A Different Form of Consensus Proof of Work & Proof of Stake

Proof of Work (PoW)

- Mineradores competem uns com os outros para produzir blocos.
- Dificuldade < x para produzir 1 bloco a cada 10 minutos.
- Alto custo energético.
- Quantidade de membros escalável.
- Ex. Bitcoin.

Forks & 51% Attack

- Chain com mais energia (mais pesada) ganha
- Esperar um tempo até algum Fork ganhar.

Proof of Stake (PoS)

- Stakers fazem um consenso sobre o próximo bloco a ser produzido.
- Difícil escalar quantidade de membros (alto custo de mensagens).
- Baixo custo energético.
- Alta subjetividade.
- Ex. Ethereal, Solana, Avalanche

Subjetividade

- Olhando cada dificuldade, podemos relacionar PoW com consumo.
- Olhando somente a chain PoS não se pode dizer nada.

Bribe

- Olhando cada dificuldade, podemos relacionar PoW com consumo.
- Olhando somente a chain PoS não se pode dizer nada.

Bribe В N+1 Ν

- Olhando cada dificuldade, podemos relacionar PoW com consumo.
- Olhando somente a chain PoS não se pode dizer nada.

Smart Contracts

- Programação em Blockchains.
- Aproveitar interface de consenso.
- Um banco de dados programável distribuído tolerante a falhas.
- Programas agora podem ter uma noção de valor.

Vulnerabilidades

- Transações irreversíveis.
- Contratos sem upgrade.
- DAO Hack: 3.6 milhões Eth = \$5.76 bilhões
- Mais que qualquer outro roubo à época.

Solido - Solana

Chorus-one

- Stakers fazem stake em contas
- Os depósitos são feitos travando o stake por um interesse futuro (similar a um título)
- Os fundos não podem ser movidos por um certo tempo.

Solido (Chorus One)

Stake com liquidez

- O stake que estaria bloqueado agora pode ser utilizado em outras coisas como:
 - Uso em outros protocolos.
 - Empréstimos.
 - Provedor de liquidez.

Mercado: Sol x stSol

- AMM: Automatic Market Maker
- token_a * token_b = constante

Exemplo: AMM

A: 45 B: 30 AMM { a*b = 1350 reserva_a = 45; reserva_b = 30; reserva_a * reserva_b = constante

swap(a)

A: 5

Exemplo: AMM

A: 45

B: 30

AMM {

a*b = 1350

reserva_a = 45;

reserva_b = 30;

reserva_a * reserva_b = constante

}

swap(a)

A: 5

1350 = 50 * b = 27

B <- 3

Exemplo: AMM

swap(a)

A: 5

1350 = 50 * b = 30

B <- 3

TON

- Cada conta vive em sua própria partição.
- Mensagens podem ser enviadas com uma resposta, não existem transações.
- Diferente design para construção de smart contracts.
- Possibilidade de escalar partições conforme necessário.

TON

Eleições baseadas em stake

Pool

- Pool podem eleger mais de um validator.
- Contratos podem fazer parte da pool.
- Fácil de manter.

Pool v2

- Diferentes parâmetros de vault.
 - Liquid staking.

Conclusão

- Diferenças entre PoW e PoS.
- Smart contracts podem expandir e melhorar o sistema.
- Recursos para construir modelos de programas económicos.
- Absorvido pelo sistema financeiro/bancos?

Exemplo

```
Código

While (true) {
}
```

Exemplo

```
Código

While (true) {
}
```