

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 17.11.2016

Was ist überhaupt vollständige Induktion?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Beweisverfahren

- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

Vollständige Induktion

Formale Sprache

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

> Behauptung: (*kurz* **Beh.:**) Beweis: (kurz Bew.:)

Induktionsanfang: (kurz IA:)

 \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)

Auch mehrere (z.B. zwei) Anfangswerte möglich

Vollständige Induktion

Formale Sprache

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

> Behauptung: (*kurz* **Beh.:**) Beweis: (kurz Bew.:)

Vollständige Induktion

Induktionsanfang: (kurz IA:)

Formale Sprache

Übersetzung und Kodierung

• Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)

Auch mehrere (z.B. zwei) Anfangswerte möglich

Induktionsvoraussetzung: (kurz IV:)

• Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Behauptung: (*kurz* **Beh.:**)
Beweis: (*kurz* **Bew.:**)

- Induktionsanfang: (kurz IA:)
 - \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Lukas Bach, lukas.bach@student.kit.edu

Aufgabe

Vollständige Induktion

Formale Sprache

 $x_0 := 0$

Für alle $n \in \mathbb{N}_0$: $x_{n+1} := x_n + 2n + 1$

Übersetzung und Kodierung

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

$$x_n = n^2$$

gilt.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

•
$$A := \{b, n, a\}.$$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Ubersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Ubersetzung un Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Ubersetzung un Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Kodierung un

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Ubersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise?

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Kodierung un

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2

Formale Sprache

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}$.

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

Übersetzung und Kodierung

Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort *ab* nicht enthält?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort *ab* nicht enthält? $L_2 = \{b\}^* \{a\}^*$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^*$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort *ab* nicht enthält? $L_2 = \{b\}^*\{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Formale Sprache

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\} = 2^A$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen. Zeige:

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

Die Verknüpfung · ist assoziativ.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M:=\{L:L \text{ ist formale Sprache über }A\}=2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot:M\times M\to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Seien $L_1, L_2, L_3 \in M$.

■ Die Verknüpfung · ist assoziativ:

Formale Sprache

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\bullet (L_1 \cdot L_2) \cdot L_3$

Formale Sprache

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion

■ Die Verknüpfung · ist assoziativ:

 $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3$

Formale Sprache

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\})$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung un Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{\varepsilon\}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung un Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\} = L_1$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung un Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - \bullet $e := {<math>\varepsilon$ }.
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung un Kodierung

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - \bullet $e := {\varepsilon}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung und Kodierung

Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

■ *o* := ∅

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - \bullet $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

- **■** *o* := ∅

 (M, \cdot) ist damit keine Gruppe

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

- **■** *o* := ∅

 (M, \cdot) ist damit keine Gruppe, es existieren keine Invers-Element.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Potenz v

Potenz von Sprachen

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

$$L^0 := \{\varepsilon\}$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{ \varepsilon \}$. L_1^1

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.
- $L_1 := \{a\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

•
$$L_1 := \{a\}.$$

$$L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$$

$$L_1^{2} = (\{\varepsilon\} \cdot L_1) \cdot L_1$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

....

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

$$\ \ \, L_2^0=\{\varepsilon\}, L_1^1=\dots$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

Übersetzung und Kodierung

Formale Sprache

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_1^1 = \dots$$
• L_2^2

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion

Potenz von formellen Sprachen ist wie folgt definiert:

Formale Sprache $L^0 := \{\varepsilon\}$ $L^{i+1} := L^{i}$

$$L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_+.$$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$$

•
$$L_2^{\bar{2}} = (\{ab\}^{3} \{c\}^4)^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_1^1 = ...$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{3}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_1^1 = ...$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^3 \{c\}^4)^2 = (\{ab\}^3 \{cccc\})^2 = \{abababcccc\}^2$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung un Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{1}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Vollständige Induktion Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$

Übersetzung und Kodierung

Formale Sprache

- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$
 - $L_2^{\frac{5}{2}} = (\{ab\}^{\frac{1}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$
- $L_3 := (\{a\} \cup \{b\})^2$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung un Kodierung

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{\varepsilon\}, L_1^1 = \dots$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^3 \{c\}^4)^2 = (\{ab\}^3 \{cccc\})^2 = \{abababccccabababcccc\}.$$

•
$$L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L

Formale Sprache

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert

Formale Sprache

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_i L^i$.

