Stress Cube Diagram

Input stress tensor (generalized plane stress)

```
ClearAll["Global`*"]

sigma = \{\{7, 4, 0\}, \{4, 2, 0\}, \{0, 0, -1\}\};

sigma = \{\{-4, 4, 0\}, \{4, 2, 0\}, \{0, 0, -1\}\};

sigma = \{\{4, 5, 0\}, \{5, -3, 0\}, \{0, 0, 8\}\};

sigma = \{\{-40, 0, 0\}, \{0, -10, 30\}, \{0, 30, -20\}\};

sigma = \{\{-40, 0, 30\}, \{0, -10, 0\}, \{30, 0, -20\}\};

sigma = \{\{4, 5, 0\}, \{5, -3, 0\}, \{0, 0, 8\}\};

sigma = \{\{4, 5, 0\}, \{5, -3, 0\}, \{0, 0, 8\}\};

sigma // MatrixForm

\begin{pmatrix} 4 & 5 & 0 \\ 5 & -3 & 0 \\ 0 & 0 & 8 \end{pmatrix}
```

Determine which plane shear stress is in

```
If[sigma[[1, 2]] # 0, plane = "xy"]
If[sigma[[1, 3]] # 0, plane = "xz"]
If[sigma[[2, 3]] # 0, plane = "yz"]
xy
```

Find points of interest; dependent on which plane the \

shear stress is in

\

center, and radius\

Find principle stresses and (smallest) angle to \

principle plane

```
This computes principal normal stresses

If[plane == "xy",
    {sigmaP1 = center + radius,
        sigmaP2 = center - radius,
        sigmaP3 = sigma[[3, 3]]}];

If[plane == "xz",
    {sigmaP1 = center + radius,
        sigmaP2 = sigma[[2, 2]],
        sigmaP3 = center - radius}];

If[plane == "yz",
    {sigmaP1 = sigma[[1, 1]],
        sigmaP2 = center + radius,
        sigmaP3 = center - radius}];

N[{sigmaP1, sigmaP2, sigmaP3}]

{6.60328, -5.60328, 8.}
```

Find (smallest) angle to principle planes

```
minzero[x_] := {min = Max[Abs[x]];
     For [n = 1, n \le Length[x], n++,
      If [Abs[x[[n]]] < Abs[min], min = x[[n]]]
      ];
    min};
givenpoints
center
thetaP1 = (1/2) * ArcTan[(givenpoints[[1, 1]] - center), givenpoints[[1, 2]]]
thetaP2 = (1/2) * ArcTan[(givenpoints[[2, 1]] - center), givenpoints[[2, 2]]]
\{\{4, -5\}, \{-3, 5\}, \{8, 0\}\}
-\frac{1}{2} ArcTan\left[\frac{10}{7}\right]
\frac{1}{2}\left(\pi - \operatorname{ArcTan}\left[\frac{10}{7}\right]\right)
Display output
Compute display parameters
\
Displaycenter is the center of the viewing area; displaydim is a vector \
containing half the display width, half the display height; displayrange is \
formatted {{xmin, xmax},{ymin, ymax}};
Displayelement is a small length characteristic of the size of the display \
(this helps with scaling the graphics appropriately); numtics is the number \
of ticks to show along each axis;
Tickspacingx is the spacing between ticks based on numticks and the display \
```

