# **Chapter 7 Sequential Circuit Design**





#### **Sequencing Elements**

- Latch: Level sensitive
  - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
  - a.k.a. master-slave flip-flop, D flip-flop, D register
- Timing diagrams
  - Transparent/opaque





### **Latch/FF Circuits**

(b)











## **Latch --- Pass Transistor vs Transmission Gate**

#### Pass transistor

- Simple, low clock loading
- Vt drop
- Non-restoring
- Dynamic
- Bilateral (back-driving),
- Diffusion input (input at S/D),
- Output noise (exposed output)

#### Transmission gate

- No Vt drop
- Require complementary control inputs
- Larger layout
- Dynamic
- Bilateral (back-driving), diffusion input, exposed output







### **Latch --- Inverting Buffer**

- Inverting buffer
  - Restoring
  - No backdriving
  - Fixes either output noise sensitivity or diffusion input
  - Inverted output
  - Still dynamic!





#### **Static Latch**

- Static
- Tri-state inverter feedback connection (Fig. 9.18)
- Back-driving risk
- Diffusion input





#### **More Static Latches**

- Buffer-input static
  - No diffusion input
  - Non-inverting
  - Back-driving



- Buffered-input/output static latch
  - No backdriving
  - Widely used in standard cells
  - Very robust (most important)
  - Rather large
  - Rather slow (1.5 2 FO4 delays)
  - High clock loading





#### **Datapath Latch**

- Input noise can be controlled
- Buffered output, unbuffered input.
- Smaller, faster.





#### Flip-Flop Design

- Flip-flop is built as pair of back-to-back latches with complementary clocking signals.
- Dynamic FF
  - Much smaller and simpler
  - Still have clock skew problem that can cause race/hazard.
  - Mainly used in shift register.
  - The clock should go in opposite direction with the signal.





#### Static FF

#### Static FF

- Used in standard cell library
- Very robust
- Usually the complementary clock is generated locally by an inverter.
   Without sharp edge, there may be charge sharing.
- May used extra buffer for clock signals to sharpen edges.



10



#### **Two-Phase Clocking**

- Avoid clock skew problem
- More routing/power for clock signal distribution.



© Tzi-Dar Chiueh



#### **FF with Reset**

Synchronous reset FF



Asynchronous set/reset FF





#### **Enable in FF**

- Enable: ignore clock when en = 0
  - Mux: increase latch D-Q delay
  - Clock Gating: must make sure gated clock in CLEAN, 'en' must be stable when clk=1.





#### **Sequencing Methods**

- Flip-flops
- 2-Phase Latches
- Pulsed Latches
- Similar to gates along a long corridor or canal.



- FF-based Sequencing
- Note that an FF is a pair of back-to-back latches (masterslave).
- At any given time in the FF-based and latch-based methods, one latch is transparent and one latch is opaque.





### **Timing Diagrams**





| t <sub>pd</sub>    | Logic Prop. Delay             |
|--------------------|-------------------------------|
| t <sub>cd</sub>    | Logic Cont. Delay             |
| t <sub>pcq</sub>   | Latch/Flop Clk->Q Prop. Delay |
| t <sub>ccq</sub>   | Latch/Flop Clk->Q Cont. Delay |
| t <sub>pdq</sub>   | Latch D->Q Prop. Delay        |
| t <sub>cdq</sub>   | Latch D->Q Cont. Delay        |
| t <sub>setup</sub> | Latch/Flop Setup Time         |
| t <sub>hold</sub>  | Latch/Flop Hold Time          |











#### **Max-Delay Constraints: FF**

 Sequencing overhead decreases the available propagation delay for the combinational logic.





#### Max-Delay: 2-Phase Latch

$$t_{pd} = t_{pd1} + t_{pd2} \leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$



#### Min-Delay: Flip-Flop

- If the combinational logic is too fast, the signal can pass two FFs in one cycle.
- Race condition, hold-time failure.
- Worsen with clock skew, e.g. shift registers and scan chain.

$$t_{cd} \ge t_{
m hold} - t_{ccq}$$





### Min-Delay: 2-Phase Latch



20



#### **Time Borrowing**

- In a flip-flop-based system:
  - A piece of new data launches on one rising edge
  - Must setup before next rising edge
  - If it arrives late, system fails
  - If it arrives early, time is wasted
- FFs have hard edges, i.e. each stage of logic has identical timing limits as others.
- In a latch-based system
  - Data can pass through latch while transparent
  - A stage of logic with longer delay can borrow time from the next stage with shorter delay
  - Must be careful to prevent the total borrowed time from longer than one stage

© Tzi-Dar Chiueh



#### **Time Borrowing Examples**



© Tzi-Dar Chiueh



#### **Maximum Time Borrowing**

$$t_{\rm borrow} \leq \frac{T_c}{2} - \left(t_{\rm setup} + t_{\rm nonoverlap}\right)$$





#### **Clock Skew**

- We have assumed zero clock skew
- Clocks actually have uncertainty in arrival time
  - Decreases maximum propagation delay
  - Increases minimum contamination delay
  - Decreases time borrowing



24 © Tzi-Dar Chiueh



### Skew: Flip-Flop

Both delays are worsened by a clock skew time.

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \geq t_{\rm hold} - t_{ccq} + t_{\rm skew}$$





# 4

#### Skew: 2-Phase Latch

- Propagation delay unchanged.
- Skew tolerant.
- Other two times are worsened by a clock skew time.

$$t_{pd} \leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$

$$t_{cd1}, t_{cd2} \geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\rm borrow} \leq \frac{T_c}{2} - \left(t_{\rm setup} + t_{\rm nonoverlap} + t_{\rm skew}\right)$$





#### **Two-Phase Clocking**

- If setup times are violated, increase clock period.
- If hold times are violated, chip fails at any speed.
- A conservative solution to guarantee hold times is to use 2phase latches with big nonoverlap times.
- With large t<sub>nonoverlap</sub>, the inequality will always be true.

For latch-based sequencing:  $t_{cd1}$ ,  $t_{cd2} \ge t_{hold} - t_{ccq} - t_{nonoverlap}$ 



#### **Summary**

- Flip-Flops:
  - Very easy to use, supported by all tools
- 2-Phase Transparent Latches:
  - Lots of skew tolerance and time borrowing

© Tzi-Dar Chiueh