

MSP430FR5869, MSP430FR5868, MSP430FR5867, MSP430FR58671 MSP430FR5859, MSP430FR5858, MSP430FR5857 MSP430FR5849, MSP430FR5848, MSP430FR5847, MSP430FR58471

SLASE34C -MAY 2014-REVISED MARCH 2015

MSP430FR58xx Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

- Embedded Microcontroller
 - 16-Bit RISC Architecture up to 16-MHz Clock
 - Wide Supply Voltage Range (1.8 V to 3.6 V) (1)
- Optimized Ultra-Low-Power Modes
 - Active Mode: Approximately 100 μA/MHz
 - Standby (LPM3 With VLO): 0.4 µA (Typical)
 - Real-Time Clock (LPM3.5): 0.25 μA (Typical) (2)
 - Shutdown (LPM4.5): 0.02 μA (Typical)
- Ultra-Low-Power Ferroelectric RAM (FRAM)
 - Up to 64KB of Nonvolatile Memory
 - Ultra-Low-Power Writes
 - Fast Write at 125 ns Per Word (64KB in 4 ms)
 - Unified Memory = Program + Data + Storage in One Single Space
 - 10¹⁵ Write Cycle Endurance
 - Radiation Resistant and Nonmagnetic
- Intelligent Digital Peripherals
 - 32-Bit Hardware Multiplier (MPY)
 - Three-Channel Internal DMA
 - Real-Time Clock (RTC) With Calendar and Alarm Functions
 - Five 16-Bit Timers With up to Seven Capture/Compare Registers Each
 - 16-Bit Cyclic Redundancy Checker (CRC)
- High-Performance Analog
 - 16-Channel Analog Comparator
 - 12-Bit Analog-to-Digital Converter (ADC)
 With Internal Reference and Sample-and-Hold and up to 16 External Input Channels
- Multifunction Input/Output Ports
 - All Pins Support Capacitive Touch Capability With No Need for External Components
- (1) Minimum supply voltage is restricted by SVS levels.
- (2) RTC is clocked by a 3.7-pF crystal.

1.2 Applications

- Metering
- Energy Harvested Sensor Nodes
- Wearable Electronics

- Accessible Bit-, Byte-, and Word-Wise (in Pairs)
- Edge-Selectable Wake From LPM on All Ports
- Programmable Pullup and Pulldown on All Ports
- Code Security and Encryption
 - Random Number Seed for Random Number Generation Algorithms
- Enhanced Serial Communication
 - eUSCI_A0 and eUSCI_A1 Support
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI at Rates up to 10 Mbps
 - eUSCI_B0 Supports
 - I²C With Multiple Slave Addressing
 - SPI at Rates up to 8 Mbps
 - Hardware UART and I²C Bootstrap Loader (BSL)
- Flexible Clock System
 - Fixed-Frequency DCO With 10 Selectable Factory-Trimmed Frequencies
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - 32-kHz Crystals (LFXT)
 - High-Frequency Crystals (HFXT)
- Development Tools and Software
 - Free Professional Development Environments With EnergyTrace++™ Technology
 - Development Kit (MSP-TS430RGZ48C)
- Family Members
 - Section 3 Summarizes the Available Device Variants and Package Types
- For Complete Module Descriptions, See the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide (SLAU367)
- Sensor Management
- Data Logging

1.3 Description

The MSP430™ ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing innovators to increase performance at lowered energy budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at much lower power.

The MSP430 ULP FRAM portfolio consists of a diverse set of devices featuring FRAM, the ULP 16-bit MSP430 CPU, and intelligent peripherals targeted for various applications. The ULP architecture showcases seven low-power modes, optimized to achieve extended battery life in energy-challenged applications.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(2)
MSP430FR5869RGZ	VQFN (48)	7 mm × 7 mm
MSP430FR5859RHA	VQFN (40)	6 mm × 6 mm
MSP430FR5859DA	TSSOP (38)	12.5 mm × 6.2 mm

- (1) For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 9, or see the TI web site at www.ti.com.
- (2) The sizes shown here are approximations. For the package dimensions with tolerances, see the *Mechanical Data* in Section 9.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the devices.

- A. The low-frequency (LF) crystal oscillator and the corresponding LFXIN and LFXOUT pins are available only in MSP430FR5x6x and MSP430FR5x4x devices.
 - RTC_B is available only in conjunction with the LF crystal oscillator in MSP430FR5x6x and MSP430FR5x4x devices.
- B. The high-frequency (HF) crystal oscillator and the corresponding HFXIN and HFXOUT pins are available only in MSP430FR5x6x and MSP430FR5x5x devices.
 MSP430FR5x5x devices with the HF crystal oscillator only do not include the RTC_B module.

Figure 1-1. Functional Block Diagram

Table of Contents

1	Devi	ce Overview	<u>1</u>		Currents	. 21
	1.1	Features	<u>1</u>	5.10	Typical Characteristics, Current Consumption per	
	1.2	Applications	1		Module	
	1.3	Description	1	5.11	Thermal Packaging Characteristics	. 22
	1.4	Functional Block Diagram	_	5.12	Timing and Switching Characteristics	. 23
2	Revi	sion History	_	5.13	Emulation and Debug	. <u>48</u>
3		ce Comparison	_ ^	Deta	illed Description	49
4		ninal Configuration and Functions		6.1	Overview	. <u>49</u>
	4.1	Pin Diagram – RGZ Package – MSP430FR586x	_	6.2	CPU	<u>49</u>
		and MSP430FR586x1	<u>6</u>	6.3	Operating Modes	<u>50</u>
	4.2	Pin Diagram – RHA Package – MSP430FR584x		6.4	Interrupt Vector Table and Signatures	. <u>51</u>
		`	<u>7</u>	6.5	Memory Organization	. 54
	4.3	Pin Diagram – DA Package – MSP430FR584x	0	6.6	Bootstrap Loader (BSL)	. 54
	4.4	(LFXT Only) Pin Diagram – RHA Package – MSP430FR585x	<u>o</u>	6.7	JTAG Operation	. 55
	4.4	(HFXT Only)	9	6.8	FRAM Memory	. 56
	4.5	Pin Diagram – DA Package – MSP430FR585x	_	6.9	Memory Protection Unit Including IP Encapsulation	56
		(HFXT Only) <u>1</u>	<u>0</u>	6.10	Peripherals	. 57
	4.6	Signal Descriptions1	<u>1</u>	6.11	Input/Output Schematics	. 77
	4.7	Pin Multiplexing 1	<u>5</u>	6.12	Device Descriptors (TLV)	104
	4.8	Connection of Unused Pins 1	<u>5</u>	6.13	Identification	107
5	Spec	cifications 1	<u>6</u> 7	Appl	lications, Implementation, and Layout	108
	5.1	Absolute Maximum Ratings 1	<u>6</u>	7.1	Device Connection and Layout Fundamentals	108
	5.2	ESD Ratings 1	<u>6</u>	7.2	Peripheral- and Interface-Specific Design	
	5.3	Recommended Operating Conditions 1	6		Information	111
	5.4	Active Mode Supply Current Into V _{CC} Excluding	8	Devi	ice and Documentation Support	<u>113</u>
		External Current 1	<u>7</u>	8.1	Device Support	<u>113</u>
	5.5	Typical Characteristics - Active Mode Supply	0	8.2	Documentation Support	116
	E C	-	8	8.3	Trademarks	<u>117</u>
	5.6	Low-Power Mode (LPM0, LPM1) Supply Currents Into V _{CC} Excluding External Current	8	8.4	Electrostatic Discharge Caution	<u>117</u>
	5.7	Low-Power Mode (LPM2, LPM3, LPM4) Supply	<u>~</u>	8.5	Export Control Notice	<u>117</u>
		Currents (Into V _{CC}) Excluding External Current 1	9	8.6	Glossary	<u>117</u>
	5.8	Low-Power Mode (LPM3.5, LPM4.5) Supply	9		hanical, Packaging, and Orderable	
		Currents (Into V _{CC}) Excluding External Current 2	<u>.0</u>		rmation	
	5.9	Typical Characteristics, Low-Power Mode Supply		9.1	Packaging Information	<u>117</u>

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Chan	ges from August 26, 2014 to March 9, 2015	Page
•	Moved T _{sto} to Section 5.1 and removed <i>Handling Ratings</i> table	. 16
•	Added Section 5.2, ESD Ratings	. 16
•	Added notes to Figure 5-1	. 18
•	Changed I _{LPM3,XT12} parameter from "includes SVS" to "excludes SVS"	. 19
•	Changed note from "Low-power mode 3, 12-pF crystal, includes SVS" to "excludes SVS", and changed listed	
	test conditions to exclude SVS	
•	Added t _{BUF} parameter to Table 5-21, eUSCI (I ^P C Mode)	. 40
•	Moved "FRAM access time error" interrupt source and "ACCTEIFG" interrupt flag from "System NMI" to "System	
	Reset" row	
•	Changed "CBPD.x" to "CEPDx" in P1.0 to P1.2 schematic	
•	Switched P1SEL0.x and P1SEL1.x in P1.0 to P1.2 schematic to show correct inputs to multiplexers	. 78
•	Added notes that start "NOTE: Do not use this pin as"	
•	Throughout document, changed "CEPD.x" to "CEPDx" to be consistent with user's guide	. 79
•	Changed "CBPD.x" to "CEPDx" in P1.3 to P1.5 schematic	
•	Switched P1SEL0.x and P1SEL1.x in P1.3 to P1.5 schematic to show correct inputs to multiplexers	. 80
•	Switched P1SEL0.x and P1SEL1.x in P1.7 and P1.7 schematic to show correct inputs to multiplexers	
•	Switched P2SEL0.x and P2SEL1.x in P2.0 to P2.2 schematic to show correct inputs to multiplexers	
•	Added note that starts "NOTE: Do not use this pin as"	
•	Changed "CBPD.x" to "CEPDx" in P2.3 and P2.4 schematic	
•	Switched P2SEL0.x and P2SEL1.x in P2.3 and P2.4 schematic to show correct inputs to multiplexers	. 84
•	Switched P2SEL0.x and P2SEL1.x in P2.5 and P2.6 schematic to show correct inputs to multiplexers	. 86
•	Switched P2SEL0.x and P2SEL1.x in P2.7 schematic to show correct inputs to multiplexers	
•	Changed "CBPD.x" to "CEPDx" in P3.0 to P3.3 schematic	
•	Switched P3SEL0.x and P3SEL1.x in P3.0 to P3.3 schematic to show correct inputs to multiplexers	. 88
•	Switched P3SEL0.x and P3SEL1.x in P3.4 to P3.7 schematic to show correct inputs to multiplexers	
•	Switched P4SEL0.x and P4SEL1.x in P4.0 to P4.3 schematic to show correct inputs to multiplexers	. 92
•	Switched P4SEL0.x and P4SEL1.x in P4.4 to P4.7 schematic to show correct inputs to multiplexers	
•	Switched PJSEL0.4 and PJSEL1.4 in PJ.4 schematic to show correct inputs to multiplexers	
•	Switched PJSEL0.5 and PJSEL1.5 in PJ.5 schematic to show correct inputs to multiplexers	
•	Switched PJSEL0.6 and PJSEL1.6 in PJ.6 schematic to show correct inputs to multiplexers	
•	Switched PJSEL0.7 and PJSEL1.7 in PJ.7 schematic to show correct inputs to multiplexers	100
•	Changed "CBPD.x" to "CEPDx" in J.0 to J.3 schematic	
•	Switched PJSEL0.x and PJSEL1.x in J.0 to J.3 schematic to show correct inputs to multiplexers	102
•	Added note that starts "NOTE: Do not use this pin as"	103
•	Added notes on Table 6-61	104
•	Added "using the CryptGenRandom() function from Microsoft®" to note that starts "128-Bit Random Number"	106
•	Changed Figure 8-1: In "Feature Set" row, corrected descriptions of options 4 and 5 in "Second Digit". Removed	
	reel dimensions. Added note.	115

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

Device	FRAM (KB)	SRAM (KB)	Clock System	ADC12_ B	Comp_	Timer_ A ⁽³⁾	Timer_ B ⁽⁴⁾	eU A ⁽⁵⁾	SCI B ⁽⁶⁾	AES	BSL	I/O	Package Type										
MSP430FR5869	64	2	DCO HFXT LFXT	16 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾ 2, 2 ⁽⁸⁾	7	2	1	no	UART	40	48 RGZ										
MSP430FR5868	48	2	DCO HFXT LFXT	16 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾ 2, 2 ⁽⁸⁾	7	2	1	no	UART	40	48 RGZ										
MSP430FR5867	32	1	DCO HFXT LFXT	16 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾ 2, 2 ⁽⁸⁾	7	2	1	no	UART	40	48 RGZ										
MSP430FR58671	32	1	DCO HFXT LFXT	16 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾ 2, 2 ⁽⁸⁾	7	2	1	no	I ² C	40	48 RGZ										
MSP430FR5849	64	2	DCO	14 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾	7	2	1	no	UART	33	40 RHA										
W3F430FR3649	04	2	LFXT	12 ext, 2 int ch.	TO CII.	2, 2 ⁽⁸⁾	,	2	ı	TIO	UAIN	31	38 DA										
MSP430FR5848	48	2	DCO	14 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾	7	2	1	no	UART -	33	40 RHA										
WOI 4301 113040	40	2	LFXT	12 ext, 2 int ch.	10 011.	2, 2 ⁽⁸⁾	,	2	•	110	OAICI	31	38 DA										
MSP430FR5847	32	1	DCO	14 ext, 2 int ch.	16 ch.	3, 3(7)	7	2	1	no	UART	33	40 RHA										
WOI 4301 113047	52	'	LFXT	12 ext, 2 int ch.	10 011.	2, 2 ⁽⁸⁾	,		'	110	OAKI	31	38 DA										
MSP430FR58471	32	1	DCO LFXT	14 ext, 2 int ch.	16 ch.	3, 3 ⁽⁷⁾ 2, 2 ⁽⁸⁾	7	2	1	no	I ² C	33	40 RHA										
		_	DCO	14 ext, 2 int ch.		3, 3 ⁽⁷⁾	_	_	_			33	40 RHA										
MSP430FR5859	64	2	HFXT	12 ext, 2 int ch.	16 ch.	2, 2 ⁽⁸⁾	7	2	1	no	UART	31	38 DA										
MCD420ED5050	40	0	DCO	14 ext, 2 int ch.	40 ah	3, 3 ⁽⁷⁾	7	0	4			33	40 RHA										
MSP430FR5858	48	2	HFXT	12 ext, 2 int ch.	16 ch.	2, 2 ⁽⁸⁾	/	2	1	no	UART	31	38 DA										
MSP430FR5857		4	4	4	4	4	4	1	1	1	4	4	DCO	14 ext, 2 int ch.	16 ob	3, 3 ⁽⁷⁾	7		,		UART	33	40 RHA
W3P43UFR3857	32	1	HFXT	12 ext, 2 int ch.	16 ch.	2, 2 ⁽⁸⁾	,	2	1	no	UAKI	31	38 DA										

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

- (5) eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI.
- (6) eUSCI_B supports I²C with multiple slave addresses and SPI.
- (7) Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs.
- 8) Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any).

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

⁽³⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

⁽⁴⁾ Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

4 Terminal Configuration and Functions

4.1 Pin Diagram - RGZ Package - MSP430FR586x and MSP430FR586x1

Figure 4-1 shows the 48-pin RGZ package.

NOTE: QFN package pad connection to V_{SS} recommended. On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX On devices with I²C BSL: P1.6: BSLSDA; P1.7: BSLSCL

Figure 4-1. 48-Pin RGZ Package (Top View) - MSP430FR586x and MSP430FR586x1

4.2 Pin Diagram – RHA Package – MSP430FR584x and MSP430FR584x1 (LFXT Only)

Figure 4-2 shows the 40-pin RHA package.

NOTE: QFN package pad connection to V_{SS} recommended. On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX On devices with I 2 C BSL: P1.6: BSLSDA; P1.7: BSLSCL

Figure 4-2. 40-Pin RHA Package (Top View) – MSP430FR584x and MSP430FR584x1

4.3 Pin Diagram – DA Package – MSP430FR584x (LFXT Only)

Figure 4-3 shows the 38-pin DA package.

Figure 4-3. 38-Pin DA Package (Top View) - MSP430FR584x

4.4 Pin Diagram – RHA Package – MSP430FR585x (HFXT Only)

Figure 4-4 shows the 40-pin RHA package.

NOTE: QFN package pad connection to V_{SS} recommended. On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX

Figure 4-4. 40-Pin RHA Package (Top View) - MSP430FR585x

4.5 Pin Diagram – DA Package – MSP430FR585x (HFXT Only)

Figure 4-5 shows the 38-pin DA package.

On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX

Figure 4-5. 38-Pin DA Package (Top View) – MSP430FR585x

4.6 Signal Descriptions

Table 4-1 describes the signals for all device variants and package options.

Table 4-1. Signal Descriptions

TERMIN	AL							
	NO. ⁽²⁾			I/O ⁽¹⁾	DESCRIPTION			
NAME	RGZ		RHA DA					
P1.0/TA0.1/DMAE0/ RTCCLK/A0/C0/VREF-/ VeREF-	1	1	5	1/0	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger RTC clock calibration output (not available on MSP430FR5x5x devices) Analog input A0 – ADC Comparator input C0 Output of negative reference voltage Input for an external negative reference voltage to the ADC			
P1.1/TA0.2/TA1CLK/ COUT/A1/C1/VREF+/ VeREF+	2	2	6	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA0 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock Comparator output Analog input A1 – ADC Comparator input C1 Output of positive reference voltage Input for an external positive reference voltage to the ADC			
P1.2/TA1.1/TA0CLK/ COUT/A2/C2	3	3	7	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA1 CCR1 capture: CCl1A input, compare: Out1 TA0 input clock Comparator output Analog input A2 – ADC Comparator input C2			
P3.0/A12/C12	4	4	8	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A12 – ADC Comparator input C12			
P3.1/A13/C13	5	5	9	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A13 – ADC Comparator input C13			
P3.2/A14/C14	6	6	10	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A14 – ADC Comparator input C14			
P3.3/A15/C15	7	7	11	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 Analog input A15 – ADC Comparator input C15			
P4.7	8	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
P1.3/TA1.2/UCB0STE/ A3/C3	9	8	12	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 – ADC Comparator input C3			

⁽¹⁾ I = input, O = output

⁽²⁾ N/A = not available

Table 4-1. Signal Descriptions (continued)

TERMINA	AL					
NAME NO. ⁽²⁾					DESCRIPTION	
NAIVIE	RGZ	RHA	DA			
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
D4 4/TD0 4/110400TE/					TB0 CCR1 capture: CCl1A input, compare: Out1	
P1.4/TB0.1/UCA0STE/ A4/C4	10	9	13	I/O	Slave transmit enable – eUSCI_A0 SPI mode	
					Analog input A4 – ADC	
					Comparator input C4	
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
					TB0 CCR2 capture: CCI2A input, compare: Out2	
P1.5/TB0.2/UCA0CLK/ A5/C5	11	10	14	I/O	Clock signal input – eUSCI_A0 SPI slave mode, Clock signal output – eUSCI_A0 SPI master mode	
					Analog input A5 – ADC	
					Comparator input C5	
					General-purpose digital I/O	
					Test data output port	
PJ.0/TDO/TB0OUTH/	40	44	45	1/0	Switch all PWM outputs high impedance input – TB0	
SMCLK/SRSCG1/C6	12	11	15	I/O	SMCLK output	
					Low-Power Debug: CPU Status Register Bit SCG1	
					Comparator input C6	
					General-purpose digital I/O	
PJ.1/TDI/TCLK/MCLK/ SRSCG0/C7				I/O	Test data input or test clock input	
	13	12	16		MCLK output	
					Low-Power Debug: CPU Status Register Bit SCG0	
					Comparator input C7	
					General-purpose digital I/O	
D. 1 0 77 10 (1 0 1 1 (1					Test mode select	
PJ.2/TMS/ACLK/ SROSCOFF/C8	14	13	17	I/O	ACLK output	
					Low-Power Debug: CPU Status Register Bit OSCOFF	
					Comparator input C8	
					General-purpose digital I/O	
PJ.3/TCK/	15	14	18	I/O	Test clock	
SRCPUOFF/C9	10			., 0	Low-Power Debug: CPU Status Register Bit CPUOFF	
					Comparator input C9	
P4.0/A8	16	15	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
1 1.0// 10	10		14// (.,,	Analog input A8 – ADC	
P4.1/A9	17	16	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
,			,		Analog input A9 – ADC	
P4.2/A10	18	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
			,		Analog input A10 – ADC	
P4.3/A11	19	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
		-	-		Analog input A11 – ADC	
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5	
P2.5/TB0.0/UCA1TXD/	20	17	19	I/O	TB0 CCR0 capture: CCI0B input, compare: Out0	
UCA1SIMO			.5	., 0	Transmit data – eUSCI_A1 UART mode	
					Slave in, master out – eUSCI_A1 SPI mode	

Table 4-1. Signal Descriptions (continued)

