

Daniela Patrícia Lima Vilas Boas

Missing values: estimativa da altura de vértebras ausentes ou mal preservadas para a aplicação do método anatómico na estimativa da estatura

Dissertação de Mestrado em Evolução e Biologia Humanas, orientada pela Professora Doutora Sofia Wasterlain e pelo Doutor David Gonçalves e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Julho de 2016

Daniela Patrícia Lima Vilas Boas

Missing Values: estimativa da altura de vértebras ausentes ou mal preservadas para a aplicação do método anatómico na estimativa da estatura

Dissertação de Mestrado em Evolução e Biologia Humanas, orientada pela Professora Doutora Sofia Wasterlain e pelo Doutor David Gonçalves e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Julho de 2016

Universidade de Coimbra

Sumário

Lista de Figuras	vi
Lista de Tabelas	viii
Resumo/Palavras-chave	xiv
Abstract/Key-words	xvi
Agradecimentos	xviii
1.Introdução	1
1.1 Introdução ao Tema	3
1.1.1 A Estatura	3
1.1.2 Estatura e Construção do Perfil Biológico	4
1.2 Métodos de Estimativa da Estatura	5
1.2.1 Método Matemático	5
1.2.2 Método Anatómico	7
1.3 Método Anatómico para a Estimativa da Estatura de Georges Fully (1956)	9
1.3.1 Método de Fully aplicado	11
1.4 Justificação da Escolha do Tema	13
1.4.1 Objetivos	15
2. Material e Métodos	19
2.1 Material	19
2.1.2 Seleção e Constituição da Amostra	20
2.2 Métodos	21
2.2.1 Avaliação Osteométrica	21
2.2.2 Erro Intra e Inter-observador	25
2.2.3 Tratamento Estatístico	25

3. Resultados	27	
3.1 Erro Técnico de Medição Intra e Inter-observador	29	
3.2 Diferenças na Altura dos Corpos Vertebrais entre Sexos e Grupos Etários	30	
3.3 Análise de Regressão Linear Simples		
3.3.1 Vértebras Cervicais	34	
3.3.2 Vértebras Torácicas	37	
3.3.3 Vértebras Lombares e Primeira Vértebra Sagrada	43	
3.3.4 Altura Total da Coluna Vertebral	46	
3.3.5 Altura Vertebral Estimada e Altura Vertebral Real	47	
3.4 Análise de Regressão Linear Múltipla	61	
3.4.1 Vértebras Cervicais	61	
3.4.2 Vértebras Torácicas		
3.4.3 Vértebras Lombares e Primeira Vértebra Sagrada		
3.4.4 Altura Total da Coluna vertebral	73	
3.4.5 Altura Vertebral Estimada e Altura Vertebral Real	74	
4. Discussão	79	
4.1 Diferenças na Altura dos Corpos Vertebrais	81	
4.2 Estimativa da Altura dos Corpos Vertebrais	83	
5. Conclusão	87	
6. Referências Bibliográficas	91	
Apêndice I	101	
Apêndice II	105	
Apêndice III	129	

Lista de Figuras

Figura 1.1.1: Diagrama com os diferentes fatores que podem influenciar a estatura adulta
Figura 1.2.2: Passos do método anatómico de Dwight (1894) (adaptado de Moore e Ross,2013: 161)
Figura 1.3.1 : Ilustração das medições realizadas ao longo do esqueleto no método anatómico (adaptado de Willey, 2009: 237)
Figura 2.2.1: Craveira digital utilizada na medição da altura dos corpos vertebrais16
Figura 2.2.2: Ilustração da medição da altura (a) do corpo vertebral da segunda vértebra cervical
Figura 2.2.3 : Ilustração da medição da altura (a) dos corpos vertebrais nas vértebras cervicais 3, 4, 5, 6 e 7
Figura 2.2.4: Ilustração da medição da altura (a) dos corpos vertebrais das vértebras torácicas.
Figura 2.2.5 : Ilustração da medição da altura (a) dos corpos vertebrais nas vértebras lombares
Figura 2.2.6: Ilustração da medição da altura (a) do corpo vertebral da primeira vértebra sagrada

Lista de Tabelas

Tabela 2.1.1 : Distribuição do número de indivíduos por sexo e grupo etário de acordo com as amostras da Coleção de Esqueletos Identificados da Universidade de Coimbra (CEIUC) e da Coleção de Esqueletos Identificados Luís Lopes (CEILL)
Tabela 3.1.1 – Erro técnico de medição (ETM), erro técnico de medição relativo (% ETM) e coeficiente de fiabilidade (CF) para avaliação dos erros intra e inter-observador
Tabela 3.2.1 – Estatística descritiva de todas as medidas efetuadas em cada um dos sexos. 31
Tabela 3.2.2 – Estatística descritiva e inferencial sobre as diferenças médias da altura vertebral de cada vértebra nos dois grupos, mulheres e homens
Tabela 3.3.1 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C3 a partir da altura do corpo vertebral da C4 em cada um dos sexos
Tabela 3.3.2 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C4 a partir da altura do corpo vertebral da C5 nas mulheres e da C3 nos homens
Tabela 3.3.3 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C5 a partir da altura do corpo vertebral da C6 nas mulheres e da C4 nos homens
Tabela 3.3.4 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C6 a partir da altura do corpo vertebral da C4 em cada um dos sexos.
Tabela 3.3.5 – Resumo do modelo de regressão linear simples para a estimativa da altura da C7 a partir da altura do corpo vertebral da T1 em cada um dos sexos36
Tabela 3.3.6 – Resumo do modelo de regressão linear simples para a estimativa da altura da T1 a partir da altura do corpo vertebral da C7 em cada um dos sexos
Tabela 3.3.7 – Resumo do modelo de regressão linear simples para a estimativa da altura da T2 a partir da altura do corpo vertebral da T3 em cada um dos sexos
Tabela 3.3.8 – Resumo do modelo de regressão linear simples para a estimativa da altura da T3 a partir da altura do corpo vertebral da T4 nas mulheres e da T2 nos homens 38
Tabela 3.3.9 – Resumo do modelo de regressão linear simples para a estimativa da altura da T4 a partir da altura do corpo vertebral da T5 em cada um dos sexos

Tabela 3.3.10 – Resumo do modelo de regressão linear simples para a estimativa da altura da T5 a partir da altura do corpo vertebral da T6 nas mulheres e da T4 nos homens
Tabela 3.3.11 – Resumo do modelo de regressão linear simples para a estimativa da altura da T6 a partir da altura do corpo vertebral da T5 nas mulheres e da T7 nos homens
Tabela 3.3.12 – Resumo do modelo de regressão linear simples para a estimativa da altura da T7 a partir da altura do corpo vertebral da T6 nas mulheres e da T8 nos homens
Tabela 3.3.13 – Resumo do modelo de regressão linear simples para a estimativa da altura da T8 a partir da altura do corpo vertebral da T9 nas mulheres e da T7 nos homens
Tabela 3.3.14 – Resumo do modelo de regressão linear simples para a estimativa da altura da T9 a partir da altura do corpo vertebral da T10 nas mulheres e da T8 nos homens
Tabela 3.3.15 – Resumo do modelo de regressão linear simples para a estimativa da altura da T10 a partir da altura do corpo vertebral da T11 nas mulheres e da T9 nas mulheres
Tabela 3.3.16 – Resumo do modelo de regressão linear simples para a estimativa da altura da T11 a partir da altura do corpo vertebral da T10 em cada um dos sexos
Tabela 3.3.17 - Modelo de regressão linear simples para a estimativa da altura da T12 a partir da altura do corpo vertebral da L1 em cada um dos sexos
Tabela 3.3.18 – Resumo do modelo de regressão linear simples para a estimativa da altura da L1 a partir da altura do corpo vertebral da T12 nas mulheres e da L2 nos homens.
Tabela 3.3.19 – Resumo do modelo de regressão linear simples para a estimativa da altura da L2 a partir da altura do corpo vertebral da T12 nas mulheres e da L3 nos homens.
Tabela 3.3.20 – Resumo do modelo de regressão linear simples para a estimativa da altura da L3 a partir da altura do corpo vertebral da L4 nas mulheres e da L5 nos homens
Tabela 3.3.21 – Resumo do modelo de regressão linear simples para a estimativa da altura da L4 a partir da altura do corpo vertebral da L3 nas mulheres e da L5 nos homens
Tabela 3.3.22 – Resumo do modelo de regressão linear simples para a estimativa da altura da L5 a partir da altura do corpo vertebral da L4 nas mulheres e da L3 nos homens

Tabela 3.3.23 – Resumo do modelo de regressão linear simples para a estimativa da altura da fração total da coluna vertebral a partir da T12 nas mulheres e T11 nos homens
Tabela 3.3.24 – Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença entre altura estimada e altura real (mm) nos indivíduos do sexo feminino.
Tabela 3.3.25 – Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença entre altura estimada e altura real (mm) nos indivíduos do sexo masculino.
Tabela 3.3.26 – Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo feminino
Tabela 3.3.27 — Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo masculino
Tabela 3.4.1 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura C3 em função do sexo. 62
Tabela 3.4.2 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C4 em função do sexo
Tabela 3.4.3 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C5 em função do sexo
Tabela 3.4.4 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C6 em função do sexo
Tabela 3.4.5 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C7 em função do sexo
Tabela 3.4.6 – Resumo do modelo de regressão linear múltipla para a estimativa da altura da T1 em função do sexo
Tabela 3.4.7 - Resumo do modelo de regressão linear múltipla para a estimativa da altura T2 em função do sexo. 65
Tabela 3.4.8 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T3 em função do sexo.
Tabela 3.4.9 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T4 em função do sexo
Tabela 3.4.10 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T5 em função do sexo. 66

Tabela 3.4.11 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T6 em função do sexo. 67
Tabela 3.4.12 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura T7em função do sexo. 67
Tabela 3.4.13 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T8 em função do sexo. 68
Tabela 3.4.14 — Resumo do modelo de regressão linear múltipla para a estimativa da altura da T9 em função do sexo. 68
Tabela 3.4.15 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T10 em função do sexo. 69
Tabela 3.4.16 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T11 em função do sexo. 70
Tabela 3.4.17 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T12 em função do sexo. 70
Tabela 3.4.18 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L1 em função do sexo. 71
Tabela 3.4.19 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L2 em função do sexo. 71
Tabela 3.4.20 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura L3 em função do sexo. 72
Tabela 3.4.21 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura L4 em função do sexo. 72
Tabela 3.4.22 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L5 em função do sexo. 72
Tabela 3.4.23 – Resumo do modelo de regressão linear múltipla para a estimativa da altura da fração da coluna vertebral em função do sexo. 73
Tabela 3.4.24 – Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença (em mm) entre altura estimada e altura real em cada um dos sexos
Tabela 3.4.25 — Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo feminino
Tabela 3.4.26 – Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo masculino

Tabela A1 - Estatística descritiva e inferêncial na diferença da altura vertebral de acordo com o grupo etário nos indivíduos do sexo masculino. 107
Tabela A2- Estatística descritiva e inferencial das diferenças da altura vertebral de acordo com o grupo etário nos indivíduos do sexo feminino. 109
Tabela A3 - Correlações da altura dos corpos vertebrais entre as diferentes vértebras e da totalidade da fração da coluna vertebral medida (CT) nos indivíduos do sexo masculino
Tabela A4 - Correlações da altura dos corpos vertebrais entre as diferentes vértebras e com a totalidade da fração da coluna vertebral medida (CT) nos indivíduos do sexo feminino.
Tabela A5 - Resultados de todos os modelos de regressão obtidos a partir da análise de regressão linear simples para a estimativa da altura dos corpos vertebrais e da fração total da coluna vertebral nos indivíduos do sexo masculino
Tabela A6 - Resultados de todos os modelos de regressão obtidos a partir da análise de regressão linear simples para a estimativa da altura dos corpos vertebrais e da fração total da coluna vertebral nos indivíduos do sexo feminino
Tabela A7 - Resumo dos modelos de regressão linear simples obtidos para a estimativa da C2 em função do sexo. 131
Tabela A8 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da C3 em função do sexo
Tabela A9 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da C4 em função do sexo
Tabela A10 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da C5em função do sexo
Tabela A11 - Resumo dos modelos de regressão linear simples obtidos para a estimativa da C6 em função do sexo. 133
Tabela A12 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da C7 em função do sexo. 133
Tabela A13 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T1 em função do sexo
Tabela A14 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T2 em função do sexo
Tabela A15 – Resumo dos modelos de regressão linear simples obtidos para a estimativa T3 em função do sexo. 135 Tabela A16 – Resumo dos modelos de regressão linear simples obtidos para a estimativa
da T4 em função do sexo

Tabela A17 — Resumos dos modelos de regressão linear simples obtidos para a estimativa da T5 em função do sexo
Tabela A18 – Resumo dos modelos de regressão linear simples obtidos par a estimativa da T6 em função do sexo. 138
Tabela A19 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T7 em função do sexo. 139
Tabela A20 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T8 em função do sexo. 140
Tabela A21 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T9 em função do sexo. 141
Tabela A22 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T10 em função do sexo. 142
Tabela A23 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T11 em função do sexo. 143
Tabela A24 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T12 em função do sexo
Tabela A25 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L1 em função do sexo. 145
Tabela A26 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L2 em função do sexo
Tabela A27 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L3 em função do sexo
Tabela A28 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L4 em função do sexo. 148
Tabela A29 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L5 em função do sexo
Tabela A30 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da S1 em função do sexo
Tabela A31 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da altura da fração da coluna vertebral (CT) em função do sexo
Tabela A32 – Resumo dos modelos de regressão linear múltipla obtidos para a estimativa da altura da C2 em função do sexo
Tabela A33 – Resumo dos modelos de regressão linear múltipla obtidos para a estimativa da altura S1 nos indivíduos do sexo feminino

Resumo

A estimativa da estatura representa um dos critérios necessários para a avaliação do perfil biológico. Para a sua inferência existem dois métodos especialmente estabelecidos, o método anatómico e o método matemático. O método matemático, devido à fácil e rápida aplicação, é largamente utilizado, no entanto, não é tão preciso quanto o método anatómico. Contudo, o método anatómico peca pela necessidade de vários ossos do esqueleto desde o crânio ao pé. De todos os elementos ósseos necessários para o método anatómico, as vértebras são dos que mais dificilmente se encontram preservados. Assim, o objetivo do presente estudo assenta na criação de equações de regressão linear simples e múltiplas que permitam estimar a altura de vértebras ausentes ou mal preservadas e assim viabilizar a aplicação do método anatómico.

A amostra principal, a partir da qual foram utilizados os dados para a criação de modelos de regressão linear, compreendeu 70 indivíduos adultos do sexo feminino e 55 indivíduos adultos do sexo masculino, pertencentes à Coleção de Esqueletos Identificados da Universidade de Coimbra. Os modelos de regressão desenvolvidos foram testados numa amostra independente, composta por 20 indivíduos adultos do sexo feminino e 23 indivíduos adultos do sexo masculino, pertencentes à Coleção de Esqueletos Identificados Luís Lopes do Museu Nacional de História Natural e da Ciência. Em todos os indivíduos foi medida a altura máxima dos corpos vertebrais desde a segunda vertebra cervical à primeira vértebra sagrada. As correlações entre todas estas vértebras foram estatisticamente exploradas.

Com exceção da segunda vértebra cervical e da primeira vértebra sagrada, as demais apresentam modelos de regressão linear simples e múltipla, para a estimativa da altura vertebral, com R² acima de 0,5 mas mesmo para esses elementos se obtiveram modelos estatisticamente significativos. Quando aplicados na amostra independente, os resultados demonstraram que não existem diferenças significativas entre a altura estimada e a altura real documentada na grande maioria das vértebras, embora tenham sido verificadas algumas exceções.

Os modelos significativos de regressão linear simples e múltipla obtidos representam assim a possibilidade de prever a altura de determinadas vértebras ausentes ou mal preservadas e deste modo possibilitar a aplicação do método anatómico.

Palavras-chave: método matemático, perfil biológico, ossos ausentes, preservação óssea, coluna vertebral; regressão linear.

Abstract

The estimation of the stature is one of the key aspects in the evaluation of the biological profile. It can be obtained through two established methods – an anatomical versus a mathematical method. Due to its easier and fast application, the mathematical method is more frequently used though it lacks accuracy when compared with the anatomical method. This, on the other hand, requires that all bones contributing for stature are present, from the skull to the foot. From all bone elements required to implement the anatomical method, the vertebrae are the ones that are usually more absent or poorly preserved. Therefore, the aim of this study is the creation of simple and multiple regressions equations that allow for the estimation of the height of missing or poorly preserved vertebrae in order to enable the application of anatomical methods.

The main sample, from which data was used to create linear regression models, was composed of 70 adult male and 55 adult female individuals from the Identified Skeleton Collection of the University of Coimbra. These regression models were tested on an independent sample, composed of 23 adult male and 20 adult female individuals, which are part of the Luis Lopes Identified Skeleton Collection housed at the *Museu Nacional de História Natural e da Ciência*. In all individuals, the maximum height of the vertebral bodies, from cervical to sacral, was measured. Correlations among all vertebrae were statistically investigated. With the exception of the second cervical vertebra and the first sacral vertebra, simple and multiple regression models to estimate vertebral height with R² higher than 0.5 were found for both sexes, but the models were significant even for those skeletal elements. When applied to the independent sample, the results showed no significant differences between the predicted height and the real height in most vertebrae, though some few exceptions occurred.

The models developed under this research allow predicting the height of certain missing or poorly preserved vertebrae and thus potentiating the application of anatomical methods.

Key-words: mathematical method, biological profile, missing bones, bone preservation, vertebral column; linear regression.

Agradecimentos

Este trabalho foi um caminho trilhado de mãos dadas com todos aqueles que, de uma forma ou de outra, contribuíram para a sua realização. E por isso quero agradecer:

Aos meus excelentíssimos orientadores, Prof. Doutora Sofia Wasterlain e Doutor David Gonçalves, por me ajudarem e aconselharem, pelas reuniões bem-dispostas, pelo incentivo, pela sabedoria, pela paciência e pelas oportunidades.

À então curadora das Coleções Osteológicas da Universidade de Coimbra, Prof.^a Doutora Ana Luísa Santos, por permitir o acesso à Coleção de Esqueletos Identificados.

A todos os meus professores de mestrado que contribuíram com a partilha do seu conhecimento e que sempre se disponibilizaram a ajudar.

Aos funcionários da biblioteca do Departamento de Ciências da Vida.

Aos companheiros de trabalho no sótão, Andréa e Daniela, não só pela companhia mas também pela ajuda com as caixas, bem como à Ana Pelicano e à Inês Serafim. Um especial obrigado à Ana Amarante pela preciosa ajuda.

Ao Laboratório de Antropologia Forense, em especial à Prof.ª Doutora Eugénia Cunha por conceder autorização para examinar os esqueletos da Coleção de Esqueletos Identificados do Século XXI, bem como à Prof.ª Doutora Maria Teresa Ferreira e à Catarina Coelho por me orientarem e ajudarem quando necessário. Sem esquecer os colegas que ajudaram com os esqueletos, especialmente ao João Coelho e ao David Navega.

Ao Museu Nacional de História Natural e da Ciência, em especial à Prof. Doutora Susana Garcia pela sua simpatia e por permitir o acesso à Coleção de Esqueletos Identificados Luís Lopes. Sem esquecer a Doutora Judite Alves e a Doutora Diana Carvalho que simpaticamente me receberam e orientaram no espaço, bem como à Ana Maximiano pela companhia tanto no trabalho como nas pausas de almoço. Um muito obrigado à Irene e à Paulinha pela estadia em Lisboa. Senti-me verdadeiramente em casa.

Aos amigos de uma vida por fazerem os fins de semana de regresso a casa sagrados. Ao Luís Lopes pelo carinho, apoio, compreensão e paciência constantes, sem esquecer a sua força para ajudar a retirar as caixas do topo.

Por fim, um agradecimento especial aos meus pais – Adelaide e Daniel Moreira – por me proporcionarem mais do que podiam, pela força e incentivo, pela compreensão e paciência, por suportarem a distância, por tudo. Sem esquecer as avós, tios e primos que sempre me incitaram a seguir em frente. Muito obrigada!

1.Introdução

1.1 Introdução ao Tema

A estimativa da estatura a partir de restos ósseos humanos assume importância em contextos forenses e arqueológicos (White e Folkens, 2005; White et al., 2012). O desenvolvimento de diferentes métodos, que possibilitam a inferência da estatura e outros atributos biológicos, resulta de processos contínuos de investigação que objetivam a criação de novos métodos bem como o aperfeiçoamento daquelas anteriormente desenvolvidas, visando a viabilidade, fiabilidade e uma maior precisão na obtenção de resultados. Nesse sentido, o presente trabalho, especialmente relacionado com a estimativa anatómica da estatura, pretende permitir a aplicabilidade deste método em situações em que elementos ósseos necessários se encontram ausentes ou mal preservados, mais especificamente as vértebras.

1.1.1 A Estatura

A estatura pode ser definida como a altura de um indivíduo ao longo da sua vida (Moore e Ross, 2013), aumentando durante o seu período de crescimento e terminando quando todas as placas epifisárias obliteram (Iscan e Steyen, 2013). A estatura de um adulto é o resultado de um conjunto de processos de crescimento e desenvolvimento, não sendo apenas consequência do crescimento dos ossos mas também da dimensão dos órgãos e tecidos que, em condições normais, se desenvolvem proporcionalmente (Weedon e Frayling, 2008). Assim, de acordo com Schmidt *et al.* (1995), a estatura de um adulto é determinada por fatores genéticos e endócrinos e moldada pelo ambiente. Com efeito, a estatura é um traço multifatorial, em que a heritabilidade genética (Macgregor *et al.*, 2006; Perola *et al.*, 2007; Weedon e Frayling, 2008) e a população ou ambiente em que um indivíduo se desenvolve (Padez, 2003; Danubio e Sanna, 2008) podem representar os papéis principais (figura 1.1.1).

As condições socioeconómicas ou condições de vida são geralmente reconhecidas como influências indiretas no crescimento de um indivíduo e consequentemente na sua estatura adulta (Schmidt *et al.*, 1995; Padez, 2003; Danubio e Sanna, 2008). Problemas nutricionais, resultantes do limitado acesso a recursos, determinadas doenças, associadas a aglomerados populacionais, e cuidados de saúde limitados representam, de facto, um papel decisivo na estatura adulta (Schmidt *et al.*, 1995) (figura 1.1.1).

Assim, o estudo da estatura em populações do passado pode revelar tendências de desenvolvimento (Padez, 2003, 2007; Cardoso e Gomes, 2009), stresses ambientais (*e.g.* défices nutricionais) e relações evolutivas (Moore e Ross, 2013), servindo também como um marcador do estado de saúde e de vida de uma população (Fernihough e McGovern, 2015).

Figura 1.1.1 – Diagrama com diferentes fatores que podem influenciar a estatura adulta.

1.1.2 Estatura e Construção do Perfil Biológico

A estatura é um dos principais atributos biológicos individuais que podem ser estimados a partir de restos esqueléticos (Işcan e Steyen, 2013). Para além da estatura, também o sexo, a idade à morte e a afinidade populacional constituem parâmetros que contribuem para a identificação de restos ósseos humanos não identificados. Estes atributos biológicos assumem importância quer em contexto arqueológico (investigação de práticas mortuárias, paleopatologia e paleodemografia) como em contexto forense (identificação) (White e Folkens, 2005; White *et al.*, 2012). Com efeito, no contexto forense, a estimativa da estatura contribui para a construção de perfis de indivíduos não

identificados e, eventualmente, para a sua posterior identificação (Konisberg *et al.*, 2006), assumindo um papel importante, por exemplo em casos de desastres de massa (Moore e Ross, 2013; Konisberg *et al.*, 2006). Aqui, a estatura funciona como um fator de individualização que se pode refletir como específico de um determinado indivíduo (Işcan e Steyen, 2013) embora, em termos práticos, a estimativa da estatura englobe um intervalo onde podem ser incluídos vários indivíduos, funcionando apenas como um fator de exclusão na correspondência entre restos humanos e uma lista de indivíduos que se procura identificar.

No entanto, tratando-se a estatura de um parâmetro biométrico multifatorial, é necessário que a seleção de determinados métodos para a sua inferência seja fortemente ponderada, considerando a ancestralidade, o sexo e a idade do indivíduo, principalmente quando se comparam resultados entre diferentes populações (Radu e Kelemen, 2015).

1.2 Métodos de Estimativa da Estatura

Embora seja possível medir facilmente e com precisão a estatura de um indivíduo vivo (Weedon e Frayling, 2008), o mesmo não sucede com restos ósseos humanos. No final do século XIX, a estimativa da estatura era já considerada e aplicada nos estudos das populações do passado, das quais eram encontrados restos ósseos, como também na identificação de indivíduos provenientes de contextos forenses (Dwight, 1894). Desta forma, a estimativa da estatura não é uma questão recente, pelo contrário, tem sido objeto de estudo desde finais do século XIX até hoje, sendo que diferentes métodos foram desenvolvidos. Existem dois métodos distintos para estimar a estatura a partir do esqueleto: o método matemático e o método anatómico (Dwight, 1894).

1.2.1 Método Matemático

O método matemático baseia-se na correlação entre a estatura e o comprimento dos ossos, recorrendo ao uso de fórmulas de regressão ou rácios (Raxter *et al.*, 2006; Shuler *et al.*, 2011; Işcan e Steyen, 2013; Moore e Ross, 2013). Estas estimativas são frequentemente realizadas a partir de medições do comprimento de um ou vários ossos longos, uma vez que são os elementos mais significativamente correlacionados com a

estatura total (Adams e Herrmann, 2009; Raxter *et al.*, 2006). No entanto, o potencial do uso de diferentes ossos do esqueleto humano na criação de regressões, para a estimativa da estatura, tem sido largamente explorado: ossos longos (Pearson, 1899; Telkkä, 1950; Trotter e Gleser, 1952; Olivier *et al.*, 1978; Mendonça, 2000), metacárpicos (Meadows e Jantz, 1992), metatársicos (Santos, 2002; Bidmos, 2008; Cordeiro *et al.*, 2009), calcâneo (Bidmos, 2006); ossos coxais (Giroux e Wescott, 2008), coluna vertebral (Tibbetts, 1981), entre outros. Normalmente, estas regressões são elaboradas a partir de ossos completos, no entanto, em determinadas circunstâncias os ossos necessários encontram-se fragmentados ou incompletos, conduzindo alguns autores a investigarem a possibilidade de estimar a estatura a partir de secções de determinados ossos longos (Steele e McKern, 1969; Holland, 1992; Chibba e Bidmos, 2007).

De facto, o método matemático é de simples aplicação, o que facilita em casos, tanto de origem arqueológica como forense, em que os esqueletos se encontrem incompletos ou fragmentados. Trata-se de um processo rápido e as estaturas estimadas são relativamente aproximadas às estaturas reais (Moore e Ross, 2013). No entanto, Trotter e Gleser (1952) alertaram para o facto de as fórmulas fornecerem estimativas mais aproximadas quando são elaboradas a partir de um número extenso de indivíduos e quando são aplicadas a indivíduos originários da mesma população a partir da qual foram desenvolvidos os métodos. Logo, idealmente, a estatura de um indivíduo deve ser estimada apenas depois de a idade, sexo e afinidade populacional serem estimados, devido aos níveis de variação do dimorfismo sexual, de crescimento, bem como da variação populacional (Moore e Ross, 2013), de modo a aplicar as regressões adequadas aos restantes parâmetros do seu perfil biológico (Adams e Herrmann, 2009). Neste contexto, o trabalho de Wasterlain (2000) revelou a importância de se produzirem equações específicas para cada população, uma vez que ao aplicar fórmulas criadas a partir de diferentes populações numa amostra da população portuguesa, obteve resultados distintos. Neste estudo, as fórmulas produzidas por Mendonça (2000) a partir de uma amostra da população portuguesa, foram aquelas que apresentaram resultados mais aproximados da realidade (Wasterlain, 2000). Por outro lado, visto que a maioria das fórmulas foi desenvolvida a partir de coleções osteológicas modernas (Shuler et al., 2011), aplicá-las em populações do passado poderá resultar num enviesamento das estimativas, uma vez que, para além das diferenças populacionais e inter-individuais, tendências seculares podem ter ocorrido (Wilson et al., 2010). Alguns estudos têm efetivamente demonstrado mudanças seculares na estatura adulta em determinadas

populações (Padez, 2003, 2007; Cardoso e Gomes, 2009), tal como mudanças nas proporções entre os membros (Holliday, 1999; Holliday e Ruff, 2001) que podem ocorrer de forma alométrica em relação à estatura (Meadows e Jantz, 1995). Ademais, verificouse, de facto, que utilizar fórmulas obtidas a partir de grupos específicos e aplicados em grupos distintos pode subestimar a estimativa da estatura (Ross e Konigsberg, 2002). Consequentemente, a procura da obtenção de fórmulas específicas para cada grupo tem-se efetivado (Sciulli et al., 1990; Sciulli e Giesen, 1993; Mendonça, 2000; Ross e Konigsberg, 2002; Auerbach e Ruff, 2010; Sládek et al., 2015). De acordo com Albanese e colegas (2016), estes métodos baseiam-se na premissa de que a especificidade das fórmulas, de acordo com os grupos em que são aplicadas, aumenta a precisão das estimativas. No entanto, encontram-se limitados pela determinação prévia do grupo ao qual os indivíduos pertencem, pelo que só assim é viável empregar as fórmulas adequadas de modo a estimar a estatura com a máxima fiabilidade possível. Com efeito, este tipo de problemas conduziu os investigadores a indagar soluções, onde sexo e origem populacional não sejam entraves (Konigsberg et al., 1998; Albanese et al., 2016). Albanese e colegas (2016) verificaram que a aplicação de fórmulas genéricas, independentes do sexo, idade e origem de um indivíduo, conseguem ser tão precisas quanto a de específicas, pelo que a estatura pode ser estimada com precisão através do uso dessas regressões.

1.2.2 Método Anatómico

O método anatómico é uma alternativa para a estimativa da estatura. Apesar de geralmente associado a Fully (1956), foi Dwight (1894) quem primeiro propôs a abordagem anatómica, embora a tenha projetado de forma mais complexa. Dwight (1894) rearticulava meticulosamente todo o esqueleto numa mesa e, com o auxílio de uma massa de modelagem, reproduzia as curvaturas da coluna vertebral, contabilizando as partes moles e, no final, media a altura total do esqueleto (figura 1.2.2). Contudo, tratava-se de um processo moroso que exigia um esforço considerável do investigador, como também a presença de todos os ossos que contribuem para a estatura (Adams e Herrmann, 2009). Décadas depois, Fully (1956) criou "um novo método de determinação da estatura" (Fully, 1956:266). O método anatómico de Fully (1956) baseia-se na reconstrução direta da estatura através da medição e adição de todos os comprimentos e alturas de um conjunto de elementos contíguos do esqueleto, desde o crânio ao pé, que estão

diretamente envolvidos na estatura (Raxter *et al.*, 2006), juntamente com fatores de correção correspondentes aos tecidos moles e cartilagens (Fully, 1956). Enquanto Dwight (1894) avaliava o comprimento do esqueleto completo, Fully (1956) mensurava todos os ossos envolvidos individualmente. Deste modo, o método anatómico incorpora intrinsecamente as proporções corporais, sendo aplicável em casos forenses e arqueológicos desde que os restos ósseos necessários se encontrem preservados (Raxter *et al.*, 2006), sem necessidade de conhecimento prévio do sexo, idade ou afinidade populacional do indivíduo (Adams e Herrmann, 2009).

Figura 1.2.2 – Passos do método anatómico de Dwight (1894) (texto adaptado de Moore e Ross, 2013: 161).

1.3 Método Anatómico Para a Estimativa da Estatura de Georges Fully (1956)

Em 1955, Georges Fully foi incumbido da análise médico-legal e identificação de 3165 esqueletos de vítimas francesas no campo de concentração de Mauthansen, na Áustria, inumados num cemitério improvisado num antigo campo de futebol da *Schutzstaffel* Alemã (Fully, 1956). Alguns dos indivíduos possuíam placas metálicas com um número associado, permitindo a sua identificação e, posteriormente, a confirmação de dados pessoais (estatura em vida incluída) através de documentos fornecidos por familiares e fichas de registo elaboradas pela administração do campo de concentração da *Schutzstaffel* Alemã (Fully, 1956). Para a estimativa da estatura dos indivíduos, Fully (1956) recorreu às tabelas de Rollet (1888) e Manouvrier (1892), baseadas nas medidas do comprimento dos ossos longos e a sua relação com a estatura, verificando que estas produziam erros até 16 centímetros, devido à variabilidade individual nas proporções corporais entre membros superiores e inferiores e o tronco, sendo pouco precisas para indivíduos "desproporcionais". Deste modo, o conhecimento da estatura exata dos indivíduos permitiu-lhe verificar criticamente estes métodos e explorar um novo método, isto é, o método anatómico para a estimativa da estatura.

De acordo com Fully (1956), de modo a obter a altura do esqueleto, seria necessário o somatório das seguintes medidas (ver figura 1.3.1):

- A altura do crânio (altura basion-bregma);
- Altura máxima dos corpos vertebrais, medidos separadamente desde a 2ª vértebra cervical à 5ª vértebra lombar (C2 a L5);
- Altura anterior da 1ª vértebra sagrada;
- Comprimento oblíquo (fisiológico) do fémur;
- Comprimento da tíbia, sem eminência intercondilar e com maléolo incluído;
- Altura representada pelo calcâneo e tálus articulados, desde a parte superior da superfície articular (tróclea) do tálus até ao ponto mais inferior da tuberosidade do calcâneo.

Figura 1.3.1 – Ilustração das medições realizadas ao longo do esqueleto no método anatómico (adaptado de Willey, 2009: 237).

No entanto, para as medidas avaliadas no fémur, tíbia e calcâneo-tálus articulados, Fully (1956) recomendava medir de ambos os lados, esquerdo e direito, e utilizar a média. Em indivíduos com encurtamento patológico de um dos membros inferiores, devido a patologia infeciosa (*e.g.* poliomielite) ou traumatismo (*e.g.* sequelas de fraturas), devia considerar-se o comprimento máximo (Fully, 1956). É importante referir que o método de Fully (1956) foi desenvolvido para considerar as mudanças no esqueleto devido à idade ou patologias. Para além das medidas osteométricas, Fully (1956) recomendou um índice de correção, relativo aos tecidos moles e cartilagens, que deve ser adicionado à altura do esqueleto:

- Altura do esqueleto inferior ou igual a 1,535m adicionar 10cm.
- Altura do esqueleto superior ou igual a 1,655m adicionar 11,5cm.
- Altura do esqueleto compreendidas entre 1,536m e 1,654m adicionar 10,5cm.

1.3.1 Método de Fully Aplicado

Embora apresente vantagens, o método anatómico de Fully (1956) tem sido pouco testado em comparação com o método matemático, e existe alguma confusão sobre como as medições devem ser aplicadas exatamente (Raxter et al., 2006). Nesse sentido, o método de Fully (1956) foi revisto por Raxter e colegas (2006, 2007), que dispuseram instruções osteométricas detalhadas, bem como duas novas equações de regressão para a estimativa da estatura em vida, que incluem os fatores de correção, de modo a incorporar melhor o efeito dos tecidos moles e da idade. Estas equações foram determinadas para duas situações diferentes: para quando se sabe a idade do indivíduo e para quando esta é desconhecida (Raxter et al., 2006). No entanto, para converter a altura do esqueleto em estatura em vida, os autores recomendam usar a fórmula que inclui a variável idade sempre que possível (Raxter et al., 2007), que de acordo com Maijanen (2009) é a que apresenta erros mais baixos na obtenção da estatura em vida. Ademais, as fórmulas produzidas por Raxter et al. (2006) beneficiam da vantagem de terem sido concebidas a partir de uma amostra composta por ambos os sexos e de afinidades populacionais distintas enquanto a amostra utilizada por Fully era apenas constituída por indivíduos masculinos de uma região específica da Europa, mais especificamente França (Maijanen, 2009). Por essa razão, as fórmulas de Raxter et al. (2006) beneficiam de uma aplicabilidade mais geral.

No que à osteometria diz respeito, uma das questões mais dúbias refere-se à definição da medição da altura do corpo vertebral, pouco ou nada detalhada por Fully (1956). Raxter e colegas (2006) testaram duas medições distintas: altura medida medialmente na fração mais anterior do corpo vertebral e altura máxima medida anteriormente aos pedículos e facetas. Os autores verificaram que a segunda medida é aquela que apresenta uma melhor performance na estimativa da estatura em vida, uma vez que a primeira subestima num maior grau a altura da coluna vertebral. No entanto, segundo Maijanen (2009), embora esta medida apresente resultados mais aproximados, é um tanto ou quanto mais difícil de localizar do que a medida localizada medialmente na fração anterior do corpo vertebral.

Também Bidmos (2005) testou o método de Fully (1956) numa amostra da população sul-africana (negros e brancos) e verificou que os fatores de correção providenciados por Fully (1956) funcionavam melhor nos indivíduos brancos do que em

indivíduos negros, nos quais o resultado da estimativa da estatura era subestimado, sendo o mesmo verificado por Raxter *et al.* (2006) numa amostra constituída por indivíduos de ancestralidades distintas.

De acordo com Bidmos (2005), e uma vez que a estatura estimada é comparada com a estatura cadavérica, esta situação pode ser explicada pela forma como a estatura cadavérica foi avaliada bem como pela especificidade da população em questão. Mais tarde, Bidmos e Manger (2012) recomendaram um novo fator de correção relativo aos tecidos moles, obtido a partir de imagens de ressonâncias magnéticas de 28 nativos Sulafricanos vivos, dos quais também mediram a respetiva estatura. Os autores, através destas imagens, mediram todas as alturas e comprimentos incluídos no método anatómico e verificaram que a diferença entre o somatório destes elementos e a estatura real da sua amostra era menor do que aquela obtida a partir de métodos desenvolvidos por Fully (1956) e Raxter *et al.* (2006). No entanto, para Raxter e colegas (2012) esta técnica, desenvolvida por Bidmos e Manger (2012), parece apenas aplicável para a amostra que utilizaram e as medidas por eles efetuadas, a partir da ressonância magnética, não correspondem às da análise osteométrica tradicional, que em vários casos parece ser subestimada, e por isso não será recomendado aplicá-las em amostras osteológicas.

Apesar de tudo, os aspetos positivos do método anatómico vigoram, pelo que tem sido também aplicado com o intuito de criar equações de regressão para a estimativa da estatura em populações específicas com estatura desconhecida (Sciulli *et al.*, 1990; Sciulli e Giesen, 1993; Formicola e Franceschi, 1996; Raxter *et al.*, 2008). No caso de Sciulli e colegas (1990), estes verificaram que equações de regressão para a estimativa da estatura criadas a partir de populações do leste Asiático e aplicadas em populações nativas Americanas do *Ohio* reproduziam estimativas superiores às obtidas a partir do método anatómico. Nesse sentido, os autores criaram equações específicas para estas populações tendo como valor de referência a estimativa anatómica da estatura.

1.4 Justificação da Escolha do Tema

Ambos os métodos abordados para a estimativa da estatura envolvem prós e contras. Embora o método matemático seja um processo rápido e fácil, sem necessidade de um número elevado de ossos, está condicionado pela variabilidade populacional e individual bem como pelas alterações seculares. Por sua vez, o método anatómico, embora esteja limitado essencialmente pela presença e preservação de vários ossos do esqueleto e pelo tempo que consome, apresenta uma estimativa da estatura mais precisa (Raxter *et al.*, 2006), incluindo ainda todas as proporções corporais, o que o torna preferível em relação à abordagem matemática sempre que a preservação do esqueleto permita a sua aplicação.

Tendo em consideração que a principal razão pela qual o método anatómico é excecionalmente aplicado se deve ao facto de raramente se encontrarem esqueletos completos e bem preservados nos diferentes contextos, a possibilidade de estimar altura ou comprimentos de elementos ósseos ausentes, pode representar um papel importante para a aplicabilidade deste método.

Como referido anteriormente, esta abordagem para a estimativa da estatura implica a presença de todos os elementos envolvidos, isto é, crânio, parte da coluna vertebral, fémur, tíbia, calcâneo e tálus. No entanto, dos ossos envolvidos, os elementos da coluna vertebral requerem especial atenção devido à sua composição e morfologia (Mays, 1992). Esta região do esqueleto representa 24 (desde a segunda vértebra cervical à primeira vértebra sagrada) dos 29 ossos necessários para a estimativa anatómica, pelo que a falta de um deles inviabiliza o método anatómico.

A preservação de determinadas áreas esqueléticas pode ser explicada pela natureza intrínseca do osso, composição química, forma, tamanho, densidade e idade do osso (Henderson, 1987) bem como pela natureza extrínseca ao osso, isto é, pelo ambiente que o rodeia (Nielsen-Marsh e Hedges, 2000) que envolve elementos como o solo e o seu pH, água, temperatura e organismos vivos (Von Endt e Ortner, 1984). O tecido ósseo é quimicamente ativo enquanto vivo e reativo após a morte na resposta aos fatores intrínsecos e extrínsecos que determinam a taxa da sua diagénese (Von Endt e Ortner, 1984). No caso da coluna vertebral, as vértebras são fundamentalmente constituídas por tecido ósseo esponjoso, que se degrada mais facilmente do que o tecido ósseo compacto que compõe as diáfises dos ossos longos (Cunha *et al.*, 2003), o que pode esclarecer a sua frequente ausência nas diferentes circunstâncias. De acordo com Mays (1992), de facto,

os ossos que apresentam uma grande proporção de osso esponjoso parecem mais suscetíveis à destruição.

Com efeito, áreas com uma maior densidade e uma elevada proporção de osso compacto, como as diáfises dos ossos longos do esqueleto apendicular, tendem a preservar-se melhor, precisamente ao contrário de ossos frágeis (e.g. o hioide) ou de ossos que apresentam uma elevada proporção de osso esponjoso, como é o caso das vértebras (Waldron, 1987; Mays, 1992; Willey et al., 1997). As vértebras cervicais, de uma forma geral, são as mais afetadas e as lombares as menos, o que seria expectável dadas as diferenças entre elas na robustez que é evidenciada pela própria morfologia (Mays, 1992; Bello e Andrews, 2006). Porém, a representação relativa de elementos ósseos de um esqueleto pode ser resultado de fatores intrínsecos e extrínsecos que influenciam a sua preservação mas também da sua combinação com o processo de recolha, onde podem danificar-se ou perder-se, problema que deve ser desejavelmente minimizado (Waldron, 1987; Mays, 1992). Assim, dos ossos envolvidos no método anatómico, as vértebras são as mais vulneráveis à destruição e por isso sub-representadas, ao passo que o crânio, fémur, tíbia, calcâneo e tálus, apresentam uma maior taxa de sobrevivência a processos de destruição (Waldron,1987). Waldron (1987) verificou que, embora os ossos do tarso sejam sub-representados em amostras arqueológicas, o calcâneo e o tálus são, de acordo com a amostra que estudou, frequentemente encontrados. Através do estudo de seis coleções distintas, também Bello e Andrews (2006) verificaram que o crânio é relativamente bem representado bem como os ossos longos. No entanto, no caso das vértebras verificaram que a sua preservação e representação dependia do tipo de vértebra - cervical, torácica ou lombar - sendo as lombares mais representadas. Em duas das coleções observadas, dos ossos dos pés, o tálus e o calcâneo encontravam-se também relativamente bem representados, entre 75 a 99% (Bello e Andrews, 2006).

Relativamente à estimativa da dimensão de elementos ósseos ausentes ou mal preservados, mas fundamentais para o método anatómico na estimativa da estatura, são escassas as experiências nesse âmbito. Não obstante, embora diminutas, existem métodos já abordados nesse sentido. Fully e Pineau (1960) desenvolveram equações de regressão para estimar a altura da coluna vertebral a partir de diferentes conjuntos formados por vértebras torácicas ou lombares. Sciulli e colegas (1990) com o intuito de criar equações de regressão para a estimativa da estatura numa população específica, aplicaram primeiramente o método anatómico de modo a ter um termo de comparação. No entanto, depararam-se em alguns casos com vértebras ausentes ou não observáveis. Os autores resolveram este problema estimando a altura dessas vértebras através da média das alturas

das vértebras diretamente adjacentes. Esta abordagem foi também aplicada mais tarde por Formicola (1993). Auerbach (2011) averiguou a aplicação de métodos para estimar a dimensão de elementos ausentes, e necessários para o método de Fully, bem como a precisão das estimativas quando esses métodos eram utlizados. No caso das vértebras, verificou que o método abordado por Sciulli *et al.* (1990) não funcionava em determinadas vértebras (2ª, 3ª e 6ª cervicais; 2ª e 11ª torácicas; 1ª e 5ª lombares). Segundo Auerbach (2011), estas vértebras seriam melhor estimadas como percentagem de uma das vértebras adjacentes ou através de equações de regressão linear múltiplas.

1.4.1 Objetivos

Partindo da premissa de que a presença ou ausência de vértebras representa um papel decisivo para a estimativa anatómica da estatura, a criação de equações de regressão que permitam estimar o tamanho de vértebras ausentes ou mal preservadas, pode representar uma mais-valia. Desta forma, recorrendo a duas coleções osteológicas identificadas, a Coleção de Esqueletos Identificados da Universidade de Coimbra e a Coleção de Esqueletos Identificados Luís Lopes ou Coleção de Lisboa (Cardoso, 2006), pretende-se averiguar a relação entre a dimensão dos corpos vertebrais envolvidos na estimativa anatómica da estatura e obter equações de regressão que possibilitem estimar o tamanho de vértebras ausentes ou mal preservadas a partir de vértebras presentes e em bom estado, bem como a altura da coluna vertebral. A finalidade desta investigação consiste assim em viabilizar o recurso à abordagem anatómica em situações em que a ausência de vértebras é problemática.

