Работа 4. Мультиплексоры и АЛУ.

§ 4.1. Мультиплексор

Мультиплексор — это цифровой переключатель, который подключает к выходу один из информационных входов в соответствии с адресом, поданным на адресный вход. Мультиплексор имеет m адресных входов, 2^m информационных входов и один выход.

Мультиплексор 2 в 1 является простейшим, он имеет два входных сигнала: «х», и «у», и передает на выход «q» один из них, в зависимости от значения адреса «а». Функционирование мультиплексора поясняют схема коммутатора 2 в 1, условное обозначение, логическая функция, таблица истинности, принципиальная схема (рис. 4.1), а также теоретические временные диаграммы (рис. 4.2.).

По логической функции несложно составить описание на Verilog, однако более универсальным является поведенческое описание $v41_mux$. Алгоритм работы мультиплексора описывает строка 5, в которой содержится оператор условного присваивания с ключевым словом «assign». Строка 5 имеет смысл: если a=1, то q=x, иначе q=y.

Входные тестовые сигналы необходимо создать таким образом, чтобы, было несложно предсказать выходные сигналы и однозначно определить правильность функционирования устройства. Для мультиплексора сигналы на входах «х» и «у» должны быть различными, а переключающий сигнал на адресном входе «а» дожжен иметь частоту ниже, чем частота входных сигналов «х» и «у».

Рис. 4.2 Теоретические временные диаграммы мультиплексора

// Поведенческое описание
// мультиплексора 2 в 1
module v41_mux (x ,y, a, q); //2
input x ,y, a; //3
output q; //4
assign q = a ? x : y; //5
endmodule //6

Задание 4.1. Проект мультиплексора 2 в 1.

Разработайте иерархический проект мультиплексора 2 в 1 содержащий два модуля, модуль, созданный по схеме s41_mux, и модуль по описанию v41_mux. разработайте различные варианты тестовых сигналов, выполните моделирование, опишите работу устройства.

§ 4.2. Мультиплексор для коммутации шин

Шина представляет собой совокупность проводников, по которым одновременно (параллельным кодом) передаются сигналы. Для n- разрядного

мультиплексора 2 в 1 необходимо использовать п одноразрядных мультиплексоров, на которые подается общий управляющий сигнал. Каждый проводник шины должен коммутироваться отдельным одноразрядным мультиплексором. Мультиплексор, переключающий шины, подключает к выходным проводникам q проводники входной шины x, или шины y, в зависимости от адреса на входе a (Рис. 4.3). Теоретические временные диаграммы составьте подобно заданию 3.1.

Разработайте иерархический проект. При вводе схемы первого модуля $s32_mux$ используйте символ, полученный в предыдущем проекте ($s41_mux$). Для ввода описания второго модуля скорректируйте копию (полученную командой Save As) предыдущего описания.

Задание 4.2. Проект мультиплексора для коммутации шин.

Разработайте иерархический проект мультиплексора 2 в 1 для коммутации 4-разрядных шин, содержащий два модуля, модуль, созданный по схеме s42_mux, и модуль по описанию v42_mux. разработайте различные варианты тестовых сигналов, выполните моделирование, опишите работу устройства.

Рис. .4.4. Символ 4-разрядного АЛУ на 4 операции

§ 4.3. АЛУ комбинационного типа

Ядром любого процессора является арифметико — логическое устройство (АЛУ), выполняющее математиченскую обработку данных. Входами АЛУ являются операнды (a, b) и код операции (k), а выходом — код результата (q) (Рис. 4.4). Входные и выходные данные — это параллельные коды, разрядность которых (напримар, 4) задана. Разраядность кода операции k определяется по заданному количеству операций. Если задано количество операций4, то k=2

По результату операции в АЛУ должны формироваться признаки результата, для этого используются комбинационные схемы: Признак нуля (z=1, если q=0), признак переноса (c=1, если появился перенос при суммировании а и b, или при сдвиге) признак отрицательного числа (n=1, если q<0). Существует два метода синтеза АЛУ.

Рис. 4.5. Структура 4-разрядного АЛУ

АЛУ Синтез можно выполнить классическим методом, в основе которого таблицы составление истинности логических функцийй. Классичечкий синтез используется при проектитровании сложных универсальных процессоров, обеспечивает уменьшение аппаратных затрат и повышение быстродействия устройства. Классический синтез выполняется использованием спецмализированных САПР ввиду высокой трудоемкости процесса. Так, напримкр, аблица истинности заданного АЛУ с учетом суммарного количества поводников на входах

(4+4+2) бкдет иметь $2^{10} = 1024$ строк.

