Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #4

2023/03/19

Student Number:	
1. Suppose V and W are 2-dimensional vector spaces, try	to construct $T \in \mathcal{L}(V, W)$ such that the matrix o

Suppose V and W are 2-dimensional vector spaces, try to construct T ∈ L(V, W) such that the matrix of T with respect to a basis of V and a basis of W satisfies (M(T))² = M(T) and M(T) ≠ 0, M(T) ≠ I.
设 V 和 W 均是 2 维向量空间,构造 T ∈ L(V, W),使得 T 在 V 的一组基和 W 的一组基下的矩阵满足 (M(T))² = M(T) 且 M(T) ≠ 0, M(T) ≠ I.

Proof. Let v_1, v_2 be a basis of V, w_1, w_2 be a basis of W. Suppose a map $T: V \to W$ satisfies $Tv_1 = w_1$, $Tv_2 = 0$. It's easy to check $T \in \mathcal{L}(V, W)$. And $\forall v \in V$, $\exists a_1, a_2 \in \mathbf{F}$, s.t. $v = a_1v_1 + a_2v_2$, then $Tv = a_1w_1$, the matrix of T w.r.t the bases v_1, v_2 and w_1, w_2 is

$$\mathcal{M}(T) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

then $\mathcal{M}(T)$ satisfies the condition above.

2. Suppose V are 2-dimensional vector spaces, $T \in \mathcal{L}(V)$, justify the following statement true or false, if true, please give the proof; if not, please give the counter-example.

$$V = \text{null } T \oplus \text{range } T.$$

设 $V \in \mathbb{Z}$ 维向量空间, $T \in \mathcal{L}(V)$, 判断下述说法是否正确。若正确,请给出证明;若不正确,请给出反例:

$$V = \text{null } T \oplus \text{range } T.$$

Proof. False!

Counter-example: suppose v_1, v_2 is a basis of $V, T \in \mathcal{L}(V)$ satisfies $Tv_1 = v_2, Tv_2 = 0$. $\forall v \in V, \exists a_1, a_2 \in \mathcal{F},$ s.t. $v = a_1v_1 + a_2v_2$, we have $Tv = a_1v_2$, so range $T = \text{span}\{v_2\}$. But $Tv = 0 \Rightarrow a_1 = 0 \Rightarrow v = a_2v_2$, so null $T = \text{span}\{v_2\}$. Obviously, range $T + \text{null } T \neq V$ and it is not a direct sum.