

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

October 18, 2023

Recap: Data Mining Process

Test 2

- Time: 75 mins on October 26 during class
- Materials: Course slides
- Covering Topics:
 - Classification: Decision Tree, kNN, Naïve Bayes, Logistic Regression
 - Evaluation, CV, Loss Function, Gradient Descent
 - Clustering: K-Means
- Format:
 - True or False, Yes or No
 - Multiple choice questions
 - Short answer problems

Imbalanced Classification Problem

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line
 - COVID-19 test results on a random sample

• Key Challenge:

 Evaluation measures such as accuracy are not well-suited for imbalanced class

Recap: Confusion Matrix

	PREDICTED CLASS		
ACTUAL		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

Recap: Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99%
 - This is misleading because this trivial model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	0	10
CLASS	Class=No	0	990

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	0	10
	Class=No	0	990

Accuracy: 99%

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

Accuracy: 50%

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	5	5
	Class=No	0	990

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

Recap: Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

• Precision(p) =
$$\frac{a}{a+c}$$

• Recall(r) =
$$\frac{a}{a+b}$$

• F-measure(F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	10	0
	Class=No	10	980

• Precision(p) =
$$\frac{10}{10+10}$$
 = 0.5

• Recall(r) =
$$\frac{10}{10+0}$$
 = 1

• F-measure(F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

• Accuracy=
$$\frac{990}{1000}$$
 = 0.99

Alternative Measures

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F - measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18
Accuracy = $\frac{991}{1000}$ = 0.991

Which of these classifiers is better?

A

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

B

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Which of these classifiers is better?

A

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	40	10			
	Class=No	10	40			

Precision (p) = 0.8

Recall (r) = 0.8

F - measure (F) = 0.8

Accuracy = 0.8

)
	Ξ	s
)
	L	4

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) = ~ 0.04

Recall (r) = 0.8

F - measure (F) = ~ 0.08

Accuracy = ~ 0.8

Measures of Classification Performance

	PREDICTED CLASS				
		Yes	No		
ACTUAL CLASS	Yes	TP	FN		
	No	FP	TN		

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

Alternative Measures

А	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	10	40		

Precision (p) = 0.8 TPR = Recall (r) = 0.8 FPR = 0.2
F-measure (F) = 0.8 Accuracy = 0.8
$\frac{TPR}{FPR} = 4$

В	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) = 0.038
TPR = Recall (r) = 0.8
FPR = 0.2
F-measure (F) = 0.07
Accuracy = 0.8

$$\frac{TPR}{FPR} = 4$$

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
 - By using different thresholds on this value, we can create different variations of the classifier with TPR/FPR tradeoffs
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, neural networks, Bayesian classifiers, k-nearest neighbors

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuousvalued score for each instance
 - The more likely it is for the instance to be in the
 + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP,
 TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold >	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve (AUC)
 - Ideal:
 - ◆ Area = 1
 - Random guess:
 - Area = 0.5

Dealing with Imbalanced Classes - Summary

- Many measures exists, but none of them may be ideal in all situations
 - Random classifiers can have high value for many of these measures
 - TPR/FPR provides important information but may not be sufficient by itself in many practical scenarios
 - Given two classifiers, sometimes you can tell that one of them is strictly better than the other
 - C1 is strictly better than C2 if C1 has strictly better TPR and FPR relative to C2 (or same TPR and better FPR, and vice versa)
 - Even if C1 is strictly better than C2, C1's F-value can be worse than C2's if they are evaluated on data sets with different imbalances
 - Classifier C1 can be better or worse than C2 depending on the scenario at hand (class imbalance, importance of TP vs FP, cost/time tradeoffs)

Which classifier is better?

T1	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	50	50			
CLASS	Class=No	1	99			

T2	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	99	1		
	Class=No	10	90		

Т3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	1	99

Precision
$$(p) = 0.98$$

$$TPR = Recall(r) = 0.5$$

$$FPR = 0.01$$

$$TPR/FPR = 50$$

$$F$$
 – measure = 0.66

Precision
$$(p) = 0.9$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.1$$

 $TPR/FPR = 9.9$

$$F$$
 – measure = 0.94

Precision
$$(p) = 0.99$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.01$$

$$TPR/FPR = 99$$

$$F$$
 – measure = 0.99

Which classifier is better? Medium Skew case

T1	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	10	990

T2	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	100	900

Т3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	10	990

Precision
$$(p) = 0.83$$

$$TPR = Recall(r) = 0.5$$

$$FPR = 0.01$$

$$TPR/FPR = 50$$

$$F$$
 – measure = 0.62

Precision
$$(p) = 0.5$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.1$$

 $TPR/FPR = 9.9$

$$F$$
 – measure = 0.66

Precision
$$(p) = 0.9$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.01$$

$$TPR/FPR = 99$$

$$F$$
 – measure = 0.94

Which classifier is better? High Skew case

T1	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	100	9900

T2	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	1000	9000

Т3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	100	9900

Precision
$$(p) = 0.3$$

$$TPR = Recall(r) = 0.5$$

$$FPR = 0.01$$

$$TPR/FPR = 50$$

$$F$$
 – measure = 0.375

Precision
$$(p) = 0.09$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.1$$
$$TPR/FPR = 9.9$$

$$F$$
 – measure = 0.165

Precision
$$(p) = 0.5$$

$$TPR = Recall(r) = 0.99$$

$$FPR = 0.01$$

$$TPR/FPR = 99$$

$$F$$
 – measure = 0.66

Building Classifiers with Imbalanced Training Set

- Modify the distribution of training data so that rare class is wellrepresented in training set
 - Undersample the majority class
 - Oversample the rare class

• Loss Functions:

- WRAP Loss (IJCAI 2011)
- Focal Loss (ICCV 2017)
- r-th Root Ranking loss (KDD 2018)
- MultiSimilarity (MS) (ECCV 2020)
- SoftTriple (ECCV 2020)