# Link Reliability

Missing and spurious interactions in complex networks

Paolo Lapo Cerni

20 September 2024



#### Introduction



■ Network science aims to unfold the functional needs of a system by looking at the **interactions between units**.

Guimerà, Roger, and Marta Sales-Pardo. "Missing and spurious interactions and the reconstruction of complex networks." *Proceedings of the National Academy of Sciences* 106.52 (2009): 22073-22078.

#### Introduction



- Network science aims to unfold the functional needs of a system by looking at the **interactions between units**.
- Unfortunately, the reliability of network data is often a source of concern.

Guimerà, Roger, and Marta Sales-Pardo. "Missing and spurious interactions and the reconstruction of complex networks." *Proceedings of the National Academy of Sciences* 106.52 (2009): 22073-22078.

#### Introduction



- Network science aims to unfold the functional needs of a system by looking at the **interactions between units**.
- Unfortunately, the reliability of network data is often a source of concern.
- In this presentation, we will examine a framework to assess the reliability of complex networks, based on Bayesian inference.

Guimerà, Roger, and Marta Sales-Pardo. "Missing and spurious interactions and the reconstruction of complex networks." *Proceedings of the National Academy of Sciences* 106.52 (2009): 22073-22078.

#### Network examples



We compare three **different networks** with different numbers of nodes, structures, and complexities:



# **SBM** (1)



We focus on the family  $\mathcal{M}_{BM}$  of the **stochastic block model** (SBM).

## **SBM** (1)



We focus on the family  $\mathcal{M}_{BM}$  of the **stochastic block model** (SBM).

This comes with several advantages:

- It is **empirically grounded**: modular structured, role-to-role connected.
- Is is analytically and computationally tractable.

Thus, sampling over instances  $M \in \mathcal{M}_{BM}$  captures a variety of correlations.

# **SBM** (1)



We focus on the family  $\mathcal{M}_{BM}$  of the **stochastic block model** (SBM).

This comes with several advantages:

- It is **empirically grounded**: modular structured, role-to-role connected.
- Is is analytically and computationally tractable.

Thus, sampling over instances  $M \in \mathcal{M}_{BM}$  captures a variety of correlations.

#### Stochastic block model

A block model  $M = (P, \mathbf{Q})$  is completely defined by the partition P of nodes into groups and the matrix  $\mathbf{Q}$  of probabilities of connections between groups.

# **SBM** (2)





Figure: (A) Probability matrix  $\mathbf{Q}$  of a SBM  $M=(P,\mathbf{Q})$ , being P=(4,5,6). (B) A realization of the model described in A



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X = x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \int_{\mathcal{M}} dM \, p(X = x|M) \, p(M|A^{O})$$



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X=x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \int_{\mathcal{M}} dM \, p(X = x|M) \, p(M|A^{O})$$

Using the Bayes theorem we can rewrite

$$p(M|A^{O}) = \frac{p(A^{O}|M)p(M)}{\int_{\mathcal{M}} dM' p(A^{O}|M')p(M')}$$



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X=x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \int_{\mathcal{M}} dM \, p(X = x|M) \, p(A^{O}|M) \, p(M)$$



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X = x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \int_{\mathcal{M}} dM \, p(X = x|M) \, p(A^{O}|M) \, p(M)$$

Formally, the block model  $M=(P,\mathbf{Q})$  is completely determined by the partition P of nodes into groups and the matrix  $\mathbf{Q}$  of probabilities.



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X=x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \int_{[0,1]^{G}} dQ \, p(X = x|P,Q) \, p(A^{O}|P,Q) \, p(P,Q)$$

Formally, the block model  $M=(P,\mathbf{Q})$  is completely determined by the partition P of nodes into groups and the matrix  $\mathbf{Q}$  of probabilities.



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X = x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \int_{[0,1]^{G}} dQ \, p(X = x|P,Q) \, p(A^{O}|P,Q) \, p(P,Q)$$

The likelihood of each model M can be written as:

$$p(A^0|P,Q) = \prod_{\alpha \leq \beta} Q_{\alpha\beta}^{l_{\alpha\beta}^0} (1 - Q_{\alpha\beta})^{r_{\alpha\beta} - l_{\alpha\beta}^0}$$

where  $I_{\alpha\beta}^{O}$  is the number of links in  $A^{O}$  between nodes in groups  $\alpha$  and  $\beta$  of P, and  $r_{\alpha\beta}$  is the maximum number of such links.



