TIWSNE – Wireless Sensor Networks and Electronics – (2015-Q4)

Lecture Medium Access Control Protocols in WSN

Qi Zhang

(Email: qz@eng.au.dk; Edison 314)

Relevant topics in WSN

Outline

- Principal options and challenges
- Contention-based protocols
- Schedule-based protocols
- IEEE 802.15.4

Objectives of WSN MAC Protocols

- Collision Avoidance
- Energy Efficiency
- Scalability
- Latency
- Fairness
- Throughput
- Bandwidth Utilization

Objectives of WSN MAC Protocols

- Collision Avoidance
- Energy Efficiency
- Scalability
- Latency
- Fairness
- Throughput
- Bandwidth Utilization

Requirements for energy-efficient MAC protocols

- Recall
 - Transmissions are costly
 - Receiving about as expensive as transmitting
 - Idling can be cheaper but is still expensive
- Energy problems
 - Collisions wasted effort when two packets collide
 - Overhearing waste effort in receiving a packet destined for another node
 - Idle listening sitting idly and trying to receive when nobody is sending
 - Protocol overhead
- Always nice: Low complexity solution

Challenges for MAC in WSNs-1

- WSN Architecture
 - High density of nodes
 - Increased collision probability
- Limited Energy Resources
 - Connectivity and the performance of the network is affected as nodes run of energy or malfunction
 - Frequent power up/down eats up energy
 - Prevent frequent radio state changes (active<->sleep)
 - Need very low power MAC protocols
 - Minimize signaling overhead
 - Avoid idle listening

Challenges for MAC in WSNs-2

- Limited Processing and Memory Capabilities
 - Complex algorithms cannot be implemented
 - Centralized or local management is limited
 - Simple scheduling algorithms required
 - Cross-layer optimization required
 - Self-configurable, distributed protocols required
- Limited Packet Size
 - MAC protocol overhead should be minimized
- Cheap Encoder/Decoders
 - Inaccurate Clock Crystals
 - Synchronization problems
 - TDMA-based schemes might not be practical

Classes of MAC protocols

Centralized medium access

- Idea: Having a central station control when a node may access the medium
 - Example: Polling, centralized computation of TDMA schedules
 - Advantage: Simple, quite efficient (e.g., no collisions), burdens the central station
- Not directly feasible for non-trivial wireless network sizes
- However, it can be quite useful when network is somehow divided into smaller groups
 - Clusters, in each cluster medium access can be controlled centrally - compare Bluetooth pico-nets, for example

In WSN, distributed medium access is usually considered

Schedule-based MAC

- A schedule exists, regulating which participant may use which resource at which time slot
- Typical resource: frequency band in a given physical space
- Schedule can be fixed or computed on demand
- Usually, collisions, overhearing, idle listening no issues
- Needed: time synchronization!

Contention (Random)-Based MAC Protocols

- Provide robustness and scalability to the network.
- Collision probability increases with increasing node density
- Mechanisms to handle/reduce probability/impact of collisions required
 - Channel access through carrier sense mechanism

Outline

- Principal options and challenges
- Contention-based protocols
 - CSMA/CA
 - S-MAC
 - B-MAC
- Schedule-based protocols
- IEEE 802.15.4

Carrier Sense Multiple Access-Collision Avoidance (CSMA/CA)

- Listen before talk
- However, it suffers from sender not aware what is going on at its neighbors. It might destroy packets despite first listening for a while

 Hence, receiver additionally needs to inform possible senders in its vicinity about impending transmission (to "shut them up" for this duration)

RTS/CTS

- Use <u>short signaling packets</u> for Collision Avoidance
 - Smaller control packets lessen the cost of collision
 - RTS (Request To Send) Packet: A sender requests the right to send from a receiver with a short RTS packet before it sends a data packet
 - CTS (Clear To Send) Packet: The receiver grants the right to send as soon as it is ready to receive
 - They contain
 - Sender Address
 - Receiver Address
 - Packet Size
 - RTS + CTS provide "virtual" carrier sense which protects against hidden terminal collisions

