CS 581

Advanced Artificial Intelligence

March 06, 2024

Announcements / Reminders

Please follow the Week 09 To Do List instructions (if you haven't already)

Next week: Spring Break! No office hours.

- Programming Assignment #02: will be posted soon
- Written Assignment #03: will be posted soon

Plan for Today

- Decision Networks
- Probabilistic Reasoning over Time
 - Hidden Markov Model

Value of Perfect Information

The value/utility of best action α without additional evidence (information) is :

$$MEU(\alpha) = \frac{max}{a} \sum_{s'} P(Result(a) = s') * U(s')$$

If we include new evidence/information ($E_j = e_j$) given by some variable E_j , value/utility of best action α becomes:

$$MEU(a_{e_j} \mid e_j) = \max_{a} \sum_{s'} P(Result(a) = s' \mid e_j) * U(s')$$

The value of additional evidence/information from Ej is:

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) * MEU(a_{e_j} \mid E_j = e_j)\right) - MEU(a)$$

using our current beliefs about the world.

Decision Network: Example

Decision network

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} \mid e_1) = MEU(take \mid F = rain) = 53$$

$$MEU(a_{e_2} \mid e_2) = MEU(leave \mid F = sun) = 95$$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Outcome tree

Decision Networks: Example

Decision:leave umbrella

$$EU(leave) = 70$$

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{aligned} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \text{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \text{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{aligned}$$

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given sun

EU(leave given sun forecast) = 95

VPI Properties

Given a decision network with possible observations \mathbf{E}_{j} (sources of new information / evidence):

The expected value of information is nonnegative:

$$\forall_{j} \text{VPI}(E_{j}) \geq 0$$

VPI is not additive:

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order-independent:

$$VPI(E_i, E_k) = VPI(E_i) + VPI(E_k \mid E_i) = VPI(E_k) + VPI(E_i \mid E_k) = VPI(E_k, E_i)$$

Information Gathering Agent

function Information-Gathering-Agent(percept) returns an action persistent: D, a decision network

```
integrate percept into D
j \leftarrow the value that maximizes VPI(E_j) / C(E_j)
if VPI(E_j) > C(E_j)
then return Request(E_j)
else return the best action from D
```

Inference in Temporal Models

Agents and Belief State

Assume: $D_c = \{0,1,2,3\}$

State Space and Transition Model

Figure 13.21 (a) The states and transition probabilities of the Markov chain for the query $P(Rain \mid Sprinkler = true, WetGrass = true)$. Note the self-loops: the state stays the same when *either* variable is chosen and then resamples the same value it already has. (b) The transition probabilities when the CPT for Rain constrains it to have the same value as Cloudy.

Transition and Emission Probabilities

Figure 14.2 Bayesian network structure and conditional distributions describing the umbrella world. The transition model is $\mathbf{P}(Rain_t \mid Rain_{t-1})$ and the sensor model is $\mathbf{P}(Umbrella_t \mid Rain_t)$.

Inference in Temporal Models

- Filtering / State Estimation
 - Current Belief State given Evidence/Percept so far
- Prediction
 - Future Belief State given Evidence/Percept so far
- Smoothing
 - Past Belief State given Evidence/Percept so far
- Most likely explanation:
 - Use sequence of observations to find sequence of states that generated them

- Learning:
 - Learn the transition and sensor models based on observations ("emissions")

Andrey Markov's Work (early 1900s)

Sources: https://en.wikipedia.org/wiki/Markov_model https://en.wikipedia.org/wiki/Andrey_Markov

Andrey Andreyevich Markov was a Russian mathematician best known for his work on stochastic processes. A primary subject of his research later became known as the Markov chain.

A Markov model is a model used to model systems in which future states depend only on the current state, not on the events that occurred before it.

Markov Process / Chain

Markov Process (Chain) is a random process that generates a sequence of states

Markov Process / Chain

Markov Process (Chain) is a random process that generates a sequence of states

Bayesian Network?? Anyone?

Markov Process / Chain

Markov Process (Chain) is a random process that generates a sequence of states

Bayesian Network?? Anyone? Indeed!

$$P(X_{t+1} \mid X_t, X_{t-2}, X_{t-2}) = P(X_t \mid Parents(X_t)) = P(X_{t+1} \mid X_t)$$

$$P(X_{t+1} \mid X_t, X_{t-2}, X_{t-2}) = P(X_{t+1} \mid X_t)$$

Markov ASSUMPTION

Markov Process / Chain: Possible?

Markov Process (Chain) is a random process that generates a sequence of states

First-order Markov Assumption:

Second-order Markov Assumption:

Transition probability matrix A						
	q_0	q_1	q_2	q_3	q_4	Notes
\mathbf{q}_0	a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	row sum = 1
$\mathbf{q_i}$	a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	row sum = 1
\mathbf{q}_{2}	a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	row sum = 1
q_3	a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	row sum = 1
q_4	a _{4.,0}	a _{4,1}	a _{4,2}	a _{4,3}	a _{4,4}	row sum = 1

HMMs are specified with:

A set of N states:

$$Q = \{q_1, q_2, ..., q_N\}$$

- A transition probability matrix A, where each a_{i,j} represents the probability of moving from state q_i to state q_j
- A sequence of T observations O:

$$O = O_1, O_2, ..., O_T$$

A sequence of observation likelihoods (emission probabilities): probability of observation o_t being generated by a state q_i:

$$B = b_i(o_t)$$

Special start (<s>) and end (final: not here) states

 q_0 and q_E

Hidden Markov Models: Decoding

The task of determining which sequence of variables is the underlying source of some sequence of observations is called the decoding:

Given as input an HMM $\alpha = (A, B)$ and a sequence of observations o_1 , o_2 , ..., o_T find the most probable sequence of states q_1 , q_2 , ..., q_T .

or in our case:

Given as input an HMM $\alpha = (A, B)$ and a sequence of **words** $w_1, w_2, ..., w_T$ find the most probable sequence of **tags/states** $C_1, C_2, ..., C_T$.

- A transition probabilities matrix
- **B** emission probabilities matrix

HMM and Viterbi Algorithm: POS Tagging Example

Given a sequence of words (a "sentence"):

$$W_1, W_2, W_3, ..., W_T$$

there is going to be a corresponding sequence of lexical categories:

$$C_1, C_2, C_3, ..., C_T$$

What is most likely sequence of categories?

