Assessing the Role of Buildings in Sustainable Urban Eco-Systems

Jelena Srebric, Ph.D.
Cluster for Sustainability in the Built Environment
Mechanical Engineering Department, University of Maryland
NSF Award: EFRI-1038264/EFRI-1452045

November 10, 2014

Research: Vision

The EFRI-SEED PULSE project focuses on **energy flow in urban environments** at a neighborhood scale and connects the energy consumption to **occupant comfort perceptions and health outcomes**.

Campus sustainability and/or stewardship offices at Penn State, Harvard, MIT and University of Maryland.

Research: Expected Legacy

The NSF EFRI PULSE project is developing:

- (1) tools,
- (2) procedures, and
- (3) guidelines

to enable innovations for design, operation, and renovation of new and existing **building structures at university campuses**.

Examples of deliverables in each category:

- (1) VirtualPULSE, UMI, Memo Machines
- (2) Data from case studies, design performance metrics
- (3) Adaptation guidelines

Research: Objectives

- 1. Develop **urban modeling platforms** to identify and test opportunities for more sustainable cities and neighborhoods.
- 2. Develop **new physical models** for the urban modeling platforms to increase accuracy of building energy simulations and enable analyses of comfort/health outcomes for occupants.
- 3. Assess individual buildings' effects on energy consumption of surrounding clusters of buildings, and promote development of sustainable neighborhoods via quantitative analyses.
- 4. Identify and characterize a relationship between the sustainable built environments and occupant comfort/health.
- 5. Develop a data driven thermal sensation and comfort model that uses occupants' feedback. Based on the model, state-feedback thermal **control algorithms** are designed.

Research: Overview

VirtualPULSE simulation platforms engineers interested in smaller scale modeling with open source/open access to the platform codes http://www.buildsci.us/efri-pulse.html

Research: Urban Modeling Platform

Research: Urban Modeling Platform

- Create EFRI PULSE database:
 - ☐ Urban models for the reviewed case studies.
 - Building classification based on energy use pattern into externally-load, internally-load, and mixed-load dominated buildings.
 - Templates for cooling, heating, and electricity schedules of the reviewed campus buildings.
 - Physical models based on the urban density (with case studies).
 - □ Comfort/Health outcomes for the reviewed case studies.

Heating season building energy use classification

An example of the chilled water schedule

Wind tunnel model for East Halls buildings at Penn State

Research: Urban Modeling Platform

- Novelty of the platforms are associated to:
 - Focus on different audiences.
 - Enable online and offline simulations.
 - Create an open source and open access platform.
 - Rely on the developed physical models and databases for different urban densities.

• Integrate urban modeling through outdoor and indoor conditions while the focus is the human occupant.

(CFD simulations)

- Develop new physical models for urban environment to reduce the complexity of the modeling:
 - Outdoor Convective Heat Transfer Coefficients (CHTCs)
 - Outdoor Zero-Equation (ZEQ) Turbulence Models

• CHTCs

- Hypothesis: Accurate calculation of the heat losses/gains through the building surfaces.
- Method: Using Large Eddy Simulation (LES) and validation of the results with wind tunnel measurements for different urban densities: 0.25m 0.16, 0.11, 0.063, and 0.04.

Surface	h_c for arrays of buildings $(0.04 \le \lambda_{\rm p} \le 0.25)$
Windward	$\left(4.45 + 2.42 \lambda_p\right) U_{10}^{0.78} \text{ (R2=0.91)}$
Leeward	$(2.36 + 1.71\lambda_p)U_{10}^{0.79}$ (R ² =0.90)
Lateral	$(4.39 - 3.33\lambda_p)U_{10}^{0.78}$ (R ² =0.88)
Тор	$(4.32 + 1.86\lambda_p)U_{10}^{0.79}$ (R ² =0.90)

• ZEQ:

- Hypothesis: Rapid and reliable prediction of a real outdoor thermal environment in an urban area.
- Method: Integrate ZEQ model and CHTC wall boundary condition as well as validation with outdoor thermal environment measurement in the campus.