2. Material e Métodos

2.1 Material

Coleção de Esqueletos Identificados da Universidade de Coimbra

A Coleção de Esqueletos Identificados (CEIUC), alojada no Departamento de Ciências da Vida da Universidade de Coimbra, foi formada pelo Professor Eusébio Tamagnini entre 1915 e 1942 (Rocha, 1995). É composta por 505 esqueletos completos, dos quais 498 são provenientes do cemitério da Conchada, em Coimbra, e 7 do Museu Anatómico da Universidade de Coimbra. Dos 505 esqueletos, 266 pertencem a indivíduos do sexo masculino e 239 a indivíduos do sexo feminino, com idades compreendidas entre os 7 e os 96 anos, nascidos entre 1817 e 1924 e falecidos entre 1904 e 1938 (Rocha, 1995; Cunha e Wasterlain, 2007). A coleção faz-se acompanhar por um livro de registos, numerado de acordo com o número atribuído a cada indivíduo, permitindo assim aceder a informações como nome, sexo, idade, estado civil, naturalidade, filiação, data, local e causa da sua morte.

Coleção de Esqueletos Identificados Luís Lopes

A Coleção de Esqueletos Identificados Luís Lopes (CEILL), também conhecida como a Coleção de Lisboa (Cardoso, 2006), encontra-se alojada no Museu Bocage, que diz respeito ao Departamento de Zoologia e Antropologia do Museu Nacional de História Natural e da Ciência, em Lisboa. Esta coleção terá sido iniciada em 1981, resultante de um protocolo entre o Museu Bocage e a Câmara Municipal de Lisboa, que permitiu a coleta de restos esqueléticos não reclamados de cemitérios da região de Lisboa (Cardoso, 2006).

Em 2006, a coleção era composta por 1692 indivíduos identificados e 75 não identificados, no entanto apenas 699 indivíduos se encontravam detalhadamente documentados e, por isso, disponíveis para estudo (Cardoso, 2006). Os registos da coleção integram informações detalhadas que incluem: data de nascimento, idade à morte, ocupação profissional, lugar de residência, data e causa de morte. Com base nos dados dos 699 indivíduos documentados, a coleção é constituída maioritariamente por indivíduos de nacionalidade portuguesa, nascidos entre 1805 e 1972 e falecidos entre 1880 e 1975 em Lisboa, e com idade à morte que varia entre o momento do nascimento e os 98 anos (Cardoso, 2006).

2.1.2 Seleção e Constituição da Amostra

Foram reunidas duas amostras distintas, uma a partir da CEIUC e outra a partir da CEILL, com objetivos diferentes. A primeira, composta por 125 indivíduos, sustentou o principal objetivo, a criação de equações de regressão lineares simples e múltiplas, que permitirão estimar a altura de vértebras ausentes ou mal preservadas. Por sua vez, a segunda funcionou como amostra independente, constituída por 44 indivíduos, que permitiu testar as equações de regressão linear concebidas.

Apenas foram incluídos esqueletos adultos bem preservados, sem patologias da coluna vertebral exuberantes e que interferissem com as medições. Por uma questão de uniformidade em relação ao número total de cada vértebra, indivíduos com coluna vertebral completa foram privilegiados, no entanto indivíduos com um número reduzido de vértebras ausentes ou não observáveis (até 3 vértebras) foram também incluídos. A naturalidade portuguesa foi também um fator de seleção.

A amostra CEIUC foi constituída por 70 indivíduos do sexo feminino com idades compreendidas entre os 22 e 58 anos (média 36,16±9,28) e 55 indivíduos do sexo masculino com idades compreendidas entre os 24 e os 57 (média 36,09±8,27). Por seu turno, a amostra da CEILL comportou 20 indivíduos do sexo feminino entre os 20 e os 56 anos (média 36,40±11,42) e 23 indivíduos do sexo masculino com idades compreendidas entre os 23 e 59 anos (média 40,65±11,11). Na tabela 2.1.1 é possível verificar a distribuição dos indivíduos por sexo e grupo etário de acordo com a respetiva coleção.

Tabela 2.1.1: Distribuição do número de indivíduos por sexo e grupo etário de acordo com as amostras da Coleção de Esqueletos Identificados da Universidade de Coimbra (CEIUC) e da Coleção de Esqueletos Identificados Luís Lopes (CEILL).

	CEI	UC		CEILL				
Grupo Etário (anos)	Mulheres (n)	Homens (n)	Total (n)	Mulheres (n)	Homens (n)	Total (n)		
20-29	23	15	38	7	5	12		
30-39	22	23	45	6	5	11		
40-49	18	14	32	3	7	10		
50-59	7	3	10	4	6	10		
Total	70	55	125	20	23	43		

2.2 Métodos

2.2.1 Avaliação Osteométrica

A coluna vertebral de todos os indivíduos constituintes da amostra foi sujeita a medições. Em todas as vértebras, desde a segunda vértebra cervical à primeira vértebra sagrada, mediu-se a altura máxima do corpo vertebral com recurso a uma craveira digital (figura 2.2.1). Além disso, nos casos em que os esqueletos possuíam todas as vértebras necessárias à medição, procedeu-se ao somatório da altura dos seus corpos vertebrais de modo a obter a altura total da fração da coluna vertebral que representam. Todas as medidas efetuadas foram anotadas numa folha de registo (Apêndice I), tal como a coleção de origem da amostra, nome do investigador, o número e data de registo, número de identificação do indivíduo, sexo e idade à morte. A descrição das medidas efetuadas encontra-se exposta na tabela 2.2.1 e representada nas figuras 2.2.1, 2.2.2, 2.2.3, 2.2.4 e 2.2.5.

Todas as medidas foram adaptadas de Raxter et al. (2006) e registadas em milímetros.

Figura 2.2.1 – Craveira digital utilizada na medição da altura dos corpos vertebrais.

Tabela 2.2.1 – Descrição das medições realizadas nos corpos vertebrais.

Vértebras	Acrónimo	Descrição		
2ª Cervical	C2	Altura medida entre o ponto mais superior do processo odontoide ao ponto mais inferior do rebordo ânteroposterior do corpo vertebral.		
3ª a 7ª Cervicais	C3, C4, C5, C6, C7	Altura máxima do corpo vertebral, medido no seu terço anterior, medialmente às curvaturas superiores do corpo vertebral.		
1ª a 12ª Torácicas	T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12	Altura máxima do corpo vertebral medida numa posição anterior às facetas articulares costais e aos pedículos.		
1ª a 5ª Lombares	L1, L2, L3, L4, L5	Altura máxima do corpo vertebral medida numa posição anterior aos pedículos, sem incluir nenhuma elevação do centro do corpo devido aos pedículos.		
1ª Sagrada	S1	Altura máxima entre o rebordo ântero-superior do corpo vertebral e o ponto de fusão com a 2ª vértebra sacral, medida paralelamente à superfície anterior da S1.		
Altura total da fração coluna vertebral medida (2ª cervical à 1ª sagrada)	CT	Somatório da altura de todos os corpos vertebrais desde a segunda vértebra cervical à primeira vértebra sagrada.		

Figura 2.2.2: Ilustração da medição da altura (a) corpo vertebral da segunda vértebra cervical.

Figura 2.2.3: Ilustração da medição da altura (a) dos corpos vertebrais nas vértebras cervicais 3, 4, 5, 6 e 7.

Figura 2.2.4: Ilustração da medição da altura (a) dos corpos vertebrais das vérte

Figura 2.2.5: Ilustração da medição da altura (a) dos corpos vertebrais nas vérte

Figura 2.2.6: Ilustração da medição da altura (a) do corpo vertebral da primeira vértebra sagrada.

2.2.2 Erro Intra e Inter-observador

De acordo com Buikstra e Ubelaker (1994), todas as observações devem ser sujeitas a avaliação de erro intra e/ou inter-observador. Para inferência dos erros intra e inter-observador aplicou-se o cálculo do Erro Técnico de Medição (*ETM*). O ETM é obtido a partir da replicação de medidas num mesmo indivíduo ou grupo de indivíduos, pelo mesmo observador ou por dois ou mais observadores (Ulijaszek e Lourie, 1994). Assim, foram selecionados 20 indivíduos de forma aleatória e a replicação dos resultados feita com um intervalo de tempo de quatro semanas. O erro inter-observador for obtido com o auxílio de uma colega com experiência idêntica. O ETM foi calculado de acordo com Ulijaszker e Kerr (1999) e Perini *et al.* (2005).

2.2.3 Tratamento Estatístico

Os dados recolhidos foram inicialmente inseridos numa base de dados do *software Microsoft Excel* e posteriormente analisados com recurso ao *software* IBM® SPSS® para Windows, versão 20.0.

Avaliação das diferenças médias da altura dos corpos vertebrais entre sexos e grupos etários

Para verificar a existência de diferenças médias entre o grupo de indivíduos do sexo feminino e grupo de indivíduos do sexo masculino, em relação à altura dos corpos vertebrais, procedeu-se à realização do teste *t* para amostras independentes. Aplicou-se o mesmo teste para verificar a existência de diferenças médias entre os diferentes grupos etários dentro de cada grupo sexual.

Criação de modelos de regressão linear simples e múltipla

Previamente à análise de regressão linear simples e múltipla averiguou-se a correlação entre as alturas dos corpos vertebrais bem como para a totalidade da fração da coluna vertebral medida (CT). Para o efeito aplicou-se a correlação de *Pearson*. Posteriormente procedeu-se à análise de regressão linear simples e múltipla para a previsão da altura dos corpos vertebrais bem como da CT. Considerando o elevado

número de combinações possíveis, os modelos de regressão linear múltipla obtiveram-se através do método *stepwise*. Ademais, calculou-se o número mínimo de indivíduos necessários de acordo com o número de variáveis independentes constituintes da regressão linear múltipla. Este cálculo foi efetuado com recurso à calculadora *online* disponível em www.danielsoper.com. Importa referir que os modelos de regressão obtidos e apresentados tiveram em consideração os seguintes critérios: coeficientes de determinação (R²) maiores 0,5, valor considerado para previsões (Laureano, 2013); variáveis de cada modelo sem problemas de multicolinearidade; e modelos com variáveis com efeito mais significativo.

Diferenças entre a altura vertebral estimada e a altura vertebral real

Os modelos obtidos a partir da Coleção de Esqueletos Identificados da Universidade de Coimbra foram testados na amostra independente pertencente à Coleção de Esqueletos Identificados Luís Lopes. As equações de regressão criadas foram aplicadas de forma a estimar a altura dos corpos vertebrais anteriormente medidos. Este cálculo foi efetuado de acordo com a representação de cada vértebra na amostra, isto é, o número das amostras de cada vértebra, para cada conjunto de vértebras e para CT completa foi variável em função da presença e preservação nos diferentes esqueletos, pelo que o número de casos em que os modelos eram aplicáveis variou em relação à totalidade do número de indivíduos que compôs a amostra independente.

De forma a avaliar a linearidade entre a altura estimada e altura real dos corpos vertebrais bem como altura real da CT em relação à sua estimada, aplicou-se uma correlação de *Pearson* ou de *Spearman*, dependendo dos pressupostos que implicam, bem como o teste t para amostras emparelhadas ou o equivalente teste não-paramétrico de *Wilcoxon*, considerando os pressupostos para a sua aplicação, de forma a testar a diferença entre as médias. Além disso, calculou-se o RMSE (raiz quadrada do erro quadrático médio) de modo a avaliar a diferença entre o valor estimado e o real.

3. Resultados

3.1 Erro Técnico de Medição Intra e Inter-observador

Para calcular os erros intra e inter-observador as medições em cada uma das vértebras foram replicadas em 20 indivíduos da CEIUC. Encontram-se descritos na tabela 3.1.1 os resultados referentes ao erro técnico de medição (ETM), ao erro técnico de medição relativo (%ETM) e ao coeficiente de fiabilidade (CF).

Tabela 3.1.1 – Erro técnico de medição (ETM), erro técnico de medição relativo (% ETM) e coeficiente de fiabilidade (CF) para avaliação dos erros intra e inter-observador.

	Ir	ntra-observac	lor	Int	er-observado	or
Medidas	ETM (mm)	% ETM	CF	ETM (mm)	% ETM	CF
C2	0,06	0,17	0,999	0,23	0,62	0,994
C3	0,16	1,24	0,980	0,24	1,89	0,955
C4	0,21	1,62	0,972	0,30	2,40	0,945
C5	0,22	1,78	0,966	0,31	2,55	0,931
C6	0,13	1,06	0,989	0,23	1,85	0,968
C7	0,12	0,87	0,992	0,15	1,05	0,988
T1	0,15	0,92	0,987	0,19	1,18	0,980
T2	0,19	1,08	0,978	0,27	1,57	0,955
T3	0,01	0,57	0,993	0,12	0,67	0,989
T4	0,16	0,89	0,984	0,19	1,06	0,978
T5	0,15	0,82	0,989	0,18	0,99	0,983
T6	0,22	1,14	0,979	0,29	1,53	0,963
T7	0,25	1,30	0,963	0,23	1,19	0,966
T8	0,13	0,65	0,989	0,17	0,88	0,979
T9	0,09	0,43	0,995	0,12	0,61	0,991
T10	0,08	0,40	0,996	0,15	0,71	0.987
T11	0,16	0,75	0,988	0,15	0,68	0,989
T12	0,14	0,58	0,992	0,35	1,48	0,951
L1	0,16	0,63	0,985	0,19	0,76	0,978
L2	0,08	0,31	0,995	0,13	0,47	0,989
L3	0,11	0,41	0,989	0,18	0,66	0,971
L4	0,18	0,66	0,986	0,16	0,59	0,988
L5	0,17	0,61	0,986	0,23	0,82	0,974
S1	0,35	1,10	0,973	0,44	1,37	0,957

É possível verificar que o %ETM intra-observador apresenta todos os resultados inferiores a 2%, verificando-se uma boa repetibilidade. Por seu turno, o %ETM inter-observador, embora com valores um pouco mais elevados, apresenta valores inferiores a 3% em todas as medidas, também considerados aceitáveis. Todos os valores do CF se encontram acima dos 0,93, indicando que apenas uma ínfima parte da variância das medições é resultado de erros de medição.

3.2. Diferenças na Altura dos Corpos Vertebrais entre Sexos e Grupos Etários

Foi medida a altura dos corpos vertebrais em 125 indivíduos, 70 do sexo feminino e 55 do sexo masculino. No entanto, importa referir que apenas 47 indivíduos femininos e 42 masculinos possuíam a completude da coluna vertebral, no que aos elementos avaliados diz respeito. A estatística descritiva, referente a todas as vértebras medidas, encontra-se disponível na tabela 3.2.1.

Além disso, através do teste-*t* para amostras independentes, verificou-se que existem diferenças significativas (p <0,05) na altura dos corpos vertebrais, em todas as vértebras medidas, entre os dois sexos (tabela 3.2.2). De facto, quando se observam os valores médios bem como os desvios-padrão associados, é possível verificar essas diferenças entre indivíduos do sexo feminino e indivíduos do sexo masculino, sendo que os indivíduos masculinos apresentam uma maior altura nos seus corpos vertebrais.

Relativamente aos grupos etários, de modo a ter amostras maiores em cada grupo sexual, dividiu-se em dois grupos etários mais amplos (20-39 anos e 40-59 anos) e realizou-se o mesmo procedimento de modo a constatar se existiam diferenças entre os diferentes grupos etários em função do sexo. Verificou-se -se que entre os grupos etários não existem diferenças significativas (p> 0,05) na altura dos corpos vertebrais, situação essa verificada em todas as vértebras medidas (tabelas A1 e A2, apêndice II).

Tabela 3.2.1 – Estatística descritiva de todas as medidas efetuadas em cada um dos sexos.

		M	ulheres	(n=70)			Ho	mens (n	n=55)	
Medidas	n	Min.	Máx.	Média	DP	n	Min.	Máx.	Média	DP
C2	61	28,89	40,57	35,21	2,39	53	33,89	45,12	38,37	2,59
C3	66	10,06	15,15	12,70	0,85	55	11,74	17,24	14,27	1,11
C4	68	9,78	14,76	12,28	0,92	54	11,85	15,87	13,74	0,97
C5	68	8,94	13,25	11,79	0,85	54	10,80	15,32	13,06	1,09
C6	66	9,1	13,46	11,94	0,82	55	11,22	17,27	13,29	1,02
C7	66	10,95	15,62	13,48	0,94	53	12,72	16,96	14,95	1,00
T1	67	12,49	17,94	15,11	1,08	54	14,70	18,64	16,80	0,92
T2	70	14,65	19,52	16,88	0,90	54	15,82	20,19	18,41	0,90
Т3	70	14,29	19,68	17,01	0,82	54	15,77	20,48	18,53	1,04
T4	70	14,78	19,24	17,33	0,90	54	16,35	21,26	18,97	1,07
T5	70	15,34	20,14	17,90	0,94	55	16,51	21,30	19,60	1,00
T6	70	16,24	20,74	18,34	1,00	54	18,35	22,42	20,46	1,01
T7	70	16,57	21,01	18,93	0,97	55	18,48	22,25	20,54	0,92
T8	70	16,21	21,5	19,28	1,01	55	18,84	22,75	20,80	0,89
Т9	69	16,96	22,76	19,87	1,15	55	19,43	22,95	21,30	0,94
T10	70	17,18	23,44	20,91	1,30	54	19,43	24,81	22,33	1,10
T11	70	18,66	23,96	21,58	1,34	53	20,35	25,69	23,02	1,26
T12	70	19,7	26,58	23,15	1,51	54	20,57	27,27	24,38	1,33
L1	70	21,51	28,29	24,92	1,54	53	22,86	29,26	26,12	1,21
L2	70	23,29	29,66	26,25	1,58	54	23,94	29,71	26,96	1,36
L3	70	23,69	31,03	26,99	1,54	53	25,08	31,04	27,91	1,40
L4	70	20,24	31,07	26,85	1,86	55	25,68	32,30	28,42	1,51
L5	68	24,15	31,13	27,22	1,64	55	25,85	31,80	28,43	1,44
S1	68	25,89	34,76	31,25	1,88	53	28,66	37,62	33,00	2,04

Tabela 3.2.2- Estatística descritiva e inferencial sobre as diferenças médias da altura vertebral de cada vértebra nos dois grupos, mulheres e homens.

Vértebra	Sexo	n	Média	DP	Teste t	Sig.
	Mulheres	61	35,21	2,39	6,760	<0,001
C2	Homens	53	38,37	2,59	0,700	<0,001
С3	Mulheres	66	12,70	0,85	8,776	<0,001
CJ	Homens	55	14,27	1,11	8,770	<0,001
C4	Mulheres	68	12,28	0,92	8,499	< 0,001
C 4	Homens	54	13,74	0,97	0,477	\0,001
C5	Mulheres	68	11,79	0,85	7,247	<0,001
C3	Homens	54	13,06	1,09	7,247	<0,001
C6	Mulheres	66	11,94	0,82	8,072	< 0,001
Cu	Homens	55	13,29	1,02	0,072	<0,001
C7	Mulheres	66	13,48	0,94	8,206	< 0,001
Ci	Homens	53	14,95	1,00	0,200	\0,001
T1	Mulheres	67	15,11	1,08	9,103	<0,001
11	Homens	54	16,80	0,92	7,103	\0,001
T2	Mulheres	70	16,88	0,90	9,328	< 0,001
12	Homens	54	18,41	0,90	7,320	10,001
Т3	Mulheres	70	17,01	0,82	9,149	<0,001
13	Homens	54	18,53	1,04	7,147	10,001
T4	Mulheres	70	17,33	0,90	9,280	<0,001
17	Homens	54	18,97	1,07	7,200	10,001
Т5	Mulheres	70	17,90	0,94	9,717	< 0,001
10	Homens	55	19,60	1,00	<i>)</i> ,/1/	10,001
T6	Mulheres	70	18,34	1,00	11,655	< 0,001
10	Homens	54	20,46	1,01	11,033	10,001
T7	Mulheres	70	18,93	0,97	9,442	<0,001
1,	Homens	55	20,54	0,92),442	10,001
T8	Mulheres	70	19,28	1,01	8,802	<0,001
10	Homens	55	20,80	0,89	0,002	10,001
Т9	Mulheres	69	19,87	1,15	7,456	< 0,001
	Homens	55	21,30	0,94	7,430	10,001
T10	Mulheres	70	20,91	1,30	6,444	<0,001
110	Homens	54	22,33	1,10	0,111	10,001
T11	Mulheres	70	21,58	1,34	6,054	< 0,001
111	Homens	53	23,02	1,26	0,054	10,001
T12	Mulheres	70	23,15	1,51	4,712	< 0,001
	Homens	54	24,38	1,33	7,/12	10,001
L1	Mulheres	70	24,92	1,54	4,694	< 0,001
	Homens	53	26,12	1,21	т,одт	,

Tabela 3.2.2 – Continuação.

Vértebra		N	Média	DP	Teste t	Sig.	
L2	Mulheres	70	26,25	1,58	2.622	0,010	
L2	Homens	54	26,96	1,36	2,623	0,010	
L3	Mulheres	70	26,99	1,54	2 446	0,001	
	Homens	53	27,91	1,40	3,446	0,001	
L4	Mulheres	70	26,85	1,86	5.001	< 0.001	
1.4	Homens	55	28,42	1,51	5,081	<0,001	
L5	Mulheres	68	27,22	1,64	4 216	<0,001	
LS	Homens	55	28,43	1,44	4,316	<0,001	
S1	Mulheres	68	31,25	1,88	4 909	رم مرم د 1 مرم م	
81	Homens	53	33,00	2,04	4,898	<0,001	

3.3 Análise de Regressão Linear Simples

Investigou-se a correlação das alturas vertebrais entre si bem como em relação à CT (tabela A3 a A4, Apêndice II) de modo a validar a utilização de modelos de regressão linear. Embora existam diferenças significativas na altura vertebral entre indivíduos do sexo feminino e do sexo masculino, o mesmo não acontece entre os diferentes grupos etários em cada um dos sexos. Com efeito, esta análise foi apenas realizada em função do sexo.

Com exceção da segunda vértebra cervical e da primeira sagrada, as demais apresentam modelos de regressão linear com coeficientes de determinação (R²) superiores a 0,5 que é o limiar normalmente considerado na literatura para a realização de previsões. Posto isto, somente os modelos com valores de R² superiores a 0,5 são aqui apresentados. No entanto, todos os resultados relativos aos modelos de regressão obtidos encontram-se apresentados no apêndice II (tabelas A5 e A6).

3.3.1 Vértebras Cervicais

De todas as vértebras cervicais envolvidas no estudo (C2 a C7), apenas a C2 apresentou uma correlação baixa com as restantes e consequentemente não apresentou modelos de regressão linear simples úteis, uma vez que todos eles apresentaram valores de R² bastante inferiores a 0,5. Contudo, o modelo com um maior coeficiente de determinação para a sua estimativa foi representado pelas vértebras S1 no sexo feminino com R² de 0,316 e pela C3 no sexo masculino com R² de 0,255 (tabela A6, Apêndice III).

No entanto, o mesmo não sucedeu com as restantes. A C3, em ambos os sexos, apresentou um modelo estatisticamente significativo, isto é, o modelo foi considerado adequado para avaliar a relação entre a altura da C3 e, neste caso, a C4 (tabela 3.3.1). Assim, para o sexo feminino, os resultados foram estatisticamente significativos, quando a C3 foi estimada a partir da C4, apresentando um R^2 de 0,538, ou seja, em que 53,8% da variação da altura vertebral da C3 foi explicada pela altura vertebral da C4 (R^2 = 0,538; EP=0,584; F $_{(1,63)}$ = 73,43; p<0,001). No sexo masculino, 56,6% da variação da altura C3 foi explicada pela variação da altura da C4 (R^2 =0,566; EP= 0,74; F $_{(1,52)}$ = 67,84; p<0,001). Em relação à vértebra C4, os resultados mais significativos apresentaram-se quando estimada a partir da C5 (R^2 = 0,563; EP= 0,62; F $_{(1,64)}$ =82,46; p<0,001) para

indivíduos do sexo feminino e a partir da C3 em indivíduos do sexo masculino ($R^2 = 0.566$; EP=0,64; F_(1,52) = 67,84; p<0,001) (tabela 3.3.2). Relativamente à altura da C5, as vértebras que melhor explicaram a variação da sua altura são a C6 para o sexo feminino (R^2 =0,573; EP=0,56; F_(1,63) = 84,702; p<0,001) e a C4 para o sexo masculino (R^2 =0,562; EP=0,73; F_(1,52) = 66,86; p<0,001) (tabela 3.3.3).

Tabela 3.3.1 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C3 a partir da altura do corpo vertebral da C4 em cada um dos sexos.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
Feminino	Constante	4,361	0,976	-	4,469	0,000	0,538	0,58411			
mi	C4	0,679	0,079	0,734	8.569	0,000	0,338	0,36411			
Fe	Fórmula		0,679*(medida C4) + 4,361								
no		2 20 4	4.445		1.540	0.405					
Ë	Constante	2,384	1,447	-	1,648	0,105	0,566	0.74120			
Masculino	C4	0,865	0,105	0,752	8,236	0,000	0,500	0,7 1120			
\mathbf{Z}	Fórmula		0.865*(medida C4) + 2,384								

Tabela 3.3.2 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C4 a partir da altura do corpo vertebral da C5 nas mulheres e da C3 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
Feminino	Constante	2,671	1,061	-	2,518	0,014	0.562	0.61265			
mir	C5	0,815	0,090	0,750	9,080	0,000	0,563	0,61365			
Fe	Fórmula	0,815 *(medida C5) + 2,671									
Masculino	Constante	4,402	1,137	-	3,872	0,000	0.566	0.64445			
ascı	C3	0,654	0,079	0,752	8,236	0,000	0,566	0,64445			
Z Z	Fórmula		0	,654 *(m	edida C3	b) + 4,402					

Tabela 3.3.3 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C5 a partir da altura do corpo vertebral da C6 nas mulheres e da C4 nos homens.

_		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
Feminino	Constante	2,493	1,012	-	2,462	0,017	0.572	572 0 55927		
mj	C6	0,779	0,085	0,757	9,203	0,000	0,573	0,55827		
Fe	Fórmula	0,779*(medida C6) + 2,493								
Masculino	Constante	1,499	1,417	_	1,058	0,295	0.562	0.70504		
ascı	C4	0,841	0,103	0,750	8,176	0,000	0,562	0,72594		
X	Fórmula		0	,841 *(m	edida C4) + 1,499				

Relativamente à previsão da altura da vértebra C6, a melhor preditora foi a C5 em ambos os sexos, no entanto, embora com resultado estatístico significativo, para o sexo masculino o valor de R^2 é inferior a 0,5, ou seja, menos de 50% da altura da C6 é explicada pela altura da C5 (tabela 3.3.4). Contudo, para o sexo feminino esta relação foi explicada em 57,3%. Por seu turno, para a previsão da altura da C7, o melhor modelo de regressão linear foi representado pela variável independente T1 (tabela 3.3.5). Este modelo apresentou resultados estatisticamente significativos para o sexo feminino ($R^2 = 0.647$; EP=0,56; F $_{(1,62)} = 113,50$; p <0,001), bem como para o sexo masculino ($R^2 = 0.719$; EP=0,54; F $_{(1,52)} = 130,57$; p <0,001).

Tabela 3.3.4 – Resumo do modelo de regressão linear simples para a estimativa da altura do corpo vertebral da C6 a partir da altura do corpo vertebral da C5 em cada um dos sexos.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP				
Feminino	Constante	3,256	0,946	-	3,443	0,001	0.572	0.54202				
imi	C5	0,736	0,080	0,757	9,203	0,000	0,573	0,54292				
Fe	Fórmula		0,736*(medida C5) + 3,256									
10												
ulii	Constante	5,029	1,250	-	4,022	0,000	0,458	0,75528				
Masculino	C5	0,633	0,095	0,677	6,628	0,000	0,436	0,73320				
Z	Fórmula	0,633*(medida C5) +5,029										

Tabela 3.3.5 – Resumo do modelo de regressão linear simples para a estimativa da altura da C7 a partir da altura do corpo vertebral da T1 em cada um dos sexos.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
Feminino	Constante	2,957	0,991	-	2,985	0,004	0.647	0.56111			
mir	T1	0,697	0,065	0,804		0,000	0,647	0,56111			
Fe	Fórmula		0,697*(medida T1) + 2,957								
Masculino	Constante	-0,637	1,366	-	-0,467	0,643	0,719	0,53711			
ascı	T1	0,928	0,081	0,848	11,427	0,000	0,719	0,33/11			
Ž	Fórmula		0,928*(medida T1) – 0,637								

Com exceção das vértebras C2, C3 e C6, as demais apresentam mais que um modelo com coeficientes de determinação acima do limiar proposto e estatisticamente significativos. Estes modelos encontram-se apresentados no apêndice III.

3.3.2 Vértebras Torácicas

No que às vértebras torácicas diz respeito, todas elas apresentaram pelo menos um modelo de regressão linear estatisticamente significativo com coeficientes de determinação (R²) superiores a 0,5, que, como mencionado, é utilizado como valor de referência para a realização de previsões.

A vértebra que apresentou um maior coeficiente de determinação para a estimativa da altura da T1 foi a vértebra C7 em cada um dos sexos (tabela 3.3.6). No sexo feminino, a variação da altura da T1 foi explicada em 64,7% pela altura da C7 ($R^2 = 0,647$; EP= 0,65; $F_{(1,62)} = 113,50$; p < 0,001), enquanto para o sexo masculino foi explicada em 71,9% ($R^2 = 0,719$; EP= 0,49; $F_{(1,51)} = 130,567$; p < 0,001). Quanto à previsão da vértebra T2, apresentou modelos de regressão linear mais úteis quando estimada a partir da vértebra T3, quer para o sexo feminino ($R^2 = 0,663$; EP=0,53; $F_{(1,68)} = 133,70$; p < 0,001), quer para o sexo masculino ($R^2 = 0,686$; EP=0,51; $F_{(1,51)} = 111,34$; p < 0,001) (tabela 3.3.7).

Tabela 3.3.6 – Resumo do modelo de regressão linear simples para a estimativa da altura da T1 a partir da altura do corpo vertebral da C7 em cada um dos sexos.

0	-	В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	2,594	1,178	-	2,202	0,031	0.647	0.64770
emi	C7	0,928	0,087	0,804	10,654	0,000	0,647	0,64779
<u> </u>	Fórmula		(),928*(m	edida C7) + 2,594		
Masculino	Constante	5,212	1,016	-	5,130	0,000	0.710	0.40000
asc	C7	0,775	0,068	0,848	11,427	0,000	0,719	0,49088
Σ	Fórmula),775*(m	edida C7) + 5,212		

Tabela 3.3.7 – Resumo do modelo de regressão linear simples para a estimativa da altura da T2 a partir da altura do corpo vertebral da T3 em cada um dos sexos.

0		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
Feminino	Constante	1,546	1,328	-	1,165	0,248	0.662	0.52910		
emi	T3	0,902	0,078	0,814	11,563	0,000	0,663	0,52810		
Ŧ	Fórmula		•	0,902*(m	edida T3)	+ 1,546				
Masculino	Constante	5,038	1,269	_	3,970	0,000	0,686	0,51077		
ascı	T3	0,722	0,068	0,828	10,552	0,000	0,080	0,51077		
X	Fórmula		0,722*(medida T3) + 5,038							

As vértebras que apresentaram melhores resultados para predizer a altura da vértebra T3 foram a T4 para o sexo feminino (R^2 =0,671; EP=0,47; F $_{(1,68)}$ = 138,71; p <0,001) e a T2 para o sexo masculino (R^2 =0,686; EP=0,59; F $_{(1,51)}$ =111,34; p <0,001) (Tabela 3.3.8). Relativamente à vértebra T4, os modelos de regressão linear que apresentaram os maiores coeficientes de determinação incluem a vértebra T5 para o sexo feminino (R^2 =0,744; EP=0,46; F $_{(1,68)}$ = 197,36; p <0,001) tal como para o sexo masculino (R^2 = 0,752; EP= 0,54; F $_{(1,52)}$ = 157,65; p <0,001) (tabela 3.3.9).

Tabela 3.3.8 – Resumo do modelo de regressão linear simples para a estimativa da altura da T3 a partir da altura do corpo vertebral da T4 nas mulheres e da T2 nos homens.

•		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
Feminino	Constante	4,130	1,095	-	3,772	0,000	0.671	0.47005		
Femi	T4	0,743	0,063	0,819	11,777	0,000	0,671	0,47095		
-	Fórmula		(),743*(m	edida T4	+ 4,130				
Masculino	Constante	1,032	1,660	-	0,622	0,537	0,686	0,58614		
ascı	T2	0,950	0,090	0,828	10,552	0,000	0,080	0,36014		
Z	Fórmula		0,950*(medida T2) + 1,032							

Tabela 3.3.9 – Resumo do modelo de regressão linear simples para a estimativa da altura da T4 a partir da altura do corpo vertebral da T5 em cada um dos sexos.

0	-	В	EP	β	t	Sig.	\mathbb{R}^2	EP	
Feminino	Constante	2,617	1,049	-	2,495	0,015	0.744	0.45920	
em	T5	0,822	0,059	0,862	14,048	0,000	0,744	0,45839	
_	Fórmula		(),822*(m	edida T5)	+ 2,617			
Masculino	Constante	0,926	1,439	-	0,644	0,523	0,752	0.52667	
ascı	T5	0,921	0,073	0,867	12,556	0,000	0,732	0,53667	
Σ	Fórmula	0,921*(medida T5) + 0,926							

Para a estimativa da altura da vértebra T5, as vértebras que apresentaram um maior coeficiente de determinação, isto é, que melhor explicaram a variação da altura da T5, foram a T6 para o sexo feminino (R^2 =0,761; EP=0,46; F _(1,68)=216,83; p <0,001) e a T4 para o sexo masculino (R^2 =0,752; EP=0,51; F _(1,52)=157,65; p <0,001) (tabela 3.3.10).

Tabela 3.3.10 – Resumo do modelo de regressão linear simples para a estimativa da altura da T5 a partir da altura do corpo vertebral da T6 nas mulheres e da T4 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP				
Feminino	Constante	2,798	1,027	-	2,725	0,008	0.761	0.46400				
imi	T6	0,823	0,056	0,873	14,725	0,000	0,761	0,46400				
Fe	Fórmula		0,823 0,030 0,873 14,723 0,000 0,823*(medida T6) + 2,798									
10												
uli i	Constante	4,104	1,236	-	3,321	0,002	0,752	0,50529				
Masculino	T4	0,816	0,065	0,867	12,556	0,000	0,732	0,30329				
\mathbf{Z}	Fórmula		0,816*(medida T4) + 4,104									

A vértebra que apresentou um maior coeficiente de determinação para a estimativa da altura da T6 foi a vértebra T5 para o sexo feminino e a T7 para o sexo masculino (tabela 3.3.11). A variação da altura da T6 foi explicada por 76,1% da altura da T5 (R^2 =0,761; EP=0,49; F $_{(1,68)}$ = 216,83; p< 0,001) e por 63,2% da T7 (R^2 =0,632; EP=0,62; F $_{(1,52)}$ = 89,19; p < 0,001). Relativamente à T7, a sua altura foi esclarecida em 72.6% pela altura da T6 (R^2 =0,726; EP=0,51; $_{F(1,68)}$ = 179,904; p <0,001) para o sexo feminino e em 65,5% pela T8 (R^2 =0,655; EP=0,54; F $_{(1,53)}$ = 100,83; p <0,001) nos indivíduos do sexo masculino (tabela 3.3.12). As vértebras que apresentaram maiores coeficientes de determinação para prever a altura da T8 foram a T9 (R^2 =0,755; EP=0,50; F $_{(1,67)}$ = 206,39; p <0,000) para indivíduos do sexo feminino e a T7 (R^2 =0,655; EP=0,53; F $_{(1,53)}$ = 100,83; p < 0,001) para indivíduos do sexo masculino(tabela 3.3.13). Assim, a vértebra T9 explicou 75,5% da variação da altura da T8 e apresentou um erro de predição de 0,50 mm. Já a T7 explicou 65,5% dessa variação e exibiu um erro de predição de 0,53 mm.

Tabela 3.3.11 – Resumo do modelo de regressão linear simples para a estimativa da altura da T6 a partir da altura do corpo vertebral da T5 nas mulheres e da T7 nos homens.

	-	В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	1,791	1,125	-	1,591	0,116	0.761	0,4917
emi	T5	0,925	0,063	0,873	14,725	0,000	0,761	2
=	Fórmula		0	,925*(m	edida T5)	+ 1,971		
Masculino	Constante	2,552	1,898	-	1,345	0,185	0,632	0,6177
asc	T7	0,872	0,092	0,795	9,444	0,000	0,032	1
Σ	Fórmula		0	,872*(me	edida T7)	+ 2,552		

Tabela 3.3.12 – Resumo do modelo de regressão linear simples para a estimativa da altura da T7 a partir da altura do corpo vertebral da T6 nas mulheres e da T8 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
Feminino	Constante	3,832	1,127	-	3,399	0,001	0,726	0,50944		
m.	T6	0,823	0,061	0,852	13,413	0,000	0,720	0,30944		
Fe	Fórmula			0,823*(n	nedida Te	(6) + 3,83	2			
Masculino	Constante	3,072	1,741	_	1,764	0,083	0.655	0.54460		
ascı	Т8	0,840	0,084	0,810	10,042	0,000	0,655	0,54468		
¥	Fórmula		0,840*(medida T8) + 3,072							

Tabela 3.3.13 – Resumo do modelo de regressão linear simples para a estimativa da altura da T8 a partir da altura do corpo vertebral da T9 nas mulheres e da T7 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	4,219	1,050	-	4,017	0,000	0,755	0,50226
em	T9	0,758	0,053	0,869	14,366	0,000	0,733	0,30220
Ţ	Fórmula		(0,758*(n	nedida T9) + 4,21	9	
no								
ig.	Constante	4,768	1,598	-	2,984	0,004	0,655	0,52503
Masculino	T7	0,780	0,078	0,810	10,042	0,000	0,033	0,32303
E	Fórmula		(0,780*(n	nedida T7	') + 4,76	8	

Os melhores modelos de regressão para a previsão da T9 foram obtidos quando esta foi estimada a partir da T10 (R^2 =0,781; EP=0,54; F $_{(1,67)}$ =238,65; p <0,001) para indivíduos do sexo feminino e quando prevista a partir da T8 (R^2 =0,630; EP=0,57; F $_{(1,53)}$ = 90,17; p < 0,001) em indivíduos masculinos (tabela 3.3.14).

Por seu turno, a variação da altura da vértebra T10 foi explicada por 83,3% da altura da vértebra T11, no que ao sexo feminino diz respeito, apresentado, portanto, um modelo de regressão com um coeficiente de determinação bastante elevado (R^2 =0,833; EP= 0,54; $F_{(1,68)}$ = 338,48; p <0,001) como apresentado na tabela 3.3.15. Já nos indivíduos masculinos, esta relação foi melhor explicada pela vértebra T9 mas em 56,3% (R^2 = 0,563; EP= 0,73; $F_{(1,52)}$ = 67,020; p <0,001).

Relativamente à vértebra T11, a sua altura foi explicada em cada um dos sexos pela vértebra T10 (tabela 3.3.16). No sexo feminino, a altura da T11 foi explicada em 83,3% da altura da T10 ($R^2 = 0.833$; EP=0.55; F $_{(1.68)} = 338,48$; p<0.001) enquanto no sexo masculino em 55,6% ($R^2 = 0.556$; EP=0.85; F $_{(1.50)} = 62,50$; p < 0.001).

Tabela 3.3.14 – Resumo do modelo de regressão linear simples para a estimativa da altura da T9 a partir da altura do corpo vertebral da T10 nas mulheres e da T8 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	3,471	1,063	-	3,265	0,002	0,781	0,54433
im :	T10	0,784	0,051	0,884	15,448	0,000	0,701	0,54455
Fe	Fórmula		(),784*(m	edida T1	0) + 4,47	71	
fasculino	Constante	3,881	1,836	-	2,114	0,039	0.620	0.57420
scu]	Т8	0,837	0,088	0,794	9,496	0,000	0,630	0,57430
ă	Fórmula			0,837*(n	nedida T	8) + 3,88	1	

Tabela 3.3.15 – Resumo do modelo de regressão linear simples para a estimativa da altura da T10 a partir da altura do corpo vertebral da T11 nas mulheres e da T9 nas mulheres.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	1,861	1,037	-	1,794	0,077	0,833	0,53583
i m ;	T11	0,883	0,048	0,913	18,398	0,000	0,833	0,33363
F	Fórmula		(0,883*(n	nedida T1	1) + 1,80	61	
Masculino	Constante	3,559	2,295	-	1,551	0,127	0.562	0.72207
rscn	T9	0,881	0,108	0,750	8,187	0,000	0,563	0,73287
Ma	Fórmula			0,881*(n	nedida T	9) + 3,55	39	

Tabela 3.3.16 – Resumo do modelo de regressão linear simples para a estimativa da altura da T11 a partir da altura do corpo vertebral da T10 em cada um dos sexos.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	1,854	1,074	-	1,726	0,089	0,833	0,55400
m.	T10	0,943	0,051	0,913	18,398	0,000	0,033	0,33400
Fe	Fórmula		(0,943*(m	edida T1	0) + 1,85	54	
Masculino	Constante	3,918	2.420		1 610	0.112		
cm		,	2,420	0.745	1,619	0,112	0,556	0,84889
[as	T10	0,856	0,108	0,745	7,906	0,000		
\geq	Fórmula			0,856*(m	edida T1	0) + 3,91	.8	

Os modelos de regressão linear simples com maior coeficiente de determinação (R^2) para a previsão da altura da T12 foram representados pela vértebra L1 quer no sexo feminino ($R^2 = 0.776$; EP= 0.72; F $_{(1.68)} = 235.84$; p <0.001) quer no sexo masculino ($R^2 = 0.519$; EP=0.93; F $_{(1.50)} = 53.98$; p <0.001).

Tabela 3.3.17 - Modelo de regressão linear simples para a estimativa da altura da T12 a partir da altura do corpo vertebral da L1 em cada um dos sexos.

9		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	1,590	1,407	-	1,130	0,262	0,776	0,72020
em,	L1	0,865	0,056	0,881	15,357	0,000	0,770	0,72020
—	Fórmula			0,865*(n	nedida L1	l) + 1,59 0	0	
lino	Constante	3,708	2,816	_	1,317	0,194		
Masculino	L1	0,791	0,108	0,721	7,347	0,000	0,519	0,93331
Ä	Fórmula			0,791*(n	nedida L1	1) + 3,70	8	

No caso das vértebras torácicas, além dos modelos aqui apresentados, obtiveramse outros modelos de regressão linear estatisticamente significativos para a estimativa da altura do corpo vertebral das diferentes vértebras torácicas. Embora com R² relativamente mais baixos, apresentam também valores de R² superiores a 0,5. Estes modelos encontram-se disponíveis no apêndice III.

3.3.3 Vértebras Lombares e Primeira Vértebra Sagrada

Relativamente às vértebras lombares, todas elas apresentaram pelo menos um modelo de regressão linear estatisticamente significativo com coeficientes de determinação (R²) superiores a 0,5.

Na tabela 3.3.18 encontram-se representados os modelos de regressão linear que indicaram qual a melhor vértebra preditora da altura do corpo vertebral da L1 em cada um dos sexos. No sexo feminino, 77,6% da variação da altura da L1 foi explicada pela altura da T12, apresentado um erro de predição de 0,73 mm (R^2 =0,776; EP=0,74; F $_{(1,68)}$ =235,84 e p <0,001). Quanto ao sexo masculino a variação da altura da L1 foi explicada em 57,1% pela altura da L2 com erro de predição de 0,80 mm (R^2 = 0,571; EP= 0,80; F $_{(1,50)}$ = 53,978 e p <0,001).

As vértebras que apresentaram melhores resultados como preditoras da altura da L2 corresponderam à T12 para o sexo feminino ($R^2 = 0,659$; EP= 0,93; F $_{(1,68)} = 131,56$; p<0,001) e à L3 para o sexo masculino ($R^2 = 0,603$; EP= 0,87; F $_{(1,51)} = 32,637$; p<0,001) (tabela 3.3.19). De acordo com dados apresentados na tabela 3.3.20, os modelos de regressão linear simples para a previsão da altura da L3 foram representados pela L4 no sexo feminino ($R^2 = 0,675$; EP = 0,88; F $_{(1,68)} = 141,52$; p<0,001) e pela L5 para o sexo masculino ($R^2 = 0,640$; EP= 0,84563; F $_{(1,51)} = 82,825$; p<0,001). Por seu turno, para a estimativa da altura da L4, as vértebras preditoras corresponderam à L3 para o sexo feminino ($R^2 = 0,675$; EP= 1,07; F $_{(1,68)} = 141,52$; p<0,001) e à L5 para o sexo masculino ($R^2 = 0,620$; EP= 0,94; F $_{(1,53)} = 86,42$; p<0,001).

Tabela 3.3.18 – Resumo do modelo de regressão linear simples para a estimativa da altura da L1 a partir da altura do corpo vertebral da T12 nas mulheres e da L2 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP				
Feminino	Constante	4,151	1,355	-	3,063	0,003	0.776	0.72244				
imi	T12	0,897	0,058	0,881	15,357	0,000	0,776	0,73344				
Fe	Fórmula		0,897*(medida T12) + 4,151									
Masculino	Constante	7,958	2,209	_	3,603	0,001	0.571	0.00200				
ascı	L2	0,674	0,082	0,755	8,234	0,000	0,571	0,80298				
Ä	Fórmula			0,674*(n	4*(medida L2) + 7,958							

Tabela 3.3.19 – Resumo do modelo de regressão linear simples para a estimativa da altura da L2 a partir da altura do corpo vertebral da T12 nas mulheres e da L3 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	6,596	1,717	-	3,841	0,000	0.650	0.02022
m.	T12	0,849	0,074	0,812	11,470	0,000	0,659	0,92933
Fe	Fórmula),849*(m	edida T1	2) + 6,59	96	
lino	Constante	5,843	2,428	-	2,406	0,020	0.602	0.96627
Masculino	L3	0,756	0,087	0,776	8,706	0,000	0,603	0,86637
 Ma	Fórmula			0,756*(n	nedida L.	3) + 5,84	3	

Tabela 3.3.20 – Resumo do modelo de regressão linear simples para a estimativa da altura da L3 a partir da altura do corpo vertebral da L4 nas mulheres e da L5 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	8,701	1,541	-	5,647	0,000	0.675	0.00470
mi	L4	0,681	0,057	0,822	11,896	0,000	0,675	0,88470
Fe	Fórmula			0,681*(n	nedida L4	l) + 8,70 2	1	
ou ou								
idhi:	Constante	5,795	2,325	-	2,493	0,016	0,640	0,84563
Masculino	L5	0,778	0,082	0,800	9,527	0,000	0,040	0,04303
Σ	Fórmula			0,778*(n	nedida L5	5) + 5,79	5	

Tabela 3.3.21 – Resumo do modelo de regressão linear simples para a estimativa da altura da L4 a partir da altura do corpo vertebral da L3 nas mulheres e da L5 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	0,085	2,253	-	0,038	0,970	0.675	1.06750
mir	L3	0,992	0,083	0,822	11,896	0,000	0,675	1,06759
Fe	Fórmula			0,992*(n	nedida L3	3) + 0,08	5	
Masculino	Constante	4,955	2,527	_	1,961	0,055	0.620	0.02601
ascı	L5	0,825	0,089	0,787	9,296	0,000	0,620	0,93681
<u>X</u>	Fórmula			0,825*(n	nedida L5	5) + 4,95	5	

Na tabela 3.3.22 encontra-se exposto o resumo dos modelos de regressão linear simples que representaram qual a vértebra com melhores resultados como preditora para a altura da L5 de acordo com cada sexo. Com efeito, nos indivíduos do sexo feminino 67,3% da variação da altura da L5 foi explicada pela altura da L4 (R^2 =0,673; EP=0,94; F (1,66) =135,99; p<0,001) e que nos indivíduos do sexo masculino a variação da sua altura foi explicada em 64% pela altura da L3 (R^2 =0,640; EP=0,87; F (1,51) =90,77; p<0,001).

Tabela 3.3.22 – Resumo do modelo de regressão linear simples para a estimativa da altura da L5 a partir da altura do corpo vertebral da L4 nas mulheres e da L3 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP				
9	Constante	7,795	1,669	-	4,670	0,000	0.672	0.04454				
Feminino	L4	0,723	0,062	0,821	11,662	0,000	0,673	0,94454				
Fen	Fórmula	0,723*(medida L4) + 7,795										
no	Constante	5,458	2,414	-	2,261	0,028	0.640	0.96072				
Masculino	L3	0,823	0,086	0,800	9,527	0,000	0,640	0,86972				
 Ma	Fórmula			0,823*(r	nedida L	3) + 5,45	58					

Relativamente à primeira vértebra sagrada, não se obteve nenhum modelo com coeficiente de determinação superior a 0,5. Não obstante, o melhor resultado foi obtido a partir da C2 para o sexo feminino com R² de 0,316 e a partir da L4 para o sexo masculino com R² de 0,257 (apêndice III). Contudo, a maioria das vértebras lombares apresenta mais que um modelo de regressão para a sua estimativa acima do limiar de R² proposto acima de 0,5 (apêndice III).

3.3.4 Altura total da Coluna Vertebral

Verificou-se também se a partir de uma única vértebra seria possível criar um modelo de regressão linear viável para a estimativa da altura total da fração da coluna vertebral (CT) aqui avaliada. Desta forma, para o sexo feminino a vértebra que apresentou um maior coeficiente de determinação (R²) para prever a altura da CT foi a T12 enquanto para o sexo masculino foi a T11 (tabela 3.3.23). A variação da altura da coluna vertebral foi explicada em 71,2% da altura da T12 com um erro de predição igual a 11,9 mm (R² =0,712; EP= 11,91; F _(1,45) =111,26; p<0,001). Quanto à T11, esta explica a variação da altura da coluna vertebral em 62,6% com um erro de predição de 11,59 mm (R² =0,626; EP= 11,59; F _(1,40) =66,90; p <0,001). Não obstante, a estimativa da altura da CT apresentou também valores de R² acima de 0,5 quando estimada a partir de outras vértebras como é possível verificar no apêndice III.

Tabela 3.3.23 – Resumo do modelo de regressão linear simples para a estimativa da altura da fração total da coluna vertebral a partir da T12 nas mulheres e T11 nos homens.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	204,300	26,945	-	7,582	0,000	0.712	11,905
Feminino	T12	12,252	1,162	0,844	10,548	0,000	0,712	96
Fen	Fórmula		12,2	252*(me	dida T12)	+ 204,3	800	
lino	Constante	256,526	33,102	-	7,750	0,000	0.626	11,589
Masculino	T11	11,742	1,436	0,791	8,179	0,000	0,626	51
Σ	Fórmula		11,7	/42*(med	dida T11)	+ 256,5	526	

3.3.5 Altura Vertebral Estimada e Altura Vertebral Real

Todos os modelos de regressão linear simples com coeficiente de determinação (R²) superior a 0,5, bem como os modelos das vértebras C2 e S1, que excecionalmente apresentam valores inferiores a este limiar, foram posteriormente testados numa amostra independente de forma a verificar a linearidade, bem como avaliar as diferenças médias, entre altura vertebral estimada e a altura real documentada. Os modelos foram aplicados a vértebras de 20 indivíduos do sexo feminino e 23 do sexo masculino. Todos os resultados encontram-se representados nas tabelas 3.3.26 e 3.3.27.

Para se verificar a relação entre a altura estimada e altura real documentada, recorreu-se à correlação de Pearson (ou então de Spearman, quando as amostras não cumpriam os requisitos para uma análise paramétrica). Com efeito, constatou-se que, em termos gerais, na grande maioria dos casos, a altura estimada e a altura real documentada se encontram moderada a fortemente relacionadas em ambos os sexos. Contudo, existe uma exceção. A altura estimada da C7, prevista a partir da T1, em relação à sua altura real nos indivíduos do sexo masculino, apresenta um coeficiente de relação negativo (R₍₁₇₎=-0,199), ou seja, há uma relação relativamente fraca.

Embora, geralmente, a altura estimada e a altura real documentada se encontrem moderada a fortemente relacionadas, em alguns casos, o teste t para amostras emparelhadas revelou que existem diferenças significativas entre elas. Esta situação aconteceu em alguns modelos de regressão das vértebras C6, T1, T2, T5, T6, T8, T10, L3 e CT, para o sexo feminino e nas vértebras C4, C6, C7, T3, T4, T5, T6, T9, L4 e CT no sexo masculino (tabelas 3.3.26 e 3.3.27, respetivamente). As restantes vértebras, em cada um dos sexos, e a altura total da fração da coluna vertebral no sexo feminino, não apresentam diferenças significativas entre a altura estimada e a altura real documentada. Contudo, o cálculo do RMSE (raiz quadrada do erro quadrático médio) demonstrou que as diferenças entre a altura medida e a altura real se encontravam, na grande maioria dos casos, abaixo de 1 mm, sendo que os valores superiores a 1 mm se encontravam abaixo do limiar dos 3 mm em ambos os sexos. No caso da CT, nos indivíduos do sexo feminino (tabela 3.3.24), esta apresentou diferenças inferiores a 10 mm quando estimada a partir das vértebras T5 e T6, sendo que a maior diferença foi verificada quando foi estimada a partir da C7, com cerca de 72 mm. Nos indivíduos do sexo masculino as diferenças, entre altura estimada e altura real documentada, situaram-se entre os 13,81 mm e os 22,06 mm.

Tabela 3.3.24 - Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença entre altura estimada e altura real (mm) nos indivíduos do sexo feminino.

Vértebra Estimada	Vértebras Preditoras	n	RMSE	Vértebra Estimada	Vértebras preditoras	n	RMSE
C2	S 1	20	2,271		T9	18	0,568
C3	C4	18	0,517	Т7	T10	19	0,560
C4	C3	18	0,453	1 /	T11	18	0,661
	C5	20	0,427		T12	19	0,608
C5	C4	20	0,564		T5	17	0,709
	C6	17	0,685		T6	19	0,734
C6	C5	17	0,663		T7	18	0,756
C7	T1	17	0,646	Т8	T9	19	0,734
	T2	17	0,909		T10	19	0,829
T1	C7	17	0,625		T11	18	0,922
11	T2	19	0,791		T12	19	0,893
	C7	17	0,946		T5	17	0,853
T2	T1	19	0,855		T6	19	0,785
	Т3	19	0,710		T7	18	0,670
	T2	19	0,623	T9	T8	19	0,913
T3	T4	17	0,459		T10	19	0,808
	T5	17	0,546		T11	18	0,649
	Т3	17	0,426		T12	19	0,568
T4	T5	15	0,489		T6	19	0,887
	Т6	17	0,688		T7	19	0,711
	Т3	17	0,607	T10	T8	19	0,906
	T4	17	0,566	110	T9	19	0,895
T5	Т6	17	0,489		T11	19	0,983
	T7	17	0,670		T12	20	0,876
	Т8	17	0,679		T7	18	0,875
	T9	17	0,806		T8	18	1,038
	T4	17	0,735		T9	18	0,692
	T5	17	0,425	T11	T10	19	1,015
	T7	17	0,461		T12	19	0,507
T6	T8	18	0,650		L1	19	0,726
	T9	19	0,715				
	T10	19	0,735		T6	19	1,040
	T12	19	0,776		T7	19	0,891
	T5	17	0,540	T12	T8	19	1,142
T7	T6	18	0,414	112	T9	19	0,667
	T8	18	0,640		T10	20	1,013

Tabela 3.3.24 – continuação.

Vértebra Estimada	Vértebras Preditoras	n	RMSE	Vértebra Estimada	Vértebras preditoras	n	RMSE
	T11	19	0,562		T12	17	1,118
	L1	20	0,775		L1	17	1,068
T12	L2	20	0,754	L5	L2	17	1,012
112	L3	20	0,981		L3	17	1,017
	L4	19	0,816		L4	17	0,973
	L5	17	0,906	C 1	C2	20	2.092
	T11	19	0,969	S 1	C2	20	2,083
	T12	20	0,871		C6	9	12,546
L1	L2	20	0,804		C7	9	71,600
	L3	20	0,786		T1	9	12,944
	L5	17	1,000		T2	9	15,157
	T12	20	0,896		T3	9	14,181
	L1	20	0,896		T5	9	9,821
L2	L3	20	0,993		T6	9	7,933
	L4	19	1,078		T7	9	11,931
	L5	20	0,971	CT	T8	9	12,540
	T12	20	1,196	CT	T9	9	14,323
	L1	20	0,871		T10	9	16,994
L3	L2	20	0,979		T11	9	15,053
	L4	19	1,801		T12	9	16,577
	L5	17	0,964		L1	9	17,422
	T12	19	0,936		L2	9	24,636
	L2	19	0,863		L3	9	11,453
L4	L3	19	0,971		L4	9	14,413
	L5	17	0,924		L5	9	11,887

Tabela 3.3.25 - Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença entre altura estimada e altura real (mm) nos indivíduos do sexo masculino.

Vértebra Estimada	Vértebras Preditoras	n	RMSE	Vértebra Estimada	Vértebras preditoras	n	RMSE
C2	C3	17	2,266		T7	23	0,749
С3	C4	18	0,637	T9	T8	22	0,569
C4	C3	18	0,732		T10	23	0,516
C4	C5	18	0,891				
C.F	C4	18	0,753	T-10	Т9	23	0,676
C5	C6	18	0,746	T10	T11	22	0,437
C6	C5	16	0,888	TD11	TI 1.0	22	0.704
C7	T1	19	1,313	T11	T10	22	0,704
T1	C7	19	0,617	T12	L1	21	0,928
T2	T3	17	0,749		T12	21	1,222
	T2	17	0,593	L1	L2	23	1,101
T3	T4	20	0,515		L3	23	1,466
	T5	20	0,624		L1	23	0,947
	T3	20	0,489	L2	L3	23	0,966
T4	T5	22	0,843				
	T6	20	0,563		L1	23	1,477
	Т3	20	0,736		L2	23	1,027
TC =	T4	22	0,543	L3	L4	22	0,852
T5	T6	23	0,487		L5	23	0,968
	T7	21	0,501				
	T4	22	0,820	L4	L3	22	0,884
T6	T5	23	0,628	L4	L5	22	1,079
	T7	21	0,542	L5	L3	23	0,992
	T5	21	0,677	L3	L4	22	1,015
T7	T6	21	0,546	S1	L4	22	2,141
1/	T8	21	0,521		C7	11	17,587
	Т9	21	0,523		T4	11	19,191
T8	T7	21	0,513	CT	T11	11	13,81
10	T9	22	0,478		L2	11	17,804
					L4	11	22,060

Tabela 3.3.26 – Estatística descritiva, resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo feminino.

		Altura	a Real				Altı	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
C2	20	35,58	2,18	35,27	7,55	S 1	20	34,96	1,55	34,73	6,72	0,313	1,234	0,232
C3	18	12,88	0,97	12,71	2,96	C4	18	12,70	0,63	12,52	2,40	0,881** ^a	-1,328 ^b	0,184
C4	20	12,27	0,90	12,10	3,53	C3	18	12,41	0,77	12,28	2,34	0,881**	-1,066	0,301
						C5	20	12,31	0,85	12,16	3,14	0,877**	-0,376	0,711
C5	20	11,83	1,04	11,64	3,85	C4	20	11,79	0,62	11,67	2,44	0,877**	0,316	0,755
						C6	17	11,95	0,68	11,77	2,34	0,708**	-1,662	0,116
C6	17	12,14	0,87	11,91	3,01	C5	17	11,86	0,68	11,74	2,36	0,708**	1,874	0,079
C7	17	13,72	0,99	13,77	3,38	T1	17	13,60	0,64	13,54	2,10	0,758**	0,760	0,458
						T2	17	13,41	0,79	13,19	2,90	0,531*	1,243	0,232
T1	19	15,35	0,91	15,24	3,02	C7	17	15,33	0,92	15,37	3,14	0,758** ^a	-0,734 ^b	0,463
						T2	19	15,03	0,99	14,53	3,53	0,696**	1,903	0,073
T2	20	16,79	1,04	16,49	3,85	C7	17	17,05	0,69	17,04	2,37	0,531*	-0,933	0,365
						T1	19	17,04	0,58	16,97	1,93	0,696**	-1,420	0,173
						T3	17	17,02	0,84	16,79	2,81	$0,747**^a$	$-1,730^{b}$	0,084
T3	19	17,05	0,93	16,87	3,12	T2	19	16,91	0,78	16,53	2,83	0,747**	0,957	0,351
						T4	17	17,16	0,66	16,92	2,13	0,876**	-0,040	0,968
						T5	17	18,28	0,69	17,12	2,65	0,652**	-0,398	0,696
T4	17	17,53	0,89	17,22	2,86	Т3	17	17,46	0,84	17,23	2,82	0,876**	0,682	0,505

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α = 0,05 **significativo para α = 0,01; a Correlação de Spearman; b Teste de Wilcoxon; c 2-tailed.

Tabela 3.3.26 – Continuação.

		Altura	a Real		Altura Estimada									
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
T4	17	17,53	0,89	17,22	2,86	T5	15	17,53	0,89	17,45	3,17	0,845**	0,573	0,576
						T6	17	17,56	0,64	17,39	2,43	0,617***	$-0,900^{b}$	0,368
T5	18	18,16	1,00	18,06	3,86	Т3	17	17,99	0,86	17,77	2,81	0,803**	0,941	0,360
						T4	15	18,13	0,82	17,79	2,59	0,914** ^a	$-0,398^{b}$	0,691
						Т6	17	18,14	0,73	17,95	2,78	0,889**	0,339	0,739
						T7	17	18,02	0,60	17,91	2,18	0,762**	0,626	0,540
						T8	17	17,91	0,81	17,83	3,45	0,781**	1,786	0,093
						Т9	17	18,04	0,63	17,82	2,13	0,602*	0,738	0,471
T6	19	18,69	0,85	18,71	3,38	T4	17	18,51	0,79	18,23	2,54	0,617** ^a	-1,491 ^b	0,136
						T5	17	18,61	0,95	18,51	3,57	0,889**	0,322	0,752
						T7	18	18,53	0,71	18,41	2,59	0,853**	1,279	0,218
						T8	19	18,32	0,80	18,19	3,60	0,782**	2,981	0,008
						Т9	19	18,48	0,65	18,26	2,26	0,585**	1,277	0,218
						T10	19	18,36	0,52	18,21	1,91	$0,504*^{a}$	-1,368 ^b	0,171
						T12	19	18,43	0,54	18,38	1,83	0,485*	1,505	0,150
T7	19	19,12	0,80	18,96	2,94	T5	17	19,11	0,79	19,05	3,00	0,762**	-0,003	0,997
						T6	16	19,19	0,71	19,11	2,78	0,853**	-0,382	0,707
						T8	18	18,91	0,88	18,76	3,84	0,745**	1,708	0,106

Tabela 3.3.26 – Continuação.

		Altura	Real				Altı	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
T7	19	19,12	0,80	18,96	2,94	Т9	18	19,07	0,63	18,85	2,13	0,706**	0,651	0,524
						T10	19	18,92	0,57	18,82	2,28	0,742**	1,592	0,129
						T11	18	19,06	0,57	18,93	2,04	0,583*	0,402	0,692
						T12	19	18,97	0,55	18,85	1,95	0,658**	1,079	0,295
Т8	19	19,25	1,07	19,08	4,77	T5	17	19,53	0,84	19,43	3,19	0,767** ^a	-1,775 ^b	0,076
						Т6	19	19,55	0,65	19,56	2,59	0,782**	-1,882	0,076
						T7	18	19,49	0,71	19,37	2,58	0,745**	-1,345	0,196
						T9	19	19,55	0,65	19,56	2,59	0.564*	-1,882	0,076
						T10	19	19,32	0,59	19,15	2,17	0,608**	-0,360	0,723
						T11	18	19,46	0,54	19,31	1,66	$0,562*^a$	-1,633 ^b	0,102
						T12	19	19,38	0,57	19,33	1,96	$0,509*^a$	-1,087 ^b	0,277
Т9	19	20,07	0,94	19,75	3,30	T5	18	20,12	0,97	20,02	3,74	0,574* ^a	-0,686 ^b	0,492
						Т6	19	20,19	0,77	20,21	3,09	0,583** ^a	-1,167 ^b	0,243
						T7	18	20,07	0,75	19,94	2,71	0,688***	-0,675 ^b	0,500
						T8	19	19,84	1,06	19,67	4,75	0,596**	1,100	0,286
						T10	19	19,91	0,73	19,70	2,68	0,592** ^a	-0,161 ^b	0,872
						T11	18	20,09	0,67	19,91	2,05	0,724**	-0,235	0,817
						T12	19	19,98	0,69	19,92	2,34	0,795**	0,659	0,518

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *2-tailed.

Tabela 3.3.26 – Continuação.

		Altura	a Real				Altu	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
T10	20	20,87	1,01	20,70	4,11	Т6	19	21,42	0,81	21,44	3,23	0,602**	-2,545	0,020
						T7	19	21,09	0,81	20,93	2,95	0,742**	-1,336	0,198
						T8	19	20,87	1,13	20,69	5,04	0,608**	0,448	0,660
						Т9	19	21,12	0,94	20,80	3,29	$0,592**^a$	-0,161 ^b	0,872
						T11	19	21,10	0,92	20,86	3,36	0,503*	-1,020	0,321
						T12	20	20,96	0,82	20,87	3,00	0,542*	-0,493	0,628
T11	19	21,79	1,04	21,52	3,81	T7	18	21,78	0,86	21,49	3,05	0,583*	0,110	0,914
						Т8	18	21,54	1,12	21,35	4,87	0,542*	1,528	0,145
						Т9	18	21,76	0,93	21,45	3,16	$0,641**^a$	$-0,544^{b}$	0,586
						T10	19	21,54	0,98	21,36	3,88	0,503*	1,098	0,287
						T12	19	21,66	0,91	21,63	3,24	0,877**	1,183	0,252
						L1	19	21,72	0,94	21,53	3,44	0,724**	0,445	0,661
T12	20	23,23	1,16	23,11	4,23	Т7	19	23,37	0,91	23,19	3,33	0,661** ^a	-1,248 ^b	0,212
						Т8	19	23,10	1,24	22,91	5,55	0,525*	0,839	0,413
						Т9	19	23,36	1,00	23,02	3,49	0,795**	-0,229	0,822
						T10	20	23,11	0,97	22,94	3,94	$0,396^{a}$	-0,299 ^b	0,765
						T11	19	23,34	1,01	23,08	3,69	0,877**	-0,662	0,516
						L1	20	23,28	1,22	23,05	4,53	0,779**	-0,291	0,774

 $[\]overline{\mbox{M\'ed.} - \mbox{M\'edia; DP-Desvio-padr\~ao; Med.} - \mbox{Mediana; Ampl.} - \mbox{Amplitude.}} \\ ^* \mbox{significativo para } \alpha = 0.05 \mbox{\ *} \mbox{significativo para } \alpha = 0.01; \mbox{\ a} \mbox{Correla\~{c}\~ao} \mbox{\ de Spearman; b} \mbox{\ Teste de Wilcoxon; c} \mbox{\ c} \mbox{\ c} \mbox{\ a} \mbox{\ c} \mbox{\ a} \mbox$

Tabela 3.3.26 – Continuação.

		Altura	Real				Altı	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
T12	20	23,23	1,16	23,11	4,23	L2	20	23,40	1,19	23,11	4,03	0,771** ^a	-0,672 ^b	0,502
						L3	20	23,35	1,11	22,93	3,89	0,613**	-0,541	0,595
						L4	19	23,37	0,71	23,25	2,76	0,657**	-0,226	0,824
						L5	17	23,19	0,99	22,99	3,25	0,611**	0,571	0,576
L1	20	25,08	1,41	24,81	5,24	T11	19	25,10	0,90	24,87	3,28	0,724**	0,148	0,884
						T12	20	24,99	1,04	24,88	3,79	$0,779^{**}$	0,450	0,658
						L2	20	25,18	1,18	24,89	3,99	0,816**	-0,546	0,591
						L3	20	25,15	1,20	24,70	4,19	$0,788**^a$	$-1,232^{b}$	0,218
						L5	17	24,98	1,03	24,77	3,38	0,662**	0,566	0,579
L2	20	26,58	1,54	26,21	5,19	T12	20	26,32	0,98	26,21	3,59	0,794**	1,221	0,237
						L1	20	26,39	1,15	26,17	4,25	0,816**	0,984	0,338
						L3	20	26,49	1,22	26,02	4,27	0,753**	0,433	0,670
						L4	19	26,50	0,81	26,37	3,11	$0,740**^a$	$-0,483^{b}$	0,629
						L5	17	26,31	1,02	26,10	3,36	0,706**	1,064	0,303
L3	20	27,27	1,53	26,70	5,34	T12	20	27,06	0,88	26,96	3,21	0,613**	0,806	0,430
						L1	20	27,10	1,11	26,89	4,12	0,824**	0,866	0,397
						L2	20	27,24	1,17	26,95	3,95	0,753**	0,152	0,881
						L4	19	25,90	0,79	25,73	2,71	0,730**	5,986	<0,001
						L5	17	27,03	1,11	26,80	3,65	0,709**	1,048	0,310

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed

Tabela 3.3.26 — Continuação.

		Altura	Real				Altu	ıra Estim	ada					
Vértebra estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
L4	19	27,23	1,21	27,03	4,67	T12	19	27,01	0,99	26,92	3,40	0,657**	1,046	0,309
						L2	19	27,24	1,39	26,94	4,78	0,715**	-0,056	0,956
						L3	19	27,24	1,49	26,79	5,30	0,803**	-0,024	0,981
						L5	17	26,93	1,35	26,64	4,44	0,744**	0,993	0,336
L5	17	27,29	1,45	26,99	4,77	T12	17	27,34	0,88	27,27	3,04	0,611**	-0,187	0,854
						L1	17	27,38	1,08	27,17	4,21	0,662**	-0,339	0,739
						L2	17	27,45	1,03	27,29	3,59	0,706**	-0,643	0,529
						L3	17	27,46	1,16	27,15	3,87	0,709**	-0,668	0,514
						L4	17	27,42	0,87	27,34	3,38	0,744**	-0,545	0,594
S1	20	30,92	2,16	30,59	9,40	C2	20	31,42	0,96	31,28	3,34	0,313	-1,089	0,290
CT	9	494,49	25,19	490,11	66,19	C6	9	490,74	14,23	485,99	38,35	0,926*	0,886	0,401
						C7	9	423,86	14,01	420,82	37,50	0,991**	-0,212	0,838
						T1	9	495,43	16,02	498,90	47,57	0,899*	-0,208	0,841
						T2	9	490,46	24,30	475,54	66,50	0,867	0,778	0,459
						T3	9	489,52	21,11	480,99	53,93	0,842	1,057	0,321
						T5	9	490,18	24,73	482,95	72,15	0,850	1,380	0,205
						T6	9	493,44	20,49	489,00	61,00	0,989**	0,371	0,721
						T7	9	495,38	18,02	488,44	49,23	0,907*	-0,212	0,838
						Т8	9	491,42	25,21	484,47	80,63	0,901*	0,714	0,496

 $[\]overline{\mbox{M\'ed.} - \mbox{M\'edia; DP-Desvio-padrão; Med.} - \mbox{Mediana; Ampl.} - \mbox{Amplitude.}} \\ ^* \mbox{significativo para } \alpha = 0.05 \mbox{\ *} \mbox{significativo para } \alpha = 0.01; \mbox{\ a} \mbox{Correlação de Spearman; b Teste de Wilcoxon; c 2-tailed.}$

Tabela 3.3.26 – Continuação.

		Altura	a Real				Alt	ura Estin	nada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
CT	9	494,49	25,19	490,11	66,19	Т9	9	493,68	19,33	491,21	50,55	0,946*	0,16	0,877
						T10	9	489,67	12,56	485,18	38,23	0,821	0,835	0,428
						T11	9	491,36	14,84	484,84	37,24	0,877	0,601	0,564
						T12	9	491,95	16,06	489,04	46,44	0,730*	0,438	0,673
						L1	9	492,19	17,38	487,92	61,16	0,879*	0,376	0,716
						L2	9	476,92	16,95	472,76	59,65	0,879*	2,877	0,021
						L3	9	497,03	15,07	493,13	36,84	0,991**	-0,644	0,538
						L4	9	496,37	11,43	490,47	35,34	0,916*	-0,373	0,719
						L5	9	495,74	16,14	495,93	47,34	0,815	-0,300	0,772

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed.

Tabela 3.3.27 – Estatística descritiva, resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo masculino.

		Altura	a Real				Altı	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
C2	17	37,57	2,48	37,82	8,44	С3	17	37,69	1,44	37,85	5,33	0,387	-0,213	0,834
C3	20	13,88	1,22	14,07	4,54	C4	18	13,96	1,14	14,01	4,26	0,856**	-0,588	0,565
C4	19	13,33	1,30	13,44	4,92	C3	18	13,47	0,82	13,60	2,97	0,800** ^a	-0,518 ^b	0,611
						C5	18	13,65	0,77	13,66	2,55	0,793**	-2,148	0,046
C5	20	12,92	1,09	12,93	3,81	C4	19	12,71	1,09	12,80	4,14	0,793** ^a	-1,590 ^b	0,112
						C6	18	12,90	0,60	13,02	2,23	0,686**	0,632	0,536
C6	19	13,13	0,85	13,30	3,08	C5	16	13,48	0,70	13,51	2,89	0,514*	-2,474	0,026
C7	20	14,55	0,91	14,77	3,09	T1	17	11,32	0,93	11,05	2,75	-0,199	9,445	<0,001
T1	21	16,57	0,85	16,45	3,59	C7	19	16,48	0,73	16,65	2,39	0,684**	0,211	0,836
T2	17	18,13	1,22	18,08	5,06	Т3	17	18,18	0,58	18,19	2,43	0,870**	-0,239	0,814
Т3	20	18,17	0,75	18,20	3,36	T2	17	18,26	1,16	18,21	4,81	0,722** ^a	-0,399	0,695
						T4	20	18,42	0,59	18,23	2,03	0,791**	-2,428	0,025
						T5	20	18,33	0,74	18,13	2,42	0,660**	-1,171	0,256
T4	22	18,76	0,81	18,54	2,93	Т3	20	18,70	0,60	18,72	2,66	0,791**	1,273	0,218
						T5	22	18,06	0,89	17,83	2,97	0,842**	6,799	<0,001
						T6	22	18,42	0,76	18,23	2,76	0,828**	-2,938	0,003
T5	23	19,28	0,94	19,05	3,22	Т3	20	19,34	0,53	19,36	2,37	0,660**	-0,033	0,974
						T4	22	19,41	0,66	19,23	2,39	0,842**	-1,083	0,291

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed.

Tabela 3.3.27 – Continuação.

	Altura Real						Altu	ıra Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
T5	23	19,28	0,94	19,05	3,22	T6	23	19,05	0,77	18,85	2,79	0,887**	2,507	0,020
						T7	21	19,27	0,91	19,26	3,46	0,847**	-0,385	0,704
T6	23	19,77	0,98	19,51	3,56	T4	22	20,30	0,56	20,15	2,02	0,828**	-4,306	<0,001
						T5	23	20,20	0,74	20,02	2,54	0,887**	-4,395	< 0,001
						T7	21	20,10	0,98	20,09	3,73	0,911** ^a	$-3,146^{b}$	0,002
T7	21	20,13	1,12	20,11	4,28	T5	21	20,30	0,64	20,16	2,18	0,847**	-1,150	0,264
						T6	21	20,03	0,72	19,86	2,58	0,911**	0,817	0,424
						T8	22	20,34	0,94	20,49	4,17	0,895**	-1,593	0,127
						T9	21	20,22	0,94	20,31	3,50	0,884**	-0,822	0,421
T8	22	20,56	1,12	20,74	4,97	T7	21	20,47	0,87	20,45	0,87	0,895**	0,393	0,699
						T9	22	20,48	0,92	20,61	3,49	0,907**	0,707	0,487
Т9	23	20,83	1,22	20,98	4,64	T7	23	21,53	0,96	21,65	3,62	1,000**	-12,574	<0,001
						T8	22	21,09	0,94	21,24	4,16	0,907**	-1,770	0,091
						T10	23	21,01	0,99	21,01	3,63	0,923**	-1,837	0,080
T10	23	21,88	1,55	21,88	5,68	T9	23	21,91	1,08	22,04	4,09	0,923** ^a	-0,335 ^b	0,738
T11	22	22,84	1,47	22,64	5,67	T10	22	22,75	1,26	22,71	4,75	0,874**	0,555	0,585
T12	21	23,81	1,37	23,55	5,23	L1	21	24,01	1,44	23,53	4,94	0,736** ^a	-0,963	0,347
L1	23	25,65	1,81	25,06	6,25	T12	21	25,75	0,90	25,58	3,43	0,783**	-0,316	0,755

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.
*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed

Tabela 3.3.27 – Continuação.

		Altur	a Real				Altı	ura Estim	ada					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditora	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
L1	23	25,65	1,81	25,06	6,25	L2	23	25,94	1,13	25,79	3,69	0,725***	-1,234 ^b	0,230
						L3	23	25,85	1,09	25,69	3,54	0,574**	-0,639	0,529
L2	23	26,67	1,68	26,46	5,47	L1	23	26,56	1,54	26,06	5,29	0,824**	0,546	0,590
						L3	23	26,60	1,31	26,41	4,27	0,810**	0,330	0,745
L3	23	27,46	1,74	27,21	5,65	L1	23	27,52	1,50	27,03	5,18	0,574**	-0,180	0,859
						L2	23	27,70	1,34	27,53	4,36	0,810**	-1,111	0,279
						L4	22	27,27	1,24	27,17	4,29	0,892**	0,772	0,449
						L5	23	27,69	1,42	27,17	5,39	0,833**	-1,128	0,272
L4	22	27,52	1,70	27,39	5,87	L3	23	28,03	1,47	27,82	4,79	0,892***	-2,354 ^b	0,019
						L5	22	28,14	1,49	27,63	5,72	0,847**	-3,211	0,004
L5	23	28,14	1,82	27,48	6,93	L3	23	28,06	1,43	27,85	4,65	0,833**	0,386	0,703
						L4	22	27,75	1,28	27,66	4,41	$0,847**^a$	-1,575 ^b	0,115
S1	23	31,77	2,34	32,25	8,80	L4	22	32,39	1,17	32,30	4,04	0,449* ^a	-1,607 ^b	0,108
CT	11	512,37	25,07	509,18	90,14	C7	11	521,91	12,83	524,67	40,77	0,859**	-2,042	0,068
						T4	11	524,76	11,23	521,85	34,67	0,920**	-2,671	0,023
						T11	11	521,61	21,29	517,08	66,58	0,905**	-2,845	-2,845
						L2	11	522,07	16,45	520,98	54,87	0,793**	-2,055	0,067
						L4	11	516,90	13,27	513,84	37,46	0,438	-0,663	0,522

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α =0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed.

3.4 Análise de Regressão Linear Múltipla

Tal como na análise de regressão linear simples, também a análise de regressão linear múltipla se efetuou em função do sexo e apenas os modelos com valores de R² superiores a 0,5 foram considerados. Somente os modelos de regressão com duas variáveis independentes foram aqui considerados devido ao tamanho da amostra. Todos os pressupostos para a realização da análise de regressão linear múltipla foram verificados, inclusive a multicolinearidade.

Com exceção da segunda vértebra cervical e da primeira sagrada, as restantes vértebras apresentaram modelos de regressão linear estatisticamente significativos com valores de R² superiores as 0,5.

3.4.1 Vértebras Cervicais

Embora não apresente modelos de regressão com coeficiente de determinação superior a 0,5, a estimativa da altura da C2 foi melhor representada pelas vértebras S1 e L2 no sexo feminino com R² de 0,316 e no sexo masculino pelas vértebras C3 e L3 com R² de 0,360.

Segundo os resultados da análise de regressão múltipla para a estimativa da altura da T3 (tabela 3.4.1), as vértebras C4 e L5 (R² =0,653; EP=0,72; F _(2,54) = 50,71; p<0,001) foram aquelas que em conjunto apresentaram um maior coeficiente de determinação em indivíduos do sexo feminino. Com efeito, a altura da C3 foi explicada em 65,3% pelo modelo de regressão apresentado, com um erro de predição de cerca de 0,72mm. Já no sexo masculino, a altura da C3 foi explicada em 60,2% pelo modelo representado pelas vértebras C4 e T5 (R² =0,602; EP=0,72; F _(2,48) = 36,36; p <0,001). No caso da vértebra C4, os modelos que melhores resultados apresentaram para a sua predição, foram formados pelas vértebras C3 e C5 para o sexo feminino (R² =0,646; EP=0,56; F _(2,54) = 49,354; p<0,001) tal como para o sexo masculino (R² =0,707; EP=0,54; F _(2,48) = 58,043; p<0,000) (tabela 3.4.2). Já em relação à estimativa da C5, esta apresentou bons coeficientes de determinação quando a sua previsão foi efetuada a partir de modelos de regressão formados pela C4 e pela C6, nos dois sexos, em que ambas as variáveis são significativas para o modelo. Relativamente ao sexo feminino, o modelo explicou 78,1%

da variação da altura da C5 (R^2 =0,781; EP=0,46; F _(2,54) = 68,90; p< 0,000), enquanto no sexo masculino foi explicada em 66,8% (R^2 =0,668; EP=0,64; F _(2,48) = 48,21; p<0,001).

Tabela 3.4.1 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura C3 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	0,763	1,251	-	0,610	0,544		
Feminino	C4	0,551	0,080	0,595	6,871	0,000	0,653	0,71730
em	L5	0,190	0,045	0,365	4,214	0,000		
[-	Fórmula	0	,551*(me	dida C4)	+ 0,190*(r	nedida L	(5) + 0.70	63
0	Constante	-0,796	2,094	_	-0,380	0,706		
Masculino	C4	0,766	0,115	0,666	6,659	0,000	0,602	0,71730
asc	T5	0,232	0,111	0,209	2,093	0,042		
<u></u>	Fórmula	0	,766*(me	dida C4)	+ 0,232*(1	nedida T	(5) - 0.79	96

Tabela 3.4.2 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C4 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	0,760	1,169	-	0,650	0,518		
Feminino	C3	0,440	0,123	0,407	3,568	0,001	0,646	0,55780
emi	C5	0,503	0,124	0,464	4,064	0,000		
<u> </u>	Fórmula	(),440*(me	edida C3)	+ 0,503*(medida	(C5) + 0,7	760
00	Constante	2,411	1,056	-	2,284	0,027		
uli	C3	0,412	0,084	0,474	4,878	0,000	0,707	0,53493
Masculino	C5	0,417	0,087	0,468	4,817	0,000		
Z	Fórmula	(),412*(me	edida C3)	+ 0,417*(medida	(C5) + 2,4	111

Tabela 3.4.3 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C5 em função do sexo.

		В	EP	β	t	Sig,	\mathbb{R}^2	EP
9	Constante	0,544	0,962	-	0,566	0,574		
Feminino	C4	0,431	0,082	0,468	5,274	0,000	0,718	0,45826
emi	C6	0,499	0,091	0,485	5,461	0,000		
[-	Fórmula	0,4	431*(med	lida C4)	+ 0,499 *(r	nedida ((26) + 0,	544
0	Constante	-0,781	1,412	-	-0,553	0,583		
ılin	C4	0,609	0,111	0,543	5,503	0,000	0,668	0,63965
Masculino	C6	0,411	0,106	0,385	3,897	0,000		
	Fórmula	0,	609*(me	dida C4)	+ 0,411*(1	medida ((26) - 0.7	781

O modelo de regressão para a estimativa da altura da vértebra C6 que apresentou melhor coeficiente de determinação foi representado pelas vértebras C5 e C7 (tabela 3.4.4). No sexo feminino, o modelo explicou 69,6% da variação da altura da vértebra C6 (R^2 =0,696; EP=0,47; F $_{(2,54)}$ = 61,760; p<0,001), e, por seu turno, no sexo masculino a altura da C6 foi explicada em 56,8% pelo modelo obtido (R^2 =0,568; EP=0,68; F $_{(2,48)}$ = 31,61; p<0,001). As vértebras preditoras foram ambas significativas nos modelos apresentados. Para a vértebra C7, as vértebras que melhor previram a sua altura foram a T1 e C6 (tabela 3.4.5). No sexo feminino, o modelo explicou 69,6% da variação da altura da C7 associado a um erro de predição de 0,53mm (R^2 =0,696; EP=0,53; F $_{(2,54)}$ = 61,79; p <0,001). Já no sexo masculino esta relação foi explicada pelo modelo em 76,4% com um erro de predição de aproximadamente 0,50mm (R^2 =0,764; EP=0,50; F $_{(2,48)}$ = 77,52; p <0,001).

Tabela 3.4.4 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C6 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	0,795	1,011	-	0,786	0,436		
Feminino	C5	0,537	0,085	0,552	6,337	0,000	0,696	0,46324
emi	C7	0,357	0,077	0,406	4,660	0,000		
—	Fórmula	0,	537*(med	lida C5)	+ 0,357*(medida	$\mathbf{C7})+0,$	795
30	Constante	1,630	1,513	-	1,077	0,287		
ulii	C5	0,439	0,104	0,470	4,204	0,000	0,568	0,68133
Masculino	C7	0,396	0,113	0,392	3,505	0,001		
	Fórmula	0,4	439*(med	lida C5)	+ 0,396*(medida	(C7) + 1,	630

Tabela 3.4.5 – Resumo do modelo de regressão linear múltipla para a estimativa da altura C7 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
9	Constante	1,463	1,107	-	1,322	0,192				
ini	T1	0,536	0,085	0,619	6,340	0,000	0,696	0,52591		
Feminino	C6	0,328	0,111	0,289	2,956	0,005				
Ħ	Fórmula	la 0,536*(medida T1) + 0,328*(medida C6) + 1,463								
10	Constante	-1,414	1,317	-	-1,074	0,288				
ulii	T1	0,777	0,092	0,710	8,479	0,000	0,764	0,49805		
Masculino	C6	0,249	0,083	0,252	3,005	0,004				
	Fórmula	0,	777*(med	dida T1) -	+ 0 ,249 *(r	nedida (C6) – 1,4	14		

3.4.2 Vértebras Torácicas

Os resultados da análise de regressão múltipla demonstraram que para a estimativa da altura da T1, os modelos de regressão foram representados pelas vértebras C7 e T3 para o sexo feminino (R^2 =0,719; EP=0,58; F _(2,54) = 68,99; p <0,001) e pelas vértebras C7 e T9 para o sexo masculino (R^2 =0,752; EP=0,47; F _(2,48) = 72,65; p<0,001). Com efeito, os modelos explicaram em 71,9% e 75,2%, respetivamente, a variação da altura da T1.

Nos indivíduos do sexo feminino, a variação da altura da T2 foi melhor prevista pelas vértebras T3 e C7. O modelo de regressão explicou 77,4% da variação da altura da T2 (R^2 =0,774; EP=0,44; F $_{(2,54)}$ = 92,53; p<0,001). No sexo masculino esta relação foi explicada pelas vértebras T3 e T8 em 75,2% (R^2 =0,752; EP= 0,49; F $_{(2,48)}$ = 62,002; p<0,001).

Tabela 3.4.6 – Resumo do modelo de regressão linear múltipla para a estimativa da altura da T1 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
90	Constante	-1,903	1,653	-	-1,152	0,255		
Feminino	C7	0,725	0,100	0,628	7,270	0,000	0,719	0,58393
em	T3	0,426	0,115	0,321	3,718	0,000		
1	Fórmula	0,	+ 0,426*(1	medidaT	(3) - 1,90	03		
	C	2 200	1 550	_	1 404	0.161		
no	Constante	2,208	1,550		1,424	0,161		
Ë	C7	0,697	0,073	0,763	9,585	0,000	0,752	0,46652
Masculino	T9	0,196	0,078	0,200	2,509	0,016		
Σ	Fórmula 0,697*(medida C7) + 0,196*(medidaT9) + 2,208							

Tabela 3.4.7- Resumo do modelo de regressão linear múltipla para a estimativa da altura T2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
9	Constante	0,487	1,237	-	0,393	0,696			
Feminino	T3	0,659	0,086	0,595	7,688	0,000	0,774	0,43700	
emi	C7	0,385	0,075	0,399	5,157	0,000			
\F	Fórmula	0,659*(medida T3) + 0,385*(medida C7) + 0,487							
0	Constante	2,051	1,732	-	1,185	0,242			
alli	Т3	0,648	0,073	0,743	8,885	0,000	0,721	0,48658	
Masculino	T8	0,209	0,085	0,206	2,457	0,018			
<u>Z</u>	Fórmula	0,	648*(med	lida T3) -	+ 0,209 *(1	medida T	(78) + 2,0)51	

Para a previsão da altura da vértebra T3, os modelos de regressão que apresentaram melhores coeficientes de determinação foram formados pelas vértebras T2 e T4 em ambos os sexos. No sexo feminino, o modelo explicou 81,2% da altura da T3 (R^2 =0,812; EP= 0,36; F _(2,54) = 116,99; p<0,001), enquanto no masculino explica 78,7% desta relação (R^2 =0,787; EP= 0,49; F _(2,49) = 88,60; p<0,001).

Para a vértebra T4, as vértebras que apresentaram coeficientes de determinação mais elevados, para a inferência da sua altura, foram a T5 e T3 (tabela 3.4.9). Nos indivíduos do sexo feminino, o modelo de regressão obtido, explicou 79,2% da variação da altura da T4 e tem um erro de predição ou estimativa de cerca de 0,42 mm (R^2 =0,792; EP=0,41717; $F_{(2,54)}$ = 103,01; p<0,001). Também no sexo masculino, o modelo apresentado explicou a variação da altura da T4 em 79,2%, no entanto, com um erro de predição igual a 0,50 mm (R^2 = 0,792; EP=0,50; $F_{(2,48)}$ = 91,30; p<0,001). No caso da estimativa da T5, o modelo de regressão obtido é representado pelas vértebras T4 e T6 em ambos os sexos (tabela 3.4.10). No caso feminino, o modelo conseguiu explicar em 83,6% a variação da altura da T5 (R^2 =0,836; EP= 0,39; $F_{(2,54)}$ = 137,90; p<0,001), já no sexo masculino explica em 78,7% (R^2 =0,787; EP=0,46; $F_{(2,48)}$ =97,76; p<0,001).

Relativamente à vértebra T6, as vértebras que em conjunto apresentaram um maior coeficiente de determinação foram a T7 e T5 (tabela 3.4.11). No sexo feminino o modelo apresentou um coeficiente de determinação de 0,846 (R^2 =0,846; EP=0,40; F _(2,54) = 148,77; p<0,001) e no sexo masculino de 0,720 (R^2 =0,720; EP= 0,55; F _(2,48) = 61,82; p<0,001).

Tabela 3.4.8 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T3 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	1,602	1,008	-	1,589	0,118		
	T2	0,443	0,069	0,490	6,382	0,000	0,812	0,35946
emi	T4	0,457	0,070	0,504	6,564	0,000		
—	Fórmula		0,443*(m	edida T2) + 0,457*	(medida]	Γ 4) + 1,6 0	2
0	Constante	-1,062	1,476	-	-0,719	0,475		
Masculino	T2	0,655	0,098	0,571	6,661	0,000	0,787	0,48799
asc	T4	0,397	0,083	0,409	4,769	0,000		
<u> </u>	Fórmula		0,655*(m	edida T2) + 0,397*	(medida]	(74) - 1,06	2

Tabela 3.4.9 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T4 em função do sexo .

