Review of Linear Regression

Jerome Reboulleau¹

¹HEC, Lausanne

Quantitative Methods for Management

1/40

Outline

Simple and Multiple Linear Regression Analysis

- Overview
- Correlation concept and formula
- Correlation test
- Simple Linear Regression Model and Assumptions
- Simple Linear Regression: Model fitting idea OLS
- Simple Linear Regression: Fitting analysis and variance structure
- Model analysis: Regression statistical testing
- Example
- Confidence Interval: Slope and Prediction
- Model diagnostics

Overview

Correlation concept and formula

Correlation to

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testing

Example

Confidence Interval: Slope and Prediction

Simple linear regression

Outcome in simple linear analysis

Simple and Multiple Linear Regression Analysis

- Calculate and interpret the correlation between 2 variables.
- Determine whether the correlation is significant.
- Determine whether a regression model is significant.
- Prediction.
- Confidence Intervals for the regression analysis.

Overview

Simple and Multiple Linear Regression Analysis

Correlation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testing

Example
Confidence Interval: Slope and Prediction

Model diagnostics

Preview: Multiple linear regression

Outcome in multiple linear analysis

- Understand the general concepts behind model building.
- Analyze the model output.
- Test hypotheses about the significance of a multiple regression model and independant variables.
- Understand the uses of stepwise regression.

Correlation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction

Correlation concept

• Calculate and interpret the correlation between 2 variables.

Simple and Multiple Linear Regression Analysis

Correlation formula

• Calculate and interpret the correlation between 2 variables.

Simple and Multiple Linear Regression Analysis

• Measure of the strength of the linear relationship is the sample correlation coefficient:

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{(\sum (x - \bar{x})^2)(\sum (y - \bar{y})^2)}}$$
(1)

Example

Confidence Interval: Slope and Prediction

Significance test for the correlation

- After computing the correlation, one would like to establish conclusions.
 Is this correlation significantly different from 0 ?
- To draw conclusions, we develop a statistical test in 3 steps: assumptions, statistic, p-value and significance level:
 - \blacksquare Assumptions in the case of a two-sided test and where ρ represents the population correlation

$$\begin{cases}
H_0: & \rho = 0 \\
H_1: & \rho \neq 0
\end{cases}$$

Test statistic for the correlation

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}\tag{2}$$

② Decision rule If $t > t_{n-2,\alpha/2}$ or If $t < t_{n-2,1-\alpha/2}$, we reject H_0 . We can also conclude through the p-value: we reject if p-value $< \alpha$

Overview

Correlation concept and formula

Correlation test

mple Linear Regression Model and Assumptions

mple Linear Regression: Model fitting idea OLS

imple Linear Regression: Fitting analysis and variance structi lodel analysis: Regression statistical testing

Example

Confidence Interval: Slope and Predict

Example: analyzing correlation

Simple and Multiple Linear Regression Analysis

 Suppose we analyze the sales of employees and the number of years of employment within this company

Sales Y	Years of employement X
487	3
445	5
272	2
641	8
187	2
440	6
346	7
238	1
312	4
269	2
655	9
563	6

Correlation concept and formul

Correlation test

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction

Example: analyzing correlation

• Step 1: develop a scatterplot.

Simple and Multiple Linear Regression Analysis

 The question of the linear relationship between Sales and Year seems to be a good question.

Correlation test

Model analysis: Hegression statistical testii

Example

Confidence Interval: Slope and Prediction

Example: analyzing correlation

Step 2:: compute correlation

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{(\sum (x - \bar{x})^2)(\sum (y - \bar{y})^2)}}$$

$$= \frac{3838.92}{\sqrt{76.92 \cdot 276434.92}}$$

$$= 83\%$$

 Due to the small sample size, one would like to confirm that this correlation is really different from 0.

Example: analyzing correlation

Step 3: Correlation test

Simple and Multiple Linear Regression Analysis

Assumptions:

$$\begin{cases}
H_0: & \rho = 0 \\
H_1: & \rho \neq 0
\end{cases}$$

Test statistic

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

$$= \frac{83\%}{\sqrt{\frac{1-83\%^2}{12-2}}}$$

$$= 4.752$$

Example
Confidence Interval: Slope and Prediction

Example: analyzing correlation

- Decision rule at significance level $\alpha = 5\%$:
- The rejection region is defined by $\pm t_{n-2,\alpha/2} = \pm t_{12-2,2.5\%} = \pm 2.228$
- Our statistic *t* belongs to the rejection region and we reject *H*₀. The correlation is significantly different from 0.
- Another way to see thing is through the p-value. Here p-value=0.00077 (see R result).
- When p-value < α, we reject H₀, leading to the same conclusion as previously.

