

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 18 Mar 2022 1 of 21

Sample Information

Patient Name: 蔡國裕 Gender: Male ID No.: A101597905 History No.: 48251532

Age: 67

Ordering Doctor: DOC5310D 曾彥寒 Ordering REQ.: D6N5JC3 Signing in Date: 2022/03/18

Path No.: S111-98720 **MP No.:** F22022

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$111-08876A Percentage of tumor cells: 60%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Page
2
2
4
5
16
17

Report Highlights 2 Relevant Biomarkers 6 Therapies Available 10 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding
ALK	EML4-ALK fusion	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR p.(G779F) c.2335_2336delGGinsTT	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EML4-ALK fusion EMAP like 4 - ALK receptor tyrosine kinase	alectinib 1,2 brigatinib 1,2 ceritinib 1,2 crizotinib 1,2 lorlatinib 1,2 next-generation ALK inhibitor	brigatinib ceritinib crizotinib	6
	Prognostic significance: None Diagnostic significance: None			
IA	EGFR p.(G779F) c.2335_2336delGGinsTT epidermal growth factor receptor Allele Frequency: 55.74%	None	None	4
	Prognostic significance: None Diagnostic significance: None			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
EGFR	p.(G779F)	c.2335_2336delGGin sTT		chr7:55249037	55.74%	NM_005228.5	missense	1986
FGFR4	p.(N125=)	c.375C>T		chr5:176517765	18.55%	NM_213647.3	synonymous	2000

Gene Fusions (RNA)					
Genes	Variant ID	Locus	Read Count		
EML4-ALK	EML4-ALK.E18A20.COSF487.1	chr2:42543190 - chr2:29446394	521		

Biomarker Descriptions

ALK (ALK receptor tyrosine kinase)

<u>Background</u>: The ALK gene encodes the ALK receptor tyrosine kinase (RTK) with sequence similarity to the insulin receptor subfamily of kinases¹. ALK is the target of recurrent alterations in cancer, the most common being chromosomal rearrangements that generate fusion genes containing the intact ALK tyrosine kinase domain combined with multiple partner genes². ALK fusion kinases are constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/MEK/ERK pathways^{2,3,4,5}.

Alterations and prevalence: ALK was discovered by positional cloning of translocations involving nucleophosmin (NPM) on 5q35 with a previously unidentified RTK on 2p23 (ALK), which occur in over 50% of anaplastic large cell lymphoma cases^{1,6}. In contrast, about 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions with EML4, KIF5B, and HIP1^{7,8,9}.

Potential relevance: The first generation small molecule tyrosine kinase inhibitor (TKI), crizotinib¹⁰, was FDA approved (2011) for the treatment of ALK positive advanced NSCLC. Kinase domain mutations including L1196M, G1269A, F1174L, G1202R, as well as other variants have been shown to confer acquired resistance to crizotinib in ALK positive NSCLC^{11,12,13,14}. Other mechanisms of acquired resistance involve amplification of the ALK fusion gene and activation of alternate or bypass signaling pathways involving EGFR, KIT,

Biomarker Descriptions (continued)

MET, and IGF1R¹⁵. In order to overcome acquired resistance, second and third-generation ALK inhibitors including ceritinib¹⁶ (2014), alectinib¹⁷ (2015), brigatinib¹⁸ (2017), and lorlatinib¹⁹ (2018) were developed and approved by the FDA. Two phase III trials evaluating crizotinib and alectinib as first line therapy in NSCLC, including patients with asymptomatic central nervous system (CNS) disease, were conducted and both studies showed consistent higher objective response rates (ORR) with alectinib relative to crizotinib^{20,21}. For this reason, alectinib is a preferred first-line treatment of ALK positive NSCLC²².

