Data Analysis

```
In [1]:
```

```
1  # identification and handling missing values
2  # Data standardization
3  # Data normalization
4  # binning
```

model development & evaluation

importing liabraries

```
In [2]:
```

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib as plt
import matplotlib.pyplot as plt
```

In [3]:

```
# Read the online file by the URL provides above, and assign it to variable "df"

other_path = "https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DA0101EN/auto.csv"

df = pd.read_csv(other_path, header=None)
```

In [4]:

headers

```
['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engin e-location', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price']
```

In [5]:

```
1 df.columns = headers
```

In [6]:

```
1 df.columns
```

Out[6]:

In [7]:

In [10]:

1 df.head(5)

```
1 df
Out[7]:
                                                            num-
                                                                                drive-
                  normalized-
                                         fuel-
                                                                       bodv-
                                                                                        engine-
                                                                                                 wheel-
                                                                                                             engine-
                                                                                                                         fuel-
                                                                                                                                              compression-
      symboling
                                 make
                                               aspiration
                                                                                                                               bore
                                                                                                                                      stroke
                                                                              wheels
                                                                                                                                                       ratio
                                  alfa.
   0
                                                      std
                                                             two
                                                                  convertible
                                                                                           front
                                                                                                    88.6
                                                                                                                 130
                                                                                                                          mpfi
                                                                                                                                3.47
                                                                                                                                        2.68
                                                                                                                                                         9.0
                                                                                  rwd
                                          gas
                               romero
               3
                                                                  convertible
                                                                                                    88.6
                                                                                                                 130
                                                                                                                         mpfi
                                                                                                                                3.47
                                                                                                                                        2.68
                                                                                                                                                        9.0
                                          gas
                                                      std
                                                             two
                                                                                  rwd
                                                                                           front
                               romero
   2
                                                                                                    94.5 ...
                                                                                                                                                        9.0
                                          gas
                                                      std
                                                             two
                                                                   hatchback
                                                                                  rwd
                                                                                           front
                                                                                                                 152
                                                                                                                          mpfi
                                                                                                                               2.68
                                                                                                                                        3.47
               2
                                                                                                    99.8
   3
                          164
                                                                                                                                        3.40
                                                                                                                                                        10.0
                                  audi
                                                      std
                                                             four
                                                                                           front
                                                                                                                 109
                                                                                                                          mpfi
                                                                                                                                3.19
                                          gas
                                                                       sedan
                                                                                  fwd
                          164
                                                      std
                                                                                                    99.4
                                                                                                                          mpfi
                                                                                                                                        3.40
                                                                                                                                                         8.0
                           95
                                                                                                  109.1
                                                                                                                 141
                                                                                                                                                        9.5
 200
                                 volvo
                                                      std
                                                             four
                                                                       sedan
                                                                                  rwd
                                                                                           front
                                                                                                                         mpfi
                                                                                                                                3.78
                                                                                                                                        3.15
                                          gas
 201
                           95
                                                                                                   109.1
                                                                                                                                3.78
                                                                                                                                        3.15
                                                                                                                                                         8.7
              -1
                           95
                                                                                                   109.1
                                                                                                                 173
                                                                                                                                3.58
                                                                                                                                        2.87
                                                                                                                                                        8.8
 202
                                 volvo
                                                      std
                                                             four
                                                                                  rwd
                                                                                           front
                                                                                                                          mpfi
 203
                           95
                                                                                                   109.1
                                                                                                                           idi
                                                                                                                                3.01
                                                                                                                                                        23.0
                                 volvo
 204
                           95
                                                                                                   109 1
                                                                                                                          mpfi
                                                                                                                                3.78
                                                                                                                                        3.15
                                                                                                                                                         9.5
205 rows × 26 columns
In [8]:
 1 df.shape
Out[8]:
(205, 26)
In [9]:
 1 df.replace("?", 'NaN', inplace= True)
```

identify and handling missing values

```
Out[10]:
                                                         num-
of-
                                      fuel-
                                                                     body-
                                                                              drive-
                normalized-
                                                                                      engine-
                                                                                                wheel-
                                                                                                            engine-
                                                                                                                        fuel-
                                                                                                                                             compression-
    symboling
                               make
                                             aspiration
                                                                                                                              bore stroke
                                                                                                                                                             horsep
                                                                             wheels
                                                                                     location
                                                                                                 base
                                                                                                               size system
                                                                                                                                                      ratio
                                alfa.
 0
                                                                                                  88.6
                                                                                                                130
                                                                                                                               3.47
                                                                                                                                       2.68
                                                                                                                                                        9.0
                                       gas
                              romero
                                 alfa-
                                                                                                                                                        9.0
                        NaN
                                                    std
                                                                convertible
                                                                                rwd
                                                                                         front
                                                                                                  88.6
                                                                                                                130
                                                                                                                        mpfi
                                                                                                                                       2.68
                                       gas
                                                           two
                              romero
                        NaN
                                                    std
                                                                                                  94.5
                                                                                                                152
                                                                                                                        mpfi
                                                                                                                               2.68
                                       gas
                                                                                rwd
                                                                                         front
                              romero
             2
                                                                                                                109
                                                                                                                                                       10.0
                                                    std
                                                                                                                        mpfi
                                       gas
                        164
                                audi
                                                    std
                                                                                                                136
                                                                                                                                       3.40
                                                                                                                                                        8.0
5 rows × 26 columns
```

evaluating for any missing data

```
In [11]:

1    df_new= df.isnull()
2    df_new.head(5)

Out[11]:
```

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base		engine- size	fuel- system	bore	stroke	compression- ratio	horsepower
0	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False
5 rows × 26 columns																	
4																	•

count missing values in each column

```
In [12]:
 1 df_new.isnull().sum()
Out[12]:
symboling
normalized-losses
make
fuel-type
                     0
aspiration
num-of-doors
body-style
drive-wheels
engine-location
wheel-base
length
height
curb-weight
engine-type
num-of-cylinders
engine-size
fuel-system
bore
stroke
compression-ratio
horsepower
peak-rpm
city-mpg
highway-mpg
                     0
price
dtype: int64
In [13]:
    columns = ["normalized-losses", "bore" , "horsepower" ,"peak-rpm"]
 3 for column in columns:
        avg = df[column].astype('float').mean(axis = 0)
 4
        df[column].replace('NaN' , avg, inplace= True)
 5
```

replace NaN in various columns

