Research Summary

Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa

Project Purpose

"Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa" leverages the use of Sentinel-2 imagery sourced via Google Earth Engine (GEE) and two machine learning algorithms random forest (RF) and classification and regression trees (CART) - to devise a reproducible and accessible framework for monitoring mangroves in Senegal and The Gambia.

Why It Matters? (Impacts)

Over the past decade, the two selected countries have experienced accelerating deforestation and extreme weather events. As a result, mangroves play a crucial role in creating climate resilience for agricultural communities. By leveraging open satellite data and cloud computing platforms like Google Earth Engine, the project establishes a robust machine-learning method, effectively addressing painpoints in local natural resource management, particularly national progress documentation and SDG indicator tracking.

DATA COLLECTION

RF - maximum extent

Methodology

FEATURE ENGINEERING

RESULTS

Results

in Both Countries

km² of PoA **Mangroves** in Total

- Both classifiers achieved high overall accuracy (>90%) in both countries.
- For both countries, the Mangrove class has the highest accuracy, followed by the "Other Vegetation" class.
- · RF generated more stable and consistent results than CART. Respectively, RF and CART predicted: 990~2726 km² (RF) vs. 826~4396 km² (CART) mangroves in Senegal, and 340~964 km² (RF) vs. 245~1271 km² (CART) mangroves in The Gambia.

Question

What's the benefit and trade-offs of running and comparing multiple iterations of the same classifier?

How feasible can the methodology be promoted for understudied regions?

Citations

- 1. Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. https://doi.org/10.3390/rs11242928
- 2. Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz, T. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. Justice, and J. R. G. Townshend. Global Forest Change. University of Maryland, 2025. Accessed February 19, 2025. https://glad.earthengine.app/ view/global-forest-change.

Fig. 2 Prediction Results of Mangrove Forests (Mondal et al. 2019)

CART - maximum extent