AES Algorithm

- AES stands for Advanced Encryption Standard and is a majorly used symmetric encryption algorithm.
- It is mainly used for encryption and protection of electronic data.
- It was used as the replacement of DES(Data encryption standard) as it is much faster and better than DES.

• AES consists of three block ciphers and these ciphers are used to provide encryption of

data.

- AES is a block cipher.
- The key size can be 128/192/256 bits.
- Encrypts data in blocks of 128 bits each.

Rounds	No. of bits in key	
10	128	AES 128 Version
12	192	AES 192 Version
14	256	AES 256 Version

Working of AES Algorithm:

No. of keys generated by key expansion algorithm = No. of rounds + 1

Concepts to be known:

128 bits i.e. 16 byte = 4 words

1 byte	Group of 8 bits
1 Words	4 bytes = 32 bits
Block Size =	128 bit data

Since, 1 word = 32 bits

State:

16 bytes (4 x 4).
Basically. It stores the intermediate result in matrix format after each step process.

Input matrix: 4 x 4 i.e. 16 bytes i.e. 128 bits OR 4 words

1 byte	1 byte	1 byte	1 byte
1 byte	1 byte	1 byte	1 byte
1 byte	1 byte	1 byte	1 byte
1 byte	1 byte	1 byte	1 byte

1 word = 4 bytes

State matrix: 4 x 4

 $[W_0, W_1, W_2, W_3]$

1st byte of 0th word 2nd byte of 1st word 3rd byte of 2nd word

Rounds and its Transformation

1. Sub- bytes

The *state* array is replaced with a SubByte using an 8-bit <u>substitution box</u>. This S- box consist of hexa-decimal value i.e. 0 to 9 and A to F.

3 → 0000 0011

	0	1	2	9	A	F
0			3			
1						
9						
Α						
F						

2. Shift Row

Shifting is done by left. No. of shifting is depended upon the row of the state matrix.

In terms of row, 0th – no shifting 1st – 1 byte shifting 2nd - 2 byte shifting 3rd – 3 byte shifting

3. Mix Column

$$\begin{bmatrix} b_{0,j} \\ b_{1,j} \\ b_{2,j} \\ b_{3,j} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_{0,j} \\ a_{1,j} \\ a_{2,j} \\ a_{3,j} \end{bmatrix} \qquad 0 \leq j \leq 3$$

$$\begin{array}{c} \text{Constant Matrix} \\ (4 \times 4) & \text{state (4 x 1)} \end{array}$$

This step is basically a matrix multiplication. Each column is multiplied with a specific matrix and thus the position of each byte in the column is changed as a result.

Note: This step will be not performed in the last round.

4. Add Round Key

Now the resultant output of the previous stage is XOR-ed with the corresponding round key. Here, the 16 bytes is not considered as a grid but just as 128 bits of data.

Note: And the resultant matrix will be send to other round. Same process for other rounds as well. (Until now, the process was for round 1)

Characteristics

- •AES has keys of three lengths which are of 128, 192, 256 bits.
- •It is flexible and has implementation for software and hardware.
- •It provides high security and can prevent many attacks.
- •It doesn't have any copyright so it can be easily used globally.
- •It consists of 10 rounds of processing for 128 bit keys.

Advantages

- •It can be implemented on both hardware and software.
- •It provides high security to the users.
- •It provides one of the best open source solutions for encryption.
- •It is a very robust algorithm.

Disadvantages

- •It requires many rounds for encryption.
- •It is hard to implement on software.
- •It needs much processing at different stages.
- •It is difficult to implement when performance has to be considered.