12 EWMA 估计日波动率

使用申明*

2021年2月26日

显录

1	简介	1
	1.1 EWMA 模型	
	1.2 最大似然估计确定最佳 \(\lambda\)	1
2	EWMA 估计波动率步骤	2
3	步骤 Python 代码实现	2
4	计算示例	3
5	参考资料	3

1 简介

1.1 EWMA 模型

考虑一市场变量,如股价,我们有其从第 0 天至第 N 天末的数据 $S_0, S_1, ..., S_N$ 。定义 σ_n 为于第 n-1 天末所估计的市场变量在第 n 天的波动率, σ_n^2 为方差率。定义连续复利收益率 $u_n = \ln \frac{S_n}{S_{n-1}} \approx \frac{S_n - S_{n-1}}{S_{n-1}}$ 。则在指数加权移动平均模型 Exponentially Weighted Moving Average (EWMA) 模型下, σ_n^2 的变化过程为:

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1 - \lambda)u_{n-1}^2, \quad 0 < \lambda < 1.$$
 (1)

 σ_n^2 也可以直接由 u_i^2 表示为:

$$\sigma_n^2 = (1 - \lambda) \sum_{i=1}^m \lambda^{i-1} u_{n-i}^2 + \lambda^m \sigma_{n-m}^2, \quad 1 < m < n .$$
 (2)

相对于 σ_n^2 的简单估计 $\sigma_n^2=\frac{1}{m}\sum_{i=1}^m u_{n-i}^2$,EWMA 模型下, σ_n^2 中每个 u_i^2 的权重随时间距离的增加而指数衰减。这里的 m 都为一选定的截断距离。

所以给定 $S_0, S_1, ..., S_N$,我们可以先由 $u_n = \frac{S_n - S_{n-1}}{S_{n-1}}$ 计算出 $u_1, u_2, ..., u_N$,然后设初始日方差率 $\sigma_2^2 = u_1^2$,由 $\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1-\lambda)u_{n-1}^2$,计算出 $\sigma_2^2, \sigma_3^2, ..., \sigma_{N+1}^2$ 。即为 EWMA 模型给出的每天日方差率/波动率的估计结果。

1.2 最大似然估计确定最佳 λ

在 EWMA 模型中只有一个自由未确定的变量 λ ,我们希望 λ 的选取可以使得 $\{\sigma_i^2\}$ 的估计在某种定义下最优。这里我们假设每天的连续复利收益率 u_i 的数据抽样取值在给定当天隐含方差率为 σ_i^{*2} 的情况下服从正态分布,对应概率密度函数 $f(u_i) = \frac{1}{\sigma_i^*\sqrt{2\pi}} \exp\left(-\frac{u_i^2}{2\sigma_i^{*2}}\right) = P(u_i|\sigma_i^*) = p_i$ 。考虑我们选取一个具体的 λ 数值,由已知市场变量

^{*}作者不对内容正确性负责。如果您希望使用部分内容作为报告、文章内容等,请您注明内容来源为"金融工程资料小站"网站。

2 EWMA 估计波动率步骤

数据 $S_0, S_1, ..., S_N$,我们先用 EWMA 模型计算出 $\sigma_2(\lambda), \sigma_3(\lambda), ..., \sigma_N(\lambda)$,然后假如这些波动率即为对应日期隐含 波动率 σ_i^* ,就可以计算出 $p_2, p_3, ..., p_N$ 。记:

$$P(\lambda) = \prod_{i=2}^{N} p_i(\lambda) = \prod_{i=2}^{N} P(u_i | \sigma_i(\lambda)) .$$
(3)

这里 $P(\lambda)$ 可以解释为,在每天的 u_i 服从独立正态分布的假设下,考虑 EWMA 模型时,当选取 λ 和初始条件 $\sigma_2 = u_1$ 后,市场变量的连续复利收益率的历史数据正好为 $u_1, u_2, ..., u_N$ 的概率,也可以记为 $P(u_1, ..., u_N | \lambda)$ 。

