Aula Particular 14 de julho de 2021

Problemas do Curso de Combinatória do IMPA

Guilherme Zeus Dantas e Moura zeusdanmou@gmail.com

Definições

- $[n] = \{1, 2, \dots, n\};$
- $\mathcal{P}(S)$ é o conjunto de todos os subconjuntos de S.
- $\binom{S}{k}$ é o conjunto de todos os subconjuntos de S que possuem exatamente k elementos.
- $A \subset \mathcal{P}([n])$ é uma anti-cadeia se $A \not\subset B$, para quaisquer $A, B \in \mathcal{A}, A \neq B$.
- $A \subset \mathcal{P}([n])$ é intersectante se $A \cap B \neq \emptyset$, para quaisquer $A, B \in \mathcal{A}$.
- Seja ex(n, H) o número máximo de arestas que um grafo G com n vértices pode ter de modo que não existam cópias de H em G.

Problemas

Problema 1. Se $\mathcal{A} \subset \mathcal{P}([n])$ é uma anti-cadeia, então $|\mathcal{A}| \leq \binom{n}{n/2}$.

Problema 2. Suponha que $A \subset \mathcal{P}([n])$ é intersectante. Prove que $|A| \leq 2^{n-1}$.

Problema 3. Sejam k e n inteiros positivos tais que $k < \frac{n+1}{2}$. Suponha que $A \subset {[n] \choose k}$ é intersectante. Prove que $|A| \leq {n-1 \choose k-1}$.

Problema 4. Sejam k e r inteiros positivos. Todo inteiro positivo é pintado com uma de r cores. Prove que existe uma progressão aritmética monocromática com k termos.

Problema 5. Em contrapartida ao problema anterior, prove que existe uma coloração com 2 cores para a qual não existe uma progressão aritmética monocromática com infinitos termos.

Problema 6. Determine $ex(n, K_3)$.

Problema 7. Mostre que $ex(n, C_4) \le \frac{n^{3/2}}{2}$.

Problema 8. Seja T uma árvore com k vértices. Mostre que $\frac{k-2}{2}n \le ex(n,T) \le (k-1)n$.

Observação. Se for ajudar, você pode supor que n é múltiplo de d, para um d da sua escolha.