

第二章

Matlab基本運算

本章學習目標

學習Matlab的基本語法與常用函數 學習陣列的輸入方式 學習如何控制Matlab的輸出格式 認識Matlab的基本資料型態

2.1 簡單的運算

2.1.1 基本的數學運算

o 下表列出了Matlab基本運算裡所使用的符號:

表 2.1.1 Matlab 的基本運算符號

運算符號	代表意義	範例
+	加法	5+3
_	減法、負號	6-4 \ -6
*	乘法	12*5
/	除法	6/23
^	次方	2^3

2.1.2 變數的設定與清除

- o 變數名稱是由英文字母、數字或底線所組成
- o 開頭的第一個字元必須是英文字母
- 名稱長度不能超過32個字元
- o 會區分變數的大小寫
- o 變數不必宣告便可直接使用

- o 查詢工作區裡有哪些變數已被定義過,可使用 who或whos指令
- o 如要清除已定義過的變數,可用clear指令

表 2.1.2 查詢工作區裡所使用的變數

指令	說 明
who	查詢於目前的工作區內,有哪些變數正在使用
whos	同 who,但會列出每一個變數詳細的資訊
whos var	查詢變數 var 的詳細資訊
clear	清除工作區內的所有變數
clear var	清除工作區內的變數 var

2.1.3 永久常數

o Matlab 永久常數(permanent constant)如下表所列:

表 2.1.3 Matlab 所使用的永久常數

永久常數	說 明
pi	圓問率
inf 或 Inf	無限大
i\j	虚數(imaginary numbers)
NaN 或 nan	不存在的數(not a number)
realmax	系統所能表示之最大數值,其值為 1.797693134862316e+308
realmin	系統所能表示之最小數值,其值為 2.225073858507201e-308

2.2 常用的數學函數

2.2.1 三角函數

o Matlab所提供的三角函數有兩種版本:

以角度 (degree) 為單位

以弳度 (radian) 為單位

表 2.2.1 三角函數與反三角函數

數學函數	說 明
sin \ cos \ tan \ cot \ sec \ csc	三角函數(角度單位為弳度)
asin acos atan acot asec acsc	反三角函數 (角度單位為弳度)
sind \ cosd \ tand \ cotd \ secd \ cscd	三角函數(角度單位為度)
asind acosd atand acotd asecd acscd	反三角函數(角度單位為度)

o Matlab所提供了下面的雙曲線與反雙曲線函數:

表 2.2.2 雙曲線函數與反雙曲線函數

數學函數	說 明
sinh cosh tanh coth sech csch	雙曲線函數
asinh acosh atanh acoth asech acsch	反雙曲線函數

2.2.2 與指數運算相關的函數

o Matlab提供了計算指數、對數、開根號以及開n次 方等運算的函數:

表 2.2.3 指數與對數函數

數學函數	說 明
$\exp(x)$	自然指數函數,計算 e^x
$\log(x)$	計算 x 的自然對數 (以 e 為底)
$\log 2(x)$	計算 x 的對數 (以 2 為底)
log10(x)	計算 x 的對數 (以 10 為底)
sqrt(x)	開根號函數,計算 \sqrt{x}
nthroot(x,n)	開 n 次方函數,計算 $\sqrt[n]{x}$

2.2.3 與複數運算相關的函數

o Matlab是以小寫的 i 或 j 來表示 √-1 。

表 2.2.4 與複數運算相關的函數

數學函數	說 明
abs(z)	計算 z 的絕對值
angle(z)	計算複數 z 的幅角(argument)
complex(a,b)	建立複數,並指定實部為 a, 虛部為 b
conj(z)	求出複數 z 的共軛複數(conjugate complex)
imag(z)	取出複數 z 的虛部(imaginary part)
real(z)	取出複數 z 的實部(real part)

2.2.4 捨位與取餘數函數

o 下表列出了可用來做捨位處理的函數:

表 2.2.5 捨位與取餘數函數

數學函數	說 明
fix(x)	捨棄數值 x 的小數部份
floor(x)	取出小於或等於 x 的最大整數
ceil(x)	取出大於或等於 x 的最小整數
round(x)	取出最靠近 x 的整數
rem(x,y)	取出 x/y 的餘數(remainder)

2.2.5 其它常用的函數

o Matlab也供了一些常用的數學函數,列表如下:

表 2.2.6 其它常用的數學函數

數學函數	說 明
abs(x)	計算 x 的絕對值(absolute value)
factor(x)	求出整數 x 的所有質因數 (prime factors)
factorial(x)	計算 x 的階乘(factorial)
gcd(a,b)	計算 a 與 b 的最大公因數(greatest common divisor)
lcm(a,b)	計算 a 與 b 的最小公倍數(least common multiplier)
primes(x)	找出小於等於 x 的所有質數 (prime)
isprime(x)	查詢整數 x 是否為質數,若是,則回應 1 ,否則回應 0

2.3 陣列

- o 陣列 (array) 依其維度可概分為一維、二維與多維
- o 若陣列只有一維,稱之為向量(vector)
- o 陣列若是二維,則稱之為矩陣(matrix)
- o 向量可再細分為列向量(row vector)與行向量(column vector)

[2 6 8 3] —— 這是列向量。它是一維陣列,但也 可看成是維度為 1×4 (1 列 4 行) [1] —— 這是行向量。它雖是一維陣列,但也 可看成是維度為 3×1 (3 列 1 行)的

 3
 9
 0
 1

 2
 4
 4
 2

 7
 7
 9
 2

 i是 3×4 (3 列 4 行)的矩阵

2.3.1 一維陣列

- o Matlab的向量是以一維陣列來表示
- 列向量裡,元素與元素之間可以用空白鍵,或者是 用逗號來隔開
- o 行向量是以分號來隔開元素

o Matlab所提供建立列向量與行向量的函數:

表 2.3.1 建立向量的指令與函數

指令與函數	說 明
a:b	從 a 到 b ,間距為 1 ,建立一個列向量
a:step:b	從 a 到 b ,間距為 $step$,建立一個列向量
linspace(a,b)	從 a 到 b ,建立一個具有 100 個元素的列向量
linspace (a,b,n)	從 a 到 b ,建立一個具有 n 個元素的列向量
length(v)	查詢向量 v 的元素個數
ν'	將向量 v 轉置,也就是列向量變行向量,行向量變列向量

o Matlab所提供的基本的向量處理函數:

表 2.3.2 基本的向量處理函數

函 數	說 明
sum(v)	計算向量 v 的總和
prod(v)	計算向量 v 的乘積
max(v)	取出向量ν的最大値
min(v)	取出向量ν的最小値
sort(v)	將向量 v 裡的元素由小到大排列
sort(v, 'descend')	將向量 v 裡的元素由大到小排列
cumsum(v)	計算向量 v 的累加(cumulative sum)
cumprod(v)	計算向量 v 的累乘(cumulative product)

2.3.2 二維陣列

- o 我們稱二維陣列為矩陣(matrix)
- o 一個mxn的矩陣代表矩陣具有m個橫列,n個直行
- 要建立矩陣,同一列的元素用空白隔開,列與列之間用分號隔開

o 查詢陣列的維度,以及陣列元素的個數的函數:

表 2.3.3 用來查詢陣列相關資訊的函數

函 數	說 明
size(m)	查詢陣列 m 的維度 (dimensions)
length(m)	查詢陣列 m 的行數
ndims(m)	查詢陣列 m 的維數
numel(m)	查詢陣列 m 元素的總數

2.4 控制Matlab的顯示方式

2.4.1 顯示或不顯示運算結果

- o 在同一行裡撰寫數個Matlab的敘述,可用逗號隔開
- o 如果不想讓運算結果在螢幕上,可加上分號

表 2.4.1 控制顯示或不顯示運算結果

敘述型式	說 明
	執行敘述 1~3,但敘述 3 的結果不顯示
	執行敘述 1~3,且每一個結果均不顯示

2.4.2 指令跨行的控制

如果敘述較長,則可利用跨行字元「…」(連續三個點)

```
>> 12.04+sin(1.4)-12*cos(3.1405)+...
6+tan(0.13)
```

```
ans = 31.1562
```

2.4.3 資料輸出格式的控制

Matlab在顯示數值時:位數少於或等於9個,便會全數輸出它位數大於9個,則會以指數的型式來表示它

如果是帶有小數的數值:若數值大於等於1000,或者是小於等於0.001,會 以指數來表示

Matlab預設以4個位數的小數來顯示帶有小數的 數值

o 利用format指令,可以更改預設的數值顯示方式:

表 2.4.2 控制 Matlab 的輸出格式

格式指令	說 明
format	Matlab 的預設格式
format short	精簡格式,其格式同 format
format short g	若數值帶有小數,則以總共5個數字來顯示數值部分
format short e	若數值帶有小數,以指數的型式來顯示
format long	完整格式,以 16 個位數來顯示數字
format long g	完整格式,以 15 個位數來顯示數字。
format long e	完整格式,以指數型式來顯示完整格式
format compact	簡潔格式,即在指令輸入與結果輸出之間不留任何空行
format loose	寬鬆格式,即在指令輸入與結果輸出之間空一行

2.5 關於Matlab所提供的資料型態

o Matlab常用的資料型態,以及彼此之間的關係圖:

2.5.1 數值資料型態

o 一般數值型態

可分為single(單精度)與double(倍精度)兩種

表 2.5.1 單精度與倍精度型態

資料型態	說明	位元組	最大值	最小值
single	單精度	4	3.4028×10^{38}	1.1755×10^{-38}
double	倍精度	8	1.7977×10^{308}	2.2251×10^{-308}

o n-bit整數型態

可分為有號(signed)與無號(unsigned)兩種 依大小可分為8、16、32與64個位元(bits)的整數

表 2.5.2 n-bit 整數型態

資料型態	說明	位元組	最大值	最小值
int8	8-bit 整數	1	127	-128
uint8	8-bit 無號整數	1	255	0
int16	16-bit 整數	2	32767	-32768
uint16	16-bit 無號整數	2	65535	0
int32	32-bit 整數	4	2147483647	-2147483648
uint32	32-bit 無號整數	4	4294967295	0
int64	64-bit 整數	8	9223372036854775807	-9223372036854775808
uint64	64-bit 無號整數	8	18446744073709551615	0

o 查詢數值資料型態的範圍

要查詢每一種數值資料型態所能表示的範圍,可用如下的函數:

表 2.5.3 查詢數值資料型態所能表示的範圍的函數

函 數	說 明
realmax('data type')	查詢所指定之一般數值資料型態的最大值
realmin('data type')	同 realmax,不過是查詢最小值
intmax('data type')	查詢所指定之整數資料型態的最大值
intmin('data type')	同 intmax,不過是查詢最小值

2.5.2 字元資料型態

- o 在Matlab裡,字元是以成對的單引號括起來
- o 每一個字元佔了兩個bytes

```
>> ch='A'
ch =
A

>> whos('ch')

Name Size Bytes Class
ch 1x1 2 char array

Grand total is 1 element using 2 bytes
```

2.5.3 邏輯資料型態

- o Matlab是以1代表運算結果為true,而以0代表運算 結果為false
- o 邏輯資料型態只佔了一個位元組的記憶空間

```
>> t1=isprime(13)

t1 =
    1

>> whos t1

Name Size Bytes Class
t1 1x1 1 logical array
```

