LOAN DOCUMENT

		
DTIC ACCESSION NUMBER	DOCUMENT IDENTIFICATION Feb 95	tability Study
	DISTRIBUTION ST Approved for Pub Distribution U	plic Release nlimited
/	DISTRIBUTIO	N STATEMENT I
NTIS GRAM DITC TRAC UNANNOUNCER JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP		DATE ACCESSIONED
		DATE RETURNED
20001227	001	
DATE RECEIVE	ED IN DTIC TOGRAPH THIS SHEET AND RETURN TO DTIC-FD	REGISTERED OR CERTIFIED NUMBER
DTIC ROM 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL

LOAN DOCUMENT

DTIC QUALITY INCRESSED 4

Draft Work Plan for a Treatability Study in Support of the Intrinsic Remediation (Natural Attenuation) Option at Site 1 (Hazardous Waste Storage Area)

Rickenbacker Air National Guard Base Lockbourne, Ohio

Prepared For

Air Force Center for Environmental Excellence Brooks Air Force Base San Antonio, Texas

and

Rickenbacker Air National Guard Base Lockbourne, Ohio

February 1995

AQ MOI-03-0657

	DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS									
Tit	AFCEE Collection									
1.	Report Availability (Please check one box)	2a. Number of	2b. Forwarding Date							
8	This report is available. Complete sections 2a - 2f.	Copies Forwarded	zo. I ci wai sii ii pats							
	This report is not available. Complete section 3.		0.1/2001							
Źc.	. Distribution Statement (Please check ONE DOX)	1 each	July/2080							
Dal	Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distri	." 18 Mar 87, contains sevel outlon statement.	n distribution statements, as							
M	DISTRIBUTION STATEMENT A: Approved for public rel	ease. Distribution is u	nlimited.							
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Government A	\gencies only.							
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Government A	Agencies and their							
	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	to U.S. Department of	f Defense (DoD) and U.S							
	CI DISTRIBUTION STATEMENT E: Distribution authorized to U.S. Department of Defense (DeD) components only.									
	DISTRIBUTION STATEMENT F: Further dissemination only as directed by the controlling DoD office indicated below or by higher authority.									
	individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD Directive 5230.25, Withholding of Unclassified Technical Data from Public Disclosure, 6 Nov 84.									
2 d .	Reason For the Above Distribution Statement (in accor	dance with DoD Directive 5	230.24)							
2e.	Controlling Office		ibution Statement							
	Determination									
3. This report is NOT forwarded for the following reasons. (Please check appropriate box)										
		•								
_	It was previously forwarded to DTIC on (d		f 13							
	U It will be published at a later date. Enter approximate date if known.									
L3	In accordance with the provisions of DoD Directive 3200, because:	12, the requested door	unent is not supplied							
	NANKENINININININ	1, 2015 11 11 11 10 10 10 10 10 10 10 10 10 10								
Prin	or Type Name		and a series of an experience and the same and an experience of the same and the same and the same and the same							
10	Signal Signal	ogen w)							
	phone	From Unic ties on								
21	10-536-1431	AQ Mumber	NOJ-03-0657							
		A MAN SE CONSULT.	The second secon							

DRAFT

WORK PLAN FOR A
TREATABILITY STUDY
IN SUPPORT OF THE INTRINSIC REMEDIATION
(NATURAL ATTENUATION) OPTION
AT SITE 1 (HAZARDOUS WASTE STORAGE AREA)

at

RICKENBACKER AIR NATIONAL GUARD BASE LOCKBOURNE, OHIO

February 1995

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

AND

OHIO AIR NATIONAL GUARD
RICKENBACKER AIR NATIONAL GUARD BASE
LOCKBOURNE, OHIO

Prepared by:

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

CONTENTS

1	INTRODUCTION	1-1
	1.1 SCOPE OF CURRENT WORK PLAN	1-2
	1.2 BACKGROUND	1-2
	1.2.1 Base Mission and Surrounding Land Use	1-3
	1.2.2 Site History	1-3
	1.2.3 Previous Site Investigations	1-7
2	DATA REVIEW AND CONCEPTUAL MODEL DEVELOPMENT	2_1
_	2.1 DATA REVIEW AND CONCERTORE MODEL BEVELOT MENT	2-1 2-1
	2.1.1 Topography, Surface Hydrology, and Climate	
	2.1.2 Overview of Geology and Hydrogeology	
	2.1.2 Overview of Geology and Trydrogeology	2-9
	2.1.4 Ground Water Quality and Chemistry	2-16
	2.2 Development of Conceptual Model	2-16
	2.2.1 Intrinsic Remediation and the Bioplume II Model	2-20
	2.2.2 Biodegradation of Dissolved BTEX Contamination	
	2.2.3 Biodegradation of Dissolved Chlorinated Solvent Contamination	2-22
	2.2.4 Initial Conceptual Models	2-22
	2.2.5 Potential Pathways and Receptors	
_	· -	
3	COLLECTION OF ADDITIONAL DATA	2 2
	3.1 CONE PENETROMETRY	
	3.1.1 CPT/LIF Testing Strategy	3-4 2 7
	3.1.2 Soil Sampling and Analysis	۱-د ۲-۶
	3.1.3 CPT Locations and Datum Survey	2 Q
	3.1.5 Equipment Decontamination Procedures	3-2
	3.2 PERMANENT MONITORING POINT INSTALLATION	3-10
	3.2.1 Monitoring Point Locations and Completion Intervals	
	3.2.2 Monitoring Point Installation Procedures	3-10 3 ₋ 11
	3.2.3 Site Restoration	3-14
	3.3 GROUNDWATER SAMPLING	3-16
	3.3.1 Preparation for Sampling	
	3.3.2 Sampling Procedures	3-17
	3.3.3 Onsite Ground Water Parameter Measurement	
	3.4 SAMPLE HANDLING FOR LABORATORY ANALYSIS	
	3.4.1 Sample Preservation	
	3.4.2 Sample Container and Labels	3-24
	3.4.3 Sample Shipment	3-24
	3.4.4 Chain-of-Custody Control	3-25
	3.4.5 Sampling Records	3-25
	3.4.6 Laboratory Analyses	3-25
	3.5 AQUIFER TESTING	3-26
	3.5.1 Definitions	3-26
	3.5.2 Equipment	3-27

		neral Test Methods	
		ing Head Test	
	3.5.5 KIS	ing Head Testg Test Data Analysis	3-28 3-30
4 D	•	, OPTION EVALUATION AND TS REPORT	
		ASSURANCE/QUALITY CONTROL	
6 R	EFERENC	ES	6-1
APPEN	IDIX A	CONTAINERS, PRESERVATIVES, PACKAGING, AND SHIPPING REQUIREMENTS FOR GROUND WATER SAMPLES	
APPEN	IDIX B	ADDITIONAL SITE DATA	
		TABLES	
			Page
1.1	Summary	of Wastes Stored at Site 1 (HWSA)	1-8
2.1	Summary	of Monitoring Well Construction Details	2-8
2.2	Summary	of Ground Water Level and Free Product Measurements	2-10 2 14
2.3	Summary	of Soil Analytical Data of Ground Water Analytical Data	2-14 2-18
		Protocol for Ground Water and Soil	
4.1	Example '	TS Report Outline	4-2
5.1	QA/QC S	ampling Program	5-2
		FIGURES	
			Page
1.1	Regional	Location Map	1-4
1.2	Site Loca	tion Map	1-5
1.3	Site Layo	ut Map	1-6
2.1	Regional	Topographic Mapof Hydrogeologic Cross Sections	
2.2	Congression	ed Hydrogeologic Cross Sections	2-5 2-6
2.5	Generaliz	ed Hydrogeologic Cross Section B - B'	2-7
2.5	Water Ta	ble Elevation Map - February 1990	2-11
2.6	Estimated	Areal Extent of Total BTEX Contamination for Soil	2-12
2.7	Monitorin	ng Wells and Screening Locations	2-17
2.8	Estimated	Extent of Total BTEX Contamination in Ground Water -1990)2-19
3.1	Cross Sec	tion of Fiber Optic Fluorometry Penetrometer	3-5
3.2	Proposed	Cone Penetrometer and Ground Water Sampling Locations	3-6
3.3	Geologic	Boring Log	را-ک 12 ع
3.4 2.5	Monitorii	ng Point Installation Record ng Point Development Record	3-15
5.5	MOUNTAIN	is roun pevelohmem record	

FIGURES (Continued)

		•	ĺ	F	Page
3.6	Ground Water Sampling Record.			 	3-18
3.7	Aquifer Slug Test Data Form			 3	3-29

SECTION 1

INTRODUCTION

This work plan, prepared by Parsons Engineering Science, Inc. (Parsons ES), formerly Engineering-Science, Inc. (ES), presents the scope of work required for the collection of data necessary to conduct a treatability study (TS) for remediation of groundwater contaminated with petroleum hydrocarbons and chlorinated organic compounds located at Site 1 (Hazardous Waste Storage Area) at Rickenbacker Air National Guard Base (the Base), in Lockbourne, Ohio.

Several remedial options will be evaluated during the TS, including free product removal; bioventing for source removal; air sparging; and natural contaminant attenuation (intrinsic remediation) with long-term monitoring. All hydrogeologic and groundwater chemical data necessary to evaluate the various remedial options will be collected under this program; however, this work plan is primarily oriented toward the collection of hydrogeologic data to be used as input into the Bioplume II groundwater model in support of intrinsic remediation for restoration of fuel-hydrocarbon-contaminated groundwater.

As part of the TS, the Bioplume II modeling effort has three primary objectives: 1) to predict the future extent and concentration of the dissolved-phase contaminant plume by modeling the effects of advection, dispersion, sorption, and biodegradation; 2) to assess the possible threat to potential downgradient receptors; and 3) to provide technical support for selection of the intrinsic remediation option as the best remedial alternative at regulatory negotiations, as appropriate. The Bioplume II modeling effort for this site will involve completion of several tasks, which are described in the following sections.

This work plan was developed based on discussions among representatives from the Air Force Center for Environmental Excellence (AFCEE), US Environmental Protection Agency (EPA), Ohio Environmental Protection Agency (OEPA), the Rickenbacker Base Conversion Agency, and Parsons ES at a meeting conducted at the Base on February 2, 1995; on the statement of work (SOW) for this project; and on a review of existing site characterization data. All field work will follow the health and safety procedures presented in the program Health and Safety Plan for Bioplume II Modeling Initiative (ES, 1993b) and the site-specific addendum to the program Health and Safety Plan. This work plan was prepared for AFCEE and the Base.

1.1 SCOPE OF CURRENT WORK PLAN

The ultimate objective of the work described herein is to provide a TS for remediation of groundwater contamination at Site 1. However, this project is part of a larger, broad-based initiative being conducted by AFCEE in conjunction with EPA and Parsons ES to document the biodegradation and resulting attenuation of fuel hydrocarbons dissolved in groundwater, and to model this degradation using the Bioplume II numerical groundwater model. For this reason, the work described in this work plan is directed toward the collection of data in support of this initiative. All data required to develop a 30-percent design of an alternate remediation system, should intrinsic remediation not prove to be a viable remedial option at this facility, also will be collected under this program. This work plan describes the site characterization activities to be performed in support of the TS and the Bioplume II modeling effort.

Proposed site characterization activities in support of the TS include: determination of preferential contaminant migration pathways; 2) cone penetrometer (CPT) and laser-induced fluorescence (LIF) testing; 3) groundwater monitoring point placement; 4) soil and groundwater sampling; and 5) aquifer testing. The materials and methodologies required for collection of these data are described herein. Existing sitespecific data and data collected during the supplemental site characterization activities described in this work plan will be used as input for the Bioplume II model. Where site-specific data are not available, conservative values for the types of aquifer materials present at the site obtained from widely accepted published literature will be used for model input. Sensitivity analyses will be conducted for the parameters which are known to have the greatest influence on the results of Bioplume II modeling, and where possible, the model will be calibrated using historical site data. completion of the Bioplume II modeling, Parsons ES will provide technical assistance at regulatory negotiations to support the intrinsic remediation option if the results of the modeling indicate that this approach is warranted. If it is shown that intrinsic remediation is not the most appropriate remedial option, Parsons ES will recommend the most appropriate groundwater remedial technology based on available data.

This work plan consists of six sections, including this introduction. Section 2 presents a review of existing site-specific data and a conceptual model for the site. Section 3 describes the proposed sampling strategy and procedures to be used for the collection of additional site characterization data. Section 4 describes the remedial option evaluation procedure and TS report format. Section 5 describes the quality assurance/quality control (QA/QC) measures to be used during this project. Section 6 contains the references used in preparing this document. There are two appendices to this work plan. Appendix A contains a listing of containers, preservatives, packaging, and shipping requirements for groundwater samples. Appendix B contains a summary of existing soil and groundwater analytical data from previous field investigation work.

1.2 BACKGROUND

The Base, which covers approximately 2,100 acres in Franklin and Pickaway Counties, Ohio, lies 12 miles southeast of Columbus, and 0.5 mile east of Lockbourne,

Ohio (Figure 1.1). The Base is situated on a glacial till plain between the Big Walnut and Walnut Creek drainage basins (ES, 1993a).

1.2.1 Base Mission and Surrounding Land Use

Rickenbacker Air National Guard Base, known as Lockbourne Air Force Base until 1974, was officially activated as the Northeastern Training Center, Army Air Corps, in 1942. The Base was used as an air base under the control of various government agencies, including the Strategic Air Command, the Ohio Air National Guard (OANG), and the Army Air Corps. The Base closed in April 1980, and was turned over to the OANG. Portions of the Base have been under the ownership of the Rickenbacker Port Authority (RPA) since 1982, and are used by private aircraft. The Base is slated for closure, and access to it is restricted (ES, 1992b).

Land use in the area of the Base is residential and agricultural. The military personnel housing in the northwestern corner of the Base has been purchased by a private developer, and units have been rented and/or sold to civilians. Open agricultural land lies to the north and east of the Base, with some residential development along the creeks and major roads. Privately owned trailer parks and single family homes lie to the south of the Base on the former Base golf course (ES, 1992b).

1.2.2 Site History

Site 1, the Hazardous Waste Storage Area (HWSA) is located at the edge of the shop area in the central section of the Base (Figure 1.2). Site 1 measures approximately 150 feet by 95 feet and is surrounded by a chain-link fence with a locking gate. Site 1 consists of Building 560 and the drum storage area (DSA) east and southeast of the building. A 25,000-gallon underground storage tank (UST) southeast of the DSA and three adjacent 25,000-gallon USTs located outside of the fence surrounding Site 1 were recently removed. Three additional abandoned 25,000-gallon USTs are located northeast of the road. Two abandoned separator pits lie to the north of the USTs. Another abandoned pit lies northeast of the road. Figure 1.3 presents a site map of Site 1. Previous investigations identified the four removed 25,000-gallon USTs, the separator pits, and the DSA as potential sources of the contamination (ES, 1992a and 1992b).

Site 1 has been under a permit for hazardous waste storage since 1983, but no waste has been stored at the facility since September 1986. Prior to 1983, Building 560 housed water demineralization equipment. The conversion of the site into a hazardous waste storage facility involved sealing off all floor drains that lead to storm sewers, connecting remaining drains to the sanitary sewer, and installing emergency eye-wash and shower fixtures. Until 1986, Building 560 was used to store small containers of hazardous waste. The DSA adjacent to Building 560 was used to store 55-gallon drums containing liquid wastes associated with degreasing operations at Base shops, aircraft cleaning, and general maintenance. These wastes included solvents, cleaning fluids, acids, and paint strippers. Small quantities of dry wastes such as desiccants were stored in Building 560. As many as 165 containers were stored at one time in the

LEGEND

- + HAND-AUGERED BORING LOCATION (JULY 1988)
- SHALLOW SOIL BOREHOLE (JANUARY 1990)
- SHALLOW AND DEEP SOIL BOREHOLE (JANUARY 1990)
- SOIL GAS SAMPLING LOCATION
- △ GROUND WATER SCREENING LOCATION (OCTOBER 1991)

- ABANDONED FUEL LINE

FENCE

GROUND WATER FLOW DIRECTION

~

FILL STAND \triangle GW-10

ABANDONED

25,000-GAL

USTs

△GW-11

FIGURE 1.3

SITE LAYOUT MAP

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

PARSONS ENGINEERING SCIENCE, INC.

(40)14L-2-711.5-

Denver, Colorado

grass area near Building 560. Table 1.1 presents a summary of the waste stored at the DSA. The four 25,000-gallon steel USTs, which were recently removed, were used for approximately 40 years. Two of these USTs were utilized for the storage of non-hazardous de-icing fluid. The other two USTs were used to store oil and recyclable JP-4 jet fuel. The JP-4 and oil USTs were taken out of service in 1988. Dielectric fluid, which may contain polychlorinated biphenyls (PCBs), was stored in the waste oil UST. The only recorded loss from any of the storage tanks occurred when a standpipe broke in 1982. No record of the amount of waste released is available (ES, 1989, 1992a, 1992b, 1992c, and 1993a).

1.2.3 Previous Site Investigations

Installation Restoration Program (IRP) action was initiated by the Department of Defense (DOD), the Air National Guard (ANG), and the US Air Force (USAF) at the Base in 1987. The ANG, through a technical agreement with the USAF and the Department of Energy (DOE), retains Martin Marietta Energy Systems Inc.(MMES) to conduct the Hazardous Waste Remedial Actions Program (HAZWRAP) at ANG sites. MMES subcontracted site investigation (SI) activities to ES (1989, 1992a, 1992b, and 1993a) in 1988.

Site 1 was identified as a potential source of contamination in the preliminary Assessment (PA) of the Base in 1987 (Hazardous Materials Technical Center [HMTC], 1987). Initial SI activities were conducted by ES based on the results of the PA. During field activities associated with the first phase of the SI, a soil gas survey was conducted at 9 locations (1SG-1 to 1SG-9) in July 1988. In July and August 1988, soil samples were collected from 16 surface locations (SU-1 to SU-16), 6 shallow handaugered borings (HB-1 to HB-6), and 3 hollow stem auger borings. The 3 hollow stem auger borings were completed as monitoring wells (MW-1 to MW-3). Aquifer slug tests were performed in each of the three monitoring wells. A closure plan for the Base was approved by the Ohio Environmental Protection Agency (OEPA) in September 1989. The field investigation report (FIR) for the first phase of the SI was completed by ES (1989) in October 1989. In January 1990, during pre-closure SI activities, 31 surface soil samples (SU-19 through SU-49) were collected, and 10 shallow soil borings (AB-1 to AB-10) and 5 deep soil borings (AB-11 through AB-15) were installed. Six additional soil borings were completed as monitoring wells (MW-4 through MW-9). Aquifer slug tests were performed on 4 of the 6 monitoring wells installed during the pre-closure site investigation.

In July 1990, field activities associated with the determination of the extent of phase-separated hydrocarbons (PSH) were conducted. Soil was excavated around the USTs, the abandoned separator pits, and in areas outside Site 1, and a soil gas survey was performed. In October 1990, the draft pre-closure sampling report (PCSR) was completed by ES. Groundwater screening for volatile organic compounds (VOCs) was performed at 18 locations (GW-1 through GW-21) in October 1991 as part of the addendum to the PCSR (ES, 1992a). As a result of this VOC screening, three additional soil borings were completed as monitoring wells (MW-10, MW-11, and MW-12). Ten surface soil samples (SS1 through SS10) were also collected as part of the addendum to the PCSR. The final Addendum to the PCSR was submitted to the

TABLE 1.1 SUMMARY OF WASTES STORED AT SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

	EPA Haz.		Quantity	(gallons)	}
Waste Description	Waste Number	1983	1984	1985	1986 ^{a/}
PD 680 (Stoddard Solvent, Flammable Aliphatic Petroleum Distillate)	D001	1,155	1450	110	2429
Carbon Removing Compound (Methylene Chloride, Creosols, Phenols)	F001, F004	590	870		
HAN (Highly Aromatic Naptha)	D001	500	290		
MEK (Methyl Ethyl Ketone)	F005	285	525		1050
Paint Remover	F005	200	540		
Bromochloromethane		200	385		
Sulfuric Acid	D002	25	25		
Paint Thinner	D001	20	20		
Ethanolamine and Benzyl Alcohol	D001	220			
Oily Water and Cleaning Solutions containing Lead, Cadmium, Chromium and Nickel	D006, D007, D008	495			
Hydraulic Fluid		į	360		
Synthetic Oil			440		
Inspection Penetrant			150		
Organic Peroxide	D002			1	
Spent Desiccant (Cobalt chlorine) ^{b/}		50	40	10	

Source: ES, 1993a

^{a/} 1986 storage in pounds ^{b/} Desiccant quanities for all years in pounds

ANG in January 1992 and a final PCSR was completed by ES (1992b) in March 1992. The PSH report was also completed in March 1992 (ES, 1992c). In March 1993, an amended closure/post closure plan was submitted by ES (1993a) to the ANG.

SECTION 2

DATA REVIEW AND CONCEPTUAL MODEL DEVELOPMENT

Existing site-specific data were reviewed and used to develop conceptual models of the groundwater flow and contaminant transport regimes for Site 1. These conceptual models will allow efficient collection of additional data to support the Bioplume II modeling effort and to evaluate potential remediation technologies, including intrinsic remediation. Sections 2.1 and 2.2 present a synopsis of available site data. Section 2.3 presents the preliminary conceptual groundwater flow and solute transport models that were developed based on these data.

2.1 DATA REVIEW

The following sections were based upon review of data from the following sources:

- Field Investigation Report (ES, 1989)
- Addendum to the Pre-Closure Sampling Report (ES, 1992a);
- Pre-Closure Sampling Report (ES, 1992b);
- Determination of Phase-Separated Hydrocarbon Contamination (ES, 1992c); and
- Amended Closure/Post Closure Plan (ES, 1993a).

