Problema 1

a) Am ales sa prezint evolutia lunara a cazarilor turistilor in Spania din ianuarie 2010 pana in iulie 2021.

https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do

b)

Componente vizibile:

- Tendinta: de crestere pana in anul 2019, iar in 2020 se poate observa o scadere brusca datorita pandemiei, iar mai apoi o usoara crestere
- Componenta sezoniera: valori peste medie (tendinta) in lunile de vara(maxime in august) si valori sub medie in lunile de iarna(minime in ianuarie)
- Componenta aleatoare

Sample: 2010M01 2021M07 Included observations: 139 Ratio to Moving Average

Original Series:

NR__TURISTI_SPANIA

Adjusted Series: NR__TURSA

Scaling Factors:

1	0.588601
2	0.728274
3	0.830594
4	0.942811
5	1.075264
6	1.240335
7	1.602732
8	1.845422
9	1.367780
10	1.120715
11	0.707953
12	0.695896

Proc – Seasonal Adjustment – Moving Average Methods – Ratio to moving average – Multiplicative – OK

S-au calculat mediile mobile de ordin egal cu perioada componentei sezoniere, de unde rezulta MM(12).

$$\bar{y}_7 = \frac{0.5 \times y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} + y_{11} + y_{12} + 0.5 \times y_{13}}{12}$$

Se foloseste modelul multiplicativ pentru ca amplitudinea fluctuatiilor sezoniere creste (valoarea observata / medie)

$$S_{ij} = \frac{y_{ij}}{\bar{y}_{ij}}$$

Si se calculeaza media rapoartelor precedente pentru fiecare sezon

$$S_I = \frac{S_{1/2010} + S_{1/2011} + \dots + S_{1/2021}}{12}$$

Urmare a caracterului sezonier, specific turismului, in luna ianuarie numarul cazarilor turistilor in Spania a fost sub medie (tendinta) cu 41,2% (cei mai putini turisti), iar in luna august s-au inregistrat valori peste medie cu 84,5% (cei mai multi turisti).

Seria desezonalizata:

CICLICA

Cicluri vizibile: 2019 m06-2020 m03, 2020 m03-...

Daca separam componenta ciclica doar pe seria dinainte de pandemie va rezulta urmatorul grafic:

COMPCICLICA

lar aici nu putem spune ca este prezenta componenta ciclica.

e) Previziuni pentru următoarele 4 perioade, folosind metoda netezirii exponențiale, Holt-Winters Multiplicative, pentru că seria are un ușor trend determinist și sezonalitate, iar amplitudinea oscilațiilor sezoniere crește.

Sample: 2010M01 2021M07 Included observations: 139

Method: Holt-Winters Multiplicative Seasonal Original Series: NR__TURISTI_SPANIA

Forecast Series: NR__TUSM

Parameters: Sum of Square Root Mean Squ				1.0000 0.0000 0.0000 1.61E+14 1075060.
End of Period L	evels:	Mean Trend Seasonals:	2020M08 2020M09 2020M10 2020M11 2020M12 2021M01 2021M02 2021M03 2021M04 2021M05 2021M06 2021M07	817843337194.04 1.697097 1.257716 1.040449 0.662346 0.651532 0.621441 0.733149 0.788610 0.878671 1.008681 1.163688 1.496619

Lungimea seriei este T=139, perioada componentei sezoniere p=12(date lunare).

Astfel, previziunile sunt determinate din ecuația:

$$\hat{Y}_{T+h} = (a_T + hb_T)S_{T-n+h}$$
, h=1, 2, 3, ...

$$\hat{Y}_{139+h} = (a_{139} + hb_{139})S_{139-12+h}, \, \text{h=1, 2, 3, ...}$$

$$\hat{Y}_{139+h} = (8178433 - h * 37194.04)S_{139-12+h}$$
 unde orizontul de previziune este h=1,2,...

