תורת החבורות – תרגיל בית 8 -- פתרון

<u>שאלה 1</u>

 $\sigma \in S_n$ היא פונקציה חחייע כי זה נובע מחחייע של פונקציה $\sigma : A o A$ א) כל

אס
$$\sigma(i) = \sigma(k) \wedge \sigma(j) = \sigma(t)$$
 אז $\sigma(i,j) = \sigma(k,t)$ אם $\sigma(i,j) = \sigma(k,t)$ אז $\sigma(i,j) = \sigma(k,t)$

$$(i,j)=(k,t) \iff i=k \land j=t$$

כך ש 1 כא, אינה על: יהי א $\sigma\in S_{_{n}}$ ו היות ו- $(i,j)\in A$ יהי יהי על: יהי כמו כן הינה על

$$.\sigma(k,t) = (i,j) \leftarrow \sigma(k) = i \wedge \sigma(t) = j$$

הוכחנו כי כל $\sigma \in S_{\scriptscriptstyle A}$, נותר להוכיח את הומומורפיזם.

לכל $(i,j) \in A$ ולכל $\sigma, \mu \in S_A$ מתקיים

$$(\sigma\mu)(i,j) = ((\sigma\mu)i,(\sigma\mu)j) = (\sigma(\mu(i)),\sigma(\mu(j))) = \sigma(\mu(i),\mu(j)) = \sigma(\mu(i,j))$$

$$(i,j) \in A$$
 ייהי $\mu = (1,2)$ ב)

$$\mu(i,j) = (i,j)$$
 אם $\{i,j\} \cap \{1,2\} = \emptyset$ אם

.
$$\mu(i,j) = (j,i)$$
 אי $\{i,j\} \subseteq \{1,2\}$ אם

$$\mu(i,j) = \begin{cases} (2,j) & i=1\\ (1,j) & i=2 \end{cases} \quad \text{in } , \{i,j\} \cap \{1,2\} = \{i\} \quad \text{in } j \in \{1,2\}$$

$$\mu\big(i,j\big) = \begin{cases} \left(i,2\right) & j=1\\ \left(i,1\right) & j=2 \end{cases} \quad \text{in } , \left\{i,j\right\} \cap \left\{1,2\right\} = \left\{j\right\} \text{ for } i=1,2$$

$$\mu(i,j) = \{1 \mid i=3 \\ 2 \mid i=1 \\ 3 \mid i=2 \\ 4 \mid i=4 \}$$
, באשר $\mu(i,j) = (k,t)$ אז $\mu(i,j) = (k,t)$, און $\mu(i,j) = (k,t)$

וכד גם לגבי t.

שאלה 5

כל תת-החבורות של d=1,3,5,9,15,45 המחלק הת $G=C_{45}$ המחלק את כל תת-החבורות של $\left|C_{45}\right|=45$ ישנה תת-חבורה אחת מסדר $\left|C_{45}\right|=45$ מאותה סיבה כל ההכלות הן:

$$C_1 \subseteq C_5 \subseteq C_{15} \subseteq C_{45} \quad , C_1 \subseteq C_3 \subseteq C_{15} \subseteq C_{45} \quad , C_1 \subseteq C_3 \subseteq C_9 \subseteq C_{45}$$

שאלה 6

תהי a, o(x) = m, o(y) = n מתחלפים בכפל. נניח כי $a, y \in G$, ותהי מבורה, $a, y \in G$

ומתקיים $k=\alpha m=\beta n$ עבורם $lpha,eta\in\mathbb{Z}$ אז קיימים .k=l.c.mig(m,nig)

$$|o(xy)|k \iff (xy)^k = x^k y^k = (x^m)^\alpha (y^n)^\beta = 1$$

ובה שני $G=S_{\mathbb{N}}$ - אם נוותר על תנאי החילופיות, אז הטענה אינה נכונה: ראינו בכיתה דוגמא ל $G=S_{\mathbb{N}}$ ובה שני איברים מסדר 2, כך שמכפלתם מסדר אינסופי.

$$G = S_3, x = (1 \ 2), y = (1 \ 3)$$
 אוד דוגמא: