In [1]: import numpy as np
 import pandas as pd
 import seaborn as sns
 from sklearn.model_selection import train_test_split
 from sklearn.tree import DecisionTreeClassifier

In [2]: df=pd.read_csv(r"C:\Users\LENOVO\Downloads\loan1.csv")
 df

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]: df.describe

Out[3]: <bound method NDFrame.describe of Home Owner Marital Status Annual Income Defaulted Borrower

DCTau	IICCU DOLLO	WCI		
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes>

```
In [4]: df.head()
```

Out[4]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes

```
In [5]: df.shape
```

Out[5]: (10, 4)

In [6]: df.tail()

Out[6]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9

Data columns (total 4 columns):

```
Non-Null Count Dtype
#
   Column
    ----
0
   Home Owner
                        10 non-null
                                        object
   Marital Status
1
                        10 non-null
                                        object
2
   Annual Income
                        10 non-null
                                        int64
3
   Defaulted Borrower 10 non-null
                                        object
```

dtypes: int64(1), object(3) memory usage: 452.0+ bytes

```
In [8]: df['Marital Status'].value_counts()
```

Out[8]: Marital Status Single 4

Married 4 Divorced 2

Name: count, dtype: int64

```
In [9]: convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[9]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

```
In [10]: convert={"Single":1,"Married":2,"Divorced":3}
    df=df.replace(convert)
    df
```

Out[10]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

```
In [11]: x=["Home Owner","Marital Status","Annual Income"]
    y=["Yes","No"]
    all_inputs=df[x]
    all_classes=df["Defaulted Borrower"]
    x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size)
```

```
In [13]: clf=DecisionTreeClassifier(random_state=1)
    clf.fit(x_train,y_train)
    score=clf.score(x_test,y_test)
    print(score)

In []:
```