12														
10													ZEQ Model	ŀ
6													$\mu_t = (3.15z_h) \cdot \exp\left(-1.75 \cdot \frac{L}{H}\right) \cdot \rho \cdot V \cdot \left(\frac{L}{H}\right)^2$	7
2													7 11 7 11	-
O Z/H	2	4	6	8	12	14	16	18	20	22	24	х/н	$\mu_t = C_u k(z)^2 / \varepsilon(z) = \frac{\kappa^2 U_H z}{\ln(z/z_0)}$	z
2													(v /	
0	2	4	6	8	12	14	16	18	20	22	24	X/H		

 $\leq 1.3H$

> 1.3H

Zone	Urban Terrain Zone (UTZ)	Typical Location Within City
I	Attached and Closely	City Core
	Spaced Inner-City Buildings	
П	Widely Spaced High-Rise	City Core and Edge of Built-
	Office Buildings	Up City (e.g. near airports)
Ш	Attached Houses	Near City Core
IV	Closely Spaced Industrial/	Along Railroads Near Core
	Storage Buildings	and on Docks
V	Widely Spaced Apartment	Edge of city
	Buildings	
VI	Detached Houses	Near Core and in Suburbs
VII	Widely Spaced Industrial/	At City Edge Near Highways
	Storage building	

Source: Ellefsen, 1999

Plan and Frontal Area Densities:

$$\lambda_p = \frac{\sum A_f}{A_{total}}$$

$$\lambda_f = \frac{\sum A_w}{A_{total}}$$

Mean velocity contours and streamlines through the first two rows of buildings

The plan area density affects both local air velocities and turbulence kinetic energy at the individual building surfaces

Surface	${\sf h_c}$ for arrays of buildings ($^{0.04}$	$\leq \lambda_p \leq 0.25$
Windward	$(4.45 + 2.42 \lambda_p) U_{10}^{0.78}$	$(R^2=0.91)$
Leeward	$(2.36 + 1.71\lambda_p)U_{10}^{0.79}$	$(R^2=0.90)$
Lateral	$(4.39 - 3.33 \lambda_p) U_{10}^{0.78}$	$(R^2=0.88)$
Rooftop	$(4.32 + 1.86\lambda_p)U_{10}^{0.79}$	$(R^2=0.90)$

Correlations:

$$h_c = aU_{10}^b$$
$$h_c = (a + b\lambda_p)U_{10}^c$$

For a constant incoming wind velocity U_{10} , with the increase of the plan area densities λ_p from 0.04 to 0.25, CHTCs increases 15% for the leeward surface and decreases 16% for the lateral surfaces

Turbulence viscosity expressions are scale dependent and even wind tunnel data are different from data collected in an actual urban environment

$$\mu_t = 0.03874 \rho \cdot V \cdot L$$

:Indoor environment

$$\mu_{t} = 0.2 \cdot \left(\frac{10^{5}}{\text{Re}_{b}}\right) \cdot \rho \cdot T_{i_{-\text{inf }low}} \cdot U \cdot L$$

:Outdoor isolated building

$$\mu_t = \left(\frac{k_{in,H} \cdot \tau_{in,H}}{v}\right)^{1/3} \cdot L \cdot e^{-\left(\frac{U_{in,H} \cdot H}{v}\right)^{1/3} \cdot L} \cdot \rho \cdot V \cdot L$$
:Outdoor multiple buildings

Application of zero-equation model to actual urban environment:

- ✓ The importance of building scale around urban environment
- ✓ Non-dimensional height (L/H)

Roughness height of surrounding terrain and morphological parameters of building terrain

$$\mu_{t} = (a \cdot z_{h}) \cdot \exp\left((1.5\lambda_{p} - 2.2) \cdot \frac{L}{H}\right) \cdot \rho \cdot V \left(\frac{L}{H}\right)^{2} z \le 1.3H$$

$$\mu_{t} = C_{u}k(z)^{2} / \varepsilon(z) = \frac{\kappa^{2}U_{H}z}{\ln(z/z_{0})}$$

$$z > 1.3H$$

$$z_{h} = 0.1H \qquad a = (3 \sim 5)$$

$$\left(0.1 \le \lambda_p \le 0.25\right)$$

$$\lambda_p = 0.25$$

$$\mu_{t} = (3.15z_{h}) \cdot \exp\left(-1.75\frac{V}{H}\right) \cdot \rho \cdot V \cdot \left(\frac{L}{H}\right)^{2}$$

$$z \leq 1.3H$$

$$\mu_t = C_u k(z)^2 / \varepsilon(z) = \frac{\kappa^2 U_H z}{\ln(z/z_0)}$$

$$z > 1.3H$$

The model calibration process requires measured data to establish value of the calibration coefficients in near and above building regions