Simple Linear Regression Model

- The method of simple regression analysis when a single independent variable x is used to predict the dependent variable x
- We represent the relationship between x and y through a straight line described as

$$y = \beta_0 + \beta_1 x + \epsilon$$

where

y = Value of the dependent variable

x = Value of the independent variable

 β_0 = Intercept

 $\beta_1 = Slope$

 ϵ = Random error term

Overview

Correlation concept and formula

correlation te

Simple Linear Regression Model and Assumptions

imple Linear Regression: Model fitting idea OLS

Simple Linear Regression: Fitting analysis and variance structur

Example

Confidence Interval: Slope and Prediction

Simple Linear Regression Assumptions

- **1** The error terms ϵ are statistically independent of one another.
- 2 The distribution of ϵ is normal.
- **3** For all values of x, the ϵ have equal variance

Overview
Correlation concept and formul

rrelation test

Simple Linear Regression Model and Assumptions Simple Linear Regression: Model fitting idea OLS

timple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction
Model diagnostics

Model fitting: method idea

Simple and Multiple Linear Regression Analysis

 If the linear relationship seems to be satisfying, the next question is to determine the "best" model coefficient

where b_0 and b_1 are estimates of the population model coefficients β_0 and β_1 .

Overview

Correlation concept and formu

Simple Linear Regression Model and Assumptions Simple Linear Regression: Model fitting idea OLS

imple Linear Regression: Fitting analysis and variance structure lodel analysis: Regression statistical testing

Example
Confidence Interval: Slope and Predict

Model fitting: method idea

• The main idea is to make as close as possible the data y_i to the model value $\hat{y}_i = b_0 + b_1 \cdot x_i$,

Simple Linear Regression Example

Correlation concept and formul

Simple Linear Regression Model and Assumptions Simple Linear Regression: Model fitting idea OLS

imple Linear Regression: Fitting analysis and variance structure fodel analysis: Regression statistical testing

Example

Confidence Interval: Slane and Prediction

Confidence Interval: Slope and Prediction Model diagnostics

Model fitting: OLS

- The method is called the Ordinary Least Squares Criterion (OLS).
- It aims to determine coefficients that minimizes the overall "prediction error", i.e. ∑_k e_k, also called the **residuals**.

Simple Linear Regression Example

Diverview Correlation concept and formula

Simple Line

Simple Linear Regression Model and Assumptions
Simple Linear Regression: Model fitting idea OLS

Simple Linear Regression: Fitting analysis and variance structure

Example
Confidence Interval: Slope and Prediction

Confidence Interval: Slo Model diagnostics

Model fitting: Sum of Squared Errors, SSE

- However, $\sum_k e_k = \sum_k (y_k \hat{y_k}) = 0$, so that it does not help to find b_0 and b_1 .
- Instead we have to minimize the Sum of Squared Residuals (Errors):

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Model fitting: OLS Model coefficient

Simple and Multiple Linear Regression Analysis

Such minimization gives us the regression's coefficient:

$$b_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y}_i)}{\sum_i (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \cdot \bar{x}$$

Correlation concept and formula

Correlation

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example
Confidence Interval: Slope and P

Confidence Interval: Slope and Prediction Model diagnostics

Model fitting: Total Sum of Squares, SST

 The target of our model is to efficiently represents the data variations, i.e. SST

Simple Linear Regression Example

SST is the total sum of squares. For a sample of size n

TOTAL DATA VARIANCE SST

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Correlation concept and formul

mple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction Model diagnostics

Model fitting: Variance Decomposition

 According to our model, this variance can be divided into 2 parts: one coming from the regression, the second one not.

Simple Linear Regression Example

21/40

Correlation concept and formula

Correlation to

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testin

Confidence Interval: Slope and Pred

Significance Test in Regression Analysis

SST = SSR + SSE

SSE is the sum of squares error.

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SSR is the sum of squares regression.

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Simple Linear Regression Example

Correlation concept and formula

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure Model analysis: Regression statistical testing

Example

Significance Test in Regression Analysis

 Of course, the idea is having SSR as large as possible and SSE as small as possible:

$$SST = SSR + SSE$$

This gives us a first measure of the quality of the regression: the coefficient of determination R^2

$$R^2 = \frac{SSR}{SST}$$

 R^2 will have values between 0 and 1 and we wish R^2 to be as large as possible. In simple linear regression $R^2 = r^2$ where r is the correlation coefficient.

Simple Linear Regression Example

Correlation concept and formula
Correlation test

Simple Linear Regression Model and Assumptions Simple Linear Regression: Model fitting idea OLS

Simple Linear Regression: Fitting analysis and variance structur Model analysis: Regression statistical testing

Example

Confidence Interval: Slope and Predictio Model diagnostics

Test statistic for Significance of the R^2

- After computing the R², one would like to establish a conclusion. Is this
 coefficient significantly different from 0 ?
- To draw conclusions, we develop a statistical test
 - **1** Assumptions in the case of a two-sided test and where ρ represents the population correlation

$$\begin{cases}
H_0: & \rho^2 = 0 \\
H_1: & \rho^2 \neq 0
\end{cases}$$

Test statistic for the R²

$$F = \frac{\frac{SSR}{1}}{\frac{SSE}{2R}} \tag{3}$$

- Decision rule: We compare this statistic to the F-distribution. The F-distribution is defined by 2 parameters (degrees of freedom):
 - The first one is the number of explanatory variable, i.e. here 1.
 - The second one is the number of data n minus 2, (n-2).
 - If $F > F_{1,n-2,\alpha}$, we reject H_0 .
 - Of course, we can also conclude through the p-value.

orrelation concept and formula

mple Linear Regression Model and Assumptions

Simple Linear Regression: Noder hung idea 023
Simple Linear Regression: Fitting analysis and variance structur

Model analysis: Regression statistical testing Example Confidence Interval: Slope and Prediction

Test statistic for Significance of the slope coefficient β_1

- Another intuitive way to analyze the regression is a test related to the slope coefficient
- We will develop the following test
 - Assumptions of a two-sided test related to the slope coefficient

$$\left\{ \begin{array}{ll} H_0: & \beta_1=0 \\ H_1: & \beta_1\neq 0 \end{array} \right.$$

- Of course if H₀ is rejected, it will mean that the slope coefficient is different from 0, so that the variable x will be of interest to explain variations of y.
- Before presenting the test, we need to present some definitions

orrelation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structur

Model analysis: Regression statistical testing Example

Confidence Interval: Slope and Prediction Model diagnostics

Test statistic for Significance of the slope coefficient β_1

- Population standard error of the estimate σ_{ϵ}
- Estimator s_{ϵ} of the standard error σ_{ϵ} (estimate of the deviation of y around the regression line)

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}}$$

Standard error of the slope coefficient

$$\sigma_{b_1} = \frac{\sigma_{\epsilon}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Estimator of the standard error of the slope coefficient

$$s_{b_1} = \frac{s_{\epsilon}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Test statistic for Significance of the slope coefficient β_1

- We now have everything is develop our test
 - Assumptions of a two-sided test related to the slope coefficient

$$\left\{ \begin{array}{ll} H_0: & \beta_1=0 \\ H_1: & \beta_1\neq 0 \end{array} \right.$$

Statistic for test of the significance of the slope

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

- Oecision rule:
 - We compare our statistic with $\pm t_{n-2,\alpha/2}$.
 - We reject if $t > t_{n-2,\alpha/2}$ or $t < t_{n-2,1-\alpha/2}$.
 - We can also draw conclusions through the p-value.

Overview

Correlation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testing

Confidence Interval: Slope and Prediction

Conclusions

In the simple linear case, we have 3 methods to test for the significance of the regression:

- Correlation test: t-test.
- R² test: F-test.
- Slope coefficient test: t-test.

Example

Example...continued

We first apply the F-test. We need to compute SSE, SSR and first we need \hat{y} , so b_0 and b₁

$$\bar{v} = 404.85, \bar{x} = 4.58$$

$$\sum (x_i - \bar{x})(y_i - \bar{y}) = 3838.92$$

$$(x_i - \bar{x})^2 = 76.92$$

$$b_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y}_i)}{\sum_i (x_i - \bar{x})^2}$$

$$= \frac{3838.92}{76.92}$$

$$= 49.91$$

$$b_0 = \bar{y} - b_1 \cdot \bar{x}$$
= 404.85 - 49.91 \cdot 4.58
= 175.83

Correlation concept and formula

imple Linear Regression Model and Assumption

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testin Example

Example

Confidence Interval: Slope and Predictio Model diagnostics

Example...continued

Let's start the F-test

0

$$SSE = \sum_{i=1}^{12} (y_i - \hat{y}_i)^2 = 84834.29$$

2

$$SSR = \sum_{i=1}^{12} (\hat{y_i} - \bar{y})^2 = 191600$$

3

$$F = \frac{\frac{SSR}{1}}{\frac{SSE}{n-2}} = \frac{\frac{191600}{1}}{\frac{84834}{12-2}} = 22.58$$

- **1** $F_{1;n-2;\alpha} = F_{1;10;5\%} = 4.965$
- **5** The F statistic belongs to the rejection region. We reject H_0 .
- **1** The p-value is $0.0008 < \alpha$. We reject H_0 .

