) = = (e') = e"(-2x) = -	
Find d. (0-XC). Let u=-XC 50	Δ,
f(ln2) = e = -2 ln2 = 2 - 2 n4 is the min of f	
MIMIMINION	
X Z	
$\times \times (x^2)$ $\rho^{\times} > 2$ and $f'(x) > 0$	
For x < ln 2 px < 2 and f/x) < 0	
$f'(x) = e^{x} - 2$ $f'(x) = 0 \implies e^{x} = 2$ or $x = l_{1}(x)$	
)· ^
$M_{\text{IMM}} = f(x) = e^{x} - 2x$	
9/12/2007	Note Title

$$f'(x) = \chi c^{-x} \qquad f(x) = f(x) = e^{-x}(4-x)$$

$$f''(x) = (-e^{-x})(1-x) + (c^{-x})(-1) = e^{-x}(4-x)$$

$$f'''(x) = e^{-x}(3-x)$$

$$\vdots$$

$$f''(x) = e^{-x}(3-x)$$

$$\vdots$$

$$f''(x) = e^{-x}(x-1000)$$

$$f''(x) = e^{-x}(x-1000)$$

						∇				121	
		$\angle k = 2\sqrt{\xi} du$	du= 1 t /2 t		J T at -) F (-> an) = - Jo an = -20 + 1			1 - 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(u=4x-3)	 (4x-3 dx = (04/1/1) = 1 (04/2 + 2) = 4 (04/3 + C)	

$$\frac{1}{2x} \frac{d}{dx} (2x^2) = \frac{d}{dx} \left(e^{x \ln 2} \right) = (e^{x \ln 2}) (2x \ln 2)$$

$$= 2x \ln 2 e^{x \ln 2}$$

$$= 2x \ln 2 e^{x \ln 2}$$

$$= 2x \ln 2 e^{x \ln 2}$$

$$= x \ln 2 e^{x \ln 2}$$