Niao He

Subdifferential

Examples
Existence and
Properties
Directional
Derivatives
Descent Directio
Calculus of
Subgradient

Outline

Subgradient and Subdifferential

Definition

Examples

Existence and Properties

Directional Derivatives

Descent Direction

Calculus of Subgradient

Niao He

Subgradient and

Examples
Existence and
Properties
Directional
Derivatives
Descent Direction
Calculus of
Subgradient

Question

Can you find any affine function that underestimates f(x) and is tight at x = 0? What about when $x \neq 0$?

Figure: Convex Functions

Niao He

Subgradient ar

Definition

Existence and Properties
Directional Derivatives
Descent Directional Calculus of Subgradient

Subgradient

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex.

Definition. A vector $g \in \mathbb{R}^n$ is a <u>subgradient</u> of f at a point $x_0 \in dom(f)$ if

$$f(x) \geq f(x_0) + g^T(x - x_0), \forall x.$$

Figure: Subgradients

Definition. The set of all subgradient at x_0 is called the <u>subdifferential</u> of f at x_0 denoted as $\partial f(x_0)$.

Niao He

Subgradient and

Definition

Existence and Properties Directional Derivatives Descent Direction

Derivatives
Descent Direction
Calculus of

Subgradient and Epigraph

Subgradients form supporting hyperplanes for the epigraph.

$$g \in \partial f(x_0)$$

$$\Leftrightarrow f(x) - g^T x \ge f(x_0) - g^T x_0, \forall x$$

$$\Leftrightarrow t - g^T x \ge f(x_0) - g^T x_0, \forall (x, t) \in \text{epi}(f)$$

$$\Leftrightarrow \begin{bmatrix} -g \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix} \ge \begin{bmatrix} -g \\ 1 \end{bmatrix}^T \begin{bmatrix} x_0 \\ f(x_0) \end{bmatrix}, \forall (x, t) \in \text{epi}(f)$$

$$\Leftrightarrow H := \left\{ (x, t) : (-g, 1)^T (x, t) = (-g, 1)^T (x_0, f(x_0)) \right\}$$
is a supporting hyperplane of epi(f) at $(x_0, f(x_0))$

Niao He

Subgradient and Subdifferential

Definition

Examples

Existence and Properties Directional Derivatives Descent Direction Calculus of Subgradient

Examples: Differentiable Functions

Example 1. If f is differentiable at $x \in dom(f)$, then

$$\partial f(x) = \{\nabla f(x)\}.$$

 $\Rightarrow \nabla f(x)^T d \geq g^T d, \forall d, \text{ as } \epsilon \to 0$

Proof. Let
$$y = x + \epsilon d$$
, $g \in \partial f(x)$, then
$$f(x + \epsilon d) \ge f(x) + \epsilon g^T d$$
$$\Rightarrow \frac{f(x + \epsilon d) - f(x)}{\epsilon} \ge g^T d, \forall d, \forall \epsilon$$

 $\Rightarrow g = \nabla f(x)$.

Niao He

Subgradient and Subdifferential

Definition

Examples

Existence and Properties Directional Derivatives Descent Direction Calculus of Subgradient

Examples: Simple Functions

Example 2.

(a)
$$f(x) = \frac{1}{2}x^2$$
, $\partial f(x) = x$

(b)
$$f(x) = |x|, \ \partial f(x) = \begin{cases} sgn(x), x \neq 0 \\ [-1, 1], x = 0 \end{cases}$$
.

(c)
$$f(x) = \begin{cases} -\sqrt{x}, x \ge 0 \\ +\infty, o.w. \end{cases}$$
, $\partial f(x) = \begin{cases} -\frac{1}{2\sqrt{x}}, x > 0 \\ \emptyset, x = 0 \end{cases}$

(d)
$$f(x) = \begin{cases} 1, x = 0 \\ 0, x > 0 \\ +\infty, o.w. \end{cases}$$
, $\partial f(x) = \begin{cases} 0, x > 0 \\ \emptyset, x = 0 \end{cases}$.

