APLIKASI CHATBOT PADA SISTEM INFORMASI PENYEWAAN SCAFFOLDING DENGAN MENGGUNAKAN METODE TF-IDF

SKRIPSI

Oleh:

TRIANTA ALMIRA RAMADHANI NIM. 1641720097

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG JULI 2020

APLIKASI CHATBOT PADA SISTEM INFORMASI PENYEWAAN SCAFFOLDING DENGAN MENGGUNAKAN METODE TF-IDF

SKRIPSI

Digunakan Sebagai Syarat Maju Ujian Diploma IV Politeknik Negeri Malang

Oleh:

TRIANTA ALMIRA RAMADHANI NIM. 1641720097

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG JULI 2020

HALAMAN PENGESAHAN

APLIKASI CHATBOT PADA SISTEM INFORMASI PENYEWAAN SCAFFOLDING DENGAN MENGGUNAKAN METODE TF-IDF

Disusun oleh:

TRIANTA ALMIRA RAMADHANI NIM. 1641720097

Skripsi ini telah diuji pada tanggal 21 Juni 2020

Disetujui oleh:

1.	Penguji I	:	NIP.	
2.	Penguji II	:		
			NIP.	
3.	Pembimbing I	:	Dimas Wahyu Wibowo, ST., MT. NIP. 19841009 201504 1 001	
4.	Pembimbing II	:	Habibie Ed Dien, S.KOM., MT. NIDN. 0012049209	
			Mengetahui,	
	Ketua Ju		•	gram Studi
	Teknologi I	nfo	ormasi Teknik In	formatika

<u>Rudy Ariyanto, S.T., M.Cs.</u> <u>Imam Fahrur Rozi, S.T., M.T.</u> NIP. 19711110 199903 1 002 NIP. 19840610 200812 1 004

PERNYATAAN

Dengan ini saya menyatakan bahwa pada Skripsi ini tidak terdapat karya, baik seluruh maupun sebagian, yang sudah pernah diajukan untuk memperoleh gelar akademik di Perguruan Tinggi manapun, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis disitasi dalam naskah ini serta disebutkan dalam daftar sitasi/pustaka.

Malang, 21 Juni 2020

Trianta Almira R.

ABSTRAK

Ramadhani, Trianta Almira. "Aplikasi Chatbot pada Sistem Informasi Penyewaan Scaffolding dengan Menggunakan Metode TF-IDF". Pembimbing: (1) Dimas Wahyu Wibowo, ST., MT., (2) Habibie Ed Dien, S.KOM., MT.

Skripsi, Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang, 2020.

CV. Scaffolding Samarinda merupakan usaha penyewaan scaffolding di Samarinda dan sekitarnya. Salah satu permasalahan yang dimiliki oleh CV. Tersebut adalah keterbatasan waktu jam kerja admin *Customer Service* merespon pertanyaan dari pelanggan yang membutuhkan informasi mengenai penyewaan scaffolding. Dikarenakan admin *Customer Service* memiliki keterbatasan jam kerja yang ditentukan oleh peraturan perusahaan. Sehingga pelanggan sulit berkomunikasi dengan *Customer Service* diluar jam kerja admin. Sedangkan pelanggan membutuhkan respon yang cepat untuk menangani kendala pada perusahaannya yang membutuhkan jasa dari CV. Scaffolding Samarinda.

Oleh sebab itu, CV. Scaffolding Samarinda membutuhkan pemberian layanan system informasi yang cepat di setiap saat. Berdasarkan pengujian yang telah dilakukan, maka dapat disimpulkan bahwa Sistem ini dapat Melakukan *Tokenizing* (Memisah kata penyusun dari suatu dokumen) dan menghitung bobot *TF-IDF* dan *Cosine Similarity* untuk mencari jawaban pada sistem. Sehingga saat user menuliskan pertanyaan, akan muncul jawaban sesuai harapan *user*. Sistem juga dapat memudahkan *user* dalam menerima informasi sesuai dengan yang diharapkan saat itu juga.

Kata Kunci : Chatbot, TF-IDF, Cosine Similarity, Scaffolding

ABSTRACT

Ramadhani, Trianta Almira. "Chatbot Application on Scaffolding Rental Information System using TF-IDF Method". Counseling Lecturer: (1) Dimas Wahyu Wibowo, ST., MT., (2) Habibie Ed Dien, S.KOM., MT.

Thesis, Informatics Management Study Program, Department of Information Technology, State Polytechnic of Malang, 2020.

CV. Scaffolding Samarinda is a scaffolding rental business in Samarinda and surrounding areas. One that was approved by CV. Such is the limitation of the Customer Service admin's working hours to answer questions from customers who need information about scaffolding rental. Because the Customer Service admin has limited working hours determined by company regulations. Contacting customers is difficult to communicate with Customer Service outside admin working hours. While customers need a quick response to request a loan from their company that needs the services of a CV. Samarinda Scaffolding.

Therefore, CV. Scaffolding Samarinda requires a fast information service system at all times. Based on the tests that have been done, it can be concluded that this system can do Tokenizing and separate the TF-IDF and Cosine Similarity to find answers to the system. When asked the user to ask questions, answers will appear according to user expectations. The system can also provide the user in receiving information as expected at that time..

Keywords: Chatbot, TF-IDF, Cosine Similarity, Scaffolding

KATA PENGANTAR

Puji Syukur kami panjatkan kehadirat Allah SWT atas segala rahmat dan hidayah-Nya penulis dapat menyelesaikan skripsi dengan judul "APLIKASI CHATBOT PADA SISTEM INFORMASI PENYEWAAN SCAFFOLDING DENGAN MENGGUNAKAN METODE TF-IDF". Skripsi ini penulis susun sebagai persyaratan untuk menyelesaikan studi program Diploma IV Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang.

Kami menyadari bahwasannya dengan tanpa adanya dukungan dan kerja sama dari berbagai pihak, kegiatan laporan akhir ini tidak akan dapat berjalan baik. Untuk itu, kami ingin menyampaikan rasa terima kasih kepada:

- 1. Allah SWT atas segala rahmat dan hidayah-Nya memberikan ilmu yang bermanfaat dan berguna.
- 2. Orang Tua yang selalu mensupport, mendoakan, mendukung saya dalam berbagai hal untuk memberikan motivasi terselesaikannya skripsi tepat waktu.
- 3. Bapak Rudy Ariyanto, ST., M.Cs., selaku ketua jurusan Teknologi Informasi
- 4. Bapak Imam Fahrur Rozi, ST., MT., selaku ketua program studi Manajemen Informatika
- 5. Bapak Dimas Wahyu Wibowo, ST., MT., selaku dosen pembimbing I
- 6. Bapak Habibie Ed Dien, S.Kom., MT., selaku dosen pembimbing II
- 7. Bapak Ibu Dosen Penguji yang sudah menguji kemampuan saya.
- 8. H. Ahmad Soedharmo selaku kakek sekaligus ayah yang senantiasa mendoakan, mendorong serta mengingatkan selalu selama saya kuliah 4 tahun di POLINEMA. Sosok yang menjadikan saya bersemangat untuk menyelesaikan skripsi.
- 9. Hj. Erna Juwita selaku tante sekaligus pengganti ibu selama saya kuliah 4 tahun, yang mendorong saya untuk segera menyelesaikan dan tertib dalam melakukan semua kegiatan.
- 10. Joshua, Wella, Ayu, Yayas, Aang, Mbak Tya, Yoga, Agung, Ammar, Fika teman seperjuangan dari lulus SMA hingga saat ini.

11. Dan seluruh pihak yang telah membantu lancarnya pembuatan Laporan Akhir dari awal hingga akhir yang tidak dapat kami sebutkan satu persatu.

Penulis menyadari bahwa dalam penyusunan laporan akhir ini, masih banyak terdapat kekurangan dan kelemahan yang dimiliki penulis baik itu sistematika penulisan maupun penggunaan bahasa. Untuk itu penulis mengharapkan saran dan kritik dari berbagai pihak yang bersifat membangun demi penyempurnaan laporan ini. Semoga laporan ini berguna bagi pembaca secara umum dan penulis secara khusus. Akhir kata, penulis ucapkan banyak terima kasih.

Malang, 21 Juni 2020

Penulis

DAFTAR ISI

	Halaman
HALAMAN SAMPUL	i
HALAMAN JUDUL	ii
HALAMAN PENGESAHAN	iii
PERNYATAAN	iv
ABSTRAK	V
ABSTRACT	
KATA PENGANTAR	
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	
BAB I. PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Batasan Masalah	2
1.5 Sistematika Penulisan	3
BAB II. LANDASAN TEORI	5
2.1 Penelitian Terdahulu	5
2.2 Chatbot	7
2.3 XAMPP	7
2.4 MySQL	8
2.5 PHP	8
2.6 JavaScript	9
2.7 TF-IDF	9
2.8 Cosine Similarity	10
2.9 Recall dan Precision	10
BAB III. METODOLOGI PENELITIAN	12
3.1 Studi Literatur	
3.2 Identifikasi Masalah	12
3.3 Metode Pengumpulan Data	
3.4 Metode Pengembangan Sistem	
3.4.1 Waterfall	
3.4.2 Bisnis Proses	14

3.5 Metode Pengolahan Data	16
3.6 Perhitungan Manual	16
BAB IV. ANALISIS DAN PERANCANGAN SISTEM	21
4.1 Gambaran Umum Sistem	21
4.2 Analisa Permasalahan	22
4.3 Analisa Kebutuhan Non Fungsional	22
4.4 Analisa Kebutuhan Fungsional	23
4.5 Analisis Data	23
4.6 Perancangan Antar Muka Pengguna	44
4.7 Perancangan Basisdata	
4.8 Perancangan Sistem	24
BAB V. IMPLEMENTASI DAN PENGUJIAN	47
5.1 Implementasi Basisdata	47
5.2 Implementasi Anatarmuka Pengguna	56
5.3 Implementasi Sistem	47
5.4 Pengujian Fungsional	60
5.5 Pengujian Akurasi	65
BAB VI. HASIL DAN PEMBAHASAN	67
BAB VII. KESIMPULAN DAN SARAN	69
7.1 Kesimpulan	69
7.2 Saran	69
DAFTAR PUSTAKA	70
I AMPIRAN - I AMPIRAN	72

DAFTAR GAMBAR

	Halaman
Gambar 3.1 Waterfall Model	13
Gambar 3.2 Bisnis Proses Peminjaman	14
Gambar 3.3 Bisnis Proses Pengembalian	15
Gambar 4.1 Flowchart Alur Proses Chatbot	
Gambar 4.3 Flowchart Pembobotan TF-IDF	29
Gambar 4.4 Flowchart Perhitungan Cosine Similarity	30
Gambar 4.5 Context Diagram	31
Gambar 4.6 DFD Level 1	31
Gambar 4.7 DFD Level 2 Proses 1	32
Gambar 4.8 DFD Level 2 Proses 2	32
Gambar 4.9 DFD Level 2 Proses 3	33
Gambar 4.10 DFD Level 2 Proses 4	33
Gambar 4.11 DFD Level 2 Proses 5	34
Gambar 4.12 DFD Level 2 Proses 6	34
Gambar 4.13 DFD Level 2 Proses 7	35
Gambar 4.14 DFD Level 2 Proses 8	35
Gambar 4.15 DFD Level 2 Proses 9	35
Gambar 4.16 Entitas Relationship Diagram	40
Gambar 4.17 Mockup Halaman Awal Sistem	44
Gambar 4.18 Mockup Halaman Chat	44
Gambar 4.19 Mockup Halaman Login	45
Gambar 4.20 Mockup Halaman Utama Admin	45
Gambar 4.21 Mockup Halaman Data Jawaban	45
Gambar 4.22 Mockup Halaman Perhitungan TF-IDF	46
Gambar 4.23 Mockup Halaman Data Pertanyaan	46
Gambar 5.1 Struktur Database	
Gambar 5.3 Tabel Dokumen	48
Gambar 5.4 Tabel Index	48

Gambar 5.5 Tabel Vektor	48
Gambar 5.6 Tabel Cache	48
Gambar 5.7 Tabel Stem	49
Gambar 5.8 Tabel Product	49
Gambar 5.9 Tabel Customer	49
Gambar 5.10 Tabel Transaksi	49
Gambar 5.11 Tabel Detail Transaksi	50
Gambar 5.12 Potongan Kode Menampilkan Data Master Jawaban	50
Gambar 5.13 Potongan Kode Preprocessing	51
Gambar 5.14 Potongan Kode Hitung Bobot TF-IDF	52
Gambar 5.15 Potongan Kode Hitung Panjang Vektor Dokumen	53
Gambar 5.16 Potongan Kode Hitung Similarity	55
Gambar 5.17 Potongan Kode Penentuan Respon Chatbot	56
Gambar 5.18 Halaman Login	56
Gambar 5.19 Halaman Dashboard	57
Gambar 5.20 Halaman Master Jawaban	57
Gambar 5.21 Halaman Perhitungan TF-IDF	58
Gambar 5.22 Halaman Pertanyaan dari Customer	58
Gambar 5.23 Halaman Utama	59
Gambar 5.24 Halaman Chatbot	59
Gambar 6.1 Contoh Perhitungan Robot TF-IDF	67

