9 : Estimating Insurance Claim Amounts : Problem Statement: Estimating Insurance Claim Amounts Project Description: Develop a regression model to estimate the claim amounts for insurance policies based on customer profiles, policy details, and historical claim data.

Domain: Insurance Dataset Link: https://www.kaggle.com/competitions/allstate-claims-severity/data?select=train.csv (https://www.kaggle.com/competitions/allstate-claims-severity/data?select=train.csv)

Regression:Regression analysis is a statistical method to model the relationship between a dependent (target) and independent (predictor) variables with one or more independent variables. More specifically, Regression analysis helps us to understand how the value of the dependent variable is changing corresponding to an independent variable when other independent variables are held fixed. It predicts continuous/real values such as temperature, age, salary, price, etc.

Regression is a supervised learning technique which helps in finding the correlation between variables and enables us to predict the continuous output variable based on the one or more predictor variables. It is mainly used for prediction, forecasting, time series modeling, and determining the causal-effect relationship between variables.

In Regression, we plot a graph between the variables which best fits the given datapoints, using this plot, the machine learning model can make predictions about the data. In simple words, "Regression shows a line or curve that passes through all the datapoints on target-predictor graph in such a way that the vertical distance between the datapoints and the regression line is minimum." The distance between datapoints and line tells whether a model has captured a strong relationship or not.

Some examples of regression can be as:

Prediction of rain using temperature and other factors Determining Market trends Prediction of road accidents due to rash driving.

```
In [3]:
         1 # importing Libraries
         2 # importing Pandas Library as pd
         3 import pandas as pd
         4
         5
           # importing Numpy Library as np
         6
           import numpy as np
         7
         8
           # importing matplotlib.pyplot as plt
         9
            import matplotlib.pyplot as plt
        10
        11 # imporing seaborn as sns
        12
            import seaborn as sns
        13
```

```
In [4]: 1 # Loading the dataset using pandas module and assign it as df
2 df_test = pd.read_csv('test.csv')
3
4
5 # Printing the dataset
6 df test
```

Out[4]:

	id	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9	 cont5	cont6
0	4	Α	В	Α	Α	Α	Α	Α	Α	В	 0.281143	0.466591
1	6	Α	В	Α	В	Α	Α	Α	Α	В	 0.836443	0.482425
2	9	Α	В	Α	В	В	Α	В	Α	В	 0.718531	0.212308
3	12	Α	Α	Α	Α	В	Α	Α	Α	Α	 0.397069	0.369930
4	15	В	Α	Α	Α	Α	В	Α	Α	Α	 0.302678	0.398862
125541	587617	Α	Α	Α	В	Α	Α	Α	Α	Α	 0.281143	0.438917
125542	587621	Α	Α	Α	Α	В	В	Α	В	Α	 0.674529	0.346948
125543	587627	В	В	Α	Α	В	Α	Α	Α	В	 0.794794	0.808958
125544	587629	Α	Α	Α	Α	Α	В	Α	В	Α	 0.302678	0.372125
125545	587634	Α	В	Α	Α	Α	Α	Α	Α	В	 0.413817	0.221699

125546 rows × 131 columns

```
In [5]: 1 # Loading the dataset using pandas module and assign it as df
2 df_train = pd.read_csv('train.csv')
3
4 # Printing the dataset
5 df train
```

Out[5]:

	id	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9	 cont6	cont7
0	1	Α	В	Α	В	Α	Α	Α	Α	В	 0.718367	0.335060
1	2	Α	В	Α	Α	Α	Α	Α	Α	В	 0.438917	0.436585
2	5	Α	В	Α	Α	В	Α	Α	Α	В	 0.289648	0.315545
3	10	В	В	Α	В	Α	Α	Α	Α	В	 0.440945	0.391128
4	11	Α	В	Α	В	Α	Α	Α	Α	В	 0.178193	0.247408
188313	587620	Α	В	Α	Α	Α	Α	Α	Α	В	 0.242437	0.289949
188314	587624	Α	Α	Α	Α	Α	В	Α	Α	Α	 0.334270	0.382000
188315	587630	Α	В	Α	Α	Α	Α	Α	В	В	 0.345883	0.370534
188316	587632	Α	В	Α	Α	Α	Α	Α	Α	В	 0.704364	0.562866
188317	587633	В	Α	Α	В	Α	Α	Α	Α	Α	 0.844563	0.533048

