

République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

EPREUVE D'EVALUATION

Université de Gabès Ecole Nationale d'Ingénieurs de Gabès Réf: DE-EX-01

Indice: 3

Date: 28/11/2022

Page: 2/2

dip int pour Leen

- 8. Quel est l'étalement d'une impulsion sur une longueur L = 2 km
- 9. Pour une fibre monomode, la fréquence de coupure à une condition V<Vc=2.405. Quel doit être le diamètre de cœur maximum pour que cette fibre optique soit en fonctionnement monomode à partir de $\lambda=1200$ nm?
- 10. Pour $\lambda_1=1300$ nm et $\lambda_2=1550$ nm, calculer la fréquence normalisée ainsi que le nombre de modes pour chaque longueur d'onde.
- 11. Une fibre optique à gradient d'indice possède un cœur de diamètre ϕ =62.5 μ m, un indice de réfraction maximale $n_1=1.48$ et une différence d'indice $\Delta=1.5\%$.
 - a) Dans le cas d'un profil parabolique, α=2, quelle est l'ouverture numérique et l'angle d'acceptance maximum de la fibre optique ? Calculer le nombre de modes se propageant dans la fibre pour $\lambda=1300$ nm.
 - b) Pour une longueur L = 1 km, quel est l'étalement d'une impulsion se propageant le long de la fibre optique due à la dispersion intermodale et à la dispersion chromatique pour une source DEL de spectre $\Delta \lambda = 50$ nm? (On donne $D^{ch}_{1300} = 3.5$ ps/nm.km).
 - c) Quel est l'étalement (dispersion) total Δttot? En déduire la bande passante.

Exercice 2:

Soit une photodiode a une efficacité quantique de 80% à 1000 nm. Une radiation d'une puissance optique de 0.01 Watt/m² est incidente dans le composant dont la surface de réception est 1mm². Le détecteur a un courant d'obscurité de 5nA, sensibilité égale à 0.5 A/W, NEP (puissance équivalente de bruit) égal à 2,10-13 W/Hz-1/2 et une résistance de dérivation de 1080hms. Si la bande passante est 100 MHz. La température est à 27 °C.

- 1. Calculer le courant de signal (photo-courant)
- 2. Calculer le bruit d'obscurité
- 3. Calculer le bruit de grenaille
- 4. Calculer le bruit lié au NEP
- 5. Calculer le bruit de Johnson
- 6. En déduire le rapport SNR de ce détecteur.

On donne
$$I_{ph} = \eta \frac{Pq}{h\nu}$$
, h=6.62 10⁻³⁴ J.s, k_B=1.38 10⁻²³ J.k⁻¹

Bon Travail

SAVNEP

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date : 28/11/2022

Page: 1/2

Pe

EPREUVE D'EVALUATION

Année Universitaire : 2022/2023	Date de l'Examen : 28/11/2022
Nature: ☑ DC ☐ Examen ☐ DR	Durée : □ 1h ☑ 1h30min □ 2h
Diplôme: ☐ Mastère ☐ Ingénieur	Nombre de pages : 02
Section: GCP GCV GEA GCR GM	Enseignant (e): M. Chokri BACCOUCH
Niveau d'étude : □ 1ère ☑ 2ème □ 3ème année	Documents Autorisés :□ Oui ☑ Non
Matière: Communications Optiques	Remarque : Calculatrice autorisée

Exercice 1: (Atténuations et dispersions d'une communication optique)

La propagation d'un rayon lumineux à l'aide d'une fibre optique à saut d'indice, avec un cœur d'indice $n_1=1.48$ et une gaine d'indice $n_2=1.475$, peut être schématisée par la figure cidessous.

Figure.1

- 1. On injecte une lumière infrarouge de longueur d'onde 1,55 µm et de puissance 1 mW dans le cœur de la fibre. Quelle est la valeur de l'intensité lumineuse dans la fibre ?
- 2. Etablir l'expression de l'angle limite i_{1R} qui permet la réflexion totale du rayon dans la fibre et calculer sa valeur.
- 3. Etablir l'expression de l'angle maximal θ_{0max} qui autorise la propagation du signal dans la fibre et calculer sa valeur.
- 4. En déduire l'expression de l'ouverture numérique ON et calculer sa valeur.
- 5. Pour le mode de propagation fondamental sans réflexions, calculer le temps de transmission d'une information dans cette fibre.
- 6. Pour un mode de transmission correspondant à des réflexions successives de $i_1 = 86^{\circ}$, calculer le temps de transmission de l'information.
- 7. En déduire l'expression de la dispersion intermodale de cette fibre et calculer sa valeur.