

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema I

Nr. item	Partea A - Diferite ciocniri		Punctaj
a.	Pentru:		0,75p
	Ciocnirea fiind perfect elastică se aplică legile de conservare ale impulsului mecanic și energiei cinetice:		
	$Mv_0 = Mv_1 + mu_1$ $\frac{Mv_0^2}{2} = \frac{Mv_1^2}{2} + \frac{mu_1^2}{2}$	0,25p	
	Din cele două ecuații se obține: $v_1 = \frac{M-m}{M+m}v_0$ și $u_1 = \frac{2M}{M+m}v_0$.	0,50p	
b.	Pentru:		1,25p
	Din relațiile $I_2 = I_1 - v_1 \Delta t_1$ și $2I_1 = (v_1 + u_1) \Delta t_1$	0,25p	
	se obține $I_2 = \frac{u_1 - v_1}{u_1 + v_1} I_1$	0,25p	
	Din legile de conservare ale impulsului mecanic și ale energiei cinetice: $Mv_1 - mu_1 = Mv_2 + mu_2$ $\frac{Mv_1^2}{2} + \frac{mu_1^2}{2} = \frac{Mv_2^2}{2} + \frac{mu_2^2}{2}$	0,25p	
	se obține $v_1 + u_1 = u_2 - v_2$	0,25p	
	Înlocuind în expresia pentru I_2 obținem următoarea relație de invarianță : $ (u_2 - v_2)I_2 = (u_1 - v_1)I_1 $ (1)	0,25p	
c.	Pentru:		2,00p
	În momentul în care corpul cu masa M ajunge la distanța minimă de perete, viteza acestuia este nulă, energia cinetică este preluată integral de corpul cu masa m , deci $\frac{Mv_0^2}{2} = \frac{mu^{*2}}{2}$	0,25p	
	Rezultă: $u^* = v_0 \sqrt{\frac{M}{m}}$	0,25p	

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Primul termen este: $(u_1 - v_1)I_1 = (\frac{2M}{M+m}v_0 - \frac{M-m}{M+m}v_0)I_1 = v_0I_1.$ (2)	
Pentru cazul în care corpul de masă M s-a oprit $v_k = 0$, $u_k = u^*$ și $I_k = I^*$	0,50p
Aşadar: $(u_k - v_k)I_k = u * I *$. (3)	0,25p
Egalând relațiile (2) și (3) se obține $I^* = I_1 \sqrt{\frac{m}{M}}$	0,50p
Pentru:	
Se folosește teorema de variație a impulsului: $\vec{F}\Delta t = \Delta \vec{P}$.	0,25p
În fiecare ciocnire $\Delta p = 2mu^*$.	0,25p
În intervalul Δt se produc $N = \frac{\Delta t}{(\frac{2I^*}{u^*})}$ ciocniri	0,25p
Rezultă că $\Delta P = N\Delta p = \frac{Mv_0^2}{L} \sqrt{\frac{M}{m}} \Delta t$ și $F = \frac{v_0^2 M}{L} \sqrt{\frac{M}{m}}$	0,25p

© Barem de evaluare şi de notare propus de: Prof. Solschi Viorel, Colegiul Naţional "Mihai Eminescu" Satu Mare

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Nr. item	Partea B - Diferite aruncări		Punctaj
a.	Pentru: Distanța r de la locul lansării la poziția instantanee a corpului crește în timp dacă componenta radială a vitezei corpului în acel moment este orientată în același sens cu vectorul de poziție \vec{r} , adică produsul scalar $\vec{r} \cdot \vec{v} > 0$. Distanța de la locul aruncării la poziția instantanee a corpului scade în timp dacă componenta radială a vitezei corpului în acel moment este orientată în sens contrar vectorului de poziție \vec{r} , adică produsul scalar $\vec{r} \cdot \vec{v} < 0$.	1,00p	2,50p
	Utilizând legea vitezei şi legea mişcării: $ \begin{cases} \vec{v} = \vec{v}_0 + \vec{g}t \\ \vec{r} = \vec{v}_0 t + \frac{\vec{g}t^2}{2} \end{cases} $),5p	
	se obţine: $\vec{r} \cdot \vec{v} = v_0^2 t + (\vec{v}_0 \cdot \vec{g}) \frac{t^2}{2} + (\vec{v}_0 \cdot \vec{g}) t^2 + g^2 \frac{t^3}{2} = \frac{t}{2} \left[g^2 t^2 - 3v_0 g(\sin \alpha) t + 2v_0^2 \right] = \frac{t}{2} \cdot f(t)$ relaţie în care $t \ge 0$),50p	
	$f(t) = g^2 t^2 - 3v_0 g(\sin \alpha)t + 2v_0^2$ funcția de gradul al doilea $f(t)$ trebuie să fie strict pozitivă, adică: $\Delta = 9v_0^2 g^2 \sin^2 \alpha - 8v_0^2 g^2 < 0$ Se obține: $\sin \alpha < \frac{2\sqrt{2}}{3} \Rightarrow \alpha < 70.5^0$),50p	
b.	Pentru: Pentru ca distanța r să scadă este necesar să existe un interval de timp $\Delta t \neq 0$ în care funcția de gradul al doilea $f(t)$ să treacă prin valori negative,),50p	1,50p

