

#### **FCC - TEST REPORT**

| Report Number :                                               | 7088819112404-00                                                                                                                                               | Date of Issue: October 24, 2019 |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
|                                                               |                                                                                                                                                                |                                 |  |  |  |
| Model                                                         | : ZS11E; ZS11MCE3                                                                                                                                              |                                 |  |  |  |
| Product Type                                                  | : ISMART1.0                                                                                                                                                    |                                 |  |  |  |
| FCC ID                                                        | : 2AFIXISMART                                                                                                                                                  |                                 |  |  |  |
| Applicant                                                     | : Jiangsu Toppower Autom                                                                                                                                       | otive Electronics Co., Ltd      |  |  |  |
| Address                                                       | : No. 19 Fenghuang Avenue, Xuzhou Economic And Technological Development Zone Xuzhou, 221000 China                                                             |                                 |  |  |  |
| Manufacturer                                                  | : Jiangsu Toppower Autom                                                                                                                                       | otive Electronics Co., Ltd      |  |  |  |
| Address                                                       | : No. 19 Fenghuang Avenue, Xuzhou Economic And Technological Development Zone Xuzhou, 221000 China                                                             |                                 |  |  |  |
|                                                               |                                                                                                                                                                |                                 |  |  |  |
|                                                               |                                                                                                                                                                |                                 |  |  |  |
| Test Result :                                                 | ■ Positive □ Negati                                                                                                                                            | ive                             |  |  |  |
| Total pages including Appendices :                            | 36                                                                                                                                                             |                                 |  |  |  |
| TÜV SÜD Certification and Testing (China) Co., Ltd ISO 17025. | TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in |                                 |  |  |  |

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.



# Table of Contents

| 1  | Table of Contents                               | 2  |
|----|-------------------------------------------------|----|
| 2  | Poetails about the Test Laboratory              | 3  |
| 3  | B Description of the Equipment under Test       | 4  |
| 4  | Summary of Test Standards                       | 6  |
| 5  | Summary of Test Results                         | 7  |
| 6  | General Remarks                                 | 8  |
| 7  | Zest Setups                                     | 10 |
| 8  | S Systems test configuration                    | 13 |
| 9  | Technical Requirement                           | 14 |
|    | 9.1 Emission bandwidth                          | 14 |
|    | 9.2 Maximum conducted output power              | 16 |
|    | 9.3 Maximum power spectral density              | 17 |
|    | 9.4 Frequencies Stability                       | 20 |
|    | 9.5 Spurious radiated emissions for transmitter | 21 |
| 10 | 0 Test Equipment List                           | 33 |
| 11 | 1 System Measurement Uncertainty                | 34 |
| 12 | 2 Photographs of Test Set-ups                   | 35 |
| 13 | 3 Photographs of EUT                            | 36 |



# 2 Details about the Test Laboratory

### **Details about the Test Laboratory**

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai

Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

FCC Registration No.: 820234

Telephone: +86 21 6141 0123 Fax: +86 21 6140 8600



### 3 Description of the Equipment under Test

Product: ISMART1.0

Model no.: ZS11E; ZS11MCE3

FCC ID: 2AFIXISMART

Options and accessories: Test harness

Rating: 9~16V DC

RF Transmission 2402~2480MHz for Bluetooth

Frequency: For 2.4G & 5G Wi-Fi

For 802.11b/g/n-HT20: 2412~2462 MHz

For 802.11n-HT40: 2422~2452 MHz

5180~5240MHz 5745~5825MHz

No. of Operated Channel: 79 for Bluetooth 4.1+EDR

40 for Bluetooth 4.1 BLE

For 2.4GHz Wi-Fi

| Operation Frequency each of channel For 802.11b/g/n(H20) |           |         |           |         |           |         |           |  |
|----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                                                  | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1                                                        | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |  |
| 2                                                        | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |  |
| 3                                                        | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |  |

| Operation Frequency each of channel For 802.11n(H40) |           |         |           |         |           |         |           |
|------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                              | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|                                                      |           | 4       | 2427MHz   | 7       | 2442MHz   |         |           |
|                                                      |           | 5       | 2432MHz   | 8       | 2447MHz   |         |           |
| 3                                                    | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 36      | 5180 MHz  | 44      | 5220 MHz  |
| 40      | 5200 MHz  | 48      | 5240 MHz  |

#### 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 38      | 5190 MHz  | 46      | 5230 MHz  |

#### 1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency |
|---------|-----------|
| 42      | 5210 MHz  |



#### FOR 5745 ~ 5825MHz:

channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| 5 channels are provided for 802.11a, 802.11h (H120), 802.11ac (VH120): |           |         |           |  |  |  |
|------------------------------------------------------------------------|-----------|---------|-----------|--|--|--|
| Channel                                                                | Frequency | Channel | Frequency |  |  |  |
| 149                                                                    | 5745 MHz  | 161     | 5805 MHz  |  |  |  |
| 153                                                                    | 5765 MHz  | 165     | 5825 MHz  |  |  |  |
| 157                                                                    | 5785 MHz  |         |           |  |  |  |

| 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40): |           |         |           |  |  |
|---------------------------------------------------------------|-----------|---------|-----------|--|--|
| Channel                                                       | Frequency | Channel | Frequency |  |  |
| 151                                                           | 5755 MHz  | 159     | 5795 MHz  |  |  |

