SPECTROSCOPIA RADIAȚIILOR BETA

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD
Pascu Ioana-Călina
Sîrboiu Patricia Octavia
Văideanu Renata-Georgia

Scopul lucrării de laborator este de a determina energia maximă a radiațiilor beta, E_{max} , pentru o sursă de radiații β^- de Stronțiu.

Tensiunea de alimentare a electromagnetului a fost modificată pentru a obține valorile curentului electric prin bobină indicate în tabel. Pe lângă acestea, au fost adăugate valorile intermediare: 0.05, 0.15, ..., 0.65, pentru care trebuie determinată inducția câmpului magnetic separat.

Pentru aceste valori intermediare, coloana inducțiilor a fost completată folosind dreapta de regresie a graficului B = f(I), cu valorile prestabilite ale intensităților și inducțiilor.

Tot pentru valorile intermediare, s-a calculat separat energia particulelor beta folosind formula:

$$E(keV) = \sqrt{(RBc/1000)^2 + 511^2} - 511$$

unde R = 14 cm – raza de curbură, B – inducția câmpului magnetic luată din tabel, iar $c = 3 \cdot 10^8 \frac{m}{s}$ – viteza luminii.

În urma măsurătorilor s-au obținut următoarele valori:

Nrc	I(A)	B(mT)	E(keV)	N(Imp)	n' = N / t	n = n' - f
1	0	2,1	1,4	198	3,3	2,97
2	0,05	2,9006	14.321	237	3,95	3,555
3	0,1	4,6	19,58	293	4,883333	4,395
4	0,15	5,5346	50,387	402	6,7	6,03
5	0,2	6,9	53,3	468	7,8	7,02
6	0,25	8,1686	104,488	576	9,6	8,64
7	0,3	9,3	102,89	651	10,85	9,765
8	0,35	10,8026	172,354	834	13,9	12,51
9	0,4	12,5	186,39	912	15,2	13,68
10	0,45	13,4366	250,313	1056	17,6	15,84
11	0,5	14,5	246,07	1178	19,63333	17,67
12	0,55	16,0706	335,581	1202	20,03333	18,03
13	0,6	16,8	319,91	1295	21,58333	19,425
14	0,65	18,7046	426,165	1304	21,73333	19,56
15	0,7	19,6	415,47	1319	21,98333	19,785
16	0,75	21,3386	520,665	1284	21,4	19,26
17	0,8	22,3	511,97	1214	20,23333	18,21
18	0,85	23,9726	618,1	1176	19,6	17,64
19	0,9	24,8	604,17	1125	18,75	16,875
20	0,95	26,6066	717,77	1062	17,7	15,93
21	1	28,2	732,82	904	15,06667	13,56
22	1,05	29,2406	819,174	853	14,21667	12,795
23	1,1	31	840,89	802	13,36667	12,03
24	1,15	31,8746	921,944	731	12,18333	10,965
25	1,2	32,7	907,26	672	11,2	10,08
26	1,25	34,5086	1025,805	654	10,9	
27	1,3	36,1	1041,32	542	9,033333	8,13
28	1,35	37,1426	1130,55	498	8,3	7,47
29	1,4	38,2	1124,86	465	7,75	6,975
30	1,45	39,7766	1236,021	394	6,566667	5,91
31	1,5	41,1	1240,98	350	5,833333	5,25
32	1,55	42,4106	1342,09	307	5,116667	4,605
33	1,6	44,1	1361,86	291	4,85	4,365
34	1,65	45,0446	1448,66	273	4,55	4,095
35	1,7	46,7	1467,14	221	3,683333	3,315

Se trasează graficul n' = f(E) pentru a determina energia cea mai probabilă (E_h) .

Maximul graficului rezultat este $E_h=415,\!47$ keV. Deci, știind că energia maximă a radiației beta este de trei ori mai mare decât energia cea mai probabilă:

$$E_{max} = 3 \cdot E_{h} = 1246.41 \text{ keV}$$