

GATE | PSUs

Text Book:

Theory with worked out Examples and Practice Questions

Chapter

B

Basics of Control Systems

(Solutions for Text Book Practice Questions)

01. Ans: (c)

Sol:
$$2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 4y(t) = r(t) + 2r(t-1)$$

Apply LT on both sides

$$2s^2 Y(s) + 3sY(s) + 4Y(s) = R(s) + 2e^{-s}R(s)$$

$$Y(s)(2s^2 + 3s+4) = R(s)(1+2e^{-s})$$

$$\frac{Y(s)}{R(s)} = \frac{1 + 2e^{-s}}{2s^2 + 3s + 4}$$

02. Ans: (b)

Sol: I.R = $2.e^{-2t}u(t)$

Output response $c(t) = (1-e^{-2t}) u(t)$

Input response r(t) = ?

$$T.F = \frac{C(s)}{R(s)}$$

$$T.F = L(I.R) = \frac{2}{s+2}$$

$$R(s) = \frac{C(s)}{T.F} = \frac{\frac{1}{s} - \frac{1}{s+2}}{\frac{2}{s+2}} = \frac{1}{s}$$

$$R(s) = \frac{1}{s}$$

$$r(t) = u(t)$$

03. Ans: (b)

Sol: Unit impulse response of unit-feedback control system is given

$$c(t) = t.e^{-t}$$
$$T.F = L(I.R)$$

$$=\frac{1}{\left(s+1\right)^{2}}$$

Open Loop T.F =
$$\frac{\text{Closed Loop T.F}}{1 - \text{Closed Loop T.F}}$$

$$= \frac{\frac{1}{(s+1)^2}}{1 - \frac{1}{(s+1)^2}} = \frac{1}{s^2 + 2s}$$

04. Ans: (a)

Sol: G changes by 10%

$$\Rightarrow \frac{\Delta G}{G} \times 100 = 10\%$$

$$C_1 = 10\%$$

[∵ open loop] whose sensitivity is 100%]

$$\frac{\% \text{ of change in M}}{\% \text{ of change in G}} = \frac{1}{1 + \text{GH}}$$

% of change in M =
$$\frac{10\%}{1 + (10)1} = 1\%$$

% change in C₂ by 1%

05.

Sol:

(i)
$$M = C/R$$

$$\frac{C}{R} = M = \frac{GK}{1 + GH}$$

$$S_K^M = \frac{\partial M}{\partial K} \times \frac{K}{M} = 1$$

[: K is not in the loop \Rightarrow sensitivity is 100%]

(ii)
$$S_H^M = \frac{\partial M}{\partial H} \times \frac{H}{M} = \frac{\partial}{\partial H} \left(\frac{GK}{1 + GH} \right) \frac{H}{M}$$

$$= \left(\frac{GK(-G)}{(1+GH)^2}\right) \left[\frac{H}{\frac{GK}{1+GH}}\right]$$

$$S_{H}^{M} = \frac{-GH}{(1+GH)}$$

06.

Sol: Given data

$$G = 2 \times 10^3$$
, $\partial G = 100$

% change in
$$G = \frac{\partial G}{G} \times 100 = 5\%$$

% change in M = 0.5%

$$\frac{\% \text{ of change in M}}{\% \text{ of change in G}} = \frac{1}{1 + \text{GH}}$$

$$\frac{0.5\%}{5\%} = \frac{1}{1 + 2 \times 10^3 \,\mathrm{H}}$$

$$1 + 2 \times 10^3 \,\mathrm{H} = 10$$

$$H = 4.5 \times 10^{-3}$$

07. Ans: (b)

Sol:
$$K = \frac{\text{output}}{\text{input}} = \frac{c(t)}{r(t)} = \frac{mm}{{}^{0}c}$$

08. Ans: (d)

Sol: Introducing negative feedback in an amplifier results, increases bandwidth.

09. Ans: (a), (b) & (c)

Sol: Negative feedback decreases the gain, increase the bandwidth, reduce sensitivity to parameter variation and more accurate.

10. Ans: (b), (c) & (d)

Sol: Using the transfer function response due to initial conditions [zero input response] can not be obtained.

 $L^{-1}[TF] = IR$ i.e., inverse laplace transform of the transfer function is the impulse response [IR] of the system.

Signal Flow Graphs & **Block Diagrams**

01. Ans: (d)

Sol: No. of loops = 3

Loop1: $-G_1G_3G_4H_1H_2H_3$

Loop2: $-G_3G_4H_1H_2$

Loop3: $-G_4H_1$

No. of Forward paths = 3

Forward Path1: G₁G₃G₄

Forward Path 2: G₂G₃G₄

Forward Path 3: G₂G₄

$$= \frac{G_1G_3G_4 + G_2G_3G_4 + G_2G_4}{1 + G_1G_3G_4H_1H_2H_3 + G_3G_4H_1H_2 + G_4H_1}$$

02. Ans: (a)

Sol: Number of forward paths = 2

Number of loops = 3

$$\frac{Y(s)}{R(s)} = \frac{\frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} [1 - 0] + \frac{1}{s}}{1 - \left[\frac{1}{s} \cdot \left(-1\right)\left(\frac{1}{s}\right)\left(-1\right) + \frac{1}{s} \cdot \frac{1}{s}\left(-1\right) + \left(\frac{1}{s} \cdot \frac{1}{s}\left(-1\right)\right)\right]}$$

$$= \frac{\frac{1}{s^3} + \frac{1}{s}}{1 - \left[\frac{1}{s^2} - \frac{1}{s^2} - \frac{1}{s^2}\right]} = \frac{\frac{1 + s^2}{s^3}}{1 + \frac{1}{s^2}} = \frac{\frac{1 + s^2}{s^3}}{\frac{s^2 + 1}{s^2}}$$

$$= \frac{1 + s^2}{s} \times \frac{1}{s^2 + 1} = \frac{1}{s}$$

03.

Sol: Number of forward paths = 2

Number of loops = 5

Two non touching loops = 4

$$TF = \frac{24[1 - (-0.5)] + 10[1 - (-3)]}{1 - [-24 - 3 - 4 + (5 \times 2 \times (-1) + (-0.5))] + [30 + 1.5 + 2] + \left(\left(\frac{-1}{2}\right) \times (-24)\right)}$$
$$= \frac{76}{88} = \frac{19}{22}$$

04.

Sol: Number of forward paths = 2

Number of loops = 5

$$T.F = \frac{G_{1}G_{2}G_{3} + G_{1}G_{4}}{1 + G_{2}G_{3}H_{2} + G_{1}G_{2}H_{1} + G_{1}G_{2}G_{3} + G_{4}H_{2} + G_{1}G_{4}}$$

05. Ans: (c)

Sol: From the network

$$V_o(s) = \frac{1}{sC} I(s) \quad \dots (1)$$

$$-V_{i}(s) + RI(s) + V_{o}(s) = 0$$

$$-V_{i}(s) + RI(s) + V_{o}(s) = 0$$

$$I(s) = \frac{1}{R}V_{i}(s) + \left(\frac{-1}{R}\right)V_{o}(s)....(2)$$

From SFG

$$V_o(s) = x.I(s)$$
(3)

$$I(s) = \frac{1}{R} V_i(s) + y V_o(s)$$
(4)

From equ(1) and (3)

$$x = \frac{1}{sC}$$

From equ(2) and (4)

$$y = -\frac{1}{R}$$

06. Ans: (a)

Sol: Use gain formula

$$\begin{aligned} \text{transfer function} &= \frac{G(s)}{1 - \left(G(s) \frac{1}{G(s)} + G(s)\right)} \\ &= \frac{G(s)}{1 - 1 - G(s)} = -1 \end{aligned}$$

07.

Sol:

$$\Rightarrow \frac{V_0(s)}{V_i(s)} = \frac{\frac{4s}{1+4s}}{1+\frac{2(2s+1)}{1+4s}} = \frac{4s}{8s+3}$$

08.

