Digital Watermarks for LLVM Intermediate Representation

R. Nagayama, L. Chen, H. Inaba Kyoto Institute of Technology

Background

There is little research on software watermarking. 2 basic approach of software watermarking:

1. Modifying the Program Binary

Embedding by modifying the executable or the bytecode directly.

2. Modifying the Source Code

Embedding in the source code and compiling it.

Depends on development language

LLVM

LLVM is a compiler infrastructure that supports native code output to various target platforms.

LLVM IR is an intermediate representation (IR) provided by LLVM. LLVM provides several optimization paths for IRs.

Idea

Embedding watermarks in LLVM IRs.

Proposal

We proposed 3 embedding methods.

Method-1: Changing the Order of Basic Blocks

Method-2: Swapping instruction operands

Method-3: Changing the order of functions

Evaluation

1. Resistance to Optimization

LLVM has 3 optimization levels.

- IR level optimization (IRO)
- Machine code optimization (MCO)
- Link time optimization (LTO)

	IRO	МСО	LTO
Method-1	✓		
Method-2	✓		
Method-3	✓	✓	

2. Embedded Information Capacity

Source code size [KB]	by Method-1 [bit]	by Method-2 [bit]	by Method-3 [bit]
98.6	2208	1285	79
110.8	1596	1212	213
200.6	4452	1819	368
307.9	3840	3511	200
625.2	19524	14600	1398
665.8	11556	7926	1167
	[KB] 98.6 110.8 200.6 307.9	[KB] by Method-1 [bit] 98.6 2208 110.8 1596 200.6 4452 307.9 3840 625.2 19524	[KB] by Method-1 [bit] by Method-2 [bit] 98.6 2208 1285 110.8 1596 1212 200.6 4452 1819 307.9 3840 3511 625.2 19524 14600

Conclusion

1. Resistance

- Resistant to overwrite attacks
- Resistant to IR level optimization
- (Method-3) Resistant to machine code optimization

2. Originality

- Independent of target platforms
- Independent of development languages