Niao He

Existence and Properties

Closedness of Subdifferential

Proposition. Let f be convex and $x_0 \in dom(f)$. Then $\partial f(x_0)$ is convex and closed.

Proof. This is because

$$\partial f(x_0) = \left\{ g \in \mathbb{R}^n : f(x) \ge f(x_0) + g^T(x - x_0), \forall x \right\}$$
$$= \bigcap_x \left\{ g \in \mathbb{R}^n : f(x) \ge f(x_0) + g^T(x - x_0) \right\}$$

is the solution to an infinite system of linear inequalities.

$$\lambda \times f(x) > f(x_0) + g^{T}(x_0)$$

 $(1-\lambda) \times f(x_1) > f(x_0) + h^{T}(x_0)$

Niao He

Subgradient and Subdifferential Definition Examples Existence and Properties Directional Derivatives Descent Direction

Existence of Subgradient

Theorem. Let f be convex and $x_0 \in \text{rint}(\text{dom}(f))$. Then $\partial f(x_0)$ is nonempty and bounded.

Remark. The reverse is also true. If $\forall x_0 \in \text{dom}(f), \partial f(x_0)$ is non-empty, and dom(f) is convex, then f is convex.

Proof. Let $g \in \partial f(x_0)$ and $x_0 = \lambda x + (1 - \lambda)y$, we have

$$\begin{cases} f(x) \geq f(x_0) + g^T(x - x_0) + (1 - \lambda)(x - y) \\ f(y) \geq f(x_0) + g^T(y - x_0) & \lambda/y - 1 \end{cases}$$

$$\Rightarrow \lambda f(x) + (1 - \lambda)f(y) \geq f(\lambda x + (1 - \lambda)y)$$

Niao He

Existence and Properties

Proof of Existence and Boundedness

▶ (Nonempty) By separation theorem, $\exists \alpha = (s, \beta) \neq 0$,

$$\underline{s}^T x + \beta t \ge \underline{s}^T x_0 + \beta f(x_0), \forall (x, t) \in \text{epi}(f)$$
 We must have $\beta > 0$ (why?). Setting $g = -\beta^{-1} s$,

$$f(x) \geq f(x_0) + g^T(x - x_0), \forall x$$

▶ **(Bounded)** Suppose $\partial f(x_0)$ is unbounded, i.e. $\exists g_k \in \partial f(x_0)$, s.t. $\parallel g_k \parallel_2 \to \infty$, as $k \to \infty$. Let $x_k = x_0 + \delta \frac{g_k}{\|g_k\|_2} \in \text{dom}(f)$. By convexity,

$$f(x_k) \ge f(x_0) + g_k^T(x_k - x_0) = f(x_0) + \delta \parallel g_k \parallel_2 \to \infty.$$

Contradicts with the continuity of f over int(dom(f)).

Niao He

Subgradient and Subdifferential Definition Examples Existence and Properties Directional

Directional
Derivatives
Descent Direction
Calculus of
Subgradient

Monotonicity

Proposition. The subdifferential of a convex function f is a monotone operator, i.e.,

$$(u-v)^T(x-y) \ge 0, \forall x, y, u \in \partial f(x), v \in \partial f(y).$$

Proof.

By definition, we have

$$\begin{cases} f(y) \ge f(x) + u^{\mathsf{T}}(y - x) \\ f(x) \ge f(y) + v^{\mathsf{T}}(x - y) \end{cases}$$

Combining the two inequalities leads to the monotonicity.

Niao He

Subgradient and

Examples
Existence and
Properties
Directional

Directional Derivatives

Descent Direction
Calculus of
Subgradient

Directional Derivative

Definition. The <u>directional derivative</u> of a function f at x along direction d is

$$f'(x;d) = \lim_{\delta \to 0^+} \frac{f(x+\delta d) - f(x)}{\delta}.$$

Remark.

