```
In [1]: library(arules)

Warning message:
    "package 'arules' was built under R version 3.3.3"Loading required package: Matrix

Attaching package: 'arules'

The following objects are masked from 'package:base':
    abbreviate, write
```

Preprocessing steps required for association rule mining

```
In [2]: bk <-read.csv("bankdata.csv", header = TRUE, sep = ',')
In [3]: #remove id field
bk[,1] <-NULL</pre>
```

In [4]: head(bk)

age	sex	region	income	married	children	car	save_act	current_act	mortgage	pep
54	MALE	INNER_CITY	26707.9	YES	1	NO	YES	YES	YES	YES
27	FEMALE	INNER_CITY	11604.4	YES	2	YES	YES	YES	NO	NO
42	MALE	INNER_CITY	15499.9	YES	0	YES	NO	YES	YES	YES
43	MALE	TOWN	33088.5	NO	0	NO	YES	YES	YES	NO
64	FEMALE	INNER_CITY	34513.6	YES	1	NO	YES	YES	NO	YES
43	MALE	TOWN	32395.5	YES	3	YES	YES	YES	NO	NO

```
In [5]: #discretize continuous attribute to norminal
    bk[["age"]] <- ordered(cut(bk[["age"]], c(10, 40, 100)), labels = c("Young", "Senior"))

In [6]: bk[["income"]] <- discretize(bk[["income"]], categories = 2)

In [7]: #bk[["children"]] <- discretize(bk[["children"]], categories = 2)
    bk[["children"]] <- ordered(cut(bk[["children"]], c(-1,0,10)), labels = c("NoChildren", "HaveChildren"))</pre>
```

In [8]: head(bk)

age	sex	region	income	married	children	car	save_act	current_act	mortgage	pep
Senior	MALE	INNER_CITY	[6294,34712)	YES	HaveChildren	NO	YES	YES	YES	YES
Young	FEMALE	INNER_CITY	[6294,34712)	YES	HaveChildren	YES	YES	YES	NO	NO
Senior	MALE	INNER_CITY	[6294,34712)	YES	NoChildren	YES	NO	YES	YES	YES
Senior	MALE	TOWN	[6294,34712)	NO	NoChildren	NO	YES	YES	YES	NO
Senior	FEMALE	INNER_CITY	[6294,34712)	YES	HaveChildren	NO	YES	YES	NO	YES
Senior	MALE	TOWN	[6294,34712)	YES	HaveChildren	YES	YES	YES	NO	NO

```
In [9]: bk[sapply(bk, is.character)] <- lapply(bk[sapply(bk, is.character)], as.factor)</pre>
In [10]: summary(bk)
```

```
region
   age
              sex
                                              income
                                                       married
Young :234 FEMALE:248 INNER_CITY:221 [ 6294, 34712):361
                                                      NO :169
                      RURAL : 83
                                    [34712, 63130]:139
                                                      YES:331
Senior:266 MALE :252
                      SUBURBAN : 55
                            :141
                      TOWN
                car save_act current_act mortgage pep
      children
               NO :248 NO :156 NO :124
                                          NO :324 NO :267
NoChildren :222
HaveChildren:278
                YES:252 YES:344 YES:376
                                            YES:176
```

```
In [11]: bk_tran <- as(bk, "transactions")
```

```
In [12]: rules = apriori(bk_tran)
          Apriori
          Parameter specification:
           confidence minval smax arem aval original Support maxtime support minlen
                                                        TRUE
                  0.8
                         0.1
                                1 none FALSE
                                                                         0.1
           maxlen target ext
               10 rules FALSE
          Algorithmic control:
           filter tree heap memopt load sort verbose
              0.1 TRUE TRUE FALSE TRUE
          Absolute minimum support count: 50
          set item appearances ... [0 item(s)] done [0.00s].
          set transactions ... [24 item(s), 500 transaction(s)] done [0.00s].
          sorting and recoding items ... [24 item(s)] done [0.00s].
          creating transaction tree ... done [0.00s].
          checking subsets of size 1 2 3 4 5 6 done [0.01s].
          writing ... [508 rule(s)] done [0.00s].
          creating S4 object ... done [0.00s].
```


