

## Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024



# HA8401H : Calcul Différentiel et Intégral en Plusieurs Variables Chapitre 2 : Courbes paramétrées

Philippe Castillon (1)

#### Exercice 1. Courbes paramétrées et fonctions d'une variable

- 1. Soit  $\phi(t) = (x(t), y(t))$  la courbe paramétrée définie par  $x(t) = \cos^2 t 2$  et  $y(t) = \sin^4 t + 4\sin^2 t + 4$ . Déterminer le domaine de définition de  $\phi$ . Montrer que le support de  $\phi$  est le graphe d'une fonction d'une variable  $f: D \to \mathbb{R}$  que l'on précisera (ainsi que son domaine de définition).
- 2. Soit  $\phi(t) = (x(t), y(t))$  la courbe paramétrée définie par  $x(t) = \cos t + 3$  et  $y(t) = \sin t$ . Déterminer le domaine de définition de  $\phi$  et montrer que le support de  $\phi$  n'est pas le graphe d'une fonction d'une variable.

**Exercice 2.** Soit  $\phi(t) = (x(t), y(t))$  la courbe paramétrée définie par  $x(t) = \frac{1}{t^2 - t}$  et  $y(t) = \frac{t}{t^2 - 1}$ . Montrer que  $\phi$  possède un point double (si  $M = \phi(t) = \phi(s)$  avec  $t \neq s$ , on pourra chercher à déterminer t + s et ts pour en déduire t et s). Montrer que les tangentes en ce point sont orthogonales.

**Exercice 3.** Pour chacune des courbes paramétrées suivantes déterminer leurs points singuliers, étudier leurs natures et tracer l'allure de la courbe au voisinage de ces points.

1. 
$$\phi(t) = \left(2t^3 + 3t^2, 3t^2 + 6t\right)$$
 2.  $\phi(t) = \left((1 + \cos t)\sin 2t, \cos 2t\right)$ 

Exercice 4. Pour chacune des courbes paramétrées suivantes, déterminer l'ensemble de définition et étudier les branches infinies

1. 
$$\phi(t) = \left(\frac{t^3}{t^2 - 9}, \frac{t(t - 2)}{t - 3}\right)$$
 2.  $\phi(t) = \left((t - 1)\ln|t|, (t + 1)\ln|t|\right)$ 

**Exercice 5.** On considère la courbe paramétrée  $\phi: t \mapsto (x(t), y(t))$  définie sur  $\mathbb{R}$  par

$$x(t) = t - \tanh t$$
 et  $y(t) = \frac{1}{\cosh t}$ 

- 1. Étudier la parité des fonctions  $x(\cdot)$  et  $y(\cdot)$ . Quelle(s) symétrie(s) cela implique-t-il sur le support de  $\phi$ ? Peut on réduire le domaine d'étude?
- 2. Calculer  $\phi', \phi''$  (on donne  $\phi'''(t) = \left(2\frac{1-2\sinh^2 t}{\cosh^4 t}, \frac{5\tanh t 6\tanh^3 t}{\cosh t}\right)$ ) et déterminer si  $\phi$  à un/des point(s) stationnaire(s).
- 3. On se place en t = 0: donner la nature du point  $\phi(0)$  ainsi que le comportement local de la courbe (faire un petit dessin).
- 4. On se place au voisinage de  $t = +\infty$ . Étudier la branche infinie (asymptote et position relative).
- 5. Faire le tableau de variations de  $\phi$ . On pourra ajouter les limites à l'infini et les valeurs x(0) et y(0).
- 6. Tracer le support de  $\phi$  ainsi que les tangentes et asymptotes étudiées aux questions précédentes.

<sup>1.</sup> Département de Mathématiques, CC 051, Université Montpellier II, Pl. Eugène Bataillon, 34095 Montpellier cedex 5. Mèl : philippe.castillon@umontpellier.fr

Exercice 6. Tracer les courbes du plan suivantes, décrites en coordonnées polaires par

1. 
$$r(\theta) = \frac{\cos(2\theta)}{\cos(\theta)}$$
,

2. 
$$r(\theta) = \cos(\frac{\theta}{2})$$
.

**Exercice 7.** Tracer le support et calculer la longueur L des courbes paramétrées  $\phi$  dans chacun des cas suivants:

- 1. L'astroïde définie par  $\phi: t \mapsto (a\cos^3 t, a\sin^3 t)$  où  $t \in [-\pi, \pi]$  et a > 0 donné.
- 2. La cardioïde d'équation polaire  $r(\theta) = a(1 + \cos(\theta))$  où  $\theta \in [-\pi, \pi]$  et a > 0 donné.

## Exercice 8. La cycloïde.

Un cercle  $\mathscr{C}$ , de rayon R > 0, roule sans glisser sur l'axe (Ox). On note I le point de contact entre  $\mathscr{C}$  et (Ox) et on note  $\Omega$ le centre de  $\mathscr{C}$  ( $\Omega$  et I sont mobiles). M est un point donné de  $\mathscr{C}$  (M est mobile dans le plan, mais solidaire de  $\mathscr{C}$ ). On suppose qu'au démarrage le point de contact I est l'origine de l'axe (Ox), et on pose  $t = \overrightarrow{\Omega M}, \overrightarrow{\Omega I}$ .



