Creating a simple approximator case study from scratch: a cookbook

Robin K. S. Hankin

October 4, 2007

1 Introduction

Package approximator of bundle BACCO performs Bayesian calibration of computer models when fast approximations are available. This document constructs a minimal working example of a simple problem, step by step. Datasets and functions have a .vig suffix, representing "vignette".

This document is not a substitute for KOH or KOHa or Hankin 2005 or the online help files in BACCO. It is not intended to stand alone: for example, the notation used here is that of KOH, and the user is expected to consult the online help in the BACCO package when appropriate.

This document is primarily didactic, although it is informal.

Nevertheless, many of the points raised here are duplicated in the BACCO helpfiles.

Note that many of the objects created in this document are interdependent and changing one sometimes implies changing many others.

The author would be delighted to know of any improvements or suggestions. Email me at r.hankin@noc.soton.ac.uk.

2 List of objects that the user needs to supply

The user needs to supply five objects:

- A design matrix, here D1.vig (rows of this show where code level 1 has been evaluated)
- A subset object, in the form of a list. Here it is **subsets.vig**. This list has one element per level of code. A subset object shows which points in the design matrix have been evaluated at each level.
- Basis functions. Here basis.vig. This shows the basis functions used for fitting the prior
- Data, here z.vig. This shows the data obtained from evaluating the various levels of code at the points given by the design matrix and the subsets object.
- A hyperparameter object, here hpa.vig. This object holds correlation scales, the rhos, and the sigmas. One convenient way to do this is to define a function that creates a hyperparameter object from a vector; an example is given in the appendix (hpa.fun.vig()) but this is not strictly necessary.

Each of these is discussed in a separate subsection below. But the first thing we need to do is install the library:

- > library(emulator)
- > library(approximator)

2.1 Design matrix: USER TO SUPPLY

In these sections I show the objects that the user needs to supply, under a heading like the one above. In the case of the approximator package, the objects have a simple structure (list of vectors, function, etc) and so I just show what they look like.

The first thing needed is the design matrix D1.vig, ie the points in parameter space at which the lowest-level code is executed. The example here has just two parameters, a and b:

> head(D1.vig)

```
[,1] [,2]
[1,] 0.125 0.475
[2,] 0.375 0.175
[3,] 0.775 0.425
[4,] 0.075 0.575
[5,] 0.575 0.725
[6,] 0.875 0.525
> nrow(D1.vig)
[1] 20
```

Notes

- Each row is a point in parameter space, here two dimensional. The bottom level code is run at each of these points (see subsets.vig)
- The parameters are labelled a and b

2.2 Subsets object: USER TO SUPPLY

We now need a subsets.object, which gives the row numbers of the runs at each level.

```
> subsets.vig
```

```
$level.1
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
$level.2
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20
$level.3
[1] 1 3 5 6 7 8 9 10 11 12 13 14 15 17 18 20
$level.4
[1] 1 3 5 8 9 10 11 12 13 14 15 18 20
```

Notes

- This is a list of 4 elements (ie the number of levels)
- each element is a subset of those above it
- Use functions is.nested() and is.strict() to verify that the subsets are consistent.

2.3 Basis functions: USER TO SUPPLY

Now we need to choose a basis function. Do this by copying basis.toy() but fiddling with it:

```
> basis.vig <- function(x) {
+     if (is.vector(x)) {
+         stopifnot(length(x) == 2)
+          out <- c(1, x, x[1] * x[2])
+         names(out) <- c("const", LETTERS[1:2], "interaction")
+         return(out)
+     }
+     else {
+         return(t(apply(x, 1, match.fun(sys.call()[[1]]))))
+     }
+ }</pre>
```

Notes

- This is shamelessly ripped off from basis.toy(), except that I've changed the basis to be c(1,a,b,ab).
- Also note the rather strange way this function deals with vectors and matrices. Vectors via the first bit, and matrices via that strange apply() bit at the end.
- The line that reads stopifnot(length(x) == 2) is there to ensure that only vectors of length 2, or matrices with two columns, are processed.

Here is an example of basis.vig() in action:

> head(basis.vig(D1.vig))

	const	Α	В	${\tt interaction}$
[1,]	1	0.125	0.475	0.059375
[2,]	1	0.375	0.175	0.065625
[3,]	1	0.775	0.425	0.329375
[4,]	1	0.075	0.575	0.043125
[5,]	1	0.575	0.725	0.416875
[6,]	1	0.875	0.525	0.459375

See how the columns become the basis functions (that is, c(1, x, x[1]*x[2])).