EGFR (epidermal growth factor receptor)

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4²³. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{24,25}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{26,27,28,29}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21³⁰. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{31,32,33,34}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations³⁵. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{30,36}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{27,28,29,36,37}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{38,39,40}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib⁴¹ (2004) and gefitinib⁴² (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib⁴³ (2013) and dacomitinib⁴⁴ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{22,45,46,47}. However, in 2021, the irreversible tyrosine kinase inhibitor, mobocertinib⁴⁸was FDA approved for the treatment of NSCLC with EGFR exon 20 insertion mutations. Additionally, in 2022, the FDA granted breakthrough therapy designation to an irreversible EGFR inhibitor, CLN-081 (TPC-064)⁴⁹, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations who have previously received platinum-based systemic chemotherapy. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance⁵⁰. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases30. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib⁵¹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation and occurs in 22-44% of cases⁵⁰. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa⁵². T790M and C797S can occur in either cis or trans allelic orientation⁵². If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs⁵². If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{52,53}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs⁵². Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, amivantamab⁵⁴, targeting EGFR and MET was approved (2021) NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy quaratusugene ozeplasmid⁵⁵ in combination with osimertinib received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-18956 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

Relevant Therapy Summary

■ In this cancer type
In other cancer type
In this cancer type and other cancer types
X No evidence

FDA	NCCN	EMA	ESMO	Clinical Trials*
•	•	•	•	(IV)
•	•	•	•	×
•	0	•	•	×
•	•	•	•	(III)
•	•	•	•	×
×	×	×	•	×
×	×	×	×	(III)
×	×	×	×	(II)
×	×	×	×	(/)
	• • • • ×	• 0 • 0 • 0 • • • • • • • • • • • • • •		

EGFR p.(G779F) c.2335_2336delGGinsTT						
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*	
durvalumab, chemotherapy	×	×	×	×	(III)	
DZD-9008	×	×	×	×	(1/11)	
amivantamab	×	×	×	×	(I)	
lazertinib, amivantamab, chemotherapy	×	×	×	×	(1)	

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 18 Mar 2022 5 of 21

Relevant Therapy Details

Current FDA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

FDA information is current as of 2022-01-19. For the most up-to-date information, search www.fda.gov.

EML4-ALK fusion

alectinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-09-03

Variant class: ALK fusion or ALK overexpression

Indications and usage:

ALECENSA® is a kinase inhibitor indicated for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) as detected by an FDA-approved test.

Reference

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208434s012lbl.pdf

brigatinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-09-24 Variant class: ALK fusion

Indications and usage:

ALUNBRIG® is a kinase inhibitor indicated for the treatment of adult patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208772s012lbl.pdf

ceritinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-10-07 Variant class: ALK fusion or ALK

overexpression

Indications and usage:

ZYKADIA® is a kinase inhibitor indicated for the treatment of adults with metastatic non-small cell lung cancer (NSCLC) whose tumors are anaplastic lymphoma kinase (ALK)-positive as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211225s004lbl.pdf

Date: 18 Mar 2022 6 of 21

EML4-ALK fusion (continued)

crizotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-09-22 Variant class: ALK fusion

Indications and usage:

XALKORI® is a kinase inhibitor indicated for the treatment of

- patients with metastatic non-small cell lung cancer (NSCLC) whose tumors are anaplastic lymphoma kinase (ALK) or ROS1-positive as detected by an FDA-approved test.
- pediatric patients 1 year of age and older and young adults with relapsed or refractory, systemic anaplastic large cell lymphoma (ALCL) that is ALK-positive.
 - Limitations of Use: The safety and efficacy of XALKORI® have not been established in older adults with relapsed or refractory, systemic ALK-positive ALCL.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202570s031lbl.pdf

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-03-03 Variant class: ALK fusion or ALK

overexpression

Indications and usage:

LORBRENA® is a kinase inhibitor indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors are anaplastic lymphoma kinase (ALK)-positive as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf

Date: 18 Mar 2022 7 of 21

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2022-01-04. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EML4-ALK fusion

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Useful
in certain circumstances

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

Date: 18 Mar 2022 8 of 21

EML4-ALK fusion (continued)

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion or ALK overexpression

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Metastatic, Advanced (Subsequent therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

Date: 18 Mar 2022 9 of 21

EML4-ALK fusion (continued)

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Metastatic, Advanced (Subsequent therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion or ALK overexpression

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

Date: 18 Mar 2022 10 of 21

EML4-ALK fusion (continued)

