CONTINUTUL CURSULUI #1:

- I. Metode de aproximare a soluțiilor ecuațiilor neliniare.
 - I.2. Metoda Newton-Raphson.
- I.1. Metoda bisectiei

Figure: Metoda bisectiei Curs #1

I. Metode de aproximare a solutiilor ecuatiilor neliniare I.1. Metoda bisecției

Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă, astfel încât f(a)f(b)<0. Atunci $\exists x^* \in (a, b)$, astfel încât $f(x^*) = 0$.

Metoda bisecției generează un sir de aproximări $(x_k)_{k>0}$ convergent către solutia exactă x^* a ecuatiei f(x) = 0 (i.e. $\lim_{k \to \infty} x_k = x^*$, unde x^* verifică ecuatia f(x) = 0).

Metoda bisecției constă în înjumătățirea la fiecare pas k a intervalului [a, b] și selectarea acelui interval notat prin $[a_k, b_k]$ în care se află x^* . Şirurile $(a_k)_{k\geq 0}$, $(b_k)_{k\geq 0}$ și $(x_k)_{k\geq 0}$ se construiesc conform schemei:

$$\left(a_k,b_k,x_k\right) = \left\{ \begin{array}{ll} a_k = a_{k-1},b_k = b_{k-1},x_k = x_{k-1}, & \operatorname{dack} \ f(x_{k-1}) = 0 \\ a_k = a_{k-1},b_k = x_{k-1},x_k = \frac{a_k + b_k}{2}, & \operatorname{dack} \ f(a_{k-1})f(x_{k-1}) < 0 \\ a_k = x_{k-1},b_k = b_{k-1},x_k = \frac{a_k + b_k}{2}, & \operatorname{dack} \ f(a_{k-1})f(x_{k-1}) > 0, \end{array} \right.$$

unde $a_0 = a, b_0 = b, x_0 = \frac{a_0 + b_0}{2}$.

Fie $f:[a,b] \to \mathbb{R}$ continuă, f(a)f(b) < 0. Dacă f admite soluție unică $x^* \in (a,b)$ atunci sirul $(x_k)_{k>0}$ este convergent la x^* si

$$|x^* - x_k| \le \frac{b - a}{2^{k+1}}, \forall k \ge 0$$
 (2)

Demonstratie:

$$|x^* - x_k| \le \frac{1}{2} |a_k - b_k| = \begin{cases} \frac{1}{2} |a_{k-1} - x_{k-1}|, f(a_{k-1}) f(x_{k-1}) < 0\\ \frac{1}{2} |x_{k-1} - b_{k-1}|, f(a_{k-1}) f(x_{k-1}) > 0 \end{cases}$$
 (3)

Constatăm că

$$\frac{1}{2}|a_{k-1} - x_{k-1}| = \frac{1}{2}|a_{k-1} - \frac{a_{k-1} + b_{k-1}}{2}| = \frac{1}{4}|a_{k-1} - b_{k-1}| \tag{4}$$

Analog
$$\frac{1}{2}|x_{k-1} - b_{k-1}| = \frac{1}{4}|a_{k-1} - b_{k-1}|$$
 (5)

Astfel că, din (3) rezultă
$$0 \le |x^* - x_k| \le \frac{1}{4} |a_{k-1} - b_{k-1}| = \frac{1}{9} |a_{k-2} - b_{k-2}| = \dots = \frac{1}{2k+1} |a_0 - b_0|$$
 (6)

sau $|x^* - x_k| \le \frac{1}{2k+1} |a - b|$ de unde rezultă $\lim_{k \to \infty} x_k = x^*$. \square Criteriul de oprire: Fiind dat $\varepsilon > 0$, se caută $N \in \mathbb{N}$ astfel încât $\frac{b-a}{2N+1} < \varepsilon \Leftrightarrow N > log_2(\frac{b-a}{\varepsilon}) - 1 \Leftrightarrow N = \left[log_2(\frac{b-a}{\varepsilon}) - 1\right] + 1;$

Definitia (I.1.)

Fie şirul $(x_k)_{k>0}$ convergent la x^* . Spunem că şirul $(x_k)_{k>0}$ converge cel puțin liniar la x^* , dacă există șirul de numere reale pozitive $(\varepsilon_k)_{k>0}$ convergent la zero și $\alpha \in (0,1)$ astfel încât

$$|x_k - x^*| \le \varepsilon_k, \quad k \ge 0 \quad \text{si} \quad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k} = \alpha$$
 (7)

- Dacă relatia (7) are loc pentru α = 0, atunci spunem că sirul (x_k)_{k>0} converge superliniar;
- Dacă relatia (7) are loc pentru α ∈ (0,1) și ε_k = |x_k x*|, k > 0, atunci spunem că sirul $(x_k)_{k>0}$ converge **liniar**:
- Dacă (7) are loc pentru α = 1 si ε_ν = |x_ν x*|, atunci viteza de convergentă este mai lentă decât cea liniară și spunem că sirul $(x_k)_{k>0}$ converge subliniar.