Pentru luna august 2021, orizontul de previziune este h=1, coeficientul sezonalitatii S=1.697097, iar valoarea previzionata:

$$\hat{Y}_{139+1} = (8178433 - 1 * 37194.04) * 1.697097 = 13816472.215$$

$$\hat{Y}_{139+2} = (8178433 - 2 * 37194.04) * 1.257716 = 10192586.961$$

```
\hat{Y}_{139+3} = (8178433 - 3 * 37194.04) * 1.040449 = 8393146.931
```

 $\hat{Y}_{139+4} = (8178433 - 4 * 37194.04) * 0.662346 = 5318411.089$

2021M08 13816473.6... 2021M09 10192585.2... 2021M10 8393148.29...

2021M11 5318414.41...

Exemplificam pentru ultimele 5 valori MAE:

2021M03	2215210	1417857.499443464
2021M04	2614206	2435509.654683252
2021M05	4461763	2963491.391692029
2021M06	7608812	5104134.372221246
2021M07	12239999	9730027.115537286

 $\mathsf{MAE} = \frac{|y_{135} - \widehat{y_{135}}| + |y_{136} - \widehat{y_{136}}| + |y_{137} - \widehat{y_{137}}| + |y_{138} - \widehat{y_{138}}| + |y_{139} - \widehat{y_{139}}|}{5} = (|2215210 - 1417857.49| + |2614206 - 2435509.65| + |4461763 - 2963491.39| + |7608812 - 5104134.37| + |12239999 - 9730027.12|)/5 = 1497793.996$

Problema 2

Pentru acest exercițiu am folosit în continuare evolutia lunara a cazarilor turistilor in Spania din ianuarie 2010 pana in iulie 2021.

a)

Nr. Turisti Spania

Null Hypothesis: NR TURISTI SPANIA has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 12 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Full	mented Dickey-Fuller test statistic		
Test critical values:	1% level	-4.032498	
	5% level	-3.445877	
	10% level	-3.147878	

Prob=0.0161 < 0.05, de unde rezulta ca se respinge ipoteza nula, se accepta alternativa, adica seria nu are radacina unitate (seria este stationara). Deci d=0, la un nivel de semnificativitate alpha=5%.

Included observations: 139

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		1	0.848	0.848	102.02	0.000
1	ı	2	0.582	-0.486	150.40	0.000
· 🗀	🔳	3	0.255	-0.306	159.75	0.000
(4	-0.018	0.085	159.80	0.000
I	III	5	-0.216	-0.059	166.64	0.000
<u> </u>		6	-0.311	-0.007	180.89	0.000
<u> </u>		7	-0.283	0.187	192.82	0.000
-		8	-0.141	0.200	195.78	0.000
ı þ i	 	9	0.077	0.147	196.66	0.000
· 📁		10	0.343	0.336	214.53	0.000
ı —	1 1	11	0.546	-0.012	260.18	0.000
1	□ □	12	0.629	-0.113	321.31	0.000
· 🗀		13	0.494	-0.492	359.34	0.000
· 📁	 -	14	0.270	0.111	370.76	0.000
 	III	15	-0.012	-0.093	370.78	0.000

Primul coeficient ($\hat{r}_1 = \hat{c}_1$ =0.848) reprezinta corelatia intre valoarea numarului de turisti din Spania din luna curenta si valoarea lunii trecute, aceasta fiind de intensitate mare.

Formulam ipoteza nula:

 H_0 =Coeficientul de corelatie este nesemnificativ($\hat{r}_1 = \hat{c}_1$ =0).

Respingem ipoteza nula deoarece exista corelatie intre numarul turistilor din Spania din luna curenta si cea precedenta; acest coeficient este semnificativ deoarece nu apartine intervalului de acceptare a $H_0\left(\frac{-2}{\sqrt{139}};\frac{2}{\sqrt{139}}\right)$.

Al doilea coeficient($\hat{r}_2 = \hat{c}_2$ =0.582) reprezinta corelatia intre numarul de turisti din Spania din luna curenta si numarul acestora cu 2 luni in urma.

Formulam ipoteza nula:

 H_0 =Coeficientul de corelatie este nesemnificativ($\hat{r}_2 = \hat{c}_2$ =0).