DAFTAR TABEL

	Halaman
Tabel 2.1 Penelitian Terdahulu	5
Tabel 3.1 Contoh Respon Chatbot	
Tabel 3.3 Perhitungan TF-IDF	18
Tabel 3.4 Perkalian Skalar	18
Tabel 3.5 Perkalian Vektor	19
Tabel 3.6 Hasil Perhitungan Similarity	20
Tabel 4.1 Spesifikasi Minimum Perangkat Lunak	
Tabel 4.3 Deskripsi Use Case	25
Tabel 4.4 Skenario Use Case Melakukan Login	25
Tabel 4.5 Skenario Use Case Mengelola Data Produk	26
Tabel 4.6 Skenario Use Case Mengelola Data Customer	26
Tabel 4.7 Skenario Use Case Mengelola Data Transaksi	27
Tabel 4.8 Skenario Use Case Mengelola Data Chatbot	27
Tabel 4.9 Skenario Use Case Mengajukan Pertanyaan pada Sistem	28
Tabel 4.10 Skenario Use Case Mendapatkan Respon dari Chatbot	28
Tabel 4.11 Spesifikasi proses login	36
Tabel 4.12 Spesifikasi proses kelola jawaban	36
Tabel 4.13 Spesifikasi proses kelola pertanyaan	37
Tabel 4.14 Spesifikasi kelola produk	37
Tabel 4.15 Spesifikasi kelola customer	37
Tabel 4.16 Spesifikasi kelola transaksi	38
Tabel 4.17 Spesifikasi kelola pengaturan.	38
Tabel 4.18 Spesifikasi kelola token	38
Tabel 4.19 Spesifikasi kelola chatting	39
Tabel 4.20 Tabel Admin	40
Tabel 4.21 Tabel Cache	41
Tabel 4.22 Tabel Customer	41
Tobal 4.23 Tobal Datail	41

Tabel 4.24 Tabel Dokumen	42
Tabel 4.25 Tabel Index	42
Tabel 4.26 Tabel Produk	42
Tabel 4.27 Tabel Stem	43
Tabel 4.28 Tabel Transaksi	43
Tabel 4.29 Tabel Vektor	44
Tabel 5.1 Pengujian Fungsional Halaman Login Admin Tabel 5.2 Pengujian Fungsional Menu Admin	
Tabel 5.3 Pengujian Fungsional Admin Data Produk	61
Tabel 5.4 Pengujian Fungsional Admin Data Pelanggan	62
Tabel 5.5 Pengujian Fungional Admin Data Transaksi	62
Tabel 5.6 Pengujian Fungsional Admin Data Master	63
Tabel 5.7 Pengujian Fungsional Admin Hasil Perhitungan	64
Tabel 5.8 Pengujian Fungsional Admin Menu History Jawaban	64
Tabel 5.9 Pengujian Fungsional User Chatbot	64
Tabel 5.10 Tabel Pengujian Akurasi	65
Tabel 6.1 Hasil Penghitungan Cosine Similarity	68

DAFTAR LAMPIRAN

BAB I. PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi saat ini semakin memudahkan pengguna dalam mengakses aplikasi yang ada. Penggunaan aplikasi menggunakan desktop sudah dikalahkan dengan luasnya penggunaan internet yang bisa digunakan di berbagai platform dan bisa diakses oleh pengguna dari kalangan manapun, dan menjadikan website dapat memberikan kemudahan bagi masyarakat dalam mengaksesnya. Salah satunya dengan menerapkan Sistem Informasi Berbasis Website.

Berdasarkan hasil penelitian sebelumnya terkait penelitian yang dilakukan oleh (Kavitha, Cethana, 2019) yang menerapkan Chatbot untuk membantu masyarakat jika ingin mengetahui penyakit yang mungkin di derita dengan menanyakannya melalui aplikasi android dan akan diproses oleh sistem pada web dan akan menampilkan jawaban sesuai harapan dengan metode N-gram,TF-IDF, dan Cosine Similarity. Sistem Chatbot pada aplikasi tersebut menggantikan peran Dokter untuk membantu dokter untuk mengurangi biaya perawatan dan menghemat waktu. Sehingga pengguna aplikasi tidak perlu ke dokter atau ke spesialis untuk menanyakannya. Penelitian lain yang saya gunakan milik (Dhebys, Eka, 2017) yang menggunakan Chatbot untuk memudahkan masyarakat dalam mencari objek wisata di daerah Jawa Timur. Chatbot pada aplikasi tersebut memudahkan objek wisata memberikan informasi kepada pengunjung tanpa harus menyebarkan pamflet, brosur, dan poster.

CV. Scaffolding Samarinda merupakan usaha penyewaan scaffolding di Samarinda dan sekitarnya. Salah satu permasalahan yang dimiliki oleh CV. Tersebut adalah keterbatasan waktu jam kerja admin Customer Service merespon pertanyaan dari pelanggan yang membutuhkan informasi mengenai penyewaan scaffolding. Dikarenakan admin *Customer Service* memiliki jam kerja yang ditentukan oleh peraturan perusahaan. Sehingga pelanggan sulit berkomunikasi dengan Customer Service diluar jam kerja admin. Sedangkan pelanggan membutuhkan respon yang cepat untuk menangani kendala pada perusahaannya yang membutuhkan jasa dari CV. Scaffolding Samarinda.

TF-IDF (*Term Frequency - Inverse Document Frequency*) merupakan metode algoritma yang menentukan frekuensi dari kemunculan sebuah term dalam dokumen yang bersangkutan. Metode ini untuk menghitung nilai *Term Frequency* (TF) dan *Inverse Document Frequency* (IDF) pada setiap kata di setiap dokumen. Semakin besar jumlah kemunculan suatu term (TF tinggi) dalam dokumen, semakin besar pula bobotnya atau akan memberikan nilai kesesuaian yang semakin besar. (informatikalogi.com).

Sehingga pada penelitian ini, penulis membuat Aplikasi Chatbot Pada Sistem Informasi Scaffolding dengan Menggunakan Metode TF-IDF yang diharapkan dapat memudahkan serta dapat mengatasi permasalahan yang telah dipaparkan di atas. Aplikasi chatbot ini diharapkan dapat menjawab pertanyaan dari calon pelanggan dengan informasi/penjelasan yang mudah dipahami.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, maka rumusan masalah yang dapat diambil adalah sebagai berikut:

a. Bagaimana mengatasi *Customer* yang mengharapkan informasi yang cepat setiap saat dalam waktu 24 jam?

1.3 Tujuan

Tujuan dari pembuatan sistem chatbot ini adalah sebagai berikut :

a. Untuk memudahkan pelanggan saat ingin bertanya mengenai penyewaan scaffolding dengan jawaban sesuai jam bertanya dan pertanyaan beruntut akan menghasilkan jawaban yang beruntut

1.4 Batasan Masalah

Agar skripsi penulis yang berjudul Aplikasi Chatboot pada Sistem Informasi Penyewaan Scaffolding dengan Menggunakan Metode TF-IDF dapat berjalan sesuai dengan rencana dan tujuan awal, maka penulis memberikan batasan-batasan masalah yaitu :

- a. Informasi mengenai barang yang tersedia
- b. Informasi mengenai harga sewa barang per unit
- c. Informasi mengenai jangka waktu peminjaman barang
- d. Informasi mengenai berat barang per unit

1.5 Sistematika Penulisan

Sistematika penulisan laporan penelitian ini disusun untuk memberikan gambaran umum tentang penelitian yang dilakukan. Sistematika penulisan skrisi ini adalah sebalagi berikut:

BAB I. PENDAHULUAN

Menguraikan tentang latar belakang permasalahan, mencoba merumuskan inti permasalahan yang dihadapi, menentukan tujuan dan kegunaan penelitian serta sistematika penulisan

BAB II. LANDASAN TEORI

Membahas berbagai konsep dasar dan teori-teori yang berkaitan dengan topik penelitian yang dilakukan dan hal-hal yang bergina dalam proses analisis permasalahan.

BAB III. METODELOGI PENELITIAN

Membandingkan sistem pelayanan yang digunakan selama ini melalui Whatsapp dengan Chatbot, meningkatkan sistem pelayanan untuk mendapatkan informasi sesuai dengan jam pertanyaan yang, pengambilan data penelitian, lokasi penelitian yang berkaitan dengan Chatbot.

BAB IV. ANALISIS DAN PERANCANGAN SISTEM

Bab ini menjelaskan analisis terhadap seluruh spesifikasi sistem yang mencakup analisis prosedur yang sedang berjalan, pengkodean, kebutuhan non fungsional dan analisis basis data. Selain analisis sistem, bab ini terdapat juga perancangan anatarmuka untuk aplikasi yang akan dibangun sesuai dengan hasil analisis yang telah dibuat.

BAB V. IMPLEMENTASI DAN PENGUJIAN

Merupakan tahapan yang dilakukan dalam penelitian secara garis besar sejak dari tahap persiapan sampai penarikan kesimpulan, metode, dan kaidah yang diterapkan dalam penelitian.

BAB VI. HASIL DAN PEMBAHASAN

Mendeskripsikan hasil pembahasan dari penelitian yang telah dilakukan dan telah diuji sesuai dengan teori yang diharapkan.

BAB VII. KESIMPULAN DAN SARAN

Berisi kesimpulan dan saran yang sudah diperoleh dari hasil penulisanskripsi.

BAB II. LANDASAN TEORI

2.1 Penelitian Terdahulu

Penelitian terdahulu ini menjadi salah satu acuan penulis dalam melakukan penelitian sehingga penulis dapat memperkaya teori yang digunakan dalam mengkaji penelitian yang dilakukan. Dari penelitian terdahulu, penulis tidak menemukan penelitian dengan judul yang sama dengan judul penelitian penulis. Namun, penulis mengangkat beberapa penelitian sebagai referensi dalam memperkaya kajian pada penelitian penulis. Berikut merupakan penelitian terdahulu berupa beberapa jurnal terkait dengan penelitian yang dilakukan penulis.

Tabel 2.1 Penelitian Terdahulu

Nama Peneliti	Judul Penelitian	Hasil Penelitian	
Suryani, Dhebys &	Aplikasi Chatbot Objek	Aplikasi Chatbot dapat	
Larasati Amalia, Eka,	Wisata Jawa Timur	memberikan informasi	
2017.	Berbasis AIML	kepada wisatawan yang	
		ingin berwisata di	
		wilayah Jawa Timur	
Satria Paliwabet, I	Pencarian Informasi	Sistem chatbot dengan	
Nyoman & Gede Darma	Wisata Daerah Bali	28	
Putra, I Ketut, 2017.	Menggunakan Teknologi	Fulltext Search Boolean	
	Chatbot	Mode dari MySQL dapat	
		diterapkan dengan baik	
Suryani, Dhebys &	Penerapan Metode TF-	_	
Aulia, Indinabilah, 2018	IDF dan N-Gram pada		
	Pengembangan Aplikasi		
	Chatbot Berbasis LINE		
	untuk Layanan Publik	•	
	Kesehatan Kota Malang	berkomunikasi dan	
		menyampaikan	
		informasi.	
Astiningrum, Mungki &	Implementasi NLP		
Shoburu Rohmah, Maya,	dengan Konversi Kata		
2018.	pada Sistem Chatbot		
	Konsultasi Laktasi.	Similarity membuat	
		aplikasi chatbot layak	
		digunakan untuk	
		customer service pusat	
		laktasi	
Melita, Ria & Dirjam,	Penerapan Metode Term		
Taslimun, 2018.	Frequency – Inverse	Cosine Similarity	

	Document Frequency	berhasil diterapkan
	(TF-IDF) dan Cosine	dengan memberian hasil
	Similarity pada Sistem	berupa output dokumen,
	Temu Kembali Informasi	yaitu syarah hadits sesuai
	untuk Mengetahui Syarah	dengan query yang di
	Hadits Berbasis Web	input-kan
	(Studi Kasus : Syarah	
	Umdatil Ahkam)	
Kavitha B. R. dan Dr,	Chatbot for healtcare	Kombinasi antara TF-
Cethana R, Murthy, 2019	system using Artificial	IDF dan Cosine
	Intelligence	Similarity memberikan
		hasil respon chatbot yang
		sesuai.
Natadian Astuti, Rani &	Perancangan Aplikasi	Adanya aplikasi chatbot
Fatchan, Muhammad,	Chatbot untuk Industri	membuat peran dari
2019.	Komersial 4.0	customer service menjadi
		lebih efektif karena dapat
		melayani pertanyaan dari
		customer selama 24 jam.
Tirtana, A., Zulkarnain,	Pembuatan Sistem	-
A., Dwi Listio, Y., 2019.	Pencarian Pekerjaan	
	Menggunakan TF-IDF	pencarian yang lebih
		relevan daripada
		pencarian tanpa
		pembobotan.
Riyani, Ade &	Penerapan Cosine	Algoritma Cosine
Burhanuddin Aulia, 2019	Similarity dan	•
	Pembobotan TF-IDF	1
	untuk Mendeteksi	
	Kemiripan Dokumen	kemiripan pada suatu
		dokumen

Dari beberapa judul penelitian yang penulis telah angkat, penulis memilih penelitian yang dilakukan oleh Kavitha B. R. dan Dr. Chetana R. Murthy yang berjudul "Chatbot for healtcare system using Artificial Intelligence" sebagai referensi utama penulis dalam melakukan penelitian. Hal ini dikarenakan adanya persamaan metode yang digunakan oleh penulis, yaitu TF-IDF dan *Cosine Similarity*, sebagai metode utama dalam pembuatan aplikasi *chatbot*.

2.2 Chatbot

Program chatbot pertama ditulis oleh Joseph Weizembaum, profesor MIT pada tahun 1966. pada waktu itu tentu saja chatbot dibuat masih amat sangat sederhana. Meskipun perkembangan kecerdasan buatan saat ini sangat pesat dan canggih, namun chatbot tetap mempertahankan kedudukannya dalam dunia Artificiall Intelligence.

Chatbot adalah sebuah simulator percakapan yang berupa program komputer yang dapat berdialog dengan penggunanya dalam bahasa alami. Karena chatbot hanya sebuah program, dan bukan robot (chatbot tidak memiliki tubuh dan tidak memiliki mulut sehingga tidak dapat berbicara seperti manusia), maka yang dimaksud dengan dialog antar manusia sebagai pengguna dengan chatbot dilakukan dengan cara mengetik apa yang akan dibicarakan dan chatbot akan memberikan respon. Orang membuat dan mengembangkan program chatbot disebut bot *master*.

Chatbot merupakan layanan masyarakat dalam bentuk layanan obrolan virtual dengan kecerdasan buatan (*Artificial Intelligence*) yang menirukan percakapan manusia melalui pesan suara, obrolan teks maupun pesan suara dan obrolan teks. Fitur chatbot telah digunakan di berbagai industri untuk penyampaian informasi atau melakukan tugas, seperti memberitahu cuaca terkini (*Weather Bot*), membantu memilih dan memesan bahan makanan (*Grocery Bot*), membantu melakukan reservasi penerbangan, membantu memberikan solusi atas suatu (*Life Advice Bot*) dan bot sebagai teman untuk bercakap-cakap seperti SimSimi. Aplikasi Chatbot ini yang akan saya buat untuk memudahkan customer dalam menanyakan pertanyaan yang diinginkan dan akan langsung direspon dengan cepat oleh sistem.

2.3 XAMPP

XAMPP adalah pengembangan *PHP* di lingkungan paling populer. *XAMPP* merupakan distribusi *Apache* yang benar-benar gratis dan mudah dipasang yang berisi *MariaDB*, *PHP*, dan *PErl*. Paket *open source XAMPP* telah diatur agar sangat mudah untuk diinstal dan digunakan.

Banyak orang tahu dari pengalaman mereka sendiri bahwa tidak mudah untuk menginstal *server web Apache* dan semakin sulit jika ingin menambahkan *MariaDB*, *PHP*, dan *Perl*. Tujuan *XAMPP* adalah untuk membangun distribusi instalasi yang mudah bagi para pengembang untuk memasuki dunia *Apache*. Agar nyaman bagi pengembang, *XAMPP* dikonfigurasikan dengan semua fitur dihidupkan. Dalam hal penggunaann komersial, silahkan lihat lisensi produk dari sudut pandang *XAMPP* penggunaan komersial juga gratis. Saat ini ada distribusi untuk *windows*, *Linux*, dan *OS X. XAMPP* digunakan untuk membuat database dan menjalankan PHP yang telah dibuat serta tidak memerlukan biaya untuk menginstalnya.

2.4 MySQL

Menurut Kustiyahningsih (2011:145), "MySQL adalah sebuah basis data yang mengandung satu atau jumlah tabel. Tabel terdiri atas sejumlah bari dari setiap baris mengandung satu atau sejumlah tabel. Tabel terdiri atas sejumlah baris dan setiap baris mengandung satu atau sejumlah tabel".

MySQL adalah adalah multi user database yang menggunakan bahasa Structured Query Language (SQL). MySQL dalam operasi client server melibatkan server daemon MySQL disisi server dan berbagai macam program serta library yang berjalan disisi client. MySQL mampu menangani data yang cukup besar. Perusahaan yang mengembangkan MySQL yaitu TEX, mengaku mampu menyimpan data lebih dari 40 database, 10.000 tabel, dan sekitar 7.000.000 baris. Totalnya kurang lebih 100 Gigabyte data. MySQL digunakan untuk pembuatan database dan hasil pembobotan dari semua sistem yang dijalankan dalam sistem yang dibuat.

2.5 PHP

PHP (*Hypertext Preprocessor*) adalah bahasa pemrograman yang dapat digunakan untuk tujuan umum. *PHP* lebih populer digunakan untuk pengembangan aplikasi web. Dalam proses pembuatan halaman web, *PHP* tidak memerlukan kode yang panjang seperti pada *Perl* dan *Python* karena kode *PHP* dapat disisipkan di

dalam kode *HTML*. *PHP* dapat dijalankan dalam sebagian besar sistem operasi, termasuk *linux*, varian-varian *UNIX* (*HP-UX*, *OpenBSD*), *Windows*, dan *Mac OS X*. *PHP* juga mendukung sebagian besar server web yang ada saat ini, seperti : *Apache*, *IIS*, *nginx*, dan *lighttpd*. Bahasa yang digunakan dalam CodeIgnitere menggunakan PHP dimana bahasa pemrograman PHP digunakan sebagai bahasa pemrograman umum.

2.6 JavaScript

JavaScript adalah bahasa script berdasar pada objek yang memperbolehkan pemakai untuk mengendalikan banyak aspek interaksi pemakai pada suatu dokumen HTML. Dimana objek tersebut dapat berupa suatu window, frame, URL, dokumen, form, button, atau item yang lain. Yang semuanya itu mempunyai properti yang saling berhubungan dengannya, dan masing-masing memiliki nama, lokasi, warna nilai, dan atribut lain. JavaScript digunakan untuk pembuatan Desain Website dan Desain Chatbot yang dibuat.

2.7 **TF-IDF**

Metode *Term Frequency Inverse Document Frequency (TF-IDF)* adalah cara pemberian bobot hubungan suatu kata (term) terhadap dokumen.

a. *TF* murni (*raw TF*), nilai *TF* diberikan berdasarkan jumlah kemunculan suatu term di dokumen

$$tf = tf_{ii} (2.7.1)$$

b. Inverse Document Frequency (IDF) merupakan sebuah perhitungan dari bagaimana term di distribusikan secara luas pada koleksi IDF dokumen yang bersangkutan. IDF menunjukkan hubungan ketersediaan sebuah term dalam seluruh dokumen. Semakin sedikit jumlah dokumen yang mengandung term mengandung term yang dimaksud, maka nilai IDF semakin besar.

$$IDF_j = \log(D/\mathrm{df_j}) \tag{2.7.2}$$

c. Jenis formula TF yang biasa digunakan untuk perhitungan adalah TF murni (raw TF). Dengan demikian rumus umum untuk Term Weighting

TFIDF adalah penggabungan dari formula perhitungan raw TF dengan formula IDF dengan cara mengalikan nilai TF dengan nilai IDF:

$$w_{ij} = tf_{ij} x \log(D/df_j)$$
(2.7.3)

2.8 Cosine Similarity

Cosine similarity merupakan rumus yang digunakan Untuk menghitung kesamaan atau similarity dengan menentukan sudut antara vektor dokumen dengan vektor query dalam dimensi V pada bidang Euclidean. Hasil dari cosine similarity memiliki nilai antara 0 sampai dengan 1. Nilai 0 merupakan nilai yangdidapat apabila dokumen tidak berhubungan dengan query, sedangan nilai 1 berarti dokumen memiliki keterhubungan tinggi dengan query (Lahitani, Permanasari dan Setiawan, 2016). Cosine Similarity digunakan untuk mengambil jawaban yang ditanya oleh customer. Setelah TF-IDF selesai dihitung, bobot tertinggi akan dimasukan ke dalam rumus Cosine Similarity.

$$\cos(d_j, q_k) = \frac{\sum_{i=1}^{n} (t d_{ij} \times t q_{ik})}{\sqrt{\sum_{i=1}^{n} t d_{ij}^2 \times \sum_{i=1}^{n} t q_{ik}^2}}$$
(2.7.4)

Ket: $cos(d_i, q_k)$ = Tingkat kesamaan dokumen dengan query tertentu

 td_{ij} = Term ke-i dalam vektor untuk dokumen ke-j

 tq_{ik} = Term ke-i dalam vektor untuk query ke-k

n = Jumlah term yang unik dalam data set

2.9 Recall dan Precision

Menurut Kurniawan (2010) Recall adalah perbandingan jumlah dokumen relevan yang terambil sesuai dengan query yang diberikan dengan total kumpulan dokumen yang relevan dengan query. Precision adalah perbandingan jumlah dokumen yang relevan terhadap query dengan jumlah dokumen yang terambil dari hasil pencarian. Precision dapat diartikan sebagai ketepatan atau kecocokan (antara permintaan informasi dengan jawaban terhadap permintaan itu). Sedangkan istilah recall dibidang sistem temu kembali informasi (information retrival) berkaitan

dengan kemampuan menemukan kembali informasi yang sudah tersimpan (Pendit 2008).

Rumus penilaian precision yang digunakan dalam penelitian ini adalah :

Precision = <u>Jumlah dokumen relevan yang ditemukan</u> x100% Jumlah semua dokumen yang ditemukan

Sedangkan nilai relatif Recall dihitung dengan rumus :

Recall = Jumlah dokumen relevan yang ditemukan x100%

Jumlah semua dokumen relevan di dalam koleksi

Kedua ukuran diatas biasanya diberi nilai dalam bentuk persentase, 1 sampai 100%. Sebuah sistem informasi akan dianggap baik jika tingkat *recall* maupun *precision*-nya tinggi. Jika seseorang mencari dokumen tentang "Perpustakaan" dan sistem tersebut memiliki 100 buku tentang perpustakaan maka kinerja yang paling baik adalah jika sistem tersebut berhasil menemukan 100 dokumen tentang perpustakaan.

Jika sistem tersebut memberikan 100 temuan, dan ditemukan tersebut ada 50 dokumen tentang perpustakaan, maka nilai *recall*-nya adalah 0,5 (atau 50%) dan nilai *precision*-nya juga 0,5. Kalau sistem tersebut memberikan 1 dokumen saja dan dokumen tersebut adalah "perpustakaan" maka *recall*-nya bernilai 0,01 dan *precision*-nya 1. Nilai *precision*-nya yang tinggi sebenarnya terjadi karena sistem memberikan 1 jawaban kepada pencari informasi. Kalau sistem memberikan 100 dokumen dan hanya 1 yang relevan maka nilai *recall*-nya tetap 0,01 tetapi *precision*-nya merosot ke 0,01 (Pendit 2008). Metode ini digunakan untuk menghitung kecocokan jawaban dari sistem kepada user.

BAB III. METODOLOGI PENELITIAN

3.1 Studi Literatur

Studi literatur adalah pencarian referensi dari berbagai sumber yang memiliki hubungan dengan studi kasus yang ditemukan dan mencari solusi dari permasalahan yang ada. Referensi berisi tentang:

- Chatbot
- TF-IDF
- Cosine Similarity
- Scaffolding

Referensi yang dibutuhkan bisa di dapat dari jurnal, artikel laporan penelitian, dan situs-situs internet. Output dari studi literatur adalah terkumpulnya referensi yang relevan dengan studi kasus yang ada.

3.2 Identifikasi Masalah

Masalah yang dihadapi adalah sulitnya customer menghubungi admin karena keterbatasan waktu sehingga dengan adanya aplikasi diharapkan customer lebih cepat mendapat respon jawaban sesuai dengan jam bertanya.

3.3 Metode Pengumpulan Data

Metode yang digunakan dalam pengambilan data adalah melalui wawancara. Wawancara dilakukan menggunakan media *Whatsapp* dengan admin penyewaan scaffolding. Wawancara dilakukan pada bulan November 2019 hingga bulan maret. Hasil wawancara yang dilakukan adalah didapatkan data barang yang disewakan, harga barang, dan screenshot *chat* admin dengan *customer*, dan informasi-informasi lain terkait dengan operasional penyewaan.

