

Claims

1 1. Method to perform a cycle synchronization between interconnected sub-networks, **characterized in that**

- a reference node connected to one of the sub-networks transmits a respective cycle time information to cycle masters of all other sub-networks at 5 recurring time instants, and

- the cycle masters of all other sub-networks adjust their cycle time accordingly.

2. Method according to claim 1, **characterized in that** an adjustment of 10 the cycle time within a cycle master is performed by the following steps:

- determining a first time interval ($\Delta t_1, \Delta t_1'$) in-between two receptions of cycle time information from the reference node with an own clock,

- determining a second time interval ($\Delta t_2, \Delta t_2'$) in-between two corresponding transmissions of cycle time information from the reference node on 15 basis of the received cycle time information,

- comparing the first time interval ($\Delta t_1, \Delta t_1'$) and the second time interval ($\Delta t_2, \Delta t_2'$), and

- adjusting the own cycle length according to the comparison result.

20 3. Method according to claim 2, **characterized in that** the comparison of the first time interval ($\Delta t_1, \Delta t_1'$) and the second time interval ($\Delta t_2, \Delta t_2'$) considers a preceding adjustment of the own cycle length.

25 4. Method according to claim 2 or 3, **characterized in that** the adjustment of the own cycle length within a cycle master is performed in a step-wise manner.

30 5. Method according to claim 2, 3 or 4, **characterized in that** the adjustment of the own cycle length within a cycle master is performed by adjusting a local number of clocks within one cycle.

6. Method according to claim 5, **characterized in that** the adjustment of the own cycle length within a cycle master is performed by setting the local number of clocks

- equal to an ideal number of clocks of one cycle in case the first time

- 1 interval (Δt_1 , $\Delta t_1'$) and the second time interval (Δt_2 , $\Delta t_2'$) are identical,
 - smaller than an ideal number of clocks of one cycle in case the first
 time interval (Δt_1 , $\Delta t_1'$) is smaller than the second time interval (Δt_2 , $\Delta t_2'$), and
 - larger than an ideal number of clocks in case the first time interval
5 (Δt_1 , $\Delta t_1'$) is larger than the second time interval (Δt_2 , $\Delta t_2'$).

7. Method according to claim 6, **characterized in that** a step-width to
adjust the own cycle timer within a cycle master is set according to the differ-
ence of the first time interval (Δt_1 , $\Delta t_1'$) and the second time interval (Δt_2 ,
10 $\Delta t_2'$).

8. Method according to anyone of the preceding claims, **characterized in**
that the cycle time information transmitted by the reference node is a content
15 of its cycle time register.

9. Method according to claim 8, **characterized in that** the adjustment of
the own cycle time within a cycle master is performed by adjusting the average
difference between a time interval of two transmissions of cycle time informa-
20 tion of the reference node which is determined by subtracting two succeeding
received contents of the cycle time register of the reference node and a time in-
interval of two samplings of the own cycle timer which is determined by sub-
tracting two succeeding sampled contents of the own cycle time register plus a
corrective difference to be zero.

25 10. Method according to claim 9, **characterized in that** the corrective differ-
ence corresponds to the preceding adjustment.

11. Method according to anyone of the preceding claims, **characterized in**
that the recurring time instants are determined according to a regular time in-
30 terval with a small variation.

12. Cycle synchronizer, **characterized by**
 - a clock offset estimation means (1) to determine a timing error of an
 own cycle timer (3), and
35 - a cycle adjustment loop (2) receiving the timing error determined by
said clock offset estimation means (1) to adjust the own cycle timer (3) to re-
duce its timing error.

Sony International (Europe) GmbH

- 1 13. Cycle synchronizer according to claim 12, **characterized by** a de-jitter filter (4) arranged in-between the clock offset estimation means (1) and the cycle adjustment loop (2) to filter said determined timing error.

5

10

15

20

25

30

35