1. On utilise t comme paramètre. Montrer que la trajectoire décrite par le point M est donnée par la courbe paramétrée  $\phi(t) = (x(t), y(t))$  où

$$\begin{cases} x(t) = R(t - \sin t) \\ y(t) = R(1 - \cos t) \end{cases}$$

- 2. Étudier et représenter la courbe paramétrée  $\phi$ .
- 3. Calculer la longueur de la trajectoire entre deux points de contact.

### Pour s'entrainer

Exercice 9. Pour chacune des courbes paramétrées suivantes déterminer leurs points singuliers, étudier leurs natures et tracer l'allure de la courbe au voisinage de ces points.

1. 
$$\phi(t) = (t^3 - 3t, t^3 - t^2 - t + 1)$$

3. 
$$\phi(t) = \left(\sin t, \frac{\cos^2 t}{2 - \cos t}\right)$$

2. 
$$\phi(t) = \left(\frac{t^3}{1+3t}, \frac{3t^2}{1+3t}\right)$$

4. 
$$\phi(t) = \left(\frac{4t-3}{t^2+1}, \frac{2t-1}{t^2+2}\right)$$

Exercice 10. Pour chacune des courbes paramétrées suivantes, déterminer l'ensemble de définition et étudier les branches infinies

1. 
$$\phi(t) = \left(\frac{t^3}{(t+1)^2(t-1)}, \frac{t^2}{(t+1)(t-1)}\right)$$
 3.  $\phi(t) = \left(\frac{t}{t^2-1}, \frac{t+2}{(t-1)^2}\right)$ 

3. 
$$\phi(t) = \left(\frac{t}{t^2 - 1}, \frac{t + 2}{(t - 1)^2}\right)$$

2. 
$$\phi(t) = \left( (t+2) e^{\frac{1}{t}}, (t-2) e^{\frac{1}{t}} \right)$$

4. 
$$\phi(t) = \left(\frac{6t^3}{1+3t}, \frac{3t^2}{1+3t}\right)$$

**Exercice 11.** On considère la courbe paramétrée  $\phi: t \mapsto (x(t), y(t))$  définie sur  $[-\pi, \pi]$  par

$$x(t) = 2\cos t + \cos 2t$$
 et  $y(t) = 2\sin t - \sin 2t$ 

- 1. Étudier la parité des fonctions  $x(\cdot)$  et  $y(\cdot)$ . Quelle(s) symétrie(s) cela implique-t-il sur le support de
- 2. Calculer  $\phi'$ ,  $\phi''$  et  $\phi'''$ .
- 3. Soit  $t \in [-\pi, \pi[$ . Montrer que  $\cos(t) \cos(2t) = 0$  a trois solutions : t = 0,  $t = 2\pi/3$  et  $t = -2\pi/3$ .

2

- 4. Calculer la position des points stationnaires. Donner leur nature ainsi que le comportement local de la courbe en leur voisinage (faire un petit dessin à chaque fois).
- 5. Calculer les tangentes aux points stationnaires et montrer qu'elles s'intersectent toutes en un même et unique point.
- 6. Faire le tableau de variations associé à  $\phi$ .
- 7. La courbe  $\phi$  est-elle paramétrée par l'abscisse curviligne?
- 8. Montrer que la longueur de  $\phi$  est 16.

Exercice 12. Tracer les courbes du plan suivantes, décrites en coordonnées polaires par

1. 
$$r(\theta) = 4\cos(\theta)$$
.

2. 
$$r(\theta) = \cos(\theta) + \frac{1}{\cos(\theta)}$$
,

**Exercice 13.** Étant donné un réel  $\alpha > 0$ , on considère la courbe paramétrée  $\phi_{\alpha} : \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[ \cup \right] \frac{\pi}{2}, \frac{3\pi}{2} \right] \to \mathbb{R}^2$  définie par

$$\phi_{\alpha}(t) = (1 + \alpha \cos t, \tan t + \alpha \sin t)$$

- 1. Étude des points stationnaires :
  - (a) Dans le cas  $\alpha=1$ , étudier les points stationnaires éventuels de  $\phi_{\alpha}$  et, pour chacun, donner (en justifiant les calculs) sa nature et l'allure locale du support de  $\phi$ .
  - (b) Montrer qu'il n'y a pas de point stationnaire pour  $\alpha \in ]0,1[\cup]1,+\infty[$ .
- 2. Tangentes : discuter, suivant  $\alpha$ , le nombre (et la position) des points du support de  $\phi$  admettant une tangente horizontale ou verticale.
- 3. Un cas particulier : Dans le cas où  $\alpha=8$ , étudier la courbe  $\Gamma$  (symétries, variations, étude asymptotique, représentation graphique...).
- 4. Donner l'allure de  $\Gamma$  dans les cas où  $\alpha \in ]0,1[,\ \alpha=1$  et  $\alpha>1.$