Analiza Matematyczna 2 - poradnik

Dawid Gradowski (puckmoment na dc)

Luty 2025

Spis treści

1	\mathbf{Pro}	\log	2	
2	Przydatne rzeczy do wszystkiego			
	2.1	Szeregi harmoniczne różnej krotności	2	
	2.2	Wzór na e	3	
	2.3	Regula lańcuchowa	5	
	2.4	Inne przydatne własności	6	
3	Kry	zteria określające zbieżność	6	
	3.1	Kryterium Cauchy'ego	6	
	3.2	Kryterium d'Alemberta	7	
	3.3	Kryterium porównawcze	8	
	3.4	Kryterium Leibniza	9	
4	Szeregi potęgowe			
	4.1	Kryterium Cauchy'ego - Hadamarda	10	
	4.2	Kryterium d'Alemberta (szeregi potęgowe)	10	
5	Rozwijanie funkcji w szereg 11			
	5.1	Funkcja z kreską ułamkową	12	
	5.2	Funkcja z logarytmen naturalnym	13	
	5.3	Inne funkcje	13	
6	Funkcje 2 zmiennych			
	6.1	Znajdowanie granicy (sposób z t)	13	
	6.2	Obliczanie wartości przybliżonej	14	
	6.3		14	

1 Prolog

Ten dokument tworzę dlatego by poznać wspaniałe narzędzie jakim jest LATEX oraz by przygotować się do egzaminu z Analizy Matematycznej 2, ale to nie są jedyne powody. Tworzę ją jako człowiek z misją, człowiek który upierdolił wszystkie 3 kartkówki, z czego na 2 z nich dostał 0 punktów. Nie lękajcie się jednak czytelnicy tej notatki, ponieważ jestem dowodem na to, że nawet z najgorszych sytuacji da się wyjść obronną ręką.

Miejsce na wytłumaczenie z czego będzie się składać notatka.

2 Przydatne rzeczy do wszystkiego

2.1 Szeregi harmoniczne różnej krotności

Jednym z typowych szeregów jest tak zwany **szereg harmoniczny**. Znajomość tego szeregu oraz kiedy jest on zbieżny jest kluczowa jeśli chce się zdać ten przedmiot. Szereg ten wygląda następująco:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

gdzie:

- dla $p \le 1$ ciąg ten jest rozbieżny
- dla p > 1 ciąg ten jest zbieżny

Szeregi harmoniczne oraz ich zbieżności bardzo nam się przydadzą w momencie gdy będziemy korzystać w kryterium porównawczego o którym można przeczytać w dalszej części notatki.

2.2 Wzór na e

Bardzo ważnym wzorem w zadaniu pierwszym na kartkówce pierwszej jest coś co ja nazywam wzorem na e. Wygląda on następująco:

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Wzoru tego trzeba było użyć na każdej kartkówce nr 1 jaką rozwiązywałem oraz zawsze w tym samym miejscu, w zadaniu 1 w przykładzie w którym używało się kryterium Cauchy'ego. Nigdy nie będzie on tak ładnie widoczny jak powyżej więc na przykładzie zadania z kartkóweczki wytłumacze jak uzyskać odpowiednią postać. Na kartkówce był taki przykład:

$$\sum_{n=1}^{\infty} \left(\frac{3n^2 - n}{3n^2 + 4n}\right)^{n^2}$$

W trakcie stosowania kryterium Cauchy'ego otrzymujemy następującą postać:

$$\lim_{n \to \infty} \left(\frac{3n^2 - n}{3n^2 + 4n}\right)^n$$

W pierwszej kolejności możemy wyciągnąć n przed nawias by w nawiasie zostały nam n pierwszej potegi.

$$\lim_{n \to \infty} \left(\frac{3n^2 - n}{3n^2 + 4n}\right)^n = \lim_{n \to \infty} \left(\frac{n(3n - 1)}{n(3n + 4)}\right)^n = \lim_{n \to \infty} \left(\frac{3n - 1}{3n + 4}\right)^n$$

Aby w nawiasie uzyskać postać $1+\frac{1}{x}$ trzeba uzyskać w liczniku 3n+4 tak samo jak jest w mianowniku. 3n-1=3n+4-5 więc można to zapisać następująco:

$$\lim_{n \to \infty} \left(\frac{3n-1}{3n+4}\right)^n = \lim_{n \to \infty} \left(\frac{3n+4-5}{3n+4}\right)^n = \lim_{n \to \infty} \left(\frac{3n+4}{3n+4} + \frac{-5}{3n+4}\right)^n = \lim_{n \to \infty} \left(1 + \frac{-5}{3n+4}\right)^n$$

