Lezione di LATEX Per il Laboratorio di Fisica - opz. Scienze Applicate

Lorenzo Mauro Sabatino

Data di oggi

Sommario

Riassunto del contenuto, scrivete quel che vi pare

Indice

1	Introduzione	2
2	Materiale	3
	2.1 Sensibilità	3
	2.1.1 Osservazioni	3
	2.2 Sotto sezione	4
	2.2.1 Sotto sotto sezione	4
3	Formule	4
	3.1 Troppi simboli, troppi comandi!	5
4	Immagini	5
5	Tabelle	7
$\mathbf{A}_{\mathbf{J}}$	pendice	9
A	Librerie	9

Come leggere il documento

Per seguire questa lezione non serve soltanto leggere questo documento. Il PDF infatti non costituisce il vero e proprio file di LaTeX, ma il codice sorgente sì.

Esistono diversi potenti siti on-line grazie ai quali puoi evitare di installare nel tuo computer un sistema TeX e un editor per LaTeX. Questi siti ti permettono di modificare i file direttamente nella pagina web, e poi eseguono LaTeX dietro le quinte e visualizzano il PDF composto.

Consiglio di usare il sito **Overleaf** (cliccare per aprire). Dopo aver fatto l'accesso, si può aprire il codice sorgente di questo file (soltanto in modalità visualizzazione) e vedere i comandi utilizzati. Cliccare sul link per aprire il file su Overleaf: qui.

Ora non vi resta che seguire i comandi che trovate a sinistra dell'interfaccia.¹ A destra vi apparirà il documento.

1 Introduzione

Avete appena creato la sezione 'Introduzione'.

...Scrivere quello che si vuole...

Sono andato a capo col doppio slash \\. Oppure vado a capo lasciando una riga vuota.

Col comando \noindent rimuovo lo spazio all'inizio del paragrafo.

¹consiglio di riscrivere il codice su overleaf mentre si segue il pdf

2 Materiale

Sfrutto questa sezione per spiegare come si fa un elenco puntato. Le esperienze che abbiamo fatto sono:

- Periodo pendolo
- Raggio Terra
- Viscosità glicerina

Volete un elenco puntato con i numeri?

- 1. prima scelta
- 2. seconda scelta

O preferite le lettere?

A terza scelta

 ${f B}$ quarta scelta

2.1 Sensibilità

Ho creato una 'sottosezione'.

La sensibilità del metro è 1 mm

2.1.1 Osservazioni

Posso fare una 'sotto sotto sezione'.

La sensibilità degli strumenti è stata considerata nello studio della propagazione degli errori. Per dettagli vedi sezione 2.1.

2.2 Sotto sezione

2.2.1 Sotto sotto sezione

3 Formule

Come si scrivono le formule matematiche?

Partiamo dal modo più facile e veloce da usare se voglio scrivere pochi caratteri speciali.

Esempio: La catena di vestiti H&M detiene il 25% del mercato con un fatturato di \$ 2.2 miliardi. E se voglio scrivere proprio lo slash? Uso \textbackslash: \

Una formula matematica si scrive tra la coppia di dollari \$...\$. Esempio: un esponente a^b e un pedice a_b . Posso scrivere in maniera agevole l'equazione $2x^2 + 1 = 9$ (se voglio metterla nella stessa riga del testo).

Se voglio evidenziarla maggiormente farò:

$$2x^2 + 1 = 9$$

Per numerarla uso l'ambiente matematico 'equation':

$$\vec{x}(t) = \frac{1}{2}\vec{a} \cdot t^2 \tag{1}$$

$$m_1 v_1^{in} + m_2 v_2^{in} = (m_1 + m_2) v_{out}$$
 (2)

Posso riferirmi a una formula. Come si vede nella (2).

3.1 Troppi simboli, troppi comandi!

Ma come faccio a sapere che nome hanno nel linguaggio LaTeX i simboli matematici che voglio utilizzare?

Non dovete far lo grazie a Detexify $^{2}\,$

In generale basta cercare su internet: sito utile, file utile.