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X = x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \int_{[0,1]^{G}} dQ \, p(X = x|P,Q) \, p(A^{O}|P,Q) \, p(P,Q)$$

We can assume an uninformative prior, i.e.:

$$p(P,Q) \sim \text{const}$$



Considering an **observed network**  $A^O$  and a set of generative models  $\mathcal{M}$ , we can compute the probability  $p(X = x|A^O)$  for an **arbitrary network property** X as:

$$p(X = x|A^{O}) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \int_{[0,1]^{G}} dQ \, p(X = x|P,Q) \, p(A^{O}|P,Q) \, p(P,Q)$$

Then, we can study the property of having a link between nodes i and j, given their groups  $\sigma_i$  and  $\sigma_j$  in P:

$$p(A_{ij}=1|P,Q)=Q_{\sigma_i\sigma_j}$$

#### Link reliability



We can write the **link reliability**  $R_{ij}^L = p(A_{ij} = 1|A^O)$  as:

$$R_{ij}^{L} = \frac{1}{Z} \sum_{P \in \mathcal{P}} \left( \frac{l_{\sigma_{i}\sigma_{j}} + 1}{r_{\sigma_{i}\sigma_{j}} + 2} \right) \exp[-\mathcal{H}(P)]$$

### Link reliability



We can write the **link reliability**  $R_{ij}^L = p(A_{ij} = 1|A^O)$  as:

$$R_{ij}^{L} = \frac{1}{Z} \sum_{P \in \mathcal{P}} \left( \frac{l_{\sigma_{i}\sigma_{j}} + 1}{r_{\sigma_{i}\sigma_{j}} + 2} \right) \exp[-\mathcal{H}(P)]$$

where the hamiltonian  $\mathcal{H}(P)$  is

$$\mathcal{H}(P) = \sum_{\alpha \leq \beta} \left[ \ln(r_{\alpha\beta} + 1) + \ln \begin{pmatrix} r_{\alpha\beta} \\ I_{\alpha\beta}^{O} \end{pmatrix} \right]$$

and Z is the normalization.

### Link reliability



We can write the **link reliability**  $R_{ij}^L = p(A_{ij} = 1|A^O)$  as:

$$R_{ij}^{L} = \frac{1}{Z} \sum_{P \in \mathcal{P}} \left( \frac{l_{\sigma_{i}\sigma_{j}} + 1}{r_{\sigma_{i}\sigma_{j}} + 2} \right) \exp[-\mathcal{H}(P)]$$

In practice, it's impossible to sum over all the possible partitions. We can treat  $R^L_{ij}$  as an **ensemble average** and use the **Metropolis algorithm** to sample the relevant contributions.

## Sampling procedure (1)



We start initializing the N nodes into N groups, uniformly at random:

```
# Groups data structure: list of lists
N = A.shape[0]
groups = [[] for _ in range(N)]

# Uniformly random initialization
for i in range(N):
    g = np.random.randint(0, N)
    groups[g].append(i)

# Compute the hamiltonian
H = hamiltonian(A, groups)
```

### Sampling procedure (1)



We start initializing the N nodes into N groups, uniformly at random:

```
# Groups data structure: list of lists
N = A.shape[0]
groups = [[] for _ in range(N)]

# Uniformly random initialization
for i in range(N):
    g = np.random.randint(0, N)
    groups[g].append(i)

# Compute the hamiltonian
H = hamiltonian(A, groups)
```

At each step, we select a random node and attempt to move it into a new random group:

```
# Randomly select a node and a group
i = np.random.randint(0, N)
g_prop = np.random.randint(0, N)
# Move the node to another group
groups_prop = swap(groups, i, g_prop)
```

## Sampling procedure (2)



#### Then, we compute $\Delta \mathcal{H}$ :

- If  $\Delta \mathcal{H} \leq 0$  we accept the change
- Otherwise, the change is accepted with probability  $\exp(-\Delta \mathcal{H})$

```
# Compute the Hamiltonian of the new configuration
H_prop = hamiltonian(A, groups_prop)

# Acceptance probability
if H_prop <= H:
    groups = groups_prop
    H = H_prop
else:
    r = np.random.rand()
    if r < np.exp(H - H_prop):
        groups = groups_prop
        H = H_prop

    return groups, H</pre>
```

## Sampling procedure (3)



The sampling procedure starts after an equilibration period.

```
# Transient
for _ in range(transient):
    groups, H = singleStep(groups, H, A)
```



Figure: Transient time

# Sampling procedure (4)



The sampling procedure must consider only uncorrelated partitions.

```
for k in range(n_samples):
    for _ in range(delay):
        groups, H = singleStep(groups, H, A)
    partitions_set.append(groups)
    hamiltonians_list.append(H)
```



Figure: Normalized Mutual Information

## Sampling procedure (5)



#### Offset

You can always rescale the hamiltonian by choosing an offset.

