Quiz 04 Basic Components	總分 100/100 ?
NCTU EELAB Fall	
區段分數 0/0	
Class *	
DEE222	
● DEE320	
Student ID *	
0710175	
Name *	
· · · · · · · · · · · · · · · · · · ·	

Q1. Answer the following questions about capacitors.

區段分數 20/20

5/5

- X : high potential , Y : low potential
- X: low potential, Y: high potential
- There is no difference between X and Y pins.
- √ (2) Following the previous question, look at the circuit below, 5/5 how should you connect the capacitor between node A and B?

- X-A, Y-B
- X-B, Y-A
- Both ways is ok.

(3) According to the capacitance code, identify the value of capacitors a and b.

Capacitance code

- Two-digit magnitude plus one exponential digit in the unit of pF (p = pico = 10^{-12})
 - $-106 -> 10 \times 10^6 pF = 10 uF$
 - $-050 -> 5 \times 10^{0} pF = 5 pF$
 - Exception 1: only two digits; 47 -> 47pF
 - Exception 2: code with a round point 6.8-> 6.8uF

- 5 µF
- $0.5 \mu F$
- $0.05 \, \mu F$

Q2. Answer the following questions about inductors.

區段分數 30/30

HINT

How to read the inductance

Result Is In μH 4-BAND-CODE = 270μH ± 5%				
COLOR	1st BAND	2nd BAND	MULTIPLIER	TOLERANCE
BLACK	0	0	1	± 20%
BROWN	1	1	10	Military ± 1%
RED	2	2	100	Military ± 2%
ORANGE	3	3	1,000	Military ± 3%
YELLOW	4	4	10,000	Military ± 4%
GREEN	5	5		
BLUE	6	6		
VIOLET	7	7		
GREY	8	8		
WHITE	9	9		
NONE				Military ± 20%
GOLD			0.1 / Mil. Dec. Pt.	Both ± 5%
SILVER			0.01	Both ±10%
Military Identifier 6.8µH ± 10% MILITARY CODE				

http://www.elexp.com

√ (1) According the color code, identify the value of inductor. 15/15 *colors from left to right : blue . grey . red . gold *

- $6.8 \mu H \pm 5\%$
- 680 µH ±5%
- 6.8 mH ±5%

✓ (2) Given a 1 mH inductor with 5% error, what is the color 15/15 code? *

- (a,b,c) = (black, brown, orange)
- (a,b,c) = (black, brown, red)
- (a,b,c) = (brown, black, black)
- (a,b,c) = (brown, black, red)

Q3. In Lab4, we'll do the experiments about basic RC and RL circuits, try to match the corresponding diagrams and formulas respectively.

區段分數 50/50

$v_C(t) = V_s(1 - e^{-t/RC})$	$\int v_C(t) = V_C(0)e^{-t/RC}$	$i_L(t) = I_L(0)e^{-\frac{R}{L}t}$

- \checkmark (1) Find the diagrams and formulas of RC circuit in charging 10/10 state. *
 - A
 - В

 - ✓ E

 - G

(2) Find the diagrams and formulas of RC circuit in discharging state. *	10/10
A	
В	
✓ C	✓
D	
E	
F	
✓ G	✓
П	
✓ J	~
K	

!

/	(3) Find the diagrams and formulas of RL circuit in charging	10/10
	state. *	

G

/	(4) Find the diagrams and formulas of RL circuit in dis-	10/10
	charging state. *	

Ε

✓ H

 \checkmark (5) Given R=1 $k\Omega$, C=0.05 μF , L=1 mH, calculate the closest $^{10/10}$ answers of time constant τ_RC and τ_RL .

 $(\tau_RC, \tau_RL) = (50 \text{ ps}, 1 \text{ µs})$

 $(\tau_RC, \tau_RL) = (50 \mu s, 1 s)$

 $(τ_RC, τ_RL) = (50 \mu s, 1 \mu s)$

這份表單是在國立交通大學中建立。 - 服務條款

Google 表單