In [1]:

```
#Roll NO-33238
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
```

In [2]:

```
data=pd.read_csv('Admission_Predict.csv')
```

In [4]:

```
data.isnull().sum()
```

Out[4]:

Serial No. 0 GRE Score 0 TOEFL Score 0 University Rating 0 0 S₀P L₀R 0 **CGPA** 0 Research 0 Chance of Admit 0 dtype: int64

In [5]:

data.columns

Out[5]:

In [7]:

data.head				
1		324	107	4 4.0 4.
5 8.87				
2	3	316	104	3 3.0 3.
5 8.00				
3	4	322	110	3 3.5 2.
5 8.67	_			
4	5	314	103	2 2.0 3.
0 8.21				
• •				
395	396	324	110	3 3.5 3.
5 9.04	330	324	110	3 3.3 3.
396	397	325	107	3 3.0 3.
5 9.11				
397	398	330	116	4 5.0 4.
5 9.45				
398	399	312	103	3 3.5 4.
0 8.78		222		
399	400	333	117	4 5.0 4.
0 9.66				▼

In [8]:

```
#updating the chance of admission as 1 and 0
#if chance>0.8 then 1 , else 0
data.loc[data['Chance of Admit '] < 0.8, 'Chance of Admit '] = 0
data.loc[data['Chance of Admit '] >= 0.8, 'Chance of Admit '] = 1
```

In [13]:

```
#initialising variables
X = data.drop(['Chance of Admit ','Serial No.'],axis=1)
y = data['Chance of Admit ']
```

In [20]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,y,test_size=0.25,random_state=12
```

In [21]:

```
#importing required libraries
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
```

In [22]:

```
#creating decision tree classifier object
clf = DecisionTreeClassifier()
```

In [23]:

```
#trainig decision tree classifier
clf = clf.fit(X_train, Y_train)
```

```
In [24]:
```

```
#predicting for the test data
y_pred = clf.predict(X_test)
```

In [25]:

```
#confusion matrix
print("Confusion Matrix: \n")
print(metrics.confusion_matrix(Y_test,y_pred))
```

Confusion Matrix:

[[62 5] [7 26]]

In [26]:

```
print("1. Accuracy Score:", metrics.accuracy_score(Y_test,y_pred))
print("2. Precision Score:", metrics.precision_score(Y_test,y_pred))
print("3. Recall Score:", metrics.recall_score(Y_test,y_pred))
print("4. F1 Score:", metrics.f1_score(Y_test,y_pred))
```

- 1. Accuracy Score: 0.88
- 2. Precision Score: 0.8387096774193549
- 3. Recall Score: 0.78787878787878
- 4. F1 Score: 0.8125

In []: