MA2101S Homework 5

Question 1

For any $n\in\mathbb{N}$, $p_n(X):=nX^{n+1}-(n+1)X^n+1\in\mathbb{Q}[X]$. Show that there exists $q_n\in\mathbb{Q}[X]$ such that $p_n(X)=(X-1)^2q_n(X)$.

Proof. Consider $q_n(X):=\sum_{i=0}^{n-1}(i+1)X^i\in\mathbb{Q}[X].$ Now compute $(X-1)^2q_n(X)$,

$$\begin{split} (X-1)^2q_n(X) &= (X^2-2X+1)q_n(X) \\ &= X^2q_n(X) - 2Xq_n(X) + q_n(X) \\ &= X^2\sum_{i=0}^{n-1}(i+1)X^i - 2X\sum_{i=0}^{n-1}(i+1)X^i + \sum_{i=0}^{n-1}(i+1)X^i \\ &= \sum_{i=0}^{n-1}(i+1)X^{i+2} - \sum_{i=0}^{n-1}2(i+1)X^{i+1} + \sum_{i=0}^{n-1}(i+1)X^i \\ &= \sum_{i=2}^{n+1}(i-1)X^i - \sum_{i=1}^{n}2iX^i + \sum_{i=0}^{n-1}(i+1)X^i \\ &= \sum_{i=1}^{n+1}(i-1)X^i - \sum_{i=1}^{n}2iX^i + \sum_{i=0}^{n-1}(i+1)X^i \\ &= \sum_{i=1}^{n-1}(i-1)X^i - \sum_{i=1}^{n}2iX^i + \sum_{i=0}^{n-1}(i+1)X^i + nX^{n+1} + (n-1)X^n \\ &= \sum_{i=1}^{n-1}(i-1)X^i - \sum_{i=1}^{n-1}2iX^i + \sum_{i=0}^{n-1}(i+1)X^i + nX^{n+1} - (n+1)X^n \\ &= \sum_{i=1}^{n-1}\left[(i-1)X^i - 2iX^i + (i+1)X^i\right] + nX^{n+1} - (n+1)X^n + 1 \\ &= \sum_{i=1}^{n-1}0 + nX^{n+1} - (n+1)X^n + 1 \\ &= nX^{n+1} - (n+1)X^n + 1 = p_n \end{split}$$

Therefore $p_n(X)$ is divisible by $(X-1)^2$.

Qi Ji (A0167793L) 2

Question 2

Let K be a field, and let $a,b \in K$ with $a \neq 0$. Show that $(aX+b)^0, (aX+b)^1, (aX+b)^2, ...$ form a basis for K[X].

Linear independence. *Proof.* Consider any finite subset of naturals $S\subseteq\mathbb{N}$. The claim is that $\left\{(aX+b)^s\right\}_{s\in S}$ – an arbitrary finite subset of $\left\{(aX+b)^i\right\}_{i\in\mathbb{N}}$, is linearly independent. To prove linear independence, proceed by induction on |S|.

Base cases. If |S| = 0 or |S| = 1, linear independence is trivial.

Induction hypothesis. Suppose for any $T\subseteq \mathbb{N}$ with |T|=n-1, $\{(aX+b)^t\}_{t\in T}$ is linearly independent.

Now consider $S \subseteq \mathbb{N}$ with |S| = n. Let $\omega \in S$ be the largest element in S, that is for any $s \in S$, $s \leqslant \omega$. Because S is finite and non-empty, ω actually exists. Consider this equation,

$$\sum_{s \in S} c_s (aX+b)^s = 0 \qquad \text{in } \mathbb{Q}[X]$$

where $(c_s)_{s\in S}\in K$ are coefficients indexed by S. Comparing the coefficient of X^ω , $c_\omega a^\omega=0$, then because $a^\omega\neq 0$, $c_\omega=0$. Then the equation reduces to,

$$\sum_{s \in S \backslash \{\, \omega \,\}} c_s (aX+b)^s = 0 \qquad \text{in } \mathbb{Q}[X]$$

then from induction hypothesis, because $|S\setminus\{\omega\}|=n-1$, using linear independence, all the coefficients $(c_s)_{s\in S\setminus\{\omega\}}$ are zero, together with our earlier conclusion that $c_\omega=0$, completes the proof that $\{(aX+b)^s\}_{s\in S}$ is linearly independent.

