I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/16

Contents

Aim

to learn how to prove formulas having equalities

Contents

- □ natural deduction II (=)
- 2 soundness and completeness
- 3 axioms

Schedule			
	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary
		6/6	exam

Evaluation

midterm exam (40) + final exam (60)

I211E: Mathematical Logic 2/16

Natural Deduction II (\doteq)

 1211E: Mathematical Logic
 3/16
 1211E: Mathematical Logic
 4/16

Equality Axioms

Definition (inference rules for \doteq)

reflexivity, symmetry, transitivity, congruence, and substitution rules

$$\frac{\overline{t \doteq t}}{t \doteq t} \text{ REFL}
 \frac{\underline{s \doteq t}}{t \doteq s} \text{ SYM}
\underline{s \doteq t} \quad \underline{t \doteq u} \\ \underline{s \doteq u} \quad \text{TRANS}$$

$$\frac{s = t}{s \doteq u} \quad \text{TRANS}$$

$$\frac{s_1 \doteq t_1 \quad \cdots \quad s_n \doteq t_n}{f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n)} \quad \text{CONG}$$

$$\frac{s_1 \doteq t_1 \quad \cdots \quad s_n \doteq t_n}{f(s_1, \dots, s_n) \leftarrow f(t_1, \dots, t_n)} \quad \text{SUBST}$$

I211E: Mathematical Logic 5/16

Soundness and Completeness (Gödel 1930)

Definition

- structure \mathcal{A} is model of Γ if $\mathcal{A} \vDash \gamma$ holds for all $\gamma \in \Gamma$
- $\Gamma \vDash \phi$ if $A \vDash \phi$ holds for all models A of Γ

Theorem (⇒ soundness; ← completeness)

$$\Gamma \vdash \phi \iff \Gamma \vDash \phi$$

Proof.

 (\Rightarrow) additional inference rules are valid (\Leftarrow) model existence lemma

Corollary

 $\Gamma \nvdash \phi$ if and only if there exists model \mathcal{A} of Γ with $\mathcal{A} \nvdash \phi$ (countermodel)

Proposition

$$\vdash \forall x(x \cdot 0 = 0) \to 0 \doteq (x \cdot (y \cdot 0))$$

Proof Sketch: $x \cdot (y \cdot 0) = \underline{x \cdot 0} = 0$

Proof.

$$\frac{x \doteq x}{x \doteq x} \xrightarrow{\text{REFL}} \frac{\left[\forall x \, (x \cdot 0 \doteq 0)\right]^{1}}{y \cdot 0 \doteq 0} \xrightarrow{\text{CONG}} \frac{\left[\forall x \, (x \cdot 0 \doteq 0)\right]^{1}}{x \cdot 0 \doteq 0} \xrightarrow{\text{TRANS}} \frac{x \cdot (y \cdot 0) \doteq 0}{0 \doteq (x \cdot (y \cdot 0))} \xrightarrow{\text{SYM}} \frac{x \cdot (y \cdot 0) \Rightarrow 0}{\forall x (x \cdot 0 = 0) \rightarrow 0 \doteq (x \cdot (y \cdot 0))} \rightarrow I$$

I211E: Mathematical Logic

6/16

Axioms

Terminology

axioms are formulas supposed to be true a priori

Definition

- lackrell ϕ is valid under set Γ of axioms if $\Gamma \vdash \phi$
- \blacksquare Γ is consistent if $\Gamma \nvdash \bot$
- \blacksquare Γ is inconsistent if $\Gamma \vdash \bot$

Example

- $\blacksquare \ \Gamma = \{ \forall x \, \mathsf{P}(x), \forall x \, (\mathsf{P}(x) \to \mathsf{Q}(x)) \} \text{ is consistent and } \Gamma \vdash \forall x \, \mathsf{Q}(x)$
- \blacksquare $\Gamma = \{ \forall x (\neg(x \doteq x)) \}$ is inconsistent and $\Gamma \vdash \mathbf{0} \doteq \mathbf{s}(\mathbf{0})$

Fact

if Γ is inconsistent then $\Gamma \vdash \phi$ for all formulas ϕ

I211E: Mathematical Logic

9/16

Definition (Robinson Arithmetic)

$$\mathbf{Q} \text{ is } \left\{ \begin{array}{ll} \forall x. & \neg(\mathbf{s}(x) \doteq \mathbf{0}) \\ \forall x. & x \doteq \mathbf{0} \lor \exists y (x \doteq \mathbf{s}(y)) \\ \forall x, y. & \mathbf{s}(x) \doteq \mathbf{s}(y) \to x \doteq y \\ \forall x. & x + \mathbf{0} \doteq x \\ \forall x, y. & x + \mathbf{s}(y) \doteq \mathbf{s}(x + y) \\ \forall x. & x \cdot \mathbf{0} \doteq \mathbf{0} \\ \forall x, y. & x \cdot \mathbf{s}(y) \doteq (x \cdot y) + x \end{array} \right\} \text{ over } \left\{ +^{(2)}, \cdot^{(2)}, \mathbf{s}^{(1)}, \mathbf{0}^{(0)} \right\}$$