Sol: Apply Mason's Gain formula

$$M = \frac{Y_{out}}{Y_{in}} = \frac{\sum_{k=1}^{N} M_k \Delta_k}{\Delta}$$

No. of forward paths = 2

First forward path gain = $G_1G_2G_3G_4$

Second forward path gain = $G_5G_6G_7G_8$

No. of loops = 4

First loop gain = $-G_2H_2$

Second loop gain = $-G_6H_6$

Third loop gain = $-G_3H_3$

Fourth loop gain = $-G_7H_7$

Non touching loops = 4

Loop gains $\rightarrow G_2H_2G_6H_6$

 \rightarrow G₂H₂G₇H₇

 \rightarrow G₆H₆G₇H₇

 \rightarrow G₂H₂G₃H₃

Transfer function =

$$\frac{G_{1}G_{2}G_{3}G_{4}\left(1+G_{6}H_{6}+G_{7}H_{7}\right)+G_{5}G_{6}G_{7}G_{8}}{\left(1+G_{2}H_{2}+G_{3}H_{3}\right)}}{1+G_{2}H_{2}+G_{3}\cdot H_{3}+G_{6}H_{6}+G_{7}H_{7}+G_{2}H_{2}G_{6}H_{6}+G_{7}H_{7}+G_{3}H_{3}G_{7}H_{7}}$$

09. Ans: (a), (b) & (d)

Sol: It is a LTIS, hence $\frac{C}{R}$ can be found

Number of forward paths = 1

Number of loops = 2

Non touching pair = 1

$$\therefore \frac{C}{R} = \frac{(1)}{1 - [-1 - 1] + (-1)(-1)}$$

$$\frac{C}{R} = \frac{1}{4} = 0.25$$

10. Ans: (a), (b) & (d)

Sol:
$$\Rightarrow \frac{Y(s)}{X(s)} = \frac{\frac{1}{(s+1)(s+2)}}{1 + \frac{1}{(s+1)(s+2)}} = \frac{1}{s^2 + 3s + 3}$$

$$\Rightarrow \frac{Y(s)}{N(s)} = \frac{1 - G_{ff}(s) \left(\frac{1}{(s+1)(s+2)}\right)}{1 + \frac{1}{(s+1)(s+2)}} = 0$$

[Output due to noise is zero]

$$G_{ff}(s) = (s+1)(s+2)$$

$$\Rightarrow$$
 C.E: $s^2 + 3s + 3 = 0$

 \Rightarrow Poles locations are $(-3/2 \pm j0.866)$

⇒ System is stable

Chapter

Time Response Analysis

01. Ans: (a)

Sol:
$$\frac{C(s)}{R(s)} = \frac{1}{1+sT}$$
, $R(s) = \frac{8}{s}$

$$C(s) = \frac{8}{s(1+sT)} \Rightarrow c(t) = 8(1-e^{-t/T})$$

$$3.6 = 8 \left(1 - e^{\frac{-0.32}{T}} \right)$$

$$0.45 = 1 - e^{\frac{-0.32}{T}}$$

$$0.55 = e^{\frac{-0.32}{T}}$$

$$-0.59 = \frac{-0.32}{T}$$

$$T = 0.535 \text{ sec}$$

02. Ans: (c)

Sol:
$$\cos \phi = \xi$$

$$\cos 60 = 0.5$$

$$\cos 45 = 0.707$$

Poles left side $0.5 \le \xi \le 0.707$

Poles right side $-0.707 \le \xi \le -0.5$

$$0.5 \le |\xi| \le 0.707$$

$$3 \ rad/s \leq \omega_n \leq 5 \ rad/s$$

03. Ans: (c)

Sol: For R-L-C circuit:

$$T.F = \frac{V_o(s)}{V_i(s)}$$

$$V_{o}(s) = \frac{1}{Cs}I(s)$$

$$= \frac{1}{Cs} \frac{V_{i}(s)}{R + Ls + \frac{1}{Cs}}$$

$$T.F = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + LCs^2 + 1}$$
$$= \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s^2 + 2\xi \omega_n s + \omega_n^2 = 0$$

$$\omega_{n} = \frac{1}{\sqrt{LC}} \qquad 2\xi \omega_{n} = \frac{R}{L}$$

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}}$$

$$\xi = \frac{10}{2} \sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-3}}} = 0.5$$

$$M.P = e^{-\frac{\xi \pi}{\sqrt{1-\xi^2}}}$$
= 16.3% \approx 16%

04. Ans: (b)

Since

Sol: TF =
$$\frac{8/s(s+2)}{1 - \left(\frac{-8 \text{ as}}{s(s+2)} - \frac{8}{s(s+2)}\right)}$$

= $\frac{8}{s(s+2) + 8 \text{ as} + 8}$
= $\frac{8}{s^2 + 2s + 8as + 8}$
= $\frac{8}{s^2 + (2 + 8a)s + 8}$
 $\omega_n^2 = 8 \implies \omega_n = 2 \sqrt{2}$

$$\omega_n - \delta \implies \omega_n - 2$$

$$\xi = \frac{1+4a}{2\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1+4a}{2\sqrt{2}} \implies a = 0.25$$

05. Ans: 4 sec

Sol:
$$T.F = \frac{100}{(s+1)(s+100)} = \frac{100}{s^2 + 101s + 100}$$

$$\omega_n^2 = 100$$

$$\omega_n = 10$$

$$2\xi\omega_n = 101$$

$$\xi = \frac{101}{20}$$

 $\xi > 1$ \rightarrow system is over damped i.e., roots are real & unequal.

Using dominate pole concept,

T.F =
$$\frac{100}{100(s+1)} = \frac{1}{s+1}$$
, Here $\tau = 1$ sec

 \therefore Setting time for 2% criterion = 4τ

06.

Sol:
$$M_p = \frac{C(t_p) - C(\infty)}{C(\infty)}$$

$$= \frac{1.254 - 1.04}{1.04} = 0.2$$

$$\xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}$$

$$M_p = 0.2 ; \xi = 0.46$$

07. Ans: (d)

Sol: Given data: $\omega_n = 2$, $\zeta = 0.5$ Steady state gain = 1

OLTF =
$$\frac{K_1}{s^2 + as + 2}$$
 and $H(s) = K_2$
CLTF = $\frac{G(s)}{1 + G(s)}$

$$\frac{C(s)}{R(s)} = \frac{K_1}{s^2 + as + 2 + K_1 K_2}$$

DC or steady state gain from the TF

$$\begin{split} \frac{K_1}{2+K_1K_2} &= 1\\ K_1(1-K_2) &= 2 & \dots \dots (1)\\ CE \text{ is } s^2 + as + 2 + K_1K_2 &= 0\\ \omega_n &= \sqrt{2+K_1K_2} &= 2\\ 4 &= (2+K_1K_2)\\ K_1K_2 &= 2 & \dots \dots (2) \end{split}$$

Solving equations (1) & (2) we get

$$2\zeta \omega_n = a$$
$$2 \times \frac{1}{2} \times 2 = a$$

 $K_1 = 4$, $K_2 = 0.5$

$$2 \times \frac{1}{2} \times 2 = a$$

$$a = 2$$

08. Ans: (c)

Sol: If $R \uparrow damping \uparrow$

$$\Rightarrow \xi = \frac{R}{2} \sqrt{\frac{C}{L}}$$

(i) If R↑, steady state voltage across C will be reduced (wrong)

(Since steady state value does not depend on ξ)

If $\xi \uparrow$, C (∞) = remain same

(ii) If
$$\xi \uparrow$$
, $\omega_d \downarrow \left(\omega_d = \omega_n \sqrt{1 - \xi^2}\right)$

(iii) If
$$\xi \downarrow$$
, $t_s \uparrow \Rightarrow 3^{rd}$

Statement is false

(iv) If
$$\xi = 0$$
True
$$\frac{2}{0}$$

 \Rightarrow 2 and 4 are correct

09. Ans: A – T, B – S, C- P, D – R, E – Q Sol:

- (A) If the poles are real & left side of splane, the step response approaches a steady state value without oscillations.
- (B) If the poles are complex & left side of splane, the step response approaches a steady state value with the damped oscillations.
- (C) If poles are non-repeated on the $j\omega$ axis, the step response will have fixed amplitude oscillations.
- (D) If the poles are complex & right side of s-plane, response goes to '∞' with damped oscillations.
- (E) If the poles are real & right side of splane, the step response goes to ' ∞ ' without any oscillations.

10.

Sol: (i) Unstable system

$$\therefore$$
 error = ∞

(ii)
$$G(s) = \frac{10(s+1)}{s^2}$$

Step
$$\rightarrow$$
 R (s) = $\frac{1}{s}$

$$k_p\!=\!\infty$$

$$e_{ss} = \frac{A}{1+k_p} = \frac{1}{1+\infty} = 0$$

Parabolic $\Rightarrow k_a = 10$

$$e_{ss} = \frac{1}{10} = 0.1$$

11.

Sol: $G(s) = 10/s^2$ (marginally stable system) \therefore Error can't be determined

12.

