Quantum Field Theory 1 Prof. S. Forte a.a. 2024-25

Leonardo Cerasi 1 GitHub repository: LeonardoCerasi/notes

 $^{^{1}{\}rm leo.cerasi@pm.me}$

Contents

Contents		ii
Ι	Classical Field Theory	1
1	Discrete systems	2
	1.1 One-dimensional harmonic crystal	2

Part I Classical Field Theory

Discrete systems

1.1 One-dimensional harmonic crystal

Consider a simple one-dimensional model of a crystal where atoms of mass $m \equiv 1$ lie at rest on the x-axis, with equilibrium positions labelled by $n \in \mathbb{N}$ and equally spaced by a distance a.

Assuming these atoms are free to vibrate only in the x direction (longitudinal waves), and denoting the displacement of the atom at position n as η_n , one can write the Lagrangian for a harmonic crystal as:

$$L = \sum_{n} \left[\frac{1}{2} \dot{\eta}_n^2 - \frac{\lambda}{2} \left(\eta_n - \eta_{n-1} \right)^2 \right]$$
 (1.1)

where λ is the spring constant. From the Lagrange equations, the classical equations of motions are:

$$\ddot{\eta}_n = \lambda \left(\eta_{n+1} - 2\eta_n + \eta_{n-1} \right) \tag{1.2}$$

The solutions can be written as complex travelling waves:

$$\eta_n(t) = e^{i(kn - \omega t)} \tag{1.3}$$

where the dispersion relation is:

$$\omega^2 = 2\lambda \left(1 - \cos k\right) \approx \lambda k^2 \tag{1.4}$$

Therefore, in the long-wavelength limit $k \ll 1$ waves propagate with velocity $c = \sqrt{\lambda}$.