Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Лабораторная работа №1

"Осциллографа."

по дисциплине "Электрорадиоизмерения"

Выполнили студенты группы РЛ6-81 Филимонов С.В.

Преподаватель Федоркова Н.В.

Цель:

Измерение параметров последовательности видеоимпульсов с помощью осциллографа Agilent Technologies.

План:

- 1.Выписать из описаний характеристики приборов (осциллографа, генератора импульсов);
 - 2.Ознакомиться с инструкциями по эксплуатации;
- 3. Составить методику измерения параметров последовательности прямоугольных видеоимпульсов (длительность фронта, среза, импульса; амплитуда, период (частота) следования);
 - 4.Измерить параметры последовательности видеоимпульсов;
- 5.Составить методику измерения параметров спектрального преобразования Фурье;
- 6.Измерить параметры быстрого преобразования Фурье: частоту первого максимума сигнала, расстояние между максимумами;
 - 7. Составить отчет.

Основная часть

Используемые в работе приборы – генератор импульсов Г5-63 и осциллограф DSCope U2P20 – представлены на рисунках ниже.

Характеристики приборов:

Характеристики осциллографа DSCope U2P20:

- 1)Тип: цифровой, мобильный, запоминающий;
- 2) Количество каналов: 2;
- 3) Полоса пропускания: 50 МГц;
- 4) Частота дискретизации на канал: 200 МГц;
- 5) Объем памяти на канал: 8 Мб;
- 6) Синхронизация (запуск): по фронту, по длительности импульса, по кодовому слову, по ТВ-сигналу (видеосигналу), по последовательности событий, по условиям последовательных шин;
- 7) Режимы работы: усреднение, пиковый детектор, БПФ, автоизмерения, курсорные измерения, накопление;
 - 8) Встроенный прибор: нет;
 - 9) Дисплей: цветной;
 - 10) интерфейс: USB;

Интерфейс прибора:

Рис. 1 – Интерфейс DSCope U2P20

Настройки генератора импульсов Г5-63:

1)Период следования импульсов Т, мкс: 100;

2)Длительность импульсов τ_{u} , мкс: 57;

3)Амплитуда А, В: 15.

Внешний вид:

Рис. 2 – Внешний вид Г5-63

Спектральные характеристики последовательности прямоугольных видеоимпульсов:

Рис. 3 – Спектральные характеристики сигнала

Характеристики генератора импульсов Г5-63

Генератор импульсов Г5-63, имеющий следующие основные технические характеристики и параметры:

(82)	Г5-54	Г5-63	Параметры	Г5-54	Г5-63
Параметры Частота (период) по- вторения		10 мкс — 200 мс (режим одинарных импульсов), 50 мкс — 200 мс (режим парных импульсов)	Погрешность установ амплитуды	$.0,1 U + K_{x}1$	$\begin{array}{ll} {\rm B} & 0.1U+0.6 \; {\rm B} \; (6-60 {\rm B} \\ 0.15 \; U+0.06 \; {\rm B} \\ (0.6-6 \; {\rm B}), \\ 0.2 \; U+0.06 \; {\rm B} \\ (0.06-0.6 \; {\rm B}), \\ 0.2 \; U+1 \; {\rm wB} \\ (<0.06 \; {\rm B}) \\ \end{array}$
Максимальная амплитуда импульса, В	. 50 (500 O _M)	60 (1 кОм)	Погрешность установ длительности	. 0,1τ+30 нс	0,1 т + 30 нс Окончание
Париметри	1 3-34	Г5-63	Параметры	Γ5-54	Γ5-63
пительность, нс:			Временной сдвиг (за-	ethorese pass	and the same of th
	≤50 (скваж-	≤50	держка) основного им-		
	ность ≥5), ≤75 (скваж- ность 2—5)	10000	пульса относительно синхроимпульса, мкс	0-1000	0—2000
The second secon	<100 (скваж- ность ≥5),	≤100	Погрешность установки временного сдвига	0,1	D + 30 нс
	≤120 (скваж-		мая скважность	2	5
равномерность вер-	≤120 (скваж- ность 2—5)	The same	Потребляемая мощ-	2	
Carrier la	≤120 (скваж-			50	80 380×255×185

Рис. 4 — Технические характеристики генератора импульсов Г5-63

1. Методика измерения временных параметров

1.1. Измерение сигнала

- 1.1.1. Выберем частоту дискретизации, с которой будет измерятся сигнала;
- 1.1.2. Настроим масштаб напряжения;
- 1.1.3. Выберем измерение *DC*;
- 1.1.4. Нажав кнопку *Start* измерим сигнал;

1.2. Замер данных по сигналу

1.2.1 Нажав на график получим указатели на измеренное значение;

- 1.2.2 Подвинем указатели так, чтобы можно было определить харатеристики сигнала;
- 1.3. Проверка измерения.
 - 1.3.1 Сравним измеренный результат с заданным.

Заданные параметры на генераторе импульсов:

Период повторения $T = 100 \ us;$

Временной сдвиг D = 30 us;

Длительность импульса $\tau = 50 \ us;$

Амплитуда A = 15 V;

Полученные измерения:

Период повторения $T = 104.4 \ us;$

Амплитуда A = 17.3 V;

Длительность фронта $t_{\phi} = 49.8 \ ns$

Длительность среза $t_c = 51.1 \ ns$

Рис. 5 — Длительность фронта (49.8 нс)

Рис. 6 – Длительность среза (51.1 нс)

Рис. 7 – Длительность импульса (52.4 мкс) и амплитуда (17.3 В), период повторения (104.4 мкс)

2.Методика измерения параметров спектрального преобразования Фурье

2.1.Выбор FFT;

- 2.1.1 Выберем FFT анализ;
- 2.1.2 Выставим длину 2048;
- 2.1.3 Выставим анализ BlackMan;
- 2.1.4 Нажмем ОК.

Рис. 8 – Настройки FFT.

2.2. Анализ FFT

2.2.1 Выставим измерительные риски, нажав на график

Рисунок 9 – Быстрое преобразование Фурье, частота первого максимума (9.9 кГц)

Рисунок 10 — Быстрое преобразование Фурье, расстояние между максимумами (20.6 к Γ ц)

Вывод.

В ходе проведения работы было установлено, что полученные с осциллографа параметры отличны от тех параметров, что были выставлены на генераторе импульсов. Возможными причинами этого являлись низкая точность устанавливаемых на генераторе значений, а также временной износ генератора.