ALGORITM (Metoda bisectiei)

Date de intrare: f, a, b, ε ;

Date de ieșire:
$$x_{aprox}$$
;

STEP 1:
$$a_0 = a$$
; $b_0 = b$; $x_0 = \frac{a_0 + b_0}{2}$;

$$N = \left[log_2(\frac{b-a}{\varepsilon}) - 1\right] + 1;$$

STEP 2: for
$$k = 1 : N$$
 do

if
$$f(x_{k-1}) = 0$$
 then break

elseif
$$f(a_{k-1})f(x_{k-1}) < 0$$
 then $a_k = a_{k-1}$; $b_k = x_{k-1}$; $x_k = \frac{a_k + b_k}{2}$; elseif $f(a_{k-1})f(x_{k-1}) > 0$ then

elself
$$r(a_{k-1})r(x_{k-1}) > 0$$
 then $a_k = x_{k-1}; \ b_k = b_{k-1}; \ x_k = \frac{a_k + b_k}{2};$ endif

Curs #1

endfor

 $x_{anrox} = x_k$.

Definitia (I.2.)

Fie şirul $(x_k)_{k>0}$ convergent la x^* . Spunem că şirul $(x_k)_{k>0}$ converge la x^* cu ordinul de convergentă cel putin egal cu r > 1, dacă există un sir $(\varepsilon_k)_{k>}$ de numere reale pozitive convergent la 0 și $\alpha>0$ astfel încât

$$|x_k - x^*| \le \varepsilon_k, \quad k \ge 0 \quad \text{si} \quad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k'} = \alpha$$
 (8)

Dacă (8) are loc pentru $\varepsilon_k = |x_k - x^*|, k > 0$, atunci spunem că șirul $(x_k)_{k>0}$ converge la x^* cu **ordinul** r **de convergentă**. În particular, dacă r=2 atunci spunem că $(x_k)_{k>0}$ converge **pătratic.** Obs.: Datorită faptului că în cazul metodei bisecției avem estimarea

 $|x^* - x_k| \le \frac{1}{2k+1}(b-a)$ putem considera $\varepsilon_k = \frac{1}{2k+1}(b-a)$. Atunci $\lim_{k\to\infty} \frac{\varepsilon_{k+1}}{\varepsilon_{k+1}} = \frac{1}{2} \in (0,1),$ (9)

$$\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{\varepsilon_k}=\frac{1}{2}\in(0,1),$$

February 23, 2018

February 23, 2018

deci convergenta este cel putin liniară.

I.2. Metoda Newton-Raphson

Fie $f:[a,b]\to\mathbb{R}$ o funcție derivabilă astfel încât f(a)f(b)<0. Metoda N-R presupune construcția șirului $(x_k)_{k>0}$ conform următoarei scheme grafice: la pasul k, aproximarea x_k a solutiei exacte x^* a ecuatiei f(x) = 0se obtine prin intersecția cu axa Ox a tangentei T la graficul funcției f în punctul $(x_{k-1}, f(x_{k-1}))$.

Curs #1

 $T: v = f'(x_{k-1})(x - x_{k-1}) + f(x_{k-1})$ (10) $\{x_k\} = T \cap Ox \Rightarrow f'(x_{k-1})(x_k - x_{k-1}) + f(x_{k-1}) = 0 \Rightarrow$

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$$
(11)

Figure: Metoda Newton

CONVERGENTA: Fără a restrânge generalitatea vom considera f', f" strict pozitive, i.e. f'(x) > 0, f''(x) > 0, $\forall x \in [a, b]$. Celelalte cazuri se tratează în mod analog. Fie $x_0 \in [a, b]$ cu proprietatea (12), atunci $f(x_0) > 0 = f(x^*)$. Deoarece $f'(x) > 0, \forall x \in [a, b]$ rezultă că f este strict crescătoare, astfel că

 $x^* < x_0 \le b \text{ sau } x_0 \in (x^*, b].$ Presupunem în continuare $x_k \in (x^*, b]$, i.e. $x^* < x_k < b$. Dezvoltăm în serie Taylor funcția f în jurul punctului x_k și evaluăm funcția în punctul

$$x^*$$
:
$$f(x^*) = f(x_k) + (x^* - x_k)f'(x_k) + \frac{1}{2}(x^* - x_k)^2 f''(\xi_k), \quad \xi_k \in [x^*, x_k]$$
(13)

Împărțim această relație la $f'(x_k)$, ținem cont că $f(x^*) = 0$ și $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$. Obţinem:

$$x_{k+1} - x^* = \frac{1}{2}(x^* - x_k)^2 \frac{f''(\xi_k)}{f'(\xi_k)}, \quad \xi_k \in [x^*, x_k]$$
 (14)

