Convex Optimization - Preliminary Table of Contents

- 1. Introduction (Lecture 1 + Introductory slides)
 - What is an optimization problem?
 - Examples of optimization problems.
- 2. Unconstrained optimization and iterative algorithms (Lectures 2-6)
 - Unconstrained optimization
 - Convex functions
 - Gradient descent (steepest descent, step length, linear least squares)
 - Convergence of iterative methods
 - Convergence of gradient descent
 - Newton's method
 - Application: machine learning / supervised learning
- 3. Linear Programming Theory (Lectures 7-10)
 - Convex sets
 - Linear programming duality: a first glance
 - Polyhedra
 - Farkas' Lemma
 - Linear programming duality
 - A first algorithm
 - Optimality condition for linear programming
- 4. Interior Point Methods for Linear Programming (Lectures 11-13)
 - Primal-Dual interior point methods
 - Analysis of path-following methods
- 5. Constrained non-linear convex optimization (Lectures 14-18)
 - Examples of non-linear optimziation problems
 - Application: quadratic programming and portfolio optimization
 - Lagrangian duality
 - The Karush-Kuhn-Tucker optimality conditions
 - The logarithmic barrier and the central path
 - Proximal algorithms, Alternating Direction Method of Multipliers
 - Application: support vector machines for classification tasks

- 6. Semidefinite programming (Lectures 19-20)
 - Semidefinite programming duality
 - Applications: semidefinite relaxations for hard combinatorial problems