Machine Learning Exercises (chapter 18) Mohannad Jorad Abbas pour

18.2.1

We can run the ID3 Algorithm and show that the error of the decision tree algorithm is at least 4. At first we compute information gains:

$$H(Y) = \left(-\frac{1}{2}\right) \log \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \log \left(\frac{1}{2}\right) = 9$$

$$\frac{\text{Note}}{\text{Left}} H(Y) = \frac{2}{3} \log(\frac{2}{3}) - \frac{1}{3} \log(\frac{1}{3})$$

$$IG(X_2)$$
 = $H(Y) - \frac{2}{3}$, $IG(X_3) = H(Y) - \frac{2}{3}$ \longrightarrow So we can chaose left node or wing
 $\forall ight$.

$$\begin{array}{c}
\text{right} \\
\text{hode}
\end{array}$$

$$\begin{array}{c}
\text{M}_{2}=0? \\
\text{T}
\end{array}$$

$$\begin{array}{c}
\text{T}
\end{array}$$

$$\begin{array}{c}
\text{T}
\end{array}$$

In this case Error point is ((1,1,1),1), so error is $\frac{1}{4}$.

18.2.2

In this case RIVOL Rouht is ((1,0,0),1), so ellol is 1.

hence we subserve that any tree with 2 depth error is 1.

912,23 describe the lables completely so we can ignor sty to make decision tree.