Additional applications: Combining datasets

Genome alignments and introduction to incorporating structural variants.

- •DArTseq service provides alignment of your favourite genome.
- •Use BLAST function in dartR for additional alignments.
- •Chromosome data can be incorporated in metafiles for analysis of specific structural variants that are known from the dataset.

Inversion Chromosomal Polymorphisms in

Ridge-tailed goannas

- Non-model organism without genomic resources prior to my work
- Known chromosome polymorphisms from a 1982 publication (King and King, 1982)
- Two major chromosomal groups: a western polymorphic cytotype and an eastern monomorphic cytotype
- The western cytotype is described by a pericentricinversion polymorphisms for chromosome 6, and the eastern cytotype is described as monomorphic submentacentric chromosome 6.

Chromosome 6

When the data speak: Are we listening?

- Impacts of pericentric inversions on populations
- Hybridisation
- Recombination suppression
- Speciation
- Adaptive potential
- Accumulation of Deleterious alleles
- Fertility Effects

Is geneflow present between groups with

Populations show high phenotypic variation

Slight phenotypic variation between populations

Cryptic species

Chromosome polymorphisms widespread in the west but not in the east.

DArTseq data reveals immediate results

Sorted SNPs by locality

Table of SNP differences between populations

Dataset	Number of individuals	Number of	SNP alleles	Number of monomorphs			
		Pre filtering	Po	ost filtering			
All populations	49 (M+F)	301,738	46,189	195,906			
North	9 (M+F)	46,189	19,039	26,504			
West	21 (M+F)	46,189	17,075	29,114			
East	10 (M+F)	46,189	14,908	31,281			
South	9 (M+F)	46,189	7,733	38,439			

Fixed allele differences between populations

pop1	pop2	N1	N2	fixed	priv1	priv2	Total priv	Fst
East	North	10	9	4076	14107	18490	32597	0.65
East	South	10	9	578	12837	5668	18505	0.51
East	West	10	21	301	10400	12567	22967	0.58
North	South	9	9	5269	22669	11215	33884	0.69
North	West	9	21	4482	20233	17887	38120	0.73
South	West	9	21	111	3842	13177	17019	0.41

Generating Karyotypes

Karyotype Results

Sorted SNPs by Karyotype

Fixed allele differences between karyotypes

Karyo1	Karyo2	N1	N2	fixed	priv1	priv2	Total priv	Fst
AA	MA	10	10	0	6041	6683	12724	0.095
AA	MM	10	15	13	16413	10529	26942	0.163
MA	MM	10	15	0	14399	7873	22272	0.103

Within populations Between populations

RESEARCH

Widespread chromosomal rearrangements preceded genetic divergence in a monitor lizard, *Varanus acanthurus* (Varanidae)

Jason Dobry · Erik Wapstra · Emily J. Stringer · Bernd Gruber · Janine E. Deakin · Tariq Ezaz

Received: 2 September 2022 / Revised: 12 November 2022 / Accepted: 28 November 2022 © The Author(s) 2023

Abstract Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to

rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous sub-

Genome Sequencing

- A wide range of qualities in published genomes
- Scaffold/contig level (most genomes)
- Chromosome level most chromosome level genomes still contain gaps, and chromosome identity is not correlated with karyotypes (some)
- Phased and chromosome assigned (very few)
- Quality depends on many factors, such as read length, depth, and quality.
- Most reference-quality genomes integrate several sequencing technologies to overcome individual technology limitations

Characterizing a Chromosome Rearrangement –

Conceptual model

V. Komodoensis Genome

Fixed allele analysis of the west locality

Distribution of SNPs along targeted Scaffolds

Varanus komodoensis Genome

Concept for testing homology of Inversion

Probe density along scaffold of interest

Inversion is non-homologous in North

Maximum likelihood of concatenated SNPs

Correlation of chromosome morphology on

allelic richness

Relevance for broader outlook

Orthology of genes captured by inversion

MBE

Fixed Allele Differences Associated With the Centromere Reveal Chromosome Morphology and Rearrangements in a Reptile (Varanus acanthurus BOULENGER)

Jason Dobry (D,*,1 Zexian Zhu,2 Qi Zhou (D,2,3,4 Erik Wapstra,5 Janine E. Deakin,1 and Tariq Ezaz (D*,1

Associate editor: Xuming Zhou

Abstract

Chromosome rearrangements are often implicated with genomic divergence and are proposed to be associated with species evolution. Rearrangements alter the genomic structure and interfere with homologous recombination by isolating a portion of the genome. Integration of multiplatform next-generation DNA sequencing technologies has enabled putative identification of chromosome rearrangements in many taxa; however, integrating these data sets with cytogenetics is still uncommon beyond model genetic organisms. Therefore, to achieve the ultimate goal for the genomic classification of eukaryotic organisms, physical chromosome mapping remains critical. The ridge-tailed goannas (*Varanus acanthurus* BOULENGER) are a group of dwarf monitor lizards comprised of several species found throughout northern Australia. These lizards exhibit extreme divergence at both the genic and chromosomal levels. The chromosome polymorphisms are widespread extending across much of their distribution, raising the question if these polymorphisms are homologous within the *V. acanthurus* complex. We used a combined genomic and cytogenetic approach to test for homology across

¹Institute for Applied Ecology, University of Canberra, Canberra, Australia

²MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China

³Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

⁴Evolutionary & Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou, China

⁵School of Natural Sciences, University of Tasmania, Hobart, Australia

^{*}Corresponding authors: E-mails: Jason.dobry@canberra.edu.au; Tariq.Ezaz@canberra.edu.au.