3.4 Metode Pengembangan Sistem

3.4.1 Waterfall

Metode yang digunakan dalam perancangan "Aplikasi Chatbot pada Sistem Informasi Penyewaan Scaffolding dengan Menggunakan Metode TF- IDF" adalah System Development Life Cycle (SDLC) dengan waterfall model. Waterfall model merupakan bentuk umum yang digunakan dalam perancangan sebuah sistem karena dalam setiap tahapan yang dilakukan harus diselesaikan sebelum menuju tahap selanjutnya sehingga tahapan dilakukan secara berurutan dan mendapatkan hasil yang maksimal. Tahapan-tahapan yang dilakukan yaitu:

Gambar 3.1 Waterfall Model

a. Requirement

Pada tahap ini merupakan tahap pengumpulan data untuk seluruh kebutuhan perangkat lunak yang dibutuhkan. Pengumpulan data dilakukan dengan cara observasi, wawancara, atau studi literatur.

b. Design

Pada tahap ini dilakukan penerjemahan kebutuhan sistem dalam sebuah perancangan sebelum dilakukan implementasi ke dalam bentuk *coding*. Tahap ini berfokus pada struktur data, arsitektur data, arsitektur perangkat lunak, dan representasi *interface*.

c. Implementation

Implementasi merupakan tahap pemrograman. Pada tahap ini program dibuat sesuai dengan kebutuhan dan fungsi yang dibutuhkan dan diinginkan. Namun selain itu juga program di analisis apakah telah sesuaai dengan desain sistem yang dibuat.

d. Verification

Tahap pengujian program merupakan tahap yang dilakukan setelah implementasi pembuatan, dimana tahap ini bertujuan untuk mengetahui apakah sistem yang dibuat telah sesuai dengan sistem yang diharapkan dan apakah ada kesalahan yang terjadi dari implementasi program.

e. Maintenance

Tahap maintenance merupakan tahap yang dilakukan setelah sistem yang dibuat sudah jadi. Sehingga pada tahap ini merupakan tahapan pemeliharaan dan memperbaiki kesalahan apabila ditemukan suatu masalah yang tidak ditemukan pada tahap sebelumnya.

3.4.2 Bisnis Proses

Gambar 3.2 Bisnis Proses Peminjaman

a. Deskripsi Bisnis Proses

Customer menguhubungi admin melalui whatsapp untuk menanyakan harga, admin memberikan data harga. Customer akan menyewa barang dengan jangka waktu dan mencantumkan nama barang, admin memberikan format peminjaman, customer mengisi format peminjaman dan memberikan foto ktp, admin mencatat dan memberikan harga yg telah ditentukan. Customer membayar melalui atm/membayar langsung, menunjukkan bukti pembayaran, menyimpan bukti pembayaran. Admin mengirimkan barang dan memberikan surat keluar dan surat masuk. Surat keluar diberikan kepada petugas.

Gambar 3.3 Bisnis Proses Pengembalian

b. Deskripsi Bisnis Proses

Customer mengembalikan barang dengan memberikan surat masuk, admin menerima surat barang masuk, mengecek kelengkapan barang apakah sesuai dengan jumlah peminjaman. Kemudian admin mengupdate data produk dengan menambahkan barang yang telah dikembalikan oleh customer.

3.5 Metode Pengolahan Data

Pada penelitian ini, dilakukan pengolahan data layanan penyewaan, data barang beserta harga yang diperoleh dari wawancara dengan admin penyewaan. Data-data tersebut akan diolah menjadi data set jawaban *chatbot* yang akan dirancang. Kemudian data set yang telah diolah akan masuk ke dalam tahapan *preprocessing*. Tahapan *preprocessing* adalah sebagai berikut:

1. Case Folding

Case Folding merupakan tahapan mengubah semua huruf menjadi huruf kecil. Dengan menerapkan proses ini akan lebih memudahkan pemrosesan kata karena dapat meminimalisir logika yang digunakan dalam proses selanjutnya.

2. Tokenizing

Tokenizing merupakan tahapan pemotongan string input berdasarkan tiap kata yang menyusunnya. Hasil dari proses ini adalah sekumpulan kata-kata tanpa tanda baca, angka maupun karakter.

3. Filtering

Filtering merupakan tahapan untuk menghapus setiap kata-kata yang tidak penting atau kata-kata yang tidak memiliki arti. Proses filtering biasa disebut stop-words removal. Contoh kata-kata yang dikategorikan sebagai stopwords yaitu: dan, dari, di, dan sebagainya.

4. Stemming

Stemming merupakan tahapan pada proses Information Retrieval (IR) untuk mentransformasi kata-kata yang terdapat dalam suatu dokumen ke kata-kata akar/dasar (root word). Proses stemming ini biasa digunakan dalam teks berbahasa Indonesia yang memiliki struktur imbuhan yang tetap dan mudah untuk diolah.

3.6 Perhitungan Manual

TF-IDF adalah proses pembobotan kalimat dengan menjumlahkan nilai setiap *token* per kalimat untuk masalah pencarian informasi. Ide pokok dalam TF-IDF adalah menghitung *weight* setiap kalimat untuk digunakan pada tahap selanjutnya. Setelah menghitung bobot kalimat, kalimat tersebut

diurutkan dari bobot yang tertinggi. Sebagai contoh data respon *chatbot* yang akan digunakan dalam perhitungan TF-IDF ini termuat pada tabel 3.1

Tabel 3.1 Contoh Respon *Chatbot*

Kode	Jawaban/Respon
Q	Harga sewa scaffolding
d1	Penyewaan buka pada pukul 8 pagi
d2	Harga sewa main frame 1,9 Rp55.000 untuk sebulan
d3	Harga sewa main frame 1,9 Rp45.000 untuk 2 minggu
d4	Harga sewa main frame 1,9 Rp35.000 untuk 1 minggu
d5	Hari Jumat dan Minggu Libur.

Proses TF-IDF yang berdasarkan data pada tabel 3.1 sebagai contoh perhitungan TF menggunakan proses *preprocessing*. Dalam melakukan perhitungan digunakan beberapa dokumen untuk mempermudah perhitungan TF-IDF. Hasil proses TF-IDF termuat pada tabel 3.2 dan tabel 3.3.

Tabel 3.2 Perhitungan DF

Dokumen	q	d1	d2	d3	d4	d5	df	log(d/df)
Harga	1	0	1	1	1	0	4	1,5
Sewa	1	1	1	1	1	0	5	1
Scaffolding	1	0	0	0	0	0	1	6
Buka	0	1	0	0	0	0	1	6
Pukul	0	1	0	0	0	0	1	6
Pagi	0	1	0	0	0	0	1	6
Main frame	0	0	1	1	1	0	3	2
Untuk	0	0	1	0	0	0	1	6
bulan	0	0	0	1	1	1	3	2
Minggu	0	0	0	0	0	1	1	6
Hari	0	0	0	0	0	1	1	6
Jumat	0	0	0	0	0	1	1	6
Libur	1	0	1	1	1	0	4	1,5

Tabel 3.3 Perhitungan TF-IDF

Dokumen	Q	d1	d2	d3	d4	d5
Harga	0,1761	0	0,1761	0,1761	0,1761	0
Sewa	0	0	0	0	0	0
Scaffolding	0,7782	0	0	0	0	0
Buka	0	0,7782	0	0	0	0
Pukul	0	0,7782	0	0	0	0
Pagi	0	0,7782	0	0	0	0
Main frame	0	0	0,3010	0,3010	0,3010	0
Untuk	0	0	0,7782	0	0	0
Bulan	0	0	0	0,3010	0,3010	0,3010
Minggu	0	0	0	0	0	0,7782
Hari	0	0	0	0	0	0,7782
Jumat	0	0	0	0	0	0,7782
Libur	0,1761	0	0,1761	0,1761	0,1761	0

Kemudian dihitung hasil perkalian skalar masing-masing query jawaban terhadap query key jawaban. Hasil perkalian dari setiap jawaban dengan query dijumlahkan. Proses perkalian skalar ini dapat dilihat dalam tabel 3.6.

Tabel 3.4 Perkalian Skalar

Dokumen	d1	d2	d3	d4	d5
Harga	0	0,031008	0,031008	0,031008	0
Sewa	0,006270	0,006270	0,006270	0,006270	0
Scaffolding	0	0	0	0	0
Buka	0	0	0	0	0
Pukul	0	0	0	0	0
Pagi	0	0	0	0	0
Main frame	0	0	0	0	0
Untuk	0	0	0	0	0
Bulan	0	0	0	0	0

Minggu	0	0	0	0	0
Hari	0	0	0	0	0
Jumat	0	0	0	0	0
Libur	0,006270	0,037278	0,037278	0,037278	0
Jumlah	0	0,031008	0,031008	0,031008	0

Langkah selanjutnya yaitu melakukan perkalian vektor tiap query key jawaban dengan query jawaban. Hasil perkalian vektor ini dapat dilihat dalam tabel 3.7.

Tabel 3.5 Perkalian Vektor

Dokumen	Q	d1	d2	d3	d4	d5
Harga	0,031008	0	0,031008	0,031008	0,031008	0
Sewa	0,00627	0,00627	0,00627	0,00627	0,00627	0
Scaffolding	0,605519	0	0	0	0	0
Buka	0	0,605519	0	0	0	0
Pukul	0	0,605519	0	0	0	0
Pagi	0	0,605519	0	0	0	0
Main frame	0	0	0,090619	0,090619	0,090619	0
Untuk	0	0	0,605519	0	0	0
Bulan	0	0	0	0,090619	0,090619	0,090619
Minggu	0	0	0	0	0	0,605519
Hari	0	0	0	0	0	0,605519
Jumat	0	0	0	0	0	0,605519
Libur	0,642797	1,822828	0,733416	0,218516	0,218516	1,907177
Jumlah	0,031008	0	0,031008	0,031008	0,031008	0
Jumlah Akar	0,006270	0,006270	0,006270	0,006270	0,006270	0

Langkah terakhir adalah menghitung nilai *Cosine Similarity* dengan rumus seperti yang tercantum dalam rumus 2.10.1. Hasil perhitungan *Cosine Similarity* dapat dilihat dalam tabel 3.6.

Tabel 3.6 Hasil Perhitungan Similarity

Kode	Dokumen	Nilai Similarity	Persentase
d1	Penyewaan buka pada pukul 8 pagi	0,005792	0,58%
d2	Harga sewa main frame 1,9 Rp55.000	0,032241	3,22%
	untuk sebulan		
d3	Harga sewa main frame 1,9 Rp45.000	0,093118	9,31%
	untuk 2 minggu		
d4	Harga sewa main frame 1,9 Rp35.000	0,170595	17,06%
	untuk 1 minggu		
d5	Hari Jumat dan Minggu Libur.	0	0%

Berdasarkan hasil perhitungan *Cosine Similarity* pada tabel di atas, maka bisa disimpulkan jika respon pada dokumen ke-2 merupakan respon yang paling mendekati dari pertanyaan yang diajukan oleh user.

BAB IV. ANALISIS DAN PERANCANGAN SISTEM

4.1 Gambaran Umum Sistem

Sistem *chatbot* berbasis *web* berdasarkan data barang dari CV Penyewaan digunakan untuk memberikan respon terhadap pertanyaan *customer* yang diajukan kepada sistem *chatbot*. Sistem ini menggunakan algoritma TF-IDF dan *Cosine Similarity* untuk mencari jawaban terbaik yang akan diberikan oleh sistem berdasarkan *input* dari *customer*. Algoritma TF-IDF digunakan untuk memberikan pembobotan kata pada setiap data jawaban yang ada di sistem. Kemudian dilanjutkan dengan metode *Cosine Similarity* untuk menghitung similaritas antara *input* dari *customer* dengan data jawaban yang ada pada sistem. Sistem *chatbot* ini menggunakan bahasa pemrograman PHP dan *MySQL* sebagai *database*-nya. Dengan adanya sistem ini, diharapkan *customer* tidak akan merasa kesulitan dalam mencari informasi seputar layanan dan produk yang ditawarkan oleh CV Penyewaan. Adapun alur aplikasi *chatbot* ini dijelaskan pada gambar 4.1

Gambar 4.1 Flowchart Alur Proses Chatbot

4.2 Analisa Permasalahan

Permasalahan yang terjadi adalah *customer service* memiliki waktu kerja dan seringkali tidak bisa melayani pertanyaan dari *customer* selama 24 jam nonsto. Hal ini menyebabkan *customer* harus menunggu lama untuk mendapatkan jawaban dari informasi yang mereka tanyakan kepada *customer service* sesuai dengan jam bertanya.

4.3 Analisa Kebutuhan Non Fungsional

Terdapat beberapa analisa kebutuhan non fungsional meliputi kebutuhan perangkat lunak (*software*) dan perangkat keras (*hardware*). Berikut adalah rincian kebutuhan sistem yang akan dibuat:

4.3.1 Perangkat Lunak (Software)

Spesifikasi umum perangkat lunak yang digunakan dalam pembuatan sistem tercantum dalam tabel 4.1.

Tabel 4.1 Spesifikasi Minimum Perangkat Lunak

Software	Keterangan
Windows 10	Sistem operasi yang digunakan untuk menjalankan
	program <i>chatbot</i> .
Visual Studio Code	Aplikasi text editor yang digunakan untuk menulis
	kode program.
Apache HTTP Server	Sebagai web server dari aplikasi chatbot yang akan
	dibuat.
MySQL	Sebagai Database Management System (DBMS)
	untuk menyimpan data.
PHP	Sebagai bahasa pemrograman utama yang digunakan
	untuk membuat aplikasi <i>chatbot</i> .

4.3.2 Perangkat Keras (*Hardware*)

Spesifikasi umum perangkat keras yang digunakan dalam pembuatan sistem dapat dilihat pada tabel 4.2.

Tabel 4.2 Spesifikasi Minimum Perangkat Keras

Hardware	Keterangan
Processor	AMD Dual-Core A4-9120 APU 2.2 GHz
RAM	4 GB
Hard disk	500 GB
Monitor	Disesuaikan
Perangkat Input	Keyboard dan Mouse

4.4 Analisa Kebutuhan Fungsional

Kebutuhan fungsional adal ah kebutuhan yang berisi proses yang dilakukan oleh sistem. Dalam hal ini *customer* dapat menggunakan layanan yang ada pada sistem. Layanan yang dimaksud adalah sebagai berikut:

- 1. Sistem dapat load dataset dari database.
- 2. Sistem dapat menerima *input* pertanyaan dari *customer*.
- 3. Sistem dapat melakukan perhitungan TF-IDF.
- 4. Sistem dapat melakukan perhitungan Cosine Similarity.
- 5. Sistem dapat memberikan respon jawaban berdasarakan apa yang telah di-*input*-kan *customer*.

4.5 Analisis Data

Analisis data adalah proses pengolahan dan penghitungan dari seluruh data yang sudah diperoleh dari penelitian yang telah dilakukan secara sistematis. Analisis data yang digunakan pada penelitian ini untuk menguji variabel yang ada adalah penghitungan bobot tiap kata dan menghitung kemiripan kata untuk mendapatkan jawaban yang diharapkan sesuai dengan pertanyaan yang diajukan oleh customer.

Namun sebelum data diuji perlu dahulu dilakukan uji perhitungan manual guna melihat hasil apakah akan sesuai dengan jawaban yang nantinya diharapkan. Jika hasil yang diperlihatkan kemiripan tinggi maka uji yang dilakukan sesuai dengan harapan jawaban yang diinginkan.

4.6 Perancangan Sistem

4.5.1 *Use Case*

Use Case merupakan sebuah teknik yang digunakan dalam pengembangan sebuah software atau sistem informasi untuk menangkap kebutuhan fungsional dari sistem yang bersangkutan. Use Case menjelaskan interaksi yang terjadi antara aktor, yaitu inisiator dari sistem itu sendiri, dengan sistem yang ada. Sebuah Use Case direpresentasikan dengan langkah yang sederhana. Use Case pada sistem ini dapat dilihat pada gambar 4.2.

Gambar 4.2 Use Case

4.5.1.1 Deskripsi *Use Case*

Deskripsi *Use Case* bertujuan untuk memberikan gambaran umum tentang fungsional suatu proses yang di dalamnya melibatkan sebuah sistem.

Tabel 4.3 Deskripsi *Use Case*

No.	Use Case	Deskripsi
1	Melakukan login	Melakukan login untuk dapat
		mengakses sistem
2	Mengelola data produk	Menambah, mengubah dan
		menghapus data produk
3	Mengelola data customer	Menambah, mengubah dan
		menghapus data customer
4	Mengelola data transaksi	Menambah, mengubah dan
		menghapus data transaksi
5	Mengelola data chatbot	Menambah, mengubah, menghapus
		dan melakukan perhitungan data
		chatbot
6	Mengajukan pertanyaan	Melakukan input pertanyaan pada
		sistem mengenai informasi yang
		diharapkan <i>customer</i>
7	Mendapatkan respon	Mendapatkan respon sesuai dengan
		hasil yang di-input oleh customer

4.5.1.2 Skenario *Use Case*

Skenario *Use Case* berisi uraian nama, aktor yang berhubungan dengan *use case* tersebut, tujuan dari *use case*, deskripsi tentang *use case*, pra-kondisi yang harus dipenuhi dan pasca-kondisi yang diharapkan setelah berjalannya fungsional *use case*.

1. Melakukan login

Tabel 4.4 Skenario *Use Case* Melakukan *Login*

Nama Use Case	Melakukan login
Aktor	Admin
Tujuan	Admin bisa masuk ke dalam sistem
Kondisi Awal	-

Skenario	a. Admin mengisi username dan password
	b. Jika sesuai, tampil halaman dashboard sistem
	c. Jika tidak sesuai, tampil notifikasi username dan
	password tidak valid
Invariant 1	-

2. Mengelola data produk

Tabel 4.5 Skenario *Use Case* Mengelola Data Produk

Nama Use Case	Mengelola data produk
Aktor	Admin
Tujuan	Admin dapat menambah, mengubah dan menghapus data produk
Kondisi Awal	Admin sudah login
Skenario	a. Admin melihat data produk
	b. Admin menambah data produk
	c. Admin menyimpan data produk
Invariant 1	Admin mengubah data produk
Invariant 2	Admin menghapus data produk

3. Mengelola data customer

Tabel 4.6 Skenario *Use Case* Mengelola Data *Customer*

Nama Use Case	Mengelola data customer
Aktor	Admin
Tujuan	Admin dapat menambah, mengubah dan menghapus data <i>customer</i>
Kondisi Awal	Admin sudah login
Skenario	a. Admin melihat data <i>customer</i>b. Admin menambah data <i>customer</i>c. Admin menyimpan data <i>customer</i>
Invariant 1	Admin mengubah data customer
Invariant 2	Admin menghapus data customer

4. Mengelola data transaksi

Tabel 4.7 Skenario *Use Case* Mengelola Data Transaksi

Nama Use Case	Mengelola data transaksi
Aktor	Admin
Tujuan	Admin dapat melihat, menambah dan menghapus data
	transaksi percetakan
Kondisi Awal	Admin sudah login
Skenario	a. Admin melihat data transaksi
	b. Admin mengisi form transaksi
	c. Admin menyimpan data transaksi
Invariant 1	Admin menambah barang pada data transaksi
	penyewaan
Invariant 2	Admin merubah data transaksi penyewaan
Invariant 3	Admin menghapus data transaksi penyewaan

5. Mengelola data chatbot

Tabel 4.8 Skenario *Use Case* Mengelola Data *Chatbot*

Nama Use Case	Mengelola data <i>chatbot</i>
Aktor	Admin
Tujuan	Admin dapat menambah, mengubah, menghapus dan
	melakukan perhitungan data <i>chatbot</i>
Kondisi Awal	Admin sudah login
Skenario	a. Admin melihat data <i>chatbot</i>
	b. Admin menambah data <i>chatbot</i>
	c. Admin menyimpan data <i>chatbot</i>
	d. Admin melakukan perhitungan TF-IDF pada
	data <i>chatbot</i>
	e. Admin melihat hasil perhitungan data <i>chatbot</i>
Invariant 1	Admin mengubah data <i>chatbot</i>
Invariant 2	Admin menghapus data chatbot

6. Mengajukan pertanyaan pada sistem

Tabel 4.9 Skenario *Use Case* Mengajukan Pertanyaan pada Sistem

Nama Use Case	Mengajukan pertanyaan pada sistem
Aktor	User
Tujuan	User dapat melakukan input pertanyaan pada sistem
Kondisi Awal	-
Skenario	a. <i>User</i> mengisikan pertanyaan pada form <i>input</i> chatbot
	b. <i>User</i> menekan tombol <i>submit</i>
Invariant 1	-

7. Mendapatkan respon dari chatbot

Tabel 4.10 Skenario Use Case Mendapatkan Respon dari Chatbot

Nama Use Case	Mendapatkan respon dari <i>chatbot</i>
Aktor	User
Tujuan	User dapat menerima respon atas pertanyaan yang telah
	dimasukan sebelumnya
Kondisi Awal	User telah melakukan input pertanyaan
Skenario	a. Sistem menerima <i>input</i> dari user
	b. Sistem melakukan perhitungan similaritas
	terhadap <i>input</i> dari <i>user</i>
	c. Sistem melakukan pencarian respon yang
	memiki similaritas tertinggi
	d. User akan menerima respon dari sistem terkait
	pertanyaan yang diajukan
Invariant 1	Sistem akan memunculkan respon ketidaktahuan
	apabila pertanyaan dari user tidak cocok pada jawaban
	apapun

4.5.2 Flowchart

Flowchart adalah suatu bagan dengan simbol-simbol tertentu yang menggambarkan urutan proses secara mendetail dan hubungan antara suatu proses (instruksi) dengan proses lainnya dalam suatu program. Dalam sistem ini dijabarkan flowchart proses pembobotan TF-IDF dan perhitungan Cosine Similarity.

4.5.2.1 Flowchart Pembobotan TF-IDF

Gambar 4.3 Flowchart Pembobotan TF-IDF

4.5.2.2 Flowchart Perhitungan Cosine Similarity

Gambar 4.4 Flowchart Perhitungan Cosine Similarity

4.5.3 Data Flow Diagram (DFD)

Data Flow Diagram (DFD) adalah suatu diagram yang menggunakan notasi-notasi untuk menggambarkan arus dari data pada suatu sistem atau menjelaskan proses kerja suatu sistem, yang penggunaanya sangat membantu untuk memahami sistem secara logika, terstruktur dan jelas.

4.5.3.1 *Context Diagram*

Context Diagram merupakan tingkatan tertinggi dalam aliran data diagram dan hanya memuat satu proses, menunjukkan sistem secara keseluruhan. Semua entitas eksternal yang ditunjukkan pada diagram konteks berikut aliran data utama menuju ke sistem. *Context Diagram* pada sistem ini ditunjukkan dalam gambar 4.5

Gambar 4.5 Context Diagram

4.5.3.2 DFD Level 1

Gambar 4.6 DFD Level 1

4.5.3.3 DFD Level 2

1. DFD Level 2 Proses 1

Gambar 4.7 DFD Level 2 Proses 1

Gambar 4.8 DFD Level 2 Proses 2

3. DFD Level 2 Proses 3

Gambar 4.9 DFD Level 2 Proses 3

Gambar 4.10 DFD Level 2 Proses 4

5. DFD Level 2 Proses 5

Gambar 4.11 DFD Level 2 Proses 5

Gambar 4.12 DFD Level 2 Proses 6

7. DFD Level 2 Proses 7

Gambar 4.13 DFD Level 2 Proses 7

8. DFD Level 2 Proses 8

Gambar 4.14 DFD Level 2 Proses 8

Gambar 4.15 DFD Level 2 Proses 9

4.5.4 Spesifikasi Proses

Tabel 4.11 Spesifikasi proses login

No. Proses	1
Nama	Login
Deskripsi	Proses yang digunakan ketika akan mengakses halaman
	admin <i>chatbot</i> .
Data Masuk	data_login
Data Keluar	info_validasi_login, login_berhasil, login_gagal
Logika Proses	1. Jika pengguna sudah login sistem akan
	menampilkan layar dashboard.
	2. Jika belum, lanjut ke no. 3.
	3. Sistem menampilkan halaman login.
	4. Pengguna mengisi data login (username dan
	password).
	5. Setelah pengguna tekan tombol login, sistem akan memeriksa data login ke <i>database</i> tabel admin.
	6. Jika data ditemukan dan username/password benar,
	maka sistem akan menampilkan layar utama dari
	halaman admin yang berisi menu-menu untuk
	mengakses proses-proses 2,3,4,5,6,7,8.
	7. Jika data tidak ditemukan atau <i>username/password</i>
	salah, maka sistem akan menampilkan pesan gagal
	login dan sistem akan menampilkan halaman login
	kembali.

Tabel 4.12 Spesifikasi proses kelola jawaban

No. Proses	2		
Nama	Kelola Jawaban		
Deskripsi	Proses yang digunakan untuk mengelola jawaban dari		
	pertanyaan yang mungkin akan ditanyakan oleh user.		
Data Masuk	data_jawaban, login_berhasil		
Data Keluar	info_jawaban		
Logika Proses	1. Dalam halaman kelola jawaban terdapat proses		
	tambah jawaban, edit jawaban, dan hapus jawaban.		
	2. Tambah jawaban ditekan akan menampilkan form		
	tambah jawaban.		
	3. Edit jawaban ditekan akan menampilkan form edit		
	jawaban untuk jawaban yang dimaksud.		
	4. Hapus jawaban ditekan akan menampilkan		
	konfirmasi penghapusan data jawaban.		

Tabel 4.13 Spesifikasi proses kelola pertanyaan

No. Proses	3		
Nama	Kelola Pertanyaan		
Deskripsi	Proses yang digunakan untuk mengelola pertanyaan dari		
	yang diajukan oleh user.		
Data Masuk	data_pertanyaan, login_berhasil		
Data Keluar	info_pertanyaan		
Logika Proses	Dalam halaman kelola pertanyaan terdapat proses hapus pertanyaan.		
	2. Hapus jawaban ditekan akan menampilkan konfirmasi penghapusan data jawaban.		

Tabel 4.14 Spesifikasi kelola produk

No. Proses	4		
Nama	Kelola Produk		
Deskripsi	Proses yang digunakan untuk mengelola produk yang		
	tersedia.		
Data Masuk	data_produk, login_berhasil		
Data Keluar	info_produk		
Logika Proses	1. Dalam halaman kelola produk terdapat proses		
	tambah produk, edit produk, dan hapus produk.		
	2. Tambah produk ditekan akan menampilkan form		
	tambah produk.		
	3. Edit produk ditekan akan menampilkan form edit		
	produk untuk produk yang dimaksud.		
	4. Hapus produk ditekan akan menampilkan		
	konfirmasi penghapusan data layanan.		

Tabel 4.15 Spesifikasi kelola customer

No. Proses	5		
Nama	Kelola Customer		
Deskripsi	Proses yang digunakan untuk mengelola customer dari		
	penyewaan.		
Data Masuk	data_customer, login_berhasil		
Data Keluar	info_customer		
Logika Proses	 Dalam halaman kelola customer terdapat proses tambah customer, edit customer, dan hapus customer. Tambah customer ditekan akan menampilkan form tambah customer. Edit customer ditekan akan menampilkan form edit customer untuk customer yang dimaksud. 		

