Dose-escalation trials without monotonicity assumption: A weighted differential entropy approach

Pavel Mozgunov, Thomas Jaki

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK

February 27, 2018

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Dose escalation

- Limited prior knowledge about toxicities in humans
- Range of *m* regimes (doses, combinations, schedules)
- n patients

Goal:

• Find the maximum tolerated regime that corresponds to a controlled level of toxicity, usually $\gamma \in (0.2, 0.35)$ in oncology trials

Single agent dose-escalation designs

Model-based methods

- CRM
- EWOC

Algorithm based methods

- '3+3' design
- Biased Coin Design

Fundamental assumption: a monotonic dose-response relationship

Cannot be applied to:

- Combination trials with many treatments
- Scheduling of drugs
- Non-monotonic dose-toxicity relations

Unknown ordering problem. Example (I)

Let us consider drugs combination dose-escalation trial with

- 3 dose levels of drug A: A_1, A_2, A_3
- 3 dose levels of drug $B: B_1, B_2, B_3$

$(A_1; B_3)$	$(A_2; B_3)$	$(A_3; B_3)$
$(A_1; B_2)$	$(A_2; B_2)$	$(A_3; B_2)$
$(A_1; B_1)$	$(A_2; B_1)$	$(A_3; B_1)$

Even assuming monotonicity one drug being fixed, we cannot order

$$(A_1; B_2)$$
 and $(A_2; B_1);$

$$(A_1; B_3)$$
 and $(A_2; B_1);$

$$(A_1; B_3)$$
 and $(A_3; B_1)$ and so on...

Unknown ordering problem. Example (II)

Unknown ordering problem. Example (III)

Method for drug combinations

- Six-parameter model (Thall P. et al, 2003)
- Up-and-down design (Ivanova A, Kim S., 2009)
 Using the T -statistic
- **Copula regression** (*G.Yin, Y.Yuan, 2009*)

 Parametrization of drug-drug interactive effect
- POCRM (N.Wages, M. Conoway, J. O'Quigley, 2011)
 Choose several ordering and randomize between them during the trial

General restrictions:

- Strong model assumptions are usually needed
- No diagonal switching is allowed
- Synergistic effect is usually assumed
- Two combinations might be considered only

Goal

To propose an escalation procedure that **does not require any parametric assumptions** (including monotonicity between regimes).

Problem formulation

- Toxicity probabilities Z_1, \ldots, Z_m are random variables with Beta prior $\mathrm{B}(\nu_i+1,\beta_i-\nu_i+1), \ \nu_i>0, \beta_i>0$
- n_j patients assigned to the regime j and x_j toxicities observed
- Beta posterior f_{n_i} B $(x_i + \nu_i + 1, n_i x_i + \beta_i \nu_i + 1)$
- Let $0<\alpha_j<1$ be the unknown parameter in the neighbourhood of which the probability of toxicity is concentrated
- Target toxicity γ

Information theory concepts

1) A statistical experiment of estimation of a toxicity probability.

The Shannon differential entropy (DE) $h(f_n)$ of the PDF f_n is defined as

$$h(f_n) = -\int_0^1 f_n(p) \log f_n(p) dp \tag{1}$$

with the convention $0\log 0 = 0$.

Information theory concepts

1) A statistical experiment of estimation of a toxicity probability.

The Shannon differential entropy (DE) $h(f_n)$ of the PDF f_n is defined as

$$h(f_n) = -\int_0^1 f_n(p) \log f_n(p) \mathrm{d}p \tag{1}$$

with the convention $0\log 0 = 0$.

2) A statistical experiment of a sensitive estimation.

The weighted Shannon differential entropy (WDE) , $h^{\phi_n}(f_n)$, of the RV $Z^{(n)}$ with positive weight function $\phi_n(p) \equiv \phi_n(p,\alpha,\gamma)$ is defined as

$$h^{\phi_n}(f_n) = -\int_0^1 \phi_n(p) f_n(p) \log f_n(p) \mathrm{d}p. \tag{2}$$

Weight Function

The Beta-form weight function

$$\phi_n(p) = \Lambda(\gamma, x, n) p^{\gamma \sqrt{n}} (1 - p)^{(1 - \gamma)\sqrt{n}}.$$
 (3)

Escalation criteria

The difference of informations in two statistical experiments:

Theorem

Let $h(f_n)$ and $h^{\phi_n}(f_n)$ be the DE and WDE corresponding to PDF f_n when $x \sim \alpha n$ with the weight function ϕ_n given in (3). Then

$$\lim_{n\to\infty} \left(h^{\phi_n}(f_n) - h(f_n)\right) = \frac{(\alpha - \gamma)^2}{2\alpha(1-\alpha)} \equiv \Delta. \tag{4}$$

Therefore, for a regime d_j , j = 1, ..., m, we obtained that

$$\Delta_j \equiv \frac{(\alpha_j - \gamma)^2}{2\alpha_i(1 - \alpha_i)}.$$

Criteria:

$$\Delta_j = \inf_{i=1}^m \Delta_i$$
.

