

Claims

[1] A process for producing an optically active fluoro compound represented by formula (3) characterized in that the process comprises reacting a fluoroamine represented by formula (1) with an optically active diol represented by formula (2):

[F1]

[F2]

[F3]

(wherein each of R₀, R₁ and R₂, which may be identical to or different from one another, represents a hydrogen atom, or an alkyl group or aryl group which may have a substituent; and two or more groups of R₀, R₁ and R₂ may be linked to form a ring structure; each of R₃, R₄, R₅ and R₆ represents a hydrogen atom, or an alkyl group or aryl group which may have a substituent; R₃ and R₄ are different from each other; R₅ and R₆ are different from each other; the carbon atom to which R₃ and R₄ are bound is an asymmetric carbon atom; the carbon atom to which R₄ and R₅ are bound is an asymmetric carbon atom; and n is an integer of 0 to 3).

[2] A process for producing an optically active fluoro compound as described in claim 1, wherein R₀ of the fluoroamine represented by formula (1) is a 3-methylphenyl group or a 2-methoxyphenyl group, and each of R₁ and R₂ of the fluoroamine is an ethyl group.

[3] A process for producing an optically active fluoro compound as described in claim 1 or 2, wherein the reaction is carried out thermally or under irradiation with a microwave and/or an electromagnetic wave having a wavelength in the vicinity of a microwave region.

[4] A process for producing an optically active fluoroalcohol represented by formula (4) characterized in that the process comprises hydrolyzing an optically active fluoro compound which has been produced through a process as recited in any of claims 1 to 3:

[F4]

(4)

(wherein R_3 , R_4 , R_5 and R_6 represents a hydrogen atom, or an alkyl group or aryl group which may have a substituent; R_3 and R_4 are different from each other; R_5 and R_6 are different from each other; the carbon atom to which R_3 and R_4 are bound is an asymmetric carbon atom; the carbon atom to which R_5 and R_6 are bound is an asymmetric carbon atom; and n is an integer of 0 to 3).