Invatare Automata

Laborator 2

Clasificare ierarhica

In cazul gruparii ierarhice nu este necesar sa pornim cu numarul de clustere fixat.

Clasificarea ierarhica are doua variante [1]:

- Clasificare aglomerativa:
 - o fiecare valoare de intrare apartine unui cluster.
 - o Repeta
 - Unifica cele mai apropiate doua clustere
 - o Pana cand exista un singur cluster
- Clasificare prin divizare:
 - o Toate valorile de intrare fac parte din acelasi cluster
 - o La fiecare pas se alege un cluster pentru a fi divizat

Rezultatul produs de clasificarea ierarhica este un arbore. Arborele pentru reprezentarea ierahica poarta numele de dendrograma (dimensiunile de-a lungul axei oy sunt reprezentate pe baza distantelor inter-clustere).

Exemplu: [2]

Alegerea numarului de clustere: se taie dendrograma cu o dreapta D, paralela cu axa ox

Exemplu: D = 0.5

clusterele formate vor fi:

C1: (B, F)

C2: (A, E, C, G)

C3: (D)

Similaritatea intre clustere (distanta inter-clustere):

- Single-linkage clustering: $d(A, B) = \min_{i \in A, j \in B} d_{ij}$
- Complete-linkage clustering: $d(A, B) = \max_{i \in A, j \in B} d_{ij}$
- Average linkage clustering: $d(A, B) = \frac{1}{|A| * |B|} \sum_{i \in A} \sum_{j \in B} d_{ij}$

Resurse

- [1] http://en.wikipedia.org/wiki/Hierarchical_clustering
- [2] Hierarchical cluster analysis: http://www.econ.upf.edu/~michael/stanford/maeb7.pdf