TERMINA	٩L				
NAME	NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION	
NAME	RGZ	RHA	DA		
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P2.6/TB0.1/UCA1RXD/	21	18	20	I/O	TB0 CCR1 compare: Out1
UCA1SOMI	21	10	20	1/0	Receive data – eUSCI_A1 UART mode
					Slave out, master in – eUSCI_A1 SPI mode
TEST/SBWTCK	22	19	21		Test mode pin – select digital I/O on JTAG pins
TEST/SBWTCK	22	13	21	'	Spy-Bi-Wire input clock
					Reset input active low
RST/NMI/SBWTDIO	23	20	22	I/O	Nonmaskable interrupt input
					Spy-Bi-Wire data input/output
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
					TB0 CCR6 capture: CCl6B input, compare: Out6
P2.0/TB0.6/UCA0TXD/					Transmit data – eUSCI_A0 UART mode
UCA0SIMO/TB0CLK/ ACLK	24	21	23	I/O	BSL Transmit (UART BSL)
ACLK					Slave in, master out – eUSCI_A0 SPI mode
					TB0 clock input
					ACLK output
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
		22	24	I/O	TB0 CCR0 capture: CCl0A input, compare: Out0
P2.1/TB0.0/UCA0RXD/	25				Receive data – eUSCI_A0 UART mode
UCA0SOMI/TB0.0				., 0	BSL receive (UART BSL)
					Slave out, master in – eUSCI_A0 SPI mode
					TB0 CCR0 capture: CCI0A input, compare: Out0
			25		General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P2.2/TB0.2/UCB0CLK	26	23		I/O	TB0 CCR2 compare: Out2
					Clock signal input – eUSCI_B0 SPI slave mode Clock signal output – eUSCI_B0 SPI master mode
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P3.4/TB0.3/SMCLK	27	24	26	I/O	TB0 CCR3 capture: CCl3A input, compare: Out3
					SMCLK output
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P3.5/TB0.4/COUT	28	25	27	I/O	TB0 CCR4 capture: CCI4A input, compare: Out4
					Comparator output
DO C/TDO F	20	00	20	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5
P3.6/TB0.5	29	26	28	1/0	TB0 CCR5 capture: CCI5A input, compare: Out5
P3.7/TB0.6	30	27	29	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5
1 3.7/100.0	30	۷1	29	1/0	TB0 CCR6 capture: CCI6A input, compare: Out6
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5
					TB0 CCR3 capture: CCl3B input, compare: Out3
P1.6/TB0.3/UCB0SIMO/	31	28	30	I/O	Slave in, master out – eUSCI_B0 SPI mode
UCB0SDA/TA0.0	31		30		I ² C data – eUSCI_B0 I ² C mode
					BSL Data (I ² C BSL)
					TA0 CCR0 capture: CCI0A input, compare: Out0

Table 4-1. Signal Descriptions (continued)

TERMINAL								
		NO. ⁽²⁾		I/O ⁽¹⁾	DESCRIPTION			
NAME	RGZ	RHA DA						
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0 CCR4 capture: CCI4B input, compare: Out4			
P1.7/TB0.4/UCB0SOMI/ UCB0SCL/TA1.0	32	29	31	I/O	Slave out, master in – eUSCI_B0 SPI mode I ² C clock – eUSCI_B0 I ² C mode BSL clock (I ² C BSL)			
					TA1 CCR0 capture: CCI0A input, compare: Out0			
P4.4/TB0.5	33	30	32	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5 TB0CCR5 capture: CCl5B input, compare: Out5			
P4.5	34	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
P4.6	35	N/A	N/A	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
DVSS	36	31	33		Digital ground supply			
DVCC	37	32	34		Digital power supply			
P2.7	38	33	35	I/O	General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
P2.3/TA0.0/UCA1STE/ A6/C10			36		TA0 CCR0 capture: CCI0B input, compare: Out0			
	39	34		I/O	Slave transmit enable – eUSCI_A1 SPI mode			
7.0,0.0					Analog input A6 – ADC			
					Comparator input C10			
					General-purpose digital I/O with port interrupt and wakeup from LPMx.5			
					TA1 CCR0 capture: CCI0B input, compare: Out0			
P2.4/TA1.0/UCA1CLK/	40	25	27	I/O	Clock signal input – eUSCI_A1 SPI slave mode			
A7/C11	40	35	37	1/0	Clock signal output – eUSCI_A1 SPI master mode			
					Analog input A7 – ADC			
					Comparator input C11			
AVSS	41	36	38		Analog ground supply			
					General-purpose digital I/O			
PJ.6/HFXIN	42	37	1	I/O	Input for high-frequency crystal oscillator HFXT (in RHA and DA: MSP430FR585x devices only)			
					General-purpose digital I/O			
PJ.7/HFXOUT	43	38	2	I/O	Output for high-frequency crystal oscillator HFXT (in RHA and DA: MSP430FR585x devices only)			
AVSS	44	N/A	N/A		Analog ground supply			
					General-purpose digital I/O			
PJ.4/LFXIN	45	37	1	I/O	Input for low-frequency crystal oscillator LFXT (in RHA and DA: MSP430FR584x devices only)			
					General-purpose digital I/O			
PJ.5/LFXOUT	46	38	2	I/O	Output of low-frequency crystal oscillator LFXT (in RHA and DA: MSP430FR584x devices only)			
AVSS	47	39	3		Analog ground supply			
AVCC	48	40	4		Analog power supply			
QFN Pad	Pad	Pad	N/A		QFN package exposed thermal pad. Connection to V _{SS} is recommended.			

4.7 Pin Multiplexing

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 6.11.

4.8 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 4-2.

Table 4-2. Connection of Unused Pins⁽¹⁾

PIN	POTENTIAL	COMMENT
AVCC	DV_CC	
AVSS	DV_SS	
Px.0 to Px.7	Open	Switched to port function, output direction (PxDIR.n = 1)
RST/NMI	DV _{CC} or V _{CC}	47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF $^{(2)}$) pulldown
PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK	Open	The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these should be switched to port function, output direction. When used as JTAG pins, these pins should remain open.
TEST	Open	This pin always has an internal pulldown enabled.

⁽¹⁾ Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines.

⁽²⁾ The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

5 Specifications

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at DVCC and AVCC pins to V _{SS}	-0.3	4.1	V
Voltage difference between DVCC and AVCC pins ⁽²⁾		±0.3	V
Voltage applied to any pin (3)	-0.3	V _{CC} + 0.3 V (4.1 Max)	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽⁴⁾	-40	125	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.
- (3) All voltages referenced to V_{SS}.
- (4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

5.2 ESD Ratings

			VALUE	UNIT
\/ F lactor	Floatrootatia diaabaraa	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	M
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

Typical data are based on $V_{CC} = 3.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage range applied at all DVCC and AVCC pins ⁽¹⁾ (2) (3)		1.8 ⁽⁴⁾		3.6	V
V _{SS}	Supply voltage applied at all DVSS and AVSS pins			0		V
T _A	Operating free-air temperature		-40		85	ô
T _J	Operating junction temperature		-40		85	°C
C _{DVCC}	Capacitor value at DVCC ⁽⁵⁾		1 _{-20%}			μF
4	December (maximum MCLK frames) (6)	No FRAM wait states (NWAITSx = 0)	0		8 ⁽⁷⁾	NAL I-
fsystem	Processor frequency (maximum MCLK frequency) (6)	With FRAM wait states (NWAITSx = 1) ⁽⁸⁾	0		16 ⁽⁹⁾	MHz
f _{ACLK}	Maximum ACLK frequency				50	kHz
f _{SMCLK}	Maximum SMCLK frequency				16 ⁽⁹⁾	MHz

⁽¹⁾ It is recommended to power AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

(2) See Table 5-1 for additional important information.

⁽²⁾ JEDEC document JÉP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽³⁾ Modules may have a different supply voltage range specification. Refer to the specification of the respective module in this data sheet.

⁽⁴⁾ The minimum supply voltage is defined by the supervisor SVS levels. See Table 5-2 for the exact values.

⁽⁵⁾ Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC pin.

⁽⁶⁾ Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.

⁽⁷⁾ DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted.

⁽⁸⁾ Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed without wait states.

⁽⁹⁾ DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted. If a clock sources with a larger typical value is used, the clock must be divided in the clock system.

Active Mode Supply Current Into V_{CC} Excluding External Current 5.4

over recommended operating free-air temperature (unless otherwise noted)(1) (2)

						FREQ	UENCY (f	MCLK = fs	MCLK)				
PARAMETER	EXECUTION MEMORY	V _{cc}	1 MHz 0 wait states (NWAITSx = 0)		0 wait s	4 MHz 8 MHz 0 wait states (NWAITSx = 0) (NWAITSx = 0)		states	12 MHz 1 wait states (NWAITSx = 1)		16 M 1 wait s (NWAITS	tates	UNIT
			TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
I _{AM, FRAM_UNI} (Unified memory) ⁽³⁾	FRAM	3.0 V	210		640		1220		1475		1845		μΑ
I _{AM, FRAM} (0%) ⁽⁴⁾ (5)	FRAM 0% cache hit ratio	3.0 V	370		1280		2510		2080		2650		μΑ
I _{AM, FRAM} (50%) ^{(4) (5)}	FRAM 50% cache hit ratio	3.0 V	240		745		1440		1575		1990		μΑ
I _{AM, FRAM} (66%) ^{(4) (5)}	FRAM 66% cache hit ratio	3.0 V	200		560		1070		1300		1620		μΑ
I _{AM, FRAM} (75%) ^{(4) (5)}	FRAM 75% cache hit ratio	3.0 V	170	255	480		890	1085	1155	1310	1420	1620	μΑ
I _{AM, FRAM} (100% ⁽⁴⁾ (5)	FRAM 100% cache hit ratio	3.0 V	110		235		420		640		730		μΑ
I _{AM, RAM} (6)	RAM	3.0 V	130		320		585		890		1070		μΑ
I _{AM, RAM only} (7) (5)	RAM	3.0 V	100	180	290		555		860		1040	1300	μA

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

- Program and data reside entirely in RAM. All execution is from RAM.
- Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.

Characterized with program executing typical data processing. $f_{ACLK} = 32768 \text{ Hz}$, $f_{MCLK} = f_{SMCLK} = f_{DCO}$ at specified frequency, except for 12 MHz. For 12 MHz, $f_{DCO} = 24 \text{ MHz}$ and

 $f_{MCLK} = f_{SMCLK} = f_{DCO}/2$. At MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio.

The following equation can be used to compute $f_{MCLK,eff}$: $f_{MCLK,eff} = f_{MCLK} / [wait states \times (1 - cache hit ratio) + 1]$ For example, with 1 wait state and 75% cache hit ratio $f_{MCKL,eff} = f_{MCLK} / [1 \times (1 - 0.75) + 1] = f_{MCLK} / 1.25$.
Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.

Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses.

See Figure 5-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Section 5.4.

5.5 Typical Characteristics - Active Mode Supply Currents

I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses.

I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.

Figure 5-1. Typical Active Mode Supply Currents vs MCLK frequency, No Wait States

5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted)(1) (2)

		FREQUENCY (f _{SMCLK})										
PARAMETER	V _{CC}	1 MH	Ηz	4 MF	łz	8 MF	łz	12 M	Hz	16 M	Hz	UNIT
		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	2.2 V	70		95		150		250		215		
ILPM0	3.0 V	80	115	105		160		260		225	260	μΑ
I _{LPM1}	2.2 V	35		60		115		215		180		
	3.0 V	35	60	60		115		215		180	205	μΑ

⁽¹⁾ All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

 $f_{ACLK} = 32768 \text{ Hz}, f_{MCLK} = 0 \text{ MHz}, f_{SMCLK} = f_{DCO}$ at specified frequency - except for 12 MHz: here $f_{DCO} = 24 \text{MHz}$ and $f_{SMCLK} = f_{DCO}/2$.

⁽²⁾ Current for watchdog timer clocked by SMCLK included.

5.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into V_{CC}) Excluding External Current

	PARAMETER	V	-40	°C	25	°C	60	°C	85°	C	UNIT
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
	Low-power mode 2, 12-pF crystal (2) (3) (4)	2.2 V	0.5		0.9		2.2		6.1		
I _{LPM2,XT12}	crystal ⁽²⁾ (3) (4)	3.0 V	0.5		0.9	1.8	2.2		6.1	17	μA
l	Low-power mode 2, 3.7-pF	2.2 V	0.5		0.9		2.2		6.0		
I _{LPM2,XT3.7}	cyrstal ^{(2) (5) (4)}	3.0 V	0.5		0.9		2.2		6.0		μA
ı	Low-power mode 2, VLO,	2.2 V	0.3		0.7		1.9		5.8		
I _{LPM2,VLO}	includes SVS ⁽⁶⁾	3.0 V	0.3		0.7	1.6	1.9		5.8	16.7	μA
I _{LPM3,XT12}	Low-power mode 3, 12-pF	2.2 V	0.5		0.6		0.9		1.85		
	crystal, excludes SVS ^{(2) (3)}	3.0 V	0.5		0.6	0.9	0.9		1.85	4.9	μA
	Low-power mode 3, 3.7-pF	2.2 V	0.4		0.5		0.8		1.7		
I _{LPM3,XT3.7}	cyrstal, excludes SVS ^{(2) (5)} (8) (also refer to Figure 5-2)	3.0 V	0.4		0.5		0.8		1.7		μΑ
	Low-power mode 3,	2.2 V	0.3		0.4		0.7		1.6		
I _{LPM3,VLO}	VLO, excludes SVS ⁽⁹⁾	3.0 V	0.3		0.4	0.7	0.7		1.6	4.7	μA
	Low-power mode 4, includes	2.2 V	0.4		0.5		0.8		1.7		
I _{LPM4,SVS}	SVS ⁽¹⁰⁾ (also refer to Figure 5-3)	3.0 V	0.4		0.5	0.8	0.8		1.7	4.8	μA
	Low-power mode 4,	2.2 V	0.2		0.3		0.6		1.5		
I _{LPM4}	excludes SVS ⁽¹¹⁾	3.0 V	0.2		0.3	0.6	0.6		1.5	4.6	μΑ

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- (2) Not applicable for devices with HF crystal oscillator only.
- 3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5-pF load.
- (4) Low-power mode 2, crystal oscillator test conditions:
 - Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout and SVS are included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), for a = 32768 Hz, from = form = form = 0 MHz
- f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 MHz

 (5) Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load.
- (6) Low-power mode 2, VLO test conditions:
 - Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS are included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), $f_{XT1} = 0$ Hz, $f_{ACLK} = f_{VLO}$, $f_{MCLK} = f_{SMCLK} = 0$ MHz
- (7) Low-power mode 3, 12-pF crystal, excludes SVS test conditions:
 - Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled (SVSHE = 0).
 - CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
 - $f_{XT1} = 32768 \text{ Hz}, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- (8) Low-power mode 3, 3.7-pF crystal, excludes SVS test conditions:
 - Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled (SVSHE = 0).
 - CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
 - $f_{XT1} = 32768 \text{ Hz}, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- (9) Low-power mode 3, VLO, excludes SVS test conditions:
 - Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout is included. SVS is disabled (SVSHE = 0).
 - CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
- $f_{XT1} = 0 \text{ Hz}, f_{ACLK} = f_{VLO}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- (10) Low-power mode 4, includes SVS test conditions: Current for brownout and SVS are included (SVSHE = 1).
 - CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),
 - $f_{XT1} = 0 \text{ Hz}, f_{ACLK} = 0 \text{ Hz}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- (11) Low-power mode 4, excludes SVS test conditions:
 - Current for brownout is included. SVS is disabled (SVSHE = 0).
 - CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), $f_{XT1} = 0$ Hz, $f_{ACLK} = 0$ Hz, $f_{MCLK} = f_{SMCLK} = 0$ MHz

Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into V_{CC}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER		-40) °C 25		25 °C		°C	85°C		UNIT
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
I _{IDLE,Group} A	Additional idle current if one or more modules from Group A (refer to Table 6-2) are activated in LPM3 or LPM4.	3.0V			0.02				0.33	1.3	μΑ
I _{IDLE,GroupB}	Additional idle current if one or more modules from Group B (refer to Table 6-2) are activated in LPM3 or LPM4	3.0V			0.015				0.25	1.0	μΑ

5.8 Low-Power Mode (LPM3.5, LPM4.5) Supply Currents (Into V_{CC}) Excluding External Current

	PARAMETER	V	-40 °	C	25 °	С	60 °	С	85°	С	UNIT
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
	Low-power mode 3.5, 12-pF	2.2 V	0.4		0.45		0.5		0.7		
ILPM3.5,XT12	crystal, includes SVS ⁽²⁾⁽³⁾⁽⁴⁾	3.0 V	0.4		0.45	0.7	0.5		0.7	1.2	μA
	Low-power mode 3.5, 3.7-pF	2.2 V	0.2		0.25		0.3		0.45		
I _{LPM3.5,XT3.7}	cyrstal, excludes SVS (2) (5) (6) (also refer to Figure 5-4)	3.0 V	0.2		0.25		0.3		0.5		μA
	Low-power mode 4.5,	2.2 V	0.2		0.2		0.2		0.3		
I _{LPM4.5,SVS}	includes SVS ⁽⁷⁾ (also refer to Figure 5-5)	3.0 V	0.2		0.2	0.4	0.2		0.3	0.55	μA
I _{LPM4.5}	Low-power mode 4.5,	2.2 V	0.02		0.02		0.02		0.08		
	excludes SVS ⁽⁸⁾ (also refer to Figure 5-5)	3.0 V	0.02		0.02		0.02		0.08	0.35	μA

- All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only. (1)
- Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5-pF load.
- (4) Low-power mode 3.5, 12-pF crystal, includes SVS test conditions:
 - Current for RTC clocked by XT1 is included. Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),
- f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 MHz

 (5) Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load.
- (6) Low-power mode 3.5, 3.7-pF crystal, excludes SVS test conditions:
 - Current for RTC clocked by XT1 is included. Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator is disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),
- $\begin{array}{ll} f_{XT1}=32768~Hz,~f_{ACLK}=f_{XT1},~f_{MCLK}=f_{SMCLK}=0~MHz\\ \text{(7)} & \textbf{Low-power mode 4.5, includes SVS}~test~conditions: \end{array}$
 - Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled.
 - PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),
 - $f_{XT1} = 0 \text{ Hz}, f_{ACLK} = 0 \text{ Hz}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- Low-power mode 4.5, excludes SVS test conditions:
 - Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator is disabled.
 - PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),
 - $f_{XT1} = 0 \text{ Hz}, f_{ACLK} = 0 \text{ Hz}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$

5.9 Typical Characteristics, Low-Power Mode Supply Currents

5.10 Typical Characteristics, Current Consumption per Module⁽¹⁾

MODULE	TEST CONDITIONS	REFERENCE CLOCK	MIN	TYP	MAX	UNIT
Timer_A		Module input clock		3		μΑ/MHz
Timer_B		Module input clock		5		μΑ/MHz
eUSCI_A	UART mode	Module input clock		5.5		μΑ/MHz
eUSCI_A	SPI mode	Module input clock		3.5		μΑ/MHz
eUSCI_B	SPI mode	Module input clock		3.5		μΑ/MHz
eUSCI_B	I ² C mode, 100 kbaud	Module input clock		3.5		μΑ/MHz
RTC_B		32 kHz		100		nA
MPY	Only from start to end of operation	MCLK		25		μΑ/MHz
CRC	Only from start to end of operation	MCLK		2.5		μΑ/MHz

⁽¹⁾ For other module currents not listed here, refer to the module specific parameter sections.

5.11 Thermal Packaging Characteristics

PARAMETER	PARAMETER	PACKAGE	VALUE	UNIT
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾		30.6	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)		17.2	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	OFN 49 (DC7)	7.2	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	QFN-48 (RGZ)	7.2	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.2	°C/W
θ _{JC(BOTTOM)}	Junction-to-case (bottom) thermal resistance (4)		1.2	°C/W
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾		30.1	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)		18.7	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	OFN 40 (DUA)	6.4	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	QFN-40 (RHA)	6.3	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.3	°C/W
θ _{JC(BOTTOM)}	Junction-to-case (bottom) thermal resistance (4)		1.5	°C/W
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾		65.5	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)		12.5	°C/W
θ_{JB}	Junction-to-board thermal resistance (3)	T000D 00 (DA)	32.3	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	TSSOP-38 (DA)	31.8	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.3	°C/W
$\theta_{\text{JC(BOTTOM)}}$	Junction-to-case (bottom) thermal resistance (4)		N/A	°C/W

⁽¹⁾ The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

⁽²⁾ The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

⁽³⁾ The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

⁽⁴⁾ The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

5.12 Timing and Switching Characteristics

5.12.1 Power Supply Sequencing

It is recommended to power AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

At power up, the device does not start executing code before the supply voltage reaches V_{SVSH+} if the supply rises monotonically to this level.

Table 5-1. Brownout and Device Reset Power Ramp Requirements

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP M	λX	UNIT
$V_{VOC, POD}$ Brownout nower-down level V_{VOC}	Province to a very down level (1)(2)	$ dDV_{CC}/d_t < 3 V/s^{(3)}$	0.7	1.	66	V
	$ dDV_{CC}/d_t > 300 V/s^{(3)}$	0			V	
V _{VCC_BOR+}	Brownout power-up level (2)	$ dDV_{CC}/d_t < 3 V/s^{(4)}$	0.79	1.	68	V

- (1) In case of a supply voltage brownout scenario, the device supply voltages need to ramp down to the specified brownout power-down level V_{VCC_BOR}. before the voltage is ramped up again to ensure a reliable device startup and performance according to the data sheet including the correct operation of the on-chip SVS module.
- (2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/μs). Following the data sheet recommendation for capacitor C_{DVCC} should limit the slopes accordingly.
- (3) The brownout levels are measured with a slowly changing supply. With faster slopes the MIN level required to reset the device properly can decrease to 0 V. Use the graph in Figure 5-6 to estimate the V_{VCC_BOR}- level based on the down slope of the supply voltage. After removing VCC the down slope can be estimated based on the current consumption and the capacitance on DVCC: dV/dt = I/C with dV/dt: slope, I: current, C: capacitance.
- (4) The brownout levels are measured with a slowly changing supply.

Figure 5-6. Brownout Power-Down Level vs Supply Voltage Down Slope

Table 5-2, SVS

	and a series of eapprishing and eperating in			,		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SVSH,LPM}	SVS _H current consumption, low power modes			170	300	nA
V _{SVSH-}	SVS _H power-down level		1.75	1.80	1.85	V
V _{SVSH+}	SVS _H power-up level		1.77	1.88	1.99	V
V _{SVSH_hys}	SVS _H hysteresis		40		120	mV
t _{PD,SVSH, AM}	SVS _H propagation delay, active mode	$dV_{Vcc}/dt = -10 \text{ mV/}\mu\text{s}$			10	μs

5.12.2 Reset Timing

Table 5-3. Reset Input

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _(RST)	External reset pulse duration on $\overline{RST}^{(1)}$		2.2 V, 3.0 V	2			μs

⁽¹⁾ Not applicable if RST/NMI pin configured as NMI.

5.12.3 Clock Specifications

Table 5-4. Low-Frequency Crystal Oscillator, LFXT⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$\begin{split} &f_{OSC} = 32768 \text{ Hz}, \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{0\}, \\ &T_{A} = 25^{\circ}\text{C}, \text{ $C_{L,eff} = 3.7 \text{ pF}, \text{ESR}} \approx 44 \text{ k}\Omega \end{split}$	3.0 V		180		
1	Current consumption	$\begin{split} f_{OSC} &= 32768 \text{ Hz}, \\ \text{LFXTBYPASS} &= 0, \text{LFXTDRIVE} = \{1\}, \\ T_{A} &= 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 6 \text{ pF, ESR} \approx 40 \text{ k}\Omega \end{split}$	3.0 V		185		nA
VCC.LFXT	Current consumption	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz}, \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{2\}, \\ &T_A = 25^{\circ}\text{C}, \ C_{L,eff} = 9 \text{ pF}, \ \text{ESR} \approx 40 \text{ k}\Omega \end{aligned} $	3.0 V		225		IIA
f _{LFXT} DC _{LFXT} f _{LFXT,SW}		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz}, \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{3\}, \\ &T_A = 25^{\circ}\text{C}, \text{ $C_{L,eff}$} = 12.5 \text{ pF}, \text{ ESR} \approx 40 \text{ k}\Omega \end{aligned} $	3.0 V		330		
f_{LFXT}	LFXT oscillator crystal frequency	LFXTBYPASS = 0			32768		Hz
	LFXT oscillator duty cycle	Measured at ACLK, f _{LFXT} = 32768 Hz		30%		70%	
f _{LFXT,SW}	LFXT oscillator logic-level square-wave input frequency	LFXTBYPASS = 1 ⁽²⁾ (3)		10.5	32.768	50	kHz
DC _{LFXT, SW}	LFXT oscillator logic-level square-wave input duty cycle	LFXTBYPASS = 1		30%		70%	
04	Oscillation allowance for				210		kΩ
OA _{LFXT}	LF crystals ⁽⁴⁾				300		V77

- (1) To improve EMI on the LFXT oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.
 - Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DC_{LEXT. SW}.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
 - For LFXTDRIVE = {0}, $C_{L,eff}$ = 3.7 pF. For LFXTDRIVE = {1}, $C_{L,eff}$ = 6 pF

 - For LFXTDRIVE = $\{2\}$, 6 pF \leq C_{L,eff} \leq 9 pF
 - For LFXTDRIVE = $\{3\}$, 9 pF \leq C_{L,eff} \leq 12.5 pF

Low-Frequency Crystal Oscillator, LFXT⁽¹⁾ (continued)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
C _{LFXIN}	Integrated load capacitance at LFXIN terminal (5) (6)				2		pF
C _{LFXOUT}	Integrated load capacitance at LFXOUT terminal (5) (6)				2		pF
	O (7)	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz}, \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{0\}, \\ &T_A = 25^{\circ}\text{C}, \text{ $C_{L,eff}$} = 3.7 \text{ pF} \end{aligned} $	3.0 V		800		
[†] START,LFXT		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz}, \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{3\}, \\ &T_A = 25^{\circ}\text{C}, \text{C}_{L,\text{eff}} = 12.5 \text{ pF} \end{aligned} $	3.0 V		1000		ms
f _{Fault,LFXT}	Oscillator fault frequency (8) (9)			0		3500	Hz

⁽⁵⁾ This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, C_{L,eff} can be computed as C_{IN} x C_{OUT} / (C_{IN} + C_{OUT}), where C_{IN} and C_{OUT} are the total capacitance at the LFXIN and LFXOUT terminals, respectively.

⁽⁶⁾ Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. It is recommended to verify that the recommended effective load capacitance of the selected crystal is met.

⁽⁷⁾ Includes start-up counter of 1024 clock cycles.

⁽⁸⁾ Frequencies above the MAX specification do not set the fault flag. Frequencies in between the MIN and MAX specification may set the flag. A static condition or stuck at fault condition will set the flag.

⁽⁹⁾ Measured with logic-level input frequency but also applies to operation with crystals.

Table 5-5. High-Frequency Crystal Oscillator, HFXT⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		f _{OSC} = 4 MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1 ⁽²⁾ T _A = 25°C, C _{Leff} = 18 pF, Typical ESR, C _{shunt}			75		
I _{DVCC.НЕХТ}	HFXT oscillator crystal current HF mode at typical ESR	f _{OSC} = 8 MHz, HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1, T _A = 25°C, C _{L,eff} = 18 pF, Typical ESR, C _{shunt}	3.0 V		120		μA
2					190		
		$ \begin{aligned} &f_{OSC} = 24 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 3, \text{HFFREQ} = 3, \\ &T_{A} = 25^{\circ}\text{C, } C_{L,\text{eff}} = 18 \text{ pF, Typical ESR, } C_{\text{shunt}} \end{aligned} $			250		
		HFXTBYPASS = 0, HFFREQ = $1^{(2)(3)}$		4		8	
f _{HFXT}	HFXT oscillator crystal frequency, crystal mode	HFXTBYPASS = 0, HFFREQ = 2 ⁽³⁾		8.01		16	MHz
	noquency, oryotal mode	HFXTBYPASS = 0, HFFREQ = 3 ⁽³⁾		16.01		24	
DC _{HFXT}	HFXT oscillator duty cycle	Measured at SMCLK, f _{HFXT} = 16 MHz		40%	50%	60%	
	HFXT oscillator logic- level square-wave input frequency, bypass mode	HFXTBYPASS = 1, HFFREQ = 0 ⁽⁴⁾⁽³⁾		0.9		4	MHz
£		HFXTBYPASS = 1, HFFREQ = 1 (4)(3)		4.01		8	
f _{HFXT,SW}		HFXTBYPASS = 1, HFFREQ = $2^{(4)(3)}$		8.01		16	
		HFXTBYPASS = 1, HFFREQ = 3 ⁽⁴⁾⁽³⁾		16.01		24	
DC _{HFXT, SW}	HFXT oscillator logic- level square-wave input duty cycle	HFXTBYPASS = 1		40%		60%	
	Start-up time ⁽⁵⁾	$f_{OSC} = 4$ MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1, $T_A = 25^{\circ}\text{C}$, $C_{L,eff} = 16$ pF	3.0 V		1.6		
[†] START,HFXT	Start-up time		3.0 V		0.6		ms
C _{HFXIN}	Integrated load capacitance at HFXIN terminal ⁽⁶⁾ (7)				2		pF
C _{HFXOUT}	Integrated load capacitance at HFXOUT terminal ⁽⁶⁾ (7)				2		pF

- (1) To improve EMI on the HFXT oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.
 - · Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.
 - · Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DC_{HFXT, SW}.
- (5) Includes start-up counter of 1024 clock cycles.
- (6) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, C_{L,eff} can be computed as C_{IN} x C_{OUT} / (C_{IN} + C_{OUT}), where C_{IN} and C_{OUT} is the total capacitance at the HFXIN and HFXOUT terminals, respectively.
- (7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. It is recommended to verify that the recommended effective load capacitance of the selected crystal is met.

High-Frequency Crystal Oscillator, HFXT(1) (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{Fault,HFXT} Oscillator fault frequency (8) (9)			0		800	kHz

⁽⁸⁾ Frequencies above the MAX specification do not set the fault flag. Frequencies in between the MIN and MAX might set the flag. A static condition or stuck at fault condition will set the flag.

Table 5-6. DCO

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
f _{DCO1}	DCO frequency range 1 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 0, DCORSEL = 1, DCOFSEL = 0		1	±3.5%	MHz
f _{DCO2.7}	DCO frequency range 2.7 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 1		2.667	±3.5%	MHz
f _{DCO3.5}	DCO frequency range 3.5 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 2		3.5	±3.5%	MHz
f _{DCO4}	DCO frequency range 4 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 3		4	±3.5%	MHz
f _{DCO5.3}	DCO frequency range 5.3 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 4, DCORSEL = 1, DCOFSEL = 1		5.333	±3.5%	MHz
f _{DCO7}	DCO frequency range 7 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 5, DCORSEL = 1, DCOFSEL = 2		7	±3.5%	MHz
f _{DCO8}	DCO frequency range 8 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 6, DCORSEL = 1, DCOFSEL = 3		8	±3.5%	MHz
f _{DCO16}	DCO frequency range 16 MHz, trimmed	Measured at SMCLK, divide by 1, DCORSEL = 1, DCOFSEL = 4		16	±3.5% ⁽¹⁾	MHz
f _{DCO21}	DCO frequency range 21 MHz, trimmed	Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 5		21	±3.5% ⁽¹⁾	MHz
f _{DCO24}	DCO frequency range 24 MHz, trimmed	Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 6		24	±3.5% ⁽¹⁾	MHz
$f_{DCO,DC}$	Duty cycle	Measured at SMCLK, divide by 1, No external divide, all DCORSEL/DCOFSEL settings except DCORSEL = 1, DCOFSEL = 5 and DCORSEL = 1, DCOFSEL = 6		48% 50%	52%	
t _{DCO,} JITTER	DCO jitter	Based on f _{signal} = 10 kHz and DCO used for 12 bit SAR ADC sampling source. This achieves >74 dB SNR due to jitter (that is, it is limited by ADC performance)		2	3	ns
df_{DCO}/dT	DCO temperature drift (2)		3.0 V	0.01		%/°C

⁽¹⁾ After a wakeup from LPM1, LPM2, LPM3 or LPM4 the DCO frequency f_{DCO} might exceed the specified frequency range for a few clock cycles by up to 5% before settling into the specified steady state frequency range.

⁽⁹⁾ Measured with logic-level input frequency but also applies to operation with crystals.

⁽²⁾ Calculated using the box method: (MAX(-40°C to 85°C) – MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C – (-40°C))

Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I_{VLO}	Current consumption				100		nΑ
f _{VLO}	VLO frequency	Measured at ACLK		6	9.4	14	kHz
df _{VLO} /d _T	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾			0.2		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾			0.7		%/V
$f_{VLO,DC}$	Duty cycle	Measured at ACLK		40%	50%	60%	

⁽¹⁾ Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) - MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C - (-40^{\circ}C))$

Table 5-8. Module Oscillator (MODOSC)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{MODOSC}	Current consumption	Enabled		25		μΑ
f _{MODOSC}	MODOSC frequency		4.0	4.8	5.4	MHz
f _{MODOSC} /dT	MODOSC frequency temperature drift ⁽¹⁾			0.08		%/°C
f _{MODOSC} /dV _{CC}	MODOSC frequency supply voltage drift ⁽²⁾			1.4		%/V
DC _{MODOSC}	Duty cycle	Measured at SMCLK, divide by 1	40%	50%	60%	

⁽¹⁾ Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) - MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C - (-40^{\circ}C))$

⁽²⁾ Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

5.12.4 Wake-Up Characteristics

Table 5-9. Wakeup Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{WAKE-UP} FRAM	(Additional) wakeup time to activate the FRAM in AM if previously disabled by the FRAM controller or from an LPM if immediate activation is selected for wake up				6	10	μs
twake-up LPM0	Wakeup time from LPM0 to active mode ⁽¹⁾		2.2 V, 3.0 V			400 ns + 1.5/f _{DCO}	
t _{WAKE-UP} LPM1	Wakeup time from LPM1 to active mode (1)		2.2 V, 3.0 V		6		μs
t _{WAKE-UP LPM2}	Wakeup time from LPM2 to active mode (1)		2.2 V, 3.0 V		6		μs
twake-up LPM3	Wakeup time from LPM3 to active mode (1)		2.2 V, 3.0 V		7	10	μs
t _{WAKE-UP LPM4}	Wakeup time from LPM4 to active mode (1)		2.2 V, 3.0 V		7	10	μs
t _{WAKE-UP} LPM3.5	Wakeup time from LPM3.5 to active mode ⁽²⁾		2.2 V, 3.0 V		250	350	μs
	Malana fina from LDMA 5 to active mode (2)	SVSHE = 1	2.2 V, 3.0 V		250	350	μs
twake-up LPM4.5	Wakeup time from LPM4.5 to active mode (2)	SVSHE = 0	2.2 V, 3.0 V		1	1.5	ms
t _{WAKE-UP-RST}	Wakeup time from a $\overline{\text{RST}}$ pin triggered reset to active mode $^{(2)}$		2.2 V, 3.0 V		250	350	μs
t _{WAKE-UP-BOR}	Wakeup time from power-up to active mode (2)		2.2 V, 3.0 V		1	1.5	ms

⁽¹⁾ The wakeup time is measured from the edge of an external wakeup signal (for example, port interrupt or wakeup event) to the first externally observable MCLK clock edge. MCLK is sourced by the DCO and the MCLK divider is set to divide-by-1 (DIVMx = 000b, f_{MCLK} = f_{DCO}). This time includes the activation of the FRAM during wake up.

Table 5-10. Typical Wakeup Charge⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Q _{WAKE-UP} FRAM	Charge used for activating the FRAM in AM or during wakeup from LPM0 if previously disabled by the FRAM controller.		15.1	nAs
Q _{WAKE-UP} LPM0	Charge used for wakeup from LPM0 to active mode (with FRAM active)		4.4	nAs
Q _{WAKE-UP} LPM1	Charge used for wakeup from LPM1 to active mode (with FRAM active)		15.1	nAs
Q _{WAKE-UP LPM2}	Charge used for wakeup from LPM2 to active mode (with FRAM active)		15.3	nAs
Q _{WAKE-UP} LPM3	Charge used for wakeup from LPM3 to active mode (with FRAM active)		16.5	nAs
Q _{WAKE-UP LPM4}	Charge used for wakeup from LPM4 to active mode (with FRAM active)		16.5	nAs
Q _{WAKE-UP} LPM3.5	Charge used for wakeup from LPM3.5 to active mode (2)		76	nAs
0	Charge used for wakeup from LPM4.5 to active mode (2)	SVSHE = 1	77	nAs
Q _{WAKE-UP} LPM4.5	Charge used for wakeup from LPM4.5 to active mode 47	SVSHE = 0	77.5	nAs
Q _{WAKE-UP-RESET}	Charge used for reset from \overline{RST} or BOR event to active mode (2)		75	nAs

⁽¹⁾ Charge used during the wakeup time from a given low-power mode to active mode. This does **not** include the energy required in active mode (for example, for an interrupt service routine).

⁽²⁾ The wakeup time is measured from the edge of an external wakeup signal (for example, port interrupt or wakeup event) until the first instruction of the user program is executed.

⁽²⁾ Charge required until start of user code. This does **not** include the energy required to reconfigure the device.

5.12.4.1 Typical Characteristics, Average LPM Currents vs Wakeup Frequency

NOTE: The average wakeup current does not include the energy required in active mode; for example, for an interrupt service routine or to reconfigure the device.

Figure 5-7. Average LPM Currents vs Wakeup Frequency at 25°C

NOTE: The average wakeup current does not include the energy required in active mode; for example, for an interrupt service routine or to reconfigure the device.

Figure 5-8. Average LPM Currents vs Wakeup Frequency at 85°C

5.12.5 Peripherals

5.12.5.1 Digital I/Os

Table 5-11. Digital Inputs

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	Positive going input threshold voltage		2.2 V	1.2		1.65	V
V _{IT+}	Positive-going input threshold voltage		3.0 V	1.65		2.25	"
V	Negative going input threehold veltage		2.2 V	0.55		1.00	V
V _{IT} _	Negative-going input threshold voltage		3.0 V	0.75		1.35	\ \ \
V	Input voltage bustarenia (\/ \/ \/ \)		2.2 V	0.44		0.98	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3.0 V	0.60		1.30	\ \ \
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C _{I,dig}	Input capacitance, digital only port pins	$V_{IN} = V_{SS}$ or V_{CC}			3		pF
C _{I,ana}	Input capacitance, port pins with shared analog functions (1)	$V_{IN} = V_{SS}$ or V_{CC}			5		pF
I _{lkg(Px.y)}	High-impedance input leakage current (also refer to and)	Refer to notes ⁽²⁾ and ⁽³⁾	2.2 V, 3.0 V	-20		+20	nA
t _(int)	External interrupt timing (external trigger pulse duration to set interrupt flag) ⁽⁴⁾	Ports with interrupt capability (see block diagram and terminal function descriptions).	2.2 V, 3.0 V	20			ns
t _(RST)	External reset pulse duration on $\overline{\text{RST}}^{(5)}$		2.2 V, 3.0 V	2			μs

If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-MΩ resistor in series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or PJ.5/LFXOUT.

The input leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted.

The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

An external signal sets the interrupt flag every time the minimum interrupt pulse duration $t_{(int)}$ is met. It may be set by trigger signals shorter than $t_{(int)}$. Not applicable if \overline{RST}/NMI pin configured as NMI.

Table 5-12. Digital Outputs

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(1)}$	- 2.2 V	V _{CC} – 0.25		V _{CC}	
V	High lovel output valtege	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	2.2 V	V _{CC} - 0.60		V _{CC}	V
V _{OH}	High-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(1)}$	3.0 V	V _{CC} – 0.25		V_{CC}	V
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$	3.0 V	V _{CC} - 0.60		V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	2.2 V	V _{SS}		V _{SS} + 0.25	
V_{OL}	Low-level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(2)}$	Z.Z V	V _{SS}		V _{SS} + 0.60	V
	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(1)}$	3.0 V	V _{SS}		V _{SS} + 0.25	
		$I_{(OLmax)} = 6 \text{ mA}^{(2)}$	3.0 V	V _{SS}		V _{SS} + 0.60	
f _{Px.y}	Port output frequency (with load) (3)	C _L = 20 pF, R _L ^{(4) (5)}	2.2 V	16			MHz
тРх.у	Torroutput frequency (with load)	OL = 20 βΓ, ΝΕ ** **	3.0 V	16			IVII IZ
,		ACLK, MCLK, or SMCLK at	2.2 V	16			
f _{Port_CLK}	Clock output frequency (3)	configured output port $C_L = 20 \text{ pF}^{(5)}$	3.0 V	16			MHz
	Port output rise time, digital only port pins	C _L = 20 pF	2.2 V		4	15	ns
t _{rise,dig}	For output rise time, digital only port pins	CL = 20 βF	3.0 V		3	15	115
	Port output fall time, digital only port pins	C _L = 20 pF	2.2 V		4	15	no
t _{fall,dig}	Fort output fail time, digital only port pins	O _L = 20 μΓ	3.0 V		3	15	ns
+ .	Port output rise time, port pins with shared	C. = 20 pE	2.2 V		6	15	ns
t _{rise,ana}	analog functions	$C_L = 20 pF$	3.0 V		4	15	115
t	Port output fall time, port pins with shared	C _L = 20 pF	2.2 V		6	15	ns
t _{fall,ana}	analog functions	OL – 20 μΓ	3.0 V		4	15	119

⁽¹⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽³⁾ The port can output frequencies at least up to the specified limit - it might support higher frequencies.

⁽⁴⁾ A resistive divider with 2 x R1 and R1 = 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. C_L = 20 pF is connected from the output to V_{SS}.

⁽⁵⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.12.5.1.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V

- fitted

- 25℃

- 85℃

100

Table 5-13. Pin-Oscillator Frequency, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP MA	UNIT
fo _{Px.y}	Din aggillator fraguency	$Px.y, C_L = 10 pF^{(1)}$	3.0 V	1640	kHz
	Pin-oscillator frequency	$Px.y, C_L = 20 pF^{(1)}$	3.0 V	870	kHz

1000

Pin Oscillator Frequency [kHz]

5.12.5.1.2 Typical Characteristics, Pin-Oscillator Frequency

100 10 External Load Capacitance (incl. board etc.) [pF] $V_{CC} = 3.0 \text{ V}$ One output active at a time.

Figure 5-13. Typical Oscillation Frequency vs Load Capacitance

Figure 5-14. Typical Oscillation Frequency vs Load Capacitance

⁽¹⁾ C_L is the external load capacitance connected from the output to V_{SS} and includes all parasitic effects such as PCB traces.

5.12.5.2 Timer_A and Timer_B

Table 5-14. Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10%	2.2 V, 3.0 V			16	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	2.2 V, 3.0 V	20			ns

Table 5-15. Timer_B

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10%	2.2 V, 3.0 V			16	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	2.2 V, 3.0 V	20			ns

5.12.5.3 eUSCI

Table 5-16. eUSCI (UART Mode) Recommended Operating Conditions

	PARAMETER	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%				16	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)					4	MHz

Table 5-17. eUSCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MAX	UNIT
t _t		UCGLITx = 0		5	30	
	LIART receive dealitch time (1)	UCGLITx = 1	2.2 V,	20	90	ns
	UART receive deglitch time ⁽¹⁾	UCGLITx = 2	3.0 V	35	160	
		UCGLITx = 3		50	220	

Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

Table 5-18. eUSCI (SPI Master Mode) Recommended Operating Conditions

PARAMETER	CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{eUSCI} eUSCI input clock frequency	Internal: SMCLK, ACLK Duty cycle = 50% ± 10%				16	MHz

Table 5-19. eUSCI (SPI Master Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10		1			UCxCLK
t _{STE,LAG}	STE lag time, Last clock to STE inactive	UCSTEM = 1, UCMODEx = 01 or 10		1			cycles
t _{STE,ACC}	STE access time, STE active to SIMO data out	UCSTEM = 0, UCMODEx = 01 or 10	2.2 V, 3.0 V			60	ns
t _{STE,DIS}	STE disable time, STE inactive to SOMI high impedance	UCSTEM = 0, UCMODEx = 01 or 10	2.2 V, 3.0 V			60	ns
	COMI input data actus tima		2.2 V	35			
t _{SU,MI}	SOMI input data setup time		3.0 V	35			ns
	COMI input data hald time		2.2 V	0			
t _{HD,MI}	SOMI input data hold time		3.0 V	0			ns
		LICLK adapta CIMO walld C 20 af	2.2 V			10	
t _{VALID,MO}	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid, $C_L = 20 \text{ pF}$	3.0 V			10	ns
	ONA C	0 00 5	2.2 V	0			
t _{HD,MO}	SIMO output data hold time ⁽³⁾	C _L = 20 pF	3.0 V	0			ns

 $f_{\text{UCXCLK}} = 1/2 t_{\text{LO/HI}} \text{ with } t_{\text{LO/HI}} = \text{max}(t_{\text{VALID,MO(eUSCI)}} + t_{\text{SU,SI(Slave)}}, t_{\text{SU,MI(eUSCI)}} + t_{\text{VALID,SO(Slave)}}).$ For the slave parameters $t_{\text{SU,SI(Slave)}}$ and $t_{\text{VALID,SO(Slave)}}$, refer to the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing (1)

diagrams in Figure 5-15 and Figure 5-16.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in Figure 5-15 and Figure 5-16.

Figure 5-15. SPI Master Mode, CKPH = 0

Figure 5-16. SPI Master Mode, CKPH = 1

Table 5-20. eUSCI (SPI Slave Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	STE load time. STE active to clock		2.2 V	45			no
t _{STE,LEAD}	STE lead time, STE active to clock		3.0 V	40			ns
	STE log time. Lost clock to STE inactive		2.2 V	0			20
t _{STE,LAG}	STE lag time, Last clock to STE inactive		3.0 V	0			ns
	STE access time, STE active to SOMI data out		2.2 V			45	ns
t _{STE,ACC}	STE access little, STE active to SOIVII data out		3.0 V			40	115
	STE disable time, STE inactive to SOMI high		2.2 V			40	9
^L STE,DIS	impedance impedance		3.0 V			35	ns
	SIMO input data actus tima		2.2 V	4			20
t _{SU,SI}	SIMO input data setup time		3.0 V	4			ns
	CIMO input data hald time		2.2 V	7			9
t _{HD,SI}	SIMO input data hold time		3.0 V	7			ns
	COMI output data valid time (2)	UCLK edge to SOMI valid,	2.2 V			35	9
t _{VALID,SO}	ALID,SO SOMI output data valid time (2)	C _L = 20 pF	3.0 V			35	ns
	COM autout data hald fine (3)	0	2.2 V	0			20
t _{HD,SO}	SOMI output data hold time ⁽³⁾	$C_L = 20 \text{ pF}$	3.0 V	0			ns

 $[\]begin{aligned} &f_{UCXCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq max(t_{VALID,MO(Master)} + t_{SU,SI(eUSCI)}, t_{SU,MI(Master)} + t_{VALID,SO(eUSCI)}). \\ &\text{For the master parameters } t_{SU,MI(Master)} \text{ and } t_{VALID,MO(Master)} \text{ refer to the SPI parameters of the attached slave.} \\ &\text{Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing the state of the soutput changing UCLK clock edge.} \end{aligned}$ (1)

diagrams in Figure 5-17 and Figure 5-18.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 5-17 and Figure 5-18.

Figure 5-17. SPI Slave Mode, CKPH = 0

Figure 5-18. SPI Slave Mode, CKPH = 1

Table 5-21. eUSCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%				16	MHz
f_{SCL}	SCL clock frequency		2.2 V, 3.0 V	0		400	kHz
4	Hold time (repeated) START	f _{SCL} = 100 kHz	2.2 V, 3.0 V	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3.0 V	0.6			μs
	Setup time for a repeated START	f _{SCL} = 100 kHz	2.2 V, 3.0 V	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3.0 V	0.6			μs
$t_{HD,DAT}$	Data hold time		2.2 V, 3.0 V	0			ns
t _{SU,DAT}	Data setup time		2.2 V, 3.0 V	100			ns
4	Cotun time for CTOD	f _{SCL} = 100 kHz	221/201/	4.0			
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3.0 V	0.6			μs
4	Bus free time between a STOP and	f _{SCL} = 100 kHz		4.7			
t _{BUF}	START condition	f _{SCL} > 100 kHz		1.3			μs
		UCGLITx = 0		50		250	
4	Pulse duration of spikes suppressed by	UCGLITx = 1	227/227/	25		125	
t _{SP}	input filter	UCGLITx = 2	2.2 V, 3.0 V	12.5		62.5	ns
		UCGLITx = 3		6.3		31.5	
		UCCLTOx = 1			27		
t _{TIMEOUT}	Clock low timeout	UCCLTOx = 2	2.2 V, 3.0 V		30		ms
		UCCLTOx = 3			33		

Figure 5-19. I²C Mode Timing

5.12.5.4 ADC

Table 5-22. 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
V(Ax)	Analog input voltage range ⁽¹⁾	All ADC12 analog input pins Ax		0		AVCC	V
I(ADC12_B)		f _{ADC12CLK} = MODCLK, ADC12ON = 1,	3.0 V		145	185	
single- ended mode	Operating supply current into AVCC plus DVCC terminals (2) (3)	(2) (3) REFON = 0, ADC12SHTx = 0, ADC12DIV = 0		140	180	μΑ	
I(ADC12_B)		f _{ADC12CLK} = MODCLK, ADC12ON = 1,	3.0 V		175	225	
differential mode	Operating supply current into AVCC plus DVCC terminals (2) (3)	ADC12PWRMD = 0, ADC12DIF = 1, REFON = 0, ADC12SHTx= 0, ADC12DIV = 0	2.2 V		170	220	μΑ
C _I	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		10	15	pF
В	Innuit MI IV ON registeres	0.1/<.1//0.1/<.0.1/0.0	>2 V		0.5	4	kΩ
R _I	Input MUX ON resistance	0 V ≤ V(Ax) ≤ AVCC	<2 V		1	10	kΩ

- The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.
- The internal reference supply current is not included in current consumption parameter I(ADC12_B).
- Approximately 60% (typical) of the total current into the AVCC and DVCC terminal is from AVCC.

Table 5-23. 12-Bit ADC, Timing Parameters

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{ADC12CLK}	Frequency for specified performance	For specified performance of ADC12 linearity parameters with ADC12PWRMD = 0, If ADC12PWRMD = 1, the maximum is 1/4 of the value shown here	0.45		5.4	MHz
f _{ADC12CLK}	Frequency for reduced performance	Linearity parameters have reduced performance		32.768		kHz
f _{ADC12OSC}	Internal oscillator ⁽¹⁾	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC} from MODCLK	4	4.8	5.4	MHz
t _{CONVERT}	Conversion time	REFON = 0, Internal oscillator, f _{ADC12CLK} = f _{ADC12OSC} from MODCLK, ADC12WINC = 0	2.6		3.5	μs
		External $f_{ADC12CLK}$ from ACLK, MCLK, or SMCLK, ADC12SSEL $\neq 0$		(2)		
t _{ADC12ON}	Turnon settling time of the ADC	See (3)			100	ns
t _{ADC12OFF}	Time ADC must be off before can be turned on again	Note: $t_{ADC12OFF}$ must be met to make sure that $t_{ADC12ON}$ time holds	100			ns
t _{Sample}	Sampling time	$R_S = 400 \Omega$, $R_I = 4 k\Omega$, $C_I = 15 pF$, $C_{pext} = 8 pF^{(4)}$	1			μs

- The ADC12OSC is sourced directly from MODOSC inside the UCS.
- 14 x ADC12DIV x 1/f_{ADC12CLK}, if ADC12WINC=1 then 15 x ADC12DIV x 1/f_{ADC12CLK}
 The condition is that the error in a conversion started after t_{ADC12ON} is less than ±0.5 LSB. The reference and input signal are already
- Approximately 10 Tau (τ) are needed to get an error of less than ± 0.5 LSB: $t_{sample} = ln(2^{n+2}) \times (R_S + R_I) \times (C_I + C_{pext})$, where n = ADC resolution =12, R_S = external source resistance, C_{pext} = external parasitic capacitance.

Table 5-24. 12-Bit ADC, Linearity Parameters With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution	Number of no missing code output-code bits		12			bits
Eı	Integral linearity error (INL) for differential input	$1.2 \text{ V} \leq \text{V}_{R+} - \text{V}_{R-} \leq \text{AV}_{CC}$			±1.8	LSB
Eı	Integral linearity error (INL) for single ended inputs	$1.2 \text{ V} \leq \text{V}_{R+} - \text{V}_{R-} \leq \text{AV}_{CC}$			±2.2	LSB
E _D	Differential linearity error (DNL)		-0.99		+1.0	LSB
Eo	Offset error ⁽²⁾ (3)	ADC12VRSEL = 0x2 or 0x4 without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾		±0.5	±1.5	mV
$E_{G,ext}$	Gain error	With external voltage reference without internal buffer (ADC12VRSEL = 0x2 or 0x4) without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾ , VR+ = 2.5 V, VR- = AVSS		±0.8	±2.5	LSB
		With external voltage reference with internal buffer (ADC12VRSEL = 0x3), VR+ = 2.5 V, VR- = AVSS		±1	±20	
E _{T,ext}	Total unadjusted error	With external voltage reference without internal buffer (ADC12VRSEL = 0x2 or 0x4) without TLV calibration, TLV calibration data can be used to improve the parameter ⁽⁴⁾ , VR+ = 2.5 V, VR- = AVSS		±1.4	±3.5	LSB
		With external voltage reference with internal buffer (ADC12VRSEL = 0x3), VR+ = 2.5 V, VR- = AVSS		±1.4	±21.0	

⁽¹⁾ See Table 5-26 and Table 5-32 electrical sections for more information on internal reference performance and refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

- (2) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.
- (3) Offset increases as IR drop increases when VR- is AVSS.
- (4) For details, see the Device Descriptor Table section in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide (SLAU367).

Table 5-25. 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	9 11 7	-		<u> </u>	II.	,		,		
	PARAMETER			TEST	CONDITION	ıs	MIN	TYP	MAX	UNIT
SNR	Signal-to-noise		VR+ = 2	2.5 V, VR- =	= AVSS		68	71		dB
ENOB	Effective number of bits ⁽²⁾		VR+ = 2	2.5 V, VR- =	= AVSS		10.7	11.2		bits

⁽¹⁾ See Table 5-26 and Table 5-32 electrical sections for more information on internal reference performance and refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

(2) ENOB = (SINAD – 1.76) / 6.02

Table 5-26, 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	0 11,	_		•	`		,		
PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
ENOB	Effective number of bits (2)		VR+ = 2.5 V, VR- =	= AVSS		10.3	10.7		Bits

⁽¹⁾ See Table 5-32 electrical section for more information on internal reference performance and refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

(2) ENOB = (SINAD - 1.76) / 6.02

Table 5-27. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SNR	Signal-to-noise	VR+ = 2.5 V, VR- = AVSS	64	68		dB
ENOB	Effective number of bits ⁽²⁾	VR+ = 2.5 V, VR- = AVSS	10.2	10.7		bits

⁽¹⁾ See Table 5-28 and Table 5-32 electrical sections for more information on internal reference performance and refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

Table 5-28. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENOB	Effective number of bits (2)	VR+ = 2.5 V, VR- = AVSS	9.4	10.4		bits

⁽¹⁾ See Table 5-32 electrical section for more information on internal reference performance and refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

Table 5-29. 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENOB	Effective number of bits ⁽¹⁾	Reduced performance with f _{ADC12CLK} from ACLK LFXT 32.768 kHz, VR+ = 2.5 V, VR- = AVSS		10		bits

(1) ENOB = (SINAD - 1.76) / 6.02

Figure 5-20. Typical Temperature Sensor Voltage

⁽²⁾ ENOB = (SINAD - 1.76) / 6.02

⁽²⁾ ENOB = (SINAD – 1.76) / 6.02

Table 5-30. 12-Bit ADC, Temperature Sensor and Built-In V_{1/2}

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SENSOR}	See (1) (2)	ADC12ON = 1, ADC12TCMAP=1, $T_A = 0$ °C		700		mV
TC _{SENSOR}	See (2)	ADC12ON = 1, ADC12TCMAP = 1		2.5		mV/°C
t _{SENSOR(sample)}	Sample time required if ADCTCMAP = 1 and channel MAX-1 is selected ⁽³⁾	ADC12ON = 1, ADC12TCMAP = 1, Error of conversion result ≤ 1 LSB	30			μs
V _{1/2}	AVCC voltage divider for ADC12BATMAP = 1 on MAX input channel	ADC12ON = 1, ADC12BATMAP = 1	47.5%	50%	52.5%	
I _{V 1/2}	Current for battery monitor during sample time	ADC12ON = 1, ADC12BATMAP = 1		38	63	μΑ
t _{V 1/2} (sample)	Sample time required if ADC12BATMAP = 1 and channel MAX is selected ⁽⁴⁾	ADC12ON = 1, ADC12BATMAP = 1	1.7			μs

- (1) The temperature sensor offset can be as much as ±30°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor.
- (2) The device descriptor structure contains calibration values for 30°C ± 3°C and 85°C ± 3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSOR} = TC_{SENSOR} * (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy.
- (3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- (4) The on-time $t_{V1/2(on)}$ is included in the sampling time $t_{V1/2(sample)}$; no additional on time is needed.

Table 5-31. 12-Bit ADC, External Reference⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{R+}	Positive external reference voltage input VeREF+ or VeREF- based on ADC12VRSEL bit	$V_{R+} > V_{R-}$	1.2	AV_{CC}	٧
V _R -	Negative external reference voltage input VeREF+ or VeREF- based on ADC12VRSEL bit	$V_{R+} > V_{R-}$	0	1.2	>
(V _{R+} - V _{R-})	Differential external reference voltage input	$V_{R+} > V_{R-}$	1.2	AV_CC	٧
I _{VeREF+}	Static input current singled anded input mode	$ \begin{array}{l} 1.2~V \leq V_{eREf+} \leq V_{AVCC},~V_{eREf-} = 0~V \\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 1h, \\ ADC12DIF = 0,~ADC12PWRMD = 0 \end{array} $		±10	
I _{VeREF} -	Static input current singled ended input mode	$ \begin{array}{l} 1.2~V \leq V_{eREf+} \leq V_{AVCC}~, V_{eREF-} = 0~V \\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 8h, \\ ADC12DIF = 0,~ADC12PWRMD = 01 \end{array} $		±2.5	μΑ
I _{VeREF+}	Static input oursest differential input mode	$ \begin{array}{l} 1.2~V \leq V_{eREf+} \leq V_{AVCC},~V_{eREf-} = 0~V \\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 1h, \\ ADC12DIF = 1,~ADC12PWRMD = 0 \end{array} $		±20	^
I _{VeREF} -	Static input current differential input mode	$ \begin{array}{l} 1.2~V \leq V_{eREf+} \leq V_{AVCC}~, V_{eREF-} = 0~V \\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 8h, \\ ADC12DIF = 1,~ADC12PWRMD = 1 \end{array} $		±5	μΑ
I _{VeREF+}	Peak input current with single-ended input	$0 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \text{ ADC12DIF} = 0$		1.5	mA
I _{VeREF+}	Peak input current with differential input	$0 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}, \text{ADC12DIF} = 1$		3	mΑ
C _{VeREF+/-}	Capacitance at VeREF+ or VeREF- terminal	See (2)	10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.

⁽²⁾ Two decoupling capacitors, 10 μF and 470 nF, should be connected to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_B. See also the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide (SLAU367).

5.12.5.5 Reference

Table 5-32. REF, Built-In Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = 1	2.7 V		2.5	±1.5%	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2.0 V, REFON = 1	2.2 V		2.0	±1.5%	V
	voltage output	REFVSEL = {0} for 1.2 V, REFON = 1	1.8 V		1.2	±1.8%	
Noise	RMS noise at VREF ⁽¹⁾	From 0.1 Hz to 10 Hz, REFVSEL = {0}			110	600	μV
V _{OS_BUF_INT}	VREF ADC BUF_INT buffer offset ⁽²⁾	$T_A = 25^{\circ}\text{C}$, ADC ON, REFVSEL = $\{0\}$, REFON = 1, REFOUT = 0		-12		+12	mV
V _{OS_BUF_EXT}	VREF ADC BUF_EXT buffer offset ⁽³⁾	T _A = 25°C, REFVSEL = {0}, REFOUT = 1, REFON = 1 or ADC ON		-12		+12	mV
	AVCC minimum voltage,	REFVSEL = {0} for 1.2 V		1.8			
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 2.0 V		2.2			V
	active	REFVSEL = {2} for 2.5 V		2.7			
I _{REF+}	Operating supply current into AVCC terminal (4)	REFON = 1	3 V		8	15	μA
		ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2}, ADC12PWRMD = 0,	3 V		225	355	
		ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2}, ADC12PWRMD = 0	3 V		1030	1660	
I _{REF+_ADC_BUF}	Operating supply current into AVCC terminal (4)	ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2}, ADC12PWRMD = 1	3 V		120	185	μΑ
		ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2}, ADC12PWRMD = 1	3 V		545	895	
		ADC OFF, REFON=1, REFOUT=1, REFVSEL = {0, 1, 2}	3 V		1085	1780	
I _{O(VREF+)}	VREF maximum load current, VREF+ terminal	REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for each reference level, REFON = REFOUT = 1		-1000		+10	μA
ΔVout/Δlo (VREF+)	Load-current regulation, VREF+ terminal	REFVSEL = $\{0, 1, 2\}$, $I_{O(VREF+)} = +10 \mu A \text{ or } -1000 \mu A$, AVCC = AVCC(min) for each reference level, REFON = REFOUT = 1				2500	μV/mA
C _{VREF+/-}	Capacitance at VREF+ and VREF- terminals	REFON = REFOUT = 1		0		100	pF
TC _{REF+}	Temperature coefficient of built-in reference	REFVSEL = $\{0, 1, 2\}$, REFON = REFOUT = 1, T _A = -40 °C to 85 °C ⁽⁵⁾			18	50	ppm/K
PSRR_DC	Power supply rejection ratio (dc)	$AV_{CC} = AV_{CC \text{ (min)}} - AV_{CC \text{(max)}}, T_A = 25^{\circ}C,$ $REFVSEL = \{0, 1, 2\}, REFON = REFOUT = 1$			120	400	μV/V
PSRR_AC	Power supply rejection ratio (ac)	dAV _{CC} = 0.1 V at 1 kHz			3.0		mV/V
t _{SETTLE}	Settling time of reference voltage (6)	$AV_{CC} = AV_{CC \text{ (min)}} - AV_{CC \text{(max)}},$ REFVSEL = {0, 1, 2}, REFON = 0 \rightarrow 1			75	80	μs

⁽¹⁾ Internal reference noise affects ADC performance when ADC uses internal reference. Refer to the application report Designing With the MSP430FR59xx and MSP430FR58xx ADC (SLAA624) for details on optimizing ADC performance for your application with the choice of internal versus external reference.

5.12.5.6 Comparator

⁽²⁾ Buffer offset affects ADC gain error and thus total unadjusted error.

⁽³⁾ Buffer offset affects ADC gain error and thus total unadjusted error.

⁽⁴⁾ The internal reference current is supplied through terminal AVCC.

⁽⁵⁾ Calculated using the box method: (MAX(-40°C to 85°C) – MIN(-40°C to 85°C)) / MIN(-40°C to 85°C)/(85°C – (-40°C)).

⁽⁶⁾ The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.

Table 5-33. Comparator_E

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
		CEPWRMD = 00, CEON = 1, CERSx = 00 (fast)			11	20		
	Comparator operating supply current into AVCC,	CEPWRMD = 01, CEON = 1, CERSx = 00 (medium)	2.2 V,		9	17		
IAVCC_COMP	excludes reference resistor ladder	CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), T _A = 30°C	3.0 V			0.5	μΑ	
		CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), T _A = 85°C				1.3	ı	
1	Quiescent current of resistor ladder into AVCC,	CEREFLx = 01, CERSx = 10, REFON = 0, CEON = 0, CEREFACC = 0	2.2 V,		12	15		
IAVCC_REF	including REF module current	CEREFLx = 01, CERSx = 10, REFON = 0, CEON = 0, CEREFACC = 1	3.0 V		5	7	μA	
		CERSx = 11, CEREFLx = 01, CEREFACC = 0	1.8 V	1.17	1.2	1.23		
		CERSx = 11, CEREFLx = 10, CEREFACC = 0	2.2 V	1.92	2.0	2.08		
	Defenses well-see level	CERSx = 11, CEREFLx = 11, CEREFACC = 0	2.7 V	2.40	2.5	2.60	,	
V_{REF}	Reference voltage level	CERSx = 11, CEREFLx = 01, CEREFACC = 1	1.8 V	1.10	1.2	1.245	V	
		CERSx = 11, CEREFLx = 10, CEREFACC = 1	2.2 V	1.90	2.0	2.08		
		CERSx = 11, CEREFLx = 11, CEREFACC = 1	2.7 V	2.35	2.5	2.60		
V _{IC}	Common mode input range			0		V _{CC} -1	٧	
V _{OFFSET} Input of		CEPWRMD = 00		-32		32		
	Input offset voltage	CEPWRMD = 01		-32		32	mV	
	-	CEPWRMD = 10		-30		30		
_		CEPWRMD = 00 or CEPWRMD = 01			9		-	
C _{IN}	Input capacitance	CEPWRMD = 10			9		pF	
Б	0	ON - switch closed			1	3	kΩ	
R _{SIN}	Series input resistance	OFF - switch open		50			МΩ	
		CEPWRMD = 00, CEF = 0, Overdrive ≥ 20 mV			260	330		
t_{PD}	Propagation delay, response time	CEPWRMD = 01, CEF = 0, Overdrive ≥ 20 mV			350	460	ns	
	response time	CEPWRMD = 10, CEF = 0, Overdrive ≥ 20 mV				15	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 00			700	1000	ns	
	Propagation delay with	CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 01			1.0	1.8		
^T PD,filter	filter active	CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 10			2.0	3.5	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 11			4.0	7.0		
		CEON = 0 → 1, VIN+, VIN- from pins, Overdrive ≥ 20 mV, CEPWRMD = 00			0.9	1.5	I	
t _{EN_CMP}	Comparator enable time	CEON = 0 → 1, VIN+, VIN- from pins, Overdrive ≥ 20 mV, CEPWRMD = 01			0.9	1.5	μs	
		CEON = 0 → 1, VIN+, VIN- from pins, Overdrive ≥ 20 mV, CEPWRMD = 10			15	100	L	

Comparator_E (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV, CEPWRMD = 00			1	2	
		CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV, CEPWRMD = 01			1	2	
	Comparator and reference ladder and reference	CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV, CEPWRMD = 10			10	50	
ten_CMP_vref ladder and reference voltage enable time	CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 10, REFON = 0, CEREF0 = CEREF1 = $0x0F$, Overdrive ≥ 20 mV, CEPWRMD = 00			2	5	μs	
	CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 10, REFON = 0, CEREF0 = CEREF1 = 0x0F, Overdrive \geq 20 mV, CEPWRMD = 01			2	5		
		CEON = $0 \rightarrow 1$, CEREFLX = 10 , CERSx = 10 , REFON = 0 , CEREF0 = CEREF1 = $0x0F$, Overdrive ≥ 20 mV, CEPWRMD = 10			10	50	
		CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 10, REFON = 1, CEREF0 = CEREF1 = $0x0F$, Overdrive ≥ 20 mV, CEPWRMD = 00			1	2	
t _{EN_CMP_RL}	t _{EN_CMP_RL} Comparator and reference ladder enable time	CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 10, REFON = 1, CEREF0 = CEREF1 = $0x0F$, Overdrive ≥ 20 mV, CEPWRMD = 01			1	2	μs
		CEON = $0 \rightarrow 1$, CEREFLX = 10, CERSx = 10, REFON = 1, CEREF0 = CEREF1 = $0x0F$, Overdrive ≥ 20 mV, CEPWRMD = 10			10	50	
V _{CE_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n+0.9) /32	VIN x (n+1) /32	VIN × (n+1.1) /32	V

5.12.5.7 FRAM

Table 5-34, FRAM

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Read and write endurance		10 ¹⁵			cycles
		$T_J = 25^{\circ}C$	100			
t _{Retention}	Data retention duration	$T_J = 70^{\circ}C$	40			years
		T _J = 85°C	10			
I _{WRITE}	Current to write into FRAM		I _R	EAD ⁽¹⁾		nA
I _{ERASE}	Erase current		ı	n/a ⁽²⁾		nA
t _{WRITE}	Write time		t _R	EAD ⁽³⁾		ns
	Read time, NWAITSx=0		1/f _{SY}	STEMS (4)		ns
t _{READ}	Read time, NWAITSx=1		2/f _{SY}	STEMS (4)		ns

⁽¹⁾ Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read current I_{READ} is included in the active mode current consumption numbers I_{AM,FRAM}.

⁽²⁾ FRAM does not require a special erase sequence.

⁽³⁾ Writing into FRAM is as fast as reading.

⁽⁴⁾ The maximum read (and write) speed is specified by f_{SYSTEMS} using the appropriate wait state settings (NWAITSx).

5.13 Emulation and Debug

Table 5-35. JTAG and Spy-Bi-Wire Interface

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{JTAG}	Supply current adder when JTAG active (but not clocked)	2.2 V, 3.0 V		40	100	μΑ
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3.0 V	0		10	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3.0 V	0.04		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.2 V, 3.0 V			110	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
,	TO(() = 1 () = 1 (2)	2.2 V	0		16	MHz
f _{TCK}	TCK input frequency - 4-wire JTAG (2)	3.0 V	0		16	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3.0 V	20	35	50	kΩ
f _{TCLK}	TCLK/MCLK frequency during JTAG access, no FRAM access (limited by f _{SYSTEM})				16	MHz
t _{TCLK,Low/High}	TCLK low or high clock pulse duration, no FRAM access				25	ns
f _{TCLK,FRAM}	TCLK/MCLK frequency during JTAG access, including FRAM access (limited by $f_{\rm SYSTEM}$ with no FRAM wait states)				4	MHz
t _{TCLK,FRAM,Low/High}	TCLK low or high clock pulse duration, including FRAM accesses				100	ns

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface need to wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

www.ti.com

6 Detailed Description

6.1 Overview

The Texas Instruments MSP430FR58xx family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals. The architecture, combined with seven low-power modes is optimized to achieve extended battery life for example in portable measurement applications. The devices features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.

The MSP430FR58xx devices are microcontroller configurations with up to five 16-bit timers, Comparator, universal serial communication interfaces (eUSCI) supporting UART, SPI, and I²C, hardware multiplier, DMA, real-time clock module with alarm capabilities, up to 40 I/O pins, and an high-performance 12-bit analog-to-digital converter (ADC).

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

6.3 Operating Modes

The MSP430 has one active mode and seven software selectable low-power modes of operation. An interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

Table 6-1. Operating Modes

Mode	А	М	LPM0	LPM1	LPM2	LPM3	LPM4	LPM3.5	13.5 LPM4.5	
	Active	Active, FRAM Off ⁽¹⁾	CPU Off ⁽²⁾	CPU Off	Standby	Standby	Off	RTC only	Shutdown with SVS	Shutdown without SVS
Maximum System Clock	16 [ИНz	16 MHz	16 MHz	50 kHz	50 kHz	0(3)	50 kHz	0	(3)
Typical Current Consumption, T _A = 25°C	103 µA/MHz	65 µA/MHz	70 μA at 1 MHz	35 μA at 1 MHz	0.7 μΑ	0.4 μΑ	0.3 μΑ	0.25 μΑ	0.2 μΑ	0.02 μΑ
Typical Wake-up Time	N	/A	instant	6 µs	6 µs	7 µs	7 µs	250 µs	250 µs	1000 µs
Wake-Up Events	N	/A	all	all	LF I/O Comp	LF I/O Comp	I/O Comp	RTC I/O	I/O	
CPU	0	n	off	off	off	off	off	reset	re	set
FRAM	on	off ⁽¹⁾	standby (or off ⁽¹⁾)	off	off	off	off	off	o	ff
High-Frequency Peripherals	avai	lable	available	available	off	off	off	reset	re	set
Low-Frequency Peripherals	avai	lable	available	available	available	available (4)	off	RTC	re	set
Unclocked Peripherals ⁽⁵⁾	avai	lable	available	available	available	available (4)	available (4)	reset	re	set
MCLK	0	n	off	off	off	off	off	off	O	ff
SMCLK	optio	nal ⁽⁶⁾	optional (6)	optional (6)	off	off	off	off	O	ff
ACLK	0	n	on	on	on	on	off	off	off	
Full Retention	ye	es	yes	yes	yes	yes	yes	no	n	0
SVS	alw	ays	always	always	optional ⁽⁷⁾	optional ⁽⁷⁾	optional ⁽⁷⁾	optional (7)	on ⁽⁸⁾	off ⁽⁹⁾
Brownout	alw	ays	always	always	always	always	always	always	alw	ays

⁽¹⁾ FRAM disabled in FRAM controller

- (8) SVSHE = 1
- (9) SVSHE = 0

⁽²⁾ Disabling the FRAM through the FRAM controller allows the application to lower the LPM current consumption but the wake-up time increases as soon as FRAM is accessed (for example, to fetch an interrupt vector). For a non-FRAM wake-up (for example, DMA transfer to RAM) the wake-up is not delayed.

⁽³⁾ All clocks disabled

⁽⁴⁾ See Section 6.3.1, which describes the use of peripherals in LPM3 and LPM4.

^{(5) &}quot;Unclocked peripherals" are peripherals that do not require a clock source to operate; for example, the comparator and REF, or the eUSCI when operated as an SPI slave.

⁽⁶⁾ Controlled by SMCLKOFF.

⁽⁷⁾ Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.

6.3.1 Peripherals in LPM3 and LPM4

Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4, because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also due to an additional idle current. To limit the idle current adder, certain peripherals are grouped together. To achieve optimal current consumption, use modules within one group and limit the number of groups with active modules. The grouping is shown in Table 6-2. Modules not listed in this table are either already included in the standard LPM3 current consumption or cannot be used in LPM3 or LPM4.

The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C); refer to the I_{IDLE} current parameters in the electrical characteristics section for details..

 Group A
 Group B

 Timer TA1
 Timer TA0

 Timer TA2
 Timer TA3

 Timer TB0
 Comparator

 eUSCI_A0
 ADC12_B

 eUSCI_A1
 REF_A

 eUSCI_B0

Table 6-2. Peripheral Groups

6.4 Interrupt Vector Table and Signatures

The interrupt vectors, the power-up start address and signatures are located in the address range 0FFFh to 0FF80h. Table 6-3 summarizes the content of this address range.

The power-up start address or reset vector is located at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing to the start address of the application program.

The interrupt vectors start at 0FFFDh extending to lower addresses. Each vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

The vectors programmed into the address range from 0FFFh to 0FFE0h are used as BSL password (if enabled by the corresponding signature).

The signatures are located at 0FF80h extending to higher addresses. Signatures are evaluated during device start-up. Starting from address 0FF88h extending to higher addresses a JTAG password can programmed. The password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for the password.

Refer to the chapter "System Resets, Interrupts, and Operating Modes, System Control Module (SYS)" in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide (SLAU367) for details.

Table 6-3. Interrupt Sources, Flags, Vectors, and Signatures

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, Brownout, Supply Supervisor External Reset RST Watchdog Timeout (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM uncorrectable bit error detection MPU segment violation FRAM access time error Software POR, BOR	SVSHIFG PMMRSTIFG WDTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW UBDIFG MPUSEGIIFG, MPUSEG2IFG, MPUSEG3IFG ACCTEIFG PMMPORIFG, PMMBORIFG (SYSRSTIV) (1) (2)	Reset	0FFFEh	highest
System NMI Vacant Memory Access JTAG Mailbox FRAM bit error detection MPU segment violation	VMAIFG JMBNIFG, JMBOUTIFG CBDIFG, UBDIFG MPUSEGIIFG, MPUSEG2IFG, MPUSEG3IFG (SYSSNIV) ⁽¹⁾ (3)	(Non)maskable	0FFFCh	
User NMI External NMI Oscillator Fault	NMIIFG, OFIFG (SYSUNIV) ⁽¹⁾ (³⁾	(Non)maskable	0FFFAh	
Comparator_E	CEIFG, CEIIFG (CEIV) ⁽¹⁾	Maskable	0FFF8h	
TB0	TB0CCR0.CCIFG	Maskable	0FFF6h	
TB0	TB0CCR1.CCIFG TB0CCR6.CCIFG, TB0CTL.TBIFG (TB0IV) ⁽¹⁾	Maskable	0FFF4h	
Watchdog Timer (Interval Timer Mode)	WDTIFG	Maskable	0FFF2h	
eUSCI_A0 Receive or Transmit	UCA0IFG: UCRXIFG, UCTXIFG (SPI mode) UCA0IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA0IV) ⁽¹⁾	Maskable	0FFF0h	
eUSCI_B0 Receive or Transmit	UCB0IFG: UCRXIFG, UCTXIFG (SPI mode) UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I ² C mode) (UCB0IV) ⁽¹⁾	Maskable	0FFEEh	
ADC12_B	ADC12IFG0 to ADC12IFG31 ADC12LOIFG, ADC12INIFG, ADC12HIIFG, ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG (ADC12IV) ⁽¹⁾	Maskable	0FFECh	
TA0	TA0CCR0.CCIFG	Maskable	0FFEAh	
TA0	TA0CCR1.CCIFG, TA0CCR2.CCIFG, TA0CTL.TAIFG (TA0IV) ⁽¹⁾	Maskable	0FFE8h	
eUSCI_A1 Receive or Transmit	UCA1IFG: UCRXIFG, UCTXIFG (SPI mode) UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA1IV) ⁽¹⁾	Maskable	0FFE6h	
DMA	DMA0CTL.DMAIFG, DMA1CTL.DMAIFG, DMA2CTL.DMAIFG (DMAIV) ⁽¹⁾	Maskable	0FFE4h	
TA1	TA1CCR0.CCIFG	Maskable	0FFE2h	

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space

^{(3) (}Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.

Table 6-3. Interrupt Sources, Flags, Vectors, and Signatures (continued)

		<u> </u>	•	
INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
TA1	TA1CCR1.CCIFG, TA1CCR2.CCIFG, TA1CTL.TAIFG (TA1IV) ⁽¹⁾	Maskable	0FFE0h	
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾	Maskable	0FFDEh	
TA2	TA2CCR0.CCIFG	Maskable	0FFDCh	
TA2	TA2CCR1.CCIFG TA2CTL.TAIFG (TA2IV) ⁽¹⁾	Maskable	0FFDAh	
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ⁽¹⁾	Maskable	0FFD8h	
TA3	TA3CCR0.CCIFG	Maskable	0FFD6h	
TA3	TA3CCR1.CCIFG TA3CTL.TAIFG (TA3IV) ⁽¹⁾	Maskable	0FFD4h	
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾	Maskable	0FFD2h	
I/O Port P4	P4IFG.0 to P4IFG.2 (P4IV) ⁽¹⁾	Maskable	0FFD0h	
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ⁽¹⁾	Maskable	0FFCEh	lowest
Reserved			0FFCCh	
			0FFCAh	
Reserved	Reserved ⁽⁴⁾		i.	
			0FF8Ch	
	IP Encapsulation Signature2 ⁽⁴⁾		0FF8Ah	
	IP Encapsulation Signature1 (4)(6)		0FF88h	
Signatures ⁽⁵⁾	BSL Signature2		0FF86h	
Signatures	BSL Signature1		0FF84h	
	JTAG Signature2		0FF82h	
	JTAG Signature1		0FF80h	

⁽⁴⁾ May contain a JTAG password required to enable JTAG access to the device.

⁽⁵⁾ Signatures are evaluated during device start-up. See the "System Resets, Interrupts, and Operating Modes, System Control Module (SYS)" chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide (SLAU367) for details.

⁽⁶⁾ Must not contain 0AAAAh if used as JTAG password and IP encapsulation functionality is not desired.

6.5 Memory Organization

Table 6-4 summarizes the memory organization for all device variants.

Table 6-4. Memory Organization⁽¹⁾

		MSP430FR58x9	MSP430FR58x8	MSP430FR58x7
Memory (FRAM) Main: interrupt vectors and signatures Main: code memory	Total Size	63KB 00FFFFh-00FF80h 013FFFh-004400h	47KB 00FFFFh-00FF80h 00FF7Fh-004400h	32KB 00FFFFh-00FF80h 00FF7Fh-008000h
RAM		2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	1KB 001FFFh-001C00h
Device Descriptor Info (TLV) (FRAM)		256 B 001AFFh-001A00h	256 B 001AFFh-001A00h	256 B 001AFFh-001A00h
	Info A	128 B 0019FFh-001980h	128 B 0019FFh-001980h	128 B 0019FFh-001980h
Information memory	Info B	128 B 00197Fh-001900h	128 B 00197Fh-001900h	128 B 00197Fh-001900h
(FRAM)	Info C	128 B 0018FFh-001880h	128 B 0018FFh-001880h	128 B 0018FFh-001880h
	Info D	128 B 00187Fh-001800h	128 B 00187Fh-001800h	128 B 00187Fh-001800h
	BSL 3	512 B 0017FFh-001600h	512 B 0017FFh-001600h	512 B 0017FFh-001600h
Bootstrap loader (BSL)	BSL 2	512 B 0015FFh-001400h	512 B 0015FFh-001400h	512 B 0015FFh-001400h
memory (ROM)	BSL 1	512 B 0013FFh-001200h	512 B 0013FFh-001200h	512 B 0013FFh-001200h
	BSL 0	512 B 0011FFh-001000h	512 B 0011FFh-001000h	512 B 0011FFh-001000h
Peripherals	Size	4KB 000FFFh-0h	4KB 000FFFh-0h	4KB 000FFFh-0h

⁽¹⁾ All address space not listed is considered vacant memory.

6.6 Bootstrap Loader (BSL)

The BSL enables users to program the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I²C interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in Table 6-5. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319).

Table 6-5. BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P2.0	Devices with UART BSL (FRxxxx): Data transmit
P2.1	Devices with UART BSL (FRxxxx): Data receive
P1.6	Devices with I ² C BSL (FRxxxx1): Data
P1.7	Devices with I ² C BSL (FRxxxx1): Clock
VCC	Power supply
VSS	Ground supply

6.7 JTAG Operation

6.7.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 6-6. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 6-6. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

6.7.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 6-7. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide* (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming Via the JTAG Interface* (SLAU320).

Table 6-7. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output
VCC		Power supply
VSS		Ground supply

6.8 FRAM Memory

The FRAM memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or insystem by the CPU. Features of the FRAM memory include:

- Ultra-low-power ultra-fast-write nonvolatile memory
- Byte and word access capability
- · Programmable wait state generation
- Error correction coding (ECC)

NOTE

Wait States

For MCLK frequencies > 8 MHz, wait states must be configured following the flow described in the "Wait State Control" section of the "FRAM Controller (FRCTRL)" chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide (SLAU367).

For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see the application report *MSP430*TM *FRAM Technology – How To and Best Practices* (SLAA628).

6.9 Memory Protection Unit Including IP Encapsulation

The FRAM memory can be protected from inadvertent CPU execution, read access, or write access by the MPU. Features of the MPU include:

- IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for example, JTAG or non-IP software).
- Main memory partitioning is programmable up to three segments in steps of 1KB.
- Each segment's access rights can be individually selected (main and information memory).
- Access violation flags with interrupt capability for easy servicing of access violations.

6.10 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be handled using all instructions. For complete module descriptions, see the MSP430FR58xx, MSP430FR68xx, MSP430FR69xx Family User's Guide (SLAU367).

6.10.1 Digital I/O

There are up to four 8-bit I/O ports implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt and LPM3.5 and LPM4.5 wakeup input capability is available for all ports.
- Read and write access to port control registers is supported by all instructions.
- Ports can be accessed byte-wise or word-wise in pairs.
- Capacitive Touch functionality is supported on all pins of ports P1, P2, P3, P4, and PJ.
- No cross-currents during start-up.

NOTE

Configuration of Digital I/Os After BOR Reset

To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers, and their module functions disabled. To enable the I/O functionality after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, refer to the "Configuration After Reset" section of the "Digital I/O" chapter in the MSP430FR58xx, MSP430FR69xx, MSP430FR69xx Family User's Guide (SLAU367).

6.10.2 Oscillator and Clock System (CS)

The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals:

- Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal low-frequency oscillator (VLO), or a digital external low-frequency (<50 kHz) clock source.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency crystal (HFXT2), the internal digitally controlled oscillator DCO, a 32-kHz watch crystal (LFXT1), the internal low-frequency oscillator (VLO), or a digital external clock source.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to MCLK.

6.10.3 Power-Management Module (PMM)

The primary functions of the PMM are:

- Supply regulated voltages to the core logic
- Supervise voltages that are connected to the device (at DVCC pins)
- Give reset signals to the device during power-on and power-off

6.10.4 Hardware Multiplier (MPY)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed multiplication, unsigned multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.

6.10.5 Real-Time Clock (RTC_B) (Only MSP430FR586x and MSP430FR584x)

The RTC_B module contains an integrated real-time clock (RTC). It integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 modes to minimize power consumption.

6.10.6 Watchdog Timer (WDT_A)

The primary function of the WDT_A module is to perform a controlled system restart if a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

Table 6-8. WDT_A Clocks

WDTSSELx	NORMAL OPERATION (WATCHDOG AND INTERVAL TIMER MODE)		
00	SMCLK		
01	ACLK		
10	VLOCLK		
11	LFMODCLK		

6.10.7 System Module (SYS)

The SYS module manages many of the system functions within the device. These include power on reset (POR) and power up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS module also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.

Table 6-9. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
SYSRSTIV, System Reset	019Eh	No interrupt pending	00h	
		Brownout (BOR)	02h	Highest
		RSTIFG RST/NMI (BOR)		
		PMMSWBOR software BOR (BOR)	06h	
		LPMx.5 wakeup (BOR)	08h	
		Security violation (BOR)	0Ah	
		Reserved		
		SVSHIFG SVSH event (BOR)	0Eh	
		Reserved	10h	
		Reserved	12h	
		PMMSWPOR software POR (POR)	14h	
		WDTIFG watchdog timeout (PUC)	16h	
		WDTPW password violation (PUC)	18h	

Table 6-9. System Module Interrupt Vector Registers (continued)

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		FRCTLPW password violation (PUC)	1Ah	
		Uncorrectable FRAM bit error detection (PUC)	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMMPW PMM password violation (PUC)	20h	
		MPUPW MPU password violation (PUC)	22h	
		CSPW CS password violation (PUC)		
		MPUSEGPIFG encapsulated IP memory segment violation (PUC)		
		MPUSEGIIFG information memory segment violation (PUC)		
		MPUSEG1IFG segment 1 memory violation (PUC)	2Ah	
		MPUSEG2IFG segment 2 memory violation (PUC)		
		MPUSEG3IFG segment 3 memory violation (PUC)		
		ACCTEIFG access time error (PUC) (1)	30h	
		Reserved	32h to 3Eh	Lowest
SYSSNIV, System NMI	019Ch	No interrupt pending	00h	
		Reserved	02h	Highest
		Uncorrectable FRAM bit error detection	04h	
		Reserved	06h	
		MPUSEGPIFG encapsulated IP memory segment violation	08h	
		MPUSEGIIFG information memory segment violation	0Ah	
		MPUSEG1IFG segment 1 memory violation	0Ch	
		MPUSEG2IFG segment 2 memory violation	0Eh	
		MPUSEG3IFG segment 3 memory violation	10h	
		VMAIFG Vacant memory access	12h	
		JMBINIFG JTAG mailbox input	14h	
		JMBOUTIFG JTAG mailbox output	16h	
		Correctable FRAM bit error detection	18h	
		Reserved	1Ah to 1Eh	Lowest
SYSUNIV, User NMI	019Ah	No interrupt pending	00h	
		NMIFG NMI pin	02h	Highest
		OFIFG oscillator fault	04h	
		Reserved	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

⁽¹⁾ Indicates incorrect wait state settings.

