L16 ANSWER 6 OF 16 CA COPYRIGHT 1994 ACS

AN CA104(16):131154s CA

TI Carbonaceous antifriction material containing phenol-formaldehyde resin binder

IN Sasak, Stanislav; Duracka, Ludovit; Hodal, Emil; Petrik, Emil

LO Czech.

so __Czech.__3 pp.

CS 218705 B 850610

AI CS 81-1855 810316

SC 38-3 (Plastics Fabrication and Uses)

DT P

PI

CO CZXXA9

PY 1985

LA Czech

AB Antifriction materials comprise PhOH-HCHO polymer (I) binder and a filler compn. comprising 78% petroleum coke (particle size <0.04 mm), 10% graphite (particle size <0.01 mm), 8% asbestos (particle size <0.7 mm), and 4% MoS2 (particle size <0.01 mm). Thus, I 43, hexamethylenetetramine 3, stearin 2, MgO 2, and filler (prepd. from a mixt. of 39% heat-treated coke, 39% coke, 10% graphite, 8% asbestos and 4% MoS2 homogenized for 1 h at 110-120.degree. and ground to particle size 0.7 mm) 50 parts were mixed 1 h, calendered 10 min at 100-110.degree., cooled, and ground. Sealing rings manufd. from the granulated and hardened compn. had d. 1.53 g/cm3, compressive strength 150 MPa, hardness HRB 5/20 75, and dry wear 0.05 mm when mounted on a counter ring having a hard metal overlay at 0.12 MPa and angular velocity 1.25 m/s for 200 h.

FOR

Slot 3041 The Information Store REG USIC Ord 143957 B

Order Date & Time 26-MAY-94 @ 13:13 Needs By:

To Location: GONU Staffer:

Call Number:

Journal/Book Title: CS 218705 B

(CZECH PATENT)

Volume:

Issue:

ISSN/ISBN:

DATE: 1985

PAGES: 3P

Article Title: CARBONACEOUS ANTIFRICTION MATERIAL CONTAINING PHENOL-

FORMALDEHYDE

Author: SASAK, STANISLAV; ET AL

Page Count

Reason Not Filled

Client Order Num.:

Client Sequence 1: MCCULFOR

Client Sequence 2:

REG USIC Ord 143957 B

8lot 304F

SOCIALISTICKÁ REPUBLIKA (19)

TUPIS VYNALFZU

218/05

()

(B1)

(11)

ÚŘAD PRO VYNÁLEZY

A OBJEVY

K AUTORSKÉMU OSVEDČENIU

(51) Int. Cl.³ C 08 L 61/10

- (22) Prihlásené 16 03 81(21) (PV 1855-81)
- (40) Zverejnené 25 06 82
- (45) Vydané
- 01 06 85

(75)

Autor vynálezu

SASÁK STANISLAV, ĎURAČKA ĽUDOVÍT, HODÁL EMIL ing., TOPOĽČANY, PETRÍK EMIL, NITRIANSKA STREDA

(54) Uhlíkový klzný materiál spájaný fenolformaldehydovou živicou

Vynález sa týka uhlíkového klzného materiálu spájaného fenolformaldehydovou živicou, ktorého plnivo je zložené zo 78%-ného petrolejového koksu, 10 % grafitu, 8 % mikroazbestu a 4 % sírniku molybdeničitého, pričom najmenej 50 % z obsahu petrolejového koksu je tepelne spracované pri teplote 2400 až 2800 °C, čím sa dosiahne nízkeho opotrebenia z neho vyrobených tesniacich elementov rotačných upchávok a iných bezmazných strojných dielcov, napr. používaných plynomerov.

Dup l'icate

Vynález rieši materiálové zloženie uhlíkového klzného materiálu spájaného fenolformaldehydovou živicou pre strojné diely, u ktorých sa vyžaduje nízky koeficient trenia a nízke opotrebovanie. Napríklad: tesniace elementy rotačných upcháviek, ložiská, diely plynomerov a podobne.

Sú známe fenolformaldehydové materiály, u ktorých ako plniva sa používajú niektoré z týchto látok napr. textilné vlákna, drevená múčka, mletá bridlica, grafit. Nevýhodou klzných strojných dielov vyrobených z týchto materiálov je vysoký koeficient trenia a veľké opotrebenie. Konkrétne hodnoty koeficientu trenia a životnosti sú závislé od akosti protikusu a média, v ktorom pracujú ako napr. rôzne kvapaliny, vzduch, plyn ako i od ich teploty atď. Materiály plnené grafitom majú nižší koeficient trenia v porovnaní s ostatnými uvedenými plnidlami, ale majú nižšiu tvrdosť, čo spôsobuje vyššie opotrebenie.

