Test Specifications

This document details the tests that have been written, what component of the software they test, testing data used, and level of testing. It is intended to be a reference document for markers which is more readable than the actual test code whilst also providing some explanation for the rationale behind choices of test cases and methodology.

Notes on General Methodology

Tests are expressed as functions, wrapped in google test's TYPED_TEST macro. All tests are run for float and double types. To account for the different levels of precision, equality testing is done at the lower level of precision (i.e., float). In cases where randomness affects results (e.g., dropout layers), an appropriate error window is used for equality testing. Most instrumentation is done in the test functions – specifically, generating test data, instantiating required objects, and setting up internal state. Helper functions for populating matrices with ascending whole numbers and testing matrix equality are defined in ./test/test_helpers.hpp.

Utils Tests

The utils module contains numerous helper functions which are reused throughout the rest of the codebase, the bulk of which are matrix operations. Source code is located in ./nn-cpp/utils.hpp and ./nn-cpp/utils.cpp. Tests are located in ./test/utils_unit_tests.cpp and ./test/utils integration tests.cpp.

Unit Tests

The unit tests test individual functions defined in utils. To achieve maximal coverage and capture a wide spectrum of inputs, a combinatorial approach was used. For each function there is a small, medium, and big test case (which denotes the size of the input test data). Then, each case is run with both float and double data types (making use of google test's TYPED_TEST_SUITE macro). So for each function we have at minimum $3 \times 2 = 6$ test cases at runtime (because of timing constraints some test cases were omitted, but enough were written to demonstrate a thorough understanding of the approach). Test outputs are compared against numpy outputs; a trusted and widely used library.

Test Name	Description of Test Data	Functionality Tested
MatMulSmall	2x2 matrix multiplied by 2x3	Matrix-matrix multiplication
		defined in lines 5 to 43 of utils.cpp
MatMulMed	15x5 matrix multiplied by 20x20	As above
MatMulBig	50x20 matrix multiplied by 20x50	As above
ScalarMulSmall	2x2 matrix multiplied by 2	Matrix-scalar multiplication
		defined in lines 45 to 57 of
		utils.cpp
ScalarMulMed	15x5 matrix multiplied by 43	As above
ScalarMulBig	20x50 matrix multiplied by 1.5	As above
MatDivSmall	2x2 matrix divided by 2x2	Matrix-matrix division defined in
		lines 79 to 88 of utils.cpp

MatDivMed	15x5 matrix divided by 15x5	As above
MatDivBig	20x50 matrix divided by 20x50	As above
PowerSmall	2x2 matrix taken to the power of 2	Matrix exponentiation defined in
		lines 142 to 150 of utils.cpp
PowerMed	10x20 matrix taken to the power of	As above
	1.5	
PowerBig	50x50 matrix taken to the power of	As above
	3	
TransposeSmall	3x2 matrix	Matrix transposition defined in
		lines 194 to 202 of utils.cpp
TransposeMed	10x15 matrix	As above
TransposeBig	50x20 matrix	As above
MeanSmall	2x2 matrix	Taking the overall mean of all
		values in a matrix, defined in lines
		204 to 212 of utils.cpp
MeanMed	10x10 matrix	As above
MeanBig	20x50 matrix	As above

In addition to these test cases, assertions are also placed throughout the body of utils.cpp to validate preconditions for input data (e.g., line 80 asserts that input matrix dimensions match before dividing them by each other).

Integration Tests

I also adopted a combinatorial approach for the utils integration tests. Here we create cases such that for each function, the output is used as the input for each other function in at least one test case (i.e., pairwise testing). This way we can test how different components interact with each other. We don't need to do integration tests with other components of the library because the library is designed in such a way that invocation of functions defined in utils are encapsulated entirely within abstractions (such as Layer or Model classes); in effect the unit tests for those abstractions double up as integration tests for the utils functions. Each test case is instantiated for float and double data types as in the unit tests. (As mentioned above, some cases have been missed out due to time constraints but enough have been written to demonstrate understanding of the approach).

