Exercise section 13

Mehrab Atighi

11/18/2021

Exercise section 13 part 1

```
library(psych)
Data = data.frame(Kind = c(1,8,9,9,1,9,9),
                  Intelligent = c(5,9,8,9,9,7,7),
                  Happy = c(5,7,9,9,1,7,9),
                  Likeable = c(1,9,9,9,1,9,9),
                  Just = c(1,8,8,9,9,9,7))
fa1 = fa(Data ,nfactors = 5 , rotate = "varimax")
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is
used
fa2 = fa(Data ,nfactors = 5 )
## Loading required namespace: GPArotation
## In factor.scores, the correlation matrix is singular, an approximation is
used
fa1$loadings
## Loadings:
                                           MR5
##
               MR1
                      MR2
                             MR3
                                    MR4
                0.946 0.261 0.179
## Kind
## Intelligent
                       0.990 -0.109
               0.980
## Happy
                                    -0.131
               0.940 0.285 0.129 0.125
## Likeable
## Just
                0.255 0.875 0.405
##
##
                    MR1
                          MR2
                                MR3
                                      MR4
                                            MR5
## SS loadings
                  2.807 1.902 0.234 0.037 0.000
## Proportion Var 0.561 0.380 0.047 0.007 0.000
## Cumulative Var 0.561 0.942 0.989 0.996 0.996
```

```
fa2$loadings
##
## Loadings:
##
               MR1 MR2
                              MR3
                                      MR4
                                             MR5
## Kind 0.969 -0.231
## Intelligent 0.519 0.806 0.276
## Happy 0.784 -0.586 0.165
## Likeable 0.970 -0.210
## Just 0.703 0.666 -0.228
##
                     MR1
##
                           MR2
                                 MR3
                                        MR4
                                              MR5
## SS loadings 3.258 1.533 0.163 0.026 0.000
## Proportion Var 0.652 0.307 0.033 0.005 0.000
## Cumulative Var 0.652 0.958 0.991 0.996 0.996
```

Variables	Principal Component Loadings f1 f2		Varimax Rotated Loadings f_1 f_2		Communalities, \hat{h}_i^2
Kind	.969	231	.951	.298	.993
Intelligent	.519	.807	.033	.959	.921
Happy	.785	587	.975	103	.960
Likeable	.971	210	.941	.317	.987
Just	.704	.667	.263	.933	.940
Variance accounted for	3.263	1.538	2.811	1.991	4.802
Proportion of total variance	.653	.308	.562	.398	.960
Cumulative proportion	.653	.960	.562	.960	.960

با توجه به تصویر میبینیم که مقادیر ضرایبی که برای دو عاملی که داریم بدست آمده است، دقیقا مشابه خروجی کتاب می اشد و اندک تغییری هم که دار د برای رند شدن مقادیر هست.

