1 Ampliación 2D

1.1 Cambios en el código

Esquemas numéricas implementadas

parámetro schemeType en constants.py

las mismas esquemas de 1D extendidas a 2D

 \mathbf{LF}

un solo paso de tiempo: FTCS usando en lugar de $u_{i,j}$ la media espacial

Lax Wendroff

2 pasos de tiempo: el primero LF y el segundo Leapfrog

como los elementos de la matriz f
c de dimension 2x2 (para cada punto de la red) $f_{0,1}=f_{1,0}$ guardo para cada punto un array de 3 elementos $(p+\rho v_x^2, \rho v_x v_y, p+\rho v_y^2)$

2 implementaciones

Lax Wendroff 1

Figure 1: lw

en esta implementación se calcula un solo array de puntos intermedios

en el primer paso se calcula u en los puntos intermedios $m_{i,j}$

para las variables ue, um (escalares):

$$\begin{array}{l} um_{i,j} = \frac{1}{4}(ug_{i-1,j-1} + ug_{i-1,j} + ug_{i,j-1} + ug_{i,j}) - \frac{1}{4} \big[\frac{dt}{dz_0} (f_{g_{i,j},0} - f_{g_{i-1,j},0} + f_{g_{i,j-1},0} - f_{g_{i-1,j-1},0}) + \frac{dt}{dz_1} (f_{g_{i,j},1} - f_{g_{i,j-1},1} + f_{g_{i-1,j},1} - f_{g_{i-1,j-1},1}) \big] \end{array}$$

para la variables uc (vector) ():

$$\begin{aligned} u_{m_{i,j},0} &= \tfrac{1}{4} (u_{g_{i-1,j-1},0} + u_{g_{i-1,j},0} + u_{g_{i,j-1},0} + u_{g_{i,j},0}) - \tfrac{1}{4} \big[\tfrac{dt}{dz_0} (f_{g_{i,j},0} - f_{g_{i-1,j},0} + f_{g_{i,j-1},0} - f_{g_{i-1,j-1},0}) + \tfrac{dt}{dz_1} (f_{g_{i,j},1} - f_{g_{i,j-1},1} + f_{g_{i-1,j},1} - f_{g_{i-1,j-1},1}) \big] \end{aligned}$$

$$u_{m_{i,j},1} = \frac{1}{4}(u_{g_{i-1,j-1},1} + u_{g_{i-1,j},1} + u_{g_{i,j-1},1} + u_{g_{i,j},1}) - \frac{1}{4}\big[\frac{dt}{dz_0}(f_{g_{i,j},1} - f_{g_{i-1,j},1} + f_{g_{i,j-1},1} - f_{g_{i-1,j-1},1}) + \frac{dt}{dz_1}(f_{g_{i,j},2} - f_{g_{i,j-1},2} + f_{g_{i-1,j},2} - f_{g_{i-1,j-1},2})\big]$$

leapfrog en el segundo paso: se calcula u en los puntos $g_{i,j}$

para las variables ue, um:

$$ug_{i,j} = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0}) \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big] = ug_{i,j} - \frac{1}{2}dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} - f_{m_{i+1,j},0} \big] \\ f_{m_{i+1,j},1} \big[\frac{1}{dz_0}$$

para la variable uc:

$$u_{g_{i,j},0} = u_{g_{i,j},0} - \frac{1}{2} dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i+1,j},1}) \big] \\ f_{m_{i+1,j},1} \big] = u_{g_{i,j},0} - \frac{1}{2} dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i+1,j+1},0}) \big] \\ f_{m_{i+1,j},1} \big] = u_{g_{i,j},0} - \frac{1}{2} dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},0} - f_{m_{i,j},0} + f_{m_{i+1,j+1},0} - f_{m_{i,j+1},0}) + \frac{1}{dz_1} (f_{m_{i,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_$$

$$u_{g_{i,j},1} = u_{g_{i,j},1} - \frac{1}{2} dt \big[\frac{1}{dz_0} (f_{m_{i+1,j},1} - f_{m_{i,j},1} + f_{m_{i+1,j+1},1} - f_{m_{i,j+1},1}) + \frac{1}{dz_1} (f_{m_{i,j+1},2} - f_{m_{i,j},2} + f_{m_{i+1,j+1},2} - f_{m_{i+1,j},2}) \big] - f_{m_{i+1,j},2} - f_{m_{i$$

Figure 2: lw2

para las variables ue, um (escalares):

en el primer paso se calcula u en 2 arrays de puntos intermedios $mx_{i,j}$ y $my_{i,j}$

$$\begin{split} umx_{i,j} &= \frac{1}{2}(ug_{i-1,j} + ug_{i,j}) - \big[\frac{1}{8}\frac{dt}{dz_1}(f_{g_{i,j+1},1} - f_{g_{i,j-1},1} + f_{g_{i-1,j+1},1} - f_{g_{i-1,j-1},1}) + \frac{1}{2}\frac{dt}{dz_0}(f_{g_{i,j},0} - f_{g_{i-1,j},0})\big] \\ umy_{i,j} &= \frac{1}{2}(ug_{i,j-1} + ug_{i,j}) - \big[\frac{1}{8}\frac{dt}{dz_0}(f_{g_{i+1,j},0} - f_{g_{i-1,j},0} + f_{g_{i+1,j-1},0} - f_{g_{i-1,j-1},0}) + \frac{1}{2}\frac{dt}{dz_1}(f_{g_{i,j},1} - f_{g_{i,j-1},1})\big] \\ \text{en el segundo paso:} \end{split}$$

$$u_{g_{i,j}} = u_{g_{i,j}} - \left[\frac{dt}{dz_0} (f_{mx_{i+1,j},0} - f_{mx_{i,j},0}) + \frac{dt}{dz_1} (f_{my_{i,j+1},1} - f_{my_{i,j},1}) \right]$$

de forma similar se calcula para uc

Condiciones iniciales

la función de la perturbación(h) es ahora función de 2 variables(argFunc en perturbation_params.py) y la velocidad tiene 2 componentes

arg Func puede ser una función lineal de x_0 y x_1 (en perturbato in_params wave Type = "lineal") o radial (en este caso la perturbación de la velocidad se genera a partir del gradiente de la función de perturbación y la densidad y presión de tal forma que cumplan las relaciones de las amplitudes)

1.2 Tests

waveType = "lineal": el cartón en la dirección horizontal(argType="y"), vertical(argType="x"), diagonal(argType="d1") con functionType="sine"—"ggauss"—"wavepacket_carton" y "wavepacket"

Intenté waveType="radial" con functionType="hankel" pero no salió muy bien

1.3 Breve resumen de la teoria de ray tracing

Después de hacer unos cálculos de las ecuaciones de los fluidos (y suponiendo el caso general inhomogeneo en tiempo y espacio : $\rho_0 = \rho_0(x,t), p_0 = p_0(x,t) \implies c_s = c_s(x,t)$ con p_0, ρ_0, c_s monótonas, variando bastante lentamente en el espacio y tiempo de tal forma que se pueden omitir terminos de segundo orden o mas en multiplicaciones de derivadas temporales o espaciales de estas y las perturbaciones) las perturbaciones de las variables verifican las ecuaciones:

$$\frac{\partial}{\partial t} \left(\frac{1}{c_s^2(x,t)} \frac{\partial p'}{\partial t} \right) = \nabla^2 p'$$

$$\frac{\partial}{\partial t} \left(\frac{1}{c_o^2(x,t)} \frac{\partial \rho'}{\partial t} \right) = \nabla^2 \rho'$$

$$\frac{\partial}{\partial t} \left(\frac{1}{c_s^2(x,t)} \frac{\partial \Phi}{\partial t} \right) = \nabla^2 \Phi$$
 donde definimos $v = \nabla \Phi$ considerando el fluido irrotacional

Medio homogéneo

Si la densidad y presión de equilibrio son constantes en tiempo y espacio $(\rho_0, p_0 constantes \implies c_s const)$:

$$\frac{1}{c_s^2} \frac{\partial^2 p'}{\partial t^2} = \nabla^2 p'$$

$$\frac{1}{c_s^2} \frac{\partial^2 \rho'}{\partial t^2} = \nabla^2 \rho'$$

$$\frac{1}{c_s^2} \frac{\partial^2 \Phi}{\partial t^2} = \nabla^2 \Phi$$

En 2d la solución general es similar caso 1d de forma $F(k \cdot x + \omega t) + G(k \cdot x - \omega t)$ con F, G funciones arbitrarias y k y ω cumpliendo la relación de dispersión: $\omega = c_S |k|$ (por la T. Fourier F y G se pueden escribir como superposiciones de ondas harmónicas)

Medio inhomogéneo independiente de tiempo $p_0 = p_0(x), \rho_0 = \rho_0(x) \implies c_s = c_s(x)$ monótonas, variando lentamente..

