WikipediA

轉動慣量列表

维基百科,自由的百科全书

對於一個有多個質點的系統, $I=\sum_{i=1}^N m_i r_i^2$ 。若該系統由<u>剛體</u>組成,可以用無限個質點的轉動慣量和,即用<u>積分</u>計算其轉動慣量。以下列表给出了常见物理模型的转动惯量。

值得注意的是,不應將其與<u>截面慣量(又稱截面二次轴矩</u>(second axial moment of area)),<u>截面矩</u>(area moment of inertia)混淆,後者用於彎折方面的計算。以下之轉動慣量假設了整個物體具有均勻的常數密度。

目录

常见物理模型的转动惯量

常見物理模型的三維慣量張量

相關條目

参考資料

常见物理模型的转动惯量

描述	圖形	轉動慣量	註解
质点,离轴 距离为r,质 量为 <i>m</i>		$I=mr^2$	_
兩端開通的 薄圓柱殼 , 半徑為r , 質 量為 <i>m</i>		$I=mr^{2\left[1 ight] }$	此表示法假設了殼的厚度可以 忽略不計。此為下一個物體, 當其 $r_1 = r_2$ 時的特例。
兩端開通的 厚圓柱,內 半徑為 _{「1} , 外半徑為 _{「2} ,高為h, 質量為 <i>m</i>	r_1	$I_z = rac{1}{2} m \left({r_1}^2 + {r_2}^2 ight)$ $I_x = I_y = rac{1}{12} m \left[3 \left({r_1}^2 + {r_2}^2 ight) + h^2 ight]$ 或者定義標準化厚度 $t_n = t t r$ 並定義 $t = r_2$, 可得 $I_z = m r^2 \left(1 - t_n + rac{1}{2} t_n^2 ight)$	_
實心圓柱 , 半徑為r , 高 為n , 質量為 m		$I_z=rac{mr^2}{2}{}^{[1]} \ I_x=I_y=rac{1}{12}m\left(3r^2+h^2 ight)$	此為前面物體,當其 r_1 = 0時的特例。
薄圆盘,半 徑為r,質量 為m	x y	$I_z=rac{mr^2}{2}$ $I_x=I_y=rac{mr^2}{4}$	此為前面物體,當其h = 0時 的特例。
圓環,半徑 為r,質量為 m	x y	$I_z=mr^2 \ I_x=I_y=rac{mr^2}{2}$	此為後面 <u>環面</u> ,當其b = 0時 的特例。
球売,内半 径为r ₁ ,外 半径为r ₂ , 质量为 <i>m</i>	x r_1 y	$I=rac{2}{5}m\left(rac{{r_2}^5-{r_1}^5}{{r_2}^3-{r_1}^3} ight)^{[\underline{1}]}$	_
實心球 , 半 ^{巠為r ,} 質量 為m		$I=rac{2mr^2}{5}$ [1]	此为前面物体,当其r ₁ = 0时的特例;也是后面椭球,当其 a = b = c时的特例。
		I	i I

	y y		
空心球,半徑為r,質量為m	y y	$I=rac{2mr^2}{3}$	此为前面球壳,当其 $r_1 \rightarrow r_2$ 时的极限。
椭球,半轴 为a、b、c, 质量为 <i>m</i>	10 00 00 -0.5 -1.0	$I_a = rac{1}{5} m \left(b^2 + c^2 ight) \ I_b = rac{1}{5} m \left(a^2 + c^2 ight) \ I_c = rac{1}{5} m \left(a^2 + b^2 ight)$	_
圆锥,半徑 為r,高為 h,質量為m	x	$I_z = rac{3}{10} m r^2$ [2] $I_x = I_y = rac{3}{20} m \left(r^2 + 4 h^2 ight)$ [2]	_
實心 <u>长方</u> <u>体</u> ,高為h, 宽為w,长 為d,質量為 m		$I_h = rac{1}{12} m \left(w^2 + d^2 ight) \ I_w = rac{1}{12} m \left(h^2 + d^2 ight) \ I_d = rac{1}{12} m \left(h^2 + w^2 ight)$	边长为 s 的 <u>立方体</u> 对任意过质 心的轴的转动惯量 $I_{ m CM}=rac{ms^2}{6}$ 。
正四面体, 边长为s,质 量为 <i>m</i>		$egin{aligned} I_{ m solid} &= rac{1}{20} m s^2 \ I_{ m hollow} &= rac{1}{12} m s^2 ^{egin{aligned} eta \end{array}} \end{aligned}$	"solid"意为实心,"hollow"意 为空心,下同。
正八面体, 边长为s,质 量为m	Z Y	$egin{align} I_{x, ext{hollow}} &= I_{y, ext{hollow}} = I_{z, ext{hollow}} = rac{1}{6}ms^2 ^{[3]} \ I_{x, ext{solid}} &= I_{y, ext{solid}} = I_{z, ext{solid}} = rac{1}{10}ms^2 ^{[3]} \ \end{aligned}$	_
细棒,长為		$I_{ m center} = rac{mL^2}{12}$	此表示法假設了棒的宽度和厚

