# ECSE 323 – Digital System Design g39\_testbed

# **Description:**

The testbed circuit puts together stack52, Modulo\_13, 7\_segment\_decoder and single pulse generator circuits in order to later on upload it onto the Altera board and display the different outputs representing a card deck.

## The circuit has the following inputs/outputs:

pushbutton: 1-bit input to enable the circuit, i.e. carrying out the operation selected

*mode:* 2-bit input representing the operation desired *addr:* 6-bit input representing a location in the stack

rst: 1-bit input to create an empty hand

clk: 1-bit input

suit: 7-bit output representing the suit of card

card: 7-bit output representing the card at the input address

#### **Implementation Details:**

#### Sub-circuits:

(Modulo\_13, 7\_segment\_decoder and stack52 were explained in previous reports)

#### Single Pulse generator:

The main purpose of this circuit is to eliminate the de-bouncing effect explained in the lab description. To do so, we use an SR Flipflop, a counter and a comparator.

#### Logic:

- When a button is pushed S = 1, R = 0. So, the SR Flipflop sets Q to 1 and thus the counter is enabled.
- The counter then gets incremented to 1 and  $C_{out} = 0$ . This results in S=0, R=0 with  $Q_n = 1$  which means the SR is in hold mode with  $Q_{n+1} = 1$ .
- The output of the comparator is compared with 1. This generates a pulse at this stage since output is 1.
- Pulse (output of comparator) is 0 for all subsequent increments since the output of the counter is not 1.
- Once the output of the counter exceeds the limit set (overflow takes place), C<sub>out</sub> will become 1. This resets the SR Fliplop as well as counter waiting for the next button press.





# Test\_bed Logic:

- When a button is pressed, the stack52 is enabled and will carry out the operation specified.
- The output of the stack52 (VALUE) is now fed to Modulo\_13 circuit.
- Modulo\_13 outputs a floor representing a suit since floor(VALUE/13) where VALUE is 6-bits is 0, 1, 2, or 3 (4 values). The floor output is then fed to a 7\_segment\_decoder to display it on the board.
- Modulo\_13 also outputs VALUEmod13 which takes 13 possible values representing the card (13 cards/suit). This is fed into a second 7\_segment\_decoder to display it on the board.



## **Testing:**

# Pin assignments:



#### Flow summary:

| Flow Summary                       |                                                  |  |  |  |
|------------------------------------|--------------------------------------------------|--|--|--|
| Flow Status                        | Successful - Sun Mar 19 17:43:03 2017            |  |  |  |
| Quartus II 64-Bit Version          | 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version |  |  |  |
| Revision Name                      | g39_lab3                                         |  |  |  |
| Top-level Entity Name              | g39_testbed                                      |  |  |  |
| Family                             | Cyclone II                                       |  |  |  |
| Device                             | EP2C20F484C7                                     |  |  |  |
| Timing Models                      | Final                                            |  |  |  |
| Total logic elements               | 679 / 18,752 ( 4 % )                             |  |  |  |
| Total combinational functions      | 679 / 18,752 ( 4 % )                             |  |  |  |
| Dedicated logic registers          | 325 / 18,752 ( 2 % )                             |  |  |  |
| Total registers                    | 325                                              |  |  |  |
| Total pins                         | 31 / 315 ( 10 % )                                |  |  |  |
| Total virtual pins                 | 0                                                |  |  |  |
| Total memory bits                  | 3,328 / 239,616 ( 1 % )                          |  |  |  |
| Embedded Multiplier 9-bit elements | 0/52(0%)                                         |  |  |  |
| Total PLLs                         | 0/4(0%)                                          |  |  |  |
|                                    |                                                  |  |  |  |

## Timing:

| Multicorner Timing Analysis Summary |                    |           |       |          |         |                     |  |  |
|-------------------------------------|--------------------|-----------|-------|----------|---------|---------------------|--|--|
|                                     | Clock              | Setup     | Hold  | Recovery | Removal | Minimum Pulse Width |  |  |
| 1                                   | 🖨 Worst-case Slack | -5.138    | 0.215 | N/A      | N/A     | -1.814              |  |  |
| 1                                   | dk                 | -5.138    | 0.215 | N/A      | N/A     | -1.814              |  |  |
| 2                                   | 🖮 Design-wide TNS  | -1514.226 | 0.0   | 0.0      | 0.0     | -442.317            |  |  |
| 1                                   | i dk               | -1514.226 | 0.000 | N/A      | N/A     | -442.317            |  |  |

# **Simulations:**

Single pulse generator:



## testbed:

