Компьютерное моделирование Моделирование динамических систем. Дифференциальные уравнения. Черновик

Кафедра ИВТ и ПМ

2018

План

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?

Прошлые темы

- Что такое динамическая система?
- Примеры?
- Динамическая система противопоставляется ... ?
- Примеры статических систем?

Современная наука стала возможной тогда, когда было решено самое первое дифференциальное уравнение

вольный перевод цитаты Дэвида Берлински

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

- Что такое дифференциальное уравнение?
- ▶ Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

$$\frac{dv_{x}}{dt} = g$$
 или

$$\dot{V}_{x}=g$$

Что является решением дифференциального уравнения?

- Что является решением дифференциального уравнения?
- Какие решения бывают?

- Что является решением дифференциального уравнения?
- Какие решения бывают?
- Что такое общее решение?
- Что такое частное решение?
- Как получить из общего решения частное?

▶ Как представить общее решение ДУ графически?

Что такое численный метод?

- Что такое численный метод?
- Как численно определить производную известной функции в точке?

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Динамическая система

- ▶ Изменяется с течением времени t
- ightharpoonup Состояния системы s(t)
- ightharpoonup Состояние системы может быть представлено вектором $s(t)=(s_1(t),s_2(t),...,s_n(t))$
- ▶ Примеры: маятник, популяция животных, движение автомобиля, поток людей, ...

Способы представления

Дискретная система

$$s(t + \Delta t) = f(s(t))$$

где Δt - приращение времени, f - некоторая функция определяющая состояние системы на следующем шаге

Непрерывная система

$$\dot{s} \equiv \frac{ds}{dt} = f(s(t))$$

Всегда ли первой производной достаточно?

Состояние может зависеть от второй производной: непрерывная система

Предположим, что состояние системы зависит ещё и от второй производной

$$\dot{s} + \ddot{s} = f(s)$$

Обозначим

$$y = \dot{s}$$
$$\dot{y} = f(s) - y$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

 $\dot{u} = g(u)$

Состояние может зависеть от второй производной: дискретная система

$$s(t + \Delta t) = f(s(t)) + s(t - \Delta t)$$

Аналогично непрерывной системе

$$y(t + \Delta t) = \dot{s}$$
$$s(t + \Delta t) = f(s(t)) + y(t)$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

$$u(t + \Delta t) = g(u(t))$$

Состояние может зависеть от второй производной: непрерывная система

Если f явно зависит от t

$$\dot{s}=f(s,t)$$

$$\dot{s} = f(s, y)$$

$$\dot{y} = 1$$

для y(0) = 0

$$u(t) \equiv f_1[s(t), y(t)]$$
$$\dot{u} = g(u)$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Balance equations

При описании динамических моделей используются уравнения вида

изменение величины = прирост - убыль

или для непрерывной системы

$$\dot{s} = f(s) = \text{creation rate} - \text{destruction rate}$$

Balance equations

Аналогично для дискретного случая:

$$s(t+\Delta t)-s(t)=$$
 (creation rate $-$ destruction rate) Δt

При $\Delta t o 0$ дискретный случай переходит в непрерывный, т.к.

$$\lim_{\Delta t o 0} rac{s(t+\Delta t)-s(t)}{\Delta t} = \dot{s}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Уравнение учитывающие пространство и время

- Предыдущие примеры не учитывали пространство, но часто это важно (распределение вещества, температуры и т.д.)
- ightharpoonup Необходимо учесть движение чего-либо из некоторого объёма V через его поверхность ∂V
- ▶ Причём отнести это движение к единице времени

Уравнение учитывающие пространство и время

входящий поток исходящий поток

(на касательной к поверхности) - поток не покидающий данный объём V dS (тёмно серый участок) - площадь поверхности ∂V с нормалью n

Уравнение учитывающие пространство и время

 $\rho(t,x)$ - плотность исследуемой величины (массы, заряда, ...)

$$s(t) = \int_{V} \rho(t, x) dV$$

Уравнение равновесия:

 $\dot{s} = -\mathsf{flux} \; \mathsf{through} \; \mathsf{surface} + \mathsf{volumic} \; \mathsf{creation/destruction} \; \mathsf{rate}$

знак минус в формуле выше появляется из-за того, что выходящий поток считается положительным, а он должен уменьшать некоторую величину внутри объёма V.

