Chapitre 5

Trois exemples d'algorithmes de graphes

Table des matières

	1	Con	nposantes fortement connexes (CFC)	2							
		1.1	Rappels	3							
		1.2	Rangement particulier de graphe	4							
		1.3	Graphe transposé et cfc	5							
		1.4	Calcul de tri préfixe	5							
		1.5	Algorithme de Kosaraju	6							
		1.6	Applications	6							
	2 Arbres couvrants de poids minimum										
	3 Couplage dans un graphe biparti										
Annexe A. Remarques supplémentaires											

ANS CE CHAPITRE, on s'intéresse aux graphes. Nous rappellerons les notions et algorithmes de graphes vus l'année dernière. On considère 3 exemples d'algorithmes de graphes.

Par exemple, l'année dernière, nous avons vu comment décomposer un graphe non-orienté en composantes connexes : on choisit un sommet au hasard, puis on parcours les voisins de ce sommets, et on répète. Mais, dans un graphe orienté, la notion de « composante connexe » n'est plus la même dans un graphe orienté. C'est l'algorithme décrit dans la section 1.

1 Composantes fortement connexes (CFC)

Dans la suite de cette section, G = (S, A) est un graphe orienté.

Définition: On dit que $v \in S$ est accessible depuis $u \in S$ s'il existe un chemin de u à v, que l'on note $u \xrightarrow{\star} v$. De même, on dit que $v \in S$ est co-accessible depuis $u \in S$ s'il existe un chemin de v à u, que l'on note $v \xrightarrow{\star} u$.

Définition $(u \sim_G v)$: On note $u \sim_G v$ si $u \xrightarrow{\star} v$ et $v \xrightarrow{\star} u$.

REMARQUE:

La relation \sim_G est une relation d'équivalence.

Digression L'année dernière, dans un graphe non orienté, on peut noter \sim la relation d'équivalence induite par, si $\{u,v\}\in A$, alors $u\sim v$. Dans ce cas, le même chemin permet d'aller de u à v, puis de v à u, et ce chemin est le même. Mais, dans un graphe orienté, si $u\sim_G v$, les chemins de u à v puis de v à u ne sont pas forcément les mêmes.

 $\begin{tabular}{ll} \bf D\'{e}finition~(\tt CFC): & On~appelle~composantes~for tement~connexes~(\tt CFC)~d'un~graphe~G, les~classes~d'\'{e}quivalences~de~la~relation~\sim_G. \end{tabular}$

Définition: On dit d'un graphe ayant une unique composante fortement connexe qu'il est *fortement connexe*.

Définition: On appelle ensemble fortement connexe un ensemble $V\subseteq S$ tel que G_V est fortement connexe où G_V est le graphe induit par $V:G_V=(V,A\cap V^2)$.

Lemme : Si W est une composante fortement connexe de G, alors W est un ensemble fortement connexe.

Propriété: Les composantes fortement connexes sont les ensembles fortement connexes qui sont maximaux pour l'inclusion.

Définition : On appelle graphe réduit de G le graphe orienté $\hat{G} = (\hat{S}, \hat{A})$ où

$$\hat{S} = \{\bar{x} \mid x \in S\} \quad \text{ et } \quad \hat{A} = \left\{(\bar{x}, \bar{y}) \mid (x, y) \in A \text{ et } \bar{x} \neq \bar{y}\right\}.$$

Remarque : — \hat{G} est acyclique.

— Pour tout couple $(\bar{x}, \bar{y}) \in \hat{S}^2$, si $\bar{x} \xrightarrow{\star}_{\hat{G}} \bar{y}$, alors $\forall u \in \bar{x}, \forall v \in \bar{y}, x \xrightarrow{\star}_{G} v$.

1.1 Rappels

Définition : La bordure d'un ensemble de sommets $V\subseteq S$, noté $\mathfrak{B}(V)$, est l'ensemble des successeurs de V non dans V :

$$\mathfrak{B}(V) = \{ s \in S \setminus V \mid \exists u \in V, \ (u, s) \in A \}.$$

Définition (parcours): Un parcours est une permutation des sommets (L_1, L_2, \dots, L_n) telle que, pour $i \in [\![1, n-1]\!]$,

$$L_i\in \mathfrak{B}(\{L_1,\ldots,L_{i-1}\})\quad \text{ ou }\quad \mathfrak{B}(\{L_1,\ldots,L_{i-1}\})=\varnothing.$$

On dit d'un L_i avec $i \in [\![1,n]\!]$ tel que $\Re(\{L_1,\ldots,L_{i-1}\})=\varnothing$, que c'est un point de régénération du parcours.