```
In [14]:

1 df["num-of-doors"].value_counts()

Out[14]:

four 114
two 89
NaN 2
Name: num-of-doors, dtype: int64
```

```
In [15]:
 1 #replace missing by most frequent values:-
 3 df["num-of-doors"].replace('NaN', "four", inplace= True)
In [16]:
 1 df["num-of-doors"].value_counts()
Out[16]:
four
        116
two
Name: num-of-doors, dtype: int64
In [17]:
 1 #certain columns drop entire rows
 2
    df.dropna(subset=["price"],axis=0, inplace= True)
 1 df.reset_index(drop = True, inplace= True)
In [19]:
 1 df.head()
Out[19]:
                                                  num-
   symboling normalized-
losses
                                 fuel-
type
                                                            body-
style
                                                                  drive-
wheels
                                                                          engine-
location
                                                                                   wheel-
base
                                                                                             engine- fuel-
size system
                                                                                                             bore stroke compression-
                                      aspiration
                                                 doors
                            alfa-
           3
0
                    122.0
                                                                                     88.6
                                                                                                 130
                                                                                                              3.47
                                                                                                                     2.68
                                                                                                                                    9.0
                                  gas
                                             std
                                                   two convertible
                                                                     rwd
                                                                             front
                                                                                                         mpfi
                            alfa-
           3
                    122.0
                                  gas
                                             std
                                                   two convertible
                                                                     rwd
                                                                             front
                                                                                     88.6 ...
                                                                                                 130
                                                                                                         mpfi
                                                                                                             3.47
                                                                                                                     2.68
                                                                                                                                    9.0
                         romero
                            alfa-
                    122.0
                                             std
                                                        hatchback
                                                                      rwd
                                                                             front
                                                                                     94.5 ...
                                                                                                 152
                                                                                                         mpfi
                                                                                                             2.68
                                                                                                                     3.47
                                                                                                                                    9.0
           2
                     164
                            audi
                                  gas
                                             std
                                                   four
                                                            sedan
                                                                      fwd
                                                                             front
                                                                                     99.8 ..
                                                                                                 109
                                                                                                         mpfi
                                                                                                              3.19
                                                                                                                     3.40
                                                                                                                                   10.0
           2
                     164
                                                                                     99.4 ...
                                                                                                 136
                                                                                                             3.19
                                                                                                                     3.40
                                                                                                                                    8.0
                            audi
                                             std
                                                   four
                                                                     4wd
                                                                                                         mpfi
                                  gas
                                                            sedan
                                                                             front
5 rows × 26 columns
In [20]:
 1 df.dtypes
Out[20]:
symboling
                          int64
normalized-losses
                         object
make
                         object
fuel-type
                         object
aspiration
                         object
num-of-doors
                         object
body-style
                         object
drive-wheels
                         object
engine-location
                         object
wheel-base
                        float64
length
                        float64
                        float64
width
                        float64
height
curb-weight
                          int64
engine-type
                         object
num-of-cylinders
                         object
engine-size
                         int64
                         object
fuel-system
bore
                         obiect
stroke
                         object
compression-ratio
                        float64
horsepower
                         object
peak-rpm
                         object
                          int64
city-mpg
                         int64
highway-mpg
price
                         object
```

Bring the columns into correct datatypes

dtype: object

```
In [21]:
 1 #as we see, numerical variables should have tpe 'Float' or 'int' & categoricals are in 'object'
In [22]:
 1 df[["bore", "stroke"]] = df[["bore", "stroke"]].astype("float")
 2 df[["normalized-losses"]] = df[["normalized-losses"]].astype("int")
3 df[["price"]] = df[["price"]].astype("float")
 4 df[["peak-rpm"]] = df[["peak-rpm"]].astype("float")
```

Data Standardization

convert milesper galoons (mpg) into litres per 100km

```
In [23]:
 1 #formula for unit conversion is litre/100km = 235/mpg
In [24]:
 1 #transform mpg to L/100km
 2 df['city-L/100km'] = 235/df['city-mpg']
 3 df['highway-L/100km']= 235/df['highway-mpg']
4 df[['city-L/100km', 'city-mpg', 'highway-L/100km', 'highway-mpg']].head()
Out[24]:
   city-L/100km city-mpg highway-L/100km highway-mpg
0
      11.190476
                                  8.703704
                                                     27
      11 190476
                                  8 703704
                      21
                                                     27
      12.368421
                      19
                                  9.038462
                                                     26
       9.791667
                      24
                                  7.833333
                                                     30
      13.055556
                      18
                                 10.681818
                                                     22
```

Data Normalization

```
In [25]:
  1 #replace original values by (original values/max value)
  3 df["length"] = df["length"]/df["length"].max()
 df["width"] = df["width"]/df["width"].max()
df["height"] = df["height"]/df["height"].max()
df[["length","width","height"]].head()
```

Out[25]:

```
length
                       height
0 0.811148 0.886584 0.816054
1 0.811148 0.886584 0.816054
2 0.822681 0.905947 0.876254
3 0.848630 0.915629 0.908027
4 0.848630 0.918396 0.908027
```

width

Binning

convert data to correct format

```
In [26]:
 1 df["horsepower"]= df["horsepower"].astype(float, copy=True)
 band_width = (max(df["horsepower"])-min(df["horsepower"]))/4
 2 band_width
Out[27]:
60.0
```

	horsepower	horsepower_binned
0	111.0	Medium
1	111.0	Medium
2	154.0	Medium
3	102.0	Low
4	115.0	Medium
5	110.0	Medium
6	110.0	Medium
7	110.0	Medium
8	140.0	Medium
9	160.0	Medium
10	101.0	Low
11	101.0	Low
12	121.0	Medium
13	121.0	Medium
14	121.0	Medium
15	182.0	High
16	182.0	High
17	182.0	High
18	48.0	Low
19	70.0	Low

bins visualization

```
In [33]:

1  plt.title("horsepower")
2  plt.hist(df[["horsepower"]], bins=[48., 108., 168., 228.])

