# THINK LIKE AN ARCHITECT: TYPES

Lesson 8



# THINK ABOUT DIFFERENT KINDS OF BUILDINGS



# THINK ABOUT DIFFERENT KINDS OF BUILDINGS

# LET'S GET STARTED

- Name different types of buildings.
- Let's pick one type to think about.
- In Notes, write down what makes this type of building unique? What are some specific properties that helps you identify it?

# LET'S GET STARTED

- Name different types of buildings.
- Let's pick one type to think about.
- In Notes, write down what makes this type of building unique? What are some specific properties that helps you identify it?

# LET'S DISCUSS

- 1. What properties did you think of?
- 2. Do we all agree that these are the properties? Are there any missing?
  Any that we shouldn't include?
- 3. Are each of the properties clear? Would we be able to build this building based on our list?

# LET'S DISCUSS

- 1. What properties did you think of?
- 2. Do we all agree that these are the properties? Are there any missing?
  Any that we shouldn't include?
- 3. Are each of the properties clear? Would we be able to build this building based on our list?

Type: A named grouping of properties (the features) and methods (the behaviors) of a kind of data.

Initialization: The act of creating a new instance of a type, which includes setting initial values for any properties of the type.



Type: A named grouping of properties (the features) and methods (the behaviors) of a kind of data.

Initialization: The act of creating a new instance of a type, which includes setting initial values for any properties of the type.



Here are a few different data types:

String: A type that stores a series for characters, such as "hello world."

Int: A type that stores an integer - a number that has no decimal, such as 10 or -42.

**Bool:** A type that stores a value of either "true" or "false."

Here are a few different data types:

String: A type that stores a series for characters, such as "hello world."

Int: A type that stores an integer - a number that has no decimal, such as 10 or -42.

**Bool:** A type that stores a value of either "true" or "false."

- 1. Choose a type of building. This can be real or imagined.
- 2. In Notes, write down the variables your building will have.
  - ex. numberOfWindows

- 1. Choose a type of building. This can be real or imagined.
- 2. In Notes, write down the variables your building will have.
  - ex. numberOfWindows

- 3. Now add the values next to the variables. This step describes a specific instance of the building type. So you are now initializing an instance of your house type. You should indicate where you used string, int, and bool data types.
  - ex. numberOfWindows = 8
- 4. In Notes, or another drawing app, draw your building using your defined variables.

- 3. Now add the values next to the variables. This step describes a specific instance of the building type. So you are now initializing an instance of your house type. You should indicate where you used string, int, and bool data types.
  - ex. numberOfWindows = 8
- 4. In Notes, or another drawing app, draw your building using your defined variables.

# LET'S TEST

- 1. Find a partner.
- 2. Share only your text with your type and instance values with your partner.
- 3. Draw your partner's building.
- 4. Share your drawings. How similar do they look?

# LET'S TEST

- 1. Find a partner.
- 2. Share only your text with your type and instance values with your partner.
- 3. Draw your partner's building.
- 4. Share your drawings. How similar do they look?



Share your types, instance values, and drawings.



Share your types, instance values, and drawings.

# LET'S DISCUSS

- 1. How similar were you and your partner's drawings?
- 2. How can you make them more alike?

# LET'S DISCUSS

- 1. How similar were you and your partner's drawings?
- 2. How can you make them more alike?

# TIME FOR SWIFT PLAYGROUNDS

Chapters: Types and Initialization

**REMINDER**: Take videos and or photos of your playgrounds. You will need them for your portfolio.



| Types                              |          |  |  |  |
|------------------------------------|----------|--|--|--|
| Introduction                       |          |  |  |  |
| Deactivating a Portal              |          |  |  |  |
| Portal On and Off                  |          |  |  |  |
| Setting the Right Portal           |          |  |  |  |
| Corners of the World               | <b>②</b> |  |  |  |
| Random Gems Everywhere             |          |  |  |  |
| Initialization                     |          |  |  |  |
| Introduction                       |          |  |  |  |
| Initializing Your Expert           | <b>②</b> |  |  |  |
| Train Your Expert                  | <b>⊘</b> |  |  |  |
| Using Instances of Different Types | <b>②</b> |  |  |  |
| It Takes Two                       |          |  |  |  |

# TIME FOR SWIFT PLAYGROUNDS

Chapters: Types and Initialization

.....

**REMINDER**: Take videos and or photos of your playgrounds. You will need them for your portfolio.



| Types                              |          |  |  |  |
|------------------------------------|----------|--|--|--|
| Introduction                       |          |  |  |  |
| Deactivating a Portal              |          |  |  |  |
| Portal On and Off                  | <b>⊘</b> |  |  |  |
| Setting the Right Portal           | <b>⊘</b> |  |  |  |
| Corners of the World               | <b>②</b> |  |  |  |
| Random Gems Everywhere             | <b>⊘</b> |  |  |  |
| Initialization                     |          |  |  |  |
| Introduction                       | <b>⊘</b> |  |  |  |
| Initializing Your Expert           | <b>②</b> |  |  |  |
| Train Your Expert                  | <b>②</b> |  |  |  |
| Using Instances of Different Types | <b>②</b> |  |  |  |
| It Takes Two                       |          |  |  |  |



# Share what you did in Swift Playgrounds with AirPlay



# Share what you did in Swift Playgrounds with AirPlay

# LET'S REFLECT

- 1. What were the types in the app?
- 2. What did you initialize?
- 3. How was the code you wrote in the app similar or different from the code you wrote for your building?
- 4. Do types in everyday life differ from types in coding? Why or why not?

Think ahead: What other ways can you provide more detail in code?

# LET'S REFLECT

- 1. What were the types in the app?
- 2. What did you initialize?
- 3. How was the code you wrote in the app similar or different from the code you wrote for your building?
- 4. Do types in everyday life differ from types in coding? Why or why not?

Think ahead: What other ways can you provide more detail in code?

# **JOURNAL**

- 1. Upload your type, instance values, and drawings.
- 2. Upload videos and photos from Swift Playgrounds.
- 3. Record answers to these questions:
  - What is type and initialization?
     (Use your own words.)
  - What do you know about thinking like an architect who is also a programmer?

# **JOURNAL**

- 1. Upload your type, instance values, and drawings.
- 2. Upload videos and photos from Swift Playgrounds.
- 3. Record answers to these questions:
  - What is type and initialization?
     (Use your own words.)
  - What do you know about thinking like an architect who is also a programmer?