SMART INDIA HACKATHON 2025

- Problem Statement ID –25242
- Problem Statement Title- Deep learning based ALM (Audio Language Mown which Listen, Think, and Understand the speech and non-speech Together
- Theme- Smart Automation
- PS Category- Software
- Team ID-59988
- Team Name (Registered on portal)-Quantum Quirks

AUDIO LANGUAGE MODEL

- Audio data is often unstructured and difficult to analyze.
- ① Manual transcription and analysis are time-consuming and prone to human errors.
- ©Existing systems focus only on speech, ignoring environmental or contextual audio.
- ⊕ Lack of unified models that can handle multilingual, code-mixed, and noisy audio data.
- **●** □ Automatically transcribe speech from audio inputs.
- **◄** Identify speech and non-speech segments in real-time.
- ☐ Extract meaningful insights and context from the processed audio (like emotion, environment, or activity).
- Adapt to multilingual and real-world conditions.

- Imports and processes various audio file formats.
- ❖ Generates accurate text transcripts from speech.
- ❖ Combines both **acoustic** and **linguistic** information
- the model uses **deep neural networks** (like Transformers) to analyze patterns and make decisions..

Uniqueness: 1. Unified Understanding of Speech and Non-Speech Audio.

- 2. Multimodal Audio Context Awareness.
- 3. Cross-Domain Applicability.
- 4. Human-Like "Listen-Think-Respond" Loop

❖ Develop a unified Audio Language Model (ALM) that understands both speech and non-speech audio.

- *Capture raw audio input from the user and preprocess it through denoising and normalization.
- **❖Segment audio** into small data packets for efficient processing. identify **individual** and **average audio data points** for detailed analysis.
- ❖Collect contextual information such as Fuse all contextual and audio data inside the AI model for interpretation.
- ❖Generate and store the analyzed output as a **text (.txt) file**.

TECHNICAL APPROACH

Uniqueness:

- **Objective:** Distinguishes between speech and non-speech audio in real-time.
- **Innovation:** Uses a custom-trained dataset for improved accuracy across environments.
- ©Capability: Powers applications like smart assistants, surveillance, and audio analytics.
- Efficiency: Processes audio with low latency and high precision using optimized AI models.
- **Scalability:** Easily adaptable to different languages, accents, and acoustic conditions.

FEASIBILITY AND VIABILITY

0

environment

temperature

time_of_day

text content

env_id

location

weather

0

string pk

string

float

string

string

string

Feasibility

open-source audio datasets for faster prototyping

Operational Feasibility

Can be integrated into real-world applications like smart assistants, call centers, and surveillance systems

Economic Feasibility

Low development and maintenance cost due to reusable datasets and scalable cloud deployment

Time Feasibility Prototype can be devioped within

Visibility

High Market Demand

Growing need for accurate aut understanding in Al-driven dev

Future Expansion

Potential to extend into multilanguage, emotion, and context based audio recognition

Innovation Visibility

Demonstrates advancement in real-time audio intelligence for smart systems

Impact

Improves accessibility, safety, automation across multiple sec

▲ Potential Challenges

Challenge

Multilingual & Code-Mixed Speech

♣ Non-Speech Sound Detection

☐ Data Collection & **Annotation**

Description

Accurately recognizing Indian regional and mixedlanguage speech.

Distinguishing between speech, silence, and environmental sounds.

Building large, diverse, labeled datasets for training.

□ Overall Summary: The Audio Language Model is technically strong, cost-efficient, and time-feasible ensuring scalable, real-world deployment with high impact in multilingual AI applications.

audiodata

env id

\$

string

IMPACT AND BENEFITS

Defence-Specific Impact

⚠ Threat Detection & Surveillance The ALM can automatically identify critical defence-related sounds such as gunfire,

explosions, distress calls, or unauthorized movements.

Tactical Real-Time Alerts

By processing live field audio, the system can generate instant alerts for suspicious activities or sounds.

This feature is critical for **battlefield awareness**. base security, and emergency response coordination among defence units.

Border and Coastal Security

The ALM can detect unusual sound patterns near borders, coastlines, or restricted areas such as vehicles, boats, or drone noises. This helps strengthen **perimeter defence** and prevents unauthorized crossings or intrusions before they escalate.

Intelligence and Reconnaissance Support The model can analyze intercepted communications or ambient battlefield sounds to extract strategic insights.

☐ Future Scope – Defense Applications

Secure Voice Commands − Encrypted, hands-free control for weapons, drones & vehicles.

Multilingual Communication – Real-time translation between field units.

Mission AI Assistant – Instant voice-based tactical updates & intel access

Y Key Benefits of the Audio Language Model (ALM)

Automated Audio Understanding Transforms unstructured audio into meaningful information by automatically detecting, classifying, and transcribing both speech and non-speech sounds.

♥ Improved Efficiency & Accuracy Eliminates manual transcription errors and enhances accuracy in speech recognition and sound classification.

Multilingual and Cross-Cultural Adaptability

Supports multiple languages, dialects, and regional accents, enabling better communication across diverse communities or forces.

☐ Context-Aware Insights Gathers contextual data (location, noise level, environment) to interpret sound meaningfully.

RESEARCH AND REFERENCES

- **□** References
- ☐ Research Papers
- **Tang, C. et al. (2023)** SALMONN: Towards Generic Hearing Abilities for Large Language Models. [arXiv:2310.13289]
- → Introduces the idea of AI with hearing capabilities for both speech & non-speech sounds.
- Mardila, R. et al. (2019) Common Voice: A Massively-Multilingual Speech Corpus. Mozilla Foundation.
- → Provides **diverse multilingual datasets** for training speech recognition systems.
- **Wu, J. et al. (2023)** Speech-LLaMA: Decoder-Only Architecture for Speech and Language Model Integration. [arXiv:2307.03917]
- → Shows how to integrate speech understanding into LLMs for contextual comprehension.
- **©** Datasets & Benchmarks
- AudioSet (Google Research, 2017) Over 2 million labeled audio clips covering 600+ sound classes.
- **DCASE Challenge** (2013–2023) Annual benchmark for sound event detection & acoustic scene analysis.
- **↑** ReaLISED Dataset (MDPI, 2022) − Real-world indoor sound event dataset for AI model training.
- **FSDnoisy18k** (Fonseca et al., 2019) Web audio dataset designed for training with noisy labels.
- ☐ Defence & Strategic Research
- ☐ Gunshot & Blast Detection Systems IEEE papers on acoustic signal detection for defence and border safety.
- ► AI-Driven Acoustic Surveillance Research integrating IoT sensors and machine learning for field monitoring.
- Sound-Based Intelligence Systems Defence studies on audio-driven situational awareness in combat zones.