Out[33]:
```

```
(array([125., 66., 12.]),
array([ 48., 108., 168., 228.]),
<BarContainer object of 3 artists>)
```


one hot encoding

In [34]:

203

204

diesel

gas

Name: fuel-type, Length: 205, dtype: object

```
1 # as "fuel type" column has two values 'GAS' & 'disel' convert it into indicator variable

In [35]:
```

```
1 df["fuel-type"]
Out[35]:
0
          gas
1
          gas
2
          gas
3
          gas
4
         gas
200
          gas
201
         gas
202
          gas
```

```
In [36]:
```

```
dummy_variable_1= pd.get_dummies(df["fuel-type"])
dummy_variable_1
```

Out[36]:

	diesel	gas	
0	0	1	
1	0	1	
2	0	1	
3	0	1	
4	0	1	
200	0	1	
201	0	1	
202	0	1	
203	1	0	
204	0	1	

205 rows × 2 columns

In [37]:

```
dummy_variable_1= pd.get_dummies(df["fuel-type"])
dummy_variable_1.rename(columns = {'gas':'fuel-type-gas', 'diesel':'fuel-type-diesel'}, inplace=True)
dummy_variable_1.head()
```

Out[37]:

	fuel-type-diesel	fuel-type-gas
0	0	1
1	0	1
2	0	1
3	0	1
4	0	1

In [38]:

```
# we now have values 0 to represent 'GAS' & 1 to represent 'DIESEL'in column name"fuel-type". we will now insert this ew columns to o
```

In [39]:

```
#merge dataframe
df = pd.concat([df, dummy_variable_1], axis=1)

#drop original column 'fuel-type' from df
df.drop('fuel-type', axis=1, inplace=True)
```

In [40]:

```
1 df.head()
```

Out[40]:

	symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length		horsepower	peak- rpm	city- mpg	highway- mpg	price	L
0	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148		111.0	5000.0	21	27	13495.0	11.
1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148		111.0	5000.0	21	27	16500.0	11.
2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681		154.0	5000.0	19	26	16500.0	12.
3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630		102.0	5500.0	24	30	13950.0	9.
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630		115.0	5500.0	18	22	17450.0	13.
5 r	5 rows × 30 columns																

```
In [41]:
1  #repeat same to create dummy variables for "aspiration" features

In [42]:
1  dummy_variable_2= pd.get_dummies(df['aspiration'])
2  dummy_variable_2.rename(columns={'std':'aspiration-std', 'turbo':'aspiration-turbo'}, inplace=True)
3  df= pd.concat([df,dummy_variable_2],axis=1)
4  df.drop('aspiration',axis = 1 , inplace=True)

In [43]:
1  df.to_csv('clean_df.csv')
In []:
```

findind correlation between variables

```
In [44]:

1 df.corr()
```

Out[44]:

