Previously on 4SSPP109...

- Random variables
- Probability distribution
- Probability density function
- Expected value
- Variance & SD

Standardized random variables

- Random variable Y has mean μ_Y and variance σ_Y^2 .
- Standardized version of Y:

$$Z = \frac{(Y - \mu_Y)}{\sigma_Y}$$

By design, if Z is a standardized RV, we always have

$$E(Z) = 0$$

$$Var(Z) = SD(Z) = 1$$

TWO RANDOM VARIABLES

- In the US, are Democrats more likely to get vaccinated against Covid than Republicans?
- Are graduates more likely to find a job than non-graduates?

- How do women and men's average earnings differ?
- All these Qs involve the relationship between two RVs.

JOINT PROBABILITY DISTRIBUTION

Joint probability distribution of X and Y:

$$p(x_j, y_i) = Pr(X = x_j, Y = y_i)$$

Conditional distribution of Y given X:

$$Pr(Y = y_i | X = x_j) = \frac{Pr(X = x_j, Y = y_i)}{Pr(X = x_i)}$$

Conditional expectation (or conditional mean) of Y given X:

$$E(Y|X=x_j) = \sum_{i=1}^k y_i \Pr(Y=y_i|X=x_j)$$

EXAMPLE: Joint distribution of Covid VAX Status & Partisanship in US

	Dem (X=1)	Rep (X=0)	Total
Vaccinated (Y=1)	0.37	0.21	0.58
Not Vaccinated (Y=0)	0.18	0.24	0.42
Total	0.55	0.45	1.00

Source: calculated and adapted from data in New York Times "The Vaccine Class Gap", 5-24-2021

Your Turn: Figure out the following

- 1. Pr(Y=1, X=0)
- 2. $Pr(Y=1 \mid X=1)$
- 3. E(Y|X=1)

Reminder:

•
$$Pr(Y = y | X = x) = \frac{Pr(X = x, Y = y)}{Pr(X = x)}$$

• $E(Y | X = x) = \sum_{i=1}^{k} y_i Pr(Y = y_i | X = x)$

•
$$E(Y|X = x) = \sum_{i=1}^{k} y_i Pr(Y = y_i | X = x)$$

EXAMPLE: Joint distribution of Covid VAX Status & Partisanship in US

	Dem (X=1)	Rep (X=0)	Total
Vaccinated (Y=1)	0.37	0.21	0.58
Not Vaccinated (Y=0)	0.18	0.24	0.42
Total	0.55	0.45	1.00

1.
$$Pr(Y=1, X=0) = 0.21$$

2.
$$Pr(Y=1 \mid X=1) = 0.37/0.55=0.67$$

3.
$$E(Y|X=1) = 0 * 0.33 + 1 * 0.67 = 0.67$$

Reminder:

•
$$Pr(Y = y | X = x) = \frac{Pr(X = x, Y = y)}{Pr(X = x)}$$

• $E(Y | X = x) = \sum_{i=1}^{k} y_i Pr(Y = y_i | X = x)$

•
$$E(Y|X = x) = \sum_{i=1}^{k} y_i Pr(Y = y_i | X = x)$$

Independence

• X and Y are *independently distributed* (or *independent*) if

$$Pr(Y = y | X = x) = Pr(Y = y)$$
 for all possible X and Y

If X and Y are independent, then

$$Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y)$$

Example: if rain does not affect Liverpool's performance, then

$$Pr(Rain, Liverpool\ wins) = Pr(Rain) * Pr(Liverpool\ wins)$$

Covariance

- How much do X and Y move together?
- Covariance:

$$cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{l} (x_j - \mu_x)(y_i - \mu_Y) \Pr(X = x_y, Y = y_i)$$

• Also, $cov(X, Y) = E[XY] - \mu_x \mu_Y$

(Assuming X & Y are discrete RVs with *k* & *I* possible realizations)

Correlation

- The units of covariance are awkward (units of X * units of Y).
- Correlation:

$$corr(X,Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Correlation is unit free and always between -1 and +1.

Sums of random variables

•
$$E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$$

•
$$Var(X + Y) = var(X) + var(Y) + 2cov(X, Y)$$

• If Y & Z are independent $\rightarrow Var(X + Y) = var(X) + var(Y)$

The Normal distribution

A particular type of p.d.f.

Bell-shaped & symmetric.

• 95% of probability mass between $\mu - 1.96\sigma$ / $\mu + 1.96\sigma$

- Written as $N(\mu, \sigma^2)$
- Some random variables are distributed normally.

The Standardized Normal distribution

- 1. Take a variable Y distributed $N(\mu, \sigma^2)$.
- 2. Standardize it:

$$Z = \frac{(Y - \mu_Y)}{\sigma_Y}$$

3. Z is distributed N(0,1).

The Standardized Normal distribution

• Z is distributed N(0,1)

• Then
$$\Pr(Z \le z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du$$

- To get $\Phi(z)$ for any z:
 - Excel: NORMSDIST(z)
 - STATA: display normal (z)
 - Table 6.1: look up the cumulative probability of the desired value.

The Normal distribution: example

- Say $X \sim N(1,4)$
- What is the probability that $X \leq 2$?

•
$$\Pr(X \le 2) = \Pr\left(Z \le \frac{2-1}{\sqrt{4}}\right) = \Pr(Z \le 0.5) = \Phi(0.5)$$

• Look up 0.5 in the table or "display normal(0.5)" in STATA.

. display normal(0.5)

.69146246

Other important distributions

- Chi-Squared distribution
- Student-t distribution
- F distribution
- ...
- We don't really need to study them, at least for now.

3. The distribution of sampling statistics

Quant methods Daniele Girardi King's College London 65

Population, sample, inference

Quant methods

Daniele Girardi

King's College London

Random sampling

n randomly drawn observations of Y:

$$Y_1, Y_2, Y_3, \dots, Y_n$$

- $Y_1, ..., Y_n$ are random variables: different from one random sample to the next.
- $Y_1, ..., Y_n$ are identically & independently distributed (i.i.d.).
- The sample mean

$$\overline{Y} = \frac{1}{n}(Y_1 + \dots + Y_n) = \frac{1}{n} \sum_{i=0}^{n} Y_i$$

is also a random variable.

• Sampling distribution: the probability distribution of \overline{Y} .

The Sampling Distribution of \overline{Y}

If sample observations Y_1, \dots, Y_n are i.i.d.,

•
$$E(\overline{Y}) = \mu_Y$$

•
$$var(\overline{Y}) = \sigma_{\overline{Y}}^2 = \frac{1}{n}\sigma_Y^2$$

•
$$std.dev(\overline{Y}) = \sigma_{\overline{Y}} = \frac{1}{\sqrt{n}}\sigma_{Y}$$

The law of large numbers

• Law of large numbers:

- o If *n* is larger, \overline{Y} is more likely to be close to μ_Y .
- o $\sigma_{\overline{Y}}^2$ goes down as n increases
- $\rightarrow \overline{Y}$ is **consistent** estimator of μ_Y

Sampling distributions in large samples

- How does the probability distribution of \overline{Y} look like?
- If $Y \sim N(\mu_Y, \sigma_Y^2)$ then $\overline{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$ irrespective of sample size.

Central Limit Theorem:

- O When n is large, \overline{Y} is (approximately) normally distributed even if Y is not.
- \circ The larger n, the closer the distribution of \overline{Y} to a normal.
- \circ $\rightarrow \overline{Y}$ is asymptotically normally distributed.

The Central Limit Theorem

(d) n = 100

Thank you for your attention