Algorithmik zur Optimierung in neuronalen Netzwerken

Gradient Descent und Backpropagation

Tim Hilt

19. Mai 2020

Hochschule Esslingen — University of Applied Sciences

Gliederung

Supervised Learning

Künstliche Neuronale Netze

Künstliches Neuron

Architektur eines Neuronalen Netzes

Training

Gradient Descent

Backpropagation

Umsetzung in Python (mit Keras)

Supervised Learning

Machine Learning Workflow

Abbildung 1: Machine Learning Workflow [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Definition Supervised Learning

Bei Supervised Learning ist jeweils ein Datensatz gegeben, der *gelabelte* Beispiele enthält. Dabei wird das i-te Beispiel jeweils mit einem Vektor \mathbf{x}_i und das Label mit y_i benannt. Die Aufgabe des lernenden Algorithmus ist es, aufgrund der Beispielmatrix \mathbf{X} auf die Beispiellabel \mathbf{y} zu schließen. Hierzu wird ein sog. *Modell* trainiert, welches angewendet auf bisher unbekannte Daten $\mathbf{x}_{\text{unbekannt}}$ passende Werte $y_{\text{unbekannt}}$ vorhersagen kann. [2]

Beispiel: Datensatz für Supervised Learning

Beispiel: Datensatz für Supervised Learning

- · Insgesamt 70000 Bilder
- · Bildgröße: 28 × 28 Pixel

- 150

- 100

- · Abgebildet: Kleidungsstücke
- · Ouelle: Zalando Research [4]

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Künstliche Neuronale Netze

Künstliches Neuron

Künstliches Neuron

Künstliches Neuron

$$z = \sum_{i} x_i w_i + b = \mathbf{x} \mathbf{w} + b$$

 $\Rightarrow z$ wird für spätere Parameteroptimierung benötigt

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Architektur eines Neuronalen Netzwerks

Architektur eines Neuronalen Netzwerks

Deep Neural Network

Target-Architektur zur Klassifikation von MNIST

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Output eines neuronalen Netzwerks berechnen

Gegeben:

- \cdot Inputvektor ${f x}$
- Gewichtsmatrizen $\mathbf{W}^{2...4}$
- Biasvektoren $\mathbf{b}^{2...4}$

$$\begin{aligned} \mathbf{a^1} &= \mathbf{x} \\ \mathbf{a^2} &= \sigma(\mathbf{W^2}\mathbf{a^1} + \mathbf{b^2}) \\ \mathbf{a^3} &= \sigma(\mathbf{W^3}\mathbf{a^2} + \mathbf{b^3}) \\ \mathbf{a^4} &= \sigma(\mathbf{W^4}\mathbf{a^3} + \mathbf{b^4}) = \widehat{\mathbf{y}} \end{aligned}$$

Training

Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^2$$

Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^{2}$$

C(w, b)	Cost in Abhängigkeit von $\it w$ und $\it b$
m	Anzahl der Trainingsinstanzen
y(x)	Gewünschter Output wenn x Input ist
$\hat{y}(x)$	Tatsächlicher Output des Netzwerkes

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η

- Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η
 - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab

- \cdot Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w;\partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η
 - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab
 - 4. Aktualisiere die alten Parameter durch das Ergebnis des letzten Schrittes

$$w_{k+1} = w_k - \eta \frac{\partial C}{\partial w_k}$$

$$b_{k+1} = b_k - \eta \frac{\partial C}{\partial b_k}$$

Backpropagation — Einleitung

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}; \frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

Backpropagation — Einleitung

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}; \frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

Beispiel:

Gegeben:

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

Gesucht:

$$\frac{\partial f}{\partial a}$$

Backpropagation — Einleitung

Beispiel:

Gegeben:

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

Gesucht:

$$\frac{\partial f}{\partial a}$$

Analytische Lösung

Umformung zu Summanden:

$$f = (a + b)^{2} \cdot (c + d)^{2}$$
$$f = (a^{2} + 2ab + b^{2}) \cdot (c + d)^{2}$$

Ableitung:

$$\frac{\partial f}{\partial a} = (2a + 2b) \cdot (c + d)^2$$

Backpropagation — Idee

· Problem:

- · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
- · Sind schwer zu implementieren
- · Sind ineffizient

Backpropagation — Idee

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - · Sind schwer zu implementieren
 - Sind ineffizient
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

Backpropagation — Idee

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - Sind schwer zu implementieren
 - · Sind ineffizient
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - Sind schwer zu implementieren
 - · Sind ineffizient
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

 $g = a + b$

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - · Sind schwer zu implementieren
 - · Sind ineffizient
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$
$$g = a + b$$
$$h = c + d$$

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - · Sind schwer zu implementieren
 - Sind ineffizient
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$
$$g = a + b$$
$$h = c + d$$
$$i = g \cdot h$$

- · Problem:
 - · Analytische Verfahren kommen bei komplizierten Funktionen an ihre Grenzen
 - Sind schwer zu implementieren
 - Sind ineffizient.
- · Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g = a + b$$

$$h = c + d$$

$$i = g \cdot h$$

$$f = i^{2}$$

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g = a + b$$

$$h = c + d$$

$$i = g \cdot h$$

$$f = i^{2}$$

Gesucht: $\frac{\partial f}{\partial a}$

Gesucht:
$$\frac{\partial f}{\partial a}$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial i} \cdot \frac{\partial i}{\partial gh} \cdot \frac{\partial gh}{\partial g} \cdot \frac{\partial g}{\partial a}$$

Gesucht:
$$\frac{\partial f}{\partial a}$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial i} \cdot \frac{\partial i}{\partial gh} \cdot \frac{\partial gh}{\partial g} \cdot \frac{\partial gh}{\partial g}$$

$$\frac{\partial f}{\partial i} = 2 \cdot 21 = 42;$$
 $\frac{\partial i}{\partial gh} = 1;$ $\frac{\partial gh}{g} = h = 7;$ $\frac{\partial g}{\partial a} = 1$ $\Rightarrow 7 \cdot 42 = 294$

Umsetzung in Python (mit Keras)

Zuvor beschriebene Architektur

```
from tensorflow import keras
model = keras.models.Sequential([
  keras.lavers.Flatten(input shape=(28, 28)).
  keras.layers.Dense(30. activation='sigmoid').
  keras.layers.Dense(15, activation='sigmoid'),
  keras.lavers.Dense(10. activation='sigmoid').
1)
model.compile(loss='mse',
              optimizer=keras.optimizers.SGD(learning rate=.8).
              metrics=['accuracy'])
history = model.fit(X_train, y_train_cat, epochs=10,
                    validation data=(X valid. v valid cat))
```

Verlauf während des Trainings

Optimierte Architektur

- · Vorteil: Schnellere Konvergenz
- · Verwendung von optimierter Cost-, Activation- und Gradient-Descent-Funktion

Verlauf während des Trainings

- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2019.
- BURKOV, Andriy. The hundred-page machine learning book. Andriy Burkov Quebec City, Can., 2019.
- LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*. 1998, Jg. 86, Nr. 11, S. 2278–2324.
- XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*. 2017.