```
normalized-
                                           wheel-
                                                                                        curb
                                                                                                engine
                                                                                                                                                        high
                symboling
                                                      length
                                                                            height
                                                                                                                       stroke
                                                                                                                                  peak-rpm
                                                                                                                                             city-mpg
                                                                                                              bore
                                losses
                                            base
                                                                                      weight
                                                                                                   size
    symboling
                 1.000000
                              0.465190
                                        -0.531954
                                                   -0.357612
                                                              -0.232919
                                                                         -0.541038
                                                                                    -0.227691
                                                                                              -0.105790
                                                                                                         -0.130083
                                                                                                                    -0.008965
                                                                                                                                   0.273679
                                                                                                                                             -0.035823
                                                                                                                                                        0.03
   normalized-
                 0.465190
                              1.000000
                                        -0.056518
                                                    0.019209
                                                               0.084195
                                                                         -0.370706
                                                                                    0.097785
                                                                                               0.110997
                                                                                                         -0.029266
                                                                                                                     0.055363
                                                                                                                                   0.237748
                                                                                                                                             -0.218749
                                                                                                                                                        -0.17
       losses
   wheel-base
                 -0.531954
                              -0.056518
                                         1.000000
                                                    0.874587
                                                              0.795144
                                                                         0.589435
                                                                                    0.776386
                                                                                               0.569329
                                                                                                          0.488760
                                                                                                                    0.161477
                                                                                                                                  -0.360704
                                                                                                                                             -0.470414 -0.54
                -0.357612
                                                                                    0.877728
                                                                                               0.683360
                                                                                                          0.606462
                                                                                                                                  -0.287031
       lenath
                              0.019209
                                         0.874587
                                                    1.000000
                                                               0.841118
                                                                         0.491029
                                                                                                                    0.129739
                                                                                                                                             -0.670909
                                                                                                                                                        -0.70
        width
                 -0.232919
                              0.084195
                                         0.795144
                                                    0.841118
                                                               1.000000
                                                                          0.279210
                                                                                    0.867032
                                                                                               0.735433
                                                                                                          0.559152
                                                                                                                     0.182956
                                                                                                                                  -0.219859
                                                                                                                                             -0.642704
                                                                                                                                                        -0.67
                                                              0.279210
                                                                         1.000000
        height
                 -0.541038
                              -0.370706
                                         0.589435
                                                    0.491029
                                                                                    0.295572
                                                                                               0.067149
                                                                                                          0.171101
                                                                                                                    -0.056999
                                                                                                                                  -0.320602
                                                                                                                                             -0.048640
                                                                                                                                                        -0.10
                -0.227691
                              0.097785
                                                   0.877728
                                                               0.867032
                                                                         0.295572
                                                                                               0.850594
                                                                                                          0.648485
                                                                                                                                  -0.266283
  curb-weight
                                         0.776386
                                                                                    1.000000
                                                                                                                    0.168929
                                                                                                                                             -0.757414
                                                                                                                                                       -0.79
   engine-size
                -0.105790
                              0.110997
                                         0.569329
                                                    0.683360
                                                               0.735433
                                                                          0.067149
                                                                                    0.850594
                                                                                               1.000000
                                                                                                          0.583798
                                                                                                                     0.206675
                                                                                                                                  -0.244599
                                                                                                                                             -0.653658
         bore
                 -0.130083
                              -0.029266
                                         0.488760
                                                   0.606462
                                                               0.559152
                                                                          0.171101
                                                                                    0.648485
                                                                                               0.583798
                                                                                                          1.000000
                                                                                                                    -0.055909
                                                                                                                                  -0.254761
                                                                                                                                             -0.584508
                                                                                                                                                       -0.58
                 -0.008965
                              0.055363
                                         0.161477
                                                   0.129739
                                                               0.182956
                                                                         -0.056999
                                                                                    0.168929
                                                                                               0.206675
                                                                                                         -0.055909
                                                                                                                    1.000000
                                                                                                                              ... -0.069212
                                                                                                                                            -0.042906
       stroke
                                                                                                                                                       -0.04
 compression-
                 -0.178515
                              -0.114525
                                         0.249786
                                                   0.158414
                                                               0.181129
                                                                         0.261214
                                                                                    0.151362
                                                                                               0.028971
                                                                                                          0.005201
                                                                                                                    0.186170 ... -0.435936
                                                                                                                                             0.324701
                                                                                                                                                        0.26
         ratio
                                         0.351957
                                                    0.554434
                                                               0.642195
                                                                         -0.110137
                                                                                    0.750968
                                                                                               0.810713
                                                                                                          0.575737
                 0.071389
                              0.203434
                                                                                                                    0.088400
                                                                                                                                  0.130971
                                                                                                                                             -0.803162 -0.77
  horsepower
     peak-rpm
                 0.273679
                              0.237748
                                        -0.360704
                                                   -0.287031
                                                              -0.219859
                                                                         -0.320602
                                                                                    -0.266283
                                                                                               -0.244599
                                                                                                         -0.254761
                                                                                                                    -0.069212
                                                                                                                                   1.000000
                                                                                                                                             -0.113723
                                                                                                                                                        -0.05
                 -0.035823
                             -0.218749
                                        -0.470414
                                                   -0.670909
                                                              -0.642704
                                                                         -0.048640
                                                                                    -0.757414
                                                                                              -0.653658
                                                                                                         -0.584508
                                                                                                                    -0.042906 ...
                                                                                                                                  -0.113723
                                                                                                                                              1.000000
                                                                                                                                                        0.97
     city-mpa
                 0.034606
                              -0.178221
                                        -0.544082
                                                   -0.704662
                                                              -0.677218
                                                                         -0.107358
                                                                                    -0.797465
                                                                                               -0.677470
                                                                                                         -0.586992
                                                                                                                    -0.044528
                                                                                                                                  -0.054257
                                                                                                                                              0.971337
                                                                                                                                                        1.00
 highway-mpg
         price
                 -0.082391
                              0.133999
                                         0.584642
                                                   0.690628
                                                               0.751265
                                                                         0.135486
                                                                                    0.834415
                                                                                               0.872335
                                                                                                          0.543155
                                                                                                                    0.082310 ...
                                                                                                                                  -0.101616
                                                                                                                                             -0.686571
                                                                                                                                                        -0.70
                 0.063165
                                                                         -0.002333
 citv-L/100km
                              0.232682
                                         0.474040
                                                   0.659165
                                                               0.682850
                                                                                    0.791911
                                                                                               0.744952
                                                                                                          0.555960
                                                                                                                    0.043677
                                                                                                                                  0.120653
                                                                                                                                             -0.950493
                                                                                                                                                       -0.92
                 -0.030190
                              0.178527
                                         0.578128
                                                    0.711597
                                                               0.728044
                                                                         0.085892
                                                                                    0.836742
                                                                                               0.777077
                                                                                                          0.551943
                                                                                                                    0.056222
                                                                                                                                   0.016127
                                                                                                                                             -0.908439
                                                                                                                                                        -0.95
      L/100km
     fuel-type-
                                                                                                                    0.242081
                 -0.194311
                              -0.101437
                                        0.308346
                                                   0.212679
                                                               0.233880
                                                                         0.284631
                                                                                    0.217275
                                                                                               0.069594
                                                                                                          0.054457
                                                                                                                                  -0.477060
                                                                                                                                             0.255963
                                                                                                                                                        0.19
                                                              -0.233880
 fuel-type-gas
                 0.194311
                              0.101437
                                       -0.308346 -0.212679
                                                                         -0.284631
                                                                                   -0.217275
                                                                                              -0.069594
                                                                                                        -0.054457
                                                                                                                   -0.242081
                                                                                                                                  0.477060
                                                                                                                                             -0.255963 -0.19
   aspiration-
                 0.059866
                              0.006823
                                        -0.257611
                                                   -0.234539
                                                              -0.300567
                                                                         -0.087311
                                                                                    -0.324902
                                                                                              -0.108217
                                                                                                         -0.212623
                                                                                                                   -0.223460
           std
   aspiration-
                -0.059866
                                                                         -0.006823 0.257611
                                                   0.234539
                                                             0.300567
        turbo
22 rows × 22 columns
```

```
4
```

```
In [45]:

1 df[['price','bore', 'stroke', 'compression-ratio','horsepower']].corr()["price"]
```

```
Out[45]:
```

```
price 1.000000
bore 0.543155
stroke 0.082310
compression-ratio 0.071107
horsepower 0.809575
Name: price, dtype: float64
```

In [47]:

```
import seaborn as sns
plt.figure(figsize=(12,4))
sns.boxplot(x= "body-style", y = "price", data=df )
```

Out[47]:

<AxesSubplot:xlabel='body-style', ylabel='price'>

In [48]:

find scatterplot of "engine-size" & "price"

In [49]:

```
plt.scatter(x="engine-size", y="price", data=df)
plt.show()
```



```
In [50]:
```

```
1 sns.scatterplot(x= "engine-size", y= "price", data=df, s=100)
```

Out[50]:

<AxesSubplot:xlabel='engine-size', ylabel='price'>

In [51]:

```
colors= ["r","g","y","b","o"]
sns.scatterplot(x= "engine-size", y= "price", data=df, s=100, hue="body-style", cmap="rainbow")
```

Out[51]:

<AxesSubplot:xlabel='engine-size', ylabel='price'>

find which variable is suitable for predictor of price

In [52]:

