Advanced Bayesian Learning

Lecture 8 - Bayesian Variable Selection and Shrinkage

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Topic overview

- Bayesian cross-validation
- Bayesian variable selection: Spike-and-slab priors.
- Shrinkage: Ridge, Lasso, Horseshoe.
- Stacking and other approaches

Bayesian cross-validation

- \mathcal{M} -open: $p_u(\tilde{\mathbf{y}}|\mathbf{y})$ is not available \Rightarrow Cross-validation ¹
- Generalization performance on new data $\tilde{\mathbf{y}} \sim p_{\star}(\tilde{\mathbf{y}})$.
- Here: focus on conditionally iid data $\tilde{y}_i|\theta$.
- **Expected log pointwise predictive density** for a new dataset of same size as training data $\mathbf{y} = (y_1, \dots, y_n)^{\top}$

$$elpd = \sum_{i=1}^{n} \int \log p(\tilde{y}_{i}|\boldsymbol{y}) p_{\star}(\tilde{y}_{i}) d\tilde{y}_{i}$$

Over-estimate of elpd from the training data

$$lpd = \sum_{i=1}^{n} log \, p(y_i | \mathbf{y}) = \sum_{i=1}^{n} log \int p(y_i | \theta) p(\theta | \mathbf{y}) d\theta$$

■ Computing lpd by posterior simulation $\theta^{(s)} \sim p(\theta|\mathbf{y})$

$$\widehat{\text{lpd}} = \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i | \theta^{(s)}) \right)$$

¹Bernardo and Smith (1994). Bayesian Theory, Wiley.

Leave-one-out (LOO) cross-validation

Bayesian LOO estimate of out-of-sample performance

$$\operatorname{elpd}_{\operatorname{loo}} = \sum_{i=1}^{n} \log p(y_i | \boldsymbol{y}_{-i})$$

where

$$p(y_i|\mathbf{y}_{-i}) = \int p(y_i|\theta)p(\theta|\mathbf{y}_{-i})d\theta$$

- Computationally costly: need simulate from *n* posteriors.
- **Importance sampling** with $p(\theta|\mathbf{y})$ as importance function.
- Importance weights

$$r_i^{(s)} = \frac{p(\theta^{(s)}|\mathbf{y}_{-i})}{p(\theta^{(s)}|\mathbf{y})} \propto \frac{1}{p(y_i|\theta^{(s)})}$$

■ LOO predictive distributions

$$p(\tilde{y}_i|\mathbf{y}_{-i}) \approx \frac{\sum_{s=1}^{S} r_i^{(s)} p(\tilde{y}_i|\theta^{(s)})}{\sum_{s=1}^{S} r_i^{(s)}}$$

Leave-one-out (LOO) cross-validation

At actual test data $\tilde{y}_i = y_i$. Harmonic mean of $p(y_i | \theta^{(s)})$:

$$p(y_i|\mathbf{y}_{-i}) \approx \frac{1}{S^{-1} \sum_{s=1}^{S} \frac{1}{p(y_i|\theta^{(s)})}}.$$

- Large weights important for the variance.
- PSIS-LOO: Pareto Smoothed Importance Sampling.
 - **Fit generalized Pareto** to largest importance ratios. Get \hat{k} .
 - Replace largest weights with expected values of order statistics from generalized Pareto.
- Pareto parameter \hat{k} can be used to assess the estimate:
 - ► *k* < 1/2 OK!
 - ▶ $1/2 \le k \le 1$ Warning!
 - k > 1. Red alert!
- Compute $p(y_i|\mathbf{y}_{-i})$ by sampling from $p(\theta|\mathbf{y}_{-i})$ when $\hat{k} > 0.7$.

WAIC

■ Watanabe's Bayesian AIC (WAIC)

$$\widehat{elpd}_{waic} = \widehat{lpd} - \hat{p}_{waic}$$

 p_{waic} is the effective number of parameters

$$p_{waic} = \sum_{i=1}^{n} \mathbb{V}_{p(\theta|\mathbf{y})} \left[\log p(y_i|\theta) \right]$$

- \hat{p}_{waic} estimates p_{waic} from simulation $\theta^{(s)} \sim p(\theta|\mathbf{y})$.
- WAIC removes some of the bias in lpd in estimating elpd.

