

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

Elektronika

Elektronika előadás

Mérnök informatikus szak

Dr. Rencz Márta, Dr. Ress Sándor

http://www.eet.bme.hu

A tantárgy oktatásának módja

Az előadások vázlata PDF-formátumban a tanszéki webről letölthető:

http://www.eet.bme.hu/vieea307/

belépés: NEPTUN kód nagybetűvel!

Jelszó: NEPTUN kód megfordítva

Első belépés után változtassa meg!

- Jegyzet, felhasználható irodalom:
 - Székely Vladimír: Elektronika I, Félvezető Eszközök, 2001, Azonosító sz.: 55054
 - Mikroelektronika és elektronikai technológia, Szerk.: Dr. Mojzes I. Műszaki Könyvkiadó, 2005

Elektronika

Elektromos áram félvezetőkben ill. vákumban

- ► Ágai (régebben erős-, gyenge áram)
 - energy processing
 - information processing
- ▶ Utóbbi felosztása, az ún. 4C
 - Communication
 - Computation
 - Control
 - Components

A tantárgy tematikája

- ▶ Bevezető, az elektronika története
- ▶ Félvezető fizikai összefoglaló
- ▶ Félvezető eszközök
 - p-n átmenet, dióda
 - bipoláris tranzisztor
 - MOS tranzisztor
- CMOS áramkörök
 - analóg és digitális áramköri elemek
- Memóriák
- VLSI áramkörök
 - integrált áramkörök tervezési kérdései
- Számítástechnikai periféria elektronika
- MEMS

Az elektronika története

Generációk

- Elektromágnessel mozgatott mechanika (elektromosságtan)
- Elektromos és mágneses erőtérrel, vákuumban mozgatott elektron
- Szilárd testben mozgó, potenciálterekkel vezérelt elektron

Az elektronika története 2.

A gyökerek

(Elektromosság-tan)

(Elektromágnessel mozgatott mechanika)

- ▶ 1837 Morse, telegráf
- ▶ 1876 Bell, telefon
- 1877 Edison, fonográf: az első ROM

- ▶ 1865 Maxwell, az elektromágneses hullámok elmélete
- ▶ 1888 (azaz 23 évvel később) Herz előállítja őket
- ► 1896 Marconi rádió kapcsolat = drót nélküli távíró (vagy Popov, 1 évvel korábban, de nem publikálta...)

6.1060

Elektroncső korszak

Vákuumban mozgatott **elektron** → **elektronika**

- ▶ 1895 Lorenz kimutatta az elektronok létét
- ▶ 1897 Braun az első katódsugárcső
- 1904 Flemming az első dióda (valve) nemlineáris eszköz
- Trióda erősítő eszköz
- ▶ 1920 Rádiótávközlés
- ▶ 1940 TV, radarrendszerek

Rádió a 20-as évekből

Tranzisztor korszak

▶ 1948 Bell Laboratórium Shockley, Bardeen, Brattain

Bipoláris eszköz: elektronok és lyukak (Germánium tűs tranzisztor)

- ▶ 1954 Szilícium tranzisztor, Texas Instruments
- ▶ 1958 az első integrált áramkör Kilby, Texas Instruments

Integrált áramkörök

- 1960 SSI < 100 elem
- 1966 MSI n × 100 elem
- 1969 I SI n × 1000 elem
- 1975 VLSI n × 10 000 elem
- Ma: UI SI n × 10⁹ elem
- Új felosztás:

Elektronikai ipar:

- chip gyártók
- chip felhasználók
- ▶ 1958 JFET
- ▶ 1960 MOSFET
- ► 1969 Mikroprocesszor (Intel, **Andrew Grove**)
- Memóriák, képfeldolgozó eszközök
- ▶ Ma: System-on-a-chip SoC, Network on a chip NoC

A szükséges alapok felfrissítése

- ▶ Kirchhoff törvények
- ▶ Ideális és valós források
- ▶ Helyettesítő képek
- ► Lineáris hálózatok, a Szuperpozició elve
- ▶ Passzív lineáris hálózati elemek
- ▶ RC hálózatok jellemzése
- ▶ Bode diagramm
- Erősítők jellemzői

Kirchhoff-törvények

- ► Egy csomópontba befolyó áramok előjeles összege = 0.
- ► Tetszőleges zárt hurokban a feszültségek összege = 0.