- ▶ If f is differentiable, then $f'(x; d) = \nabla f(x)^T d$.
- $f'(x; d) = \phi'(0^+)$, where $\phi(\alpha) = f(x + \alpha d)$.
- $f'(x;d) = \inf_{t>0} \left(tf(x+d/t) tf(x) \right) \text{ is convex in } d$ (why?).
- ▶ f'(x; d) defines a lower bound on f on direction d: $f(x + \alpha d) \ge f(x) + \alpha f'(x; d), \forall \alpha \ge 0$.

Niao He

Descent Direction

Descent Direction

Definition. The direction d is called a descent direction if

▶ If f is differentiable, then $d = -\nabla f(x)$ is a descent direction, except when it is zero.

Q. Is negative subgradient always a descent direction?

Niao He

Subgradient and

Definition Examples Existence and Properties Directional

Descent Direction

Calculus of Subgradient

Descent Direction

▶ Negative subgradient may not be a descent direction.

Figure: Contours of function $f(x_1, x_2) = |x_1| + 2|x_2|$

- At x = (1,0), $\partial f(x) = \{(1,a) : a \in [-2,2]\}$.
- ▶ Consider g = (1,0), d = -g is a descent direction.
- ▶ Consider g = (1,2), d = -g is not a descent direction.
- Note: let $g_* = \operatorname{argmin}_{g \in \partial f(x)} \{ \|g\|_2^2 \}$, then $d = -g_*$ is a descent direction if $g_* \neq 0$.

Niao He

Subgradient and Subdifferential

Definition
Examples
Existence and
Properties
Directional

Descent Direction

Calculus of Subgradient

Directional Derivative and Subdifferential

Theorem. Let f be convex and $x \in int(dom(f))$, then

$$f'(x;d) = \max_{g \in \partial f(x)} g^{T} d$$

Niao He

Subgradient and Subdifferential

Definition Examples Existence and Properties Directional

Descent Direction

Calculus of Subgradient

Proof

- ▶ Easy to show $f'(x; d) \ge \max_{g \in \partial f(x)} g^T d$.
- ▶ Suffice to show that $\exists \tilde{g} \in \partial f(x)$, s.t. $f'(x; d) \leq \tilde{g}^T d$.
 - ▶ Let \tilde{g} be a subgradient of f'(x; d) at d.
 - For any $v, \lambda \geq 0$:

$$f(x + \alpha v) - f(x) \ge \alpha f'(x; v)$$

$$= f'(x; \alpha v)$$

$$\ge f'(x; d) + \tilde{g}^{T}(\alpha v - d).$$

- ▶ Setting $\alpha = \infty$ implies $f(x + v) f(x) \ge f'(x; v) \ge \tilde{g}^T v$; thus $\tilde{g} \in \partial f(x)$.
- Setting $\alpha = 0$ implies $f'(x; d) \leq \tilde{g}^T d$.

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Directic

Descent Dire Calculus of Subgradient

Calculus of Subgradients

Assume $x \in int(dom(h))$.

▶ Conic combination: Let $h(x) = \beta_1 f_1(x) + \beta_2 f_2(x)$ with $\beta_1, \beta_2 \ge 0$,

$$\partial h(x) = \beta_1 \partial f_1(x) + \beta_2 \partial f_2(x).$$

▶ Affine transformation: Let h(x) = f(Ax + b),

$$\partial h(x) = A^T \partial f(Ax + b).$$

▶ Pointwise maximum: Let $h(x) = \max_{i=1,...,m} f_i(x)$,

$$\partial h(x) = \operatorname{Conv} \{ \partial f_i(x) | f_i(x) = h(x) \}.$$

▶ Pointwise supreme: Let $h(x) = \max_{\alpha \in \mathcal{A}} f_{\alpha}(x)$,

$$\partial h(x) = \operatorname{cl}\left(\operatorname{Conv}\left\{\partial f_{\alpha}(x)|f_{\alpha}(x)=h(x)\right\}\right).$$

