Contents

1	1 Basic	-
-	1.1 .vimrc	-
	1.2 Increase Stack Size	
	1.2 Increase stack size	
2	2 Math	1
	2.1 Euclidean's Algorithm	
	2.2 Big Integer	
	2.3 FFT	
	2.4 NTT	
	2.5 Miller Rabin	
	2.6 Chinese Remainder	
	2.7 Pollard's rho	
	2.8 Roots of Polynomial	
	2.9 Simplex	
	210 Simplest 1111 1111 1111 1111 1111 1111 1111 1	
3	3 Data Structure	(
	3.1 Disjoint Set	(
	3.2 Segement Tree with Lazy Tag	
	3.3 Copy on Write Segement Tree	
	3.4 Persistent Segement Tree	
	3.5 Rope	
	3.6 pb ds	
	3.7 Link-Cut Tree	
	3.8 Treap	
	<u>-</u>	
4	4 Graph	10
	4.1 Dijkstra's Algorithm	
	4.2 Tarjan's Algorithm	
	4.3 Jump Pointer Algorithm	
	4.4 Maximum Clique	
	4.5 Heavy-Light Decomposition	
	4.6 Dominator Tree	
	4.7 Number of Maximal Clique	
	4.8 Strongly Connected Component	
	4.9 Dynamic MST	
	4.10 General Matching	
	4.11 Minimum General Weighted Matching	
	4.12 Maximum General Weighted Matching	
	4.13 Minimum Steiner Tree	
	4.14 BCC based on Vertex	
	III Boo sassa on voicen i i i i i i i i i i i i i i i i i i i	
5	5 Flow	18
	5.1 Bipartite Matching	1
	5.2 MaxFlow (ISAP)	
	5.3 MinCostMaxFlow	
	5.4 BoundedMaxFlow	
		1'
	5.5 Dinic	
	5.5 Dinic	1'
	5.6 DMST	1' 18
	5.6 DMST	1' 18
	5.6 DMST	1' 18
6	5.6 DMST	1' 18
6	5.6 DMST	1' 18 18
6	5.6 DMST	18 18 18 18
6	5.6 DMST	18 18 18 18 18
6	5.6 DMST	1' 18 18 18 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment	1 18 18 18 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle	1 18 18 18 19 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles	10 18 18 18 18 18 18 18 18 18 18 18 18 18
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover	12 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles	10 11 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree	
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull	10 11 18 18 18 18 18 18 18 18 18 18 18 18
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation	10 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle	10 18 18 18 18 18 18 18 18 18 18 18 18 18
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle	11 18 18 18 18 18 18 18 18 18 18 18 18 1
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp	11 18 18 18 18 18 18 18 18 18 18 18 18 1
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp 6.15 Union of Polynomials	10 11 18 18 18 18 18 18 18 18 18 18 18 18
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of Polygon and Circle 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp 6.15 Union of Polynomials 6.16 String	11 18 18 18 18 18 18 18 18 18 18 18 18 1
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp 6.15 Union of Polynomials 6.16 String 6.17 Palindrome Tree	11 18 18 18 18 18 18 18 18 18 18 18 18 1
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 6 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp 6.15 Union of Polynomials 6.16 String 6.17 Palindrome Tree 6.18 SAIS	11 18 18 18 18 18 18 18 18 18 18 18 18 1
6	5.6 DMST 5.7 SW min-cut 5.8 Theorem 3 Geometry 6.1 Half Plane Intersection 6.2 Intersection of 2 Lines 6.3 Intersection of 2 Segments 6.4 Intersection of Circle and Segment 6.5 Intersection of Polygon and Circle 6.6 Intersection of 2 Circles 6.7 Circle Cover 6.8 Tangent Line of 2 Circles 6.9 KD Tree 6.10 Lower Concave Hull 6.11 Delaunay Triangulation 6.12 Min Enclosing Circle 6.13 Heart of Triangle 6.14 Min/Max Enclosing Rectangle.cpp 6.15 Union of Polynomials 6.16 String 6.17 Palindrome Tree	11 18 18 18 18 18 18 18 18 18 18 18 18 1

1 Basic

1.1 .vimrc

1.2 Increase Stack Size

```
//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
  const rlim_t ks = 64*1024*1024;
  struct rlimit rl;
  int res=getrlimit(RLIMIT_STACK, &rl);
  if(res==0){
    if(rl.rlim_cur<ks){
      rl.rlim_cur=ks;
      res=setrlimit(RLIMIT_STACK, &rl);
    }
  }
}</pre>
```

2 Math

2.1 Euclidean's Algorithm

```
// a must be greater than b
pair< int, int > gcd( int a, int b ) {
   if ( b == 0 ) return { 1, 0 };
   pair< int, int > q = gcd( b, b % a );
   return { q.second, q.first - q.second * ( a / b ) };
}
```

2.2 Big Integer

```
const int base = 1000000000;
const int base_digits = 9;
class Bigint {
 public:
  vector < int > a;
  int sign;
  Bigint() : sign(1) \{ \}
  Bigint( long long v ) { *this = v; }
Bigint( const string &s ) { read( s ); }
  void operator=( const Bigint &v ) {
    sign = v.sign;
    a = v.a;
  void operator=( long long v ) {
    sign = 1;
    if ( v < 0 ) sign = -1, v = -v;
    for ( ; v > 0; v = v / base ) a.push_back( v \% base
  Bigint operator+( const Bigint &v ) const {
    if ( sign = v.sign ) {
      Bigint\ res\,=\,v\,;
       for ( int i = 0, carry = 0; i < (int)max(a.size)
            (), v.a.size() ) || carry; ++i ) {
         if ( i == (int)res.a.size() ) res.a.push_back(
             0);
         res.a[i] += carry + (i < (int)a.size() ? a[
             i ] : 0 );
         carry = res.a[ i ] >= base;
         if ( carry ) res.a[ i ] -= base;
      return res;
    return *this - ( -v );
  Bigint operator - ( const Bigint &v ) const {
    if (sign = v.sign) {
      if (abs() >= v.abs()) 
         Bigint res = *this;
         \label{eq:formula} \mbox{for ( int } i \, = \, 0 \, , \ \mbox{carry} \, = \, 0; \ i \, < \, (\, \mbox{int} \,) \, v.\, a.\, size \, (\, )}
               || carry; ++i ) {
```

```
res.a[i] -= carry + (i < (int)v.a.size() ?
             v.a[i]:0);
        \texttt{carry} \, = \, \texttt{res.a[} \quad \texttt{i} \quad \texttt{]} \, < \, 0 \,; \\
        if ( carry ) res.a[ i ] += base;
      res.trim();
      return res;
    return -( v - *this );
  }
  return *this + ( -v );
void operator*=( int v ) {
  if (v < 0) sign = -sign, v = -v;
  for ( int i = 0, carry = 0; i < (int)a.size()
      carry; ++i ) {
     \begin{array}{lll} & \text{if } ( & i \stackrel{=}{=} (int)a.\,size() \ ) \ a.\,push\_back(\ 0\ );\\ & long\ long\ cur = a[\ i\ ]\ *\ (long\ long)v + carry; \\ \end{array} 
    carry = (int)( cur / base );
    a[i] = (int)(cur \% base);
  trim();
Bigint operator*( int v ) const {
  Bigint res = *this;
  \text{res *= v;}
  return res;
friend pair< Bigint, Bigint > divmod( const Bigint &
   a1, const Bigint &b1 ) {
  int norm = base / ( b1.a.back() + 1 );
  Bigint a = a1.abs() * norm;
  Bigint b = b1.abs() * norm;
  Bigint q, r;
  q.a.resize(a.a.size());
  for ( int i = a.a.size() - 1; i >= 0; i-- ) {
    r *= base;
    r += a.a[i];
    int s1 = r.a.size() \le b.a.size() ? 0 : r.a[b.a.
        size()];
    int s2 = r.a. size() \le b.a. size() - 1 ? 0 : r.a[
        b.a.size() - 1];
    int d = ((long long)base * s1 + s2) / b.a.back
        ();
    r -= b * d;
    while (r < 0) r += b, --d;
    q.a[i] = d;
 q.sign = a1.sign * b1.sign;
 r.sign = a1.sign;
 q.trim();
  r.trim();
  return make_pair( q, r / norm );
Bigint operator/( const Bigint &v ) const { return
    divmod( *this, v ).first; }
{\tt Bigint\ operator\%(\ const\ Bigint\ \&v\ )\ const\ \{\ return\ }
    divmod( *this, v ).second; }
void operator/=( int v ) {
  if (v < 0) sign = -sign, v = -v;
  for ( int i = (int)a.size() - 1, rem = 0; i >= 0;
    long long cur = a[ i ] + rem * (long long)base;
    a[i] = (int)(cur / v);
    rem = (int)(cur \% v);
  trim();
Bigint operator/( int v ) const {
  Bigint res = *this;
  res \neq v;
  return res;
int operator%( int v ) const {
  if (v < 0) v = -v;
  int m = 0;
```

```
for ( int i = a.size() - 1; i >= 0; --i ) m = ( a[
      i | + m * (long long)base ) % v;
 return m * sign;
void operator+=( const Bigint &v ) { *this = *this +
void operator -= ( const Bigint &v ) { *this = *this -
   v; }
void operator*=( const Bigint &v ) { *this = *this *
   v; }
void operator/=( const Bigint &v ) { *this = *this /
   v; }
bool operator < ( const Bigint &v ) const {
  if (sign != v.sign) return sign < v.sign;
  if ( a.size() != v.a.size() ) return a.size() *
     sign < v.a. size() * v. sign;
  for ( int i = a.size() - 1; i >= 0; i--)
    if ( a[i] != v.a[i] ) return a[i] * sign <
       v.a[i] * sign;
 return false;
bool operator > ( const Bigint &v ) const { return v <
    *this; }
bool operator <= ( const Bigint &v ) const { return !(
   v < *this); 
bool operator>=( const Bigint &v ) const { return !(
   *this < v ); }
bool operator == ( const Bigint &v ) const { return !(
    *this < v ) && !( v < *this ); }
bool operator!=( const Bigint &v ) const { return *
   this \langle v \mid | v \langle *this; \rangle
void trim() {
  while ( !a.empty() && !a.back() ) a.pop_back();
  if (a.empty()) sign = 1;
bool isZero() const { return a.empty() || ( a.size()
   = 1 \&\& !a[0]); 
Bigint operator - () const {
  Bigint res = *this;
  res.sign = -sign;
  return res;
Bigint abs() const {
  Bigint res = *this:
  res.sign *= res.sign;
  return res;
long longValue() const {
 long long res = 0;
 for ( int i = a.size() - 1; i >= 0; i-- ) res = res * base + a[i];
 return res * sign;
friend Bigint gcd (const Bigint &a, const Bigint &b)
    { return b.isZero() ? a : gcd(b, a % b); }
friend Bigint lcm( const Bigint &a, const Bigint &b )
{ return a / gcd(a, b) * b; } void read(const string &s) {
  sign = 1;
  a.clear();
  int pos = 0;
  while ( pos < (int)s.size() && ( s[ pos ] == '-' ||
      s[ pos ] = '+' ) ) {
    if (s[pos] = , -, ) sign = -sign;
   ++pos;
  for ( int i = s.size() - 1; i >= pos; i -=
      base_digits ) {
    int x = 0;
    a.push_back( x );
  trim();
friend istream & operator >> ( istream & stream, Bigint &
   v ) {
  string s;
```

```
stream >> s;
 v.read( s );
 return stream;
friend ostream & operator << ( ostream & stream, const
   Bigint &v ) {
  if (v.sign = -1) stream << '-';
 stream << ( v.a.empty() ? 0 : v.a.back() );
  for (int i = (int)v.a.size() - 2; i >= 0; --i)
   stream << setw( base_digits ) << setfill( '0')
       << v.a[ i ];
 return stream;
}
static vector< int > convert_base( const vector< int</pre>
   > &a, int old_digits, int new_digits) {
  vector< long long > p( max( old_digits, new_digits
      ) + 1 );
 p[0] = 1;
 for ( int i = 1; i < (int)p.size(); i++ ) p[ i ] =
   p[ i - 1 ] * 10;
vector< int > res;
 long long cur = 0;
  int cur_digits = 0;
 cur_digits += old_digits;
    while ( cur_digits >= new_digits ) {
      res.push_back( int( cur % p[ new_digits ] ) );
      cur \not= p[\ new\_digits \ ];
      cur_digits -= new_digits;
  res.push_back( (int)cur );
  while ( !res.empty() && !res.back() ) res.pop_back
     ();
 return res;
}
typedef vector< long long > vll;
static vll karatsubaMultiply( const vll &a, const vll
    &b ) {
  int n = a.size();
  vll res(n+n);
  if ( n <= 32 ) {
    for (int i = 0; i < n; i++)
     for ( int j = 0; j < n; j++ ) res[ i + j ] += a
  [ i ] * b[ j ];
   return res;
  int k = n \gg 1;
  vll \ al(\ a.begin(),\ a.begin()+k\ );
  vll a2(a.begin() + k, a.end());
  vll b1(b.begin(), b.begin() + k);
  vll b2(b.begin() + k, b.end());
  vll a1b1 = karatsubaMultiply( a1, b1);
  vll a2b2 = karatsubaMultiply(a2, b2);
  for ( int i = 0; i < k; i++ ) a2[i] += a1[i]
  for ( int i = 0; i < k; i++ ) b2[i] += b1[i];
  vll r = karatsubaMultiply( a2, b2);
  for ( int i = 0; i < (int)alb1.size(); i++ ) r[i]
       -= a1b1[ i ];
 for ( int i = 0; i < (int)a2b2.size(); i++ ) r[ i ] -= a2b2[ i ];
  for ( int i = 0; i < (int)r.size(); i+++) res[ i ++
      k ] += r[ i ];
  for ( int i = 0; i < (int)alb1.size(); i++ ) res[ i
       ] += a1b1[i];
  for ( int i = 0; i < (int)a2b2.size(); i++) res[ i
      + n ] += a2b2[i];
 return res;
Bigint operator*( const Bigint &v ) const {
  vector< int > a6 = convert_base( this->a,
      base_digits, 6);
  vector < int > b6 = convert_base( v.a, base_digits,
      6);
 vll a( a6.begin(), a6.end() );
vll b( b6.begin(), b6.end() );
  while (a.size() < b.size()) a.push_back(0);
```

2.3 FFT

```
const int MAXN = 262144;
   (must be 2<sup>k</sup>)
// before any usage, run pre_fft() first
// To implement poly. multiply:
  fft( n , a );
   fft(n,b);
  for ( int i = 0 ; i < n ; i+++)
     c[i] = a[i] * b[i];
   fft(n,c,1);
// then you have the result in c :: [cplx]
typedef long double ld;
typedef complex<ld> cplx;
const ld PI = acosl(-1);
const cplx I(0, 1);
cplx omega[MAXN+1];
void pre_fft(){
 for(int i=0; i<=MAXN; i++)
    omega[i] = exp(i * 2 * PI / MAXN * I);
// n must be 2^k
void fft(int n, cplx a[], bool inv=false){
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m \gg 1;
    for (int i = 0; i < mh; i++) {
      {\tt cplx \ w = omega[inv \ ? MAXN \dot{(i*theta)MAXN)}}
                            : i*theta%MAXN];
       for (int j = i; j < n; j += m) {
        int k = j + mh;
         cplx x = a[j] - a[k];
        a[j] += a[k];
        a[k] = w * x;
    theta = (theta * 2) \% MAXN;
  int i = 0:
  \begin{array}{lll} for \ (int \ j = 1; \ j < n \ - \ 1; \ j++) \ \{ \\ for \ (int \ k = n >> 1; \ k > (i \ \hat{} = k); \ k >>= 1); \end{array}
    if (j < i) swap(a[i], a[j]);
  if (inv)
    for (i = 0; i < n; i++)
      a[i] /= n;
```