Lemme : Si $V\subseteq S$ est tel que $\mathfrak{B}(V)=\varnothing$, il n'existe aucun chemin d'un sommet de V à un chemin de $S\setminus V$.

Définition : Soit (L_1,L_2,\ldots,L_n) un parcours de G. On note K le nombre de ses points de régénération. On note $(r_k)_{k\in \llbracket 1,k\rrbracket}$ l'extractrice des points de régénération. En notant de plus $r_{K+1}=n+1$. Le partitionnement associé au parcours est alors

$$\{\{L_{r_i}, L_{r_i+1}, \dots, L_{r_{i+1}-1}\} \mid i \in [1, K]\}.$$

Définition : Un partitionnement P_1 est un raffinement d'un partitionnement P_2 dès lors que

$$\forall C_1 \in P_1, \exists C_2 \in P_2, C_1 \subseteq C_2.$$

Propriété : Les composantes fortement connexes sont un raffinement des partitionnement des parcours.

1.2 Rangement particulier de graphe

Définition (Sommet ouvert): Soit (L_1, \ldots, L_n) un parcours de G. Pour $k \in [1, n]$ et $i \in [1, k[$, on dit que L_i est ouvert à l'étape k si

$$\operatorname{Succ}(L_i) \not\subseteq \{L_j \mid j \in [1, k[]\}$$

où $\operatorname{Succ}(L_i)$ est l'ensemble des successeurs de L_i .

Cette définition nous permet de définir les parcours en largeur et en profondeur.

Définition (parcours en largeur): Soit (L_1, \ldots, L_n) un parcours. Il est dit *en largeur* si chaque sommet du parcours qui n'est pas un point de régénération est un successeur du premier sommet ouvert à cette étape :

$$\forall k \in [\![2,n]\!], \qquad \mathscr{B}(\{L_j \mid j \in [\![1,k[\![]\!]\} = \varnothing \quad \text{ ou } \quad L_k \in \operatorname{Succ}(L_{i_0})$$

avec $i_0 = \min\{i \in [1, k[\mid L_i \text{ ouvert à l'étape } k \}.$

Définition (parcours en profondeur) : Soit (L_1,\ldots,L_n) un parcours. Il est dit *en largeur* si chaque sommet du parcours qui n'est pas un point de régénération est un successeur du dernier sommet ouvert à cette étape :

$$\forall k \in [\![2,n]\!], \qquad \Re(\{L_j \mid j \in [\![1,k]\!]\}) = \varnothing \quad \text{ ou } \quad L_k \in \operatorname{Succ}(L_{i_0})$$

avec $i_0 = \max\{i \in [1, k[\mid L_i \text{ ouvert à l'étape } k\}.$

Définition (tri topologique): Soit $(T_i)_{i\in [\![1,n]\!]}$ une permutation des sommets. On dit que T est un tri topologique si

$$\forall (i,j) \in [1,n]^2$$
, si $(T_i,T_j) \in A$ alors $i \leq j$.

Définition : Soit une permutation de sommets $(T_i)_{i\in \llbracket 1,n\rrbracket}$. On appelle rang de $u\in S$ dans T le plus petit indice dans T d'un élément accessible $(u\stackrel{\star}{\to} v)$ et co-accessible $(v\stackrel{\star}{\to} u)$ depuis u. On définit

$$\operatorname{rang}_T(u) = \min\{i \in [1, n] \mid T_i \sim_G u\}.$$

Définition : Étant donné une permutation $(T_i)_{i\in \llbracket 1,n\rrbracket}$ des sommets de G, on définit

la relation

$$\preccurlyeq_T = \{(u, v) \in S^2 \mid \operatorname{rang}(u) \leqslant \operatorname{rang}(v)\}.$$

