# Introduction to Communication Engineering SSY121, Lecture # 1

Fredrik Brännström
Fredrik.Brannstrom@chalmers.se

Communication Systems Group Department of Electrical Engineering Chalmers University of Technology Göteborg, Sweden

September 1, 2021

# Outline

- Course Organization
  - Staff and Students
  - Literature and Information
  - Contents and Elements
  - Examination and Rules
- Brief Signals and Systems Review
  - The Fourier Transform
  - Linear and Time Invariant (LTI) Systems
  - The Sampling Theorem
- 3 The Digital Communication System
  - Models for Digital Communications
  - Spectrum Regulation
  - Designer's Dilemma

# Part I

Course Organization

# Course Organization

#### Course Staff

- Fredrik Brännström, Professor,
   Communication Systems, Lecturer and Examiner
- Mohammad Nazari, PhD Candidate, Communication Systems, Teaching Assistant
- Yibo Wu, PhD Candidate,
   Communication Systems, Teaching Assistant
- Erik Svenske, Management Consultant / Section Manager, AFRY, Guest Lecturer

#### For more info

Communication Systems Group (CS)
Department of Electrical Engineering (E2)

# Fredrik Brännström

- MSc in Electrical Engineering, 1998, Lulea University of Technology
- LicEng and PhD in Communication Theory, 2000 and 2004
   Department of Computer Engineering, Chalmers
- Post Doc, Communication Systems, 2004 2006
   Department of Signals and Systems, Chalmers
- Principal Design Engineer for Wi-Fi 802.11a/b/g/n, 2006 2010
   Quantenna Communications, Fremont, CA
- Communication Systems Group (CS)
   Department of Electrical Engineering (E2)
  - Assistant Professor, Sept 2010 Oct 2013
  - Docent in Communication Systems, Nov 2012
  - Associate Professor, Nov 2013 Sept 2016
  - Professor, Oct 2016 -
  - Head of Communication Systems Group, Oct 2018 –
- Research Scientist (part time) at Neural Propulsion Systems, Inc.
   A CA startup in autonomous sensing platforms, (www.nps.ai), 2018–

#### **Students**

- 27 Communication Engineering (MPCOM)
- 12 Biomedical Engineering (MPBME)
- 8 ERASMUS
- 5 Wireless, Photonics and Space Engineering (MPWPS)
- 1 Embedded Electronic System Design (MPEES)
- 1 Electric Power Engineering (MPEPO)
- 1 Systems, Control and Mechatronics (MPSYS)
- 2 PhD students
- 1 unknown
- 58 students in total

### Vaccination against Covid-19!

- Chalmers strongly encourage everyone to get vaccinated!
- Adults (18+) vaccinated in Västra Götaland (2021-08-26)
  - First vaccination dose: 79%
  - Fully vaccinated: 58%
- Vaccination is open for everyone born 2005 (16+) or earlier
- If you live in Sweden and are aged 18 or above, you will be offered free vaccination against Covid-19 according to the Swedish vaccination plan.
- You do not need to be a Swedish citizen or have a Swedish personal identity number to get the vaccine.
- If you have taken the first dose in another region or country, you can book an appointment for dose two from September 1 in Västra Götaland. It applies to all students.
- Information on vaccination

## Most Importantly!

- Although the restrictions due to the pandemic are easing, the risk of spreading of infection is far from over.
- The most important measures to minimize the spread of infection are still:
  - Do not go to Chalmers campus if you are ill, even if the symptoms are mild
  - Keep a distance from other people
  - Wash your hands often / use hand sanitizer
  - Vaccinate yourself against Covid-19

#### Course Literature and Information Resources

- Course Memo, 2021
- Course book: J. B. Anderson, Digital Transmission Engineering, 2nd ed., Wiley, 2005 (STORE or eBook for loan at Chalmers library)
- Supplementary literature will be posted on the course website
  - Comments on Digital Transmission Engineering
  - E. Ström, Notes on Signals and Systems
  - Formula Sheet
  - Introduction to Matlab slides
  - Project Memo
  - P. Mattisson, Working in Projects
  - Request for Proposal (RFP), Thu Sept. 9
  - Lecture slides, weekly
  - Exercises and homeworks, weekly
  - Old exams
  - A few selected articles
- Course website: www.canvas.chalmers.se/courses/15229
- Course staff (email)

## Do you need a quick answer?

Take a look at www.wikipedia.org or see what www.google.com says.

# Do you want to learn more?

- Proakis, Digital Communications.
- Ziemer and Tranter, Principles of Communications.
- Viterbi and Omura, Principles of Digital Communication and Coding.