2.4 NTT

```
typedef long long LL;
// Remember coefficient are mod P
  p=a*2^n+1
        2^n
   n
                                       root
        32
                     97
                                  3
   5
                                       5
   6
        64
                     193
                                  3
                                       5
```

```
128
                      257
                                         3
   8
        256
                       257
                                         3
   9
                      7681
        512
                                   15
                                         17
   10
         1024
                       12289
                                   12
                                         11
                      12289
        2048
                                   6
                                         11
   11
        4096
   12
                      12289
                                   3
                                         11
                      40961
   13
        8192
                                   5
                                         3
        16384
                      65537
                                         3
   14
                                   4
   15
        32768
                      65537
                                   2
                                         3
   16
        65536
                      65537
                                   1
                                         3
   17
        131072
                      786433
                                   6
                                        10
        262144
                      786433
                                        10 (605028353,
        2308, 3)
   19
        524288
                      5767169
                                   11
   20
        1048576
                      7340033
                                         3
        2097152
   21
                      23068673
                                   11
                                         3
   22
        4194304
                      104857601
                                   25
                                         3
        8388608
                      167772161
                                         3
        16777216
                      167772161
   24
                                   10
                                         3
        33554432
                                         3 (1107296257, 33,
   25
                      167772161
        10)
        67108864
   26
                      469762049
   ^{27}
        134217728
                      2013265921\ 15
                                         31 */
  (must be 2<sup>k</sup>)
// To implement poly. multiply:
 'NTT≪P, root, MAXN⊳ ntt;
// ntt( n , b );
  // ntt( n , c , 1 );
// then you have the result in c :: [LL]
template<LL P, LL root, int MAXN>
struct NTT{
  static LL bigmod(LL a, LL b) {
    LL res = 1;
    for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P) {
      if (b&1) res=(res*bs)%P;
    return res;
  static LL inv(LL a, LL b) {
    if (a==1)return 1;
    return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
 LL omega [MAXN+1];
 NTT() {
    omega[0] = 1;
    LL r = bigmod(root, (P-1)/MAXN);
    omega [i] = (\text{omega} [i-1]*r)\%P;
  // n must be 2^k
  void tran(int n, LL a[], bool inv_ntt=false){
    int basic = MAXN / n;
    int theta = basic;
    for (int m = n; m >= 2; m >>= 1) {
      int mh = m \gg 1;
      for (int i = 0; i < mh; i++) {
        LL w = omega[i*theta%MAXN];
         for (int j = i; j < n; j += m) {
           int k = j + mh;
           LL \ x = a [ \, j \, ] \ - \ a [ \, k \, ] \, ;
           if (x < 0) x += P;
           a\,[\,j\,\,] \; +\!\!= \; a\,[\,k\,]\,;
           if(a[j] > P) a[j] -= P;

a[k] = (w * x) \% P;
        }
      theta = (theta * 2) \% MAXN;
    int i = 0;
    if (j < i) swap(a[i], a[j]);
    if (inv_ntt) {
      LL ni = inv(n,P);
      \begin{array}{lll} reverse \left( \begin{array}{l} a+1 & , & a+n \end{array} \right); \\ \textbf{for} \ \left( \begin{array}{lll} i & = \ 0; & i \ < \ n; & i++ \end{array} \right) \end{array}
        a[i] = (a[i] * ni) \% P;
```

```
}
}
void operator()(int n, LL a[], bool inv_ntt=false) {
    tran(n, a, inv_ntt);
}
};
const LL P=2013265921,root=31;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
```

2.5 Miller Rabin

```
// n < 4,759,123,141
                             3:2,7,61
// n < 1,122,004,669,633
                             4:2,13,23,1662803
  n < 3,474,749,660,383
                                   6 : pirmes \ll 13
// n < 2^64
                                   7 :
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
// Make sure testing integer is in range [2, n-2] if
// you want to use magic
bool witness (LL a, LL n, LL u, int t) {
 LL x=mypow(a, u, n);
  for (int i=0; i< t; i++) {
    LL nx=mul(x,x,n);
    if (nx=1&&x!=1&&x!=n-1) return 1;
    x=nx;
 }
  return x!=1;
bool miller_rabin(LL n, int s=100) {
  // iterate s times of witness on n
    return 1 if prime, 0 otherwise
  if (n<2) return 0;
  if (!(n\&1)) return n = 2;
 LL u=n-1; int t=0;
  // n-1 = u*2^t
  while (!(u\&1)) u>>=1, t++;
  while (s - -) {
    LL a=randll()\%(n-1)+1;
    if(witness(a,n,u,t)) return 0;
  return 1;
```

2.6 Chinese Remainder

```
int pfn;
// number of distinct prime factors
int pf [MAXN]; // prime factor powers
int rem [MAXN]; // corresponding remainder
int pm[MAXN];
inline void generate_primes() {
 int i, j;
  pnum=1;
  prime[0]=2;
  for (i=3; i \le MAXVAL; i+=2) {
    if (nprime[i]) continue;
    prime [pnum++]=i;
    for (j=i*i;j<MAXVAL;j+=i) nprime [j]=1;
inline int inverse(int x, int p) {
  int q, tmp, a=x, b=p;
  int a0=1,a1=0,b0=0,b1=1;
  while(b) {
    q=a/b; tmp=b; b=a-b*q; a=tmp;
    tmp=b0; b0=a0-b0*q; a0=tmp;
    tmp=b1; b1=a1-b1*q; a1=tmp;
  return a0;
inline void decompose_mod() {
  \underline{int} \quad i\ , p\ , t \!\!=\!\! mod;
  pfn=0;
  for(i=0;i<pnum&&prime[i]<=t;i++) {
    p=prime[i];
    if (t%p==0) {
      pf[pfn]=1;
       while (t\%p==0) {
```

```
t/=p;
    pf[pfn]*=p;
}
pfn++;
}
if(t>1) pf[pfn++]=t;
}
inline int chinese_remainder() {
    int i ,m, s=0;
    for(i=0;i<pfn;i++) {
        m=mod/pf[i];
        pm[i]=(LL)m*inverse(m, pf[i])%mod;
        s=(s+(LL)pm[i]*rem[i])%mod;
}
return s;
}</pre>
```

2.7 Pollard's rho

```
// does not work when n is prime
LL f(LL x, LL mod) {
   return add(mul(x,x,mod),1,mod);
}
LL pollard_rho(LL n) {
   if(!(n&1)) return 2;
   while(true) {
      LL y=2, x=rand()%(n-1)+1, res=1;
      for(int sz=2; res==1; sz*=2) {
        for(int i=0; i<sz && res<=1; i++) {
            x = f(x, n);
            res = __gcd(abs(x-y), n);
        }
        y = x;
    }
   if (res!=0 && res!=n) return res;
}</pre>
```

2.8 Roots of Polynomial

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ];
int n;
int sign( double x ){
 return (x < -eps)?(-1):(x>eps);
double f(double a[], int n, double x){
  double tmp=1,sum=0;
  for (int i=0; i \le n; i++){
   sum=sum+a [ i ]*tmp;
    tmp=tmp*x;
  return sum:
double binary (double 1, double r, double a[], int n) {
  int sl=sign(f(a,n,l)), sr=sign(f(a,n,r));
  if(sl==0) return 1;
  if (sr==0) return r;
  if(sl*sr>0) return inf;
  while (r-l>eps) {
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if (ss==0) return mid;
    if (ss*sl>0) l=mid; else r=mid;
  return 1;
void solve(int n,double a[],double x[],int &nx){
  if (n==1)
   x[1] = -a[0]/a[1];
   nx=1;
    return;
  double da[10], dx[10];
  int ndx;
  for (int i=n; i>=1;i--) da[i-1]=a[i]*i;
```

```
solve(n-1, da, dx, ndx);
  nx=0:
  if (ndx==0)
     double tmp=binary(-inf,inf,a,n);
     \begin{array}{ll} {\bf i}\, f & (tmp\!\!<\!\!i\, n\, f\,) & x[+\!+\!nx]\!=\!\!tmp\,; \end{array}
     return;
  double tmp;
  tmp=binary(-inf,dx[1],a,n);
  if(tmp < inf) x[++nx] = tmp;
  for (int i=1; i \le ndx-1; i++){
     tmp=binary(dx[i],dx[i+1],a,n);
     if(tmp < inf) x[++nx] = tmp;
  tmp=binary(dx[ndx], inf, a, n);
  if(tmp < inf) x[++nx] = tmp;
int main() {
  scanf("%d",&n);
  for(int i=n; i>=0;i--) scanf("%lf",&a[i]);
  int nx;
  solve (n, a, x, nx);
  for(int i=1;i<=nx;i++) printf("%.6f\n",x[i]);
```

2.9 Simplex

```
const int MAXN = 111;
const int MAXM = 111;
const double eps = 1E-10;
double x [MAXM];
int ix [MAXN + MAXM]; // !!! array all indexed from 0
// \max\{cx\} subject to \{Ax <= b, x >= 0\}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex (double a [MAXN] [MAXM], double b [MAXN],
                  double c [MAXM], int n, int m) {
  ++m:
  int r = n, s = m - 1;
  memset(d, 0, sizeof(d));
  \mbox{for (int $i=0$; $i< n+m$; $+\!\!+\!\!i)$ $ix[i]=i$;}
   for (int i = 0; i < n; ++i) {
     for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
     d[i][m-1] = 1;
     d[i][m] = b[i];
      \begin{tabular}{ll} if & (d\,[\,r\,]\,[m]\,>\,d\,[\,i\,]\,[m]\,) & r\,=\,i\,; \\ \end{tabular} 
  for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];
  d[n + 1][m - 1] = -1;
  for (double dd;; ) {
     if (r < n) {
       int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
       \begin{array}{l} d[r][s] = 1.0 \; / \; d[r][s]; \\ for \; (int \; j = 0; \; j <= m; \; +\!\!\!+\!\!\! j) \\ if \; (j \; != \; s) \; d[r][j] \; *= \; -d[r][s]; \end{array}
       for (int i = 0; i \le n + 1; ++i) if (i != r) {
         for (int j = 0; j <= m; ++j) if (j != s)

d[i][j] += d[r][j] * d[i][s];

d[i][s] *= d[r][s];
       }
     r = -1; s = -1;
     for (int j = 0; j < m; +++j)
       if^{(s)} (s < 0 \mid | ix[s] > ix[j])  {
         if (d[n+1][j] > eps | |
               (d[n + 1][j] > -eps && d[n][j] > eps))
            s = j;
     if(s < 0) break;
     for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {
       if (r < 0 | |
            (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
                 < -eps
            (dd < eps \&\& ix[r + m] > ix[i + m]))
          r = i:
     if (r < 0) return -1; // not bounded
```

3 Data Structure

3.1 Disjoint Set

```
class DisjointSet {
  public:
    static const int N = 1e5 + 10;
    int p[N];
  void Init( int x ) {
      for ( int i = 1; i <= x; ++i ) p[ i ] = i;
    }
  int Find( int x ) { return x == p[ x ] ? x : p[ x ] =
         Find( p[ x ] ); }
  void Union( int x, int y ) { p[ Find( x ) ] = Find( y
          ); }
};</pre>
```

3.2 Segement Tree with Lazy Tag

```
#define L( X ) ( X << 1 )
#define R( X ) ( ( X << 1 ) + 1 )
#define mid ( ( l + r ) >> 1 )
class SegmentTree {
 public:
  static const int N = 1e5 + 10;
  inline void Pull( int now ) { st[ now ] = max( st[ L(
       now ) ], st[R(now )]); }
  inline void Push( int now, int l, int r ) {
    if ( lazy[ now ] != 0 ) {
      if ( l != r ) {
        st[ L( now ) ] += lazy[ now ];
st[ R( now ) ] += lazy[ now ];
        lazy[ L( now ) ] += lazy[ now ];
        lazy[ R( now ) ] += lazy[ now ];
      lazy[now] = 0;
    }
  void Build( int now, int l, int r ) {
    if (l = r) {
      st[now] = arr[l];
      return;
    Build (L(now), l, mid);
    Build (R(now), mid + 1, r);
    Pull (now);
  void Update( int ql, int qr, int value, int now, int
      l, int r) {
    if ( ql>qr || l>qr || r< ql ) return; Push( now, 1, r );
    if ( l == ql && qr == r ) {
      st[ now ] += value;
lazy[ now ] += value;
      return;
    if (qr \ll mid)
      Update(ql, qr, value, L(now), l, mid);
     else \quad if \quad ( \quad mid < ql \quad ) 
      Update (ql, qr, value, R(now), mid + 1, r);
```

```
Update( ql, mid, value, L( now ), l, mid );
       Update(mid + 1, qr, value, R(now), mid + 1, r
     Pull ( now );
  int Query( int ql, int qr, int now, int l, int r ) {
     Push( now, l, r);
     if ( l = ql \&\& qr = r ) return st[ now ];
     if (qr \le mid)
       return Query( ql, qr, L( now ), l, mid );
     else if ( mid < ql )
       return Query( ql, qr, R( now ), mid + 1, r );
     else \ \{
       int left = Query(ql, mid, L(now), l, mid);
       \label{eq:int_right} \begin{array}{l} \text{int} & \text{right} = \text{Query(} & \text{mid} \, + \, 1 \, , \, \, \text{qr} \, , \, \, \text{R(} & \text{now } \, ) \, , \, \, \text{mid} \, + \, \end{array}
            1, r);
       int ans = max( left, right );
       return ans:
  }
};
```

3.3 Copy on Write Segement Tree

```
// tested with ASC 29 B
#define mid ( (l + r) \gg 1)
class Node {
 public:
  int value, l, r, who;
  Node() {}
  Node(int v): value(v) { l = r = who = 0; }
class SegmentTree {
 public:
  static const int N = 1e9;
  vector < Node > st;
  inline void Pull( int now ) {
  int lchild = st[ now ].1;
    int rchild = st[ now ].r;
    if ( lchild != 0 ) {
      st[now].value = st[lchild].value;
      st now . who = st lchild . who;
    if ( rchild != 0 \&\& st[ rchild ].value > st[ now ].
        value ) {
      st [ now ].value = st [ rchild ].value;
      st [ now ].who = st [ rchild ].who;
  void Build() {
    st.push_back( Node() ); // Null Node
    st.push_back( Node( 0 ) );
  void Update (int ql, int qr, int value, int who, int
      now = 1, int l = 1, int r = N) {
    if ( ql > qr or qr < l or ql > r ) return;
    if ( l = ql \&\& qr = r ) {
      st [ now ]. value = value;
      st [now].who = who;
      return:
    if \ (\ \mathrm{qr} <= \mathrm{mid}\ )\ \{
      if (st[now].l == 0) {
        st[now].l = st.size();
        st.push\_back(Node(0));
      Update( ql, qr, value, who, st[ now ].l, l, mid )
    else if ( mid < ql )  {
      if (st[now].r == 0) {
        st[now].r = st.size();
        st.push_back( Node( 0 ) );
      Update(\ ql,\ qr,\ value,\ who,\ st[\ now\ ].r,\ mid+1,
```

```
else {
      if (st[now].l == 0) {
       st[now].l = st.size();
       st.push_back( Node( 0 ) );
      if ( st[ now ].r == 0 ) {
       st[now].r = st.size();
        st.push_back( Node( 0 ) );
      Update(ql, mid, value, who, st[now].l, l, mid
      Update( mid + 1, qr, value, who, st[ now ].r, mid
          + 1, r);
    Pull( now );
  pair < int, int > Query( int ql, int qr, int now = 1,
      int l = 1, int r = N) {
    if (ql > qr or qr < l or ql > r) return { 0, 0 };
    if ( l = ql && qr = r ) {
     return { st[ now ].value, st[ now ].who };
    if (qr \le mid)
      if ( st[ now ].l == 0 ) return { 0, 0 };
      else if ( mid < ql )  {
      if ( st[ now ].r = 0 ) return { 0, 0 };
      return Query( ql, qr, st[ now ].r, mid + 1, r );
    else {
      pair < int, int > lchild = \{ 0, 0 \};
      if (st[now].l!=0) lchild = Query(ql, mid,
         st[ now ].l, l, mid );
      pair < int, int > rchild = \{ 0, 0 \};
      if (st[now].r!= 0) rchild = Query(mid + 1,
         qr, st[now].r, mid + 1, r);
      pair < int, int > ans = \{ 0, 0 \};
      if ( lchild.first > ans.first ) {
       ans.first = lchild.first;
       ans.second = lchild.second;
      if ( rchild.first > ans.first ) {
       ans.first = rchild.first;
       ans.second = rchild.second;
     return ans;
 }
};
```

3.4 Persistent Segement Tree

```
// tested with spoj MKTHNUM - K-th Number
#define mid ( (l+r) \gg 1 )
class Node {
public:
  int value, l, r;
 Node() { value = l = r = 0; }
class SegmentTree {
public:
  static const int N = 1e5 + 10;
  int ver size, st size:
  vector < int > ver;
  vector < Node > st;
  SegmentTree() {
    ver\_size = st\_size = 0;
    ver.resize( N );
st.resize( 70 * N );
    ver[ ver_size++ ] = 1;
st[ 0 ] = st[ 1 ] = Node();
    st\_size = 2;
  void AddVersion() {
    ver[ver\_size++] = st\_size++;
    st[ver[ver_size - 1]] = st[ver[ver_size - 2]
```

```
inline void Pull( int now ) {
     \begin{array}{lll} \textbf{int} & \textbf{lchild} \, = \, \textbf{st} \, [ & \textbf{now} & \textbf{].l.}, & \textbf{rchild} \, = \, \textbf{st} \, [ & \textbf{now} & \textbf{].r.}; \end{array}
     st [ now ].value = st [ lchild ].value + st [ rchild
          l. value:
   void Build (int now = 1, int l = 1, int r = N) {
     if (l = r) return;
     st[now].l = st\_size++;
     st[ now ].r = st_size++;
Build( st[ now ].l, l, mid );
     Build ( st [ now ].r, mid + 1, r );
     Pull ( now );
   void Update( int prv_now, int now, int pos, int l =
       1, int r = N ) {
      if ( l == r ) {
        st[ now ].value += 1;
        return;
     if ( pos <= mid ) {
        st[now].l = st\_size++;
        st[st[now].l] = st[st[prv_now].l];
        \label{eq:continuous_posterior} \begin{tabular}{ll} Update( & t[ & prv\_now & ].l., & st[ & now & ].l., & pos., & l., & mid \\ \end{tabular}
     else {
        st[now].r = st\_size++;
        Update( st[ prv_now ].r, st[ now ].r, pos, mid +
            1, r);
     Pull ( now );
   pair< int, bool > Query( int prv_now, int now, int k,
         int l = 1, int r = N) {
     int prv_value = st[ prv_now ].value, now_value = st
          [ now ]. value;
     if ( l = r && now_value - prv_value = k )
        return make_pair( l, true );
     else if ( now_value - prv_value < k )
     return make_pair( now_value - prv_value, false );
pair< int, bool > child = Query( st[ prv_now ].l,
          st[ now ].l, k, l, mid );
     if ( child.second = false ) {
        l].value;
        child = Query( st[ prv_now ].r, st[ now ].r, k,
            mid + 1, r);
     return child;
};
```

3.5 Rope