6.10.8 DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

Table 6-10. DMA Trigger Assignments⁽¹⁾

TRIGGER	CHANNEL 0	CHANNEL 1	CHANNEL 2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	TA2CCR0 CCIFG	TA2CCR0 CCIFG	TA2CCR0 CCIFG
6	TA3CCR0 CCIFG	TA3CCR0 CCIFG	TA3CCR0 CCIFG
7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
9	Reserved	Reserved	Reserved
10	Reserved	Reserved	Reserved
11	Reserved	Reserved	Reserved
12	Reserved	Reserved	Reserved
13	Reserved	Reserved	Reserved
14	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
15	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
16	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
17	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
18	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)	UCB0RXIFG (SPI) UCB0RXIFG0 (I ² C)
19	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)	UCB0TXIFG (SPI) UCB0TXIFG0 (I ² C)
20	UCB0RXIFG1 (I ² C)	UCB0RXIFG1 (I ² C)	UCB0RXIFG1 (I ² C)
21	UCB0TXIFG1 (I ² C)	UCB0TXIFG1 (I ² C)	UCB0TXIFG1 (I ² C)
22	UCB0RXIFG2 (I ² C)	UCB0RXIFG2 (I ² C)	UCB0RXIFG2 (I ² C)
23	UCB0TXIFG2 (I ² C)	UCB0TXIFG2 (I ² C)	UCB0TXIFG2 (I ² C)
24	UCB0RXIFG3 (I ² C)	UCB0RXIFG3 (I ² C)	UCB0RXIFG3 (I ² C)
25	UCB0TXIFG3 (I ² C)	UCB0TXIFG3 (I ² C)	UCB0TXIFG3 (I ² C)
26	ADC12 end of conversion	ADC12 end of conversion	ADC12 end of conversion
27	Reserved	Reserved	Reserved
28	Reserved	Reserved	Reserved
29	MPY ready	MPY ready	MPY ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

⁽¹⁾ If a reserved trigger source is selected, no trigger is generated.

6.10.9 Enhanced Universal Serial Communication Interface (eUSCI)

The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA.

The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, and IrDA.

The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) and I²C.

Two eUSCI_A modules and one eUSCI_B module are implemented.

6.10.10 TAO, TA1

TA0 and TA1 are 16-bit timers and counters (Timer_A type) with three capture/compare registers each. Each can support multiple captures or compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-11. TA0 Signal Connections

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN					
P1.2	TA0CLK	TACLK									
	ACLK (internal)	ACLK	Timer	NI/A	NI/A						
	SMCLK (internal)	SMCLK	rimer	N/A	N/A						
P1.2	TA0CLK	INCLK									
P1.6	TA0.0	CCI0A				P1.6					
P2.3	TA0.0	CCI0B	0000	T4.0	TAO 0	P2.3					
	DVSS	GND	CCR0	TA0	TA0.0						
	DVCC	V _{CC}									
P1.0	TA0.1	CCI1A				P1.0					
	COUT (internal)	CCI1B	CCR1	TA1	TA1	TA1	TA1	TA1	TA1	TA0.1	ADC12(internal) ADC12SHSx = {1}
	DVSS	GND									
	DVCC	V _{cc}									
P1.1	TA0.2	CCI2A				P1.1					
	ACLK (internal)	CCI2B	CCDO	T40							
	DVSS	GND	CCR2	TA2	TA0.2						
	DVCC	V _{CC}									

Table 6-12. TA1 Signal Connections

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN		
P1.1	TA1CLK	TACLK						
	ACLK (internal)	ACLK	Timer	N/A	N/A			
	SMCLK (internal)	SMCLK	rimei	IN/A	IN/A			
P1.1	TA1CLK	INCLK						
P1.7	TA1.0	CCI0A				P1.7		
P2.4	TA1.0	CCI0B	CCR0 TA0	CCBO	TAO	TA4.0	P2.4	
	DVSS	GND		TAU	TA1.0			
	DVCC	V _{CC}						
P1.2	TA1.1	CCI1A				P1.2		
	COUT (internal)	CCI1B	CCR1	TA1	TA1	TA1	TA1.1	ADC12(internal) ADC12SHSx = {4}
	DVSS	GND						
	DVCC	V _{CC}						
P1.3	TA1.2	CCI2A				P1.3		
	ACLK (internal)	CCI2B	CODO	TA2	TA4.0			
	DVSS	GND	CCR2		TA1.2			
	DVCC	V _{CC}						

6.10.11 TA2, TA3

TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and with internal connections only. Each can support multiple captures or compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-13. TA2 Signal Connections

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	
COUT (internal)	TACLK				
ACLK (internal)	ACLK				
SMCLK (internal)	SMCLK	Timer	N/A		
From Capacitive Touch IO 0 (internal)	INCLK				
TA3 CCR0 output (internal)	CCI0A	CCR0			TA3 CCI0A input
ACLK (internal)	CCI0B		TA0		
DVSS	GND				
DVCC	V _{CC}				
From Capacitive Touch IO 0 (internal)	CCI1A			ADC12(internal) ADC12SHSx = {5}	
COUT (internal)	CCI1B	CCR1	TA1		
DVSS	GND				
DVCC	V _{CC}				

Table 6-14. TA3 Signal Connections

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
COUT (internal)	TACLK			
ACLK (internal)	ACLK			
SMCLK (internal)	SMCLK	Timer	N/A	
From Capacitive Touch IO 1 (internal)	INCLK			
TA2 CCR0 output (internal)	CCI0A		TA0	TA2 CCI0A input
ACLK (internal)	CCI0B	CCR0		
DVSS	GND			
DVCC	V _{cc}			
From Capacitive Touch IO 1 (internal)	CCI1A			ADC12(internal) ADC12SHSx = {6}
COUT (internal)	CCI1B	CCR1	TA1	
DVSS	GND			
DVCC	V _{cc}			

6.10.12 TB0

TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. It can support multiple captures or compares, PWM outputs, and interval timing. It has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-15. TB0 Signal Connections

INPUT PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PORT PIN						
P2.0	TB0CLK	TBCLK										
	ACLK (internal)	ACLK		N/A	N/A							
	SMCLK (internal)	SMCLK	Timer	IN/A	IN/A							
P2.0	TB0CLK	INCLK										
P2.1	TB0.0	CCI0A				P2.1						
P2.5	TB0.0	CCI0B				P2.5						
	DVSS	GND	CCR0	TB0	TB0.0	ADC12 (internal) ADC12SHSx = {2}						
	DVCC	V _{CC}										
P1.4	TB0.1	CCI1A				P1.4						
	COUT (internal)	CCI1B				P2.6						
	DVSS	GND	CCR1	TB1	TB0.1	ADC12 (internal) ADC12SHSx = {3}						
	DVCC	V _{CC}										
P1.5	TB0.2	CCI2A		CR2 TB2		P1.5						
	ACLK (internal)	CCI2B	CCP2		2 TB0.2	P2.2						
	DVSS	GND	CCR2 TB2	160.2								
	DVCC	V _{CC}										
P3.4	TB0.3	CCI3A				P3.4						
P1.6	TB0.3	CCI3B	CCD2	TB3	CCR3 TB3	TB0.3	P1.6					
	DVSS	GND	CCRS			160.3						
	DVCC	V _{CC}										
P3.5	TB0.4	CCI4A				P3.5						
P1.7	TB0.4	CCI4B	CCD4	TD 4	TD 4	TD4	TB4	TD4	TD4	TD4	4 TD0 4	P1.7
	DVSS	GND	CCR4	184	TB0.4							
	DVCC	V _{cc}										
P3.6	TB0.5	CCI5A				P3.6						
P4.4	TB0.5	CCI5B	CODE	TDF	TDO 5	P4.4						
	DVSS	GND	CCR5	TB5	TB5 TB0.5							
	DVCC	V _{CC}										
P3.7	TB0.6	CCI6A				P3.7						
P2.0	TB0.6	CCI6B	CCDC	T	TDO C	P2.0						
	DVSS	GND	CCR6	TB6	TB0.6							
	DVCC	V _{CC}										

6.10.13 ADC12 B

The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended inputs. The module implements a 12-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with a lower and upper limit allows CPU-independent result monitoring with three window comparator interrupt flags.

The external trigger sources available are summarized in Table 6-16.

The available multiplexing between internal and external analog inputs is listed in Table 6-17.

Table 6-16. ADC12_B Trigger Signal Connections

ADC1	2SHSx	CONNECTED TRIGGER
BINARY	DECIMAL	SOURCE
000	0	Software (ADC12SC)
001	1	TA0 CCR1 output
010	2	TB0 CCR0 output
011	3	TB0 CCR1 output
100	4	TA1 CCR1 output
101	5	TA2 CCR1 output
110	6	TA3 CCR1 output
111	7	Reserved (DVSS)

Table 6-17. ADC12_B External and Internal Signal Mapping

CONTROL BIT IN ADC12CTL3 REGISTER	EXTERNAL ADC INPUT (CONTROL BIT = 0)	INTERNAL ADC INPUT (CONTROL BIT = 1)
ADC12BATMAP	A31	Battery Monitor
ADC12TCMAP	A30	Temperature Sensor
ADC12CH0MAP	A29	N/A ⁽¹⁾
ADC12CH1MAP	A28	N/A ⁽¹⁾
ADC12CH2MAP	A27	N/A ⁽¹⁾
ADC12CH3MAP	A26	N/A ⁽¹⁾

⁽¹⁾ N/A = No internal signal is available on this device.

6.10.14 Comparator_E

The primary function of the Comparator_E module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.10.15 CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.10.16 True Random Seed

The Device Descriptor Information (TLV) section contains a 128-bit true random seed that can be used to implement a deterministic random number generator.

6.10.17 Shared Reference (REF)

The REF module is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

6.10.18 Embedded Emulation

Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The S version of the EEM that is implemented on all devices has the following features:

- Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- One cycle counter
- · Clock control on module level

EnergyTrace++™ Technology

The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology allows you to observe information about the internal states of the microcontroller. These states include the CPU Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of the clock source), and the low-power mode currently in use. These states can always be read by a debug tool, even when the microcontroller sleeps in LPMx.5 modes.

The activity of the following modules can be observed:

- MPY is calculating.
- · WDT is counting.
- · RTC is counting.
- ADC: a sequence, sample, or conversion is active.
- REF: REFBG or REFGEN active and BG in static mode.
- COMP is on.
- eUSCI_A0 is transferring (receiving or transmitting) data.
- eUSCI A1 is transferring (receiving or transmitting) data.
- eUSCI_B0 is transferring (receiving or transmitting) data.
- TB0 is counting.
- TA0 is counting.
- TA1 is counting.
- TA2 is counting.
- TA3 is counting.

6.10.19 Peripheral File Map

For complete module register descriptions, see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide (SLAU367).

Table 6-18. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 6-19)	0100h	000h-01Fh
PMM (see Table 6-20)	0120h	000h-01Fh
FRAM Control (see Table 6-21)	0140h	000h-00Fh
CRC16 (see Table 6-22)	0150h	000h-007h
Watchdog (see Table 6-23)	015Ch	000h-001h
CS (see Table 6-24)	0160h	000h-00Fh
SYS (see Table 6-25)	0180h	000h-01Fh
Shared Reference (see Table 6-26)	01B0h	000h-001h
Port P1, P2 (see Table 6-27)	0200h	000h-01Fh
Port P3, P4 (see Table 6-28)	0220h	000h-01Fh
Port PJ (see Table 6-29)	0320h	000h-01Fh
TA0 (see Table 6-30)	0340h	000h-02Fh
TA1 (see Table 6-31)	0380h	000h-02Fh
TB0 (see Table 6-32)	03C0h	000h-02Fh
TA2 (see Table 6-33)	0400h	000h-02Fh
Capacitive Touch IO 0 (see Table 6-34)	0430h	000h-00Fh
TA3 (see Table 6-35)	0440h	000h-02Fh
Capacitive Touch IO 1 (see Table 6-36)	0470h	000h-00Fh
Real-Time Clock (RTC_B) (see Table 6-37)	04A0h	000h-01Fh
32-Bit Hardware Multiplier (see Table 6-38)	04C0h	000h-02Fh
DMA General Control (see Table 6-39)	0500h	000h-00Fh
DMA Channel 0 (see Table 6-39)	0510h	000h-00Fh
DMA Channel 1 (see Table 6-39)	0520h	000h-00Fh
DMA Channel 2 (see Table 6-39)	0530h	000h-00Fh
MPU Control (see Table 6-40)	05A0h	000h-00Fh
eUSCI_A0 (see Table 6-41)	05C0h	000h-01Fh
eUSCI_A1 (see Table 6-42)	05E0h	000h-01Fh
eUSCI_B0 (see Table 6-43)	0640h	000h-02Fh
ADC12_B (see Table 6-44)	0800h	000h-09Fh
Comparator_E (see Table 6-45)	08C0h	000h-00Fh

Table 6-19. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-20. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM interrupt flags	PMMIFG	0Ah
PM5 Control 0	PM5CTL0	10h

Table 6-21. FRAM Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
FRAM control 0	FRCTL0	00h
General control 0	GCCTL0	04h
General control 1	GCCTL1	06h

Table 6-22. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 6-23. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-24. CS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CS control 0	CSCTL0	00h
CS control 1	CSCTL1	02h
CS control 2	CSCTL2	04h
CS control 3	CSCTL3	06h
CS control 4	CSCTL4	08h
CS control 5	CSCTL5	0Ah
CS control 6	CSCTL6	0Ch

Table 6-25. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh

Table 6-25. SYS Registers (Base Address: 0180h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-26. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 6-27. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 selection 0	P1SEL0	0Ah
Port P1 selection 1	P1SEL1	0Ch
Port P1 interrupt vector word	P1IV	0Eh
Port P1 complement selection	P1SELC	16h
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 selection 0	P2SEL0	0Bh
Port P2 selection 1	P2SEL1	0Dh
Port P2 complement selection	P2SELC	17h
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-28. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 selection 0	P3SEL0	0Ah
Port P3 selection 1	P3SEL1	0Ch
Port P3 interrupt vector word	P3IV	0Eh
Port P3 complement selection	P3SELC	16h
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch

Table 6-28. Port P3, P4 Registers (Base Address: 0220h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 selection 0	P4SEL0	0Bh
Port P4 selection 1	P4SEL1	0Dh
Port P4 complement selection	P4SELC	17h
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 6-29. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ selection 0	PJSEL0	0Ah
Port PJ selection 1	PJSEL1	0Ch
Port PJ complement selection	PJSELC	16h

Table 6-30. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter register	TA0R	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
Capture/compare register 3	TA0CCR3	18h
Capture/compare register 4	TA0CCR4	1Ah
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-31. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h

Table 6-31. TA1 Registers (Base Address: 0380h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-32. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
Capture/compare register 3	TB0CCR3	18h
Capture/compare register 4	TB0CCR4	1Ah
Capture/compare register 5	TB0CCR5	1Ch
Capture/compare register 6	TB0CCR6	1Eh
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-33. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
TA2 register	TA2R	10h
Capture/compare register 0	TA2CCR0	12h
Capture/compare register 1	TA2CCR1	14h
TA2 expansion register 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

Table 6-34. Capacitive Touch IO 0 Registers (Base Address: 0430h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capacitive Touch IO 0 control	CAPTIO0CTL	0Eh

Table 6-35. TA3 Registers (Base Address: 0440h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA3 control	TA3CTL	00h
Capture/compare control 0	TA3CCTL0	02h

Table 6-35. TA3 Registers (Base Address: 0440h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capture/compare control 1	TA3CCTL1	04h
TA3 register	TA3R	10h
Capture/compare register 0	TA3CCR0	12h
Capture/compare register 1	TA3CCR1	14h
TA3 expansion register 0	TA3EX0	20h
TA3 interrupt vector	TA3IV	2Eh

Table 6-36. Capacitive Touch IO 1 Registers (Base Address: 0470h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capacitive Touch IO 1 control	CAPTIO1CTL	0Eh

Table 6-37. RTC_B Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC/RTCNT1	10h
RTC minutes	RTCMIN/RTCNT2	11h
RTC hours	RTCHOUR/RTCNT3	12h
RTC day of week	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion register	BIN2BCD	1Ch
BCD-to-binary conversion register	BCD2BIN	1Eh

Table 6-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch

Table 6-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 6-39. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Eh

Table 6-40. MPU Control Registers (Base Address: 05A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
MPU control 0	MPUCTL0	00h
MPU control 1	MPUCTL1	02h
MPU Segmentation Border 2	MPUSEGB2	04h
MPU Segmentation Border 1	MPUSEGB1	06h
MPU access management	MPUSAM	08h
MPU IP control 0	MPUIPC0	0Ah
MPU IP Encapsulation Segment Border 2	MPUIPSEGB2	0Ch
MPU IP Encapsulation Segment Border 1	MPUIPSEGB1	0Eh

Table 6-41. eUSCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA0CTLW0	00h
eUSCI _A control word 1	UCA0CTLW1	02h
eUSCI_A baud rate 0	UCA0BR0	06h
eUSCI_A baud rate 1	UCA0BR1	07h
eUSCI_A modulation control	UCA0MCTLW	08h
eUSCI_A status word	UCA0STATW	0Ah
eUSCI_A receive buffer	UCA0RXBUF	0Ch
eUSCI_A transmit buffer	UCA0TXBUF	0Eh
eUSCI_A LIN control	UCA0ABCTL	10h
eUSCI_A IrDA transmit control	UCA0IRTCTL	12h
eUSCI_A IrDA receive control	UCA0IRRCTL	13h
eUSCI_A interrupt enable	UCA0IE	1Ah
eUSCI_A interrupt flags	UCA0IFG	1Ch
eUSCI_A interrupt vector word	UCA0IV	1Eh

Table 6-42. eUSCI_A1 Registers (Base Address:05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA1CTLW0	00h
eUSCI _A control word 1	UCA1CTLW1	02h
eUSCI_A baud rate 0	UCA1BR0	06h
eUSCI_A baud rate 1	UCA1BR1	07h
eUSCI_A modulation control	UCA1MCTLW	08h
eUSCI_A status word	UCA1STATW	0Ah
eUSCI_A receive buffer	UCA1RXBUF	0Ch
eUSCI_A transmit buffer	UCA1TXBUF	0Eh
eUSCI_A LIN control	UCA1ABCTL	10h
eUSCI_A IrDA transmit control	UCA1IRTCTL	12h
eUSCI_A IrDA receive control	UCA1IRRCTL	13h
eUSCI_A interrupt enable	UCA1IE	1Ah
eUSCI_A interrupt flags	UCA1IFG	1Ch
eUSCI_A interrupt vector word	UCA1IV	1Eh

Table 6-43. eUSCI_B0 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B control word 0	UCB0CTLW0	00h
eUSCI_B control word 1	UCB0CTLW1	02h
eUSCI_B bit rate 0	UCB0BR0	06h
eUSCI_B bit rate 1	UCB0BR1	07h
eUSCI_B status word	UCB0STATW	08h
eUSCI_B byte counter threshold	UCB0TBCNT	0Ah
eUSCI_B receive buffer	UCB0RXBUF	0Ch
eUSCI_B transmit buffer	UCB0TXBUF	0Eh
eUSCI_B I2C own address 0	UCB0I2COA0	14h
eUSCI_B I2C own address 1	UCB0I2COA1	16h
eUSCI_B I2C own address 2	UCB0I2COA2	18h
eUSCI_B I2C own address 3	UCB0I2COA3	1Ah
eUSCI_B received address	UCB0ADDRX	1Ch
eUSCI_B address mask	UCB0ADDMASK	1Eh
eUSCI I2C slave address	UCB0I2CSA	20h
eUSCI interrupt enable	UCB0IE	2Ah
eUSCI interrupt flags	UCB0IFG	2Ch
eUSCI interrupt vector word	UCB0IV	2Eh

Table 6-44. ADC12_B Registers (Base Address: 0800h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12_B Control 0	ADC12CTL0	00h
ADC12_B Control 1	ADC12CTL1	02h
ADC12_B Control 2	ADC12CTL2	04h
ADC12_B Control 3	ADC12CTL3	06h
ADC12_B Window Comparator Low Threshold Register	ADC12LO	08h
ADC12_B Window Comparator High Threshold Register	ADC12HI	0Ah
ADC12_B Interrupt Flag Register 0	ADC12IFGR0	0Ch
ADC12_B Interrupt Flag Register 1	ADC12IFGR1	0Eh
ADC12_B Interrupt Flag Register 2	ADC12IFGR2	10h
ADC12_B Interrupt Enable Register 0	ADC12IER0	12h
ADC12_B Interrupt Enable Register 1	ADC12IER1	14h
ADC12_B Interrupt Enable Register 2	ADC12IER2	16h
ADC12_B Interrupt Vector	ADC12IV	18h
ADC12_B Memory Control 0	ADC12MCTL0	20h
ADC12_B Memory Control 1	ADC12MCTL1	22h
ADC12_B Memory Control 2	ADC12MCTL2	24h
ADC12_B Memory Control 3	ADC12MCTL3	26h
ADC12_B Memory Control 4	ADC12MCTL4	28h
ADC12_B Memory Control 5	ADC12MCTL5	2Ah
ADC12_B Memory Control 6	ADC12MCTL6	2Ch
ADC12_B Memory Control 7	ADC12MCTL7	2Eh
ADC12_B Memory Control 8	ADC12MCTL8	30h
ADC12_B Memory Control 9	ADC12MCTL9	32h
ADC12_B Memory Control 10	ADC12MCTL10	34h
ADC12_B Memory Control 11	ADC12MCTL11	36h
ADC12_B Memory Control 12	ADC12MCTL12	38h

