Hopf Algebras Acting on Quantum Planes

Brandon Mather

1 Hopf Algebra Definitions

Definition 1.1. A Hopf Algebra, $(H, \nabla, \eta, \triangle, \varepsilon, S)$, is a bialgebra H over a field \mathbb{k} with an antipode $S: H \to H$ where the bialgebra has product $\nabla: H \otimes H \to H$, unit $\eta: \mathbb{k} \to H$, coproduct $\Delta: H \to H \otimes H$, counit $\varepsilon: H \to \mathbb{k}$ such that the following diagrams commute

For the sake of brevity, we write in general that $\triangle(h) = \sum h_{(1)} \otimes h_{(2)}$, this is called Sweedler notation.

One can note that these diagrams are self-dual, changing the directions of the morphisms gives another diagram. Then an immediate question is when is the dual of a Hopf algebra again a Hopf algebra?

Definition 1.2. Let V be a \Bbbk vector space and V^* its corresponding dual, then they determine a non-degenerate bilinear form $\langle , \rangle : V^* \otimes V \to \Bbbk$ by $\langle \phi, v \rangle = \phi(v)$.

Definition 1.3. If V and W are \mathbb{k} vector spaces and $f: V \to W$ is \mathbb{k} -linear, then the transpose of f is $f^*: W^* \to V^*$ given by

$$f^*(\phi)(v) = f(\phi(v)).$$

Definition 1.4. Let $(C, \triangle, \varepsilon)$ be a coalgebra, then C^* is an algebra with multiplication $\triangle^* : C^* \otimes C^* \to C^*$ and unit $\varepsilon^* : \mathbb{k} \to C^*$.

Note that Δ^* , by definition 1.3, maps from $(C \otimes C)^*$, but we can restrict the map to the domain $C^* \otimes C^*$ to meet the criteria of being a product.

In a similar vein, if we start with an algebra (A, ∇, η) , then the transpose of the product ∇ is $\nabla^* : A^* \to (A \otimes A)^*$. But unless A is finite dimensional, we cannot know that $\nabla^*(A^*) \subseteq A^* \otimes A^*$, which is required for ∇^* to be a coproduct. This is exactly the requirement for A^* to be a coalgebra. This motivates the following definition.

Definition 1.5. The finite dual of an algebra H is $H^{\circ} = \{ f \in H^* \mid f(I) = 0 \text{ for some ideal } I \text{ of } A \text{ where } \dim H/I < \infty \}.$

If H is finite-dimensional, then H° is exactly H^{*} .

Proposition 1.6. If A is an algebra, then A° is a coalgebra with coproduct $\nabla^* : A^{\circ} \to (A \otimes A)^{\circ} = A^{\circ} \otimes A^{\circ}$ and counit $\eta^* : A^{\circ} \to \mathbb{k}$.

Proposition 1.7. As proved in [13], if H is a Hopf algebra, H° is also a Hopf algebra with product, unit, coproduct, counit and antipode \triangle^* , ε^* , ∇^* η^* , S^* respectively. Explicitly, $\forall \phi, \psi \in H^{\circ}$ and all $h, g \in H$,

$$\langle \nabla^*(\phi\psi), h \rangle = \langle \phi \otimes \psi, \triangle(h) \rangle, \quad \langle 1, h \rangle = \varepsilon(h), \quad \langle \triangle^*(\phi), h \otimes g \rangle = \langle \phi, \nabla(hg) \rangle, \quad \varepsilon^*(\phi) = \langle \phi, 1 \rangle,$$
$$\langle S^*\phi h \rangle = \langle \phi, Sh \rangle.$$

Example 1.8. Let G be any group and denote $kG = \{\sum_{i=0}^{\infty} a_i g_i \mid a_i \in k, g_i \in G, n \in \mathbb{N}\}$ The kG is a Hopf algebra called the group algebra of G. It has the product

$$\left(\sum_{i=-0}^{n} a_{i} g_{i}\right) \left(\sum_{j=0}^{m} b_{j} g_{j}\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} b_{j} (g_{i} g_{j})$$

where $a_i \cdot b_j$ is the product in \mathbb{k} and $g_i \cdot g_j$ is the product in the group. The unit is $1_{\mathbb{k}}1_G$ where $1_{\mathbb{k}}$ is the unit of \mathbb{k} and 1_G is the identity element of the group. The coproduct is defined by $\Delta(g) = g \otimes g$ extended linearly to all of $\mathbb{k}G$, and the counit is $\varepsilon(g) = 1_{\mathbb{k}}$, again extended linearly. Finally, the antipode is $S(g) = g^{-1}$.

Note that group algebras are always cocommutative, in other words $\nabla(h) = \tau \circ \nabla(h)$ for all $h \in \mathbb{k}G$, where $\tau(a \otimes b) = b \otimes a$, and are commutative if and only if G is abelian.

