

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «	Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №1 по курсу «Математическая статистика»

на тему: «Гистограмма и эмпирическая функция распределения»

Студент ИУ7-63Б		Лысцев Н. Д.
(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель		Власов П. А.
	(Подпись, дата)	(И. О. Фамилия)
		,

СОДЕРЖАНИЕ

1	Зад	ание	3
2	2 Теоретические сведения		
	2.1	Формулы для вычисления величин $M_{max},M_{min},R,\hat{\mu},S^2$	4
	2.2	Определение эмпирической плотности и гистограммы	5
	2.3	Определение эмпирической функции распределения	6
3	Тек	ст программы	7

1 Задание

Цель работы: построение гистограммы и эмпирической функции распределения.

Содержание работы

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - б) размаха R выборки;
 - в) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания $\mathbf{M}X$ и дисперсии $\mathbf{D}X$;
 - Γ) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - д) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - е) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретические сведения

2.1 Формулы для вычисления величин $M_{max},\ M_{min},\ R,$ $\hat{\mu},\ S^2$

Пусть $\vec{x} = (x_1, ..., x_n)$ — выборка объема n из генеральной совокупности X.

 $-M_{min}$ — минимальное значение выборки \vec{x} , определяется по формуле (2.1).

$$M_{min} = x_{(1)} = \min\{x_1, ..., x_n\}$$
(2.1)

где $x_{(1)}$ — крайний левый член вариационного ряда выборки \vec{x} .

— M_{max} — максимальное значение выборки \vec{x} , определяется по формуле (2.2).

$$M_{max} = x_{(n)} = \max\{x_1, ..., x_n\}$$
 (2.2)

где $x_{(n)}$ — крайний правый член вариационного ряда выборки \vec{x} .

-R — размах выборки, определяется по формуле (2.3).

$$R = M_{max} - M_{min} (2.3)$$

 $-\hat{\mu}$ — оценка математического ожидания(выборочное среднее), определяется по формуле (2.4).

$$\hat{\mu}(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i. \tag{2.4}$$

 $-S^2$ — оценка дисперсии(исправленная выборочная дисперсия), определяется по формуле (2.5).

$$S^{2}(\vec{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \qquad (2.5)$$

2.2 Определение эмпирической плотности и гистограммы

Если объем выборки велик (n > 50), то данные группируют не только в виде статистического ряда, но и в виде интервального статистического ряда. Для этого выбирается число $m \in \mathbb{N}$ — количество интервалов, а отрезок $J = [x_{(1)}, x_{(n)}]$ разбивают на m равновеликих промежутков. Длина Δ каждого из них определяется по формуле (2.6).

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m}.$$
(2.6)

Интервалы определяются равенствами (2.7).

$$J_{i} = [x_{(1)} + (i-1)\Delta; x_{(1)} + i\Delta], \quad i = \overline{1, m-1},$$

$$J_{m} = [x_{(1)} + (m-1)\Delta; x_{(n)}].$$
(2.7)

Опр. Интервальным статистическим рядом, отвечающим выборке \vec{x} , называется таблица вида:

Здесь n_i — число элементов выборки \vec{x} , попавших в промежуток J_i , $i=\overline{1,m}$.

При выборе числа промежутков используют формулу (2.8).

$$m = [\log_2 n] + 2. (2.8)$$

Пусть для данной выборки \vec{x} построен интервальный статистический ряд.

Опр. Эмпирической плотностью распределения соответствующей выборке \vec{x} называется функция:

$$f_n(x) = \begin{cases} \frac{n_i}{n \cdot \Delta}, & x \in J_i, \ i = \overline{1, m}, \\ 0, & \text{иначе.} \end{cases}$$
 (2.9)

Опр. График эмпирической функции плотности называется гистограммой.

2.3 Определение эмпирической функции распределения

Пусть $\vec{x} = (x_1, ..., x_n)$ — выборка из генеральной совокупности X.

Обозначим $l(t, \vec{x})$ — число компонент \vec{x} , которые меньше, чем t $(t \in \mathbb{R})$.

Опр. Эмпирической функцией распределения, отвечающей выборке \vec{x} , называется отображение $F_n: \mathbb{R} \to \mathbb{R}$, заданное формулой:

$$F_n(t) = \frac{l(t, \vec{x})}{n}.$$
(2.10)

3 Текст программы