<u>Course</u>

Progress

<u>Help</u>

sandipan_dey >

....

<u>Dates</u>

★ Course / 8 Initial Value Problems, Python Classes, and Discr... / 8.8 Forward Euler me...

MO Index

Discussion

MO2.4

MO2.7

We now consider our first numerical method for solving an IVP, the forward Euler method. The key concept is that from the governing differential equation, given some current state \underline{v} at time t we can always calculate the rate of change from the model differential equation $d\underline{u}/dt=\underline{f}(\underline{v},t)$. Since we know the initial condition, we can then start from it, calculate the $d\underline{u}/dt$ $(t_I)=\underline{f}(\underline{u}_I,t_I)$ and then use that slope to extrapolate the solution to time $t^1=t_I+\Delta t$. This is shown graphically in Figure 8.13. Mathematically, this gives

$$\underline{v}^{1}=\underline{u}\left(t_{I}
ight)+\Delta t\underline{f}\left(\underline{u}\left(t_{I}
ight),t_{I}
ight).$$

Discussions

All posts sorted by recent activity

© All Rights Reserved

Affiliates Figure 8.13: Forward Euler method ed for the same idea to the

Legal

$$\underline{v}^2 = \underline{v}^1 + \Delta t \underline{f} \left(\underline{v}^1, t^1
ight)$$

(8.57)

(8.56)

Terms of Service & Honor Code

PrThen, this process of extrapolation can be continued.

A Thus ithe Forward Euler algorithm is,

Trademark Policy

$$\underline{\text{Sitemap}}\underline{v}^{0} = \underline{u}_{I} \tag{8.58}$$

 $\frac{\text{Cookie Policy}}{v^{n+1}} = \underline{v}^n + \Delta t \underline{f}(\underline{v}^n, t^n) \qquad \text{for} \qquad n \ge 0, \tag{8.59}$ Your Privacy Choices

Control Euler method

INSTRUCTOR: So how do we approximate these values of v

in our numerical method?

We're going to look at probably what is the simplest

© 2023edX LC. All rights reserved > 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

Video

▲ Download video file

Transcripts