Des données à l'intelligence artificielle

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Yves Terrat PhD

Consortium Santé Numérique, UdeM-IVADO

Qu'est-ce que l'intelligence artificielle ?

« Algorithmes qui sont capables d'apprendre des <u>taches complexes</u> sans avoir été <u>explicitement</u> programmés »

Le « big bang » de l'intelligence artificielle en santé

<u>Source</u>: PubMed, keyword: (Artificial intelligence) [Title/Abstract]

A-t-on besoin de l'IA?

Published: 03 April 2018

Points of Significance

Statistics versus machine learning

Danilo Bzdok, Naomi Altman & Martin Krzywinski

Nature Methods 15, 233–234 (2018) Cite this article

95k Accesses | 462 Citations | 360 Altmetric | Metrics

- IA adapté aux données massives
- IA n'a pas d'a priori sur la distribution des données
- IA peut gérer des milliers de variables et des millions d'exemples

Disponibilité des données massives en santé : organisation en silos

Disponibilité des données massives en santé : les lacs de données

Fonction (question

domaine d'étude, taille des données, qualité des données, accès à une infrastructure de calcul, temps de calcul, performance, interprétabilité, ...)

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

```
Fonction (question,
          domaine d'étude,
          taille des données,
          qualité des données,
          accès à une infrastructure de calcul,
          temps de calcul,
          performance,
          interprétabilité,
```

Préparation des données

	Patient.e 1	Patient.e 2	Patient.e 3	Patient.e 4	Patient.e 5	Patient.e 6
Éosinophiles	1.3	0.55	0. 57	0.2	0.5	0.8
Age	54	37	27	64	73	40
Mutation	Oui	Oui	Non	Non	Non	Oui
Statut	Cancer	Non cancer	Cancer	Non cancer	Non cancer	Cancer

NB : on ne parlera pas ici du pré-traitement des données

Préparation des données

		Patient.e 1	Patient.e 2	Patient.e 3	Patient.e 4	Patient.e 5	Patient.e 6
es	Éosinophiles	1.3	0.55	0. 57	0.2	0.5	0.8
Variables	Age	54	37	27	64	73	40
Var	Mutation	Oui	Oui	Non	Non	Non	Oui
Résultat	Statut	Cancer	Non cancer	Cancer	Non cancer	Non cancer	Cancer

Préparation des données

Patient.e 5	Patient.e 6	Patient.e 5	Patient.e 6	Patient.e 5
0.5	0.8	0.5	0.8	0.5
73	40	73	40	73
Non	Oui	Non	Oui	Non
Non cancer	Cancer	Non cancer	Cancer	Non cancer

Patient.e 5	Patient.e 6
0.5	0.8
73	40
Non	Oui
Non cancer	Cancer

Entrainement

Test

Poids négatif
Poids positif

Intérprétablité ???

Une IA explicable

Fig. 1: Attitudes towards interpretability across real-world AI applications.

P1	P2	Р3	P4	
1.3	0.55	0. 57	0.2	Éosino
54	37	27	64	Age
Oui	Oui	Non	Non	Mutation
Cancer	Non Cancer	Cancer	Non Cancer	

Entrainement

Non

Cancer

Non

Cancer

Cancer

Cancer

Un réseau de neurones devient « intelligent » car il absorbe de la donnée

Valider l'entrainement : notre modèle généralise-t-il bien ?

Le perceptron, Rosenblatt, 1959

Poids numériques : potentiomètres analogiques

Une intelligence artificielle à la portée de (presque) toutes et tous

```
from sklearn.neural network import MLPClassifier
steps = [('scaler', StandardScaler()),
         ('KB', SelectKBest(score func=f classif, k = 4)),
         ('MLP', MLPClassifier(random state=rs))]
pipeline = Pipeline(steps)
diabetesDF = pd.read csv("/content/drive/My Drive/RanDonnees/diabetes.csv")
X = diabetesDF[diabetesDF.columns[0:8]]
y = diabetesDF[diabetesDF.columns[-1]]
X train, X test, y train, y test = train test split(X,y,test size=0.1, random state=rs, stratify=y)
params = [
    {'MLP solver': ['adam'],
     'MLP learning rate init': [0.0001],
     'MLP max iter': [10000],
      'MLP hidden layer sizes': [(10,20,20,10), (20,50,50,20), (50,100,100,50)],
     'MLP activation': ['tanh'],
     'MLP alpha': [0.0001, 0.001, 0.05],
     'MLP early stopping': [False]
grid = GridSearchCV(pipeline, param grid=params, cv=5,n jobs=-1)
grid(fit)(X train, y train)
print('Test score = {}'.format(grid.score(X_test,y_test)))
print(grid.best params )
res df = pd.DataFrame({'mean test score': grid.cv results ['mean test score']})
```


Processing < 20 lignes

Forces et faiblesse des réseaux de neurones

- Puissants et flexibles
- Gourmands en données
- Simple série de calculs algébriques
- « garbage in, garbage out » / « garbage in, carnage out »
- Peu interprétables (« Black box »)
- Mono-taches (« Catastrophe forgetting »)

Quels domaines d'application en santé?

Des architectures très complexes pour l'analyse multimodale

Article | Open Access | Published: 17 December 2020

Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection

Shih-Cheng Huang , Anuj Pareek, Roham Zamanian, Imon Banerjee & Matthew P. Lungren

lA et données : promesses et désillusions

Editorial

June 21, 2021

The Epic Sepsis Model Falls Short—The Importance of External Validation

Anand R. Habib, MD, MPhil^{1,2}; Anthony L. Lin, MD¹; Richard W. Grant, MD, MPH^{3,4}

» Author Affiliations | Article Information

JAMA Intern Med. 2021;181(8):1040-1041. doi:10.1001/jamainternmed.2021.3333

JAMA Internal Medicine | Original Investigation

External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients

Andrew Wong, MD; Erkin Otles, MEng; John P. Donnelly, PhD; Andrew Krumm, PhD; Jeffrey McCullough, PhD; Olivia DeTroyer-Cooley, BSE; Justin Pestrue, MEcon; Marie Phillips, BA; Judy Konye, MSN, RN; Carleen Penoza, MHSA, RN; Muhammad Ghous, MBBS; Karandeep Singh, MD, MMSc

lA et données : promesses et désillusions dans le modèle sepsis

- Identifie 7% de sepsis non identifiés par des clinicien.ne.s
- N'identifie pas 67 % des sepsis identifiés par des clinicien.ne.s
- Génère des alertes pour 18% des patient.e.s. alors que le sepsis concerne seulement 7% des cas

Le cœur du problème reste l'accès aux données

Comment faire une lA plus généralisable ? L'apprentissage fédéré

Développer des modèles d'IA plus robustes

- Accès aux modèles
- Accès aux données (...)
- Accès aux métadonnées
- Publier des résultats négatifs
- Développer des méthodes d'évaluation robustes
- Rendre les modèles plus explicables

Science Ouverte