The probability we are looking for

$$P(C_1, C_2, C_3, ..., C_T | w_1, w_2, w_3, ..., w_T)$$

will require a lot of data, which we most likely won't have. We can use Bayes' Theorem:

$$P(C_1, C_2, C_3, ..., C_T \mid w_1, w_2, w_3, ..., w_T) =$$

$$= \frac{P(w_1, w_2, w_3, \dots, w_T \mid C_1, C_2, C_3, \dots, C_T) * P(C_1, C_2, C_3, \dots, C_T)}{P(w_1, w_2, w_3, \dots, w_T)}$$

Maximizing:

$$P(C_1, C_2, C_3, ..., C_T \mid w_1, w_2, w_3, ..., w_T)$$

in practice means maximizing the numerator:

$$\frac{P(w_1, w_2, w_3, \dots, w_T \mid C_1, C_2, C_3, \dots, C_T) * P(C_1, C_2, C_3, \dots, C_T)}{P(w_1, w_2, w_3, \dots, w_T)}$$

as denominator $P(w_1, w_2, w_3, \dots, w_T)$ will not change:

Estimating:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) * P(C_1, C_2, C_3, ..., C_T)$$

Approximate it with N-grams (here bigrams):

$$P(C_1, C_2, C_3, ..., C_T) = \prod_{i=1}^T P(C_i \mid all \ categories \ preceding \ C_i)$$

$$P(C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-1})$$

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(w_i \mid C_i)$$

Transition probability matrix					
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION
<s></s>	0.00	0.71	0.29	0.00	0.00
ARTICLE	0.00	0.00	1.00	0.00	0.00
NOUN	0.00	0.00	0.13	0.43	0.44
VERB	0.00	0.65	0.35	0.00	0.00
PREPOSITION	0.00	0.74	0.26	0.00	0.00

Emission probability matrix						
	flies like a flower					
<s></s>	0.000	0.000	0.000	0.000		
ARTICLE	0.000	0.000	0.360	0.000		
NOUN	0.025	0.012	0.001	0.063		
VERB	0.076	0.100	0.000	0.050		
PREPOSITION	0.000	0.068	0.000	0.000		

Based on corpus: how frequently a word X is tagged with Y

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P (VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

Consider a following sequence of categories (tags):

<s>, ARTICLE, NOUN, VERB, NOUN

What's the probability of its occurence in our synthetic corpus?

Hidden Markov Model (HMM)

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P (NOUN PREPOSITION)	0.26

The word "Hidden" in Hidden Markov Model means that for a specific sequence (of words) it is unclear what state the model is in.

The word *flies* could be generated from state NOUN and state VERB.

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

Probability of occurrence of a sequence of categories (tags):

$$P(C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(C_i \mid C_{i-1})$$

P(Bigram)	Estimate
P(ARTICLE <s>)</s>	0.71
P(NOUN <s>)</s>	0.29
P(NOUN ARTICLE)	1.00
P(VERB NOUN)	0.43
P (NOUN NOUN)	0.13
P (PREPOSITION NOUN)	0.44
P(NOUN VERB)	0.35
P (ARTICLE VERB)	0.65
P(ARTICLE PREPOSITION)	0.74
P(NOUN PREPOSITION)	0.26

Probability of occurrence of a sequence of categories (tags):

P(<s>, ARTICLE, NOUN, VERB, NOUN) =

 $\cong P(ART|<s>) * P(N|ART) * P(V|N) * P(N|V) = 0.71 * 1.00 * 0.43 * 0.35 = 0.107$

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

We need to maximize:

$$P(w_{1}, w_{2}, w_{3}, ..., w_{T} \mid C_{1}, C_{2}, C_{3}, ..., C_{T}) * P(C_{1}, C_{2}, C_{3}, ..., C_{T}) \cong \prod_{i=1}^{T} P(w_{i} \mid C_{i}) * P(C_{i} \mid C_{i-1})$$

POS Tagging: Simple Tagset

Let's assume we have a simple tagset:

- N NOUN
- V VERB
- ART ARTICLE
- P PREPOSITION

and some synthetic corpus.

Example sentence:

Flies like a flower

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^{T} P(w_i \mid C_i)$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

POS Tagging: General Approach

Estimations with corpus counts:

$$P(C_i = VERB \mid C_{i-1} = NOUN) = \frac{Count (NOUN \text{ at position } i - 1 \text{ and } VERB \text{ at } i)}{Count(NOUN \text{ at position } i - 1)}$$

Sample bigram probabilities from our synthetic corpus:

Category	Count at i	Pair	Count at i,i+1	P(Bigram)	Estimate
<s></s>	300	<s>, ARTICLE</s>	213	P(ARTICLE <s>)</s>	0.71
<s></s>	300	<s>, NOUN</s>	87	P(NOUN <s>)</s>	0.29
ARTICLE	558	ARTICLE, NOUN	558	P(NOUN ARTICLE)	1.00
NOUN	833	NOIN VERR	358	P(VERB NOUN)	0.43
NOUN	833	Transition	-108 >	P (NOUN NOUN)	0.13
NOUN	833	NOUN, PREPOSITION	366	P(PREPOSITION NOUN)	0.44
VERB	300	VERB, NOUN	75	P (NOUN VERB)	0.35
VERB	300	VERB, ARTICLE	194	P(ARTICLE VERB)	0.65
PREPOSITION	307	PREPOSITION, ARTICLE	226	P (ARTICLE PREPOSITION)	0.74
PREPOSITION	307	PREPOSITION, NOUN	81	P(NOUN PREPOSITION)	0.26

Synthetic Corpus: Word/Tag Counts

Summary of selected word counts in the synthetic corpus:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

From the table we can calculate lexical generation probabilities P(w|C) estimates:

$$P(the|ART) = 300/558 = 0.54$$

$$P(a|ART) = 201/558 = 0.36$$

$$P(flies|N) = 21/833 = 0.025$$

$$P(a|N) = 1/833 = 0.001$$

$$P(flies|V) = 23/300 = 0.076$$

$$P(flower|N) = 53/833 = 0.063$$

$$P(like|V) = 30/300 = 0.1$$

$$P(flower|V) = 15/300 = 0.05$$

$$P(like|P) = 21/307 = 0.068$$

$$P(like|N) = 10/833 = 0.012$$

Emission probabilities

Viterbi Algorithm

Sample Tagged Sentence

There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC

Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^T P(w_i \mid C_i)$$

Example: Best Option

Best option will be:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

Example: All Possible Sequences

Brute force approach time complexity: O(KL)

$$K = 20, L = 10 \rightarrow 20^{10} = 10240000000000$$

Example: Best Option

How can we efficiently find:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

Viterbi Algorithm: the Idea

In other words: maximize P() for all "sub-sentences".

