Large-Scale Distributed Private Learning with DPSGD

Tianhao Wang, Litao Yan, Ruoxi Yang, Silin Zou

Overview

- Type of application
 - Data Preprocessing
 - o DPSGD Algorithm
- Levels of parallelism
 - Big data
 - Distributed parallelization
- Programming model
 - Spark
 - Distributed package of PyTorch
 - with MPI backend
- Parallel algorithm
 - Synchronous Fashion
 - Asynchronous Fashion
 - Ring All-Reduce
- Infrastructure
 - O AWS 4 g3.4xlarge

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C.

Initialize θ_0 randomly

for $t \in [T]$ do

Take a random sample L_t with sampling probability L/N

Compute gradient

For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$

Clip gradient

 $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$

Add noise

 $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$

Descent

$$\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$$

Output θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

MPI

Spark

	sex	married	black	asian	collegedegree	employed	militaryservice	uscitizen	disability	englishability	blackfemale
0	1	1	0	0	0	1	0	1	0	1	0
1	1	1	0	0	0	0	0	1	0	1	0
2	0	1	0	0	0	0	1	1	0	1	0
3	0	0	0	0	0	0	0	1	1	1	0
4	0	1	0	0	0	0	0	1	0	1	0

Sequential Code Analysis

```
if __name__=='__main__':
    model = Network()
    model.to(device)
    12 \text{ norm clip} = 3
    noise multiplier = 0.9
    batch size = 256
    minibatch size = 3
    optimizer = DPSGD(
        params = model.parameters(),
       12 norm clip = 12 norm clip,
       noise_multiplier = noise_multiplier,
        batch_size = batch_size,
        minibatch size = minibatch size,
        lr = 0.01.
    DPtrain(model, device, DIR+'CaPUMS5full.csv', optimizer, epoch nb=50,
        target acc=0.7)
```

Acc: 0.67

Real: 16m 32s User: 15m 16s Sys: 33s

Profiling:

```
123912621 function calls (121671800 primitive calls) in 991.690 seconds
     for epoch in range(epoch_nb):
       batch loss = 0
       batch acc = 0
       for i in range(batches per epoch):
         idx = np.random.randint(0, x train.shape[0], batch size)
         x_train_batch, y_train_batch = x_train[idx], y_train[idx]
         optimizer, zero grad()
         for _ in range(minibatches_per_batch):
           idx = np.random.randint(0, batch_size, minibatch_size)
           x_train_mb, y_train_mb = x_train_batch[idx].to(device), y_train_batch[idx].to(device)
           optimizer.zero_minibatch_grad()
           pred mb = model(x train mb)
           loss = lossFnc(pred mb, y train mb.unsqueeze(1))
           acc = binary acc(pred mb, y train mb.unsqueeze(1))
           loss.backward()
           optimizer.minibatch step()
1109350
                        U.000 136.543
                                              ששש.ש main.py:25(forwara)
             9.492
            25.104
                                  83.242
                                              0.000 main.py:32(binary_acc)
```

parallelization overheads

All-Reduce

- Spark: Spark RDD persistence (caching)
 - Use cached RDDs for reuse, avoid reloading dataset everytime it is used
 - Decreases the computation time by almost 100x, comparing to other distributed computation frameworks (MapReduce)
- Reduce overhead on torch.distributed
 - Load balancer: solve the imbalanced issue while using mixed GPUs
 - Data partition: reduce communication betwee nodes
 - Communication: Point to Point & Collective Communication
 - centralized vs decentralized (ring all-reduce)

Runtime Analysis

In regular algorithm, we measure the numerical complexity of a problem as a function of input size, but for a learning algorithm, it does not make sense to define the input size to be the size of training set.

Theorem 1. Assume there are m workers, each with a set of data $S_i, i \in [m]$. Suppose the sensitivity bound of gradient specified in DPSGD is C. Let B > 0. Suppose the target loss function f is convex, let $w^* = \arg\min_{||w|| \le B} f(w)$.

Assume DPSGD algorithm is run for T iterations with learning rate $\eta = \sqrt{\frac{B^2}{C^2T}}$, then

$$E[f(\bar{w})] - f(w^*) \le \frac{BC}{\sqrt{mT}}$$

Hence, suppose we are aiming for ϵ accuracy for the learned classifier, then it suffices to run DPSGD for a number of iterations that satisfies

$$T \ge \frac{B^2 C^2}{m\epsilon^2}$$

Shalev-Shwartz, Shai, and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014. Zinkevich, Martin, et al. "Parallelized stochastic gradient descent." *Advances in neural information processing systems*. 2010.