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	0,732	1,185	-	0,618	0,539	0.70	
Feminino	T5	0,547	0,097	0,574	5,616	0,000	0,79 2	0,41717
emį	T3	0,400	0,113	0,363	3,554	0,001	2	
<u> </u>	Fórmula	0,547*(medida T5) + 0,400*(medida T3) + 0,732						
10	Constante	-0,223	1,424	-	-0,157	0,876	0.70	
il i	T5	0,696	0,102	0,655	6,825	0,000	0,79 2	0,49702
Masculino	T3	0,300	0,099	0,291	3,033	0,004	2	
_ <u>Z</u>	Fórmula	0	,696*(me	dida T5) -	+ 0,300 *(n	nedida T	3) - 0,22	23

Tabela 3.4.10 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T5 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
0	Constante	0,820	1,034	-	0,793	0,431		
Feminino	T4	0,479	0,096	0,457	4,974	0,000	0,836	0,38847
emj	T6	0,479	0,087	0,507	5,524	0,000		
—	Fórmula		0,479*(m	edida T4) + 0,479*	(medida	$\mathbf{T6}) + 0,8$	20
2	Constante	1,680	1,337	-	1,256	0,215		
ulir	T4	0,589	0,088	0,626	6,662	0,000	0,803	0,45539
Masculino	T6	0,330	0,094	0,331	3,521	0,001		
	Fórmula		0,589*(m	edida T4) + 0,330*	(medida	T6) + 1,6	580

Tabela 3.4.11 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T6 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
9	Constante	-0,538	1,099	-	-0,490	0,626					
Feminino	T7	0,463	0,085	0,448	5,471	0,000	0,846	0,39873			
emi	T5	0,565	0,087	0,533	6,514	0,000					
—	Fórmula	0,	$0,463*(medida\ T7) + 0,565*(medida\ T5) - 0,538$								
10	Constante	1,219	1,755	-	0,695	0,491					
uli I	T7	0,514	0,124	0,468	4,137	0,000	0,720	0,54417			
Masculino	T5	0,443	0,114	0,442	3,900	0,000					
	Fórmula	0,	514*(med	lida T7) -	+ 0,443 *(n	nedida T	(5) + 1,2	19			

O resumo do modelo de regressão apresentado na tabela 3.4.12 demonstrou que, para a inferência da altura da T7, as vértebras que no seu conjunto apresentaram melhores resultados como preditoras foram a T8 e a T6 para o sexo feminino ($R^2 = 0.813$; EP = 0.43; $F_{(2.54)} = 117.38$; p < 0.001) e a T8 e T6 para o sexo masculino ($R^2 = 0.764$; EP = 0.46; $F_{(2.48)} = 77.81$; p < 0.001).

No caso da T8, as vértebras que apresentaram melhores coeficientes de determinação para a estimativa da sua altura foram a T7 e T9 em cada um dos sexos (tabela 3.4.13). O modelo de regressão apresentado para o sexo feminino conseguiu explicar em 82,5% a variação da altura da T8 ($R^2 = 0.825$; EP=0,43; F _(2,54) =127,38; p<0,001) enquanto no sexo masculino foi de 72,8% ($R^2 = 0.728$; EP=0,47; F _(2,48) = 64,13; p<0,001).

Tabela 3.4.12- Resumo dos modelos de regressão linear múltipla para a estimativa da altura T7em função do sexo.

	3	В	EP	β	t	Sig.	\mathbb{R}^2	EP
0	Constante	1,551	1,139	-	1,362	0,179		
Feminino	T8	0,436	0,087	0,455	5,021	0,000	0,813	0,42524
emi	T6	0,489	0,088	0,506	5,593	0,000		
<u>-</u>	Fórmula 0,436*(medida T8) + 0,489*(medida T6) + 1							
0	Constante	0,887	1,583	-	0,560	0,578		
ulin	Т8	0,596	0,089	0,574	6,670	0,000	0,764	0,45556
Masculino	T5	0,371	0,079	0,405	4,707	0,000		
≥ Fórmula 0,596*(medida T8) + 0,489*							$\mathbf{\Gamma6)} + 0,8$	87

Tabela 3.4.13 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T8 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	1,569	1,140	-	1,376	0,175		
Feminino	T7	0,435	0,093	0,417	4,655	0,000	0,825	0,42891
emi	T9	0,477	0,078	0,547	6,097	0,000		
H	(9) + 1,56	59						
2	Constante	2,678	1,604	-	1,670	0,101		
ulir	T7	0,470	0,113	0,488	4,153	0,000	0,728	0,47198
Masculino	T9	0,397	0,111	0,419	3,567	0,001		
	Fórmula	(,470*(me	dida T7)	+ 0,397*(medida T	(9) + 2,67	78

Para a vértebra T9, os modelos com coeficientes de determinação mais elevados foram representados pelas vértebras T10 e T8 para indivíduos do sexo feminino e T8 e T11 para indivíduos do sexo masculino (tabela 3.3.14). No primeiro caso o modelo explicou em 84,5% a variação da altura da T9 com um erro de predição de 0,46mm (R^2 =0,845; EP=0,46; F $_{(2,54)}$ = 147,18; p<0,001). No caso masculino esta relação foi explicada em 72,7% pelo modelo de regressão e encontra-se associado a um erro de predição de 0,50mm (R^2 =0,727; EP=0,49; F $_{(2,48)}$ = 63,85; p<0,001).

Tabela 3.4.14 – Resumo do modelo de regressão linear múltipla para a estimativa da altura da T9 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
0	Constante	0,425	1,186	-	0,358	0,722			
Feminino	T8	0,506	0,107	0,441	4,729	0,000	0,845	0,46271	
emi	T10	0,464	0,083	0,523	5,601	0,000			
1	Fórmula	0,506 *(medida T8) + 0,464*(medida T10) + 0,425							
0	Constante	1,705	1,739	-	0,981	0,332			
ulin	T8	0,646	0,092	0,612	7,015	0,000	0,727	0,49884	
Masculino	T11	0,267	0,065	0,360	4,128	0,000			
<u>Z</u>	Fórmula	0,646*(medida T8) + 0,267*(medida T11) + 1,705							

No que concerne à vértebra T10, o resumo dos modelos de regressão encontra-se apresentado na tabela 3.4.15. Tanto para o sexo feminino como para o masculino, cada um dos modelos é representado pelas vértebras T9 e T11. Com efeito, no sexo feminino, o modelo explicou em 88,7% a altura da T10 (R^2 =0,887; EP=0,45; F _(2,54) = 212,51; p<0,001) enquanto no sexo masculino explicou 67,1% (R^2 =0,671; EP=0,65; F _(2,48) =48,85; p<0,001).

Tabela 3.4.15 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T10 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
9	Constante	-0,281	1,043	-	-0,269	0,789			
Feminino	T9	0,463	0,091	0,411	5,112	0,000	0,887	0,44467	
emi	T11	0,555	0,078	0,574	7,142	0,000			
Ĕ	Fórmula	0,463*(medida T9) + 0,555*(medida T11) – 0,281							
	C	2.000	2.107		0.001	0.227			
Ĕ.	Constante	2,088	2,107	-	0,991	0,327			
Ä	T9	0,535	0,131	0,456	4,093	0,000	0,671	0,64337	
Masculino	T11	0,384	0,097	0,441	3,956	0,000			
Σ	Fórmula	0	,535*(me	edidaT9) +	- 0,384*(m	edida T1	1) + 2,08	88	

Relativamente à estimativa da T11, o melhor modelo de regressão obtido para o sexo feminino foi representado pelas vértebras T10 e T12 (tabela 3.4.16). Aqui, o modelo conseguiu explicar em 87% a variação da altura da T11 e apresentou um erro de predição de aproximadamente 0,49mm (R^2 =0,870; EP=0,49; F $_{(2,54)}$ =181,973; p<0,004). Já para o sexo masculino, o modelo foi formado pelas vértebras T10 e L1 (tabela 3.4.16), explicando a altura da T11 em 68,9% e associado a um erro de predição de cerca de 0,72 mm (R^2 =0,689; EP=0,72; F $_{(2,48)}$ = 53,23; p<0,001).

O resumo dos modelos de regressão obtidos para a estimativa da vértebra T12 em cada um dos sexos encontra-se apresentado na tabela 3.4.17. Para os indivíduos do sexo feminino, o modelo foi representado pelas vértebras L1 e T11 (R^2 =0,869; EP=0,56; F (2,54) =178,48; p<0,001) bem como para o sexo masculino (R^2 =0,572; EP=0,89; F (2,48) =32,03; p<0,001).

Tabela 3.4.16 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T11 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
0	Constante	0,909	1,088	-	0,835	0,407					
inin	T10	0,651	0,090	0,629	7,251	0,000	0,870	0,49326			
Feminino	T12	0,305	0,077	0,343	3,952	0,000					
T	Fórmula	0,6	0,651*(medida T10) + 0,305*(medida T12) + 0,909								
9	Constante	-2,407	2,490	-	-0,966	0,339					
alin .	T10	0,639	0,104	0,556	6,143	0,000	0,689	0,71736			
Masculino	L1	0,427	0,094	0,412	4,543	0,000					
	Fórmula 0,639*(medida T10) + 0,427*(medida L1) – 2,407							107			

Tabela 3.4.17 – Resumo do modelo de regressão linear múltipla para a estimativa da altura T12 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP				
	Constante	-1,115	1,287	-	-0,867	0,390						
Feminino	L1	0,525	0,073	0,535	7,159	0,000	0,869	0,5578				
imi	T11	0,518	0,084	0,461	6,162	0,000						
Fe	Fórmula	$0,525*(medida\ L1) + 0,518*(medida\ T11) - 1,115$										
9	Constante	2,107	2,792	-	0,755	0,454						
ulir	L1	0,566	0,139	0,515	4,065	0,000	0,572	0,8901				
Masculino	T11	0,325	0,134	0,308	2,426	0,019						
Σ	Fórmula	0,	566*(med	ida L1) +	0,325*(m	edida T1	1) + 2,10	7				

3.4.3 Vértebras Lombares e Primeira Vértebra Sagrada

Os melhores modelos de regressão para a previsão da L1, foram obtidos quando esta foi estimada a partir da T12 e L3 (R^2 =0,814; EP=0,67551; F _(2,54) = 118,35; p<0,001) para indivíduos do sexo feminino e quando prevista a partir da L2 e T12 (R^2 =0,672; EP=0,71; F _(2,48) = 49,18; p<0,001) em indivíduos masculinos (tabela 3.4.18). Em relação à vértebra L2, esta apresenta coeficientes de determinação mais elevados quando estimada a partir da T12 e L4 para o sexo feminino (R^2 =0,739; EP= 0,82; F _(2,54) = 76,33; p <0,000) e a partir da L3 e T9 para o sexo masculino (R^2 =0,691; EP=0,77; F _(2,48) = 53.61; p <0,001).

Tabela 3.4.18 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L1 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
0	Constante	1,404	1,613	-	0,870	0,388		
Feminino	T12	0,677	0,089	0,665	7,587	0,000	0,814	0,67551
emi	L3	0,291	0,087	0,291	3,326	0,002		
<u> </u>	Fórmula	0,6	577*(med	ida T12)	+ 0,291*	(medida	L3) + 1	,404
10	Constante	5,032	2,130	-	2,362	0,022		
ij	L2	0,447	0,094	0,501	4,731	0,000	0,672	0,70938
Masculino	T12	0,371	0,096	0,408	3,851	0,000		
Z	Fórmula	0,4	177*(med	ida L2) -	+ 0,371*(ı	nedida T	(12) + 5	,032

Tabela 3.4.19 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	4,463	1,768	-	2,525	0,015		
Feminino	T12	0,536	0,106	0,513	5,055	0,000	0,739	0,82270
emi	L4	0,349	0,086	0,411	4,052	0,000		
—	Fórmula	0,	536*(med	dida T12)	+ 0,349*	(medida	L4) + 4	463
9	Constante	- 0,919	2,849	-	0,322	0,749	0.601	0.77220
alin	L3	0,646	0,084	0,662	7,707	0,000	0,691	0,77230
Masculino	T9	0,463	0,125	0,318	3,700	0,001		
Z	Fórmula	0	,646*(me	dida L3)	+ 0,463*(medida '	T9) – 0,9	919

O resumo do modelo de regressão apresentado na tabela 3.4.20 demonstrou que para a estimativa da altura da L3, as vértebras que no seu conjunto apresentaram melhores resultados como preditoras foram a L4 e L1 para o sexo feminino (R²=0,762; EP=0,73; F (2,54) = 86,62; p<0,000) e a L5 e L2 para o sexo masculino (R²=0,742; EP=0,73; F (2,48) =69,14; p<0,001). Já para a estimativa da L4, os modelos de regressão foram representados pela L5 e L3 para o sexo feminino (R²=0,743; EP=0,96; F (2,54) =78,22; p<0,001) tal como para o sexo masculino (R²=0,688; EP=0,86; F (2,48) =52,96; p<0,001) (3.4.21). Em relação à vértebra L5 (tabela 3.4.22), o modelo de regressão obtido revelou que esta pode ser prevista a partir da L4 e L1 no sexo feminino (R²=0,737; EP=0,86; F

 $_{(2,54)} = 75,80$; p<0,001) e pela L3 e L4 no sexo masculino (R 2 =0,706; EP=0.80; F $_{(2,48)} = 57,53$; p<0,001).

Tabela 3.4.20 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura L3 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
10	Constante	4,819	1,718	-	2,805	0,007		
Feminino	L4	0,443	0,077	0,534	5,762	0,000	0,762	0,72338
em	L1	0,413	0,093	0,412	4,444	0,000		
=	Fórmula	0,4	443*(med	lida L4) -	+ 0,413*(medida	L1) + 4,	819
00	Constante	1,902	2,216	-	0,858	0,395		
Masculino	L5	0,493	0,097	0,507	5,103	0,000	0,742	0,72338
asc	L2	0,445	0,102	0,433	4,360	0,000		
<u> </u>	Fórmula	0,4	493*(med	lida L5) -	+ 0,445*(medida	L2) + 1,	902

Tabela 3.4.21 – Resumo dos modelos de regressão linear múltipla para a estimativa da altura L4 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
9	Constante	-1,871	2,307	-	-0,811	0,421		
Feminino	L5	0,509	0,135	0,449	3,781	0,000	0,743	0,95970
emį	L3	0,551	0,143	0,456	3,841	0,000		
Ŧ	Fórmula	0,5	509*(med	lida L5)	+ 0,551*(r	nedida I	(-3) - 1,8	71
	_							
no	Constante	2,232	2,547	-	0,876	0,385		
illi	L5	0,460	0,141	0,439	3,264	0,002	0,688	0,85795
Masculino	L3	0,470	0,145	0,436	3,242	0,002		
<u> </u>	Fórmula	0,4	160*(med	lida L5) -	+ 0,470 *(n	nedida L	(2.3) + 2.2	32

Tabela 3.4.22 – Resumo do modelo de regressão linear múltipla para a estimativa da altura L5 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
10	Constante	4,249	1,921		2,211	0,031		
Feminino	L4	0,506	0,086	0,573	5,885	0,000	0,737	0,85593
em	L1	0,377	0,104	0,354	3,630	0,001		
[-	Fórmula	0,	506*(med	dida L4)	+ 0,377*(medida	L1) + 4,	249
00	Constante	3,585	2,323		1,543	0,129		
ă.	L3	0,488	0,130	0,474	3,740	0,000	0,706	0,79524
Masculino	L4	0,395	0,121	0,414	3,264	0,002		
<u> </u>	Fórmula	0,4	488*(med	dida L3)	+ 0,395*(medida	L4) + 3,	585

Relativamente à primeira vértebra sagrada, os modelos de regressão obtidos não apresentaram coeficientes de determinação superiores a 0,5 em nenhum caso. Contudo, o melhor resultado foi obtido quando esta foi estimada a partir das vértebras C2 e T5, com R² de 0,366 nos indivíduos do sexo feminino (apêndice III). Para os indivíduos do sexo masculino, através do método *stepwise*, não se obtiveram modelos de regressão linear múltipla.

3.4.4 Altura Total da Coluna Vertebral

Procedeu-se a uma análise de regressão linear múltipla de modo a averiguar a possibilidade de um modelo de regressão múltipla ser capaz de predizer a altura da totalidade da fração da coluna vertebral (CT) aqui avaliada. Desta forma, para o sexo feminino o modelo que apresentou um maior coeficiente de determinação (R²) para previsão da altura total da fração da coluna vertebral foi formado pela vértebra C7 e T12 enquanto para o sexo masculino foi formado pela T11 e T4 (tabela 3.4.23). A variação da altura da fração da coluna vertebral foi explicada por 95,1% do modelo de regressão do sexo feminino, apresentando um erro de predição igual a 4,96 mm (R² =0,951; EP=4,97; F (2,44) = 427,44; p<0,000). Já o modelo de regressão do sexo masculino explicou a variação da altura da fração coluna vertebral avaliada em 80,7% com um erro de predição de cerca de 8,43mm (R² =0,807; EP= 8,43; F (2,39) = 81,64; p<0,001).

Tabela 3.4.23 – Resumo do modelo de regressão linear múltipla para a estimativa da altura da fração da coluna vertebral em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
0	Constante	103,236	13,181	-	7,832	0,000		1.064
Feminino	C7	12,322	0,841	0,526	14,658	0,000	0,951	4,964 09
emi	T12	9,440	0,521	0,650	18,123	0,000		0)
—	Fórmula	12,32	2*(medida	a C7) + 9	,440*(med	ida T12)	+ 103,2	236
0	Constante	177,404	27,382	-	6,479	0,000		0.425
ulin	T11	8,056	1,208	0,543	6,668	0,000	0,807	8,425 40
Masculino	T4	8,644	1,427	0,493	6,057	0,000		10
Z	Fórmula	8,050	6*(medida	T11) + 8	3,644*(med	dida T4)	+ 177,4	04

3.4.5 Altura Vertebral Estimada e Altura Vertebral Real

Todos os modelos de regressão linear múltipla obtidos, e apresentados anteriormente, foram também testados nos 43 indivíduos, 20 femininos e 23 masculinos, que constituíram a amostra independente.

Para se verificar a relação entre a altura estimada e altura real documentada, recorreu-se à correlação de Pearson (ou de Spearman). Com efeito, constatou-se que, em termos gerais, na grande maioria dos casos, a altura estimada e a altura real documentada encontram-se moderadas a fortemente relacionadas em ambos os sexos. No entanto, nas vértebras C3, C5, T2 e T10 no sexo feminino apresentam uma relação fraca (r <0,5) entre a altura estimada e a altura documentada.

Apesar de apresentarem uma boa relação entre a altura estimada e a altura documentada, com o teste-*t* verificou-se que a vértebra C3 no sexo feminino e as vértebras C5, T6, T7, T12, L1 e CT, nos indivíduos do sexo masculino, apresentam diferenças significativas entre estas duas avaliações. Ainda assim, constatou-se que nas demais não existiram diferenças significativas. Contudo, através dos resultados obtidos a partir do cálculo do RMSE (tabela 3.4.24), verificou-se que, em geral, as diferenças foram inferiores a 1 mm, embora se tenham verificado algumas exceções. Nos indivíduos do sexo feminino a vértebra C5 apresentou uma diferença superior a 1 mm, as vértebras C2, C3, T2 apresentaram diferenças superiores a 2 mm e a S1 uma diferença de 4,785 mm. No caso da CT a diferença foi de 10,490 mm. Quanto ao sexo masculino as diferenças foram em geral inferiores a 1 mm com exceção das vértebras C2, C7, T2, T7 e L1. Já a CT apresentou uma diferença entre a altura estimada e a altura real de 12,749 mm.

Tabela 3.4.24 – Resultados obtidos a partir do cálculo do RMSE (raiz quadrada do erro quadrático médio) para inferência da diferença (em mm) entre altura estimada e altura real em cada um dos sexos.

	Feminino)		Masculino					
Vértebra Estimada	Vértebras Preditoras	n	RMSE	Vértebra Estimada	Vértebras preditoras	n	RMSE		
C2	S1, L2	20	2,021	C2	C3, L2	17	2,195		
C3	C4,L5	18	2,746	C3	C4, T5	18	0,630		
C4	C3,C5	18	0,304	C4	C3, C5	17	0,585		
C5	C4, C6	18	1,783	C5	C4, C6	16	0,685		
C6	C5, C7	15	0,439	C6	C5, C7	18	0,568		
C7	T1, C6	15	0,504	C7	T1, C6	19	1,313		
T1	C7, T3	16	0,654	T1	C7, T9	19	3,812		
T2	T3, C7	19	2,076	T2	T3, T8	17	4,381		
T3	T2, T4	17	0,404	T3	T2, T4	17	0,502		
T4	T5, T3	15	0,427	T4	T5, T3	21	0,411		
T5	T4, T6	15	0,399	T5	T4, T6	22	0,415		
T6	T7, T5	16	0,265	T6	T7. T5	21	0,485		
T7	T8. T6	18	0,465	T7	T8. T5	21	2,671		
T8	T7, T9	18	0,781	T8	T7, T9	21	0,420		
T9	T8, T10	19	0,770	T9	T8, T11	21	0,497		
T10	T9, T11	18	0,926	T10	T9, T11	22	0,549		
T11	T10, T12	19	0,762	T11	T10, L1	22	0,792		
T12	L1, T11	19	0,578	T12	L1, T11	21	0,598		
L1	T12, L3	20	0,673	L1	L2, T12	21	1,257		
L2	T12, L4	19	0,921	L2	L3, T9	21	1,000		
L3	L4, L1	19	0,766	L3	L5, L2	23	0,823		
L4	L5, L3	17	0,751	L4	L5, L3	22	0,854		
L5	L4,L1	17	0,908	L5	L3,L4	22	0,928		
S1	T5, C2	18	2,012	S1	n.a	n.a	n.a.		
CT	C7, T12	9	10,490	CT	T11, T4	11	12,749		

n.a. – não aplicável

Tabela 3.4.25 – Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo feminino.

		Altura	a Real				Altu	ra Estima	ıda					
Vértebra Estimada	n	Méd.	DP	Med.	Ampl.	Vértebra preditoras	n casos aplicáveis	Méd.	DP	Med.	Ampl.	r	Teste t	Sig. ^c
C2	20	35,58	2,18	35,27	7,55	L2, S1	20	35,20	1,69	34,85	6,64	0,469*	0,846	0,408
C3	18	12,88	0,97	12,71	2,96	C4, L5	18	11,12	2,04	11,75	6,81	$0,434^{a}$	-3,593 ^b	<0,001
C4	20	12,30	0,95	12,10	3,53	C3, C5	18	12,39	0,91	12,11	2,97	$0,949^{**}$	-1,292	0,214
C5	20	11,83	1,04	11,64	3,85	C4, C6	18	11,56	1,40	11,67	6,39	$0,492^{*a}$	-0.893^{b}	0,372
C6	17	12,14	0,87	11,91	3,01	C5, C7	15	11,99	0,87	11,93	2,93	$0,873^{**a}$	$-0,909^{b}$	0,363
C7	17	13,72	0,99	13,72	3,38	T1, C6	15	13,60	0,75	13,54	2,54	0,894**	0,753	0,464
T1	19	15,35	0,91	15,24	3,02	C7, T3	16	15,28	1,03	15,16	3,46	0,771**	-0,399	0,695
T2	20	16,79	1,04	16,49	3,85	T3, C7	19	16,15	2,20	16,76	7,91	$0,472^{*a}$	-0.040^{b}	0,968
T3	19	17,05	0,93	16,87	3,12	T2, T4	17	17,08	0,78	16,69	2,43	$0,\!899^{**}$	0,728	0,477
T4	17	17,53	0,89	17,22	2,86	T5, T3	15	17,50	0,92	17,07	3,14	$0,957^{**a}$	$-1,136^{b}$	0,256
T5	18	18,16	1,00	18,06	3,86	T4, T6	15	18,16	0,81	17,90	2,99	$0,945^{**a}$	$-0,568^{b}$	0,570
T6	19	18,69	0,85	18,71	3,38	T7. T5	16	18,59	0,92	18,44	3,25	$0,906^{**a}$	0,467	0,647
T7	19	19,12	0,80	18,96	2,94	T8. T6	18	19,07	0,85	18,96	3,55	$0,690^{**a}$	0,747	0,466
T8	19	19,25	1,07	19,08	4,77	T7, T9	18	19,48	0,75	19,28	2,52	0.581^{*a}	-1,277	0,219
Т9	19	20,07	0,94	19,75	3,30	T8, T10	19	19,89	0,87	19,68	3,71	0,695**a	$-0,563^{b}$	0,573
T10	20	20,87	1,01	20,70	4,11	T9, T11	18	21,16	0,91	20,83	3,14	0,493 ^{* a}	$-0,065^{b}$	0,948
T11	19	21,79	1,04	21,52	3,81	T10, T12	18	21,59	0,92	21,39	3,72	0,711**	1,159	0,262
T12	20	23,23	1,16	23,11	4,23	L1, T11	19	23,37	1,20	23,01	4,53	0,881**	-0,848	0,407
L1	20	25,08	1,41	24,81	5,24	T12, L3	20	25,07	1,11	24,83	3,90	0,878**	0,073	0,942
L2	20	26,58	1,54	26,21	5,19	T12, L4	19	26,47	0,93	26,31	2,97	0,820**	1,025	0,319
L3	20	27,27	1,53	26,70	5,34	L4, L1	19	27,28	1,02	27,06	3,20	0,877**	0,509	0,617
L4	19	27,23	1,21	27,03	4,67	L5, L3	17	27,05	1,37	26,80	4,60	$0,829^{**a}$	$-0,166^{b}$	0,868
L5	17	27,29	1,45	26,99	4,77	L4,L1	17	27,46	1,02	27,29	3,29	0,778**	-0,735	0,473
S1	20	30,92	2,16	30,59	9,40	C2, T5	18	31,53	1,18	31,17	3,87	0,406	-1,099	0,284
\mathbf{CT}	9	494,49	25,19	490,11	66,19	C7, T12	9	494,23	24,25	486,48	59,75	0,899**	0,070	0,946

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α = 0,05 ***significativo para α = 0,01; a Correlação de Spearman; Teste de Wilcoxon; 2-tailed.

Tabela 3.4.26 – Estatística descritiva e resultados para os testes de correlação e diferenças médias entre a altura vertebral estimada e a altura vertebral real nos indivíduos do sexo masculino.

		Altı	ıra Rea	l			Al	tura Esti	mada					
Vértebra Estimada	n	Méd.	DP	Med.	Amplitude	Vértebras preditoras	n casos aplicáveis	Méd.	DP	Med.	Amplitude	r	Teste t	Sig.
C2	17	37,57	2,48	37,82	8,44	C3, L2	17	36,81	1,67	37,07	6,39	0,533*	1,475	0,160
C3	20	13,88	1,22	14,07	4,54	C4, T5	18	13,98	1,14	14,06	4,22	0,861**	-0,714	0,485
C4	19	13,33	1,30	13,44	4,92	C3, C5	17	13,52	0,87	13,65	3,04	$0,897^{**a}$	-1,520 ^b	0,148
C5	20	12,92	1,09	12,93	3,81	C4, C6	16	12,70	0,90	12,93	3,65	0,819	2,019	0,062
C6	19	13,13	0,85	13,30	3,08	C5, C7	18	13,10	0,73	13,11	2,82	0,724**	-0,227	0,823
C7	20	14,55	0,91	14,77	3,09	T1, C6	19	14,34	1,37	14,62	5,08	$0,514^{*a}$	$-0,523^{b}$	0,601
T1	21	16,57	0,85	16,45	3,59	C7, T9	19	16,41	0,82	16,57	2,87	$0,686^{**a}$	$-0,604^{b}$	0,546
T2	17	18,13	1,22	18,08	5,06	T3, T8	17	17,93	1,35	18,03	6,29	0.840^{**a}	-0.402^{b}	0,687
T3	20	18,17	0,75	18,20	3,36	T2, T4	17	18,33	1,08	18,15	4,16	$0,789^{**a}$	-1,073 ^b	0,299
T4	22	18,76	0,81	18,54	2,93	T5, T3	21	18,69	0,86	18,36	3,02	0,837**	1,742	0,098
T5	23	19,28	0,94	19,05	3,22	T4, T6	22	19,24	0,77	19,02	2,48	0,905**	0,487	0,632
T6	23	19,77	0,98	19,51	3,56	T7. T5	21	20,08	0,96	19,83	3,44	0,935**a	$-3,215^{b}$	0,001
T7	21	20,13	1,12	20,11	4,28	T8. T5	21	22,77	1,13	22,62	4,53	0,930**a	$-4,015^{b}$	0,000
T8	22	20,56	1,12	20,74	4,97	T7, T9	21	20,42	0,99	20,37	3,80	0,930**	1,005	0,327
T9	23	20,83	1,22	20,98	4,64	T8, T11	21	21,17	0,96	21,14	3,46	0,905**	-1,648	0,115
T10	23	21,88	1,55	21,88	5,68	T9, T11	22	22,06	1,11	21,95	4,44	0,946**	-0,475	0,640
T11	22	22,84	1,47	22,64	5,67	T10, L1	22	22,64	1,48	22,63	5,46	0,858**	1,155	0,261
T12	21	23,81	1,37	23,55	5,23	L1, T11	21	24,03	1,36	23,87	4,78	0,912**	-1,729	0,099
L1	23	25,65	1,81	25,06	6,25	L2, T12	21	26,55	1,25	26,09	4,23	0,837**a	$-3,424^{b}$	0,001
$\overline{\mathbf{L2}}$	21	26,67	1,68	26,46	5,47	L3, T9	21	26,46	1,33	26,17	4,73	0,755**a	$0,999^{b}$	0,329
L3	23	27,46	1,74	27,21	5,65	L5, L2	23	27,64	1,53	27,34	5,25	0,864**	-1,066	0,298
L4	22	27,52	1,70	27,39	5,87	L5, L3	22	28,02	1,59	27,70	5,13	0,909**	-3,300	0,003
L5	23	28,14	1,82	27,48	6,93	L3,L4	22	27,83	1,49	27,70	4,98	0,861**	1,122	0,274
S1	23	31,77	2,34	32,25	8,80	n.a.	-	-	_	-	-	_	_	_
CT	11	512,37	25,07	509,18	90,14	T11, T4	11	521,92	21,12	520,54	67,98	0,941**	-3,576	0,005

Méd. – Média; DP – Desvio-padrão; Med. – Mediana; Ampl. – Amplitude.

*significativo para α = 0,05 **significativo para α = 0,01; *Correlação de Spearman; *Teste de Wilcoxon; *C2-tailed.

4. Discussão

O principal objetivo deste estudo consistiu essencialmente na avaliação da relação entre altura dos corpos vertebrais de modo a criar equações de regressão linear simples e múltiplas que permitissem estimar a altura de vértebras ausentes ou mal preservadas, ou mesmo a altura da fração da coluna vertebral envolvida no método anatómico, e consequentemente permitir a aplicação do método anatómico para a estimativa da estatura. No entanto, foram também avaliadas as diferenças na altura dos corpos vertebrais entre sexos, bem como entre os diferentes grupos etários.

4.1 Diferenças na Altura dos Corpos Vertebrais

Em todas as vértebras, desde a segunda vértebra cervical à primeira vértebra sagrada, foram verificadas diferenças significativas na altura média dos seus corpos entre indivíduos do sexo masculino e do sexo feminino. Pelo contrário, não se verificaram essas diferenças quando comparadas por grupos etários dentro de cada grupo sexual.

As diferenças na altura dos corpos vertebrais entre sexos não são novidade. Embora o dimorfismo sexual ao nível da coluna vertebral não seja largamente explorado, já alguns estudos verificaram, de facto, essas diferenças (Taylor e Twomey, 1984; Hermann *et al.*, 1993; Jankauskas, 1994; Wescott, 2000). Em termos gerais, as vértebras masculinas apresentam, em média, uma maior altura em relação às femininas (Hermann *et al.*, 1993) o que também se verifica no presente estudo. Jankauskas (1994) mediu a altura posterior e anterior dos corpos vertebrais bem como a largura superior. Em geral, o autor verificou um dimorfismo sexual significativo em todos os grupos de vértebras e que os indivíduos do sexo feminino apresentam maiores índices de altura-largura nos seus corpos vertebrais, principalmente nas vértebras torácicas, observação já feita por Taylor e Twomey em 1984. No entanto, a relação altura-largura não foi aqui averiguada.

De acordo com Taylor e Twomey (1984), o dimorfismo sexual presente na forma dos corpos vertebrais pode ser explicado pelas diferentes taxas de crescimento entre rapazes e raparigas. De facto, Roche (1972) verificou que, já na puberdade, os rapazes apresentam em média uma maior altura vertebral em relação às raparigas. Deste modo, o sexo influencia no tamanho do esqueleto axial e apendicular (Gilsanz *et al.*, 1997) sendo o principal fomentador da variabilidade da coluna vertebral (Jankauskas, 1994).

Na questão da idade, Erickson (1976) verificou um decréscimo na altura dos corpos vertebrais com o avançar da idade. No entanto, no seu estudo, Jankauskas (1994) averiguou que o fator idade não influenciava a altura vertebral, embora afetasse a largura. Já Hermann et al. (1993) constatou que a altura dos corpos vertebrais no sexo feminino era inversamente proporcional à idade, isto é, com o avançar da idade a altura vertebral tendia a diminuir. Alguns autores associam as mudanças nos corpos vertebrais à idade e às patologias degenerativas a ela associadas (Ericksen, 1976; Jankauskas, 1994), onde se espera uma relação linear positiva entre o aumento de idade e essas mudanças degenerativas. As patologias degenerativas da coluna vertebral incluem, entre outros, degeneração dos discos intervertebrais, osteófitos, distúrbios nos ligamentos e patologia degenerativa articular nas facetas. Contudo, estas modificações patológicas são invulgares antes dos 30 anos, progressivas com a idade e atingem um maior envolvimento após os 75 anos de idade (Aufderheide e Rodríguez-Martin, 1998). Todavia, os resultados obtidos, a partir da amostra aqui estudada, demonstram que não existem diferenças entre os grupos etários, no que à altura dos corpos vertebrais diz respeito. Esta questão é facilmente explicável. A idade máxima dos indivíduos que compõem a amostra é de 59 anos para sexo masculino e de 57 anos para o sexo feminino, sendo que o grupo etário dos 20 aos 39 anos é composto por um maior número de indivíduos. Ademais, a condição patológica, ou melhor, a ausência ou fraca presença dela, constituiu um dos critérios na seleção dos indivíduos. Assim sendo, tanto este critério de seleção como a ausência de indivíduos idosos na amostra aqui examinada podem ajudar a explicar o porquê dessas diferenças não se encontrarem aqui evidenciadas.

4.2 Estimativa da Altura dos Corpos Vertebrais

A estimativa da altura dos corpos vertebrais de vértebras ausentes ou mal preservadas representa uma mais-valia para a aplicação do método anatómico de estimativa da estatura.

Foram obtidos modelos de regressão lineares simples e múltiplos com coeficientes de determinação superiores a 0,5 e estatisticamente significativos para a maioria das vértebras, embora nas vértebras C2 e S1 o coeficiente de determinação tenha sido inferior a este limiar. No entanto, quando se observa a diferença, em milímetros, entre a altura estimada e a altura real, tanto para a vértebra C2 como para a S1, em cada um dos sexos, esta apresentou diferenças de cerca de 2mm a partir dos modelos de regressão linear simples e de cerca de 4 mm a partir dos modelos de regressão linear múltipla. O que demonstra que, apesar da morfologia característica destas vértebras em relação às demais, esta não será um impedimento para a aplicação de equações de regressão para estimar a altura dos seus corpos com precisão. Nas restantes vértebras, as diferenças observadas entre a altura estimada e a real situam-se abaixo de 1 mm, não representando diferenças estatisticamente significativas e, inclusivamente, algumas destas diferenças foram inferiores àquelas associadas ao erro técnico de medição. Isto demonstra que, em muitos casos, esses erros são negligenciáveis. Além disso, os modelos que serviram para a sua estimativa encontram-se associados a baixos erros de predição, também inferiores a 1 mm. Estes resultados apontam, de facto, para a possibilidade de se estimar com precisão a altura dos corpos vertebrais, de vértebras ausentes ou mal preservadas a partir daquelas que se encontram presentes e em bom estado.

Em geral, quando se observam os modelos de regressão linear múltiplos conseguidos, o melhor conjunto de vértebras preditoras ou aquelas que apresentaram maiores coeficientes de determinação associados a baixos erros de estimativa, são na sua maioria imediatamente adjacentes superior e inferiormente à que se pretende estimar. Também nos modelos de regressão linear simples, a vértebra preditora com maior coeficiente de determinação é, geralmente, uma vértebra adjacente, superior ou inferior, à que se pretende prever a altura. Isto faz sentido, considerando que as mais próximas entre si, embora diferentes na altura, apresentam características semelhantes e seguem um padrão de aumento gradual da altura que se verifica ao longo da coluna vertebral. Este

pormenor remete para o método aplicado por Sciulli et al. (1990) e mais tarde por Formicola (1993) em que estimaram a altura de vértebras ausentes através da média da altura das vértebras adjacentes. Também Auerbach (2011) aplicou diferentes métodos para estimar dimensões ausentes dos elementos necessários ao método anatómico, de modo a avaliar o quão este era preciso, em circunstâncias de dimensões estimadas, em relação ao método matemático. Para determinar a altura dos corpos vertebrais aplicou inicialmente o método abordado por Sciulli et al. (1990), verificando que este era eficaz na maioria das vértebras. No entanto, verificou que nas vértebras C2, C3, C6, T2, T11, L1 e L5 este método era pouco preciso. Nos modelos aqui obtidos para a estimativa destas vértebras, verificou-se que no caso da C3 e T2, em cada um dos sexos, os modelos foram representados pelo menos por uma vértebra que não é adjacente à vértebra que se pretende estimar. Na vértebra C6, em ambos os sexos, os modelos são compostos por vértebras adjacentes (C5 e C7), já nas restantes (T11, L1 e L5), apenas um dos sexos apresenta um modelo com vértebras adjacentes, não se observando um comportamento específico por sexo. Esta observação vai de encontro ao constatado por Auerbach (2011). Algumas destas vértebras encontram-se em áreas de transição da coluna vertebral e, por isso, a falta precisão do método de Sciulli et al. (1990), nestas vértebras em específico, pode estar associada às suas curvaturas, uma vez que se encontram nos seus pontos máximos.

Para as vértebras em que não foi possível estimar a altura dos seus corpos através da média da altura das vértebras adjacentes, Auerbach (2011) recorreu à criação de modelos de regressão múltipla. Considerando os modelos com duas variáveis independentes obtidos por Auerbach (2011), apenas o modelo para a estimativa da C6 é representado pelas mesmas vértebras preditoras que o modelo obtido no presente estudo em ambos os sexos. Já no caso da L5, apenas o modelo masculino é representado pelas mesmas vértebras no modelo aqui obtido. Nas restantes, não é possível verificar este termo de comparação uma vez que os modelos são representados por mais que duas vértebras preditoras, o que aqui não acontece devido ao tamanho da amostra estudada.

Determinados modelos de regressão aqui obtidos quando aplicados à amostra independente revelaram diferenças significativas entre a altura estimada e a altura real. Esta situação aconteceu em alguns modelos de regressão linear simples das vértebras C6, T1, T2, T5, T6, T8, T10, L3 e CT, para o sexo feminino e nas vértebras C4, C6, C7, T3, T4, T5, T6, T9, L4 e CT no sexo masculino. Verificou-se a mesma situação nos modelos de regressão linear múltipla para a vértebra C3 no sexo feminino e para as vértebras C5, T6, T7, T12, L1 e CT nos indivíduos do sexo masculino. No entanto, em termos de erro médio, no caso do sexo feminino as diferenças entre a altura estimada e a real, nestas vértebras, não vai muito além de 1 mm. O mesmo se sucede no sexo masculino.

Embora a amostra independente se encontre pouco ou nada distanciada no tempo da amostra de origem dos modelos de regressão, são de regiões distintas de Portugal. Padez (2003, 2007), num estudo sobre tendências seculares em Portugal entre 1904 e 2000, verificou que os indivíduos masculinos do distrito de Lisboa juntamente com os de Braga, locais mais desenvolvidos, eram os mais altos. Pelo contrário, os indivíduos de Coimbra, Leiria, Castelo Branco e Madeira eram os mais baixos. Deste modo, uma vez que a coluna vertebral também contribui para a estatura de um indivíduo, seria natural essas diferenças refletirem-se na altura dos corpos vertebrais. Assim, os resultados de Padez (2003, 2007), para os indivíduos masculinos, podem explicar o porquê da grande maioria dos modelos de regressão em que existem diferenças, ligeiramente mais elevadas do que no sexo feminino, entre a altura vertebral estimada e a altura real serem no sexo masculino. No entanto, as diferenças observadas, em termos de erro médio, são bastante pequenas podendo esta relação não ser linear. Além disso, importa referir que as diferenças entre alturas estimadas e alturas reais podem estar associadas às curvaturas da coluna vertebral, que podem variar entre indivíduos.

Apesar da obtenção de modelos de regressão lineares com resultados prometedores, existem algumas limitações associadas. As vértebras preditoras são na sua maioria vértebras adjacentes, pelo que em termos práticos poderá ser pouco frequente encontrar grupos de vértebras contínuas bem preservadas, embora não seja impossível. Contudo, a partir de vértebras preservadas poderá ser possível estimar altura das ausentes e a partir das ausentes estimadas prever a altura das restantes não preservadas. No entanto seria necessário testar até que ponto as alturas estimadas a partir de outras alturas estimadas seriam precisas.

Não obstante, os modelos de regressão linear simples e múltipla, aqui desenvolvidos, apresentaram resultados que inspiram a sua aplicação. Ademais, podem representar um importante auxílio para outras abordagens. Em contextos arqueológicos e forenses é frequente encontrarem-se restos ósseos humanos de diferentes indivíduos misturados. Uma das técnicas utilizadas para diferenciação dos indivíduos neste contexto é a "osteometric sorting", que consiste numa técnica quantitativa que permite avaliar estatisticamente as semelhanças entre ossos homólogos e assim avaliar possíveis correspondências (Byrd, 2008). Assim, o valor da medição de determinado osso é comparado com um outro de referência, permitindo segregar os restos ósseos por indivíduo, partindo da premissa que dada a sua forma e dimensão poderiam pertencer a um mesmo indivíduo (Byrd e Adams, 2003). No caso das vértebras, aplicando a técnica aqui desenvolvida, poderia ser possível identificar situações em que exista mais que um indivíduo no caso de se encontrarem vértebras com alturas que não correspondem entre si, bem como permitir associar um conjunto de vértebras pertencentes a um mesmo indivíduo.

5. Conclusão

A ausência de determinados elementos ósseos, devido a destruição ou má preservação, é o principal motivo pelo qual o método anatómico para a estimativa da estatura é raramente aplicado. Por isso, o principal objetivo deste estudo assentava na criação de equações de regressão linear simples e múltiplas que permitissem estimar a dimensão de elementos ausentes, mais especificamente as vértebras. Com efeito, foram obtidos modelos de regressão linear simples e múltipla em função do sexo que, quando aplicados na amostra independente, não apresentaram diferenças significativas entre a altura estimada e a altura real na grande maioria dos casos.

A obtenção destes modelos representa um papel fundamental para a aplicação do método anatómico na estimativa da estatura em contextos de vértebras ausentes ou mal preservadas.

Embora os modelos de regressão obtidos tenham apresentado resultados significativos quando aplicados na amostra independente, será importante verificar se, quando aplicados na estimativa anatómica da estatura de um indivíduo, apresentam resultados precisos. Para o efeito, seria necessário aplicá-los numa amostra com estatura em vida conhecida, o que poderá fomentar trabalho futuro. Além disso, considerando a questão dúbia da universalidade dos fatores de correção relativos aos tecidos moles e tratando-se aqui de uma amostra da população portuguesa, verificar se esses fatores são fiáveis na nossa população é também uma possibilidade. A criação de equações de regressão linear independentes do sexo é também um ponto importante a explorar.

Embora seja preferível aplicar o método anatómico com todos os elementos ósseos necessários presentes, os resultados obtidos representam uma possibilidade para alargar a sua aplicabilidade mesmo quando alguns desses ossos se encontram ausentes, neste caso as vértebras. Ademais, o método aqui elaborado para a estimativa da altura dos corpos vertebrais pode representar um papel importante para outras questões como a avaliação do número mínimo de indivíduos, bem como para a técnica de "osteometric sorting" permitindo que a partir da medição de uma determinada vértebra seja possível comparar com uma vértebra de uma amostra de referência e assim ajudar a inferir se pertencem a um mesmo indivíduo.

6. Referências Bibliográficas

- Adams, B.J.; Herrmann, N.P. 2009. Estimation of living stature from selected anthropometric (soft tissue) measurements: applications for forensic anthropology. *Journal of Forensic Sciences*, 54(4):753-760.
- Aufderheide, A.C.; Rodríguez-Martin, C. 1998. *The Cambridge Encyclopedia of Human Paleopathology*. Cambridge, Cambridge University Press.
- Albanese, J.; Tuck, A.; Gomes, J.; Cardoso, H. F. V. 2016. An alternative approach for estimating stature from long bones that is not population- or group-specific. *Forensic Science International*, 259: 59–68.
- Auerbach, B. M.; Ruff, C. B. 2010. Stature estimation formulae for indigenous North American populations. *American Journal of Physical Anthropology*, 141(2): 190–207.
- Auerbach, B.M. 2011. Methods for estimating missing human skeletal element osteometric dimensions employed in the revised Fully technique for estimating stature. *American Journal of Physical Anthropology*, 145:67-80.
- Bello, S.; Andrews, P. 2006. The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours. *In*: Gowland, R.; Knüsel. C. (eds.) *The Social Archaeology of Funerary Remains*. Oxford, Oxbow Books: 1-13
- Bidmos, M.A. 2005. On the non-equivalence of documented cadaver lengths to living stature estimates based on Fully's method on bones in the Raymond A. Dart Collection. *Journal of Forensic Sciences*, 50(3):1-6.
- Bidmos, M. 2006. Adult stature reconstruction from the calcaneus of South Africans of European descent. *Journal of Clinical Forensic Medicine*, 13(5): 247–252.
- Bidmos, M.A. 2008. Metatarsals in the estimation of stature in South Africans. *Journal of Forensic and Legal Medicine*, 15(8): 505-509.
- Bidmos, M. A.; Manger, P. R. 2012. New soft tissue correction factors for stature estimation: Results from magnetic resonance imaging. *Forensic Science International*, 214(1–3): 212.e1-212.e7.

- Buikstra, J.; Ubelaker, D. 1994. *Standards for data collection from human skeletal remains*. Proceedings of a Seminar at the Field Museum of Natural History. Fayetteville, Arkansas (Arkansas Archaeological Survey Research Series: 44).
- Byrd, J.E.; Adams, B. 2003. Osteometric sorting of commingled human remains. *Journal of Forensic Sciences*, 48(4):717-724.
- Byrd, J.E.2008. Models and methods for osteometric sorting. *In:* Adams, B.J.; Byrd, J.E. (eds). *Recovery, analysis, and identification of commingled human remains*. Totowa, Humana Press: 199–220.
- Cardoso, H. F. V. 2006. Brief communication: The collection of identified human skeletons housed at the Bocage Museum (National Museum of Natural History), Lisbon, Portugal. *American Journal of Physical Anthropology*, 129(2): 173–176.
- Cardoso, H. F. V.; Gomes, J. E. A. 2009. Trends in adult stature of peoples who inhabited the modern Portuguese territory from the Mesolithic to the late 20 th century. *International Journal of Osteoarchaeology*, 19(6): 711–725.
- Chibba, K.; Bidmos, M. A. 2007. Using tibia fragments from South Africans of European descent to estimate maximum tibia length and stature. *Forensic Science International*, 169(2–3): 145–151.
- Cordeiro, C.; Muñoz-Barús, J.; Wasterlain, S.; Cunha, E.; Vieira, D.N. 2009. Predicting adult stature from metatarsal length in a Portuguese population. *Forensic Science International*, 193(1-3):131.e1-131.e4.
- Cunha, E.; Silva, A.M.; Miranda, M. 2003. Caracterização e estudo dos materiais antropológicos provenientes da Anta 3 de Santa Margarida. *In*: Gonçalves, V. (ed.). STAM-3, a Anta 3 da Herdade de Santa Margarida (Reguendos de Monsaraz). Trabalhos de Arqueologia 32, Lisboa, Instituto Português de Arqueologia: 385 420.
- Cunha, E.; Wasterlain, S. 2007. The Coimbra identified osteological collections. *In:* Skeletal series and their socio-economic context. Documenta Archaeobiologiae 5, Grupe G, Peters, J. (eds). Verlag Marie Leidorf GmbH: Rahden/Westf.: 23-33.
- Danubio, M. E.; Sanna, E. 2008. Secular changes in human biological variables in Western countries: an updated review and synthesis. *Journal of Anthropological Sciences*, 86: 91–112.

- Dwight, T. 1894. Methods of estimating the height from parts of the skeleton. *Medical Record*, 46:293–296.
- Ericksen, M.F. 1976. Some aspects of aging in lumbar spine. *American Journal of Physical Anthropology*, 45: 575 580.
- Fernihough, A.; McGovern, M. E. 2015. Physical stature decline and the health status of the elderly population in England. *Economics & Human Biology*, 16: 30–44.
- Formicola, V. 1993. Stature reconstruction from long bones in ancient population samples: an approach to the problem of its reliability. *American Journal of Physical Anthropology*, 90(3): 351–358.
- Formicola, V.; Franceschi, M.1996. Regression equations for estimating stature from long bones of early halocene European samples. *American Journal of Physical Anthropology*, 100: 83-88.
- Fully, M.G. 1956. Une nouvelle méthode de détermination de la taille. *Annales de Médecine Légale et de Criminologie*, 35:266–273.
- Fully, M.G.; Pineau, H. 1960. Détermination de la stature au moyen du squelette. *Annales de Médecine Légale* 40:145–154.
- Gilsanz, V.; Kovanlikaya, A.; Costin, G.; Roe, T. F.; Sayre, J.; Kaufman, F. 1997. Differential effect of gender on the sizes of the bones in the axial and appendicular akeletons 1. *The Journal of Clinical Endocrinology & Metabolism*, 82(5): 1603–1607.
- Giroux, C.L.; Wescott, D.J. 2008. Stature estimation based in dimensions of the bony pelvis and proximal femur. *Journal of Forensic Sciences*, 53(1): 65-68.
- Henderson, J. 1987. Factors determining the state of preservation of human remains. *In:*Boddington, A.; Garland, A. N.; Janaway, R. C. (eds.) *Death Decay and Reconstruction: Approaches to Archaeology and Forensic Science.*Manchester, Manchester University Press: 43-54.
- Hermann, A. P.; Brixen, K.; Andresen, J.; Mosekilde, L. 1993. Reference values for vertebral heights in scandinavian females and males. *Acta Radiologica*, 34(1): 48–52.

- Holland, T. D. 1992. Estimation of adult stature from fragmentary tibias. *Journal of Forensic Science*, 37(5): 1223–1229.
- Holliday, T. W. 1999. Brachial and crural indices of European late upper Paleolithic and Mesolithic humans. *Journal of Human Evolution*, 36(5): 549–566.
- Holliday, T. W.; Ruff, C. B. 2001. Relative variation in human proximal and distal limb segment lengths. *American Journal of Physical Anthropology*, 116(1): 26–33.
- Işcan, M.Y.; Steyn, M. 2013. *The Human Skeleton in Forensic Medicine*. Springfield, Charles C. Thomas.
- Jankauskas, R. 1994. Variability of vertebral column measurements in Lithuanian paleopopulation. *International Journal of Anthropology*, 9(2): 137–151.
- Konigsberg, L. W.; Hens, S. M.; Jantz, L. M.; Jungers, W. L. 1998. Stature estimation and calibration: bayesian and maximum likelihood perspectives in physical Anthropology. *Yearbook of Physical Anthropology*, 41: 65–92.
- Konigsberg, L.W.; Ross, A.H.; Jungers, W.L. 2006. Estimation and evidence in forensic anthropology. Determining stature. *In*: Schmitt, A., Cunha, E., Pinheiro, J. (Eds.) *Forensic Anthropology and Medicine. Complementary Sciences. From Recovery to Cause of Death.* New Jersey, Humana Press: 317-331.
- Laureano, R.M.S. 2013. Teste de hipóteses com o SPSS: o meu manual de consulta rápida. Lisboa, Edições Sílabo.
- Macgregor, S.; Cornes, B. K.; Martin, N. G.; Visscher, P. M. 2006. Bias, precision and heritability of self-reported and clinically measured height in Australian twins. *Human Genetics*, 120(4): 571–580.
- Maijanen, H. 2009. Testing anatomical methods for stature estimation on individuals from the W. M. Bass donated skeletal collection. *Journal of Forensic Sciences*, 54(4): 746 752.
- Manouvrier, L. 1892. Détermination de la taille d'après les grands os des membres. Revue Mensuelle de l'École d'Anthropologie de Paris, 2 : 227-233.

- Mays, S. 1992. Taphonomic factors in a human skeletal assemblage. *Circaea*, 9(2):54–58.
- Meadows, L.; Jantz, R. L. 1992. Estimation of stature from metacarpal lengths. *Journal of Forensic Science*, 37(1): 147–154.
- Meadows, L.; Jantz, R. L. 1995. Allometric secular change in the long bones from the 1800s to the present. *Journal of Forensic Science*, 40(5): 762–767.
- Mendonça, M. C. 2000. Estimation of height from the length of long bones in a Portuguese adult population. *American Journal of Physical Anthropology*, 112(1): 39–48.
- Moore, K.M.; Ross, A.H. 2013. Stature estimation. *In*: DiGangi, E.A.; Moore, M.K. (eds.) *Research Methods in Human Skeletal Biology*. San Diego, Academic Press: 151-176.
- Nielsen-Marsh, C. M.; Hedges, R. E. 2000. Patterns of diagenesis in bone I: The effects of site environments. *Journal of Archaeological Science*, 27(12): 1139–1150.
- Olivier, G.; Aaron, C.; Fully, G.; Tissier, G. 1978. New estimation of stature and cranial capacity in modern man. *Journal of Human Evolution*, 7: 513-518.
- Padez, C. 2003. Secular trend in stature in the Portuguese population (1904-2000). *Annals of Human Biology*, 30(3): 262–278.
- Padez, C. 2007. Secular trend in Portugal. *Journal of Human Ecology*, 22(1): 15–22.
- Perini, T. A.; Oliveira, G. L.; Ornellas, J.S.; Oliveira, F.P. 2005. Cálculo do erro técnico de medição em antropometria. *Revista Brasileira de Medicina do Esporte*, 11 (1): 86-90.
- Perola, M.; Sammalisto, S.; Hiekkalinna, T.; Martin, N. G.; Visscher, P. M.; Montgomery, G. W.; Benyamin, B.; Harris, J. R.; Boomsma, D.; Willemsen, G.; Hottenga, J.-J.; Christensen, K.; Kyvik, K. O.; Sørensen, T. I. A.; Pedersen, N. L.; Magnusson, P. K. E.; Spector, T. D.; Widen, E.; Silventoinen, K.; Kaprio, J.; Palotie, A.; Peltonen, L.; GenomEUtwin Project. 2007. Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. *PLoS Genetics*, 3(6): e97. DOI: 10.1371/journal.pgen.0030097.

- Radu, C.; Kelemen, B. 2015. Estimating stature for archaeological human remains: a methodological review. *In:* Cociş, S.; Lăzărescu, V.; Deac, D. (Eds.) *Ad Finem Imperii Romani: Studies in Honour of Coriolan H.Opreanu*. Cluj-Napoca, Mega Publishing House: 331-338.
- Raxter, M. H.; Auerbach, B. M.; Ruff, C. B. 2006. Revision of the Fully technique for estimating statures. *American Journal of Physical Anthropology*, 130(3): 374–384.
- Raxter, M. H.; Ruff, C. B.; Auerbach, B. M. 2007. Technical note: Revised fully stature estimation technique. *American Journal of Physical Anthropology*, 133(2): 817–818.
- Raxter, M. H.; Ruff, C. B.; Azab, A.; Erfan, M.; Soliman, M.; El-Sawaf, A. 2008. Stature estimation in ancient Egyptians: A new technique based on anatomical reconstruction of stature. *American Journal of Physical Anthropology*, 136(2): 147–155.
- Rocha, M.A. 1995. Les collections ostéologiques humaines identifies du Musée Anthropologique de L'Université de Coimbra. *Antropologia Portuguesa*, 13:7-38.
- Roche, A. F. 1972. The elongation of the human cervical vertebral column. *American journal of physical anthropology*, 36(2): 221–228.
- Ross, A. H.; Konigsberg, L. W. 2002. New formulae for estimating stature in the Balkans. *Journal of Forensic Science*, 47(1): 165–167.
- Santos, C.M.C. 2002. Estimativa da estatura a partir dos metatársicos. Dissertação de Mestrado em Medicina Legal, Faculdade de Medicina, Universidade de Coimbra.
- Schmidt, I. M.; Jørgensen, M. H.; Michaelsen, K. F. 1995. Height of conscripts in Europe: is postneonatal mortality a predictor? *Annals of Human Biology*, 22(1): 57–67.
- Sciulli, P. W.; Giesen, M. J. 1993. An update on stature estimation in prehistoric Native Americans of Ohio. *American Journal of Physical Anthropology*, 92(3): 395–399.
- Sciulli, P. W.; Schneider, K. N.; Mahaney, M. C. 1990. Stature estimation in prehistoric Native Americans of Ohio. *American Journal of Physical Anthropology*, 83(3): 275–280.

- Shuler, K.A.; Danforth, M.E.; Auerbach, J. 2011. Challenges in approaches to skeletal stature estimation: An example from prehistoric eastern Mississippi and Western Alabama. *Southeastern Archaeology*, 30(2): 377 389.
- Sládek, V.; Macháček, J.; Ruff, C. B.; Schuplerová, E.; Přichystalová, R.; Hora, M. 2015. Population-specific stature estimation from long bones in the early medieval Pohansko (Czech Republic): Stature Estimation In Early Medieval Skeletal Sample. *American Journal of Physical Anthropology*, 158(2): 312–324.
- Steele, D. G.; McKern, T. W. 1969. A method for assessment of maximum long bone length and living stature from fragmentary long bones. *American Journal of Physical Anthropology*, 31(2): 215–227.
- Taylor, J. R.; Twomey, L. T. 1984. Sexual dimorphism in human vertebral body shape. *Journal of Anatomy*, 138(2): 281-286.
- Telkkä, A. 1950. On the prediction of human stature from long bones. *Acta Anatomica*, 9:103-117.
- Tibbetts, G. L. 1981. Estimation of stature from the vertebral column in American Blacks. *Journal of Forensic Science*, 26(4): 715–723.
- Trotter, M.; Gleser, G. 1952. Estimation of stature from long bones of American whites and Negroes. *American Journal of Physical Anthropology*, 10(4):463–514.
- Ulijaszek, S.J.; Lourie, J.A. 1994. Intra- and inter-observer error in anthropometric measurement. *In:* Ulijaszek, S.J.; Mascie-Taylor, C.G.N. (eds.) *Anthropometry: the individual and the population*. Cambridge, Cambridge University Press: 30-55.
- Ulijaszek, S.J.; Kerr, D.A.1999. Anthropometric measurement error and the assessment of nutritional status. *Brithish Journal of Nutrition*, 82:165-177.
- Von Endt, D. W.; Ortner, D. J. 1984. Experimental effects of bone size and temperature on bone diagenesis. *Journal of Archaeological Science*, 11(3): 247–253.
- Waldron, T. 1987. The relative survival of the human skeleton: implications for paleopathology. *In:* Boddington, A.; Garland, A. N.; Janaway, R. C. (eds.) *Death Decay and Reconstruction: Approaches to Archaeology and Forensic Science*. Manchester, Manchester University Press: 43-54.

- Wasterlain, S. 2000. Morphé: análise das proporções entre os membros. Dimorfismo sexual e estatura de uma amostra da colecção de esqueletos identificados do Museu Antropológico da Universidade de Coimbra. Dissertação de Mestrado em Evolução Humana, Faculdade de Ciências e Tecnologia, Universidade de Coimbra.
- Weedon, M. N.; Frayling, T. M. 2008. Reaching new heights: insights into the genetics of human stature. *Trends in Genetics*, 24(12): 595–603.
- Wescott, D. J. 2000. Sex variation in the second cervical vertebra. *Journal of Forensic Science*, 45(2): 462–466.
- Wiley, P.; Galloway, A.; Snider, L. 1997. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims. *American Journal of Physical Anthropology*, 104: 503-528.
- Wiley, P. 2009. Stature estimation. *In:* Blau, S.; Ubelaker, D.S. (eds.) *Handbook of forensic Anthropology and Archaeology*. Walnut Creek, Left Coast Press: 236-245.
- Wilson, R. J.; Herrmann, N.P.; Jantz, L.M. 2010. Evaluation of stature estimation from the database for forensic anthropology. *Journal of Forensic Science*, 55(3):684-689. Doi: 10.1111/j.1556-4029.2010.01343.x
- White, T.D.; Folkens, P.A. 2005. *The manual of human bone*. Burlington (USA), Academic Press.
- White, T.D.; Black, M.T.; Folkens, P.A. 2012. *Human osteology*. Oxford, Academic Press.

Apêndice I

Folha de Registo

Folha de Registo – Estimativa da Estatura Altura dos Corpos Vertebrais

Coleção:			

Observador:

	To d			
	Data			
	Registo n.º			
	Indivíduo n.º			
	Sexo			
	Idade			
	C2			
	C3			
	C4			
	C5			
	C6			
	C7			
	T1			
	T2			
	Т3			
	T4			
(mu	T5			
Medições (mm)	Т6			
diçõ	T7			
Me	Т8			
	Т9			
	T10			
	T11			
	T12			
	L1			
	L2			
	L3			
	L4			
	L5			
	S 1			

Apêndice II

Inferências Estatísticas e Descritivas

Tabela A1 - Estatística descritiva e inferêncial na diferença da altura vertebral de acordo com o grupo etário nos indivíduos do sexo masculino.

Vértebra	Grupo etário (anos)	n	Média	DP.	Teste t	Sig.	
C2	20-39	36	38,22	2,40	0.607	0,547	
C2	40-59	17	38,68	3,02	-0,607	0,547	
С3	20-39	38	14,22	1,09	0.527	0,593	
CS	40-59	17	14,39	1,19	-0,537	0,393	
C4	20-39	37	13,69	0,96	0.500	0,564	
C4	40-59	17	13,85	1,00	-0,580	0,304	
C5	20-39	37	12,97	1,15	0.010	0,367	
CS	40-59	17	13,26	0,94	-0,910	0,307	
C6	20-39	38	13,30	1,13	0.152	0,879	
Co	40-59	17	13,26	0,74	0,153	0,879	
CT	20-39	36	14,79	0,99	1.667	0.102	
C7	40-59	17	15,28	0,98	-1,667	0,102	
TP 1	20-39	37	16,68	0,91	1 421	0.150	
T1	40-59	17	17,06	0,91	-1,431	0,158	
T2	20-39	37	18,22	0,78	2.207	0.021	
12	40-59	17	18,82	1,04	-2,387	0,021	
Т2	20-39	38	18,34	0,97	0.151	0,036	
Т3	40-59	16	18,98	1,07	-2,151	0,030	
T4	20-39	37	18,94	1,07	0.201	0,697	
14	40-59	17	19,06	1,09	-0,391		
Т5	20-39	38	19,46	1,04	1.516	0,135	
15	40-59	17	19,90	0,87	-1,516	0,133	
Tr.	20-39	38	20,33	0,95	1.450	0.151	
T6	40-59	16	20,76	1,11	-1,458	0,151	
T7	20-39	38	20,38	0,85	2.020	0.049	
T7	40-59	17	20,91	1,00	-2,028	0,048	
то	20-39	38	20,70	0,87	1 074	0.200	
T8	40-59	17	21,02	0,90	-1,274	0,208	
TO	20-39	38	21,19	0,97	1 22 6	0.222	
Т9	40-59	17	21,53	0,83	-1,236	0,222	
Т10	20-39	37	22,16	1,16	1.650	0.102	
T10	40-59	17	22,69	0,89	-1,659	0,103	
TT11	20-39	36	22,92	1,28	0.027	0.407	
T11	40-59	17	23,24	1,24	-0,837	0,407	
T14	20-39	37	24,23	1,29	4.400	0.244	
T12	40-59	17	24,69	1,40	-1,180	0,244	
T 1	20-39	37	26,04	1,23	0.753	0.455	
L1	40-59	16	26,32	1,19	-0,752	0,455	

Tabela A1 – Continuação.

Vértebra	Grupo etário (anos)	n	Média	DP.	Teste t	Sig.	
L2	20-39	37	26,79	1,36	1 240	0,186	
L2	40-59	17	27,32	1,33	-1,340	0,160	
L3	20-39	38	27,86	1,40	0.472	0,639	
	40-59	15	28,06	1,42	-0,472	0,037	
L4	20-39	38	28,28	1,49	0.070	0,336	
LŦ	40-59	17	28,71	1,55	-0,970	0,330	
L5	20-39	38	28,31	1,32	-0,949	0,347	
LS	40-59	17	28,71	1,69	-0,949	0,547	
S1	20-39	36	33,05	2,05	0,258	0,797	
81	40-59	17	32,89	2,09	0,238	0,797	

Tabela A2- Estatística descritiva e inferencial das diferenças da altura vertebral de acordo com o grupo etário nos indivíduos do sexo feminino.

Vértebra	Grupo Etário	n	Média	DP.	Teste	Sig.	
C2	20-39	40	34,81	2,48	-1,868	0,067	
C2	40-59	21	35,98	2,03	-1,000	0,007	
C3	20-39	42	12,68	0,91	-0,233	0,817	
CS	40-59	24	12,73	0,75	-0,233	0,017	
C4	20-39	45	12,28	0,93	0,041	0,967	
C4	40-59	23	12,27	0,93	0,041	0,707	
C5	20-39	44	11,80	0,86	0,102	0,919	
CS	40-59	24	11,77	0,83	0,102	0,717	
C6	20-39	43	11,97	0,86	0,427	0,671	
Co	40-59	23	11,88	0,77	0,427	0,071	
C7	20-39	44	13,59	0,95	1,318	0,192	
C7	40-59	22	13,27	0,89	1,316	0,172	
T1	20-39	44	15,16	1,16	0,499	0,619	
11	40-59	23	15,02	0,93	0,499	0,017	
T2	20-39	45	16,96	1,00	0.015	0,364	
12	40-59	25	16,75	0,70	0,915	0,304	
Т3	20-39	45	17,04	0,92	0.421	0,668	
13	40-59	25	16,95	0,60	0,431	0,008	
T4	20-39	45	17,37	0,97	0.421	0,675	
14	40-59	25	17,27	0,77	0,421		
T5	20-39	45	17,95	1,01	0.640	0.524	
13	40-59	25	17,80	0,83	0,640	0,524	
Т6	20-39	45	18,36	0,96	0.102	0,848	
10	40-59	25	18,31	1,08	0,192	0,040	
T7	20-39	45	18,94	0,90	0.000	0.020	
1 /	40-59	25	18,92	1,10	0,090	0,929	
то	20-39	45	19,31	1,03	0.229	0.744	
T8	40-59	25	19,23	0,99	0,328	0,744	
TO	20-39	44	19,85	1,19	0.156	0.076	
T9	40-59	25	19,89	1,12	-0,156	0,876	
T10	20-39	45	20,95	1,37	0.245	0.722	
T10	40-59	25	20,84	1,18	0,345	0,732	
TD11	20-39	45	21,66	1,40	0 (7)	0.501	
T11	40-59	25	21,43	1,25	0,676	0,501	
TT10	20-39	45	23,18	1,64	0.004	0.017	
T12	40-59	25	23,09	1,27	0,234	0,816	
т 4	20-39	45	24,93	1,71	0.024	0.071	
L1	40-59	25	24,91	1,20	0,036	0,971	

Vértebra	Grupo Etário	n	Média	DP.	Teste t	Sig.	
L2	20-39	45	26,27	1,73	0.100	0,921	
L/2	40-59	25	26,23	1,31	0,100	0,921	
L3	20-39	45	27,07	1,66	0.576	0,566	
	40-59	25	26,84	1,32	0,576		
L4	20-39	45	26,85	1,77	0.004	0,997	
L4	40-59	25	26,85	2,05	-0,004	0,997	
L5	20-39	44	27,21	1,68	0.024	0,981	
L5	40-59	24	27,22	1,61	-0,024	0,981	
C1	20-39	44	31,16	1,88	0.521	0.507	
S1	40-59	24	31,41	1,90	-0,531	0,597	

Tabela A3 - Correlações da altura dos corpos vertebrais entre as diferentes vértebras e da totalidade da fração da coluna vertebral medida (CT) nos indivíduos do sexo masculino.

	C2	C3	C4	C5	C6	C7	T1	T2	T3	T4	T5	T6
C2	1,000											
С3	0,505	1,000										
C4	0,475	0,752	1,000									
C5	0,404	0,595	0,750	1,000								
C6	0,355	0,556	0,538	0,677	1,000							
C7	0,449	0,563	0,662	0,529	0,640	1,000						
T1	0,344	0,508	0,622	0,537	0,546	0,848	1,000					
T2	0,107	0,494	0,454	0,478	0,340	0,507	0,533	1,000				
Т3	0,246	0,551	0,515	0,603	0,424	0,551	0,543	0,828	1,000			
T4	0,300	0,480	0,494	0,464	0,421	0,506	0,522	0,629	0,768	1,000		
Т5	0,364	0,485	0,414	0,420	0,497	0,516	0,470	0,627	0,728	0,867	1,000	
T6	0,249	0,399	0,321	0,337	0,409	0,441	0,398	0,563	0,599	0,731	0,788	1,000
T7	0,235	0,427	0,434	0,352	0,422	0,522	0,575 **	0,575	0,535	0,684	0,739	0,795 **
T8	0,245	0,363	0,353	0,286	0,366	0,372	0,413	0,512	0,412	0,582 **	0,581 **	0,705
Т9	0,199	0,353	0,421	0,369	0,372	0,428	0,526 **	0,549 **	0,473	0,616	0,527 **	0,554
T10	0,258	0,221	0,273	0,274	0,276	0,363	0,311	0,407	0,442	0,507 **	0,476	0,586
T11	0,330	0,365	0,379	0,282	0,280	0,433	0,409	0,384	0,404	0,504 **	0,407	0,370
T12	0,133	0,163	0,399	0,242	0,190	0,396	0,413	0,227	0,274	0,335	0,283	0,243
L1	0,273	0,272	0,381	0,254	0,284	0,460	0,503	0,352	0,301	0,446	0,303	0,326
L2	0,409	0,335	0,341	0,228	0,334	0,537	0,491 **	0,304	0,209	0,373	0,301	0,307
L3	0,383	0,123	0,276	0,188	0,132	0,513	0,424	0,202	0,161	0,393	0,265	0,238
L4	0,412	0,250	0,264	0,202	0,179	0,477	0,405	0,317	0,378	0,563	0,445	0,381
L5	0,362	0,267	0,275	0,133	0,112	0,422	0,347	0,314	0,264	0,428	0,339	0,271
S1	0,273	0,276	0,011	0,055	0,277	0,163	0,282	0,298	0,268	0,201	0,208	0,192
CT	0,588	0,640	0,653	0,551	0,498	0,708	0,640	0,624	0,648	0,766	0,687	0,614

^{*}significativo para $\alpha=0,05$ **significativo para $\alpha=0,01$

 ${\bf Tabela~A3}-{\bf Continua} \\ {\bf \tilde{ao}}.$

	T7	T8	Т9	T10	T11	T12	L1	L2	L3	L4	L5	S1
C2	0,235	0,245	0,199	0,258	0,330	0,133	0,273	0,409	0,383	0,412	0,362	0,273
С3	0,427	0,363	0,353	0,221	0,365	0,163	0,272	0,335	0,123	0,250	0,267	0,276
C4	0,434	0,353	0,412	0,273	0,379	0,399	0,381	0,341	0,276	0,264	0,275	0,275
C5	0,352	0,286	0,369 **	0,274	0,282	0,242	0,254	0,228	0,188	0,202	0,133	0,011
C6	0,422	0,366	0,372	0,276	0,280	0,190	0,284	0,334	0,132	0,179	0,112	0,055
C7	0,522	0,372	0,428	0,363	0,433	0,396	0,460	0,537	0,513	0,477	0,422	0,277
T1	0,575	0,413	0,526 **	0,311	0,409 **	0,413	0,503	0,491 **	0,424	0,405	0,347	0,163
T2	0,575	0,512	0,549 **	0,407 **	0,384	0,227	0,352	0,304	0,202	0,317	0,314	0,282
Т3	0,535	0,412	0,473 **	0,442	0,404	0,274	0,301	0,209	0,161	0,378	0,264	0,298
T4	0,684	0,582	0,616 **	0,507 **	0,504 **	0,335	0,446	0,373	0,393	0,536	0,428	0,268
T5	0,739	0,581 **	0,527 **	0,476 **	0,407 **	0,283	0,303	0,301	0265	0,445	0,339	0,201
T6	0,795 **	0,705	0,554 **	0,586 **	0,370 **	0,243	0,326	0,307	0,238	0,381	0,271	0,208
T7	1,000	0,810 **	0,767 **	0,644	0,499	0,321	0,327	0,417	0,267	0,342	0,276	0,192
T8		1,000	0,794 **	0,673 **	0,503 **	0,251	0,321	0,432	0,274	0,320	0,338	0,286
Т9			1,000	0,750 **	0,668 **	0,494	0,508 **	0,555	0,358	0,373	0,411	0,242
T10				1,000	0,745	0,446	0,459	0,544	0,358	0,506 **	0,355	0,430
T11					1,000	0,651	0,667	0,693	0,596 **	0,631	0,586	0,426
T12						1,000	0,721	0,625	0,534	0,515	0,459	0,280
L1							1,000	0,755	0,721 **	0,647	0,618	0,375
L2								1,000	0,776 **	0,678	0,676 **	0,388
L3									1,000	0,787 **	0,800	0,290
L4										1,000	0,787 **	0,507 **
L5											1,000	0,378
S1	0.555	0.510	0	0 :==	0.501	0.75	0.50=	0.75:	0.50:	0.7.5	0.500	1,000
CT	0,639	0,640	0,679 **	0,672	0,791 **	0,576	0,697 **	0,754	0,684	0,763	0,700	0,540 **

^{*}significativo para $\alpha = 0.05$ **significativo para $\alpha = 0.01$

Tabela A4 - Correlações da altura dos corpos vertebrais entre as diferentes vértebras e com a totalidade da fração da coluna vertebral medida (CT) nos indivíduos do sexo feminino.

	C2	C3	C4	C5	C6	C7	T1	T2	Т3	T4	T5	T6
C2	1,000											
C3	0,426	1,000										
C4	0,466	0,734	1,000									
C5	0,424	0,705	0,750	1,000								
C6	0,348	0,608	0,582	0,757	1,000							
C7	0,388	0,579	0,472	0,507	0,685	1,000						
T1	0,471	0,581 **	0,462	0,474	0,640	0,804	1,000					
T2	0,443	0,590 **	0,541	0,489	0,577	0,726	0,766	1,000				
Т3	0,480	0,562	0,395	0,443	0,500 **	0,549	0,666	0,814	1,000			
T4	0,445	0,430	0,301	0,389	0,439	0,451	0,493	0,642	0,819	1,000		
Т5	0,456	0,475	0,393	0,479 **	0,500 **	0,507 **	0,576 **	0,668	0,795 **	0,862	1,000	
Т6	0,431	0,457 **	0,418 **	0,405 **	0,509 **	0,502 **	0,520 **	0,620 **	0,700 **	0,800	0,873	1,000
T7	0,411	0,397 **	0,442 **	0,399 **	0,485 **	0,443	0,492 **	0,593 **	0,607 **	0,657 **	0,758 **	0,852 **
Т8	0,372	0,438 **	0,421 **	0,424	0,467 **	0,391 **	0,517 **	0,543	0,608 **	0,652 **	0,773	0,760
Т9	0,395	0,525 **	0,492 **	0,493 **	0,417 **	0,432	0,504 **	0,580 **	0,637 **	0,681 **	0,791 **	0,791 **
T10	0,382	0,465 **	0,461 **	0,477 **	0,433	0,367 **	0,460 **	0,503	0,538 **	0,595 **	0,703	0,727
T11	0,319	0,497 **	0,507 **	0,535	0,445 **	0,374 **	0,408 **	0,478	0,489 **	0,502 **	0,676 **	0,698 **
T12	0,377	0,504 **	0,442 **	0,405 **	0,432	0,368 **	0,456 **	0,482	0,505 **	0,510 **	0,689 **	0,729 **
L1	0,419	0,566 **	0,484	0,482	0,402	0,416 **	0,540 **	0,493	0,508 **	0,434	0,613	0,624
L2	0,531	0,434	0,412	0,401	0,416	0,440	0,464	0,486	0,509 **	0,514	0,626	0,629
L3	0,494	0,554	0,454	0,496 **	0,507 **	0,403	0,544	0,483	0,502 **	0,398	0,496	0,494
L4	0,506 **	0,563	0,461	0,447	0,512 **	0,517 **	0,554 **	0,496	0,482	0,440	0,518	0,563
L5	0,455	0,591 **	0,378	0,399	0,487	0,592 **	0,650	0,596	0,544	0,429	0,534	0,577
S1	0,562	0,391	0,437	0,411	0,394	0,380	0,298	0,437	0,393	0,323	0,455	0,373
СТ	0,627	0,689	0,639	0,689	0,747	0,765	0,776	0,758	0,745	0,674	0,803	0,824

^{*}significativo para $\alpha=0{,}05$ **significativo para $\alpha=0{,}01$

Tabela A4 – Continuação.

	T7	Т8	Т9	T10	T11	T12	L1	L2	L3	L4	L5	S1
C2	0,411	0,372	0,395	0,382	0,319	0,377	0,419	0,531	0,494	0,506	0,455	0,562
	**	**	**	**	**	**	**	**	**	**	**	**
C3	0,397	0,438	0,525	0,465	0,497	0,504	0,566	0,434	0,554	0,563	0,591 **	0,391
	0,442	0,421	0,492	0,461	0,507	0,442	0,484	0,412	0,454	0,461	0,378	0,437
C4	**	0,421 **	0,492 **	0,401 **	**	0,442 **	0,464 **	0,412 **	**	0,401 **	0,576 **	**
	0,399	0,424	0,493	0,477	0,535	0,405	0,482	0,401	0,496	0,447	0,399	0,411
C5	**	**	**	**	**	**	**	**	**	**	**	**
~ .	0,485	0,467	0,417	0,433	0,445	0,432	0,402	0,416	0,507	0,512	0,487	0,394
C6	**	**	**	**	**	**	**	**	**	**	**	**
C7	0,443	0,391	0,432	0,367	0,374	0,368	0,416	0,440	0,403	0,517	0,592	0,380
C7	**	**	**	**	**	**	**	**	**	**	**	**
T1	0,492	0,517	0,504	0,460	0,408	0,456	0,540	0,464	0,544	0,554	0,650	0,298
11	**	**	**	**	**	**	**	**	**	**	**	*
T2	0,593	0,543	0,580	0,503	0,478	0,482	0,493	0,486	0,483	0,496	0,596	0,437
	**	**	**	**	**	**	**	**	**	**	**	**
Т3	0,607	0,608	0,637	0,538	0,489	0,505	0,508	0,509	0,502	0,482	0,544	0,393
T4	0,657	0,652	0,681	0,595	0,502	0,510	0,434	0,514	0,398	0,440	0,429	0,323
	0,758	0,773	0,791	0,703	0,676	0,689	0,613	0,626	0,496	0,518	0,534	0,455
T5	**	**	**	**	**	**	**	**	**	**	**	**
	0,852	0,760	0,791	0,727	0,698	0,729	0,624	0,629	0,494	0,563	0,577	0,373
T6	**	**	**	**	**	**	**	**	**	**	**	**
	1.000	0,839	0,773	0,746	0,745	0,723	0,609	0,611	0,581	0,590	0,630	0,395
T7	1,000	**	**	**	**	**	**	**	**	**	**	**
Т8		1,000	0,869	0,819	0,764	0,775	0,649	0,581	0,551	0,533	0,600	0,343
10		1,000	**	**	**	**	**	**	**	**	**	**
Т9			1,000	0,884	0,823	0,809	0,689	0,625	0,582	0,547	0,619	0,329
			1,000	**	**	**	**	**	**	**	**	**
T10				1,000	0,913	0,825	0,693	0,658	0,621	0,617	0,648	0,290
				,	**							*
T11					1,000	0,862	0,751	0,701 **	0,678	0,667	0,677 **	0,328
							0,881	0,812	0,743	0,728	0,739	0,367
T12						1,000	**	**	**	**	**	**
								0,790	0,785	0,698	0,754	0,386
L1							1,000	**	**	**	**	**
1.0								1 000	0,780	0,784	0,730	0,375
L2								1,000	**	**	**	**
L3									1,000	0,822	0.814	0,375
LJ									1,000	**	**	**
L4										1,000	0,821	0,344
										1,000	**	**
L5											1,000	0,378
											, , , , ,	**
S1	0.704	0.707	0.007	0.770	0.704	0.044	0.010	0.000	0.012	0.707	0.020	1,000
CT	0,794	0,786	0,806	0,779 **	0,784	0,844	0,819	0,820	0,812	0,795	0,838	0,670
	**	**	**	ጥጥ	ጥጥ	ጥጥ	ጥጥ	**	ጥጥ	ጥጥ	**	ጥጥ

 $^{^*}significativo$ para $\alpha=0,05$ $^{**}significativo$ para $\alpha=0,01$

Tabela A5 - Resultados de todos os modelos de regressão obtidos a partir da análise de regressão linear simples para a estimativa da altura dos corpos vertebrais e da fração total da coluna vertebral nos indivíduos do sexo masculino.

Vértebras	Vértebras Estimadas					
Preditoras	C2	C3	C4	C5		
C2		R^2 =0,255 B_0 =5,951 B_{c2} =0,217 p = 0,000	R^2 =0,226 B_0 =6,930 B_{c2} =0,177 p = 0,000	R^2 =0,163 B_0 =6,560 B_{c2} =0,169 p = 0,003		
C3	R^2 =0,255 B_0 =21,597 B_{c3} =1,175 p =0,000		R^2 =0,566 B_0 =4,402 B_{c3} =0,654 p =0,000	R^2 =0,354 B_0 =4,772 B_{c3} =0,581 p =0,000		
C4	R ² =0,226 B ₀ =20,895 B _{c4} =1,272 p=0,000	R^2 =0,566 B_0 =2,384 B_{c4} =0,865 p =0,000		$R^2 = 0.562 B_0 = 1.499 B_{c4} = 0.841 p = 0.000$		
C5	R^2 =0,163 B_0 =25,773 B_{c5} =0,965 p =0,003	R^2 =0,354 B_0 =6,303 B_{c5} =0,610 p =0,000	R^2 = 0,562 B_0 =5,008 B_{c5} =0,669 p =0,000			
C6	R^2 =0,126 B_0 =26,340 B_{c6} =0,905 p =0,009	R^2 =0,309 B_0 =6,171 B_{c6} =0,610 p =0,000	R^2 =0,289 B_0 =6,922 B_{c6} =0,513 p=0,000	R^2 =0,458 B_0 =3,437 B_{c6} =0,724 p=0,000		
C7	$R^2=0,202$ $B_0=21,002B_{c7}=1,162$ $p=0,001$	R^2 =0,317 B_0 =4,931 B_{c7} =0,625 p =0,000	R^2 =0,439 B_0 =4,178 B_{c7} =0,639 p=0,000	R^2 =0,280 B_0 =4,496 B_{c7} =0,573 p =0,000		
T1	R^2 =0,118 B_0 =22,013 B_{t1} =0,974 p = 0,012	R^2 =0,258 B_0 =3,902 B_{t1} =0,617 p =0,000	R^2 =0,387 B_0 =2,691 B_{t1} =0,658 p =0,000	$R^2 = 0.288 B_0 = 2.368 B_{t1} = 0.636 p = .000$		
T2	R^2 =0,011 B_0 =32,700 B_{t2} =0,308 p =0,450	R^2 =0,244 B_0 =3,040 B_{t2} =0,610 p=0,000	R^2 =0,206 B_0 =4,769 B_{t2} =0,487 p =0,001	R^2 =0,228 B_0 =2,461 B_{t2} =0,576 p =0,000		
Т3	R^2 =0,060 B_0 =26,973 B_{t3} =0,615 p =0,079	R^2 =0,303 B_0 =3,291 B_{t3} =0,593 p =0,000	R^2 =0,265 B_0 =4,807 B_{t3} =0,482 p = ,000	R^2 =0,364 B_0 =1,324 B_{t3} =0,633 p =0,000		
T4	R^2 =0,090 B_0 =24,509 B_{t4} =0,730 p=0,029	$R^2 = 0.231 B_0 = 4,758 B_{t4} = 0,501 p = 0,000$	R^2 =0,244 B_0 =5,223 B_{t4} =0,449 p =0,000	R^2 =0,215 B_0 =4,092 B_{t4} =0,473 p =0,000		
T5	R^2 =0,132 B_0 =19,977 B_{t5} =0,939 p=0,007	R^2 =0,235 B_0 =3,737 B_{t5} =0,538 p=0,000	R^2 =0,171 B_0 = 5,918 B_{t5} =0,399 p=0,002	R^2 =0,177 B_0 =4,147 B_{t5} =0,455 p =0,002		
T6	R^2 =0,062 B_0 =25,263 B_{t6} =0,641 p =0,075	R^2 =0,159 B_0 =5,259 B_{t6} =0,441 p =0,003	$R^2 = 0.103$ $B_0 = 7.421$ $B_{t6} = 0.309$ $p = 0.019$	R^2 =0,114 B_0 =5,622 B_{t6} =0,363 p =0,014		
T7	R^2 =0,055 B_0 =24,728 B_{t7} =0,664 p = ,090	$R^2=0.182$ $B_0=3.647$ $B_{t7}=0.517$ $p=0.001$	R^2 =0,188 B_0 =4,338 B_{t7} =0,458 p=0,001	R^2 =0,124 B_0 =4,518 B_{t7} =0,416 p=0,009		
Т8	R^2 =0,060 B_0 =23,454 B t8=0,717 p =0,077	$R^2=0,132$ $B_0=4,777B_{t8}=0,457$ $p=0,006$	$R^2 = 0.125$ $B_0 = 5.701$ $B_{t8} = 0.386$ $p = 0.009$	R^2 =0,082 B_0 =5,755 B_{t8} =0,351 p =0,036		
Т9	R^2 =0,039 B_0 =26,632 B_{t9} =0,551 p =0,154	$R^2=0,125$ $B_0=5,312$ $B_{t9}=0,421$ $p=0,008$	$R^2 = 0.177 B_0 = 4.443 B_{t9} = 0.436 p = 0.002$	R^2 =0,136 B_0 =3,928 B_{t9} =0,429 p=0,006		
T10	R^2 =0,067 B_0 =24,739 B_{t10} =0,610 p=0,062	R^2 =0,049 B_0 =9,262 B_{t10} =0,224 p =0,108	R^2 =0,075 B_0 =8,358 B_{t10} =0,241 p =0,048	R^2 =0,075 B_0 =6,993 Bt10=0,272 p=0,047		
T11	R^2 =0,109 B_0 =22,742 B_{t11} =0,679 p =0,018	R^2 =0,133 B_0 =6,851 B_{t11} =0,322 p =0,007	R^2 =0,144 B_0 =7,032 B_{t11} =0,291 p =0,006	R^2 =0,079 B_0 =7,462 B_{t11} =0,243 p =0,043		
T12	R^2 =0,018 B_0 =32,042 B_{t12} =0,259 p=0,346	R^2 =0,027 B_0 =10,949 B_{t12} =0,136 p =0,239	R^2 =0,159 B_0 =6,660 B_{t12} =0,290 p=0,003	R^2 =0,058 B_0 =8,253 B_{t12} =0,197 p =0,081		
L1	R^2 =0,273 B_0 =23,134 B_{11} =0,583 p = 0,053	R^2 =0,074 B_0 =7,739 B_{11} =0,250 p =0,049	R^2 =0,145 B_0 = 5,798 B_{11} =0,304 p =0,005	R^2 =0,065 B_0 =7,114 B_{11} =0,227 p =0,069		
L2	$R^2 = 0.167$ $B_0 = 17.337$ $B_{12} = 0.780$ $p = 0.003$	R^2 =0,112 B_0 =6,882 B_{12} =0,274 p =0,013	R^2 =0,117 B_0 =7,183 B_{12} =0,243 p =0,012	R^2 =0,052 B_0 =8,136 B_{12} =0,183 p=0,100		
L3	R^2 =0,147 B_0 =18,486 B_{13} =0,712 p =0,005	R ² =0,015 B ₀ =11,538 Bl3=0,098 p=0,382	R^2 =0,076 B_0 =8,381 B_{13} =0,192 p =0,047	R^2 =0,035 B_0 = 8,967 B_{13} =0,147 p =0,181		
L4	R^2 =0,170 B_0 =18,182 B_{14} =0,710 p =0,002	$R^2 = 0.062 B_0 = 9.015 B_{14} = 0.185 p = 0.066$	R^2 =0,070 B_0 =8,900 B_{14} =0,170 p =0,053	R^2 =0,041 B_0 =8,909 B_{14} =0,146 p =0,143		
L5	R^2 =0,131 B_0 = 19,749 B_{15} =0,655 p =0,008	R^2 =0,071 B_0 =8,388 B_{15} =0,207 p = 0,049	R^2 =0,076 B_0 =8,453 B_{15} =0,186 p =0,044	R^2 =0,018 B_0 =10,205 B_{15} =0,100 p=0,339		
S 1	R^2 =0,075 B_0 =26,917 B_{s1} =0,347 p =0,052	R^2 =0,076 B_0 =9,310 B_{s1} =0,150 p=0,046	R^2 =0,076 B_0 =9,434 B_{s1} =0,130 p=0,049	$R^2=0,000$ $B_0=12,859B_{s1}=0,006$ $p=0,937$		

Tabela A5 – Continuação.

