Lógica El

	6		
	— 1º Teste — 18 de março de 2019 — duração: 2 horas —		
nome: .	número:		
	Grupo I		
(V) ou -0,25 v	rupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indica falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuíd valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assin vamente. A cotação total neste grupo é no mínimo 0 valores.	da será 1	valor,
		V	F
1.	Para todas as fórmulas φ e ψ , se ψ é uma tautologia, então $\varphi \to \psi$ é uma tautolog	gia. □	
2.	Quaisquer que sejam as fórmulas φ e ψ , se φ e ψ são FNDs então $\varphi \wedge \psi$ é uma FN	IC. □	
3.	Para toda a fórmula φ , a sequência de duas letras ")^" não ocorre em φ .		
4.	Para toda a fórmula φ , se $var(\varphi) = \{p_{2019}\}$, então $\{p_2, p_0 \vee \neg p_2\} \not\models \varphi$.		
5.	Quaisquer que sejam Γ e Δ conjuntos de fórmulas, se Γ e Δ são inconsistentes, ent $\Gamma\cap\Delta$ é inconsistente.	tão 🗆	
6.	Existe uma infinidade de valorações que satisfazem a fórmula $p_0 \wedge \neg p_1$.		
	Grupo II		
_	nda a cada uma das questões deste grupo no espaço disponibilizado a seguir à que justificações.	stão, sem	apre-
	Dê exemplo de fórmulas φ e ψ tais que o número de subfórmulas de φ é inferior ubfórmulas de $\varphi[\psi/p_1]$.	ao núme	ero de
R	Resposta:		
	Considere a fórmula $\varphi=(p_1\to p_2)\wedge \neg p_2$. Dê exemplo de valorações distintas $v_1(\varphi)=v_2(\varphi)=1$.	$v_1 \in v_2 a$	is que
R	Resposta:		

3. Indique uma forma normal disjuntiva logicamente equivalente à fórmula $(p_1 \to (\bot \lor p_3)) \land \neg (p_2 \land \neg p_3)$.

Resposta:

4. Seja $\Gamma = \{ \neg p_4 \to p_3, p_1 \lor \neg p_4, \bot \leftrightarrow (\neg p_1 \lor p_3) \}$. Apresente um $i \in \mathbb{N}_0$ tal que o conjunto $\Gamma \cup \{p_i\}$ é inconsistente.

Resposta:

Grupo III

- 1. Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $p_0 \notin \varphi[\neg p_1/p_0]$.
- 2. Sem justificar, defina por recursão estrutural uma função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}_{\{\bot,\to,\wedge\}}$ tal que $f(\varphi) \Leftrightarrow \varphi$, para todo $\varphi \in \mathcal{F}^{CP}$. $(\mathcal{F}^{CP}_{\{\bot,\to,\wedge\}}$ representa o conjunto das fórmulas com conetivos em $\{\bot,\to,\wedge\}$.)
- 3. Considere a função $f: \mathcal{F}^{CP} \to \{0,1\}$ definida recursivamente por:
 - (i) $f(p_i) = 1$ $(i \in \mathbb{N}_0)$.
- (ii) $f(\perp) = 0$.

(iii) $f(\neg \varphi) = f(\varphi)^2$.

- (iv) $f(\varphi \Box \psi) = f(\varphi) \times f(\psi) \quad (\Box \in \{\land, \lor, \to, \leftrightarrow\}).$
- (a) Determine $f(\neg p_1 \to (p_5 \lor \bot))$. Justifique.
- (b) Diga, justificando, se f é uma valoração.
- 4. Seja $\Gamma = \{(p_1 \land \neg p_2) \to \neg p_3\}$. Em cada uma das seguintes alíneas, diga, justificando, se $\Gamma \models \varphi$:
 - (a) $\varphi = \neg p_1 \to p_3$.
 - (b) $\varphi = p_3 \to (\neg p_1 \lor p_2).$
- 5. Mostre que $\{\neg\}$ não é um conjunto completo de conectivos.

Cotações	Ι	II	III
Cotações	6	1+1+1+1	2+2+2+2+2