Definition 1.9. For a Hopf algebra H, $G(H) = \{g \in H \mid \triangle g = g \otimes g\}$ is called the set of grouplike elements of H.

Example 1.10. Let \mathfrak{g} be a Lie algebra and $U(\mathfrak{g})$ the corresponding Universal Enveloping algebra. Then $U(\mathfrak{g})$ is naturally an algebra, but also has a Hopf algebra structure. The coproduct is given by $\Delta x = x \otimes 1 + 1 \otimes x$, $\varepsilon(x) = 0$ and S(x) = -x.

Definition 1.11. For a Hopf algebra H, $P(H) = \{x \in H \mid \Delta x = x \otimes 1 + 1 \otimes x\}$ is called the set of primitive elements of H. Generally, one can define the skew-primitive elements as $P_{a,b} = \{x \in H \mid \Delta x = x \otimes a + b \otimes x\}.$

Example 1.12. In his seminal book, [16], Sweedler defined a 4-dimensional, non-commutative, non-cocommutative Hopf algebra

$$H_4 = \langle g, x \mid g^2 = 1, x^2 = 0, gx = -xg \rangle$$

with operations

$$\triangle g = g \otimes g, \quad \triangle x = x \otimes 1 + g \otimes x, \quad \varepsilon(g) = 1, \quad \varepsilon(x) = 0,$$

$$S(g) = g^{-1} \quad S(x) = -xg^{-1}.$$

We will see in section 3 a generalization of this to Taft algebras, which were introduced by Taft in [17].

Definition 1.13. If H is a Hopf algebra, then H^{op} is a Hopf algebra with the same structure except the opposite multiplication, $\nabla^{op}(hg) = \nabla(gh)$. As well, H^{cop} is a Hopf algebra with the same structure as H but with the opposite coproduct, $\Delta^{cop}(h) = \sum h_{(2)} \otimes h_{(1)}$.

Definition 1.14. A left action of a Hopf algebra on a vector space V is a tuple (α, V) so that $\alpha: H \otimes V \to V$ is a map satisfying the diagrams

In this case, V is called a left Hopf-module.

For the rest of this paper we suppress the action α and instead write $\alpha(h \otimes v) = {}^h v$.

Definition 1.15. A right coaction, ρ , of H on V is a tuple (ρ, V) with $\rho: V \to V \otimes H$ so that the following commute

In this case, V is called a right Hopf-comodule.

Definition 1.16. When an algebra A is a left Hopf-module with action α , we call it a left Hopf-module algebra if it also satisfies the diagrams

Note that a Hopf algebra acts if and only if its dual coacts. (Write why here)

Definition 1.17. And when a coalgebra A is a an Hopf-module with action α , we call it an Hopf-module coalgebra if it also satisfies the diagrams

Similar diagrams give the conditions for Hopf-comodule algebras and Hopf-comodule coalgebras.

Definition 1.18. A useful and prevalent construction on Hopf algebras is given a Hopf algebra H and a left Hopf-module algebra A, the smash product algebra A#H is the algebra where $A\#H = A \otimes H$ as a \mathbb{k} -vector space and has product

$$(a \otimes h)(b \otimes k) = \sum a^{h_{(1)}} b \otimes h_{(2)} k.$$

Definition 1.19. A Hopf algebra is called pointed if all of its left (right) comodules are 1-dimensional.

Definition 1.20. If $I \subseteq H$ and for any $h \in H$, $hI \subseteq I$, then I is called an ideal of H. If $\triangle(I) \subseteq I \otimes H + H \otimes I$, then I is called a coideal of H. If I is both an ideal and a coideal, it is called a biideal. Finally, if I is a biideal and $S(I) \subseteq I$, then I is called a Hopf ideal of H.

Lemma 1.21. If I is a Hopf ideal of H, then the quotient H/I is a Hopf algebra.

Definition 1.22. If H acts on an algebra A and there is a Hopf ideal I so that $I \cdot A = 0$, then we say the action of H factors through the quotient H/I. In particular, if H/I is isomorphic to a group algebra, we say the action of H factors through a group action.

2 Big Questions

Juan Cuadra, Pavel Etingof and Chelsea Walton have been classifying algebras with Hopf actions for which the action factors through a group action [7]. For example, they have shown that any action by a semi-simple, finite dimensional Hopf algebra on an integral domain always has this property. As well, they have shown that any action by a finite dimensional Hopf algebra on a Weyl algebra also has this property. This is a component of a larger search for algebras on which Hopf algebras act.

Andruskiewitsch and Schneider have been classifying pointed Hopf algebras [1].

Kenneth Chan, Ellen Kirkman, Jim Kuzmanovich, Chelsea Walton, and James Zhang have a series of works on Hopf algebras acting on AS-regular algebras [2] [3] [4] [11]. They have posed the question of when are the coinvariant subrings from these actions Artin-Schelter Gorenstein?