Table 6-44. ADC12_B Registers (Base Address: 0800h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12_B Memory Control 13	ADC12MCTL13	3Ah
ADC12_B Memory Control 14	ADC12MCTL13	3Ch
ADC12_B Memory Control 15	ADC12MCTL15	3Eh
ADC12_B Memory Control 16	ADC12MCTL15	40h
ADC12_B Memory Control 17	ADC12MCTL17	42h 44h
ADC12_B Memory Control 18	ADC12MCTL18	
ADC12_B Memory Control 19	ADC12MCTL19	46h
ADC12_B Memory Control 20	ADC12MCTL20	48h
ADC12_B Memory Control 21	ADC12MCTL21	4Ah
ADC12_B Memory Control 22	ADC12MCTL22	4Ch
ADC12_B Memory Control 23	ADC12MCTL23	4Eh
ADC12_B Memory Control 24	ADC12MCTL24	50h
ADC12_B Memory Control 25	ADC12MCTL25	52h
ADC12_B Memory Control 26	ADC12MCTL26	54h
ADC12_B Memory Control 27	ADC12MCTL27	56h
ADC12_B Memory Control 28	ADC12MCTL28	58h
ADC12_B Memory Control 29	ADC12MCTL29	5Ah
ADC12_B Memory Control 30	ADC12MCTL30	5Ch
ADC12_B Memory Control 31	ADC12MCTL31	5Eh
ADC12_B Memory 0	ADC12MEM0	60h
ADC12_B Memory 1	ADC12MEM1	62h
ADC12_B Memory 2	ADC12MEM2	64h
ADC12_B Memory 3	ADC12MEM3	66h
ADC12_B Memory 4	ADC12MEM4	68h
ADC12_B Memory 5	ADC12MEM5	6Ah
ADC12_B Memory 6	ADC12MEM6	6Ch
ADC12_B Memory 7	ADC12MEM7	6Eh
ADC12_B Memory 8	ADC12MEM8	70h
ADC12_B Memory 9	ADC12MEM9	72h
ADC12_B Memory 10	ADC12MEM10	74h
ADC12_B Memory 11	ADC12MEM11	76h
ADC12_B Memory 12	ADC12MEM12	78h
ADC12_B Memory 13	ADC12MEM13	7Ah
ADC12_B Memory 14	ADC12MEM14	7Ch
ADC12_B Memory 15	ADC12MEM15	7Eh
ADC12_B Memory 16	ADC12MEM16	80h
ADC12_B Memory 17	ADC12MEM17	82h
ADC12_B Memory 18	ADC12MEM18	84h
ADC12_B Memory 19	ADC12MEM19	86h
ADC12_B Memory 20	ADC12MEM20	88h
ADC12_B Memory 21	ADC12MEM21	8Ah
ADC12_B Memory 22	ADC12MEM22	8Ch
ADC12_B Memory 23	ADC12MEM23	8Eh
ADC12_B Memory 24	ADC12MEM24	90h
ADC12_B Memory 25	ADC12MEM25	92h
ADC12_B Memory 26	ADC12MEM26	94h
ADC12_B Memory 27	ADC12MEM27	96h

Table 6-44. ADC12_B Registers (Base Address: 0800h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12_B Memory 28	ADC12MEM28	98h
ADC12_B Memory 29	ADC12MEM29	9Ah
ADC12_B Memory 30	ADC12MEM30	9Ch
ADC12_B Memory 31	ADC12MEM31	9Eh

Table 6-45. Comparator_E Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comparator_E control register 0	CECTL0	00h
Comparator_E control register 1	CECTL1	02h
Comparator_E control register 2	CECTL2	04h
Comparator_E control register 3	CECTL3	06h
Comparator_E interrupt register	CEINT	0Ch
Comparator_E interrupt vector word	CEIV	0Eh

6.11 Input/Output Schematics

6.11.1 Capacitive Touch Functionality Ports P1, P2, P3, P4, and PJ

All port pins provide the Capacitive Touch functionality as shown in the following figure. The Capacitive Touch functionality is controlled using the Capacitive Touch IO control registers CAPTIO0CTL and CAPTIO1CTL as described in the *MSP430FR58xx*, *MSP430FR59xx*, *MSP430FR68xx*, *MSP430FR68xx*, *MSP430FR69xx* Family User's Guide (SLAU367). The Capacitive Touch functionality is not shown in the individual pin schematics in the following sections.

6.11.2 Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger

Table 6-46. Port P1 (P1.0 to P1.2) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/	0	P1.0 (I/O)	I: 0; O: 1	0	0	
VREF-/VeREF-		TA0.CCI1A	0	0	4	
		TA0.1	1	U	1	
		DMAE0	0	4	0	
		RTCCLK ⁽²⁾⁽³⁾	1	1 1	0	
		A0, C0, VREF-, VeREF- ⁽⁴⁾⁽⁵⁾	Х	1	1	
P1.1/TA0.2/TA1CLK/COUT/A1/C1/ VREF+/VeREF+	1	P1.1 (I/O)	I: 0; O: 1	0	0	
		TA0.CCI2A	0	0	1	
		TA0.2	1			
		TA1CLK	0	4	0	
		COUT ⁽⁶⁾	1	1	0	
		A1, C1, VREF+, VeREF+ ⁽⁴⁾⁽⁵⁾	Х	1	1	
P1.2/TA1.1/TA0CLK/COUT/A2/C2	2	P1.2 (I/O)	I: 0; O: 1	0	0	
		TA1.CCI1A	0	0	1	
		TA1.1	1	0		
		TA0CLK	0	4		
		COUT ⁽⁷⁾	1	1	0	
		A2, C2 ⁽⁴⁾⁽⁵⁾	X	1	1	

⁽¹⁾ X = Don't care

⁽²⁾ Not available on MSP430FR5x5x devices

⁽³⁾ NOTE: Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternative RTCCLK output pin.

⁽⁴⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽⁵⁾ Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

⁽⁶⁾ NOTE: Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternative COUT output pin.

⁽⁷⁾ NOTE: Do not use this pin as COUT output if the TAOCLK functionality is used on any other pin. Select an alternative COUT output pin.

6.11.3 Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger

Table 6-47. Port P1 (P1.3 to P1.5) Pin Functions

PIN NAME (P1.x)		FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾		
	X	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	
P1.3/TA1.2/UCB0STE/A3/C3	3	P1.3 (I/O)	I: 0; O: 1	0	0	
		TA1.CCI2A	0	0	4	
		TA1.2	1	0	1	
		UCB0STE	X ⁽²⁾	1	0	
		A3, C3 ⁽³⁾⁽⁴⁾	Х	1	1	
P1.4/TB0.1/UCA0STE/A4/C4	4	P1.4 (I/O)	I: 0; O: 1	0	0	
		TB0.CCI1A	0	0	1	
		TB0.1	1			
		UCA0STE	X ⁽⁵⁾	1	0	
		A4, C4 ⁽³⁾⁽⁴⁾	Х	1	1	
P1.5/TB0.2/UCA0CLK/A5/C5	5	P1.5(I/O)	I: 0; O: 1	0	0	
		TB0.CCI2A	0	0	4	
		TB0.2	1	0	1	
		UCA0CLK	X ⁽⁵⁾	1	0	
		A5, C5 ⁽³⁾⁽⁴⁾	X	1	1	

⁽¹⁾ X = Don't care

(5) Direction controlled by eUSCI_A0 module.

⁽²⁾ Direction controlled by eUSCI_B0 module.

⁽³⁾ Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽⁴⁾ Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

6.11.4 Port P1, P1.6 and P1.7, Input/Output With Schmitt Trigger

Table 6-48. Port P1 (P1.6 and P1.7) Pin Functions

PIN NAME (P1.x)	x FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾		
		FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
P1.6/TB0.3/UCB0SIMO/UCB0SDA/ TA0.0	6	P1.6 (I/O)	I: 0; O: 1	0	0
		TB0.CCI3B	0	0	4
		TB0.3	1	0	1
		UCB0SIMO/UCB0SDA	X ⁽²⁾	1	0
		TA0.CCI0A	0	1	1
		TA0.0	1		'
P1.7/TB0.4/UCB0SOMI/UCB0SCL/ TA1.0	7	P1.7 (I/O)	I: 0; O: 1	0	0
		TB0.CCI4B	0		1
		TB0.4	1	0	
		UCB0SOMI/UCB0SCL	X ⁽³⁾	1	0
		TA1.CCI0A	0	4	4
		TA1.0	1	1	1

⁽¹⁾ X = Don't care

⁽²⁾ Direction controlled by eUSCI_B0 module.

⁽³⁾ Direction controlled by eUSCI_A0 module.

6.11.5 Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger

Table 6-49. Port P2 (P2.0 to P2.2) Pin Functions

PIN NAME (P2.x)		FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾		
	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	
P2.0/TB0.6/UCA0TXD/UCA0SIMO/	0	P2.0 (I/O)	I: 0; O: 1	0	0	
TB0CLK/ACLK		TB0.CCI6B	0	0	4	
		TB0.6	1	0	1	
		UCA0TXD/UCA0SIMO	X ⁽²⁾	1	0	
		TB0CLK	0	1	1	
		ACLK ⁽³⁾	1			
P2.1/TB0.0/UCA0RXD/UCA0SOMI/	1	P2.1 (I/O)	I: 0; O: 1	0	0	
TB0.0		TB0.CCI0A	0	Х	1	
		TB0.0	1			
		UCA0RXD/UCA0SOMI	X ⁽²⁾	1	0	
P2.2/TB0.2/UCB0CLK	2	P2.2 (I/O)	I: 0; O: 1	0	0	
		N/A	0	0	4	
		TB0.2	1	0	1	
		UCB0CLK	X ⁽⁴⁾	1	0	
		N/A	0	4	4	
		Internally tied to DVSS	1	1	1	

¹⁾ X = Don't care

Direction controlled by eUSCI_A0 module.

⁽³⁾ NOTE: Do not use this pin as ACLK output if the TB0CLK functionality is used on any other pin. Select an alternative ACLK output pin.

⁴⁾ Direction controlled by eUSCI_B0 module.

6.11.6 Port P2, P2.3 and P2.4, Input/Output With Schmitt Trigger

RUMENTS

Table 6-50. Port P2 (P2.3 and P2.4) Pin Functions

DIN NAME (D2 v)		x FUNCTION		CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x		
P2.3/TA0.0/UCA1STE/A6/C10	3	P2.3 (I/O)	I: 0; O: 1	0	0		
		TA0.CCI0B	0	0	4		
		TA0.0	1	0	1		
		UCA1STE	X ⁽²⁾	1	0		
		A6, C10 ⁽³⁾⁽⁴⁾	Х	1	1		
P2.4/TA1.0/UCA1CLK/A7/C11	4	P2.4 (I/O)	I: 0; O: 1	0	0		
		TA1.CCI0B	0		4		
		TA1.0	1	0	1		
		UCA1CLK	X ⁽²⁾	1	0		
		A7, C11 ⁽³⁾⁽⁴⁾	Х	1	1		

X = Don't care

Direction controlled by eUSCI_A1 module.

Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

6.11.7 Port P2, P2.5 and P2.6, Input/Output With Schmitt Trigger

Table 6-51. Port P2 (P2.5 and P2.6) Pin Functions

DIN NAME (D2 v)	,	FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x		
P2.5/TB0.0/UCA1TXD/UCA1SIMO	5	P2.5(I/O)	I: 0; O: 1	0	0		
		TB0.CCI0B	0	0	4		
		TB0.0	1	0	1		
		UCA1TXD/UCA1SIMO	X ⁽²⁾	1	0		
		N/A	0	4	4		
		Internally tied to DVSS	1	1	1		
P2.6/TB0.1/UCA1RXD/UCA1SOMI	6	P2.6(I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
		TB0.1	1	0	1		
		UCA1RXD/UCA1SOMI	X ⁽²⁾	1	0		
		N/A	0	4	4		
		Internally tied to DVSS	1	1	1		

⁽¹⁾ X = Don't care

⁽²⁾ Direction controlled by eUSCI_A1 module.

6.11.8 Port P2, P2.7, Input/Output With Schmitt Trigger

NOTE: Functional representation only.

Table 6-52. Port P2 (P2.7) Pin Functions

DIN NAME (DO v)		x FUNCTION		CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x		
P2.7	7	P2.7(I/O)	I: 0; O: 1	0	0		
		N/A	0		4		
		Internally tied to DVSS	1	U	1		
		N/A	0	_			
		Internally tied to DVSS	1	1	Х		

(1) X = Don't care

6.11.9 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger

Table 6-53. Port P3 (P3.0 to P3.3) Pin Functions

DIN NAME (D2)		FUNCTION	CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x		
P3.0/A12/C12	0	P3.0 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0			
		Internally tied to DVSS	1	0	1		
		N/A	0	1	0		
		Internally tied to DVSS	1	1	0		
		A12/C12 ⁽²⁾⁽³⁾	Х	1	1		
P3.1/A13/C13	1	P3.1 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0			
		Internally tied to DVSS	1	0	1		
		N/A	0	4	0		
		Internally tied to DVSS	1	1	0		
		A13/C13 ⁽²⁾⁽³⁾	Х	1	1		
P3.2/A14/C14	2	P3.2 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
		Internally tied to DVSS	1	0	1		
		N/A	0	4	0		
		Internally tied to DVSS	1	1	0		
		A14/C14 ⁽²⁾⁽³⁾	Х	1	1		
P3.3/A15/C15	3	P3.3 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
		Internally tied to DVSS	1	0	1		
		N/A	0	4	0		
		Internally tied to DVSS	1	1	0		
		A15/C15 ⁽²⁾⁽³⁾	X	1	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P3SEL1.x and P3SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

6.11.10 Port P3, P3.4 to P3.7, Input/Output With Schmitt Trigger

Table 6-54. Port P3 (P3.4 to P3.7) Pin Functions

DIN NAME (DO)		FUNCTION	CONTRO	OL BITS AND SIG	SNALS ⁽¹⁾
PIN NAME (P3.x)	х	FUNCTION	P3DIR.x	P3SEL1.x	P3SEL0.x
P3.4/TB0.3/SMCLK	4	P3.4 (I/O)	I: 0; O: 1	0	0
		TB0.CCI3A	0	0	4
		TB0.3	1	0	1
		N/A	0	1	Х
		SMCLK	1	l	^
P3.5/TB0.4/COUT	5	P3.5 (I/O)	I: 0; O: 1	0	0
		TB0.CCI4A	0	0	4
		TB0.4	1	0	1
		N/A	0	4	Х
		COUT	1	1	^
P3.6/TB0.5	6	P3.6 (I/O)	I: 0; O: 1	0	0
		TB0.CCI5A	0	0	4
		TB0.5	1	0	1
		N/A	0	1	V
		Internally tied to DVSS	1	1	Х
P3.7/TB0.6	7	P3.7 (I/O)	I: 0; O: 1	0	0
		TB0.CCI6A	0		4
		TB0.6	1	0	1
		N/A	0	4	V
		Internally tied to DVSS	1	1	X

⁽¹⁾ X = Don't care

6.11.11 Port P4, P4.0 to P4.3, Input/Output With Schmitt Trigger

Table 6-55. Port P4 (P4.0 to P4.3) Pin Functions

DIN NAME (D4)	x FUNCTION		CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾			
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x		
P4.0/A8	0	P4.0 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	,		
		Internally tied to DVSS	1	0	1		
		N/A	0	4	0		
		Internally tied to DVSS	1	1	0		
		A8 ⁽²⁾	Х	1	1		
P4.1/A9	1	P4.1 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	,		
		Internally tied to DVSS	1	0	1		
		N/A	0	_	0		
		Internally tied to DVSS	1	1	0		
		A9 ⁽²⁾	Х	1	1		
P4.2/A10	2	P4.2 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0			
		Internally tied to DVSS	1	0	1		
		N/A	0	_			
		Internally tied to DVSS	1	1	0		
		A10 ⁽²⁾	Х	1	1		
P4.3/A11	3	P4.3 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
		Internally tied to DVSS	1	0	1		
		N/A	0	_			
		Internally tied to DVSS	1	1	0		
		A11 ⁽²⁾	X	1	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P4SEL1.x and P4SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

6.11.12 Port P4, P4.4 to P4.7, Input/Output With Schmitt Trigger

Table 6-56. Port P4 (P4.4 to P4.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTRO	OL BITS AND SIG	SNALS ⁽¹⁾
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x
P4.4/TB0.5	4	P4.4 (I/O)	I: 0; O: 1	0	0
		TB0.CCI5B	0	0	4
		TB0.5	1	0	1
		N/A	0	1	Х
		Internally tied to DVSS	1	l	^
P4.5	5	P4.5 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
		Internally tied to DVSS	1	0	1
		N/A	0	1	X
		Internally tied to DVSS	1	l	^
P4.6	6	P4.6 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
		Internally tied to DVSS	1	0	1
		N/A	0	1	Х
		Internally tied to DVSS	1	l	^
P4.7	7	P4.7 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
		Internally tied to DVSS	1	0	1
		N/A	0	0 .	
		Internally tied to DVSS	1	1	X

⁽¹⁾ X = Don't care

6.11.13 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger

Table 6-57. Port PJ (PJ.4 and PJ.5) Pin Functions

				CO	NTROL BITS	AND SIGNAL	.S ⁽¹⁾		
PIN NAME (PJ.x)	x	FUNCTION	PJDIR.x	PJSEL1.5	PJSEL0.5	PJSEL1.4	PJSEL0.4	LFXT BYPASS	
PJ.4/LFXIN	4	PJ.4 (I/O)	I: 0; O: 1	Х	Х	0	0	Х	
		N/A	0	V	V	4	V	V	
		Internally tied to DVSS	1	X	X	1	X	X	
		LFXIN crystal mode (2)	Х	Х	Х	0	1	0	
		LFXIN bypass mode (2)	Х	Х	Х	0	1	1	
PJ.5/LFXOUT	5					0	0	0	
			PJ.5 (I/O)	I: 0; O: 1	0	0	1	Х	0
						Х	Х	1 ⁽³⁾	
						0	0	0	
		N/A	0	see (4)	see ⁽⁴⁾	1	Х	0	
						Х	Х	1 ⁽³⁾	
						0	0	0	
		Internally tied to DVSS	1	see ⁽⁴⁾	see ⁽⁴⁾	1	Х	0	
						Х	Х	1 ⁽³⁾	
		LFXOUT crystal mode (2)	Х	Х	Х	0	1	0	

⁽¹⁾ X = Don't care

⁽²⁾ If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O.

⁽³⁾ When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.

⁽⁴⁾ If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output, the pin is actively pulled to zero.

6.11.14 Port PJ, PJ.6 and PJ.7 Input/Output With Schmitt Trigger

Table 6-58. Port PJ (PJ.6 and PJ.7) Pin Functions

			.S ⁽¹⁾						
PIN NAME (PJ.x)	x	FUNCTION	PJDIR.x	PJSEL1.7	PJSEL0.7	PJSEL1.6	PJSEL0.6	HFXT BYPASS	
PJ.6/HFXIN	6	PJ.6 (I/O)	I: 0; O: 1	Х	Х	0	0	Х	
		N/A	0	V	Х	4	Х	V	
		Internally tied to DVSS	1	X	Α	1	X	X	
		HFXIN crystal mode (2)	Х	Х	Х	0	1	0	
		HFXIN bypass mode (2)	Х	Х	Х	0	1	1	
PJ.7/HFXOUT	5					0	0	0	
			PJ.7 (I/O) ⁽³⁾	I: 0; O: 1	0	0	1	Х	0
						Х	Х	1 (4)	
						0	0	0	
		N/A	0	see (3)	see (3)	1	Х	0	
						Х	Х	1 (4)	
						0	0	0	
		Internally tied to DVSS	1	see (3)	see (3)	1	Х	0	
						Х	Х	1 (4)	
		HFXOUT crystal mode (2)	Х	Х	Х	0	1	0	

⁽¹⁾ X = Don't care

⁽²⁾ Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass operation and PJ.7 is configured as general-purpose I/O.

⁽³⁾ With PJSEL0.7 = 1 or PJSEL1.7 = 1 the general-purpose I/O functionality is disabled. No input function is available. Configured as output the pin is actively pulled to zero.

⁽⁴⁾ When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.

6.11.15 Port J, J.0 to J.3 JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger

Table 6-59. Port PJ (PJ.0 to PJ.3) Pin Functions

DIN NAME (D.L.v.)		FUNCTION		CONTROL BIT	'S/ SIGNALS ⁽¹)
PIN NAME (PJ.x)	Х	FUNCTION	PJDIR.x	PJSEL1.x	PJSEL0.x	CEPDx (Cx)
PJ.0/TDO/TB0OUTH/	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
SMCLK/SRSCG1/C6		TDO ⁽³⁾	X	Х	X	0
		TB0OUTH	0	0	1	0
		SMCLK ⁽⁴⁾	1	U	I	U
		N/A	0	1	0	0
		CPU Status Register Bit SCG1	1	•	U	U
		N/A	0	1	1	0
		Internally tied to DVSS	1	1	I	U
		C6 ⁽⁵⁾	X	X	X	1
PJ.1/TDI/TCLK/MCLK/	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
SRSCG0/C7		TDI/TCLK ⁽³⁾ (6)	X	Х	Х	0
		N/A	0	0		0
		MCLK	1	0	1	0
		N/A	0	4	0	0
		CPU Status Register Bit SCG0	1	1	0	0
		N/A	0	_	1	
		Internally tied to DVSS	1	1		0
		C7 ⁽⁵⁾	X	Х	Х	1
PJ.2/TMS/ACLK/	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
SROSCOFF/C8		TMS ^{(3) (6)}	Х	Х	Х	0
		N/A	0			
		ACLK	1	0	1	0
		N/A	0	_		
		CPU Status Register Bit OSCOFF	1	1	0	0
		N/A	0	4		0
		Internally tied to DVSS	1	1	1	0
		C8 ⁽⁵⁾	Х	Х	Х	1
PJ.3/TCK/SRCPUOFF/C9	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1	0	0	0
		TCK ⁽³⁾ (6)	X	Х	Х	0
		N/A	0			
		Internally tied to DVSS	1	0	1	0
		N/A	0			
		CPU Status Register Bit CPUOFF	1	1	0	0
		N/A	0	_		
		Internally tied to DVSS	1	1	1	0
		C9 ⁽⁵⁾	X	Х	Х	1

⁽¹⁾ X = Don't care

Default condition

The pin direction is controlled by the JTAG module. JTAG mode selection is made via the SYS module or by the Spy-Bi-Wire four-wire entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.

