Definitions

- 1. Agent.
- 2. Environment.
- 3. State.
- 4. Observation.
- 5. Episode.

MDP

A MDP is a 4-tuple (S, A, P_a, R_a) , where:

- S := is a set of states called the state space.
- A := is a set of actions called the action space.
- $A_s :=$ is a set of actions available from state $s \in S$.
- $P_a(s,s'):=\mathbb{P}(s_{t+1}=s'|s_t=s,a_t=a)$ is the probability that action a in state s at time t will lead to state s' at time t+1.
- ullet $R_a(s,s')$ is the immediate reward recived after transition from s to s' .

Marcov property

$$\mathbb{P}(S_{t+1}|S_t,A_t) = \mathbb{P}(S_{t+1}|S_t,A_t,S_{t-1},A_{t-1},...)$$

Episode

Is a sequence:

$$[(S_0, A_0, R_0), (S_1, A_1, R_1), ..., (S_T, A_T, R_T)]$$

its just one run.

Return

A given episode $[(S_0,A_0,R_0),(S_1,A_1,R_1),...,(S_T,A_T,R_T)]$ of MDP and a given $\gamma\epsilon[0,1].$

$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

or

$$G_t = R_{t+1} + \gamma G_{t+1}$$

Reward function.

Given MDP we define reward function. $s, s' \in S, a \in A$

$$egin{aligned} r(s) &= \mathbb{E}_{a,s'}[R_{t+1}|S_t = s] \ & r(s,a) = \mathbb{E}_{s'}[R_{t+1}|S_t = s, A_t = a] \ & r(s,a,s') = \mathbb{E}[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s'] \end{aligned}$$

Policy

Given a MPD we define

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

A policy fully defines the behavior of an agent.

State value function V

Given a MDP and a policy π on it we define

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] \ \ orall s \epsilon S$$