Experiment 0

```
In [14]: rules = apriori(bk tran, parameter = list(support = 0.2, confidence = 0.4, minlen = 2))
           pep rules = subset(rules, rhs %in% "pep=YES")
           #summary(pep_rules)
           inspect(sort(pep_rules, by = "lift"))
           Apriori
          Parameter specification:
           confidence minval smax arem aval original Support maxtime support minlen
                        0.1 1 none FALSE
                                                           TRUE
           maxlen target ext
                10 rules FALSE
           Algorithmic control:
           filter tree heap memopt load sort verbose
               0.1 TRUE TRUE FALSE TRUE
           Absolute minimum support count: 100
           set item appearances ... [0 item(s)] done [0.00s].
           set transactions ... [24 item(s), 500 transaction(s)] done [0.00s].
           sorting and recoding items ... [22 item(s)] done [0.00s].
           creating transaction tree ... done [0.00s].
           checking subsets of size 1 2 3 4 5 done [0.00s].
           writing ... [758 rule(s)] done [0.00s].
           creating S4 object ... done [0.00s].
                lhs
                                                                        support confidence
                                                             rhs
           [1]
               {age=Senior, children=HaveChildren}
                                                          => \{pep=YES\} 0.200
                                                                               0.6622517
               {married=NO}
                                                          => {pep=YES} 0.204
                                                                                0.6035503
                                                          \Rightarrow {pep=YES} 0.228
           [3] {children=HaveChildren, save_act=YES}
                                                                                0. 5757576
           [4] {children=HaveChildren, mortgage=N0}
                                                          => \{pep=YES\} 0.208
                                                                                0.5621622
           [5] {children=HaveChildren, current_act=YES} => {pep=YES} 0.228
                                                                                0. 5402844
           [6]
                {age=Senior, current_act=YES}
                                                          => \{pep=YES\} 0.214
                                                                                0. 5297030
                                                          \Rightarrow {pep=YES} 0.294
           [7]
                {children=HaveChildren}
                                                                                0. 5287770
               {age=Senior}
                                                          => \{pep=YES\} 0.278
                                                                                0.5225564
           [8]
           [9] {age=Senior, save_act=YES}
                                                          => \{pep=YES\} 0.208
                                                                                0.5098039
           [10] {save act=YES, mortgage=NO}
                                                          => \{pep=YES\} 0.224
                                                                                0.4977778
           [11] \{sex=MALE\}
                                                          => \{pep=YES\} 0.244
                                                                                0.4841270
           [12] \{car=YES\}
                                                          \Rightarrow {pep=YES} 0.244
                                                                                0.4841270
           [13] {current act=YES, mortgage=NO}
                                                          => \{pep=YES\} 0.242
                                                                                0.4840000
           [14] {mortgage=NO}
                                                          => \{pep=YES\} 0.306
                                                                                0. 4722222
           [15] {current act=YES}
                                                          => \{pep=YES\} 0.354
                                                                                0.4707447
           [16] {region=INNER_CITY}
                                                          => \{pep=YES\} 0.206
                                                                                0.4660633
           [17] {save_act=YES, current_act=YES}
                                                          => \{pep=YES\} 0.240
                                                                                0. 4545455
           [18] \{\text{save\_act=YES}\}
                                                          => \{pep=YES\} 0.308
                                                                                0.4476744
           [19] \{car=N0\}
                                                          \Rightarrow {pep=YES} 0.222
                                                                                0.4475806
           [20] {sex=FEMALE}
                                                          => \{pep=YES\} 0.222
                                                                                0.4475806
           [21] {income=[ 6294, 34712), current_act=YES} => {pep=YES} 0.224
                                                                                0. 4258555
           [22] {income=[ 6294, 34712)}
                                                          => \{pep=YES\} 0.306
                                                                                0. 4238227
                lift
           [1] 1.4211409
           [2] 1. 2951723
           [3] 1. 2355313
           [4] 1. 2063566
           [5] 1.1594085
           [6] 1.1367017
           [7] 1.1347145
           [8] 1.1213656
           [9] 1.0939998
           [10] 1.0681927
           [11] 1.0388991
           [12] 1.0388991
           [13] 1.0386266
           [14] 1.0133524
           [15] 1.0101817
           [16] 1.0001359
           [17] 0.9754194
           [18] 0.9606747
           [19] 0.9604735
           [20] 0.9604735
           [21] 0.9138530
           [22] 0.9094908
```

