CIRCUITOS DIGITAIS

MAPA DE KARNAUGH

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Literais

variável na forma direta (x) ou inversa (x')

Termos

- Termo-soma: soma (OR) de literais
 - Exemplos: A+B', B + C + D`,
- **Termo-produto**: produto (AND) de literais
 - Exemplos: AB, ABC'

- Termo-normal: Termo soma ou termo produto no qual nenhum literal aparece mais de uma vez
 - Exemplos: AB, ABC'
 - Não é termo-normal : AA, AA'
- Soma-de-produtos: Quando dois ou mais termosproduto são somados por uma adição Booleana, a expressão resultante é uma soma-de-produtos
 - Exemplos:

- Produto-de-somas: Quando dois ou mais termossoma são multiplicados, a expressão resultante é um produto-de-somas
 - Exemplos:

$$(A + B)(A + B + C)$$

 $(A + B + C)(C + D + E)(B' + C + D')$
 $A(A' + B + C')(B' + C + D)$

Lembrar dos parenteses!!

Formas Padrão de Funções Booleanas

- Qualquer função booleana de n variáveis pode ser expressa através de :
 - Soma-de-produtos padrão → todos termos-produto contém todas n variáveis da função
 - Exemplo: F(A, B, C) = AB + ABC não é uma soma de produtos padrão porque o termo-produto AB não contém a variável C
 - F(A, B, C) = A'B'C + ABC' é uma soma de produtos padrão porque todos termo-produtos contem todas variáveis da função ABC
 - Produto-de-somas padrão → todos termos-produto contém todas n variáveis da função

Soma de Produtos - Mintermos

→ Tabela verdade de função com n variáveis tem 2ⁿ mintermos ou minitermos → termo-produto padrão (com todas variáveis da função)

Α	В	С	mintermo
0	0	0	m ₀ = A'B'C'
0	0	1	m ₁ = A'B'C
0	1	0	m ₂ = A'BC'
0	1	1	$m_3 = A'BC$
1	0	0	$m_4 = AB'C'$
1	0	1	$m_5 = AB'C$
1	1	0	m ₆ = ABC'
1	1	1	m ₇ = ABC

Soma de Produtos - Mintermos

→ Exemplo: F é função das variáveis A, B e C

Α	В	С	F	mintermo
0	0	0	0	m ₀ = A'B'C'
0	0	7	0	$m_1 = A'B'C$
0	1	0	1	m ₂ = A'BC'
0	1	1	1	$m_3 = A'BC$
1	0	0	0	m ₄ = AB'C'
1	0	1	1	$m_5 = AB'C$
1	1	0	1	m ₆ = ABC'
1	1	1	0	m ₇ = ABC

Soma de Produtos - Mintermos

→ Selecionar os valores onde F é 1

Α	В	C	F	mintermo
0	0	0	0	m ₀ = A'B'C'
0	0	7	0	m ₁ = A'B'C
0	1	0	1	m ₂ = A'BC'
0	1	1	1	m ₃ = A'BC
1	0	0	0	m ₄ = AB'C'
1	0	1	1	m ₅ = AB'C
1	1	0	1	m ₆ = ABC'
1	1	1	0	m ₇ = ABC

$$F = A'BC' + A'BC + AB'C + ABC'$$

ou

$$\mathbf{F} = \mathbf{m}_2 + \mathbf{m}_3 + \mathbf{m}_5 + \mathbf{m}_6$$
 ou $\mathbf{F} = \sum_{m(2,3,5,6)} m_{(2,3,5,6)}$

Produto de Somas - Maxtermos

→ Tabela verdade de função com n variáveis tem 2ⁿ maxtermos ou maxitermos → termo-soma padrão (com todas variáveis da função)

Α	В	С	MAXTERMO
0	0	0	$M_0 = A+B+C$
0	0	1	$M_1 = A + B + C'$
0	1	0	$M_2 = A + B' + C$
0	1	1	$M_3 = A + B' + C'$
1	0	0	$M_4 = A' + B + C$
1	0	1	$M_5 = A' + B + C'$
1	1	0	$M_6 = A' + B' + C$
1	1	1	$M_7 = A' + B' + C'$

Produto de Somas - Maxtermos

→ Exemplo: F é função das variáveis A, B e C

Α	В	С	F	MAXTERMO
0	0	0	0	$M_0 = A+B+C$
0	0	1	0	$M_1 = A+B+C'$
0	1	0	1	$M_2 = A + B' + C$
0	1	1	1	$M_3 = A + B' + C'$
1	0	0	0	$M_4 = A' + B + C$
1	0	1	1	$M_5 = A' + B + C'$
1	1	0	1	$M_6 = A' + B' + C$
1	1	1	0	$M_7 = A' + B' + C'$