$$\frac{1}{c_s^2(x)} \frac{\partial^2 p'}{\partial t^2} = \nabla^2 p'$$

$$\frac{1}{c_s^2(x)} \frac{\partial^2 \rho'}{\partial t^2} = \nabla^2 \rho'$$

$$\frac{1}{c_s^2(x)} \frac{\partial^2 \Phi}{\partial t^2} = \nabla^2 \Phi$$

Análogo a la solución del caso homogeneo de la onda plana: $p(x,t) = acos(\phi(x))$ donde $\phi(x,t) = k \cdot x - \omega t$ con la amplitud a const y ω , k constantes verificando la relación de dispersión $\omega^2 = c_s^2 k^2$ intentamos buscar soluciones de forma $a(x,t)e^{i\phi(x,t)}$ (aproximación WKB): donde definimos

$$\omega(x,t) = -\frac{\partial \phi}{\partial t}$$

$$k(x,t) = -\nabla \phi$$

Resolver la ecuación genérica

$$\frac{1}{c_s^2(x)} \frac{\partial^2 p}{\partial t^2} = \nabla^2 p$$

Reemplazando la solución WKB approx. $p(x,t)=a(x,t)e^{i\phi(x,t)}$ en la ecuación y con las definiciones de ω y k de arriba despues de hacer los cálculos y asumiendo que las variaciones en la amplitud son muy pequeñas de forma que podemos omitir términos de segundo orden en las derivadas espaciales y temporales de a llegamos a:

- y la ecuación de la evolución de la amplitud: $\frac{\partial a}{\partial t} + c_g \cdot \nabla a = -\frac{1}{2} \frac{a}{|k|c_s} (\frac{\partial \omega}{\partial t} + c_s^2 \nabla \cdot k)$

con
$$c_g = \frac{\partial \omega}{\partial k} = c_s \frac{k}{|k|}$$
 (k es un vector)

de la relación de dispersión \implies

$$\frac{\partial \omega}{\partial t} + c_g \cdot \nabla \omega = 0$$

$$\frac{\partial k}{\partial t} + c_g \cdot \nabla k = -k \cdot \nabla c_g$$

$$\frac{\partial \phi}{\partial t} + c_g \cdot \nabla \phi = 0$$

Usamos directamente la ecuación de conservación de energía para determinar la amplitud y no la de arriba (TODO):

$$\frac{\partial E}{\partial t} + c_g \cdot \nabla E = -E\nabla \cdot c_g$$

Al largo de un rayo $x_p(t)$ solución de :

$$\frac{dx}{dt} = c_g$$

$$x(0) = x_p$$

las dependencias de x se transforman en dependencias de t
 reemplazando x por $x_p(t)$ y reemplazando en las ecuaciones de arriba obtenemos las ecuaciones diferenciales:

$$\frac{d\omega}{dt} = 0$$

$$\frac{d\phi}{dt} = 0$$

$$\frac{dk}{dt} = -k \cdot \nabla c_g$$

$$\frac{da}{dt} = -\frac{1}{2} \frac{a}{|k|c_s} (\frac{\partial \omega}{\partial t} + c_s^2 \nabla \cdot k)$$

$$\frac{dE}{dt} = -E\nabla \cdot cg$$

2 D

Las caracteristicas: $\frac{dx_i}{dt} = c_s \frac{k_i}{\sqrt{k_0^2 + k_1^2}}, i \in 0, 1$

$$\frac{d\omega}{dt} = 0$$

$$\frac{dk_i}{dt} = -\frac{\partial c_S}{\partial x_i}|k|, \ i \in {0,1}$$

Consideramos el caso inhomogeneo solo en una dirección: (considerando la dirección e_0 , y es lo mismo para una dirección arbitraria cambiando el sistema de coordenadas, $c_s(x) = c_s(x_0)$)

$$\frac{dk_1}{dt} = 0$$

$$\frac{dk_0}{dt} = -\frac{\partial c_s}{\partial x_0} |k|$$

al largo del rayo $x_p(t)$:

$$\omega(x_p(t), t) = constant$$

$$\phi(x_p(t), t) = constant$$

$$k_1(x_p(t),t) = constant$$

Relación entre las amplitudes de las variables p, ρ, v

Suponiendo que estas soluciones existen:

$$p\prime = Pe^{i\phi}$$

$$\rho \prime = Re^{i\phi}$$

$$v = Ve^{i\phi}$$

P,R,V complejos

de la relación de adiabaticidad: $|P(x,t)| = c_s^2(x)|R(x,t)|$

de la ecuación de movimiento:

$$\rho_0 \frac{\partial v}{\partial t} = -\nabla \rho \iota \implies -i \rho_0 \omega V e^{i\phi} = ik P e^{i\phi}$$