Niao He

Subgradient and Subdifferential

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Direction

Calculus of Subgradient

Weak Calculus

- Maximization: $f(x) = \max_{y \in Y} \phi(x, y)$, where $\phi(x, y)$ is convex in x for any $y \in Y$.
 - ▶ Find $\hat{y} \in \operatorname{argmax}_{y \in Y} \phi(x, y)$.
 - $g \in \partial \phi(x, \hat{y})$ is a subgradient of f(x).
- Minimization: $f(x) = \min_{y \in Y} \phi(x, y)$, where $\phi(x, y)$ is convex in (x, y) and Y is convex.
 - ▶ Find $\hat{y} \in \operatorname{argmin}_{y \in Y} \phi(x, y)$.
 - $g \in \partial \phi(x, \hat{y})$ is a subgradient of f(x).
- ▶ Composition: $f(x) = F(f_1(x), ..., f_m(x))$, where $F(y_1, ..., y_m)$ is non-decreasing and convex.
 - ► Find $(d_1, ..., d_m) \in \partial F(y_1, ..., y_m)|_{y_i = f_i(x), i = 1, ..., m}$.
 - ▶ Find $g_i \in \partial f_i(x)$, i = 1, ..., m
 - $g = \sum_{i=1}^{m} d_i g_i$ is a subgradient of f(x).

Niao He

Subgradient and

Definition
Examples
Existence and
Properties
Directional
Derivatives
Descent Directio
Calculus of
Subgradient

Example: Piecewise Linear Function

Example 3. Consider a single period inventory system. The cost f(x) at inventory level x given demand d is

$$f(x) = h \cdot \max(x - d, 0) + p \cdot \max(d - x, 0).$$

The subgradient of f(x) is

$$\partial f(x) = \begin{cases} h, & x > d \\ [-p, h], & x = d \\ -p, & x < d \end{cases}$$

Niao He

Subgradient and

Definition Examples Existence and Properties Directional Derivatives

Descent Direction
Calculus of
Subgradient

Example: ℓ_1 -Norm

Example 5.
$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^d} \{s^T x\}$$

$$\partial f(x)$$
 at $x = (0,0)$

at
$$x = (1, 0)$$

at
$$x = (1, 1)$$

Figure: Subgradient of $f(x) = ||x||_1$ on \mathbb{R}^2

Niao He

Calculus of Subgradient

Example: general norm

Example 6. f(x) = ||x||, here $||\cdot||$ is an arbitrary norm

$$\partial f(x) = \{g : g^T x = ||x|| \text{ and } ||g||_* \le 1\}.$$

- $\|\cdot\|_*$ is the dual norm: $\|y\|_* = \max_{x:\|x\| \le 1} y^T x$.
- ▶ In particular, $\partial f(0) := \{g : ||g||_* \le 1\}.$

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Convex Conjugate
Conjugate Function
Examples

Recap: Subgradient

Outline

Minima of Convex Functions

Existence

Uniqueness

Optimality Conditions

Convex Conjugate

Conjugate Function

Examples

Calculus of Conjugate

Conjugate Theory

Niao He

Recap: Subgradient

Minima of Convex

Existence Uniqueness

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Recap: Subgradient

- Subgradient and subdifferential
 - $g \in \partial f(x_0)$ if $f(x) \ge f(x_0) + g^T(x x_0), \forall x$.
- Properties
 - Subdifferential is closed and convex.
 - Subgradient exists and is bounded at interior.
 - Subdifferential is a monotone operator.
- Directional derivative

$$f'(x; d) = \max_{g \in \partial f(x)} g^T d$$

- Calculus of Subgradients
 - Conic combination
 - ► Affine transformation
 - ► Point maximum/supreme
 - Taking minimization
 - Composition

Niao He

Recap: Subgradient

Minima of Convex

Functions

Uniqueness Optimality Condition

Convex Conjugat

Conjugate Function Examples

Conjugate Theory

Simple Examples

Figure: Examples of subdifferential sets

Existence Uniqueness Optimality Condition

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Example .
$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^d} \{s^T x\}$$