2.4 Data: USER TO SUPPLY

The data needed is output from the four levels of code. The code is evaluated at points specified by the design matrix D1.vig.

```
Code level 1 is evaluated at each point of D1.vig (ie D1.vig[subsets[[1]],])
Code level 2 is evaluated at D1.vig[subsets[[2]],]
Code level n is evaluated at D1.vig[subsets[[n]],]
```

The data we have for the .vig example is a list of four elements. Each element is a vector whose ith element is the code output at the appropriate point in the design matrix. We can get a feel for the dataset by looking at the head of each vector, and extracting the length:

```
> lapply(z.vig, head)
[[1]]
[1] 2.877093 2.694712 5.212505 2.997084 6.023126 6.280077
```

```
[[2]]
[1] 5.672763 4.917716 9.647068 6.071553 11.593038 11.615629

[[3]]
[1] 7.529491 13.344707 15.577468 16.089929 16.360315 9.410776

[[4]]
[1] 9.205228 15.796070 18.329570 11.320442 23.192226 22.628015

> lapply(z.vig, length)

[[1]]
[1] 20

[[2]]
[1] 19

[[3]]
[1] 16

[[4]]
[1] 13
```

2.5 Hyperparameters: USER TO SUPPLY

We now need some hyperparameters. The appendix gives an example of how to specify a function that creates a hyperparameter object. Here I will show an example

```
> hpa.vig
$sigma_squareds
level1 level2 level3 level4
 0.01 0.01 0.01 0.01
$B
$B[[1]]
  A B
A 20 0
B 0 20
$B[[2]]
  A B
A 20 0
B 0 20
$B[[3]]
  A B
A 20 0
B 0 20
$B[[4]]
  A B
A 20 0
```

B 0 20

Notes

- The hyperparameter object is a list of three elements:
 - The first element, sigma_squareds, is a vector of variances (one per level)
 - The second element is a list of length n (the number of levels). Each of these elements is a positive definite matrix of correlation lengths (here diagonal for simplicity)
 - The third element is a vector of length n-1 of the rhos.
- Different problems will have different hyperparameter objects
- In this case it's probably easier to create a hyperparameter object by hand, but in the appendix I show how a function to generate hyperparameter objects may be written. This option is sometimes better.

3 Data analysis

The previous section showed what data and functions the user needs to supply. These all have a .vig suffix. This section shows the data being analyzed.

3.1 Estimate of the coefficients in the hyperparameter object

This estimate uses the initial value for the hyperparameters.

The hyperparameters themselves may be estimated by using functions opt.1() and opt.gt.1() for level 1 and levels 2 and greater, respectively.

```
> jj <- list(trace = 100, maxit = 10)
> hpa.vig.level1 <- opt.1(D = D1.vig, z = z.vig, basis = basis.vig,
      subsets = subsets.vig, hpa.start = hpa.vig, control = jj)
  Nelder-Mead direct search function minimizer
function value for initial parameters = -97.250027
  Scaled convergence tolerance is 1.44914e-06
Stepsize computed as 0.460517
                   3 -90.911513 -97.250027
BUILD
EXTENSION
                   5 -93.590053 -102.559030
REFLECTION
                   7 -97.250027 -104.036396
LO-REDUCTION
                   9 -102.559030 -104.057607
Exiting from Nelder Mead minimizer
    11 function evaluations used
> hpa.vig.level1
$sigma_squareds
     level1
                 level2
                             level3
                                         level4
0.002511886 0.010000000 0.010000000 0.010000000
$B
$B[[1]]
                  В
```

```
A 39.90525 0.00000
B 0.00000 39.90525
$B[[2]]
   A B
A 20 0
B 0 20
$B[[3]]
  A B
A 20 0
B 0 20
$B[[4]]
  A B
A 20 0
B 0 20
$rhos
level1 level2 level3
    1
          1 1
   Notes
   • Function opt.1() takes a whole bunch o' inputs and returns a modified hyperparameter
   • The hyperparamer object that opt.1() returns is identical to hpa.start except for sigma_squareds[1]
     and B[[1]], corresponding to the first level.
   • We can use this output as a start point to functions opt.gt.1() et seq
> jj <- list(trace = 0, maxit = 20)
> hpa.vig.level2 <- opt.gt.1(level = 2, D = D1.vig, z = z.vig,
      basis = basis.vig, subsets = subsets.vig, hpa.start = hpa.vig.level1,
      control = jj)
> hpa.vig.level3 <- opt.gt.1(level = 3, D = D1.vig, z = z.vig,
      basis = basis.vig, subsets = subsets.vig, hpa.start = hpa.vig.level2,
      control = jj)
> hpa.vig.level4 <- opt.gt.1(level = 4, D = D1.vig, z = z.vig,
      basis = basis.vig, subsets = subsets.vig, hpa.start = hpa.vig.level3,
      control = jj)
> hpa.vig.level4
$sigma_squareds
                             level3
                 level2
                                          level4
     level1
0.002511886 0.008218556 0.011790379 0.005623413
$B
$B[[1]]
A 39.90525 0.00000
B 0.00000 39.90525
```

\$B[[2]]

\$rhos

level1 level2 level3 1.479779 1.017745 0.891251

Now we can try and estimate the betas using the optimized hyperparameter object:

```
> betahat.app(D1 = D1.vig, subsets = subsets.vig, basis = basis.vig,
+ hpa = hpa.vig.level4, z = z.vig)
```

level1.const	level1.A	level1.B	level1.interaction
1.08190387	1.97776541	2.80170706	4.25624102
level2.const	level2.A	level2.B	${\tt level 2.interaction}$
0.47200241	0.06640875	1.60336508	2.13518997
level3.const	level3.A	level3.B	${\tt level 3.interaction}$
1.06725173	0.90994936	0.74592322	3.98967742
level4.const	level4.A	level4.B	${\tt level 4.interaction}$
1.36609328	1.41156794	1.61417749	2.66186031

Not too bad.

3.2 The package in use

The final stage would be using function mdash.fun(), which gives the posterior expectation of the Gaussian process (for level 4):

```
> mdash.fun(x = c(0.5, 0.5), D1 = D1.vig, subsets = subsets.vig,
+ hpa = hpa.vig.level4, z = z.vig, basis = basis.vig)
```

[1] 13.81455

We can now give an error estimate here:

```
> cdash.fun(x = c(0.5, 0.5), D1 = D1.vig, subsets = subsets.vig,
+ basis = basis.vig, hpa = hpa.vig)
```

[,1] [1,] 0.02111428

Appendix

A Data generation

In practice the user generates data from a climate model. Here, I will generate data that matches the assumptions of the approximator software exactly.

Now we need a design matrix:

```
> n <- 20
> D1.vig <- latin.hypercube(n, 2)</pre>
```

See how the function latin.hypercube() is used.

Now we need to specify which rows of the design matrix are run at each of the various levels. We can generate some of this randomly. The lowest level code will use all rows of D1.vig, level 2 will use about half of them, level 3 (ie the top level) will use about half of them, and level 4 about half of them:

```
> subsets.vig <- subsets.fun(n, levels = 4, prob = 0.9)
> names(subsets.vig) <- paste("level", 1:4, sep = ".")</pre>
```

Notes

- See the .vig suffix, for "vignette".
- randomly chosen values illustrate the general nature of the software

Notes

- The is.vector() test allows one to treat matrices and vectors in a consistent way
- the last line is a kludge, but no better way seems to exist

Now we need a function that creates a hyperparameter object:

```
> hpa.fun.vig
function (x)
    if (length(x) != 15) {
         stop("x must have 19 elements")
    }
    pdm.maker <- function(x) {</pre>
         jj \leftarrow diag(x[1:2], nrow = 2)
         rownames(jj) <- LETTERS[1:2]</pre>
         colnames(jj) <- LETTERS[1:2]</pre>
         return(jj)
    sigma_squareds <- x[1:4]
    names(sigma_squareds) <- paste("level", 1:4, sep = "")</pre>
    B <- list()
    B[[1]] \leftarrow pdm.maker(x[5:6])
    B[[2]] <- pdm.maker(x[7:8])
    B[[3]] \leftarrow pdm.maker(x[9:10])
    B[[4]] \leftarrow pdm.maker(x[11:12])
    rhos \leftarrow x[13:15]
    names(rhos) <- paste("level", 1:3, sep = "")</pre>
    return(list(sigma_squareds = sigma_squareds, B = B, rhos = rhos))
}
```

Notes:

- This is a modification of hpa.fun.toy() but with a smaller number of params
- This function isn't strictly necessary, but the alternative (defining a hyperparameter object *ab initio*) is fiddly and error-prone.

