LAPORAN MBKM

Persiapan dan Perencanaan SiElisa Listrik di Kampus ITB 2022/2023

Diajukan untuk memenuhi persyaratan kelulusan MBKM SiSiElisa Listrik Tim Hardware Lab ME TF ITB

Oleh:

Triko Juannika	13319071
Luqman Ardiseno	13320021
Ariel Christofer Pelamonia	13320042
Hanif Manik Kottama	13320084

PROGRAM STUDI SARJANA TEKNIK FISIKA
FAKULTAS TEKNOLOGI INDUSTRI
INSTITUT TEKNOLOGI BANDUNG
2022

LEMBAR PENGESAHAN

LABORATORIUM MANAJEMEN ENERGI

Menerangkan bahwa mahasiswa di bawah ini:

Triko Juannika	13319071
Luqman Ardiseno	13320021
Ariel Christofer Pelamonia	13320042
Hanif Manik Kottama	13320084

Telah menyelesaikan kegiatan Merdeka Belajar Kampus Merdeka – SiElisa Listrik Tim Hardware di Laboratorium Manajemen Energi pada bulan November 2022 – April 2023

Dengan judul laporan:

Persiapan dan Perencanaan SiElisa Listrik di Kampus ITB 2022/2023

Bandung, 20 Juni 2023 Menyetujui,

Dosen Pembimbing MBKM Dosen Pembimbing MBKM

Dr. -Ing. Justin Pradipta, S.T., M.T.

Dr. Irsyad Nashirul Haq, S.T., M.T.

NIP: 120110001 NIP: 119110107

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah Swt. karena atas berkat dan rahmat-Nya, penulis dapat menyelesaikan laporan Merdeka Belajar Kampus Merdeka (MBKM) yang berjudul "Persiapan dan Perencanaan SiElisa Listrik di Kampus ITB 2022/2023". Adapun laporan ini disusun untuk memenuhi salah satu persyaratan kelulusan kegiatan MBKM yang akan dikonversi ke dalam Satuan Kredit Semester Mata Kuliah TF5031 Sistem SCADA dan sebagai bentuk pertanggungjawaban penulis setelah melaksanakan MBKM di bagian *SiElisa Listrik Tim Hardware*, Laboratorium Manajemen Energi Prodi Teknik Fisika ITB, pada November 2022 – April 2023. Atas kontribusi langsung maupun tidak langsung, penulis ingin mengucapkan terima kasih kepada:

- 1. Bapak Ir. Edi Leksono, M.Eng, Ph.D. selaku dosen dan kepala Laboratorium Manajemen Energi Program Studi Teknik Fisika ITB
- 2. Bapak Dr.-Ing. Justin Pradipta S.T., M.T. selaku dosen pembimbing
- 3. Bapak Dr. Irsyad Nashirul Haq, S.T., M.T.
- 4. Mas Koko Friansa S.T., M.T. atas masukan dan saran selama kegiatan MBKM MDMS berlangsung
- 5. Mas Rizal Fariz Mustaram S.T. atas masukan dan saran selama kegiatan MBKM MDMS berlangsung
- 6. Pihak-pihak lain yang tidak dapat disebutkan satu per satu

DAFTAR ISI

LEMBA	AR PENGESAHAN	i
DAFTA	R ISI	iii
DAFTA	R GAMBARError! Bookmark not d	lefined.
BAB I I	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Ruang Lingkup	2
BAB II	TINJAUAN UMUM DAN LANDASAN TEORI	3
2.1	Komponen Listrik Bangunan Error! Bookmark not d	lefined.
2.1	.1 SDP	5
2.1	.2 MCCB	5
2.1	.3 CT	5
2.1	.4 Power Meter	6
2.2	Skema SIELISA Error! Bookmark not d	lefined.
2.2	.1 RS-485Error! Bookmark not d	lefined.
2.2	.2 Modbus Error! Bookmark not d	lefined.
BAB III	PEMBAHASAN	7
3 P	Pembahasan	7
3.1	Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB	7
3.1	.1 Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB Ganesha	7
3.1	.2 Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB Jatinangor	9
3.2	Overview Tipe-Tipe Panel	10
3.3	Analisis Kondisi Kelistrikan ITB	16
BAB IV	PENUTUP	18
4.1	Kesimpulan	18
4.2	Saran	18
LAMPI	RAN	20
REFER	ENSI	21

BAB I PENDAHULUAN

1.1 Latar Belakang

Krisis energi merupakan hal yang mulai "dilirik" oleh pemerintah. Untuk menghadapi hal tersebut, pemerintah Indonesia mulai melakukan transisi energi. Pemerintah sendiri telah berkomitmen untuk meningkatkan bauran sumber Energi Baru Terbarukan (EBT) sebesar 23% di tahun 2025 hingga 31% di tahun 2030. EBT yang memiliki potensi untuk dikembangkan di Indonesia sendiri sangat melimpah. Mulai dari energi surya, bayu, hidro, bioenergy, panas bumi, dan laut yang total potensinya dapat mencapai 3.686 gigawatt.

