# Robot Eye Walker 4D





CV TECHNOLOGY



Produced by



# 「Robot Eye Walker 4D」

現在、防災・建設・土木工事計画や工事中の確認作業において、現地実測や実測内容の図面作成が必須である。手間のかかる測量や測量結果を用い、複雑な複合図作成が課題となっている。特に近年では3DCADを複合図として作図することを望まれるが、図面のない、既存建物等を3DCAD化する技術が求められている。

本商品は(株)岩根研究所と(株)U'sFactoryの共同開発商品であり、既存建物等を簡単に3DCADに変換可能な技術を提供する。

(株)岩根研究所独自のCV(カメラベクター)技術を使い、全周囲動画映像からカメラ位置を高精度に求め、座標値を持ち合わせる三次元化映像を作成。位置確認用のレーザー測量値をCV補正し、映像内で3DACADを作成後、市販3DCADに変換が可能な技術である。

# 作業手順

## ① 360° カメラによる撮影



全周囲 360°カメラ

16枚/毎秒の記録



③ 計測データの確認



特徴点計測の際、角となる出隅計測において レーザーが突き抜けて意図しない計測ポイントの 目視による確認且つ、計測ポイントに自動で付与 された番号の確認を行う

## ② レーザー測量機による代表点の計測



レーザー測量器にて、部屋の入隅、出隅など特徴とみられるポイントをX,Y,Z座用の相対座標として得られるデータをレーザー計測する。

(4) 360° 画像に計測ポイントを登録



測量した、出隅・入隅・サインの角などの特徴点 (X,Y,Z値)を画像に手動で登録する。特徴点は、同一特徴点を異なる時間(場所)の視点から画像に登録することが重要となる。手動の特徴点登録の目的は、画像同士の結合の際に、座標値を持ち合わせる三次元化映像の補正に利用する。

## ④ 自動トラッキング及びCV演算



撮影した全周囲画像から「特徴点」を自動的に抽出し、 全周囲画像内で追跡。特殊画像処理後、各画像フレー ムの三次元情報を取得可能な「CV映像」に変換する。

## ⑥ 計測データ+映像情報からの3DCAD作成



360° カメラ撮影位置からの視点(時間軸)を変えながらポイントとラインを描画し、壁面を構築する。背景の360° 画像を見ながら壁面を構築できるため、ヒューマンエラーの原因となる、見落しを防止する。

## ⑧ 市販3DCADへの変換

### ArchiCAD、Revit、AutoCAD



属性が付加されたオブジェクトを市販の3DCAD用に変換するための中間ファイルを出力。専用アドインによるAPI変換を活用し、再描画させる。

# ⑤ CV演算後のレーザー計測点の確認



「CV演算」、「CV補正」により、レーザー計測結果と、CV映像内の特徴点が一致することを確認する。

## ⑦ 建築オブジェクトの属性を登録



壁面を構築後、(図8)に示すように、床、壁、天井、建具、メッシュの属性を付加する。

#### 作業手順説明 補足

計測精度は、レーザー計測機の測位誤差±3mm~±5mmの範囲内と想定。

ただし、実在する建物は専門の職人が施工したものであるため、ヒューマンエラー等の要素などを含め、全てが図面通りとなる水平・垂直面に施工されているとは限らない。故に計測ポイントの補正及び、3DCADへの作図においては建築知識を有し、柔軟な図面化手法を理解することが求められる。

従来の2次元CADからの3DCAD作成は、平面図、 断面図、天井伏図、展開図といった図面からの読 み取り知識を必要とされるが、現地現物を比較し ながら3DCADを作成する手法を構築した。

# Sample 3DCAD Modeling

#### 街並み計測



既存躯体・既存設備スリーブ計測





既存建物等の周辺状況 現地調査





既存建物内の複数スリーブ計測における、従来 手法の問題点は、実際に計測したスリーブ位置 の確認が難しい上に、3DCADに活用するための、 知識と膨大な作図時間を必要とすることである。

本商品における活用実例は、計測用の仮設足 場を不要としただけでなく、計測したスリーブ位置 の場所が360°動画(CV映像)上に視覚的に判 断できるとともに、スリーブの有無とスリーブ径及 び高さを画面上で判別可能とした。



既存建物の改修工事を計画する際は、多くの関 係者による現地調査が必要である。従来の現地 調査手法では、数多くの写真撮影と、撮影場所 が第三者にも理解可能なように写真の整理とし て、平面図面に撮影場所と、写真番号の明記を 行う。同じような外観の写真だけでも、複数の写 真が存在し、同様の写真整理手法を行う。また、 撮影した写真がフレーム内に収まっておらず、後 日に何度も現地に足を運ぶケースも少なくない。 これらの問題を解決する手段のひとつとして、 360°カメラによる敷地周辺の全周囲撮影及び レーザー測量を実施し、3DCADに変換することで 現地情報の一元化が図られる。

# Technical DATA

屋内・屋外の高精度測位技術評価について









# 測位座標付 連続360°映像の活用

# 「WebALP」360°情報共有ツール



実測値と画像位置がマッチングし、情報のタグ付及びリンク先の管理による情報の一元化が可能

#### 【効果】

- ▶ 現地調査の写真まとめを一元化
- ▶ 第三者が現場にいかなくても状況把握が可能
- ▶ 360° 画像であるため、撮影忘れを防止
- いけない場所でも情報を共有

- ▶ Web上で情報共有することによる早期合意形成を可能
- ▶ 遠隔地のエキスパートたちの意見を集約管理
- ▶ スプリンクラー・照明・吸気口・排気口の位置確認が容易
- ▶ 視覚効果によるお客様との早期合意形成と確認が容易
- → イメージ共有が図れることによる、複数人の手戻り作業を防止



#### 仕様:

全周囲カメラ:

CCDセンサー 6個 【構成】

1600 (H) × 1200 (V) pixel ×6個 【解像度】 【アウトプット】 8ビットベイヤー配列データ

0°C~45°C 【使用温度範囲】 【装着スタンド】 撮影用専用ポール

GPS(標準):

【チャンネル数】 12チャンネル 【アップデートレート】 一秒毎

(推奨)撮影・演算PCスペック:

[os] Windows7 64bit [CPU] Intel Core i7 2.6GHz

[RAM] 16GB

[Graphics Card] NVIDIA GeForce GT 750M 程度

ビデオメモリ 4096 MB

【ポート】 e-SATA×1またはUSB3.0×2

IEEE13946b×1またはExpressCard/34 slot×1

付属ソフトウエア 【撮影用ツール】 GloobeCapture 【CV演算・動画作成ツール】 IMS2ILCVImageCleator 【動画3DCAD作成ツール】

CV Modeler 【地図上 動画再生・CG合成ツール】 ALVs・WebALP

【市販3DCAD変換ツール】 Robot EyeWalker 4DConverter for AirchiCAD18 /for Revit

(アドインツール) API変換 (※市販3DCADソフトウエアは別売です)

販売価格: 1式 3,500万円(消費税別) ※仕様の変更により、価格が変動する場合があります。

# レーザー測量器 ライカ MS50







MS50-R2000の場合

| 標準測定        | 標準運差 ISO17128-4 | 劉定時間、代表值 [a] | 测定時間最速值 [4] |
|-------------|-----------------|--------------|-------------|
| 0 m ~ 500 m | 2mm+2ppm        | 1.5          | 12          |
| >500m       | 4mm+2ppm        | 4            | 12          |

日陰または曇り空での対象物 レーザビームが妨げられた場合、極度の温度差が存在する ザービームパス上に移動物がある場合は、ここに明記した精度が得ら れない可能性があります。表示分解能は 0.1 mm です。

自動測点アプリケーションの使用により、測定時間は長く掛かります。

種類 同軸可視光赤色レーザー

測定システム: R1000: 100 MHz ~ 150 MHz を基本にしたシステムアナライザー

R2000: 波形デジタイザー

| 距離 [m] | レーザースポットの径、松算値 [mm] |
|--------|---------------------|
| 30     | 7 x 10              |
| 50     | 8 x 20              |
| 100    | 1 6x25              |

# 【測量実施 作業サービスの事例】

|                                               |                                                                            |           |     | 2015. | . 6.3 上鳴  | 作成                               |                                            |
|-----------------------------------------------|----------------------------------------------------------------------------|-----------|-----|-------|-----------|----------------------------------|--------------------------------------------|
| 作業内容                                          |                                                                            | 単価        | 数量  | 単位    | 金額        |                                  | 備考                                         |
| 車移動(計測メンバー)                                   |                                                                            | 40,000    | 4   | B     | 160,000   | 車移動台<br>計測作業員3人<br>20,000/日・人    |                                            |
| 宿泊(計測メンバー)                                    |                                                                            | 30,000    | 3   | B     | 90,000    |                                  | ・名古屋九州往復 現<br>地調査含む                        |
| 燃料費•高速料金                                      |                                                                            | 30,000    | 2   | B     | 60,000    | 高速代:20,000円<br>ガソリン10,000円       |                                            |
| レーザー計測<br>(測量器利用料とも)                          |                                                                            | 275,000   | 2   | B     | 550,000   | レザー測量器MS50<br>技術作業員3人<br>(1日あたり) | 125,000/日<br>50000 * 3=150,000<br>計275,000 |
| 360° Camera撮影<br>(自動追尾プリズム、機器利用料とも)           | _                                                                          | 90,000    | 1   | B     | 90,000    | 360° カメラ<br>GloveCapture         | 52,000<br>38,000                           |
| 360°映像作成編集<br>(IMS2 利用料とも)                    |                                                                            | 112,000   | 1   | 式     | 112,000   | CV Generator<br>技術作業員2日          | 42,000<br>35,000*2=70000                   |
| Web ALP 360°動画登録                              |                                                                            | 112,000   | 1   | 式     | 112,000   | FLV-maker<br>技術作業員2日             | 42,000<br>35,000*2=70,000                  |
| 点群データ・3DCADデータ統合<br>(MAP On 3D 利用料とも)         |                                                                            | 154,000   | 1   | 式     | 154,000   | CV-Modeler<br>技術作業員2日            | 54,000<br>50,000*2=100,000                 |
| <b>※1</b> (360° 動画作成)小計                       |                                                                            |           |     |       | 1,328,000 |                                  |                                            |
| WebALP基本ライセンス利用料<br>(80人同時使用を100%とする)         | 「380° viewwer」「計測機能(精度誤差20mm~100mm程度)映像作成方法による」                            | 7,000,000 | 3.8 | %     | 262,500   |                                  | 同時利用を3人と想定                                 |
| 同上 利用者登録費用                                    | (利用者申請が必要です)                                                               | 20,000    | 3   | 人     | 60,000    |                                  |                                            |
| サーバー利用料                                       | サーバー用OS、DB、認証サーバ、メインサーバ<br>(セキュリティレベルLinklt.DocDriveの契約方法に応じて費用負担範囲が変動します) | 3,000,000 | 3.8 | %     | 112,500   |                                  |                                            |
| File Storage (10GB)                           | サーバー保守管理費 (データサイズにより金額が変動します)                                              | 57,600    | 1   | 式     | 57,600    |                                  |                                            |
| ※1・2 360° 内容 閲覧・記録確認システム(Hardware/Software)小計 |                                                                            |           |     |       | 492,600   |                                  |                                            |
| 中 計                                           |                                                                            | 1,820,600 |     |       |           |                                  |                                            |
| 諸経費                                           |                                                                            | 455,150   |     |       |           |                                  | 25                                         |
| 合計(消費稅別)                                      |                                                                            | 2,275,750 |     |       |           |                                  |                                            |
| 撮影筋囲 撮影方法によって作業日教が                            | 変動   15-   ます    南王延旭の場合も内突が変動   ます                                        |           |     |       |           |                                  |                                            |

①撮影範囲、撮影方法によって作業日数が変動いたします。雨天延期の場合も内容が変動します。

File Storage (10GB)の構成は内容により変動いたします

③点群・3Dモデル、統合においては範囲と内容によって変動するため、打ち合わせをお願いいたします。 ④現地計測作業時の電気のご用意をお願いいたします。

⑤計測時の作業ルートの確保及び光源は別途扱いになります。準備と、設置作業・灯りの盛り替え作業員準備をお願いいたします。

※内容・提出物により価格が変わりますので、随時見積書を作成いたします。

(2015年6月時点)

# 【Robot Eve Walker4D販売・サポート】(ソフトウェアの販売元は(株)岩根研究所となります)



# 株式会社岩根研究所

北海道札幌市中央区円山西町7-8-3

Tel. 011-643-0872 Fax. 011-643-4182

HP: http://www.iwane.com/ E-mail: jpsales@iwane.com



東京都港区港南2-15-1品川インターシティA棟28階

Tel. 03-6717-4440 Fax. 03-6717-4442

HP: http://us-factory.jp/ E-mail: info@us-factory.jp