Technical Report

1829008 김민영

Practice: Adaptive Tresholding Using Moving Averages

1. result image

■ Grayscale - □ X	■ Adaptive_threshold
Hello, Quorans!	Hello, Quoransi
This is my handwriting when I'm trying.	This is my handwriting when I'm trying.
This is my normal handwriting.	This is my normal handwriting.
This is my really fast handwriting.	This is my really East hand writing
I can also write in cursive.	I can also write in consinc.

2. Explanation of code (adaptiveThreshold.cpp)

Main 함수: 사진을 입력받아와 Adaptice_thres 함수를 통해 결과 image를 출력한다.

<u>Adaptive_thres 함수</u>: Moving Avearage 를 이용하여 Adaptive Thresholding 을 구현하고 결과를 반환한다.

$$\begin{split} g(i,j) &= \begin{cases} 1 & if \ I(i,j) > T(i,j) \\ 0 & otherwise \end{cases} \\ T(i,j) &= b \times m(i,j) \\ \text{Using the mean intensity } m(i,j) \\ m(i,j) &= \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) I(i+s,j+t) \end{split}$$

3. Analysis

Adaptive threshoding bases on moving averages : 물체사이즈가 작으면 잘 작동하며, 문서 처리에 유용한 방법인데 예상한대로 Result image가 잘 나온 것을 확인할 수 있다.

Practice: K-Means Clustering

1. result image

2. Explanation of code (KMeans.cpp)

Main 함수 : Kmeans_gray1, Kmeans_gray2, Kmeans_RGB1, Kmeans_RGB2를 호출하고 이미지를 출력한다.

Kmeans_gray1 함수: intensity I

Kmeans_gray2 함수: intensity + position(I,x/sigma,y/sigma)

Kmeans_RGB1 함수: color(r,g,b)

Kmeans_RGB2 함수: color+position(r,g,b,x/sigma,y/sigma)

로 하여 Kmeans clustering을 하고 각각의 output을 출력한다.

3. Analysis : Intensity + position 으로 pixels들을 그룹핑하니 Intensity 만 고려한 kmeans 보다 더 깔끔하게 clustering 되었다. + 추가 : 주어진 프로그램으로 Mean Shift Segmentation 실행하기(실행결과 첨부)