Input sentence

function VITERB (observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]
                                         ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]
                                                         ; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Hidden Markov Model

function VITERBI(observations of len T state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]
                                         ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

function VITERBI(observations of len T,state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]
                                        ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Matrix (N x T): Structure

					_		_			
	N	Z	q _N	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
I-1, N	N-1	<mark>I</mark> n-1, q	q _{N-1}	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
3,, N-2,N-1, N	N-2	: 9 _{N-2} , C	q _{N-2}	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
	•••	States: Q = q ₁ , q ₂ , q ₃ ,, q _{N-2} , q _{N-1} , q _N		•••	•••	•••			•••	
Rows: 1, 2,	3	, <mark>q</mark> 2, q	q ₃	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
Rows	2	շ = գ <u>,</u>	q ₂	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
	1		q_1	V _{col} (row)	V _{col} (row)	V _{col} (row)		V _{col} (row)	V _{col} (row)	V _{col} (row)
•			\mathbf{q}_0	o ₁	02	O ₃	•••	O _{T-2}	O _{T-1}	O _T
	Observations: O = O ₁ , O ₂ , O ₃ ,, O _{T-2} , O _{T-1} , O _T									
				1	2	3		T -2	T -1	Т
				Columns / Time steps: 1, 2, 3,, T-2, T-1, T						

------> Time

Viterbi Matrix (N x T): Structure

					_		•			
	N	Z	q _N	V ₁ ^(N)	V ₂ ^(N)	V ₃ ^(N)		V _{T-2} ^(N)	V _{T-1} ^(N)	V _T ^(N)
N-2,N-1, N	N-1	<mark>In</mark> -1, q	q _{N-1}	V ₁ ^(N-1)	V ₂ ^(N-1)	V ₃ ^(N-1)		V _{T-2} ^(N-1)	V _{T-1} ^(N-1)	V _T (N-1)
N-2,N	N-2	States: q ₃ ,, q _{N-2} , q _{N-1} , q _N	q _{N-2}	V ₁ ^(N-2)	V ₂ ^(N-2)	V ₃ ^(N-2)		V _{T-2} ^(N-2)	V _{T-1} ^(N-2)	V _T (N-2)
3,,		States: q ₃ ,, q				•••				•••
: 1, 2,	3	, <mark>q</mark> 2, 0	q ₃	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾		V _{T-2} ⁽³⁾	V _{T-1} ⁽³⁾	V _T ⁽³⁾
Rows:	2	Q = q ₁ , q ₂ ,	q ₂	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾		V _{T-2} (2)	V _{T-1} ⁽²⁾	V _T ⁽²⁾
	1		q_1	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾		V _{T-2} ⁽¹⁾	V _{T-1} ⁽¹⁾	V _T ⁽¹⁾
•			q_0	o ₁	02	0 ₃		O _{T-2}	O _{T-1}	O _T
				Observations:						
				$O = O_1, O_2, O_3,, O_{T-2}, O_{T-1}, O_T$						
				1	2	3		T -2	T -1	Т

------> Time

Columns / Time steps: 1, 2, 3, ..., T-2, T-1, T

Viterbi Matrix (N x T): Structure

							_			
	N	2	q _N	V ₁ ^(N)	V ₂ ^(N)	V ₃ ^(N)		V _{T-2} ^(N)	V _{T-1} ^(N)	V _T ^(N)
I-1, N	N-1	<mark>N</mark> -1, q	q _{N-1}	V ₁ (N-1)	V ₂ ^(N-1)	V ₃ ^(N-1)		V _{T-2} ^(N-1)	V _{T-1} ^(N-1)	V _T (N-1)
3,, N-2,N-1, N	N-2	q _{N-2} , c	q _{N-2}	V ₁ ^(N-2)	V ₂ ^(N-2)	V ₃ ^(N-2)		V _{T-2} ^(N-2)	V _{T-1} (N-2)	V _T (N-2)
	•••	States: q ₃ ,, q _{N-2} , q _{N-1} , q _N		•••	•••	•••				•••
: 1, 2,	3	S q ₁ , q ₂ , q	q ₃	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾		V _{T-2} ⁽³⁾	V _{T-1} ⁽³⁾	V _T ⁽³⁾
Rows:	2	Q = q ₁	q ₂	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾		V _{T-2} (2)	V _{T-1} ⁽²⁾	V _T ⁽²⁾
	1		q ₁	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾		V _{T-2} ⁽¹⁾	V _{T-1} ⁽¹⁾	V _T ⁽¹⁾
			q_0	o ₁	02	O ₃		O _{T-2}	O _{T-1}	O _T
	Observations: $O = O_1, O_2, O_3,, O_{T-2}, O_{T-1}, O_T$									
				1	2	3		T -2	T -1	Т
				Columns / Time steps: 1, 2, 3,, T-2, T-1, T						

------> Time

POS Tagging: Simple Tagset

Let's assume we have a simple tagset:

- N NOUN
- V VERB
- ART ARTICLE
- P PREPOSITION

and some synthetic corpus.

Example sentence:

Flies like a flower

Viterbi Matrix (4 x 4): Structure

3, 4	4	q	q_4	V ₁ ⁽⁴⁾	V ₂ ⁽⁴⁾	V ₃ ⁽⁴⁾	V ₄ ⁽⁴⁾		
2,	3	States: q ₁ , q ₂ , q ₃ ,	q_3	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾	V ₄ ⁽³⁾		
Rows: 1,	2		q_2	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾	V ₄ ⁽²⁾		
Rc	1	Q	$q_{\scriptscriptstyle 1}$	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾	V ₄ ⁽¹⁾		
			q_0	01	02	0 ₃	04		
				Observations: $O = O_1, O_2, O_3, O_4$					
				1	2	3	4		
				Columns / Time steps: 1, 2, 3, 4					

-----> Time

Viterbi Matrix (4 x 4): Structure

4	4	q	PREPOSITION	V ₁ ⁽⁴⁾	V ₂ ⁽⁴⁾	V ₃ ⁽⁴⁾	V ₄ (4)		
., 2, 3,	3	States: ¶ ₁ , ¶ ₂ , ¶ ₃ ,	VERB	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾	V ₄ ⁽³⁾		
Rows: 1,	2	States = q ₁ , q ₂ ,	NOUN	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾	V ₄ ⁽²⁾		
Rc	1	Q	ARTICLE	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾	V ₄ ⁽¹⁾		
			<s></s>	flies	like	а	flower		
				Observations: $O = O_1, O_2, O_3, O_4$					
				1	2	3	4		
				Columns / Time steps: 1, 2, 3, 4					

-----> Time

q_4	V ₁ ⁽⁴⁾	V ₂ ⁽⁴⁾	V ₃ ⁽⁴⁾	V ₄ ⁽⁴⁾
q_{3}	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾	V ₄ ⁽³⁾
q_{2}	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾	V ₄ ⁽²⁾
q_1	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾	V ₄ ⁽¹⁾
q_{o}	$\mathbf{o_1}$	O ₂	o ₃	04

	Transition probability matrix								
	q_o	$\mathbf{q_1}$	q_2	q_{2}	q_4				
\mathbf{q}_{0}	a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}				
q_1	a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}				
q_2	a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}				
q_3	a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}				
\mathbf{q}_4	a _{4.,0}	a _{4,1}	a _{4,2}	a _{4,3}	a _{4,4}				

