EEE336 Signal Processing and Digital Filtering

Lecture 8 Discrete-Time Systems in Frequency Domain

8_1 FD Analyses of Systems

(Frequency Response)

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Analyses of LTI systems in transform domain

- Frequency response of LTI discrete-time system:
 - Most discrete-time signals in practice can be represented as a linear combination of sinusoidal discrete-time signals $e^{j\omega n}$ at different angular frequencies ω ;

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

- If the response of the LTI system to $e^{j\omega n}$ is known, then the response to x[n] can be determined using the superposition property;
- Therefore, we call $e^{j\omega n}$ as eigen function.

Frequency response of a Discrete-time system

For the system as follows

- System input: $e^{j\omega_0 n}$, a complex exponential at a specific frequency ω_0
- System output: the same exponential, at the same frequency ω_0 but weighted by a complex amplitude that is a function of this input frequency $H(e^{j\omega_0})e^{j\omega_0 n}$;
- $H(e^{j\omega_0}) = H(\omega_0)$ is called the *frequency response* of the system at ω_0 .

Frequency response of a Discrete-time system

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$$

- Called the *frequency response* of the LTI system, providing a frequency-domain description of the system;
- $H(e^{j\omega})$ is the Fourier transform of the impulse response h[n] of the system;
 - It exists if h[n] is absolutely summable;
 - It is a complex function of ω with a period of 2π
 - It can be expressed in real/imaginary or magnitude/phase parts

$$H(e^{j\omega}) = H_{re}(e^{j\omega}) + jH_{im}(e^{j\omega}) = |H(e^{j\omega})|e^{j\Theta(\omega)}$$

Phase response

Frequency response - Example

Example: M-Moving-average filter is given by

$$h[n] = \begin{cases} \frac{1}{M}, 0 \le n \le M - 1\\ 0, & otherwise \end{cases}$$

Its frequency response is thus given by

$$H(e^{j\omega}) = \frac{1}{M} \sum_{n=0}^{M-1} e^{-j\omega n} = \frac{1}{M} \left(\sum_{n=0}^{\infty} e^{-j\omega n} - \sum_{n=M}^{\infty} e^{-j\omega n} \right)$$

$$= \frac{1}{M} \left(\sum_{n=0}^{\infty} e^{-j\omega n} \right) \left(1 - e^{-jM\omega} \right) = \frac{1}{M} \frac{1 - e^{-jM\omega}}{1 - e^{-j\omega}}$$

$$= \frac{1}{M} \frac{\sin(M\omega/2)}{\sin(\omega/2)} e^{j\left(-\frac{(M-1)\omega}{2}\right)}$$

Magnitude response Phase response

Frequency response - Example

- The magnitude has a maximum value of unity at $\omega = 0$, and has zeros at $\omega = 2\pi k/M$;
- The phase function exhibits discontinuities of π at each zero of the magnitude and is linear elsewhere with a slope of -(M-1)/2;
- Both magnitude and phase functions are periodic in ω with a period 2 π .

Time-Frequency Domain Relationship

• If x[n] is input to an LTI system with an impulse response of h[n], then the DTFT of the output is the product of $X(\omega)$ and $H(\omega)$

Transfer function of LTI

• Besides $e^{j\omega n}$, another commonly used eigen function of LTI system is

$$x[n] = z^n, -\infty < n < \infty$$

• The output of the LTI system is

$$z^{n} \longrightarrow h[n] \longrightarrow y[n] = \sum_{k=-\infty} h[k]z^{n-k} k]$$

- Output y[n] is the input zⁿ multiplied by H(z);
- H(z) is the transfer function of LTI system.