Si de data aceasta respingem ipoteza nula, exista corelatie intre numarul turistilor din Spania din luna actuala si numarul acestora cu 2 luni in urma.

c)
Corelograma seriei desezonalizate:

Included observations: 139

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0 912	0.912	118.06	0.000
		2		-0.311	204.83	0.000
ı ——	<u> </u>	3	0.656	0.057	266.86	0.000
-		4	0.577	0.162	315.21	0.000
		5	0.556	0.208	360.46	0.000
ı —		6	0.536	-0.151	402.72	0.000
ı —		7	0.487	-0.107	437.97	0.000
· 🗀		8	0.425	0.053	464.97	0.000
· 🗀	[]	9	0.352	-0.049	483.69	0.000
ı 	[]	10	0.289	-0.054	496.39	0.000
· 🗀	III	11	0.232	-0.097	504.60	0.000
· 🗀	III	12	0.164	-0.104	508.76	0.000
ı þ i		13	0.091	-0.056	510.06	0.000
1 1	III	14	0.009	-0.121	510.07	0.000
I		15	-0.057	0.042	510.59	0.000

Din corelograma seriei stationalizate rezulta un model AR(3) sau MA(3).

Included observations: 139

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.848	0.848	102.02	0.000
ı	j <u> </u>	2	0.582	-0.486	150.40	0.000
ı (3	0.255	-0.306	159.75	0.000
I 🚺 I		4	-0.018	0.085	159.80	0.000
 1		5	-0.216	-0.059	166.64	0.000
<u> </u>	1 (1	6	-0.311	-0.007	180.89	0.000
<u> </u>		7	-0.283	0.187	192.82	0.000
		8	-0.141	0.200	195.78	0.000
ı İ İI ı		9	0.077	0.147	196.66	0.000
ı İ		10	0.343	0.336	214.53	0.000
ı	1 (1	11	0.546	-0.012	260.18	0.000
	 	12	0.629	-0.113	321.31	0.000
ı	ı ı	13	0.494	-0.492	359.34	0.000
ı !		14	0.270	0.111	370.76	0.000
I (I		15	-0.012	-0.093	370.78	0.000

Optiunea Automatic ARIMA Forecasting (Transformation:None - ARIMA Specification: Max. AR:4, Max. MA:4, Max. SAR:2, Max. SMA:2, Periodicity:12) sugereaza un model ARMA(3,3)(1,1), adica p=3, q=3, P=1, Q=1, d=0.

d)

In continuare estimam ecuatia cu ajutorul Equation Estimation prin metota celor mai mici patrate (LS – Least Squares) pe esantionul 2010m01 2021m11:

nr__turisti_spania c ar(1) ar(2) ar(3) ma(1) ma(2) ma(3) sar(12) sma(12)

Sample: 2010M01 2021M07 Included observations: 139

Convergence achieved after 31 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8726510.	7530105.	1.158883	0.2486
AR(1)	0.748730	0.277885	2.694383	0.0080
AR(2)	-0.506079	0.325155	-1.556425	0.1221
AR(3)	0.519156	0.166296	3.121877	0.0022
SAR(12)	0.998516	0.008337	119.7762	0.0000
MA(1)	0.475216	0.280358	1.695034	0.0925
MA(2)	0.935521	0.103822	9.010827	0.0000
MA(3)	0.258220	0.175006	1.475494	0.1425
SMA(12)	-0.895186	0.284705	-3.144256	0.0021
SIGMASQ	7.08E+11	1.36E+11	5.209632	0.0000

Probabilitatea constantei este mai mare decat alpha=5%, adica este nesemnificativa, deci o putem elimina.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AD(4)	0.704000	0.070040	0.040074	0.0050
AR(1)	0.794038	0.279210	2.843874	0.0052
AR(2)	-0.540283	0.339591	-1.590981	0.1140
AR(3)	0.555933	0.158375	3.510236	0.0006
SAR(12)	0.998378	0.007848	127.2198	0.0000
MA(1)	0.439859	0.282246	1.558422	0.1216
MA(2)	0.937750	0.092806	10.10443	0.0000
MA(3)	0.239324	0.181534	1.318343	0.1897
SMA(12)	-0.880982	0.275588	-3.196737	0.0017
SIGMASQ	7.13E+11	1.23E+11	5.814828	0.0000

In continuare eliminam MA(3), adica scadem q-ul cu o unitate.

Ramane ecuatia cu coeficientii semnificativi.