2.1.1 Topography, Surface Hydrology, and Climate

The Base is located in the Interior Plains Physiographic Region, just west of the Appalachian Highlands. The Interior Plains Physiographic Region is characterized by broad river valleys with low local relief, separated by large plateaus and rolling hills (Espenshade, 1986). Base elevations range from approximately 720 to 750 feet above mean sea level (msl). Vegetation consists of grasses and herbaceous plants, with deciduous trees along the stream beds (ES, 1989, 1992a, and 1992b). A topographic map of the Base area is presented in Figure 2.1 (US Geological Survey [USGS], 1985)

Major surface water features in the area include Big Walnut Creek, located west and north of the Base, and Walnut Creek, located east of the Base. Several intermittent

streams, which flow into either Big Walnut Creek or Walnut Creek, are located on or near the Base (Figure 2.1). Surface water at the Base and Site 1 is collected through an extensive storm drain network. Water from the storm drains is routed through oil/water separators before being released into the surrounding streams. Surface water originating from Site 1 enters a separator located in the northeastern section of the Base and drains into Walnut Creek near the sewage disposal area (Figure 2.1) (ES, 1989 and 1992a; USGS, 1985).

The climate is continental, characterized by cold winters, hot summers, and moderate rainfall (Pierce, 1959). The mean annual temperature is 52 degrees Fahrenheit (°F). The coldest month is January with a mean temperature of 30°F; the warmest month is July, with a mean temperature of 74°F. Precipitation at the Base occurs primarily during the summer months, with June being the wettest month and October being the driest month of the year. The mean annual Base precipitation is approximately 38 inches (HMTC, 1987).

2.1.2 Overview of Geology and Hydrogeology

2.1.2.1 Regional and Local Geology and Hydrogeology

Rickenbacker ANGB lies within the Glaciated Central Lowlands Geologic Province, just west of the Appalachian Plateau Province. The geology of the area is characterized by over 200 feet of Pleistocene sandy and gravely glacial outwash and silty and clayey glacial till filling a pre-glacial bedrock valley. The bedrock in the area consists of Devonian-age limestones and shales of the Columbus and Delaware Formations (ES, 1993a).

On the Base, surficial deposits consist of 8 to 20 feet of yellowish-brown silt and clay underlain by 2 to 20 feet of medium-grained, sandy gravel with interbedded, intermittent stringers of fine-grained, well-sorted sands and sandy gravels. These sands and gravels form the shallow surficial aquifer beneath the Base. Between 40 and 70 feet of dense, gray silty clay lies beneath the sands and gravels of the surficial aquifer. Intermittent sand and gravel layers exist within the upper portion of the clay unit. Directly beneath the clay unit, at depths ranging from 50 to 100 feet below ground surface (bgs), is 100 to 140 feet of gravel and sand. The bedrock of the Columbus and Delaware Formations is found beneath the lower sand and gravel unit, at a depth of at least 200 feet bgs (ES, 1989, 1992a, 1992b, and 1993a).

The regional hydrogeology of central Ohio is characterized by unconfined and confined surficial aquifers within the glacial deposits overlying confined bedrock aquifers. Yields from the surficial aquifers varies greatly depending upon the glacial materials deposited (Driscoll, 1986)

At the Base, two aquifers exist within the surficial glacial deposits. An unconfined to semiconfined shallow surficial aquifer, consisting of silts, sands, and gravels up to 15 feet thick, is present at depths ranging from 5 to 15 feet bgs. The base of the shallow surficial aquifer is roughly defined by the top of the gray, silty clay confining unit. Previous investigations indicate that the intermittent sands and gravels within the

upper portion of the clay unit are also water bearing, but the hydraulic connection between these sand and gravel layers and the shallow, surficial aquifer is not clearly defined. A deep, confined surficial aquifer exists at depths ranging from 50 to 100 feet bgs and is comprised of sands and gravels ranging in thickness from 100 to 140 feet. No information is available concerning groundwater within the bedrock beneath the Base. The deep surficial aquifer serves as a primary source of potable water for the Base and the City of Lockbourne, Ohio (ES, 1989, 1992a, 1992b, and 1993a).

2.1.2.2 Site Geology and Hydrogeology

During initial site investigation activities conducted by ES (1989), three borings were installed and sampled using a hollow-stem auger with a split-spoon sampler. Borehole depths ranged from 15 to 20 feet bgs, and all three were completed as monitoring wells. Six additional shallow soil borings were installed, and 16 surface soil samples were collected using manual sampling methods. Each shallow soil boring was completed to a depth of 4 feet bgs. In January 1990, pre-closure field activities performed by ES (1992b) included drilling of six additional borings to 16 feet bgs, using a hollow-stem auger. Each boring was sampled and completed as a monitoring well. Thirty-one surface soil samples were collected at the site in a 35-foot grid pattern to ascertain the areal extent of surface soil contamination. At 10 of the surface soil sampling locations, shallow soil borings were installed to 10 feet bgs using a hollow-stem auger. Samples were collected from these borings to determine the vertical extent of soil contamination. Five deep soil borings were drilled and sampled to depths ranging from 23 to 27 feet bgs.

As part of the PSH investigation conducted by ES (1992c), test pits were excavated to depths of 3 to 12 feet bgs in four potential source areas. Three additional soil borings were drilled and sampled to a depth of 18 feet, then completed as monitoring wells as part of the supplementary investigation associated with the PCSR (ES, 1992b). As part of the addendum to the PCSR, 10 additional surface soil samples were gathered along the southern edge of Site 1. The locations of hydrogeologic cross-section lines are shown in Figure 2.2. Figures 2.3 and 2.4 present the hydrogeologic cross sections developed from boring logs produced during initial and pre closure site investigation efforts. Table 2.1 presents the well completion data for Site 1.

Near-surface soil observed in the vicinity of Site 1 consisted of yellowish-brown, silt and silty clay to a depth ranging from 8 to 15 feet bgs. The relatively low vertical and horizontal permeability of the silt and clays is thought to retard the migration of surface contaminants into groundwater. Beneath the surficial silt and clay layer is 2 to 10 feet of brown to reddish-brown, medium-grained sandy gravel with stringers of fine-grained, well-sorted sands and sandy gravels. No further subsurface information at Site 1 is available, but it is assumed that subsurface geology is similar to that of the rest of the Base, as described in Section 2.1.2.1 (ES, 1989. 1992a, 1992b, and 1992c).

LEGEND

- MONITORING WELL LOCATION
- SURFACE SOIL SAMPLING LOCATION (SU1 TO SU16, JULY 1988) (SU19 TO SU49, JANUARY 1990) (SS1 TO SS10, OCTOBER 1990)
- + HAND-AUGERED BORING LOCATION (JULY 1988)
- O SHALLOW SOIL BOREHOLE (JANUARY 1990)
- SHALLOW AND DEEP SOIL BOREHOLE (JANUARY 1990)
- SOIL GAS SAMPLING LOCATION
- GROUND WATER SCREENING LOCATION (OCTOBER 1991)

_____ ABANDONED FUEL LINE

×--× FENCE

GROUND WATER FLOW DIRECTION

MW-8

GW-6, GW-15-18 A

△GW-10

FILL STAND

ABANDONED

25,000-GAL

USTs

△GW-11

FIGURE 2.2

LOCATION OF GEOLOGIC CROSS SECTIONS

Site 1 (HWSA)
Intrinsic Remediation TS
Rickenbacker Air National Guard Base, Ohio

PA

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

M: \45025\DRAWNGS\95DN0132. 2/13/95 at 7:45

M: \45025\DRAWNGS\95DNO132, 2/13/95 at 7:45

TABLE 2.1

SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS INTRINSIC REMEDIATION TS SITE 1 (HWSA)

RICKENBACKER ANGB, OHIO

Well	Completion	Well	Elev	Elevation	Top of Filter Pack	lter Pack	Top of W	Top of Well Screen	Bottom of Well Screen	Well Screen	Bottom of Well	of Well
А	Date	Material	TOC	CS	Depth	Elev	Depth	Elev	Depth	Elev	Depth	Elev
:			ft msl a/	ft msl b/	ft bgs c/	ft msl	ft bgs	ft msl	ft bgs	ft msl	ft bgs	ft msl
MW-1	7/19/88	2" PVC	743.43	741.2		741.2	0.6	732.2	19.0	722.2	20.0	721.2
MW-2	7/29/88	2" PVC	743.25	741.0	38.0	703.0	5.0	736.0	15.0	726.0	15.0	726.0
MW-3	8/18/88	2" PVC	743.89	741.6	32.0	9.60/	7.0	734.6	17.0	724.6	18.0	723.6
MW-4	1/29/90	2" PVC	745.01	NA®	36.0	NA	5.0	NA	15.0	NA A	16.0	NA
MW-5	1/31/90	2" PVC	744.99	N A	36.0	NA	5.0	NA	15.0	NA	16.0	NA
9-MM	1/30/90	2" PVC	744.99	ΝΑ	33.0	NA	5.0	NA	15.0	NA	16.0	NA
MW-7	1/30/90	2" PVC	745.16	NA	36.0	NA	5.0	NA	15.0	NA A	16.0	NA
MW-8	1/30/90	2" PVC	743.74	NA	36.0	NA	5.0	NA	15.0	NA AN	16.0	NA
WM-9	2/9/30	2" PVC	745.12	NA	36.0	NA	5.0	NA	15.0	NA	16.0	NA
MW-10	10/14/91	2" PVC	742.44	N.	6.0	NA	8.0	NA	18.0	NA	18.0	NA
MW-11	10/15/91	2" PVC	744.04	NA	5.5	NA	7.5	NA	17.5	NA	17.5	NA
MW-12	10/16/91	2" PVC	742.87	NA	0.9	NA	8.0	NA	18.0	NA	18.0	NA
Course DC	Constant EC 1090 1007s and 1007h	and 1997h										

2-8

Source: ES, 1989, 1992a, and 1992b

a/ Top of casing; feet above mean sea level

b/ Ground surface; feet above mean sea level

c/ Feet below ground surface d/ Not available

The shallow surficial aquifer is at least 10 feet thick in the Site 1 area. Groundwater is present within the sands and gravels of the surficial aquifer at depths ranging from 8 to 17 feet bgs, and the elevation of groundwater surface ranges from 727 to 734 feet above msl. The shallow surficial aquifer exists under semiconfined conditions, as the water levels within the wells at Site 1 rise above the top of the sand and gravel unit. Groundwater levels in wells at Site 1 fluctuate as much as 6 feet seasonally. Highest groundwater level elevations were observed in October 1988, and the lowest elevations were recorded in April 1989. Table 2.2 presents a summary of groundwater level measurements. Based on historic groundwater elevation data, flow is expected to be to the south and southeast toward Walnut Creek (Figure 2.5). A slight rise in groundwater elevations was recorded in the vicinity of the USTs during February 1990. This rise was attributed to the accumulation of water within the fill material surrounding the tanks.

The horizontal hydraulic gradient in the vicinity of Site 1 is approximately 0.047 foot/foot (ft/ft). Rising head slug tests suggest the average hydraulic conductivity of the shallow surficial aquifer is about 2.35 feet per day (ft/day). Rising head slug test results are presented in Table B.1 in Appendix B. Assuming a porosity of 0.25, a horizontal hydraulic gradient of 0.047 ft/ft, and a hydraulic conductivity of 2.35 ft/day, the average groundwater velocity was calculated to be 0.44 ft/day (ES, 1989, 1992a, 1992b, and 1992c).

2.1.3 Soil Quality

During site investigation activities conducted by ES (1989, 1992a, 1992b, and 1992c), four primary areas of soil contamination were identified. The largest area is located adjacent to the building foundation in the grassy area that is in the center of Site 1. Contamination is estimated to extend south from the northwestern corner of the building foundation to an area southeast of the former location of the four 25,000-gallon USTs. The second contaminated area lies to the northwest of Building 560, and another area lies to the southeast of Building 560. The final contaminated area is located in the center of the drum storage area. Figure 2.6 presents the estimated extent of benzene, toluene, ethylbenzene, and xylenes (BTEX) contamination in the soil at Site 1.

A soil gas survey was conducted at nine points at Site 1 in July 1988, to determine the areal extent of soil contamination. BTEX contamination was identified at two soil gas survey locations: southeast of Building 560 at point 1SG-1 at 29.81 parts per million per volume (ppmv), and southeast of the abandoned separator pits at point 1SG-6 at 0.66 ppmv (Figure 2.6). Table B.2 in Appendix B presents a summary of soil gas survey results.

Soil samples were collected for laboratory analysis from surface soil investigations, shallow hand borings, and from the boreholes of the three monitoring wells installed during initial SI by conducted by ES (1989) (Section 2.1.2.2). A summary of laboratory analytical data from soil samples collected at Site 1 is presented in

TABLE 2.2 SUMMARY OF GROUND WATER LEVEL AND FREE PRODUCT MEASUREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS

RICKENBACKER ANGB, OHIO

				Datum	Datum	Depth	Depth to	Product	Corr. Depth	Corr. GW
Sample	Sample			Elevation ^{a/}	Elevation ^{b/}	to Water	Product	Thickness	to Water	Elevation
Location	Date	Easting	Northing	(ft msl) d'	(ft msl)	(ft TOC) e	(ft TOC)	(feet)	(ft TOC)	(ft msl)
	0/16/00	11	NA	743.60		10.40			10.40	733,20
MW-1	9/16/88	NA ^{f/}	NA NA	743.60		12.11			12.11	731.49
	10/17/88	NA		743.60		10.72			10.72	732.88
	11/17/88	NA	NA NA	743.60		11.84			11.84	731.76
	12/17/88	NA	NA NA	743.60		10.30			10.30	733.30
	1/20/89	NA NA	NA NA	743.60		10.30			10.15	733.45
	2/15/89	NA	NA NA	743.60		9.98			9.98	733.62
	3/15/89	NA NA	NA NA	743.60		8.83			8.83	734.77
İ	4/19/89	NA NA	NA NA	743.60	743.43	14.78	14.73	0.05	14.74	728.69
MW-2	10/17/91	NA NA	NA NA	743.38	743.43	10.35	14.73	0.03	10.35	733.03
MW-2	9/16/88		NA NA	743.38		12.00			12.00	731.38
	10/17/88	NA NA	NA NA	743.38		10.78			10.78	732.60
	11/17/88	NA		743.38		11.75			11.75	731.63
	12/17/88	NA	NA NA			9.46			9.46	733.92
	1/16/89	NA	NA NA	743.38	1	10.10			10.10	733.28
	2/15/89	NA	NA	743.38		9.90			9.90	733.48
	3/15/89	NA	NA NA	743.38		9.30	1		9.30	734.08
	4/19/89	NA	NA NA	743.38	743.25	9.30 14.77			14.77	728.48
	10/17/91	NA NA	NA NA	744.00	743.23	10.50			10.50	733.59
MW-3	9/16/88	NA	NA	744.09		12.42			12.42	731.67
	10/17/88	NA	NA	744.09					10.82	733.27
	11/17/88	NA	NA	744.09		10.82			12.17	731.92
	12/17/88	NA	NA	744.09	<u> </u>	12.17		[10.21	731.92
	1/20/89	NA	NA	744.09		10.21			9.71	734.38
	2/15/89	NA	NA	744.09		9.71			9.71	734.36
	3/15/89	NA	NA	744.09		9.73			9.73	734.64
	4/19/89	NA	NA	744.09	742.00	9.45		<u> </u>	15.43	728.46
	10/17/91	NA	NA		743.89	15.43			15.43	729.36
MW-4	10/17/91	NA	NA		745.01	15.65			16.49	729.50
MW-5	10/17/91	NA	NA		744.99	16.49			16.49	728.41
MW-6	10/17/91	NA	NA		744.99	16.58				
MW-7	10/17/91	NA	NA		745.16	17.25			17.25 15.87	727.91 727.87
MW-8	10/17/91	NA	NA		743.74	15.87	-	-		727.87
MW-9	10/17/91	NA	NA	ļ	745.12	17.03	<u> </u>		17.03 14.06	728.38
MW-10	10/17/91	NA	NA	<u> </u>	742.44	14.06	ļ		15.83	728.38
MW-11	10/17/91	NA .	NA		744.04	15.83	 	 	15.83	727.08
MW-12	10/17/91	NA 1000h and	NA 1002a	<u> </u>	742.87	15.79	J	L	13.79	121.08

Source: ES, 1989, 1992a, 1992b, and 1993a

a/ Top of casing elevation

b/ Top of protective casing elevation

c' Corrected depth to water = measured depth to water - (0.75 x product thickness)

d Feet above mean sea level

e' Feet below top of specified casing elevation

[&]quot; Not available

LEGEND

- SURFACE SOIL SAMPLING LOCATION (SU1 TO SU16, JULY 1988) (SU19 TO SU49, JANUARY 1990) (SS1 TO SS10, OCTOBER 1990)
- + HAND-AUGERED BORING LOCATION (JULY 1988)
- SHALLOW SOIL BOREHOLE (JANUARY 1990)
- SHALLOW AND DEEP SOIL BOREHOLE (JANUARY 1990)
- SOIL GAS SAMPLING LOCATION
- GROUND WATER SCREENING LOCATION (OCTOBER 1991)

- ABANDONED FUEL LINE

- FENCE .

733 -

GROUND WATER FLOW DIRECTION

LINE OF EQUAL GROUND WATER ELEVATION (FEBRUARY 1990) (feet above MSL)

w-6, Gw-15-18[△]

WATER TABLE ELEVATION MAP FEBRUARY 1990

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

ENGINEERING SCIENCE, INC.

Denver, Colorado

Table 2.3. Laboratory analyses indicate that the greatest concentrations of contaminants were present in soils in the grassy area southeast of Building 560. A total BTEX concentration of 2,020,000 micrograms per kilogram (μ g/kg), a naphthalene concentration of 1,600 μ g/kg, and a 2-methylnaphthalene concentration of 2,800 μ g/kg were obtained in the 2.6- to 3.9-foot bgs sample in hand boring HB-1. Of the BTEX contaminants, only xylene and ethylbenzene were detected in HB-1 (Table 2.3). A total BTEX concentration of 32,900 μ g/kg, a naphthalene concentration of 630 μ g/kg, and a 2-methylnaphthalene concentration of 1,200 μ g/kg were detected in soil samples associated with the boring of monitoring well MW-1. Samples from hand boring HB-2 also contained significant naphthalene and 2-methylnaphthalene contamination (5,400 μ g/kg and 23,000 μ g/kg, respectively). Soil samples from the other two monitoring wells and the other four hand soil boring showed no evidence of contamination. The 16 surface soil samples either were not analyzed or showed no evidence of volatile or aromatic hydrocarbon contamination (ES, 1989).

Soil analytical results were also reported for field sampling associated with the preclosure investigation performed by ES (1992a). Soil analytical results are available for surface soil samples, shallow soil borings, deep soil borings, and borings performed during the installation of monitoring wells MW-4 to MW-9 (Section 2.1.2.2). Table The greatest total BTEX concentrations were 2.3 also summarizes these data. identified in soil samples from monitoring well boreholes MW-5 and MW-7. Monitoring well MW-5, located east of Building 560 adjacent to the building foundation (Figure 2.6), contained total BTEX concentrations of 16,300 µg/kg at a depth of 13 to 15 feet bgs. A sample from 8 to 10 feet bgs at monitoring well MW-7, located southeast of the USTs, had a total BTEX concentration of 6,080 µg/kg. In the shallow soil samples, contamination was identified in samples from 8 to 10 feet bgs at locations AB1 and AB3. At shallow soil sample location AB1, located north of Building 560, the total BTEX concentration was 24,700 µg/kg. collected at location AB3, positioned near the building foundation, contained a total BTEX concentration of 39 µg/kg. Elevated total BTEX concentrations were also detected in deep soil borings AB14 and AB15. Deep soil boring AB14, located southeast of the building foundation, had a total BTEX concentration of 72,000 µg/kg, and location AB15, near the center of the grassy area, contained 250 µg/kg of BTEX compounds.

As part of the field effort to identify the free-phase hydrocarbons at Site 1 (ES, 1992c), excavations were installed in around the USTs and the abandoned separator pits. Soil sample headspace readings indicated elevated VOC concentrations in the abandoned pit northeast of the building foundation and in each of the four soil stockpiles created during excavation activities. Table B.3 in Appendix B presents a summary of VOC headspace data. Volatile hydrocarbon contamination was identified in the abandoned pit to the northeast of the building foundation (39 μ g/kg) by laboratory analysis (ES, 1992c).