	Emission probability matrix									
	$\mathbf{o_1} \qquad \qquad \mathbf{o_2} \qquad \qquad \mathbf{o_3} \qquad \qquad \mathbf{o_4}$									
\mathbf{q}_{0}	b ₀ (o ₁)	b ₀ (o ₂)	b ₀ (o ₃)	b ₀ (o ₄)						
$\mathbf{q_1}$	b ₁ (o ₁)	b ₁ (o ₂)	b ₁ (o ₃)	b ₁ (o ₄)						
q_{2}	b ₂ (o ₁)	b ₂ (o ₂)	b ₂ (o ₃)	b ₂ (o ₄)						
q_3	b ₃ (o ₁)	b ₃ (o ₃)	b ₃ (o ₃)	b ₃ (o ₄)						
q_4	b ₄ (o ₁)	b ₄ (o ₃)	b ₄ (o ₃)	b ₄ (o ₄)						

PREPOSITION	V ₁ ⁽⁴⁾	V ₂ ⁽⁴⁾	V ₃ ⁽⁴⁾	V ₄ ⁽⁴⁾
VERB	V ₁ (3)	V ₂ ⁽³⁾	V ₃ (3)	V ₄ ⁽³⁾
NOUN	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾	V ₄ ⁽²⁾
ARTICLE	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾	V ₄ ⁽¹⁾
<s></s>	flies	like	а	flower

Transition probability matrix									
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION				
<s></s>	0.00	0.71	0.29	0.00	0.00				
ARTICLE	0.00	0.00	1.00	0.00	0.00				
NOUN	0.00	0.00	0.13	0.43	0.44				
VERB	0.00	0.65	0.35	0.00	0.00				
PREPOSITION	0.00	0.74	0.26	0.00	0.00				

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do

; initialization step

First column

t = 1

 $viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$

for each time step t **from** 2 **to** T **do**

; recursion step

for each state s from 1 to N do

$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$
 ; termination step

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$
 ; termination step

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

$$V_1^{(s)} = viterbi[s, observation_1] = viterbi[s, o_1] = \pi_s * b_s(o_1) = a_{0,s} * b_s(o_1) = P(s \mid q_0) * P(o_1 \mid s)$$

$$\begin{aligned} &V_1^{(1)} = \text{viterbi}[\text{state}_1, \, \text{observation}_1] = \text{viterbi}[q_1, \, o_1] = \pi_1 * b_1(o_1) = a_{0,1} * b_1(o_1) = P(q_1 \mid q_0) * P(o_1 \mid q_1) \\ &V_1^{(2)} = \text{viterbi}[\text{state}_2, \, \text{observation}_1] = \text{viterbi}[q_2, \, o_1] = \pi_2 * b_2(o_1) = a_{0,2} * b_2(o_1) = P(q_2 \mid q_0) * P(o_1 \mid q_2) \\ &V_1^{(3)} = \text{viterbi}[\text{state}_3, \, \text{observation}_1] = \text{viterbi}[q_3, \, o_1] = \pi_3 * b_3(o_1) = a_{0,3} * b_3(o_1) = P(q_3 \mid q_0) * P(o_1 \mid q_3) \\ &V_1^{(4)} = \text{viterbi}[\text{state}_4, \, \text{observation}_1] = \text{viterbi}[q_4, \, o_1] = \pi_4 * b_4(o_1) = a_{0,4} * b_4(o_1) = P(q_4 \mid q_0) * P(o_1 \mid q_4) \end{aligned}$$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do

; initialization step

First column

t = 1

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t **from** 2 **to** T **do**

; recursion step

for each state s from 1 to N do

$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

$$backpointer[s,t] \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$
 ; termination step

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$
 ; termination step

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

PREPOSITION	V ₁ ⁽⁴⁾	V ₂ ⁽⁴⁾	V ₃ ⁽⁴⁾	V ₄ ⁽⁴⁾
VERB	V ₁ ⁽³⁾	V ₂ ⁽³⁾	V ₃ ⁽³⁾	V ₄ ⁽³⁾
NOUN	V ₁ ⁽²⁾	V ₂ ⁽²⁾	V ₃ ⁽²⁾	V ₄ ⁽²⁾
ARTICLE	V ₁ ⁽¹⁾	V ₂ ⁽¹⁾	V ₃ ⁽¹⁾	V ₄ ⁽¹⁾
<s></s>	flies	like	a	flower

 $V_1^{(s)}$ = viterbi[state s, observation₁] = viterbi[s, o_1] = π_s * $b_s(o_1)$ = $a_{0,s}$ * $b_s(o_1)$ = $P(s \mid q_0)$ * $P(o_1 \mid s)$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix							
	flies like a flower						
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

$$V_1^{(s)}$$
 = viterbi[state s, observation₁] = viterbi[s, o_1] = π_s * $b_s(o_1)$ = $a_{0,s}$ * $b_s(o_1)$ = $P(s \mid q_0)$ * $P(o_1 \mid s)$

$$\begin{aligned} &V_1^{(1)} = \text{viterbi}[\text{state}_1, \, \text{observation}_1] = \text{viterbi}[q_1, \, o_1] = \pi_1 * b_1(o_1) = a_{0,1} * b_1(o_1) = P(q_1 \mid q_0) * P(o_1 \mid q_1) \\ &V_1^{(2)} = \text{viterbi}[\text{state}_2, \, \text{observation}_1] = \text{viterbi}[q_2, \, o_1] = \pi_2 * b_2(o_1) = a_{0,2} * b_2(o_1) = P(q_2 \mid q_0) * P(o_1 \mid q_2) \\ &V_1^{(3)} = \text{viterbi}[\text{state}_3, \, \text{observation}_1] = \text{viterbi}[q_3, \, o_1] = \pi_3 * b_3(o_1) = a_{0,3} * b_3(o_1) = P(q_3 \mid q_0) * P(o_1 \mid q_3) \\ &V_1^{(4)} = \text{viterbi}[\text{state}_4, \, \text{observation}_1] = \text{viterbi}[q_4, \, o_1] = \pi_4 * b_4(o_1) = a_{0,4} * b_4(o_1) = P(q_4 \mid q_0) * P(o_1 \mid q_4) \end{aligned}$$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix							
	flies like a flower						
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

$$V_1^{(s)}$$
 = viterbi[state s, observation₁] = viterbi[s, o_1] = π_s * $b_s(o_1)$ = $a_{0,s}$ * $b_s(o_1)$ = $P(s \mid q_0)$ * $P(o_1 \mid s)$

```
V_1^{(1)} = \text{viterbi}[\textbf{ARTICLE}, \textbf{flies}] = a_{0,1} * b_1(\textbf{flies}) = P(\textbf{ARTICLE} \mid <s>) * P(\textbf{flies} \mid \textbf{ARTICLE})
V_1^{(2)} = \text{viterbi}[\textbf{NOUN}, \textbf{flies}] = a_{0,2} * b_2(\textbf{flies}) = P(\textbf{NOUN} \mid <s>) * P(\textbf{flies} \mid \textbf{NOUN})
V_1^{(3)} = \text{viterbi}[\textbf{VERB}, \textbf{flies}] = a_{0,3} * b_3(\textbf{flies}) = P(\textbf{VERB} \mid <s>) * P(\textbf{flies} \mid \textbf{VERB})
V_1^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = a_{0,4} * b_4(\textbf{flies}) = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION})
```

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies like a flower						
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

 $V_1^{(s)}$ = viterbi[state s, observation₁] = viterbi[s, o_1] = π_s * $b_s(o_1)$ = $a_{0,s}$ * $b_s(o_1)$ = $P(s \mid q_0)$ * $P(o_1 \mid s)$

 $V_{1}^{(1)} = \text{viterbi}[\textbf{ARTICLE}, \textbf{flies}] = P(\textbf{ARTICLE} \mid <s>) * P(\textbf{flies} \mid \textbf{ARTICLE}) = 0.71 * 0.000 = 0.000 \\ V_{1}^{(2)} = \text{viterbi}[\textbf{NOUN}, \textbf{flies}] = P(\textbf{NOUN} \mid <s>) * P(\textbf{flies} \mid \textbf{NOUN}) = 0.29 * 0.025 = 0.057 \\ V_{1}^{(3)} = \text{viterbi}[\textbf{VERB}, \textbf{flies}] = P(\textbf{VERB} \mid <s>) * P(\textbf{flies} \mid \textbf{VERB}) = 0.00 * 0.076 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION} \mid <s>) * P(\textbf{flies} \mid \textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = P(\textbf{PREPOSITION}) = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = \text{viterbi}[\textbf{PREPOSITION}, \textbf{flies}] = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = 0.00 * 0.000 = 0.000 \\ V_{1}^{(4)} = 0.00 * 0.000 = 0.000 = 0.000 \\ V_{2}^{(4)} = 0.000 = 0.000 = 0.000 \\ V_{1}^{(4)} = 0.000 = 0.000 = 0.000 = 0.000 \\ V_{2}^{(4)} = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 \\ V_{2}^{(4)} = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

create a path probability matrix viterbi[N,T]

for each state s from 1 to N do

; initialization step

First column

t = 1

$$viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$$

 $backpointer[s,1] \leftarrow 0$

for each time step t **from** 2 **to** T **do**

; recursion step

for each state s from 1 to N do

$$viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$$

$$bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$$
 ; termination step

$$bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$$
 ; termination step

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

$$V_1^{(s)} = viterbi[s, observation_1] = viterbi[s, o_1] = \pi_s * b_s(o_1) = a_{0,s} * b_s(o_1) = P(s | q_0) * P(o_1 | s)$$

```
V_1^{(1)} = viterbi[ARTICLE, flies] = P(ARTICLE | <s>) * P(flies | ARTICLE) = 0.71 * 0.000 = 0.000
V_1^{(2)} = viterbi[NOUN, flies] = P(NOUN | <s>) * P(flies | NOUN) = 0.29 * 0.025 = 0.057
V_1^{(3)} = viterbi[VERB, flies] = P(VERB | <s>) * P(flies | VERB) = 0.00 * 0.076 = 0.000
V_1^{(4)} = viterbi[PREPOSITION, flies] = P(PREPOSITION | <s>) * P(flies | PREPOSITION) = 0.00 * 0.000 = 0.000
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
flies like a flower								
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

t = 2

for each state s from 1 to N do second column

viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{max}} viterbi[s, T] ; termination step ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1) backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step
```

for each state s from 1 to N do

```
viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
backpointer[s,t] \leftarrow \underset{s}{\text{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
flies like a flower								
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\cdot}{\operatorname{argmax}} \quad viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_t^{(s)} = viterbi[state s, observation_t] = viterbi[s, o_t] = max_{s'}(viterbi[state s', observation_t] * a_{s',s} * b_s(o_t))$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
flies like a flower								
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_2^{(1)}$ = viterbi[ARTICLE, like] = max_{s'}(viterbi[state s', like] * $a_{s',1}$ * b_1 (like)) = max(

```
V_{1}^{(1)} * P(ARTICLE \mid ARTICLE) * P(like \mid ARTICLE) = 0.000 * 0.000 * 0.000 = 0.000 \\ V_{1}^{(2)} * P(ARTICLE \mid NOUN) * P(like \mid ARTICLE) = 0.057 * 0.00 * 0.000 = 0.000 \\ V_{1}^{(3)} * P(ARTICLE \mid VERB) * P(like \mid ARTICLE) = 0.000 * 0.65 * 0.000 = 0.000 \\ V_{1}^{(4)} * P(ARTICLE \mid PREPOSITION) * P(like \mid ARTICLE) = 0.000 * 0.74 * 0.000 = 0.000 \\ )
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

V ₂ ⁽¹⁾ = viterbi[ARTICLE, like] = max _{s'} (viterbi[state s', like]	* $a_{s',1}$ * $b_1(like)$) = 0.000
---	--------------------------------------

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob create a path probability matrix *viterbi[N,T]* for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$ $backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $bestpathprob \leftarrow \max_{s} viterbi[s, T]$; termination step $bestpathpointer \leftarrow argmax \ viterbi[s, T]$; termination step $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time

return bestpath, bestpathprob

$V_2^{(1)}$ = viterbi[ARTICLE, like] = max _{s'} (viterbi[state s', like]	* $a_{s',1}$ * $b_1(like)$) = 0.000
---	--------------------------------------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flowe							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_2^{(2)}$ = viterbi[NOUN, like] = max_{s'}(viterbi[state s', like] * $a_{s',2}$ * b_2 (like)) = max(

 $V_1^{(1)}$ * P(NOUN | ARTICLE) * P(like | NOUN) = 0.000 * 1.00 * 0.012 = 0.000 $V_1^{(2)}$ * P(NOUN | NOUN) * P(like | NOUN) = 0.057 * 0.13 * 0.012 = 8.892E-5 $V_1^{(3)}$ * P(NOUN | VERB) * P(like | NOUN) = 0.000 * 0.35 * 0.012 = 0.000 $V_1^{(4)}$ * P(NOUN | PREPOSITION) * P(like | NOUN) = 0.000 * 0.26 * 0.012 = 0.000)

