Power k-Means Clustering

Kathryn Carbone, Cindy Lyu, Erik Swanke

Paper Background

- Power k-Means Clustering
- Jason Xu, Kenneth Lange
- Proceedings of 36th International Conference on Machine Learning
- 2019

Motivation An introduction to clustering

What is clustering?

What is the problem? Why is it interesting?

$$f_{-\infty}(\Theta) = \sum_{j=1}^{n} \sum_{i \in C_j} ||x_i - \theta_j||^2$$

$$f_{-\infty}(\Theta) = \sum_{i=1}^{N} \min_{1 \le j \le k} ||x_i - \theta_j||^2$$

Labelled Clusters

Lloyd's Algorithm

Algorithm 1 Lloyd's Algorithm

Initialize Θ with k random datapoints

$$X \leftarrow x$$

 $\Theta \leftarrow \theta$ Randomly initialize centroids

while Not Converged do

Empty each C_j

for $x_i \in X$ do

$$j = argmin_{j}\{||x_{i} - \theta_{j}||\}$$

 $C_j \leftarrow C_j \cup x_i$

end for

end for

for $j = 1 \cdots k$ do

$$\theta_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

8

 \triangleright Recalculate each centroid as the average of points in its cluster

▶ Reassign each datapoint to its nearest cluster

end while

Generalized and Power Means

A simple way of describing a family of functions

$$M_g(\mathbf{y}) = g^{-1} \left[\frac{g(y_1) + \dots + g(y_k)}{k} \right]$$

$$M_s(\mathbf{y}) = \left[\frac{y_1^s + \dots + y_k^s}{k} \right]^{\frac{1}{s}}$$

$$\frac{\partial}{\partial y_j} M_s(\mathbf{y}) = \frac{1}{k} (\sum_{i=1}^k y_i^s)^{\frac{1}{s} - 1} \frac{1}{k} y_j^{s - 1} > 0$$

$f_{-\infty}(\Theta) = \sum_{i=1}^{N} \min_{1 \le j \le k} ||x_i - \theta_j||^2$

k-Harmonic Means

Replace k-means objective with proxy

$$f_{-1}(\Theta) = \sum_{i=1}^{N} H A_{1 \le j \le k} ||x_i - \theta_j||^2 \qquad f_{-1}(\Theta) = \sum_{i=1}^{N} \frac{k}{\sum_{j=1}^{k} (||x_i - \theta_j||^2)^{-1}}$$

- Fewer local minima
- Curse of dimensionality

k-Harmonic Means

Min Function

Objective surfaces

- Simulated data
- 100 data points
- 3 clusters
- 1 dimension

Power K-Means: Objective Function

$$f_s(\Theta) = \sum_{i=1}^n M_s(||x_i - \theta_1||^2, \dots, ||x_i - \theta_k||^2)$$
$$f_s(\Theta) = \left[\frac{(||x_i - \theta_1||^2)^s + \dots + (||x_i - \theta_k||^2)^s}{h}\right]^{-s}$$

Expanded objective is general case of KHM

$$f_{-1}(\Theta) = \sum_{i=1}^{N} \frac{k}{\sum_{j=1}^{k} (||x_i - \theta_j||^2)^{-1}}$$

Non-convex objective function f(x).

• Surrogate function $g(x|x_m)$

$$f(x_m) = g(x_m \mid x_m)$$
$$f(x) \leqslant g(x \mid x_m)$$

tangency at x_m domination for all x

Minimize the surrogate function to obtain the new estimate.

Updating Rule:

$$x_{m+1} = \operatorname*{arg\,min}_{x} g(x \mid x_{m})$$

 Find a sequence of surrogate functions until convergence to a stationary point.

$$f_s(\Theta) = \sum_{i=1}^n M_s(||x_i - \theta_1||^2, \cdots, ||x_i - \theta_k||^2)$$

Algorithm 2 Power k-Means Algorithm

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of clusters k

- **input:** Data matrix $A \in \mathbb{R}$, number of clusters K
- 1: Initialize $s_0 < 0, \, \Theta_0, \, \eta > 1$

 \triangleright initial exponent s_0 , exponent increment factor η

- 2: repeat
- 3: $\omega_{m,ij} \leftarrow \left(\sum_{l=1}^{k} ||x_i \theta_{m,l}||^{2s_m}\right)^{\frac{1}{s_m}-1} ||x_i \theta_{m,l}||^{2(s_m-1)}$
- 4: $\theta_{m+1,j} \leftarrow \left(\sum_{i=1}^n \omega_{m,ij}\right)^{-1} \sum_{i=1}^n \omega_{m,ij} x_i$
- 5: $s_{m+1} \leftarrow \eta \cdot s_m$
- 6: **until** convergence

$$f_s(\Theta) = \sum_{i=1}^n M_s(||x_i - \theta_1||^2, \cdots, ||x_i - \theta_k||^2)$$

- Exploit the convexity by computing the Hessian:
 - S < 1, concave</p>
 - Otherwise, convex
- Find the linear majorization:

$$M_s(\mathbf{y}) \leqslant M_s(\mathbf{y}_m) + \sum_{j=1}^K \nabla_{y_j} M_s(y_m)^T (y_j - y_{m,j}).$$

Substitution and Summation:

$$f_s(\Theta) \leqslant f_s(\Theta_m) + \sum_{i=1}^n \sum_{j=1}^K \nabla_{y_j} M_s(y_m) ||x_i - \theta_j||^2 - \sum_{i=1}^n \sum_{j=1}^K \nabla_{y_j} M_s(y_m) ||x_i - \theta_{m,j}||^2.$$

 Focus on the term that is relevant in minimizing the right-hand side.

$$\omega_{\mathfrak{m},\mathfrak{i}\mathfrak{j}} = \nabla_{\mathfrak{y}\mathfrak{j}} M_{\mathfrak{s}}(\mathfrak{y}_{\mathfrak{m}}) = \nabla_{\theta_{\mathfrak{j}}} M_{\mathfrak{s}}(\|\mathfrak{x}_{\mathfrak{i}} - \theta_{\mathfrak{m},k}\|^2)$$

Do math to get the weights function (step 3) and the updating rule (step 4).

Algorithm 2 Power k-Means Algorithm

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of clusters k

- 1: Initialize $s_0 < 0, \Theta_0, \eta > 1$

 \triangleright initial exponent s_0 , exponent increment factor η

2: repeat

3:
$$\omega_{m,ij} \leftarrow \left(\sum_{l=1}^{k} ||x_i - \theta_{m,l}||^{2s_m}\right)^{\frac{1}{s_m}-1} ||x_i - \theta_{m,l}||^{2(s_m-1)}$$

4:
$$\theta_{m+1,j} \leftarrow \left(\sum_{i=1}^{n} \omega_{m,ij}\right)^{-1} \sum_{i=1}^{n} \omega_{m,ij} x_i$$

- $s_{m+1} \leftarrow \eta \cdot s_m$
- 6: **until** convergence

▶ Optional Annealing

Annealing

- Lloyd's (KM)
 - no annealing
- KHM
 - heuristic annealing
- Power-k Means
 - deterministic annealing
 - retains the benefits of annealing as dimension d increases

Performance Guarantee

$$f_s(\Theta) = \sum_{i=1}^n M_s(||x_i - \theta_1||^2, \cdots, ||x_i - \theta_k||^2)$$

 Altering the objective function at each step of an MM algorithm still guarantees the descent property and the advantages that follow from it.

Proposition: For any decreasing sequence $s_m \leq 1$, the iterates Θ_m produced by the MM updates (step 4) generates a decreasing sequence of objective values $f_{s_m}(\Theta_m)$ bounded below by 0.

Proof. By the power mean inequality, we have $M_{s_{m+1}}(y) \leq M_{s_m}(y)$ for $s_{m+1} \leq s_m$ where $\lim_{s \to -\infty} M_s(y) = \min(y_1, ..., y_k)$. By summing over all data points, the descent property holds for chosen surrogate function $g = \omega$: $0 \leq f_{s_{m+1}}(\Theta_{m+1}) \leq g(\Theta_m) = f_{s_m}(\Theta_m)$.

Performance Guarantee

$$f_s(\Theta) = \sum_{i=1}^n M_s(||x_i - \theta_1||^2, \cdots, ||x_i - \theta_k||^2)$$

- Altering the objective function at each step of an MM algorithm still guarantees the descent property and the advantages that follow from it.
- We can freely choose a schedule for decreasing s in the initialization of the power k-means algorithm.
- Though the initial value of s does affect performance, it does not require careful tuning.

Experimental Results

Synthetic Data

- Binomial distribution
- Same amount of data points per cluster

ARI

- Adjusted Rand Index
- Accounts for chance

$$ARI = \frac{RI - ExpectedRI}{max(RI) - ExpectedRI}$$

 $ARI = \frac{RI - ExpectedRI}{max(RI) - ExpectedRI}$

ARI

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$

\sum_{i}	$\binom{a_i}{2} \times \sum_i$	$\binom{bj}{2}$
	$\frac{(2)}{(n)}$	(2)
	(2)	

True/Pred	C_1^T		C_m^T	sum
C_1^P	$n_{1,1}$	• • •	$n_{1,m}$	a_1
• • •	$n_{i,1}$		$n_{i,m}$	a_i
C_n^P	$n_{n,1}$	• • •	$n_{n,m}$	a_n
sum	b_1		b_m	

ARI

IM

$$\bigcirc$$
 Marginal Entropy $H(Pred) = -\sum_{i=1}^{n} p_{C_i} log(p_{C_i})$

O Conditional Entropy
$$H(Pred|True) = -\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} log(\frac{p_{i,j}}{p_{C_i}})$$

- \bigcirc Mutual information I(Pred, True) = H(Pred) H(Pred|True)
- Normalized Mutual Information

$$NMI(Pred, True) = \frac{I(Pred, True)}{\sqrt{H(True)H(Pred)}}$$

NMI

VI

- Variation of information
- Uses conditional entropy

$$H(Pred|True) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{i,j} log(\frac{p_{i,j}}{p_{C_i}})$$

$$VI(True, Pred) = H(True|Pred) + H(Pred|True)$$

VI

3 clusters, 600 data points

Real Data

Low dimensional dataset: North Jutland 3d road network

- 3 dimensions, large number of clusters (510)

High dimensional dataset: Cancer gene expression

- >20,000 dimensions, 5 clusters

ARI, NMI, VI of the Real datasets

Sources

- Vellal, A., Chakraborty, S. & Xu, J.Q. (2022). Bregman Power k-Means for Clustering Exponential Family Data. *Proceedings of the 39th International Conference on Machine Learning*, in *Proceedings of Machine Learning Research* 162:22103-22119 Available from https://proceedings.mlr.press/v162/vellal22a.html.
- Xu, J. & Lange, K. (2019). Power k-Means Clustering. *Proceedings of the 36th International Conference on Machine Learning*, in *Proceedings of Machine Learning Research* 97:6921-6931 Available from https://proceedings.mlr.press/v97/xu19a.html.
- Zhang, B. (2001). Generalized K-Harmonic Means Dynamic Weighting of Data in Unsupervised Learning. *SDM*.
 - Zhang, B., Hsu, M., & Dayal, U. (1999). K-Harmonic Means A Data Clustering Algorithm.