S.No	Title	Overview
1	Course Kickoff & Fundamentals of Python	- Provide a high-level roadmap of topics: Python, ML, LLMs, Fine-tuning, RAG, Deployment, and Agents Explain how Python is the lingua franca of AI due to its simplicity, extensive libraries (NumPy, Pandas, Scikit-learn, PyTorch), and community support Cover Python basics: data types, loops, functions, OOP—ensuring everyone can write and read AI-related Python code.
2	Fundamentals of Machine Learning	- Introduce core ML concepts: supervised/unsupervised learning, bias-variance, overfitting, and generalization Cover statistics (mean, variance, distributions), probability, and the importance of experimentation in Al If time permits, introduce core Python packages: NumPy, Pandas, Matplotlib, Seaborn for EDA and ML workflows.
3	Building a Simple ML Model with Scikit-learn	- Walk through building a pipeline: data loading, preprocessing, training, evaluation Use models like logistic regression, decision trees to make ML less abstract Discuss how classical ML still solves many real-world Al problems in domains like healthcare, finance, etc.
4	Building a Deep Learning Model with Pytorch	- Explain neural networks, activation functions, layers,

		backpropagation Implement a simple neural net with Pytorch to reinforce abstraction with practice Deep learning is foundational for modern Al systems like vision models and LLMs.
5	NLP & Transformers: Historical to Modern View	- Cover NLP evolution: bag- of-words → word embeddings → transformers Introduce the transformer architecture: self-attention, positional encoding NLP is central to Al's understanding of human language; transformers are the backbone of models like GPT and BERT.
6	LLMs in Practice with Ollama	- Demonstrate how to run LLMs locally using Ollama for privacy and control Explore prompting, limitations, and useful applications like summarization or Q&A Real-world LLM usage enables building Al-driven assistants, chatbots, or copilots.
7	Retrieval-Augmented Generation (RAG)	- Explain RAG concept: combining retrieval with generation for more accurate, grounded responses Cover cosine similarity, embeddings, and vector stores (like ChromaDB, FAISS) RAG is vital for domain-specific AI—e.g., medical chatbots referencing latest research.
8	Fine-tuning an LLM for Your Use Case	- Show how to fine-tune using domain-specific data

		for better performance Explain the difference between fine-tuning and prompt-engineering Fine- tuning helps models specialize in areas like legal, healthcare, or enterprise documents.
9	Deployment of LLMs	- Discuss model deployment strategies: REST APIs, Streamlit- Cover real-world concerns: latency, cost, scaling, monitoring Deployment bridges the gap between research and usable AI products.
10	Real Agentic AI Use Case Implementation	- Define Agentic AI: systems that can plan, reason, and act autonomously Implement a simple use case using an open-source agent framework.