## Sampling procedure (5)



#### Offset

You can always rescale the hamiltonian by choosing an offset.

- This is meant to avoid roundoff errors and vanishing information.
- It allows you to work with bigger networks.
- Working with huge networks would require studying the fluctuations around the mean.

np.exp(-np.array(hamiltionian\_list, dtype=np.float128) + offset)

## Sampling procedure (6)



The reliability is an ensemble average over independent partitions: one can parallelize the algorithm and obtain the partitions concurrently.

## Sampling procedure (6)



The reliability is an ensemble average over independent partitions: one can parallelize the algorithm and obtain the partitions concurrently.

with multiprocessing.Pool(processes=n\_cores) as pool:
 results = pool.starmap(samplingBranch, input)

## Sampling procedure (6)



The reliability is an ensemble average over independent partitions: one can parallelize the algorithm and obtain the partitions concurrently.

```
with multiprocessing.Pool(processes=n_cores) as pool:
    results = pool.starmap(samplingBranch, input)
```

Figure: A snapshot of the system displayed by htop in the terminal.

#### Corrupt a graph



Given a "true" network  $A^T$  with E links, we want to generate a hypothetical observation  $A^O$  by adding/removing a fraction f of edges from  $A^T$ .

#### Corrupt a graph



Given a "true" network  $A^T$  with E links, we want to generate a hypothetical observation  $A^O$  by adding/removing a fraction f of edges from  $A^T$ .

Missing interactions:  $A^O$  is obtained by removing  $\lceil f E \rceil$  edges from  $A^T$ 

**Spurious** interactions:  $A^O$  is obtained by adding  $\lceil f E \rceil$  edges to  $A^T$ 

#### Corrupt a graph



Given a "true" network  $A^T$  with E links, we want to generate a hypothetical observation  $A^O$  by adding/removing a fraction f of edges from  $A^T$ .

Missing interactions:  $A^O$  is obtained by removing [f E] edges from  $A^T$ 

Spurious interactions:  $A^O$  is obtained by adding [f E] edges to  $A^T$ 



## Test link reliability (1)



To test the ability to identify **missing interactions**, we compute the probability that a false negative has a higher reliability than a true negative.

#### Test link reliability (1)



To test the ability to identify **missing interactions**, we compute the probability that a false negative has a higher reliability than a true negative.



## Test link reliability (2)



To test the ability to identify **spurious interactions**, we compute the probability that a false positive has a lower reliability than a true positive.

### Test link reliability (2)



To test the ability to identify **spurious interactions**, we compute the probability that a false positive has a lower reliability than a true positive.



#### Network reliability



Similarly, one can test the **network reliability**  $R_A^N = p(A|A^O)$  that can be written as:

$$R_A^N = \frac{1}{Z} \sum_{P \in \mathcal{P}} h(A; A^O, P) \exp(-\mathcal{H}(P))$$

#### Network reliability



Similarly, one can test the **network reliability**  $R_A^N = p(A|A^O)$  that can be written as:

$$R_A^N = \frac{1}{Z} \sum_{P \in \mathcal{P}} h(A; A^O, P) \exp(-\mathcal{H}(P))$$

where

$$h(A; A^{O}, P) = \exp \left\{ \sum_{\alpha \leq \beta} \left[ \ln \left( \frac{r_{\alpha\beta} + 1}{2r_{\alpha\beta} + 1} \right) + \ln \left( \frac{\binom{r_{\alpha\beta}}{l_{\alpha\beta}^{O}}}{\binom{2r_{\alpha\beta}}{l_{\alpha\beta} + l_{\alpha\beta}^{O}}} \right) \right] \right\}$$

and

$$\mathcal{H}(P) = \sum_{\alpha < \beta} \left[ \ln(r_{\alpha\beta} + 1) + \ln \begin{pmatrix} r_{\alpha\beta} \\ I_{\alpha\beta}^{O} \end{pmatrix} \right]$$

#### Network reconstruction (1)



We want to **reconstruct the network**  $A^T$  from its partially corrupted observed version  $A^O$ , with both missing and spurious interactions.

