第一章 误差

- 1. 误差的来源
- 2. 浮点数、误差、误差限和有效数字
- 3. 相对误差和相对误差限
- 4. 误差的传播
- 5. 在近似计算中需要注意的一些现象

误差

- 模型误差
 - 。实际问题用数学模型刻画时要忽略一些因素,从而造成数学的量 u_1 和实际的量u的误差—模型误差.
 - 。人口增长模型: y'(t) = ry
- 数据误差
 - 。数学模型用到的数据,可能是观测到的(称观测误差),也可能是计算得到的,这种数据误差也造成数学量的近似 u_2 .
 - 。地球重力加速度:约9.8 m/s^2

误差

- ▶ 方法误差-截断误差
 - 。解数学问题的方法给出的解也是近似的u₃,它与数学问题 的准确解的差叫方法误差,也叫截断误差.

$$f(x) \approx P_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

。 截断误差:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$$

- 舍入误差
 - 。近似的方法计算数据有误差的数学问题要用有限位数字, 这就要舍入,计算得 u_4 .由此引起的误差称舍入误差.

$$R = \pi - 3.14159 = 0.0000026 \cdots$$

浮点数

- 规格化浮点数
 - $x = \pm 0$. $\alpha_1 \alpha_2 \cdots \alpha_t \times \beta^J$, $\alpha_1 \neq 0$, $0 \leq \alpha_j < \beta$
 - 。阶(亦称指数):J整数,L ≤ J ≤ U
 - 尾数: $w = 0. \alpha_1 \alpha_2 \cdots \alpha_t$
 - 。 计算机常用的双精度浮点数:

$$\beta = 2, t = 52, -1023 \le J \le 1023$$

- ▶ 基-进制
 - β称为基
 - 。 这样表示的数称为β进制数
- ▶上溢、下溢

误差

> 误差

- 。准确数x,近似数 x^*
- 。 误差 $e^* = x^* x$ 、误差限 $e^* \ge |x^* x|$
- $\circ x \leq x^* + \varepsilon^*$

准确数	近似数	误差	误差限
X	x^*	$e^*=x^*-x$	$\varepsilon^* \ge x^* - x $
π =3.141 592 65	3	-0.14	0.15,0.5,
	3.14	-0.001 5	0.001 6,0.005,
	3.141 6	0.000 007	0.000 008,

四舍五入

。十进制数通常取若干位为其近似:若后位为4则舍,为5则进1。

有效数字

- ▶ 有效数字——准确到该位
 - 。如果 x^* 的误差限是某位的半个单位,该位到 x^* 的第一位非零数字共n位,则称 x^* 有n位有效数字或 x^* 准确到该位
 - x^* 可表成 $x^* = \pm 0$. $\alpha_1 \alpha_2 \cdots \alpha_t \cdots \times 10^p$, (1.1) $\alpha_1 \neq 0, |x^* x| \leq \frac{1}{2} \times 10^{p-n}$ 则 x^* 有n位有效数字
- 四舍五入所得近似数从第一位非零数字到最后一位 都是有效数字
- 若误差为0,则认为有效数字有任意位

相对误差

▶ 相对误差

$$e_r^* = \frac{x^* - x}{x}, \quad x \neq 0, \quad \vec{x}e_r^* = \frac{x^* - x}{x^*}$$

▶ 相对误差限

$$\circ \ \varepsilon_r^* \ge \left| \frac{x^* - x}{x} \right|, \ \ \overline{\mathfrak{R}} \varepsilon_r^* \ge \left| \frac{x^* - x}{x^*} \right|$$

准确数	近似数	相对误差	相对误差限
x	<i>x</i> *	e_r *=(x *- x)/ x 可以	$\varepsilon_r^* \ge (x^*-x)/x $ 或
		$e_r^*=(x^*-x)/x^*$	$\varepsilon_r^* \ge (x^*-x)/x^* $
С	2.997 925×10 ¹⁰		3.3×10 ⁻⁷ ≈3×10 ⁻⁷
	3.00×10^{10}		0.00067≈0.0007
π =3.14159265	3.1416	2.3×10 ⁻⁶	2.4×10 ⁻⁶ ≈2×10 ⁻⁶

相对误差

- 。 设数*x**可表成(1.1),
- - $|x^* x| \le \frac{1}{2} \times 10^{p-n}$,
 - $|x^*| \ge \alpha_1 \times 10^{p-1}$,相除.
- - $|x^* x| \leq \varepsilon_r^* |x^*|$,
 - $|x^*| \le (\alpha_1 + 1) \times 10^{p-1}$,相乘。
- 。例: e=2.71828...,取三位有效数字 $x^*=2.72$,相对误差限 $1/(2\times2)\times10^{1-3}=0.0025$;由定义,相对误差为0.0006....(如果再由0.0025≤1/(2×3)×10¹-²则 x^* 有二位有效数字,估少了一位数字)

计算机精度

- 计算机表示数的误差
 - 数x = 0. $a_1 a_2 \dots a_t \dots \times 10^p$ 引入计算机时四舍五入表示成t位尾数 $fl(x) = x^* = 0$. $a_1 a_2 \dots a_t \times 10^q$,q = p或p + 1
 - 令 $\varepsilon = (fl(x) x)/x$ 则 $|\varepsilon| \le eps \equiv \frac{1}{2} \times 10^{1-t}$, $fl(x) = x(1+\varepsilon)$
 - 。数x在t位尾数,β进制,舍入的计算机系统表为fl(x)则有 $fl(x) = x(1+\varepsilon)$, $|\varepsilon| \le eps \equiv \frac{1}{2} \times \beta^{1-t}$
- 计算机的精度
 - $\kappa eps \equiv \frac{1}{2} \times \beta^{1-t}$ 为该计算机的精度
 - 双精度浮点数的精度为 $2^{-52} \approx 2 \times 10^{-16}$

