CS557: Cryptography

Pseudo Random number Generator (PRNG)-II

S. Tripathy IIT Patna

Random number

- Truly random is defined as exhibiting ``true''
 randomness, such as
 - Noise in electrical circuits
 - Radio active decay.
- Pseudorandom is defined as having the appearance of randomness, but nevertheless exhibiting a specific, repeatable pattern.
 - numbers calculated by a computer through a deterministic process, cannot, by definition, be random

(Desirable) Properties of Pseudorandom Numbers

- Uncorrelated Sequences The sequences of random numbers should be serially uncorrelated
- Long Period The generator should be of long period (ideally, the generator should not repeat; practically, the repetition should occur only after the generation of a very large set of random numbers).
- Uniformity The sequence of random numbers should be uniform, and unbiased. That is, equal fractions of random numbers should fall into equal `areas' in space.
 - Eg. if random numbers on [0,1) are to be generated, it would be poor practice were more than half to fall into [0, 0.1), presuming the sample size is sufficiently large.
- Efficiency The generator should be efficient. Low overhead for massively parallel computations.

Cryptographically Secure PRNG

Indistinguishability

- Uniform distribution
 - distribution $\mathfrak D$ over strings of length- ℓ is pseudorandom if it is indistinguishable from a random distribution
 - Definition. We say an algorithm G, which on input of length n outputs a string of length $\ell(n)$, is a pseudorandom generator if
 - 1. For every n, $\ell(n) > n$
 - 2. For each PPT distinguisher D, there exists a negligible function negl such that $|Pr[D(r)=1 Pr[D(G(s))=1| \le negl(n)$

Where r is chosen at uniformly random from $\{0,1\}^{\ell(n)}$ and s is chosen at uniform random from $\{0,1\}^s$

Next-bit prediction

Given N bits of the pseudo-random sequence, predict (N+1)st bit Probability of correct prediction should be very close to 1/2 for any efficient adversarial algorithm

Classes of Attacks on PRNGs

- Direct Cryptanalytic Attack:
 - When the attacker can directly distinguish between PRNG numbers and random numbers (cryptanalyze the PRNG).
- Input Based Attack:
 - When the attacker is able to use knowledge and/ or control of PRNG inputs to cryptanalyze the PRNG.
- State Compromise Extension Attacks:
 - When the attacker can guess some information due to an earlier breach of security. The advantage of a previous attack is extended.

Direct Cryptanalytic Attacks

- When the attacker can directly cryptanalyze the PRNG.
 - Applicable to most PRNGs
 - Not applicable when the attacker is not able to directly see the output of the PRNG.
 - Eg A PRNG used to generate triple-DES keys. Here the output of the PRNG is never directly seen by an attacker.

Input Based Attacks

 When an attacker used knowledge or control of the inputs to cyptanalyze the PRNG output.

Types:

- Known Input
 - If the inputs to the PRNG, that are designed to be difficult for a user to guess, turn out to be easily deducible.
 - Eg disk latency time. When the user is accessing a network disk, the attacker can observe the latency time.
- Chosen input
 - Practical against smartcards, applications that feed incoming messages (username/password etc) to the PRNG as entropy samples.
- Replayed Input
 - Similar to chosen input, except it requires less sophistication on the part of the attacker.

State Compromise Extension Attacks

- These attacks are classified as:
 - Backtracking attacks
 - Uses the compromise of PRNG state S to learn about all previous PRNG outputs.
 - Permanent compromise attack
 - Once S has been compromised, all future and past outputs of the PRNG are vulnerable.
 - Iterative guessing attacks
 - Uses the knowledge of state S that was compromised at time t and the intervening PRNG outputs to guess the state S' at time $t+\Delta$.
 - Meet-in-the-middle attacks
 - Combination of iterative guessing and backtracking.

