МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №1: «Исследование полупроводникового диода» по дисциплине Электроника и Схемотехника

Вариант 6

Выполнил:

Студенты группы R33362 Осинина Т. С, Моховиков А.Е. Преподаватель: Николаев Н. А **Цель работы:** исследовать вольтамперной характеристики (BAX) полупроводникового диода, провести исследование работы однополупериодного выпрямителя, а также работы мостового выпрямителя

Таблица 1. <u>Параметры диода MURS120</u>

Наименование	V_{RRM}	V_{RMS}	V_{DC}	IF _(AV)	I_{FSM}	$I_{R(AV)}$	$V_{\rm F}$	I_R	t _{rr}	CJ	T_{stg}
диода											
	В	В	В	A	A	мкА	В	мкА	нс	пФ	°C
MUR120	200	-	-	1,0	35,0	-	1,25	5,0	50	-	-65+175

Часть 1. Исследование ВАХ полупроводникового диода

Рисунок 1 - BAX диода MURS120

Рисунок 2 - ветвь ВАХ полупроводникового диода

Таблица 2

No	$\mathbf{U}_{\scriptscriptstyle\mathrm{\mathcal{I}}}$	${ m I}_{\scriptscriptstyle \mathcal{I}}$
1	0.9	3.426
2	1.1	9.902

$$R_{ ext{CT1}} = rac{U_{ ext{д1}}}{I_{ ext{д1}}} = 0.26 \; ext{Ом}$$
 $R_{ ext{CT2}} = rac{U_{ ext{д2}}}{I_{ ext{д2}}} = 0.11 \; ext{Ом}$

Рассчитали дифференциальное сопротивление диода по следующей формуле:

$$r_{\text{диф}} = \frac{\Delta U}{\Delta I} = \frac{0.2}{6.47} = 0.03 \text{ Ом}$$

$$r_{\text{диф.паспорт}} = 0.0236 \text{ Ом}$$

По вольт-амперной характеристике определили напряжение изгиба:

$$U_{\text{\tiny M3\Gamma}} = 0.826 \text{ B}$$

Рисунок 3 - Полная ВАХ диода

Вывод: в задание 1 исследовали вольт - амперную характеристику диода, рассчитали дифференциальное сопротивление диода, получили значение приблизительно равное паспортному значению. Следовательно значения напряжений и силы тока определили верно.

Часть 2. Исследование работы однополупериодного полупроводникового выпрямителя

Рисунок 4 - Схема однополупериодного выпрямителя

Рисунок 5 - Осциллограмма напряжений на входе и выходе выпрямителя

Анализируя осциллограмму, определили максимальное мгновенное значение напряжения на выходе выпрямителя: $U_{\text{вых.max}} = 9.4228 \text{ B}$.

Далее вычисляем средневыпрямленное значение напряжения на выходе выпрямителя:

$$U_{\text{вых.cp.}} = \frac{U_{\text{вых.max}}}{\pi} = \frac{9.4228}{\pi} = 2.999 \text{ B}$$

Измерили максимальное обратное напряжение на диоде: $U_{\text{обр.max}} = 9.9854 \text{ B}$

Вывод: периоды изменения сигналов на входе и выходе выпрямителя примерно равны, а также максимальное обратное напряжение на диоде равно амплитуде входного напряжения.

Часть 3. Исследование работы однофазного мостового выпрямителя

Рисунок 6 - Схема однофазного мостового выпрямителя

Рисунок 7 - Осциллограмма напряжений на входе и выходе

По осциллограмме определили максимальное мгновенное значение напряжения на выходе выпрямителя Uвых.max:

$$U$$
вых. $max = 8.88$ В

Далее вычислили средневыпрямленное значение напряжения на выходе выпрямителя, используя формулу:

*U*вых. cp =
$$\frac{2 \cdot U_{\text{Вых.}} max}{\pi}$$
 = 5.65 В

Вывод: в задании 3 построили схему однофазного мостового выпрямителя, получили осциллограмму напряжений, по ней определили максимальное мгновенное значение напряжения, далее рассчитали средневыпрямленное значение напряжения. Также сравнили периоды изменения сигналов на входе и выходе выпрямителя, выявили, что период сигнала на выходе двухполупериодного выпрямителя в два раза меньше, чем на его входе.