188318 rows × 132 columns

	_	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9		
0	1	Α	В	Α	В	Α	Α	Α	Α	В		
0.71836 1 0.43891	2	Α	В	Α	Α	Α	Α	Α	Α	В		
2 0.28964	5	Α	В	Α	Α	В	Α	Α	А	В		
3 0.44094	10	В	В	Α	В	Α	Α	Α	Α	В		
4 0.17819	11 3	Α	В	Α	В	Α	Α	Α	Α	В		
125541 0.43891	587617	Α	Α	Α	В	Α	Α	Α	А	Α		
125542 0.34694	587621	Α	Α	Α	Α	В	В	Α	В	Α		
125543 0.80895	587627	В	В	Α	Α	В	Α	Α	Α	В		
125544 0.37212	587629	Α	Α	Α	Α	Α	В	Α	В	Α		
125545 0.22169	587634	А	В	Α	А	Α	А	Α	А	В		
+12	con	t7	cont	3 (cont9	COI	nt10	COI	nt11	con	t12	
cont13 0	0.3350	60 0	. 30260	0.6	67135	0.83	3510	0.569	9745	0.594	646	0.
822493 1	0.4365	85 0	. 60087	7 0.3	35127	0.43	3919	0.33	8312	0.366	307	0.
611431	0.3155	45 0	. 27320	0.2	26076	0.32	2446	0.38	1398	0.373	424	0.
195709 3	0.3911	28 0	. 31796	6 0.3	32128	0.4	1467	0.32	7915	0.321	570	0.
605077 4 246011	0.2474	08 0	. 24564	1 0.2	22089	0.2	1230	0.20	4687	0.202	213	0.
125541	0.8159	41 0	. 39455	5 0.4	48740	0.40	9666	0.55	9529	0.538	473	0.
298734 125542	0.4249	68 0	. 47669	0.2	25753	0.20	5894	0.32	4486	0.352	251	0.
490001 125543	0.5115	02 0	.72299	0.9	94438	0.83	3510	0.93	3174	0.926	619	0.
848129 125544	0.3885	45 0	.31796	0.3	32128	0.30	5974	0.30	7628	0.301	921	0.
608259 125545 287682	0.2420	44 0	. 25461	L 0.3	31399	0.2	5183	0.24	5410	0.241	676	0.
0 1 2 3 4 125541 125542	cont 0.7148 0.3044 0.7744 0.6026 0.4326 0.3459 0.2905	43 22 96 12 25 30 42 9 06 27	loss 213.18 283.66 905.09 939.85 763.85 NaN	3 9 5 5								
125543	0.8081		Nal									

```
125544
                  0.361542
                                  NaN
          125545
                                  NaN
                  0.220323
In [18]: 1 df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 313864 entries, 0 to 125545
          Columns: 132 entries, id to loss
          dtypes: float64(15), int64(1), object(116)
          memory usage: 318.5+ MB
 In [7]: 1 df.isnull().sum()
 Out[7]: id
          cat1
                          0
                          0
          cat2
          cat3
                          0
          cat4
                          0
          cont11
                          0
          cont12
                          0
          cont13
                          0
          cont14
                          0
                     125546
          loss
          Length: 132, dtype: int64
 In [8]: 1 df.dronna(innlace = True)
 In [9]: 1 df.isnull() sum()
 Out[9]: id
                     0
                     0
          cat1
          cat2
                     0
                     0
          cat3
          cat4
                     0
          cont11
                    0
          cont12
                     0
          cont13
                     0
          cont14
                     0
          loss
                     0
          Length: 132, dtype: int64
In [10]:
           1 print(df.size)
           2 nrint(df shane)
          24857976
          (188318, 132)
          Information about the data
In [11]: 1 df.head()
Out[11]:
             id cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9 ...
                                                                               cont8
                                                               cont6
                                                                       cont7
                                                        B ... 0.718367 0.335060 0.30260 (
              1
                                В
                                     Α
                                              Α
          0
                       В
                            Α
                                          Α
              2
                  Α
                                Α
                                     Α
                                          Α
                                              Α
                                                        B ... 0.438917 0.436585 0.60087 (
          1
                       В
                            Α
                                                   Α
```

