Comparing Correlated Data Models on Single-Cell RNA Expression Profiles

Lee Panter

Monday, November 25, 2019

Presentation Overview

Project Goals and Desired Outcomes:

- Develop multiple statistical models for Single-Cell RNA Sequencing data
- Compare the models for: fit, estimate stability, and diagnostic integrity.
- Suggest a model.

Presentation Highlights:

- Introduction to RNA and Single-Cell
- Data Summaries and Proposed Modeling Approaches
- Results, Comparisons, and Conclusions
- ► Future Research, Outstanding Problems, Areas of Interest

Introduction to RNA Sequencing

RNA Sequencing (RNAseq) [1]

- Which genes are being expressed and at what magnitude?
- How do gene expressions change over time, or between treatment groups?
- ► Used in:
 - Transcriptional Profiling
 - Single Nucleotide Polymorphism (SNP) identification
 - Differential Expression

RNAseq Expression Profiles

- Count data higher values ⇒ higher level of expression
- ▶ Genes \rightarrow (on/off)? \Rightarrow Expression Value is (0 or > 0)
- Indicative of zero-inflation

Single-Cell Methods

Single-Cell (sc) Data:

- Measurements single-cell resolution
- ▶ Batch-Samples from subjects ⇒ Single-Cells "sub-sampled" from each = Observational Units.

Repeated Measure/Clustering Assumptions:

- SC observations are independent between Batch Samples
- Covariance between all Batch Samples assumed to be identical

Case Study scRNA-seq Data:

- ightharpoonup $\sim 38*10^3$ variables (genes), $\sim 9*10^3$ observations (SCs) [2]
- ▶ Poor measurement accuracy. Problems with: batch effects, contamination, duplicate reads,...etc. [3]
- ▶ Quality control filtering: $\sim 9*10^3$ obs $\longrightarrow \sim 1,000$ obs

NOTE 223 extreme observations removed to enlarge main distribution

Proposed Modeling Approaches: Notation - OLS & LMM

Notation:

- ► Fixed Effects:
 - Global Intercept:

$$\sim 1 + \cdots$$

• Subject Factor:

$$\sim$$
 subject $+\cdots$

• Covariate Factor:

$$\sim CD19 + \cdots$$

- Random Effects:
 - Intercept:

$$\sim$$
 (1|subject) $+ \cdots$

• Slope:

$$\sim$$
 (CD19|subject) $+ \cdots$

OLS and Linear Mixed Effects Models

- OLS:
 - Predictors:

$$\sim$$
1 + CD19

- LMM:
 - Fixed Effects:

$$\sim 1 + \text{CD19}$$

Random Effects:

$$\sim (1 \mid \mathsf{subject})$$

 Repeated Measures: Unstructured (CS)

Proposed Modeling Approaches: Generalized Linear (Mixed) Models

- Poisson Regression (No Over-dispersion) & Poisson Quasi-Likelihood (w/Over-dispersion)
 - Error Distribution: Poisson
 - Linear Predictor: 1 + CD19
 - Link Function: log
- Generalized Linear Mixed Models (Penalized QL) [4]
 - Error Distribution: Poisson
 - $\begin{array}{ll} \bullet & \mathsf{Linear} \; \mathsf{Predictor}(\mathsf{s}) \text{:} \\ \mathsf{FIXED}{=}1 \; + \; \mathsf{CD19} \\ \mathsf{RANDOM}{=}(1 \mid \mathsf{subject}) \; + \; (0 \; + \; \mathsf{CD19} \mid \mathsf{subject}) \end{array}$
 - Link Function: log

Proposed Modeling Approaches: Zero Inflated Poisson [5]

Occurrence Model: $R_{ij} \sim bernoulli(p_{ij}|a_0, a_1)$ where a_0, a_1 are Occurrence-Model random effect parameters

Intensity Model: $Y_{ij}|(r_{ij}=1,a_0,a_1), \sim Poisson(\lambda_{ij}|b_0,b_1)$ where b_0,b_1 are Intensity-Model random effect parameters

Zero-Inflated Poisson, Generalized Linear (Mixed) Models

Fit Using Adaptive Gauss-Hermite Quadrature

- Error Distribution: "Zero-Inflated Poisson"
- Occurence & Intensity Model Linear Predictors:
 - Fixed Effects: $\{\sim 1, \sim 1 + \textit{CD}19\}$
 - \circ Random Effects: $\{\sim 1, \sim 1 + \textit{CD}19\}$
- Link Function: Log

Results, Comparisons, Conclusions

	Model	Intercept Estimate	Std.Err	p-value
	LMwFE	$7.7624 * 10^3$	$2.3480*10^{2}$	$< 2 * 10^{-16}$
7	LMMwRE	$7.338 * 10^3$	$7.6776 * 10^2$	$< 2 * 10^{-16}$
	POI	8.957	$3.723 * 10^{-4}$	$< 2 * 10^{-16}$
\	POlql	8.957	$3.007 * 10^{-2}$	$< 2 * 10^{-16}$
	POlqlLMM	8.8362	$1.0160*10^{-1}$	$1.7 * 10^{-3}$
١	ZIP	8.9572	$< 2 * 10^{-4}$	$< 2 * 10^{-4}$

Model	Slope Estimate	Std.Err	p-value
LMwFE	$7.1320 * 10^{-1}$	1.5426	$6.440*10^{-1}$
LMMwRE	2.168	1.797	$2.278 * 10^{-1}$
POI	$8.839*10^{-5}$	$2.369 * 10^{-6}$	$< 2 * 10^{-16}$
POlql	$8.839*10^{-5}$	$1.913*10^{-4}$	$6.440*10^{-1}$
POlqILMM	$3.16*10^{-4}$	$1.653 * 10^{-4}$	$5.61*10^{-2}$
ZIP	$1*10^{-4}$	$2.03 * 10^{-6}$	$< 2 * 10^{-16}$

Note: $e^{8.957} \approx 7.762 * 10^3$

Results, Comparisons, Conclusions

Conclusions Drawn from Results:

- Simpler models performed better according to the AIC criterion
- Parameter estimates for global intercept showed higher stability and significance than estimates for slope

AIC	
$2.2851*10^{4}$	
$2.2851*10^4$	
$5.7046 * 10^6$	
NA	
NA	
$4.1791 * 10^6$	

Future Research, Outstanding Problems, Areas of Interest

Outstanding Issues:

 Comparing quasi-likelihood models to linear models and quadrature methods

Future Research & Areas of Interest:

 Log-transformed responses, additional variable combinations, marginal average models

Thanks for Listening!

If You Want To Learn More:

- email: lee.panter@ucdenver.edu
- Project GitHub: https://github.com/leepanter/BIOS6643FinalProject.git