Soil samples were also collected for laboratory analysis during installation of monitoring wells MW-10 through MW-12 (ES, 1992a). Analytical laboratory data

TABLE 2.3

SUMMARY OF SOIL ANALYTICAL DATA SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

		Sample	,	-1	.,			Total	Total	w	
Sample	Sample	Depth	Benzene *	Toluene "	Ethylbenzene */	m&p-xylene	o-Xylene "	Xylenes	BTEX	Naphthalene b/	2-Methylnapthalene b
Location	Date	(feet bgs)	(μg/kg)	(µg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)
HB1-SS1	6/14/88	0-1.3	NA ^{d/}	ND ^{e/}	ND	NA	440,000	440,000	440,000	ND	1,100
HB1-SS2	6/14/88	1.3-2.6	NA	ND	ND	NA	300,000	300,000	300,000	390	960
HB1-SS3	6/14/88	2.6-3.9	NA	ND	120,000	NA	1,900,000	1,900,000	2,020,000	1,600	2,800
HB2+3-SS1	6/14/88	0-1.3	NA	ND	ND	NA	ND	0	ND	870	1,900
HB2-SS2	6/14/88	1.3-2.6	NA	ND	ND	NA	43	43	43	5,400	23,000
HB2-SS3	6/14/88	2.6-3.9	NA	ND	ND	NA	ND	ND	ND	570	2,800
HB4-SS1	7/6/88	0-1.3	NA	ND	ND	NA NA	ND	ND	ND	ND	ND ND
HB4-SS2	7/6/88	1.3-2.6	NA NA	ND	ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND
HB4-SS3	7/6/88	2.6-3.9	NA NA	ND	ND ND	NA NA	ND	ND	ND ND	ND	ND
HB5-SS1 HB6-SS1	7/6/88	0-1.3 0-1.3	NA NA	ND ND	ND	NA NA	ND	ND	ND	ND	ND
HB6-SS2	7/6/88	1.3-2.6	NA NA	ND	ND	NA NA	ND	ND	ND	ND	ND
HB6-SS3	7/6/88	2.6-3.9	NA NA	ND	ND	NA NA	ND	ND	ND	ND	ND
AB1-SS1	1/22/90	3-5	6 U ^(f)	5 UJ ^{g/}	6 U	6 U	6 U	12 U	29U	NA	NA
AB1-SS2	1/22/90	8-10	1200 UJ	710 U	6,700	6,000	12,000	18,000	24,700	NA	NA
AB2-SS1	1/22/90	3-5	1 J	6 U	6 U	6 U	6 U	12U	1J	NA	NA
AB2-SS2	1/22/90	8-10	6 U	5 UJ	6 U	6 U	6 U	12U	29U	NA	NA
AB3-SS1	1/23/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	42U	NA	NA
AB3-SS2	1/23/90	8-10	39	6 U	6 U	6 U	6 U	12U	39	NA	NA
AB4-SS1	1/23/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB4-SS2	1/23/90	8-10	6 U	6 U	20	36	51	87	107	NA	NA
AB5-SS1	1/22/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB5-SS2	1/22/90	8-10	6 U	5 UJ	6 U	6 U	6 U	12U	29U	NA NA	NA NA
AB6-SS1	1/23/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	30U 1J	NA NA	NA NA
AB6-SS2	1/23/90	8-10	1 J	6 U	6 U	6 U	6 U	12U 12U	30U	NA NA	NA NA
AB7-SS1	1/23/90	3-5 8-10	6 U	6 U	6 U	6 U	6 U	12U	30U	NA NA	NA NA
AB7-SS2 AB8-SS1	1/23/90	3-5	6 U	5 UJ	6 U	6 U	6 U	12U	29U	NA NA	NA NA
AB8-SS2	1/22/90	8-10	6 U	5 UJ	6 U	6 U	6 U	12U	29U	NA	NA
AB9-SS1	1/23/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB9-SS2	1/23/90	8-10	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB10-SS1	1/23/90	3-5	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB10-SS2	1/23/90	8-10	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
AB11-SS4	1/26/90	15-17	6 U	6 U	6 U	6 U	6 U	12U	30U	NA NA	NA NA
AB11-SS7	1/26/90	21-23	6 U	2 J	6 U	6 U	6 U	12U	2J	NA NA	NA NA
AB12-SS3	1/24/90	13-15	6 U	6 U	6 U	6 Ü	6 U	12U	30U	NA NA	NA NA
AB12-SS7	1/24/90	21-13	6 J	6 J	6 J	6 J	6 J	12J	30J	NA NA	NA NA
AB13-SS5	1/24/90	17-19	6 U	6 U	6 U	6 U	6 U	12U 10U	30U 25U	NA NA	NA NA
AB13-SS7	1/24/90	21-23	5 U	5 U	5 U	15,000	27,000	42,000	72,000	NA NA	NA NA
AB14-SS2 AB14-SS7	1/25/90	8-10 21-23	15,000	679 U 6 U	15,000 6 U	6 U	6 U	NA	30U	NA NA	NA NA
AB14-SS7 AB15-SS3	1/25/90	13-15	26 U	26 U	250	26 U	26 U	52U	250	NA NA	NA NA
AB15-SS8	1/25/90	25-27	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
SU28	6/14/88	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
SU41	6/14/88	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
SU42	6/14/88	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
SS9	10/16/91	NA	ND	ND	ND	NA	NA	NA	ND	NA	NA
SS10	10/16/91	NA	ND	ND	ND	NA	NA	NA	ND	NA NA	NA NA
MW1-SS1	7/20/88	NA	ND	ND	1,700	NA_	1,600	1,600	3,300	ND (20	ND 1 200
MW1-SS2	7/20/88	NA	1,900	ND	11,000	NA NA	20,000	20,000	32,900	630	1,200
MW2-SS1	7/29/88	NA	ND	ND NA	ND ND	NA NA	ND	ND	ND	ND ND	ND ND
MW2-SS2	7/29/88	NA_	ND	NA NA	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND
MW2-SS3	7/29/88	NA NA	ND NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND
MW3-SS1 MW3-SS2	8/10/88 8/10/88	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND
MW3-SS2 MW4-SS2	1/29/90		6 U	6 U	6 U	6 U	6 U	12U	30U	NA NA	NA NA
MW4-SS3	1/29/90	13-15	6 U	6 U	6 U	6 U	6 U	12U	30U	NA NA	NA NA
MW5-SS2	1/31/90		6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
MW5-SS3	1/31/90		694 U	694 U	7,400	1,900	7,000	8,900	16,300	NA	NA
TAT AL 2-2022	1/31/90	12-12	1 477 0	1 277 0	1 .,100				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	<u> </u>

TABLE 2.3 (Continued)

SUMMARY OF SOIL ANALYTICAL DATA SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

	T	Sample						Total	Total		
Sample	Sample	Depth	Benzene "	Toluene "	Ethylbenzene */	m&p-xylene *	o-Xylene *	Xylenes	BTEX	Naphthalene ^{b∕}	2-Methylnapthalene b
Location	Date	(feet bgs)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(µg/kg)	(μg/kg)
			r								
MW6-SS2	1/30/90	8-10	6 U	6 U	6 U	6 U	6 U	12U	3OU	NA	NA
MW6-SS3	1/30/90	11-13	6 U	1J	6 U	6 U	6 U	12U	1J	NA	NA
MW7-SS2	1/30/90	8-10	2,100	682 U	980	1,800	1,200	3,000	6,080	NA	NA
MW7-SS3	1/30/90	11-13	140	4 Ј	6 U	6 U	6 U	12U	140	NA	NA
MW8-SS2	1/31/90	9-11	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
MW8-SS3	1/31/90	13-15	2 J	6 U	6 U	6 U	6 U	12U	2J	NA	NA
MW9-SS2	2/09/90	9-11	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
MW9-SS3	2/09/90	13-15	6 U	6 U	6 U	6 U	6 U	12U	30U	NA	NA
MW10	10/14/91	8-10	12 U	12 U	12 U	NA	NA	12 U	48U	NA	NA
MW10	10/14/91	13-15	13 U	13 U	13 U	NA	NA	13 U	52U	NA	NA
MW11	10/15/91	8-10	11U	11U	11U	NA	NA	11U	44U	NA	NA
MW11	10/15/91	13-15	12 U	12 U	12 U	NA	NA	12 U	48U	NA	NA
MW12	10/15/91	8-10	11 U	11 U	11 U	NA	NA	11 U	44U	NA	NA
MW12	10/15/91	13-15	11 U	11 U	11 U	NA	NA	11U	40U	NA	NA
NE PIT	7/6/90		13		9	29	<5	<34	38	NA	NA

Source: ES, 1989,1992a,1992b, and 1992c

^a/ Sample was analyzed by using method SW8020 in 1988 or sample was analyzed by using method CLP/8240 in 1990 and 1991

Sample was analyzed by using method Sw8270 in 1988 or sample was analyzed by using method CLP/8240 in 1990 and 1991

c/μg/kg = micrograms per kilogram

WNA = not analyzed

e/ ND = not detected

 $^{^{}g}$ U = the compound was analyzed for, but not detected

g' J = the value reported is an estimated concentation

from the soil samples collected at MW-10, MW-11, and MW-12 indicated no contamination was present at those locations (Figure 2.6). VOC headspace analysis was conducted for surface soil samples SS-1 through SS-10 (Section 2.1.2.2). Elevated VOC readings were found in all of these surface soil samples except SS-1, SS-2, and SS-7 (Table B.3). Laboratory samples acquired from surface soil samples SS-9 and SS-10 did not contain BTEX contamination. Surface soil samples SS-1 through SS-8 were not analyzed for BTEX compounds.

2.1.4 Ground Water Quality and Chemistry

Twelve monitoring wells (MW-1 through MW-12) have been installed in the vicinity of Site 1(Figure 2.7). Petroleum hydrocarbon compounds have been detected in wells MW-1 and MW-7, while halogenated organic compounds have been detected in wells MW-3 and MW-6. In addition, free-phase hydrocarbons have been detected in wells MW-1 and MW-5 (ES, 1992a and 1992b). Previous analytical results for monitoring well samples are summarized in Table 2.4. The estimated extent of dissolved BTEX contamination in 1990 is indicated on Figure 2.8.

Detected total BTEX concentrations were greatest at MW-1, with the 1990 sample from that well containing 796 micrograms per liter ($\mu g/L$) of total BTEX, including 60 $\mu g/L$ of benzene. This well was not sampled in 1991 due to the presence of free-phase hydrocarbons. At MW-7, the total BTEX concentration was 431 $\mu g/L$ in 1990 and 119 $\mu g/L$ in 1991. In 1990, the benzene concentration in the MW-7 sample was 200 $\mu g/L$, while in 1991 it was 19 $\mu g/L$. Well MW-5 has apparently never been sampled because it has always contained free product. Halogenated compounds detected at MW-3 and MW-6 include trichlroroethene (TCE) and 1,2-dichloroethene (DCE). Samples collected from MW-3 in 1990, and 1991 contained TCE at concentrations of 7 and 8J $\mu g/L$, respectively. Samples collected from MW-6 at the same times contained both TCE and 1,2-DCE. In 1990, the TCE concentration at MW-6 was 78 $\mu g/L$, and the DCE concentration was 8 $\mu g/L$. In 1991, the TCE and DCE concentrations at MW-6 were 2,000 and 190 $\mu g/L$, respectively.

Groundwater screening samples were collected from several locations (using a Geoprobe® apparatus and a field gas chromatograph) in October 1991. These results generally confirm that previous sampling results indicated the full extent of BTEX and halogenated organic compound contamination. The results of this survey are presented in Table B.4.

2.2 DEVELOPMENT OF CONCEPTUAL MODEL

A conceptual model is a three-dimensional representation of the hydrogeologic system based on available geological, hydrological, climatological, and geochemical data. The purpose of developing a site conceptual model is to provide an understanding of the mechanism for contaminant fate and transport and to identify additional data requirements. The model describes known and suspected sources of contamination, types of contamination, affected media, and contaminant migration

LEGEND

△ GROUND WATER SCREENING LOCATION

ABANDONED FUEL LINE

FENCE

GROUND WATER FLOW DIRECTION

FIGURE 2.7

MONITORING WELL AND SCREENING LOCATIONS

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

SUMMARY OF GROUND WATER ANALYTICAL DATA SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

									Commi	Commis I contion									
41.4.	1/11/4	-	VVVV			1411/3	F	MWA	Zam.	MWA		WW7	_	MW8	MW0	Н	MW10	MW11	MW12
Analyic	1988 1990	00 1088		180	1988	L	166	1990	2	1990	1=	1990 1991	_	1990 1991	1990 1991	+	1991	_	1991
Aromatic Volatile Organics		-		_							-		-			T			
(μg/L) e/																			
Benzene	8 8	60D ² ND	50	10U	S	SU	100	20	1001	SU 10	1000 z	200 19	50	100	20	10 <u>U</u>	10U	100	100
Toluene	ND ^d SU	SU ^{b'} ND		100	£	50	100	50	1001		1000 SC	50U 2J ^{c/}	20		20	10O	100	10U	10U
Ethylbenzene	ND 110		50	100	Ę	SU	100	2 Ω	10O	50 10	000 <u>0</u>	90 62	20 S	100	SU	10 <u>U</u>	10U	10U	100
m/p-Xylenes	35	- 2	SU			5U		50		SU	7	211	50		SU				
o-Xylenes	80	SS ND	50		£	SU		SU	<u>-</u>	SU		2	50		20			•	
Xylenes				100			10U		1001	ĭ	D001	36		100		100	100	100	100
Total BTEX	114 796	<u>R</u>	25U	40U	£	25U	40U	25U	40U	25U 40	400U 4	431 119	9 25U	J 40U	25U	40U	40U	40U	40U
																	•		
Petroleum Hydrocarbons																			
(μg/L) f/						!		;							,	!	į	-	-
Naphthalene		_		100	2	101	2	100		_					201	Q Z	3	9	9
Fluorene	2 2 2	100 N	•	100	S	101	<u>e</u>	100					_		100	£	100	1001	DOI
Phenanthrene	2 Q		10U	100	S	101	£	100	100 100	1001	1001	10U 10U	U 10U		10U	£	1001	100	10D
Anthracene	92 92	ON DOI	J01	100	£	101	£	100	1001	1001	1001 	10U 10U	001 O	S	10U	g	100	10C	100
Halogenated Organics																			
(µg/L) f/							·												
Vinyl Chloride	9 <u>R</u>	100 ND		10U	£	100	100	10U	10D	1001	100U 10	100U 17	7 100			100	100	100	100
1,2-Dichloroethene (total)	ND S	<u>SO</u> <u>N</u> D	50	100	£	SU.	100	SU	1001			50U 10U	u su			10C	10C	100	100
Trichloroethene	ND 5	<u>8</u>		100	£	7	8	SU	1001			50U 10U		_		100	100	1001	100
Tetrachloroethene	S ON	SU ND	50	100	£	SU	10U	SU	100	5U 10	1000 S	50U 10U	u su	10U	SU	10U	10U	10U	10U

Source: ES, 1989, 1992a, 1992b, 1992c

^{2/} Result is calculated froom a greater dilution than the primary analysis

b/ Compound was analyzed for, but not detected

c/ Reported value is an estimated concentration

W Not detected

^{e/} Sample is analyzed by using method SW8010/8020 in 1988 or using method CLP/8240 in 1990 and 1991

¹⁷ Sample is analyzed by using method SW8270 in 1988 or by using method CLP/8240 in 1990 and 1991

LEGEND

→¹¹⁹

MONITORING WELL LOCATION WITH TOTAL BTEX CONCENTRATION IN µg/L

Δ

GROUND WATER SCREENING LOCATION (OCTOBER 1990)

ND

NOT DETECTED

ABANDONED FUEL LINE

FENCE

GROUND WATER FLOW DIRECTION

EXTENT OF FREE PRODUCT

EXTENT OF BTEX CONTAMINATION

VALVES

GW-6, GW-15-18 △ , MW-8

FIGURE 2.8

ESTIMATED EXTENT OF BTEX CONTAMINATION IN **GROUND WATER - 1990**

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

pathways. The model to be developed provides a foundation for identifying data gaps and formulating decisions regarding additional data collection activities and potential remedial actions. The conceptual model for Site 1 will be used to aid in selecting additional data collection points and to identify appropriate data needs for modeling hydrocarbon degradation using the Bioplume II model.

Successful conceptual model development involves:

- Defining the problem to be solved;
- Integrating available data, including
 - Local geologic and topographic data,
 - Hydraulic data,
 - Site stratigraphic data,
 - Contaminant concentration and distribution data;
- Evaluating contaminant fate and transport characteristics;
- Identifying contaminant migration pathways;
- Identifying potential receptors; and
- Determining additional data requirements.

2.2.1 Intrinsic Remediation and the Bioplume II Model

After a site has been adequately characterized, fate and transport analyses can be performed to determine the potential for contaminant migration and whether any exposure pathway for human or ecological receptors is complete. The Bioplume II model has proved useful for predicting BTEX plume migration and contaminant attenuation by natural biodegradation. The Bioplume II model (Rifai et al., 1988) can be used to evaluate critical groundwater fate and transport processes that may be involved in some of the potential migration pathways to human and ecological receptors. Quantitative fate and transport analyses can be used to determine what level and extent of remediation is required.

An important consideration in determining whether fuel hydrocarbon contamination presents a substantial threat to human health and the environment and what type of remedial alternative will be most cost effective in eliminating or abating these threats is an accurate estimate of the potential for natural biodegradation of BTEX compounds in the groundwater. Over the past 2 decades, numerous laboratory and field studies have demonstrated that subsurface microorganisms can degrade a variety of hydrocarbons via aerobic and anaerobic pathways (Lee et al., 1988). This process occurs naturally when sufficient oxygen and other electron acceptors are available in the groundwater. The rate of natural biodegradation is generally limited by the lack of oxygen or other electron acceptors rather than by the lack of nutrients such as nitrogen or phosphorus. The supply of oxygen to unsaturated soil is constantly renewed by the vertical diffusion from the atmosphere. The supply of oxygen to a shallow, fuel-contaminated aquifer is

constantly renewed by the influx of electron acceptor-rich upgradient flow and the vertical diffusion of oxygen from the unsaturated soil zone into the groundwater (Borden and Bedient, 1986). The rate of natural biodegradation in shallow aquifers is largely dependent upon the rate at which electron acceptors enter the contaminated media.

2.2.2 Biodegradation of Dissolved BTEX Contamination

The Bioplume II model is a well-documented and widely accepted numerical model available for modeling the fate and transport of fuel hydrocarbons under the influence of advection, dispersion, sorption, and natural aerobic and anaerobic biodegradation. The positive effect of these processes on reducing the actual mass of fuel-related contamination dissolved in groundwater has been termed intrinsic remediation. The advantages of intrinsic remediation include: (1) contaminants are transformed to innocuous byproducts (e.g., carbon dioxide and water), not just transferred to another phase or location within the environment; (2) current pump-and-treat technologies are energy intensive and generally not as effective in reducing residual contamination; (3) the process is nonintrusive and allows continuing use of infrastructure during remediation; (4) current engineered remedial technologies may pose a greater risk to potential receptors than intrinsic remediation because contaminants may be transferred into the atmosphere during remediation activities; and (5) intrinsic remediation is far less costly than conventional, engineered remedial technologies.

To estimate the impact of natural attenuation on the fate and transport of BTEX compounds dissolved in groundwater at a site, two important lines of evidence must be demonstrated (Wiedemeier et al., in preparation). The first is a documented loss of contaminants at the field scale. Dissolved concentrations of biologically-recalcitrant tracers found in most fuel contamination are used in conjunction with aquifer hydrogeologic parameters such as groundwater seepage velocity and dilution to demonstrate that a reduction in the total contaminant mass is occurring at the site. The second line of evidence involves the use of chemical analytical data in mass balance calculations to show that areas with BTEX contamination can be correlated to areas with depleted electron acceptor (e.g., oxygen, nitrate, and sulfate) concentrations and increases in metabolic fuel degradation byproduct concentrations (e.g., methane and ferrous iron). With this site-specific information, the Bioplume II computer model can be used to simulate the fate and transport of dissolved BTEX compounds under the influence of the process of natural attenuation.

The Bioplume II model is based upon the USGS two-dimensional (2-D) solute transport model, which has been modified to include a biodegradation component that is activated by a superimposed plume of dissolved oxygen. Bioplume II solves the USGS 2-D solute equation twice, once for hydrocarbon concentrations in the groundwater and once for a dissolved oxygen plume. The two plumes are then combined using superimposition at every particle move to simulate biological reactions between fuel products and oxygen. If appropriate, biodegradation of contaminants by anaerobic processes is simulated using a first-order anaerobic decay rate.

2.2.3 Biodegradation of Dissolved Chlorinated Solvent Contamination

Biodegradation of chlorinated organic compounds in the natural environment can occur through cometabolism under either aerobic or anaerobic conditions. Analytical results from groundwater samples collected from Site 1 indicate the presence of dissolved chlorinated compounds in the form of TCE and 1,2-DCE. Cometabolism of TCE can occur by the production of enzymes or cofactors produced during the transformation of other primary organic substrates such as BTEX. The cometabolic processes usually only result in partial transformation of the chlorinated organic compound into an intermediate product. Anaerobic reduction of TCE by dechlorination produces either cis- or trans-DCE, both of which can be further transformed to vinyl chloride. Vinyl chloride may subsequently be reduced to ethylene or carbon dioxide. Reaction rates of cometabolism appear to be influenced by the reduction-oxidation conditions at a site. Dechlorination tends to proceed more rapidly in reducing conditions than under oxidizing conditions. Therefore, TCE degradation is likely to be kinetically favored in reducing environments where BTEX compounds are undergoing degradation by denitrification, iron reduction, sulfate reduction, and/or methanogenesis.

The concentrations and distributions of chlorinated organic compounds will be determined by analysis of groundwater samples for the compounds listed in the analytical protocol discussed in Section 3. The documentation of the anaerobic processes associated with BTEX degradation which are listed above will also be addressed by the collection of the appropriate data in the field. All of this information will be used to determine the occurrence of biodegradation of chlorinated organic compounds and the suitability of site conditions for continued biodegradation.

2.2.4 Initial Conceptual Models

Site hydrogeologic data were integrated to produce the hydrogeologic cross sections of Site 1 (ES, 1992b). Cross sections A-A' (Figure 2.3) and B-B' (Figure 2.4) show the dominant stratigraphic units present at Site 1. Figure 2.5 is a groundwater surface map using February 1990 water table elevation data (ES, 1992b).

In the vicinity of the site, groundwater exists under semiconfined conditions in glacially deposited, fine- to medium-grained sands, silts, and gravels. The saturated thickness of the aquifer in the Site 1 area is approximately 10 feet. Based on available data, Parsons ES will model the site as an unconfined to semiconfined, fine- to medium-grained sand and gravel aquifer. Groundwater is believed to flow south and southeast at the site. This conceptual model will be modified as necessary as additional site hydrogeologic data become available.

Free product has been documented at Site 1 (Figure 2.8). Therefore, it will be necessary to use the fuel/water partitioning model of Bruce et al. (1991) or Cline et al. (1991) to provide a conservative source term to model the partitioning of BTEX compounds from the free-phase product into the groundwater. In order to use this model, samples of free product will be collected and analyzed for mass fraction of BTEX compounds.