```
#include<ext/rope>
using namespace ___gnu_cxx;
// inserts c before p.
iterator insert (const iterator& p, charT c) :
// inserts n copies of c before p.
iterator insert(const iterator& p, size_t n, charT c) :
// inserts the character c before the ith element.
void insert(size_t i, charT c) :
// erases the element pointed to by p.
void erase(const iterator& p) :
// erases the range [f, l)
void erase(const iterator& f, const iterator& l) :
// Appends a C string.
void append(const charT* s) :
void replace(const iterator& f, const iterator& l,
    const rope& x)
void replace (const iterator & f, const iterator & l,
    const charT* s)
void replace (const iterator & f1, const iterator & l1,
    const charT* f2, const charT* 12)
void replace(const iterator& f1, const iterator& l1,
    const iterator& f2, const iterator& 12)
void replace (const iterator& p, const rope& x)
void replace(size_t i, size_t n, const rope& x)
```

3.6 pb_ds

```
/*************PB_DS priority_queue**********/
#include <ext/pb_ds/priority_queue.hpp>
\underline{using} \;\; \underline{namespace} \;\; \underline{\underline{\hspace{0.5cm}}} gnu\underline{\hspace{0.5cm}} pbds;
typedef priority_queue<T, less<T>,pairing_heap_tag> PQ;
typedef PQ::point_iterator PQit;
point\_iterator \ push(const\_reference \ key)
void modify(point_iterator it, const_reference key)
void erase(point_iterator it)
T top()
void pop()
point_iterator begin()
point_iterator end()
void join(priority_queue &other)
template<class Pred> void split(Pred prd,
    priority_queue &other) //Other will contain only
    values v for which prd(v) is true. When calling
    this method, other's policies must be equivalent to this object's policies.
template<class Pred> size_type erase_if(Pred prd) //
    Erases any value satisfying prd; returns the number
     of value erased.
//1. push will return a point_iterator, which can be
    saved in a vector and modify or erase afterward.
//2. using begin() and end() can traverse all elements
    in the priority\_queue
//3. after join, other will be cleared.
//4. for optimizing Dijkstra, use pairing_heap
 /5. binary_heap_tag is better that std::priority_queue
//6. pairing_heap_tag is better than binomial_heap_tag
    and rc_binomial_heap_tag
//7. when using only push, pop and join, use
    binary_heap_tag
//8. when using modify, use pairing_heap_tag or
'' thin_heap_tag
/***********************************/
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
typedef tree<K, T, less<K>, rb_tree_tag, Node_Update>
    TREE;
//similar to std::map
T = 
             _gnu_pbds::null_type, become std::set
// when \ \ Node\_Update = \ tree\_order\_statistics\_node\_update \, ,
     TREE become a ordered TREE with two new functions:
//1. iterator find_by_order(size_type order) return the
     smallest order-th element (e.x. when order = 0,
    return the smallest element), when order > TREE.
    size(), return end()
//2. size_type order_of_key(const_reference key) return
     number of elements smaller than key
void join(tree &other) //other和*this的值域不能相交
void split(const_reference key, tree &other) // 清空
    other, 然後把*this當中所有大於key的元素移到other
//自定義Node_Update: 查詢子段和的map<int, int>, 需要紀
    F子樹的mapped_value的和。
template<class Node_CItr, class Node_Itr, class Cmp_Fn,
     class _Alloc>
struct my_nd_upd {
  virtual Node_CItr node_begin () const = 0;
  virtual Node_CItr node_end () const = 0;
  typedef int metadata_type ; //額外信息, 這邊用int
  inline void operator()(Node_Itr it, Node_CItr end_it){
    Node\_Itr \ l\!=\!it.get\_l\_child()\;,\; r\!=\!it.get\_r\_child()\;;
    int left = 0 , right = 0;
    if(l != end_it) left = l.get_metadata();
    if(r != end_it) right = r.get_metadata();
    const_cast<metadata_type&>(it.get_metadata())=
      left+right+(*it)->second;
  //operator()功能是將節點it的信息更新, end_it表空節點
```

```
//it 是Node_Itr, *之後變成iterator, 再取->second變節點
       的 mapped_value
  inline int prefix_sum (int x) {
    int ans = 0;
    Node_CItr it = node_begin();
    while (it!=node_end()){
       Node\_CItr l = it.get\_l\_child(), r = it.
           get_r_child();
        if(Cmp\_Fn()(x , (*it)->first)) it = 1; \\
       else {
         ans += (*it)->second;
         if(l != node_end ()) ans += l.get_metadata();
      }
    return ans;
  inline int interval_sum(int l ,int r)
  {return prefix_sum(r)-prefix_sum(l-1);}
tree < int \;,\; int \;,\; less < int >,\; rb\_tree\_tag \;,\; my\_nd\_upd > T;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
  _gnu_pbds::cc_hash_table<Key, Mapped>
  gnu_pbds::gp_hash_table<Key, Mapped>
//支援find和operator[]
  #include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>
{\color{red} \textbf{typedef}} \ {\color{red} \textbf{trie}} \! < \! {\color{red} \textbf{string}} \ , \ {\color{red} \textbf{null\_type}} \ ,
     trie_string_access_traits <>, pat_trie_tag,
              trie_prefix_search_node_update> pref_trie;
pref_trie.insert(const string &str);
auto range = pref_trie.prefix_range(const string &str);
for(auto it = range.first; it != range.second; ++it)
  cout << *it << '\n';
                       push
                                      modify
                                                erase
                                                        join
                               pop
   std::priority_queue
                       \lg(n)
                              \lg(n)
                                      n \lg(n)
                                               n \lg(n)
                                                       n \lg(n)
   pairing_heap_tag
                              \lg(n)
                                      \lg(n)
                                               \lg(n)
    binary_heap_tag
                       \lg(n)
                              \lg(n)
                                                          n
 binomial_heap_tag
rc_binomial_heap_tag
                         1
                              \lg(n)
                                      \lg(n)
                                                \lg(n)
                                                        \lg(n)
                         1
                              lg(n)
                                       lg(n)
                                                lg(n)
                                                        \lg(n)
    thin heap tag
                         1
                              \lg(n)
                                     \lg(n)[ps]
                                               \lg(n)
                                                          n
ps: 1 if increased_key only else \lg(n)
```

3.7 Link-Cut Tree

```
const int MXN = 100005;
const int MEM = 100005;
struct Splay {
  static Splay nil , mem[MEM] , *pmem;
  Splay \ *ch[2] \ , \ *f;
  int val, rev, size;
  Splay () : val(-1), rev(0), size(0)
  \{f = ch[0] = ch[1] = &nil; \}
   \begin{array}{l}  \text{Splay (int \_val): val(\_val), rev(0), size(1)} \\  \{ \ f = ch[0] = ch[1] = \&nil; \ \} \\  \end{array} 
  bool isr()
  \{ return f->ch[0] != this && f->ch[1] != this; \}
  int dir()
  { return f->ch[0] = this ? 0 : 1; } void setCh(Splay *c, int d){
    ch[d] = c;
     if (c != \&nil) c->f = this;
     pull();
  void push(){
     if (!rev ) return;
     swap(\operatorname{ch}[0], \operatorname{ch}[1]);
     if (ch[0] != &nil) ch[0] -> rev = 1;
     if (ch[1] != &nil) ch[1] -> rev = 1;
     rev=0;
  void pull(){
     size = ch[0] - size + ch[1] - size + 1;
     if (ch[0] != &nil) ch[0] -> f = this;
     if (ch[1] != &nil) ch[1] -> f = this;
```

```
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::
    mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x){
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p-\operatorname{setCh}(x-\operatorname{ch}[!d], d);
  x->setCh(p, !d);
  p->pull(); x->pull();
vector < Splay* > splay Vec;
void splay(Splay *x){
  splayVec.clear();
  splayVec.push\_back(q);
    if (q-sisr()) break;
  reverse(begin(splayVec), end(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir()=x->f->dir())
       rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
  }
Splay* access(Splay *x){
  Splay *q = nil;
  for (; x!=nil; x=x->f) {
    splay(x);
    x-\operatorname{setCh}(q, 1);
    q = x;
  }
  return q;
void evert(Splay *x){
  access(x);
  splay(x);
  x \rightarrow rev = 1;
  x->push(); x->pull();
void link (Splay *x, Splay *y) {
// evert(x);
  access(x);
  splay(x);
  evert(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y){
// evert(x);
 access(y);
  splay(y);
  y - > push();
  y\text{-}\!>\!ch\,[\,0\,]\ =\ y\text{-}\!>\!ch\,[\,0\,]\text{-}\!>\!f\ =\ n\,i\,l\;;
int N, Q;
Splay *vt [MXN];
int ask(Splay *x, Splay *y){
  access(x);
  access(y);
  splay(x);
  int res = x->f->val;
  if (res = -1) res = x - val;
  return res;
int main(int argc, char** argv){
  scanf("%d%d", &N, &Q);
   \  \  \, \text{for}\  \, (\,int\  \  i\!=\!1;\  \, i\!<\!\!=\!\!N;\  \  i\!+\!+\!)
    vt[i] = new (Splay::pmem++) Splay(i);
  while (Q--) {
    char cmd[105];
    int u, v;
scanf("%s", cmd);
     if (cmd[1] == 'i') {
       scanf("%d%d", &u, &v);
       link(vt[v], vt[u]);
    } else if (\operatorname{cmd}[0] = 'c') {
       scanf("%d", &v);
cut(vt[1], vt[v]);
     } else {
```

```
scanf("%d%d", &u, &v);
int res=ask(vt[u], vt[v]);
printf("%d\n", res);
}
}
}
```

3.8 Treap

```
struct Treap{
  int sz , val , pri , tag;
Treap *l , *r;
Treap( int _val ){
    val = val; sz = 1;
    pri = rand(); l = r = NULL; tag = 0;
};
void push( Treap * a ){
  if( a->tag ){
    Treap *swp = a->l; a->l = a->r; a->r = swp;
    int swp2;
    if ( a -> l ) a -> l -> tag ^= 1;
    if(a->r)a->r->tag^{=}1;
    a \rightarrow tag = 0;
int Size ( Treap * a ) { return a ? a->sz : 0; } void pull ( Treap * a ) {
  a->sz = Size(a->l) + Size(a->r) + 1;
Treap* merge( Treap *a , Treap *b ){
  if (!a || !b) return a ? a : b;
  _{if(\ a->pri\ >\ b->pri\ )\{}
    push( a );
    a->r = merge(a->r, b);
    pull( a );
    return a;
  }else{
    push( b );
    b->l = merge(a, b->l);
    pull( b );
    return b;
void split ( Treap *t , int k , Treap*&a , Treap*&b ) {
  if (!t) a = b = NULL; return;
  push( t );
  if(Size(t->l) + 1 \le k)
    a = t:
    split(t->r, k-Size(t->l)-1, a->r, b);
    pull( a );
  }else{
    split(t->l, k, a, b->l);
    pull( b );
```

4 Graph

4.1 Dijkstra's Algorithm

4.2 Tarjan's Algorithm

4.3 Jump Pointer Algorithm

```
// Build: O( VlogV ), Query: O( logV ) int tin[ N ], tout[ N ], ancestor[ N ][ 20 ];
vector < int > v[N];
void dfs( int now, int pnow ) {
  tin [now] = ++now\_time;
   \verb"ancestor" [ now ][ 0 ] = pnow";
   for ( int i = 1; i < 20; ++i )
      ancestor\left[\begin{array}{c} now \end{array}\right]\left[\begin{array}{c} i \end{array}\right] \,=\, ancestor\left[\begin{array}{c} ancestor\left[\begin{array}{c} now \end{array}\right]\right[\begin{array}{c} i \end{array}\right]
            - 1 ] [ i - 1 ];
   for ( auto child : v[ now ] )
     if ( child != pnow ) dfs( child , now );
   tout[now] = ++now\_time;
bool check_ancestor( int x, int y ) { return ( tin[ x ]
       <= tin[ y ] && tout[ x ] >= tout[ y ] ); }
 int find_lca( int x, int y ) {
   if ( check\_ancestor( x, y ) ) return x;
   if ( check_ancestor( y, x ) ) return y;
   for ( int i = 19; i >= 0; --i )
     if (!check\_ancestor(ancestor[x][i], y)) x =
            ancestor[x][i];
   return ancestor[x][0];
}
```

4.4 Maximum Clique

```
// max N = 64
typedef unsigned long long ll;
struct MaxClique{
  static const int N = 64;
```

```
ll\ nb\left[\begin{array}{c} N\end{array}\right]\ ,\ n\ ,\ ans\,;
  void init( ll _n ){
    n\,=\,\underline{\hspace{1.5pt}} n\,;
    for ( int i = 0 ; i < n ; i +++ ) nb[i] = 0LLU;
  void add_edge( ll _u , ll _v ){
    nb[ _u ] |= ( 1LLU << _v );
nb[ _v ] |= ( 1LLU << _u );
  void B( ll r , ll p , ll x , ll cnt , ll res ){
    if(cnt + res < ans) return;
    if ( p == 0LLU && x == 0LLU ){
      if(cnt > ans) ans = cnt;
      return;
    11 y = p | x; y &= -y;
    11 \ q = p \& ( \sim nb[ int( log2( y ) ) ] );
    while (q){
      11 i = int(log2(q & (-q)));
      i ] ) );
      q &= \sim( 1LLU << i );
      p &= ~( 1LLU << i );
      x \mid = (1LLU \ll i);
  int solve(){
    ans = 0:
    11 = set = 0;
    if(n < 64) \_set = (1LLU << n) - 1;
      for ( ll i = 0 ; i < n ; i ++ ) _set |= ( <math>llLU \ll
          i );
    B(0LLU, \_set, 0LLU, 0LLU, n);
    return ans;
} maxClique;
```

4.5 Heavy-Light Decomposition

```
#define SZ(c) (int)(c).size()
#define ALL(c) (c).begin(), (c).end()
#define REP(i, s, e) for(int i = (s); i \le (e); i ++)
#define REPD(i, s, e) for (int i = (s); i >= (e); i --)
typedef \ tuple < \ int \ , \ int > \ tii \, ;
const int MAXN = 100010;
const int LOG = 19;
struct HLD{
  int n;
  vector < int > g[MAXN];
  \operatorname{int} sz [MAXN], dep [MAXN];
  int ts, tid [MAXN], tdi [MAXN], tl [MAXN], tr [MAXN];
      ts : timestamp , useless after yutruli
       tid[u]: pos. of node u in the seq.
                : node at pos i of the seq.
       tdi[i]
           , tr[u]: subtree interval in the seq. of
       t l
       node u
  \verb|int| mom[MAXN] [LOG] , \ head[MAXN];
  // head[ u ] : head of the chain contains u
  void dfssz(int u, int p){
    dep[u] = dep[p] + 1;
    mom[\,u\,]\,[\,0\,] \;=\; p\,;
    sz[u] = 1:
    head[u] = u;
     for (int \& v:g[u]) if (v != p){
       dep[v] = dep[u] + 1;
       dfssz(v, u);
       sz[u] += sz[v];
  void dfshl(int u){
    //printf("dfshl %d\n", u);
    \,tid\,[\,u\,] \,\,=\,\,tl\,[\,u\,] \,\,=\,\,tr\,[\,u\,] \,\,=\,\,ts\,;
    tdi[tid[u]] = u;
     sort(ALL(g[u]),
          [\&](int a, int b)\{return sz[a] > sz[b];\});
    bool flag = 1;
```

```
for(int\& v:g[u]) if(v != mom[u][0]) {
       if(flag) head[v] = head[u], flag = 0;
       dfshl(v);
       tr[u] = tr[v];
  inline int lca(int a, int b){
     if(dep[a] > dep[b]) swap(a, b);
     //printf("lca %d %d\n", a, b);
     int diff = dep[b] - dep[a];
    REPD(k, LOG-1, 0) if (diff & (1<<k)){
//printf("b %d\n", mom[b][k]);
       b = mom[b][k];
     if (a == b) return a;
    REPD(\,k\,,\,\,LOG\text{-}\,1\,,\,\,\,0\,)\  \  \, \textbf{if}\,\,(mom[\,a\,]\,[\,k\,]\  \, !=\,\,mom[\,b\,]\,[\,k\,]\,)\,\{
       a = mom[a][k];
       b = mom[b][k];
     return mom[a][0];
  void init( int _n ){
    n = \underline{n};
    REP(\ i\ ,\ 1\ ,\ n\ )\ g[\ i\ ].\,clear();
  void addEdge( int u , int v ){
    g\left[\begin{array}{cc} u \end{array}\right].\,push\_back\left(\begin{array}{cc} v \end{array}\right);
    g[v].push_back(u);
  void yutruli(){
     dfssz(1, 0);
     ts = 0;
     dfshl(1);
    REP(k, 1, LOG-1) REP(i, 1, n)
       mom[i][k] = mom[mom[i][k-1]][k-1];
  vector< tii > getPath( int u , int v ){
     {\tt vector} < \; {\tt tii} \; > \; {\tt res} \, ;
     while ( tid [ u ] < tid [ head [ v ] ] ) 
       res.push\_back(\ tii(tid[\ head[\ v\ ]\ ]\ ,\ tid[\ v\ ])\ )
       v = mom[head[v]][0];
     res.push_back( tii( tid[ u ] , tid[ v ] ));
     reverse( ALL( res ) );
     return res;
     ^{*} res : list of intervals from u to v
        u must be ancestor of v
      * usage :
        vector< tii >& path = tree.getPath( u , v )
      * for ( tii tp : path ) \{
         int l , r; tie(l , r) = tp;
          upd( l , r );
          uu = tree.tdi[l], vv = tree.tdi[r];
          uu ~> vv is a heavy path on tree
  }
} tree;
```

4.6 Dominator Tree

