SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE

By Anup Joseph

Background

A large CNN model has fundamental limitations in deploylment. To solve this problem a variety of heavily engineered models with small sizes have emerged.

Advantages of smaller CNNs

LESS OVERHEAD WHEN EXPORTING NEW MODELS TO CLIENTS

FEASIBLE FPGA AND EMBEDDED DEPLOYMENT

Architectural Design Strategies

Replace 3x3 filters with 1x1 filters

1x1 filters have 9x fewer parameter than 3x3 filters

Decrease the number of input channels to 3x3 filters

To decrease the total number of parameters its important to decrease the number of input channels to the 3x3 filters

Downsample late in the network so that convolution layers have large activation maps.

The Fire module

Fire module consists of two sections

- squeeze layers
- expand layers

The Fire module has three tunable hperparameters

- no. of filters in the squeeze layer(all 1x1)
- no. of 1x1 filters in the expand layer
- no. of 3x3 filters in the expand layer

Configurations

Training Settings

- Learning Rate 0.4 and then linearly decrease throughout the network.
- ReLU is applied to activations from squeeze and expand layers.
- The number of filters per fire module are gradually increased to the end of the network
- The arcitecture was implemeted using the Caffe2 framework but ports foor most popular frameworks exists

PAPER PRESENATIONS August 2021

Model Architecture

PAPER PRESENTATION — August 2021

Results

CNN architecture	Compression Approach	Data	Original →	Reduction in	Top-1	Top-5
		Type	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	lx	57.2%	80.3%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240 \mathrm{MB} \rightarrow 27 \mathrm{MB}$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	240MB → 6.9MB	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

Squeezenets outperform all model compressions approaches before it with the smallest model being 0.5MB registering a 510x decrease in model size compared to AlexNet

Hyperparameters

SR - the ratio between the no. of filters in squeeze to the no of filters in expand.

PAPER PRESENTATION — August 2021

Squeezenet variants

Architecture	Top-1 Accuracy	Top-5 Accuracy	Model Size
Vanilla SqueezeNet	57.5%	80.3%	4.8MB
SqueezeNet + Simple Bypass	60.4%	82.5%	4.8MB
SqueezeNet + Complex Bypass	58.8%	82.0%	7.7MB

The bypass connections are same as skip connections in the Resnet architecture.

The simple bypass is just a wire i.e. it adds the output of past layer as an input further in the network.

The complex bypass on the other hand has a 1x1 convolution with the number of filters set equal to the number of output channels that are needed.