- The specific infrared camera measures temperature with <0.07°C thermal sensitivity and 2% accuracy.
- The temperatures of grass and concrete ground around these four student dorms were averaged.
- The approximate temperature range is 28°C 44°C when directly exposed to the sun and 26°C 38°C in the shade.
- The air temperature measurements use a wireless temperature system with accuracy of ± 0.5 °C from -10°C to +65°C and with the precision of 0.0625 °C.

- Computational time: ZEQ:SKE = 1:1.8
- New ZEQ work faster and provide good agreement

No.1 SKE No.2 SKE No.4 SKE - No.2 Zero-EQ No.4 Zero-EQ **Velocity distribution:** - No.1 Zero-EQ - No.3 SKE -- No.3 Zero-EQ Velocity (m/s) Velocity (m/s) Velocity (m/s) Velocity (m/s) **Temperature distribution:** SKE △ Zero-EQ emperature (C) for simulation Temperature (°C) for measurement

Overall comparisons between simulated by ZEQ, SKE and measured air temperature

Research: Energy in Building Clusters

❖ Goal

 Evaluate building energy consumption before and after the change of neighborhood due to changes in urban environment.

Method

- Statistical analysis of the energy consumption data normalized with CDD/HDD for 3 years and compare the regression results.
- Use suite of tools, E+ with CONTAMW, CFD0 to examine infiltration effects in different neighborhood context.

(MSC was added to the urban environment)

Research: Energy in Building Clusters

 Significant 2 sample T tests indicate different energy consumption patterns before and after the change of urban context.

Energy type	R ² adjusted	Significant relationship with CDD/HDD?	2010 Significant paired t-test?	2011: Significant paired t-test	Percentage of the energy use difference
TMS CHW	81	Yes	Yes	N/A	25%
TMS Steam	94	Yes	Yes	Yes	12%
STH CHW	68	Yes	Yes	Yes	46%

CHW = $3413478 + 469681 \times CDD$ ($R^2 = 80.1\% \& P$ -value = 0.000)

 Integrate the outdoor air flow with infiltration and energy simulations.

Research: Energy in Building Clusters

Deploy the new developed CHTC models to energy models for buildings at Penn State.

- Results show that developed CHTC has:
 - Negligible effect on the total energy use of a building.
 - Significant influence on the outdoor properties such as surface temperature and COP of HVAC systems (up to 25%).

Monthly energy consumptions for space heating in (a) 2009 and (b) 2010.

 Implementing urban environment based infiltration rate models to energy models (influence is up to 10%).

Traditional Roof

$$R_N - Q_{sensible} - Q_{roof} = 0$$

Green Roof

$$R_N - Q_{sensible} - Q_{ET} - Q_{substrate} = 0$$

Where,

 R_N = net radiation

Q_{sensible} = sensible heat flux due to convection

Q_{FT} = latent heat flux due to convection

Q_{substrate/roof} = conductive heat flux through roof

- Inspired by ASTM C177 "hot plate" and C1363 "hot box"
- The design and construction was challenging
- Requires an environmental chamber
- Uses chamber and a bank of lamps as heat sources Environmental Chamber

- Green roof plants/substrates impact on roof thermal performance
 - 7 plant species
 - 5 substrate types
 - Same substrate thickness (3"), LAI (2.5), plant coverage (0.75)
 - Insulated roof (R-15)
- combination of plants and substrates with the highest / lowest reflectivity

Case	Plants (albedo)	Substrates(albedo)
1	Sedum tomentosum (0.23)	Rooflite media (0.13)
2	Mixed species (0.11)	Rooflite media (0.13)
3	Sedum tomentosum (0.23)	Norlite (0.08)

25

Latent heat flux for plants and substrate Radiative heat flux:

plants-sky plants-substrate

sky-substrate

Complete heat transfer validation

■Roof without plants:

$$R_{sh,abs} = Q_{film} + Q_{conduction}$$

■Roof with plants:

$$R_{sh,abs} = Q_{film} + Q_i$$

■Roof with plants: Substrate covered by plants

$$R_{\mathit{sh,abs,cov,substrtae}} + Q_i + Q_{\mathit{substrate}} - Q_{\mathit{IR,sky,substrate,cov}} - Q_{\mathit{E,substrate,cov}}$$

- Absorbed short-wave irradiance
- Thermal radiative heat transfer between:
 - Plants and sky
 - Plants and top substrate

$$oxed{R_n = Q_{solar}ig(I_{solar},
ho_{soil},
ho_{leaf}, au_{solar}, LAIig)} + Q_{IR}ig(T_{sky}, T_{soil}, T_{leaf}, arepsilon_{soil}, arepsilon_{leaf}, au_{IR}, LAIig)}$$

- Plants transpiration is controlled by stomatal resistance
 - Adjustable pores on leaves
 - Allow entry/release of gases for photosynthesis (CO2, O2 and water vapor)
 - Function of the LAI, solar radiation, temperature, and water availability

$$T = \frac{\rho C_p}{\gamma (r_{sto} + r_a)} (e_{so} - e_{air})$$

$$r_{sto} = \frac{r_l}{LAI} f(solar) f(water) f(VPD) f(temp)$$

 e_{so} = vapor pressure of the air in contact with the surface, kPa

r_{sto} = stomatal resistance to mass transfer, s/m

r_a = aerodynamic resistance to mass transfer, s/m

γ = psychrometric constant =

i_{fq} = enthalpy of vaporization, kJ/kg

P = atmospheric pressure, kPa

- Thermal conductivity depends on substrate type and water content
- Previous soil models overestimate thermal conductivity of green roof substrate
 - Substrate: 0.12-0.4 W/mK
 - Soils: 0.1-2 W/mK

$$R_n = Q_{ET} + Q_{sensible} + Q_{substrate}$$

$$Q_{ET} = \sigma_f \left(Q_{E, substrate, cov} + Q_{T, plants} \right) + \left(\mathbf{I} - \sigma_f \right) Q_{E, substrate, bare}$$

$$E = \frac{\rho C_p}{\gamma (r_{soil} + r_a)} (e_{soil} - e_{air})$$

$$T = \frac{\rho C_p}{\gamma (r_{sto} + r_a)} (e_{so} - e_{air})$$

Plus thermal mass effects...

$$Q_{sensible, plants} = 1.5 \cdot LAI \cdot h_{conv} \left(T_{plants} - T_{air}\right)$$

$$Q_{sensible,substrate,cov} = h_{sub} \left(T_{substrate,top} - T_{air} \right)$$

$$Q_{substrate} = \sigma_f Q_{substrate, covered} + (1 - \sigma_f) Q_{substrate, bare}$$

$$Q_{\textit{substrate}} = \frac{k_{\textit{substrate}} \left(T_{\textit{substrate}}^{\textit{top}} - T_{\textit{substrate}}^{\textit{bottom}} \right)}{L_{\textit{substrate}}}$$

31

- Total received radiation on the bare-soil substrate surface is 32% (6.2 kWh m⁻²) larger than the total radiation received at the fully-coved green roof surface
- Total daily value of latent heat fluxes over the bare-soil roof is negligible compared to that value over the fully-covered green roof
- Daily peak value of the substrate surface temperature for the baresoil roof is 24°C (34%) higher than that over the fully-covered green roof
- In response to the change in plant coverage rate, the decrease in the annual cooling demand is significantly larger than the increase in the annual heating demand.

Collaborations

- Dissemination of results to the OPP at Penn State
- Dissemination of results to the building industry through NREL's <u>Building Component Library (BCL)</u>, a repository of building data to create building energy models.
 - Writing measures and components to create campus building templates based on the building classification results and CHTCs based on the new physical models.

Assessing the Role of Buildings in Sustainable Urban Eco-Systems

Questions?