CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 10 · Solutions

Posted Wednesday 11 September 2013. Due 5pm Wednesday 18 September 2013.

10. [25 points]

Demonstrate whether or not each of the following sets is a real vector space. You do not need to show that \mathbb{R}^2 , \mathbb{R}^3 , C[0,1], or $C^2[0,1]$ are real vector spaces.

(a)
$$\{\mathbf{x} \in \mathbb{R}^2 : x_2 = x_1^3\}$$

(b)
$$\{\mathbf{x} \in \mathbb{R}^3 : 3x_1 + 2x_2 + x_3 = 0\}$$

(c)
$$\{f \in C[0,1]: f(x) \ge 0 \text{ for all } x \in [0,1]\}$$

(d)
$$\left\{ f \in C[0,1] : \max_{x \in [0,1]} f(x) \le 1 \right\}$$

(e)
$$\{f \in C^2[0,1]: f(1)=1\}$$

(f)
$$\{f \in C^2[0,1]: f(1) = 0\}$$

Solution.

- (a) [4 points] This set is not a real vector space. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in the set, yet $2\mathbf{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is not, since $2 \neq 2^3 = 8$.
- (b) [4 points] This set is a real vector space.

The set is a subset of \mathbb{R}^3 and $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is a member of this set. Now, suppose \mathbf{x} and \mathbf{y} are members of this set. Then $3x_1 + 2x_2 + x_3 = 0$ and $3y_1 + 2y_2 + y_3 = 0$. Adding these two equations gives

$$3(x_1 + y_1) + 2(x_2 + y_2) + (x_3 + y_3) = 0,$$

and hence $\mathbf{x} + \mathbf{y}$ is also in the set. Multiplying $3x_1 + 2x_2 + x_3 = 0$ by an arbitrary constant $\alpha \in \mathbb{R}$ gives

$$3(\alpha x_1) + 2(\alpha x_2) + \alpha x_3 = 0,$$

and hence $\alpha \mathbf{x}$ is also in the set. Consequently, the set is a subspace of \mathbb{R}^3 and is hence a real vector space.

- (c) [4 points] This set is not a real vector space. Let f(x) = 1 for $x \in [0, 1]$. Then f is in the set, but a scalar multiple, $-1 \cdot f(x) = -1$ for $x \in [0, 1]$, takes negative values and thus violates the requirement for membership in the set.
- (d) [4 points] This set is not a real vector space. Let f(x) = 1 for $x \in [0, 1]$. Then f is in the set, but a scalar multiple, $2 \cdot f(x) = 2$ for $x \in [0, 1]$, takes values greater than one and thus violates the requirement for membership in the set.

- (e) [4 points] This set is not a real vector space. The function z defined by z(x) = 0 for $x \in [0, 1]$ is not in the set since z(1) = 0 and thus violates the requirement for membership in the set.
- (f) [5 points] This set is a real vector space. The set is a subset of $C^2[0,1]$ and the function z defined by z(x) = 0 for $x \in [0,1]$ is in the set. If f and g are in the set, then f(1) = g(1) = 0, so

$$(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$$

and hence f + g is in the set. Also, if f is in the set and $\alpha \in \mathbb{R}$, then

$$(\alpha f)(1) = \alpha f(1) = \alpha \cdot 0 = 0$$

and hence αf is in the set. Consequently, the set is a subspace of $C^2[0,1]$ and is hence a real vector space.