Exercise section 13 part 2

```
Country<-
c("Belgium", "Denmark", "France", "Germany", "Greece", "Ireland", "Italy", "Luxembou
rg", "Netherlands", "Portugal", "Spain", "United
Kingdom", "Austria", "Finlad", "Iceland", "Norway", "Sweden", "Swirzerland", "Albani
a", "Bulgaria", "Czech/Slovak", "Hungary", "Poland", "Roma
nia","USSR(Former)","Youslavia(Former)","Cyprus","Gilbralter","Malta","Turkey
")
Group<-c(rep("EU",12),rep("EFTA",6),rep("Eastern",8),rep("Other",4))
AGR<-
c(2.6,5.6,5.1,3.2,22.2,13.8,8.4,3.3,4.2,11.5,9.9,2.2,7.4,8.5,10.5,5.8,3.2,5.6)
,55.5,19.0,12.8,15.3,23.6,22.0,18.5,5.0,13.5,0.0,2.6,
    44.8)
MIN<-
c(0.2,0.1,0.3,0.7,0.5,0.6,1.1,0.1,0.1,0.5,0.5,0.7,0.3,0.2,0.0,1.1,0.3,0.0,19.
4,0.0,37.3,28.9,3.9,2.6,0.0,2.2,0.3,0.0,0.6,0.9)
c(20.8, 20.4, 20.2, 24.8, 19.2, 19.8, 21.9, 19.6, 19.2, 23.6, 21.1, 21.3, 26.9, 19.3, 18.7,
14.6,19.0,24.7,0.0,35.0,0.0,0.0,24.1,37.9,28.8,38.7,19.0,6.8,27.9,15.3)
c(0.8,0.7,0.9,1.0,1.0,1.2,0.0,0.7,0.7,0.6,1.2,1.2,1.2,0.9,1.1,0.8,0.0,0.0
,0.0,0.0,0.0,0.9,2.0,0.0,2.2,0.5,2.0,1.5,0.2)
CON<-
c(6.3,6.4,7.1,9.4,6.8,7.1,9.1,9.9,0.6,8.2,9.5,7.0,8.5,6.8,10.0,6.5,6.4,9.2,3.
4,6.7,8.4,6.4,6.3,5.8,10.2,8.1,9.1,16.9,4.6,5.2)
SER<-
c(16.9,14.5,16.7,17.2,18.2,17.8,21.6,21.2,18.5,19.8,20.1,20.2,19.1,14.6,14.5,
17.6, 14.2, 20.5, 3.3, 9.4, 10.2, 13.3, 10.3, 6.9, 7.9, 13.8, 23.7, 24.5, 10.2, 12.4
FIN<-
c(8.7,9.1,10.2,9.6,5.3,8.4,4.6,8.7,11.5,6.3,5.9,12.4,6.7,8.6,8.0,7.6,9.4,107,
15.3,1.5,1.6,0.0,1.3,0.6,0.6,3.1,6.7,108,3.9,2.4)
SPS<-
c(36.9,36.3,33.1,28.4,19.8,25.5,28.0,29.6,38.3,24.6,26.7,28.4,23.3,33.2,30.7,
37.5, 39.5, 23.1, 0.0, 20.9, 22.9, 27.3, 24.5, 15.3, 25.6, 19.1, 21.2, 34.0, 41.6, 14.5
TC<-
c(6.8,7.0,6.4,5.6,6.9,5.8,5.3,6.8,6.8,4.8,5.8,6.5,6.4,7.5,6.7,8.1,7.2,6.2,3.0)
,7.5,6.9,8.8,5.2,6.8,8.4,7.8,6.0,5.0,7.2,4.4)
Data<-data.frame(Country,Group,AGR,MIN,MAN,PS,CON,SER,FIN,SPS,TC)
head(Data ,4)
##
     Country Group AGR MIN MAN PS CON SER FIN SPS TC
## 1 Belgium
                EU 2.6 0.2 20.8 0.8 6.3 16.9 8.7 36.9 6.8
## 2 Denmark
                EU 5.6 0.1 20.4 0.7 6.4 14.5 9.1 36.3 7.0
                EU 5.1 0.3 20.2 0.9 7.1 16.7 10.2 33.1 6.4
## 3 France
## 4 Germany
                EU 3.2 0.7 24.8 1.0 9.4 17.2 9.6 28.4 5.6
```

```
fa3=fa(Data[,-c(1,2)] , nfactors =9 , rotate = "varimax")
fa4 = fa(Data[,-c(1,2)], nfactors = 9)
## Loading required namespace: GPArotation
fa3$loadings
##
## Loadings:
##
       MR1
              MR2
                     MR7
                             MR5
                                    MR3
                                           MR6
                                                   MR8
                                                          MR4
                                                                 MR9
## AGR -0.802 -0.265 -0.182 -0.390
                                            -0.307
## MIN
                      -0.390 -0.217 -0.845 -0.255
## MAN
              -0.121 0.882
                                     0.319
                                            0.290
## PS
        0.158 0.111
                      0.197
                                     0.155
                                            0.579
## CON
               0.714
                              0.230
                                             0.117 0.118 0.151
## SER 0.200
               0.375
                              0.876
                                     0.203
## FIN
               0.749 -0.117 0.105
                                                   -0.151 -0.138
                      -0.138 0.149 0.260
## SPS 0.924
                                             0.124 - 0.131
## TC
        0.665 -0.158 0.229 -0.118 -0.162
                                                    0.358
##
##
                                              MR3
                                                    MR6
                                                          MR8
                                                                MR4
                                                                       MR9
                    MR1
                           MR2
                                 MR7
                                       MR5
## SS loadings
                   2.018 1.340 1.090 1.071 0.984 0.612 0.188 0.044 0.000
## Proportion Var 0.224 0.149 0.121 0.119 0.109 0.068 0.021 0.005 0.000
## Cumulative Var 0.224 0.373 0.494 0.613 0.723 0.790 0.811 0.816 0.816
fa4$loadings
##
## Loadings:
##
       MR1
              MR2
                     MR3
                             MR4
                                    MR5
                                           MR6
                                                   MR7
                                                          MR8
                                                                 MR9
## AGR -0.913
                      -0.346 -0.129
                                                    0.102
## MIN -0.653 0.262 0.609 0.294
                                     0.127 -0.130
                                                   -0.123
## MAN 0.422 -0.695 -0.493
                             0.216
                                     0.130
## PS
        0.451 -0.172 -0.184
                             0.173 -0.155 -0.326
## CON 0.404 0.507 -0.146
                             0.376
                                                    0.136
## SER 0.702 0.531 -0.102 -0.259
                                     0.374
## FIN 0.304 0.604 -0.197 0.205 -0.260
                                            0.114 -0.122
## SPS 0.752 -0.110 0.523 -0.272 -0.255
        0.324 -0.440 0.526 0.238 0.111
## TC
                                            0.168
##
##
                                                    MR6
                                                                 MR8
                    MR1
                           MR2
                                 MR3
                                       MR4
                                              MR5
                                                          MR7
                                                                       MR9
## SS loadings
                   3.062 1.691 1.388 0.561 0.347 0.188 0.085 0.024 0.000
## Proportion Var 0.340 0.188 0.154 0.062 0.039 0.021 0.009 0.003 0.000
## Cumulative Var 0.340 0.528 0.682 0.745 0.783 0.804 0.814 0.816 0.816
  با توجه به مشاهدات در بالا و دو روشی که بکار بردیم اگر ما از روش واریمکس هم برای دوران استفاده بکنیم، 6 تا
                                      عامل نیاز داریم تا بتوانیم 80% از واریانس کل را یوشش بدهد.
```