

# INFERENTIAL STATISTICS

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer







........





### TOPIC OUTLINE

**Inferential Statistics** 

Distribution

**Normal Distribution** 

Histogram

**Normality Test** 





#### INFERENTIAL STATISTICS

Inferential statistics is a branch of statistics that analyzes and interprets data to make conclusions beyond the observed dataset. It focuses on drawing meaningful inferences about a population based on a sample using techniques such as <a href="https://www.hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hy

#### Normal Distribution:





<u>Distribution</u> or the probability distribution describes the <u>probabilities</u> or <u>frequencies</u> of different outcomes in an experiment or observed data.

#### Rolling one die:

(all else)

| Outcome | Probability |
|---------|-------------|
| 1       | 1/6 or 0.17 |
| 2       | 1/6 or 0.17 |
| 3       | 1/6 or 0.17 |
| 4       | 1/6 or 0.17 |
| 5       | 1/6 or 0.17 |
| 6       | 1/6 or 0.17 |
|         |             |

Sum of probabilities = 1 or 100%



## UNIFORM DISTRIBUTION

#### Discrete data:

#### One die distribution



#### Rolling one die:

| Outcome      | Probability |
|--------------|-------------|
| 1            | 1/6 or 0.17 |
| 2            | 1/6 or 0.17 |
| 3            | 1/6 or 0.17 |
| 4            | 1/6 or 0.17 |
| 5            | 1/6 or 0.17 |
| 6            | 1/6 or 0.17 |
| 7 (all else) | 0           |

Sum of probabilities = 1 or 100%





## 36 possible outcomes:

| (1,1) | (2,1) | (3,1) | (4,1)  | (5,1)  | (6,1) |
|-------|-------|-------|--------|--------|-------|
| (1,2) | (2,2) | (3,2) | (4,2)  | (5,2)  | (6,2) |
| (1,3) | (2,3) | (3,3) | (4,3)  | (5,3)  | (6,3) |
| (1,4) | (2,4) | (3,4) | (4, 4) | (5, 4) | (6,4) |
| (1,5) | (2,5) | (3,5) | (4,5)  | (5,5)  | (6,5) |
| (1,6) | (2,6) | (3,6) | (4,6)  | (5,6)  | (6,6) |

## Rolling two dice:

| Sum      | Probability |
|----------|-------------|
| 2        | 0.03        |
| 3        | 0.06        |
| 4        | 0.08        |
| 5        | 0.11        |
| 6        | 0.14        |
| 7        | 0.17        |
| 8        | 0.14        |
| 9        | 0.11        |
| 10       | 0.08        |
| 11       | 0.06        |
| 12       | 0.03        |
| All else | 0           |





#### Discrete data:

#### Two dice distribution



### Rolling two dice:

| Sum      | Probability |
|----------|-------------|
| 2        | 0.03        |
| 3        | 0.06        |
| 4        | 0.08        |
| 5        | 0.11        |
| 6        | 0.14        |
| 7        | 0.17        |
| 8        | 0.14        |
| 9        | 0.11        |
| 10       | 0.08        |
| 11       | 0.06        |
| 12       | 0.03        |
| All else | 0           |







A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or bell curve because of its shape.



Johann Carl Friedrich Gauss



A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

#### Denoted by:

$$N\sim (\mu,\sigma^2)$$

#### **Bell Curve:**



A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

#### Formula:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### **Bell Curve:**



mean = median = mode

### **HISTOGRAM**

Histograms are used to visualize the shape, spread, and central tendency of data, making them a useful tool for assessing whether a dataset follows a normal distribution or deviates from it.

#### Histogram:



#### **NORMALITY TEST**

| Test               | Recommendation                    |
|--------------------|-----------------------------------|
| Shapiro-Wilk       | Small sample sizes (< 50)         |
| Anderson-Darling   | Moderate sample sizes (50 – 5000) |
| Kolmogorov-Smirnov | Large sample sizes (> 5000)       |

<u>Interpreting the p-value in a Normality Test</u>

High p-value (p > 0.05):

The data may be normally distributed.

Low p-value ( $p \le 0.05$ ):

The data is likely <u>not</u> normally distributed.



### **EXERCISE**

The dataset consists of 30 samples of current measurements (in mA). Generate a **normal distribution plot** and assess the normality of the data using the **Shapiro-Wilk** test in a Jupyter Notebook.

Dataset:

L14-current-data.csv

#### Current Response

| Sample | Current |
|--------|---------|
| 1      | 12.0    |
| 2      | 15.0    |
| 3      | 8.3     |
| 4      | 9.7     |
| 5      | 12.0    |
| 6      | 13.9    |
| 7      | 14.1    |
| 8      | 9.2     |
| 9      | 12.4    |
| 10     | 13.7    |
| 11     | 10.6    |
| 12     | 21.5    |
| 13     | 12.0    |



## **LABORATORY**

