Assignment 2

1. Download the dataset from the source here.

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows **CustomerId** - Unique identification of customer **Surname** - Name of the customer **CreditScore** - Cipil score of the customer **Geography** - Location of the bank **Gender** - Sex of the customer **Age** - Age of the customer **Tenure** - Repayment period for the credit amount **Balance** - Current balance in thier creidt card **NumOfProducts** - Products owned by the customer from the company **HasCrCard** - Has credit card or not (0 - no , 1 - yes) **IsactiveMember** - Is a active member or not **EstimatedSalary** - Salary of the customer **Exited** - Churn of the customer

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

```
df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

\	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

```
Tenure Balance NumOfProducts HasCrCard IsActiveMember \setminus 0 2 0.00 1 1 1
```

```
1
            83807.86
1
                                    1
                                                0
                                                                 1
2
        8
                                    3
                                                1
                                                                 0
           159660.80
3
                                    2
                                                0
                                                                 0
        1
                 0.00
4
        2
           125510.82
                                    1
                                                1
                                                                 1
   EstimatedSalary Exited
0
         101348.88
                          1
1
         112542.58
                          0
2
                          1
         113931.57
3
          93826.63
                          0
4
          79084.10
                          0
df.tail()
      RowNumber CustomerId
                                 Surname CreditScore Geography
                                                                   Gender
Age \
9995
           9996
                    15606229
                                Obijiaku
                                                   771
                                                          France
                                                                     Male
39
9996
           9997
                    15569892
                               Johnstone
                                                   516
                                                          France
                                                                     Male
35
9997
           9998
                                     Liu
                                                   709
                                                                   Female
                    15584532
                                                          France
36
9998
           9999
                    15682355
                               Sabbatini
                                                   772
                                                         Germany
                                                                     Male
42
9999
          10000
                    15628319
                                  Walker
                                                   792
                                                                   Female
                                                          France
28
                 Balance
                          NumOfProducts
                                          HasCrCard
                                                      IsActiveMember
      Tenure
9995
           5
                    0.00
                                       2
                                                   1
                                                                    0
                                       1
                                                   1
                                                                    1
9996
           10
                57369.61
                                                                    1
9997
                                       1
                                                   0
           7
                    0.00
9998
           3
                                       2
                                                   1
                                                                    0
                75075.31
9999
           4
               130142.79
                                       1
                                                   1
                                                                    0
      EstimatedSalary
                        Exited
9995
              96270.64
                              0
9996
                              0
             101699.77
9997
              42085.58
                              1
9998
              92888.52
                              1
              38190.78
                              0
9999
3 a). Univariate analysis
#checking for categorical variables
category = df.select dtypes(include=[np.object])
print("Categorical Variables: ",category.shape[1])
#checking for numerical variables
numerical = df.select dtypes(include=[np.int64,np.float64])
print("Numerical Variables: ",numerical.shape[1])
```


geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))

<AxesSubplot:ylabel='Geography'>

sns.countplot(df['Gender'])
<AxesSubplot:xlabel='Gender', ylabel='count'>

sns.distplot(df['Age'],hist=False)

<AxesSubplot:xlabel='Age', ylabel='Density'>

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<AxesSubplot:xlabel='Tenure', ylabel='count'>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<AxesSubplot:ylabel='NumOfProducts'>


```
cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))
<AxesSubplot:ylabel='HasCrCard'>
```



```
plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])
<AxesSubplot:xlabel='IsActiveMember', ylabel='count'>
```


sns.distplot(df['EstimatedSalary'],hist=False)

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])

<AxesSubplot:xlabel='Exited', ylabel='count'>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. **Dataset is imbalanced.**

3 b). Bivariate analysis

```
sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)
<AxesSubplot:xlabel='Gender', ylabel='CreditScore'>
```


sns.violinplot(x='Geography',y='Balance',data=df)
<AxesSubplot:xlabel='Geography', ylabel='Balance'>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)
<AxesSubplot:xlabel='Geography', ylabel='EstimatedSalary'>

sns.violinplot(x='Gender',y='Balance',data=df)
<AxesSubplot:xlabel='Gender', ylabel='Balance'>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)
<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)
<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=d
f)

<AxesSubplot:xlabel='IsActiveMember', ylabel='EstimatedSalary'>

sns.barplot(x='Exited',y='Tenure',data=df)
<AxesSubplot:xlabel='Exited', ylabel='Tenure'>

Inference:

1. Credit score for Male is higher in Spain.

- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

3 c). Multivariate analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

Gender	Geography	
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316

Name: Geography, dtype: int64


```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
Gender
```

Female 39.238389 Male 38.658237

Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

 Gender Geography

 Female France Germany
 4.950022

 Germany Spain
 5.000000

 Male France Germany Spain
 5.050152

 Spain
 5.057637

 Name: Tenure, dtype: float64

```
gp4 = df.groupby('Geography')
['HasCrCard','IsActiveMember'].value_counts()
gp4.plot(kind="bar",figsize=(8,5))
print(gp4)
```

Geography	HasCrCard	IsActiveMember	
France	1	1	1826
		0	1717
	0	1	765
		0	706
Germany	1	0	918
		1	873
	0	1	375
		0	343
Spain	1	1	908
		0	813
	0	1	404
		0	352

dtype: int64


```
gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])
['EstimatedSalary'].mean()
gp5.plot(kind="line",figsize=(10,8))
print(gp5)
```

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

gp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp6.plot(kind='bar',figsize=(10,8))
print(gp6)

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546

Name: Exited, dtype: int64

gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)

	Balan	ce Estim	atedSalar	y
Exited 0 1	72745.2967 91108.5393		738.39177 465.67753	
	(kind='bar			y','Exited'].value_counts()
Gender Female	Geography France Spain Germany France Germany	Exited 0 0 0 1	1801 858 745 460 448	

	Spain	1	231
Male	France	Θ	2403
	Spain	Θ	1206
	Germany	0	950
	-	1	366
	France	1	350
	Spain	1	182
. م مدر خالم	C 1		

dtype: int64

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.

- The estimated salary for a person who is not having credit card is high when 5. compared to those having them.
- Churn for inactive member is high compared to active member. 6.
- Those who churn has thier estimated salary very low. 7.
- France has the more churn rate. 8.

4. Descriptive statistics df.describe().T

RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited	10000.0 1.5 10000.0 6.5 10000.0 3.8 10000.0 5.0 10000.0 7.6 10000.0 7.5 10000.0 7.0 10000.0 5.1 10000.0 1.0	69094e+07 7: 05288e+02 92180e+01 12800e+00 48589e+04 6: 30200e+00 55000e-01 51000e-01	std 2886.895680 1936.186123 1 96.653299 10.487806 2.892174 2397.405202 0.581654 0.455840 0.499797 7510.492818 0.402769	min \ 1.00 .5565701.00 350.00 18.00 0.00 0.00 1.00 0.00 1.58 0.00
	25%	50 ⁹	75	% max
RowNumber	2500.75	5.000500e+03	3 7.500250e+0	3 10000.00
CustomerId	15628528.25	1.569074e+0	7 1.575323e+0	7 15815690.00
CreditScore	584.00	6.520000e+02	2 7.180000e+0	2 850.00
Age	32.00	3.700000e+0	1 4.400000e+0	92.00
Tenure	3.00	5.000000e+0	7.00000e+6	10.00
Balance	0.00	9.719854e+0	4 1.276442e+0	5 250898.09
NumOfProducts	1.00	1.000000e+0	0 2.000000e+0	4.00
HasCrCard	0.00	1.000000e+0	0 1.000000e+0	1.00
IsActiveMember	0.00	1.000000e+0	0 1.000000e+0	00 1.00
EstimatedSalary	51002.11	1.001939e+0	5 1.493882e+0	5 199992.48
Exited	0.00	0.000000e+00	0.000000e+0	1.00

5. Handling the missing values

