Philipp Hauber^{1,2}

 1 JMU Würzburg 2 Kiel Institute for the World Economy (IfW)

Kiel Institute Research Seminar March 22nd, 2022

This presentation

Mash-up of two papers in my dissertation!

Method:

Hauber, P and C. Schumacher (2021). *Precision-based sampling with missing observations: A factor model application*, **Bundesbank Discussion Paper 11/2021**.

Application:

Hauber, P. (2021) How useful is external information from professional forecasters? Conditional forecasts in large factor models

Motivation

Essential task in the Bayesian estimation of state space models: drawing from $p(\eta|\mathbf{y},\Theta)$ where η is an unobserved component, \mathbf{y} is data and Θ parameters

Precision-based samplers (Chan and Jeliazkov 2009, IJMMNO; McCausland 2012, JEcmtrics) exploit the fact the precision matrix of η is banded in many macroeconomic application \rightarrow alternative to simulation smoothers that rely on the Kalman filter

Applications in macroeconomics (with complete data) include models of trend inflation (Chan et al. 2013, JBES), time-varying Bayesian vector autoregressions (Chan 2020, JBES) and factor models (Kaufmann and Schumacher 2017, JAE)

Missing observations arise frequently in macroeconomic applications/datasets: different starting dates, different release patterns ("ragged edge"), outliers or mixed frequencies

In our paper, we propose a precision-sampler that can handle (most of these) applications!

Simple example

AR(2) process:
$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + u_t$$
; $u_t \sim \mathcal{N}(0, \sigma^2)$

Stacking the observations over t = 1, ..., T yields

$$\mathbf{H}\boldsymbol{\eta} = \mathbf{u}, \text{ where } \mathbf{u} \sim \mathcal{N}(0, \mathbf{I}_T \sigma^2) \text{ and } \mathbf{H} = \begin{bmatrix} 1 \\ -\phi_1 & 1 \\ -\phi_2 & -\phi_1 & 1 \\ & -\phi_2 & -\phi_1 & 1 \\ & & \ddots & \ddots & \ddots \\ & & & -\phi_2 & -\phi_1 & 1 \end{bmatrix}$$

$$\eta$$
 is Normal with mean $\mathbf{0}_T$ and covariance matrix $\Sigma = \mathbf{H}^{-1} \mathbf{I}_T \sigma^2 \mathbf{H}^{-1}$ corresponding *precision matrix* is given by $\mathbf{Q} = \Sigma^{-1} = \mathbf{H}^\mathsf{T} \mathbf{I}_T \sigma^{-2} \mathbf{H}$

Precision-based sampling with missing observations Covariance and precision matrix of η

Properties of the multivariate \mathcal{N} :

- lacksquare $\Sigma_{ij}=0\Longrightarrow$ independence of η_i and η_j
- $\mathbf{Q}_{ij} = 0 \Longrightarrow \mathbf{conditional}$ independence of η_i and η_j

Notes: The blue dots indicate the non-zero entries in the covariance matrix Σ and precision matrix \mathbf{Q} of an AR(2) process for T=20 observations. The former is a dense matrix while the latter is sparse and banded with lower and upper bandwidth equal to 2.

Computational advantages of banded precision matrices

Solving linear systems of the form Ux = b where U is an $n \times n$ upper-triangular matrix takes n^2 flops (left); when U has bandwidth p the solution can be obtained in 2np flops (right):

```
% solution to Ux = b
                                           % solution to Ux = b
% U has maximal bandwidth
                                           % U has bandwidth p
for i = n:-1:1
                                           for i = n:-1:1
    x(i) = b(i)/U(i,i)
                                               x(i) = b(i)/U(i,i)
    for i = 1:i-1
                                                for i = \max\{1, i-p\}: i-1
        b(i) = b(i) - U(i,i) \times (i)
                                                    b(i) = b(i) - U(i,i) \times (i)
    end
                                                end
end
                                           end
```

Even larger gains for matrix factorisations, e.g. Cholesky ($Q = LL^T$) \Longrightarrow linear instead of cubic costs!

L "inherits" the bandwidth of Q (Golub and Van Loan 2013, Theorem 4.3.1)

Factor model

To fix ideas, consider the following factor model:

$$\begin{aligned} & \mathbf{y}_t = \lambda \boldsymbol{\eta}_t + \mathbf{e}_t \\ & \mathbf{e}_t = \phi^{\mathbf{e}} \mathbf{e}_{t-1} + \boldsymbol{\varepsilon}_t; \; \boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \textit{diag}([\sigma_1^2, \cdots, \sigma_N^2])) \\ & \boldsymbol{\eta}_t = \phi^{\eta} \boldsymbol{\eta}_{t-1} + \mathbf{u}_t; \; \mathbf{u}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_u) \end{aligned}$$

where \mathbf{y}_t is an $N \times 1$ vector of data and η_t is an $R \times 1$ vector of unobserved factors

Bayesian estimation of the model is done via a Gibbs Sampler which sequentially draws from

- lacksquare the conditional distribution of factors given data and parameters: $p(\pmb{\eta}|\mathbf{y},\Theta)$
- the conditional distribution of parameters given data and factors: $p(\Theta|\eta, \mathbf{y})$

Drawing from $p(\eta|\mathbf{y}, \Theta)$

Joint distribution of states $\boldsymbol{\eta} = \left[\boldsymbol{\eta}_1^{\mathsf{T}}, \cdots, \boldsymbol{\eta}_{\mathcal{T}}^{\mathsf{T}}\right]^{\mathsf{T}}$ and data $\mathbf{y} = \left[\mathbf{y}_1^{\mathsf{T}}, \cdots, \mathbf{y}_{\mathcal{T}}^{\mathsf{T}}\right]^{\mathsf{T}}$ given parameters:

$$\mathbf{z} = egin{bmatrix} \pmb{\eta} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}^{-1}); \ \mathbf{Q} = egin{bmatrix} \mathbf{Q}_{\eta} & \mathbf{Q}_{\eta, y} \\ \mathbf{Q}_{\eta, y}^{\mathsf{T}} & \mathbf{Q}_{y} \end{bmatrix}$$
 Mapping from Θ to \mathbf{Q}

Standard result for the multivariate $\mathcal{N}\colon p(\pmb{\eta}|\mathbf{y},\Theta)=\mathcal{N}(-\mathbf{Q}_{\eta}^{-1}\mathbf{Q}_{\eta y}\mathbf{y},\mathbf{Q}_{\eta}^{-1})$

Sampling from this distribution does **not** require the inversion of (the potentially very large matrix) \mathbf{Q}_{η} and because it is banded

- the mean $-\mathbf{Q}_n^{-1}\mathbf{Q}_{n\nu}\mathbf{y}$
- and a random draw given mean and precision matrix

can be obtained efficiently! Rue and Held (2005, Algorithms 2.1, 2.4)

Drawing from $p(\eta, y^m | y^o, \Theta)$: 3 block ordering

What to do when some observations in y are missing?

E.g. a model with one factor and data $\mathbf{y} = [y_{11}, y_{12}, \text{NaN}, y_{22}, y_{31}, \text{NaN}, \text{NaN}, \text{NaN}, y_{51}, \text{NaN}]^T$

Reorder the model in 3 blocks as:

$$\mathbf{z}_{3b} = \begin{bmatrix} \mathbf{\eta} \\ \mathbf{y^m} \\ \mathbf{y^o} \end{bmatrix} \equiv \begin{bmatrix} \mathbf{z}_{\eta y^m}^{3b} \\ \mathbf{z}_{y^o}^{3b} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_{3b}^{-1}); \, \mathbf{Q}_{3b} = \begin{bmatrix} \mathbf{Q}_{\eta} & \mathbf{Q}_{\eta, y^m} & \mathbf{Q}_{\eta y^o} \\ \mathbf{Q}_{\eta, y^o}^\mathsf{T} & \mathbf{Q}_{y^m} & \mathbf{Q}_{y^m, y^o} \\ \mathbf{Q}_{\eta, y^o}^\mathsf{T} & \mathbf{Q}_{y^m, y^o} & \mathbf{Q}_{y^o} \end{bmatrix} \equiv \begin{bmatrix} \mathbf{Q}_{\eta y^m}^{3b} & \mathbf{Q}_{\eta y^m, y^o}^{3b} \\ \mathbf{Q}_{\eta y^m, y^o}^{3b} & \mathbf{Q}_{y^o}^{3b} \end{bmatrix}$$

Example:

$$\mathbf{z}_{3b} = [\eta, \mathbf{y^m}, \mathbf{y^o}]^\mathsf{T} = [\eta_1, \eta_2, \eta_3, \eta_5, \eta_5, y_{21}, y_{32}, y_{41}, y_{42}, y_{52}, y_{11}, y_{12}, y_{22}, y_{31}, y_{51}]^\mathsf{T}$$

Drawing from $p(\eta, y^m | y^o, \Theta)$: time-t ordering

However, $Var(\mathbf{z}_{\eta y^m|y^o}^{3b})^{-1}=\mathbf{Q}_{\eta y^m}^{3b}$ will in general **not** be a banded matrix, so sampling as in the case of complete data not feasible!

 \Longrightarrow different ordering of \mathbf{z} that groups conditionally dependent components - $\boldsymbol{\eta}_t$ and \mathbf{y}_t^m (time-t ordering - together: $\mathbf{z}_{\tau} = \mathcal{P}_{\tau}\mathbf{z}$ and corresponding precision matrix $Q_{\tau} = \mathcal{P}_{\tau}\mathbf{Q}\mathcal{P}_{\tau}^{\mathsf{T}}$

Example:
$$\mathbf{z}_{\mathcal{P}_{\tau}} = [\eta_1, \eta_2, y_{21}, \eta_3, y_{32}, \eta_4, y_{41}, y_{42}, \eta_5, y_{52}, y_{11}, y_{12}, y_{22}, y_{31}, y_{51}]^{\mathsf{T}}$$

This ensures that the precision matrix of the desired conditional distribution $Var(\mathbf{z}^{\tau}_{\eta_{\mathcal{V}^m}|_{\mathcal{V}^o}})^{-1} = Q^{\tau}_{\eta_{\mathcal{V}^m}}$ is banded!

After sampling from $p(\mathbf{z}_{\eta v^m|v^o}^{\tau})$, reverse the permutation to back out the draw of η and \mathbf{y}^m

Example: Graphical comparison of Q_{3b} and Q_{τ}

Notes: The blue dots indicate the non-zero entries in the precision matrix of the 3-block ordering (left) and the time-t permutation (right) of the discussed example with 2 variables and one factor. The highlighted upper left submatrices correspond to the conditional precision matrix of factors and missing values given observations, Q^{3b}_{nym} and Q^{π}_{nym} .

References I

- Chan, Joshua C. C., "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, 2020, 38 (1), 68–79.
- __ , Gary Koop, and Simon M. Potter, "A New Model of Trend Inflation," Journal of Business & Economic Statistics, 2013, 31 (1), 94–106.
- Chan, Joshua CC and Ivan Jeliazkov, "Efficient simulation and integrated likelihood estimation in state space models," International Journal of Mathematical Modelling and Numerical Optimisation, 2009, 1 (1-2), 101–120.
- Golub, Gene H. and Charles F. Van Loan, Matrix Computations Johns Hopkins Studies in the Mathematical Sciences, 4th ed., Johns Hopkins University Press, 2013.
- Kaufmann, Sylvia and Christian Schumacher, "Identifying relevant and irrelevant variables in sparse factor models," *Journal of Applied Econometrics*, 2017, 32 (6), 1123–1144.
- McCausland, William J., "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," *Journal of Econometrics*, 2012, 168 (2), 189–206.
- Rue, Havard and Leonhard Held, Gaussian Markov random fields: theory and applications, CRC press, 2005.

Appendix

Mapping from Θ to Q

ladida ladida

Appendix

Rue and Held (2005, Algorithm 2.1, 2.4)

Algorithm 2.1 Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} > 0$

- 1: Compute the Cholesky factorization $\mathbf{A} = \mathbf{L} \mathbf{L}^\mathsf{T}$
- 2: Solve $\mathbf{L}\mathbf{v} = \mathbf{b}$ via forward substitution
- 3: Solve $\mathbf{L}^\mathsf{T} \mathbf{x} = \mathbf{v}$ via backward substitution
- 4: return x

Algorithm 2.4 Sampling $\mathbf{x} \sim \mathcal{N}(u, \mathbf{Q}^{-1})$

- 1: Compute the Cholesky factorization $\mathbf{Q} = \mathbf{L} \mathbf{L}^\mathsf{T}$
- 2: Sample $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$
- 3: Solve $\mathbf{L}^{\mathsf{T}}\mathbf{v} = \mathbf{z}$
- 4: Compute $\mathbf{x} = \mathbf{\mu} + \mathbf{v}$
- 5: return x