1 channel is provided for 802.11ac (VHT80):

Channel Frequency

Modulation: Bluetooth 4.0+EDR FHSS: GFSK, 8DPSK, π/4 DQPSK

Bluetooth BLE DHSS: QPSK

For Wi-Fi:

Direct Sequence Spread Spectrum (DSSS) for 802.11b

Orthogonal Frequency Division Multiplexing(OFDM) for 802.11g/n

Data speed: 1. Bluetooth: 1Mbps, 2Mbps, 3Mbps

2. Wi-Fi: 11b 1 ~ 11Mbps,

11g/a 6 ~ 54Mbps, 11n HT20 6.5 ~ 65Mbps,

11n HT 40 13.5 ~ 135Mbps, 11ac VHT40 13.5 ~ 180Mbps, 11ac VHT80 29.3 ~ 390Mbps

Duty Cycle: 100%

Antenna Type: PIFA Antenna

Antenna Gain: 2.4GHz: 2.04dBi

5.2GHz: 4.2dBi 5.8GHz: 5.52dBi

Description of the EUT: The Equipment Under Test (EUT) is a Car Radio with Bluetooth and WI-

FI Module is equipment installed in a car to provide in-car entertainment and information for the vehicle occupants. It consisted of a simple FM/AM/DRM radio, media players and Bluetooth module. User can

listen to FM/AM, DRM, USB audio by using the equipment.

The EUT support Bluetooth 4.1+EDR and support BLE function and Wi-Fi

operated at 5GHz and 2.4GHz. Only 5G Wi-Fi included in this report.



# 4 Summary of Test Standards

|                      | Test Standards                                                     |
|----------------------|--------------------------------------------------------------------|
| FCC Part 15 Subpart  | PART 15 - RADIO FREQUENCY DEVICES                                  |
| E, 10-1-2017 Edition | Subpart E - Unlicensed National Information Infrastructure Devices |

#### Test Method:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices



### 5 Summary of Test Results

|                                                                                                                             | Technical Requirements                      |          |        |             |         |     |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|--------|-------------|---------|-----|
| FCC Part 15 Subpart C                                                                                                       |                                             |          |        |             |         |     |
| Test Condition                                                                                                              |                                             | Pages    | Test   | Te          | st Resu | ılt |
| Test Condition                                                                                                              |                                             | rayes    | Site   | Pass        | Fail    | N/A |
| §15.207                                                                                                                     | Conducted emission AC power port            |          |        |             |         |     |
| §15.407(e)                                                                                                                  | Emission bandwidth                          | 14-15    | Site 1 |             |         |     |
| 15.407(a)(i)                                                                                                                | Maximum Conducted Output Power              | 16       | Site 1 | $\boxtimes$ |         |     |
| 15.407(a)(i)                                                                                                                | Maximum Power Spectral Density              | 17-19    | Site 1 | $\boxtimes$ |         |     |
| §15.407(g)                                                                                                                  | Frequencies Stability                       | 20       | Site 1 |             |         |     |
| §15.407(b)(1),<br>15.407(b)(2),<br>15.407(b)(3),<br>15.407(b)(4),<br>15.407(b)(5),<br>15.407(b)(6),<br>15.407(b)(7), 15.209 | Spurious radiated emissions for transmitter | 21-32    | Site 1 | $\boxtimes$ |         |     |
| §15.203                                                                                                                     | Antenna requirement                         | See note | e 1    |             |         |     |

Remark 1: The EUT only operation at 5G Wi-Fi UNII Band4 (5180MHz-5240MHz, 5745MHz-5825MHz). Remark 2: N/A – Not Applicable. Conducted emission is not apply for battery operated device.

Note 1: The EUT uses a permanently integral antenna, which gain is 2.04dBi for 2.4GHz, 4.2dBi for 5.2GHz, 5.52dBi for 5.8GHz. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.



### 6 General Remarks

#### Remarks

This submittal(s) (test report) is intended for FCC ID: 2AFIXISMART complies with Section 15.207, 15.209, 15.407 of the FCC Part 15, Subpart E Rules.

This report in only for 5GHz Wi-Fi. The TX and RX range is 5180MHz-5240MHz, 5745MHz-5825MHz.

According to the client's declaration, we chose the ZS11E to perform the conductive RF tests, and chose ZS11E and ZS11MCE3 to perform the radiated emission test.

|                          | 251 Le and 251 mioe5 to perform the radiated emission test. |                   |  |  |  |
|--------------------------|-------------------------------------------------------------|-------------------|--|--|--|
| HARDWARE<br>MODIFICATION | ZS11E                                                       | ZS11MCE3          |  |  |  |
| Band                     | The same                                                    | The same          |  |  |  |
| Power Amplifier          | The same                                                    | The same          |  |  |  |
| Antenna                  | The same                                                    | The same          |  |  |  |
| PCB Layout               | The same                                                    | The same          |  |  |  |
| Components on PCB        | Have DRM components                                         | No DRM            |  |  |  |
| DRM                      | Yes                                                         | No                |  |  |  |
| LCD Structural Bracket   | Not connected the AHU                                       | Connected the AHU |  |  |  |
| LCD Size                 | 8 "                                                         | 10.1 "            |  |  |  |
| Speaker                  | The same                                                    | The same          |  |  |  |
| Camera                   | The same                                                    | The same          |  |  |  |
| Bluetooth                | The same                                                    | The same          |  |  |  |
| WIFI                     | The same                                                    | The same          |  |  |  |

ZS11E and ZS11MCE3 are use same Bluetooth and WIFI module. Main PCB board is same in these 2 models. ZS11E and ZS11MCE3 all need to match LCD use.



