15. Vnútorné pamäte

Popíšte hierarchiu pamätí v PC:

Rozdeľte vnútorné pamäte podľa spôsobu výberu z pamäťového priestoru

Pamäte sa používajú na **ukladanie informácií** (údaje, programy, adresy, textové súbory) **Informácie** vieme **rozdeliť** na – bity, bajty, slová, bloky, segmenty, stránky, štruktúry a ukladajú

Prístup k bunkám riadený pomocou adries

Prístup k bunkám riadený obsahom pamäte

Prístup k bunkám riadený pomocou adries: → RAM

a.) s NÁHODNÝM prístupom – doba prístupu je rovnaká pre všetky bunky v PAMATI, nezáleží na poradí bunky v pamäti, polovodičové pamäte RAM a ROM

b.) so SEKVENČNÝM – informácie sa ukladajú napr. na magnetickú pásku, alebo povrch optického disku (špirálová dráha),

doba prístupu nie je rovnaká pre všetky bunky v PAMATI,

ZÁLEŽÍ NA PORADÍ

c.) s CYKLICKÝM – informácie sú na nosiči, ten predstavuje SLUČKU/MNOŽINU SLUČIEK umožňuje aby na nejakom mieste nosiča došlo k náhlej ZMENE ADRESY z najväčšej na najmenšiu ->
HARDDISK

Prístup k bunkám riadený obsahom pamäte:

Vyberáme pomocou tzv. výberového kľúča. Tie sa používajú vo vyrovnávacích pamätiach → CACHE pamäť

Popíšte pamäte ROM, ich štruktúru a delenie

Po vypnutí zdroja uchovávajú svoj OBSAH !!! Sú energeticky nezávislé; KLO

<u>Ich štruktúra:</u> DEKÓDER (AND hradlá) + programovateľné OR hradlá 2^{n*}y, n – počet vstupov

y - počet výstupov

Klasifikácia ROM = Pamäte programovateľné –

VÝROBCOM – obsah pamäte je zavedený počas výroby IO za pomoci technologickej masky a tá určuje ktoré kontakty sa PREPOJA a ktoré budú NEPREPOJENÉ → V TOVÁRNI Maskovanie je finančne náročné U ZÁKAZNÍKA – vyrábané ako IO, je možné ich programovať špec. Zar. pripojenými k PC

PROM – 1 krát naprogramovateľná pamäť, dáta nemôžu byť vymazané

<u>EPROM</u> – informácia je uložená v podobe el. náboja, novú INFO vieme do pamäti uložiť pomocou programátora

EEPROM – dáta sa mažú el. prúdom bit po bite, prepis možný len niekoľkokrát, FLASH pamäť

Popíšte pamäte RWM, ich delenie, fyzickú realizáciu (čím je tvorený 1 bit):

Do tejto pamäte vie CPU zapísať a vie z nej aj čítať

Po vypnutí zdroja strácajú svoj obsah !!!, Je energeticky závislá

STATICKÉ SRAM

Základný pamäťový element tvorí RS preklápací obvod, po Zápise informácie zostane v stabilnom stave, ten sa zmení po zápise novej hodnoty; Vstup jedného invertora je výstupom Druhého invertora.

1 BIT REALIZUJEME VIACERÝMI TRANZISTORMI

DYNAMICKÉ DRAM

Základný pamäťový element je realizovaný pomocou parazitnej C. Tá sa pri zápise nabije. Vplyvom zvodového prúdu sa vybíja (STRATY) STRATY INFORMÁCIÍ \rightarrow Preto je nutné periodicky obnovovať náboje C (REFRESH)

1 BIT REALIZUJEME JEDNÝM TRANZISTOROM

Načrtnite princíp virtuálnej pamäte:

- → správa pamäte v multitaskingových operačných systémoch
- → preklad lineárnej adresy pamäte na fyzickú pamäť
- → rieši problém obmedzenej veľkosti operačnej pamäte
- → umožňuje vykonávanie procesov, ktoré sa nenachádzajú v operačnej pamäti celé
- → rôzne druhy nesusediacej pamäte sú prezentované aplikácii ako súvislá pamäť
 - o virtuálny adresný priestor
- → Realizuje sa 2 spôsobmi
 - STRÁNKOVANÍM → rozdeľuje pamäť na stránky, ktoré majú hardvérom pevne danú (rovnakú) veľkosť – najčastejšie 4 kB
 - procesy sú umiestnené na disku
 - každy proces ma svoj vlastny adresný priestor
 - proces môže čítať a zapisovať iba v rámci svojho adresného priestoru
 - vytvárame zdanie vlastnej pamäte a tá pamať môže byť väčšia ako RAM
 - poskytuje nepriamu adresaciu
 - máme jednu vrstvu medzi procesom a fyzickou pamäťou to je virtuálna pamäť, ktorú spravuje jednotka správy pamäte – Memory Management Unit
 - program pracuje iba s virtuálnymi adresami
 - jadro OS ma za úlohu riadiť mapovanie kazdej virtuálnej adresy na fyzickú adresu
 - MMU → Memory Management Unit
 - používa na preklad tabuľku, v ktorej
 - virtuálna adresa je indexom do tabuľky
 - fyzická adresa je hodnotou na indexe
 - tabuľka sa volá tabuľka stránok
 - jeden proces ma jednu tabuľku, jeden adresný priestor
 - MMU dokáže obmedziť, ktoré virtuálne adresy sú prístupne v užívateľskom režime procesora
 - procesor obsahuje špeciálny register, v ktorom sa nachádza fyzická adresa RAM-ky, kde sa nachádza tabuľka stránok
 - meniť hodnotu tohto registra nie je možne v užívateľskom režime, iba v privilegovanom režime
 - Umožňuje:
 - rozlíšenie oprávnenia typu prístupu → čítanie/zápis
 - určí, či mapovanie existuje
 - rozlíšenie oprávnenia prístupu privilegovaný režim/ užívateľský režim
 - zistiť, či prístup k určitej adrese vyvolal zmenu hodnôt v pamäti
 - zistiť, či bolo vôbec niekedy pristúpene k nejakej adrese
 - Rámec (page frame) vs Stránka (page)

- Virtuálna adresa
 - o formát virtuálnej adresy
 - bity 31 12 → číslo stránky
 - bity 11 0 → offset → posunutie vzhľadom na začiatok stránky

- Tabuľka stránok
- Položka tabuľky stránok
- preklad virtuálnej adresy na fyzickú adresu

Tabuľka stránok obsahuje položky

Preklad virtuálnej adresy na fyzickú adresu

SEGMENTOVANÍM → rozdeľuje pamäť na segmenty, ktoré majú <u>rôznu</u> veľkosť

Načrtnite princíp Cache pamäte.

Cache

- Procesor sa obracia v 80 -95% prípadov na rovnakú oblasť v pamäti
- Zapíšeme ju do Cache pamäti ušetríme cca 90% prístupov k OP (operačnej pamäti)
- Cache pamäť kladie vysoké nároky na pamäťové bunky:
 - o rýchlosť (používajú sa statické pamäte)
 - schopnosť komparovať
- vysoké nároky na riadiaci systém pamäti cache

PRINCÍP ČINNOSTI

• 1. ak sa procesor obracia na údaje, ktoré nie sú v pamäti cache, načítajú sa údaje z hlavnej pamäti nielen do procesora, ale aj do pamäti cache

- 2. keď procesor nezaťažuje zbernicu, nahrá sa z hlavnej pamäte do cache pamäti celá oblasť údajov stránky
 - o ak sú potrebné údaje v cache pamäti, tak sa prečítajú údaje len z pamäti cache
 - o ak sa procesor bude obracať na údaje, ktoré nie sú v cache pamäti, tak sa zopakuje krok číslo 1

- v prípade, že jedna oblasť údajov v pamäti cache je málo, musíme mať v pamäti cache zapísaných viacej rôznych oblastí
- jednotlivé oblasti sú označované Tagom

Podľa počtu oblastí s údajmi delíme cache pamäte na:

o Jednocestné pamäte cache

Viaccestné pamäte cache

výmena údajov medzi hlavnou (operačnou) a vyrovnávacou (cache) pamäťou

ak sú zaplnené všetky stránky cache pamäti, treba sa rozhodnúť, ktorá stránka v Cache pamäti bude prepísaná

LRU (Lest Recently Used) – najdlhšie nepoužívaný

- →každá oblasť údajov má čítač, ktorý sa vynuluje, ak je oblasť údajov čítaná, alebo inkrementuje, ak oblasť údajov nie je čítaná
- →v prípade potreby sa prepíše oblasť údajov, ktorá má v čítači najvyššiu hodnotu.

