- 7. Explica si las siguientes afirmaciones son ciertas o falsas. Cuando sean ciertas indica el resultado de teoría que lo justifica o proporciona una prueba y, cuando sean falsas indica un contraejemplo.
 - 1. Si una sucesión monótona $\{x_n\}$ tiene una sucesión parcial convergente entonces $\{x_n\}$ es convergente.

Verdadero. Supongamos que $\{x_n\}$ es creciente y sea $\{x_{\sigma(n)}\}$ una sucesión parcial convergente. Entonces la sucesión $\{x_{\sigma(n)}\}$ debe estar mayorada, es decir, existe M>0 tal que $x_{\sigma(n)}\leqslant M$ para todo $n\in\mathbb{N}$. Pero sabemos que para todo $n\in\mathbb{N}$ es $n\leqslant\sigma(n)$, por lo que $x_n\leqslant x_{\sigma(n)}\leqslant M$, lo que prueba que $\{x_n\}$ está mayorada y, por tanto, es convergente. Análogamente se razona si suponemos que $\{x_n\}$ es decreciente.

- 2. Si $\{x_n\}$ es una sucesión acotada de números reales, entonces $\{x_n\}$ tiene la siguiente propiedad: para cada $\delta>0$, pueden encontrarse $m,n\in\mathbb{N}$, con $m\neq n$, tales que $|x_n-x_m|<\delta$.
 - Verdadero. Por el teorema de Bolzano–Weierstrass, toda sucesión acotada tiene alguna sucesión parcial, $\{x_{\sigma(n)}\}$, convergente. Por tanto, la sucesión $\{x_{\sigma(n)}\}$ debe verificar la condición de Cauchy, es decir, dado $\delta>0$ existe $n_0\in\mathbb{N}$ tal que para todos $p,q\geqslant n_0$ se verifica que $\left|x_{\sigma(p)}-x_{\sigma(q)}\right|<\delta.$ Poniendo $m=\sigma(n_0)$ y $n=\sigma(n_0+1)$ tenemos que $m\neq n$ (porque σ es estrictamente creciente) y $|x_n-x_m|<\delta.$
- 3. Si $f,g:\mathbb{R}\to\mathbb{R}$ son funciones continuas tales que f(x)=g(x) para todo $x\in\mathbb{Q}$, entonces f(x)=g(x) para todo $x\in\mathbb{R}$.
 - Verdadero. Como $\mathbb Q$ es denso en $\mathbb R$, dado $y\in\mathbb R$ existe una sucesión de números racionales, $\{x_n\}$, con $x_n\in\mathbb Q$, tal que $\lim\{x_n\}=y$. Por la continuidad de f y de g debe ser $f(y)=\lim\{f(x_n)\}$ y $g(y)=\lim\{g(x_n)\}$, pero como, por la hipótesis hecha, para todo $n\in\mathbb N$ es $f(x_n)=g(x_n)$, deducimos que $f(y)=\lim\{f(x_n)\}=\lim\{g(x_n)\}=g(y)$, esto es, f(y)=g(y). Concluimos que f y g coinciden en todo $\mathbb R$.
- 4. Si $f:[0,1]\to\mathbb{R}$ es continua y f(x)>0 para todo $x\in[0,1]$ entonces existe $\alpha>0$ tal que $f(x)>\alpha$ para todo $x\in[0,1]$.

Verdadero. Por el teorema de Weierstrass de valores máximos y mínimos, sabemos que una función continua en un intervalo cerrado y acotado alcanza un mínimo absoluto (y también un máximo absoluto pero eso ahora no interesa), es decir hay algún $x_0 \in [0,1]$ tal que $f(x_0) \leqslant f(x)$ para todo $x \in [0,1]$. Y como es f(x)>0 para todo $x \in [0,1]$ debe ser $f(x_0)>0$. Tomando $\alpha=f(x_0)/2$ (vale cualquier número que esté en el intervalo $[0,f(x_0)]$) tenemos que $f(x)>\alpha$ para todo $x \in [0,1]$.