1

Question 12.13.3.24 Probability and Random Processes

Sarvesh K EE22BTECH11046*

Question:12/13/3/24

(ii) $var(\frac{X}{2})$

Consider the probability distribution of a random variable X:

X	0	1	2	3	4
P(X)	0.1	0.25	0.3	0.2	0.15

$=E\left(\frac{X^2}{4}\right)$	$-\left[E\left(\frac{X}{2}\right)\right]^2$	(11)
\ 4	/ [\2/]	

$$= \frac{1}{4} \left[E(X^2) - [E(X)]^2 \right]$$
 (12)

$$=\frac{\operatorname{var}(X)}{4}\tag{13}$$

$$=\frac{1.4475}{4}\tag{14}$$

$$= 0.361875$$
 (15)

Calculate

(i) var(X)

(ii) $var\left(\frac{X}{2}\right)$

Solution:

(i) var(X)

$$= E\left[X - E\left(X\right)\right]^{2} \tag{1}$$

$$= E \left[X^2 + [E(X)]^2 - 2XE(X) \right]$$
 (2)

$$= E(X^{2}) + [E(X)]^{2} - 2[E(X)]^{2}$$
 (3)

$$= E\left(X^2\right) - \left[E\left(X\right)\right]^2 \tag{4}$$

where

$$E(X) = \sum_{k=0}^{4} k p_X(k)$$
 (5)

$$= 2.05$$
 (6)

and

$$E(X^{2}) = \sum_{k=0}^{4} k^{2} p_{X}(k)$$
 (7)

$$= 5.65$$
 (8)

Then

$$var(X) = 5.65 - (2.05)^2$$
 (9)

$$= 1.4475$$
 (10)