Lab2: back-propagation

310605005 王映匀

1. Introduction

這次 lab 我們需要實作出一個包含兩層 hidden layers 的神經網路架構,對兩種二元分類問題進行測試,將分類結果及學習曲線等繪製成圖表,比較調整不同參數及激活函數(Activation functions)的結果並探討其原因。

實作流程:

- [1] Network Initialization
- [2] Forward propagation
- [3] Backpropagation
- [4] Weight update
- [5] Predictition

Repeat until the performance of the network is satisfactory

Input data:

2. Experiment setups

A. Sigmoid functions

Sigmoid functions 是最常見的一種激活函數,激活函數的目的是為了讓神經網路能實現非線性輸出,使其能學習更複雜的問題。

Sigmoid:
$$f(x) = \frac{1}{1 + e^{-x}}$$
, $f'(x) = f(x) * (1 - f(x))$

Sigmoid functions 把輸入的連續實值變換為 0 和 1 之間的輸出,是便於求導數之平滑函數。但這種指數函數在計算上較耗損資源,且因其導數在極值上會趨近於 0,在 Backpropagation 與各層導數的數值進行乘積時,結果就會趨近於 0,容易造成梯度消失 (gradient vanishing) 的問題。

B. Neural network

神經網路的特色是利用神經元(節點)來做非線性的特徵轉換,依賴訓練資料來學習並隨著網路架構的深度提高其精確度。其運作方式為將輸入乘上權重後,再經由激活函數輸出,一層一層反覆傳遞得到最後的結果。而訓練的目標就是要出節點和節點之間的關係,也就是隱藏層的權重參數。

這次 lab 的神經網路模型由一個輸入層、兩個隱藏層,以及一個輸出層所組成。將輸入 x 乘上權重 w 後會得到一個 score ($s=\sum w_i x_i$),將這個 score 輸入到激活函數(本次設定為 sigmoid funstions)計算後,判斷其是否大於設定的閾值以向後傳遞,此即為一個神經元的運算。將多組神經元做線性組合最後透過 loss function 來衡量出最後的答案。有了這個模型架構後,即可以透過 gradient descent 的方式來對參數做最佳化,此方法即為後面所提到的backpropagation

C. Backpropagation

Backpropagation 的概念是將誤差值往回傳遞資訊,透過連鎖律(chain rule)可計算出損失函數對每一個節點的梯度,再進一步算出對每個權重的梯度,使模型可以利用這些資訊進行梯度下降法來更新權重以最小化誤差。

以這次的雙層神經網路模型為例,為了讓模型能自動地從資料中學到神經網路的權重,我們需要得到 loss 對權重 w 的偏微分,也就等於把每個參數的 loss 對特定參數 w 的微分加總:

Gradient of weight: $\widehat{w} = w - \eta \frac{\partial L(\theta)}{\partial w}$ $(\eta : learning \ rate)$

Loss function:
$$L(\theta) = \sum_{n=1}^{N} l_n(\theta) \rightarrow \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l_n(\theta)}{\partial w}$$

 $l_n(\theta)$: error function of $y_n \& \hat{y}_n$ (In this case, N = 2)

利用 chain rule 得出 $\frac{\partial l(\theta)}{\partial w} = \frac{\partial z}{\partial w} * \frac{\partial l(\theta)}{\partial z}$ (z: a neuron of hidden layers)

接著就可以分為以下兩部份推導:

ightharpoonup Forward pass $ightharpoonup \frac{\partial z}{\partial w}$

$$z = x_1 w_{n1} + x_2 w_{n2} \qquad z = x_1, \frac{\partial z}{\partial w_{n1}} = x_1, \frac{\partial z}{\partial w_{n2}} = x_2$$

因此可以得出一個結論 $\cdot \frac{\partial z}{\partial w}$ 即為該神經元的輸入 \mathbf{x} ·

ightharpoonup Backward pass $ightharpoonup \frac{\partial l(\theta)}{\partial z}$

$$\frac{\partial l(\theta)}{\partial z} = \frac{\partial a}{\partial z} \frac{\partial l(\theta)}{\partial a} \quad (a: output \ of \ each \ hidden \ layer)$$