Обозначим поток (flux) как j;

изменение исследуемой величины в заданном объёме (creation/destruction rate) -

$$\Sigma = \int_{V} \sigma dV$$

где σ - характеризует изменение s в заданном объёме

$$\dot{s} + \oint_{\partial V} j \cdot n dS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток (flux) как j;

изменение исследуемой величины в заданном объёме (creation/destruction rate) -

$$\Sigma = \int_{V} \sigma dV$$

где σ - характеризует изменение s в заданном объёме

$$\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток как j

$$\Sigma = \int_{V} \sigma dV$$

$$|\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

$$\int_{V} \dot{s} dV + \int_{V} \nabla j \cdot n dV = \int_{V} \sigma dV$$
$$|\dot{s} + \nabla j \cdot n = \sigma |$$

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Чему равны значения \dot{s} , j и σ ?

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Чему равны значения \dot{s}, j и σ ?

$$\dot{s} = \frac{\partial}{\partial t}c(x, t)
j = Dc(x, t)
\sigma = f(x, t)$$

Пример Уравнение диффузии

Уравнение диффузии для трёхмерного случая

$$\frac{\partial}{\partial t}c(\vec{r},t)=D\Delta c(\vec{r},t)+f(\vec{r},t),$$

где
$$\Delta =
abla^2$$

Пример Уравнение теплопроводности

Уравнение диффузии для трёхмерного случая

$$\frac{\partial u}{\partial t} - a^2 \Delta u = f(\mathbf{r}, t),$$

где a — положительная константа (число a^2 является коэффициентом температуропроводности), $\Delta = \nabla^2$ — оператор Лапласа и $f(\vec{r},t)$ — функция тепловых источников. Искомая функция $u=u(\vec{r}),t)$ задает температуру в точке с координатами \vec{r} в момент времени t.

Пример уравнение Навье-Стокса

$$rac{\partial ec{v}}{\partial t} = -(ec{v}\cdot
abla)ec{v} +
u\Deltaec{v} - rac{1}{
ho}
abla p + ec{f}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Моделирование химических реакций

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения

Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Моделирование химических реакций

Требуется проинтегрировать однородное дифференциальное уравнение

$$\dot{s} = f(s, t)$$

на интервале $t_0 < t < t_f$ если известно $s(t=t_0) = s_0$

Не все интегралы могут быть вычислены аналитически или аналитическое интегрирование может быть сложным.

Во время численного интегрирования важно знать об ошибке вычисления

Для примера возьмём ранее рассмотренную модель популяции

$$\dot{s}=f(s,t)$$

$$f(s,t)=v\left(1-\frac{P}{C}\right)s$$

Аналитическое решение:

$$P(t) = \frac{C}{1 + \frac{C - P_0}{P_0} e^{-vt}}$$

Далее сравним точное решение с численным.

Используем ряд Тейлора

$$s(t) = \sum_{k=0}^{\infty} \frac{s^{(k)}(t_0)}{k!} (t - t_0)^k$$

где $s^{(k)}(t_0)$ означает производную k-го порядка.

Пусть $t-t_0=\Delta t$, тогда

$$s(t_0 + \Delta t) = \sum_{k=0}^{\infty} \frac{s^{(k)}}{k!} \Delta t^k$$

Выделим слагаемые для k = 0, 1:

$$s(t_0 + \Delta t) = s(t_0) + s'(t_0)\Delta t + \mathcal{O}(\Delta t^2)$$

Отбросим $\mathcal{O}(\Delta t^2)$:

$$s(t_1) = s(t_0) + \dot{s}(t_0) \Delta t$$

Заменим $\dot{s}(t_0) = f(s, t_0)$:

$$s(t_1) = s(t_0) + f(s, t_0) \Delta t$$

Явная схема Эйлера (Explicit Euler Scheme)

Тогда уравнение можно использовать для определения состояния $s(t_i)$ в каждый следующий момент времени t_{i+1} :

$$s(t_{i+1}) = s(t_i) + f(s, t_i) \Delta t$$

где
$$t_{i+1} - t_i = \Delta t$$

- выражение дискретно по времени
- производную (но не саму функцию) можно выразить из дифференциального уравнения $\dot{s}(t_0) = f(s,t_0)$:
- аналитическое выражение для функции искать не нужно
- значение функции явно зависит только от известного значения функции в предыдущий момент времени и от производной

Явная схема Эйлера (Explicit Euler Scheme)