range\

```
displaycenter = {(Min[sigmaP1, sigmaP2, sigmaP3] + Max[sigmaP1, sigmaP2, sigmaP3])/2, 0};
displaydim =
  1.5 * .5 * {Max[sigmaP1, sigmaP2, sigmaP3] - Min[sigmaP1, sigmaP2, sigmaP3], 2 * radius};
displayrange = {{displaycenter [[1]] - displaydim [[1]], displaycenter [[1]] + displaydim [[1]]},
    {displaycenter [[2]] - displaydim [[2]], displaycenter [[2]] + displaydim [[2]]}};
displayelement = .1 * ((displaydim [[1]] + displaydim [[2]]) / 2);
numticks = 10;
tickspacingx = Abs[displayrange[[1, 2]] - displayrange[[1, 1]]]/numticks;
tickspacingy = Abs[displayrange [[2, 2]] - displayrange [[2, 1]]]/numticks;
Circles
\
First the circle for the faces of the unrotated stress cube is determined. \
Then the other two circles are found such that they intersect the remaining \
principal stresses. The circle information is put in a generic circledata \
array, to be used to generate the graphics primitives.\
If[plane == "xy",
  circledata = {{center, 0, radius}, {(sigmaP2 + sigmaP3)/2, 0, Abs[sigmaP2 - sigmaP3]/2},
     {(sigmaP1 + sigmaP3)/2, 0, Abs[sigmaP1 - sigmaP3]/2}}];
If[plane == "xz",
  circledata = {{center, 0, radius}, {(sigmaP1 + sigmaP2)/2, 0, Abs[sigmaP1 - sigmaP2]/2},
     {(sigmaP2 + sigmaP3)/2, 0, Abs[sigmaP2 - sigmaP3]/2}}];
If[plane == "yz",
  circledata = {{center, 0, radius}, {(sigmaP1 + sigmaP2)/2, 0, Abs[sigmaP1 - sigmaP2]/2},
     {(sigmaP1 + sigmaP3)/2, 0, Abs[sigmaP1 - sigmaP3]/2}}];
\
The largest circle is determined. circledata[[largestcircle]] is then the row \
containing enough information to draw the largest circle.\
```

```
largestcircle = 1;
rowmax = Dimensions[circledata, 1];
For[row = 1, row \leq rowmax[[1]], row++,
  If[circledata[[row, 3]] > circledata[[largestcircle , 3]], largestcircle = row]
 }
1
Finally the graphics objects are created, all three circles in one foul \
swoop. Since all graphics objects in the show command follow the formatting \
rules set by the first, and the circle object is always shown in the graphics \
output, it was chosen to contain all plot formatting information, such as \
axis labels and tick marks.\
circle1 := Graphics[{Circle[{circledata[[1, 1]], circledata[[1, 2]]}, circledata[[1, 3]]],
     Circle[{circledata[[2, 1]], circledata[[2, 2]]}, circledata[[2, 3]]],
     Circle[{circledata[[3, 1]], circledata[[3, 2]]}, circledata[[3, 3]]]},
    Axes → True,
    AxesLabel \rightarrow {Subscript[\sigma, nn], Subscript[\sigma, ns]},
    LabelStyle → Directive[Large, Bold],
    Ticks \rightarrow { Floor[Table[tickspacingx * Floor[.5 * n] * (-1) ^ Floor[1.5 * n],
         {n, 0, Ceiling[(2 * Max[Abs[ displayrange [[1]] ]] + 1) / tickspacingx ]}]],
      Floor[Table[tickspacingy * Floor[.5 * n] * (-1) ^ Floor[1.5 * n],
         {n, 0, Ceiling[(2 * Max[Abs[displayrange [[2]]]] + 1) / tickspacingy ]}]]},
    TicksStyle → Directive[Small, Italic],
    PlotRange → displayrange,
    AspectRatio → 1];
Lines
This creates the line graphics object which draws a line from the appropriate \
points related to the faces of the unrotated stress cube.\
```

```
If[plane == "xy",
  line1 := Graphics [Line[{givenpoints [[1]], givenpoints [[2]]}]]];
If[plane == "xz",
  line1 := Graphics[Line[{givenpoints[[1]], givenpoints[[3]]}]]];
If[plane == "yz",
  line1 := Graphics[Line[{givenpoints[[2]], givenpoints[[3]]}]]];
Points
\
Pointsdata is an array of two-element vectors representing points to be \
displayed. The order of the points in this array is identical to the order in \
which they are assigned annotation elements.\
pointsdata = { givenpoints [[1]], givenpoints [[2]],
    givenpoints[[3]], {center, 0}, {sigmaP1, 0}, {sigmaP2, 0}, {sigmaP3, 0},
   {circledata[[largestcircle, 1]], circledata[[largestcircle, 3]]},
   {circledata[[largestcircle, 1]], -circledata[[largestcircle, 3]]}};
\
A graphics object to generate a plot of all points is next created.\
points1 := Graphics[
   {PointSize[Large], Red, Point[pointsdata]}
  ];
Annotation
Create r1, a set of vectors pointing from the origin to the points to be \
annotated\
```

```
r1 = N[pointsdata - ConstantArray [displaycenter, Dimensions [pointsdata, 1]]];
dim = Dimensions[r1, 1];
r1norm = N[Table[{Norm[r1[[i]]], Norm[ r1[[i]]]}, {i, dim[[1]]}]];
Create r2, a set of vectors pointing from the points to be annotated out a \
small distance away from the points\
r2 = ConstantArray [{0, 0}, dim[[1]]];
For[row = 1, row \leq dim[[1]], row++,
 If[r1norm[[row, 1]] # 0, r2[[row]] = displayelement *r1[[row]]/r1norm[[row]]]