	id	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9	 cont6	cont7	cont8	
2	5	Α	В	Α	Α	В	Α	Α	Α	В	 0.289648	0.315545	0.27320	(
3	10	В	В	Α	В	Α	Α	Α	Α	В	 0.440945	0.391128	0.31796	(
4	11	Α	В	Α	В	Α	Α	Α	Α	В	 0.178193	0.247408	0.24564	(

In [12]: 1 df tail()

Out[12]:

	id	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9	•••	cont6	cont7
188313	587620	Α	В	Α	Α	Α	Α	Α	А	В		0.242437	0.289949
188314	587624	Α	Α	Α	Α	Α	В	Α	Α	Α		0.334270	0.382000
188315	587630	Α	В	Α	Α	Α	Α	Α	В	В		0.345883	0.370534
188316	587632	Α	В	Α	Α	Α	Α	Α	Α	В		0.704364	0.562866
188317	587633	В	Α	Α	В	Α	Α	Α	Α	Α		0.844563	0.533048

5 rows × 132 columns

In [14]:

- 1 # Summary stats for Numerical Column:
- 2 df.describe()

Out[14]:

	id	cont1	cont2	cont3	cont4	
count	188318.000000	188318.000000	188318.000000	188318.000000	188318.000000	188318.0
mean	294135.982561	0.493861	0.507188	0.498918	0.491812	0.4
std	169336.084867	0.187640	0.207202	0.202105	0.211292	0.2
min	1.000000	0.000016	0.001149	0.002634	0.176921	0.2
25%	147748.250000	0.346090	0.358319	0.336963	0.327354	0.2
50%	294539.500000	0.475784	0.555782	0.527991	0.452887	0.4
75%	440680.500000	0.623912	0.681761	0.634224	0.652072	0.6
max	587633.000000	0.984975	0.862654	0.944251	0.954297	0.9

In [15]:

- 1 # Summary stats for Categorical Column:
 - 2 **from** warnings **import** filterwarnings
 - 3 filterwarnings('ignore')
- 4 df.describe(include = [nn.ohiect])

Out[15]:

	cat1	cat2	cat3	cat4	cat5	cat6	cat7	cat8	cat9	cat10
count	188318	188318	188318	188318	188318	188318	188318	188318	188318	188318
unique	2	2	2	2	2	2	2	2	2	2
top	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
freq	141550	106721	177993	128395	123737	131693	183744	177274	113122	160213

4 rows × 116 columns

Data Visuvalization


```
id
                             cont1
                                       cont2
                                                 cont3
                                                            cont4
                                                                      cont5
         cont6 \
                         0.726300
                                    0.245921
                                              0.187583
                                                        0.789639
                                                                   0.310061
                       1
         0
         0.718367
                       2
                         0.330514
                                    0.737068
                                              0.592681
                                                        0.614134
                                                                   0.885834
         1
         0.438917
         2
                      5
                          0.261841
                                    0.358319
                                              0.484196
                                                        0.236924
                                                                   0.397069
         0.289648
                      10
         3
                         0.321594
                                    0.555782
                                              0.527991
                                                        0.373816
                                                                   0.422268
         0.440945
         4
                     11
                          0.273204
                                    0.159990
                                              0.527991
                                                        0.473202
                                                                   0.704268
         0.178193
         . . .
                                         . . .
                                                    . . .
                                                              . . .
                     . . .
                               . . .
         188313 587620
                         0.347403
                                    0.785784
                                              0.613660
                                                        0.473202
                                                                   0.939556
         0.242437
         188314 587624
                         0.507661
                                    0.555782
                                              0.549770
                                                        0.802892
                                                                   0.704268
         0.334270
         188315 587630
                         0.484469
                                    0.785784
                                              0.792378
                                                        0.189137
                                                                   0.482436
         0.345883
         188316 587632
                         0.438385
                                    0.422197
                                              0.298977
                                                        0.383428
                                                                   0.340543
         0.704364
         188317 587633 0.907272
                                    0.620805
                                              0.440642
                                                        0.821574 0.281143
         0.844563
                    cont7
                              cont8
                                       cont9
                                               cont10
                                                          cont11
                                                                    cont12
         cont13
                 0.335060
                            0.30260
                                     0.67135
                                              0.83510
                                                       0.569745
                                                                  0.594646
                                                                            0.
         0
         822493
                 0.436585
                            0.60087
                                     0.35127
                                              0.43919
                                                       0.338312
                                                                  0.366307
                                                                            0.
         1
         611431
         2
                 0.315545
                            0.27320
                                     0.26076
                                              0.32446
                                                       0.381398
                                                                  0.373424
                                                                            0.
         195709
         3
                 0.391128  0.31796  0.32128  0.44467  0.327915  0.321570  0.
         605077
         Index(['id', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6',
Out[17]:
          'cont7',
                 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13', 'c
         ont14',
                 'loss'],
               dtype='object')
```



```
In [37]:
            1 #To identify the Outliers in Numerical Columns:
               #Subplots()
             3
                fig, ax = plt.subplots(3,3,figsize = (15,9))
             4
             5
             6
                for variable, subplot in zip(df_num.columns, ax.flatten()):
                     z = sns.boxplot(x = df_num[variable], orient = 'h', whis = 1.5
             7
             8
             9
                     z.set xlahel(variable.fontsize = 5)
             0 100000 200000 300000 400000 500000 600000
                                               0.4
                                                     0.6
                                                                      0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
                 0.2
                     0.4
                               0.8
                                                          0.8
                    0.4 cont6
                                            0.2
                         0.6
                             0.8
                                  1.0
                                                 0.4
                                                               1.0
                                                                          0 4
                                                                                            1.0
                                                     0.6
                                                          0.8
                                                                                0.6
                                                                                      0.8
            1 y = df.iloc[:, -1]
In [20]:
             2 plt.figure(figsize=(7, 5))
               sns.histplot(data=y, kde=True, bins=50)
             4 nlt.tight lavout()
              140000
              120000
              100000
               80000
               60000
               40000
               20000
                              20000
                                        40000
                                                 60000
                                                          80000
                                                                   100000
                                                                            120000
            1 # Label Encoding
In [21]:
             2
```

```
3
              # The label Encoding consider a level in a Categorical variable &
            4