Sol:
$$e_{ss} = \frac{1}{11}$$
, $R(s) = \frac{1}{s}$
 $e_{ss} = \frac{A}{1+k_p} = \frac{1}{1+k_p} = \frac{1}{11} = \frac{1}{1+10}$
 $k_p = \underset{s \to 0}{\text{Lt }} G(s)$

$$10 = \mathop{\mathrm{Lt}}_{s \to 0} G(s)$$

$$k = 10$$

$$R(s) = \frac{1}{s^2} (ramp)$$

$$e_{ss} = \frac{A}{k_v} = \frac{1}{k_v} = \frac{1}{10}$$

(System is increased by 1)

$$\Rightarrow$$
 e_{ss} = 0.1

13. Ans: (a)

Since

Sol:
$$T(s) = \frac{(s-2)}{(s-1)(s+2)^2}$$
 (unstable system)

14. Ans: (b)

Sol: Given data: r(t) = 400tu(t) rad/sec Steady state error = 10°

i.e.,
$$e_{ss} = \frac{\pi}{180^{\circ}} (10^{\circ})$$
 radians

$$G(s) = {20K \over s(1+0.1s)}$$
 and $H(s) = 1$

$$r(t) = 400tu(t) \implies 400/s^2$$

$$Error (e_{ss}) = \frac{A}{K_{v}} = \frac{400}{K_{v}}$$

$$K_V = \underset{s \to 0}{\text{Lim}} \, s \, G(s)$$

$$K_V = \underset{s \to 0}{\text{Lim s}} \frac{20K}{s(1+0.1s)}$$

$$K_{\rm V} = 20 {\rm K}$$

$$e_{ss} = \frac{400}{20K}$$

$$e_{ss} = \frac{20}{K} = \frac{\pi}{18}$$

$$K = 114.5$$

15. Ans: (d)

Sol:
$$\frac{d^2y}{dt^2} = -e(t)$$

$$s^2 Y(s) = - E(s)$$

$$x(t) = t u(t) \Rightarrow X(s) = \frac{1}{s^2}$$

$$Y(s) = \frac{-1}{s^2} E(s)$$

$$\frac{Y(s)}{E(s)} = \frac{-1}{s^2}$$

$$\frac{E(s)}{X(s)} = \frac{-1}{1 + \frac{1}{s^2}}$$

$$E(s) = \frac{-s^{2}}{1+s^{2}}X(s)$$

$$= \frac{-s^{2}}{1+s^{2}} \times \frac{1}{s^{2}} = \frac{-1}{1+s^{2}}$$

$$= L^{-1} \left[\frac{-1}{1+s^{2}} \right] = -\sin t$$

Sol: $e_{ss} = 0.1$ for step input For pulse input = 10 time = 1 sec error is function of input $t \rightarrow \infty$ input = 0

17. Ans: (c)

Sol:
$$\frac{C(s)}{R(s)} = \frac{100}{\frac{(s+1)(s+5)}{1+\frac{100\times0.2}{(s+1)(s+5)}}}$$
$$= \frac{100}{(s+1)(s+5)+20}$$

$$= \frac{100}{s^2 + 6s + 5 + 20}$$

$$= \frac{100}{s^2 + 6s + 25}$$

$$\omega_n^2=25,\,\omega_n=5$$

$$\xi = \frac{6}{10} = \frac{3}{5}$$

$$\omega_{d} = \omega_{n} \sqrt{1 - \xi^{2}}$$

$$= 5\sqrt{1 - \left(\frac{3}{5}\right)^{2}}$$

$$= 5 \times \frac{4}{5} = 4 \text{ rad/sec}$$

18. Ans: (c)

Sol:
$$f(t) = \frac{Md^2x}{dt^2} + B\frac{dx}{dt} + Kx(t)$$

Applying Laplace transform on both sides, with zero initial conditions

$$F(s) = Ms^2X(s) + BsX(s) + KX(s)$$

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}$$

Characteristic equation is $Ms^2 + Bs + K = 0$

$$s^2 + \frac{B}{M}s + \frac{K}{M} = 0$$

Compare with $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$

$$2\zeta\omega_n=\frac{B}{M}$$

$$\xi = \frac{B}{2\sqrt{MK}} \qquad \omega_n = \sqrt{\frac{K}{M}}$$

Time constant
$$T = \frac{1}{\zeta \omega_n}$$

= $\frac{1}{B} \times 2M$
 $T = \frac{2M}{B}$

Hence, statements (2 & 3) are correct

19. Ans: (c)

Sol: type 1 system has a infinite positional error constant.

20. Ans: (a)

Sol: Given
$$G(s) = \frac{1}{s(1+s)(s+2)}$$
, $H(s) = 1$.

It is type-I system

Positional error constant $k_p = Lt_{s\to 0}$ G(s)H(s)

$$k_p = Lt_{s\to 0} \frac{1}{s(1+s)(s+2)}$$

 $= \infty$

Steady state error due to step input

$$=\frac{1}{1+k_{p}}=0$$

21.

Sol Open loop T/F G(s) =
$$\frac{A}{s(s+P)}$$

$$C.L T/F = \frac{A}{s^2 + sP + A}$$

$$\omega_{_{n}}=\sqrt{A}$$

Setting time = $4/\xi \omega_n = 4$

$$2\xi\omega_n=P \qquad \qquad \therefore \frac{4}{P/2}=4$$

$$\xi \omega_n = P/2 \qquad \Rightarrow P = \frac{8}{4} = 2$$

$$e^{\frac{-\pi\xi}{\sqrt{1+\xi^2}}} = 0.1 \Rightarrow \frac{\pi\xi}{\sqrt{1-\xi^2}} = \ell n 10$$

$$\frac{1}{2} = 0.5373$$

$$\Rightarrow 1.5373 \ \xi^2 = 0.5373$$

$$\xi = 0.59$$

$$\xi\omega_n=1$$

$$\Rightarrow \omega_n = 1.694 \Rightarrow A = \omega_n^2 = 2.861$$

22.

Since 1995

Sol:

$$\frac{C(s)}{R(s)} = \frac{10}{s(s+0.8+10K)+10}$$
$$= \frac{10}{s^2 + s(0.8+10K)10}$$

$$\Rightarrow 2 \times \frac{1}{2} \times \sqrt{10} = 0.8 + 10K$$

$$\Rightarrow K = 0.236$$

$$t_r = \frac{\pi - \phi}{\omega_d} = \frac{\pi - \cos^{-1}(\xi)}{\omega_n \sqrt{1 - \xi^2}}$$

$$= \frac{\pi - \pi/3}{2.88} = 0.764 \text{ sec}$$

$$t_p = \frac{\pi}{\omega_d} = 1.147 \, sec$$

%Mp =
$$e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}}$$
 = 0.163 × 100 = 16.3%
 t_s (for 2%) = $\frac{4}{\xi\omega_p}$ = $\frac{4}{0.5 \times \sqrt{10}}$ = 2.52 sec

23. Ans: (a), (c) & (d)

Sol: CLTF
$$\Rightarrow \frac{C(s)}{R(s)} = \frac{3k}{2s+1+3k}$$

 \Rightarrow CL pole $s = -\left(\frac{1+3k}{2}\right)$
 \Rightarrow time constant $\tau = \left(\frac{2}{1+3k}\right)$

If
$$k = 3 \Rightarrow \tau = 0.2 \text{ sec}$$

If $k > 3 \Rightarrow \tau < 0.2 \text{ sec}$

If
$$k = 3 \Rightarrow \tau = 0.2 \text{ sec} \Rightarrow BW = \frac{1}{\tau} \text{ rad/sec}$$

$$BW = \frac{1}{0.2} = 5 \text{ rad/sec}$$

24. Ans: (a), (c) & (d)

Sol: ⇒As poles moves toward left side, the system time constant is decreases and system is more relative stable.

- ⇒ Damping ratio increases & percentage of peak overshoot decreases.
- \Rightarrow Damped oscillations (ω_d) is constant. Hence peak time is constant.

Sol: Roots are $(-2 \pm j2\sqrt{3})$ complex $0 < \zeta < 1$ – under damped system

Natural frequency = $\sqrt{16} = 4$ rad/sec

Damping ratio
$$\zeta = \frac{4}{2(4)} = 0.5$$

Under damped system has damped oscillations.

26. Ans: (b) & (c)

Sol: OLTF =
$$\frac{20}{s+2}$$
, H(s) = 1
CLTF = $\frac{\frac{20}{s+2}}{1+\frac{20}{s+2}} = \frac{20}{s+22}$
DC gain = $\frac{20}{22} = \frac{10}{11}$

Steady state error to a unit step input $= \left(1 - \frac{20}{22}\right)$ which is non zero

27. Ans: (b) & (d)

Sol: In OLTF two poles are at the origin

∴ It is type '2'

CE =
$$1 + \frac{10(s+1)^4}{s^2(s+2)} = 0$$
, 4 roots it has

∴ 4th order system

Type 2 system error to step and ramp input s = 0

$$k_a = \underset{s\to 0}{\text{Lt }} s^2 G(s) = \frac{10}{2} = 5$$

Error = $\frac{1}{5}$ = 0.2 to a parabolic input

Stability

01.

Sol: CE =
$$s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$$

s^5	1	8	7
s^4	4(1)	8(2)	4(1)
s^3			0
	6(1)	6(1)	
s^2	1		$0 \longrightarrow \text{Row of AE}$
s^1	0(2)	0	$0 \longrightarrow \text{Row of zero}$
\mathbf{s}^0	1		

System is marginally stable.

(ii)
$$s^2 + 1 = 0$$

 $s = \pm 1$ $j = \pm j\omega_n$
 $\omega_n = 1$ rad/sec
Oscillating frequency $\omega_n = 1$ rad/sec

02.

