Problem set 1

Красильников Иван

22 сентября 2010 г.

Задача 1

Да.
$$a(x) = sign(-3 + sign(x_1 > 0) + sign(x_1 < 1) + sign(x_2 > 0) + sign(x_2 < 1)).$$

Задача 2

Нет. Нельзя, например, описать $\{(x,y)\,|\, xy>0\}$ (т.е. решить XOR), что можно показать невозможностью отделить точки (1,1),(-1,-1) от (-1,1),(1,-1) решающими правилами вида $\mathrm{sign}(f(x)+g(y))$:

$$\begin{cases} f(1) + g(1) > 0, \\ f(-1) + g(-1) > 0, \\ f(-1) + g(1) < 0, \\ f(1) + g(-1) < 0, \end{cases} \implies \begin{cases} f(1) > -g(1) \\ f(-1) > -g(-1) \\ f(-1) < -g(1), \\ f(1) < -g(-1), \end{cases}$$

$$f(1) > -g(1) > f(-1) > -g(-1) > f(1)$$
, что неверно

Задача 3

3.1. Первый базовый классификатор: $h_1(x,y) = \text{sign}(x-2.5)$. Он положителен при x > 2.5, отрицателен при x < 2.5.

Здесь должен быть рисунок, но у меня нет времени на его оформление.

Неправильно классифицировался один пример из 9, поэтому

$$\varepsilon_1 = \frac{1}{9}, \quad \alpha_1 = \frac{1}{2} \log \frac{1 - \varepsilon_1}{\varepsilon_1} = \log \sqrt{8} \approx 1.03972$$

- **3.2.** Ненормализованные веса: у неправильно классифицированного объекта (4,0.5) вес $\frac{1}{9}e^{\alpha_1}=\frac{1}{9}\sqrt{8}$, у остальных веса $\frac{1}{9}e^{-\alpha_1}=\frac{1}{9}\frac{1}{\sqrt{8}}$. Сумма весов: $\frac{1}{9}\left(8\frac{1}{\sqrt{8}}+\sqrt{8}\right)=\frac{2}{9}\sqrt{8}$. Веса после нормализации: у (4,0.5) вес $\frac{1}{2}$, у остальных: $\frac{1}{16}$.
- **3.3.** Равно сумме весов неправильно классифицированных объектов, то есть весу одного объекта (4, 0.5): $\frac{1}{2}$.
- **3.4.** Столь большой вес (4,0.5) накладывает ограничие на новый базовый классификатор он должен обязательно правильно классифицировать этот объект, иначе его взвешенная ошибка не будет меньше $\frac{1}{2}$. Из таких классификаторов взвешенную ошибку минимизирует sign(4.5-x). Он положителен при x < 4.5 и отрицателен при x > 4.5.
- **3.5.** Нет, так как при любых коэффициентах функция $\alpha_1 \cdot \text{sign}(x-2.5) + \alpha_2 \cdot \text{sign}(4.5-x)$ будет постоянной на интервале (2.5, 4.5), а там находятся обучающие примеры разных классов.

Задача 4

После обучения t-го базового классификатора h_t с весами объектов $w_i^{(t)}$ (нормализованные так, чтобы их сумма была равна единице), веса в алгоритме AdaBoost пересчитываются по следующей формуле:

$$w_i^{(t+1)} = Z_t w_i^{(t)} e^{-y_i \alpha_t h_t(x_i)},$$

где Z_t – множитель для нормализации новых весов:

$$\frac{1}{Z_t} = \sum_{i} w_i^{(t)} e^{-y_i \alpha_t h_t(x_i)} = \sum_{i: y_i = h_t(x_i)} w_i^{(t)} e^{-\alpha_t} + \sum_{i: y_i \neq h_t(x_i)} w_i^{(t)} e^{\alpha_t}
= (1 - \varepsilon_t) e^{-\alpha_t} + \varepsilon_t e^{\alpha_t},$$

а ε_t – функционал взвешенной ошибки классификатора h_t с весами $w_i^{(t)}$:

$$\varepsilon_t = \sum_{i: y_i \neq h_t(x_i)} w_i^{(t)}.$$

Значение функционала взвешенной ошибки для алгоритма h_t с новыми, пересчитанными и нормализованными весами $w_i^{(t+1)}$:

$$\varepsilon_t' = \sum_{i:y_i \neq h_t(x_i)} w_i^{(t+1)} = \sum_{i:y_i \neq h_t(x_i)} Z_t w_i^{(t)} e^{-y_i \alpha_t h_t(x_i)}$$

$$= Z_t \sum_{i:y_i \neq h_t(x_i)} w_i^{(t)} e^{\alpha_t} = Z_t \varepsilon_t e^{\alpha_t} = \frac{\varepsilon_t e^{\alpha_t}}{(1 - \varepsilon_t) e^{-\alpha_t} + \varepsilon_t e^{\alpha_t}}$$

$$= \frac{1}{1 + \frac{1 - \varepsilon_t}{\varepsilon_t} e^{-2\alpha_t}} = \frac{1}{1 + 1} = \frac{1}{2},$$

так как

$$\alpha_t = \frac{1}{2}\log\frac{1-\varepsilon_t}{\varepsilon_t}, \quad e^{-2\alpha_t} = e^{-2\cdot\frac{1}{2}\log\frac{1-\varepsilon_t}{\varepsilon_t}} = \frac{\varepsilon_t}{1-\varepsilon_t}.$$

Ответ: $\frac{1}{2}$.

Задача 5

Пусть задана выборка $\{(x_i,y_i)\}_{i=1}^n, x_i \in \mathbb{R}^m, y_i \in \mathbb{R}$, и требуется найти f(x), минимизирующую сумму квадратов ошибок: $\sum_{i=1}^n (f(x_i)-y_i)^2$.

На первом шаге положим $f_0(x) = \frac{1}{n} \sum_{i=1}^n y_i$ — наилучшее константное приближение.

Далее, следуя общей концепции бустинга, на t-м шаге будем искать $f_t(x)$ в виде $f_t(x) = f_{t-1}(x) + h(x)$, где h(x) – функция, возвращаемая базовым алгоритмом обучения, критерий выбора которой – минимизация квадратичной ошибки функции $f_t(x)$:

$$\sum_{i=1}^{n} (y_i - f_t(x_i))^2 \to \min_{h}$$

$$\sum_{i=1}^{n} ([y_i - f_{t-1}(x_i)] - h(x_i))^2 \to \min_{h}$$

Таким образом, для выбора h(x) необходимо решить задачу регрессии на выборке $\{(x_i, y_i - f_{t-1}(x_i))\}_{i=1}^n$. Это уже задача для базового алгоритма регрессии.

Алгоритм построен.

Псевдокод:

- 1. $f_0(x) := \frac{1}{n} \sum_{i=1}^n y_i$.
- 2. Для $t = 1, 2, \dots, T$:
 - (a) Построить функцию h(x) при помощи базового алгоритма для решения задачи регрессии:

$$h(x) = \arg\max_{h} \sum_{i=1}^{n} (h(x_i) - r_i)^2,$$

где
$$r_i = y_i - f_{t-1}(x_i)$$
.

- (b) $f_t(x) := f_{t-1}(x) + h(x)$:
- 3. Вывести $f_T(x)$.