Course Overview

15-213: Introduction to Computer Systems 1st Lecture, Sep. 1, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

The course that gives CMU its "Zip"!

Overview

- Course theme
- **■** Five realities
- How the course fits into the CS/ECE curriculum
- Academic integrity

Course Theme:

Abstraction Is Good But Don't Forget Reality

- Most CS and CE courses emphasize abstraction
 - Abstract data types
 - Asymptotic analysis
- These abstractions have limits
 - Especially in the presence of bugs
 - Need to understand details of underlying implementations
- Useful outcomes from taking 213
 - Become more effective programmers
 - Able to find and eliminate bugs efficiently
 - Able to understand and tune for program performance
 - Prepare for later "systems" classes in CS & ECE
 - Compilers, Operating Systems, Networks, Computer Architecture,
 Embedded Systems, Storage Systems, etc.

Great Reality #1: Ints are not Integers, Floats are not Reals

- **■** Example 1: Is $x^2 \ge 0$?
 - Float's: Yes!

- Int's:
 - 40000 * 40000 <1600000000
 - 50000 * 50000 **©**??
- **Example 2:** Is (x + y) + z = x + (y + z)?
 - Unsigned & Signed Int's: Yes!
 - Float's:
 - (1e20 + -1e20) + 3.14 --> 3.14
 - 1e20 + (-1e20 + 3.14) --> ??

Computer Arithmetic

Does not generate random values

Arithmetic operations have important mathematical properties

Cannot assume all "usual" mathematical properties

- Due to finiteness of representations
- Integer operations satisfy "ring" properties
 - Commutativity, associativity, distributivity
- Floating point operations satisfy "ordering" properties
 - Monotonicity, values of signs

Observation

- Need to understand which abstractions apply in which contexts
- Important issues for compiler writers and serious application programmers

Great Reality #2: You've Got to Know Assembly

- Chances are, you'll never write programs in assembly
 - Compilers are much better & more patient than you are
- But: Understanding assembly is key to machine-level execution model
 - Behavior of programs in presence of bugs
 - High-level language models break down
 - Tuning program performance
 - Understand optimizations done / not done by the compiler
 - Understanding sources of program inefficiency
 - Implementing system software
 - Compiler has machine code as target
 - Operating systems must manage process state
 - Creating / fighting malware
 - x86 assembly is the language of choice!

Great Reality #3: Memory MattersRandom Access Memory Is an Unphysical Abstraction

Memory is not unbounded

- It must be allocated and managed
- Many applications are memory dominated

Memory referencing bugs especially pernicious

Effects are distant in both time and space

Memory performance is not uniform

- Cache and virtual memory effects can greatly affect program performance
- Adapting program to characteristics of memory system can lead to major speed improvements

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

Result is system specific

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun(0)
                   3.14
           \omega
                   3.14
fun(1)
           \mathcal{O}_{\mathcal{S}}
fun(2)
                   3.1399998664856
           \mathcal{O}_{\mathcal{S}}
           Q 2.00000061035156
fun(3)
fun(4)
           \approx 3.14
fun(6)
                   Segmentation fault
           \omega
```

Explanation:

Memory Referencing Errors

C and C++ do not provide any memory protection

- Out of bounds array references
- Invalid pointer values
- Abuses of malloc/free

Can lead to nasty bugs

- Whether or not bug has any effect depends on system and compiler
- Action at a distance
 - Corrupted object logically unrelated to one being accessed
 - Effect of bug may be first observed long after it is generated

How can I deal with this?

- Program in Java, Ruby, Python, ML, ...
- Understand what possible interactions may occur
- Use or develop tools to detect referencing errors (e.g. Valgrind)

Great Reality #4: There's more to performance than asymptotic complexity

- Constant factors matter too!
- And even exact op count does not predict performance
 - Easily see 10:1 performance range depending on how code written
 - Must optimize at multiple levels: algorithm, data representations, procedures, and loops
- Must understand system to optimize performance
 - How programs compiled and executed
 - How to measure program performance and identify bottlenecks
 - How to improve performance without destroying code modularity and generality

Memory System Performance Example

4.3ms 2.0 GHz Intel Core i7 Haswell 81.8ms

- Hierarchical memory organization
- Performance depends on access patterns
 - Including how step through multi-dimensional array

Why The Performance Differs

Great Reality #5: Computers do more than execute programs

- They need to get data in and out
 - I/O system critical to program reliability and performance

■ They communicate with each other over networks

- Many system-level issues arise in presence of network
 - Concurrent operations by autonomous processes
 - Coping with unreliable media
 - Cross platform compatibility
 - Complex performance issues

Role within CS/ECE Curriculum

Course Perspective

Most Systems Courses are Builder-Centric

- Computer Architecture
 - Design pipelined processor in Verilog
- Operating Systems
 - Implement sample portions of operating system
- Compilers
 - Write compiler for simple language
- Networking
 - Implement and simulate network protocols

Instructors

Randy Bryant

Dave O'Hallaron

Cheating: Description

Please pay close attention, especially if this is your first semester at CMU

What is cheating?

- Sharing code: by copying, retyping, looking at, or supplying a file
- Describing: verbal description of code from one person to another.
- Coaching: helping your friend to write a lab, line by line
- Searching the Web for solutions
- Copying code from a previous course or online solution
 - You are only allowed to use code we supply, or from the CS:APP website

What is NOT cheating?

- Explaining how to use systems or tools
- Helping others with high-level design issues

See the course syllabus for details.

Ignorance is not an excuse

Cheating: Consequences

Penalty for cheating:

- Removal from course with failing grade (no exceptions!)
- Permanent mark on your record
- Your instructors' personal contempt

Detection of cheating:

- We have sophisticated tools for detecting code plagiarism
- Last Fall, 20 students were caught cheating and failed the course.
- Some were expelled from the University

Don't do it!

- Start early
- Ask the staff for help when you get stuck

Textbooks

Randal E. Bryant and David R. O'Hallaron,

- Computer Systems: A Programmer's Perspective, Third Edition (CS:APP3e),
 Pearson, 2016
- http://csapp.cs.cmu.edu
- This book really matters for the course!
 - How to solve labs
 - Practice problems typical of exam problems

Brian Kernighan and Dennis Ritchie,

- The C Programming Language, Second Edition, Prentice Hall, 1988
- Still the best book about C, from the originators

Course Components

Lectures

Higher level concepts

Recitations

 Applied concepts, important tools and skills for labs, clarification of lectures, exam coverage

Labs (7)

- The heart of the course
- 1-2 weeks each
- Provide in-depth understanding of an aspect of systems
- Programming and measurement

Exams (midterm + final)

Test your understanding of concepts & mathematical principles

Getting Help

- Class Web page: http://www.cs.cmu.edu/~213
 - Complete schedule of lectures, exams, and assignments
 - Copies of lectures, assignments, exams, solutions
 - Clarifications to assignments

Blackboard and Piazza

We won't be using Blackboard or Piazza for the course

Getting Help

- Staff mailing list: 15-213-staff@cs.cmu.edu
 - Use this for all communication with the teaching staff
 - Always CC staff mailing list during email exchanges
 - Send email to individual instructors only to schedule appointments

Office hours (starting Tue Sept 3):

SMTWR, 5:30-7:30pm, WeH 5207

■ 1:1 Appointments

You can schedule 1:1 appointments with any of the teaching staff

Policies: Labs And Exams

Work groups

You must work alone on all lab assignments

Handins

- Labs due at 11:59pm on Tues or Thurs
- Electronic handins using Autolab (no exceptions!)

Exams

- Exams will be online in network-isolated clusters
- Held over multiple days. Self-scheduled; just sign up!

Appealing grades

- In writing to Prof O'Hallaron within 7 days of completion of grading
- Follow formal procedure described in syllabus

Facilities

■ Labs will use the Intel Computer Systems Cluster

- The "shark machines"
- linux> ssh shark.ics.cs.cmu.edu
- 21 servers donated by Intel for 213
 - 10 student machines (for student logins)
 - 1 head node (for Autolab server and instructor logins)
 - 10 grading machines (for autograding)
- Each server: iCore 7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
- Rack-mounted in Gates machine room
- Login using your Andrew ID and password

Getting help with the cluster machines:

Please direct questions to staff mailing list

Timeliness

Grace days

- 5 grace days for the semester
- Limit of 2 grace days per lab used automatically
- Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
- Save them until late in the term!

Lateness penalties

- Once grace day(s) used up, get penalized 15% per day
- No handins later than 3 days after due date

Catastrophic events

- Major illness, death in family, ...
- Formulate a plan (with your academic advisor) to get back on track

Advice

Once you start running late, it's really hard to catch up

Other Rules of the Lecture Hall

- Laptops: permitted
- **Electronic communications:** *forbidden*
 - No email, instant messaging, cell phone calls, etc.
- Presence in lectures, recitations: voluntary, recommended
- No recordings of ANY KIND

Policies: Grading

- Exams (50%): midterm (20%), final (30%)
- Labs (50%): weighted according to effort
- Final grades based on a straight scale.

Programs and Data

Topics

- Bits operations, arithmetic, assembly language programs
- Representation of C control and data structures
- Includes aspects of architecture and compilers

- L1 (datalab): Manipulating bits
- L2 (bomblab): Defusing a binary bomb
- L3 (attacklab): The basics of code injection attacks

The Memory Hierarchy

Topics

- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS

- L4 (cachelab): Building a cache simulator and optimizing for locality.
 - Learn how to exploit locality in your programs.

Exceptional Control Flow

Topics

- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

- L5 (tshlab): Writing your own Unix shell.
 - A first introduction to concurrency

Virtual Memory

■ Topics

- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

- L6 (malloclab): Writing your own malloc package
 - Get a real feel for systems-level programming

Networking, and Concurrency

Topics

- High level and low-level I/O, network programming
- Internet services, Web servers
- concurrency, concurrent server design, threads
- I/O multiplexing with select
- Includes aspects of networking, OS, and architecture

- L7 (proxylab): Writing your own Web proxy
 - Learn network programming and more about concurrency and synchronization.

Lab Rationale

- Each lab has a well-defined goal such as solving a puzzle or winning a contest
- Doing the lab should result in new skills and concepts
- We try to use competition in a fun and healthy way
 - Set a reasonable threshold for full credit
 - Post intermediate results (anonymized) on Autolab scoreboard for glory!

Autolab (https://autolab.cs.cmu.edu)

Labs are provided by the CMU Autolab system

- Project page: http://autolab.cs.cmu.edu
- Developed by CMU faculty and students
- Key ideas: Autograding and Scoreboards
 - Autograding: Providing you with instant feedback.
 - Scoreboards: Real-time, rank-ordered, and anonymous summary.
- Used by over 3,000 students each semester

With Autolab you can use your Web browser to:

- Download the lab materials
- Handin your code for autograding by the Autolab server
- View the class scoreboard
- View the complete history of your code handins, autograded results, instructor's evaluations, and gradebook.
- View the TA annotations of your code for Style points.

Autolab accounts

- Students enrolled 10am on Mon, Aug 26 have Autolab accounts
- You must be enrolled to get an account
 - Autolab is not tied in to the Hub's rosters
 - If you add in, contact <u>15-213-staff@cs.cmu.edu</u> for an account
- For those who are waiting to add in, the first lab (datalab) will be available on the Schedule page of the course Web site.

Waitlist questions

- 15-213: Catherine Fichtner (<u>cathyf@cs.cmu.edu</u>)
- 18-213: Zara Collier (zcollier@andrew.cmu.edu)
- 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)
- Please don't contact the instructors with waitlist questions.

Welcome and Enjoy!