]
Create annotationdata, the array of points at which annotations will \
eventually be placed. The points in annotationdata are slightly offset from \
those in pointsdata, so that the annotations do not overlap the points.\
annotationdata = ConstantArray [displaycenter , Dimensions [pointsdata , 1]] + r1 + r2;
\
Debug annotationdata; move annotation elements that are near axes away from \
those axes\
```

```
dim = Dimensions [annotationdata , 1];
For[row = 1, row \leq dim[[1]], row++, {
    If[Abs[annotationdata [[row, 1]]] < displayelement ,</pre>
     { annotationdata [[row, 1]] =
        displayelement *(2*Ceiling[(Sign[annotationdata[[row, 1]]]+1)/2]-1),
      r2[[row]] = annotationdata [[row]] - pointsdata [[row]] }
   ],
    If[Abs[annotationdata [[row, 2]]] < displayelement ,</pre>
     { annotationdata [[row, 2]] =
       displayelement *(2*Ceiling[(Sign[annotationdata[[row, 2]]]+1)/2]-1),
      r2[[row]] = annotationdata [[row]] - pointsdata [[row]] }
   1
  }];
\
Determine which points in annotationdata are "duplicates", where a \
"duplicate" pair of pionts are two points separated by no more than the \
length displayelement.\
duplicates = {};
temparray = annotationdata;
dim = Dimensions [temparray, 1];
For[row1 = 1, row1 \leq dim[[1]] - 1, row1++,
 {temp = {row1},
  For[row2 = row1 + 1, row2 \leq dim[[1]], row2 ++,
    If[EuclideanDistance [temparray[[row2]], temparray[[row1]]]≤ displayelement &&
      temparray[[row2]] # {},
     {temp = Append[temp, row2], temparray[[row2]] = {}}
   1
  ],
  If[Length[temp] > 1, duplicates = Append[duplicates, temp]]}
1
\
Step through the rows of the duplicates[[]] array, and separate all points \
that are considered "overlapping". All r2 vectors associated with the \
```

```
points in the rows of duplicates[[]] are rotated to generate an angular \setminus
spread.\
rmatrix[theta_] = {{Cos[theta], Sin[theta]}, {-Sin[theta], Cos[theta]}};
dim = Dimensions[duplicates, 1];
For[row = 1, row \leq dim[[1]], row++,
 {numcollisions = Length[duplicates[[row]]],
  If[numcollisions > 1,
   {spread =
      (Pi/6)*(Range[0, numcollisions -1]-N[Median[Range[0, numcollisions -1]]]),
     For[col = 1, col ≤ Length[duplicates[[row]]], col++,
      r2[[duplicates[[row, col]]]] = r2[[duplicates[[row, col]]]].rmatrix[spread[[col]]]
     ]}
  ]}
]
annotationdata = ConstantArray [displaycenter , Dimensions [pointsdata , 1]] + r1 + r2;
Create graphics objects that will draw annotation elements at the points \
contained within annotationdata\
```

```
annotation1 := Graphics[Text[Style["x-face", Larger, Blue], annotationdata [[1]]]];
annotation2 := Graphics[Text[Style["y-face", Larger, Blue], annotationdata [[2]]]];
annotation3 := Graphics[Text[Style["z-face", Larger, Blue], annotationdata[[3]]]];
annotation4 := Graphics[Text[Style["Center", Larger, Blue], annotationdata[[4]]]];
annotation5 :=
  Graphics [Text[Style[Subscript[\sigma, P1], Larger, Blue], annotationdata [[5]]]];
annotation6 := Graphics[Text[Style[Subscript[σ, P2], Larger, Blue],
     annotationdata [[6]]];
annotation7 := Graphics[Text[Style[Subscript[\sigma, P3], Larger, Blue],
     annotationdata [[7]] ]];
annotation8 := Graphics [Text[Style[Subscript[\sigma, smax], Larger, Blue],
     annotationdata [[8]]];
annotation9 := Graphics[Text[Style[Subscript[\sigma, smin], Larger, Blue],
     annotationdata [[9]]];
Display
Show graphical output, followed by the values of the points.
Show[circle1, line1, points1, annotation1, annotation2, annotation3,
 annotation4, annotation5, annotation6, annotation7, annotation8, annotation9]
\{\{\{"\sigma = ", N[sigma] // MatrixForm\}\} // MatrixForm,
 {{"x-face", pointsdata[[1]]},
    {"y-face", pointsdata [[2]]},
    {"z-face", pointsdata[[3]]},
   {"Center", pointsdata[[4]]},
    {Subscript [\sigma, P1], pointsdata [[5]]},
    {Subscript [\sigma, P2], pointsdata [[6]]},
   {Subscript [\sigma, P3], pointsdata [[7]]},
    {Subscript [\sigma, smax], pointsdata [[8]]},
    {Subscript [\sigma, smin], pointsdata [[9]]}
  } // MatrixForm , N[{{"x-face", pointsdata[[1]]},
     {"y-face", pointsdata[[2]]},
     {"z-face", pointsdata[[3]]},
     {"Center", pointsdata[[4]]},
     {Subscript [\sigma, P1], pointsdata [[5]]},
     {Subscript [\sigma, P2], pointsdata [[6]]},
     {Subscript[\sigma, P3], pointsdata[[7]]},
     {Subscript [\sigma, smax], pointsdata [[8]]},
     {Subscript [\sigma, smin], pointsdata [[9]]}
   }] // MatrixForm }
```


