Motivating de Rham cohomology why?

Simon Xiang

University of Texas at Austin

April 19, 2021

Here are some things I'll assume you know about:

Here are some things I'll assume you know about:

• Linear algebra, including quotient spaces, exact sequences

Here are some things I'll assume you know about:

- Linear algebra, including quotient spaces, exact sequences
- Multivariable calculus up to Green's theorem and friends

Here are some things I'll assume you know about:

- Linear algebra, including quotient spaces, exact sequences
- Multivariable calculus up to Green's theorem and friends
- Analysis, including the notions of open and closed sets

Here are some things I'll assume you know about:

- Linear algebra, including quotient spaces, exact sequences
- Multivariable calculus up to Green's theorem and friends
- Analysis, including the notions of open and closed sets

It would be helpful to know (algebra, exact sequences)

What groups are,

Here are some things I'll assume you know about:

- Linear algebra, including quotient spaces, exact sequences
- Multivariable calculus up to Green's theorem and friends
- Analysis, including the notions of open and closed sets

It would be helpful to know (algebra, exact sequences)

- What groups are,
- And basic topology.

Motivation

Question

Does there exist a function that is the gradient of some other function? More precisely, when does $F:U\to\mathbb{R}^2$ for $U\subseteq\mathbb{R}^2$ satisfy

$$\frac{\partial F}{\partial x} = f_1, \quad \frac{\partial F}{\partial y} = f_2 \quad \text{for some } f = (f_1, f_2)$$
?

(You could also think of this question as asking when vector fields have potential.)

Motivation

Question

Does there exist a function that is the gradient of some other function? More precisely, when does $F:U\to\mathbb{R}^2$ for $U\subseteq\mathbb{R}^2$ satisfy

$$\frac{\partial F}{\partial x} = f_1, \quad \frac{\partial F}{\partial y} = f_2 \quad \text{for some } f = (f_1, f_2)$$
?

(You could also think of this question as asking when vector fields have potential.)

Answer

It depends on the topology of U!

Some vector calculus

Note that $\frac{\partial F}{\partial x} = f_1$, $\frac{\partial F}{\partial y} = f_2$ implies $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Is this condition sufficient to show F is the gradient of some other function?

Example

easy example of something ssatisfying on \mathbb{R}^2 .

Some vector calculus

Note that $\frac{\partial F}{\partial x} = f_1$, $\frac{\partial F}{\partial y} = f_2$ implies $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Is this condition sufficient to show F is the gradient of some other function?

Example

easy example of something ssatisfying on \mathbb{R}^2 .

Example

However, consider $f(x, y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$.

Some vector calculus

Note that $\frac{\partial F}{\partial x} = f_1$, $\frac{\partial F}{\partial y} = f_2$ implies $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Is this condition sufficient to show F is the gradient of some other function?

Example

easy example of something ssatisfying on \mathbb{R}^2 .

Example

However, consider
$$f(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$$
.

By a theorem, the above condition turns out to be sufficient if U looks like a ball (convex).

more vector cal

define div grad and curl

sneak peek of de rham cohomology

Define cohomology groups, do some theorem, show reason why our ealire rfucntion is false is because $H(\mathbb{R}^2 \setminus \{0\}) \neq 0$

Define the re Rham complexa nd bieng generated by the dx^i

calculate div grad curl using abstract, link between aglebra and calc:

testing testing

Definition

whatno

test

testing testing

Definition

whatno

- test
- ok

testing testing

Definition

whatno

- test
- ok
- te

what's the point?

text

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- what's the
- point?

text

$$abla_{eta} T^{lphaeta} = T^{lphaeta}_{eta} = 0$$

of