10/12/22, 10:01 PM Stride

REM			2PHY							
REM			2PHY							
REM	STRIDE: Knowledge-based secondary structure assignment 2F									
REM	Please cite: D.Frishman	R P.Argos, Proteins XX, XXX-XXX, 1995								
REM			2PHY							
REM	Residue accessible surfa		2PHY							
REM		r & P.Argos, J.Comp.Chem. 14, 1272-12								
REM	F.Eisenhabe	et al., J.Comp.Chem., 1994, submitte								
REM			2PHY							
REM		General information								
REM			2PHY							
HDR	PHOTORECEPTOR	12-APR-95 2PHY	2PHY							
CMP	MOL_ID: 1;									
CMP	MOLECULE: PHOTOACTIVE Y	ELLOW PROTEIN;	2PHY							
CMP	CHAIN: A;		2PHY							
CMP	SYNONYM: PYP		2PHY							
SRC	MOL_ID: 1;	ODUODOCOTOA HALODUTLA	2PHY							
SRC	ORGANISM_SCIENTIFIC: HA	LORHODOSPIRA HALOPHILA;	2PHY							
SRC	ORGANISM_TAXID: 1053;		2PHY							
SRC	STRAIN: BN9626).F.F.	2PHY							
AUT	G.E.O.BORGSTAHL, E.D.GETZ	JFF	2PHY							
REM	-		2PHY							
REM	Sec	ondary structure summary								
REM	/////////	DEMT Jl. A	2PHY							
CHN	/home/proj/stride/tmp/tm	DRSMIPZPOD A	2PHY							
REM			2PHY							
REM		COLDCLASCATOLDCDCNTLOVALAACCDTT FO	2PHY							
SEQ		DGQLDGLAFGAIQLDGDGNILQYNAAEGDIT 50	2PHY							
STR	TTTT HHHHHHH	HHHHH EEEEEETTTEEEEE HHHHHHH	2PHY							
REM			2PHY							
REM	• • • • • • • • • • • • • • • • • • •	FDCDEEVCKEKECVACCNI NTMEEVTEDVOM 100	2PHY							
SEQ STR		FDSPEFYGKFKEGVASGNLNTMFEYTFDYQM 100 GTTTTTHHHHHHHHHHH EEEEEEEETTTT	2PHY 2PHY							
REM	GGGIIIEEIIIII GG		2PHY							
REM			2PHY							
	101 TPTKVKVHMKKALSGDSYW	, /FVKRV 125	2PHY							
SEQ STR	101 TPTKVKVHMKKALSGDSYW EEEEEEEEE TTTEEE		2PHY							
REM			2PHY							
REM			2PHY							
REM			=: : : :							
	AlphaHelix ASP 10 A	ΛΙΛ 16 Λ	2PHY 2PHY							
LOC		ALA 16 A ASP 24 A	2PHY							
LOC LOC	AlphaHelix ASP 20 A AlphaHelix ALA 44 A									
LOC	AlphaHelix TYR 76 A	THR 50 A SER 85 A	2PHY 2PHY							
LOC		GLN 56 A THR 70 A	2PHY 2PHY							
LOC LOC	310Helix PRO 68 A PiHelix PHE 62 A	VAL 66 A	2PHY							
LOC	Strand GLY 29 A	ASP 34 A	2PHY							
LUC	Scialiu GLT 29 A	A3F 34 A	2711							