Display parameters that may be tweaked

```
Clear["Global`*"]
dx = 1;
lennn = .8;
offsetnn = .1;
lenns = .9;
offsetns = .2;
colnn = {0, 0, 0, 1};
colyz = \{1, 0, 0, 1\};
colxz = {0, 1, 0, 1};
colxy = {0, 0, 1, 1};
(*colyz={1,0,0,1};
colxz={1,.8,0,1};
colxy={1,0,.8,1};*)
Define transformaion matrices
\
The rotation and reflection matrices that compose the transformation matrices \
assume a right-handed coordinate system, with counter-clockwise rotation \
positive, as dictated by the right-hand rule.
Reflection matrices reflect along their axis; RF1 reflects along the x-axis \
(across the yz plane), and so forth.
Transformation matrices transform point sets between indicated faces; TX2Y \
```

transforms points from X-face to Y-face.\

```
R1[theta_] = \{\{1, 0, 0\},\
    {0, Cos[theta], -Sin[theta]},
    {0, Sin[theta], Cos[theta]}};
R2[theta_] = {{Cos[theta], 0, Sin[theta]},
    {0, 1, 0},
    {-Sin[theta], 0, Cos[theta]}};
R3[theta_] = {{Cos[theta], -Sin[theta], 0},
    {Sin[theta], Cos[theta], 0},
    {0, 0, 1}};
R1[\theta] // MatrixForm;
R2[θ] // MatrixForm;
R3[\theta] // MatrixForm;
\mathsf{RF1} = \{\{-1,\ 0,\ 0\},\ \{0,\ 1,\ 0\},\ \{0,\ 0,\ 1\}\};
RF2 = \{\{1, 0, 0\}, \{0, -1, 0\}, \{0, 0, 1\}\};
RF3 = \{\{1, 0, 0\}, \{0, 1, 0\}, \{0, 0, -1\}\};
TX2Y = RF1.R3[Pi/2];
TX2Z = RF1.R2[-Pi/2];
TY2Z = RF2.R1[Pi/2];
```