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_2^{(2)}$ = viterbi[NOUN, like] = max_{s'}(viterbi[state s', like] * $a_{s',2}$ * b_2 (like)) = 8.892E-5

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]
                                                         ; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_2^{(2)}$ = viterbi[NOUN, like] = max_{s'}(viterbi[state s', like] * $a_{s',2}$ * b_2 (like)) = 8.892E-5

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_2^{(3)}$ = viterbi[VERB, like] = max_{s'}(viterbi[state s', like] * $a_{s',3}$ * b_3 (like)) = max(

```
V_{1}^{(1)} * P(VERB \mid ARTICLE) * P(like \mid VERB) = 0.000 * 0.00 * 0.100 = 0.000 \\ V_{1}^{(2)} * P(VERB \mid NOUN) * P(like \mid VERB) = 0.057 * 0.43 * 0.100 = 0.002451 \\ V_{1}^{(3)} * P(VERB \mid VERB) * P(like \mid VERB) = 0.000 * 0.00 * 0.100 = 0.000 \\ V_{1}^{(4)} * P(VERB \mid PREPOSITION) * P(like \mid VERB) = 0.000 * 0.000 * 0.100 = 0.000 \\ )
```

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_2^{(3)}$ = viterbi[VERB, like] = max_{s'}(viterbi[state s', like] * $a_{s',3}$ * b_3 (like)) = 0.002451

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \arg\max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

 $bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] \qquad ; termination step$

 $bestpathprob \leftarrow \max_{s} viterbi[s, T]$; termination step

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

$V_2^{(3)}$ = viterbi[VERF	<pre>B, like] = max_{s'}(viterbi[state s', like]</pre>	* $a_{s',3}$ * b_3 (like)) = 0.002451
----------------------------	--	---

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

 $V_2^{(4)}$ = viterbi[PREPOSITION, like] = max_{s'}(viterbi[state s', like] * $a_{s',4}$ * b_4 (like)) = max(

 $V_{1}^{(1)} * P(PREPOSITION \mid ARTICLE) * P(like \mid PREPOSITION) = 0.000 * 0.000 * 0.0068 = 0.000 \\ V_{1}^{(2)} * P(PREPOSITION \mid NOUN) * P(like \mid PREPOSITION) = 0.057 * 0.44 * 0.068 = 0.00170544 \\ V_{1}^{(3)} * P(PREPOSITION \mid VERB) * P(like \mid PREPOSITION) = 0.000 * 0.00 * 0.068 = 0.000 \\ V_{1}^{(4)} * P(PREPOSITION \mid PREPOSITION) * P(like \mid PREPOSITION) = 0.000 * 0.000 * 0.068 = 0.000 \\)$

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix							
flies like a flower							
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

 $V_2^{(4)}$ = viterbi[PREPOSITION, like] = max_{s'}(viterbi[state s', like] * $a_{s',4}$ * b_4 (like)) = 0.00170544

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

create a path probability matrix viterbi[N,T]for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{t=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

 $bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$; termination step

 $backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$

 $bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$; termination step

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

 $V_2^{(4)}$ = viterbi[PREPOSITION, like] = max_{s'}(viterbi[state s', like] * $a_{s',4}$ * b_4 (like)) = 0.00170544

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do titerbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \underset{s'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{max}} viterbi[s, T] ; termination step  (s, T) ; termination step  (s, T)
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\cdot}{\operatorname{argmax}} \quad viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_3^{(1)}$ = viterbi[ARTICLE, a] = max_{s'}(viterbi[state s', a] * $a_{s',1}$ * $b_1(a)$) = max(

```
V_{2}^{(1)} * P(ARTICLE \mid ARTICLE) * P(a \mid ARTICLE) = 0.000 * 0.00 * 0.360 = 0.000 \\ V_{2}^{(2)} * P(ARTICLE \mid NOUN) * P(a \mid ARTICLE) = 8.892E-5 * 0.00 * 0.360 = 0.000 \\ V_{2}^{(3)} * P(ARTICLE \mid VERB) * P(a \mid ARTICLE) = 0.002451 * 0.65 * 0.360 = 0.000573 \\ V_{2}^{(4)} * P(ARTICLE \mid PREPOSITION) * P(a \mid ARTICLE) = 0.00170544 * 0.74 * 0.360 = 0.00045432921 \\ )
```

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies	like		flower			
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

v ₃ , , –	VILEIDILAKTICE	c, aj – max _{s'} (v	iter bi[State	$S, a_1 a_{S',1}$	$D_1(a)) -$	0.000373

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies	like		flower			
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

create a path probability matrix viterbi[N,T]for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow \pi_s * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$ for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow \operatorname{argmax} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

V ₃ (-)	= viterbitART	icle, aj = m	iax _{s′} (viterbi	[State S, a]	d _{s',1}	$D_1(a)) = C$	1.000573

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies	like		flower			
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

function VITERBI(observations of len T,state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\cdot}{\operatorname{argmax}} \quad viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```



```
V_2^{(1)} * P(NOUN | ARTICLE) * P(a | NOUN) = 0.000 * 1.00 * 0.001 = 0.000
V_2^{(2)} * P(NOUN | NOUN) * P(a | NOUN) = 8.892E-5 * 0.13 * 0.001 = 1.15596E-8
V_2^{(3)} * P(NOUN | VERB) * P(a | NOUN) = 0.002451 * 0.35 * 0.001 = 8.5785E-7
V_2^{(4)} * P(NOUN | PREPOSITION) * P(a | NOUN) = 0.00170544 * 0.26 * 0.001 = 4.434144E-7
```

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies	like		flower			
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

$V_3^{(2)} = viterbi[NOUN, a] = max_{s'}(viterbi[state s', a])$	* a _{s',2} *	$b_2(a) = 8.5785E-7$
---	-----------------------	----------------------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1) backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \operatorname{argmax} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{max}} viterbi[s, T] ; termination step ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

$V_3^{(2)}$ = viterbi[NOUN, a] = max _{s'} (viterbi[state s', a]	* a _{s′,2} *	$b_2(a)) = 8.5785E-7$
--	-----------------------	-----------------------

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\cdot}{\operatorname{argmax}} \quad viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_3^{(3)}$ = viterbi[VERB, a] = max_{s'}(viterbi[state s', a] * a_{s',3} * b₃(a)) = max(

```
V_2^{(1)} * P(VERB | ARTICLE) * P(a | VERB) = 0.000 * 0.000 * 0.000 = 0.000 

V_2^{(2)} * P(VERB | NOUN) * P(a | VERB) = 8.892E-5 * 0.43 * 0.000 = 0.000 

V_2^{(3)} * P(VERB | VERB) * P(a | VERB) = 0.002451 * 0.00 * 0.000 = 0.000 

V_2^{(4)} * P(VERB | PREPOSITION) * P(a | VERB) = 0.00170544 * 0.00 * 0.000 = 0.000 

)
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix									
	flies like a flower								
<s></s>	0.000	0.000	0.000	0.000					
ARTICLE	0.000	0.000	0.360	0.000					
NOUN	0.025	0.012	0.001	0.063					
VERB	0.076	0.100	0.000	0.050					
PREPOSITION	0.000	0.068	0.000	0.000					

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N, T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each state s from 1 to N do ; recursion step

for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s,T] ; termination step

bestpathpointer \leftarrow argmax viterbi[s,T] ; termination step
```

