스마트 수경 재배기

혁스퀘어

팀장: 전병혁

팀원: 박상혁

경기인력개발원 | SOC 반도체 회로설계 아카데미

Contents

- 1. 개발 동기
- 2. 기존 재배기의 불편함
- 3. 스마트 재배기의 기능
- 4. 코드 설명 (천이도)
- 5. 동작 시연
- 6. 고찰

개발 동기

경기인력개발원 | SOC 반도체 회로설계 아카데미

개발 동기

개발 동기

수경 재배기 사용 경험에서 느꼈던 불편함을

Basys3 와 다양한 센서 모듈을 이용하여 부분 자동화 함으로서

누구나 손쉽고, 효율적인 농작물 재배을 가능하게 하고자

"스마트 수경 재배기"를 프로젝트의 주제로 선택하였습니다.

기존 재배기의 불편한 점 (1)

급수 수동 공급

기존 수경 재배기에는 자동 급수 기능이 없어 사용자가 직접 물을 공급해야 하는 불편함이 있었습니다.

이로 인해 LED를 사용해 실내에서 채소를 재배할 수 있음에도 불구하고, 바쁜 현대인들은 물 공급 상태를 일일이 확인하고 부족한 물을 채워야하는 번거로움이 있었습니다.

기존 재배기의 불편한 점 (2)

LED 높이 수동 조절

LED는 식물의 광합성을 24시간 지원하지만, 온도가 매우 높아 손으로 만질 수 없을 정도이기 때문에 LED와 식물 사이에 일정한 거리를 유지해야 합니다.

그러나 왼쪽 사진에서 알 수 있듯이 LED의 높이 조 절은 수동으로 조절해야 하기 때문에 뜨거운 LED을 수동으로 옮기는 일은 생각보다 어렵습니다.

또한 바쁜 현대인들에게는 식물의 성장을 매일 모니 터링하며, LED의 높이를 조절해야하는 것은 어렵습 니다.

기존 재배기의 불편한 점 (3)

더운 날씨로 인한 작물 성장 부진

왼쪽 사진은 한 달 전 씨앗을 심은 수경 재배기의 모습입니다.

사진에서 한 달이 지나도 싹이 거의 나지 않거나 전혀 발아하지 않은 것을 확인할 수 있습니다. 이는 최근 더워진 날씨로 인해 식물 성장에 어려움이 있 음을 확인할 수 있었습니다.

따라서 기존 수경 재배기는 더운 날씨에 대한 대응 책이 부족하다는 것을 확인하였으며, 이에 대한 개 선 방안이 필요하다고 생각합니다.

급수 자동 공급

동작

수경 재배기 내부의 수위 센서를 통해 현재 수위를 모니 터링하고, 식물의 급수가 부족할 경우 자동으로 필요한 양을 공급할 수 있습니다.

> 수위 센서

워터 펌프

식물에 필요한 환경 조성

동작

조도 센서와 온.습도 센서를 통해 재배기 주변 환경의 상태를 모니터링 한 뒤, 식물 성장에 부적합한 환경일 경우 DC 모터를 이용한 선풍기와 LED를 통해 적합한 환경으로 자동으로 조성시킬 수 있다.

LED 높이 자동 조절

동작

초음파 센서를 통해 얻은 식물과 LED 간에 거리 정보를 통해 식물이 성장함에 있어 적합한 거리를 자동적으로 조정 할 수 있다.

> 초음파 센서 모터

디스플레이 통해 환경 정보 확인

동작

UART와 블루투스를 통해 식물 재배기로부터 멀리 떨어져 있어도 언제 어디서든 식물 및 환경에 대한 정보를 스마트폰을 통해 확인 가능합니다.

Switch

Switch 0번 : sw_led_height_mode Switch 1 번 : sw_led_up (LED 위치 up) Switch 2번 : sw_led_down (LED 위치 down)

Switch 6번 : sw_window_open (Window open) Switch 7번 : sw_window_close (Window close)

switch 10번 : sw_led_mode

switch 14년 : sw_cntr_electric_fan_dir (신풍기 팬 각도 조절) switch 16년 : sw_electric_fan_mode

Button

Button 0번 : btn_led_light Button 1번 : btn_window_mode Button 2번 : btn_electric_fan_power

dht11_value (16bit) [온도 (8bit) + 습도 (8bit)]

(Sensor Module)

(Sensor Module)

```
// Channel_out 변수 값에 따라 변환된 Channel이 무엇인지를 확인 후, 해당 값을 출력
// do_out 값이 100미만 이면 물이 부족한 상태 ----> 1
// do_out 값이 100이상 이면 물이 충분한 상태 ----> 0
always @(posedge clk or posedge reset_p) begin
    if(reset_p) begin
    sunlight_value = 0;
    water_flag = 0;
end
else if(eoc_out_pedge) begin
    case(channel_out[3:0])
    6 : begin sunlight_value = do_out[15:8]; end
    15 : begin water_flag = (do_out[15:9] < 100) ? 1 : 0; end
    endcase
end
end
```


1.실험을 통해 7bit로 양자화할 경우, do_out 값이 100보다 작으면 식물에 필요한 수분이 부족하다고 판단

(Control LED Module)

Block Diagram

(Control LED Module)

Block Diagram

(Control LED Height Module)

sw_led_up sw_led_down

sw_led_height_mode

Block Diagram

(Control window, fan)

(Control window)

btn_window_control

sw_window_open
sw_window_close

Block Diagram

(Control electirc fan)

Btn_electric_fan_power

sw_electric_fan_mode

(Control water pump)

```
// Water Pump Control module
module water_pump (
   input clk, reset_p,
   input water_flag,
   output pump_on_off );

assign pump_on_off = water_flag;
endmodule
```


water_flag == 1 이면 물이 부족한 상황이기 때문에 워터 펌프 가동
water_flag == 0 이면 물이 충분한 상황이기 때문에 워터 펌프 가동 중지

Block Diagram (Control LCD Display)

```
// Declare state machine
parameter IDLE = 9'b0_0000_0001;
parameter INIT = 9'b0_0000_0010;
parameter SEND_STRING_TEMPERATURE = 9'b0_0000_0100;
parameter SEND_TEMPERATURE_DATA = 9'b0_0000_1000;
parameter SEND_COMMAND_NEXT_LINE = 9'b0_0001_0000;
parameter SEND_STRING_HUMIDITY = 9'b0_0010_0000;
parameter SEND_HUMIDITY_DATA = 9'b0_0100_0000;
parameter WAIT_1SEC = 9'b0_1000_0000;
parameter SEND_COMMAND = 9'b1_0000_0000;
```


Uart_app_control

```
Baud Rate Divider = \frac{100,000,000}{9600 \times 16} = \frac{100,000,000}{153,600} \approx 651.04167
```

```
4'b0000: begin
    if (timer_tick) begin
        // Prepare data for transmission
        data_to_send <= {temp[7:4] + 8'd48, temp[3:0] + 8'd48, 8'h3B, humi[7:4] + 8'd48, humi[3:0] + 8'd48, 8'h3B, 8'h0A};
        byte_index <= 6'b0;
        state <= 4'b0001;
    end
end</pre>
```


온습도 센서(DHT-11)

기능: 온도와 습도를 측정하여 실시간으로 모니터링합니다.

역할: 온도가 식물 성장에 적합하지 않을 경우, 선풍기를 자동으로 작동 시켜 적절한 온도를 유지합니다. 환경이 건조해지면 스텝 모터를 통해 창 문을 닫아 외부의 건조한 공기를 차단하고, 식물에게 적합한 습도 환경을 제공합니다.

FND LCD (12C) APP (UART)

시연 순서

- 1. LCD 디스플레이, FND를 통한 온,습도 출력
- 2. 문 수동 동작
- 3. 문 자동 동작 (27도 이상이면 닫힘)
- 4. LED 수동 동작
- 5. LED 자동 동작 (조도 센서)
- 6. LED 높이 수동 조작
- 7. LED 높이 자동 조작 (초음파 센서)
- 8. 선풍기 수동 조작
- 9. 선풍기 자동 동작
- 10. 워터 펌프 동작 (수위 센서)
- 11. 블루투스 + 앱을 통한 온,습도 확인

1. LCD 디스플레이, FND를 통한 온,습도 출력

2. 문 수동 조작

3. 문 자동 동작 (27도 이상이면 닫힘)

4. LED 수동 동작

5. LED 자동 동작 (조도 센서)

6. LED 높이 수동 조작

7. LED 높이 자동 조작 (초음파 센서)

8. 선풍기 수동 조작

9. 선풍기 자동 조작

10. 워터 펌프 동작 (수위 센서)

11. 블루투스 + 앱을 통한 온,습도 확인

고찰

1. 전병혁

이번 프로젝트를 통해 다양한 모듈을 접하고 구현함으로서 Verilog에 대해서 좀 더 배울 수 있었습니다.

특히 ADC 변환하는 과정에서 두 개이상의 드라이버를 사용 할 때에는 반드시 동일한 인스턴스에서 한 번에 선언 및 사용해야 한다는 점을 배울 수 있었고, 하드웨어 제작 과정에서전압 부족 문제를 경험하여 하드웨어에 관한지식을 쌓을 수 있었던 프로젝트 였던 것 같습니다.

2. 박상혁

이번 프로젝트를 겪으면서 시간과 인원이 부족했던 상황에서 업무분장의 중요성을 느꼈습니다.

또한 앱과 UART통신할때 구조화된 데이터를 전달하기위해 데이터를 버퍼에 넣어 한번에 전달하는 방법을 배웠습니다

Github

감사합니다

혁스퀘어 팀장 : 전병혁 팀원 : 박상혁