Formelsammlung — Signale und Systeme

bei Prof. Thao Dang

Tim Hilt

3. Februar 2019

Inhaltsverzeichnis

1	Grundlagen	2
2	LTI-Systeme	4
3	Fourierreihen	6
4	Fouriertransformation, Laplacetransformation	7
5	Faltung	8
6	Filter und Übertragungsfunktionen	9
7	Bode-Diagramm	11
8	Anhang	12
	A Tabellen aus Buch von Prof. Koch und Prof. Stämpfle	12
	B Impulstabelle zu FT aus Vorlesung	18
	C Werte Si-Funktion	19

Seite 2 Tim Hilt

1 Grundlagen

Eigenschaften Allgemeine Cosinusfunktion

$$f(t) = A\cos(\omega \cdot t + \varphi)$$
$$T = \frac{2\pi}{\omega} \quad ; \quad \omega = \frac{2\pi}{T}$$

si(x)- und sinc(x)-Funktionen

$$\mathbf{si}(x) = \begin{cases} \frac{\sin(x)}{x} & x \in \mathbb{R} \setminus 0\\ 1 & x = 0 \end{cases}$$

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & x \in \mathbb{R} \setminus 0\\ 1 & x = 0 \end{cases}$$

Betrag einer komplexen Zahl

$$Z = a + jb$$
$$|Z| = \sqrt{a^2 + b^2}$$

Winkel einer komplexen Zahl

$$\arg(Z) = \varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{für } x > 0, y \text{ bel.} \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{für } x < 0, y \text{ bel.} \\ \frac{\pi}{2} & \text{für } x = 0, y > 0 \\ -\frac{\pi}{2} & \text{für } x = 0, y < 0 \end{cases}$$

Umrechnung e-Funktion zu Cosinus und Sinus

$$\cos \varphi = \frac{e^{\mathbf{j}\varphi} + e^{-\mathbf{j}\varphi}}{2} \qquad \sin \varphi = \frac{e^{\mathbf{j}\varphi} - e^{-\mathbf{j}\varphi}}{2\mathbf{j}}$$

Dämpfung zweier Pegel

$$a = 20 \cdot \log \left(\frac{\texttt{Eingang}}{\texttt{Ausgang}} \right) \texttt{dB}$$

und wenn Eingang = 1:

$$= -20 \cdot \log({\rm Ausgang}) dB$$

Phasengang

$$b(f) = -\arg(Z)$$

Die Phase muss dem negativen Winkel entsprechen, um bei nachlaufendem Signal eine positive Zeitverzögerung zu erhalten.

Phasenlaufzeit/Zeitverzögerung

$$t_p = \frac{b(f)}{\omega}$$

Seite 4 Tim Hilt

2 LTI-Systeme

Abbildung 1: LTI-System

Linearität

Ein System gilt als linear, wenn zum Signal nichts addiert wird, sondern dass Signal nur entweder verschoben entlang der *t*-Achse oder skaliert in *y*-Richtung ist.

Zeitinvarianz

Wird das Signal x(t) noch mit einer anderen Funktion, die von t abhängt multipliziert, dann ist das System **nicht** zeitinvariant, da diese Funktion sich mit der Zeit verändert und x(t) somit immer mit anderen Werten multipliziert wird.

Bsp.:

$$y(t) = \sqrt{2}x(t)$$
 zeitinvariant $y(t) = x(t) \cdot \sin(t)$ zeitvariant! $y(t) = x^2(t)$ auch zeitvariant

Kausalität

Ein Signal ist kausal, wenn gilt y(t) = 0 für t < 0

Stabilität

Beim Betrachten der Stabilität unterscheidet man 3 Fälle:

- 1. Das System ist stabil, wenn alle Pole im Pol-Nullstellen-Diagramm in der linken Halbebene liegen
- 2. Das System ist grenzstabil, wenn nur einfache Pole im Pol-Nullstellen-Diagramm auf der imaginären Achse liegen
- 3. Das System ist instabil, wenn Pole in der rechten Halbebene des Pol-Nullstellen-Diagramms liegen und/oder mehrfache Pole auf der imaginären Achse liegen

Sprungantwort und Impulsantwort

Die Sprungantwort ist das Ausgangssignal eines Systems wenn am Eingang die Sprungfunktion $\sigma(t)$ angelegt wird. Sie wird allgemein auch mit a(t) bezeichnet.

$$\begin{array}{c|c} \sigma(t) & \text{LTI} \\ \hline & h(t) \end{array}$$

Ein Rechteckimpuls ist die Kombination mehrerer skalierter und verschobener Sprungfunktionen. Aufgrund der Eigenschaften von LTI-Systemen kann die Systemantwort auf einen Rechteckimpuls daher durch die Addition mehrerer Sprungantworten konstruiert werden.

