Multiresolution image processing

- Laplacian pyramids
- Some applications of Laplacian pyramids
- Discrete Wavelet Transform (DWT)
- Wavelet theory
- Wavelet image compression

Image pyramids

[Burt, Adelson, 1983]

Image pyramid example

Gaussian pyramid

Laplacian pyramid

Overcomplete representation

Number of samples in Laplacian or Gaussian pyramid =

$$\left| \left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^P} \right) \le \frac{4}{3} \right|$$
 number of original image samples

LoG vs. DoG

Laplacian of Gaussian

Difference of Gaussians

Image processing with Laplacian pyramid

Expanded Laplacian pyramid

Mosaicing in the image domain

Mosaicing by blending Laplacian pyramids

Expanded Laplacian pyramids

Blending Laplacian pyramids

Bernd Girod: EE368 Digital Image Processing

Multiresolution Image Processing no. 11

Image analysis with Laplacian pyramid

Multiscale edge detection

Zero-crossings of Laplacian images of different scales

Multiscale face detection

[Rowley, Baluja, Kanade, 1995]

Example: multiresolution noise reduction

Original

Noisy

Noise reduction:
3-level Haar transform
no subsampling
w/ soft coring

1-d Discrete Wavelet Transform

 Recursive application of a two-band filter bank to the lowpass band of the previous stage yields octave band

splitting:

Cascaded analysis / synthesis filterbanks

2-d Discrete Wavelet Transform

Review: Z-transform and subsampling

Generalization of the discrete-time Fourier transform

$$x(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} ; \quad z \in \mathbb{C} ; r^{-} < |z| < r^{+}$$

- Fourier transform on unit circle: substitute $z = e^{j\omega}$
- Downsampling and upsampling by factor 2

Two-channel filterbank

$$\hat{x}(z) = \frac{1}{2} g_0(z) \left[h_0(z) x(z) + h_0(-z) x(-z) \right] + \frac{1}{2} g_1(z) \left[h_1(z) x(z) + h_1(-z) x(-z) \right]$$

$$= \frac{1}{2} \left[h_0(z) g_0(z) + h_1(z) g_1(z) \right] x(z) + \frac{1}{2} \left[h_0(-z) g_0(z) + h_1(-z) g_1(z) \right] x(-z)$$

Aliasing

Aliasing cancellation if :

$$g_0(z) = h_1(-z) -g_1(z) = h_0(-z)$$

Example: two-channel filter bank with perfect reconstruction

Impulse responses, analysis filters:

Lowpass

highpass

$$\left(\frac{-1}{4}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{-1}{4}\right)$$
 $\left(\frac{1}{4}, \frac{-1}{2}, \frac{1}{4}\right)$

Impulse responses, synthesis filters <u>highpass</u> Lowpass

$$\left(\frac{1}{4},\frac{1}{2},\frac{1}{4}\right)$$

$$\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$
 $\left(\frac{1}{4}, \frac{1}{2}, \frac{-3}{2}, \frac{1}{2}, \frac{1}{4}\right)$

"Biorthogonal 5/3 filters" "LeGall filters"

- Mandatory in JPEG2000
- Frequency responses:

Lifting

Analysis filters

L "lifting steps"

[Sweldens 1996]

 First step can be interpreted as prediction of odd samples from the even samples

Lifting (cont.)

Synthesis filters

- Perfect reconstruction (biorthogonality) is directly build into lifting structure
- Powerful for both implementation and filter/wavelet design

Example: lifting implementation of 5/3 filters

Verify by considering response to unit impulse in even and odd input channel.

Conjugate quadrature filters

Achieve aliasing cancelation by

Prototype filter

$$h_0(z) = g_0(z^{-1}) \equiv f(z)$$

$$h_1(z) = g_1(z^{-1}) = zf(-z^{-1})$$
 [Smith, Barnwell, 1986]

Impulse responses

$$h_0[k] = g_0[-k] = f[k]$$

$$h_1[k] = g_1[-k] = (-1)^{k+1} f[-(k+1)]$$

- With perfect reconstruction: orthonormal subband transform!
- Perfect reconstruction: find power complementary prototype filter

$$\left| F\left(e^{j\omega}\right) \right|^2 + \left| F\left(e^{j(\omega \pm \pi)}\right) \right|^2 = 2$$

Wavelet bases

Consider Hilbert space $\mathcal{L}^2(\mathbb{R})$ of finite-energy functions $\mathbf{x} = x(t)$.