Generate sets of points necessary for display

```
(*xx,xz,xy*)
vectorscube = \{\{(offsetnn + 1/2) * dx, 0, 0\}, \{(lennn + offsetnn + 1/2) * dx, 0, 0\}\}
    \{(offsetns + 1/2) * dx, 0, -lenns * dx/2\}, \{(offsetns + 1/2) * dx, 0, lenns * dx/2\}\},
    \{(offsetns + 1/2) * dx, -lenns * dx/2, 0\}, \{(offsetns + 1/2) * dx, lenns * dx/2, 0\}\}\};
vectorstemp1 = {{TX2Y.vectorscube [[1, 1]], TX2Y.vectorscube [[1, 2]]},
    {TX2Y.vectorscube [[2, 1]], TX2Y.vectorscube [[2, 2]]},
    {TX2Y.vectorscube [[3, 1]], TX2Y.vectorscube [[3, 2]]}};
vectorstemp2 = {{TY2Z.vectorstemp1 [[1, 1]], TY2Z.vectorstemp1 [[1, 2]]},
    {TY2Z.vectorstemp1 [[2, 1]], TY2Z.vectorstemp1 [[2, 2]]},
   {TY2Z.vectorstemp1 [[3, 1]], TY2Z.vectorstemp1 [[3, 2]]}};
vectorstemp3 = {{TX2Z.vectorscube [[1, 1]], TX2Z.vectorscube [[1, 2]]},
    {TX2Z.vectorscube [[2, 1]], TX2Z.vectorscube [[2, 2]]},
   {TX2Z.vectorscube [[3, 1]], TX2Z.vectorscube [[3, 2]]}};
(*RX2Yxx=R3[-Pi/2];
RX2Yxz=R3[-Pi/2];
RX2Yxy=R3[-Pi/2].R1[-Pi];
\label{eq:constant} \textit{vectorscube} \ [[1,1]], RX2Yxx \ . \textit{vectorscube} \ [[1,2]]\}, \\
  {RX2Yxz.vectorscube [[2,1]], RX2Yxz.vectorscube [[2,2]]},
  {RX2Yxy.vectorscube [[3,1]],RX2Yxy.vectorscube [[3,2]]}};
RX2Zxx=R2[-Pi/2];
RX2Zxz=R2[-Pi/2].R1[-Pi];
RX2Zxy=R3[-Pi/2].R1[-Pi];
vectorstemp1 ={{RX2Yxx.vectorscube[[1,1]],RX2Yxx.vectorscube[[1,2]]},
  {RX2Yxz.vectorscube [[2,1]], RX2Yxz.vectorscube [[2,2]]},
  {RX2Yxy .vectorscube [[3,1]], RX2Yxy .vectorscube [[3,2]]}};*)
```

Perform all computations to get values and matrices Draw local graphics elements

```
Graphics3D [{{RGBColor[0, .5, 1, .2], Opacity[.2],
    Cuboid [{-dx/2, -dx/2, -dx/2}, {dx/2, dx/2, dx/2}],
  {RGBColor[colnn], Arrow[vectorscube [[1]]]},
  {RGBColor[colxz], Arrow[vectorscube [[2]]]},
  {RGBColor[colxy], Arrow[vectorscube [[3]]]},
  {RGBColor[colnn], Arrow[vectorstemp1[[1]]]},
  {RGBColor[colxz], Arrow[vectorstemp1 [[2]]]},
  {RGBColor[colxy], Arrow[vectorstemp1 [[3]]]},
  {RGBColor[colnn], Arrow[vectorstemp2 [[1]]]},
  {RGBColor[colxz], Arrow[vectorstemp2 [[2]]]},
  {RGBColor[colxy], Arrow[vectorstemp2 [[3]]]},
  {RGBColor[colnn], Arrow[vectorstemp3 [[1]]]},
  {RGBColor[colxz], Arrow[vectorstemp3 [[2]]]},
  {RGBColor[colxy], Arrow[vectorstemp3 [[3]]]}
 },
 Boxed → False,
 Axes → True,
 AxesLabel \rightarrow {"x", "y", "z"},
 SphericalRegion → True,
 ViewPoint \rightarrow {1, 1, 1},
 ViewVertical \rightarrow {0, 0, 1},
 PlotRange → All
1
```


Draw global graphics elements

Define graphics elements for first coordinate system \

(C.S.)

Stress cube

Stress vectors

Perform first rotation

If[

Decide which plane maximum shear is in

Perform second rotation

Editing Notes

Display Organization

Graphics Elements - Local C.S.

```
Geometry -Stress cube Stresses -sigmaxx, sigmayy, etc. -show \ stresses into/out of page properly in 2D mode View A-A lines Annotation -\theta_P, axes (x,y,z), \theta_s, stresses, "A-A", C.S. title ("View A-A") Axes -(x,y,z), \ (x',y',z'), etc.
```

Graphics Elements - Global C.S.

Positioning lines

-line from ctr. of 1st cube to side o 2nd cube

\ -optional ghost line -arrow indicating angular measurement 1. Generate rotation matrices 2. Generate sets of points \setminus necessary for display 3. Perform all computations to obtain all values and \setminus matrices 4. Draw graphics elements local to coordinate system a) Draw all \ geometry (i.e., all three cubes) b) Draw stresses c) Draw axes d) Draw \ view A-A lines (if applicable) e) Draw annotation 5. Draw global graphics \ elements

a) Positioning lines