#### **SUMMARY:**

All tests according to the regulations cited on page 6 were

- Performed
- ☐ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: September 19, 2019

Testing Start Date: September 26, 2019

Testing End Date: October 16, 2019

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

Prepared by:

Tested by:

Hui TONG Review Engineer Jiaxi XU Project Engineer Wenqiang LU Test Engineer



### 7 Test Setups

### 7.1 AC Power Line Conducted Emission test setups



### 7.2 Radiated test setups

### 9kHz ~ 30MHz Test Setup:





### 30MHz ~ 1GHz Test Setup:



### 1GHz ~ 18GHz Test Setup:





### 18GHz ~ 40GHz Test Setup:



### 7.3 Conducted RF test setups





### 8 Systems test configuration

Auxiliary Equipment Used during Test:

| DESCRIPTION | MANUFACTURER | MODEL NO.(SHIELD) |  |
|-------------|--------------|-------------------|--|
| Notebook    | Lenove       | X240              |  |

Test channel & mode:

The was Interactive Tablet configured using a proprietary communication interface provided by the client. The interface allows channel control required to support the evaluation.

Test software SecureCRT

The system was configured to channel:

| Test Mode                   | Channel | Frequency (MHz) |
|-----------------------------|---------|-----------------|
|                             | 36      | 5180            |
| 000 446                     | 44      | 5220            |
| 802.11a,<br>802.11n HT20    | 48      | 5240            |
| 802.1111 H120<br>802.11ac20 | 149     | 5745            |
| 602.11ac20                  | 157     | 5785            |
|                             | 165     | 5825            |
|                             | 38      | 5190            |
| 802.11n HT40                | 46      | 5230            |
| 802.11ac40                  | 151     | 5755            |
|                             | 159     | 5795            |
| 802.11ac80                  | 42      | 5210            |
| 002.11aC00                  | 155     | 5755            |

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

| Modulation Type        | Data Rate             |
|------------------------|-----------------------|
| 802.11a OFDM           | 6Mbps                 |
| 802.11n (HT20): OFDM   | MCS0 (6.5Mbps)        |
| 802.11n (HT20): OFDM   | MCS0 (6.5Mbps)        |
| 802.11n (HT40): OFDM   | MCS0 (13.5Mbps)       |
| 802.11ac (VHT20): OFDM | 11ac 6.5Mbps (20MHz)  |
| 802.11ac (VHT40): OFDM | 11ac13.5Mbps (40MHz)  |
| 802.11ac (VHT80): OFDM | 11ac 29.3Mbps (80MHz) |

#### **Device Capabilities**

Duty Cycle: 100%

**Note:** 2.4GHz WLAN (DTS) operation is possible in 20MHz, and 40MHz channel bandwidths. 5GHz WLAN (DTS) operation is possible in 20MHz, 40MHz and 80MHz channel bandwidths.



### 9 Technical Requirement

#### 9.1 Emission bandwidth

#### 1. Test Method of 26dB Bandwidth

According to KDB789033 D02

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Limit: No limit

#### 2. Test Method of 6dB Bandwidth

According to KDB789033 D02

- a) Set RBW = 100KHz
- b) Set the video bandwidth (VBW) ≥ 3 x RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Limit: ≥500KHz

#### 3. Test Method of 99% Bandwidth

According to KDB789033 D02

- a) Set center frequency to the nominal EUT channel center frequency
- b) Set span = 1.5 times to 5.0 times the OBW.
- c) Set RBW = 1 % to 5 % of the OBW
- d) Set VBW ≥ 3 · RBW
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99 % power bandwidth function of the instrument (if available).
- g) If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total

Page 14 of 36 Rev. 171.00



is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Limit: No limit

#### Test result as below table:

| Test Mode   | Frequency(MHz) | 26db EBW [MHz] | 6db EBW [MHz] | Limit[MHz] | Verdict |
|-------------|----------------|----------------|---------------|------------|---------|
|             | 5180           | 27.704         | N/A           |            | PASS    |
|             | 5220           | 27.704         | N/A           |            | PASS    |
| 11a         | 5240           | 27.568         | N/A           |            | PASS    |
| Ha          | 5745           | N/A            | 16.384        |            | PASS    |
|             | 5785           | N/A            | 16.4          |            | PASS    |
|             | 5825           | N/A            | 16.3872       |            | PASS    |
|             | 5180           | 30.984         | N/A           |            | PASS    |
|             | 5220           | 29.6325        | N/A           |            | PASS    |
| 11n HT20    | 5240           | 27.6755        | N/A           |            | PASS    |
|             | 5745           | N/A            | 17.76         |            | PASS    |
|             | 5785           | N/A            | 17.76         |            | PASS    |
|             | 5825           | N/A            | 17.76         |            | PASS    |
|             | 5180           | 22.869         | N/A           |            | PASS    |
|             | 5220           | 22.876         | N/A           |            | PASS    |
| 11ac VHT20  | 5240           | 22.95          | N/A           |            | PASS    |
| TTAC VHTZU  | 5745           | N/A            | 17.768        |            | PASS    |
|             | 5785           | N/A            | 17.744        |            | PASS    |
|             | 5825           | N/A            | 17.752        |            | PASS    |
|             | 5190           | 47.104         | N/A           |            | PASS    |
| 11n HT40    | 5230           | 46.08          | N/A           |            | PASS    |
| 1111 11 140 | 5755           | N/A            | 36.512        |            | PASS    |
|             | 5795           | N/A            | 36.52         |            | PASS    |
|             | 5190           | 41.024         | N/A           |            | PASS    |
| 1100 V/UT40 | 5230           | 40.892         | N/A           |            | PASS    |
| 11ac VHT40  | 5755           | N/A            | 36.496        |            | PASS    |
|             | 5795           | N/A            | 36.528        |            | PASS    |
| 11ac VHT80  | 5210           | 81.352         | N/A           |            | PASS    |
| TTAC VHT80  | 5775           | N/A            | 75.92         |            | PASS    |



