

What Is Claimed Is:

1. A liquid crystal display device comprising:
a first substrate having a first surface, a second
surface, and a reference line;
a first alignment layer formed on the second
surface of the first substrate;
a second substrate having a first surface and a
second surface;
a second alignment layer formed on the second
surface of the second substrate;
a molecular liquid crystal layer between the
second surface of the first substrate and the second
surface of the second substrate; and
a pair of electrodes formed in parallel on the
second surface of the first substrate.

5

10

T02007 000023660

2. A liquid crystal display device according to claim 1, further including:

a polarizer formed on the first surface of the first substrate and having a transmittance axis; and

an analyzer formed on the first surface of the second substrate and having a transmittance axis.

3. A liquid crystal display device in accordance with claim 1, wherein the molecules of the liquid crystal layer adjacent to the second surface of the first substrate are aligned parallel to the reference line of the first substrate.

4. A liquid crystal display device in accordance with claim 1, wherein the molecules of the liquid crystal layer adjacent to the second surface of the first substrate are aligned perpendicular to the reference line of the first substrate.

5. A liquid crystal display device in accordance with claim 1, wherein the distance between the electrodes is less than the thickness of the liquid crystal layer.

6. A liquid crystal display device in accordance with claim 2, wherein the transmittance axis of the polarizer is perpendicular to the transmittance axis of the analyzer.

7. A liquid crystal display device in accordance with claim 2, wherein the transmittance axis of the polarizer is parallel with the alignment direction of the liquid crystal molecules adjacent to the second surface of the first substrate.

8. A liquid crystal display device in accordance with claim 2, wherein the first substrate has a reference line and wherein the electrodes are formed at an angle of θ_{EL} with respect to the reference line of the first substrate, and wherein $0^\circ < \theta_{EL} < 90^\circ$.

9. A liquid crystal display device in accordance with claim 8, wherein the angle θ_{EL} includes 85° .

10. A liquid crystal display device in accordance with claim 8, wherein $90^\circ < \theta_{EL} < 180^\circ$.

11. A liquid crystal display device in accordance with claim 10, wherein the angle θ_{EL} includes 95° .

12. A liquid crystal display device in accordance
with claim 2, wherein the liquid crystal layer has a
retardation value $\Delta n d$ in the range of
 $\lambda/2 < \Delta n d < \lambda$ (wherein, Δn is the refractive anisotropy, d
is the thickness of liquid crystal layer, and λ is a
wave length, wherein the retardation value $\Delta n d$ of the
liquid crystal includes 0.74λ .

13. A liquid crystal device in accordance with
claim 2, wherein the first alignment layer is formed
from a different material than the second alignment
layer, and the material for the first alignment layer
has a smaller anchoring energy with respect to liquid
crystal molecules than the anchoring energy with
respect to liquid crystal molecules of the material for
the second alignment layer.

14. A liquid crystal display device in accordance
with claim 2, wherein the material for the first
alignment layer includes an inorganic material.

15. A liquid crystal display device comprising:
a first substrate having a first surface, a second
surface, and a reference line, the second surface of

the first substrate being coated with a first alignment
5 layer;

a second substrate having a first surface and a
second surface, the second surface of the second
substrate facing the second surface of the first
substrate;

10 a molecular liquid crystal layer between the
second surface of the first substrate and the second
surface of the second substrate;

15 a pair of electrodes formed on the first
substrate, the electrodes being parallel to each other
and angularly disposed by the angle $\theta_{EL} \neq 0^\circ$ with
respect to the reference line of the substrate;

a polarizer attached to the first surface of the
first substrate; and

20 an analyzer attached to the first surface of the
second substrate.

16. A liquid crystal display device in accordance
with claim 15, wherein an alignment direction of liquid
crystal molecules adjacent to the first substrate is
parallel to the reference line of the first substrate.

17. A liquid crystal display device in accordance
with claim 15, wherein an alignment direction of

liquid crystal molecules adjacent to the first substrate is perpendicular to the reference line of the first substrate.

18. A liquid crystal device in accordance with claim 15, wherein the polarizer has a transmittance axis perpendicular to a transmittance axis of the analyzer.

19. A liquid crystal display device in accordance with claim 15, wherein the polarizer has a transmittance axis parallel to the alignment direction of the liquid crystal molecules adjacent to the second surface of the first substrate.

20. A liquid crystal display device in accordance with claim 14, wherein the electrodes are formed at an angle of θ_{EL} with respect to the reference line of the first substrate and wherein the angle θ_{EL} includes $0^\circ < \theta_{EL} < 90^\circ$.

21. A liquid crystal device in accordance with claim 20, wherein the θ_{EL} includes 85° .

22. A liquid crystal device in accordance with
claim 15, wherein θ_{EL} includes $90^\circ < \theta_{EL} < 180^\circ$.

23. A liquid crystal device in accordance with
claim 21, wherein the angle θ_{EL} includes 95° .

24. A liquid crystal device in accordance with
claim 15, wherein the liquid crystal layer has a
retardation value Δnd and wherein $\lambda/2 < \Delta nd < \lambda$ (Δn is the
refractive anisotropy of the liquid crystal layer, d
is the thickness of liquid crystal layer, and λ is a
wave length of light, and wherein the retardation value
 Δnd of the liquid crystal is 0.74λ .

25. A liquid crystal device in accordance with
claim 15, further including a second alignment layer on
the second surface of the second substrate, the first
alignment layer and the second alignment layer being
made of different materials, and wherein the material
of the first alignment layer has a smaller anchoring
energy with respect to liquid crystal molecules than
the anchoring energy of the material of the second
alignment layer.

26. A liquid crystal display device in accordance with claim 15, wherein the material for the first alignment layer includes an inorganic material.

27. A liquid crystal display device in accordance with claim 15, wherein the distance between the electrodes is less than the thickness of the liquid crystal layer.