Statistical Learning

(You've seen this before!)

Christophe Bontemps & Patrick Jonsson - SIAP1

- Introduction
 - Tasks
 - Tools
- · Statistical Learning In practice
 - · Let's start with an example
 - Histograms and Densities
 - Plot
- Exporing the relationships: It is all about $f(\cdot)$
 - How to estimate $f(\cdot)$?
 - Linear Model
 - Goodness of fit: R²
 - Observing the residuals
 - Polynomial Models
 - Comparing the residuals distribution
- Nonparametric models
 - Nearest-Neighbors (k-NN)
 - Playing with k
 - Residuals distribution
- · An important Criterion: Mean Squared Error
 - Bias-Variance Trade-Off
 - Under/Over Smoothing
- Wrap-up

Introduction

This course is designed for current or future data scientists working in an NSO, or in any statistical office.

Data Scientist: "Person who is **better** at statistics than any software engineer and **better** at software than any statistician." (J. Wills)

The term *machine learning* is used because the computer (more accurately the algorithm) figures out the model from the data. There are many related words: statistical learning, big data, nonparametric estimation, AI, high-dimensional models,

In fact there are two main learning problems:

- 1. When we observe both the outcome **y** and regressors (also called *features*) **x** the analysis is called *Supervised learning*. This is in fact a regression type of model with two possible denominations
- · Regression: y is continuous
- · Classification: y is categorical
- 2. When we do not observe **y** but only several **x** the analysis is called *Unsupervised learning* This is also called *Cluster Analysis*: e.g. determine five types of consumers given many socio-economic measures.

Tasks

Data science involves several tasks, some of them can take a lot of time in the professionnal life of a data scientist.

- · Data collection: usually done beforehand, so you don't have to do it yourself
- Data organization: when you get data in several formats, from several sources, ...
- Data cleaning: removing duplicates, spotting missing data and errors, ...
- · Data visualization
- · Data analysis

Tools

- R and the *caret* package https://topepo.github.io/caret/index.html (https://topepo.github.io/caret/index.html). Caret can deal with 238 "models": we are going to use some of them.
- · We are not going to use Python, but Scikit-Learn and PyCaret are two main tools in Python
- There are interfaces to call Python from inside R, the *reticulate* package allows to do this from inside a Markdown document.
- If you work in data science, you will have to keep up to date. The internet is a good source, with sites such as https://www.kdnuggets.com/ (https://www.kdnuggets.com/) and https://towardsdatascience.com/
 (https://towardsdatascience.com/) Look at https://www.kaggle.com/ (https://www.kaggle.com/) for competitions and solutions posted by participants.

Statistical Learning In practice

One specific feature is that in most cases the data is "big":

- usually n is relatively large
- sometimes $\dim(x)$ is also relatively large compared to n
- in addition, machine learning typically requires to estimate several models, several times
- · in practice, this requires computing power and takes time

In the course, we will deal with "not so big" data for practical purposes

Let's start with an example

We will begin by a look at consumption data and focus on relations between **total expenses** of a household and the **share of a good** in total consumption. Here we will study food share in SouthAfrica².

```
Hide
```

```
# We load the data from the "Data" folder where we store raw data
SouthAfrica <-read.csv2("https://www.unsiap.or.jp/on_line/ML/MLData/ML_SouthAfrica.csv")
# ltexp is expenditure in log
# The variables "zij" are dummies for families with "i" adults and "j" kids.
```

Now we select **only singles** households and reorder according to expenditure variable.

```
Singles <- SouthAfrica[SouthAfrica$z10==1,4:5]
#Singles Subset
Singles <- Singles[order(Singles$ltexp),1:2]
#Reorder so that Log expenditure is in increasing order
FoodShr <- Singles$FoodShr
ltexp <- Singles$ltexp
MyData <- data.frame(FoodShr,ltexp)
```

datasummary_skim(MyData, type = "numeric")

	Unique (#)	Missing (%)	Mean	SD	Min	Median	Max	
FoodShr	88	0	0.4	0.2	0.0	0.4	0.9	
Itexp	265	0	6.6	0.7	5.6	6.5	8.6	

Histograms and Densities

Let's first look at the data.

Hide

```
hist(ltexp,prob=T,breaks=50,
     main = "Histogram of log(expenses)",
     sub = "Red curve is the density (estimated)",
     xlab = "log(expenses)" ,
     col = SIAP.color, border = "white")
lines(density(ltexp,na.rm = TRUE),lwd=2,col = "darkred")
```

Histogram of log(expenses)

Red curve is the density (estimated)

```
hist(FoodShr,prob=T,breaks=50,
     main = "Histogram of Food Share",
     sub = "Red curve is the density (estimated)",
     xlab = "Food Share" ,
     col = SIAP.color, border = "white")
lines(density(FoodShr,na.rm = TRUE),lwd=2,col = "darkred")
```

Histogram of Food Share

Plot

This is the plot of our observations.

plot(FoodShr~ltexp, main="Scatter plot of Food Share vs Log(exp)",
 xlab="Log(Exp)",ylab = "FoodShare",
 pch=19, cex = 0.5,col = "grey", frame.plot = FALSE)

Hide

Scatter plot of Food Share vs Log(exp)

Exporing the relationships: It is all about $f(\cdot)$

We may be interested in the relation between y = Food Share and $x = \log(\text{Expenses})$ and thus in the expression

$$y = f(x) + \varepsilon$$

In essence, statistical learning refers to a set of approaches for estimating $f(\cdot)$

James, Witten, Hastie & Tibshirani (2021)

How to estimate $f(\cdot)$?

Linear Model

Let's begin with a simple linear model.

$$y = x'\beta + \varepsilon$$

Hide

```
lmFood <- lm(FoodShr~ltexp)

# Table
xtable(summary(lmFood)) %>%
  kable(digits=2) %>%
  kable_styling()
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.75	0.04	41.09	0
Itexp	-0.20	0.01	-31.84	0

Here is the estimated regression line. Note how it is constructed in practice.

Linear regression

How is this line computed?

You may recall that the regression is obtained by trying to find the line defined by the equation $\beta_0+\beta_1 x$ that fits the data and minimize the vertical distance between a point and the estimated line. In other words, we are looking for β_0 and β_1 , the parameters of the line, such that the sum of all distances for all points is minimized. The vertical distance of any y_i to the line for a particular point i is simply:

$$ig(y_i-(eta_0+eta_1x_i)ig)^2$$

```
# Setting the plot with points
plot(ltexp, FoodShr, type="n",
     main="Linear regression",
     sub = "In red, the distance to the regression line for some observations",
     xlab="Log(Exp)", ylab = "FoodShare",
    pch=19, cex = 0.5,col = "grey", frame.plot = FALSE )
points(ltexp,FoodShr,
    pch=19, cex = 0.5,col = "grey" )
# Estimation of the linear regression model
lmFood <- lm(FoodShr ~ poly(ltexp, degree=1,raw=TRUE))</pre>
# Plotting the regression line for a sequence of points
newx <- seq(from=min(ltexp), to=max(ltexp),</pre>
            length.out = 200)
lines(newx, predict(lmFood, data.frame(ltexp = newx)),
      col = "blue")
# Plotting the vertical distances in red
                     # Here we take the distance for the 6th point
i <- 6
segments(ltexp[i] , FoodShr[i], ltexp[i], lmFood$coefficients[1] + lmFood$coefficients[2]* ltexp[i]
         , col = "red", lw=2)
# Vertical distances for some other points
segments(ltexp[555] , FoodShr[555], ltexp[555],
         lmFood$coefficients[1] + lmFood$coefficients[2]* ltexp[555],
         col = "red", lw=2)
segments(ltexp[725] , FoodShr[725], ltexp[725],
         lmFood$coefficients[1] + lmFood$coefficients[2]* ltexp[725],
         col = "red", lw=2)
```

Linear regression

In red, the distance to the regression line for some observations

Therefore, the regression line can be found by minimizing the *residual sum of squares* (RSS, see below) that is by solving the following optimization problem:

• find β_0 and β_1 such that:

$$Min_{\;(eta_0,eta_1)} \quad \sum_{i=1}^n ig(y_i-(eta_0+eta_1x_i)ig)^2$$

is minimal.

The regression line is found as a solution of an optimization problem

In this case when $f(\cdot)$ is linear, an analytical solution exist (the equation can be written explicitly).

Goodness of fit: \mathbb{R}^2

We can compute one of the favorite measures of adjustment: the R^2 that measures how close the data are to the fitted regression line. We use the sum of squared distances of the observations Y_i to the regression line, or *residual sum of squares* (RSS), as compared to the *total sum of the squares* (TSS), measured as the sum of the distances of the observations Y_i to their mean. So:

$$TSS = \sum_{i=1}^n (y_i - ar{y})^2$$

and

$$RSS = \sum_{i=1}^n (y_i - \widehat{f}(x_i))^2$$

The definition of R-squared is then: $R^2=\frac{TSS-RSS}{TSS}$ It is simply the explained (by the regression) variation of the outcome variable y divided by the total variation of the outcome variable. It can be noted that $R^2=1-\frac{RSS}{TSS}$ and that the goodness of fit is perfect when equal to 1.

Hide

summary(lmFood)\$adj.r.squared

[1] 0.4776279

Observing the residuals

