Laboratorinis darbas 4 Tema: Diskretūs ir tolydūs atsitiktiniai dydžiai

- 1. Detalių partijoje 10 % nestandartinių detalių. Atsitiktinai paimtos 4 detalės. Kokia tikimybė, kad tarp paimtų detalių:
 - a) trys bus standartinės
 - b) daugiau kaip trys bus standartinės,
 - c) bent viena bus nestandartinė,
 - d) nedaugiau kaip viena bus nestandartinė,

Ats.: a) 0.2916; b) 0.6561; c) 0.3439; d) 0.9477.

- 2. Technologiniame procese automatinės staklės gamina 1/6 visos produkcijos pirmos rūšies. Atsitiktinai paimami 7 gaminiai. Atsitiktinis dydis *X* paimtų pirmos rūšies gaminių skaičius.
 - a. Sudarykite pirmos rūšies gaminių skaičiaus skirstinį;
 - b. Nubrėžkite *X* skirstinio daugiakampį ir pasiskirstymo funkciją viename grafiniame lange (įrašykite pavadinimu *diskretus.pdf*).
 - c. Nustatykite koks yra vidutinis ir koks yra labiausiai tikėtinas pirmos rūšies gaminių skaičiai;
 - d. Apskaičiuokite tikimybę, kad pirmos rūšies gaminių yra nemažiau nei 5.
- 4. Atsitiktinis dydis $X \sim N(6;4)$, t.y. $N(\mu, \sigma^2)$. Pavaizduokite jo tankio ir pasiskirstymo funkcijų grafikus viename grafiniame lange, grafikus pavadinkite atitinkamai **Tankis**, **Pasiskirstymas**. Grafinį failą išsaugoti pavadinimu: *Normalusis.png*
- 5. Atsitiktinis dydis *X* turi normalųjį skirstinį, kurio vidurkis 10, o dispersija lygi 16. Raskite tikimybę, kad atsitiktinis dydis *X* įgis reikšmę iš intervalo [2, 13]. Grafiškai pavaizduokite sritį po tankio kreive žyminčia šią tikimybę, tą sritį užspalvinkite žaliai. Grafinį failą įrašykite pavadinimu *Tikimybe.jpeg*. *Ats.*: 0.7506.
- 6. Sugeneruokite 100 **Binominio** atsitiktinio dydžio reikšmių, kai n = 8, p = 0,75. Naudodami šias reikšmes sudarykite (*santykinių*) dažnių lentelę ir lentelės duomenis pavaizduokite stulpeline diagrama. Grafinį failą išsaugoti pavadinimu *Diskretus.png*
- 7. Sukurkite kintamąjį *A*, kurio 100 reikšmių yra sugeneruota normaliojo atsitiktinio dydžio N(-2, 3) imtis. Gautus duomenis pavaizduokite (*santykinių dažnių*) histograma. Ant histogramos nubrėžkite šio normaliojo atsitiktinio dydžio tankio funkcijos grafikus viename grafiniame lange, punktyrine linija dviem būdais:
 - a. Naudodami komandą *lines(x,dnorm(x,vid,st))*;
 - b. Naudodami komandą *lines(density(A))*. # Komentaru paaiškinkite komandą density().
 - c. Grafinį failą išsaugoti pavadinimu Norm_hist.png

KOMANDOS

Kai spręsdami uždavinį pastebite, jog atsitiktinis dydis pasiskirstęs pagal žinomą skirstinį, tai jo tikimybei skaičiuoti galima pasinaudoti skirstinio galimybėmis R kalboje.

binom - binominis skirstinys $X \sim B(n,p)$

norm - normalusis skirstinys X~N(mean,sd)

lnorm - lognormalusis skirstinys X~ln(ln(mean), ln(sd))

 \mathbf{d} - tankio funkcija $\mathbf{p}(\mathbf{x})$

 \mathbf{p} - pasiskirstymo funkcija F(x)

r - reikšmių modeliavimas (atsitiktinių skaičių generavimas)

Komanda	Paaiškinimas
dbinom(x, n, p)	Apskaičiuojamos reikšmių x tikimybės, kai x, n ir p duota.
pbinom(x, n, p)	Apskaičiuojamos pasiskirstymo funkcijos $F(x)$ reikšmės, kai x , n ir p duota.
dbinom(k, n, p)	Apskaičiuoja tikimybę, jog binominis atsitiktinis dydis įgys reikšmę k kai
	eksperimentas atliekamas n kartu, o įvykio tikimybė P(A)=p .
rbinom(r, n, p)	Sugeneruojama r binominio atsitiktinio dydžio reikšmių, iš intervalo
	[0, n]. Kintamųjų r, n, p reikšmes reikia nurodyti.
dnorm(x, vid, st)	Apibrėžiama normaliojo atsitiktinio dydžio tankio funkcija $p(x)$, kai vidurkis
	(vid) ir standartinis nuokrypis (st) duoti.
pnorm(x,vid,st)	Apibrėžiama normaliojo atsitiktinio dydžio pasiskirstymo funkcija $F(x)$, kai
	vidurkis (<i>vid</i>) ir standartinis nuokrypis (<i>st</i>) duoti.
rnorm(r, vid, st)	Sugeneruojama <i>r</i> normaliojo atsitiktinio dydžio reikšmių, kai vidurkis (<i>vid</i>) ir
	standartinis nuokrypis (st) duoti.
plot(x, y)	Grafiškai pavaizduoja taškus, kurių koordinatės pateiktos vektoriuose x ir y .
curve(y)	Nubrėžia funkcijos y grafiką. Pvz.: y = function (x) dnorm(x,vid, st)
par(mfrow=c(n,m))	Viename grafiniame lange bus brėžiama <i>nxm</i> grafikų.
integrate(f, a, b)	Apskaičiuojama funkcijos f apibrėžtinio integralo reikšmė intervale $[a, b]$.
options(digits=2)	Komanda, kuria nustatoma kiek skaitmenų bus rodoma visuose tolimesniuose
	skaičiavimuose.
round(x, k)	Skaičius x apvalinamas iki k skaitmenų po kablelio.
polygon(x,y,col="green")	Žaliai užspalvinamas daugiakampis, kurio viršūnių koordinatės pateiktos
	vektoriuose x ir y.