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Se obţine $\Delta t = \frac{v_0}{q} \sqrt{9 \sin^2 \alpha - 8}$	0,50p	
$\begin{cases} t_1 = \frac{3v_0 g \sin \alpha - \sqrt{9v_0^2 g^2 \sin^2 \alpha - 8v_0^2 g^2}}{2g^2} \\ t_2 = \frac{3v_0 g \sin \alpha + \sqrt{9v_0^2 g^2 \sin^2 \alpha - 8v_0^2 g^2}}{2g^2} \end{cases}$		
$\int_{t_1} = \frac{3v_0 g \sin \alpha - \sqrt{9v_0^2 g^2 \sin^2 \alpha - 8v_0^2 g^2}}{2}$	0,50p	
Pentru o aruncare sub unghiul α astfel încât distanța r să scadă, funcția de gradul al doilea va fi negativă pe intervalul de timp $\Delta t = t_2 - t_1$, unde t_1 și t_2 sunt rădăcinile ecuației $f(t) = 0$		
Se obţine: $\sin \alpha > \frac{2\sqrt{2}}{3} \Rightarrow \alpha > 70,5^{\circ}$		

© Barem de evaluare şi de notare propus de: Prof. Butuşină Florin, Colegiul Naţional "Simion Bărnuţiu" Şimleu Silvaniei

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a II-a

Nr. item	Partea A - Despre un randament maxim		Punctaj
a.	Pentru:		2,50p
	Lucrul mecanic efectuat de gaz într-un ciclu este $L = \Delta p \cdot \Delta V$ (aria dreptunghiului)	0,25p	
	Căldura primită de gaz într-un ciclu este $Q_{AB} + Q_{BC} = Q_{(+)}$, unde $Q_{AB} = (3R/2)(T_B - T_A) = (3V_1/2)(p_B - p_1) = (3V_1/2)\Delta p$ și $Q_{BC} = (5R/2)(T_C - T_B) = (5p_B/2)\Delta V$ cu $p_B = p_1 + \Delta p$	0,75p	
	Randamentul ciclului se exprimă prin relația $\eta = L/Q_{(+)} = Aria/(Q_{AB} + Q_{BC})$	0,25p	
	calcul elementar ne permit să scriem $1/\eta = 5/2 + (3/2)(V_1/\Delta V) + (5/2)(p_1/\Delta p)(*)$	0,75p	
	În loc să căutăm maximul lui η , cătăm minimul lui $1/\eta$. Expresia (*) este din ce în ce mai mică pe măsură ce punctul A se apropie de origine ($V_1 \rightarrow 0, p_1 \rightarrow 0$) sau pe măsură ce aria din interiorul dreptunghiului crește nelimitat ($\Delta V \rightarrow \infty, \Delta p \rightarrow \infty$). Așadar, $\eta_{\text{max}} = 2/5 = 40\%$	0,50p	
b.	Pentru:		2,00p
	Acum, considerăm punctul $A(V_1, p_1)$ fixat și o arie de dreptunghi de asemenea fixată (adică un lucru mecanic $L = \Omega = \Delta p \cdot \Delta V$ bine determinat). În formula (*) vom scrie $\Delta p = \Omega/\Delta V$ și astfel $1/\eta = 5/2 + (3/2)(V_1/\Delta V) + (5/2)(p_1\Delta V/\Omega)$	0,50p	
	Adunând şi scăzând, în membrul drept, cantitatea $\sqrt{15\rho_1V_1/\Omega}$ putem forma un pătrat perfect, astfel că $1/\eta = 5/2 + \{(3V_1/2\Delta V)^{1/2} - (5\rho_1\Delta V/2\Omega)^{1/2}\}^2 + \sqrt{15\rho_1V_1/\Omega}$	0,75p	
	Această expresie este minimă când acolada se anulează, adică pentru $\Delta V = \sqrt{3\Omega V_1/5p_1}$. Corespunzător $\Delta p = \sqrt{5\Omega p_1/3V_1}$ și $(1/\eta)_{min} = 1/\eta_{max} = 5/2 + \sqrt{15p_1V_1/\Omega}$.	0,75p	
	Aceasta înseamnă că $\eta_{\text{max}} = \left(5/2 + \sqrt{15p_1V_1/\Omega}\right)^{-1}$		
c.	Pentru:		0,50р
	Atunci când $\Omega = n(p_1V_1)$, n fiind un număr pozitiv, găsim $\eta_{\text{max}} = \left(5/2 + \sqrt{15/n}\right)^{-1}$, iar $\Delta V = V_1\sqrt{3n/5}$ și $\Delta p = p_1\sqrt{5n/3}$	0,25p	

