Evaluation & Assignment Project Exam Help Hyperparameter Tuning

Add Wechat powcoder

With worked examples adapted from Andrew Moore's tutorial slides https://sites.astro.caltech.edu/~george/aybi199/AMooreTutorials/

Recap (1)

Each supervised learning method consists of 3 ingredients:

- Model: form of function mantage dearchasters
- Cost function: given a training set, it measures the misfit of any particular function from the model
- Training algorithm: graded Wescent Printing algorithm: graded Wescent Printing algorithm: graded to the cost function

Running the training algorithm on some training data learns "best" values of the free parameters, giving us a predictor.

Recap (2)

Hyperparameters are "higher-level" free parameters

- In Neural Networks:
 Depth (number of hidden layers)

 Project Exam Help
 - Width (number of hidden peurops in a hidden layer)
 - Activation function (choice of nonlinearity in non-input nodes)
 - Regularisation parameter (dva) to that epoffs in decity vs. fit to the data)
- In polynomial regression
 - Order of the polynomial (use of $x, x^2, x^3, ..., x^m$)
- In general
 - Model choice

Evaluation of a predictor before deployment

Always split the available annotated data randomly into:

Assignment Project Exam Help

• A training set- to be used for training – i.e. estimating all the free patagore wooder.com

• A test set - to be used to evalvate the prayreder predictor before deploying it

Evaluation of a predictor serves to estimate its future performance, before deploying it in the real world.

Training set

Test set

Which model? How to set hyperparameters?

- Each hyperparameter value corresponds to a different model
- We need methods that evaluate each candidate model
- For this evaluation we can no longer use our cost function computed on training set why? https://powcoder.com
 - The more complex (flexible) the more training data
 - But the goal is to predict well on future data
 - A model that has capacity to fit any training data will overfit.
- To choose between models (including hyperparameters) we need a criterion to estimate future performance

Which model to choose?

Remember: Even if the models only differ by one hyperparameter, they are different models. Choosing a particular value of a hyperparameter requires evaluating each model.

Evaluating models for model choice

• Don't confuse this with evaluating a predictor (model already chosen)

Assignment Project Exam Help

- The training set is annotated data (input, output) use for training within a chosen model https://powcoder.com
- The test set is also annotated data (input output) use for evaluating the performance of the trained predictor before deploying it
- None of these can be used to choose the model!
 - Tempting to use the test set, but if we do, we no longer have an independent data set to evaluate the final predictor before deployment!

Evaluating models for model choice

Idea: To choose between models or hyperparameters, split out a subset from the training set = validation set Assignment Project Exam Help

Method 1: The holdout validation method

Mean Squared Validation Error = 2.4

Mean Squared Validation Error = 0.9

Choose the model with the lowest validation error Assignment Project Exam Help

Model 1 https://powcoder.com
Mean Squared Validation Error = 2.4

Add WeChat powcoder

Model 2

Mean Squared Validation Error = 0.9

Model 3

Mean Squared Validation Error = 2.2

A practical detail on point 4

"4. Estimate the test performance on the validation set"

This is done differently in regression; and in classification:

- In regression, we compute the cost function (mean square error) on the examples of the validation set (instead of the training set)
- In classification, we dom'tldom putet pe woodeentropy cost on the validation set, instead on validation set we compute the ... number of wrong predictions
 - 0-1 error metric: $\frac{number\ of\ wrong\ predictions}{number\ of\ predictions} = 1$ Accuracy
 - There are also other metrics, besides Accuracy, that take account of the 2 types of error specific to classification (false positives and false negatives)

Method 2: k-fold Cross-validation

Assignment Project ExamoHelp Training set https://powcoder.com Validation set Validation set

Split the training set randomly into k (equal sized) disjoint sets.

(In this example, k=3)

Use k-1 of those together for training

Use the remaining one for validation.

Permute the k sets and repeat k times.

Average the performances on the k validation sets.

Test set

Model 1 Take the $MSE_{3FOLD}=2.05$

Take the mean of these errors

Take the mean of these errors

Model 2 $MSE_{3FOLD}=1.11$

Model 3

 $MSE_{3FOLD}=2.93$

Take the mean of these errors

Method 3: Leave-one-out validation

- For a total of N examples, we repeat this N times, each time leaving out a single example/powcoder.com
- Take the average of the validation errors as measured on the left-out points

 Same as N-fold cross-validation where N is the number of labelled points

Advantages & Disadvantages

	Advantages	Disadvantages	
Holdout validation	Computationally cheapest Assignm	Most unreliable if sample size is not large enough ent Project Exam Help	Large sample
3-fold	Slightly more reliable	 Wastes 1/3-rd annotated data. S://portpotationally@rtimes as expensive as holdout 	
10-fold	 Only wastes 10% Fairly reliable 	 WeChat powcoder Wastes 10% annotated data Computationally 10-times as expensive as holdout 	
Leave- one-out	Doesn't waste data	Computationally most expensive	↓ Small sample

Using medeby alidation to tune hyperparameters

Add WeChat powcoder

Example 1: Choosing number of hidden units in a Multi-Layer Perceptron

• Step 1: Compute 10-fold CV error for six different model classes:

Assignment Droiget Even Help.					
Candidates	Train ERR	ment Project Exam Help 10-FOLD-CV-ERR	Choice		
0 hidden units	htt	ps://powcoder.com			
1 hidden units					
2 hidden units	Ac	d WeChat powcoder	\odot		
3 hidden units					
4 hidden units					
5 hidden units					

• Step 2: Whichever candidate choice gave best CV score: train it with all the data, and that's the predictor you'll use.

Example 2: Choosing number of hidden layers in a neural nets

• Step 1: Compute 10-fold CV error for six different model classes:

• Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictor you'll use.

Example 3: Choosing the activation function is (deep) neural net

• Step 1: Compute 10-fold CV error for six different model classes:

• Step 2: Whichever candidate choice gave best CV score: train it with all the data, and that's the predictor you'll use.

Example 4: Early Stopping using Holdout validation

Suppose you have a neural net with too many hidden units. It will overfit.

• As Backprop (gradient descent) progresses, monitor the error on a holdout set https://powcoder.com

What you should know

- Why you can't use "training-set-error" to choose between models
- Why you need model validation methods to tune hyperparameters
 Assignment Project Exam Help
 Methods for model validation and how they work
- - https://powcoder.com Holdout validation
 - k-fold cross-validation
 Leave-one-out validation

 Add WeChat powcoder
- Advantages & disadvantages of each model validation method