```
lmFood.res = resid(lmFood)
# We now plot the residual against the observed values of the variable FoodShr.
hist(lmFood.res,prob=T,breaks=50,
    main = "Histogram of the residuals (Linear model)",
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood.res,na.rm = TRUE),lwd=2,col = "darkred")
```

Histogram of the residuals (Linear model)

The jtools package allows to simply obtain a similar plot, with confidence interval around the regression line.

Hide

Polynomial Models

We can try to have a better model by introducing some non linearity. This can be done using polynomials of the unique regressor x. Here we define a polynomial model of order 2, or *quadratic model*:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Hide

```
lmFood2 <- lm(FoodShr ~ poly(ltexp, degree=2,raw=TRUE))
summ(lmFood2, robust = "HC1")$coeftable %>%
  kable(digits=2) %>%
  kable_styling()
```

	Est.	S.E.	t val.	р
(Intercept)	3.25	0.34	9.55	0
poly(ltexp, degree = 2, raw = TRUE)1	-0.64	0.10	-6.55	0
poly(ltexp, degree = 2, raw = TRUE)2	0.03	0.01	4.56	0

Let us see if the adjustment, in terms of the \mathbb{R}^2 has been better:

Hide

summary(lmFood2)\$adj.r.squared

```
## [1] 0.4845056
```



```
lmFood2.res = resid(lmFood2)
# We now plot the residual against the observed values of the variable FoodShr.
hist(lmFood2.res,prob=T,breaks=50,
    main = "Histogram of the residuals (Quadratic model)",
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood2.res,na.rm = TRUE),lwd=2,col = "darkred")
```

Histogram of the residuals (Quadratic model)

Let's try with more degrees in our polynomial model (Cubic model):

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$$

 $g = \rho_0 + \rho_1 \omega + \rho_2 \omega + \rho_3 \omega + \varepsilon$

lmFood3 <- lm(FoodShr ~ poly(ltexp, degree=3,raw=TRUE))
summ(lmFood3, robust = "HC1")\$coeftable %>%
 kable(digits=2) %>%
 kable_styling()

	Est.	S.E.	t val.	р
(Intercept)	-8.74	2.97	-2.95	0
poly(ltexp, degree = 3, raw = TRUE)1	4.61	1.28	3.59	0
poly(Itexp, degree = 3, raw = TRUE)2	-0.73	0.18	-3.96	0
poly(Itexp, degree = 3, raw = TRUE)3	0.04	0.01	4.17	0

Hide

summary(lmFood3)\$adj.r.squared

[1] 0.489811

. . .


