Stat111 W4 P5

Yihui Wu

Feb 2025

\mathbf{a}

To distinguish between conditional expectation given an event and conditional expectation given a random variable, we need to start from their definition. That is, write conditional expectation given an event as $E[X|Y=y_0]$ and write conditional expectation given a random variable as E[X|Y].

 $E[X|Y=y_0]$ is a value, while E[X|Y] is a random variable that can be written as a function of y.

We shall use the example with $Poisson(\lambda)$. Let T_i represent the time taken for i^{th} event to happen, thus $T_i \sim Poission(\lambda)$. Let $X \sim T_1$ and $Y \sim T_1 + T_2$. We shall find $(X|Y=y) \sim Unif(y)$, and $E[X|Y=y]=\frac{y}{2}$. Furthermore, $E[X|Y]=\frac{Y}{2}$.

b

Adam's Law (law of total expectation):

$$E[X] = E[E[X|Y]]$$

proof:

$$E[E[X|Y]] = E[\int x f_{X|Y}(x|y) dx]$$

$$= \int [\int x f_{X|Y}(x|y) dx] f_Y(y) dy$$

$$= \int \int x (f_{X|Y}(x|y) f_Y(y)) dx dy$$

$$= \int \int x f_{X,Y}(x,y) dx dy$$

$$= E[x]$$

Eve's Law (law of total variance):

$$Var[X] = E[Var[X|Y]] + Var[E[X|Y]]$$

proof:

$$\begin{split} E[Var(X|Y)] + Var[E(X|Y)] &= E[Var(X|Y)] + E[[E(X|Y)]^2] - [E[E(X|Y)]]^2 \\ &= E[Var(X|Y) + [E(X|Y)]^2] - [E(X)]^2 \\ &= E[E(X^2|Y)] - [E(X)]^2 \\ &= E(X^2) - [E(X)]^2 = E(X) \end{split}$$

c^*

Apply the above equation to the problem we have for part C, we will have

$$E(X) = E[E(X|\theta)]$$
$$= E(\theta) = \mu$$

$$Var(X) = E[Var(X|\theta)] + Var[E(X|\theta)]$$
$$= E(\theta) + Var(\theta) = \mu + \frac{\mu^2}{\alpha}$$

when t approaches infinite, $E(X) = \mu$ and $Var(X) \to \mu$. Then The distribution approaches a Poisson distribution.

d

Similarly, we apply law of total expectation and variance:

$$E(Y) = E[E(Y|\theta)]$$
$$= E(\theta) = \mu$$

$$Var(Y) = E[Var(Y|\theta)] + Var[E(Y|\theta)]$$
$$= E(V) + Var(\theta) = V + A$$

To write θ and Y in terms of two independent standard Normal variables Z_1 and Z_2 , write

$$\theta = \sqrt{A}Z_1 + \mu$$

$$Y|\theta = \sqrt{V}Z_2 + \theta$$

$$Y = \sqrt{V}Z_2 + \sqrt{A}Z_1 + \mu$$

 \mathbf{e}

by Bayesian inference:

$$f_{\theta|Y}(\theta'|Y=y) * f_Y(y) = f_{Y|\theta}(y|\theta=\theta') * f_{\theta}(\theta')$$

Based on this, we shall find out $\theta|Y \sim N(\frac{\frac{\mu}{A} + \frac{Y}{V}}{\frac{1}{A} + \frac{1}{V}}, \frac{1}{\frac{1}{A} + \frac{1}{V}})$, where $E(\theta|Y = y) = \frac{Ay + V\mu}{A + V}$ and $Var(\theta|Y = y) = \frac{AV}{A + V}$