

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

⑯ DE 199 34 946 A 1

⑯ Int. Cl. 7:

A 61 K 7/00

A 61 K 7/48

A 61 K 9/107

⑯ Aktenzeichen: 199 34 946.0
⑯ Anmeldetag: 26. 7. 1999
⑯ Offenlegungstag: 1. 2. 2001

⑯ Anmelder:

Beiersdorf AG, 20253 Hamburg, DE

⑯ Erfinder:

Riedel, Heidi, 22529 Hamburg, DE; Schneider, Günther, Dr., 22607 Hamburg, DE; Hamer, Gunhild, 22455 Hamburg, DE; Bleckmann, Andreas, 22926 Ahrensburg, DE

⑯ Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 694 16 060 T2
US 55 60 916
EP 09 53 340 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Kosmetische und dermatologische Zubereitungen auf der Grundlage von O/W-Emulsionen

⑯ Kosmetische und dermatologische Zubereitungen in Form von O/W-Emulsionen, enthaltend

(1) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, einer oder mehrerer C 14 -C 22 -Fettsäuren,

(2) 0,2 bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Mono- und/oder Diglyceride von Fettsäuren,

(3) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester,

wobei die Summe aus (1), (2) und (3) maximal 12 Gew.-% beträgt,

(4) 0,5-10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an hydriertem Polyisobuten mit einem Molekulargewicht von 100 bis 4000 g/mol,

(5) 0,5-10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer unpolarer Lipide,

(6) 0,5-10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an einem oder mehreren Siliconölen,

wobei die Summe aus (4), (5) und (6) maximal 25 Gew.-%

beträgt,

(7) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Fettalkohole,

(8) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer lipophiler Konsistenzgeber eines Schmelz- oder Tropfpunktes L 30 C,

(9) wobei die gesamte Lipidphase bis zu 40 Gew.-% polare Lipide enthalten kann,

bezogen auf das Gesamtgewicht der Lipidphase.

DE 199 34 946 A 1

DE 199 34 946 A 1

Beschreibung

Die vorliegende Erfindung betrifft kosmetische und dermatologische Emulsionen, insbesondere hautpflegende kosmetische und dermatologische Emulsionen. In einer vorteilhaften Ausführungsform betrifft die vorliegende Erfindung eine Anwendung, welche es erlaubt, die Stabilität von elektrolythaltigen Zubereitungen, insbesondere Emulsionen, bevorzugt von O/W-Emulsionen, zu steigern.

Die Haut ist das größte Organ des Menschen. Unter ihren vielen Funktionen (beispielsweise zur Wärmeregulation und als Sinnesorgan) ist die Barrierefunktion, die das Austrocknen der Haut (und damit letztlich des gesamten Organismus) verhindert, die wohl wichtigste. Gleichzeitig wirkt die Haut als Schutzeinrichtung gegen das Eindringen und die Aufnahme von außen kommender Stoffe. Bewirkt wird diese Barrierefunktion durch die Epidermis, welche als äußerste Schicht die eigentliche Schutzhülle gegenüber der Umwelt bildet. Mit etwa einem Zehntel der Gesamtdicke ist sie gleichzeitig die dünnste Schicht der Haut.

Die Epidermis ist ein stratifiziertes Gewebe, in dem die äußere Schicht, die Hornschicht (Stratum corneum), den für die Barrierefunktion bedeutenden Teil darstellt. Das heute in der Fachwelt anerkannte Hautmodell von Elias (P.M. Elias, Structure and Function of the Stratum Corneum Permeability Barrier, Drug Dev. Res. 13, 7988, 97-105) beschreibt die Hornschicht als Zwei-Komponenten-System, ähnlich einer Ziegelsteinmauer (Ziegelstein-Mörtel-Modell). In diesem Modell entsprechen die Hornzellen (Korneozyten) den Ziegelsteinen, die komplex zusammengesetzte Lipidmembranen in den Interzellularräumen entspricht dem Mörtel. Dieses System stellt im wesentlichen eine physikalische Barriere gegen hydrophile Substanzen dar, kann aber aufgrund seiner engen und mehrschichtigen Struktur gleichermaßen auch von lipophilen Substanzen nur schwer passiert werden.

Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform kosmetische oder pharmazeutische Zubereitungen mit verminderter Klebrigkeit, Verfahren zu ihrer Herstellung sowie die Verwendung von Wirkstoffen zur Herabminderung des Klebrigkeitssinnes der Zubereitungen.

Außer ihrer Barrierefunktion gegen externe chemische und physikalische Einflüsse tragen die epidermalen Lipide auch zum Zusammenhalt der Hornschicht bei und haben Einfluß auf die Hautglätte. Im Gegensatz zu den Talgdrüselenlipiden, die keinen geschlossenen Film auf der Haut ausbilden, sind die epidermalen Lipide über die gesamte Hornschicht verteilt.

Das äußerst komplexe Zusammenwirken der feuchtigkeitsbindenden Substanzen und der Lipide der oberen Hautschichten ist für die Regulation der Hautfeuchte sehr wichtig. Daher enthalten Kosmetika in der Regel, neben ausgewogenen Lipidabmischungen und Wasser, wasserbindende Substanzen.

Neben der chemischen Zusammensetzung ist jedoch auch das physikalische Verhalten dieser Substanzen von Bedeutung. Daher ist die Entwicklung von sehr gut bioverträglichen Emulgatoren bzw. Tensiden wünschenswert. Damit formulierte Produkte unterstützen die flüssigkristalline Organisation der Interzellularlipide des Stratum Corneum und verbessern so die Barriereeigenschaften der Hornschicht. Besonders vorteilhaft ist es, wenn deren Molekülbestandteile aus natürlicherweise in der Epidermis vorkommenden Substanzen bestehen.

Unter kosmetischer Hautpflege ist in erster Linie zu verstehen, daß die natürliche Funktion der Haut als Barriere gegen Umwelteinflüsse (z. B. Schmutz, Chemikalien, Mikroorganismen) und gegen den Verlust von körpereigenen Stoffen (z. B. Wasser, natürliche Fette, Elektrolyte) gestärkt oder wiederhergestellt wird.

Wird diese Funktion gestört, kann es zu verstärkter Resorption toxischer oder allergener Stoffe oder zum Befall von Mikroorganismen und als Folge zu toxischen oder allergischen Hautreaktionen kommen.

Ziel der Hautpflege ist es ferner, den durch tägliches Waschen verursachten Fett- und Wasserverlust der Haut auszugleichen. Dies ist gerade dann wichtig, wenn das natürliche Regenerationsvermögen nicht ausreicht. Außerdem sollen Hautpflegeprodukte vor Umwelteinflüssen, insbesondere vor Sonne und Wind, schützen und die Hautalterung verzögern.

Medizinische topische Zusammensetzungen enthalten in der Regel ein oder mehrere Medikamente in wirksamer Konzentration. Der Einfachheit halber wird zur sauberen Unterscheidung zwischen kosmetischer und medizinischer Anwendung und entsprechenden Produkten auf die gesetzlichen Bestimmungen der Bundesrepublik Deutschland verwiesen (z. B. Kosmetikverordnung, Lebensmittel- und Arzneimittelgesetz).

Übliche kosmetische Darreichungsformen sind Emulsionen. Darunter versteht man im allgemeinen ein heterogenes System aus zwei miteinander nicht oder nur begrenzt mischbaren Flüssigkeiten, die üblicherweise als Phasen bezeichnet werden. Die eine liegt dabei in Form von Tröpfchen vor (disperse oder innere Phase), während die andere Flüssigkeit eine kontinuierliche (kohärente oder innere Phase) bildet. Seltener Darreichungsformen sind multiple Emulsionen, also solche, welche in den Tröpfchen der dispergierten (oder diskontinuierlichen) Phase ihrerseits Tröpfchen einer weiteren dispergierten Phase enthalten, z. B. W/O/W-Emulsionen und O/W/O-Emulsionen.

Neuere Erkenntnisse führen in letzter Zeit zu einem besseren Verständnis praxisrelevanter kosmetischer Emulsionen. Dabei geht man davon aus, daß die im Überschuß eingesetzten Emulgatorgemische lamellare flüssigkristalline Phasen bzw. kristalline Gelphasen ausbilden. In der Gelnetzwerktheorie werden Stabilität und physikochemische Eigenschaften solcher Emulsionen auf die Ausbildung von viskoelastischen Gelnetzwerken zurückgeführt.

Um die Metastabilität von Emulsionen gewährleisten zu können, sind in der Regel grenzflächenaktive Substanzen, also Emulgatoren, nötig. An sich ist die Verwendung der üblichen kosmetischen Emulgatoren völlig unbedenklich. Dennoch können Emulgatoren, wie letztlich jede chemische Substanz, im Einzelfalle allergische oder auf Überempfindlichkeit des Anwenders beruhende Reaktionen hervorrufen. So ist bekannt, daß bei manchen besonders empfindlichen Personen bestimmte Lichtdermatosen durch gewisse Emulgatoren und gleichzeitige Einwirkung von Sonnenlicht ausgelöst werden.

Es ist möglich, emulgatorfreie Zubereitungen herzustellen, welche beispielsweise in einer wäßrigen Phase dispergierte Öltröpfchen, ähnlich einer O/W-Emulsion, aufweisen. Voraussetzung dafür kann sein, daß die kontinuierliche wäßrige Phase ein die dispergierte Phase stabilisierendes Gelgerüst aufweist und andere Umstände mehr. Solche Systeme werden gelegentlich Hydrodispersionen oder Oleodispersionen genannt, je nachdem, welches die disperse und welches die kontinuierliche Phase darstellt.

Es ist für die kosmetische Galenik aber weder nötig noch möglich, auf Emulgatoren ganz zu verzichten, zumal eine gewisse Auswahl an besonders milden Emulgatoren existiert. Allerdings besteht ein Mangel des Standes der Technik an einer befriedigend großen Vielfalt solcher Emulgatoren, welche dann auch das Anwendungsspektrum entsprechend milder und hautverträglicher kosmetischer Zubereitungen deutlich verbreitern würde.

So war eine Aufgabe der vorliegenden Erfindung, kosmetische bzw. dermatologische Zubereitungen mit hervorragenden hautpflegenden Eigenschaften zur Verfügung zu stellen.

Ein Nachteil insbesondere von O/W-Emulsionen ist oft deren mangelnde Stabilität gegenüber höheren Elektrolytkonzentrationen, was sich in Phasentrennung äußert. Dies kann zwar auch bei W/O-Emulsionen gelegentlich zu Problemen führen, tritt dort aber bei weitem nicht so in den Vordergrund wie bei O/W-Systemen. Zwar läßt sich diesen oft durch geeignete Wahl des Emulgatorsystems in gewissem Maße Abhilfe schaffen, es treten dann aber ebensooft andere Nachteile auf.

Es ist andererseits oft wünschenswert, bestimmte Elektrolyte einzusetzen, um deren sonstige physikalische, chemische bzw. physiologische Eigenschaften nutzen zu können.

Üblicherweise werden die Konzentrationen aller Bestandteile einer kosmetischen oder dermatologischen Zubereitung in solchen Einheiten wie Gewichts-%, Mol-% und dergleichen angegeben. Aufgrund ihrer mehr oder minder stark ausgeprägten Dissoziation in Kationen und Anionen, oftmals in mehreren Dissoziationsstufen, erscheint es manchmal zweckmäßiger für die Schilderung der vorliegenden Erfindung und ihres technischen Hintergrundes, von der Ionenstärke eines gegebenen Elektrolytes in seiner Lösung auszugehen.

Die Ionenstärke I einer Elektrolytlösung ist definiert als

$$I = \frac{1}{2} \sum_i c_i z_i^2$$

wobei c_i die Konzentrationen der einzelnen Ionensorten (in mol/l) und z_i deren Ladungszahlen darstellen. Die physikalische Einheit der Ionenstärke ist die einer Konzentration (mol/l).

Eine 1%-ige ($\approx 0,17$ -molare) Kochsalzlösung hat beispielsweise eine Ionenstärke $I = 0,17$.

Eine weitere Aufgabe der vorliegenden Erfindung war es also, Lösungswege zu kosmetischen oder dermatologischen Emulsionen, insbesondere O/W-Emulsionen, aufzudecken, welche gegenüber erhöhten Elektrolytkonzentrationen – bzw. erhöhten Ionenstärken – stabil sind.

Ferner war eine Aufgabe der vorliegenden Erfindung, Zubereitungen zur Verfügung zu stellen, welche den Zustand der Haut deutlich verbessern, insbesondere die Hautrauhigkeit vermindern.

Es ist zwar bekannt, durch Hinzufügen bestimmter Substanzen, beispielsweise einiger ausgewählter Puderrohstoffe, insbesondere Talcum, ein Klebrigkeitsgefühl oder auch Schmierigkeitsgefühl zu reduzieren. Davon abgesehen, daß dieses nur selten vollständig gelingt, wird durch einen solchen Zusatz auch die Viskosität des betreffenden Produktes verändert und die Stabilität verringert.

Aufgabe war daher, all diesen den Nachteilen des Standes der Technik Abhilfe zu schaffen. Insbesondere sollten Produkte mit verringriger Klebrigkeit bzw. Schmierigkeit zur Verfügung gestellt werden. Produkte auf dem Gebiete der pflegenden Kosmetik, der dekorativen Kosmetik und der pharmakologischen Galenik sollten gleichermaßen von den geschilderten Nachteilen des Standes der Technik befreit werden.

Weiterhin war es eine Aufgabe der Erfindung, kosmetische Grundlagen für kosmetische Zubereitungen zu entwickeln, die sich durch gute Hautverträglichkeit auszeichnen.

Ferner war eine Aufgabe der vorliegenden Erfindung, Produkte mit einer möglichst breiten Anwendungsvielfalt zur Verfügung zu stellen. Beispielsweise sollten Grundlagen für Zubereitungsformen wie Reinigungsemulsionen, Gesichts- und Körperpflegezubereitungen, aber auch ausgesprochen medizinisch-pharmazeutische Darreichungsformen geschaffen werden, zum Beispiel Zubereitungen gegen Akne und andere Hauterscheinungen.

Es hat sich überraschend gezeigt, und darin liegt die Lösung dieser Aufgaben, daß kosmetische und dermatologische Zubereitungen in Form von O/W-Emulsionen, enthaltend

- (1) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, einer oder mehrerer C₁₄-C₂₂-Fettsäuren,
- (2) 0,2 bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Mono- und/oder Diglyceride von Fettsäuren,
- (3) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester,

wobei die Summe aus (1), (2) und (3) maximal 12 Gew.-% beträgt,

- (4) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an hydriertem Polyisobuten mit einem Molekulargewicht von 100 bis 4000 g/mol,
- (5) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer unpolarer Lipide,
- (6) 0,5-10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an einem oder mehreren Siliconölen,

wobei die Summe aus (4), (5) und (6) maximal 25 Gew.-% beträgt,

- (7) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Fettalkohole
- (8) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer lipophiler Konsistenzgeber eines Schmelz- oder Tropfpunktes $\geq 30^\circ\text{C}$,
- (9) wobei die gesamte Lipidphase bis zu 40 Gew.-% polare Lipide enthalten kann, bezogen auf das Gesamtgewicht der Lipidphase,

den Nachteilen des Standes der Technik abhelfen.

Es war für den Fachmann daher nicht vorauszusehen gewesen, daß die erfundungsgemäßen Zubereitungen

- 5 – besser als feuchtigkeitsspendende Zubereitungen wirken,
- besser die Hautglättung fördern,
- sich durch bessere Pflegewirkung auszeichnen,
- besser als Vehikel für kosmetische und medizinisch-dermatologische Wirkstoffe dienen,
- höhere Stabilität gegenüber Zerfall in Öl- und Wasserphasen aufweisen und
- sich durch bessere Bioverträglichkeit auszeichnen würden
- 10 – sich durch besseres Hautgefühl und durch höhere kosmetische Eleganz auszeichnen würden

als die Zubereitungen des Standes der Technik.

Die erfundungsgemäßen Zubereitungen sind sowohl fließfähig als auch crèmeartig formulierbar, besitzen sehr gute kosmetische Eigenschaften, insbesondere was die Klebrigkeits betrifft, und weisen eine sehr gute Hautverträglichkeit sowie Hautpflegeleistung auf.

15 Vorteilhafte Ausführungsformen der vorliegenden Erfindung betreffen kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch, enthaltend

20 (1) 0,5 bis zu 1,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, einer oder mehrerer C₁₄-C₂₂-Fettsäuren.

Vorteilhafte Ausführungsformen der vorliegenden Erfindung betreffen auch kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch, enthaltend

25 (2) 2,5 bis zu 3,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Mono- und/oder Diglyceride von Fettsäuren.

Vorteilhafte Ausführungsformen der vorliegenden Erfindung betreffen auch kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch, enthaltend

30 (3) 1,0 bis zu 1,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester.

35 Insbesondere vorteilhafte Ausführungsformen der vorliegenden Erfindung werden erhalten, wenn diese kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

(2) bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an Glycerylstearat.

40 Insbesondere vorteilhafte Ausführungsformen der vorliegenden Erfindung werden erhalten, wenn sie kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

(3) bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester gewählt aus der Gruppe der PEG-20- bis PEG-100-Stearate.

45 Es ist insbesondere vorteilhaft, Gewichtsverhältnisse zwischen den unter (1), (2) und (3) genannten Bestandteile von ungefähr 1 : 4 : 2 zu wählen.

Weiterhin werden vorteilhafte Ausführungen der vorliegenden Erfindung erhalten, wenn diese kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

50 (5) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer unpolarer Lipide, gewählt aus der Gruppe Mineralöl und/oder Mineralwachse (u. a. Vaseline).

Weiterhin werden vorteilhafte Ausführungen der vorliegenden Erfindung erhalten, wenn diese kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

55 (6) 5–8 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an einem oder mehreren Siliconölen, besonders bevorzugt Cylomethicone.

60 Es ist insbesondere bevorzugt, Gewichtsverhältnisse zwischen den unter (4), (5) und (6) genannten Bestandteile von ungefähr 1 : 1 : 1 zu wählen.

Weiterhin werden vorteilhafte Ausführungen der vorliegenden Erfindung erhalten, wenn diese kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

65 (7) 2,0–3,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Fettalkohole.

Weiterhin werden vorteilhafte Ausführungen der vorliegenden Erfindung erhalten, wenn diese kosmetische und dermatologische Zubereitungen gemäß Hauptanspruch betreffen, enthaltend

(8) 1,5-2,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer lipophiler Konsistenzgeber eines Schmelz- oder Tropfpunktes $\geq 30^\circ\text{C}$.

Im Rahmen der vorliegenden Offenbarung wird als Oberbegriff für Fette, Öle, Wachse und dergleichen gelegentlich der Ausdruck "Lipide" verwendet, wie dem Fachmannen durchaus geläufig ist. Auch werden die Begriffe "Ölphase" und "Lipidphase" synonym angewandt.

Öle und Fette unterscheiden sich unter anderem in ihrer Polarität, welche schwierig zu definieren ist. Es wurde bereits vorgeschlagen, die Grenzflächenspannung gegenüber Wasser als Maß für den Polaritätsindex eines Öls bzw. einer Ölphase anzunehmen. Dabei gilt, daß die Polarität der betreffenden Ölphase um so größer ist, je niedriger die Grenzflächenspannung zwischen dieser Ölphase und Wasser ist. Erfahrungsgemäß wird die Grenzflächenspannung als ein mögliches Maß für die Polarität einer gegebenen Ölkomponente angesehen.

Die Grenzflächenspannung ist diejenige Kraft, die an einer gedachten, in der Grenzfläche zwischen zwei Phasen befindlichen Linie der Länge von einem Meter wirkt. Die physikalische Einheit für diese Grenzflächenspannung errechnet sich klassisch nach der Beziehung Kraft/Länge und wird gewöhnlich in mN/m (Millinewton geteilt durch Meter) wiedergegeben. Sie hat positives Vorzeichen, wenn sie das Bestreben hat, die Grenzfläche zu verkleinern. Im umgekehrten Falle hat sie negatives Vorzeichen. Als polar im Sinne der vorliegenden Erfundung werden Lipide angesehen, deren Grenzflächenspannung gegen Wasser weniger als 30 mN/m beträgt.

Polare Öle, sind beispielsweise solche aus der Gruppe der Lecithine und der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl und dergleichen mehr.

Weitere polare Ölkomponenten können gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyl-laurat, n-Decyloleat, Isooctylstearat, Isónonylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z. B. Jojobaöl.

Ferner können die Bestandteile der Ölphase vorteilhaft gewählt werden aus der Gruppe der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole.

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfundung einzusetzen.

Unpolare Öle sind beispielsweise solche, welche gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, insbesondere Vaseline (Petrolatum), Paraffinöl, Squalan und Squalen, Polyolefine und hydrogenierte Polyisobutene. Unter den Polyolefinen sind Polydecene die bevorzugten Substanzen. Die nachfolgende Tabelle 1 führt Lipide auf, die als Einzelsubstanzen oder auch im Gemisch untereinander erfahrungsgemäß vorteilhaft sind. Die betreffenden Grenzflächenspannungen gegen Wasser sind in der letzten Spalte angegeben. Es ist jedoch auch vorteilhaft, Gemische aus höher- und niederpolaren und dergleichen zu verwenden, sofern gewährleistet ist, daß die Gesamtpolarität der Ölphase im beanspruchten Bereich liegt.

5

10

15

20

30

35

40

45

50

55

60

65

Tabelle 1

Handelsname	INCI-Bezeichnung	(mN/m)
Isofol® 14 T	Butyl Decanol + Hexyl Decanol + Hexyl Octanol + Butyl Octanol	27,6
Isofol® 16	Hexyl Decanol	24,3
Eutanol® G	Octyldodecanol	24,8
Cetiol® OE	Dicaprylyl Ether	22,1
Miglyol® 812	Caprylic/Capric Triglyceride	21,3
Cegesoft® C24	Octyl Palmitate	23,1
Isopropylstearat	Isopropyl Stearate	21,9
Estol® 1540 EHC	Octyl Octanoate	30,0
Finsolv® TN	C ₁₂₋₁₅ Alkyl Benzoate	21,8
Cetiol® SN	Cetearyl Isononanoate	28,6
Dermofeel® BGC	Butylene Glycol Caprylate/Caprate	21,5
Trivent® OCG	Tricaprylin	20,2
MOD	Octyldodecyl Myristate	22,1
Cosmacol® ETI	Di-C ₁₂₋₁₃ Alkyl Tartrate	29,4
Miglyol® 829	Caprylic/Capric Diglyceryl Succinate	29,5
Prisorine® 2036	Octyl Isostearate	29,7
Tegosoft® SH	Stearyl Heptanoate	28,7
Abil® Wax 9840	Cetyl Dimethicone	25,1
Cetiol® LC	Coco-Caprylate/Caprate	24,8
IPP	Isopropyl Palmitate	22,5
Luvitol® EHO	Cetearyl Octanoate	28,6
Cetiol® 868	Octyl Stearate	28,4

50 Es wird erfindungsgemäß bevorzugt, das oder die Siliconöle der erfindungsgemäßen Zubereitungen aus der Gruppe der cyclischen und/oder linearen Silicone zu wählen, welche im Rahmen der vorliegenden Offenbarung auch als "Siliconöle" bezeichnet werden. Solche Silicone oder Siliconöle können als Monomere vorliegen, welche in der Regel durch Strukturelemente charakterisiert sind, wie folgt:

60 Als erfindungsgemäß vorteilhaft einzusetzende lineare Silicone mit mehreren Siloxyleinheiten werden im allgemeinen durch Strukturelemente charakterisiert wie folgt:

wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste R₁-R₄ dargestellt sind (will sagen, daß die Anzahl der unterschiedlichen Reste nicht notwendig auf bis zu 4 beschränkt ist). m kann dabei Werte von 2-200.000 annehmen.

Erfnungsgemäß vorteilhaft einzusetzende cyclische Silicone werden im allgemeinen durch Strukturelemente charakterisiert, wie folgt

wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste R₁-R₄ dargestellt sind (will sagen, daß die Anzahl der unterschiedlichen Reste nicht notwendig auf bis zu 4 beschränkt ist). n kann dabei Werte von 3/2 bis 20 annehmen. Gebrochene Werte für n berücksichtigen, daß ungeradzahlige Anzahlen von Siloxylgruppen im Cyclus vorhanden sein können.

Vorteilhaft wird Phenyltrimethicon als Siliconöl gewählt. Auch andere Siliconöle, beispielsweise Dimethicon, Phenyldimethicon, Cyclomethicon (Octamethylcyclotetrasiloxan) beispielsweise Hexamethylcyclotrisiloxan, Polymethylsiloxan, Poly(methylphenylsiloxan), Cetyltrimethicon, Behenoxydimethicon sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2-Ethylhexylisostearat.

Es ist aber auch vorteilhaft, Siliconöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxan-polyalkyl-polyether-copolymere wie das Cetyl-Dimethicon-Copolyol, das (Cetyl-Dimethicon-Copolyol (und) Polyglyceryl-4-Isostearat (und) Hexyllaurat).

Besonders vorteilhaft können das oder die Siliconöle auch gewählt werden aus der Gruppe der Silicone der allgemeinen Struktur

bezogen auf das Gesamtgewicht der Zubereitung, aufweisen; wobei n Zahlen zwischen 5 und 50 annehmen kann. Es ist dabei von Vorteil, den Durchschnittswert n in aus dem Bereich von 12-16 zu wählen. Als ein besonders vorteilhafter Vertreter solcher Siliconöle hat sich das Siliconöl AK 10 der Gesellschaft Wacker-Chemie GmbH herausgestellt, dessen Durchschnittswert für n bei etwa 14 liegt.

Erfnungsgemäß bevorzugte Zubereitungen enthalten vorteilhaft einen Anteil von mindestens 5 Gew.-%, bevorzugt mindestens 10 Gew.-%, an einem oder mehreren Siliconölen.

Die Verwendung von hydriertem Polyisobuten in kosmetischen Zubereitungen ist an sich bekannt. Es handelt sich dabei um eine Verbindungsklasse, deren chemischer Aufbau durch die nachfolgende Strukturformel gekennzeichnet ist:

10 n nimmt dabei gewöhnlich Werte von 3 bis 15 an. Erfindungsgemäß bevorzugt ist der Bereich von n von 3–12, insbesondere 6–7.

Die Gesamtmenge an erfindungsgemäß verwendeten hydrierten Polyisobutenen in den erfindungsgemäßen kosmetischen oder dermatologischen Zubereitungen wird vorteilhaft aus dem Bereich von 4–8 Gew.-% gewählt, bezogen auf das Gesamtgewicht der Zubereitung.

15 Die Molmassenmaxima der erfindungsgemäß verwendeten hydrierten Polyisobutene liegt vorteilhaft zwischen 250 und 600 g/mol, besonders bevorzugt bei ungefähr 400 g/mol, entsprechend einem Wert für n von ungefähr 6.

Als Grundbestandteile der erfindungsgemäßen Zubereitungen können verwendet werden:

- Wasser oder wässrige Lösungen
- 20 – wässrige ethanolische Lösungen
- natürliche Öle und/oder chemisch modifizierte natürliche Öle und/oder synthetische Öle;
- Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z. B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;
- 25 – Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl-, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte.

Insbesondere werden Gemische der vorstehend genannten Lösungsmittel verwendet.

30 Die Ölphase der Emulsionen im Sinne der vorliegenden Erfindung besteht erfindungsgemäß vorzugsweise vorwiegend aus Komponenten der unter Punkt (4) aufgeführten Art, wobei es allerdings möglich ist, ohne große Nachteile in Kauf zu nehmen, bis zu 50 Gew.-%, vorzugsweise bis zu 40 Gew.-% des Gesamtgewichtes der Ölkomponenten aus der Gruppe anderer Ölkomponenten zu wählen. Diese können dann vorteilhaft gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloeat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyoleat, Oleylerucat, Erucyloeat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z. B. Jojobaöl.

40 Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12–18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr, sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

45 Erfindungsgemäß vorteilhaft zu verwendende Fett- und/oder Wachskomponenten können aus der Gruppe der pflanzlichen Wachse, tierischen Wachse, Mineralwachse und petrochemischen Wachse gewählt werden. Erfindungsgemäß günstig sind beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Beerenwachs, Ouricurywachs, Montanwachs, Jojobawachs, Shea Butter, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Paraffinwachse und Mikrowachse, sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

55 Weitere vorteilhafte Fett- und/oder Wachskomponenten sind chemisch modifizierte Wachse und synthetische Wachse, wie beispielsweise die unter den Handelsbezeichnungen Syncrowax HRC (Glyceryltribehenat), Syncrowax HGLC (C_{16–36}-Fettsäuretriglycerid) und Syncrowax AW 1C (C_{18–36}-Fettsäure) bei der CRODA GmbH erhältlichen sowie Montanesterwachs, Sasolwachs, hydrierte Jojobawachs, synthetische oder modifizierte Bienenwachse (z. B. Dimethicon Copolyol Bienenwachs und/oder C_{30–50}-Alkyl Bienenwachs), Polyalkylenwachs, Polyethylenglykolwachs, aber auch 60 chemisch modifizierte Fette, wie z. B. hydrierte Pflanzenöle (beispielsweise hydriertes Ricinusöl und/oder hydrierte Coscettglyceride), Triglyceride, wie beispielsweise Trihydroxystearin, Fettsäuren, Fettsäureester und Glykolester, wie beispielsweise C_{20–40}-Alkylstearat, C_{20–40}-Alkylhydroxystearoylstearat und/oder Glykolmontanat. Weiter vorteilhaft sind auch bestimmte Organosiliciumverbindungen, die ähnliche physikalische Eigenschaften aufweisen wie die genannten Fett- und/oder Wachskomponenten, wie beispielsweise Stearoxytrimethylsilan, sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

65 Erfindungsgemäß können die Fell- und/oder Wachskomponenten sowohl einzeln als auch im Gemisch vorliegen.

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Li-

pidkomponente der Ölphase einzusetzen sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C₁₂₋₁₅-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

Besonders vorteilhaft sind Mischungen aus C₁₂₋₁₅-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C₁₂₋₁₅-Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C₁₂₋₁₅-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat, sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

Von den Kohlenwasserstoffen sind Paraffinöl, Cycloparaffin, Squalan, Squalen, hydriertes Polyisobutene bzw. Polydecan vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, sofern die im Hauptanspruch geforderten Bedingungen eingehalten werden.

Erfindungsgemäße O/W-Emulsionen können vorteilhaft mit Hilfe der üblichen O/W-Emulgatoren, gewünschtenfalls unter Zuhilfenahme von W/O-Emulgatoren bzw. weiteren Coemulgatoren hergestellt werden.

O/W-Emulsionen entsprechend der vorliegenden Erfindung enthalten einen oder mehrere Emulgatoren, gewünschtenfalls vorteilhaft gewählt aus der Gruppe der folgenden Substanzen, die in der Regel als W/O-Emulgatoren wirken:
 Sorbitanstearat, Sorbitanoleat, Lecithin, Glyceryllanolat, Lanolin, mikrokristallines Wachs (Cera microcristallina) im Gemisch mit Paraffinöl (Paraffinum liquidum), Ozokerit, hydriertem Ricinusöl, Glycerylisostearat, Polyglyceryl-3-Oleat, Wollwachssäuregemische, Wollwachsalkoholgemische, Pentaerythritylisostearat, Polyglyceryl-3 Diisostearat, Sorbitan Oleat im Gemisch mit hydriertem Ricinusöl, Bienenwachs (Cera alba) und Stearinsäure, Natriumdihydroxyctylphosphat im Gemisch mit Isopropylhydroxycetylather, Methylglucosedioleat, Methylglucosediolat im Gemisch mit Hydroxystearat und Bienenwachs, Mineralöl im Gemisch mit Petrolatum und Ozokerit und Glyceryloleat und Lanolinalkohol, Petrolatum im Gemisch mit Ozokerit und hydriertem Ricinusöl und Glycerylisostearat und Polyglyceryl-3-oleat, PEG-7-hydriertes Ricinusöl, Sorbitanoleat im Gemisch mit PEG-2-hydriertem Ricinusöl, Ozokerit und hydriertem Ricinusöl, Sorbitanisostearat im Gemisch mit PEG-2-hydriertem Ricinusöl, Polyglyceryl-4-isostearat, Polyglyceryl-4-isostearat im Gemisch mit Cetyltrimethiconcopolyol und Hexylaurat, Laurylmethiconcopolyol, Cetyltrimethiconcopolyol, Acrylat/ C₁₀₋₃₀-Alkylacrylat-Crosspolymer, Sorbitanisostearat, Poloxamer 101, Polyglyceryl-2-dipolyhydroxystearat, Polyglyceryl-3-Diisostearat, Polyglyceryl-4-dipolyhydroxystearat, PEG-30-dipolyhydroxystearat, Diisostearoylpolyglyceryl-3-diisostearat, Polyglyceryl-2-dipolyhydroxystearat, Polyglyceryl-3-dipolyhydroxystearat, Polyglyceryl-4-dipolyhydroxystearat, Polyglyceryl-3-dioleat.

O/W-Emulsionen entsprechend der vorliegenden Erfindung enthalten gewünschtenfalls einen oder mehrere Emulgatoren, insbesondere vorteilhaft gewählt aus der Gruppe der folgenden Substanzen, die in der Regel als O/W-Emulgatoren wirken:

Glycerylstearat im Gemisch mit Ceteareth-20, Ceteareth-25, Ceteareth-6 im Gemisch mit Stearylalkohol, Cetylstearylalkohol im Gemisch mit PEG-40-Ricinusöl und Natriumcetylstearylsulfat, Triceteareth-4 Phosphat, Glycerylstearat, Natriumcetylstearylsulfat, Lecithin, Trilaureth-4 Phosphat, Laureth-4 Phosphat, Stearinsäure, Propylenglycolstearat SE, PEG-25-hydriertes Ricinusöl, PEG-54-hydriertes Ricinusöl, PEG-6 Caprylsäure/Caprinsäureglyceride, Glyceryloleat im Gemisch mit Propylenglycol, PEG-9-Stearat, Ceteth-2, Ceteth-20, Polysorbat 60, Glycerylstearat im Gemisch mit PEG-100 Stearat, Glycerylmyristat, Glyceryllaurat, PEG-40-Sorbitanperoleat, Laureth-4, Ceteareth-3, Isostearylglycerether, Cetylstearylalkohol im Gemisch mit Natrium Cetylstearylsulfat, Laureth-23, Steareth-2, Glycerylstearat im Gemisch mit PEG-30 Stearat, PEG-40-Stearat, Glycol Distearat, PEG-22-Dodecyl Glycol Copolymer, Polyglyceryl-2-PEG-4-Stearat, Ceteareth-20, Methylglucosatesesquistearat, Steareth-10, PEG-20-Stearat, Steareth-2 im Gemisch mit PEG-8 Distearat, Steareth-21, Steareth-20, Isosteareth-20, PEG-45/Dodecylglycol-Copolymer, Methoxy-PEG-22/Dodecylglycol-Copolymer, PEG-40-Sorbitanperoleat, PEG-40-Sorbitanperisostearat, PEG-20-Glycerylstearat, PEG-20-Glycerylstearat, PEG-8-Bienenwachs, Polyglyceryl-2-laurat, Isostearyl diglycerylsuccinat, Stearamidopropyl-PG-dimoniumchloridphosphat, Glycerylstearat SE, Ceteth-20, Triethylcitrat, PEG-20-Methylglucosatesesquistearat, Ceteareth-12, Glycerylstearatcitrat, Cetylphosphat, Sorbitansesquioleat, Triceteareth-4-Phosphat, Trilaureth-4-Phosphat, Polyglycerylmethylglucosidestearat, Kaliumcetylphosphat, Isosteareth-10, Polyglyceryl-2-sesquioleat, Ceteth-10, Oleth-20, Isoceteth-20, Glycerylstearat im Gemisch mit Ceteareth-20, Ceteareth-12, Cetylstearylalkohol und Cetylpalmitat, Cetylstearylalkohol im Gemisch mit PEG-20 Stearat, PEG-30-Stearat, PEG-40-Stearat, PEG-100-Stearat.

Erfindungsgemäße Emulsionen im Sinne der vorliegenden Erfindung, z.B. in Form einer Hautschutzcreme, einer Hautlotion, einer kosmetischen Milch, beispielsweise in Form einer Sonnenschutzcreme oder einer Sonnenschutzmilch, sind vorteilhaft und enthalten z. B. Fette, Öle, Wachse und/oder andere Fettkörper, sowie Wasser und einen oder mehrere Emulgatoren, wie sie üblicherweise für einen solchen Typ der Formulierung verwendet werden.

Es ist dem Fachmann natürlich bekannt, daß anspruchsvolle kosmetische Zusammensetzungen zumeist nicht ohne die üblichen Hilfs- und Zusatzstoffe denkbar sind. Darunter zählen beispielsweise Konsistenzgeber, Füllstoffe, Parfum, Farbstoffe, Emulgatoren, zusätzliche Wirkstoffe wie Vitamine oder Proteine, Lichtschutzmittel, Stabilisatoren, Insektenrepellentien, Alkohol, Wasser, Salze, antimikrobiell, proteolytisch oder keratolytisch wirksame Substanzen usw.

Mutatis mutandis gelten entsprechende Anforderungen an die Formulierung medizinischer Zubereitungen.

Medizinische topische Zusammensetzungen im Sinne der vorliegenden Erfindung enthalten in der Regel ein oder mehrere Medikamente in wirksamer Konzentration. Der Einfachheit halber wird zur sauberen Unterscheidung zwischen kosmetischer und medizinischer Anwendung und entsprechenden Produkten auf die gesetzlichen Bestimmungen der Bundesrepublik Deutschland verwiesen (z. B. Kosmetikverordnung, Lebensmittel- und Arzneimittelgesetz).

Entsprechend können kosmetische oder topische dermatologische Zusammensetzungen im Sinne der vorliegenden Erfindung, je nach ihrem Aufbau, beispielsweise verwendet werden als Hautschutzcreme, Reinigungsmilch, Sonnenschutzlotions, Nährcreme, Tages- oder Nachtcreme usw. Es ist gegebenenfalls möglich und vorteilhaft, die erfindungsgemäßen Zusammensetzungen als Grundlage für pharmazeutische Formulierungen zu verwenden.

Es ist ebenfalls von Vorteil, von den erfindungsgemäßen Eigenschaften in Form von dekorativen Kosmetika (Make-Up-Formulierungen) Gebrauch zu machen.

Günstig sind auch solche kosmetischen und dermatologischen Zubereitungen, die in der Form eines Sonnenschutzmit-

tels vorliegen. Vorzugsweise enthalten diese neben dem erfundungsgemäß verwendeten Wirkstoff zusätzlich mindestens eine UVA-Filtersubstanz und/oder mindestens eine UVB-Filtersubstanz und/oder mindestens ein anorganisches Pigment.

Es ist aber auch vorteilhaft im Sinne der vorliegenden Erfindungen, solche kosmetischen und dermatologischen Zubereitungen zu erstellen, deren hauptsächlicher Zweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an UV-Schutzsubstanzen enthalten. So werden beispielsweise in Tagescremes gewöhnlich UV-A- bzw. UV-B-Filtersubstanzen eingearbeitet.

Vorteilhaft können erfundungsgemäß Zubereitungen Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1 bis 6 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen.

Die UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:

- 3-Benzylidencampher und dessen Derivate, z. B. 3-(4-Methylbenzyliden)campher,
- 4-Aminobenzoësäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoësäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoësäureamylester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
- Ester der Salicylsäure, vorzugsweise Salicylsäure(2-ethylhexyl)ester, Salicylsäure-(4-isopropylbenzyl)ester, Salicylsäurehomomenthylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester;
- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin.

Als wasserlösliche Substanzen sind vorteilhaft:

- 2-Phenylbenzimidazol-5-sulfonsäure und deren Salze, z. B. Natrium-, Kalium- oder Triethanolammonium-Salze,
- Sulfonsäure-Derivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze;
- Sulfonsäure-Derivate des 3-Benzylidencampfers, wie z. B. 4-(2-Oxo-3-bomylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und ihre Salze.

Die Liste der genannten UVB-Filter, die erfundungsgemäß Verwendung finden können, soll selbstverständlich nicht limitierend sein.

Es kann auch von Vorteil sein, in erfundungsgemäßen Zubereitungen UVA-Filter einzusetzen, die üblicherweise in kosmetischen und/oder dermatologischen Zubereitungen enthalten sind. Bei solchen Filtersubstanzen handelt es sich vorzugsweise um Derivate des Dibenzoylmethans, insbesondere um 1-(4'-tert. Butylphenyl)-3-(4'-methoxyphenyl)-propan-1,3-dion und um 1-Phenyl-3-(4'-isopropylphenyl)propan-1,3-dion. Auch Zubereitungen, die diese Kombinationen enthalten, sind Gegenstand der Erfindung. Es können die gleichen Mengen an UVA-Filtersubstanzen verwendet werden, welche für UVB-Filtersubstanzen genannt wurden.

Kosmetische und/oder dermatologische Zubereitungen im Sinne der vorliegenden Erfindung können auch anorganische Pigmente enthalten, die üblicherweise in der Kosmetik zum Schutze der Haut vor UV-Strahlen verwendet werden. Dabei handelt es sich um Oxide des Titans, Zinks, Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums, Cers und Mischungen davon, sowie Abwandlungen, bei denen die Oxide die aktiven Agentien sind. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid. Es können die für die vorstehenden Kombinationen genannten Mengen verwendet werden.

Die erfundungsgemäßen kosmetischen und dermatologischen Zubereitungen können kosmetische Wirk-, Hilfs- und/oder Zusatzstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, z. B. Antioxidationsmittel, Konservierungsmittel, Bakterizide, Parfüme, Substanzen zum Verhindern des Schäumens, Farbstoffe, Pigmente, die färbende Wirkung haben, Verdickungsmittel, oberflächenaktive Substanzen, Emulgatoren, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen, Fette, Öle, Wachse oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lösungsmittel oder Silikonderivate.

Es ist vorteilhaft, den Zubereitungen im Sinne der vorliegenden Erfindung weitere antirritative oder antientzündliche Wirkstoffe zuzugeben, insbesondere Batylalkohol (α -Octadecylglycerylether), Selachylalkohol (α -9-Octadecenylglycerylether), Chimylalkohol (α -Hexadecylglycerylether), Bisabolol und/oder Panthenol.

Es ist ebenfalls vorteilhaft, den Zubereitungen im Sinne der vorliegenden Erfindung übliche Antioxidantien zuzufügen. Erfundungsgemäß können als günstige Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α -Carotin, β -Carotin, ψ -Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ -Linoleyl-, Cholesterin- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis μ mol/kg), ferner (Metall)-Chelatoren (z. B. α -Hydroxyfettsäuren, Pal-

mitinsäure, Phytinsäure, Lactoferrin), α -Hydroxysäuren (z. B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ -Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Furfurylidensorbitol und dessen Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylp-phosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α -Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaret-säure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z. B. ZnO, ZnSO₄) Selen und dessen Derivate (z. B. Selenmethionin), Stilbene und deren Derivate (z. B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05–20 Gew.-%, insbesondere 1–10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001–10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Zubereitungen gemäß der vorliegenden Erfindung können auch Verwendung als Grundlage für kosmetische oder dermatologische Desodorantien bzw. Antitranspirantien finden. Alle für Desodorantien bzw. Antitranspirantien gängigen Wirkstoffe können vorteilhaft genutzt werden, beispielsweise Geruchsüberdecker wie die gängigen Parfümbestandteile, Geruchsabsorber, beispielsweise die in der Patentoffenlegungsschrift DE-P 40 09 347 beschriebenen Schichtsilikate, von diesen insbesondere Montmorillonit, Kaolinit, Illit, Beidellit, Nontronit, Saponit, Hectorit, Bentonit, Smectit, ferner beispielsweise Zinksalze der Reginolsäure.

Keimhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Zubereitungen eingearbeitet zu werden. Vorteilhafte Substanzen sind zum Beispiel 2,4,4'-Trichlor-2'-hydroxydiphenylether (Irgasan), 1,6-Di-(4-chlorphenylbi-guanido)-hexan (Chlorhexidin), 3,4,4'-Trichlorcarbonilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol) sowie die in den Patentoffenlegungsschriften DE-37 40 186, DE-39 38 140, DE-42 04 321, DE-42 29 707, DE-43 09 372, DE-44 11 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE-196 02 111, DE-196 31 003, DE-196 31 004 und DE-196 34 019 und den Patentschriften DE-42 29 737, DE-42 37 081, DE-43 24 219, DE-44 29 467, DE-44 23 410 und DE-195 16 705 beschriebenen Wirkstoffe bzw. Wirkstoffkombinationen. Auch Natriumhydrogencar-bonat ist vorteilhaft zu verwenden.

Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05–20 Gew.-%, insbesondere 1–10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Die Wasserphase der kosmetischen Zubereitungen im Sinne der vorliegenden Erfindung kann auch Gelcharakter aufweisen, die neben einem wirksamen Gehalt am erfindungsgemäß eingesetzten Substanzen und dafür üblicherweise ver-wendeten Lösungsmitteln, bevorzugt Wasser, noch weitere organische Verdickungsmittel, z. B. Gummiarabikum, Xanthan-gummi, Natriumalginat, Stärke und Stärkederivate (z. B. Distärkephosphat), Cellulose, Cellulose-Derivate, vorzugsweise Methylcellulose, Hydroxymethylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethy-cellulose oder anorganische Verdickungsmittel, z. B. Aluminiumsilikate wie beispielsweise organisch-modifizierte oder auch unmodifizierte Hectorite, Bentonite, oder dergleichen, oder ein Gemisch aus Polyethylenglykol und Polyethylenglykolstearat oder -distearat, enthalten. Das Verdickungsmittel ist in dem Gel z. B. in einer Menge zwischen 0,1 und 30 Gew.-%, bevorzugt zwischen 0,5 und 15 Gew.-%, enthalten.

Ferner kann es von Vorteil sein, Zubereitungen gemäß der Erfindung grenz- bzw. oberflächenaktive Agentien zuzufügen, beispielsweise kationische Emulgatoren wie insbesondere quaternäre Tenside.

Quaternäre Tenside enthalten mindestens ein N-Atom, das mit 4 Alkyl- oder Arylgruppen kovalent verbunden ist. Dies führt, unabhängig vom pH Wert, zu einer positiven Ladung. Vorteilhaft sind, Alkylbetain, Alkylamidopropylbetain und Alkyl-amidopropylhydroxysulfain. Die erfindungsgemäß verwendeten kationischen Tenside können ferner bevor-zugt gewählt werden aus der Gruppe der quaternären Ammoniumverbindungen, insbesondere Benzyltrialkylammoniumchloride oder -bromide, wie beispielsweise Benzylidimethylstearylammmoniumchlorid, ferner Alkyltrialkylammoniumsalze, beispielsweise beispielsweise Cetyltrimethylammoniumchlorid oder -bromid, Alkylidimethylhydroxyethylammoniumchloride oder -bromide, Dialkyldimethylammoniumchloride oder -bromide, Alkylamidethyldimethylammoniumsulfate, Alkylpyridiniumsalze, beispielsweise Lauryl- oder Cetylpyrimidiniumchlorid, Imidazolinderivate und Verbindungen mit kationischem, Charakter wie Aminoxide, beispielsweise Alkylidimethylaminoxide oder Alkylamino-ethyldimethylaminoxide. Vorteilhaft sind insbesondere Cetyltrimethylammoniumsalze zu verwenden.

Vorteilhaft ist auch, kationische Polymere (z. B. Jaguar® C 162 [Hydroxypropyl Guar Hydroxypropyltrimonium Chloride] bzw. modifizierten Magnesiumaluminumsilikaten (z. B. Quaternium-18-Hectorit, welches z. B. unter der Handelsbezeichnung Bentone® 38 bei der Firma Rheox erhältlich ist, oder Stearalkonium Hectorit, welches z. B. unter der Handelsbezeichnung Softisan® Gel bei der Hüls AG erhältlich ist), einzusetzen.

Erfindungsgemäße Zubereitungen können vorteilhaft auch Ölverdickungsmittel enthalten, um die taktilen Eigenschaften der Emulsion und die Stiftkonsistenz zu verbessern. Vorteilhafte Ölverdickungsmittel im Sinne der vorliegenden Erfindung sind beispielsweise weitere Feststoffe, wie z. B. hydrophobe Siliciumoxide des Typs Aerosil®, welche von der Degussa AG erhältlich sind. Vorteilhafte Aerosil®-Typen sind beispielsweise Aerosil® OX50, Aerosil 130, Aerosil® 150, Aerosil 200, Aerosil® 300, Aerosil® 380, Aerosil® MOX 80, Aerosil® MOX 170, Aerosil COK 84, Aerosil R 202, Aerosil® R 805, Aerosil® R 812, Aerosil® R 972, Aerosil® R 974 und/oder Aerosil® R976.

Ferner sind auch sogenannte Metallseifen (d. h. die Salze höherer Fettsäuren mit Ausnahme der Alkalusalze) vorteil-hafte Ölverdickungsmittel im Sinne der vorliegenden Erfindung, wie beispielsweise Aluminium-Stearat, Zink-Stearat und/oder Magnesium-Stearat.

DE 199 34 946 A 1

Ebenfalls vorteilhaft ist, Zubereitungen gemäß der Erfindung amphotere bzw. zwitterionische Tenside (z. B. Cocoamidopropylbetain) und Moisturizer (z. B. Betain) zuzusetzen. Vorteilhaft zu verwendende amphotere Tenside sind beispielsweise Acyl-/dialkylethylendiamin, beispielsweise Natriumacylamphoacetat, Dinatriumacylamphodipropionat, Dinatriumalkylamphodiacetat, Natriumacylamphohydroxypropylsulfonat, Dinatriumacylamphodiacetat und Natriumacylamphopropionat, N-Alkylaminosäuren, beispielsweise Aminopropylalkylglutamid, Alkylaminopropionsäure, Natriumalkylimidodipropionat und Lauroamphocarboxyglycinat.

Die Menge der ober- bzw. grenzflächenaktiven Substanzen (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05–20 Gew.-%, insbesondere 1–10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

10 Erfindungsgemäße Zubereitungen können auch Wirkstoffe (eine oder mehrere Verbindungen) enthalten, welche gewählt werden aus der Gruppe: Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivate, z. B. Hydrocortison-17-valerat, Vitamine, z. B. Ascorbinsäure und deren Derivate, Vitamine der B- und D-Reihe, sehr günstig das Vitamin B₁, das Vitamin B₁₂ das Vitamin D₁, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die γ -Linolensäure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z. B. Nachtkerzenöl, Borretschöl oder Johanniskernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter. Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®.

15 Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05–20 Gew.-%, insbesondere 1–10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen.

Beispiel 1

	Gew.-%
25 Stearinsäure/Palmitinsäure	2,00
PEG-40-Stearat	2,00
Glycerylstearat	2,00
30 Cetylstearylalkohol	3,00
Hydriertes Polyisobutene	7,00
Petrolatum	4,00
Cyclomethicon	9,00
35 Glyceryllanolat	2,00
Glycerin	4,00
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.
40 Wasser	ad 100,00
pH-Wert eingestellt auf	6,5

Beispiel 2

	Gew.-%
45 Stearinsäure/Palmitinsäure	1,20
PEG-40-Stearat	2,00
Glycerylstearat	4,00
Cetylstearylalkohol	3,00
50 Hydriertes Polyisobutene	10,00
Cyclomethicon	10,00
Glyceryllanolat	2,00
Glycerin	4,00
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.
55 Wasser	ad 100,00
pH-Wert eingestellt auf	6,5

Beispiel 3

	Gew.-%
60 Stearinsäure/Palmitinsäure	1,20
PEG-40-Stearat	2,00
Glycerylstearat	6,00
65 Cetylstearylalkohol	2,50
Hydriertes Polyisobutene	8,00
Petrolatum	2,00

DE 199 34 946 A 1

Gew.-%

Cyclomethicon	9,00	5
Glyceryllanolat	2,00	
Glycerin	4,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf	6,5	

5

10

Beispiel 4

Gew.-%

Stearinsäure/Palmitinsäure	1,20	15
PEG-100-Stearat	1,20	
Glycerylstearat	3,60	
Cetylstearylalkohol	3,00	
Hydriertes Polyisobutene	9,00	
Petrolatum	2,00	
Cyclomethicon	7,00	20
Dimethicon	3,00	
Glyceryllanolat	2,00	
Glycerin	4,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf	7,0	

20

25

Beispiel 5

Gew.-%

Stearinsäure/Palmitinsäure	1,20	35
PEG-20-Stearat	1,20	
Glycerylstearat	3,60	
Cetylstearylalkohol	3,00	
Hydriertes Polyisobutene	9,00	
Petrolatum	2,00	
Cyclomethicon	5,00	40
Dimethicon	5,00	
Glyceryllanolat	5,00	
Glycerin	10,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf	6,5	

40

45

Beispiel 6

Gew.-%

Stearinsäure/Palmitinsäure	1,20	55
PEG-40-Stearat	1,20	
Glyceryl Stearate	3,60	
Cetylstearylalkohol	3,00	
Hydriertes Polyisobutene	8,00	
Paraffinum Liquidum	5,00	
Petrolatum	2,00	
Cyclomethicon	10,00	60
Glyceryllanolat	2,00	
Glycerin	10,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf	7,0	

55

60

65

DE 199 34 946 A 1

Beispiel 7

	Gew.-%
5 Stearinsäure/Palmitinsäure	1,20
PEG-40-Stearat	1,20
Glyceryl-Stearat	3,60
Cetylstearylalkohol	3,00
Hydriertes Polyisobuten	8,00
Polydecene	6,00
10 Petrolatum	4,00
Cyclomethicon	10,00
Glyceryllanolat	2,00
Glycerin	5,00
15 Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.
Wasser	ad 100,00
pH-Wert eingestellt auf	7,0

20

Beispiel 8

	Gew.-%
Stearinsäure/Palmitinsäure	1,20
PEG-40-Stearat	2,00
25 Glycerylstearat	4,00
Cetearylalkohol	3,00
Hydriertes Polyisobuten	9,00
Polydecen	5,00
30 Caprylsäure/Caprinsäuretriglyc- ride	5,00
Petrolatum	1,00
Cyclomethicon	4,00
Glyceryllanolat	2,00
Glycerin	3,00
35 Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.
Wasser	ad 100,00
pH-Wert eingestellt auf	6,0

40

Beispiel 9

	Gew.-%
Stearinsäure/Palmitinsäure	1,20
45 PEG-40-Stearat	2,00
Glycerylstearat	4,00
Cetylstearylalkohol	3,00
Hydriertes Polyisobuten	12,00
Polydecen	4,00
50 Cyclomethicon	5,00
Glyceryllanolat	2,00
Glycerin	3,00
Octylmethoxycinnamat	3,00
Benzophenon-3	2,00
55 Octylsalicylat	1,00
Parfüm, Konservierungsmittel, NaOH,	q. s.
Farbstoffe, Antioxidantien etc.	
Wasser	ad 100,00
60 pH-Wert eingestellt auf	7,0

65

Beispiel 10

	Gew.-%	
Stearinsäure/Palmitinsäure	1,00	5
PEG-100-Stearat	2,00	
Glycerylstearat	4,00	
Cetylstearylalkohol	3,00	
Hydriertes Polyisobuten	9,00	
Octyldodecanol	3,50	
Dimethicon	10,00	10
Myristylmyristat	4,00	
Glycerin	3,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	
pH-Wert eingestellt auf	7,0	15

Beispiel 11

	Gew.-%	
Stearinsäure/Palmitinsäure	1,00	20
PEG-100-Stearat	2,00	
Glycerylstearat	4,00	
Cetylstearylalkohol	3,00	
Hydriertes Polyisobuten	0,50	25
Dimethicon	5,00	
Cyclomethicon	15,00	
Myristylmyristat	4,00	
Glycerin	3,00	
Parfüm, Konservierungsmittel, Farbstoffe, Antioxidantien etc.	q. s.	
Wasser	ad 100,00	30
pH-Wert eingestellt auf	7,0	

Patentansprüche

1. Kosmetische und dermatologische Zubereitungen in Form von O/W-Emulsionen, enthaltend
 - (1) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, einer oder mehrerer C₁₄-C₂₂-Fettsäuren,
 - (2) 0,2 bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Mono- und/oder Diglyceride von Fettsäuren,
 - (3) 0,1 bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester,
 wobei die Summe aus (1), (2) und (3) maximal 12 Gew.-% beträgt,
 - (4) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an hydriertem Polyisobuten mit einem Molekulargewicht von 100 bis 4000 g/mol,
 - (5) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer unpolarer Lipide,
 - (6) 0,5-10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an einem oder mehreren Siliconölen,
 wobei die Summe aus (4), (5) und (6) maximal 25 Gew.-% beträgt,
 - (7) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Fettalkohole
 - (8) 0,5-7,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer lipophiler Kon sistenzgeber eines Schmelz- oder Tropfpunktes $\geq 30^\circ\text{C}$,
 - (9) wobei die gesamte Lipidphase bis zu 40 Gew.-% polare Lipide enthalten kann, bezogen auf das Gesamt gewicht der Lipidphase.
2. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
 - (1) 0,5 bis zu 1,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, einer oder mehrerer C₁₄-C₂₂-Fettsäuren.
3. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
 - (2) 2,5 bis zu 3,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Mono- und/oder Diglyceride von Fettsäuren.
4. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
 - (3) 1,0 bis zu 1,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester.
5. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
 - (2) bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an Glycerylstearat.

DE 199 34 946 A 1

6. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
(3) bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer ethoxylierter Fettsäureester gewählt aus der Gruppe der PEG-20- bis PEG-100-Stearate.
- 5 7. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
(5) 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer unpolarer Lipide, gewählt aus der Gruppe Mineralöl und/oder Mineralwachse (u. a. Vaseline).
8. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
(6) 5-8 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, an einem oder mehreren Siliconölen, besonders bevorzugt Cyclohexicone.
- 10 9. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
(7) 2,0-3,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer Fettalkohole.
- 10 10. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, enthaltend
(8) 1,5-2,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, eines oder mehrerer lipophiler Konsistenzgeber eines Schmelz- oder Tropfpunktes $\geq 30^\circ\text{C}$.
- 15 11. Kosmetische und dermatologische Zubereitungen nach Anspruch 1, in denen Gewichtsverhältnisse zwischen den unter (4), (5) und (6) genannten Bestandteile von ungefähr 1 : 1 : 1 gewählt wurden.

20

25

30

35

40

45

50

55

60

65