

Trabajo PBL Diseño de estructura del sistema motriz de un pequeño vehículo de exploración planetaria

- Introducción.
- Objetivo.
- Requisitos Funcionales.
- Diseño 3D

Introducción

Un Rover, también conocido como astromóvil, es un vehículo de exploración espacial diseñado para moverse sobre la superficie de un planeta u otro objeto astronómico. Algunos astromóviles han sido diseñados para transportar tripulantes durante vuelos espaciales tripulados; otros han sido vehículos robóticos parcial o completamente autónomos. Los astromóviles suelen llegar a la superficie del planeta en una nave espacial tipo aterrizador.

Figura 1.1 Ejemplo de vehículos Rover: Sojourner (a). Spirit, Opportunity (b). Curiosity (c).

■ Introducción

Figura 1.2 Ejemplos de vehículos Rover

■ Sistema de suspensión Rocker Bogie

El sistema de la suspensión de bogie basculante (rocker bogie), fue diseñado específicamente para los vehículos de la exploración del espacio y cuyo desarrollo cuenta con una gran tradición desde el punto de vista del diseño. El término "basculante" describe el aspecto oscilante de las articulaciones de los ejes del sistema de ruedas que presentan cada lado del sistema de suspensión y equilibra el bogie cuando estos basculantes están conectados entre sí y el chasis del vehículo a través de un diferencial selectivamente modificado.

Figura 1.3 Sistema de suspensión Rocker Bogie

■ Sistema de suspensión Rocker Bogie

Figura 1.3 Sistema de suspensión Rocker Bogie del Spirit

■ Sistema de suspensión Rocker Bogie

Figura 1.4 Sistema de suspensión Rocker Bogie del Curiosity

Sistema de suspensión Rocker Bogie. Ruedas

El vehículo tiene seis ruedas, cada una con su propio motor individual. Las dos ruedas delanteras y dos traseras también tienen motores de dirección individuales (1 cada una). Esta capacidad de dirección permite que el vehículo pueda girar en punto fijo, un total de 360 grados.

Figura 1.5 Tipos de ruedas

Sistema de suspensión Rocker Bogie. Diferencial

Los modelos de rover Spirit y Opportunity incluyen un diferencial universal integrado en su sistema de suspensión rocker-bogie

Figura 1.6 Diferencial universal

Sistema de suspensión Rocker Bogie. Diferencial

El modelo Curiosity incluye un sistema diferencial por barra integrado en su sistema de

suspensión rocker-bogie

Figura 1.7 Diferencial por barra

■ Sistema de suspensión Rocker Bogie. Materiales

Metal	Use
<u>Titanium</u> tubing	Form Curiosity's legs
Titanium springs	Add cushioning within Curiosity's wheels
Titanium bridle	Part of the parachute deployment mechanism used during the rover's landing sequence
Aluminum	Curiosity's wheels
Aluminum mortar	Part of the parachute deployment mechanism. Hand forged from an aluminum billet
Aluminum honeycomb	Formed the core of Atlas V, Curiosity's launch vessel
Bronze	DU® metal-polymer bearings are critical components in the rover's drill.
Copper	Curiosity collects samples in cells, which are sealed in a pyrolysis oven by pressing the cell's copper collar into a knife-edge seal with a force of up to 250 pounds. The sample is then heated to 1100°C for analysis.

Lead	Curiosity is powered, in part, by a Radioisotope Thermoelectric Generator that will use PbTe/TAGS thermocouples produced by Teledyne Energy Systems.
Tellurium	
Germanium	
Antimony	
Silver	
Stainless steel	Stainless steel gas generators provided the high- pressure gas used to propel Curiosity's parachute from the spacecraft.
Rhenium	A RD AMROSS RD-180 booster engine powered the propulsion system used to launch Atlas V. Rhenium is alloyed in the jet turbine.
Tantalum	630 tantalum multianode capacitors are responsible for powering the ChemCam laser module onboard Curiosity
Tungsten	The back shell of Curiosity's atmospheric entry vehicle released two sets of detachable tungsten weights in order to alter the spacecraft's center of mass as it approached Mars. Individual ballasts

Figura 1.8 Materiales

■ Sistema de suspensión Rocker Bogie. Materiales

Gallium	Photovoltaic cells layered with minor and semiconductor metals provide Curiosity with power during the day.
Indium	
Germanium	
Silicon	Silicon chips etched with more than 1.24 million names are aboard Curiosity.
Copper	A penny minted in 1909 (when they were still mostly copper) is onboard to help scientists calibrate the cameras currently sending images back to Earth.
<u>Tin</u>	
Zinc	

Figura 1.9 Materiales

Objetivo del trabajo

El objetivo del trabajo es la definición de un modelo 3D paramétrico de un sistema motriz de un pequeño vehículo de exploración planetaria que incluya:

- Estructura chasis
- Rocket-Bogie
- Diferencial
- Ruedas
- Motores

Todo el sistema deberá incluir las uniones necesarias para su montaje

■ Requisitos Funcionales

Para la realización del modelo se debe tener en cuenta los siguientes requisitos funcionales:

- FR1 = Minimizar la masa de la estructura del sistema completo.
- FR2 = Permitir diferentes tipos de diferenciales.
- FR3 = Control de la forma en planta del chasis
- FR4 = Controlar los tipos de ruedas en función del tamaño.
- FR5 = Permitir la unión de paneles solares.
- FR6 = Permitir el montaje en una sola dirección.
- FR7 = Definición de geometría en función de tipo de material.

■ Diseño 3D

Para la realización del modelo 3D se debe tener en cuenta los siguientes elementos de diseño:

- Definición de parámetros.
- Funciones entre parámetros.
- Leyes de diseño.
- Control de valores (Chequeos).
- Tablas de diseño
- Parámetros publicados.

■ Diseño 3D

La entrega final consistirá en:

- Modelo 3D paramétrico
- Plano de conjunto del modelo TAD
- Video de la simulación cinemática de funcionamiento
- Informe del trabajo
- Presentación del trabajo y Poster