3.4 The Full Procrustes Mean in a fixed basis

To avoid having to sample the estimated covariance surface $\hat{C}(s,t)$ on a large grid when calculating its leading eigenfunction, it might be preferable to calculate this eigenfunction from the vector of basis coefficients directly.

After choosing a basis representation B with basis functions $b_j(t)$, $j=1,\ldots,k$ we want to estimate coefficients $\theta_j \in \mathbb{C}$ so that the Full Procrustes mean is given by $\hat{\mu}(t) = \sum_{j=1}^k \hat{\theta}_j \beta_j(t) = b^T \hat{\theta}$:

$$\hat{\mu} = \underset{\theta:||b^T\theta||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle b^T\theta, \beta_i \rangle \langle \beta_i, b^T\theta \rangle$$

$$= \underset{\theta:||b^T\theta||=1}{\operatorname{argmax}} \sum_{k,l} \sum_{i=1}^n \langle b_k \theta_k, \beta_i \rangle \langle \beta_i, b_l \theta_l \rangle$$

$$= \underset{\theta:||b^T\theta||=1}{\operatorname{argmax}} \sum_{k,l} \bar{\theta}_k \theta_l \sum_{i=1}^n \langle b_k, \beta_i \rangle \langle \beta_i, b_l \rangle$$

$$= \underset{\theta:||b^T\theta||=1}{\operatorname{argmax}} \bar{\theta}^T S \theta$$

$$= \underset{\theta:||b^T\theta||=1}{\operatorname{argmax}} \bar{\theta}^T S \theta$$

with $S = \{\sum_{i=1}^{n} \langle b_k, \beta_i \rangle \langle \beta_i, b_l \rangle \}_{k,l}$. As is known from e.g. PCA, the solution to this problem is the leading complex eigenvector $\hat{\theta}$ of the matrix S. We can calculate S in the following way:

$$\begin{split} S_{kl} &= \sum_{i=1}^{n} \int_{0}^{1} \bar{b}_{k}(t) \beta_{i}(t) dt \int_{0}^{1} \bar{\beta}_{i}(s) b_{l}(s) ds \\ &= \int_{0}^{1} \int_{0}^{1} \bar{b}_{k}(t) \underbrace{\left(\sum_{i=1}^{n} \beta_{i}(t) \bar{\beta}_{i}(s)\right)}_{=C(s,t)} b_{l}(s) ds dt \\ &= \int_{0}^{1} \int_{0}^{1} \bar{b}_{k}(t) C(s,t) b_{l}(s) ds dt \end{split}$$

We may estimate C(s,t) via tensor product splines, so that $\hat{C}(s,t) = \sum_{k,l} \hat{\xi}_{kl} b_k(t) b_l(s)$.

However this does not actually simplify the above expression for S_{kl} :

$$S_{kl} = \dots = \int_0^1 \int_0^1 \bar{b}_k(t) \left(\sum_{p,q} \hat{\xi}_{pq} b_q(t) b_p(s) \right) b_l(s) ds dt$$

$$= \sum_{p,q} \hat{\xi}_{pq} \int_0^1 \int_0^1 \bar{b}_k(t) b_q(t) b_p(s) b_l(s) ds dt$$

$$= \sum_{p,q} \hat{\xi}_{pq} \langle b_k, b_q \rangle \langle \bar{b}_p, b_l \rangle$$

At this point we would like to use the properties of an (let's assume orthogonal) basis, so that $\langle b_k, b_q \rangle = \delta_{kq}$, which we can't use here because of the complex conjugate of b_p in the second scalar product. To solve this nicely wouldn't we need tensor product splines of the form: $\hat{C}(s,t) = \sum_{k,l} \hat{\xi}_{kl} b_k(t) \bar{b}_l(s)$ (complex conjugate in the second basis term)? This would lead us to:

$$S_{kl} = \cdots = \sum_{p,q} \hat{\xi}_{pq} \langle b_k, b_q \rangle \langle b_p, b_l \rangle$$

 $= \sum_{p,q} \hat{\xi}_{pq} \delta_{kq} \delta_{pl}$
 $= \hat{\xi}_{kl}$

Which means the matrix S is just the matrix of coefficients $\hat{\Xi} = {\{\hat{\xi}\}_{k,l}}$ from the covariance smoothing.