SEMINAR 11

- 1) Let V be a K-vector space, $S \leq_K V$ and $x, y \in V$. We denote $\langle S, x \rangle = \langle S \cup \{x\} \rangle$. Show that if $x \in V \setminus S$ and $x \in \langle S, y \rangle$ then $y \in \langle S, x \rangle$.
- 2) Let V be a K-vector space and $\alpha, \beta, \gamma \in K$, $x, y, z \in V$ such that $\alpha \gamma \neq 0$ and $\alpha x + \beta y + \gamma z = 0$. Show that $\langle x, y \rangle = \langle y, z \rangle$.
- 3) Can you find an \mathbb{R} -linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$f(1,0,3) = (1,1)$$
 si $f(-2,0,-6) = (2,1)$?

- 4) Let us consider:
- a) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $f_1(x,y) = (-x,y)$ (the symmetry with respect to Oy);
- b) $f_2: \mathbb{R}^2 \to \mathbb{R}^2, f_2(x,y) = (x,-y)$ (the symmetry with respect to Ox);
- c) $f_3: \mathbb{R}^2 \to \mathbb{R}^2$, $f_3(x, y) = (x \cos \varphi y \sin \varphi, x \sin \varphi + y \cos \varphi)$, $\varphi \in \mathbb{R}$, (the plane rotation of angle φ);
- d) $f_4: \mathbb{R}^2 \to \mathbb{R}^3, f_4(x, y) = (x + y, 2x y, 3x + 2y).$

Show that f_1 , f_2 , f_3 , f_4 are \mathbb{R} -linear maps. Are they isomorphisms? Are they automorphisms?

5) Let V, V_1, V_2 be K-vector spaces, $f: V \to V_1, g: V \to V_2$ and

$$h: V \to V_1 \times V_2, \ h(x) = (f(x), g(x)).$$

Show that h is a linear map if and only if f and g are linear maps. Generalize this statement.

6) a) Let $m \in \mathbb{N}^*$ and $f : \mathbb{R}^m \to \mathbb{R}$. Show that f is an \mathbb{R} -linear map if and only if there exist $a_1, \ldots, a_m \in \mathbb{R}$, uniquely determined, such that

$$f(x_1, ..., x_m) = a_1 x_1 + \dots + a_m x_m, \ \forall (x_1, ..., x_m) \in \mathbb{R}^m.$$

1

b) Determine the \mathbb{R} -linear maps $f: \mathbb{R}^m \to \mathbb{R}^n \ (m, n \in \mathbb{N}^*)$.