Engineering Calculator with KEyboard and Refined Tools

ECKERT

Console User Interface

(キーボード操作 汎用関数電卓)

バージョン 2017-01 ユーザーズマニュアル

2016年12月12日

© 2015-2016 菊地唯真 (Yuishin Kikuchi)

目次

T#	:=刃
惟	部心

これは、関数電卓ソフト ECKERT のユーザーズマニュアルです。

0.	はじめに1
	0-1. ECKERT とは?10-2. 対象ユーザー.10-3. 対応機能20-4. 動作環境20-5. 免責事項2
1.	ECKERT を使う準備 3
	1-1. インストールとアンインストール.31-2. 本マニュアルの読み方.31-3. 本マニュアルの表記・表示.4
2.	画面の見方と操作方法5
	2-1. 起動と終了52-2. 計算モードの画面の全体52-3. 計算設定・状態表示領域72-4. スタック表示領域の見方92-5. メッセージ表示領域122-6. コンフィグモードの画面の見方132-7. 基本的な操作方法142-8. 数の入力方法152-9. エラーメッセージが表示されたとき18
3.	設定・表示切り替え19
	3-1. コンフィグモードでの設定.193-2. 計算モードでの設定.213-3. スタックのページめくり.273-4. レジスタのページめくり.283-5. 値の全体表示.303-6. バージョン表示.31

4.	基本操作~四則演算してみよう3	32
	4-1. 基本的なスタック操作. 4-2. 四則演算. 4-2. 四則演算. 4-3. 複合的な四則演算. 4-4. 四則演算以外の基本的な演算. 4-5. 逆ポーランド記法とそれに慣れるコツ.	35 38 40
5.	関数を使ってみよう4	12
	5-1. 関数の使い方. - 5-2. 指数・対数. - 5-3. 三角関数・逆三角関数. - 5-4. 双曲線関数・逆双曲線関数. - 5-5. 統計関連の関数. - 5-6. 整数丸め関数. - 5-7. 整数の関数. -	42 43 45 45 46
6.	複素数を計算してみよう4	17
	6-1. 複素数の表示.66-2. 複素数の作り方.66-3. 複素数の演算.56-4. 複素数の分解.56-5. 複素関数.5	48 50 51
7.	論理計算してみよう	52
	 7-1. 符号なし整数・ブーリアンの表示	52 53 53 55 55
8.	ベクトルを計算してみよう5	57
	8-1. ベクトルの表示	57

	8-2. ベクトルの作り方!	57
	8-3. ベクトルを含む四則演算	61
	8-4. 内積・外積	
	8-5. ベクトルノルム	
	8-6. ベクトルの転置	62
9.	行列を計算してみよう6	34
	9-1. 行列の表示	64
	9-2. 行列の作り方	64
	9-3. 行列を含む四則演算	
	9-4. 行列式と逆行列	
	9-5. 行列の転置	
	9-6. その他の行列演算 (38
10.	レジスタを使ってみよう6	9
	10-1. レジスタとは?	69
	10-2. レジスタの表示切り替え	70
	10-3. 指定レジスタへのストア	71
	10-4. 指定レジスタのロード	74
	10-5. 指定レジスタのデリート	
	10-6. レジスタ演算	
	10-7. レジスタクリア	
	10-8. 文字列とレジスタ	/9
11.	スタックを自由に操ろう8	30
	11-1. スタックの特殊操作	80
	11-2. 基本的なスタック操作	30
	11-3. スタックの順番を変更する操作	
	11-4. コピー・上書きをする操作	
	11-5. 削除をする操作	
	11-6. その他のスタック操作	93
12.	その他の便利な機能9	14
	12-1. オールクリア	94
	12-2. オールリセット	
	12-3. 元に戻す・やり直し	94

	12-5.	JSON 出力マクロ機能	95
	12–6.	便利な計算機能	97
13.	特別	朱な機能1	05
	13-1.	精度の検証	105
	13-2.	特殊な起動	105
14.	+-	- ワード一覧	06
	14-1.	終了など	106
	14-2.	コンフィグ	106
	14-3.	表示・出力機能一覧	106
	14-4.	設定変更キーワード一覧	107
	14-1.	履歴キーワード一覧	108
	14-2.	ページめくり一覧	108
	14-3.	スタック操作キーワード一覧	109
	14-4.	レジスタ操作一覧	110
	14-5.	マクロ関連一覧	110
	14-6.	接頭辞との乗算一覧	111
	14-7.	四則演算と基本演算	112
	14-8.	指数・対数関数の一覧	113
	14-9.	三角関数の一覧	113
	14-10.	双曲線関数の一覧	114
	14-11.	統計に関する関数の一覧	115
	14-12.	整数丸めの関数一覧	115
	14-13.	整数の関数一覧	115
	14-14.	複素数演算一覧	116
	14-15.	論理計算一覧	117
	14-16.	ベクトルに関する機能一覧	118
	14-17.	行列に関する機能一覧	119
	14-18.	角度変換一覧	119
	14-19.	角度計算一覧	119
	14-20.	パーセント計算一覧	120
	14-21.	エンジニア向け一覧	120
	14-22.	分解一覧	120
	14-23.	全体計算一覧	121

	14-24. 健康や生活に関する計算一覧12	2
	14-25. キャスト一覧12	2
	14-26. その他の計算機能一覧12	2
	14-27. 特殊機能一覧12	2
	14-28. 数学・科学定数一覧12	3
15.	メッセージー覧13-	4
	15-1. エラーメッセージー覧13	4
	- 15-2. 確認メッセージー覧13	5
	15-3. 入力待ち・入力確認メッセージ一覧13	5
16.	技術情報130	6
		6
	16-2. 計算精度 13	6
	16-3. 数学的定義	7
17.	トラブルシューティング139	9
	17-1. まったく操作がわからない13	9
	17-2. 異常な計算結果が出た13	9
	17-3. エラーになって計算できない14	0
	17-4. 画面表示を変えたい14	0
	17-5. バグと思われる挙動を見つけた14	1

0. はじめに

0-1. ECKERT とは?

ECKERT は、関数電卓ソフトウエアです。

正式名称は Engineering Calculator with KEyboard and Refined Toolsです。

Engineering Ca (C) 2014-2017		ith KEyboard and F ikuchi	Refined Tools
HOMURA: (Rad) (Std: 9/15, St			
# TYPE	:		VALUE
6: Integer	:		12
5: Floating	:		1.5
4: Complex	:		3/25 - i4/25
Z: Rational	:		2.1/4
Y: Matrix	:		[[2, 3], [3, 4]]
X: Tuple(Col)	:	(1 + i2,	2 + i3, 3 + i4)
TRANSPOSE Ready to operat	te		
> =			

ECKERT はすべてキーボード操作です。画面を確認しつつ、数値やキーワードを入力しながら計算します。逆ポーランド記法を採用しているため、複雑な計算も、カッコを用いずに行うことができます。なお、画面表示はすべて英語です。

0-2. 対象ユーザー

本ソフトウエアは、電気・電子・情報・通信系のエンジニア、および理工系大学生に幅広くお使いいただけます。設計や実験の他、学習の支援にご活用いただけます。

また、逆ポーランド記法の電卓が好きな方に、特におすすめします。

※ただし、機能数と操作から、一般用途にはおすすめしません。

0-3. 対応機能

指数・対数、三角関数などはもちろんのこと、 2π との乗除算やデシベル変換など、とくにエンジニアに要求される計算に対応します。

また、複素数の計算にも対応します。単なる四則演算にとどまらず、複素関数、複素ベクトル、複素行列の計算もこなせます。

おまけ機能ですが、基数変換や、論理和 (OR) や論理積 (AND) といった、論理演算にも対応します。

0-4. 動作環境

Windows 7, Windows 8, Windows 8.1 にて動作確認をしています。それ以前の Windows では、正常に起動しない可能性もありますので、ご注意ください。

0-5. 免責事項

本ソフトウエア、および本マニュアルの著作権は、菊地唯真(Yuishin Kikuchi)に属します。 ECKERT は無償で、無保証です。 本ソフトウエアによって生じるいかなるトラブルについても保証しかねます。

また、ソフトウエアテストについては万全を期していますが、万が一、不自然な挙動や計 算結果が見受けられる場合、お手数ですが、当方ホームページから報告をお願いします。

ECKERT 紹介ページ

http://sfoftime.web.fc2.com/eckert

作者宛てEメールアドレス

only.my.truth@gmail.com

1. ECKERT を使う準備

1-1. インストールとアンインストール

配布ファイル内の ekert86.exe と eckert64.exe が実行ファイルです。ekert86.exe は 32 ビットで、eckert64.exe は 64 ビットで動作します。ビット数については、お使いのオペレーティングシステムをご確認ください。

なお、どちらの実行ファイルも独立しており、単体で動作するため、片方が不要な場合は 削除していただいても問題ありません。本ソフトウエアはレジストリなどのシステムの変 更を行わないため、USBメモリなどで持ち運びができます。

インストールは、実行ファイルのコピーのみです。実行ファイルのいずれかを、お好きなディレクトリにコピーしてお使いいただけます。なお、本ソフトウエアは、設定の読み書きや計算結果のファイル出力があるため、専用のディレクトリ(フォルダ)を用意することを強くおすすめします。

アンインストールは、実行ファイルの削除のみです(場合によっては、同ディレクトリに config ファイルが作られていますが、その場合は同時に削除します)。なお、専用のディレクトリを用意していた場合は、ディレクトリごと削除していただいても問題ありません。

1-2. 本マニュアルの読み方

本マニュアルでは、関数電卓アプリケーション ECKERT (以下、本ソフトウエア) の機能をすべて紹介します。

ただし、本マニュアルでは基本的な数学的定義を示しません。あくまで操作マニュアルと してお使いください。

逆ポーランド記法を知らない場合、2章「画面の見方と操作方法」、4章「基本操作~四則 演算してみよう」をお読みください。操作に慣れてきたら、5章「関数を使ってみよう」、 6章「複素数を計算してみよう」、10章「レジスタを使ってみよう」などをお読みください。

逆ポーランド記法を知っている場合、4章「基本操作~四則演算してみよう」を斜め読み する程度で基本操作がすぐに理解できます。各章のキーワードの表にざっと目を通すと、時 間をかけずに機能を把握できます。

表示析数や画面表示の設定を行うには、3章「設定・表示切り替え」で説明しますが、基本的な操作を理解してから読むことをおすすめします。

さらに複雑な機能を使いたい場合、14 章「キーワード一覧」を見れば、すべての機能を 見渡すことができます。

1. ECKERT を使う準備

1-3. 本マニュアルの表記・表示

本マニュアルでは、次のような表示を用います。

確認

確認すべきことを示します

注意

注意すべきことを示します

入力>

(入力する文字列)

この表示の右側の文字列を、本ソフトウエアの入力欄に入力する操作を示します。

本ソフトウエアはスタックという計算スペース(3章「画面の見方と操作方法」で詳しく 説明)を用います。スタックの状態を表すのに、以下のような表を用います。

#	TYPE	VALUE	
4			
Z			
Υ	Integer	12	│
Х	Floating	1.5	

「TYPE」の列はデータ型を、「VALUE」の列は値を示しています。 キーワード一覧を示す際には、次のような表を示します。

機能	キーワード	R	D	演算内容	
加算	add	1	1	V + V	
加昇 -	+	2	2 2	Y + X	
減算	sub	2	,	2	Y - X
/	-	2	2	I - X	

「機能」の列は、実行する機能を表しています。「キーワード」の列は、機能に対応する 文字列です。ひとつの機能に対して複数のキーワードが割り当てられている場合、どれを使 ってもよいことを示しています。

機能とキーワードの表については、4章「基本操作~四則演算してみよう」で改めて説明 します。

2. 画面の見方と操作方法

2-1. 起動と終了

起動するには、実行ファイルをダブルクリックします。

終了するには、キーボードで「exit」「quit」「q」のいずれかを入力して、エンターキーを押下します。なお、基本的に大文字・小文字は区別されませんが、一部例外があります。

機能	キーワード
終了	exit
	quit
	q

※なお、特殊な起動もあります。詳しくは、13章「特殊な機能」をご参照ください。

2-2. 計算モードの画面の全体

計算モードの画面表示の見方を紹介します。まずは画面全体の見方です。

Engineering Ca (C) 2014-2017		with KEyboard and Refined Tools Kikuchi
HOMURA: (Rad) Std: 9/15, S		
# TYPE	:	VALUE
6: Integer	:	
5: Floating	:	1.5
4: Complex	:	3/25 - i4/25
Z: Rational	:	2.1/4
Y: Matrix	:	[[2, 3], [3, 4]]
X: Tuple(Col)	:	(1 + i2, 2 + i3, 3 + i4)
TRANSPOSE Ready to opera	te	
> _		

最初の2行はソフト名と作者の表示です。モードに関係なく表示されます。

Engineering Calculator with KEyboard and Refined Tools (C) 2014-2017 Yuishin Kikuchi

区切り線をはさみ、計算設定・状態表示領域があります。

HOMURA: (Rad) (Hex) (Dword) [i.a/b] Std: 9/15, Stack: 6, History: 0/10

二重区切り線をはさみ、もう一つの区切り線の下にあるのが**スタック表示領域**です。入力 したデータの確認や計算結果はここで見ます。

#	TYPE	:	VALUE
5: 4: Z:	Integer Floating Complex Rational Matrix	:	12 1.5 3/25 - i4/25 2.1/4 [[2, 3], [3, 4]]
Х:	Tuple(Col)	:	(1 + i2, 2 + i3, 3 + i4)

スタック表示領域の左側にはデータの型 (種類)、右側に値が表示されます。

区切り線をはさみ、その下 2 行は、**メッセージ表示領域**です。ここには、直前に実行した機能やメッセージが表示されます。

```
TRANSPOSE
Ready to operate
```

画面の一番下が入力欄です。ここにコマンドを入力します。

```
> _
```

次節から、各表示領域について細かく説明します。

2-3. 計算設定· 状態表示領域

計算設定・状態表示領域の見方を紹介します。

HOMURA: (Rad) (Hex) (Dword) [i.a/b] Std: 9/15, Stack: 6, History: 0/10

上の行では、次のようなシンボルが表示されます。

表示	意味	区分
(Deg)	度数法モード	
(Rad)	ラジアンモード	角度モード
(Gra)	グラードモード	
(Bin)	2 進数表示	
(0ct)	8 進数表示	バイナリの
(Sdec)	符号あり 10 進数表示	ハイ
(Udec)	符号なし 10 進数表示	12八
(Hex)	16 進数表示	
(Byte)	8 ビットモード	
(Word)	16 ビットモード	会 冊 計算
(Dword)	32 ビットモード	論理計算
(Qword)	64 ビットモード	
[Reg]	レジスタ表示	表示枠
[Eul]	オイラー表示	
[Apx]	近似表示	値表示
[i.a/b]	带分数表示	

(丸カッコ)のシンボルは、各区分について必ずいずれかが表示されます。 [角カッコ]のシンボルは、表示・非表示となります。

> HOMURA: (Rad) (Hex) (Dword) [i.a/b] Std: 9/15, Stack: 6, History: 0/10

上のような表示ならば、ラジアンモード、16進数表示、32ビットモードです。

下の行では、3つの要素が表示されます。最初に、浮動小数点数の表示モードと桁数です。

表示	意味
Std	標準表示
Fix	固定小数点表示
Sci	指数表示
Eng	エンジニアリング表示

この直後の「整数/整数」の表示は、現在の設定桁数(変更可能)と、設定可能な最大の 桁数(変更不可能)を示しています。なお、桁数の変更方法は3章「設定・表示切り替え」 で説明します。

Std: 6/15

このような表示ならば、標準表示で、6 桁を表示しており、最大 15 桁まで表示できることを示しています。

次に、スタックの要素数です。0の場合はEmpty、それ以外は数が表示されます。

Stack: 11

このような表示ならば、スタックに 11 個のデータが含まれていることを示しています。 3 番目は**履歴の表示**です。

表示	意味
OFF	履歴機能オフ
Init	初期状態
整数/整数	※後述

「整数/整数」の表示は、元に戻す機能で履歴をさかのぼった回数と、管理している(過去の)履歴数を示しています。

History: 4/10

上のような表示ならば、4回履歴をさかのぼった状態で、最大で 10回までさかのぼることができることを示しています。

2-4. スタック表示領域の見方

本ソフトウエアの鍵となる、スタックについて紹介します。

# TYPE	:	VALUE
-:	:	
-:	:	
-:	:	
Z :	:	
Y: Integer	:	12
X: Floating	:	1.5

スタックとは、数を格納する領域です。本ソフトウエアのスタック表示領域は、画面の下側(後述する「末尾」)から押し上げたり取り除いたりする形で動きます。

各行には、スタックの中の位置を示すアルファベットまたは番号、データの型、値が表示されます。データの型とは、いわゆる数の種類のことです。整数ならば Integer が、有理数ならば Rational が表示されます。

なお、本マニュアルでは、スタックを次のようにも表示します。

#	TYPE	VALUE
4		
Z		
Υ	Integer	12
Х	Floating	1.5

確認 本ソフトウエアのスタックの大きさは、(実行メモリの許す限り)無制限です。

Xの行を、スタックの末尾と呼びます。**Yは末尾2番目、Zは末尾3番目**です。それ以降は、**4,5,**…と数字で示します。また、**X**の行にあるデータを単に**X**と呼び、**Y**や**Z**についても同様に表現します。

では、スタックの動きを視覚的に理解しましょう。

スタックは、カードの山にカードを重ねたり、取り除いたりするのと同じ扱いです。

左図のように、カードが重なっている様子を想像します。 カードを 1 枚ずつ重ねたとすると、1 のカードを重ねた後 に 2 のカードを重ねています。

これを、次のように表現します。

#	TYPE	VALUE
Z		
Υ	Integer	1
Х	Integer	2

左図では、上図からカードが 1 枚取り除かれています。 スタックで言えば、末尾の X が削除されています。

#	TYPE	VALUE
Z		
Υ		
Х	Integer	1

では、加算を説明します。
2 枚のカードがある状態で、
2 枚のカードを引き、その加算
結果のカードを上に重ねます。
これが、スタックで計算する
基本的な流れです。

#	TYPE	VALUE
Z		
Υ	Integer	1
Χ	Integer	2

加算実行

#	TYPE	VALUE
Z		
Υ		
Х	Integer	3

スタックへの、追加、削除、演算という操作があることを理解しましょう。

なお、左側に表示される型には、次のようなものがあります。

表示	意味
Error	エラーを示す文字列
String	文字列
Integer	整数
Floating	浮動小数点数
Rational	有理数
Infinity	無限大
Complex	複素数
Boolean	ブーリアン
Byte	8 ビット整数
Word	16 ビット整数
Dword	32 ビット整数
Qword	64 ビット整数
Tuple[Row]	横方向ベクトル
Tuple(Col)	縦方向ベクトル
Matrix	行列

2-5. メッセージ表示領域

メッセージ表示領域では、直前に実行した機能やメッセージを表示します。

TRANSPOSE Ready to operate

上の行では実行した機能を、下の行ではその他のメッセージを表示させます。 ゼロ除算など、実行できない操作が入った場合、その場で処理を中止し、メッセージ表示 領域の下の行にエラーメッセージを表示します。

> [!] ADD Y+X Error: Too few arguments

なお、実行結果に関するメッセージが表示される場合、次のシンボルが上の行、つまり実 行した機能の左側に表示されます。

表示	意味	
[!]	エラーによる中止	
[i]	特別な内部処理を行った	
[C]	入力待ち、または設定の確認	

具体的なメッセージの意味については、15章「メッセージ一覧」をお読みください。 なお、[?] が表示された場合、それは不具合ですので、バグ報告をお願いします。

2-6. コンフィグモードの画面の見方

計算モードで「config」と入力すると、コンフィグモードに移ります。

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2016 Yuishin Kikuchi

CONFIGURATION MODE

Interface
History size (hist): 10
Display width (width): 60
Display lines (lines): 6

Management
Load config (load)
Save config (save)
Reset config (reset)

