PROJECT_STAGE_4_REPORT

1) Utilize Linear and Non-Linear (polynomial) regression models to compare trends for a single state (each member should choose different state) and its counties (top 5 with highest number of cases).

I have chosen California State.

Linear Regression Model for new cases across the California State

RMSE of Linear Regression on new_cases 16137.333352803971


```
One week ahead forecast using Non-linear Regression Model with degree 2 [[7626.5207269 ] [7711.12460406] [7797.11051336] [7884.4784548 ] [7973.22842838] [8063.3604341 ] [8154.87447197]] RMSE of Non Linear (Polynomial) Regression with degree 2 on new_cases 15964.037613310162
```


One week ahead forecast using Non-linear Regression Model with degree 3 [[11902.44464186] [12225.70473752]

[12555.87131483]

[12892.99529037] [13237.12758073]

[13588.31910249]

[13946.62077223]]

RMSE of Non Linear (Polynomial) Regression with degree 3 on new_cases 15886.503816265138

One week ahead forecast using Non-linear Regression Model with degree 4 [[3293.4337172]
[2815.85558667]
[2311.81567834]
[1780.64731181]
[1221.67722323]
[634.22556529]
[17.60590722]]

RMSE of Non Linear (Polynomial) Regression with degree 4 on new_cases 15648.667818651118

Non-linear regression model with degree 5 for new cases across California State

One week ahead forecast using Non-linear Regression Model with degree 5 [[2404.44410639] [1802.82387422] [1166.70213543] [495.11581442] [-212.91086612] [-958.36644108]

[-1742.25225881]]
RMSE of Non Linear (Polynomial) Regression with degree 5 on new_cases 15646.672533720646

Linear Regression Model for new deaths across the California State

RMSE of Linear Regression on new_deaths 95.21051925043596

Non-linear regression model with degree 2 for new deaths across California State

One week ahead forecast using Non-linear Regression Model with degree 2 [[30.03442521] [29.94987296] [29.86517734] [29.78033833] [29.69535594] [29.61023017] [29.52496102]]

RMSE of Non Linear (Polynomial) Regression with degree 2 on new_deaths 95.21020480366471

Non-linear regression model with degree 3 for new deaths across California State


```
One week ahead forecast using Non-linear Regression Model with degree 3 [[37.89312386] [38.24719666] [38.61127943] [38.98546576] [39.36984922] [39.7645234 ] [40.16958187]]
```

RMSE of Non Linear (Polynomial) Regression with degree 3 on new_deaths 95.166388508328

Non-linear regression model with degree 4 for new deaths across California State

One week ahead forecast using Non-linear Regression Model with degree 4 [[9.35042414] [7.04936213] [4.64767947] [2.1430906] [-0.46671188] [-3.18405721] [-6.01129643]]

RMSE of Non Linear (Polynomial) Regression with degree 4 on new_deaths 94.73224380387285

2) Identify which counties are most at risk. Model for top 5 counties with cases within a state and describe their trends.

Finding the top 5 infected counties across the CA State

	elected_state_county_data_daily2 = selected_state_county_data_daily1.sort							sort_value
:	countyFIPS	County Name	StateFIPS	population	cases	deaths	new_cases	new_deaths
18	6037	Los Angeles County	6	10039107	685420148	7083040	576726.0	2461.0
36	6073	San Diego County	6	3338330	193002028	1171012	169096.0	338.0
29	6059	Orange County	6	3175692	139335973	1576808	120667.0	618.0
35	6071	San Bernardino County	6	2180085	139636983	1707439	114782.0	492.0
40		Canta Clava Cavata		1007050	00050000	500750	1111000	007.0

Linear Regression Model trend lines and non-linear regression model trend lines for new cases and new deaths across these top 5 counties are modeled in ipynb file.

3) Perform hypothesis tests on questions identified in Stage II

- Does the increase in white population increases in the spread of covid-19 cases?
- Covid cases are more in the age group of 65 years and above.
- Covid cases spread is more in the Male population.
- Covid cases are more among the Asian population.

Applied two tail two sample t test and one tail two sample t test on each of these hypothesis questions in the ipynb file.