实验2组合逻辑电路设计实验报告

姓名: 姜帅 学号: 221220115

一、实验目的

- 1. 掌握组合逻辑电路的设计方法和步骤,实现译码器、编码器等基本组合逻辑电路。
- 2. 掌握全加器的设计方法和原理, 在 1 位全加器基础上实现一个 4 位串行进位加法器。
- 3. 掌握多路选择器的应用。
- 4. 掌握汉明码校验电路的设计方法。

二、实验环境

Logisim: https://github.com/Logisim-Ita/Logisim

三、实验内容

1. 译码器实验

输入引脚 G2A_L, G2B_L, G1 控制译码器工作, 当且仅当 G1=1, G2A_L=G2B_L =0 的时候, 该译码器正常进行工作。

输入引脚 A, B, C 用于表示输入二进制数 ABC 的各个位数的数值。

输出引脚 Y0_L, Y1_1, Y2_L, Y3_L, Y4_L, Y5_L, Y6_L, Y7_L 用于表示该二进制数在十进制下的大小,Yi_L=1 时表示该二进制数下在十进制数下的大小为 i,同一时间只有一个 Yi_L 为 1

实验步骤

1) 基本原理

原理图:

- 2) 需要8个4输入与非门、7个非门、1个与门、7个输入引脚、8个输出引脚
- 3)添加逻辑门,输入输出引脚并连线,最后进行仿真测试,验证是否正确

电路:

真值表:

G1	G2A_L	G2B_L	A	В	С	YO	Y1	Y2	Y 3	Y4	Y5	Y6	Y7
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
0	X	X	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

仿真测试:

2. 编码器实验

将十进制数转换为二进制表示,并用数字表示出来 实验步骤

1) 基本原理

原理图:

图 11.36 8-3 优先级编码器原理图

- 2) 根据原理图需要8个与门,3个或门,8个输入引脚。3个输出引脚,分线器等
 - 3)添加逻辑门,输入输出引脚并连线,最后进行仿真测试,验证是否正确 **电路**:

真值表

I0	I1	I2	I3	I4	I5	I6	I7	00	01	O2	Hex显示
1	X	X	X	X	X	X	X	0	0	0	0
0	1	X	X	X	X	X	X	0	0	1	1
0	0	1	X	X	X	X	x	0	1	0	2
0	0	0	1	X	X	X	x	0	1	1	3
0	0	0	0	1	X	X	X	1	0	0	4

0	0	0	0	0	1	X	X	1	0	1	5
0	0	0	0	0	0	1	X	1	1	0	6
0	0	0	0	0	0	0	1	1	1	1	7

仿真测试:

3. 4位串行加法器实验

设计一个全加器 (FA),在此基础上将 4 个全加器串联成一个 4 位串行进位加法器。 实验步骤

1) 基本原理

F=A^B^Cin (F 为本位)

Cout=A B + B Cin + A Cin (cin 为低位进位, cout 为向高位进位)

2) 按照公式取所需

3)添加逻辑门,输入输出引脚并连线,最后进行仿真测试,验证是否正确完成 FA 设计:

电路图:

真值表:

A	В	Cin	F	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4位串行加法器

FA 为子电路,设计封装电路后组装,最初进位为 0,最终电路为

仿真测试:

4. 4 ALU

设计一个多路选择器,完成以下表格功能,并最终拓展到 4 位 表 11.7 一位 ALU 功能表

S3	S2	S1	功能
0	0	0	А加В
0	0	1	A减 B
0	1	0	A·B
0	1	1	A+B
1	0	0	A 异或非 B

1	0	1	A非
1	1	0	A
1	1	1	B非

一位 ALU 电路图:

最终 4 位 ALU 多路选择器电路图

5、汉明码校验电路

1) 基本原理

图 11.42 数据校验过程示意图

$$\begin{split} P_1{}' &= M_1 \oplus M_2 \oplus M_4 \qquad S_1 = M_1 \oplus M_2 \oplus M_4 \oplus P_1 \\ P_2{}' &= M_1 \oplus M_3 \oplus M_4 \qquad S_2 = M_1 \oplus M_3 \oplus M_4 \oplus P_2 \\ P_3{}' &= M_2 \oplus M_3 \oplus M_4 \qquad S_3 = M_2 \oplus M_3 \oplus M_4 \oplus P_3 \end{split}$$

2)添加逻辑门,输入输出引脚并连线,最后进行仿真测试,验证是否正确电路图:

其中封装的4位偶校验器

封装的 3-8 译码器为

在 DU[1:7]处分别输入 1000001 和 1001110 等 7 位二进制位串进行验证,如图验证结果正确

四、实验中的错误

实验中没有遇到明显的错误

五、思考题

- 1. 组合逻辑电路的一般设计步骤是什么?
- (1)列真值表
- (2) 写逻辑表达式
- (3)根据逻辑表达式设计草图
- (4) 选择实验器材连接并标记
- (5) 仿真测试, 检验, 与初始真值表相比较

2. 测试电路功能有哪几种方式?

- (1) 仿真测试
- (2) 插入探针, 按步检验
- (3) 自动生成电路并比较
- 3. 如何利用 Logisim 提供的 LED 矩阵显示"NJUCS"五个字符。 电路图:

仿真测试:

4. 简要说明 4 位二进制补码加法器溢出检测电路的设计思路。

带标志加法器中符号位的进位与最后一位数字位的进位异或为 1 则溢出,否则不溢出

即 OF=Cn-1 ⊕ Cn 若 OF=1 则溢出,否则不溢出

5. 如何修改图 11.41 中的电路以产生进位标志 CF、溢出标志 OF、符号标志 SF 和零标志 ZF?

符号标志 SF=F(n-1) (无符号没有意义)

溢出标志 0F=C_{n-1}⊕C_n (无符号没有意义) 进位标志 CF=Cout⊕Cin (带符号没有意义) 零标志 ZF=! (F0*F1*...*Fn-1) 其中 Cn-1=An⊕Bn⊕Fn 电路图:

