向量空间

颜文斌

清华大学

内容提要

- 向量空间
- 线性独立、基和维度
- 矩阵A的零空间(Ax = 0的解空间)
- 方程Ax = b的完整解
- 四个子空间的维度

向量空间 \mathbb{R}^n 和 \mathbb{C}^n

- \mathbb{R}^n : 所有n个实数分量的列向量的集合
- \mathbb{C}^n : 所有n个复数分量的列向量的集合

$$\begin{bmatrix} 4 \\ \pi \end{bmatrix}$$
 is in \mathbf{R}^2 , $(1, 1, 0, 1, 1)$ is in \mathbf{R}^5 , $\begin{bmatrix} 1+i \\ 1-i \end{bmatrix}$ is in \mathbf{C}^2

- 性质: $\mathbb{R}^n/\mathbb{C}^n$ 中的元素的线性组合还属于 $\mathbb{R}^n/\mathbb{C}^n$
 - 注意: 数乘时所乘的数要和向量的分量属于同一个数域

一般向量空间 (线性空间)

- 定义:域 Γ 上的向量空间是具有加法 $+: V \times V \to V$ 和数乘: $\Gamma \times V \to V$ 运算且满足以下公理的集合V
 - 1. x + y = y + x
 - 2. x + (y + z) = (x + y) + z
 - 3. 存在唯一的零向量0使得对于任意x, x + 0 = x
 - 4. 对任意x,存在唯一的向量-x使得x + (-x) = 0
 - 5. 1乘*x*等于*x*
 - 6. $(c_1c_2)x = c_1(c_2x)$
 - 7. c(x+y) = cx + cy
 - 8. $(c_1 + c_2)x = c_1x + c_2x$
- 向量空间: (粗略的说) 定义了加法和数乘的空间

向量空间

- 向量空间中的元素不一定是狭义的"向量(一列数)"
 - 定义里面并没有规定集合,只是规定了上面运算和运算的性质
 - 根据定义,线性空间*V*在加法和数乘下是**封闭**的
- 例:实数上的向量空间
 - M:所有mxn实矩阵构成的空间
 - F: 所有实函数f(x)构成的空间
 - Z: 只有零向量的空间
- 维数:
 - M:mn
 - F: 无穷
 - Z: 0

子空间 (subspace)

· 定义:

线性空间V的子空间 V_S 是V的一个子集,并且满足下面两个条件:对于属于子空间的矢量v和w,以及一个标量c

- 1. $v + w 是V_S$ 的元素
- 2. cv是 V_S 的元素
- 子空间对于加法和数乘封闭
 - 子空间中元素的线性组合都在同一个子空间
- 子空间必然包含零向量(提示:v + (-v))

子空间判定

- 例: ℝ³中的子空间
 - 不过原点的平面:不是
 - 原点本身:是
 - 过原点的直线:是
 - 过原点的平面:是
 - ℝ³本身:是
- 直线或者平面的一部分:
 - 平面的某一象限:不是
 - 平面的第一象限和第三象限的并集:不是
- v和w在子空间中,那么所有线性组合cv+dw也在子空间中

子空间判定

- 2x2矩阵构成的线性空间M
 - U:所有的上三角矩阵 $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$
 - D:所有的对角矩阵 $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$
 - 零向量是什么?
 - 单位矩阵/构成子空间吗?

矩阵A的列空间

• 定义:

矩阵A的列空间C(A)是A的所有列的线性组合

- 方程Ax = b:
 - $Ax \in C(A)$
 - 方程是否有解 \Leftrightarrow **b**是否属于C(A)
- 如果A是个mxn的矩阵:C(A)是 \mathbb{R}^m 的子空间
- 如果把A看成是 \mathbb{R}^n 到 \mathbb{R}^m 的(线性)映射,是C(A)是这个线性变换的**像集(像)**(image)

矩阵A的列空间

• 例:

$$Ax$$
 is $\begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ which is $x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$

Figure from Strang, introduction to linear algebra

线性扩张 (span)

- 一般来说,向量空间V的子集S不是子空间
- 从S构造出子空间?
- 线性扩张: SS = span(S) = S中向量的**所有**线性组合的集合
 - SS是V的子空间
 - C(A)是A所有列的线性扩张
- 例:以下矩阵的列空间?

