Física Geral I • FIS0703

Aula 11 31/10/2016

Espelhos esféricos côncavos

$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R}$$

Caso de objeto muito distante:

$$\frac{1}{p} \approx 0$$

$$\frac{1}{p} \approx 0$$
 $\frac{1}{q} \approx \frac{2}{R}$

A imagem é formada no foco F.

A distância da imagem chama-se a distância focal f.

$$f = \frac{R}{2}$$

A distância focal caracteriza o espelho tal como o raio de curvatura R (e não depende do material do espelho).

Podemos re-escrever a equação dos espelhos em termos de f:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

Espelhos esféricos convexos

A luz é refletido pela superfície exterior duma secção esférica.

Os raios sempre divergem após a reflexão no espelho.

As imagens são virtuais, direitas e mais pequenas do que o objeto.

As equações do espelho côncavo são também válidas para espelhos convexos, desde que usamos uma determinada convenção para os sinais:

$$\left| \frac{1}{p} + \frac{1}{q} \right| = \frac{1}{f}$$

$$M = \frac{h'}{h}$$

Lado dos raios incidentes no espelho: "em frente" (front).
O outro lado é "atrás" (back).

Sign Conventions for Mirrors				
Quantity	Positive When	Negative When		
Object location (p)	Object is in front of mirror (real object)	Object is in back of mirror (virtual object)		
Image location (q)	Image is in front of mirror (real image)	Image is in back of mirror (virtual image)		
Image height (h')	Image is upright	Image is inverted		
Focal length (f) and radius (R)	Mirror is concave	Mirror is convex		
Magnification (M)	Image is upright	Image is inverted		

Construções gráficas

Espelho côncavo. Objeto mais distante do espelho do que o ponto C.

A imagem é real, invertida e reduzida em tamanho.

Raios principais para espelhos côncavos:

Raio 1: do ponto superior do objeto em paralelo ao eixo principal, é refletido através de *F*. Raio 2: do ponto superior do objeto através de *F*, é refletido em paralelo ao eixo principal. Raio 3: do ponto superior do objeto através de *C*, é refletido na mesma direção em sentido contrário.

A intersecção de dois raios localiza a imagem.

Construções gráficas

Espelho côncavo. Objeto mais próximo do espelho do que o foco F.

A imagem é virtual, direita e ampliada.

Construções gráficas

Espelho convexo.

A imagem é virtual, direita e reduzida em tamanho.

Raios principais para espelhos convexos:

Raio 1: do ponto superior do objeto em paralelo ao eixo principal, é refletido para longe de *F*. Raio 2: do ponto superior do objeto em direção para *F* do lado atrás, é refletido em paralelo ao eixo principal.

Raio 3: do ponto superior do objeto em direção para C do lado atrás, é refletido na mesma direção em sentido contrário.

A intersecção de dois raios localiza a imagem.

Imagens formadas por refração

Consideremos dois meios transparentes separados por uma fronteira esférica com raio R.

Os índices de refração são $n_1 < n_2$.

Raios provenientes do objeto O são refratados na superfície esférica e focados no ponto imagem *I*.

Lei de Snell: $n_1 \operatorname{sen} \theta_1 = n_2 \operatorname{sen} \theta_2$

Aproximação para ângulos pequenos (raios paraxiais):

$$n_1\theta_1 = n_2\theta_2$$

OPC:
$$\alpha + \beta + (180^{\circ} - \theta_1) = 180^{\circ} \longrightarrow \theta_1 = \alpha + \beta$$

PIC:
$$\gamma + (180^{\circ} - \beta) + \theta_2 = 180^{\circ} \longrightarrow \theta_2 = \beta - \gamma$$

Eliminar θ_1 e θ_2 :

$$n_1(\alpha + \beta) = n_2(\beta - \gamma)$$

$$n_1\alpha + n_2\gamma = (n_2 - n_1)\beta$$

Imagens formadas por refração

$$n_1\alpha + n_2\gamma = (n_2 - n_1)\beta$$

Para ângulos pequenos:
$$\tan \alpha \approx \alpha \approx \frac{d}{n}$$
 $\tan \beta \approx \beta \approx \frac{d}{R}$

$$\tan \beta pprox \beta pprox rac{d}{R}$$

$$\tan \gamma \approx \gamma \approx \frac{d}{q}$$

$$n_1 \frac{d}{p} + n_2 \frac{d}{q} = (n_2 - n_1) \frac{d}{R}$$
 \longrightarrow $\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$

$$\left(\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}\right)$$

Para um dado p, a distância da imagem q não depende do ângulo (pequeno!) $\alpha \rightarrow$ todos os raios que saem de O convergem no mesmo ponto I.

Convenção de sinais

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$

Com uma convenção de sinais, esta equação pode ser usada em todas as situações.

Define-se o lado de onde incidem os raios do objeto como o lado da frente.

Sign Conventions for Refracting Surfaces				
Quantity	Positive When	Negative When		
Object location (p)	Object is in front of surface (real object)	Object is in back of surface (virtual object)		
Image location (q)	Image is in back of surface (real image)	Image is in front of surface (virtual image)		
Image height (h')	Image is upright	Image is inverted		
Radius (R)	Center of curvature is in back of surface	Center of curvature is in front of surface		

Nota: esta equação foi deduzida com o pressuposto $n_1 < n_2$. No entanto, ela também é válida no caso $n_1 > n_2$.

Imagens por refração em superfícies planas

É um caso particular de superfícies esféricas, com $R \rightarrow \infty$.

$$q = -\frac{n_2}{n_1}p$$

Pela convenção de sinais vê-se que a imagem se forma sempre do lado do objeto.

Lentes delgadas

Para formar imagens por refração em instrumentos óticos (microscópios, telescópios, câmeras, ...) usam-se lentes.

Quando a luz atravessa uma lente, há refração em duas superfícies.

Princípio para refração em superfícies múltiplas: a imagem formada por refração numa superfície torna-se o objeto para a próxima superfície.

Lentes delgadas

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$

* Consideremos primeiro uma lente com espessura t

$$n_1 = 1$$

$$n_2 = n$$

Refração na superfície 1:
$$n_1 = 1$$
 $n_2 = n$ $\frac{1}{p_1} + \frac{n}{q_1} = \frac{n-1}{R_1}$ (1)

$$n_1 = n$$

$$n_2 = 1$$

Refração na superfície 2:
$$n_1=n$$
 $n_2=1$ $\frac{n}{p_2}+\frac{1}{q_2}=\frac{1-n}{R_2}$

Dois casos:

 $q_1 < 0$: (imagem virtual)

 $q_1 > 0$: (imagem real)

$$p_2 = -q_1$$

* Lentes delgadas:
$$t \to 0$$
 $p_2 = -q_1$ $-\frac{n}{q_1} + \frac{1}{q_2} = \frac{1-n}{R_2}$ (2)

$$(1)+(2): \qquad \frac{1}{p_1}+\frac{1}{q_2}=(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right) \qquad \qquad \text{Esta equação \'e v\'alida para raios paraxiais e quando } t \ll R_1 \text{ e } t \ll R_2$$

e quando $t \ll R_1$ e $t \ll R_2$

Lentes delgadas

$$\frac{1}{p_1} + \frac{1}{q_2} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Agora podemos omitir os índices em p_1 e q_2 :

$$\frac{1}{p} + \frac{1}{q} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

A equação relaciona a distância de imagem q formada pela lente fina com a distância do objeto p e com as propriedades da lente (n, R_1, R_2) .

* Quando $p \to \infty$, $q \to f$ (distância focal)

$$\left(\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)\right)$$

A equação dos fabricantes de lentes

Com esta equação podemos também escrever

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

A equação das lentes delgadas

A forma desta equação é idêntica com a forma da equação dos espelhos.

Pontos focais de lentes delgadas

A luz pode passar por uma lente nos dois sentidos → cada lente tem dois pontos focais mas apenas uma distância focal (as distâncias dos dois focos da lente são iguais).

Lentes convergentes:

Lentes divergentes:

Convenção de sinais

Sinais de p e q

Lado da frente p positivo q negativo

Luz incidente

Lado de trás

p negativoq positivo

Luz refratada

Convenção de sinais para lentes delgadas

Sign Conventions for Thin Lenses				
Quantity	Positive When	Negative When		
Object location (p)	Object is in front of lens (real object)	Object is in back of lens (virtual object)		
Image location (q)	Image is in back of lens (real image)	Image is in front of lens (virtual image)		
Image height (h')	Image is upright	Image is inverted		
R_1 and R_2	Center of curvature is in back of lens	Center of curvature is in front of lens		
Focal length (f)	Converging lens	Diverging lens		

(Igual à convenção de sinais para superfícies refratoras)

Tipos de lentes:

Diagramas de raios para lentes delgadas

Construção geométrica para encontrar a imagem de lentes convergentes:

Raio 1: paralelo ao eixo principal; após refração passa pelo foco do lado de trás.

