Topic 10 - Diagnostics

STAT 525 - Fall 2013

Outline

- Scatterplots
- Correlation Matrix
- Residual Plots
- Tests
- Remedies
- Example

Topic 10

STAT 525

Diagnostics

- Diagnostics play a key role in both the **development** and assessment of multiple regression models
- Most of the previous diagnostics carry over to multiple regression
- However, given more than one predictor, must also consider relationship between predictors
- Specialized diagnostics discussed later in Chpts 9 and 10

STAT 525

Scatterplots

- Scatterplot matrix summarizes bivariate relationships between Y and X_j as well as between X_j and X_k (j, k = 1, 2, ..., p 1)
 - Nature of bivariate relationships
 - Strength of bivariate relationships
 - Detection of outliers
 - Range spanned by X's
- Scatterplot matrix embines many scatterplots
- Examples presented later in this topic

Topic 10

3

Correlation Matrix

- Complementary summary
- Displays all pairwise correlations
- When interpreting, be wary of
 - Nonlinear relationships
 - Outliers
 - Influential observations

Topic 10

5

STAT 525

Tests

- Univariate graphical summaries of e still preferred
- NORMAL option in UNIVARIATE test normality
- Modified Levene's and Breusch-Pagan for constant variance
- ullet Lack of fit test: But need repeat observations where all X fixed at same levels or can be comfortably grouped together....this hinders its applicability

Residual Plots

- \bullet Used for similar assessment of assumptions
 - Model is "correct"
 - Errors are Normally distributed
 - Errors have constant variance
 - Errors are independent
- Plot e vs \hat{Y} (overall)
- Plot e vs X_i (with respect to X_i)
- Plot e vs non-included variable (e.g., X_iX_k)

Topic 10

6

STAT 525

Example I - Dwaine Studios (pg 236)

- Company that specializes in portraits of children. It has studios in 21 medium-sized cities nationwide and is considering expansion into other cities.
- Goal: To investigate whether sales are associated with certain characteristics of the city. If so, this could help in determining where to expand.
- Variables:
 - Annual sales (Y) expressed in thousands of \$
 - Persons aged 16 and younger (X_1) expressed in thousands
 - Per capita disposable income (X_2) expressed in thousands of \$

Topic 10

7

Topic 10

8

Scatterplot Matrix

Topic 10

Correlations

proc corr data=a1;
var young income sales;

Pearson Correlation Coefficients, \mathbb{N} = 21

Prob > |r| under HO: Rho=0

young income sales

young 1.00000 0.78130 0.94455

<.0001 <.0001

<.0001

<.0001

sales 0.94455 0.83580 1.00000

<.0001 <.0001

Topic 10

STAT 525

Model Fit Diagnostics

Topic 10

STAT 525

Example II - Predict Success?

- Goal: To find entry-level predictors of academic success
- Define academic success as high GPA after 3 semesters
- Predictors include
 - GPA after three semesters
 - HS math grades
 - HS science grades
 - HS english grades
 - SAT Math
 - SAT Verbal
- Data available on n = 224 students

Topic 10

• Using Proc MEANS or Proc UNIVARIATE

STAT 525

Var	N	Mean	Std Dev
gpa	224	2.64	0.78
hsm	224	8.32	1.64
hss	224	8.09	1.70
hse	224	8.09	1.51
\mathtt{satm}	224	595.29	86.40
satv	224	504.55	92.61

Topic 10 14

STAT 525

Topic 10

 ${\rm Topic}\ 10$

 $Topic \ 10$

Correlations

```
var hsm hss hse;
     hsm
            hss
                   hse
          0.57
                   0.44
hsm 1.00
          <.0001 <.0001
hss 0.57 1.00
                   0.57
   < .0001
                 < .0001
hse 0.44
           0.57
                  1.00
   <.0001 <.0001
```

[2] proc corr data=a1; var satm satv;

[1] proc corr data=a1;

satmsatv 0.46 satm 1.00 <.0001 satv 0.46 1.00 <.0001

Topic 10

Correlations

[3] proc corr data=a1; var hsm hss hse satm satv; with gpa;

> hse 0.28 gpa 0.43 0.32 <.0001 <.0001 <.0001

satmsatv 0.25 0.11 0.0001 0.0873

Topic 10

STAT 525

Regression Models

• Will now investigate:

Model 1: GPA = HSM HSS HSE

Model 2: GPA = HSM HSE

Model 3: GPA = HSM

Model 4: GPA = SATM SATV

Model 5: GPA = HSM HSS HSE SATM SATV

• Should check residuals prior to any inference

STAT 525

Model 1

Analysis of Variance Sum of Mean

Source Squares Square F Value Pr > F Model 27.71233 9.23744 18.86 < .0001

Error 107.75046 0.48977

Corrected Total 135.46279

Root MSE 0.69984 R-Square 0.2046 Dependent Mean 2.63522 Adj R-Sq 0.1937

Coeff Var 26.55711

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.58988	0.29424	2.00	0.0462
hsm	1	0.16857	0.03549	4.75	<.0001
hss	1	0.03432	0.03756	0.91	0.3619
hse	1	0.04510	0.03870	1.17	0.2451

Model 2

Mean

Analysis of Variance

 Source
 DF
 Squares
 Square F Value
 Pr > F

 Model
 2
 27.30349
 13.65175
 27.89
 <.0001</td>

 Error
 221
 108.15930
 0.48941

Sum of

Corrected Total 223 135.46279

Root MSE 0.69958 R-Square 0.2016

Dependent Mean 2.63522 Adj R-Sq 0.1943

Coeff Var 26.54718

Parameter Estimates

Parameter Standard DF Estimate Error t Value Pr > |t| Variable 0.62423 0.29172 2.14 0.0335 Intercept 1 5.72 0.03196 <.0001 0.18265 0.03473 1.75 0.0820 hse 1 0.06067

Topic 10

STAT 525

25

27

Model 4

Analysis of Variance

 Sum of Squares
 Mean

 Source
 DF
 Squares
 Square F Value Pr > F

 Model
 2
 8.58384 4.29192 7.48 0.0007

Error 221 126.87895 0.57411

Corrected Total 223 135.46279

Root MSE 0.75770 R-Square 0.0634
Dependent Mean 2.63522 Adj R-Sq 0.0549

Coeff Var 28.75287

Parameter Estimates

Parameter Standard Variable DF Estimate Error t Value Pr > |t| 1.28868 0.37604 3.43 0.0007 Intercept 0.00228 3.44 0.0007 satm 0.00066291 1 -0.00002456 0.00061847 -0.04 0.9684 satv

Topic 10

Model 3

Analysis of Variance

Sum of Mean Source DF Squares Square F Value Pr > F Model 25.80989 25.80989 52.25 <.0001 Error 222 109.65290 0.49393 Corrected Total 223 135,46279

 Root MSE
 0.70280
 R-Square
 0.1905

 Dependent Mean
 2.63522
 Adj R-Sq
 0.1869

Coeff Var 26.66958

Parameter Estimates

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 0.90768 0.24355 3.73 0.0002
hsm 1 0.20760 0.02872 7.23 <.0001

Topic 10

Model 5

Analysis of Variance of Mean

26

28

 Sum of
 Mean

 Source
 DF
 Squares
 Square
 F Value
 Pr > F

 Model
 5
 28.64364
 5.72873
 11.69
 <.0001</td>

Error 218 106.81914 0.49000

Corrected Total 223 135.46279

Root MSE 0.70000 R-Square 0.2115
Dependent Mean 2.63522 Adj R-Sq 0.1934

Coeff Var 26.56311

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.32672	0.40000	0.82	0.4149
\mathtt{satm}	1	0.00094359	0.00068566	1.38	0.1702
satv	1	-0.00040785	0.00059189	-0.69	0.4915
hsm	1	0.14596	0.03926	3.72	0.0003
hss	1	0.03591	0.03780	0.95	0.3432
hse	1	0.05529	0.03957	1.40	0.1637

General Linear Test

```
• Can use TEST statement in SAS
```

```
proc reg data=a1;
  model gpa=satm satv hsm hss hse;
  sat: test satm, satv;
  hs: test hsm. hss. hse:
```

Test sat

Results for Dep Var $\ensuremath{\mathtt{gpa}}$

Mean

Source DF Square F Pr > F Num 2 0.46566 0.95 0.3882

Den 218 0.49000

Test hs

Results for Dep Var gpa

Mean

Source DF Square F P
Num 3 6.68660 13.65 <.0001

Den 218 0.49000

Topic 10

What's the Best Model?

- Will discuss selection approaches in Chpts 8,9, and 10
- Appears HSM only is best model
- Should also be looking at diagnostics
- Important:
 - Look at variables one at a time
 - Look at all pairwise relationships
 - PLOT! PLOT! PLOT!

Topic 10

STAT 525

Topic 10

Model Fit Diagnostics

STAT 525

Key Results

- The relationship between Y and X_j depends on the other predictors in the model
- A predictor may be significant alone but not significant when other variables are in the model
- Similarly, coefficients and standard errors depend on the variables that are in the model

pic 10

Topic 10

32