## Network reconstruction (1)



We want to **reconstruct the network**  $A^T$  from its partially corrupted observed version  $A^O$ , with both missing and spurious interactions.

Summing over all possible networks to obtain an ensemble average is prohibitive. Thus, we want to **find the network that maximizes**  $R_A^N$ 

#### Optimal network

We want to find  $A^R = \arg \max_A R_A^N$ 

## Network reconstruction (1)



We want to **reconstruct the network**  $A^T$  from its partially corrupted observed version  $A^O$ , with both missing and spurious interactions.

Summing over all possible networks to obtain an ensemble average is prohibitive. Thus, we want to **find the network that maximizes**  $R_A^N$ 

#### Optimal network

We want to find  $A^R = \arg \max_A R_A^N$ 

Unfortunately, a full scan in the configuration space is unfeasible. We need to define an **heuristic maximization method**.

```
hyper = (n samples, delay, transient) # Hyperparameters
A cur = A obs.copy() # Initialize the current adjacency matrix
for j in range(5): # This is the maximum number of iterations
   R_N = getNetworkReliability(A_cur, A_obs, *generatePartitionsSet(A_obs, *hyper))
   R L = computeLinkReliabilityMatrix(A cur, *generatePartitionsSet(A cur, *hyper))
    sorted_links, sorted_not_links = sortLinkLists(*getLinkLists(A_cur), R_L)
   num iters = np.min([len(sorted links), len(sorted not links)])
    miss_update = 0
    done update = False
   for k in range(num iters):
       link, not link = sorted links[k], sorted not links[k]
       A temp = A cur.copy()
       A temp[link[0], link[1]] = 0
       A_{temp[link[1], link[0]] = 0
       A temp[not link[0], not link[1]] = 1
       A temp[not link[1], not link[0]] = 1
       R N temp = qetNetworkReliability(A temp, A obs, *qeneratePartitionsSet(A obs, *hyper))
        if R_N_temp > R_N:
           A_cur = A_temp
           R N = R N temp
           miss update = 0
           done_update = True
        else:
            miss update += 1
            if miss update > 4:
```

if not done\_update:
 break

# Network reconstruction (3)



#### Rationale of network reconstruction

The crucial assumption is that  $R_{A^T}^N \gg R_{A^O}^N$ .



Figure: From the Supporting Information of Guimera and Sales-Pardo.

## Network reconstruction (3)



#### Rationale of network reconstruction

The crucial assumption is that  $R_{A^T}^N \gg R_{A^O}^N$ .



Figure: From the Supporting Information of Guimera and Sales-Pardo.



Figure: Preliminary studies on network reconstruction.

### Network reconstruction (4)



This leads to a failure in the reconstruction of the true network



## Network reconstruction (4)



#### This leads to a failure in the reconstruction of the true network



## Possible improvements



The **network reconstruction framework** should be debugged by:

- increasing transient, decorrelation time, and number of samples
- changing the underlying groups' data structure to speed up the computations and the debugging

#### Possible improvements



The **network reconstruction framework** should be debugged by:

- increasing transient, decorrelation time, and number of samples
- changing the underlying groups' data structure to speed up the computations and the debugging

Moreover, one can study **other optimizations**:

- lacktriangleright (partially) shared samples from  $A^{\mathcal{O}}$  along the iterations
- dynamic decorrelation time based on NMI

#### Possible improvements



The **network reconstruction framework** should be debugged by:

- increasing transient, decorrelation time, and number of samples
- changing the underlying groups' data structure to speed up the computations and the debugging

Moreover, one can study **other optimizations**:

- lacktriangleright (partially) shared samples from  $A^O$  along the iterations
- dynamic decorrelation time based on NMI

Finally, it would be **interesting to study**:

- the role of the network topology with synthetic data
- the impact of possible node metadata

#### **Conclusions**



We review this bayesian framework to test interactions in complex networks.

- We developed the notion of reliability in the context of the SBM.
- We implemented a sampling procedure to compute the ensemble averages.
- We studied the link reliability for missing and spurious interactions.
- We introduced the network reliability.