4.	Hapus	customer	ditekan	akan	menampilkan
	konfirm	nasi penghap	usan data	custom	er.

Tabel 4.16 Spesifikasi kelola transaksi

No. Proses	6		
Nama	Kelola Transaksi		
Deskripsi	Proses yang digunakan untuk mengelola transaksi dari		
	penyewaan.		
Data Masuk	data_transaksi, login_berhasil		
Data Keluar	info_transaksi		
Logika Proses	1. Dalam halaman kelola transaksi terdapat proses		
	tambah transaksi, edit transaksi, dan hapus transaksi.		
	2. Tambah transaksi ditekan akan menampilkan form		
	tambah transaksi.		
	3. Edit transaksi ditekan akan menampilkan form edit		
	transaksi untuk transaksi yang dimaksud.		
	4. Hapus transaksi ditekan akan menampilkan		
	konfirmasi penghapusan data transaksi.		

Tabel 4.17 Spesifikasi kelola pengaturan

No. Proses	7
Nama	Kelola Pengaturan
Deskripsi	Proses yang digunakan untuk mengelola pengaturan dari
	penyewaan.
Data Masuk	data_ganti_password, login_berhasil
Data Keluar	info_ganti_password
Logika Proses	1. Dalam halaman kelola pengaturan terdapat proses
	ganti password.

Tabel 4.18 Spesifikasi kelola token

No. Proses	8		
Nama	Kelola Token		
Deskripsi	Proses yang digunakan untuk mengelola token dari		
	penyewaan.		
Data Masuk	data_token		
Data Keluar	info_hasil_tokenizing		
Logika Proses	1. Dalam halaman kelola token terdapat proses		
	tokenizing, filtering, steaming, parse token sama.		
	2. Proses tokenizing untuk memotong string input		
	berdasarkan kata yang tersusun.		
	3. Proses <i>filtering</i> untuk menghapus setiap kata-kata		
	yang tidak penting atau kata-kata yang tidak		
	memiliki arti.		

4.	Proses steaming untuk mentransformasi kata-kata	
	yang terdapat dalam suatu dokumen ke kata-kata	
	akar/dasar (root word).	

Tabel 4.19 Spesifikasi kelola chatting

No. Proses	9		
Nama	Kelola Chatting		
Deskripsi	Proses yang digunakan untuk mengelola chatting dari		
	penyewaan.		
Data Masuk	Pertanyaan		
Data Keluar	Jawaban		
Logika Proses	Dalam halaman kelola chatting terdapat proses input		
	pertanyaan, hitung similaritas, dan menampilkan		
	hasil jawaban.		
	2. Saat customer masuk ke halam chatbot, customer		
	mengetikkan pertanyaan.		
	3. Sistem menghitung kemiripan kata pertanyaan		
	dengan jawaban yang diinginkan.		
	4. Sistem menampilkan jawaban dengan kemiripan		
	tinggi.		

4.7 Perancangan Basisdata

Gambar 4.16 Entitas Relationship Diagram

Tabel Admin

Nama Tabel : tb_admin

Deskripsi : Berisi data admin

Tabel 4.20 Tabel Admin

	Nama Field	Tipe Data	Keterangan
No.		-	Č
1.	Admin_id	Int(11)	AutoIncrement, PK
2.	Admin_name	Varchar(128)	
3.	Admin_username	Varchar(15)	
4.	Admin_password	Varchar(15)	

Tabel Cache

Nama Tabel : tb_cache

Deskripsi : Berisi data cache

Tabel 4.21 Tabel Cache

No.	Nama Field	Tipe Data	Keterangan
1.	Id	Int(11)	AutoIncrement, PK
2.	Query	Varchar(255)	
3.	Doc_id	Int(11)	FK
4.	Nilai	Float	

Tabel Customer

Nama Tabel : tb_customer

Deskripsi : Berisi data customer

Tabel 4.22 Tabel Customer

No.	Nama Field	Tipe Data	Keterangan
110.			
1.	customer_id	Int(5)	AutoIncrement, PK
2.	customer_nik	Varchar(20)	
3.	customer_name	Varchar(255)	
4.	customer_address	Text	
5.	Customer_phone	Varchar(20)	
6.	Customer_company	Varchar(150)	
7.	Customer_project	Varchar(150)	

Tabel Detail

Nama Tabel : tb_detail

Deskripsi : Berisi data detail transaksi

Tabel 4.23 Tabel Detail

No.	Nama Field	Tipe Data	Keterangan
1.	detail_id	Int(10)	AutoIncrement, PK
2.	Transaction_id	int(11)	FK

3.	Product_id	Varchar(5)	FK
4.	quantity	Int(5)	

Tabel Dokumen

Nama Tabel : tb_dokumen

Deskripsi : Berisi data dokumen

Tabel 4.24 Tabel Dokumen

No.	Nama Field	Tipe Data	Keterangan
1.	id	Int(5)	AutoIncrement, PK
2.	dokumen	Varchar(255)	

Tabel Index

Nama Tabel : tb_index

Deskripsi : Berisi data index

Tabel 4.25 Tabel Index

No.	Nama Field	Tipe Data	Keterangan
1.	id	Int(11)	AutoIncrement, PK
2.	Term	Varchar(255)	
3.	Id_doc	Int(11)	FK
4.	jumlah	int(11)	
5.	bobot	Float	

Tabel Produk

Nama Tabel : tb_product

Deskripsi : Berisi data produk

Tabel 4.26 Tabel Produk

No.	Nama Field	Tipe Data	Keterangan
1.	product_id	Int(11)	AutoIncrement, PK
2.	product_name	Varchar(25)	

3.	product_owp	int(5)	
4.	product_twp	int(5)	
5.	Product_omp	Int(5)	
6.	Product_ep	Int(5)	
7.	Product_stock	Int(3)	
8.	Product_weight	Int(5)	

Tabel Stem

Nama Tabel : tb_stem

Deskripsi : Berisi data stem

Tabel 4.27 Tabel Stem

	Nama Field	Tipe Data	Keterangan
No.			
1.	id	Int(11)	AutoIncrement, PK
2.	term	Varchar(255)	
3.	stem	varchar(255)	

Tabel Transaksi

Nama Tabel : tb_transaction

Deskripsi : Berisi data transaksi

Tabel 4.28 Tabel Transaksi

	Nama Field	Tipe Data	Keterangan
No.			
1.	id	Int(11)	AutoIncrement, PK
2.	Id_cust	Int(5)	FK
3.	fdate	Date	
4.	ldate	Date	
5.	loanstatus	Varchar(20)	
6.	paidstatus	Varchar(20)	

Tabel Vektor

Nama Tabel : tb_vektor

Deskripsi : Berisi data vektor

Tabel 4.29 Tabel Vektor

No.	Nama Field	Tipe Data	Keterangan
1.	Doc_id	Int(11)	AutoIncrement, PK
2.	panjang	Float	

4.8 Perancangan Antar Muka Pengguna

a. Halaman awal

PENYEWAAN SCAFFOLDING	НОМЕ	ABOUT	CONTACT	СНАТВОТ	LOGIN
НОМЕ					
ABOUT					
CONTACT					
CONTACT					

Gambar 4.17 Mockup Halaman Awal Sistem

b. Halaman Chat

Gambar 4.18 Mockup Halaman Chat

c. Halaman Login

Gambar 4.19 Mockup Halaman Login

d. Halaman Admin

Gambar 4.20 Mockup Halaman Utama Admin

e. Halaman Master Chatbot

Gambar 4.21 Mockup Halaman Data Jawaban

f. Halaman Penghitungan TF-IDF

Gambar 4.22 Mockup Halaman Perhitungan TF-IDF

g. Halaman Pertanyaan

Gambar 4.23 Mockup Halaman Data Pertanyaan

BAB V. IMPLEMENTASI DAN PENGUJIAN

5.1 Implementasi Basisdata

Implementasi Basisdata untuk sistem yang dibangun diberi nama db_sewa. Basisdata yang dibuat memiliki beberapa tabel yang sebelumnya telah dirancangkan. Berikut merupakan gambar dari struktur database.

Gambar 5.1 Struktur Database

Dibawah ini akan menjelaskan pada masing-masing tabel

5.1.1 Tabel Admin

Tabel *tb_admin* yang sebelumnya telah dirancang pada tabel 4.20 diimplementasikan pada gambar 5.2.

Gambar 5.2 Tabel Admin

5.1.2 Tabel Dokumen

Tabel *tb_dokumen* yang sebelumnya telah dirancang pada tabel 4.24 diimplementasikan pada gambar 5.3.

Gambar 5.3 Tabel Dokumen

5.1.3 Tabel *Index*

Tabel *tb_index* yang sebelumnya telah dirancang pada tabel 4.25 diimplementasikan pada gambar 5.4.

Gambar 5.4 Tabel Index

5.1.4 Tabel Vektor

Tabel *tb_vektor* yang sebelumnya telah dirancang pada tabel 4.29 diimplementasikan pada gambar 5.5.

Gambar 5.5 Tabel Vektor

5.1.5 Tabel Cache

Tabel *tb_cache* yang sebelumnya telah dirancang pada tabel 4.21 diimplementasikan pada gambar 5.6

Gambar 5.6 Tabel Cache

5.1.6 Tabel Stem

Tabel *tb_stem* yang sebelumnya telah dirancang pada tabel 4.27 diimplementasikan pada gambar 5.7.

Gambar 5.7 Tabel Stem

5.1.7 Tabel Product

Tabel *tb_product* yang sebelumnya telah dirancang pada tabel 4.26 diimplementasikan pada gambar 5.8.

Gambar 5.8 Tabel Product

5.1.8 Tabel Customer

Tabel *tb_customer* yang sebelumnya telah dirancang pada tabel 4.22 diimplementasikan pada gambar 5.9.

Gambar 5.9 Tabel Customer

5.1.9 Tabel Transaksi

Tabel *tb_transaksi* yang sebelumnya telah dirancang pada tabel 4.28 diimplementasikan pada gambar 5.10.

Gambar 5.10 Tabel Transaksi

5.1.10 Tabel Detail Transaksi

Tabel *tb_detail_transaksi* yang sebelumnya telah dirancang pada tabel 4.23 diimplementasikan pada gambar 5.10.

Gambar 5.11 Tabel Detail Transaksi

5.2 Implementasi Sistem

Implementasi proses sistem yang berdasarkan pada perancangan terdiri dari beberapa potongan kode program sebagai berikut.

5.3.1 Menampilkan Data *Master* Jawaban

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk menampilkan data *master* jawaban *chatbot*. Potongan kode program dapat dilihat pada gambar 5.12.

```
<?php
   include '../koneksi.php';
   $data = mysqli_query($koneksi, "SELECT * FROM tb_dokumen");
   $no = 1;
   while($d = mysqli_fetch_array($data)) {
?>
```

Gambar 5.12 Potongan Kode Menampilkan Data Master Jawaban

5.3.2 Preprocessing

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk melakukan proses *preprocessing*. Potongan kode program dapat dilihat pada gambar 5.13.

```
function preproses($teks)
{
   include '../koneksi.php';
   //Bersihkan tanda baca, ganti dengan space
```

```
$teks = str_replace("'", " ", $teks);
    $teks = str_replace("-", " ", $teks);
    $teks = str_replace(")", " ", $teks);
    $teks = str replace("(", " ", $teks);
    $teks = str replace("\"", " ", $teks);
   $teks = str_replace("/", " ", $teks);
    $teks = str_replace("=", " ", $teks);
   $teks = str_replace(".", " ", $teks);
    $teks = str_replace(",", " ", $teks);
    $teks = str_replace(":", " ", $teks);
    $teks = str replace(";", " ", $teks);
    $teks = str_replace("!", " ", $teks);
    $teks = str replace("?", " ", $teks);
    //Ubah ke huruf kecil
    $teks = strtolower(trim($teks));
    //Stopword remove
    $stoplist = array("yang", "juga", "dari", "dia", "kami", "ka
mu", "ini", "itu", "atau", "dan", "tersebut", "pada", "dengan",
"adalah", "yaitu");
    foreach ($stoplist as $i => $value) {
        $teks = str replace($stoplist[$i], "", $teks);
    //Terapkan stemming (ubah ke kata dasar)
    $restem = mysqli_query($koneksi, "SELECT * FROM tb_stem ORDE
R BY id");
    while ($rowstem = mysqli fetch array($restem)) {
        $teks = str_replace($rowstem['term'], $rowstem['stem'],
$teks);
    //Return teks
   $teks = strtolower(trim($teks));
   return $teks;
```

Gambar 5.13 Potongan Kode *Preprocessing*

5.3.3 Hitung Bobot TF-IDF

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk melakukan proses hitung bobot TF-IDF. Potongan kode program dapat dilihat pada gambar 5.14.

```
function hitungBobot()
{
  include '../koneksi.php';
```

```
//Hitung total doc id
    $resn = mysqli query($koneksi, "SELECT DISTINCT id doc FROM
tb index");
    $n = mysqli num rows($resn);
    //Ambil setiap record dalam tb index
    //Hitung bobot untuk setiap term
    $resBobot = mysqli query($koneksi, "SELECT * FROM tb index O
RDER BY id");
    $num_rows = mysqli_num_rows($resBobot);
   print("Terdapat " . $num_rows . " term yang diberikan bobot.
 <br>");
   while ($rowBobot = mysqli fetch array($resBobot)) {
        //$w = tf * log(n/N)
        $term = $rowBobot['term'];
        $tf = $rowBobot['jumlah'];
        $id = $rowBobot['id'];
        //Jumlah dokumen yang mengandung term tersebut (N)
        $resNTerm = mysqli_query($koneksi, "SELECT COUNT(*) AS N
 FROM tb index WHERE term = '$term'");
        $rowNTerm = mysqli fetch array($resNTerm);
        $NTerm = $rowNTerm['N'];
        $w = $tf * log($n / $NTerm);
        //Update bobot
        $resUpdateBobot = mysqli_query($koneksi, "UPDATE tb_inde
x SET bobot = $w WHERE id = $id");
   }
}
```

Gambar 5.14 Potongan Kode Hitung Bobot TF-IDF

5.3.4 Hitung Panjang Vektor Dokumen

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk melakukan proses hitung vektor dokumen. Potongan kode program dapat dilihat pada gambar 5.15.

```
function panjangVektor()
{
   include '../koneksi.php';
   //Hapus isi tabel vektor
   mysqli_query($koneksi, "TRUNCATE TABLE tb_vektor");

   //Ambil setiap doc id dari table index
   //Hitung panjang vektor untuk setiap doc id
```

```
//Simpan ke table vektor
    $resDocId = mysqli query($koneksi, "SELECT DISTINCT id doc F
ROM tb index");
    $num_rows = mysqli num rows($resDocId);
    print('Terdapat ' . $num_rows . " dokumen yang dihitung panj
ang vektornya. <br>");
   while ($rowDocId = mysqli fetch array($resDocId)) {
        $docId = $rowDocId['id doc'];
        $resVektor = mysqli query($koneksi, "SELECT bobot FROM t
b index WHERE id doc = $docId");
        //Jumlahkan semua bobot kuadrat
        $panjangVektor = 0;
       while ($rowVektor = mysqli fetch array($resVektor)) {
            $panjangVektor = $panjangVektor + $rowVektor['bobot'
}
        //Hitung akarnya
        $panjangVektor = sqrt($panjangVektor);
        //Masukkan ke dalam tabel vektor
        $resInsertVektor = mysqli query($koneksi, "INSERT INTO t
b_vektor (doc_id, panjang) VALUES ($docId, $panjangVektor)");
   }
}
```

Gambar 5.15 Potongan Kode Hitung Panjang Vektor Dokumen

5.3.5 Hitung Similarity

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk melakukan proses hitung *similarity*. Potongan kode program dapat dilihat pada gambar 5.16.

```
function hitungSimilarity($query)
{
   include '../koneksi.php';
   //Ambil jumlah total dokumen yang telah diindex
   $resn = mysqli_query($koneksi, "SELECT COUNT(*) AS n FROM tb
_vektor");
   $rown = mysqli_fetch_array($resn);
   $n = $rown['n'];

   //Terapkan preprocessing pada query
   $aquery = explode(" ", $query);
```

```
//Hitung panjang vektor query
    $panjangQuery = 0;
    $aBobotQuery = array();
    for (\$i = 0; \$i < count(\$aquery); \$i++) {
        //hitung bobot untuk term ke-i pada query, log(n/N);
        //hitung jumlah dokumen yang mengandung term tersebut
        $resNTerm = mysqli query($koneksi, "SELECT COUNT(*) AS n
 FROM tb index WHERE term = '$aquery[$i]'");
        $rowNTerm = mysqli fetch array($resNTerm);
        $NTerm = $rowNTerm['n'];
        //idf = 0
        $idf = 0;
        if ($NTerm > 0) {
            $idf = log($n / $NTerm);
            //Simpan di array
            $aBobotQuery[] = $idf;
            $panjangQuery = $panjangQuery + $idf * $idf;
        }
    }
    $panjangQuery = sqrt($panjangQuery);
    jumlah mirip = 0;
    //Ambil setiap term dari doc id, bandingkan dengan query
    $resDocId = mysqli query($koneksi, "SELECT * FROM tb vektor
ORDER BY doc id");
    while ($rowDocId = mysqli fetch array($resDocId)) {
        dotproduct = 0;
        $docId = $rowDocId['doc id'];
        $panjangDocId = $rowDocId['panjang'];
        $resTerm = mysqli query($koneksi, "SELECT * FROM tb inde
x WHERE id doc = $docId");
        while ($rowTerm = mysqli fetch array($resTerm)) {
            for ($i = 0; $i < count($aquery); $i++) {}
                //Jika term sama
                if ($rowTerm['term'] == $aquery[$i]) {
                    $dotproduct = $dotproduct + $rowTerm['bobot'
| * $aBobotQuery[$i];
                }
            }
        }
        if ($dotproduct > 0) {
            $similarity = $dotproduct / ($panjangQuery * $panjan
gDocId);
            //Simpan kemiripan ke tabel cache
            $resInsertCache = mysqli query($koneksi, "INSERT INT
O tb cache (query, doc id, nilai) VALUES ('$query', $docId, $sim
ilarity)");
            $jumlah mirip++;
```

```
}

if ($jumlah_mirip == 0) {
    $resInsertCache = mysqli_query($koneksi, "INSERT INTO tb
    _cache (query, doc_id, nilai) VALUES ('$query', 0, 0)");
}

}
```

Gambar 5.16 Potongan Kode Hitung Similarity

5.3.6 Penentuan Respon Chatbot

Pada potongan kode berikut dijelaskan bagaimana alur kode program yang digunakan untuk melakukan proses penentuan respon *chatbot* berdasarakan *input* masukan dari user. Potongan kode program dapat dilihat pada gambar 5.17.

```
function ambilCache($keyword)
    include '../koneksi.php';
    $resCache = mysqli query($koneksi, "SELECT * FROM tb cache W
HERE query = '$keyword' ORDER BY nilai DESC LIMIT 1");
    $num rows = mysqli num rows($resCache);
    if (\text{num rows} > 0) {
        //Tampilkan respon
        while ($rowCache = mysqli fetch array($resCache)) {
            $doc id = $rowCache['doc id'];
            $nilai similarity = $rowCache['nilai'];
            if ($doc id != 0) {
                $responChat = mysqli query($koneksi, "SELECT * F
ROM tb dokumen WHERE id = $doc id");
                $rowChat = mysqli fetch array($responChat);
                $answer = $rowChat['dokumen'];
                print($answer);
            } else {
                print('Jawaban tidak ditemukan...');
    } else {
        hitungSimilarity($keyword);
        $resCache = mysqli query($koneksi, "SELECT * FROM tb cac
he WHERE query = '$keyword' ORDER BY nilai DESC LIMIT 1");
        $num rows = mysqli num rows($resCache);
        while ($rowCache = mysqli_fetch_array($resCache))
```

Gambar 5.17 Potongan Kode Penentuan Respon Chatbot

5.3 Implementasi Anatarmuka Pengguna

Implementasi antar muka yang dirancangkan sebelumnya. Berikut adalah implementasi masing-masing antar muka.

5.3.1 Antarmuka Pengguna Login Admin

Implementasi dari antarmuka pengguna *login admin* yang sebelumnya telah dirancangkan pada gambar 4.19 dapat dilihat pada gambar 5.18.

Gambar 5.18 Halaman Login

5.3.2 Antarmuka Pengguna Halaman *Dashboard*

Implementasi dari antarmuka pengguna halaman *dashboard* yang sebelumnya telah dirancangkan pada gambar 4.20 dapat dilihat pada gambar 5.19.

Gambar 5.19 Halaman Dashboard

5.3.3 Interface Halaman Kelola Data Master

Implementasi dari antarmuka pengguna halaman kelola data *master* yang sebelumnya telah dirancangkan pada gambar 4.21 dapat dilihat pada gambar 5.20

Gambar 5.20 Halaman Master Jawaban

5.3.4 *Interface* Halaman Hitung TF-IDF

Implementasi dari antarmuka pengguna halaman hitung TF-IDF yang sebelumnya telah dirancangkan pada gambar 4.22 dapat dilihat pada gambar 5.21

Gambar 5.21 Halaman Perhitungan TF-IDF

5.3.5 *Interface* Halaman Data Pertanyaan

Implementasi dari antarmuka pengguna halaman hitung TF-IDF yang sebelumnya telah dirancangkan pada gambar 4.23 dapat dilihat pada gambar 5.22

Gambar 5.22 Halaman Pertanyaan dari Customer

Halaman utama dimana customer dapat melihat barang apa saja yang disewakan, mengetahui mengenai penyewaan scaffolding, siapa pemiliknya dan dapat memberikan komentar mengenai proses penyewaan yang telah dilakukan. Halaman utama ditunjukan pada Gambar 5.23 dari implementasi gambar 4.17.

Gambar 5.23 Halaman Utama

Halaman berikutnya adalah halaman bagi customer untuk melakukan chat dengan bot untuk menanyakan jam buka, harga sewa barang, hari kerja. Ditujukan pada Gambar 5.24 dari implementasi gambar 4.18.

Gambar 5.24 Halaman Chatbot

5.4 Pengujian Fungsional

Pengujian fungsional dilakukan dengan cara menguji setiap fitur aplikasi dan melihat kecocokan hasil yang terjadi dengan hasil yang diinginkan.

5.3.6 Pengujian Sistem

Pengujian sistem ini dilakukan dengan cara menjalankan aplikasi secara detail pada setiap menu yang bertujuan mengetahui fitur mana yang sudah berfungsi baik maupun yang tidak berfungsi. Hal ini bertujuan agar aplikasi dapat berjalan sebagaimana fungsinya.

Tabel 5.1 Pengujian Fungsional Halaman Login Admin

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Form Login	Mengalihkan	Admin yang	Berhasil
	Admin	admin ke	berhasil	
		dashboard admin	memasukkan	
		sesuai <i>username</i>	username dan	
		dan <i>password</i> .	password beralih	
			ke halaman	
			dashboard.	

Tabel 5.2 Pengujian Fungsional Menu Admin

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu	Menampilkan	Halaman	Berhasil
	Dashboard	halaman dashboard	dashboard	
			berhasil tampil.	
2.	Dropdown	Menampilkan data	Data barang	Berhasil
	Master	barang	berhasil tampil	
	Penyewaan			
	Barang			

3.	Dropdown	Menampilkan data	Data pelanggan	Berhasil
	Master	pelanggan	berhasil tampil	
	Penyewaan			
	Pelanggan			
4.	Dropdown	Menampilkan data	Data Transaksi	Berhasil
	Master	Transaksi	berhasil tampil	
	Penyewaan			
	Transaksi			
5.	Dropdown	Menampilkan data	Data Jawaban	Berhasil
	Master Chatbot	Jawaban	berhasil tampil	
	Jawaban			
6.	Dropdown	Menampilkan data	Data Hitung TF-	Berhasil
	Master Chatbot	hitung TF-IDF	IDF Berhasil	
	Hitung TF-IDF		tampil	
7.	Dropdown	Menampilkan data	Data Pertanyaan	Berhasil
	Master Chatbot	pertanyaan	berhasil tampil	
	History			
	Pertanyaan			
8.	Dropdown	Menampilkan	Halaman ganti	Berhasil
	Pengaturan	halaman ganti	password berhasil	
	Ganti Password	password	tampil	
9.	Dropdown	Menampilkan	Halaman awal	Berhasil
	Pengaturan	halaman awal	berhasil tampil	
	Logout	sistem		
	1	1		

Tabel 5.3 Pengujian Fungsional Admin Data Produk

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu Data	Menampilkan data	Data produk	Berhasil
	Produk	produk.	berhasil tampil.	

2.	Tombol Tambah	Menampilkan form	Form tambah data	Berhasil
	Data Produk	tambah dan	tampil dan data	
		menyimpan data	produk berhasil	
		produk.	tersimpan.	
3.	Tombol Edit	Menampilkan form	Form <i>edit</i> data	Berhasil
	Data Produk	edit dan mengubah	tampil dan data	
		data produk.	produk berhasil	
			dirubah.	
4.	Tombol Delete	Menghapus data	Data produk	Berhasil
	Data Produk	produk.	berhasil terhapus.	

Tabel 5.4 Pengujian Fungsional Admin Data Pelanggan

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu Data	Menampilkan data	Data pelanggan	Berhasil
	Pelanggan	pelanggan.	berhasil tampil.	
2.	Tombol Tambah	Menampilkan form	Form tambah data	Berhasil
	Data Pelanggan	tambah dan	tampil dan data	
		menyimpan data	pelanggan	
		pelanggan.	berhasil	
			tersimpan.	
3.	Tombol Edit	Menampilkan form	Form <i>edit</i> data	Berhasil
	Data Pelanggan	edit dan mengubah	tampil dan data	
		data pelanggan.	pelanggan	
			berhasil dirubah.	
4.	Tombol Delete	Menghapus data	Data pelanggan	Berhasil
	Data Pelanggan	pelanggan.	berhasil terhapus.	

