Übungen zu Funktionentheorie 2

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner Musterlösung Blatt 1 Abgabe auf Moodle bis zum 13. November

Wir werten die erste und drei der vier anderen Aufgaben.

Ein Gitter Γ ist bei uns definiert als ein \mathbb{Z} -Untermodul von \mathbb{C} mit zwei fest gewählten Erzeugern ω_1 und ω_2 , welche \mathbb{R} -linear unabhängig in \mathbb{C} sind.

- **1. Aufgabe:** (2+2+2=6 Punkte) Sei $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{R})$ eine reellwertige invertierbare Matrix. Zeigen Sie:
 - (a) Für ein Gitter $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ ist $M \cdot \Gamma = \mathbb{Z}(a\omega_1 + b\omega_2) \oplus \mathbb{Z}(c\omega_1 \oplus d\omega_2)$ wieder ein Gitter.
 - (b) Dies definiert eine transitive Gruppenoperation von $GL(2,\mathbb{R})$ auf der Menge aller Gitter in \mathbb{C} .
 - (c) Es gilt $M \in GL(2,\mathbb{Z})$ genau dann, wenn für alle Gitter Γ die \mathbb{Z} -Moduln $M \cdot \Gamma$ und Γ gleich sind.

Anmerkung zu (c): Die Gleichheit ist hier nur eine Gleichheit von Z-Moduln. Die Basis kann sich dabei ändern.

Lösung:

- (a) Der von einem Paar (ω_1, ω_2) aufgespannte \mathbb{Z} -Modul $\Gamma = span(\omega_1, \omega_2) = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ ist ein Gitter genau dann, wenn ω_1 und ω_2 reell-linear abhängig sind, also eine \mathbb{R} -Basis von \mathbb{C} bilden. Ein $M \in \mathrm{GL}(2,\mathbb{R})$ operiert auf solchen Paaren via $(\omega_1,\omega_2) \mapsto (\omega_1,\omega_2) \cdot M^t$ im Sinne der Matrizenmultiplikation. Damit folgt $M \cdot \Gamma = span((\omega_1,\omega_2)M^t)$. Diese lineare Operation erhält lineare Unabhängigkeit, damit ist $M \cdot \Gamma$ wieder ein Gitter.
- (b) Für die Gruppenoperation reicht zu zeigen $(M \cdot N) \cdot \Gamma = M(N \cdot \Gamma)$ für alle $M, N \in GL(2, \mathbb{R})$ und i = 1, 2 und dass $E_2 \cdot \Gamma = \Gamma$. Das ist aus der linearen Algebra bekannt. Für die Transitivität reicht zu zeigen, dass es für jede Gitterbasis (ω_1, ω_2) ein $M \in GL(2, \mathbb{R})$ gibt mit $(\omega_1, \omega_2) = (1, i)M^t$. Setze dazu $M = \binom{\operatorname{Re}(\omega_1) \operatorname{Im}(\omega_1)}{\operatorname{Re}(\omega_2) \operatorname{Im}(\omega_2)}$, diese Matrix ist invertierbar, weil ω_1 und ω_2 linear unabhängig sind.
- (c) Sei $M = \binom{a \ b}{c \ d} \in \operatorname{GL}(2,\mathbb{R})$ beliebig. Wenn alle Einträge ganzzahlig sind, dann gilt $a \cdot \omega_1 + b\omega_2 \in \Gamma$ und $c \cdot \omega_1 + d \cdot \omega_2 \in \Gamma$ weil Γ ein \mathbb{Z} -Modul ist. Insbesondere ist $M\Gamma \subseteq \Gamma$. Für $M \in \operatorname{GL}(2,\mathbb{Z})$ hat auch M^{-1} ganzzahlige Einträge, also $\Gamma = M^{-1} \cdot M\Gamma \subseteq M\Gamma$, also $M \cdot \Gamma = \Gamma$. Umgekehrt nehmen wir an, M ist eine reelle Matrix mit $M \cdot \Gamma = \Gamma$ für ein beliebiges feste Gitter $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ Gitter. Dann sind $a\omega_1 + b\omega_2$ und $c\omega_1 + d\omega_2$ auch in Γ . Wegen der linearen Unabhängigkeit von ω_1 und ω_2 sind die Koeffizienten a, b, c, d jeweils ganze Zahlen. Das gleiche Argument angewandt auf M^{-1} zeigt $M \in \operatorname{GL}(2, \mathbb{Z})$.
- **2. Aufgabe:** (2+2=4 Punkte) Sei $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ ein Gitter mit Fundamentalparallelogramm $\mathcal{F} = \{s\omega_1 + t\omega_2 \mid 0 \leq s, t \leq 1\}$. Zeigen Sie:
 - (a) Das Volumen von \mathcal{F} ist $\operatorname{vol}(\mathcal{F}) = |\operatorname{Im}(\overline{\omega_1}\omega_2)|$.

(b) Dieses Volumen ist unabhängig von der Wahl der Basis des Gitters.

