文章编号:2095-6835(2019)07-0032-02

基于 TRIZ 理论的 3D 浮雕打印

王世磊1, 翁幸1, 李莹2

(1.哈尔滨工程大学, 黑龙江 哈尔滨 150001; 2.兰州交通大学, 甘肃 兰州 730070)

摘 要:基于哈尔滨印梦科技有限公司 3D 浮雕打印实践,应用 TRIZ 理论创新方法,将浮雕系列产品从较为昂贵、费时的传统制作工艺转移至廉价且迅速的 3D 打印生产工艺。依据 TRIZ 理论中多种方法,较为详细地分析了该技术所处的阶段、资源情况、技术矛盾等。最终通过方案的整理与评价,确定采用更精密设备、更细致软件组合方案开展浮雕打印产业化实施。

关键词:TRIZ 理论; 3D 浮雕打印; 技术矛盾分析; 最终理想解

中图分类号: TP334.8: TP391.73 文献标识码: A

DOI: 10.15913/j.cnki.kjycx.2019.07.032

1 引言

随着 3D 技术的快速发展, 其以独特的优势已经融入到社会各个领域中。传统的浮雕制作工艺如注塑、车床加工等具有耗时久、成本高、内容单一的缺点, 而 3D 打印技术很好弥补了这些劣势。因此我们团队以此为契机, 结合 3D 打印技术进行浮雕产品的研发设计与制造。

2 问题描述

目前 3D 打印应用服务行业遇到最大的问题是成本高,由于全彩 3D 打印所用的打印设备与耗材基本依靠进口,成本过高导致 3D 人像打印在市场上难以大规模推广。另外一个障碍就是技术问题,现在全彩打印的材料几乎都是石膏,精度方面虽然可以接受,但仍然需要提高,而且石膏人像易碎。对于人像的还原,凭借浮雕独特的优势,3D 打印技术刚好可以实现这个功能。

3 系统分析

TRIZ 理论认为,发明问题的核心是解决矛盾,未克服矛盾的设计不是创新设计,设计中不断地发现并解决矛盾,是推动产品向理想化方向进化的动力。

3.1 生命曲线分析

虽然近些年 3D 打印技术发展得如火如荼,已经比较成熟,但是 3D 浮雕打印市场刚刚兴起,缺少部分资源,同时也存在一系列"瓶颈问题",相对于处在衰退期的包括浮雕灯罩在内的传统浮雕产品,其性能有时暂不如旧产品,所以3D 浮雕市场目前处于婴儿期。生命曲线如图 1 所示。

3.2 资源分析

从现有资源来看,3D 浮雕的原材料已经有了极大的突破,打印成本已经降低至每克0.2元。但从整个大范围的3D产业的层面来说,3D 浮雕相对来说略显稚嫩,可以利用的技术资源很少。从资源灵活性角度来看,3D 打印的原材料已日益丰富化,产业也稳步扩张。而从战略适应性来说,现有的原材料还是过于脆性,不易满足消费者多样化的需求。

3.3 九屏图法

九屏幕图如图 2 所示。系统的子系统是 3D 打印设备和打印耗材,在过去三维产品的制作使用单一化的模具,种类单一、价格昂贵;当前的系统是 3D 打印技术,相对于过去的"开模注塑"等传统工艺,其优势极其明显,制作成本低、制作耗时短等;系统的未来是 3D 打印产业的普及,不再是往常的小众市场,以其独特的优势将有可能推动整个制造业的快速发展,这也将标志着新的工业革命的开始。

4 运用 TRIZ 工具解决问题

4.1 40 个发明原理

4.1.1 复制的原则

用简单的、低廉的复制品代替复杂的、昂贵的、易碎的或不易获得的物体。

4.1.2 预先作用原理

预先对物体施加适当的改变; 预先安置物体, 使其在最 方便的位置开始发挥作用而不浪费运送时间。

4.2 最终理想解

最终理想解(IFR)是 TRIZ 的核心概念之一,是指解决问题中设想最后可能的完美结果,具体分析如表1所示。

5 方案整理与评价

针对以上系统分析, 我们通过整理了共计 32 种方案(由于篇幅限制暂不一一呈现)。再进行可行性分析并评价, 确定最终方案为: 采用加大宣传力度的方法来扩张市场, 通过

