# TD10: Cinétique chimique

#### Exercice 1 : Décomposition de l'anion peroxodisulfate

Les anions peroxodisulfate  $S_2O_8^{2-}$  sont instables en solution aqueuse car ils oxydent lentement l'eau en dioxygène.

1. Écrire l'équation de la réaction traduisant cette instabilité, sachant que des ions sulfate (SO<sub>4</sub><sup>2-</sup>) sont formés.

Pour étudier la cinétique de la réaction de décomposition des ions peroxodisulfate, on suit l'évolution d'une solution de peroxodisulfate de sodium  $\mathrm{Na_2S_2O_8}$  de concentration initiale  $C_0=10$ , 0 mmol  $\mathrm{L}^{-1}$ . Le tableau ci-dessous donne la concentration C en ions  $\mathrm{S_2O_8}^{2^-}$  en fonction du temps, à  $80^{\circ}\mathrm{C}$ .

| t (min)                      | 0    | 50   | 100  | 150  | 200  | 250  |
|------------------------------|------|------|------|------|------|------|
| $C(t) \text{ (mmol L}^{-1})$ | 10,0 | 7,80 | 6,05 | 4,72 | 3,68 | 2,86 |

- 2. Montrer que ces résultats sont compatibles avec une cinétique d'ordre 1.
- 3. Déterminer la valeur de la constante de vitesse à cette température.

#### Exercice 2 : Dimérisation du butadiène

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation :

$$2 C_4 H_6(g) = C_8 H_{12}(g)$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume V constant, maintenu à température constante T=326 K. On mesure alors la pression partielle en butadiène  $p_B$  dans le récipient en fonction du temps.

| t(min)      | 0     | 3,25  | 8,02  | 12,18 | 17,3  | 24,55 | 33,0  | 43,0  | 55,08 | 68,05 | 90,1  | 119   |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $p_B$ (bar) | 0,843 | 0,807 | 0,756 | 0,715 | 0,670 | 0,615 | 0,565 | 0,520 | 0,465 | 0,423 | 0,366 | 0,311 |

- 1. Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale  $p_B$  et de la température T suffit pour calculer la concentration initiale  $C_B$  en buta-1,3-diène.
- 2. Montrer que les résultats sont compatibles avec une cinétique d'ordre 2.
- 3. Déterminer la valeur de la constante de vitesse à cette température.
- 4. Déterminer le temps de demi-réaction du système précédent.
- 5. On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

### Exercice 3 : Substitution sur le bromoéthane

On étudie, à 25°C, l'action d'une solution de soude diluée sur le bronoéthane; la réaction totale a pour équation :

$$CH_3CH_2Br + OH^- \rightleftharpoons CH_3CH_2OH + Br^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit  $C_0$  la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de  $C_0$ .

| $C_0  (\mathrm{mmol}  \mathrm{L}^{-1})$ | 10   | 25  | 50  | 75  | 100 |
|-----------------------------------------|------|-----|-----|-----|-----|
| $\tau_{1/2}$ (min)                      | 1100 | 445 | 220 | 150 | 110 |

- 1. Démontrer que ces données sont compatibles avec une réaction d'ordre partiel 1 par rapport à chacun des réactifs.
- 2. Déterminer la constante de vitesse de la réaction.

#### Exercice 4 : Dissociation en milieu acide

On considère une solution complexe  $[Fe(phen)_3]^{2+}$ ] de concentration  $1,0 \times 10^{-4} \text{ mol } \ell^{-1}$ . On y ajoute de l'acide chlorhydrique. On suppose que l'addition d'acide se fait instantanément, à la date t=0.

- 1. Dans l'hypothèse d'une réaction d'ordre 1 par rapport au complexe, établir l'expression de la concentration C(t) en complexe en fonction du temps.
- La constante de vitesse sera notée k.

Le suivi de la réaction est effectué par spectrophotométrie, en mesurant l'absorbance d'une solution de complexe à une longueur d'onde à laquelle seul le complexe absorbe. On considère une solution de concentration  $8 \times 10^{-5} \, \mathrm{mol} \, \ell^{-1}$  en complexe, et  $2 \, \mathrm{mol} \, \ell^{-1}$  en acide chlorhydrique à l'instant t=0. On mesure l'absorbance A à différents instants, la température étant maintenue à  $26 \, ^{\circ}\mathrm{C}$ . Les valeurs sont rassemblées dans le tableau suivant :

| t  (min)       | 0     | 20    | 35    | 48    | 66    | 85    |
|----------------|-------|-------|-------|-------|-------|-------|
| $\overline{A}$ | 0,937 | 0,851 | 0,815 | 0,757 | 0,701 | 0,640 |

On rappelle que l'absorbance de la solution est proportionnelle à la concentration en complexe :  $A = \epsilon C$ .

- 2. Montrer que dans le cas d'une réaction d'ordre 1,  $ln(A(t)) = ln(A_0) kt$ .
- 3. En déduire que la réaction est bien d'ordre 1 et déterminer la valeur de k à  $26^{\circ}$ C (on pourra utiliser une méthode de régression ou bien une méthode graphique).

## Exercice 5 : Chlorure d'hydrogène et cyclohexène

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :  $C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$  schématisée par :  $A+B \longrightarrow C$ . On réalise une série d'expériences à 25°C, où l'on mesure la vitesse initiale  $v_0$  de la réaction en fonction des concentrations molaires initiales  $[A]_0$  en cyclohexène et  $[B]_0$  en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci dessous :

| Expérience                                                                                                                          | 1              | 2              | 3              | 4     |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|-------|
| [A] <sub>0</sub> (mol L <sup>-1</sup> )<br>[B] <sub>0</sub> (mol L <sup>-1</sup> )<br>$v_0$ (10 <sup>-9</sup> mol s <sup>-1</sup> ) | 0,470<br>0,235 | 0,470<br>0,328 | 0,470<br>0,448 | 0,313 |
| $v_0$ (10 mors )                                                                                                                    | 15,7           | 30,6           | 57,1           | 38,0  |

- 1. On désigne par *p* et *q* les ordres partiels initiaux de la réaction par rapport au cyclohexane (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de *p* et *q*.
- 2. Déterminer p.
- 3. Déterminer *q*, en déduire l'ordre global de la réaction.
- 4. Calculer la constante cinétique de la réaction.
- 5. Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse de la réaction en fonction de [A]. En déduire l'équation différentielle satisfaite par [A](t).

#### Exercice 6: RÉDUCTION DU MERCURE

On considère la réaction suivante :  $2 \, \text{Hg}^{\scriptscriptstyle +} + 2 \, \text{Fe}^{2 \scriptscriptstyle +} \longrightarrow \text{Hg}_2^{\ 2 \scriptscriptstyle +} + 2 \, \text{Fe}^{2 \scriptscriptstyle +}$ 

On suit deux expériences, à 80°C par spectrophotométrie, qui donnent, avec  $\alpha = \frac{[Hg^{2+}]}{[Hg^{2+}]_0}$ 

Expérience  $1: [Fe^{2+}]_0 = 0{,}100\,\text{mol}\,L^{-1}$  et  $[Hg^{2+}]_0 = 0{,}100\,\text{mol}\,L^{-1}$ 

| t (10 <sup>5</sup> s) | 0,0   | 1,0   | 2,0   | 3,0   | $\infty$ |
|-----------------------|-------|-------|-------|-------|----------|
| $\alpha(t)$           | 1,000 | 0,500 | 0,333 | 0,250 | 0,000    |

Expérience  $2 : [Fe^{2+}]_0 = 0,100 \text{ mol } L^{-1} \text{ et } [Hg^{2+}]_0 = 0,001 \text{ mol } L^{-1}$ 

| $t (10^5 \text{ s})$ | 0.0   | 0.5   | 1.0   | 1.5   | 2.0   | $\infty$ |
|----------------------|-------|-------|-------|-------|-------|----------|
| $\alpha(t)$          | 1,000 | 0,585 | 0,348 | 0,205 | 0,122 | 0,000    |

- 1. On considère que la réaction est d'ordre partiel p par rapport à  $Fe^{2+}$  et q par rapport à  $Hg^{2+}$ . Écrire l'expression de la vitesse de la réaction.
- 2. Déterminer l'ordre global de la réaction à l'aide de l'expérience 1.
- 3. Déterminer q à l'aide de l'expérience 2. En déduire p.
- 4. Déterminer la constante de vitesse de la réaction.

## Exercice 7 : Dismutation de l'eau oxygénée

L'eau oxygénée H<sub>2</sub>O<sub>2</sub> se dismute naturellement suivant la réaction :

$$\mathrm{H_2O_2} \longrightarrow \mathrm{H_2O} + \frac{1}{2}\mathrm{O_2}.$$

Sur le graphique ci-contre, on trace l'évolution de  $\ln([\mathrm{H_2O_2}])$  en fonction du temps.

Déterminer l'ordre de la réaction ainsi que la constante de vitesse k de la réaction.