Tests for Randomness in Random Numbers:

- Goal: To ensure that the random number generator produces a random stream.!
- Use of tests!
 - Passing a test is necessary but not sufficient
 - Pass ≠ Good
 - Fail ⇒ Bad
- Golomb's Postulates: Discussed
- Quantitative tests:
 - X² tests:
 - Lagged Correlation:
- Qualitative tests:
 - Scatter Plots
 - Plot pairs of random numbers.
 - Clumps of numbers, gaps and patterns are easily visible.

X² (Chi²)tests:

- Measure how well the presumed distribution (usually uniform) is represented.
- Algorithm for the test:
 - Divide the whole interval, within which the random number would be into finite number of bins (class intervals). Assume they have same size.
 - Count the number of random numbers within each interval and calculate the "expected" number of observations
 - Calculate: D= $X^2 = \Sigma(i=1,m)$ (observed; expected;)² / (expected;)
 - The value of D determines if the numbers generated represent a chosen distribution, by looking up in a table, some critical values of Chi²[1-a; k-1] Pass with confidence a if D is less.

5 Basic Tests for Random Numbers

- 1. Frequency test (Monobit). Uses the tests like chisquare test to compare the distribution of the set of numbers generated to a uniform distribution.
- Let n_0 , n_1 denote the number of 0's and 1's in s, respectively. The statistic used is

$$X1 = (n_0 - n_1)^2 / n$$

which approximately follows a Chi² distribution with 1 degree of freedom

2. Serial test (2-BIT)

- Determine whether the number of occurrences of 00,01,10 and 11
 - as subsequences of s are approximately same, as would be expected for a random sequence.
- Let n_0 , n_1 denote the number of 0 's and 1 's in s, respectively, and let n_{00} ,..., n_{11} etc., denote the number of occurrences of 00,01,10,11 in s respectively.
- Note that
 - \circ $n_{00} + n_{01} + n_{10} + n_{11} = (n-1)$
 - since the subsequences are allowed to overlap

The statistic used is

$$X_2 = rac{4}{n-1}ig(n_{00}^2 + n_{01}^2 + n_{10}^2 + n_{11}^2ig) - rac{2}{n}ig(n_0^2 + n_1^2ig) + 1$$

which approximately follows a χ^2 distribution with 2 degrees of freedom

3. Poker test

- Let m be a positive integer such that . and let and let, k = [n/m].
- Divide the sequence s into k non-overlapping parts each of length m and let n_i be the no. of occurrences of the i^{th} type of sequence of length m, $1 \le i \le 2^m$. $\left\lfloor \frac{n}{m} \right\rfloor \ge 5 \cdot (2^m)$
- The poker test determines whether the sequences of length m
 - each appear approximately the same number of times in s, as would be expected for a random sequence. The statistic used is

$$X_3-rac{2^m}{k}\Bigl(\sum_{i=1}^{2^m}n_i^2\Bigr)-k$$

• which approximately follows a χ^2 distribution with 2^m -1 degrees of freedom.

4. Runs test

- Tests the runs up and down or the runs above and below the mean by comparing the actual values to expected values.
 - The statistic for comparison is the chi-square.
- \circ The expected number of gaps (or blocks) of length i in a random sequence of length n is $e_i=(n-i+3)/2^{i+2}$.
- \circ Let k be equal to the largest integer i for which $e_i \geq 5$
- Let B_i , G_i be the number of blocks and gaps, respectively, of length i in s for each i, $1 \le i \le k$.
- The statistic used is

$$X_4 = \sum_{i=1}^k rac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^k rac{(G_i - e_i)^2}{e_i}$$

which approximately follows a χ^2 distribution with 2k-2 degrees of freedom.

5. Autocorrelation test

- Tests the correlation between numbers and compares the sample correlation to the expected correlation of zero.
- check for correlations between the sequence s and (non-cyclic) shifted versions of it.
- Let d be a fixed integer, $1 \le d \le \lfloor n/2 \rfloor$.
- The number of bits in s not equal to their d-shifts is

$$A(d) = \sum_{i=0}^{n-d-1} s_i \oplus s_{i+d}$$

The statistic used is

$$X_5 = 2\left(A(d) - rac{n-d}{2}
ight)/\sqrt{n-d}$$

• which approximately follows an N(0,1) distribution if $n-d \ge 10$.

