

Problem G Geometric Greatness

Time limit: 2 seconds Memory limit: 512 megabytes

Problem Description

"Do you want the triangles? Again, triangles." "Yes."

Hank likes triangles. He even listens to a song to which the lyrics contain the above sentence. Since he loves triangles so much, he received a triangle as his birthday present this year. The triangle Hank received is a right triangle with width a, height b, and hypotenuse $\sqrt{a^2 + b^2}$. In this problem, you only need to consider the case where a = 1.

Figure 2: An example of Hank's triangle.

As one triangle is obviously not enough, he wants to construct a sequence of n triangles. The first triangle T_1 of the sequence is the one he received. For i = 2, 3, ..., n, he creates a new triangle T_i by the following rules:

- T_i 's width is the same as T_{i-1} 's perimeter length. The perimeter length of a triangle is the sum of all its side lengths.
- T_i is similar to T_{i-1} . Two triangles X and Y are similar only if their side lengths satisfy $\frac{X'\text{s width}}{Y'\text{s width}} = \frac{X'\text{s height}}{Y'\text{s height}} = \frac{X'\text{s hypotenuse}}{Y'\text{s hypotenuse}}.$

After finishing all n triangles, Hank is curious about the total perimeter length and **twice** the total area of them. Help him write a program to find the answers.

Input Format

The first line contains an integer T, the number of test cases.

Then T lines follow, each representing a test case. On each line, there are three space-separated integers a, b, n.

Output Format

For each test case, output two lines describing the total perimeter length and **twice** the total area of all triangles.

It is guaranteed that each answer can be written in the form $m + k\sqrt{c}$ where m, k are integers and c is a positive integer. If there are multiple possible values for c, choose the representation with minimum positive c. Additionally, if the answer is rational, i.e., c = 1, you have to choose k = 0.

Print three integers m, k, c on one line for each answer. Since m and k can get really big, output them modulo $10^9 + 7$. You should **not** take the modulo for c.

For example, if the answer is $8+9\sqrt{10}$, you have to print "8 9 10" (without quotes). Although $8+3\sqrt{90}$ is also correct, you cannot print "8 3 90" because the c here is not the minimum positive value for it.

Technical Specification

- $1 \le T \le 10^3$
- a = 1
- $1 \le b \le 10^5$
- $1 \le n \le 10^9$

Sample Input 1

Sample input i		
5		
1	2	1
1	2	3
1	4	5
1	4	6
1	5	1

Sample Output 1

3 1 5
2 0 1
89 39 5
782 348 5
35491 8607 17
97145164 23561160 17
323779 78527 17
85494036 961020353 17
6 1 26
5 0 1

Hint

In the first test case, there is only one triangle (the one Hank received).

- Its side lengths are 1, 2 and $\sqrt{1^2 + 2^2} = \sqrt{5}$ so the total perimeter length is $3 + \sqrt{5}$. Therefore, you should print "3 1 5" on the first line.
- Its area is $\frac{1}{2} \times 1 \times 2 = 1$ so twice the total area is 2. Therefore, you should print "2 0 1" on the second line.