Hence any finite subset of $\{(aX+b)^0, (aX+b)^1, (aX+b)^2, ...\}$ is linearly independent. \Box

Spanning. Proof. To show that $\left\{\,(aX+b)^i\,\right\}_{i\in\mathbb{N}}$ spans K[X], proceed by induction on the degree of the polynomial that lies in K[X].

Base cases. Trivial to see that zero polynomial is spanned. Since $(aX+b)^0=1$, all degree 0 polynomials are spanned too.

Induction hypothesis. Suppose any polynomial of degree strictly less than n is spanned by $\{(aX+b)^i\}_{i\in\mathbb{N}}$.

Let $f\in K[X]$ with $\deg(f)=n$, so $f=\sum_{i=0}^n f_iX^i$, where $f_0,\dots,f_n\in K$ are coefficients with $f_n\neq 0$. From binomial theorem,

$$\begin{split} (aX+b)^n &= \sum_{r=0}^n \binom{n}{r} (aX)^r b^{n-r} \\ &= a^n X^n + \sum_{r=0}^{n-1} \binom{n}{r} (aX)^r b^{n-r} \end{split}$$

as $a^n \neq 0$, proceed to compute $f - \frac{f_n}{a^n} (aX + b)^n$,

$$\begin{split} f - \frac{f_n}{a^n} (aX + b)^n &= f_n X^n + \sum_{i=0}^{n-1} f_i X^i - \frac{f_n}{a^n} \left(a^n X^n + \sum_{r=0}^{n-1} \binom{n}{r} (aX)^r b^{n-r} \right) \\ &= f_n X^n + \sum_{i=0}^{n-1} f_i X^i - f_n X^n - \frac{f_n}{a^n} \sum_{r=0}^{n-1} \binom{n}{r} a^r X^r b^{n-r} \\ &= \sum_{r=0}^{n-1} \left(f_r X^r - \frac{f_n}{a^n} \binom{n}{r} a^r b^{n-r} X^r \right) \\ &= \sum_{r=0}^{n-1} \left(f_r - \frac{f_n}{a^n} \binom{n}{r} a^r b^{n-r} \right) X^r \end{split}$$

This means $f-\frac{f_n}{a^n}(aX+b)^n$ is a polynomial with degree at most n-1, so by induction hypothesis, it is spanned by $\left\{\,(aX+b)^i\,\right\}_{i\in\mathbb{N}}$. So there exists a finite subset $S\subseteq\mathbb{N}$, and coefficients $(c_s)_{s\in S}\in K$ indexed by S such that

$$f - \frac{f_n}{a^n} (aX + b)^n = \sum_{s \in S} c_s (aX + b)^s,$$

which gives

$$f = \sum_{s \in S} c_s (aX + b)^s + \frac{f_n}{a^n} (aX + b)^n.$$

By strong induction, any polynomial is spanned by $\left\{\,(aX+b)^{\,i}\,\right\}_{i\in\mathbb{N}}$. Therefore $\left\{\,(aX+b)^{\,i}\,\right\}_{i\in\mathbb{N}}$ forms a basis for K[X].

Question 3

Let K be a field, and let $h \in K[X]$ be a polynomial with $\deg(h) \geqslant 1$. Consider the linear endormorphism Φ of K[X] given by

$$\Phi: K[X] \to K[X], \qquad f \mapsto f(h).$$

- (a) Show that Φ is injective.
- (b) Show that Φ is an isomorphism if and only if $\deg(h) = 1$.

Proposition. For any nonzero polynomials $f, g \in K[X]$, $\deg(f(g)) = \deg(f) \deg(g)$.

Proof. Let $f_0,\dots,f_m\in K$ such that $f=\sum_{i=0}^m f_iX^i$ and $g_0,\dots,g_n\in K$ such that $g=\sum_{j=0}^n g_jX^j$, with $f_m\neq 0$ and $g_n\neq 0$, where $m=\deg(f), n=\deg(g), m, m\geqslant 0$, then

$$\begin{split} f(g) &= \sum_{i=0}^m f_i g^i \\ &= \sum_{i=0}^m f_i \left(\sum_{j=0}^n g_j X^j \right)^i \end{split}$$