Raio 2: passa em linha reta pelo centro da lente.

Raio 3: passa pelo foco do lado da frente; após refração continua em paralelo ao eixo principal.

Objeto fora do foco

Imagem real, invertida, reduzida, do lado de trás.

Objeto entre o foco e a lente

Imagem virtual, direita, ampliada, do lado da frente.

Diagramas de raios para lentes delgadas

Construção geométrica para encontrar a imagem de lentes divergentes:

Raio 1: paralelo ao eixo principal; após refração é dirigido para fora do foco do lado da frente.

Raio 2: passa em linha reta pelo centro da lente.

Raio 3: dirigido para o foco do lado de trás; após refração continua em paralelo ao eixo principal.

Objeto em frente da lente

Imagem virtual, direita, reduzida, do lado da frente.

Ampliação das imagens de lentes delgadas:

(obtém-se da mesma maneira como para os espelhos)

$$M = \frac{h'}{h} = -\frac{q}{p}$$

Combinação de lentes delgadas

Método:

- Localizar a imagem formada pela primeira lente (ignorar as outras)
- ► Tratar esta imagem como objeto para a segunda lente. Se estiver localizada no lado de trás da lente, é tratada como um objeto virtual (p < 0).
- ► Estender este procedimento para todas as lentes do sistema.
- ► A ampliação total do sistema de lentes é o produto das ampliações individuais das lentes.

Exemplo: duas lentes (com distâncias focais f_1 e f_2) em contacto

 $p_1 \rightarrow p$ distância do objeto das lentes

Lente 1:
$$\frac{1}{p} + \frac{1}{q_1} = \frac{1}{f_1}$$
 eto virtual:
$$p_2 = -q_1$$

Lentes em contacto e com espessuras desprezáveis, objeto virtual: $p_2 = -q_1$

$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2}$$

$$q_2 \to q$$

distância final

da imagem

Lente 2:
$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2}$$
 $q_2 \to q$ $-\frac{1}{q_1} + \frac{1}{q} = \frac{1}{f_2}$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

Duas lentes finas em contacto $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$ | são equivalentes a uma lente só com distância focal f.

somar

Aberrações de lentes

Aberração esférica

- ► Raios não paraxiais provenientes dum objeto pontual após refração pela lente não se intersectam exatamente num único ponto-imagem.
- ► Imagem perde nitidez.
- ► Minimizar aberração esférica: bloquear raios não paraxiais. (Câmeras fotográficas têm aberturas ajustáveis.) As imagens tornam-se mais nítidas, mas perdem intensidade.

Aberração esférica de espelhos (e.g. em telescópios) pode ser eliminada quando têm uma forma parabólica (Desvantagem: é muito mais caro!)

Aberração cromática

- ▶O índice de refração depende do comprimento de onda.
- ► Luz refratada de cores diferentes é focada em pontos diferentes.
- ► A distância focal para luz vermelha é maior do que para luz violeta (também para lentes divergentes, más do outro lado da lente!).
- ► Aberração cromática pode ser minimizada pela combinação duma lente convergente e outra divergente feita dum outro tipo de vidro.

A câmera fotográfica

Uma câmera contém uma lente convergente que produz uma imagem real numa superfície fotossensível (filme fotográfico ou sensor digital CCD).

- ► Alteração da distância entre filme e lente permite focar a imagem.
- ► A velocidade de abertura do obturador determina o tempo de exposição (e a quantidade da luz).
- ► A abertura do diafragma controla a profundidade do campo (o intervalo de distâncias relativamente ao objeto que está a ser fotografado em que outros objetos ainda aparecem nítidas na imagem).

A intensidade da luz que chega ao filme depende do diâmetro da lente D:

 $I \propto D^2$

A área da imagem é proporcional ao quadrado da sua distância da lente q.

Para *p* muito grande $q \approx f$, $\rightarrow I \propto 1/f^2$

Então $I \propto (D/f)^2$

Define-se o número f ("f-stop") duma lente: número $f \equiv \frac{f}{D}$ $I \propto \frac{1}{(f/D)^2} \propto \frac{1}{(\text{número f})^2}$

Designação de lentes em fotografia: f/2.8, f/4, f/5.6, f/8, f/11, f/16

(cada passo diminui a área da abertura para metade)

Câmeras simples têm uma lente ~f/11 (grande profundidade de campo - não é preciso focar)