Билет 21

Автор1, ..., АвторN

20 июня 2020 г.

Содержание

0.1 Билет 21: Фундаментальные последовательности. Свойства. Полнота. Полнота \mathbb{R}^d

1

Билет 21 СОДЕРЖАНИЕ

0.1. Билет 21: Фундаментальные последовательности. Свойства. Полнота. Полнота \mathbb{R}^d

Тут что-то странное с порядком билетов, рекомендуется сначала прочитать билет 22

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространоство.

Последовательность x_n называется фундаментальной

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geqslant N \quad \rho(x_n, x_m) < \varepsilon.$$

Лемма.

Фундаментальная последовательность ограничена

Доказательство.

Подставим $\varepsilon = 1$, получим $\forall n \geqslant N \quad \rho(x_N, x_n) < 1 \implies x_n \in B_1(N)$, пусть

$$r = \max\{1, \max_{k < N} \{\rho(x_N, x_k)\}\}.$$
 1-(N-1) () 1 N ,

Тогда $\forall n \in \mathbb{N} \quad x_n \in B_r(x_N).$

ТООО: Это все свойства фундаментальной последовательности?

Определение 0.2.

Метрическое пространство называется полным, если любая фундаментальная последовательность имеет предел.

Лемма.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Пусть $x_n \in X$ - фундаментальна, а $\lim_{k \to \infty} x_{n_k} = a$. Тогда $\lim_{n \to \infty} x_n = a$.

Доказательство.

$$\lim_{n \to \infty} x_{n_k} = a \implies \forall \varepsilon > 0 \quad \exists M \in \mathbb{N} \quad \forall k \geqslant M \quad \rho(x_{n_k}, a) < \varepsilon.$$

 x_n - фундаментальна $\implies \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geqslant N \quad \rho(x_n, x_m) < \varepsilon$.

Пусть $L = \max\{N, n_M\}.$

Тогда $\forall n > L \quad \exists k \quad \rho(x_n, a) < \rho(x_n, x_{n_k}) + \rho(x_{n_k}, a) < 2\varepsilon.$

Значит,
$$\rho(x_n, a) \to 0 \implies x_n \to a$$
.

Следствие.

 $1. \ \mathbb{R}^d$ - полное

Доказательство.

Пусть $x_n \in \mathbb{R}^d$ - фундаментальная последовательность.

Тогда x_n ограничена $\Longrightarrow \exists x_{n_k}$ - сходящаяся к точке из \mathbb{R}^d подпоследовательность (Больцано-Вейерштрасс из следующего билета), пусть $\lim_{k\to\infty} x_{n_k} = a$.

Тогда
$$\lim_{n \to \infty} x_n = a \in \mathbb{R}^d$$
.

Билет 21 COДЕРЖАНИЕ

2. K - компакт в $\langle X, \rho \rangle \implies \langle K, \rho \rangle$ - полное.

Доказательство.

K - компакт, $x_n \in K$ - фундаментальна.

$$\exists x_{n_k} \in K \quad \lim_{k \to \infty} x_{n_k} = a \in K \implies \lim_{n \to \infty} x_n = a \in K.$$