Sol: (i)
$$s^5 + s^4 + s^3 + s^2 + s + 1 = 0$$

AE (1) =
$$s^4 + s^2 + 1 = 0$$

$$\frac{d(AE)}{ds} = 4s^3 + 2s = 0$$

$$\Rightarrow 2s^3 + s = 0$$

No. of sign changes below AE = 2

No. of AE roots = 4No .of RHP = 2

No. of $j\omega p = 2$

 \Rightarrow No .of LHP = 3

No .of LHP = 2No. of $j\omega p = 0$

CE No. of sign changes in

 1^{st} column = 2

No. of CE roots = 5

No. of RHP = 2

No. of LHP = 3

No. of $j\omega p = 0$

System is unstable

(ii)
$$s^6 + 2s^5 + 2s^4 + 0s^3 - s^2 - 2s - 2 = 0$$

s^6	1	2	-1	-2
s^5	2(1)	0	-2(-1)	0
s^4	2(1)	+0	-2(-1)	0
s^3	0(4)	0	0	0
s^2	0(ε)	-1	0	0
s^1	4/ε			
$-s^0$	-1			

No. of $j\omega p = 2$

$$AE = s^4 - 1 = 0$$

$$\frac{dAE}{ds} = 4s^3 + 0 = 0$$

CE

ΑE

No. of CE roots = 6
No. of AE roots = 4
No. of sign changes
in the 1st column= 1
No .of RHP = 1
No .of LHP = 3
No. of AE roots = 4
No. of sign changes
below AE = 1
No. of RHP = 1
No. of p = 2

No. of $j\omega p = 2$ No. of LHP = 1

03.

Sol: CE =
$$s^3 + 20 s^2 + 16s + 16 K = 0$$

$$\begin{vmatrix}
s^{3} & 1 & 16 \\
s^{2} & 20 & 16K \\
s^{1} & 20 & 0 \\
s^{0} & 16K & 0
\end{vmatrix}$$

(i) For stability $\frac{20(16)-16K}{20} > 0$

$$\Rightarrow$$
 20 (16) - 16 K > 0

 \Rightarrow K < 20 and 16 K > 0 \Rightarrow K > 0

Range of K for stability $0 \le K \le 20$

- (ii) For the system to oscillate with ω_n it must be marginally stable
 - i.e., s¹ row should be 0

s² row should be AE

∴ A.E roots =
$$\pm j\omega_n$$

$$\therefore$$
 s¹ row \Rightarrow 20 (16) - 16 K = 0

$$\Rightarrow K = 20$$

AE is
$$20s^2 + 16 K = 0$$

$$20s^{2} + 16 (20) = 0$$
$$\Rightarrow s = \pm j4$$

$$\omega_n = 4 \text{ rad/sec}$$

04.

Sol: CE =
$$1 + \frac{K(s+1)}{s^3 + as^2 + 2s + 1} = 0$$

 $s^3 + as^2 + (K+2)s + K + 1 = 0$
 $s^3 + as^2 + (K+2)s + (K+1) = 0$

s^3	1	K + 2
s^2	a	K+ 1
s ¹	$\frac{a(K+2)-(K+1)}{a}$ $K+1$	0

Given,

$$\Rightarrow$$
 s¹ row = 0

$$a(K+2)-(K+1)=0$$

$$a=\frac{K+1}{K+2}$$

$$AE = as^{2} + K + 1 = 0$$
$$= \frac{K+1}{K+2}s^{2} + K + 1 = 0$$

$$(k+1)\left(\frac{s^2}{k+2}+1\right)=0$$

$$s^2 + k + 2 = 0$$

$$s = \pm i\sqrt{(k+2)}$$

$$\omega_n = \sqrt{k+2} = 2$$

$$k = 2$$

$$a = \frac{k+1}{k+2} = \frac{3}{4} = 0.75$$

05.

Given that system is marginally stable,

Hence

$$s^1 row = 0$$

$$\frac{9K-18}{K} = 0$$

$$9K = 18 \Rightarrow K = 2$$

A.E is
$$9s^2 + 18 = 0$$

$$Ks^2 + 18 = 0$$
,

$$2s^2 + 18 = 0$$

$$2s^2 = -18$$

$$s = \pm i3$$

$$\therefore \omega_n = 3 \text{ rad/sec.}$$

06. Ans: (d)

Sol: Given transfer function $G(s) = \frac{k}{(s^2 + 1)^2}$

Characteristic equation 1 - G(s).H(s) = 0

$$1 - \frac{k}{(s^2 + 1)^2} = 0$$

$$s^4 + 2s^2 + 1 - k = 0 \dots (1)$$

RH criteria

s^4	1	2	1-K
s^3	4	4	-
s^2	1	1-K	
s^1	4K		
s°	1-K		

$$AE = s^4 + 2s^2 + 1 - K$$

$$\frac{d}{ds}(AE) = 4s^3 + 4s$$

1-K > 0 no poles are on RHS plane and LHS plane.

All poles are on j ω - axis

 $\therefore 0 < K < 1$ system marginally stable

07. Ans: (d)

Since

Sol: Assertion: FALSE

Let the TF= s. "s" is the differentiator Impulse response $L^{-1}[TF] = L^{-1}[s] = \delta'(t)$

$$\operatorname{Lt}_{t\to\infty} \delta'(t) = 0$$

:. It is BIBO stable

Reason: True

$$x(t) = t \sin t$$

Lt x(t) = Lt t sint is unbounded

08. Ans: (a)

Sol: Assertion: TRUE

If feedback is not properly utilized the closed loop system may become unstable.

Reason: True

Feedback changes the location of poles

Let
$$G(s) = \frac{-2}{s+1}$$
 $H(s) = 1$

Open loop pole s = -1 (stable)

CLTF =
$$\frac{\frac{-2}{s+1}}{1+\frac{-2}{s+1}} = \frac{-2}{s-1}$$

Closed loop pole is at s = 1 (unstable)

∴ After applying the feedback no more system is open loop. It becomes closed loop system. Hence poles are affected.

09. Ans: (a) & (d)

Sol: RH tabulation:

$$AE = 5s^2 + 20 = 0$$

$$\frac{dAE}{ds} = 10s = 0$$

AE roots = $s = \pm j2$

Two sign changes

 \therefore No. of j ω axis roots = 2

No. of left hand root = 1 (real)

10. Ans: (a), (c) & (d)

Sol: C.E = 1 +
$$\frac{k}{s(s+4)(s+5)}$$
 = 0

$$s^3 + 9s^2 + 20s + k = 0$$

$$\begin{vmatrix}
s^{3} & 1 & 20 \\
s^{2} & 9 & k \\
s^{1} & \frac{180 - k}{9} & k
\end{vmatrix}$$

$$180 - k > 0$$

k < 180 and

k > 0

 \therefore Range of k for stability 0 < k < 180

k > 180; Two sign changes in the

1st column

 \therefore Number of right half of s-plane poles = 2

k = 180 marginally stable

.. Two poles are on the imaginary axis

k < 180 stable

:. All the three poles are in the left half of s-plane

Root Locus Diagram

01. Ans: (a)

Sol:
$$s_1 = -1 + j\sqrt{3}$$

$$s_2 = -3 - i\sqrt{3}$$

$$G(s).H(s) = \frac{K}{(s+2)^3}$$

$$s_1 = -1 + i\sqrt{3}$$

$$G(s).H(s) = \frac{K}{\left(-1 + j\sqrt{3} + 2\right)^3}$$
$$= \frac{K}{\left(1 + j\sqrt{3}\right)^3}$$
$$= -3\tan^{-1}(\sqrt{3})$$
$$= -180^{\circ}$$

It is odd multiples of 180°, Hence s₁ lies on Root locus

$$s_2 = -3 - i\sqrt{3}$$

G(s).H(s) =
$$\frac{K}{(-3 - j\sqrt{3} + 2)^3}$$

= $\frac{K}{(-1 - j\sqrt{3})^3}$
= $-3 [180^\circ + 60^\circ] = -720^\circ$

It is not odd multiples of 180°, Hence s₂ is not lies on Root locus.

02. Ans: (a)

Sol: Over damped - roots are real & unequal $\Rightarrow 0 < k < 4$

(b) k = 4 roots are real & equal \Rightarrow Critically damped $\xi = 1$

(c)
$$k > 4 \Rightarrow$$
 roots are complex $0 < \xi < 1 \Rightarrow$ under damped

03. Ans: (a)

Sol: Asymptotes meeting point is nothing but centroid

centroid
$$\sigma = \frac{\sum poles - \sum zeros}{p - z}$$

$$= \frac{-3 - 0}{3 - 0} = -1$$

centroid =
$$(-1, 0)$$

04. Ans: (b)

Sol: Break point =
$$\frac{dK}{ds} = 0$$

$$\frac{d}{ds}(G_1(s).H_1(s)) = 0$$

$$\frac{d}{ds}[s(s+1)(s+2)] = 0$$

$$3s^2 + 6s + 2 = 0$$

Since
$$1995 = -0.422, -1.57$$

But s = -1.57 do not lie on root locus So, s = -0.422 is valid break point.