最大似然估计的想法是选取使得该 $P(\lambda)$ 达到极大值的 λ 作为模型的最优参数估计。即

$$\lambda = \operatorname{Arg} \max_{\lambda} P(\lambda) \ . \tag{4}$$

其中 Arg max 是"return the arguments that maximize the function",即指计算出可以使后面方程值达到最大的参数。具体表示为

$$\lambda = \operatorname{Arg} \max_{\lambda} \prod_{i=2}^{N} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{u_i^2}{2\sigma_i^2}\right). \tag{5}$$

等价于,

$$\lambda = \operatorname{Arg} \min_{\lambda} \sum_{i=2}^{N} \left(\ln \sigma_i^2 + \frac{u_i^2}{\sigma_i^2} \right) . \tag{6}$$

并记

$$\mathcal{L}(\lambda) = \sum_{i=2}^{N} \left(\ln \sigma_i^2 + \frac{u_i^2}{\sigma_i^2} \right) . \tag{7}$$

由于这里希望确定的参数只有一个,我们可以通过穷举法简单地求出其最优值。

2 EWMA 估计波动率步骤

- 1. 由已知数据 $S_0, S_1, ..., S_N$,按 $u_i = \frac{S_i S_{i-1}}{S_{i-1}}$ 计算出 $u_1, u_2, ..., u_N$ 。
- 2. 在 [0,1] 区间均匀地取 M 个点,作为 λ 的尝试取值, $\lambda_i = \frac{i}{M}$ 。
- 3. 计算出每个 λ_i 对应的 $\mathcal{L}(\lambda_i)$:

A 设 $\sigma_2^2 = u_1^2$, 由 λ_i 和 $u_1, u_2, ..., u_N$, 按照 EWMA 模型 $\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1 - \lambda)u_{n-1}^2$ 计算出 $\sigma_2, \sigma_3, ..., \sigma_N$ 。
B 由 $\mathcal{L}(\lambda_i) = \sum_{i=2}^N (\left(\ln \sigma_j^2 + \frac{u_j^2}{\sigma_j^2}\right)$ 计算出 $\mathcal{L}(\lambda_i)$ 。

4. λ 的最优估计值即为最小的 $\mathcal{L}(\lambda_i)$ 所对应的 λ_i 。

3 步骤 Python 代码实现

```
import numpy as np
                                                                                                                       1
                                                                                                                       2
def EWMA(values, precision=1.e-3):
                                                                                                                       3
    # 由给定精确度确定划分格点数。
                                                                                                                       4
    M = int(1/precision)
                                                                                                                       5
    values = np.array(values)
                                                                                                                       6
    # 计算出{u_i}。
                                                                                                                       7
    U = (values[1:]-values[:-1]) / values[:-1]
                                                                                                                       8
    U_{squared} = U^*U
                                                                                                                       9
                                                                                                                       10
    opt\_lbd = None
                                                                                                                       11
    \min_{loss} = \text{float}(\text{"inf"})
                                                                                                                       12
```

4 计算示例 3

# 穷举法找最优lambda。	13
for i in $range(1, M)$:	14
lbd = float(i)/M	15
$sigma_squared = U_squared[0]$	16
loss = 0	17
for j in range(1, len(U_squared)):	18
$loss += np.log(sigma_squared) + U_squared[j]/sigma_squared$	19
$sigma_squared = lbd*sigma_squared + (1-lbd)*U_squared[j]$	20
if loss < min_loss:	21
$\min_{loss} = loss$	22
$opt_lbd = lbd$	23
# 用最优lambda再计算出日方差率估计值。	24
$Vars = [0, U_squared[0]]$	25
for i in range(1, len(U_squared)):	26
$Vars.append(Vars[-1]*opt_lbd + (1-opt_lbd)*U_squared[i])$	27
return (Vars, opt_lbd)	28

4 计算示例

我们考虑 John Hull 网站上的示例数据(欧元/美元汇率)。

```
data = np.genfromtxt("EURUSDExchangerates.txt", skip_header=1, usecols=(1))1Vars, lbd = EWMA(data, precision=1.e-3)2print("EWMA最优lambda: ", lbd)3Output:5EWMA最优lambda: 0.9586
```

5 参考资料

参考文献

[1] 《期权、期货及其他衍生产品》(原书第 9 版)第 23 章,John C. Hull 著,王勇、索吾林译,机械工业出版社, 2014.11 。