```
1 #regplots - regression plot
```

```
In [53]:
```

```
sns.regplot(x= "wheel-base", y="price", data=df)
plt.show()
```

```
40000 - 30000 - 20000 - 10000 - 1000 - 105 - 110 - 115 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120
```

In [54]:

```
#engine-size
sns.regplot(x= "engine-size", y="price", data=df)
plt.show()
```


In [55]:

1 df.describe()

Out[55]:

	symboling	normalized- losses	wheel- base	length	width	height	curb-weight	engine- size	bore	stroke	 peak-rpm	city-
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	201.000000	 205.000000	205.00
mean	0.834146	122.000000	98.756585	0.836373	0.911588	0.898409	2555.565854	126.907317	3.329751	3.255423	 5125.369458	25.21
std	1.245307	31.681008	6.021776	0.059285	0.029671	0.040862	520.680204	41.642693	0.270844	0.316717	 476.979093	6.54
min	-2.000000	65.000000	86.600000	0.678039	0.834025	0.799331	1488.000000	61.000000	2.540000	2.070000	 4150.000000	13.00
25%	0.000000	101.000000	94.500000	0.799135	0.886584	0.869565	2145.000000	97.000000	3.150000	3.110000	 4800.000000	19.00
50%	1.000000	122.000000	97.000000	0.832292	0.905947	0.904682	2414.000000	120.000000	3.310000	3.290000	 5200.000000	24.00
75%	2.000000	137.000000	102.400000	0.879865	0.925311	0.928094	2935.000000	141.000000	3.580000	3.410000	 5500.000000	30.00
max	3.000000	256.000000	120.900000	1.000000	1.000000	1.000000	4066.000000	326.000000	3.940000	4.170000	 6600.000000	49.00

8 rows × 22 columns

```
In [56]:
```

```
1 df.describe(include=["object"])
```

Out[56]:

	make	num-of-doors	body-style	drive-wheels	engine-location	engine-type	num-of-cylinders	fuel-system
cou	t 205	205	205	205	205	205	205	205
uniqu	e 22	2	5	3	2	7	7	8
to	p toyota	four	sedan	fwd	front	ohc	four	mpfi
fre	q 32	116	96	120	202	148	159	94

In [57]:

1 #value_countis a goodway of understanding how mwny units of each characterstic/variables we have.

In [58]:

```
1 df["drive-wheels"].value_counts().to_frame()
```

Out[58]:

	drive-wheels
fwd	120
rwd	76
4wd	9

In [59]:

```
drive_wheels_counts = df['drive-wheels'].value_counts().to_frame()
drive_wheels_counts.rename(columns={'drive-wheels':'value_counts'}, inplace=True)
drive_wheels_counts.index.name='drive-wheels'
drive_wheels_counts
```

Out[59]:

value_counts

drive-wneels						
120	fwd					
76	rwd					
q	4wd					

In [60]:

```
engine_loc_counts= df['engine-location'].value_counts().to_frame()
engine_loc_counts.rename(columns={'engine-location':'value_counts'}, inplace=True)
engine_loc_counts.index.name='engine-location'
engine_loc_counts
```

Out[60]:

value_counts

engine-location	
front	202
rear	3

Draw heatmap between correlated features

In [61]:

```
1 #correlation= df.corr() #allready is there
```

In [62]:

```
f,ax = plt.subplots(figsize = (14,12))
plt.title('correlation with price' , y=1, size=16)
sns.heatmap(df.corr() , square=True , vmax=0)
```

Out[62]:

<AxesSubplot:title={'center':'correlation with price'}>


