Домашня робота з курсу "Теоретична механіка"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 3.

Умова. Визначте максимальний кут відхилення від вертикалі математичного маятника довжини l з масою m, якщо початкове значення кута відхилення і початкова швидкість дорівнюють відповідно φ_0 і v_0 . Як залежить реакція в'язі R від кута φ ?

Розв'язок. Якщо взяти на початковий рівень точку підвісу, то потенціальну енергію системи можемо знайти як:

$$W_p = -mgl\cos\varphi$$

А кінетичну енергію як:

$$W_k = \frac{mv^2}{2}$$

З закону збереження енергії $W_p + W_k = \text{const.}$ На початку ця сума дорівнює $\frac{1}{2} m v_0^2 - mgl \cos \varphi_0$, тому у будь-який момент зберігається величина $v_0^2 - 2gl \cos \varphi_0$. Тому в довільний момент при куті φ :

$$v^2 - 2gl\cos\varphi = v_0^2 - 2gl\cos\varphi_0 \implies v^2(\varphi) = v_0^2 + 2gl(\cos\varphi - \cos\varphi_0)$$

Для знаходження реакції в'язі, треба записати другий закон Ньютона на радіальну вісь (тобто вздовж шарніра від точки закріплення):

$$ma_r = mg\cos\varphi - R$$

Прискорення дорівнює $a_r = -\frac{v^2}{l}$, тому:

$$R(\varphi) = mg\cos\varphi + m\frac{v^2}{l} = mg\cos\varphi + \frac{mv_0^2}{l} + 2mg(\cos\varphi - \cos\varphi_0)$$

Звідки, якщо спростити, остаточно:

$$R(\varphi) = mg(3\cos\varphi - 2\cos\varphi_0) + \frac{mv_0^2}{l}$$

Завдання 4.

Умова. Камінь M зісковзує з вершини сферичного купола радіусу R, маючи початкову швидкість v_0 . В якому місці камінь відірветься від поверхні куполу? За якої початкової швидкості v_0 відрив відбудеться відразу, в початковий момент часу?

Розв'язок. Найлегше відповісти на другу частину питання. Нехай камінь ще не відривається у початковий момент, тоді центробіжна сила $m_R^{v_0^2}$ має бути меншою за силу тяжіння mg. Тобто при $v_0 < \sqrt{gR}$ камінь ще не буде відриватися. Якщо ж $v_0 \geq \sqrt{gR}$, то камінь відірветься одразу. Вираз \sqrt{gR} , до речі, є аналогом першої космічної швидкості.

Тепер відповімо на першу частину. Будемо описувати позицію каменя через кут відхилення на колі φ від початкового положення. Тоді висоту каменю можна зна-йти як $h=R\cos\varphi$. Якщо вважати, що тертя немає, то зміна потенціальної енергії $-\Delta W_p=mgR(1-\cos\varphi)$ перетворилася у зміну кінетичної $\Delta W_k=\frac{1}{2}mv^2-\frac{1}{2}mv_0^2$ з закону збереження енергії. Тому:

$$v^2 = v_0^2 + 2gR(1 - \cos\varphi)$$

Тепер запишемо другий закон Ньютона на радіальну вісь. Якщо камінь ще не відірвався, то його радіальне прискорення дорівнює доцентровому $a_r = -\frac{v^2}{R}$. Окрім того, на камінь діє дві сили: сила нормальної реакції опори ${\bf N}$ та сила тяжіння $m{\bf g}$. Сила нормальної реакції опори повністю лежить на радіальній вісі, а проекція сили тяжіння, у свою чергу, дорівнює $-mg\cos\varphi$. Тому другий закон Ньютона має вид:

$$-m\frac{v^2}{R} = N - mg\cos\varphi \implies N = mg\cos\varphi - \frac{mv^2}{R}$$

Камінь відірветься тоді, коли N=0. Тобто ми маємо вимагати $v^2>gR\cos\varphi$. Оскільки ми вже знайшли вираз $v^2(\varphi)$, підставляємо його:

$$v_0^2 + 2gR(1 - \cos\varphi) > gR\cos\varphi \implies v_0^2 + 2gR > 3gR\cos\varphi \implies \cos\varphi < \frac{2}{3} + \frac{v_0^2}{3gR}\cos\varphi$$

Отже, при $\varphi = \arccos\left(\frac{2}{3} + \frac{v_0^2}{3gR}\right)$ буде відрив. Помітимо, що він відбудеться навіть якщо $v_0 = 0$. Якщо ж $v_0 > \sqrt{gR}$, то вираз не визначений, проте в такому разі це буде відповідати випадку, коли камінь відірвався одразу.

Завдання 5.

Умова. Маленькому кільцю, що надіте на горизонтальне дротове коло радіусу a, надана початкова швидкість v_0 . Як довго буде рухатися це кільце, якщо коефіцієнт його тертя з дротом дорівнює μ ?

Розв'язок. На маленьке кільце діє сила нормальної реакції опори \mathbf{N} , сила тяжіння $m\mathbf{g}$ та сила тертя \mathbf{F}_f . В такому разі, другий закон Ньютона має форму:

$$m\mathbf{a} = \mathbf{N} + m\mathbf{g} + \mathbf{F}_f$$

Спроектуємо це рівняння на вертикальну вісь Oz, а також на тангенсальний (τ) та радіальний (r) напрямки. Вертикального прискорення у тіла немає, як і сили тертя, тому $N_z = mg$.

На радіальній вісі тертя теж немає, а прискорення дорівнює доцентровому, тобто $a_r=-\frac{v^2}{a}$. Проекція сили тяжіння також 0. Отже, $N_r=\frac{mv^2}{a}$.

Найцікавіше — це тангенсальний напрямок. Тут вже діє сила тертя, а прискорення дорівнює тангенсальному, тобто $a_{\tau}=\frac{dv}{dt}$. Сила нормальної реакції опори по модулю $N=\sqrt{N_r^2+N_z^2}=m\sqrt{g^2+\frac{v^4}{a^2}}$. Тоді другий закон Ньютона має вид:

$$m\frac{dv}{dt} = -\mu mg\sqrt{1 + \frac{v^4}{g^2 a^2}} \implies dt = -\frac{dv}{\mu g\sqrt{1 + \frac{v^4}{g^2 a^2}}}$$

Якщо час зупинки буде через au, то інтегруємо це рівняння від t=0 до au і отримуємо:

$$\tau = \frac{1}{\mu g} \int_0^{v_0} \frac{dv}{\sqrt{1 + \frac{v^4}{g^2 a^2}}}$$

Краще зробити інтеграл безрозмірним. Зробимо заміну $\xi = \frac{v}{\sqrt{qa}}$, тоді

$$\tau = \frac{\sqrt{a/g}}{\mu} \int_0^{v_0/\sqrt{ga}} \frac{d\xi}{\sqrt{1+\xi^4}}$$

Зокрема, якщо придати дуже велику швидкість $(v_0 \to +\infty)$, то цей час скінченний і дорівнює:

$$\tau_{\infty} = \frac{\Gamma^2 \left(\frac{1}{4}\right)}{4\mu} \sqrt{\frac{a}{\pi g}}$$