Wavelet basis for $\mathcal{L}^2(\mathbb{R})$: family of linearly independent functions

$$\psi_n^{(m)}(t) = \sqrt{2^{-m}} \psi\left(2^{-m}t - n\right)$$
 "mother wavelet"

that span $\mathcal{L}^2(\mathbb{R})$. Hence any signal $\mathbf{x} \in \mathcal{L}^2(\mathbb{R})$ can be written as

$$\mathbf{x} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} y^{(m)} [n] \psi_n^{(m)}$$

Multi-resolution analysis

Nested subspaces

$$... \subset V^{(2)} \subset V^{(1)} \subset V^{(0)} \subset V^{(-1)} \subset V^{(-2)} \subset ... \subset \mathcal{L}^{2}(\mathbb{R})$$

Upward completeness
$$\bigcup_{m \in \mathbb{Z}} V^{(m)} = \mathcal{L}^{2}(\mathbb{R})$$

Downward completeness
$$\bigcap_{m \in \mathbb{Z}} V^{(m)} = \{ \mathbf{0} \}$$

Self-similarity
$$x(t) \in V^{(0)}$$
 iff $x(2^{-m}t) \in V^{(m)}$

Translation invariance
$$x(t) \in V^{(0)}$$
 iff $x(t-n) \in V^{(0)}$ for all $n \in \mathbb{Z}$

There exists a "scaling function" $\varphi(t)$ with integer translates $\varphi_n(t) = \varphi(t-n)$ such that $\{\varphi_n\}_{n\in\mathbb{Z}}$ forms an orthonormal basis for $V^{(0)}$

Multiresolution Fourier analysis

Relation to subband filters

Since $V^{(0)} \subset V^{(-1)}$, recursive definition of scaling function

$$\varphi(t) = \sum_{n=-\infty}^{\infty} g_0[n] \varphi_n^{(-1)}(t) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(2t-n)$$
linear combination
of scaling functions in $V^{(-1)}$

Orthonormality

$$\begin{split} \delta \big[\mathbf{n} \big] &= \left\langle \varphi_0^{(0)}, \varphi_n^{(0)} \right\rangle \\ &= \int_{-\infty}^{\infty} \left(\sum_{i} g_0 \big[i \big] \varphi_i^{(-1)} (t) \sum_{j} g_0 \big[j \big] \varphi_{j+2n}^{(-1)} (t) \right) dt \\ &= \sum_{i,j} g_0 \big[i \big] g_0 \big[j - 2n \big] \left\langle \varphi_i^{(-1)}, \varphi_j^{(-1)} \right\rangle = \sum_{i} g_0 \big[i \big] g_0 \big[i - 2n \big] \end{split}$$

 g_0 [k] unit norm and orthogonal to its 2-translates: corresponds to synthesis lowpass filter of orthonormal subband transform

Wavelets from scaling functions

 $W^{(p)}$ is orthogonal complement of $V^{(p)}$ in $V^{(p-1)}$

$$W^{(p)} \perp V^{(p)}$$
 and $W^{(p)} \cup V^{(p)} = V^{(p-1)}$

Orthonormal wavelet basis $\left\{\psi_n^{(0)}\right\}$ for $W^{(0)} \subset V^{(-1)}$

$$\psi(t) = \sum_{n=-\infty}^{\infty} g_1[n] \varphi_n^{(-1)}(t) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_1[n] \varphi_n(2t-n)$$
linear combination
of scaling functions in $V^{(-1)}$

Using conjugate quadrature high-pass synthesis filter

$$g_1[n] = (-1)^{n+1} g_0[-(n-1)]$$

The mutually orthonormal functions, $\left\{\psi_n^{(0)}\right\}_{n\in\mathbb{Z}}$ and $\left\{\varphi_n^{(0)}\right\}_{n\in\mathbb{Z}}$, together span $V^{(-1)}$.

Easy to extend to dilated versions of $\psi(t)$ to construct orthonormal wavelet basis

$$\left\{\psi_n^{(m)}\right\}_{n,m\in\mathbb{Z}} \text{ for } \mathcal{L}^2(\mathbb{R}).$$

Calculating wavelet coefficients for a continuous signal

Signal synthesis by discrete filter bank

Suppose continuous signal
$$x^{(0)}(t) = \sum_{n \in \mathbb{Z}} y_0^{(0)}[n] \varphi(t-n) = \sum_{n \in \mathbb{Z}} y_0^{(0)}[n] \varphi_n^{(0)} \in V^{(0)}$$

Write as superposition of $x^{(1)}(t) \in V^{(1)}$ and $w^{(1)}(t) \in W^{(1)}$

$$x^{(0)}(t) = \sum_{i \in \mathbb{Z}} y_0^{(i)}[i] \varphi_n^{(i)} + \sum_{j \in \mathbb{Z}} y_1^{(i)}[j] \psi_n^{(i)}$$

$$= \sum_{n \in \mathbb{Z}} \varphi_n^{(0)} \left(\sum_{i \in \mathbb{Z}} y_0^{(i)}[n] g_0[n-2i] + \sum_{j \in \mathbb{Z}} y_1^{(i)}[j] g_1[n-2i]\right)$$

- Signal analysis by analysis filters $h_0[k]$, $h_1[k]$
- Discrete wavelet transform

1-d Discrete Wavelet Transform

Example: Daubechies wavelet, order 2

Example: Daubechies wavelet, order 9

Comparison JPEG vs. JPEG2000

Lenna, 256x256 RGB Baseline JPEG: 4572 bytes

Lenna, 256x256 RGB JPEG-2000: 4572 bytes

Comparison JPEG vs. JPEG2000

JPEG with optimized Huffman tables 8268 bytes

JPEG2000 8192 bytes