Niao He

Recap: Subgradient

Minima of Conver

Existence Uniqueness

Convex Conjuga

Conjugate Function Examples

Conjugate Theory

Example .
$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^d} \{s^T x\}$$

Figure: Subgradient of $f(x) = ||x||_1$ on $\mathbb{R}^2(d=2)$

Niao He

Recap: Subgradient

Minima of Convey Functions

Existence Uniqueness

Optimality Condition

Convex Conjuga

Conjugate Function Examples Calculus of Conjugat

Conjugate Theory

Example .
$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^d} \{s^T x\}$$

Figure: Subgradient of $f(x) = ||x||_1$ on $\mathbb{R}^2(d=2)$

Example .
$$f(x) = ||x||_2 = \max_{s:||s||_2 \le 1} \{s^T x\}$$

Existence Uniqueness

Optimality Condition

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugat

Example
$$f(x) = \|x\|_1 = \max_{s \in \{-1,1\}^d} \{s^T x\} = 1$$

Figure: Subgradient of $f(x) = ||x||_1$ on $\mathbb{R}^2(d=2)$

Example .
$$f(x) \neq \|x\|_2 = \max_{s:\|s\|_2 \le 1} \{s^T x\}$$

$$\partial f(x) = \begin{cases} \frac{x}{\|x\|_2}, & x \ne 0 \\ \{s: \|s\|_2 \le 1\}, & x = 0 \end{cases}.$$

Niao He

Recap:

Minima of Convex

Functions

Uniqueness Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugat

Question

Which function below is different from others?

Figure: Convex functions

Niao He

Recap:

Minima of Conve

Existence

Optimality Condition

Convex Conjuga

Conjugate Function
Examples
Calculus of Conjugate

Existence of Global Minimizer

Definition. x^* is a <u>global minimizer</u> of f(x) if

$$f(x^*) \leq f(x), \forall x.$$

Niao He

Recap:

Minima of Conve

Existence

Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Existence of Global Minimizer

Definition. x^* is a <u>global minimizer</u> of f(x) if

$$f(x^*) \leq f(x), \forall x.$$

Definition. f is called <u>coercive</u> if all level sets are bounded, i.e., $f(x_k) \to \infty$ if $||x_k||_2 \to \infty$.

Niao He

Recap: Subgradient

Minima of Conve

Existence

Uniqueness
Optimality Condition

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Existence of Global Minimizer

Definition. x^* is a <u>global minimizer</u> of f(x) if

$$f(x^*) \leq f(x), \forall x.$$

Definition. f is called <u>coercive</u> if all level sets are bounded, i.e., $f(x_k) \to \infty$ if $||x_k||_2 \to \infty$.

Theorem. If f is closed (l.s.c.) and coercive, then it has a global minimizer.

Niao He

Recap:

Minima of Conve

Functions

Uniqueness

Optimality Condition

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Uniqueness of Global Minimizer

Recall f is strictly convex if

$$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y), \forall \lambda \in (0,1), x \neq y.$$

• (sufficient condition): $\nabla^2 f(x) \succ 0$ (why?)

Niao He

Recap: Subgradien

Minima of Conve

Existence

Uniqueness Optimality Condition

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Uniqueness of Global Minimizer

Recall f is strictly convex if

$$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y), \forall \lambda \in (0,1), x \neq y.$$

• (sufficient condition): $\nabla^2 f(x) \succ 0$ (why?)

Theorem. If f is strictly convex, then the global minimizer (if exists) must be unique.

Niao He

Recap: Subgradien

Minima of Convex

Existence

Jniquenes

Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Finding Global Minimizer

Theorem. Let f be convex. Then x^* is a global minimizer if and only if

$$0\in\partial f(x^*).$$

Niao He

Recap: Subgradien

Minima of Convex Functions

Uniqueness

Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate
Conjugate Theory

Finding Global Minimizer

Theorem. Let f be convex. Then x^* is a global minimizer if and only if

$$0 \in \partial f(x^*).$$

If f is convex and differentiable, x^* is a global minimizer iff $\nabla f(x^*) = 0$.