            5
              from sklearn.preprocessing import LabelEncoder
              # Create an Instance
            7
              labelencoder = LabelEncoder()
            8
            9
              #Fit the Encoder
              df['Encoded_performance_of_cat1'] = labelencoder.fit_transform(d
           10
           11
           12
              # Display the data
           13
              df
Out[21]:
                         cat1 cat2 cat3 cat4 cat5
                                                 cat6
                                                     cat7
                                                           cat8
                                                               cat9
                                                                          cont7
                                                                                  cont8
               0
                                                                                0.30260 (
                      1
                           Α
                                В
                                     Α
                                          В
                                               Α
                                                    Α
                                                        Α
                                                             Α
                                                                  В
                                                                       0.335060
                      2
               1
                           Α
                                В
                                     Α
                                          Α
                                               Α
                                                    Α
                                                        Α
                                                             Α
                                                                    ... 0.436585 0.60087 (
               2
                      5
                                                    Α
                                                                    ... 0.315545 0.27320 (
                           Α
                                В
                                     Α
                                          Α
                                               В
                                                        Α
               3
                      10
                           В
                                В
                                     Α
                                          В
                                                    Α
                                                        Α
                                                                        0.391128 0.31796 (
               4
                                В
                                     Α
                                          В
                                                    Α
                                                                        0.247408 0.24564 (
                      11
                                                        Α
                                ...
                                     ...
                                          ...
                                                   ...
                                                        ...
                                                                             ...
           188313 587620
                           Α
                                В
                                     Α
                                          Α
                                                    Α
                                                        Α
                                                             Α
                                                                  В
                                                                    ... 0.289949 0.24564 (
                                               Α
           188314 587624
                                                                        0.382000 0.63475 (
                                Α
                                     Α
                                          Α
                                               Α
                                                    В
                                                        Α
                                                             Α
           188315 587630
                           Α
                                В
                                     Α
                                          Α
                                               Α
                                                    Α
                                                        Α
                                                             В
                                                                  В
                                                                    ... 0.370534 0.24564 (
           188316 587632
                           Α
                                В
                                     Α
                                          Α
                                               Α
                                                    Α
                                                        Α
                                                             Α
                                                                  В
                                                                        0.562866 0.34987 (
           188317 587633
                                                                  A ... 0.533048 0.97123 (
                                     Α
                                          В
                                               Δ
                                                    Α
                                                         Α
                           В
                                Α
                                                             Δ
          188318 rows × 133 columns
In [22]:
            1 print(df['cat1'].value_counts())
            2
              print('\n')
            3 dfl'Encoded performance of catl'l value counts()
          Α
                141550
          В
                 46768
          Name: cat1, dtype: int64
Out[22]:
          0
                141550
                 46768
          1
          Name: Encoded_performance_of_cat1, dtype: int64
              x = np.array(df["cont1"]).reshape(-1,1)
In [23]:
              v = nn.array(df["loss"]).reshape(-1.1)
              from sklearn.linear_model import LinearRegression
In [24]:
            1
            2
              linear = LinearRegression()
            3
              linear.fit(x,y)
            4 linear_nredict([[1211)
Out[24]: array([[1214.35169353]])
In [25]:
            1 ## multiple Regression
            2
              x = df.drop("loss",axis = 1)
            3
              y = df["loss"]
```

```
In [68]: 1 sns.regnlot(x="cont14".v="loss".data = df)
Out[68]: <AxesSubplot:xlabel='cont14', ylabel='loss'>
            120000
            100000
            80000
            60000
            40000
            20000
                   0.2
                         0.3
                              0.4
                                         0.6
                                                    0.8
                                    0.5
                                   cont14
In [27]:
         1 from sklearn.model_selection import train_test_split
          2 xtrain. xtest. vtrain. vtest = train test snlit(df num.dron("loss
In [71]: 1 xtrain shane
Out[71]: (141238, 15)
In [29]: 1 vtrain shane
Out[29]: (141238,)
In [30]: 1 xtest shane
Out[30]: (47080, 15)
In [31]: 1 vtest shane
Out[31]: (47080,)
In [53]: 1 vtest.isnull().sum()
Out[53]: 0
In [32]: 1 model = LinearRegression()
In [33]: 1 model fit(xtrain vtrain)
Out[33]: LinearRegression()
In [34]: 1 v nred = model nredict(xtest)
In [35]: 1 vtest head(10)
Out[35]:
```

