

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 20 Sep 2023 1 of 7

Sample Information

Patient Name: 簡佩瓊 Gender: Female ID No.: A221627273 History No.: 25156596

Age: 64

Ordering Doctor: DOC4205A 柯博伸

Ordering REQ.: H47P228 Signing in Date: 2023/09/20

Path No.: M112-00251 **MP No.:** MY23068

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2023/09/14

Reporting Doctor: DOC5444B 楊靜芬 (Phone: 8#5444)

Note:

Sample Cancer Type: Acute Myeloid Leukemia

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	3

Report Highlights

- 1 Relevant Biomarkers 5 Therapies Available
- 0 Clinical Trials

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	IDH2 p.(R140Q) c.419G>A isocitrate dehydrogenase (NADP(+)) 2 Allele Frequency: 18.46%	enasidenib ¹ azacitidine decitabine enasidenib + chemotherapy venetoclax + chemotherapy	None	0

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

NRAS p.(G12D) c.35G>A

Date: 20 Sep 2023

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants Allele Amino Acid Change Coding Variant ID Variant Effect Coverage Gene Locus Frequency Transcript **NRAS** p.(G12D) c.35G>A COSM564 chr1:115258747 18.43% NM_002524.5 missense 1997 IDH2 p.(R140Q) c.419G>A COSM41590 chr15:90631934 18.46% NM_002168.4 missense 1999 IKZF1 p.(S506P) c.1516T>C chr7:50468281 18.90% NM_006060.6 2000 missense CEBPA p.(H195_P196dup) c.589_590insACCCG chr19:33792731 38.75% NM_004364.4 nonframeshift 1489 Insertion CEBPA p.(G122E) c.365G>A chr19:33792956 52.03% NM_004364.4 missense 1868

Biomarker Descriptions

IDH2 (isocitrate dehydrogenase (NADP(+)) 2)

Background: The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) 1 . The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme; IDH2 encodes the mitochondrial isoform.

Alterations and prevalence: Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several malignancies including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS)². Recurrent IDH2 variants include predominately R140Q and R172K plus other substitutions at lower frequencies. These gain of function variants confer neomorphic enzyme activity³. Although wild-type enzymatic activity is ablated, recurrent IDH2 variants catalyze the conversion of α -KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular metabolism, epigenetic regulation, redox states, and DNA repair¹.4. Recurrent IDH2 mutations are present in 10-20% of patients with AML and 5% of patients with MDS⁵.6.7.

Potential relevance: Enasidenib⁸ is FDA approved (2017) for the treatment of AML patients with IDH2 R140G/L/Q/W and R172G/K/M/S/W mutations. In AML, acquired resistance to enasidenib has been associated with the emergence of Q316E or I319M mutations⁹. IDH2 R172 and R140Q variants are associated with poor prognosis in MDS but have been shown to confer improved prognosis in lower grade gliomas^{10,11,12}. Additionally, IDH2 mutations are associated with inferior overall survival in polycythemia vera (PV) and essential thrombocythemia (ET) as well as inferior leukemia-free survival in primary myelofibrosis (PMF)¹³. Mutations in IDH2 are diagnostic of astrocytoma IDH-mutant and oligodendroglioma IDH-mutant and 1p/19q-codeleted subtypes of central nervous system (CNS) tumors¹⁴

NRAS (NRAS proto-oncogene, GTPase)

<u>Background:</u> The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{15,16,17}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{18,19}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{18,20}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{21,22}.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab²³ and panitumumab²⁴, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)²². The FDA has granted fast track designation to the pan-RAF inhibitor, KIN-2787²⁵, for the treatment of NRAS mutation positive metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome¹⁰ as well as melanoma²⁶. In a phase III clinical trial in patients with advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively²⁷.

Relevant Therapy Summary

In this cancer type

O In other cancer type

In this cancer type and other cancer types

X No evidence

IDH2 p.(R140Q) c.419G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
enasidenib	•	•	×	•	×
azacitidine	×	•	×	×	×
decitabine	×		×	×	×
enasidenib + azacitidine	×	•	×	×	×
venetoclax + azacitidine	×	•	×	×	×
venetoclax + cytarabine	×	•	×	×	×
venetoclax + decitabine	×	•	×	×	×

Relevant Therapy Details

Current FDA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

FDA information is current as of 2023-07-19. For the most up-to-date information, search www.fda.gov.

IDH2 p.(R140Q) c.419G>A

enasidenib

Cancer type: Acute Myeloid Leukemia

Label as of: 2020-11-24

Variant class: IDH2 R140Q mutation

Indications and usage:

IDHIFA® is an isocitrate dehydrogenase-2 inhibitor indicated for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) with an isocitrate dehydrogenase-2 (IDH2) mutation as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209606s004lbl.pdf

Date: 20 Sep 2023 4 of 7

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2023-07-03. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

IDH2 p.(R140Q) c.419G>A

venetoclax + azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 R140 mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

enasidenib

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 R140 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Relapsed, Refractory (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

venetoclax + decitabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 R140 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

Date: 20 Sep 2023

5 of 7

IDH2 p.(R140Q) c.419G>A (continued)

decitabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

enasidenib

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

venetoclax + cytarabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

enasidenib + azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

(Induction therapy); Useful in certain circumstances

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2023]

Date: 20 Sep 2023 6 of 7

Current ESMO Information

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2023-07-03. For the most up-to-date information, search www.esmo.org.

IDH2 p.(R140Q) c.419G>A

enasidenib

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

ESMO Level of Evidence/Grade of Recommendation: IV / B

Population segment (Line of therapy):

■ Relapsed, Refractory (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 20 Sep 2023

References

- Molenaar et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018 Apr;37(15):1949-1960. PMID: 29367755
- 2. Yan et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009 Feb 19;360(8):765-73. PMID: 19228619
- 3. Dang et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009 Dec 10;462(7274):739-44. PMID: 19935646
- 4. Ward et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010 Mar 16;17(3):225-34. PMID: 20171147
- Paschka et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 2010 Aug 1:28(22):3636-43. PMID: 20567020
- 6. Chou et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011 Feb;25(2):246-53. PMID: 21079611
- 7. Marcucci et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 2010 May 10;28(14):2348-55. PMID: 20368543
- 8. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209606s004lbl.pdf
- 9. Intlekofer et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018 Jul;559(7712):125-129. PMID: 29950729
- 10. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2023]
- Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. PMID: 26061751
- 12. Houillier et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010 Oct 26;75(17):1560-6. PMID: 20975057
- 13. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2023]
- 14. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 15. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 16. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.0000000000187. PMID: 27341593
- 18. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 19. Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- 20. Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 21. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 22. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- $24. \quad https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf$
- 25. https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food
- 26. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 27. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557