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{pmatrix}$$

小结

- 线性空间:满足关于加法和数乘的八条公理的集合
- 例: \mathbb{R}^n ,所有mxn的实矩阵,等等
- 子空间:对加法和数乘封闭
- mxn实矩阵A的列空间C(A)是A的列张成的线性空间,C(A)是 \mathbb{R}^m 的一个子空间
- 方程Ax = b是否有解 $\Leftrightarrow b$ 是否属于C(A)

内容提要

- 向量空间
- 线性独立、基和维度
- 矩阵A的零空间 (Ax = 0的解空间)
- 方程Ax = b的完整解
- 四个子空间的维度

线性独立

- 定义:n个向量{ v_i }是线性独立的,当且仅当 $\sum_{i=1}^n x_i v_i = \mathbf{0} \text{ 只在} x_i = 0$ 时成立(只有0解)
- 线性相关: n个向量{ v_i }不是线性独立,那么他们是线性相关的
- 判定:
 - $A = (v_1 \quad \cdots \quad v_n)$
 - Ax = 0是否只有零解
 - 通常A是一个mxn的矩阵,用到解一般线性方程组的知识
- 等价描述: $\{v_i\}$ 是线性独立的,则集合中每一个向量都不能写成 集合中其它向量的线性组合

线性独立

- 例:ℝ²
 - (a) The vectors (1,0) and (0,1) are independent.
 - (b) The vectors (1,0) and (1,0.00001) are independent.
 - (c) The vectors (1, 1) and (-1, -1) are dependent.
 - (d) The vectors (1, 1) and (0, 0) are *dependent* because of the zero vector.
 - (e) In \mathbb{R}^2 , any three vectors (a, b) and (c, d) and (e, f) are dependent.

线性独立

- 两个向量是否线性独立同数域F选择密切相关
- **例**: 考虑 F = ℂ, V = ℂ
 - 1和虚数单位i都是 \mathbb{C} 中的向量,而且 $z_11 + z_2i = 0$ 在复数域中有非0解
 - 在复数域中,1和虚数单位i是线性相关的
- **例**:考虑F = ℝ, V = ℂ
 - 1和i都是 \mathbb{C} 中的向量,但是 $a_11 + a_2i = 0$ 在实数域中没有非0解
 - 在实数域中, 1和虚数单位i是线性无关的

线性空间的基

- **定义**:线性空间V的基是一组**线性无关**的向量 $\{v_i\}$,并且他们**张** 成整个线性空间V
 - 线性无关: $\sum_{i=1}^{n} x_i v_i = 0$ 只在 $x_i = 0$ 时成立
 - 扩张成V: V中的任何一个向量v都可以写成 $\{v_i\}$ 的线性组合
 - $\{v_i\}$ 总是 $S\{v_i\}$ 的基
- 例:

The basis vectors
$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are independent. They span \mathbf{R}^2 .

• 推广: $\{e_i\}$ 构成 \mathbb{R}^n 中的一组基

线性空间的基

- 根据基的定义:V中的任何一个向量v都可以写成基 $\{v_i\}$ 的线性组合
- 假设 $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$,这个线性组合是**唯**一的
- 证明:
 - 如果 $\boldsymbol{v} = \sum_{i=1}^n a_i \boldsymbol{v}_i \, \boldsymbol{\perp} \boldsymbol{v} = \sum_{i=1}^n b_i \boldsymbol{v}_i$,则 $\boldsymbol{0} = \sum_{i=1}^n (a_i b_i) \boldsymbol{v}_i$
 - 因为 $\{v_i\}$ 线性独立(基的定义),则 $(a_i b_i) = 0$
- 描述一个线性空间的方法之一就是写下它的一组基
- $\{v_1, \dots, v_n\}$ 是 \mathbb{R}^m 中某个子空间的一组基,令矩阵 $A = (v_1, \dots, v_n)$,则 $C(A) = \operatorname{span}\{v_1, \dots, v_n\}$

- 定义:线性空间V的维度 $\dim V$ 等于任意一组基中向量的个数
- 线性空间的维度和基的选取无关:
- 证明:
 - 两组基: $\{v_1 \cdots v_m\}$ 和 $\{w_1 \cdots w_n\}$,假设m>n
 - 因为 $\{\boldsymbol{w}_1 \quad \cdots \quad \boldsymbol{w}_n\}$ 是基, $\boldsymbol{v}_i = \sum_{j=1}^n \boldsymbol{w}_j a_{ji}$
 - 考虑线性组合 $\sum_{i=1}^{m} x_i v_i = \sum_{i,j} x_i w_j a_{ji}$,因为 $\{w_1 \cdots w_n\}$ 线性无关,所以 $\sum_{i,j} x_i w_j a_{ji} = \mathbf{0}$ 推出 $\sum_i a_{ji} x_i = 0$
 - 但是 $\sum_i a_{ji} x_i = 0$ 中未知数的个数m大于方程的个数n,系数矩阵一定有自由列,所以有非零解
 - 同 $\{v_1 \cdots v_m\}$ 线性独立矛盾($\sum_{i=1}^m x_i v_i = \mathbf{0}$ 只有零解)=>m不能大于n
 - 同理m不能小于n。最终m=n

- 两个线性空间 V_1 和 V_2 ,如果任意 $v \in V_1$ 可以写成 V_2 中向量的线性组合,则 $\dim V_1 \leq \dim V_2$
- 证明:
 - V_1 和 V_2 的基分别记为:{ \boldsymbol{v}_1 ··· \boldsymbol{v}_m }和{ \boldsymbol{w}_1 ··· \boldsymbol{w}_n }
 - 由假设, $\boldsymbol{v}_i = \sum_{j=1}^n \boldsymbol{w}_j a_{ji}$
 - 考虑线性组合 $\mathbf{0} = \sum_{i=1}^m x_i \mathbf{v}_i = \sum_{i,j} x_i \mathbf{w}_j a_{ji}$,因为 $\{\mathbf{w}_1 \cdots \mathbf{w}_n\}$ 是基,所以 $\sum_i a_{ji} x_i = 0$
 - 又因为{ v_1 ··· v_m }是基,所以 $\sum_i a_{ji} x_i = 0$ 只有0解($x_i = 0$)
 - $m \le n$, 或者说 $\dim V_1 \le \dim V_2$

- 例:Z
 - 维度为0, 基是空集
- 例:矩阵
 - nxn实方阵构成的线性空间的维数是 n^2
 - n阶上三角矩阵的子空间维数是 $\frac{1}{2}n^2 + \frac{1}{2}n$
 - n阶对角矩阵子空间维数是n
 - n阶对称矩阵子空间维数是 $\frac{1}{2}n^2 + \frac{1}{2}n$

• 例:微分方程的解空间

•
$$m \frac{d^2x}{dt^2} = 0$$
, $\mathbb{R} : x = c + dt$

•
$$m\frac{d^2x}{dt^2} = -kx$$
, $\not R : x = c\sin\sqrt{\frac{k}{m}}t + d\cos\sqrt{\frac{k}{m}}t$

不同基之间的变换

- 线性空间V中的两组基: $\{\boldsymbol{v}_1 \ \cdots \ \boldsymbol{v}_r\}$ 和 $\{\boldsymbol{w}_1 \ \cdots \ \boldsymbol{w}_r\}$
- 由基的定义可知
 - $v_i = \sum_{i=1}^r w_i a_{ij}$, a_{ij} 是将 v_i 写成{ w_1 ··· w_r }的线性组合时的系数
 - $\mathbf{w}_i = \sum_{i=1}^r \mathbf{v}_i b_{ij}$, b_{ij} 是将 \mathbf{w}_i 写成{ \mathbf{v}_1 ··· \mathbf{v}_r }的线性组合时的系数
 - 矩阵 $A=(a_{ij})$ 称为从 $\{\boldsymbol{w}_1 \ \cdots \ \boldsymbol{w}_r\}$ 到 $\{\boldsymbol{v}_1 \ \cdots \ \boldsymbol{v}_r\}$ 的**变换矩阵**
 - 矩阵 $B=(b_{ij})$ 称为从 $\{v_1 \cdots v_r\}$ 到 $\{w_1 \cdots w_r\}$ 的**变换矩阵**
- 定理:矩阵A, B可逆, 而且AB = BA = I
 - 证明提示: $v_j = \sum_{i=1}^r w_i \, a_{ij} = \sum_{i=1}^r (\sum_{k=1}^r v_k \, b_{ki}) \, a_{ij}$

