APPUNTI DI ALGEBRA

MANUEL DEODATO

INDICE

1	Teoria dei gruppi		3
	1.1	Il gruppo degli automorfismi	3
	1.2	Azioni di gruppo	4
		1.2.1 Azione di coniugio	6
		1.2.2 Formula delle classi	7
	1.3	l p-gruppi	7
	1.4	Teoremi di Cauchy e Cayley	8
	1.5	Commutatore e gruppo derivato	11
	1.6	Gruppi diedrali	12

1 TEORIA DEI GRUPPI

1.1 Il gruppo degli automorfismi

LEMMA 1.0.1. Siano H, G due gruppi ciclici; un omomorfismo $\varphi : G \to H$ è univocamente determinato da come agisce su un generatore di G.

Dimostrazione. Sia $g_0 \in G$ tale che $\langle g_0 \rangle = G$ e sia $\varphi(g_0) = \overline{h} \in H$. Per $g \in G$ generico, per cui $g_0^k = g$ per qualche intero k, si ha:

$$\varphi(g) = \varphi(g_0^k) = \varphi(g_0)^k = \overline{h}^k$$

Cioè tutti gli elementi di Im φ sono esprimibili come potenze di \overline{h} .

OSSERVAZIONE 1.1. Non ogni scelta di $\overline{h} \in H$ è ammissibile, ma bisogna rispettare l'ordine di g_0 . Se $g_0^n = e_G$, allora $e_H = \varphi(g_0^n) = \varphi(g_0)^n = \overline{h}^n$. Questa condizione, impone che ord $(\overline{h}) \mid \operatorname{ord}(g_0)$.

DEFINIZIONE 1.1 (GRUPPO DEGLI AUTOMORFISMI). Sia *G* un gruppo; si definisce il gruppo dei suoi automorfismi come

$$Aut(G) = \{f : G \rightarrow G \mid f \text{ è un isomorfismo di gruppi}\}$$

ESEMPIO 1.1. Si calcola $Aut(\mathbb{Z})$.

Svolgimento. Il gruppo $(\mathbb{Z}, +)$ è ciclico, quindi un omomorfismo è determinato in base a come agisce su un generatore. Prendendo, per esempio 1, si definisce $q_a : \mathbb{Z} \to \mathbb{Z}$ tale che $q_a(1) = a$; perché $\langle q_a(1) \rangle = \mathbb{Z}^1$, è necessario che a sia un generatore di \mathbb{Z} , perciò sono ammessi $a = \pm 1$. In questo caso, $\operatorname{Aut}(\mathbb{Z}) = \{\pm \operatorname{Id}_{\mathbb{Z}}\} \cong (\mathbb{Z}/2\mathbb{Z}, +)$.

TEOREMA 1.1. Aut
$$(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^*$$
.

Dimostrazione. ($\mathbb{Z}/m\mathbb{Z}$, +) è ciclico, quindi si stabilisce l'azione di $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ su un generatore. Preso, allora, $\overline{k} \in \mathbb{Z}/m\mathbb{Z}$ tale che $\gcd(k,m)=1$ e scelto $f(\overline{k})=\overline{a}$, si ha che $\langle f(\overline{k})\rangle=\langle \overline{a}\rangle=\mathbb{Z}/m\mathbb{Z} \iff \gcd(a,m)=1 \iff \overline{a} \in (\mathbb{Z}/m\mathbb{Z})^*$.

DEFINIZIONE 1.2 (AUTOMORFISMO INTERNO). Sia G un gruppo; si definisce ϕ_g : $G \to G$, $\forall g \in G$, come $\phi_g(x) = gxg^{-1}$ ed è detto *automorfismo interno*. L'insieme di questi automorfismi, al variare di $g \in G$, forma il gruppo

$$\operatorname{Int}(G) = \big\{ \phi_{\mathcal{g}} : G \to G \mid \mathcal{g} \in G \text{ e } \phi_{\mathcal{g}} \text{ automorfismo interno} \big\}$$

¹Richiesto dal fatto che q_a sia suriettivo.