As $\deg(g^i)=i\cdot \deg(g)$ for any $i\in\mathbb{N}$, $\deg(f(g))\leqslant m\cdot \deg(g)$. Also note that in f(g), the coefficient of X^{mn} is $f_mg_n^m$, which is nonzero, therefore $\deg(f(g))=mn=\deg(f)\deg(g)$. \square

- (a) Proof. To show injectivity, proceed to show that Φ has a trivial kernel. Suppose for a contradiction Φ has a non-trivial kernel, that is there exists $f \in K[X]$, with $\deg(f) \geqslant 0$, and $\Phi(f) = 0$. This means $\deg(\Phi(f)) = \deg(0) = -\infty$, but because both f,h are nonzero polynomials, by proposition above, $\deg(f(h)) = \deg(f) \deg(h) \geqslant 0$ which is a contradiction. \square

Conversely suppose $\deg(h) \geqslant 2$, the claim is that $X \notin \operatorname{Im}(\Phi)$. Consider the degree of the polynomial (point) we evaluate Φ at, for any $f \in K[X]$,

- Case $\deg(f) = -\infty$, $\Phi(f) = 0$, and $\deg(\Phi(f)) = -\infty$,
- Case deg(f) = 0, $\Phi(f) = f$ is degree 0,
- Case $deg(f) \ge 1$, $\Phi(f) = f(h)$ has $degree deg(f) deg(h) \ge 2$.

This means that no degree 1 polynomial lies in $\operatorname{Im}(\Phi)$, therefore Φ is not an isomorphism. \square

Question 4

Let K be a field of characteristic 0. Consider the linear endormorphism S of K[X] given by

$$S:K[X]\to K[X], \qquad \sum_{n=0}^d a_n X^n \mapsto \sum_{n=0}^d \frac{a_n}{n+1} X^{n+1}.$$

Let $V \subseteq K[X]$ be a non-zero subspace which is stable under S. Show that V is not finite-dimensional.

Proof. Suppose for a contradiction that $V\subseteq K[X]$ is non-zero, stable under S and is finite-dimensional, then V has a finite basis \mathcal{B} . Note that since V is not the zero subspace, \mathcal{B} is non-empty. Consider $\deg(\mathcal{B})\subseteq \mathbb{N}$, a finite and non-empty subset of natural numbers. Let $\omega\in\deg(\mathcal{B})$ be the largest element, that is, for any $d\in\deg(\mathcal{B})$, $d\leqslant\omega$. This means that there exists $z\in\mathcal{B}$ such that $\deg(z)=\omega$, and for any $b\in\mathcal{B}$, $\deg(b)\leqslant\deg(z)$.

As linear combination of polynomials do not increase the degree, for any $v\in \mathrm{span}(\mathcal{B})=V$, $\deg(v)\leqslant \omega$. But now, consider S(z). Let $z_0,\ldots,z_\omega\in K$ with $z_\omega\neq 0$ such that $z=\sum_{i=0}^\omega z_iX^i$, then

$$\begin{split} S(z) &= S\left(\sum_{i=0}^{\omega} z_i X^i\right) \\ &= \sum_{i=0}^{\omega} \frac{z_i}{i+1} X^{i+1} \end{split}$$

which has degree $\omega+1$, as $\frac{z_\omega}{\omega+1}\neq 0$. Then from our earlier conclusion that any $v\in V$ has degree less than or equal to ω , we have $z\in V$, but $S(z)\notin V$, which contradicts fact that V is stable under S. \square

Question 5

Let K be a field of characteristic 0. Consider the linear endomorphism D of K[X] given by

$$D:K[X]\to K[X], \qquad \sum_{n=0}^d a_n X^n \mapsto \sum_{n=1}^d n a_n X^{n-1}.$$

Let $V \subseteq K[X]$ be a finite dimensional subspace. Show that D is nilpotent on V, i.e. there exists $m \in \mathbb{N}$ such that for any $f \in V$, one has $D^m(f) = 0$.

Claim. For any nonzero $f \in K[X]$, $D^{\deg(f)+1}(f) = 0$.

Proof (of claim). Proceed by induction on $\deg(f)$, case $\deg(f)=0$, it is clear that $D^1(0)=0$. (There are no terms in a sum from 1 to 0.) Suppose for any $g\in K[X]$ with $\deg(g)=n-1$, $D^n(g)=0$.