FIFO - najdlhšie zapísaný

→inkrementovaním čítača je vyhodnotená stránka, ktorá je v pamäti cache najdlhšie

ČÍTANIE ÚDAJOV Z PAMATE CACHE

- o Keď procesor číta z pamäti, treba určiť, či údaj je v cache pamäti, alebo nie
- Spôsob, akým to bude realizované, sa určuje podľa organizácie pamäti cache
 - Priamo mapovaná pamäť cache
 - Plne asociovaná pamäť cache

Priamo mapovaná pamäť cache	Plne asociovaná pamäť cache
do pamäti cache sa zapisuje s údajmi aj TAG	Celá adresa je určená TAG -om
Tag je časťou adresy	
radič pamäti cache porovnáva či požadovaný TAG je v pamäti cache →ak je, tak dáta na výstup z cache pamäti sa určia na základe INDEXU, →dáta sú ešte potvrdzované tzv. príznakom validity	V pamäti cache sú zapísané okrem údajov aj adresy na bunkách, ktoré sú schopné komparácie
tag index Prístupová adresa tag index V ****** ****** dáta V data do CPU komparátor	tag Prístupová adresa komp. tag dáta v komp. *** ****** * komp. *** ****** * komp. tag dáta v data do CPU

ZÁPIS ÚDAJOV DO CACHE A OP

- Podľa spôsobu zápisu delíme pamäte cache
 - Zápis ponad cache alebo súčasný zápis
 - Oneskorený zápis

Vysvetlite činnosť Bistabilného preklápacieho obvodu s vyžitím časovacieho obvodu 555: Realizácia BKO pomocou NE555:

Zapojenie aj s komplementárnymi komponentami na dosiahnutie plnej funkčnosti bloku obvodu RSs

Obvod NE555P pri tomto zapojení ako RSS obvod si vyžaduje na vstupe negovaný Set a negovaný Reset. Ďalej má len jeden nenegovaný výstup. Tým pádom potrebujeme 3 hradlá NOT na to aby plne spĺňal funkciu obvodu RSS. Za to sú na schéme 3 tranzistory (v zapojení NOT). Samotný IO NE555P má vnútorný

negovaný RS preklápací obvod, ktorý má 3 vstupy (Set a negovaný a nenegovaný Reset). Negovaný reset sme zapojili na výstup Reset NOTu a nenegovaný tým pádom znefunkčníme (zemníme pin 6 a pin 5 je NC). Na to, aby sa na vstupe S vnútorného RS obvodu objavila logická jednotka potrebujeme na pin 2 dodať napätie nižšie ako 1/3 napájacieho – je to kvôli zapojeniu komparátora – preto na pin 2 pripájame negovaný set. Na pine 3 máme nenegovaný výstup, ktorý ešte negujeme NOTom a dostávame Q negované. Pin 7 je NC, pin 8 je napájanie a pin 1 je zem.

Uveďte použitie pamätí v digitálnych osciloskopoch:

Pamäte nájdeme najmä v DO!

Ukladanie firmvéru DO na EPROM

Ukladanie nameraného priebehu do dlhodobej pamäti

Akvizičná pamäť (typu FIFO) – pamäť v ktorej sa ukladajú zdigitalizované vzorky aj spolu s časom odobratia vzorky v reálnom čase, na ňu máme najvyššie požiadavky s hľadiska rýchlosti veľkosti či odozvy – od jej kvality veľmi závisí celková kvalita osciloskopu a výsledného merania (závisí od nej vzorkovacia frekvencia, rozlíšenie vzoriek kvalita ZOOMu, čas zrekonštruovania meraného signálu a podobne)