Hinweis zu (b): Man benutze Aufgabe 1.

Lösung:

(a) Fixiere den linearen Endomorphismus A von $\mathbb{R}^2 \cong \mathbb{C}$ gegeben in der Standardbasis (1,i) durch $A_{\omega} = \begin{pmatrix} \operatorname{Re}(\omega_1) & \operatorname{Re}(\omega_2) \\ \operatorname{Im}(\omega_1) & \operatorname{Im}(\omega_2) \end{pmatrix}$. Dann ist $(1,i)A_{\omega} = (\omega_1,\omega_2)$, also $\mathcal{F} = \{(1,i)A_{\omega} \begin{pmatrix} r \\ s \end{pmatrix} \mid 0 \leq r, s \leq 1\}$. Nach Definition und Transformationssatz ist das Volumen

$$vol(\mathcal{F}) = \int_{\mathcal{F}} dx dy = \int_{0}^{1} \int_{0}^{1} |\det A_{\omega}| dx dy = |\det A_{\omega}| = |\operatorname{Re}(\omega_{1})\operatorname{Im}(\omega_{2}) - \operatorname{Re}(\omega_{2})\operatorname{Im}(\omega_{1})| = |\operatorname{Im}(\overline{\omega_{1}}\omega_{2})|.$$

- (b) Sei (η_1, η_2) eine andere Basis des Gitters, dann gibt es nach Aufgabe 1(b),(c) eine Matrix $M \in GL(2, \mathbb{Z})$ mit $(\omega_1, \omega_2) = (\eta_1, \eta_2)M$. Damit folgt $A_{\eta} = A_{\omega}M$. Wegen $|\det M| = 1$ folgt $vol(\mathcal{F}_{\eta}) = |\det A_{\eta}| = |\det A_{\omega}| \cdot |\det M| = vol(\mathcal{F}_{\omega})$, also ist das Volumen unabhängig von der Wahl der Basis.
- **3. Aufgabe:** (4 Punkte) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze holomorphe Funktion und Γ ein Gitter. Wir nehmen an, zu jedem $\gamma \in \Gamma$ gibt es eine Polynomfunktion P_{γ} mit

$$f(z+\gamma) = f(z) + P_{\gamma}(z)$$
.

Zeigen Sie: Dann ist f selbst ein Polynom. Hinweis: Ableiten.

Lösung: Sei (ω_1, ω_2) eine Gitterbasis und n das Maximum der Grade der Polynome P_{ω_1} und P_{ω_2} . Dann gilt $P_{\omega_i}^{(n+1)} = 0$. Nach Ableiten folgt $f^{(n+1)}(z + \omega_1) = f^{(n+1)}(z) = f^{(n+1)}(z + \omega_2)$, also ist $f^{(n+1)} \in \mathbb{C}(\Gamma)$ elliptisch. Da $f^{(n+1)}$ holomorph ist, ist es daher konstant nach Satz von Liouville. Damit ist f ein Polynom.

4. Aufgabe: (4 Punkte) Sei Γ ein Gitter. Sei $f \in \mathbb{C}(\Gamma)$ eine nichtkonstante elliptische Funktion der Ordnung $N_f \in \mathbb{N}_0$. Die Ordnung N_f ist definiert als die Anzahl der Polstellen (mit Vielfachheit) modulo Γ . Die Ableitung $f' \in \mathbb{C}(\Gamma)$ ist auch eine elliptische Funktion. Zeigen Sie:

$$N_f + 1 \le N_{f'} \le 2N_f .$$

Hinweis: Wie verändert sich die Vielfachheit einer Polstelle beim Ableiten?

Lösung: Sei P die Menge der Polstellen modulo Γ , dann ist $N_f = \sum_{p \in P} \operatorname{ord}_p(f)$. Für jede Polstelle p gilt $\operatorname{ord}_{f'}(p) = \operatorname{ord}_f(p) + 1$ wie man sofort an der Laurent-Entwicklung sieht. Damit folgt $N_{f'} = N_f + \#P$. Es verbleibt die Ungleichung $1 \leq \#P \leq N_f$ zu zeigen. Letztere ist mehr oder weniger offensichtlich, da jede Polstelle mindestens die Ordnung 1 hat (Schubfach-Prinzip).

5. Aufgabe: (4 Punkte) Sei Γ ein Gitter und seien $f,g\in\mathbb{C}(\Gamma)$ elliptische Funktionen mit derselben Null- und Polstellenordnung in jedem Punkt. Dann ist $f=c\cdot g$ für eine Konstante $c\in\mathbb{C}$.

Lösung: Obda sind f und g nicht konstant Null. Nach Annahme haben f und g dieselbe Nullund Polstellen ordnung in jedem Punkt, also hat f/g in jedem Punkt die Null- und Polstellenordnung Null. Also hat f/g hebbare Singularitäten und seltzt sich fort zu einer holomorphen Nullstellenfreien Funktion. Da f/g elliptisch ist, folgt f/g ist konstant $c \in \mathbb{C}$ nach Satz von Liouville.