Class 10: Halloween Mini Project

Jessica Diaz-Vigil

Importing Candy Data

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-r
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	cicewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

• Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 different types of candy in this dataset.

• Q2. How many fruity candy types are in the dataset?

```
table(candy$fruity)
```

0 1 47 38

There are 38 types of candy that are fruity in the dataset. We know 1 means True and 0 means False.

What is your favorite candy?

We can look at favorite candies by looking at larger values under the winpercent column.

```
candy["Twix", ]$winpercent
```

[1] 81.64291

• Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Twix", ]$winpercent
[1] 81.64291
candy["Laffy Taffy", ]$winpercent
[1] 41.38956
```

My favorite type of candy is Twix which has a winpercent value of 81.62, but since it was already looked at, my second is Laffy Taffy which has a winpercent of 41.39.

• Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
[1] 76.7686
```

The winpercent value for Kit Kats is 76.77.

• Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bar", ]$winpercent
```

[1] 49.6535

The winpercent value for Kit Kats is 76.77.

Skim() Function

```
#install.packages("skimr")
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
	_
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

• Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The columns n_missing and complete_rate are different from the other columns since they are only ones and zeros. This is to ensure that the data was completed adequately and in our case, they all were since there is a one in every complete_rate row.

• Q7. What do you think a zero and one represent for the candy\$chocolate column?

candy\$chocolate

The zero in this case means that the candy does not have chocolate in it, whereas the one in this case means that candy does have chocolate in it.

• Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

• **Q9**. Is the distribution of winpercent values symmetrical?

No, they are not. In this histogram we can see that there are a lot more candies with a winpercent of 30-60% and there is a decrease the higher the winpercent values are.

- Q10. Is the center of the distribution above or below 50%?

 Just by looking, we can see that the center of the distribution is below 50%.
- Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate <-candy$winpercent[as.logical(candy$chocolate)]
fruity <- candy$winpercent[as.logical(candy$fruity)]
t.test(chocolate, fruity)

Welch Two Sample t-test

data: chocolate and fruity
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974

boxplot(chocolate, fruity)
```


By looking at the means, the mean of the chocolate candies are much higher that the means of the fruity candies (60.92% compared to 44.11%).

• Q12. Is this difference statistically significant?

The difference is statistically significant since the p-value for the Welch Two Sample t-test is 2.871e-08 which is lower than 0.05.

Overall Candy Rankings

head(candy[order(candy\$winpercent),], n=5)

	chocolate	iruity	caran	neı j	peanutya⊥n	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511

Chiclets		0	0	0	1	0.046	0.325
Super Bubble		0	0	0	0	0.162	0.116
Jawbusters		0	1	0	1	0.093	0.511
	winpercent						
Nik L Nip	22.44534						
Boston Baked Beans	23.41782						
Chiclets	24.52499						
Super Bubble	27.30386						
Jawbusters	28.12744						

tail(candy[order(candy\$winpercent),], n=5)

	${\tt chocolate}$	fruity	cara	nel j	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent win	percei	nt			
Snickers	0.6	351 76	6.673	78			
Kit Kat	0.5	511 76	6.7686	30			
Twix	0.9	906 8:	1.6429	91			
Reese's Miniatures	0.2	279 8:	1.8662	26			
Reese's Peanut Butter cup	0.6	351 8 ⁴	4.1802	29			

• Q13. What are the five least liked candy types in this set?

The least favorite candies are Nik N Lip, Boston Baked, Chiclets, Super Bubble, and Jawbusters.

• Q14. What are the top 5 all time favorite candy types out of this set?

The top favorite candy types are Snickers, Kit Kat, Twix, Reese's Miniature Cups, Reese's Peanut Butter Cups.

• Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


• Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


Adding Colors

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


- Q17. What is the worst ranked chocolate candy?

 The worst ranked chocolate candy was Sixlets
- Q18. What is the best ranked fruity candy?

 The worst ranked fruity candy was Nik L Nip

Taking a look at Pricepercent

```
#install.packages("ggrepel")
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

• Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
tail( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Strawberry bon bons	0.058	34.57899
Dum Dums	0.034	39.46056
Fruit Chews	0.034	43.08892
Pixie Sticks	0.023	37.72234
Tootsie Roll Midgies	0.011	45.73675

Considering that good candies have a winpercent higher than 80% and candies that are cheap have a pricepercent lower than .3, the candy with the most bang for your buck is Reece's Miniatures. Overall, fruity candies offer more bang for your buck though (higher win values, lower price values.

• **Q20**. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Considering that bad candies have a winpercent lower than 40% and candies that are expensive have a pricepercent higher than .75, the candies that are least popular and most expensive are: Nik L Nip, Ring pop, Nestle Smarties, Sugar Babies, and Pop Rocks.

Exploring the Correlation Structure

```
#install.packages("corrplot")
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>
```


- Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? The two variables that are anti-correlated are fruity and chocolate.
- Q23. Similarly, what two variables are most positively correlated?

 The two variables that are correlated are chocolate and bar.

Principal Component Analysis

```
pca <- prcomp(candy, scale=T)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
plot(pca$x[,1:2])
```


plot(pca\$x[,1:2], col=my_cols, pch=16)

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
#install.packages("plotly")
library(plotly)
```

```
Attaching package: 'plotly'
```

```
The following object is masked from 'package:ggplot2':
```

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

#ggplotly(p)

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


• Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

The variables that are picked up strongly by PC1 in the positive direction are fruity, hard, and pluribus meaning that these values are more correlated together than the other variables. Fruity candies tend to be hard and come in packages of many.