```
Hide
```

```
lmFood3.res = resid(lmFood3)
# We now plot the residual against the observed values of the variable FoodShr.
hist(lmFood3.res,prob=T,breaks=50,
    main = "Histogram of the residuals (Cubic model)",
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood2.res,na.rm = TRUE),lwd=2,col = "darkred")
```

Histogram of the residuals (Cubic model)

Comparing the residuals distribution

```
res.all <- as.data.frame(cbind(lmFood.res, lmFood2.res, lmFood3.res))

boxplot(res.all, ylim = c(-0.5, 0.5),outline=FALSE,
    frame.plot = FALSE, horizontal = TRUE,
    names = c("Lm", "Quadratic", "Cubic") )
```


Trying to find the "right" model, that is the right order of the polynomial function is not so easy.

Nonparametric models

Nearest-Neighbors (k-NN)

We assume that $f(\cdot)$ is *smooth*

• No jumps: continuous

• No kinks: differentiable

· Smooth enough: usually twice differentiable

We want to estimate $f(\cdot)$. We talk about

- nonparametric regression, since there is no parameter to be estimated.
- functional estimation, since we estimate a function.

Note that we could find a function $f(\cdot)$ that goes through every observation: this is called *interpolation*. There is actually an infinity of such functions, these are defined uniquely only at observations points.

Nearest-neighbors method is close to moving average: we estimate f(x) by averaging the y_i corresponding to observations x_i close to x. That's the idea of smoothing. Since the x_i are ordered from smallest to largest. We define the estimate of $f(x_i)$ as

$$\widehat{f}\left(x_{i}
ight) = rac{1}{k} \sum_{j \in k-nearest \ neighbours \ of \ x_{i}} y_{j}$$

k is the number of neighbors of x_i taken into account in estimation. This method is called k-nearest neighbors (K-NN for short).

Note: Our estimator should be defined at any point x, even if x is not an observation, so

$$\widehat{f}(x) = \widehat{f}(x_i)$$

where x_i is the closest point to x. So we obtain a step function or *piecewise constant* function.

Playing with k

Here we have 1109 observations in our dataset. We can choose different values for k and see how this affect our estimation of $f(\cdot)$:

Experiment with different number of nearest-neighbors. What do you get for a small number k? What happens when you increase k? Use the online Shiny application to play with k-nn (https://xtophedataviz.shinyapps.io/KnnExplore/)

Hide

library(caret)

Change the value of k here!!

k.choice = 250

k = 250 (try with k = 10, 50, 100, 400, or 1000)

```
# Scatter plot
plot(ltexp,FoodShr,type="n",
     main= paste("K-NN regression with k=", k.choice,""),
     sub = "Points used for a specific x",
     xlab="Log(Exp)", ylab = "FoodShare",
    pch=19, cex = 0.5,col = "grey", frame.plot = FALSE )
points(ltexp,FoodShr,
    pch=19, cex = 0.5,col = "grey" )
\# for a specific x, highlight the points included in computation
my.index <- 200 # <-- value can be changed here
my.x <- ltexp[my.index]</pre>
my.y <- FoodShr[my.index]</pre>
library(tidyverse)
# computing x's nearest neighbors
df <- as.data.frame(cbind(ltexp, FoodShr))</pre>
df <- df %>%
  mutate( dist = abs(ltexp - my.x) ) %>%
  arrange(dist) %>%
  slice(1:k.choice)
points(df$ltexp,df$FoodShr,
    pch=19, cex = 0.6, col = "pink")
# Original values
points(my.x,0,
    pch=15, cex = 0.6,col = "red" )
points(my.x,my.y,
    pch=18, cex = 0.9, col = "black")
```

K-NN regression with k= 250