A Kirchhoff-törvények alkalmazásával minden hálózat megoldható.

Referencia feszültség, föld potenciál

Áramkör analízis

Alapvető számítás módszerek

- Csomóponti potenciálok módszere
 - Áramkör analízis programok általában ezt használják
 - minden (n) csomópont potenciálja ismeretlen, ezekkel kifejezzük az ágáramokat
 - segítségükkel minden csomópontra felírjuk a csomóponti törvényt
 - megoldjuk az n egyenletből álló n ismeretlenes egyenletrendszert
 - a csomóponti potenciálokkal meghatározzuk az ágáramokat

Ideális és valós források 1.

Feszültségforrások

▶ ideális:

 a 2 kivezetés között a feszültség független a feszültségforrás áramától

▶ valós:

- a kivezetések között mérhető feszültség függ az áramtól (a gyakorlatban: csökken)
- modell: belső ellenállás

Ideális és valós források 2.

Áramforrások

▶ ideális:

 az áram független az áramforráson eső feszültségtől

▶ valós:

- a kimenő áram függ az áramforráson eső feszültségtől
- modell: ideális áramforrás + belső ellenállás

Helyettesítő képek (modellek)

Olyan áramköri részletek, amelyek a kapcsokon (az áramkör további részeihez való kapcsolódási pontokon) olyan karakterisztikát (összetartozó áram és feszültség értékeket) mutatnak, mint a helyettesítendő áramköri részlet.

kapocs pár = kapu

Nemlineáris elemek lineáris helyettesítő képei csak közelítések, adott feltételekre.

Thévenin helyettesítő kép

- ► Tetszőleges, ellenállásokból és ideális forrásokból álló 1 kapus hálózat helyettesíthető egy sorbakapcsolt ideális feszültségforrással (U_G) és egy ellenállással (R_B).
- ► A helyettesítőkép meghatározása:
 - Legyen U_ü = a kapu kimenetén mérhető (számítható) feszültség (az üresjárási feszültség), IR a kapu kimenetén mérhető (számítható) rövidzárási áram.

Thévenin – Norton átalakítás

- ► Tetszőleges R_B belső ellenállású, U_G feszültségforrás helyettesíthető egy I_G=U_G/R_B ideális áramforrás és egy R_B ellenállás párhuzamos kapcsolásával.
- A két alak ekvivalens: azt érdemes használni, amivel a hálózat egyszerűbben számítható.

Szuperpozició elve

Lineáris hálózatok:

- amelyekben minden elem I(U) karakterisztikáját lineáris egyenlet, vagy lineáris differenciálegyenlet írja le.
- ► Lineáris hálózatokban teljesül, hogy
 - $f(F+\Delta F) = f(F)+f(\Delta F)$
- ▶ Így a különböző gerjesztésekre adott együttes válasz meghatározható az egyes gerjesztésre adott válaszok összegeként.
 - alkalmazásnál:
 - az ideális áramgenerátort szakadással,
 - a feszültséggenerátort rövidzárral kell helyettesíteni.

amíg a többi generátor hatását számoljuk egyenként, majd az összes generátor hatást összeadjuk...

