Musterlösung zu Level 3

Berichtigungen gerne an joschua.ruwe AT uni-bielefeld.de

Behauptung. Sei $m \in \mathbb{Z}$, m > 0. Dann gilt: Ist m eine Primzahl, so ist $\mathbb{Z}/m\mathbb{Z}$ ein Integritätsring.

Beweis.

Seien $\bar{a}, \bar{b} \in \mathbb{Z}/m\mathbb{Z}$ die Restklassen zu $a, b \in \mathbb{Z}$ modulo $m\mathbb{Z}$. Es gilt $ab \in m\mathbb{Z}$, da

$$\bar{a}\cdot\bar{b}=(a+m\mathbb{Z})\cdot(b+m\mathbb{Z})=(ab)+m\mathbb{Z}=0=\underbrace{0+m\mathbb{Z}}_{\substack{\text{Nullelement in }\mathbb{Z}/m\mathbb{Z}}}=m\mathbb{Z},$$

was genau dann der Fall ist, wenn $ab \in m\mathbb{Z}$ (gemeint ist $ab + m\mathbb{Z} = m\mathbb{Z}$). Dann ist offensichtlich m ein Teiler von ab und somit liegt $a \in m\mathbb{Z}$ oder $b \in m\mathbb{Z}$ (oder beide). Also folgt $\bar{a} = a + m\mathbb{Z} = 0 + m\mathbb{Z} = 0$ oder analog $\bar{b} = 0$ (oder beide = 0). Demnach ist $\mathbb{Z}/m\mathbb{Z}$ ein Integritätsring. \square

 $^{^{1}}$ Ein Integritatsring ist ein vom Nullring verschiedener nullteilerfreier kommutativer Ring mit einem Einselement. Das bedeutet, wenn zwei Zahlen multipliziert = 0 sind, so muss (mindestens) eine 0 gewesen sein.