Difference-in-Differences using Mixed-Integer Programming Matching Approach

Magdalena Bennett

McCombs School of Business, The University of Texas at Austin

AEFP 50th Conference, Washington DC March 13th, 2025

Diff-in-Diff as an identification strategy

Parallel trend assumption (PTA)

Estimate Average Treatment Effect on the Treated (ATT)

But what if the PTA doesn't hold?

But what if the PTA doesn't hold?

We can potentially remove [part of] the bias by matching on $X_{it}^s = X_i$

This paper

- Identify contexts when matching can recover causal estimates under certain violations of the parallel trend assumption.
 - o Overall bias reduction and increase in robustness for sensitivity analysis.
- Use mixed-integer programming matching (MIP) to balance covariates directly.

Simulations:

Different DGP scenarios

Application:

School segregation & vouchers

Let's set up the problem

DD Setup

- Let $Y_{it}(z)$ be the potential outcome for unit i in period t under treatment z.
- ullet Intervention implemented in $T_0 o \mathsf{No}$ units are treated in $t\le T_0$
- ullet Difference-in-Differences (DD) focuses on ATT for $t>T_0$:

$$ATT(t) = E[Y_{it}(1) - Y_{it}(0)|Z = 1]$$

DD Setup

- Let $Y_{it}(z)$ be the potential outcome for unit i in period t under treatment z.
- ullet Intervention implemented in $T_0 o \mathsf{No}$ units are treated in $t\le T_0$
- Difference-in-Differences (DD) focuses on ATT for $t>T_0$:

$$ATT(t) = E[Y_{it}(1) - Y_{it}(0)|Z = 1]$$

Under the PTA:

$$\hat{ au}^{DD} = \overbrace{E[Y_{i1}|Z=1] - E[Y_{i1}|Z=0] - }^{\Delta_{post}} \ \underbrace{(E[Y_{i0}|Z=1] - E[Y_{i0}|Z=0])}_{\Delta_{pre}}$$

Bias in a DD setting

Bias can be introduced to DD in different ways:

- 1) Time-invariant covariates with time-varying effects: Obs. Bias
 - e.g. Effect of gender on salaries.
- 2) Differential time-varying effects: Obs. Diff. Bias
 - e.g. Effect of race on salaries evolve differently over time by group.
- 3) Observed or unobserved time-varying covariates: Unobs. Bias
 - e.g. Test scores

If the PTA holds...

$$\underbrace{(\bar{\gamma}_{1}(X^{1},t') - \bar{\gamma}_{1}(X^{0},t')) - (\bar{\gamma}_{1}(X^{1},t) - \bar{\gamma}_{1}(X^{0},t))}_{Obs.Diff.Bias} + \underbrace{(\bar{\gamma}_{2}(X^{1},t') - \bar{\gamma}_{2}(X^{1},t))}_{Unobs.Bias} + \underbrace{(\lambda_{t'1} - \lambda_{t'0}) - (\lambda_{t1} - \lambda_{t0})}_{Unobs.Bias} = 0$$

One of the two conditions need to hold:

- 1) No effect or constant effect of X on Y over time: $\mathbb{E}[\gamma_1(X,t)] = \mathbb{E}[\gamma_1(X)]$
- 2) Equal distribution of observed covariates between groups: $X_i|Z=1\stackrel{d}{=}X_i|Z=0$

in addition to:

- 3) No differential time effect of X on Y by treatment group: $\mathbb{E}[\gamma_2(X,t)]=0$
- 4) No unobserved time-varying effects: $\lambda_{t1} = \lambda_{t0}$

Cond. 2 can hold through matching

Cond. 3 and 4 can be tested with sensitivity analysis

Sensitivity analysis for Diff-in-Diff

ullet In an event study o null effects prior to the intervention:

Honest approach to test pretrends

- One main issue with the previous test → Underpowered
- Rambachan & Roth (2023) propose sensitivity bounds to allow pre-trends violations:
 - E.g. Violations in the post-intervention period can be *at most M* times the max violation in the pre-intervention period.

Simulations

Different scenarios

For linear and quadratic functions:

S1: No interaction between X and t

S2: Equal interaction between X and t

S3: Differential interaction between X and t

S4: S3 + Bias cancellation

ullet For all scenarios, differential distribution of covariates X between groups

Parameters:

Parameter	Value
Number of obs (N)	1,000
Pr(Z=1)	0.5
Time periods (T)	8
Last pre-intervention period (T_0)	4
Matching PS	Nearest neighbor (using calipers)
MIP Matching tolerance	.01 SD
Number of simulations	1,000

• Estimate compared to sample ATT (can be different for matching)

S1 - No interaction between X and t

S2 - Equal interaction between X and t by treatment

S3 - Differential interaction between X and t by treatment

Why is this bias reduction important?

• Example of S2 (Quadratic) with no true effect:

Why is this bias reduction important?

• Even under modest bias, we would incorrectly reject the null 20% of the time.

Why is this bias reduction important?

• Sensitivity analysis results are skewed by the magnitude of the bias.