Predmetom vynálezu je uhlíkový klzný materiál spájaný fenolformaldehydovou živicou, u ktorého plnivo je zložené zo 78 % petrolejového koksu jemnejšieho ako 0,04 mm, 10 % grafitu jemnejšieho ako 0,01 mm, 8 % mikroazbestu jemnejšieho ako 0,7 mm a 4 % sírniku molybdeničitého jemnejšieho ako 0,01 mm, vyznačujúci sa tým, že najmenej 50 % petrolejového koksu prítomného v plnidle je tepelne spracované pri teplote 2400 až 2800 °C. Komponenty plniva ovplyvňujú vlastnosti finálneho výrobku nasledovne:

Koks tepelne spracovaný na teplotu 2400–2800 °C dáva výrobku tvrdosť a klzné vlastnosti, mikroazbest zvyšuje pevnosť v lome a zlepšuje vlastnosti materiálu pri technologickom spracovaní, grafit a sírnik molybdeničitý zlepšuje klzné vlastnosti pri suchom trení i za teplôt nad 100 °C.

Materiál pripravený podľa tohoto vynálezu vykazuje mechanické vlastnosti obdobné aké majú fenolformaldehydové materiály plnené textilnými vláknami, mletou bridlicou, drevitou múčkou, grafitom a zároveň dobré klzné vlastnosti, aké majú klasické uhlíkové materiály pri čom svojou životnostou oba porovnávajúce materiály prevyšuje.

Upchávkový krúžok vyrobený z materiálu podľa tohoto vynálezu, pri suchom trení na oceľovom protikrúžku s tvrdokovovým návarom za prítlačného tlaku 0,12 MPa a obvodovej rýchlosti 1,25 m/s, má po 200 h chodu opotrebenie 0,05 mm.

Krúžok vyrobený z fenolformaldehydovej živice plnenej drevenou múčkou má za uvedených podmienok opotrebenie 0,35 mm. Ďalšie výhody nového materiálu sa prejavujú i v oblasti ekonomickej. Náklady na výrobu navrhovaného materiálu sú na úrovni bežných plnených fenolformaldehydových materiálov, avšak sú až 20-krát nižšie v porovnaní s klasickými uhlíkovými materiálmi.

Ako príklad využitia tohto vynálezu je možné uviesť výrobu tesniaceho krúžku pre upchávku.

Pri príprave plniva sa do ramenovej miešačky vyhrievanej na teplotu 120 °C navážia nasledovné suroviny:

•	zrnitosť	
•	jemn.	zloženie
	než	%
	(mm)	
Mletý petrolejový koks vyžíha-		
ný na teplotu 2600 °C	0,04	39
Mletý petrolejový koks	0,04	39
Grafit, netolický púder	0,01	10
Mikroazbest	0,7	8
Sírnik molybdeničitý	0,01	4

Plnivo sa mieša 1 h pri 110-120 °C za účelom dokonalého zhomogenizovania ako i odparenia vlhkosti a preoseje sa na vibračnom site s veľkostou oka 0,7 mm, aby došlo k rozbitiu prípadných zhlukov.

Pri príprave lisovacej zmesi sa do ramenovej miešačky naváži:
Pripravené plnivo 50 dielov Fenol-novolaková živica 70 °C zomletá na veľkost zrna max. 2 mm 43 dielov Hexametyléntetramín 3 diely Stearín 2 diely Kysličník horečnatý 2 diely

Zmes sa homogenizuje hodinu a kalandruje na frakčnom kalandri, u ktorého je pomer otáčok valcov 1:1,2. Teplota pomalšieho valca 100-110 °C. Doba kalandrovania jednej dávky je 10 minút.

Po vychladnutí sa zmes podrví na čelusťovom drviči, zomelie na kolíkovom desintegrátore a preoseje sa cez sito s veľkosťou oka 2 mm a väčší podiel sa znovu zomelie. Zmes sa tabletuje na tablety Ø 20 až 30 mm hrúbky 8 až 10 mm, špecifickým tlakom 20-30 MPa.

Pri lisovaní tesniacich krúžkov Ø 36/26 × 8 mm sa granulovaná zmes naváži do lis. stroja a vytvrdzuje sa pod tlakom 60 MPa pri teplote 160 °C po dobu 8 minút. Po vychladnutí sa výrobok odhrotí a funkčná plocha sa zalapuje na drsnosť Ra 0,8.

Dosiahnuté fyzikálne vlastnosti:

Olimpid hustata (a/am³)	1,53
Objemová hustota (g/cm³)	150
Pevnosť v tlaku (MPa)	
Tyrdosf HR _B 5/20	75
Opotrebenie za sucha (mm)	0,05
na protikrúžku s tyrdokovovým ná	varom pri tlaku
0 12 MPa, obvodovej rýchlosti 1,2	5 m/s za 200 h.

Uhlíkový klzný materiál spájaný fenolformaldehydovou živicou, u ktorého plnivo je zložené zo 78 % petrolejového koksu jemnejšieho ako 0,04 mm, 10 % grafitu jemnejšieho ako 0,01 mm, 8 % mikroazbestu jemnejšieho ako 0,7 mm a 4 %

sírniku molybdeničitého jemnejšieho ako 0,01 mm vyznačujúci sa tým, že najmenej 50 % petrolejového koksu prítomného v plnidle je tepelne spracované pri teplote 2400 až 2800 °C.