Сравнение численного решения и точного (слайд 36)

Явная схема Эйлера (Explicit Euler Scheme)

- ightharpoonup Возможно потеря устойчивости при решениях жёстких систем с большими больших значениями Δt
- Накопление ошибки

неявная схема Эйлера (Explicit Euler Scheme)

Явная схема:

$$s_{i+1} = s_i + f(s_i, t_i) \Delta t$$

Будем вычислять s_{i-1} вместо s_{i+1}

$$s_{i-1} = s_i - f(s_i, t_i) \Delta t$$

Выразим s_i :

$$s_i = s_{i-1} + f(s_i, t_i) \Delta t$$

тогда s_{i+1}

$$s_{i+1} = s_i + f(s_{i+1}, t_{i+1}) + \Delta t$$

Неявная схема Эйлера (Explicit Euler Scheme)

Неявная схема Эйлера

$$s_{i+1} = s_i + f(s_{i+1}, t_{i+1})\Delta t$$

Явная схема Эйлера

$$s_{i+1} = s_i + f(s_i, t_i) \Delta t$$

Неявная схема Эйлера (Explicit Euler Scheme)

Неявная схема Эйлера (Explicit Euler Scheme)

Пример: $\dot{s}=-10s(t)$, $t_0=0$, $s_0=1$ Решение:

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$
Решение: $s = s_0 exp(-10t)$

Явная схема

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$

Решение: $s = s_0 exp(-10t)$

Явная схема

$$s_{i+1} = s_i(1 - 10\Delta t)$$

Решение не устойчиво

Неявная схема

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$

Решение: $s = s_0 exp(-10t)$

Явная схема

$$s_{i+1} = s_i(1 - 10\Delta t)$$

Решение не устойчиво

Неявная схема $s_{i+1} = s_i/(1+10\Delta t)$

Пунктиром показано решение с помощью явной схемы

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения

Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Моделирование химических реакций

Пример: уравнение диффузии Постановка задачи

Рассмотрим простое уравнений диффузии в одномерном пространстве, причем f(x,t)=0

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

$$t \in [t_0, t_f], x \in [x_0, x_f]$$

Граничные условия:

$$C(x_0,t)=C_0$$

$$C(x_f, t) = C_1$$

Начальные условия:

$$C(x, t_0) = C_x$$

- lacktriangle разделим пространство на N+1 точек. $N=(x_f-x_0)/\Delta x$
- координата каждой следующей точки вычисляется: $x_{i+1} = x_0 + i\Delta x, x_f = x_N$
- ightharpoonup концентрация в каждой точке $_i \equiv C(x_i)$

Используя ряд Тейлора запишем C_{i+1} и C_{i-1} с учётом первой и второй производной:

$$C_{i+1} = C_i + \Delta x \frac{\partial C_i}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 C_i}{\partial x^2}$$

$$C_{i-1} = C_i - \Delta x \frac{\partial C_i}{\partial x} - \frac{\Delta x^2}{2} \frac{\partial^2 C_i}{\partial x^2}$$

Сложим уравнения:

$$\frac{\partial^2 C_i}{\partial x^2} = \frac{C_{i-1} - 2C_i + C_{i+1}}{\Delta x^2}$$

перепишем уравнение:

$$\frac{\partial^2 C_i(t)}{\partial x^2} = \frac{C_{i-1}(t) - 2C_i(t) + C_{i+1}(t)}{\Delta x^2}$$

Чтобы учесть множество x_i соответствующих одному значению t $\mathbf{C}(t) = (C(x_0,t),C(x_1,t),...,C(x_N,t))^T$

Запишем рассматриваемое дифференциальное уравнение в матричном виде 1

$$\frac{\partial \mathbf{C}(t)}{\partial x} = \frac{D}{\Delta x^2} A \mathbf{C}(t)$$

¹это будет соответствовать системе из дифференциальных уравнений

$$\frac{\partial \mathbf{C}(t)}{\partial x} = \frac{D}{\Delta x^2} A \mathbf{C}(t)$$

где
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & 1 & -2 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Таким образом получено (матричное) однородное ДУ

Пример: уравнение диффузии Дискретизация времени

Пример: уравнение диффузии Пример вычислений

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Моделирование химических реакций

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Моделирование химических реакций

Рассмотрим химическую реакцию в которой молекула (доля вещества) A превращается в молекулу B с интенсивностью k_1 . Аналогичные превращения происходят с молекулой B.

