```
$%\STN; HighlightOn= ***; HighlightOff=***
Connecting via Winsock to STN
Welcome to STN International! Enter x:x
LOGINID: SSSPTA1635KXH
PASSWORD:
TERMINAL (ENTER 1, 2, 3, OR ?):2
 * * * * * * * * *
                       Welcome to STN International
                   Web Page URLs for STN Seminar Schedule - N. America
 NEWS
                   "Ask CĂS" for self-help around the clock
 NEWS
          SEP 09
       3
                   CA/CAplus records now contain indexing from 1907 to the
 NEWS
                   present
          DEC 08
SEP 29
 NEWS
                   INPADOC: Legal Status data reloaded
 NEWS
                   DISSABS now available on STN
          OCT 10
                   PCTFULL: Two new display fields added
 NEWS
                   BIOSIS file reloaded and enhanced
          OCT 21
 NEWS
          OCT 28
                   BIOSIS file segment of TOXCENTER reloaded and enhanced
 NEWS
          NOV 24
                   MSDS-CCOHS file reloaded
 NEWS
          DEC 08
DEC 08
DEC 09
 NEWS 10
                   CABA reloaded with left truncation
 NEWS 11
                   IMS file names changed
 NEWS 12
                   Experimental property data collected by CAS now available
                   in REGISTRY
 NEWS 13
          DEC 09
                   STN Entry Date available for display in REGISTRY and CA/CAplus
          DEC 17
                   DGENE: Two new display fields added
 NEWS 14
 NEWS 15
          DEC 18
                   BIOTECHNO no longer updated
 NEWS 16
          DEC 19
                   CROPU no longer updated; subscriber discount no longer
                   available
 NEWS 17
          DEC 22
                   Additional INPI reactions and pre-1907 documents added to CAS
                   databases
          DEC 22
DEC 22
 NEWS 18
                   IFIPAT/IFIUDB/IFICDB reloaded with new data and search fields
NEWS 19
                   ABI-INFORM now available on STN
 NEWS 20
          JAN 27
                   Source of Registration (SR) information in REGISTRY updated
                   and searchable
 NEWS 21
          JAN 27
                   A new search aid, the Company Name Thesaurus, available in
                   CA/CAplus
 NEWS 22
          FEB 05
                   German (DE) application and patent publication number format
                   changes
 NEWS 23
          MAR 03 MEDLINE and LMEDLINE reloaded
          MAR 03 MEDLINE file segment of TOXCENTER reloaded
 NEWS 24
 NEWS 25
          MAR 03 FRANCEPAT now available on STN
               DECEMBER 28 CURRENT WINDOWS VERSION IS V7.00, CURRENT
 NEWS EXPRESS
               MACINTOSH VERSION IS V6.0b(ENG) AND V6.0Jb(JP)
               AND CURRENT DISCOVER FILE IS DATED 23 SEPTEMBER 2003
               STN Operating Hours Plus Help Desk Availability
NEWS HOURS
 NEWS INTER
               General Internet Information
 NEWS LOGIN
               Welcome Banner and News Items
               Direct Dial and Telecommunication Network Access to STN
NEWS PHONE
NEWS WWW
               CAS World Wide Web Site (general information)
Enter NEWS followed by the item number or name to see news on that
specific topic.
 All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific
 research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may
  result in loss of user privileges and other penalties.
```

FILE 'HOME' ENTERED AT 10:52:19 ON 03 MAR 2004

=> edline caplus lifesci embase uspatfull biosis EDLINE IS NOT A RECOGNIZED COMMAND The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter => b medline caplus lifesci embase uspatfull biosis

COST IN U.S. DOLLARS

SINCE FILE

ENTRY
SESSION
FULL ESTIMATED COST

0.21

0.21

FILE 'MEDLINE' ENTERED AT 10:52:40 ON 03 MAR 2004

FILE 'CAPLUS' ENTERED AT 10:52:40 ON 03 MAR 2004 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'LIFESCI' ENTERED AT 10:52:40 ON 03 MAR 2004 COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'EMBASE' ENTERED AT 10:52:40 ON 03 MAR 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'USPATFULL' ENTERED AT 10:52:40 ON 03 MAR 2004
CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 10:52:40 ON 03 MAR 2004 COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC.(R)

=> dup rem 11
PROCESSING COMPLETED FOR L1
L2 58 DUP REM L1 (2 DUPLICATES REMOVED)

=> d 12 ibib abs tot

L2 ANSWER 1 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

TITLE: INVENTOR(S):

2004:44499 USPATFULL

Proteins and nucleic acids encoding same Alsobrook, John P., II, Madison, CT, UNITED STATES Anderson, David W., Branford, CT, UNITED STATES
Burgess, Catherine E., Wethersfield, CT, UNITED STATES
Boldog, Ferenc L., North Haven, CT, UNITED STATES
Casman, Stacie J., North Haven, CT, UNITED STATES Colman, Steven D., Guilford, CT, UNITED STATES Edinger, Shlomit R., New Haven, CT, UNITED STATES Ellerman, Karen, Branford, CT, UNITED STATES Gerlach, Valerie, Branford, CT, UNITED STATES Gorman, Linda, Branford, CT, UNITED STATES Grosse, William M., Branford, CT, UNITED STATES Guo, Xiaojia Sasha, Branford, CT, UNITED STATES Herrmann, John L., Guilford, CT, UNITED STATES Kekuda, Ramesh, Danbury, CT, UNITED STATES Lepley, Denise M., Branford, CT, UNITED STATES Li, Li, Branford, CT, UNITED STATES MacDougall, John R., Hamden, CT, UNITED STATES Millet, Isabelle, Milford, CT, UNITED STATES Pena, Carol E. A., New Haven, CT, UNITED STATES Peyman, John A., New Haven, CT, UNITED STATES Rastelli, Luca, Guilford, CT, UNITED STATES Rieger, Daniel K., Branford, CT, UNITED STATES Shimkets, Richard A., Guilford, CT, UNITED STATES Smithson, Glennda, Guilford, CT, UNITED STATES Spytek, Kimberly A., New Haven, CT, UNITED STATES Stone, David J., Guilford, CT, UNITED STATES Tchernev, Velizar T., Branford, CT, UNITED STATES Vernet, Corine A.M., Branford, CT, UNITED STATES Voss, Edward Z., Wallingford, CT, UNITED STATES Zerhusen, Bryan D., Branford, CT, UNITED STATES Zhong, Haihong, Guilford, CT, UNITED STATES Zhong, Mei, Branford, CT, UNITED STATES

NUMBER KIND DATE
US 2004033491 A1 2004021

PATENT INFORMATION: APPLICATION INFO.:

US 2004033491 A1 20040219 US 2001-16248 A1 20011210 (10)

US 2000-254329P 20001208 (60) PRIORITY .INFORMATION: US 2001-291037P (60)20010515 US 2000-255648P 20001214 (60) US 2001-297173P 20010608 (60) US 2001-309258P 20010731 (60) US 2001-326393P 20011001 (60) US 2001-315639P 20010829 (60) DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION LEGAL REPRESENTATIVE: Ivor R. Elrifi, MINTZ, LEVIN, COHN, FERRIS,, GLOVSKY and POPEO, P.C., One Financial Center, Boston, MA, 02111 49 NUMBER OF CLAIMS: **EXEMPLARY CLAIM:** LINE COUNT: 12259 Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins. ANSWER 2 OF 58 USPATFULL on STN ACCESSION NUMBER: 2004:13072 USPATFULL TITLE: Genetically-modified neural progenitors and uses thereof Sabate, Olivier, Paris, FRANCE INVENTOR(S): Horellou, Philippe, Paris, FRANCE Buc-Caron, Marie-Helene, Paris, FRANCE Mallet, Jacques, Paris, FRANCE PATENT ASSIGNEE(S): Rhone-Poulenc Rorer S.A. (non-U.S. corporation) NUMBER KIND DATE us 2004009592 PATENT INFORMATION: 20040115 Α1 APPLICATION INFO.: US 2002-305386 Α1 20021127 (10)Continuation of Ser. No. US 1997-810315, filed on 28 **RELATED APPLN. INFO.:** Feb 1997, ABANDONED NUMBER DATE US 1996-12635P PRIORITY INFORMATION: 19960301 (60) Utility DOCUMENT TYPE: FILE SEGMENT: APPLICATION LEGAL REPRESENTATIVE: FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, LLP, 1300 I STREET, NW, WASHINGTON, DC, 20005 NUMBER OF CLAIMS: 19 **EXEMPLARY CLAIM:** NUMBER OF DRAWINGS: 2 Drawing Page(s) 1050 LINE COUNT: CAS INDEXING IS AVAILABLE FOR THIS PATENT. The invention concerns human neural progenitor cells containing introduced genetic material encoding a product of interest, and their use for the treatment of neurodegenerative diseases. CAS INDEXING IS AVAILABLE FOR THIS PATENT. ANSWER 3 OF 58 USPATFULL on STN L2 ACCESSION NUMBER: 2004:7469 USPATFULL TITLE: Low oxygen culturing of central nervous system progenitor cells Csete, Marie, Ann Arbor, MI, UNITED STATES Doyle, John, South Pasadena, CA, UNITED STATES INVENTOR(S): Wold, Barbara J., San Marino, CA, UNITED STATES MCKay, Ron, Bethesda, MD, UNITED STATES Studer, Lorenz, New York, NY, UNITED STATES California Institute of Technology (U.S. corporation) PATENT ASSIGNEE(S):

NUMBER KIND DATE
PATENT INFORMATION: US 2004005704 A1 2004010

PATENT INFORMATION: US 2004005704 A1 20040108 APPLICATION INFO:: US 2003-462896 A1 20030613 (10)

National Institutes of Health (U.S. corporation)

1999, GRANTED, Pat. No. US 6610540 Continuation-in-part of Ser. No. US 1998-195569, filed on 18 Nov 1998,

GRANTED, Pat. No. US 6184035

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: K. Shannon Mrksich, BRINKS HOFER GILSON & LIONE, P.O.

BOX 10395, CHICAGO, IL, 60610

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 14 Drawing Page(s) 2349 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT. AΒ

The present invention relates to the growth of cells in culture under conditions that promote cell survival, proliferation, and/or cellular differentiation. The present inventors have found that proliferation was promoted and apoptosis reduced when cells were grown in lowered oxygen as compared to environmental oxygen conditions traditionally employed in cell culture techniques. Further, the inventors found that differentiation of precursor cells to specific fates also was enhanced in lowered oxygen where a much greater number and fraction of dopaminergic neurons were obtained when mesencephalic precursors were expanded and differentiated in lowered oxygen conditions. Thus at more physiological oxygen levels the proliferation and differentiation of CNS precursors is enhanced, and lowered oxygen is a useful adjunct for ex vivo generation of specific neuron types. Methods and compositions exploiting these findings are described.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 4 OF 58 USPATFULL ON STN L2

ACCESSION NUMBER: 2004:7342 USPATFULL TITLE:

Proteins and nucleic acids encoding same INVENTOR(S):

Guo, Xiaojia (Sasha), Branford, CT, UNITED STATES Li, Li, Branford, CT, UNITED STATES

Patturajan, Meera, Branford, CT, UNITED STATES Shimkets, Richard A., Guilford, CT, UNITED STATES Casman, Stacie J., North Haven, CT, UNITED STATES Malyankar, Uriel M., Branford, CT, UNITED STATES Tchernev, Velizar T., Branford, CT, UNITED STATES Vernet, Corine A., North Branford, CT, UNITED STATES Spytek, Kimberly A., New Haven, CT, UNITED STATES Shenoy, Suresh G., Branford, CT, UNITED STATES Alsobrook, John P., II, Madison, CT, UNITED STATES Edinger, Schlomit, New Haven, CT, UNITED STATES Peyman, John A., New Haven, CT, UNITED STATES Stone, David J., Guilford, CT, UNITED STATES Ellerman, Karen, Branford, CT, UNITED STATES

Gangolli, Esha A., Madison, CT, UNITED STATES Boldog, Ferenc L., North Haven, CT, UNITED STATES Colman, Steven D., Guilford, CT, UNITED STATES Eisen, Andrew, Rockville, MD, UNITED STATES Liu, Xiaohong, Lexington, MA, UNITED STATES

Padigaru, Muralidhara, Branford, CT, UNITED STATES Spaderna, Steven K., Berlin, CT, UNITED STATES Zerhusen, Bryan D., Branford, CT, UNITED STATES

NUMBER	KIND	DATE
 004005576 002-231913		20040108 20020830

APPLICATION INFO.: US 2002-231913 RELATED APPLN. INFO.:

ATContinuation of Ser. No. US 2001-10680, filed on 6 Dec

2001, PENDING

		NUMBER	DATE	
	INFORMATION:	US 2000-251660P US 2001-260326P US 2001-318712P US 2000-255029P US 2001-263800P US 2001-286183P US 2001-269942P US 2001-313627P	20001206 20010108 20010912 20001212 20010124 20010424 20010220 20010820	(60) (60) (60) (60) (60) (60) (60)
DOCUMENT	IYPE:	Utility		

DOCUMENT TYPE: FILE SEGMENT:

PATENT INFORMATION:

APPLICATION LEGAL REPRESENTATIVE: MINTZ, LEVIN, COHN, FERRIS, GLOVSKY, AND POPEO, P.C.,

NUMBER OF CLAIMS: 41 EXEMPLARY CLAIM: LINE COUNT: 17887

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Disclosed are polypeptides and nucleic acids encoding same. Also disclosed are vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods

for using same.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 5 OF 58 USPATFULL on STN 12

ACCESSION NUMBER:

TITLE: INVENTOR(S): 2004:7326 USPATFULL Markers of neuronal differentiation and morphogenesis Loring, Jeanne F., Foster City, CA, UNITED STATES Kaser, Matthew R., Castro Valley, CA, UNITED STATES

NUMBER KIND DATE

PATENT INFORMATION:

US 2004005559 Α1 20040108

APPLICATION INFO.: RELATED APPLN. INFO.: US 2002-62674 20020130 (10) Α1 Continuation-in-part of Ser. No. US 2000-625102, filed

on 24 Jul 2000, ABANDONED

DOCUMENT TYPE: Utility APPLICATION FILE SEGMENT:

LEGAL REPRESENTATIVE:

INCYTE CORPORATION (formerly known as Incyte, Genomics,

Inc.), 3160 PORTER DRIVE, PALO ALTO, CA, 94304

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

5725

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention provides cDNAs that are diagnostic of and participate in neuronal differentiation and morphogenesis, proteins encoded by the cDNAs and agonists, antagonists, and antibodies that specifically bind AB the protein. The invention also provides compositions containing cDNAs, proteins, or antibodies and methods for their use diagnostically and therapeutically.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 6 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

2003:283103 USPATFULL

TITLE:

Enhancing neurotrophin-induced neurogenesis by

endogenous neural progenitor cells by concurrent overexpression of brain derived neurotrophic factor and an inhibitor of a pro-gliogenic bone morphogenetic

protein

INVENTOR(S):

Goldman, Steven A., South Salem, NY, UNITED STATES Chmielnicki, Eva, New York, NY, UNITED STATES Economides, Aris, Tarrytown, NY, UNITED STATES

NUMBER KIND DATE

PATENT INFORMATION: APPLICATION INFO.:

us 2003199447 us 2003-368809 20031023 Α1 Α1 20030214 (10)

> NUMBER DATE

PRIORITY INFORMATION:

US 2002-358005P 20020215 (60)

DOCUMENT TYPE: FILE SEGMENT:

Utility APPLICATION

LEGAL REPRESENTATIVE:

Michael L. Goldman, NIXON PEABODY LLP, Clinton Square,

P.O. Box 31051, Rochester, NY, 14603-1051

NUMBER OF CLAIMS:

106

EXEMPLARY CLAIM:

8 Drawing Page(s)

NUMBER OF DRAWINGS: LINE COUNT:

1728

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to a method of inducing neuronal production in a subject, a method of recruiting neurons to a subject's brain, and a method of treating a neurodegenerative condition by administering a neurotrophic factor and an inhibitor of pro-gliogenic bone morphogenetic proteins. Also disclosed is a method of suppressing astrocyte generation and inducing neuronal production in a subject, a method of treating a neurologic condition, and a method of suppressing glial scar formation in a subject by administering an inhibitor of

invention involves a method of introducing a heterogeneous protein into a subject's brain and spinal cord by introducing a nucleic acid molecule encoding the heterogeneous protein introduced into the subject's ependyma, permitting the protein from the nucleic acid molecule to be expressed within the subject's ependyma, and permitting the expressed protein to migrate within the subject's brain and spinal cord.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 7 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 2003:265269 USPATFULL

TITLE: Method of screening ptp cedilla activitiy promoter or

inhibitor

INVENTOR(S): Noda, Masaharu, Aichi, JAPAN

Fujikawa, Akihiro, Aichi, JAPAN

NUMBER KIND DATE US 2003186284

PATENT INFORMATION: Α1 20031002

APPLICATION INFO.: US 2003-333786 Α1 20030124 (10)WO 2001-JP6343 20010723

> NUMBER DATE

JP 2000-223184 PRIORITY INFORMATION: 20000724

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: VENABLE, BAETJER, HOWARD AND CIVILETTI, LLP, P.O. BOX

34385, WASHINGTON, DC, 20043-9998

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 13 Drawing Page(s)

LINE COUNT: 1319

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

An object of the present invention is to provide a remedy for dysfunction of central monoamine pathway, a method for screening a PTP.zeta. inhibitor or activator, which is useful as a remedy for gastric ulcer caused by Helicobacter pylori or pleiotrophin which is a heparin-binding secretory protein, and a non-human model animal being hyposensitive to a stimulant drug, VacA which is a toxin of Helicobacter pylori, or pleiotrophin by utilizing the physiological function of PTP.zeta.. After administering a subject material to PTP.zeta. knockout mice and wild-type mice, PTP.zeta. activity in the PTP.zeta. knockout mice and the wild-type mice is compared and evaluated to screen a PTP.zeta. inhibitor or activator. Examples of the comparison and the evaluation of the PTP.zeta. activity include the comparison and the evaluation of the function of central monoamine pathway such as changes in the level of central monoamine metabolism, sensitivity to a stimulant drug, the presence of dysfunction of mesolimbic dopamine pathway, level of acclimation to new circumstances, or stress-responsiveness, and the comparison and the evaluation of the level of binding to VacA, a toxin of Helicobacter pylori, or pleiotrophin.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 8 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2003:251172 USPATFULL

Methods for using bag expression as a cell TITLE:

differentiation agent and marker

Reed, John C., Rancho Santa Fe, CA, UNITED STATES

Kermer, Pawel, San Diego, CA, UNITED STATES

Krajewski, Stanislaw, San Diego, CA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: US 2003175958 20030918 Α1 APPLICATION INFO.: US 2002-99553 20020315 Α1 (10)DOCUMENT TYPE: Utility

FILE SEGMENT: **APPLICATION**

LEGAL REPRESENTATIVE: PERKINS COIE LLP, 101 Jefferson Drive, Menlo Park, CA,

94025-1114

NUMBER OF CLAIMS: 43 EXEMPLARY CLAIM:

INVENTOR(S):

NUMBER OF DRAWINGS: 6 Drawing Page(s) LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

which involves modifying a cell to increase expression of a BAG polypeptide that promotes differentiation of a cell, such as a neuronal cell, stem cell or neural progenitor cell. The invention provides another method for promoting čell differentiation, which involves modifying a cell to increase the amount of a nuclear localized BAG polypeptide, when the nuclear localized BAG polypeptide promotes differentiation of the cell. The invention also provides methods for reducing the rate of cell proliferation and suppressing apoptosis. The methods involve modifying a cell to increase the amount of a nuclear localized BAG polypeptide, when the nuclear localized BAG polypeptide inhibits proliferation, or suppresses apoptosis, respectively.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 9 OF 58 USPATFULL ON STN SSION NUMBER: 2003:225262 USPATFULL L2

ACCESSION NUMBER:

TITLE:

Methods for pretreating a subject with apoptotic cells

Peritt, David L., Bala Cynwyd, PA, UNITED STATES Harriman, Gregory, Paoli, PA, UNITED STATES INVENTOR(S):

NUMBER KIND DATE 20030821 US 2003157073 Α1

PATENT INFORMATION: APPLICATION INFO.:

US 2002-306786 20021129 (10) Α1

> NUMBER DATE

PRIORITY INFORMATION:

US 2001-333746P 20011129 (60)

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

WOODCOCK WASHBURN LLP, ONE LIBERTY PLACE, 46TH FLOOR,

1650 MARKET STREET, PHILADELPHIA, PA, 19103

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

212 1

LINE COUNT:

6889

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to methods for treating a subject predisposed to an autoimmune disease with extracorporeal photopheresis or an effective amount of apoptotic cells before the clinical manifestation of a symptom associated with the autoimmune disease. The present invention alsorelates to methods for treating a subject predisposed to an atopic disease with extracorporeal photopheresis or an effective amount of apoptotic cells before the clinical manitfestation of a symptom associated with the atopic disease. The present invention further relates to methods for treating a transplant donor and/or a transplant recipient, or an implant recipient with extracorporeal photopheresis or an effective amount of apoptotic cells prior to the transplant or implantation procedure.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 10 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

2003:213275 USPATFULL

TITLE: INVENTOR(S): Adeno-associated virus materials and methods Johnson, Philip R., Columbus, OH, UNITED STATES

NUMBER KIND DATE us 2003147912 PATENT INFORMATION: Α1 20030807

APPLICATION INFO.:

RELATED APPLN. INFO.:

US 2003-375777 Α1 20030226

Continuation of Ser. No. US 2002-163886, filed on 4 Jun 2002, ABANDONED Continuation of Ser. No. US 2002-77294, filed on 15 Feb 2002, ABANDONED Continuation of Ser. No. US 2000-691604, filed on 18 Oct 2000, PENDING Continuation of Ser. No. US 1999-292703, filed on 15 Apr 1999, ABANDONED Continuation of Ser. No. US

1998-12132, filed on 22 Jan 1998, ABANDONED

Continuation of Ser. No. US 1995-466606, filed on 6 Jun 1995, ABANDONED Continuation-in-part of Ser. No. US 1994-254358, filed on 6 Jun 1994, GRANTED, Pat. No. US

5658785

DOCUMENT TYPE: FILE SEGMENT:

Utility APPLICATION

LEGAL REPRESENTATIVE:

MARSHALL, GERSTEIN & BORUN, 6300 SEARS TOWER, 233 SOUTH

WACKER, CHICAGO, IL, 60606-6357

NUMBER OF CLAIMS:

NUMBER OF DRAWINGS:

5 Drawing Page(s)

LINE COUNT:

1013

CAS INDEXING IS AVAILABLE FOR THIS PATENT. The present invention provides adeno-associated virus (AAV) materials AΒ and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

ANSWER 11 OF 58 USPATFULL on STN

2003:201479 USPATFULL

TITLE:

Methods for pretreating a subject with extracorporeal

photopheresis

INVENTOR(S):

Peritt, David L., Bala Cynwyd, PA, UNITED STATES

Harriman, Gregory, Paoli, PA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2003139466 20030724 Α1 us 2002-306859 APPLICATION INFO.: Α1 20021129 (10)

> NUMBER DATE

PRIORITY INFORMATION:

US 2001-333746P 20011129 (60)

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

Dianne B. Elderkin, Esq., WOODCOCK WASHBURN LLP, One Liberty Place - 46th Floor, Philadelphia, PA, 19103

NUMBER OF CLAIMS:

112

EXEMPLARY CLAIM: LINE COUNT:

6681

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to methods for treating a subject predisposed to an autoimmune disease with extracorporeal photopheresis or an effective amount of apoptotic cells before the clinical manifestation of a symptom associated with the autoimmune disease. The present invention alsorelates to methods for treating a subject predisposed to an atopic disease with extracorporeal photopheresis or an effective amount of apoptotic cells before the clinical manitfestation of a symptom associated with the atopic disease. The present invention further relates to methods for treating a transplant donor and/or a transplant recipient, or an implant recipient with extracorporeal photopheresis or an effective amount of apoptotic cells prior to the transplant or implantation procedure.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 12 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2003:173922 USPATFULL

TITLE:

Intercellular delivery of a herpes simplex virus VP22

fusion protein from cells infected with lentiviral

vectors

INVENTOR(S):

Lai, Zhennan, N. Potomac, MD, UNITED STATES Reiser, Jakob, New Orleans, LA, UNITED STATES Brady, Roscoe O., Rockville, MD, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2003119770 Α1 20030626 APPLICATION INFO.: US 2002-212634 Α1 20020802 (10)

APPLICATION

NUMBER DATE

PRIORITY INFORMATION: DOCUMENT TYPE:

US 2001-310012P 20010802 (60) Utility

FILE SEGMENT: LEGAL REPRESENTATIVE:

KNOBBE MARTENS OLSON & BEAR LLP, 2040 MAIN STREET.

FOURTEENTH FLOOR, IRVINE, CA, 92614 20

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

8 Drawing Page(s)

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention is related to use of recombinant lentiviral AB . vectors containing a therapeutic gene of interest fused in-frame with an intercellular trafficking gene for the global delivery of therapeutic proteins in nondividing cells.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 13 OF 58 USPATFULL on STN

ACCESSION NUMBER: TITLE:

2003:172722 USPATFULL Compositions and methods for isolation, propagation,

and differentiation of human stem cells and uses

thereof

INVENTOR(S):

Neuman, Toomas, Santa Monica, CA, UNITED STATES Levesque, Michel, Beverly Hills, CA, UNITED STATES

NUMBER KIND DATE Α1 20030626

PATENT INFORMATION: APPLICATION INFO.:

us 2003118566 US 2002-216677 Α1 20020808 (10)

NUMBER

DATE

PRIORITY INFORMATION:

US 2001-310727P 20010808 (60) 20010816 (60) US 2001-312714P

DOCUMENT TYPE:

Utility **APPLICATION**

FILE SEGMENT: LEGAL REPRESENTATIVE:

KNOBBE MARTENS OLSON & BEAR LLP, 2040 MAIN STREET.

FOURTEENTH FLOOR, IRVINE, CA, 92614

NUMBER OF CLAIMS:

EXEMPLARY CLAIM: LINE COUNT:

1836

The invention is directed to the field of human stem cells and includes AB methods and compositions for isolating, propagating, and differentiating human stem cells. The invention provides therapeutic uses of the methods and compositions, including autologous transplantation of treated cells into humans for treatment of ***Parkinson*** 's and other neuronal disorders.

ANSWER 14 OF 58 USPATFULL on STN

ACCESSION NUMBER:

TITLE: INVENTOR(S): 2003:159395 USPATFULL

Methods of making CDNA libraries Weiss, Samuel, Alberta, CANADA Reynolds, Brent, Alberta, CANADA

Hammang, Joseph P., Barrington, RI, UNITED STATES Baetge, E. Edward, Barrington, RI, UNITED STATES

NUMBER KIND US 2003109008 Α1 20030612

PATENT INFORMATION: **APPLICATION INFO.:**

RELATED APPLN. INFO.:

US 2002-199830 Α1 20020719 (10)

Continuation of Ser. No. US 1995-486313, filed on 7 Jun 1995, GRANTED, Pat. No. US 6497872 Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, ABANDONED Continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation of Ser. No. US 1995-385404, filed on 7 Feb 1995, ABANDONED Continuation of Ser. No. US 1992-961813, filed on 16

Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-359945, filed

on 20 Dec 1994, ABANDONED Continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, ABANDONED Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED

Continuation-in-part of Ser. No. US 1995-376062, filed on 20 Jan 1995, ABANDONED Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, ABANDONED

Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1993-149508, filed on 9 Nov 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser.

No. US 1994-311099, filed on 23 Sep 1994, ABANDONED

on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed

on 8 Jul 1991, ABANDONED

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

MINTZ LEVIN, One Financial Center, Boston, MA. 02111

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

13 1

NUMBER OF DRAWINGS:

3 Drawing Page(s)

LINE COUNT:

3873

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention discloses methods of proliferation and differentiation of multipotent neural stem cells. Also provided are methods of making CDNA libraries and methods of screening biological agents which affect proliferation differentiation survival phenotype or function of CNS

cells.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

ANSWER 15 OF 58 USPATFULL on STN 2003:146370 USPATFULL

TITLE:

Canine adenovirus vectors for the transfer of genes in

targeted cells

INVENTOR(S):

Kremer, Eric, Castelnau le Lez, FRANCE Chillon Rodriguez, Miguel, Barcelone, SPAIN Soudais, Claire, Fontenay Aux Roses, FRANCE

Boutin, Sylvie, Alfortville, FRANCE Peltekian, Elise, Paris, FRANCE

Garcia, Luis, Saint Denis, FRANCE Vincent, Nathalie, Saintry Sur Seine, FRANCE Danos, Olivier, Fontainebleau, FRANCE

NUMBER KIND DATE

PATENT INFORMATION: APPLICATION INFO.:

US 2003100116 Α1 20030529 US 2002-165202 Α1 20020607 (10)

RELATED APPLN. INFO.:

Continuation of Ser. No. WO 2000-EP12792, filed on 6

Dec 2000, UNKNOWN

NUMBER DATE PRIORITY INFORMATION: EP 1999-403061 19991207

EP 1999-403078 19991208

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

HESLIN ROTHENBERG FARLEY & MESITI PC, 5 COLUMBIA

CIRCLE, ALBANY, NY, 12203

NUMBER OF CLAIMS:

26 EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

42 Drawing Page(s)

LINE COUNT:

1980

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Recombinant Canine Adenovirus (CAV) vectors based on CAV-2 strain Toronto in which the CAV-2 E1 region has been deleted are described herein. Methods for the preparation of recombinant vectors include the use of transcomplementation cell lines which are specifically employed to reduce the likelihood of generating replication competent CAV-2 during propagation of the vectors. The resultant replication-defective, E1-deficient CAV preparations are highly desirable for the transfer of nucleic acid sequences in vitro and in vivo.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 16 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2003:140116 USPATFULL

TITLE: INVENTOR(S): Methods of proliferating undifferentiated neural cells

Weiss, Samuel, Alberta, CANADA

Reynolds, Brent, Alberta, CANADA Hammang, Joseph P., Barrington, RI, UNITED STATES Baetge, E. Edward, Barrington, RI, UNITED STATES

NUMBER **KIND** DATE PATENT INFORMATION: US 2003095956 Α1 20030522 APPLICATION INFO.: us 2002-199918 Α1 20020719 (10)

1995, PENDING Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, ABANDONED Continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1995-385404, filed on 7 Feb 1995, ABANDONED Continuation of Ser. No. US 1992-961813, filed on 16 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-359945, filed on 20 Dec 1994, ABANDONED Continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, ABANDONED Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1993-149508, filed on 9 Nov 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-311099, filed on 23 Sep 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED

DOCUMENT TYPE: FILE SEGMENT:

Utility **APPLICATION**

LEGAL REPRESENTATIVE:

Ivor R. Elrifi, Esquire, One Financial Center, Boston,

MA, 02111

NUMBER OF CLAIMS:

12

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

3 Drawing Page(s)

LINE COUNT:

3838

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention discloses methods of proliferation and differentiation of multipotent neural stem cells. Also provided are methods of making cDNA libraries and methods of screening biological agents which affect proliferation differentiation survival phenotype or function of CNS cells.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

USPATFULL on STN ANSWER 17 OF 58

ACCESSION NUMBER:

2003:127052 USPATFULL

TITLE: INVENTOR(S): Transcriptional regulation of target genes

Kaplitt, Michael G., New York, NY, UNITED STATES
During, Matthew J., Philadelphia, PA, UNITED STATES
Lozano, Andres M., Toronto, CANADA

NUMBER KIND DATE PATENT INFORMATION: us 2003087264 Α1 20030508 us 2002-151702 Α1 20020520 (10)

APPLICATION INFO.:

DATE NUMBER

PRIORITY INFORMATION:

US 2001-292604P 20010521 (60)

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

KLAUBER & JACKSON, 411 HACKENSACK AVENUE, HACKENSACK,

NJ, 07601

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

35

NUMBER OF DRAWINGS:

4 Drawing Page(s)

LINE COUNT:

1123

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AΒ The present invention describes a method of identifying inducible genetic regulatory sequences that can control the transcription of specific gene transcripts. Methods of using inducible genetic regulatory sequences are also discussed. In particular, the genetic regulatory sequences of the present invention can modulate the transcription of a nucleic acid transcript in vivo.

ACGESSION NUMBER:

TITLE:

INVENTOR(S):

2003:120030 USPATFULL

US

Methods of screening biological agents

Weiss, Samuel, Alberta, CANADA Reynolds, Brent, Alberta, CANADA

Hammang, Joseph P., Barrington, RI, UNITED STATES Baetge, E. Edward, Barrington, RI, UNITED STATES

NUMBER	KIND	DATE	
2003082515	Α1	20030501	
2002-100180	۸1	20020710	

PATENT INFORMATION: APPLICATION INFO.: RELATED APPLN. INFO.:

US 2002-199189 A1 20020719 (10) Continuation of Ser. No. US 1995-486313, filed on 7 Jun US 2002-199189

1995, PENDING Continuation-in-part of Ser. No. US

1994-270412, filed on 5 Jul 1994, ABANDONED Continuation of Ser. No. US 1991-726812, filed on 8 Jul

1991, ABANDONED Continuation of Ser. No. US 1995-385404, filed on 7 Feb 1995, ABANDONED Continuation of Ser. No. US 1992-961813, filed on 16 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US

1991-726812, filed on 8 Jul 1991, ABANDONED

Continuation-in-part of Ser. No. US 1994-359945, filed on 20 Dec 1994, ABANDONED Continuation of Ser. No. US

1994-221655, filed on 1 Apr 1994, ABANDONED Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US

1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1995-376062, filed

on 20 Jan 1995, ABANDONED Continuation of Ser. No. US

1993-10829, filed on 29 Jan 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser.

No. US 1993-149508, filed on 9 Nov 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-311099, filed on 23 Sep 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, ABANDONED

Continuation-in-part of Ser. No. US 1991-726812, filed

on 8 Jul 1991, ABANDONED

DOCUMENT TYPE:

FILE SEGMENT:

LEGAL REPRESENTATIVE:

Utility APPLICATION

Ivor R. Elrifi Esquire, MINTZ, LEVIN, COHN, FERRIS, GLOVSKY and POPEO, P.C., One Financial Center, Boston,

MA, 02111

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

12 1

NUMBER OF DRAWINGS:

3 Drawing Page(s)

LINE COUNT:

3844

CAS INDEXING IS AVAILABLE FOR THIS PATENT. AB

The invention discloses methods of proliferation and differentiation of multipotent neural stem cells. Also provided are methods of making CDNA libraries and methods of screening biological agents which affect proliferation differentiation survival phenotype or function of CNS

cells.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

ANSWER 19 OF 58 USPATFULL ON STN

TITLE:

2003:119660 USPATFULL

INVENTOR(S):

Adeno-associated virus materials and methods Johnson, Philip R., Columbus, OH, UNITED STATES

		NUMBER	KIND	DATE
ATFNT	TNEORMATTON:	US 2003082145	۸1	2003050

APPLICATION INFO.: RELATED APPLN. INFO.:

20030501 20021002 US 2002-263127 Α1 (10)

Continuation of Ser. No. US 2002-77294, filed on 15 Feb 2002, PENDING Continuation of Ser. No. US 2000-691604, filed on 18 Oct 2000, PENDING Continuation of Ser. No.

US 1999-292703, filed on 15 Apr 1999, ABANDONED Continuation of Ser. No. US 1998-12132, filed on 22 Jan

1998, ABANDONED Continuation of Ser. No. US 1995-466606, filed on 6 Jun 1995, ABANDONED Continuation-in-part of Ser. No. US 1994-254358, filed

on 6 Jun 1994, GRANTED, Pat. No. US 5658785

FILE SEGMENT: APPLICATION

MARSHALL, GERSTEIN & BORUN, 6300 SEARS TOWER, 233 SOUTH LEGAL REPRESENTATIVE:

WACKER, CHICAGO, IL, 60606-6357

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 5 Drawing Page(s)

LINE COUNT: 1013

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for

treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 20 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2003:86828 USPATFULL

PARKINSON 'S DISEASE WITH TREATMENT OF TITLE:

OLIGONUCLEOTIDES

INVENTOR(S): SCHNEIDER, JAY S., CHERRY HILL, NJ, UNITED STATES

CLIFFORD KENT WEBER ESQ. (U.S. corporation) PATENT ASSIGNEE(S):

KIND NUMBER DATE us 2003060436 PATENT INFORMATION: Α1 20030327 US 1999-435249 APPLICATION INFO.: 19991105 (9) Α1

> NUMBER DATE

PRIORITY INFORMATION: US 1998-107191P 19981105 (60)

Utility DOCUMENT TYPE: FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: DRINKER BIDDLE & REATH, ONE LOGAN SQUARE, 18TH AND

CHERRY STREETS, PHILADELPHIA, PA. 19103-6996

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS: 7 Drawing Page(s)

LINE COUNT: 574

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to a method of treatment of

Parkinson 's disease, and to the use of ***antisense***
oligonucleotides or triplex oligonucleotides introduced into targeted
brain structures to decrease the function of brain circuits known to be ΑB overactive in the ***Parkinsonian*** brain. ***Antisense*** triplex oligonucleotides are targeted to the internal globus pallidus and/or substantia nigra pars reticulata (SNr) where the expression of ***glutamic*** ***acid*** ***decarboxylase*** (GAD.sub.67 GAD.sub.65, or a combination of the two isoforms) is downregulated. The present invention also relates to a method of treatment of ***Parkinson*** 's disease where ***antisense*** or

oligonucleotides are targeted to the internal globus pallidus and/or substantia nigra pars reticulata for the downregulation of glutamate receptors. The present invention further relates to a method of treatment of ***Parkinson*** 's disease where ***antisense*** triplex oligonucleotides are targeted to the thatlamic motor nuclei for the downregulation of GABA receptors.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 21 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2003:71552 USPATFULL

In vitro and in vivo proliferation and use of TITLE:

multipotent neural stem cells and their progeny

INVENTOR(S): Weiss, Samuel, Alberta, CANADA Reynolds, Brent, Alberta, CANADA

Hammang, Joseph P., Barrington, RI, UNITED STATES Baetge, E. Edward, Barrington, RI, UNITED STATES

NUMBER KIND DATE us 2003049837 PATENT INFORMATION: Α1 20030313

APPLICATION INFO.: us 2001-925911 Α1 20010809 (9)

1995, GRANTED, Pat. No. US 6399369 Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, ABANDONED Continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation of Ser. No. US 1995-385404, filed on 7 Feb 1995, ABANDONED Continuation of Ser. No. US 1992-961813, filed on 16 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-359945, filed on 20 Dec 1994, ABANDONED Continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, ABANDONED Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1995-376062, filed on 20 Jan 1995, ABANDONED Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1993-149508, filed on 9 Nov 1993, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-311099, filed on 23 Sep 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, ABANDONED Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, ABANDONED

DOCUMENT TYPE:

FILE SEGMENT:

Utility APPLICATION

LEGAL REPRESENTATIVE: MINTZ LEVIN, One Financial Center, Boston, MA, 02111

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

3 Drawing Page(s)

LINE COUNT: 4025

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Nucleic acids may be obtained from neural cell cultures produced by using growth factors to induce the proliferation of multipotent neural stem cells. The resultant progeny may be passaged repeatedly to produce a sufficient number of cells to obtain representative nucleic acid samples. Clonal cultures may be produced. Nucleic acids may be obtained from both cultured normal and dysfunctional neural cells and from neural cell cultured normal and dysfunctional neural cells and from allows for the identification of the sequence of gene expression during neural development and can be used to reveal the effects of biological agents on gene expression in neural cells. Additionally, nucleic acids derived from dysfunctional tissue can be compared with that of normal tissue to identify genetic material which may be the cause of the dysfunction. This information could then be used in the design of therapies to treat the neurological disorder. A further use of the technology would be in the diagnosis of genetic disorders or for use in identifying neural cells at a particular stage in development.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 22 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2003:70969 USPATFULL

TITLE:

INVENTOR(S):

Modulating neuronal outgrowth via the major

histocompatibility complex Class I (MHC I) molecule Kaufman, Daniel L., Los Angeles, CA, UNITED STATES Hanssen, Lorraine, Los Angeles, CA, UNITED STATES

Zekzer, Dan, Encinitas, CA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2003049254 Α1 20030313 APPLICATION INFO.: US 2002-161647 Α1 20020605 (10)

> NUMBER DATE

PRIORITY INFORMATION: US 2001-295596P 20010605 (60) Utility

DOCUMENT TYPE: FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE: Sharon E. Crane, Ph.D., BURNS, DOANE, SWECKER & MATHIS,

L.L.P., P.O. Box 1404, Alexandria, VA, 22313-1404 NUMBER OF CLAIMS:

NUMBER OF DRAWINGS: 5 Drawing Page(s)

2511 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention relates to methods and compositions for treating neural AB damage caused by injury or disease, by enhancing neural outgrowth and/or repair responses in the nervous system. Preferably, the methods and compositions utilize agents which interfere with the ability of the major histocompatibility complex (MHC) Class I molecule (MHC I) to inhibit neurite outgrowth. Such agents include antibodies directed to MHC I, MHC I fragments and/or analogs, and agents which interfere with MHC I interaction with its neuronal receptor and the receptor's signaling pathway.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 23 OF 58 USPATFULL on STN

2003:70918 USPATFULL ACCESSION NUMBER:

TTTLF: Targeted nucleic acid constructs and uses related

thereto

Elmaleh, David R., Newton, MA, UNITED STATES INVENTOR(S):

Fischman, Alan J., Boston, MA, UNITED STATES Babich, John W., Scituate, MA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2003049203 Α1 20030313

APPLICATION INFO.: US 2001-945166 Α1 20010831 (9)

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: FOLEY HOAG, LLP, PATENT GROUP, WORLD TRADE CENTER WEST,

155 SEAPORT BLVD, BOSTON, MA, 02110

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 9 Drawing Page(s) LINE COUNT: 2270

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention provides targeted constructs comprising a targeting AB moiety, a nucleic acid, and a payload. The payload can be a detectable

label or a therapeutic agent. The nucleic acid can be an

antisense molecule that is complementary to RNA present in a target cell. The targeted constructs can be used to introduce the payload into a target cell in vivo or in vitro. Accordingly, the invention can be used for diagnostic purposes and for therapeutic purposes.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 24 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2003:57546 USPATFULL

TTTLF: Differentiated cells suitable for human therapy INVENTOR(S): Gold, Joseph D., San Francisco, CA, UNITED STATES

Lebkowski, Jane S., Portola Valley, CA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: US 2003040111 20030227

A1 US 2002-141220 APPLICATION INFO.: Α1 20020507 (10)

Division of Ser. No. US 2001-783203, filed on 13 Feb 2001, PENDING Continuation of Ser. No. WO 2001-US44309, RELATED APPLN. INFO.:

filed on 26 Nov 2001, UNKNOWN

NUMBER DATE

20001127 (60) 20001127 (60) PRIORITY INFORMATION: US 2000-253443P

US 2000-253357P

Utility DOCUMENT TYPE: FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: GERON CORPORATION, 230 CONSTITUTION DRIVE, MENLO PARK.

CA, 94025

NUMBER OF CLAIMS: EXEMPLARY CLAIM: 12

NUMBER OF DRAWINGS: 13 Drawing Page(s) LINE COUNT:

3280 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention provides a system for producing differentiated cells from a stem cell population for use wherever a relatively homogenous cell

control of a transcriptional control element (such as the TERT promoter) that causes the gene to be expressed in relatively undifferentiated cells in the population. Expression of the effector gene results in depletion of undifferentiated cells, or expression of a marker that can be used to remove them later. Suitable effector sequences encode a toxin, a protein that induces apoptosis, a cell-surface antigen, or an enzyme (such as thymidine kinase) that converts a prodrug into a substance that is lethal to the cell. The differentiated cell populations produced according to this disclosure are suitable for use in tissue regeneration, and non-therapeutic applications such as drug screening.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 25 OF 58 USPATFULL ON STN L2

ACCESSION NUMBER:

2003:57516 USPATFULL

TITLE: INVENTOR(S):

Bio-synthetic photostimulators and methods of use Miesenbock, Gero, New York, NY, UNITED STATES

Zemelman, Boris V., New York, NY, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2003040080 20030227 Α1 APPLICATION INFO.: US 2002-222675 Α1 20020816

> NUMBER DATE

PRIORITY INFORMATION:

US 2001-345741P 20011231 (60) US 2001-312707P 20010816 (60)

DOCUMENT TYPE: FILE SEGMENT:

Utility APPLICATION

LEGAL REPRESENTATIVE:

Benjamin Aaron Adler, ADLER & ASSOCIATES, 8011 candle

(10)

Lane, Houston, TX, 77071

NUMBER OF CLAIMS:

51

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

12 Drawing Page(s)

LINE COUNT: 2021

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Method for rendering a cell sensitive to stimulation. In a preferred embodiment, the method comprises introducing, into a cell, nucleic acid sequences encoding at least an opsin gene product, an arrestin gene product, and the alpha subunit of the heterotrimeric G protein of the G.sub.q family. The introduced nucleic acid sequences are then expressed by the non-photoreceptor cell to yield at least the opsin gene product, the arrestin gene product, and the alpha subunit of the heterotrimeric G protein of the G.sub.q family. Retinal or a derivative thereof capable of bonding with the opsin gene product to form a rhodopsin is then provided to the non-photoreceptor cell. The non-photoreceptor cell is then irradiated with light having a wavelength capable of converting the rhodopsin to metarhodopsin. The conversion of rhodopsin to metarhodopsin triggers a cascade of intracellular responses within the cell resulting in an increased intracellular concentration of IP.sub.3 and calcium ions leading to an action potential in the cell.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 26 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2003:44877 USPATFULL

TITLE:

Selective antibody targeting of undifferentiated stem

cells

INVENTOR(S):

McWhir, Jim, Midlothian, UNITED KINGDOM

Gold, Joseph D., San Francisco, CA, UNITED STATES Schiff, J. Michael, Menlo Park, CA, UNITED STATES

20001127 (60)

NUMBER KIND DATE PATENT INFORMATION: US 2003032187 A1 20030213 APPLICATION INFO.: US 2001-995419 Α1 20011126

> NUMBER DATE

PRIORITY INFORMATION:

US 2000-253357P 20001127 (60) US 2000-253443P 20001127 (60)

DOCUMENT TYPE:

Utility

US 2000-253395P

FILE SEGMENT:

APPLICATION

CA, 94025

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

22

NUMBER OF DRAWINGS:

10 Drawing Page(s)

LINE COUNT:

4177

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention provides a system for producing differentiated cells from a stem cell population for use wherever a relatively homogenous cell population is desirable. The cells contain an effector gene under control of a transcriptional control element (such as the TERT promoter) that causes the gene to be expressed in relatively undifferentiated cells in the population. Expression of the effector gene results in expression of a cell-surface antigen that can be used to deplete the undifferentiated cells. Model effector sequences encode glycosyl transferases that synthesize carbohydrate xenoantigen or alloantigen, which can be used for immunoseparation or as a target for complement-mediated lysis. The differentiated cell populations produced are suitable for use in tissue regeneration and non-therapeutic applications such as drug screening.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 27 OF 58 USPATFULL ON STN SSION NUMBER: 2003:44759 USPATFULL

ACCESSION NUMBER:

TITLE:

Evaluating neuropshychiatric diseases using a

specimen-linked database

INVENTOR(S):

Muraca, Patrick J., Pittsfield, MA, UNITED STATES

NUMBER KIND DATE US 2003032069 A1 US 2002-184671 A1 20030213 20020628 (10)

PATENT INFORMATION: APPLICATION INFO.:

NUMBER

DATE

PRIORITY INFORMATION:

US 2001-302223P 20010629 (60)

DOCUMENT TYPE: FILE SEGMENT:

Utility APPLICATION

LEGAL REPRESENTATIVE:

PALMER & DODGE, LLP, PAULA CAMPBELL EVANS, 111

HUNTINGTON AVENUE, BOSTON, MA, 02199

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

8 Drawing Page(s)

LINE COUNT:

AB

3380

The invention relates to a method and system for identifying and evaluating the responses of a patient to a neuropsychiatric disorder. Preferably, both physiological and behavioral responses are linked to molecular profiling data, i.e., data relating to the expression of a plurality of genes in tissues from the patient with these diseases. In one aspect, the invention provides a tissue information system comprising a specimen-linked database and an information management system for accessing, organizing, and displaying tissue information obtained from tissue microarrays comprising samples from patients with neuropsychiatric disorders.

ANSWER 28 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2003:3539 USPATFULL

TITLE:

Multipotent stem cells from peripheral tissues and uses

INVENTOR(S):

Toma, Jean, Montreal, CANADA Akhavan, Mahnaz, Montreal, CANADA Fernandes, Karl J. L., Montreal, CANADA

Fortier, Mathieu, Orford, CANADA Miller, Freda, Montreal, CANADA

NUMBER KIND DATE US 2003003574

PATENT INFORMATION: APPLICATION INFO.: RELATED APPLN. INFO.:

A1 20030102 A1 20020315 US 2002-99539 A1 20020315 (10) Continuation-in-part of Ser. No. US 2001-991480, filed

on 9 Nov 2001, PENDING Continuation-in-part of Ser. No. US 2001-916639, filed on 26 Jul 2001, PENDING Continuation-in-part of Ser. No. WO 2001-CA47, filed on

24 Jan 2001, UNKNOWN Continuation-in-part of Ser. No.

US 2000-670049, filed on 25 Sep 2000, PENDING

on 24 Jan 2000, ABANDONED

DOCUMENT TYPE:

Utility APPLICATION

FILE SEGMENT:

ROPES & GRAY, ONE INTERNATIONAL PLACE, BOSTON, MA,

02110-2624

NUMBER OF CLAIMS:

LEGAL REPRESENTATIVE:

73

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

32 Drawing Page(s)

LINE COUNT:

2354

CAS INDEXING IS AVAILABLE FOR THIS PATENT. This invention relates to multipotent stem cells, purified from the

peripheral tissue of mammals, and capable of differentiating into neural and non-neural cell types. These stem cells provide an accessible source for autologous transplantation into CNS, PNS, and other damaged tissues.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 29 OF 58 USPATFULL ON STN 12

2003:228269 USPATFULL

ACCESSION NUMBER: TITLE:

Low oxygen culturing of central nervous system

progenitor cells

INVENTOR(S):

Csete, Marie, Ann Arbor, MI, United States Doyle, John, South Pasadena, CA, United States Wold, Barbara J., San Marino, CA, United States

McKay, Ron, Bethesda, MD, United States Studer, Lorenz, New York, NY, United States

PATENT ASSIGNEE(S):

California Institute of Technology, Pasadena, CA,

United States (U.S. corporation)

National Institutes of Health, Bethesda, MD, United

States (U.S. corporation)

NUMBER KIND DATE

PATENT INFORMATION:

US 6610540 20030826 в1 US 1999-425462 19991022

APPLICATION INFO.: RELATED APPLN. INFO.:

Continuation-in-part of Ser. No. US 1998-195569, filed

on 18 Nov 1998, now patented, Pat. No. US 6184035

DOCUMENT TYPE:

Utility

FILE SEGMENT: PRIMARY EXAMINER: **GRANTED** Kemmerer, Elizabeth

ASSISTANT EXAMINER:

Bunner, Bridget E. Brinks Hofer Gilson & Lione

LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

11

NUMBER OF DRAWINGS:

22 Drawing Figure(s); 14 Drawing Page(s)

LINE COUNT:

2398

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to the growth of cells in culture under conditions that promote cell survival, proliferation, and/or cellular differentiation. The present inventors have found that proliferation was promoted and apoptosis reduced when cells were grown in lowered oxygen as compared to environmental oxygen conditions traditionally employed in cell culture techniques. Further, the inventors found that differentiation of precursor cells to specific fates also was enhanced in lowered oxygen where a much greater number and fraction of dopaminergic neurons were obtained when mesencephalic precursors were expanded and differentiated in lowered oxygen conditions. Thus at more physiological oxygen levels the proliferation and differentiation of CNS precursors is enhanced, and lowered oxygen is a useful adjunct for ex vivo generation of specific neuron types. Methods and compositions exploiting these findings are described.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 30 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

2003:6896 USPATFULL

TITLE:

AAV-mediated delivery of DNA to cells of the nervous

INVENTOR(S):

Kaplitt, Michael G., New York, NY, United States

PATENT ASSIGNEE(S):

During, Matthew J., Weston, CT, United States The Rockefeller University, New York, NY, United States

DATE

(U.S. corporation)

Yale University, New Haven, CT, United States (U.S.

corporation)

NUMBER KIND PATENT INFORMATION: US 6503888 US 2000-548176 в1 20030107

20000413 APPLICATION INFO.: Continuation of Ser. No. US 1995-467044, filed on 6 Jun RELATED APPLN. INFO.:

1995, now patented, Pat. No. US 6180613

Continuation-in-part of Ser. No. US 1994-227319, filed

on 13 Apr 1994, now abandoned

DOCUMENT TYPE: Utility FILE SEGMENT: GRANTED

Martinell, James Klauber & Jackson PRIMARY EXAMINER: LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 11 Drawing Figure(s); 6 Drawing Page(s)

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention relates to a method of delivering exogenous DNA to a AB target cell of the mammalian central nervous system using an adeno-associated virus (AAV)-derived vector. Also included in the invention are the AAV-derived vectors containing exogenous DNA which encodes a protein or proteins which prevent or treat nervous system disease, and a method of prevent or treating such disease.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 31 OF 58 DUPLICATE 1 L2 MEDLINE on STN

2003011859 ACCESSION NUMBER: MEDLINE DOCUMENT NUMBER: PubMed ID: 12518298

parkinsonism Experimental is associated with TITLE:

increased pallidal GAD gene expression and is reversed by

antisense site-directed gene therapy.

Schneider Jay S; Wade Timothy V **AUTHOR:**

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, CORPORATE SOURCE:

USA.. jay.schneider@mail.tju.edu Movement disorders: official journal of the Movement Disorder Society, (2003 Jan) 18 (1) 32-40. Journal code: 8610688. ISSN: 0885-3185. SOURCE:

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

English LANGUAGE:

FILE SEGMENT: ENTRY MONTH: Priority Journals

200303

Entered STN: 20030109 ENTRY DATE:

Last Updated on STN: 20030320 Entered Medline: 20030319

AB The levels of mRNA encoding the two isoforms of ***alutamic*** ***acid*** ***decarboxylase*** (GAD(65) and GAD(67)) were measured throughout the pallidal complex in normal and acutely (i.e., 1 month duration) and chronically (i.e., 5 years duration) ***parkinsonian*** duration) and chronically (i.e., 5 years duration) ***parkinsonian***

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) -treated monkeys as well as in monkeys exposed to MPTP but asymptomatic for ***parkinsonism*** . GAD(65) mRNA labeling was modestly increased in the mid/caudal internal globus pallidus (GPi) but not in the external globus pallidus (GPe) in ***parkinsonian*** monkeys, compared with normal and asymptomatic monkeys. GAD(67) mRNA expression was highly increased in the mid/caudal GPi, and modestly increased in the GPe in ***parkinsonian*** mid/caudal GPi, and modestly increased in the GPe in ***parkinson monkeys compared with normal and asymptomatic animals. Infusion of ***parkinsonian*** GAD(67) ***antisense*** oligodeoxynucleotides bilaterally into the GPi resulted in a transient reversal of akinesia and bradykinesia that was not produced by infusion of missense oligodeoxynucleotides. These data emphasize the role of GAD enzyme (particularly GAD(67)) and GABA in the GPi for the expression of ***parkinsonian*** motor signs and suggest that selective manipulation of GABAergic neurotransmission in the GPi may have therapeutic potential for treating ***parkinsonism*** Copyright 2002 Movement Disorder Society

ANSWER 32 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2002:329450 USPATFULL

Adeno-associated virus materials and methods TITLE: INVENTOR(S): Johnson, Philip R., Columbus, OH, UNITED STATES

