

Çizge Sinyallerinin Dar Bantlı Spektral Kernel Öğrenimi ile Kestirimi

Learning Narrowband Graph Spectral Kernels for Graph Signal Estimation

Osman Furkan KAR

Orta Doğu Teknik Üniversitesi Elektrik ve Elektronik Mühendisliği

Aselsan A.Ş. **aselsan**

Gülce TURHAN

Orta Doğu Teknik Üniversitesi Elektrik ve Elektronik Mühendisliği

TED Üniversitesi

Elif VURAL

Orta Doğu Teknik Üniversitesi Elektrik ve Elektronik Mühendisliği

18 Mayıs, 2022 SİU 2022, Safranbolu, Türkiye

İÇERİK

- Giriş
- Amaç
- Sinyal Modeli ve Notasyon
- Önerilen Yöntem
- Deneyler
- Sonuçlar

GİRİŞ: Çizge Sinyal İşleme

AMAÇ

- Çizge sinyallerinin eksik gözlemlerden kestirimi
 - Dar Bantlı Çizge Çekirdek Fonksiyonları
 - Spektral Çizge Sözlükleri

Sinyal Modeli ve Notasyon

$$\mathcal{G}^{m} = (\mathcal{V}^{m}, \mathcal{E}^{m}, W^{m})
L^{m} = (\mathcal{D}^{m})^{-1/2} (\mathcal{D}^{m} - W^{m}) (\mathcal{D}^{m})^{-1/2}
L^{m} = U^{m} \Lambda^{m} (U^{m})^{T}
D_{i}^{m} = U^{m} \hat{g}_{j} (\Lambda^{m}) (U^{m})^{T} \in \mathbb{R}^{N^{m} \times N^{m}}
D^{m} = [D_{1}^{m} D_{2}^{m} \cdots D_{J}^{m}] \in \mathbb{R}^{N^{m} \times JN^{m}} \hat{g}_{j}(\lambda) = \exp\left(-\frac{\|\lambda - \mu_{j}\|^{2}}{s_{j}^{2}}\right)$$

$$y_i^m = D^m x_i^m + w_i^m$$

Önerilen Yöntem

Spektral Kernel Parametreleri

İki Adımlı Optimizasyon.

Sözlük Üzerinden Seyrek Gösterim

$$\min_{\{X^m\},\psi} \sum_{j=1}^{J} (\mu_j)^2 + \eta_s \sum_{j=1}^{J} (s_j - s_0)^2 + \eta_x \sum_{m=1}^{M} \|X^m\|_1$$

$$+ \eta_w \sum_{m=1}^{M} \sum_{i=1}^{K^m} \|S^{m,i} y_i^m - S^{m,i} D^m x_i^m\|^2$$

Gözlemlenen Nodlarda Uyumlu Atomlar

$$+ \eta_y \sum_{m=1}^{M} \operatorname{tr}((X^m)^T (D^m)^T L^m D^m X^m) + \eta_c \sum_{m=1}^{M} \operatorname{tr}((X^m) \widetilde{L}^m (X^m)^T)$$

Sentezlenen Çizge Sinyalin Düşük Geçirgenliği

Benzer Sinyaller Benzer Atomlar

Deneyler: Veri Kümesi

Molene Veri Kümesi:

Fransız ulusal meteoroloji servisinin paylastığı, Brest bölgesi için 2014 yılı Ocak ayı saatlik hava gozlem ölçümlerinden oluşan bir veri kümesi

(a) Sıcaklık

(b) Rüzgar Hızı

Deneyler: Sonuçlar

$$NMSE^{m} = \left\| Y_{u}^{m} - \tilde{Y}_{u}^{m} \right\|^{2} / \|Y_{u}^{m}\|^{2}$$

0.45 0.4 0.35 0.25 %10 %20 %30 %40 %50 Eksik Gözlem Oranı

(a) Sıcaklık ölçümleri

(b) Rüzgar hızı ölçümleri

Sonuçlar

- Bu çalışmada çizge sinyallerinin eksik gozlemlerinin kestirimi için çizgeler uzerinde sözlük öğrenmeye dayalı bir yöntem önerilmiştir.
- Çizge sinyalleri dar bantlı spektral bileşenlerden oluşan çizge sozlükleri üzerinde seyrek gösterimlere sahip olacak şekilde modellenmiş; dar bantlı kernel parametreleri ile seyrek gösterim katsayıları yinelemeli bir algoritma ile ortak olarak optimize edilmiştir.
- Onerilen yöntemin performansı meteorolojik olçümlerden oluşan çizge sinyal verilerindeki deneylerle değerlendirilmiş, temel çizge regresyon yöntemlerine kıyasla daha düşük kestirim hatası sağladığı gösterilmiştir.

Teşekkürler