λC中逻辑概念的编码

The encoding of logical notions in λC

读书笔记

许博

1 类型理论中的谬论(absurdity)与否定(negation)

在章节 5.4 中,通过编码蕴含式 $A \Rightarrow B$ 为函数类型 $A \rightarrow B$,模拟蕴含式的 行为,包括它的导入和消解规则。因为 λP 是 λC 的一部分,所以 λC 中同样拥有最小谓词逻辑。

本章将处理更多的接词(connective),比如否定(\neg),合取(\wedge)和析取(\vee)。这些在 λ P 中不能表示,但在 λ C 中存在非常优雅的方式去编码这些概念。

将否定 $\neg A$ 看作蕴含式 $A \Rightarrow \bot$,其中 \bot 是 "谬论 (absurdity)",也可以称为 "矛盾 (contradiction)"。因此 $\neg A$ 被解释为 "A 蕴含了谬论"。为了这个目标,我们需要谬论的编码:

I. 谬论, Absurdity

命题"谬论"或 \bot 的一个独特的性质是: 如果 \bot 为真,则每一个命题都为 真。

每一个命题都为真,则存在一个接收任意一个命题 α 然后返回 α 的一个成员的函数,而这个函数的类型为 $\Pi\alpha:*.\alpha$ 。因此"如果 \bot 为真,则每一个命题都为真"可以表述为"如果存在 $M:\bot$,则存在 $f:\Pi\alpha:*.\alpha$ "。因此,在类型理论中,定义 \bot 为 $\Pi\alpha:*.\alpha$ 。