despues de simplificar, multiplicar cada lado con su conjugado(hay que expresar las amplitudes locales con el módulo porque pueden ser complejas):

$$|V|^2 = \frac{|P|^2}{\rho_0^2 c_s^2} \implies$$

$$|V| = \frac{1}{c_s \rho_0} |P| = \frac{c_s}{p_0 \gamma} |P|$$

es independiente de si el medio es homogéneo o no

es independiente del número de dimensiones

Practica

Condiciones iniciales

Definimos una amplitud A(en soundwave_perturbation_params.py) muy pequeña y una función periodica h en el intervalo $[x0_0, xf_0]x[x0_1, xf_1]$ (estos están en constants.py) con amplitud máxima 1 y creeamos las perturbaciones para que cumplan las relaciones entre las amplitudes de arriba y considerando una onda que empieza a propagarse en la dirección definida por la recta $n_x x - n_y y = 0$

definimos
$$k_0 = \frac{n_x}{xf_0 - x0_0}, k_1 = \frac{n_y}{xf_1 - x0_1}$$

$$p\prime(x,0) = A\gamma p_0 h(x)$$

$$\rho\prime(x,0) = A\rho_0 h(x)$$

$$v(x,0) = Ac_S h(x)(\frac{k_0}{|k|}, \frac{k_1}{|k|})$$
 donde $|k| = \sqrt{k_0^2 + k_1^2}$

para el paquete de ondas (para el caso de propagación diagonal):

$$h(x) = e^{-\frac{(x_0 - xc_0)^2 + (x_1 - xc_1)^2}{W^2}} cos \left[2\pi K_0 (k_0(x_0 - x0_0) + k_1(x_1 - x0_1)) \right]$$

Fourier

reemplazo los parámetros k_0 y k_1 (multiplicándolos por $2\pi K_0$) para escribir $h(x)=e^{-\frac{(x_0-xc_0)^2+(x_1-xc_1)^2}{W^2}}cos\left[k_0(x_0-xc_0)+k_1(x_1-xc_1)\right]$

para el caso 1
d
$$h_1(x)=e^{\displaystyle -\frac{(x-x_c)^2}{W^2}}\cos(k_0(x-x_0))$$

había obtenido con mathematica (de forma analítica) la transformada fourier de h
 con Fourier Transform sin especificar Fourier Parameters que por defecto son 0,1 y obtengo
 $f_3(k)$. De la documentación de mathematica y también se puede comprobar de forma analítica y numérica $f_3(k) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} h(x) e^{ikx} dx$

después de hacer unos cálculos:

$$f_3(k) = \frac{W}{2\sqrt{2}}e^{-ikx_c}(u_1(k) + u_2(k))$$

$$u_1(k) = e^{-\frac{W^2}{4}(k+k_0)^2} e^{-ik_0(x_0-x_c)}$$

$$u_2(k) = e^{-\frac{W^2}{4}(k-k_0)^2} e^{ik_0(x_0-x_c)}$$

Uso esta transf fourier para calcular en el caso 2d:

La transf fourier de $h(x_0, x_1)$ es

$$\begin{split} f_2(m,n) &= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_0,x_1) e^{imx_0} e^{inx_1} dx_0 dx_1 \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x_0 - xc_0)^2}{W^2}} e^{-\frac{(x_1 - xc_1)^2}{W^2}} cos \big[k_0(x_0 - x0_0) + k_1(x_1 - x0_1) \big] e^{imx_0} e^{inx_1} dx_0 dx_1 \\ &\int_{-\infty}^{\infty} e^{-\frac{(x_0 - xc_0)^2}{W^2}} cos \big[k_0(x_0 - x0_0) + k_1(x_1 - x0_1) \big] e^{imx_0} dx_0 \text{es la transf fourier de h(x) donde reemplazo } x_0 \text{ por } x_0 - \frac{k_1}{k_0} (x_1 - x0_1) \text{ y } x_c \text{ por } xc_0 \end{split}$$

$$\implies f_2(m,n) = \sqrt{\frac{1}{2\pi}} \frac{W}{2\sqrt{2}} e^{-imxc_0} \left[\int_{-\infty}^{\infty} e^{-\frac{(x_1 - xc_1)^2}{W^2}} e^{inx_1} e^{-\frac{W^2}{4}(m+k_0)^2} e^{-ik_0(x_0 - \frac{k_1}{k_0}(x_1 - xc_0) - xc_0)} dx_1 + \frac{(x_1 - xc_1)^2}{W^2} e^{-ik_0(x_0 - \frac{k_1}{k_0}(x_1 - xc_0) - xc_0)} dx_1 \right]$$

$$\int_{-\infty}^{\infty} e^{-\frac{(x_1 - xc_1)^2}{W^2}} e^{inx_1} e^{-\frac{W^2}{4}(m - k_0)^2} e^{ik_0(x_0 - \frac{k_1}{k_0}(x_1 - xc_1) - xc_0)} dx_1$$

$$\implies f_2(m,n) = \frac{W}{4\sqrt{\pi}}e^{-imxc_0} \left[e^{-\frac{W^2}{4}(m+k_0)^2} \int_{-\infty}^{\infty} e^{-\frac{(x_1-xc_1)^2}{W^2}} e^{inx_1}e^{-i(k_0x_0-k_1(x_1-x0_1)-k_0xc_0)} dx_1 + e^{-\frac{W^2}{4}(m-k_0)^2} \int_{-\infty}^{\infty} e^{-\frac{(x_1-xc_1)^2}{W^2}} e^{inx_1}e^{i(k_0x_0-k_1(x_1-x0_1)-k_0xc_0)} dx_1\right]$$

$$\implies f_2(m,n) = \frac{W}{4\sqrt{\pi}}e^{-imxc_0}\left[e^{-\frac{W^2}{4}(m+k_0)^2}e^{-i(k_0x_0+k_1x_0-k_0xc_0)}\int_{-\infty}^{\infty}e^{-\frac{(x_1-xc_1)^2}{W^2}}e^{i(n+k_1)x_1}dx_1 + e^{-\frac{W^2}{4}(m-k_0)^2}e^{i(k_0x_0+k_1x_0-xc_0)}\int_{-\infty}^{\infty}e^{-\frac{(x_1-xc_1)^2}{W^2}}e^{i(n-k_1)x_1}dx_1\right]$$

las integrales son transf fourier de func gauss: $\int_{-\infty}^{\infty} e^{-\frac{(x_1-xc_1)^2}{W^2}} e^{inx_1} dx_1 = \sqrt{\pi}e^{-ixc_1n}e^{-\frac{n^2W^2}{4}}$

$$\Longrightarrow f_2(m,n) = \frac{W}{4} e^{-imxc_0} \left[e^{-\frac{W^2}{4}(m+k_0)^2} e^{-i(k_0x_0+k_1x_0-k_0xc_0)} e^{-ixc_1(n+k_1)} e^{-\frac{W^2}{4}(n+k_1)^2} + e^{-\frac{W^2}{4}(m-k_0)^2} e^{i(k_0x_0+k_1x_0-k_0xc_0)} e^{-ixc_1(n-k_1)} e^{-\frac{W^2}{4}(n-k_1)^2} \right]$$

$$\Rightarrow f_2(m,n) = \frac{W}{4}e^{-i(mxc_0+nxc_1)} \left[e^{-\frac{W^2}{4}(m+k_0)^2}e^{-\frac{W^2}{4}(n+k_1)^2}e^{-i(k_0x_0+k_1x0_1-k_0xc_0-k_1xc_1)} + e^{-\frac{W^2}{4}(m-k_0)^2}e^{-\frac{W^2}{4}(n-k_1)^2}e^{i(k_0x_0+k_1x0_1-k_0xc_0-k_1xc_1)}\right]$$

la fórmula muy similar a la 1d (sobre todo si reemplazo con los vectores)

2 gauss una centrada en $k = [k_0, k_1]$ y la otra en -k

Ray tracing

determinar k(t) y x(t) de las ecuaciones diferenciales

$$k(t=0) = [K_0, K_1], x(t=0) = z_c$$

calculamos en cada paso de tiempo k y x integrando las DE de arriba

podemos comprobar si k obtenido en cada paso de tiempo es igual a k_c el valor donde la transf fourier tiene el máximo

Caso homogéneo

k es constante \implies las trayectorias son rectas

Caso inhomogéneo $cs(x) = cs(x_0) \implies k1$ constante

- $k_1=0$ las trayectorias son rectas, si c
s crece en la dirección de k inicial , k_0 decrece, la componente en la dirección
 x_0 de las otras componentes del paquete de ondas decrecen también y el paquete se abre
 De forma similar si c
s decrece en esta dirección, k_0 crece y el paquete se alarga
- $k_0>0, k_1>0$ (el paquete va de izq arriba derecha abajo), c
s decrece en la direccion x_0 (arriba abajo)
, k_0 decrece y el paquete gira a la derecha