POLITECHNIKA WARSZAWSKA

Wydział Elektroniki i Technik Informacyjnych

Systemy Agentowe

Wieloagentowy system giełdowy

Sprawozdanie końcowe

Autorzy:
Jacek Sosnowski
Maciej Suchecki
Jacek Witkowski

 $\label{eq:prowadzący:} Prowadzący: dr inż. Piotr Andruszkiewicz$

1 Treść zadania

Tytuł Wieloagentowy system gieldowy

Opis Celem projektu jest stworzenie systemu symulacji giełdowej, w której udział biorą dwa typy agentów:

- grające indywidualnie,
- grające w grupie.

Celem każdego z agentów jest podejmowanie takich decyzji o kupnie lub sprzedaży akcji, by uzyskać jak największy zysk. Agenty grające w grupie aby osiągnąć większy zysk niż inne agenty tworzą bański spekulacyjne. Z tego powodu wymieniają ze sobą informacje o aktualnej strategii działania.

2 Opis rozwiązania

System składać się będzie z trzech modułów:

- serwera symbolizującego giełdę,
- agenta indywidualnego,
- agenta grupowego.

Po uruchomieniu symulacji program będzie uruchamiał serwer giełdowy, a następnie inicjalizował zdefiniowaną przez użytkownika liczbę agentów indywidualnych oraz grupowych. Każdy z agentów, po uruchomieniu będzie próbował zarejestrować się w serwerze giełdowym, przy czym agenty grupowe będą automatycznie nawiązywały połączenia również między sobą. Następnie jeden z agentów grupowych zostanie koordynatorem grupy. Potem w pętli wykonują się kolejne iteracje symulacji.

Przebieg iteracji

- 1. Agenty pytają o cenę akcji w poprzedniej iteracji.
- 2. Na podstawie historii cen akcji agenty podejmują decyzje o kupnie lub sprzedaży akcji.
- 3. Agenty zgłaszają serwerowi oferty.
- 4. Agenty czekają na zakończenie iteracji i pobierają rezultat ich transakcji z serwera, aktualizując dane.

Iteracje są powtarzane, dopóki nie zostanie przekroczony ich – zdefiniowany wcześniej – limit, lub użytkownik przerwie wykonywanie symulacji ręcznie.

2.1 Pozostałe założenia

- dostępny jest tylko jeden typ akcji,
- każdy z agentów przy otrzymuje początkowo taką samą ilość pieniędzy i taką samą liczbę akcji,
- każdy z agentów zgłasza tylko jedną ofertę na iterację.

2.2 Opis modułów

2.2.1 Serwer giełdowy

Serwer symbolizujący w symulacji giełdę został napisany w języku Python z wykorzystaniem biblioteki Flask. Biblioteka ta zostałą wykorzystana do obsługiwania zapytań REST, które są używane do komunikacji z agentami. Serwer ma cztery główne zadania:

• komunikacja z agentami,

- nawiązywanie transakcji,
- wyliczanie aktualnej ceny akcji,
- prezentacja przebiegu symulacji.

Serwer giełdy, po uruchomieniu, ustala liczbę dostępnych akcji oraz tworzy historię zmian cen (na podstawie cen akcji firmy Google).

Komunikacja z agentami W celu komunikacji z agentami, serwer udostępnia API zgodne ze specyfikacją REST. Dostępne są następujące metody:

Adres	Typ	Parametry	Zwracana	Opis
			wartość	
/brokers	POST	-	ID zarejestro-	Metoda służąca
			wanego broke-	do rejestrowania
			ra	nowego agenta
				w symulacji.
/stock/price	GET	day numer iteracji	cena akcji	Metoda służąca
			w danej itera-	do pobierania
			cji	historycznej ceny
				akcji.
/stock/buy	POST	price proponowana cena,	liczba kupio-	Metoda służąca
		amount liczba akcji do ku-	nych akcji i ich	do złożenia oferty
		pienia	cena	zakupu akcji przez
				agenta.
/stock/sell	POST	price proponowana ce-	liczba kupio-	Metoda służąca
		na, amount liczba akcji	nych akcji i ich	do złożenia oferty
		do sprzedania	cena	sprzedaży akcji
				przez agenta.

Wyliczanie ceny akcji Aktualna cena akcji (w danej iteracji) jest wyznaczana na podstawie aktualnych ofert (czyli popytu oraz podaży dla danej akcji) jako cena równowagi rynkowej.

Prezentacja przebiegu symulacji W trakcie trwania symulacji, serwer będzie udostępniał stronę internetową dostępną z poziomu przeglądarki. Będą na niej dostępne dane nt. aktualnego przebiegu symulacji, między innymi wykres ceny akcji.

2.2.2 Agent indywidualny

Strategia Jedyne informacje, jakie wpływają na decyzje o kupnie lub sprzedaży akcji przez agenta indywidualnego, to historia zmian cen akcji. W realizowanym projekcie przyjęto, że agent kupuje akcje, jeśli ich cena w ciągu ostatnich k iteracji wzrosła i sprzedaje, jeśli ich cena w ciągu ostatnich k iteracji spadła.

2.2.3 Agent grupowy

Strategia W przeciwieństwie do agentów indywidualnych agenty grupowe podejmują decyzję zarówno na podstawie informacji o zmianach cen akcji, jak i na podstawie informacji o zamiarach innych agentów grupowych. Wszystkie agenty grupowe tworzą jedną grupę, która stara się maksymalizować średni zysk przypadający na członka grupy, poprzez tworzenie baniek spekulacyjnych.

Koordynator podejmuje decyzje o tworzeniu bańki spekulacyjnej od razu po otrzymaniu kompletu informacji o członkach grupy. Wówczas rozgłasza informację o kupowaniu akcji przez k kolejnych iteracji. Po upływie k iteracji agenty otrzymują polecenie sprzedaży wszystkich posiadanych akcji. Następnie, gdy koordynator zauważy, że w ciągu ostatnich n iteracji cena akcji nie spadła bardziej niż o 5%, wysyła polecenie utworzenia kolejnej bańki spekulacyjnej itd.

Komunikacja agentów Agenty grupowe muszą się ze sobą porozumiewać po to, by koordynować swoje akcje dotyczące kupna lub sprzedaży akcji. O akcjach podejmowanych przez agenty grupowe decyduje samodzielnie GroupMaster. Konieczne było zdefiniowanie interfejsu komunikacyjnego właściwego dla tego typu agentów.

Wiadomość	Parametry	Opis
Init	-	wiadomość przesyłana do agenta w celu zainicjo-
		wania go (znak by zaczął działać).
Trade	-	Wysyłana cyklicznie przez agentów do samych
		siebie po to, by wznawiać akcję kupowania-
		/sprzedawania co określony czas.
Buy	część pie-	Wiadomość przesyłana do agenta grupowego
	niedzy jaką	przez GroupMastera w celu nakazania mu ku-
	należy wydać;	powania akcji.
	cena po jakiej	
	należy kupić	
Sell	część akcji jaką	Wiadomość przesyłana do agenta grupowego
	należy sprze-	przez GroupMastera w celu nakazania mu sprze-
	dać; cena po	dawania akcji.
	jakiej należy	
	sprzedać	

Platforma MAS Do implementacji agentów postanowiono wykorzystać język Scala. Do zapewnienia komunikacji pomiędzy agentami grupowymi wykorzystano platformę Akka.