Seasonal time series

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Seasonal data

- Has predictable and repeated patterns
- Repeats after any amount of time

Seasonal decomposition

time series = trend + seasonal + residual

Seasonal decomposition using statsmodels

```
# Import
from statsmodels.tsa.seasonal import seasonal_decompose

# Decompose data
decomp_results = seasonal_decompose(df['IPG3113N'], period=12)

type(decomp_results)
```

statsmodels.tsa.seasonal.DecomposeResult

Seasonal decomposition using statsmodels

```
# Plot decomposed data
decomp_results.plot()
plt.show()
```


Finding seasonal period using ACF

Identifying seasonal data using ACF

Detrending time series

```
# Subtract long rolling average over N steps
df = df - df.rolling(N).mean()
# Drop NaN values
df = df.dropna()
```


Identifying seasonal data using ACF

```
# Create figure
fig, ax = plt.subplots(1,1, figsize=(8,4))

# Plot ACF
plot_acf(df.dropna(), ax=ax, lags=25, zero=False)
plt.show()
```


ARIMA models and seasonal data

The SARIMA model

Seasonal ARIMA = SARIMA

- Non-seasonal orders
 - p: autoregressive order
 - d: differencing order
 - q: moving average order

SARIMA(p,d,q)(P,D,Q) $_S$

- Seasonal Orders
 - P: seasonal autoregressive order
 - D: seasonal differencing order
 - Q: seasonal moving average order
 - S: number of time steps per cycle

The SARIMA model

ARIMA(2,0,1) model:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + m_1 \epsilon_{t-1} + \epsilon_t$$

SARIMA(0,0,0)(2,0,1)₇ model:

$$y_t = a_7 y_{t-7} + a_{14} y_{t-14} + m_7 \epsilon_{t-7} + \epsilon_t$$

Fitting a SARIMA model

```
# Imports
statsmodels.tsa.statespace.sarimax import SARIMAX
# Instantiate model
model = SARIMAX(df, order=(p,d,q), seasonal_order=(P,D,Q,S))
# Fit model
results = model.fit()
```

Seasonal differencing

Subtract the time series value of one season ago

$$\Delta y_t = y_t - y_{t-S}$$

Take the seasonal difference
df_diff = df.diff(S)

Differencing for SARIMA models

Time series

Differencing for SARIMA models

First difference of time series

Differencing for SARIMA models

First difference and first seasonal difference of time series

Finding p and q

Plotting seasonal ACF and PACF

```
# Create figure
fig, (ax1, ax2) = plt.subplots(2,1)
# Plot seasonal ACF
plot_acf(df_diff, lags=[12,24,36,48,60,72], ax=ax1)
# Plot seasonal PACF
plot_pacf(df_diff, lags=[12,24,36,48,60,72], ax=ax2)
plt.show()
```

Finding P and Q

Searching over model orders

```
import pmdarima as pm
results = pm.auto_arima(df)
Performing stepwise search to minimize aic
ARIMA(2,0,2)(1,1,1)[12] intercept : AIC=inf, Time=3.33 sec
ARIMA(0,0,0)(0,1,0)[12] intercept : AIC=2648.467, Time=0.062 sec
ARIMA(1,0,0)(1,1,0)[12] intercept
                                    : AIC=2279.986, Time=1.171 sec
ARIMA(3,0,3)(1,1,1)[12] intercept : AIC=2173.508, Time=12.487 sec
ARIMA(3,0,3)(0,1,0)[12] intercept : AIC=2297.305, Time=2.087 sec
Best model: ARIMA(3,0,3)(1,1,1)[12]
Total fit time: 245.812 seconds
```


pmdarima results

print(results.summary())

Statespace Model Results

===========			==========
Dep. Variable:	real values	No. Observations:	300
Model:	SARIMAX(2, 0, 0)	Log Likelihood	-408.078
Date:	Tue, 28 May 2019	AIC	822.156
Time:	15:53:07	BIC	833.267
Sample:	01-01-2013	HQIC	826.603
	10 07 0010		

- 10-27-2013 Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	0.2189	0.054	4.072	0.000	0.114	0.324	
ar.L2	0.1960	0.054	3.626	0.000	0.090	0.302	
sigma2	0.8888	0.073	12.160	0.000	0.746	1.032	

32.10	Jarque-Bera (JB):	0.02
0.81	Prob(JB):	0.99
1.28	Skew:	-0.02
0.21	Kurtosis:	2.98
	0.81 1.28	32.10 Jarque-Bera (JB): 0.81 Prob(JB): 1.28 Skew: 0.21 Kurtosis:

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

results.plot_diagnostics()

Non-seasonal search parameters

¹ https://www.alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html

Seasonal search parameters

```
results = pm.auto_arima( df, # data
                     ..., # non-seasonal arguments
                    seasonal=True, # is the time series seasonal
                        # the seasonal period
                    m=7,
                    D=1, # seasonal difference order
                    start_P=1, # initial guess for P
                    start_Q=1, # initial guess for Q
                    max_P=2, # max value of P to test
                    \max_{Q=2}, # max value of Q to test
```

Other parameters

Saving model objects

```
# Import
import joblib

# Select a filepath
filepath = 'localpath/great_model.pkl'

# Save model to filepath
joblib.dump(model_results_object, filepath)
```

Saving model objects

```
# Select a filepath
filepath = 'localpath/great_model.pkl'

# Load model object from filepath
model_results_object = joblib.load(filepath)
```


Updating model

```
# Add new observations and update parameters
model_results_object.update(df_new)
```


Update comparison

Let's practice!

ARIMA MODELS IN PYTHON

SARIMA and Box-Jenkins

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Box-Jenkins

Box-Jenkins with seasonal data

- Determine if time series is seasonal.
- Find seasonal period
- Find transforms to make data stationary
 - Seasonal and non-seasonal differencing
 - Other transforms

Mixed differencing

- D should be 0 or 1
- d + D should be 0-2

Weak vs strong seasonality

- Weak seasonal pattern
- Use seasonal differencing if necessary

- Strong seasonal pattern
- Always use seasonal differencing

Additive vs multiplicative seasonality

- Additive series = trend + season
- Proceed as usual with differencing

- multiplicative series = trend x season
- Apply log transform first np.log

Multiplicative to additive seasonality

The SARIMAX model

- S seasonal
- A autoregressive
- I integrated
- M moving average
- X exogenous

Time series modeling framework

- Test for stationarity and seasonality
- Find promising model orders
- Fit models and narrow selection with AIC/BIC
- Perform model diagnostics tests
- Make forecasts
- Save and update models