Salah satu potensi EBT yang besar dan paling mudah dimanfaatkan adalah *solar energy* (energi surya). Potensi energi surya di Indonesia tehittung besar di angka 4.8 kWh/m² atau 112.000 GWp. Saat ini, Indonesia memiliki besar pemanfaatan energi surya di angka 10 MWp. Targetnya, kapasitas PLTS terpasang di Indonesia hingga tahun 2025 adalah sebesar 0.87 GWp atau 50 MWp/tahun. Dengan potensi pemanfaatan sebesar ini, Indonesia berpeluang besar untuk mengembangkan proyek energi surya skala besar, industri, hinngga sektor komersial dan rumah tangga.

Institut Teknologi Bandung (ITB) sebagai salah satu tonggak teknologi di Indonesia juga dapat mengambil peran untuk memanfaatkan potensi besar ini. Pemasangan atau penggunaan tenaga surya di ITB dapat memantik pengambangan dan penerapan tenaga surya hingga tingkat rumah tangga di masyarakat. Oleh karena itu, proyek pemasangan penerapan energi surya di ITB penting untuk dilakukan.

Salah satu aspek dalam pemasangan dan penerapan energi surya adalah pemantauan dan energi listrik. Pemantauan energi listrik ini diimplementasikan melalui proyek Sistem Informasi Energi Listrik dan Air (SiElisa). SiElisa sendiri aalah sebuah sistem yang mengumpulkan informasi penggunaan energi listrik dan air secara terpusat untuk mengetahui pola konsumsi energi listrik dan air dan secara otomatis dilengkapi dengan analisis indikator kinerja spesifik & finansial, dimana sistemnya dapat diakses dari mana saja menggunakan teknologi Internet of Things (IoT) untuk kebutuhan awareness dan decision support system. Salah satu langkah awal

pada proyek ini adalah melakukan survey dan pemasangan komponen *hardware* yang diperlukan untuk menunjang SiElisa.

1.2 Rumusan Masalah

Adapun rumusan masalah dari MBKM tim hardware:

- 1. Bagaimana langkah untuk persiapan dan pemasangan hardware SiElisa?
- 2. Komponen apa saja yang diperlukan untuk menunjang SiElisa?

1.3 Tujuan

Adapun tujuan dari MBKM tim hardware:

- 1. Terlaksananya survey untuk pendataan *hardware* serta pemetaan sistem kelistrikan di tiap gedung berdasarkan fakultas.
- 2. Dihasilkannya Dokumen Teknis Perencanaan Rinci Deailed Energy Design implementasi sistem informasi energi listrik dan pemantuan utilitas air di ITB (SiElisa).

1.4 Ruang Lingkup

Lokasi dan objek MBKM terbatas padas Gedung ITB di Ganesha dan Jatinangor

BAB II TINJAUAN UMUM DAN LANDASAN TEORI

1.1 Cara Kerja

Sistem informasi energi listrik dan pemantauan utilitas air (SIELISA) adalah aplikasi teknologi yang digunakan untuk mengumpulkan, mengelola, dan menganalisis data terkait dengan konsumsi energi listrik dan penggunaan air. Sistem ini bertujuan untuk meningkatkan efisiensi energi dan pengelolaan air dengan memberikan informasi yang akurat dan real-time kepada pengguna.

1.2 Operasional

Operasional Sistem Informasi Energi Listrik dan Pemantauan Utilitas Air (SiElisa) melibatkan implementasi praktis dan fungsi dari sistem tersebut. Berikut adalah beberapa aspek operasional yang terkait dengan sistem ini :

1. Pengumpulan Data

Sistem ini akan mengumpulkan data terkait dengan energi listrik dan utilitas air. Ini dapat mencakup data penggunaan energi listrik dari meteran listrik, data penggunaan air dari meteran air, serta data lainnya seperti suhu, tekanan, atau kualitas air. Data ini harus dikumpulkan secara akurat dan teratur.

2. Pemantauan Real-time

Sistem ini akan memantau penggunaan energi listrik dan utilitas air secara real-time. Ini dapat dilakukan melalui sensor atau meteran yang terhubung secara langsung ke sistem. Informasi ini akan memberikan pemantauan yang akurat dan up-to-date tentang penggunaan energi dan utilitas air.

3. Pemrosesan dan Penyimpanan Data

Data yang dikumpulkan akan diproses dan disimpan dalam sistem. Hal ini melibatkan penggunaan database atau sistem penyimpanan yang sesuai untuk

menyimpan data yang besar dan beragam. Data harus tersedia untuk akses dan analisis di masa depan.