争取更大的订单数量来提升销量;同时采用技术革新的方式来获取利润,引入更高精度的打印设备,掌握更高水平的建模软件,采用更为实用更为廉价的原材料。通过技术上的优势来提升销量。

6 结论

目前 3D 浮雕系列产品正处于婴儿期,正需要更高的普及度。但是只有通过技术革新,实现产品的平民化,才能真正留住客户,迎来 3D 浮雕打印产业的春天。3D 浮雕系列产品将高智能化、自动化的三维扫描技术跟 3D 打印技术相结合,让我们能够实现无拘无束设计、随心所欲制造。

表 1 最终理想解分析表

77 100 41 22 20 17 17 17 17 17 17 17 17 17 17 17 17 17	
问题	分析结果
设计最终目标	为大众提供便利的 3D 打印服务,提高 3D 打印技术应用的普及度与实用性,使 3D 打印走进人们的生活中
理想化最终结果	3D 浮雕系列产品普及到全国各个地区,3D 打印业务占据哈尔滨较大市场
达到理想解的障碍是什么	大众的了解不够多,打印成本还不够平民化,公司本身设备的打印精度局限性
出现这种障碍的结果是什么	导致公司的前期利润低下以及业务扩展困难
不出现这种障碍的条件是什么	找到更廉价的打印材料,改进打印技术,加大宣传力度
创造这些条件所用的资源是什么	同行间的交流帮助,技术的革新,以及通过微信、淘宝等各网络平台的扩大宣传

参考文献:

- [1] Berman B.3-D printing: The new industrial revolution [J].Business Horizons, 2012, 55 (2): 160-162.
- [2]常伟,杨艳石.快速成型技术在家具设计中的应用研究 [J].包装工程,2017,38 (10):171-174.
- [3] 张翼翔,崔佳,唐昕.大学生创新创业能力培养中TRIZ 理论之应用研究[J].人力资源管理,2017(1):152.

[4] 侯昕志.基于 3D 打印技术的服装设计创新应用 [J].设计, 2017 (15).

作者简介:王世磊(1997—), 男, 研究方向为核工程与核技术。翁幸(1996—), 女, 研究方向为经济学。李莹(1997—), 女, 研究方向为土木工程。

[编辑:严丽琴]

(上接第31页)

建议每一位参与"互联网+停车"的行为主体,在进入该市场时能够考虑自己的市场需求、市场优势以及准入的市场定位及相关策略。当然,如果能够有相对客观、公正的评价标准,以及由政府相关管理部门从事这方面的帮助活动,则是更加理想的状态。

4 结论

"互联网+停车"智能化系统的推广,应该根据各个市场主体的利益驱动和市场需求,遵循激励机制,针对不同市场主体,设计有针对性的推广策略。而如何推进"互联网+停车",则需要各个行为主体充分发挥自己的主观能动性,在商业模式上不断改进。

参考文献:

- [1] 张尚仪.成都市雾霾治理策略探讨——汽车尾气收集及 再利用[J].南方农机,2018(07):179.
- [2] 邹德慈.论大城市交通问题——以北京为例 [J].城市规划, 2010 (02): 78-79.
- [3] 郭艳华, 佟宇竟.我国大城市交通拥堵难题破解之策——以北京市为例[J].管理学刊, 2012, 25(04):

85-89.

- [4] 康正宁, 周振华.试论"互联网+停车"模式[J].上海 经济研究, 2017 (03): 117-124.
- [5]梁斌. "互联网+停车"兴起[J].计算机与网络, 2016, 42 (10): 15.
- [6]何寰,程传伟,胡晓伟."互联网+"下共享停车管理的 思考[J].交通科技,2016(04):145-148.
- [7] 田华.互联网+数据共享推进地方税源综合管理的思考 [J].审计与理财, 2017 (10): 20-23.
- [8] 梁伟杰. "互联网+"实现传统行业商业模式创新的动力——对"共享停车"项目商业模式的剖析[J].科技·经济·市场,2017(06): 136-137.

作者简介:张志杰(1972—), 男, 博士, 副高, 研究方向 为机器视觉与人工智能。杨硕(1983—), 博士, 讲师, 研 究方向为图像处理与模式识别。

[编辑:张思楠]