Die Impulsantwort hingegen ist das Ausgangssignal eines Systems, wenn am Eingang die Impulsfunktion $\delta(t)$ angelegt wird. Sie wird allgemein auch mit h(t) bezeichnet.

$$\begin{array}{c|c} \delta(t) & LTI \\ \hline h(t) & h(t) \end{array}$$

Um von der Sprungantwort auf die Impulsantwort zu schließen muss Die Sprungantwort einmal abgeleitet werden, da gilt:

$$\sigma(t)' = \delta(t) \iff a(t)' = h(t)$$

Demnach gilt auch:

$$\int h(t)dt = a(t)$$

Darüber hinaus gilt:

$$A(p) = \frac{1}{p} \cdot H(p) \quad \Rightarrow \quad H(p) = p \cdot A(p)$$

Die Impulsantwort h(t) beschreibt das gesamte System. Wird die Impulsantwort transformiert, so ergibt sich die Übertragungsfunktion H(f).

Wird ein beliebiges Eingangssignal x(t) mit der Impulsantwort gefaltet, so ergibt sich das Ausgangssignal.

$$x(t) \star h(t) = y(t)$$

Seite 6 Tim Hilt

3 Fourierreihen

$$f(t) = s_G + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t)), \quad \omega = \frac{2\pi}{T}/2\pi \cdot f_0$$

Gleichanteil

$$s_G = rac{a_0}{2} = c_0 = rac{ ext{Integral "über eine Periode}}{ ext{Periodendauer}}$$

Reelle Fourier-Koeffizienten a_n und b_n

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega t) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega t) dt$$

Umrechnung von c_n zu a_n und b_n

$$a_n = 2\operatorname{Re}(c_n)$$

$$b_n = -2\operatorname{Im}(c_n)$$

$$\to c_n = \frac{a_n - \mathbf{j}b_n}{2}$$

Berechnung der Amplituden

$$\hat{s}_n = 2 \cdot |c_n| = \sqrt{a_n^2 + b_n^2}$$

4 Fouriertransformation, Laplacetransformation

Fourierreihe aus Fouriertransformation

Achtung: stetiges f der Fouriertransformation wird durch diskretes $\frac{n}{T}$ ersetzt

$$\frac{1}{T} = f_0$$

$$s(t) \circ - \bullet \quad S(f)$$

$$c_n = \frac{1}{T} \cdot S\left(\frac{n}{T}\right) = f_0 \cdot S(n \cdot f_0)$$

Demnach lässt sich der Gleichanteil berechnen durch:

$$c_0 = s_G = \frac{1}{T} \cdot S\left(\frac{0}{T}\right) = f_0 \cdot S(0 \cdot f_0)$$

Transformation von $\cos(2\pi f_0 t)$

$$\cos(2\pi f_0 t)$$
 \circ $\frac{1}{2} \left(\delta(f - f_0) + \delta(f + f_0)\right)$

Spezielle Rücktransformationen

Zu der Funktion

$$\frac{p}{p+1}$$

ergibt die Korrespondenzentabelle keine Einträge. Hier hilft das Erweitern des Zählers mit 1-1:

$$\frac{p}{p+1} = \frac{p+1-1}{p+1}$$

$$\rightarrow = \frac{p+1}{p+1} - \frac{1}{p+1}$$

$$\rightarrow = 1 - \frac{1}{p+1}$$

Seite 8 Tim Hilt

5 Faltung

Werden zwei Signale $u_1(t),u_2(t)$ unterschiedlicher Bandbreiten T_1,T_2 gefaltet, so beträgt die Bandbreite des neuen Signals T_1+T_2 .