### 9.2 Maximum conducted output power

#### **Test Method**

According to KDB789033 D02

**Limits:** The maximum conducted output power over the frequency band of operation shall not exceed 250mW for 5.15-5.25GHz Band, 250mW for 5.25-5.35GHz, 5.47-5.725 GHz Band and 1W for 5.725-5.85GHz Band, provided the maximum antenna gain does not exceed 6dBi.

| Test Mode   | Frequency(MHz) | Maximum<br>Conducted<br>Output Power<br>(dBm) | Power Limit<br>(dBm) | Verdict |
|-------------|----------------|-----------------------------------------------|----------------------|---------|
|             | 5180           | 21.83                                         | 24.00                | PASS    |
|             | 5220           | 22.13                                         | 24.00                | PASS    |
| 44-         | 5240           | 22.64                                         | 24.00                | PASS    |
| 11a         | 5745           | 12.41                                         | 30.00                | PASS    |
|             | 5785           | 12.75                                         | 30.00                | PASS    |
|             | 5825           | 13.4                                          | 30.00                | PASS    |
|             | 5180           | 21.62                                         | 24.00                | PASS    |
|             | 5220           | 21.85                                         | 24.00                | PASS    |
| 11n HT20    | 5240           | 22.54                                         | 24.00                | PASS    |
|             | 5745           | 11.17                                         | 30.00                | PASS    |
|             | 5785           | 11.55                                         | 30.00                | PASS    |
|             | 5825           | 12.35                                         | 30.00                | PASS    |
|             | 5180           | 20.46                                         | 24.00                | PASS    |
|             | 5220           | 20.63                                         | 24.00                | PASS    |
| 11ac VHT20  | 5240           | 21.27                                         | 24.00                | PASS    |
| Trac vHT20  | 5745           | 8.06                                          | 30.00                | PASS    |
|             | 5785           | 8.46                                          | 30.00                | PASS    |
|             | 5825           | 9.19                                          | 30.00                | PASS    |
|             | 5190           | 21.73                                         | 24.00                | PASS    |
| 11n HT40    | 5230           | 22.33                                         | 24.00                | PASS    |
| 110 1140    | 5755           | 10.4                                          | 30.00                | PASS    |
|             | 5795           | 11.18                                         | 30.00                | PASS    |
|             | 5190           | 20.52                                         | 24.00                | PASS    |
| 1100 \/UT40 | 5230           | 21                                            | 24.00                | PASS    |
| 11ac VHT40  | 5755           | 7.22                                          | 30.00                | PASS    |
|             | 5795           | 7.85                                          | 30.00                | PASS    |
| 11ac VHT80  | 5210           | 20                                            | 24.00                | PASS    |
| TIAC VITTOU | 5775           | 6.4                                           | 30.00                | PASS    |



### 9.3 Maximum power spectral density

#### **Test Method**

According to KDB789033 D02

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW  $\geq$  1/T, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

**Limit:** The maximum power spectral density shall not exceed 11dBm for the 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725 GHz Band and 30dBm for the 5.8GHz Band in any 1 megahertz band.



