Fitting SVM models in Matlab

- mdl = fitcsvm(X,y)
 - <u>fit</u> a <u>classifier using SVM</u>
 - X is a matrix
 - columns are predictor variables
 - · rows are observations
 - y is a response vector
 - +1/-1 for each row in X
 - can be any set of integers or strings
 - returns a ClassifierSVM object, which we stored in variable mdl
- predict(mdl,newX)
 - returns responses for matrix newX using the classifier mdl

Example: Heart Attack prediction from Blood Pressure and Cholesterol

ha data	= 20×3	tab	le
---------	--------	-----	----

BloodPressure	Cholesterol	HeartAttack
133	160	-1
132	166	-1
128	168	-1
89	169	-1
86	170	-1
86	175	-1
111	177	-1
132	179	-1
108	185	-1
118	193	-1
120	198	-1
102	205	-1
164	208	1
163	211	1
177	215	1
146	219	1
152	223	1
164	224	1
170	227	1
153	242	1

Example: Heart Attack prediction from Blood Pressure and Cholesterol

mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
ha_data.predicted = predict(mdl, [ha_data.BloodPressure ha_data.Cholesterol])

				280 ┌─				- 1	-				1	_
BloodPressure	Cholesterol	HeartAttack	predicted									• (normal lisease	
122	160	1	1	260 -									Support Vector Classifier	
133	160	-1	-1								L			_
132	166	-1	-1											
128	168	-1	-1								•			
89	169	-1	-1	240										
86	170	-1	-1											
86	175	-1	-1	_									•	
111	177	-1	-1	b 220 -							•		•	
132	179	-1	-1	<u>E</u> 220							•			•
108	185	-1	-1	<u> </u>									•	
118	193	-1	-1	Şte		•							•	
120	198	-1	-1					\odot						
102	205	-1	-1	cholesterol [mg/dl]				•						
164	208	1	1											
163	211	1	1	400			•							
177	215	1	1	180			•		•					
146	219	1	1		•									
152	223	1	1		•				• •					
164	224	1	1	160					•					
170	227	1	1											< ·
153	242	ī	ī											
				140										
				80	90	100	110	120	130	140	150	160	170	18
							n	nean arte	rial press	sure [mm	ıHg]			

What if we cannot perfectly classify the data?

What if we cannot perfectly classify the data?

mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
ha_data.predicted = predict(mdl, [ha_data.BloodPressure ha_data.Cholesterol])

BloodPressure	Cholesterol	HeartAttack	predicted	250	•	normal disease		ı		1		ı		
				240		— Support \	/ector				•			_
133	160	-1	-1											
132	166	-1	-1											
128	168	-1	-1	230 -										-
89	169	-1	-1										•	
86	170	-1	-1	220							•	•		
86	175	-1	-1								•			
111	177	-1	-1	[b]			•				•	•		•
132	179	-1	-1	ති E 210 -								•		4
108	185	-1	-1									•		
118	193	-1	-1	terc		•	•							
120	198	-1	-1	cholesterol [mg/dl]										
102	205	-1	-1	2				•						
164	208	1	1	-				•						
163	211	1	1	190										1
177	215	1	1				•							
146	219	1	1	180					_					_
152	223	1	1	.00			•		•					
164	224	1	1		•									
170	227	1	1	170 -	• •				_					-
153	242	1	1						•					
155	215	-1	1								1			.
110	215	1	1	160 ^L 80	90	100	110	120	130	140	150	160	170	180
				00	90	100		mean art				100	170	100

Fundamental Theorem of Modeling*

- Data used for training cannot be used for validation.
- Why not? To avoid overfitting.
- Imagine we create a model that predicts a person's height from their name.
- We train our model using the names and heights of people in our class.
- Everyone in our class has a different name, so the mapping is 1-to-1. If we tested our model with anyone in our class, it would predict their height perfectly!
- But clearly this is a horrible model; there are many other people with our same name but different height. We only think our model is perfect because we tested on data we trained with.

*this is not actually a theorem.

What are our options?

- 1. Don't validate your model.
 - Not a scientifically valid approach.
- 2. Train with only a subset of your data; leave the rest for validation.
 - Your model would be underpowered.
 - Fit is sensitive to which points you left out.
- 3. Collect new data to validate the trained model.
 - Can be expensive and/or infeasible.
 - Also, wouldn't you want to train with these data as well?

Best solution: Cross Validation

- We split our data into two groups: training and testing
- Train and test the model using the respective sets.
- Repeat this process several times.
- Advantages of Cross Validation
 - All points are used for both training and testing (at separate times).
 - Overfit models will perform poorly, making them easy to identify.
 - Good models will perform consistently across all testing sets.
- The "final" model is training using the entire dataset.

Example: training an SVM Classifier

• *n* data points

- Method 1: Leave-One-Out (L1O) Cross Validation
 - 1. Remove the first data point.
 - 2. Train on the remaining *n*-1 points.
 - 3. Test the removed point.
 - 4. Repeat using point 2 n.
 - 5. Final accuracy: (# correct) / n

Method 2: k-fold Cross Validation

• *n* data points

- Split the points into *k* evenly sized groups.
- For each group:
 - Remove the group from the data.
 - Training on the remaining points.
 - Validate using the removed points.
- Example: k = 4

= testing set

Comparing L1O to k-fold Cross Validation

- L10 Advantages
 - Trained models are closest to the final model, since only one point is removed.
- L10 Disadvantages
 - If models take a long time to train, L1O can be infeasible.
- k-fold Advantages
 - Faster to train
 - More stringent (works well with n/k points removed).
 - Statistical power for each sub-model, since multiple points tested.
- *k*-fold Disadvantages
 - What value of k should we use?

Note that when k=n, the methods are identical!

Picking *k* for Cross Validation (XV)

- For large datasets, *k*=10 is commonly used.
- For biomedical applications, samples can be noisy.
- Each cycle uses n/k points for testing and n(1-1/k) points for training. Thus, a k-fold XV has k-1 times more points used for training than testing. Try to keep k > 3-4.

k-fold Cross Validation in Matlab

```
mdl = fitcsvm(...)
xval = crossval(mdl,'Kfold',5)
default for Kfold is 10
kfoldLoss(xval)
```

Gives the average misclassification rate ("loss") across all folds

```
mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
xval = crossval(mdl,'KFold',10);
kfoldLoss(xval)
    ans = 0.0909
```