离散数学习题课

第十二讲——偏序与格

Partial orders

Definition:

A relation $R \subseteq A \times A$ is called a partial order on A if R is

- a) reflexive,
- b) transtive, and
- c) anti-symmetric

 $\langle A, R \rangle$ is called a partially ordered set, or poset.

Comments:

• For $x, y \in A$, x and y are not always comparable.

Elements in posets

Definition: Let $\langle A, R \rangle$ be a poset, $B \subseteq A$, $x \in A$, then

- (1) x is called a <u>minimal element</u> of B if $x \in B \land \forall y \in B(yRx \to x = y);$
- (2) x is called a <u>maximal element</u> of B if $x \in B \land \forall y \in B(xRy \to x = y);$
- (3) x is called an <u>upper bound</u> of B if $\forall y \in B(yRx)$;
- (4) x is called a <u>lower bound</u> of B if $\forall y \in B(xRy)$;

Elements in posets (cont.)

Definition: Let $\langle A, R \rangle$ be a poset, $B \subseteq A$, $x \in A$, then

- (5) x is called the <u>greatest element</u> of B if $x \in B$ AND x is an upper bound of B;
- (6) x is called the <u>least element</u> of B if $x \in B$ AND x is a lower bound of B;
- (7) x is called the <u>supremum</u> of B if x is the least upper bound of B;
- (8) x is called the <u>infimum</u> of B if x is the greatest lower bound of B.

Elements in posets (cont.)

Comments:

- The greatest/least element (if exists) must be the supremum/infimum
- The greatest/least element (if exists) must be maximal/minimal
- The supremum/infimum (if exists) must be unique
- The supremum/infimum (if exists) of B is not necessarily in B
- If B is finite, then B always have maximal elements and minimal elements

Lattices

Definition:

A poset $\langle L, \preccurlyeq \rangle$ is called a <u>lattice</u> if

 $\forall a, b \in L, \{a, b\}$ has both supremum and infimum.

A algrebraic system $\langle L, \wedge, \vee \rangle$ is called a <u>lattice</u> if

$$\forall a, b, c \in L$$
,

- (1) $a \lor b = b \lor a \text{ and } a \land b = b \land a;$
- (2) $(a \lor b) \lor c = a \lor (b \lor c)$ and $(a \land b) \land c = a \land (b \land c)$;
- $(3) \ a \lor (a \land b) = a \land (a \lor b) = a.$

The operators \land and \lor are called <u>meet</u> and join respectively.

Lattices (cont.)

Comments:

- If $\langle L, \wedge, \vee \rangle$ is a lattice, then there is a unique corresponding lattice $\langle L, \preccurlyeq \rangle$, and vice versa
- If $\langle L, \wedge, \vee \rangle$ is a lattice, then $\forall a \in L$, $a \wedge a = a \vee a = a$
- If $\langle L, \wedge, \vee \rangle$ is a lattice, $\emptyset \neq S \subseteq L$, and $\forall x, y \in S$, $x \wedge y \in S$ and $x \vee y \in S$ then $\langle S, \wedge, \vee \rangle$ is a <u>sublattice</u> of $\langle L, \wedge, \vee \rangle$.

The principle of duality

The principle:

设 f 是含有格中元素以及符号 =, \preceq , \succ , \lor , \land 的命题,若 f 对一切格为真,则 f 的对偶命题 f^* 也对一切格为真。

Notes:

- f must not contain other symbols
- f must hold for every lattice

Properties of lattices

Let *L* be a lattice, for any $a, b, c, d \in L$,

- (1) $a \wedge b \preccurlyeq a \preccurlyeq a \vee b$;
- (2) $a \wedge b \leq b \leq a \vee b$;
- (3) $a \leq c \text{ and } b \leq d \implies a \wedge b \leq c \wedge d;$
- (4) $a \leq c \text{ and } b \leq d \implies a \vee b \leq c \vee d;$
- (5) $a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c);$
- (6) $a \wedge (b \vee c) \succcurlyeq (a \wedge c) \vee (a \wedge c);$
- $(7) \ a \leq b \iff a \wedge b = a \iff a \vee b = b$

Homomorphisms of lattices

Definition:

Let $\langle L, \wedge, \vee \rangle$, $\langle L', \wedge', \vee' \rangle$ be lattices, $\varphi : L \to L'$ is called a homomorphism from L to L' if and only if $\forall x, y \in L$, $\varphi(x \vee y) = \varphi(x) \vee' \varphi(y)$ and $\varphi(x \wedge y) = \varphi(x) \wedge' \varphi(y)$

Comments:

- If $\varphi: L \to L'$ is a homomorphism, then $\forall x, y \in L$, $x \preccurlyeq y \implies \varphi(x) \preccurlyeq' \varphi(y)$
- For any bijection $f: L \xrightarrow[onto]{1-1} L'$, f is a isomorphism if and only if $\forall x, y \in L(x \leq y \leftrightarrow f(x) \leq' f(y))$

Problems

1. Let *L* be a lattice, show that, for all $a, b, c \in L$,

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c$$

2. Let L be a lattice, and for all $a, b, c \in L$, we have

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Show that, for all $a, b, c \in L$,

$$(1) \ a \lor (b \land c) = (a \lor b) \land (a \lor c);$$

$$(2) \ a \preccurlyeq c \implies a \lor (b \land c) = (a \lor b) \land c$$

Problems (cont.)

- 3. Let *L* be a lattice, show that, for all $a, b, c, d \in L$,
 - $(1) (a \land b) \lor (c \land d) \preccurlyeq (a \lor c) \land (b \lor d)$
 - $(2) (a \land b) \lor (b \land c) \lor (c \land a) \preccurlyeq (a \lor b) \land (b \lor c) \land (c \lor a)$
- 4. A lattice *L* is called a modular lattice if $\forall a, b, c \in L$,

$$a \preccurlyeq c \implies a \lor (b \land c) = (a \lor b) \land c$$

Show that, a lattice L is a modular lattice if and only if $\forall a, b, c \in L$,

$$a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$$

Thank you

Any questions?