8254 Programmable Interval Timer

Dr A Sahu

Dept of Comp Sc & Engg.

IIT Guwahati

Hierarchy of I/O Control Devices

Outline

- Basic Difference of 8155 I/O timer Vs 8254
- 8254 Brief
- Architecture of 8254
- Control register
- Status register
- Modes of Counters with example
- Read-Back modes

8155: Timer Modes Output

- 00: Single square wave of wavelength TC/2 (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
- 01: Square waves of wavelength TC (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
- 10: Single pulse on the TC'th clock pulse
- 11: Single pulse on every TC'th clock pulse.

8254: Brief

- Three independent 16-bit programmable counters (timers).
- It generates accurate time delays and can be used for
 - Real time clock, an event Ctr, a digital one shot, a square wave gen, complex wave gen.
- Programmable and work DC to 8 MHz
- 5 different modes of operation

The 8254 PIT

- The 8254 Programmable Interval-timer is used by the PC system for (1) generating timer-tick interrupts (rate is 18.2 per sec), (2) performing dynamic memory-refresh (reads ram once every 15 microseconds), and (3) generates 'beeps' of PC speaker
- When the speaker-function isn't needed, the 8254 is available for other purposes

8254 Block Diagram

Control Logic

- RDb, WRb, CSb
- A0, A1: Selection of Counter and Control Register
- Suppose Address is (80H,81H,82H,83H) with interfacing Circuit

A1	A0	Selection
0	0	Counter 0
0	1	Counter 1
1	0	Counter 2
1	1	Control Register

Control Register

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC2	RW1	RW0	M2	M1	M0	BCD
Select (Counter	Read Write		000	: Mode 0		0/1 =
				001	:Mode 1		Binary
00: Coι	ınter 0	00: Counter latch		X10 :Mode 2			/ BCD
01: Cou	ınter 1	Command		X11 :Mode 3			Mode
10: Cou	ınter 2	01:RW LSB	yte only	100 :Mode 4			
11: Rea	d-Back	10: RW MSByte		101	: Mode 5		
Co	mmand	only					
		11:RW LSByte first					
		then	Msbyte				

Programming Counters

- Each counter may be programmed with a count of 1 to FFFFH.
 - Minimum count is 1 all modes except 2 and 3 with minimum count of 2.
- Each counter has a program control word used to select the way the counter operates.
 - If two bytes are programmed, then the first byte (LSB) stops the count, and the second byte (MSB) starts the counter with the new count.

Modes of 8254 Counter

- Mode 0 : Interrupt on Terminal count
- Mode 1: Hardware Retriggerable One Shot
- Mode 2: Rate Generator
- Mode 3 : Square wave generator
- Mode 4 : Software Triggered Strobe
- Mode 5 : Hardware Triggered Strobe

Mode 0: Interrupt on Terminal Count

 The output becomes a logic 0 when the control word is written and remains there until N plus the number of programmed counts.

Mode 1: Hardware Retriggerable One Shot

- The G input triggers the counter to output a 0 pulse for `count' clocks.
- Counter reloaded if G is pulsed again.

Mode 2: Rate Generator

- Counter generates a series of pulses 1 clock pulse wide.
- The separation between pulses is determined by the count.
- The cycle is repeated until reprogrammed or G pin set to 0.

Write instruction to generate pulse every 50mcroS from Ctr0

- Control word = 14H
 - D7D6=00 Select ctr 0
 - D5D4=01 load 8 bit count
 - D3D2D1=010 mode 2
 - D0=0 Binary
- Count = $50x10^{-6}/0.5x10^{-6}=64H$

PULSE: MVI A 14H; Control word

OUT CTRAdd 83H

MVI A,64H; Count value

OUT 80H; load counter 0 with low

order byte

HALT

Mode 3: Square wave generator

- Generates a continuous square-wave with G set to 1.
- If count is even, 50% duty cycle otherwise
 OUT is high 1 cycle longer

Write instruction for 1KhZ square wave at Ctr 1

Control word = 76H

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC2	RW1	RW0	M2	M1	MO	BCD
01		Load 16 bit (11)		011 (mode 3)			0

- Count= $1x10^{-3}/0.5x10^{-6}=2000=07D0H$
- Instructions

```
MVI A,76H; load Control word for Ctr 1 mode 3
OUT 83H; write to Ctrl reg
MVI A, D0H; lower order byte cnt
OUT 81H
MVI A,07H; higher order byte
OUT 81H
HLT
```

Mode 4: Software Triggered Strobe

- Software triggered one-shot (G must be 1).
- OUT goes initially High, it goes low for one clock at the end of count
- The count must be reloaded for subsequent output

Mode 5: Hardware Triggered Strobe

- Hardware triggered is one-shot
- It is triggered by rising edge at the Gate
- Initially the OUT is low and Gate triggered from low to high the count begins
- OUT goes low for one clock periood

Gate Setting of Counter

Modes	Low or Going Low	Rising	High
Mode 0	Disable Counting	-	Enable Counting
Mode 1		 Initiate Counting Reset O/P after next Clock 	
	 Disable counting Set O/P immediately high 	 Reloads Counter Initiate Counting 	Enable Counting
	 Disable counting Set O/P immediately high 	Initiates Counting	Enable Counting
	Disable Counting		Enable Counting
		Initiates Counting	

Read-Back Command

- This allow user to read the count and status of the counter
- Command Written in control register and count of the specified counter can be latched

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC2	COUNTb	STATUS ^b	CNT2	CNT1	CNT0	0
11: Rea	nd-	If (D5=0) count is		D3=1 sel			
Back		lateched		D2=1 select counter 1			
Comma	and			D1=1 select counter 0			

 Control word 11 01 011 0 (D6H) in control word will latch the count of CNT0 & CNT1

Read-Back Command

- Status can be read if STATUS^b bit D4 =0
- D7=1: Outpin is 1, 0 Outpin is 0
- D6=1: Null count, D6: 0= Count available for reading
- D5-D0:Counter Programmed mode

D7	D6	D5	D4	D3	D2	D1	D0
OUTPUT	NULL COUNT	RW1	RW0	M2	M1	M0	BCD

Write a SR to generate an interrupt every 1 Second

- Assume Clock Freq=2MhZ
- Count is too large
- Counter 1 load with 50,000 to generate 25ms
 - CNTLOAD=50,000₁₀=C350H
- Counter 2 load with 40 to generate
 25msX40=-1S pulse (CNTLOAD=40₁₀=28H)
- Counter1 input is to counter 2
- Both Counter 1 & Counter 2 in Mode 2

Control word

• Counter 1 (74H)

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC2	RW1	RW0	M2	M1	MO	BCD
01		Load 16 bit (11)		010 (mode 2)			0

• Counter 2 (94H)

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC2	RW1	RW0	M2	M1	M0	BCD
10		Load 8 bit (01)		010 (mode 2)			0

Instruction to set up 1s interrupt

MVI	A , 74H	; Mode for 1 st CTR
OUT	83H	;Write in control register
MVI	A,94H	; Mode for 2 nd CTR
OUT	83H	; Write to control register
MVI	A,50	; low byte of CTR1=C350
OUT	81H	; load to CTR1 low byte
MVI	A,C3	; high byte of CTR1=C350
OUT	81H	; load to CTR1 high byte
MVI	A,28H	; Count for Counter 2
OUT	82H	; Load Counter 2
RET		

Thanks