_	Variable	Coefficient	Std. Error	t-Statistic	Prob.
_	AR(1)	1.030004	0.141196	7.294852	0.0000
	AR(2)	-0.712315	0.261741	-2.721450	0.0074
	AR(3)	0.548640	0.197772	2.774107	0.0063
	SAR(12)	0.997874	0.008409	118.6730	0.0000
	MA(1)	0.131088	0.147102	0.891142	0.3745
	MA(2)	0.838483	0.119943	6.990665	0.0000
	SMA(12)	-0.862492	0.260940	-3.305326	0.0012
	SIGMASQ	7.33E+11	1.15E+11	6.353404	0.0000

Modelul final va fi ARMA(3,2)(1,1)

e) Testam validitatea modelului prin analiza ultimilor 2 coeficienti semnificativi ai modelului si prin testarea autocorelarii reziduurilor.

Coeficientul pentru Y_{t-2} adică coeficientul de la MA(2) este semnificațiv, pentru nivelul de semnificativitate alpha=5%. De asemenea, coeficientul pentru termenul ε_{t-12} aferent sezonalității MA(12) este semnificativ.

Testarea autocorelării reziduurilor. View/Residual Diagnostics/Corelogram Q statistics

Sample: 2010M01 2021M11 Included observations: 139

Q-statistic probabilities adjusted for 7 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0 064	0.064	0.5758	
i (i	i i i	2 -0.027		0.6776	
ı 🛅 ı	j <u>i</u> b.	3 0.082	0.086	1.6497	
I 🚺 I		4 -0.030	-0.043	1.7812	
I (I		5 -0.045	-0.036	2.0834	
ı () ı		6 0.059	0.056	2.5924	
ı [[ı		7 -0.064	-0.070	3.2088	
1 🚺 1	1 1 1	8 -0.001	0.019	3.2089	0.073
1 1		9 0.005	-0.014	3.2122	0.201
⊢Щ +		10 -0.065	-0.053	3.8602	0.277
· 🗀		11 0.143	0.156	6.9918	0.136
1 1		12 0.010	-0.028	7.0073	0.220
I I I I	ļ (þ)	13 0.038	0.070	7.2267	0.300
1 (1	III	14 -0.017	-0.062	7.2727	0.401
Щ ।	<u> </u>	15 -0.121	-0.115	9.5986	0.294

Pentru M=15, Q(15)=9.59, iar probabilitatea aferenta 0.294 este mai mare decat 5%. Nu exista autocorelatii in seria reziduurilor. Modelul are reziduurile necorelate, de unde rezulta ca avem un model adecvat.

In continuare vom elabora previziuni pe urmatoarele 5 perioade din obiectul ecuatie aferent modelului, de unde se foloseste Forecast pe esantionul 2021m08 2021m12.

Selectam seria initiala si cea previzionata, o deschidem ca grup si ii analizam graficul.

Problema 3

Problema 3. Testul Granger. Modele econometrice cu variabile stationare/ nestationare

In testele de cointegrare şi ecuaţia de cointegrare (dacă există) se lucrează cu valorile obsérvate (Y, X pe level; nestaţionare). In modelul ARDL, VAR, testul Granger, ECM se lucrează cu seriile staţionare $\Delta Y = d(Y)$, $\Delta X = d(X)$ (first difference).

I. Pregatirea datelor

Pentru aceasta problema am ales sa fac prezint o analiza asupra importurilor si PIB-ului din Danemarca, cu date anuale din 1995 pana in 2020. Sursa datelor: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do

PIB Danemarca

Importuri Danemarca

Avand in vedere faptul ca datele sunt exprimate in milioane de euro, am ales sa le logaritmez.

PIB_D	ANEMARCA	LPIB	IMPORTUR	LIMP
1995	79.839	4.38001210	49.146	3.89479545
1996	82.155	4.40860770	50.685	3.92563000
1997	84.834	4.44069640	55.369	4.01401987
1998	86.715	4.46262687	59.567	4.08710172
1999	89.272	4.49168788	61.084	4.11224996
2000	92.617	4.52847271	69.459	4.24073665

In continuare verific daca variabilele au radacina unitate cu testul Unit-Root.

H₀: PIB-ul din Danemarca are radacina unitate

H₁: PIB-ul din Danemarca nu are radacina unitate

Null Hypothesis: LPIB has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=5)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.675273 -4.394309 -3.612199 -3.243079	0.2541

^{*}MacKinnon (1996) one-sided p-values.

