Redesigning Climate Risk Visualization: From Facility-Level Heatmaps to Global Insights

Zixuan Li Infosci301

A.

Motivation

The original visualization (by Four Twenty Seven using Mapbox) mapped heat stress scores for corporate facilities using a dense dot heatmap.

- Limited scope (only heat stress)
- Lack of transparency in scoring
- Poor readability in high-density areas
- Low emotional or policy relevance

B.

Theory

- Affective Visualization Design (Lan, Wu, Cao, 2024): Emotion increases engagement, memory, and comprehension
- FAIR Data Principles (GO FAIR, 2019): Data should be Findable, Accessible, Interoperable, Reusable.

C.

Strategy

- Used the Global Climate Risk Index dataset (Kaggle, sourced from Germanwatch)
 - → Transparent, peer-reviewed, globally cited
- Built visualizations in Amazon QuickSight
 - → Easy geospatial visualization
 - → Supports FAIR and affective design principles

E.

Redesign Flow

- Original Map Review
- Theory Integration
- Dataset Upgrade
- Tool-Based Redesign
- Impact: Emotion + Fairness + Clarity

D.

Results

Original design

Redesign

Score of the country on the Climate Risk Index (Integer)

Crisis Score

正在显示 COUNTRY 中的前 182 个和 RW_COUNTRY_CODE 中的前 180 个

NORTH AMERICA

North Atlantic
Ocean

AFRICA

Indian
Ocean

Country Name

AFRICA

ASIA

AFRICA

BBI BBL BBN

F.

Conclusion & Impact

- Broadened climate impact scope
- Strengthened emotional engagement
- Improved accessibility for non-technical audiences
- Enabled informed decision-making across global contexts

References