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time

return bestpath, bestpathprob

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
```

return bestpath, bestpathprob

 $V_3^{(4)}$ = viterbi[PREPOSITION, a] = max_{s'}(viterbi[state s', a] * a_{s',4} * b₄(a)) = max(

```
V_{2}^{(1)} * P(PREPOSITION \mid ARTICLE) * P(a \mid PREPOSITION) = 0.000 * 0.000 * 0.000 = 0.000 \\ V_{2}^{(2)} * P(PREPOSITION \mid NOUN) * P(a \mid PREPOSITION) = 8.892E-5 * 0.44 * 0.000 = 0.000 \\ V_{2}^{(3)} * P(PREPOSITION \mid VERB) * P(a \mid PREPOSITION) = 0.002451 * 0.00 * 0.000 = 0.000 \\ V_{2}^{(4)} * P(PREPOSITION \mid PREPOSITION) * P(a \mid PREPOSITION) = 0.00170544 * 0.00 * 0.000 = 0.000 \\ )
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

$V_3^{(4)}$ = viterbi[PREPOSITION, a] = max _{s'} (viterbi[state s', a] *	^k a _{s',4} *	$b_4(a) = 0.000$
---	----------------------------------	------------------

Transition probability matrix					
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION
<s></s>	0.00	0.71	0.29	0.00	0.00
ARTICLE	0.00	0.00	1.00	0.00	0.00
NOUN	0.00	0.00	0.13	0.43	0.44
VERB	0.00	0.65	0.35	0.00	0.00
PREPOSITION	0.00	0.74	0.26	0.00	0.00

Emission probability matrix						
	flies	like		flower		
<s></s>	0.000	0.000	0.000	0.000		
ARTICLE	0.000	0.000	0.360	0.000		
NOUN	0.025	0.012	0.001	0.063		
VERB	0.076	0.100	0.000	0.050		
PREPOSITION	0.000	0.068	0.000	0.000		

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \arg\max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

$V_3^{(4)}$ = viterbi[PREPOSITION, a] = max _{s'} (viterbi[state s', a]	* a _{s′,4} *	$b_4(a)) = 0.000$
---	-----------------------	-------------------

Transition probability matrix					
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION
<s></s>	0.00	0.71	0.29	0.00	0.00
ARTICLE	0.00	0.00	1.00	0.00	0.00
NOUN	0.00	0.00	0.13	0.43	0.44
VERB	0.00	0.65	0.35	0.00	0.00
PREPOSITION	0.00	0.74	0.26	0.00	0.00

Emission probability matrix						
	flies	like		flower		
<s></s>	0.000	0.000	0.000	0.000		
ARTICLE	0.000	0.000	0.360	0.000		
NOUN	0.025	0.012	0.001	0.063		
VERB	0.076	0.100	0.000	0.050		
PREPOSITION	0.000	0.068	0.000	0.000		

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix							
flies like a flower							
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do to for each state <math>to for each state <math>to for each state for each state for each state <math>to for each state for each st
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max \ viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_4^{(1)}$ = viterbi[ARTICLE, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',1}$ * b_1 (flower)) = max(

```
V_{3}^{(1)} * P(ARTICLE \mid ARTICLE) * P(flower \mid ARTICLE) = 0.000573 * 0.00 * 0.000 = 0.000 \\ V_{3}^{(2)} * P(ARTICLE \mid NOUN) * P(flower \mid ARTICLE) = 8.5785E-7 * 0.00 * 0.000 = 0.000 \\ V_{3}^{(3)} * P(ARTICLE \mid VERB) * P(flower \mid ARTICLE) = 0.000 * 0.65 * 0.000 = 0.000 \\ V_{3}^{(4)} * P(ARTICLE \mid PREPOSITION) * P(flower \mid ARTICLE) = 0.000 * 0.74 * 0.000 = 0.000 \\ )
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix						
	flies	like		flower		
<s></s>	0.000	0.000	0.000	0.000		
ARTICLE	0.000	0.000	0.360	0.000		
NOUN	0.025	0.012	0.001	0.063		
VERB	0.076	0.100	0.000	0.050		
PREPOSITION	0.000	0.068	0.000	0.000		

$V_4^{(1)}$ = viterbi[ARTICLE, flower] = max _{s'} (viterbi[state s', flower] *	^k a _{s'.1}	* b_1 (flower)) = 0.000
---	--------------------------------	---------------------------

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix							
flies like a flower							
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N, T]

for each state s from 1 to N do ; initialization step

viterbi[s, 1] \leftarrow \pi_s * b_s(o_1)

backpointer[s, 1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

viterbi[s, t] \leftarrow \max_{s=1}^{N} viterbi[s', t-1] * a_{s',s} * b_s(o_t)

backpointer[s, t] \leftarrow \max_{s=1}^{N} viterbi[s', t-1] * a_{s',s} * b_s(o_t)

bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step

bestpathpointer \leftarrow argmax viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

 $V_4^{(1)}$ = viterbi[ARTICLE, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',1}$ * b_1 (flower)) = 0.000

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
	flies like a flower						
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step
```

for each state s from 1 to N do

```
viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
backpointer[s,t] \leftarrow \underset{s}{\text{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
```

```
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

 $V_4^{(2)}$ = viterbi[NOUN, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',2}$ * b_2 (flower)) = max(

```
V_{3}^{(1)} * P(NOUN \mid ARTICLE) * P(flower \mid NOUN) = 0.000573 * 1.00 * 0.063 = \underline{3.6099E-5} \\ V_{3}^{(2)} * P(NOUN \mid NOUN) * P(flower \mid NOUN) = 8.5785E-7 * 0.13 * 0.063 = 7.0257915E-9 \\ V_{3}^{(3)} * P(NOUN \mid VERB) * P(flower \mid NOUN) = 0.000 * 0.35 * 0.063 = 0.000 \\ V_{3}^{(4)} * P(NOUN \mid PREPOSITION) * P(flower \mid NOUN) = 0.000 * 0.26 * 0.063 = 0.000 \\ )
```

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix						
flies like a flower						
<s></s>	0.000	0.000	0.000	0.000		
ARTICLE	0.000	0.000	0.360	0.000		
NOUN	0.025	0.012	0.001	0.063		
VERB	0.076	0.100	0.000	0.050		
PREPOSITION	0.000	0.068	0.000	0.000		

$V_4^{(2)}$ = viterbi[NOUN	, flower] = $\max_{s'}$ (viterly	bi[state s', flower] * a _{s'}	b_2 * b_2 (flower)) = 3.6099E-5
------------------------------------	----------------------------------	--	-------------------------------------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix							
flies like a flowe							
<s></s>	0.000	0.000	0.000	0.000			
ARTICLE	0.000	0.000	0.360	0.000			
NOUN	0.025	0.012	0.001	0.063			
VERB	0.076	0.100	0.000	0.050			
PREPOSITION	0.000	0.068	0.000	0.000			

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
```