PROPOSIZIONE 1.1. Sia G un gruppo; allora $Int(G) \triangleleft Aut(G)$ e $Int(G) \cong G/Z(G)$.

Dimostrazione. $\operatorname{Int}(G)$ è un sottogruppo di $\operatorname{Aut}(G)$ perché $\operatorname{Id}(x) = exe^{-1} = x \Rightarrow \operatorname{Id} \in \operatorname{Int}(G)$. Inoltre, $\phi_g \circ \phi_h(x) = ghxh^{-1}g^{-1} = \phi_{gh}(x) \in \operatorname{Int}(G)$ e $\phi_{g^{-1}} \circ \phi_g(x) = x \Rightarrow \phi_g^{-1} = \phi_{g^{-1}} \in \operatorname{Int}(G)$.

È un sottogruppo normale perché $\forall f \in Aut(G)$, si ha

$$f \circ \phi_g \circ f^{-1}(x) = f\left(gf^{-1}(x)g^{-1}\right) = f(g)xf(g)^{-1} \in Int(G)$$

Per finire, si definisce $\Phi: G \to \operatorname{Int}(G)$. Questo è un omomorfismo perché $\Phi(gh) = \phi_{gh} = \phi_g \circ \phi_h = \Phi(g)\Phi(h)$. È, inoltre, suriettivo perché ogni automorfismo interno è associato ad un elemento di G, cioè $\forall \phi_g \in \operatorname{Int}(G), \ \exists g \in G : \Phi(g) = \phi_g$. Allora, la tesi deriva dal I teorema di omomorfismo, visto che $\operatorname{Ker} \Phi = Z(G)$.

OSSERVAZIONE 1.2. $H \triangleleft G \iff \phi_{\sigma}(H) = H, \ \forall \phi_{\sigma} \in \operatorname{Int}(G).$

Dimostrazione. Per ogni elemento di Int(G), si ha $\phi_g(H) = H \iff gHg^{-1} = H \iff H \triangleleft G$.

DEFINIZIONE 1.3 (SOTTOGRUPPO CARATTERISTICO). Sia G un gruppo e H < G. Si dice che H è *caratteristico* se è invariante per automorfismo, cioè $\forall f \in \operatorname{Aut}(G), \ f(H) = H$.

COROLLARIO 1.1.1. Sia G un gruppo; per la proposizione 1.1 e l'osservazione 1.2 se H è caratteristico, allora $H \triangleleft G$.

Il viceversa è falso, cioè normale \Rightarrow caratteristico; infatti, in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il sottogruppo $\langle (1,0) \rangle$ è normale, ma non caratteristico perché l'automorfismo che scambia le coordinate è tale per cui $\langle (1,0) \rangle \mapsto \langle (0,1) \rangle \neq \langle (1,0) \rangle$.

1.2 Azioni di gruppo

DEFINIZIONE 1.4 (AZIONE). Sia G un gruppo; un'azione di G su un insieme X è un omomorfismo

$$\gamma: \begin{array}{ccc} G & \longrightarrow & S(X) = \{f: X \to X \mid f \text{ biettiva}\} \\ g & \longmapsto & \psi_g: \psi_g(x) = g \cdot x \end{array}$$

ESEMPIO 1.2. Sia $G = \{z \in \mathbb{C}^* \mid |z| = 1\} \cong S^1$ la circonferenza unitaria e $X = \mathbb{R}^2$. Un'azione di G su X è una rotazione definita da $\gamma(z) = R(\arg z)$. Questa è un omomorfismo perché $\gamma(zw) = R(\arg zw) = R(\arg z + \arg w) = R(\arg z)R(\arg w) = \gamma(z)\gamma(w)$.