2.2.5 Potential Pathways and Receptors

Potential preferential contaminant migration pathways such as storm drains, groundwater discharge points, and subsurface utility corridors (artificial conduits) will be identified during the field work phase of this project. The primary potential migration paths for hydrocarbon contaminants at the site are from the contaminated soil and the soil in the former location of the four 25,000-gallon USTs to the groundwater, and from the groundwater to potential receptors via consumption or other use. Shallow groundwater beneath Site 1 flows to the southeast towards an intermittent stream and Walnut Creek (Figure 2.1). It is unlikely that detectable concentrations of contaminants will reach either the intermittent stream or Walnut Creek because of the processes of dilution, dispersion, and degradation. If contaminated groundwater is discharged into the intermittent stream drainage or Walnut Creek, a completed pathway to human and ecological receptors may exist. Groundwater contamination is not known to have migrated beyond the boundaries of the Base. It is unlikely that exposure to contaminated groundwater from the shallow surficial aquifer may be a completed pathway to human receptors because the shallow aquifer is separated from the deeper unconsolidated aquifer by over 40 feet of relatively impermeable clay material. Primary potable water supplies for the Base and the City of Lockbourne are obtained from the deep unconsolidated aquifer.

SECTION 3

COLLECTION OF ADDITIONAL DATA

To complete the TS and to evaluate whether natural attenuation of fuel-related contaminants is occurring, additional site-specific hydrogeologic data will be collected. The physical and chemical hydrogeologic parameters listed below will be determined during the field work phase of the TS.

Physical hydrogeologic characteristics include:

- Depth from measurement datum to the groundwater surface in existing monitoring wells:
- Locations of potential groundwater recharge and discharge areas;
- Locations of downgradient wells and their uses;
- Hydraulic conductivity through slug tests, as required;
- Estimation of dispersivity, where possible;
- Stratigraphic analysis of subsurface media;
- Groundwater temperature; and
- Determination of extent and thickness of free- and residual-phase product.

Chemical hydrogeologic characteristics include:

- Dissolved oxygen (DO) concentration;
- Specific conductance;
- pH;
- Chemical analysis of free product to determine mass fraction of BTEX; and
- Chemical analysis of groundwater and soil for the parameters listed in Table 3.1.

Field work described in this work plan in support of the TS will be completed in February and March 1995. The objective of the field work will be to define the extent of residual and free-phase hydrocarbon contamination using CPT in conjunction with laser induced fluorescence (LIF) testing and limited soil sampling. These activities will also include groundwater monitoring point installation; CPT testing; and groundwater, free product, and soil sampling.

TABLE 3.1 ANALYTICAL PROTOCOL FOR GROUND WATER AND SOIL

SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

MATRIX	метнор	FIELD (F) OR ANALYTICAL LABORATORY (L)
WATER		
Total Iron	Colorimetric, HACH Method 8008	F
Ferrous Iron (Fe ²⁺)	Colorimetric, HACH Method 8146	F
Ferric Iron (Fe ³⁺)	Difference between total and ferrous iron	F
Manganese	Colorimetric, HACH Method 8034	F
Sulfate	Colorimetric, HACH Method 8051	F
Nitrate	Titrimetric, HACH Method 8039	F
Nitrite	Titrimetric, HACH Method 8507	F
Redox Potential	A2580B, direct reading meter	F
Oxygen	HACH 16046 DO Meter	F
pН	E150.1/SW9040, direct reading meter	F
Conductivity	E120.1/SW9050, direct reading meter	F
Temperature	E170.1	F
Carbon Dioxide	Titrimetric, HACH Method 1436-01	F
Alkalinity (Carbonate [CO ₃ ²]	F = Titrimetric, HACH Method 8221	F
and Bicarbonate [HCO3-])	L = EPA method 310.1	L
Nitrate + Nitrite	EPA Method 353.1	L
Chloride	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane, Ethene	RSKSOP-147	L
Dissolved Organic Carbon	RSKSOP-102	L
VOCs	RSKSOP-148	L
Fuel Carbon	RSKSOP-148	L
SOIL		
Total Organic Carbon	RSKSOP-102 & RSKSOP-120	L
Moisture	ASTM D-2216	L
Aromatic Hydrocarbons	RSKSOP-124, modified	L
VOC	RSKSOP-148	L
Total Hydrocarbons	RSKSOP-174	L
FREE PRODUCT		
BTEX Mass Fraction	GC/MS, Direct Injection	L

The following sections describe the procedures that will be followed when performing field investigations and collecting site-specific data. The CPT/LIF system is described in Section 3.1. Procedures for soil sample collection to verify CPT/LIF data are described in Section 3.1.2. Procedures for the installation of new monitoring points are described in Section 3.2. Procedures for sampling existing groundwater monitoring wells and newly installed groundwater monitoring points are described in Section 3.3. Sample handling procedures are described in Section 3.4, and procedures for the measurement of aquifer parameters (e.g., hydraulic conductivity) are described in Section 3.5.

3.1 CONE PENETROMETRY

Subsurface conditions at the site will be characterized using CPT coupled with LIF. Cone penetrometry is an expeditious and effective means of analyzing the stratigraphy of a site by measuring the resistance against the conical probe of the penetrometer as it is pushed into the subsurface. Stratigraphy is determined from a correlation of the point stress at the probe tip and frictional stress on the side of the cone. Soil samples are collected to correlate the CPT readings to the lithologies present at the site.

CPT will be conducted using the US Army Corps of Engineers' (USACE's) cone penetrometer truck. This equipment consists of an instrument probe that is forced into the ground using a hydraulic load frame mounted on a heavy truck, with the weight of the truck providing the necessary reaction mass. The penetrometer equipment is housed in a stainless steel, dual-compartment body mounted on a 43,000-pound, triple-axle Kenworth® truck chassis powered by a turbo-charged diesel engine. The weight of the truck and equipment is used as ballast to achieve the overall push capability of 39,000 pounds. This push capacity may be limited in tight soils by the structural bending capacity of the 1.40-inch outside-diameter (OD) push rods, rather than by the weight of the truck. The current 39,000-pound limitation is intended to minimize the possibility of push-rod buckling. Penetration force is supplied by a pair of large hydraulic cylinders bolted to the truck frame.

The penetrometer probe is of standard dimensions, having a 1.40-inch-OD, a 60-degree conical point with sacrificial tip, and an 8.0-inch-long by 1.40-inch-OD friction sleeve. Inside the probe, two load cells independently measure the vertical resistance against the conical tip and the side friction along the sleeve. Each load cell is a cylinder of uniform cross-section which is instrumented with four strain gauges in a full-bridge circuit. Forces are sensed by the load cells, and the data are transmitted from the probe assembly via a cable running through the push tubes. The analog data are digitized, recorded, and plotted by computer in the penetrometry truck. A grout tube also runs down the push cylinder to allow the introduction of cement grout to the hole in order to seal the CPT hole. The USACE CPT is not equipped to monitor pore pressure; therefore, the location of the water table will not be measured using the CPT apparatus. Evaluation of point and sleeve stresses can often provide an estimated depth to groundwater. The penetrometer is usually advanced vertically into the soil at a constant rate of 2 centimeters per second (cm/s), although this rate must sometimes be reduced, such as when hard layers are encountered. Penetration, dissipation, and

resistivity data will be used to determine potential site layering as it is encountered in the field.

The known propensity of aromatic hydrocarbons to fluoresce under ultraviolet wavelengths has allowed the use of LIF technology, in conjunction with CPT detect soil characteristics and hydrocarbon technology. simultaneously. The LIF is not capable of detecting chlorinated solvents. The LIF is only useful for more grossly contaminated areas with free-phase or significant residual The lower range of detection is greater than 100 ppm total contamination. hydrocarbons. The LIF system has a 0.25-inch sapphire window in the side of the cone that allows a laser to scan the soil for fluorescent compounds as the LIF penetrometer rod pushes through soil. Assuming that aromatic hydrocarbons are simultaneously solvenated with other fuel-hydrocarbon constituents, the magnitude of aromatic fluorescence is indicative of hydrocarbon contamination in a soil matrix. Fiber optic cables connected to the laser spectrometer and a 6-pair electrical conductor connected to the CPT data acquisition system, are routed through the interior of the push tubes to the CPT probe.

The basic components of the LIF instrument are a nitrogen laser, a fiber optic probe, a monochromator for wavelength resolution of the return fluorescence, a photomultiplier tube to convert photons into an electrical signal, a digital oscilloscope for waveform capture, and a control computer. The fiber optic probe for the cone penetrometer consists of delivery and collection optical fibers, a protective sheath, a fiber optic mount within the cone, and a 0.25-inch sapphire window (Figure 3.1).

The results of each LIF/CPT push will be available 2 or 3 minutes after the completion of each hole. Graphs showing cone resistance, sleeve friction, soil classification, fluorescence intensity, and wavelength will be plotted by USACE personnel at the conclusion of each penetration and presented to the Parsons ES field scientist in order to allow investigative decisions to be based on the most current information.

3.1.1 CPT/LIF Testing Strategy

The purpose of the LIF/CPT testing at the site is to determine subsurface stratigraphy and to better define the areal and vertical extent of residual fuel hydrocarbons in the unsaturated zone and free-phase hydrocarbons on the site groundwater. The CPT will be pushed from ground surface to below fluorescing contamination, refusal, or up to 40 feet bgs, depending on contaminant distribution and subsurface conditions. In order to define the edges of LNAPL contamination, CPT/LIF points be will placed at the locations shown on Figure 3.2. Most of the points will be used to define the LNAPL layer previously encountered in monitoring wells MW-5 and MW-1 (Figure 2.8). Points will be placed at the estimated outer extent of the LNAPL, and between the two monitoring wells to establish whether the product layer is continuous. CPT/LIF points will also be placed closer or further away as necessary to define the extent of the layer. Other CPT/LIF sites are located downgradient of the location of the four removed USTs, near shallow soil boring AB15, north of Building 560 in the vicinity of shallow soil boring AB1, downgradient

LEGEND

+

MONITORING WELL LOCATION

*

PROPOSED CPT/LIF LOCATION

 o^2

PROPOSED MONITORING POINT INSTALLATION AND GROUND WATER SAMPLING LOCATION WITH NUMBER OF PROPOSED MONITORING POINTS

ABANDONED FUEL LINE

-)(----)(--

GROUND WATER FLOW

DIRECTION

FENCE

- Known concrete slabs exist

ABANDONED 25,000-GAL USTs

(+L15)

(4)

(5,0)

FILL STAND

ESMP 7(5,D)

FIGURE 3.2

PROPOSED CONE PENETROMETER
AND GROUND WATER SAMPLING
LOCATIONS

Site 1 (HWSA)
Intrinsic Remediation TS
Rickenbacker Air National Guard Base, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

of the abandoned separator pits, and downgradient of Building 560 near soil boring HB-1.

Base personnel will be responsible for identifying the location of all utility lines, USTs, fuel lines, and any other underground infrastructure prior to any CPT activities. All necessary digging permits will be obtained by Base personnel prior to mobilizing to the field. Base personnel will also be responsible for acquiring drilling and monitoring point installation permits for the proposed CPT/LIF locations indicated in Figure 3.2.

3.1.2 Soil Sampling and Analysis

To check the CPT soil classifications and to calibrate the LIF data, soil samples from discrete intervals will be collected at the site. Soil samples will be collected from varied soil matrices (if present) from within source areas and visibly contaminated areas, at the fringe of the identified residual or light nonaqueous-phase liquid (LNAPL) hydrocarbon plume, and outside of the LNAPL plume.

When soil samples are collected using the CPT, a Hoggen Toggler® attachment for the CPT push rods will be used. A Hoggen Toggler® sampler is a device used to collect undisturbed soil samples at any desired depth within the range of the driving apparatus. The sampler is coupled to the penetrometer rod and pushed into the soil with the CPT truck. With the Hoggen Toggler® cone in the closed position, soil is prevented from entering the sampling tube until the desired depth is achieved. When the sampler has been pushed to the depth at which the soil sample is to be taken, the sampling unit is raised a few inches and the Hoggen Toggler® apparatus is opened. The open Hoggen Toggler® is pushed to fill with soil, then pulled from the ground as quickly as possible. The Hoggen Toggler® sampling apparatus allows collection of 8-inch-long by 1-inch inside-diameter (ID) continuous samples. Recovery efficiencies for samples in saturated or sandy soils are often reduced, or the samples are compromised, because of spillage of the soil from the device after extraction. To mitigate this problem, soil samples will be compressed *in situ* with the penetrometer and Hoggen Toggler® assembly to expel the pore water before extraction.

When the Hoggen Toggler® sampling technique described above is ineffective or unable to efficiently provide sufficient soil volumes for the characterization of the site, soil samples will be obtained using a hand auger or similar method judged acceptable by the Parsons ES field scientist. Procedures will be modified, if necessary, to ensure good sample recovery.

Recovered soil will be placed in analyte-appropriate sample containers (Appendix A) and shipped to the analytical laboratory for analysis of BTEX, total organic carbon (TOC), moisture content, and total petroleum hydrocarbons (TPH) by the analytical methods listed in Table 3.1. The lithology of recovered soil will be recorded for comparison and correlation with CPT results.

The Parsons ES field scientist will be responsible for observing all field investigation activities, maintaining a detailed descriptive log of all subsurface materials recovered during soil coring, photographing representative samples, and properly

labeling and storing samples. An example of the proposed geologic boring log form is presented in Figure 3.3. The descriptive log will contain the following information:

- Sample interval (top and bottom depth);
- Sample recovery;
- Presence or absence of contamination based on visual observations, odor, and photoionization detector (PID) headspace VOC measurements;
- Lithologic description, including relative density, color, major textural constituents, minor constituents, porosity, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, relative permeability, and any other significant observations; and
- Depths of lithologic contacts and/or significant textural changes measured and recorded to the nearest 0.1 foot.

3.1.3 CPT Locations and Datum Survey

The horizontal location of all CPT/LIF testing locations relative to established Base coordinates will be measured by a surveyor. Horizontal coordinates will be measured to the nearest 0.1 foot. The elevation of the ground surface will also be measured to the nearest 0.1 foot relative to a USGS msl datum. Sample location and other relevant site information for the soil cores collected for verification purposes will be recorded by the Parsons ES field scientist.

3.1.4 Site Restoration

After sampling is complete, each CPT site will be restored as closely to its original condition as possible. Any test holes remaining open after extraction of the penetrometer rod will be sealed with hydrated bentonite chips, pellets, or grout to eliminate the creation or enhancement of contaminant migration pathways to the groundwater.

3.1.5 Equipment Decontamination Procedures

The CPT push rods will be cleaned with potable water using the USACE CPT steam-cleaning system (rod cleaner) as the rods are withdrawn from the ground. A vacuum system located beneath the CPT truck will be used to recover rinseate. Use of this system results in nearly 100-percent recovery of steam-cleaning rinseate from the rod cleaner. Rinseate is generated only as the rods move past the cleaner, thereby minimizing liquid waste generation. Care will be taken not to apply the pressurized steam to the LIF module, which will be decontaminated by hand. Rinseate will be collected in 55-gallon drums. Filled 55-gallon drums will be stored at the Base, and Base personnel will arrange for final disposal of the drums and their contents. Base personnel are responsible for sampling the contents of the drums to identify any hazardous constituents before the drums are transported to an appropriate disposal facility.

					GEOLO	GIC B	ORIN	IG	LOC	<u></u>			She	et 1 of	f 1	
BUSIN	a NO.				CONTRACTO						SPU!	٠				1
CLIENT					_RIG TYPE:											_ !
					_DRLG METH											_
					BORING DIA							_				_ 1
					_DRLG FLUID							_				_ 1
																_ '
Elev	Depth	Drow	US					S	iample	Sample	Denet	T	WKSPC	TOTAL	TPH	1
(ft)			CS	1	Geologic Descri	iption	ţ) BTEX(ppm)		'
-	- 1 -							i								1
		4	1 1	1			1	i '	1		1				<u> </u>	1
		(1	1	•			()	'	1 1	1		-	 	-	1
	\vdash	i '	1	1				1	'	1	1	-	 	 	-	1
	┼5┤	(1	1			1	1		1	1		 	 		1
		1 '	1	1				1	•	1	1		<u> </u>			
		1 '	1					l '		1 '	1					1
		4 '	1	İ				1]	1	1		 	<u> </u>	4	4
	10-	('	1 '	1				1		1	1	<u> </u>	+	 '		+
1	-	(1 '	1			1	l		'		 	+			1
		<i>(</i> '	1 '	1			1	l		'			<u> </u>	† <u> </u>		1
		1	1 '	1			1	l		1	1					1
 	15-	1 '	['	1			1	ĺ					<u></u>	<u> </u>	<u></u>	1
		i '	1				1	ĺ		1		<u> </u>	-			┨
	 	1	1	1			1	1					+		 	1
		1	'				1	ĺ					+	 		1
	20-	1	1	-				1]
	720	4	'				1	Í			1		<u> </u>	<u> </u>		1
		1	,				•	1				<u> </u>	-	ļ		1
	-	1	1				1	1		1		-	+	+		1
	75_	1	'									 	†	<u> </u>		1
	25-	1	<u> </u>													1
		1	'									<u> </u>	1	 		1
	-	1	1				1	1				<u> </u>	+	+	-	1
		1	1							1		 	+	+	 	1
	-30-	1		<u> </u>			!						†	<u> </u>	f	1
		j					1				1					1
		4					1						4			1
1	-	1					1			-		-	+	+	 	1
1 —	لــ35ــا		<u></u>	1				-	<u></u>							<u> </u>
											F	IGURE	3.3			
									_		201	-	~ DIM	- 10	_	
	NOT	ŒS			SAM	IPLE TYP	Έ		G	EOL	.OGi	C B	OKIN	G LO	G	
bgs			Grou	and Surfac	ce D -						Çi.	:e 1 (H	NAICA'	١		
	5 – G				C -					Intr		e 1 (H Reme				
тос	C - To	ор с	of Car	sing	G -			Ri	ickenbr					ard Ba	se,_C	hic
	2 _ N.			-				1=	$\overline{}$							

SAA - Same As Above

Denver, Colorado

Other downhole and sampling equipment will be decontaminated by steam cleaning or by the procedures specified in Section 3.3.1.1.

Potable water to be used in CPT equipment cleaning, decontamination, or grouting will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities. Precautions will be taken to minimize any impact on the surrounding area that might result from decontamination operations.

3.2 PERMANENT MONITORING POINT INSTALLATION

To further characterize the hydrogeologic conditions of the shallow subsurface, up to 33 groundwater monitoring points may be installed at Site 1 to supplement the existing site monitoring wells. The following sections describe the proposed monitoring point locations and completion intervals, monitoring point installation, monitoring point development, and equipment decontamination procedures.

3.2.1 Monitoring Point Locations and Completion Intervals

The locations of 33 proposed groundwater monitoring points are identified for Site 1 on Figure 3.2. The proposed locations for the new monitoring points were determined from a review of existing data gathered during previous site activities. Monitoring point locations were selected to provide hydrogeologic data necessary for successful implementation of the Bioplume II model and to monitor potential fuel hydrocarbon migration from the site. Monitoring point locations were selected to define three aspects of Site 1: 1) the extent of contamination, 2) the horizontal and vertical distribution of dissolved BTEX, and 3) the hydrogeology and groundwater flow direction at the site. The proposed locations shown on Figure 3.2 may be modified in the field as a result of encountered field conditions and acquired field data.

Several shallow monitoring points are proposed to define the extent of the primary contaminant plume, which emanates from the northwest corner of the building foundation and extends southeast to the four former 25,000-gallon USTs. Ten nested pairs of monitoring points are proposed to be located within and along the southeast, southwest, and northeast borders of the estimated primary dissolved BTEX plume to define the lateral and vertical extent of contaminant migration. Of these 10, three nested pairs of monitoring points will be located adjacent to and downgradient of the former location of the four 25,000-gallon USTs, to determine if any contamination is associated with the USTs.

Six additional nested pairs of monitoring points will be positioned to assess the extent of contamination not associated with the primary contaminant plume. One nested pair will be located downgradient of the abandoned pit northeast of the building foundation and one nested pair will be situated southeast of Building 560. The remaining four nested pairs will be placed to the south and southeast of monitoring well MW-3 to define the horizontal and vertical extent of contamination originating in the DSA.

A single shallow monitoring point will located north of the road leading in to Site 1 from the northwest. This point will be utilized to determine background contamination concentrations and geochemical parameters.

Screened intervals for shallow monitoring points will extend from approximately 4 feet above the water table to 2 feet below the water table. Deep points will be placed on the basis of lithology, or approximately 5 feet below the next shallowest monitoring point (in the absence of significant lithologic changes). Deep monitoring points will be installed with 1 meter of screen. The shallow monitoring points will be installed with 2 meters of screen in order to accommodate the seasonal groundwater elevation fluctuations (Table 2.2). The proposed screened intervals of 2 meters for shallow monitoring points and 1 meter for deep monitoring points will help mitigate the dilution of water samples from potential vertical mixing of contaminated and uncontaminated groundwater in the monitoring point casing, and will give important information on the nature of vertical hydraulic gradients in the area. Adjustments of the depth and length of the screened interval of the monitoring points may be necessary in response to actual aquifer conditions and contaminant distribution identified during CPT/LIF testing.

3.2.2 Monitoring Point Installation Procedures

This section describes the procedures to be used for installation of new groundwater monitoring points. All new monitoring points will be constructed of 0.75-inch OD/0.5-inch-ID polyvinyl chloride (PVC) casing placed with a CPT pushrod using equipment described in Section 3.1.

3.2.2.1 Pre-Placement Activities

All necessary digging, drilling, and groundwater monitoring point installation permits will be obtained prior to mobilizing to the field. In addition, all utility lines will be located, and proposed drilling locations will be cleared prior to any intrusive activities. Responsibilities for these permits and clearances are discussed in Section 3.1.1.

Water to be used in monitoring point installation and equipment cleaning will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities.

3.2.2.2 Ground Water Monitoring Point Installation

3.2.2.2.1 Monitoring Point Materials Decontamination

Monitoring point completion materials will be inspected by the field scientist and determined to be clean and acceptable prior to use. If not factory sealed, casing, screen, and casing plugs and caps will be cleaned prior to use with a high-pressure, steam/hot-water cleaner using approved water. Materials that cannot be cleaned to the satisfaction of the field scientist will not be used.