Stacking - Optimal Prediction Pools

Model averaging

$$\rho(\tilde{\boldsymbol{y}}|\boldsymbol{y}) = \sum_{k=1}^{K} \Pr(M_k|\boldsymbol{y}) \rho_k(\tilde{\boldsymbol{y}}|\boldsymbol{y})$$

Stacking: Optimize model selection loss wrt ω_k

$$g(\omega) = u\left(\sum_{k=1}^{K} \omega_k p_k(\tilde{\boldsymbol{y}}|\boldsymbol{y}), \tilde{\boldsymbol{y}}\right)$$

Stacking uses log score out-of-sample (LOO)

$$g_{ls}(\omega) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \omega_k p_k(y_i | \boldsymbol{y}_{-i})$$

- Stacking weights converge as $n \to \infty$.
- Unlike $Pr(M_k|\mathbf{y})$, does not give zeros-one solutions.²

²Geweke and Amisano (2011). Optimal Prediction Pools. Journal of Econometrics.

Stacking - Optimal Prediction Pools³

 $[{]f 3}$ Geweke and Amisano (2011). Optimal Prediction Pools. Journal of Econometrics.

Bayesian variable selection

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

■ Binary variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$

$$I_j = \begin{cases} 0 & \text{if } \beta_j = 0\\ 1 & \text{if } \beta_j \neq 0 \end{cases}$$

- Example: $\mathcal{I}=(1,1,0)$ means that $\beta_1\neq 0$ and $\beta_2\neq 0$, but $\beta_3=0$, so x_3 drops out of the model.
- Usually assume that the intercept is always in the model.

Bayesian variable selection

Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|y,X) \propto p(y|X,\mathcal{I}) \cdot p(\mathcal{I})$$

■ The prior $p(\mathcal{I})$ is typically taken to be

$$I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$$

- \blacksquare θ is the prior inclusion probability.
- Hierarchical prior

$$\theta \sim \text{Beta}(a, b)$$
.

Marginal marginal likelihood for each model (\mathcal{I})

$$p(y|X, \mathcal{I}) = \int p(y|X, \mathcal{I}, \beta) p(\beta|X, \mathcal{I}) d\beta$$

Bayesian variable selection

- Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$eta_{\mathcal{I}} | \sigma^2 \sim \mathcal{N}\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right)$$

$$\sigma^2 \sim \mathit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right)$$

Marginal likelihood

$$p(y|X, \mathcal{I}) \propto \left| X_{\mathcal{I}}' X_{\mathcal{I}} + \Omega_{\mathcal{I}, 0}^{-1} \right|^{-1/2} \left| \Omega_{\mathcal{I}, 0} \right|^{1/2} \left(v_0 \sigma_0^2 + RSS_{\mathcal{I}} \right)^{-(v_0 + n - 1)/2}$$

where $X_{\mathcal{I}}$ is the covariate matrix for the subset selected by \mathcal{I} .

 \blacksquare RSS $_{\mathcal{I}}$ - Bayesian residual sum of squares for model with \mathcal{I}

$$\textit{RSS}_{\mathcal{I}} = \mathsf{y}'\mathsf{y} - \mathsf{y}'\mathsf{X}_{\mathcal{I}} \left(\mathsf{X}_{\mathcal{I}}'\mathsf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}\right)^{-1} \mathsf{X}_{\mathcal{I}}'\mathsf{y}$$

Bayesian variable selection via Gibbs sampling

- But there are 2^p model combinations to go through! Ouch!
- but most have essentially zero posterior probability. Phew!
- Simulate from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|\mathsf{y}, \mathsf{X}) = p(\beta, \sigma^2|\mathcal{I}, \mathsf{y}, \mathsf{X})p(\mathcal{I}|\mathsf{y}, \mathsf{X}).$$

- Simulate from $p(\mathcal{I}|y, X)$ using Gibbs sampling:
 - ▶ Draw $l_1 | \mathcal{I}_{-1}$, y, X
 - ▶ Draw $I_2|\mathcal{I}_{-2}$, y, X
 - **.**
 - ightharpoonup Draw $I_p|\mathcal{I}_{-p}$, y, X
- Note that: $Pr(I_j = 0 | \mathcal{I}_{-j}, y, X) \propto Pr(I_j = 0, \mathcal{I}_{-j} | y, X)$.
- Compute $p(\mathcal{I}|y,X) \propto p(y|X,\mathcal{I}) \cdot p(\mathcal{I})$ for $I_j = 0$ and for $I_j = 1$.
- Model averaging in a single simulation run.
- If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, y, X)$ for each draw of \mathcal{I} .

Simple general Bayesian variable selection

The previous algorithm only works when we can compute

$$p(\mathcal{I}|\mathsf{y},\mathsf{X}) = \int p(\beta,\sigma^2,\mathcal{I}|\mathsf{y},\mathsf{X})d\beta d\sigma$$

lacksquare lacksquare lacksquare eta and $\mathcal I$ jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - ▶ Approximate posterior with all variables in the model:

$$\boldsymbol{\beta}|\mathbf{y},\mathbf{X} \overset{\mathit{approx}}{\sim} N\left[\boldsymbol{\hat{\beta}}, \mathit{J}_{\mathbf{y}}^{-1}(\boldsymbol{\hat{\beta}})\right]$$

▶ Propose β_p from $N\left[\hat{\beta}, J_y^{-1}(\hat{\beta})\right]$, conditional on the zero restrictions implied by \mathcal{I}_p . (See GP topic for formulas).

Variable selection - eBay

Table 3. Poisson regression with the number of bids as the response variable

Coeff	Covariate	Mean	SD	Incl. prob.	IF
λ	Const	1.056	0.023	1.000	1.694
	Power	-0.031	0.037	0.010	_
	ID	-0.401	0.093	0.997	1.304
	Sealed	0.444	0.049	1.000	1.379
	MinBlem	-0.027	0.055	0.005	_
	MajBlem	-0.235	0.090	0.111	1.615
	NegScore	0.085	0.056	0.011	-
	$LBook_d$	-0.113	0.028	0.973	1.416
	MinBidShare _d	-1.894	0.074	1.000	2.797

Variable selection - electricity expenditure

Table 6. Posterior means and inclusion probabilities in the one-component split-t model for the electricity expenditure data.

Variable	β_{μ}	\mathcal{I}_{μ}	β_{ϕ}	\mathcal{I}_{ϕ}	β_{ν}	\mathcal{I}_{ν}	β_{λ}	I_{λ}
Intercept	256.62	-	3.82	-	2.83	-	1.34	_
log(rooms)	49.47	0.90	-0.65	0.43	-0.05	0.04	0.97	1.00
log(income)	2.71	0.48	-0.36	1.00	-0.05	0.02	0.55	1.00
log(people)	40.62	1.00	-0.20	0.22	0.06	0.03	0.34	1.00
mhtgel	27.28	1.00	0.07	0.12	-0.18	0.03	0.13	0.15
sheonly	10.11	0.72	0.01	0.04	2.10	0.99	0.04	0.05
whtgel	17.74	0.68	-0.23	0.18	0.33	0.04	0.82	0.99
cookel	27.80	0.99	-0.19	0.14	0.01	0.04	0.39	1.00
poolfilt	-6.50	0.50	-0.11	0.23	1.62	0.07	0.32	0.76
airrev	14.06	0.91	0.06	0.07	-0.03	0.03	0.12	0.16
aircond	5.58	0.46	0.03	0.11	0.01	0.03	0.29	0.96
mwave	8.08	0.75	-0.38	0.49	-0.39	0.05	0.43	0.49
dish	12.96	0.66	0.08	0.05	1.16	0.04	0.11	0.07
dryer	19.64	0.99	0.06	0.12	-0.29	0.05	0.20	0.90

Figure 3. Conditional predictive densities for different values of the most important covariates. All other covariates are held fixed at their mean.

Finite step Newton variable selection

General regression model

$$p(y|\mathbf{X},\beta) = \prod_{i=1}^{n} p(y_i|\phi_i),$$

parameters ϕ_i depend on covariates through a link function

$$k(\phi_i) = \mathbf{x}_i^T \beta.$$

- GLM examples:
 - ▶ Linear regression. $\phi_i = \mu_i$, $k(\cdot)$ is the identity link.
 - ▶ Poisson regression. $\phi_i = \mu_i$, $k(\cdot)$ is the log link.
- Metropolis-Hastings with Newton proposal:
 - \blacktriangleright get posterior mode of β and the Hessian at the mode.
 - ▶ Multivariate student-*t* distribution proposal.
 - ▶ Only need first two derivatives of log $p(y_i|\phi_i)$ wrt ϕ_i .

Finite step Newton proposal for variable selection ⁴

More general regression

$$p(\mathbf{y}|\mathbf{X}, \beta, \gamma) = \prod_{i=1}^{n} p(y_i|\phi_i, \psi_i)$$
$$k(\phi_i) = \mathbf{x}_i^T \beta \text{ and } h(\psi_i) = \mathbf{x}_i^T \gamma.$$

- Example: Regression with heteroscedastic errors: $\psi_i = \sigma_i^2$.
- Sample from full conditionals $p(\beta|\gamma, \mathbf{y}, \mathbf{X})$ and $p(\gamma|\beta, \mathbf{y}, \mathbf{X})$:
 - Newtons method in each updating step. Time-consuming.
 - **Finite-step Newton**. Take only 1-3 steps toward the mode.
- **Sample** β and selection indicators \mathcal{I} jointly with MCMC.
- How to propose β conditional on \mathcal{I} ?
 - Finite-step Newton with variable dimension.
 - \triangleright $k(\phi_i) = \mathbf{x}_i^T \boldsymbol{\beta}$ has always the same dimension
 - \triangleright $k(\phi_{ic}) = \mathbf{x}_i^T \beta_c$ and $k(\phi_{ip}) = \mathbf{x}_i^T \beta_p$ are expected to be close.

⁴Villani et al (2012). Generalized Smooth Finite Mixtures. Journal of Econometrics.

Variable selection - electricity expenditure

Table 6. Posterior means and inclusion probabilities in the one-component split-t model for the electricity expenditure data.

Variable	β_{μ}	\mathcal{I}_{μ}	β_{ϕ}	\mathcal{I}_{ϕ}	β_{ν}	\mathcal{I}_{ν}	β_{λ}	\mathcal{I}_{λ}
Intercept	256.62	-	3.82	-	2.83	-	1.34	-
log(rooms)	49.47	0.90	-0.65	0.43	-0.05	0.04	0.97	1.00
log(income)	2.71	0.48	-0.36	1.00	-0.05	0.02	0.55	1.00
log(people)	40.62	1.00	-0.20	0.22	0.06	0.03	0.34	1.00
mhtgel	27.28	1.00	0.07	0.12	-0.18	0.03	0.13	0.15
sheonly	10.11	0.72	0.01	0.04	2.10	0.99	0.04	0.05
whtgel	17.74	0.68	-0.23	0.18	0.33	0.04	0.82	0.99
cookel	27.80	0.99	-0.19	0.14	0.01	0.04	0.39	1.00
poolfilt	-6.50	0.50	-0.11	0.23	1.62	0.07	0.32	0.76
airrev	14.06	0.91	0.06	0.07	-0.03	0.03	0.12	0.16
aircond	5.58	0.46	0.03	0.11	0.01	0.03	0.29	0.96
mwave	8.08	0.75	-0.38	0.49	-0.39	0.05	0.43	0.49
dish	12.96	0.66	0.08	0.05	1.16	0.04	0.11	0.07
dryer	19.64	0.99	0.06	0.12	-0.29	0.05	0.20	0.90

Figure 3. Conditional predictive densities for different values of the most important covariates. All other covariates are held fixed at their mean.

Shrinkage priors

- Shrinkage regression priors:
 - ▶ $\beta | \sigma^2 \sim N \left(0, \lambda^{-1} \sigma I_p \right)$ gives Ridge regression.
 - ▶ β | σ^2 ~ Laplace (0, $\lambda^{-1}\sigma I_p$) + Posterior mode = Lasso.
- Posterior mode Ridge (when $X^TX = I_p$)

$$\hat{\beta}_{RR} = \kappa \hat{\beta}_{LS}, \quad \kappa = \frac{1}{1+\lambda}.$$

- Both Ridge and Lasso are applying global shrinkage.
- Horseshoe prior: Shrink globally, Act locally.

$$\mathbf{y} \sim N\left(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}, \sigma^{2}\mathbf{I}_{n}\right)$$

$$\beta_{j}|\lambda_{j}, \tau \stackrel{indep}{\sim} N(0, \lambda_{j}\tau)$$

$$\lambda_{j} \stackrel{iid}{\sim} \operatorname{Cauchy}^{+}(0, 1)$$

$$\tau \sim \operatorname{Cauchy}^{+}(0, 1)$$

Horseshoe

Horseshoe prior

$$\beta_j | \lambda_j, \tau \overset{indep}{\sim} N(0, \lambda_j \tau) \quad \lambda_j \overset{iid}{\sim} Cauchy^+(0, 1) \quad \tau \sim Cauchy^+(0, 1)$$

Marginal prior $p(\beta_j|\tau)$ not tractable. Tight lower bound.

- Infinite spike at zero ⇒ sparsity.
- Heavy but integrable tails \Rightarrow signals untouched.
- Horseshoe posterior mean estimate: $\hat{\beta}_{HS,j} = \mathbb{E}_{post}(\kappa_j)\hat{\beta}_{LS,j}$.
- Shrinkage factor a priori: $\kappa_j \sim \text{Beta}(1/2, 1/2)$ (*U*-shaped).

Model projections

■ TBD ...