CSC321 Lecture 22: Q-Learning

Roger Grosse

Overview

- Second of 3 lectures on reinforcement learning
- Last time: policy gradient (e.g. REINFORCE)
 - Optimize a policy directly, don't represent anything about the environment
- Today: Q-learning
 - Learn an action-value function that predicts future returns
- Next time: AlphaGo uses both a policy network and a value network
- This lecture is review if you've taken 411
- This lecture has more new content than I'd intended. If there is an exam question about this lecture or next one, it won't be a hard question.

Overview

- Agent interacts with an environment, which we treat as a black box
- Your RL code accesses it only through an API since it's external to the agent
 - I.e., you're not "allowed" to inspect the transition probabilities, reward distributions, etc.

Recap: Markov Decision Processes

- The environment is represented as a Markov decision process (MDP)
 M.
- Markov assumption: all relevant information is encapsulated in the current state
- Components of an MDP:
 - initial state distribution $p(\mathbf{s}_0)$
 - transition distribution $p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$
 - reward function $r(\mathbf{s}_t, \mathbf{a}_t)$
- ullet policy $\pi_{oldsymbol{ heta}}(\mathbf{a}_t \,|\, \mathbf{s}_t)$ parameterized by $oldsymbol{ heta}$
- ullet Assume a fully observable environment, i.e. \mathbf{s}_t can be observed directly

Finite and Infinite Horizon

- Last time: finite horizon MDPs
 - Fixed number of steps T per episode
 - Maximize expected return $R = \mathbb{E}_{p(\tau)}[r(\tau)]$
- Now: more convenient to assume infinite horizon
 - We can't sum infinitely many rewards, so we need to discount them:
 \$100 a year from now is worth less than \$100 today
 - Discounted return

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

- Want to choose an action to maximize expected discounted return
- ullet The parameter $\gamma < 1$ is called the discount factor
 - $\bullet \ \ {\rm small} \ \gamma = {\rm myopic}$
 - $\bullet \ \ {\rm large} \ \gamma = {\rm farsighted} \\$

Value Function

• Value function $V^{\pi}(\mathbf{s})$ of a state \mathbf{s} under policy π : the expected discounted return if we start in \mathbf{s} and follow π

$$egin{aligned} V^{\pi}(\mathbf{s}) &= \mathbb{E}[G_t \,|\, \mathbf{s}_t = \mathbf{s}] \ &= \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \,|\, \mathbf{s}_t = \mathbf{s}
ight] \end{aligned}$$

- Computing the value function is generally impractical, but we can try to approximate (learn) it
- The benefit is credit assignment: see directly how an action affects future returns rather than wait for rollouts

Value Function

- Rewards: -1 per time step
- Undiscounted ($\gamma = 1$)
- Actions: N, E, S, W
- State: current location

Value Function

Action-Value Function

• Can we use a value function to choose actions?

$$\arg\max_{\mathbf{a}} r(\mathbf{s}_t,\mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}_{t+1} \,|\, \mathbf{s}_t,\mathbf{a}_t)}[V^{\pi}(\mathbf{s}_{t+1})]$$

Action-Value Function

• Can we use a value function to choose actions?

$$\arg\max_{\mathbf{a}} r(\mathbf{s}_t, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}_{t+1} \,|\, \mathbf{s}_t, \mathbf{a}_t)}[V^{\pi}(\mathbf{s}_{t+1})]$$

- Problem: this requires taking the expectation with respect to the environment's dynamics, which we don't have direct access to!
- Instead learn an action-value function, or Q-function: expected returns if you take action a and then follow your policy

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}[G_t \,|\, \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a}]$$

Relationship:

$$V^{\pi}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \,|\, \mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a})$$

• Optimal action:

$$\arg\max_{\mathbf{a}}Q^{\pi}(\mathbf{s},\mathbf{a})$$

Bellman Equation

 The Bellman Equation is a recursive formula for the action-value function:

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\rho(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \pi(\mathbf{a}' \mid \mathbf{s}')} [Q^{\pi}(\mathbf{s}', \mathbf{a}')]$$

 There are various Bellman equations, and most RL algorithms are based on repeatedly applying one of them.

Optimal Bellman Equation

- The optimal policy π^* is the one that maximizes the expected discounted return, and the optimal action-value function Q^* is the action-value function for π^* .
- The Optimal Bellman Equation gives a recursive formula for Q^* :

$$Q^*(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}' \mid \mathbf{s}, \mathbf{a})} \left[\max_{\mathbf{a}'} Q^*(\mathbf{s}_{t+1}, \mathbf{a}') \, | \, \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a}
ight]$$

• This system of equations characterizes the optimal action-value function. So maybe we can approximate Q^* by trying to solve the optimal Bellman equation!

