Exercices, 5

EXERCICE 1 (exemples d'EMV). — Calculer l'estimateur du maximum de vraisemblance et étudier ses propriétés (lien avec un estimateur par moments, risque quadratique, loi limite et intervalle de confiance asymptotique) dans les cas suivants :

- 1. On observe X_1, \ldots, X_n i.i.d. de loi de Poisson de paramètre $\lambda > 0$.
- 2. On observe $X \sim \mathcal{B}(n, p)$, où $p \in [0, 1]$. Pour la loi limite et l'intervalle de confiance, on considérera l'hypothèse supplémentaire $p \in [0, 1]$.
- 3. On observe X_1, \ldots, X_n i.i.d. de loi $\mathcal{N}(\mu, \sigma^2)$, où $\mu \in \mathbb{R}$ et $\sigma > 0$.

EXERCICE 2. — On considère l'expérience statistique

$$\mathcal{E} = (\{0,1\}, \mathcal{P}(\{0,1\}), (\mathbb{P}_{\theta})_{\theta \in \{\frac{1}{10}, \frac{8}{10}\}}),$$

où
$$\mathbb{P}_{\theta}(dx) = \theta \delta_{\{0\}}(dx) + (1 - \theta) \delta_{\{1\}}(dx).$$

- 1. Montrer que le modèle est dominé, et calculer sa fonction de vraisemblance.
- 2. En déduire l'estimateur du maximum de vraisemblance.

EXERCICE 3 (loi Gamma). — On rappelle que la loi Gamma $\Gamma(\alpha,\beta)$, $\alpha,\beta>0$ est une v.a. réelle de densité

$$x \mapsto \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(-\beta x), \quad x > 0.$$

On se donne un échantillon (X_1, \ldots, X_n) de loi $\Gamma(\alpha, \beta)$.

- 1. On suppose le paramètre β connu. Proposer un estimateur de α par la méthode des moments.
- 2. On suppose à présent que les deux paramètres α, β sont inconnus. Proposer un estimateur de (α, β) par la méthode des moments.
- 3. Toujours dans le cas où α, β sont inconnus, donner le système d'équation que satisfont les estimateurs de (α, β) par la méthode du maximum de vraisemblance.

EXERCICE 4. — Soit (X_1, \ldots, X_n) un *n*-échantillon de la loi uniforme sur $[-\theta, \theta]$, avec $\theta > 0$.

- 1. Décrire le modèle statistique associé.
- 2. Proposer un estimateur $\hat{\theta}_n$ de θ obtenu par méthode des moments. Est-il consistant? Proposer un intervalle de confiance asymptotique de niveau de confiance α .
- 3. Soit T_n l'estimateur du maximum de vraisemblance de θ . Montrer que pour tout réel t,

$$\mathbb{P}_{\theta}^{n}\left(n(T_{n}-\theta)\leq t\right)\to e^{t/\theta}\,\mathbb{1}_{t<0}+\mathbb{1}_{t>0}$$

quand n tend vers l'infini. En déduire un intervalle de confiance asymptotique de niveau α .

4. Comparer les estimateurs $\hat{\theta}_n$ et T_n sur la base des longueurs moyennes des intervalles de confiance asymptotiques associés.

EXERCICE 5. — Dans une urne contenant 1000 tickets, 20 sont marqués θ et 980 sont marqués 10θ , où θ est un réel strictement positif inconnu.

- 1. On tire un unique ticket de valeur X. Donner le modèle. Est-il dominé par une mesure σ -finie? Donner un estimateur qui s'apparenterait à un maximum de vraisemblance $\hat{\theta}$ de θ (maximiser $P_{\theta}(\{X\})$). Montrer que $\mathbb{P}(\hat{\theta} = \theta) \geq 0, 98$.
- 2. On renumérote les tickets marqués 10θ par $a_i\theta$, $1 \le i \le 980$, où les a_i sont des réels connus, deux-à-deux distincts, et compris dans l'intervalle [10; 10, 1]. Donner le nouvel estimateur du maximum de vraisemblance $\widetilde{\theta}$ et montrer que $\mathbb{P}(\widetilde{\theta} < 10\theta) = 0, 02$. Commenter.

EXERCICE 6 (Weibull). — Soit c>0 un paramètre fixé connu. On considère la loi de Weibull $P_{\lambda}, \lambda>0$, de densité

$$\lambda c x^{c-1} e^{-\lambda x^c} \mathbb{1}_{[0,+\infty[}(x)$$

par rapport à la mesure de Lebesgue. On observe un n-échantillon de la loi P_{λ} , avec $n \geq 3$.

- 1. Calculer l'estimateur du maximum de vraisemblance $\hat{\lambda}_n$ de λ .
- 2. Calculer son risque quadratique $\mathbb{E}^n_{\lambda}\left[(\hat{\lambda}_n-\lambda)^2\right]$ où P^n_{λ} désigne la loi du *n*-échantillon.

EXERCICE 7. — On considère pour $\mu > 0$, $\alpha > 0$, la loi de probabilité $\mathbb{P}_{\mu,\alpha}$ dont la fonction de répartition est continue sur \mathbb{R} et vaut : $\mathbb{P}_{\mu,\alpha}(X \leq x) = 1 - Cx^{-\alpha}$ si $x \geq \mu$ et 0 sinon. On se donne un *n*-échantillon X_1, \ldots, X_n i.i.d de loi $\mathbb{P}_{\mu,\alpha}$.

- 1. Calculer la constante C.
- 2. Calculer l'estimateur du maximum de vraisemblance $(\hat{\mu}_n, \hat{\alpha}_n)$ de (μ, α) .
- 3. Quelle est la loi limite de $n(\hat{\mu}_n \mu)$?
- 4. Montrer que

$$\sqrt{n}\left(\hat{\alpha}_n^{-1} - \frac{1}{n}\sum_{i=1}^n \ln(X_i/\mu)\right) \stackrel{\mathbb{P}}{\longrightarrow} 0,$$

puis en déduire la loi limite de $\sqrt{n}(\hat{\alpha}_n - \alpha)$.