19407	61089
59649	186897
157826	491890
74298	232234
168874	526714
100911	315340

In [36]: 1 xtest_head(10)

Out[36]:

	id	cont1	cont2	cont3	cont4	cont5	cont6	cont7	con
19407	61089	0.513457	0.681761	0.549770	0.594598	0.811271	0.416181	0.402349	0.6291
59649	186897	0.703859	0.488789	0.263570	0.623770	0.783230	0.874303	0.687567	0.6457
157826	491890	0.355333	0.681761	0.692825	0.284048	0.281143	0.526202	0.868961	0.4351
74298	232234	0.329232	0.358319	0.484196	0.373816	0.422268	0.372125	0.388545	0.3179
168874	526714	0.546670	0.681761	0.728827	0.373816	0.422268	0.364464	0.401162	0.2684
100911	315340	0.936584	0.245921	0.120071	0.661283	0.281143	0.903531	0.553910	0.8293
148414	462856	0.292010	0.737068	0.634224	0.623770	0.281143	0.314937	0.413673	0.6726
188085	586944	0.340859	0.785784	0.506105	0.267727	0.960658	0.369930	0.405795	0.4766
24040	75564	0.475784	0.555782	0.462347	0.534409	0.889301	0.373500	0.347485	0.3608
42362	132985	0.218540	0.488789	0.397983	0.524230	0.281143	0.342167	0.291170	0.3498

In [37]:

61089.00000001055

186897.00000000047

491889.99999999

232234.00000000032

526713.9999999988

315339.9999999994

462855.9999999992

586943.9999999986

75564.00000000102

132985.00000000073

```
In [64]:
              for i in df.columns[:-1]:
           1
           2
                   plt.xlabel(i)
           3
                   plt.ylabel("loss")
           4
                   plt.scatter(df[i][:300],df["loss"][:300])
           5
                   nlt.show()
             17500
             15000
             12500
             10000
             7500
              5000
             2500
                0
                           200
                                   400
                                           600
                                                   800
                                                           1000
                                       id
             17500
             15000
In [38]: 1 model.score(xtrain.vtrain)
Out[38]: 1.0
              plt.scatter(xtest["id"],ytest)
In [94]:
           2 nlt_nlot(v nred)
Out[94]: [<matplotlib.lines.Line2D at 0x7f1d3773a5c0>]
           600000
           500000
           400000
           300000
           200000
           100000
               0
                       100000
                              200000
                                     300000
                                           400000
                  0
                                                  500000
                                                         600000
In [87]:
             ### Polynomial Regression
           2 from sklearn.preprocessing import PolynomialFeatures
             lin = LinearRegression()
           3
              poly = PolynomialFeatures(degree = 2)
              x = np.array(df["id"]).reshape(-1,1)
              y = np.array(df["loss"]).reshape(-1,1)
              x train = nolv fit transform(x)
```

```
In [88]: 1 x train
Out[88]: array([[1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
                [1.00000000e+00, 2.00000000e+00, 4.00000000e+00],
                [1.00000000e+00, 5.00000000e+00, 2.50000000e+01],
                [1.00000000e+00, 5.87630000e+05, 3.45309017e+11],
                [1.00000000e+00, 5.87632000e+05, 3.45311367e+11],
                [1.00000000e+00, 5.87633000e+05, 3.45312543e+11]])
In [89]: 1 x train shape
Out[89]: (188318, 3)
In [90]: 1 nlt_scatter(x train[11 x train[21)
Out[90]: <matplotlib.collections.PathCollection at 0x7f1d374656a0>
          25
          20
          15
          10
           5
                   1.5
                               2.5
                         2.0
                                      3.0
                                            3.5
                                                  4.0
In [91]:
          1 from sklearn.linear model import LinearRegression
          2 lin = LinearRegression()
          3 print(poly.fit(x_train,y))
            print(lin.fit(x train,y))
          5 lin.intercent
         PolynomialFeatures()
         LinearRegression()
Out[91]: array([3031.94493943])
In [40]: 1 from sklearn metrics import mean absolute error mean squared error
In [41]: 1 mean absolute error(vtest.v nred)
Out[41]: 6.963696855254863e-10
In [42]: 1 mean squared error(vtest.v nred)
Out[42]: 6.436651276460588e-19
In [43]: 1 model score(xtrain vtrain)
Out[43]: 1.0
```

Untitled6 -	Junutar	Notah	ook
Onthueuo -	iubvier	Moren	OUK

T			
In :			