Tutorial-2: Matrix Algebra CZ1104 2020-2021

Presented by: Svetlana (Lana) Obraztsova

Problem-1:

Required:

Consider an $m \times n$ matrix A and an $n \times p$ matrix B. Show that if the columns of B are linearly dependent, then so are the columns of AB.

Solution:

If the columns of B are linearly dependent, then there exists a non-zero vector \boldsymbol{x} such that $B\boldsymbol{x}=0$.

$$\Rightarrow A(Bx) = 0 \xrightarrow{\text{by associativity}} (AB)x = 0$$

Since x is non-zero, columns of AB must be linearly dependent.

Problem-2:

Required:

Suppose A and B are $n \times n$, B is invertible, and AB is invertible. Show that A is invertible.

Solution:

Let C = AB, then $CB^{-1} = ABB^{-1} = AI = A$

I.e., \boldsymbol{A} is a product of invertible matrices and, hence, is invertible.

Problem-3:

Required:

Suppose A, B and X are $n \times n$ matrices with A, X and A - AX invertible. Also, suppose $(A - AX)^{-1} = X^{-1}B$. Solve for X. If you need to invert a matrix, explain why that matrix is invertible.

Solution:

$$\begin{split} & (A - AX)^{-1} = X^{-1}B \Rightarrow (A - AX) = (X^{-1}B)^{-1} = B^{-1}(X^{-1})^{-1} = B^{-1}X \\ & \therefore A = AX + B^{-1}X = (A + B^{-1})X \\ & (B \text{ is invertable, because } XX^{-1}B = X(A - AX)^{-1} \Leftrightarrow B = X(A - AX)^{-1}, \\ & \text{where } X \text{ and } (A - AX)^{-1} \text{ are invertible.}) \end{split}$$

The product $(A+B^{-1})X$ is invertible, because A is invertible. Since X is invertible, so is $(A+B^{-1})$

$$(A + B^{-1})^{-1}A = X$$

Problem-4:

Required:

- (a) Let $A\mathbf{x}=0$ be a homogeneous system with n linear equations and n unknowns. If $A\mathbf{x}=0$ has only the trivial solution, show that for any positive integer k, the system $A^kx=0$ also has only the trivial solution.
- (b) Let $Ax = \mathbf{b}$ be any consistent system of linear equations and let x_1 be a fixed solution. Show that every solution to the system can be written in the from $x = x_1 + x_0$ where x_0 is a solution to Ax = 0.

- (a) Since Ax = 0 has only trivial solution, A is invertible. A^k is also invertible and $A^kx = 0$ has only a trivial solution.
- (b) Let x_1 be a fixed solution of $Ax = \mathbf{b}$ and let x be any other solution. Then $A(x x_1) = Ax Ax_1 = \mathbf{b} \mathbf{b} = 0$.
 - $\therefore x_0 = x x_1$ is a solution to Ax = 0. $\therefore x = x_0 + x_1$.

Problem-5:

Required:

- (a) If the columns of an $n \times n$ matrix A are linearly independent, show that the columns of A^2 span \mathbb{R}^n .
- (b) Show that if AB is invertible, so is A.

- (a) **Invertible Matrix Theorem**: If the columns of A are linearly independent, then, since A is square, A is invertible.
 - \therefore A^2 , which is a product of invertible matrices, is also invertible.
 - \Rightarrow Columns of A^2 span \mathbb{R}^n .
- (b) Let W be the inverse of AB, then $ABW = I \Rightarrow A(BW) = I$. Since A is square, A is invertible [property (9) of Theorem 2.4 IMT]

Problem-6:

Required:

Using the notion of pivots and free variables only, answer the following questions:

- (a) Suppose A is an $n \times n$ matrix with the property that the equation $Ax = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n . Explain why the equation $Ax = \mathbf{b}$ has in fact exactly one solution.
- (b) Suppose A is an $n \times n$ matrix with the property that the equation Ax = 0 has only the trivial solution. Explain why the equation $Ax = \mathbf{b}$ must have a solution for each \mathbf{b} in \mathbb{R}^n .

- (a) Since $Ax = \mathbf{b}$ has a solution for each \mathbf{b} , A has a pivot in each row. Since A is square, A has a pivot in each column.
 - \therefore There are no free variables in $Ax = b \Rightarrow$ solution is unique.
- (b) Since Ax = 0 has only the trivial solution, A is invertible.
 - $Ax = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$, given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution:
$$Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$$
. If $Ux = \mathbf{y}$, $L\mathbf{y} = \mathbf{b}$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution:
$$Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$$
. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} .

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} .

[L b]
$$r_2 \leftarrow -\frac{1}{2}r_1 + r_2 \\ r_3 \leftarrow -\frac{3}{2}r_1 + r_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & -5 \\ \frac{3}{2} & -5 & 1 & 7 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & -5 & 1 & 7 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} .

$$[L \ \mathbf{b}]$$
 $r_2 \leftarrow -\frac{1}{2}r_1 + r_2$ $r_3 \leftarrow -\frac{3}{2}r_1 + r_3$ $r_3 \leftarrow 5r_2 + r_3$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & -5 \\ \frac{3}{2} & -5 & 1 & 7 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & -5 & 1 & 7 \end{bmatrix} \Rightarrow \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -18 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

A =
$$\begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$, $A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$r_2 \leftarrow -\frac{1}{2}r_1 + r_2$$

 $r_3 \leftarrow -\frac{3}{2}r_1 + r_3$ $r_3 \leftarrow 5r_2 + r_3$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & -\xi \end{bmatrix}$$

 $[L \mathbf{b}]$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & -5 \\ \frac{3}{2} & -5 & 1 & 7 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & -5 & 1 & 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -18 \end{bmatrix}$$

 $\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

A =
$$\begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$, $A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

$${}_{2} \leftarrow -\frac{1}{2}r_1 + r_2$$

$$[L \mathbf{b}] \qquad r_2 \leftarrow -\frac{1}{2}r_1 + r_2 r_3 \leftarrow -\frac{3}{2}r_1 + r_3$$

$$\leftarrow -\frac{3}{2}r_1 + r_3 \qquad \qquad r_3 \leftarrow 5r_2 + r_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & -5 \\ \frac{3}{2} & -5 & 1 & 7 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & -5 & 1 & 7 \end{bmatrix} \Rightarrow \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -18 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve
$$Ux = y$$
 for x .