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Metastatic, Advanced (Subsequent therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2021]

O brigatinib

Cancer type: Inflammatory Myofibroblastic Tumor Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Line of therapy not specified); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 2.2021]

O ceritinib

Cancer type: Inflammatory Myofibroblastic Tumor Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Line of therapy not specified); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 2.2021]

O crizotinib

Cancer type: Inflammatory Myofibroblastic Tumor Variant class: ALK fusion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Line of therapy not specified); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 2.2021]

Date: 18 Mar 2022 11 of 21

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2022-01-19. For the most up-to-date information, search www.ema.europa.eu/ema.

EML4-ALK fusion

alectinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-10-11

Variant class: ALK fusion or ALK

overexpression

Reference:

https://www.ema.europa.eu/en/documents/product-information/alecensa-epar-product-information_en.pdf

brigatinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-10-15

Variant class: ALK fusion

Reference:

https://www.ema.europa.eu/en/documents/product-information/alunbrig-epar-product-information_en.pdf

crizotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-07-21

Variant class: ALK fusion

Reference:

https://www.ema.europa.eu/en/documents/product-information/xalkori-epar-product-information_en.pdf

ceritinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-10-11

Variant class: ALK positive

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/zykadia-epar-product-information_en.pdf\\$

lorlatinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-11-05

Variant class: ALK positive

Reference:

https://www.ema.europa.eu/en/documents/product-information/lorviqua-epar-product-information_en.pdf

Date: 18 Mar 2022 12 of 21

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2022-01-04. For the most up-to-date information, search www.esmo.org.

EML4-ALK fusion

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

- Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 4
- Advanced, Progression (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced, Progression (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 4

Date: 18 Mar 2022 13 of 21

EML4-ALK fusion (continued)

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 4

(Second-line therapy, Subsequent therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

next-generation ALK inhibitor

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (Second-line therapy, Subsequent therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

■ Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 4

EML4-ALK fusion (continued)

next-generation ALK inhibitor

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: II / A

Population segment (Line of therapy):

Advanced, Progression (Second-line therapy, Subsequent therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Advanced (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV; Advanced, Progression (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 3

Date: 18 Mar 2022 15 of 21

EML4-ALK fusion (continued)

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

Advanced (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

ESMO Level of Evidence/Grade of Recommendation: IV / B

Population segment (Line of therapy):

■ (First-line therapy)

Date: 18 Mar 2022 16 of 21

Clinical Trials in Taiwan region:

Clinical Trials Summary

EML4-ALK fusion

NCT ID	Title	Phase
NCT03596866	A Phase III Randomized Open-label Study of Brigatinib (Alunbrig) Versus Alectinib (Alecensa) in Advanced Anaplastic Lymphoma Kinase-Positive Non Small-Cell Lung Cancer Patients Who Have Progressed on Crizotinib (Xalkori)	III
NCT02584933	An Open-label, Multi-center, Phase IV Roll-over Study in Patients With ALK Positive Malignancies Who Have Completed a Novartis-sponsored Ceritinib (LDK378) Study and Are Judged by the Investigator to Benefit From Continued Treatment With Ceritinib	IV
NCT03456076	A Phase III, Open-Label, Randomized Study to Evaluate the Efficacy and Safety of Adjuvant Alectinib Versus Adjuvant Platinum-Based Chemotherapy in Patients With Completely Resected Stage IB (Tumors Equal to or Larger Than 4cm) to Stage IIIA Anaplastic Lymphoma Kinase Positive Non-Small Cell Lung Cancer	III
NCT02568267	An Open-Label, Multicenter, Global Phase II Basket Study of Entrectinib for the Treatment of Patients With Locally Advanced or Metastatic Solid Tumors That Harbor NTRK1/2/3, ROS1, or ALK Gene Rearrangements. Studies of Tumor Alterations Responsive to Targeting Receptor Kinases (STARTRK-2)	II
NCT03093116	A Phase I/II, Open-Label, Multi-Center, First-in-Human Study of the Safety, Tolerability, Pharmacokinetics, and Anti-Tumor Activity of TPX-0005 in Patients With Advanced Solid Tumors Harboring ALK, ROS1, or NTRK1-3 Rearrangements (TRIDENT-1)	1/11
NCT04094610	A Phase I/II, Open-Label, Safety, Tolerability, Pharmacokinetics, and Anti-Tumor Activity Study of Repotrectinib in Pediatric and Young Adult Subjects With Advanced or Metastatic Malignancies Harboring ALK, ROS1, NTRK1-3 Alterations	I/II

EGFR p.(G779F) c.2335_2336delGGinsTT

NCT ID	Title	Phase
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer.	I
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) With EGFR or HER2 Mutation	1/11
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT03800134	A Phase III, Double-blind, Placebo-controlled, Multi-center International Study of Neoadjuvant/Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III Non-small Cell Lung Cancer (AEGEAN)	III

Date: 18 Mar 2022 17 of 21

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

c	_	N
١.		

Not recommended

Resistance

Breakthrough

FDA information is current as of 2022-01-19. For the most up-to-date information, search www.fda.gov.

EGFR p.(G779F) c.2335_2336delGGinsTT

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Current NCCN Information

Contraindicated

Not recommended

Resistance

Breakthrough

NCCN information is current as of 2022-01-04. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EML4-ALK fusion

atezolizumab

Cancer type: Non-Small Cell Lung Cancer

Variant class: ALK fusion

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

nivolumab

Cancer type: Non-Small Cell Lung Cancer

Variant class: ALK fusion

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

Date: 18 Mar 2022 18 of 21

EML4-ALK fusion (continued)

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

EGFR p.(G779F) c.2335_2336delGGinsTT

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 1.2022]

Date: 18 Mar 2022 19 of 21

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

Date: 18 Mar 2022

References

- Webb et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009 Mar;9(3):331-56. PMID: 19275511
- Shaw et al. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer. 2013 Nov;13(11):772-87. PMID: 24132104
- 3. Chiarle et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005 Jun;11(6):623-9. PMID: 15895073
- 4. Bai et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 2000 Dec 15;96(13):4319-27. PMID: 11110708
- 5. Hrustanovic et al. RAS signaling in ALK fusion lung cancer. Small GTPases. 2016;7(1):32-3. PMID: 26901483
- 6. Morris et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994 Mar 4;263(5151):1281-4. PMID: 8122112
- 7. Kwak et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 2010 Oct 28;363(18):1693-703. PMID: 20979469
- 8. Yu et al. Frequencies of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. Springerplus. 2016 Jun 27;5(1):894. doi: 10.1186/s40064-016-2607-5. eCollection 2016. PMID: 27386342
- 9. Dai et al. Incidence and patterns of ALK FISH abnormalities seen in a large unselected series of lung carcinomas. Send to Mol Cytogenet. 2012 Dec 3;5(1):44. doi: 10.1186/1755-8166-5-44. PMID: 23198868
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202570s031lbl.pdf
- 11. Choi et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 2010 Oct 28;363(18):1734-9. PMID: 20979473
- 12. Awad et al. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014 Jul;12(7):429-39. PMID: 25322323
- 13. Kim et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J Thorac Oncol. 2013 Apr;8(4):415-22. PMID: 23344087
- 14. Katayama et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25. PMID: 22277784
- 15. Katayama. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Sci. 2018 Mar;109(3):572-580. PMID: 29336091
- 16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211225s004lbl.pdf
- 17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208434s012lbl.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208772s012lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf
- 20. Peters et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017 Aug 31;377(9):829-838. PMID: 28586279
- 21. Hida et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017 Jul 1;390(10089):29-39. PMID: 28501140
- 22. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 1.2022]
- 23. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 24. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 25. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 26. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 27. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 28. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 29. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877

References (continued)

- 30. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 31. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 32. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 33. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 34. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 35. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 36. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 37. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 39. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 40. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 41. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 42. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 44. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 45. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 46. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 47. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 48. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215310s000lbl.pdf
- 49. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 50. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 51. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208065s022lbl.pdf
- 52. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 53. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 54. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761210s001lbl.pdf
- 55. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 56. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda