0.1 幺半群 群

定义 0.1 ((幺) 半群)

设 S 是非空集合. 在 S 中定义了二元运算称为乘法, 满足结合律, 即

 $(ab)c = a(bc), \quad \forall a, b, c \in S,$

则称 S 为半群.

如果在半群 M 中存在元素 1, 使得

$$1a = a1 = a, \quad \forall a \in M, \tag{1}$$

则称 M 为幺半群, 1 称为幺元素或幺元.

如果一个幺半群 M(或半群 S) 的乘法还满足交换律, 即

 $ab = ba, \quad \forall a, b \in M (\not S),$

则称 $M(\mathfrak{s}, S)$ 为**交换幺半**群 (或**交换半**群), 也简单地称 $M(\mathfrak{s}, S)$ 为**可换的**.

对于交换幺半群,有时把二元运算记为加法,此时幺元素记为0,改称零元素或零.

例题 0.1

- 1. N 对乘法是幺半群, 对加法是半群而不是幺半群. 非负整数集对加法与乘法均为幺半群.
- 2. 令 M(X) 为非空集 X 的所有变换 (即 X 到 X 的映射) 的集合, 则对于变换的乘法, M(X) 是一个幺半群, id_X 是一个幺元素. 当 $|X| \ge 2$ 时, M(X) 不是可换的.
- 3. 设 P(X) 为非空集合 X 的所有子集的集合. 空集 \varnothing 也是 X 的一个子集, 则 P(X) 对集合的并的运算是一个幺半群, \varnothing 为幺元素. 同样, P(X) 对集合的交的运算是一个幺半群, X 为幺元素, 这两种幺半群都是可换的.

命题 0.1

幺半群中的幺元素是唯一的.

证明 如果 1 - 51 都是幺半群 M 的幺元素,则由条件 (1)可知 1 = 1.

定义 0.2 (群)

在非空集合 G 中定义了二元运算, 称为乘法. 若满足下列条件:

- (1) 结合律成立, 即 $(ab)c = a(bc)(\forall a, b, c \in G)$;
- (2) 存在**左幺元**, 即 $\exists e \in G$, 使 $ea = a(\forall a \in G)$;
- (3) 对 $\forall a \in G$ 有左逆元, 即有 $b \in G$, 使 ba = e,

则称 (G,\cdot) 或 G 是一个群. 若 G 的乘法还满足交换律. 则称 G 为**交换群**或 **Abel** 群.

注 数域 **P** 对加法构成一个群, 左幺元为 0, a 的左逆元为 -a. **P** 对乘法是幺半群, 不是群. 但是 **P** 中非零元素的集合 **P*** 对乘法是群, 1 为左幺元, 1/a 为 a 的左逆元.

有时将 Abel 群的运算记作加法. 这时左幺元改称零元, 以 0 表示; a 的左逆元改称 a 的负元, 记为 -a.

定义 0.3 (全变换群/置换群)

设 X 是非空集合. 以 S_X 表示 X 的所有可逆变换 (即 X 到 X 的一一对应) 的集合,则 S_X 对变换的乘法构成一个群, id_X 为左幺元, f^{-1} 为 f 的左逆元. S_X 称 X 的**全变换群**.

如果集合 X 所含元素的个数 $|X| = n < +\infty$. 此时 S_X 记为 S_n , 称为 n 个文字的**对称群**或 n 个文字的**置换群**, 其元素称为**置换**.

 $\geq S_X$ 的子群称为 X 上的**变换群**.

例题 0.2 假定集合 $X = \{1, 2, \dots, n\}$, 记 S_n 为 X 的对称群, 设 $\sigma \in S_n$, 则 $\sigma(1), \sigma(2), \dots, \sigma(n)$ 是 $1, 2, \dots, n$ 的一个

排列. 常用下面记法:

$$\sigma = \begin{pmatrix} 1 & 2 & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

更一般地, 若 i_1, i_2, \dots, i_n 是 $1, 2, \dots, n$ 的一个排列, 则可记

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_n \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_n) \end{pmatrix}$$

易知 S_n 中有 n! 个元素, S_n 中一个元素可以有 n! 种表示法.

例如, $\sigma \in S_3$, 满足 $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$, 则可记

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \cdots$$

定理 0.1 (群的基本性质)

设 (G,\cdot) 是一个群 $,a \in G,1$ 是G的左幺元,则

- 1. 若 b 为 a 的左逆元,则 b 也是 a 的右逆元,即有 ab=1,故称 b 为 a 的逆元.
- 2. 1 也是 G 的**右**幺元, 即 $a \cdot 1 = a$ ($\forall a \in G$), 故 $1 \ni G$ 的幺元. 故 G 为幺半群, 幺元唯一.
- 3. 任一元素 a 的逆元唯一, 记为 a^{-1} , 并且 $1^{-1} = 1$, $(a^{-1})^{-1} = a$, $(ab)^{-1} = b^{-1}a^{-1}$, $(a^n)^{-1} = (a^{-1})^n$.
- 4. 群运算满足消去律,即

$$ax = bx$$
 (或 $xa = xb$), 则 $a = b$, $\forall a, b, x \in G$.