On dit alors que T est un tri préfixe dès lors que, pour tout $(u,v)\in S^2,$ si $u\stackrel{\star}{\to} v$ alors $u\preccurlyeq_T v.$

Remarque:

Étant donné une permutation T, pour tout couple de sommets (u, v),

$$u \sim_G v \iff (u \preccurlyeq_T v \text{ et } v \preccurlyeq_T u).$$

1.3 Graphe transposé et cFC

Définition : Étant donné un graphe G=(S,A), on appelle graphe transposé de G, que l'on note $G^{\top},$ le graphe

$$G^{\top} = \Big(S, \left\{(y, x) \in S^2 \mid (x, y) \in A\right\}\Big).$$

Propriété : Soit T un tri préfixe de G. Soit L un parcours de G^{\top} utilisant l'ordre des points de régénération induit par T. Alors, la partition associée à L est la décomposition en composantes forment connexes.

1.4 Calcul de tri préfixe

On peut donc donner un algorithme calculant un tri préfixe. On donne cet algorithme en impératif, même si la version récursive est plus simple.

Algorithme 1 Calcul d'un tri préfixe

```
Entrée Un graphe G = (S, A).
Sortie Un tri préfixe des sommets de G.
 1: Procédure ExploreDescendants(s, Visités, Res)
          Entrée Un graphe G = (S, A), Res, Visités, s \in S.
 2:
          Sortie Modifie Res et Visités de sorte que Res soit un parcours préfixe de Visités et des
 3:
          sommets accessibles depuis s.
 4:
          todo \leftarrow pileVide
         empiler(s, Succ(s)), todo)
 5:
 6:
          Visités \leftarrow \{s\} \cup Visités
 7:
          tant que todo ≠ pileVide faire
              (x, \ell) \leftarrow \text{depiler}(\text{todo})
 8 .
 9:
              \mathbf{si}\ \ell = (\ )\ \mathbf{alors}
10:
                   \text{Res} \leftarrow x \cdot \text{Res}
11:
               sinon
                   t \cdot \ell' \leftarrow \ell
                                      \triangleright on sépare la tête t du reste \ell' de la pile \ell.
12:
13 .
                   \operatorname{empiler}((x, \ell'), \operatorname{todo})
14
                   si t \notin \text{Visit\'es alors}
                        \textit{Visit\'es} \leftarrow \{t\} \cup \textit{Visit\'es}
15:
                        empiler((t, Succ(t)), todo)
16:
17 : Visités \leftarrow \emptyset
18: Res \leftarrow ()
19 : tant que S \setminus \text{Visit\'es} \neq \emptyset faire
         s \leftarrow \text{un sommet de } S \setminus \text{Visit\'es}
20 \cdot
          ExploreDescendants(s, Visités, Res)
22 : retourner Res
```

On montre la correction de cet algorithme. On cherche des invariants *intéressants*, que l'on ne prouvera pas. Pour la boucle "tant que," dans la procédure ExploreDescendants, on choisit les invariants

- 1. pour tout couple de sommets $(u,v) \in S^2$, si $\mathscr{C}(u) \subseteq \operatorname{Res}$ et que $u \xrightarrow{\star} v$, alors $\mathscr{C}(v) \subseteq \operatorname{Res}$ et $\operatorname{rand}_{\operatorname{Res}}(u) \leqslant \operatorname{rang}_{\operatorname{Res}}(v)$,
- 2. $K(\text{todo}) \cup \text{Res} = \text{Visit\'es}$, où où K(todo) est l'ensemble des premières composantes des couples de todo,
- 3. les clés de todo, du fond de la pile au sommet forment un chemin,
- 4. si u est un élément de Visités, et v est un descendant de u,
 - ou bien $v \in \text{Res}$,
 - ou bien $v \in K(todo)$
 - ou bien v est un descendant d'un élément d'une liste adjointe à un élément $w \in K(\text{todo})$ tel que $u \xrightarrow{\star} w$.

On admet que ces 4 propriétés sont invariantes. À la fin, $\forall x \in \text{Res}$, $\mathscr{C}(x) \subseteq \text{Res}$, et dnc l'invariant 1 assure alors que nous avons un tri préfixe.