小结

- 线性独立:n个向量 $\{v_i\}$ 线性独立,当且仅当方程 $\sum_{i=1}^n x_i v_i = \mathbf{0}$ 只有0解
- 线性空间V的基:一组**线性无关**的向量 $\{v_i\}$,并且他们**张成**整个 线性空间V
- 线性空间V的基是V中最大的线性无关的向量组
- 线性空间中所有的基都有相同的数量,这个个数就定义为线性空间的维数
- $\{v_1, \dots, v_n\}$ 是 \mathbb{R}^m 中某个子空间的一组基,令矩阵 $A = (v_1, \dots, v_n)$,则 $C(A) = \operatorname{span}\{v_1, \dots, v_n\}$

内容提要

- 向量空间
- 线性独立、基和维度
- •矩阵A的零空间(Ax = 0的解空间)
- 方程Ax = b的完整解
- 四个子空间的维度

矩阵A的零空间(Nullspace)

- 定义:mxn矩阵A的零空间N(A)是Ax = 0所有解构成的空间。
 - N(A)是 \mathbb{R}^n 的子空间(需要证明在加法和数乘下封闭)
 - C(A)是 \mathbb{R}^m 的子空间
- 如果A是可逆的,则N(A) = Z (只有零向量)
- 如果A没有自由列,则N(A) = Z (Ax = 0只有0解)
- 例:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \qquad \begin{array}{c} x_1 + 2x_2 = 0 \\ 3x_1 + 6x_2 = 0 \end{array} \Rightarrow \begin{array}{c} x_1 + 2x_2 = 0 \\ 0 = 0 \end{array}$$

• N(A): $x_1 + 2x_2 = 0$ 定义的直线

矩阵A的零空间

• 例:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

$$\begin{array}{c} x_1 + 2x_2 = 0 \\ 3x_1 + 6x_2 = 0 \end{array} \Rightarrow \begin{array}{c} x_1 + 2x_2 = 0 \\ 0 = 0 \end{array}$$

- N(A): $x_1 + 2x_2 = 0$ 定义的直线
- N(A): $\binom{-2c}{c} = c \binom{-2}{1}$
- N(A): $\binom{-2}{1}$ 的线性扩张
- 想法: 找到的*N(A)*一组基

约化行阶梯矩阵和N(A)的描述

Pivot Variables and Free Variables in the Echelon Matrix R

$$m{A} = \left[egin{array}{ccccc} p & p & f & p & f \ & & & & & & \end{array}
ight]$$

$$\boldsymbol{R} = \begin{bmatrix} \mathbf{1} & 0 & a & 0 & c \\ 0 & \mathbf{1} & b & 0 & d \\ 0 & 0 & 0 & \mathbf{1} & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$m{A} = egin{bmatrix} p & p & f & p & f \ d & d & d & d \ d & 0 & 0 & 0 & 1 & e \ 0 & 0 & 0 & 0 & 0 \ \end{bmatrix} \quad m{s}_1 = egin{bmatrix} -a \ -b \ 1 \ 0 \ 0 \end{bmatrix} \quad m{s}_2 = egin{bmatrix} -c \ -d \ 0 \ -e \ 1 \ \end{bmatrix}$$

3 pivot columns p 2 free columns f to be revealed by R

I in pivot columns F in free columns

special $Rs_1 = 0$ and $Rs_2 = 0$ take -a to -e from R3 pivots: rank r = 3 Rs = 0 means As = 0

R shows clearly: $column \ 3 = a (column \ 1) + b (column \ 2)$. The same must be true for A. The special solution s_1 repeats that combination so (-a, -b, 1, 0, 0) has $Rs_1 = 0$. Nullspace of A = Nullspace of R = all combinations of s_1 and s_2 .

思考:R的列空间的基?

约化行阶梯矩阵和N(A)的描述

- N(A) = N(R)
- 方程Rx = 0,主列对应的未知数可以用自由列对应的未知数表示
- N(R) 的基
 - 每个自由列给出基中的一个向量x, N(R)的维数=自由列的数量
 - 自由列j对应的x写法如下: $x_j = 1$, x对应其它自由列的分量是0, x对 应主列i的分量为 $x_i = -R_{ij}$
- 另外:自由列可以写成主列的线性组合
 - 所有**主列**构成C(R)的一组基

矩阵的秩 (rank)

- 定义:矩阵A的秩为行空间或者列空间的维数(后面会证明行秩= 列秩)
 - 等于约化行阶梯矩阵R = rref(A)的非零行数
 - 等于约化行阶梯矩阵R = rref(A)的主列数
- 例:

$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 3 \\ 0 & 5 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 6 \end{bmatrix}$ all have rank 1.

$$R = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \end{bmatrix}$ have only one pivot.

小结

- 矩阵A的零空间:mxn矩阵A的零空间N(A)是Ax = 0所有解构成的空间
- 矩阵A的秩: 行空间或者列空间的维数(后面会证明行秩=列秩)
 - 等于约化行阶梯矩阵R = rref(A)的非零行数
 - 等于约化行阶梯矩阵R = rref(A)的主列数
- 如果矩阵的列数大于行数,则矩阵一定有自由列,所以对应的零空间非0

内容提要

- 向量空间
- 线性独立、基和维度
- 矩阵A的零空间 (Ax = 0的解空间)
- 方程Ax = b的完整解
- 四个子空间的维度

线性方程组的通解 (revisit)

- 零空间:线性方程组Ax = 0的通解
- 考虑线性方程组Ax = b
 - A是mxn矩阵
- 通解: $x = x_p + x_n$
 - x_p 是一个特解
 - x_n 是A的零空间N(A)的任意元素

线性方程组的通解 (revisit)

- 线性方程组Ax = b
 - A是mxn矩阵
- 增广矩阵 $(A \ b)$, 约化行阶梯矩阵为 $(R \ d)$
 - **解存在**: R的零行对应d的零行

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 1 & 3 & 1 & 6 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 0 & 0 & 0 & 0 & b_3 - b_1 - b_2 \end{bmatrix} = \begin{bmatrix} R & d \end{bmatrix}$$

线性方程组的通解

- 增广矩阵 $(A \quad b)$, 约化行阶梯矩阵为 $(R \quad d)$
 - 特解: $Rx_p = d$
 - 通解: $x_n \in N(A)$, x_n 表达成N(A)中基的线性组合
- 例:

$$Rx_p = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$$

$$oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n = \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix} + oldsymbol{x}_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + oldsymbol{x}_4 \begin{bmatrix} -2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

线性方程组的通解

- 增广矩阵 $(A \ b)$, 约化行阶梯矩阵为 $(R \ d)$
 - 特解: $Rx_p = d$
 - x_p 的一种选取方式:自由列对应的未知数取0。如果主元列i中的1在第j行,则 $(x_p)_i = b_i$
- 例:

$$Rx_p = \left[egin{array}{cccc} 1 & 3 & \mathbf{0} & 2 \ \mathbf{0} & 0 & \mathbf{1} & 4 \ 0 & 0 & 0 & 0 \end{array}
ight] \left[egin{array}{cccc} 1 \ 0 \ \mathbf{6} \ 0 \end{array}
ight] = \left[egin{array}{cccc} 1 \ \mathbf{6} \ 0 \end{array}
ight]$$

$$oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n = egin{bmatrix} 1 \ 0 \ 6 \ 0 \end{bmatrix} + oldsymbol{x}_2 egin{bmatrix} -3 \ 1 \ 0 \ 0 \end{bmatrix} + oldsymbol{x}_4 egin{bmatrix} -2 \ 0 \ -4 \ 1 \end{bmatrix}$$

线性方程组的通解

- 例:假设A是一个可逆的方阵,Ax = b 的解?
 - $\operatorname{rref}(A) = I$, N(A) = Z
 - $(A, b) = (I, A^{-1}b)$
 - $\mathbf{x} = \mathbf{x}_p = A^{-1}\mathbf{b}$
- 例:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

$$oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n = egin{bmatrix} 2b_1 - b_2 \ b_2 - b_1 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix}$$

满列秩(full column rank)矩阵

- 定义: A满列秩, 如果秩r=列数n
 - A的所有列都是主列(没有自由列)
 - 零空间*N(A)*只有零向量
 - Ax = b如果有解, $b \in C(A)$,且只有一个解

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_1 + b_2 \end{bmatrix}$$

$$oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n = egin{bmatrix} 2b_1 - b_2 \ b_2 - b_1 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix}$$

满行秩(full row rank)矩阵

- 定义:A满行秩,如果秩r=行数m
 - A的所有行都有主元, R没有零行
 - Ax = b对于任意b都有解
 - $C(A) = \mathbb{R}^m$
 - $\dim N(A) = n r = n m$,张成 \mathbb{R}^n 内的一个n-m维线性空间

线性方程组解的总结

The four possibilities for linear equations depend on the rank r

$$oldsymbol{r} = oldsymbol{m} \qquad ext{and} \qquad oldsymbol{r} = oldsymbol{n} \qquad ext{Square and invertible} \qquad Aoldsymbol{x} = oldsymbol{b} \qquad ext{has 1 solution} \ oldsymbol{r} = oldsymbol{m} \qquad ext{Short and wide} \qquad Aoldsymbol{x} = oldsymbol{b} \qquad ext{has 0 or 1 solution} \ oldsymbol{r} < oldsymbol{m} \qquad ext{and} \qquad oldsymbol{r} < oldsymbol{n} \qquad ext{Not full rank} \qquad Aoldsymbol{x} = oldsymbol{b} \qquad ext{has 0 or } \infty \text{ solutions} \ oldsymbol{solution} \ oldsymbol{r} < oldsymbol{m} \qquad ext{Not full rank} \qquad Aoldsymbol{x} = oldsymbol{b} \qquad ext{has 0 or } \infty \text{ solutions} \ oldsymbol{r} < oldsymbol{m} \qquad ext{Not full rank} \qquad Aoldsymbol{x} = oldsymbol{b} \qquad ext{has 0 or } \infty \text{ solutions} \ oldsymbol{r} < oldsymbol{m} < oldsymbol{m} > oldsymb$$

Four types for
$$R$$
 $\begin{bmatrix} I \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ Their ranks $r=m=n$ $r=m < n$ $r=n < m$ $r < m, r < n$

Cases 1 and 2 have full row rank r = m. Cases 1 and 3 have full column rank r = n. Case 4 is the most general in theory and it is the least common in practice.

小结

- •矩阵的秩=主元个数,约化行阶梯矩阵的零行数量=m-r
- Ax = b有解当且仅当增广矩阵(A, b)的最后一列不是主列
- 特解 x_p 的一种选取方式:自由列对应的分量取0。如果主元列i中的1在第j行,则 $(x_p)_i = b_j$
- 如果系数矩阵列满秩:无解或者有唯一解
- 如果系数矩阵行满秩:有唯一解或者有无穷多解

内容提要

- 向量空间
- 线性独立、基和维度
- 矩阵A的零空间(Ax = 0的解空间)
- 方程Ax = b的完整解
- •四个子空间的维度

四个同矩阵A有关的线性子空间

• mxn矩阵A

- 行空间 $C(A^T)$: 所有行向量的线性扩张, \mathbb{R}^n 的子空间
- 列空间C(A) : 所有列向量的线性扩张, \mathbb{R}^m 的子空间
- 零空间N(A) : $Ax = \mathbf{0}$ 的解构成的线性空间, \mathbb{R}^n 的子空间
- 左零空间(left null space) $N(A^T)$: $\mathbf{x}^T A = \mathbf{0}$ 的解构成的线性空间, \mathbb{R}^m 的子空间
- 维度(线性代数基本定理):
 - $C(A^T)$ 和C(A)的维度都等于A的秩r(行秩=列秩)
 - *N(A)*的维度等于n-r
 - $N(A^T)$ 的维度等于m-r

行变换和列变换 (矩阵的初等变换)

- 行变换:用初等矩阵左乘矩阵A
 - 倍加矩阵: $I + ae_{ij}$
 - 置换矩阵: $I + e_{ij} + e_{ji} e_{ii} e_{jj}$
 - 倍乘矩阵: $I + (c 1)e_{ii}$
- 列变换:用初等矩阵右乘矩阵A
 - $A(I + ae_{ij})$: A的第i列乘a再加到第j列
 - $A(I + e_{ij} + e_{ji} e_{ii} e_{jj})$: 交换A的第i列和第j列
 - $A(I + (c-1)e_{ii})$: A的第i列乘非零常数c