L,質量為m			度可以忽略不計。此為前面实心长方体,當其w=L,h=d=0時的特例。
细棒,长為 L,質量為m		$I_{ m end} = rac{mL^2}{3} ext{[1]}$	此表示法假設了棒的宽度和厚 度可以忽略不計。
环面,圆管的半徑為a,截面的半徑為b,質量為m		关于直徑: $rac{1}{8}\left(4a^2+5b^2 ight)m^{[4]}$ 关于纵轴: $\left(a^2+rac{3}{4}b^2 ight)m$	_
薄多边形, 顶点為 $ec{P}_1$, $ec{P}_2$, $ec{P}_3$, , $ec{P}_N$,質量為 m	P7 P3 P3 P3	$I = rac{m}{6} rac{\sum_{n=1}^{N} ec{P}_{n+1} imes ec{P}_{n} (ec{P}_{n+1}^2 + ec{P}_{n+1} \cdot ec{P}_{n} + ec{P}_{n}^2)}{\sum_{n=1}^{N} ec{P}_{n+1} imes ec{P}_{n} }$	外接圆半径为 R ,质量为 m 的 $正 n$ 边形,对过其中心且垂直 于所在平面的轴的转动惯量 $I=rac{1}{2}mR^2\left(1-rac{2}{3}\sin^2rac{\pi}{n} ight)$ \Box

常見物理模型的三維慣量張量

以下列表給出了每個物體主軸上的慣量張量。

為了保留上面的I的標量矩,I的張量矩根據以下式子被投射在由單位向量n所定義的方向上:

$${f n}\cdot{f I}\cdot{f n}\equiv n_iI_{ij}n_j$$
 ,

其中點積表示用到了張量收縮和愛因斯坦求和約定。 \mathbf{n} 可以是 I_x , I_y , I_z 的笛卡爾基 \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z

z	慣量張量矩
	$I = \left[egin{array}{cccc} rac{2}{5}mr^2 & 0 & 0 \ 0 & rac{2}{5}mr^2 & 0 \ 0 & 0 & rac{2}{5}mr^2 \end{array} ight]$
x y	$I = egin{bmatrix} rac{2}{3}mr^2 & 0 & 0 \ 0 & rac{2}{3}mr^2 & 0 \ 0 & 0 & rac{2}{3}mr^2 \end{bmatrix}$
	$I = egin{bmatrix} rac{1}{5}m(b^2+c^2) & 0 & 0 \ 0 & rac{1}{5}m(a^2+c^2) & 0 \ 0 & 0 & rac{1}{5}m(a^2+b^2) \end{bmatrix}$
	$I = egin{bmatrix} rac{3}{5}mh^2 + rac{3}{20}mr^2 & 0 & 0 \ 0 & rac{3}{5}mh^2 + rac{3}{20}mr^2 & 0 \ 0 & 0 & rac{3}{10}mr^2 \end{bmatrix}$
	$I = egin{bmatrix} rac{1}{12}m(h^2+d^2) & 0 & 0 \ 0 & rac{1}{12}m(w^2+d^2) & 0 \ 0 & 0 & rac{1}{12}m(w^2+h^2) \end{bmatrix}$
	$I = egin{bmatrix} rac{1}{3}ml^2 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & rac{1}{3}ml^2 \end{bmatrix}$
	$I = egin{bmatrix} rac{1}{12}ml^2 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & rac{1}{12}ml^2 \end{bmatrix}$

實心圓柱,半徑為 r,高為h,質量為 m		$I = egin{bmatrix} rac{1}{12}m(3r^2+h^2) & 0 & 0 \ 0 & rac{1}{12}m(3r^2+h^2) & 0 \ 0 & 0 & rac{1}{2}mr^2 \end{bmatrix}$
兩端開通的厚圓柱,內半徑為r1, 外半徑為r2,高為 h,質量為m	h r_1 r_2	$I = egin{bmatrix} rac{1}{12}m(3(r_1^2+r_2^2)+h^2) & 0 & 0 \ 0 & rac{1}{12}m(3(r_1^2+r_2^2)+h^2) & 0 \ 0 & 0 & rac{1}{2}m(r_1^2+r_2^2) \end{bmatrix}$

相關條目

- 轉動慣量
- 截面慣量列表

參考資料

- 1. Raymond A. Serway. Physics for Scientists and Engineers, second ed.. Saunders College Publishing. 1986: 202. ISBN 0-03-004534-7.
- 2. Ferdinand P. Beer and E. Russell Johnston, Jr. Vector Mechanics for Engineers, fourth ed.. McGraw-Hill. 1984: 911. ISBN 0-07-004389-2.
- 3. Satterly, John. The Moments of Inertia of Some Polyhedra. The Mathematical Gazette (Mathematical Association). 1958, **42** (339): 11–13. JSTOR 3608345. doi:10.2307/3608345.
- 4. Eric W. Weisstein. Moment of Inertia Ring. Wolfram Research. [2010-03-25].
- 5. David Morin. Introduction to Classical Mechanics: With Problems and Solutions; first edition (8 january 2010). Cambridge University Press. 2010: 320. ISBN 0521876222.

取自"https://zh.wikipedia.org/w/index.php?title=轉動慣量列表&oldid=51912958"

本页面最后修订于2018年11月5日 (星期一) 17:14。

本站的全部文字在<u>知识共享</u> 署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用。(请参阅<u>使用条款</u>) Wikipedia®和维基百科标志是<u>维基媒体基金会</u>的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。