ZESTAW ZADAŃ IV

Zadanie 1 Sprawdź, że podane funkcje spełniają podane równania różniczkowe:

- (a) $y = e^{-3x}$, równanie: y' + 3y = 0, (b) $y = 3\cos(5x) + 5\sin(5x)$, równanie y'' + 25y = 0,
- (c) $y = 3e^{-x} + 5xe^{-x}$, równanie: y'' + 2y' + y = 0,
- (d) $y = e^{-2x}(3\cos(3x) + 2\sin(3x))$, równanie: y'' + 4y' + 13y = 0.

Zadanie 2

- (a) Zapisz wzór Taylora dla funkcji $f(x) = \ln(x+1)$ w okolicy $x_0 = 0$ z dokładnością do n wyrazów; wykorzystaj otrzymany wzór do obliczenia przybliżenia $\ln 2$ (wartość wskazana przez kalkulator: 0,693147),
- (b) Zapisz wzór Taylora dla funkcji $f(x) = \frac{2x}{2-x}$ z dokładnością do dwóch wyrazów w okolicy $x_0 = 1$; wykorzystaj otrzymany wzór do przybliżenia wartości funkcji dla x = 0.9,
- (c) w oparciu o wzór Taylora przybliż funkcję $y = \sqrt{8 x^2}$ w okolicy $x_0 = 2$ za pomocą paraboli; sprawdź dokładność przybliżenia w punktach x = 2,5 oraz x = 2,1.

Zadanie 3 W oparciu o regule de l'Hospitala oblicz poniższe granice:

(a)
$$\lim_{x\to 2} \frac{x^3 + 5x^2 - 2x - 24}{x^3 - 2x^2 - 3x + 6}$$
, (b) $\lim_{x\to 0} \frac{x \sin x}{e^{-2x} - 1 + 2x}$, (c) $\lim_{x\to 0} \frac{\sin(x^2)}{\ln(\cos x)}$, (d) $\lim_{x\to \infty} \frac{e^x}{x^2}$.