```
const int MAXN = 100010;
struct DominatorTree{
#define REP(i,s,e) for(int i=(s);i<=(e);i++)
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
int n , m , s;
vector< int > g[ MAXN ] , pred[ MAXN ];
vector< int > cov[ MAXN ];
int dfn[ MAXN ] , nfd[ MAXN ] , ts;
int par[ MAXN ] , idom[ MAXN ];
int sdom[ MAXN ] , idom[ MAXN ];
int mom[ MAXN ] , mn[ MAXN ];
int mom[ MAXN ] , mn[ MAXN ];
inline bool cmp( int u , int v )
{ return dfn[ u ] < dfn[ v ]; }
int eval( int u ){
   if( mom[ u ] == u ) return u;
   int res = eval( mom[ u ] ) ;
   if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))</pre>
```

```
mn[u] = mn[mom[u]];
     return mom[ u ] = res;
  void init( int _n , int _m , int _s ){
    ts = 0; n = \underline{n}; m = \underline{m}; s = \underline{s};
    REP(\ i \ , \ 1 \ , \ n \ ) \ g[\ i \ ] . \, clear () \ , \ pred [\ i \ ] . \, clear () \ ;
  void addEdge( int u , int v ){
     g[ u ].push_back( v );
     pred[ v ].push_back( u );
  void dfs( int u ){
     ts++;
     dfn\left[\begin{array}{cc} u \end{array}\right] \,=\, ts\,;
     nfd[ts] = u;
    for ( int v : g[ u ] ) if ( dfn[ v ] == 0 ) { par[ v ] = u;
       dfs(v);
    }
  void build(){
    REP(i , 1 , n) \{
       dfn[i] = nfd[i] = 0;
       cov[ i ].clear();
      mom[\ i\ ] = mn[\ i\ ] = sdom[\ i\ ] = i\,;
     dfs(s);
    REPD(i, n, 2)
       int u = nfd[i];
       if (u = 0) continue;
       for( int v : pred[ u ] ) if( dfn[ v ] ){
         eval(v);
         \operatorname{sdom}[u] = \operatorname{sdom}[\operatorname{mn}[v]];
       cov[sdom[u]].push_back(u);
      mom[u] = par[u];
       for ( int w : cov [ par [ u ] ] ) {
         eval( w );
         idom[w] = mn[w];
         else idom[w] = par[u];
       }
       cov[ par[ u ] ].clear();
    REP( i , 2 , n ){
       int u = nfd[i];
       \begin{array}{l} if (\ u =\!\!\!\!= 0\ ) \ continue \ ; \\ if (\ idom[\ u\ ]\ != \ sdom[\ u\ ]\ ) \end{array}
         idom[u] = idom[idom[u]];
} domT;
```

4.7 Number of Maximal Clique

```
// bool g\left[\,\right]\left[\,\right] : adjacent array indexed from 1 to n
void dfs(int sz){
   int i, j, k, t, cnt, best = 0;
if(ne[sz]==ce[sz]){ if (ce[sz]==0) ++ans; return; }
   for(t=0, i=1; i \le ne[sz]; ++i){
      for (cnt=0, j=ne[sz]+1; j \le ce[sz]; ++j)
      if (!g[lst[sz][i]][lst[sz][j]]) ++cnt;
       if (t=0 \mid \mid cnt < best) t=i, best=cnt;
   } if (t && best <= 0) return;
   for (k=ne[sz]+1; k=ce[sz]; ++k) {
       \begin{array}{c} \mbox{if } (t>0) \{ \mbox{ for } (i=\!\!k; \ i\!<\!\!=\!\!ce\,[\,sz\,]; \ +\!\!+\!\!i\,) \\ \mbox{if } (!\,g\,[\,lst\,[\,sz\,]\,[\,t\,]\,]\,[\,lst\,[\,sz\,]\,[\,i\,]]) \mbox{ break}; \end{array} 
         swap(lst[sz][k], lst[sz][i]);
      i=lst[sz][k]; ne[sz+1]=ce[sz+1]=0;
      for (j=1; j<k; ++j) if (g[i][lst[sz][j]])
            lst[sz+1][++ne[sz+1]] = lst[sz][j];
      for (ce[sz+1]=ne[sz+1], j=k+1; j<=ce[sz]; ++j) if (g[i][st[sz][j]]) lst [sz+1][++ce[sz+1]]=lst[sz
             || j |;
      dfs\left(\,sz\,{+}1\right)\,;\,\,+\!\!+\!\!ne\left[\,sz\,\right]\,;\,\,\,\text{--best}\,;
      for (j=k+1, cnt=0; j \le ce[sz]; ++j) if (!g[i][lst[sz]
             ][j]]) ++cnt;
      if (t==0 \mid \mid cnt < best) t=k, best=cnt;
      if (t && best <= 0) break;
```

```
}}
void work(){
  ne[0]=0; ce[0]=0;
  for(int i=1; i<=n; ++i) lst[0][++ce[0]]=i;
  ans=0; dfs(0);
}</pre>
```

4.8 Strongly Connected Component

```
struct Scc{
  \begin{array}{lll} \textbf{int} & n \,, & nScc \,, & vst \, [M\!X\!N] \;, & bln \, [M\!X\!N] \;; \end{array}
  vector < int > E[MXN], rE[MXN], vec;
  void init(int _n){
    n = \underline{n};
    for (int i=0; i<MXN; i++){
    E[i].clear();</pre>
       rE[i].clear();
     }
  void add_edge(int u, int v){
    E[u].PB(v);
    rE[v].PB(u);
  void DFS(int u){
     vst[u]=1;
     for (auto v : E[u])
       if (!vst[v]) DFS(v);
     vec.PB(u);
  void rDFS(int u){
     vst [u] = 1;
bln [u] = nScc;
     for (auto v : rE[u])
       if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
     vec.clear();
    FZ(vst);
     if (!vst[i]) DFS(i);
     reverse (vec.begin(), vec.end());
    FZ(vst);
     for (auto v : vec){
       if (!vst[v]){
         rDFS(v);
         nScc++;
       }
    }
  }
};
```

4.9 Dynamic MST

```
/* Dynamic MST O( Q lg^2 Q )
 (qx[i], qy[i])->chg weight of edge No.qx[i] to qy[i]
 delete an edge: (i, \infty)
add an edge: change from \infty to specific value
const int SZ=M+3*MXQ;
int a[N], *tz;
int find(int xx){
  int root=xx; while(a[root]) root=a[root];
  int next; while ((next=a[xx]))\{a[xx]=root; xx=next; \}
  return root;
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }</pre>
int \ kx\left[N\right], ky\left[N\right], kt\,,\ vd\left[N\right], id\left[M\right],\ app\left[M\right];
bool extra [M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,
    int *z, int m1, long long ans) {
  if(Q==1){
    for (int i=1; i \le n; i++) a [i]=0;
    z[qx[0]]=qy[0]; tz = z;
    for (int i=0; i < m1; i++) id [i]=i;
    sort(id,id+m1,cmp); int ri,rj;
    for(int i=0;i<m1;i++){</pre>
       ri=find(x[id[i]]); rj=find(y[id[i]]);
```

```
if (ri!=rj) { ans+=z[id[i]]; a[ri]=rj; }
            printf("%lld\n",ans);
           return;
      int ri, rj;
       //contract
      kt = 0:
       for (int i=1; i \le n; i++) a [i]=0;
      for (int i=0; i<Q; i++){
            ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
                        ri]=rj;
      int tm=0;
      for (int i=0; i \le m1; i++) extra [i]=true;
      \begin{array}{lll} & \text{for} (int & i = 0; i <\!\! Q; i +\!\! +\!) & \text{extra} [ & qx[i] & ] =\! false \, ; \end{array}
      \label{eq:formal} \begin{array}{ll} \text{for} \, (\, \text{int} \quad i = \! 0; i \! < \! \! \text{m1}; \, i \! + \! \! + \! \! ) \quad \text{if} \, (\, \text{extra} \, [\, i \, ] \, ) \quad \text{id} \, [\, \text{tm} \! + \! \! + \! \! ] \! = \! i \, ; \end{array}
      tz=z; sort(id,id+tm,cmp);
      for (int i=0; i< tm; i++){
            ri=find(x[id[i]]); rj=find(y[id[i]]);
            if (ri!=rj){
                 a\,[\; r\, i\, ]\! =\! r\, j\; ;\;\; ans\; +\!\! =\; z\, [\; id\, [\; i\; ]\; ]\; ;\;\;
                  kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
      for (int i=1; i \le n; i++) a [i]=0;
      for (int i=0; i < kt; i++) a[find(kx[i])] = find(ky[i]);
      int n2=0;
      for(int i=1;i<=n;i++) if(a[i]==0)
      vd\left[ \ i\right] \!\!=\!\!+\!\!+\!n2\,;
      for (int i=1;i<=n;i++) if (a[i])
      vd[i]=vd[find(i)];
      int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
      for (int i=0; i < m1; i++) app [i]=-1;
      \quad \quad \text{for} \, (\, \text{int} \ i \! = \! 0; i \! < \! \! Q; \, i \! + \! + \! ) \ if \, (\, \text{app} \, [\, qx \, [\, i \, ]] \! = \! = \! -1) \, \{ \,
           app[qx[i]]=m2; m2++;
      for (int i=0; i \triangleleft Q; i++){ z[qx[i]]=qy[i]; qx[i]=app[qx[i]; qx[i]=app[qx[i]: qx[i]=app[qx[i]: qx[i]=app[qx[i]: qx[i]=app[qx[i]: qx[i]=app[qx[i]: qx[i]=app[qx[i]: qx[i]: qx[i]=app[qx[i]: qx[i]: qx[i]=app[qx[i]: qx[i]: qx[
                  i ] ]; }
      for (int i=1; i \le n2; i++) a[i]=0;
      for (int i=0; i< tm; i++){
            ri=find(vd[ x[id[i]] ]); rj=find(vd[ y[id[i]] ]);
            if (ri!=rj){
                 a[ri]=rj; Nx[m2]=vd[x[id[i]]];
                 Ny[m2]=vd[y[id[i]]; Nz[m2]=z[id[i]]; m2++;
           }
      int mid=Q/2;
      \mathtt{solve}\left(\left. \mathsf{qx} \right., \mathsf{qy} \right., \mathtt{mid} \left., \mathsf{n2} \right., \mathsf{Nx}, \mathsf{Ny}, \mathsf{Nz} \right., \mathtt{m2}, \mathtt{ans} \left. \right) ;
      solve (qx+mid, qy+mid, Q-mid, n2, Nx, Ny, Nz, m2, ans);
int x[SZ], y[SZ], z[SZ], qx[MXQ], qy[MXQ], n, m, Q;
void init(){
      scanf("%d%d",&n,&m);
      for(int i=0;i<m;i++) scanf("%d%d%d",x+i,y+i,z+i);
      scanf ( "%d",&Q);
      for (int i=0; i < Q; i++){ scanf("%d%d", qx+i, qy+i); qx[i]
                 ]--; }
 \begin{array}{ll} \textbf{void} & \text{work}() \left\{ \begin{array}{ll} \textbf{if}(Q) & \text{solve}(qx,qy,Q,n,x,y,z,m,0) \,; \end{array} \right\} \end{array}
int main(){init(); work(); }
```

4.10 General Matching

```
const int N = 514, E = (2e5) * 2;
struct Graph{
  int to[E], bro[E], head[N], e;
  int lnk[N], vis[N], stp,n;
  void init( int _n ){
    stp = 0; e = 1; n = _n;
    for( int i = 1; i <= n; i ++ )
        lnk[i] = vis[i] = 0;
}
  void add_edge(int u, int v){
    to[e]=v, bro[e]=head[u], head[u]=e++;
    to[e]=u, bro[e]=head[v], head[v]=e++;
}
bool dfs(int x){</pre>
```

```
vis[x]=stp;
     for (int i=head[x]; i; i=bro[i]) {
       int v=to[i];
       if (!lnk[v]) {
          lnk[x]=v, lnk[v]=x;
          return true;
       else\ if(vis[lnk[v]] < stp){
          int w=lnk[v];
          \ln k\,[\,x] \!=\! v\,, \ln k\,[\,v] \!=\! x\,, \ln k\,[\,w] \!=\! 0\,;
          if (dfs (w)) {
            return true;
          lnk[w]=v, lnk[v]=w, lnk[x]=0;
     return false;
  int solve(){
     int ans = 0;
     for (int i=1; i \le n; i++)
       if (!lnk[i]) {
          stp++; ans += dfs(i);
     return ans;
} graph;
```

4.11 Minimum General Weighted Matching

```
struct Graph {
  // Minimum General Weighted Matching (Perfect Match)
  static const int MXN = 105;
  int n, edge[MXN][MXN];
  int match [MXN] , dis [MXN] , onstk [MXN] ;
  vector<int> stk;
  void init(int _n) {
    n\,=\,\underline{}n;
    for (int i = 0 ; i < n ; i ++)
       for(int j = 0 ; j < n ; j ++ )
         edge[i][j] = 0;
  void add_edge(int u, int v, int w)
  \{\ edge\,[\,u\,]\,[\,v\,]\ =\ edge\,[\,v\,]\,[\,u\,]\ =\ w;\ \}
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.PB(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){
       if (u != v \&\& match[u] != v \&\& !onstk[v]) {
         int m = match[v]
         if \ (\,dis\,[m]\,>\,dis\,[\,u\,]\,\,-\,\,edge\,[\,v\,]\,[m]\,\,+\,\,edge\,[\,u\,]\,[\,v\,]\,)\,\{
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1;
           stk.PB(v);
           if (SPFA(m)) return true;
           stk.pop_back();
           onstk[v] = 0;
         }
      }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i< n; i+=2){
      \operatorname{match}[i] = i+1;
      \mathrm{match}\,[\;i+1]\;=\;i\;;
    while (true){
       int found = 0;
       for (int i = 0 ; i < n ; i ++)
         onstk[ i ] = dis[ i ] = 0;
       for (int i=0; i< n; i++){
         stk.clear();
         if (!onstk[i] && SPFA(i)){
           found = 1;
           while (SZ(stk) >= 2){
             int u = stk.back(); stk.pop_back();
```

4.12 Maximum General Weighted Matching

```
struct WeightGraph
  static const int INF = INT MAX;
  static const int N = 514;
  struct edge{
    int u,v,w; edge(){}
    edge(int ui, int vi, int wi)
       : u(ui), v(vi), w(wi)\{\}
  int n,n_x;
  \mathrm{edge}\ \mathrm{g}\,[\overline{\mathrm{N}}^{*}2]\,[\mathrm{N}^{*}2]\,;
  int lab[N*2];
  int match [N*2], slack [N*2], st [N*2], pa [N*2];
  int flo_from [N*2] [N+1], S[N*2], vis [N*2];
  vector < int > flo[N*2];
  queue<int> q;
  int e_delta(const edge &e){
    return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
  void update_slack(int u,int x){
    if(!slack[x]||e_delta(g[u][x]) < e_delta(g[slack[x]][
         x]))slack[x]=u;
  void set_slack(int x){
    slack[x]=0;
    for (int u=1;u \le n;++u)
       if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
         update_slack(u,x);
  void q_push(int x){
    if(x \le n)q.push(x);
    else for (size_t i=0; i < flo[x]. size(); i++)
      q_push(flo[x][i]);
  void set_st(int x, int b){
    st[x]=b;
    if(x>n) for(size_t i=0;i<flo[x].size();++i)
       set_st(flo[x][i],b);
  int get_pr(int b, int xr){
    int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].
         begin();
    if(pr\%2==1){
       reverse(flo[b].begin()+1,flo[b].end());
       return (int) flo[b]. size()-pr;
    }else return pr;
  void set_match(int u, int v){
    \operatorname{match}[\mathbf{u}] = g[\mathbf{u}][\mathbf{v}] \cdot \mathbf{v};
    if(u \le n) return;
    edge \ e=g[u][v];
    int xr = flo_from[u][e.u], pr = get_pr(u,xr);
    for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i]
         ^1]);
    set_match(xr,v);
    rotate (flo [u]. begin (), flo [u]. begin ()+pr, flo [u]. end
  void augment(int u,int v){
    for (;;) {
       int xnv=st[match[u]];
       set_match(u,v);
       if (!xnv)return;
```

