行为中有效地学习观众的偏好,性能提升;

卷积层数从3到5:添加更多层可能会导致模型过度拟合。过多参数可能会使模型学到噪声和特定但不

Fig. 6. Performance comparison with different numbers of hypergraph convolutional layers.

知点扩展与反思

为什么整体性能评估不用Accuracy指标或ROC曲线?

<u> 別什么釜伸性能评估</u>	小用Accuracy指标或ROCE	出 线:	AGN as a	
指标	公式		含义	场景
查全率 (Recall) 真阳性率TPR、敏感 性 (Sensitivity)	$\frac{TP}{TP + FN}$			
查准率 (Precision)	$\frac{TP}{TP + FP}$		可预测为正例的样本中,真 可正例的样本占比	需要确保预测结果准确性的场景, 如法律判决、金融风险评估
准确率 (Accuracy)	$\frac{TP + TN}{TP + TN + FP + FN}$	所有 本占	7样本中,被正确预测的样 5比	对模型整体性能进行综合评价, 正负样本分布较为均衡的场景
指标	公式		含义	场景
累积增益 (Cumulative Gain)	$CG_p = \sum_{i=1}^p rel_i$		只关注搜索结果列表中所 有结果的相关性得分的总 和	能够反映搜索结果页面的总体质量, 但无法评估算法的排序能力
折损累积率 (Discounted Cumulative Gain)	$DCG_p = rel_i + \sum_{i=1}^{p} \frac{rel_i}{\log_2(i + i)}$	1)	排名越靠前的对指标的影响越大,当相关度高的排序位置靠后时进行惩罚	考虑了结果的位置信息,更准确地评估排序算法的性能,常用于搜索引擎、推荐系统等领域的算法评估
归一化累积增率 (Normalized DCG)	$NDCG_p = \frac{DCG_p}{IDCG_p}$		IDCG是理想情况下DCG值, 此时所有结果按照相关性 得分从高到低排序且最大	通过对DCG进行归一化处理,使其能够在不同长度的搜索结果或不同用户之间进行比较

29 几种注意力机制分类方式 🗾

self(intra) attention 编码器 解码器	inter(cross) attention 解码器
序列内部	数据源之间或跨模态
查询、键和值都来自同一个输入序列	查询来自一个输入序列,而键和值来自另一个输入序列
捕捉序列内部的长距离依赖关系 文本分类、情感分析	根据查询意图,平衡不同数据源或模态之间的重要性机器翻译、问答系统

按注意力 添加位置:

local attention 解码器	global attention 解码器
编码器的部分位置	编码器的所有位置
根据目标位置选择上下文窗口,关注窗口内状态	每个时间步都关注所有隐藏状态
减少计算量,提高处理长序列的效率	充分利用序列中的所有信息,计算量大

按特征采 样方式:

soft attention	hard attention
反向传播时基于梯度进行优化	不能优化
确定性、参数化、可导	随机采样 (蒙特卡洛) , 不可微
深度学习	强化学习

超图定义: G = (V; E; W)

相邻、关联: 若{x}是超边,则x与自身相邻

- 两个顶点是相邻的(adjacent):存在包含两个顶点的超边
- 两个超边是关联的(incident): 两个超边的交点不为空
- 顶点的度: $d(v_i) = \sum_{e_i \in E \mid v \in e} w(e_i)$ 包含该顶点的超边的个数
- 超边的度: $\delta(e_i) = |e_i| = \sum_{v_i \in V} h(v_i, e_i)$ 超边上包含的顶点的个数

关联矩阵和邻接矩阵:

- $V = \{v_1, v_2, ..., v_n\} E = \{e_1, e_2, ..., e_m\}$ 并且 $\bigcup_{i \in I} e_i = V$ (没有孤立顶点)
- $n \times m$ 关联矩阵 $\mathbf{H} = (h_{ij})$ $h_{ij} = \begin{cases} 1, v_i \in e_j \\ 0, others \end{cases}$
- 定义邻接矩阵: $A = HH^T$
- $n \times n$ 邻接矩阵 $A = (a_{ij})$ 即节点 i 和 j 共享超边的数量

本文:

- 定义邻接矩阵: $A = HWD_e^{-1}H^T$
- $n \times n$ 邻接矩阵 $\mathbf{A} = \begin{pmatrix} a_{ij} \end{pmatrix}$ $a_{ij} = w(e_n)$ $v_i, v_j \in e_n$ 即节点 i 和 j 共享超边的加权求和
- 对角的 $m \times m$ 权重矩阵W 对角线的元素表示每条超边的权重w(e)
- 对角的 $n \times n$ 度矩阵 D_v 对角线的元素表示顶点的度

• 对角的 $m \times m$ 度矩阵 D_e 对角线的元素表示超边的度	2	2	1	0	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$
图卷积: $\mathbf{X}^{(l+1)} = \sigma \left(\widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{A} \widetilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X}^{(l)} \mathbf{\Theta}^{(l)} \right) \widetilde{A} = A + I$	2	2	1	0	1			$\frac{1}{3}$		
超图卷积: $\mathbf{X}^{(l+1)} = \sigma \left(\mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{W} \mathbf{D}_e^{-1} \mathbf{H}^T \mathbf{D}_v^{-\frac{1}{2}} \mathbf{X}^{(l)} \mathbf{\Theta}^{(l)} \right)$	1	1	2	1	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{5}{6}$	$\frac{1}{3}$	0
图片卷积: $(f * g)(x,y)$ 使用滤波器 g 来对某个空间区域的像素点进行加权求和,得到新的特征表示	0	0	1	1	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	0
图卷积:根据拓扑结构g通过传播函数或聚合函数,将邻居节点的信息聚合到当前节点上,得到新的特征表示	1	1	0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$

超图的适用场景 🗾

- 组间建模问题:
 - 多对多
 - 高阶交互
- 数据稀疏性问题:
 - 通过间接连接来缓解冷启动难题

本文局限性:

- 模型主要依赖于直播频道的标题来获得 其初始表示
- 需要挖掘更多观众的隐性行为, 在特定直播频道的停留时间,以更准确 地捕捉观众的偏好
- 考虑不同直播者之间的社会关系,从直 播者的角度更好地代表不同的直播渠道

Collaborative group embedding and decision aggregation based on attentive influence of individual members: A group 传统图能做的,超图没必要做:前置工作=> recommendation perspective,2023,Decision Support Systems

请老师同学们批评指正!

汇报人: 罗巨鹏

北京理工大學 BEIJING INSTITUTE OF TECHNOLOGY