ЛЕКЦИЯ №13.

Кодирование стационарных источников.

Энтропия последовательности символов от стационарного источника определяется следующим образом:

$$H(X_1,...,X_J) = \sum_{i=1}^J H(X_i / X_1,...,X_{i-1}),$$
 (4.16)

где $X_1,...,X_J$ - блок случайных переменных, $H(X_i/X_1,...,X_{i-1})$ - энтропия i - го символа при условии, что источник выдал предыдущие i-1 символов. Энтропия на символ для такого J символьного блока:

$$H_J(X) = \frac{1}{J}H(X_1, ..., X_J)$$
 (4.17)

Количество информации стационарного источника — энтропия на символ (4.17) при $J \to \infty$.

Пусть источник выдает J символьный блок с энтропией $H_J(X)$. Тогда можно кодировать этот блок кодом Хаффмена, который удовлетворяет префиксному условию. Полученный код имеет среднее число бит на J символов, удовлетворяющее условию:

$$H(X_1,...,X_J) \le \overline{K}_J < H(X_1,...,X_J) + 1.$$

Разделим это неравенство на J, получим:

$$H_J(X) \le \overline{K} < H_J(X) + \frac{1}{J}, \tag{4.18}$$

где $\overline{K}=\frac{\overline{K}_J}{J}$ - среднее число бит на один символ источника. Увеличивая длину блока J можно приблизить \overline{K} к $H_J(X)$, т.е. $\overline{K}\to H_J(X)$ при $J\to\infty$.

Вывод. Эффективное кодирование стационарных источников может быть реализовано путем кодирования длинных блоков источника алгоритмом Хаффмена.

Недостаток: надо знать совместные функции плотности распределения вероятности для *J* символьных блоков.

4.2. Непрерывный источник (НИ).

Непрерывный (аналоговый) источник выдает непрерывный сигнал x(t), который является некоторой реализацией случайного процесса $\zeta(t)$.