```
set_match(xnv, st[pa[xnv]]);
                                                                     if(q.empty())return false;
    u=st[pa[xnv]], v=xnv;
                                                                     for (;;) {
  }
                                                                       while(q.size()){}
                                                                          int u=q.front();q.pop();
                                                                          if(S[st[u]]==1)continue;
int get_lca(int u,int v){
  static int t=0;
                                                                          for (int v=1; v \leq n; ++v)
  for(++t; u | | v; swap(u, v)) {
                                                                            if(g[u][v].w>0&&st[u]!=st[v]){
    if (u==0)continue;
                                                                               if(e_delta(g[u][v])==0){
    if (vis[u]==t)return u;
                                                                                 if(on_found_edge(g[u][v]))return true;
    vis[u]=t;
                                                                              }else update_slack(u, st[v]);
                                                                            }
    u=st[match[u]];
    if(u)u=st[pa[u]];
                                                                       int d=INF;
                                                                       for(int b=n+1;b<=n_x;++b)</pre>
  return 0;
                                                                          if(st[b]==b\&\&S[b]==1)d=min(d, lab[b]/2);
                                                                       for(int x=1;x<=n_x;++x)
void add_blossom(int u,int lca,int v){
  int b=n+1;
                                                                          if(st[x]==x\&\&slack[x]){
  while (b \le n_x \le t [b]) + b;
                                                                            if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]));
                                                                            else if (S[x]==0)d=min(d,e\_delta(g[slack[x]]|x))
  if(b>n_x)++n_x;
  lab[b]=0,S[b]=0;
                                                                                 ])/2);
  match[b]=match[lca];
                                                                       for(int u=1;u<=n;++u){
  flo[b].clear();
  flo[b].push_back(lca);
                                                                          if(S[st[u]]==0){
                                                                            if (lab[u]<=d)return 0;
  for(int x=u,y;x!=lca;x=st[pa[y]])
    flo [b]. push\_back(x), flo [b]. push\_back(y=st [match [x
                                                                            lab[u]-=d;
         ]]),q_push(y);
                                                                          else if(S[st[u]]==1)lab[u]+=d;
  reverse(flo[b].begin()+1,flo[b].end());
  for (int x=v, y; x!=lca; x=st[pa[y]])
                                                                        for(int b=n+1;b \le n_x;++b)
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
                                                                          if(st[b]==b)
                                                                            if(S[st[b]]==0)lab[b]+=d*2;
         ]]),q_push(y);
                                                                            else if (S[st[b]]==1) lab [b]-=d*2;
  set_st(b,b);
  for(int x=1;x<=n_x;++x)g[b][x].w=g[x][b].w=0;
  for (int x=1;x \le n;++x) flo_from [b][x]=0;
                                                                        q=queue < int > ();
  for (size_t i=0;i<flo[b].size();++i){
                                                                       for (int x=1;x \le n_x;++x)
    int xs=flo[b][i];
                                                                          \label{eq:stack}  \text{if (st [x]==x\&\&slack [x]\&\&st [slack [x]]!=x\&\&e\_delta} 
    for (int x=1;x \le n_x;++x)
                                                                               (g[slack[x]][x]) == 0)
       if(g[b][x].w==0||e\_delta(g[xs][x])<e_delta(g[b
                                                                            if(on_found_edge(g[slack[x]][x]))return true;
            ][x]))
                                                                       for (int b=n+1;b \le n_x;++b)
                                                                          if(st[b]==b\&\&S[b]==1\&\&lab[b]==0)expand\_blossom(
         g[b][x]=g[xs][x],g[x][b]=g[x][xs];
    for(int x=1;x<=n;++x)
                                                                              b):
       if (flo_from [xs][x]) flo_from [b][x]=xs;
                                                                     return false;
  set slack(b);
                                                                   pair < long long, int > solve(){
void expand_blossom(int b){
                                                                     memset(match+1,0,sizeof(int)*n);
  for(size\_t i=0;i<flo[b].size();++i)
                                                                     n_x=n;
    set_st(flo[b][i],flo[b][i]);
                                                                     int n_matches=0;
  \begin{array}{ll} \textbf{int} & \textbf{xr=flo\_from} \, [\, \textbf{b} \, ] \, [\, \textbf{g} \, [\, \textbf{b} \, ] \, [\, \textbf{pa} \, [\, \textbf{b} \, ] \, ] \, . \, \textbf{u} \, ] \, \, , \textbf{pr=get\_pr} \, (\, \textbf{b} \, , \textbf{xr} \, ) \, ; \end{array}
                                                                     long long tot_weight=0;
  for (int i=0; i < pr; i+=2){
                                                                     for(int u=0;u \leq n;++u)st[u]=u,flo[u].clear();
    int xs=flo[b][i], xns=flo[b][i+1];
                                                                     int w_max=0;
    pa[xs]=g[xns][xs].u;
                                                                     for (int u=1;u \le n;++u)
                                                                       for(int v=1;v<=n;++v){
    S[xs]=1,S[xns]=0;
    slack[xs]=0, set\_slack(xns);
                                                                          flo_from[u][v]=(u=v?u:0);
    q_push(xns);
                                                                         w_{max}=max(w_{max}, g[u][v].w);
  S[xr]=1,pa[xr]=pa[b];
                                                                     for (int u=1;u \le n;++u) lab [u]=w_max;
  for (size_t i=pr+1;i<flo[b].size();++i){
                                                                     while (matching())++n_matches;
    int xs=flo[b][i];
                                                                     for (int u=1;u \le n;++u)
    S[xs]=-1,set\_slack(xs);
                                                                        if (match [u]&&match [u]<u)
                                                                          tot_weight+=g[u][match[u]].w;
  st[b]=0;
                                                                     return make_pair(tot_weight, n_matches);
bool on_found_edge(const edge &e){
                                                                   void add_edge( int ui , int vi , int wi ){
  int u=st[e.u], v=st[e.v];
                                                                     g[ui][vi].w = g[vi][ui].w = wi;
  if(S[v]==-1)
    pa[v]=e.u,S[v]=1;
                                                                   void init( int _n ){
    int nu=st[match[v]];
                                                                     n\,=\,\underline{}\,n\,;
    slack[v]=slack[nu]=0;
                                                                     for (int u=1;u \le n;++u)
    S[nu]=0,q_push(nu);
                                                                       for (int v=1; v \le n; ++v)
  else if(S[v]==0){
                                                                          g[u][v]=edge(u,v,0);
    int lca=get_lca(u,v);
    if (!lca)return augment(u,v), augment(v,u), true;
                                                               } graph;
    else add_blossom(u,lca,v);
  return false;
                                                                         Minimum Steiner Tree
                                                                4.13
bool matching(){
  memset(S+1,-1,sizeof(int)*n_x);
                                                                // Minimum Steiner Tree
  memset(slack+1,0,sizeof(int)*n_x);
                                                                 // O(V 3^T + V^2 2^T)
  q=queue < int > ();
                                                                struct SteinerTree{
  for (int x=1;x \le n_x;++x)
                                                                #define V 33
    if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(x);
                                                                #define T 8
```

```
#define INF 1023456789
  \label{eq:continuous} \begin{array}{lll} \mbox{int} & n & , & dst \, [V] \, [V] & , & dp \, [1 <\!\! < T] \, [V] & , & tdst \, [V] \, ; \end{array}
  void init( int _n ){
    n = \underline{n};
    for ( int i = 0 ; i < n ; i ++ ){
      for( int j = 0 ; j < n ; j ++ )
dst[i][j] = INF;
dst[i][i] = 0;
    }
  }
  void add_edge( int ui , int vi , int wi ){
    dst[vi][ui] = min(dst[vi][ui], wi);
  void shortest_path(){
    \quad \  \  \text{for} \, ( \  \  \, \text{int} \  \, k \, = \, 0 \  \, ; \  \, k \, < \, n \  \, ; \  \, k \, + \!\!\!\! + \, )
      for (int i = 0 ; i < n ; i ++)
        for (int j = 0 ; j < n ; j \leftrightarrow)
          dst[i][j] = min(dst[i][j],
                 dst[i][k] + dst[k][j];
  int solve( const vector<int>& ter ){
    int t = (int) ter.size();
    for ( int i = 0 ; i < (1 << t) ; i ++ )
      for(int j = 0 ; j < n ; j +++)
    dp[ i ][ j ] = INF;
for( int i = 0 ; i < n ; i ++ )
      dp[0][i] = 0;
    for ( int msk = 1 ; msk < (1 << t) ; msk ++ ){
      if (msk == (msk & (-msk))) 
        int who = \_\_lg(msk);
        continue;
      for (int i = 0 ; i < n ; i ++)
        for ( int submsk = ( msk - 1 ) & msk ; submsk ;
                  submsk = (submsk - 1) \& msk)
             dp[msk ^submsk][i];
      for (int i = 0; i < n; i ++){}
        tdst[i] = INF;
        dp[ msk ][ j ] + dst[ j ][ i ] );
      int ans = INF;
    for (int i = 0 ; i < n ; i ++)
      ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
    return ans;
} solver;
```

4.14 BCC based on Vertex

```
struct BccVertex {
  int n, nScc, step, dfn[MXN], low[MXN];
  vector<int> E[MXN], sccv[MXN];
  int top, stk [MXN];
  void init(int _n) {
   n\,=\,\underline{}\,n;
    nScc = step = 0;
    for (int i=0; i<n; i++) E[i].clear();
  void add_edge(int u, int v) {
   E[u].PB(v);
   E[v].PB(u);
  void DFS(int u, int f) {
    dfn[u] = low[u] = step++;
    stk[top++] = u;
    for (auto v:E[u]) {
      if (v = f) continue;
      if (dfn[v] = -1) {
        DFS(v\,,u)\,;
        low[u] = min(low[u], low[v]);
```

```
if (low[v] >= dfn[u]) {
           int z;
           sccv[nScc].clear();
           do {
             z = stk[--top]:
             sccv[nScc].PB(z);
           \} while (z != v);
           sccv[nScc].PB(u);
         }
      } else {
        low[u] = min(low[u], dfn[v]);
    }
  vector<vector<int>>> solve() {
    vector<vector<int>>> res;
    for (int i=0; i< n; i++) {
      dfn[i] = low[i] = -1;
    for (int i=0; i<n; i++) {
       if (dfn[i] == -1) {
        top = 0;
        \mathrm{DFS}(\,i\,\,,\,i\,)\,;
      }
    REP(i, nScc) res.PB(sccv[i]);
    return res;
}graph;
```

5 Flow

5.1 Bipartite Matching

```
struct BipartiteMatching { // O( ( V + E ) * sqrt( V )
   vector < int > G[N];
                                   // N = total number of
       nodes = n + m
  \begin{array}{lll} & \text{int} & n \,, & m, & \text{match} \left[ \begin{array}{c} N \end{array} \right] \,, & \text{dist} \left[ \begin{array}{c} N \end{array} \right] ; \end{array}
  // n: number of nodes on left side, nodes are
       numbered 1 to n
   // m: number of nodes on right side, nodes are
        numbered n+1 to n+m
   // G = NIL[0] G1[G[1--n]] G2[G[n+1--n+m]]
  bool BFS() {
     if ( match[ i ] = 0 ) {
          dist[i] = 0;
          Q.push(i);
       }
       else
          dist[i] = INF;
     \mathrm{dist} \left[ \begin{array}{cc} 0 \end{array} \right] \, = \, \mathrm{INF} \, ;
     while (!Q.empty()) {
       int u = Q. front();
       Q. pop();
        if ( dist[ u ] < dist[ 0 ] )</pre>
          for ( int v : G[ u ] )
            if ( dist[ match[ v ] ] == INF ) {
  dist[ match[ v ] ] = dist[ u ] + 1;
  Q.push( match[ v ] );
     bool DFS( int u ) {
     if ( u != 0 ) {
        for ( int v : G[ u ] )
          if ( dist[ match[ v ] ] == dist[ u ] + 1 && DFS
               ( match [ v ] ) ) {
             match[v] = u;
            match[u] = v;
             return true;
        dist[u] = INF;
        return false;
```

```
return true;
  int Max_Match() {
    int matching = 0;
    fill_n(match, n + m + 1, 0);
    while (BFS())
      for ( int i = 1; i \le n; i++)
        if (match[i] = 0 \&\& DFS(i)) matching++;
    return matching;
  }
  void AddEdge( int u, int v ) { G[ u ].push_back( n +
      v ); }
  void DFS2( int u ) {
    dist[u] = 1;
    if ( v != match[ u ] ) {
       dist[v] = 1;
        if ( match[ v ] != 0 ) DFS2( match[ v ] );
  }
  void Min_Vertex_Cover( vector< int > &lrtn , vector<</pre>
      int > &rrtn ) {
     / after calling Max_Match
    fill_n(dist + 1, n + m, 0);
    for (int i = 1; i \le n; i \leftrightarrow)
       \begin{tabular}{ll} if (dist[i] == 0) & lrtn.push\_back(i); \\ \end{tabular} 
    for (int i = n + 1; i \le n + m; i++)
      if ( dist[i] = 1 ) rrtn.push_back(i - n);
} ob;
```

5.2 MaxFlow (ISAP)

```
// O( V^2 * E ) V up to 2w
#define SZ( c ) ( (int)( c ).size() )
class MaxFlow {
public:
  \label{eq:static_const} \begin{array}{ll} \text{static const int MAXV} = 5\,\text{e}3 \,+\, 10; \end{array}
  static const int INF = 1e18;
  struct Edge {
    \quad \quad \text{int} \quad v\,, \quad c\,, \quad r\;; \quad
    Edge( int _v, int _c, int _r ) : v( _v ), c( _c ),
         r( _r ) {}
  int s, t;
  vector < Edge > G[ MAXV * 2 ];
  int iter [ MAXV * 2 ], d[ MAXV * 2 ], gap [ MAXV * 2 ],
        tot:
  void Init( int x ) {
    tot = x + 2;
    s = x + 1, t = x + 2;
    for ( int i = 0; i \le tot; i++) {
       G[ i ].clear();
       iter[i] = d[i] = gap[i] = 0;
  void AddEdge( int u, int v, int c ) {
   G[ u ].push_back( Edge( v, c, SZ( G[ v ] ) ) );
    G[ v ].push_back( Edge( u, 0, SZ( G[ u ] ) - 1 ) );
  int DFS( int p, int flow ) {
  if ( p == t ) return flow;
     for ( int &i = iter[ p ]; i < SZ( G[ p ] ); i++ ) {
       Edge &e = G[ p ][ i ];
if ( e.c > 0 && d[ p ] == d[ e.v ] + 1 ) {
         int f = DFS(e.v, min(flow, e.c));
          if ( f ) {
            e.c -= f:
            G[e.v][e.r].c += f;
            return f:
       }
     if ( ( --gap[d[p]] ) == 0 )
       d[s] = tot;
     else {
       d[ p ]++;
```

```
iter[ p ] = 0;
    ++gap[ d[ p ] ];
}
return 0;
}
int Solve() {
    int res = 0;
    gap[ 0 ] = tot;
    for ( res = 0; d[ s ] < tot; res += DFS( s, INF ) )
    ;
    return res;
}
};</pre>
```

5.3 MinCostMaxFlow

```
// O( V^2 * F )
class MinCostMaxFlow {
 public:
  static const int MAXV = 2000;
  static const int INF = 1e9;
  struct Edge {
    int v, cap, w, rev;
    Edge() {}
     Edge(\ int\ t2\,,\ int\ t3\,,\ int\ t4\,,\ int\ t5\,)\ :\ v(\ t2\,)\,,
        cap(t3), w(t4), rev(t5)  {}
  };
  int V, s, t;
  vector< Edge > g[ MAXV ];
  void Init( int n ) {
                            // total number of nodes
// s = source, t = sink
    V = n + 4;
    s = n + 1, t = n + 4;
    // cap: capacity, w: cost void AddEdge( int a, int b, int cap, int w ) {
    g[a].push_back(Edge(b, cap, w, (int)g[b].size
        () );
    g[ b ].push_back( Edge( a, 0, -w, (int)g[ a ].size
         () - 1 ));
  int d[ MAXV ], id[ MAXV ], mom[ MAXV ];
  bool inqu[MAXV];
  // the size of qu should be much large than MAXV
  int MncMxf() {
    \begin{array}{ll} \textbf{int} & \text{INF} = \text{INF}; \end{array}
    int mxf = 0, mnc = 0;
    while (1) {
      fill(d + 1, d + 1 + V, INF);
       fill ( inqu + 1, inqu + 1 + V, 0 );
      fill (mom + 1, mom + 1 + V, -1);
      mom[\ s\ ]\ =\ s\ ;
      d[s] = 0;
      ql = 1, qr = 0;
      qu[++qr] = s;
      inqu[s] = 1;
      while (ql \ll qr)
        int u = qu[ql++];
        inqu\left[\begin{array}{cc} u\end{array}\right] \,=\, 0;
        for ( int i = 0; i < (int)g[u].size(); i++)
          Edge \&e = g[u][i];
           int v = e.v;
           if ( e.cap > 0 && d[v] > d[u] + e.w ) {
            d[v] = d[u] + e.w;

\begin{array}{ccc}
\text{mom}[& v & ] &= u; \\
\text{id}[& v & ] &= i;
\end{array}

             if (!inqu[v]) qu[++qr] = v, inqu[v]
        }
      if (mom[t] = -1) break;
      int df = INF;
      df, g[ mom[ u ] ][ id[ u ] ].cap );
      for ( int u = t; u != s; u = mom[u] ) {
        Edge \&e = g[mom[u]][id[u]];
        e.\,cap \ -= \ df\,;
```

```
g[ e.v ][ e.rev ].cap += df;
}
mxf += df;
mnc += df * d[ t ];
}
return mnc;
}
};
```

5.4 BoundedMaxFlow

