

Versão Educacional 2.0

Roteiro para Dimensionamento de Ligações entre Elementos de Madeira e Aço com Parafusos

1 VARIÁVEIS UTILIZADAS

Variável	Descrição	Procedência
fc0,k1	Força de compressão característica paralela	Característica da classe de
ICU,K I	às fibras do elemento 1 de madeira	madeira
fo0.1c0	Força de compressão característica paralela	Característica da classe de
fc0,k2	às fibras do elemento 2 de madeira	madeira
t1	Espessura do elemento 1 de madeira	Determinado pelo projeto
t2	Espessura do elemento 2 de madeira	Determinado pelo projeto
Ângulo	Ângulo entre os elementos de madeira	Determinado pelo projeto
kmod1	Coeficiente de modificação que leva em	Duração do carregamento
KIIIOU I	consideração as classes de carregamento	Duração do carregamento
kmod2	Coeficiente de modificação que leva em	Teor de umidade e tipo de
KIIIOUZ	consideração as classes de umidade	madeira utilizado
kmod3	Coeficiente de modificação que leva em	Método de classificação da
KIIIOUS	consideração a qualidade da madeira	qualidade da madeira
d	Diâmetro do parafuso	Tipo do parafuso
n	Número de parafusos utilizados	Determinado pelo projeto
fu,k	Força de tensão característica do parafuso	Classe do aço do parafuso

2 MÉTODO DE DIMENSIONAMENTO

O método de dimensionamento a seguir, utiliza as equações apresentadas pela Associação Brasileira de Normas Técnicas através da revisão da norma ABNT NBR 7190 (1997). O documento normativo não determina uma

Versão Educacional 2.0

sequência de cálculo, porém, por questões de agilidade, será apresentada uma ordem considerada pelos desenvolvedores do software como mais adequada.

2.1 DETERMINAÇÃO DAS PROPRIEDADES DOS MATERIAIS – VALORES DE CÁLCULO

A revisão da norma ABNT NBR 7190 (1997) permite que o dimensionamento seja realizado através das Classes de Resistência ou Espécies, porém, no software ocorre por meio da primeira opção apenas. Portanto, seguem as tabelas apresentadas na norma que especificam valores de propriedades para o dimensionamento por Classes de Resistência.

Tabela 1 - Classe de resistência das Coníferas

Coníferas (valores na condição padrão de referência U = 12%)					
Classes	f _{c0k} (MPa)	f _{v0,k} (MPa)	E _{c0,k} (MPa)	ρ _{aparente} (kg/m³)	
C20	20	4	3500	500	
C25	25	5	8500	550	
C30	30	6	14500	600	

Fonte: NBR 7190 (ABNT,2011).

Tabela 2 - Classe de resistência das Folhosas

Folhosas (valores na condição padrão de referência U = 12%)						
Classes	f _{c0k} (MPa)	f _{v0,k} (MPa)	E _{c0,k} (MPa)	ρ _{aparente} (kg/m³)		
D20	20	4	9500	650		
D30	30	5	14500	800		
D40	40	6	19500	950		
D50	50	7	22000	970		
D60	60	8	24500	1000		

Fonte: NBR 7190 (ABNT,2011)

Versão Educacional 2.0

Os valores apresentados nas tabelas são os característicos.

Para calcular os valores de resistência de cálculo, utiliza-se a equação a seguir:

$$f_{w,d} = k_{mod} \cdot \frac{f_{w,k}}{\gamma_w}$$

Equação 1 - Resistências de Cálculo

Onde:

 $f_{w,d}$ = resistências de cálculo (pode assumir valores de resistência à compressão, tração, cisalhamento, etc.);

 $f_{w,k}$ = é a resistência característica da madeira definida por meio de classes de resistência;

γ_w = 1,4 (para resistência à compressão paralela ou normal da madeira);

 $y_w = 1.8$ (para resistência à tração paralela ou cisalhamento da madeira).

O valor conhecido como k_{mod} é o produto de três coeficientes de modificação. Seus valores são dados no Quadro 1 e Tabelas 4, 5 e 6. Cada k_{mod} significa:

k_{mod1} = refere-se a classe de carregamento e o tipo de material;

 k_{mod2} = refere-se a classe de umidade e o tipo de material;

k_{mod3} = refere-se a qualidade da madeira e ao método utilizado na classificação da mesma.

 $k_{mod} = k_{mod1} \cdot k_{mod2} \cdot k_{mod3}$

Equação 2 - Composição do Coeficiente de Modificação

Versão Educacional 2.0

	,	iável principal da ombinação	Tipos de madeira	
Classes de carregamento	Duração acumulada	Ordem de grandeza da duração acumulada da ação característica	Madeira serrada Madeira roliça Madeira laminada colada Madeira compensada	Madeira recomposta
Permanente	Permanente	Vida útil da construção	0,60	0,30
Longa duração	Longa duração	Mais de seis meses	0,70	0,45
Média duração	Média duração	Uma semana a seis meses	0,80	0,65
Curta duração	Curta duração	Menos de uma semana	0,90	0,90
Instantânea	Instantânea	Muito curta	1,10	1,10

Quadro 1 - Definição de classes de carregamento e valores de kmod1 Fonte: NBR 7190 (ABNT,2011).

Classes de carregamento	Exemplos
Permanente	Peso próprio
Longa duração	Reservatórios de água Carga de armazenamento
Média duração	Sobrecarga geral de piso
Curta duração	Neve Sobrecarga de manutenção de cobertura
Instantânea	Vento Explosão Cargas de impacto

Quadro 2 – Exemplos práticos das classes de carregamento Fonte: Adaptado Porteous e Kermani (2007).

Versão Educacional 2.0

Tabela 3 - Classes de umidade

Classes de umidade	Umidade relativa do ambiente U _{amb}	Umidade de equilíbrio da madeira U _{eq}
1	U _{amb} ≤ 65 %	12 %
2	65 % < U _{amb} ≤ 75 %	15 %
3	75 % < U _{amb} ≤ 85 %	18 %
4	U _{amb} > 85 % durante longos períodos	≥ 25 %

Fonte: NBR 7190 (ABNT, 2011).

Tabela 4 - Valores do Kmod 2

Classes de umidade	Madeira serrada Madeira roliça Madeira laminada colada Madeira compensada	Madeira recomposta
(1)	1,00	1,00
(2)	0,90	0,95
(3)	0,80	0,93
(4)	0,70	0,90

Fonte: NBR 7190 (ABNT, 2011).

Para madeira serrada submersa, admite-se o valor de 0,65.

TED

TCD – Timber Connections Design

Versão Educacional 2.0

Tabela 5 - Valores de Kmod 3 para Coníferas

		Tipos de clas	ssificação
Classificação	Classes	Apenas visual	Visual e mecânica
	SE-D	0,70	0,90
Densas (D)	S1-D	0,60	0,80
	S2-D	0,50	0,70
	S3-D	0,40	0,60
	S3-D	0,40	•

		Tipos de clas	ssificação
Classificação	Classes	Apenas visual	Visual e mecânica
	SE-ND	0,60	0,60
Não-Densas	S1-ND	0,50	0,70
(ND)	S2-ND	0,40	0,60
	S3-ND	0,30	0,50

Fonte: NBR 7190 (ABNT, 2011).

Tabela 6 - Valores de Kmod 3 para Folhosas

Classes	Tipos de classificação				
Classes	Apenas visual	Visual e mecânica			
SE	0,90	1,00			
S1	0,85	0,95			
S2	0,80	0,70			
S3	0,75	0,85			

Fonte: NBR 7190 (ABNT, 2011).

Para madeira folhosa não-classificada, admite-se o valor de 0,70.

Diâmetro (cm)	<0,64	0,95	1,27	1,59	1,91	2,22	2,54	3,18	3,81	4,45	5,08	>7,62
Coeficiente αe	2,5	1,95	1,68	1,52	1,41	1,33	1,27	1,19	1,14	1,1	1,07	1

Quadro 3 - Coeficiente αe

Fonte: NBR 7190 (ABNT, 2017).

Versão Educacional 2.0

Especificaçã	f _{y,k} (MPa)	f _{u,k} (MPa)	Diâmetro nominal mínimo	
Prego comum	Liso com cabeça	600	800	d ≥ 3 mm
Darafusa nasaanta	A307	250	415	d ≥ 3/8 pol
Parafuso passante padrão ASTM	A325	635	825	ou
paurau ASTIVI	A490	895	1035	$d \ge 10 \text{ mml}$
Parafuso passante	Classe 4.6	235	400	
padrão NBR ISO	Classe 8.8	640	800	$d \ge 10 \text{ mm}$
898-1	Classe 10.9	900	1000	
Parafuso de rosca soberba padrão NBRxxx		250	415	d ≥ 6 mm

Quadro 4 - Características dos pinos metálicos

2.2 CÁLCULO DO VALOR CARACTERÍSTICO DA FORÇA DE EMBUTIMENTO $(f_{e,k})$:

Primeiramente, deve-se calcular os valores característicos das forças de embutimento dos elementos 1 e 2 de madeira. Para isso, utiliza-se as variáveis $f_{c0, \, k1}$ e $f_{c0, \, k2}$ respectivamente. Se a classe do elemento de madeira 1 for igual à classe do elemento de madeira 2, temos que $f_{e, \, k1} = f_{e, \, k2}$.

$$f_{e0,k} = f_{c0,k}$$

Equação 3 – Força de embutimento paralela às fibras do elemento de madeira

$$f_{e90,k} = 0.25. f_{c0,k}. \alpha_e$$

Equação 4 – Força de embutimento perpendicular às fibras do elemento de madeira

Sendo:

f_{c0,k} = valor característico de compressão paralelo às fibras;

 α_e = coeficiente indicado no Quadro 3.

Versão Educacional 2.0

$$f_{c90,d} = \frac{f_{e0,k} \cdot f_{e90,k}}{f_{e0,k} \cdot sen^{2} \alpha + f_{e90,k} \cdot cos^{2} \alpha}$$

Equação 5 – Força de embutimento inclinada às fibras do elemento de madeira

Sendo:

f_{c0,k} = valor característico de compressão paralelo às fibras;

f_{c90,k} = valor característico de compressão perpendicular às fibras;

 α = ângulo entre os elementos.

2.3 CÁLCULO DO COEFICIENTE DE RELAÇÃO ENTRE OS VALORES DE EMBUTIMENTO DOS ELEMENTOS DE MADEIRA (β)

$$\beta = \frac{f_{e,k2}}{f_{e,k1}}$$

Equação 6 - Coeficiente de Relação entre as Forças de Embutimento dos Elementos de Madeira

Sendo:

 $f_{e,k1}$ = valor característico da força de embutimento do elemento 2 de madeira; $f_{e,k2}$ = valor característico da força de embutimento do elemento 2 de madeira;

2.4 CÁLCULO DO NÚMERO EFETIVO DE PARAFUSOS NA LIGAÇÃO

2.4.1 Se número de parafusos em linha da ligação for maior que 8

$$n0 = 8 + \frac{2}{3} \cdot (nc - 8)$$

Equação 7 - Número Efetivo de Parafusos

Em que:

Versão Educacional 2.0

n₀ = número efetivo de parafusos resistentes;

nc = número de parafusos.

2.5 CÁLCULO DO EFEITO DE CONFINAMENTO

Recomenda-se que a contribuição do efeito de confinamento só deva ser considerada após investigação experimental que comprove o fenômeno. A contribuição do efeito de confinamento deve ser limitada ao percentual de 25% para parafusos passantes com porcas e arruelas. Para o mesmo caso, o valor Fax,Rk pode ser estimado pelo menor valor dentre a resistência de tração do parafuso e a resistência ao embutimento da arruela na madeira.

Devido à resistência à tração no pino metálico:

$$F_{ax,rk} = 0.75. \frac{\pi d^2}{4}. f_{u,k}$$

Equação 8 – Efeito de Corda devido à Resistência à Tração

Devido à resistência ao embutimento da arruela na madeira:

$$f_{ax,rk} = (\frac{\pi d2^2}{4} - \frac{\pi d1^2}{4}).3. f_{e,k}$$

Equação 8 - Efeito de Corda devido ao Embutimento da Arruela

Versão Educacional 2.0

O valor de F_{ax,rk} será o menor entre os calculados anteriormente, e deverá ser levado em consideração somente se, seu valor dividido por 4, for menor que 25% da parcela de Johansen. Caso seja levado em consideração, seu valor dividido por 4 será somado a parcela de Johansen. Caso contrário, considera-se a parcela de Johansen somada a 25% de seu próprio valor.

$$F_{ax.rk} = 0$$

Equação 9 – Efeito de corda quando não considerado

2.6 DETERMINAÇÃO DO MOMENTO RESISTENTE DO PARAFUSO

My,k é o momento resistente do parafuso à flexão (N.mm); fu,k é a resistência última do aço do parafuso à tração (N/mm²); d é o diâmetro do parafuso (mm).

$$M_{\nu k} = 0.3 \cdot f_{\mu,k} \cdot d^{2.6}$$

Equação 10 - Momento Resistente do Parafuso

2.7 CÁLCULO DAS RESISTÊNCIAS CARACTERÍSTICAS DE UMA SEÇÃO DE CORTE DE UM PARAFUSO

Escolhe-se o menor valor das equações abaixo, calculadas para uma seção ou duas seções de corte.

Versão Educacional 2.0

- Para ligações com chapas finas em corte simples

Modo de falha (a)
$$F_{v,Rk} = 0.4 \cdot f_{e1,k} \cdot t_1 \cdot d$$
 Modo de falha (b)
$$F_{v,Rk} = 1.15 \cdot \left[\sqrt{2 \cdot M_{y,Rk} \cdot f_{e1,k} \cdot d} \right] + \frac{F_{ax,Rk}}{4}$$

- Para ligações com chapas grossas em corte simples

Modo de falha (c)
$$F_{v,Rk} = f_{e1,k} \cdot t_1 \cdot d$$

$$\text{Modo de falha} \text{ (d)} \qquad F_{v,Rk} = f_{e1,k} \cdot t_1 \cdot d \left[\sqrt{2 + \frac{4 \cdot M_{y,Rk}}{f_{e1,k} \cdot d \cdot t_1^2}} - 1 \right] + \frac{F_{ax,Rk}}{4}$$

$$\text{Modo de falha} \text{ (e)} \qquad F_{v,Rk} = 2,3 \cdot \left[\sqrt{M_{y,Rk} \cdot f_{e1,k} \cdot d} \right] + \frac{F_{ax,Rk}}{4}$$

- Para ligações com chapa metálica central de qualquer espessura, em dupla seção de corte

Modo de falha (f)
$$F_{v,Rk} = f_{e1,k} \cdot t_1 \cdot d$$

$$\text{Modo de falha} \qquad F_{v,Rk} = f_{e1,k} \cdot t_1 \cdot d \left[\sqrt{2 + \frac{4 \cdot M_{y,Rk}}{f_{e1,k} \cdot d \cdot t_1^2}} - 1 \right] + \frac{F_{ax,Rk}}{4}$$

$$\text{Modo de falha} \qquad F_{v,Rk} = 2.3 \cdot \left[\sqrt{M_{y,Rk} \cdot f_{e1,k} \cdot d} \right] + \frac{F_{ax,Rk}}{4}$$

- Para ligações com duas chapas laterais caracterizadas como finas, em corte duplo

Versão Educacional 2.0

Modo de falha (j)
$$F_{v,Rk} = 0.5.\,f_{e2,k}\cdot t_2\cdot d$$
 Modo de falha (k)
$$F_{v,Rk} = 1.15\cdot\left[\sqrt{2\cdot M_{y,Rk}\cdot f_{e2,k}\cdot d}\right] + \frac{F_{ax,Rk}}{4}$$

- Para ligações com duas chapas laterais caracterizadas como grossas, em corte duplo

Modo de falha (I)
$$F_{v,Rk} = 0.5. \, f_{e2,k} \cdot t_2 \cdot d$$
 Modo de falha (m)
$$F_{v,Rk} = 2.3 \cdot \left[\sqrt{M_{y,Rk}. \, f_{e2,k}. \, d} \right] + \frac{F_{ax,Rk}}{4}$$

Onde t_1 é a menor espessura dentre os elementos de madeira laterais, para os casos em corte simples e corte duplo, t_2 é a espessura do elemento de madeira central para os casos em corte duplo, $f_{e1,k}$ e $f_{e2,k}$ referem-se à resistência ao embutimento dos elementos de madeira 1 e 2, respectivamente, $M_{y,Rk}$ é o momento característico resistente do parafuso. Os modelos de falha podem ser vistos na Figura 1.

Figura 1 - Modos de falha para determinação da força característica de ligações com pinos metálicos e chapas de aço

750

TCD – Timber Connections Design

Versão Educacional 2.0

2.8 CÁLCULO DAS RESISTÊNCIAS CARACTERÍSTICAS DA LIGAÇÃO

A resistência característica da ligação é definida por:

$$R_k = F_{v,Rk}.\,n_{sp}.\,n_0$$

Equação 10 – Resistência característica da ligação

Onde:

n_{sp} = refere-se à quantidade de seções de corte por pino metálico;

n₀ = número efetivo de pinos por ligação;

 $F_{v,Rk}$ = resistência característica de um pino, correspondente a uma dada seção de corte.

2.9 DETERMINAÇÃO DA RESISTÊNCIA DE CÁLCULO DA LIGAÇÃO

O valor de cálculo da resistência da ligação é definido a partir do valor característico da resistência da ligação, pela equação:

Versão Educacional 2.0

$$R_d = k_{mod1}. k_{mod2}. k_{mod3}. \frac{R_k}{\gamma_{lig}}$$

Equação 11 - Resistência de cálculo da ligação

O valor do coeficiente de minoração das propriedades de resistência da ligação γ_{lig} é igual a 1,4.

OBSERVAÇÕES:

No dimensionamento de ligações com o uso de conectores em aço não se deve tomar valor de k_{mod1} superior a 1, mesmo para combinação de ações de duração instantânea.