10/12/22, 10:01 PM Stride

	,								
LOC	Strand		ASN	38 /	A TYR	42 A			2PHY
LOC	Strand		LYS	60 /	A ASN	61 A			2PHY
LOC	Strand		ASN	89 /	A PHE	96 A			2PHY
LOC	Strand		THR	103 /	A LYS	111 A			2PHY
LOC	Strand		SER	117	A ARG	124 A			2PHY
LOC	TurnII		ALA	5 /	A SER	8 A			2PHY
LOC	TurnI		ASP	34 /	A GLY	37 A			2PHY
LOC	TurnII		VAL	57 /	A LYS	60 A			2PHY
LOC	TurnI		SER	72		75 A			2PHY
LOC	TurnIV		PRO	73 /		76 A			2PHY
LOC	TurnIV		ASP	97 /		100 A			2PHY
LOC	TurnIV		SER	114		117 A			2PHY
LOC	GammaIr	าง	THR	70 /		72 A			2PHY
REM									2PHY
REM			D	etaile	d secondary	structure	assignment		
REM					,				2PHY
REM	Res	sidue		S	tructure	-Phi-	-Psi-	-Area-	2PHY
ASG	MET A	1	i	Ċ	Coil	360.00	146.81	190.6	2PHY
ASG	GLU A	2	2	Č	Coil	-82.98	126.40	45.0	2PHY
ASG	HIS A	3	3	Č	Coil	-90.49		169.8	2PHY
ASG	VAL A	4	4	Č	Coil	-138.24	132.92	16.7	2PHY
ASG	ALA A	5	5	T	Turn	-91.24	137.96	60.6	2PHY
ASG	PHE A	6	6	T	Turn	-55.73	131.36	33.8	2PHY
ASG	GLY A	7	7	T	Turn	84.75	5.75	30.6	2PHY
ASG	SER A	8	8	T	Turn	-59.42	138.95	40.7	2PHY
ASG	GLU A	9	9	Ċ	Coil	-59.57	-31.59	162.3	2PHY
ASG	ASP A	10	10	Н	AlphaHelix		26.30	94.3	2PHY
ASG	ILE A	11	11	н	AlphaHelix		-38.42	0.4	2PHY
ASG	GLU A	12	12	н	AlphaHelix		-33.37	37.6	2PHY
ASG	ASN A	13	13	н	AlphaHelix			91.8	2PHY
ASG	THR A	14	14	н	AlphaHelix	-63.86	-42.99	42.0	2PHY
ASG	LEU A	15	15	н	AlphaHelix	-77.88	-14.85	2.3	2PHY
ASG	ALA A	16	16	H	AlphaHelix	-61.52	-24.49	68.1	2PHY
ASG	LYS A	17	17	C	Coil	-88.83	-5.23	136.6	2PHY
ASG	MET A	18	18	C	Coil	-93.80	124.52	12.1	2PHY
ASG	ASP A	19	19	C	Coil	-76.47		84.2	2PHY
ASG									
	ASP A	20	20	Н	AlphaHelix		-32.22	76.9	2PHY
ASG	GLY A	21	21	Н	AlphaHelix		-37.22	39.4	2PHY
ASG	GLN A	22	22	Н	AlphaHelix	-75.82	-33.38	67.3	2PHY
ASG	LEU A	23	23	Н	AlphaHelix	-61.57	-32.44	1.6	2PHY
ASG	ASP A	24	24	Н	AlphaHelix	-67.68	-15.73	67.4	2PHY
ASG	GLY A	25	25	C	Coil	-89.78	2.50	27.3	2PHY
ASG	LEU A	26	26	C	Coil	-72.79	151.36	8.4	2PHY
ASG	ALA A	27	27	C	Coil	-79.58	-1.84	65.8	2PHY
ASG	PHE A	28	28	C	Coil	-141.34	165.84	6.7	2PHY
ASG	GLY A	29	29	E	Strand	-71.86	141.94	0.0	2PHY
ASG	ALA A	30	30	E	Strand	-143.22	127.89	0.0	2PHY
ASG	ILE A	31	31	E	Strand	-128.84	132.59	0.2	2PHY
ASG	GLN A	32	32	E	Strand	-110.50	128.64	26.9	2PHY

webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py

ASG	LEU A	33	33	Ε	Strand	-118.83	152.07	0.0	2PHY
ASG	ASP A	34	34	Ε	Strand	-89.38	-178.19	38.5	2PHY
ASG	GLY A	35	35	Т	Turn	-60.60	-21.22	19.9	2PHY
ASG	ASP A	36	36	Т	Turn	-92.97	-1.48	120.7	2PHY
ASG	GLY A	37	37	T	Turn	92.47	10.11	0.0	2PHY
ASG	ASN A	38	38	Е	Strand	-79.87	139.92	48.7	2PHY
ASG	ILE A	39	39	Е	Strand	-81.21	121.13	1.7	2PHY
ASG	LEU A	40	40	Е	Strand	-100.36	-35.39	78.8	2PHY
ASG	GLN A	41	41	Е	Strand	-142.44	149.95	33.1	2PHY
ASG	TYR A	42	42	Е	Strand	-157.65	112.67	12.5	2PHY
ASG	ASN A	43	43	С	Coil	-85.53	169.75	0.4	2PHY
ASG	ALA A	44	44	Н	AlphaHelix	-61.61	-40.64	35.0	2PHY
ASG	ALA A	45	45	Н	AlphaHelix	-61.22	-35.09	17.2	2PHY
ASG	GLU A	46	46	Н	AlphaHelix	-67.82	-41.96	2.0	2PHY
ASG	GLY A	47	47	Н	AlphaHelix	-63.44	-33.23	8.6	2PHY
ASG	ASP A	48	48	Н	AlphaHelix	-66.96	-38.26	142.0	2PHY
ASG	ILE A	49	49	Н	AlphaHelix	-73.47	-39.47	41.9	2PHY
ASG	THR A	50	50	Н	AlphaHelix	-102.85	-17.57	13.2	2PHY
ASG	GLY A	51	51	С	Coil	91.01	-12.64	67.6	2PHY
ASG	ARG A	52	52	C	Coil	-71.90	147.71	45.3	2PHY
ASG	ASP A	53	53	Ċ	Coil	-89.56	119.88	84.6	2PHY
ASG	PRO A	54	54	G	310Helix	-47.42	-52.51	31.7	2PHY
ASG	LYS A	55	55	G	310Helix	-61.81	-27.56	133.8	2PHY
ASG	GLN A	56	56	G	310Helix	-79.86	-23.23	133.9	2PHY
ASG	VAL A	57	57	T	Turn	-94.06	-14.84	9.8	2PHY
ASG	ILE A	58	58	Ť	Turn	-63.96	129.23	66.4	2PHY
ASG	GLY A	59	59	Ť	Turn	99.42	-16.02	58.3	2PHY
ASG	LYS A	60	60	Ė	Strand	-83.39	158.43	92.9	2PHY
ASG	ASN A	61	61	Ē	Strand	-86.42	123.37	25.4	2PHY
ASG	PHE A	62	62	Ī	PiHelix	-60.08	-46.31	7.0	2PHY
ASG	PHE A	63	63	Ī	PiHelix	-78.87	-30.37	2.7	2PHY
ASG	LYS A	64	64	Ī	PiHelix	-92.89	-43.82	163.7	2PHY
ASG	ASP A	65	65	Ī	PiHelix	-95.54	-57.28	80.7	2PHY
ASG	VAL A	66	66	Ī	PiHelix	-79.91	-42.77	16.3	2PHY
ASG	ALA A	67	67	C	Coil	-129.57	66.76	11.5	2PHY
ASG	PRO A	68	68	Ğ	310Helix	-59.50	-25.75	47.0	2PHY
ASG	CYS A	69	69	Ğ	310Helix	-66.34	-17.47	31.2	2PHY
ASG	THR A	70	70	Ğ	310Helix	-91.32	-6.20	0.2	2PHY
ASG	ASP A	71	71	T	Turn	-80.70	85.03	93.9	2PHY
ASG	SER A	72	72	Ť	Turn	-161.02	165.37	31.6	2PHY
ASG	PRO A	73	73	Ť	Turn	-62.54	-27.21	111.6	2PHY
ASG	GLU A	74	74	Ť	Turn	-75.49	-13.94	125.7	2PHY
ASG	PHE A	75	75	Ť	Turn	-130.59	-74.27	0.0	2PHY
ASG	TYR A	76	76	H	AlphaHelix	-55.56	-39.15	83.8	2PHY
ASG	GLY A	77	77	H	AlphaHelix	-59.77	-38.15	12.5	2PHY
ASG	LYS A	78	78	н	AlphaHelix	-71.78	-38.16	60.8	2PHY
ASG	PHE A	79	79	н	AlphaHelix	-63.34	-49.53	2.4	2PHY
ASG	LYS A	80	80	н	AlphaHelix	-66.27	-30.48	125.4	2PHY
ASG	GLU A	81	81	н	AlphaHelix	-68.32	-41.07	128.8	2PHY
, ,50	323 A	5 ±	5 ±	• •	. IIP. GITCIIA	55.52	,		

webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py

Stride

ASG	GLY A	82	82	Н	AlphaHelix	-67.59	-41.24	4.3	2PHY
ASG	VAL A	83	83	 Н	AlphaHelix	-63.19	-43.51	32.3	2PHY
ASG	ALA A	84	84	 Н	AlphaHelix	-66.34	-36.01	90.9	2PHY
ASG	SER A	85	85	 Н	AlphaHelix	-79.83	-21.94	96.0	2PHY
ASG	GLY A	86	86	C	Coil	81.59	14.79	37.4	2PHY
ASG	ASN A	87	87	C	Coil	-151.34	138.01	118.0	2PHY
ASG	LEU A	88	88	C	Coil	-159.21	128.29	12.7	2PHY
ASG	ASN A	89	89	E	Strand	-163.00	94.56	97.6	2PHY
ASG	THR A	90	90	E	Strand	-145.12	147.14	42.9	2PHY
ASG	MET A	91	91	E	Strand	-131.41	134.71	76.4	2PHY
ASG	PHE A	92	92	E	Strand	-159.91	159.51	28.1	2PHY
ASG	GLU A	93	93	E	Strand	-89.54	150.12	123.7	2PHY
ASG	TYR A	94	94	E	Strand	-152.42	160.51	34.3	2PHY
ASG	THR A	95	95	E	Strand	-132.42	121.51	56.9	2PHY
ASG	PHE A	96	96	E	Strand	-91.03	121.31	11.6	2PHY
ASG	ASP A	97	97	T	Turn	-141.79	18.54	86.7	2PHY
ASG	TYR A	98	98	T T	Turn	-141.79 -92.02	116.57	94.7	2PHY
ASG	GLN A	99	99	T T	Turn	56.98	33.56	156.0	2PHY
ASG	MET A	100	100	T T	Turn	-159.39	165.73	42.7	2PHY
ASG		101		C	Coil	-67.90	131.38	115.3	2PHY
ASG	THR A PRO A		101 102	C	Coil	-67.90 -52.09		91.6	2PHY 2PHY
		102					122.51		
ASG	THR A	103	103	E E	Strand	-124.57	121.80	16.5	2PHY
ASG	LYS A	104	104		Strand	-80.16	129.34	131.2	2PHY
ASG	VAL A	105	105	E	Strand	-136.69	162.96	0.0	2PHY
ASG	LYS A	106	106	E	Strand	-106.67	128.82	68.1	2PHY
ASG	VAL A	107	107	E	Strand	-114.79	135.25	0.0	2PHY
ASG	HIS A	108	108	E	Strand	-124.85	116.58	4.0	2PHY
ASG	MET A	109	109	E	Strand	-106.04	129.90	0.0	2PHY
ASG	LYS A	110	110	E	Strand	-147.61	138.72	21.2	2PHY
ASG	LYS A	111	111	E	Strand	-64.70	135.54	57.8	2PHY
ASG	ALA A	112	112	C	Coil	-74.85	167.78	5.6	2PHY
ASG	LEU A	113	113	C	Coil	-67.87	-34.52	100.7	2PHY
ASG	SER A	114	114	T	Turn	-63.01	162.77	76.8	2PHY
ASG	GLY A	115	115	T	Turn	-57.32	-74.29	51.8	2PHY
ASG	ASP A	116	116	T	Turn	-107.86	58.81	114.4	2PHY
ASG	SER A	117	117	E	Strand	-141.28	147.95	4.2	2PHY
ASG	TYR A	118	118	E	Strand	-137.62	144.12	2.4	2PHY
ASG	TRP A	119	119	E	Strand	-101.33	146.83	5.9	2PHY
ASG	VAL A	120	120	E	Strand	-127.19	115.18	0.2	2PHY
ASG	PHE A	121	121	E	Strand	-107.74	143.29	0.2	2PHY
ASG	VAL A	122	122	E	Strand	-140.35	137.11	0.2	2PHY
ASG	LYS A	123	123	Е	Strand	-143.37	153.53	84.2	2PHY
ASG	ARG A	124	124	E	Strand	-71.17	148.60	183.9	2PHY
ASG	VAL A	125	125	С	Coil	-130.63	360.00	102.2	2PHY

webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py