DM 35 : Processus démographiques

On désire étudier le comportement à l'infini d'un processus démographique.

A l'instant initial, la génération G_0 est constituée de N individus (N entier non nul). Ces N individus donnent naissance à d'autres individus, leurs fils, qui constitueront la génération G_1 . Cette génération donnera naissance elle aussi à une nouvelle génération G_2 . On définit ainsi G_n la n-ième génération et on note Z_n la variable aléatoire égale au nombre d'individus de la génération G_n .

On remarquera que si $Z_n = 0$, alors $Z_{n+1} = 0$.

On s'intéresse à la probabilité d'extinction de l'espèce et à la variable égale au numéro de la première génération pour laquelle il n'y a plus d'individu.

On étudie 3 types de reproduction et on utilise différentes méthodes de calcul.

Préliminaires

Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- $\mathbf{1}^{\circ}$) On suppose uniquement pour cette question que X suit une loi géométrique de paramètre $p \in]0,1[$.
- a) Pour tout $k \in \mathbb{N}$, calculer P(X > k).
- b) Vérifier que $E(X) = \sum_{k=0}^{+\infty} P(X > k)$.

On se propose de montrer que cette relation est vraie pour toute variable aléatoire X à valeurs entières.

- $\mathbf{2}^{\circ}$) a) Montrer que, pour tout $k \in \mathbb{N}$, P(X = k) = P(X > k 1) P(X > k).
- b) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n kP(X=k)$.

Déduire de la question précédente que $S_n = \left(\sum_{k=0}^{n-1} P(X > k)\right) - nP(X > n)$.

- ${\bf 3}^{\circ}) \ \,$ On suppose que la série $\sum P(X>k)$ est convergente.
- a) Montrer que la suite $(S_n)_{n\in\mathbb{N}^*}$ est majorée. En déduire que X est d'espérance finie.
- b) Montrer que $nP(X>n)\underset{n\to+\infty}{\longrightarrow} 0$. En déduire que $E(X)=\sum_{k=0}^{+\infty}P(X>k)$.

$$\mathbf{4}^{\circ}) \quad \text{En utilisant la suite double } (a_{k,n})_{(k,n)\in\mathbb{N}^{*2}} \text{ définie par } a_{k,n} = \begin{cases} P(X=n) & \text{ si } k \leq n \\ 0 & \text{ si } k > n \end{cases},$$
 donner une seconde démonstration de la relation $E(X) = \sum_{k=0}^{+\infty} P(X>k)$.

Partie I

Dans cette partie, on suppose que chaque individu de la génération G_0 donne naissance à 1 individu avec la probabilité $p \in]0,1[$ et ne donne naissance à aucun enfant avec la probabilité q=1-p, et ceci indépendamment les uns des autres.

De même, s'il y a des individus à la génération G_n , chacun donne, pour la génération G_{n+1} , un enfant avec la probabilité p et 0 enfant avec la probabilité q, et ceci indépendamment les uns des autres.

- 5°) a) Quelle est la loi de Z_1 ?
- b) Montrer que pour tout $k \geq 1$, l'ensemble des valeurs prises par Z_k est égal à $\{0,\ldots,N\}$.
- c) Pour tout $k \in \{1, ..., N\}$, Quelle est la loi conditionnelle de Z_{n+1} sachant que $Z_n = k$?
- d) En numérotant de 1 à N les individus de la génération G_0 , et en appelant "lignée i" les descendants de l'individu numéro i, montrer que Z_n suit la loi binomiale $\mathcal{B}(N, p^n)$.
- 6°) On note E l'événement : "il y a disparition de l'espèce".
- a) Ecrire E à l'aide des événements $(Z_n = 0)$.
- b) Montrer que P(E) = 1.
- 7°) On appelle T la variable aléatoire égale au numéro de la première génération pour laquelle il n'y a plus d'individu.
- a) A l'aide de la variable aléatoire Z_n , montrer que pour tout $n \ge 0$, $P(T > n) = 1 (1 p^n)^N$.
- b) Pour tout $i \in \{1, ..., N\}$, on note T_i la variable aléatoire égale au numéro de la génération pour laquelle la lignée i s'éteint.

Quelle est la loi de T_i ?

- c) Retrouver à l'aide des variables aléatoires T_i que $P(T \le n) = (1 p^n)^N$.
- d) Donner la loi de T.
- **8**°) a) Montrer que $P(T > n) \sim Np^n$, lorsque n tend vers $+\infty$.
- b) A l'aide du préliminaire, montrer que T admet une espérance finie.
- c) Montrer que $E(T) = \sum_{k=1}^{N} {N \choose k} \frac{(-1)^{k+1}}{1 p^k}$.

Partie 2

On suppose dans cette partie que N est un entier non nul **et pair**.

Dans cette partie, chaque individu de la génération G_n donne deux enfants avec la probabilité $\frac{1}{2}$ et 0 enfant avec la probabilité $\frac{1}{2}$, et ceci indépendamment les uns des autres.

Pour tout $n \ge 0$, on pose $a_n = 2^{n-1}N$.

- 9°) Montrer que, pour tout $n \geq 1$, l'ensemble des valeurs prises par Z_n est $\{0, 2, 4, \dots, 2a_n\}$.
- 10°) Montrer que, pour tout $i \in \{0, 1, \dots, a_{n+1}\},\$

(1) :
$$P(Z_{n+1} = 2i) = \sum_{k=0}^{a_n} {2k \choose i} {1 \choose 2}^{2k} P(Z_n = 2k),$$

en convenant que, pour tout $(a,b) \in \mathbb{N}^2$, $\begin{pmatrix} a \\ b \end{pmatrix} = 0$ lorsque $b \notin \{0,\ldots,a\}$.

- 11°) Pour tout $x \in \mathbb{R}$, on pose $H_n(x) = \sum_{k=0}^{a_n} P(Z_n = 2k) x^{2k}$.
- a) Que vaut $H_n(1)$?
- b) Montrer que $H_0(x) = x^N$.
- c) A l'aide de la relation (1) de la question précédente, montrer que pour tout $x \in \mathbb{R}$, $H_{n+1}(x) = H_n\left(\frac{1+x^2}{2}\right)$.
- 12°) a) Montrer que $H'_n(1) = E(Z_n)$.
- b) Déterminer une relation liant $E(Z_{n+1})$ et $E(Z_n)$ et en déduire $E(Z_n)$ en fonction de n.
- 13°) On pose $v_n = H_n(0) = P(Z_n = 0)$.
- a) Par un raisonnement probabiliste, montrer que la suite (v_n) est croissante et convergente.
- b) On définit la suite (w_n) par : $w_0 = 0$ et pour tout $n \in \mathbb{N}$, $w_{n+1} = \frac{1 + w_n^2}{2}$.

Montrer que, pour tout $(n,k) \in \mathbb{N}^2$, $H_n(w_k) = (w_{n+k})^N$.

c) Déterminer la limite de $H_n(0)$ lorsque n tend vers $+\infty$. Quelle est la probabilité que l'espèce s'éteigne?

Partie 3

On suppose dans cette partie que la loi conditionnelle de Z_{n+1} sachant que $Z_n = k$ est la loi uniforme sur $\{0, \ldots, k\}$, c'est-à-dire que :

$$\forall i \in \{0, \dots, k\}, P(Z_{n+1} = i | Z_n = k) = \frac{1}{k+1}.$$

En particulier la loi de Z_1 est la loi uniforme sur $\{0, \ldots, N\}$.

- 14°) a) Quelles sont les valeurs prises par les variables Z_n pour $n \ge 1$?
- b) Montrer que, pour tout $i \in \{0, ..., N\}$, $P(Z_{n+1} = i) = \sum_{k=i}^{N} \frac{1}{k+1} P(Z_n = k)$.
- **15**°) a) En utilisant cette dernière relation, montrer que $E(Z_{n+1}) = \frac{E(Z_n)}{2}$. En déduire $E(Z_n)$ en fonction de n.
- b) De même, déterminer une relation entre $E(Z_{n+1}^2)$ et $E(Z_n^2)$.
- c) On pose, pour tout $n \in \mathbb{N}$, $u_n = 2^n E(Z_n^2)$.

Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{2}{3}u_n + \frac{N}{3}$. Déterminer u_n puis la variance de Z_n en fonction de n.

- **16**°) a) Montrer que $E(Z_n) \ge P(Z_n \ge 1)$. En déduire que $P(Z_n = 0) \underset{n \to +\infty}{\longrightarrow} 1$.
- b) Quelle est la probabilité d'extinction de l'espèce?
- c) On note T la variable aléatoire égale au numéro de la première génération où s'éteint l'espèce. Montrer que T possède une espérance finie.