Un'azione γ di G su X definisce, proprio su X, una relazione di equivalenza definita da

$$x \sim_{\gamma} y \iff x = \psi_{g}(y) = g \cdot y, \text{ con } x, y \in X$$
 (1.2.1)

La relazione di equivalenza è ben definita perché le ψ_g sono mappe biettive.

DEFINIZIONE 1.5 (ORBITA). Sia $\gamma:G\to \mathcal{S}(X)$ un'azione di G gruppo su X. Dato $x\in X$, la sua classe di equivalenza rispetto alla relazione \sim_{γ} è detta *orbita* ed è indicata con $Orb(x)=\{g\cdot x\mid g\in G\}$.

Ricordando che una relazione di equivalenza fornisce una partizione dell'insieme su cui è definita, si ha:

$$X = \bigsqcup_{x \in R} \operatorname{Orb}(x) \tag{1.2.2}$$

con R insieme dei rappresentati di tutte le orbite. Se, poi, X ha cardinalità finita, allora:

$$|X| = \sum_{x \in R} |\mathsf{Orb}(x)| \tag{1.2.3}$$

DEFINIZIONE 1.6 (STABILIZZATORE). Sia $\gamma: G \to \mathcal{S}(X)$ un'azione di G su X; allora per ogni $x \in X$, si definisce l'insieme

$$Stab(x) = \{ g \in G \mid g \cdot x = x \} < G$$

LEMMA 1.1.1. Se due elementi di un'orbita sono uguali, allora appartengono alla stessa classe di equivalenza di $G/\operatorname{Stab}(x)$.

Dimostrazione. Se $g \cdot x$, $h \cdot x \in \text{Orb}(x)$ sono uguali, allora $x = h^{-1}g \cdot x$, cioè $h^{-1}g \in G$ lascia invariato x, quindi è in Stab(x). Da questo segue che $h \cdot \text{Stab}(x) = hh^{-1}g \cdot \text{Stab}(x) = g \cdot \text{Stab}(x)$.

TEOREMA 1.2 (TEOREMA DI ORBITA-STBILIZZATORE). Esiste una mappa biettiva $\Gamma: \operatorname{Orb}(x) \to G/\operatorname{Stab}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$.

Dimostrazione. Γ è iniettiva come diretta conseguenza del lemma 1.1.1 ed è suriettiva perché $\forall g \operatorname{Stab}(x) \in G/\operatorname{Stab}(x), \exists g \cdot x \in \operatorname{Orb}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$. Segue che $|\operatorname{Orb}(x)| = |G|/|\operatorname{Stab}(x)|$. □

OSSERVAZIONE 1.3. Si osserva che, per il teorema di orbita-stabilizzatore, la cardinalità di un'orbita indica il numero di classi laterali dello stabilizzatore nel gruppo che compie l'azione, cioè il teorema di orbita-stabilizzatore si può riscrivere come $|\operatorname{Orb}(x)| = [G:\operatorname{Stab}(x)] = |G/\operatorname{Stab}(x)| = |G|/|\operatorname{Stab}(x)|$.

Un caso notevole di azione è il coniugio: per X=G, si definisce $\gamma:G\to \operatorname{Int}(G)\subset S(G)$. Le orbite indotte da questa azione sono dette *classi di coniugio* e si indicano

con cl(x), mentre lo stabilizzatore è detto *centralizzatore* e si indica con:

$$Z(x) = \{ g \in G \mid g \cdot x = gxg^{-1} = x \}$$
 (1.2.4)

Come conseguenza del teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |c|(x)||Z(x)|, \ \forall x \in G$$
 (1.2.5)

PROPOSIZIONE 1.2. Sia G un gruppo e γ l'azione di coniugio su di esso; allora

$$\bigcap_{x \in G} Z(x) = Z(G)$$

Dimostrazione. Si ha $g \in Z(x)$, $\forall x \iff gxg^{-1} = x$, $\forall x \in G \iff g \in Z(G)$.

OSSERVAZIONE 1.4 (CENTRO DI UN SOTTOGRUPPO). Sia G un gruppo e H < G; allora il centro di H è definito come

$$\bigcap_{x \in H} Z(x) = Z(H)$$

1.2.1 Azione di coniugio

Si considera, ora, l'azione di coniugio di un gruppo G su $X = \{H \subseteq G \mid H < G\}$ e $\gamma(g) = \psi_g$ tale che $\psi_g(H) = gHg^{-1}$. Questa è un'azione ed è ben definita.

Dimostrazione. Per dimostrare che è un'azione, si deve mostrare che la mappa $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo e che $\psi_g : X \to X$ sia biettiva.

Si nota che $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo perché $\psi_{g_1g_2}(H) = g_1g_2Hg_2^{-1}g_1^{-1} = \psi_{g_1} \circ \psi_{g_2}(H)$, cioè $g_1g_2 \mapsto \psi_{g_1}\psi_{g_2}$. Inoltre, $\psi_g: X \to X$ è biettiva perché $\exists \psi_g^{-1} = \psi_{g^{-1}}: \psi_{g^{-1}} \circ \psi_g(H) = H$.

Per mostrare che è ben definita, si fa vedere che effettivamente $\forall g, \psi_g$ mappa un sottogruppo di G in un altro sottogruppo, cioè che $gHg^{-1} < G$. Intanto, $e \in gHg^{-1}$ perché $H < G \Rightarrow e \in H \Rightarrow geg^{-1} = e$; poi, $(ghg^{-1})(gh'g^{-1}) = ghh'g^{-1} \in gHg^{-1}$ e $h^{-1} \in H \Rightarrow \exists (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}$ elemento inverso.

Lo stabilizzatore di questa azione è detto *normalizzatore*, in quanto è definito come tutti elementi di G rispetto a cui H è normale:

$$N_G(H) = \text{Stab}(H) = \{ g \in G \mid gHg^{-1} = H \}$$
 (1.2.6)

Infine, l'orbita è l'insieme (classe di equivalenza) di tutti i coniugati di un sottogruppo di *G*:

Orb
$$(H) = \{gHg^{-1} \mid g \in G\}$$
 (1.2.7)

Per il teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |N_G(H)||Orb(H)|$$
 (1.2.8)

da cui si ricava anche che $H \triangleleft G \iff N_G(H) = G \iff Orb(H) = \{H\}.$

1.2.2 Formula delle classi

Si ricorda che le orbite definite da un'azione di un gruppo G su un insieme X formano una partizione di X stesso, in quanto sono delle classi di equivalenza. Se $|X| < \infty$, si ha:

$$|X| = \sum_{x \in R} |\mathsf{Orb}(x)| = \sum_{x \in R} \frac{|G|}{|\mathsf{Stab}(x)|} = \sum_{x \in R'} 1 + \sum_{x \in R \setminus R'} \frac{|G|}{|\mathsf{Stab}(x)|}$$
 (1.2.9)

con R insieme dei rappresentanti delle orbite e R' insieme dei rappresentati delle orbite tali che $Orb(x) = \{x\}$, cioè degli elementi invarianti sotto l'azione di G.

TEOREMA 1.3 (FORMULA DELLE CLASSI). Sia $\gamma: G \to \mathcal{S}(G)$ l'azione di coniugio di un gruppo G su un insieme X; allora:

$$|G| = Z(G) + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Dimostrazione. Segue per quanto appena detto e dall'osservazione che

$$R' = \{x \in R \mid Orb(x) = x\} = \{x \in R \mid gxg^{-1} = x\} = Z(G)$$

Visto che ogni orbita del genere contiene un solo elemento, i rappresentanti delle orbite sono esattamente tutti gli elementi di Z(G), cioè un elemento $x \in Z(G)$ non può essere contenuto in nessun'altra orbita, se non nel singoletto $\{x\}$. Perciò, la relazione in eq. 1.2.9, avendo X = G, conferma la tesi.