3.2.2.2.2 Monitoring Point Screen and Casing

Groundwater monitoring points will be installed by attaching 0.75-inch-OD/0.5-inch-ID PVC casing and screen to a sacrificial tip and threading the casing/screen through the penetrometer pushrod. As the pushrod is pressed into the ground, new 0.75-inch-OD/0.5-inch-ID PVC casing will be continuously attached until the desired depth is reached and a fully cased monitoring point is created. Data collection devices such as CPT and LIF will not be used during monitoring point placement; however, a CPT test will be performed at each monitoring point location prior to monitoring point placement in order to select desired screen depths.

Monitoring point casing and screens will be constructed of flush-threaded Schedule 40 PVC. The screens will be factory slotted with 0.01-inch openings. Casing joints will not be glued. The PVC top cap will be vented to maintain ambient atmospheric pressure if the monitoring point is completed above grade. The PVC top cap for monitoring points completed at or below grade will not be vented to minimize the potential for runoff or surface water entering the point.

The field scientist will verify and record the total depth of the monitoring point, the lengths of all casing sections, and the depth to the top of all monitoring point completion materials. All lengths and depths will be recorded to the nearest 0.1 foot. Monitoring point construction details will be noted on a Monitoring Point Installation Record form (Figure 3.4). This information will become part of the permanent field record for the site.

3.2.2.3 Above-Grade and At-Grade Well Completion

Each monitoring point will be completed with an at-grade protective cover or an above-grade protector pipe. In areas where pavement is present, the at-grade cover will be cemented in place using concrete blended to the existing pavement; otherwise, a concrete pad will be installed around the monitoring point. The concrete immediately surrounding the monitoring point will be sloped gently away from the protective casing to facilitate runoff during precipitation events. For above-grade completions, a steel protector pipe will be installed around the monitoring point riser in order to protect the riser from damage. Each pipe will be painted a color designated by Base personnel and cemented into a 1-foot-square pad to ensure the stability of the post.

3.2.2.4 Monitoring Point Development

New monitoring points will be developed prior to sampling. Development removes sediment from inside the monitoring point casing and flushes fines from the portion of the formation adjacent to the monitoring point screen.

Monitoring point development will be accomplished using a peristaltic pump with dedicated tubing provided by Parsons ES. The pump tubing will be regularly lowered to the bottom of the monitoring point so that fines which have accumulated in the bottom are agitated and removed from the monitoring point.

MONITORING POINT INSTALLATION RECORD JOB NAME RICKENBACKER AIR NATIONAL GUARD BASE MONITORING POINT NUMBER JOB NUMBER 722450.25 INSTALLATION DATE LOCATION LOCATION DATUM ELEVATION _____ _____ GROUND SURFACE ELEVATION _____ DATUM FOR WATER LEVEL MEASUREMENT _____ SLOT SIZE _____ SCREEN DIAMETER & MATERIAL _____ RISER DIAMETER & MATERIAL ______ BOREHOLE DIAMETER _____ CONE PENETROMETER CONTRACTOR ______ ES REPRESENTATIVE _____ VENTED CAP COVER GROUND SURFACE -CONCRETE-THREADED COUPLING -LENGTH OF SOLID RISER: TOTAL DEPTH SOLID RISER -OF MONITORING POINT: _____ LENGTH OF SCREEN: ____ SCREEN SLOT SIZE: 0.01" SCREEN -CAP -LENGTH OF BACKFILLED BOREHOLE: _____ BACKFILLED WITH: _____ (NOT TO SCALE) FIGURE 3.4 MONITORING POINT **INSTALLATION RECORD** STABILIZED WATER LEVEL _____ FEET Site 1 (HWSA) BELOW DATUM. Intrinsic Remediation TS TOTAL MONITORING POINT DEPTH _____ FEET Rickenbacker Air National Guard Base, Ohio BELOW DATUM. P) PARSONS GROUND SURFACE _____ FEET ENGINEERING SCIENCE, INC.

Denver, Colorado

Development will be continued until a minimum 10 casing volumes of water has been removed from the monitoring point and until pH, temperature, specific conductivity, DO, and water clarity (turbidity) stabilize. If the water remains turbid, monitoring point development will continue until the turbidity of the water produced has been stable after the removal of several casing volumes.

A monitoring point development record will be maintained for each point. The monitoring point development record will be completed in the field by the field scientist. Figure 3.5 is an example of the monitoring point development record. Development records will include:

- Monitoring point number;
- Date and time of development;
- Development method;
- Pre-development water level and monitoring point depth;
- Volume of water produced;
- Description of water produced;
- Post-development water level and monitoring point depth; and
- Field analytical measurements, including pH and specific conductivity.

Development waters will be collected in 55-gallon drums. Filled 55-gallon drums will be placed on pallets and transported by Base personnel to the Base's designated hazardous waste collection area.

3.2.2.5 Water Level Measurements

Water levels at existing monitoring wells and newly installed monitoring points will be measured within a short time period so that the water level data are comparable. The depth to water below the measurement datum will be measured to the nearest 0.01 foot using an electric water level probe.

3.2.2.6 Monitoring Point Location and Datum Survey

The location and elevation of the new monitoring points will be surveyed soon after point completion. The horizontal location will be measured relative to established Base coordinates. Horizontal coordinates will be measured to the nearest 0.1 foot. The elevation of the ground surface adjacent to the monitoring point casing and the measurement datum elevation (top of PVC casing) will be measured relative to the USGS msl datum. The ground surface elevation will be measured to the nearest 0.1 foot and the measurement datum, outer casing, and surveyor's pin (if present) elevation will be measured to the nearest 0.01 foot.

MONITORING PC Job Number: 722450.25020	Job Name: Rickenbacker ANGB	Page 0i
Location Site 1 HWSA Well Number	By Measurement Datum	Date
Pre-Development Information	Time (Start):	
Water Level:	Total Depth of Well:	
Water Characteristics		
ColorOdor: None We Any Films or Immiscible MapH Te Specific Conductance(µS/c	Clear Cloudy eak Moderate Strong aterial emperature(^O F ^O C) cm)	
Interim Water Characteristics		
Gallons Removed		
рН		
Temperature (^o F ^o C)		
Specific Conductance(μS/cm)		
Post-Development Information	Time (Finish):	
Water Level:	Total Depth of Well:	
Approximate Volume Removed:		
Water Characteristics		
Any Films or Immiscible N	Clear Cloudy Neak Moderate Strong Material Temperature(OFOC) S/cm)	
Comments:	FIGURE	E 3.5
	MONITORIN DEVELOPMEN	IG POINT IT RECORD

PARSONS
ENGINEERING SCIENCE, INC.

Denver, Colorado

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

3.2.3 Site Restoration

After monitoring point installation and sampling is complete, each site will be restored around the finished monitoring point as closely as possible to its original condition. Both clean and contaminated development waters and sampling purge waters will be stored in 55-gallon drums and transported by Base personnel to the designated area used for collection of hazardous wastes at the Base.

3.3 GROUNDWATER SAMPLING

This section describes the scope of work required for collection of groundwater quality samples. Samples will be collected from existing monitoring wells (i.e., wells MW-1 through MW-12) and newly installed groundwater monitoring points. A peristaltic pump with dedicated high-density (HDPE) tubing will be used to collect groundwater samples. In order to maintain a high degree of QC during this sampling event, the procedures described in the following sections will be followed.

Sampling will be conducted by qualified scientists and technicians from Parson ES and the EPA/Robert S. Kerr Research Laboratory (RSKERL) who are trained in the conduct of groundwater sampling, records documentation, and chain-of-custody procedures. In addition, sampling personnel will have thoroughly reviewed this work plan prior to sample acquisition and will have a copy of the work plan available onsite for reference. The following activities will occur during groundwater sampling:

- Assembly and preparation of equipment and supplies;
- Inspection of the monitoring well/point integrity including:
 - Protective cover, cap, and lock,
 - External surface seal and pad,
 - Monitoring point stick-up, cap, and datum reference, and
 - Internal surface seal;
- Groundwater sampling, including
 - Water level and product thickness measurements,
 - Visual inspection of sample water,
 - Monitoring point casing evacuation, and
 - Sample collection;
- Sample preservation and shipment, including
 - Sample preparation,
 - Onsite measurement of physical parameters, and
 - Sample labeling;
- Completion of sampling records: and

• Sample disposition.

Detailed groundwater sampling and sample handling procedures are presented in following sections.

3.3.1 Preparation for Sampling

All equipment to be used for sampling will be assembled and properly cleaned and calibrated (if required) prior to arriving in the field. In addition, all record-keeping materials will be gathered prior to leaving the office.

3.3.1.1 Equipment Cleaning

All portions of sampling and test equipment that will contact the sample matrix will be thoroughly cleaned before each use. This includes the CPT soil sampling tool, water level probe and cable, lifting line, test equipment for onsite use, and other equipment or portions thereof that will contact the samples. Based on the types of sample analyses to be conducted, the following cleaning protocol will be used:

- Wash with potable water and phosphate-free laboratory detergent (HP-II detergent solutions, as appropriate);
- Rinse with potable water;
- Rinse with isopropyl alcohol;
- Rinse with distilled or deionized water; and
- Air dry the equipment prior to use.

Any deviations from these procedures will be documented in the field scientist's field notebook and on the ground water sampling record (Figure 3.6).

If precleaned disposable sampling equipment is used, the cleaning protocol specified above will not be required. Laboratory-supplied sample containers will be cleaned and sealed by the laboratory. The type of container provided and the method of container decontamination will be documented in the EPA mobile laboratory's permanent record of the sampling event.

3.3.1.2 Equipment Calibration

As required, field analytical equipment will be calibrated according to the manufacturers' specifications prior to field use. This applies to equipment used for onsite measurements of DO, pH, electrical conductivity, temperature, redox potential, sulfate, nitrate, ferrous iron (Fe²⁺), and other field parameters listed on Table 3.1.

3.3.2 Sampling Procedures

Special care will be taken to prevent contamination of the groundwater and extracted samples. The two primary ways in which sample contamination can occur are through

	SAMPLING LOCATION SAMPLING DATE(S)	
GROUND	WATER SAMPLING RECORD - MONITORING WELL	
REASON F DATE AND SAMPLE O WEATHER	FOR SAMPLING: [] Regular Sampling; [] Special Sampling; D TIME OF SAMPLING:, 19a.m./p.m. COLLECTED BY: of R: OR WATER DEPTH MEASUREMENT (Describe):	(number)
MONITOR		
	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4 []	WELL EVACUATION: Method:	

FIGURE 3.6

GROUND WATER SAMPLING RECORD

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

Denver, Colorado

5[]	SAMPI	LE EXTRACTION	METHOD:			
		[] Bailer m	ade of:			
		[] Pump, ty	/pe:			
		[] Other, de	escribe:			
		Sample obtain	ned is [] GRAB; [] COMPC	OSITE SAMPLE	
6[]	ON-SIT	E MEASUREMEN	NTS:			
		Temp:	•	Measure	ed with:	
		pH:		Measure	ed with:	
		Conductivity:	<u> </u>	Measure	ed with:	
		Dissolved Ox	ygen:	Measure	ed with:	
		Redox Potent	ial:	Measure	ed with:	
		Salinity:		Measure	ed with:	
		Nitrate:		Measure	ed with:	
		Sulfate:		Measure	ed with:	
		Other:		Measure	ed with:	
		· · · · · · · · · · · · · · · · · · ·		-		
7[]	SAMPL	E CONTAINERS (material, number, siz	:e):		
		•				
8[]	ON-SIT	E SAMPLE TREA	TMENT:			
	[]	Filtration:	Method		Containann	
		i nation.	Method		Containers:	
			Method		Containers:	
	[]	Preservatives a	added:			
			Method		Containers:	
			Method		Containers:	
			Method		Containers:	
			Method	-	Containers:	
9[]	CONTA	INER HANDLING	: :			
		[] Contain	er Sides Labeled			
			er Lids Taped			
			ers Placed in Ice Che	st		
10[]	OTHER	COMMENTS:			FIGURE 3.6 (Continued)	
. ,				—	<u></u> -	
					GROUND WATER Sampling Record	
		*****			OAMIFEING RECORD	
	-		***		••••	
					Site 1 (HWSA)	
				Rick	Intrinsic Remediation TS	
					enbacker Air National Guard Base, Ol	nio
					PARSONS ENGINEERING SCIENCE, INI	
					/	_

Denver, Colorado

M: \45025\DRAWINGS\95DN0132, 2/13/95 at 7:45 3-19

contact with improperly cleaned equipment and through cross-contamination due to insufficient cleaning of equipment between wells and monitoring points. To prevent such contamination, the water level probe and cable used to determine static water levels and total well depths will be thoroughly cleaned before and after field use and between uses at different sampling locations according to the procedures presented in Dedicated tubing will be used at each well or monitoring point Section 3.3.1.1. developed, purged, and/or sampled with the peristaltic pump. The nondisposable bailers will be decontaminated according to procedures listed in Section 3.3.1.1. In addition to the use of properly cleaned equipment, a clean pair of new, disposable nitrile or latex gloves will be worn each time a different well or monitoring point is sampled. Dedicated, disposable bailers may be used on the 2-inch ID existing wells. The following paragraphs present the procedures to be followed for groundwater sample collection from groundwater monitoring wells and monitoring points. These activities will be performed in the order presented below. Exceptions to this procedure will be noted in the field scientist's field notebook.

3.3.2.1 Preparation of Location

Prior to starting the sampling procedure, the area around the existing wells and new monitoring points will be cleared of foreign materials, such as brush, rocks, and debris. These procedures will prevent sampling equipment from inadvertently contacting debris around the monitoring well/point.

3.3.2.2 Water Level and Total Depth Measurements

Prior to removing any water from the monitoring well or monitoring point, the static water level will be measured. An electric water level probe will be used to measure the depth to groundwater below the datum to the nearest 0.01 foot. After measuring the static water level, the water level probe will be slowly lowered to the bottom of the monitoring well/point and the depth will be measured to the nearest 0.01 foot. If free-phase product (LNAPL) is present, the total depth of the well from installation records will be used to avoid excessive contamination of the water level probe and cord. Based on these measurements, the volume of water to be purged from the monitoring well/point will be calculated. If free-phase product is encountered, the thickness of the product will be measured with an oil/water interface probe.

3.3.2.3 Monitoring Well/Point Purging

The volume of water contained within the monitoring well/point casing at the time of sampling will be calculated, and three times the calculated volume will be removed from the well/point. All purge water will be placed in 55-gallon drums and disposed of by Base personnel in the Base's approved disposal location. Emptied 55-gallon drums will be handled by Base personnel. A peristaltic pump will be used for monitoring well and monitoring point purging, depth permitting, and either a Waterra[®] inertial pump or bailer will be used to purge all monitoring points in which a peristaltic pump will not work.

If a monitoring well/point is evacuated to a dry state during purging, the monitoring well/point will be allowed to recharge, and the sample will be collected as soon as sufficient water is present in the monitoring well/point to obtain the necessary sample quantity. Sample compositing or sampling over a lengthy period by accumulating small volumes of water at different times to obtain a sample of sufficient volume will not be allowed.

3.3.2.4 Sample Extraction

Dedicated HDPE tubing and a peristaltic pump will be used to extract groundwater samples from monitoring wells/points whenever depth to groundwater permits; otherwise, a Waterra[®] inertial pump or bailer will be used. The tubing, pump, or bailer will be lowered through the casing into the water gently to prevent splashing. The sample will be transferred directly into the appropriate sample container. The water will be carefully poured down the inner walls of the sample bottle to minimize aeration of the sample.

Unless other instructions are given by the EPA mobile laboratory, sample containers will be completely filled so that no air space remains in the container. Excess water collected during sampling will be placed into the 55-gallon drums used for monitoring well/point purge waters and transported for disposal by Base personnel to the facilities designated by the Base.

3.3.3 Onsite Ground Water Parameter Measurement

As indicated on Table 3.1, many of the groundwater chemical parameters will be measured onsite by EPA/RSKERL staff. Some of the measurements will be made with direct-reading meters, while others will be made using of a HACH® portable colorimeter in accordance with specific HACH® analytical procedures. These procedures are described in the following subsections.

All glassware or plasticware used in the analyses will have been cleaned prior to sample collection by thoroughly washing with a solution of Alconox® and water, and rinsing with deionized water and isopropyl alcohol to prevent interference or cross contamination between measurements. If concentrations of an analyte are above the range detectable by the titrimetric method, the analysis will be repeated by diluting the groundwater sample with double-distilled water until the analyte concentration falls to a level within the range of the method. All rinseate and sample reagents accumulated during groundwater analysis will be collected in glass containers fitted with screw caps. These waste containers will be clearly labeled as to their contents and carefully stored for later transfer by Base personnel to the approved disposal facility.

3.3.3.1 Dissolved Oxygen Measurements

DO measurements will be made using a meter with a downhole oxygen sensor or a sensor in a flow-through cell before and immediately following groundwater sample acquisition. When DO measurements are taken in monitoring wells/points that have

not yet been sampled, the existing monitoring wells/points will be purged until DO levels stabilize.

3.3.3.2 pH, Temperature, and Specific Conductance

Because the pH, temperature, and specific conductance of a groundwater sample can change significantly within a short time following sample acquisition, these parameters will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made in a clean glass container separate from those intended for laboratory analysis, and the measured values will be recorded in the groundwater sampling record (Figure 3.6).

3.3.3.3 Alkalinity Measurements

Alkalinity in groundwater helps buffer the groundwater system against acids generated through both aerobic and anaerobic biodegradation processes. Alkalinity of the groundwater sample will be measured in the field by experienced EPA/RSKERL scientists via titrimetric analysis using EPA-approved HACH[®] Method 8221 (0 to 5,000 mg/L as calcium carbonate) or a similar method. Alkalinity of the groundwater sample will also be measured in the laboratory using EPA method 310.1.

3.3.3.4 Nitrate- and Nitrite-Nitrogen Measurements

Nitrate-nitrogen concentrations are of interest because nitrate can act as an electron acceptor during hydrocarbon biodegradation under anaerobic soil or groundwater conditions. Nitrate-nitrogen is also a potential nitrogen source for biomass formation for hydrocarbon-degrading bacteria. Nitrite-nitrogen is an intermediate byproduct in both ammonia nitrification and in nitrate reduction in anaerobic environments.

Nitrate- and nitrite-nitrogen concentrations in groundwater will be measured in the field by experienced EPA/RSKERL scientists via colorimetric analysis using a HACH® DR/700 Portable Colorimeter. Nitrate concentrations in groundwater samples will be analyzed after preparation with HACH® Method 8039 (0 to 30.0 mg/L NO₃). Nitrite concentrations in groundwater samples will be analyzed after preparation with EPA-approved HACH® Method 8507 (0 to 0.35 mg/L NO₂) or a similar method.

3.3.3.5 Carbon Dioxide Measurements

Carbon dioxide concentrations in groundwater will be measured in the field by EPA/RSKERL scientists via titrimetric analysis using HACH[®] Method 8223 (0 to 250 mg/L as CO₂). Sample preparation and disposal procedures are the same as outlined at the beginning of Section 3.3.3.

3.3.3.6 Sulfate and Sulfide Sulfur Measurements

Sulfate in groundwater is a potential electron acceptor for fuel-hydrocarbon biodegradation in anaerobic environments, and sulfide is resultant after sulfate

reduction. An EPA/RSKERL scientist will measure sulfate and sulfide concentrations via colorimetric analysis with a HACH® DR/700 Portable Colorimeter after appropriate sample preparation. EPA-approved HACH® Methods 8051 (0 to 70.0 mg/L SO₄) or similar and 8131 (0.60 mg/L S²) or similar will be used to prepare samples and analyze sulfate and sulfide concentrations, respectively.

3.3.3.7 Total Iron, Ferrous Iron, and Ferric Iron Measurements

Iron is an important trace nutrient for bacterial growth, and different states of iron can affect the redox potential of the groundwater and act as an electron acceptor for biological metabolism under anaerobic conditions. Iron concentrations will be measured in the field via colorimetric analysis with a HACH® DR/700 Portable Colorimeter after appropriate sample preparation. HACH® Method 8008 (or similar) for total soluble iron (0 to 3.0 mg/L Fe³⁺ + Fe²⁺) and HACH® Method 8146 (or similar) for ferrous iron (0 to 3.0 mg/L Fe²⁺) will be used to prepare and quantitate the samples. Ferric iron will be quantitated by subtracting ferrous iron levels from total iron levels.

3.3.3.8 Manganese Measurements

Manganese is a potential electron acceptor under anaerobic environments. Manganese concentrations will be quantitated in the field using colorimetric analysis with a HACH® DR/700 Portable Colorimeter. EPA approved HACH® Method 8034 (0 to 20.0 mg/L) or similar will be used for quantitation of manganese concentrations. Sample preparation and disposal procedures are outlined earlier in Section 3.3.3.

3.3.3.9 Redox Potential

The redox potential of groundwater is an indication of the relative tendency of a solution to accept or transfer electrons. Redox reactions in groundwater are usually biologically mediated; therefore, the redox potential of a groundwater system depends upon and influences rates of biodegradation. Redox potential can be used to provide real-time data on the location of the contaminant plume, especially in areas undergoing anaerobic biodegradation. The redox potential of a groundwater sample taken inside the contaminant plume should be somewhat less than that taken in the upgradient location.

The redox potential of a groundwater sample can change significantly within a short time following sample acquisition and exposure to atmospheric oxygen. As a result, this parameter will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made as quickly as possible in a clean glass container separate from those intended for laboratory analysis.

3.4 SAMPLE HANDLING FOR LABORATORY ANALYSIS

This section describes the handling of samples from the time of sampling until the samples are delivered to EPA mobile laboratory.

3.4.1 Sample Preservation

The EPA laboratory support personnel will add any necessary chemical preservatives prior to filling the sample containers. Samples will be prepared for transportation to the analytical laboratory by placing the samples in a cooler containing ice to maintain a shipping temperature of 4 degrees centigrade (°C). Samples will be delivered promptly to EPA mobile laboratory personnel, who will be responsible for shipment of appropriate samples to the RSKERL in Ada, Oklahoma for analysis.

3.4.2 Sample Container and Labels

Sample containers and appropriate container lids will be provided by the EPA mobile laboratory (see Appendix A). The sample containers will be filled as described in Section 3.3.3.2.4, and the container lids will be tightly closed. The sample label will be firmly attached to the container side, and the following information will be legibly and indelibly written on the label:

- Facility name;
- Sample identification;
- Sample type (e.g., groundwater, soil);
- Sampling date;
- Sampling time;
- Preservatives added;
- Sample collector's initials; and
- Requested analyses.

3.4.3 Sample Shipment

After the samples are sealed and labeled, they will be packaged for transport to the onsite EPA mobile laboratory. The following packaging and labeling procedures will be followed:

- Package sample so that it will not leak, spill, or vaporize from its container;
- Cushion samples to avoid breakage; and
- Add ice to container to keep samples cool.

The packaged samples will be delivered by hand to the EPA mobile laboratory. Delivery will occur as soon as possible after sample acquisition.

3.4.4 Chain-of-Custody Control

Chain-of-custody documentation for the shipment of samples from the EPA mobile laboratory to the EPA/RSKERL analytical laboratory in Ada, Oklahoma, will be the responsibility of the EPA/RSKERL field personnel.

3.4.5 Sampling Records

In order to provide complete documentation of the sampling event, detailed records will be maintained by the field scientist. At a minimum, these records will include the following information:

- Sample location (facility name);
- Sample identification;
- Sample location map or detailed sketch;
- Date and time of sampling;
- Sampling method;
- Field observations of
 - Sample appearance, and
 - Sample odor;
- Weather conditions;
- Water level prior to purging (groundwater samples, only);
- Total monitoring well/point depth (groundwater samples, only);
- Sample depth (soil samples, only);
- Purge volume (groundwater samples, only);
- Water level after purging (groundwater samples, only);
- Monitoring well/point condition (groundwater samples, only);
- Sampler's identification;
- Field measurements of pH, temperature, DO, and specific conductivity (groundwater samples, only); and
- Any other relevant information.

Groundwater sampling information will be recorded on a groundwater sampling form. Figure 3.6 shows an example of the groundwater sampling record. Soil sampling information will be recorded in the field log book.

3.4.6 Laboratory Analyses

Laboratory analyses will be performed on all groundwater and soil samples as well as the QA/QC samples described in Section 5. The analytical methods for this

sampling event are listed in Table 3.1. Prior to sampling, EPA/RSKERL personnel will provide a sufficient number of analyte-appropriate sample containers for the samples to be collected. All containers, preservatives, and shipping requirements will be consistent with EPA protocol or those reported in Appendix A of this plan.

EPA/RSKERL laboratory support personnel will specify the necessary QC samples and prepare appropriate QC sample bottles. For samples requiring chemical preservation, preservatives will be added to containers by the laboratory. Containers, ice chests with adequate padding, and cooling media may be provided by EPA/RSKERL laboratory personnel. Sampling personnel will fill the sample containers and return the samples to the mobile laboratory.

3.5 AQUIFER TESTING

Slug tests will be conducted on selected existing wells to estimate the hydraulic conductivity of unconsolidated sand and clay deposits at the site. This information is required to accurately estimate the velocity of groundwater and contaminants in the shallow saturated zone. A slug test is a single-well hydraulic test used to determine the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug tests can be used for both confined and unconfined aquifers that have a transmissivity of less than 7,000 square feet per day (ft²/day). Slug testing can be performed using either a rising head or a falling head test; at this site, both methods will be used in sequence.

3.5.1 Definitions

- Hydraulic Conductivity (K). A quantitative measure of the ability of porous material to transmit water; defined as the volume of water that will flow through a unit cross-sectional area of porous or fractured material per unit time under a unit hydraulic gradient.
- Transmissivity (T). A quantitative measure of the ability of an aquifer to transmit water. It is the product of the hydraulic conductivity and the saturated thickness.
- Slug Test. Two types of testing are possible: rising head and falling head tests. A slug test consists of adding a slug of water or a solid cylinder of known volume to the well to be tested or removing a known volume of water or cylinder and measuring the rate of recovery of water level inside the well. The slug of a known volume acts to raise or lower the water level in the well.
- Rising Head Test. A test used in an individual well within the saturated zone to estimate the hydraulic conductivity of the surrounding formation by lowering the water level in the well and measuring the rate of recovery of the water level. The water level may be lowered by pumping, bailing, or removing a submerged slug from the well.
- Falling Head Test. A test used in an individual well to estimate the hydraulic conductivity of the surrounding formation by raising the water level in the well by insertion of a slug or quantity of water, and then measuring the rate of drop in the water level.

3.5.2 Equipment

The following equipment will be used to conduct a slug test:

- Teflon®, PVC, or metal slugs;
- Nylon or polypropylene rope;
- Electric water level indicator;
- Pressure transducer/sensor;
- Field logbook/forms; and
- Automatic data recording instrument (such as the Hermit Environmental Data Logger[®], In-Situ, Inc. Model SE1000B, or equivalent).

3.5.3 General Test Methods

Aquifer hydraulic conductivity tests (slug tests) are accomplished by either removal of a slug or quantity of water (rising head) or introduction of a slug (falling head), and then allowing the water level to stabilize while taking water level measurements at closely spaced time intervals.

Because hydraulic testing will be completed on existing wells, it will be assumed that the wells were properly developed and that water levels have stabilized. Slug testing will proceed only after multiple water level measurements over time show that static water levels are in equilibrium. During the slug test, the water level change should be influenced only by the introduction (or removal) of the slug volume. Other factors, such as inadequate well development or extended pumping may lead to inaccurate results; slug tests will not be performed on wells with free product. The field scientist will determine when static equilibrium has been reached in the well. The pressure transducer, slugs, and any other downhole equipment will be decontaminated prior to and immediately after the performance of each slug test using the procedures described in Section 3.3.1.1.

3.5.4 Falling Head Test

The falling head test is the first step in the two-step slug testing procedure. The following paragraphs describe procedures to be followed during performance of the falling head test.

- 1. Decontaminate all downhole equipment prior to initiating the test.
- 2. Open the well. Where wells are equipped with water tight caps, the well should be unsealed at least 24 hours prior to testing to allow the water level to stabilize. The protective casing will remain locked during this time to prevent vandalism.

- 3. Prepare the aquifer slug test data form (Figure 3.7) with entries for:
 - Borehole/well number,
 - Project number,
 - Project name,
 - Aquifer testing team,
 - Climatic data,
 - Ground surface elevation,
 - Top of well casing elevation,
 - Identification of measuring equipment being used,
 - Page number,
 - Static water level, and
 - Date.
- 4. Measure the static water level in the well to the nearest 0.01 foot.
- 5. Lower the decontaminated pressure transducer into the well and allow the displaced water to return to its static level. This can be determined by periodic water level measurements until the static water level in the well is within 0.01 foot of the original static water level.
- 6. Lower the decontaminated slug into the well to just above the water level in the well.
- 7. Turn on the data logger and quickly lower the slug below the water table, being careful not to disturb the pressure transducer. Follow the owner's manual for proper operation of the data logger.
- 8. Terminate data recording when the water level stabilizes in the well. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

3.5.5 Rising Head Test

After completion of the falling head test, the rising head test will be performed. The following paragraphs describe the rising head slug test procedure.

- 1. Measure the water level in the well to the nearest 0.01 foot to ensure that it has returned to the static water level.
- 2. Initiate data recording and quickly withdraw the slug from the well. Follow the owner's manual for proper operation of the data logger.

Location Job No. Water Level Measuring Datum Weather Comments	Client Field Scientist Total Well Depth Elevation of Datum Temp	Well No

Beginning Time	Ending Time	Initial Head Reading	Ending Head Reading	Test Type (Rise/Fall)	File Name	Comments
		,	·			
	i					
				-		
	 	 				

FIGURE 3.7

AQUIFER SLUG TEST DATA FORM

Site 1 (HWSA) Intrinsic Remediation TS Rickenbacker Air National Guard Base, Ohio

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

3. Terminate data recording when the water level stabilizes in the well, and remove the pressure transducer from the well and decontaminate. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

3.5.6 Slug Test Data Analysis

Data obtained during slug testing will be analyzed using AQTESOLV™ and the method of Hvorslev (1951) for confined aquifers or the method of Bouwer and Rice (1976) and Bouwer (1989) for unconfined conditions.

SECTION 4

REMEDIAL OPTION EVALUATION AND TS REPORT

Upon completion of field work, the Bioplume II numerical groundwater model will be used to determine the fate and transport of fuel hydrocarbons dissolved in groundwater at the site. Based upon model predictions of contaminant concentrations and distribution through time, and upon potential exposure pathways, the potential threat to human health and the environment based on regulatory action levels will be assessed. If it is shown that intrinsic remediation of BTEX compounds at the site is sufficient to reduce concentrations to acceptable levels, Parsons ES will recommend implementation of the intrinsic remediation option. If intrinsic remediation is chosen, Parsons ES will prepare a site-specific, long-term monitoring plan that will specify the location of point-of-compliance monitoring wells and sampling frequencies.

If the intrinsic remediation option is deemed inappropriate for use at this site, institutional controls such as groundwater or land use restrictions will be evaluated to determine if they will be sufficient to reduce the contaminant concentrations to acceptable levels. If institutional controls are inappropriate, remedial options which could reduce risks to acceptable levels will be evaluated and the most appropriate remedial options will be recommended. Potential remedial options include, but are not limited to, free-product recovery, groundwater pump-and-treat, enhanced biological treatment, bioventing, air sparging, and *in situ* reactive barrier walls. The reduction in dissolved BTEX that should result from remedial activities will be used to produce a new input file for the Bioplume II model. The model will then be used to predict the BTEX plume reduction that should result from remedial actions.

Upon completion of Bioplume II modeling and remedial option selection, an TS report detailing the results of the modeling and remedial option selection will be prepared. This report will follow the outline presented in Table 4.1 and will contain an introduction, site description, identification of remediation objectives, description of remediation alternatives, an analysis of remediation alternatives, and the recommended remedial approach. This report will also contain the results of the site characterization activities described herein and a description of the Bioplume II model simulations developed for this site.

TABLE 4.1 EXAMPLE TS REPORT OUTLINE

SITE 1 (HWSA)

IINTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

INTRODUCTION

Scope and Objectives Site Background

SITE CHARACTERIZATION ACTIVITIES

CPT, Sampling, and Aquifer Testing Procedures

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

Surface Features

Regional Geology and Hydrogeology Site Geology and Hydrogeology Climatological Characteristics

NATURE AND EXTENT OF CONTAMINATION

Source Characterization

Soil Chemistry

Residual-Phase Contamination

Total Organic Carbon

Ground Water Chemistry

LNAPL Contamination
Dissolved Contamination
Ground Water Geochemistry
Expressed Assimilative Capacity

GROUND WATER MODEL

Model Description

Conceptual Model Design and Assumptions

Initial Model Setup

Model Calibration

Sensitivity Analysis

Model Results

Conclusions

COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

Remedial Alternative Evaluation Criteria

Long-Term Effectiveness

Implementability (Technical, Administrative)

Cost (Capital, Operating, Present Worth)

Factors Influencing Alternatives Development

Program Objectives

Contaminant Properties

Site-Specific Conditions

Brief Description of Remedial Alternatives

TABLE 4.1 (Continued) EXAMPLE TS REPORT OUTLINE

SITE 1 (HWSA)
IINTRINSIC REMEDIATION TS
RICKENBACKER ANGB, OHIO

Intrinsic Remediation with Long-Term Monitoring

Other Alternatives

Evaluation of Alternatives

Recommended Remedial Approach

LONG-TERM MONITORING PLAN

Overview

Monitoring Networks

Ground Water Sampling

CONCLUSIONS AND RECOMMENDATIONS

How does the recommended technology offer adequate protection for less cost.

APPENDICES: Supporting Data and Documentation

Site-Specific Bioplume II Model Input and Results

SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL

Field QA/QC procedures will include collection of field duplicates and rinseate, field, and trip blanks; decontamination of all equipment that contacts the sample medium before and after each use; use of analyte-appropriate containers; and chain-of-custody procedures for sample handling and tracking. All samples to be transferred to an onsite or offsite analytical laboratory for analysis will be clearly labeled to indicate sample number, location, matrix (e.g., groundwater), and analyses requested. Samples will be preserved in accordance with the analytical methods to be used and packaged in coolers with ice to maintain a temperature of approximately 4 °C.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature. Field QC samples will be collected in accordance with the program described below, and as summarized in Table 5.1.

QA/QC sampling will include collection and analysis of duplicate samples, rinseate blanks, field/trip blanks, and matrix spike samples. Internal laboratory QC analyses will involve the analysis of laboratory control samples (LCSs) and laboratory method blanks (LMBs). QA/QC objectives for each of these samples, blanks, and spikes are described below.

One duplicate sample will be collected for every 10 or fewer samples collected, both for groundwater and soils. Volume permitting, duplicate samples will be collected at locations where low to moderate levels of contamination are believed to be present.

One rinseate sample will be collected for every 10 or fewer groundwater samples collected from existing wells. If disposable bailers are used for this sampling event, the rinseate sample will consist of a sample of distilled water poured into a new disposable bailer and subsequently transferred into a sample container provided by the laboratory. Rinseate samples will be analyzed for VOCs by Method RSKSOP-148.

A field blank will be collected for every 20 or fewer groundwater samples (both from groundwater monitoring point and existing groundwater monitoring well sampling events) to assess the effects of ambient conditions in the field. The field blank will consist of a sample of distilled water poured into a laboratory-supplied sample

TABLE 5.1

QA/QC SAMPLING PROGRAM SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

QA/QC Sample Types	Frequency to be Collected and/or Analyzed	Analytical Methods
Duplicates/Replicates	10% of Samples per Matrix "	VOCs, TPH
Rinseate Blanks	10% of Ground Water Samples ^{a/}	VOCs
Field Blanks	5% of Ground Water Samples a	VOCs
Trip Blanks	One per shipping cooler containing VOC samples	VOCs
Matrix Spike Samples	Once per sampling event	VOCs
Laboratory Control Sample	Once per method per medium	Laboratory Control Charts (Method Specific)
Laboratory Method Blanks	Once per method per medium	Laboratory Control Charts (Method Specific)

5-2

a/ Rounded to the next highest whole number.

container while sampling activities are underway. The field blank will be analyzed for VOCs by Method RSKSOP-148.

A trip blank will be analyzed to assess the effects of ambient conditions on sampling results during the transportation of samples. The trip blank will be prepared by the laboratory. A trip blank will be transported inside each cooler which contains samples for VOC analysis. Trip blanks will be analyzed for VOCs.

Matrix spikes will be prepared in the laboratory and used to establish matrix effects for samples analyzed for VOCs.

LCSs and LMBs will be prepared internally by the laboratory and will be analyzed each day samples from the site are analyzed. Samples will be reanalyzed in cases where the LCS or LMB are out of the control limits. Control charts for LCSs and LMBs will be developed by the laboratory and monitored for the analytical methods used.

SECTION 6

REFERENCES

- Borden, R.C., and Bedient, P.B., 1986. Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation theoretical development, *Water Resources Research*, vol. 22, no. 13. p. 1973-82.
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: *Ground Water*, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: *Water Resources Research*, 12(3), p. 423-428.
- Bruce, L., Miller, T., and Hockman, B., 1991, Solubility versus equilibrium saturation of gasoline compounds a method to estimate fuel/water partition coefficient using solubility or K_{oc...} In, A. Stanley (editor), NWWAI/API Conference on Petroleum Hydrocarbons in Ground Water: NWT/API, p. 571-582.
- Cline, P.V., Delfino, J.J., and Rao, P.S.C., 1991, Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures: *Environmental Science and Technology:* v. 17, no. 4, p. 227-231.
- Driscoll, F.G., Groundwater and Wells, Second Edition: Johnson Filtration Systems, Inc., St. Paul, MN, 1986.
- Engineering Science, Inc.(ES), 1989, Final Field Investigation Report Hazardous Waste Storage Area, Rickenbacker Air National Guard Base, Columbus, Ohio, April.
- Engineering-Science, Inc. (ES), 1992a, Final Addendum to the Pre-Closure Sampling Report Hazardous Waste Storage Area, Rickenbacker Air National Guard Base, Columbus, Ohio, January.
- Engineering-Science, Inc. (ES), 1992b, Final Pre-Closure Sampling Report Hazardous Waste Storage Area, Rickenbacker Air National Guard Base, Columbus, Ohio, March.
- Engineering-Science, Inc. (ES), 1992c, Determination of Phase-Separated Hydrocarbon Extent at the Hazardous Waste Storage Area, Rickenbacker Air National Guard Base, Columbus, Ohio, March.

- Engineering-Science, Inc. (ES), 1993a, Amended Closure / Post Closure Plan Hazardous Waste Storage Area (Building 56), Rickenbacker Air National Guard Base, Columbus, Ohio, March.
- Engineering-Science, Inc. (ES), 1993b, Health and Safety Plan for the Bioplume Modeling Initiative. Prepared for the Air Force Center for Environmental Excellence, Environmental Restoration Division, USAF Contract F41624-92-D-8036.
- Espenshade, E.B., *Goode's World Atlas*, 17th Edition: Rand MacNally & Company, San Fransisco, CA, 1986.
- Hazardous Materials Technical Center, 1987, Installation Restoration Program: Phase 1, Records Search (Preliminary Assessment), Rickenbacker Air National Guard Base, Columbus, Ohio, June.
- Hvorslev, M. J., 1951, *Time Lag and Soil Permeability in Ground-Water Observations:* United States Corps of Engineers Waterways Experiment Station Bulletin 36, Vicksburg, Mississippi. 50 p.
- Lee, M.D., 1988. "Biorestoration of Aquifers Contaminated with Organic Compounds." CRC Critical Reviews in Environmental Control, v. 18. p. 29-89.
- Pierce, L.J., The Climate of Ohio: in Climates of the States, 1959, In Volume 1 Eastern States, Water Information Center, Inc., 1974.
- Rifai, H.S., Bedient, P.B., Wilson, J.T., Miller, K.M., and Armstrong, J.M., 1988, Biodegradation modeling at aviation Fuel spill site, *Journal of Environmental Engineering*, v. 114, no. 5, p. 1007-1029.
- US Geological Survey (USGS), 1985, 7.5 Minute Quadrangle Map of Lockbourne, Ohio.
- Wiedemeier, T. H., Downey, D. C., Wilson, J. T., Kampbell, D. H., Miller, R. N., and Hansen, J. E., In Preparation, Technical Protocol for Implementing the Intrinsic Remediation (Natural Attenuation) with Long-term Monitoring Option for Dissolved-phase Fuel Contamination in Ground Water. Prepared for the Air Force Center for Environmental Excellence.

APPENDIX A

CONTAINERS, PRESERVATIVES, PACKAGING, AND SHIPPING REQUIREMENTS FOR GROUND WATER SAMPLES

TABLE A.1 SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA)

INTRINSIC REMEDIATION TS

RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

					Recommended	Sample Volume,	Field or
					Frequency of	Sample Container,	Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Soil	Volatile organics	Gas chromatography/ mass spectrometry	Handbood method	Data is used to determine the extent of chlorinated	Each sampling round	Collect 100 g of soil in a glass container with	Fixed-base
		method SW8240.		solvent and aromatic hydrocarbon		Teflon®-lined cap; cool to 4°C	
				contamination, contaminant			
				mass present, and the need for source removal			
Soil	Dehydrogenase	Colorimetric	Reduction of added	An indicator of the	At the beginning	Collect 100 g of soil in	Field
	enzyme activity	RSKSOP-100	triphenyltetrazolium	presence of soil microbes,	of the project	a glass container	
	(optional)		chloride by soil	which are necessary for			
			microbes is	bioremediation to occur			
			measured				
			colorimetrically;				
			analyze immediately		;		: i
Soil	Aromatic	Purge and trap gas	Handbook method	Data is used to determine	Each sampling	Collect 100 g of soil in	Fixed-base
	hydrocarbons	chromatography (GC)	modified for field	the extent of soil	round	a glass container with	
	(benzene,	method SW8020	extraction of soil	contamination, the		Teflon-lined cap; cool	
	toluene, ethyl-		using methanol	contaminant mass present,		to 4°C	
	benzene, and			and the need for source			
	xylene [BTEX];			removal			
	trimethylbenzene						
	isomers)						
Soil	Total	GC method SW8015	Handbook method;	Data are used to determine	Each sampling	Collect 100 g of soil in	Fixed-base
	hydrocarbons,	[modified]	reference is the	the extent of soil	round	a glass container with	
	volatile and		California LUFT	contamination, the		Teflon-lined cap; cool	
	extractable		manual	contaminant mass present,		to 4°C	
				and the need for source			
				removal			
	(2) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0			0.0000000000000000000000000000000000000			

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

					Recommended	Sample Volume.	Field or
					Frequency of	Sample Container,	Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Soil	Total organic	SW9060 modified for	Procedure must be	Relatively high amounts of	At initial	Collect 100 g of soil in	Fixed-base
	carbon (10C)	son samples	range of 0.5-	reducing environment and	Sampring	Teflon-lined cap; cool	
			15 percent TOC	may indicate the need for		to 4°C	
			•	analysis of electron			
				acceptors associated with	-		
				that environment; the rate			
				of migration of petroleum			
				contaminants in			
				groundwater is dependent			
				upon the amount of TOC in			
				the saturated zone soil; the			
				rate of release of petroleum			
				contaminants from the			
				source into groundwater is			
				dependent (in part) on the			
-				amount of TOC in the			
				vadose zone soil			
Soil	Moisture	ASTM D-2216	Handbook method	Data are used to correct soil	Each soil	Use a portion of soil	Fixed-base
				sample analytical results for	sampling round	sample collected for	
				moisture content		another analysis	
				(e.g., report results on a dry			
				weight basis)			
Soil	Grain size	ASTM D422	Procedure provides	Data are used to infer	One time during	Collect 250 g of soil in	Fixed-base
	distribution		a distribution of	hydraulic conductivity of	life of project	a glass or plastic	
			grain size by sieving	aquifer, and are used in		container; preservation	
				calculating sorption of		is unnecessary	
				contaminants			
Soil gas	Carbon dioxide	Nondispersive infrared	Soil gas carbon	Data used to understand the	Each sampling	NA	Field
)	content of soil	instrument operating	dioxide may be	carbon dioxide	round		
	gas	over the range of	produced by the	concentration gradient with			
)	approximately 0.1-	degradation of	depth and to infer the			
		15 percent	petroleum	biological degradation of			
			hydrocarbons	petroleum contaminants			