Sex chromosome discovery

Methodology for development of sex specific DNA probes

3. BLAST Komodo Dragon (V. komodoensis) Genome

FISH with inferred sex chromosome probes

Comparing the sex probes to other species with Sex chromosome variation

gl.filter.sexlinked analysis yesterday

- Detected 23 females and 38 males.
- Building heterozygosity plots.
- Done building heterozygosity plots.
- **FINISHED** Total of analyzed loci: 301738.
- Found 241 sex-linked loci:
- 220 W-linked loci
- 20 sex-biased loci
- 0 Z-linked loci
- 1 ZW gametologs.
- And 301497 autosomal loci.

All loci have aligned to W chromosome scaffolds

Varanu

		Varanus	s_acant																
Varanus_ko						.,								scaff					
modoensis_	modoensis_	urus_St	Ending		Ç	% dontiti			CO	00	VVO coeffold size	NVO ok		oldL	Mannad M	loonCovere l	Fotal Cov	Mapped	from o
_	Ending position	nosition	n	I FN.1	ı ۱ FN.2 ۱	ueniiii <i>I</i>	I FN.R	I FN.O	V.R	V.O REETAG	VKO_scaffold.size	rom	ı VAC scaffold	engen Ih l	-ength g		age	age	ex link
p		p = 0			,	•					2 scaffold1 138,28				. 0 0		. 0 .	8-	
30616382	30619010	36205	33615	2629	2591	83.43				368.1	0,312				18173 1	.00497705	1808	3 19.0715	14
										0.5 NW_0253352	2 scaffold1 138,28	unplac		9481					
119816385	119816897	31620	32133	513	514	83.75	138280312	94817	7 (468.1	0,312	ed	scaf_43901	7	18173 1	.00497705	1808	3 19.0715	14
											2 scaffold1 138,28					.00091625			
114638709	114639536	42212	42979	828	768	84.84	138280312	250273	3 (168.1	0,312						4693	0 18.7515	23
866639	06762	10706	9749	002	958	05	37404197	10640	. (2 scaffold10 37,40 4,197			1264		.00221287 9	151	9 35.7459	NΙΛ
000038	00/03	10700	9/49	993	900	65	3/40419/	12042	2 (4, 197 2 scaffold10 37,40			3137		.00155073	451	9 55.7459	INA
19283585	5 19284179	185298	184726	595	573	81.88	37404197	313777	7 (0.1144v_0255552) 869.1							4900	9 15.6191	52
											2 scaffold101 1,46			1811		.01307242			
1182390	1183745	176266	177639	1356	1374	87.66	1462154	181103		675.1				03	25109	3	2478	5 13.6856	63
											2 scaffold105 1,30			9481					
575570	576120	92643	93176	551	534	86.8	1308065	94817	7 4	697.1	8,065	Chr1,	scaf_43901	7	18173 1	.00497705	1808	3 19.0715	14
											3 scaffold1056 21,					.01307242			
1465	2493	98077	97039	1029	1039	83.17	21071	181103	3 8	3 700.1	071						2478	5 13.6856	63
21442055	. 2144272	7 227246	227017	672	672	70.56	34281621	250273			3 scaffold11 34,28 1,621			2502		.00091625 8	4602	0 18.7515	22
21443033	21443/2/	22/240	22/91/	0/3	0/2	79.50	34201021	250275			1,021 3 scaffold11 34,28					.00115908	4093	0 10.7515	23
24136036	3 24137568	6057	7584	1533	1528	92.29	34281621	12272			1,621					4	345	1 28.1209	NA
											3 scaffold11 34,28			1579		.00367634			
29160588							34281621			617.1	1,621	8	scaf_177	14	28666	2	2856	1 18.0864	17
									0.1	0.8NW_025335	3 scaffold113 1,03 0,508	3		1299	1	.00146449			
300865	301996	120720	121849	1132	1130	89.18	1030508	129995						95	23934	6	2389	9 18.3846	39
							1000555		0.1	1.1 NW_025335	3 scaffold113 1,03	3_		1299		.00146449			
304317	305827	122327	123767	1511	1441	/8.89	1030508	129995) 5	125.1	0,508	Z	scat_43207	95	23934	6	2389	9 18.3846	39

Summary

- Take advantage of available resources for data exploration
- Genome alignments can be powerful tools for targeting interesting patterns in SNP data
- Combining datasets can help complete the picture
- Listen to the data