Probabilitatea de acceptare a ipotezei nule cand aceasta este adevarata este 0.2541, semnificativ mai mare decat pragul de 5%, deci acceptam ipoteza nula – PIB-ul are tendinta stochastica (este nestationara).

Calculam diferentele de ordin 1 si rulam iar testul Unit-Root.

Null Hypothesis: D(LPIB) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=5)

		t-Statistic	Prob.*
Augmented Dickey-Fu		-3.167889	0.0348
Test critical values:	1% level 5% level	-3.737853 -2.991878	
	10% level	-2.635542	

^{*}MacKinnon (1996) one-sided p-values.

Probabilitatea este egala cu 0.0348, mai mica decat pragul de 5%, deci ipoteza nula se respinge, adica seria formata din diferentele de ordinul 1 este stationara. In concluzie, *ordinul de integrare* este d=1.

Rulam aceeasi analiza si pentru variabila "importuri".

Null Hypothesis: LIMP has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=5)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.489933 -4.374307 -3.603202 -3.238054	0.8059

^{*}MacKinnon (1996) one-sided p-values.

H₀: Seria "Importurile Luxembourg-ului" are radacina unitate.

H₁: Seria "Importurile Luxembourg-ului" nu are radacina unitate.

Avand in vedere probabilitatea mai mare decat pragul de 5% si de aceasta data reiese ca seria este nestationara.

Refacem analiza dupa ce facem diferenta de ordin 1.

Null Hypothesis: D(LIMP) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=5)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-3.811291 -3.737853 -2.991878 -2.635542	0.0085

^{*}MacKinnon (1996) one-sided p-values.

Si de aceasta data avem *ordinul de integrare d=1*.

- II. Testul Granger de cauzalitate si corelograma incrucisata
 - a) Interpretati corelograma incrucisata; se realizeaza pentru variabilele stationarizate (diferentele de ordin unu $\Delta Y, \Delta X$);

Variabilele create prin diferentierea de ordin 1 le-am deschis ca grup si am rulat corelograma incrucisata.

Sample: 1995 2020 Included observations: 25

Correlations are asymptotically consistent approximations

D1_LPIB,D_LIMP(-i)	D1_LPIB,D_LIMP(+i)	i lag lead
		0 0.8087 0.8087 1 -0.0326 0.3907 2 -0.0829 0.0360 3 -0.2822 -0.2467 4 -0.1219 -0.0974 5 -0.0865 -0.0264 6 0.0800 0.1431 7 -0.1964 0.1798 8 -0.0568 0.1789 9 -0.2084 -0.0675
		10

Prima coloana sugereaza exista unei corelatii semnificative intre PIB-ul din anul curent si importurile din anul curent, deci q=0. De aici rezulta faptul ca o modificare a importurilor in acest an va duce la o modificare a PIB-ului tot in acest an.

Coeficientul de corelatie liniara intre PIB din anul curent si importurile tot din acel an este 0.8087 si este semnificativ deoarece depaseste marginea superioara a intervalului [-2/sqrt(25); 2/sqrt(25)].

De la lag=1, adica corelatia liniara intre PIB-ul din anul curent si importurile din anul precedent, cat si de la lead=1 adica corelatia liniara intre PIB-ul din anul curent si importurile din anul urmator sunt nesemnificative.

b) Testati natura relatiei de cauzalitate dintre variabile; testul se aplica pe variabilele stationarizate (diferentele de ordin unu $\Delta Y, \Delta X$). Concluzii şi explicaţii în termeni de predictibilitate

Din corelograma incrucisata si PAC pentru importuri si PIB se observa ca nu exista corelatii puternic semnificative dupa lags=1. Aplicam testul Granger cu lags=1.