Faltung mit $\sigma(t)$

Wird eine Funktion mit $\sigma(t)$ gefaltet, so ergibt sich für das Faltungsintegral:

$$n(t) \star \sigma(t) = \int_{-\infty}^{\infty} n(\tau) \cdot \sigma(t - \tau) d\tau = \int_{-\infty}^{t} n(\tau) d\tau$$

6 Filter und Übertragungsfunktionen

Zeitkonstante au bei der **Spule**: $au = \frac{L}{R}$

Im Fourierbereich: $\omega=2\pi f$, im Laplacebereich: $j\omega=p$

	RC-Tiefpass	RC-Hochpass	RL-Tiefpass	RL-Hochpass
$\overline{rac{U_a}{U_e} = H(j\omega)}$	$\frac{1}{1+j\omega RC}$	$\frac{j\omega RC}{1+j\omega RC}$	$\frac{R}{R + j\omega L}$	$\frac{j\omega L}{R + j\omega L}$
f_G/ω_G	<u>1</u> . <u>1</u>	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{R}{2\pi L}; \frac{R}{L}$	$\frac{R}{2\pi L}; \frac{R}{L}$

Abbildung 2: RC-Tiefpass

Abbildung 4: RC-Hochpass

Abbildung 3: RL-Tiefpass

Abbildung 5: RL-Hochpass

Frequenz	Spule	Kondensator
0 Hz	$Z_L=0\Omega;$ Kurzschluss	$Z_C=\infty$ Ω ; Leerlauf
∞ Hz	$Z_L = \infty \Omega$; Leerlauf	$Z_C = 0$ Ω; Kurzschluss

Tabelle 1: Spule und Kondensator im Frequenzbereich

Seite 10 Tim Hilt

Vorgehen, wenn nach $H(p), p \to \infty$ gefragt ist

- 1. Stelle H(p) auf
- 2. Löse so auf, dass ps einzeln stehen
- 3. Setze $p=\infty$ ein
- 4. Kürze soweit wie möglich
- 5. Betrachte Rest

7 Bode-Diagramm

Für Pol- Nullstellendiagramm:

- 1. ps im Nenner und im Zähler isolieren
- 2. Pol- und Nullstellen des Bruchs für p finden
- 3. Polstellen als \times und Nullstellen als \bigcirc in ein Re / Im-Diagramm (p-Ebene) eintragen

Das Bode-Diagramm besteht aus dem Amplitudengang und dem Phasengang. Der Amplitudengang a(f) lässt sich berechnen durch

$$a(f) = -20\log(|H(f)|)$$

während sich der Phasengang b(f) berechnen lässt über

$$b(f) = -\arctan\left(\frac{\operatorname{Im}(H(f))}{\operatorname{Re}(H(f))}\right) + \begin{cases} 0 & \operatorname{Re}(H(f)) > 0\\ \pm \pi & \operatorname{Re}(H(f)) < 0 \end{cases}$$

Zudem kann der lineare Amplitudengang als

$$A(f) = |H(f)|$$

dargestellt werden.

Schrittweise Konstruktion des Bode-Diagramms

- 1. |H(f)| bestimmen
- 2. f_G berechnen
- 3. Werte für f in |H(f)| einsetzen (für f=0 und zwei Werte im Sperrbereich) und $20 \cdot \log(|H(f)|)$ berechnen
- 4. Asymptoten zeichnen
- 5. Bode Diagramm zeichnen, f_G befindet sich am Schnittpunkt beider Asymptoten

Sprungantwort schnell berechnen

$$a(t) = (a(0) - a(\infty)) \cdot e^{-\frac{t}{T}} + a(\infty)$$

714 A Anhang

A.9 Korrespondenzen der Fourier-Transformation

Fourier-Transformation S(f) = R(f) + i I(f)

$$s(t) = \operatorname{sgn}(t)$$

$$S(f) = -\mathbf{i} \, \frac{1}{\pi f}$$

$$s(t) = \sigma(t)$$

$$s(t) = \delta(t)$$

$$S(f) = 1$$

$$s(t) = 1$$

$$S(f) = \delta(f)$$

Zeitfunktion s(t)

Fourier-Transformation S(f) = R(f) + i I(f)

$$s(t) = \sigma(t+1) - \sigma(t-1)$$

$$S(f) = 2 \frac{\sin(2\pi f)}{2\pi f}$$

$$s(t) = (1+t)(\sigma(t+1) - \sigma(t)) + (1-t)(\sigma(t) - \sigma(t-1))$$

$$s(t) = e^{-t}\sigma(t)$$

$$S(f) = \frac{1}{1 + \mathbf{i} 2\pi f} = \frac{1}{1 + 4\pi^2 f^2} - \mathbf{i} \frac{2\pi f}{1 + 4\pi^2 f^2}$$