```
RowNumber
                    0
CustomerId
                    0
Surname
                    0
CreditScore
                    0
Geography
                    0
Gender
                    0
                    0
Age
Tenure
                    0
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
IsActiveMember
                    0
EstimatedSalary
                    0
Exited
                    0
dtype: int64
```

df.isnull().sum()

There is no missing value in the dataset

6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore'])
plt.show()</pre>
```

Before removing outliers

After removing outliers


```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
```

```
sns.boxplot(df['Age'])
plt.show()
```

Before removing outliers

After removing outliers

sns.boxplot(df['Balance'])

<AxesSubplot:xlabel='Balance'>

sns.boxplot(df['EstimatedSalary'])

<AxesSubplot:xlabel='EstimatedSalary'>

Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])

df.head()
```

√Number	CustomerId	Surname	CreditScore	Geography	Gender
\					
1	15634602	Hargrave	619.0	0	0
				_	_
2	15647311	Hill	608.0	2	0
2	15610204	0	F02 0	0	0
3	15019304	0110	502.0	U	0
1	1570135 <i>4</i>	Roni	600 A	Θ	0
	13701334	DONE	033.0	O	U
5	15737888	Mitchell	850.0	2	0
	2 3 4	1 15634602 2 15647311 3 15619304 4 15701354	1 15634602 Hargrave 2 15647311 Hill 3 15619304 Onio 4 15701354 Boni	1 15634602 Hargrave 619.0 2 15647311 Hill 608.0 3 15619304 Onio 502.0 4 15701354 Boni 699.0	1 15634602 Hargrave 619.0 0 2 15647311 Hill 608.0 2 3 15619304 Onio 502.0 0 4 15701354 Boni 699.0 0

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	Θ	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
df.head()
```

	ditScore Products	Geography	Gender	Age	Tenure	Balance
0	619.0	0	0	42.0	2	0.00
1	608.0	2	0	41.0	1	83807.86

```
42.0
2
         502.0
                          0
                                                 8
                                                     159660.80
3
3
                                      39.0
                                                          0.00
         699.0
                          0
                                                  1
2
4
         850.0
                          2
                                      43.0
                                                 2
                                                     125510.82
1
   HasCrCard
               IsActiveMember
                                EstimatedSalary
                                                  Exited
0
                                       101348.88
            0
                                       112542.58
1
                             1
                                                        0
2
            1
                             0
                                       113931.57
                                                        1
3
            0
                             0
                                                        0
                                        93826.63
            1
                             1
                                        79084.10
                                                        0
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df lt1 = df lt.where(np.tril(np.ones(df lt.shape)).astype(np.bool))
sns.heatmap(df lt1,annot=True,cmap="coolwarm")
```

<AxesSubplot:>

1. The Removed columns are nothing to do with model building. 2. Feature importance also checked using pearson correlation.

8. Data Splitting

```
target = df['Exited']
data = df.drop(['Exited'],axis=1)
print(data.shape)
print(target.shape)
```

```
(10000, 10)
(10000,)
```

9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()
data['CreditScore'] =
se.fit transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] =
se.fit transform(pd.DataFrame(data['EstimatedSalary']))
data.head()
   CreditScore Geography Gender
                                        Age Tenure
                                                       Balance
NumOfProducts
0
     -0.326878
                        0
                                0
                                   0.342615
                                                   2 -1.225848
1
1
     -0.440804
                        2
                                   0.240011
                                                   1 0.117350
1
2
     -1.538636
                        0
                                0 0.342615
                                                     1.333053
3
3
      0.501675
                        0
                                0 0.034803
                                                   1 -1.225848
2
4
      2.065569
                        2
                                   0.445219
                                                   2 0.785728
1
   HasCrCard
              IsActiveMember EstimatedSalary
0
                                     0.021886
           1
                           1
1
           0
                                     0.216534
2
           1
                           0
                                     0.240687
3
           0
                           0
                                    -0.108918
```

10. Train test split

1

4

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test =
train_test_split(data,target,test_size=0.25,random_state=101)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(7500, 10)
(2500, 10)
```

1

-0.365276

```
(7500,)
(2500,)
```

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.