5. 若 $a, b \in G$, 则群中方程 ax = b(或 xa = b) 的解存在且唯一.

证明

1. 事实上,设c是b的左逆元,则有

$$ab = 1 \cdot (ab) = (cb)(ab) = c(ba)b = c(1 \cdot b) = 1.$$

2. 设 b 为 a 的逆元,则有

$$a \cdot 1 = a(ba) = (ab)a = 1 \cdot a = a.$$

3. 设 b₁, b₂ 均为 a 的逆元, 则有

$$b_1 = b_1 \cdot 1 = b_1(ab_2) = (b_1a)b_2 = 1 \cdot b_2 = b_2.$$

其余各式显然.

- 4. 两边同乘 x^{-1} 即得.
- 5. 事实上, $x = a^{-1}b($ 或 $x = ba^{-1})$ 为解, 由性质 4 知解唯一.

定义 0.4

群 G 中所含元素个数 |G| 称为 G 的阶. 若 |G| 有限,则称 G 为有限群; 若 |G| 无限,则称 G 为无限群.

注 有限群 G 的乘法可列表给出, 此表称为 G 的群表. 设 $G = \{1, a_1, a_2, \cdots, a_{n-1}\}$ 为 n 阶群, 则 G 的群表为

	1	a_1	a_2	• • •	a_{n-1}
1	1	a_1	a_2		a_{n-1}
a_1	a_1	a_1^2	a_1a_2		$a_1 a_{n-1}$
a_2	a_2	a_2a_1	a_2^2		$a_2 a_{n-1}$
÷	:	÷	÷	٠	÷
a_{n-1}	a_{n-1}	$a_{n-1}a_1$	$a_{n-1}a_2$	• • •	a_{n-1}^{2}

同样,可定义半群与幺半群的阶,对于有限半群与幺半群,其运算也可列表给出.

定义 0.5

设 a 是群 G 的元素. 若 $\forall k \in \mathbb{N}, a^k \neq 1$, 则称 a 的**阶为无穷**, 记作 ord $a = \infty$. 若 $\exists k \in \mathbb{N}$, 使得 $a^k = 1$, 则 $r = \min\{k \mid k \in \mathbb{N}, a^k = 1\}$ 称为 a 的**阶**, 记作 ord a = r.

定义 0.6

设a是群G的元素,可定义a的非正整数次乘幂如下:

$$a^0 = 1$$
, $a^{-n} = (a^{-1})^n$, $\forall n \in \mathbb{N}$.

定理 0.2

设 G 是一个群,则对 $\forall m,n \in \mathbb{Z}, a,b \in G$ 有

$$a^m \cdot a^n = a^{m+n}, \quad (a^m)^n = a^{mn}, \quad 1^m = 1.$$

又若 ab = ba, 则有 $(ab)^m = a^m b^m$.

证明

定理 0.3 (群的阶的基本性质)

设 (G,\cdot) 是一个群 $,a\in G,则$

- 1. a 的阶为无穷当且仅当 $\forall m, n \in \mathbb{Z}$ 且 $m \neq n$ 时, $a^m \neq a^n$.
- 2. 设 a 的 阶 为 d, 则

$$a^m = a^n \iff m \equiv n \pmod{d}. \tag{2}$$

3. a与 a-1 阶相同.

证明

1. 事实上, 若 a 的阶为无穷, 而有 $m \neq n$, 使 $a^m = a^n$. 设 m > n, 于是 $a^m(a^n)^{-1} = 1$, 而 $a^m(a^n)^{-1} = a^{m-n} = 1$, 自 然 $m - n \in \mathbb{N}$. 矛盾.

反之, $\forall m, n \in \mathbb{Z}$ 且 $m \neq n$, 有 $a^m \neq a^n$, 则 $a^{m-n} = a^m (a^n)^{-1} = 1$, 即 $\forall k \in \mathbb{N}$ 有 $a^k \neq 1$, 故 a 的阶为无穷.

2. 设 a 的阶为 d, m, $n \in \mathbb{N}$, 由带余除法知, 一定能找到整数 t_1, t_2, r_1, r_2 , 使 $m = dt_1 + r_1(0 \le r_1 < d)$, $n = dt_2 + r_2(0 \le r_2 < d)$. 于是 $a^m = (a^d)^{t_1}a^{r_1} = a^{r_1}$, $a^n = (a^d)^{t_2}a^{r_2} = a^{r_2}$, 因而

$$a^m = a^n \iff a^{r_1} = a^{r_2} \iff a^{r_1 - r_2} = a^{r_2 - r_1} = 1.$$

又 $|r_1 - r_2| < d$, 故上式也等价于 $r_1 - r_2 = 0$, 即式 (2) 成立.

3. $\pm (a^n)^{-1} = (a^{-1})^n \ \, \text{$ \mu$ $a^k = 1$ } \, \text{$ \pm 1 $} \,$