Test Name	Description of Test Data	Functionality Tested
MulMulPow	2x2 matrix a	power((a * b) * c, 2.0)
	2x3 matrix b	por et ((a a) e, =:e)
	3x2 matrix c	
MulDivMean	3x2 matrix a	mean((a * b) / c)
	2x2 matrix b	
	3x2 matrix c	
MulAddRoot	3x2 matrix a	root((a * b) + c)
	2x2 matrix b	
	3x2 matrix c	
MulSubExp	3x2 matrix a	exp((a * b) - c)
	2x2 matrix b	
	3x2 matrix c	

DivAddLog	2x2 matrix a	log((a / b) + c)
	2x2 matrix b	
	2x2 matrix c	
DivSubAbs	2x2 matrix a	abs((a / b) – c)
	2x2 matrix b	
	2x2 matrix c	
AddSubTranspose	3x2 matrix a	transpose((a / b) - c)
	3x2 matrix b	
	3x2 matrix c	

Evaluation

If I were to approach deriving these tests again, I would do a more comprehensive category partition. Currently, the expectation is that all tests should pass; a better approach would be to have some boundary and erroneous test data. Those cases are currently caught by assertions in the source code, but it would be nice to have explicit unit tests for them. Currently, expected results are hardcoded into the test code. A better approach would be, at runtime, to dynamically run the test cases in the trusted reference implementation (in this case numpy) and compare the results; this way we could dynamically generate input test data (i.e., random number generation), and the only constants between different test runs would be dimensions of the input matrices. This would increase the thoroughness of our tests and is essentially a form of fuzzing.

Layer Tests

The layer classes are the backbone of the neural network library. Source code is located in ./nn-cpp/Layer.hpp and ./nn-cpp/Layer.cpp. Tests are located in ./test/layer_unit_tests.cpp and ./test/layer_integration_tests.cpp.

Unit Tests

The library implements three types of layer: input, dropout, and dense. Each layer has the same API consisting of the methods compute, backward, and a constructor (setters are ignored for testing in the interests of time, getters are tested as part of the constructor unit tests). Layers also have hyperparameters (e.g., dropout rate or regularization coefficients) which affect their outputs. Outputs are tested against Pytorch outputs which were crossverified with TensorFlow outputs, adding an extra guarantee of correctness. In practice, dense neural network layers are initialized with random weights, but for testing we need deterministic outputs, so we define a new constructor for the dense layer which allows us to deterministically set initial weight values.

Test Name	Description of Test Data	Functionality Tested
DenseLayerInit	Initializes a dense layer with	Verifies if initializer
	784 inputs and 128 outputs, 1	parameters are correctly
	L1 weight regularization, 3 L1	assigned (and by proxy tests
	bias regularization, 2 L2	getter functions).
	weight regularization, and 4	
	L2 bias regularization	

	F0 F0	+ · · · · · ·
DenseLayerCompute	50x50 weight matrix of	Tests correct computation of
	ascending whole numbers	layer forward propagation.
	1x50 bias vector (ascending	
	whole numbers)	
	50x50 input data (ascending	
	whole numbers)	
	All other layer parameters are	
	default	
DenseLayerBackpropNoReg	20x20 weight matrix of	Tests correct computation of
Densetayer Backproprioneg		·
	ascending whole numbers	layer back propagation pass
	1x20 bias vector (ascending	without regularization (i.e.,
	whole numbers)	regularization terms set to
	20x20 input data (ascending	0). Verifies that gradients of
	whole numbers)	weights, biases, and inputs
	20x20 output derivatives	are correct.
	(ascending whole numbers)	
	All other layer parameters are	
	default	
DenseLayerBackpropL1Reg	As above but with L1 weight	As above, but this time with
	regularization set to 1 and L1	L1 regularization applied
	bias regularization set to 2	21 regularization applied
DenseLayerBackpropL1Reg	As above but with L2 weight	As above, but this time with
DeliseLayerBackpropLineg	_	
	regularization set to 3 and L2	L2 regularization applied
	bias regularization set to 4	
DropoutLayerComputeTrain	Dropout rate set to 0.2	Tests dropout layer during
	50x50 input matrix of	training is zeroing an
	ascending whole numbers	appropriate amount of
	Training layer mode	neurons in accordance with
		the given dropout rate
		(because randomness is
		involved an error window of
		0.05 is used)
DropoutLayerComputeEval	Dropout rate set to 0.2	Tests dropout during
	50x50 input matrix of	inference which computes
	ascending whole numbers	the identity function
	Eval layer mode	l lacinaty failetion
DropoutLayerBackprop	50x50 input matrix of	Tests dropout back
Diopoutlayer backprop		· •
	ascending whole numbers	propagation during training.
	50x50 output derivatives	Same note on randomness
	(ascending whole numbers)	applies from
	Training layer mode	DropoutLayerComputeTrain
InputLayerCompute	50x50 input matrix of	Tests correct computation of
	ascending whole numbers	input layer forward
		propagation
InputLayerBackprop	50x50 input matrix of	Tests correct computation of
, ,	ascending whole numbers	input layer backwards
		propagation
		propagation

