David A. Díaz

UNC Chapel Hill

Industrial Organization

- Industrial Organization: The study of how firms' decisions about prices and quantities depend on the market conditions they face.
- We assume that the goal of a firm is to maximize $\frac{\text{profit}}{TR} = PQ$
- Moreover, firms also incurs some costs to produce. The market value of the inputs a firm uses in production are the firm's <u>total costs</u>.
- Profit (Π) is given by $\Pi = TR TC$.

Opportunity Costs

- When we talk about a firm's costs of production, we will include all the opportunity costs of making its output.
- The firm's opportunity costs are divided into two pieces:
 - Explicit costs: Input costs that require an outlay of money by the firm.
 - 2 Implicit costs: Input costs that do not require an outlay of money.

Economic vs Accounting Profit

- Why do we include implicit costs? They affect firm decisions
 opportunity costs should be taken into account.
- **Economic profit:** *TR* (explicit costs + implicit costs).
- Accounting profit: TR explicit costs.
- Since economic profit includes implicit costs, it will generally be <u>lower</u> than accounting profit.

 Production Function: Relationship between quantity of inputs used to make a good and the quantity of output.

Figure: Simplified Production Function

Production Functions

- Rational people (and firms) think on the margin.
- With this in mind, the marginal product of an input is the increase in output from an additional unit of input.
- Notable marginal products:
 - $MP_L = \frac{\Delta Q}{\Delta L}$
 - $MP_K = \frac{\Delta Q}{\Delta K}$

Example

Consider Table 1 below. What is the marginal product of labor of the second worker? The fifth? Draw a graph and show the MP_L at each unit of labor.

Table: Production of Frozen Bananas

Number of workers	Output (per day)	MPL
0	0	
1	20	20
2	35	15
3	45	10
4	50	5
5	52	2
6	53	1

Figure: Marginal Product of Labor

- Properties of the Production Function:
 - An increase in inputs increases output.
 - $MP_L > 0$, $MP_K > 0$
 - ② Diminishing marginal product: *MP* declines (eventually) as the number of inputs increases.

- Because of diminishing marginal product, the cost curve becomes steeper as the quantity of output increases.
 - As Q increases, producing an additional unit of output requires a lot of additional units of inputs and so is more costly.

Figure: Simplified Total Cost Curve

- Fixed Costs (FC): Costs that do not vary with the quantity of output produced.
- Variable Costs (VC): Costs that vary with the quantity of output produced.
- If a producer does not produce any output his variable costs are <u>zero</u>.
- Total costs (TC): FC + VC.

 Average Total Cost: The cost of making a typical unit of output.

$$ATC = TC/Q$$

- Average Fixed Cost: = FC/Q
- Average Variable Cost: = VC/Q

$$ATC = \frac{FC + VC}{Q} = FC/Q + VC/Q = AFC + AVC$$

• Marginal Cost: The increase in total costs that arises from producing an extra unit of output.

$$MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$$

• **Efficient scale:** The quantity of output that minimizes ATC.

Example

Julien also owns a juice bar, which has the following cost schedule:

Table: Production of Mango Juice

Quantity	Variable Cost	Total Cost	AVC	ATC	MC
0	\$0	\$30	_	_	
1	\$10	\$40	10	40	10
2	\$25	<i>\$55</i>	12.5	27.5	<i>15</i>
3	\$45	<i>\$75</i>	15	25	20
4	\$70	\$100	17.5	25	25
5	\$100	\$130	20	26	<i>30</i>
6	<i>\$135</i>	\$165	22.5	27.5	35

Calculate the AVC, ATC, and MC for each quantity.

Example

Julien's Frozen Banana stand has the following ATC schedule:

Table: ATC of Frozen Bananas

Quantity	Average Total Cost
600	\$3.00
601	\$3.01

He made 600 bananas today and sold them all. He is about to close up shop when someone calls, desperate to escape the heat and buy a banana. She offers to pay \$5.50 for it. Should Julien accept this offer or not? Why?

Example

Julien's Frozen Banana stand has the following ATC schedule:

Table: ATC of Frozen Bananas

Quantity	Average Total Cost
600	\$3.00
601	\$3.01

He made 600 bananas today and sold them all. He is about to close up shop when someone calls, desperate to escape the heat and buy a banana. She offers to pay \$5.50 for it. Should Julien accept this offer or not? Why?

MB = MR = \$5.50. MC = 9.01. Nope, don't sell since MC > MB.

- Marginal cost: Rising marginal costs (reflects diminishing) MP).
- 2 Average fixed cost: Always decreasing since FC are constant.
- Average variable cost: Rising due to diminishing MP.
- 4 Average total cost:
 - U-shaped due to addition of AFC & AVC.
 - At low Q, high AFC, low AVC leads to high ATC.
 - As Q increases, AFC decreases fast initially while AVC increases at constant rate so ATC decreases.
 - At high Q, AFC decreases slowly and increasing AVC becomes dominant effect so ATC rises.

Figure: Simplified Cost Curves

- If we are at a level of production where marginal costs are less than average total costs, then average total costs are decreasing.
- If we are at a level of production where marginal costs are greater than average total costs, then average total costs are increasing.

- If the next unit of input adds less to production costs than current average, average cost will decrease.
- If the next unit of input adds more to production costs than the current average, average cost will increase.
- As a result, ATC and MC meet at the minimum of ATC.

- We made the simplifying assumption that firms exhibit decreasing marginal product for all levels of inputs in order to get the main points associated with production and costs across.
- However, this is not generally the case.
- Generally, MP increases initially before decreasing after some level of inputs.

Figure: Standard Production Function

- **1** *MC* still increases after some *Q*.
- ATC still u-shaped.
- MC crosses ATC and AVC at their minimum.

The Costs of Production - The Long Run

 In the short run, a firm cannot get rid of its <u>fixed costs</u> because they are <u>sunk</u>. However, in the long run, these costs become <u>variable</u>.

Figure: Long-Run ATC

The Costs of Production - The Long Run

- **Economies of Scale:** Property whereby long-run *ATC* decreases as Q increases.
- Constant Returns to Scale: Property whereby long-run ATC remains constant as Q increases.
- **Diseconomies of Scale:** Property whereby long-run *ATC* decreases as Q increases.

Readings and Assignments

- Today: Mankiw Ch. 13
- Next time: Mankiw Ch. 14
- Problem Set 3, section 1