Orthogonality

March 5, 2020 11:03 AM

1.1 III Orthogonality

L-> line spen {u}

Find Puzz:

The square distance between & and Puz is: 11x - Puz112 = 1/2 - Sulle = flow) (Shortest distance)

$$\rightarrow$$
 Milyimize $d(s)$ to Find Puz: $d(s) = ||x - su||_2^2 = (x - su, x - su)$

The square distance between
$$x$$
 and Pux is: $\|x - 4nx\|_2 = \|n - su\|_2 = f(x)$ (Shortest distance)

This is a distance between x and Pux is: $\|x - 4nx\|_2 = \|x - su\|_2 - \|x - su\|_2 = \|x\|^2 - \|x\|^2$

$$S^{*} = \frac{\langle u_1 x \rangle}{\|u\|^{2}} \qquad Puzc = S^{*}u = \frac{\langle u_1 x \rangle}{\|u\|^{2}} u$$

= projection of a conto line spanned by vector u

Represent Pux:

Puz = (orthogonal projector) x

$$||u||^{2} = |u + (-1)|^{2} = 2 \quad |u||_{0}^{2} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \left[\begin{array}{c} 1 \\ -1 \end{array} \right] = \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

$$||u||^{2} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

ex.
$$n = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
 $\rightarrow \rho_{nn} = \begin{bmatrix} v_1 \cdot v_2 & 0 \\ -v_4 & y_4 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

Properties of P:

Consequences of these properties

1)
$$N(P) = [P(P^T)]^{\perp} = [P(P)]^{\perp} = L^{\perp}$$

$$g = u - Pu = (I - P) 2$$
, $Q = (I - P) \rightarrow matrix$ that pajects unto L

ex. projection of $\begin{bmatrix} \frac{1}{4} \\ \frac{1}{3} \end{bmatrix}$ onto orthogonal complement of $L = span \tilde{Z}u3$ where $u = \begin{bmatrix} -\frac{1}{4} \\ \frac{1}{3} \end{bmatrix}$

$$Q = \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{3}{3} \\ \frac{3}{3} \end{bmatrix}$$

1.2 Orthogonal Arajection Matrix (Summary)

Properties of Q

ex. find closest vector in R(P) to
$$x$$

in case to find y such that $||P_y - x||^2$ is as small as possible

if $||P_y - x||^2 = ||P(y - x) - Qx||^2 = (|P(y - x) - Qx), (|P(y - x) - Qx)$
 $||P_y - x||^2 = ||P(y - x)||^2 = ||P(y - x)||^2 + ||Qx||^2$

ex. a projects or the geneally on
$$R(Q)$$
. $R(P)^{\perp} = N(P)$ it remains to show that $R(Q) = N(P)$ $x \in R(Q) \longrightarrow Qx = x$