Pairwise Granger Causality Tests Date: 12/23/21 Time: 10:38

Sample: 1995 2020

Lags: 1

Null Hypothesis:	Obs	F-Statistic	Prob.
D_LIMP does not Granger Cause D1_LPIB	24	4.83755	0.0392
D1_LPIB does not Granger Cause D_LIMP		7.22956	0.0137

Formulam ipotezele:

- 1. H_0 =Importurile din Danemarca nu influenteaza PIB-ul tarii. H_1 =Importurile din Danemarca influenteaza PIB-ul tarii. Prob = 0.0392 < 0.05 (prag) => H_0 se respinge, deci importurile sunt o cauza pentru modificarea PIB-ului.
- 2. H_0 =PIB-ul din Danemarca nu influenteaza importurile. H_1 =PIB-ul din Danemarca influenteaza importurile. Prob = 0.0137 < 0.05 (prag) => H_0 se respinge, deci PIB-ul influenteaza importurile.

Avand in vedere cele 2 puncte putem spune ca avem cauzalitate bilaterala, deci variabilele se influenteaza reciproc.

III. Existenta unei relatii de cointegrare; metoda Engle-Granger. Model ECM, ARDL, VAR

c) Analizati existenta unei relatii de cointegrare (echilibru pe termen lung) intre Y si X; Eviews: Open as Group/View/Cointegration test/Single-Equation Cointegration Test/Engle-Granger. Estimati ecuatia de cointegrare si interpretati coeficientii, daca este cazul; Eviews: se estimeaza din Method/Cointegrating regression. Extrageti reziduul si analizati grafic stationaritatea acestuia; concluzii.

Series: LPIB LIMP Sample: 1995 2020 Included observations: 26

Null hypothesis: Series are not cointegrated Cointegrating equation deterministics: C @TREND

Automatic lags specification based on Schwarz criterion (maxlag=4)

Dependent	tau-statistic	Prob.*	z-statistic	Prob.*
LPIB	-1.476196	0.9367	-4.054574	0.9615
LIMP	-0.853731	0.9900	-2.565539	0.9900

Se formuleaza ipotezele:

H₀: Seriile nu sunt cointegrate.

H₁: Seriile sunt cointegrate.

Ambele teste (tau si z) indica acceptarea ipotezei nule pentru un prag de semnificatie de 5%, deci seriile nu sunt cointegrate pentru niciuna dintre variantele Constant, Linear trend, None și Quadratic trend. Prin urmare nu exista relatie de echilibru pe termen lung.

- d1) Daca variabilele nu sunt cointegrate atunci elaborati un model econometric de tip ARDL sau VAR adecvat (pentru seriile stationarizate $\Delta Y, \Delta X$); interpretări inclusiv functiile impuls (pentru VAR).
 - Se poate elabora insa un model de tip VAR pentru seriile nestationarizate: pib_danemarca şi importuri_danemarca, ce redă dinamica pe termen scurt dintre variable.

VAR Lag Order Selection Criteria Endogenous variables: LPIB LIMP Exogenous variables: C Date: 01/19/22 Time: 14:17 Sample: 1995 2025 Included observations: 21

_	Lag	LogL	LR	FPE	AIC	SC	HQ
	0	52.46252 100.4828	NA 82.32051*	2.80e-05 4.25e-07	-4.805955 -8.998364	-4.706476 -8.699929*	-4.784365 -8.933596
	2	105.9054	8.262939	3.77e-07*	-9.133845*	-8.636454	-9.025899*
	3 4	107.6572 113.0616	2.335719 6.176445	4.83e-07 4.51e-07	-8.919730 -9.053482	-8.223382 -8.158177	-8.768605 -8.859177
	5	115.6125	2.429454	5.80e-07	-8.915475	-7.821213	-8.677992

Datorita faptului ca avem prea putine observatii, testul sugereaza lag=2.

Modelul estimat pentru seriile nestationarizate:

Vector Autoregression Estimates Date: 01/19/22 Time: 15:18 Sample (adjusted): 1997 2020

Included observations: 24 after adjustments Standard errors in () & t-statistics in []

	LPIB	LIMP
LPIB(-1)	1.785204 (0.31825) [5.60950]	2.198923 (0.84949) [2.58854]
LPIB(-2)	-0.942466 (0.35295) [-2.67022]	-2.327743 (0.94213) [-2.47073]
LIMP(-1)	-0.246877 (0.12269) [-2.01226]	0.426233 (0.32748) [1.30154]
LIMP(-2)	0.274618 (0.11374) [2.41453]	0.546899 (0.30359) [1.80144]
С	0.608570 (0.66856) [0.91027]	0.741634 (1.78457) [0.41558]

• Analizam daca reziduurile sunt necorelate.

H₀: Reziduurile nu sunt corelate.

H₁: Reziduurile sunt corelate.

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h

Date: 01/19/22 Time: 15:30 Sample: 1995 2025 Included observations: 24

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	1.007611		1.051420		
2	2.665496		2.860022		
3	6.286557	0.1787	6.998378	0.1360	4
4	7.370605	0.4972	8.299235	0.4048	8
5	8.852452	0.7155	10.17104	0.6010	12

Pentru nivelul de semnificativitate de 5% se accepta ipoteza nula, deci reziduurile sunt necorelate.

• Se formuleaza ipoteza nula: Coeficientul este nesemnificativ (=0). Considerand un nivel de semnificativitate de 10%, ipoteza nula se respinge, deci toti coeficientii sunt semnificativi.

VAR Lag Exclusion Wald Tests Date: 01/19/22 Time: 15:31 Sample: 1995 2025 Included observations: 24

Chi-squared test statistics for lag exclusion:

Numbers in [] are p-values

	LPIB	LIMP	Joint
Lag 1	42.84228	31.20606	62.11272
	[0.0000]	[0.0000]	[0.0000]
Lag 2	7.507876	6.112317	8.698956
	[0.0234]	[0.0471]	[0.0691]

• Previziunile PIB-ului si importurilor din Danemarca pe urmatorii 5 ani folosind ecuatia VAR sunt:

AN	LPIB	LIMP
2021	4.707713	4.834226
2022	4.710666	4.842249
2023	4.713331	4.849442
2024	4.71573400000001	4.85588300000001
2025	4.717896	4.861640000000001

Problema 4

Problema 4. Intelegerea notiunilor teoretice.

 a) Generati prin simulare o serie de timp de tip zgomot alb distribuit dupa legea normala (succesiune de variabile independente, identic distribuite dupa legea normala). Ce observaţi?
 Am creat o serie noua cu numele "whitenoise" cu 200 de observaţii. Am generat ecuatia pentru serie: whitenoise=@nrnd.

Series: WHITENOISE Sample 1 200					
Observations	200				
Mean	-0.114524				
Median	-0.177546				
Maximum	2.050713				
Minimum	-2.309317				
Std. Dev.	0.887889				
Skewness	0.127426				
Kurtosis	2.654747				
Jarque-Bera	1.534575				
Probability	0.464271				

Ne uitam la statisticile descriptive si la histograma si observam ca media este in jurul valorii 0, abaterea standard este aproape de 1, asimetria tinde spre 0, boltirea spre 3, iar testul JB confirma ca distributia seriei este una normala.

Date: 01/19/22 Time: 18:06

Sample: 1 200

Included observations: 200

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0 027	-0.027	0.1455	0.703
		2 -0.161		5.4149	0.067
1 1	1 1	3 0.032	0.023	5.6234	0.131
ı İ İ ı	1 1	4 0.054	0.030	6.2191	0.183
1 [] 1		5 -0.057	-0.048	6.9022	0.228
1 [] 1	Id	6 -0.053	-0.045	7.4908	0.278
1 [] 1	III	7 -0.068	-0.092	8.4516	0.294
I I	1 1	8 0.033	0.015	8.6843	0.370
1 [] 1		9 -0.031	-0.050	8.8911	0.447
1 (1	111	10 -0.017	-0.008	8.9526	0.537
1 [] 1	III	11 -0.064	-0.081	9.8184	0.547
1 (1		12 -0.027	-0.050	9.9774	0.618
1 (1		13 -0.022	-0.052	10.085	0.687
1 (1		14 -0.032	-0.056	10.314	0.739
- III I		15 -0.073	-0.089	11.475	0.718

Folosind corelograma putem spune ca avem de a face cu variabile independente, identic distribuite dupa legea normala.

b) Generati prin simulare un model AR(2) si MA(2). Analizati corelograma. Ce observati? Recunoasteti modelul AR(p) sau MA(q) in baza corelogramei și estimați ecuația. Am creat o noua serie "ar2" unde am fixat primele doua valori cu 0. Ulterior am generat ecuatia pentru sample 3-200. Ecuatia: ar2 = 0.72*ar2(-1) - 0.4*ar2(-2) +nrnd

