Department of Computer Systems Engineering

University of Engineering & Technology Peshawar Khyber Pukhtunkhwa, Pakistan, *Phone No # +92-922-560576*

EXAM: FINAL-TERM

SUBJECT: CSE-408 DIGITAL IMAGE PROCESSING

TOTAL MARKS:50

SEMESTER: SPRING-2024

TIME: 120 MINS

Question I: An image with intensities in the range [0, 1] has the PDF $p_r(r)$ shown in the following diagram. It is desired to transform the intensity levels of this image so that they will have the specified $p_z(z)$ shown. Assume continuous quantities and find the transformation (in terms of r and z) that will accomplish this.

CLO - 2 [10]

Question II: Perform the histogram matching on the given 8x8 image.

CLO - 2 [10]

Original Image Gray Levels

•	Original linage oraș			1			
0	1	51	1	7	2	0	3
0	0	5	51	51	2	4 ·	51
4	5,	1	4	1	51	1	4
5.	1	2	4	51	2	61	3
5	2	6	4	0	4	0_	5 /
4	0	2	4	7	4	6	2
5	1	6	1	0	1	-1	5 '
4	5	2	4	2	5 '	2	5"

Target Image Gray Levels

		_					
4'	61	51	6/	6/	7,	51	5'
51	51	41	41	4/	71	4 :	41
51	. 61	4/	51	51	61	61	5'
51	41	7 r	4 r	5′	41	61	7'
41	51	51	51	41	41	6'	51
61	51	41	51	6'	61	7 °	4,
61	41	51	41	7 '	41	6'	5′
71	61	61	51	4 1	5'	61	7 '

Question No: III: Given an input 6x6 image.

CLO - 3 [1+3+3+3]

0	(2			
7	1	.0	6	2	1
5	2	1	5	7	3
4	0	5	0	7	5
0	2	4	7	3	4
2	6	7	5	0	3
5	6	2	1	4	5
	7 5 4 0 2 5	7 1 5 2 4 0 0 2 2 6	7 1 0 5 2 1 4 0 5 0 2 4 2 6 7	7 1 0 6 5 2 1 5 4 0 5 0 0 2 4 7 2 6 7 5	7 1 .0 6 2 5 2 1 5 7 4 0 5 0 7 0 2 4 7 3 2 6 7 5 0

Figure 1. Intensity values of the input image

- a) What is the bit depth of the input image?
- b) Apply the spatial domain Min filter on the image given in Figure 1 and analyze the effect of the Min filter on the given image.
- c) Apply the spatial domain Max filter on the image given in Figure 1 and analyze the effect of the Max filter on the given image.

d) Apply the spatial domain Mid-Point filter on the image given in Figure 1 and analyze the effect of the Mid-Point filter on a given image.

Question IV: Use the following kernel shown in (a) to perform the convolution process on the shaded pixels in the 5x5 image patch shown in (b)

CLO -3 [2+5+3]

1/6	0		
1/3	1/6		
1/6	0		
	1/3		

b. Image patch

- a) What type of filter does this kernel represent?
- b) What is the primary purpose of this kernel in Image Processing?
- c) Write down the filtered output.

Question V A 3-bit 5x6 image is reshaped into a row vector. The intensities and their values are given below. Apply 1st and 2nd order derivatives on it. Fill in the cells given below `CLO - 4 [5+5]