ECKERT Config
To quit config, type "calc", "homura"
```

Interface
History size (hist): 10
Display width (width): 60
Display lines (lines): 6

最大履歴数、画面幅、スタック表示領域の行数の設定が表示されています。設定方法は、 3章「設定・表示切り替え」で示します。

Management
Load config (load)
Save config (save)
Reset config (reset)

コンフィグ管理用のコマンドです。

コンフィグモードから計算モードに戻るには、「homura」または「calc」と入力します。

2-7. 基本的な操作方法

本ソフトウエアは、キーボードから数値やキーワードを入力して操作します。なお、対応 する入力は半角英数字のみです。全角数字や日本語の入力に対する動作は保証しません。

数値やキーワードを1つ、または半角スペース区切りで複数入力し、エンターキーで確定することにより、入力した順番の通りに機能・命令を実行します。ただし、設定変更のキーワードの場合は1つで入力する必要がある場合もあります。

このように、文字を入力してエンターキー、という流れの操作となります。エンターキー を押さない限りは次の画面に移りませんので、ご注意ください。なお、数値入力の際の接頭 辞を除き、大文字・小文字は区別されません。

また、本ソフトウエアでは、文字キー以外の入力に対する動作を定義していません。実行環境によっては、入力履歴が表示される場合もありますが、それは環境依存の機能です。

計算や設定変更などの機能を呼び出すには、対応するキーワードを入力します。キーワードは半角スペース区切りで複数入力できます。複数のキーワードが入力されると、単純に入力された順番の通りに機能を呼び出します。機能とキーワードの対応は各章で紹介します。たとえば、加算、乗算の順番に機能を実行するには、次のように入力します。

ひとつの機能に対して複数のキーワードが割り当てられている場合もあります。その場合、どちらを使用しても同じ結果となります。

また、同一のキーワードでも計算モードに応じて異なる機能が呼ばれる場合もあります ので、ご注意ください。

数を入力するには、単純に数を記述します。なお、数値の入力についても、スペース区切りで並べることができます。

数の入力と計算キーワードを混ぜて記述することもできます。

数の入力について、詳しくは次節で説明します。

2-8. 数の入力方法

本ソフトウエアで対応する数の入力について示します。

下表の符号列は、先頭に「+」または「-」をつけられるかを示しています。SI 接頭辞、2 進接頭辞の列は、接頭辞をつけられるかどうかを示しています。

種類	符号	SI 接頭辞	2 進接頭辞
整数			
小数	OK	OK	ОК
指数表記			
虚数単位i	OK	NG	NG
整数・小数・指数表記に	OK	OK	ОК
虚数単位を前置	6	UK UK	OK .
整数・小数・指数表記に	ΟĽ	ΟV	NG※
虚数単位を後置	OK	OK	NG%
無限大	OK	NG	NG
ブーリアン			
u を前置した符号なし整数			
0b を前置した 2 進数	NG	NG	NG
0o を前置した 8 進数			
0x を前置した 16 進数			

※「12ki」のような表記は、整数に2進接頭辞がついたものとみなされます

小数表記では、「.2」のような整数部分の省略、「1.」のような小数部分の省略ができます。これは後に説明する指数表記の仮数部でも同じです。

指数表記とは、Eまたは eを使って、指数を表現する表記です。「仮数部 E 指数部」の形で表記します。この仮数部には整数または小数、指数部には符号を認める整数が入ります。

数学的な表現では、「仮数部 \times 10 指数部 」のように書きますが、この「 \times 10」を「E」に置き換えて表現します。

たとえば、 6.02×10^{-23} は「6.02E-23」という表記、 1.01325×10^5 は「1.01325E5」という表記になります。

プラスの無限大は、「inf」「+inf」「+infinity」と入力します。 マイナスの無限大は「-inf」「-infinity」と入力します。

ブーリアンは、真の場合「TRUE」「T」、偽の場合「FALSE」「F」と入力します。符号なし整数は、「u」を前置し、直後に符号をつけずに整数を続けて入力します。 2 進数は、「0b」を前置し、直後に 0 と 1 による 2 進数表現を入力します。 8 進数は、「0o」を前置し、直後に 0~7 による 8 進数表現を入力します。 16 進数は、「0x」を前置し、直後に 0x9,x7 による 8 進数表現を入力します。

対応する SI 接頭辞、2 進接頭辞の一覧を示します。

記号	名前	値	値	名前	記号
da	DECA	1.0E+01	1.0E-01	DECI	d
h	НЕСТО	1.0E+02	1.0E-02	CENTI	С
K, k	KILO	1.0E+03	1.0E-03	MILLI	m
М	MEGA	1.0E+06	1.0E-06	MICRO	u
G	GIGA	1.0E+09	1.0E-09	NANO	n
Т	TERA	1.0E+12	1.0E-12	PICO	р
Р	PETA	1.0E+15	1.0E-15	FEMTO	f
Е	EXA	1.0E+18	1.0E-18	ATT0	а
Z	ZETTA	1.0E+21	1.0E-21	ZEPT0	Z
Υ	YOTTA	1.0E+24	1.0E-24	YOCTO	у
Ki, ki	KIBI	1024^1			
Mi, mi	MEBI	1024^2			
Gi, gi	GIBI	1024^3			
Ti, ti	TEBI	1024^4			
Pi, pi	PEBI	1024^5			
Ei, ei	EXBI	1024^6			
Zi, zi	ZEBI	1024^7			
Yi, yi	YOBI	1024^8			

カンマ区切りで複数表示されているものは、どちらを使っても同じという意味です。

では、数の入力例を示します。

整数	入力> -3	無限大	入力 > -inf
接頭辞	入力 > 3k	ブーリアン	入力> t
指数表記	入力> 2.998e8	符号なし整数	入力> u65536
虚数	入力> -i	2 進数	入力> 0b1010
虚数前置	入力> i12	8 進数	入力> 00100
虚数後置	入力> -5i	16 進数	入力 > 0xFFFE

また、この他、数学・化学定数のキーワードにも対応しています。

定数名	キーワード	値
円周率	pi	3.14159265358979
ネイピア数	е	2.71828182845905
オイラーのガンマ	egamma	0.577215664901533

詳しくは14章「キーワード一覧」をご覧ください。

ちなみに、数ではありませんが、文字列にも対応しています。文字列を入力するには、半 角ダブルクオーテーションを用います。

文字列、レジスタに目印やメッセージを残したり、マクロ機能を使ったりするために用います。

2-9. エラーメッセージが表示されたとき

ある機能を実行する際にエラーが起きたとき、そこで処理を中断します。つまり、その機能が実行される前の状態で止まります。そして、メッセージ表示領域にエラーメッセージが表示されます。

エラーメッセージが表示されても、入力の方法は変わりません。また同様にコマンドを入力し、正常に実行されれば、エラーメッセージは消えます。

スペース区切りで複数の入力をしている場合でも、処理はスペース区切りごとなので、あくまでエラーになるまで処理を実行します。

入力> 50/

(この意味は4章「基本操作~四則演算してみよう」を読むとおわかりいただけます)

たとえば、上の入力の場合、ゼロ除算でエラーとなります。ただ、その前に 5 と 0 はスタックに追加されているので、その状態で処理が中止されます。

エラーが表示された場合、元に戻す機能が便利です。元に戻す・やり直し機能については、 12 章「その他の便利な機能」をお読みください。

エラーメッセージの意味が知りたい場合、15章「メッセージ一覧」を参照ください。

また、非対応の入力を検出すると、次のように表示します。

[!] OPERATIONAL ERROR

Error: Unsupported operation or notation

このメッセージが表示された場合、スペルの間違いがないかをご確認ください。

また、対応しているキーワードであっても、使うモードが異なったり、設定変更などの単体で使われるキーワードが複数で使われていたりすると、この表示になることがあります。

3. 設定・表示切り替え

注意 本章は、基本操作を理解してから読むことをおすすめします。

3-1. コンフィグモードでの設定

最大履歴数、画面幅、スタック表示領域の行数はコンフィグモードで設定できます。 コンフィグモードに入るには、キーワード「config」を入力します。コンフィグモード から計算モードに移る場合は、キーワード「homura」または「calc」と入力します。

3-1-1. 最大履歴数の設定

キーワード「hist」を入力し、続けて整数を指定します。この際、「hist 10」のように、スペース区切りで入力することもできます。ここで、「0」を指定すると、履歴機能をオフにできます。

なお、最大履歴数のデフォルト値は10です。

たとえば、最大履歴数を20にしたい場合、次のように入力します。

入力> hist 20

3-1-2. 画面幅の設定

キーワード「width」を入力し、続けて整数を指定します。この際、「hist 79」のように、スペース区切りで入力することもできます。ただし、最小値は決められておりますので、その値よりも小さいものが指定された場合、最小値に設定されます。

なお、画面幅のデフォルト値は79で、最小幅は60です。

たとえば、画面幅を69にしたい場合、次のように入力します。

入力> width 69

3-1-3. スタック表示領域の行数の設定

キーワード「lines」を入力し、続けて整数を指定します。この際、「lines 11」のように、スペース区切りで入力することもできます。ただし、最小値は決められておりますので、その値よりも小さいものが指定された場合、最小値に設定されます。

なお、画面幅のデフォルト値は79で、最小幅は60です。

たとえば、スタック表示領域の行数を20にしたい場合、次のように入力します。

入力> lines 20

3-1-4. 設定のロード・セーブ・リセット

コンフィグモードにおける設定は、config ファイルに保存できます。コンフィグの 管理を行うには、次のキーワードを用います。

機能	キーワード
コンフィグのロード	load
コンフィグのセーブ	save
コンフィグのリセット	reset
	rst

コンフィグのセーブを行うと、次回起動時にその設定が読み込まれます。つまり、履 歴数や画面の幅が自動的に適用されます。

コンフィグのロードを行うと、明示的に config ファイルを読み込みます。

コンフィグのリセットを行うと、コンフィグの設定すべてがデフォルトに戻ります。 ただ、コンフィグのリセットを行っても config ファイルは変更されません。

3-2. 計算モードでの設定

角度モードや型表示、表示桁数などの設定は計算モードで行えます。

3-2-1. 角度モード

三角関数や複素偏角の計算について、角度の単位を設定できます。

度数法モードを指定するには、キーワード「deg」を単体で入力します。このモードのとき、計算設定・状態表示領域に(Deg)が表示されます。

ラジアンモード、グラードモードについては、次のようになっています。

角度モード	キーワード	画面表示
度数法	deg	(Deg)
ラジアン	rad	(Rad)
グラード	grad	(Cn2)
9 7 - 1	gra	(Gra)

このモードは、三角関数「sin」や、複素偏角「arg」などの計算に関わります。 なお、デフォルトの角度モードはラジアンモードです。

3-2-2. N 進数表示モード

8 ビット整数、16 ビット整数、32 ビット整数、64 ビット整数の表示に関して、進数 表示を変えることができます。

2 進数表示モードを指定するには、キーワード「bin」を単体で入力します。このモードのとき、計算設定・状態表示領域に(Bin)が表示されます。

8 進数表示モード、符号つき 10 進数表示モード、符号なし 10 進数表示モード、16 進数表示モードについては、次のようになっています。

N進モード	キーワード	画面表示
2 進数	bin	(Bin)
8 進数	oct	(Oct)
符号つき	sdec	(Sdec)
符号なし	udec	(Udec)
16 進数	hex	(Hex)

なお、デフォルトのモードは16進数モードです。

3-2-3. Nビットモード

論理計算を行う際に、扱いたいビット数を 8,16,32,64 の中から選ぶことができます。 符号なし整数の入力があった場合、選ばれたビット数でデータが追加されます。

8 ビットモードを指定するには、キーワード「byte」を単体で入力します。このモードのとき、計算設定・状態表示領域に(Byte)が表示されます。

16 ビットモード、32 ビットモード、64 ビットモードについては、次のようになっています。

Nビットモード	キーワード	画面表示
8 ビット バイト	byte	(Byte)
16 ビット ワード	word	(Word)
32 ビット ダブルワード	dword	(Dword)
64 ビット クアッドワード	qword	(Qword)

なお、デフォルトのモードは32ビットモードです。

3-2-4. 型表示

スタック表示領域の左側の型表示は、非表示にもできます。キーワード「type」を単体で入力すると、表示・非表示を切り替えられます。

なお、デフォルトでは表示される設定です。

3-2-5. レジスタ表示

レジスタの表示・非表示を切り替えるには、キーワード「reg」または「register」を単体で入力します。レジスタは、スタック表示領域の上半分に表示されます。そのため、レジスタが表示されているとき、スタックの表示は少なくなります。

レジスタ表示が有効のとき、計算設定・状態表示領域に[Reg]が表示されます。 なお、デフォルトでは非表示の設定です。

3-2-6. オイラー表示

複素数の表示形式について、a+ib(直交座標)の形式と $r\exp(i\theta)$ (極座標)の形式 を切り替えるには、キーワード「euler」または「eul」を単体で入力します。

オイラー表示が有効のとき、計算設定・状態表示領域に[Eul]が表示されます。

また、表示される偏角は角度モードに依存します。

なお、デフォルトでは無効です。

3-2-7. 近似表示

近似表示の有効・無効を切り替えるには、キーワード「approx」または「apx」を単体で入力します。

近似表示の設定により、次の表示が変更されます。

■ 有理数

■ 整数 (浮動小数点数の表示形式が通常以外のとき)

上記が浮動小数点数と同じ形の表示になります(浮動小数点数の表示モードに従います)。近似表示が有効のとき、計算設定・状態表示領域に[Apx]が表示されます。 なお、デフォルトでは無効です。

3-2-8. 有理数の仮分数・帯分数表示

有理数の仮分数・帯分数表示を切り替えるには、キーワード「fraction」または「frac」を単体で入力します。

有理数の表示は、次のようになります。帯分数は小数点「.」を用います。

数值	仮分数	帯分数	小数
+3/2	3/2	1.1/2	1.5
-6/5	-6/5	-1.1/5	-1.2

計算設定・状態表示領域には、帯分数表示のとき[i.a/b]が表示されます。なお、デフォルトでは仮分数表示です。

3-2-9. 浮動小数点数の表示形式

浮動小数点数の表示は、通常表示、固定小数点表示、指数表示、エンジニアリング表示の4種類から選ぶことができます。

■ 通常表示

値に応じて、柔軟に表示桁数が変化する表示です。

■ 固定小数点表示

小数点以下の桁数を固定する表示です。

■ 指数表示

「1.2E+10」のように、仮数部 $m \ge 0 \le m < 10$ にして、指数部は E を使って表示します。例の場合、 1.2×10^{10} という意味です。

■ エンジニアリング表示

「12E-03」のように、仮数部mを $0 \le m < 1000$ にして、指数部は E を使って、かつ 3 の倍数にする表示です。例の場合、 12×10^{-3} ですが、これを「12 ミリ」と読むことができます。

通常表示にするには、キーワード「std」を単体で入力します。このモードのとき、計算設定・状態表示領域に Std が表示されます。その他は以下の通りです。

表示形式	キーワード	画面表示
通常	std	Std
固定小数点	fix	Fix
指数	sci	Sci
エンジニアリング	eng	Eng

3-2-10. 浮動小数点数の表示桁数

浮動小数点数の表示桁数を設定できます。ただし、あくまで表示桁数を変更するだけであり、内部の計算精度に影響はありません。

ここでの桁数の定義は、表示形式ごとに、次のようにしています。

表示形式	「桁数」の意味
通常	有効数字
固定小数点	小数点下の桁数
指数	有効数字
エンジニアリング	有効数字

浮動小数点数の表示桁数を操作するには、キーワード「disp」または「digit」を単体で入力します。続けて整数を入力することにより、設定を変更できます。

たとえば、表示桁数を3桁にしたければ、次のように入力します。

入力> digit 3

なお、この桁数は、浮動小数点数の表示形式ごとの設定です。したがって、ある表示 形式のときに桁数を変更しても、他の表示形式の桁数は変更されません。

また、最大桁数と最小桁数はそれぞれの形式で決まっており、小さすぎる値が指定された場合は最小桁数に、大きすぎる値が指定された場合には最大桁数に設定されます。

表示形式	最小桁数	最大桁数
通常	1	15
固定小数点	0	15
指数	1	15
エンジニアリング	1	15

表示例: 円周率の10倍(31.4159265358979)の場合

Std: 5/1531.416Fix: 5/1531.41593Sci: 5/153.1416E+01Eng: 5/1531.416E+00

なお、デフォルトの表示桁数は、すべて9桁です。

また、 $\lceil \text{disp 10 } \underline{36} \rceil$ のように、桁数指定の整数に続けてスペース区切りで何かトークン (列) を入力しても、それらは無視されます。

次に、計算モードでの設定のキーワードをまとめます。

機能	キーワード	画面表示
度数法モード	deg	(Deg)
ラジアンモード	rad	(Rad)
グラードモード	gra	(Gra)
// 10 1	grad	(dra)
2 進数表示	bin	(Bin)
8新数表示	oct	(Oct)
符号つき 10 進数表示	sdec	(Sdec)
符号なし 10 進数表示	udec	(Udec)
16 新数表示	hex	(Hex)
8ビットモード	byte	(Byte)
16 ビットモード	word	(Word)
32 ビットモード	dword	(Dword)
64 ビットモード	qword	(Qword)
型表示	type	
レジスタ表示	reg	[Reg]
 オイラー表示	euler	[Eul]
オイノー 裁小	eul	
近似表示	approx	[Apx]
足区投小	арх	[Abv]
 帯分数表示	fraction	[i a/b]
市刀奴茲小	frac	[i.a/b]
浮動小数点数の通常表示	std	Std
浮動小数点数の	£iv	Eiv
固定小数点表示	fix	Fix
浮動小数点数の指数表示	sci	Sci
浮動小数点数の	eng	Eng
エンジニアリング表示	eng	LIIE
析数設定	disp	
111 9X 11X /C	digit	

3-3. スタックのページめくり

スタックにたくさんのデータがあると、下図のように、一部が表示されなくなります。

Std: 9/15,	Stack: 11, Hi	story: 0/10
# TYPE	:	VALUE
6: Integer	:	6
5: Integer	:	7
4: Integer	:	8
Z: Integer	:	9
Y: Integer	:	10
X: Integer	:	11
PUSH Integer Ready to ope		

画面に表示されていない位置のデータを見たい場合、スタックのページめくりの機能を使います。上図では、8個のデータがあるのに対し、6番目までしか表示されていません。 さらに後ろのデータを表示させるには、スタックの次のページを開きます。

キーワード「next」または「n」を単体で入力すると、次のページが表示できます。

Std: 9/1	l5, Stack: 1	1, History: 0/10
# TYPE	:	VALUE
-:	:	
11: Integ	ger :	1
10: Integ	ger :	2
9: Integ	ger :	3
8: Integ	ger :	4
7: Integ	ger :	5
v		v
NEXT PAGE	of STACK	
Ready to	operate	

逆に、前のページに戻るには、キーワード「prev」または「p」を単体で入力します。 最初のページ、つまり末尾を表示させるには、キーワード「first」または「fst」を単 体で入力します。

なお、スタックが変更される機能が実行されると、最初のページに自動的に戻ります。

これらをまとめると、次のようになります。

機能	キーワード
スタックの次のページ	next
	n
スタックの前のページ	prev
	р
スタックの最初のページ	first
	fst

3-4. レジスタのページめくり

本ソフトウエアのレジスタ機能は、値を再利用するための退避場所として利用できます。 レジスタは RA~RZ の 26 本を利用できますが、レジスタ表示機能では、一度にすべてのレ ジスタを表示できないことがあります。

下図の場合、RA~RC は表示されていますが、それ以外は見えません。

Std: 9/15,	Stack: 3,	History: 0/	10
# TYPE RA: Floating RB: RC:	: : : :		VALUE 3.14159265
Z: Integer	:		4
Y: Integer X: Integer	:		6
PUSH Integer Ready to ope	rate		

レジスタ表示にも、スタック表示と同様、ページめくりがあります。

レジスタの次のページを表示させるには、「regnext」または「rn」を単体で入力します。

Std: 9/1	5, Stack: 3,	History: 0/3
# TYPE	:	VALUE
RD:	:	
RE:	:	
RF:	:	
Z: Integ	er :	4
Y: Integ	er :	5
X: Integ	er :	6
NEXT PAGE Ready to	of REGISTERS	

逆に、前のページに戻るには、キーワード「regprev」または「rp」を単体で入力します。 最初のページ、つまり RA を表示させるには、キーワード「regfirst」または「rf」を単 体で入力します。

これらをまとめると、次のようになります。

機能	キーワード
レジスタの次のページ	regnext
	rn
レジスタの前のページ	regprev
	rp
レジスタの最初のページ	regfirst
レンスグの取例のページ	rf

3. 設定・表示切り替え

3-5. 値の全体表示

値の表示が長すぎる場合、幅に収まらない場合があります。下図では、分母と分子がそれ ぞれ大きな有理数を含む複素数の表示が省略されています。

# TYPE	:	VALUE
-:	:	
-:	:	
-:	:	
Z:	:	
Υ:	:	
X: Complex	: 2432902008176640000/24329020081766	54000

このような場合、値の全体表示を利用します。キーワード「view」または「v」で、値の全体表示の画面に移行します。

機能	キーワード
値の全体表示	view
恒の主件衣小	V

HOMURA STACK VIEW
======================================
(Press Return or Enter)

全体表示となる対象は、スタック及びレジスタで、表示されているものです。つまり、ページめくりなどを利用していれば、そのデータが省略されずに表示されます。

エンターキーを押すと、全体表示から計算モード画面に戻ります。

3. 設定・表示切り替え

3-6. バージョン表示

キーワード「ver」または「version」で実行中のバージョンを表示できます。バージョン表示画面でエンターキーを押すと、直前のモードに復帰します。

機能	キーワード
バージョン表示	version
ハーション表示	ver

Engineering Calculator with KEyboard and Refined Tools (C) 2014-2017 Yuishin Kikuchi
VERSION DISPLAY
ECKERT: Version Dec 31, 2016 (254 functions)
(Press Return or Enter)

※表示はあくまで一例です。

不具合など、気になる点がある場合は、バージョンを添えて報告ください。

注意

本ソフトウエアは逆ポーランド記法を採用しているため、操作が特殊です。逆ポーランド 記法を知らない場合、本章を飛ばさずにお読みください。

4-1. 基本的なスタック操作 まずは、何か整数を入力してみましょう。

入力> 12

#	TYPE	VALUE	
4			
Z			
Υ			∫ 末尾に追加
Х	Integer	12	

スタック表示領域の X に 12 が追加されます。 次に、もう一度別の整数を入力してみましょう。

入力> 9

