Линейные функционалы

Свойства операторов во многом определяются размерностью пространств, в которых они действуют (чем меньше, тем лучше).

Определение

Линейным функционалом называется линейное отображение линейного пространства в множество вещественных или комплексных чисел.

Определение

$$f: X \to R, ||f|| = \sup\{|f(x)| : ||x|| \le 1\}$$

Линейный функционал является частным случаем линейного оператора и если он действует в нормированном пространстве, то можно говорить о его норме, ограниченности и непрерывности.

Напомним, что для линейных операторов понятия ограниченности и непрерывности совпадают. Линейный функционал не обязательно ограничен, например, линейный функционал $\{x_n\} \to \{nx_n\}$ не ограничен ни в одном из пространств l^p .

Определение

Если X банахово пространство, то множество всех линейных непрерывных функционалов на X называется сопряженным пространством и обозначается X^*

Всюду далее будут рассматриваться только линейные непрерывные функционалы, заданные в банаховых пространствах.

Примеры

1)
$$(l^p)^* = l^q, \frac{1}{p} + \frac{1}{q}, \ 1$$

2)
$$(l^1)^* = l^{\infty}$$
, no $(l^{\infty})^* \neq l^1$

- 3) такая же ситуация и для пространств $L^{p}(a,b)$
- 4) пространство $(C[a,b])^*$ содержит в себе $L^1(a,b)$, но неравно ему

Из примеров видно, что $(l^2)^*=l^2$ оказывается это верно для любого гильбертова пространства

Теорема (Рисса-Фишера)

Если H гильбертово пространство, то существует взаимно однозначное непрерывное отображение $J: H \to H^*$ (каждый функционал можно записать как скалярное произведение с подходящим элементом). Причем J^2 является тождественным отображением.

Доказательство имеется в методичке

Важным свойством линейных функционалов, является то, что такой функционал с точностью до постоянного множителя определяется множеством своих нулей.

Определение

Пусть f – линейный функционал на банаховом пространстве X. Ядром функционала называется множество $\ker f = \{x \in X : f(x) = 0\}$.

Чтобы доказать вышеупомянутое свойство, надо описать структуру линейных пространств, вложенных одно в другое.

Предложение

Пусть Y — замкнутое подпространство линейного пространства X, тогда равносильны утверждения:

1) для любого $x_0 \in X \setminus Y$ справедливо равенство

$$X = \{x = tx_0 + y : y \in Y, t \in \mathbb{R}\},\$$

при этом пара x_0 , x однозначно определяет пару t, y.

2) если Z линейное пространство такое, что $Y \subset Z \subset X$, то Z = Y или Z = X.

Доказательство имеется в методичке

Условие замкнутости здесь существенно. Пространство C[a,b] содержит в себе пространство многочленов, но утверждение предложения для него неверно.

Определение

Замкнутое линейное пространство Y, содержащееся в банаховом пространстве X, называется **однородной гиперплоскостью**,

если не существует линейного пространства Z не равного X или Y такого, что $Y\subset Z\subset X$.

Добавление к термину эпитета «однородный» выделяет линейные пространства. В приложениях часто приходится использовать и «просто» гиперплоскости, то есть сдвиги однородных гиперплоскостей. Однородная гиперплоскость в \mathbb{R}^2 – это прямая, проходящая через 0, а гиперплоскость – это произвольная прямая.

Однородная гиперплоскость и линейный непрерывный функционал — это практически одно и то же. Трудность возникают только при доказательстве того, что замкнутость ядра гарантирует непрерывность функционала. Здесь необходимо перейти на другой — топологический язык описаний.

Топология — ветвь математики, имеющая дело с множествами, не имеющими ни линейной структуры, ни метрики, наделенными только системой окрестностей, заданных для каждой точки пространства.

Определение непрерывности отображения одного топологического пространства в звучит значительно проще классического : прообраз любого открытого множества открыт.

Предложение

- 1) Если f непрерывный функционал, то его ядро замкнуто.
- 2) Если Y однородная гиперплоскость, то любой функционал f с ядром $\ker f = Y$ непрерывен.

Доказательство имеется в методичке

Следствие

Однородная гиперплоскость, являющаяся ядром функционала, определяет его с точностью до константы.

Важным и глубоким утверждением о линейных функционалов является теорема о продолжении линейного функционала.

Теорема Хана-Банаха

Если X -банахово пространство, Y – его замкнутое подпространство,

на У задан линейный непрерывный функционал,

то его можно продолжит на пространство X с сохранением нормы

то есть:
$$Y \subset X, \ g \in Y^*$$
 тогда существует $f \in X^*, \ \forall y \in Y, \ f(y) = g(y), \ ||f|| = ||g||$

Теорема представляется очевидной, и это справедливо пока в банаховом пространстве есть счетный базис, но когда его нет (как например в $L^{\infty}(a,b)$) возникают большие технические сложности

Рассмотрим план доказательства на простом примере

$$X = \mathbb{R}^n, Y = \{(x_1, \dots, x_n) : a_1x_1 + \dots + a_nx_n = 0, b_1x_1 + \dots + b_nx_n = 0\}$$

рассмотрим функционал $g \in Y^*$, определенном на базисе в Y, p_1, \ldots, p_{n-2} таком, что $g(p_1) = 1, \ g(p_k) = 0, \ k > 1$

легко проверить, что $||g|| = \frac{1}{||p_1||}$

добавим к базису два элемента $p_{n-1},\ p_n$ ортогональных к p_1 и линейно независимых с p_2,\dots,p_{n-2}

очевидно что это базис в X

определим функционал $f \in X^*$ значениями на базисе $p_k, \ k=1,\dots,n$

$$f(p_k) = g(p_k), \ k = 1, 2, \dots, n - 2, \ f(p_{n-1}) = 0, \ f(p_n) = 0$$

легко видеть, что $\forall y \in Y, \ f(y) = g(x), \ ||f|| = ||g||$

Задача. Реализовать пример в размерности четыре.

Геометрическая формулировка теоремы Хана-Банаха

Теорема об отделимости