Point of intersection wrt jω-axis

$$s^3 + 3s^2 + 2s + k = 0$$

$$\begin{vmatrix}
s^{3} & 1 & 2 \\
s^{2} & 3 & k \\
s^{1} & 6-k & 0 \\
s^{0} & k & 0
\end{vmatrix}$$

As
$$s^1$$
 Row = 0

$$k = 6$$

$$3s^2 + 6 = 0$$

$$s^2 = -2$$

$$s = \pm i\sqrt{2}$$

point of inter section: $s = \pm j\sqrt{2}$

05. Ans: (b)

Sol:

$$\frac{K}{s(s+1)(s+2)}$$

substitute s = -0.423 and apply the magnitude criteria.

$$\left| \frac{K}{(-0.423)(-0.423+1)(-0.423+2)} \right| = 1$$

$$K = 0.354$$

when the roots are complex conjugate then the system response is under damped.

From K > 0.384 to K < 6 roots are complex conjugate then system to be under damped the values of k is 0.384 < K < 6.

06. Ans: (c)

Sol: If the roots are lies on the real axis then system exhibits the non-oscillatory response. from $K \ge 0$ to $K \le 0.384$ roots lies on the real axis. Hence for $0 \le K \le 0.384$ system exhibits the non-oscillatory response.

Sol:

$$\frac{d}{ds}[G(s).H(s)] = \frac{d}{ds} \left[\frac{k(s+3)}{s(s+2)} \right]$$

$$s^{2} + 6s + 6 = 0$$
break points - 1.27, -4.73
$$radius = \frac{4.73 - 1.27}{2} = 1.73$$

Sol:
$$G(s).H(s) = \frac{K(s+3)}{s(s+2)}$$

center = (-3, 0)

$$|\mathbf{k}|_{s=-4} = \left| \frac{(-4)(-4+2)}{(-4+3)} \right|$$

$$= \left| \frac{(-4)(-2)}{(-1)} \right| = 8$$

09. Ans: (a)

Sol: $s^2-4s+8=0 \Rightarrow s=2\pm 2j$ are two zeroes $s^2+4s+8=0 \Rightarrow s=-2\pm 2j$ are two poles $\phi_A = 180 - \angle GH\big|_{s=2\pm 2j}$ $GH = \frac{k[s-(2+2j)[s-(2-2j)]]}{[s-(-2+2j)[s-(-2-2j)]]}$ $\angle GH\big|_{s=2\pm 2j} = \frac{\angle k \angle 4j}{\angle 4 \angle 4 + 4j}$ $= 90^\circ - 45^\circ = 45^\circ$

 $\phi_{\Delta} = 180^{\circ} - 45^{\circ} = \pm 135^{\circ}$

10. Ans: (b)

Sol:
$$s^2-4s+8=0 \Rightarrow s=2\pm 2j$$
 are two zeroes
 $s^2+4s+8=0 \Rightarrow s=-2\pm 2j$ are two poles
 $\phi_d=180^0+\angle GH\big|_{s=-2\pm 2j}$

$$\angle GH|_{S=-2\pm2j} = \angle \frac{k[s - (2+2j)][s - (2-2j)]}{[s - (-2+2j)][s - (-2-2j)]}|_{S=-2\pm2j}$$

$$= \frac{\angle k(-4)(-4+4j)}{\angle 4j}$$

$$= 180^{\circ} + 180^{\circ} - 45^{\circ} - 90^{\circ} = 225^{\circ}$$

$$\phi_d = 180^{\circ} + 225^{\circ} = 405^{\circ}$$

$$\therefore \varphi_d = \pm \ 45^\circ$$

11. Ans: (d)

Sol: Poles
$$s = -2, -5$$
; Zero $s = -10$

∴ Breakaway point exist between –2 and –5

12.

Sol: Refer Pg No: 75, Vol-1 Ex: 8

13. Ans: (a), (c) & (d)

Sol:

$$\Rightarrow$$
 Centroid $\sigma = \frac{(-2-4)-(0)}{3} = -2$

$$\Rightarrow$$
 Angle of asymptotes $\theta = \frac{(2q+1)180^{\circ}}{(p-z)}$,

$$q = 0 \Rightarrow \theta = \frac{180^{\circ}}{3} = 60^{\circ}$$

$$q = 1 \Rightarrow \theta = \frac{3 \times 180^{\circ}}{3} = 180^{\circ}$$

$$q = 2 \Rightarrow \theta = \frac{5 \times 180^{\circ}}{3} = 300^{\circ}$$

14. Ans: (a) & (b)

Sol: RLD of the system is drawn below

Consider
$$\sigma = \frac{-4-4-4-4}{4-0}$$

$$\sigma = -4$$

All the root loci branches are breaking away at s = -4, hence it is called as a break away point.

15. Ans: (c) & (d)

Since

Sol: RLD of the system is given below

$$k\big|_{s=-3} = (1)(1) = 1$$

s = -3 is a break in | away point

Chapter 6

Frequency Response Analysis

01. Ans: (c)

Sol:
$$G(s).H(s) = \frac{100}{s(s+4)(s+16)}$$

Phase crossover frequency (ω_{pc}):

$$\angle G(j\omega).H(j\omega)/\omega = \omega_{pc} = -180^{\circ}$$

$$-90^{\circ} - \tan^{-1}(\omega_{pc}/4) - \tan^{-1}(\omega_{pc}/16) = -180^{\circ}$$
$$-\tan^{-1}(\omega_{pc}/4) - \tan^{-1}(\omega_{pc}/16) = -90^{\circ}$$

$$tan[tan^{-1}(\omega_{pc}/4) + tan^{-1}(\omega_{pc}/16)] = tan(90^{\circ})$$

$$\frac{\frac{\omega_{pc}}{4} + \frac{\omega_{pc}}{16}}{1 - \frac{\omega_{pc}}{4} \cdot \frac{\omega_{pc}}{16}} = \frac{1}{0}$$

$$\omega_{pc}^2 = 16 \times 4 \Rightarrow \omega_{pc} = 8 \text{ rad/sec}$$

02. Ans: (d)

Sol:
$$G(s).H(s) = \frac{100}{s(s+4)(s+16)}$$

Gain margin (G.M) =
$$\frac{1}{\left|G(j\omega)H(j\omega)\right|_{\omega=\omega_{nc}}}$$

$$\begin{split} \left|G(j\omega).H(j\omega)\right|_{\omega=\omega_{pc}} &= \frac{100}{\omega_{pc}\sqrt{\omega_{pc}^2 + 4^2}\sqrt{\omega_{pc}^2 + 16^2}} \\ &= \frac{5}{64} \\ G.M &= \frac{64}{5} = 12.8 \end{split}$$

03. Ans: (c)

Sol:
$$G(s).H(s) = \frac{2e^{-0.5s}}{(s+1)}$$

gain crossover frequency,

$$\omega_{gc} = |G(j\omega).H(j\omega)|_{\omega=\omega} = 1$$

$$\frac{2}{\sqrt{\omega_{\rm gc}^2 + 1}} = 1$$

$$\omega_{\rm gc}^2 + 1 = 4 \implies \omega_{\rm gc} = \sqrt{3} \, \text{rad/sec}$$

04. Ans: (b)

Sol:
$$\omega_{\rm gc} = \sqrt{3} \text{rad/sec}$$

$$P.M = 180^{\circ} + \angle G(j\omega) H(j\omega) / \omega = \omega_{oc}$$

$$\angle G(j\omega).H(j\omega)/_{\omega=\omega_{gc}} = -0.5 \omega_{gc} - tan^{-1}(\omega_{gc})$$

$$= -109.62^{\circ}$$

$$P.M = 70.35^{\circ}$$

05. Ans: (a)

Sol:
$$M_r = 2.5 = \frac{1}{2\xi\sqrt{1-\xi^2}}$$

$$2\xi\sqrt{1-\xi^2} = \frac{1}{2.5}$$

$$\xi^4 - \xi^2 + 0.04 = 0$$

$$\xi^2 = 0.958$$
 $\xi^2 = 0.0417$

$$\xi = 0.204$$
 $(M_r > 1)$

06. Ans: (a)

Sol: Closed loop T.F =
$$\frac{1}{s+2}$$

$$A = \frac{1}{\sqrt{\omega^2 + 4}} = \frac{1}{\sqrt{4 + 4}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}}$$

