Nerissa A. Finnen

nfinnenct@gmail.com (260)-446-1798

EDUCATION

College Education

- Pasadena, CA
- California Institute of Technology (Caltech) 2022 -2026
- Bachelor of Science in Electrical Engineering: GPA 3.6/4.0
- Relevant Coursework: Analog Circuit Design, Analog Design Laboratory, High Frequency Systems Laboratory, Mixed-Mode Integrated Circuits, Advanced Digital Systems Design, Feedback and Control Circuits

TECHNICAL SKILLLS

Programming Languages: Python, Java, Assembly, C, MATLAB, Mathematica, VHDL

Design Software: Fusion 360, KiCad, Altium, LTSpice, CST, VHDL, MWO, AWR, Arduino, AVR Studio 4, Cadence Virtuoso

Electrical Equipment: Oscilloscope, power supplies, multimeters, spectrum analyzer, function generators, noise temperature measurement, vector network analyzer (VNA)

EXPERIENCE

Electrical Engineering Research Intern

2025-present

ETHZ (IDEAS Group): Zurich, Switzerland

- Conducting mathematical derivations of non-idealities for time-modulated array antennas
- Simulated lobe patterns using MATLAB and presented developments in research meetings

President of Caltech IEEE branch

2024-present

Caltech: Pasadena, CA

- Planned social, soldering, and informational events for Electrical Engineering community at Caltech
- Performed reimbursements for events and membership fees

Teaching Assistant 2023-present

Caltech: Pasadena, CA

- Taught students Diptrace for schematic, and PCB layout design and soldering skills
- Reviewed and troubleshooted 60 PCBs

Electrical Engineering Research Intern

2024-2024

Caltech High-Speed Integrated Circuits (CHIC): Pasadena, CA

- Designed PCBs with Altium and soldered to test components for a flexible RF board
- Developing a flexible, thin, lightweight thermal management system for flexible 2-D array PCBs with CST
- Presented oral presentation to a general audience of the research progress for the thermal management system

PROJECTS

8 GHz DLL 2025

- Designed in Cadence Maestro an 8 GHz delay locked loop in 45 nm CMOS with minimal RMS and peak to peak jitter, phase offset, duty cycle distortion and low power.
- Achieved locking with 150 MHz power supply and input noise at 720°, 810°, 900°, and degraded results at 990° 16-bit Serial Divider 2025
 - Implemented a non-restoring division algorithm for 16-bit unsigned serial divider on a Xilinx chip with VHDL

4.35 GHz Speed Gun

- Constructed 4.35 GHz speed measuring device with custom Wilkinson power dividers, low noise amplifiers, oscillator, and antennas and manufactured parts
- Microwave Office was used to simulate the designs of the custom parts, while hand calculations were performed to determine the necessary antenna dimensions
- The frequency data was converted to audio that was analyzed in python to calculate the speed of moving objects **Two-Waveform Function Generator** 2024

Designed a PCB for a two-waveform function generator that produced triangle, and square waves from 1

kilohertz to 100 kilohertz range, with amplitude, frequency, and DC offset control

Utilized LTSpice for simulations to advise component selection and design decisions

Ball and Beam Control 2024

Designed, and debugged PID controller to balance a ball on a beam with reference voltages and feedback control