Gaokai Zhang

+1 412-214-3200 | gaokaiz@andrew.cmu.edu | linkedin.com/in/gaokaizhang

EDUCATION

Carnegie Mellon University

Zhejiang University

Pittsburgh, Pennsylvania

Master of Science in Intelligent Information Systems

Dec 2026

University of Illinois at Urbana-Champaign

Champaign, Illinois

Bachelor of Science in Computer Engineering (Highest Honors), GPA: 3.89/4.0

Hangzhou, China

Bachelor of Engineering in Electrical and Computer Engineering, GPA: 3.95/4.0

May 2025

May 2025

SKILLS

Languages & Tools: Python, C/C++, Bash, Git, SQL, Slurm, RSpec, Linux, Docker, ReactJS

Frameworks: PyTorch, Hugging Face Transformers, Spark, verl, OpenRLHF, DeepSpeed, Megatron-LM

ML/Systems: Distributed Training, Supervised Fine-tuning, Reinforcement Learning, Cloud (Azure, CloudLab)

Professional Experience

Microsoft Research Asia

Beijing, China

Machine Learning Engineer Intern in Systems Research Group supervised by Dr. Li Lyna Zhang — July 2024 – Aug 2025

- Initiated design of a multi-stage reinforcement learning recipe for long-context reasoning with Group Relative Policy Optimization (GRPO); boosted Qwen2.5-7B-Instruct by 48% on long-context benchmarks, surpassing larger state-of-the-art (SOTA) 32B Large Reasoning Models (LRMs).
- Collaborated with mentors and colleagues to scale context windows of Large Language Models (LLMs); extended Llama3-8B from 8K to 128K using only 10B tokens—80× fewer than Meta's approach—while retaining 98.5% short-context accuracy.
- Led development of a parallel pipeline for browsing-history retrieval and filtering, reducing 8B-token data curation time by 80% (35h → 7h); partnered with customer-oriented teams to deliver production-ready recommendation LLMs with 70% user-interest prediction accuracy against GPT-4o, supporting Microsoft Asia-Pacific R&D Group in product delivery.

LLM Systems & Cloud Optimization

Champaign, Illinois

Research Intern supervised by Prof. Fan Lai from UIUC

Nov 2024 - Aug 2025

- Coordinated with peers to design an MCTS planner for cloud machine learning under Service-Level Objectives (SLOs), integrating multi-fidelity profiling data from collaborators; cut search time for training an 80-layer model on 32 GPUs from 100,000s with Metis' exhaustive search to only 80s.
- Benchmarked and validated profiling via Megatron-LM across diverse RSpec configurations; communicated findings with peers to resolve heterogeneity mismatches across GPU (V100, A40, A100, H200, etc.) deployments.

LLM Randomness Safety Evaluation

Champaign, Illinois

Research Intern supervised by Professors Minjia Zhang and Gagandeep Singh from UIUC

Mar 2024 - Oct 2024

- Built an automated evaluation pipeline across 17 models using 25 random augmentations per prompt with teammates; calibrated thresholds with a 1,220-sample manmade dataset to minimize positives/negatives.
- Demonstrated how simple random edits raised harmful-compliance by up to 21% under greedy decoding for aligned models (Llama 3, Phi 3, Qwen 2), and revealed common W8A8/W4A16 quantization sacrifice safety by up to 15%.

Publications & Submissions

- Siyuan Wang*, Gaokai Zhang*, Li Lyna Zhang, Ning Shang, Fan Yang, Dongyao Chen, Mao Yang. LoongRL:Reinforcement Learning for Advanced Reasoning over Long Contexts. Under review at International Conference on Learning Representations (ICLR), 2026.
- Ning Shang*, Li Lyna Zhang*, Siyuan Wang, **Gaokai Zhang**, Gilsinia Lopez, Fan Yang, Weizhu Chen, Mao Yang. LongRoPE2: Near-Lossless LLM Context Window Scaling. International Conference on Machine Learning (ICML), 2025.
- Jason Vega, Junsheng Huang*, Gaokai Zhang*, Hangoo Kang*, Minjia Zhang, Gagandeep Singh. Stochastic Monkeys
 at Play: Random Augmentations Cheaply Break LLM Safety Alignment. Under review at Transactions on Machine
 Learning Research (TMLR), 2026. (*: equal contribution)