Data Mining with Markowitz Portfolio Optimization in Higher Dimensions

Mark J. Bennett
Graduate Program in Analytics
University of Chicago

R in Finance, May, 2014

higher dimensional R-packages

Are they Data Mining cousins?

Historical Timeline

Why Are These Techniques Important?

- Portfolio Theory and Graphical Models are Natural Tools for Market Uncertainty, Portfolio Complexity
- Tie together Machine Learning and Financial Analytics: looking for Comovement in Multivariate Gaussian distributed returns
- ullet Given dataset: N Training vectors old X p Dimensions
- ullet Perform data mining where N pprox p
- Inspect and clean dataset: split-adjust

Historical N+1=1255 prices for p=9 securities

Historical N=1254 log returns for p=9 securities

Environment:

When we have p time series of stock prices: S_{ij} at time i for security j, \log returns are $R_{ij} = ln(S_{ij}/S_{i-1j})$.

The full matrix of log returns is:
$$\mathbf{R} = \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1p} \\ R_{21} & R_{22} & \dots & R_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ R_{N1} & R_{N2} & \dots & R_{Np} \end{bmatrix}$$

We can find:
$$E\left\{\mathbf{R}\right\}=\mu=\begin{bmatrix}\mu_1\\ \vdots\\ \mu_p\end{bmatrix}$$
 and $cov(\mathbf{R})=\Sigma_{p\times p}$

Portfolio

Optimization:

Find $m{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix}$ the *optimal weights* for the p securities given

historical series of $N \times p$ prices in order to forecast the best portfolio going forward:

$$\underset{w}{\operatorname{argmin}} \ w^T \Sigma w, \tag{1}$$

for each target level of return μ_P where $w^T \Sigma w$ is the return variance of the portfolio, weighted by the vector w where below are the weight sum, portfolio mean, and no short sales constraints:

$$\begin{pmatrix} \mathbf{1}^T w \\ \mu^T w \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \mu_P \end{pmatrix}; w \ge 0 \tag{2}$$

Comovement Clusters for Weighted Stocks p = 452 securities

Huge lambda.min.ratio: 0.4 NPN, Glasso

Cov Matrix Threshold: 1.7

Result Portfolio for p=452 securities: Favoring CME, AAPL

Thank you!

References:

- Ruppert, D., Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics. Springer, New York, ISBN 9781441977861, 2011.
- Zhao, T., Liu, H., Roeder, K., Lafferty, J., Wasserman, L., The huge Package for High-dimensional Undirected Graph Estimation in R, Journal of Machine Learning Research 13 (2012) 1059-1062, April 2012.