Już coraz bardziej wygląda to jak postać której szukamy. Brakuje nam jedyneczki w liczniku. Aby mieć jedynkę w liczniku trzeba górę i dół przemnożyć przez $-\frac{1}{5}$.

$$\lim_{n \to \infty} \left(1 + \frac{-5}{3n+4}\right)^n = \lim_{n \to \infty} \left(1 + \frac{-5}{3n+4} \times \frac{-\frac{1}{5}}{-\frac{1}{5}}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{-\frac{3n}{5} - \frac{4}{5}}\right)^n$$

No i teraz mamy postać typu kongo, która wygląda dodupnie, ale spokojnie bo to już ostatnia prosta. Wytłumaczę na prostym przykładzie co trzeba zrobić:

$$\lim_{n\to\infty} (1+\frac{1}{x})^y = \lim_{n\to\infty} ((1+\frac{1}{x})^x)^{\frac{y}{x}} = e^{\lim_{n\to\infty} \frac{y}{x}}$$

Robiąc to samo na naszym przykładzie otrzymamy:

$$\lim_{n \to \infty} \left(1 + \frac{-5}{3n+4}\right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{1}{-\frac{3n}{5} - \frac{4}{5}}\right)^{-\frac{3n}{5} - \frac{4}{5}}\right)^{\frac{n}{-\frac{3n}{5} - \frac{4}{5}}} = e^{-\frac{5}{3}} = \frac{1}{e^{\frac{5}{3}}}$$

I tak właśnie z jakiegoś gówna dostaliśmy piękne e.

2.3 Reguła łańcuchowa

Reguła łańcuchowa to jedno z podstawowych narzędzi rachunku różniczkowego (liczenia pochodnych), które pozwala na liczenie pochodnych funkcji złożonych. Reguła wygląda następująco. Zakładamy, że mamy funkcję składającą się z 2 funkcji:

$$h(x) = g(f(x))$$

gdzie:

- f(x) to funkcja wewnętrzna
- g(u) to funkcja zewnętrzna, przy czym nasze u = f(x)

Aby znaleźć pochodną h(x), stosujemy regułę łańcuchową:

$$h'(x) = g'(f(x)) \cdot f'(x)$$

Jak stosować to w praktyce. Weźmy sobie taki przykład:

$$h(x) = \sqrt{5x+3} = (5x+3)^{\frac{1}{2}}$$

I teraz określamy sobie co jest funkcję wewnętrzną, a co zewnętrzną:

- funkcja wewnętrzna: f(x) = 5x + 3
- funkcja zewnętrzna: $g(u) = u^{\frac{1}{2}}$, przy czym nasze u = f(x)

Licząc pochodnę otrzymujemy:

- f'(x) = 5
- $g'(u) = \frac{1}{2} \cdot u^{\frac{1}{2} 1} = \frac{1}{2} \cdot u^{-\frac{1}{2}} = \frac{1}{2} \cdot (5x + 3)^{-\frac{1}{2}} = \frac{1}{2\sqrt{5x + 3}}$

Wstawiając więc otrzymane pochodne do wzoru na regułę łańcuchową otrzymujemy:

$$h'(x) = \frac{1}{2\sqrt{5x+3}} \cdot 5 = \frac{5}{2\sqrt{5x+3}}$$

2.4 Inne przydatne własności

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$tgx = \frac{\sin x}{\cos x}$$

$$ctgx = \frac{\cos x}{\sin x}$$

3 Kryteria określające zbieżność

Kryteria opisane poniżej pozwalają określić czy dany szereg jest zbieżny czy rozbieżny. Generalnie to chuj wie co to znaczy, jak chcesz wiedzieć to sobie w google wpisz, ale to nie jest wiedza potrzebna do zdania.

3.1 Kryterium Cauchy'ego

Dla szeregu $\sum_{n=1}^{\infty} a_n$ jego zbieżność wyznaczamy licząc g albo q (nie mogłem się odczytać w notatkach jaka to literka ale ja na kartkówce co zdałem pisałem g).

$$g = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Najczęściej wartość bezględna $|a_n|$ to po prostu a_n . Posiadając policzone g dowiadujemy się, że:

- g < 1 to szereg jest bezwzględnie zbieżny
- g > 1 to szereg jest rozbieżny
- \bullet g=1 to kryterium jest niewystarczające, więc nie rozstrzyga zbieżności

Kryterium to najlepiej stosować gdy całe wyrażenie jest do potęgi n^p , gdzie p to jakaś liczba całkowita.