$$A \xrightarrow{k_1} B$$
$$B \xrightarrow{k_2} A$$

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Система однородных дифференциальных уравнений первого порядка

$$\frac{d}{dt}\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -k_1 & k_2 \\ k_1 & -k_2 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$$

Решение:

$$A(t) = \frac{k_2}{k_1 + k_2} (A_0 + B_0) + \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

$$B(t) = \frac{k_1}{k_1 + k_2} (A_0 + B_0) - \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

При $t \to \infty$:

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Система однородных дифференциальных уравнений первого порядка

$$\frac{d}{dt}\begin{pmatrix}A\\B\end{pmatrix}=\begin{pmatrix}-k_1&k_2\\k_1&-k_2\end{pmatrix}\begin{pmatrix}A\\B\end{pmatrix}$$

Решение:

$$A(t) = \frac{k_2}{k_1 + k_2} (A_0 + B_0) + \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

$$B(t) = \frac{k_1}{k_1 + k_2} (A_0 + B_0) - \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

При $t \to \infty$:

$$A \to A_{\infty} = \frac{k_2}{k_1 + k_2} (A_0 + B_0)$$
 $B \to B_{\infty} = \frac{k_1}{k_1 + k_2} (A_0 + B_0)$

Моделирование химических реакций Метод Монте Карло

Рассматриваемая реакция моделируется с помощью Динамического метода Монте Карло. Этот метод применяется для моделирования систем которые не находятся в равновесии.

- ightharpoonup Время дискретно, с шагом Δt
- lacktriangle Δt следует выбрать таким, чтобы $\Delta t k_1 < 1$ и $\Delta t k_2 < 1$
- ▶ Величины $\Delta t k_1$ и $\Delta t k_2$ вероятности превращения доли вещества A в вещество B и наоборот

Моделирование химических реакций Метод Монте Карло

- ▶ Моделируя реакцию будем выбирать случайную молекулу (долю вещества) из всех N = A + B = const
- ▶ Вероятности выбора соответствующей молекулы A B $\frac{A}{A+B}$ и $\frac{B}{A+B}$ соответственно например если $\operatorname{rand}(0,1) < \frac{A}{A+B}$ то выбирается молекула A
- ▶ Если выбрана молекула A, то она превращается в молекулу B с вероятностью $\Delta t k_1 < 1$ Число молекул изменяется: $\Delta = \Delta = 1$

$$A = A - 1$$
$$B = B + 1$$

Аналогично для молекулы В

Моделирование химических реакций Метод Монте Карло

- операция превращения (или не превращения) повторяется для всех N молекул
- ▶ После того как N молекул обработано время увеличивается на Δt и процесс повторяется заново
- lacktriangle Моделирование происходит пока $t < t_{max}$

Моделирование химических реакций Метод Монте Карло. Результат

график построен для
$$\Delta = 0.02, \; k_1 = 0.5, \; k_2 = 0.8$$

Кривыми соответствующего цвета показаны аналитические решения. Для получения более точного результата нужно провести моделирование несколько раз.

Моделирование химических реакций Алгоритм Гиллиспи

- ightharpoonup Для каждого из возможных событий i=1..n заданы интенсивности $r_1,...,r_n$, с корой они происходят
- lacktriangle например $r_i=kAB$ для химической реакции A+B o C
- lacktriangle введём накопленные интенсивности $R_i = \sum\limits_{j=1}^{r} r_j$
- Выберем одно из событий сгенерировав случайное число 2 s=rand(0,1):
- ightharpoonup номер события будет определятся из соотношения $R_{k-1} < sR_n < R_{k+1}$

²равномерно распределённое

Моделирование химических реакций Алгоритм Гиллиспи

- после того как событие выбрано, оно происходит
- ▶ изменить время на $\Delta t = ln(\frac{1}{rand(0.1)})^3$
- ightharpoonup В течении интервала времени t происходит только одно событие

 $^{^3\}Delta t$ будет иметь экспоненциальное распределение ullet ullet ullet ullet ullet ullet ullet ullet

Ссылки

- ▶ «Жесткие» и «мягкие» математические модели, Арнольд В.
- scipy Modeling a Zombie Apocalypse

Использованы материалы курса Simulation and modeling of natural processes coursera.org/learn/modeling-simulation-natural-processes/

Ссылки

Материалы курса

github.com/ivtipm/computer-simulation