

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: A 3 Roll No.: 16010121051 Type your text

Experiment / assignment / tutorial No. 2

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: To study and implement Booth's Multiplication Algorithm.

AIM: Booth's Algorithm for Multiplication

Expected OUTCOME of Experiment: (Mention CO/CO's attained here)

Books/ Journals/ Websites referred:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, TataMcGraw-Hill.
- 2. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 3. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

It is a powerful algorithm for signed number multiplication which generates a 2n bit product and treats both positive and negative numbers uniformly. Also the efficiency of the algorithm is good due to the fact that, block of 1's and 0's are skipped over and subtraction/addition is only done if pair contains 10 or 01

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Flowchart:

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Design Steps:

- 1. Start
- 2. Get the multiplicand (M) and Multiplier (Q) from the user
- 3. Initialize $A = Q_{-1} = 0$
- 4. Convert M and Q into binary
- 5. Compare Q_0 and Q_{-1} and perform the respective operation.

Q ₀ Q ₋₁	Operation
00/11	Arithmetic right shift
01	A+M and Arithmetic right shift
10	A-M and Arithmetic right shift

- 6. Repeat steps 5 till all bits are compared
- 7. Convert the result to decimal form and display
- 8. End

Code:

```
#include<iostream>
using namespace std;
void add(int a[], int x[], int q);
void complement(int a[], int n) {
  int i;
  int x[8] = \{ NULL \};
  x[0] = 1;
  for (i = 0; i < n; i++) {
    a[i] = (a[i] + 1) \% 2;
  add(a, x, n);
void add(int ac[], int x[], int q) {
  int i, c = 0;
  for (i = 0; i < q; i++) {
    ac[i] = ac[i] + x[i] + c;
    if (ac[i] > 1) {
       Page No 6
```


ac[i] = ac[i] % 2;

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)


```
c = 1;
    }else
   c = 0;
}
void ashr(int ac[], int qr[], int &qn, int q) {
  int temp, i;
  temp = ac[0];
  qn = qr[0];
  cout << "\t\tashr\t\t";</pre>
  for (i = 0; i < q - 1; i++) {
    ac[i] = ac[i + 1];
   qr[i] = qr[i+1];
 qr[q - 1] = temp;
void display(int ac[], int qr[], int qrn) {
  int i;
  for (i = qrn - 1; i >= 0; i--)
   cout << ac[i];
  cout << " ";
  for (i = qrn - 1; i >= 0; i--)
    cout \ll qr[i];
int main(int argc, char **argv) {
  int mt[10], br[10], qr[10], sc, ac[10] = \{ 0 \};
  int brn, qrn, i, qn, temp;
  cout << "\n--Enter the multiplicand and multiplier :-";
  cout<<"\n Pls give space beteen bits while inputting";
  cout << "\n Number of multiplicand bit=";</pre>
  cin >> brn;
  cout << "\nmultiplicand=";</pre>
  for (i = brn - 1; i >= 0; i--)
      cin >> br[i]; //multiplicand
    for (i = brn - 1; i >= 0; i--)
     mt[i] = br[i];
    complement(mt, brn);
    cout << "\nNo. of multiplier bit=";
    cin >> qrn;
    sc = qrn;
    cout << "Multiplier=";</pre>
    for (i = qrn - 1; i >= 0; i--)
     cin >> qr[i];
    qn = 0;
    temp = 0;
    cout \ll "qn tq[n+1] t BR t AC QR t c'n";
    cout << "\t\t\tinitial\t\t";</pre>
    display(ac, qr, qrn);
    cout << "\t'" << sc << "\n";
```


