Kapitel 12

Charakteristische Funktionen

In §10 haben wir für diskrete Zufallsvariablen die erzeugende Funktion betrachtet. Jetzt betrachten wir eine andere Transformierte, die für beliebige Zufallsvariablen X definiert ist. Im Folgenden sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum.

Definition 12.1

Es sei X eine Zufallsvariable. Dann heißt $\varphi_X : \mathbb{R} \to \mathbb{C}$

$$\varphi_X(t) := Ee^{itX}$$

die charakteristische Funktion zu X

Bemerkung 12.1

- a) Man kann im Reellen rechnen. $Ee^{itX} = E\cos(tX) + iE\sin(tX)$ Insbesondere existieren die Erwartungswerte ohne weitere Bedingung.
- b) $\varphi_X(t)$ hängt nur von der Verteilung von X ab
- c) Ist X diskret, so gilt: $\varphi_X(t) = g_X(e^{it})$
- d) Ist X absolutstetig, so gilt: $\varphi_X(t)=\int_{-\infty}^{\infty}e^{itx}f_X(x)dx$ (Fourier-Transformierte von f_X)

Beispiel 12.1

Es sei $X \equiv \mu \in \mathbb{R}$ Dann ist $\varphi_X(t) = Ee^{it\mu} = e^{it\mu}$

Beispiel 12.2

Es sei $X \sim N(0,1)$ Also:

$$\begin{split} \varphi_X(t) &= E e^{itX} = E cos(tX) + iE sin(tX) \\ &= \int_{-\infty}^{\infty} e^{itx} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \\ &= \int_{-\infty}^{\infty} cos(tx) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx + i \underbrace{\int_{-\infty}^{\infty} sin(tx) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx}_{=0} \\ &= \int_{-\infty}^{\infty} -x sin(tx) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \underbrace{\underbrace{= \cdots =}_{\text{part. Integration}}}_{\text{part. Integration}} - \int_{-\infty}^{\infty} t cos(tx) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx = -t\varphi_X(t) \end{split}$$

und
$$\varphi_X(0) = 1$$
 Lösung der Dgl. $\varphi_X(t) = e^{-\frac{t^2}{2}}$

Satz 12.1

Es sei φ_X die charakteristische Funktion einer Zufallsvariablen X. Dann gilt:

a)
$$\varphi_X(0) = 1$$

b)
$$|\varphi_X(t)| \le 1$$
 $\forall t \in \mathbb{R}$

c) Für
$$a, b \in \mathbb{R}$$
 gilt: $\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at)$

Beweis

a)
$$\varphi_X(0) = Ee^{i0X} = 1$$

b)
$$|\varphi_X(t)| \leq E|e^{itX}| = 1$$

c)
$$\varphi_{aX+b}(t) = Ee^{it(aX+b)} = e^{itb} \underbrace{Ee^{itaX}}_{Ee^{itaX}}$$

Beispiel 12.3

Es sei $X \sim N(\mu, \sigma^2)$

Es gilt: $\mu + \sigma Z \sim N(\mu, \sigma^2)$, falls $Z \sim N(0, 1)$ (Lemma 6.1)

Also:
$$\varphi_X(t) = \varphi_{\mu+\sigma Z}(t) \stackrel{\text{Satz 12.1 c}}{=} e^{i\mu t} e^{-\frac{\sigma^2 t^2}{2}}$$

Satz 12.2

Sind X_1, \ldots, X_n unabhängige Zufallsvariablen mit charakteristischen Funktionen $\varphi_{X_1}, \ldots, \varphi_{X_n}$ so gilt für die charakteristische Funktion $\varphi_{\sum_{i=1}^n X_i}$ von $\sum_{i=1}^n X_i$:

$$\varphi_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} \varphi_{X_i}(t), \quad \forall t \in \mathbb{R}$$

Beweis

$$\varphi_{X+Y}(t) = Ee^{it(X+Y)} = E(e^{itX}e^{itY}) \stackrel{X,Y}{=} \stackrel{\text{unabh.}}{=} Ee^{itX} \cdot Ee^{itY} = \varphi_X(t) \cdot \varphi_Y(t)$$

Satz 12.3

Falls $E|X|^n < \infty$, $n \in \mathbb{N}$, so ist φ_X n-mal differenzierbar und es gilt:

$$\varphi_X^{(n)}(0) = i^n E X^n$$
 (n-te Moment)

Beweis

Man darf E (= Integral) und Differentiation vertauschen. (\rightarrow Majorisierte Konvergenz Stochastik II)

$$\varphi_X^{(n)}(t) = \frac{d^n}{(dt)^n} Ee^{itX} = E\left(\frac{d^n}{(dt)^n} e^{itX}\right) = E((iX)^n e^{itX}) = i^n EX^n e^{itX}$$

$$\Rightarrow \varphi_X^{(n)}(0) = i^n E X^n$$

Beispiel 12.4

Sei $X \sim N(\mu, \sigma^2)$ $E|X|^n < \infty$ $\forall n \in \mathbb{N}$

Beispiel 12.3
$$\Rightarrow \varphi_X(t) = e^{i\mu t} e^{-\frac{\sigma^2 t^2}{2}}$$

$$\underset{(\overrightarrow{n=1})}{\overset{\text{Satz 12.2}}{\Longrightarrow}} EX = \frac{1}{i} (\varphi_X^i(0)) = \frac{1}{i} ((i\mu - \sigma^2 t) e^{i\mu t - \frac{\sigma^2 t^2}{2}} \Big|_{t=0} = \mu$$

Satz 12.4 (Eindeutigkeitssatz für charakteristische Funktionen)

Sind X und Y Zufallsvariablen mit derselben charakteristischen Funktion, so haben X und Y dieselbe Verteilung.

Beweis

Siehe zum Beispiel: Hesse Seite 94

Beispiel 12.5

Es seien $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2), X_1, X_2$ unabhängig.

Beispiel 12.3
$$\Rightarrow \varphi_{X_1}(t) = e^{it\mu_1} e^{-\frac{\sigma_1^2 t^2}{2}}$$
 (entsprechend für X_2)

Satz 12.2:
$$\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) = e^{it(\mu_1+\mu_2)} \cdot e^{-\frac{(\sigma_1^2+\sigma_2^2)t^2}{2}}$$

$$\stackrel{Satz12.4}{\Longrightarrow} X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
 (vgl. Beispiel 9.4 bzw. Übung)

Satz 12.5 (Stetigkeitssatz bei charakteristischen Funktionen)

Es sei (X_n) eine Folge von Zufallsvariablen mit zugehörigen Verteilungsfunktionen $F_{X_n}(x)$ und charakteristischen Funktionen $\varphi_{X_n}(t)$. Folgende Aussagen sind äquivalent:

$$a) X_n \stackrel{d}{\to} X$$

b)
$$\varphi_{X_n}(t) \to \varphi(t)$$
 $\forall t \in \mathbb{R} \ und \ \varphi \ ist \ stetig \ in \ 0.$

In diesem Fall ist φ die charakteristische Funktion von X.

ohne Beweis