4. Analisis Data

Sistem ini akan menganalisis data yang dikumpulkan untuk mendapatkan wawasan dan informasi yang berguna. Analisis ini dapat melibatkan pemantauan tren penggunaan energi, deteksi anomali, pemodelan prediktif, atau analisis efisiensi energi. Tujuan dari analisis data adalah untuk meningkatkan pemahaman tentang pola penggunaan energi dan utilitas air serta identifikasi peluang untuk meningkatkan efisiensi.

5. Pelaporan Sistem

Sistem ini akan menghasilkan laporan yang berguna berdasarkan data yang dikumpulkan dan dianalisis. Laporan ini dapat mencakup informasi tentang konsumsi energi dan utilitas air, efisiensi energi, biaya, atau kinerja sistem. Laporan ini dapat digunakan oleh pengguna sistem, manajemen, atau pihak yang berkepentingan lainnya.

6. Antarmuka Pengguna

Sistem ini akan memiliki antarmuka pengguna yang memungkinkan pengguna untuk mengakses dan berinteraksi dengan data dan informasi yang dihasilkan. Antarmuka ini dapat berupa aplikasi web, aplikasi seluler, atau antarmuka lainnya yang mudah digunakan dan intuitif.

7. Integrasi Sistem

Sistem ini dapat diintegrasikan dengan sistem lain, seperti sistem manajemen gedung atau sistem pemantauan energi yang ada. Ini memungkinkan pertukaran data yang mulus dan penggunaan informasi yang lebih lengkap untuk pengambilan keputusan yang efektif.

8. Keamanan Data

Sistem ini harus memiliki mekanisme keamanan data yang kuat untuk melindungi informasi sensitif dan mencegah akses yang tidak sah. Ini

melibatkan penggunaan enkripsi, otorisasi akses, dan tindakan keamanan lainnya untuk menjaga kerahasiaan dan integritas data.

9. Pemeliharaan dan Dukungan

Sistem ini membutuhkan pemeliharaan dan dukungan yang teratur.

1.3 Komponen Listrik

Komponen listrik adalah bagian-bagian yang digunakan dalam sistem listrik untuk mengatur, mengarahkan, dan mengendalikan aliran listrik. Mereka berperan dalam menyediakan fungsi-fungsi khusus dalam suatu rangkaian listrik atau perangkat listrik.

1.3.1 SDP

Sistem Distribusi Primer (SDP) merupakan bagian dari jaringan listrik yang bertanggung jawab untuk mendistribusikan listrik. Sistem ini diterapkan pada gardu distribusi atau transformator distribusi ke gardu-gardu distribusi primer yang lebih kecil. SDP merupakan tahap pertama dalam rantai distribusi listrik yang membawa listrik dari sumber daya listrik ke wilayah yang lebih tersegmentasi.

1.3.2 MCCB

MCCB adalah singkatan dari Moulded Case Circuit Breaker. MCCB berfungsi sebagai Pemutus Sirkuit Tipe Cetakan. MCCB merupakan salah satu jenis pemutus sirkuit listrik yang dirancang untuk melindungi sirkuit listrik dari arus lebih tinggi dan gangguan lainnya.

1.3.3 CT

Current transform (CT), adalah sebuah perangkat yang digunakan untuk mengukur arus listrik AC (arus bolak-balik) dalam sistem tenaga listrik. CT mengubah arus tinggi yang mengalir melalui konduktor menjadi arus yang lebih rendah dan sesuai dengan rentang pengukuran instrumen atau peralatan pengukuran.

1.3.4 Power Meter

Power meter adalah sebuah perangkat yang digunakan untuk mengukur daya listrik yang dikonsumsi oleh suatu perangkat atau sistem. Fungsi utama power meter adalah untuk mengukur daya aktif (watt) yang digunakan dalam suatu rangkaian listrik.

Power meter biasanya terdiri dari sebuah layar atau display yang menampilkan informasi mengenai daya listrik, seperti tegangan (volt), arus (ampere), daya aktif (watt), daya reaktif (VAR), faktor daya (power factor), dan konsumsi energi (kWh).

Beberapa jenis power meter dapat memberikan informasi tambahan seperti tegangan efektif (RMS), frekuensi, harmonik, dan catatan data historis untuk analisis lebih lanjut. Power meter juga dapat dilengkapi dengan fitur-fitur tambahan seperti alarm ketika terjadi kelebihan daya atau pembacaan energi berlebih.

Power meter dapat digunakan dalam berbagai aplikasi, termasuk rumah tangga, industri, komersial, dan penyedia layanan utilitas. Mereka membantu pengguna untuk memantau dan mengelola penggunaan energi, melakukan analisis pemakaian daya, dan membuat keputusan berdasarkan data yang akurat tentang konsumsi listrik. Power meter juga dapat digunakan untuk mengukur efisiensi energi, mendeteksi kebocoran daya, dan mengidentifikasi perangkat-perangkat yang mengkonsumsi daya secara berlebihan.

Penggunaan power meter dapat membantu pengguna untuk mengelola penggunaan energi, mengoptimalkan efisiensi, dan mengurangi biaya operasional yang terkait dengan penggunaan listrik.

BAB III PEMBAHASAN

2 Pembahasan

2.1 Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB

Pada Instalasi SiElisa di Kampus ITB hampir mencakup keseluruhan kampus. Sesuai Data Rekap yang dilakukan, akan dilakukan pada dua kampus ITB, yaitu Kampus Ganesha dan Kampus Jatinangor. Rencana Instalasi Sistem dilakukan di 49 Gedung yang data nya akan dipisahkan dan di evaluasi berdasarkan Sekolah/Fakultas.

2.1.1 Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB Ganesha

Telah dilakukan Data Rekap pada 39 Titik Gedung Kampus Ganesha. Berikut ini merupakan daftar dari Gedung yang dilakukan perencanaan untuk Instalasi SiElisa di Kampus Ganesha.

Table 1 Titik Pemasangan SiElisa Kampus Ganesha

No.	Bangunan	Unit Kerja / Fungsi	Sub-bagian Bangunan Unit
			kerja
1	SBM Freeport	SBM	-
2	SBM Lama	SBM	-
3	SBM MBA	SBM	-
4	CRCS	-	Bagian A Gedung
		-	Lantai 1A
		-	Lantai 2A
		-	Lantai 3A
		-	Lantai 4A
		-	Lantai 5A
		-	Lantai 6A
		-	Lantai 7A
		-	Bagian B Gedung
		-	Lantai 1B
		-	Lantai 2B
		-	Lantai 3B
5	CAS	FTI	Lantai 1 A
		-	Lantai 2 A
		-	Lantai 3 A
		FMIPA	Lantai 4 A
		-	Lantai 5 A
		-	Lantai 6 A
		PPNN	Lantai Basement B

		_	Lantai 1 B
		_	Lantai 2 B
		_	Lantai 3 B
6	CADL	FSRD	CADL B
O	CADL	UPT Bahasa	CADL A
7	CIBE	FTSL	Perangkat Lab
,	CIBL	-	Beban Lainnya
8	Labtek I	DTI, FMIPA	Lantai 1, 2
		DITSP	Lantai 3
		Server DTI	_
9	Labtek III	FTI	Pemasangan di Gedung
10	Labtek IV	FITB	Labtek IV Barat
		FTTM	Labtek IV Barat
		_	Labtek IV Timur
11	Labtek V	FTI	Lantai 1
		STEI	Lantai 1, 2, 3, 4
		-	Seluruh gedung
12	Labtek VI	FTI	Lantai 1, 2, 3, 4
		FTSL	Lantai 3, 4
13	Labtek VII	Sosiohum	Lantai 1
		SF	Lantai 2,3,4, Basement
14	Labtek VIII	STEI	Lantai 2,3,4,basement
		FMIPA	-
15	Labtek IX A	SAPPK	-
16	Labtek IX B	SAPPK	-
17	Labtek IX C	Overall Incoming	-
		FITB	Lantai 1, 2, 3 (, 4)
		FTSL	Lantai 4, 5, 6
		Lab TL 1	Lantai 4
		Lab TL 2	Lantai 4
		Lift	Lantai 6
18	Labtek X	FTI	Lantai 1, 2, 3, 4
		FTMD	Lantai 1, 2
		Emergency/Utility	-
19	Labtek XI	SITH	Lantai 1, 2, 3, 4
		FITB	Lantai 1, 2
		Emergency/Utility	-
20	Gedung BSC-A	FMIPA	-
		FMIPA	(TPB) Lantai 1
		FTTM	(Geofisika)
			(Fiktim)
			(Fisika Bumi)
22	Gedung Kimia	FMIPA	Gedung Utana

		-	Ruang Pompa
23	Gedung Fisika	FMIPA	Diukur di Terminasi FISI
24	Laboratorium Kimia Organik	FMIPA	-
25	Gardu Mesin	FTMD	Labtek II, Lab Mesin
			Produksi, Gas Engine, Mesin
			Bakar, Penerbangan
26	Gardu PPTI	FTMD	Gedung PPTI
27	Gedung Teknik Sipil	FTSL	Diukur di Kubikel Aula
			Barat
28	Gedung Kantor FTSL	FTSL	DP Kantor FTSL
29	Gedung PSDA	FTSL	-
30	Gedung Teknik Lingkungan	FTSL	-
31	Gedung Lab. Mekanika Fluida	FTSL	-
32	Gedung CAD	FSRD	-
33	Gedung kantor FSRD	FSRD	-
34	Gedung Energi	FTTM	-
35	Gedung Perminyakan	FTTM	-
36	Gardu Konversi	STEI	Gedung Lab Radar
		FTMD	Gedung Bunker
37	Gedung Lab Konversi	STEI	-
38	Gedung Lab PLN	STEI	-
39	Laboratorium Doping	SF	-

2.1.2 Sebaran Titik Rencana Instalasi SiElisa di Kampus ITB Jatinangor

Telah dilakukan Data Rekap pada 10 Titik Gedung Kampus Jatinangor. Berikut ini merupakan daftar dari Gedung yang dilakukan perencanaan untuk Instalasi SiElisa di Kampus Jatinangor.

Table 2 Titik Pemasangan SiElisa di Kampus Jatinangor

No.	Bangunan	Unit Kerja / Fungsi	Sub-bagian Bangunan Unit kerja
1	Labtek IA	SITH	-
2	Labtek IB	FTSL	-
3	Labtek II	FTI	Gedung A (Teknik Pangan)
			Gedung B (Lab Kimia)
5	Labtek III	STEI	-
6	Labtek V	SITH	-
7	Gedung Kuliah B	SBM	-
8	Gedung Kuliah C	FSRD	FSRD (Lantai 2)
9	Gedung Kuliah D	SAPPK	Lantai 1,2
10	Gedung Kuliah E	FTTM, FITB, STEI	Lantai 1
		FITB	Lantai 2
		STEI	Lantai 2

2.2 Overview Tipe-Tipe Panel

Berikut ini akan ditampilkan Rekapitulasi data dari Panel yang diukur, rating MCCB setiap panel, dan Rating dari *Current Transformer* setiap gedung dari Kampus ITB Ganesha dan Jatinangor.

No.	Bangunan	Sub-bagian Bangunan Unit kerja	Panel yang Diukur	Rating MCCB	Rating CT
1	SBM Freeport	-	-	-	-
2	SBM Lama	-	SDP	400A	400/5A
3	SBM MBA	-	MDP (Cabang SBM MBA)	125A	300/5A
		-	SDP SBM MBA	100A	200/5A
4	CRCS	Bagian A Gedung	SDP A	630A	**
			SDP Emergency A	200A	200/5A
		Lantai 1A	DP 1F-A	32A	30/5A
			DP-Emergency 1F-A	63A	**
		Lantai 2A	DP 2F-A	63A	60/5A
		Lantai 3A	DP 3F-A	125A	150/5A
		Lantai 4A	DP 4F-A	100A	**
		Lantai 5A	DP 5F-A	100A	100/5A
		Lantai 6A	DP 6F-A	63A	60/5A
		Lantai 7A	DP 7F-A	100A	100/5A
			DP-Emergency 7F-A	63A	**
		Bagian B Gedung	SDP B (MISSING)	-	-
		_	SDP Emergency B (MISSING)	-	-
		Lantai 1B	DP 1F-B	32A	30/5A
			DP-Emergency 1F-B	250A	250/5A
		Lantai 2B	DP 2F-B	100A	100/5A
		Lantai 3B	DP 3F-B	250A	200/5A
5	CAS	-	SDP-CAS.A	1000A	**
			SDP-CAS Emergency.A	630A	**
		-	SDP-CAS.B	630A	**
			SDP-CAS Emergency.B	630A	**

			SDP-Equipment Lab (CAS)	1000A	**
		Lantai 1 A	DP-1F.A	100A	100/5A
			DP-Emergency.1F.A	25A	25/5A
		Lantai 2 A	DP-2F.A	50A	**
		_	DP-Emergency.2F.A	16A	**
		Lantai 3 A	DP-3F.A	200A	200/5A
			DP-Emergency.3F.A	16A	**
		Lantai 4 A	DP-4F	200A	**
			DP-Emergency.4F.A	16A	**
		Lantai 5 A	DP-5F	-	**
			DP-Emergency.5F.A	16A	**
		Lantai 6 A	DP-6F	-	**
			DP-Emergency.6F.A	16A	**
		Lantai Basement B	DP-B1.B	40A	**
			DP-	250A	**
			Emergency.B1.B		
		Lantai 1 B	DP-1F.B	125A	**
			DP-Emergency.1F.B	630A	**
		Lantai 2 B	DP-2F.B	125A	**
			DP-Emergency.2F.B	250A	250/5A
		Lantai 3 B	DP-3F.B	160A	**
			DP-Emergency.3F.B	160A	150/5A
6	CADL - FSRD	CADL B	SDP-B	1000A	**
			SDP Emergency B	40A	150/5A
		CADL A	SDP-A	400A	400/5A
			SDP Emergency A	125A	150/5A
		-	ATS-CADL	1600A	2000/5A
7	CIBE - FTSL	Perangkat Lab	SDP-A.Lab	400A	**
		Beban Lainnya	SDP-B CIBE	-	-
			SDP-B (Emergency) CIBE	-	-
		-	ATS-CIBE I	1000A	1000/5A*
			ATS-CIBE II	630A	400/5A*
8	Labtek I - FMIPA	Lantai 1, 2	SDP 1 Utara	50A***	75/5A*
			SDP 1 Selatan	50A***	75/5A*
			SDP 2 Utara	50A	75/5A
			SDP 2 Selatan	50A	75/5A
		Lantai 3	SDP 3 Utara	50A***	75/5A***
			SDP 3 Selatan	50A***	75/5A***

		-	ATS Server DTI	(Panel Terkunci)	100/5A*
9	Labtek III - FTI	Pemasangan di Gedung	LVMDP	1250A	1200/5A
10	Labtek IV	Labtek IV Barat	SDP GL	630A	600/5A
		Labtek IV Barat	SDP GL MCCB cabang Lab TA	100A	-
		Labtek IV Timur	SDP TA	630A	600/5A
		110V PBG	SDP 110V Gardu Kimia	100A	-
11	Labtek V - FTI dan STEI	Lantai 1	LVMDP V (Outgiong LT.1)	100A	-
		Lantai 1, 2, 3, 4	LVMDP V (Outgiong LT.2)	400A	400/5A
			LVMDP V (Outgiong LT.3)	160A	-
			LVMDP V (Outgiong LT.4)	400A	400/5A
		Seluruh gedung	LVMDP V (Incoming)	1000A	
12	Labtek VI - FTI dan FTSL	Lantai 1, 2, 3, 4	-	-	-
		Lantai 3, 4	-	-	-
13	Labtek VII - SF Sosial	Lantai 1	LVMDP VII Outgiong LT.1	400A	***
		Lantai 2,3,4, Basement	LVMDP VII Outgiong LT.2	400A	-
		-	LVMDP VII Outgiong LT.3	400A	-
		-	LVMDP VII Outgiong LT.4	250A	-
		-	LVMDP VII Outgiong Basement	125A	-
		-	LVMDP VII Incoming	1250A	1200/5A
14	Labtek VIII - STEI dan FMIPA	Lantai 2,3,4,basement	LVMDP VIII (Outgiong LT.2)	400A	**
		-	LVMDP VIII (Outgiong LT.3)	200A*	**

		-	LVMDP VIII (Outgiong LT.4)	400A	**
			LVMDP VIII (Outgiong Basement)	100A*	-
		-	LVMDP VIII (Outgiong LT.1)	160A*	200/5A
		-	LVMDP VIII (Incoming)	1250A	1200/5A
15	Labtek IX A	-	LVMDP (Incoming)	1000A	600/5A
16	Labtek IX B	-	LVMDP (Incoming)	400A	400/5A
17	Labtek IX C	-	MDP (Incoming)	630A	600/5A
		Lantai 1, 2, 3 (, 4)	MDP (Cabang Incoming)	250A	250/5A
		Lantai 4, 5, 6	MDP (Cabang Incoming)	250A	250/5A
		Lantai 4	Panel PP-4A	25A	-
		Lantai 4	Panel PP-4B	25A	-
		Lantai 6	Panel PP-Lift	63A	-
18	Labtek X - FTI, FTMD	Lantai 1, 2, 3, 4	SDP UN	(TIDAK DIKETAHUI)	2000/5A
		Lantai 1, 2	SDP MS	630A	800/5A
		-	SDP UE	200A	200/5A*
19	Labtek XI - SITH, FITB	Lantai 1, 2, 3, 4	SDP BG	1000A	1000/5A*
		Lantai 1, 2	SDP GM	400A	400/5A*
		-	SDP UE	150A	150/5A
20	Gedung BSC-A - FMIPA	-	LVMDP BSC A	630A	800/5A*
21	Gedung BSC-B	Seluruh Gedung	LVMDP incoming Utama	400A	400/5A*
		(TPB) Lantai 1	LVMDP TPB	400A	200/5A*
		(Geofisika)	LVMDP Geofisika	80A	100/5A*
		(Fiktim)	LVMDP Fiktim	80A	100/5A*
		(Fisika Bumi)	LVMDP Fisika Bumi	80A	50/5A*
22	Gedung Kimia - FMIPA	Gedung Utana	MDP Baru	400A	500/5A
			MDP Lama	400A	2000/5A
		Ruang Pompa	DP Pompa	32A	-
23	Gedung Fisika - FMIPA	Diukur di Terminasi FISI	Panel MDP 630kVA, MCCB 1	600A	600/5A