误差的传播

- 用微分来估计误差和误差限
 - 误差 $e^* = x^* x \approx dx$
 - 相对误差 $e_r^* \approx d \ln x$, $d_r x = \left| \frac{dx}{x} \right| = |d \ln x|$
- 近似数参与运算时结果的误差
 - 。四则运算时结果误差的估计
 - $d(x \pm y) = dx \pm dy$
 - $d(x \times y) = ydx + xdy$
 - $d\left(\frac{x}{y}\right) = \frac{ydx xdy}{y^2}$
 - 计算函数时误差的估计df(x) = f'(x)dx

误差的传播:相对误差

- 近似数参与运算时结果的误差
 - 。四则运算时结果相对误差的估计

•
$$d_r(x+y) = \left| \frac{dx+dy}{x+y} \right| \le \left| \frac{dx}{x} \frac{x}{x+y} + \frac{dy}{y} \frac{y}{x+y} \right| \le \max(d_r x, d_r y)$$

- $d_r(x-y) \le \frac{|x|d_rx+|y|d_ry}{|x-y|}$, x,y同号(相近的数相减会放大误差!)
- $d_r(xy) \le d_r x + d_r y$
- $d_r(x/y) \le d_r x + d_r y$
- 。计算函数时结果相对误差的估计
 - $d \ln f(x) = f'(x) dx/f(x)$
 - $d_r f(x) = \left| \frac{x f'(x)}{f(x)} \right| d_r x$

误差的传播:例

▶ 例 设 $a = 1.21 \times 3.65 + 9.81$,其中每个数据的绝对 误差限为0.005,求α的绝对误差限和相对误差限 $da = d(1.21 \times 3.65) + d9.81$ $|da| \le 1.21 \times 0.005 + 3.65 \times 0.005 + 0.005$ $\approx 0.029 \ 3 \le 0.03$ $d_r a \approx \max(d_r (1.21 \times 3.65), d_r 9.81)$ $\approx \max(d_r 1.21 + d_r 3.65, d_r 9.81)$ $= \max(d \ 1.21/1.21 + d \ 3.65/3.65, d \ 9.81/9.81)$ $= \max(0.005/1.21 + 0.005/3.65, 0.005/9.81)$ $\approx \max(0.0055, 0.0005) = 0.0055$ • 设 $y = x^n$, y的相对误差与x的相对误差之间的关系: $d_r y = |d(\ln y)| = |nd(\ln x)| = nd_r x$

浮点运算的误差

- ▶ 计算机中浮点运算的误差 在一个t位尾数舍入的计算机系统中,两个机器数 x,y作四则运算。(+、 - 、 × 、 ÷),记为x。y ,结 果舍入得到fl(xοy)则有fl(xοy) = (xοy)(1 + ε),|ε| ≤ eps (计算机精度)
- 向前误差分析
- 向后误差分析
 - 把舍入误差归结为数据引出的误差

经验谈

- ▶ 在近似计算中需要注意的一些事项
 - 。避免相近数相减
 - 。 防止大数'吃'小数
 - 。避免分母为零或比分子小得多
 - 。注意简化计算步骤,减少运算次数
 - 秦九韶算法
 - 。选用稳定的公式
- 计算问题的敏感性与算法的稳定性

- \rightarrow 当x接近于零时 $\frac{1-\cos x}{\sin x}$ 应变换为 $\frac{\sin x}{1+\cos x}$ \rightarrow 当x充分大时 $\sqrt{1+x}-\sqrt{x}$ 应变换为 $\frac{1}{\sqrt{1+x}+\sqrt{x}}$
- ▶ 计算多项式 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ **秦九韶算法** $P(x) = (\cdots((a_n x + a_{n-1})x + a_{n-2})x + \cdots + a_1)x + a_0$
- ▶尾数是3位十进制数字的浮点系统中运算求解二元一次方程组

$$\begin{cases} 0.000 \ 1x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases}$$

- 顺序消元 $-10\ 000x_2 = -10\ 000, x_2 = 1, x_1 = 0$
- 方程交换再消元 $\begin{cases} x_1 + x_2 = 2 \\ 0.000 \ 1x_1 + x_2 = 1 \end{cases}$, $x_2 = 1$, $x_1 = 1$

例

- ▶ 求 $x^2 56x + 1 = 0$ 的根. 取5位数字
 - 。准确解 $x_1 = 55.982 137 159 \dots$, $x_2 = 0.017 862 840 \dots$

•
$$x_1 = 28 + \frac{282 - 1}{2} = 28 + 27.982 = 55.982$$
,

•
$$x_2 = 28 - \frac{282 - 1}{2} = 28 - 27.982 = 0.018$$

•
$$x_1$$
 \exists \bot , $x_2 = \frac{1}{x_1} = \frac{1}{55.972} = 0.01786288$

- ▶ 在三位尾数的计算机上计算 $x = a_0 + a_1 + a_2 + \cdots + a_{100}$, $a_0 = 0.1$, $a_1 = a_2 = \cdots = a_{100} = 0.0001$
 - $a_0 + a_1$ 得0.1,再加 a_2 还是0.1,…,x = 0.1
 - 如果从后往前加,0.0001+0.0001=0.0002,…最后x = 0.1 + 0.01 = 0.11