第十一章 无穷级数

- 一、数项级数:概念和性质、柯西收敛准则
- 二、正项级数:收敛准则、三个判别法
- 三、一般项级数:绝对收敛和条件收敛、交错级数、绝对收敛级数
- 四、幂级数:收敛半径、幂级数运算
- 五、函数的幂级数展开式:泰勒级数、初等函数的幂级数展开
- 六、傅里叶级数:三角函数系、正交性、周期函数的傅里叶级数

第四节 幂级数

- 一、函数项级数的概念
- 二、幂级数及其收敛性
- 三、幂级数的运算

求级数的和函数

求级数的和函数
$$S(x) = \underbrace{S}_{n=1}^{x^{n-1}} = \underbrace{S}_{n=1}^{x^{n-1}} = S(x)$$

$$\sum_{k=0}^{\infty} \underbrace{S(k)}_{k=0}^{x^{n-1}} = \underbrace{S}_{n=1}^{x^{n-1}} = \underbrace{S(x)}_{n=1}^{x^{n-1}} = \underbrace{S}_{n=1}^{x^{n-1}} = \underbrace{S(x)}_{n=1}^{x^{n-1}} = \underbrace{S}_{n=1}^{x^{n-1}} =$$

$$(1)\sum_{n=1}^{\infty}nx^{n}$$

(1)
$$\sum_{n=1}^{\infty} nx^n$$
 (2) $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$

$$(3) \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(4)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \propto$$

$$\chi \left(\chi''\right)' = \eta \chi'' \cdot \chi = \mu \chi''$$

$$\sum_{n=1}^{\infty} n x^{n} = \sum_{n=1}^{\infty} x^{n} (x^{n})' = x \left[\sum_{n=1}^{\infty} x^{n} \right]' = x \left[\sum_{n=1}^{\infty} x^{n$$

$$= \chi \frac{(-\chi - \chi(-1))}{(1-\chi)^2} = \frac{\chi}{(1-\chi)^2} \qquad (-\chi(-\chi(-1))) \qquad (-$$

例. 求幂级数 $\sum_{n=1}^{\infty} n x^n$ 的和函数 S(x).

解: 易求出幂级数的收敛半径为 1, $x = \pm 1$ 时级数发散,

故当
$$x \in (-1,1)$$
时, $S(x) = \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1}$

$$= x \sum_{n=1}^{\infty} (x^n)' = x \left(\sum_{n=1}^{\infty} x^n\right)'$$

$$= x \left(\frac{x}{1-x}\right)' = \frac{x}{(1-x)^2}$$

例. 求级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的和函数S(x).

解: 易求出幂级数的收敛半径为 1,且 x = -1时级数 收敛,

则当 $x \neq 0$ 时,有

$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \int_{0}^{x} x^n \, dx = \frac{1}{x} \int_{0}^{x} \left(\sum_{n=0}^{\infty} x^n\right) dx$$

$$= \frac{1}{x} \int_{0}^{x} \frac{1}{1-x} dx = -\frac{1}{x} \ln(1-x) \quad (0 < |x| < 1)$$

而
$$S(0) = 1$$
,所以 $S(x) = \begin{cases} -\frac{1}{x} \ln(1-x), & x \in [-1,0) \cup (0,1) \\ 1. & x = 0 \end{cases}$

例. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ 的和函数.

解:级数的收敛半径 $R = +\infty$.

设
$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $(-\infty < x < +\infty)$

$$\text{III } S'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{k=0}^{\infty} \frac{x^k}{k!} = S(x) \qquad (-\infty < x < +\infty)$$

故有
$$\left(\ln |S(x)|\right)' = 1$$
 因此得 $S(x) = Ce^x$

由
$$S(0) = 1$$
得 $S(x) = e^x$,故得 $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$.

例: 求级数
$$\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!}$$
 的和。

解: 原式=
$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n [(2n+1)+1]}{(2n+1)!}$$

$$= \frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \right]$$

$$=\frac{1}{2}[\cos 1 + \sin 1]$$

例. 求数项级数
$$\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n}$$
的和.

$$\frac{1}{4^{2}} \frac{1}{1} \frac{1}{1}$$

$$-\frac{1}{2}\frac{x^{n}}{x^{n}} = S(x)$$

$$\Im X = \frac{1}{a} \cdot S(t) = \cdot -$$

例. 求数项级数
$$\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n}$$
的和.

解: 设
$$S(x) = \sum_{n=2}^{\infty} \frac{x^n}{n^2 - 1}$$
, $x \in \{-1, 1\}$, 则

$$S(x) = \sum_{n=2}^{\infty} \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) x^n$$

$$(x \neq 0) = \frac{x}{2} \sum_{n=2}^{\infty} \frac{x^{n-1}}{n-1} - \frac{1}{2x} \sum_{n=2}^{\infty} \frac{x^{n+1}}{n+1} = \frac{x}{2} \sum_{n=1}^{\infty} \frac{x^n}{n} - \frac{1}{2x} \sum_{n=3}^{\infty} \frac{x^n}{n}$$

$$S(x) = \left(\frac{x}{2} - \frac{1}{2x}\right) \sum_{n=1}^{\infty} \frac{x^n}{n} + \frac{1}{2x} (x + \frac{x^2}{2}) \quad (x \neq 0)$$

$$S(x) = \left(\frac{x}{2} - \frac{1}{2x}\right) \sum_{n=1}^{\infty} \frac{x^n}{n} + \frac{1}{2x} (x + \frac{x^2}{2}) \quad (x \neq 0)$$

$$\overline{m} \qquad \sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{n=1}^{\infty} \int_{0}^{x} x^{n-1} \, \mathrm{d}x = \int_{0}^{x} \left(\sum_{n=1}^{\infty} x^{n-1} \right) \, \mathrm{d}x = \int_{0}^{x} \frac{\mathrm{d}x}{1-x} = -\ln(1-x)$$

$$S(x) = \frac{1 - x^2}{2x} \ln(1 - x) + \frac{2 + x}{4} \qquad (x \neq 0)$$

$$\sum_{n=2}^{\infty} \frac{1}{(n^2 - 1)2^n} = S(\frac{1}{2}) = \frac{5}{8} - \frac{3}{4} \ln 2$$

数
$$\sum_{n=2}^{\infty} \frac{1}{(n^2-1)2^n} = S(\frac{1}{2}) = \frac{5}{8} - \frac{3}{4} \ln 2$$

例: 求极限
$$\lim_{n\to\infty} (\frac{1}{a} + \frac{2}{a^2} + \dots + \frac{n}{a^n}), (a > 1).$$

解: 令
$$S_n = \frac{1}{a} + \frac{2}{a^2} + \dots + \frac{n}{a^n} = \sum_{k=1}^n \frac{k}{a^k}$$

作幂级数 $\sum_{n=1}^{\infty} n x^n$, 易知其收敛半径为 1, 设其和为 S(x),

$$\text{III } S(x) = \sum_{n=1}^{\infty} n \ x^n = x \sum_{n=1}^{\infty} n \ x^{n-1} = x \left(\sum_{n=1}^{\infty} x^n \right)' = x \cdot \left(\frac{x}{1-x} \right)' = \frac{x}{(1-x)^2} \text{ (ML)}$$

$$\therefore \lim_{n\to\infty} S_n = S(\frac{1}{a}) = \frac{a}{(a-1)^2}$$

内容小结

- 1. 求幂级数收敛域的方法
- 1) 对标准型幂级数 $\sum_{n=0}^{\infty} a_n x^n (a_n \neq 0)$ 先求收敛半径, 再讨论端点的收敛性。
- 2) 对非标准型幂级数(缺项或通项为复合式)

求收敛半径时直接用比式法或根式法,也可通过换元化为标准型再求。

2. 幂级数的性质

- 1) 两个幂级数在公共收敛区间内可进行加、减与乘法运算。
- 2) 在收敛区间内幂级数的和函数连续;
- 3) 幂级数在收敛区间内可逐项求导和求积分。

第5节 函数的幂级数展开式

- 一、泰勒 (Taylor) 级数
- 二、初等函数展开成幂级数
- 三、函数幂级数展开式的应用 近似计算、欧拉公式

$$f(x) \stackrel{\text{le}}{=} U(x_0) \stackrel{\text{le}}{=} Q_n(x_0) = Q_0 + Q_1(x_0) + Q_2(x_0) + \dots + Q_n(x_n) + Q_n(x_n) + \dots + Q_n(x_n) + Q_n(x_n)$$

二、初等函数展开成幂级数

展开方法 — 利用泰勒公式 展开方法 — 利用已知其级数展开式的函数展开

1. 直接展开法

由泰勒级数理论可知, 函数 f(x) 展开成幂级数的步骤如下:

第一步 求函数及其各阶导数在 x = 0 处的值;

第二步 写出麦克劳林级数,并求出其收敛半径 R;

第三步 判别在收敛区间(-R, R) 内 $\lim_{n\to\infty} R_n(x)$ 是否为0。

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + (-1)^{n-1}\frac{1}{(2n-1)!}x^{2n-1} + \dots, x \in (-\infty, +\infty)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots + (-1)^{n-1}\frac{1}{(2n)!}x^{2n} + \dots, x \in (-\infty, +\infty)$$

$$\exp(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{n!}x^n + \dots, x \in (-\infty, +\infty)$$

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + \dots$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots \qquad (-1 < x < 1)$$

2. 间接展开法

利用已知的函数展开式及幂级数的运算性质将所给函数展开成幂级数。

例. 将函数
$$\frac{1}{1+x^2}$$
 展开成 x 的幂级数。

解: 因为
$$\frac{1}{1+x} = 1-x+x^2-\dots+(-1)^n x^n+\dots$$
 (~1)

把*x*换成
$$x^2$$
, 得 $\frac{1}{1+x^2} = 1-x^2+x^4+\dots+(-1)^n x^{2n}+\dots$ $(-1 < x < 1)$

例. 将函数 $f(x) = \ln(1+x)$ 展开成x 的幂级数。

例. 将函数
$$\frac{1}{(2-x)^2}$$
 展开成 x 的幂级数.

$$\frac{1}{(2-x)^2} = \frac{-(-1)}{(2-x)^2} = \frac{1}{(2-x)^2}$$

$$\frac{1}{(2-x)^2} = \left[\frac{1}{2-x}\right]' = \left[\frac{1}{2}, \frac{1}{1-\left[\frac{x}{2}\right]}\right]' = \frac{1}{2}\left[\frac{x}{2}\right]'$$

$$\frac{1}{(2-x)^2} = \left[\frac{1}{2-x}\right]' = \left[\frac{1}{2}, \frac{1}{1-\left[\frac{x}{2}\right]}\right]' = \frac{1}{2}\left[\frac{x}{2}\right]'$$

$$\frac{1}{(2-x)^2} = \left[\frac{1}{2-x}\right]' = \left[\frac{1}{2}, \frac{1}{1-\left[\frac{x}{2}\right]}\right]' = \frac{1}{2}\left[\frac{x}{2}\right]'$$

$$=\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}=\frac{1}{2}\sum_{n=0}^{\infty}y_{n}\cdot\left(\frac{x}{2}\right)^{n-1}\cdot\frac{1}{2}$$

$$=\frac{2}{2}\sum_{n=0}^{\infty}\frac{y_{n}}{2^{n+1}}x^{n-1}\left(-24x42\right)$$

例. 将 $\sin x$ 展成 $x - \frac{\pi}{4}$ 的幂级数。

$$\mathbf{\beta}\mathbf{F}: \sin x = \sin\left[\frac{\pi}{4} + (x - \frac{\pi}{4})\right] = \sin\frac{\pi}{4}\cos(x - \frac{\pi}{4}) + \cos\frac{\pi}{4}\sin(x - \frac{\pi}{4})$$

$$= \frac{1}{\sqrt{2}}\left[\cos(x - \frac{\pi}{4}) + \sin(x - \frac{\pi}{4})\right]$$

$$= \frac{1}{\sqrt{2}}\left[\left(1 - \frac{1}{2!}(x - \frac{\pi}{4})^2 + \frac{1}{4!}(x - \frac{\pi}{4})^4 - \cdots\right) + \left((x - \frac{\pi}{4}) - \frac{1}{3!}(x - \frac{\pi}{4})^3 + \frac{1}{5!}(x - \frac{\pi}{4})^5 - \cdots\right)\right]$$

$$= \frac{1}{\sqrt{2}}\left(1 + (x - \frac{\pi}{4}) - \frac{1}{2!}(x - \frac{\pi}{4})^2 - \frac{1}{3!}(x - \frac{\pi}{4})^3 + \cdots\right) \quad (-\infty < x < +\infty)$$

例. 将
$$\frac{1}{x^2+4x+3}$$
 展成 $x-1$ 的幂级数。

$$\frac{x}{(x-1)^{2}+7x-1} + 4x+3$$

$$(x-1)^{2}+7x-1 + 4y+3 = (x-1)+6(x-1)+8 = ((x-1)+2)$$

$$(x-1)^{2}+7x-1 + 4y+3 = (x-1)+6(x-1)+8 = ((x-1)+2)$$

$$(x-1)^{2}+7x-1 + 4y+3 = (x-1)+6(x-1)+8 = (x-1)+8$$

$$(x-1)^{2}+7x-1 + 4y+3 = (x-1)+6(x-1)+8 = (x-1)+8$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)+6(x-1)+8 = (x-1)+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)+8 = (x-1)+8 = (x-1)+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)+8 = (x-1)+8 = (x-1)+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)+8 = (x-1)+8 = (x-1)+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)+8 = (x-1)+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1)^{2}+2$$

$$(x-1)^{2}+7x-1 + 4x+3 = (x-1$$

例. 设 $f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, & x \neq 0 \\ 1, & x \neq 0 \end{cases}$, 将 f(x) 展开成 x 的幂级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4n^2}$ 的和。 (Curotanx) $= \frac{1}{1+x^2}$ $\left(\operatorname{arctan}_{x}\right)' = \frac{1}{1+x^{2}} = \sum_{h=0}^{10} \left(-x^{2}\right)^{h}, \left(\left|x^{2}\right| < 1\right)$ $\int_{0}^{\chi} \left(\operatorname{cuntamx} \right) dx = \sum_{n=0}^{k} (-1)^{n} \int_{0}^{\chi} \chi^{2n} dx$ $\lim_{n \to \infty} \left(\int_{0}^{\chi} \left(\int_{0}^$ $\arctan x = \sum_{N=0}^{\infty} (-1)^{N} \cdot \frac{x}{2n+1} \left(-1 \leq x \leq 1 \right) = \sum_{N=0}^{\infty} (-1)^{N} \cdot \frac{x}{2n+1} + \sum_{N=0}^{\infty} (-1)^{N} \cdot \frac{x}{2n+1} \left(-1 \leq x \leq 1 \right)$

$$f(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+2}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$$

$$= 1 + \sum_{n=1}^{\infty} (-1)^n \left[\frac{1}{2n+1} - \frac{1}{2n-1} \right] x^{2n}$$

$$= 1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{1 - 4n^2} x^{2n}, \qquad x \in [-1,1]$$

$$\therefore \sum_{n=1}^{\infty} \frac{(-1)^n}{1 - 4n^2} = \frac{1}{2} [f(1) - 1] = \frac{\pi}{4} - \frac{1}{2}$$

练习 1. 将下列函数展开成 x 的幂级数 $f(x) = \arctan \frac{1+x}{1-x}$

解:
$$f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad x \in (-1,1)$$

$$\therefore f(x) = \int_{n=0}^{\infty} (-1)^n \int_0^x x^{2n} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

$$x = \pm 1 \text{ fr}, 此级数收敛, \quad f(0) = \frac{\pi}{4},$$
因此 $f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, \quad x \in [-1,1]$

2. 将 $f(x) = \ln(2 + x - 3x^2)$ 在 x = 0处展为幂级数。

PRIOR:
$$f(x) = \ln(1-x) + \ln 2 + \ln(1+\frac{3}{2}x)$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n} \quad (-1 \le x < 1) \qquad \ln(1 + \frac{3}{2}x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\frac{3}{2}x)^n$$

$$(-\frac{2}{3} < x \le \frac{2}{3})$$

因此
$$f(x) = \ln 2 - \sum_{n=1}^{\infty} \frac{x^n}{n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\frac{3}{2}x)^n$$

$$= \ln 2 - \sum_{n=1}^{\infty} \frac{1}{n} \left[1 + \left(-\frac{3}{2} \right)^n \right] x^n \qquad \left(-\frac{2}{3} < x \le \frac{2}{3} \right)$$

三、应用: 近似计算

例. 计算 $\sqrt[5]{240}$ 的近似值,精确到 10^{-4} .

P:
$$\sqrt[5]{240} = \sqrt[5]{243 - 3} = 3(1 - \frac{1}{3^4})^{\frac{1}{5}}$$

$$= 3\left(1 - \frac{1}{5} \cdot \frac{1}{3^4} - \frac{1 \cdot 4}{5^2 \cdot 2!} \cdot \frac{1}{3^8} - \frac{1 \cdot 4 \cdot 9}{5^3 \cdot 3!} \cdot \frac{1}{3^{12}} - \cdots\right)$$

$$|r_2| = 3 \left(\frac{1 \cdot 4}{5^2 \cdot 2!} \cdot \frac{1}{3^8} + \frac{1 \cdot 4 \cdot 9}{5^3 \cdot 3!} \cdot \frac{1}{3^{12}} + \frac{1 \cdot 4 \cdot 9 \cdot 14}{5^4 \cdot 4!} \cdot \frac{1}{3^{16}} + \cdots \right)$$

$$<3\cdot\frac{1\cdot 4}{5^2\cdot 2!}\cdot\frac{1}{3^8}\left[1+\frac{1}{81}+\left(\frac{1}{81}\right)^2+\cdots\right]<0.5\times 10^{-4}$$

$$\therefore \sqrt[5]{240} \approx 3(1 - \frac{1}{5} \cdot \frac{1}{3^4}) \approx 3 - 0.00741 \approx 2.9926$$

例. 计算 $\ln 2$ 的近似值, 使准确到 10^{-4} .

解: 已知
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
 $(-1 < x \le 1)$

$$\therefore \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$
 (-1 \le x < 1)

故
$$\ln \frac{1+x}{1-x} = \ln(1+x) - \ln(1-x) = 2\left(x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \cdots\right)$$
 (-1

令
$$\frac{1+x}{1-x} = 2$$
 得 $x = \frac{1}{3}$,于是有 $\ln 2 = 2\left(\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} + \frac{1}{7} \cdot \frac{1}{3^7} + \cdots\right)$

$$\ln 2 = 2\left(\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} + \frac{1}{7} \cdot \frac{1}{3^7} + \cdots\right)$$

在上述展开式中取前四项,

$$|r_4| = 2\left(\frac{1}{9} \cdot \frac{1}{3^9} + \frac{1}{11} \cdot \frac{1}{3^{11}} + \frac{1}{13} \cdot \frac{1}{3^{13}} + \cdots\right) < \frac{2}{3^{11}} \left(1 + \frac{1}{9} + (\frac{1}{9})^2 + \cdots\right)$$

$$= \frac{2}{3^{11}} \cdot \frac{1}{1 - \frac{1}{9}} = \frac{1}{4 \cdot 3^9} = \frac{1}{78732} < 0.2 \times 10^{-4}$$

$$\therefore \ln 2 \approx 2 \left(\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} + \frac{1}{7} \cdot \frac{1}{3^7} \right) \approx 0.6931$$

说明: 在展开式
$$\ln \frac{1+x}{1-x} = 2(x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \cdots)$$
中

令
$$x = \frac{1}{2n+1}$$
 (n为自然数),

得
$$\ln \frac{n+1}{n} = 2\left(\frac{1}{2n+1} + \frac{1}{3}\left(\frac{1}{2n+1}\right)^3 + \frac{1}{5}\left(\frac{1}{2n+1}\right)^5 + \cdots\right)$$

$$\therefore \ln(n+1) = \ln n + 2\left(\frac{1}{2n+1} + \frac{1}{3}\left(\frac{1}{2n+1}\right)^3 + \frac{1}{5}\left(\frac{1}{2n+1}\right)^5 + \cdots\right)$$

具此递推公式可求出任意正整数的对数。 如

$$\ln 5 = 2\ln 2 + 2\left(\frac{1}{9} + \frac{1}{3}\left(\frac{1}{9}\right)^3 + \frac{1}{5}\left(\frac{1}{9}\right)^5 + \cdots\right) \approx 1.6094$$

例. 利用 $\sin x \approx x - \frac{x^3}{3!}$,求 $\sin 9^\circ$ 的近似值,并估计误差。

解: 先把角度化为弧度 $9^{\circ} = \frac{\pi}{180} \times 9 = \frac{\pi}{20}$ (弧度)

$$\therefore \sin \frac{\pi}{20} = \frac{\pi}{20} - \frac{1}{3!} (\frac{\pi}{20})^3 + \frac{1}{5!} (\frac{\pi}{20})^5 - \frac{1}{7!} (\frac{\pi}{20})^7 + \cdots$$

$$|r_2| < \frac{1}{5!} (\frac{\pi}{20})^5 < \frac{1}{120} (0.2)^5 < \frac{1}{3} \times 10^{-5}$$

 $\therefore \sin \frac{\pi}{20} \approx \frac{\pi}{20} - \frac{1}{3!} (\frac{\pi}{20})^3 \approx 0.157080 - 0.000646 \approx 0.15643$

误差不超过 10^{-5}

例. 计算积分 $\frac{2}{\sqrt{\pi}} \int_0^{\frac{1}{2}} e^{-x^2} dx$ 的近似值,精确到 10^{-4} . ($\mathbb{Q} = 0.56419$)

解:
$$e^{-x^2} = 1 + \frac{(-x^2)}{1!} + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} \quad (-\infty < x < +\infty)$$

$$\frac{2}{\sqrt{\pi}} \int_0^{\frac{1}{2}} e^{-x^2} dx = \frac{2}{\sqrt{\pi}} \int_0^{\frac{1}{2}} \left[\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} \right] dx$$

$$= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^{\frac{1}{2}} x^{2n} dx = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n! (2n+1)} \cdot \frac{1}{2^{2n+1}}$$

$$\frac{2}{\sqrt{\pi}} \int_0^{\frac{1}{2}} e^{-x^2} dx = \dots = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} \cdot \frac{1}{2^{2n+1}}$$
$$= \frac{1}{\sqrt{\pi}} \left(1 - \frac{1}{2^2 \cdot 3} + \frac{1}{2^4 \cdot 5 \cdot 2!} - \frac{1}{2^6 \cdot 7 \cdot 3!} + \dots \right)$$

欲使截断误差
$$|r_n| < \frac{1}{\sqrt{\pi}} \frac{1}{n!(2n+1)\cdot 2^{2n}} < 10^{-4}$$

则
$$n$$
 应满足 $\sqrt{\pi} \cdot n!(2n+1) \cdot 2^{2n} > 10^4 \Longrightarrow n \ge 4$

取 n=4,则所求积分近似值为

$$\frac{2}{\sqrt{\pi}} \int_0^{\frac{1}{2}} e^{-x^2} dx \approx \frac{1}{\sqrt{\pi}} \left(1 - \frac{1}{2^2 \cdot 3} + \frac{1}{2^4 \cdot 5 \cdot 2!} - \frac{1}{2^6 \cdot 7 \cdot 3!} \right) \approx 0.5205$$

例. 计算积分 $\int_0^1 \frac{\sin x}{x} dx$ 的近似值, 精确到 10^{-4} .

解:由于 $\lim_{x\to 0} \frac{\sin x}{x} = 1$,故所给积分不是广义积分。

若定义被积函数在x=0处的值为1,则它在积分区间上连续,

且有幂级数展开式:
$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + (-1)^n \frac{x^{2n}}{(2n+1)!} + \dots$$

$$\int_0^1 \frac{\sin x}{x} dx = 1 - \frac{1}{3 \cdot 3!} + \frac{1}{5 \cdot 5!} - \dots + \frac{(-1)^n}{(2n+1) \cdot (2n+1)!} + \dots$$

$$\begin{vmatrix} |r_3| < \frac{1}{7 \cdot 7!} = \frac{1}{35280} < 0.3 \times 10^{-4} \\ \approx 1 - 0.05556 + 0.00167 \approx 0.9461 \end{vmatrix}$$

第6爷 傅里叶级数

- 一、三角级数及三角函数系的正交性
- 二、函数展开成傅里叶级数
- 三、正弦级数和余弦级数
- 四、一般周期函数的傅里叶级数

一、三角级数及三角函数系的正交性

简单的周期运动: $y = A\sin(\omega t + \varphi)$ (谐波函数)

(A为振幅, ω 为角频率, φ 为初相)

复杂的周期运动:
$$y = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n)$$
 (谐波迭加)

 $A_n \sin \varphi_n \cos n\omega t + A_n \cos \varphi_n \sin n\omega t =$

得函数项级数 $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 称该级数为三角级数。

定理 1. 组成三角级数的函数系

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$,...

 $\mathbb{E}[-\pi,\pi]$ 上正交,即任意两个不同的函数之积在 $[-\pi,\pi]$ 上的积分等于 0。

iii:
$$\int_{-\pi}^{\pi} 1 \cdot \cos nx \, dx = \int_{-\pi}^{\pi} 1 \cdot \sin nx \, dx = 0 \qquad (n = 1, 2, \dots)$$

$$\int_{-\pi}^{\pi} \cos kx \cos nx \, dx$$

$$\left[\cos kx \cos nx = \frac{1}{2} \left[\cos(k+n)x + \cos(k-n)x \right] \right]$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \left[\cos(k+n)x + \cos(k-n)x \right] \, dx = 0 \qquad (k \neq n)$$

同理可证:
$$\int_{-\pi}^{\pi} \sin kx \sin nx \, dx = 0 \qquad \int_{-\pi}^{\pi} \cos kx \sin nx \, dx = 0 \quad (k \neq n)$$

但是在三角函数系中两个相同的函数的乘积在 $[-\pi, \pi]$ 上的积分不等于 0,且有

$$\int_{-\pi}^{\pi} 1 \cdot 1 \, dx = 2\pi$$

$$\int_{-\pi}^{\pi} \cos^2 n x \, dx = \pi$$

$$(n = 1, 2, \dots)$$

$$\int_{-\pi}^{\pi} \sin^2 nx \, dx = \pi$$

$$\cos^2 nx = \frac{1 + \cos 2nx}{2}$$
, $\sin^2 nx = \frac{1 - \cos 2nx}{2}$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$,...

组成三角级数的函数系 $在[-\pi,\pi]$ 上正交,

$$\int_{-\pi}^{\pi} 1 \cdot \cos nx \, dx = \int_{-\pi}^{\pi} 1 \cdot \sin nx \, dx = 0 \qquad (n = 1, 2, \cdots)$$

$$\int_{-\pi}^{\pi} \sin kx \sin nx \, dx = 0 \qquad (k \neq n)$$

$$\int_{-\pi}^{\pi} \cos kx \sin nx \, dx = 0$$

$$\int_{-\pi}^{\pi} 1 \cdot 1 \, dx = 2\pi$$

$$\int_{-\pi}^{\pi} \cos^2 nx \, dx = \pi$$

$$\int_{-\pi}^{\pi} \sin^2 nx \, dx = \pi$$

$$(n = 1, 2, \cdots)$$

$$\int_{-\pi}^{\pi} \sin^2 nx \, dx = \pi$$

二、函数展开成傅里叶级数

定理 2. 设 f(x) 是周期为 2π 的周期函数,且

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 1

右端级数可逐项积分,则有

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx & (n = 0, 1, \dots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx & (n = 1, 2, \dots) \end{cases}$$

证:由定理条件,对①在 $[-\pi,\pi]$ 逐项积分,得

$$\int_{-\pi}^{\pi} f(x) dx = \frac{a_0}{2} \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos nx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, dx \right) = a_0 \pi \quad \therefore \quad a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

$$\int_{-\pi}^{\pi} f(x) \cos k \, x \, dx = \frac{a_0}{2} \int_{-\pi}^{\pi} \cos kx \, dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \cos kx \cos nx \, dx + b_n \int_{-\pi}^{\pi} \cos kx \sin nx \, dx \right]$$

$$= a_k \int_{-\pi}^{\pi} \cos^2 kx \, \mathrm{d}x = a_k \pi \quad (利用正交性)$$

$$\therefore a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, \mathrm{d}x \, (k = 1, 2, \dots)$$

