Worksheet 5.2: Solutions

Gas calculations

No.	Question Answer
1	$m(H_2SO_4) = x \ 19.56 = 19.2 g$
	$n(H_2SO_4) = \frac{m}{M} = \frac{19.2}{98.076} = 0.196 \text{ mol}$
	$n(NH_3) = 2 \times n(H_2SO_4) = 2 \times 0.196 = 0.392 \text{ mol}$
	$\therefore V(NH_3) = \frac{nRT}{P} = \frac{0.392 \times 8.314 \times 360.1}{310} = 3.8 L$
2	At constant temperature and pressure, the mole ratio becomes a volume ratio. ∴ 150 mL CO reacts with 75 mL of oxygen to produce 150 mL of CO₂. 75 mL of O₂ remains unreacted. No CO remains.
3	n(NaCl) = 500 mol
	$n(Cl_2) = \frac{1}{2} \times n(NaCl) = 250 \text{ mol}$
	:. $V(Cl_2) = n \times V_M = 250 \times 24.5 = 6.12 \times 10^3 L$
4	$n(MgO) = \frac{m}{M} = \frac{100}{40.31} = 2.481 \text{ mol}$ $n(CO_2) = n(MgO) = 2.481 \text{ mol}$ $\therefore V(CO_2) = n \times V_M = 2.481 \times 22.41 = 55.6 \text{ L}$
5	a Lethal dose is 0.300 g of HCN in 1000 g of air $d(\text{air}) = 0.001 18 \text{g mL}^{-1} = \frac{m(\text{air})}{V(\text{air})}$ $V(1000 \text{g of air}) = 8.475 \times 10^5 \text{mL}$ $\text{mass of HCN in 1 mL} = \frac{0.300}{8.475 \times 10^5} = 3.54 \times 10^{-7} \text{g}$ b $n(\text{NaCN}) = \frac{m}{M} = \frac{8.80}{49.01} = 0.1796 \text{mol}$ $n(\text{H}_2\text{SO}_4) = c \times V = 0.475 \times 0.100 = 0.04750 \text{mol}$ 0.1796 mol of NaCN will react with 0.08980 mol of H₂SO₄; however, we only have 0.04750 mol ∴ H₂SO₄ is the limiting reagent. $n(\text{HCN}) = 2 \times n(\text{H}_2\text{SO}_4) = 2 \times 0.04750 = 0.09500 \text{mol}$ $V(\text{HCN}) = \frac{nRT}{P} = \frac{0.09500 \times 8.314 \times 293.1}{100} = 2.31 \text{L}$
6	$d = \frac{PM}{m} = \frac{750 \times 101.3 \times 28.02}{1.3 \times 100000000000000000000000000000000000$
7	$M = \frac{mRT}{PV} = \frac{2.04 \times 8.314 \times 298.1}{101.3 \times 1.56} = 32.0 \text{ g mol}^{-1}$

Worksheet 5.2: Solutions

Gas calculations

8	$d = \frac{PM}{RT} = \frac{400 \times 28.01}{8.314 \times 289.1} = 4.7 \text{ g L}^{-1}$
9	$M = \frac{dRT}{P} = \frac{1.22 \times 8.314 \times 298.1}{101.3} = 29.8 \text{ g mol}^{-1}$
	$MF = C_n H_{2n+2}$
	$\therefore 12n + 2n + 2 = 29.8$
	∴ n = 2
	$\therefore MF = C_2H_6$
10	N: H = $\frac{87.4}{14.01}$: $\frac{12.6}{1.008}$ = 6.238: 12.50 \approx 1: 2
	∴ EF is NH ₂
	$M = \frac{dRT}{P} = \frac{0.977 \times 8.314 \times 373.1}{0.93 \times 101.3} = 32.2 \text{ g mol}^{-1}$
	Mass of EF = $14.0 + (2 \times 1.0) = 16$
	Mass of MF = $32.2 \approx 16 \times 2$
	$\therefore MF = (NH_2)_2 = N_2H_4$