Ex.:

```
S=
11100 01100 01000 10100 11101 11100 10010 01001
11100 01100 01000 10100 11101 11100 10010 01001
11100 01100 01000 10100 11101 11100 10010 01001
11100 01100 01000 10100 11101 11100 10010 01001
```

n=160

255	0 100 0 000 0 000 0 000 0 000							
- 87	0.100	0.050	0.025	0.010	0.005	0.001		
1	2.7055	3.8415	5.0239	6.6349	7.8794	10.8276		
2	4.6052	5.9915	7.3778	9.2103	10.5966	13.8155		
3	6.2514	7.8147	9.3484	11.3449	12.8382	16.2662		
4	7.7794	9.4877	11.1433	13.2767	14.8603	18.4668		
5	9.2364	11.0705	12.8325	15.0863	16.7496	20.5150		
6	10.6446	12.5916	14.4494	16.8119	18.5476	22,4577		
7	12.0170	14.0671	16.0128	18.4753	20.2777	24.3219		
8	13.3616	15.5073	17.5345	20.0902	21.9550	26.1245		
9	14.6837	16.9190	19.0228	21.6660	23.5894	27.8772		
10	15.9872	18.3070	20.4832	23.2093	25.1882	29.5883		
11	17.2750	19.6751	21.9200	24.7250	26.7568	31.2641		
12	18.5493	21.0261	23.3367	26.2170	28.2995	32,9095		
13	19.8119	22.3620	24.7356	27.6882	29.8195	34,5282		
14	21.0641	23.6848	26.1189	29.1412	31.3193	36.1233		
15	22.3071	24.9958	27,4884	30.5779	32.8013	37.6973		
16	23.5418	26.2962	28.8454	31.9999	34.2672	39.2524		
17	24.7690	27.5871	30.1910	33.4087	35.7185	40.7900		
18	25.9894	28.8693	31.5264	34.8053	37.1565	42.3124		
19	27.2036	30.1435	32.8523	36.1909	38.5823	43.8202		
20	28.4120	31.4104	34.1696	37.5662	39.9968	45.3147		
21	29.6151	32.6706	35.4789	38.9322	41.4011	46,7970		
22	30.8133	33.9244	36.7807	40.2894	42.7957	48.2679		
23	32.0069	35.1725	38.0756	41.6384	44.1813	49.7282		
24	33.1962	36.4150	39.3641	42.9798	45.5585	51.1786		
25	34.3816	37.6525	40.6465	44.3141	46.9279	52.6197		
26	35.5632	38.8851	41.9232	45.6417	48.2899	54.0520		
27	36.7412	40.1133	43.1945	46.9629	49.6449	55.4760		
28	37.9159	41.3371	44.4608	48.2782	50.9934	56.8923		
29	39.0875	42.5570	45.7223	49.5879	52.3356	58.3012		
30	40.2560	43.7730	46.9792	50.8922	53.6720	59,7031		
31	41.4217	44.9853	48.2319	52.1914	55.0027	61.0983		
63	77.7454	82.5287	86.8296	92.0100	95.6493	103.4424		
127	147.8048	154.3015	160.0858	166.9874	171.7961	181.9930		
255	284.3359	293.2478	301 1250	310.4574	316.9194	330.5197		
511	552.3739	564.6961	575.5298	588.2978	597.0978	615.5149		
1023	1081.3794	1098.5208	1113.5334	1131.1587	1143.2653	1168.4972		

	0.1							
\boldsymbol{x}	1.2816	1.6449	1.9600	2.3263	2.5758	2.8070	3.0902	3.2905

• Thanks