Estimation

Consider the mode of the posterior distribution f_{n_j}

$$\hat{p}_j^{(n)} = \frac{x_j + \nu_j}{n_j + \beta_j}.$$

Then the following "plug-in" estimator $\hat{\Delta}_{i}^{(n)}$ may be used

$$\hat{\Delta}_{j}^{(n)} = \frac{(\hat{p}_{j}^{(n)} - \gamma)^{2}}{\hat{p}_{j}^{(n)}(1 - \hat{p}_{j}^{(n)})}.$$
 (5)

Escalation design

Let $d_j(i)$ be a regime d_j recommended for cohort i.

- ullet The procedure starts from $\hat{\Delta}_{i}^{(0)}$
- I cohorts were already assigned

The $(l+1)^{th}$ cohort of patients will be assigned to regime k such that

$$d_j(l+1): \hat{\Delta}_k^{(l)} = \inf_{i=1,\ldots,m} \hat{\Delta}_i^{(l)}, \ l=0,1,2,\ldots,C.$$

We adopt regime $d_j(C+1)$ as the final recommended regime.

Alternative angle

One can consider

$$\hat{\Delta}_{j}^{(n)} = rac{(\hat{
ho}_{j}^{(n)} - \gamma)^{2}}{\hat{
ho}_{j}^{(n)}(1 - \hat{
ho}_{j}^{(n)})}$$

as a **loss function** for a parameter defined on (0,1).

- Loss function penalize $\hat{p}_{j}^{(n)}$ close to 0 to 1 and 'pushes' the allocation away from bounds to the neighbourhood of γ
- \bullet Does not include any definition of safety \to safety constraint is needed

Safety constrain (I)

Considers regime d_j as safe if at the moment n its PDF satisfies

$$\int_{\gamma^*}^1 f_{n_j}(\rho) \mathrm{d}\rho \le \theta_n \tag{6}$$

where

- γ^* is some threshold after which all regimes above are declared to have excessive risk, $\gamma^*=\gamma+0.2$
- \bullet θ_n is the level of probability that controls the overdosing
 - Note that this depends on n

Why is a time-varying SC is needed?

If $\beta=1$ and $\theta_n=\theta=0.50$ then regimes with prior mode ≥ 0.40 will never be considered since

$$\int_{0.45}^{1} f_0(\rho|x=0) \mathrm{d}\rho = 0.5107 > 0.50$$

Requirements to the function θ_n

- θ_n is a decreasing function of n
- $\theta_0 = 1$
- $\theta_N \le 0.3$
- \bullet \to $\theta_n = 1 rn$

Choice of SC parameters

	r								
	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	
$\gamma^* = 0.55$	0.00	0.32	4.32	18.47	36.15	49.06	61.49	75.70	
	26.47	26.65	26.40	26.05	26.85	25.03	24.10	20.23	
$\gamma^* = 0.50$	0.15	2.50	17.76	38.75	52.74	63.06	74.94	87.22	
$\gamma = 0.50$	26.27	26.22	26.53	27.24	25.46	23.30	19.35	17.10	
$\gamma^* = 0.45$	1.13	12.72	35.72	56.49	67.16	77.55	86.53	93.49	
$\gamma = 0.45$	26.15	26.02	26.81	25.18	22.26	21.75	15.16	11.05	
$\gamma^* = 0.40$	7.47	37.95	59.49	70.52	80.53	88.32	94.18	97.63	
$\gamma = 0.40$	26.04	25.91	24.90	21.98	17.66	14.47	8.05	3.51	
* - 0.25	33.98	58.22	74.42	84.14	90.52	94.86	97.90	99.20	
$\gamma^* = 0.35$	25.65	24.54	20.45	15.55	13.77	7.21	3.25	0.70	
* - 0.30	55.51	77.02	87.21	92.99	96.50	98.55	99.37	99.83	
$\gamma^* = 0.30$	24.21	18.09	14.40	11.42	7.13	0.95	0.08	0.04	

Table: Top row: Proportion of no recommendations for toxic scenario. Bottom row: Proportion of correct recommendations. 10⁶ simulations.

Simulations

For simulations below the following parameters were chosen:

- The cohort size c = 1
- Total sample size N = 20
- Number of regimes m = 7
- The target probability $\gamma = 0.25$
- Safety constraint

$$\theta_n = \begin{cases} 1 - 0.035n, & \text{if } 0.035 \times n \leq 0.7; \\ 0.3, & \text{otherwise.} \end{cases}$$

Investigated scenarios

Figure: Considering response shapes. The TD is marked as triangle.

Specifying the prior

Assumptions:

- Vague beliefs about toxicity risk
- Prior belief: regimes have been correctly ordered monotonically
- ullet A escalation to be started from d_1

The prior for regime d_j $(1 \le j \le 7)$ is specified thought the mode $\hat{p}_j^{(0)} = \frac{\nu_j}{\beta_j}$.

Starting from the bottom: $\hat{p}_1^{(0)} = \gamma$.

The vector of modes $\hat{\mathbf{p}}$ for all regimes is defined

$$\hat{\mathbf{p}} = [0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55]^{\mathrm{T}}.$$

Vague prior $\rightarrow \beta_i = \beta = 1$ for j = 1, ..., m.

