Rafael Ferreira Garcia Almeida 712841 Trabalho Teorico 5	
(1) : Qual é a diferença entre as notações O, Ω e \square ?	?
Respostas: O (n) e o simbolo utilizado para representar o limite reito. Ω (n) e o simbolo utilizado para representa o li Big "O" representa o pior caso de um algoritmo, ou su "Omega" é o melhor caso que aquilo executará,ou se nimo.O Big "Theta" quer saber a complexidade méd	ir Se
~//~	
Respostas:	
E.R (1)	
Resp = $O(1) \Omega(1) \square (1)$	
E.R (2)	
Resp =	

 $O(1) \Omega(1) \square (1)$

 $O(1) \Omega(1) \square (1)$

 $O(1) \Omega(1) \square (1)$

 $O(n)\;\Omega(n)\;\square\;(n)$

 $O(1) \Omega(1) \square (1)$

 $O(n)\;\Omega(n)\;\square\;(n)$

E.R (3)

Resp =

E.R (4)

Resp =

E.R (5)

Resp =

E.R (6)

Resp =

E.R (7)

Resp =

ado para representar o limite superior. Θ (n) e o simbolo utilizado para representar limite est utilizado para representa o limite inferior. Or caso de um algoritmo, ou seja, o caso mais caro ou que requer mais processamento. O Big so que aquilo executará, ou seja, o caso mais barato ou que requer apenas o processamento mi er saber a complexidade média de execução ou apenas o processamento necessario.
1 · · · · · · · · · · · · · · · · · · ·

~//~
Exercício (5)
Resp = $O(1) \Omega(1) \square (1)$
Exercício (6)
Resp = $O(1) \Omega(1) \square (1)$
Exercício (7)
Resp = $O(1) \Omega(1) \square (1)$
E.R (8)
Resp = $O(1) \Omega(1) \square (1)$
Exercício (8)
$Resp = O(n^2) \Omega(n^2) \square (n^2)$
Exercício (9)
Resp = $O(1) \Omega(1) \square (1)$
Exercício (10)
$\begin{aligned} Resp &= \\ O(n^2) \ \Omega(n^2) \ \Box \ (n^2) \end{aligned}$
Exercício (11)
$\begin{aligned} Resp &= \\ O(n^2) \ \Omega(n^2) \ \Box \ (n^2) \end{aligned}$
Exercício (12)
$\begin{aligned} Resp &= \\ O(\lg(n)) \ \Omega(\lg(n)) \ \Box \ (\lg(n)) \end{aligned}$
Exercício (13)
$Resp = O(nB) \Omega(nB) \square (nB)$
Exercício (14)

e)
$ Resp = O(n \Box) \Omega(n \Box) \Box (n \Box) $
f)
$\begin{aligned} Resp &= \\ O(\lg(n)) \; \Omega(\lg(n)) \; \Box \; (\lg(n)) \end{aligned}$
E.R (11)
$Resp = O(n) \Omega(n) \square (n)$