COMPREHENSIVE EXAM

ALGEBRA Fall 2018

Part I: Group Theory (Do 4 of the following 5 problems)

- 1. (a) Determine, up to isomorphism, all Abelian groups of order $180 = 2^2 \cdot 3^2 \cdot 5$
 - (b) For each isomorphism class described in part (a), determine, with explanation, the number of elements of order 6.
- 2. (a) Let G be a group and let $x \in G$ with $\circ(x) = n$. Prove

$$x^t = e \iff n|t.$$

(b) Prove that, in a finite Abelian group, for any $x, y \in G$, we have

$$\circ(xy)$$
 divides $lcm(\circ(x), \circ(y))$

- 3. Let $n \geq 3$ be an integer and let $i \in \{1, 2, \dots, n\}$.
 - (a) Show that $H_i = \{ \sigma \in S_n : \sigma(i) = i \}$ is a subgroup of S_n .
 - (b) In S_6 , find the number of elements in the conjugacy class that contains (14).
- 4. Let G be a group. For each $g \in G$, define $\phi_g : G \to G$ by

$$\phi_q(x) = gxg^{-1}$$

- (a) Prove that $\phi_g \in \operatorname{Aut}(G)$, where $\operatorname{Aut}(G)$ denotes the group of automorphisms on G.
- (b) Prove that ϕ_g is the identity automorphism if and only if $g \in Z(G)$, where Z(G) denotes the center of G.
- (c) Let $H = \{\phi_g : g \in G\}$. Prove $H \triangleleft \operatorname{Aut}(G)$. (You may assume $H \leq \operatorname{Aut}(G)$.)
- 5. (a) Let G be a group of order $325 = 5^2 \cdot 13$. Prove that G is Abelian.
 - (b) Let G be a group of order $992 = 2^5 \cdot 31$. Show that G is not simple.

Part II: Ring and Field Theory (Do 4 of the following 5 problems)

1. Let R be a commutative ring, I an ideal. For each $a \in R$ define

$$I_a = \{ r \in R : ar \in I \}$$

- (a) Prove that I_a is an ideal in R, for each $a \in R$.
- (b) Let $R = \mathbb{Q}[x]$ and let $I = (x^4 1)$ and let $a = x^2 1$. Prove $I_a = (x^2 + 1)$.
- 2. Let F be a field and let E be an extension field of F.
 - (a) Let $a \in E$. Prove [F(a) : F] is finite if and only if a is algebraic over F.
 - (b) Let $A = \{a \in E : a \text{ is algebraic over } F\}$. Prove that A is a subfield of E.
- 3. (a) Let R be a principal ideal domain (PID). Let I = (a) be an ideal in R. Prove that I is a maximal ideal if and only if a is an irreducible element.
 - (b) Prove that every Euclidean domain (ED) is a PID.
- 4. Let E be an extension field of F. Let G = Gal(E/F).
 - (a) Suppose S and T are subsets of G. Prove $S \subseteq T \implies E^T \subseteq E^S$. (Note: E^T denotes the fixed field of T.)
 - (b) Suppose H and K are subsets of G such that $E^H = E^K$. Prove that $E^{H \cup K} = E^H$.
 - (c) Let $E = \mathbb{Q}(\sqrt[4]{2}, i)$, then E is the splitting field for $p = x^4 2 \in \mathbb{Q}[x]$. Consider $\phi \in \operatorname{Gal}(E/\mathbb{Q})$ such that $\phi(\sqrt[4]{2}) = -\sqrt[4]{2}$ and $\phi(i) = -i$. Let $H = (\phi)$, the subgroup generated by ϕ . Determine, with explanation, E^H .
- 5. Determine each of the following (with explanation).
 - (a) All ideals in $\mathbb{Q}[x]/(x^4 + 4x^2 5)$.
 - (b) All fields which are homomorphic images of \mathbb{Z}_{30} .
 - (c) Describe all subfields of \mathbb{C} which are homomorphic images of $\mathbb{Q}[x]/(x^3+2x)$.

2