Chapitre 7

Géométrie dans l'Espace (sans coordonnées)

L'histoire de deux résolveurs de problèmes (Ombres cubiques moyennes) Moiré effect/illusion - live Geogebra build Charme fractal : courbes remplissant l'espace

7.1 Perspective Cavalière

$Rappel\ Perspective\ Cavali\`ere:$

- $\bullet\,$ permet de la représentation d'objet 3D en 2D
- <u>angle de fuite</u> : $30^{\circ} \le \alpha \le 60^{\circ}$ (par rapport à l'horizontale); il donne une impression de perspective
- coefficient de réduction : $0.5 \leqslant k \leqslant 0.7$ qui multiplie les longueurs (en profondeur)

: $0.5 \leqslant k \leqslant 0.7$ qui en profondeur)

 T^{ale} S - Math13Net 2024 - 2025

7.2 Droite et Plan

Définition (dans l'espace) :

- <u>droite</u> : c'est la donnée de 2 points distincts ces 2 points permettent alors de définir 1 repère (sur une droite)
- p<u>lan</u>: c'est la donnée de 3 points non alignés ces 3 points permettent alors de définir 1 repère (sur ce plan)
- repère : c'est donc la donnée de 4 points non coplanaires

Remarque, exemple:

- 1 plan peut aussi être défini par la donnée de 2 droites sécantes ou strictement parallèles
- exemple : dans le cube ABCDEFGH, le plan $\mathcal{P} = (AEC)$ peut être défini par :
 - les points A, E, C
 - les droites (EC) et (AG)
 - les droites (AE) et (CG)

2 droites (dans l'espace) sont :

- coplanaires: pour le plan (AEG)
 - sécantes : $(AE) \cap (AG) = \{A\}$
 - parallèles : (AE) // (GC)
- non coplanaires : (AE) et (HC)

2 droites sont donc parallèles, sécantes ou non coplanaires

1 droite et 1 plan (dans l'espace) sont :

- $\underline{s\acute{e}cants}$:
 - sécants en 1 point : $(HI) \cap \mathcal{P} = \{I\}$
 - inclus : $(AB) \subset \mathcal{P}$
- $parall\`{e}les: (EF) // \mathcal{P} = (ABC)$

 $T^{ale} S - Math 13Net$ 2024 - 2025

2 plans (dans l'espace) sont :

• $\underline{s\acute{e}cants}: \mathcal{P}_3 \cap \mathcal{P}_1 = (BC)$

• $parall\`{e}les: \mathcal{P}_1 \ // \ \mathcal{P}_2$

7.3 Parallélisme

Proriété:

$$\bullet \ \, \underbrace{Si} \quad \begin{array}{c} d_1 \ , \ d_2 \subset \mathcal{P}_1 \\ d_1 \ , \ d_2 \ \text{sécantes} \\ d_1 \ , \ d_2 \ // \ \mathcal{P}_2 \end{array} \right\} \underbrace{Alors}_{} \mathcal{P}_1 \ // \ \mathcal{P}_2$$

•
$$\underline{Si}$$
 $\stackrel{\mathrm{d}}{\sim} \frac{//|\mathcal{P}_1|}{\mathcal{P}_1 \cap \mathcal{P}_2 = \Delta}$ $\frac{\mathbf{Alors}}{\sim} d //|\Delta|$

$$\begin{array}{ccc} & d_1 \ // \ d_2 \\ \bullet \ \underline{Si} & d_1 \subset \mathcal{P}_1 \ , \ d_2 \subset \mathcal{P}_2 \\ & \mathcal{P}_1 \cap \mathcal{P}_2 = \Delta \end{array} \right\} \ \underline{Alors} \ \Delta // d_1 // d_2$$

$$\bullet \ \underline{Si} \quad \begin{array}{ll} \mathcal{P}_1 \ / / \ \mathcal{P}_2 \\ \mathcal{P}_3 \cap \mathcal{P}_1 = d_1 \end{array} \right\} \ \underline{\boldsymbol{Alors}} \left\{ \begin{array}{ll} \mathcal{P}_2 \cap \mathcal{P}_1 = d_2 \\ d_1 \ / / \ d_2 \end{array} \right.$$

7.4 Exemples de Section - Solide Classique

On pourra visualiser les sections Solide Classique / Plan!! Allez voir!!

Pour vous entrainer, faire les sujets type BAC suivants :

Cube : Faire Pondichéry 2016 Ex 3 Octaèdre : Faire Liban 2016 Ex 1

7.5 Orthogonalité

 $\boldsymbol{D\acute{e}finition}: 2$ droites d_1 , d_2 de l'espace

- perpendiculaire: d_1 et d_2 se coupent perpendiculairement
- <u>orthogonale</u> : $\exists \Delta // d_1$ tq Δ et d_2 se coupent perpendiculairement (voir figure)
- dans les 2 cas, on note : $d_1 \perp d_2$ la confusion entre les 2 mots sera pardonnée!

Proriété :

$$\bullet \ \underline{Si} \quad \begin{array}{c|c} d_1 \ // \ d_2 \\ d_3 \perp d_1 \end{array} \right\} \ \underline{Alors} \ d_3 \perp d_2$$

•
$$d \perp \mathcal{P} \quad \Leftrightarrow \left\{ \begin{array}{l} \exists d_1 \ , d_2 \ \text{sécantes} \ \subset \mathcal{P} \ \text{tq} : \\ d \perp d_1 \ \text{et} \ d \perp d_2 \end{array} \right.$$

$$\bullet \ \underline{Si} \quad \begin{array}{ll} d \perp \mathcal{P} \\ d \cap \mathcal{P} = I \\ I \in d_1 \subset \mathcal{P} \end{array} \right\} \underline{Alors} \, d_1 \perp d \ (\text{voir figure})$$

Application:

On considère le cube ABCDEFGH ci contre de côté 4 cm. I, J, K et L sont les milieux respectifs de [GH], [AB], [EF] et [CD].

- 1) Le point F appartient-il au segment [IC]?
- 2) Justifier que EG = GB = BD = DE. Peut-on en déduire que EGBD est un losange?
- 3) Démontrer que le quadrilatères EIGK, GKJC et EICJ sont des parallélogrammes.
- 4) Démontrer que EICJ est un losange.
- 5) Le quadrilatère EICJ est-il un carré?