### Learning Outcomes (abbreviated)

After completion of this course, the student should be able to:

- Explain the purpose of each of the main blocks in the Shannon communication model
- Choose signal waveforms and receiver filters for digital transmission
- Synchronize the frame, symbol timing and phase of a received signal
- Describe the functions in some modern communication standards
- Derive and calculate the uncoded bit and symbol error rate, including bounds and approximations, for transmission over the additive white Gaussian noise channel (AWGN)
- Convert continuous-time signals to a discrete constellation using orthonormal basis (Gram-Schmidt procedure)
- Solve a complex task as a member of a project team, by planning and organizing subtasks, establishing roles and common values, reporting and delivering results and self-evaluating the process
- Characterize a typical development project in industry

#### Course Elements

- Lectures: maximum 14 sessions. Voluntary!
- Computer exercises: 3 sessions. Voluntary!
- Tutorial exercises: 5 sessions, including exam practice. Voluntary!
- **Homework exercises**: 4 homeworks that give extra points towards the final grade. Voluntary!
- Project: Continuous over course weeks 2–8. Mandatory!
- Wrap-up online workshop: Wed. Oct. 20, 13:15–16:30, hosted by Ericsson. Voluntary but very nice!
- Written examination: Wed. Oct. 27, 08:30–12:30 Mandatory! (reexam Jan. 4 and Aug. 16, 2022).

### Lectures Voluntary!

- The lectures cover the essentials but not the full course contents.
   Read the book!
- A combination of slides and whiteboard will be used.
- Lecture slides (like this) reflect the content of the lecture, but not the details.
- Are more intensive during weeks 1–4 to help the project preparation.
- Guest sessions provide the industrial view on project development and teamworking. Details in Course Memo.

### Computer Exercises Voluntary!

- Mondays at 08:00 in the 3 coming weeks.
- MATLAB (that has to be used in the projects) will be introduced.
- MATLAB exercise to help the project development.
- Even experienced MATLAB users are welcome!
- Check out MATLAB tutorial and online training!

#### Exercises Voluntary!

- Tutorial Exercises in weeks 1, 3, 5, and 7:
  - Short theory review.
  - Solution of selected problems.
  - Take a look at the problems before the session.
- Homework Exercises in weeks 2, 4, 6, and 8:
  - Discussing the homework assignment.
  - 4 homeworks with 3 problems each (maximum 12 points).
  - Discussing homework assignments is allowed, but individual solutions are required!
- Last Tutorial Exercise in week 8: solving previous exam problems.
- The level of the problems is often, but not always, similar to the level of the exam's problems. Details in Course Memo.

| ſ              | Week 1 |        | Week 2                |                          | Week 3           |                           | Week 4                  |        | Week 5                  |         | Week 6                  |                     | Week 7                 |                                                      | Week 8                    |                        | Week 9 |
|----------------|--------|--------|-----------------------|--------------------------|------------------|---------------------------|-------------------------|--------|-------------------------|---------|-------------------------|---------------------|------------------------|------------------------------------------------------|---------------------------|------------------------|--------|
|                | Mon    | Wed    | Mon                   | Wed                      | Mon              | Wed                       | Mon                     | Wed    | Mon                     | Wed     | Mon                     | Wed                 | Mon                    | Wed                                                  | Mon                       | Wed                    | Wed    |
| 2021           | 30/8   | 1/9    | 6/9                   | 8/9                      | 13/9             | 15/9                      | 20/9                    | 22/9   | 27/9                    | 29/9    | 4/10                    | 6/10                | 11/10                  | 13/10                                                | 18/10                     | 20/10                  | 27/10  |
| -00:80         |        |        | C1: YW                |                          | C2: YW           |                           | C3: YW                  |        |                         |         |                         |                     |                        |                                                      |                           |                        | EXAM   |
| 09:45          |        |        |                       |                          |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           |                        | 08:30- |
| 10:00-         |        | L1: FB | L3: FB                | L4: ES                   | L6: FB           | L7: FB                    | L8: FB                  | L9: FB | L10: FB                 | L11: FB | L12: FB                 | L13: FB             | E4: MN                 | L14: FB                                              | H4: MN                    | E5: MN                 | 12:30  |
| 11:45          |        |        |                       |                          |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           |                        | 12:50  |
| LUNCH          |        |        |                       |                          |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           |                        |        |
| 13:15-         |        | L2: FB |                       | L5: FB                   |                  | E2: YW                    |                         | H2: YW |                         | E3: MN  |                         | H3: MN              |                        |                                                      |                           |                        |        |
| 15:00          |        |        |                       |                          |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           | Ericsson?              |        |
| 15:15-         |        | E1: MN |                       | H1: MN                   |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           | ETICSSOTT              |        |
| 17:00          |        |        |                       |                          |                  |                           | l                       |        | l                       |         |                         |                     |                        |                                                      |                           |                        |        |
| Project tasks: |        |        | Mon 12: Project reg   |                          | Tue 18: Proposal |                           | Fri 12: Status report 1 |        | Fri 12: Status report 2 |         | Fri 12: Status report 3 |                     | Mon-Thu 17-21: 5225    |                                                      | Mon 12: Experience report |                        |        |
|                | ,      |        |                       | Mon 18: Teams are formed |                  | Wed 15:30-18:30: Hearings |                         |        |                         |         |                         | Mon-Fri 17-21: 5225 |                        | Wed 10: Quiz                                         |                           | Mon 17-20: Demo (5225) |        |
|                |        |        |                       | Thu 12: RFP handed out   |                  | Fri 12: Time report 2     |                         |        |                         |         |                         |                     |                        | Wed: 12-17: Demo sign up<br>Fri 12: Project deadline |                           | Tue 17-20: Demo (5225) |        |
|                |        |        |                       |                          |                  |                           |                         |        |                         |         |                         |                     |                        |                                                      |                           |                        |        |
|                |        |        | Fri 12: Time report 1 |                          | l                |                           | 1                       |        | i                       |         |                         |                     | Fri 12: Time report 6  |                                                      | 1                         |                        | l      |
|                |        |        | i                     |                          |                  |                           |                         |        |                         |         |                         |                     | Fri 17-20: Demo (5225) |                                                      |                           |                        | 1      |

Fredrik Brännström (FB), Erik Svenske (ES), Yibo Wu (YW), Mohammad Nazari (MN)

Block A

#### Schedule

- A recommendation is to use all the grey slots for project, since you have no other courses in these slots.
- Computer lab (room 5225) booked on Mon–Fri between 17:00-21:00 during week 5, 6, and 7 (unsupervised).

# Project Mandatory!

- **Summary**: Work in a complex project spanning the entire course.
- Technical contents:
  - Design a digital communication link.
  - Use of a real hardware channel.
  - Preparation of software for transmitter and receiver.
- Nontechnical contents:
  - Simulate an industrial development project.
  - Learn professional teamworking.
- Examination: Continuous over weeks 2–8.
- Parts: Customer approval 10 points + Teamworking 8 points +
   Deliverables 6 points + Quality 6 points + Individual Quiz 10 points
   40 points.
- MATLAB-based... Matlab introduction/training is recommended!
- Register on course website before the deadline: noon Mon. Sept. 6.
- Details in Course Memo, Project Memo, and Working in Projects

# Wrap-up online Workshop Voluntary but very nice!

- Hosted by Ericsson. Not yet confirmed!
- Wed. Oct. 20, 13:15-16:30.
- Demo of selected project solutions.
- Reflections on the project experience.
- Comments by industry experts.
- Demo of modern telecom products.
- A great opportunity for asking questions to Ericsson managers!

# Written Exam Mandatory!

- Understanding communication engineering is rewarded. The emphasis is not on memorizing facts or solving standard problems.
- Aim for understanding **during the course**. The earlier the preparation starts, the better.
- Chalmers' rules apply. See link in Course Memo.
- You may bring (if the exam is on campus):
  - L. Råde and B. Westergren, Mathematics Handbook.
  - Chalmers-approved calculator.
- A formula sheet, included in Exercises and Exams, will be handed out with the exam. Ask the TAs if you want some additional formula to be included.
- The solution is more important than the answer:
  - A good solution with a minor error usually gives close to full points, even if the answer is incorrect.
  - An answer without a clear motivation usually gives 0 points, even if it is correct.

# Passing Requirements and Grades

- Both the project and the written exam need to be passed.
- Project points *P* at least 20 (out of maximum 40).
- Exam points E at least 12 (out of maximum 48).
- Homework assignment points H (maximum 12).
- The final course grade G = P + E + H is

$$0 \le G < 40$$
 FAIL  
 $40 \le G < 60$  grade 3  
 $60 \le G < 80$  grade 4  
 $80 \le G \le 100$  grade 5

• Project points earned in 2021 are valid until after the second reexam in Aug. 2022.

#### Rules and Policies in This Course

- Questions are always very welcome
- Only English please!
- Feel free to turn on your camera, but mute yourself if you are not talking.
- Active participation in the classroom is highly appreciated.

### Acknowledgment

- Some of these slides have been created and/or modified by Alex Alvarado, Erik Agrell, Erik Ström, Johan Lassing, and Patrik Bohlin. Their contribution is much appreciated.
- Thanks to Ericsson and AFRY for supporting this course in various ways!