S4: Bias cancellation

(a) Larger bias in matched DD vs Smaller bias in unmatched DD

 $\beta_{x} = 0.5$ $\beta_{x_{t}} = -0.1$ $\beta_{x_{t1}} = 0.03$ $\lambda_{t1} = 0.02$

(a) Larger bias in matched DD vs No bias in unmatched DD

True Effect

Matched

Application

Preferential Voucher Scheme in Chile

- ullet Universal flat voucher scheme $\stackrel{\mathbf{2008}}{\longrightarrow}$ Universal + preferential voucher scheme
- Preferential voucher scheme:
 - Targeted to bottom 40% of vulnerable students
 - Additional 50% of voucher per student
 - Additional money for concentration of SEP students.

Students:

- Verify SEP status
- Attend a SEP school

Schools:

- Opt-into the policy
- No selection, no fees
- Resources ~ performance

Before matching: Household income

Year

Years

Before matching: Average SIMCE

Years

Matching + DD

- Prior to matching: No parallel pre-trend
- Different types of schools:
 - Schools that charge high co-payment fees.
 - Schools with low number of SEP student enrolled.
- MIP Matching using constant or "sticky" covariates:
 - Mean balance (0.025 SD): Enrollment, average yearly subsidy, number of voucher schools in county, charges add-on fees
 - Exact balance: Geographic province

Groups are balanced in specific characteristics

Absolute standarized diff. in means

Matching in 16 out of 53 provinces

After matching: Household income

After matching: Average SIMCE

Year

Results

- Matched schools:
 - More vulnerable and lower test scores than the population mean.
- 9pp increase in the income gap between SEP and non-SEP schools in matched DD:
 - SEP schools attracted even more vulnerable students.
 - Non-SEP schools increased their average family income.
- No evidence of increase in SIMCE score:
 - o Could be a longer-term outcome.
- Findings in segregation are moderately robust to hidden bias (Keele et al., 2019):
 - \circ $\Gamma_c=1.76 o$ Unobserved confounder would have to change the probability of assignment from 50% vs 50% to 32.7% vs 67.3%.
 - Allows up to 70% of the maximum deviation in the pre-intervention period (*M* = 0.7) vs 50% without matching (Rambachan & Roth, 2023)

Potential reasons?

• Increase in probability of becoming SEP in 2009 jumps discontinuously at 60% of SEP student concentration in 2008 (4.7 pp; SE = 0.024)

Let's wrap it up

Conclusions and Next Steps

- Matching can be an important tool to address violations in PTA.
- Bias reduction is very important for sensitivity analysis.
- Serial correlation also plays an important role: Don't match on random noise.
- Next steps: Partial identification using time-varying covariates

Difference-in-Differences using Mixed-Integer Programming Matching Approach

Magdalena Bennett

McCombs School of Business, The University of Texas at Austin

AEFP 50th Conference, Washington DC March 13th, 2025

Honest approach to test pretrends

- One drawback of the previous method is that it can **overstate** (or understate) the robustness of findings if the point estimate is biased.
 - Honest CIs depend on the magnitude of the point estimate as well as the pre-trend violations.
- Matching can reduce the overall bias of the point estimate

(a) Biased estimate

(b) Unbiased estimate

How do we match?

- Match on covariates or outcomes? Levels or trends?
- Propensity score matching? Optimal matching? etc.

This paper:

- Match on time-invariant covariates that could make groups behave differently.
 - Use distribution of covariates to match on a template.
- Use of Mixed-Integer Programming (MIP) Matching (Zubizarreta, 2015; Bennett, Zubizarreta, & Vielma, 2020):
 - Balance covariates directly
 - Yield largest matched sample under balancing constraints (cardinality matching)
 - Works fast with large samples

Data Generating Processes

Scenarios	Functions
Linear	
(1) No interaction between X and t	$\gamma_0(X)=eta_x\cdot X \qquad \gamma_1=\gamma_2=0$
(2) Equal interaction between $oldsymbol{X}$ and $oldsymbol{t}$ by treatment	$\gamma_0(X) = eta_x \cdot X \qquad \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t}{2} \qquad \gamma_2(X,t) = 0$
(3) Different interaction between \boldsymbol{X} and \boldsymbol{t} by treatment	$\gamma_0(X) = eta_x \cdot X \qquad \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t}{2} \qquad \gamma_2(X,t) = eta_{x_{t1}} \cdot X \cdot rac{t}{5} \cdot Z$
Quadratic	
(1) No interaction between X and t	$\gamma_0(X) = eta_x \cdot X + eta_x \cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1 = \gamma_2 = 0$
(2) Equal interaction between X and t by treatment	$\gamma_0(X) = eta_x \cdot X + eta_x \cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1(X,t) = eta_{x_t} \cdot X \cdot rac{t^2}{10} \hspace{0.5cm} \gamma_2(X,t) = 0$
(3) Different interaction between X and t by treatment	$\gamma_0(X)=eta_x\cdot X+eta_x\cdot rac{X^2}{10} \hspace{0.5cm} \gamma_1(X,t)=eta_{x_t}\cdot X\cdot rac{t^2}{10} \hspace{0.5cm} \gamma_2(X,t)=eta_{x_{t1}}\cdot X\cdot rac{t^2}{50}\cdot Z$

SEP adoption over time