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

Matrix Analysis Method/Reference Comments Data to Use Freduency of Sample Container, Freduency of Sample Container, Freduency of Sample Container, Freduency of Sample Container, Freduency of Sample Container, of Sample Container, Freduency of Sample Container, of Sample Container, of Sample Container, Freduency of Container, and programment of Pydrocarbon meter of these containers and management of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect 100 mL of Collect						Recommended	Sample Volume,	Field or
Analysis Method/Reference Comments Data are used to understand of soil gas oxygen of soil gas smple are used to understand processes of degradation of the soil gas sample as the determined the presence or a such as the degradation of processes degradation of processes of degradation of processes of soil gas oxygen and concentrations may decreate to the point of soil gas oxygen and the soil gas sample as a such as the degradation of processes of degradation of processes of soil gas oxygen and concentrations may decreate to the point of soil gas oxygen and concentrations may decreate to the point of soil gas oxygen and concentrations may decreate to the point of the sample of soil gas and postation of gas oxygen and concentrations may be a such as the degradation of a presence of anaerobic analyst with a carbon and postation of an anaerobic analyst with a carbon and postation of an are used to understand the content of operation over a wide content over a wide content over a wide content over a wide content over a wide content over a wide content over a wide content over a w	•					Frequency of	Sample Container,	Fixed-Base
Oxygen content Electrochemical oxygen in the range of the soil gas sample of soil gas oxygen in the range of the soil gas sample amount of the soil gas sample and the soil gas oxygen and contentations and decrease to the point where anaerobic pathways domined anaerobic and spatiation of decrease to the point where anaerobic and operating in the low parts per million volture (ppmv) Pele hydrocarbon meter operating over a wide previoleum soil gas pertoleum operation of pertoleum operations and operating over a wide previoleum peter of these content of hydrocarbon meter of these depth and to locate the most pertoleum operation process due to round an anaerobic contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants of the low parts per contaminants in the low parts per contaminants of the low parts per contaminants of the low parts per contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants in the low parts per contaminants and deperation of prediction of oxygen, and the pertoleum process the contaminants and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and managanese and	×	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
the range of Concentration of the related to the presence or amount of the range of Concentration of the soil gas sample by the soil gas sample by the soil gas supplements of the soil gas supplements of the soil gas of the soil gas of the soil gas of these content of order content of the soil gas of the soil gas of the soil gas of these content of byth ocarbon meter soil gas of these content of byth ocarbons where an area to the point of the low parts per million volume (pmv) Ferrous (Fe'2) The range of Colorimetric content of the soil gas relating the soil gas of these content of byth ocarbons and the low presence of these content of byth ocarbons meter soil gas of these content of byth ocarbons and the low presence of these content of byth ocarbons meter soil gas of these content of byth ocarbons meter soil gas of these content of byth ocarbons meter soil gas of these content of byth ocarbons meter soil gas of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons meter soil gas of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of these content of byth ocarbons the low presence of the byth ocarbon ocarbons the low presence of these content of byth ocarbon ocarbons the low presenc	<u>,,</u>	Oxygen content	Electrochemical oxygen	The concentration	Data are used to understand	Each sampling	N/A	Field
25 percent of oxygen in biological activity, absence of aerobic the soil gas sample biological activity, absence of aerobic such as the soil gas sample biological activity, absence of aerobic such as a biological activity, absence of aerobic such as a biological activity, absence of aerobic such as a biological activity absence of aerobic perroleum hydrocarbons may decrease to the point where anaerobic pathways dominate of soil gas pathways dominate of soil gas pathways dominate of soil gas pathways dominate of soil gas pathways dominate of soil gas pathways dominate of soil gas pathways dominate of soil gas pathways dominate of gradation of processes; see discussion of trap, and operating in petroleum degradation of processes; see discussion of trap, and operating in petroleum degradation of processes; see discussion of transparence of these or market in a glass or ontential on an aerobic processed upon meter indicate the concentration gradient with operating over a wide presence of these or oncentration gradient with participate and processed upon meter indicate the personne of these or oncentration gradient with confinence of these or oncentration of oxygen, pythocarbon meter indicate the participate of these or oncentration of oxygen, pythocarbon indicate an anaerobic process due to or oncentration of oxygen, pythocarbon intents, and manganese meters of these or oncentration of oxygen, pythocarbon intents, and manganese meters of these or oncentration of oxygen, pythocarbon process due to or oncentration of oxygen, pythocarbon process due to or oncentration of oxygen, pythocarbon process due to or oncentration of oxygen, pythocarbon process due to or oncentration of oxygen, pythocarbon or occurrence of these or oncentration of oxygen, pythocarbon or occurrence of these or oncentration of oxygen, pythocarbon or occurrence of these or occurrence		or son gas	the range of 0-	often related to the	gradient with depth and to	2000		
the soil gas sample such as the degradation processes degradation processes such as the elegradation processes and soil gas oxygen to be lower content of petroleum of petrole			25 percent of oxygen in	amount of	determine the presence or			
Methane content Total combustible Methane content Total combustible			the soil gas sample	biological activity,	absence of aerobic			
degradation of perform protochors, soil gas oxygen content content Methane content Of soil gas are accounted by decrease to the point where anaerobic pathways dominated of soil gas are platinum canalys with a carbon degradation of trap, and operating in the low parts per million volume (ppmv) Fuel hydrocarbon meter percent of percent of manifold and the low parts per million volume (ppmv) Fuel hydrocarbon meter percent of percent of manifold and the low parts per million volume (ppmv) Fuel hydrocarbon meter phydrocarbons of these operating over a wide phydrocarbon meter phydrocarbon phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon meter phydrocarbon phydrocarbon meter phydrocarbon phydrocarbon meter phydrocarbon phydrocarbon meter phydrocarbon phydrocarbon phydrocarbon meter phydrocarbon phydrocarbon phydrocarbon phydrocarbon phydrocarbon phydrocarbon phydrocarbon phydrocarbon phydrocar				such as the	degradation processes			
Methane content Total combustible Methane is a of soil gas not content of the point where an another of soil gas objection of soil gas of soil gas of soil gas of soil gas of soil gas of soil gas not out of the loydrocarbon meter anaerobic range anaerobic range round operating in phydrocarbon or soil gas of soil gas				degradation of				
Methane content Total combustible where anaerobic pathways dominate of soil gas methane can be to soil gas methane can be carease to the point where anaerobic pathways dominate of soil gas methane can be thy drocarbon meter product of the care of anaerobic care of anaerobic trap, and operating in million volume (ppmv) anaeroboc carbon Total combustible why operating in the low parts per million volume (ppmv) and operating over a wide publicate the popur range contaminated and to locate the most contaminated soil gas perroleum where methane in indicate the contaminants in the publication of perating over a wide presence of these contaminated soils and operating over a wide presence of these contaminated soils and operating over a wide presence of these contaminated soils and operating over a wide presence of these contaminated soils and operating over a wide presence of these contaminated soils and operation of contaminated soils and operation of contaminated soils and operation of anaerobic metal or metal or metal or metal or metal or contaminated and managanese metal or metal or metal or metal or metal or metal or metal or metal or soil or an anaerobic metal or m				petroleum				
Methane content Methane content Methane content Methane content Methane content Total combustible hydrocarbon meter austrobic range Trainge Fired bydrocarbon meter avalogs soil gas Petrolaus (Fe ²) Trainge				hydrocarbons; soil				
Methane content Methane content Methane content Methane content Methane content Methane content Methane content Methane content Methane is a Methane content Methane is a ass a Methane is a methane is a Methane is a methane is a Methane				gas oxygen				
Methane content Total combustible Methane is a product of the point anaerobic pathways dominate of soil gas methane can be soil gas platinum anaerobic pathways dominate anaerobic cataly with a carbon trap, and operating in the low parts per angle soil gas port content of bydrocarbon neter soil gas poperating over a wide presence of these depth and to locate the most concentration processes; see discussion of presence of these depth and to locate the most concentration gradient with pmnv range contaminants in the Perrous (Fe²²) Colorimetric Field only Ferous (Fe²²) Colorimetric Field only anaerobic pathways dominants in the low parts per presence of these depeting of contaminants in the low parts per presence of these depth and to locate the most contentration process due to degradation process due to degradation process due to degradation of oxygen, nitrate, and manganese process description of oxygen, nitrate, and manganese process deforms the method process deforms an anaerobic path and manganese process deforms an anaerobic process due to degradation of oxygen, nitrate, and manganese process deforms method process deforms an anaerobic process due to degradation of oxygen, nitrate, and manganese process deforms method process deforms method process deforms an anaerobic process due to degradation of oxygen, nitrate, and manganese process deforms an anaerobic process due to degradation of oxygen, nitrate, and manganese process deforms an anaerobic process due to degradation of oxygen, nitrate, and manganese process due to degradation of oxygen, nitrate, and manganese process due to deform the process due to degradation of oxygen, nitrate, and manganese process due to degradation of oxygen, nitrate, and manganese process due to deform the process due to degradation of oxygen, nitrate, and anaerobic process due to degradation of oxygen, nitrate, and anaerobic process due to degradation of oxygen, nitrate, and an anaerobic process due to degradation of oxygen, nitrate, and anaerobic process due to degradation of o				concentrations may				
Methane connent Total combustible of soil gas methane can be soil gas methane can be by determine the catalyst with a carbon degradation of the lydrocarbon meter whydrocarbon meter whydrocarbon meter whydrocarbon meter bydrocarbon meter bydrocarbon meter whydrocarbon meter bydrocarbon bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon bydrocarbon meter bydrocarbon meter bydrocarbon meter bydrocarbon bydrocarbon meter bydrocarbon by				decrease to the point				
Methane content Total combustible Methane is a large to locate contaminated of soil gas methane can be bydrocarbon meter arange trap, and operating in the low parts per million volume (ppmv) Fuel hydrocarbon Total combustible bydrocarbon meter operating over a wide presence of these ppmv range Ferrous (Fe ⁻²) Colorimetric Methane is a log gas methane can be gear sampling large to locate contaminated soils soil gas betroleum hydrocarbon meter hydrocarbon meter hydrocarbon meter promote soil gas per locate the most pomv range contaminants in the leavily contaminated soils soil column Ferrous (Fe ⁻²) Colorimetric Ferrous (Fe ⁻²) A3500-Fe D Methane is a contaminate can be get sampling product of the most operation by degradation process due to contaminants in the large degradation process due to round mitrane; and manganese method mitrane, and manganese method in method Methane is a contaminate soil soil said manganese method mitrane, and manganese method is soil soil soil soil soil soil soil s				where anaerobic				
Methane content Total combustible Methane is a Soil gas methane can be lydrocarbon meter anaerobic soil gas platinum anaerobic rap, and operating in the low parts per million volume (ppmv) range soil gas poperating over a wide vapor content of operating over a wide permission of personce of these operating over a wide poperating over a wide p				pathways dominate				
of soil gas by drocarbon meter anaerobic soil and to determine the catalyst with a carbon degradation of the low parts per million volume (ppmv) and poperating in the low parts per million volume (ppmv) and operating over a wide soil gas per presence of an auserobic processes, see discussion of the low parts per million volume (ppmv) and operating over a wide soil gas pmv range contaminants in the ppmv range contaminants in the soil column Ferrous (Fe*2) Colorimetric Field only A3500-Fe D Rate and manganese institute an anaerobic contaminer, and manganese methods and manganese methods and manganese methods and manganese methods and manganese methods and manganese methods and manganese methods and manganese method		Methane content	Total combustible	Methane is a	Soil gas methane can be	Each sampling	N/A	Field
trap, and operating in the low parts per million volume (ppmv) and operating operating of presence of anaerobic petroleum petroleum petroleum petroleum petroleum petroleum processes, see discussion of the low parts per million volume (ppmv) anger content of hydrocarbon meter vapor content of ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the ppmv range contaminants in the deptation of oxygen, intrinter, and manganese method		of soil gas	hydrocarbon meter	product of the	used to locate contaminated	round		
trap, and operating in the low parts per million volume (ppmv) range Fuel hydrocarbon operating over a wide poperating over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide poperation of over a wide popera)	using a platinum	anaerobic	soil and to determine the			
the low parts per hydrocarbons the low parts per million volume (ppmv) Fuel hydrocarbon Total combustible soil gas per nettrain gas per anide soil gas per hydrocarbon meter soil gas pmnv range contaminants in the perrous (Fe ^{2,2}) Colorimetric Field only A3500-Fe D A3500-Fe D Asset to the locate the most depth and managanese the locate the most depetition of oxygen, intirate, and manganese the locate data used for methane in water in a glass depetition of oxygen, intirate, and manganese the locate data used for methane in hydrocarbons perceived water in a glass containing to the locate the most depetition of oxygen, intirate, and manganese method			catalyst with a carbon	degradation of	presence of anaerobic			
the low parts per million volume (ppmv) range Fuel hydrocarbon routent of operating over a wide pmw range Fuel hydrocarbon Retrost (Fe ²) Ferrous (Fe ²) Colorimetric A3500-Fe D Total combustible soil gas betroleum hydrocarbon round concentration gradient with ppmv range contaminants in the soil column Ferrous (Fe ²) A3500-Fe D May indicate an anaerobic degradation process due to depletion of oxygen, nitrate, and manganese May indicate an anaerobic degradation of oxygen, nitrate, and manganese May indicate an anaerobic degradation of oxygen, nitrate, and manganese May indicate an anaerobic degradation of oxygen, nitrate, and manganese			trap, and operating in	petroleum	processes; see discussion of			
Fuel hydrocarbon rontent of hydrocarbon meter soil gas perroleum hydrocarbon rontent of ppmv range contaminants in the recouns (Fe+2) Colorimetric Perrous (Fe+2) A3500-Fe D A3500-Fe D Assert the range range and the contaminants in the soil column range contaminants in the depletion of oxygen, nitrate, and manganese range range range range range and range range and range range and range range range range range and range ran			the low parts per	hydrocarbons	data use for methane in			
Fuel hydrocarbon Total combustible Soil gas Data used to understand the vapor content of hydrocarbon meter soil gas operating over a wide petroleum hydrocarbon petroleum hydrocarbon concentration gradient with presence of these depth and to locate the most contaminants in the revily contaminants in the revily contaminated soils soil column Field only A3500-Fe D A3500-Fe D A3500-fe D			million volume (ppmv)	,	water			
Fuel hydrocarbon Total combustible Soil gas Data used to understand the schore and petroleum hydrocarbon meter soil gas operating over a wide presence of these concentration gradient with ppmv range contaminants in the contaminants in the ferrous (Fe ²) Colorimetric Soil column Ferrous (Fe ²) A3500-Fe D A3500-Fe D A3500-fe D A			range					
vapor content of soil gas hydrocarbon meter operating over a wide soil gas hydrocarbon meter indicate the most operating over a wide presence of these depth and to locate the most contaminants in the soil column petrolect the most depth and to locate the most of these depth and to locate the most contaminants in the soil column May indicate an anaerobic degradation process due to degradation process due to degradation of oxygen, and manganese Collect 100 mL of container; acidify with hydrochloric acid for method	10	Fuel hydrocarbon	Total combustible	Soil gas	Data used to understand the	Each sampling	N/A	Field
soil gas operating over a wide presence of these presence of these ppmv range contaminants in the contaminated soils soil column Field only A3500-Fe D A3500-Fe D mitrate, and manganese contamined soil gas between depth and to locate the most contaminated soils soil column feavily contaminated soils soil column degradation process due to degradation of oxygen, and manganese method method		vapor content of	hydrocarbon meter	hydrocarbons	petroleum hydrocarbon	round		
Ferrous (Fe ⁺²) For the depth and to locate the most contaminants in the soil column Ferrous (Fe ⁺²) A3500-Fe D Field only A3500-Fe D Field only Field only Gegradation process due to depletion of oxygen, intrate, and manganese Field only Field on		soil gas	operating over a wide	indicate the	concentration gradient with			
Ferrous (Fe ⁺²) Colorimetric A3500-Fe D A3500-Fe D A3500-Fe D Initrate, and manganese contaminants in the heavily contaminated soils soil column May indicate an anaerobic Each sampling Adapter 100 mL of water in a glass container; acidify with hydrochloric acid per method			ppmv range	presence of these	depth and to locate the most			
Ferrous (Fe ⁺²) Colorimetric A3500-Fe D A35				contaminants in the	heavily contaminated soils			
Ferrous (Fe ⁺²) Colorimetric Field only May indicate an anaerobic Each sampling Collect 100 mL of degradation process due to round water in a glass depletion of oxygen, depletion of oxygen, nitrate, and manganese hydrochloric acid per method				soil column				
degradation process due to round depletion of oxygen, nitrate, and manganese		Ferrous (Fe ⁺²)	Colorimetric	Field only	May indicate an anaerobic	Each sampling	Collect 100 mL of	Field
se			A3500-Fe D		degradation process due to	round	water in a glass	
					depletion of oxygen,		container, acidify with	
method					nitrate, and manganese		hydrochloric acid per	
							method	