```
In [63]:
  1 k = 22
     cols = df.corr().nlargest(k, 'price')['price'].index
     print(cols)
  3
  4 cm= np.corrcoef(df[cols].values.T)
  5 f, ax = plt.subplots(figsize=(14,12))
  6 sns.heatmap(cm,vmax=8, linewidth=0.01,square=True,annot= True,cmap='viridis', linecolor='black', xticklabels= cols.values)
dtype='object')
Out[63]:
<AxesSubplot:>
                                                          0.58 0.11 0.067 0.11 0.07
                  0.85
                       0.81
                             0.78
                                  0.74 0.74
                                               0.68 0.57
                                                                                             0.029-0.11 -0.24 -0.07 -0.11 -0.65 -0.68
            0.85
                        0.75
                             0.84
                                   0.79
                                         0.87
                                               0.88
                                                    0.78
                                                          0.65
                                                                0.32
                                                                      0.3 0.098 0.22
                                                                                              0.15 -0.23 -0.27 -0.22 -0.32 -0.76 -0.8
                                                                                              -0.21 0.071 0.13 0.17 -0.24 -0.8 -0.77
                              0.8
                                         0.64
                                                           0.58
                                                                      -0.11 0.2
            0.78
                  0.84
                        0.8
                                   0.96
                                         0.73
                                               0.71
                                                    0.58
                                                          0.55
                                                                0.23 0.086 0.18 -0.15
                                                                                              -0.22 -0.03 0.016 0.15 -0.23 -0.91 -0.95
                                                                                                                                                     - 6
            0.74
                  0.79
                        0.87
                              0.96
                                         0.68
                                               0.66
                                                     0.47
                                                                0.17-0.00230.23 -0.2
                                                                                                                     -0.17 -0.95 -0.93
  S
  G
            0.74
                  0.87
                        0.64
                             0.73
                                   0.68
                                               0.84
                                                     0.8
                                                           0.56
                                                                 0.3
                                                                      0.28 0.084 0.23
                                                                                              0.18
                                                                                                   -0.23 -0.22 -0.23 -0.3 -0.64 -0.68
                                                                                                                                                     - 5
            0.68
                  0.88
                       0.55
                                   0.66
                                         0.84
                                                    0.87
                                                          0.61
                                                                0.23
                                                                      0.49 0.019 0.21
                                                                                              0.16
                                                                                                   -0.36 -0.29 -0.21 -0.23 <mark>-0.67 -0.7</mark>
                                                                      0.59 -0.057 0.31
                                                                                                   -0.53 -0.36 -0.31 -0.26 -0.47 -0.54
            0.57
                       0.35
                             0.58
                                   0.47
                                          0.8
                                               0.87
                                                          0.49
                                                                0.26
  ω
            0.58
                  0.65
                       0.58
                             0.55
                                   0.56
                                         0.56
                                               0.61
                                                    0.49
                                                                      0.17-0.0290.054
                                                                                             0.0052-0.13 -0.25-0.054-0.21 -0.58 -0.59
                                                                      0.0870.0068 0.4
                                                                                                   -0.06
                                                                                                         -0.18
                                                                                                                                 -0.25
  10
           0.067
                  0.3
                        -0.110.0860.00230.28
                                               0.49 0.59
                                                          0.17 0.087
                                                                            -0.37 0.28
                                                                                              0.26
                                                                                                   -0.54 -0.32 -0.28-0.0870.049-0.11
  1
                                                                                                                                                     - 3
                             0.18 0.23 0.0840.0190.0570.0290.00680.37
                                                                                  -0.1
                                                                                                   0.47 0.24
                                                                                                               0.1 0.00680.22 -0.18
  12
                 0.22 -0.17 -0.15 -0.24 0.23 0.21 0.31 0.054 0.4 0.28
            0.07
                                                                            -0.1
                                                                                              0.98 -0.19 -0.48
                                                                                                                     -0.4 0.26 0.19
  13
  14
                                                                                                                                                     - 2
           0.029 0.15 -0.21 -0.22 -0.3 0.18 0.16 0.250.0052 0.3
                                                                      0.26 -0.11 0.98
                                                                                                   -0.18 -0.44 -0.98
                                                                                                                     -0.3
                                                                                                                           0.32 0.27
  15
  16
            -0.11 -0.23 0.071 -0.03 0.063 -0.23 -0.36 -0.53 -0.13 -0.06 -0.54 0.47
                                                                                              -0.18
                                                                                                         0.27
                                                                                                               0.19 0.06 0.0360.035
            -0.24 -0.27 0.13 0.016 0.12 -0.22 -0.29 -0.36 -0.25 -0.18 -0.32 0.24
                                                                                                               0.48
                                                                                                                          -0.11-0.054
  17
            -0.07 -0.22 0.17 0.15 0.24 -0.23 -0.21 -0.31-0.054 -0.4
                                                                     -0.28 0.1
                                                                                                   0.19
                                                                                                         0.48
                                                                                                                      0.4
                                                                                                                                -0.19
  18
                                                                                              -0.98
                                                                                                                           -0.26
                 -0.32 -0.24 -0.23 -0.17 -0.3
                                               -0.23 -0.26 -0.21
                                                                     -0.0810.0068-0.4
                                                                                                   0.06
                                                                                                         0.18
                                                                                                                0.4
  19
                                                                                                                                                     - 0
            -0.65 -0.76 -0.8 -0.91 -0.95 -0.64 -0.67 -0.47 -0.58
                                                                 -0.2 -0.049-0.22 0.26
                                                                                              0.32 -0.036-0.11 -0.26
  20
            -0.68 -0.8 -0.77 -0.95 -0.93 -0.68 -0.7
                                                    -0.54 -0.59 -0.25 -0.11 -0.18 0.19
                                                                                              0.27
                                                                                                   0.0350.054-0.19 0.25
                                                                                                                           0.97
  21
                                                                                         stroke
                   weight
                                    city-L/100km
                                                length
                                                            bore
                                                                  aspiration-turbo
                                                                       height
                                                                                               compression-ratio
                                                                                                                      aspiration-std
                                                      wheel-base
                                                                                                                            city-mpg
                         horsepower
                               highway-L/100km
                                          width
                                                                             normalized-losses
                                                                                   fuel-type-diese
                                                                                                                                  highway-mpg
                                                                                                                fuel-type-ga
```

find correlation of predictor variables with price using scatter-plots:-

```
In [64]:
```

1 #scatterplot between most correlated variables

In [65]:

```
df[['price','engine-location', 'engine-size','peak-rpm','highway-mpg','horsepower']].corr()["price"]
```

Out[65]:

price 1.000000 engine-size 0.872335 peak-rpm -0.101616 highway-mpg -0.704692 horsepower 0.809575 Name: price, dtype: float64

In [66]:

```
1
     fig = plt.figure(figsize=(14,14))#create figure
 2
   ax0= fig.add_subplot(2,2,1)
ax1= fig.add_subplot(2,2,2)
ax2= fig.add_subplot(2,2,3)
ax3= fig.add_subplot(2,2,4)
 3
 4
 5
 6
 8
 9
    sns.set(font_scale= 0.5)
10
11
   sns.regplot(x= 'engine-size', y='price' , data=df,color='green',marker='*',scatter_kws={'s': 50}, ax=ax0)
12
13
    ax0.set_title('price vs engine-size')
14
    sns.regplot(x= 'highway-mpg' , y='price', data=df,color='red',marker='x',scatter_kws={'s': 50}, ax=ax1)
ax1.set_title('price vs highway-mpg')
15
16
17
18 sns.regplot(x= 'peak-rpm' , y='price', data=df,color='blue',marker= 'o',scatter_kws={'s': 50}, ax=ax2)
19
    ax2.set_title('price vs peak-rpm')
20
21
    sns.regplot(x= 'horsepower' , y='price', data=df, color='orange',marker= 'o',scatter_kws={'s': 50}, ax=ax3)
22
   ax3.set_title('price vs horsepower')
23
24
25
26
   fig.tight_layout()
27
28
    plt.show()
29
30
```



```
In [ ]:

1
```

relationship between 'body-style' & 'price' using boxplot

In [67]:

```
import seaborn as sns
plt.figure(figsize=(12,4))
sns.boxplot(x= "body-style", y = "price", data=df )
```

Out[67]:

<AxesSubplot:xlabel='body-style', ylabel='price'>

In [68]:

```
import seaborn as sns
plt.figure(figsize=(12,4))
sns.boxplot(x= "engine-location", y = "price", data=df )
```

Out[68]:

<AxesSubplot:xlabel='engine-location', ylabel='price'>

In [69]:

```
import seaborn as sns
plt.figure(figsize=(12,4))
sns.boxplot(x= "drive-wheels", y = "price", data=df )
```

Out[69]:

<AxesSubplot:xlabel='drive-wheels', ylabel='price'>

using'groupby'function to finf avg price of car based on 'body-style':-

```
In [70]:

1  df['drive-wheels'].unique()

Out[70]:
array(['rwd', 'fwd', '4wd'], dtype=object)

In [71]:

1  df_group= df[['drive-wheels', 'body-style', 'price']]
2  df_group_result = df_group.groupby(['drive-wheels', 'body-style'], as_index = False).mean()
3  df_group_result
```

Out[71]:

	drive-wheels	body-style	price
0	4wd	hatchback	7603.000000
1	4wd	sedan	12647.333333
2	4wd	wagon	9095.750000
3	fwd	convertible	11595.000000
4	fwd	hardtop	8249.000000
5	fwd	hatchback	8396.387755
6	fwd	sedan	9811.800000
7	fwd	wagon	9997.333333
8	rwd	convertible	23949.600000
9	rwd	hardtop	24202.714286
10	rwd	hatchback	14337.777778
11	rwd	sedan	21711.833333
12	rwd	wagon	16994.222222

In [72]:

1 #from groupby we can se multiple variables.

```
In [73]:
```

```
df_group= df[['engine-size', 'body-style', 'price']]
df_group_result = df_group.groupby(['engine-size', 'body-style'], as_index = False).mean()
df_group_result
```

Out[73]:

	engine-size	body-style	price
0	61	hatchback	5151.000000
1	70	hatchback	12145.000000
2	79	hatchback	5399.000000
3	80	hatchback	15645.000000
4	90	hatchback	6045.666667

76	234	sedan	34184.000000
77	258	sedan	33900.000000
78	304	hardtop	45400.000000
79	308	sedan	40960.000000
80	326	sedan	36000.000000

81 rows × 3 columns

In [74]:

```
plt.figure(figsize=(12,6))
plot= sns.heatmap(df.corr().round(2), annot = True)
```


Correlation and Causation Analysis

```
In [75]:
```

```
1 #correlation: means measure of extent of interdependance between variables.
2 #causation: means relationship between cause andeffect between two vaiables.
```

In [76]:

```
1 from scipy import stats
```

In [77]:

```
1  df = df.replace([np.inf, -np.inf], np.nan)
2  df = df.dropna()
3  df = df.reset_index()
```

```
In [78]:
```

```
pearson_coef,p_value = stats.pearsonr(df['wheel-base'], df['price'])
print("The PeasonR Coefficient for wheel-base vs price is", pearson_coef, "with a p-value of p=", p_value)
```

The PeasonR Coefficient for wheel-base vs price is 0.591955763054654 with a p-value of p= 6.41333881539141e-20

```
In [79]:
```

```
1
    pearson_coef,p_value = stats.pearsonr(df['length'], df['price'])
 2
 print("The PeasonR Coefficient for length vs price is", pearson_coef, "with a p-value of p=", p_value)
pearson_coef,p_value = stats.pearson(df['width'], df['price'])
    print("The PeasonR Coefficient for width vs price is", pearson_coef, "with a p-value of p=", p_value)
pearson_coef,p_value = stats.pearsonr(df['curb-weight'], df['price'])
 7 print("The PeasonR Coefficient for curb-weight vs price is", pearson_coef, "with a p-value of p=", p_value)
8 pearson_coef,p_value = stats.pearsonr(df['horsepower'], df['price'])
    print("The PeasonR Coefficient for horsepower vs price is", pearson_coef, "with a p-value of p=", p_value)
pearson_coef,p_value = stats.pearsonr(df['engine-size'], df['price'])
    print("The PeasonR Coefficient for engine-size vs price is", pearson_coef, "with a p-value of p=", p_value)
pearson_coef,p_value = stats.pearsonr(df['bore'], df['price'])
11
12
     print("The PeasonR Coefficient for bore vs price is", pearson_coef, "with a p-value of p=", p_value)
13
    pearson_coef,p_value = stats.pearsonr(df['city-mpg'], df['price'])
14
    print("The PeasonR Coefficient for city-mpg vs price is", pearson_coef, "with a p-value of p=", p_value)
pearson_coef,p_value = stats.pearsonr(df['highway-mpg'], df['price'])
15
16
     print("The PeasonR Coefficient for highway-mpg vs price is", pearson_coef, "with a p-value of p=", p_value)
17
18
19
20
```

The PeasonR Coefficient for length vs price is 0.6894657962054989 with a p-value of p= 5.531750161103238e-29
The PeasonR Coefficient for width vs price is 0.7441763798094059 with a p-value of p= 7.736546677140488e-36
The PeasonR Coefficient for curb-weight vs price is 0.8284829891299339 with a p-value of p= 9.745571059120956e-51
The PeasonR Coefficient for horsepower vs price is 0.8020402807928606 with a p-value of p= 2.68640466763373e-45
The PeasonR Coefficient for engine-size vs price is 0.8892649648855933 with a p-value of p= 8.01534486496905e-68
The PeasonR Coefficient for bore vs price is 0.5443747906183409 with a p-value of p= 1.623426821501105e-16
The PeasonR Coefficient for city-mpg vs price is -0.6925501912683503 with a p-value of p= 2.4962452990006994e-29
The PeasonR Coefficient for highway-mpg vs price is -0.7074662427380923 with a p-value of p= 4.600625491195127e-31

```
In [ ]:
```

1

df.columns

In [80]:

```
1 df.columns
```

Out[80]:

ANOVA: Analysis of Variance

In [87]:

```
df_group = df[['drive-wheels', 'price']]
groups= df_group[['drive-wheels', 'price']].groupby(['drive-wheels'])
groups.head(2)
```

Out[87]:

	drive-wheels	price
0	rwd	13495.0
1	rwd	16500.0
3	fwd	13950.0
4	4wd	17450.0
5	fwd	15250.0
131	4wd	7603.0

```
In [88]:
 1 groups.get_group('4wd')['price']
Out[88]:
       17450.0
131
        7603.0
        9233.0
135
136
       11259.0
139
       8013.0
140
       11694.0
145
        7898.0
146
       8778.0
Name: price, dtype: float64
In [89]:
 1 # ANOVA
 2 | f_val, p_val = stats.f_oneway(groups.get_group('fwd')['price'], groups.get_group('rwd')['price']), groups.get_group('4wd')['price'])
 4 print( "ANOVA results: F=", f_val, ", P =", p_val)
ANOVA results: F= 69.54140581577971 , P = 1.8030300682433396e-23
In [90]:
 1 # this f_value suggest that mean price value varies a lot.
```

Separately: fwd and rwd

```
In [91]:
 1 f_val, p_val = stats.f_oneway(groups.get_group('fwd')['price'], groups.get_group('rwd')['price'])
  3 print( "ANOVA results: F=", f_val, ", P =", p_val )
ANOVA results: F= 133.68058112336752 , P = 1.1991081909665041e-23
In [92]:
 1 # 4wd and rwd
In [931:
 1 f_val, p_val = stats.f_oneway(groups.get_group('4wd')['price'], groups.get_group('rwd')['price'])
  3 print( "ANOVA results: F=", f_val, ", P =", p_val)
ANOVA results: F= 8.918937140036293 , P = 0.003796935906545933
In [94]:
 1 # 4wd and fwd
In [96]:
 1 f_val, p_val = stats.f_oneway(groups.get_group('4wd')['price'], groups.get_group('fwd')['price'])
  3 print("ANOVA results: F=", f_val, ", P =", p_val)
ANOVA results: F= 0.665465750252303 , P = 0.41620116697845666
In [97]:
at main variation of price mean values is in fwd and rwd groups.so even inside feature drive-wheels, these two groups are more importanat.
```

Conclusion: Important Variables

We now have a better idea of what our data looks like and which variables are important to take into account when predicting the car price. We have narrowed it down to the following variables:

Continuous numerical variables:

Length Width Curb-weight Engine-size Horsepower City-mpg Highway-mpg Wheel-base Bore Categorical variables:

Drive-wheels As we now move into building machine learning models to automate our analysis, feeding the model with variables that meaningfully affect our target variable will improve our model's prediction performance.

Model Development and Evaluation

```
In [98]:

1 #model development using predictor variable identified as important in data analysis

In [99]:

1 df_new= df[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg','bore', 'wheel-base','city-mpg', 'length', 'width']]
```

splitting data into training n testing

```
In [100]:
   from sklearn.model_selection import train_test_split
 2 x_train, x_test, y_train, y_test = train_test_split(df_new , df['price'], test_size=0.2, random_state=1)
In [101]:
 1 x_train.shape
Out[101]:
(156, 9)
In [102]:
 1 x_test.shape
Out[102]:
(40, 9)
In [103]:
1 y_train.shape
Out[103]:
(156,)
In [104]:
 1 y_test.shape
Out[104]:
(40,)
```

Multiple LinearRegression

```
In [105]:

1    ln = LinearRegression()
2    ln.fit(x_train, y_train)

Out[105]:

v LinearRegression
LinearRegression()
```

multiple linear regression evaluation

```
In [107]:

1 print("The R_squared value for Multiple Linear Regression Model is:" , ln.score(x_test,y_test))
```

The R_squared value for Multiple Linear Regression Model is: 0.8125272966433501

In [112]:

```
predicted = Rf.predict(x_test)
import seaborn as sns
plt.figure(figsize=(12,4))

ax1= sns.distplot(df["price"], hist= False, color="r", label= 'Actual Value')
sns.distplot(predicted, hist= False, color = 'b', label= 'Predicted Values', ax= ax1)

plt.title('Actual vs Predicted Values for price')
plt.xlabel('price')
plt.ylabel('cars')

plt.show()
plt.close()
```

C:\Users\Acer\anaconda37\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\Acer\anaconda37\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

RandomForestregressor

```
In [113]:
```

```
#it is non-linear regreesor
Rf = RandomForestRegressor()
Rf.fit(x_train, y_train)
```

Out[113]:

```
RandomForestRegressor
RandomForestRegressor()
```

In [114]:

```
1 print("The R_squared value for Random Forest Regression Model is:", Rf.score(x_test, y_test))
```

The R_squared value for Random Forest Regression Model is: 0.9398079770869349

In [115]:

```
predicted = Rf.predict(x test)
    import seaborn as sns
    plt.figure(figsize=(12,4))
 3
 4
    ax1= sns.distplot(df["price"], hist= False, color="r", label= 'Actual Value')
sns.distplot(predicted, hist= False, color = 'b', label= 'Predicted Values', ax= ax1)
 6
 8
 9
    plt.title('Actual vs Predicted Values for price')
10
    plt.xlabel('price')
11
    plt.ylabel('cars')
12
13
    plt.show()
14 plt.close()
```

C:\Users\Acer\anaconda37\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\Acer\anaconda37\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Best Model Refinement ¶

In [123]:

```
1
    def build_and_compile_model(norm):
2
        model = keras.Sequential ([
3
         norm,
        layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
4
5
6
        layers.Dense(1)])
8
         model.compile(loss='mean_absolute_error',
9
                       optimizer=tf.keras.optimizers.Adam(0.001))
10
         return model
```

In [126]:

```
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing

print(tf.__version__)
```

2.11.0

```
In [127]:
```

```
1 normalizer = preprocessing.Normalization()
```

```
In [128]:
```

```
1 normalizer.adapt(np.array(x_train))
```

```
In [129]:
```

```
print(normalizer.mean.numpy())
```

[[1.03419952e+02 2.55034619e+03 1.27275635e+02 3.07243595e+01 3.33301258e+00 9.85557709e+01 2.51666679e+01 8.36324394e-01 9.10504699e-01]]

In [130]:

dnn_model = build_and_compile_model(normalizer)
dnn_model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #	
normalization (Normalization)	(None, 9)	19	
dense (Dense)	(None, 64)	640	
dense_1 (Dense)	(None, 64)	4160	
dense_2 (Dense)	(None, 1)	65	
Total params: 4,884 Trainable params: 4,865 Non-trainable params: 19			

In [142]:

best_dnn_model = dnn_model.evaluate(x_train, y_train, verbose=0)

In [143]:

1 best_dnn_model

Out[143]:

13316.3154296875

In [144]:

1 dnn_model.save('dnn_model')

WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading.

INFO:tensorflow:Assets written to: dnn_model\assets

INFO:tensorflow:Assets written to: dnn_model\assets

In []:

1