1.3 I p-gruppi

DEFINIZIONE 1.7 (P-GRUPPO). Sia $p \in \mathbb{Z}$ un numero primo; allora si dice che G è p-gruppo se $|G| = p^n$, per qualche $n \in \mathbb{N}$.

PROPOSIZIONE 1.3. Il centro di un *p*-gruppo è non-banale.

Dimostrazione. Per la formula delle classi, si ha:

$$p^{n} = |Z(G)| + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Se $|Z(G)| = p^n$, la tesi è verificata, altrimenti $\exists x \in R \setminus Z(G)$, quindi tale che $Z(x) \subseteq G$; allora, per qualche intero k > 0, si ha $|G|/|Z(x)| = p^k$, da cui

$$|Z(G)| = p^n - \sum_{x \in R \setminus Z(G)} p^k \implies p \mid |Z(G)|$$

Visto che $e \in Z(G)$, deve risultare $|Z(G)| \ge 1$, da cui $|Z(G)| = p^s$, per qualche intero s > 1.

LEMMA 1.3.1. Vale G/Z(G) ciclico \iff G è abeliano.

Dimostrazione. Sia G/Z(G) ciclico e sia $x_0Z(G)$ il suo generatore. Date due classi laterali distinte $xZ(G), yZ(G) \in G/Z(G)$ e visto che $x_0Z(G)$ genera, si avrà $x_0^mZ(G)=xZ(G)$ e $x_0^nZ(G)=yZ(G)$, ossia, per $z,w\in Z(G), x=x_0^mz, y=x_0^nw$. Allora:

$$xy = x_0^m z x_0^n w = x_0^m x_0^n z w = x_0^n w x_0^m z = y x$$

Essendo questo valido per $x, y \in G$ generiche, si è dimostrata l'implicazione verso destra.

Per l'implicazione inversa, sia G abeliano; allora Z(G) = G e $G/Z(G) = \{e\}$, che è ovviamente ciclico.

PROPOSIZIONE 1.4. Un gruppo di ordine p^2 è abeliano.

Dimostrazione. Sia G un p-gruppo tale che $|G|=p^2$. Per mostrare che è abeliano, si fa vedere che Z(G)=G, ossia $|Z(G)|=p^2$. Per la proposizione 1.3, si può avere solamente |Z(G)|=p, oppure $|Z(G)|=p^2$. Se, per assurdo, fosse |Z(G)|=p, allora |G|/|Z(G)|=p, quindi G/Z(G) avrebbe ordine primo e, quindi, sarebbe ciclico; per il lemma precedente (1.3.1), però, questo è assurdo perché risulterebbe anche abeliano al contempo, ma senza avere |Z(G)|=|G|. Quindi deve essere $|Z(G)|=p^2=|G|\Rightarrow Z(G)=G$, da cui G è abeliano.

1.4 Teoremi di Cauchy e Cayley

LEMMA 1.3.2 (TEOREMA DI CAUCHY ABELIANO). Sia p un primo e G un gruppo abeliano finito; se $p \mid |G|$, allora $\exists x \in G : \operatorname{ord}(x) = p$.

Dimostrazione. Sia |G| = pn; si procede per induzione su n. Il passo base è ovvio: se |G| = p, allora è ciclico e, quindi, contiene un elemento di ordine p.

Per il passo induttivo, si suppone che la tesi sia vera per ogni m < n e si dimostra per n.

Sia, allora |G| = pn; sia, poi $y \in G$, $y \neq e$ tale che $\langle y \rangle = H < G$: per Lagrange, |G| = |G/H||H|. Allora, se $p \mid |G| \Rightarrow p \mid |H|$, oppure $p \mid |G/H|$.

- Se $p \mid |H|$, allora può essere |G| = |H|, caso in cui $G = \langle y \rangle$ sarebbe ciclico e, quindi, avrebbe un elemento di ordine p^1 , oppure può essere |H| = pm < pn, caso in cui l'elemento di ordine p è presente per ipotesi induttiva.
- Se $p \mid |G/H|$, invece, allora |G/H| = pm' < pn perché H contiene almeno due elementi, cioè y ed e; per ipotesi induttiva, allora, esiste $zH \in G/H$ il cui ordine è p. Considerando la proiezione $\pi_H : G \to G/H$ tale che $x \mapsto xH$ e ricordando che è un omomorfismo, si ha che, per questo motivo, $\operatorname{ord}(zH) \mid \operatorname{ord}(z) \Rightarrow \operatorname{ord}(z) = pk$; se k = n, allora G è ciclico e z^n ha ordine p, altrimenti, se k < n, si ha la tesi per induzione.

TEOREMA 1.4 (TEOREMA DI CAUCHY). Sia p un numero primo e G un gruppo finito; se $p \mid |G|$, allora esiste $x \in G$: ord(x) = p.

Dimostrazione. Sia |G| = pn, con p primo e $n \in \mathbb{N}$; si procede per induzione su n. Se n = 1, $|G| = p \Rightarrow G$ è ciclico, quindi $\exists x \in G : \langle x \rangle = G$ e ord(x) = p.

Per il passo induttivo, si assume che la tesi sia valida per ogni m < n e si dimostra per n.

Si nota che se $\exists H < G$ tale che $p \mid |H|$, allora |H| = pm, $m < n \Rightarrow \exists x \in H$ tale che ord(x) = p per ipotesi induttiva. Si assume, dunque, che non esista alcun sottogruppo di G il cui ordine sia divisibile per p. Per la formula delle classi

$$pn - \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|} = |Z(G)|$$

Ora, visto che $Z(x) < G \Rightarrow p \nmid Z(x)$, quindi si ha la certezza che, essendo $p \mid |G| = |Z(x)||G|/|Z(x)|$, p divide |G|/|Z(x)|. Allora $p \mid |Z(G)|$, per cui Z(G) = G; infatti, se così non fosse, sarebbe un sottogruppo proprio di G e p non lo potrebbe dividere, il che è assurdo.

Da questo, segue che G è abeliano, quindi la tesi segue dal teorema di Cauchy per gruppi abeliani (lemma 1.3.2). \Box

PROPOSIZIONE 1.5. Siano H, K < G; allora $HK < G \iff HK = KH$ e $|HK| = |H||K|/|H \cap K|$.

In questo caso, l'elemento di ordine p sarebbe proprio $y^{p^{n-1}} \in G$; infatti, $(y^{p^{n-1}})^p = y^{p^n} = e$, visto che $|G| = p^n$.

Dimostrazione. Per la prima parte, è sufficiente osservare che per $hk \in HK$, l'elemento neutro $(hk)^{-1} = k^{-1}h^{-1}$ sta in HK se e solo se HK = KH, e, allo stesso modo, il prodotto è chiuso cioè $hkh'k' = hh''k''k' \in HK$ solamente se HK = KH così da poter trovare un elemento di HK che sia uguale a $kh' \in KH$ che compare in tale prodotto.

La seconda parte, invece, si verifica considerando l'applicazione $\gamma: H \times K \to HK$ tale che $\gamma((h,k)) = hk$, che è evidentemente suriettiva; inoltre, se $s \in H \cap K$, allora $(hs, s^{-1}k) \in H \times K \Rightarrow \gamma((hs, s^{-1}k)) = hk$, il che vuol dire che $\forall hk \in HK$, si trovano $|H \cap K|$ coppie in $H \times K$ che hanno immagine hk, da cui la tesi.

Classificazione dei gruppi di ordine 6

Sia G un gruppo di ordine 6; per Cauchy, allora, esistono $x, y \in G$ tali che ord(x) = 2 e ord(y) = 3. Se G è abeliano, poi, si ha ord $(xy) = 6^a$, quindi $G = \langle xy \rangle \cong \mathbb{Z}/6\mathbb{Z}$.