1.5 Algorithme de Kosaraju

Algorithme 2 Algorithme de Kosaraju

Entrée Un graphe G = (S, A)

Sortie Les composantes fortement connexes de G

- 1: On calcule un tri préfixe de G.
- 2 : On parcours G^{\top} en utilisant l'ordre T comme points de régénération.
- 3: On retourne le plus petit partitionnement associé au parcours.

1.6 Applications

Théorème : 2-cnf-sat $\in \mathbf{P}$.

Figure 1 - Représentation d'une formule 2-cnf-sat par un graphe

Preuve :

Soit $H \in 2$ cnf. On pose

$$H = (\ell_{1,1} \vee \ell_{1,2}) \wedge \ldots \wedge (\ell_{n,1} \vee \ell_{n,2}).$$

Dans la suite, on note $\ell_{i,j}^c$ le littéral opposé à $\ell_{i,j}$. À la formule H, nous associons le graphe G_H défini

$$\begin{split} S_H &= \left\{ (\ell_{i,j}) \mid i \in [\![1,n]\!], j \in \{1,2\} \right\} \cup \left\{ (\ell_{i,j}^c) \mid i \in [\![1,n]\!], j \in \{1,2\} \right\}, \\ A_H &= \left\{ (\ell_{i,1}^c, \ell_{i,2} \mid i \in [\![1,n]\!] \right\} \cup \left\{ (\ell_{i,2}^c, \ell_{i,1}) \mid i \in [\![1,n]\!] \right\}. \end{split}$$

Lemme : Si ρ est un modèle de H et $u \xrightarrow{\star} v$ tel que $\llbracket u \rrbracket^{\rho} = V$, alors $\llbracket v \rrbracket^{\rho} = V$.

Propriété: H est satisfiable si, et seulement si aucune variable et sa négation ne se trouvent dans la même cFC de G_H .

Algorithme 3 Solution au problème 2CNFSAT

Entrée H une 2-cnf

Sortie ρ un modèle de H ou None si H n'est pas satisfiable

- 1: On construit G_H
- 2: On construit les CFC C_1,\ldots,C_p de G_H (dans un ordre topologique) 3: \mathbf{si} il existe x et $i\in \llbracket 1,p \rrbracket$ tel que $x\in C_i$ et $\neg x\in C_i$ alors
- 4: retourner None
- 5 : **sinon**
- **retourner** ρ défini comme

$$\begin{split} \rho: \mathbb{Q} & \longrightarrow \mathbb{B} \\ x & \longmapsto \begin{cases} F & \text{ si } i < j \\ V & \text{ sinon} \end{cases} \end{split}$$

où $x \in C_i$ et $\neg x \in C_j$.

Arbres couvrants de poids minimum

Définition (Arbre) : Soit G = (S, A) un graphe non-orienté. On dit que G est un arbresi G est connexe et acyclique.

Définition (Arbre couvrant): Étant donné un graphe non orienté pondéré par poids positifs G = (S, A, c), on dit de G' = (S', A') que c'est un arbre couvrant de G si S' = Set $A' \subseteq A$, et G' est un arbre.

Définition (Arbre couvrant de poids minimum) : Étant donné un graphe non orienté pondéré G=(S,A,c) et un arbre couvrant $T=(S^\prime,A^\prime)$, on appelle poids de l'arbre T la valeur $\sum_{a \in A'} c(a)$.

Si G est connexe, il admet au moins un arbre couvrant, on peut définir l'arbre couvrantde poids minimum (ACPM).

On définir alors le problème

```
_{\text{ACPM}}^{2} \left\{ \begin{array}{l} \mathbf{Entr\'{e}e} \\ \mathbf{S} \end{array} \right. : G = (S, A, c) connexe
             Sortie : le poids de l'arbre couvrant de poids minimum.
```

Algorithme 4 Algorithme de Kruskal

```
Entrée G = (S, A, c) un graphe connexe
Sortie Un arbre couvrant de poids minimum
1: B \leftarrow \emptyset
2: U \leftarrow \emptyset
3 : tant que il existe u et v tels que u \nsim_B v faire
4:
          Soit \{x,y\} \in A \setminus U de poids minimal
5:
          si x \sim_B y alors
          U \leftarrow \{\{x,y\}\} \cup U
6:
              \begin{array}{l} U \leftarrow \big\{\!\{x,y\}\!\big\} \cup U \\ B \leftarrow \big\{\!\{x,y\}\!\big\} \cup B \end{array}
8:
9:
10: retourner T = (S, B)
```

Propriété: L'algorithme de Kruskal est correct.