Experiment 1

```
In [15]: rules = apriori(bk tran, parameter = list(support = 0.1, confidence = 0.4, minlen = 2))
          pep_rules = subset(rules, lhs %ain% c("sex=MALE", "married=NO")& rhs %in% "pep=YES")
          #summary(pep_rules)
          inspect(sort(pep_rules, by = "lift"))
          Apriori
          Parameter specification:
           confidence minval smax arem aval originalSupport maxtime support minlen
                      0.1 1 none FALSE
                                              TRUE
          maxlen target ext
              10 rules FALSE
          Algorithmic control:
          filter tree heap memopt load sort verbose
              O. 1 TRUE TRUE FALSE TRUE 2
          Absolute minimum support count: 50
          set item appearances ... [0 item(s)] done [0.00s].
          set transactions ... [24 item(s), 500 transaction(s)] done [0.00s].
          sorting and recoding items ... [24 item(s)] done [0.00s].
          creating transaction tree ... done [0.00s].
          checking subsets of size 1 2 3 4 5 6 done [0.00s].
          writing ... [5667 rule(s)] done [0.59s].
          creating S4 object ... done [0.01s].
                                                support confidence lift
                                      rhs
          [1] {sex=MALE, married=NO} => {pep=YES} 0.1
                                                       0. 5952381 1. 277335
         Experiment 2
          min_suport = 0.3, confidence = 0.4, minlen = 2, pep=TRUE as RHS
          6 rules were generated
In [16]: rules = apriori(bk_tran, parameter = list(support = 0.1, confidence = 0.04, minlen = 2))
          pep_rules = subset(rules, lhs %in% "age=Young" & rhs %in% "pep=YES")
          #summary(pep_rules)
          inspect(sort(pep_rules, by = "support"))
          Apriori
          Parameter specification:
           confidence minval smax arem aval originalSupport maxtime support minlen
                       0.1 1 none FALSE
          maxlen target ext
               10 rules FALSE
```

Algorithmic control:

lhs

[5]

[6]

[7]

[8]

[9]

{age=Young} [2] {age=Young,

{age=Young,

{age=Young,

{age=Young,

{age=Young,

sex=MALE}

{age=Young,

{age=Young,

{age=Young, save act=YES}

car=NO}

[10] {age=Young, sex=MALE,

mortgage=NO}

mortgage=NO}

current_act=YES}

current_act=YES}

income=[6294, 34712),

income=[6294, 34712),

income = [6294, 34712) => {pep=YES}

filter tree heap memopt load sort verbose 0. 1 TRUE TRUE FALSE TRUE 2

creating transaction tree ... done [0.00s].

writing ... [6092 rule(s)] done [0.00s]. creating S4 object ... done [0.00s].

set item appearances ... [0 item(s)] done [0.00s].

checking subsets of size 1 2 3 4 5 6 done [0.01s].

set transactions ... [24 item(s), 500 transaction(s)] done [0.00s].

rhs

 $\Rightarrow \{pep=YES\}$

 $\Rightarrow \{pep=YES\}$

= {pep=YES}

 $\Rightarrow \{pep=YES\}$

 $\Rightarrow \{pep=YES\}$

 $\Rightarrow \{pep=YES\}$

 $\Rightarrow \{pep=YES\}$

income=[6294, 34712)} => {pep=YES} 0.176 0.3911111 0.8392942

sorting and recoding items ... [24 item(s)] done [0.00s].

Absolute minimum support count: 50

TRUE

support confidence => {pep=YES} 0.188 0.4017094 0.8620373

0. 140 0. 4022989 0. 8633023

0.130 0.3892216 0.8352394

0.114 0.3851351 0.8264702

0.110 0.4365079 0.9367123

0.108 0.3776224 0.8103484

0.100 0.4000000 0.8583691

0.100 0.3571429 0.7664010

0.100 0.4237288 0.9092893

Experiment 3

min_suport = 0.1, confidence = 0.8, minlen = 2, income=[34712,63130] & pep=TRUE as RHS & lift > 1.0