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Când n = 1 obținem $\eta_{\text{max}} = 1/(5/2 + \sqrt{15})$, adică $\eta_{\text{max}} = 0,1569$ (aproximativ 15,7%). Când $n \to \infty$, găsim $\eta_{\text{max}} \to 0,40$

Nr. item	Partea B – Un proces liniar		Punctaj
	Pentru:		2,00p
	Ecuația dreptei ACB este $p = KV$, $K = const$ (panta)	0,25p	
	Segmentele au lungimile $AC = \sqrt{(p_C - p_A)^2 + (V_C - V_A)^2} = (V_C - V_A)\sqrt{1 + K^2}$, respectiv $CB = \sqrt{(p_B - p_C)^2 + (V_B - V_C)^2} = (V_B - V_C)\sqrt{1 + K^2}$	0,50p	
	Conform enunțului $n = CB/CA = (V_B - V_C)/(V_C - V_A)$, (*)	0,25p	
	Cunoscând $T_1 = p_A V_A / R = (K/R) V_A^2$, putem scrie $V_A = \sqrt{RT_1/K}$. Similar, $V_B = \sqrt{RT_3/K}$ şi $V_C = \sqrt{RT_2/K}$	0,75p	
	Revenind în relația (*) găsim în cele din urmă $T_2 = \frac{n^2 T_1 + T_3 + 2n\sqrt{T_1 T_3}}{(n+1)^2}$	0,25p	
Nr.	Dantes C. Dan's Salantini		_
item	Partea C – Două întrebări		Punctaj
item	Pentru:		2,00p
item		0,50p	
item	Pentru: Energia internă a gazului ideal monoatomic are forma	0,50p 0,50p	
item	Pentru: Energia internă a gazului ideal monoatomic are forma $U = (3/2)\nu RT = (3/2)\rho V$. De aici rezultă dependența $\rho = (2\alpha/3)V$, (*) Așadar, în planul $\rho - V$, procesul $1 \rightarrow 2$ este reprezentat printr-o dreaptă ce trece prin origine. Lucrul mecanic efectuat de gaz poate fi calculat ca o arie		
item	Pentru: Energia internă a gazului ideal monoatomic are forma $U = (3/2)\nu RT = (3/2)\rho V$. De aici rezultă dependența $\rho = (2\alpha/3)V$, (*) Așadar, în planul $\rho - V$, procesul $1 \rightarrow 2$ este reprezentat printr-o dreaptă ce trece prin origine. Lucrul mecanic efectuat de gaz poate fi calculat ca o arie de trapez $L_{12} = (1/2)(V_2 - V_1)(\rho_2 + \rho_1)$	0,50p	
Ofici	Pentru: Energia internă a gazului ideal monoatomic are forma $U = (3/2)\nu RT = (3/2)\rho V$. De aici rezultă dependența $\rho = (2\alpha/3)V$, (*) Așadar, în planul $\rho - V$, procesul $1 \rightarrow 2$ este reprezentat printr-o dreaptă ce trece prin origine. Lucrul mecanic efectuat de gaz poate fi calculat ca o arie de trapez $L_{12} = (1/2)(V_2 - V_1)(\rho_2 + \rho_1)$ Cu ajutorul relației (*) găsim $L_{12} = (\alpha/3)(V_2^2 - V_1^2) = (1/3)(U_2 - U_1) = (1/3)\Delta U_{12}$ Conform principiului I al termodinamicii, $Q_{12} = \Delta U_{12} + L_{12} = (4/3)\Delta U_{12}$	0,50p	