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time

return bestpath, bestpathprob

$V_4^{(2)}$ = viterbi[NOUN	, flower] = $\max_{s'}$,(viterbi[state s',	flower] * a _{s',2} *	$b_2(flower)) = 3.6099E-5$
------------------------------------	-------------------------	---------------------	-------------------------------	----------------------------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max \ viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_4^{(3)}$ = viterbi[VERB, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',3}$ * b_3 (flower)) = max(

```
V_{3}^{(1)} * P(VERB \mid ARTICLE) * P(flower \mid VERB) = 0.000573 * 0.00 * 0.050 = 0.000 \\ V_{3}^{(2)} * P(VERB \mid NOUN) * P(flower \mid VERB) = 8.5785E-7 * 0.43 * 0.050 = <u>1.8443775E-8</u> \\ V_{3}^{(3)} * P(VERB \mid VERB) * P(flower \mid VERB) = 0.000 * 0.00 * 0.050 = 0.000 \\ V_{3}^{(4)} * P(VERB \mid PREPOSITION) * P(flower \mid VERB) = 0.000 * 0.00 * 0.050 = 0.000 \\ )
```

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

$V_4^{(3)}$ = viterbi[VERE	B , flower] = $\max_{s'}$ (viterbi[state s', flower] * $a_{s',3}$ * b_3 (flower)) = 1.8443	3775E-8
------------------------------------	---	---------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies like a flower							
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N, T]

for each state s from 1 to N do ; initialization step

viterbi[s,1] \leftarrow \pi_s * b_s(o_1)

backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s,T] ; termination step

bestpathpointer \leftarrow \arg\max_{s=1}^{N} viterbi[s,T] ; termination step
```

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time

return bestpath, bestpathprob

$V_4^{(3)}$ = viterbi[VERE	s, flower] = max _s	/(viterbi[state s',	flower] * a _{s',3} *	* b_3 (flower)) =	1.8443775E-8
----------------------------	-------------------------------	---------------------	-------------------------------	---------------------	--------------

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	flies like a		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                       ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\cdot}{\operatorname{argmax}} \quad viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max \ viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


 $V_4^{(4)}$ = viterbi[PREPOSITION, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',4}$ * b_4 (flower)) = max(

 $V_{3}^{(1)} * P(PREPOSITION \mid ARTICLE) * P(flower \mid PREPOSITION) = 0.000573 * 0.00 * 0.050 = 0.000 \\ V_{3}^{(2)} * P(PREPOSITION \mid NOUN) * P(flower \mid PREPOSITION) = 8.5785E-7 * 0.44 * 0.050 = <math>\underline{1.8443775E-8}$ $V_{3}^{(3)} * P(PREPOSITION \mid VERB) * P(flower \mid PREPOSITION) = 0.000 * 0.000 * 0.050 = 0.000 \\ V_{3}^{(4)} * P(PREPOSITION \mid PREPOSITION) * P(flower \mid PREPOSITION) = 0.000 * 0.000 * 0.050 = 0.000 \\)$

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	like		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

 $V_4^{(4)}$ = viterbi[PREPOSITION, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',4}$ * b_4 (flower)) = 1.8443775E-8

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	like		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
```

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time

return bestpath, bestpathprob

 $V_4^{(4)}$ = viterbi[PREPOSITION, flower] = max_{s'}(viterbi[state s', flower] * $a_{s',4}$ * b_4 (flower)) = 1.8443775E-8

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	flies like a		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	flies like a		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1) backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t) backpointer[s,t] \leftarrow \underset{s'=1}{\max} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
```

 $bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]$; termination step

 $bestpathpointer \leftarrow \underset{s=1}{\operatorname{argmax}} viterbi[s, T]$; termination step

 $bestpath \leftarrow$ the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

Transition probability matrix						
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION	
<s></s>	0.00	0.71	0.29	0.00	0.00	
ARTICLE	0.00	0.00	1.00	0.00	0.00	
NOUN	0.00	0.00	0.13	0.43	0.44	
VERB	0.00	0.65	0.35	0.00	0.00	
PREPOSITION	0.00	0.74	0.26	0.00	0.00	

Emission probability matrix								
	flies	like		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

Transition probability matrix							
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION		
<s></s>	0.00	0.71	0.29	0.00	0.00		
ARTICLE	0.00	0.00	1.00	0.00	0.00		
NOUN	0.00	0.00	0.13	0.43	0.44		
VERB	0.00	0.65	0.35	0.00	0.00		
PREPOSITION	0.00	0.74	0.26	0.00	0.00		

Emission probability matrix								
	flies	like		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]

for each state s from 1 to N do ; initialization step viterbi[s,1] \leftarrow \pi_s * b_s(o_1) backpointer[s,1] \leftarrow 0

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t) backpointer[s,t] \leftarrow \underset{s=1}{\max} viterbi[s',t-1] * a_{s',s} * b_s(o_t) bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s,T] ; termination step bestpathpointer \leftarrow \underset{s=1}{\max} viterbi[s,T] ; termination step
```

bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time return bestpath, bestpathprob

SOLUTION:

POS tagged sequence: flies/NOUN, like/VERB, a/ARTICLE, flower/NOUN

P(NOUN, VERB, ARTICLE, NOUN | flies, like, a, flower) = $V_4^{(2)}$ = 3.6099E-5

Transition probability matrix								
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION			
<s></s>	0.00	0.71	0.29	0.00	0.00			
ARTICLE	0.00	0.00	1.00	0.00	0.00			
NOUN	0.00	0.00	0.13	0.43	0.44			
VERB	0.00	0.65	0.35	0.00	0.00			
PREPOSITION	0.00	0.74	0.26	0.00	0.00			

Emission probability matrix								
	flies	like		flower				
<s></s>	0.000	0.000	0.000	0.000				
ARTICLE	0.000	0.000	0.360	0.000				
NOUN	0.025	0.012	0.001	0.063				
VERB	0.076	0.100	0.000	0.050				
PREPOSITION	0.000	0.068	0.000	0.000				