AR2

Date: 01/19/22 Time: 19:32

Sample: 1 200

Included observations: 200

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.551	0.551	61.582	0.000
		2	0.058	-0.352	62.278	0.000
- " " ' · · · · · · · · · · · · · · · · ·		:	0.000			
□ '	! ' <u>!</u> '	၂ ၁	-0.151	-0.002	66.960	0.000
-		4	-0.151	-0.028	71.651	0.000
Щ і		5	-0.100	-0.046	73.738	0.000
Щ .	III	6	-0.099	-0.087	75.775	0.000
I (I		7	-0.024	0.093	75.899	0.000
ı İ DI		8	0.098	0.071	77.919	0.000
ı İ DI		9	0.102	-0.059	80.110	0.000
I () I		10	0.059	0.049	80.854	0.000
ı 🏚ı		11	0.104	0.151	83.170	0.000
ı İ		12	0.099	-0.049	85.284	0.000
ı İ I ı	1 1	13	0.050	0.030	85.817	0.000
1 🗓 1	1 1 1	14	-0.023	0.001	85.929	0.000
<u> </u>		15	-0.064	-0.018	86.818	0.000

Corelograma indica faptul ca modelul AR(2) este potrivit seriei deoarece primii 2 coeficienti ai corelatiei partiale depasesc intervalul, iar dupa devin nesemnificativi.

lar pentru modelul MA(2) am creat o serie "ma2" cu primele 2 valori 0. Ecuatia folosita a fost: ma2=0.52*whitenoise(-1) + 0.71*whitenoise(-2)+whitenoise

Sample 3-200

MA2

Date: 01/20/22 Time: 23:38

Sample: 1 200

Included observations: 200

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 1	0.472	0.472	45.134	0.000
ı <u>—</u>	<u> </u>	2	0.313	0.117	65.119	0.000
1 [] 1	 	3	-0.069	-0.331	66.093	0.000
ı [[ı		4	-0.065	0.063	66.962	0.000
ı [] ı		5	-0.096	0.051	68.858	0.000
-	<u> </u>	6	-0.108	-0.159	71.277	0.000
-	'[[]	7	-0.136	-0.069	75.124	0.000
1 [] 1		8	-0.043	0.144	75.511	0.000
ı l ı	 	9	-0.087	-0.146	77.111	0.000
1 [] 1	ļ @ !	10	-0.076	-0.120	78.335	0.000
		11	-0.141	0.004	82.556	0.000
-		12	-0.120	-0.047	85.652	0.000
-	<u> </u>	13	-0.129	-0.122	89.250	0.000
.		14	-0.114	-0.045	92.079	0.000
Щ і		15	-0.123	-0.043	95.365	0.000

Avand in vedere ca doar primii doi coeficienti ai autocorelatiei sunt semnificativi, modelul MA(2) este potrivit.

- c) Generati prin simulare o serie de timp cu
 - 1) tendinta deterministă liniara, cu

Seria "td" creata are ecuatia td=15+0.3*@trend+3*nrnd

Din grafic se vede clar faptul ca seria are tendinta determinista liniara. Iar in urma testului ADF rezulta ca seria nu are radacina unitate.

Null Hypothesis: TD has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-14.46466	0.0000
Test critical values:	1% level	-4.004836	
	5% level	-3.432566	
	10% level	-3.140059	

2) tendinta stochastica (radacina unitate, de tip mers aleator), aplicati apoi testul ADF. Ce observati?

Am creat o noua serie "ts" unde am fixat prima valoare si am formulat ecuatia pe sample 2-200: ts=ts(-1)+@nrnd.

Graficul indica un vizibil trend crescator.

Continuam cu testul ADF pentru a testa daca seria are radacina unitate cu optiunea trend and intercept.

H0: Seria are radacina unitate.

Null Hypothesis: TS has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.541591	0.3079
Test critical values:	1% level	-4.004836	
	5% level	-3.432566	
	10% level	-3.140059	

Testul indica acceptarea ipotezei nule indiferent de pragul de risc ales.

Numarul observatiilor simulate n=200.