CAE Analyst: Brake Moan Simulation and Testing

Objective

- ☐ To understand the mechanism of Brake Moan Noise
- ☐ To develop the procedure for simulation of Brake Moan Noise with MotionView

Process/Methodology

Simple Disc Brake Model

Simulation Results

Status/Outcome/Results

- ☐ Parameters are identified for simulation. Model is simulated with dummy values of friction. Tonal noise is simulated.
- ☐ Friction measurement is done. More pads to be tested when BTB is available.

Basic Stick Slip Model

Summary of different solutions with the Basic Stick-Slip model in the Literature Survey

-0.4

-0.4 -0.2

-0.4 -0.2

0 0.2 0.4 0.6 0.8 1 Displacement (m) 0 0.2 0.4 0.6 0.8 Displacement (m)

LuGre Friction model

 $T_f = Friction Torque$

 $T_s = Static\ friction\ Torque$

 $T_c = Dynamic\ friction\ Torque$

 $z = Bristle \ Deflection$

 $\dot{z} = Bristle\ Velocity$

 $\sigma_0 = Bristle\ Stiffness$

 $\sigma_1 = Bristle\ Damping$

 $\sigma_2 = Propostionality\ Constant$

 $\omega_m = Motor\ rotational\ speed$

 $\omega_s = Stick - slip transition speed$

Friction Torque Formulation

$$T_f = \sigma_0 \cdot z + \sigma_1 \cdot \dot{z} + \sigma_2 \cdot \omega_m$$

$$\dot{z} = \omega_m - \frac{|\omega_m|}{g(\omega_m)} \cdot z$$

$$\sigma_0 \cdot g(\omega_m) = T_c + (T_s - T_c) \cdot exp\left(-\left(\frac{\omega_m}{\omega_s}\right)^2\right)$$

Relative speed between the two surfaces is zero at steady rotor speed

 $Torque \mid_{Motor} = Inertia \cdot \alpha + Torque \mid_{Friction}$

Experimental Setup [8]

- Angular acceleration is zero
- Relative bristle deflection zero
- Bristle Velocity is zero

$$T_f = \sigma_0 \cdot z + \sigma_1 / \dot{z} + \sigma_2 \cdot \omega_m$$

$$T_f = \sigma_0 \cdot z + \sigma_2 \cdot \omega_m$$

Friction Torque Estimation

$$\left[T_c + (T_s - T_c) \cdot exp\left(-\left(\frac{\omega_m}{\omega_s}\right)^2\right)\right] \cdot sgn(\omega_m) + \sigma_2 \cdot \omega_m$$

Steady State Parameters

$$\Omega_s = [T_c, T_s, \omega_s, \sigma_2]$$

Steady State Parameters

$$\Omega_s = [T_c, T_s, \omega_s, \sigma_2]$$

Error Formulation

$$Erf(i) = T_{measured}(i) - T_{estimated}(\Omega_s, \omega_m, i)$$

Objective Function

$$Objective\ Function = \frac{1}{2}\sum (Erf(i))^2$$

Differential Evolution Algorithm

Repeatability

Computer Specification

G = 200 Serial Computing Ram = 128 GB CPU = 2.4 GHz Time ~ 12.5 s

Parameter	Paper (TVM)	OCTAVE code (DE)		
Dynamic Torque (N-m)	6.975	4.352		
Static Torque (N-m)	8.558	8.802		
Sigma_2	1.819	6.416		
Sliding Speed (r/s)	0.06109	0.0613		
Population	-	50		
Cross Over Probability	-	0.8		
Selection Probability	-	0.85		
Mutation Probability	-	-		

Friction Torque Formulation

$$T_f = \sigma_0 \cdot z + \sigma_1 \cdot \dot{z} + \sigma_2 \cdot \omega_m$$

$$\dot{z} = \omega_m - \frac{|\omega_m|}{g(\omega_m)} \cdot z$$

$$\sigma_0 \cdot g(\omega_m) = T_c + (T_s - T_c) \cdot exp\left(-\left(\frac{\omega_m}{\omega_s}\right)^2\right)$$

Dynamic Parameters

$$\Omega_d = [\sigma_0, \sigma_1]$$

Error Formulation

$$Erf(i) = T_{measured}(i) - T_{estimated}(\Omega_s, \omega_m, i)$$

Objective Function

Objective Function =
$$\frac{1}{2}\sum (Erf(i))^2$$

 $Torque \mid_{Motor} = Inertia \cdot \cancel{\alpha} + Torque \mid_{Friction}$

- ➤ In the literature, torque is given as input and velocity is measured
- We are measuring friction hysteresis by velocity cycle input
- Measurement to be taken in presliding region

Dynamic Parameters

$$\Omega_d = [\sigma_0, \sigma_1]$$

Error Formulation

$$Erf(i) = T_{measured}(t,i) - T_{estimated}(\Omega_d,\omega_m,t,i)$$

Objective Function

Objective Function =
$$\frac{1}{2}\sum (Erf(i))^2$$

Repeatability

Computer Specification

G = 100 Time steps: 83 Serial Computing Ram = 128 GB CPU = 2.4 GHz Time ~ 30 mins

Parameter	Paper (TVM)	OCTAVE code (DE)		
Sigma_0	2750	2695.83		
Sigma_1	45.2	174.04		
Population	-	50		
Cross Over Probability	-	0.8		
Selection Probability	-	0.85		
Mutation Probability	-	-		

- ➤ Although the pressure is different the Coefficient of Friction varying mainly due to temperature change
- The input lever force governs how fast the temperature changes. At high lever force the temperature rise is high. This could be possible reason in panic brake condition.

0	vel	T_cor	F_lever	T_SG	press	temp	pos	mu
vel	1.000000	-0.209661	-0.273443	-0.272209	-0.046012	0.051890	0.087503	-0.146159
T_cor	-0.209661	1.000000	0.134834	0.844547	0.652304	0.149819	-0.585756	-0.152297
F_lever	-0.273443	0.134834	1.000000	0.160211	0.304707	0.468732	0.295984	-0.264239
T_SG	-0.272209	0.844547	0.160211	1.000000	0.637414	0.140634	-0.535206	-0.015946
press	-0.046012	0.652304	0.304707	0.637414	1.000000	0.742944	-0.170720	-0.778188
temp	0.051890	0.149819	0.468732	0.140634	0.742944	1.000000	0.484158	-0.858661
pos	0.087503	-0.585756	0.295984	-0.535206	-0.170720	0.484158	1.000000	-0.232458
mu	-0.146159	-0.152297	-0.264239	-0.015946	-0.778188	-0.858661	-0.232458	1.000000

Co-relation matrix at fixed velocity

Simple Disc Brake Model

Simulation Results

Rubber Bush Radial Stiffness Prediction

Excel Sheet Prediction of Cylindrical Rubber Bush Stiffness

Measured Values of Radial Stiffness

$$K_{Measured} = 133.15 \pm 17 \ Kg/mm$$

 $K_{Predicted} = 135.05 \ Kg/mm$