假設每層 hidden layer 只有兩個神經元 z' & z'',且每層的輸出 z 都需

再經過激活函數 σ 的運算得到 $a = \sigma(z)$:

由上式得出,目前的未知數僅剩下 $\frac{\partial l(\theta)}{\partial z'}$ & $\frac{\partial l(\theta)}{\partial z''}$

若是最後一層 output layer 的話 →

$$\frac{\partial l(\theta)}{\partial z'} = \frac{\partial y_1}{\partial z'} \frac{\partial l(\theta)}{\partial y_1} , \quad \frac{\partial l(\theta)}{\partial z''} = \frac{\partial y_2}{\partial z''} \frac{\partial l(\theta)}{\partial y_2}$$

(最後的輸出 y_1, y_2 已經透過正向運算得到 · 且 $\frac{\partial l(\theta)}{\partial y_1}$, $\frac{\partial l(\theta)}{\partial y_2}$ 也可利用

loss function 來決定)

若不是 output layer 的話 →

就得一路往後推到 output layer 才能得到確切的值,再從結果一

層一層回推所有的
$$\frac{\partial l(\theta)}{\partial z}$$

3. Results of your testing

(1) Linear (learning rate = 0.01, n_epoch = 10000)

```
epoch
              loss: 0.29704
epoch
      500
              loss: 0.10009
epoch 1000
              loss: 0.04742
epoch 1500
              loss : 0.02833
epoch 2000
              loss: 0.01792
epoch 2500
              loss : 0.01175
epoch 3000
              loss: 0.00793
epoch 3500
              loss: 0.00548
epoch 4000
              loss: 0.00387
epoch 4500
              loss: 0.00278
epoch 5000
              loss: 0.00203
epoch 5500
              loss: 0.00151
epoch 6000
              loss: 0.00113
              loss: 0.00086
epoch 6500
epoch 7000
              loss: 0.00067
epoch 7500
              loss: 0.00052
epoch 8000
              loss: 0.00041
              loss: 0.00033
epoch 8500
epoch 9000
              loss: 0.00027
epoch 9500
              loss: 0.00022
```



```
0.99918898
             label = 1
                        predict = 1
             label = 0
                        predict = 0
0.08553790
             label = 0
                        predict = 0
0.00051500
                        predict = 1
0.99904851
             label = 1
0.00031254
             label = 0
                        predict = 0
0.87299754
             label = 1
                        predict = 1
                        predict = 1
0.99880661
             label = 1
0.00580453
             label = 0
                        predict = 0
0.76166223
             label = 1
                        predict = 1
             label = 1
                       predict = 1
0.67883747
0.00069167
             label = 0 predict = 0
0.00034529
             label = 0 predict = 0
0.99901158
             label = 1 predict = 1
0.99902390
             label = 1 predict = 1
                        predict = 0
0.00026575
             label = 0
0.99929975
             label = 1
                        predict = 1
0.01482909
             label = 0 predict = 0
```


