

Concept of project

In Classification

- Dataset description

In Classification

File bank-additional-full.csv

Size 21 Columns, 41188 Rows

Dataset Link

https://www.kaggle.com/henriqueyamahata/bank-marketing?select=bank-additional-full.csv

In Classification

Numeric

- Age
- Duration
- Campaign
- Pdays
- Previous

- emp.var.rate
- cons.price.idx
- cons.conf.idx
- euribor3m
- nr.employed

Categorical

- Job
- Marital
- Education
- Default
- Housing

- Loan
- Contact
- month
- day_of_week:
- Poutcome
- Y (target)

"There is no null value in the data"

print("In Initial data, total dirty data count = ", sum(df.isna().sum()))

In Initial data, total dirty data count = 0

In Classification: Data selection

Numeric

- Age
- Duration
- Campaign
- Pdays
- Previous

- emp.var.rate
- cons.price.idx
- cons.conf.idx
- euribor3m
- nr.employed

Categorical

- Job
- Marital
- Education
- Default
- Housing

- Loan
- Contact
- month
- day_of_week:
- Poutcome
- Y (target)

We chose "12 features"

In Classification : Correlation heatmap

In Classification

Apply One Hot Encoding to Categorical data

Rows: 41188, Columns: 13 (12 (features) + 1 (target))

→ Rows: 41188, Columns: 40

In Classification: Data Inspection & Outlier detection


```
# Function of getting of outlier index
# 
def get_outlier(df=None, column=None, weight=1.5):

quantile_25 = np.percentile(df[column].values, 25)
quantile_75 = np.percentile(df[column].values, 75)

IQR = quantile_75 - quantile_25
IQR_weight = IQR*weight

lowest = quantile_25 - IQR_weight
highest = quantile_75 + IQR_weight

outlier_idx = df[column][ (df[column] < lowest) | (df[column] > highest) ].index
return outlier_idx
```

In Classification: Data Inspection & Outlier detection

In Classification : Data Preparation

Feature Scalingmin-max Scaler

In Classification

Model

- Decision Tree
- Logistic Regression
- KNN
- Gradient Boosting

Evaluation Method

- Accuracy
- Mean Square Error
- F1 Score
- Precision
- Recall

In Classification

Training Setting

```
# Split data
# Split data
# From sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(scaled_x, y, test_size=0.2, shuffle=True, random_state=0)

kf = KFold(n_splits=5)
```

Training data and test data were divided into 20% ratios

The optimal parameters were found using **GridSearchCV**

In Classification

Decision Tree

Logistic Regression Classification

In Classification

Gradient Boosting

KNN

In Classification

Final result

< Result > Algorithm Accuracy MSE F1-score Decision Tree 0.897 0.875 0.103 Logistic Regression 0.897 0.863 0.103 KNN 0.8940.106 0.860GradientBoosting 0.8720.898 0.102

In Classification

Decision Tree

Logistic Regression Classification

In Classification

Gradient Boosting

KNN

In Classification

Evaluation analysis

There is a <u>difference in the ratio of target data</u>

```
y_idx = df2['y'].unique()

y_count = df2['y'].value_counts()

sum = y_count[0] + y_count[1]
print("yes's ratio = {:.2f}%".format(y_count[1] / sum * 100))
print("no's ratio = {:.2f}%".format(y_count[0] / sum * 100))

yes's ratio = 10.56%
no's ratio = 89.44%
```

```
Undersampling
from collections import Counter
from imblearn.under_sampling import RandomUnderSampler
# summarize class distribution
print(Counter(y))
# define undersample strategy
undersample = RandomUnderSampler(sampling strategy='majority')
# fit and apply the transform
X_under, y_under = undersample.fit_resample(X, y)
# summarize class distribution
print(Counter(y_under))
Counter({0: 36068, 1: 4259})
Counter({0: 4259, 1: 4259})
```

In Classification

Decision Tree

Logistic Regression Classification

In Classification

Gradient Boosting

KNN

- Concept of project

In Clustering

The clustering goal is to cluster the relationship between income groups and population growth

In Clustering

Indicators.csv → Country Name& 2014 Population growth

Country.csv → **Country Name & InComeGroup**

1 Albania Upper middle income -0.099830 2 Algeria Upper middle income 1.940399 3 American Samoa Upper middle income 0.238405		CountryName	IncomeGroup	Value
2 Algeria Upper middle income 1.940399 3 American Samoa Upper middle income 0.238405	0	Afghanistan	Low income	3.033473
3 American Samoa Upper middle income 0.238405	1	Albania	Upper middle income	-0.099830
	2	Algeria	Upper middle income	1.940399
	3	American Samoa	Upper middle income	0.238405
4 Andorra High income: nonOECD -4.191941	4	Andorra	High income: nonOECD	-4.191941

Shape

214 (Number of country) * 3

In Clustering

Apply Label Encoding to Categorical data

```
# ENCODING
def ENCODING(df, column):
    encoder = LabelEncoder()
    encoder.fit(df[column])
    df[column] = encoder.transform(df[column])
    return df

df_mergeData = ENCODING(df_mergeData, 'IncomeGroup') # Label encoding
df_mergeData.head()

IncomeGroup Value
```

```
IncomeGroup Value

0 2 3.033473

1 4 -0.099830

2 4 1.940399

3 4 0.238405

4 1 -4.191941
```

```
Label encoding index = 0, label = High income: OECD
Label encoding index = 1, label = High income: nonOECD
Label encoding index = 2, label = Low income
Label encoding index = 3, label = Lower middle income
Label encoding index = 4, label = Upper middle income
```

- Training

In Clustering

Use 3 Machine Learning Algorithms K Means, DBSCAN, EM

```
def KMEANS_CLUSTERING(dataset1, dataset2):
    n_clusters = [2, 3, 4, 5, 6]
    max_iter = [50, 100, 200, 300]
    for i in n_clusters:
        for j in max_iter:
            print("n_cluster = {}, max_iter = {}".format(i,j))
            kmeans = KMeans(n_clusters=i, max_iter=j)
            pd_kmeans = kmeans.fit_predict(dataset1)
            dataset2['KMeans']=pd_kmeans
        # VISUALIZE BEST RESULT AS SCATTER PLOT
        # scatter_plot(pd_kmeans, dataset1, 'K-Means')
            make_Map(dataset2, 'KMeans')
```

```
# Compute DBSCAN

def DBSCAN_CLUSTERING(dataset1, dataset2):

# DBSCAN PARAMETER

eps = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]

min_samples = [3, 5, 10, 15, 20, 30, 50, 100]

for i in eps:

    for j in min_samples:

        print("eps = {}, min_samples = {}".format(i,j))

        dbscan = DBSCAN(eps=i, min_samples=j)

        pd_dbscan = dbscan.fit_predict(dataset1)

        dataset2['DBSCAN'] = pd_dbscan

    # VISUALIZE BEST RESULT AS SCATTER PLOT

# cscatter_plot(pd_dbscan, dataset1, 'DBSCAN')

    make_Map(dataset2, 'DBSCAN')
```

- Result

In Clustering

K-Means

EM

DBSCAN

- Conclusion

- Conclusion

In Classification

DON'T BE FOOLED

by the evaluation method of accuracy

Various evaluation methods should be analyzed.

The proportion of the Label in the data should be considered.

