Lógica

Mauro Polenta Mora

Ejercicio 8

Consigna

(a) Defina una función de rango $r: PROP \to \mathbb{N}$ que dada una fórmula proposicional calcula la altura del árbol asociado a esa fórmula. Ejemplo: $r(p_i) = 0$.

Calcule el rango de las proposiciones del Ejercicio 1.

(b) Defina una función $con : PROP \to \mathbb{N}$ tal que $con(\varphi)$ denota la cantidad de ocurrencias de conectivos en la fórmula φ .

Calcule con para las proposiciones del Ejercicio 1.

- (c) Indique cuál de las siguientes afirmaciones es correcta y cuál no, y en cada caso justifique su respuesta mediante la demostración:
 - 1. Para toda fórmula φ , $r(\varphi) \ge con(\varphi)$.
- 2. Para toda fórmula φ , $r(\varphi) < con(\varphi)$.
- 3. Para toda fórmula φ , $r(\varphi) \leq con(\varphi)$.

Premisa

Estaremos definiendo funciones usando el ERP sobre PROP, veamos como se define dicho esquema:

Sea B un conjunto, y:

- 1. una función $H_{AT}:AT\to B$, y
- 2. para cada conectivo $* \in C_2,$ una función $H_* : PROP \times B \times PROP \times B \rightarrow B,$ y
- 3. una función $H_{\neg}: PROP \times B \to B$

Entonces, existe una única función $F: PROP \rightarrow B$ tal que:

- 1. $F(\alpha) = H_{AT}(\alpha) \text{ con } \alpha \in AT$
- 2. $F((\alpha * \beta)) = H_*(\alpha, F(\alpha), \beta, F(\beta)) \text{ con } \alpha, \beta \in PROP$
- 3. $F((\neg \alpha)) = H_{\neg}(\alpha, F(\alpha)) \text{ con } \alpha \in PROP$

fig1
Figure 1: fig1
fig2

Figure 2: fig2

Resolución (parte a)

Observación: Se define la altura de un árbol por la máxima cantidad de aristas que se deben recorrer para llegar a una hoja.

Definamos la función $r:PROP\to\mathbb{N}$ que dado una fórmula proposicional, calcula la altura del árbol asociado a esa fórmula. Para esto definamos las funciones auxiliares H_{AT} , H_* y H_{\neg} :

- 1. $H_{AT}(\alpha) = 0 \text{ con } \alpha \in AT$
- 2. $H_*(\alpha, h_1, \beta, h_2) = 1 + \max(h_1, h_2)$ con $\alpha, \beta \in PROP$
- 3. $H_{\neg}(\alpha, h) = 1 + h \operatorname{con} \alpha \in PROP$

Entonces, definimos $r: PROP \to \mathbb{N}$ como:

- 1. $r(\alpha) = 0 \text{ con } \alpha \in AT$
- 2. $r((\alpha * \beta)) = 1 + \max(r(\alpha), r(\beta)) \text{ con } \alpha, \beta \in PROP$
- 3. $r((\neg \alpha)) = 1 + r(\alpha) \text{ con } \alpha \in PROP$

Calculemos r para las proposiciones del Ejercicio 1:

Proposición 1

$$(((\neg p_2) \rightarrow (p_3 \vee (p_1 \leftrightarrow p_2))) \wedge (\neg p_3)) \in PROP$$

Calculemos su altura:

$$r((((\neg p_2) \rightarrow (p_3 \vee (p_1 \leftrightarrow p_2))) \wedge (\neg p_3))) = 4$$

Proposición 2

$$((p_7 \to (\neg\bot)) \leftrightarrow ((p_4 \land (\neg p_2)) \to p_1)) \in PROP$$

Calculemos su altura:

$$r(((p_7 \to (\neg\bot)) \leftrightarrow ((p_4 \land (\neg p_2)) \to p_1))) = 4$$

Resolucion (parte b)

Definamos la función $con: PROP \to \mathbb{N}$ tal que $con(\varphi)$ denota la cantidad de ocurrencias de conectivos en la fórmula φ . Para esto definamos las funciones auxiliares $H_{AT},\ H_*$ y H_{\neg} :

fig1

Figure 3: fig1

fig2

Figure 4: fig2

- 1. $H_{AT}(\alpha) = 0$ con $\alpha \in AT$
- 2. $H_*(\alpha, c_1, \beta, c_2) = 1 + c_1 + c_2 \text{ con } \alpha, \beta \in PROP$
- 3. $H_{\neg}(\alpha, c) = 1 + c \operatorname{con} \alpha \in PROP$

Entonces, definimos $con : PROP \to \mathbb{N}$ como:

- 1. $con(\alpha) = 0 \text{ con } \alpha \in AT$
- 2. $con((\alpha * \beta)) = 1 + con(\alpha) + con(\beta) \text{ con } \alpha, \beta \in PROP$
- 3. $con((\neg \alpha)) = 1 + con(\alpha) \text{ con } \alpha \in PROP$

Calculemos *con* para las proposiciones del Ejercicio 1:

Proposición 1

$$(((\neg p_2) \rightarrow (p_3 \vee (p_1 \leftrightarrow p_2))) \wedge (\neg p_3)) \in PROP$$

Calculemos la cantidad de conectivos:

$$con((((\neg p_2) \rightarrow (p_3 \lor (p_1 \leftrightarrow p_2))) \land (\neg p_3))) = 6$$

Proposición 2

$$((p_7 \to (\neg\bot)) \leftrightarrow ((p_4 \land (\neg p_2)) \to p_1)) \in PROP$$

Calculemos la cantidad de conectivos:

$$con(((p_7 \to (\neg \bot)) \leftrightarrow ((p_4 \land (\neg p_2)) \to p_1))) = 6$$

Observar que \perp no es considerado un conectivo.

Resolucion (parte c)

Afirmación 1

Para toda fórmula φ , $r(\varphi) \ge con(\varphi)$.

Esta afirmación es FALSA, tenemos como contraejemplo cualquiera de las proposiciones del Ejercicio 1.

Figure 5: fig3

Afirmación 2

Para toda fórmula φ , $r(\varphi) < con(\varphi)$.

Esta afirmación es FALSA, veamos el siguiente contraejemplo:

$$\varphi = \neg (\neg (\neg p_1))$$

Observemos que: $r(\varphi) = 3$ y $con(\varphi) = 3$

Afirmación 3

Para toda fórmula φ , $r(\varphi) \leq con(\varphi)$.

Esta afirmación es VERDADERA, veamos la demostración usando el PIP sobre PROP

PASO BASE

$$P(\alpha): r(\alpha) \le con(\alpha) \text{ con } \alpha \in AT$$

Usando las respectivas reglas 1 de r y con tenemos que:

1.
$$r(\alpha) = 0 \text{ con } \alpha \in AT$$

2.
$$con(\alpha) = 0 \text{ con } \alpha \in AT$$

Entonces, $r(\alpha) \leq con(\alpha)$

PASO INDUCTIVO

(H)
$$P(\varphi): r(\varphi) \leq con(\varphi)$$
 con $\varphi \in PROP$

PARTE 1

(T)
$$P((\neg \varphi)): r((\neg \varphi)) \leq con((\neg \varphi)) \text{ con } \varphi \in PROP$$

Usando las respectivas reglas 3 de r y con tenemos que:

1.
$$r((\neg \varphi)) = 1 + r(\varphi) \operatorname{con} \varphi \in PROP$$

2.
$$con((\neg \varphi)) = 1 + con(\varphi) \text{ con } \varphi \in PROP$$

Entonces veamos la siguiente cadena de sii:

$$r((\neg\varphi)) \leq con((\neg\varphi)) \iff 1 + r(\varphi) \leq 1 + con(\varphi) \iff r(\varphi) \leq con(\varphi)$$

Donde lo último se cumple por la hipótesis

PARTE 2

(T)
$$P((\varphi * \psi)) : r((\varphi * \psi)) \le con((\varphi * \psi)) \text{ con } \varphi, \psi \in PROP$$

Usando las respectivas reglas 2 de r y con tenemos que:

1.
$$r((\varphi * \psi)) = 1 + \max(r(\varphi), r(\psi)) \text{ con } \varphi, \psi \in PROP$$

2.
$$con((\varphi * \psi)) = 1 + con(\varphi) + con(\psi) \text{ con } \varphi, \psi \in PROP$$

Entonces veamos la siguiente cadena de sii:

$$r((\varphi*\psi)) \leq con((\varphi*\psi)) \iff 1 + \max(r(\varphi), r(\psi)) \leq 1 + con(\varphi) + con(\psi) \iff \max(r(\varphi), r(\psi)) \leq con(\varphi) + con(\varphi) +$$

Pero sabemos por hipótesis que:

1.
$$r(\varphi) \le con(\varphi)$$

2.
$$r(\psi) \leq con(\psi)$$

Por consecuencia, $\max(r(\varphi), r(\psi)) \leq con(\varphi) + con(\psi)$

Entonces,
$$r((\varphi * \psi)) \leq con((\varphi * \psi))$$

Esto prueba la propiedad para todo φ