

MADEIRA INTERNATIONAL WORKSHOP IN MACHINE LEARNING

Premium sponsor:

Gold sponsor:

Bronze sponsor:

CONTENTS

- Image Classification Applications
- Images
- Image Classification Framework
- Challenges for Image Classification tasks
- Data Augmentation
- Data Augmentation in Practice

IMAGE CLASSIFICATION APPLICATIONS

Self driving cars

Biometric Recognition

Image Annotation

Face Recognition

Object Detection

Tumour detection

DIGITAL IMAGE

A Digital image is a **2D matrix** made up of small box units called **pixel**.

The numerical value for each pixel depicts its intensity.

The intensity can range between **0-255**.

Fig 1. Digital Image (Black and white) Representation

COLOR IMAGES

Colored image consist of three channels: **Red**, **Green and Blue**.

Each channel intensity value may range between **0** and **255**.

Hence, each pixel is represented by **three values**. Different intensity values from these channels defines the object's color.

Fig. 2. Colored image and its R,G and B channels.

IMAGE CLASSIFICATION FRAMEWORK

Fig 4. Image classification Framework (a) Training framework (b) testing framework.

Challenges

- Limited data availability due to data cleaning.
- Limited labelled training samples (Supervised Learning).
- Limited Data diversifications.
- Difficulty in creating Generalised deep learning models.

Solution

- It is a technique to **create a diverse training dataset** for robust models.
- It deals with applying **image transformations** such as image restoration, flipping, resizing etc.
- It should be applied to training data only.

IMAGE AUGMENTATION

a. Image rotation and width-height shift

b. Image resizing

c. Horizontal and vertical flip

Data Augmentation in Practice

DATASET INFORMATION

Inputs: Grayscale Images (60,000 training, 10,000 testing)

Classes: **10** (Needs to be converted to one-hot encoding format)

In this type of encoding ,the sample belonging to particular class is assigned a value 1 and, 0 for other classes. For instance, imagine following are the labels for dog-cat classification.

Categories	Cat	Dog
Cat	1,	0
Dog	0,	1
Cat	1,	0
Dog	0,	1
Cat	1,	0

Image Augmentation Used

- Pixel normalization: by dividing each pixel value by 255.
- datagen = ImageDataGenerator(
 featurewise_center=False,
 samplewise_std_normalization=False,
 samplewise_std_normalization=False,
 samplewise_std_normalization=False,
 zca_whitening=False,
 rotation_range=60,
 width_shift_range=0.03,
 height_shift_range=0.03,
 horizontal_flip=True,
 vertical_flip=True)

Results

Metrics	W/O Augmentation	W/ augmentation
Training Loss	0.34	0.28 (-0.6)
Testing Loss	0.33	0.31 (-0.2)
Training Accuracy	0.87	0.90 (+3%)
Testing Accuracy	0.88	0.89 (+1%)

Thank You