```
// node from 0 \sim size - 1
class Graph {
public:
 Graph (const int &size )
     : size_{(size + 2)},
        source_( size ),
        sink_{(size + 1)}
       edges_( size_ ),
capacity_( size_, vector< int >( size_, 0 ) ),
        lower_bound_( size_, vector< int >( size_, 0 )
        lower_bound_sum_( size_, 0 ) {}
  void AddEdge( int from, int to, int lower_bound, int
      capacity ) .
    edges_[ from ].push_back( to );
    edges_[ to ].push_back( from );
    capacity_[ from ][ to ] += capacity - lower_bound;
    lower\_bound\_[ \ from \ ][ \ to \ ] \ +\!\!= lower\_bound;
   int MaxFlow() {
    int expected_source = 0, expected_sink = 0;
    for (int i = 0; i < source_; ++i)
      capacity\_[ \ i \ ][ \ sink\_ \ ] = lower\_bound\_sum\_[ \ i
           ];
        edges_[ i ].push_back( sink_ );
edges_[ sink_ ].push_back( i );
        expected_sink += lower_bound_sum_[ i ];
      else if ( lower_bound_sum_[ i ] < 0 ) {</pre>
        capacity_[ source_ ][ i ] = -lower_bound_sum_[
           i ];
        edges_[ source_ ].push_back( i );
        expected_source -= lower_bound_sum_[ i ];
    int Flow = 0;
    while ( BFS( source_, sink__) )
      for ( auto \& from : edges_[ sink_ ] ) {
        if ( from_[ from ] == -1 ) continue;
        from_[sink_] = from;
        int current_Flow = numeric_limits< int >::max()
        for ( int i = sink_; i != source_; i = from_[ i
             ] )
          current_Flow = min( current_Flow, capacity_[
             from_[ i ] ][ i ] );
        if ( not current_Flow ) continue;
        for ( int i = sink_; i != source_; i = from_[ i
             ] ) {
          capacity_[ from_[ i ] ][ i ] -= current_Flow;
          capacity_[ i ][ from_[ i ] += current_Flow;
        Flow += current_Flow;
    if ( Flow != expected_source ) return -1;
    return Flow;
  int Flow( int from, int to ) { return lower_bound_[
      from ][ to ] + capacity_[ to ][ from ]; }
 private:
  bool BFS( int source, int sink ) {
    queue < int > Q;
   Q.push( source );
```

```
from_{\underline{}} = vector < int > (size_{\underline{}}, -1);
  from_[ source ] = source;
  while (!Q.empty())
    int node = Q.front();
    Q. pop();
    if ( node == sink ) continue;
    for ( auto &neighbour : edges_[ node ] )
      if ( from_[ neighbour ] == -1 && capacity_[
          node ][ neighbour ] > 0 ) {
        from_[ neighbour ] = node;
        Q.push(neighbour);
  return from_[ sink ] != -1;
int size_, source_, sink_;
vector< vector< int >> edges_;
vector< vector< int >> capacity_;
vector< vector< int >> lower_bound_;
vector< int > lower_bound_sum_;
vector< int > from_;
```

5.5 Dinic

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level [MXN];
  vector < Edge > E[MXN];
  void init(int _n, int _s, int _t){
  n = _n;  s = _s;  t = _t;
    for (int i=0; i<n; i++) E[i].clear();
  void add_edge(int u, int v, int f){
    E[u].PB(\{v,f,SZ(E[v])\});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS() {
    for (int i=0; i< n; i++) level [i] = -1;
    queue<int> que;
    que.push(s);
    level[s] = 0;
    while (!que.empty()){
       int u = que.front(); que.pop();
       for (auto it : E[u]) {
         if (it.f > 0 \&\& level[it.v] = -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
         }
      }
    }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
    for (auto &it : E[u]) {
       if (it.f > 0 \&\& level[it.v] == level[u]+1){
         int tf = DFS(it.v, min(nf, it.f));
         res \mathrel{+}= tf; \ nf \mathrel{-}= tf; \ it.f \mathrel{-}= tf;
        E[it.v][it.re].f += tf;
         if (nf = 0) return res;
    if (!res) level [u] = -1;
    return res;
  int flow(int res=0){
    while (BFS())
      res += DFS(s, 2147483647);
    return res;
} flow;
```

```
* Edmond's algoirthm for Directed MST
 * runs in O(VE)
const int MAXV = 10010;
const int MAXE = 10010;
const int INF
                     = 2147483647;
struct Edge{
  \quad \quad \text{int} \ u\,,\ v\,,\ c\,;
   Edge() {}
  Edge(int x, int y, int z):
     u(x), v(y), c(z)\{\}
int V, E, root;
Edge edges [MAXE];
inline int newV(){
  V++;
  return V;
inline void addEdge(int u, int v, int c){
  edges[E] = Edge(u, v, c);
bool con [MAXV]:
\label{eq:maxv} \begin{array}{ll} \text{int} & \text{mnInW}\left[\text{MAXV}\right] \;, & \text{cyc}\left[\text{MAXV}\right] \;, & \text{vis}\left[\text{MAXV}\right] \;; \end{array}
inline int DMST() {
    \  \, \text{fill} \, (\, \text{con} \, , \  \, \text{con+V+1}, \  \, 0) \, ; \\
   int r1 = 0, r2 = 0;
   while (1) {
      fill (mnInW, mnInW+V+1, INF);
       fill (prv, prv+V+1, -1); \\
     REP(\,i\;,\;\;1\,,\;\;E)\,\{
         int u=edges[i].u, v=edges[i].v, c=edges[i].c;
         if(u != v \&\& v != root \&\& c < mnInW[v])
            mnInW[v] = c, prv[v] = u;
      fill(vis, vis+V+1, -1);
      fill(cyc, cyc+V+1, -1);
      r1 = 0;
      bool jf = 0;
     REP(i, 1, V){
         if(con[i]) continue;
         if (prv[i] = -1 && i != root) return -1;
         if(prv[i] > 0) r1 += mnInW[i];
         int s;
         for(s = i; s != -1 \&\& vis[s] == -1; s = prv[s])
            vis[s] = i;
         if(s > 0 \&\& vis[s] == i){
              // get a cycle
            jf = 1;
            int v = s;
               \operatorname{cyc}[v] = s, \operatorname{con}[v] = 1;
               r2 += mnInW[v];
               v = prv[v];
            \} while (v != s);
            con[s] = 0;
         }
      if(!jf) break ;
     REP(i, 1, E){
         \quad \text{int } \& u = \operatorname{edges}[i].u;
         int &v = edges[i].v;
         \begin{array}{l} if\left(\operatorname{cyc}\left[v\right]>0\right) \ \operatorname{edges}\left[\,i\,\right].\,c \ -= \ mnlnW\left[\,\operatorname{edges}\left[\,i\,\right].\,v\,\right];\\ if\left(\operatorname{cyc}\left[u\right]>0\right) \ \operatorname{edges}\left[\,i\,\right].\,u \ = \ \operatorname{cyc}\left[\,\operatorname{edges}\left[\,i\,\right].\,u\,\right]; \end{array}
         if(cyc[v] > 0) edges[i].v = cyc[edges[i].v];
         if(u = v) edges[i--] = edges[E--];
  }
   return r1+r2;
```

5.7 SW min-cut

```
n = \underline{n};
    FZ(edge);
    FZ(del);
  void add_edge(int u, int v, int w){
     edge[v][u] += w;
  void search(int &s, int &t){
    FZ(vst); FZ(wei);
     s = t = -1;
     while (true){
       int mx=-1, cur=0;
for (int i=0; i<n; i++)
         if (!del[i] && !vst[i] && mx<wei[i])
           cur = i, mx = wei[i];
       if (mx = -1) break;
       vst[cur] = 1;
       s = t;
       t = cur;
       for (int i=0; i< n; i++)
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
  int solve(){
    int res = 2147483647;
     \quad \text{for (int } i\!=\!0,\!x\,,\!y\,; \ i\!<\!n\!-\!1\,; \ i\!+\!+\!)\{
       search(x,y);
       res = min(res, wei[y]);
       del[y] = \hat{1};
       for (int j=0; j<n; j++)
         edge[x][j] = (edge[j][x] += edge[y][j]);
     return res;
  }
}graph;
```

5.8 Theorem

```
Lucas' Theorem:
For non-negative integer n,m and prime P,
C(m,n) \mod P = C(m/M,n/M) * C(m/M,n/M) \mod P
= mult_i ( C(m_i,n_i) )
where m_i is the i-th digit of m in base P.

Pick's Theorem
A = i + b/2 - 1

Kirchhoff's theorem
A_{ii} = deg(i), A_{ij} = (i,j) \in P
Deleting any one row, one column, and cal the det(A)
*/
```

6 Geometry

6.1 Half Plane Intersection

6.2 Intersection of 2 Lines

```
#define N 100010
#define EPS 1e-8
#define SIDE 10000000
struct PO{ double x , y ; } p[ N ], o ;
struct LI{
   PO a, b;
   double angle;
   void in( double x1 , double y1 , double x2 , double
        y2 ){
        a.x = x1 ; a.y = y1 ; b.x = x2 ; b.y = y2;
   }
}li[N] , deq[N];
int n , m , cnt;
inline int dc( double x ){
   if (x > EPS ) return 1;
   else if (x < -EPS ) return -1;</pre>
```

```
return 0;
inline PO operator - ( PO a, PO b ){
 PO c;
 c.x = a.x - b.x ; c.y = a.y - b.y;
 return c;
inline double cross( PO a , PO b , PO c ){
 return ( b.x - a.x ) * ( c.y - a.y ) - ( b.y - a.y )
     * ( c.x - a.x );
inline bool cmp( const LI &a , const LI &b ){
 if ( dc(a.angle - b.angle) = 0 ) return dc(cross(angle - b.angle))
     a.a , a.b , b.a ) ) < 0;
 return a.angle > b.angle;
inline PO getpoint ( LI &a , LI &b ){
 double k1 = cross(a.a, b.b, b.a);
 double k2 = cross(a.b, b.a, b.b);
 PO \text{ tmp} = a.b - a.a , ans;
 ans.x = a.a.x + tmp.x * k1 / (k1 + k2);
 ans.y = a.a.y + tmp.y * k1 / ( k1 + k2 );
 return ans;
inline void getcut(){
 sort(li + 1, li + 1 + n, cmp); m = 1; for(int i = 2; i <= n; i ++)
   if ( dc( li[ i ].angle - li[ m ].angle ) != 0 )
 int bot = 1 , top = 2;
 b , getpoint( deq[ top ] , deq[ top - 1 ] ) ) )
        < 0 ) top --
   while (bot < top && dc(cross(li[i].a, li[i].
       b , getpoint( deq[ bot ] , deq[ bot + 1 ] ) )
        < 0 ) bot ++
   deq[ ++ top ] = li[i];
 while (bot < top && dc(cross(deq[bot].a, deq[
     bot ].b , getpoint( deq[ top ] , deq[ top - 1 ] )
      ) < 0 ) top --;
 while (bot < top && dc(cross(deq[top].a, deq[
     top ].b , getpoint( deq[ bot ] , deq[ bot + 1 ] )
) ) < 0 ) bot ++;
 cnt = 0;
 if ( bot = top ) return;
 for(int i = bot ; i < top ; i ++ ) p[ ++ cnt ] =
     getpoint(\ deq[\ i\ ]\ ,\ deq[\ i\ +\ 1\ ]\ );
 if ( top - 1 > bot ) p[ ++ cnt ] = getpoint ( deq[ bot
     ] , deq[ top ] );
double px[ N ] , py[ N ];
void read( int rm ) {
 ] , py[i + n] = py[i];
 for ( int i = 1 ; i <= n ; i ++ ) {
    // half-plane from li[ i ].a -> li[ i ].b
   li[i].a.x = px[i+rm+1]; li[i].a.y = py[i]
        + rm + 1 ];
       i ].b.x = px[i]; li[i].b.y = py[i];
   li[i].angle = atan2(li[i].b.y - li[i].a.y,
       li[i].b.x - li[i].a.x;
 }
inline double getarea( int rm ){
 read( rm ); getcut();
 double res = 0.0;
 p[ cnt + 1 ] = p[ 1 ];
 for ( int i = 1 ; i \le cnt ; i ++ ) res += cross ( o ,
     p[ i ] , p[ i + 1 ] )
 if ( res < 0.0 ) res *= -1.0;
 return res;
```

6.3 Intersection of 2 Segments

6.4 Intersection of Circle and Segment

6.5 Intersection of Polygon and Circle

```
Pt\ ORI\ ,\ info[\ N\ ];
Dr; int n;
// Divides into multiple triangle, and sum up
// oriented area
D area2(Pt pa, Pt pb){
  if(norm(pa) < norm(pb)) swap(pa, pb);
   if( norm(pb) < eps ) return 0;</pre>
  DS, h, theta;
  \begin{array}{l} D \ a = norm(\ pb \ ) \, , \ b = norm(\ pa \ ) \, , \ c = norm(pb \ - \ pa) \, ; \\ D \ cosB = (pb \ * \ (pb \ - \ pa)) \ / \ a \ / \ c \, , \ B = acos(cosB) \, ; \end{array}
  D \cos C = (pa * pb) / a / b, C = a\cos(\cos C);
  if(a > r)
     \dot{S} = (C/2) * r * r;
     h = a*b*sin(C)/c;
     if (h < r \&\& B < PI/2) S = (acos(h/r)*r*r - h*sqrt
          (r*r-h*h));
  else if(b > r)
     theta = PI - B - a\sin(\sin(B)/r*a);
     S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S;
D area() {
  D S = 0:
  for (int i = 0; i < n; ++i)
     S += abs(area2(info[i], info[i+1]) * sign(det(
         info[i], info[i + 1]));
  return fabs(S);
```

6.6 Intersection of 2 Circles

6.7 Circle Cover

```
D d = sqrt(d2);
    if ( d > r1 + r2 ) return false;
    Pt u = (o1+o2)*0.5 + (o1-o2)*((r2*r2-r1*r1)/(2*d2))
    D\ A = \ \operatorname{sqrt} ((\ r1 + r2 + d) * (\ r1 - r2 + d) * (\ r1 + r2 - d) * (\ - r1 + r2 + d)
    Pt \ v = Pt(\ o1.Y-o2.Y \ , \ -o1.X + o2.X \ ) * A / (2*d2);
    p1 \, = \, u \, + \, v \, ; \ p2 \, = \, u \, - \, v \, ;
    return true;
  struct Tevent {
    Pt p; D ang; int add;
    Tevent() {}
    Tevent(Pt _a, D _b, int _c): p(_a), ang(_b), add(_c
        ) {}
    bool operator < (const Tevent & a) const
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct (Circle& a, Circle &b, int x) {
    return sign( norm( a.O - b.O ) - a.R - b.R ) > x;
  bool contain (Circle& a, Circle &b, int x) {
    return sign( a.R - b.R - norm( a.O - b.O ) ) > x;
  bool contain(int i, int j){ /* c[j] is non-strictly
      in c[i]. *
    contain(c[i], c[j], -1);
  void solve(){
    for ( int i = 0 ; i <= C + 1 ; i ++ )
      Area [i] = 0;
    for (int i = 0; i < C; i ++)
      for (int j = 0 ; j < C ; j ++)
        overlap[i][j] = contain(i, j);
    for(int i = 0 ; i < C ; i ++ )
      for (int j = 0 ; j < C ; j ++)
        g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                     disjuct(c[i], c[j], -1));
    for ( int i = 0 ; i < C ; i ++){
      int E = 0, cnt = 1;
      for (int j = 0 ; j < C ; j ++)
        if( j != i && overlap[j][i] )
          cnt ++;
      for (int j = 0 ; j < C ; j ++)
        if( i != j && g[i][j] ){
  Pt aa, bb;
          CCinter(c[i], c[j], aa, bb);
          DA = atan2(aa.Y - c[i].O.Y, aa.X - c[i].O.X)
          D B = atan2(bb.Y - c[i].O.Y, bb.X - c[i].O.X)
          eve[E ++] = Tevent(bb, B, 1);
          eve[E ++] = Tevent(aa, A, -1);
          if(B > A) cnt ++;
      if(E = 0) Area[ cnt ] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
        eve[\hat{E}] = eve[0];
        for ( int j = 0; j < E; j ++ ){
          cnt += eve[j].add;
          Area [cnt] += (eve[j].p \hat{} eve[j + 1].p) * .5;
          D theta = eve[j + 1].ang - eve[j].ang; if (theta < 0) theta += 2. * pi;
          Area[cnt] += (theta - sin(theta)) * c[i].R
               * c[i].R * .5;
        }
      }
   }
  }
};
```

6.8 Tangent Line of 2 Circles

```
vector<Line> go( const Circle& c1 , const Circle& c2 ){
  vector<Line> ret;
  double d_sq = norm2( c1.O - c2.O );
```

```
if( d_sq < eps ) return ret;</pre>
double d = sqrt(d_sq);
Pt\ v = (\ c2.O\ -\ c1.O\ )\ /\ d;
for ( int sign1 = 1 ; sign1 >= -1 ; sign1 -= 2 ) {
 double c = (c1.R - sign1 * c2.R) / d;
  if( c * c > 1 ) continue;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for ( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
    n.X = v.X * c - sign2 * h * v.Y;
    n.Y = v.Y * c + sign2 * h * v.X;
    Pt p1 = c1.O + n * c1.R;
    Pt p2 = c2.O + n * (c2.R * sign1);
    if (fabs(p1.X - p2.X) < eps and
        fabs( p1.Y - p2.Y ) < eps )
      p2 = p1 + perp(c2.O - c1.O);
    ret.push_back( { p1 , p2 } );
 }
return ret;
```