Transmission with RTS/CTS

- Sender B asks receiver C whether C is able to receive a transmission Request to Send (RTS)
- Receiver C agrees, sends out a Clear to Send (CTS)
- Potential interferers overhear either RTS or CTS and know about impending transmission and for how long it will last
 - Store this information in a Network Allocation Vector (NAV)
- B sends data, C ACKs

Hidden Terminal problem cases

Hidden node problem cases:

Outline

- Principal options and challenges
- Contention-based protocols
 - CSMA/CA
 - S-MAC
 - B-MAC
- Schedule-based protocols
- IEEE 802.15.4

S-MAC

Wei Ye et al. "Medium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks" IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

- Problem: "Idle Listening and overhear" consumes significant energy
- Solution: Periodic listen and sleep
 - Trades energy efficiency for lower throughput and higher latency
 - Nodes can go to sleep during other nodes transmissions
 - During sleeping, radio is turned off. Only in these active periods, packet exchanges happen

S-MAC details

- Each node goes into periodic sleep mode during which it switches the radio off and sets a timer to awake later
- When the timer expires it wakes up and listens to see if any other node wants to talk to it
- The duration of the sleep and listen cycles are application dependent
 - They are set the same for all nodes
- A periodic synchronization among nodes is required as there are different types clock drift
 - By periodic exchange SYNC packets
 - Receivers will adjust their timer counters immediately after they receive the SYNC packet

SYNC packet format: Sender Node ID

Next Sleep Time

S-MAC Periodic Sleep and Listen

- Listen interval
 - Normally fixed according to PHY and MAC parameters,
 - E.g. radio bandwidth, contention window size
 - Essentially used for exchange RTS/CTS between sender and receiver
 - Used to exchange wakeup schedule between neighbors by broadcasting SYNC packets
 - The period of a node sending a SYNC packet is called synchronization period.
 - Synchronization period often consists of many listen-sleep periods
- Sleep interval
 - It can be changed according to different application requirements

Collision Avoidance in S-MAC

- S-MAC is based on contention
 - i.e., if multiple nodes want to talk to a node at the same time, they will contend to send during the listening phase of the receiver.
 - Similar to CSMA/CA, i.e. use RTS/CTS mechanism to address the hidden terminal problem.
 - Perform carrier sense before initiating a transmission.
 - Both physical carrier sensing and virtual sensing (NAV) are needed
 - If a node fails to get the medium, it goes to sleep and wakes up when the receiver is free and listening again.
 - Broadcast packets are sent without using RTS/CTS.
 - Unicast data packets follow the sequence of RTS/CTS/DATA/ACK between the sender and receiver
 - Two nodes can use their normal sleep time for data transmission after successfully exchanging RTS/CTS, until data transmission finishes

S-MAC Synchronization Maintenance

- Each node maintains a schedule table that stores schedules of all its known neighbors
- Steps to choose schedule and establish schedule table
 - A node first listens to the medium for a certain amount of time (at least the synchronization period)
 - If it does not hear a schedule from another node, it randomly chooses its own schedule and broadcasts its schedule with a SYNC packet immediately. This node is called a Synchronizer
 - If a node receives a schedule from a neighbor before choosing its own schedule,
 - it just follows this neighbor's schedule, i.e. becomes a Follower
 - it broadcasts its schedule at its next scheduled listen time
 - If a node receives a different schedule after it chooses and announces its own
 - If it has no neighbors, it discard its current schedule
 - Otherwise, it adopts both schedules

S-MAC synchronized islands

- If additional nodes join, some nodes at border might learn about two different schedules from different nodes
 - "Synchronized islands"
 - To bridge this gap, it has to follow both schedules.
 - Border nodes have less sleeping time and consumes more energy
- In a large network, we cannot guarantee that all nodes follow the same schedule.

Adaptive Listening Feature

- Purpose: Reduce multi-hop latency due to periodic sleep
- BASIC IDEA: Let the node who overhears its neighbor's transmission stay awake instead of following the periodic sleep schedule.
 - From the duration field in the RTS and CTS, neighbors at both sides know the transmission time.
 - They adaptively wake up when the transmission is over.

