Provadis Hochschule

pr@vadis

Theoretische Informatik Übung 1

Aleksey Koschowoj

Teile der Aufgaben stammen von Prof. Dr. H. Peter Gumm sowie Prof. Dr. Jörg Daubert und André Bauer, Philipps-Universität Marburg und basieren auf den Aufgaben von Dr. Florian Volk.

Aufgabe 1 - Worte und Sprachen

- a) Bestimmen Sie die Sprache $L_1=\emptyset^*$ durch Angabe aller Worte.
- b) Wie viele Worte enthält die Sprache $L_2 = \{w \mid w \in \Sigma_2^* \land |w| = 1\}$ über dem Alphabet $\Sigma_2 = \emptyset$?
- c) Erläutern Sie den Unterschied zwischen ϵ , \emptyset und $\{\emptyset\}$.

Aufgabe 2 - Sprachen

Seien Σ ein Alphabet und $L, L' \subseteq \Sigma^*$ beliebige Sprachen über Σ . Wir betrachten jeweils die beiden Gleichungen

- $L \circ L = L$ und
- $L \circ L' = L' \circ L$.

Zeigen Sie durch Angabe jeweils eines Gegenbeispiels, dass die beiden Gleichungen im Allgemeinen nicht gelten.

Aufgabe 3 – Beweis für Längenerhalt bei Konkatenation

Beweisen Sie $|u \circ v| = |u| + |v|$. Nutzen Sie die Definitionen von Folie 01a.12.

Aufgabe 4 - Reguläre Ausdrücke

Gegeben sei das Alphabet $\Sigma = \{0, 1\}$. Finden Sie je einen regulären Ausdruck für die folgenden Sprachen. (Knobelaufgabe!)

- a) L_1 : Worte, in denen 010 als Teilwort vorkommt.
- b) L_2 : Worte, mit ungerader Anzahl von 0en.
- c) $L_3 = \Sigma^* \backslash L_1$ (Diese Spezifikation ist *nicht regulär*, es gibt jedoch einen regulären Ausdruck für diese Sprache.)

Aufgabe 5 - Einhornbeweis

Finden Sie den Fehler im nachfolgenden Beweis und begründen Sie kurz.

Behauptung/Annahme: In einer Gruppe von n Einhörnern sind alle Einhörner rosa, falls sich unter den n Einhörnern ein rosa Einhorn befindet.

Anfang: Für n=1 stimmt die Behauptung offensichtlich. Es gibt insgesamt 1 Einhörner, davon ist eines rosa. Alle 1 Einhörner sind rosa.

Schritt von $n \rightarrow (n+1)$: Mit der Annahme existiert ein rosa Einhorn innerhalb der n+1 Einhörner.

Wir ordnen die Liste der Einhörner so, dass das rosa Einhorn an Position 1 steht und illustrieren die ersten 1 ... n Einhörner:

Mit der Annahme sind die ersten n Einhörner rosa:

Wir betrachten nun die Einhörner 2, ..., n+1. Offensichtlich existieren auch hier rosa Einhörner, womit nach Annahme auch die Einhörner 2, ..., n+1 rosa sein müssen:

Somit gilt, dass auch alle n + 1 Einhörner rosa sind, wenn eines der n + 1 Einhörner rosa ist.

Schluss: Damit ist die Aussage bewiesen und alle n Einhörner sind rosa, wenn ein Einhorn unter ihnen rosa ist.

Aufgabe 6 – Reguläre Ausdrücke

Gegeben sei das Alphabet $\Sigma = \{a, b, c\}$. Finden Sie je einen regulären Ausdruck für die folgenden Sprachen.

- a) L_1 über Σ ist die Sprache aller Worte, die mit c beginnen.
- b) L_2 über Σ ist die Sprache aller Worte, die das Teilwort ac enthalten.
- c) L_3 über Σ ist die Sprache aller Worte, die mit a beginnen und auf b enden.
- d) L_4 über dem Alphabet $\Sigma_4 = \{0,1,2,3,4,5,6,7,8,9\}$ ist die Sprache der natürlichen Zahlen (inkl. 0) ohne führende Nullen.