Se, invece, G non è abeliano, si considera il sottogruppo $\langle x, y \rangle$ e si considera anche l'insieme $\langle x \rangle \langle y \rangle$ che, in generale, non è un sottogruppo.

Applicando la proposizione precedente (1.5), si ha che $|\langle x, y \rangle| = (3 \cdot 2)/1 = 6^b$, da cui $G = \langle x \rangle \langle y \rangle$, con $\langle x \rangle = \{e, x\}$ e $\langle y \rangle = \{e, y, y^2\}$, quindi $G = \{e, x, y, xy, y^2, xy^2\}$.

Per finire, si mostra che $G\cong S_3$. Per farlo, si definisce $\phi:G\to S_3=\{e,\tau,\rho,\tau\rho,\tau^2,\rho\tau^2\}$ tale che $\phi(x)=\rho$ e $\phi(y)=\tau$, con $\tau=(1,2,3)$ e $\rho=(1,2)$. Questa mappa è suriettiva per costruzione, quindi è biettiva per questioni di cardinalità; inoltre, è un omomorfismo, da cui segue la tesi.

TEOREMA 1.5 (TEOREMA DI CAYLEY). Sia G un gruppo; allora G è isomorfo a un sottogruppo di S(G). In particolare, se |G|=n, allora G è isomorfo a un sottogruppo di S_n .

Dimostrazione. Si definisce l'azione

$$\phi: \begin{array}{ccc} G & \longrightarrow & \mathcal{S}(G) \\ g & \longmapsto & \gamma_g \end{array}$$
, tale che $\gamma_g(x) = g \cdot x$

Questa è ben definita perché $\gamma:G\to G$ è biettiva, infatti $\gamma_g(x)=\gamma_g(y)\iff g\cdot x=g\cdot y\iff x=y\ e\ \forall\ y\in G,\ \exists\gamma_g(g^{-1}\cdot y)=y,$ il che mostra che è rispettivamente iniettiva e suriettiva. Inoltre, ϕ è un omomorfismo (ovvio) ed è anche iniettiva perché $\ker\phi=\left\{g\in G\mid\phi_g=\phi_e\right\}=\left\{g\in G\mid g\cdot x=x\right\}=\left\{e\right\}$. Da questo, segue che S(G) contiene una copia isomorfa a G.

^aSi dimostra per calcolo diretto; per esempio: $(xy)^3 = xyxyxy = xxxyyy = x$.

^bL'intersezione è solo l'unità perché i due elementi hanno ordini diversi, quindi generano gruppi disgiunti.

1.5 Commutatore e gruppo derivato

DEFINIZIONE 1.8. Sia G un gruppo e $S \subset G$ un suo sottoinsieme; allora $\langle S \rangle$ è il più piccolo sottogruppo di G contenente anche S.

PROPOSIZIONE 1.6. Dato G un gruppo e $S \subset G$ un suo sottoinsieme, vale la relazione

$$\langle S \rangle = \left\{ s_1 s_2 \dots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \right\} = X$$

con $S^{-1} = \{s^{-1} \mid s \in S\}.$

Dimostrazione. Per definizione

$$\langle S \rangle = \bigcap_{\substack{H < G \\ S \subset H}} H$$

Questa scrittura è ben definita perché l'intersezione di gruppi è ancora un gruppo e, in questo modo, si ha il gruppo più piccolo contenente S; se così non fosse, ne esisterebbe uno più piccolo ancora, che, però, farebbe parte dell'intersezione e sarebbe assurdo.

Ora, per quanto detto sopra, S è contenuto in tutti i gruppi la cui intersezione genera $\langle S \rangle$, quindi anche S^{-1} deve essere contenuto in tali sottogruppi di G. Segue che $S, S^{-1} \subset H \Rightarrow X \subset H, \forall H < G \in S \subset H,$ quindi $X \subset \bigcap H = \langle S \rangle$.