Niao He

Recap: Subgradien

Minima of Convex Functions Existence Uniqueness

Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugat

Finding Global Minimizer

Theorem. Let f be convex. Then x^* is a global minimizer if and only if

$$0 \in \partial f(x^*).$$

▶ If f is convex and differentiable, x^* is a global minimizer iff $\nabla f(x^*) = 0$.

Proof.

$$0 \in \partial f(x^*) \Leftrightarrow f(x) \ge f(x^*) + \langle 0, x - x^* \rangle = f(x^*), \forall x.$$

Niao He

Recap: Subgradient

Minima of Conver

Existence Uniqueness

Optimality Condition

Convex Conjugate

Conjugate Function Examples Calculus of Conjugat

Question

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Convex Conjugate

Conjugate Function Examples Calculus of Conjugate

Question

Niao He

Convex Conjugate

Question

Niao He

Convex Conjugate

Question

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Conjugate Function

Calculus of Conjugat Conjugate Theory

Conjugate Function

Definition. The conjugate function of $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \left\{ y^T x - f(x) \right\} = \sup_{x \in dom(f)} \left\{ y^T x - f(x) \right\}$$

Also called Legendre-Fenchel transformation.

Legendre (1752-1833)

(1905-1988)

Werner Fenchel

Niao He

Recap:

Minima of Conve

Existence Uniqueness

C C C

Conjugate Function

Conjugate Function Examples

Calculus of Conjugat Conjugate Theory

Conjugate Function

Definition. The conjugate function of $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \left\{ y^T x - f(x) \right\} = \sup_{x \in dom(f)} \left\{ y^T x - f(x) \right\}$$

Also called Legendre-Fenchel transformation.

Remark.

Fenchel's inequality:

$$f(x)+f^*(y) \ge x^T y, \forall x, y$$

Werner Fenchel

Legendre (1752-1833)

(1905-1988)

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Optimality Condition

Convex Conjuga

Conjugate Function Examples

Calculus of Conjugat Conjugate Theory

Conjugate Function

Definition. The conjugate function of $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \left\{ y^T x - f(x) \right\} = \sup_{x \in dom(f)} \left\{ y^T x - f(x) \right\}$$

Also called Legendre-Fenchel transformation.

Remark.

Fenchel's inequality:

$$f(x)+f^*(y) \ge x^T y, \forall x, y$$

$$\frac{x^2}{2} + \frac{y^2}{2}$$

f* is convex and closed.

Legendre (1752-1833)

(1905-1988)

Werner Fenchel

Niao He

Recap:

Minima of Conver

Existence Uniqueness

Convex Conjugat

Conjugate Functio

Examples

Calculus of Conjugate Conjugate Theory

Examples

Figure: Examples of conjugate functions

Niao He

Recap: Subgradient

Minima of Convey

Existence Uniqueness

Uniqueness Optimality Condition

Convex Conjugate Conjugate Function Examples

Calculus of Conjugat

More Examples

Example 1. Quadratic: $f(x) = \frac{1}{2}x^TQx$ (Q > 0)

max
$$y^T 2 - \frac{1}{2} 2^T Q 2$$

$$\nabla (---) = y - Qx = 0 \rightarrow x = \overline{Q} y$$

Example 2. Negative entropy: $f(x) = \sum_{i=1}^{n} x_i \log(x_i)$

Niao He

Recap: Subgradient

Minima of Conver

Existence Uniqueness

Convex Conjugate

Conjugate Fu Examples

Calculus of Conjugate

More Examples

Example 1. Quadratic: $f(x) = \frac{1}{2}x^T Qx$ (Q > 0)

$$f^*(y) = \frac{1}{2}(x \longrightarrow)^T Q^{-1}(x \longrightarrow)$$

Example 2. Negative entropy: $f(x) = \sum_{i=1}^{n} x_i \log(x_i)$

Niao He

Examples

More Examples

Example 1. Quadratic: $f(x) = \frac{1}{2}x^TQx + b^Tx + c$ (Q > 0)

$$f^*(y) = \frac{1}{2}(x-b)^T Q^{-1}(x-b) - c$$

Example 2. Negative entropy: $f(x) = \sum_{i=1}^{n} x_i \log(x_i)$

$$f^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Niao He

Examples

More Examples

Example 1. Quadratic: $f(x) = \frac{1}{2}x^TQx + b^Tx + c$ (Q > 0)

$$f^*(y) = \frac{1}{2}(x-b)^T Q^{-1}(x-b) - c$$

Example 2. Negative entropy: $f(x) = \sum_{i=1}^{n} x_i \log(x_i)$

$$f^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

$$f^*(y) = -\sum_{i=1}^n \log(-y_i) - n$$

Niao He

Examples

More Examples

Example 4. Indicator function:
$$I_C(x) = \begin{cases} 0, & x \in C \\ +\infty, & x \notin C \end{cases}$$
 $\max_{x \in \mathcal{L}} \langle y, x \rangle - I_C(x) = \max_{x \in \mathcal{L}} \langle y, x \rangle$

Example 5. Norm:
$$f(x) = ||x||$$

Niao He

Recap:

Minima of Conve

Functions

Uniqueness Optimality Condition

Convex Conjugat
Conjugate Function

Conjugate Function
Examples
Calculus of Conjug

Calculus of Conjugate Conjugate Theory

More Examples

Example 4. Indicator function:
$$I_C(x) = \begin{cases} 0, & x \in C \\ +\infty, & x \notin C \end{cases}$$

$$I_C^*(y) = \sup_{x \in C} y^T x$$

Example 5. Norm: f(x) = ||x||

sup
$$\langle x,y \rangle = ||x||$$

$$= \sup_{x \in \mathcal{J}.||x||} ||x|| \cdot ||x||$$

$$= \sup_{x \in \mathcal{J}.||x||} ||x|| \cdot ||x||$$

$$= \sup_{x \in \mathcal{J}.||x||} ||x|| \cdot ||x||$$

√ Q (~ 15 / 22

Niao He

Examples

More Examples

Example 4. Indicator function:
$$I_C(x) = \begin{cases} 0, & x \in C \\ +\infty, & x \notin C \end{cases}$$

$$I_C^*(y) = \sup_{x \in C} y^T x$$

Example 5. Norm: f(x) = ||x||

$$f^*(y) = \begin{cases} 0, & \|y\|_* \le 1 \\ +\infty, & \|y\|_* > 1 \end{cases}$$

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Calculus of Conjugate Functions

► Separable sum: If $g(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $g^*(y_1, y_2) = f_1^*(y_1) + f_2^*(y_2).$

▶ Scaling: If $g(x) = \alpha f(x)$ with $\alpha > 0$, then

$$g^* = \sup_{\alpha} g^*(y) = \alpha f^*(y/\alpha).$$

$$g^* = \sup_{\alpha} \underbrace{y^{\top}_{\alpha} - \alpha f(x)}_{\alpha} \underbrace{g^*(y)}_{\alpha} - f(x)$$

▶ Summation: If $g(x) = f_1(x) + f_2(x)$, then

$$g^*(y) = \inf_{z} \{ f_1^*(z) + f_2^*(y-z) \}$$

Niao He

Recap: Subgradient

Minima of Conver

Existence
Uniqueness
Optimality Conditions

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Biconjugate Function

► The conjugate of *f* is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \left\{ y^T x - f(x) \right\}$$

▶ The conjugate of the conjugate function $f^*(y)$,

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \left\{ x^T y - f^*(y) \right\}$$

Niao He

Recap: Subgradient

Minima of Conve

Existence Uniqueness

Convex Conjugate
Conjugate Function
Examples
Calculus of Conjugate

Biconjugate Function

► The conjugate of *f* is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \left\{ y^T x - f(x) \right\}$$

▶ The conjugate of the conjugate function $f^*(y)$,

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \left\{ x^T y - f^*(y) \right\}$$

Q: is it true that $f^{**} = f$?