Lecture 4 Probabilistic Models and Stochastic Search

Nadia Polikarpova

Logistics

Project topics

- Once you have decided on the topic, put it on the Google sheet next to any of the team members
- If you haven't decided, talk to me

Project proposals

- Due next Friday (Oct 20)
- Upload to the Proposals directory inside the shared Google folder
- Can be a Google Doc or a PDF
- File name must be "Team-N", where N is your team ID

Announcement

Consider applying to the *Programming Languages Mentoring Workshop* (Jan 9, Los Angeles, CA)

https://popl18.sigplan.org/track/PLMW-POPL-2018

Enumerative search

Explores smaller programs before larger programs

- Small solution is likely to generalize
- Scales poorly with the size of the smallest solution

Top-down search (revisited)

Turn off the rightmost sequence of **1**s:

```
00101 \rightarrow 00100
01010 \rightarrow 01000
10110 \rightarrow 10000
```

Explores many unlikely programs!

Weighted top-down search

Idea: explore programs in the order of likelihood, not size

1. Assign weights w(e) to edges such that d(p) < d(p') iff p is more likely than p'

$$d(\mathbf{p}) = \sum_{e \in S \to \mathbf{p}} w(e)$$

2. Use Dijkstra's algorithm to find closest leaves

Weighted top-down search (Dijkstra)

```
top-down(\langle T, N, R, S \rangle, [i \rightarrow o]) {
                                                P now stores candidates (nodes) together
  P := \lceil \langle S, 0 \rangle \rceil \leftarrow
                                               with their distances
  while (P != [])
     <p,d> := P.dequeue_min(d);
                                               Dequeue the node with the shortest
     if (ground(p) \&\& p([i]) = [o])
       return p;
                                               distance from the root
     P.enqueue(unroll(p,d));
unroll(p,d) {
  P' := []
                                                Distance to a new node: add the w(e)
  N := leftmost nonterminal in p
  forall (N ::= rhs in R)
     P' += \langle p[N -> rhs], d + w(rhs, p) >
  return P';
```

Weighted top-down search (A*)

```
top-down(\langle T, N, R, S \rangle, [i \rightarrow o]) {
                                              Dijkstra: explores a lot of intermediate
  P := [\langle S, 0, h(S) \rangle]
                                              nodes that don't lead to any cheap leaves
  while (P != [])
    \langle p,d,h \rangle := P.dequeue\_min(d + h);
                                              A*: introduce heuristic function h(p) that
    if (ground(p) \&\& p([i]) = [o])
                                              estimates how close we are to the closest
       return p;
    P.enqueue(unroll(p,d));
                                              leaf
unroll(p,d) {
                                               So, where does this come from?
  P' := []
  N := leftmost nonterminal in p
  forall (N ::= rhs in R)
    P' += (p[N -> rhs], d + w(rhs, p),
                            h(p[N -> rhs])>
  return P';
```

Assigning weights to edges

$$d(\mathbf{p}) = \sum_{e \in S \to \mathbf{p}} w(e)$$

$$2^{-d(\mathbf{p})} = \prod_{e \in S \to \mathbf{p}} 2^{-w(e)}$$

$$\wp(\mathbf{p}) = \prod_{e \in S \to \mathbf{p}} \wp(e)$$

So, we should decide what is the probability of taking each edge $\mathcal{D}(e)$ and then set $w(e) = -\log_2 \mathcal{D}(e)$

Probabilistic CFG (PCFG)

Probabilistic Higher-Order Grammar (PHOG)

[Bielik, Raychev, Vechev '16]

N[context]	-> rhs	
		Ø
S[x,-] ->	1	0.72
$S[x,-] \rightarrow$	X	0.02
$S[x,-] \rightarrow$	S + S	0.12
S[x,-] ->	S - S	0.12
• • •		
S[1,+] ->	1	0.26
S[1,+] ->	X	0.25
S[1,+] ->	S + S	0.19
S[1,+] ->	S - S	0.08

Learning PHOGs

[Bielik, Raychev, Vechev '16]

PHOGs useful for:

code completion

deobfuscation

programming language translation

statistical bug detection

Probabilistic models: overview

Learn natural programs

Learn solutions for particular problem

useful for MOOCs

Learn mapping from spec to code

• or features of code

Program corrections for MOOCs

Treats programs as text

- Modulo concrete variable names etc.
- Uses the skipgram model to predict which statement is most likely to occur between the two

Features

Can repair syntax errors

Limitations

Needs all algorithmically distinct solutions to appear in the training set

DeepCoder

Answer to *neural programming*: neural nets that write programs Predicts likely components from IO examples:

$$[-17 -3 \ 4 \ 11 \ 0 \ -5 \ -9 \ 13 \ 6 \ 6 \ -8 \ 11]$$

$$\rightarrow [-12 \ -20 \ -32 \ -36 \ -68]$$

$$+4 \ (1.0) \ filter \ (1.0)$$

$$>0 \ (1.0) \ sort \ (1.0)$$

$$map \ (1.0) \ reverse \ (0.7)$$

Features

- Can be combined with any enumerative search
- Significant speedups for a small list DSL

Limitations

• Unclear whether it scales to larger DSLs or more complex data structures

Stochastic search

Search space

Enumerative search

Weighted enumerative search

MCMC sampling!

Search by hill climbing

To find the best program:

```
p := random()
while (true) {
   p' := mutate(p);
   if (cost(p') < cost(p))
      p := p';
}</pre>
```

Will never get to \bigcirc from $p_1!$

can generate p₂ from p₁ (and vice versa) via mutation

MCMC sampling

Avoid getting stuck in local minima:

```
p := random()
while (true) {
   p' := mutate(p);
   if (random(A(p,p'))
      p := p';
}
```


$$A(p \to p') = \min(1, e^{-\beta * C(p')/C(p)})$$

MCMC sampling

Why did we pick this A?

$$A(p \to p') = \min(1, e^{-\beta * C(p')/C(p)})$$

The theory of Markov chains tells us that in the limit we will be sampling with the probability proportional to

$$e^{-\beta * C(p)}$$

MCMC for superoptimization

[Schkufza, Sharma, Aiken '13]

Cost function

$$\operatorname{eq}_{s}(p) = \sum_{t \in Tests} \operatorname{reg}_{s}(p, t) + \operatorname{mem}_{s}(p, t) + \operatorname{err}(p, t)$$

$$\uparrow$$
of different bits in registers/memory # of segfaults etc

when $eq_s(p) = 0$, use a symbolic validator

Cost function

$$C_S(p) = \operatorname{eq}_S(p) + \operatorname{perf}(p)$$
source program

penalty for penalty for being wrong results slow

$$perf(p) = \sum_{i \in instr(p)} latency(i)$$

Stochastic search: discussion

Hill climbing can explore larger spaces Limitations?

- only applicable when there is a cost function that faithfully approximates correctness
- Counterexample: round to next power of two

Other examples of making programs incrementally "more correct"?

Condition abduction!

