

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) – 802.11b 1Mbps (Fast SAR)

		Am	nbient T	emperature	: 22.2 °C	Liquid Temperature: 21.7 °C				
Freque	encv	Test	Figur	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	<i>,</i>		_	Power	Power Power (dBm)		SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	Position	e No. (dBm) Power (dBm)		Power (aBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2462	11	Front	/	17.49	17.5	0.091	0.09	0.172	0.17	0.15
2462	11	Rear	/	17.49	17.5	0.100	0.10	0.198	0.20	-0.08
2462	11	Left	/	17.49	17.5	0.080	80.0	0.152	0.15	0.12
2462	11	Тор	/	17.49	17.5	0.060	0.06	0.114	0.11	0.07

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) – 802.11b 1Mbps (Full SAR)

		Am	nbient Te	mperature:	22.2°C	Liquid Temp	perature: 2°	1.7°C		
Frequ	ency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Rear	Fig.7	17.49	17.5	0.086	0.09	0.176	0.18	-0.08

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Tem	perature: 22.2 $^{\circ}$	C Liquid	Temperature: 21.7	7 °C
Frequ	ency	Test Position	Actual duty	maximum	Reported SAR	Scaled reported SAR
MHz	Ch.		factor	duty factor	(1g) (W/kg)	(1g) (W/kg)
2462	11	Rear	97.62%	100%	0.18	0.18

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Picture 14.1 The plot of duty factor for Head

Picture 14.2 The plot of duty factor for Body

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body CDMA BC1 (1g)

				•		. •
Freque	ency	Test	Original SAR	First Repeated	The	Second Repeated
MHz	Ch.	Position	(W/kg)	SAR (W/kg)	Ratio	SAR (W/kg)
1909.75 1175		Bottom	1.14	1.15	1.01	1

Table 15.2: SAR Measurement Variability for Head WLAN (1g)

							<u>U/</u>
Frequ	ency		Test	Original	First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
2462	11	Right	Touch	0.911	0.903	1.01	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)										
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	1	I	I	I	I	
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

C	Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	nded uncertainty idence interval of	ı	$u_e = 2u_c$					19.1	18.9	
16.2	2 Measurement U	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system			1						
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
			Test	sample related	l					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
	(meas.)									

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.4	21.1	

	3 Measurement U		1	l				1	I	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system	ı	T	I	1	1	1	1	1	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
		•	Test	sample related	l				•	
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8

	Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8	
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
20	(meas.)		2.06	N	1	0.64	0.43	1.32	0.89	43	
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8	
22	Liquid permittivity		1.6	N	1	0.6	0.49	1.0	0.8	521	
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257	
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.8	20.6		

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Meas	surement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	$\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8	
	Test sample related										

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	&
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year
02	Power meter	NRVD	102196	March 03, 2016	One year
03	Power sensor	NRV-Z5	100596		
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	E5515C	MY50263375	January 30, 2016	One year
07	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year
08	DAE	SPEAG DAE4	777	August 26, 2015	One year
09	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year
10	Dipole Validation Kit	SPEAG D1900V2	5d142	June 23, 2015	One year
11	Dipole Validation Kit	SPEAG D2450V2	853	June 24, 2015	One year

^{***}END OF REPORT BODY***

ANNEX A Graph Results

CDMA BC0 Head Left Cheek Low

Date: 2016-1-9

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used: f = 824.7 MHz; $\sigma = 0.911 \text{ mho/m}$; $\epsilon r = 41.386$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C

Communication System: CDMA BC0 Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.637 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.99 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.754 W/kg

SAR(1 g) = 0.578 W/kg; SAR(10 g) = 0.436 W/kg

Maximum value of SAR (measured) = 0.649 W/kg

Fig.1 CDMA BC0

Fig. 1-1 Z-Scan at power reference point (CDMA BC0)

CDMA BC0 Body Rear Low

Date: 2016-5-25

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used: f = 824.7 MHz; $\sigma = 0.959 \text{ S/m}$; $\epsilon r = 55.896$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: CDMA BC0 Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.542 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.81 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.590 W/kg

SAR(1 g) = 0.481 W/kg; SAR(10 g) = 0.373 W/kgMaximum value of SAR (measured) = 0.523 W/kg

Fig.2 CDMA BC0

Fig. 2-1 Z-Scan at power reference point (CDMA BC0)

CDMA BC1 Head Left Cheek High

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1908.8 MHz; $\sigma = 1.402$ mho/m; $\epsilon r = 40.361$; $\rho = 1.402$ mho/m; $\epsilon r = 40.361$; $\epsilon r = 40.361$

 1000 kg/m^3

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C

Communication System: CDMA BC1 Frequency: 1908.8 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.982 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.995 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.480 W/kg

Maximum value of SAR (measured) = 0.952 W/kg

Fig.3 CDMA BC1

Fig. 3-1 Z-Scan at power reference point (CDMA BC1)

CDMA BC1 Body Bottom High – AP ON

Date: 2016-5-27

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1908.8 MHz; $\sigma = 1.566$ mho/m; $\epsilon r = 53.317$; $\rho = 1.566$ mho/m; $\epsilon r = 53.317$; $\epsilon r = 53.317$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: CDMA BC1 Frequency: 1908.8 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.44 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.09 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.591 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

Fig.4 CDMA BC1

Fig.4-1 Z-Scan at power reference point (CDMA BC1)

CDMA BC1 Body Rear High – AP OFF

Date: 2016-5-27

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.578 \text{ mho/m}$; $\epsilon r = 53.234$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: CDMA BC1 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.785 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.20 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.702 W/kg; SAR(10 g) = 0.454 W/kg

Maximum value of SAR (measured) = 0.751 W/kg

Fig.5 CDMA BC1

Fig.5-1 Z-Scan at power reference point (CDMA BC1)

Wifi 802.11b Right Cheek Channel 6

Date: 2016-1-12

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.917$ S/m; $\varepsilon_r = 38.593$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.24, 7.24, 7.24)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.17 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.79 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 0.889 W/kg; SAR(10 g) = 0.416 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

Fig.6 2450 MHz

Fig. 6-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Body Rear Channel 11

Date: 2016-5-28

Electronics: DAE4 Sn777 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.997$ S/m; $\varepsilon_r = 50.849$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.35, 7.35, 7.35)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.264 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.281 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.176 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.196 W/kg

Fig.7 2450 MHz

Fig. 7-1 Z-Scan at power reference point (2450 MHz)

ANNEX B System Verification Results

835MHz

Date: 2016-1-9

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.921$ S/m; $\varepsilon_r = 41.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

System Validation/Area Scan (61x121x1):Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 53.737 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (interpolated) = 2.59 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.737 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 2.42 W/kg

0 dB = 2.42 W/kg = 3.84 dBW/kg

Fig.B.1 validation 835MHz 250mW

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.408 \text{ mho/m}$; $\varepsilon_r = 40.54$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.844 V/m; Power Drift = -0.02 dB

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.42 W/kg

Maximum value of SAR (interpolated) = 12.8 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.844 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.36 W/kg

Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.9 dBW/kg

Fig.B.2 validation 1900MHz 250mW

Date: 2016-1-12

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.827 \text{ S/m}$; $\varepsilon_r = 38.38$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.24, 7.24, 7.24)

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 87.891 V/m; Power Drift = -0.03 dB

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg

Maximum value of SAR (interpolated) = 17.0 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.891 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.71 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dB W/kg

Fig.B.3 validation 2450MHz 250mW

Date: 2016-05-25

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.929$ S/m; $\varepsilon_r = 42.17$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(9.56, 9.56, 9.56)

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 50.804 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (interpolated) = 2.54 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.804 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.59 W/kg

0 dB = 2.59 W/kg = 4.13 dBW/kg

Fig.B.4 validation 835MHz 250mW

Date: 2016-05-25

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.967$ S/m; $\varepsilon_r = 56.01$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(9.71, 9.71, 9.71)

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 50.298 V/m; Power Drift = 0.08 dB

Fast SAR: SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (interpolated) = 2.4 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.298 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.41 W/kg

SAR(1 g) = 2.28 W/kg; SAR(10 g) = 1.48 W/kg

Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dBW/kg

Fig.B.5 validation 835MHz 250mW

Date: 2016-05-27

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.417 \text{ S/m}$; $\varepsilon_r = 39.74$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 91.872 V/m; Power Drift = -0.04 dB

Fast SAR: SAR(1 g) = 10.7 W/kg; SAR(10 g) = 5.69 W/kg

Maximum value of SAR (interpolated) = 12.1 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.872 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 19.15 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.56 W/kg

Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Fig.B.6 validation 1900MHz 250mW

Date: 2016-05-27

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ S/m}$; $\varepsilon_r = 53.01$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(7.74, 7.74, 7.74)

System validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.905 V/m; Power Drift = -0.06 dBFast SAR: SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.6 W/kg

Maximum value of SAR (interpolated) = 12.6 W/kg

System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.905 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 19.32 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.51 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Fig.B.7 validation 1900MHz 250mW

Date: 2016-05-28

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.847 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.24, 7.24, 7.24)

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 86.267 V/m; Power Drift = 0.05 dB

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.19 W/kg

Maximum value of SAR (interpolated) = 16.4 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.267 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.01 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

Fig.B.8 validation 2450MHz 250mW