(A Constituent College of Somaiya Vidyavihar University)


```
while (sc !=0) {
    cout << qr[0] << "\t" << qn;
    if ((qn + qr[0]) == 1) {
      if (temp == 0) {
        add(ac, mt, qrn);
        cout << "\t\tsubtracting BR\t";</pre>
        for (i = qrn - 1; i >= 0; i--)
          cout << ac[i];
        temp = 1;
      else if (temp == 1) {
        add(ac, br, qrn);
        cout << "\t\tadding BR\t";</pre>
        for (i = qrn - 1; i >= 0; i--)
          cout \ll ac[i];
        temp = 0;
      cout \ll "\n\t";
      ashr(ac, qr, qn, qrn);
    else if (qn - qr[0] == 0)
      ashr(ac, qr, qn, qrn);
    display(ac, qr, qrn);
    cout << "\t";
    sc--;
    cout << "\t" << sc << "\n";
cout << "Result=";</pre>
display(ac, qr, qrn);
return 0;
```

Example: (Handwritten solved problem needs to be uploaded)

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

	lya conege of Engineering		Departme	ent of Com	puter Engi	neering		1 40 3
• •	(none Rough	UN)					Date:	
eg.					-	Algerith	E. M.	
	M = 0				- M	= 1001		
	Q =	0011				3455	Market J.	
	A	Q	e,	(TAT	150			
	0000	0011	0	7				
	1001	0011	0	4	BO			
	1100	1001	1					
M	1110	0160	1	providering	2 2			
0	0101	0100	1		1000			
	0010	1010	0	-] (3)			
01	0001	0101	0		3(4)			
		- 14.50						
			10 4	1-2	91			
	Any	0001 010	5/		1	1		
		- 21		1				
		Z A	S 18 1	112	1 14 6	7 + 4		

Outputs:

(A Constituent College of Somaiya Vidyavihar University)


```
-Enter the multiplicand and multipier :-
Pls give space beteen bits while inputting
Number of multiplicand bit=4
multiplicand=0 1 1 1
No. of multiplier bit=4
Multiplier=0 0 1 1
qn
       q[n+1]
                                         AC
                                                 QR
                        initial
                                         0000 0011
       0
                        subtracting BR 1001
                        ashr
                                         1100 1001
       1
                        ashr
                                         1110 0100
                                                                 2
       1
                        adding BR
                                         0101
                        ashr
                                         0010 1010
                                                                 1
       0
                        ashr
                                         0001 0101
                                                                 0
Result=0001 0101
Process exited after 20.18 seconds with return value 0
Press any key to continue . . .
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

	Enter the multiplicand and multipier :- Pls give space beteen bits while inputting Number of multiplicand bit=4									
r	multiplicand=0 1 0 1									
ı	No. of m	nultiplier bit=4								
1	Multipli	ier=0 1 0 1								
(qn	q[n+1]			QR	sc				
					0101	4				
-	1	0	subtracting BR							
ı				1101	1010	3				
(9	1	adding BR							
			ashr		0101	2				
ľ	l	0	subtracting BR		0040					
	n.	1		1110	0010	1				
	0	1	adding BR ashr	0001	1001	0				
	Pocul+_6	0001 1001	q2III.	0001	1001	V				
	Process	exited after 12	.26 seconds with	retur	rn value 0					
	Press any key to continue									
		.,,								
ı										
ı										
ı										

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Conclusion: Through this experiment, the method to multiply two binary numbers was learnt. New operations like right shift were also acquired. In the research for Post Lab Question I understood Booth's Recoding Method and its advantages.

Post Lab Descriptive Ouestions

Question: Explain advantages and disadvantages of Booth's algorithm.

Answer:

Advantages of booth's multiplication:

- Easy calculation of multiplication problem.
- Consecutive additions will be replaced.
- Less complex and ease scaling.

Disadvantages of booth's multiplication:

- This algorithm will not work for isolated 1's.
- It is time consuming.
- If digital gates are more, chip area would be large.

Question: Is Booth's recoding better than Booth's algorithm? Justify

Answer:

Advantage of Booth's recoding is that it reduces the number of 1's and increases the number of 0's in a binary number. Having more number of 0's is advantageous for easier calculation.

For Example: (01111)2 is equivalent to (+1 0 0 0 -1) in Booth Recoding.

Date: 16/09/2022 Signature of faculty in-charge