	0
	Studio J. Quir
1.	Ko=30 mNm/A Ra=1052.
	Pdev = TexW
	1/ 1/4 1/2
	= 30×10-3 × 20 1310
	= 6 v.
	Polev = 30×103 × 0.6 × 20 1810
	= 3.6w.
2.	Ke= 40 mVs/rad Ra= 10 J2 Te= 30 mNm.
	1a= 0.75A
	Ve=ke w.
	v: Ve
	= 12 - v.75(10)
	.,
	= 112.5 nad/s.
3.	
	$Ra = \frac{V}{2} + \Omega$.
	10-5:1-0
	50= Te × 270 4000 0 = 21 60 Te = 0.0189 Nm.
	0 = 2/1 60 Te= 0.0189 Nm.
Ψ.	$V_{\alpha}=12V_{\beta} V_{+}=3_{0} M_{\alpha}/A$.
	Te= 0.03 x 0.6 - 0.018.
	Va = 6V
	$\omega = \frac{6}{0.03} = 200 \text{ vads}.$
	P= 200 × 0.018 = 3.6ω.
	3.6 - 3.20 = 0.36 W.
	Tp = 0.36/200 = 0.0018 Nm.
	Ke= 20 mV/rad/s Ra=55.
	Te=K+ Ia = 20116 ³ x 1.16
	= 0.0232 Nm.
	w= Ve
	$W = \frac{1}{1}$

	Le .
	$= \frac{10 - \pm (1/16)}{ke}$
	= 210 nod/s.
	= 210 100g s.
	P=Te.w
	= 4.872.
	7.0/2.
	$n = \frac{4.872 - 0.07}{11.6} \times 100\%$
	11.6
	a.
	~ ψ1. ψ ⁷ / ₂
в.	Vet 12V at surv RPM.
	Ve= Kew.
	ke = 0,0229.
	$\frac{12}{2.4} \cdot \int \Omega \cdot = Ra.$
	Ve= 0.022]. (200 60)
	= 4.80V.
	$I_{\alpha} = \frac{12 - 4.8}{5}$
	= 1.44.
	P = Te - co
	= 6-91 W.

Ke