Consider $f \in K[X]$ with $\deg(f) = n$, so $f_0, \ldots, f_n \in K$ with $f_n \neq 0$ such that $f = \sum_{i=0}^n f_i X_i$, then by induction hypothesis,

$$\begin{split} D^{n+1}(f) &= D^n \left(D(f) \right) \\ &= D^n \left(D \left(\sum_{i=0}^n f_i X^i \right) \right) \\ &= D^n \left(\sum_{i=1}^n i f_i X^{i-1} \right) \\ &= 0 \end{split}$$

Therefore by induction, for any nonzero $f \in K[X]$, $D^{\deg(f)+1}(f) = 0$. \square An immediate corollary is that for any $f \in K[X]$, for any $m \in \mathbb{N}$, where $m > \deg(f)$, $D^m(f) = 0$.

Proof (of Q5). V is finite dimensional, so V has a finite basis \mathcal{B} . In the case that V is the zero subspace, D(0)=0 so D is nilpotent. For cases where V is a non-zero subspace of K[X], \mathcal{B} is non-empty. Consider $\deg(\mathcal{B})\subseteq\mathbb{N}$, which is a finite and non-empty subset of natural numbers. It has the largest element ω , where for any $d\in\deg(\mathcal{B})$, $d\leqslant\omega$. This means that there exists $z\in\mathcal{B}$ such that $\deg(z)=\omega$, and for any $b\in\mathcal{B}$, $\deg(b)\leqslant\deg(z)$.

As linear combination of polynomials do not increase the degree, for any $v \in \operatorname{span}(\mathcal{B}) = V$, $\deg(v) \leqslant \omega$. For $0 \in V$, $D^{\omega+1}(0) = 0$ is trivial. For any nonzero $v \in V$, as $\omega+1 > \deg(v)$, by claim, $D^{\omega+1}(v) = 0$. Therefore D is nilpotent. \square

Question 6

Let K be a field. For each $t \in K$, "evaluation at t" gives a linear functional $\operatorname{eval}_t \in K[X]^{\vee}$ on the K-vector space K[X]:

$$\operatorname{eval}_t: K[X] \to K, \qquad f \mapsto f(t),$$

which has the property that for any $f,g\in K[X]$, one has

$$eval(fg) = eval(f) eval(g)$$
 in K .

Show that for any linear functional $\varphi \in K[X]^{\vee}$ with property that for any $f,g \in K[X]$, one has

$$\varphi(fg) = \varphi(f)\varphi(g) \qquad \text{ in } K,$$

 $\text{then either } \varphi = 0 \text{ in } K[X]^\vee \text{ or there exists } t \in K \text{ such that } \varphi = \operatorname{eval}_t \text{ in } K[X]^\vee.$

Proof. Let $\varphi \in K[X]^{\vee}$ be any multiplicative linear functional. By multiplicative property, $\varphi(1) = \varphi(1) \cdot \varphi(1)$, then $\varphi(1) = 0$ or $\varphi(1) = 1$.

 $\mathsf{Case}\,\varphi(1)=0, \mathsf{then}\,\mathsf{for}\,\mathsf{any}\,f\in K[X], \varphi(f)=\varphi(1\cdot f)=\varphi(1)\cdot \varphi(f)=0, \mathsf{so}\,\varphi\,\mathsf{is}\,\mathsf{the}\,\mathsf{zero}\,\mathsf{functional}.$

Case φ nonzero and $\varphi(1)=1$, for any $f\in K[X]$, let $f_0,\ldots,f_d\in K$ such that $f=\sum_{i=0}^d f_iX^i$, where $d=\deg(f)$, then by linearity and multiplicative property,

$$\begin{split} \varphi(f) &= \varphi\left(\sum_{i=0}^d f_i X^i\right) \\ &= f_0 \varphi(1) + \sum_{i=1}^d f_i \varphi(X^i) \\ &= f_0 + \sum_{i=1}^d f_i \varphi(X)^i \end{split}$$

define $t := \varphi(X) \in K$, then

$$\begin{aligned} \operatorname{eval}_t(f) &= f(t) \\ &= \sum_{i=0}^d f_i t^i \\ &= f_0 + \sum_{i=1}^d f_i t^i \end{aligned}$$

Since f was arbitrary, we see that by setting $t = \varphi(X) \in K$, $\varphi = \operatorname{eval}_t$.

Qi Ji (A0167793L)