Is there a unique set of prior parameters that lead to the equivalent performance?

Choice of prior

Figure: Proportion of correct recommendations: $\beta =$ number of patients and difference between the risk of toxicity on lowest and highest dose across six scenarios.

Alternative methods

We have also investigated

- Continual reassessment method (CRM)
- Partial ordering continual reassessment method (POCRM)
 All correct orderings used in simulation are incorporated in the model.
- Escalation with overdose control (EWOC)
 A target 25th percentile is used.
- Non-parametric optimal benchmark

Simulation results. Ordering is correctly specified

Simulation results. Ordering is wrongly specified.

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	No	TR	N
True	0.05	0.10	0.40	0.35	0.25	0.15	0.12			
WDE_{SC}	14.11	19.13	11.77	18.27	27.90	8.50	0.23	0.15	4.26	19.99
CRM_{SC}	4.26	19.90	17.70	6.31	2.84	3.00	46.10	0.31	3.26	19.92
$POCRM_{\mathrm{SC}}$	2.87	11.39	11.75	9.32	19.11	33.94	11.62	0.24	4.29	19.99
$EWOC_{\operatorname{SC}}$	7.18	24.90	18.60	3.79	2.52	3.79	30.60	6.62	2.73	18.89

	d_1	d_2	d ₃	d_4	d_5	d_6	d_7	No	TR	N
True	0.35	0.40	0.40	0.35	0.25	0.15	0.10			
WDE_{SC}	15.57	12.65	13.31	18.27	27.92	8.90	0.58	9.96	5.81	19.73
CRM_{SC}	47.41	2.51	0.97	0.48	0.72	0.40	30.10	27.30	4.27	15.96
$POCRM_{\mathrm{SC}}$	16.81	5.98	5.66	12.42	20.10	23.13	10.23	9.67	5.14	19.46
$EWOC_{\operatorname{SC}}$	30.75	1.26	0.78	0.47	0.47	0.31	9.78	56.15	3.30	11.02

Simulation results. Highly toxic scenarios.

	d_1	d ₂	d ₃	d ₄	d_5	d ₆	d ₇	No	TR	Ñ
True	0.15	0.20	0.50	0.55	0.60	0.65	0.70			
WDE _{SC}	38.07	44.65	6.59	3.44	1.48	0.28	0.02	5.47	5.94	19.77
CRM_{SC}	37.47	37.85	17.41	2.92	0.36	0.07	0.00	3.92	5.10	19.41
$POCRM_{\mathrm{SC}}$	33.57	37.76	13.27	2.55	0.54	1.33	6.04	4.95	6.06	19.82
$EWOC_{\operatorname{SC}}$	51.00	26.11	11.01	0.88	0.13	0.00	0.00	10.87	3.60	16.82
True	0.50	0.55	0.60	0.65	0.70	0.75	0.80	No		
WDE _{SC}	13.63	5.53	2.45	0.88	0.27	0.06	0.00	77.17	8.02	14.28
CRM_{SC}	32.24	0.32	0.08	0.00	0.00	0.00	0.00	67.36	5.33	10.30
$POCRM_{SC}$	15.18	0.57	0.12	0.04	0.01	3.06	0.08	80.94	7.12	12.59
$EWOC_{\operatorname{SC}}$	16.17	0.00	0.12	0.00	0.00	0.00	0.00	83.71	3.07	6.05

Conclusions

The WDE-based method

- performs comparably to the model-based methods when the ordering is specified correctly scenarios
- outperform them in wrongly specified setting

However, WDE-based method

- experience problems in scenarios with no safe doses or with sharp jump in toxicity probability at the bottom.
- The time-varying safety constrain in the proposed form can overcome overdosing problems and increase the accuracy of the original method

Further development

- Phase II
- Generalized weight function
- Consistency conditions

References

J. Babb, A. Rogatko, S. Zacks. Cancer phase I clinical trials: efficient dose escalation with overdose control. (1998). Statistics in Medicine. 17(10). 1103–20.

M. Belis, S. Gulasu, A quantitative and qualitative measure of information in cybernetic systems (1968), IEEE Trans. Inf. Th.,14, 593-594

GASPARINI, M. AND EISELE, J. (2000), A curve-free method for phase I clinical trials. Biometrics, 56, 609-615

M. KELBERT, P. MOZGUNOV, Shannon's differential entropy asymptotic analysis in a Bayesian problem, Mathematical Communications Vol 20, 2015, N 2, 219-228

J. O'QUIGLEY, M. PEPE, L. FISHER, Continual reassessment method: A practical design for phase I clinical trials in cancer, 1990, Biometrics 46 33–48.

O'QUIGLEY J, PAOLETTI X, MACCARIO J., Non-parametric optimal design in dose finding studies, (2002) Biostatistics; 3: 51–56.

M.K. RIVIERE, F. DUBOIS, S. ZOHAR, Competing designs for drug combination in phase I dose-finding clinical trials, Statistics in Medicine 2015, 34, 1-12

WAGES N., CONAWAY M., O'QUIGLEY J. (2011a). Continual reassessment method for partial ordering. Biometrics 67(4), 1555-1563.

