HW#6 - METCS 248

1. Simplify the following expression: (p'.q)+(p.q)+(p.q')

$$(p'.q)+(p.q)+(p.q')=(p'.q)+p(q+q')$$

= $(p'.q)+p=(p+p')(p+q)$
= $p+q$

2. Find the sum-of-products of f(x,y,z).

\boldsymbol{X}	y	z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

3. Write the expression (x.y)'.z in terms of each of the following:

b) NAND operator.
$$(\chi \cdot \mathcal{F})' \cdot \mathcal{Z} = (((\chi \cdot \mathcal{F})' \cdot \mathcal{Z}')' = (((\chi \cdot \mathcal{F})' \cdot \mathcal{Z}') \cdot ((\chi \cdot \mathcal{F})' \cdot \mathcal{Z}'))'$$

$$((\chi \cdot \mathcal{A}) \times \mathcal{F}) \times \mathcal{F} \times$$

4. Draw the Karnaugh map for f(x,y,z) in problem 2 and minimize the function.

	メな	23	メ'る'	23
Z				
21		1	1	

5. Draw the Karnaugh map for g(x,y,z,w), where g(x,y,z,w) is "1" for the following x, y, z, w:

2 W (1)	X3	763	26	メな	
24/ (1)			dil		ZW
2/2/	1)			(1)	えか
					ZN
ZW (1)	1		(1)		ZW

0010, 0011, 0101, 0110, 1001, 1011, 1100, 1110, and g(x,y,z,w) = 0 elsewhere. Minimize the function.

6. Draw the logic circuit for the expression in problem 4 using only 2 input gates.

7. Show that NOR is complete set of operators.

You can make OR, AND and NOT, that is a complete set of operators, from NOR.

AND: (X NOR X) NOR (Y NOR Y)

NOT: X NOR X 3

0	101		
1001	3000	1000-	

8) Write the following expression as a sum of minterms: f(x, y, z) = xyz' + x'z + y, then simplify.

	_				
١	2	3	2	f(x,8,2)	
1	0	0	0	O	,
	0	D	1	1	- 义'子'区
	0	ī	0	1	- x13 z'
	٥	1	1	1 1	
	1		1	'	ーズなる
		0	0	0	
	1	0	1	0	_
	1	1 1	0	1	- 132
	1	1	1		ーエなる

	13	23'	x'3'	x'3
Z				[2]
7				