50x50 output derivatives	
(ascending whole numbers)	

Integration Tests

Layer objects are designed to be coupled together in succession, separated by activation functions, and with a final loss function tacked onto the end; so our integration tests follow this pattern of usage. Test cases are derived such that each layer type interacts with every type of loss function and every type of activation function at least once (i.e., pairwise testing). There wasn't enough time to write integration tests for backpropagation, but the methodology would be the same. As with the unit tests, results are checked against Pytorch and TensorFlow and tests are evaluated with floats and doubles.

Test Name	Description of Test Data	Functionality Tested
DenseReluDenseCCE	3x3 dense layer	Computes forward
	ReLU activation layer	propagation through each
	3x3 dense layer	layer in sequence, then
	Categorical Cross Entropy loss	computes and validates
		accuracy (with a 0.01 error
		window to account for
		decimal rounding)
DenseSoftmaxDenseBCE	3x3 dense layer	As above
	Softmax activation layer	
	3x3 dense layer	
	Binary Cross Entropy loss	
DenseSigmoidDenseMSE	3x3 dense layer	As above
	Sigmoid activation function	
	3x3 dense layer	
	Mean Squared Error loss	
DenseLinearDenseMAE	3x3 dense layer	As above
	Linear activation layer	
	3x3 dense layer	
	Mean Absolute Error loss	

Evaluation

Together, the unit and integration tests achieve a good degree of coverage, however I think that the input data space isn't explored thoroughly enough with the current set of test data. For example, the unit tests only test each layer function with a single input dimension. Preferable each function would be tested on a range of input dimensions. There are other features of the input space which could be varied, such as layer hyperparameters, or ranges of input values (e.g., a test case with all negative numbers in the input, or all fractions).

System Tests

The system test trains a neural network model for classifying items of clothing from the MNIST fashion data set. Source code is located in ./test/system_tests.cpp The model trains for 15 epochs and is then tested. The model must achieve an accuracy greater than 0.8 on unseen test data to pass the test. This lower bound was chosen by training five identical

models implemented in Pytorch for the same number of epochs, and then taking the rounded mean of their accuracies.

Architecture

- 1. 784x128 dense layer
- 2. Relu activation
- 3. 128x128 dense layer
- 4. Relu activation
- 5. 128x10 dense layer
- 6. Softmax activation
- Categorical Cross Entropy loss
- Adam optimizer (learning rate 0.001 and decay 0.001)

Evaluation

This architecture and 15 epochs were chosen because a more complex architecture or more epochs would take lots of computing power, storage, and time to train. If this test were to run as part of a periodic regression testing suite, then that would slow down the development process. The chosen architecture and number of epochs evaluates fast enough whilst also covering enough of the codebase to thoroughly test the overall system correctness of a model constructed using the library. If I had more time, I would like to add more models which incorporate some of the other components in the library, such as dropout layers or linear activation.