Formale Sprache

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

 ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^*$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^*$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^* = \{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \ldots\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Sei
$$L := \{a\}^* \{b\}^*$$
.

Formale Sprache

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

Was ist alles in L drin?

Formale Sprache

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba?

Formale Sprache

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

vvas is

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
 - Was ist alles in L^* drin?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a?

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus L*!

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus $L^*! \rightarrow L^* = \{a, b\}^*$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweise: $L^* \cdot L = L^+$.

$$\subseteq$$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subseteq

Vorraussetzung:

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subseteq

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subset

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subset

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subset

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subset

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Weil $i + \in \mathbb{N}_+$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Weil $i + \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

 \supset :

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subseteq

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot L = L^{i+1}$

Weil $i + {\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweise: $L^* \cdot L = L^+$.

Vorraussetzung: $w \in L^* \cdot L$ mit w = w'w'', $w' \in L^*$ und $w'' \in L$

Vorraussetzung:

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $\mathbf{w} = \mathbf{w}'\mathbf{w}'' \in I^i \cdot I = I^{i+1}$

Weil $i + \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweise: $L^* \cdot L = L^+$.

Vorraussetzung: $w \in L^* \cdot L$ mit w = w'w'', $w' \in L^*$ und $w'' \in L$

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in I^{i} \cdot I = I^{i+1}$

Weil $i + \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und

Kodierung und

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i + {\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also

 $w = w'w'' \in L^i \cdot L = L^{i+1}.$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = I^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i\in\mathbb{N}_+$ mit $w\in L^i$. Da $i\in\mathbb{N}_+$, existiert ein $j\in\mathbb{N}_0$ mit i=j+1, also für ein solches $j\in\mathbb{N}_0$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

 $L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^j$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i$$
 $L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = I^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = I^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

 \supseteq

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊆:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i +^{\in} \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$ ist w = w'w''

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

⊂:

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$, also $w = w'w'' \in L^i \cdot I = L^{i+1}$

Weil $i + \in \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

⊇:

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

 L_1, L_2 seien formale Sprachen.

Formale Sprache

Übersetzung und Kodierung

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 L_1, L_2 seien formale Sprachen.

• Wie sieht $L_1 \cdot L_2$ aus?

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L₁³ aus?

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L_1^3 aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L_1^3 aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Formale Sprache

Übersetzung und Kodierung

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Formale Sprache

Was können wir daraus machen?

Übersetzung und Kodierung

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Wir betrachten die Alphabete $A_{\textit{dez}} := \mathbb{Z}_{10}, A_{\textit{bin}} := \{0, 1\}, A_{\textit{oct}} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $\quad \bullet \ \, A^*_{bin} \supset \{101010, 10100111001, 1111100111\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $\quad \bullet \ \, A^*_{bin} \supset \{101010, 10100111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 101001111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_{8}.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung Num_k Einer Zeichenkette Z_k aus Ziffern

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon)=0$$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

$\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

• Wichtig: $Num_k(w) \neq num_k(w)$!

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: num₁₀(3)

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

E-----

Übersetzung und Kodierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon)=0$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7)$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

$\overline{num_k}$

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

$\overline{num_k}$

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

IIIduktioii

Formale Sprache

Übersetzung und Kodierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

$\overline{num_k}$

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Formale Sprache

 $Num_k(\varepsilon)=0$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Formale Sprache

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ *Num*₁₀(123)

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist Num₁₀(123)?

7443 13t 744111₁₀(120)

 $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3)$

Formale Sprache

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3)$

Übersetzung und Kodierung

Formale Sprache

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $\operatorname{\textit{Num}}_k(wx) = k \cdot \operatorname{\textit{Num}}_k(w) + \operatorname{\textit{num}}_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3)$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

 $\begin{array}{l} \blacksquare \; \, \textit{Num}_{10}(123) = 10 \cdot \textit{Num}_{10}(12) + \textit{num}_{10}(3) = \\ 10 \cdot (\textit{Num}_{10}(1) + \textit{num}_{10}(2)) + \textit{num}_{10}(3) = \\ 10 \cdot (\textit{num}_{10}(1) + 10 \cdot \textit{num}_{10}(2)) + \textit{num}_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123. \end{array}$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Übersetzung und Kodierung

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yay?

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Übersetzung und Kodierung $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010?

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

Yay?

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

■ Num₂(1010)

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist
$$Num_{10}(123)$$
?

Formale Sprache

Übersetzung und Kodierung

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

$$Num_2(1010) = 2 \cdot Num_2(101) + num_2(0)$$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Num₂(1010) =
$$2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0)$$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

■
$$Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$$

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$
 $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0)$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

■
$$Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$$

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$
 $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$
 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0)$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $\mathit{Num}_k(\mathit{wx}) = k \cdot \mathit{Num}_k(\mathit{w}) + \mathit{num}_k(\mathit{x}) \ \mathsf{mit} \ \mathit{w} \in \mathit{Z}_k^* \ \mathsf{und} \ \mathit{x} \in \mathit{Z}_k.$

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

■ $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$ $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$ $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$ $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$ $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige Induktion

Was ist $Num_{10}(123)$?

Formale Sprache

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Übersetzung und Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) = 2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) = 2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) = 2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Yay!

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- *Num*₈(345).
- *Num*₂(11001).
- Num₂(1000).
- Num₄(123).
- \blacksquare Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

■ *Num*₈(345)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$.

Übersetzung und Kodierung ■ *Num*₂(11001)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

- $Num_8(345) = 229$.
- Übersetzung und Kodierung
- $Num_2(11001) = 25.$

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

- $Num_8(345) = 229$.
- Übersetzung und Kodierung
- $Num_2(11001) = 25.$
- *Num*₂(1000)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

- $Num_8(345) = 229$.
- Übersetzung und Kodierung
- $Num_2(11001) = 25.$
- $Num_2(1000) = 8$.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$. $Num_2(11001) = 25.$

Übersetzung und Kodierung

• $Num_2(1000) = 8$.

■ Num₄(123)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

• $Num_8(345) = 229$.

- $Num_2(11001) = 25.$
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- Num₁₆(4DF)

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

• $Num_8(345) = 229$.

• $Num_2(11001) = 25.$

• $Num_2(1000) = 8$.

• $Num_4(123) = 27$.

• $Num_{16}(4DF) = 1247.$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Kodierung

Es gilt:

Formale Sprache

Übersetzung und

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

Übersetzung und

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Kodierung

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Kodierung

nduktion Es gilt:

Formale Sprache $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

Übersetzung und $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

Übersetzung und

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Kodierung

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

 $Num_2(10101)$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$

Daher, einfachere Rechenweise:

Übersetzung und

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Kodierung

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

 $Num_2(10101) = 21.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

- $Num_2(10101) = 21.$
- Num₂(11101)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Es gilt:

Formale Sprache

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und

Kodierung

Es gilt:

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$ Daher, einfachere Rechenweise:

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- Num₂(1111111111)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu

Vollständige

Formale Sprache

Übersetzung und Kodierung

Es gilt:

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Daher, einfachere Rechenweise:

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

■ *Num*₁₆(*A*1)

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

• $Num_{16}(A1) = 161.$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- $Num_{16}(A1) = 161.$
- *Num*₁₆(*BC*)

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- *Num*₁₆(14)

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

div Funktion

Die Funktion div dividiert ganzzahlig.

Vollständige Induktion

Formale Sprache

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div 8

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

■ 22 div 8 = 2

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Fülle die Tabelle aus:

x 0 1 2 3 4 5 6 7 8 9 10 11 12

x div 4

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and ald it	20011	o a	۸٠.										
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0												

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X			3	4	5	6	7	8	9	10	11	12	
x div 4	0	0											-

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0											

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0										

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1									

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1								

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1							

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1						_

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2					

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2			

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2		

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4														

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0													

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	-
x mod 4	0	1												

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and all it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2											

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i dile die it	ااعامه	ic a	٦٥.											
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3										

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0									

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and are re														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1								

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and are re														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2							

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and are re														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3						

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

i and all it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0					

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1			

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

											10		
x div 4												2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2		

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

x 0 1 2 3 4 5 6 7 8 9 10 11 12													
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

X				3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	0	

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