# **Plagiarism**

- All deliverables are submitted through the course website Canvas and are automatically checked for plagiarism.
- All deliverables, including text, figures, tables, MATLAB code, etc., must be authored by the student/team itself.
- Copying any material (from other teams, students, publications, the Internet, or elsewhere) is considered cheating and will result in disciplinary action.
- **Do not include any copied material** in your project deliverables. This will be reported as cheating!
- Do not collaborate if the exam is a remote exam!
- This applies to all courses at Chalmers!

# Part II

Introduction to Digital Communication Systems

# Brief Signals and Systems Review

# The Fourier Transform $\mathcal{F}\{\cdot\}$

The Fourier Transform pair is defined as

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt \Longleftrightarrow x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df,$$

or alternatively,

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\jmath \omega t} \, dt \Longleftrightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \mathrm{e}^{\jmath \omega t} \, d\omega.$$

#### **Properties**

- Linearity, i.e.,  $\mathcal{F}\{ax_1(t) + bx_2(t)\} = aX_1(f) + bX_2(f)$
- Signal energy (using Parseval's theorem):

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Convolution:

$$x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$$

• Transform of a convolution:

$$\mathcal{F}\{x_1(t) * x_2(t)\} = X_1(f) \cdot X_2(f)$$

• If x(t) is symmetric respect to zero, i.e., x(-t)=x(t), its transform is real,  $\mathcal{F}\{x(t)\}\in\mathbb{R}$ 

# Linear and Time Invariant (LTI) System



- The impulse response of the LTI system is given by h(t)
- In the time domain, y(t) = x(t) \* h(t)
- In the frequency domain, Y(f) = X(f)H(f)

# The Sampling Theorem

Let x(t) be a signal with Fourier transform X(f) such that x(t) is band-limited, i.e., X(f)=0 for  $|f|\geq B$ . If the signal x(t) is sampled at uniformly spaced time instants using a sampling frequency  $f_{\rm s}=1/T_{\rm s}$ , x(t) can be completely recovered if  $f_{\rm s}\geq 2B$ .

#### And how?

By interpolating, i.e.,

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_{\rm s}) \operatorname{sinc}\left(\frac{t - nT_{\rm s}}{T_{\rm s}}\right),$$

where sinc(x) is the normalized sinc function

$$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}.$$



Figure: The band-limited signal x(t) is reconstructed using samples. The BW of x(t) is  $B \approx 10~$  Hz and  $f_s = 25~$  sample/s.



Figure: The band-limited signal x(t) is reconstructed using samples. The BW of x(t) is  $B \approx 100~$  Hz and  $f_s = 25~$  sample/s.

# The Digital Communication System

## System Modeling

- We will look at models of communication systems
- Simplification of reality in order to predict aspects of real world behavior
- We will look at digital systems

# Why digital?

- Oheap hardware (due to the transistor)
- Quality control (error rates, detection and correction)
- Compatibility and flexibility (packeting, routing)
- Efficient utilization of the resources (source coding)
- Security can be easily implemented

#### Two Communication Models

- Shannon's communication model

  - Point-to-point communication
  - Application-specific
- The Open System Interconnection (OSI) reference model

  - Packet-switched networks
  - Shared between many types of traffic



Figure: Shannon's communication model.



Figure: OSI Layered communication model.



#### Designing the highlighted layer

- The upper interface tells us which service we should provide
- The lower interface offers us a service
- Upper/lower levels implementations become unimportant

#### The simplified version

All the designer needs to know is the following model:



This will work well if and only if the interfaces and the other layers were properly defined.

# Spectrum Regulation

- The electromagnetic spectrum is a very costly resource
- Spectrum regulation is needed to minimize interference and optimize the overall utilization of the radio spectrum
- Licensed bands are reserved for singular operators or functions
- Unlicensed bands may be used by anyone, but under strict conditions
- The global spectrum allocation is managed by the International Telecommunications Union (ITU)
- Each country has their own local administration, e.g.,
  - The Swedish Post and Telecommunications Agency (PTS)
  - The US Federal Communications Commission (FCC)
  - The Canadian Radio-Television and Telecommunications Commission (CRTC)
- Spectrum regulation is a slow process

# UNITED **STATES FREQUENCY ALLOCATIONS**

#### THE RADIO SPECTRUM







Figure: The designer's dilemma.

#### Constraints

The design is limited by

- Theoretical bounds
- Laws and regulations

## Confused?

- Read the course memo
- Read the project memo
- Visit the course website
- Ask the course staff