Material suplementario: Análisis de supervivencia sobre el tiempo de permanencia en Unidades de Cuidados Intensivos para pacientes de COVID-19 en Cali, Colombia

Isabel C. García A.¹, Abel Álvarez B.², and Sergio A. Barona M.³

1. Análisis descriptivo

Cuadro S1: Non-parametric Mann–Whitney U test for two independent samples

	Sex		Chronic	
	W	$p ext{-}value$	W	$p ext{-}value$
Age	421358	0,2438	358133,5	2,07e-20***
ICU LoS	426576,5	$0,\!4673$	945516	0,0000***
Time from SO to ICU	459781,5	0,0385	470060	0,8274

Null hypothesis: The two populations have identical distributions. $ICU\ LoS = Intensive\ Care\ Unit\ Length\ of\ Stay.$ $Time\ from\ SO\ to\ ICU = Time\ from\ Symptoms$ Onset to ICU admission. $W = Test\ statistic.$ Sex: 1 if female; 0 if male. Chronic: 1 if $T \geq 21$; 0 if T < 21. ***p - value < 0,01, **p - value < 0,05, *p - value < 0,1.

^{1,2} Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana — Cali.

³Departamento de Economía, Pontificia Universidad Javeriana — Cali. Email ids

Cuadro S2: Shapiro-Wilk normality test for continuous variables

	Skewness	Kurtosis	W	$p ext{-}value$
Age	-0,7328	3,3296	0,9623	3,98e-18***
ICU LoS	2,2575	8,4785	0,7129	1,59e-42***
Time from SO to ICU	2,8088	15,3450	0,7498	1,37e-44***

Null hypothesis: the sample comes from a Gaussian distribution. $ICU\ LoS =$ Intensive Care Unit Length of Stay. $Time\ from\ SO\ to\ ICU =$ Time from Symptoms Onset to ICU admission. W = Test statistic. ***p-value < 0,01, **p-value < 0,05, *p-value < 0,1.

Cuadro S3: Chi-square (χ^2) test of independence

Z_1	Z_2	χ^2	df	$p ext{-}value$
Sex	Chronic	0,007858513	1	0,9293615
Sex	Outcome	4,18183966	2	$0,\!1235734$
Chronic	Outcome	327,9942	2	0,000***

Null hypothesis: the two variables are independent. Sex: 0 if female; 1 if male. Chronic: 1 if $T \geq 21$; 0 if T < 21. Outcome: 0 if censored; 1 if discharged alive; 2 if died from COVID-19. ***p-value < 0.01, **p-value < 0.05, *p-value < 0.1. It is found that Chi-square (χ^2) test of independence and Fisher's exact test yield the same conclusion.

2. Estimador no-paramétrico de Kaplan-Meier

Figura S1: Kaplan-Meier survival curves of critically ill patients with COVID-19. Cumulative survival rate at 90 days for study variables such as (a) sex (log-rank test: p=0.12) and (b) age (log-rank test: p=0.000). Tick marks indicate censored data.

3. Modelo paramétrico

Figura S2: Parametric survival models for critically ill patients with COVID-19. Cumulative survival rate a 90 days. Parametric estimates are compared with the non-parametric estimate, i.e., Kaplan-Meier estimator. (The step function corresponds to the Kaplan-Meier non-parametric estimator).

Cuadro S4: Akaike Information Criterion and Bayesian Information Criterion for Parametric Model Selection

	AIC	BIC	LRT
Weibull	5667.16	5677.16	-2831.58
Log-normal	5506.72	5516.73	-2751.36
Generalized Gamma	5533.54	5548.54	-2763.77
Log-logistic	5564.40	5574.40	-2780.20
Gompertz	5208.52	5218.60	-2602.26
Exponential	6352.83	6357.83	-3175.41

AIC = Akaike Information Criterion. BIC: Bayesian Information Criterion (or Schwarz Criterion). LRT: Log-likelihood Ratio Test.

Figura S3: Parametric cumulative hazard models for critically ill patients with COVID-19. Cumulative hazard rate. Parametric estimates are compared with the non-parametric estimate, *i.e.*, Kaplan-Meier estimator. (The step function corresponds to the Kaplan-Meier non-parametric estimator).

4. Modelo de riesgos proporcionales de Cox

Cuadro S5: Multivariate Cox model for risk factors associated with ICU mortality of chronic critically ill patients with COVID-19 (Age [years] as a continuous variable)

	HR (95 % CI)	$p ext{-}value$
Sex (Male vs. Female) Age, an additional year	1.1564 (0.6926 - 1.9309) 1.0478 (1.0265 - 1.0695)	$0.5785 < 0.001^{***}$

HR= Hazard Ratio. 95 % CI= Confidence Intervals at the 95 % confidence level. P-value= P-value of Wald's test statistics. ***p-value<0,01, **p-value<0,05, *p-value<0,1

Cuadro S6: Multivariate Cox model for risk factors associated with ICU mortality of non-chronic critically ill patients with COVID-19 (Age [years] as a continuous variable)

	HR (95 % CI)	p-value
Sex (Male vs. Female)	1.0966 (0.9163 - 1.3124)	0.3145
Age, an additional year	$1.0298 \ (1.023 - 1.0366)$	< 0.001****

HR= Hazard Ratio. 95 % CI= Confidence Intervals at the 95 % confidence level. P-value= P-value of Wald's test statistics. ***p-value<0,01, **p-value<0,05, *p-value<0,1