4142 HW 6

Duncan Wilkie

14 November 2022

Problem 1. Consider the energy matrix

$$H = V_0 \begin{pmatrix} 1 - \epsilon & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & \epsilon & 2 \end{pmatrix}$$

where V_0 is constant and ϵ is a small number.

- Find the exact eigenvalues and eigenvectors of this Hamiltonian.
- Use first- and second-order non-degenerate perturbation theory to derive the energy corrections to the unperturbed problem with $\epsilon = 0$.
- *Use first order degenerate perturbation theory to derive the energy corrections. Compare the results.*

Solution. Clearly, one eigenvector is the first basis state with eigenvalue $V_0(1 - \epsilon)$. We can diagonalize the 2×2 matrix pretty easily:

$$\det \begin{vmatrix} 1 - \lambda & \epsilon \\ \epsilon & 2 - \lambda \end{vmatrix} = 2 - 3\lambda + \lambda^2 - \epsilon^2 \Rightarrow \lambda = \frac{3 \pm \sqrt{1 + 4\epsilon^2}}{2}$$

The corresponding eigenvectors are

$$\begin{pmatrix} \frac{-1\pm\sqrt{1+4\epsilon^2}}{2\epsilon} \\ 1 \end{pmatrix}$$

The eigenvalues and eigenvectors for the overall problem are then

$$V_0(1-\epsilon) \to \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

$$V_0 \frac{3-\sqrt{1+4\epsilon^2}}{2} \to \begin{pmatrix} 0\\\frac{-1-\sqrt{1+4\epsilon^2}}{2\epsilon}\\1 \end{pmatrix}$$

$$V_0 \frac{3+\sqrt{1+4\epsilon^2}}{2} \to \begin{pmatrix} 0\\\frac{-1+\sqrt{1+4\epsilon^2}}{2\epsilon}\\1 \end{pmatrix}$$

We write the Hamiltonian as

$$H = H_0 + H' = V_0 \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \epsilon \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$

We must first compute the 0th-order terms: the solution to the H_0 problem. This is trivial, as the problem is diagonalized: there are two eigenstates with energies V_0 and one with eigenstate $2V_0$ corresponding exactly to the basis states with respect to which the problem is presented. First-order non-degenerate theory gives us

$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle$$
.

Sticking with the eigenbasis for H_0 ,

$$E_1^1 = \left\langle \psi_1^0 \middle| H' \middle| \psi_1^0 \right\rangle = -\epsilon V_0$$

$$E_2^1 = \left\langle \psi_2^0 \middle| H' \middle| \psi_2^0 \right\rangle = 0$$

$$E_3^1 = \left\langle \psi_3^0 \middle| H' \middle| \psi_3^0 \right\rangle = 0$$

The second-order non-degenerate theory yields

$$E_{1}^{2} = \frac{\left|\left\langle\psi_{1}^{0}\right|H'\left|\psi_{1}^{0}\right\rangle\right|^{2}}{E_{1}^{0} - E_{2}^{0}} + \frac{\left|\left\langle\psi_{3}^{0}\right|H'\left|\psi_{1}^{0}\right\rangle\right|^{2}}{E_{1}^{0} - E_{3}^{0}} = 0$$

$$E_{2}^{2} = \frac{\left|\left\langle\psi_{1}^{0}\right|H'\left|\psi_{2}^{0}\right\rangle\right|^{2}}{E_{2}^{0} - E_{1}^{0}} + \frac{\left|\left\langle\psi_{3}^{0}\right|H'\left|\psi_{2}^{0}\right\rangle\right|^{2}}{E_{2}^{0} - E_{3}^{0}} = \frac{\left|\epsilon V_{0}\right|^{2}}{V_{0} - 2V_{0}} = -\epsilon^{2}V_{0}$$

$$E_{3}^{2} = \frac{\left|\left\langle\psi_{1}^{0}\right|H'\left|\psi_{3}^{0}\right\rangle\right|^{2}}{E_{3}^{0} - E_{1}^{0}} + \frac{\left|\left\langle\psi_{2}^{0}\right|H'\left|\psi_{3}^{0}\right\rangle\right|^{2}}{E_{3}^{0} - E_{2}^{0}} = \frac{\left|\epsilon V_{0}\right|^{2}}{2V_{0} - V_{0}} = \epsilon^{2}V_{0}$$

For the more suitable first-order degenerate correction, we must first find an operator mutually commuting with H_0 and H'. Using the fact that if the product of symmetric matrices is symmetric, then they commute, any diagonal matrix will commute with both. Choose

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Accordingly, the first and second basis eigenstates are suitable to remove their degeneracy in the unperturbed state. The matrix whose eigenvalues are the first-order degenerate corrections is given by

$$W = \epsilon V_0 \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$

The eigenvalues are given trivially as $E_{\pm}^1=0, -\epsilon V_0$ These are exactly the non-degenerate first-order corrections to E_1^1 and E_2^1 .

Problem 2. For the harmonic oscillator with $V(x) = kx^2/2$, the allowed energies are $E_n = (n + \frac{1}{2})\hbar\omega$ with $\hbar\omega = \sqrt{k/m}$. Suppose the spring is cooled so that the spring constant rises slightly to $k(1 + \epsilon)$.

- 1. Find the exact new energies. Expand in ϵ to second order.
- 2. Instead, treat by perturbation theory to calculate the first order correction to the energy. Compare the results.

Solution. The new energies are given by $k\mapsto k(\epsilon+1)$, so $E_n'=\left(n+\frac{1}{2}\right)\hbar\sqrt{\frac{k}{m}}\sqrt{1+\epsilon}$. Using the Maclaurin series of $\sqrt{1+x}$, this is to second order

$$E_n^2 = \left(n + \frac{1}{2}\right)\hbar\sqrt{\frac{k}{m}}\left[1 + \frac{\epsilon}{2} - \frac{\epsilon^2}{8}\right].$$

Perturbatively, the perturbation to the Hamiltonian is $H' = \epsilon H_0$, so

$$E_n^1 = \left\langle \psi_n^0 \middle| H' \middle| \psi_n^0 \right\rangle = \epsilon \left(\frac{1}{2} \hbar \sqrt{\frac{k}{m}} \right)$$

This is precisely the first-order term in the series expansion of the exact solution.

Problem 3. Estimate the energy correction to the ground state of the hydrogen atom arising from the finite size of the proton (approx 10^{-13} cm). Assume all the charge of the proton is distributed uniformly on

- 1. the surface of the proton,
- 2. the volume of the proton.

Solution. With a spherical shell of charge, the electric field inside is zero by Gauss's law, so the potential inside is the potential of a point charge at the boundary: $-\frac{e^2}{4\pi\epsilon_0 r_p}$, where r_p is the radius of the proton. Similarly, for a solid sphere of charge, by Gauss's law the electric field is as a point charge at the center, but the size of that charge is proportional to the volume enclosed by a concentric Gaussian sphere:

$$|E| = \frac{e^2}{4\pi\epsilon_0 r^2} \frac{r^3}{r_p^3} = \frac{e^2}{4\pi\epsilon_0} \frac{r}{r_p^3}$$

Integrating from r_p (where $V=-\frac{e^2}{4\pi\epsilon_0 r_p}$ as before) to r, the potential is

$$V = -\frac{e^2}{4\pi\epsilon_0 r_p^3} (r^2 - r_p^2) - \frac{e^2}{4\pi\epsilon_0 r_p} = -\frac{e^2 r^2}{4\pi\epsilon_0 r_p^3}$$

Accordingly, we get new Hamiltonians

$$H = H_0 +$$

Problem 4. For a two-electron configuration 2p3p, find the states in $^{2S+1}L_J$ notation.

Solution. One electron has n=2, $\ell=2$, and the other n=3, $\ell=2$. The possible total spin states of the system are the integers from $\frac{1}{2}+\frac{1}{2}$ to $\frac{1}{2}-\frac{1}{2}$, i.e. 1 and 0. The possible L are the integers between 4 and 0, i.e. 0, 1, 2, 3, 4. If the spin is zero, the possible J are 0, 1, 2, 3, 4, and if the spin is one, the

possible J are 0, 1, 2, 3, 4, 5. We now list all those states: for spin zero, all of J must come from L, so

$${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, {}^{1}F_{3}, {}^{1}G_{4},$$

and for spin-1, each L can have total spin L+1, L, or |L-1|, so

$${}^{3}S_{0}, {}^{3}S_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}, {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3}, {}^{3}F_{2}, {}^{3}F_{3}, {}^{3}F_{4}, {}^{3}G_{3}, {}^{3}G_{4}, {}^{3}G_{5}$$

exhausts the possible states.

Problem 5. Consider the Zeeman splitting of the ${}^2P_{3/2}$ state. What are the spacings of the splitting? Give an estimate for a magnetic field of 0.1 T.

Solution. To first order, the Zeeman effect corrections are of the form

$$\mu_B g_J B_{ext} m_i$$

where $g_J=1+rac{j(j+1)-\ell(\ell+1)+s(s+1)}{2j(j+1)}$. This is added onto the fine-structure-corrected energy

$$E_{nj} = -\frac{-13.6 \,\text{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right) \right];$$

evaluating for our state,

$$E_{n(3/2)} = -\frac{-13.6 \,\text{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \frac{2n-3}{4} \right];$$

and

$$g_J = 1 + \frac{(3/2)(5/2) - (1)(2) + (1/2)(3/2)}{3(5/2)} = \frac{4}{3}.$$

The splitting is then

$$E_n = -\frac{-13.6 \,\text{eV}}{n^2} \left[1 + \frac{\alpha^2}{n^2} \frac{2n-3}{4} \right] + \frac{4\mu_B}{3} B_{ext} m_j.$$

One has $-j \le m_j \le j$ in increments of 1/2, so $m_j = -3/2, -1, -1/2, 0, 1/2, 1, 3/2$, yielding seven-fold splitting with spacing

$$\frac{2\mu_B}{3}B_{ext}$$

For the given field, the spacing is approximately

$$\frac{2(9.27 \times 10^{-24} \,\mathrm{J/T})}{3}(0.1 \,\mathrm{T}) = 6.18 \times 10^{-25} \,\mathrm{J} = 3.86 \times 10^{-6} \,\mathrm{eV}$$