$$\phi = -\tan^{-1}\omega/2$$

$$= -\tan^{-1}2/2$$

$$\Rightarrow \phi = -\tan^{-1}(1) = -45^{\circ}$$

output =
$$\frac{1}{2\sqrt{2}}\cos(2t + 20^{\circ} - 45^{\circ})$$

= $\frac{1}{2\sqrt{2}}\cos(2t - 25^{\circ})$

07. Ans: (c)

Sol: Initial slope = -40 dB/dec

Two integral terms $\left(\frac{1}{s^2}\right)$

$$\therefore$$
 Part of TF = G(s)H(s) = $\frac{K}{s^2}$

at $\omega = 0.1$

Change in slope = $-20 - (-40) = 20^{\circ}$

Part of TF = G(s) H(s) =
$$\frac{K\left(1 + \frac{s}{0.1}\right)}{s^2}$$

At $\omega = 10$ slope changed to -60 dB/dec

Change in slope =
$$-60$$
– (-20)
= -40 dB/dec

TF (G(s)H(s)) =
$$\frac{K\left(1 + \frac{s}{0.1}\right)}{s^2\left(\frac{s}{10} + 1\right)^2}$$

$$20 \log K - 2 (20 \log 0.1) = 20 dB$$

$$20 \log K = 20 - 40$$

$$20 \log K = -20$$

$$K = 0.1$$

$$G(s)H(s) = \frac{(0.1)(1 + \frac{s}{0.1})}{s^2(1 + \frac{s}{10})^2}$$
$$= \frac{(0.1) \times 10^2 (s + 0.1)}{(0.1)s^2 (s + 10)^2}$$
$$G(s)H(s) = \frac{100(s + 0.1)}{s^2 (s + 10)^2}$$

08. Ans: (b)

Sol:
$$G(s)H(s) = \frac{Ks}{\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{10}\right)}$$

 $12 = 20 \log K + 20 \log 0.5$

$$12 = 20\log K + (-6)$$

$$20 \log K = 18 dB = 20 \log 2^3$$

$$K = 8$$

G(s)H(s) =
$$\frac{8s \times 2 \times 10}{(2+s)(10+s)}$$

$$G(s)H(s) = \frac{160s}{(2+s)(10+s)}$$

09. Ans: (b)

Sol:

1995

$$G(s)H(s) = \frac{K\left(1 + \frac{s}{10}\right)^{2}\left(1 + \frac{s}{20}\right)}{(1+s)^{2}}$$

$$\frac{y_2 - y_1}{x_2 - x_1} = -40 \, dB / dec$$

$$\frac{20 - y_1}{\log 10 - \log 1} = -40$$

$$y_1 = +60 \, dB \Big|_{\infty \le 1}$$

$$\Rightarrow$$
 20 log K = 60

$$K = 10^3$$

$$G(s)H(s) = \frac{10^{3}(s+10)^{2}(s+20)}{10^{2} \times 20 \times (s+1)^{2}}$$
$$= \frac{(s+10)^{2}(s+20)}{2(s+1)^{2}}$$

10. Ans: (d)

Sol:

 ω_1 calculation:

$$\frac{0-20}{\log 1 - \log \omega_1}$$
$$= -20 \text{ dB/dec}$$
$$\omega_1 = 0.1$$

ω₂ calculation:

$$\frac{-20 - 0}{\log \omega_2 - \log 1}$$
$$= -20 dB/dec$$
$$\omega_2 = 10$$

$$G(s)H(s) = \frac{K\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)}$$

$$20\log K - 2 (20 \log 0.1) = 20$$

$$20 \log K = 20 - 40$$

$$K = 0.1$$

$$G(s)H(s) = \frac{0.1 \times \frac{1}{0.1}(0.1+s)}{s^2 \frac{1}{10}(10+s)}$$
$$= \frac{10(0.1+s)}{s^2(10+s)}$$

11.

Sol:
$$\frac{200}{s(s+2)} = \frac{100}{s(1+\frac{s}{2})}$$

 $x = -KT \Rightarrow -(100) \times \frac{1}{2} = x = -50$

12. Ans: (c)

Sol: For stability (-1, j0) should not be enclosed by the polar plot.

For stability 1 > 0.01 K

$$\Rightarrow$$
 K < 100

13.

Sol: GM = -40 dB

$$20 \log \frac{1}{a} = -40 \implies a = 10^{2}$$
POI = 100

14.

Sol: (i) GM =
$$\frac{1}{0.1}$$
 = +10 = 20 dB
PM = 180°- 140°= 40°

(ii) PM =
$$180-150^{\circ} = 30^{\circ}$$

GM = $\frac{1}{0} = \infty$ POI = 0

(iii) ω_{PC} does not exist

$$GM = \frac{1}{0} = \infty PM = 180^{\circ} + 0^{\circ} = 180^{\circ}$$

(iv) ω_{gc} not exist

$$\omega_{pc} = \infty$$

$$GM = \frac{1}{0} = \infty$$

$$PM = \infty$$

(v)
$$GM = \frac{1}{0.5} = 2$$

 $PM = 180 - 90$
 $= 90^{0}$

15. Ans: (d)

Sol: For stability (-1, j0) should not be enclosed by the polar plot. In figures (1) & (2) (-1, j0) is not enclosed.

∴ Systems represented by (1) & (2) are stable.

16. Ans: (b)

Sol: Open loop system is stable, since the open loop poles are lies in the left half of s-plane ∴ P = 0.

From the plot N = -2.

No. of encirclements N = P - Z

$$N = -2$$
, $P = 0$ (Given)
 $\therefore N = P - Z$

$$-2 = 0 - Z$$
$$Z = 2$$

Two closed loop poles are lies on RH of s-plane and hence the closed loop system is unstable.

17. _Ans: (c)

Sol:

23

$$\frac{K_c}{K} = 0.4$$
 When $K = 1$

Now, K double, $\frac{K_c}{K} = 0.4$

$$K_c = 0.4 \times 2 = 0.8$$

Even though the value of K is double, the system is stable (negative real axis magnitude is less than one)

Oscillations depends on 'ξ'

 $\xi \propto \frac{1}{\sqrt{K}} \ \ \text{as K is increased} \ \ \xi \ \text{reduced, then}$

more oscillations.

18. Ans: (a)

Sol: Given system
$$G(s) = \frac{10(s-12)}{s(s+2)(s+3)}$$

It is a non minimum phase system since s = 12 is a zero on the right half of s-plane

19.

Sol: Given that
$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

s-plane Nyquist Contour

- Nyquist plot is the mapping of Nyquist contour(s-plane) into G(s)H(s) plane.
- The Nyquist contour in the s-plane enclosing the entire right half of S-plane is shown figure.

The Nyquist Contour has four sections C_1 , C_2 , C_3 and C_4 . These sections are mapped into G(s)H(s) plane .

Mapping of section C_1 : It is the positive imaginary axis, therefore sub $s = j\omega$, $(0 \le \omega \le \infty)$ in the TF G(s) H(s), which gives the polar plot

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

Let
$$s = j\omega$$

$$\begin{split} G(j\omega)H(j\omega) &= \frac{10(j\omega+3)}{j\omega(j\omega-1)} \\ G(j\omega)H(j\omega) &= \frac{10\sqrt{\omega^2+9}}{\omega\sqrt{\omega^2+1}} \angle \left\{ \tan^{-1} \left(\frac{\omega}{3} \right) \right. \\ &\left. - [90^0 + \ 180^0 - \tan^{-1}(\omega)] \right\} \end{split}$$

At
$$\omega = 0 \implies \infty \angle -270^{0}$$

At $\omega = \omega_{pc} = \sqrt{3} \implies 10 \angle -180^{0}$
At $\omega = \infty \implies 0 \angle -90^{0}$

point of intersection of the Nyquist plot with respect to negative real axis is calculated below

ArgG(j\omega)H(j\omega) = arg
$$\frac{10(j\omega+3)}{j\omega(j\omega-1)}$$

= -180° will give the '\omega_pc'

Magnitude of $G(j\omega)H(j\omega)$ gives the point of intersection

$$\angle \tan^{-1}(\frac{\omega}{3}) - [90^{0} + 180^{0} - \tan^{-1}(\omega))$$

$$= -180^{0} | \omega = \omega_{pc}$$

$$\angle \tan^{-1}(\frac{\omega_{pc}}{3}) - [90^{0} + 180^{0} - \tan^{-1}(\omega_{pc})) = -180^{0}$$

$$\tan^{-1}(\frac{\omega_{pc}}{3}) + \tan^{-1}(\omega_{pc}) = 90^{0}$$

Taking "tan" both the sides

$$\frac{\frac{\omega_{pc}}{3} + \omega_{pc}}{1 - \frac{(\omega_{pc})^2}{3}} = \tan 90^0 = \infty$$

$$1 - \frac{(\omega_{pc})^2}{3} = 0$$

$$\omega_{pc} = \sqrt{3} \text{ rad/sec}$$

Therefore the point of intersection is

$$|G(j\omega)H(j\omega)|$$
 at $\omega_{pc} = \frac{10\sqrt{\omega_{pc}^2 + 3^2}}{\omega_{pc}\sqrt{1 + \omega_{pc}^2}} = 10$

The mapping of the section C_1 is shown figure.

Mapping of section C_2 : It is the radius 'R' semicircle, therefore sub $s = \lim_{R \to \infty} Re^{j\theta}$ (θ is from 90^0 to 0^0 to -90^0) in the TF G(s)H(s), which merges to the origin in G(s)H(s) plane.

$$G(Re^{j\theta})H(Re^{j\theta}) = \frac{2(Re^{j\theta}+3)}{Re^{j\theta}(Re^{j\theta}-1)} \approx 0$$

The plot is shown in figure.

Mapping of section C_3 : It is the negative imaginary axis, therefore sub $s = j\omega$, $(-\infty \le \omega \le 0)$ in the TF G(s)H(s), which gives the mirror image of the polar plot and is symmetrical with respect to the real axis,

The plot is shown in figure.

Mapping of section C₄: It is the radius 'ε' semicircle, therefore sub $s = \lim_{\epsilon \to 0} \epsilon e^{j\theta}$

 $(-90^{\circ} \le \theta \le 90^{\circ})$ in the TF G(s)H(s), which gives clockwise infinite radius semicircle in G(s)H(s) plane.

The plot is shown below

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) = \frac{10(\epsilon e^{j\theta} + 3)}{\epsilon e^{j\theta}(\epsilon e^{j\theta} - 1)}$$

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) \approx \frac{10\times 3}{-\epsilon e^{j\theta}} = \infty \angle 180^{0} - \theta$$

When,
$$\theta = -90^{\circ} \quad \infty \angle 270^{\circ}$$

$$\theta = -40^0 \quad \infty \angle 220^0$$

$$\theta = 0^0 \qquad \infty \angle 0^0$$

$$\theta = 40^0 \quad \infty \angle 140^0$$

$$\theta = 90^0 \quad \infty \angle 90^0$$

It is clear that the plot is clockwise ' ∞ ' radius semicircle centred at the origin

Combining all the above four sections, the

Nyquist plot of
$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

is shown in figure below

From the plot N = 1

Given that P = 1

$$N = P - Z$$

Z = P - N = 1 - 1 = 0, therefore system is

20.

Sol: The given bode plot is shown below.

Initial slope = -6 db/octave.

i.e., there is one pole at origin (or) one integral term.

portion of transfer function

$$G(s) = \frac{K}{s}$$

At $\omega = 2$ rad/sec, slope is changed to 0dB/ octave.

∴ change in slope

= present slope – previous slope = 0 - (-6) = 6 dB/octave

 \therefore There is a real zero at corner frequency $\omega_1 = 2$.

$$(1+sT_1)=\left(1+\frac{s}{\omega_1}\right)=\left(1+\frac{s}{Z}\right)$$

At $\omega = 10$ rad/sec, slope is changed to -6dB/octave.

:. change in slope = -6-0= -6 dB/octave.

 \therefore There is a real pole at corner frequency $\omega_2 = 2$.

$$\frac{1}{1+sT_2} = \frac{1}{\left(1+\frac{s}{\omega_2}\right)} = \frac{1}{\left(1+\frac{s}{10}\right)}$$

At $\omega = 50$ rad/sec, slope is changed to -12dB/octave.

:. change in slope = -12 - (-6)= -6 dB/octave

 \therefore There is a real pole at corner frequency $\omega_3 = 50$ rad/sec.

$$\frac{1}{1 + ST_3} = \frac{1}{\left(1 + \frac{S}{\omega_3}\right)} = \frac{1}{\left(1 + \frac{S}{50}\right)}$$

At $\omega = 100$ rad/sec, the slope changed to -6 dB/octave.

:. change in slope = -6 - (-12)= 6 dB/octave.

... There is a real zero at corner frequency $\omega_4 = 100 \text{ rad/sec}$.

$$\therefore (1+sT_4) = \left(1+\frac{s}{\omega_4}\right) = \left(1+\frac{s}{100}\right)$$

$$\therefore \text{ Transfer function} = \frac{K\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{100}\right)}{s\left(1 + \frac{s}{50}\right)\left(1 + \frac{s}{10}\right)}$$

$$= \frac{K(s+2)(s+100)}{s(s+50)(s+10)} \frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{50} \cdot \frac{1}{10}}$$

$$= \frac{2.5K(s+2)(s+100)}{s(s+10)(s+50)}$$

In the given bode plot,

at $\omega = 1 \text{rad/sec}$, Magnitude = -20 dB.

$$-20 \text{dB} = 20 \log K - 20 \log \omega + 20 \sqrt{1 + \left(\frac{\omega}{2}\right)^2} + 20 \sqrt{1 + \left(\frac{\omega}{100}\right)^2} - 20 \log \sqrt{1 + \left(\frac{\omega}{50}\right)^2} - 20 \log \sqrt{1 + \left(\frac{\omega}{10}\right)^2}$$

At $\omega = 1 \text{ rad/sec}$,

$$-20 = 20\log K - 20\log \omega/\omega = 1 \text{ rad/sec}$$

[: Remaining values eliminated]

$$- 20 = 20 \log K$$

$$\Rightarrow$$
 K = 0.1

: Transfer function

$$\frac{C(s)}{R(s)} = \frac{0.25(s+2)(s+100)}{s(s+10)(s+50)}$$

21. Ans: (a) & (d)

Sol: k > 1/2, closed loop system is stable.

For k < 1/2, one closed loop pole in the right half of s-plane.

CL is unstable, $2k < 1 \Rightarrow k < 1/2$

 $N = P - Z \Rightarrow 0 = 1 - Z \Rightarrow Z = 1 \Rightarrow$ one closed loop Pole in the right half s-plane

22. Ans: (a) & (d)

Sol:
$$\Rightarrow \omega_{pc} = \infty$$
. Hence $GM = \infty$
 $\Rightarrow \angle \phi | \omega_{gc} = -150^{\circ}, \Rightarrow PM = 180^{\circ} + \angle \phi | \omega_{gc}$
 $\Rightarrow PM = 180^{\circ} - 150^{\circ} = +30^{\circ}$ (finite).

23. Ans: (b) & (d)

Since

Sol: G(s)H(s) =
$$\frac{10 \times 5^{2} (1 + \frac{s}{5})^{2}}{s \times 2(1 + \frac{s}{2})(10)(1 + \frac{s}{10})}$$
$$= \frac{12.5(1 + \frac{s}{5})^{2}}{s(1 + \frac{s}{2})(1 + \frac{s}{10})}$$

$$M\Big|_{\omega=0.1} = 20\log 12.5 - 20\log \omega$$

= 20\log 12.5 - 20\log 0.1
\approx 42 dB

- \Rightarrow Slope of the line between 5 rad/sec to 10 rad/sec is 0 dB/dec.
- \Rightarrow At high frequency, slope of line is -20 dB/dec.

24. Ans: (b) & (c)

Sol: At any frequency magnitude of the loop transfer function is not unity,

$$\therefore PM = \infty$$

System is always stable,

$$\therefore$$
 GM = ∞

25. Ans: (b) & (c)

Sol: $N_{0,0}$ = difference between open loop polar and zero

$$N_{0,0} = (2 - 0) = 2$$

$$N_{0,0} = 2$$

Chapter

Compensators & Controllers

01. Ans: (a)

Sol:
$$G_{C}(s) = (-1)\left(-\frac{Z_{2}}{Z_{1}}\right)$$

$$= (-1)(-1)\left(\frac{R_{2} + \frac{1}{sC}}{R_{1}}\right)$$

$$G_{c}(s) = \frac{(100 \times 10^{3}) + \frac{1}{s \times 10^{-6}}}{10^{6}}$$

$$G_{c}(s) = \frac{1 + 0.1s}{s}$$

02. Ans: (c)

Sol: CE
$$\Rightarrow$$
 1+ G_c (s) G_p (s) = 0
= 1 + $\frac{1+0.1s}{s} \times \frac{1}{(s+1)(1+0.1s)}$
= 1 + $\frac{1+0.1s}{s(s+1)(1+0.1s)}$ = 0
 \Rightarrow s² + s+ 1 = 0 \Rightarrow ω_n = 1,
 $e^{\left[\frac{-\xi\pi}{\sqrt{1-\xi^2}}\right]_{\xi=0.5}}$ = 0.163
M_p = 16.3%

03. Ans: (b)

Sol: T.F =
$$\frac{k(1+0.3s)}{1+0.17s}$$

T = 0.17, aT = 0.3 \Rightarrow a = $\frac{0.3}{0.17}$
C = 1 μ F
T = $\frac{R_1R_2}{R_1+R_2}$ C, a = $\frac{R_1+R_2}{R_2}$
 $\frac{R_1R_2}{R_1+R_2}$ = $\frac{0.17}{1\times10^{-6}}$ = 170000
 $\frac{R_1+R_2}{R_2}$ = 1.764
aT = R₁ C
 R_1 = $\frac{aT}{C}$ = $\frac{0.3}{C}$ = $(0.3)(10^6)$

$$= 300 \text{ k}\Omega$$
Bv
$$300 \text{ k} + \text{R}_2 - 1.76 \text{ R}_2 = 0$$

$$\text{R}_2 = \frac{300}{0.70} = 394.736$$

 $=400 \text{ k}\Omega$

04. Ans: (d)

Sol: PD controller improves transient stability and PI controller improves steady state stability. PID controller combines the advantages of the above two controllers.