Time-Transform Domain Relationship

• If x[n] is input to an LTI system with an impulse response of h[n], then the z-transform of the output is the product of X(z) and H(z)

8_1 Wrap up

- What's the frequency response of a system?
 - The frequency response H(ω) is the DTFT of the impulse response h[n];
 - Concept of "eigen function"
- Convolution theorem of DTFT:
 - TD convolution <=> FD multiplication
- Frequency domain: DTFT
- Transform domain: z-transform

EEE336 Signal Processing and Digital Filtering

Lecture 8 Discrete-Time Systems in Frequency Domain 8_2 FD Example - Filtering

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

The concept of filtering

- What is filtering?
 - To pass certain frequency components in an input sequence (without any distortion, if possible);
 - To block other frequency components (without leakage, if possible).
- Why can an LTI system be used for filtering?
 - -x[n] is a weighted sum of the eigen function $e^{j\omega n}$ for ω in $[-\pi, \pi]$;
 - LTI output for $e^{j\omega n}$ is given by $|H(e^{j\omega})|e^{j\omega n}$;
 - Appropriately choosing $|H(e^{j\omega})|$ can pass or block certain frequency components in the input signal.

The concept of filtering

Ideal bandpass filter

Ideal bandstop filter

Example 1 of filter – FIR filter design

- Consider an input signal $x[n] = \cos(0.1n) + \cos(0.4n)$, design an FIR filter to pass the high-frequency component and block the low-frequency component.
 - We want our filter to be as simple as possible, so let's assume that we have length 3, symmetric impulse response filter. That is, h[0] = h[2] = a, and h[1] = b.
 - Then our filter should have a frequency response of the form:

$$H(\omega) = h[0]e^{-j\omega 0} + h[1]e^{-j\omega 1} + h[2]e^{-j\omega 2}$$

$$= a + be^{-j\omega} + ae^{-j\omega 2} = a(1 + e^{-j\omega 2}) + be^{-j\omega}$$

$$= a \cdot 2e^{-j\omega} \frac{e^{j\omega} + e^{-j\omega}}{2} + be^{-j\omega}$$

$$= (2a\cos(\omega) + b)e^{-j\omega}$$

Example 1 of filter – FIR filter design (cont.)

$$H(\omega) = (2a\cos(\omega) + b)e^{-j\omega}$$

- To block low frequency component: $2a\cos(0.1) + b = 0$ 0.40 + b = 1 b = 13.46
- To pass high frequency component: $2a \cos(0.4) + b = 1$
- So the system can be represented by:

$$y[n] = -6.76(x[n] + x[n-2]) + 13.46x[n-1]$$

n	$\cos(0.1n)$	cos(0.4n)	x[n]	y[n]
0	1.0	1.0	2.0	-13.52390
1	0.9950041	0.9210609	1.9160652	13.956333
2	0.9800665	0.6967067	1.6767733	0.9210616
3	0.9553364	0.3623577	1.3176942	0.6967064
4	0.9210609	-0.0291995	0.8918614	0.3623572
5	0.8775825	-0.4161468	0.4614357	-0.0292002
6	0.8253356	-0.7373937	0.0879419	-0.4161467

(a) Time domain plot

(b) Time domain data

Example 2 of filter - Noise suppression

Consider a noisy input x[n] given by

$$x[n] = s[n] + d[n]$$

Signal: $s[n] = 2n * 0.9^n$ Noise: different types of noises

– a) Apply the moving-average filter to suppress the noise d[n];

$$y[n] = \frac{1}{M} \sum_{l=0}^{M-1} x[n-l]$$

b) Apply the median filter

$$y[n] = med\{x[n - K], ..., x[n + K]\}$$

which chooses the median value over the (2K+1)-length window $\{x[n-K], \ldots, x[n+K]\}$ as the output.

Example 2 of filter - Noise suppression (cont.)

8_2 Wrap up

- What is filtering?
- Four types of filters
 - LP, HP, BP, BS
- Examples of typical filters
 - FIR filter
 - MAF filter and Median filter

Chapter 8 Summary

- Discrete-Time System in frequency domain
 - Analyses of discrete-time systems in transform domain
 - Frequency response and DTFT
 - Example of filters
 - Time-frequency domain relationship of continuous and discrete systems
 - Time-transform domain relationship
 - Applications of LTI systems for filtering
 - Concept of filtering
 - Noise suppression

