Chapitre VI - Variables aléatoires

II - Variables aléatoires discrètes

Exemple 1:

Si X est la variable aléatoire représentant le nombre de fois qu'on a obtenu PILE lorsqu'on joue trois fois de suite à PILE ou FACE.

On a déjà vu que X peut prendre les valeurs 0, 1, 2 et 3.

L'arbre nous permet de calculer chaque probabilité de la forme $P(X = x_i)$.

Exemple 1:

 $\overline{\text{Si } X}$ est la variable aléatoire représentant le nombre de fois qu'on a obtenu PILE lorsqu'on joue trois fois de suite à PILE ou FACE.

On a déjà vu que X peut prendre les valeurs 0, 1, 2 et 3.

L'arbre nous permet de calculer chaque probabilité de la forme $P(X = x_i)$.

La loi de X est alors :

x_i	0	1	2	3
$p(X=x_i)$				

Exemple 1:

Si X est la variable aléatoire représentant le nombre de fois qu'on a obtenu PILE lorsqu'on joue trois fois de suite à PILE ou FACE.

On a déjà vu que X peut prendre les valeurs 0, 1, 2 et 3.

L'arbre nous permet de calculer chaque probabilité de la forme $P(X = x_i)$.

La loi de X est alors :

x_i	0	1	2	3
$p(X=x_i)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Exemple 1:

Si X est la variable aléatoire représentant le nombre de fois qu'on a obtenu PILE lorsqu'on joue trois fois de suite à PILE ou FACE.

On a déjà vu que X peut prendre les valeurs 0, 1, 2 et 3.

L'arbre nous permet de calculer chaque probabilité de la forme $P(X = x_i)$.

	3	F	$\frac{2}{3}$ F
_	5	г—	$\frac{1}{3}$ G
	2	c <u>-</u> -	$\frac{2}{3}$ F
	5	U —	$\frac{1}{3}$ G

La loi de X est alors :

x_i	0	1	2	3
$p(X=x_i)$	$\frac{1}{8}$	3 8	3 8	$\frac{1}{8}$

On peut aussi calculer la probabilité d'avoir au moins 2 PILE sur les 3 tirages. Cela se note $P(X\geqslant 2)$ et se calcule sous la forme :

$$P(X \ge 2) = P(X = 2) + P(X = 3) = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}.$$