05.

Sol: For
$$K_I = 0 \Rightarrow$$

$$\frac{C(s)}{R(s)} = \frac{(K_P + K_D s)}{s(s+1) + (K_P + K_D s)}$$

$$= \frac{K_P + K_D s}{s^2 + (1 + K_D) s + K_P}$$

$$\omega_n = \sqrt{K_P}$$

$$2\xi \omega_n = 1 + K_D$$

$$\Rightarrow 2(0.9) \sqrt{K_P} = 1 + K_D$$

$$\Rightarrow 1.8 \sqrt{K_P} = 1 + K_D$$

$$1$$

Dominant time constant $\frac{1}{\xi \omega_n} = 1$

$$\Rightarrow \omega_{n} = \frac{1}{0.9} = 1.111$$

$$K_{P} = \omega_{n}^{2} = 1.11^{2}$$

From eq. (1),

$$\Rightarrow 1.8 \times \frac{1}{0.9} = 1 + K_D$$

$$\Rightarrow K_D = 1$$

06. Ans: (b) & (d)

Sol: Both PD and lead controller improve transient response of the system.

Chapter 8

State Space Analysis

01. Ans: (a)

Sol: TF =
$$\frac{1}{s^2 + 5s + 6}$$

= $\frac{1}{(s+2)(s+3)}$
= $\frac{1}{s+2} + \frac{-1}{s+3}$
 $\therefore A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

02. Ans: (c)

Sol: Given problem is Controllable canonical form.

(or)

TF = C[sI - A]⁻¹B + D
= [6 5 1]
$$\begin{bmatrix} s & 1 & 0 \\ 0 & s & 1 \\ -5 & -3 & s+6 \end{bmatrix}$$
 $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$
= $\frac{3s^2 + 15s + 18}{s^3 + 6s^2 + 3s + 5}$

03. Ans: (d)

Sol:
$$\frac{d^2y}{dt^2} + \frac{3dy}{dt} + 2y = u(t)$$

2nd order system hence two state variables are chosen

Let x_1 (t), x_2 (t) are the state variables

Let
$$x_1(t) = y(t) \dots (1)$$

$$x_2(t) = \dot{y}(t) \dots (2)$$

Differentiating (1)

$$\dot{x}_1(t) = \dot{y}(t) = x_2(t) \dots (3)$$

$$\dot{x}_2(t) = \ddot{y}(t) = u(t) - 3y^1(t) - 2y(t)$$

$$= u(t) - 3x_2(t) - 2x_1(t) \dots (4)$$

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(\mathbf{t})$$

A

В

From equation 1. The output equation in matrix form

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, D = 0$$

04. Ans: (b)

Sol: OCF - SSR

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

05. Ans: (c)

Sol: Normal form - SSR

$$TF = \frac{Y(s)}{G(s)} = \frac{1}{s^2 + 3s + 2} = \frac{1}{(s+1)(s+2)}$$

⇒ Diagonal canonical form

The eigen values are distinct i.e., -1 & -2.

:. Corresponding normal form is called as diagonal canonical form

DCF - SSR

$$\frac{Y(s)}{U(s)} = \frac{b_1}{s+1} + \frac{b_2}{s+2}$$

$$b_1 = 1, b_2 = -1$$

$$Y(s) = \frac{b_1}{\underbrace{s+1}_{x_1}} U(s) + \frac{b_2}{\underbrace{s+2}_{x_2}} U(s)$$

Let
$$Y(s) = X_1(s) + X_2(s)$$

Where
$$y(t) = x_1(t) + x_2(t)$$
(1)

Where
$$X_1(s) = \frac{b_1}{s+1}U(s)$$

$$s X_1(s) + X_1(s) = b_1 U(s)$$

Take Laplace Inverse

$$\dot{x}_1 + x_1 = b_1 u(t)$$

$$X_2(s) = \frac{b_2}{s+2}U(s)$$

$$s X_2(s) + 2 X_2(s) = b_2 U(s)$$

Laplace Inverse

$$\dot{x}_2 + 2x_2 = b_2 u(t)$$

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathbf{u}(\mathbf{t})$$

From (1) output equation.

$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

06. Ans: (c)

$$\begin{aligned} & O/P_1 \Longrightarrow y_1 = V_c \\ & O/P_2 \Longrightarrow y_2 = R_2 \ i_2 \end{aligned}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \mathbf{R}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_c \\ \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix}$$

$$y = C X$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & R_2 \end{bmatrix}$$

07. Ans: (a)

Sol: T.F =
$$C[sI-A]^{-1}B + D$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+4 & 1 \\ 3 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{1}{s^2 + 5s + 1} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{s^2 + 5s + 1} \begin{bmatrix} 1 & 0 \end{bmatrix}_{1 \times 2} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix}_{2 \times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{s^2 + 5s + 1} [s+1 & -1]_{1 \times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2 \times 1}$$

$$= \frac{1}{s^2 + 5s + 1} [s+1-1]$$

$$= \frac{s}{s^2 + 5s + 1}$$

08. Ans: (c)

Sol: State transition matrix $\phi(t) = L^{-1}[(sI-A)^{-1}]$

$$sI - A = \begin{bmatrix} s+3 & -1 \\ 0 & s+2 \end{bmatrix}$$

$$[sI - A]^{-1} = \frac{1}{(s+2)(s+3)} \begin{bmatrix} s+2 & 1 \\ 0 & s+3 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{s+3} & \frac{1}{(s+2)(s+3)} \\ 0 & \frac{1}{s+2} \end{bmatrix}$$

$$L^{-1}[[sI - A]^{-1}] = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$$

09. Ans: (b)

Sol: Controllability

$$[M] = \begin{bmatrix} B & AB & A^2B.. & A^{n-1}B \end{bmatrix}$$

$$AB = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$M = \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix}$$

$$|M| = -1 \neq 0 \text{ (Controllable)}$$

Observability

$$[N] = [C^T A^T C^T \dots (A^T)^{n-1} C^T]$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
$$\mathbf{N} = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$

|N| = 0 (Not observable)

10. Ans: (c)

Sol: According to Gilberts test the system is controllable and observable.

11. Ans: (c)

Sol:
$$\frac{Y(s)}{U(s)} = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

at node \dot{x}_1

$$\dot{x}_1 = -a_1x_1 - a_2x_2 - a_3 x_3$$

at
$$\dot{x}_2 = x_1 \& \dot{x}_3 = x_2$$

$$\therefore \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix} = \begin{bmatrix} -\mathbf{a}_1 & -\mathbf{a}_2 & -\mathbf{a}_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

$$\therefore A = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

12.

Sol: The given state space equations:

$$\dot{X} = X_2$$

$$\dot{\mathbf{X}}_2 = \mathbf{X}_3 - \mathbf{u}_1$$

$$\dot{X}_3 = -2X_2 - 3X_3 + u_2$$

and output equations are:

$$Y_{1} = X_{1} + 3X_{2} + 2u_{1}$$

$$Y_{2} = X_{2}$$

$$X_{3} = X_{2}$$

$$X_{4} = X_{1} + 3X_{2} + 2u_{1}$$

$$X_{5} = X_{2}$$

$$X_{7} = X_{1} + 3X_{2} + 2u_{1}$$

$$X_{7} = X_{2} + 2u_{1}$$

$$X_{8} = X_{1} + 3X_{2} + 2u_{1}$$

$$X_{9} = X_{1} + 3X_{2} + 2u_{1}$$

$$X_{1} = X_{2} + 2u_{1} + 2u_{1}$$

$$X_{2} = X_{2} + 2u_{1} + 2u_{1$$

The given state space equations in matrix for

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}_{3\times 3} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}_{3\times 1} + \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}_{3\times 2} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_{2\times 1}$$

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{2\times 3} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}_{3\times 1} + \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}_{2\times 2} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_{2\times 1}$$

Where A: State matrix

B: Input matrix

C: Output matrix

D: Transition matrix

Characteristic equation

$$|\mathbf{sI} - \mathbf{A}| = 0$$

$$\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} S & -1 & 0 \\ 0 & S & -1 = 0 \\ 0 & 2 & S+3 \end{vmatrix}$$

$$\Rightarrow s[s(s+3)+2]+1(0)=0$$

$$\Rightarrow s(s^2 + 3s + 2) = 0$$

$$\Rightarrow$$
 s(s+1)(s+2) = 0

The roots are 0, -1, -2.

13. Ans: (a) & (b)

Sol: (a) \rightarrow state model is in controllable canonical form

(b) → state model is in observable canonical form