Q-Learning

- Let Q be an action-value function which hopefully approximates Q^* .
- The Bellman error is the update to our expected return when we observe the next state s'.

$$\underbrace{r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a})}_{\text{inside } \mathbb{E} \text{ in RHS of Bellman eqn}} - Q(\mathbf{s}_t, \mathbf{a}_t)$$

- The Bellman equation says the Bellman error is 0 in expectation
- ullet Q-learning is an algorithm that repeatedly adjusts Q to minimize the Bellman error
- Each time we sample consecutive states and actions $(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})$:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) - \alpha \underbrace{\left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a}) - Q(\mathbf{s}_t, \mathbf{a}_t)\right]}_{\text{Bellman error}}$$

Exploration-Exploitation Tradeoff

- Notice: Q-learning only learns about the states and actions it visits.
- Exploration-exploitation tradeoff: the agent should sometimes pick suboptimal actions in order to visit new states and actions.
- Simple solution: ϵ -greedy policy
 - ullet With probability $1-\epsilon$, choose the optimal action according to Q
 - With probability ϵ , choose a random action
- Believe it or not, ϵ -greedy is still used today!

Exploration-Exploitation Tradeoff

- You can't use an epsilon-greedy strategy with policy gradient because it's an on-policy algorithm: the agent can only learn about the policy it's actually following.
- ullet Q-learning is an off-policy algorithm: the agent can learn Q regardless of whether it's actually following the optimal policy
- Hence, Q-learning is typically done with an ϵ -greedy policy, or some other policy that encourages exploration.

Q-Learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A)\big]
   S \leftarrow S';
   until S is terminal
```

Function Approximation

- So far, we've been assuming a tabular representation of Q: one entry for every state/action pair.
- This is impractical to store for all but the simplest problems, and doesn't share structure between related states.
- Solution: approximate Q using a parameterized function, e.g.
 - linear function approximation: $Q(\mathbf{s}, \mathbf{a}) = \mathbf{w}^{\top} \psi(\mathbf{s}, \mathbf{a})$
 - ullet compute Q with a neural net
- Update Q using backprop:

$$t \leftarrow r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a})$$

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha (t - Q(\mathbf{s}, \mathbf{a})) \frac{\partial Q}{\partial \boldsymbol{\theta}}$

Function Approximation

- Approximating Q with a neural net is a decades-old idea, but DeepMind got it to work really well on Atari games in 2013 ("deep Q-learning")
- They used a very small network by today's standards

- Main technical innovation: store experience into a replay buffer, and perform Q-learning using stored experience
 - Gains sample efficiency by separating environment interaction from optimization don't need new experience for every SGD update!

Atari

- Mnih et al., Nature 2015. Human-level control through deep reinforcement learning
- Network was given raw pixels as observations
- Same architecture shared between all games
- Assume fully observable environment, even though that's not the case
- After about a day of training on a particular game, often beat "human-level" performance (number of points within 5 minutes of play)
 - Did very well on reactive games, poorly on ones that require planning (e.g. Montezuma's Revenge)
- https://www.youtube.com/watch?v=V1eYniJORnk
- https://www.youtube.com/watch?v=4MlZncshy1Q

Wireheading

- If rats have a lever that causes an electrode to stimulate certain "reward centers" in their brain, they'll keep pressing the lever at the expense of sleep, food, etc.
- RL algorithms show this "wireheading" behavior if the reward function isn't designed carefully
- https://blog.openai.com/faulty-reward-functions/

Policy Gradient vs. Q-Learning

- Policy gradient and Q-learning use two very different choices of representation: policies and value functions
- Advantage of both methods: don't need to model the environment
- Pros/cons of policy gradient
 - Pro: unbiased estimate of gradient of expected return
 - Pro: can handle a large space of actions (since you only need to sample one)
 - Con: high variance updates (implies poor sample efficiency)
 - Con: doesn't do credit assignment
- Pros/cons of Q-learning
 - Pro: lower variance updates, more sample efficient
 - Pro: does credit assignment
 - Con: biased updates since Q function is approximate (drinks its own Kool-Aid)
 - Con: hard to handle many actions (since you need to take the max)

Actor-Critic (optional)

Actor-critic methods combine the best of both worlds

- Fit both a policy network (the "actor") and a value network (the "critic")
- ullet Repeatedly update the value network to estimate V^π
- Unroll for only a few steps, then compute the REINFORCE policy update using the expected returns estimated by the value network
- The two networks adapt to each other, much like GAN training
- Modern version: Asynchronous Advantage Actor-Critic (A3C)