Produto de Somas - Maxtermos

→ Selecionar os valores onde F é 0

Α	В	С	F	MAXTERMO
0	0	0	0	$M_0 = A+B+C$
0	0	1	0	M ₁ = A+B+C'
0	1	0	1	$M_2 = A + B' + C$
0	1	1	1	$M_3 = A + B' + C'$
1	0	0	0	$M_4 = A'+B+C$
1	0	1	1	$M_5 = A' + B + C'$
1	1	0	1	$M_6 = A' + B' + C$
1	1	1	0	$M_7 = A' + B' + C'$

$$F = (A+B+C)(A+B+C')(A'+B+C)(A'+B'+C')$$

$$\mathbf{F} = M_0 M_1 M_4 M_7$$
 ou $\mathbf{F} = \prod_{M(0,1,4,7)} M_1(0,1,4,7)$

Conversão

Como converter termos-produto para termos-soma e vice-versa

Α	В	С	mintermo	MAXTERMO
0	0	0	m ₀ = A'B'C'	$M_0 = A+B+C$
0	0	1	m ₁ = A'B'C	M ₁ = A+B+C'
0	1	0	m ₂ = A'BC'	$M_2 = A + B' + C$
0	1	1	m ₃ = A'BC	$M_3 = A + B' + C'$
1	0	0	m ₄ = AB'C'	$M_4 = A' + B + C$
1	0	1	$m_5 = AB'C$	$M_5 = A' + B + C'$
1	1	0	m ₆ = ABC'	$M_6 = A' + B' + C$
1	1	1	m ₇ = ABC	$M_7 = A' + B' + C'$

DE MORGAN

Exemplo: $m_2 = (M_2)' = (A + B' + C)' = A'BC'$

Conversão - Mintermos

$$f(A,B,C,D) = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, BC \, \overline{D} + A \, \overline{B} \, C \overline{D} + ABCD$$

Designação binária → 0000 (mintermos)

0110

1010

1111

Designação decimal ____

0

6

10

15

$$f(A,B,C,D) = \sum m(0,6,10,15)$$

$$f(A, B, C, D) = \prod M(1,2,3,4,5,7,8,9,11,12,13,14)$$

Conversão - Maxtermos

$$f(A,B,C,D) = (A+B+C+D)(A+\overline{B}+C+D)(\overline{A}+B+\overline{C}+\overline{D})(\overline{A}+\overline{B}+\overline{C}+\overline{D})$$

$$f(A,B,C,D) = \prod M(0,4,11,15)$$

$$f(A, B, C, D) = \sum_{i=1}^{n} m(1,2,3,5,6,7,8,9,10,12,13,14)$$

Exemplo 1: Soma-de-produtos padrão

$$F(A, B, C, D) = A'B'C + AD'$$

- A função possui 4 variáveis
- Todas variáveis devem estar presentes em todos termos-produto para que seja uma forma padrão

Exemplo 1: Soma-de-produtos padrão

$$F(A, B, C, D) = A'B'C + AD'$$

 Multiplique cada termo-produto não padrão por um termo constituído de uma soma de uma variável que não aparece no termo com o seu complemento

$$F(A, B, C, D) = A'B'C(D + D') + AD'(B + B')(C + C')$$

$$Falta D$$

$$Falta B e C$$

Exemplo 1: Soma-de-produtos padrão

$$F(A, B, C, D) = A'B'C + AD'$$

→ Utilizando a propriedade distributiva:

→ Ao fim verificar e eliminar termos-produto repetidos

Exemplo 2: Produto-de-somas padrão

$$F(A, B, C, D) = (A' + B' + C)$$

- A função possui 4 variáveis
- Todas variáveis devem estar presentes em todos termos-soma para que seja uma forma padrão

Exemplo 2: Produto-de-somas padrão

$$F(A, B, C, D) = (A' + B' + C)$$

 Some cada termo-soma não padrão por um termo constituído de uma multiplicação de uma variável que não aparece no termo com o seu complemento

Exemplo 2: Produto-de-somas padrão

$$F(A, B, C, D) = (A' + B' + C)$$

→ Utilizando a propriedade distributiva:

$$F(A, B, C, D) = (A' + B' + C) + (DD')$$

$$F(A, B, C, D) = (A' + B' + C + D)(A' + B' + C + D')$$

$$F(A, B, C, D) = (A' + B' + C + D)(A' + B' + C + D')$$

→ Ao fim verificar e eliminar termos-produto repetidos

Formas Padrão de Funções Booleanas

□ Circuitos nas formas padrão aprentam apenas dois níveis de portas → circuitos em dois níveis (ou lógica a dois níveis)

$$F = \overline{A}B + A\overline{B}C + B\overline{C}$$

Formas Padrão de Funções Booleanas

Tomando uma expressão que não é SDP

$$F = AB + C (D + E)$$

Esta é uma implementação em 3 níveis 4 portas, 8 entradas

tempo de propagação máximo = 3 x tempo de uma porta

Convertendo para uma SDP

$$F = AB + C (D + E)$$
$$= AB + CD + CE$$

implementação em 2 níveis 4 portas, 9 entradas

tempo de propagação máximo = 2 x tempo de uma porta

MAPA DE KARNAUGH

 O Mapa de Karnaugh é uma ferramenta de auxílio à minimização de funções booleanas.

O próprio nome mapa vem do fato dele ser um mapeamento a partir de uma tabelaverdade.

Simplifique a seguinte função lógica de duas variáveis utilizando o mapa de Karnaugh:

$$F(A,B) = A'B' + AB' + AB$$

1º Passo: Montar a tabela verdade da função lógica

$$F(A,B) = A'B' + AB' + AB$$

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	1

2º Passo: Desenhar o mapa de Karnaugh

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	1

3º Passo: Preencher o mapa de Karnaugh com valores de F

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	1

3º Passo: Preencher o mapa de Karnaugh com valores de F

Quando o valor de A é 0 e B é 0, o valor de F é 1. Então, coloca-se 1 no quadrado do mapa de karnaugh onde A é 0 e B é 0.

3º Passo: Preencher o mapa de Karnaugh com valores de F

Quando o valor de A é 0 e B é 1, o valor de F é 0. Então, coloca-se 0 no quadrado do mapa de karnaugh onde A é 0 e B é 1.

3º Passo: Preencher o mapa de Karnaugh com valores de F

Quando o valor de A é 1 e B é 0, o valor de F é 1. Então, coloca-se 1 no quadrado do mapa de karnaugh onde A é 1 e B é 0.

3º Passo: Preencher o mapa de Karnaugh com valores de F

Quando o valor de A é 1 e B é 1, o valor de F é 1. Então, coloca-se 1 no quadrado do mapa de karnaugh onde A é 1 e B é 1.

Α	В	F		0	1
0	0	1	A		0
0	1	0	0	1	U
1	0	1	1	1	1
1	1	1	'		

С

3º Passo: Preencher o mapa de Karnaugh com valores de F

Pode-se preencher o mapa diretamente de uma função booleana expressa através de mintermos

$$F(A,B) = A'B' + AB' + AB$$

0 0 1 1 1

4º Passo: Identificar grupos de "1s" adjacentes:

- Um grupo deve conter um números de "1s" de tamanho igual a potências de 2 (1, 2, 4, 8, 16, 32 ...)
- Um "1" pode estar contido em dois grupos diferentes

 Deve-se identificar o número mínimo de grupos possível onde todos os "1s" do mapa de karnaugh estejam contidos

4º Passo:

- Comece identificando grupos de tamanho maior para menor
- O maior grupo será do tamanho de todo mapa de karnaugh → tamanho 2ⁿ, onde n é o número de variáveis da função lógica
- Depois identifique outros grupos menores que terão, em ordem, tamanhos 2ⁿ⁻¹, 2ⁿ⁻², ..., 2⁰. → um grupo menor terá o tamanho igual a metade do seu grupo maior antecessor

4º Passo:

Neste exemplo temos 2 variáveis. Então, n = 2 e $2^n = 2^2 = 4$.

Procuraremos, em ordem, grupos de 4 (2²), 2 (2¹) e 1 (2⁰) "1s".

4º Passo:

Um "1" pode estar contido em dois grupos diferentes

5º Passo : Escreva a função minimizada através de uma soma de produtos

5º Passo : Escreva a função minimizada através de uma soma de produtos

5º Passo : Escreva a função minimizada através de uma soma de produtos

5º Passo : Escreva a função minimizada através de uma soma de produtos

1º Passo: Montar a tabela verdade da função lógica

$$F = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C + A B \overline{C} + A B C$$

$$000 \quad 100 \quad 101 \quad 110 \quad 111$$

A	В	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2º Passo: Desenhar o mapa de Karnaugh

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C + A B \overline{C} + A B C$$

$$000 \quad 100 \quad 101 \quad 110 \quad 111$$

Α	В	С	F	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Α	В	С	F	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Α	В	С	F	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

A BO	00	01	11	10
0	1			
1	1	1		

Α	В	С	F	
0	0	0	•	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

A BO	00	01	11	10
0	1			
1	1	1		1

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

BO A	00	01	11	10
0	1			
1	1	1	1	1

4º Passo:

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Neste exemplo temos 3 variáveis. Então, $n = 3 e 2^n = 2^3 = 8$.

Procuraremos, em ordem, grupos de 8 (2³), 4 (2²), 2 (2¹) e 1 (2⁰) "1s".

4º Passo:

4	В	U	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

4º Passo:

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

5º Passo : Escreva a função minimizada através de uma soma de produtos

No círculo indicado o valor de **B** muda de valor

5º Passo : Escreva a função minimizada através de uma soma de produtos

No círculo indicado o valor de **C** muda de valor

5º Passo : Escreva a função minimizada através de uma soma de produtos

Na círculo indicado o valor de **A** permance em **1**

$$F = A +$$

5º Passo : Escreva a função minimizada através de uma soma de produtos

Na círculo indicado o valor de **A** muda de valor

$$F = A +$$

5º Passo : Escreva a função minimizada através de uma soma de produtos

Na círculo indicado o valor de **B** permance em **0**

$$F = A + B'$$

5º Passo : Escreva a função minimizada através de uma soma de produtos

Na círculo indicado o valor de **C** permance em **0**

$$F = A + B'C'$$

Outros exemplo

MAPA DE KARNAUGH

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

F(A,B,C,D) = A'BC'D + A'BCD + ABC'D

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

F(A,B,C,D) = A'BC'D + A'BCD + ABC'D

$$F(A,B,C,D) = A'BD +$$

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

F(A,B,C,D) = A'BC'D + A'BCD + ABC'D

$$F(A,B,C,D) = A'BD + BC'D$$

Exemplo 1

F(A,B,C,D) = BD'

CI AB	00	01	11	10	CI AB	00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	0	0	1	01	1	0	0	1
11	1	0	0	~	11	1	0	0	1
10	0	0	0	0	10	0	0	0	0

Exemplo 3

F(A,B,C,D) = B'D'

CE AB	00	01	11	10	AI	CD	00	01	11	10
00	1	0	0	1	C	00	1	0	0	1
01	0	0	0	0)1	0	0	0	0
11	0	0	0	0	1	1	0	0	0	0
10	1	0	0	1	1	0	1	0	0	1
L						L				

Exemplo 4

Verificar primeiramente se há algum grupo formado pelas bordas

Exemplo 4 - Somente dois "círculos"

$$F(A,B,C,D) = BD' + A'D$$

Exemplo 4 – Definindo os grupos de "1" dessa forma teremos uma equação não tão minimizada como a mostrada no slide anterior

$$F(A,B,C,D) = B'C' + B'D' + AC'D' + A'BCD$$

$$f(A, B, C, D, E) = \sum m(7,15,17,18,22,23,25,26,30,31)$$

Mapa de Karnaugh - 5 variáveis

EXEMPLO 4-34

Use um mapa de Karnaugh para minimizar a seguinte expressão de soma-de-produtos padrão de 5 variáveis:

$$X = \overline{A}\overline{B}\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}\overline{C}\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}\overline{C}\overline{D}E + \overline{A}B\overline{C}\overline{D}E + \overline{A}B\overline{C}\overline{D}$$

Solução Insira no mapa a expressão de soma-de-produtos. A Figura 4–44 mostra os agrupamentos e os termos correspondentes. Combinando os termos temos a seguinte expressão de soma-de-produtos minimizada:

$$X + \overline{A}\overline{D}\overline{E} + \overline{B}\overline{C}\overline{D} + BCE + ACDE$$

► FIGURA 4-44

Exemplos

Agrupe os 1s em cada um dos mapas de Karnaugh mostrados na Figura 4-29.

▲ FIGURA 4-29

Respostas - Exemplos

Solução Os agrupamentos são mostrados na Figura 4–30. Em alguns casos, existem mais de uma forma de agrupar os 1s para formar agrupamentos máximos.

Mapa de Karnaugh - Site

http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/