Math 3B: Lecture 2

Noah White

October 1, 2018

Last time, we spoke about

• The syllabus

- The syllabus
- Problem sets, homework, and quizzes

- The syllabus
- Problem sets, homework, and quizzes
- Campuswire

- The syllabus
- Problem sets, homework, and quizzes
- Campuswire
- Differentiation of common functions

- The syllabus
- Problem sets, homework, and quizzes
- Campuswire
- Differentiation of common functions
- Product rule

- The syllabus
- Problem sets, homework, and quizzes
- Campuswire
- Differentiation of common functions
- Product rule
- Chain rule

- The syllabus
- Problem sets, homework, and quizzes
- Campuswire
- Differentiation of common functions
- Product rule
- Chain rule
- Remember: I will be away until next Monday (Jens Eberhadt taking lectures)

A common (and fair) question is: Why learn to sketch graphs when computers that do it so well?

A common (and fair) question is: Why learn to sketch graphs when computers that do it so well?

Building intuition

A common (and fair) question is: Why learn to sketch graphs when computers that do it so well?

- Building intuition
- Understand functions qualitatively

A common (and fair) question is: Why learn to sketch graphs when computers that do it so well?

- Building intuition
- Understand functions qualitatively
- Better understanding of derivatives

Here is an example where a good understanding of a functions behaviour is useful:

Here is an example where a good understanding of a functions behaviour is useful:

Here is an example where a good understanding of a functions behaviour is useful:

$$1. P(t) = \frac{t \ln t}{t-1}$$

Here is an example where a good understanding of a functions behaviour is useful:

$$1. P(t) = \frac{t \ln t}{t-1}$$

$$2. P(t) = \frac{t}{t+1}$$

Here is an example where a good understanding of a functions behaviour is useful:

- $1. P(t) = \frac{t \ln t}{t-1}$
- $2. P(t) = \frac{t}{t+1}$
- 3. $P(t) = \frac{t}{t+e^t}$

In order to sketch a function accurately we need a few ingredients

• The x and y intercepts

- The x and y intercepts
- Horizontal asymptotes

- The x and y intercepts
- Horizontal asymptotes
- Vertical asymptotes

- The x and y intercepts
- Horizontal asymptotes
- Vertical asymptotes
- Slanted asymptotes

- The x and y intercepts
- Horizontal asymptotes
- Vertical asymptotes
- Slanted asymptotes
- The regions of increase/decrease of the first derivative

- The x and y intercepts
- Horizontal asymptotes
- Vertical asymptotes
- Slanted asymptotes
- The regions of increase/decrease of the first derivative
- The regions of increase/decrease of the second derivative

Asymptotes

An asmptote is a line which the function approches. Some examples:

Asymptotes

Asymptotes

These are the easiest asymptotes to find. Suppose you have a function f(x)

These are the easiest asymptotes to find. Suppose you have a function f(x)

• Calculate $\lim_{x \to \infty} f(x)$

These are the easiest asymptotes to find. Suppose you have a function f(x)

- Calculate $\lim_{x \to \infty} f(x)$
- Calculate $\lim_{x \to -\infty} f(x)$

These are the easiest asymptotes to find. Suppose you have a function f(x)

- Calculate $\lim_{x \to \infty} f(x)$
- Calculate $\lim_{x \to -\infty} f(x)$

Example

Say
$$f(x) = \frac{x-1}{x+1}$$
. In this case

$$\lim_{x \to \pm \infty} \frac{x-1}{x+1} = 1$$

More examples

Example

Say
$$f(t) = \frac{t}{t+1}$$
. In this case

$$\lim_{t\to\pm\infty}\frac{t}{t+1}=1$$

More examples

Example

Say $f(t) = \frac{t}{t+1}$. In this case

$$\lim_{t\to\pm\infty}\frac{t}{t+1}=1$$

Example

Say $f(t) = \frac{t \ln t}{t-1}$. In this case

$$\lim_{t \to \infty} \frac{t \ln t}{t - 1} = \infty$$

No horizontal asymptotes.

More examples

Example

Say
$$f(t) = \frac{t}{t+1}$$
. In this case

$$\lim_{t \to \pm \infty} \frac{t}{t+1} = 1$$

Example

Say $f(t) = \frac{t \ln t}{t-1}$. In this case

$$\lim_{t \to \infty} \frac{t \ln t}{t} = \infty$$

No horizontal asymptotes.

Example

Say
$$f(t) = \frac{t}{t+e^t}$$
. In this case

$$\lim_{t\to\infty}\frac{t}{t+e^t}=0$$

Here is an example where a good understanding of a functions behaviour is useful:

Here is an example where a good understanding of a functions behaviour is useful:

Here is an example where a good understanding of a functions behaviour is useful:

$$1. P(t) = \frac{t \ln t}{t-1}$$

Here is an example where a good understanding of a functions behaviour is useful:

$$1. P(t) = \frac{t \ln t}{t-1}$$

2.
$$P(t) = \frac{t}{t+1}$$

Here is an example where a good understanding of a functions behaviour is useful:

$$1. P(t) = \frac{t \ln t}{t-1}$$

$$2. P(t) = \frac{t}{t+1}$$

3.
$$P(t) = \frac{t}{t+e^t}$$

Finding verticle asymptotes

Verticle asymptotes happen when a function "blows up", or goes to infinity as it approaches a finite number. I.e. Is there a real number a so that

$$\lim_{x\to a^+} f(x) = \pm \infty$$

or

$$\lim_{x\to a^-} f(x) = \pm \infty$$

Finding verticle asymptotes

Verticle asymptotes happen when a function "blows up", or goes to infinity as it approaches a finite number. I.e. Is there a real number a so that

$$\lim_{x\to a^+} f(x) = \pm \infty$$

or

$$\lim_{x\to a^-} f(x) = \pm \infty$$

Example

$$f(x) = \frac{x-1}{1+x}$$
, we have

$$\lim_{x\to -1^+}\frac{x-1}{1+x}=-\infty\quad\text{and}\quad \lim_{x\to -1^-}\frac{x-1}{1+x}=\infty$$

Finding verticle asymptotes

Finding slanted asymptotes

Lets come back to this...

The first derivative

The first derivative tells us is the function going up or down?

The second derivative

The second derivative tells us is the function concave up or down?

Example time

... On the board.