

LABORATORIO DE MEDICIONES

LIC. PROF. RICARDO G. DEFRANCE ricardo.defrance@inspt.utn.edu.ar

ROTACIÓN DEL SISTEMA MÓVIL EN INSTRUMENTOS DE ÍNDICE Y ESCALA

DISTRIBUCIÓN LINEAL DE LA ESCALA

X

DISTRIBUCIÓN ALINEAL DE LA ESCALA

 $\alpha = f(x)$

SENSIBILIDAD DE UN INSTRUMENTO

ES LA RELACIÓN ENTRE EL DESPLAZAMIENTO DEL ÍNDICE Y LA VARIACIÓN DE LA MAGNITUD MEDIDA

$$S = \frac{d\alpha}{dx}$$

CONSTANTE DE UN INSTRUMENTO

ES LA RELACIÓN ENTRE EL ALCANCE SELECCIONADO YEL NÚMERO TOTAL DE DIVISIONES DE LA ESCALA

$$k = \frac{ALCANCE}{N^{\circ} DIVISIONES}$$

EL VALOR DE LA MEDICIÓN RESULTA DE MULTIPLICAR EL RESULTADO DE LA POSICIÓN DEL ÍNDICE, POR LA CONSTANTE DEL INSTRUMENTO

POSICIÓN DE LA BOBINA RESPECTO AL CAMPO DE INDUCCIÓN MAGNÉTICA B

90°
$$\Phi = \int B. dA$$
 FLUJO MÁXIMO

Generador elemental de dos polos

Campo magnético necesario para contrarrestar el movimiento

Conductor portador de corriente dentro de un campo magnético

Flujo producido por el conductor dentro del campo magnético

Lados activos de la espira

CUERPO RÍGIDO EN ROTACIÓN ALREDEDOR DE UN EJE FIJO

El torque depende de la fuerza que aplico y en dónde la aplico.

ROTACIÓN = ACELERACIÓN ANGULAR

Sí F y r son paralelos, el torque es 0

torque

 $\tau = F \times r [Nm] \circ [Kgm]$

Fitg = mi x atg = mi x
$$\rho$$
i x α fuerza tangencial aplicada a una partícula

$$\alpha = \frac{d\omega}{dt}$$
 aceleración angular

Multiplico ambos miembros de la ecuación por pi

Fitg x
$$\rho i = mi x \rho i^2 x \alpha$$

Aplico la sumatoria para n partículas rotando

$$\sum Fitg \ x \ \rho i = \alpha \sum mi \ x \ \rho i^2$$

Luego resulta,

 $\tau = I \times \alpha$ torque = momento de inercia x aceleración angular

LABORATORIO DE MEDICIONES UTN-INSPT LIC. PROF. RICARDO DEFRANCE ricardo.defrance@inspt.utn.edu.ar ©2020