TABLE A.1 (Continued) SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

Frequency of Analysis e Each sampling round Each sampling round Each sampling round site samples from the same system concentration Each sampling round concentration Each sampling round soncentration Each sampling round site samples from the same system site samples from the same system anarker round ally indicate pathway requality Each sampling round site samples from the same system requality Each sampling round from the same system requality Each sampling round requality Each sampling round from the same system requality and samples from the same system requality cound from the same system requality cound from the same system requality cound from the same system requality cound from the same system requality cound from the same system requality cound from mindwater system requality cound from mindwater system requality cound from mindwater system requality of system requality of system requality of system requality of system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality of system requality of system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system requality round from mindwater system required from min						Kecommended	Sample Volume,	rieia or
Ferrous (Fe ²⁴) Golorimetric Alternate method; Same as above Each sampling countries and the state of field only and the state of field only and the state of field only and the state of field only and the state of field only and the state of field only and the state of field only and the state of colorimetric colorimetric and the state of colorimetric distance and the state of colorimetric colorimetric colorimetric distance and the state of colorimetric c						Frequency of	Sample Container,	Fixed-Base
Ferrous (Fe**) Colorimetric HACH Method # 81046 field only Total Iron Colorimetric Chloride HACH Method # 8008 Manganese Colorimetric Good must be a colorimetric Chloride HACH Method # 8004 Chloride Mercuric nitrate (IC) method 58/090 parameter used as a marker round corner in traiton A4500-Cl* C (IC) method 58/090 are obtained from the same model 8-P may also be used groundwater system Chloride test kit infantion A500-Cl* C (IC) method 58/090 are obtained from the same model 8-P may also be used groundwater system on method A500 bissolved oxygen meter method A4500 bissolved oxygen meter method at a marker to the same groundwater system and an anaerobic pathway procedure an anaerobic pathway procedure and marker to verify that all site amples are obtained from the same groundwater system and contract water quality parameter used as a marker to wenty that all site amples are obtained from the same groundwater system and contract water quality parameter used as a marker to wenty that all site amples are obtained from the same samples are obtained from the same poundwater system and contract water quality parameter used as a marker to wenty that all site amples are obtained from the same samples are obtained fr	Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Total Iron Colorimetric HACH Method # 8008 Mangamese Colorimetric Chloride HACH Method # 8003 Chloride HACH Chloride test kit irration A4500-CT C Chloride Chloride Chloride HACH Chloride test kit irration A4500-CT C Chloride Chloride test kit irration A4500-CT C Chloride HACH Chloride test kit irration Chloride Chloride test kit irration Chloride Chloride HACH Chloride test kit irration Chloride Chloride test kit irration Chloride HACH Chloride test kit irration Chloride Chloride HACH Chloride test kit irration Chloride Chloride Chloride Chloride Chloride Chloride HACH Chloride test kit irration Chloride HACH Chloride test kit irration Chloride Chlor	/ater	Ferrous (Fe ⁺²)	Colorimetric	Alternate method;	Same as above	Each sampling	Collect 100 mL of	Field
Total Iron Colorimetric Field only Field only Field only Field only Field only Field only Found HACH Method # 8034 Chloride Mercuric nitrate HACH Chloride test kit intration A4500-C1°C Commence Chloride HACH Chloride test kit intration Dissolved oxygen meter Refer to Dissolved oxygen meter method 500°C Field only Fie			HACH Method # 8146	field only		round	water in a glass	
Total Iron Colorimetric Manganese Colorimetric Manganese Colorimetric Manganese Colorimetric Manganese HACH Method # 8034 HACH Method # 8034 Coloride Manganese HACH Method # 8034 HACH Method # 8034 Coloride Mercuric nitrate Chloride HACH Chloride test kit May also be used Moved oxygen Moved oxygen Conductivity E120.1/SW9030, direct May also Conductivity E120.1/SW9030, direct May also Manganese Conductivity E120.1/SW9030, direct Method Ad500 Manganese May also Moved May and Moved May and Moved Mov							Colitainol	
Manganese Colorimetric 81 HACH Method # 8008 Glorimetric 834 Chloride HACH Method # 8344 Chloride HACH Method # 8344 Chloride tritation A4500-Cl C (IC) method 5300 Chloride may also be used are obtained from the same are obtained from the same difference oxygen meter Refer intration Dissolved oxygen meter Refer Refer or a data input to the round method A4500 Conductivity E120.1/SW9050, direct Protocols/Handbook The oxygen or concentration and anaertobic pathway and anaertobic pathway and anaertobic pathway and anaertobic pathway are obtained from the same are obtained from the same method A4500 Conductivity E120.1/SW9050, direct Protocols/Handbook HACH Alkalimity test Phenolphtalein General water quality round marker to verify that site sampling parameter used as a marker round to verify that site sampling parameter used as a marker round methods Atkalimity test Phenolphtalein General water quality round marker to verify that site sampling parameter used (3) as a marker poundwater system samples are obtained from the same proundwater system the same groundwater system the same groundwater system the buffering capacity of	/ater	Total Iron	Colorimetric	Field only		Each sampling	Collect 100mL of water	Field
Manganese Colorimetric HACH Method # 8034 Chloride HACH Method # 8034 Chloride itiration A4500-C1°C (IC) method E300 Chloride itiration A4500-C1°C or method SW9050 Intervention and also be used are obtained from the same may also be used are obtained from the same proundwater system and also be used are obtained from the same itiration Chloride HACH Chloride test kit itiration Chloride HACH Chloride test kit itiration Chloride HACH Chloride test kit itiration Chloride HACH Chloride test kit itiration Chloride HACH Chloride test kit intervention are above used are obtained from the same intervention are above concentration is a data input to the round for a comparable is a data input to the round intervention in			HACH Method # 8008			round	in a glass conatainer	
Chloride Mercuric nitrate (IC) method 89030 parameter used as a marker round groundwater system may also be used proudwater system may also be used groundwater system model 8-P iteration Dissolved oxygen meter Refer to method 84500 is a data input to the model 8-P iteration method 84500 is a data input to the model 8-P iteration method 84500 is a data input to the method 84500 in a comparable bioplume model; in a data input to the method 84500 in a marker in a marker in	/ater	Manganese	Colorimetric	Field only		Each sampling	Colect 100 mL of water	Field
Chloride Mercuric nitrate (IC) method B300 parameter used as a marker or nembod Sw9050 for verify that site samples may also be used are obtained from the same may also be used are obtained from the same may also be used are obtained from the same may also be used are obtained from the same needed B4P Refer to method A4500 is a data input to the for a comparable biopiume model; and an anaerobic pathway parameter used as a marker found parameter used as a marker found methods and fit model AL AP MG-L method marker to verify that site sampling parameter used as a marker to verify that site sampling method methods methods are obtained from the same proundwater system and (2) to method marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling the buffering capacity of)	HACH Method # 8034			round	in a glass conatiner	
titration A4500-CIT C (IC) method E300 to verify that site samples may also be used are obtained from the same groundwater system Dissolved oxygen meter Refer to Dissolved oxygen meter Refer to Dissolved oxygen meter Refer to Dissolved oxygen meter Refer to Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Refer to The oxygen concentration Dissolved oxygen meter Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen meter The oxygen concentration Dissolved oxygen The oxygen The oxygen The oxygen The oxygen The oxygen The oxygen The oxygen The Oxygen T	/oter	Chloride	Mercuric nitrate	Ton chromatography	General water quality	Each sampling	Collect 250 mL of	Field
Chloride HACH Chloride test kit Silver nitrate Bare as above round it ritration Dissolved oxygen meter Refer to method A4500 Bioplume model; Inaction procedure In mater of a data input to the for a comparable Bioplume model; Inaction procedure In mater of procedure In methods parameter used as a marker round parameter used as a marker fround parameter used as a marker fround groundwater system and (2) to method hit marker to verify that all site sampling parameter used (1) as a marker fround parameter used (1) as a marker fround groundwater system and (2) to measure the buffering capacity of the buffering the buffering the buffering the buffering the buffering		Antionio	TILL A 4500-CIT	(IC) method E300	narameter lised as a marker	Lound	water in a glass	
Chloride HACH Chloride test kit Silver nitrate groundwater system model 8-P titration Choxygen Dissolved oxygen meter Refer to Dissolved oxygen meter method A4500 is a data input to the nethod A4500 is a data input to the round procedure and an anaerobic pathway procedure and an anaerobic pathway procedure protocols/Handbook parameter used as a marker round groundwater system method AL AP MG-L method Alkalinity test Phenolphtalem groundwater system the same groundwater system method in the same groundwater system method in the same groundwater system method in the same groundwater system method in the same groundwater system method in the same groundwater system method in the same groundwater system and (2) to measure the buffering capacity of			Unanon (14500-C)	or mathod SW0050	to varify that site samples	1	container	
Chloride HACH Chloride test kit itration Dissolved oxygen meter a conqueration below that it reading meter and an anaetobic pathway conductivity and below treading meter and an anaetobic pathway are obtained from the same are obtained fr					conditing only made on the condition of			
Chloride HACH Chloride test kit intrate Same as above Each sampling funded 8-P through the concentration is a data input to the counce for a comparable for a comparable for a comparable for a comparable bioplume model; laboratory concentrations less than procedure an anaerobic pathway reading meter for a comparable for to verify that site samples are obtained from the same groundwater system HACH Alkalinity test Phenolphtalem groundwater system the same anaerobic pathway for methods form the same groundwater system for method from the same farm marker to verify that site sampling parameter used (1) as a method from the same farm marker to verify that site sampling parameter used (1) as a method from the same farm marker to verify that all site samples are obtained from the same farm marker to verify that all site samples are obtained from the same system and (2) to measure the buffering capacity of				may also be used	are obtained from the same			
Chloride HACH Chloride test kit Silver nitrate Same as above Each sampling model 8-P titration Dissolved oxygen meter Refer to The oxygen concentration Each sampling nethod oxygen meter Refer to The oxygen concentration Each sampling concentration less than procedure Ingoratory concentrations less than procedure Ingolume model; Ingo					groundwater system			
Model 8-P titration reter Refer to bissolved oxygen meter and the concentration bissolved oxygen meter between the concentration bissolved oxygen meter between the concentrations is a data input to the round for a comparable bisplume model; concentrations less than procedure an anaerobic pathway between treading meter protocols/Handbook General water quality reading meter methods to verify that site samples are obtained from the same groundwater system the samples and marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling the same groundwater system and (2) to measure the buffering capacity of	/ater	Chloride	HACH Chloride test kit	Silver nitrate	Same as above	Each sampling	Collect 100mL of water	Field
Oxygen Dissolved oxygen meter Refer to The oxygen concentration Each sampling method A4500 is a data input to the for a comparable Bioplume model; laboratory concentrations less than procedure in an anaerobic pathway reading meter methods parameter used as a marker round to verify that site sampling parameter used (1) as a method water quality health methods parameter used (1) as a method method Alkalinity test phenolphtalem denoted water quality parameter used (1) as a method method method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of			model 8-P	titration		round	in a glass container	
Conductivity E120.1/SW9050, direct reading meter reading meter method A4500 parameter used as a marker round to verify that site sampling parameter used (1) as a marker to verify that all site sampling parameter used (1) as a marker to verify that all site sampling the same groundwater system and (2) to measure the buffering capacity of	20000000000000000000000000000000000000		Discolved avvices meter	Peferto	The oxygen concentration	Fach sampling	Collect 300 mL of	Field
Conductivity E120.1/SW9050, direct reading meter methods reading meter Alkalinity HACH Alkalimity test kit model AL AP MG-L method kit model AL AP MG-L system and (2) to measure the buffering capacity of the buffering capacity of the buffering capacity of the buffering capacity of the same groundwater system the same groundwater system the same groundwater system the same groundwater system and (2) to measure the buffering capacity of	מונו	CAYBOIL	Planting out bon many	method A4500	is a data input to the	2 punu	water in biochemical	
Conductivity E120.1/SW9050, direct Protocols/Handbook General water quality reading meter methods parameter used as a marker round methods to verify that site samples are obtained from the same groundwater system HACHARalimity test Phenolphtalein General water quality bar and (1) as a marker to verify that all site sampling marker to verify that all site sampling marker to verify that all site sampling method marker to verify that all site sampling marker to verify that all site sampling the same groundwater system and (2) to measure the buffering capacity of				5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Din luma model		ovvaen demand hottles:	
Conductivity E120.1/SW9050, direct Protocols/Handbook General water quality reading meter methods parameter used as a marker round to verify that site samples are obtained from the same groundwater system HACH Alkalimity test PMG-L method marker to verify that all site samples are obtained from the same groundwater system deneral water quality parameter used (1) as a marker to verify that all site samples are obtained from the same groundwater system the same groundwater system and (2) to measure system and (2) to measure the buffering capacity of				ior a comparante	Biopidine Inodei,		oxygen demand connes,	
Conductivity E120.1/SW9050, direct Protocols/Handbook General water quality Each sampling reading meter methods parameter used as a marker round to verify that site samples are obtained from the same groundwater system HACH Alkalinity test Phenolphtalein General water quality in method marker to verify that all site samples are obtained from the same the same groundwater system method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure system and (2) to measure the buffering capacity of				laboratory	concentrations less than		analyze milledialely,	
Conductivity E120.1/SW9050, direct Protocols/Handbook General water quality Each sampling methods methods methods an americal round to verify that site samples are obtained from the same groundwater system HACH Alkalinity test model AL AP MG-L method marker to verify that all site sampling the same groundwater system gramater used (1) as a marker to verify that all site samples are obtained from the same the same groundwater system and (2) to measure system and (2) to measure the buffering capacity of				procedure	1 mg/L generally indicate		alternately, measure	
Conductivity E120.1/SW9050, direct Protocols/Handbook General water quality Each sampling reading meter methods methods parameter used as a marker round to verify that site samples are obtained from the same groundwater system Alkalinity test Phenolphtalein General water quality parameter used (1) as a marker round marker to verify that all site samples are obtained from the same groundwater system method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of					an anaerobic pathway		dissolved oxygen in situ	
Alkalinity HACH Alkalinity test model AL AP MG-L method marker to verify that all site samples are obtained from the same groundwater system General water quality in method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of	/ater	Conductivity	E120.1/SW9050, direct	Protocols/Handbook	General water quality	Each sampling	Collect 100-250 mL of	Field
Alkalinity HACH Alkalinity test Phenolphtalein General water quality test model AL AP MG-L method marker to verify that all site samples are obtained from the same groundwater system General water quality parameter used (1) as a marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of		•	reading meter	methods	parameter used as a marker	round	water in a glass or	
Alkalinity HACH Alkalinity test kit model AL AP MG-L method marker to verify that all site samples are obtained from the same groundwater system General water quality parameter used (1) as a marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of			l		to verify that site samples		plastic container	
Alkalinity HACH Alkalimity test Phenolphtalein General water quality Each sampling method parameter used (1) as a marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of					are obtained from the same			
Alkalinity HACH Alkalinity test Phenolphtalein General water quality Each sampling kit model AL AP MG-L method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of					groundwater system			
kit model AL AP MG-L method marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of	Jater	Alkalinity	HACH Alkalinity test	Phenolphtalein	General water quality	Each sampling	Collect 100mL of water	Field
marker to verify that all site samples are obtained from the same groundwater system and (2) to measure the buffering capacity of	ì		kit model AL AP MG-L	method	parameter used (1) as a	round	in glass container	
samples are obtained from the same groundwater system and (2) to measure the buffering capacity of					marker to verify that all site			
the same groundwater system and (2) to measure the buffering capacity of					samples are obtained from			
system and (2) to measure the buffering capacity of					the same groundwater			
the buffering capacity of					system and (2) to measure			
					the buffering capacity of			
ernindwater					groundwater			

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS

Fixed-base Field or Fixed-Base Laboratory Fixed-base Field Field Field Field Field Collect up to 40 mL of Collect 100mL of water in a glass container Collect 100mL of water Collect up to 40 mL of Collect up to 40 mL of analyze within 6 hours Sample Preservation to 4°C; analyze within plastic container; cool plastic container; cool plastic container; cool Sample Volume, Sample Container, in a glass container water in a glass or water in a glass or Collect 100 mL of water in a glass or container; analyze Collect 250 mL of water in a glass or plastic container; water in a glass immediately 48 hours to 4°C to 4°C Recommended Each sampling round Each sampling round Each sampling round Frequency of Each sampling Each sampling Each sampling Each sampling Analysis round round round round RICKENBACKER AIR NATIONAL GUARD BASE, OHIO Product of sulfate-based conjunction with sulfate respiration if oxygen is respiration if oxygen is Substrate for anaerobic Substrate for microbial Substrate for microbial respiration; analyze in microbial respiration anaerobic microbial Data Use Same as above Same as above Same as above depleted depleted analysis method SW9056 is Handbook method; Handbook method; method SW9056 is Handbook method Method E300 is a Method E300 is a Comments procedure Colorimetric procedure Colorimetric an equivalent an equivalent Colorimetric Colorimetric HACH method # 8051 HACH method # 8039 method # 8192 for low HACH method #8040 HACH method # 8131 Method/Reference A2320, titrimetric; E310.2, colorimetric IC method E300 or IC method E300 or method SW9056 method SW9056; method E353.2 for high range colorimetric, range Dissolved sulfide (S-2) Nitrate (NO₃-1) Nitrate (NO, -1) Sulfate (SO₄⁻²) Sulfate (SO₄-2) Analysis Nitrite (NO Alkalinity Matrix Water Water Water Water Water Water Water

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

Field or	Fixed-Base	Laboratory		Field
Sample Volume,	Sample Container,	Sample Preservation		Collect 100 mL of water in a glass container
Recommended	Frequency of	Analysis		Each sampling round
		Data Use	Ethane and ethene are products of the biotransformation of chlorinated hydrocarbons under anaerobic conditions. The presence of these chemicals may indicate that anaerobic degradation is occurring	The presence of free carbon dioxide dissolved in groundwater is unlikely because of the carbonate buffering system of water, but if detected, the carbon dioxide concentrations should be compared with background to determine whether they are elevated; elevated concentrations of carbon dioxide could indicate an aerobic mechanism for bacterial degradation of petroleum
		Comments	Ethane and ethene are analyzed in addition to the other analytes only if chlorinated hydrocarbons are contaminants suspected of undergoing biological transformation	Tirimetric; alternate method
		Method/Reference	RSKSOP-114 (cont'd)	HACH test kit model CA-23 or CHEMetrics Method 4500
		Analysis	Ethane, ethene	Carbon dioxide
		Matrix	Water	Water

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

ded Sample Volume, Field or of Sample Container, Fixed-Base Sample Preservation Laboratory	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	volatile hydrocarbons— collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2 Extractile
Recommended Frequency of Analysis	Each sampling round or peed of the control of the c	le One time per ions year or as ons required by due regulations fata
Data Use	Method of analysis for BTEX, which is the primary target analyte for monitoring natural attenuation. BTEX concentrations must also be measured for regulatory compliance; method can be extended to higher molecular weight alkyl benzenes; trimethylbenzenes are used to monitor plume dilution if degradation is primarily anagerabic	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation; data also used to infer presence of an emulsion or surface
Comments	Handbook method; analysis may be extended to higher molecular weight alkyl benzenes	Handbook method; reference is the California LUFT manual
Method/Reference	Purge and trap GC method SW8020	GC method SW8015 [modified]
Analysis	Aromatic hydrocarbons (BTEX, trimethylbenzene isomers)	Total hydrocarbons, volatile and extractable
Matrix	Water	Water

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

Field or Fixed-Base Laboratory	Fixed-base	Fixed-base	Fixed-base	Field
Sample Volume, Sample Container, Sample Preservation	Collect 40 mL of water in glass vials with Teffon-lined caps; add sulfuric acid to pH 2; cool to 4°C	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	Collect 100 mL of water in an amber glass container with Teflonlined cap; preserve with sulfuric acid to pH less than 2; cool to 4°C	Collect 100–250 mL of water in a glass or plastic container; analyze immediately
Recommended Frequency of Analysis	At initial sampling and at site closure	Each sampling round	Each sampling round	Each sampling round
Data Use	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation	Method of analysis for chlorinated solvents and aromatic hydrocarbons for evaluation of cometabolic degradation; measured for regulatory compliance when chlorinated solvents are known site	An indirect index of microbial activity	Aerobic and anaerobic processes are pH-sensitive
Comments	A substitute method for measuring total volatile hydrocarbons; reports amount of fuel as carbon present in the sample; method available from the U.S. EPA Robert S. Kerr Laboratory	Handbook method	An oxidation procedure whereby carbon dioxide formed from DOC is measured by an infrared spectrometer. The minimum detectable amount of DOC is 0.05 cm./1	Protocols/Handbook methods
Method/Reference	Purge and trap GC method SW8020 modified to measure all volatile aromatic hydrocarbons present in the sample	GS/MS method SW8240	A5310 C	E150.1/SW9040, direct reading meter
Analysis	(optional)	Volatile Organics	Dissolved organic carbon (DOC) (optional)	Н
Matrix	Water	Water	Water	Water

SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

					Recommended	Sample Volume,	Field or
				-	Frequency of	Sample Container,	Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Water	Water Temperature	E170.1	Field only	Well development	Each sampling	N/A	Field
	STATE OF THE STATE				ronna	_	: :
Water	Redox potential	A2580 B	Measurements	The redox potential of	Each sampling	Collect 100-250 mL of	Field
			are made with	groundwater influences and	round	water in a glass	
			electrodes; results	is influenced by the nature		container, filling	
			are displayed on a	of the biologically mediated		container from bottom;	
***			meter; samples	degradation of		analyze immediately	
			should be protected	contaminants; the redox			
			from exposure to	potential of groundwater			
			atmospheric oxygen	may range from more			
				than 200 mV to less			
				than -400 mV			

TABLE A.1 (Continued) SAMPLE PACKAGING AND HANDLING REQUIREMENTS SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER AIR NATIONAL GUARD BASE, OHIO

NOTES:

- 1. "HACH" refers to the HACH Company catalog, 1990.
- "A" refers to Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992. તં
- "E" refers to Methods for Chemical Analysis of Water and Wastes, U.S. Environmental Protection Agency, March 1979. ω.
- "Protocols" refers to the AFCEE Environmental Chemistry Function Installation Restoration Program Analytical Protocols, 4
- "Handbook" refers to the AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS), September 1993. 5
- "SW" refers to the Test Methods for Evaluating Solid Waste, Physical, and Chemical Methods, SW-846, U.S. Environmental Protection Agency, 3rd edition, 1986. 6
- "ASTM" refers to the American Society for Testing and Materials, current edition.
- "RSKSOP" refers to Robert S. Kerr (Environmental Protection Agency Laboratory) Standard Operating Procedure.
- "LUFT" refers to the state of California Leaking Underground Fuel Tank Field Manual, 1988 edition. ο.
- 10. International Journal of Environmental Analytical Chemistry, Volume 36, pp. 249-257, "Dissolved Oxygen and Methane in Water by a Gas Chromatography Headspace Equilibration Technique," by D. H. Kampbell, J. T. Wilson, and S. A. Vandegrift.

APPENDIX B ADDITIONAL SITE DATA

TABLE B.1

HYDRAULIC CONDUCTIVITY AND GROUNDWATER VELOCITY SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

	Hydraulic Conductivity		Velocity ^{a/}	
Well	(cm/sec)	(ft/day)	(ft/day)	(ft/year)
MW-1	5.76E-05	1.96	0.3682	134.39
MW-2	2.86E-04	9.72	1.8274	666.99
MW-3	2.57E-07	8.74E-03	0.0016	0.60
MW-4	5.55E-05	0.157	0.0295	10.77
MW-6	6.75E-05	0.192	0.0361	13.18
MW-7	2.00E-03	4.32	0.8122	296.44
MW-8	4.89E-05	0.139	0.0261	9.54
Average	3.59E-04	2.356	0.4430	161.70

Source: ES, 1989 and 1992b

^{a/}Assuming porosity of 0.25 and hydraulic gradient of 0.047 ft/ft.

TABLE B.2

SOIL-GAS SURVEY RESULTS, JULY 25, 1988 SITE 1 (HWSA) INTRINSIC REMEDIATION TS

INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

Sample	Benzene (ppm)	Toluene (ppm)	O-Xylene (ppm)	Total BTEX (ppm)
1SG1-5	ND ^{a/}	ND	29.81	29.81
1SG2-5	ND	ND	ND	ND
1SG3-5	ND	ND	ND	ND
1SG4-5	ND	ND	ND	ND
1SG5-5	ND	ND	ND	ND
1SG6-5	0.49	0.1	0.07	0.66
1SG7-5	ND	ND	ND	ND
1SG8-3.5	ND	ND	ND	ND
1SG9-5	ND	ND	ND	ND

Source: ES, 1989

a/Contaminant not detected

TABLE B.3

SOIL SAMPLE HEADSPACE, JULY 1990 VOLATILE ORGANICS COMPOUNDS (VOC)

SITE 1 (HWSA) INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

Sample ID	VOC ^{a/} (μg/kg)
Abandoned Pit - RANGB (Northeast)	24.8
Separator Pit (East)	NA ^{b/}
Stockpile 1	73
Stockpile 2	80.2
Stockpile 3	950
Stockpile 4	151
SS1	ND ^{c/}
SS2	ND
SS3	1108
SS4	78
SS5	583
SS6	602
SS7	ND
SS8	373
SS9	2470
SS10	977

Source: ES, 1992b and 1992c

^{a'} Sample screened with TIP II Photoionization Detector calibrated with 100 ppm isobutylene in air.

b/ Not Analyzed

c/Contaminant not detected

TABLE B.4

RESULT OF GROUNDWATER VOC SCREENING

SITE 1 (HWSA)

INTRINSIC REMEDIATION TS RICKENBACKER ANGB, OHIO

Sample ID	VOC (μg/L)
GW-1	8
GW-2-2D	ND ^{a/}
GW-3	ND
GW-4	2092
GW-5	ND
GW-6	ND
GW-7	ND
GW-8	ND
GW-9	ND
GW-10	ND
GW-11	ND
GW-12	ND
GW-13	168
GW-14	ND
GW-15-18	ND
GW-19	ND
GW-20-20D	4
GW-21	178
MW-1	PSH ^{b/}
MW-2	2
MW-3	10
MW-4	ND
MW-5	PSH
MW-6	2190
MW-7	134
MW-8	3
MW-9	ND
MW-10	ND
MW-11	ND
MW-12	ND

Source: ES, 1992b

a/ Contaminant not detected

^{b/}Phase separated hydrocarbons in monitoring well.