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve Ux = y for x.

$$\begin{bmatrix} U \ \mathbf{y} \end{bmatrix} \\ \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & -2 & -1 & -5 \\ 0 & 0 & -6 & -18 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $L\mathbf{y} = \mathbf{b}$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve Ux = y for x.

$$\begin{bmatrix} U \ \mathbf{y} \end{bmatrix} \qquad r_3 \leftarrow -\frac{1}{6}r_3 \\ \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & -2 & -1 & -5 \\ 0 & 0 & -6 & -18 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & -2 & -1 & -5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Required:

Solve the equation Ax = b using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Solution: $Ax = \mathbf{b} \Rightarrow LUx = \mathbf{b}$. If $Ux = \mathbf{y}$, $Ly = \mathbf{b}$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve Ux = y for x.

$$\begin{bmatrix} U \ \mathbf{y} \end{bmatrix} \qquad r_3 \leftarrow -\frac{1}{6}r_3 \qquad r_2 \leftarrow r_2 + r_3 \\ \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & -2 & -1 & -5 \\ 0 & 0 & -6 & -18 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & -2 & -1 & -5 \\ 0 & 0 & 1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -2 & 0 & -12 \\ 0 & -2 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Required:

Solve the equation Ax = b using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve
$$Ux = y$$
 for x .

Required:

Solve the equation Ax = b using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve
$$Ux = y$$
 for x .

Required:

Solve the equation Ax = b using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$

Step-2: Next, solve
$$Ux = y$$
 for x .

$$x = \begin{bmatrix} -5 & 1 & 3 \end{bmatrix}^T$$

$$\Rightarrow \begin{bmatrix} r_2 \leftarrow -\frac{1}{2}r_2 & r_1 \leftarrow 2r_2 + r_1 \\ 2 & -2 & 0 & -12 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 0 & -10 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 \leftarrow \frac{1}{2}r_1 \\ 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Required:

Solve the equation $Ax = \mathbf{b}$ using the LU factorization given for A:

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}, A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Step-1: Solving
$$L\mathbf{y} = \mathbf{b}$$
 for \mathbf{y} .

$$\mathbf{y} = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$$
$$x = \begin{bmatrix} -5 & 1 & 3 \end{bmatrix}^T$$

Step-2: Next, solve
$$Ux = y$$
 for x .

$$x = \begin{bmatrix} -5 & 1 & 3 \end{bmatrix}^{\frac{1}{2}}$$

Required:

Suppose a 3×3 matrix A admits a factorization as $A=PDP^{-1}$, where P is some invertible 3×3 matrix and D is the diagonal matrix

$$D=\begin{bmatrix}1&0&0\\0&1/2&0\\0&0&1/3\end{bmatrix}$$
 . Find A^2 and A^3 and hence, a simple formula for A^k

(where k is a positive integer). This factorization is useful when computing high powers of A.

Required:

Suppose a 3×3 matrix A admits a factorization as $A=PDP^{-1}$, where P is some invertible 3×3 matrix and D is the diagonal matrix

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}.$$
 Find A^2 and A^3 and hence, a simple formula for A^k

(where k is a positive integer). This factorization is useful when computing high powers of A.

$$A^2 = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1}$$

= $PDIDP^{-1} = PDDP^{-1} = PD^2P^{-1}$

$$D^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9} \end{bmatrix} \qquad \therefore A^{2} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9} \end{bmatrix} P^{-1}$$

Required:

Suppose a 3×3 matrix A admits a factorization as $A=PDP^{-1}$, where P is some invertible 3×3 matrix and D is the diagonal matrix

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}.$$
 Find A^2 and A^3 and hence, a simple formula for A^k

(where k is a positive integer). This factorization is useful when computing high powers of A.

$$\begin{array}{lcl} A^3 & = & (PDP^{-1})(PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)D(P^{-1}P)DP^{-1} \\ & = & PDIDIDP^{-1} = PDDDP^{-1} = PD^3P^{-1} \end{array}$$

$$D^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & (1/2)^{3} & 0 \\ 0 & 0 & (1/3)^{3} \end{bmatrix} \qquad \therefore A^{3} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/8 & 0 \\ 0 & 0 & 1/27 \end{bmatrix} P^{-1}$$

Required:

Suppose a 3×3 matrix A admits a factorization as $A=PDP^{-1}$, where P is some invertible 3×3 matrix and D is the diagonal matrix

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$$
. Find A^2 and A^3 and hence, a simple formula for A^k

(where k is a positive integer). This factorization is useful when computing high powers of A.

$$A^{k} = (PDP^{-1})^{k} = PD^{k}P^{-1} = P \begin{vmatrix} 1 & 0 & 0 \\ 0 & (1/2)^{k} & 0 \\ 0 & 0 & (1/3)^{k} \end{vmatrix} P^{-1}$$