HEC 2011

Exercice avec préparation 1

Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{e^{-|x|}}{2}.$$

- 1. Question de cours : Rappeler la définition d'une densité de probabilité.
- 2. Vérifier que f est une densité de probabilité.

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathscr{A}, P) dont f est une densité de probabilité.

- 3. a) Déterminer l'espérance $\mathbb{E}(X)$ de X.
 - b) A-t-on, pour tout réel s, pour tout réel t tel que $t \ge s$,

$$P_{[X>s]}([X>t]) = \mathbb{P}([X>t-s])$$
?

4. Pour tout entier $n \ge 1$ et tout réel x, on pose :

$$H_n(x) = \int_{-\infty}^x f(t)(1 + te^{-n|t|}) dt.$$

Montrer que H_n est une fonction de répartition.

5. Soit X_n une variable aléatoire définie sur (Ω, \mathcal{A}, P) de fonction de répartition H_n . Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers X.

Exercice sans préparation 1

Soit n un entier supérieur ou égal à 2 et $(a_1, a_2, \ldots, a_n) \in \mathbb{R}^n - \{0, \ldots, 0\}$.

On considère la matrice colonne $X = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}).$

On pose $B = X^{t}X$ et $A = {}^{t}X X$.

On désigne par u l'endomorphisme de \mathbb{R}^n canoniquement associé à B.

- 1. Expliciter la matrice B et la matrice A.
- 2. Quel est le rang de u? Déterminer son noyau.
- 3. B est-elle diagonalisable?
- 4. Calculer B^k pour tout $k \in \mathbb{N}^*$.

Exercice avec préparation 2

On admet la propriété (\mathbb{P}) suivante :

Si la suite réelle $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre réel L, alors la suite $(V_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, V_n = \frac{1}{n}(u_0 + u_1 + \dots u_{n-1})$$

converge aussi vers L.

On se donne deux nombres réels α et β tels que $0 < \alpha < \beta$.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n \frac{1 + \alpha u_n}{1 + \beta u_n}$

- 1. Question de cours : Convergence et divergence des suites réelles monotones.
- 2. Dans cette question seulement, on suppose $\alpha = 1$ et $\beta = 2$.
 - a) Étudier les variations de la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = x \frac{1+x}{1+2x}$$

- b) Étudier la convergence de la suite (u_n) .
- c) Écrire un programme en Pascal permettant le calcul de u_{10} .
- 3. Dans le cas général, prouver que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 4. On pose, pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n}$. Prouver que la suite $(v_{n+1} v_n)_{n \in \mathbb{N}}$ converge vers $\beta \alpha$.
- 5. En utilisant la propriété \mathbb{P} , déduire du résultat précédent un équivalent de u_n de la forme $\frac{1}{qn}$ lorsque n tend vers $+\infty$, où q est un réel strictement positif.

Exercice sans préparation 2

n souris (minimum 3) sont lâchées en direction de 3 cages, chaque cage pouvant contenir les n souris et chaque souris allant dans une cage au hasard.

- 1. Calculer la probabilité pour qu'une cage au moins reste vide.
- 2. Soit X la variable aléatoire égale au nombre de cages restées vides. Calculer l'espérance de X.

Exercice avec préparation 3

- 1. Question de cours : Variable aléatoire à densité. Propriétés de sa fonction de répartition.
 - On considère une densité de probabilité f, nulle sur \mathbb{R}_- , continue sur \mathbb{R}_+^* , associée à une variable aléatoire X. On suppose que X est définie sur un espace probabilisé (Ω, \mathscr{A}, P) et on note F la fonction de répartition de X.
- 2. Montrer que F possède une unique primitive s'annulant en 0. On note H_f cette fonction. Montrer que H_f est de classe C^1 .
- 3. Donner H_f dans les cas suivants :

a)
$$f(x) = 0$$
 si $x \le 0$ et $f(x) = e^{-x}$ si $x > 0$.

b)
$$f(x) = 0$$
 si $x \le 0$ et $f(x) = \frac{1}{(1+x)^2}$ si $x > 0$.

c)
$$f(x) = 0$$
 si $x \le 0$ et $f(x) = \frac{1}{2(1+x)^{3/2}}$ si $x > 0$.

Dans chacune des cas, étudier l'existence d'une direction asymptotique et d'une asymptote oblique pour la courbe représentative de H_f lorsque x tend vers $+\infty$.

- 4. On suppose que X admet une espérance l.
 - a) En intégrant par parties $\int_0^x tf(t) dt$, montrer que $H_f(x) \sim x$ au voisinage de $+\infty$. En déduire que la courbe représentative de H_f admet une direction asymptotique en $+\infty$.
 - b) A-t-on toujours une asymptote?

Exercice sans préparation 3

Soit E l'ensemble des matrices $M_{a,b} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où (a,b) prend toute valeur de \mathbb{R}^2 .

- 1. Montrer que E est un espace vectoriel réel de dimension 2. Calculer le produit $M_{a,b}M_{a',b'}$ pou $(a,b,a',b') \in \mathbb{R}^4$. Vérifier que ce produit appartient à E.
- 2. Calculer $M_{a,b}^n$ pour $n \in \mathbb{N}^*$.

Exercice avec préparation 4

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Soit $p \in]0,1[$ et q=1-p.

- 1. Question de cours : Indépendance de n variables aléatoires discrètes $(n \in \mathbb{N}^*)$.
- 2. On effectue des lancers successifs et indépendants d'une pièce de monnaie. On suppose qu'à chaque lancer la probabilité d'obtenir Pile est égale à p. On notera P et F les évènements « Obtenir Pile » et « Obtenir Face ».

On définit les variables aléatoires X_1 et X_2 de la façon suivante :

- $\times X_1$ vaut k si le premier Pile de rang impair s'obtient au rang 2k-1 (entier qui représente le $k^{\text{ème}}$ nombre impair de \mathbb{N}^*),
- \times X_2 vaut k si le premier Pile de rang pair s'obtient au rang 2k (entier qui représente le k-ième nombre pair de \mathbb{N}^* .

Par exemple si l'on obtient (F, P, F, F, P, P) alors X_1 prend la valeur 4 et X_2 prend la valeur 1. On posera $X_1 = 0$ (respectivement $X_2 = 0$) si Pile n'apparaît à aucun rang impair (respectivement à aucun rang pair).

- a) Prouver que $\mathbb{P}([X_1 = 0]) = \mathbb{P}([X_2 = 0]) = 0.$
- b) Calculer $\mathbb{P}([X_1 = 1])$ et $\mathbb{P}([X_2 = 1])$. Déterminer les lois de X_1 et de X_2 . Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- c) Déterminer la loi de la variable aléatoire Y égale au minimum de X_1 et de X_2 .
- 3. Soit X une variable aléatoire suivant une loi géométrique de paramètre p.
 - a) Montrer que la variable aléatoire $Y = \left\lfloor \frac{X+1}{2} \right\rfloor$ suit une loi géométrique ($\lfloor x \rfloor$ désigne la partie entière du nombre x).
 - b) Montrer que les variables aléatoires Y et 2Y X sont indépendantes.

Exercice sans préparation 4

On note E_4 l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 4 et on considère l'application Δ qui à un polynôme P de E_4 associe le polynôme $Q = \Delta(P)$ défini par :

$$Q(x) = P(x+2) - P(x)$$

- 1. Vérifier que l'application Δ est un endomorphisme de E_4 . Expliciter la matrice de Δ dans la base canonique de E_4 .
- 2. Déterminer le noyau de Δ . On pourra prouver que si $P \in \ker(\Delta)$, alors P(x) P(0) a une infinité de racines.
- 3. L'endomorphisme Δ est-il diagonalisable?
- 4. Existe-t-il un polynôme Q appartenant à E_4 ayant un unique antécédent par Δ ?

Exercice avec préparation 5

Dans tout l'exercice, n désigne un entier naturel non nul et $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels, de degré inférieur ou égal à n. On note $M(m_{i,j})_{1 \leq i,j \leq n+1}$ la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ de terme général :

$$m_{i,j} = \begin{cases} i & \text{si } j = i+1 \\ n+1-j & \text{si } i = j+1 \\ 0 & \text{dans tous les autres cas} \end{cases}$$

et u l'endomorphisme de $\mathbb{R}_n[X]$ dont la matrice dans la base canonique $(1, X, \ldots, X^n)$ est égale à M.

- 1. Question de cours : Rappeler la définition d'un vecteur propre d'un endomorphisme. Enoncer la propriété relative à une famille de vecteurs propres d'un endomorphisme, associés à des valeurs propres distinctes.
- 2. a) Calculer $u(X^k)$ pour $k \in [0, n]$.
 - b) En déduire l'expression de u(P) pour $P \in E$ en fonction notamment de P et de P'.
- 3. Pour $k \in [0, n]$, on pose $P_k(X) = (X 1)^k (X + 1)^{n-k}$.
 - a) Calculer $u(P_k)$.
 - b) En déduire que P_0, \ldots, P_n) est une base de $\mathbb{R}^n[X]$.
 - c) L'endomorphisme u est-il diagonalisable? Préciser ses valeurs propres et les espaces propres associés.
- 4. Dans cette question, on suppose que n=3.
 - a) Expliciter M et déterminer une matrice diagonale D et une matrice inversible P telles que $P^{-1}MP = D$.
 - b) Déterminer les matrices commutant avec D.
 - c) Existe-t-il un endomorphisme v de $\mathbb{R}_3[X]$ tel que $v \circ v = u$?

Exercice sans préparation 5

Soient X et Y deux variables aléatoires définies sur un espace probabilisé (Ω, \mathscr{A}, P) à valeurs dans \mathbb{N}^* , indépendantes et telles que :

$$\forall i \in \mathbb{N}^*, \ \mathbb{P}([X=i]) = \mathbb{P}([Y=i]) = \frac{1}{2^i}$$

- 1. Reconnaître la loi de X et de Y.
- 2. Déterminer la loi de la variable aléatoire Z = X + Y et la loi de X conditionnellement à [X + Y = k], k étant un entier supérieur ou égal à 2 fixé.
- 3. Calculer $\mathbb{P}([X = Y])$ et $\mathbb{P}([X > Y])$.
- 4. Calculer $\mathbb{P}([X \geqslant 2Y])$ et $\mathbb{P}_{[X \geqslant Y]}([X \geqslant 2Y])$.

Exercice avec préparation 6

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes définie sur un espace probabilisé (Ω, \mathscr{A}, P) telles que, pour tout $n\in\mathbb{N}^*$, X_n suit la loi exponentielle de paramètre $\frac{1}{n}$ (d'espérance n).

Pour tout x réel on note $\lfloor x \rfloor$ sa partie entière.

Pour $n \in \mathbb{N}^*$ soient :

$$Y_n = |X_n|$$
 et $Z_n = X_n - |X_n|$

- 1. Question de cours : Définition de la convergence en loi d'une suite de variables aléatoires.
- 2. Déterminer la loi de Y_n et son espérance.
- 3. Déterminer $Z_n(\Omega)$ et montrer que,

$$\forall t \in [0,1] : \mathbb{P}(Z_n \leqslant t) = \frac{1 - e^{\frac{-t}{n}}}{1 - e^{\frac{-1}{n}}}.$$

- 4. Montrer que la suite de variables aléatoires $(Z_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire Z dont on précisera la loi.
- 5. Soit $n \in \mathbb{N}^*$ et N_n la variable aléatoire définie par :

$$N_n = \operatorname{Card}\left\{k \in [1, n] \text{ tel que } X_k \leqslant \frac{k}{n}\right\}$$

- où Card(A) désigne le nombre d'éléments de l'ensemble fini A.
- a) Reconnaître la loi de N_n et donner son espérance et sa variance.
- b) Montrer que la suite de variables aléatoires $(N_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire N dont on précisera la loi.

Exercice sans préparation 6

Soit E l'ensemble des matrices $M_{a,b} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où (a,b) prend toute valeur de \mathbb{R}^2 .

- 1. Montrer que E est un espace vectoriel de dimension 2.
- 2. Dans le cas où soit a = b, soit a = -2b, prouver que $M_{a,b}$ n'est pas inversible. Dans le cas contraire, calculer son inverse et montrer qu'il appartient à E.
- 3. Calculer $M_{a,b}^n$ pour $n \in \mathbb{N}^*$.

Exercice avec préparation 7

1. Question de cours : Estimateur, biais, risque quadratique.

Soient a, b et c trois réels strictement positifs et soit f la fonction définie sur \mathbb{R} par :

$$f(x) = 0 \text{ si } x < 0, \quad f(x) = c \text{ si } x \in [0, a[, \quad f(x) = \frac{b}{x^4} \text{ si } x \in [a, +\infty[.$$

- 2. Déterminer b et c en fonction de a pour que f soit une densité de probabilité continue sur \mathbb{R}_+ . On suppose que b et c sont ainsi définis dans la suite de l'exercice et X est une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) de densité f. Donner une allure de la représentation graphique de f.
- 3. Pour quelles valeurs $k \in \mathbb{N}^*$, X admet-elle un moment d'ordre k?
- 4. Déterminer l'espérance et la variance de X si elles existent.
- 5. Soit (X_n) une suite de variables aléatoires indépendantes de même loi que X. On pose :

$$T_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- a) Montrer que (T_n) est un estimateur de a.
- b) Construire à partir de (T_n) un estimateur (S_n) sans biais de a.
- c) Quel est le risque quadratique de S_n ?

Exercice sans préparation 7

Soit
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$
.

- 1. Calculer $A^2 I$.
- 2. A est-elle diagonalisable? Si oui, la diagonaliser.