學號:B06902042 系級:資工三 姓名:劉愷為

1. (3%) 請至少使用兩種方法 (autoencoder 架構、optimizer、data preprocessing、 後續降維方法、clustering 算法等等) 來改進 baseline code 的 accuracy。

a. 分別記錄改進前、後的 test accuracy 為多少。

	Baseline	Improved
Test Accuracy	0.74917	0.79152

b. 分別使用改進前、後的方法,將 val data 的降維結果 (embedding) 與他們對應 的 label 畫出來。

Baseline:

Improved:

c. 盡量詳細說明你做了哪些改進。

首先是改善 autoencoder 的架構,我將 self.encoder 的 convolution 層數,在6 4, 128, 256都多做了一次,使它變成6層。另外也在每一層當中增加BatchNor m2d

接著是改善降維的方法,我先利用 KernelPCA 把 latents 從 4096 維降到 500維,接著用 PCA 從 500 維降到 64 維再 到 32 維,最後再用 TSNE 降到 2 維

	Baseline	Improved
Autoencoder	nn.Conv2d(3, 64, 3, stride=1, padding=1),	nn.Conv2d(3, 64, 3, stride=1, padding=1),
	nn.ReLU(True),	nn.BatchNorm2d(64),
	nn.MaxPool2d(2,2,0),	nn.ReLU(True),
	nn.Conv2d(64, 128, 3, stride=1, padding=1),	nn.Conv2d(64, 64, 3, stride=1, padding=1),
	nn.ReLU(True),	nn.BatchNorm2d(64),
	nn.MaxPool2d(2,2,0),	nn.ReLU(True),
	nn.Conv2d(128, 256, 3, stride=1, padding=1),	nn.MaxPool2d(2,2,0),
	nn.ReLU(True),	nn.Conv2d(64, 128, 3, stride=1, padding=1),
	nn.MaxPool2d(2,2,0)	nn.BatchNorm2d(128),
		nn.ReLU(True),
		nn.Conv2d(128, 128, 3, stride=1, padding=1),
		nn.BatchNorm2d(128),
		nn.ReLU(True),
		nn.MaxPool2d(2,2,0),
		nn.Conv2d(128, 256, 3, stride=1, padding=1),
		nn.BatchNorm2d(256),
		nn.ReLU(True),
		nn.Conv2d(256, 256, 3, stride=1, padding=1),
		nn.BatchNorm2d(256),
		nn.ReLU(True),
		nn.MaxPool2d(2,2,0)
Epoch	100	180
Clustering	KernalPCA 4096 -> 256	KernalPCA 4096 -> 500
	TSNE 32 -> 2	PCA 500 -> 64
	MiniBatchMeans(n_clusters = 2)	PCA 64 -> 32
		TSNE 32 -> 2
		MiniBatchMeans(n_clusters = 2)

2. (1%) 使用你 test accuracy 最高的 autoencoder,從 trainX 中,取出 index 1, 2, 3, 6, 7, 9 這 6 張圖片畫出他們的原圖以及 reconstruct 之後的圖片。

- 3. (2%) 在 autoencoder 的訓練過程中,至少挑選 10 個 checkpoints
 - a. 請用 model 的 train reconstruction error (用所有的 trainX 計算 MSE) 和 val accur acy 對那些 checkpoints 作圖。

b. 簡單說明你觀察到的現象。

Model的Train Reconstruction Error穩定下降,大致符合預期。然而Accuracy 卻呈現鋸齒狀上升,推測是因為val accuracy只和encoder所產生的latents有關,而latents越具代表性則分類的越好,accuracy也會越高。然而在erroe降低的過程中,那一刻的decoder也學得很好,造成分類不明顯,導致accuracy 降低。