#	TYPE	VALUE	
4			
Z			
Υ	Integer	12	│
Х	Integer	9	

スタック表示領域の X に 9 が追加されます。

このように、データの追加は、スタック表示領域の X に行われます。

今度は、小数を入力してみましょう。スペース区切りで複数入力することもできます。

入力> 1.6 6.0e-23

#	TYPE	VALUE	
4	Integer	12	
Z	Integer	9	
Υ	Floating	1.6	┃
Х	Floating	6E-23	

このように、数をスタックに追加するには、数をそのまま書きます。スタックの末尾にデータを追加することを**プッシュ**と言います。

不要なデータを削除したい場合、「drop」または「¥」と入力します。これで、末尾1つのデータを削除できます。これを**ドロップ**と言います。

入力>¥

#	TYPE	VALUE	
4			
Z	Integer	12	
Υ	Integer	9	│
Х	Floating	1.6	

なお、**計算モードで、設定の入力待ちでない場合、空の状態でエンターキーを押すと、X のコピーが実行**されます(**X** と同じデータがプッシュされます)。

キーワード「copy」、「c」、「dup」のいずれかでも、同じ機能が実行されます。

入力 > (そのまま Enter)

#	TYPE	VALUE	
4	Integer	12	
Z	Integer	9	
Υ	Floating	1.6	
Χ	Floating	1.6	

また、スタックを一掃したい場合、「clear」または「clr」と入力します。

入力> clear

#	TYPE	VALUE	
4			
Z			
Υ			クリア
Х			

紹介した機能を表にまとめます。

機能	キーワード	R	D
プッシュ		0	0
ドロップ	drop	1	1
	¥	1	1
	сору		
コピー※	С	1	1
	dup		
クリア	clear	N>0	N
/ / /	clr		

※入力欄に何も入力しない状態でエンターキーを押下しても実行されます

プッシュ、ドロップ、コピー、クリアの操作が理解できたら、四則演算に移ります。

4-2. 四則演算

四則演算の操作があらゆる計算機能の使い方の基本となります。 まずはこれらの使い方 をおさえましょう。

四則演算を行うには、次のキーワードを用います。詳しい表の読み方は後述します。

機能	キーワード	R	D	演算内容
加算	add	2	2	V + V
加升	+	2	2	Y + X
減算	sub	2	2	Y - X
1/95.开	-		2	I - X
乗算	mul	2	2	$Y \times X$
木开	*			
除算	div	2	2	Y / X
你好	/	2	2	Ι/Λ
剰余	mod	2	2	Y mod X
<u>ለነነለ</u>	%	2	2	

これらを用いた計算例を示していきます。

まずは、「2+3」を計算します。最初に、計算に使いたい数を入力します。

入力> 2 3

#	TYPE	VALUE	
4			
Z			
Υ	Integer	2	順番に追加
Х	Integer	3	人順番に追加

入力> +

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	5

加算は 末尾2つ 2つ削除 結果を追加

X には、Y+X を計算した結果の5が残ります。直前のY とX はドロップされています。この入力は、[2 と [3] を追加し、足し算する」という意味です。

これに続けて、次のように入力してみましょう。

入力> 9 -

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	-4

プッシュと 減算を 一度に実行

Xの表示は-4となります。この入力は、「9をプッシュし、引き算する」という意味です。 このように、本ソフトウエアは、スタックの末尾を使って計算します。

機能	キーワード	R	D	演算内容
加算	add	,	2	Y + X
加异	+	2		

上表のRは必要とされるデータ数で、実行時に足りない場合はエラーが表示されます。 Dは、ドロップされるデータ数です。演算内容が最後にプッシュされます。

加算は、2つのデータが必要であり、実行すると2つがドロップされ、Y+Xの結果がプッシュされる、と読みます。他の四則演算も同様です。

ちなみに、実行しようとしている機能に対して、スタックのデータ数が足りない場合は、 下図のようにエラーが表示されます。

Engineering Calculator with KEyboard and Refined To (C) 2014-2017 Yuishin Kikuchi	ools
HOMURA: (Rad) (Hex) (Dword) Std: 9/15, Stack: 1, History: 0/8	
# TYPE :	VALUE
-: :	
-: :	
-: :	
Z: :	
Y: :	
X: Integer :	5
[!] ADD Y+X Error: Too few arguments	
> _	

「Too few arguments」というメッセージは、「データ数が足りず、実行できなかった」という意味です。

4-3. 複合的な四則演算

もう少し複雑な例を見てみましょう。

台形の面積を計算してみます。上底を 2、下底を 1、高さを 5 とする台形を考えてみましょう。計算するのは、次の式です。

$$5 \times (2 + 1) \div 2$$

まず、 $\lceil 5 \times (2+1) \times 0$ 掛け算」と読みます。これを求めるには、 $\lceil 5 \times (2+1) \times 0$ を計算し、掛け算を行います。あとは、これを $\lceil 5 \times 0 \times 0$ で割り算します。 これを一度に記述すれば、次のようになります。

ただ、説明のため、これを分けて入力します。次に示す(1)~(5)の手順に従って、読みながら操作すると理解しやすいでしょう。

(1) 整数の 5、2、1 をプッシュ

#	TYPE	VALUE	
4			
Z	Integer	5	
Υ	Integer	2	∫ 順番に追加
Х	Integer	1	

(2) 加算を実行

入力> +

#	TYPE	VALUE		使われない
4				値は残る
Z			/	
Υ	Integer	5		加算は
Х	Integer	3	<	末尾2つ

(3) 乗算を実行

入力> *

#	TYPE	VALUE	
4			
Z			
Υ			乗算は
Х	Integer	15	末尾2つ

(4) 整数の2をプッシュ

入力> 2

#	TYPE	VALUE	
4			
Z			
Υ	Integer	15	末尾に
Х	Integer	2	プッシュ

(5) 除算を実行

入力> /

#	TYPE	VALUE	
4			
Z			
Υ			除算は 末尾 2 つ
Х	Rational	15/2	末尾2つ

プッシュと計算命令を適切な順番で実行することにより、カッコを使うことなく、所望の 計算が行えます。

4-4. 四則演算以外の基本的な演算

四則演算以外の基本的な演算として、次のものを紹介します。

機能	キーワード	R	D	演算内容
インクリメント	inc	1	1	X + 1
	++	1		
デクリメント	dec	1	1	<i>X</i> – 1
		1		
絶対値	abs	1	1	X
符号反転	pm	1	_	-X
刊分及料	neg	1	1	<i>-</i> λ
逆数・逆行列	inv	1	1	X^{-1}

インクリメント・デクリメントは整数に対してのみ使える機能で、インクリメントは1増やす、デクリメントは1減らす機能です。

たとえば、5の逆数を求めるなら、次のように入力します。

入力> 5 inv

これらは、1つに対して計算を行います。そのため、**上表に示す演算のように、計算に1**つのデータが必要とし、結果が1つの場合は、1つのデータが削除され、1つの結果がスタックにプッシュされます。

4-5. 逆ポーランド記法とそれに慣れるコツ

スタックを使いながら計算を行うと、計算命令が後置されます。このように、**演算命令(または演算子)が被演算子の後ろに置かれる記法を、逆ポーランド記法と呼びます。**

この記法を用いると、並べる順番で計算のタイミングが決定されるため、優先順位が問われません。したがって、カッコを用いる必要がないのです。また、逆ポーランド記法の記述を日本語で読み上げると、直感的に理解しやすい場合があります。

入力> 2 1 -

この入力を、「2と1で引き算」と読むと、結果が理解できます。

このように「~を(で)……する」という順番で読むことができるので、これに当てはめると、逆ポーランド記法が浮かびやすくなります。

たとえば、「5と6で掛け算して、符号反転」ならば次のようになります。

入力> 5 6 * pm

この考え方は、四則演算以外に対しても同様に適用できます。

5. 関数を使ってみよう

5-1. 関数の使い方

本ソフトウエアは、平方根・立方根、指数・対数、三角関数などなど、多くの数学関数に 対応します。スタックにあらかじめデータが必要なことなど、基本的な注意は四則演算と変 わりありません。

ただし、関数の中には、定義域が制限されているものもあります。また、数学的に定義可能な値の入力にも対応しない場合があります。あらかじめご了承ください。

5-2. 指数·対数

数学関数の使い方は、四則演算や符号反転とよく似ています。下表の演算内容を見ながら 操作し、四則演算と見比べると理解しやすいでしょう。

機能	キーワード	R	D	演算内容
2 乗	sq	1	1	X^2
平方根	sqrt	1	1	\sqrt{X}
立方根	cbrt	1	1	$\sqrt[3]{X}$
	pow			
冪乗	^	2	2	Y^X
	**			
冪乗根	nrt	2	2	$\sqrt[X]{Y}$
指数関数	exp	1	1	$\exp(X)$
10 の冪乗	tpow	1	1	10 ^X
2の冪乗	bpow	1	1	2 ^{<i>X</i>}
Y に対する X の対数	logb	2	2	$\log_Y X$
自然対数	ln	1	1	$\log_e X$
常用対数	log	1	1	$\log_{10} X$
2 進対数	1b	1	1	$\log_2 X$

計算例 1 log₁₀ 3000

計算例 3 log₃ 22

入力> 3000 log

入力> 3 22 logb

計算例 2 $\sqrt{5^2 + 12^2}$

計算例 4 $\exp(-3^2/2)$

入力> 5 sq 12 sq + sqrt

入力> 3 sq 2 / pm exp

5-3. 三角関数・逆三角関数

三角関数・逆三角関数は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
サイン	sin	1	1	sin X
コサイン	cos	1	1	cos X
タンジェント	tan	1	1	tan X
アークサイン	asin	1	1	$\sin^{-1} X$
アークコサイン	acos	1	1	$\cos^{-1} X$
アークタンジェント	atan	1	1	tan ⁻¹ X

ただ、これらの関数は角度モードに依存します。複数の角度の単位を同時に使う場合、モード非依存なキーワードをご使用ください。

ラジアンの三角関数は次のとおりです。

機能	キーワード	R	D	演算内容
サイン (ラジアン)	sinr	1	1	sin(X[rad])
コサイン (ラジアン)	cosr	1	1	cos(X[rad])
タンジェント	+	1	1	+(V[
(ラジアン)	tanr	1	1	tan(X[rad])
アークサイン		1	1	-:
(ラジアン)	asinr	T	1	sin ⁻¹ X [rad]
アークコサイン		_	4	-1 v [1]
(ラジアン)	acosr	1	1	cos ⁻¹ X [rad]
アークタンジェント	-4			1 v [1]
(ラジアン)	atanr	1	1	tan ⁻¹ X [rad]

度数法の三角関数は次のとおりです。

機能	キーワード	R	D	演算内容
サイン (度数法)	sind	1	1	sin(X[deg])
コサイン (度数法)	cosd	1	1	cos(X[deg])
タンジェント (度数法)	tand	1	1	tan(X[deg])
アークサイン (度数法)	asind	1	1	sin ⁻¹ X [deg]
アークコサイン (度数法)	acosd	1	1	cos ⁻¹ X [deg]
アークタンジェント (度数法)	atand	1	1	tan ⁻¹ X [deg]

グラードの三角関数は次のとおりです。

機能	キーワード	R	D	演算内容
サイン (グラード)	sing	1	1	sin(X[gra])
コサイン (グラード)	cosg	1	1	cos(X[gra])
タンジェント	+255	1	1	ton (V[ano])
(グラード)	tang	1	1	tan(X[gra])
アークサイン	acing	1	1	sin-1 V [ano]
(グラード)	asing	4	1	$\sin^{-1} X [gra]$
アークコサイン	25055	1	1	aaa-1 V [ama]
(グラード)	acosg	1	1	cos ⁻¹ X [gra]
アークタンジェント	atana	1	1	+1 V[]
(グラード)	atang	1	1	tan ⁻¹ X[gra]

入力> 52 tand 入力> inf atand

5-4. 双曲線関数·逆双曲線関数

双曲線関数・逆双曲線関数は次のキーワードを用います。

機能	キーワード	R	D	演算内容
ハイパーボリックサイン	sinh	1	1	sinh X
ハイパーボリックコサイン	cosh	1	1	cosh X
ハイパーボリックタンジェント	tanh	1	1	tanh X
インバース ハイパーボリックサイン	asinh	1	1	sinh ^{−1} X
インバース ハイパーボリックコサイン	acosh	1	1	cosh ^{−1} X
インバース ハイパーボリックタンジェント	atanh	1	1	tanh ⁻¹ X

計算例 cosh(1.2)

入力> 1.2 cosh

5-5. 統計関連の関数

統計に関連する関数は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ベータ関数	beta	2	2	B(Y,X)
ガンマ関数	gamma	1	1	$\Gamma(X)$
ガンマ関数の絶対値の対数	lngamma	1	1	$\log_{\mathrm{e}} \Gamma(X) $
誤差関数	erf	1	1	erf(X)
1 と誤差関数の差	erfc	1	1	$1 - \operatorname{erf}(X)$

計算例 1 B(0.5, 1.6)

計算例 2 Γ(2)

入力> 0.5 1.6 beta

入力> 2 gamma

5-6. 整数丸め関数

整数丸め演算は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
床関数	floor	1	1	[X]
/个 天 女人	flr		1	
天井関数	ceil	1	1	[X]
四捨五入	round	1	1	IV + O.E.I
四倍五八	rnd	1	1	[X+0.5]

計算例 1 [-2.2]

計算例 2 [π]

入力> -2.2 flr

入力> pi ceil

5-7. 整数の関数

最大公約数、最小公倍数などの整数の関数は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
階乗	fact	1	1	<i>X</i> !
陷米	!	1	1	Λ!
最大公約数	gcd	1	1	GCD(Y,X)
最小公倍数	lcm	1	1	LCM(Y,X)
パーミュテーション	perm	1	1	$_{Y}P_{X}$
コンビネーション	comb	1	1	$_{Y}C_{X}$

計算例 1 ₅P₂

計算例 2 LCM(12,50)

入力> 5 2 perm

入力> 12 50 1cm

6. 複素数を計算してみよう

6-1. 複素数の表示

本ソフトウエアでは、複素数を次のように表示します。

モード	数式	本ソフトウェアの表示
直交座標	2 + 3i	2 + i3
極座標 (度数法)	12∠56[deg]	12 exp(+i56.d)
極座標 (ラジアン)	12∠0.9[rad]	12 exp(+i0.9)
極座標 (グラード)	12∠62[gra]	12 exp(+i62.g)

キーワード「euler」または「eul」を単体で用いると、複素数の表示形式を変更できます。実数部と虚数部の表示(直交座標)と絶対値と偏角の表示(極座標)を切り替えます。 極座標表示は、オイラー表示とも呼びます。

絶対値と偏角の表示において、偏角の表示は角度モードに依存します。角度の単位を変えたい場合、キーワード「deg」、「rad」、「gra」を使って、角度モードを変更します。

機能	キーワード
オイラー表示	euler
	eul
度数法モード	deg
ラジアンモード	rad
グラードモード	grad
クノートセート	gra

また、整数、浮動小数点数、有理数についても、その値が0でなければ、偏角を表示します。

6-2. 複素数の作り方

本ソフトウエアで複素数を入力するには、3通りの方法があります。

複素数の実部・虚部に認められるのは、整数、浮動小数点数、有理数のみです。

6-2-1. 虚数を入力し、加減する

虚数を直接入力し、足し引きする方法です。たとえば、「2+i3」を作ってみましょう。

入力> 2 3i +

6-2-2. 実数部・虚数部を入力して複素数にする

Yに実数部、Xに虚数部の順番で数をプッシュしておき、複素数を作ることもできます。キーワード「mkcmp」または「mkc」でこの方法を使えます。

入力> 2 3

#	TYPE	VALUE	
4			
Z			実数部
Υ	Integer	2	上 水广
Х	Integer	3	虚数部

入力> mkc

_				
	#	TYPE	VALUE	
	4			
	Z			
	Υ			
	Х	Complex	2 + i3	複素数生成

6-2-3. 絶対値と偏角から複素数にする

Yに絶対値、Xに偏角の順番で数をプッシュしておき、複素数を作ることもできます。 キーワード「mke」でこの方法を使えます。

ただし、キーワード「mke」は角度モードに依存します。ここでは、度数法モードと仮定して、 $\lceil 1.5 \angle 30^{\circ} \rfloor$ を求めます。

入力> 1.5 30

#	TYPE	VALUE	
4			
Z			絶対値
Υ	Floating	1.5	/=i /z.
Х	Integer	30	偏角

入力> mke

#	TYPE	VALUE	
4			
Z			
Υ			
Х	Complex	1.299038106 + i0.75	複素数生成

度数法による生成は「mked」、ラジアンによる生成は「mker」、グラードによる生成は「mkeg」です。いずれの使い方も「mke」と同じです。

これらをまとめると、次のようになります。

機能	キーワード	R	D	演算内容
複素数の生成 (直交座標)	mkcmp	2	2	V + iV
後条数の主成(巨文座标)	mkc	2	2	Y + iX
複素数の生成 (極座標)	mke	2	2	$Y \angle X$
複素数の生成(極座標、度数法)	mked	2	2	<i>Y∠X</i> [deg]
複素数の生成 (極座標、ラジアン)	mker	2	2	<i>Y∠X</i> [rad]
複素数の生成(極座標、グラード)	mkeg	2	2	<i>Y∠X</i> [gra]

6-3. 複素数の演算

実数部分、虚数部分、偏角、共軛など、複素数に特有の演算は、次のキーワードを用います。絶対値は、実数の場合と同様、キーワード「abs」が使えます。

機能	キーワード	R	D	演算内容
実数部分	re	1	1	Re(X)
虚数部分	im	1	1	Im(X)
複素偏角	arg	1	1	arg X
複素偏角 (度数法)	argd	1	1	arg X [deg]
複素偏角 (ラジアン)	argr	1	1	arg X [rad]
複素偏角 (グラード)	argg	1	1	arg X [gra]
複素共軛	conj	1	1	conj(X)

計算例 1 arg(1+i2)

計算例 3 conj(6+i3)

入力> 1 2 mkc arg

入力> 6 3 mkc conj

計算例 2 Re(15∠32°)

入力> 15 32 mked re

6-4. 複素数の分解

実数部と虚数部への分解、絶対値と偏角への分解は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
実数部と虚数部	reim	1	1	$Y \leftarrow \operatorname{Re}(X)$
犬奴印で巫奴印	I CIIII	1	1	$X \leftarrow \operatorname{Im}(X)$
 絶対値と偏角	maga	1	1	$Y \leftarrow X $
	maga	1	1	$X \leftarrow \arg X$
絶対値と偏角(度数法)	magad	1	1	$Y \leftarrow X $
心が胆と帰角(反数仏)	magad		1	$X \leftarrow \arg X [\deg]$
 絶対値と偏角(ラジアン)	magan	1	1	$Y \leftarrow X $
	magar			$X \leftarrow \arg X [\operatorname{rad}]$
絶対値と偏角(グラード)	magag	1	1	$Y \leftarrow X $
心が順と帰内(クノート)	magag	1	1	$X \leftarrow \arg X [\operatorname{gra}]$

計算例 1 15∠32°を実部虚部に分解 計算例 2 5+i3の絶対値と偏角(度)

入力> 15 32 mked reim

入力> 5 3 mkc magad

6-5. 複素関数

本ソフトウエアは、次の関数を複素関数として使うことができます。複素関数の場合でも、 キーワードは共通です。

- 平方根・立方根
- 指数・対数関数
- 三角関数
- 双曲線関数

ただし、三角関数の複素数の入力は、ラジアンモードにおいてのみ有効です。

7-1. 符号なし整数・ブーリアンの表示

本ソフトウエアでは、符号なし整数とブーリアンの値を、次のように表示します。

種類	値(8 ビット)	本ソフトウェアの表示
ブーリアン	TRUE	TRUE
	FALSE	FALSE
2 進数	255	0b11111111
8 進数	255	0377
符号つき 10 進数	255	-1
符号なし 10 進数	255	255
16 進数	255	0xFF

7-2. プッシュするビット長の設定

本ソフトウエアの論理計算は、他の計算と同様に計算モードを使います。

論理計算を始める前に、設定のビット長 (N ビットモード) を確認しましょう。計算設定・ 状態表示領域に、下表の画面表示の列のいずれかが表示されます。

設定されているビット長が行いたい計算と合わない場合、ビット長を変更します。

Nビットモード	キーワード	画面表示
8 ビット	byte	(Byte)
バイト	byte	(вусе)
16 ビット	word	(Word)
ワード	word	(word)
32 ビット	dword	(Dwond)
ダブルワード	awora	(Dword)
64 ビット	guand	(Owond)
クアッドワード	qword	(Qword)

正しく設定されると、計算設定・状態表示領域の表示が変わります。スタックの表示もご確認ください。

なお、符号なし整数をプッシュする際、設定されているビット数に対してオーバーフロー する値が入力されると、下位 N ビットのマスクが取られます。

7-3. 符号なし整数・ブーリアンの表示切り替え

進数表示の設定は、計算設定・状態表示領域で確認できます。下表の画面表示のいずれか が表示されています。

表示を切り替えたい場合、下表のキーワードを用います。

N進モード	キーワード	画面表示
2 進数	bin	(Bin)
8 進数	oct	(Oct)
符号つき	sdec	(Sdec)
符号なし	udec	(Udec)
16 進数	hex	(Hex)

正しく設定されると、計算設定・状態表示領域の表示が変わります。 また、ブーリアンの表示は、近似表示モードで変わります。

値	通常表示	近似表示
真	TRUE	1
偽	FALSE	0

近似表示の有効・無効を切り替えるには、キーワード「APX」を単体で入力します。

7-4. 符号なし整数・ブーリアンの入力

バイナリやブーリアンの計算を行うには、データを符号なし整数としてプッシュする必要があります。普通に整数を入力しても、符号なし整数の扱いにはなりません。

ブーリアンは、真の場合「TRUE」「T」、偽の場合「FALSE」「F」と入力します。 符号なし整数は、「u」を前置し、直後に符号をつけずに整数を続けて入力します。

- 2進数は、「Øb」を前置し、直後に Ø と 1 による 2 進数表現を入力します。
- 8進数は、「00」を前置し、直後に 0~7による 8進数表現を入力します。
- 16 進数は、「0x」を前置し、直後に 0~9, A~F による 8 進数表現を入力します。

ただ、入力したデータは、選択されている表示モードで表示されます。たとえば、16 進数表示モードのときに、2 進数で「0b1010」と入力すると、「0x00000000A」が表示されます。

入力> 0b1010

#	TYPE	VALUE
4		
Z		
Υ		
Х	Dword	0x0000000A

バイナリやブーリアンも他の数と同様、一度に複数プッシュできます。

入力**>** t f

#	TYPE	VALUE
4		
Z	Dword	0x0000000A
Υ	Boolean	TRUE
Х	Boolean	FALSE

7-5. 基本的な論理演算

基本的な論理演算を行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
論理否定 (NOT)	not	1	1	$ar{X}$
酬至日足(NOI)	~	1	1	Λ
論理積 (AND)	and	2	2	$Y \wedge X$
·····································	&	2	2	$I \wedge X$
 論理和 (OR)	or	2	2	$Y \vee X$
神理和 (OK)		۷	۷	IVA
排他的論理和 (XOR)	xor	2	2	$Y \oplus X$
否定論理積 (NAND)	nand	2	2	$\overline{Y \wedge X}$
否定論理和 (NOR)	nor	2	2	$\overline{Y \vee X}$

計算例 1 0x1234 & 0b0111

計算例 2 not(65535)

入力> 0x1234 0b0111 and

入力> u65535 not

7-6. ビットシフト

符号なし整数のシフトやローテイトを行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
左シフト	shl	1	1	X << 1
圧シノド	<<	4	1	X << 1
論理右シフト	shr	1	1	X >> 1
開生生インフト	>>	1	1	X >> 1
算術右シフト	sar	1	1	X >>> 1
弁例行マノト	>>>	1		X /// 1
8ビット左シフト	sbl	1	1	X << 8
8ビット右シフト	sbr	1	1	X >> 8
4ビット左シフト	snl	1	1	X << 4
4 ビット右シフト	snr	1	1	X >> 4

計算例 1 0x1234 & 0b0111

計算例 2 not(65535)

入力> 0x1234 0b0111 and

入力> u65535 not

7-7. ローテイト

ローテイトを行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
左ローテイト	rol	1	1	Rotate X Left
右ローテイト	ror	1	1	Rotate X Right

計算例 rol(31)

入力> u31 rol

7-8. その他符号なし整数に使える機能

機能	キーワード	R	D	演算内容
インクリメント	inc	1	1	X+1
777777	++	4	1	<i>N</i> + 1
デクリメント	dec	1	1	X-1
		4	4	λ – 1
加算	add	2	2	Y + X
加昇	+	2		
減算	sub	2	2	Y - X
/	-			
乗算	mul	•	2 2	$Y \times X$
米昇 	*	2		
除算	div	1	2	V /V
	/	2		Y/X
符号反転	neg	1	1	-X
17) 勺 八〇 半4	pm	1		

注意

ブーリアン同士の加算は排他的論理和に、乗算は論理積になります。また、ブーリアンに対してインクリメントを実行すると、必ず TRUE になります。

8-1. ベクトルの表示

本ソフトウエアでは、ベクトルの表示を次のようにします。

方向	数式	本ソフトウェアの表示
横	[1 2 3]	[1, 2, 3]
縦	$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$	(3, 2, 1)

8-2. ベクトルの作り方

実数のベクトルはもちろん、複素数や符号なし整数などが含まれていても計算できます。

ベクトルの入力は操作数が多いため、レジスタ機能の利用をおすすめします。詳しくは、 10 章「レジスタを使ってみよう」をお読みください。

任意の要素を含むベクトルを作るには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ベクトルの生成(横方向)	mrtup	N	N	Push Tup.R
ベクトルの生成 (縦方向)	mctup	N	N	Push Tup.C

任意のベクトルを作るには、3つの手順を踏みます。

- 1. あらかじめ要素をプッシュ
 - …… ベクトルの要素にしたい数を順番にプッシュします
- 2. 要素数 (次元) を整数で指定
 - …… 1以上の整数でベクトルの次元を指定します
- 3. ベクトルの生成機能を使う
 - …… 縦方向または横方向で、指定された要素数にしたがってベクトルを作ります

注意

ベクトルの要素にベクトルや行列を含むことはできません。ベクトルの要素として認められるのは、整数、浮動小数点数、有理数、複素数、ブーリアン、符号なし整数です。

では、横方向ベクトル[1+i2 6]を作ってみましょう。

(1) 要素をプッシュ

入力> 1 2 mkc 6

#	TYPE	VALUE	
4			
Z			
Υ	Complex	1 + i2	版本式) =) 卢上中
Х	Integer	6	順番に追加

(2) 要素数 (次元) をプッシュ

入力> 2

#	TYPE	VALUE	
4			
Z	Complex	1 + i2	
Υ	Integer	6	
Х	Integer	2	要素数

(3) 横方向ベクトルの生成

入力> mrtup

#	TYPE	VALUE	
4			
Z			
Υ			4.5
Х	Tuple[Row]	[1 + i2, 6]	生成

縦方向ベクトルについても、作り方は同様です。

単位ベクトルを作ることもできます。

機能	キーワード	R	D	演算内容
単位ベクトルの生成 (横方向)	mrutup	2	2	Push Tup.R
単位ベクトルの生成 (縦方向)	mcutup	2	2	Push Tup.C

単位ベクトルを作るには、2つの整数をプッシュする必要があります。

- 1. 要素数として整数をプッシュ
- 2. 1にする要素の位置として整数をプッシュ(最初の要素は1番目とする)
- 3. 単位ベクトルの生成機能を使う

では、3次元の縦方向単位ベクトル(0 1 0)を作ってみましょう。

(1) 要素数 (次元) をプッシュ

入力> 3

#	TYPE	VALUE	
4			
Z			
Υ			— = *W.
Х	Integer	3	要素数

(2)1にしたい位置の整数をプッシュ

入力> 2

#	TYPE	VALUE	
4			
Z			
Υ	Integer	3	/L PE
Х	Integer	2	位置

(3) 縦方向単位ベクトルの生成

入力> mcutup

#	TYPE	VALUE	
4			
Z			
Υ			
Χ	Tuple(Col)	(0, 1, 0)	生成

8-3. ベクトルを含む四則演算

ベクトル同士の加減算やベクトルと数との乗除算を行う場合でも、数同士の四則演算と同じキーワードを使います。

計算例 1 (3 2 1) + (5 6 9)

入力> 3 2 1 3 mctup

入力> 5 6 9 3 mctup

入力> +

計算例 2 (3 2 1)×9

入力> 3 2 1 3 mctup 9 *

ベクトル同士であっても、次元の違いにより、計算が定義できない場合があります。その 場合、エラーが表示されます。

8-4. 内積·外積

ベクトルの内積・外積を計算するには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
内積	inner	1	1	$ec{Y}\cdotec{X}$
	dot	۷	۷	
外積	outer	- 2	2	$\vec{Y} \times \vec{X}$
7M貝	cross		2	

内積は、同じ次元数のベクトル、外積は、両方が3次元のベクトルの必要があります。

計算例 1 (3 2 1) · (7 8 9)

入力> 3 2 1 3 mctup

入力> 7 8 9 3 mctup

入力> dot

計算例 2 (1 2 3)×(4 5 6)

入力> 1 2 3 3 mctup

入力> 4 5 6 3 mctup

入力> cross

8-5. ベクトルノルム

ベクトルノルムを求めるには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ユークリッドノルム	norm	1	1	$\sqrt{\sum_{i=1}^{\infty} x_i ^2}$
ユークリッドノルムの2乗	nsq	1	1	$\sum\nolimits_{i=1}^{\infty} \lvert x_i \rvert^2$
p次平均ノルム	pnorm	2	2	$\left(\sum_{i=1}^{\infty} y_i ^x\right)^{1/x}$
最大値ノルム	maxnorm	1	1	$\max(x_1 , x_2 , x_n)$

ユークリッドノルム、ユークリッドノルムの2乗、最大値ノルムは、ベクトルを1つ用意 して利用します。

たとえば、[3 5 7]のユークリッドノルムを求めるには、次のように入力します。

入力> 3 5 7 mrtup norm

p 次平均ノルムを求めるには、ベクトルと、次元にあたる整数をプッシュして利用します。 たとえば、[7 8 9]の3次平均ノルムを求めるには、次のように入力します。

入力> 7 8 9 3 mrtup 3 pnorm

8-6. ベクトルの転置

ベクトルの転置を行うには、キーワード「TRANS」を用います。

機能	キーワード	R	D	演算内容
転置	trans	1	1	X^T

このキーワードは、行列に対しても同じです。

9. 行列を計算してみよう

9-1. 行列の表示

行列は、次のように、横方向ベクトル (行ベクトル) の並びとして表示します。

数式	本ソフトウエアの表示
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

9-2. 行列の作り方

本ソフトウエアでは、行列の計算を行えます。実数の行列はもちろん、複素数や符号なし 整数などが含まれていても計算できます。

行列の入力はベクトルと同様、操作数が多いため、レジスタ機能の利用をおすすめします。 詳しくは、10 章「レジスタを使ってみよう」をお読みください。

任意の要素を含む行列を作るには、キーワード「MKMAT」を用います。

機能	キーワード	R	D	演算内容
行列の生成	mkmat	N	N	Push Mat

任意の行列を作るには、3つの手順を踏みます。

- 1. あらかじめ同方向・同次元のベクトルをプッシュ
 - …… 横方向なら行べクトルで、縦方向なら列ベクトルで行列を作ります
- 2. 要素数 (次元)を整数で指定
 - …… 1以上の整数で束ねるベクトルの個数を指定します
- 3. 行列の生成機能を使う
 - …… ベクトルを束ねて行列を作ります

注意

行列は横方向ベクトルの束として管理されています。ベクトルに含むことができないデータは、行列にも含むことができません。

9. 行列を計算してみよう

では、例として、次の行列Aを入力します。2種類の方法を示します。

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(1-1) 横方向ベクトル2つをプッシュ

入力> 1 2 2 mrtup 3 4 2 mrtup

#	TYPE	VALUE	
4			
Z			
Υ	Tuple[Row]	[1, 2]	litt at 1 - 14 lin
Х	Tuple[Row]	[3, 4]	順番に追加

(1-2) ベクトルを束ねる個数をプッシュ

入力 > 2

#	TYPE	VALUE	
4			
Z	Tuple[Row]	[1, 2]	
Υ	Tuple[Row]	[3, 4]	NA NA
Х	Integer	2	ベクトル数

(1-3) 行列の生成

入力> mkmat

#	TYPE	VALUE	
4			
Z			
Υ			(= TI (I , IS
Х	Matrix	[[1, 2], [3, 4]]	行列生成

9. 行列を計算してみよう

(2-1) 縦方向ベクトル2つをプッシュ

入力> 1 3 2 mctup 2 4 2 mctup

#	TYPE	VALUE	
4			
Z			
Υ	Tuple(Col)	(1, 3)	
Х	Tuple(Col)	(2, 4)	順番に追加

(2-2) ベクトルを束ねる個数をプッシュ

入力> 2

#	TYPE	VALUE	
4			
Z	Tuple(Col)	(1, 3)	
Υ	Tuple(Col)	(2, 4)	
Х	Integer	2	ベクトル数

(2-3) 行列の生成

入力> mkmat

#	TYPE	VALUE	
4			(
Z			行列生成
Υ			
Χ	Matrix	[[1, 2], [3, 4]]	

異なる方向、または異なる次元のベクトルが含まれると、エラーが表示されます。

9. 行列を計算してみよう

また、単位行列を作ることもできます。単位行列を作るには、キーワード「MKUMAT」を用います。

機能	キーワード	R	D	演算内容
単位行列の生成	mkumat	1	1	Push Mat

次元数を指定して、単位行列の生成機能を使います。たとえば、3次元の単位行列を作る には、次のように入力します。

入力> 3 mkumat

9-3. 行列を含む四則演算

行列同士の加減算や、行列とベクトル、行列と数との乗除算を行う場合でも、数同士の四 則演算と同じキーワードを使います。

計算例1

$$\begin{bmatrix} 3 & 7 \\ 9 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 2 & 4 \end{bmatrix}$$

入力> 3 7 2 mrtup 9 5 2 mrtup 2 mkmat

入力> 2 6 2 mrtup 2 4 2 mrtup 2 mkmat

入力> -

計算例 2

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

入力> 1 2 2 mrtup 3 4 2 mrtup 2 mkmat

入力> 5 6 2 mctup

入力> *

9. 行列を計算してみよう

9-4. 行列式と逆行列

行列式を求めるには、キーワード「DET」を、逆行列を求めるには、逆数のキーワード「INV」を用います。

機能	キーワード	R	D	演算内容
行列式	det	1	1	det X
逆行列	inv	1	1	X^{-1}

行列式・逆行列ともに、正方行列に限ります。行列式の値がゼロになる正方行列の逆行列はエラーとなります。

計算例

$$\begin{bmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{bmatrix}^{-1}$$

入力,2 sqrt 1 2 mrtup 1 2 sqrt 2 mrtup 2 mkmat inv

9-5. 行列の転置

行列の転置を行うには、次のようなキーワードを用います。

機能	キーワード	R	D	演算内容
転置	trans	1	1	X^T
エルミート転置	htrans	1	1	an:(VT)
エルミュー料目	hconj	1	1	$\operatorname{conj}(X^T)$

エルミート転置は、通常の転置を行った後、すべての成分について共軛を取ります。

9-6. その他の行列演算

その他の行列に、次のようなものがあります。

機能	キーワード	R	D	演算内容
トレース	trace	1	1	tr(X)

トレースは正方行列に対してのみ有効です。

10. レジスタを使ってみよう

10-1. レジスタとは?

レジスタは、スタックとは別に値を格納できる領域です。レジスタをうまく使うと、効率的に計算を進められます。RA~RZの26本のレジスタが利用できます。

Std: 15/15,	Stack: 3,	History: 0/10			
# TYPE RA: Floating RB: RC:	: : : :	VALUE 3.14159265358979			
Z: Integer	:	4			
Y: Integer	:	5			
X: Integer	:	6			
STORE to selected register View / Undo / Redo / type / reg / euler / apx / json					

各レジスタには、1つのデータがストア(登録)できます。一度レジスタにストアしたデータは、何度もロード(呼び出し)できます。また、レジスタの上書きやデリート(削除)も自由に行えます。レジスタはスタックから独立しており、スタックが変更されても、レジスタは影響を受けません。

また、レジスタにはいかなるデータも登録できます。整数や有理数はもちろん、ベクトルや行列、エラーや文字列さえも、1つのレジスタに1つ登録できます。

なお、本章では、レジスタの機能の説明のため、次のような表を用います。

#	TYPE	VALUE		
RA				レジスタ RA~RZ
RB			4	RA∼RZ ———
Z				
Υ				
Х				

この表では、スタックの X, Y, Z と、レジスタの RA, RB を表示しています。

10-2. レジスタの表示切り替え

レジスタの表示・非表示を切り替えるには、キーワード「REG」を単体で入力します。 レジスタ表示が有効のとき、計算設定・状態表示領域には[Reg]が、スタック表示領域の 上部分にはレジスタが表示されます。

確認したいレジスタが見えない場合は、レジスタのページめくり機能を用います。レジスタの表示に関するキーワードは次のとおりです。

機能	キーワード
レジスタの表示・非表示	reg
レジスタの次のページ	regnext
レジスタの次のページ	rn
レジスタの前のページ	regprev
	rp
レジスタの最初のページ	regfirst
	rf

ページめくりに関しては、3章「設定・表示切り替え」の4節「レジスタのページめくり」をお読みください。

確認

レジスタが画面に表示されていなくても、機能を使うことはできます。また、レジスタの表示を変更しても、レジスタに影響はありません。そのため、レジスタの表示・非表示の切り替えや、ページめくりによって、レジスタの内容がクリアされることもありません。

10-3. 指定レジスタへのストア

指定レジスタへのストア機能は、スタックの X にあるデータを指定したレジスタにコピーし、スタックからドロップする機能です。

ただし、ストアできるのは、Xにあるデータのみです。それ以外のデータをストアしたい場合、ドロップを繰り返すか、スタックの並び順を変える必要があります。

指定レジスタへのストアは、次のキーワードを用います。

機能	キーワード	R	D
RA へのストア	stra		
RB へのストア	strb	1	1
			1
RZへのストア	strz		

「STR?」とう形式で、この「?」にはレジスタを指定するアルファベットが入ります。 では、RA に整数の 5 をストアしてみましょう。

(1) ストアしたい数をプッシュ

入力> 5

#	TYPE	VALUE	
RA			
RB			
Z			
Υ			ストアは X からのみ
Χ	Integer	5	からのみ

10. レジスタを使ってみよう

(2) RA にストア

入力> stra

#	TYPE	VALUE	
RA	Integer	5	RA にストア
RB			
Z			
Υ			
Х			

また、同じレジスタに対してストアを行うと、レジスタの内容は上書きされます。

(1) 最初の状態

#	TYPE	VALUE	
RA	Integer	5	ストア済
RB			
Z			
Υ			
Х	Integer	7	

(3) ストアしたい数をプッシュ

入力>9

			1
#	TYPE	VALUE	
RA	Integer	5	
RB			
Z			
Υ	Integer	7	ストアはX
Х	Integer	9	からのみ

10. レジスタを使ってみよう

(3) RA の上書き

入力> stra

#	TYPE	VALUE	
RA	Integer	9	RA に上書き
RB			
Z			
Υ			
Х	Integer	7	

RB~RZ についても同様です。

10-4. 指定レジスタのロード

指定レジスタのロード機能は、データがストアされているレジスタから、その内容をスタックにプッシュする機能です。ただし、レジスタにデータがない場合はエラーです。

なお、ロードを行ってもレジスタの中にデータは残るので、何度も呼び出しが可能です。 指定レジスタのロードは、次のキーワードを用います。

機能	キーワード	R	D
RAのロード	ldra		
RBのロード	ldrb	0	0
		О	b
RZのロード	ldrz		

「LDR?」とう形式で、この「?」にはレジスタを指定するアルファベットが入ります。では、RAとRBをロードして、加算してみましょう。

(1) 最初の状態

#	TYPE	VALUE	
RA	Integer	9	ストア済
RB	Integer	4	
Z			
Υ			
Х			

(2) RA をロード

入力> ldra

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ			RA の内容を
Х	Integer	9	

10. レジスタを使ってみよう

(3) RB をロード

入力> ldrb

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ	Integer	9	RB の内容を
Х	Integer	4	X~P-F

(4) 加算

入力> +

#	TYPE	VALUE	
RA	Integer	9	
RB	Integer	4	
Z			
Υ			加算は
Х	Integer	13	末尾2つ

RC~RZ についても同様です。

10-5. 指定レジスタのデリート

指定レジスタの内容を明示的にデリートすることもできます。ただし、実行できるのは、 指定したレジスタにすでにデータが登録されている場合に限ります。

指定レジスタのデリートには、次のキーワードを用います。

機能	キーワード	R	D
RA のデリート	delra		
RB のデリート	delrb	0	0
		0	b
RZ のデリート	delrz		

「DELR?」とう形式で、この「?」にはレジスタを指定するアルファベットが入ります。

(1) 最初の状態

#	TYPE	VALUE	
RA	Integer	9	ストア済
RB	Integer	4	
Z			
Υ			
Х			

(2) RA をデリート

入力> delra

#	TYPE	VALUE	
RA			デリート)
RB	Integer	4	
Z			
Υ			
Х			

10-6. レジスタ演算

レジスタ演算とは、指定レジスタと X とで計算を行い、その計算結果でそのレジスタを上書きする機能です。

レジスタ演算を行うには、次のキーワードを用います。下表のキーワード列の「?」には、 レジスタに対応するアルファベットが入ります。

機能	キーワード	R	D	演算内容
レジスタインクリメント	ir?	0	9	D . D . 1
	++r?		Ø	$R \leftarrow R + 1$
レジスタデクリメント	dr?	0	0	$R \leftarrow R - 1$
	r?	Ø	Ø	<i>κ</i> ← <i>κ</i> − 1
レジスタ加算	addr?	1	1	$R \leftarrow R + X$
レンヘグ加昇	+r?		_	
レジスタ減算	subr?	1	1	$R \leftarrow R - X$
レンヘグ概昇	-r?		_	
レジスタ乗算	mulr?	1	1	$R \leftarrow R \times X$
レンヘク米昇	*r?	1	1	
レジスタ除算	divr?	1	1	D , D/V
レンヘグ防昇	/r?		1	$R \leftarrow R/X$

レジスタ演算を実行すると、スタックから1つのデータがドロップされ、計算結果がレジスタに上書きされます。

レジスタインクリメントとレジスタ加算の例を示します。

(1) 最初の状態

#	TYPE	VALUE	
RA	Integer	9	マトア済 」
RB	Integer	4	
Z			
Υ			
Х			

10. レジスタを使ってみよう

(2) RA をインクリメント

入力> ira

#	TYPE	VALUE	
RA	Integer	10	インクリメント
RB	Integer	4	
Z			
Υ			
Х			

(2) 小数 1.2 をプッシュ

入力> 1.2

#	TYPE	VALUE	
RA	Integer	10	
RB	Integer	4	
Z			
Υ			レジスタ演算 X とのみ
Х	Floating	1.2	く x とのみ 】

(3) RB と加算

入力> +rb

			_
#	TYPE	VALUE	
RA	Integer	10	
RB	Floating	5.2	加算
Z			
Υ			
Χ			

10-7. レジスタクリア

すべてのレジスタを一掃するには、レジスタクリアを実行します。レジスタクリアには、 次のキーワードを用います。

機能	キーワード	R	D	演算内容
レジスタクリア	regclear	a	0	1
	rclr	0		

指定レジスタのみを削除したい場合は、指定レジスタのデリートを実行します。

確認

レジスタとスタックの両方をクリアするには、オールクリアが便利です。キーワード「ac」でオールクリアを実行できます。

10-8. 文字列とレジスタ

レジスタにはいかなるデータも登録できます。文字列も例外ではありません。

本ソフトウエアでは、文字列を半角ダブルクオーテーションで囲うと、文字列データをスタックにプッシュできます。これをレジスタに登録することにより、レジスタ内に目印をつけることができます。また、これをマクロ機能と組み合わせると、より強力です。

詳しくは、2章「画面の見方と操作方法」の5節「数の入力方法」や、12章「その他の便利な機能」の4節「マクロ機能」をお読みください。

11-1. スタックの特殊操作

スタックにデータをプッシュする順番を誤った場合、入力し直すのは面倒です。また、ちょうど4つだけドロップしたい場合など、スタックそのものを操作したい場合があります。 そのような場合、プッシュ、ドロップ、クリアだけでは足りません。

本ソフトウエアでは、スタック操作機能を多く用意してあります。本章では、スタック操作をすべて紹介します。

11-2. 基本的なスタック操作

基本的なスタック操作を行うには、次のキーワードを用います。

機能	キーワード	R	D
ドロップ	drop	1	1
	¥	1	
コピー※	сору		
	С	1	1
	dup		
クリア	clear	N>0	N
	clr	INSO	IN

※入力欄が空の状態でエンターキーを押下しても実行されます

これらの使い方は、4章「基本操作~四則演算してみよう」に説明があります。

11-3. スタックの順番を変更する操作

スタックの順番の操作を行う機能には、次のようなものがあります。

機能	キーワード	R	D
スワップ	swap	2	
	\$	2	0
末尾 3 要素回転	rot	3	0
末尾 3 要素逆回転	unrot	3	0
位置指定回転	roll	N	1
位置指定逆回転	rolld	N	1

それぞれの詳細は次のとおりです。

11-3-1. スワップ

スタックの Y と X を交換する操作です。スタックに 2 つ以上のデータが必要です。 キーワードは「swap」「\$」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2) スワップ

入力> swap

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Rational	9/4
Х	Floating	3.14159265358979

11-3-2. 末尾 3 要素回転

スタックの Z, Y, X を回転する操作です。スタックに 3 つ以上のデータが必要です。 並びは次のように変わります。

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} Y \\ X \\ Z \end{pmatrix}$$

キーワードは「rot」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2) 末尾 3 要素回転

入力> rot

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Rational	9/4
Х	Floating	3.14159265358979

11-3-3. 末尾 3 要素逆回転

スタックのZ,Y,Xを逆回転する操作です。スタックに3つ以上のデータが必要です。 並びは次のように変わります。

キーワードは「unrot」です。

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} X \\ Z \\ Y \end{pmatrix}$$

操作やスタックの動きに関しては、末尾3要素回転と同様です。

11-3-4. 位置指定回転

指定位置からスタックのデータの並びを回転させる操作です。指定位置のデータが 末尾に移動します。位置を指定する正の整数をプッシュし、回転させます。

キーワードは「roll」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2) 位置指定 (3番目、つまり Z とする)

入力> 3

#	TYPE	VALUE
4	Integer	256
Z	Rational	9/4
Υ	Floating	3.14159265358979
Х	Integer	3

(3) 位置指定回転

入力> roll

#	TYPE	VALUE
4		
Z	Floating	3.14159265358979
Υ	Rational	9/4
Х	Integer	256

11-3-5. 位置指定逆回転

指定位置からスタックのデータの並びを逆回転させる操作です。末尾のデータが指 定位置に移動します。位置を指定する正の整数をプッシュし、回転させます。

キーワードは「rolld」です。

操作やスタックの動きに関しては、位置指定回転と同様です。

11-4. コピー・上書きをする操作

コピー・上書きをする操作には、次のようなものがあります。

機能	キーワード	R	D
オーバー	over	2	0
	0		Ø
位置指定コピー	pick	N	0
3番目コピー	pick3	3	0
位置指定上書き	unpick	N	1
	ху		
末尾2要素コピー	yx	2	0
	dup2		
2回コピー	dupdup	1	0
2 凹っ [-	dd	1	۷
個数指定コピーおよび個数	ndupn	1	1

それぞれの詳細は次のとおりです。

11-4-1. オーバー

スタックの Y をコピーし、プッシュします。データ数が 2 未満ならばエラーです。 キーワードは $\lceil over \rfloor \lceil o \rfloor$ です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) 位置指定 (3番目、つまり Z とする)

入力> 3

#	TYPE	VALUE
4		
Z	Integer	16
Υ	Integer	32
Х	Integer	16

11-4-2. 位置指定コピー

指定された位置のデータをコピーし、プッシュします。 キーワードは「pick」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2) 位置指定 (3番目、つまり Z とする)

入力> 3

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Rational	9/4
Х	Integer	3

(3) 位置指定コピー

入力> pick

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Rational	9/4
Х	Integer	256

11-4-3.3番目コピー

スタックの Z をコピーし、プッシュします。データ数が 3 未満ならばエラーです。 キーワードは「pick3」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2)3番目コピー

入力> pick3

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Rational	9/4
Х	Integer	256

11-4-4. 位置指定上書き

Y で指定されたデータで、X で指定した位置のデータを上書きします。 キーワードは「unpick」です。

(1) 最初の状態 (2番目、つまり Yを上書きしたい)

#	TYPE	VALUE
4		
Z		
Υ	Integer	256
Х	Floating	3.14159265358979

(2) データをプッシュ

入力> 64

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Integer	64

(3) 位置をプッシュ

入力> 2

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Integer	64
Х	Integer	2

(4) 位置指定上書き

入力> unpick

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Integer	64
Х	Integer	2

11-4-5. 末尾2要素コピー

スタックのYとXにあるデータをそれぞれコピーし、Y,Xの順番にプッシュします。 データ数が2未満ならばエラーです。

キーワードは「xy」「yx」「dup2」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) 末尾2要素コピー

入力> xy

#	TYPE	VALUE
4	Integer	16
Z	Integer	32
Υ	Integer	16
Х	Integer	32

11-4-6. 2回コピー

コピー操作を単純に2回実行します。キーワードは「dupdup」「dd」です。

11-4-7. 個数指定コピーおよび個数

X が正の整数のとき、一旦 X をドロップし、Y のデータが X 個になるようにコピーし、X をプッシュします。

キーワードは「ndupn」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2) 個数を指定

入力> 2

#	TYPE	VALUE
4		
Z	Integer	16
Υ	Integer	32
Х	Integer	2

(3) 個数指定コピーおよび個数

入力> ndupn

#	TYPE	VALUE
4	Integer	16
Z	Integer	32
Υ	Integer	32
Х	Integer	2

11-5. 削除をする操作

コピー・上書きをする操作には、次のようなものがあります。

機能	キーワード	R	D
2回ドロップ	drop2	2	0
	¥¥	2	
N回ドロップ	dropn	N	0
2番目の削除	nip	2	1
指定位置の削除	nipn	N	2

それぞれの詳細は次のとおりです。

11-5-1. 2回ドロップ

ドロップ操作を単純に2回実行します。

キーワードは「drop2」「¥¥」です。

11-5-2. N回ドロップ

整数で指定した数のデータ、およびその数をドロップします。 キーワードは「dropn」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	256
Υ	Floating	3.14159265358979
Х	Rational	9/4

(2) 整数 (ドロップする個数) をプッシュ

入力 > 2

#	TYPE	VALUE
4	Integer	256
Z	Floating	3.14159265358979
Υ	Rational	9/4
Х	Integer	2

(3) N回ドロップ (今回の場合、2+1回ドロップ)

入力> dropn

Stack 11-1

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	256

11-5-3. 2番目の削除 スタックの Y を削除します。 キーワードは「nip」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

(2)2番目の削除

入力> nip

#	TYPE	VALUE
4		
Z		
Υ		
X	Integer	32

11-5-4. 指定位置の削除

整数で指定した位置のデータを削除します。

キーワードは「nipn」です。

(1) 最初の状態

#	TYPE	VALUE
4		
Z	Integer	64
Υ	Integer	16
Х	Integer	32

(2) 位置を指定

入力> 3

#	TYPE	VALUE
4	Integer	64
Z	Integer	16
Υ	Integer	32
Х	Integer	3

(3) 位置指定削除

入力> nipn

#	TYPE	VALUE
4		
Z		
Υ	Integer	16
Х	Integer	32

11-6. その他のスタック操作

その他のスタック操作には、次のようなものがあります。

機能	キーワード	R	D
スタック深さ	depth	0	0

スタック深さは、現在のスタックのデータ数を整数でプッシュします。

12-1. オールクリア

レジスタおよびスタックを一掃したい場合、オールクリアを使います。その他、クリア機能には、次のものがあります。

機能	キーワード
オールクリア	ac
スタッククリア	clear
	clr
レジスタクリア	regclear
	rclr

これらのクリアを実行した後でも、元に戻す機能を使えます。

12-2. オールリセット

計算モードを初期状態にするには、キーワード「reset」または「rst」を単体で入力します。スタック、レジスタ、履歴が初期化されます。

続いて、「yes」または「no」の入力待ちとなるので、実行する場合は「yes」を、キャンセルする場合は「no」を単体で入力します。

12-3. 元に戻す・やり直し

本ソフトウエアは、スタックおよびレジスタの履歴機能があります。万が一途中で操作を 誤っても、元に戻す・やり直しができます。

機能	キーワード
元に戻す	undo
九に庆 9	u
やり直し	redo
	r

履歴をたどった回数や履歴数は、計算設定・状態表示領域で確認できます。詳しくは、2 章「画面の見方と操作方法」の2節「計算設定・状態表示領域」をご確認ください。

最大履歴数の設定は、3 章「設定・表示切り替え」の 1 節「コンフィグモードでの設定」 に詳しい説明があります。

12-4. JSON 出力

キーワード「json」または「out」を単体で入力すると、スタックとレジスタの内容を JSON 形式のテキストファイルに出力できます。

機能	キーワード	R	D	演算内容
JSON 出力	json	9	•	
JSON Ш/J	out	0	0	

ファイルは実行ファイルと同じディレクトリに出力されます。ファイル名は、次の形式になります。

eckert_YYYY_MMDD_HHMMSS.json

YYYY: 西曆 MMDD: 月日

HHMMSS: 時分秒

JSON 出力に成功すると、メッセージ表示領域にファイル名が表示されます。 計算結果をテキストで保存したい場合にお役立てください。

12-5. マクロ機能

文字列からマクロを実行するには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
マクロ実行	run	1	1	

マクロ機能機能は、Xの文字列を読み取り、それを入力として実行する機能です。

利用例を示します。

(1) 文字列 "2 3 +" をプッシュ

入力> "2 3 +"

#	TYPE	VALUE
4		
Z		
Υ		
Х	String	2 3 +

(2) マクロ実行

入力> run

#	TYPE	VALUE
4		
Z		
Υ		
Х	Integer	5

この機能は、レジスタ機能と組み合わせて、簡単な独自関数を定義することができます。 たとえば、「RA + $\sqrt{RB \times RC}$ 」という式の文字列 "ldra ldrb ldrc * sqrt +" を RE に 登録します。次に、RA、RB、RC にそれぞれ値を入れます。RE を呼び出し、マクロ実行する と、RA + $\sqrt{RB \times RC}$ が計算できています。

これは、同じ形の計算を、数値を変えつつ何度も行う場合に有効です。

注意

マクロで使う文字列にマクロ実行のキーワード「run」を含めても、実行できません。これは、無限ループを防ぐための仕様です。

また、モード変更・表示変更キーワードを含めても、実行できません。

12-6. 便利な計算機能

12-6-1. 接頭辞との乗算

キロやメガなどとの乗算を実行するには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ヨクトとの乗算	yocto	1	1	$X \times 10^{-24}$
ゼプトとの乗算	zepto	1	1	$X \times 10^{-21}$
アトとの乗算	atto	1	1	$X \times 10^{-18}$
フェムトとの乗算	femto	1	1	$X \times 10^{-15}$
ピコとの乗算	pico	1	1	$X \times 10^{-12}$
ナノとの乗算	nano	1	1	$X \times 10^{-09}$
マイクロとの乗算	micro	1	1	$X \times 10^{-06}$
ミリとの乗算	milli	1	1	$X \times 10^{-03}$
センチとの乗算	centi	1	1	$X \times 10^{-02}$
デシとの乗算	deci	1	1	$X \times 10^{-01}$
デカとの乗算	deca	1	1	$X \times 10^{+01}$
ヘクトとの乗算	hecto	1	1	$X \times 10^{+02}$
キロとの乗算	kilo	1	1	$X \times 10^{+03}$
メガとの乗算	mega	1	1	$X \times 10^{+06}$
ギガとの乗算	giga	1	1	$X \times 10^{+09}$
テラとの乗算	tera	1	1	$X \times 10^{+12}$
ペタとの乗算	peta	1	1	$X \times 10^{+15}$
エクサとの乗算	exa	1	1	$X \times 10^{+18}$
ゼタとの乗算	zetta	1	1	$X \times 10^{+21}$
ヨタとの乗算	yotta	1	1	$X \times 10^{+24}$
キビとの乗算	kibi	1	1	$X \times 2^{10}$
メビとの乗算	mebi	1	1	$X \times 2^{20}$
ギビとの乗算	gibi	1	1	$X \times 2^{30}$
テビとの乗算	tebi	1	1	$X \times 2^{40}$
ペビとの乗算	pebi	1	1	$X \times 2^{50}$
エクシビとの乗算	exbi	1	1	$X \times 2^{60}$
ゼビとの乗算	zebi	1	1	$X \times 2^{70}$
ヨビとの乗算	yobi	1	1	$X \times 2^{80}$

12-6-2. 商と剰余

キーワード「qm」を用いると、商と剰余が同時に求められます。

機能	キーワード	R	D	演算内容
商と剰余	am 3	1	1	$Y \leftarrow Y \div X$
何 乙 利 示	qm	2	2	$X \leftarrow Y \mod X$

この機能は、2つの整数に対してのみ使用できます。

12-6-3. 直角三角形の斜辺

キーワード「hypot」を用いると、直角三角形の斜辺を求められます。

機能	キーワード	R	D	演算内容
直角三角形の斜辺	hypot	2	2	$\sqrt{Y^2 + X^2}$

これは、ピュタゴラスの定理の計算をそのまま機能にしたものです。

12-6-4. 有理数の分解

キーワード「ratio」を用いると、有理数を分解できます。

Xが有理数のとき、Yに分子、Xに分母を展開します。

機能	キーワード	R	D	演算内容
有理数の分解	ratio	1	1	$Y \leftarrow Numerator \ of \ X$
有理奴の万牌	Lacio	_	_	$X \leftarrow Denominator \ of \ X$

12-6-5. 角度変換

角度の単位を変換するには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ラジアンから度数法	rtod	1	1	$180X/\pi$
ラジアンからグラード	rtog	1	1	$200X/\pi$
度数法からラジアン	dtor	1	1	$\pi X / 180$
度数法からグラード	dtog	1	1	10 <i>X</i> /9
グラードからラジアン	gtor	1	1	$\pi X / 200$
グラードから度数法	gtod	1	1	9X/10

角度の変換のみを行う場合、これらのキーワードをご活用ください。

12-6-6. 角度計算

余角や補角を求めるには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
余角 ※	cang	1	1	
余角 (ラジアン)	cangr	1	1	$\pi/2-X$
余角 (度数法)	cangd	1	1	90 – <i>X</i>
余角 (グラード)	cangg	1	1	100 - X
補角 ※	sang	1	1	
補角(ラジアン)	sangr	1	1	$\pi - X$
補角(度数法)	sangd	1	1	180 – <i>X</i>
補角(グラード)	sangg	1	1	200 - X

※角度モードに依存します。

12-6-7. パーセント計算

税率などのパーセント計算を行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
YのXパーセント※	perc	2	1	X
1 V) X > 1 VE > 1 X	рс	۷	1	$Y \times \frac{X}{100}$
Y に対する X の差のパーセント	dperc	2	,	$\frac{X-Y}{Y} \times 100$
表示	dp		2	${Y}$ × 100
YのXパーセント税込み計算	intax	2	2	$Y \times \frac{100 + X}{100}$
YのXパーセント税抜き計算	extax	2	2	$Y \times \frac{100}{100 + X}$

※この機能では、Xのみがドロップされ、元のYは残ります

12-6-8. 2πの計算

2πとの乗除算を行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
2πとの乗算	tpix	1	1	$2\pi X$
2πによる除算	dtpi	1	1	Χ/2π

周波数と角周波数の変換など、工学の場面でご活用ください。

12-6-9. 並列

並列を計算するには、キーワード「para」を用います。

機能	キーワード	R	D	演算内容
並列	para	1	1	$(Y^{-1} + X^{-1})^{-1}$

この演算は、並列に接続された2つの抵抗の合成抵抗に相当します。

12-6-10. デシベル計算 デシベルと比との変換は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
デシベルへの変換	todb	1	1	$10\log_{10} X $
デシベルからの変換	dbto	1	1	$10^{\frac{X}{10}}$

12-6-11. 総和・平均など

スタック全体について、総和や平均を求めることができます。エラーなく求まると、 スタックには結果だけが残ります。

機能	キーワード	R	D	演算内容
総和	sum	N>1	N	$\sum\nolimits_{i=1}^{n}x_{i}$
総積	prod	N>1	N	$\prod\nolimits_{i=1}^{n}x_{i}$
算術平均	avr	N>1	N	$\frac{1}{n} \sum_{i=1}^{n} x_i$
幾何平均	gavr	N>1	N	$\sqrt[n]{\prod_{i=1}^{n} x_i}$
調和平均	havr	N>1	N	$\frac{n}{\sum_{i=1}^{n} x_i^{-1}}$

途中で加算や乗算が定義できない組み合わせが検出されるとエラーになります。

12. その他の便利な機能

機能	キーワード	R	D	演算内容
総和 (個数指定)	psum	N>1	N	
総積 (個数指定)	pprod	N>1	N	
算術平均 (個数指定)	pavr	N>1	N	
幾何平均 (個数指定)	pgavr	N>1	N	
調和平均(個数指定)	phavr	N>1	N	
総和(ドロップなし)	sumw	N>1	N	
総積(ドロップなし)	prodw	N>1	N	
算術平均(ドロップなし)	avrw	N>1	N	
幾何平均(ドロップなし)	gavrw	N>1	N	
調和平均(ドロップなし)	havrw	N>1	N	
総和(個数指定・ドロップなし)	psumw	N>1	N	
総積(個数指定・ドロップなし)	pprodw	N>1	N	
算術平均(個数指定・ドロップなし)	pavrw	N>1	N	
幾何平均(個数指定・ドロップなし)	pgavrw	N>1	N	
調和平均(個数指定・ドロップなし)	phavrw	N>1	N	

12-6-12. 論理演算の積算

論理積や論理和についても、スタック全体を使って計算する機能があります。

機能	キーワード	R	D	演算内容
総論理積	alland	N>1	N	$x_1 \wedge x_2 \dots$
総論理和	allor	N>1	N	<i>x</i> ₁ ∨ <i>x</i> ₂
総排他的論理和	allxor	N>1	N	$x_1 \oplus x_2 \dots$

12. その他の便利な機能

12-6-13. ベクトル・行列の分解

ベクトル・行列の分解には、次のキーワードを用います。

機能	キーワード	R	D	演算内容
ベクトルの要素への分解	cut	1	1	
ペクトルの安糸への万胜	crave			
行列の行べクトルへの分解	cut	1	1	
11/91/0/11 ヘクトルへの分件	crave		1	

分解元のデータはドロップされ、分解された要素や行べクトルは、スタックに順番通りにプッシュされます。

12-6-14. 健康や生活に関する計算

健康や生活に関する計算は、次のキーワードを用います。

機能	キーワード	R	D	演算内容
不快指数	discom	2	2	$0.81Y - 0.01X \times (0.99Y - 14.3) + 46.3$
BMI	bmi	2	2	$X/(Y/100)^2$

BMI は、キログラムの体重をメートル単位の身長の2乗で割ったものです。

12-6-15. キャスト

型変換を行うには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
整数キャスト	toint	1	1	
浮動小数点数キャスト	toflt	1	1	
有理数キャスト	torat	1	1	
ブーリアンキャスト	tobool	1	1	
8ビットキャスト	tobyte	1	1	
16 ビットキャスト	toword	1	1	
32 ビットキャスト	todword	1	1	
64 ビットキャスト	toqword	1	1	

なお、浮動小数点数を有理数に変換するのに、連分数近似を用いています。

12. その他の便利な機能

12-6-16. 乱数

乱数をプッシュするには、次のキーワードを用います。

機能	キーワード	R	D	演算内容
整数乱数	rand	0	0	Push Int
浮動小数点数乱数	frand	0	0	Push Flt

整数乱数は63ビット、浮動小数点数は整数乱数を元にして生成されます。 ※いずれも、内部的にはメルセンヌ・ツイスタを用いています。

13. 特殊な機能

13. 特殊な機能

13-1. 精度の検証

精度の検証を行うための機能として、次のようなものを提供します。

機能	キーワード	R	D	演算内容
浮動小数点数の基数	radix	0	0	Push Int
計算機イプシロン	eps	0	0	Push Flt

本ソフトウエアの計算精度を検証する場合、これらの機能をお使いください。

13-2. 特殊な起動

本ソフトウエアは、コマンドライン引数を受け取って起動できます。

引数	処理内容
-d	画面クリアを行わない
-j	JSON 出力
-jd	JSON 画面表示
	JSON 機能のための区切り

画面バッファを残したい場合「-d」を用います。

eckert64.exe -d

JSON 出力および JSON 画面表示は、ともに、引数「--」と一緒に利用します。これ以降に記述された引数郡をコマンドとして処理し、JSON 出力または画面表示します。 例を示します。

eckert64.exe -j -- 1 2 3 sum stra pi exp strz sum copy i mul 2

上の例で「 $-\mathbf{j}$ 」を「 $-\mathbf{j}$ d」に変えれば、画面表示です。

14. キーワード一覧

14-1. 終了など

機能	キーワード
	exit
終了	quit
	q
オールリセット	reset
7 - 70 9 -2 9 1	rst
バージョン表示	version
	ver

14-2. コンフィグ

機能	キーワード
コンフィグモード	config
 計算モード	calc
可开心。	homura
最大履歴数	hist
画面幅	width
スタック表示領域の行数	height
コンフィグのロード	load
コンフィグのセーブ	save
コンフィグのリセット	reset
	rst

14-3. 表示・出力機能一覧

機能	キーワード
値の全体表示	view
個の主体表示	V
JSON 出力	json
JSON 山/J	out

14-4. 設定変更キーワード一覧

機能	キーワード
度数法モード	deg
ラジアンモード	rad
グラードモード	gra
/ / - · -	grad
2 進数表示	bin
8 新数表示	oct
符号つき 10 進数表示	sdec
符号なし 10 進数表示	udec
16 新数表示	hex
8 ビットモード	byte
16 ビットモード	word
32 ビットモード	dword
64 ビットモード	qword
型表示	type
レジスタ表示	register
	reg
オイラー表示	euler
717 27	eul
近似表示	approx
	арх
 仮分数・帯分数表示切り替え	fraction
10.73X 11.73XXX1.37 7 6 7.	frac
浮動小数点数の通常表示	std
浮動小数点数の	fix
固定小数点表示	. 1/
浮動小数点数の指数表示	sci
浮動小数点数の	eng
エンジニアリング表示	8
 桁数設定	disp
117.75	digit

14-1. 履歴キーワード一覧

機能	キーワード
元に戻す	undo
元に戻す	u
やり直し	redo
	r

14-2. ページめくり一覧

機能	キーワード
スタックの次のページ	next
	n
 スタックの前のページ	prev
スメノノの前のベーン	р
 スタックの最初のページ	first
スグラクの取例のペーン	fst
レジスタの次のページ	regnext
	rn
レジスタの前のページ	regprev
レンスグの削のペーン	rp
レジスタの最初のページ	regfirst
	rf

14-3. スタック操作キーワード一覧

機能	キーワード	R	D	
ドロップ	drop	1	1	
	¥	1	1	
コピー	сору			
	С	1	1	
	dup			
クリア	clear	N>0	N	
7 9 7	clr	NZO	IN	
スワップ	swap	2	0	
X / / /	\$	2	V	
末尾 3 要素回転	rot	3	0	
末尾 3 要素逆回転	unrot	3	0	
位置指定回転	roll	N	1	
位置指定逆回転	rolld	N	1	
オーバー	over	2	0	
	0	2	V	
位置指定コピー	pick	N	0	
3番目コピー	pick3	3	0	
位置指定上書き	unpick	N	1	
	xy			
末尾2要素コピー	yx	2	0	
	dup2			
2回コピー	dupdup	1	0	
2回コピー 	dd		Ø	
個数指定コピーおよび個数	ndupn	1	1	
2回ドロップ	drop2	,	٥	
2回トロック	¥¥	2	0	
N回ドロップ	dropn	N	0	
2番目の削除	nip	2	1	
指定位置の削除	nipn	N	2	
スタック深さ	depth	0	0	

14-4. レジスタ操作一覧

機能	キーワード	R	D	演算内容								
レジスタクリア	regclear		_	0								
	rclr	0	О									
ストア	str?	1	1									
ロード	ldr?	0	0									
デリート	delr?	0	0									
レジスタインクリメント	ir?	9	9	D . D . 1								
	++r?	О	О	$R \leftarrow R + 1$								
レジスタデクリメント	dr?	0	0	D . D 1								
	r?	0	О	$R \leftarrow R - 1$								
レジスタ加算	addr?	1	1	D . D . V								
レンヘグ加昇	+r?	1 1		_ _		1	1	1	1 1	. 1	1 1	$R \leftarrow R + X$
レジスタ減算	subr?	1	1	$R \leftarrow R - X$								
レンヘグ概弁	-r?		1	_ _	` ¹	$K \leftarrow K - X$						
レジスタ乗算	mulr?	1		D . D . V								
レンヘク米昇	*r?	T	1	T	1	$R \leftarrow R \times X$						
しいフカ陸笛	divr?	4	1	1	n . n/v							
レジスタ除算	/r?	1	1	$R \leftarrow R/X$								

14-5. マクロ関連一覧

機能	キーワード	R	D
マクロ実行	run	1	1

14-6. 接頭辞との乗算一覧

機能	キーワード	R	D	演算内容
ヨクトとの乗算	yocto	1	1	$X \times 10^{-24}$
ゼプトとの乗算	zepto	1	1	$X \times 10^{-21}$
アトとの乗算	atto	1	1	$X \times 10^{-18}$
フェムトとの乗算	femto	1	1	$X \times 10^{-15}$
ピコとの乗算	pico	1	1	$X \times 10^{-12}$
ナノとの乗算	nano	1	1	$X \times 10^{-09}$
マイクロとの乗算	micro	1	1	$X \times 10^{-06}$
ミリとの乗算	milli	1	1	$X \times 10^{-03}$
センチとの乗算	centi	1	1	$X \times 10^{-02}$
デシとの乗算	deci	1	1	$X \times 10^{-01}$
デカとの乗算	deca	1	1	$X \times 10^{+01}$
ヘクトとの乗算	hecto	1	1	$X \times 10^{+02}$
キロとの乗算	kilo	1	1	$X \times 10^{+03}$
メガとの乗算	mega	1	1	$X \times 10^{+06}$
ギガとの乗算	giga	1	1	$X \times 10^{+09}$
テラとの乗算	tera	1	1	$X \times 10^{+12}$
ペタとの乗算	peta	1	1	$X \times 10^{+15}$
エクサとの乗算	exa	1	1	$X \times 10^{+18}$
ゼタとの乗算	zetta	1	1	$X \times 10^{+21}$
ヨタとの乗算	yotta	1	1	$X \times 10^{+24}$
キビとの乗算	kibi	1	1	$X \times 2^{10}$
メビとの乗算	mebi	1	1	$X \times 2^{20}$
ギビとの乗算	gibi	1	1	$X \times 2^{30}$
テビとの乗算	tebi	1	1	$X \times 2^{40}$
ペビとの乗算	pebi	1	1	$X \times 2^{50}$
エクシビとの乗算	exbi	1	1	$X \times 2^{60}$
ゼビとの乗算	zebi	1	1	$X \times 2^{70}$
ヨビとの乗算	yobi	1	1	$X \times 2^{80}$

14-7. 四則演算と基本演算

機能	キーワード	R	D	演算内容		
加算	add	2	2	Y + X		
加异	+	2		$I + \lambda$		
 減算	sub	2	2	Y - X		
199. 37.	-		Ι Λ			
 乗算	mul	2	2	$Y \times X$		
术 并	*			1 ^ 1		
 除算	div	2	2	<i>V / V</i>		
	/	2		Y/X		
剰余	mod	2	2	Y mod X		
本は八	%	2		I mou A		
インクリメント	inc	1	1	X + 1		
1477774	++	_	_	Λ 1		
デクリメント	dec	1	1	<i>X</i> – 1		
			1	_	Λ – 1	
絶対値	abs	1	1	X		
符号反転	pm	1	1	-X		
71 7 12 14	neg	1	-		1	<i>-</i> Λ
逆数・逆行列	inv	1	1	X^{-1}		

14-8. 指数・対数関数の一覧

機能	キーワード	R	D	演算内容
2 乗	sq	1	1	X^2
平方根	sqrt	1	1	\sqrt{X}
立方根	cbrt	1	1	³ √ <i>X</i>
	pow			
冪乗	^	2	2	Y^X
	**			
冪乗根	nrt	2	2	$\sqrt[X]{Y}$
指数関数	exp	1	1	$\exp(X)$
10 の冪乗	tpow	1	1	10 ^X
2の冪乗	bpow	1	1	2^X
Yに対するXの対数	logb	2	2	$\log_Y X$
自然対数	ln	1	1	$\log_e X$
常用対数	log	1	1	$\log_{10} X$
2 進対数	1b	1	1	$\log_2 X$

14-9. 三角関数の一覧

機能	キーワード	R	D	演算内容
サイン	sin	1	1	sin X
コサイン	cos	1	1	cos X
タンジェント	tan	1	1	tan X
アークサイン	asin	1	1	sin ^{−1} X
アークコサイン	acos	1	1	cos ^{−1} X
アークタンジェント	atan	1	1	tan ^{−1} X

機能	キーワード	R	D	演算内容
サイン(度数法)	sind	1	1	sin(X[deg])
コサイン (度数法)	cosd	1	1	cos(X[deg])
タンジェント (度数法)	tand	1	1	tan(X[deg])
アークサイン (度数法)	asind	1	1	$\sin^{-1} X [\deg]$
アークコサイン (度数法)	acosd	1	1	$\cos^{-1} X [\deg]$
アークタンジェント (度数法)	atand	1	1	tan ⁻¹ X [deg]
サイン (ラジアン)	sinr	1	1	sin(X[rad])
コサイン (ラジアン)	cosr	1	1	cos(X[rad])
タンジェント (ラジアン)	tanr	1	1	tan(X[rad])
アークサイン (ラジアン)	asinr	1	1	sin ⁻¹ X [rad]
アークコサイン (ラジアン)	acosr	1	1	cos ⁻¹ X [rad]
アークタンジェント (ラジアン)	atanr	1	1	tan ⁻¹ X [rad]
サイン (グラード)	sing	1	1	sin(X[gra])
コサイン (グラード)	cosg	1	1	cos(X[gra])
タンジェント (グラード)	tang	1	1	tan(X[gra])
アークサイン (グラード)	asing	1	1	sin ⁻¹ X [gra]
アークコサイン (グラード)	acosg	1	1	cos ⁻¹ X [gra]
アークタンジェント (グラード)	atang	1	1	tan ⁻¹ X[gra]

14-10. 双曲線関数の一覧

機能	キーワード	R	D	演算内容
ハイパーボリックサイン	sinh	1	1	sinh X
ハイパーボリックコサイン	cosh	1	1	cosh X
ハイパーボリックタンジェント	tanh	1	1	tanh X
インバース ハイパーボリックサイン	asinh	1	1	sinh ^{−1} X
インバース ハイパーボリックコサイン	acosh	1	1	cosh ^{−1} X
インバース ハイパーボリックタンジェント	atanh	1	1	tanh ⁻¹ X

14-11. 統計に関する関数の一覧

機能	キーワード	R	D	演算内容
ベータ関数	beta	2	2	B(Y,X)
ガンマ関数	gamma	1	1	$\Gamma(X)$
ガンマ関数の絶対値の対数	lngamma	1	1	$\log_{\mathrm{e}} \Gamma(X) $
誤差関数	erf	1	1	erf(X)
1 と誤差関数の差	erfc	1	1	$1 - \operatorname{erf}(X)$

14-12. 整数丸めの関数一覧

機能	キーワード	R	D	演算内容
床関数 floor		1	1	1771
/ (天)女(flr	1	1	[X]
天井関数	ceil	1	1	[X]
四捨五入	round	1	1	V O E
四指五人	rnd	1	1	[X + 0.5]

14-13. 整数の関数一覧

機能	機能 キーワード			演算内容
階乗	fact	1	1	VI
陷来 	!	1	1	<i>X</i> !
最大公約数	gcd	1	1	GCD(Y,X)
最小公倍数	lcm	1	1	LCM(Y,X)
パーミュテーション	perm	1	1	$_{Y}P_{X}$
コンビネーション	comb	1	1	$_{Y}C_{X}$

14-14. 複素数演算一覧

機能	キーワード	R	D	演算内容
複素数の生成(直交座標)	mkcmp	2	2	Y + iX
後常数の工队(巨叉座际)	mkc			$I + \iota_{\Lambda}$
複素数の生成 (極座標)	mke	2	2	$Y \angle X$
複素数の生成 (極座標、度数法)	mked	2	2	<i>Y∠X</i> [deg]
複素数の生成(極座標、ラジアン)	mker	2	2	<i>Y∠X</i> [rad]
複素数の生成(極座標、グラード)	mkeg	2	2	<i>Y∠X</i> [gra]
実数部分	re	1	1	Re(X)
虚数部分	im	1	1	Im(X)
複素偏角	arg	1	1	arg X
複素偏角 (度数法)	argd	1	1	arg X [deg]
複素偏角 (ラジアン)	argr	1	1	arg X [rad]
複素偏角 (グラード)	argg	1	1	arg X [gra]
実数部と虚数部	reim	1	1	$Y \leftarrow \operatorname{Re}(X)$
大奴마と巡奴마	T CIIII	•	-	$X \leftarrow \operatorname{Im}(X)$
 絶対値と偏角	maga	1	1	$Y \leftarrow X $
	illaga	•	-	$X \leftarrow \arg X$
 絶対値と偏角(度数法)	magad	1	1	$Y \leftarrow X $
ルロバ 旧 C 加 万 (/文 妖石 /	magaa	•	-	$X \leftarrow \arg X [\deg]$
絶対値と偏角 (ラジアン) magar	1	1	$Y \leftarrow X $	
	iliagai	-	_	$X \leftarrow \arg X [\operatorname{rad}]$
 絶対値と偏角(グラード)	絶対値と信角 (グラード) magag	1	1 1	$Y \leftarrow X $
	magag	-		$X \leftarrow \arg X [\operatorname{gra}]$

14-15. 論理計算一覧 論理計算の一覧です。

機能	キーワード	R	D	演算内容								
論理否定 (NOT)	not	1	1	$ar{X}$								
聞至日足 (NOI)	~	1	1	Λ								
 論理積 (AND)	and	2	2	$Y \wedge X$								
m/主俱 (AND)	&			1 A A								
 論理和 (OR)	or	2	2	$Y \vee X$								
mm产生作(OK)	1			IVA								
排他的論理和 (XOR)	xor	2	2	$Y \oplus X$								
否定論理積 (NAND)	nand	2	2	$\overline{Y \wedge X}$								
否定論理和 (NOR)	nor	2	2	$\overline{Y \vee X}$								
左シフト shl <<	shl	1	1	X << 1								
	1	1	X									
論理右シフト	shr	1	1	X >> 1								
神経行シブト	>>	1 1		1 1	1							X // I
 算術右シフト	sar	1	1	X >>> 1								
弁例行シノド	>>>	1	1	X /// I								
8ビット左シフト	sbl	1	1	X << 8								
8ビット右シフト	sbr	1	1	X >> 8								
4 ビット左シフト	snl	1	1	X << 4								
4 ビット右シフト	snr	1	1	X >> 4								
左ローテイト	rol	1	1	Rotate X Left								
右ローテイト	ror	1	1	Rotate X Right								

14-16. ベクトルに関する機能一覧

機能	キーワード	R	D	演算内容		
ベクトルの生成 (横方向)	mrtup	N	N	Push Tup.R		
ベクトルの生成 (縦方向)	mctup	N	N	Push Tup.C		
単位ベクトルの生成 (横方向)	mrutup	2	2	Push Tup.R		
単位ベクトルの生成 (縦方向)	mcutup	2	2	Push Tup.C		
 内積	inner	2	2	$ec{Y}\cdotec{X}$		
[7] 作	dot		4	Y·X		
外積	outer	2	2	2	2	$ec{Y} imes ec{X}$
7/1頃	cross		_	YXX		
ユークリッドノルム	norm	1	1	$\sqrt{\sum_{i=1}^{\infty} x_i ^2}$		
ユークリッドノルムの2乗	nsq	1	1	$\sum\nolimits_{i=1}^{\infty} \lvert x_i \rvert^2$		
p次平均ノルム	pnorm	2	2	$\left(\sum\nolimits_{i=1}^{\infty} y_i ^x\right)^{1/x}$		
最大値ノルム	maxnorm	1	1	$\max(x_1 , x_2 , x_n)$		
ユークリッドノルム	norm	1	1	$\sqrt{\sum_{i=1}^{\infty} x_i ^2}$		

14-17. 行列に関する機能一覧

機能	キーワード	R	D	演算内容
行列の生成	mkmat	N	N	Push Mat
単位行列の生成	mkumat	1	1	Push Mat
行列式	det	1	1	det X
逆行列	inv	1	1	X^{-1}
転置	trans	1	1	X^T
エルミート転置	htrans	1	1 1	con:(VT)
エル・一下料直	hconj	1		
トレース	trace	1	1	tr(<i>X</i>)

14-18. 角度変換一覧

機能	キーワード	R	D	演算内容
ラジアンから度数法	rtod	1	1	$180X/\pi$
ラジアンからグラード	rtog	1	1	$200X/\pi$
度数法からラジアン	dtor	1	1	$\pi X / 180$
度数法からグラード	dtog	1	1	10 <i>X</i> /9
グラードからラジアン	gtor	1	1	$\pi X/200$
グラードから度数法	gtod	1	1	9 <i>X</i> /10

14-19. 角度計算一覧

機能	キーワード	R	D	演算内容
余角 ※	cang	1	1	
余角 (ラジアン)	cangr	1	1	$\pi/2-X$
余角(度数法)	cangd	1	1	90 – <i>X</i>
余角 (グラード)	cangg	1	1	100 - X
補角 ※	sang	1	1	
補角 (ラジアン)	sangr	1	1	$\pi - X$
補角(度数法)	sangd	1	1	180 – X
補角(グラード)	sangg	1	1	200 - X

※角度モードに依存します。

14-20. パーセント計算一覧

機能	キーワード	R	D	演算内容
YのXパーセント pc perc	2	1	$Y \times \frac{X}{100}$	
	۷	1		
Y に対する X の差のパーセント	dperc	2	1	$\frac{X-Y}{Y} \times 100$
表示	dp	2	2	${Y}$ × 100
YのXパーセント税込み計算	intax	2	2	$Y \times \frac{100 + X}{100}$
YのXパーセント税抜き計算	extax	2	2	$Y \times \frac{100}{100 + X}$

14-21. エンジニア向け一覧

機能	キーワード	R	D	演算内容
2πとの乗算	tpix	1	1	$2\pi X$
2πによる除算	dtpi	1	1	$X/2\pi$
並列	para	1	1	$(Y^{-1} + X^{-1})^{-1}$
デシベルへの変換	todb	1	1	$10\log_{10} X $
デシベルからの変換	dbto	1	1	$10^{\frac{X}{10}}$

14-22. 分解一覧

機能	キーワード	R	D	演算内容
有理数の分解	ratio	1	1	$Y \leftarrow Numerator \ of \ X$ $X \leftarrow Denominator \ of \ X$
ベクトルの要素への分解	cut	1	1	
行列の行ベクトルへの分解	crave	1	1	

14-23. 全体計算一覧

機能	キーワード	R	D	演算内容
総和	sum	N>1	N	$\sum\nolimits_{i=1}^{n}x_{i}$
総積	prod	N>1	N	$\prod\nolimits_{i=1}^{n}x_{i}$
算術平均	avr	N>1	N	$\frac{1}{n} \sum_{i=1}^{n} x_i$
幾何平均	gavr	N>1	N	$\sqrt[n]{\prod_{i=1}^n x_i}$
調和平均	havr	N>1	N	$\frac{n}{\sum_{i=1}^{n} x_i^{-1}}$
総論理積	alland	N>1	N	$x_1 \wedge x_2 \dots$
総論理和	allor	N>1	N	$x_1 \lor x_2 \dots$
総排他的論理和	allxor	N>1	N	$x_1 \oplus x_2 \dots$
総和 (個数指定)	psum	N>1	N	
総積 (個数指定)	pprod	N>1	N	
算術平均 (個数指定)	pavr	N>1	N	
幾何平均 (個数指定)	pgavr	N>1	N	
調和平均(個数指定)	phavr	N>1	N	
総和(ドロップなし)	sumw	N>1	N	
総積(ドロップなし)	prodw	N>1	N	
算術平均(ドロップなし)	avrw	N>1	N	
幾何平均(ドロップなし)	gavrw	N>1	N	
調和平均(ドロップなし)	havrw	N>1	N	
総和(個数指定・ドロップなし)	psumw	N>1	N	
総積(個数指定・ドロップなし)	pprodw	N>1	N	
算術平均(個数指定・ドロップなし)	pavrw	N>1	N	
幾何平均(個数指定・ドロップなし)	pgavrw	N>1	N	
調和平均(個数指定・ドロップなし)	phavrw	N>1	N	

14-24. 健康や生活に関する計算一覧

機能	キーワード	R	D	演算内容
不快指数	discom	2	2	$0.81Y - 0.01X \times (0.99Y - 14.3) + 46.3$
BMI	bmi	2	2	$X/(Y/100)^2$

14-25. キャスト一覧

機能	キーワード	R	D	演算内容
整数キャスト	toint	1	1	
浮動小数点数キャスト	toflt	1	1	
有理数キャスト	torat	1	1	
ブーリアンキャスト	tobool	1	1	
8 ビットキャスト	tobyte	1	1	
16 ビットキャスト	toword	1	1	
32 ビットキャスト	todword	1	1	
64 ビットキャスト	toqword	1	1	

14-26. その他の計算機能一覧

機能	キーワード	R	D	演算内容
商と剰余	qm	2	2	$Y \leftarrow Y \div X$
同こ利示				$X \leftarrow Y \mod X$
直角三角形の斜辺	hypot	2	2	$\sqrt{Y^2 + X^2}$
整数乱数	rand	0	0	Push Int
浮動小数点数乱数	frand	0	0	Push Flt

14-27. 特殊機能一覧

機能	キーワード	R	D	演算内容
浮動小数点数の基数	radix	0	0	Push Ilt
計算機イプシロン	eps	0	0	Push Flt

14-28. 数学・科学定数一覧

数学・科学定数の一覧です。非常に大きな表なので、ご注意ください。

Name	Keyword	Value
PI	pi	3.14159265358979
Napier's constant	е	2.71828182845905
Euler-Mascheroni constant	egamma	0.577215664901533
alpha particle-electron mass ratio	alel	7294.2995361
alpha particle-proton mass ratio	alprot	6.64465675e-27
alpha particle mass	alphap	5.97191967e-10
alpha particle mass energy equivalent	alen	3727.379240
alpha particle mass energy equivalent in MeV	almev	4.001506179125
alpha particle mass in u	alpu	4.001506179125e-3
alpha particle molar mass	alpmol	3.97259968933
Angstrom star	angsts	1.00001495e-10
atomic mass constant	amc	1.660538921e-27
atomic mass constant energy equivalent	amcen	1.492417954e-10
atomic mass constant energy equivalent in MeV	amcmev	931.494061
atomic mass unit-electron volt relationship	amuelec	931.494061e6
atomic mass unit-hartree relationship	amuhart	3.4231776845e7
atomic mass unit-hertz relationship	amuhertz	2.2523427168e23
atomic mass unit-inverse meter relationship	amuim	7.5130066042e14
atomic mass unit-joule relationship	amuj	1.492417954e-10
atomic mass unit-kelvin relationship	amukl	1.08095408e13
atomic mass unit-kilogram relationship	amukg	1.660538921e-27
atomic unit of 1st hyperpolarizability	aufirst	3.206361449e-53
atomic unit of 2nd hyperpolarizability	ausecond	6.23538054e-65
atomic unit of action	aua	1.054571726e-34
atomic unit of charge	auchg	1.602176565e-19
atomic unit of charge density	auchgd	1.081202338e12
atomic unit of current	aucur	6.62361795e-3
atomic unit of electric dipole mom.	aued	8.47835326e-30
atomic unit of electric field	auef	5.14220652e11
atomic unit of electric field gradient	auefg	9.71736200e21
atomic unit of electric polarizability	auepol	1.6487772754e-41

Name	Keyword	Value
atomic unit of electric potential	auepot	27.21138505
atomic unit of electric quadrupole mom.	aueq	4.486551331e-40
atomic unit of energy	auen	4.35974434e-18
atomic unit of force	auforce	8.23872278e-8
atomic unit of length	aulen	0.52917721092e-10
atomic unit of mag. dipole mom.	aumagd	1.854801936e-23
atomic unit of mag. flux density	aumagf	2.350517464e5
atomic unit of magnetizability	aumag	7.891036607e-29
atomic unit of mass	aumass	9.10938291e-31
atomic unit of mom.um	aumum	1.992851740e-24
atomic unit of permittivity	auperm	1.112650056e-10
atomic unit of time	autime	2.418884326502e-17
Avogadro constant	avogadro	6.02214129e23
Bohr magneton	bohm	927.400968e-26
Bohr magneton in eV/T	bohmevt	5.7883818066e-5
Bohr magneton in Hz/T	bohmhzt	13.99624555e9
Bohr magneton in inverse meters per tesla	bohimt	46.6864498
Bohr magneton in K/T	bohkt	0.67171388
Bohr radius	bohrad	0.52917721092e-10
Boltzmann constant	boltzmann	1.3806488e-23
Boltzmann constant in eV/K	blzevk	8.6173324e-5
Boltzmann constant in Hz/K	blzhzk	2.0836618e10
Boltzmann constant in inverse meters per kelvin	blzimkl	69.503476
characteristic impedance of vacuum	cimped	376.730313461
classical electron radius	celrad	2.8179403267e-15
Compton wavelength	сотры	2.4263102389e-12
Compton wavelength over 2 pi	compwtp	386.15926800e-15
conductance quantum	condq	7.7480917346e-5
conventional value of Josephson constant	convj	483597.9e9
conventional value of von Klitzing constant	convk	25812.807
Cu x unit	cux	1.00207697e-13
deuteron-electron mag. mom. ratio	dtemagr	-4.664345537e-4

Name	Keyword	Value
deuteron-electron mass ratio	dtemr	3670.4829652
deuteron g factor	dtgf	0.8574382308
deuteron mag. mom.	dtmagm	0.433073489e-26
deuteron mag. mom. to Bohr magneton ratio	dtmagmb	0.4669754556e-3
deuteron mag. mom. to nuclear magneton ratio	dtmagmn	0.8574382308
deuteron mass	deuteron	3.34358348e-27
deuteron mass energy equivalent	dten	3.00506297e-10
deuteron mass energy equivalent in MeV	dtmev	1875.612859
deuteron mass in u	dtu	2.013553212712
deuteron molar mass	dtmol	2.013553212712e-3
deuteron-neutron mag. mom. ratio	dtnmagm	-0.44820652
deuteron-proton mag. mom. ratio	dtpmagm	0.3070122070
deuteron-proton mass ratio	dtp	1.99900750097
deuteron rms charge radius	deutrms	2.1424e-15
electric constant	elec	8.854187817e-12
electron charge to mass quotient	elchgq	-1.758820088e11
electron-deuteron mag. mom. ratio	eldtmagm	-2143.923498
electron-deuteron mass ratio	eldt	2.7244371095e-4
electron g factor	elg	-2.00231930436153
electron gyromag. ratio	elgy	1.760859708e11
electron gyromag. ratio over 2 pi	elgytpi	28024.95266
electron-helion mass ratio	elheli	1.8195430761e-4
electron mag. mom.	elmagm	-928.476430e-26
electron mag. mom. anomaly	elmagma	1.15965218076e-3
electron mag. mom. to Bohr magneton ratio	elmagmb	-1.00115965218076
electron mag. mom. to nuclear magneton ratio	elmagmn	-1838.28197090
electron mass	electron	9.10938291e-31
electron mass energy equivalent	elmen	8.18710506e-14
electron mass energy equivalent in MeV	elmmev	0.510998928
electron mass in u	elmu	5.4857990946e-4
electron molar mass	elmmol	5.4857990946e-7
electron-muon mag. mom. ratio	emmagm	206.7669896

Name	Keyword	Value
electron-muon mass ratio	emmass	4.83633166e-3
electron-neutron mag. mom. ratio	elnmagm	960.92050
electron-neutron mass ratio	elnmass	5.4386734461e-4
electron-proton mag. mom. ratio	elpmagm	-658.2106848
electron-proton mass ratio	elpm	5.4461702178e-4
electron-tau mass ratio	eltm	2.87592e-4
electron to alpha particle mass ratio	elapm	1.37093355578e-4
electron to shielded helion mag. mom. ratio	elshmagm	864.058257
electron to shielded proton mag. mom. ratio	elspmagm	-658.2275971
electron-triton mass ratio	eltrim	1.8192000653e-4
electron volt	evolt	1.602176565e-19
electron volt-atomic mass unit relationship	evamu	1.073544150e-9
electron volt-hartree relationship	evht	3.674932379e-2
electron volt-hertz relationship	evhz	2.417989348e14
electron volt-inverse meter relationship	evim	8.06554429e5
electron volt-joule relationship	evj	1.602176565e-19
electron volt-kelvin relationship	evkl	1.1604519e4
electron volt-kilogram relationship	evkg	1.782661845e-36
elementary charge	elmchg	1.602176565e-19
elementary charge over h	elmchgh	2.417989348e14
Faraday constant	faraday	96485.3365
Faraday constant for conventional	fdcur	96485.3321
electric current	1	
Fermi coupling constant	fermi	1.166364e-5
fine-structure constant	fstruct	7.2973525698e-3
first radiation constant	frad	3.74177153e-16
first radiation constant for spectral radiance	fradsp	1.191042869e-16
hartree-atomic mass unit relationship	htamu	2.9212623246e-8
hartree-electron volt relationship	htev	27.21138505
Hartree energy	hten	4.35974434e-18
Hartree energy in eV	htmev	27.21138505
hartree-hertz relationship	hthz	6.579683920729e15

Name	Keyword	Value
hartree-inverse meter relationship	htim	2.194746313708e7
hartree-joule relationship	htj	4.35974434e-18
hartree-kelvin relationship	htkl	3.1577504e5
hartree-kilogram relationship	htkg	4.85086979e-35
helion-electron mass ratio	hlelm	5495.8852754
helion g factor	hlg	-4.255250613
helion mag. mom.	hlmagm	-1.074617486e-26
helion mag. mom. to Bohr magneton ratio	hlmagmb	-1.158740958e-3
helion mag. mom. to nuclear magneton ratio	hlmagmn	-2.127625306
helion mass	helion	5.00641234e-27
helion mass energy equivalent	hlmen	4.49953902e-10
helion mass energy equivalent in MeV	hlmmev	2808.391482
helion mass in u	hlmu	3.0149322468
helion molar mass	hlmol	3.0149322468e-3
helion-proton mass ratio	hlp	2.9931526707
hertz-atomic mass unit relationship	hzamu	4.4398216689e-24
hertz-electron volt relationship	hzev	4.135667516e-15
hertz-hartree relationship	hzht	1.5198298460045e-16
hertz-inverse meter relationship	hzim	3.335640951e-9
hertz-joule relationship	hzj	6.62606957e-34
hertz-kelvin relationship	hzkl	4.7992434e-11
hertz-kilogram relationship	hzkg	7.37249668e-51
inverse fine-structure constant	ifstruct	137.035999074
inverse meter-atomic mass unit relationship	imamu	1.33102505120e-15
inverse meter-electron volt relationship	imev	1.239841930e-6
inverse meter-hartree relationship	imht	4.556335252755e-8
inverse meter-hertz relationship	imhz	299792458
inverse meter-joule relationship	imj	1.986445684e-25
inverse meter-kelvin relationship	imkl	1.4387770e-2
inverse meter-kilogram relationship	imkg	2.210218902e-42
inverse of conductance quantum	imcondq	12906.4037217
Josephson constant	josephson	483597.870e9

Name	Keyword	Value
joule-atomic mass unit relationship	jamu	6.70053585e9
joule-electron volt relationship	jev	6.24150934e18
joule-hartree relationship	jht	2.29371248e17
joule-hertz relationship	jhz	1.509190311e33
joule-inverse meter relationship	jim	5.03411701e24
joule-kelvin relationship	jkl	7.2429716e22
joule-kilogram relationship	jkg	1.112650056e-17
kelvin-atomic mass unit relationship	klamu	9.2510868e-14
kelvin-electron volt relationship	klev	8.6173324e-5
kelvin-hartree relationship	klht	3.1668114e-6
kelvin-hertz relationship	klhz	2.0836618e10
kelvin-inverse meter relationship	klim	69.503476
kelvin-joule relationship	klj	1.3806488e-23
kelvin-kilogram relationship	klkg	1.5361790e-40
kilogram-atomic mass unit relationship	kgamu	6.02214129e26
kilogram-electron volt relationship	kgev	5.60958885e35
kilogram-hartree relationship	kght	2.061485968e34
kilogram-hertz relationship	kghz	1.356392608e50
kilogram-inverse meter relationship	kgim	4.52443873e41
kilogram-joule relationship	kgj	8.987551787e16
kilogram-kelvin relationship	kgkl	6.5096582e39
lattice parameter of silicon	ltpmsi	543.1020504e-12
lattice spacing of silicon	ltspsi	192.0155714e-12
Loschmidt constant (273.15 K, 100 kPa)	losch	2.6516462e25
Loschmidt constant (273.15 K, 101.325 kPa)	loschs	2.6867805e25
mag. constant	magnetic	12.566370614e-7
mag. flux quantum	magflux	2.067833758e-15
molar gas constant	molg	8.3144621
molar mass constant	molm	1e-3
molar mass of carbon-12	molmc	12e-3
molar Planck constant	molplk	3.9903127176e-10
molar Planck constant times c	molplkc	0.119626565779

Name	Keyword	Value
molar volume of ideal gas		22 710052- 2
(273.15 K, 100 kPa)	molvi	22.710953e-3
molar volume of ideal gas		22 412060- 2
(273.15 K, 101.325 kPa)	molvis	22.413968e-3
molar volume of silicon	molvsi	12.05883301e-6
Mo x unit	mox	1.00209952e-13
muon Compton wavelength	mcpwl	11.73444103e-15
muon Compton wavelength over 2 pi	mcpwltpi	1.867594294e-15
muon-electron mass ratio	melm	206.7682843
muon g factor	muong	-2.0023318418
muon mag. mom.	mmagm	-4.49044807e-26
muon mag. mom. anomaly	mmagma	1.16592091e-3
muon mag. mom. to Bohr magneton ratio	mmagmb	-4.84197044e-3
muon mag. mom. to nuclear magneton ratio	mmagmn	-8.89059697
muon mass	muon	1.883531475e-28
muon mass energy equivalent	munen	1.692833667e-11
muon mass energy equivalent in MeV	munmev	105.6583715
muon mass in u	munu	0.1134289267
muon molar mass	munmol	0.1134289267e-3
muon-neutron mass ratio	munn	0.1124545177
muon-proton mag. mom. ratio	munpmagm	-3.183345107
muon-proton mass ratio	munpm	0.1126095272
muon-tau mass ratio	muntm	5.94649e-2
natural unit of action	nuact	1.054571726e-34
natural unit of action in eV s	nuactev	6.58211928e-16
natural unit of energy	nuen	8.18710506e-14
natural unit of energy in MeV	numev	0.510998928
natural unit of length	nulen	386.15926800e-15
natural unit of mass	numass	9.10938291e-31
natural unit of mom.um	numom	2.73092429e-22
natural unit of mom.um in MeV/c	nummevc	0.510998928
natural unit of time	nutime	1.28808866833e-21

Name	Keyword	Value
natural unit of velocity	nuvel	299792458
neutron Compton wavelength	ntcw	1.3195909068e-15
neutron Compton wavelength over 2 pi	ntcwtpi	0.21001941568e-15
neutron-electron mag. mom. ratio	ntelmagm	1.04066882e-3
neutron-electron mass ratio	ntelm	1838.6836605
neutron g factor	ntg	-3.82608545
neutron gyromag. ratio	ntgy	1.83247179e8
neutron gyromag. ratio over 2 pi	ntgytpi	29.1646943
neutron mag. mom.	ntmagm	-0.96623647e-26
neutron mag. mom. to Bohr magneton ratio	ntmagmb	-1.04187563e-3
neutron mag. mom. to nuclear magneton ratio	ntmagmn	-1.91304272
neutron mass	neutron	1.674927351e-27
