2015/2016 SEMESTER ONE EXAMINATION

Diploma in Electrical and Electronic Engineering 3rd Year Full Time 3rd Year Full Time Technical Elective 5th Year Evening Only

DIGITAL SIGNAL PROCESSING

<u>Time Allowed</u>: 2 Hours

<u>Instructions to Candidates</u>

- 1. The examination rules as set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 6 Short Questions, 10 marks each.
Section B - 2 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. **ALL** questions are to be answered in the answer booklet.
- 5. This paper consists of 6 pages, including 2 pages of mathematical formulae.

2015/2016 S1 Page 1 of 6

SECTION A - SHORT QUESTIONS [10 marks each]

A1 The system function of a digital system is given as:

$$H(z) = \frac{6 - 9z^{-1}}{1 - 2.5z^{-1} + z^{-2}}$$

a) Obtain its difference equation.

(4 marks)

- b) Determine the output y(n) of the system if the input is a unit impulse function, $\delta(n)$. (6 marks)
- A2 Evaluate N=4 point DFT for X(0) and X(2) for the sequence x(n) = $\{1,1,2,2\}$. (10 marks)
- A3 A system has an impulse response $h(n) = \{1,2,-1,-2\}$ and output response,

 $y(n) = \{1,4,6,6,1,-10,-8\}$ when subjected to an unknown input x(n). Find the Z-transform of h(n) and y(n) and hence solve for the input sequence x(n) using long division method. (10 marks)

A4 Given the following DSP system with a sampling rate 8000 Hz

$$y(n) = 3x(n) + x(n-1)$$

where y(n) is the output and x(n) is the input,

- a) Determine the transfer function, H(z). (3 marks)
- b) Determine the filter frequency response $|H(e^{jw})|$. (3 marks)
- c) Compute the filter gain at a frequency of 2000 Hz. (4 marks)

- As Answer the following short questions. Please note that the questions are not related to each other.
 - a) Given the following labelled digital signals,

- (i) What is the sampling frequency and the value, x(2)? (4 marks)
- (ii) If x(n) is the sampled version of the analog sine wave: $x(t) = 20\sin(\omega t)$, what is the frequency of the analog sine wave? (2 marks)
- b) Determine the autocorrelation of $x(n) = \{1,2,3,4\}$. (4 marks)

A6 Find the inverse z transform of the following casual signals

a)
$$X_1(z) = 1 + \frac{2z}{z-1} + \frac{5z}{(z-1)^2} + z^{-10}$$
 (5 marks)

b)
$$X_2(z) = \frac{10(z - 0.7071)}{z^2 - 1.4142z + 1}$$
 (5 marks)

2015/2016_S1 Page 3 of 6

SECTION B - LONG QUESTIONS [20 marks each]

B1. A linear phase low-pass filter is to be designed using the FIR technique. The filter has the following specification where peak approximation error (δ) = 0.015 and ω_{pass} = 0.514 π , ω_{stop} = 0.714 π . The sampling frequency of the system is given as 14kHz.

To strictly meet the specification, determine

a)	the windowing function that you would choose.	(2 marks)	
b)	the values for ω_c and $\Delta \omega$.	(4 marks)	
c)	the number of tap coefficients that you would need.	(4 marks)	
d)	the value of tap coefficient for $h(16)$ and $h(17)$.	(6 marks)	
e)	the value of tap coefficient for h(20).	(2 marks)	
f)	the type of windowing function you will choose if peak approxima	f peak approximation error	
	$(\delta) = 0.05.$	(2 marks)	

B2. The difference equation of system A in Figure B2a is given as:

$$y(n) - 0.5y(n-1) + y(n-2) = x(n) - 0.25x(n-1)$$

- a) Draw the digital network diagram for the system. (5 marks)
- b) Is this system a FIR or IIR system? (2 marks)
- c) State One advantage for FIR and One advantage for IIR filter. (2 marks)
- d) Using Z transform, determine the system function H(z) for system A.

(4 marks)

- e) Using inverse Z transform, determine the impulse response. (4 marks)
- f) The output of system A is now fed as input to an additional system named system B as shown in Figure B2.

Figure B2

Given the difference equation of system B to be q(n) = 0.5y(n) + 0.25y(n-1), determine the new system function for this cascaded system. (3 marks)

-End of Paper-

2015/2016 S1 Page 4 of 6

Appendix

The z-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

	$\eta = -\infty$
Sequence	Transform
δ[n]	1
u[n]	$\frac{1}{1-z^{-1}}$
	$1-z^{-1}$
δ[n - m]	z ^{-m}
a ⁿ u[n]	1
	$\frac{1}{1-az^{-1}}$ az^{-1}
пг	1-az
na ⁿ u[n]	az^{-1}
	$(1-az^{-1})^2$
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$
	$\frac{1-[2\cos\omega_0]z^{-1}+z^{-2}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$
	$1 - [2\cos \omega_0]z + z$
$[\sin \omega_0^n]u[n]$	$[\sin \omega_0]z^{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
	$1 - [2\cos \omega_0]z + z$
$[r^n \cos \omega_0 n] u[n]$	$1 - [r\cos\omega_0]z^{-1}$
	$1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}$
	$1 - [27\cos\omega_0]z + 7z$
$[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$
	$\frac{1}{1}$ [2rcos ω] z^{-1} + z^{2} z^{-2}
	$\begin{bmatrix} 1 - [2i\cos\omega_0]z & +i & z \end{bmatrix}$

Some z-transform properties:			
Sequence	Transform		
x[n]	X(z)		
$x_1[n]$	$X_1(z)$		
$x_2[n]$	$X_2(z)$		
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$		
x[n - m]	$z^{-m}X(z)$		

Some trigonometric identities:

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

$$\cos^{2} \theta + \sin^{2} \theta = 1$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Discrete Fourier Transform:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}$$

Complex number theory:

$$z = a + jb = r \angle \theta = re^{j\theta}$$
 Quadratic equation solution:

$$r = \sqrt{a^2 + b^2}$$
 If $ax^2 + bx + c = 0$

$$\theta = \tan^{-1} \frac{b}{a}$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The characteristics of the different windowing functions:

Window Type	Peak	Transition
	approximation	Band
	Error	$\Delta\omega$
	$20 \log_{10} \delta dB$	
Rectangular $w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-21	$\frac{4\pi}{M+1}$
$\textbf{Bartlett} \hspace{1cm} w[n] = \begin{cases} \frac{2n}{M} & 0 \le n \le \frac{M}{2} \\ 2 - \frac{2n}{M} & \frac{M}{2} \le n \le M \\ 0 & \text{otherwise} \end{cases}$	-25	$\frac{8\pi}{M}$
Hanning	-44	$\frac{8\pi}{2\pi}$
$w[n] = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		M
Hamming	-53	<u>8π</u>
$w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		M
Blackman	-74	$\frac{12\pi}{M}$
$w[n] = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		

The impulse response of an ideal low pass filter is: $h_d(n) = \frac{\sin(\omega_C(n - \frac{M}{2}))}{\pi(n - \frac{M}{2})}$