Example

Example...continued

Let's start the Slope test

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{84834.92}{12-2}} = 92.10$$

2

$$s_{b_1} = \frac{s_{\epsilon}}{\sqrt{(x_i - \bar{x})^2}} = \frac{92.10}{\sqrt{76.92}} = 10.50$$

3

$$t = \frac{b_1 - \beta_1}{s_{b_1}} = \frac{49.91 - 0}{10.50} = 4.75$$

- $4 \pm t_{n-2:\alpha/2} = \pm t_{10:2.5\%} = \pm 2.228$
- **1** The t statistic belongs to the rejection region. We reject H_0 .
- **1** The p-value is $0.0008 < \alpha$. We reject H_0 .

Correlation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testing

Confidence Interval: Slope and Prediction

Model diagnostics

Confidence Interval

We develop confidence interval in the following cases:

- Slope coefficient
- Prediction interval

Correlation concept and formula

Correlation test

Simple Linear Regression: Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example
Confidence Interval: Slope and Prediction

Confidence Interval: Slope Coefficient

The confidence interval for the slope coefficient is very simple:

Parameter estimate \pm quantile \cdot standard error of the estimate

$$\Leftrightarrow$$
 $b_1 \pm t_{n-2,\alpha/2} \cdot s_{b_1}$

In our example, we get:

$$49.91 \pm t_{12-2,\alpha/2} \cdot 10.50 = 49.91 \pm 2.228 \cdot 10.50 = [25.97; 73.85]$$

Confidence Interval: Slope and Prediction

Prediction Interval: Prediction for average value

We develop the confidence interval for the average value, i.e. E[y] given the value dependent value x_n :

$$\hat{y} \pm t_{n-2,\alpha/2} \cdot s_{\epsilon} \sqrt{rac{1}{n} + rac{(x_{
ho} - ar{x})^2}{\sum (x - ar{x})^2}}$$

For
$$x_p = 3$$
,

$$\hat{y} = 175.83 + 49.91 \cdot 3 = 325.56$$

and we get:

$$325.56 \pm 2.228 \cdot 92.10 \cdot \sqrt{\frac{1}{12} + \frac{(3 - 4.583)^2}{76.92}} = [255.7; 395.4]$$

34/40

Confidence Interval: Slope and Prediction

Prediction Interval: Prediction for a particular y

We develop the confidence interval for a particular value y, given the value dependent value x_n :

$$\hat{y} \pm t_{n-2,\alpha/2} \cdot s_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x_{\rho} - \bar{x})^2}{\sum (x - \bar{x})^2}}$$

For the same $x_p = 3$,

$$325.56 \pm 2.28 \cdot 92.10 \cdot \sqrt{1 + \frac{1}{12} + \frac{(3 - 4.583)^2}{76.92}} = [108.77; 542.35]$$

Confidence Interval: Slope and Prediction

Prediction without interval

Without prediction interval, one would get the following prediction line:

Correlation concept and formul

Correlation

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction

Prediction for the average value E[y]

Including the prediction interval for the average, we get

Correlation concept and formula

orrelation concept and formul

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structur

Model analysis: Regression statistical testing Example

Confidence Interval: Slope and Prediction

Prediction for a particular y

Including finally the prediction for a particular y

Correlation concept and formula

Simple Linear Regression Model and Assumptions

Simple Linear Regression: Model fitting idea OLS

Simple Linear Regression: Fitting analysis and variance structure

Example

Confidence Interval: Slope and Prediction Model diagnostics

Model diagnostics

The model diagnostics will be discussed in the Multiple Linear case (next Chapter) as it is exactly the same analysis

- Normality assumptions
- Equal Variance assumptions

Correlation concept and formula

imple Linear Regression Model and Assumptions

Simple Linear Regression: Fitting analysis and variance structure

Model analysis: Regression statistical testing

Confidence Interval: Slope and Pred

Model diagnostics

Executive Summary

We have reviewed the Simple Linear Regression covering

- Correlation testing
- Model outlook and assumptions
- Model fitting
- Variance structure and Model testing
- Confidence Interval for slope and prediction