Tabel 5.5 Pengujian Fungional Admin Data Transaksi

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	

1.	Menu Data	Menampilkan data	Data transaksi	Berhasil
	Transaksi	transaksi.	berhasil tampil.	
2.	Tombol Tambah	Menampilkan form	Form tambah data	Berhasil
	Data Transaksi	tambah dan	tampil dan data	
		menyimpan data	transaksi berhasil	
		transaksi.	tersimpan.	
3.	Tombol Detail	Menampilkan	Detail data	Berhasil
	Data Transaksi	halaman detail data	transaksi berhasil	
		transaksi.	tampil.	
4.	Tombol Edit	Menampilkan form	Form <i>edit</i> data	Berhasil
	Data Transaksi	edit dan mengubah	tampil dan data	
		data transaksi.	transaksi berhasil	
			dirubah.	
5.	Tombol Delete	Menghapus data	Data transaksi	Berhasil
	Data Transaksi	transaksi.	berhasil terhapus.	

Tabel 5.6 Pengujian Fungsional Admin Data Master

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu Data	Menampilkan data	Data jawaban	Berhasil
	Jawaban	jawaban.	berhasil tampil.	
2.	Tombol Tambah	Menampilkan form	Form tambah data	Berhasil
	Data Jawaban	tambah dan	tampil dan data	
		menyimpan data	jawaban berhasil	
		jawaban.	tersimpan.	
4.	Tombol Edit	Menampilkan form	Form <i>edit</i> data	Berhasil
	Data Jawaban	edit dan mengubah	tampil dan data	
		data jawaban.	jawaban berhasil	
			dirubah.	
5.	Tombol Delete	Menghapus data	Data jawaban	Berhasil
	Data Jawaban	jawaban.	berhasil terhapus.	

Tabel 5.7 Pengujian Fungsional Admin Hasil Perhitungan

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu Data	Menampilkan data	Data perhitungan	Berhasil
	Perhitungan TF-	hasil perhitungan	berhasil tampil.	
	IDF	TF-IDF		
2.	Tombol Hitung	Menampilkan	Modal	Berhasil
	Vektor	modal hasil	perhitungan	
		perhitungan vektor	vektor jawaban	
		jawaban	berhasil tampil.	

Tabel 5.8 Pengujian Fungsional Admin Menu History Jawaban

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Menu Data	Menampilkan data	Data similarity	Berhasil
	History	similarity antara	berhasil tampil.	
	Pertanyaan	query user dengan		
		dokumen sistem.		
2.	Tombol Delete	Menghapus data	Data history	Berhasil
	History	history pertanyaan.	pertanyaan	
	Pertanyaan		berhasil terhapus.	

Tabel 5.9 Pengujian Fungsional *User Chatbot*

No.	Menu	Hasil yang	Hasil yang	Status
		Diharapkan	Diperoleh	
1.	Form	Sistem	Respon informasi	Berhasil
	Pertanyaan <i>User</i>	menampilkan	berhasil tampil	
		respon informasi	sesuai dengan	
		berdasarkan	keyword dari	
		keyword dari user.	user.	

5.3.7 Pengujian Metode

Pengujian metode yang digunakan pada sistem ini dimaksudkan untuk menguji ketepatan perhitungan dari metode yang digunakan, dengan menggunakan metode TF-IDF dan *Cosine Similarity* untuk menentukan respon dari *chatbot* sesuai dengan *keyword* yang dimasukkan oleh user. Pengujian ketepatan penghitungan metode menggunak teknik *Recall and Precision*. Penghitungan dilakukan dengan melakukan percobaan sebanyak 25 kali menggunakan *query* terhadap 25 dokumen yang ada di dalam *database*. *Query* yang digunakan adalah *query* yang memiliki masing-masing 1 untuk setiap *query*. Artinya, 1 *query* hanya relevan dengan 1 dokumen dimana dokumen tersebut merupakan dokumen jawaban yang relevan berdasarkan query jawaban yang dimasukkan.

Setelah melakukan percobaan terhadap 25 dokumen dengan *query* tersebut, didapatkan hasil benar yang ditemukan berjumlah 21 dokumen yang ditemukan relevan (sesuai dengan *query*), dan 4 dokumen yang ditemukan tidak relevan (tidak sesuai dengan *query*). Oleh karena itu, maka hasil pengujian *Recall and Precision* adalah sebagai berikut:

5.5 Pengujian Akurasi

Tabel 5.10 Tabel Pengujian Akurasi

No	Pertanyaan	Jawaban Sistem	Akurasi
1.	Pinjam main frame	harga sewa main frame	Akurat
		1,7 selama 1 minggu	
		30.000 rupiah, selama 2	
		minggu 40.000 rupiah,	
		selama 1 bulan 50.000	
		rupiah	
2.	Selamat pagi	Selamat pagi	Akurat
3	Selamat siang	Selamat siang	Akurat
4	Selamat sore	Selamat sore	Akurat

5	Selamat malam	Selamat malam	Akurat
6	Mau menyewa main	harga sewa main frame	Akurat
	frame	1,7 selama 1 minggu	
		30.000 rupiah, selama 2	
		minggu 40.000 rupiah,	
		selama 1 bulan 50.000	
		rupiah	
7	Buka jam berapa?	Penyewaan buka pukul	Akurat
		8 pagi	
8	Buka hari apa?	Penyewaan buka pada	Akurat
		hari Senin, Selasa,	
		Rabu, Kamis, dan Sabtu	
9	Libur hari apa?	hari jumat dan minggu	Akurat
		libu	
10.	Mau beli scaffolding	Jawaban tidak	Akurat
		ditemukan	

BAB VI. HASIL DAN PEMBAHASAN

6.1 Hasil

Data yang digunakan dalam penelitian ini adalah data harga layanan percetakan yang sudah diubah ke dalam bentuk dokumen jawaban *chatbot*. Sebelum diimplementasikan ke dalam algoritma *cosine similarity*, data dokumen jawaban tersebut akan masuk ke dalam tahap *preprocessing*. Setelah dokumen tersebut melalui tahap *preprocessing* maka akan masuk ke dalam tahap pembobotan TF-IDF. Penghitungan bobot TF-IDF dilakukan untuk memberi bobot tiap *term* yang terdapat pada kalimat yang dicari oleh *user*. Penghitungan bobot TF IDF menggunakan rumus (3) dan menghasilkan pembobotan sebagai berikut:

Gambar 6.1 Contoh Perhitungan Bobot TF-IDF

Pada gambar 6.1 merupakan contoh hasil dari penghitungan TF-IDF yang telah dilakukan oleh sistem. Setelah dilakukan pembobotan kata, maka akan dilakukan penghitungan menggunakan *cosine similarity* untuk membandingkan tingkat kemiripan antar dokumen dengan *query* yang dimasukkan oleh *user*. Penghitungan *cosine similarity* menggunakan rumus sesuai dengan rumus (4). Sebagai contoh *user* memasukkan input "harga banner korea" ke dalam chatbot. Hasil penghitungan *cosine similarity* menghasilkan 3 dokumen jawaban yang memiliki tingkat kemiripan tertinggi diantara dokumen lainnya. Tingkat kemiripan 3 dokumen tersebut dapat dilihat pada tabel 6.1.

Tabel 6.1 Hasil Penghitungan Cosine Similarity

No.	Query User	Dokumen	Nilai Similarity
1	harga sewa scaffolding	harga sewa 1 set main frame 1,7 selama 1 minggu 30.000 rupiah, selama 2 minggu 40.000 rupiah, selama 1 bulan 50.000 rupiah	0.192847
2		Penyewaan buka pukul 8 pagi	0.365148
3		Penyewaan buka pada hari Senin, Selasa, Rabu, Kamis, dan Sabtu	0.374634

Berdasarkan hasil pada tabel 6.1 maka didapati pada dokumen yang ke 3 merupakan dokumen dengan tingkat similaritas tertinggi terhadap *query* yang diinputkan oleh *user*. Dokumen tersebut kemudian dikirim sebagai respon *chatbot* atas kalimat yang telah diinputkan oleh *user*.

6.2 Pembahasan

Berdasarkan dari hasil pengujian data-data penelitian yang telah dilakukan oleh peneliti, berikut paparan pembahasan hasil penelitian:

Penggunaan metode TF-IDF dan *cosine similarity* dapat diterapkan ke dalam sistem *chatbot* untuk merespon permintaan informasi dari *user*.

Perhitungan TF-IDF dapat digunakan untuk membobotkan setiap *term* yang dicari oleh *user* dalam koleksi dokumen jawaban.

Metode *cosine similarity* dapat digunakan untuk melakukan perhitungan tingkat similaritas antar dokumen terhadap *query* yang dicari oleh *user*.

Penggunaan metode *cosine similarity* kurang cocok diterapkan pada *chatbot* penjualan online karena tidak dapat merespon permintaan pesanan dari *user*.

BAB VII. KESIMPULAN DAN SARAN

7.1 Kesimpulan

Berdasarkan pembahasan yang telah dilakukan pada bab I hingga bab VI, maka dapat disimpulkan bahwa Sistem ini dapat Melakukan Tokenezing (Memisah kata penyusun dari suatu dokumen) dan menghitung bobot Tf-Idf setiap kata tersebut pada tiap array. Kemudian menggunakan Metode TF-IDF dan Cosine Similarity untuk mencari jawaban pada sistem. Sehingga saat user menuliskan pertanyaan, akan muncul jawaban sesuai harapan user. Sistem juga dapat memudahkan user dalam menerima informasi sesuai dengan yang diharapkan.

7.2 Saran

Untuk pengembangan sistem informasi Aplikasi Chatbot pada Sistem Informasi Penyewaan Scaffolding dengan Menggunakan metode TF-IDF lebih lanjut agar semakin memberikan manfaat untuk user ada beberapa hal yang bisa dijadikan bahan kajian lebih lanjut, yaitu

- a. Untuk kedepannya disarankan chatbot dapat menambahkan respon inputan dengan kata-kata yang salah dalam pengetikan.
- b. Untuk kedepannya disarankan chatbot menambahkan informasi-informasi penyewaan menjadi lebih detail.
- c. Untuk kedepannya disarankan chatbot dapat dikembangkan lebih lanjut.

DAFTAR PUSTAKA

- Andreev, Andrey (2018, July 11) CodeIgniter [Online]. Available: https://codeigniter.com/.
- Oswald and Kay, (2002) Apache Friends [Online]. Available: https://www.apachefriends.org/index.html.
- R. Kavitha B. & Murthy Chethana R. "Chatbot for healthcare system using Artificial Intelligence," International Journal of Advance Research, Ideas and Innovations in Technology, vol.5 pp.1304-1307, June, 2019.
- Suryani, Dhebys & Larasati, Eka. (2017). Aplikasi Chatbot Objek Wisata Jawa Timur Berbasis AIML. *SMARTICS Journal: 3*, 47-54.
- Suryani, Dhebys & Putera, Yoga. (2018). Aplikasi Chatbot Berbasis Web Pada Sistem Informasi Layanan Publik Kesehatan di Malang dengan Menggunakan Metode TF-IDF. *Jurnal Informatika Polinema*, 4(3): 224-228.
- Suryani, Dhebys & Aulia, Indinabilah. (2018). Penerapan Metode TF-IDF dan N-Gram pada Pengembangan Aplikasi Chatbot Berbasis LINE untuk Layanan Publik Kesehatan di Kota Malang. *Jurnal Informatika Polinema*. *5*(*1*): 7-11.
- Dwi Listio, Y., Zulkarnain, A., Tirtana, A. (2019). Pembuatan Sistem Pencarian Pekerjaan Menggunakan TF-IDF. *Jurnal Ilmiah Teknologi Informasi Asia*, *13*(2): 91-100.
- Yamaguchi, Hiroshi & Mozgoyov, Maxim. (2018). A Chatbot Based on AIML Rules Extracted From Twitter Dialogues. *Communication Paper Poznan*, 17: 37-42.
- Astiningrum, Mungki & Shoburu Rohmah, Maya. (2018). Implementasi NLP dengan Konversi Kata pada Sistem Chatbot Konsultasi Laktasi. *Jurnal Informatika Polinema*, *5*(1): 46-52.
- Natadian Astuti, Rani & Fatchan, Muhammad. (2019). Perancangan Aplikasi Teknologi Chatbot untuk Industri Komersial 4.0. *e-Prosiding SNasTekS* 2019, 4: 339-348.
- Melita, Ria & Dirjam, Taslimun. (2018). Penerapan Metode Term Frequency Inverse Document Frequency dan Cosine Similarity pada Sistem Temu Kembali Informasi untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Syarah Umdatil Ahkam). *Jurnal Teknik Informatika*, 11(2): 149-164.

- Satria Paliwahet, I Nyoman & Gede Darma Putra, I Ketut. (2017). Pencarian Informasi Wisata Daerah Bali Menggunakan Teknologi Chatbot. *Lontar Komputer*, 8(3): 144-153.
- Riyani, Ade & Burhanuddin, Auliya. (2019). Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen. *Jurnal Linguistik Komputasional, 2(1): 23-27*

LAMPIRAN - LAMPIRAN