	Estimadas					
Preditoras	C6	C7	T1	T2		
C2	R^2 =0,126 B_0 =7,961 B_{c2} =0,139 p= 0,009	R^2 =0,202 B_0 =8,278 B_{c2} =0,174 p =0,001	R^2 =0,118 B_0 =12,128 B_{c2} =0,122 p = 0,012	R^2 =0,011 B_0 =16,978 B_{c2} =0,037 p =0,450		
C3	R ² =0,309 B ₀ =6,057 B _{c3} =0,507 p=0,000	R^2 =0,317 B_0 =7,717 B_{c3} =0,507 p=0,000	R^2 =0,258 B_0 =10,830 B_{c3} =0,418 p =0,000	R ² =0,244 B ₀ =12,698 B _{c3} =0,400 p=0,000		
C4	R^2 =0,289 B_0 = 5,541 B_{c4} =0,564 p =0,000	$R^2 = 0,439 \ B_0 = 5,524 \ B_{c4} = 0,686 \ p = 0,000$	R^2 =0,387 B_0 =8,703 B_{c4} =0,589 p=0,000	R^2 =0,206 B_0 =12,602 B_{c4} =0,423 p=0,001		
C5	R^2 =0,458 B_0 =5,029 B_{c5} =0,633 p=0,000	R^2 =0,280 B_0 =8,573 B_{c5} =0,488 p=0,000	R^2 =0,288 B_0 =10,881 B_{c5} =0,453 p =0,000	R^2 =0,228 B_0 =13,227 B_{c5} =0,397 p=0,000		
C6		R^2 =0,409 B_0 =6,549 B_{c6} =0,632 p =0,000	R^2 =0,298 B_0 =10,244 B_{c6} =0,493 p =0,000	R^2 =0,116 B_0 =14,391 B_{c6} =0,302 p=0,012		
C7	R ² =0,409 B ₀ =3,604 B _{c7} =0,648 p=0,000		R^2 =0,719 B_0 =5,212 B_{c7} =0,775 p =0,000	R ² =0,257 B ₀ =11,594 B _{c7} =0,456 p=0,000		
T1	R^2 =0,298 B_0 =3,123 B_{t1} =0,605 p=0,000	R^2 =0,719 B_0 =-,637 B_{t1} =0,928 p= 0,000		R ² =0,284 B ₀ =9,597 B _{t1} =0,525 p=0,000		
T2	R^2 =0,116 B_0 =6,234 B_{t2} =0,383 p=0,012	R^2 =0,257 B_0 =4,570 B_{12} =0,564 p=0,000	R ² =0,284 B ₀ =6,823 B _{t2} =0,542 p=0,000			
T3	R^2 =0,180 B_0 =5,579 B_{t3} =0,416 p = 0,001	R^2 =0,304 B_0 =5,048 B_{t3} =0,534 p = 0,000	R^2 =0,294 B_0 =7,895 B_{t3} =0,480 p = 0,000	R^2 =0,396 B_0 =8,316 B_{t3} =0,532 p= 0,000		
T4	R ² =0,177 B ₀ =5,684 B _{t4} =0,401 p=0,002	R ² =0,256 B ₀ =5,928B _{t4} =0,475 p=0,000	R ² =0,272 B ₀ =8,293 B _{t4} =0,448 p=0,000	R^2 =0,396 B_0 =8,316 B_{t4} =0,532 p=0,000		
T5	R^2 =0,247 B_0 =3,445 B_{t5} =0,502 p = 0,000	R ² =0,267 B ₀ =4,842 B _{t5} =0,516 p=0,000	R^2 =0,221 B_0 = 8,384 B_{t5} =0,429 p =0,000	R^2 =0,393 B_0 =7,370 B_{t5} =0,563 p=0,000		
T6	R ² =0,167 B ₀ =4,853 B ₁₆ =0,412 p=0,002	R ² =0,195 B ₀ =5,967B _{t6} =0,439 p=0,001	R ² =0,159 B ₀ =9,384 B _{t6} =0,362 p=0,003	R ² =0,317 B ₀ =8,106 B _{t6} =0,504 p=0,000		
T7	R^2 =0,178 B_0 =3,698 B_{t7} =0,467 p =0,001	R^2 =0,273 B_0 = 3,237 B_{t7} =0,570 p = 0,000	R^2 =0,330 B_0 =5,021 B_{t7} =0,573 p = 0,000	R^2 =0,331 B_0 =6,805 B_{t7} =0,565 p = 0,000		
T8	R ² =0,134 B ₀ =4,565 B _{t8} =0,419 p=0,006	R^2 =0,139 B_0 =6,177 B_{t8} =0,422 p=0,006	R ² =0,171 B ₀ =7,897 B _{t8} =0,428 p=0,002	R ² =0,262 B ₀ =7,566 B _{t8} =0,521 p=0,000		
T9	R^2 =0,138 B_0 =4,682 B_{t9} =0,404 p =0,005	R^2 =0,183 B_0 =5,173 B_{t9} =0,459 p =0,001	R^2 =0,276 B_0 =5,814 B_{t9} =0,516 p =0,000	$R^2=0.301$ $B_0=7.133$ $B_{t9}=0.529$ $p=0.000$		
T10	R ² =0,076 B ₀ =7,595 B _{t10} =0,255 p=0,044	R^2 =0,132 B_0 =7,532 B_{t10} =0,332 p=0,008	R^2 =0,097 B_0 =10,999 B_{t10} =0,260 p=0,023	R^2 =0,166 B_0 =10,934 B_{t10} =0,335 p=0,002		
T11	R^2 =0,079 B_0 = 8,089 B_{t11} =0,226 p = 0,042	R^2 =0,188 B_0 =7,003 B_{t11} =0,345 p=0,001	R^2 =0,167 B_0 =9,949 B_{t11} =0,297 p=0,003	R^2 =0,147 B_0 =12,078 B_{t11} =0,275 p = 0,005		
T12	R^2 =0,036 B_0 =9,749 Bt_{12} =0,145 p =0,168	R ² =0,157 B ₀ =7,685 Bt ₁₂ =0,298 p=0,004	R ² =0,171 B ₀ =9,860 Bt ₁₂ =0,285 p=0,002	R ² =0,051 B ₀ =14,667 Bt ₁₂ =0,153 p=0,103		
L1	R^2 =0,081 B_0 = 7,078 B_{11} =0,238 p = 0,039	R^2 =0,211 B_0 = 5,014 B_{11} =0,380 p = 0,001	R ² =0,253 B ₀ =6,874 B ₁₁ =0,380 p=0,000	R^2 =0,124 B_0 =11,576 B_{11} =0,262 p = 0,011		
L2	R^2 =0,112 B_0 =6,564 B_{12} =0,249 p =0,014	R ² =0,289 B ₀ =4,261 B ₁₂ =0,396 p=0,000	R ² =0,241 B ₀ =7,869 B ₁₂ =0,331 p=0,000	R ² =0,092 B ₀ =12,980 B ₁₂ =0,201 p=0,027		
L3	R^2 =0,017 B_0 =10,609 B_{13} =0,096 p =0,347	R^2 =0,263 B_0 =4,664 B_{13} =0,368 p = 0,000	R^2 =0,180 B_0 =9,022 B_{13} =0,279 p =0,002	R^2 =0,041 B_0 =14,757 B_{13} =0,131 p =0,150		
L4	R^2 =0,032 B_0 =9,847 B_{14} =0,121 p =0,190	R ² =0,227 B ₀ =5,914 B ₁₄ =5,914 p=0,000	R ² =0,164 B ₀ =9,788 B ₁₄ =0,247 p=0,002	R ² =0,101 B ₀ =13,006 B ₁₄ =0,190 p=0,019		
L5	R^2 =0,013 B_0 =11,038 B_{15} =0,079 p =0,416	R^2 =0,178 B_0 =6,561 B_{15} =0,295 p = 0,002	R^2 =0,120 B_0 =10,504 B_{15} =0,221 p = 0,010	R^2 =0,099 B_0 = 12,797 B_{15} =0,197 p =0,021		
S1	R^2 =0,003 B_0 =14,187 B_{s1} =-0,027 p =0,697	R^2 =0,077 B_0 =10,458 B_{s1} =0,136 p =0,049	R^2 =0,026 B_0 =14,388 B_{s1} =0,073 p =0,250	R ² =0,080 B ₀ =14,292 B _{s1=} 0,125 p=0,043		

Tabela A5 – Continuação.

Vértebras	Vértebras Estimadas						
Preditoras	Т3	T4	T5	Т6			
C2	R^2 =0,060 B_0 =14,766 B_{c2} =0,098 p =0,079	R^2 =0,090 B_0 =14,231 B_{c2} =0,124 p=0,029	R ² =0,132 B ₀ = 14,193 B _{c2} =0,141 p=0,007	R ² =0,062 B ₀ =16,744 B _{c2} =0,097 p=0,075			
C3	R^2 =0,303 B_0 =11,223 B_{c3} =0,512 p=0,000	R^2 =0,231 B_0 =12,411 B_{c3} =0,460 p=0,000	R ² =0,235 B ₀ =13,358 B _{c3} =0,437 p=0,000	R ² =0,159 B ₀ =15,310 B _{c3} =0,361 p=0,003			
C4	R^2 =0,265 B_0 =10,962 B_{c4} =10,962 p =0,000	R^2 =0,244 B_0 =11,495 B_{c4} =0,544 p =0,000	R^2 =0,171 B_0 =13,700 B_{c4} =0,429 p =0,002	R^2 =0,103 B_0 =15,864 B_{c4} =0,334 p =0,019			
C5	R^2 =0,364 B_0 =11,020 B_{c5} =0,575 p =0,000	R^2 =0,215 B_0 =13,026 B_{c5} =0,456 p =0,000	R^2 =0,177 B_0 =14,521 B_{c5} =0,389 p =0,002	R^2 =0,114 B_0 =16,373 B_{c5} =0,313 p=0,014			
C6	R^2 =0,180 B_0 =12,782 B_{c6} =0,432 p =0,001	R^2 =0,177 B_0 =13,098 B_{c6} =0,442 p =0,002	R^2 =0,247 B_0 = 13,067 B_{c6} =0,491 p = 0,000	R ² =0,167 B ₀ =15,061 B _{c6} =0,406 p=0,002			
C7	R^2 =0,304 B_0 =10,021 B_{c7} =0,569 p =0,000	R^2 =0,256 B_0 =10,937 B_{c7} =0,538 p =0,000	R^2 =0,267 B_0 = 11,867 B_{c7} =0,517 p =0,000	R ² =0,195 B ₀ =13,833 B _{c7} =0,443 p=0,001			
T1	R^2 =0,294 B_0 = 8,237 B_{t1} =0,613 p = 0,000	R^2 =0,272 B_0 = 8,780 B_{t1} =0,607 p =0,000	R^2 =0,221 B_0 =10,939 B_{t1} =0,515 p =0,000	R ² =0,159 B ₀ =13,102 B _{t1} =0,438 p=0,003			
T2	R ² =0,686 B ₀ =1,032 B _{t2} =0,950 p=0,000	R ² =0,396 B ₀ =5,279 B _{t2} =0,744 p=0,000	R ² =0,393 B ₀ =6,738 B ₁₂ =0,699 p=0,000	R ² =0,317 B ₀ =8,886 B ₁₂ =0,628 p=0,000			
T3		R^2 =0,590 B_0 =4,310 B_{t3} =0,792 p=0,000	R^2 =0,530 B_0 =6,513 B_{t3} =0,706 p=0,000	R^2 =0,359 B_0 =9,648 B_{t3} =0,583 p =0,000			
T4	R^2 =0,590 B_0 =4,387 B_{t4} =0,745 p =0,000		R^2 =0,752 B_0 = 4,104 B_{t4} =0,816 p =0,000	R^2 =0,534 B_0 =7,356 B_{t4} =0,690 p=0,000			
T5	R ² =0,530 B ₀ =0,530 B _{t5} =0,750 p=0,000	R^2 =0,752 B_0 =0,926 B_{t5} =0,921 p = 0,000		R ² =0,621 B ₀ =4,968 B _{t5} =0,790 p=0,000			
T6	R ² =0,359 B ₀ =5,934 B _{t6} =0,616 p=0,000	R ² =0,534 B ₀ =3,146 B _{t6} =0,774 p=0,000	R^2 =0,621 B_0 =3,532 B_{t6} =0,785 p=0,000				
T7	R ² =0,287 B ₀ = 6,139 B _{t7} =0,603 p=0,000	R^2 =0,468 B_0 =2,652 B_{t7} =0,795 p =0,000	R ² =0,546 B ₀ =3,008 B _{t7} =0,808 p=0,000	R^2 =0,632 B_0 =2,552 B_{t7} =0,872 p =0,000			
Т8	R ² =0,170 B ₀ =8,512 B _{t8} =0,481 p=0,002	R ² =0,339 B ₀ =4,387 B _{t8} =0,701 p=0,000	R^2 =0,337 B_0 =5,896 B_{18} =0,659 p=0,000	R ² =0,496 B ₀ =3,784 B _{t8} =0,802 p=0,000			
Т9	R^2 =0,224 B_0 =7,359 B_{t9} =0,524 p = 0,000	R^2 =0,379 B_0 = 4,009 B_{t9} =0,703 p =0,000	R^2 =0,277 B_0 =7,538 B_{t9} =0,566 p =0,000	R^2 =0,307 B_0 =7,738 B_{t9} =0,597 p =0,000			
T10	R^2 =0,195 B_0 =9,227 B_{t10} =0,416 p =0,001	R^2 =0,257 B_0 =7,976 B_{t10} =0,493 p=0,000	R^2 = ,227 B_0 =9,863 B_{t10} =0,436 p =0,000	R^2 =0,343 B_0 =8,443 B_{t10} =0,538 p=0,000			
T11	R^2 =0,164 B_0 =10,878 B_{t11} =0,332 p =0,003	R^2 =0,254 B_0 =9,154 B_{t11} =0,427 p = 0,000	R^2 =0,166 B_0 =12,126 B_{t11} =0,324 p =0,002	R^2 =0,137 B_0 =13,637 B_{t11} =0,296 p =0,007			
T12	R^2 =0,075 B_0 =13,329 Bt_{12} =0,213 p =0,047	R^2 =0,112 B_0 =12,428 Bt_{12} =0,269 p =0,014	R^2 =0,080 B_0 =14,385 Bt_{12} =14,385 p =0,038	R ² =0,059 B ₀ =15,972 Bt ₁₂ =0,184 p=0,079			
L1	R^2 =0,091 B_0 =11,816 B_{11} =0,257 p =0,030	R^2 =0,199 B_0 =8,732 B_{11} =0,392 p =0,001	R^2 =0,092 B_0 = 13,031 B_{11} =0,251 p =0,027	R^2 =0,106 B_0 =13,381 B_{11} =0,271 p =0,018			
L2	R^2 =0,044 B_0 =14,229 B_{12} =14,229 p =0,132	R ² =0,139 B ₀ =11,080 B ₁₂ =0,293 p=0,006	R ² =0,091 B ₀ =13,596 B ₁₂ =0,223 p=0,027	R ² =0,094 B ₀ =14,317 B ₁₂ =0,228 p=0,025			
L3	R^2 =0,026 B_0 =15,185 B_{13} =0,120 p=0,253	R ² =0,154 B ₀ =10,594 B ₁₃ =0,300 p=0,004	R^2 =0,070 B_0 =14,281 B_{13} =0,190 p =0,056	R^2 =0,057 B_0 =15,656 B_{13} =0,172 p =0,089			
L4	R ² =0,143 B ₀ =11,139 B ₁₄ =0,260 p=0,005	R ² =0,287 B ₀ =8,183 B ₁₄ =0,380 p=0,000	R ² =0,198 B ₀ =11,156 B ₁₄ =0,297 p=0,001	R^2 =0,145 B_0 =13,201 B_{14} =0,255 p =0,004			
L5	R^2 =0,070 B_0 = 13,107 B_{15} =0,191 p =0,053	R^2 =0,183 B_0 =9,936 B_{15} =0,318 p=0,001	R^2 =0,115 B_0 =12,849 B_{15} =0,237 p = 0,011	R ² =0,074 B ₀ =15,044 B ₁₅ =0,190 p=0,047			
S1	R^2 =0,089 B_0 =13,545 $B_{s1=0}$,151 p =0,032	R^2 =0,072 B_0 =14,354 $B_{s1=0}$,140 p =0,055	R^2 =0,040 B_0 =16,339 $B_{s1=0}$,099 p=0,150	R^2 =0,043 B_0 =17,075 $B_{s1=0}$,102 p =0,140			

Tabela A5 – Continuação.

Vértebras		Vértebras	Estimadas	
Preditoras	Т7	T8	Т9	T10
C2	R^2 =0,055 B_0 =17,341 B_{c2} =0,083 p =0,090	R^2 =0,060 B_0 =17,588 B_{c2} =0,084 p =0,077	R^2 =0,039 B_0 =18,552 B_{c2} =0,072 p = 0,154	R^2 =0,067 B_0 =18,133 B_{c2} =0,109 p = 0,062
C3	R^2 =0,182 B_0 =15,518 B_{c3} =0,352 p =0,001	R^2 =0,132 B_0 =16,679 B_{c3} =0,289 p =0,006	R^2 =0,125 B_0 =17,072 B_{c3} =0,296 p =0,008	R^2 =0,049 B_0 =19,220 B_{c3} =0,218 p=0,108
C4	R^2 =0,188 B_0 =14,882 B_{c4} =0,412 p = 0,001	R^2 =0,125 B_0 = 16,359 B_{c4} =0,323 p=0,009	R^2 =0,177 B_0 = 15,715 B_{c4} =0,406 p=0,002	R^2 =0,075 B_0 =18,078 B_{c4} =0,309 p=0,048
C5	R^2 =0,124 B_0 =16,658 B_{c5} =0,297 p =0,009	R^2 =0,082 B_0 =17,751 B_{c5} =0,233 p=0,036	R^2 =0,136 B_0 =17,156 B_{c5} =0,317 p =0,006	R^2 =0,075 B_0 =18,709 B_{c5} =0,277 p =0,047
C6	R^2 =0,178 B_0 =15,462 B_{c6} =0,382 p = 0,001	R^2 =0,134 B_0 = 16,559 B_{c6} =0,319 p =0,006	R^2 =0,138 B_0 =16,751 B_{c6} =0,342 p=0,005	R ² =0,076 B ₀ =18,371 B _{c6} =0,298 p=0,044
C7	R ² =0,273 B ₀ =13,390 B _{c7} =0,478 p=0,000	R ² =0,139 B ₀ =15,883 B _{c7} =0,329 p=0,006	R^2 =0,183 B_0 = 15,342 B_{c7} =0,398 p =0,001	R ² =0,132 B ₀ =16,384 B _{c7} =0,398 p=0,008
T1	R^2 =0,330 B_0 =10,867 B_{t1} =0,576 p = 0,000	R^2 =0,171 B_0 = 14,089 B_{t1} =0,399 p = 0,002	R ² =0,276 B ₀ = 12,295 B _{t1} =0,536 p=0,000	R^2 =0,097 B_0 = 16,076 B_{t1} =0,372 p =0,023
T2	R ² =0,331 B ₀ =9,751 B _{t2} =0,586 p=0,000	R ² =0,262 B ₀ =11,546 B _{t2} =0,503 p=0,000	R ² =0,301 B ₀ =10,836 B _{t2} =0,568 p=0,000	R ² =0,166 B ₀ =13,204 B ₁₂ =0,496 p=0,002
T3	R^2 =0,287 B_0 =11,737 B_{t3} =0,475 p=0,000	R^2 =0,170 B_0 =14,267 B_{t3} =0,353 p=0,002	R^2 =0,224 B_0 =13,379 B_{t3} =0,427 p =0,000	R^2 =0,195 B_0 = 13,652 B_{t3} =0,468 p=0,001
T4	R ² =0,468 B ₀ =9,355 B _{t4} =0,589 p=0,000	R ² =0,339 B ₀ =11,625 B _{t4} =0,483 p=0,000	R ² =0,379 B ₀ =11,065 B _{t4} =0,539 p=0,000	R^2 =0,257 B_0 =12,435 B_{t4} =0,521 p=0,000
T5	R^2 =0,546 B_0 = 7,298 B_{t5} =0,676 p = 0,000	R^2 =0,337 B_0 =10,762 B_{t5} =0,512 p =0,000	R^2 =0,277 B_0 =11,693 B_{t5} =0,490 p =0,000	R^2 =0,227 B_0 =12,129 B_{t5} =0,521 p =0,000
T6	R ² =0,632 B ₀ =5,716 B _{t6} =0,725 p=0,000	R ² =0,496 B ₀ =8,130B _{t6} =0,619 p=0,000	R ² =0,307 B ₀ =10,790 B _{t6} =0,514 p=0,000	R ² =0,343 B ₀ =9,270 B _{t6} =0,638 p=0,000
T7		R ² =0,655 B ₀ =4,768 B _{t7} =0,780 p=0,000	R ² =0,589 B ₀ =5,263 B _{t7} =0,781 p=0,000	R^2 =0,415 B_0 =6,528 B_{t7} =0,769 p=0,000
T8	R ² =0,655 B ₀ =3,072 B _{t8} =0,840 p=0,000		R^2 =0,630 B_0 =3,881 B_{t8} =0,837 p =0,000	R ² =0,453 B ₀ =4,988 B _{t8} =0,834 p=0,000
T9	R^2 =0,589 B_0 = 4,471 B_{t9} =0,755 p =0,000	R^2 =0,630 B_0 =4,780 B_{t9} =0,752 p =0,000		R^2 =0,563 B_0 =3,559 B_{t19} =0,881 p=0,000
T10	R^2 =0,415 B_0 =8,504 B_{t10} =0,539 p=0,000	R^2 =0,453 B_0 =8,677 B_{t10} =0,543 p =0,000	R^2 =0,563 B_0 =7,031 B_{t10} =0,639 p=0,000	
T11	R^2 =0,249 B_0 =12,159 B_{t11} =0,364 p =0,000	R^2 =0,253 B_0 = 12,658 B_{t11} =0,354 p =0,000	R ² =0,447 B ₀ = 9,884 B _{t11} =0,496 p=0,000	R^2 =0,556 B_0 =7,380 B_{t11} =0,649 p = 0,000
T12	R ² =0,103 B ₀ =15,147 Bt ₁₂ =0,221 p=0,018	R ² =0,063 B ₀ =16,728 Bt ₁₂ =0,167 p=0,067	R^2 =0,244 B_0 =12,849 Bt_{12} =0,347 p =0,000	R ² =0,199 B ₀ =13,360 Bt ₁₂ =0,368 p=0,001
L1	R ² =0,107 B ₀ =14,074 B ₁₁ =0,248 p=0,017	R^2 =0,103 B_0 =14,671 B_{11} =0,235 p = 0,019	R^2 =0,258 B_0 =11,071 B_{11} =0,391 p =0,000	R^2 =0,211 B_0 =11,476 B_{11} =0,415 p =0,001
L2	R^2 =0,174 B_0 =12,948 B_{12} =0,282 p=0,002	R ² =0,187 B ₀ =13,210 B ₁₂ =0,281 p=0,001	R^2 =0,308 B_0 =11,016 B_{12} =0,381 p=0,000	R^2 =0,296 B_0 =10,499 B_{12} =0,439 p =0,000
L3	R ² =0,071 B ₀ =15,627 B ₁₃ =0,176 p=0,053	R^2 =0,075 B_0 =15,937 B_{13} =0,174 p =0,047	R ² =0,128 B ₀ =14,611 B ₁₃ =0,240 p=0,009	R ² =0,128 B ₀ =14,477 B ₁₃ =0,281 p=0,009
L4	R ² =0,117 B ₀ =14,603 B ₁₄ =0,209 p=0,011	R ² =0,102 B ₀ =15,443 B ₁₄ =0,188 p=0,017	R ² =0,139 B ₀ =14,714 B ₁₄ =0,232 p=0,005	R ² =0,256 B ₀ =11,846 B ₁₄ =0,369 p=0,000
L5	R^2 =0,076 B_0 =15,510 B_{15} =0,177 p=0,041	R ² =0,114 B ₀ =14,870 B ₁₅ =0,209 p=0,012	R^2 =0,169 B_0 =13,695 B_{15} =0,267 p =0,002	R ² =0,126 B ₀ =14,601 B ₁₅ =0,272 p=0,008
S1	R^2 =0,037 B_0 =17,684 $B_{s01=0}$,087 p =0,168	R^2 =0,082 B_0 =16,698 $B_{s1=0}$,124 p =0,038	R^2 =0,059 B_0 =17,639 $B_{s1=0}$,111 p =0,081	R ² =0,185 B ₀ =14,706 B _{s1=0} ,231 p=0,001

Tabela A5 – Continuação.

Vértebras	Vértebras Estimadas						
Preditoras	T11	T12	L1	L2			
C2	R^2 =0,109 B_0 =16,876 B_{c2} =0,160 p =0,018	R^2 =0,018 B_0 =21,748 B_{c2} =0,068 p =0,346	R^2 =0,074 B_0 = 21,229 B_{c2} =0,128 p = 0,053	R^2 =0,167 B_0 =18,726 B_{c2} =0,215 p =0,003			
C3	R^2 =0,133 B_0 =17,138 B_{c3} =0,412 p =0,007	R^2 =0,027 B_0 =21,594 B_{c3} =0,195 p =0,239	R^2 =0,074 B_0 =21,893 B_{c3} =0,297 p =0,049	R ² =0,112 B ₀ =21,128 B _{c3} =0,409 p=0,013			
C4	R^2 =0,144 B_0 =16,252 B_{c4} =0,493 p =0,006	R^2 =0,159 B_0 = 16,831 B_{c4} =0,549 p =0,003	R^2 =0,145 B_0 =19,575 B_{c4} =0,477 p =0,005	$R^2 = 0.117 \ B_0 = 20.373 \ B_{c4} = 0.479 \ p = 0.012$			
C5	R^2 =0,079 B_0 =18,756 B_{c5} =0,327 p =0,043	$R^2,058=$ $B_0=20,507$ $B_{c5}=0,296$ $p=0,081$	R^2 =0,065 B_0 =22,422 B_{c5} =0,284 p =0,069	R^2 =0,052 B_0 =23,225 B_{c5} =0,286 p=0,100			
C6	R^2 =0,079 B_0 = 18,404 B_{c6} =0,348 p =0,042	R^2 =0,036 B_0 = 21,057 B_{c6} =0,250 p =0,168	R^2 =0,081 B_0 =21,618 B_{c6} =0,339 p =0,039	R ² =0,112 B ₀ =21,015 B _{c6} =0,447 p=0,014			
C7	R^2 =0,188 B_0 =14,885 B_{c7} =0,545 p = 0,001	R^2 =0,157 B_0 =16,522 B_{c7} =0,525 p =0,004	R^2 =0,211 B_0 =17,812 B_{c7} =0,556 p=0,001	R^2 =0,289 B_0 =16,067 B_{c7} =0,729 p=0,000			
T1	R ² =0,167 B ₀ =13,585 B _{t1} =0,562 p=0,003	R^2 =0,171 B_0 =14,285 B_{t1} =0,601 p =0,002	R^2 =0,253 B_0 = 14,954 B_{t1} =0,665 p =0,000	R^2 =0,241 B_0 = 14,718 B_{t1} =0,729 p=0,000			
T2	R ² =0,147 B ₀ =13,149 B _{t2} =0,537 p=0,005	R^2 =0,051 B_0 =18,215 B_{t2} =0,335 p=0,103	R^2 =0,124 B_0 =17,418 B_{t2} =0,473 p=0,011	R^2 =0,092 B_0 =18,534 B_{t2} =0,458 p=0,027			
T3	R ² =0,164 B ₀ =13,904 B _{t3} =0,492 p=0,003	R^2 =0,075 B_0 =17,834 B_{t3} =0,353 p =0,047	R ² =0,091 B ₀ =19,589 B _{t3} =0,353 p=0,030	R^2 =0,044 B_0 = 21,861 B_{t3} =0,275 p =0,132			
T4	R ² =0,254 B ₀ =11,733 B _{t4} =0,595 p=0,000	R ² =0,112 B ₀ =16,432 B _{t4} =0,419 p=0,014	R ² =0,199 B ₀ =16,507 B _{t4} =0,507 p=0,001	R^2 =0,139 B_0 =17,929 B_{t4} =0,476 p=0,006			
T5	R ² =0,166 B ₀ =13,018 B _{t5} =0,511 p=0,002	R^2 =0,080 B_0 = 17,009 B_{t5} =0,376 p =0,038	R^2 =0,092 B_0 =18,943 B_{t5} =0,366 p =0,027	R ² =0,091 B ₀ =18,965 B _{t5} =0,408 p=0,027			
Т6	R ² =0,137 B ₀ =13,551 B _{t6} =0,463 p=0,007	R ² =0,059 B ₀ =17,801 B _{t6} =0,321 p=0,079	R ² =0,106 B ₀ =18,097 B _{t6} =0,392 p=0,018	R ² =0,094 B ₀ =18,475 B _{t6} =0,415 p=0,025			
Т7	R ² =0,249 B ₀ =8,962 B _{t07} =0,685 p=0,000	R ² =0,103 B ₀ =14,826 B _{t7} =0,465 p=0,018	R^2 =0,107 B_0 =17,263 B_{t7} =0,431 p =0,017	R ² =0,174 B ₀ =14,287 B _{t7} =0,617 p=0,002			
Т8	R ² =0,253 B ₀ =8,140 B _{t8} =0,716 p=0,000	R ² =0,063 B ₀ =16,523 Bt ₈ =0,378 p=0,067	R^2 =0,103 B_0 =16,975 B_{t8} =0,440 p =0,019	R^2 =0,187 B_0 =13,156 B_{t8} =0,664 p =0,001			
Т9	R ² =0,447 B ₀ =3,832 B _{t9} =0,901 p=0,000	R^2 =0,244 B_0 = 9,381 B_{t9} =0,704 p =0,000	R^2 =0,258 B_0 =12,079 Bt_9 =0,659 p =0,000	R^2 =0,308 B_0 =9,759 B_{t19} =0,808 p=0,000			
T10	R ² =0,556 B ₀ =3,918 B _{t10} =0,856 p=0,000	R^2 =0,199 B_0 =12,278 B_{t10} =0,542 p =0,001	R ² =0,211 B ₀ =14,796 B _{t10} =0,507 p=0,001	R^2 =0,296 B_0 =11,918 B_{t10} =0,674 p =0,000			
T11		R ² =0,424 B ₀ = 8,524 B _{t11} =0,688 p=0,000	R^2 =0,445 B_0 =11,342 B_{t11} =0,642 p =0,000	R ² =0,480 B ₀ =9,744 B _{t11} =0,748 p=0,000			
T12	R^2 =0,424 B_0 =8,005 Bt_{12} =0,616 p =0,000		R^2 =0,519 B_0 =10,130 Bt_{12} =0,656 p =0,000	R ² =0,390 B ₀ =11,412 Bt ₁₂ =0,638 p=0,000			
L1	R^2 =0,445 B_0 = 4,924 B_{11} =0,693 p = 0,000	R ² =0,519 B ₀ =3,708 B ₁₁ =0,791 p=0,000		R ² =0,571 B ₀ =4,833 B ₁₁ =0,847 p=0,000			
L2	R ² =0,480 B ₀ =5,719 B ₁₂ =0,642 p=0,000	R ² =0,390 B ₀ =7,882 B ₁₂ =0,612 p=0,000	R ² =0,571 B ₀ =7,958 B ₁₂ =0,674 p=0,000				
L3	R ² =0,355 B ₀ =8,012 B ₁₃ =0,538 p=0,000	R ² =0,286 B ₀ =10,135 B ₁₃ =0,510 p=0,000	R ² =0,520 B ₀ =8,634 B ₁₃ =0,627 p=0,000	R ² =0,603 B ₀ = 5,843 B ₁₃ =0,756 p=0,000			
L4	R ² =0,399 B ₀ =7,994 B ₁₄ =0,529 p=0,000	R ² =0,265 B ₀ =11,430 B ₁₄ =0,456 p=0,000	R ² =0,419 B ₀ =11,292 B ₁₄ =0,522 p=0,000	R ² =0,460 B ₀ =9,539 B ₁₄ =0,613 p=0,000			
L5	R^2 =0,343 B_0 =8,400 B_{15} =0,514 p = 0,000	R^2 =0,211 B_0 = 12,257 B_{15} =0,426 p = 0,000	R^2 =0,382 B_0 = 11,280 B_{15} =0,522 p =0,000	R ² =0,457 B ₀ =8,753 B ₁₅ =0,640 p=0,000			
S1	R^2 =0,181 B_0 =14,348 $B_{s1=0}$,263 p =0,002	R^2 =0,079 B_0 =18,340 $B_{s1=0}$,183 p =0,044	R^2 =0,140 B_0 =18,776 $B_{s1=0}$,223 p =0,007	R^2 =0,150 B_0 =18,435 $B_{s1=0}$,258 p =0,005			

Tabela A5 – Continuação.

Vértebras	Vértebras Estimadas						
Preditoras	L3	L4	L5	S1			
C2	R^2 =0,147 B_0 =20,000 B_{c2} =0,206 p =0,005	R^2 =0,170 B_0 =19,243 B_{c2} =0,239 p=0,002	R^2 =0,131 B_0 =20,733 B_{c2} =0,201 p =0,008	R^2 =0,075 B_0 = 24,747 B_{c2} =0,215 p =0,052			
C3	R^2 =0,015 B_0 =25,722 B_{c3} =0,154 p=0,382	R^2 =0,062 B_0 =23,602 B_{c3} =0,337 p =0,066	R^2 =0,071 B_0 =23,528 B_{c3} =0,344 p=0,049	$R^2 = 0.076$ $B_0 = 25.791$ $B_{c3} = 0.505$ $p = 0.046$			
C4	R^2 =0,076 B_0 =22,442 B_{c4} =0,398 p =0,047	R^2 =0,070 B_0 =22,774 B_{c4} =0,411 p =0,053	R^2 =0,076 B_0 = 22,823 B_{c4} =0,408 p =0,044	R^2 =0,076 B_0 = 25,039 B_{c4} =0,579 p =0,049			
C5	$R^2 = 0.035$ $B_0 = 24.758B_{c5} = 0.242$ $p = 0.181$	R^2 =0,041 B_0 =24,762 B_{c5} =0,280 p=0,143	R^2 =0,018 B_0 =26,145 B_{c5} =0,175 p=0,339	R^2 =0,000 B_0 =32,720 B_{c5} =0,021 p =0,937			
C6	R^2 =0,017 B_0 =25,507 B_{c6} =0,181 p=0,347	R^2 =0,032 B_0 =24,885 B_{c6} =0,266 p =0,190	R^2 =0,013 B_0 =26,330 B_{c6} = 0,158p=0,416	R^2 =0,003 B_0 =34,460 B_{c6} =-,110 p=0,697			
C7	R^2 =0,263 B_0 =17,256 B_{c7} =0,713 p =0,000	$R^2=0.227 B_0=17.727 B_{c7}=0.715 p=0.000$	$R^2=0.178$ $B_0=19.403$ $B_{c7}=0.604$ $p=0.002$	R^2 =0,077 B_0 =24,575 B_{c7} =0,563 p=0,049			
T1	R^2 =0,180 B_0 =17,073 B_{t1} =0,645 p =0,002	R ² =0,164 B ₀ =17,260 B _{t1} =0,664 p=0,002	R^2 =0,120 B_0 = 19,317 B_{t1} =0,543 p =0,010	R ² =0,026 B ₀ =26,918 B _{t1} =0,362 p=0,250			
T2	$R^2 = 0.041$ $B_0 = 22.152$ $B_{12} = 0.313$ $p = 0.150$	$R^2 = 0.101$ $B_0 = 18,683$ $B_{12} = 0.529$ $p = 0.019$	R^2 =0,099 B_0 =19,233 B_{t2} =0,500 p=0,021	R^2 =0,080 B_0 =21,239 B_{t2} =0,639 p=0,043			
T3	R^2 =0,026 B_0 =23,884 B_{t3} =0,218 p =0,253	R^2 =0,143 B_0 =18,243 B_{t3} =0,549 p =0,005	R^2 =0,070 B_0 =21,641 B_{t3} =0,367 p =0,053	R^2 =0,089 B_0 =22,122 B_{t3} =0,587 p =0,032			
T4	$R^2 = 0.154$ $B_0 = 18.167$ $B_{t4} = 0.514$ $p = 0.004$	$R^2 = 0.287$ $B_0 = 14.087$ $B_{14} = 0.755$ $p = 0.000$	$R^2 = 0.183$ $B_0 = 17.513$ $B_{t4} = 0.575$ $p = 0.001$	$R^2 = 0.072$ $B_0 = 23,270$ $B_{t4} = 0.513$ $p = 0.055$			
T5	R^2 =0,070 B_0 =20,713 B_{t5} =0,368 p = 0,056	R^2 =0,198 B_0 = 15,360 B_{t5} =0,666 p =0,001	R^2 =0,115 B_0 =18,936 B_{t5} =0,485 p =0,011	R^2 =0,040 B_0 =25,011 B_{t5} =0,408 p =0,150			
T6	R^2 =0,057 B_0 =21,169 B_{t6} =0,330 p=0,089	R^2 =0,145 B_0 =16,776 B_{t6} =0,569 p=0,004	R^2 =0,074 B_0 =20,531 B_{t6} =0,386 p =0,047	R^2 =0,043 B_0 =24,398 B_{t6} =0,420 p=0,140			
T7	R^2 =0,071 B_0 =19,575 B_{t07} =0,406 p =0,053	R^2 =0,117 B_0 =16,911 B_{t7} =0,560 p=0,011	R^2 =0,076 B_0 =19,562 B_{t7} ,432= p=0,041	R^2 =0,037 B_0 =24,221 B_{t7} =0,427 p=0,168			
Т8	$R^2 = 0.075$ $B_0 = 18.924$ $B_{18} = 0.432$ $p = 0.047$	$R^2 = 0.102$ $B_0 = 17.109$ $B_1 = 0.544$ $p = 0.017$	R^2 =0,114 B_0 = 17,043 B_{t8} =0,548 p =0,012	R^2 =0,082 B_0 =19,270 B_{t8} =0,660 p=0,038			
T9	R^2 =0,128 B_0 =16,539 B_{t9} =0,534 p = 0,009	R^2 =0,139 B_0 = 15,630 B_{t9} =0,600 p =0,005	R^2 =0,169 B_0 =14,998 Bt_9 =0,631 p =0,002	R^2 =0,059 B_0 =21,732 B_{t19} =0,529 p=0,081			
T10	R^2 =0,128 B_0 =17,763 B_{t10} =0,455 p =0,009	R^2 =0,256 B_0 =12,942 B_{t10} =0,693 p =0,000	R^2 =0,126 B_0 =18,054 B_{t10} =0,465 p =0,008	R^2 =0,185 B_0 =15,157 B_{t10} =0,799 p=0,001			
T11	R^2 =0,355 B_0 =12,728 B_{t11} =0,660 p=0,000	R^2 =0,399 B_0 = 11,058 B_{t11} =0,754 p =0,000	R^2 =0,343 B_0 =13,066 B_{t11} =0,667 p =0,000	R^2 =0,181 B_0 = 17,111 B_{t11} =0,690 p=0,002			
T12	R ² =0,286 B ₀ =14,265Bt ₁₂ =0,560 p=0,000	R^2 =0,265 B_0 =14,250 Bt_{12} =0,581 p=0,000	R ² =0,211 B ₀ =16,367Bt ₁₂ =0,495 p=0,000	R^2 =0,079 B_0 =22,526 Bt_{12} =0,430 p=0,044			
L1	R ² =0,520 B ₀ =6,251 B ₁₁ =0,829 p=0,000	R ² =0,419 B ₀ =7,442 B ₁₁ =0,803 p=0,000	R ² =0,382 B ₀ =9,335 B ₁₁ =0,731 p=0,000	R ² =0,140 B ₀ =16,523 B ₁₁ =0,631 p=0,007			
L2	R^2 =0,603 B_0 =6,441 B_{12} =0,797 p =0,000	R^2 =0,460 B_0 =8,192 B_{12} =0,750 p =0,000	R^2 =0,457 B_0 =9,203 B_{12} =0,713 p =0,000	R^2 =0,150 B_0 =17,308 B_{12} =0,582 p=0,005			
L3		R ² =0,619 B ₀ = 4,742 B ₁₃ =0,848 p=0,000	R^2 =0,640 B_0 =5,458 B_{13} =0,823 p = 0,000	R^2 =0,084 B_0 =21,146 B_{13} =0,425 p =0,039			
L4	R ² =0,619 B ₀ =7,178B ₁₄ =0,730 p=0,000		R ² =0,620 B ₀ =7,087B ₁₄ =0,751 p=0,000	R^2 =0,257 B_0 =13,457 B_{14} =0,688 p=0,000			
L5	R ² =0,640 B ₀ =5,795 B ₁₅ =0,778 p=0,000	R^2 =0,620 B_0 =4,955 B_{15} =0,825 p = 0,000		R ² =0,143 B ₀ = 17,723 B ₁₅ =0,537 p=0,005			
S1	R^2 =0,084 B_0 =21,367 $B_{s1=0}$,198 p=0,039	R^2 =0,257 B_0 =16,091 $B_{s1=0}$,374 p=0,000	R^2 =0,143 B_0 =19,666 $B_{s1=0}$,266 p =0,005				

Tabela A5 – Continuação.

Tabela A3 – Continuação.	Vértebras Estimadas
Vértebras Preditoras	CT
C2	R^2 =0,393 B_0 =364,268 B_{c2} =4,238 p =0,000
C3	R^2 =0,409 B_0 =373,614 B_{c3} =10,740 p =0,000
C4	$R^2 = 0,426$ $B_0 = 353,663B_{c4} = 12,609$ $p = 0,000$
C5	R^2 =0,304 B_0 =402,979 B_{c5} =9,489 p =0,000
C6	R^2 =0,249 B_0 =404,888 B_{c6} =9,181 p =0,001
C7	$R^2 = 0.501$ $B_0 = 329.647$ $B_{c7} = 13.195$ $p = 0.000$
T1	$R^2 = 0,409$ $B_0 = 307,696B_{t1} = 13,049$ $p = 0,000$
T2	$R^2 = 0.574$ $B_0 = 288.882$ $B_{t2} = 12.929$ $p = 0.000$
T3	$R^2 = 0,420$ $B_0 = 310,029$ $B_{t3} = 11,705$ $p = 0,000$
T4	$R^2 = 0.587$ $B_0 = 271.920$ $B_{t4} = 13.437$ $p = 0.000$
T5	$R^2 = 0,473$ $B_0 = 276,046B_{t5} = 12,801$ $p = 0,000$
T6	$R^2 = 0.376$ $B_0 = 293.926$ $B_{t6} = 11.389$ $p = 0.000$
T7	$R^2 = 0,408$ $B_0 = 259,756B_{t7} = 13,005$ $p = 0,000$
T8	$R^2 = 0,410$ $B_0 = 245,682B_{t8} = 13,521$ $p = 0,000$
T9	$R^2 = 0,461$ $B_0 = 237,581$ $B_{19} = 13,584$ $p = 0,000$
T10	$R^2 = 0,451$ $B_0 = 271,283B_{t10} = 11,447$ $p = 0,000$
T11	$R^2 = 0.626$ $B_0 = 256.526$ $B_{t11} = 11.742$ $p = 0.000$
T12	$R^2 = 0.332$ $B_0 = 329.664$ $B_{t12} = 8.091$ $p = 0.000$
L1	$R^2 = 0.485$ $B_0 = 246.321$ $B_{11} = 10.739$ $p = 0.000$
L2	$R^2 = 0.569$ $B_0 = 247.261$ $B_{12} = 10.372$ $p = 0.000$
L3	$R^2 = 0,469$ $B_0 = 270,790B_{13} = 9,174$ $p = 0,000$
L4	$R^2 = 582 B_0 = 257,391B_{14} = 9,484 p = 0,000$
L5	R^2 =0,490 B_0 =267,423 B_{15} =9,126 p =0,000
S1	R^2 =0,291 B_0 =363,690 B_{s1} =4,946 p =0,000

Tabela A6 - Resultados de todos os modelos de regressão obtidos a partir da análise de regressão linear simples para a estimativa da altura dos corpos vertebrais e da fração total da coluna vertebral nos indivíduos do sexo feminino.