Accuracy: 1.0

```
(2)
       XOR
               (learning rate = 0.3, n_{epoch} = 10000)
                loss: 0.30356
epoch
          0
epoch 500
                loss: 0.26656
epoch 1000
                loss: 0.04911
epoch 1500
                loss: 0.00430
                loss: 0.00100
                                                     Learning curve
epoch 2000
                                    0.30
epoch 2500
                loss: 0.00047
                loss: 0.00030
epoch 3000
                                    0.25
epoch 3500
                loss: 0.00021
                                    0.20
epoch 4000
                loss: 0.00016
epoch 4500
                loss: 0.00013
                                   ÿ 0.15
epoch 5000
                loss: 0.00011
                                    0.10
epoch 5500
                loss: 0.00009
                loss: 0.00008
epoch 6000
                                    0.05
epoch 6500
                loss: 0.00007
                                    0.00
epoch 7000
                loss: 0.00006
                                              2000
                                                     4000
                                                            6000
                                                                   8000
                                                                         10000
epoch 7500
                loss: 0.00006
                                                        epochs
epoch 8000
                loss: 0.00005
epoch 8500
                loss: 0.00005
epoch 9000
                loss: 0.00004
                loss: 0.00004
epoch 9500
0.01242833
             label = 0 predict = 0
0.99785588
            label = 1
                       predict = 1
                                                              Predict result
                                          Ground turth
            label = 0 predict = 0
0.01240263
                                      1.0
                                                         1.0
            label = 1
                       predict = 1
0.99757498
            label = 0
                       predict = 0
0.01237699
                                      0.8
                                                         0.8
0.96702376
            label = 1
                       predict = 1
0.01235142
            label = 0 predict = 0
                                      0.6
                                                         0.6
0.01232593 label = 0 predict = 0
0.97155993 label = 1 predict = 1
                                      0.4
                                                         0.4
0.01230050 label = 0 predict = 0
0.99863877
            label = 1 predict = 1
                                      0.2
                                                         0.2
0.01227515
            label = 0 predict = 0
0.99880293
            label = 1 predict = 1
                                      0.0
                                                         0.0
0.01224986
            label = 0 predict = 0
                                                           0.00
                                           0.25
                                               0.50 0.75 1.00
                                                               0.25 0.50
0.99880791
            label = 1 predict = 1
0.01222464
            label = 0 predict = 0
0.99880806
            label = 1 predict = 1
Accuracy: 1.0
```

4. Discussion

- A. Try different learning rates (n_epoch = 10000, l : learning rate)
 - (1) Linear

由於輸入為簡單的線性模型,因此不論 learning rate 數值高低都有機會收斂,而從上圖也可以看出,當 learning rate 較低時,收斂速度及程度都明顯下降,反之訓練效果較好。

(2) XOR

XOR 模型則較為複雜,訓練時嘗試了很多組 learning rate 才訓練到全部正確。而從上圖同樣可看出當 learning rate 較低時,收斂速度明顯下降,而當 learning rate 較高時,雖然從上圖看不出來,但仔細觀察數值,可發現其最終收斂的 loss 值較高,推測可能是因為 learning rate 太高,導致收斂時不斷振盪,無法收斂至更小的 loss。

B. Try different numbers of hidden units

以 XOR 模型為例 (learning rate = 0.1, n_epoch = 3000):

XOR 模型本身就非線性模型,因此若在隱藏層利用較多神經元訓練效果應該會較好,從上圖比較即可看出,當一層使用 2 個神經元時,雖然能收斂到一個數值但效果不好,而當提高神經元的數量後,模型則有機會收斂至較低的 loss。

C. Try without activation functions

若不使用 activation function 的話‧整個神經網路即只是一個線性模型‧難以訓練去解決各種非線性問題。以下圖為例‧可看出模型是無法收斂的:

5. Extra

A. Implement different activation functions.

以線性模型為例 (learning rate = 0.01, n_epoch = 10000):

✓ Sigmoid

$$f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$
, $f'(x) = f(x) * (1 - f(x))$

✓ Tanh

$$f(x) = \frac{1}{1 + e^{-x}}, \ f'(x) = 1 - f(x)^2$$

Tanh 的輸出在 -1~1 之間,均值為 0,理論上會較 Sigmoid

更方便下一層網路的學習

✓ ReLU

因數學運算簡單,計算速度較 tanh 和 sigmoid 快

✓ Leaky ReLU

$$f(x) = x (x > 0) \text{ or } \alpha x(x \le 0), \ f'(x) = 1 (x > 0) \text{ or } \alpha (x \le 0)$$

$$(\alpha \text{ is a small value})$$

因 x<0 時不為 0,因此可以解決 ReLu dying 的問題