Reconciling divergent effects of diversity on disease

Maxwell Joseph, Joseph Mihaljevic, and Pieter Johnson

Acknowledgements

University of Colorado P&P group

Pieter Johnson's lab group, CU

Kim Medley

Amanda Hund

CU Research Computing

JANUS supercomputer

Dilution effect

Amplification effect or ecological disservice

Dilution effect

Variable definitions of disease risk

- Density of infected vectors
- Density of infected reservoir hosts
- Rate of change in the density of infected hosts
- Human risk of zoonotic infection
- Parasite transmission rate
- Parasite prevalence in reservoir hosts
- Parasite prevalence in vectors
- Invasibility of a host community
- Probability that an individual will be infected with a disease agent

Expectations

Diversity begets diversity

Host diversity

Expectations

Diversity reduces* transmission

^{*} on average, we think, theoretically, most of the time, when host community density is constant (Joseph et al. 2013)

Contradiction

Reconciliation

Both patterns emerge from same mechanisms in a simple multi-host, multi-symbiont model

Host diversity

Reconciliation

Both patterns emerge from same mechanisms in a simple multi-host, multi-symbiont model

Apparent contradiction arises from multiple definitions of risk

Host diversity

Model structure

Within-host environmental condition

Within-host environmental condition

Regional symbiont pool

Simplifying assumption: no cost of infection

Benefits of considering symbionts

- Data availability
- · Generality
- · Explicit distinction between infection and disease

Analysis

Iteratively

Vary host functional diversity

Analysis

Iteratively

- Vary host functional diversity
- Simulate local infection trajectories

Analysis

Iteratively

- Vary host functional diversity
- Simulate local infection trajectories
- Quantify symbiont richness and transmission

Results

Diversity begets diversity

Results

Diversity reduces transmission

Results

Diversity reduces transmission

Expectations

Parasite diversity

Transmission

Host diversity

Results

Host functional diversity

Take home

Diverse host communities:

- Rich symbiont communities, lower prevalence

Depauperate host communities:

- Depauperate symbionts, high prevalence

What about disease risk?

Still important, but integrates many factors

- Focal host choice
- Transmission potential
- Exposure
- Diversity of infectious agents

i.e. more complicated than constituent parts

What about management?

- Management goals
 - High symbiont richness & low transmission or low symbiont richness & high transmission?

Parallels

Habitat area-heterogeneity trade-off (Allouche et al. 2012)

Host abundance-diversity trade-off

Parallels

Habitat area-heterogeneity trade-off (Allouche et al. 2012)

Host abundance-diversity trade-off

Extremely high host diversity:

- low abundance of each host species
- larger pool of potential symbionts
- transmission and persistence unlikely following colonization

Host functional diversity

Thank you