neutron mass energy equivalent	nten	1.505349631e-10
neutron mass energy equivalent in MeV	ntmev	939.565379
neutron mass in u	ntu	1.00866491600
neutron molar mass	ntmol	1.00866491600e-3
neutron-muon mass ratio	ntmn	8.89248400
neutron-proton mag. mom. ratio	ntpmagm	-0.68497934
neutron-proton mass difference	ntpmd	2.30557392e-30
neutron-proton mass difference energy equivalent	ntpmden	2.07214650e-13
neutron-proton mass difference energy equivalent in MeV	ntpmdmev	1.29333217
neutron-proton mass difference in u	ntpmdu	0.00138844919
neutron-proton mass ratio	ntp	1.00137841917
neutron-tau mass ratio	ntt	0.528790
neutron to shielded proton mag. mom. ratio	ntspmagm	-0.68499694
Newtonian constant of gravitation	ntng	6.67384e-11
Newtonian constant of gravitation over h-bar c	ntnghbc	6.70837e-39
nuclear magneton	numag	5.05078353e-27
nuclear magneton in eV/T	numagevt	3.1524512605e-8
nuclear magneton in inverse meters per tesla	numagimt	2.542623527e-2

Name	Keyword	Value
nuclear magneton in K/T	numagkt	3.6582682e-4
nuclear magneton in MHz/T	numagmhzt	7.62259357
Planck constant	planck	6.62606957e-34
Planck constant in eV s	plkevs	4.135667516e-15
Planck constant over 2 pi	hbar	1.054571726e-34
Planck constant over 2 pi in eV s	hbarevs	6.58211928e-16
Planck constant over 2 pi times c in MeV fm	hbarcmev	197.3269718
Planck length	plklen	1.616199e-35
Planck mass	plkmass	2.17651e-8
Planck mass energy equivalent in GeV	plkmgev	1.220932e19
Planck temperature	plktemp	1.416833e32
Planck time	plktime	5.39106e-44
proton charge to mass quotient	protchgm	9.57883358e7
proton Compton wavelength	ptcwlen	1.32140985623e-15
proton Compton wavelength over 2 pi	ptcwlentpi	0.21030891047e-15
proton-electron mass ratio	ptelm	1836.15267245
proton g factor	protg	5.585694713
proton gyromag. ratio	ptgy	2.675222005e8
proton gyromag. ratio over 2 pi	ptgytpi	42.5774806
proton mag. mom.	ptmagm	1.410606743e-26
proton mag. mom. to Bohr magneton ratio	ptmagmb	1.521032210e-3
proton mag. mom. to nuclear magneton ratio	ptmagn	2.792847356
proton mag. shielding correction	ptmagsc	25.694e-6
proton mass	proton	1.672621777e-27
proton mass energy equivalent	pten	1.503277484e-10
proton mass energy equivalent in MeV	ptmev	938.272046
proton mass in u	ptu	1.007276466812
proton molar mass	ptmol	1.007276466812e-3
proton-muon mass ratio	ptmun	8.88024331
proton-neutron mag. mom. ratio	ptntmagm	-1.45989806
proton-neutron mass ratio	ptn	0.99862347826
proton rms charge radius	ptrmschg	0.8775e-15

Name	Keyword	Value	
proton-tau mass ratio	ptt	0.528063	
quantum of circulation	qcir	3.6369475520e-4	
quantum of circulation times 2	qcirt	7.2738951040e-4	
Rydberg constant	rydberg	10973731.568539	
Rydberg constant times c in Hz	rydchz	3.289841960364e15	
Rydberg constant times hc in eV	rydhcev	13.60569253	
Rydberg constant times hc in J	rydhcj	2.179872171e-18	
Sackur-Tetrode constant (1 K, 100 kPa)	sktd	-1.1517078	
Sackur-Tetrode constant (1 K, 101.325 kPa)	sktds	-1.1648708	
second radiation constant	srad	1.4387770e-2	
shielded helion gyromag. ratio	shgy	2.037894659e8	
shielded helion gyromag. ratio over 2 pi	shgytpi	32.43410084	
shielded helion mag. mom.	shmagm	-1.074553044e-26	
shielded helion mag. mom. to	- ll-	-1.158671471e-3	
Bohr magneton ratio	shmagmb		
shielded helion mag. mom. to	s la ma sma	2 127407710	
nuclear magneton ratio	shmagmn	-2.127497718	
shielded helion to proton mag. mom. ratio	shptmagm	-0.761766558	
shielded helion to shielded proton mag.	shspmagm	-0.7617861313	
mom. ratio	3113piiiagiii	0.7017001313	
shielded proton gyromag. ratio	spgy	2.675153268e8	
shielded proton gyromag. ratio over 2 pi	spgytpi	42.5763866	
shielded proton mag. mom.	spmagm	1.410570499e-26	
shielded proton mag. mom. to	spmagmb	1.520993128e-3	
Bohr magneton ratio	Spillagillo	1.3209931286-3	
shielded proton mag. mom. to	c nm 2 gmn	2.792775598	
nuclear magneton ratio	spmagmn	2./92//5596	
speed of light in vacuum	light	299792458	
standard acceleration of gravity	grav	9.80665	
standard atmosphere	atm	101325	
standard-state pressure	stdp	100000	
Stefan-Boltzmann constant	stbolz	5.670373e-8	

Name	Keyword	Value
tau Compton wavelength	tucwlen	0.697787e-15
tau Compton wavelength over 2 pi	tucwlentpi	0.111056e-15
tau-electron mass ratio	tel	3477.15
tau mass	tau	3.16747e-27
tau mass energy equivalent	tauen	2.84678e-10
tau mass energy equivalent in MeV	taumev	1776.82
tau mass in u	tauu	1.90749
tau molar mass	taumol	1.90749e-3
tau-muon mass ratio	taumun	16.8167
tau-neutron mass ratio	taunt	1.89111
tau-proton mass ratio	taupt	1.89372
Thomson cross section	tmcrs	0.6652458734e-28
triton-electron mass ratio	triel	5496.9215267
triton g factor	trig	5.957924896
triton mag. mom.	trimagm	1.504609447e-26
triton mag. mom. to Bohr magneton ratio	trimagmb	1.622393657e-3
triton mag. mom. to nuclear magneton ratio	trimagmn	2.978962448
triton mass	triton	5.00735630e-27
triton mass energy equivalent	trien	4.50038741e-10
triton mass energy equivalent in MeV	trimev	2808.921005
triton mass in u	triu	3.0155007134
triton molar mass	trimol	3.0155007134e-3
triton-proton mass ratio	tript	2.9937170308
unified atomic mass unit	uamu	1.660538921e-27
von Klitzing constant	vkiltz	25812.8074434
weak mixing angle	wmix	0.2223
Wien frequency displacement law constant	wfreqd	5.8789254e10
Wien wavelength displacement law constant	wwlend	2.8977721e-3

15. メッセージ一覧

15-1. エラーメッセージー覧 本ソフトウエアで表示されるエラーメッセージの一覧です。

画面上の表示	日本語での意味
Bad argument count	引数の個数が不正
Bad argument type	不正な要素の型
Bad element	不正な要素の型
Bad matrix size	不正な行列のサイズ
Bad tuple size	不正なベクトルのサイズ
Determinant is zero	行列式がゼロ
Division by zero	ゼロ除算
Empty input	スペースのみの入力
Failed to output file	ファイル出力に失敗
Final page of register	レジスタの最後のページ
Final page of stack	スタックの最後のページ
First page of register	レジスタの最初のページ
First page of stack	スタックの最初のページ
Invalid input	不正な入力
Invalid range	不正な範囲
Invalid value	不正な値
Latest history	最新の状態
Logarithm of zero	ゼロの対数
Maximum integer	最大の整数
Minimum integer	最小の整数
Negative-th power of zero	ゼロの負数乗
No history	履歴がない
No older history	もっとも古い履歴
Not a positive integer	正の整数ではない
Registers are empty	レジスタが空
Selected register is empty	指定レジスタが空

画面上の表示	日本語での意味
Stack and registers are empty	スタックもレジスタも空
Stack is empty	スタックが空
Too few arguments	引数が足りない
Too large or small input	サポート外の値
Too large to operate	値が大きすぎて処理を中断
Unsupported in current version	現バージョンで非対応
Unsupported operation or notation	サポート外の入力
Zero-th power of zero	ゼロのゼロ乗

15-2. 確認メッセージ一覧

本ソフトウエアで表示される確認メッセージの一覧です。

画面上の表示	日本語での意味
Error calculation	計算中にエラーが発生した
Floating overflow	浮動小数点オーバーフロー
Integer overflow	整数オーバーフロー
Rational overflow	有理数オーバーフロー

オーバーフローとは、桁あふれのことです。

15-3. 入力待ち・入力確認メッセージ一覧 入力待ち・入力確認メッセージの一覧です。

画面上の表示	日本語での意味
Cancelled	キャンセルされた
Done	実行された
Input integer	整数を入力
Maximum value set	最大値がセットされた
Minimum value set	最小値がセットされた
OK? Y/N	YES/NO のいずれかを入力
Setting completed	正常に設定された

16. 技術情報

16-1. 本ソフトウエアの型

本ソフトウエアで扱っているデータの型の詳細は、次のとおりです。

種別		型名	説明	扱える値
		Integer	整数	64 ビット整数
* <i>F</i>	カラ	Floating	浮動小数点数	long double
数	Ì	Rational	有理数	64 ビット整数 2 つ
		Complex	複素数	スカラー2つ
Arb.		Boolean	ブール代数	True, False
(符号なし整数	バ	Byte	バイト	符号なし8ビット整数
なし	イナリ	Word	ワード	符号なし 16 ビット整数
整粉	ý	Dword	ダブルワード	符号なし32ビット整数
数		Qword	クアッドワード	符号なし 64 ビット整数
10	A III	Tuple	ベクトル	数またはバイナリの組
組	Matrix	行列	ベクトルの組	
非数	Infinity	無限大	プラス、マイナス、複素	
	String	文字列	文字列	
*^		Error	エラー	文字列

整数オーバーフローが検知されると、浮動小数点数にキャストするようになっています。 浮動小数点数オーバーフローが検知されると、無限大に変換されるようになっています。

16-2. 計算精度

本ソフトウエアは、エンジニアが手軽に使える電卓を目指しましたが、**精度保証はしていない**ため、特別な精度が要求される計算には向きません。

内部精度は(あくまで参考値ですが)10進数で15桁ほどです。実際の内部表現は2進数となっているため、浮動小数点演算において、特有の計算機誤差が見込まれます。ちなみに、計算機誤差の補正は行わない仕様となっていますので、あらかじめご了承ください。

16-3. 数学的定義

本ソフトウエアで採用している数学的定義です。

16-3-1. 整数剰余

負数を含む整数剰余の定義は次のとおりとします。

A÷B	商	剰余
負数÷負数	(-A)÷(-B)	-((-A) mod (-B))
負数÷正数	-((-A)÷B)	-((-A) mod B)
ゼロ÷非ゼロ	0	0
正数÷負数	-(A÷(-B))	(-A) mod B
正数÷正数	A÷B	A mod B

16-3-2. 負数の奇数根

負数について、立方根、5乗根などの奇数根は実数で定義しません。たとえば、-1の 立方根を-1とはしません。

負数の奇数根の定義は、複素数の範囲内で行い、次の式に従います。

$$\sqrt[N]{a+ib} = \sqrt[N]{r} \exp(i\theta/N)$$

$$= \sqrt[N]{r}(\cos\theta/N + i\sin\theta/N)$$

16-3-3. 複素数の定義

複素数の絶対値 abs と偏角 arg を次のように定義しています。

$$abs(a+ib) = r = \sqrt{a^2 + b^2}$$

$$arg(a+ib) = \theta = \begin{cases}
atan(b/a) & (a > 0) \\
\pi/2 & (a = 0, b > 0) \\
-\pi/2 & (a = 0, b < 0) \\
\pi - atan(b/a) & (a < 0, b > 0) \\
atan(b/a) - \pi & (a < 0, b < 0) \\
all real number & (a = b = 0)
\end{cases}$$

これをもとにして、後述の複素関数を定義します。

16-3-4. 複素関数 複素関数は次のように定義しています。

関数	定義
平方根	$\sqrt{a+ib} = \sqrt{r} \exp(i\theta/2)$
1 万位	$= \sqrt{r}(\cos\theta/2 + i\sin\theta/2)$
 立方根	$\sqrt[3]{a+ib} = \sqrt[3]{r} \exp(i\theta/3)$
12.71/1X	$= \sqrt[3]{r}(\cos\theta/3 + i\sin\theta/3)$
指数関数	$\exp(a+ib) = \exp(a)(\cos b + i\sin b)$
自然対数	$\ln(a+ib) = \ln r + i\theta$
幕乗	$(a+ib)^{c+id} = r^c e^{-d\theta} \{\cos(c\theta + d \ln r)$
布木	$+i\sin(c\theta+d\ln r)$
SIN	$\sin(a+ib) = \sin a \cosh b + i \cos a \sinh b$
COS	$\cos(a+ib) = \cos a \cosh b - i \sin a \sinh b$
TAN	$\tan(a+ib) = \frac{1}{2} \cdot \frac{\sin 2a}{\cos^2 a + \sinh^2 b} + i\frac{1}{2} \cdot \frac{\sinh 2b}{\cos^2 a + \sinh^2 b}$
ASIN	$a\sin(Z) = -i\ln\left(\sqrt{1-Z^2} + Zi\right)$
ACOS	$a\cos(Z) = -i\ln\left(Z + i\sqrt{1 - Z^2}\right)$
ATAN	$\operatorname{atan}(Z) = \frac{i}{2} \ln \left(\frac{i+Z}{i-Z} \right) (Z \neq \pm i)$
SINH	$\sinh(a+ib) = \sinh a \cos b + i \cosh a \sin b$
COSH	$\cosh(a+ib) = \cosh a \cos b + i \sinh a \sin b$
TANH	$\tanh(a+ib) = \frac{\sinh 2a}{\cosh 2a + \cos 2b} + i \frac{\sin 2b}{\cosh 2a + \cos 2b}$
ASINH	$a\sinh Z = \ln\left(Z + \sqrt{Z^2 + 1}\right)$
ACOSH	$\operatorname{acosh} Z = \ln \left(Z + \sqrt{Z + 1} \sqrt{Z - 1} \right)$
ATANH	$\operatorname{atanh} Z = \frac{1}{2} \ln \left(\frac{1+Z}{1-Z} \right) (Z \neq \pm 1)$

17. トラブルシューティング

17-1. まったく操作がわからない

ソフトウェアを再起動し、4章「基本操作~四則演算してみよう」をお読みください。

本ソフトウエアは逆ポーランド記法 (スタック方式) を採用しています。操作するには、 スタックを理解する必要があります。

17-2. 異常な計算結果が出た

ソフトウェアを再起動し、同じ操作を行って、結果をおたしかめください。

なお、本ソフトウエアでは、内部的に数を2進数で管理しているため、特有の計算機誤差を生じる場合があります。「0.1 となるはずが、0.0999…のように表示される」という誤差は仕様の範囲内ですので、あらかじめご了承ください。

17-2-1. キーワードを確認

スペルの似た他のキーワードを使用していませんか。呼び出す演算のキーワードが 誤っていないか、確認しましょう。

14章「キーワード一覧」でご確認ください。

17-2-2. 表示モードを確認

見づらい表示になっていませんか。表示モードを変更し、結果を確認しましょう。 モード変更については、3章「設定・表示切り替え」をお読みください。

17-2-3. 角度モードを確認

計算しようとしている式の角度の単位を確認しましたか。三角関数や複素偏角の計算の場合、指定されている角度モードによって、異なる関数が呼ばれます。

たとえば、度数法モードの際にサインを指定すると度数法のサインが実行されますが、ラジアンモードのときはラジアンのサインが実行されます。

モード変更については、3章「設定・表示切り替え」をお読みください。

17-2-4. 入力する値の大きさを確認

関数によっては、入力される値によって、著しい誤差を生じるものがあります。たと えば、三角関数は非常に大きな値の入力に対しては、信頼できない結果となります。

また、複素関数が定義できる場合については、実数の範囲の定義域も確認しましょう。 16章「技術情報」も合わせてお読みください。

17-2-5. 演算の順番を確認

数学的に同じ結果になる式でも、演算の順番によって、誤差を生じやすくなる場合が あります。無理数を含む式を有理化するなど、誤差を生じにくい式に変形して試しましょう。

17-2-6. それでも異常な結果に見える

疑わしい結果が出た場合、「バグと思われる挙動を見つけた」をお読みください。

17-3. エラーになって計算できない

計算しようとしているデータの型をおたしかめください。たとえば、浮動小数点数の階乗は計算できません。また、ベクトルや行列の場合、サイズや要素の型も問題になります。

ただ、明らかに定義できるはずの演算についてエラーになる場合、バグの可能性がありますので、連絡していただけると幸いです。

17-3-1. 型を確認

画面左側、TYPE の列で型を確認しましょう。表示されていない場合、キーワード「type」で切り替えます。型によっては定義不能な演算となります。

17-3-2. 値を確認

異常な値で計算しようとしていませんか。型が正常でも、値によっては演算を定義できない場合があります。たとえば、ゼロの対数は定義されません。

17-3-3. ベクトルや行列のサイズを確認

計算しようとしているベクトルや行列のサイズを確認しましょう。ベクトルの場合、 向きにも注意しましょう。

17-3-4. エラーメッセージを確認

15章「メッセージ一覧」から、エラーメッセージの意味を確認できます。

17-4. 画面表示を変えたい

本ソフトウエアには多数の表示モードがあるため、理解しづらい表示となる場合があります。3章「設定・表示切り替え」を読みながら、見やすい表示に設定しましょう。

なお、値の表示の右端が「...」と表示される場合、キーワード「v」(VIEW モード)で全体が見られます。

17-5. バグと思われる挙動を見つけた

画面表示の乱れや、疑わしい計算結果・挙動に気がついた場合、再現手順を添えて、ご連絡ください。数学的に不自然な仕様にお気づきの場合も、報告していただけると助かります。

ECKERT 紹介ページ

http://sfoftime.web.fc2.com/eckert

作者宛て E メールアドレス

only.my.truth@gmail.com

ECKERT および本ドキュメントの著作権は、作者である菊地唯真に属します。