Задача 20 (4 балла)

Генерация второй гармоники в нелинейной среде описывается системой уравнений

$$i\alpha_1 \frac{d}{dz} E_1(z) = \chi E_2(z) E_1^*(z) e^{iqz},$$

$$i\alpha_2 \frac{d}{dz} E_2(z) = \chi E_1^2(z) e^{-iqz},$$

где $E_1(z)$ и $E_2(z)$ – плавные огибающие электрического поля на частотах ω и 2ω соответственно, $q=|{\bm q}|=|{\bm k}_2-2{\bm k}_1|,\ z$ – координата вдоль ${\bm q},\ \alpha_{1,2}$ и χ – вещественные константы.

Пусть при z=0 амплитуды гармоник $E_1(0)=\zeta E_0, E_2(0)=\sqrt{1-\zeta^2}E_0, \alpha_1=\alpha_2=\alpha$. Решите систему уравнений численно для параметров (a) $\zeta=0, q=0$, (b) $\zeta=0.1, q=0$, (c) $\zeta=0, q\alpha/(\chi E_0)=10$. Постройте зависимости $|E_1(z)/E_0|^2$ и $|E_2(z)/E_0|^2$ от координаты z, обезразмеренной на $\alpha/(\chi E_0)$.