Exercise

- \blacksquare find natural model of ${\bf Q}$ whose universe is ${\mathbb N}$
- $\mathbf{Q} \vdash \forall x \exists y (x + y \doteq x)$

Fact (⇒: Model Existence Lemma)

 Γ is consistent \iff there exists model of Γ

Proposition

 $\Gamma = \{ \forall x \, \mathsf{P}(x), \forall x \, (\mathsf{P}(x) \to \mathsf{Q}(x)) \}$ is consistent

Proof.

 Γ admits the model $\mathcal{A} = (\{0\}, \bar{P}, \bar{Q})$ with $\bar{P} = \bar{Q} = \{0\}$.

I211E: Mathematical Logic

10/16

Proof of Q
$$\vdash$$
 0 + s(0) \doteq s(0)

Proof Sketch: 0 + s(0) = s(0 + 0) = s(0)

$$\frac{\left[\forall x \forall y \left(x + \mathsf{s}(y) \doteq \mathsf{s}(x + y)\right)\right]^{\mathbf{Q}}}{\forall y \left(0 + \mathsf{s}(y) \doteq \mathsf{s}(0 + y)\right)} \forall \mathsf{E} \qquad \frac{\left[\forall x \left(x + 0 \doteq x\right)\right]^{\mathbf{Q}}}{0 + 0 \doteq 0} \forall \mathsf{E} \qquad \frac{\mathsf{Q} \cdot \mathsf{Q} \cdot \mathsf{Q} \cdot \mathsf{Q}}{\mathsf{Q} \cdot \mathsf{Q} \cdot \mathsf{Q} \cdot \mathsf{Q}} \qquad \mathsf{CONG} \cdot \mathsf{Q} \cdot$$

Definition (Peano Arithmetic)

 $\mathbf{PA} = \mathbf{Q} \cup \{ \forall y_1, \dots, y_n. ((\phi[0/x] \land \forall x (\phi \to \phi[\mathsf{s}(x)/x])) \to \forall x \phi) \mid (*) \}$

where (*) means that ϕ is formula with $FV(\phi) = \{x, y_1, \dots, y_n\}$

Exercise

- **PA** $\vdash \forall x \exists y (x + y \doteq x)$
- PA $\vdash \forall x \forall y (x + y \doteq y + x)$

I211E: Mathematical Logic

13/16

Proof of PA $\vdash \forall x \exists y (x \cdot y \doteq x)$

Proof Idea: 0 + x = x and $x \cdot s(0) = x$ are shown by mathematical induciton on x

where $\phi = 0 \cdot s(0) \doteq 0 \land \forall x (x \cdot s(0) \doteq x \rightarrow s(x) \cdot s(0) \doteq s(x))$, and

(a)
$$0 \cdot s(0) = \underline{0 \cdot 0} + 0 = 0 + 0 = 0$$

(b)
$$\underline{\mathsf{s}(x)\cdot\mathsf{s}(0)} = \underline{\mathsf{s}(x)\cdot 0} + \underline{\mathsf{s}(x)} = \underline{\mathsf{0} + \underline{\mathsf{s}(x)}} = \underline{\mathsf{s}(\underline{\mathsf{0} + x})} = \underline{\mathsf{s}(x)}$$

Set Theory

Definition (Zermelo-Fraenkel set theory with Axiom of Choice)

ZFC consists of following axioms over signature $\{\in^{(2)}\}$:

$$\exists X \forall z. \ \neg(z \in X)$$

$$\forall X, Y. \ (\forall x (z \in X \leftrightarrow z \in Y)) \to X \doteq Y$$

$$\forall X \exists Z \forall Y. \ (Y \in Z \leftrightarrow \exists W (W \in Z \land W \in X) \to X \doteq Y)$$

$$\vdots$$

Definition (von Neumann numbers)

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0, 1\}$, ...

I211E: Mathematical Logic

14/16

Supplementary Comments

■ alternative inference rules for \doteq are:

$$\frac{s \doteq t \quad \phi[s/x]}{t \doteq t} \doteq_{\mathbf{E}} \quad (s \text{ and } t \text{ are free for } x)$$

- there are many (non-equivalent) variations of Q, PA, and ZFC
- lacktriangle PA admits standard model on $\mathbb N$ and also non-standard models
- ZFC is powerful enough for formalizing most part of mathematics