```
plot(ltexp,FoodShr,type="n",
     main= paste("K-NN regression with k=", k.choice,""),
     xlab="Log(Exp)", ylab = "FoodShare",
    pch=19, cex = 0.5,col = "grey", frame.plot = FALSE )
points(ltexp,FoodShr,
    pch=19, cex = 0.5,col = "grey" )
# Plotting x's nearest neighbors
points(df$ltexp,df$FoodShr,
    pch=19, cex = 0.6, col = "pink")
# Computing estimation of Y using x's nearest neighbors
my.y.hat <- mean(df$FoodShr)</pre>
segments(0, my.y.hat, my.x, my.y.hat,
         lw = 2,
         col= 'pink')
# Original values
points(my.x,0,
    pch=15, cex = 0.6,col = "red" )
points(my.x,my.y,
    pch=18, cex = 0.9, col = "black")
# Some illustration on the graphic
segments( my.x, 0, my.x, my.y.hat,
         1w = 2,
         col= 'pink')
points(my.x,my.y.hat,
    pch=15, cex = 0.6,col = "red" )
rug(df$FoodShr, side=2, col = "pink")
points(0,my.y.hat,
    pch=15, cex = 0.6,col = "red" )
```

K-NN regression with k= 250


```
#Estimating Food Shares using k-NN (CARET package)
knn.est <- knnreg(FoodShr~ltexp, data = MyData, k = k.choice)</pre>
```

Hide

K-NN regression with k= 250


```
plot(ltexp,FoodShr,type="n",
     main= paste("K-NN regression with k=", k.choice,""),
     xlab="Log(Exp)", ylab = "FoodShare",
    pch=19, cex = 0.5,col = "grey", frame.plot = FALSE )
points(ltexp,FoodShr,
    pch=19, cex = 0.5,col = "grey" )
# Defining the sequence of 200 points where we will estimate the k-NN line
newx <- seq(from=min(ltexp),to=max(ltexp),</pre>
            length.out = 200)
# Estimating the k-NN regression line
newy <-predict(knn.est, data.frame(ltexp = newx))</pre>
# plotting the k-NN regression line
lines(newx, newy, col= "blue")
# Plotting x's nearest neighbors
points(df$ltexp,df$FoodShr,
    pch=19, cex = 0.6, col = "pink")
# Original values
points(my.x,0,
    pch=15, cex = 0.6,col = "red" )
points(my.x,my.y,
    pch=18, cex = 0.9, col = "black")
# Some illustration on the graphic
segments( my.x, 0, my.x, my.y.hat,
         lw = 2,
         col= 'pink')
points(my.x,my.y.hat,
    pch=15, cex = 0.6,col = "red" )
rug(df$FoodShr, side=2, col = "pink")
points(0,my.y.hat,
    pch=15, cex = 0.6,col = "red" )
```

K-NN regression with k= 250

Residuals distribution

```
Hide
```

```
# Computing the predictions for the observed x_i
yhat <-predict(knn.est, data.frame(ltexp))
knn.250.res <- yhat - FoodShr

# We now plot the residual against the observed values of the variable FoodShr.
hist(knn.250.res,prob=T,breaks=50,
    main = paste("Histogram of the residuals K-nn ( k=",k.choice,")") ,
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood2.res,na.rm = TRUE),lwd=2,col = "darkred")</pre>
```

Histogram of the residuals K-nn (k= 250)

Food Share Red curve is the density (estimated)

```
k = 10
```

```
k.choice = 10
knn.est <- knnreg(FoodShr~ltexp, data = MyData, k = k.choice)</pre>
```

Hide

K-NN regression with k= 10

Residuals distribution

Hide

```
# Computing the predictions for the observed x_i
yhat <-predict(knn.est, data.frame(ltexp))
knn.10.res <- yhat - FoodShr

# We now plot the residual against the observed values of the variable FoodShr.
hist(knn.10.res,prob=T,breaks=50,
    main = paste("Histogram of the residuals K-nn ( k=",k.choice,")") ,
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood2.res,na.rm = TRUE),lwd=2,col = "darkred")</pre>
```

Histogram of the residuals K-nn (k= 10)


```
k.choice = 400
knn.est <- knnreg(FoodShr~ltexp, data = MyData, k = k.choice)</pre>
```

Hide

K-NN regression with k= 400

Residuals distribution