Vértebras	da Tração totar da Coraña Vorteorar no		estimadas	
preditoras	C2	C3	C4	C5
C2		R^2 =0,181 B_0 =7,346 B_{c2} =0,152 p=0,001	R^2 =0,217 B_0 =5,945 B_{c2} =0,180 p= 0,000	R^2 =0,179 B_0 =6,488 B_{c2} =0,151 p=0,001
C3	R ² =0,181 B ₀ =20,084 B _{c3} =1,191 p=0,001		R^2 ,538= B_0 =2,213 B_{c3} =0,792 p=0,000	R^2 =0,497 B_0 =2,887 B_{c3} =0,701 p =0,000
C4	R^2 =0,217 B_0 =20,389 B_{c4} =1,207 p = 0,000	R^2 =0,538 B_0 =4,361 B_{c4} =0,679 p =0,000		R ² =0,563 B ₀ =3,306 B _{c4} =0,691 p=0,000
C5	R^2 =0,179 B_0 =21,161 B_{c5} =1,192 p=0,003	R^2 =0,497 B_0 =4,347 B_{c5} =0,709 p=0,000	R^2 =0,563 B_0 =2,671 B_{c5} =0,815 p =0,000	
C6	R^2 =0,121 B_0 = 23,204 B_{c6} =1,006 p=0,009	$R^2 = 0.369 B_0 = 5.201 B_{c6} = 0.628 p = .000$	R^2 =0,339 B_0 =4,520 B_{c6} =0,650 p=0,000	R^2 =0,573 B_0 =2,493 B_{c6} =0,779 p=0,000
C7	R ² =0,150 B ₀ =21,002 B _{c7} =1,162 p=0,003	R ² =0,335 B ₀ =5,589 B _{c7} =0,527 p=0,000	R ² =0,222 B ₀ = 6,023 B _{c7} =0,464 p=0,000	R ² =0,257 B ₀ =5,600 B _{c7} =0,459 p=0,000
T1	R^2 =0,222 B_0 = 19,509 B_{t1} =1,039 p = 0,000	$R^2 = 0.337 \ B_0 = 5.778 \ B_{t1} = 0.458 \ p = 0.000$	R^2 =0,214 B_0 =6,324 B_{t1} =0,394 p =0,000	R^2 =0,225 B_0 =6,170 B_{tl} =0,372 p=0,000
T2	R^2 =0,196 B_0 =15,439 B_{t2} =1,171 p =0,000	R^2 =0,348 B_0 =3,288 B_{t2} =0,558 p=0,000	R^2 =0,293 B_0 =2,954 B_{t2} =0,552 p =0,000	R^2 =0,239 B_0 =4,028 B_{12} =0,460 p=0,000
T3	R^2 =0,231 B_0 =11,301 B_{t3} =1,406 p =0,000	R^2 =0,315 B_0 =2,710 B_{t3} =0,587 p =0,000	R^2 =0,156 B_0 =4,690 B_{t3} =0,446 p = 0,001	R^2 =0,197 B_0 =3,942 B_{t3} =0,461 p=0,000
T4	R^2 =0,198 B_0 =14,715 B_{t4} =1,182 p =0,000	R^2 =0,185 B_0 =5,626 B_{t4} =0,408 p =0,000	R^2 =0,091 B_0 =6,929 B_{t4} =0,309 p =0,013	R^2 =0,151 B_0 =5,430 B_{t4} =0,367 p=0,001
T5	R^2 =0,208 B_0 =14,544 B_{t5} =1,155 p=0,000	R^2 =0,225 B_0 =5,015 B_{t5} =0,429 p=0,000	R^2 =0,155 B_0 =5,400 B_{t5} =0,384 p =0,001	R^2 =0,229 B_0 =4,081 B_{t5} =0,431 p=0,000
T6	R^2 =0,186 B_0 =16,331 B_{t6} =1,030 p =0,001	R^2 =0,209 B_0 =5,545 B_{t6} =0,390 p=0,000	$R^2=0,174$ $B_0=5,215B_{t6}=0,385$ $p=0,000$	R ² =0,164 B ₀ =5,485 B _{t6} =0,344 p=0,001
T7	R^2 =0,169 B_0 =15,962 B_{t07} =1,017 p=0,001	R^2 =0,158 B_0 =6,058 B_{t07} =0,351 p =0,001	R^2 =0,195 B_0 =4,301 B_{t07} =0,421 p=0,000	R^2 =0,159 B_0 =5,150 B_{t07} =0,351 p =0,001
T8	R^2 =0,138 B_0 =18,232 B_{t8} =0,881 p =0,003	R^2 =0,192 B_0 =5,547 B_{t8} =0,371 p =0,000	$R^2=0,177$ $B_0=4,848$ $B_{t8}=0,385$ $p=0,000$	R^2 =0,179 B_0 =4,909 B_{t8} =0,357 p=0,000
T9	R^2 =0,156 B_0 = 18,980 B_{t9} =0,817 p =0,002	R^2 =0,275 B_0 =5,001 B_{t9} =0,388 p =0,000	R^2 =0,242 B_0 =4,471 B_{t9} =0,393 p=0,000	R^2 =0,243 B_0 =4,594 B_{t9} =0,362 p=0,000
T10	R^2 =0,146 B_0 =20,568 B_{t10} =0,700 p =0,002	R^2 =0,216 B_0 =6,331 B_{t10} =0,305 p=0,000	R^2 =0,213 B_0 =5,444 B_{t10} =0,327 p=0,000	R^2 =0,228 B_0 =5,279 B_{t10} =0,311 p=0,000
T11	R^2 =0,102 B_0 = 23,007 B_{t11} =0,566 p=0,012	R^2 =0,247 B_0 =5,892 B_{t11} =0,315 p=0,000	R^2 =0,257 B_0 =4,788 B_{t11} =0,347 p=0,000	R^2 =0,287 B_0 =4,502 B_{t11} =0,338 p=0,000
T12	R^2 =0,142 B_0 =21,428 Bt_{12} =0,595 p =0,003	R^2 =0,254 B_0 =6,120 Bt_{12} =0,284 p =0,000	R^2 =0,195 B_0 =6,043 Bt_{12} =0,269 p =0,000	R^2 =0,164 B_0 =6,523 Bt_{12} =0,227 p=0,001
L1	R^2 =0,282 B_0 =14,164 B_{11} =0,802 p =0,000	R ² =0,321 B ₀ =4,880 B ₁₁ =0,314 p=0,000	R^2 =0,235 B_0 =5,053 B_{11} =0,290 p = 0,000	R^2 =0,233 B_0 =5,166 B_{11} =0,266 p =0,000
L2	R^2 =0,282 B_0 =14,164 B_{12} =0,802 p =0,000	R^2 =0,189 B_0 =6,550 B_{12} =0,234 p =0,000	R ² =0,170 B ₀ =5,976 B ₁₂ =0,240 p=0,000	R ² =0,160 B ₀ =6,146 B ₁₂ =0,215 p=0,001
L3	R ² =0,244 B ₀ = 14,584 B ₁₃ =0,764 p=0,000	R ² =0,307 B ₀ =4,431 B ₁₃ =0,306 p=0,000	R^2 =0,206 B_0 =4,956 B_{13} =0,271 p = 0,000	R ² =0,246 B ₀ =4,427 B ₁₃ =0,273 p=0,000
L4	R ² =0,256 B ₀ =17,789 B ₁₄ =0,649 p=0,000	R ² =0,317 B ₀ =5,772 B ₁₄ =0,258 p=0,000	R^2 =0,212 B_0 =6,153 B_{14} =0,228 p=0,000	R ² =0,199 B ₀ =6,322 B ₁₄ =0,204 p=0,000
L5	R^2 =0,207 B_0 = 17,187 B_{15} =0,662 p = 0,000	R ² =0,349 B ₀ =4,344 B ₁₅ =0,307 p=0,000	R ² =0,143 B ₀ =6,494 B ₁₅ =0,213 p=0,002	R ² =0,160 B ₀ =6,166 B ₁₅ =0,207 p=0,001
S1	R^2 =0,316 B_0 =12,859 $B_{s1=0}$,715 p=0,000	R^2 = ,153 B_0 =7,152 $B_{s1=0}$,178 p =0,001	R^2 =0,191 B_0 =5,571 $B_{s1=0}$,215 p =0,000	R ² =0,169 B ₀ =5,979 B _{s1=0} ,186 p=0,001

Tabela A6 - Continuação.

Vértebras	Vértebras Estimadas						
Preditoras	C6	C7	T1	T2			
C2	R ² =0,121 B ₀ =7,708 B _{c2} =0,120 p=0,008	R ² =0,150 B ₀ =8,126 B _{c2} =0,152 p=0,003	R^2 =0,222 B_0 = 7,606 B_{c2} =0,213 p=0,000	R ² =0,196 B ₀ = 10,981 B _{c2} =0,168 p=0,000			
C3	R ² =0,369 B ₀ =4,474 B _{c3} =0,588 p=0,000	R ² =0,335 B ₀ =5,407 B _{c3} =0,636 p=0,000	R ² =0,337 B ₀ =5,763 B _{c3} =0,736 p=0,000	R ² =0,348 B ₀ =8,945 B _{c3} =0,625 p=0,000			
C4	R ² =0,339 B ₀ =5,540 B _{c4} =0,521 p=0,000	R ² =0,222 B ₀ =7,598 B _{c4} =0,479 p=0,000	R ² =0,214 B ₀ =8,450 B _{c4} =0,543 p=0,000	R ² =0,293 B ₀ =10,368 B _{c4} =0,531 p=0,000			
C5	R^2 =0,573 B_0 =3,256 B_{c5} =0,736 p =0,000	R ² =0,257 B ₀ =6,889 B _{c5} =0,560 p=0,000	R ² =0,225 B ₀ =7,992 B _{c5} =0,604 p=0,000	R^2 =0,239 B_0 =10,741 B_{c5} =0,521 p=0,000			
C6		R ² =0,470 B ₀ =4,196 B _{c6} =0,778 p=0,000	R ² =0,410 B ₀ =5,094 B _{c6} =0,839 p=0,000	R ² =0,333 B ₀ =9,347 B _{c6} =0,631 p=0,000			
C7	R ² =0,470 B ₀ =3,799 B _{c7} =0,604 p=0,000		R ² =0,647 B ₀ =2,594 B _{c7} =0,928 p=0,000	R ² =0,527 B ₀ =7,446 B _{c7} =0,700 p=0,000			
T1	R ² =0,410 B ₀ =4,556 B _{t1} =0,488 p=0,000	R^2 =0,647 B_0 =2,957 B_{t1} =0,697 p = 0,000		R ² =0,587 B ₀ = 7,212 B _{t1} =0,640 p=0,000			
T2	R^2 =0,333 B_0 =3,044 B_{t2} =0,527 p=0,000	R ² =0,527 B ₀ =0,774 B _{t2} =0,753 p=0,000	R ² =0,587 B ₀ =-,376 B _{t2} =0,918 p=0,000				
T3	R ² =0,250 B ₀ =3,340 B _{t3} =0,506 p=0,000	R^2 =0,302 B_0 = 2,754 B_{t3} =0,631 p =0,001	R^2 =0,443 B_0 =0,093 B_{t3} =0,883 p = 0,000	R ² =0,663 B ₀ =1,546 B _{t3} =0,902 p=0,000			
T4	R ² =0,193 B ₀ =4,948 B _{t4} =0,403 p=0,000	R ² =0,204 B ₀ =5,334 B _{t4} =0,470 p=0,000	R ² =0,243 B ₀ =4,837 B _{t4} =0,593 p=0,000	R ² =0,412 B ₀ =5,708 B _{t4} =0,645 p=0,000			
T5	R^2 =0,250 B_0 =4,115 B_{t5} =0,437 p=0,000	R^2 =0,257 B_0 = 4,478 B_{t5} =0,503 p=0,000	R^2 =0,332 B_0 =3,296 B_{t5} =0,660 p=0,000	R ² =0,447 B ₀ =5,427 B _{t5} =0,640 p=0,000			
T6	R ² =0,260 B ₀ =4,225 B _{t6} =0,421 p=0,000	R ² =0,252 B ₀ =4,858 B _{t6} =0,470 p=0,000	R ² =0,270 B ₀ =4,803 B _{t6} =0,562 p=0,000	R ² =0,384 B ₀ =6,608 B ₁₆ =0,560 p=0,000			
T7	R ² =0,235 B ₀ =4,100 B _{t07} =0,414 p=0,000	R ² =0,197 B ₀ =5,345 B _{t07} =0,430 p=0,000	R^2 =0,242 B_0 =4,692 B_{t07} =0,550 p =0,000	R ² =0,352 B ₀ =6,377 B _{t07} =0,555 p=0,000			
T8	R ² =0,218 B ₀ =4,562 B _{t8} =0,382 p=0,000	R ² =0,153 B ₀ =6,482 B _{t8} =0,363 p=0,001	R ² =0,268 B ₀ =4,402 B _{t8} =0,556 p=0,000	R ² =0,295 B ₀ =7,494 B _{t8} =0,487 p=0,000			
T9	R^2 =0,174 B_0 =6,012 B_{t9} =0,298 p=0,001	R^2 =0,186 B_0 =6,523 B_{t9} =0,350 p=0,000	R^2 =0,254 B_0 =5,727 B_{t9} =0,472 p =0,000	R^2 =0,336 B_0 =7,872 B_{t9} =0,454 p =0,000			
T10	R^2 =0,188 B_0 =6,194 B_{t10} =0,275 p=0,000	R^2 =0,135 B_0 =7,952 B_{t10} =0,265 p=0,002	R^2 =0,212 B_0 =7,111 B_{t10} =0,383 p =0,000	R ² =0,253 B ₀ =9,579 B _{t10} =0,349 p=0,000			
T11	R^2 =0,198 B_0 =6,048 B_{t11} =0,273 p = 0,000	R ² =0,140 B ₀ =7,868 B _{t11} =0,260 p=0,002	R^2 =0,166 B_0 =8,039 B_{t11} =0,328 p =0,001	R ² =0,229 B ₀ =9,955 B ₁₁₁ =0,321 p=0,000			
T12	R^2 =0,187 B_0 =6,474 Bt_{12} =0,236 p =0,000	R^2 =0,136 B_0 =8,202 Bt_{12} =0,228 p =0,002	R^2 =0,208 B_0 =7,559 Bt_{12} =0,326 p =0,000	R^2 =0,233 B_0 =10,211 Bt_{12} =0,288 p=0,000			
L1	R ² =0,162 B ₀ = 6,569 B ₁₁ =0,215 p=0,001	R^2 =0,173 B_0 =7,172 B_{11} =0,253 p=0,001	R^2 =0,291 B_0 =5,665 B_{11} =0,379 p = 0,000	R^2 =0,243 B_0 = 9,673 B_{11} =0,289, p=0,000			
L2	R ² =0,173 B ₀ =6,245 B ₁₂ =0,217 p=0,001	R ² =0,194 B ₀ =6,636 B ₁₂ =0,261 p=0,000	R ² =0,215 B ₀ =6,782 B ₁₂ =0,317 p=0,000	R^2 =0,236 B_0 =9,594 B_{12} =0,278 p =0,000			
L3	R ² =0,258 B ₀ =4,610 B ₁₃ =0,272 p=0,000	R ² =0,162 B ₀ =6,885 B ₁₃ =0,245 p=0,001	R ² =0,296 B ₀ =4,810 B ₁₃ =0,382 p=0,000	R ² =0,234 B ₀ = 9,242 B ₁₃ =0,283 p=0,000			
L4	R ² =0,262 B ₀ =5,842 B ₁₄ =0,227 p=0,000	R ² =0,267 B ₀ =6,501 B ₁₄ =0,260 p=0,000	R ² =0,307 B ₀ =6,474 B ₁₄ =0,322 p=0,000	R ² =0,246 B ₀ =10,417 B ₁₄ =0,241 p=0,000			
L5	R ² =0,238 B ₀ =5,266 B ₁₅ =0,245 p=0,000	R ² =0,350 B ₀ =4,286 B ₁₅ =0,338 p=0,000	R ² =0,422 B ₀ =3,452 B ₁₅ =0,428 p=0,000	R ² =0,356 B ₀ =7,945 B ₁₅ =0,328 p=0,000			
S1	R^2 =0,155 B_0 =6,527 $B_{s1=0}$,173 p=0,001	R ² =0,145 B ₀ =7,553 B _{s1=0} ,190 p=0,002	R^2 =0,089 B_0 =9,751 $B_{s1=0}$,172 p=0,015	R^2 =0,191 B_0 =10,302 $B_{s1=0}$,211 p =0,000			

Tabela A6 - Continuação.

Vértebras	Vértebras Estimadas						
Preditoras	Т3	T4	T5	Т6			
C2	R^2 =0,231 B_0 =11,231 B_{c2} =0,164 p=0,000	R ² =0,198 B ₀ =11,428 B _{c2} =0,168 p=0,000	R^2 =0,208 B_0 =11,552 B_{c2} =0,180 p=0,000	R^2 =0,186 B_0 =11,986 B_{c2} =0,180 p= ,001			
C3	R^2 =0,315 B_0 =10,189 B_{c3} =0,537 p=0,000	R ² =0,185 B ₀ =11,576 B _{c3} =0,453 p=0,000	R^2 =0,225 B_0 =11,231 B_{c3} =0,525 p =0,000	R^2 =0,209 B_0 =11,537 B_{c3} =0,535 p =0,000			
C4	R^2 =0,156 B_0 = 12,716 B_{c4} =0,349 p=0,001	R^2 =0,091 B_0 =13,726 B_{c4} =0,294 p =0,013	R^2 =0,155 B_0 = 12,955 B_{c4} =0,403 p=0,001	R ² =0,174 B ₀ =12,776 B _{c4} =0,453 p=0,000			
C5	R^2 =0,197 B_0 =11,981 B_{c5} =0,426 p=0,000	R^2 =0,151 B_0 =12,477 B_{c5} =0,412 p =0,001	R^2 =0,229 B_0 =11,624 B_{c5} =0,532 p=0,000	R ² =0,164 B ₀ =12,715 B _{c5} =0,477 p=0,001			
C6	R^2 =0,250 B_0 = 11,111 B_{c6} =0,494 p=0,000	R ² =0,193 B ₀ =11,616 B _{c6} =0,479 p=0,000	R^2 =0,250 B_0 =11,079 B_{c6} =0,571 p =0,000	R ² =0,260 B ₀ =10,972 B _{c6} =0,617 p=0,000			
C7	R ² =0,302 B ₀ =10,560 B _{c7} =0,478 p=0,000	R ² =0,204 B ₀ =11,492 B _{c7} =0,433 p=0,000	R ² =0,257 B ₀ =11,020 B _{c7} =0,510 p=0,000	R ² =0,252 B ₀ =11,120 B _{c7} =0,535 p=0,000			
T1	R^2 =0,443 B_0 = 9,418 B_{t1} =0,502 p = 0,000	R ² =0,243 B ₀ =11,141 B _{t1} =0,410 p=0,000	R^2 =0,332 B_0 =10,309 B_{t1} =0,502 p =0,000	R^2 =0,270 B_0 =11,083 B_{t1} =0,480 p = ,000			
T2	R^2 =0,663 B_0 =4,597 B_{t2} =0,735 p =0,000	R ² =0,412 B ₀ =6,547 B _{t2} =0,639 p=0,000	R ² =0,447 B ₀ =6,116 B _{t2} =0,698 p=0,000	R^2 =0,384 B_0 =6,757 B_{t2} =0,686 p =0,000			
Т3		R^2 =0,671 B_0 =1,972 B_{t3} =0,903 p =0,000	R^2 =0,632 B_0 =2,266 B_{t3} =0,919 p = 0,001	R^2 =0,490 B_0 = 3,746 B_{t3} =0,858 p=0,000			
T4	R ² =0,671 B ₀ =4,130 B _{t4} =0,743 p=0,000		R ² =0,744 B ₀ =2,219B _{t4} =0,904 p=0,000	R^2 =0,640 B_0 =2,923 B_{t4} =0,889 p =0,000			
T5	R^2 =0,632 B_0 =4,708 B_{t5} =0,687 p =0,000	R^2 =0,744 B_0 =2,617 B_{t5} =0,822 p =0,000		R^2 =0,761 B_0 =1,791 B_{t5} =0,925 p =0,000			
T6	R^2 =0,490 B_0 =6,530 B_{t6} =0,571 p =0,000	R ² =0,640 B ₀ =4,131 B _{t6} =0,720 p=0,000	R ² =0,761 B ₀ =2,798 B _{t6} =0,823 p=0,000				
T7	R ² =0,368 B ₀ =7,309 B _{t07} =0,512 p=0,000	R^2 =0,432 B_0 =5,755 B_{t07} =0,612 p =0,000	R ² =0,575 B ₀ = 3,879 B _{t07} =0,740 p=0,000	R ² =0,726 B ₀ =1,653 B _{t07} =0,881 p=0,000			
Т8	R ² =0,370 B ₀ =7,511 B _{t8} =0,492 p=0,000	R ² =0,425 B ₀ =6,115 B _{t8} =0,582 p=0,000	R ² =0,597 B ₀ =3,946B ₁₈ =0,723 p=0,000	R ² =0,578 B ₀ =3,801 B _{t8} =0,754 p=0,000			
T9	R^2 =0,406 B_0 =8,070 B_{t9} =0,450 p = 0,000	R^2 =0,464 B_0 =6,796 B_{t9} =0,530 p=0,000	R^2 =0,625 B_0 =5,064 B_{t9} =0,646 p =0,000	R^2 =0,626 B_0 =4,735 B_{t9} =0,685 p =0,000			
T10	R^2 =0,290 B_0 =9,951 B_{t10} =0,337 p=0,000	R ² ,354= B ₀ =8,739 B _{t10} =0,411 p=0,000	R ² =0,494 B ₀ =7,243 B _{t10} =0,510 p=0,000	R ² =0,528 B ₀ =6,664 B _{t10} =0,558 p=0,000			
T11	R^2 =0,239 B_0 =10,605 B_{t11} =0,297 p=0,000	R^2 =0,252 B_0 = 10,087 B_{t11} =0,336 p=0,000	R^2 =0,456 B_0 =7,675 B_{t11} =0,474 p =0,000	R^2 =0,488 B_0 =7,139 B_{t11} =0,519 p=0,000			
T12	R^2 =0,255 B_0 =10,700 Bt_{12} =0,272 p=0,000	R ² =0,260 B ₀ =10,310 Bt ₁₂ =0,303 p=0,000	R^2 =0,475 B_0 =7,943 Bt_{12} =0,430 p =0,000	R ² =0,531 B ₀ =7,187 Bt ₁₂ =0,482 p=0,000			
L1	R^2 =0,258 B_0 = 10,305 B_{11} =0,269 p =0,000	R^2 =0,188 B_0 =11,017 B_{11} =0,253 p =0,000	R ^{2=0,} 376B ₀ =8,541 B ₁₁ =0,375 p=0,000	R^2 =0,389 B_0 =8,243 B_{11} =0,405 p = 0,000			
L2	R^2 =0,259 B_0 =10,119 B_{12} =0,262 p =0,000	R ² =0,265 B ₀ =9,653 B ₁₂ =0,293 p=0,000	R ² =0,392 B ₀ =8,087 B ₁₂ =0,374 p=0,000	R ² =0,395 B ₀ =7,908 B ₁₂ =397 p=0,000			
L3	R^2 =0,252 B_0 = 9,847 B_{13} =0,265 p =0,000	R^2 =0,158 B_0 =11,076 B_{13} =0,232 p =0,001	R^2 =0,246 B_0 =9,713 B_{13} =0,303 p = 0,000	R ² =0,244 B ₀ = 9,692 B ₁₃ =0,320 p=0,000			
L4	R^2 =0,233 B_0 =11,333 B_{14} =0,211 p =0,000	R ² =0,193 B ₀ =11,629 B ₁₄ =0,212 p=0,000	R ² =0,268 B ₀ =10,848 B ₁₄ =0,263 p=0,000	R ² =0,317 B ₀ =10,227B ₁₄ =0,302 p=0,000			
L5	R ² =0,296 B ₀ =9,641 B ₁₅ =0,271 p=0,000	R ² =0,184 B ₀ =10,942 B ₁₅ =0,235 p=0,000	R ² =0,285 B ₀ =9,544 B ₁₅ =0,307 p=0,000	R^2 =0,333 B_0 =8,768 B_{15} =0,352 p = 0,000			
S1	R^2 =0,154 B_0 =11,673 $B_{s1=0}$,171 p =0,001	R^2 =0,104 B_0 =12,498 $B_{s1=0}$,155 p =0,007	R^2 =0,207 B_0 =10,753 $B_{s1=0}$,229 p =0,000	R ² =0,139 B ₀ =12,132 B _{s1=0} ,199 p=0,002			

Tabela A6 - Continuação.

Vértebras		Vértebras	Estimadas	
Preditoras	T7	T8	Т9	T10
C2	R^2 =0,169 B_0 =13,071 B_{c2} =0,166 p =0,001	R^2 =0,138 B_0 =13,761 B_{c2} =0,157 p=0,003	R ² =0,156 B ₀ =13,139 B _{c2} =0,191 p=0,002	R ² =0,146 B ₀ =13,586 B _{c2} =0,208 p=0,002
C3	R^2 =0,158 B_0 =13,219 B_{c3} =0,450 p =0,001	R ² =0,192 B ₀ =12,711 B _{c3} =0,517 p=0,000	R ² =0,275 B ₀ =10,851 B _{c3} =0,710 p=0,000	R ² =0,216 B ₀ =11,911B _{c3} =0,708 p=0,000
C4	R ² =0,195 B ₀ =13,247 B _{c4} =0,463 p=0,000	R ² =0,177 B ₀ =13,627 B _{c4} =0,461 p=0,000	R ² =0,242 B ₀ =12,292 B _{c4} =0,617 p=0,000	R^2 =0,213 B_0 =12,910 B_{c4} =0,652 p =0,000
C5	R ² =0,159 B ₀ =13,573B _{c5} =0,455 p=0,001	R ² =0,179 B ₀ =13,352 B _{c5} =0,503 p=0,000	R ² =0,243 B ₀ =11,961 B _{c5} =0,671 p=0,000	R^2 =0,228 B_0 =12,279 B_{c5} =0,732 p =0,000
C6	R^2 =0,235 B_0 =12,157 B_{c6} =0,567 p =0,000	R^2 =0,218 B_0 =12,474 B_{c6} =0,570 p =0,000	R ² =0,174 B ₀ =12,894 B _{c6} =0,584 p=0,001	R ² =0,188 B ₀ =12,756 B _{c6} =0,683 p=0,000
C7	R ² =0,197 B ₀ =12,768 B _{c7} =0,457 p=0,000	R ² =0,153 B ₀ =13,618 B _{c7} =0,420 p=0,001	R ² =0,186 B ₀ =12,690 B _{c7} =0,532 p=0,000	R^2 =0,135 B_0 = 14,028 B_{c7} =0,510 p =0,002
T1	R ² =0,242 B ₀ =12,296 B _{t1} =0,439 p=0,000	R ² =0,268 B ₀ = 11,997 B _{t1} =0,482 p=0,000	R ² =0,254 B ₀ =11,730 B _{t1} =0,538 p=0,000	R^2 =0,212 B_0 =12,539 B_{t1} =0,554p=0,000
T2	R ² =0,352 B ₀ =8,216 B ₁₂ =0,635 p=0,000	R ² =0,295 B ₀ =9,055 B ₁₂ =0,606 p=0,000	R ² =0,336 B ₀ =7,356 B ₁₂ =0,741 p=0,000	R ² =0,253 B ₀ =8,673B ₁₂ =0,725 p=0,000
Т3	R^2 =0,368 B_0 =6,709 B_{t3} =0,719 p=0,000	R ² =0,370 B ₀ =6,499 B _{t3} =0,752 p=0,000	R ² =0,406 B ₀ =4,534 B _{t3} =0,902 p=0,000	R ² =0,290 B ₀ =6,302 B _{t3} =0,859 p=0,000
T4	R^2 =0,432 B_0 =6,698 B_{t4} =0,706 p=0,000	R ² =0,425 B ₀ =6,622 B ₁₄ =0,730 p=0,000	R ² =0,464 B ₀ =4,711 B ₁₄ =0,874 p=0,000	R ² =0,354 B ₀ =5,994B _{t4} =0,860 p=0,000
T5	R ² =0,575 B ₀ =5,029 B _{t5} =0,777 p=0,000	R ² =0,597 B ₀ = 4,505 B _{t5} =0,826 p=0,000	R ² =0,625 B ₀ = 2,541 B _{t5} =0,968 p=0,000	R ² =0,494 B ₀ =3,555 B _{t5} =0,970 p=0,000
T6	R ² =0,726 B ₀ =3,832 B _{t6} =0,823 p=0,000	R ² =0,578 B ₀ =5,232 B _{t6} =0,766 p=0,000	R ² =0,626 B ₀ =3,110 B _{t6} =0,914 p=0,000	R ² =0,528 B ₀ =3,557 B _{t6} =0,946 p=0,000
T7		R^2 =0,705 B_0 =2,707 B_{t07} =0,876 p =0,000	R ² =0,597 B ₀ =2,386 B _{t07} =0,923 p=0,000	R ² =0,556 B ₀ =1,897 B _{t07} =1,004 p=0,000
T8	R^2 =0,705 B_0 =3,412 B_{t8} =0,805 p =0,000		R ² =0,755 B ₀ =0,668 B ₁₈ =0,996 p=0,000	R^2 =0,670 B_0 =0,525 B_{t8} =1,057 p =0,000
Т9	R ² =0,597 B ₀ =6,090 B _{t9} =0,646 p=0,000	R ² =0,755 B ₀ =4,219 B ₁₉ =0,758 p=0,000		R^2 =0,781 B_0 = 1,127 B_{t9} =0,996 p=0,000
T10	R ² =0,556 B ₀ =7,356 B _{t10} =0,554 p=0,000	R ² =0,670 B ₀ =6,027B ₁₁₀ =0,634 p=0,000	R ² =0,781 B ₀ =3,471 B _{t10} =0,784 p=0,000	
T11	R ² =0,554 B ₀ =7,392 B _{t11} =0,535 p=0,000	R ² =0,584 B ₀ =6,931 B _{t11} =0,572 p=0,000	R ² =0,677 B ₀ =4,624 B _{t11} =0,706 p=0,000	R^2 =0,833 B_0 = 1,861 B_{t11} =0,883 p=0,000
T12	R^2 =0,523 B_0 =8,237 Bt_{12} =0,462 p =0,000	R ² =0,601 B ₀ =7,322 Bt ₁₂ =0,517 p=0,000	R^2 =0,654 B_0 =5,568 Bt_{12} =0,618 p =0,000	R^2 =0,681 B_0 =4,468 Bt_{12} =0,710 p=0,000
L1	R^2 =0,371 B_0 =9,406 B_{11} =0,382 p =0,000	R ² =0,421 B ₀ = 8,701 B ₁₁ =0,425 p=0,000	R ² =0,475 B ₀ =6,984 B ₁₁ =0,517 p=0,000	R ² =0,480 B ₀ =6,316 B ₁₁ =0,586 p=0,000
L2	R^2 =0,374 B_0 =9,125 B_{12} =0,374 p =0,000	R ² =0,337 B ₀ =9,564 B ₁₂ =0,370 p=0,000	R ² =0,391 B ₀ =7,886 B ₁₂ =0,456 p=0,000	R^2 =0,433 B_0 =6,689 B_{12} =0,542 p=0,000
L3	R ² =0,338 B ₀ =9,105 B ₁₃ =0,364 p=0,000	R ² =0,304 B ₀ =9,562 B ₁₃ =0,360 p=0,000	R^2 =0,338 B_0 =8,116 B_{13} =0,435 p =0,000	R^2 =0,386 B_0 = 6,761 B_{13} =0,524 p =0,000
L4	R ² =0,348 B ₀ =10,714 B ₁₄ =0,306 p=0,000	R ² =0,284 B ₀ =11,534 B ₁₄ =0,289 p=0,000	R ² =0,300 B ₀ =10,750 B ₁₄ =0,340 p=0,000	R ² =0,381 B ₀ =9,324B ₁₄ =0,432 p=0,000
L5	R ² =0,396 B ₀ =8,842 B ₁₅ =0,371 p=0,000	R ² =0,361 B ₀ =9,247 B ₁₅ =0,369 p=0,000	R ² =0,383 B ₀ =8,008 B ₁₅ =0,436 p=0,000	R ² =0,420 B ₀ =6,917 B ₁₅ =0,514 p=0,000
S 1	R^2 =0,156 B_0 =12,580 $B_{s1=0}$,203 p =0,001	R ² =0,117 B ₀ =13,531 B _{s1=0} ,184 p=0,004	R ² =0,108 B ₀ =13,545B _{s1=0} ,202 p=0,007	R ² =0,084 B ₀ =14,627B _{s1=0} ,201 p=0,016

Tabela A6 - Continuação.

Vértebras		Vértebras	Estimadas	
Preditoras	T11	T12	L1	L2
C2	R^2 =0,102 B_0 = 15,260 B_{c2} =0,180 p=0,012	R ² =0,142 B ₀ = 14,742 B _{c2} =0,239 p=0,003	R ² =0,176 B ₀ =15,399 B _{c2} =0,270 p=0,001	R ² =0,282 B ₀ =13,872 B _{c2} =0,352 p=0,000
C3	R^2 =0,247 B_0 =11,620 B_{c3} =0,784 p =0,000	R ² =0,254 B ₀ =11,811 B _{c3} =0,893 p=0,000	R^2 =0,321 B_0 =11,940 B_{c3} =1,022 p =0,000	R^2 =0,189 B_0 =16,032 B_{c3} =0,805 p=0,000
C4	R^2 =0,257 B_0 =12,502 B_{c4} =0,740 p = 0,000	R ² =0,195 B ₀ = 14,248 B _{c4} =0,725 p=0,000	R ² =0,235 B ₀ =14,984 B _{c4} =0,809 p=0,000	R^2 =0,170 B_0 =17,575 B_{c4} =0,707 p=0,000
C5	R^2 =0,287 B_0 =11,577 B_{c5} =0,849 p=0,000	$R^2=0.164$ $B_0=14.635B_{c5}=0.722$ $p=0.001$	R^2 =0,233 B_0 =14,605 B_{c5} =0,875 p=0,000	R^2 =0,160 B_0 =17,454 B_{c5} =0,746 p=0,001
C6	R^2 =0,198 B_0 =12,923 B_{c6} =0,725 p=0,000	R^2 =0,187 B_0 = 13,689 B_{c6} =0,792 p=0,000	R ² =0,162 B ₀ =15,967 B _{c6} =0,750 p=0,001	R^2 =0,173 B_0 =16,747 B_{c6} =0,796 p=0,001
C7	R^2 =0,140 B_0 =14,347 B_{c7} =0,536 p=0,002	R^2 =0,136 B_0 =15,136 B_{c7} =0,594 p=0,002	R ² =0,173 B ₀ =15,695 B _{c7} =0,684 p=0,001	R ² =0,194 B ₀ =16,233 B _{c7} =0,743 p=0,000
T1	R^2 =0,166 B_0 =13,918 B_{t1} =0,507 p =0,001	R^2 =0,208 B_0 =13,513 B_{t1} =0,638 p =0,000	R^2 =0,291 B_0 =13,310 B_{t1} =0,768 p =0,000	R^2 =0,215 B_0 =16,002 B_{t1} =0,678 p=0,000
T2	R^2 =0,229 B_0 =9,562 B_{t2} =0,712 p=0,000	R^2 =0,233 B_0 =9,518 B_{t2} =0,807 p=0,000	R ² =0,243 B ₀ =10,731 B _{t2} =0,841 p=0,000	R ² =0,236 B ₀ =11,889 B ₁₂ =0,851 p=0,000
T3	R^2 =0,239 B_0 =7,856 B_{t3} =0,807 p =0,000	R^2 =0,255 B_0 =7,225 B_{t3} =0,936 p =0,000	R^2 =0,258 B_0 =8,619 B_{t3} =0,959 p =0,000	R^2 =0,259 B_0 =9,481 B_{t3} =0,986 p =0,000
T4	R^2 =0,252 B_0 =8,557 B_{t4} =0,751 p =0,000	R^2 =0,260 B_0 =8,281 B_{t4} =0,858 p=0,000	R^2 =0,188 B_0 =12,040 B_{t4} =0,743 p =0,000	R^2 =0,265 B_0 =10,573 B_{t4} =0,904 p=0,000
T5	R^2 =0,456 B_0 =4,338 B_{t5} =0,964 p =0,000	R ² =0,475 B ₀ = 3,373 B _{t5} =1,105 p=0,000	R ² =0,376 B ₀ =7,013 B _{t5} =1,001 p=0,000	R ² =0,392 B ₀ =7,457 B _{t5} =1,050 p=0,000
T6	R ² =0,488 B ₀ =4,342 B _{t6} =0,940 p=0,000	R ² =0,531 B ₀ =2,934 B _{t6} =1,102 p=0,000	R^2 =0,389 B_0 =7,290 B_{t6} =0,961 p =0,000	R^2 =0,395 B_0 =8,018 B_{t6} =0,994 p =0,000
T7	R ² =0,554 B ₀ =1,953 B _{t07} =1,037 p=0,000	R ² =0,523 B ₀ =1,726 B _{t7} =1,132 p=0,000	R^2 =0,371 B_0 =6,539 B_{t7} =0,971 p =0,000	R ² =0,374 B ₀ =7,306 B _{t7} =1,001 p=0,000
T8	R ² =0,584 B ₀ =1,910 B _{t8} =1,020 p=0,000	R ² =0,601 B ₀ =0,716 Bt ₈ =1,163 p=0,000	R ² =0,421 B ₀ = 5,802 B _{t8} =0,992 p=0,000	R^2 =0,337 B_0 = 8,673 B_{t8} =0,912 p=0,000
T9	R^2 =0,677 B_0 =2,534 B_{t9} =0,959 p=0,000	R^2 =0,654 B_0 =2,107 B_{t9} =1,059 p=0,000	R^2 =0,475 B_0 =6,657 B_1 =0,919 p =0,000	R^2 =0,391 B_0 =9,250 B_{t19} =0,856 p=0,000
T10	R^2 =0,833 B_0 =1,854 B_{t10} =0,943 p=0,000	R^2 =0,681 B_0 =3,097 B_{t10} =0,959 p=0,000	R^2 =0,480 B_0 =7,774 B_{t10} =0,820 p=0,000	R^2 =0,433 B_0 =9,526 B_{t10} =0,800 p=0,000
T11		R^2 =0,744 B_0 = 2,228 B_{t11} =0,969 p=0,000	R ² =0,564 B ₀ =6,364 B _{t11} =0,860 p=0,000	R ² =0,492 B ₀ =8,466 B _{t11} =0,824 p=0,000
T12	R^2 =0,744 B_0 =3,817 Bt_{12} =0,767 p =0,000		R ² =0,776 B ₀ =4,151 Bt ₁₂ =0,897 p=0,000	R^2 =0,659 B_0 =6,596 Bt_{12} =0,849 p =0,000
L1	R ² =0,564 B ₀ =5,225 B ₁₁ =0,656 p=0,000	R ² =0,776 B ₀ =1,590 B ₁₁ =0,865 p=0,000		R ² =0,623 B ₀ =6,047 B ₁₁ =0,811 p=0,000
L2	R^2 =0,492 B_0 =5,921 B_{12} =0,597 p =0,000	R ² =0,659 B ₀ =2,767 B ₁₂ =0,776 p=0,000	R ² =0,623 B ₀ =4,737 B ₁₂ =0,769 p=0,000	
L3	R ² =0,459 B ₀ =5,631 B ₁₃ =0,591 p=0,000	R ² =0,552 B ₀ =3,499 B ₁₃ =0,728 p=0,000	R ² =0,616 B ₀ =3,772 B ₁₃ =0,784 p=0,000	R ² =0,609 B ₀ =4,668 B ₁₃ =0,800 p=0,000
L4	R ² =0,444 B ₀ =8,645 B ₁₄ =0,482 p=0,000	R ² =0,530 B ₀ =7,275 B ₁₄ =0,591 p=0,000	R ² =0,488 B ₀ =9,408 B ₁₄ =0,578 p=0,000	R ² =0,615 B ₀ =8,364 B ₁₄ =0,666 p=0,000
L5	R ² =0,459 B ₀ =6,467 B ₁₅ =0,555 p=0,000	R ² =0,547 B ₀ = 4,606 B ₁₅ =0,681 p=0,000	R ² =0,569 B ₀ =5,657 B ₁₅ =0,708 p=0,000	R ² =0,533 B ₀ =7,097 B ₁₅ =0,704 p=0,000
S1	R^2 =0,108 B_0 =14,229 $B_{s1=0}$,235 p =0,006	R^2 =0,134 B_0 =13,918 $B_{s1=0}$,295 p =0,002	R^2 =0,149 B_0 =15,012 $B_{s1=0}$,317 p =0,001	R^2 =0,141 B_0 =16,366 $B_{s1=0}$,316 p =0,002

Tabela A6 - Continuação.

Vértebras		Vértebras	Estimadas	
Preditoras	L3	L4	L5	S1
C2	R ² =0,244 B ₀ =15,756 B _{c2} =0,319 p=0,000	R^2 =0,256 B_0 =12,964 B_{c2} =0,394 p =0,000	R^2 =0,207 B_0 =16,205 B_{c2} =0,313 p =0,000	R ² =0,316 B ₀ =15,693 B _{c2} =0,442 p=0,000
C3	R ² =0,307 B ₀ =14,267 B _{c3} =1,001 p=0,000	R ² =0,317 B ₀ =11,251 B _{c3} =1,228 p=0,000	R ² =0,349 B ₀ =12,793 B _{c3} =1,136 p=0,000	R^2 =0,153 B_0 =20,340 B_{c3} =0,859 p=0,001
C4	R^2 =0,206 B_0 =17,655 B_{c4} =0,760 p =0,000	R^2 =0,212 B_0 =15,425 B_{c4} =0,930 p =0,000	R^2 =0,143 B_0 =18,945 B_{c4} =0,674 p =0,002	R^2 =0,191 B_0 = 20,322 B_{c4} =0,890 p=0,000
C5	R^2 =0,246 B_0 =16,361 B_{c5} =0,901 p=0,000	R^2 =0,199 B_0 =15,300 B_{c5} =0,980 p=0,000	R^2 =0,160 B_0 =18,110 B_{c5} =0,772 p =0,001	R^2 =0,169 B_0 =20,530 B_{c5} =0,909 p=0,001
C6	R^2 =0,258 B_0 =15,662 B_{c6} =0,949 p =0,000	R ² =0,262 B ₀ =13,060 B _{c6} =1,155 p=0,000	R^2 =0,238 B_0 =15,645 B_{c6} =0,969 p =0,000	R^2 =0,155 B_0 =20,560 B_{c6} =0,895 p=0,001
C7	R^2 =0,162 B_0 =18,049 B_{c7} =0,663 p =0,001	R ² =0,267 B ₀ =13,008 B _{c7} =1,026 p=0,000	R^2 =0,350 B_0 =13,239 B_{c7} =1,037 p =0,000	R^2 =0,145 B_0 = 20,982 B_{c7} =0,761 p =0,002
T1	R ² =0,296 B ₀ =15,254 B _{t1} =0,776 p=0,000	R^2 =0,307 B_0 =12,449 B_{t1} =0,953 p=0,000	R^2 =0,422 B_0 =12,315 B_{t1} =0,986 p =0,000	R ² =0,089 B ₀ =23,443 B _{t1} =0,516 p=0,015
T2	R ² =0,234 B ₀ =13,050 B _{t2} =0,825 p=0,000	R ² =0,246 B ₀ =9,587 B _{t2} =1,022 p=0,000	R ² =0,356 B ₀ =8,924 B _{t2} =1,083 p=0,000	R ² =0,191 B ₀ =15,907 B ₁₂ =0,909 p=0,000
T3	R^2 =0,252 B_0 =10,850 B_{t3} =0,949 p=0,000	$R^2 = 0.233 B_0 = 8.133 B_{t3} = 1.100 p = 0.000$	R^2 =0,296 B_0 = 8,588 B_{t3} =1,095 p =0,000	R^2 =0,154 B_0 =15,883 B_{t3} =0,903 p =0,001
T4	R ² =0,158 B ₀ =15,161 B _{t4} =0,682 p=0,001	R^2 =0,193 B_0 =11,072 B_{t4} =0,910 p=0,000	R ² =0,184 B ₀ =13,664 B _{t4} =0,782 p=0,000	R^2 =0,104 B_0 =19,568 B_{t4} =0,674 p =0,007
T5	R ² =0,246 B ₀ =12,473 B _{t5} =0,811 p=0,000	R ² =0,268 B ₀ =8,551 B _{t5} =1,022 p=0,000	R^2 =0,285 B_0 =10,594 B_{t5} =0,929 p =0,000	R^2 =0,207 B_0 =15,055 B_{t5} =0,905 p =0,000
T6	R^2 =0,244 B_0 =12,995 B_{t6} =0,763 p=0,000	R^2 =0,317 B_0 =7,635 B_{t6} =1,048 p=0,000	R^2 =0,333 B_0 =9,838 B_{t6} =0,948 p=0,000	R^2 =0,139 B_0 =18,411 B_{t6} =0,700 p=0,002
T7	R^2 =0,338 B_0 =9,415 B_{t07} =0,928 p=0,000	R ² =0,348 B ₀ =5,341 B _{t7} =1,136 p=0,000	R ² =0,396 B ₀ =6,970 B _{t7} =1,069 p=0,000	R^2 =0,156 B_0 =16,730 B_{t7} =0,767 p =0,001
T8	R ² =0,304 B ₀ =10,711 B _{t8} =0,844 p=0,000	R ² =0,284 B ₀ =7,862 Bt ₈ =0,985 p=0,000	R ² =0,361 B ₀ =8,362 B _{t8} =0,978 p=0,000	R ² =0,117 B ₀ = 18,939 B _{t8} =0,638 p=0,004
T9	R^2 =0,338 B_0 =11,550 B_{t9} =0,777 p =0,000	R^2 =0,300 B_0 =9,319 B_{t9} =0,882 p =0,000	R^2 =0,383 B_0 =9,735 Bt_9 =0,880 p =0,000	R^2 =0,108 B_0 =20,634 B_{t19} =0,534 p =0,007
T10	R^2 =0,386 B_0 =11,583 B_{t10} =0,737 p=0,000	R^2 =0,381 B_0 =8,387 B_{t10} =0,883 p =0,000	R^2 =0,420 B_0 =10,122 B_{t10} =0,818 p=0,000	R^2 =0,084 B_0 =22,505 B_{t10} =0,418 p=0,016
T11	R ² =0,459 B ₀ = 10,218 B _{t11} =0,777 p=0,000	R^2 =0,444 B_0 =6,943 B_{t11} =0,922 p =0,000	R ² =0,459 B ₀ =9,386 B _{t11} =0,826 p=0,000	R^2 =0,108 B_0 = 21,369 B_{t11} =0,458 p=0,006
T12	R^2 =0,552 B_0 =9,445 Bt_{12} =0,758 p =0,000	R ² =0,530 B ₀ =6,108 Bt ₁₂ =0,896 p=0,000	R ² =0,547 B ₀ =8,642 Bt ₁₂ =0,802 p=0,000	R ² =0,134 B ₀ =20,715 Bt ₁₂ =0,455 p=0,002
L1	R ² =0,616 B ₀ =7,390 B ₁₁ =0,786 p=0,000	R ² =0,488 B ₀ =5,809 B ₁₁ =0,844 p=0,000	R ² =0,569 B ₀ =7,186 B ₁₁ =0,804 p=0,000	R^2 =0,149 B_0 = 19,512 B_{11} =0,471 p = 0,001
L2	R ² =0,609 B ₀ =7,008 B ₁₂ =0,761 p=0,000	R ² =0,615 B ₀ =2,614 B ₁₂ =0,923 p=0,000	R^2 =0,533 B_0 =7,320 B_{12} =0,758 p=0,000	R ² =0,141 B ₀ =19,552 B ₁₂ =0,446 p=0,002
L3		R^2 =0,675 B_0 =0,085 B_{13} =0,992 p =0,000	R ² =0,663 B ₀ =3,839 B ₁₃ =0,866 p=0,000	R^2 =0,140 B_0 = 18,948 B_{13} =0,456 p =0,002
L4	R ² =0,675 B ₀ =8,701 B ₁₄ =0,681 p=0,000		R ² =0,673 B ₀ =7,795 B ₁₄ =0,723 p=0,000	R ² =0,118 B ₀ =21,930 B ₁₄ =0,347 p=0,004
L5	R ² =0,640 B ₀ =6,153 B ₁₅ =0,765 p=0,000	R ² =0,673 B ₀ =1,517 B ₁₅ =0,931 p=0,000		R^2 =0,143 B_0 =19,475 B_{15} =0,433 p =0,002
S1	R^2 =0,140 B_0 =17,363 B_{s110} ,308 p =0,002	R^2 =0,118 B_0 =16,178 $B_{s1=0}$,341 p =0,004	R^2 =0,143 B_0 =16,881 $B_{s1=0}$,331 p =0,002	

Tabela A6 - Continuação.

Martine Durilla	Vértebras Estimadas
Vértebras Preditoras	CT
C2	R^2 =0,393; B_0 =284,980 B_{c2} =5,763; p =0,000
C3	$R^2=0,474; B_0=262,843 B_{c3}=17,722; p=0,000$
C4	$R^2=0,409$; $B_0=300,925$ $B_{c4}=15,231$; $p=0,000$
C5	$R^2=0,475; B_0=277,813 B_{c5}=277,813; p=0,000$
C6	$R^2=0.558; B_0=250.728 B_{c6}=19.870; p=0.000$
C7	$R^2=0.586$; $B_0=246.126 B_{c7}=17.931$; $p=0.000$
T1	R^2 =0,602; B_0 =249,891 B_{tl} =15,750; p =0,000
T2	$R^2=0,574; B_0=176,938 B_{t2}=18,421; p=0,000$
T3	$R^2=0,555; B_0=146,954 B_{t3}=20,050; p=0,000$
T4	$R^2=0,455; B_0=202,642 B_{t4}=16,458; p=0,000$
T5	$R^2=0,645; B_0=153,412 B_{t5}=18,692; p=0,000$
T6	$R^2=0,680; B_0=155,879 B_{t6}=18,107; p=0,000$
T7	R^2 =0,630; B_0 =146,518 B_{t7} =18,034; p =0,000
T8	$R^2=0.617; B_0=157.844 B_{t8}=17.119; p=0.000$
T9	$R^2=0,649$; $B_0=183,602$ $B_{t9}=15,319$; $p=0,000$
T10	R^2 =0,606; B_0 =213,240 B_{t10} =13,137; p =0,000
T11	$R^2=0.615$; $B_0=211.755$ $B_{t11}=12.797$; $p=0.000$
T12	R^2 =0,712; B_0 =204,300 B_{t12} =12,252; p =0,000
L1	$R^2=0,670; B_0=197,054 B_{11}=11,672; p=0,000$
L2	$R^2=0,672; B_0=189,093B_{12}=11,383; p=0,000$
L3	$R^2=0,659; B_0=176,194 B_{13}=11,552; p=0,000$
L4	R^2 =0,632; B_0 =236,215 B_{14} =9,375; p =0,000
L5	$R^2=0.703; B_0=182.637 B_{15}=11.217; p=0.000$
S1	R^2 =0,449; B_0 =242,916 B_{s1} =7,841; p =0,000

Apêndice III

Resumo dos Modelos de Regressão Linear

Tabela A7 - Resumo dos modelos de regressão linear simples obtidos para a estimativa da C2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	12,859	4,442	-	2,895	0,005	0,316	1,9918
	S 1	0,715	0,142	0,562	5,041	0,000	0,510	1
Fe	Fórmula		0,	715 *(me	dida S1)	+ 12,859		
Masculino	Constante	21,597	4,109	-	5,256	0,000	0,255	2,2623
	C3	1,175	0,287	0,505	4,093	0,000	0,233	9
	Fórmula	1,175 *(medidaC3) + 21,597						

Tabela A8 — Resumo dos modelos de regressão linear simples obtidos para a estimativa da C3 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
Feminino	Constante	4,361	0,976	-	4,469	0,000	0.529	3 0,58411			
	C4	0,679	0,079	0,734	8.569	0,000	0,538				
Fer	Fórmula		0,679*(medida C4) + 4,361								
ino	Constante	2,384	1,447	-	1,648	0,105	0.566	0.74120			
Masculino	C4	0,865	0,105	0,752	8,236	0,000	0,566	0,74120			
Ma	Fórmula		0.865*(medida C4) + 2,384								

Tabela A9 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da C4 em função do sexo.

	· · · · · · · · · · · · · · · · · · ·	В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	2,213	1,177	-	1,881	0,065	0,538	0,6308
n0	C3	0,792	0,092	0,734	8,569	0,000	0,336	7
Feminino	Fórmula		0	,792*(me	edida C3)	+ 2,213		
Fer	Constante	2,671	1,061	-	2,518	0,014	0.562	0,6136
	C5	0,815	0,090	0,750	9,080	0,000	0,563	5
	Fórmula		0	,815*(me	edida C5)	+ 2,671		
	Constante	4,402	1,137	-	3,872	0,000	0,566	0,6444
no	C3	0,654	0,079	0,752	8,236	0,000	0,500	5
culi	Fórmula		0	,654*(me	edida C3)	+ 4,402		
Masculino	Constante	5,008	1,071	-	4,675	0,000	0,562	0,6471
	C5	0,669	0,082	0,750	8,176	0,000	0,362	1
	Fórmula		0	,669*(me	edida C5)	+ 5,008		

 $\begin{tabelatica} \textbf{Tabela A10} - Resumo \ dos \ modelos \ de \ regress\~ao \ linear \ simples \ obtidos \ para \ a \ estimativa \ da \ C5 \ em \ funç\~ao \ do \ sexo. \end{tabelatica}$

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
Feminino	Constante	3,306	0,937	-	3,530	0,001	0.562	0,5650	
	C4	0,691	0,076	0,750	9,80	0,000	0,563	0	
	Fórmula		0,691*(medida C4) + 3,306						
	Constante	2,493	1,012	-	2,462	0,017	0.572	0,5582	
	C6	0,779	0,085	0,757	9,203	0,000	0,573	7	
	Fórmula		0	,779*(me	edida C6)	+ 2,493			
	Constante	1,499	1,417	-	1,058	0,295	0,562	0,7259	
no	C4	0,841	0,103	0,750	8,176	0,000	0,302	4	
Masculino	Fórmula		0	,841*(me	edida C4)	+ 1,499			
Mas	Constante	3,437	1,456	-	2,361	0,022	0.459	0,8080	
, ,	C6	0,724	0,109	0,677	6,628	0,000	0,458	3	
	Fórmula		0	,724*(me	edida C6)	+ 3,437			

Tabela A11 - Resumo dos modelos de regressão linear simples obtidos para a estimativa da C6 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
Feminino	Constante	3,256	0,946	-	3,443	0,001	0.572	0,54292		
	C5	0,736	0,080	0,757	9,203	0,000	0,573			
Fer	Fórmula		0,736*(medida C5) + 3,256							
ino	Constante	5,029	1,250	-	4,022	0,000	0.450	0.75529		
Masculino	C5	0,633	0,095	0,677	6,628	0,000	0,458	0,75528		
	Fórmula		0,633*(medida C5) +5,029							

 $\begin{tabelatic} \textbf{Tabela A12} - Resumo \ dos \ modelos \ de \ regress\~ao \ linear \ simples \ obtidos \ para \ a \ estimativa \ da \ C7 \ em \ funç\~ao \ do \ sexo. \end{tabelatic}$

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	2,957	0,991	-	2,985	0,004	0,647	0,561		
ino	T1	0,697	0,065	0,804		0,000	0,647	11		
Feminino	Fórmula	0,697*(medida T1) + 2,957								
Fe	Constante	0,774	1,508	-	0,503	0,610	0,527	0,649		
	T2	0,753	0,089	0,726	8,443	0,000	0,327	16		
	Fórmula		(),753*(me	edida T2) -	+ 0,774				
ino	Constante	-0,637	1,366		-0,467	0,643		0.527		
culi		,	,	0.040	,	ĺ	0,719	0,537 11		
Masculino	T1	0,928	0,081	0,848	11,427	0,000		11		
	Fórmula),928*(me	edida T1) -	- 0,637				

Tabela A13 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T1 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
	Constante	2,594	1,178	-	2,202	0,031	0,647	0,6477	
ino	C7	0,928	0,087	0,804	10,654	0,000	0,047	9	
Feminino	Fórmula	0,928*(medida C7) + 2,594							
Fe	Constante	-0,376	1,614	-	-0,233	0,816	0,587	0,7000	
	T2	0,918	0,095	0,766	9,613	0,000	0,387	7	
	Fórmula		0	,918*(m	edida T2)	- 0,376			
Masculino	Constante	5,212	1,016	_	5,130	0,000	0,719	0,4908	
	C7	0,775	0,068	0,848	11,427	0,000	0,719	8	
	Fórmula		0	,775*(me	edida C7)	+ 5,212			

Tabela A14 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	7,446	1,120	-	6,645	0,000	0,527	0,6258		
	C7	0,700	0,083	0,726	8,443	0,000	0,327	6		
0	Fórmula		0	,700*(m	edida C7)	+ 7,446				
nin	Constante	7,212	1,008	-	7,151	0,000	0.507	0,5846		
Feminino	T1	0,640	0,067	0,766	9,613	0,000	0,587	4		
<u> </u>	Fórmula		0,640*(medida T1) + 7,212							
	Constante	1,546	1,328	-	1,165	0,248	0.662	0,5281		
	T3	0,902	0,078	0,814	11,563	0,000	0,663	0		
	Fórmula		0	,902*(m	edida T3)	+ 1,546				
10										
ulii	Constante	5,038	1,269	-	3,970	0,000	0,686	0,5107		
Masculino	T3	0,722	0,068	0,828	10,552	0,000	0,000	7		
Z	Fórmula		0	,722*(m	edida T3)	+ 5,038				

Tabela A15 – Resumo dos modelos de regressão linear simples obtidos para a estimativa T3 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	4,597	1,075	-	4,277	0,000	0,663	0,47677
	T2	0,735	0,064	0,814	11,563	0,000	0,003	0,47077
9	Fórmula			0,735*(m	edida T2) + 4,597		
ini	Constante	4,130	1,095	-	3,772	0,000	0,671	0,47095
Feminino	T4	0,743	0,063	0,819	11,777	0,000	0,071	0,47093
<u> </u>	Fórmula			0,743*(m	edidaT4)	+ 4,130		
	Constante	4,708	1,141	-	4,128	0,000	0,632	0,49838
	T5	0,687	0,064	0,795	10,797	0,000	0,032	0,49030
	Fórmula			0,687*(m	edida T5	+ 4,708		
	Constante	1,032	1,660	-	0,622	0,537	0,686	0.50614
	T2	0,950	0,090	0,828	10,552	0,000	0,080	0,58614
90	Fórmula			0,950*(m	edida T2	+ 1,032		
Masculino	Constante	4,387	1,654	-	2,653	0,011	0.500	0.66072
asc	T4	0,745	0,087	0,768	8,564	0,000	0,590	0,66972
Z	Fórmula			0,745*(m	edidaT4)	+ 4,387		
	Constante	3,831	1,923	-	1,992	0,052	0.520	0,71713
	T5	0,750	0,098	0,728	7,651	0,000	0,530	0,/1/13
	Fórmula			0,75	60 T5 + 3,3	831		

Tabela A16 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T4 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	1,972	1,306	-	1,510	0,136	0,671	0,51936
	Т3	0,903	0,077	0,819	11,777	0,000	0,071	0,31930
0	Fórmula		(0,903*(m	edida T3)	+ 1,972		
irin	Constante	2,617	1,049	-	2,495	0,015	0,744	0,45839
Feminino	T5	0,822	0,059	0,862	14,048	0,000	0,744	0,43639
	Fórmula		(0,822*(m	edida T5	+ 2,617		
	Constante	4,131	1,202	-	3,437	0,001	0,640	0,54311
	T6	0,720	0,065	0,800	11,001	0,000	0,040	0,54511
	Fórmula			0,720*(m	edida T6	+ 4,131		
	Constante	4,310	1,715	_	2,513	0,015		
	T3	0,792	0,092	0,768	8,564	0,000	0,590	0,69025
	Fórmula	-,	,	,	edida T3	,		
lino	Constante	0,926	1,439	-	0,644	0,523		
Masculino	T5	0,921	0,073	0,867	12,556	0,000	0,752	0,53667
Ä	Fórmula			0,921*(m	edida T5)	+ 0,926		
	Constante	3,146	2,071	-	1,518	0,135	0.524	0.72550
	T6	0,774	0,101	0,731	7,648	0,000	0,534	0,73559
	Fórmula),774*(m	edida T6	+ 3,146		

Tabela A17 – Resumos dos modelos de regressão linear simples obtidos para a estimativa da T5 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	2,266	1,449	-	1,564	0,123	0.622	0.57620		
	T3	0,919	0,085	0,795	10,797	0,000	0,632	0,57638		
	Fórmula			0,919*(m	edida T3) + 2,266				
	Constante	2,219	1,117	-	1,986	0,051	0,744	0,48072		
	T4	0,904	0,064	0,862	14,048	0,000	0,744	0,46072		
	Fórmula		(0,904*(m	edida T4) + 2,219				
	Constante	2,798	1,027	-	2,725	0,008	0.761	0.46400		
ino	T6	0,823	0,056	0,873	14,725	0,000	0,761	0,46400		
Feminino	Fórmula			0,823*(m	edida T6) + 2,798				
Fe	Constante	3,879	1,463	-	2,652	0,010	0.575	0.61906		
	T7	0,740	0,077	0,758	9,595	0,000	0,575	0,61896		
	Fórmula			0,740*(n	nedida T7)+ 3,879				
	Constante	3,946	1,391	-	2,838	0,006	0.507	0.60259		
	T8	0,723	0,072	0,773	10,044	0,000	0,597	0,60258		
	Fórmula			0,723*(m	edida T8	+ 3,946				
	Constante	5,064	1,216	-	4,166	0,000	0.625	0.50122		
	T9	0,646	0,061	0,791	10,575	0,000	0,625	0,58132		
	Fórmula	0,646*(medida T9) + 5,064								
	Constante	6,513	1,713	-	3,803	0,000	0.520	0.60590		
	T3	0,706	0,092	0,728	7,651	0,000	0,530	0,69589		
	Fórmula			0,706*(m	edida T3	+ 6,513				
	Constante	4,104	1,236	-	3,321	0,002	0.752	0.50520		
no	T4	0,816	0,065	0,867	12,556	0,000	0,752	0,50529		
Masculino	Fórmula			0,816*(m	edida T4) + 4,104				
Mas	Constante	3,532	1,744	-	2,026	0,048	0.621	0.62402		
	T6	0,785	0,085	0,788	9,223	0,000	0,621	0,62492		
	Fórmula			0,785*(m	edida T6) + 3,532				
	Constante	3,008	2,081	-	1,446	0,154	0.546	0.69271		
	T7	0,808	0,101	0,739	7,980	0,000	0,546	0,68371		
	Fórmula			0,808*(m	edida T7	+ 3,008				

Tabela A18 – Resumo dos modelos de regressão linear simples obtidos par a estimativa da T6 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	2,923	1,403	-	2,084	0,041	0.640	0,6035
	T4	0,889	0,081	0,800	11,001	0,000	0,640	9
	Fórmula		0	,889*(me	edida T4)	+ 2,923		
	Constante	1,791	1,125	-	1,591	0,116	0,761	0,4917
	T5	0,925	0,063	0,873	14,725	0,000	0,701	2
	Fórmula		0	,925*(me	edida T5)	+ 1,971		
	Constante	1,653	1,246	-	1,327	0,189	0.726	0,5270
	T7	0,881	0,066	0,852	13,413	0,000	0,726	6
0	Fórmula		0	,881*(me	edida T7)	+ 1,653		
Feminino	Constante	3,801	1,510	-	2,518	0,014	0.579	0,6540
Fem	T8	0,754	0,078	0,760	9,643	0,000	0,578	5
	Fórmula		0	,754*(me	edida T8)	+ 3,801		
	Constante	4,735	1,288	-	3,678	0,000	0.626	0,6157
	T9	0,685	0,065	0,791	10,582	0,000	0,626	9
	Fórmula		0	,685*(me	edida T9)	+ 4,735		
	Constante	6,664	1,340	-	4,972	0,000	0,528	0,6911
	T10	0,558	0,064	0,727	8,727	0,000	0,326	5
	Fórmula		0,	558*(me	dida T10	+ 6,664		
	Constante	7,187	1,273	-	5,743	0,000	0,531	0,6891
	T12	0,482	0,055	0,729	8,775	0,000	0,331	6
	Fórmula		0,	482 *(me	dida T12) + 7,187		
	Constante	7,356	1,715	_	4,288	0,000		0,6948
	T4	0,690	0,090	0,731	7,648	0,000	0,534	1
	Fórmula	·	0	,690*(me	edida T4)	+ 7,356		
Masculino	Constante	4,968	1,681	_	2,955	0,005		0,6269
ascn	T5	0,790	0,086	0,788	9,223	0,000	0,621	3
Ž	Fórmula		0	,790*(me	edida T5)	+ 4,968		
	Constante	2,552	1,898	-	1,345	0,185	0.622	0,6177
	T7	0,872	0,092	0,795	9,444	0,000	0,632	1
	Fórmula		0	,872*(me	edida T7)	+ 2,552		

Tabela A19 — Resumo dos modelos de regressão linear simples obtidos para a estimativa da T7 em função do sexo.

	inção do sexo.	В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	5,029	1,451	-	3,466	0,001	0.575	0,6340		
	T5	0,777	0,081	0,758	9,595	0,000	0,575	0		
	Fórmula		(0,777*(m	edida T5) + 5,029				
	Constante	3,832	1,127	-	3,399	0,001	0,726	0,5094		
	T6	0,823	0,061	0,852	13,413	0,000	0,720	4		
	Fórmula		(0,823*(m	edida T6) + 3,832				
	Constante	3,412	1,220	-	2,797	0,007	0,705	0,5286		
	T8	0,805	0,063	0,839	12,738	0,000	0,703	0		
10	Fórmula		(0,805*(m	edida T8) + 3,412				
Feminino	Constante	6,090	1,292	-	4,715	0,000	0,597	0,6176		
.em	T9	0,646	0,065	,	*	0,000	,	6		
H	Fórmula			0,646*(m	edida T9) + 6,090				
	Constante	7,356	1,257	-	5,853	0,000	0,556	0,6481		
	T10	0,554	0,060	0,746	•	0,000	ŕ	6		
	Fórmula		0	,554*(me	edida T10)) + 7,35 (5			
	Constante	7,392	1,257	-	5,881	0,000	0,554	0,6493		
	T11	0,535	,	0,745	,	0,000		4		
	Fórmula		0	,535*(me	edida T11	(1) + 7,392	2			
	Constante	8,237	1,242	-	6,634	0,000	0,523	0,6719		
	T12	0,462	0,054	0,723	8,631	0,000	,	5		
	Fórmula	rmula 0,462*(medida T12) + 8,237								
	Constante	7,298	1,662	_	4,329	0,000	0 7 4 5	0,6254		
	T5	0,676	0,085	0,739	7,980	0,000	0,546	3		
	Fórmula			0,676*(m	edida T5) + 7,298				
	Constante	5,716	1,572	-	3,637	0,001	0,632	0,5632		
lino	T6	0,725	0,077	0,795	9,444	0,000	0,032	5		
Masculino	Fórmula			0,725*(m	edida T6) + 5,716				
Ma	Constante	3,072	1,741	-	1,764	0,083	0,655	0,5446		
	T8	0,840	0,084	0,810	10,042	0,000	0,033	8		
	Fórmula			0,840*(m	edida T8) + 3,072				
	Constante	4,471	1,846	-	2,422	0,019	0,589	0,5948		
	T9	0,755	0,087	0,767	8,716	0,000	0,507	8		
	Fórmula			0,755*(m	edida T9) + 4,471				

Tabela A20 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T8 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
	Constante	4,505	1,473	-	3,058	0,003	0,597	0,64372	
	T5	0,826	0,082	0,773	10,044	0,000	0,397	0,04372	
	Fórmula			0,826*(n	nedida T5	5) + 4,50	5		
	Constante	5,232	1,459	-	3,586	0,001	0,578	0,65933	
	T6	0,766	0,079	0,760	9,643	0,000	0,576	0,03933	
	Fórmula			0,766*(n	nedidaT6	() + 5,232	2		
	Constante	2,707	1,303	-	2,078	0,042	0,705	0,55130	
	T7	0,876	0,069	0,839	12,738	0,000	0,703	0,33130	
9	Fórmula			0,876*(n	nedida T7	7) + 2,70'	7		
Feminino	Constante	4,219	1,050	-	4,017	0,000	0,755	0,50226	
emi	T9	0,758	0,053	0,869	14,366	0,000	0,733	0,30220	
7	Fórmula	0,758*(medida T9) + 4,219							
	Constante	6,027	1,130	-	5,335	0,000	0,670	0,58263	
	T10	0,634	0,054	0,819	11,754	0,000	0,070	0,36203	
	Fórmula			0,634*(m	edida T1	0) + 6,02	27		
	Constante	6,931	1,267	-	5,471	0,000	0,584	0,65444	
	T11	0,572	0,059	0,764	9,767	0,000	0,364	0,03444	
	Fórmula			0,572*(m	edida T1	1) + 6,93	31		
	Constante	7,322	1,184	-	6,184	0,000	0,601	0,64073	
	T12	0,517	0,051	0,775	10,123	0,000	0,001	0,04073	
	Fórmula			0,517*(m	nedidaT12	2) + 7,32	2		
	Constante	4,768	1,598	_	2,984	0,004			
ino	T7	0,780	0,078	0,810	10,042	0,000	0,655	0,52503	
culi	Fórmula	•	•		nedida T7	•	8		
Masculino	Constante	4,780	1,688	-	2,831	0,007		0.54.00	
\mathbf{Z}	T9	0,752	0,079	0,794	9,496	0,000	0,630	0,54423	
	Fórmula			0,752*(n	nedida T9) + 4,780	0		

Tabela A21– Resumo dos modelos de regressão linear simples obtidos para a estimativa da T9 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	2,541	1,641	-	1,549	0,126	0,625	0,71164		
	T5	0,968	0,092	0,791	10,575	0,000	0,023	0,71104		
	Fórmula			0,968*(n	nedida T5	(5) + 2,54	1			
	Constante	3,110	1,586	-	1,961	0,054	0,626	0,71134		
	Т6	0,914	0,086	0,791	10,582	0,000	0,020	0,71134		
	Fórmula			0,914*(n	nedida Te	(5) + 3,110	0			
	Constante	2,386	1,757	-	1,358	0,179	0,597	0,73818		
	T7	0,923	0,093	0,773	9,960	0,000	0,397	0,73010		
	Fórmula			0,923*(n	nedida T7	7) + 2,380	6			
ino	Constante	0,668	1,338	-	0,499	0,619	0,755	0,57555		
Feminino	Т8	0,996	0,069	0,869	14,366	0,000	0,733	0,37333		
Fer	Fórmula		0,996*(medida T8) + 0,668							
	Constante	3,471	1,063	-	3,265	0,002	0,781	0,54433		
	T10	0,784	0,051	0,884	15,448	0,000	0,781	0,54455		
	Fórmula			0,784*(m	edida T1	0) + 4,47	' 1			
	Constante	4,624	1,288	-	3,589	0,001	0,677	0,66062		
	T11	0,706	0,060	0,823	11,854	0,000	0,077	0,00002		
	Fórmula	0,706*(medida T11) + 4,624								
	Constante	5,568	1,273	-	4,375	0,000	0,654	0,68366		
	T12	0,618	0,055	0,809	11,259	0,000	0,034	0,00300		
	Fórmula		(0,618*(m	edida T1	2) + 5,56	58			
	Constante	5,263	1,842		2,858	0,006				
	T7	0,781	0,090	0,767	ŕ	0,000	0,589	0,60511		
0	Fórmula	0,701		,	nedida T7		3			
Masculino	Constante	3,881	1,836	-	2,114	0,039				
nosı	T8	0,837	0,088	0,794	9,496	0,000	0,630	0,57430		
M	Fórmula	,,,,,,		,	nedida T8		1			
	Constante	7,031	1,745	-	4,030	0,000				
	T10	0,639	0,078	0,750	8,187	0,000	0,563	0,62402		
	Fórmula	-,500		•	edida T1	•	31			

Tabela A22 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T10 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP	
	Constante	3,557	1,991	-	1,786	0,078	0.529	0,8997	
	T6	0,946	0,108	0,727	8,727	0,000	0,528	4	
	Fórmula		(0,946*(m	edida T6) + 3,557	7		
	Constante	1,897	2,063	-	0,919	0,361	0,556	0,8729	
	T7	1,004	0,109	0,746	9,227	0,000	0,330	6	
	Fórmula			1,004*(m	edida T7) + 1,897	7		
	Constante	0,525	1,737	-	0,302	0,763	0,670	0,7524	
0	Т8	1,057	0,090	0,819	11,754	0,000	0,070	0	
Feminino	Fórmula			1,057*(m	edida T8) + 0,525	5		
emi	Constante	1,127	1,283	-	0,878	0,383	0,781	0,6134	
<u>[</u>	Т9	0,996	0,064	0,884	15,448	0,000	0,761	3	
	Fórmula		(0,996*(m	edida T9) + 1,127	7		
	Constante	1,861	1,037	-	1,794	0,077	0,833	0,5358	
	T11	0,883	0,048	0,913	18,398	0,000	0,833	3	
	Fórmula	0,883*(medida T11) + 1,861							
	Constante	4,468	1,367	-	3,269	0,002	0,681	0,7398	
	T12	0,710	0,059	0,825	12,051	0,000	0,061	2	
	Fórmula		0	,710*(m	edida T12	2) + 4,46	8		
	Constante	3,559	2,295		1,551	0,127		0,7328	
00	T9	0,881	0,108	0,750	,	0,127	0,563	0,7328 7	
ä	Fórmula	0,001	<i>'</i>		edida T9	,)	•	
Masculino	Constante	7,380	1,894	0,001 · (III	3,897	0,000	•	0.7204	
Σ	T11	•	0,082	0,745	<i>'</i>	0,000	0,556	0,7394 5	
		0,649	,	,	<i>'</i>	,	0	3	
	Fórmula		U),649*(m	edida T11	l) + 7 ,38	U		

Tabela A23 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T11 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
	Constante	1,953	2,137	-	0,914	0,364	0,554	0,90420			
	T7	1,037	0,113	0,745	9,197	0,000	0,554	0,90420			
	Fórmula			1,037*(n	nedida T7	7) + 1,95	3				
	Constante	1,910	2,017	-	0,947	0,347	0,584	0,87378			
	T8	1,020	0,104	0,764	9,767	0,000	0,364	0,67376			
	Fórmula			1,020*(n	nedida T8	3) + 1,91 0	0				
	Constante	2,534	1,609	-	1,575	0,120	0,677	0,76971			
9	T9	0,959	0,081	0,823	11,854	0,000	0,077	0,70971			
Feminino	Fórmula		0,959*(medida T9) + 2,534								
emi	Constante	1,854	1,074	-	1,726	0,089	0,833	0,55400			
=	T10	0,943	0,051	0,913	18,398	0,000	0,033	0,55400			
	Fórmula	0,943*(medida T10) + 1,854									
	Constante	3,817	1,267	-	3,014	0,004	0,744	0,68546			
	T12	0,767	0,055	0,862	14,054	0,000	0,744	0,00540			
	Fórmula		(0,767*(m	edida T1	2) + 3,81	.7				
	Constante	5,225	1,746	-	2,993	0,004	0,558	0,89399			
	L1	0,656	0,070	0,751	9,386	0,000	0,550	0,07377			
	Fórmula			0,656*(n	nedida L1	1) + 5,225	5				
10											
d li	Constante	3,918	2,420	-	1,619	0,112	0,556	0,84889			
Masculino	T10	0,856	0,108	0,745		0,000		,			
Σ	Fórmula		(0,856*(m	edida T1	0) + 3,91	.8				

Tabela A24 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da T12 em função do sexo.

	3	В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	2,934	2,307	-	1,272	0,208	0,531	1,042		
	T6	1,102	0,126	0,729	8,775	0,000	0,551	54		
	Fórmula		1	,102*(m	edida T6)	+ 2,934				
	Constante	1,726	2,485	-	0,694	0,490	0,523	1,051		
	T7	1,132	0,131	0,723	8,631	0,000	0,323	66		
	Fórmula		1	,132*(m	edida T7)	+ 1,726				
	Constante	0,716	2,219	-	0,322	0,748	0,601	0,961		
	T8	1,163	0,115		,	0,000	0,001	50		
	Fórmula		1	,163*(m	edida T8)	+ 0,716				
	Constante	2,107	1,872	-	1,120	0,264	0,654	0,895		
	T9	1,059	0,094	0,809	ŕ	0,000	3,33	30		
	Fórmula		1	,059*(m	edida T9)	+ 2,107				
	Constante	3,097	1,667	-	1,858	0,068	0,681	0,859		
	T10	0,959	0,080	0,825	ŕ	0,000	•	72		
•	Fórmula		0,	,959*(me	edida T10) + 3,097				
Feminino	Constante	2,228	1,491	-	1,494	0,140	0,744	0,770		
imi	T11	0,969	0,069	0,862	ŕ	0,000		42		
Fe	Fórmula		0,	,969*(me	edida T11) + 2,228				
	Constante	1,590	1,407	-	1,130	0,262	0,776	0,720		
	L1	0,865	0,056	0,881	ŕ	•		20		
	Fórmula	0,865*(medida L1) + 1,590								
	Constante	2,767	1,780	-	1,554	0,125	0,659	0,888		
	L2	0,776	•	0,812	ŕ	0,000		66		
	Fórmula			,	edida L2)					
	Constante	3,499		-		0,108	0,552	1,019 26		
	L3	0,728	0,080	0,743	,	0,00		20		
	Fórmula),728*(m	edida L3)	,				
	Constante	7,275	1,818	-	4,002	0,000	0,530	1,044 01		
	L4	0,591	0,068	0,728	ŕ	0,000		01		
	Fórmula	1,000),591*(m	edida L4)	•				
	Constante	4,606	2,082	- 0.076	2,212	0,030	0,547	1,025 24		
	L5	0,681	0,076	0,076	ŕ	0,000		∠ +		
	Fórmula		·	,081*(III	edida L5)	+ 4,000				
Masculino	Constante	3,708	2,816	_	1,317	0,194	_	0,933		
nos	L1	0,791	0,108	0,721		0,000	0,519	31		
Ma	Fórmula	,	•	•	edida L1)					
				, ,						

 $\begin{tabelall} \textbf{Tabela A25} - Resumo \ dos \ modelos \ de \ regress\~ao \ linear \ simples \ obtidos \ para \ a \ estimativa \ da \ L1 \ em \ funç\~ao \ do \ sexo. \end{tabelall}$

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	6,364	1,981	-	3,212	0,002	0,564	1,0232
	T11	0,860	0,092	0,751	9,386	0,000	0,304	8
	Fórmula		0	,860*(m	edida T11	1) + 6,36	4	
	Constante	4,151	1,355	-	3,063	0,003	0.776	0,7334
	T12	0,897	0,058	0,881	15,357	0,000	0,776	4
0	Fórmula		0	,897*(m	edida T12	2) + 4,15	1	
nin	Constante	4,737	1,906	-	2,485	0,015	0,623	0,9514
Feminino	L2	0,769	0,072	0,790	10,609	0,000	0,023	6
<u> </u>	Fórmula		(0,769*(m	edida L2) + 4,737	7	
	Constante	3,772	2,027	-	1,861	0,067	0,616	0,9604
	L3	0,784	0,075	0,785	10,450	0,000	0,010	2
	Fórmula			0,784*(m	nedida L3	3)+3,772		
	Constante	5,657	2,068	-	2,735	0,008	0,569	1,0181
	L5	0,708	0,076	0,754	9,333	0,000	0,309	4
	Fórmula			0,708*(m	nedida L5	5)+ 5,657	,	
	Constante	10,130	2,180	-	4,646	0,000	0.510	0,8500
	T12	0,656	0,089	0,721	7,347	0,000	0,519	3
90	Fórmula		0,	,656*(me	dida T12) + 10,13	30	
Masculino	Constante	7,958	2,209	-	3,603	0,001	0.527	0,8029
asc	L2	0,674	0,082	0,755	8,234	0,000	0,527	8
Σ	Fórmula		(0,674*(m	edida L2) + 7,95 8	3	
	Constante	8,634	2,381	-	3,626	0,001	0.520	0,8496
	L3	0,627	0,085	0,721	7,354	0,000	0,520	2
	Fórmula		(0,627*(m	edida L3) + 8,634	ı	

Tabela A26 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	6,596	1,717	-	3,841	0,000	0,659	0,9293		
	T12	0,849	0,074	0,812	11,470	0,000	0,039	3		
	Fórmula	0,849*(medida T12) + 6,596								
	Constante	6,047	1,908	-	3,169	0,002	0,623	0,9770		
	L1	0,811	0,076	0,790	10,609	0,000	0,023	3		
9	Fórmula		(0,811*(m	edida L1) + 6,047	7			
Feminino	Constante	4,668	2,102	-	2,221	0,030	0,609	0,9959		
	L3	0,800	0,078	0,780	10,284	0,000	0,009	2		
Ţ	Fórmula	0,800*(medida L3) + 4,668								
	Constante	8,364	1,720	-	4,862	0,000	0,615	0,9877		
	L4	0,666	0,064	0,784	10,423	0,000		7		
	Fórmula	Fórmula 0,666*(medida L4) + 8,364								
	Constante	7,097	2,209	-	3,212	0,002	0,533	1,0877		
	L5	0,704	0,081	0,730	8,686	0,000	0,333	3		
	Fórmula		(0,704*(m	edida L5) + 7,097	•			
	Constante	4,833	2,690	-	1,797	0,078	0.571	0,9002		
ino	L1	0,847	0,103	0,755	8,234	0,000	0,571	1		
Masculino	Fórmula		(0,847*(m	edida L1) + 4,833	3			
Ma	Constante	5,843	2,428	-	2,406	0,020	0.602	0,8663		
	L3	0,756	0,087	0,776	8,706	0,000	0,603	7		
	Fórmula		(0,756*(m	edida L3) + 5,843	3			

 $\begin{tabelar}{ll} \textbf{Tabela A27} - Resumo \ dos \ modelos \ de \ regress\~ao \ linear \ simples \ obtidos \ para \ a \ estimativa \ da \ L3 \ em \ funç\~ao \ do \ sexo. \end{tabelar}$

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	9,445	1,921	-	4,916	0,000	0,552	1,0397		
	T12	0,758	0,083	0,743	9,149	0,000	0,332	2		
	Fórmula	0,758*(medida T12) + 9,445								
	Constante	7,390	1,879	-	3,933	0,000	0,616	0,9620		
	L1	0,786	0,075	0,785	10,450	0,000	0,010	1		
9	Fórmula		0,786*(medida L1) + 7,390							
ini	Constante	7,008	1,946	-	3,601	0,001	0,609	0,9714		
Feminino	L2	0,761	0,074	0,780	10,284	0,000	0,009	5		
F	Fórmula	0,761*(medida L2) + 7,008								
	Constante	8,701	1,541	-	5,647	0,000	0,675	0,8847		
	L4	0,681	0,057	0,822	11,896	0,000	0,073	0		
	Fórmula		(0,681*(m	edida L4) + 8,701	-			
	Constante	6,153	1,831	-	3,360	0,001	0,663	0,9015		
	L5	0,765	0,067	0,814	11,397	0,000	0,003	7		
	Fórmula		(0,765*(m	edida L5) + 6,153	3			
	Constante	6,251	2,949	_	2,120	0,039		0,9774		
	L1	0,829	0,113	0,721	7,354	0,000	0,520	2		
	Fórmula	ŕ		•	edida L1					
	Constante	6,441	2,470	-	2,608	0,012	0.602	0,8890		
ino	L2	0,797	0,091	0,776	8,706	0,000	0,603	3		
Masculino	Fórmula		(0,797*(m	edida L2) + 6,441	_			
Mag	Constante	7,178	2,282	-	3,146	0,003	0.610	0,8703		
, ,	L4	0,730	0,080	0,787	9,101	0,000	0,619	7		
	Fórmula		(0,730*(m	edida L4) + 7,178	}			
	Constante	5,795	2,325	-	2,493	0,016	0,640	0,8456		
	L5	0,778	0,082	0,800	9,527	0,000	0,040	3		
	Fórmula		(0,778*(m	edida L5) + 5,795	5			

 $\begin{tabelar}{ll} \textbf{Tabela A28} - Resumo \ dos \ modelos \ de \ regress\~ao \ linear \ simples \ obtidos \ para \ a \ estimativa \ da \ L4 \ em \ funç\~ao \ do \ sexo. \end{tabelar}$

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
	Constante	6,108	2,375	-	2,572	0,012	0,530	1,28512			
	T12	0,896	0,102	0,728	8,752	0,000	0,330	1,20312			
	Fórmula		(0,896*(m	edida T1	2) + 6,10	8				
	Constante	2,614	2,329	-	1,122	0,266	0.615	1 16270			
00	L2	0,923	0,089	0,784	10,423	0,000	0,615	1,16270			
Feminino	Fórmula	órmula 0,923*(medida L2) + 2,614									
Fei	Constante	0,085	2,253	-	0,038	0,970	0.675	1.06750			
	L3	0,992	0,083	0,822	11,896	0,000	0,675	1,06759			
	Fórmula			0,992*(n	nedida L3	3) + 0,08	5				
	Constante	1,517	2,176	-	0,697	0,488	0.672	1 07141			
	L5	0,931	0,080	0,821	11,662	0,000	0,673	1,07141			
	Fórmula			0,931*(n	nedida L5	5) + 1,51'	7				
	Constante	4,742	2,605		1,821	0,075					
				0.707			0,619	0,93830			
Masculino	L3	0,848	0,093	0,787	9,101	0,000					
ascı	Fórmula			0,848*(n	nedida L3	3) + 4,742	2				
Z	Constante	4,955	2,527	-	1,961	0,055	0,620	0,93681			
	L5	0,825	0,089	0,787	9,296	0,000	0,020	0,73001			
	Fórmula			0,825*(n	nedida L5	5) + 4,95	5				

Tabela A29 – Resumo dos modelos de regressão linear simples obtidos para a estimativa da L5 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	8,642	2,086	-	4,142	0,000	0,547	1,1125		
	T12	0,802	0,090	0,739	8,921	0,000	0,547	8		
	Fórmula		0	,802*(m	edida T12	2) + 8,642	2			
	Constante	7,186	2,150	-	3,342	0,001	0,569	1,0849		
	L1	0,804	0,086	0,754	9,333	0,000	0,309	3		
9	Fórmula			0,804*(m	edida L1) + 7,186	6			
in His	Constante	7,320	2,295	-	3,190	0,002	0,533	1,1287		
Feminino	L2	0,758	0,087	0,730	8,686	0,000	0,333	4		
Ŧ	Fórmula 0,758*(medida L2) + 7,320									
	Constante	3,839	2,054	-	1,869	0,066	0.662	0,9591		
	L3	0,866	0,076	0,814	11,397	0,000	0,663	3		
	Fórmula 0,866*(medida L3) + 3,839									
	Constante	7,795	1,669	-	4,670	0,000	0.672	0,9445		
	L4	0,723	0,062	0,821	11,662	0,000	0,673	4		
	Fórmula		(0,723*(m	edida L4) + 7,795	5			
	Constante	5,458	2,414	_	2,261	0,028		0,8697		
ino	L3	0,823	0,086	0,800	9,527	0,000	0,640	2		
cul	Fórmula			0,823*(m	edida L3) + 5,458	3			
Masculino	Constante	7,087	2,299	_	3,082	0,003	0.620	0,8937		
Ħ	L4	0,751	0,081	0,787	9,296	0,000	0,620	5		
	Fórmula			0,751*(m	edida L4) + 7,087	7			

Tabela A30— Resumo dos modelos de regressão linear simples obtidos para a estimativa da S1 em função do sexo.

0		В	EP	β	t	Sig.	\mathbb{R}^2	EP
Feminino	Constante	15,693	3,093	-	5,074	0,000	0,316	0,5651
Jem	C2	0,442	0,088	0,562	5,041	0,000	0,310	5
	Fórmula		0,	442*(me	dida C2)	+ 15,693		
Masculino	Constante	13,457	4,755	-	2,830	0,007	0,257	1,7785
[asc	L4	0,688	0,167	0,507	4,115	0,000	0,237	3
Σ	Fórmula		0,	688*(me	dida L4)	+ 13,457		

	Tração da con		, ,				2			
		В	EP	β	t	Sig.	\mathbb{R}^2	EP		
	Constante	250,728	31,558	-	7,945	0,000	0,558	14,7540		
	C6	19,870	2,638	0,747	7,534	0,000	0,556	14,7340		
	Fórmula		19,	870*(me	edida C6)	+ 250,7	28			
	Constante	246,126	30,390	-	8,099	0,000	0,586	14,2813		
	C7	17,931	2,248	0,765	7,975	0,000	0,560	8		
	Fórmula		17,	931*(me	edida C7)	+ 246,1	26			
	Constante	249,891	28,913	-	8,643	0,000	0,602	13,9936		
	T1	15,750	1,908	0,776	8,253	0,000	0,002	0		
	Fórmula	15,750*(medida T1) + 249,891								
	Constante	176,938	39,956	-	4,428	0,000	0,574	14,4727		
	T2	18,421	2,363	0,758	7,794	0,000	0,374	9		
	Fórmula		18,421*(medida T2) + 176,938							
	Constante	146,954	45,590	-	3,223	0,002	0,555	14,8046		
	T3	20,050	2,678	0,745	7,487	0,000	0,333	4		
	Fórmula	20,050*(medida T3) + 146,954								
	Constante	153,412	37,060	-	4,140	0,000	0,645	13,2223		
	T5	18,692	2,068	0,803	9,039	0,000	0,043	7		
	Fórmula		18,	692*(me	edida T5)	+ 153,4	12			
ino	Constante	155,879	34,040	-	4,579	0,000	0,680	12,5593		
Feminino	T6	18,107	1,854	0,824	9,769	0,000	0,080	7		
Fer	Fórmula	18,107*(medida T6) + 155,579								
	Constante	146,518	39,073	-	3,750	0,001	0,630	13,4999		
	T7	18,034	2,061	0,794	8,749	0,000	0,030	5		
	Fórmula		18,	034*(me	edida T7)	+ 146,5	18			
	Constante	157,844	38,798	-	4,068	0,000	0,617	13,7258		
	T8	17,119	2,010	0,786	8,519	0,000	0,017	1		
	Fórmula		17,	119*(me	edida T8)	+ 157,8	44			
	Constante	183,602	33,413	-	5,495	0,000	0,649	13,1432		
	T9	15,319	1,679	0,806	9,123	0,000	0,049	7		
	Fórmula		15,	319*(me	edida T9)	+ 183,6	02			
	Constante	213,240	33,064	-	6,449	0,000	0,606	13,9222		
	T10	13,137	1,578	0,779	8,323	0,000	0,000	2		
	Fórmula		13,1	137*(me	dida T10) + 213,2	240			
	Constante	211,755	32,644	-	6,487	0,000	0,615	13,7685		
	T11	12,797	1,510	0,784	8,476	0,000	0,013	6		
	Fórmula		13,1	137*(me	dida T11) + 211,7	755			
	Constante	204,300	26,945	-	7,582	0,000	0,712	11,9059		
	T12	12,252	1,162	0,844	10,548	0,000	0,/12	6		
	Fórmula		12,2	252*(me	dida T12) + 204,3	300			

Tabela A31 – Continuação.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP			
	Constante	197,054	30,477	-	6,466	0,000	0,670	12,7421			
	L1	11,672	1,221	0,819	9,562	0,000	0,070	5			
	Fórmula		11	,672*(m	edida L1)	+ 197,05	54				
	Constante	189,093	31,165	-	6,067	0,000	0,672	12,7029			
	L2	11,383	1,185	0,820	9,606	0,000	0,072	5			
no	Fórmula		11,	,383*(m	edida L2)	+ 189,0	93				
ijij	Constante	176,194	33,509	-	5,258	0,000	0,659	12,9629			
Feminino	L3	11,552	1,240	0,812	9,318	0,000	0,037	5			
	Fórmula		11,552*(medida L3) + 176,194								
	Constante	236,215	28,715	-	8,226	0,000	0,632	13,4634			
	L4	9,375	1,067	0,795	8,786	0,000	0,032	9			
	Fórmula	9,375*(medida L4) + 236,215									
	Constante	182,637	29,644	-	6,161	0,000	0,703	12,0942			
	L5	11,217	1,087	0,838	10,317	0,000	0,703	1			
	Fórmula		11,	,217*(m	edida L5)	+ 182,6	37				
	Constante	329,647	31,206	-	,	0,000	0,501	13,3868			
	C7	13,195	2,083	0,708	6,334	0,000	,	4			
	Fórmula	13,195*(medida C7) + 329,647									
	Constante	271,920	33,838	-	8,036	0,000	0,587	12,1699			
	T4	13,437	1,781	0,766	7,546	0,000	0,507	4			
•	Fórmula		13,	,437*(m	edida T4)	,	20				
ļi	Constante	256,526	33,102	-	7,750	0,000	0,626	11,5895			
Masculino	T11	11,742	1,436	•	8,179	0,000	ŕ	1			
Ma	Fórmula			`	dida T11	<i>'</i>	526				
	Constante	247,261	38,546		6,415	0,000	0,569	12,4419			
	L2	10,372	1,428	0,754	7,263	0,000	0,000	7			
	Fórmula			,372*(m	edida L2)	•	61				
	Constante	257,391	36,170	-	7,116	0,000	0,582	12,2511			
	L4	9,484	1,271	0,763	,	0,000	ŕ	7			
	Fórmula		9,	484*(me	dida L4)	+ 257,39) 1				

Tabela A32 - Resumo dos modelos de regressão linear múltipla obtidos para a estimativa da altura da C2 em função do sexo.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
	Constante	3,655	4,903	-	0,746	0,459		
inino	S 1	0,537	0,140	0,422	3,827	0,000	0,316	1,99181
Feminino	L2	0,562	0,167	0,372	3,375	0,001		
, ,	Fórmula	0,	537*(med	lida S1) +	0,562*(n	nedida L	2) + 3,65	55
00	Constante	6,002	6,764	-	0,887	0,379		
Masculino	C3	1,082	0,271	0,465	3,994	0,000	0,360	2,118900
Ma	L3	0,606	0,216	0,326	2,804	0,007		
	Fórmula	1,0	082*(med	lida C3) +	0,606*(n	nedida L	(3) + 6,00	02

Tabela A33 - Resumo dos modelos de regressão linear múltipla obtidos para a estimativa da altura S1 nos indivíduos do sexo feminino.

		В	EP	β	t	Sig.	\mathbb{R}^2	EP
•	Constante	9,936	4,107	-	2,419	0,019		
nin	C2	0,352	0,096	0,448	3,677	0,001	0,366	1,52113
Feminino	T5	0,498	0,242	0,250	2,057	0,045		
	Fórmula	0,.	352*(med	lida C2) +	- 0,498*(m	edida T	5) + 9,93	36