Miriam Cohen and Davida Fishman extended work by Fisher and Montogomery [8] and Cohen and Montogomery [6] to determine when A#H is semiprime for A and algebra and H a Hopf algebra. Specifically, if H is semi-simple and finite-dimensional and A is semiprime, they ask is A#H is semiprime? [5]

Chelsea Walton and Sarah Witherspoon have been working towards PBW deformation conditions on B#H where B is a Koszul algebra and H a Hopf algebra. In [18] they are able to provide these conditions when the antipode of H is bijective, B is connected as an H-module algebra, and the action of H preserves the grading on B. In the same paper they pose the question if $H = U_q(\mathfrak{sl}_2)$, are there nontrivial PBW deformations of B#H?

3 Taft Algebras

A Taft algebra, as defined in [2], is a Hopf algebra $T_{n,m} = \langle g, x \mid g^n = 1, x^n = 0, gx = \zeta xg \rangle$ where ζ is a primitive *n*-th root of unity. $T_{n,m}$ has the maps

$$\triangle(g) = g \otimes g, \quad \triangle(x) = 1 \otimes x + x \otimes g$$

$$\varepsilon(g) = 1, \quad \varepsilon(x) = 0, \quad S(g) = g^{-1}, \quad S(x) = -xg^{-1}.$$

A small example is the lowest dimension non-commutative, non-cocommutative Hopf algebra, the 4-dimensional Sweedler algebra. This is given by $H_4 = \langle g, x \mid g^2 = 1, x=0, xg = -gx \rangle$ with operations

$$\triangle(g) = g \otimes g, \quad \triangle(x) = 1 \otimes x + x \otimes g$$

$$\varepsilon(g) = 1, \quad \varepsilon(x) = 0, \quad S(g) = g, \quad S(x) = -xg.$$

This algebra in particular acts on the AS-regular algebra $\mathbb{k}_{-1}[u,v] = \mathbb{k}[u,v]/(uv+vu)$ by

$$q \cdot u = u$$
, $q \cdot v = -v$, $x \cdot u = 0$, $x \cdot v = v$.

Let q be a primitive root of unity where $|q^2| = m > 1$, let $\alpha \in \mathbb{k}$ and $n \in \mathbb{Z}^+$ where |q| | n, then a generalized Taft algebra is a Hopf algebra

$$T_{q,\alpha,n} = \langle g, g^{-1}x \mid gg^{-1} = g^{-1}g = 1, xg = qgx, g^n = 1, x^m = \alpha(g^m - g^{-m}) \rangle$$

with maps

$$\triangle(g) = g \otimes g, \quad \triangle(x) = x \otimes g^{-1} + g \otimes x,$$

$$\varepsilon(g) = 1, \quad \varepsilon(x) = 0, \quad S(g) = g^{-1}, \quad S(x) = -qx.$$

If $q^m \neq 1$, then $\alpha = 0$, and if $q^m = 1$, $\alpha \in \{0, 1\}$.

Another definition for a generalized Taft algebra given in [1] is to take a Yetter-Drinfeld module V of D_2 -type over the group algebra $k\mathbb{Z}/n\mathbb{Z}$. Then if $\mathcal{B}(V)$ is the Nichols algebra of V, the bosonization $(\mathcal{B}(V)\#k\mathbb{Z}/n\mathbb{Z})^{\text{cop}}$ is a generalized Taft algebra.

Let q be a primitive root of unity with $q^2 \neq 1$, then we can define the quantum polynomial ring $\mathbb{k}_q[u,v] = \mathbb{k}[u,v]/\langle uv - qvu \rangle$. The subring $U = \mathbb{k}u \oplus \mathbb{k}v$ is then a left $T_{q,\alpha,n}$ -module. If as a $T_{q,\alpha,n}$ -module U is not semi-simple, then in [2] it is proved that $T_{q,\alpha,n}$ coacts on $\mathbb{k}_q[u,v]$. This coaction is given by

$$\rho(u) = u \otimes g \quad \rho(v) = v \otimes g^{-1} + u \otimes x.$$

The coaction induces an action by the finite dual $(T_{q,\alpha,n})^{\circ}$ on $\mathbb{k}_q[u,v]$.