```
# Computing the predictions for the observed x_i
yhat <-predict(knn.est, data.frame(ltexp))
knn.400.res <- yhat - FoodShr

# We now plot the residual against the observed values of the variable FoodShr.
hist(knn.400.res,prob=T,breaks=50,
    main = paste("Histogram of the residuals K-nn ( k=",k.choice,")") ,
    sub = "Red curve is the density (estimated)",
    xlab = "Food Share" , xlim=c(-1,1),
    col = SIAP.color, border = "white")
lines(density(lmFood2.res,na.rm = TRUE),lwd=2,col = "darkred")</pre>
```

Histogram of the residuals K-nn (k= 400)

Comparing the residuals distribution

An important Criterion: Mean Squared Error

The MSE is a **theoretical**³ measure of the precision for any estimator, it is defined as the Expectation of the distance between the estimated $\hat{f}(x_i)$ and true (unknown) value $f(x_i)$ for a particular observation i:

$$E\Big[\widehat{f}(x_i) - f(x_i)\Big]^2$$

It can be shown that the MSE can be decomposed into 2 terms:

$$MSE = E\left[\left(\widehat{f}\left(x_i
ight) - f(x_i)
ight)^2
ight] = \left\{E\left[\widehat{f}\left(x_i
ight) - f(x_i)
ight]
ight\}^2 + Var\left[\widehat{f}\left(x_i
ight)
ight]$$

The MSE is a measure of the precision for any estimator, and we always have

$$MSE = Bias^2 + Variance$$

Since the *true* function $f(\cdot)$ is unknown, we cannot estimate the first term that depends on the *true* function $f(\cdot)$ (more precisely on its second derivative) and since we cannot assume we obtain an unbiased estimator, the MSE for our nonparametric k-NN estimator is:

$$MSE_{K-NN} = E\Big[\widehat{f}\left(x_i
ight) - f(x_i)\Big]^2 pprox \left\{f^{''}(x_i)rac{1}{24}igg(rac{k}{n}igg)^2
ight\}^2 + rac{1}{k}\sigma_arepsilon^2 \,.$$

Bias-Variance Trade-Off

To minimize the MSE, we should balance squared bias and variance. from this expression we can learn that:

- bias increases when k increases
- variance decreases when k increases

and also that:

bias decreases when n increases

Then , we should choose k such that the squared bias is of the same order than the variance. One can show that the **optimal** k is: $k^* \propto n^{4/5}$

Under/Over Smoothing

• Undersmoothing occurs is when we use too small a k.

Think about k = 1: we have *interpolation*. More generally undersmoothing occurs when we obtain a very **wiggly** curve: bias is small (we are near each observation), but variance is large (curve is wiggly).

• Oversmoothing is when we use too large a k.

Think about k=n: the estimator $\widehat{f}(x)=\bar{y}$ for any x! More generally oversmothing occurs when we obtain too flat a curve: variance is small, but bias is large.

In practice, it may be tricky to determine the right number of neighbors that is the right amount of smoothing!

Wrap-up

- ML is about estimating an unknown function $f(\cdot)$
- To estimate regression models, we have to solve an optimization problem
- With "big data", we can go over a simple linear model: e.g. polynomial models or nonparametric mode such as *k-NN* regression.
- There is a *bias-variance trade-off*: a more complex model allows to estimate the regression more accurately, but introduces more variability in estimation.
- Theory tells us exactly how to balance squared bias and variance but it does not tell us how to choose the model in practice!
- 1. This document uses teaching materials developped by Pascal Lavergne (Toulouse School of Economics)↔

- 2. Data from A. Yatchew *Semiparametric Regression for the Applied Econometrician* https://www.economics.utoronto.ca/yatchew/ (https://www.economics.utoronto.ca/yatchew/) ↔
- 3. One can estimate the MSE on the sample when y_i is observed and then:

$$MSE = rac{1}{n} \; \sum_{i=1}^n ig(y_i - \widehat{f}(x_i)ig)^2$$

ب