Часть 4.1. Исследование работы однофазного мостового выпрямителя с емкостным сглаживающим фильтром (f = 50)

Сначала подобрали значение для C_{Φ} , чтобы выполнялось условие: $\omega R_H C_{\Phi} > 1$, следовательно $C_{\Phi} = 10 \cdot 10^{-6}$

Рисунок 8 - Осциллограмма напряжений на входе и выходе выпрямителя при частоте =10

Рисунок 9 - Схема мостового выпрямителя с емкостным фильтром

Анализирую осциллограмму ($Pucyhok\ 8$ - Ocциллограмма напряжений на входе выпрямителя при частоте =10) нашли максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

Uвых. max = 9.2804В Uвых. min = 2.1123 В Uвых. cp = 7.2571 В

$$k = \frac{U$$
вых. $max - U$ вых. min
 $= \frac{9.2804 - 2.1123}{6.1723} = 0.87$

Часть 4.2. Исследование работы однофазного мостового выпрямителя с емкостным сглаживающим фильтром (f = 200)

Далее повторили предыдущие действия, увеличив частоту входного сигнала до 200 Гц.

Рисунок 10 - Осциллограмма напряжений на входе и выходе выпрямителя при частоте =200

Анализирую осциллограмму ($Pucyhok\ 10$ - Ocциллограмма напряжений на входе u выходе выпрямителя при частоте =200) нашли максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

$$U$$
вых. $max = 9.4149$ В U вых. $min = 6.1781$ В U вых. $cp = 7.7227$ В

$$k = \frac{U$$
вых. $max - U$ вых. min
 U вых. ср

Часть 4.3. Исследование работы однофазного мостового выпрямителя с емкостным сглаживающим фильтром ($C_{\phi} = 100 \cdot 10^{-6}$)

Рисунок 11 - Осциллограмма напряжений на входе и выходе выпрямителя при $C_{\Phi} = 100 \cdot 10^{-6} \; \Phi$

Анализирую осциллограмму (Рисунок 11 - Осциллограмма напряжений на входе выпрямителя при $C_{\Phi}=100\cdot 10^{-6}~\Phi$), нашли максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

$$U$$
вых. $max = 9.3872$ В U вых. $min = 7.8928$ В U вых. $cp = 8.417$ В

$$k = \frac{U$$
вых. $max - U$ вых. min
 U вых. ср

Часть 4.4. Исследование работы однофазного мостового выпрямителя с прямоугольной формой сигнала.

Рисунок 12 - Осциллограмма при прямоугольной форме сигнала

Рисунок 13 - Схема моделирования при прямоугольной форме сигнала

Максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

$$U$$
вых. $max = 9.4425$ В U вых. $min = 3.6847$ В U вых. $cp = 7.1252$ В

$$k = \frac{U$$
вых. $max - U$ вых. min

$$U$$
вых. ср

Часть 4.5. Исследование работы однофазного мостового выпрямителя с треугольной формой сигнала.

Рисунок 14 - Осциллограмма при треугольной форме сигнала

Рисунок 15 - Схема моделирования при треугольной форме сигнала

Максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

$$U$$
вых. $max = 9.4189$ В U вых. $min = 2.5924$ В U вых. $cp = 5.8783$ В

$$k = \frac{U$$
вых. $max - U$ вых. min
 U вых. ср

Часть 4.6. Исследование работы однофазного мостового выпрямителя с пилообразной формой сигнала.

Рисунок 16 - Осциллограмма при пилообразной форме сигнала

Рисунок 17 - Схема моделирования при пилообразной форме сигнала

Максимальное Uвых.max и минимальное Uвых.min, среднее Uвых.ср значения напряжения на выходе (нагрузке) выпрямителя:

$$U$$
вых. $max = 9.4236$ В U вых. $min = 3.922$ В U вых. $cp = 6.4213$ В

Далее вычислили коэффициент пульсаций на выходе выпрямителя с емкостным фильтром по формуле:

$$k = \frac{U$$
вых. $max - U$ вых. min
 U вых. ср

Вывод: в процессе выполнения части 4 мы определили, что коэффициент пульсаций уменьшается при увеличении частоты и емкости конденсатора. Сравнивая работу выпрямителя при разных формах сигнала, заметили, что коэффициент пульсаций при прямоугольной форме — уменьшается, при треугольной форме — увеличивается, при пилообразной форме — не изменяется. Коэффициент пульсаций при частоте равной 50 Гц приблизительно равен табличному коэффициенту пульсаций двухполупериодного выпрямителя (0.67).