Din monotonia funcției f rezultă $f(x_k) > 0 = f(x^*)$. Din (11) rezultă $x_{k+1} < x_k$, iar conform formulei (14) rezultă $x_{k+1} > x_*$,

Teorema (I.2)

Presupunem că $f \in C^2([a,b]), f', f''$ nu se anulează pe [a,b] si

$$f(x_0)f''(x_0) > 0 (12)$$

f(a)f(b) < 0. Fie $x_0 \in [a, b]$ astfel încât să aibă loc condiția

Atunci ecuația
$$f(x) = 0$$
 are o soluție unică $x^* \in (a, b)$, iar șirul $(x_k)_{k \ge 0}$

construit prin metoda Newton-Raphson, rămâne în [a, b] și converge pătratic la x*. Demonstratie:

EXISTENTA: Existenta soluției ecuației f(x) = 0 este asigurată de conditia f(a)f(b) < 0.

UNICITATEA: Presupunem că $\exists y^* \in (a, b)$ cu $x^* \neq y^*$ și $f(y^*) = 0$. Cum $f(x^*) = f(y^*) = 0$, atunci conform Teoremei lui Rolle rezultă că $\exists c \in (x^*, y^*)$ astfel încât f'(c) = 0, contradictie, deoarece am presupus cu a f' este nenulă pe intervalul [a, b].

deci $x^* < x_{k+1} < x_k \le b$. Am obținut că șirul $(x_k)_{k > 0}$ este descrescător și mărginit, deci convergent. Fie $y^* = \lim_{k \to \infty} x_k$, atunci trecând la limită în formula (11) rezultă:

> $y^* = y^* - \frac{f(y^*)}{f'(y^*)} \Rightarrow f(y^*) = 0,$ (15)

deci y^* este soluție a ecuației f(x) = 0, iar din unicitatea soluției avem

Din relatia (14) rezultă

 $x^* = y^*$.

 $\frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{1}{2} \frac{f''(\xi_k)}{f'(\xi_k)}$ (16)

Dacă $\varepsilon_{\nu} = |x_{\nu} - x^*|$ atunci

$$\lim_{k\to\infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^2} = \lim_{k\to\infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \lim_{k\to\infty} \frac{1}{2} \frac{|f''(\xi_k)|}{|f'(x_k)|}$$
(17)

 $=\frac{1}{2}\frac{|f''(x^*)|}{|f'(x^*)|}\in(0,\infty)$ (18)

Rezultă că $(x_k)_{k>0}$ converge **pătratic** la x^* .

Deoarece f',f'' nu se anulează pe intervalul [a,b], atunci funcția trebuie să fie monotonă (crescătoare sau descrescătoare) și să nu-și schimbe

concavitatea pe intervalul dat.

Strategie de lucru: Din punct de vedere computațional se alege conform graficului funcției un interval în care funcția să fie monotonă și să nu-și

- schimbe concavitatea. Valoarea x_0 se alege în modul următor: 1. Dacă f este convexă $(f''(x_0)>0)$, atunci $f(x_0)>0$;
- 2. Dacă f este concavă ($f''(x_0) < 0$), atunci $f(x_0) < 0$. Pentru metoda N-R ca și criteriu de oprire vom alege una din următoarele
 - $\begin{aligned} &-|f(x_k)|<\varepsilon;\\ &-\frac{|x_k-x_{k-1}|}{|x_{k-1}|}<\varepsilon. \end{aligned}$

condiții:

ALGORITM (Metoda Newton-Raphson)

Date de intrare: f, f', x_0, ε ; Date de iesire: x_{aprox} ;

STEP 1:
$$k = 0$$
;
STEP 2: do

$$k = k + 1;$$

$$f(x_{k-1})$$

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})};$$
while
$$\frac{|x_k - x_{k-1}|}{|x_{k-1}|} \ge \varepsilon;$$

$$|x_{k-1}| \le |x_{k-1}|$$
 $|x_{k-1}| \le |x_{k-1}|$

February 23, 2018

Exercițiu: (I.1.)

Fie ecuația $\sqrt{x} - \cos x = 0$ a. Să se construiască în Matlab o procedură cu sintaxa

 $[x_{aprox}] = MetBisectie(f, a, b, eps).$

b. Într-un fișier script să se construiască în Matlab graficul funcției $f(x) = \sqrt{x} - \cos x$ pe intervalul [0, 1]. Să se calculeze soluția

aproximativă x_{aprox} cu ajutorul procedurii **MetBisectie** având ca date de intrare funcția f, intervalul [a,b]=[0,1] si eroarea de aproximare $\varepsilon=10^{-5}$.

Soluție: Vezi Program I.1.