Passzív lineáris hálózati elemek

▶ Disszipatív elem:

- ellenállás
 - az R ellenálláson átfolyó I áram
 P = UI = I²R = U²/R
 teljesítményt hővé alakít

$$U = I \cdot R$$

- ► Energia tároló elemek:
 - kapacitás
 - induktivitás

Kapacitás

Egymáshoz közeli, de egymástól elektromosan elszigetelt két vezető → töltés felhalmozódás

- ▶ Q = C·U
- ▶ C egysége a Farad (As/V)
- ► Mivel: I = dQ/dt →

 $I = C \cdot dU/dt$

- Ha az ideális kapacitáson a feszültség nem változik (állandósult állapot, DC eset): árama = 0, azaz szakadásként viselkedik, töltését megtartja.
- A valóságos kapacitásnak mindig van párhuzamos veszteségi ellenállása.

Induktivitás

Hurkolt vezető, amin áram folyik. Ha az áram megváltozik, az induktivitás végpontjain feszültség mérhető

 $U = L \cdot dI/dt$

- ▶ L egysége a Henry (Vs/A)
- Ha az induktivitáson állandó áram folyik, a rajta eső feszültség U = 0
 - Ha az induktivitást rövidre zárjuk, a veszteség mentes (ideális) induktivitásban az folytonosan (örökké) folyik.
 - Valóságos induktivitásnak mindig van soros veszteségi ellenállása, sőt párhuzamos kapacitása is.

RC hálózatok jellemzése

Időtartományban

bekapcsoláskor (a) $U_{be}=U_{\theta}$ kikapcsoláskor (b) $U_{ki}(\theta)=U_{\theta}$

$$U_{ki}(t) = U_0 (1 - e^{-t/RC})$$
 $U_{ki}(t) = U_0 e^{-t/RC}$

A τ = RC mennyiség az ún. időállandó.

Az időállandó megadja, hogy mennyi ideig tart, amíg az eltérés az állandósult állapottól e-d részére csökken. Az eltérés 5τ idő alatt már kevesebb mint 1%.

gyors változásokat nem tud követni

Jellemzés frekvenciatartományban

Bode-diagramm

- Az A(ω)= U_{ki}/ U_{be} átviteli függvényt ábrázoljuk. Ha U₁ amplitudójú, ω frekvenciájú szinuszos jelet teszünk a hálózat bemenetére:
 - $U_{be}(t)=U_1\cos(\omega t)$, a kimeneten $U_{ki}(t)=U_2\cos(\omega t+\varphi)$
 - az átvitel abszolút értéke U₂/U₁, a bemenet és a kimenet között φ fázistolás van.
- Az átvitel abszolút értékét és a fázistolást szokás a frekvencia függvényében logaritmikusan ábrázolni, ez a Bode-diagramm.
 - Az |A| mértékegysége a dB (decibel)

$$A|_{dB} = 20 \lg(A)$$

Feszültség- és áramerősítés esetén. Teljesítményerősítés esetén P(dB) = 10 lg(P)

gyors változásokat nem tud követni

Példa Bode-diagrammra

▶ Jellegzetes pontok:

- Határfrekvencia: f_h az a pont, ahol az erősítés a névleges erősítésnél 3dB-el kevesebb.
- Tranzitfrekvencia: az a frekvencia, ahol az erősítés abszolút értéke 1-re csökken. (Más néven erősítés-sávszélesség szorzat, GBW, sávjóság.)
- Sávszélesség: két határfrekvencia közötti frekvencia tartomány

Erősítők jellemzői

- Az erősítő aktív eszköz, teljesítményt erősít. (A transzformátor pl. nem erősítő!)
 - Az erősítés: A=U_{ki}/U_{be} (feszültség erősítő)
 - a valóságos erősítő modellje

Ideális erősítőben: R_i=∞, R_o=0, azaz I_{in}=0, és ideális feszültséggenerátoros kimenet

- A jó erősítőhöz tehát az kell, hogy R_i >>R_s másrészt R_o<<R_L
- Ideális erősítőben: R_i=∞, R_o=0
- ► Az erősítés frekvenciafüggő
- Általában a Bode-diagrammon szokás megadni a frekvenciamenetet.