

DE JONGE INDERZOEKERS

- Les 17: simpele melodie
- Les 18: 7-pin-piano
- Les 19: 1-pin-7-parallelle_weerstanden-piano
- Les 20: 1-pin-7-weerstanden-in-serie-piano

Figure 1: Boek 5: Muziek 1

Contents

Voorwoord	1
21: Theremin met potmeters	2
22: Theremin met LDRs	13
23: Theremin met infrarood afstandssensoren	24
24: Theremin met joystick	35

Voorwoord

Figure 1: Het logo van De Jonge Onderzoekers

Dit is het boek van de Arduino cursus. Een Arduino is een machine die je kunt programmeren. Dit boek leert je hoe je elektronica op de Arduino aansluit, en hoe je deze programmeert.

Over dit boek

Dit boek heeft een CC-BY-NC-SA licensie.

Figure 2: De licensie van dit boek

(C) Arduino cursus Groningen 2017

Het is nog een beetje een slordig boek. Er zitten tiepvauten in en de opmaak is niet altijd even mooi.

Daarom staat dit boek op een GitHub. Om precies te zijn, op https://github.com/richelbilderbeek/ArduinoCourse. Hierdoor kan iedereen die dit boek te slordig vindt minder slordig maken.

21: Theremin met potmeters

In deze les gaan we een theremin met potmeters maken.

Figure 3: Een theremin

21.1: opdracht: aansluiten piezo

- Sluit een piezo aan op pin 5.
- Gebruik een weerstand van tienduizend Ohm, kleurcode: bruin-zwart-oranje-goud

21.1: oplossing: aansluiten piezo

Figure 4: Aansluiten piezo

21.2: opdracht: de volume bibliotheek

Upload de volgende code:

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
   vol.begin();
}

void loop()
{
   const int toon_hoogte = 440;
   const int volume = 255;
   vol.tone(toon_hoogte, volume);
   vol.delay(10);
}
```

Doet de 'Volume' bibliotheek het niet, ga dan naar de les 'Volume installeren'.

21.3: opdracht: aansluiten potmeter

Sluit een potmeter aan op A0.

21.3: oplossing: aansluiten potmeter

Figure 5: Aansluiten potmeter

21.4: opdracht: toon hoogte lineair

Lees de potmeter.

Gebruik:

```
const int input_toon_hoogte = /* lees de waarde van AO */;
const int toon_hoogte = input_toon_hoogte;
```

21.4: oplossing: toon hoogte lineair

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = input_toon_hoogte;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

21.5: opdracht: toonhoogte exponentieel

De toonhoogte klinkt nog niet mooi. Dat komt omdat hogere tonen steeds verder van elkaar af gaan zitten. Met pow kunnen we een machtverheffing doen (wat dat ook is), zodat we mooi door de tonen heen kunnen gaan.

Vervang:

```
const int toon_hoogte = input_toon_hoogte;
door:
```

```
const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
```

21.5: oplossing: toonhoogte exponentieel

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

21.6: eindopdracht

- Sluit een tweede potmeter aan op A1.
- Gebruik:

```
const int input_volume = /* lees de waarde van A1 */;
```

• Gebruik:

```
const int volume = 1.0 * pow(2.0, 0.0078125 * input_volume);
```

22: Theremin met LDRs

In deze les gaan we een theremin met LDRs maken.

22.1: opdracht: aansluiten piezo

- Sluit een piezo aan op pin 5.
- Gebruik een weerstand van tienduizend Ohm, kleurcode: bruin-zwart-oranje-goud

22.1: oplossing: aansluiten piezo

Figure 6: Aansluiten piezo

22.2: opdracht: de volume bibliotheek

Upload de volgende code:

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    vol.begin();
}

void loop()
{
    const int toon_hoogte = 440;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

Doet de 'Volume' bibliotheek het niet, ga dan naar de les 'Volume installeren'.

22.3: opdracht: aansluiten LDR

Sluit een LDR aan op A0. Je hebt een LDR en een weerstand van 10k Ohm (bruin-zwart-oranje-goud) nodig.

22.3: oplossing: aansluiten LDR

Figure 7: Aansluiten LDR

22.4: opdracht: toon hoogte lineair

Lees de LDR.

Gebruik:

```
const int input_toon_hoogte = /* lees de waarde van AO */;
const int toon_hoogte = input_toon_hoogte;
```

22.4: oplossing: toon hoogte lineair

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = input_toon_hoogte;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

22.5: opdracht: toonhoogte exponentieel

De toonhoogte klinkt nog niet mooi. Dat komt omdat hogere tonen steeds verder van elkaar af gaan zitten. Met pow kunnen we een machtverheffing doen (wat dat ook is), zodat we mooi door de tonen heen kunnen gaan.

Vervang:

```
const int toon_hoogte = input_toon_hoogte;
door:
```

```
const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
```

22.5: oplossing: toonhoogte exponentieel

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

22.6: eindopdracht

- Sluit een tweede LDR aan op A1.
- Gebruik:

```
const int input_volume = /* lees de waarde van A1 */;
```

• Gebruik:

```
const int volume = 1.0 * pow(2.0, 0.0078125 * input_volume);
```

23: Theremin met infrarood afstandssensoren

In deze les gaan we een theremin met infrarood afstandssensoren maken.

23.1: opdracht: aansluiten piezo

- Sluit een piezo aan op pin 5.
- Gebruik een weerstand van tienduizend Ohm, kleurcode: bruin-zwart-oranje-goud

23.1: oplossing: aansluiten piezo

Figure 8: Aansluiten piezo

23.2: opdracht: de volume bibliotheek

Upload de volgende code:

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    vol.begin();
}

void loop()
{
    const int toon_hoogte = 440;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

Doet de 'Volume' bibliotheek het niet, ga dan naar de les 'Volume installeren'.

${\bf 23.3:\ opdracht:\ aansluiten\ infrarood\ afstandssensor}$

Sluit een infrarood afstandssensor aan op A0.

23.3: oplossing: aansluiten infrarood afstandssensor

Figure 9: Aansluiten infrarood afstandssensor

23.4: opdracht: toon hoogte lineair

Lees de infrarood afstandssensor.

Gebruik:

```
const int input_toon_hoogte = /* lees de waarde van A0 */;
const int toon_hoogte = input_toon_hoogte;
```

23.4: oplossing: toon hoogte lineair

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = input_toon_hoogte;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

23.5: opdracht: toonhoogte exponentieel

De toonhoogte klinkt nog niet mooi. Dat komt omdat hogere tonen steeds verder van elkaar af gaan zitten. Met pow kunnen we een machtverheffing doen (wat dat ook is), zodat we mooi door de tonen heen kunnen gaan.

Vervang:

```
const int toon_hoogte = input_toon_hoogte;
door:
```

```
const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
```

23.5: oplossing: toonhoogte exponentieel

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

23.6: eindopdracht

- Sluit een tweede infrarood afstandssensor aan op A1.
- Gebruik

```
const int input_volume = /* lees de waarde van A1 */;
```

• Gebruik:

```
const int volume = 1.0 * pow(2.0, 0.0078125 * input_volume);
```

24: Theremin met joystick

In deze les gaan we een theremin met joystick maken.

24.1: opdracht: aansluiten piezo

- Sluit een piezo aan op pin 5.
- Gebruik een weerstand van tienduizend Ohm, kleurcode: bruin-zwart-oranje-goud

24.1: oplossing: aansluiten piezo

Figure 10: Aansluiten piezo

24.2: opdracht: de volume bibliotheek

Upload de volgende code:

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    vol.begin();
}

void loop()
{
    const int toon_hoogte = 440;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

Doet de 'Volume' bibliotheek het niet, ga dan naar de les 'Volume installeren'.

24.3: opdracht: aansluiten joystick

Sluit een joystick aan:

Pin joystick	Pin Arduino
+5V GND	5V GND
VRx of VER	A0

24.3: oplossing: aansluiten joystick

Figure 11: Aansluiten joystick

24.4: opdracht: toon hoogte lineair

Lees de joystick.

Gebruik:

```
const int input_toon_hoogte = /* lees de waarde van AO */;
const int toon_hoogte = input_toon_hoogte;
```

24.4: oplossing: toon hoogte lineair

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = input_toon_hoogte;
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

24.5: opdracht: toonhoogte exponentieel

De toonhoogte klinkt nog niet mooi. Dat komt omdat hogere tonen steeds verder van elkaar af gaan zitten. Met pow kunnen we een machtverheffing doen (wat dat ook is), zodat we mooi door de tonen heen kunnen gaan.

Vervang:

```
const int toon_hoogte = input_toon_hoogte;
door:
```

```
const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
```

24.5: oplossing: toonhoogte exponentieel

```
#include "Volume.h"

Volume vol; // Piezo in pin 5

void setup()
{
    pinMode(AO, INPUT);
    vol.begin();
}

void loop()
{
    const int input_toon_hoogte = analogRead(AO);
    const int toon_hoogte = 110.0 * pow(2.0, 0.002 * input_toon_hoogte);
    const int volume = 255;
    vol.tone(toon_hoogte, volume);
    vol.delay(10);
}
```

24.6: eindopdracht

- Sluit een tweede pin (VRy of HOR) van de joystick aan op A1.
- Gebruik

```
const int input_volume = /* lees de waarde van A1 */;
```

• Gebruik:

```
const int volume = 1.0 * pow(2.0, 0.0078125 * input_volume);
```