$$s(t) = \cos\left(2\pi t\right)$$

$$S(f) = \frac{1}{2} \Big(\delta(f-1) + \delta(f+1) \Big)$$

A.10 Eigenschaften der Fourier-Transformation

Eigenschaft	Zeitfunktion	Bildfunktion
Linearität	$C_1 s_1(t) + C_2 s_2(t)$	$C_1 S_1(f) + C_2 S_2(f)$
Zeitverschiebung	$s(t-t_0)$	$e^{-\mathrm{i}2\pift_0}S(f)$
Frequenzverschiebung	$\mathrm{e}^{\mathrm{i}2\pif_0t}s(t)$	$S(f-f_0)$
Amplitudenmodulation	$s(t)\cos(2\pi f_0 t)$	$\frac{1}{2}\left(S(f-f_0)+S(f+f_0)\right)$
Ähnlichkeit	s(at)	$\frac{1}{ a } S\left(\frac{f}{a}\right)$
Zeitumkehr	s(-t)	S(-f)
Differenziation in \boldsymbol{t}	$\dot{s}(t)$	$\mathrm{i}2\pifS(f)$
	$ \ddot{s}(t) $	$(\mathrm{i} 2\pi f)^2 S(f)$
	:	:
	$\frac{\mathrm{d}^n}{\mathrm{d}t^n}s(t)$	$(\mathrm{i} 2\pi f)^n S(f)$
Differenziation in f	$(-\mathrm{i}2\pit)s(t)$	S'(f)
	$\left (-\mathbf{i} 2 \pi t)^2 s(t) \right $	S''(f)
	:	:
	$\left(-\mathrm{i}2\pit\right)^n s(t)$	$S^{(n)}(f)$
Multiplikation in t	t s(t)	S'(f)
	$\int t^2 s(t)$	$\frac{S''(f)}{-i 2 \pi}$
	:	-12 <i>n</i>
	$\left \begin{array}{c}t^ns(t)\end{array}\right $	$\frac{S^{(n)}(f)}{(-\mathrm{i}2\pi)^n}$
Integration	$\int_{-\infty}^{t} s(\tau) \mathrm{d} \tau$	$\frac{1}{\mathrm{i}2\pif}S(f) + \frac{1}{2}S(0)\delta(f)$
Faltung in t	$s_1(t) \star s_2(t)$	$S_1(f) \cdot S_2(f)$
Faltung in f	$s_1(t) \cdot s_2(t)$	$S_1(f) \star S_2(f)$

A.11 Korrespondenzen der Laplace-Transformation

Bildfunktion $F(s)$	Zeitfunktion $f(t)$	Bildfunktion $F(s)$	Zeitfunktion $f(t)$
1	$\delta(t)$	$\frac{a}{s^2 + a^2}$	$\sin at$
$\frac{1}{s}$	1	$\frac{s}{s^2 + a^2}$	$\cos at$
$\frac{1}{s^2}$	$oxed{t}$	$\frac{a}{s^2 - a^2}$	$\sinh at$
$\frac{n!}{s^{n+1}}$	t^n	$\frac{s}{s^2 - a^2}$	$\cosh at$
$\frac{1}{s-a}$	e^{at}	$\frac{a}{(s-b)^2 + a^2}$	$e^{bt} \sin at$
$\frac{1}{(s-a)^2}$	$t e^{at}$	$\frac{s-b}{(s-b)^2+a^2}$	$e^{bt}\cos at$
$\frac{a}{s(s-a)}$	$e^{at} - 1$	$\frac{a}{(s-b)^2 - a^2}$	$e^{bt} \sinh at$
$\frac{a-b}{(s-a)(s-b)}$	$e^{at} - e^{bt}$	$\frac{s-b}{(s-b)^2 - a^2}$	$e^{bt} \cosh at$
$\frac{a}{1+as}$	$e^{-\frac{t}{a}}$ $(a \neq 0)$	$\frac{2as}{(s^2+a^2)^2}$	$t \sin at$
$\frac{a^2}{(1+as)^2}$	$t e^{-\frac{t}{a}} (a \neq 0)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$t\cos at$
$\frac{1}{s(1+as)}$	$1 - e^{-\frac{t}{a}} (a \neq 0)$	$\frac{2as}{(s^2 - a^2)^2}$	$t \sinh at$
$\frac{a-b}{(1+as)(1+bs)}$	$e^{-\frac{t}{a}} - e^{-\frac{t}{b}} (a, b \neq 0)$	$\frac{s^2 + a^2}{(s^2 - a^2)^2}$	$t \cosh at$
$\frac{s}{(s-a)^2}$	$(1+at)e^{at}$	$\frac{2}{(s-a)^3}$	$t^2 e^{at}$
$\frac{(a-b)s}{(s-a)(s-b)}$	$a e^{at} - b e^{bt}$	$\frac{2s}{(s-a)^3}$	$\left(at^2 + 2t\right)e^{at}$
$\frac{a^3 s}{(1+as)^2}$	$(a-t)e^{-\frac{t}{a}} (a \neq 0)$ $a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}} (a, b \neq 0)$	$\frac{2s^2}{(s-a)^3}$	$\left (a^2t^2 + 4at + 2)e^{at} \right $
$\frac{ab(a-b)s}{(1+as)(1+bs)}$	$a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}} (a, b \neq 0)$	$\frac{a^2}{s^2(s-a)}$	$e^{at} - at - 1$

A.12 Eigenschaften der Laplace-Transformation

Eigenschaft	Zeitfunktion	Bildfunktion
Linearität	$C_1 f_1(t) + C_2 f_2(t)$	$C_1 F_1(s) + C_2 F_2(s)$
Ähnlichkeit $(a > 0)$	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Zeitverschiebung	$\sigma(t-t_0)f(t-t_0)$	$e^{-t_0 s} F(s)$
Dämpfung	$= e^{-s_0 t} f(t)$	$F(s+s_0)$
Differenziation in \boldsymbol{t}	f'(t)	sF(s)-f(0)
	$\int f''(t)$	$s^2 F(s) - s f(0) - f'(0)$
	:	:
	$f^{(n)}(t)$	$s^{n} F(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$
Differenziation in s	-t f(t)	F'(s)
	$\int t^2 f(t)$	F''(s)
	:	:
	$(-t)^n f(t)$	$F^{(n)}(s)$
Multiplikation mit t	t f(t)	-F'(s)
	$\int t^2 f(t)$	F''(s)
	:	:
		$(-1)^n F^{(n)}(s)$
Integration im Zeitbereich	$\int_0^t f(\tau) \mathrm{d} \tau$	$\frac{1}{s}F(s)$
Integration im Bildbereich	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) \mathrm{d} u$
Faltung im Zeitbereich	$f_1(t) \star f_2(t)$	$F_1(s) \cdot F_2(s)$
Periodische Funktion	f(t+T)=f(t)	$\frac{1}{1 - e^{-Ts}} \int_0^T f(t) e^{-st} dt$

A.13 Korrespondenzen der z-Transformationen

Bildfunktion $F(z)$	${\sf Zeitfolge}\;(f_k)$	Bildfunktion $F(z)$	${\sf Zeitfolge}\;(f_k)$
1	δ_k	$\frac{1}{z^n}$	1 für $k = n$, 0 sonst
$\frac{z}{z-1}$	1	$\frac{z}{(z-1)^2}$	$oxed{k}$
$\frac{z}{z-a}$	a^k	$\frac{az}{(z-a)^2}$	$igg k a^k$

A.14 Eigenschaften der z-Transformationen

Eigenschaft	Zeitfolge	Bildfunktion		
Linearität	$C_1\left(f_k\right) + C_2\left(g_k\right)$	$C_1 F(z) + C_2 G(z)$		
Dämpfung	$(a^{-k}f_k)$	F(az)		
Indexverschiebung	(f_{k-n})	$z^{-n}F(z)$		
	(f_{k+1})	$z(F(z)-f_0)$		
	(f_{k+2})	$z^2(F(z) - f_0 - f_1 z^{-1})$		
	:	:		
	(f_{k+n})	$z^n \left(F(z) - \sum_{k=0}^{n-1} f_k z^{-k} \right)$		
Differenzen	(Δf_k)	$(z-1)F(z)-zf_0$		
	$\left(\Delta^2 f_k\right)$	$(z-1)^2F(z)-z((z-1)f_0+\Delta f_0)$		
	:	:		
	$(\Delta^n f_k)$	$(z-1)^n F(z) - z \sum_{k=0}^{n-1} (z-1)^{n-k-1} \Delta^k f_0$		
Multiplikation mit k	$(k f_k)$	-z F'(z)		
	$\left(\left(k^{2}f_{k} ight)$	$z F'(z) - z^2 F''(z)$		
	:	:		
Faltung im Zeitbereich	$(f_k)\star(g_k)$	$F(z) \cdot G(z)$		

Korrespondenzen der FT

Skript, Tabelle 2.2.

22.10.18 Signale und Systeme, VL1

	(π)	(π)	(π)	(π)	(π)	(π)	(π)
k	$\operatorname{si}\left(\mathbf{k}\cdot\frac{\pi}{2}\right)$	$si\left(k\cdot\frac{\pi}{3}\right)$	$\operatorname{si}\left(\mathbf{k}\cdot\frac{\pi}{4}\right)$		$\operatorname{si}\left(\mathbf{k}\cdot\frac{\pi}{6}\right)$	$\operatorname{si}\left(\mathbf{k}\cdot\frac{\pi}{7}\right)$	$\operatorname{si}\left(\mathbf{k}\cdot\frac{\pi}{8}\right)$
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	0.6366	0.8270	0.9003	0.9355	0.9549	0.9668	0.9745
2	0.0000	0.4135	0.6366	0.7568	0.8270	0.8710	0.9003
3	-0.2122	0.0000	0.3001	0.5046	0.6366	0.7241	0.7842
4	0.0000	-0.2067	0.0000	0.2339	0.4135	0.5431	0.6366
5	0.1273	-0.1654	-0.1801	0.0000	0.1910	0.3484	0.4705
6	0.0000	0.0000	-0.2122	-0.1559	0.0000	0.1611	0.3001
7	-0.0909	0.1181	-0.1286	-0.2162	-0.1364	0.0000	0.1392
8	0.0000	0.1034	0.0000	-0.1892	-0.2067	-0.1208	0.0000
9	0.0707	0.0000	0.1000	-0.1039	-0.2122	-0.1936	-0.1083
10	0.0000	-0.0827	0.1273	0.0000	-0.1654	-0.2172	-0.1801
11	-0.0579	-0.0752	0.0818	0.0850	-0.0868	-0.1975	-0.2139
12	0.0000	0.0000	0.0000	0.1261	0.0000	-0.1452	-0.2122
13	0.0490	0.0636	-0.0693	0.1164	0.0735	-0.0744	-0.1810
14	0.0000	0.0591	-0.0909	0.0668	0.1181	0.0000	-0.1286
15	-0.0424	0.0000	-0.0600	0.0000	0.1273	0.0645	-0.0650
16	0.0000	-0.0517	0.0000	-0.0585	0.1034	0.1089	0.0000
17	0.0374	-0.0486	0.0530	-0.0890	0.0562	0.1278	0.0573
18	0.0000	0.0000	0.0707	-0.0841	0.0000	0.1207	0.1000
19	-0.0335	0.0435	0.0474	-0.0492	-0.0503	0.0917	0.1238
20	0.0000	0.0413	0.0000	0.0000	-0.0827	0.0483	0.1273
21	0.0303	0.0000	-0.0429	0.0445	-0.0909	0.0000	0.1120
22	0.0000	-0.0376	-0.0579	0.0688	-0.0752	-0.0439	0.0818
23	-0.0277	-0.0360	-0.0391	0.0658	-0.0415	-0.0757	0.0424
24	0.0000	0.0000	0.0000	0.0390	0.0000	-0.0905	0.0000
25	0.0255	0.0331	0.0360	0.0000	0.0382	-0.0869	-0.0390
26	0.0000	0.0318	0.0490	-0.0360	0.0636	-0.0670	-0.0693
27	-0.0236	0.0000	0.0333	-0.0561	0.0707	-0.0358	-0.0871
28	0.0000	-0.0295	0.0000	-0.0541	0.0591	0.0000	-0.0909
29	0.0220	-0.0285	-0.0310	-0.0323	0.0329	0.0333	-0.0811
30	0.0000	0.0000	-0.0424	0.0000	0.0000	0.0581	-0.0600
31	-0.0205	0.0267	-0.0290	0.0302	-0.0308	0.0701	-0.0314
32	0.0000	0.0258	0.0000	0.0473	-0.0517	0.0679	0.0000
33	0.0193	0.0000	0.0273	0.0459	-0.0579	0.0528	0.0295
34	0.0000	-0.0243	0.0374	0.0275	-0.0486	0.0284	0.0530
35	-0.0182	-0.0236	0.0257	0.0000	0.0273	0.0000	0.0672
36	0.0000	0.0000	0.0000	-0.0260	0.0000	-0.0269	0.0707
37	0.0172	0.0224	-0.0243	-0.0409	0.0258	-0.0471	0.0636
38	0.0000	0.0218	-0.0335	-0.0398	0.0435	-0.0572	0.0474
39	-0.0163	0.0000	-0.0231	-0.0240	0.0490	-0.0557	0.0250
40	0.0000	-0.0207	0.0000	0.0000	0.0414	-0.0436	0.0000

Tabelle 2.1: Ausgewählte Werte der si-Funktion