3.2 Kryterium d'Alemberta

Tak samo jak w poprzednik kryterium, dla szeregu $\sum_{n=1}^\infty a_n$ jego zbieżność wyznaczamy licząc g.Zmienia się jednak wzór

$$g = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

Najczęściej wartość bezględna $\left|\frac{a_{n+1}}{a_n}\right|$ to po prostu $\frac{a_{n+1}}{a_n}$. Posiadając policzone g tak samo jak w poprzednim dowiadujemy się, że:

- $\bullet \ g < 1$ to szereg jest bezwzględnie zbieżny
- \bullet g > 1 to szereg jest rozbieżny
- $\bullet \ g=1$ to kryterium jest niewystarczające, więc nie rozstrzyga zbieżności

Kryterium to najlepiej stosować gdy w szeregu występują jakieś silnie albo n-te potęgi.

3.3 Kryterium porównawcze

Jeśli mamy 2 szeregi dodatnie

$$(A)\sum_{n=1}^{\infty}a_n$$

$$(B)\sum_{n=1}^{\infty}b_n$$

i dla prawie wszystkich n zachodzi $a_n \leq b_n$ to:

- ze zbieżności szeregu (B) wynika zbieżność szeregu (A)
- z rozbieżności szeregu (A) wynika zbieżność szeregu (B)

Ewentualnie jak komuś łatwiej zapamiętać to:

- ze zbieżności większego szeregu możemy udowodnić zbieżność szeregu mniejszego
- z rozbieżności szeregu mniejszego możemy udowodnić zbieżność szeregu większego

Prawie wszystkie n oznacza, że dla jakiegoś n staje się to prawdą, bo jak któreś n jest prawdą to później idzie to w nieskończoność, a to całkiem sporo przypadków jakby nie patrzeć. Zwykle jest tak, że już dla n=1 jest to prawdą, więc nie ma się czym martwić.

Kryterium to najlepiej stosować gdy dla dużych n nasze $\sum_{n=1}^{\infty} a_n$ przypomina szereg harmoniczny jakiejkolwiek krotności. Tylko co to znaczy, że dla dużych n coś przypomina nam coś? To bardzo proste. Weźmy dla przykładu taki szereg:

$$\sum_{n=1}^{\infty} \frac{n+1}{3n^2 - n}$$

Dla małych n jedynka w liczniku ma dość duży wpływ na wartość wyrażenia, ale gdyby nasze n było olbrzymie to byłby to że tak to ujmę jeden chuj, dlatego:

$$\sum_{n=1}^{\infty} \frac{n+1}{3n^2 - n} \approx \sum_{n=1}^{\infty} \frac{n}{3n^2 - n}$$

Mając taką postać możemy wyciągnąć n przed nawias

$$\sum_{n=1}^{\infty} \frac{n}{3n^2 - n} = \sum_{n=1}^{\infty} \frac{n}{n(3n - 1)} = \sum_{n=1}^{\infty} \frac{1}{3n - 1} \approx \sum_{n=1}^{\infty} \frac{1}{3n} = \frac{1}{3} \times \sum_{n=1}^{\infty} \frac{1}{n}$$

Możemy teraz zauważyć podobieńtwo do szeregu harmonicznego o którym pisałem w części 2.1. Jest to szereg harmoniczny pierwszego stopnia, który jest rozbieżny. Teraz aby udowodnić rozbieżność znajdźmy szereg harmoniczny mniejszy od naszego ciągu.

$$\sum_{n=1}^{\infty} \frac{n+1}{3n^2 - n} \ge \sum_{n=1}^{\infty} \frac{1}{4n}$$

Na mocy kryterium porównawczego, szereg ten jest rozbieżny.

3.4 Kryterium Leibniza

Jest to kryterium zbieżności szeregów naprzemiennych, które określa warunkową zbieżność szeregu. Nie do końca wiem co to znaczy ale tak jest. Szereg $\sum_{n=0}^{\infty} (-1)^n a_n$ jest zbieżny warunkowo gdy:

- 1. $\lim_{n\to\infty} a_n = 0$,
- 2. Ciag a_n jest nierosnący, czyli $a_n a_{n+1} \ge 0$

UWAGA! Trzeba pamiętać, że określa to wyłącznie zbieżność warunkową szeregu a nie bezwzględną!

4 Szeregi potęgowe

Wzór ogólny szeregu potęgowego wygląda następująco:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Dla takiego szeregu potęgowego możemy wyliczyć promień zbieżności r. Promień wykorzystujemy przy liczeniu przedziału zbieżności.

Przedział zbieżności określa dla jakich wartości x szereg ten jest zbieżny, nie określa on jednak zbieżności na granicach przedziału. Szereg jest zbieżny gdy:

$$x \in (x_0 - r; x_0 + r)$$

Obszar zbieżności jest tym samym co przedział zbieżności ale z uwzględnieniem zbieżności dla wartości skrajnych.

4.1 Kryterium Cauchy'ego - Hadamarda

Kryterium to określa promień zbieżności szeregu potęgowego. Jest ono bardzo podobne do kryterium Cauchy'ego. Zaczynamy od policzenia g z tego samego wzoru, którego używaliśmy przy kryterium Cauchy'ego

$$g = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Teraz w zależności od obliczonego g, nasze r jest równe:

$$r = \begin{cases} \infty, & \text{if } g = 0\\ 0, & \text{if } g = \infty\\ \frac{1}{g}, & \text{if } g < 0 < \infty \end{cases}$$
 (1)

4.2 Kryterium d'Alemberta (szeregi potęgowe)

Tak jak wykorzystaliśmy kryterium Cauchy'ego tak bliźniaczo możemy wykorzystać kryterium d'Alemberta.

$$g = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

i następnie sytuacja wygląda dokładnie tak samo jak w poprzednim kryterium, więc używamy równania (1). Można też zauważyć, że nasze r, jeśli granica istnieje jest po prostu równe

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

5 Rozwijanie funkcji w szereg

Istnieje coś takiego jak szereg Taylora, który wygląda następująco:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)$$

Na kartkówcę drugiej trzeba będzie najprawdopodobniej rozwinąć funkcję w szeregu Maclaurina. Jest to szereg Taylora dla którego $x_0=0$. Rozwinięcie funkcji w szereg polega na wyliczeniu dużej ilości pochodnych tak, aby w pewnym momencie wyznaczyć wzór na n-tą pochodną. Jak pierwszy raz zobaczyłem, że muszę coś takiego zrobić to się załamałem i dałem ff, ale ty tak nie rób. Pokażę ci zaraz wspaniałe wzorki:).

5.1 Funkcja z kreską ułamkową

Nie będę zgrywał bohatera i po prostu się przyznam, że nie wiedziałem jak nazwać tą fukcję, ale ta funkcja wygląda podobnie do czegoś takiego:

$$f(x) = \frac{3x}{8 + x^3}$$

Jeśli mamy coś takiego w zadaniu to należy zapamiętać, że:

$$\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n \text{ lub } \frac{1}{1+q} = \sum_{n=0}^{\infty} (-1)^n q^n$$

wtedy kiedy $q \in (-1,1)$. Dla przykładu rozwińmy sobie podaną wyżej funkcje. W liczniku potrzebujemy samej 1, a w mianowniku 1+q z czego q może być czymś dziwnym, a więc

$$\frac{3x}{8+x^3} = 3x \times \frac{1}{8+x^3} = \frac{3x}{8} \times \frac{1}{1+\frac{x^3}{8}} = \frac{3x}{8} \times \sum_{n=0}^{\infty} (-1)^n (\frac{x^3}{8})^n$$

Mamy już szereg ale to nie koniec zadania. Teraz musimy pomnożyć to co jest przed szeregiem z tym co jest w szeregu. Nie ma się tu czego bać po prostu wymnażamy jakby tego \sum nie było. Można sam szereg sobie ładniej zapisać:

$$\frac{3x}{8} \times \sum_{n=0}^{\infty} (-1)^n \left(\frac{x^3}{8}\right)^n = \frac{3x}{8} \times \sum_{n=0}^{\infty} (-1)^n \frac{x^{3n}}{8^n} = \sum_{n=0}^{\infty} (-1)^n \frac{3}{8^{n+1}} x^{3n+1}$$

Trzeba też wyznaczyć dla jakich x stwierdzenie $\frac{x^3}{8} \in (-1,1)$ co jest równoznawcze z

$$-1 < \frac{x^3}{8} < 1$$
$$-8 < x^3 < 8$$
$$-2 < x < 2$$

5.2 Funkcja z logarytmen naturalnym

Wzór wygląda następująco

$$ln(1+t) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n}$$

gdzie $t \in (-1,1)$. Warto zwrócić uwagę na to, że szereg zaczyna się od jedynki, a nie od zera. Zasada używania wzoru jest podobna jak w sekcji 5.1. Przykład:

$$f(x) = x \ln(1 - 2x) = x \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{(-2x)^n}{n}$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \cdot (-1)^n \cdot \frac{2^n}{n} x^{n+1} = \sum_{n=1}^{\infty} (-1) \cdot \frac{2^n}{n} x^{n+1}$$

5.3 Inne funkcje

Istnieją jeszcze 3 wzory, ale nie są one potrzebne do zdania kartkówek. Te wzory to:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \text{ dla } x \in R$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} \text{ dla } x \in R$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} dla \quad x \in R$$

6 Funkcje 2 zmiennych

6.1 Znajdowanie granicy (sposób z t)

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \operatorname{ctg}(3x^2 + 3y^2)$$

6.2 Obliczanie wartości przybliżonej

$$\sqrt{5x-y^2}\partial$$

6.3 Wyznaczanie ekstermów