NUMBER KIND DATE US 2002187129 US 2002-163886 PATENT INFORMATION: Α1 20021212 APPLICATION INFO.: $\mathsf{A}\mathbf{1}$ 20020604 (10)

RELATED APPLN. INFO.: Continuation of Ser. No. US 2002-77294, filed on 15 Feb filed on 18 Oct 2000, PENDING Continuation of Ser. No. US 1999-292703, filed on 15 Apr 1999, ABANDONED Continuation of Ser. No. US 1998-12132, filed on 22 Jan 1998, ABANDONED Continuation of Ser. No. US

1995-466606, filed on 6 Jun 1995, ABANDONED

Continuation-in-part of Ser. No. US 1994-254358, filed

on 6 Jun 1994, GRANTED, Pat. No. US 5658785

DOCUMENT TYPE:

Utility APPLICATION

FILE SEGMENT: LEGAL REPRESENTATIVE:

Greta E. Noland, MARSHALL, GERSTEIN & BORUN, Sears Tower, 233 S. Wacker Drive, Suite 6300, Chicago, IL,

60606-6357

NUMBER OF CLAIMS:

25

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

5 Drawing Page(s)

LINE COUNT:

1013

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for

treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

ANSWER 33 OF 58 USPATFULL on STN

2002:287120 USPATFULL

TITLE: INVENTOR(S): Adeno-associated virus materials and methods Johnson, Philip R., Columbus, OH, UNITED STATES Children's Hospital, Inc. (U.S. corporation)

PATENT ASSIGNEE(S):

NUMBER KIND DATE

PATENT INFORMATION:

Α1 US 2002159979 20021031

APPLICATION INFO.:

US 2002-77294 Α1 20020215 (10)

RELATED APPLN. INFO.:

Continuation of Ser. No. US 2000-691604, filed on 18 Oct 2000, PENDING Continuation of Ser. No. US

1999-292703, filed on 15 Apr 1999, ABANDONED

Continuation of Ser. No. US 1998-12132, filed on 22 Jan 1998, ABANDONED Continuation of Ser. No. US 1995-466606, filed on 6 Jun 1995, ABANDONED

Continuation-in-part of Ser. No. US 1994-254358, filed on 6 Jun 1994, GRANTED, Pat. No. US 5658785

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

MARSHALL, GERSTEIN & BORUN, 6300 SEARS TOWER, 233 SOUTH

WACKER, CHICAGO, IL, 60606-6357

NUMBER OF CLAIMS:

25 EXEMPLARY CLAIM:

5 Drawing Page(s)

NUMBER OF DRAWINGS:

1013

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 34 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2002:227988 USPATFULL

TITLE:

Multipotent stem cells from peripheral tissues and uses

thereof

INVENTOR(S):

Toma, Jean, Montreal, CANADA

Akhavan, Mahnaz, Montreal, CANADA Fernandes, Karl J. L., Montreal, CANADA Fortier, Mathieu, Orford, CANADA

Miller, Freda, Montreal, CANADA

PATENT INFORMATION: us 2002123143 20020905 Α1

APPLICATION INFO.: US 2001-991480 A1 20011109 (9)

Continuation-in-part of Ser. No. US 2001-916639, filed RELATED APPLN. INFO.: on 26 Jul 2001, PENDING Continuation-in-part of Ser.

No. WO 2001-CA47, filed on 24 Jan 2001, UNKNOWN

Continuation-in-part of Ser. No. US 2000-670049, filed on 25 Sep 2000, PENDING Continuation-in-part of Ser. No. US 2000-490422, filed on 24 Jan 2000, ABANDONED Continuation-in-part of Ser. No. US 1997-920272, filed

on 22 Aug 1997, PENDING

DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: ROPES & GRAY, ONE INTERNATIONAL PLACE, BOSTON, MA,

02110-2624

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS:

27 Drawing Page(s)

LINE COUNT:

2174

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention relates to multipotent stem cells, purified from the peripheral tissue of mammals, and capable of differentiating into neural and non-neural cell types. These stem cells provide an accessible source for autologous transplantation into CNS, PNS, and other damaged tissues.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 35 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 2002:185669 USPATFULL

TITLE: INVENTOR(S):

Differentiated stem cells suitable for human therapy Gold, Joseph D., San Francisco, CA, UNITED STATES Lebkowski, Jane S., Portola Valley, CA, UNITED STATES

NUMBER KIND DATE PATENT INFORMATION: us 2002098582 Α1 20020725 us 6576464 В2 20030610 us 2001-783203 20010213 Α1

APPLICATION INFO.:

NUMBER DATE

PRIORITY INFORMATION:

US 2000-253443P 20001127 (60) US 2000-253357P 20001127 (60)

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

GERON CORPORATION, 230 CONSTITUTION DRIVE, MENLO PARK,

CA, 94025

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 10 Drawing Page(s) 3087

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT. This invention provides a system for producing differentiated cells from AB a stem cell population for use wherever a relatively homogenous cell population is desirable. The cells contain an effector gene under control of a transcriptional control element (such as the TERT promoter) that causes the gene to be expressed in relatively undifferentiated cells in the population. Expression of the effector gene results in depletion of undifferentiated cells, or expression of a marker that can be used to remove them later. Suitable effector sequences encode a toxin, a protein that induces apoptosis, a cell-surface antigen, or an enzyme (such as thymidine kinase) that converts a prodrug into a substance that is lethal to the cell. The differentiated cell populations produced according to this disclosure are suitable for use in tissue regeneration, and non-therapeutic applications such as drug screening.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 36 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2002:92654 USPATFULL

TITLE: Method of inducing neuronal production in the brain and

spinal cord

Goldman, Steven A., South Salem, NY, UNITED STATES Benraiss, Abdellatif, Astoria, NY, UNITED STATES INVENTOR(S):

PATENT INFORMATION: 20020425

US 2002049178 A1 US 2001-846588 A1 APPLICATION INFO.: 20010501 (9)

> NUMBER DATE

PRIORITY INFORMATION: US 2000-201230P 20000501 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: **APPLICATION**

LEGAL REPRESENTATIVE: Michael L. Goldman, Esq., NIXON PEABODY LLP, Clinton

Square, P.O. Box 31051, Rochester, NY, 14603-1051

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 11 Drawing Page(s)

LINE COUNT: 1997

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention relates to methods of inducing neuronal production

in the brain, recruiting neurons to the brain, and treating a neurodegenerative condition by providing a nucleic acid construct

encoding a neurotrophic factor, and injecting the nucleic acid construct

intraventricularly into a subject's brain.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 37 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2002:27155 USPATFULL

TITLE:

Multipotent neural stem cells from peripheral tissues

and uses thereof

INVENTOR(S):

Toma, Jean, Montreal, CANADA

Akhavan, Mahnaz, Montreal, CANADA Fernandes, Karl J. L., Montreal, CANADA Fortier, Mathieu, Orford, CANADA Miller, Freda, Montreal, CANADA

NUMBER KIND DATE

PATENT INFORMATION: APPLICATION INFO.:

US 2002016002 A1 20020207 US 2001-916639 Α1 20010726 (9)

RELATED APPLN. INFO.:

Continuation-in-part of Ser. No. WO 2001-CA47, filed on

24 Jan 2001, UNKNOWN Continuation-in-part of Ser. No. US 2000-670049, filed on 25 Sep 2000, UNKNOWN Continuation-in-part of Ser. No. US 2000-490422, filed

on 24 Jan 2000, UNKNOWN

DOCUMENT TYPE:

Utility APPLICATION

FILE SEGMENT: LEGAL REPRESENTATIVE:

ROPES & GRAY, ONE INTERNATIONAL PLACE, BOSTON, MA,

02110-2624

NUMBER OF CLAIMS:

56

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

16 Drawing Page(s)

LINE COUNT:

1697

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

This invention relates to multipotent neural stem cells, purified from the peripheral nervous system of mammals, capable of differentiating into neural and non-neural cell types. These stem cells provide an accessible source for autologous transplantation into CNS, PNS, and other damaged tissues.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 38 OF 58 USPATFULL on STN

ACCESSION NUMBER:

2002:12280 USPATFULL

TITLE:

GENETICALLY-MODIFIED NEURAL PROGENITORS AND USES

THEREOF

INVENTOR(S):

SABATE, OLIVIER, PARIS, FRANCE HORELLOU, PHILIPPE, PARIS, FRANCE BUC-CARON, MARIE-HELENE, PARIS, FRANCE

Α1

MALLET, JACQUES, PARIS, FRANCE

PATENT ASSIGNEE(S):

APPLICATION INFO.:

Rhone-Poulenc Rorer, S.A. (non-U.S. corporation)

19970228

(8)

KIND DATE PATENT INFORMATION: us 2002006660 20020117 Α1

US 1997-810315

NUMBER DATE

US 1996-12635P PRIORITY INFORMATION: 19960301 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: FINNEGAN, HENDERSON, FARABOW,, GARRETT & DUNNER, L.L.P,

1300 I STREET, N.W., WASHINGTON,, DC, 200053315

NUMBER OF CLAIMS: 22 **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS: 2 Drawing Page(s) LINE COUNT: 1048 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention concerns human neural progenitor cells containing AB

introduced genetic material encoding a product of interest, and their

use for the treatment of neurodegenerative diseases.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 39 OF 58 USPATFULL ON STN L2

ACCESSION NUMBER:

2002:340140 USPATFULL

TITLE:

Neural transplantation using proliferated multipotent

neural stem cells and their progeny

INVENTOR(S):

Weiss, Samuel, Alberta, CANADA Reynolds, Brent, Alberta, CANADA

Hammang, Joseph P., Barrington, RI, United States Baetge, E. Edward, Barrington, RI, United States

PATENT ASSIGNEE(S):

NeuroSpheres Holdings Ltd., Calgary, CANADA (non-U.S.

corporation)

NUMBER KIND DATE PATENT INFORMATION: US 6497872 в1 20021224 APPLICATION INFO.: US 1995-486313 19950607

(8) RELATED APPLN. INFO.:

Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned Continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned Continuation of Ser. No. US 486113 Continuation-in-part of Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned Continuation of Ser. No. US 1992-961813,

filed on 16 Oct 1992, now abandoned

Continuation-in-part of Ser. No. US 726812 Continuation-in-part of Ser. No. US 486313 Continuation-in-part of Ser. No. US 1994-359945, filed

on 20 Dec 1994, now abandoned Continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, now abandoned Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned

Continuation-in-part of Ser. No. US 486313 Continuation-in-part of Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, now abandoned Continuation-in-part of Ser. No. US 726812

Continuation-in-part of Ser. No. US 486313

Continuation-in-part of Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned Continuation-in-part of Ser. No. US 726812 Continuation-in-part of Ser. No. US 486313 Continuation-in-part of Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned Continuation-in-part of Ser. No. US 726812

Continuation-in-part of Ser. No. US 486313

Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned Continuation-in-part of

Ser. No. US 726812

Utility DOCUMENT TYPE: FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Baker, Anne-Marie

LEGAL REPRESENTATIVE: Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., Elrifi, Esq., Ivor R., Karnakis, Esq., Christine V.

NUMBER OF CLAIMS: 32 **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS:

9 Drawing Figure(s); 3 Drawing Page(s)

LINE COUNT: 4223

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention provides methods of transplanting multipotent neural stem cell progeny to a host by obtaining a population of cells derived from mammalian neural tissue containing at least one multipotent CNS multipotent neural stem cell; culturing the neural stem cell in a

multipotent neural stem cell proliferation; inducing proliferation of the multipotent neural stem cell to produce neural stem cell progeny which includes multipotent neural stem cell progeny cells; and transplanting the multipotent neural stem cell progeny to the host. Also provided are methods of transplanting neural stem cell progeny to a host by obtaining an in vitro cell culture containing CNS neural stem cells where one or more cells in the culture (i) proliferates in a culture medium supplemented with one or more mitrogens, (ii) retains the capacity for renewed proliferation, and (iii) maintains the multipotential capacity, under suitable culture conditions, to differentiate into neurons, astrocytes, and oligodendrocytes; and transplanting the one or more cells to the hose.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 40 OF 58 USPATFULL ON STN L2

ACCESSION NUMBER:

2002:129781 USPATFULL

TITLE: INVENTOR(S): Multipotent neural stem cell cDNA libraries

Weiss, Samuel, Calgary, CANADA

Reynolds, Brent, Saltspring, CANADA

PATENT ASSIGNEE(S):

Neurospheres Holdings Ltd., Calgary, CANADA (non-U.S.

DATE

corporation)

NUMBER

PATENT	INFOR	MAT	ION:	
APPLICA	NOIT	INF	0.:	
RELATED	APPI	Ν.	TNFO.	•

US 6399369 B1 20020604 us 1995-484203 19950607 (8) Continuation-in-part of Ser. No. US 1994-270412, filed

KIND

on 5 Jul 1994, now abandoned Continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned Continuation-in-part of Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned Continuation of Ser. No. US 1992-961813, filed on 16 Oct 1992, now abandoned Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991 now abandoned Continuation in part of on 8 Jul 1991, now abandoned Continuation-in-part of Ser. No. US 1994-359945, filed on 20 Dec 1994, now abandoned Continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, now abandoned Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991 Continuation-in-part of Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993 Continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned Continuation-in-part of Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned Continuation-in-part of Ser. No. US 726812 Continuation-in-part of Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned Continuation-in-part of Ser. No. US 726812 Continuation-in-part of Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned Continuation-in-part of Ser. No. US 1991-726812, filed

on 8 Jul 1991, now abandoned

Utility

DOCUMENT TYPE: FILE SEGMENT: PRIMARY EXAMINER: ASSISTANT EXAMINER:

GRANTED Kunz, Gary L. Hayes, Robert C.

Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, PC, Elrifi, Esquire, Ivor R., Karnakis, Esq., Christina V.

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

LEGAL REPRESENTATIVE:

9 Drawing Figure(s); 3 Drawing Page(s)

NUMBER OF DRAWINGS: LINE COUNT: 3847

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

cDNA libraries may be obtained from neural cell cultures produced by using growth factors to induce the proliferation of multipotent neural stem cells. The libraries may be obtained from both cultured normal and dysfunctional neural cells and from neural cell cultures at various stages of development. This information allows for the identification of the sequence of gene expression during neural development and can be used to reveal the effects of biological agents on gene expression in neural cells. Additionally, nucleic acid derived from dysfunctional tissue can be compared with that of normal tissue to identify genetic material which may be a cause of the dysfunction. This information could then be used in the design of therapies to treat the neurological disorder. A further use of the technology would be in the diagnosis of

stage in development.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 41 OF 58 USPATFULL on STN

2002:9755 USPATFULL ACCESSION NUMBER:

TITLE: Use of carbon monoxide dependent guanylyl cyclase

INVENTOR(S):

modifiers to stimulate neuritogenesis Glasky, Alvin J., Tustin, CA, United States Rathbone, Michael P., Hamilton, CANADA

PATENT ASSIGNEE(S): NeoTherapeutics, Inc., Irvine, CA, United States (U.S.

corporation)

NUMBER KIND DATE

US 1999-420543 Continued: PATENT INFORMATION: 20020115 APPLICATION INFO.: 19991019

Continuation-in-part of Ser. No. US 1998-86878, filed on 29 May 1998, now patented, Pat. No. US 6027936 RELATED APPLN. INFO.:

Division of Ser. No. US 1995-488976, filed on 8 Jun

1995, now patented, Pat. No. US 5801184

Continuation-in-part of Ser. No. US 1994-280719, filed

on 25 Jun 1994, now patented, Pat. No. US 5447936

DOCUMENT TYPE: Utility FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Park, Hankyel T.

Oppenheimer Wolff & Donnelly LLP, Farber, Esq., Michael LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: 85 **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS: 89 Drawing Figure(s); 53 Drawing Page(s)

LINE COUNT: 3564

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Disclosed herein are methods directed generally to the control of neural activity and for selectively and controllably inducing the in vivo genetic expression of one or more naturally occurring genetically encoded molecules in mammals. More particularly, the present invention selectively activates or derepresses genes encoding for specific naturally occurring molecules such as neurotrophic factors through the administration of carbon monoxide dependent guanylyl cyclase modulating purine derivatives. The methods of the present invention may be used to affect a variety of cellular and neurological activities and to therapeutically or prophylactically treat a wide variety of neurodegenerative, neurological, and cellular disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 42 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2001:220833 USPATFULL TITLE:

Method of determining multiple mRNAs in dying cells INVENTOR(S): O'Dell, Dianne M., 52 Revere Rd., Apt. 10, Drexel Hill,

PA, United States 19026

Raghupathi, Ramesh, 484 Cassatt Rd., Devon, PA, United

19312

McIntosh, Tracy Kahl, 909 Winding La., Wallingford, PA, United States 19063

United States 19063 Crino, Peter, 34 Hemlock Dr., Blenheim, NJ, United

States 08012

Eberwine, James, 3918 Henry Ave., Philadelphia, PA,

United States 19120

NUMBER KIND DATE US 6326146 PATENT INFORMATION: 20011204 APPLICATION INFO.: us 1999-274900 19990323 (9)

> NUMBER DATE

PRIORITY INFORMATION: DOCUMENT TYPE: US 1998-79640P 19980327 (60)

Utility FILE SEGMENT: **GRANTED**

PRIMARY EXAMINER: Fredman, Jeffrey ASSISTANT EXAMINER: Einsmann, Juliet C. LEGAL REPRESENTATIVE: Licata & Tyrrell P.C. NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A method for determining expression levels of multiple mRNAs in single, AB dying cells from a selected tissue is provided. The method utilizes terminal deoxynucleotidyl-transferase mediated biotin-dutp nick end labeling to identify dying cells and measures multiple mRNA expression levels in single, isolated dying cells or portions thereof by amplified ***antisense*** RNA techniques.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 43 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 2001:163016 USPATFULL

Use of multipotent neural stem cells and their progeny TITLE: for the screening of drugs and other biological agents

INVENTOR(S): Weiss, Samuel, Calgary, Canada

Reynolds, Brent, Calgary, Canada Hammang, Joseph P., Barrington, RI, United States Baetge, E. Edward, Barrington, RI, United States Neurospheres Holdings, Ltd., Alberta, Canada (non-U.S.

PATENT ASSIGNEE(S):

corporation)

NUMBER

PATENT INFORMATION: APPLICATION INFO.: RELATED APPLN. INFO.: US 6294346 в1 20010925 US 1995-484406 19950607 (8)

KIND

Continuation-in-part of Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned , said Ser. No. US 484406 And Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned , said Ser. No. US 484406 And Ser. No. US 1994-359945, filed on 20 Dec 1994, now abandoned , sa Ser. No. US 484406 And Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned , said Ser. No. US 484406 And Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned , said Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned , said Ser. No. US 484406 And Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned , said Ser. No. US 484406 And Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned Continuation—in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned Continuation of Ser. No. US 1992-961813,

DATE

filed on 16 Oct 1992, now abandoned Continuation-in-part of Ser. No. US 726812 Continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, now abandoned Continuation-in-part of Ser. No. US 726812 Continuation of Ser. No. US 1994-221655, filed on 1 Apr

1994, now abandoned Continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned Continuation-in-part of Ser. No. US 726812 , said Ser. No. US 338730 Continuation-in-part of Ser. No. US 726812 , said Ser. No. US 311099 Continuation-in-part of Ser. No. US 726812 , said Ser. No. US 270412 Continuation-in-part of Ser. No. US 726812

Utility

DOCUMENT TYPE: FILE SEGMENT: GRANTED PRIMARY EXAMINER: Kunz, Gary L.

Hayes, Robert C. ASSISTANT EXAMINER: Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., Elrifi, Esq., Ivor R. LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: 12

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

9 Drawing Figure(s); 3 Drawing Page(s)

LINE COUNT: 4153

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A culture method for determining the effect of a biological agent on AB multipotent neural_stem cell progeny is provided. In the presence of growth factors, multipotent neural stem cells are induced to proliferate in culture. The multipotent neural stem cells may be obtained from normal neural tissue or from a donor afflicted with a disease such as Alzheimer's Disease, ***Parkinson*** 's Disease or Down's Syndrome. At various stages in the differentiation process of the multipotent neural stem cell progeny, the effects of a biological agent, such as a virus, protein, peptide, amino acid, lipid, carbohydrate, nucleic acid or a drug or pro-drug on cell activity are determined. Additionally, a method of screening the effects of biological agents on a clonal population of neural cells is provided. The technology provides an efficient method for the generation of large numbers of pre- and post-natal neural cells under controlled, defined conditions. The

neural cells at various developmental stages, which can be screened for potential side effects in addition to testing the action and efficacy of different biological agents.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L2 ANSWER 44 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 2001:102376 USPATFULL

Method of treating huntington's disease using HNT TITLE:

Freed, Curt R., Denver, CO, United States INVENTOR(S):

Kaddis, Farida G., Lakewood, CO, United States University Technology Corporation, Boulder, CO, United PATENT ASSIGNEE(S):

States (U.S. corporation)

NUMBER KIND DATE

US 6254865 PATENT INFORMATION: В1 20010703

US 1998-99121 19980617 (9) APPLICATION INFO.:

> NUMBER DATE

US 1997-49817P 19970617 (60) PRIORITY INFORMATION:

Utility DOCUMENT TYPE: FILE SEGMENT: **GRANTED**

PRIMARY EXAMINER: Clark, Deborah J. R. Wilson, Michael C. ASSISTANT EXAMINER: Medlen & Carroll, LLP LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: **EXEMPLARY CLAIM:**

5 Drawing Figure(s); 5 Drawing Page(s) NUMBER OF DRAWINGS:

LINE COUNT: 2167 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention relates to methods and compositions for

transplantation of neurons. The methods and compositions of the present invention provide a renewable supply of safe and effective therapeutic transplantable tissue. In particular, the present invention provides methods and compositions for the transplantation of terminally differentiated neurons derived from cell lines for the treatment of

Huntington's disease and other neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 45 OF 58 USPATFULL on STN

ACCESSION NUMBER: 2001:51558 USPATFULL

TITLE: Compositions and methods for producing and using

homogenous neuronal cell transplants to treat neurodegenerative disorders and brain and spinal cord

injurieš

Lee, Virginia M. -Y., Philadelphia, PA, United States Trojanowski, John Q., Philadelphia, PA, United States Trustees of the University of Pennsylvania, INVENTOR(S):

PATENT ASSIGNEE(S):

Philadelphia, PA, United States (U.S. corporation)

NUMBER KIND DATE us 6214334 PATENT INFORMATION: 20010410 us 1999-303973 19990503 APPLICATION INFO.:

Continuation-in-part of Ser. No. US 1998-122019, filed RELATED APPLN. INFO.:

on 24 Jul 1998 Continuation of Ser. No. US 1996-640894, filed on 7 Jun 1996, now patented, Pat. No. US 5792900 Continuation of Ser. No. US 1993-150368, filed on 9 Nov 1992-911980, filed on 10 Jul 1992, now abandoned Division of Ser. No. US 1991-780715, filed on 21 Oct 1991, now patented, Pat. No. US 5175103
Utility 1993, now abandoned Continuation-in-part of Ser. No. US

DOCUMENT TYPE: FILE SEGMENT: Granted

PRIMARY EXAMINER: Priebe, Scott D. ASSISTANT EXAMINER: Shukla, Ram

LEGAL REPRESENTATIVE: Law Office of Jane Massey Licata

2211

NUMBER OF CLAIMS: 6 **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS: 21 Drawing Figure(s); 6 Drawing Page(s)

LINE COUNT: CAS INDEXING IS AVAILABLE FOR THIS PATENT. conditions or disorders of the Central Nervous System which comprise implanting stable, homogeneous post-mitotic human neurons into the individual's brain are disclosed. Methods of treating individuals suspected of suffering from injuries, diseases, conditions or disorders characterized by nerve damage which comprise implanting stable, homogeneous post-mitotic human neurons at or near a site of said nerve damage are also disclosed.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 46 OF 58 USPATFULL ON STN

2001:14469 USPATFULL ACCESSION NUMBER:

AAV-mediated delivery of DNA to cells of the nervous TITLE:

Kaplitt, Michael G., New York, NY, United States During, Matthew J., Weston, CT, United States The Rockefeller University, New York, NY, United States INVENTOR(S):

PATENT ASSIGNEE(S):

(U.S. corporation)

Yale University, New Haven, CT, United States (U.S.

20010130

corporation)

NUMBER KIND DATE

PATENT INFORMATION: US 6180613 R1

us 1995-467044 19950606 APPLICATION INFO.: (8)

Continuation-in-part of Ser. No. US 1994-227319, filed RELATED APPLN. INFO.:

on 13 Apr 1994, now abandoned

DOCUMENT TYPE: Utility FILE SEGMENT: Granted

Chambers, Jasemine PRIMARY EXAMINER: Martin, Jill D. ASSISTANT EXAMINER: Klauber & Jackson LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: 15 **EXEMPLARY CLAIM:**

NUMBER OF DRAWINGS: 11 Drawing Figure(s); 6 Drawing Page(s)

LINE COUNT: 1725

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The invention relates to a method of delivering exogenous DNA to a AB target cell of the mammalian central nervous system using an adeno-associated virus (AAV)-derived vector. Also included in the invention are the AAV-derived vectors containing exogenous DNA which encodes a protein or proteins which treat nervous system disease, and a method of treating such disease.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 47 OF 58 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2 L2

2000:378161 CAPLUS ACCESSION NUMBER:

133:27162 DOCUMENT NUMBER:

In vivo genetic modification of growth TITLE:

factor-responsive neural precursor cells

Weiss, Samuel; Reynolds, Brent; Hammang, Joseph P.; INVENTOR(S):

Baetge, E. Edward

PATENT ASSIGNEE(S): NeuroSpheres Holdings Ltd., Can.

U.S., 42 pp., Cont.-in-part of U.S. Ser. No. 385,404, SOURCE:

abandoned.

CODEN: USXXAM

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
wo 9301275	A 20000606 A1 19930121	US 1995-479795 WO 1992-CA283	19950607 19920707
RW: AT, BE, AU 9222425	FI, JP, NO, RU, US CH, DE, DK, ES, FR, A1 19930211	GB, GR, IT, LU, MC AU 1992-22425	, NL, SE 19920707
EP 594669	B2 19951214 A1 19940504 B1 20030514	EP 1992-914286	19920707
JP 06509225	CH, DE, DK, ES, FR, T2 19941020 C 20020917 E 20030515	GB, GR, IT, LI, LU JP 1992-501862 CA 1992-2113118 AT 1992-914286	

```
EP 1329499
                    Α3
                          20030903
        AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC
                          19940428
wo 9409119
                                           wo 1993-CA428
                                                               19931015
                    Α1
             AU, BB, BG, BR, BY, CA, CH, CZ, DE, DK, ES, FI, GB, HU,
         AT,
             KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
             SK, UA, VN
    RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG
                          19940509
                                           AU 1993-51474
AU 9351474
                    Α1
                                                               19931015
AU 683023
                          19971030
                    В2
                          19950802
                                           EP 1993-922482
                                                               19931015
EP 664832
                    Α1
                          20020724
EP 664832
                    в1
            BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
T2 19960312 JP 1994-509473 19931015
JP 08502172
                                           CA 1993-2147162
                                                               19931015
CA 2147162
                    C
                          20020430
                                           AT 1993-922482
AT 221117
                    Ε
                          20020815
                                                               19931015
                                           ES 1993-922482
                    T3
                          20030216
                                                               19931015
ES 2180547
wo 9410292
                    Α1
                          19940511
                                           WO 1993-CA456
                                                               19931027
            AU, BB, BG, BR, BY, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
         AT,
         KΡ,
             SK, UA, VN
    RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE,
             BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG
                                           AU 1994-53676
                          19940524
                                                               19931027
AU 9453676
                    Α1
                          19950906
                                           EP 1993-923994
                                                               19931027
EP 669973
                    Α1
EP 669973
                    в1
                          20030312
                                    FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
             BE, CH, DE, DK, ES,
   08502652
                    Ť2
                          19960326
                                           ÍР 1993-510503
                                                               19931027
CA 2148138
                    C
                          20020108
                                           CA 1993-2148138
                                                               19931027
                                           AT 1993-923994
AT 234353
                          20030315
                                                               19931027
                    A2
                                           EP 2002-18736
                                                               19931027
EP 1298202
                          20030402
EP 1298202
                    Α3
                          20031203
            BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE
T3 20031116 ES 1993-923994 19931027
         AT,
   2194016
ES
                                           NO 1994-56
                                                               19940106
NO 9400056
                    Α
                          19940303
                                                               19940128
CA 2155024
                          19940804
                                           CA 1994-2155024
                    AA
                          19940804
wo 9416718
                    Α1
                                           wo 1994-us1053
                                                               19940128
    W: AU, CA, FI, JP, KR, NO, US, US, US
             BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
                                           ÁU 1994-60983
                                                               19940128
AU 9460983
                    Α1
                          19940815
                          19980305
AU 687785
                    В2
                                                               19940128
                                           EP 1994-907366
   681477
                    Α1
                          19951115
             BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC,
                                                                         NL, PT, SE
JP 08505762
                    Ť2
                          19960625
                                           JP 1994-510446
                                                               19940128
CA 2175992
                                           CA 1994-2175992
                                                               19941108
                    AA
                          19950518
wo 9513364
                    A1
                          19950518
                                           wo 1994-CA614
                                                               19941108
       AU, CA, CN, FI, JP, NO, RU, US
    RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
                          19960828
                                           EP 1994-931482
                                                               19941108
EP 728194
                    Α1
   728194
                          20030108
                    в1
         AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
058 A 19970122 CN 1994-194785 19941108
                                                               19941108
CN 1141058
                          19970812
                                           JP 1994-513499
                                                               19941108
JP 09507747
                    T2
AU 697894
                    в2
                          19981022
                                           AU 1994-80561
                                                               19941108
AU 9480561
                          19950529
                    Α1
AT 230795
                          20030115
                                           AT 1994-931482
                                                               19941108
                    Ε
ES 2189807
                    Т3
                          20030716
                                           ES 1994-931482
                                                               19941108
                                                               19950407
FI 9501677
                          19950407
                                           FΙ
                                               1995-1677
                    Α
                                           NO 1995-1378
                          19950407
                                                               19950407
NO 9501378
                    Α
                                           FI 1995-2022
FI 9502022
                          19950427
                                                               19950427
NO 9501617
                          19950427
                                           NO 1995-1617
                                                               19950427
                    Α
                                           us 1995-483122
us 5750376
                    Α
                          19980512
                                                               19950607
                          19981222
                                           us 1995-486648
                                                               19950607
US 5851832
                    Α
FI 9503569
                          19950925
                                           FI 1995-3569
                                                               19950726
                    Α
                                           NO 1995-2985
CN 1995-195867
NO 9502985
                    Α
                          19950727
                                                               19950727
   1161744
                          19971008
                                                               19950922
CN
                    Α
                                           EP 2001-101622
                                                               19950922
EP 1130394
                    Α1
                          20010905
         AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE
355 A 19960604 FI 1996-1855 19960430
FI 9601855
NO 9601859
                          19960703
                                           NO 1996-1859
                                                               19960508
AU 703729
                    В2
                          19990401
                                           AU 1997-49241
                                                               19971224
                          19980312
AU 9749241
                    Α1
   2003082515
                          20030501
                                           us 2002-199189
                                                               20020719
US
                    Α1
                                                               20020719
   2003095956
                    Α1
                          20030522
                                           us 2002-199918
                                           US 2002-199830
                                                               20020719
us 2003109008
                    Α1
                          20030612
```

US 1991-726812

A2 19910708

PRIORITY APPLN. INFO.:

```
us 1993-10829
                                                                B1 19930129
                                           us 1993-149508
                                                                B2 19931109
                                                                B1 19940401
                                           us 1994-221655
                                                                B2 19940705
                                           us 1994-270412
                                                                B2 19940923
                                           us 1994-311099
                                           us 1994-338730
                                                                B2 19941114
                                               1994-359945
                                                                В2
                                                                    19941220
                                           US
                                               1995-376062
                                           US
                                                                в2 19950120
                                               1995-385404
                                                                B2 19950207
                                           US
                                           EP 1992-914286
                                                                A3 19920707
                                           wo 1992-CA283
                                                                    19920707
                                           WO 1993-CA428
                                                                    19931015
                                           EP 1993-923994
                                                                A3 19931027
                                           WO 1993-CA456
                                                                    19931027
                                                                W
                                           wo 1994-US1053
                                                                    19940128
                                                                W
                                           WO 1994-CA614
                                                                W
                                                                    19941108
                                           US 1994-339730
                                                                B2 19941114
                                           us 1994-359345
                                                                    19941220
                                                                Α
                                           us 1995-481893
                                                                Α
                                                                    19950607
                                                                A1 19950607
                                           us 1995-486313
                                           EP 1995-931864
                                                                A3 19950922
Methods for administering genetic material to dividing neural precursor
cell populations in vivo are provided. The genetic material may comprise useful genes for neurotransmitters, growth factors, growth factor receptors, and the like. The genetic material is administered to the brain with one or more growth factors. The growth factors induce proliferation of neural precursor cells, thereby facilitating the
incorporation of the genetic material into the cell progeny.
                                THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS
                                RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
                     CAPLUS COPYRIGHT 2004 ACS on STN
                         2000:314557 CAPLUS
                         Treatment of
                                           ***Parkinson*** 's disease with
                           ***antisense***
                                                and triplex oligonucleotides for the
                         downregulation of ***glutamic***
                                                                         ***acid***
                           ***decarboxylase*** , glutamate receptors, and GABA
                         Schneider, Jay S.
Thomas Jefferson University, USA
                         PCT Int. Appl., 30 pp.
                         CODEN: PIXXD2
                                               APPLICATION NO.
                                                                    DATE
                             20000511
                                               wo 1999-us26128
                                                                    19991105
     RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
                                               EP 1999-971323
                                                                    19991105
                            20010926
          AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
                             20020903
                                               JP 2000-579238
                                                                    19991105
                                               us 1999-435249
                             20030327
                                                                    19991105
                                           US 1998-107191P P
                                                                    19981105
WO 1999-US26128 W 19991105
The invention relates to a method of treatment of ***Parkinson*** 's
                                  ***antisense*** oligonucleotides or triplex
oligonucleotides introduced into targeted brain structures to decrease the
function of brain circuits known to be overactive in the ***Parkinsonian*** brain. ***Antisense*** or tr
                                                              or triplex
oligonucleotides are targeted to the internal globus pallidus and/or
substantia nigra pars reticulata where the expression of
                     ***decarboxylase*** (GAD67, GAD65, or a combination of
the two isoforms) is downregulated. The invention also relates to a method of treatment of ***Parkinson*** 's disease where
***antisense*** or triplex oligonucleotides are targeted to the internal globus pallidus and/or substantia nigra pars reticulata for the
```

US 1992-967622

AB

REFERENCE COUNT:

ACCESSION NUMBER:

PATENT ASSIGNEE(S):

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

wo 2000025798

us 2003060436

acid

PRIORITY APPLN. INFO.:

W: CA, JP

ΙE, JP 2002528509

PT, SE

FI

disease, and to the use of

PATENT NO.

EP 1135113

DOCUMENT NUMBER:

INVENTOR(S):

DOCUMENT TYPE:

TITLE:

SOURCE:

LANGUAGE:

AB

ANSWER 48 OF 58

132:329941

receptors

Patent

KIND

Α1

Α1

T2

Α1

English

DATE

downregulation of glutamate receptors. The invention further relates to a method of treatment of ***Parkinson*** 's disease where

B1 19921028

motor nuclei for the downregulation of GABA receptors.

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 2 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L2 ANSWER 49 OF 58 USPATFULL on STN

2000:21215 USPATFULL ACCESSION NUMBER:

Device and method for encapsulated gene therapy TITLE: INVENTOR(S):

Hammang, Joseph P., Barrington, RI, United States Aebischer, Patrick, Lutry, Switzerland Cytotherapeutics, Inc., Lincoln, RI, United States PATENT ASSIGNEE(S):

(U.S. corporation)

KIND NUMBER DATE

us 6027721 20000222 PATENT INFORMATION:

us 1996-650726 Utility 19960520 (8) APPLICATION INFO.:

DOCUMENT TYPE: FILE SEGMENT: Granted

Campell, Bruce R. PRIMARY EXAMINER: ASSISTANT EXAMINER: Clark, Deborah J. R.

Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., LEGAL REPRESENTATIVE:

Elrifi, Ivon R., Prince, John T.

NUMBER OF CLAIMS: 21 **EXEMPLARY CLAIM:**

1,7,16
2 Drawing Figure(s); 2 Drawing Page(s) NUMBER OF DRAWINGS:

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

methods and devices are provided for gene therapy using encapsulated AB packaging cell lines to deliver viral particles carrying at least one heterologous gene encoding at least one biologically active molecule.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 50 OF 58 USPATFULL ON STN

1999:141292 USPATFULL ACCESSION NUMBER:

Growth factor-induced proliferation of neural precursor TITLE:

cells in vivo

Weiss, Samuel, Alberta, Canada INVENTOR(S):

Reynolds, Brent, Alberta, Canada

NeuroSpheres Holdings Ltd., Calgary, Canada (non-U.S. PATENT ASSIGNEE(S):

corporation)

KIND DATE NUMBER US 5980885 19991109

PATENT INFORMATION: APPLICATION INFO.: RELATED APPLN. INFO.:

19950607 us 1995-486307 (8)

US 1995-486307 19950607 (8)
Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned Ser. No. Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned Ser. No. Ser. No. US 1994-359945, filed on 20 Dec 1994, now abandoned Ser. No. Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned Ser. No. Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned Ser. No. Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned And Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned, said Ser. No. US 270412 which is a abandoned , said Ser. No. US 270412 which is a continuation of Ser. No. US 726812 , said Ser. No. US 385404 which is a continuation of Ser. No. US

1992-961813, filed on 16 Oct 1992, now abandoned which is a continuation-in-part of Ser. No. US 726812 , said Ser. No. US 359945 which is a continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, now abandoned which is a continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned which is a continuation-in-part of Ser. No. US 726812, said Ser.

No. US 376062 which is a continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, now abandoned which is a continuation-in-part of Ser. No. US 726812 , said Ser. No. US 149508 which is a continuation-in-part of Ser. No. US 726812 , said Ser. No. US 311099 which is a

continuation-in-part of Ser. No. US 726812

DOCUMENT TYPE: Utility Granted FILE SEGMENT:

PRIMARY EXAMINER: Campbell, Bruce R. LEGAL REPRESENTATIVE: Burns, Doane, Swecker & Mathis, L.L.P.

NUMBER OF CLAIMS: 11

EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 3 Drawing Figure(s); 3 Drawing Page(s)

LINE COUNT: 4215

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A method is described for inducing in vivo proliferation of precursor cells located in mammalian neural tissue by administering to the mammal a fibroblast growth factor and at least one additional growth factor selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and amphiregulin. The method can be transforming growth factor alpha, and amphiregulin. The method can be used to replace damaged or missing neurons and/or glia. Another method is described for transplanting multipotent neural stem cell progeny into a mammal. The method comprises the steps of administering growth factors to a mammal to induce in vivo proliferation of neural precursor cells, removing the precursor cell progeny from the mammal, culturing the removed cells in vitro in the presence of one or more growth factors that induces multipotent neural stem cell proliferation, and implanting the multipotent neural stem cell progeny into the mammal.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 51 OF 58 USPATFULL ON STN SSION NUMBER: 1999:4435 USPATFULL ACCESSION NUMBER:

TITLE: Adeno-associated virus materials and methods INVENTOR(S): Johnson, Philip R., Gahanna, OH, United States

Children's Hospital, Inc., Columbus, OH, United States PATENT ASSIGNEE(S):

(U.S. corporation)

NUMBER KIND DATE US 5858775 19990112

us 1996-709609 APPLICATION INFO.: 19960910 Division of Ser. No. US 1994-254358, filed on 6 Jun RELATED APPLN. INFO.:

1994, now patented, Pat. No. US 5658785

DOCUMENT TYPE: Utility FILE SEGMENT: Granted PRIMARY EXAMINER: Guzo, David

LEGAL REPRESENTATIVE: Marshall, O'Toole, Gerstein, Murray & Borun

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

PATENT INFORMATION:

INVENTOR(S):

NUMBER OF DRAWINGS: 5 Drawing Figure(s); 5 Drawing Page(s)

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 52 OF 58 USPATFULL on STN

ACCESSION NUMBER: 1998:159764 USPATFULL

TITLE: In vitro growth and proliferation of multipotent neural

stem cells and their progeny Weiss, Samuel, Alberta, Canada

Reynolds, Brent, Alberta, Canada Hammang, Joseph P., Barrington, RI, United States Baetge, E. Edward, Barrington, RI, United States

PATENT ASSIGNEE(S): Neurospheres, Ltd., Canada (non-U.S. corporation)

NUMBER KIND DATE PATENT INFORMATION: US 5851832 19981222

APPLICATION INFO.: US 1995-486648 19950607 (8) RELATED APPLN. INFO.:

Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned which is a continuation of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned And a continuation-in-part of Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned which is a continuation of Ser. No. US 1992-961813, filed on

16 Oct 1992, now abandoned which is a

US 1994-359945, filed on 20 Dec 1994, now abandoned which is a continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, now abandoned which is a continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned And Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned which is a continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, now abandoned which is a continuation-in-part of Ser. No. US 726812 And Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned which is a continuation-in-part of Ser. No. US 726812 And Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned which is a continuation-in-part of Ser. No. US 726812 And Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned which is a

continuation-in-part of Ser. No. US 726812
DOCUMENT TYPE: Utility
FILE SEGMENT: Granted

PRIMARY EXAMINER: Elliott, George C. ASSISTANT EXAMINER: Railey, II, Johnny F.

LEGAL REPRESENTATIVE: Flehr Hohbach Test Albrition & Herbert LLP

NUMBER OF CLAIMS: 80 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 9 Drawing Figure(s); 3 Drawing Page(s)

LINE COUNT: 4487

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A method for the in vitro proliferation and differentiation of neural stem cells and stem cell progeny comprising the steps of (a) isolating the cells from a mammal, (b) exposing the cells to a culture medium containing a growth factor, (c) inducing the cells to proliferate, and (d) inducing the cells to differentiate is provided.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L2 ANSWER 53 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 1998:88700 USPATFULL

TITLE: Adeno-associated virus materials and methods INVENTOR(S): Johnson, Philip R., Gahanna, OH, United States

PATENT ASSIGNEE(S): Children's Hospital, Inc., Columbus, OH, United States

(U.S. corporation)

APPLICATION INFO.: US 1995-475391 19950607 (8) RELATED APPLN. INFO.: Division of Ser. No. US 1994-254358, filed on 6 Jun

1994, now patented, Pat. No. US 5658785

DOCUMENT TYPE: Utility

FILE SEGMENT: Granted
PRIMARY EXAMINER: Ketter, James
ASSISTANT EXAMINER: Yucel, Irem

LEGAL REPRESENTATIVE: Marshall, O'Toole, Gerstein, Murray & Borun

NUMBER OF CLAIMS: 1 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 5 Drawing Figure(s); 5 Drawing Page(s)

LINE COUNT: 911

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L2 ANSWER 54 OF 58 USPATFULL ON STN

ACCESSION NUMBER: 1998:72446 USPATFULL

TITLE: Regulatable retrovirus system for genetic modification

of cells

INVENTOR(S):

Gage, Fred H., La Jolla, CA, United States
Ray, Jasodhara, San Diego, CA, United States

Hoshimaru, Minoru, Shiga-ken, Japan

CA, United States (U.S. corporation)

KIND NUMBER DATE PATENT INFORMATION: us 5770414 19980623 us 1996-602203 APPLICATION INFO.: 19960220 (8) DOCUMENT TYPE: Utility FILE SEGMENT: Granted Ketter, James Yucel, Irem PRIMARY EXAMINER: ASSISTANT EXAMINER: LEGAL REPRESENTATIVE: Fish & Richardson, P.C. NUMBER OF CLAIMS: 19

EXEMPLARY CLAIM:

18 Drawing Figure(s); 8 Drawing Page(s) NUMBER OF DRAWINGS:

1051 LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A novel regulatable retroviral vector in which the v-myc oncogene is AR driven by a tetracycline-controlled transactivator and a human cytomegalovirus minimal promoter fused to tet operator sequence useful for immortalization of adult neuronal progenitor cells is provided. Regulation of a heterologous Producer cell lines which produce high titers of the recombinant retrovirus are also provided.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 55 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

1998:51459 USPATFULL

TITLE:

In vitro growth and proliferation of genetically modified multipotent neural stem cells and their

progeny

INVENTOR(S):

Weiss, Samuel, Alberta, Canada Reynolds, Brent, Alberta, Canada

Hammang, Joseph P., Barrington, RI, United States Baetge, E. Edward, Barrington, RI, United States

PATENT ASSIGNEE(S):

NeuroSpheres Holdings Ltd., Calgary, Canada (non-U.S.

corporation)

NUMBER KIND DATE PATENT INFORMATION: US 5750376 19980512 us 1995-483122 19950607

APPLICATION INFO.: RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned Ser. No. Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned Ser. No. Ser. No. US 1994-359945, filed on 20 Dec 1994, now abandoned Ser. No. Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned Ser. No. Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned Ser. No. Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned And Ser. No. US 1994-338730, filed on 14 Nov 1994, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned , said Ser. No. US 1995-385404, filed on 7 Feb 1995, now abandoned which is a continuation of Ser. No. US 1992-961813, filed on 16 Oct 1992, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned, Ser. No. US 1994-359345, filed on 20 Dec 1994, now abandoned which is a continuation of Ser. No. US 1994-221655, filed on 1 Apr 1994, now abandoned which is a continuation of Ser. No. US 1992-967622, filed on 28 Oct 1992, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned , said Ser. No. US 1995-376062, filed on 20 Jan 1995, now abandoned which is a continuation of Ser. No. US 1993-10829, filed on 29 Jan 1993, now abandoned which is a continuation-in-part of Ser. No. US 1991-726812, filed on 8 Jul 1991, now abandoned , said Ser. No. US 1994-270412, filed on 5 Jul 1994, now abandoned Ser. No. Ser. No. US 1993-149508, filed on 9 Nov 1993, now abandoned And Ser. No. US 1994-311099, filed on 23 Sep 1994, now abandoned , each Ser. No. US - which is a continuation-in-part of Ser. No. US 1991-726812, filed

DOCUMENT TYPE:

Utility

on 8 Jul 1991, now abandoned

PRIMARY EXAMINER:

Elliott, George C. Railey, II, Johnny F.

ASSISTANT EXAMINER: LEGAL REPRESENTATIVE:

Flehr Hohbach Test Albritton & Herbert, Brezner, David

J., Brunelle, Jan P.

NUMBER OF CLAIMS: 40

EXEMPLARY CLAIM: NUMBER OF DRAWINGS:

1,8,9 9 Drawing Figure(s); 3 Drawing Page(s)

LINE COUNT:

4339

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB

A method for producing genetically modified neural cells comprises culturing cells derived from embryonic, juvenile, or adult mammalian neural tissue with one or more growth factors that induce multipotent neural stem cells to proliferate and produce multipotent neural stem cell progeny which include more daughter multipotent neural stem cells and undifferentiated progeny that are capable of differentiating into neurons, astrocytes, and oligodendrocytes. The proliferating neural cells can be transfected with exogenous DNA to produce genetically modified neural stem cell progeny. The genetic modification can be for the production of biologically useful proteins such as growth factor products, growth factor receptors, neurotransmitters, neurotransmitter receptors, neuropeptides and neurotransmitter synthesizing genes. The multipotent neural stem cell progeny can be continuously passaged and proliferation reinitiated in the presence of growth factors to result in an unlimited supply of neural cells for transplantation and other purposes. Culture conditions can be provided that induce the genetically modified multipotent neural stem cell progeny to differentiate into neurons, astrocytes, and oligodendrocytes in vitro.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L2

ANSWER 56 OF 58 USPATFULL on STN

ACCESSION NUMBER: TITLE:

97:73494 USPATFULL

INVENTOR(S):

Adeno-associated virus materials and methods Johnson, Philip R., Gahanna, OH, United States

PATENT ASSIGNEE(S):

Children's Hospital, Inc., Columbus, OH, United States

(U.S. corporation)

NUMBER KIND DATE

PATENT INFORMATION:

US 5658785 19970819 19940606 (8)

APPLICATION INFO.: DOCUMENT TYPE:

us 1994-254358 Utility

FILE SEGMENT:

Granted Guzo, David

PRIMARY EXAMINER: LEGAL REPRESENTATIVE:

Marshall, O'Toole, Gerstein, Murray & Borun

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

5 Drawing Figure(s); 5 Drawing Page(s)

NUMBER OF DRAWINGS:

LINE COUNT: 887

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AΒ

The present invention provides adeno-associated virus (AAV) materials and methods which are useful for DNA delivery to cells. More particularly, the invention provides recombinant AAV (rAAV) genomes, methods for packaging rAAV genomes, stable host cell lines producing rAAV and methods for delivering genes of interest to cells utilizing the rAAV. Particularly disclosed are rAAV useful in generating immunity to human immunodeficiency virus-1 and in therapeutic gene delivery for treatment of neurological disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 57 OF 58 USPATFULL on STN

ACCESSION NUMBER: TITLE:

97:68345 USPATFULL

INVENTOR(S):

Gaba.sub.a receptor epsilon subunit Li, Yi, Gaithersburg, MD, United States Kirkness, Ewen F., Olney, MD, United States

PATENT ASSIGNEE(S):

Human Genome Sciences, Inc., Rockville, MD, United

19950602 (8)

States (U.S. corporation)

NUMBER KIND DATE US 5654172 19970805

PATENT INFORMATION: APPLICATION INFO.:

DOCUMENT TYPE:

Utility Granted

FILE SEGMENT: PRIMARY EXAMINER:

Fleisher, Mindy

US 1995-459100

LEGAL REPRESENTATIVE: Mullins, J. G., Olstein, Elliot M.

NUMBER OF CLAIMS: 19 EXEMPLARY CLAIM: 15

NUMBER OF DRAWINGS: 12 Drawing Figure(s); 12 Drawing Page(s)

LINE COUNT: 1459

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

Disclosed is a human GABA. sub. A epsilon subunit receptor and DNA (RNA) encoding such polypeptides (RNA). Also provided is a procedure for producing such polypeptides by recombinant techniques and agonists and antagonists for such polypeptides. Also provided are methods of using the agonists, for example, to treat anxiety, Huntington's Chorea, muscular spasms and rigidity, and sleep and seizure disorders. Antagonists may be used, for example, to diagnose and treat anxiety, Huntington's Chorea, sleep and seizure disorders, Alzheimer's disease, ***Parkinson*** 's disease and overdoses with benzodiazepine and for enhancing cognition and reversing sedation after application of general anesthesia during surgery. Also disclosed are diagnostic methods for detecting mutations in the polynucleotides of the present invention and for detecting levels of the soluble polypeptides in samples derived from a host.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L2 ANSWER 58 OF 58 USPATFULL ON STN

ACCESSION NUMBER:

95:34069 USPATFULL

TITLE: INVENTOR(S):

Genetic diagnosis of torsion dystonia

Breakefield, Xandra O., Newton, MA, United States Ozelius, Laurie, Cambridge, MA, United States

PATENT ASSIGNEE(S):

PATENT INFORMATION:

The General Hospital Corporation, Boston, MA, United

States (U.S. corporation)

APPLICATION INFO.: US 1991-725083 19910703 (7)

RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 1989-353432, filed

on 18 May 1989, now abandoned

DOCUMENT TYPE: Utility
FILE SEGMENT: Granted

PRIMARY EXAMINER: Parr, Margaret ASSISTANT EXAMINER: Myers, Carla

ASSISTANT EXAMINER: Myers, Carla LEGAL REPRESENTATIVE: Sterne, Kessler, Goldstein & Fox

NUMBER OF CLAIMS: 23 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 11 Drawing Figure(s); 11 Drawing Page(s)

LINE COUNT: 2144

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods are provided for detecting the presence of a gene for torsion dystonia in a human subject. Furthermore, a haplotype which is associated with torsion dystonia is disclosed. Methods and kits for the detection of torsion dystonia in a subject are additionally provided.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d all 31

L2 ANSWER 31 OF 58 MEDLINE ON STN DUPLICATE 1

AN 2003011859 MEDLINE DN PubMed ID: 12518298

TI Experimental ***parkinsonism*** is associated with increased pallidal GAD gene expression and is reversed by site-directed ***antisense*** gene therapy.

AU Schneider Jay S; Wade Timothy V

CS Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA... jay.schneider@mail.tju.edu

Movement disorders: official journal of the Movement Disorder Society, (2003 Jan) 18 (1) 32-40.
Journal code: 8610688. ISSN: 0885-3185.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200303 ED Entered STN: 20030109

```
Entered Medline: 20030319
       The levels of mRNA encoding the two isoforms of ***acid*** ***decarboxylase*** (GAD(65)
                                                                                 ***glutamic***
AB
                                                               (GAD(65) and GAD(67)) were measured
       throughout the pallidal complex in normal and acutely (i.e., 1 month
       duration) and chronically (i.e., 5 years duration)
                                                                                      ***parkinsonian***
       1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) -treated
       monkeys as well as in monkeys exposed to MPTP but asymptomatic for 
***parkinsonism*** . GAD(65) mRNA labeling was modestly increased in the 
mid/caudal internal globus pallidus (GPi) but not in the external globus 
pallidus (GPe) in ***parkinsonian*** monkeys, compared with normal and
       asymptomatic monkeys. GAD(67) mRNA expression was highly increased in the mid/caudal GPi and modestly increased in the GPe in ***parkinsonian***
       mid/caudal GPi, and modestly increased in the GPe in ***parkinson monkeys compared with normal and asymptomatic animals. Infusion of
                      ***antisense***
                                               oligodeoxynucleotides bilaterally into the GPi
       resulted in a transient reversal of akinesia and bradykinesia that was not produced by infusion of missense oligodeoxynucleotides. These data emphasize the role of GAD enzyme (particularly GAD(67)) and GABA in the GPi for the expression of ***parkinsonian*** motor signs and suggest that selective manipulation of GABAergic neurotransmission in the GPi may
       have therapeutic potential for treating
                                                                      ***parkinsonism***
       Copyright 2002 Movement Disorder Society
       Check Tags: Female; Male; Support, Non-U.S. Gov't
CT
         1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
         Animals
       *Gene Therapy: MT, methods
*Globus Pallidus: PA, pathology
       *Glutamate Decarboxylase: GE, genetics
       *Isoenzymes: GE, genetics
         Macaca fascicularis
        *Mutagenesis, Site-Directed: GE, genetics
             ****Oligodeoxyribonucleotides, Antisense: PD, pharmacology***
             ****Parkinsonian Disorders: GE, genetics***

*** Parkinsonian Disorders: PA, pathology***

*** Parkinsonian Disorders: TH, therapy***
         RNA, Messenger: GE, genetics
         Saimiri
       28289-54-5 (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine)
RN
       0 (Isoenzymes); 0 (Oligodeoxyribonucleotides, ***Antisense*** ); 0
CN
       (RNA, Messenger); EC 4.1.1.- (GAD65 enzyme); EC 4.1.1.- (GAD67 enzyme); EC
       4.1.1.15 (Glutamate Decarboxylase)
=>
Executing the logoff script...
=> LOG H
COST IN U.S. DOLLARS
                                                                        SINCE FILE
                                                                                                TOTAL
                                                                                ENTRY
                                                                                             SESSION
FULL ESTIMATED COST
                                                                              129.65
                                                                                               129.86
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)
                                                                        SINCE FILE
                                                                                                TOTAL
                                                                                ENTRY
                                                                                             SESSION
CA SUBSCRIBER PRICE
                                                                                -1.39
                                                                                                -1.39
```

SESSION WILL BE HELD FOR 60 MINUTES STN INTERNATIONAL SESSION SUSPENDED AT 11:01:31 ON 03 MAR 2004