Allo stesso tempo, X è evidentemente un sottogruppo di G e contiene S per costruzione, quindi $X \supset \langle S \rangle$, da cui la tesi.

DEFINIZIONE 1.9 (COMMUTATORE). Sia G un gruppo; dati $g, h \in G$, il loro *commutatore* è definito come

$$[g,h] = ghg^{-1}h^{-1}$$

DEFINIZIONE 1.10 (GRUPPO DERIVATO). Dato un gruppo G, si definisce *gruppo dei commutatori*, o *derivato* di G, il gruppo

$$G' = \langle [g, h] \mid g, h \in G \rangle = [G : G]$$

Ora si caratterizza il gruppo derivato. Intanto, si ricorda che $\langle S \rangle$ è abeliano \iff $\forall s_1, s_2 \in S, \ s_1s_2 = s_2s_1, \ \langle S \rangle$ è normale \iff $\forall g \in G, \forall s \in S, \ gsg^{-1} \in \langle S \rangle$ e, infine, $\langle S \rangle$ è caratteristico \iff $\forall f \in \operatorname{Aut}(G), \ \forall s \in S$ si ha $f(s) \in S$. Applicando queste alla definizione di commutatore, si ottiene la seguente.

PROPOSIZIONE 1.7. [Proprietà del derivato] Sia G un gruppo e G' il suo derivato; allora:

- (a). $G' = \{e\} \iff G \text{ è abeliano};$
- (b). $G' \triangleleft G$;

- (c). G' è caratteristico in G;
- (d). dato $H \triangleleft G$, se G/H è abeliano, allora $G' \subset H$.

Dimostrazione. La (a) è immediata perché $G' = \{e\} \iff \forall g_1, g_2 \in G, [g_1, g_2] = e,$ cioè g_1 e g_2 commutano, da cui G abeliano.

Per la (b), $\forall x \in G, \ \forall g, h \in G$, si ha

$$x[g,h]x^{-1} = xghg^{-1}h^{-1}x^{-1} = xgx^{-1}xhx^{-1}xg^{-1}x^{-1}xh^{-1}x^{-1}$$
$$= [xgx^{-1}, xhx^{-1}] \in G'$$

Per la (c), si nota che $\forall f \in Aut(G), \ \forall g, h \in G$, si ha:

$$f([g,h]) = f(ghg^{-1}h^{-1}) = f(g)f(h)f(g)^{-1}f(h)^{-1} = [f(g),f(h)] \in G'$$

Infine, per la (d), se $H \triangleleft G$ e G/H è abeliano, si ha $\forall x, y \in G$

$$xHyH = yHxH \Rightarrow xyH = yxH \implies x^{-1}y^{-1}xy \in H \Rightarrow [x, y] \in H$$

da cui $H \supset G'$.

COROLLARIO 1.5.1. Sia G un gruppo e G' il suo derivato; allora G/G' è sempre abeliano ed è chiamato *abelianizzazione* di G, nel senso che è il più grande quoziente abeliano di G.

Dimostrazione. Si mostra che G/G' è sempre abeliano. Siano, quindi $gG', hG' \in G/G'$ due classi laterali; allora si osserva che

$$(gG')(hG') = ghG' = hg[g^{-1}, h^{-1}]G' = hgG'$$

visto che $g^{-1}h^{-1}gh = [g^{-1},h^{-1}] \in G'$. Allora, dalla proprietà (d) della precedente proposizione (1.7), si ha $G' \subset H = G'$, cioè in questo caso si ha l'inclusione nell'insieme più piccolo, ovvero proprio G'. Questo vuol dire che G/G' è il quoziente con più elementi che sia abeliano perché ottenuto tramite quoziente con G', che è l'insieme più piccolo che soddisfa la proprietà¹.

1.6 Gruppi diedrali

¹Per controposizione, se $G' \not\subset H \implies G/H$ non abeliano.