Examen d'algèbre1

- Exercice 1. (7pts). Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^3 x^2 4x + 4$
 - I. Soient les ensembles $A = \{-2, 0, \frac{1}{2}, 2\}$ et $B = \{4\}$.
 - (a). Déterminer $f(A) \rightarrow (1.5 \text{pts})$
 - (b). En déduire que f n'est pas injective. Justifier. → (1.5pts)
 - (c). Déterminer $f^{-1}(B) \rightarrow (1pt)$
 - II. On désigne par R la relation binaire définie par :

$$\forall x, y \in \mathbb{R}, \ x\Re y \Leftrightarrow f(x) = f(y)$$

- (a). Montrer que \Re est relation d'équivalence sur \mathbb{R} . \to (1.5pts)
- (b). Déterminer les classes d'équivalences de -2, 0 et 2. \rightarrow (1.5pts)
- Exercice 2. (6pts) On définit sur \mathbb{R} la loi de composition * par x * y = x + y 2.
 - la loi * est elle commutative, associative, possède elle un élément neutre et un élément symétrique ?→ (3pts)
 - 2. Soit $n \in \mathbb{N}/\{0\}$. On pose $x^{(1)} = x$ et $x^{(n+1)} = x^{(n)} * x$
 - (a). Calculer $x^{(2)}$, $x^{(3)}$ et $x^{(4)}$. \to (1.5pts)
 - (b). Montrer que $\forall n \in \mathbb{N}/\{0\} : x^{(n)} = nx 2(n-1) . \to (1.5 \text{pts})$

Exercice 3. (4.5pts)

- 1 Est ce que l'ensemble $\mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}$ est un anneau intègre? \rightarrow (1.5pts)
- 2. Déterminer la table de multiplication dans Z/6Z et quelles sont les éléments non symétrisables.(1.5pts)
- 3. Résoudre dans $\mathbb{Z}/6\mathbb{Z}$ l'équation (x-2)(x-3)=0. Qu'est ce qu'on déduit ?(1.5pts)
- Exercice 4. (3.5pts) Déterminer le PGCD de A et B avec $A = X^4 3X^3 + X^2 + 4$ et $B = X^3 3X^2 + 3X 2$.

Bon courage