À la fin, B induit un graphe connexe et B est contenu dans un ACPM, c'en est donc un.

Une structure pour la gestion des partitions : UnionFind.

Définition (Type de données abstrait UnionFind): On définit le type de données abstrait UnionFind comme contenant

- un type t de partitions;
- un type elem des éléments manipulés par les partitions;
- initialise_partition : elem list o t retournant le partitionnement dans lequel chaque élément est seul dans sa classe;
- 1. on dit que c est la fonction de pondération de ce graphe 2. Arbre Couvrant de Poids Minimum

- find: $(t*elem) \rightarrow elem$ retournant un représentant de la classe de l'élément. Si deux éléments x et y sont dans la même classe, dans le partitionnement p, alors find(p,x) = find(p,y);
- union: (t*elem*elem) → t retourne le partitionnement dans lequel on a fusionné les classes des arguments.

On implémente ce type abstrait en OCAML.

Remarque (Niveau zéro – listes de liste):

```
type 'a t = 'a list list
    let initialise_partition (1: 'a list): 'a t =
  List.map (fun x -> [ x ] ) 1
    let rec find (p: 'a t) (x: 'a): 'a =
      match p with | classes ->
           if List.mem x classe then List.hd classe
       else find classes x
    let est_equiv (p: 'a t) (x: 'a) (y: 'a): bool =
  (find p x) = (find p y)
14
    let rec extrait_liste (x: 'a) (p: 'a t): 'a list * 'a p =
16
      match p with | classes ->
18
            if List.mem x classe then (classe, classes)
       let cl, cls' = extrait_liste x classes in
    (cl, classe :: cls')
| [] -> raise Not_Found
21
23
    let union (p: 'a t) (x: 'a) (y: 'a): 'a t = if est_equiv p x y then p
       else
27
         let cx, p' = extrait_liste x p in
let cy, p'' = extrait_liste y p' in
(cx @ cy) :: p''
```

Code 1 – Implémentation du type UnionFind en OCAML

Remarque (Niveau un – tableau de classes):

Dans la case du tableau, on inscrit le numéro de sa classe. Pour find, on prend le premier ayant la même classe. Pour union, on re-numérote vers un numéro commun. Par exemple,

1	

Remarque (Niveau deux — tableau de représentants) :

Dans les cases du tableau, on écrit le représentant de la classe de i. Pour find, on lit la case. Pour union, on re-numérote vers un numéro commun. Par exemple,

					5	$\longleftrightarrow \{\{0,2,3\},\{1,4\},\{5\}\}$
0	1	2	3	4	5	

Remarque (Niveau trois – arbres):

Pour union(0,1), on cherche le représentant de 0 (2) puis celui de 1 (4). On fait pointer 4vers 2. Pour la suite de l'implémentation, c.f. dm₃.

Figure 2 – Représentation par des arbres

Avec cette nouvelle structure, on peut maintenant revenir sur l'algorithme de Kruskal.

Algorithme 5 Algorithme de Kruskal – version 2

```
Entrée Un graphe G = (S, A, c) un graphe non orienté, pondéré
Sortie Un ACPM
\begin{array}{ll} 1 \colon \text{Soit } (e_i)_{i \in [\![ 1,m]\!]} \text{ un tri des arrêtes par coût croissant} \\ 2 \colon f \leftarrow 0 & \triangleright \textit{Nombre d'union effectuées} \end{array}
3: \ p \leftarrow \mathtt{initialise\_partition}(S)
 4:I\leftarrow 0
5: B \leftarrow \emptyset
 6: tant que f < n-1 faire
          \{x,y\} \leftarrow e_I
 8:
           si find(p, x) \neq find(p, y) alors
                p \leftarrow \mathtt{union}(p, x, y)
9:
                 B \leftarrow B \cup \{\{x,y\}\}\
10:
                f \leftarrow f + 1
            I \leftarrow I + 1
12:
13: retourner (S, B)
```

Étude de complexité. Notons $C^n_{\mathtt{find}}$ un majorant du coût de find sur une structure contenant n éléments, notons C^n_{union} un majorant du coût de union sur une structure contenant n éléments, et notons C^n_{init} un majorant du coût de init sur une structure contenant n éléments. La complexité de cet algorithme est de

$$\mathbb{O}(C_{\text{init}}^n + 2m C_{\text{find}}^n + n C_{\text{union}}^n + m \log_2 m).$$

Couplage dans un graphe biparti

Définition (Couplage): On appelle couplage d'un graphe non orienté G = (S, A), la donnée d'un sous-ensemble $C\subseteq A$ tel que

$$\forall \{x,y\}, \{x',y'\} \in C, \qquad \{x,y\} \cap \{x',y'\} \neq \varnothing \implies \{x,y\} = \{x',y'\}.$$

Figure 3 – Exemple de couplage

Définition: Un couplage est dit maximal s'il est maximal pour l'inclusion (\subseteq). Un couplage est dit maximum si son cardinal est maximal.

REMARQUE

Dans toute la suite, on ne considère que des graphes bipartis.

Définition : Étant donné un graphe biparti G=(S,A) et un couplage C, un sommet x est dit libre dès lors que

$$\forall \{y,z\} \in C, \ x \not\in \{y,z\}.$$

Une chaîne élémentaire $^3(c_0,c_1,\ldots,c_{2p+1})$ est dit augmentante si

- c_0 et c_{2n+1} sont libres;
- $\forall i \in [0, p], \{c_{2i}, c_{2i+1}\} \in A \setminus C;$
- $-- \forall i \in [0, p-1], \{c_{2i+1}, c_{2i+2}\} \in C.$

Propriété : Étant donné un graphe biparti G=(S,A) avec $S=S_1\cup S_2$ (partitionnement du graphe biparti), un couplage C est maximum si, et seulement s'il n'admet pas de chaînes augmentantes.

3. *i.e.* une chaîne sans boucles.

3. On représente \Rightarrow pour les arrêtes dans le couplage C.

Algorithme 6 ChaîneAugmentante : Trouver une chaîne augmentante dans un graphe biparti G=(S,A) muni d'un couplage C partant d'un sommet $s\in S$

```
1: Procédure Augmente(x, \text{chaîne})
2:
        \mathbf{pour}\ y \in \mathrm{Succ}(x) \setminus \mathbf{chaîne}\ \mathbf{faire}
            \mathbf{si}\ y est libre dans C alors
3:
4:
               retourner Some(chaîne \uplus (y))
            sinon
5:
6:
               Soit z tel que \{y, z\} \in C.
                r \leftarrow \text{Augmente}(z, \text{chaîne} \uplus (y, z))
7:
                si r \neq \text{None alors}
8:
9:
                retourner None
10:
11 : \mathbf{si} \ s est libre dans C alors
12: retourner Augmente(s,(s))
13: sinon
14: L retourner None
```

Remarque:

Si un sommet n'est pas libre dans le couplage C, il n'est pas libre dans les couplage obtenus par inversion de chaîne depuis C.

Algorithme 7 Calcul d'un couplage maximum

```
Entrée G = (S, A) un graphe biparti, avec S = S_1 \cup S_2
1 \colon \mathit{C} \leftarrow \varnothing
2: \ \mathrm{Done} \leftarrow \varnothing
3: tant que \exists x \in S_1 \setminus \text{Done faire}
          Soit un tel x.
4:
          r \leftarrow \texttt{ChaîneAugmentante}(G, C, x)
5:
          \mathbf{si} \ r \neq \text{None alors}
6:
7:
               Some(a) \leftarrow r
               On inverse la chaîne a dans C.
          \mathsf{Done} \leftarrow \{x\} \cup \mathsf{Done}
9:
10: retourner C
```

Annexe A. Remarques supplémentaires

Le parcours d'un graphe G=(S,A) a une complexité en $\mathfrak{G}(|S|+|A|)$.