类似地,用 sin k x 乘 ① 式两边,再逐项积分可得

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \quad (k = 1, 2, \dots)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx & (n = 0, 1, \dots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx & (n = 1, 2, \dots) \end{cases}$$

$$2$$

由公式②确定的 a_n , b_n 称为函数 f(x)的**傅里叶系数**;以f(x)的傅里叶系数 ① 称为叶系数为系数的三角级数 ① 称为 f(x)的**傅里叶级数**。

傅里叶, J.-B.-J

定理3 (收敛定理, 展开定理) 设f(x) 是周期为 2π 的周期函数,

并满足狄利克雷(Dirichlet)条件:

- 1) 在一个周期内连续或只有有限个第一类间断点;
- 2) 在一个周期内只有有限个极值点,

则f(x)的傅里叶级数收敛,且有

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \begin{cases} f(x), & x$$
为连续点
$$\frac{f(x+0) + f(x-0)}{2}, x$$
为间断点

注意: 函数展成 傅里叶级数的条件比展成幂级数的条件低得多.

狄利克雷, P.G.L

其中 a_n, b_n 为f(x)的傅里叶系数。

(证明略)

周期为 2π 的周期函数 f(x)的满足**狄利克雷**(Dirichlet)条件:

- 1) 在一个周期内连续或只有有限个第一类间断点:
- 2) 在一个周期内只有有限个极值点,

傅里叶级数
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

傅里叶系数
$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx & (n = 0, 1, \dots) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx & (n = 1, 2, \dots) \end{cases}$$

则傅里叶
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \begin{cases} f(x), & x$$
 为连续点 级数收敛 且有

设周期为2l 的周期函数f(x)满足收敛定理条件,则它的傅**里**叶展开式为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

(在 f(x) 的连续点处)

其中
$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx & (n = 0, 1, 2, \dots) \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx & (n = 1, 2, \dots) \end{cases}$$

在f(x) 的间断点x处,傅里叶级数收敛于 $\frac{1}{2}[f(x+0)+f(x-0)]$.

定义在 $[-\pi,\pi]$ 上的函数f(x)

$$f(x), x \in [-\pi, \pi]$$

$$F(x) = \begin{cases} f(x), & x \in [-\pi, \pi) \\ f(x-2k\pi), & 其它 \end{cases}$$

傅里叶展开

f(x) 在 $[-\pi, \pi]$ 上的傅里叶级数

定义在 $[0,\pi]$ 上的函数 f(x)

奇延拓

偶延拓

$$F(x) =$$

$$\begin{cases} f(x), & x \in (0, \pi] \\ 0, & x = 0 \\ -f(-x), & x \in (-\pi, 0) \end{cases}$$

F(x) = $\begin{cases} f(x), & x \in (0, \pi] \\ f(-x), & x \in (-\pi, 0) \end{cases}$ **周期延拓** F(x)

f(x) 在 [0, π]上 展成正弦级数

周期延拓 F(x)

f(x) 在 [0, π]上 展成余弦级数

当函数定义在任意有限区间上时, 其傅里叶展开方法:

方法1 $f(x), x \in [a,b]$

$$\Rightarrow x = z + \frac{b+a}{2}, \quad \text{If } z = x - \frac{b+a}{2}$$

$$F(z) = f(x) = f(z + \frac{b+a}{2}), \quad z \in \left[-\frac{b-a}{2}, \frac{b-a}{2} \right]$$

周期延拓

$$F(z)$$
在 $\left[-\frac{b-a}{2}, \frac{b-a}{2}\right]$ 上展成傅里叶级数

将
$$z = x - \frac{b+a}{2}$$
代入展开式

f(x) 在 [a,b] 上的傅里叶级数

方法 2 f(x), $x \in [a,b]$

$$F(z) = f(x) = f(z+a), \quad z \in [0, b-a]$$

奇或偶式周期延拓

$$F(z)$$
 在 $[0,b-a]$

将
$$z = x - a$$
 代入展开式

f(x) 在 [a,b] 上的正弦或余弦级数