- e.g., CTS of node 2 is heard by node 3 also. Node 3 remains awake!! So node 3 can immediately forward packet to node 4, if node 4 is stilling listening.
- It can reduce latency by at least half

Overhearing Avoidance

- S-MAC tries to avoid overhearing by letting interfering nodes go to sleep after they hear RTS/CTS
 - Each node maintains NAV from RTS/CTS
 - Each node should sleep if NAV is not zero
 - This prevent neighbors from overhearing DATA packets and ACKs

Message Passing

- A message is defined as the collection of meaningful, interleaved units of data
- A receiver usually needs to obtain all the data units before innetwork processing such as aggregation
- However, a packet with long message has higher probability to get corrupted.
- Solution:
 - Fragment the long message into many small fragments, transmit them in a burst
 - Only one pair RTS/CTS is used to reserve the channel
 - The neighbors go to sleep when receiving RTS/CTS or ACK
 - Receiver sends an ACK for each fragment
 - If a node wakes up or a new node joins in the middle of a burst transmission, it can go to sleep by hearing ACK

Energy Consumption Performance

Fig. 10. Aggregate energy consumption on radios in the entire ten-hop network using three S-MAC modes.

Latency Performance

Outline

- Principal options and challenges
- Contention-based protocols
 - CSMA/CA
 - S-MAC
 - B-MAC
- Schedule-based protocols
- IEEE 802.15.4

B-MAC

- J. Polastre, J. Hill, D. Culler, "Versatile Low Power Media Access for WSNs", Proc. of ACM SenSys, Nov. 2004
- Design goals of B-MAC
 - Effective Collision Avoidance
 - Efficient Channel Utilization
 - Scalable to Large Numbers of Nodes
 - Reconfigurable by Network Protocols
 - Tolerant to Changing RF/Networking Conditions
 - Simple Implementation, Small Code and RAM Size

B-MAC Design Highlight

- Keep core MAC simple
- Provides basic CSMA access
- Optional link level ACK, no link level RTS/CTS
- CSMA backoffs configurable by higher layers
- Carrier sensing using Clear Channel Assessment (CCA)
- Sleep/Wake scheduling using Low Power Listening (LPL)

Clear Channel Assessment

- For effective collision avoidance, MAC must accurately determine if the channel is clear.
 - Need to tell what is noise and what is a signal
 - Ambient noise is prone to environmental changes
- Find out whether the channel is idle
 - If too pessimistic: waste bandwidth
 - If too optimistic: more collisions
- Key observation:
 - Packet reception has fairly constant channel energy
 - Ambient noise may change significantly depending on the environment
- B-MAC solution:
 - Software approach to estimate the noise floor (software automatic gain control)

Clear Channel Assessment

- Take a signal strength sample when the channel is assumed to be free/idle.
 - WHEN? Right after a packet is transmitted or when no valid data is received
 - Samples are entered into a FIFO queue.
 - Median of the queue is added to an exponentially weighted moving average (EWMA) with decay α .
 - Median signal strength is used as a simple low pass filter to add robustness to the noise floor estimate.
 - $S_m(t) = \alpha * S(t) + (1 \alpha) * S_m(t-1)$
 - S_m(t): EWMA at time t
 - S(t): Signal strength of ambient noise at t
 - $S_m(t-1)$: EWMA at time t-1
 - where α value is assumed to be 0.06 and FIFO queue size of 10.

CCA (Clear Channel Assessment)

- Once estimate of the noise floor is established,
 - TX requests to start monitoring the received signal from the radio (i.e, to assess if channel is clear)

CCA:

Single-Sample Thresholding vs Outlier Detection

- Common approach: take single sample, compare it to the noise floor, i.e., single-sample thresholding
 - Large number of false negatives → lower effective channel utilization
- B-MAC uses outlier detection
 - search for outliers in received signal (RSSI)
 - If a sample has significantly lower energy than the noise floor during the sampling period, then the channel is clear
 - If 5 samples are taken and no outlier is found, the channel is busy.
 - Fully utilize the channel since a valid packet has no outlier significantly below the noise floor

Single-Sample Thresholding vs Outlier Detection

- A packet arrives between 22 and 54ms.
- Y-axis: 1: channel clear, 0: channel busy
- The middle graph shows the output of single-sample thresholding algorithm
- Bottom shows the output of an outlier detection algorithm

Clear Channel Assessment

- CCA can be turned on/off
- If turned off, a schedule-based protocol can be implemented above B-MAC
- If turned on, B-MAC uses an initial channel backoff when sending a packet
 - After the initial backoff, the CCA outlier detection algorithm is run.
 - If the sample is below the current noise floor, channel clear, send immediately.
 - If five samples are taken, and no outlier found =>channel busy, take a random backoff (congestion backoff)
 - Noise floor updated when the channel is known to be clear, e.g., just after packet transmission

Low Power Listening

- Goal: minimize listening cost
- Principles
 - Node periodically wakes up, turns radio on and checks channel
 - If activity on the channel is detected, node powers up and stays awake for the time required to receive the incoming packet
 - Node goes back to sleep
 - If a packet is received
 - After a timeout, (if no packet received, i.e., a false positive)
 - Preamble length of a packet matches channel checking period
 - No explicit synchronization required
 - Noise floor estimation is also used to detect channel activity during LPL

Lower Power Listening: Preamble Sampling

- Preamble is not a packet but a physical layer RF pulse
 - Minimize overhead

Check Interval for Channel Activity

- To reliably receive data, the preamble length is matched to the interval that the channel is checked for activity.
- If the channel is checked for every 100 ms, the preamble must be at least 100 ms long for a node to wake up, detect activity on the channel, receive the preamble and then receive the message.
- Sampling rate (traffic pattern) defines optimal check interval
- Check interval
 - Too small: energy wasted on idle listening
 - Too large: energy wasted on transmissions (long preambles)

Comparison of S-MAC and B-MAC

	S-MAC	B-MAC	
Collision avoidance	CSMA/CA	CSMA	
ACK	Yes	Optional	
Message passing	Yes	No	
Overhearing avoidance	Yes	No	
Listen period	Pre-defined + adaptive listen	Pre-defined	
Listen interval	Long	Very short	
Schedule synchronization	Required	Not required	
Packet transmission	Short preamble	ble Long preamble	
Code size	6.3KB	4.4KB (LPL & ACK)	

Outline

- Principal options and challenges
- Contention-based protocols
 - CSMA/CA
 - S-MAC
 - B-MAC
- Schedule-based protocols
 - TRAMA
- IEEE 802.15.4

TRAMA: TRaffic-Adaptive Medium Access Protocol

Venkatesh Rajendran et al. "Energy Efficient, Collision Free Medium Access Control for Wireless Sensor Networks", SenSys'03, November 5-7, 2003, Los Angeles, California, USA

- Nodes are synchronized
- Time divided into cycles, divided into
 - Random access periods
 - Used for signaling: e.g., synchronization and updating two-hop neighbor information. Collision possible!!
 - Scheduled access periods
 - Used for contention-free data exchange between nodes.
 - Supports unicast, multicast and broadcast communication.

A time-slotted structure

TRAMA Components

- Neighbor Protocol (NP)
 - Gather 2-hop neighborhood information
- Schedule Exchange Protocol (SEP)
 - Gather 1-hop traffic information for SCHEDULING
- Adaptive Election Algorithm (AEA)
 - Elect transmitter, receiver and stand-by nodes for each transmission slot.
 - without any data to send are removed from the election process, thereby improving the channel utilization.

Neighbor Protocol (NP)

Main Function:

- Gather two-hop neighborhood information by periodic propagating one-hop neighbor information among neighboring nodes during the random access period.
- Using Incremental neighbor updates to keep the size of the signaling packet small.

Steps:

- Sensors pick a random signaling slot and transmit a list of their one hop neighbors (to share topology information)
- All sensors receive signaling messages from neighbors by listening during time slots in which they do not transmit.
- As a result of NP, a sensor determines the network topology within a two hop neighborhood.
- Note: Collisions may occur for signaling messages, retransmissions take place.

Schedule Exchange Protocol (SEP)

- SEP establishes and maintains schedule based on the current traffic info at the node
- The node periodically broadcasts its schedule info to its 1-hop neighbors during scheduled access by Schedule PACKETS and schedule summaries
 - Schedule consists of list of intended receivers for future transmission slots.
- The interval of broadcasting schedule info is calculated by each node based on its own generated traffic, called schedule_interval
- The node can pre-calculate the time slots (winning slots) that it can use among [t, t+schedule_interval] slots
- The last winning slot is used to announce the node's schedule by Schedule PACKETS

Schedule_interval

- EXAMPLE: Node_i's schedule_interval = 100 slots.
 - During time slot 1000, Node_i computes its winning slots between [1000,1100].
 - Assume: The winning slots are 1009, 1030, 1033, 1064, 1075, 1098.
 - Node_i uses slot 1098 to announce its next schedule by looking ahead from [1098,1198].

Schedule PACKETS

- Schedule PACKETS include
 - the number of slots the sensor owns in the next schedule-interval as determined by the Adaptive Election Algorithm (AEA)
 - A bitmap of the intended receivers
 - Data slots the sensor plans to use
- No need to send receiver addresses explicitly.
- Instead sensors convey the intended receiver information using a BITMAP!!
 - BITMAP: With the length equal to the number of one-hop neighbors.
 - Each bit corresponds to one particular receiver.
 - For example: One node with 4 neighbors 14,7,5 and 4, the BITMAP size = 4
 - For broadcast: all bitmap bits are set to 1.

Schedule Packet Format

Adaptive Election Algorithm

- Given: Each node knows its two-hop neighborhood and schedules of 1-hop neighbors
- How to decide which slot (in scheduled access period) a node can transmit?
 - Use node identifier x and globally known hash function h
 - For time slot t, compute priority $p = h(x \oplus t)$
 - Compute this priority for next k time slots for node itself and all two-hop neighbors (k= schedule_interval)
 - Node uses these time slots for which it has the highest priority

Priorities of node A and its two neighbors B & C

	t = 0	t = 1	t = 2	t=3	t = 4	t = 5
Α	14	23	9	56	3	26
В	33	64	8	12	44	6
С	53	18	6	33	57	2

Comparison: TRAMA vs. S-MAC

- TRAMA Limitations:
 - Complex election algorithm and data structures.
 - Substantial memory/CPU requirements for schedule computation
 - Overhead due to explicit schedule propagation.
 - Higher queuing delay.
 - More energy consumption
- Comparison
 - Energy savings in TRAMA depend on the workload situation
 - Energy savings in S-MAC depend on duty cycle

Outline

- Principal options and challenges
- Contention-based protocols
 - CSMA/CA
 - S-MAC
 - B-MAC
- Schedule-based protocols
 - TRAMA
- IEEE 802.15.4

IEEE 802.15.4

- IEEE standard for low-rate WPAN applications
- Goals:
 - low-to-medium bit rates,
 - moderate delays without too stringent guarantee requirements,
 - low energy consumption
- Physical layer
 - 20 kbps over 1 channel @ 868-868.6 MHz
 - 40 kbps over 10 channels @ 905 928 MHz
 - 250 kbps over 16 channels @ 2.4 GHz
- MAC protocol
 - Single channel at any one time
 - Combines contention-based and schedule-based schemes
 - Asymmetric: nodes can assume different roles

802.15.4 Type of nodes

Full function device

Full Function Device (FFD):

Reduced function device

- It can operate in three roles
 - PAN coordinator, a simple coordinator, device
- Any topology, e.g., star topology, peer-to-peer topology
- Talks to any other device
- Reduced Function Device (RFD):
 - only as normal device
 - It MUST be associated with a coordinator
 - Limited to star topology

Different Data Transmission Methods

- Data transfer can happen in three ways:
 - From a normal device to a coordinator, from a coordinator to a device;
 from one peer to another in a peer-to-peer multihop network
- There are three different types of data transfer:
 - Direct data transmission
 - This applies to all data transfers
 - Using unslotted CSMA/CA or slotted CSMA/CA
 - Indirect data transmission
 - This applies to data transfer from a coordinator to a normal device
 - Data frame is kept in a transaction list by coordinator, waiting for extraction by the corresponding device
 - A device knows it has pending data by checking beacon frames
 - Guaranteed time slot (GTS) data transmission
 - This applies to data transfer between a coordinator and a device

Beacon mode and non-Beacon mode

- 802.15.4 supports both beacon mode and non-beacon mode
- In beacon mode, a coordinator broadcasts beacons periodically to synchronize the attached devices
 - Superframe structure is used in beacon mode.
- In non-beacon mode, a coordinator does NOT broadcast beacon periodically, but may unicast a beacon to a device that is soliciting beacons

Coordinator

- Coordinator: Multiple coordinators form a personal area network (PAN)
 - Bookkeeping the associated devices
 - Allocate short address (16-bit) to devices
 - Generate frame beacon packets announcing PAN identifier
 - Process slots requests from devices
 - Exchange packets with devices and peer coordinator

Superframe Structure

- Starts by a frame beacon packet
- Composed of active period and inactive period.
 - During inactive period, all nodes including coordinator switch off transceiver and go to sleep
 - Nodes wake up when inactive period ends and get ready to receive next beacon
 - Active period has 16 time slots.
 - First time slot used for beacon
 - The remaining time slots are partitioned into
 - Connection Access control (CAP)
 - Connection Free Period (CFP) consisting of Guaranteed Time Slots

Superframe Structure

SO = Superframe order

BO = Beacon order

- Format defined by coordinator
- Bounded by network beacons

Data Transfer Procedure

- Beacon-Enabled Transmission
 - Transmitting device finds beacon before transmission
 - If not found, uses unslotted CSMA/CA to send
 - If found, transmits in appropriate portion of superframe
 - Transmissions in CAP use CSMA, in GTS no CSMA
- Beacon-Enabled Reception
 - Device determines that data for it is pending by examining beacon message contents
 - If data pending, sends request for that data to coordinator

Data Transfer Procedure

- Device to Coordinator (Beacon-Enabled)
 - Device listens for network beacon
 - When found, synchronizes to superframe structure
 - At right time it transmits its data frame using slotted CSMA/CA to coordinator
 - Space for optional acknowledgements at end of slot

Data Transfer Procedure

- Coordinator to Device (Beacon-Enabled)
 - Coordinator indicates in beacon message that data pending
 - Device requests data using slotted CSMA/CA
 - Coordinator acknowledges request
 - Data sent from coordinator to device
 - Device acknowledges data sent

Slotted CSMA/CA

Note:

BE: Backoff exponent

NB: the number of successive backoffs before the current

transmission

CW: contention window

Non-Beaconed mode

- This mode is much simpler:
 - no beacon packets, no superframe structure, no inactive periods
 - Coordinator must be switched on constantly
 - Devices can sleep as they like
 - only (unslotted) CSMA/CA mode available
 - Uplink traffic handled directly by CSMA/CA protocol
 - Downlink traffic: device sends explicit request packet to coordinator (using CSMA/CA), followed by immediate ACK, data packet, immediate ACK

Association/Disassociation with PAN

- Coordinator decides to release device from PAN
 - Sends dis-association notification command to device
 - Device sends ACK that it has dis-associated itself
- Device decides to release itself from PAN
 - Sends dis-association notification command to coordinator
 - Coordinator sends ACK that it has dis-associated device
- Both devices and coordinator remove all references of each other

Summary

- MAC protocols for sensor networks is one the most active research fields
 - Many different ideas exist for medium access control in WSN
- Comparing their performance and suitability is difficult
- Especially: clearly identifying interdependencies between MAC protocol and other layers/applications is difficult
 - Which is the best MAC for which application?