#### **Test Result**

| Test Mode   | Frequency(MHz) | Maximum PSD<br>(dBm/MHz) | PSD Limit<br>(dBm/MHz) | Verdict |
|-------------|----------------|--------------------------|------------------------|---------|
|             | 5180           | 10.69                    | 11.00                  | PASS    |
| 11a -       | 5220           | 10.98                    | 11.00                  | PASS    |
|             | 5240           | 10.99                    | 11.00                  | PASS    |
|             | 5745           | 10.08                    | 30.00                  | PASS    |
|             | 5785           | 8.97                     | 30.00                  | PASS    |
|             | 5825           | 8.2                      | 30.00                  | PASS    |
|             | 5180           | 9.66                     | 11.00                  | PASS    |
|             | 5220           | 9.84                     | 11.00                  | PASS    |
| 11n HT20    | 5240           | 10.3                     | 11.00                  | PASS    |
|             | 5745           | 9.24                     | 30.00                  | PASS    |
|             | 5785           | 8.09                     | 30.00                  | PASS    |
|             | 5825           | 7.21                     | 30.00                  | PASS    |
|             | 5180           | 6.77                     | 11.00                  | PASS    |
|             | 5220           | 7.26                     | 11.00                  | PASS    |
| 11ac VHT20  | 5240           | 7.9                      | 11.00                  | PASS    |
| TTAC VHTZU  | 5745           | 6.14                     | 30.00                  | PASS    |
|             | 5785           | 5.01                     | 30.00                  | PASS    |
|             | 5825           | 3.98                     | 30.00                  | PASS    |
|             | 5190           | 8.06                     | 11.00                  | PASS    |
| 11n HT40    | 5230           | 8.58                     | 11.00                  | PASS    |
| 111111140   | 5755           | 6.49                     | 30.00                  | PASS    |
|             | 5795           | 5.41                     | 30.00                  | PASS    |
|             | 5190           | 4.93                     | 11.00                  | PASS    |
| 1100 V/UT40 | 5230           | 5.51                     | 11.00                  | PASS    |
| 11ac VHT40  | 5755           | 4.11                     | 30.00                  | PASS    |
|             | 5795           | 3.06                     | 30.00                  | PASS    |
| 11ac VHT80  | 5210           | 2.27                     | 11.00                  | PASS    |
| TIAC VITIOU | 5775           | 0.11                     | 30.00                  | PASS    |





Spectrum Offset 0.50 dB → RBW 1 MHz SWT 5 ms → VBW 3 MHz Mode Auto Sweep ●1Pk Max 27.56800 MH -15.96 dBn 5.18886800 GH 20 dBn M1[1] 10 dBn -10 dBm -30 dBm 40 dBn -60 dBm 70 d8m CF 5.2 GH 40.0 MHz larker X-value 5.188868 GHz 27.568 MHz 5.199084 GHz Type Ref Trc **Function Result** M1



Date: 16.OCT.2019 10:49:25



### 9.4 Frequencies Stability

#### **Test Method**

- 1. Connect the UUT to the spectrum analyzer
- 2. Set Centre Frequency of the channel under test.
- 3. Set Detector PEAK
- 4. Set RBW: 10KHz, VBW: 3RBW
- 5. Set Span: Encompass the entire emissions bandwidth (EBW) of the signal.
- 6. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

User manual temperature is -40°C to 80°C

Limit: 20ppm

Test Results (All conditions and all modes were performed, only list Worst-Case in the report)

| Voltage   |         |                  |              |                   |                 |                |         |  |  |
|-----------|---------|------------------|--------------|-------------------|-----------------|----------------|---------|--|--|
| Test Mode | Channel | Voltage<br>[Vdc] | Temp<br>(°C) | Deviation<br>(Hz) | Deviation (ppm) | Limit<br>(ppm) | Verdict |  |  |
|           | 5745    | NV               | NT           | 50000             | 8.72122         | 20             | PASS    |  |  |
|           | 5745    | HV               | NT           | 70000             | 12.17451        | 20             | PASS    |  |  |
|           | 5745    | LV               | NT           | 45000             | 7.846898        | 20             | PASS    |  |  |
|           | 5785    | NV               | NT           | 60000             | 10.36265        | 20             | PASS    |  |  |
| 11a       | 5785    | LV               | NT           | 7000              | 1.195026        | 20             | PASS    |  |  |
|           | 5785    | HV               | NT           | 75000             | 12.94856        | 20             | PASS    |  |  |
|           | 5825    | LV               | NT           | 65000             | 11.1698         | 20             | PASS    |  |  |
|           | 5825    | NV               | NT           | 60000             | 10.29243        | 20             | PASS    |  |  |
|           | 5825    | HV               | NT           | 70000             | 12.00917        | 20             | PASS    |  |  |

|                      | Temperature |                  |              |                   |                 |                |         |  |  |
|----------------------|-------------|------------------|--------------|-------------------|-----------------|----------------|---------|--|--|
| Test Mode<br>Antenna | Channel     | Voltage<br>[Vdc] | Temp<br>(°C) | Deviation<br>(Hz) | Deviation (ppm) | Limit<br>(ppm) | Verdict |  |  |
|                      | 5745        | NV               | -40          | 65000             | 11.31419        | 20             | PASS    |  |  |
|                      | 5745        | NV               | -20          | 55000             | 9.593542        | 20             | PASS    |  |  |
|                      | 5745        | NV               | 0            | 70000             | 12.17351        | 20             | PASS    |  |  |
|                      | 5745        | NV               | 20           | 55000             | 9.558542        | 20             | PASS    |  |  |
|                      | 5745        | NV               | 80           | 65000             | 11.32419        | 20             | PASS    |  |  |
|                      | 5785        | NV               | -40          | 70000             | 12.11526        | 20             | PASS    |  |  |
|                      | 5785        | NV               | -20          | 65000             | 11.24396        | 20             | PASS    |  |  |
| 11a                  | 5785        | NV               | 0            | 65000             | 11.24896        | 20             | PASS    |  |  |
|                      | 5785        | NV               | 20           | 55000             | 9.518347        | 20             | PASS    |  |  |
|                      | 5785        | NV               | 80           | 65000             | 11.24996        | 20             | PASS    |  |  |
|                      | 5825        | NV               | -40          | 70000             | 12.01017        | 20             | PASS    |  |  |
|                      | 5825        | NV               | -20          | 65000             | 11.1398         | 20             | PASS    |  |  |
|                      | 5825        | NV               | 0            | 70000             | 12.01917        | 20             | PASS    |  |  |
|                      | 5825        | NV               | 20           | 75000             | 12.88154        | 20             | PASS    |  |  |
|                      | 5825        | NV               | 80           | 55000             | 9.43306         | 20             | PASS    |  |  |



### 9.5 Spurious radiated emissions for transmitter

#### **Test Method**

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned
- 5. Use the following spectrum analyzer settings According to C63.10: For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

#### Limit

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.



- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
  - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

According to part 15.407(b), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205, must comply with the radiated emission limits specified in section 15.209.

| Frequency  | Frequency Field Strength |        | Detector |
|------------|--------------------------|--------|----------|
| MHz        | uV/m                     | dBμV/m |          |
| 30-88      | 100                      | 40     | QP       |
| 88-216     | 150                      | 43.5   | QP       |
| 216-960    | 200                      | 46     | QP       |
| 960-1000   | 500                      | 54     | QP       |
| Above 1000 | 500                      | 54     | AV       |
| Above 1000 | 5000                     | 74     | PK       |

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, 802.11a mode) for model ZS11E, ZS11MCE3 are listed in the report.

#### Transmitting spurious emission worse case test result as below:

Transmitting spurious emission test result as below:

802.11a Modulation 5180MHz Test Result

|                    | oziii a modalatoii o roomi z root roodit |                   |              |        |        |          |        |  |  |
|--------------------|------------------------------------------|-------------------|--------------|--------|--------|----------|--------|--|--|
| Frequency<br>Range | Frequency                                | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |  |  |
| MHz                | MHz                                      | dBuV/m            |              | dBμV/m | dB     |          |        |  |  |
| 1000-7000          |                                          |                   | Horizontal   | 74.00  |        | PK       | Pass   |  |  |
| 1000-7000          |                                          |                   | Vertical     | 74.00  |        | PK       | Pass   |  |  |
| 7000-40000         | 10360                                    | 44.37             | Horizontal   | 74.00  | 29.63  | PK       | Pass   |  |  |
| 7000-40000         | 10360                                    | 46.29             | Vertical     | 74.00  | 27.71  | PK       | Pass   |  |  |



#### 802.11a Modulation 5220MHz Test Result

| Frequency<br>Range | Frequency | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |
|--------------------|-----------|-------------------|--------------|--------|--------|----------|--------|
| MHz                | MHz       | dBuV/m            |              | dBμV/m | dB     |          |        |
| 1000-7000          |           |                   | Horizontal   | 74.00  |        | PK       | Pass   |
| 1000-7000          |           |                   | Vertical     | 74.00  |        | PK       | Pass   |
| 7000-40000         | 10440     | 45.26             | Horizontal   | 74.00  | 28.74  | PK       | Pass   |
| 7000-40000         | 10440     | 51.27             | Vertical     | 74.00  | 22.73  | PK       | Pass   |

#### 802.11a Modulation 5240MHz Test Result

| Frequency<br>Range | Frequency | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |
|--------------------|-----------|-------------------|--------------|--------|--------|----------|--------|
| MHz                | MHz       | dBuV/m            |              | dBμV/m | dB     |          |        |
| 1000-7000          |           |                   | Horizontal   | 74.00  |        | PK       | Pass   |
| 1000-7000          |           |                   | Vertical     | 74.00  |        | PK       | Pass   |
| 7000-40000         | 10480     | 49.86             | Horizontal   | 74.00  | 24.14  | PK       | Pass   |
| 7000-40000         | 10480     | 51.27             | Vertical     | 74.00  | 22.73  | PK       | Pass   |

#### Transmitting spurious emission test result as below:

#### 802.11a Modulation 5745MHz Test Result

| Frequency<br>Range | Frequency | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |
|--------------------|-----------|-------------------|--------------|--------|--------|----------|--------|
| MHz                | MHz       | dBuV/m            |              | dBμV/m | dB     |          |        |
| 1000-7000          |           |                   | Horizontal   | 74.00  |        | PK       | Pass   |
| 1000-7000          |           |                   | Vertical     | 74.00  |        | PK       | Pass   |
| 7000-40000         | 11490     | 47.34             | Horizontal   | 74.00  | 26.66  | PK       | Pass   |
| 7000-40000         | 11480     | 50.59             | Vertical     | 74.00  | 23.41  | PK       | Pass   |

#### 802.11a Modulation 5785MHz Test Result

| Frequency<br>Range | Frequency | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |
|--------------------|-----------|-------------------|--------------|--------|--------|----------|--------|
| MHz                | MHz       | dBuV/m            |              | dBμV/m | dB     |          |        |
| 1000-7000          |           |                   | Horizontal   | 74.00  |        | PK       | Pass   |
| 1000-7000          |           |                   | Vertical     | 74.00  |        | PK       | Pass   |
| 7000-40000         | 11570     | 45.94             | Horizontal   | 74.00  | 28.06  | PK       | Pass   |
| 7000-40000         | 11579     | 51.48             | Vertical     | 74.00  | 22.52  | PK       | Pass   |

#### 802.11a Modulation 5825MHz Test Result

| Frequency<br>Range | Frequency | Emission<br>Level | Polarization | Limit  | Margin | Detector | Result |
|--------------------|-----------|-------------------|--------------|--------|--------|----------|--------|
| MHz                | MHz       | dBuV/m            |              | dBμV/m | dB     |          |        |
| 1000-7000          |           |                   | Horizontal   | 74.00  |        | PK       | Pass   |
| 1000-7000          |           |                   | Vertical     | 74.00  |        | PK       | Pass   |
| 7000-40000         | 11650     | 47.59             | Horizontal   | 74.00  | 26.41  | PK       | Pass   |
| 7000-40000         | 11650     | 52.43             | Vertical     | 74.00  | 21.57  | PK       | Pass   |

#### Remark:

- (1) Above 1GHz Corrector factor= Antenna Factor +Cable Loss Amp. Factor.
- (2) Below 1GHz Corrector factor= Antenna Factor +Cable Loss.
- (3) "\*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (4) We test all modes and only the worst case for each bandwidth recorded in the report.
- (5) Testing is carried out with frequency rang 30MHz to 40GHz, which data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (6) The Low frequency, which start from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



### Out of Band Emission 802.11a: CH 5745MHz Horizontal



**Vertical**FCC 15.407 U-NII Out of Band Emission





### 802.11a: CH 5825MHz Horizontal

FCC 15.407 U-NII Out of Band Emission



Vertical





### 802.11ac(VHT40): CH 5755MHz

#### Horizontal

FCC 15.407 U-NII Out of Band Emission



#### **Vertical**





### 802.11ac(VHT40): CH 5795MHz

#### Horizontal

FCC 15.407 U-NII Out of Band Emission



#### Vertical





### 802.11ac(VHT80): CH 5775MHz Horizontal

FCC 15.407 U-NII Out of Band Emission







### ZS11E Transmitting spurious emission test result as below:

The worst case of Radiated Emission below 1GHz:

| Site: 3 meter chamber                                           | Time: 2019/09/28 - 17:21 |  |  |  |
|-----------------------------------------------------------------|--------------------------|--|--|--|
| Limit: FCC_Part15.109_RE(3m)_ClassB                             | Engineer: Wenqiang LU    |  |  |  |
| Probe: VULB9168                                                 | Polarity: Horizontal     |  |  |  |
| EUT: ISMART1.0, Model no: ZS11E                                 | Power: 12VDC             |  |  |  |
| Note: There is the worst case within frequency range 30MHz~1GHz |                          |  |  |  |

RE\_VULB9168\_pre\_Cont\_EN 55014\_30-1000



**Limit and Margin** 

| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|-----|---------------|---------------|-------------------------|----------------------------|
| 95.960000          | 20.8                  | 1000.0                | 120.000            | 100.0          | Н   | 1.0           | 11.0          | 22.7                    | 43.5                       |
| 161.240000         | 32.1                  | 1000.0                | 120.000            | 100.0          | Н   | 358.0         | 15.5          | 11.4                    | 43.5                       |
| 221.920000         | 39.5                  | 1000.0                | 120.000            | 100.0          | Н   | 1.0           | 12.6          | 6.5                     | 46.0                       |
| 224.320000         | 37.9                  | 1000.0                | 120.000            | 100.0          | Н   | 359.0         | 12.7          | 8.1                     | 46.0                       |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



#### The worst case of Radiated Emission below 1GHz:

| Site: 3 meter chamber                                  | Time: 2019/09/28 - 17:40 |
|--------------------------------------------------------|--------------------------|
| Limit: FCC_Part15.109_RE(3m)_ClassB                    | Engineer: Wenqiang LU    |
| Probe: VULB9168                                        | Polarity: Vertical       |
| EUT: ISMART1.0, Model no: ZS11E                        | Power: 12VDC             |
| Note: There is the worst case within frequency range 3 | 30MHz~1GHz               |

#### RE\_VULB9168\_pre\_Cont\_EN 55014\_30-1000



**Limit and Margin** 

| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|-----|------------------|---------------|-------------------------|----------------------------|
| 95.920000          | 28.1                  | 1000.0                | 120.000            | 100.1          | ٧   | 358.0            | 11.0          | 15.4                    | 43.5                       |
| 161.160000         | 33.3                  | 1000.0                | 120.000            | 100.1          | ٧   | 1.0              | 15.6          | 10.2                    | 43.5                       |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



### ZS11MCE3 Transmitting spurious emission test result as below:

The worst case of Radiated Emission below 1GHz:

| Site: 3 meter chamber                                           | Time: 2019/09/28 - 17:21 |  |  |  |  |
|-----------------------------------------------------------------|--------------------------|--|--|--|--|
| Limit: FCC_Part15.109_RE(3m)_ClassB                             | Engineer: Wenqiang LU    |  |  |  |  |
| Probe: VULB9168                                                 | Polarity: Horizontal     |  |  |  |  |
| EUT: ISMART1.0, Model no: ZS11MCE3                              | Power: 12VDC             |  |  |  |  |
| Note: There is the worst case within frequency range 30MHz~1GHz |                          |  |  |  |  |

RE\_VULB9168\_pre\_Cont\_EN 55014\_30-1000



**Limit and Margin** 

| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|-----|---------------|---------------|-------------------------|----------------------------|
| 202.400000         | 34.0                  | 1000.0                | 120.000            | 100.0          | Н   | 6.0           | 11.7          | 9.5                     | 43.5                       |
| 217.640000         | 34.2                  | 1000.0                | 120.000            | 100.0          | Н   | 359.0         | 12.4          | 11.9                    | 46.0                       |
| 220.200000         | 35.2                  | 1000.0                | 120.000            | 100.0          | Н   | 1.0           | 12.5          | 10.8                    | 46.0                       |
| 229.800000         | 38.7                  | 1000.0                | 120.000            | 100.0          | Н   | 2.0           | 12.9          | 7.3                     | 46.0                       |
| 232.200000         | 39.9                  | 1000.0                | 120.000            | 100.0          | Н   | 358.0         | 13.0          | 6.1                     | 46.0                       |
| 277.720000         | 44.2                  | 1000.0                | 120.000            | 100.0          | Н   | 358.0         | 14.4          | 1.8                     | 46.0                       |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



#### The worst case of Radiated Emission below 1GHz:

| Site: 3 meter chamber                               | Time: 2019/09/28 - 17:40 |
|-----------------------------------------------------|--------------------------|
| Limit: FCC_Part15.109_RE(3m)_ClassB                 | Engineer: Wenqiang LU    |
| Probe: VULB9168                                     | Polarity: Vertical       |
| EUT: ISMART1.0, Model no: ZS11MCE3                  | Power: 12VDC             |
| Note: There is the worst case within frequency rang | e 30MHz~1GHz.            |

#### RE\_VULB9168\_pre\_Cont\_EN 55014\_30-1000



### **Limit and Margin**

|   | Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|---|--------------------|-----------------------|-----------------------|--------------------|----------------|-----|---------------|---------------|-------------------------|----------------------------|
| Г | 153.320000         | 39.8                  | 1000.0                | 120.000            | 100.0          | ٧   | 255.0         | 15.7          | 3.7                     | 43.5                       |
|   | 159.960000         | 35.2                  | 1000.0                | 120.000            | 100.0          | ٧   | 1.0           | 15.7          | 8.3                     | 43.5                       |
|   | 212.120000         | 30.9                  | 1000.0                | 120.000            | 100.0          | ٧   | 358.0         | 12.2          | 12.6                    | 43.5                       |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)



# 10 Test Equipment List

#### List of Test Instruments Test Site1

|           | DESCRIPTION                                                                    | MANUFACTURER         | MODEL<br>NO.     | SERIAL NO. | CAL. DUE<br>DATE |  |
|-----------|--------------------------------------------------------------------------------|----------------------|------------------|------------|------------------|--|
|           | Signal Analyzer                                                                | Rohde & Schwarz      | FSV40            | 101091     | 2020-8-4         |  |
| С         | Wideband power sensor                                                          | Rohde & Schwarz      | NRP-Z81          | 104782     | 2019-12-27       |  |
|           | EMI Test Receiver                                                              | Rohde & Schwarz      | ESR3             | 101906     | 2020-8-4         |  |
|           | Signal Analyzer                                                                | Rohde & Schwarz      | FSV40            | 101091     | 2020-8-4         |  |
|           | Trilog Super<br>Broadband Test<br>Antenna                                      | Schwarzbeck          | VULB 9168        | 961        | 2022-3-15        |  |
|           | Horn Antenna                                                                   | Rohde & Schwarz      | HF907            | 102393     | 2021-4-1         |  |
|           | Pre-amplifier                                                                  | Rohde & Schwarz      | SCU-18D 19006451 |            | 2020-8-4         |  |
| RE        | Loop antenna Rohde & Schwa                                                     |                      | HFH2-Z2          | 100443     | 2020-6-27        |  |
|           | DOUBLE-RIDGED<br>WAVEGUIDE<br>HORN WITH PRE-<br>AMPLIFIER<br>(18 GHZ - 40 GHZ) | ETS-Lindgren         | 3116C-PA         | E326       | 2021-1-28        |  |
|           | 3m Semi-anechoic chamber                                                       | TDK                  | 9X6X6            |            | 2021-5-10        |  |
|           | EMI Test Receiver                                                              | Rohde & Schwarz      | ESR3             | 101907     | 2020-8-4         |  |
| CE        | LISN                                                                           | Rohde & Schwarz      | ENV216           | 101924     | 2020-8-4         |  |
|           |                                                                                | Measurement Software | e Information    |            |                  |  |
| Test Item | Software                                                                       | Manufacturer         | Version          |            |                  |  |
| RE        | EMC 32                                                                         | Rohde & Schwarz      | V9.15.00         |            |                  |  |
| CE        | EMC 32                                                                         | Rohde & Schwarz      |                  |            |                  |  |

#### C - Conducted RF tests

- Conducted peak output power
- Occupied Bandwidth
- Power spectral density\*



# 11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| Items                                       | Extended Uncertainty                                                                                                                              |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted Disturbance at Mains<br>Terminals | 150kHz to 30MHz, LISN, ±3.16dB                                                                                                                    |
| Radiated Disturbance                        | 30MHz to 1GHz, ±5.03dB (Horizontal)<br>±5.12dB (Vertical)<br>1GHz to 18GHz, ±5.15dB (Horizontal)<br>±5.12dB (Vertical)<br>18GHz to 25GHz, ±4.76dB |



# 12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.



# 13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END