Now we can call this function and create a hyperparameter object

```
> hpa.vig <- hpa.fun.vig(c(rep(0.01, 4), rep(20, 8), rep(1, 3)))
```

Now we can generate some data. In practice, this data will come from a climate model. Here I will cheat and define a function generate.vig.observations() to generate data that comes from a known distribution:

First define a function ripped off from generate.toy.obs():

```
"generate.vig.observations" <- function(D1, subsets, basis.fun,
      hpa, betas = NULL, export.truth = FALSE) {
      if (is.null(betas)) {
          betas <- rbind(c(1, 2, 3, 4), c(1, 1, 3, 4), c(1, 1,
              1, 4), c(1, 1, 1, 1))
          colnames(betas) <- c("const", LETTERS[1:2], "interaction")</pre>
          rownames(betas) <- paste("level", 1:4, sep = "")
      }
      if (export.truth) {
          return(list(hpa = hpa, betas = betas))
      sigma_squareds <- hpa$sigma_squareds
      B <- hpa$B
      rhos <- hpa$rhos
      delta <- function(i) {</pre>
          out <- rmvnorm(n = 1, mean = basis.fun(D1[subsets[[i]],</pre>
              , drop = FALSE]) %*% betas[i, ], sigma = sigma_squareds[i] *
              corr.matrix(xold = D1[subsets[[i]], , drop = FALSE],
                  pos.def.matrix = B[[i]]))
          out <- drop(out)
          names(out) <- rownames(D1[subsets[[i]], , drop = FALSE])</pre>
          return(out)
      }
      use.clever.but.untested.method <- FALSE
      if (use.clever.but.untested.method) {
          z1 \leftarrow delta(1)
          z2 \leftarrow delta(2) + rhos[1] * z1[match(subsets[[2]], subsets[[1]])]
          z3 \leftarrow delta(3) + rhos[2] * z2[match(subsets[[3]], subsets[[2]])]
          z4 \leftarrow delta(4) + rhos[3] * z3[match(subsets[[4]], subsets[[3]])]
          return(list(z1 = z1, z2 = z2, z3 = z3, z4 = z4))
      }
      else {
          out <- NULL
          out[[1]] <- delta(1)
          for (i in 2:length(subsets)) {
              out[[i]] <- delta(i) + rhos[i - 1] * out[[i - 1]][match(subsets[[i]],
                  subsets[[i - 1]])]
          return(out)
      }
+ }
```

Then call it:

```
> z.vig <- generate.vig.observations(D1 = D1.vig, subsets = subsets.vig,
+ basis.fun = basis.vig, hpa = hpa.vig)</pre>
```

> z.vig

[[1]]

- [1] 2.877093 2.694712 5.212505 2.997084 6.023126 6.280077 6.376812 3.744098
- [9] 7.661558 7.577209 7.656810 2.547340 1.170986 3.021671 2.824013 4.652889
- [17] 2.360677 4.956209 5.429102 6.196652

[[2]]

- [1] 5.672763 4.917716 9.647068 6.071553 11.593038 11.615629 12.287205
- [8] 7.079795 14.757840 14.221501 14.311365 4.794156 2.211904 5.638859
- [15] 4.900143 9.042288 4.199696 9.615104 11.633233

[[3]]

- [1] 7.529491 13.344707 15.577468 16.089929 16.360315 9.410776 19.839705
- [8] 19.255711 19.681854 6.577214 3.451101 7.536054 6.902830 5.795828
- [15] 12.679756 15.832981

[[4]]

- [1] 9.205228 15.796070 18.329570 11.320442 23.192226 22.628015 23.173538
- [8] 8.095882 4.544181 9.303020 8.874261 15.006535 18.705684

Robin K. S. Hankin

National Oceanography Centre, Southampton

European Way

Southampton SO14 3ZH

United Kingdom

E-mail: r.hankin@noc.soton.ac.uk URL: http://www.noc.soton.ac.uk