Второй метод синтеза — блочно модульный. Это построение сложного устройства из отдельных более простых модулей, каждый из которых выполняет определенную функцию, а выходной сигнал формируетмя на выходе мультиплексора, который управляется кодом операции. Процесс проектирования в этом случае упрощается. 0

Задано проектирование 4 - разрядного АЛУ комбинационного типа на 4 операции, имеющего входы данных a, b и вход кода операции k. Сигнал на выходе q определяется следующим образом: q = a + b при k=00; $q = a \cdot b$ при k=01; $q = a \lor b$ при k=10; $q = a \oplus b$ при k=11. Заданию соответствует структурная схема АЛУ (рис. 4.5). Схема АЛУ может быть построена из ранее разработанных модулей 4-разрядных схем сумматора, комбинационных схем, мультиплексора для коммутации шин.

Перспективным методом проектирования АЛУ комбинационного типа является его поведенческое описание на языке Verilog по алгоритму функционирования. Составим описание 4-разрядного АЛУ на 4 операции, структура которого приведено на рис. 4.5. Устройство должно иметь 4-разрядные входы (a,b)

//Описание АЛУ 1
module v43_alu (a,b,k,q, c,z);//2
input [3:0] a, b; //3
input [1:0] k; //4
output [3:0] q;t c,z; //6
assign {c,q} = (k == 0) ? (a +b):
(k==1)?(a&b):
(k==2) ? (a | b):(a ^ b); //7
endmodule //8

Рис. 4.8. Алгоритм выбора операции и описание АЛУ

и выход (q), а также двухразрядный код операции (k). Заданы коды операций: 0 суммирование, 1 поразрядная логическая операция «И», 2 поразрядная логическая операция «ИЛИ».,

поразрядная логическая операция «сумма пр модулю 2». Устройство должно формировать признаки переноса (с), отрицательного числа n и нуля (z).

В описании АЛУ строка 2 – заголовок, содержит имя описания и перечисление всех входов и выходов. В строке 3 описаны 4-разрядные входные

векторы a,b, в строке 4 описан 2-разрядный вектор кода операции (k), а в строке 5 – выходной вектор (q) В строке 6 указаны признаки переноса и нуля (c,z), для которых описание диапазона отсутствует, следовательно, эти сигналы – одноразрядный.

Описание типов сигналов, используемых в качестве входов и выходов, в данном примере отсутствует, все сигналы по умолчанию имеют тип «wire», с которыми используют параллельный оператор с ключевым словом «assign», а также арифметические, логические операторы и оператор условного присваивания.

Сигнал, формируемый оператором присваивания (строка 7), записан как объединение сигналов переноса «с» и выходного вектора «q», они записаны через запятую в фигурных скобках. Результат - 5-разрядный вектор суммы или разности, старший бит которого равен 1, если возникает перенос.

Теоретические временные диаграммы, предназначенные для проверки работоспособности, лриведены на рис. 4.9.

Задание 4.3. Проект АЛУ комбинационного типа

Разработайте проект **АЛУ комбинационного типа** по описанию v43_ alu . разработайте различные варианты тестовых сигналов, выполните моделирование, опишите работу устройства.

Задание 4.4. Проект АЛУ комбинационного типа по схеме. Заданы операции.

Разработайте проект 4-разрядного АЛУ по схеме на 4 операции в соответствии с таблицей, содержащий модули, разработанные в предыдущих работах. Разработайте тестовые сигналы, выполните моделирование, опишите работу устройства.

Контрольные вопросы

- 1. Сформулируйте функциональное назначение мультиплексора.
- 2. Укажите входные и выходные сигналы мультиплексора.
- 3. Как составляется таблица истинности мультиплексора.

- 4. Составьте описание мультиплексора по логическим функциям.
- 5. Как составить теоретические временные диаграммы для мультиплексора?
- 6. Синтаксис и применение оператора условного присваивания.
- 7. Особенности структурного и поведенческого описания.
- 8. Поясните методы проектирования АЛУ и способы его описания на Vtrilog..
- 9.10. Определите количество входов мультиплексора для переключения п входов.