

Data

Original Intensity Matrix Marine Sonic Feature Data 200 -

1500

500

1000

2000

2500

3000

3500

A. Image Pre-processing

Because the matrix I is a record of the reflected acoustic wave strength, it is not a standard image matrix. Preprocessing is necessary to enhance the measurements for further processing. Also, since the original sonar data are over-sampled, the first step in pre-processing is to downsample sonar matrix data by a user-defined factor, d. This reduces the computational complexity of the problem. Then, the down-sampled image I_d becomes a matrix of size of $\left|\frac{n_s}{d}\right| \times n_t$, where $|\cdot|$ is the floor operator. Next, the down-

sampled image is normalized linearly to obtain the grayscale

image matrix,

$$I_g(i,j) = \frac{I_d(i,j)}{\max\limits_{i,j} \left[I_d(i,j)\right]} \tag{4}$$
 Then $I_g(i,j) \in [0,1], \ \forall i,j.$ Finally, in order to adjust image intensities to enhance contrast, the histogram equalization

technique [13] is applied to the gray image, and a trans-

formed image, I_h , is obtained. Examples of the grayscale

image I_a and the histogram equalized image I_h are shown

in Fig. 3. It can be seen that the objects in I_h are better observed I_h than in I_g due to enhanced contrast.

B. Segmentation based on Matched Filters

In sonar images used in this study, all objects of interest have a similar structure comprised of a highlight area followed by a shadow. This is because the object reflects the sonar waves causing a the sonar to pick up a strong

signal for that location, while location behind the object is

blocked, results in a weak signal registration. The direction

direction, facing away from the sonar. To recognize and segment seafloor objects in the sonar images, a matched filter is designed, as shown in Fig. 4. W_m is the width of the matched filter and L_h and L_b are the lengths of the head and body parts, respectively. The matched filter is mathematically

of the shadow area is always in line with the sonar scan

described by introducing a
$$(W_m \times (L_h + L_b))$$
 match filter matrix,
$$I_m(i,j) = \begin{cases} 1, \text{ for } i \in [1,W_m] \text{ and } j \in [1,L_h] \\ -1, \text{ for } i \in [1,W_m] \text{ and } j \in [L_h + 1,L_h + L_b] \end{cases}$$

The grayscale image
$$I_g$$
 is then converted to the binary image matrix

 $I_b(i,j) = \begin{cases} 1, & \text{if } I_g(i,j) \ge \theta_b \\ -1, & \text{if } I_g(i,j) < \theta_b \end{cases}$ (6)where θ is the binary decaded for the rivels. The name θ

where θ_b is the binary threshold for the pixels. The normalized output of the metabod filter is expressed as

ized output of the matched filter is expressed as
$$I_n(i,j) = \frac{\sum_{\iota=1}^{W_m} \sum_{\zeta=1}^{L_h + L_b} I_b(i+\iota,j+\zeta) I_m(\iota,\zeta)}{\sum_{\iota=1}^{W_m} \sum_{\iota,\zeta=1}^{L_h + L_b} I_m^2(\iota,\zeta)}, \quad (7)$$

Fig. 5. The normalized output of the matched filter.

Labeling from Paper

Fig. 6. Example σ set for a sonar image represented by white segments.