行变换和子空间

- 假设E是一系列行变换对应的矩阵,E可逆
- A和EA有相同的零空间
 - N(A) = N(EA)
 - 证明思路:Ax = 0的解是EAx = 0的解,反之也成立
- *A*和*EA*列空间的维度相同(列空间不一定一样!!!)
 - $\dim C(A) = \dim C(EA)$
 - 证明思路:假设 $\{v_i\}$ 是C(A)的一组基,证明 $\{Ev_i\}$ 是C(EA)的一组基。

列变换和子空间

- 假设E是一系列列变换对应的矩阵,E可逆
- A和AE有相同的零空间维度
 - $\dim N(A) = \dim N(AE)$
 - 证明思路: $x \in Ax = \mathbf{0}$ 的解,那么 $E^{-1}x$ 就是 $AEx = \mathbf{0}$ 的解,假设 $\{v_i\}$ 是N(A)的一组基,证明 $\{E^{-1}v_i\}$ 是N(AE)的一组基
- A和AE 有相同的列空间
 - C(A) = C(AE)
 - 证明思路:AE的每一列是A的列向量的线性组合(矩阵乘法的第二种观点),又因为 $A = (AE)E^{-1}$,A的每一列也是AE的列向量的线性组合

矩阵A的子空间在初等变换下的性质

- 矩阵A在初等变换下
 - 列空间C(A)的维度不变
 - 零空间N(A)的维度不变
- 行变换下
 - 零空间*N(A)*不变
- 列变换下
 - 列空间C(A)不变
- 矩阵 A^T 的子空间在初等变换下如何?

矩阵和初等变换

•矩阵A可以通过初等行变换化成约化行阶梯形式R = rref(A)

$$m{R} = \left[egin{array}{ccccc} m{1} & 0 & a & 0 & c \ 0 & m{1} & b & 0 & d \ 0 & 0 & 0 & m{1} & e \ 0 & 0 & 0 & 0 & 0 \end{array}
ight]$$

• R可以通过列变换变成矩阵 \tilde{I}

$$\tilde{I} = \begin{pmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{pmatrix}$$

• 对于矩阵 \tilde{I} : 行秩($\dim C(\tilde{I}^T)$) =列秩($\dim C(\tilde{I})$) =r, $\dim C(\tilde{I})$ + $\dim N(\tilde{I})$ = n, $\dim C(\tilde{I}^T)$ + $\dim N(\tilde{I}^T)$ = m

矩阵和初等变换

•矩阵A可以通过行变换+列变换变成矩阵 \tilde{I}

$$\tilde{I} = \begin{pmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{pmatrix}$$

- 对于矩阵 \tilde{I} :行秩($\dim C(\tilde{I}^T)$)=列秩($\dim C(\tilde{I})$)=r, $\dim C(\tilde{I})$ + $\dim N(\tilde{I})$ = m
- 以上的这些量在初等变化下都不变,所以:
- •线性代数基本定理(第一部分):

行秩 $(\dim C(A^T))$ =列秩 $(\dim C(A))$ =r, $\dim C(A^T)$ + $\dim N(A) = n$, $\dim C(A) + \dim N(A^T) = m$

可逆矩阵的判断

•矩阵A可以通过行变换+列变换变成矩阵 \tilde{I}

$$\tilde{I} = \begin{pmatrix} I_{r \times r} & 0 \\ 0 & 0 \end{pmatrix}$$

- 如果A是n阶方阵,且rank(A) = n,则A可以通过行变换变成单位矩阵: $E_i \cdots E_1 A = I$
 - 因为初等矩阵和单位矩阵可逆,所以A也可逆
- **定理**: 方阵A可逆当且仅当A满秩

线性代数基本定理 (第一部分)

• 行秩=列秩

$$\dim C(A^T) = \dim C(A) = r$$

- $\dim C(A^T) + \dim N(A) = r + \dim N(A) = n$
- $\dim C(A) + \dim N(A^T) = r + \dim N(A^T) = m$

矩阵的四个子空间

Figure from Strang, introduction to linear algebra

小结

• 行秩=列秩

$$\dim C(A^T) = \dim C(A) = r$$

- $\dim C(A^T) + \dim N(A) = \dim C(A) + \dim N(A) = r + \dim N(A) = n$
- $\dim C(A) + \dim N(A^T) = \dim C(A^T) + \dim N(A^T) = r + \dim N(A^T) = m$