Insulation Material Analysis

• • • • • • • • • • • • • • • • • • • •		_			
Type of Material	R-Value Ap	proximate PriceCovera	ige by sq. ft.Val	ue \$ per sq. ft.	Specific Product
Cellulose Insulation	19	6.25	40	0.15625 L	ow Dust Cellulose Blow-in Insulation
Rock wool - Mineral Wool Insulation	30	52.95	29.9	1.77090301 R	loxul Wood Stud Unfaced Rock Wool Batt Insulation with Sound Barrier
Fiberglass Insulation	38	112.50	63.33	1.776369809 C	athedral Insulation Kraft Faced Batts high-density

Tickmark

- A From Department of Energy 'https://energy.gov/energysaver/insulation-materials'
- B Price, R-value and coverage are from Home depot and Lowe's.

Chart to compare the R-values

Chart to compare the prices

Scatterplot between the R-Value and the price

Conclusion

Based on the analysis above with three typical insulation materials, the relationship between the R-value and price of construction is correlative with the higher the R-value, the higher the price.

Window Assembly Analysis

Type of Window Assembly	U Value App	proximate Price Frame Material	Size	Value	Specific Product
Double Hung Windows	0.3	148.00 vinyl	1,899	0.08	ThermaStar by Pella Vinyl Double Pane Annealed Replacement Double Hung Window (Rough Opening: 35.75-in x 53.75-in)
Picture Windows	0.49	358.57 Wood	702	0.51	AWSCO Octagon Replacement Window (Rough Opening: 24.5-in x 24.5-in)
Glass Block Windows	0.49	587.23 vinyl	1,835	0.32	CrystaLok Wavy pattern Vinyl New Construction Glass Block Window (Rough Opening: 41-in x 48.75-in)

Tickmark

A From data is obtained from Lowe's

Chart to compare the U-values

Chart to compare the prices

Scatterplot between the U-Value and the price

Conclusion

Based on the analysis above with three typical windows assembly, there is no relationship between the U-value and price. There are a lot of other factors that will go into the price. For example, the wood frame picture window is a lot more expensive because of its unique frame material of wood which has a higher U-value which is not good for thermal transmittance.

Relationship between center-of-glass U-value to assembly U-value?

Assembly U-value is the "area weighted" average thermal transmittance of all components (i.e. center-of-glass, edge of glass, and frame). Each piece will contribute to the overall assembly u-value hence window area and configuation can significantly affect the overall window assembly u-value. U assembly=((U frame* frame area)+(U edge* edge area)+(U center* center area))/(total area).