6.9 KD Tree

```
const int MXN = 100005;
struct KDTree {
   struct Node {
      int x, y, x1, y1, x2, y2;
      int id, f;
      Node *L, *R;
   \} tree [MXN];
   int n;
   Node *root;
   LL dis2(int x1, int y1, int x2, int y2) {
      LL dx = x1-x2;
      LL dy = y1 - y2;
      return dx*dx+dy*dy;
   static bool cmpx(Node& a, Node& b){ return a.x<b.x; ]
   static bool cmpy(Node& a, Node& b){ return a.y<b.y; }</pre>
   void init(vector<pair<int,int>>> ip) {
      n = ip.size();
      for (int i=0; i< n; i++) {
         {\tt tree}\,[\,i\,]\,.\,id\,=\,i\,;
          tree[i].x = ip[i].first;
          tree[i].y = ip[i].second;
      root = build\_tree(0, n-1, 0);
   Node* build_tree(int L, int R, int dep) {
      if (L>R) return nullptr;
      int M = (L+R)/2;
      tree [M] . f = dep\%2;
      nth\_element(tree+L, tree+M, tree+R+1, tree[M].f?
             cmpy : cmpx);
      tree[M].x1 = tree[M].x2 = tree[M].x;
      tree[M].y1 = tree[M].y2 = tree[M].y;
      tree[M].L = build\_tree(L, M-1, dep+1);
      if (tree[M].L) {
          {\tt tree}\,[M]\,.\,x1\,=\,\min(\,{\tt tree}\,[M]\,.\,x1\,,\ {\tt tree}\,[M]\,.\,L\!\!-\!\!>\!\!x1\,)\,;
          \texttt{tree}\left[M\right].\,x2\,=\,\max(\,\texttt{tree}\left[M\right].\,x2\,,\ \ \texttt{tree}\left[M\right].\,L\text{-}\!>\!x2\,)\,;
          \texttt{tree}\left[M\right].\,\texttt{y1} \,=\, \min\big(\,\texttt{tree}\left[M\right].\,\texttt{y1}\,,\ \ \texttt{tree}\left[M\right].\,\texttt{L->y1}\big)\,;
          tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
      tree[M].R = build\_tree(M+1, R, dep+1);
      if (tree[M].R) {
         tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
          \texttt{tree} \, [\texttt{M}] \, . \, \texttt{x2} \, = \, \texttt{max} \big( \, \texttt{tree} \, [\texttt{M}] \, . \, \texttt{x2} \, , \quad \texttt{tree} \, [\texttt{M}] \, . \, \texttt{R-} \mathclose{>} \texttt{x2} \big) \, ;
          \begin{array}{l} {\rm tree}\left[ {\rm M} \right].\,{\rm y1} \,=\, {\rm min}\left( \,{\rm tree}\left[ {\rm M} \right].\,{\rm y1} \,,\,\,\, {\rm tree}\left[ {\rm M} \right].\,{\rm R->y1} \right); \\ {\rm tree}\left[ {\rm M} \right].\,{\rm y2} \,=\, {\rm max}\left( \,{\rm tree}\left[ {\rm M} \right].\,{\rm y2} \,,\,\,\, {\rm tree}\left[ {\rm M} \right].\,{\rm R->y2} \right); \\ \end{array} 
      return tree+M;
   int touch (Node* r, int x, int y, LL d2) {
      LL \ dis = sqrt(d2)+1;
      if (x<r->x1-dis || x>r->x2+dis ||
            y < r - y - dis \mid y > r - y + dis
          return 0;
      return 1;
```

```
void nearest (Node* r, int x, int y,
                int &mID, LL &md2){
    if \ (!r \ || \ !touch(r,\ x,\ y,\ md2)) \ return;
    LL d2 = dis2(r->x, r->y, x, y);
    if (d2 < md2 || (d2 == md2 && mID < r->id)) {
      mID = r -> id:
      md2 = d2:
       search order depends on split dim
    if ((r->f == 0 \&\& x < r->x) | |
        (r->f = 1 & y < r->y)
      n\,earest\,(\,r\text{->}L,\ x\,,\ y\,,\ mID,\ md2)\,;
      nearest(r->R, x, y, mID, md2);
      nearest(r->R, x, y, mID, md2);
      nearest(r->L, x, y, mID, md2);
  int query(int x, int y) {
    int id = 1029384756;
    LL d2 = 102938475612345678LL;
    nearest(root, x, y, id, d2);
    return id;
}tree;
```

6.10 Lower Concave Hull

```
/****
  maintain a "concave hull" that support the following
  1. insertion of a line
  2. query of height(y) on specific x on the hull
/* set as needed *
typedef long double LD;
const LD eps=1e-9;
const LD inf=1e19;
class Seg {
public:
 LD m, c, x1, x2; // y=mx+c
  bool flag;
  Seg (
    LD \_m, LD \_c, LD \_x1 = -\inf, LD \_x2 = \inf, \frac{bool} \_flag = 0)
    :m(\underline{m}), c(\underline{c}), x1(\underline{x}1), x2(\underline{x}2), flag(\underline{flag}) {}
 LD evaly (LD x) const {
    return m*x+c;
  const bool operator < (LD x) const {
    return x2-eps < x;
  const bool operator < (const Seg &b) const {
    if(flag||b.flag) return *this<b.x1;</pre>
    return m+eps<b.m;
 }
};
class LowerConcaveHull { // maintain a hull like: \_
public:
  set<Seg> hull;
   * functions */
 LD xintersection (Seg a, Seg b) {
    return (a.c-b.c)/(b.m-a.m);
  inline set <Seg >::iterator replace (set <Seg > &
      hull, set < Seg > :: iterator it, Seg s) {
    hull.erase(it);
    return hull.insert(s).first;
  void insert(Seg s) {
    // insert a line and update hull
    set <\!\!Seg\!>:: iterator\ it\!=\!hull.find(s);
    // check for same slope
    if(it!=hull.end()) {
       if(it->c+eps>=s.c) return;
       hull.erase(it);
    // check if below whole hull
    it=hull.lower_bound(s);
    if (it!=hull.end()&&
        s.evaly(it->x1) \le it->evaly(it->x1)+eps) return;
```

```
// update right hull
    while(it!=hull.end()) {
LD x=xintersection(s,*it);
       if(x)=it->x2-eps) hull.erase(it++);
       else {
         s.x2=x;
         it=replace(hull, it, Seg(it->m, it->c, x, it->x2));
         break;
      }
     // update left hull
     while(it!=hull.begin()) {
      LD x=xintersection(s,*(--it));
      if(x \le it - x1 + eps) hull.erase(it++);
         s \cdot x1 = x:
         it=replace(hull, it, Seg(it->m, it->c, it->x1, x));
      }
     // insert s
    hull.insert(s);
  void insert (LD m,LD c) { insert (Seg(m,c)); }
  LD query(LD x) { // return y @ given x
    set < Seg > :: iterator it =
      hull.lower\_bound(Seg(0.0,0.0,x,x,1));
    return it->evaly(x);
  }
};
```

6.11 Delaunay Triangulation

```
'* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
calculation involves O(|V|^6) */
const int N = 100000 + 5;
const type inf = 2e3;
type eps = 1e-6; // 0 when integer
type sqr(type x) { return x*x; }
// return p4 is in circumcircle of tri(p1,p2,p3)
bool in_cc(const Pt& p1, const Pt& p2, const Pt& p3,
    const Pt& p4){
  type u31 = p3.X - p4.X; type u32 = p3.Y - p4.Y;
  type \ u13 = sqr(p1.X) - sqr(p4.X) + sqr(p1.Y) - sqr(p4.Y);
  type u23 = sqr(p2.X) - sqr(p4.X) + sqr(p2.Y) - sqr(p4.Y);
  type u33 = sqr(p3.X) - sqr(p4.X) + sqr(p3.Y) - sqr(p4.Y);
  {\rm type}\ \det\ =\ -{\rm u}13^*{\rm u}22^*{\rm u}31\ +\ {\rm u}12^*{\rm u}23^*{\rm u}31\ +\ {\rm u}13^*{\rm u}21^*{\rm u}32
              -u11*u23*u32 - u12*u21*u33 + u11*u22*u33;
  return det > eps;
type side(const Pt& a, const Pt& b, const Pt& p)
{ return (b - a) ^ (p - a); }
typedef int SdRef;
struct Tri;
typedef Tri* TriRef;
struct Edge {
  TriRef tri; SdRef side;
  \operatorname{Edge}():\operatorname{tri}(0)\,,\ \operatorname{side}(0)\,\{\}
  Edge(TriRef _tri, SdRef _side):tri(_tri), side(_side)
      {}
struct Tri {
  Pt p[3];
  Edge edge [3];
  TriRef chd[3];
  Tri() {}
```

Tri(const Pt& p0, const Pt& p1, const Pt& p2) {

```
p\,[\,0\,] \ = \ p0\,; \ p\,[\,1\,] \ = \ p1\,; \ p\,[\,2\,] \ = \ p2\,;
      chd[0] = chd[1] = chd[2] = 0;
   bool has_chd() const { return chd[0] != 0; }
   int num_chd() const {
  return chd[0] == 0 ? 0
              : chd[1] = 0 ? 1
              : \operatorname{chd}[2] = 0 ? 2 : 3;
   bool contains (Pt const& q) const {
      for ( int i = 0 ; i < 3 ; i ++ )
         if(side(p[i], p[(i + 1) \% 3], q) < -eps)
            return false;
      return true;
} pool[N * 10], *tris;
void edge (Edge a, Edge b){
   if(a.tri) a.tri->edge[a.side] = b;
   if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
   Trig(){
      the\_root = // Tri should at least contain all
            points
         \frac{\text{new}(\text{tris}++)\text{Tri}(\text{Pt}(-\text{inf},-\text{inf}),\text{Pt}(+\text{inf}+\text{inf},-\text{inf}),\text{Pt}}{\text{Pt}(+\text{inf}+\text{inf},-\text{inf})}
                (-\inf,+\inf+\inf));
   TriRef find(Pt p)const{ return find(the_root,p); }
   void add_point(const Pt& p){ add_point(find(the_root,
         p),p); }
   TriRef the_root;
   static TriRef find(TriRef root, const Pt& p) {
      while (true) {
         if( !root->has_chd() )
            return root;
         for ( int i = 0; i < 3 && root->chd[i] ; ++i )
            if (root->chd[i]->contains(p)) {
                root = root -> chd[i];
                break;
      assert( false ); // "point not found"
   }
   void add_point(TriRef root, Pt const& p) {
      TriRef\ tab\,,tbc\,,tca\,;
         split it into three triangles */
      tab=new(tris++) Tri(root->p[0], root->p[1], p);
      \begin{array}{l} tbc \!\!=\!\! new(tris+\!\!\!\!+\!\!\!\!) \; Tri(root-\!\!\!\!>\!\!\!\!>\!\!\!\!p[1]\;,root-\!\!\!\!>\!\!\!\!>\!\!\!p[2]\;,p)\;;\\ tca \!\!\!=\!\!\!\!\!=\!\!\!\!\!new(tris+\!\!\!\!\!+\!\!\!\!) \; Tri(root-\!\!\!\!>\!\!\!\!>\!\!\!p[2]\;,root-\!\!\!>\!\!\!>\!\!\!p[0]\;,p)\;; \end{array}
      \mathtt{edge}(\mathtt{Edge}(\mathtt{tab}\,,0)\;,\;\;\mathtt{Edge}(\mathtt{tbc}\,,1)\,)\,;
      \verb|edge(Edge(tbc,0), Edge(tca,1))|;\\
      edge(Edge(tca,0), Edge(tab,1));
      edge(Edge(tab,2), root->edge[2]);
      edge(Edge(tbc,2), root->edge[0]);
      edge(Edge(tca,2), root->edge[1]);
      root->chd[0] = tab;
      root->chd[1] = tbc;
      root->chd[2] = tca;
      flip(tab,2);
      flip (tbc,2);
      flip(tca,2);
   void flip (TriRef tri, SdRef pi) {
      TriRef trj = tri->edge[pi].tri;
      int pj = tri->edge[pi].side;
      if (!trj) return;
      if \ (!\,in\_cc\,(\,tri\,\text{--}\!\!>\!\!p\,[0]\,,\,tri\,\text{--}\!\!>\!\!p\,[1]\,,\,tri\,\text{--}\!\!>\!\!p\,[2]\,,trj\,\text{--}\!\!>\!\!p\,[\,pj
             ])) return;
       /* flip edge between tri,trj */
      TriRef trk = new(tris++) Tri(tri->p[(pi+1)\%3], trj
             ->p[pj], tri->p[pi]);
      TriRef trl = new(tris++) Tri(trj->p[(pj+1)\%3], tri
             ->p[pi], trj->p[pj]);
      edge(Edge(trk,0), Edge(trl,0));
      {\tt edge}({\tt Edge}({\tt trk}\,,1)\;,\;\;{\tt tri}\,\hbox{-}\!\!>\!\!{\tt edge}\,[\,(\,{\tt pi}\,\hbox{+}\!2)\%3])\,;
      edge(Edge(trk,2), trj->edge[(pj+1)\%3]);
      \begin{array}{l} \operatorname{edge}\left(\operatorname{Edge}\left(\operatorname{trl},1\right),\ \operatorname{trj}\operatorname{->edge}\left[\left(\operatorname{pj}+2\right)\%3\right]\right);\\ \operatorname{edge}\left(\operatorname{Edge}\left(\operatorname{trl},2\right),\ \operatorname{tri}\operatorname{->edge}\left[\left(\operatorname{pi}+1\right)\%3\right]\right); \end{array}
      \label{eq:tri-} {\rm tri}\,\text{-}{\rm >}{\rm chd}\,[0] = {\rm trk}\,; \ {\rm tri}\,\text{-}{\rm >}{\rm chd}\,[1] = {\rm trl}\,; \ {\rm tri}\,\text{-}{\rm >}{\rm chd}\,[2] = 0;
      trj -> chd[0] = trk; trj -> chd[1] = trl; trj -> chd[2] = 0;
      flip(trk,1); flip(trk,2);
      flip(trl,1); flip(trl,2);
```

```
};
vector<TriRef> triang;
set<TriRef> vst;
void go( TriRef now ){
  if( vst.find( now ) != vst.end() )
  vst.insert( now );
  if(!now-has\_chd())
    triang.push_back( now );
    return;
 for( int i = 0 ; i < now->num_chd() ; i ++ )
go( now->chd[ i ] );
void build( int n , Pt* ps ){
  tris = pool;
  random\_shuffle(ps, ps + n);
  Trig tri;
  for (int i = 0; i < n; ++ i)
    tri.add_point(ps[i]);
  go(tri.the_root);
```

6.12 Min Enclosing Circle

```
struct Mec{
   // return pair of center and r
   static const int N = 101010;
   int n;
   Pt p[ N ], cen;
   double r2;
   n = \underline{n};
     memcpy(\ p\ ,\ \underline{\hspace{1em}}p\ ,\ sizeof(Pt)\ *\ n\ );
   double sqr(double a){ return a*a; }
   Pt center(Pt p0, Pt p1, Pt p2) {
     Pt a = p1 - p0;
     Pt b = p2 - p0;
     double c1=norm2( a ) * 0.5;
     double c2=norm2( b ) * 0.5;
     double d = a \hat{b};
     double x = p0.X + (c1 * b.Y - c2 * a.Y) / d;
     double y = p0.Y + (a.X * c2 - b.X * c1) / d;
     return Pt(x,y);
   pair<Pt, double> solve(){
     random_shuffle(p,p+n);
     for (int i=0; i< n; i++){
        if (norm2(cen-p[i]) <= r2) continue;</pre>
       cen = p[i];
        r2 = 0;
        for (int j=0; j< i; j++){}
          if \ (norm2(cen-p[j]) \mathrel{<=} r2) \ continue;\\
          cen=Pt((p[i].X+p[j].X)/2,(p[i].Y+p[j].Y)/2);
          r2 = norm2(cen-p[j]);
          for (int k=0; k< j; k++){}
            if (norm2(cen-p[k]) \le r2) continue;
            cen \, = \, center \, (p \, [\, i \, ] \, , p \, [\, j \, ] \, , p \, [\, k \, ] \, ) \, ;
            r2 = norm2(cen - p[k]);
       }
     return {cen, sqrt(r2)};
} mec;
```

6.13 Heart of Triangle

```
return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; } Pt othroCenter( Pt &a, Pt &b, Pt &c) { // \# \& Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0= (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0= -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

6.14 Min/Max Enclosing Rectangle.cpp

```
/***** NEED REVISION ******/
/* uva819 - gifts large and small */
#define MAXN 100005
const double eps=1e-8;
const double inf=1e15;
class Coor {
public:
  double x,y;
  Coor() {}
  Coor(double xi, double yi) { x=xi; y=yi; }
  Coor& operator+=(const Coor &b) { x+=b.x; y+=b.y;
      return *this; }
  const Coor operator+(const Coor &b) const { return (
      Coor)*this+=b; }
  Coor& operator \rightarrow (const Coor &b) { x-b.x; y-b.y;
      return *this; }
  const Coor operator - (const Coor &b) const { return (
      Coor)*this-=b; }
  Coor& operator*=(const double b) { x*=b; y*=b; return
       *this; }
  {\tt const~Coor~operator*(const~double~b)~const~\{~return~(}
      Coor)*this*=b; }
  Coor& operator/=(const double b) { x/=b; y/=b; return
       *this; }
  const Coor operator/(const double b) const { return (
      Coor)*this/=b; }
  const bool operator < (const Coor& b) const { return y<
      b.y-eps||fabs(y-b.y)<eps&&x<b.x;}
  const double len2() const { return x*x+y*y; }
  const double len() const { return sqrt(len2()); }
  const Coor perp() const { return Coor(y,-x); }
  Coor& standardize() {
    if(y<0||y=0&&x<0) {
      x=-x;
      y=-y;
   }
    return *this;
  const Coor standardize() const { return ((Coor)*this)
      .standardize(); }
double dot(const Coor &a,const Coor &b) { return a.x*b.
    x+a.y*b.y; }
double dot(const Coor &o,const Coor &a,const Coor &b) {
     return dot(a-o,b-o); }
double cross (const Coor &a, const Coor &b) { return a.x*
    b.y-a.y*b.x; }
double cross (const Coor &o, const Coor &a, const Coor &b)
     { return cross(a-o,b-o); }
Coor cmpo;
const bool cmpf(const Coor &a, const Coor &b) {
 return cross (cmpo, a, b)>eps | | fabs (cross (cmpo, a, b))<eps
     &&
    dot(a, cmpo, b) < -eps;
class Polygon {
public:
  int pn:
  Coor p [MAXN];
  void convex_hull() {
    int i, tn=pn;
    for (i=1;i \le pn;++i) if (p[i] \le p[0]) swap (p[0],p[i]);
   cmpo=p[0];
    std :: sort(p+1,p+pn,cmpf);
    for(i=pn=1;i< tn;++i) {
      while (pn>2\&&cross(p[pn-2],p[pn-1],p[i]) \le eps) --
```

```
p[pn++]=p[i];
    p[pn]=p[0];
  }
Polygon pol;
double minarea, maxarea;
int slpn:
Coor slope [MAXN*2];
Coor lrec [MAXN*2], rrec [MAXN*2], trec [MAXN*2], brec [MAXN
inline double xproject(Coor p, Coor slp) { return dot(p,
    slp)/slp.len(); }
inline double yproject(Coor p,Coor slp) { return cross(
    p, slp)/slp.len(); }
inline double calcarea (Coor lp, Coor rp, Coor bp, Coor tp,
    Coor slp) {
  return (xproject(rp,slp)-xproject(lp,slp))*(yproject(
       tp,slp)-yproject(bp,slp)); }
  inline void solve(){
    int i, lind, rind, tind, bind, tn;
    double pro, area1, area2, l, r, m1, m2;
    Coor s1, s2;
    {\tt pol.convex\_hull();}
    slpn=0; /* generate all critical slope */
    slope [slpn++]=Coor(1.0,0.0);
    slope [slpn++]=Coor(0.0,1.0);
    for (i=0;i<pol.pn;i++) {
      slope[slpn] = (pol.p[i+1]-pol.p[i]) . standardize();
       if(slope[slpn].x>0) slpn++;
       slope[slpn]=(pol.p[i+1]-pol.p[i]).perp().
         standardize();
       if (slope[slpn].x>0) slpn++;
    cmpo=Coor(0,0);
    std::sort(slope,slope+slpn,cmpf);
    tn=slpn;
    for (i=slpn=1; i < tn; i++)
       if(cross(cmpo, slope[i-1], slope[i])>0) slope[slpn
         ++|=slope[i];
    lind=rind=0; /* find critical touchpoints */
    for (i=0;i<pol.pn;i++)
      pro=xproject(pol.p[i],slope[0]);\\
       if(pro < xproject(pol.p[lind], slope[0])) lind=i;
       if(pro>xproject(pol.p[rind], slope[0])) rind=i;
    tind=bind=0;
    for(i=0;i<pol.pn;i++)
       pro=yproject(pol.p[i], slope[0]);
       \begin{array}{ll} \textbf{if} \left( \texttt{pro} \!\! < \!\! \texttt{yproject} \left( \texttt{pol.p} [ \texttt{bind} \right], \texttt{slope} \left[ 0 \right] \right) \right) \  \, \texttt{bind} \!\! = \!\! i \, ; \end{array}
       if(pro>yproject(pol.p[tind],slope[0])) tind=i;
    for (i=0;i<slpn;i++) {
       while (xproject (pol.p[lind+1], slope[i]) <= xproject (
              pol.p[lind],slope[i])+eps)
         lind = (lind = pol.pn-1?0: lind+1);
       while (xproject (pol.p[rind+1], slope [i])>=xproject (
              pol.p[rind], slope[i])-eps)
         rind = (rind = pol.pn-1?0:rind+1);
       while (yproject (pol.p[bind+1], slope [i]) <= yproject (
              pol.p[bind],slope[i])+eps)
         bind = (bind = pol.pn-1?0:bind+1);
       while (yproject (pol.p[tind+1], slope[i])>=yproject (
              pol.p[tind],slope[i])-eps)
         tind = (tind = pol.pn-1?0:tind+1);
       lrec[i]=pol.p[lind];
       rrec[i]=pol.p[rind];
       brec[i]=pol.p[bind];
       trec[i]=pol.p[tind];
    minarea=inf; /* find minimum area */
    for (i=0;i<slpn;i++) {
       area1=calcarea(lrec[i],rrec[i],brec[i],trec[i],
           slope[i]);
       if(area1<minarea) minarea=area1;</pre>
    maxarea=minarea; /* find maximum area */
    for(i=0;i<slpn-1;i++) {
       l = 0.0; r = 1.0;
       while(l<r-eps) {
         ml = l + (r - l) / 3;
         m2=1+(r-1)*2/3;
```

```
s1=slope[i]*(1.0-m1)+slope[i+1]*m1;
          areal=calcarea(lrec[i], rrec[i], brec[i], trec[i],
               s1);
          s2=slope[i]*(1.0-m2)+slope[i+1]*m2;
          area2=calcarea(lrec[i],rrec[i],brec[i],trec[i],
          if (area1<area2) l=m1;</pre>
          else r=m2;
       s1=slope[i]*(1.0-1)+slope[i+1]*l;
       area1=calcarea(lrec[i],rrec[i],brec[i],trec[i],s1
        if (area1>maxarea) maxarea=area1:
     }
  }
int main(){
   {\color{red} \textbf{int}} \quad i \ , casenum {=} 1; \\
   while (scanf ("%d", & pol.pn) == 1&&pol.pn) {
     \quad \  \  for \, (\, i\!=\!0; i\!<\!pol.\,pn\,;\, i\!+\!+)
        scanf("%lf %lf",&pol.p[i].x,&pol.p[i].y);
     solve():
     //minarea, maxarea
}
```

6.15 Union of Polynomials

```
#define eps 1e-8
class PY{ public:
  int n;
  Pt pt[5];
  Pt& operator[](const int x){ return pt[x]; }
  void input(){
    int i; n=4;
    for (i=0;i<n;i++) scanf("%lf%lf",&pt[i].x,&pt[i].y);
  double getArea(){
    int i; double s=pt[n-1]^pt[0];
    for (i=0; i< n-1; i++) s+=pt [i]^pt[i+1];
    return s/2;
  }
PY py [500];
pair < \!\! double\,, int \!\! > c\,[5000];
inline double segP(Pt &p,Pt &p1,Pt &p2){
  if(SG(p1.x-p2.x)==0) return (p.y-p1.y)/(p2.y-p1.y);
  return (p.x-p1.x)/(p2.x-p1.x);
double polyUnion(int n){
  int i,j,ii,jj,ta,tb,r,d;
  double z, w, s, sum, tc, td;
  for (i=0;i< n;i++) py [i][py[i].n]=py[i][0];
  sum=0;
  for (i=0; i< n; i++){
    for (ii = 0; ii < py[i].n; ii++){
      c[r++]=make\_pair(0.0,0);
       c[r++]=make\_pair(1.0,0);
       for (j=0; j< n; j++){
         if (i=j) continue;
         for (jj=0;jj<py[j].n;jj++){
           ta=SG(tri(py[i][ii],py[i][ii+1],py[j][jj]));
           tb=SG(tri(py[i][ii],py[i][ii+1],py[j][jj+1]))
           if(ta==0 \&\& tb==0)
             if ((py[j][jj+1]-py[j][jj])*(py[i][ii+1]-py[
                  i ] [ ii ] )>0 && j<i ) {
               c[r++]=make_pair(segP(py[j][jj],py[i][ii
                    ], py[i][ii+1],1)
               c[r++]=make\_pair(segP(py[j][jj+1],py[i][
                    ii],py[i][ii+1]),-1);
           else if (ta>=0 \&\& tb<0)
             tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
             td \!\!=\!\! t\,r\,i\,(py[\,j\,][\,jj\,]\,,py[\,j\,][\,jj\,+1],py[\,i\,][\,i\,i\,+1])\,;
             c[r++]=make\_pair(tc/(tc-td),1);
           else if (ta<0 \&\& tb>=0){
             tc=tri(py[j][jj],py[j][jj+1],py[i][ii]);
             td=tri(py[j][jj],py[j][jj+1],py[i][ii+1]);
             c[r++]=make\_pair(tc/(tc-td),-1);
```

```
}
          sort(c,c+r);
          z=\min(\max(c[0]. \text{ first }, 0.0), 1.0);
          d=c[0]. second; s=0;
          for (j=1; j< r; j++){
             w=\min(\max(c[j].first,0.0),1.0);
             if(!d) s+=w-z;
             d+=c[j].second; z=w;
         sum+=(py[i][ii]^py[i][ii+1])*s;
   return sum/2;
int main(){
   int n, i, j, k;
   double sum, ds;
   \operatorname{scanf}("%d",&n); \operatorname{sum}=0;
   for (i=0; i< n; i++){
      py[i].input();
      ds=py[i].getArea();
      if(ds<0){
          \label{eq:formal_state} \begin{array}{ll} \text{for} \, (\, j \! = \! 0, \! k \! = \! py \, [\, i \, ] \, . \, n \! - \! 1 \, ; \, j \! < \! k \, ; \, j \! + \! + \! , \! k \, - \, - \, ) & \text{swap} \, (\, py \, [\, i \, ] \, [\, j \, ] \, , \end{array}
                py[i][k]);
          ds = -ds;
      } sum+=ds;
   } printf("%.9f\n",sum/polyUnion(n));
```

6.16 String

6.17 Palindrome Tree

```
const int MAXN = 200010:
struct PalT{
  struct Node{
    int nxt[ 33 ] , len , fail;
    ll cnt;
  int tot
           , lst;
  Node nd[MAXN * 2];
  char* s
  int newNode( int l , int _fail ){
    int res = ++tot;
    memset(\ nd[\ res\ ].\, nxt\ ,\ 0\ ,\ sizeof\ nd[\ res\ ].\, nxt\ );
    nd[res].len = 1;
    nd[res].cnt = 0:
    nd[res].fail = _fail;
    return res;
  void push( int p ){
    int np = lst;
    int c = s[p] - 'a';
    while (p - nd[np].len - 1 < 0
         np = nd[np].fail;
    \begin{array}{lll} \textbf{if} \left( \begin{array}{cc} nd \left[ \begin{array}{cc} np \end{array} \right]. \, nxt \left[ \begin{array}{cc} c \end{array} \right] \end{array} \right) \{ \end{array}
      nd[ nd[ np ].nxt[ c ] ].cnt++;
      lst = nd[np].nxt[c];
      return ;
    int nq = newNode(nd[np].len + 2, 0);
    nd[nq].cnt++;
    nd[np].nxt[c] = nq;
    lst = nq;
    if(nd[nq].len == 1){
      nd[nq].fail = 2;
      return ;
    int tf = nd[ np ].fail;
    || s[p]!= s[p - nd[tf].len - 1])
      tf = nd[tf].fail;
    nd[nq].fail = nd[tf].nxt[c];
    return ;
```

```
void init( char* _s ){
    s = _s;
    tot = 0;
    newNode( -1 , 1 );
    newNode( 0 , 1 );
    lst = 2;
    for( int i = 0 ; s[ i ] ; i++ )
        push( i );
    }
    void yutruli(){
#define REPD(i, s, e) for(int i = (s); i >= (e); i--)
        REPD( i , tot , 1 )
        nd[ nd[ i ] .fail ] .cnt += nd[ i ] .cnt;
        nd[ 1 ] .cnt = nd[ 2 ] .cnt = 011;
    }
} pA;
int main(){ pA.init( sa ); }
```

6.18 SAIS

```
const int N = 300010;
struct SA{
#define REP(i,n) for ( int i=0; i<int(n); i++)
#define REP1(i,a,b) for ( int i=(a); i \le int(b); i++)
  bool _t[N*2];
  {\color{red} int \ \_s[N*2] \,, \ \_sa[N*2] \,, \ \_c[N*2] \,, \ x[N] \,, \ \_p[N] \,, \ \_q[N*2] \,,}
         hei\left[ N\right] ,\ r\left[ N\right] ;
  int operator [] (int i){ return _sa[i]; }
void build(int *s, int n, int m){
  memcpy(_s, s, sizeof(int) * n);
     sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
  void mkhei(int n){
    REP(\,i\;,n)\;\;r\left[\_sa\left[\,i\;\right]\,\right]\;=\;i\;;
     hei[0] = 0;
    REP(i,n) if (r[i]) {
       int ans = i > 0? max(hei[r[i-1]] - 1, 0) : 0;
       \label{eq:while} \begin{tabular}{ll} while (\_s[i+ans] == \_s[\_sa[r[i]-1]+ans]) & ans++; \end{tabular}
       hei[r[i]] = ans;
    }
  }
  void sais(int *s, int *sa, int *p, int *q, bool *t,
       int *c, int n, int z){
     bool uniq = t[n-1] = true, neq;
     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
          lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MSO(sa, n); \
memcpy(x, c, sizeof(int) * z); \
    XD; \setminus
    memcpy(x + 1, c, sizeof(int) * (z - 1)); \ \ \ \\
    REP(i,n) \quad if (sa[i] \&\& !t[sa[i]-1]) \quad sa[x[s[sa[i]-1]]]
          ]-1]]++] = sa[i]-1;
     memcpy(x, c, sizeof(int) * z); \
     for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i]]
          ]-1]) sa[--x[s[sa[i]-1]]] = sa[i]-1;
    MSO(c, z);
    REP(i,n) uniq &= ++c[s[i]] < 2;
    REP(i, z-1) c[i+1] += c[i];
     if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return; }
     for (int i = n - 2; i >= 0; i --) t[i] = (s[i] == s[i]
          +1] \ ? \ t \, [\, i \, +1] \ : \ s \, [\, i \, ] \! < \! s \, [\, i \, +1]) \, ;
    MAGIC(REP1(i,1,n-1) if(t[i] \&\& !t[i-1]) sa[--x[s[i
          ]]] = p[q[i]=nn++]=i);
    REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
       neq=lst < 0 | lmemcmp(s+sa[i], s+lst, (p[q[sa[i]]+1]-sa)
             [i])*sizeof(int));
       ns[q[lst=sa[i]]] = nmxz+=neq;
     sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz)
           + 1);
    MAGIC(for(int i = nn - 1; i >= 0; i--) sa[--x[s[p[
          nsa[i]]]] = p[nsa[i]];
  }
}sa;
int H[ N ], SA[ N ];
void suffix_array(int* ip, int len) {
    / should padding a zero in the back
  // ip is int array, len is array length
```

```
// ip [0..n-1] != 0, and ip [len] = 0
ip [len++] = 0;
sa.build(ip, len, 128);
for (int i=0; i<len; i++) {
    H[i] = sa.hei[i + 1];
    SA[i] = sa._sa[i + 1];
}
// resulting height, sa array \in [0,len)
}</pre>
```

6.19 Suffix Automata

```
const int MAXM = 1000010;
struct SAM{
  \begin{array}{lll} & \text{int tot, root, lst, mom[MAXM], mx[MAXM];} \\ & \text{int acc[MAXM], nxt[MAXM][33];} \end{array}
  int newNode(){
     int res = ++tot:
     fill(nxt[res], nxt[res]+33, 0);
    mom[res] = mx[res] = acc[res] = 0;
     return res;
  void init(){
     \quad tot \, = \, 0 \, ; \\
     root = newNode();
    mom[root] = 0, mx[root] = 0;
     lst = root;
  void push(int c){
     int p = lst;
     int np = newNode();
     mx[np] = mx[p] + 1;
     for (; p && nxt[p][c] == 0; p = mom[p])
       nxt[p][c] = np;
     if(p == 0) mom[np] = root;
     else{
       int q = nxt[p][c];
        \text{if} \left( mx[p] + 1 = mx[q] \right) \ mom[np] = q; \\
       else{
          int nq = newNode();
         mx[nq] = mx[p] + 1;
          for (int i = 0; i < 33; i++)
            nxt[nq][i] = nxt[q][i];
         mom[nq] = mom[q];
         mom[\,q\,]\ =\ nq\,;
         mom[np] = nq;
          for (; p \&\& nxt[p][c] == q; p = mom[p])
            nxt[p][c] = nq;
     lst = np;
  void push(char *str){
     for(int i = 0; str[i]; i++)
       push(str[i]-'a'+1);
} sam;
```

6.20 Smallest Rotation

```
string mcp(string s){
  int n = s.length();
  s += s;
  int i=0, j=1;
  while (i<n && j<n){
    int k = 0;
    while (k < n && s[i+k] == s[j+k]) k++;
    if (s[i+k] <= s[j+k]) j += k+1;
    else i += k+1;
    if (i == j) j++;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```