4 Immagini

Vedi codice sorgente per i comandi. Difatti si usano sempre questi. Attenzione: le foto vanno caricate su overleaf (documento > in alto a sinistra > 'Carica').

Figura 1: Bohr

Ci sono tanti modi per riscalare una immagine, il comando scale ti permette di scrivere una percentuale dell'area precedente ma ne esistono molti altri:

 $^{^2\}mathrm{Detexify}$ è un sito che permette alle persone di disegnare il simbolo che vogliono inserire nel codice

Figura 2: Bohr ruotato

scale preserva il rapporto altezza/larghezza ma come vedete qui sotto se voi non dite a LaTeX di preservarlo potete stretchare le foto a piacere. 3

Figura 3: Bohr stretchato

³Per saperne di più di questi parametri vi consiglio di guardare Overleaf

5 Tabelle

Realizzare tabelle non è molto complicato, bisogna solo prestare attenzione ai comandi. Per velocizzare i tempi suggerisco di usare il sito https://www.tablesgenerator.com/ che crea il codice LaTeX della tabella che si desidera fare.

Attenzione, le tabelle:

- necessitano di uno specificatore di posizione tipo [H]
- accettano anche testo dentro quindi se volete un'equazione dovete specificarlo con il simbolo del dollaro \$
- le table hanno bisogno che tu gli specifichi quando fare le righe orizzontali con il comando \hline

Esempi

	Voce 1	Voce 2	Voce 3
#	a	b	С
#	d	e	f

Tabella 1: tabella facile

$\sin(\omega(t))$	b	c
b	diversi allineamenti	е
С	е	$E^2 = m^2 c^4 + p^2 c^2$

Tabella 2: Altra tabella

N. prove	massa carrello [g]	forza risultante [N]
1		
2	•••	
3		

Tabella 3: Altra tabella

Sensibilità strumenti	
Oscilloscopio (tensioni)	2 mV
Oscilloscopio (tempi)	$2~\mu \mathrm{s}$
Ohmetro (per R)	$0,1~\mathrm{k}\Omega$
Ohmetro (per R_L)	$1~\Omega$

Tabella 4: errori relativi al circuito RL e sensibilità strumenti

t [ms]	$V_C [mV]$
$2,0 \pm 0,2$	$9,6 \pm 0,4$
$4,0 \pm 0,2$	$22,4 \pm 0,4$
$6,0 \pm 0,2$	32.8 ± 0.4
$8,0 \pm 0,2$	$41,6 \pm 0,4$
$10,0 \pm 0,2$	$49,6 \pm 0,4$
$12,0 \pm 0,2$	56.8 ± 0.4
$14,0 \pm 0,2$	$62,4 \pm 0,4$
$16,0 \pm 0,2$	68 ± 0.4
$18,0 \pm 0,2$	$69,6 \pm 0,4$
$20,0 \pm 0,2$	76 ± 0.4
$22,0 \pm 0,2$	77.6 ± 0.4
$24,0 \pm 0,2$	$83,2 \pm 0,4$
$26,0 \pm 0,2$	$85,6 \pm 0,4$
$28,0 \pm 0,2$	87.2 ± 0.4
$30,0 \pm 0,2$	88.8 ± 0.4
$32,0 \pm 0,2$	88 ± 0.4
$34,0 \pm 0,2$	$88,4 \pm 0,4$
$36,0 \pm 0,2$	$92,8 \pm 0,4$

Tabella 5: Carica del circuito RC

Appendice

Così si crea l'appendice

A Librerie

Consiglio, per la creazione di file futuri, di copiare le librerie all'inzio di questo file. Bene o male contengono il minimo indispensabile per scrivere delle semplici relazioni di laboratorio.

Riferimenti bibliografici

- [1] Learn LaTeX, https://www.learnlatex.org/it/
- [2] Lezioni online AISF, https://ai-sf.it/

Crediti

Autore: Lorenzo Mauro Sabatino

Per segnalare errori o proporre correzioni, visita: https://lorenzosabatino03.github.io/lab-fisica//oppure contatta: lorenzo.sabatino@collegifacec.it