

Introduction to Statistics

Swiss Institute of Bioinformatics

Isabelle Dupanloup (isabelle.dupanloup@sib.swiss) and Rachel Marcone (rachel.jeitziner@sib.swiss)

8th-11th February 2021

T-tests: summary

T-test in general Used to compare means

One-sample t-test
Compare the mean of a sample to a given number

Two-sample t-test
Compare the means of two samples

Paired t-test

Compare the difference between pairs of related data points

One or two groups How to compare the mean of 3 groups?

Example: What is the effect of treatment conditions on plant growth (weight)?

How to compare the mean of 20 groups?

Multiple T-tests — Multiple testing correction!

Another solution?

ANOVA = ANalysis Of Variance

allows to determine whether there are any statistically significant differences between the means of three or more independent groups

ANOVA – Schematic view

Within group variance = SS_{error}

Assumption: $SS_{error} = SS_{error} = SS_{error}$

Between group variance = SS_{group}

 $SS_{total} = SS_{group} + SS_{error}$

ANOVA - Schematic view

ANOVA – Hypothesis testing

- H₀: all group means are equal
- H₁: at least one mean is different
- A simple model formula in R with one factor is written as

ANOVA - in R

```
# read data
> PlantGrowth <- read.csv("PlantGrowth.csv", header = T)</pre>
> dim(PlantGrowth)
> levels(PlantGrowth$group)
> summary(PlantGrowth)
# if the levels are not automatically in the correct order, re-order them as follow:
> PlantGrowth <- PlantGrowth %>% reorder levels(group, order = c("ctrl", "trt1",
"trt2"))
# compute some summary statistics (count, mean and sd) per group
> PlantGrowth %>% group by(group) %>% get summary stats(weight, type = "mean sd")
# A tibble: 3 x 5
  group variable
                    n mean
                                sd
 <fct> <chr> <dbl> <dbl> <dbl> <
1 ctrl weight
                   10 5.03 0.583
2 trt1 weight
                   10 4.66 0.794
3 trt2 weight
                   10 5.53 0.443
```

ANOVA – in R

```
# create a box plot of weight by group:
> ggboxplot(PlantGrowth, x = "group", y = "weight")
> boxplot(PlantGrowth$weight ~ PlantGrowth$group, xlab="group", ylab="weight")
```


ANOVA - in R

```
> anova.res <- aov(PlantGrowth$weight ~ PlantGrowth$group)</pre>
Call:
  aov(formula = PlantGrowth$weight ~ PlantGrowth$group)
Terms:
               PlantGrowth$group Residuals
               3.76634 10.49209
Sum of Squares
Deg. of Freedom
                                        27
Residual standard error: 0.6233746
Estimated effects may be unbalanced
> summary(anova.res)
                 Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth$group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVA - in R

> summary(anova.res)

Df Sum Sq Mean Sq F value Pr(>F)
PlantGrowth\$group 2 3.766 1.8832 4.846 0.0159 *
Residuals 27 10.492 0.3886

1(c)1(d)10.17

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Between groups (factor)	SSB	k-1	MSB=SSB/k-1	F=MSB/MSW
Within groups (error)	SSW	n-k	MSW=SSW/n-k	
Total	SST=SSB+SSW	n-1		

$$SSB = \sum_{j=1}^{k} n_j (\bar{X}_j - \bar{\bar{X}})^2 \qquad SSW = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_j)^2 \qquad SST = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \bar{\bar{X}})^2$$

ANOVA assumptions

- Independence of observations
- Equal variance

$$W = \frac{n-k}{k-1} \frac{\sum_{i=1}^{k} n_i (\frac{1}{n_i} \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}| - \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}|)^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (|Y_{ij} - \overline{Y_i}| - \frac{1}{n_i} \sum_{j=1}^{n_i} |Y_{ij} - \overline{Y_i}|)^2} \sim F(k-1, n-1)$$

ANOVA assumptions

Normal distribution

Post-hoc tests

 A significant one-way ANOVA is generally followed up by Tukey post-hoc tests to perform multiple pairwise comparisons between groups

```
> tukey.res <- PlantGrowth %>% tukey hsd(weight ~ group)
# A tibble: 3 x 9
 term group1 group2 null.value estimate conf.low conf.high p.adj p.adj.signif
* <chr> <chr> <chr>
                         <dbl>
                                 <dbl>
                                          <dbl>
                                                   <dbl> <dbl> <chr>
                               -0.371 -1.06
1 group ctrl trt1
                                                   0.320 0.391 ns
2 group ctrl trt2
                               0.494 - 0.197
                                                   1.19 0.198 ns
                             0
3 group trt1
                                 0.865 0.174
                                                   1.56 0.012 *
             trt2
                             \cap
```

ANOVA is parametric

- ANOVA assumptions
 - Independence of observations
 - Equal variance
 - Normal distribution
- if the above assumptions are not met: non-parametric alternative: Kruskal-Wallis test

Two-way ANOVA

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

Treatment type

Concentration	
oncentration	
oncentration	$\overline{}$
oncentra	\cup
oncentra	
oncentra	-
oncentr	$\boldsymbol{\sigma}$
oncen	
oncen	
once	
onc	
onc	വ
onc	\sim
ō	$\mathbf{\mathcal{O}}$
	_
Ũ	0
$\mathbf{\mathcal{O}}$	(5)
	\cup

	Control	Treatment 1	Treatment 2
Low			
High			

ANOVA – Hypothesis testing

A model formula in R with x factors is written as

- Some useful symbols
- add more variables
- leave out variables
- interaction between two terms
- * include the terms and the interactions a*b=a+b+a:b
- adds all terms and all interactions up to order n
- I() include a mathematical expression

Two-way ANOVA

• Example: the combined effect of treatment type and concentration on the growth (weight) of plants

Treatment type

atior		Control	Treatment 1	Treatment 2
entr	Low			
onc	High			
\circ				

Plant growth ~ treatment type * concentration

ANOVA - in R

```
# compute some summary statistics (count, mean and sd) per group
> PlantGrowth_new %>% group_by(group, concentration) %>%
get_summary_stats(weight, type = "mean_sd")
# A tibble: 6 x 6
 group concentration variable
                                             sd
                                     mean
                                  n
  <chr> <chr>
                     <chr>
                              <dbl> <dbl> <dbl>
1 ctrl high
                     weight
                                 10 5.16 1.00
2 ctrl low
                     weight
                                 10 5.24 0.755
3 trt1 high
                     weight
                                 10 4.51 0.552
                     weight
                                 10 5.30 0.69
4 trt1 low
                     weight
                                 10 4.77 0.745
5 trt2 high
                     weight
6 trt2
       low
                                 10 4.55 0.775
```

ANOVA – in R

trt1

group

trt2

4.5

4.0

ctrl

ANOVA – in R – check assumptions

- Independence of observations
- Equal variance

ANOVA – in R – check assumptions

Normal distribution

```
> PlantGrowth_new %>% group_by(group, concentration) %>% shapiro_test(weight)
# A tibble: 6 x 5
 group concentration variable statistic
                                             р
  <chr> <chr>
                     <chr>
                                  <dbl> <dbl>
                     weight
                                  0.883 0.143
1 ctrl high
2 ctrl low
                     weight
                                  0.914 0.313
                     weight
3 trt1 high
                                  0.963 0.817
4 trt1 low
                     weight
                                  0.941 0.562
5 trt2 high
                     weight
                                  0.943 0.585
6 trt2 low
                     weight
                                  0.867 0.093
```

ANOVA – in R – check assumptions

Normal distribution

```
> ggqqplot(PlantGrowth_new,
"weight", ggtheme = theme_bw()) +
facet_grid(group ~ concentration)
```


ANOVA - in R

ANOVA - in R

Source of variation	Sum of squares	Degrees of freedom	Mean squares	F ratio
Factor A	SSA	a-1	MSA = SSA/(a-1)	MSA/MSE
Factor B	SSB	b-1	MSB = SSB/(b-1)	MSB/MSE
Interaction	SSAB	(a-1)(b-1)	SSAB = MSAB/(a-1)(b-1)	MSAB/MSE
Error	SSE	ab(n _{ij} -1)	SSE = MSE/(ab(n_{ij} -1))	
Total	SST	n-1		

 X_{ijk} : value of kth observation of level i of factor A and level j of factor B

 n_i : number of observations of level i of factor A

 n_i : number of observations of level j of factor B

 n_{ij} : number of observations of level i of factor A and level j of factor B

$$SSA = \sum_{i=1}^{a} n_{i} (\overline{X}_{i} - \overline{X})^{2} \qquad SSB = \sum_{j=1}^{b} n_{j} (\overline{X}_{j} - \overline{X})^{2} \qquad SSAB = \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} (\overline{X}_{ij} - \overline{X}_{i} - \overline{X}_{j} + \overline{X})^{2}$$

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (X_{ijk} - \overline{X}_{ij})^{2} \qquad SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (X_{ijk} - \overline{X}_{j})^{2}$$

Confidence intervals

Confidence intervals

- Confidence interval is related to the p-value.
- It is a measure of the study's precision.
- P-value answers the question:

"Is there a statistically significant difference between the two treatments?"

• The point estimate and its confidence interval answer the questions:

"What is the size of that treatment difference?"

"How precisely did this trial determine or estimate the treatment difference?"

Confidence intervals - representation

• Width of a confidence interval:

- A narrow CI implies high precision
- A wide CI implies poor precision (usually due to inadequate sample size)

Confidence intervals – computation

- CI = (Sample statistic) ± [(confidence level) × (Sampling variability measure)]
 - Sample statistic: observed magnitude of effect or association (e.g., odds ratio, risk ratio, difference in mean)
 - Confidence level: (1.0α) , usually expressed as a percentage (e.g. 90%, 95% or 99%).
 - Sampling variability: a measure of how high the sampling variability is. Ex: Standard error
 (S.E.) of the estimate is a measure of variability

• 95% C.I. means that true estimate of effect (ex: difference in mean, risk, rate) lies within 2 standard errors of the population mean 95 times out of 100 (given some assumptions).

- If the 95% confidence interval does NOT include the null value, then we declare a "statistically significant" association.
- If the 95% confidence interval includes the null value, then the test result is "not statistically significant."

- Interpretation of C.I. for means: does the interval include 0?
- Interpretation of C.I. for ratio: does the interval include 1?
- Connection between P-values and C.I.s
 - If a 95% CI includes the null effect, the Pvalue is > 0.05 (and we would fail to reject the null hypothesis)
 - If the 95% CI excludes the null effect, the Pvalue is < 0.05 (and we would reject the null hypothesis)

alcohol intake (high versus low) Exposure: Incidence of breast cancer Outcome: Risk Ratio: 1.32 (point estimate) 0.14 (not statistically significant) p-value: 95% C.I.: 0.87 - 1.9895% confidence interval 1.0 1.5 0.0 0.5 2.0 (null value)

Women with high alcohol intake are 1.32 times (or 32%) more likely to develop breast cancer compared to women with low alcohol intake. However, we are 95% confident that the true value (risk) of the population lies between 0.87 and 1.98 => not significant!