

Centro de Desarrollo Espacial De Estado de Zacatecas

Agencia Espacial Mexicana

Programa Cohetería Experimental y Desarrollo Satelital

SRS – Sistema de Visualización y Comando para CanSat: Interfaz Gráfica (GUI)

Por

José Francisco Hurtado Muro

Fecha de entrega 05/20/2025

Indice.

Indice	2
Introducción	
Proposito:	
Alcance y limitaciones:	
Definiciones, Abreviaturas y Acrónimos:	
Referencias:	
Audiencia:	
Usuarios principales:	
Usuarios tecnicos:	
Descripción General	
Perspectiva del producto:	
Funcionalidades principales:	
Entorno Operacional	
Sistema Operativo:	
Software:	
Requerimientos Funcionales	
•	

Introducción

Proposito:

Este documento describe los requerimientos funcionales y no funcionales de la interfaz gráfica de usuario (GUI) para el monitoreo y control del CanSat. La GUI permitirá visualizar en tiempo real datos como temperatura, altura, distancia, humedad, aceleración y [giroscopio]. Además, la interfaz se encargará de almacenar estos datos en una base de datos, desde la cual los responsables del análisis de datos podrán consultar la información correspondiente a cada lanzamiento.

Alcance y limitaciones:

El software cubrirá:

- Panel de monitoreo en tiempo real
- Panel para consulta de datos referentes a un vuelo
- Panel de re-simulacion de datos de vuelo (Objeto 3D, Aceleración, altura, distancia y [giroscopio])
- Conexión serial para recepción de datos
- Exportación de Base de Datos a archivo XLSX (exel)

Definiciones, Abreviaturas y Acrónimos:

- GUI: Interfaz Grafica de Usuario
- **BD**: Base de Datos
- **LoRa:** (Long Range) Protocolo de comunicación inalámbrica de bajo consumo para largas distancias.
- Serial: Método de transmisión de datos punto a punto mediante puerto físico.
- CanSat: Sistema aeroespacial educativo que simula un satélite real en miniatura.
- Estacion Terrestre: Sistema receptor en tierra que procesa datos del CanSat.
- **ER:** Diagrama Entidad Relación
- QT: framework multiplataforma de desarrollo de interfaces gráficas (GUI)
 y aplicaciones, ampliamente usado en proyectos profesionales y educativos

Referencias:

- (Getting Started Qt For Python, s. f.)
- (pySerial pySerial 3.4 Documentation, s. f.)
- (Sqlite3 DB-API 2.0 Interface For SQLite Databases, s. f.)
- (Vtk, 2025)
- (Pandas Documentation Pandas 2.2.3 Documentation, s. f.)

Audiencia:

Usuarios principales:

- Operadores de misión: Personal encargado de monitorear las gráficas de telemetría en tiempo real durante las fases de despegue, vuelo y descenso del CanSat, con el objetivo de identificar y reportar anomalías inmediatas.
- Analista de datos: Responsables de consultar, procesar e interpretar la información almacenada, generando reportes técnicos y conclusiones basadas en los datos de cada misión.

Usuarios tecnicos:

 Equipo de Desarrollo: Ingenieros y programadores encargados del diseño, implementación y mantenimiento del sistema, trabajando en todas las capas de la arquitectura de software (Modelo-Vista-Controlador).

Descripción General

Perspectiva del producto:

La Interfaz Gráfica de Usuario (GUI) funcionará como un módulo independiente diseñado para interpretar, procesar y visualizar en tiempo real los datos de telemetría transmitidos por el CanSat. El flujo de operación seguirá esta arquitectura:

1. Recepción y Conversión:

 La Estación Terrestre recibirá los datos bajo el protocolo LoRa y los transmitirá a la computadora mediante una conexión USB.

2. Procesamiento Inicial:

- La GUI obtendrá los datos a través del puerto serial, aplicando:
 - Conversión de formato (parseo)
 - Validación de integridad
 - Estructuración en paquetes lógicos
- 3. Visualización y Almacenamiento:
 - Representación gráfica: Mediante el framework Qt para:
 - Gráficas 2D en tiempo real
 - Visualización 3D
 - Tablas de datos
 - Paneles de control
 - Almacenamiento persistente: En una base de datos SQLite3 local, organizada por:
 - Misiones (lanzamientos)
 - o Renderizado 3D: Uso de VTK (Visualization Toolkit) para:
 - Modelado de trayectorias
 - Visualización de patrones de vuelo

Funcionalidades principales:

- 1. Visualización en Tiempo Real
 - Gráficas dinámicas: Mostrar telemetría (altitud, temperatura, etc.)
 con actualización continua.
 - Modelado 3D: Representar trayectoria y orientación del CanSat usando herramientas como VTK.

2. Almacenamiento de Datos

- Guardar toda la telemetría en una base de datos SQLite
- 3. Exportación y Análisis Posterior
 - Generar reportes en formato XLSX (Excel) con tablas y gráficos.
- 4. Reinterpretación de Misiones Pasadas
 - Cargar datos históricos para:
 - Recrear visualizaciones (gráficas/3D)
 - Reprocesar la información en la gráficas

Entorno Operacional

Hardware:

- RAM: 8 GB
- Almacenamiento base: 500 MB (para aplicación y base de datos)
- Puerto USB disponible (para la conexión serial con la estación terreno)

Sistema Operativo:

• Windows 10/11 (64-bit) "primera version"

Software:

- Python 3.9+ (entorno de ejecución principal)
- Qt 6 (PySide6/PyQt6) (interfaz gráfica)
- VTK (Visualization Toolkit) (renderizado 3D)
- pySerial (comunicación serial con la estación terrestre)
- SQLite3 (base de datos local)
- Pandas (exportación a Excel)
- Matplotlib/Plotly (gráficas 2D en tiempo real)

Requerimientos Funcionales

ID	Requerimiento	Descripción
RF-01	Conexion serial	La GUI debe establecer comunicación vía puerto serial (USB) para recibir datos en tiempo real desde la estación terrestre
RF-02	Parseo de datos	Convertir datos crudos (ej: strings separados por comas) en variables estructuradas (Temperatura, altura, [giroscopio])
RF-03	Validación de datos	Verificar la integridad de los recibidos (ej: rangos válidos)
RF-04	Almacenamiento en BD	Guardar datos procesados en una Base de Datos SQLite, organizados por misión
RF-05	Seleccion de mision	Permitir cargar datos históricos de una específica desde la BD
RF-06	Exportacion a Excel	Generar un archivo .xlsx con datos de una misión
RF-07	Re-simulacion	Procesar y visualizar datos pasados, como si fuera en tiempo real
RF-08	Iniciar/Detener monitoreo	debe de pausar o reanudar la recepción de los datos sin cerrar la aplicación