			Panel MDP 630kVA, MCCB 2	400A	400/5A
			MDP 400kVA, MCCB Utama	630A	-
24	Laboratorium Kimia Organik	-	Panel SDP	630A	600/5A
25	Gardu Mesin - FTMD	Labtek II, Lab Mesin Produksi, Gas Engine, Mesin Bakar, Penerbangan	LVMDP	1600	2000/5A
26	Gardu PPTI - FTMD	Gedung PPTI	LVMDP	2000A	2000/5A
27	Gedung Teknik Sipil - FTSL	Diukur di Kubikel Aula Barat	SDP Kubilel Aula Barat, MCCB Teknik Sipil 1	100A	-
			SDP Kubilel Aula Barat, MCCB Teknik Sipil 2	100A	-
28	Gedung Kantor FTSL - FTSL	DP Kantor FTSL	-	50A	50/5A
29	Gedung PSDA - FTSL	-	PPA (SDP)	250A	250A/5A
30	Gedung Teknik Lingkungan - FTSL	-	LVMDP A	400A	400/5A
		-	LVMDP B	400A	400/5A
31	Gedung Lab. Mekanika Fluida - FTSL	-	MDP Fluida	250A	250/5A
32	Gedung CAD - FSRD	-	Panel LVMDP (Incoming)	800A	800/5A
33	Gedung kantor FSRD - FSRD	-	PPA	160A	150/5A
34	Gedung Energi	-	LVMDP Incoming	2000A	1000/5A
35	Gedung Perminyakan *	-	SDP-TM	400A	400/5A
36	Gardu Konversi - STEI FTMD	Gedung Lab Radar	MDP Travo 1 Konversi	250A	-
		Gedung Bunker	MDP Travo 1 Konversi	160A	-

37	Gedung Lab Konversi - STEI	-	LVMDP Incoming PLN	600A	600/5A
38	Gedung Lab PLN - STEI	-	LVMDP (Incoming PLN)	400A	800/5A
39	Laboratorium Doping - SF	-	LVMDP (Incoming PLN)	(TIDAK DIKETAHUI, Maksimum 630A)	800/5A*

No.	Bangunan	Sub-bagian Bangunan Unit kerja	Panel yang Diukur	Rating MCCB	Rating CT
1	Labtek IA	-	MDP A	1250A	1200/5A*
2	Labtek IB	-	MDP B	400A	400/5A*
3	Labtek II	Gedung A (Teknik Pangan)	Panel Lab Struktur (SDP A)	50A	-
		Gedung B (Lab Kimia)	SDP B	250A	200/5A
5	Labtek III	-	LVMDP Incoming	630A	600/5A
6	Labtek V	-	MCB PLN / SDP Gedung	20A / 50A	-
7	Gedung Kuliah B	-	Panel Gedung B	50A	-
8	Gedung Kuliah C	FSRD (Lantai 2)	SDP Incoming	40A	-
9	Gedung Kuliah D	Lantai 1,2	SDP	50A	-
			SDP	50A	-
10	Gedung Kuliah E	Lantai 1	SDP Incoming	60A	-
		Lantai 2	SDP Incoming	25A	-
		Lantai 2			

Jumlah Panel		
0PM-1HF	12	
0PM-2HF	2	
1PM-0HF	6	
1PM-1HF	34	
2PM-1HF	6	
3PM-1HF	4	
4PM-1HF	0	
5PM-1HF	2	
6PM-1HF	2	

TBP	15
Total	83

Jumlah Panel		
0PM-1HF	12	
0PM-2HF	2	
1PM-0HF	6	
1PM-1HF	34	
2PM-1HF	6	
3PM-1HF	4	
4PM-1HF	0	
5PM-1HF	2	
6PM-1HF	2	
TBP	15	
Total	83	

2.3 Analisis Kondisi Kelistrikan ITB

Telah dilakukan Survey terhadap Kondisi kelistrikan di 49 Gedung yang data telah dipisahkan berdasarkan Sekolah/Fakultas. Dapat dilihat, tercatat pada setiap gedung jalur listrik dari Distribution Panel, MCCB, dan Current Transformer. Data rekapitulasi ters tersebut, dapat dilakukan persiapan lebih lanjut untuk Pemasangan sistem SiElisa ITB.

Namun didapatkan beberapa masalah yang menjadi masalah sehingga data tidak dapat diambil. Pada beberapa gedung, tidak terdapat instrumen pengukuran, sehinga dianggap gedung tersebut tidak terencana dan dibutuhkan pemasangan power meter untuk dapat mengukur besar tegangan dan arus dari gedung tersebut. Namun sebagian besar sudah terpasang Power Meter, dalam gedung-gedng kampus ITB, power meter yang paling sering dipakai yaitu Schneider PM1200 dan Analog Meter (Volt, Ampere, Kwh. Penggunaan Analog Meter saja pada gedung tertentu, menentukan bahwa gedung tersebt terakhir dipugar sekitar tahun 1980an, dimana pada zaman tersebut belum ada produsen power meter digital yang dijual secara komersil. Lalu untuk Gedung yang tergolong baru, sebagian menggunakan EDMI untuk memonitor penggunaan energi,

User Interface sudah terdigitalisasi dan mudah dipahami, namun untuk pengambilan datanya tidak dipikirkan, sehingga perlu dirancang kembali metode untuk pengambilan data dari power meter yang tersedia.

Selain power meter, pada saat survey juga ditemukan kesulitan pada beberapa Gedung, karena jalur kabel yang semrawut dan tidak memiliki label atau label sudah pudar, sehingga diperlukan pengecekan jalur dari Distribution Panel diatasnya untuk mengecek jalur manakah yang terbagi dan kemana energi tersebut disalurkan.

BAB IV PENUTUP

3.1 Kesimpulan

Instalasi Si SiElisa merupakan salah satu langkah dalam upaya pengumpulan informasi penggunaan energi listrik dan air secara terpusat. Namun dalam pelaksanaanya, masih terdapat beberapa kesulitan berupa terdapat beberapa gedung yang tidak memiliki komponen yang lengkap untuk sebagai syarat untuk pemasangan sehingga diperlukan pemasangan beberapa komponen yang dibutuhkan terlebih dahulu. Untuk membantu pemecahan masalah tersebut, dibuat juga Dokumen Teknis Perencanaan Rinci Detailed Energy Design agar proses instalasi Si SiElisa berjalan lebih lancar dan sistematis.

3.2 Saran

Dalam rangka instalasi Si SiElisa, terdapat beberapa saran yang dapat diberikan. Pertama, penting untuk mengadopsi teknologi terkini yang dapat memberikan pengukuran yang akurat dan real-time untuk konsumsi energi listrik dan air di berbagai area universitas. Dengan menggunakan sensor dan perangkat cerdas, informasi yang diperoleh dapat dianalisis secara efisien. Selanjutnya, sistem ini harus terhubung dengan pusat kontrol yang dapat memantau data yang terkumpul dan memberikan laporan berkala. Pusat kontrol ini harus dilengkapi dengan perangkat lunak yang mampu mengidentifikasi pola konsumsi energi dan air yang tidak efisien, sehingga dapat memberikan rekomendasi untuk mengurangi konsumsi berlebih. Selain itu, penting untuk melibatkan seluruh komunitas universitas dalam keseluruhan proses ini, dengan menyediakan informasi tentang manfaat penghematan energi dan air serta cara untuk berkontribusi dalam pengurangan konsumsi yang berkelanjutan. Langkah ini dapat didukung oleh program edukasi dan kampanye yang bertujuan untuk meningkatkan kesadaran akan pentingnya efisiensi energi dan pengelolaan air. Dengan mengadopsi sistem pemantauan yang baik dan melibatkan komunitas, universitas dapat mencapai tujuan keberlanjutan dan menjadi contoh bagi institusi lain dalam mengelola konsumsi energi listrik dan air dengan lebih efisien

LAMPIRAN

REFERENSI

- Pengertian MCCB adalah: Fungsi, Prinsip Kerja, Perbedaan MCB dan MCCB. Thecityfoundry. Diakses 19 Juni 2023, dari https://thecityfoundry.com/mccb-adalah/
- Temperature humidity sensor module, XY-MD02 temperature humidity transmitter acquisition module transducer SHT20 temperature & humidity sensors. Amazon.sg: Home. (n.d.). Diakses 3 Oktober 2022, dari https://www.amazon.sg/Temperature-Humidity-Transmitter-Acquisition-Transducer/dp/B07VNFDQRJ
- LG VRF Systems to Modbus RTU interface. Intesis. (n.d.). Diakses 3 Oktober 2022, dari https://www.intesis.com/products/ac-interfaces/modbus-gateways/lg-modbus-vrf-lg-rc-mbs-1?ordercode=INMBSLGE001R000
- Cahyono, B., Budijanto, A. and Utama, Y. (2017). *PROTOTIPE PANEL MONITORING LAMPU LISTRIK TERPUSAT MENGGUNAKAN KOMUNIKASI RS485*. 1st ed. [ebook] Surabaya. Diakses 3 Oktober 2022, dari https://ojs.widyakartika.ac.id/index.php/sniter/article/view/44