⁽⁴⁾ NOTE: Do not use this pin as SMCLK output if the TB0OUTH functionality is used on any other pin. Select an alternative SMCLK output

pin.
Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.

In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

6.12 Device Descriptors (TLV)

Table 6-61 lists the contents of the device descriptor tag-length-value (TLV) structure for MSP430FR58xx(1) devices without AES. Table 6-60 summarizes the Device IDs of the corresponding MSP430FR58xx(1) devices.

Table 6-60. Device IDs

Davies	Devi	ce ID
Device	01A05h	01A04h
MSP430FR5869	081h	05Dh
MSP430FR5868	081h	05Ch
MSP430FR5867(1)	081h	05Bh
MSP430FR5849	081h	055h
MSP430FR5848	081h	054h
MSP430FR5847(1)	081h	053h
MSP430FR5859	081h	059h
MSP430FR5858	081h	058h
MSP430FR5857	081h	057h

Table 6-61. Device Descriptor Table MSP40FR58xx(1)⁽¹⁾

	Donasti da	MSP430FR58	Bxx (UART BSL)	MSP430FR58	Bxx(1) (I2C BSL)
	Description	Address	Value	Address	Value
Info Block	Info length	01A00h	06h	01A00h	06h
	CRC length	01A01h	06h	01A01h	06h
	CRC value	01A02h	per unit	01A02h	per unit
	CRC value	01A03h	per unit	01A03h	per unit
	Device ID	01A04h	see Table 6-60	01A04h	ana Tabla 6 60
	Device ID	01A05h	see Table 6-60	UTAU4N	see Table 6-60
	Hardware revision	01A06h	per unit	01A06h	per unit
	Firmware revision	01A07h	per unit	01A07h	per unit
Die Record	Die Record Tag	01A08h	08h	01A08h	08h
	Die Record length	01A09h	0Ah	01A09h	0Ah
		01A0Ah	per unit	01A0Ah	per unit
	Lot/Wafer ID	01A0Bh	per unit	01A0Bh	per unit
	LOV VValet 1D	01A0Ch	per unit	01A0Ch	per unit
		01A0Dh	per unit	01A0Dh	per unit
	Die V position	01A0Eh	per unit	01A0Eh	per unit
	Die X position	01A0Fh	per unit	01A0Fh	per unit
	Dio V position	01A10h	per unit	01A10h	per unit
	Die Y position	01A11h	per unit	01A11h	per unit
	Toot reculto	01A12h	per unit	01A12h	per unit
	Test results	01A13h	per unit	01A13h	per unit

Table 6-61. Device Descriptor Table MSP40FR58xx(1)⁽¹⁾ (continued)

	Description	MSP430FR58xx (UART BSL)		MSP430FR58xx(1) (I2C BSL)	
		Address	Value	Address	Value
ADC12 Calibration	ADC12 Calibration Tag	01A14h	11h	01A14h	11h
	ADC12 Calibration length	01A15h	10h	01A15h	10h
	ADC Gain Factor ⁽²⁾	01A16h	per unit	01A16h	per unit
		01A17h	per unit	01A17h	per unit
	ADC Offset ⁽³⁾	01A18h	per unit	01A18h	per unit
		01A19h	per unit	01A19h	per unit
	ADC 1.2-V Reference Temp. Sensor 30°C	01A1Ah	per unit	01A1Ah	per unit
		01A1Bh	per unit	01A1Bh	per unit
	ADC 1.2-V Reference Temp. Sensor 85°C	01A1Ch	per unit	01A1Ch	per unit
		01A1Dh	per unit	01A1Dh	per unit
	ADC 2.0-V Reference Temp. Sensor 30°C	01A1Eh	per unit	01A1Eh	per unit
		01A1Fh	per unit	01A1Fh	per unit
	ADC 2.0-V Reference Temp. Sensor 85°C	01A20h	per unit	01A20h	per unit
		01A21h	per unit	01A21h	per unit
	ADC 2.5-V Reference Temp. Sensor 30°C	01A22h	per unit	01A22h	per unit
		01A23h	per unit	01A23h	per unit
	ADC 2.5-V Reference Temp. Sensor 85°C	01A24h	per unit	01A24h	per unit
		01A25h	per unit	01A25h	per unit
REF Calibration	REF Calibration Tag	01A26h	12h	01A26h	12h
	REF Calibration length	01A27h	06h	01A27h	06h
	REF 1.2-V Reference	01A28h	per unit	01A28h	per unit
		01A29h	per unit	01A29h	per unit
	REF 2.0-V Reference	01A2Ah	per unit	01A2Ah	per unit
		01A2Bh	per unit	01A2Bh	per unit
	REF 2.5-V Reference	01A2Ch	per unit	01A2Ch	per unit
		01A2Dh	per unit	01A2Dh	per unit

⁽²⁾ ADC Gain: the gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer (ADC12VRSEL=0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.

⁽³⁾ ADC Offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference, VR+ = external 2.5 V, VR- = AVSS.

Table 6-61. Device Descriptor Table MSP40FR58xx(1)⁽¹⁾ (continued)

	Description	MSP430FR58xx (UART BSL)		MSP430FR58xx(1) (I2C BSL)	
		Address	Value	Address	Value
Random Number	128-Bit Random Number Tag	01A2Eh	15h	01A2Eh	15h
	Random Number Length	01A2Fh	10h	01A2Fh	10h
	128-Bit Random Number ⁽⁴⁾	01A30h	per unit	01A30h	per unit
		01A31h	per unit	01A31h	per unit
		01A32h	per unit	01A32h	per unit
		01A33h	per unit	01A33h	per unit
		01A34h	per unit	01A34h	per unit
		01A35h	per unit	01A35h	per unit
		01A36h	per unit	01A36h	per unit
		01A37h	per unit	01A37h	per unit
		01A38h	per unit	01A38h	per unit
		01A39h	per unit	01A39h	per unit
		01A3Ah	per unit	01A3Ah	per unit
		01A3Bh	per unit	01A3Bh	per unit
		01A3Ch	per unit	01A3Ch	per unit
		01A3Dh	per unit	01A3Dh	per unit
		01A3Eh	per unit	01A3Eh	per unit
		01A3Fh	per unit	01A3Fh	per unit

^{(4) 128-}Bit Random Number: The random number is generated during production test using the CryptGenRandom() function from Microsoft®.

Table 6-61. Device Descriptor Table MSP40FR58xx(1)(1) (continued)

	Description	MSP430FR58xx (UART BSL)		MSP430FR58xx(1) (I2C BSL)	
		Address	Value	Address	Value
BSL Configuration	BSL Tag	01A40h	1Ch	01A40h	1Ch
	BSL length	01A41h	02h	01A41h	02h
	BSL Interface	01A42h	00h	01A42h	01h
	BSL Interface Configuration	01A43h	00h	01A43h	48h

6.13 Identification

6.13.1 Revision Identification

The device revision information is shown as part of the top-side marking on the device package. The device-specific erratasheet describes these markings. For links to all of the erratasheets for the devices in this data sheet, see Section 8.2.

The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 6.12.

6.13.2 Device Identification

The device type can be identified from the top-side marking on the device package. The device-specific erratasheet describes these markings. For links to all of the erratasheets for the devices in this data sheet, see Section 8.2.

A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 6.12.

6.13.3 JTAG Identification

Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the MSP430 Programming Via the JTAG Interface User's Guide (SLAU320).

7 Applications, Implementation, and Layout

7.1 Device Connection and Layout Fundamentals

This section discusses the recommended guidelines when designing with the MSP430. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance.

7.1.1 Power Supply Decoupling and Bulk Capacitors

It is recommended to connect a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters). Additionally, separated grounds with a single-point connection are recommend for better noise isolation from digital to analog circuits on the board and are especially recommended to achieve high analog accuracy.

Figure 7-1. Power Supply Decoupling

7.1.2 External Oscillator

Depending on the device variant (see Section 3), the device can support a low-frequency crystal (32 kHz) on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the crystal oscillator pins are required.

It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If they are left unused, they must be terminated according to Section 4.8.

Figure 7-2 shows a typical connection diagram.

Figure 7-2. Typical Crystal Connection

See the application report *MSP430 32-kHz Crystal Oscillators* (SLAA322) for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices.

7.1.3 JTAG

With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).

The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.

For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide (SLAU278).

- A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2.
- B. The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 7-3. Signal Connections for 4-Wire JTAG Communication

- A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter.
- The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

7.1.4 Reset

The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR.

In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset.

Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set.

The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

See the device family user's guide (SLAU367) for more information on the referenced control registers and bits.

7.1.5 Unused Pins

For details on the connection of unused pins, see Section 4.8.

www.ti.com

7.1.6 General Layout Recommendations

- Proper grounding and short traces for external crystal to reduce parasitic capacitance. See the application report MSP430 32-kHz Crystal Oscillators (SLAA322) for recommended layout guidelines.
- Proper bypass capacitors on DVCC, AVCC, and reference pins if used.
- Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit.
- Refer to the Circuit Board Layout Techniques design guide (<u>SLOA089</u>) for a detailed discussion of PCB layout considerations. This document is written primarily about op amps, but the guidelines are generally applicable for all mixed-signal applications.
- Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See the application report MSP430 System-Level ESD Considerations (SLAA530) for guidelines.

7.1.7 Do's and Don'ts

It is recommended to power AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

7.2 Peripheral- and Interface-Specific Design Information

7.2.1 ADC12_B Peripheral

7.2.1.1 Partial Schematic

Figure 7-5. ADC12 B Grounding and Noise Considerations

7.2.1.2 Design Requirements

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general guidelines in Section 7.1.1 combined with the connections shown in Section 7.2.1.1 prevent this.

In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or switching power supplies can corrupt the conversion result. A noise-free design using separate analog and digital ground planes with a single-point connection is recommend to achieve high accuracy.

Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as specified in the Reference module's $I_{O(VREF+)}$ specification.

The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the $10-\mu F$ capacitor is used to buffer the reference pin and filter any low-frequency ripple. A bypass capacitor of $4.7~\mu F$ is used to filter out any high frequency noise.

7.2.1.3 Detailed Design Procedure

For additional design information, see the application report *Designing With the MSP430FR58xx*, *FR59xx*, *FR68xx*, *and FR69xx ADC* (SLAA624).

7.2.1.4 Layout Guidelines

Component that are shown in the partial schematic (see Figure 7-5) should be placed as close as possible to the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal.

Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal.

If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely together to minimize the effect of noise on the resulting signal.

8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

8.1.1.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features. See the application reports Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio Version 6 (SLAA393) and MSP430TM Advanced Power Optimizations: ULP AdvisorTM and EnergyTraceTM Technology (SLAA603) for further usage information.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support	Energy Trace++
MSP430Xv2	Yes	Yes	3	Yes	Yes	No	No	Yes	Yes

EnergyTrace technology is supported with Code Composer Studio version 6.0 and newer. It requires specialized debugger circuitry, which is supported with the second-generation on-board eZ-FET flash emulation tool and second-generation standalone MSP-FET JTAG emulator. See the *MSP430TM Advanced Power Optimizations: ULP AdvisorTM and EnergyTraceTM Technology (SLAA603) application report, the Code Composer Studio for MSP430 User's Guide (SLAU157), and the MSP430 Hardware Tools User's Guide (SLAU278) for more detailed information.*

8.1.1.2 Recommended Hardware Options

8.1.1.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages. See the *MSP430 Hardware Tools User's Guide* (SLAU278) for board design information.

Package	Target Board and Programmer Bundle	Target Board Only
48-pin QFN (RGZ)	MSP-FET430U48C	MSP-TS430RGZ48C

8.1.1.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

This device is supported on the MSP430FR5969 LaunchPad Evaluation Kit (MSP-EXP430FR5969).

8.1.1.2.2.1 MSP430FR5969 LaunchPad Evaluation Kit With Sharp® Memory LCD BoosterPack Bundle

The MSP-BNDL-FR5969LCD (MSP-EXP430FR5969 LaunchPad Evaluation Kit with 430BOOST-SHARP96 LCD Display BoosterPack) kit is an easy-to-use Evaluation Module for the MSP430FR5969 microcontroller. It contains everything needed to start developing on a MSP430 FRAM Technology platform, including on-board emulation for programming and debugging. The board features on-board buttons and LEDs for quick integration of a simple user interface as well as a SuperCap allowing standalone RTC operation without an external power supply.

8.1.1.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third-party suppliers. See the full list of available tools at www.ti.com/msp430tools.

Р	Part Number	PC Port	Features	Provider
	MSP-FET	USB	Fast download and debugging. Supports EnergyTrace++ Technology. Compatible with 4-wire JTAG and 2-wire Spy-Bi-Wire (SBW) JTAG modes. Small form factor.	Texas Instruments
MS	SP-FET430UIF	USB	Legacy interface – superseded by MSP-FET. Compatible with 4-wire JTAG and 2-wire Spy-Bi-Wire (SBW) JTAG modes.	Texas Instruments

8.1.1.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

8.1.1.3 Recommended Software Options

8.1.1.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open-source solutions are also available. See the full list of available tools at www.ti.com/msp430tools.

This device is supported by the Code Composer Studio™ IDE (CCS).

See the MSP Debug Stack (MSPDS) landing page (<u>www.ti.com/mspds</u>) for useful information about debugging tools.

8.1.1.3.2 MSP430Ware™ Software

MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a standalone package.

8.1.1.3.3 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the need for an IDE.

8.1.2 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430FR59691). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP – Fully-qualified development-support product

XMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 8-1 provides a legend for reading the complete device name for any family member.

Processor Family	MSP = Mixed Signal F XMS = Experimental S												
430 MCU Platform	Tl's 16-bit Low-Power	I's 16-bit Low-Power Microcontroller Platform											
Device Type	Memory Type FR = FRAM												
Series	FRAM 5 Series = Up t	o 16 MHz											
Feature Set	First Digit - AES 9 = AES 8 = No AES 5 = DCO/HFXT/LFXT, 14/12, 33/31 4 = DCO/LFXT, 14/12, 33/31 First Digit - AES 6 = DCO/HFXT/LFXT, 16, 40 5 = DCO/HFXT, 14/12, 33/31 7 = 32 Third Digit - FRAM (KB) 9 = 64 8 = 48 No value = UART												
Optional: Temperature Range	S = 0°C to 50°C I = -40°C to 85°C T = -40°C to 105°C												
Packaging	www.ti.com/packaging	1											
Optional: Distribution Format	T = Small Reel R = Large Reel No Markings = Tube o	T = Small Reel											
Optional: Additional Features	-Q1 = Automotive Qua -EP = Enhanced Prod -HT = Extreme Tempe												

NOTE: This figure does not represent a complete list of the available features and options, and does not indicate that all of these features and options are available for a given device or family.

Figure 8-1. Device Nomenclature – Part Number Decoder

8.2 Documentation Support

The following documents describe the MSP430FR58xx devices. Copies of these documents are available on the Internet at www.ti.com.

- **SLAU367** MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide. Detailed description of all modules and peripherals available in this device family. MSP430FR5869 Device Erratasheet. Describes the known exceptions to the functional SLAZ461 specifications for each silicon revision of this device. SLAZ460 MSP430FR5868 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device. **SLAZ459** MSP430FR5867 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device. **SLAZ603** MSP430FR58671 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5859 Device Erratasheet. Describes the known exceptions to the functional SLAZ457 specifications for each silicon revision of this device. SLAZ456 MSP430FR5858 Device Erratasheet. Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5857 Device Erratasheet. Describes the known exceptions to the functional SLAZ455
 - specifications for each silicon revision of this device.
- <u>SLAZ453</u> *MSP430FR5849 Device Erratasheet.* Describes the known exceptions to the functional specifications for each silicon revision of this device.
- <u>SLAZ452</u> *MSP430FR5848 Device Erratasheet.* Describes the known exceptions to the functional specifications for each silicon revision of this device.
- **SLAZ451 MSP430FR5847 Device Erratasheet.** Describes the known exceptions to the functional specifications for each silicon revision of this device.
- <u>SLAZ604</u> *MSP430FR58471 Device Erratasheet.* Describes the known exceptions to the functional specifications for each silicon revision of this device.

8.2.1 Related Links

Table 8-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430FR5869	Click here	Click here	Click here	Click here	Click here
MSP430FR5868	Click here	Click here	Click here	Click here	Click here
MSP430FR5867	Click here	Click here	Click here	Click here	Click here
MSP430FR58671	Click here	Click here	Click here	Click here	Click here
MSP430FR5859	Click here	Click here	Click here	Click here	Click here
MSP430FR5858	Click here	Click here	Click here	Click here	Click here
MSP430FR5857	Click here	Click here	Click here	Click here	Click here
MSP430FR5849	Click here	Click here	Click here	Click here	Click here
MSP430FR5848	Click here	Click here	Click here	Click here	Click here
MSP430FR5847	Click here	Click here	Click here	Click here	Click here
MSP430FR58471	Click here	Click here	Click here	Click here	Click here

8.2.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.3 Trademarks

EnergyTrace++, MSP430, Code Composer Studio, MSP430Ware, E2E are trademarks of Texas Instruments.

Microsoft is a registered trademark of Microsoft Corporation.

All other trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

9.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

9-Jan-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430FR58471IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR58471	Samples
MSP430FR58471IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR58471	Samples
MSP430FR5847IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5847	Samples
MSP430FR5847IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5847	Samples
MSP430FR5847IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5847	Samples
MSP430FR5847IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5847	Samples
MSP430FR5848IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5848	Samples
MSP430FR5848IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5848	Samples
MSP430FR5848IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5848	Samples
MSP430FR5848IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5848	Samples
MSP430FR5849IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5849	Samples
MSP430FR5849IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5849	Samples
MSP430FR5849IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5849	Sample
MSP430FR5849IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5849	Sample
MSP430FR5857IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5857	Sample
MSP430FR5857IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5857	Sample
MSP430FR5857IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5857	Samples

www.ti.com

9-Jan-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430FR5857IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5857	Samples
MSP430FR5858IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5858	Samples
MSP430FR5858IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5858	Sample
MSP430FR5858IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5858	Sample
MSP430FR5858IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5858	Sample
MSP430FR5859IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5859	Sample
MSP430FR5859IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5859	Sample
MSP430FR5859IRHAR	ACTIVE	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5859	Sample
MSP430FR5859IRHAT	ACTIVE	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5859	Sample
MSP430FR58671IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR58671	Sample
MSP430FR58671IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR58671	Sample
MSP430FR5867IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5867	Sample
MSP430FR5867IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5867	Sample
MSP430FR5868IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5868	Sample
MSP430FR5868IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5868	Sample
MSP430FR5869IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5869	Sample
MSP430FR5869IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FR5869	Sample

⁽¹⁾ The marketing status values are defined as follows:

PACKAGE OPTION ADDENDUM

9-Jan-2015

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Mar-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430FR58471IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5847IDAR	TSSOP	DA	38	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
MSP430FR5847IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5847IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5848IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5848IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5849IDAR	TSSOP	DA	38	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
MSP430FR5849IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5849IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5857IDAR	TSSOP	DA	38	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
MSP430FR5857IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5857IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5858IDAR	TSSOP	DA	38	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
MSP430FR5858IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5858IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5859IDAR	TSSOP	DA	38	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
MSP430FR5859IRHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
MSP430FR5859IRHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Mar-2015

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430FR58671IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR58671IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5867IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5867IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5868IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5868IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5869IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
MSP430FR5869IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430FR58471IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR5847IDAR	TSSOP	DA	38	2000	367.0	367.0	45.0
MSP430FR5847IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5847IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR5848IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5848IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR5849IDAR	TSSOP	DA	38	2000	367.0	367.0	45.0
MSP430FR5849IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5849IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Mar-2015

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430FR5857IDAR	TSSOP	DA	38	2000	367.0	367.0	45.0
MSP430FR5857IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5857IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR5858IDAR	TSSOP	DA	38	2000	367.0	367.0	45.0
MSP430FR5858IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5858IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR5859IDAR	TSSOP	DA	38	2000	367.0	367.0	45.0
MSP430FR5859IRHAR	VQFN	RHA	40	2500	367.0	367.0	38.0
MSP430FR5859IRHAT	VQFN	RHA	40	250	210.0	185.0	35.0
MSP430FR58671IRGZR	VQFN	RGZ	48	2500	367.0	367.0	38.0
MSP430FR58671IRGZT	VQFN	RGZ	48	250	210.0	185.0	35.0
MSP430FR5867IRGZR	VQFN	RGZ	48	2500	367.0	367.0	38.0
MSP430FR5867IRGZT	VQFN	RGZ	48	250	210.0	185.0	35.0
MSP430FR5868IRGZR	VQFN	RGZ	48	2500	367.0	367.0	38.0
MSP430FR5868IRGZT	VQFN	RGZ	48	250	210.0	185.0	35.0
MSP430FR5869IRGZR	VQFN	RGZ	48	2500	367.0	367.0	38.0
MSP430FR5869IRGZT	VQFN	RGZ	48	250	210.0	185.0	35.0

DA (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

38 PIN SHOWN

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- ⚠ Falls within JEDEC MO−153, except 30 pin body length.

DA (R-PDSO-G38)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Contact the board fabrication site for recommended soldermask tolerances.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206354-3/Y 06/14

NOTE: All linear dimensions are in millimeters

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Package complies to JEDEC MO-220 variation VJJD-2.

RHA (S-PVQFN-N40)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

B. The Pin 1 Identification mark is an optional feature that may be present on some devices In addition, this Pin 1 feature if present is electrically connected to the center thermal pad and therefore should be considered when routing the board layout.

RHA (S-PVQFN-N40)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity