Unidad 1: Vectores

Matemática (IA1.2)

Tecnicatura Universitaria en Inteligencia Artificial

Branco Blunda

${\rm \acute{I}ndice}$

1.	Vectores	2
	1.1. Definiciones Básicas	2
	1.2. Paralelismo y Perpendicularidad	2
	1.3. Ángulo entre Vectores	
2.	Operaciones entre Vectores	3
	2.1. Suma de Vectores	3
	2.2. Resta de Vectores	3
	2.3. Producto de un Vector por un Escalar	3
3.	Vectores en \mathbb{R}^2 y \mathbb{R}^3 : Componentes	3
	3.1. Versores Fundamentales y Descomposición Canónica	3
	3.2. Operaciones con Componentes	
	3.3. Módulo con Componentes	4
	3.4. Versor Asociado con Componentes	4
	3.5. Condición de Paralelismo con Componentes	4
4.	Producto Escalar (Producto Punto)	5
5 .	Proyección Ortogonal	5
6.	Producto Vectorial (Producto Cruz)	6
7.	Producto Mixto (Triple Producto Escalar)	7

1. Vectores

1.1. Definiciones Básicas

Definición 1.1: Dados dos puntos A y B, se llama **segmento orientado AB** al segmento que tiene origen en A y extremo en B. A un segmento orientado le llamaremos **vector**.

Notación usual: u, v, w.

Un vector queda definido implícitamente por:

- Dirección: La recta que determinan sus extremos.
- Sentido: Indica cuál es el origen y cuál el extremo.
- Módulo: La longitud del segmento (distancia entre origen y extremo). Se nota |u|.

Definición 1.2: Un **vector nulo** (0) es aquel de módulo cero. Su imagen geométrica es un punto. No tiene dirección ni sentido.

Definición 1.3: Dos vectores son iguales si y sólo si:

- ambos tienen módulo cero, o bien,
- ambos tienen igual dirección, sentido y módulo.

Definición 1.4: Se llama versor a todo vector de módulo 1.

Definición 1.5: Se denomina **versor asociado** a un vector \mathbf{v} (notado \mathbf{v}_0) a un vector que tenga igual sentido y dirección que \mathbf{v} , pero de módulo 1. Dado un $\mathbf{v} \neq \mathbf{0}$, existe un único versor asociado.

Definición 1.6: El **vector opuesto** de \mathbf{u} (notado $-\mathbf{u}$) es el vector con igual dirección y módulo, pero sentido contrario.

1.2. Paralelismo y Perpendicularidad

Definición 1.7: Dos vectores son **paralelos** (**u** || **v**) si tienen igual dirección.

• Un vector no nulo \mathbf{u} es paralelo a su versor asociado \mathbf{u}_0 y a su opuesto $-\mathbf{u}$.

Teorema (Condición de paralelismo): Dos vectores no nulos u, v son paralelos si y solamente si uno puede expresarse como el producto del otro por un número real:

$$\mathbf{u} \parallel \mathbf{v} \iff \exists \lambda \in \mathbb{R} \setminus \{0\} \text{ tal que } \mathbf{u} = \lambda \mathbf{v}$$

Definición 1.9: Dos vectores \mathbf{u}, \mathbf{v} son **perpendiculares** $(\mathbf{u} \perp \mathbf{v})$ si forman un ángulo recto $(\pi/2 \text{ o } 90^{\circ})$ entre ellos.

1.3. Angulo entre Vectores

Definición 1.8: Dados dos vectores no nulos \mathbf{u}, \mathbf{v} , el **ángulo entre ellos**, (\mathbf{u}, \mathbf{v}) , es el ángulo convexo $(0 \le \theta \le \pi)$ determinado al aplicar sus orígenes en un punto común.

- Si u || v: el ángulo es 0° (mismo sentido) o 180° (sentido opuesto).
- Propiedades: $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u}), (\mathbf{u}, \mathbf{v}) + (-\mathbf{u}, \mathbf{v}) = \pi$.

2. Operaciones entre Vectores

2.1. Suma de Vectores

La suma $\mathbf{u} + \mathbf{v}$ es otro vector. Se puede obtener mediante:

- Regla de la poligonal (o del triángulo): Se traslada v para que su origen coincida con el extremo de u. El vector suma va desde el origen de u hasta el extremo de v.
- Regla del paralelogramo: Se dibujan u y v con origen común. El vector suma es la diagonal del paralelogramo formado, partiendo del origen común.

Teorema (Propiedades de la suma):

- 1. Conmutativa: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 2. Asociativa: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 3. Elemento neutro: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 4. Elemento opuesto: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

2.2. Resta de Vectores

La resta o diferencia se define como: $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.

2.3. Producto de un Vector por un Escalar

El producto de \mathbf{u} por un escalar $\lambda \in \mathbb{R}$ es otro vector $\lambda \mathbf{u}$ con las siguientes características:

- Módulo: $|\lambda \mathbf{u}| = |\lambda||\mathbf{u}|$
- Dirección: Si $\lambda \neq 0$ y $\mathbf{u} \neq \mathbf{0}$, $\lambda \mathbf{u}$ tiene la misma dirección que \mathbf{u} . (Son paralelos).
- Sentido:
 - Si $\lambda > 0$, $\lambda \mathbf{u}$ tiene el mismo sentido que \mathbf{u} .
 - Si $\lambda < 0$, $\lambda \mathbf{u}$ tiene sentido contrario a \mathbf{u} .
- Casos especiales: $0\mathbf{u} = \mathbf{0}$, $1\mathbf{u} = \mathbf{u}$, $-1\mathbf{u} = -\mathbf{u}$.

Teorema (Propiedades del producto por escalar): Sean u, v vectores y $\alpha, \beta \in \mathbb{R}$.

- 1. Distributiva respecto a suma de escalares: $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- 2. Distributiva respecto a suma de vectores: $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- 3. Asociativa mixta: $(\alpha\beta)\mathbf{u} = \alpha(\beta\mathbf{u})$
- 4. Elemento neutro escalar: $1\mathbf{u} = \mathbf{u}$

3. Vectores en \mathbb{R}^2 y \mathbb{R}^3 : Componentes

3.1. Versores Fundamentales y Descomposición Canónica

Los **versores fundamentales** son vectores de módulo 1, con origen en el origen de coordenadas, incluidos en los ejes coordenados y con sentido positivo.

- En \mathbb{R}^2 : $\mathbf{i} = (1,0), \mathbf{j} = (0,1).$
- En \mathbb{R}^3 : $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$.

Teorema (Descomposición canónica): Todo vector puede escribirse de manera única como combinación lineal de los versores fundamentales.

• En
$$\mathbb{R}^2$$
: $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$. Se escribe $\mathbf{v} = (v_1, v_2)$ o $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$.

• En
$$\mathbb{R}^3$$
: $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$. Se escribe $\mathbf{u} = (u_1, u_2, u_3)$ o $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$.

Los números v_1, v_2 (o u_1, u_2, u_3) son las **componentes** del vector.

Vector Posición: El vector **OP** que une el origen O con un punto P(x,y) (o P(x,y,z)) es el vector posición de P. Sus componentes coinciden con las coordenadas del punto:

- En \mathbb{R}^2 : $\mathbf{OP} = x\mathbf{i} + y\mathbf{j} = (x, y)$.
- En \mathbb{R}^3 : $\mathbf{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = (x, y, z)$.

Vector entre dos puntos: El vector $\mathbf{P_1P_2}$ que une $P_1(x_1,y_1,z_1)$ con $P_2(x_2,y_2,z_2)$ tiene componentes:

$$\mathbf{P_1P_2} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

(Análogo para \mathbb{R}^2 omitiendo la componente z).

3.2. Operaciones con Componentes

Sean $\mathbf{u} = (u_1, u_2, u_3)$ y $\mathbf{v} = (v_1, v_2, v_3)$ en \mathbb{R}^3 (análogo en \mathbb{R}^2).

- Igualdad: $\mathbf{u} = \mathbf{v} \iff u_1 = v_1, u_2 = v_2, u_3 = v_3.$
- Suma: $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3).$
- Resta: $\mathbf{u} \mathbf{v} = (u_1 v_1, u_2 v_2, u_3 v_3).$
- Producto por escalar: $\lambda \mathbf{u} = (\lambda u_1, \lambda u_2, \lambda u_3)$

3.3. Módulo con Componentes

- En \mathbb{R}^2 : $|\mathbf{u}| = \sqrt{u_1^2 + u_2^2}$.
- En \mathbb{R}^3 : $|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

3.4. Versor Asociado con Componentes

El versor asociado a $\mathbf{u} \neq \mathbf{0}$ es:

$$\mathbf{u}_0 = \frac{\mathbf{u}}{|\mathbf{u}|} = \left(\frac{u_1}{|\mathbf{u}|}, \frac{u_2}{|\mathbf{u}|}, \frac{u_3}{|\mathbf{u}|}\right)$$

(Análogo para \mathbb{R}^2).

3.5. Condición de Paralelismo con Componentes

Dos vectores no nulos \mathbf{u}, \mathbf{v} son paralelos si sus componentes homólogas son proporcionales:

- En \mathbb{R}^2 : $\mathbf{u} \parallel \mathbf{v} \iff \frac{u_1}{v_1} = \frac{u_2}{v_2}$ (si $v_1, v_2 \neq 0$). Más general: $u_1v_2 u_2v_1 = 0$.
- En \mathbb{R}^3 : $\mathbf{u} \parallel \mathbf{v} \iff \frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_3} \text{ (si } v_i \neq 0).$

Esto equivale a $\mathbf{u} = \lambda \mathbf{v}$ para algún $\lambda \in \mathbb{R}$.

4. Producto Escalar (Producto Punto)

Definición: Dados u, v, su producto escalar es el número real:

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} 0 & \text{si } \mathbf{u} = \mathbf{0} \text{ o } \mathbf{v} = \mathbf{0} \\ |\mathbf{u}| |\mathbf{v}| \cos(\mathbf{u}, \mathbf{v}) & \text{si } \mathbf{u} \neq \mathbf{0} \text{ y } \mathbf{v} \neq \mathbf{0} \end{cases}$$

Observación: $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}| |\mathbf{u}| \cos(0) = |\mathbf{u}|^2$.

Teorema (Propiedades del producto escalar):

- 1. Conmutativa: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.
- 2. Distributiva: $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$.
- 3. Compatibilidad con escalar: $\alpha(\mathbf{u} \cdot \mathbf{v}) = (\alpha \mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (\alpha \mathbf{v})$.
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$, $\mathbf{v} \cdot \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}$.

Teorema (Condición de perpendicularidad): Dos vectores no nulos \mathbf{u}, \mathbf{v} son perpendiculares si y sólo si su producto escalar es cero.

$$\mathbf{u} \perp \mathbf{v} \iff \mathbf{u} \cdot \mathbf{v} = 0$$

Cálculo con Componentes:

- En \mathbb{R}^2 : $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$.
- En \mathbb{R}^3 : $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

Cálculo del Ángulo con Componentes: Para vectores no nulos:

$$\cos(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

$$(\mathbf{u}, \mathbf{v}) = \arccos\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}\right)$$

5. Proyección Ortogonal

La **proyección ortogonal del vector u** sobre el vector no nulo \mathbf{v} (notada $\operatorname{proy}_{\mathbf{v}}\mathbf{u}$) es un vector que tiene la misma dirección que \mathbf{v} . Se obtiene proyectando perpendicularmente el origen y el extremo de \mathbf{u} sobre la recta que contiene a \mathbf{v} .

Fórmula de Cálculo:

$$\operatorname{proy}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$$

Observaciones:

- Si $\mathbf{u} \perp \mathbf{v}$, entonces $\mathbf{u} \cdot \mathbf{v} = 0$ y proy $\mathbf{u} = \mathbf{0}$.
- El sentido de proy_v u es el mismo que v si (\mathbf{u}, \mathbf{v}) es agudo $(\mathbf{u} \cdot \mathbf{v} > 0)$, y opuesto si es obtuso $(\mathbf{u} \cdot \mathbf{v} < 0)$.
- El módulo (longitud) de la proyección, llamado **proyección escalar** o componente de **u** sobre **v**, es $\frac{|\mathbf{u} \cdot \mathbf{v}|}{|\mathbf{v}|}$. El signo de $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$ indica el sentido relativo a **v**.

5

6. Producto Vectorial (Producto Cruz)

(Definido sólo en \mathbb{R}^3)

Definición: Dados $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, su producto vectorial $\mathbf{u} \times \mathbf{v}$ es un **vector** tal que:

- 1. Módulo: $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin(\mathbf{u}, \mathbf{v})$.
- 2. **Dirección:** $\mathbf{u} \times \mathbf{v}$ es perpendicular tanto a \mathbf{u} como a \mathbf{v} (es perpendicular al plano que los contiene).
- 3. Sentido: La terna $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ tiene la misma orientación que $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ (Regla de la mano derecha).

Observaciones:

- El producto vectorial **no** es conmutativo: $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$.
- Condición de paralelismo: Dos vectores no nulos u, v son paralelos si y sólo si su producto vectorial es el vector nulo.

$$\mathbf{u}\parallel\mathbf{v}\iff\mathbf{u}\times\mathbf{v}=\mathbf{0}$$

(Ya que $\sin(0) = \sin(\pi) = 0$).

■ Productos entre versores fundamentales: $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$. Y $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, etc. $\mathbf{i} \times \mathbf{i} = \mathbf{0}$, etc.

Teorema (Cálculo con Componentes):

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2)\mathbf{i} + (u_3v_1 - u_1v_3)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}$$

Se puede calcular usando el determinante simbólico:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Teorema (Propiedades del producto vectorial):

- 1. Anticonmutativa: $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$.
- 2. Distributiva: $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$.
- 3. Compatibilidad con escalar: $\alpha(\mathbf{u} \times \mathbf{v}) = (\alpha \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (\alpha \mathbf{v})$.
- 4. $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$.
- 5. $\mathbf{u} \times \mathbf{u} = \mathbf{0}$.

Teorema (Interpretación Geométrica): El módulo del producto vectorial, $|\mathbf{u} \times \mathbf{v}|$, es igual al área del paralelogramo determinado por los vectores \mathbf{u} y \mathbf{v} cuando se aplican con un origen común.

6

 \blacksquare El área del triángulo determinado por ${\bf u}$ y ${\bf v}$ es $\frac{1}{2}|{\bf u}\times{\bf v}|.$

7. Producto Mixto (Triple Producto Escalar)

(Definido sólo en \mathbb{R}^3)

Definición: Dados tres vectores $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ (en ese orden), su producto mixto es el **número** real que resulta de:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

Cálculo con Componentes: Se calcula mediante el determinante:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Teorema (Condición de Coplanaridad): Tres vectores no nulos $\mathbf{u}, \mathbf{v}, \mathbf{w}$ son coplanares (están contenidos en un mismo plano) si y sólo si su producto mixto es cero.

$$\mathbf{u}, \mathbf{v}, \mathbf{w} \text{ son coplanares } \iff \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$$

Teorema (Interpretación Geométrica): Si tres vectores $\mathbf{u}, \mathbf{v}, \mathbf{w}$ no son coplanares, el valor absoluto de su producto mixto, $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$, es igual al **volumen del paralelepípedo** determinado por los tres vectores aplicados desde un origen común.