4 8-dimensional Hopf Algebra

In [10], Kac and Paljutkin define an 8-dimensional, non-commutative, non-cocommutative, semi-simple Hopf algebra

$$H_8 = \langle x, y, z \mid x^2 = y^2 = 1, xy = yx, zx = yz, zy = xz, z^2 = \frac{1}{2}(1 + x + y - xy) \rangle$$

with operations

$$\triangle(x) = x \otimes x, \ \triangle(y) = y \otimes y, \ \triangle(z) = \frac{1}{2} (1 \otimes 1 + 1 \otimes x + y \otimes 1 - y \otimes x)(z \otimes z),$$
$$\varepsilon(x) = \varepsilon(y) = \varepsilon(z) = 1, \ S(x) = x^{-1}, \ S(y) = y^{-1}, \ S(z) = z.$$

Then in [12], three representations of H_8 acting on quantum polynomial rings are given. For the ring $\mathbb{k}_q[x_1, x_2]$ where $q^2 = -1$, the first representation is given by

$$x \mapsto \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad y \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad z \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

For the ring $\mathbb{k}_Q[x_1, x_2, x_3, x_4]$ where $Q = (q_{ij}), x_j x_i = q_{ij} x_i x_j$ and $q_{12} = q_{34}^{-1}, q_{13} = q_{24}^{-1}, q_{14}^2 = 1, q_{23}^2 = -1$, we also have the representation

$$x \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad y \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad z \mapsto \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

And finally, for the ring $\mathbb{k}_{-1}[u,v]$, we get the representation

$$x \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad y \mapsto \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \quad z \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

c

5 Quantum Enveloping Algebras

References

- [1] Andruskiewitsch, N., and H. -J. Schneider. "Pointed Hopf Algebras," 2001. https://doi.org/10.48550/ARXIV.MATH/0110136.
- [2] Chan, Kenneth, Ellen Kirkman, Chelsea Walton, and James Zhang. "Quantum Binary Polyhedral Groups and Their Actions on Quantum Planes." arXiv, July 2, 2014. http://arxiv.org/abs/1303.7203.
- [3] Chan, Kenneth, Ellen Kirkman, Chelsea Walton, and James Zhang. "McKay Correspondence for Semisimple Hopf Actions on Regular Graded Algebras, II." arXiv, October 2, 2017. http://arxiv.org/abs/1610.01220.
- [4] Chan, Kenneth, Ellen Kirkman, Chelsea Walton, and James Zhang. "McKay Correspondence for Semisimple Hopf Actions on Regular Graded Algebras, I." arXiv, May 12, 2018. http://arxiv.org/abs/1607.06977.
- [5] Cohen, Miriam, and Davida Fishman. "Hopf Algebra Actions." Journal of Algebra 100, no. 2 (May 1986): 363–79. https://doi.org/10.1016/0021-8693(86)90082-7.
- [6] Cohen, M, and S Montgomery. "GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP ACTIONS," n.d.
- [7] Etingof, Pavel, and Chelsea Walton. "Finite Dimensional Hopf Actions on Deformation Quantizations." arXiv, July 2, 2016. http://arxiv.org/abs/1602.00532.
- [8] Fisher, Joe W, and Susan Montgomery. "Semiprime Skew Group Rings." Journal of Algebra 52, no. 1 (May 1978): 241–47. https://doi.org/10.1016/0021-8693(78)90272-7.
- [9] Halbig, Sebastian. "Generalised Taft Involution." Algebras and Pairs in Algebra 2, 2021): 5181 - 95.Communications in 49, no. 12 (December https://doi.org/10.1080/00927872.2021.1939043.
- [10] Kac, G. I., and V. G. Paljutkin. "Finite Ring Groups." Trudy Moskov. Mat. Obšč. 15 (1966): 224–61.
- [11] Kirkman, E., J. Kuzmanovich, and J.J. Zhang. "Gorenstein Subrings of Invariants under Hopf Algebra Actions." Journal of Algebra 322, no. 10 (November 2009): 3640–69. https://doi.org/10.1016/j.jalgebra.2009.08.018.
- [12] Kirkman, E., J. Kuzmanovich, and J.J. Zhang. "Gorenstein Subrings of Invariants under Hopf Algebra Actions." Journal of Algebra 322, no. 10 (November 2009): 3640–69. https://doi.org/10.1016/j.jalgebra.2009.08.018.
- [13] Majid, Shahn. Foundations of Quantum Group Theory. Cambridge University Press 1995.
- [14] Masuoka, A., Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1–3) (1995) 361-373

- [15] Montgomery, Susan. Hopf Algebras and Their Actions on Rings. Vol. 82. Providence, R.I.;4: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1993.
- [16] Sweedler, Moss E. Hopf Algebras. New York: W. A. Benjamin, 1969.
- [17] Taft, Earl J. "The Order of the Antipode of Finite-Dimensional Hopf Algebra." Proceedings of the National Academy of Sciences 68, no. 11 (November 1971): 2631–33. https://doi.org/10.1073/pnas.68.11.2631.
- [18] Walton, Chelsea, and Sarah Witherspoon. "Poincaré-Birkhoff-Witt Deformations of Smash Product Algebras from Hopf Actions on Koszul Algebras." Algebra & Number Theory 8, no. 7 (October 21, 2014): 1701–31. https://doi.org/10.2140/ant.2014.8.1701.