© Barem de evaluare și de notare propus de: Prof. Univ. Dr. Florea Uliu

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a III-a

Nr. item	Partea A - Fierberea apei		Punctaj
a.	Pentru:		2,00p
	În timpul fierberii apei temperatura şi presiunea vaporilor rămân constante. La momentul de timp $t: pV = \frac{m}{\mu}RT$		
	La momentul de timp $(t + \Delta t)$: $p(V + \Delta V) = \frac{(m + \Delta m)}{\mu} RT$	0,50p	
	$p\Delta V = \frac{\Delta m}{\mu} RT$		
	$pS = p_0S + Mg$	0,50p	
	$\Delta V = S\Delta x = Sv\Delta t$	0,50p	
	$\frac{\Delta m}{\Delta t} = \frac{(p_0 S + Mg)\mu v}{RT}$	0,50p	
b.	Pentru:		2,50p
	$Q_{arzator} = Q_{vaporizare} + Q_{pierdut}$	0,40p	
	$(D \cdot \Delta t)q = \Delta m \cdot \lambda + Q_{pierdut}$	0,40p	
	$Dq = \frac{\Delta m}{\Delta t} \cdot \lambda + \frac{Q_{pierdut}}{\Delta t} = \frac{\Delta m}{\Delta t} \cdot \lambda + P_{pierdere}$	0,30p	
	$\begin{cases} Dq = \frac{(p_0S + Mg)\mu v}{RT} \cdot \lambda + P_{pierdere} \\ (D + fD)q = \frac{(p_0S + Mg)\mu nv}{RT} \cdot \lambda + P_{pierdere} \end{cases}$	0,40p	
	$fDq = \frac{(p_0 S + Mg)\mu v(n-1)}{RT}\lambda$	0,30p	
	$T = \frac{(p_0 S + Mg)\mu v(n-1)\lambda}{fDqR}$	0,40p	
	Rezultat numeric: $T = 386,79$ K , respectiv $t = 113,64$ °C	0,30p	

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Nr. item	Partea B - Focul de tabără		Punctaj
a.1.	Pentru:		1,50p
	ecuația transformării adiabatice $T^{\gamma}=ct\cdot p^{\gamma-1}$	0,50p	
	$\gamma \cdot T^{\gamma-1} \cdot \Delta T = ct \cdot (\gamma - 1)p^{\gamma-2} \cdot \Delta p$	0,50p	
	$\frac{\Delta T}{T} = \frac{(\gamma - 1)}{\gamma} \cdot \frac{\Delta p}{p}$	0,50p	
a.2.	Pentru:		0,50
	$p(h) = p_0 - \rho \cdot g \cdot h$	0,50p	
b.	Pentru:		2,50p
	relația între temperaturile aerului și fumului, la altitudinea la care parcela plutește $T_{ m 1,\ fum}=T_{ m aer}$	0,50p	
	$\frac{\Delta T}{T_{fum}} = \frac{(\gamma - 1)}{\gamma} \cdot \frac{\Delta p}{p_0}$	0,50p	
	$\frac{\Delta T}{T_{fum}} = \frac{(\gamma - 1)}{\gamma} \cdot \frac{\rho \cdot g \cdot h}{p_0}$	0,50p	
	$h \cong \frac{\left(T_{fum} - T_{aer}\right) \cdot \gamma \cdot R}{\left(\gamma - 1\right) \cdot \mu \cdot g} \cdot \frac{T_{aer}}{T_{fum}}$	0,50p	
	<i>h</i> ≅ 971 <i>m</i>	0,50p	
Oficiu		1,00p	
TOTAL Problema a III-a			10p

© Barem de evaluare şi de notare propus de:

Prof. Dr. Delia DAVIDESCU

Prof. Butuşină Florin