10 rules were generated

```
In [17]: rules = apriori(bk_tran, parameter = list(support = 0.1, confidence = 0.8, minlen = 3))
           pep_rules = subset(rules, lhs %in% "income=[34712,63130]" & rhs %in% "pep=YES" & lift > 1.0)
           #summary(pep_rules)
           inspect(sort(pep_rules, by = "lift"))
           Apriori
           Parameter specification:
           confidence minval smax arem aval originalSupport maxtime support minlen
                   0.8
                          0.1
                                 1 none FALSE
                                                           TRUE
                                                                             0.1
            maxlen target ext
                10 rules FALSE
           Algorithmic control:
           filter tree heap memopt load sort verbose
               0.1 TRUE TRUE FALSE TRUE
           Absolute minimum support count: 50
           set item appearances ... [0 item(s)] done [0.00s].
           set transactions ... [24 item(s), 500 transaction(s)] done [0.00s].
           sorting and recoding items ... [24 item(s)] done [0.00s].
           creating transaction tree ... done [0.00s].
           checking subsets of size 1 2 3 4 5 6 done [0.00s].
           writing ... [503 rule(s)] done [0.00s].
           creating S4 object ... done [0.00s].
               lhs
                                                      support confidence
                                                                              lift
           [1] {income=[34712,63130],
                children=HaveChildren,
                                        \Rightarrow \{pep=YES\}
                                                        0. 102 0. 8644068 1. 854950
                mortgage=NO}
           [2] {income=[34712,63130],
                children=HaveChildren,
                save act=YES,
                                                        0. 102 0. 8360656 1. 794132
                current_act=YES}
                                        \Rightarrow \{pep=YES\}
           [3] {income=[34712,63130],
                children=HaveChildren,
                save_act=YES}
                                        \Rightarrow \{pep=YES\}
                                                        0. 124 0. 8266667 1. 773963
           [4] {age=Senior,
                income=[34712,63130],
                children=HaveChildren,
                current_act=YES}
                                        \Rightarrow \{pep=YES\}
                                                        0. 104 0. 8253968 1. 771238
           [5] {income=[34712,63130],
                children=HaveChildren,
                current act=YES}
                                        \Rightarrow \{pep=YES\}
                                                        0. 112 0. 8235294 1. 767230
           [6] {income=[34712,63130],
                                                        0. 134 0. 8170732 1. 753376
                children=HaveChildren => {pep=YES}
           [7] {age=Senior,
                income=[34712,63130],
                children=HaveChildren,
                                        \Rightarrow \{pep=YES\}
                                                        0. 116 0. 8169014 1. 753007
                save_act=YES}
           [8] {age=Senior,
                income=[34712, 63130],
```

Three interesting rules

children=HaveChildren => {pep=YES}

lhs	rhs	support	confidence	lift
{sex=MALE, married=NO}	$\Rightarrow \{pep=YES\}$	0.1	0. 5952381	1.277335
{age=Senior, children=HaveChildren,save_act=YES}	$\Rightarrow \{pep=YES\}$	0.212	0.6235294	1.3380459
{income=[34712,63130], children=HaveChildren, mortgage=NO}	$\Rightarrow \{pep=YES\}$	0.102	0.8644068	1.854950

Observations

- 1. From **experiment 0**, we can see that compares with female, male has more interest in the PEP product, also, senior people have higher change to buy PEP.
- 2. From **expriment 1**, we can see a sinlge male has significant relationship with the PEP purchase behavior.

0. 124 0. 8157895 1. 750621

- 3. From **expriment 2** and **experiment 3**, we can see that the younger people(age < 35) doesn't have much interest buying our product.
- 4. **Experiment 4** investigated the customers who have a higher income, since those people have much interest in purchasing the PEP product.

Recommendations

The target customer should have the following feathers: 1.single male; 2.having no mortgage; 3.having a saving account; 4.senior people who has children; 5.having higher income (income > 34712\$).

Calculate support, confidence and lift

confidence = 50/84 = 0.5952381

In []:

lift = (50x500)/(233x84) = 1.277335

```
In [18]: bk2<-as. data. frame(bk)
In [19]: summary(bk2)
                                                                         married
               age
                            sex
                                           region
                                                               income
           Young :234
                       FEMALE:248
                                    INNER_CITY:221
                                                     [ 6294, 34712):361
                                                                         NO:169
           Senior:266
                       MALE :252
                                    RURAL
                                              : 83
                                                      [34712, 63130]:139
                                                                         YES:331
                                     SUBURBAN : 55
                                     TOWN
                                               :141
                                       save act current act mortgage
                   children
                              car
                                                                        pep
           NoChildren :222
                             NO :248
                                       NO:156
                                                 NO:124
                                                             NO :324
                                                                       NO:267
           HaveChildren:278
                             YES:252
                                       YES:344
                                                 YES:376
                                                             YES:176
                                                                       YES:233
In [20]: | ## this does not work in jupyter notebook, but works in RStudio!
          sigma_male_marryNo <- nrow(bk2[ bk2$sex=="MALE" & bk2$married == "NO",]) # = 83
          sigma_male_marryNo_pepYes <-nrow (bk[( bk$sex=="MALE" & bk$married == "NO" & bk$pep=="YES"),]) # = 50
          now caculate the support, confidence and lift for the following rule;
          {sex=MALE,married=NO} => {pep=YES}
          support = 50/500 = 0.1
```