Stability of Minkowski Space for the Massless Einstein–Vlasov System

Martin Taylor

DPMMS, Cambridge m.taylor@maths.cam.ac.uk

Recent Progress in Collisionless Models Imperial College London 9th September 2015

General Relativity and the Einstein Equations

General relativity is Einstein's theory of gravity, governed by the *Einstein equations*:

$$Ric(g)_{\mu\nu}-rac{1}{2}g_{\mu\nu}R(g)=T_{\mu\nu}.$$

Unknown is a Lorentzian manifold (M, g), called a spacetime, together with fields describing the matter.

Here $Ric(g)_{\mu\nu}$ denotes the Ricci curvature, R(g) the scalar curvature, $T_{\mu\nu}$ the stress–energy–momentum tensor of the matter present.

Terms on the left describe curvature of the spacetime, terms on the right describe the matter present.

Admit a trivial solution $g=-dt^2+(dx^1)^2+(dx^2)^2+(dx^3)^2$ when T=0, called *Minkowski space*.

The Vlasov Model

A particle at $x \in M$ with velocity $p \in T_x M$ will follow the unique geodesic $\gamma_{x,p}$ such that

$$\gamma_{x,p}(0)=x, \qquad \dot{\gamma}_{x,p}(0)=p.$$

Encoded in a density function: f(x, p) denotes the density of particles at x with velocity p.

Vlasov equation says f conserved along trajectories of the geodesic flow:

$$f(x,p) = f(\exp_s(x,p)),$$

where $\exp_s: T\mathcal{M} \to T\mathcal{M}$ is the exponential map,

$$\exp_s(x,p) = (\gamma_{x,p}(s), \dot{\gamma}_{x,p}(s)).$$

Equivalently,

$$X(f)=0$$
,

where $X \in \Gamma(TTM)$ is the *geodesic spray*.

The Energy Momentum Tensor

Assume all particles have equal mass, i.e. f is supported on the mass shell,

$$P = \bigcup_{x \in \mathcal{M}} P_x, \qquad P_x = \{p \in T_x \mathcal{M} : g(p, p) = -m^2\}.$$

Energy momentum tensor takes the form,

$$T^{lphaeta}(x)=\int_{P_x}fp^lpha p^eta d\mu_{P_x},$$

with p^1, p^2, p^3, p^4 coordinates on $T_x\mathcal{M}$ conjugate to frame e_1, e_2, e_3, e_4 on \mathcal{M} and $d\mu_{P_x}$ volume form on P_x .

Distinguish two cases:

- Massive matter: m > 0;
- Massless matter: m = 0.

Stability of Minkowski Space with Massless Collisionless Matter

The Einstein–Vlasov system has a well posed Cauchy problem and domain of dependence property (Choquet-Bruhat 1971).

This tells us the dynamic viewpoint is the correct one and allows us to pose the question of stability of Minkowski space:

Given an initial data set which is close to that of Minkowski space, what properties does the resulting spacetime have?

Theorem (M.T. 2015)

Given regular initial data for the massless Einstein–Vlasov system suitably "close" to that of Minkowski space with f_0 compactly supported, the resulting spacetime is geodesically complete and approaches Minkowski space in every direction. Moreover, the spacetime possesses a complete future null infinity whose causal past is \mathcal{M} .

Previous Work on Stability of Minkowski Space

Without symmetry:

- Christodoulou–Klainerman (1993): Vacuum;
- Zipser (2000): Maxwell;
- Klainerman–Nicolo (2003): Vacuum;
- Lindblad–Rodnianski (2004): Vacuum, Scalar Field;
- Bieri (2007): Vacuum;
- Loizelet (2008): Maxwell;
- Speck (2010): "Large class of nonlinear electromagnetic equations".

Einstein–Vlasov in spherical symmetry:

- Rein–Rendall (1992): m > 0;
- Dafermos (2006): m = 0.

Which Gauge to Use?

Two serious options, each with their own merits:

- Something in the spirit of Christodoulou-Klainerman e.g. double null gauge;
- or harmonic gauge à la Lindblad-Rodnianski.

Choose double null gauge:

- There are issues related to this gauge which need to be overcome, with a view to further problems;
- Certain geometric aspects of the proof are more appealing: can show matter is confined to a certain region and appeal to the vacuum result for remaining regions.

The Double Null Gauge

Two *optical* functions u, v whose level hypersurfaces are outgoing and incoming null (characteristic) cones respectively.

Instead of estimating metric, estimate

- Γ Ricci coefficients;
- ψ Weyl curvature components;
- ullet ${\cal T}$ energy momentum tensor components;

with respect to double null frame,

 e_3 – incoming null direction, e_4 – outgoing null direction,

 e_A – spherical directions, A = 1, 2.

Note that, of course, two spherical frames are required.

Overview of Proof

The entire content of the proof is in obtaining global a priori estimates for $\Gamma, \psi, \mathcal{T}$.

Step 0: Appeal to vacuum result to reduce to semi-global existence problem.

Step 1: Global estimates for Γ, ψ .

Step 2: Global estimates for derivatives of f.

Step 3: Behaviour of null geodesics.

Steps 2 and 3 immediately give estimates for \mathcal{T} .

Main new difficulties in step 2, so will only briefly discuss the others. Will follow from introducing Sasaki metric on P and estimating Jacobi fields on P.

Null Structure and Bianchi Equations

Content of Einstein equations captured through:

• Null Bianchi equations for Weyl curvature components:

$$\nabla_3 \psi = \mathcal{D}\psi + \Gamma \cdot \psi + \nabla \mathcal{T}, \qquad \nabla_4 \psi = \mathcal{D}\psi + \Gamma \cdot \psi + \nabla \mathcal{T}.$$

Null structure equations for Ricci coefficients

$$\nabla_3 \Gamma = \Gamma \cdot \Gamma + \psi + \mathcal{T}, \qquad \nabla_4 \Gamma = \Gamma \cdot \Gamma + \psi + \mathcal{T}.$$

Weyl curvature components estimated through *energy estimates* for Bianchi equations.

Ricci coefficients estimated through *transport estimates* for null structure equations.

Note it is important that $\mathcal T$ estimated at one degree of differentiability greater than ψ .

Global Decay Estimates

Due to strongly coupled nature of the system, have to prove boundedness and decay of the geometric quantities simultaneously.

Each $\Gamma, \psi, \mathcal{T}$ has its own decay rate. Proceed by *guessing* correct decay hierarchy then proving guesses are correct.

Then see that error terms in above equations have correct decay for obtaining *global* estimates, i.e. there is some special structure in above equations which is heavily exploited.

Estimates are L^2 based, so to treat nonlinear terms have to also estimate derivatives and use Sobolev inequalities. This is done by introducing a set of differential operators

$$\mathfrak{D} = \{ v \nabla, \nabla_3, v \nabla_4 \},$$

and showing structure in equations is still present after commutation with elements of \mathfrak{D} .

Most obvious way to estimate f is to commute Vlasov equation:

$$X(f)=0.$$

Note that,

$$X=p^{\mu}e_{\mu}-p^{\alpha}p^{\beta}\Gamma^{\mu}_{\alpha\beta}\partial_{p^{\mu}},$$

so commutation errors will involve derivatives of $\Gamma^{\mu}_{\alpha\beta}$. Should live at level of differentiability of curvature, so looks promising. There are issues however.

Most obvious way to estimate f is to commute Vlasov equation:

$$X(f)=0.$$

Note that,

$$X=p^{\mu}e_{\mu}-p^{\alpha}p^{\beta}\Gamma^{\mu}_{\alpha\beta}\partial_{p^{\mu}},$$

so commutation errors will involve derivatives of $\Gamma^{\mu}_{\alpha\beta}$. Should live at level of differentiability of curvature, so looks promising. There are issues however.

Instead differentiate expression,

$$f(x,p)=f(\exp_s(x,p)),$$

and use the chain rule to get,

$$Vf(x,p) = df|_{(x,p)}V = df|_{\exp_s(x,p)} \cdot d\exp_s|_{(x,p)}V = J(s)f(\exp_s(x,p)),$$

where,

$$J(s) := d \exp_s |_{(x,p)} V.$$

So,

$$Vf(x, p) = J(s)f(\exp_s(x, p)).$$

Take s < 0 so that $\exp_s(x, p)$ lies on mass shell over the initial hypersurface.

It remains to estimate the components of J with respect to a suitable frame for P.

So,

$$Vf(x, p) = J(s)f(\exp_s(x, p)).$$

Take s < 0 so that $\exp_s(x, p)$ lies on mass shell over the initial hypersurface.

It remains to estimate the components of J with respect to a suitable frame for P.

When P is given the induced Sasaki metric, J is a Jacobi field along $s \mapsto \exp_s(x, p)$,

$$\hat{\nabla}_X \hat{\nabla}_X J = \hat{R}(X, J) X.$$

Choice of vectors V are important. Will return to this.

Horizontal and Vertical Lifts

Sasaki metric defined using two geometrically defined maps

$$\operatorname{Hor}_{(x,p)}, \operatorname{Ver}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}.$$

In components, if $V=V^{\mu}e_{\mu}$,

$$\operatorname{Ver}_{(x,p)}(V) = V^{\mu} \partial_{p^{\mu}}, \qquad \operatorname{Hor}_{(x,p)}(V) = V^{\mu} e_{\mu} - V^{\alpha} p^{\beta} \Gamma^{\mu}_{\alpha\beta} \partial_{p^{\mu}}.$$

Horizontal and Vertical Lifts

Sasaki metric defined using two geometrically defined maps

$$\operatorname{Hor}_{(x,p)}, \operatorname{Ver}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}.$$

In components, if $V=V^{\mu}e_{\mu}$,

$$\operatorname{Ver}_{(x,p)}(V) = V^{\mu} \partial_{p^{\mu}}, \qquad \operatorname{Hor}_{(x,p)}(V) = V^{\mu} e_{\mu} - V^{\alpha} p^{\beta} \Gamma^{\mu}_{\alpha\beta} \partial_{p^{\mu}}.$$

Can split $T_{(x,p)}T\mathcal{M}$ into direct sum of vertical and horizontal subspaces,

$$T_{(x,p)}T\mathcal{M}=\mathcal{V}_{(x,p)}\oplus\mathcal{H}_{(x,p)},$$

$$\mathcal{V}_{(x,p)} = \{ \operatorname{Ver}_{(x,p)}(V) \mid V \in \mathcal{T}_x \mathcal{M} \}, \qquad \mathcal{H}_{(x,p)} = \{ \operatorname{Hor}_{(x,p)}(V) \mid V \in \mathcal{T}_x \mathcal{M} \}.$$

For $Y \in T_{(x,p)}T\mathcal{M}$, define Y^{v}, Y^{h} so that,

$$Y = \operatorname{Ver}_{(x,p)}(Y^{v}) + \operatorname{Hor}_{(x,p)}(Y^{h}).$$

Curvature of the Mass Shell

Recall,

$$\hat{\nabla}_X \hat{\nabla}_X J = \hat{R}(X, J) X.$$

Can compute,

$$\hat{R}(X,J)X = \operatorname{Hor}_{(\gamma,\dot{\gamma})} \left(R(\dot{\gamma},J^h)\dot{\gamma} + \frac{3}{4}R(\dot{\gamma},R(\dot{\gamma},J^h)\dot{\gamma})\dot{\gamma} + \frac{1}{2}(\nabla_{\dot{\gamma}}R)(\dot{\gamma},J^v)\dot{\gamma} \right) + \frac{1}{2}^{T} \operatorname{Ver}_{(\gamma,\dot{\gamma})} \left((\nabla_{\dot{\gamma}}R)(\dot{\gamma},J^h)\dot{\gamma} + \frac{1}{2}R(\dot{\gamma},R(\dot{\gamma},J^v)\dot{\gamma})\dot{\gamma} \right),$$

where $(\gamma(s), \dot{\gamma}(s)) = \exp_s(x, p)$.

Note the derivatives are in the "correct" direction.

Can then compute R in terms of $\psi, \mathcal{T} \dots$

$$\begin{split} R(\dot{\gamma},J)\dot{\gamma} &= \\ &-\frac{1}{2} \bigg\{ J^{4} \Big[\dot{\gamma}^{3} \dot{\gamma}^{3} (4\rho + 2\mathcal{T}_{34}) + 2\dot{\gamma}^{3} \dot{\gamma}^{A} (\beta_{A} + \mathcal{T}_{4A}) + \dot{\gamma}^{A} \dot{\gamma}^{B} (\alpha_{AB} + \frac{1}{2} \mathbf{g}_{AB} \mathcal{T}_{44}) \Big] \\ &+ J^{3} \Big[-2\dot{\gamma}^{3} \dot{\gamma}^{4} (2\rho + \mathcal{T}_{34}) + \dot{\gamma}^{3} \dot{\gamma}^{A} (2\underline{\beta}_{A} - \mathcal{T}_{3A}) - \dot{\gamma}^{4} \dot{\gamma}^{A} (2\beta_{A} + \mathcal{T}_{4A}) \\ &- \dot{\gamma}^{A} \dot{\gamma}^{B} (\rho \mathbf{g}_{AB} + \sigma \mathbf{g}_{AB} - \frac{1}{2} \mathbf{g}_{AB} \mathcal{T}_{34} + \mathcal{T}_{AB}) \Big] \\ &+ \frac{1}{r} J^{C} \Big[-\dot{\gamma}^{3} \dot{\gamma}^{4} (2\beta_{C} + \mathcal{T}_{4C}) + \dot{\gamma}^{3} \dot{\gamma}^{3} (-2\underline{\beta}_{C} + \mathcal{T}_{3C}) \\ &+ \dot{\gamma}^{3} \dot{\gamma}^{A} (\rho \mathbf{g}_{AC} + 3\sigma \mathbf{g}_{AC} + \mathcal{T}_{AC} - \frac{1}{2} \mathbf{g}_{AC} \mathcal{T}_{34}) - \dot{\gamma}^{4} \dot{\gamma}^{A} (\alpha_{AC} + \frac{1}{2} \mathbf{g}_{AC} \mathcal{T}_{44}) \\ &+ \dot{\gamma}^{A} \dot{\gamma}^{B} (-\mathbf{g}_{AB} \beta_{C} + \mathbf{g}_{AC} \beta_{B} + \frac{1}{2} \mathbf{g}_{AB} \mathcal{T}_{4C} - \frac{1}{2} \mathbf{g}_{AC} \mathcal{T}_{4B}) \Big] \bigg\} e_{3} \end{split}$$

$$\begin{split} &-\dot{\gamma}^{A}\dot{\gamma}^{B}(\rho \rlap{/}g_{AB} + \sigma \rlap{/}e_{AB} - \frac{1}{2}\rlap{/}g_{AB} \rlap{/}\tau_{34} + \rlap{/}\tau_{AB})\Big] \\ &+ J^{3}\Big[\dot{\gamma}^{4}\dot{\gamma}^{4}(4\rho + 2\rlap{/}\tau_{34}) - 2\dot{\gamma}^{4}\dot{\gamma}^{A}(2\underline{\rho}_{A} - \rlap{/}\tau_{3A}) + \dot{\gamma}^{A}\dot{\gamma}^{B}(\underline{\alpha}_{AB} + \frac{1}{2}\rlap{/}g_{AB} \rlap{/}\tau_{33})\Big] \\ &+ \frac{1}{r}J^{C}\Big[\dot{\gamma}^{3}\dot{\gamma}^{4}(2\underline{\rho}_{C} - \rlap{/}\tau_{3C}) + \dot{\gamma}^{4}\dot{\gamma}^{4}(2\beta_{C} + \rlap{/}\tau_{4C}) \\ &- \dot{\gamma}^{3}\dot{\gamma}^{A}(\underline{\alpha}_{AC} + \frac{1}{2}\rlap{/}g_{AC} \rlap{/}\tau_{33}) + \dot{\gamma}^{4}\dot{\gamma}^{A}(\rho\rlap{/}g_{AC} + 3\sigma\rlap{/}e_{AC} + \rlap{/}\tau_{AC} - \frac{1}{2}\rlap{/}g_{AC} \rlap{/}\tau_{34}) \\ &+ \dot{\gamma}^{A}\dot{\gamma}^{B}(\rlap{/}g_{AB} \underline{\beta}_{C} - \rlap{/}g_{AC} \underline{\beta}_{B} + \frac{1}{2}\rlap{/}g_{AB} \rlap{/}\tau_{3C} - \frac{1}{2}\rlap{/}g_{AC} \rlap{/}\tau_{3B})\Big]\Big\} e_{4} \\ &+ \Big\{J^{4}\Big[-\dot{\gamma}^{3}\dot{\gamma}^{4}(2\beta^{D} + \rlap{/}\tau_{4}^{D}) + \dot{\gamma}^{3}\dot{\gamma}^{3}(-2\underline{\rho}^{D} + \rlap{/}\tau_{3}^{D}) \\ &+ \dot{\gamma}^{3}\dot{\gamma}^{A}(\rho\delta_{A}^{D} + 3\sigma\rlap{/}e_{A}^{D} + \rlap{/}\tau_{A}^{D} - \frac{1}{2}\delta_{A}^{D} \rlap{/}\tau_{34}) - \dot{\gamma}^{4}\dot{\gamma}^{A}(\alpha_{A}^{D} + \frac{1}{2}\delta_{A}^{D} \rlap{/}\tau_{44}) \\ \end{split}$$

$$\begin{split} &+\dot{\gamma}^{A}\dot{\gamma}^{B}(-\not\xi_{AB}\beta^{D}+\delta_{A}^{D}\beta_{B}+\frac{1}{2}\not\xi_{AB}\mathcal{T}_{4}{}^{D}-\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{4B})\Big]\\ &+J^{3}\Big[\dot{\gamma}^{3}\dot{\gamma}^{4}(2\underline{\beta}^{D}-\mathcal{T}_{3}{}^{D})+\dot{\gamma}^{4}\dot{\gamma}^{4}(2\beta^{D}+\mathcal{T}_{4}{}^{D})-\dot{\gamma}^{3}\dot{\gamma}^{A}(\underline{\alpha}_{A}{}^{D}+\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{33})\\ &+\dot{\gamma}^{4}\dot{\gamma}^{A}(\rho\delta_{A}^{D}+3\sigma\not\epsilon_{A}{}^{D}+\mathcal{T}_{A}{}^{D}-\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{34})\\ &+\dot{\gamma}^{A}\dot{\gamma}^{B}(\not\xi_{AB}\underline{\beta}^{D}-\delta_{A}^{D}\underline{\beta}_{B}+\frac{1}{2}\mathcal{T}_{3}{}^{D}-\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{3B})\Big]\\ &+\frac{1}{r}J^{C}\Big[\dot{\gamma}^{4}\dot{\gamma}^{4}(\alpha_{C}{}^{D}+\frac{1}{2}\delta_{C}^{D}\mathcal{T}_{44})+\dot{\gamma}^{3}\dot{\gamma}^{3}(\underline{\alpha}_{C}{}^{D}+\frac{1}{2}\delta_{C}^{D}\mathcal{T}_{33})\\ &+\dot{\gamma}^{3}\dot{\gamma}^{4}(-2\rho\delta_{C}^{D}-2\mathcal{T}_{C}{}^{D}+\delta_{C}^{D}\mathcal{T}_{34})+\dot{\gamma}^{A}\dot{\gamma}^{B}\big(-\rho(\not\xi_{AB}\delta_{C}^{D}-\delta_{A}^{D}\not\xi_{BC})\\ &+\dot{\gamma}^{4}\dot{\gamma}^{A}(\not\xi_{AC}\beta^{D}+\delta_{A}^{D}\beta_{C}-2\delta_{C}^{D}\beta_{A}+\delta_{C}^{D}\mathcal{T}_{4A}-\frac{1}{2}\not\xi_{AC}\mathcal{T}_{4}{}^{D}-\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{4C})\\ &+\dot{\gamma}^{3}\dot{\gamma}^{A}(-\not\xi_{AC}\underline{\beta}^{D}-\delta_{A}^{D}\underline{\beta}_{C}+2\delta_{C}^{D}\underline{\beta}_{A}+\delta_{C}^{D}\mathcal{T}_{3A}-\frac{1}{2}\not\xi_{AC}\mathcal{T}_{3}{}^{D}-\frac{1}{2}\delta_{A}^{D}\mathcal{T}_{3C})\\ &+\frac{1}{2}(\not\xi_{AB}\mathcal{T}_{C}{}^{D}+\delta_{A}^{D}\mathcal{T}_{AB}-\not\xi_{BC}\mathcal{T}_{A}{}^{D}-\delta_{A}^{D}\mathcal{T}_{BC}))\Big]\Big\}e_{D}. \end{split}$$

Curvature of the Mass Shell

Recall,

$$\hat{\nabla}_X \hat{\nabla}_X J = \hat{R}(X, J) X,$$

with

$$\begin{split} \hat{R}(X,J)X &= \operatorname{Hor}_{(\gamma,\dot{\gamma})} \left(R(\dot{\gamma},J^h)\dot{\gamma} + \frac{3}{4}R(\dot{\gamma},R(\dot{\gamma},J^h)\dot{\gamma})\dot{\gamma} + \frac{1}{2}(\nabla_{\dot{\gamma}}R)(\dot{\gamma},J^v)\dot{\gamma} \right) \\ &+ \frac{1}{2}^{T} \operatorname{Ver}_{(\gamma,\dot{\gamma})} \left((\nabla_{\dot{\gamma}}R)(\dot{\gamma},J^h)\dot{\gamma} + \frac{1}{2}R(\dot{\gamma},R(\dot{\gamma},J^v)\dot{\gamma})\dot{\gamma} \right). \end{split}$$

Allowing certain components of J to grow like v, use guess for decay of Γ, ψ and bounds for components of null geodesics to check,

$$\hat{R}(X,J)X = \mathcal{O}(v(s)^{-\frac{5}{2}}),$$

and hence can be integrated twice.

The goal is to estimate,

$$ve_4(f), \qquad e_3(f), \qquad v\left(\frac{1}{v}e_A\right)(f) \text{ for } A=1,2.$$

More natural to take vertical and horizontal lifts for V.

The goal is to estimate,

$$ve_4(f), \qquad e_3(f), \qquad v\left(\frac{1}{v}e_A\right)(f) \text{ for } A=1,2.$$

More natural to take vertical and horizontal lifts for V.

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s} \left(\operatorname{Hor}_{(x,p)}(V^{v}) \right).$$

The goal is to estimate,

$$ve_4(f), \qquad e_3(f), \qquad v\left(\frac{1}{v}e_A\right)(f) \text{ for } A=1,2.$$

More natural to take vertical and horizontal lifts for V.

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s}\left(\operatorname{Hor}_{(x,p)}(V^{v})\right).$$

Take $V_{(3)}=\operatorname{Hor}_{(x,p)}(e_3).$ Then $V_{(3)}\sim 1$ and hence $J_{(3)}(s)\sim 1$ for all s<0.

The goal is to estimate,

$$ve_4(f), \qquad e_3(f), \qquad v\left(\frac{1}{v}e_A\right)(f) \text{ for } A=1,2.$$

More natural to take vertical and horizontal lifts for V.

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s}\left(\operatorname{Hor}_{(x,\rho)}(V^{\nu})\right).$$

Take $V_{(3)} = \operatorname{Hor}_{(x,p)}(e_3)$. Then $V_{(3)} \sim 1$ and hence $J_{(3)}(s) \sim 1$ for all s < 0.

Choosing $V_{(A)} = v \operatorname{Hor}_{(x,p)} \left(\frac{1}{v} e_A \right)$ leads to $J_{(A)}(s) \sim v$ for all s < 0, so instead take

$$V_{(A)} = v \mathrm{Hor}_{(x,p)} \left(\frac{1}{v} e_A \right) + p^{4T} \mathrm{Ver}_{(x,p)} \left(\frac{1}{v} e_A \right).$$

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s} \left(\operatorname{Hor}_{(x,\rho)}(V^{\nu}) \right).$$

Similarly, choosing $V_{(4)} = v \operatorname{Hor}_{(x,p)}(e_4)$ leads to $J_{(4)}(s) \sim v$ for all s < 0. Instead use the fact that,

$$v \operatorname{Hor}_{(x,p)}(e_4) = \frac{v}{p^4} X - \frac{v^2 p^A}{p^4} \operatorname{Hor}_{(x,p)} \left(\frac{1}{v} e_A \right) - \frac{v p^3}{p^4} \operatorname{Hor}_{(x,p)}(e_3),$$

and

$$rac{v p^A}{p^4} \sim 1, \qquad rac{v p^3}{p^4} \sim rac{1}{v}.$$

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s} \left(\operatorname{Hor}_{(x,\rho)}(V^{\nu}) \right).$$

Similarly, choosing $V_{(4)} = v \operatorname{Hor}_{(x,p)}(e_4)$ leads to $J_{(4)}(s) \sim v$ for all s < 0. Instead use the fact that,

$$v\mathrm{Hor}_{(x,p)}(e_4) = \frac{v}{p^4}X - \frac{v^2p^A}{p^4}\mathrm{Hor}_{(x,p)}\left(\frac{1}{v}e_A\right) - \frac{vp^3}{p^4}\mathrm{Hor}_{(x,p)}(e_3),$$

and

$$rac{v
ho^A}{
ho^4} \sim 1, \qquad rac{v
ho^3}{
ho^4} \sim rac{1}{v}.$$

For vertical parts, $V_{(4+A)} = \frac{p^4}{v}^T \mathrm{Ver}_{(x,p)} \left(\frac{1}{v} e_A \right)$ is of size $\frac{p^4}{v}$, so $J_{(4+A)}(s) \sim \frac{sp^4}{v} \leq 1$.

In uncoupled problem in Minkowski space,

$$J(s) = \operatorname{Par}_{(\gamma,\dot{\gamma}),s}(V) + s \operatorname{Par}_{(\gamma,\dot{\gamma}),s} \left(\operatorname{Hor}_{(x,\rho)}(V^{\nu}) \right).$$

Similarly, choosing $V_{(4)} = v \operatorname{Hor}_{(x,p)}(e_4)$ leads to $J_{(4)}(s) \sim v$ for all s < 0. Instead use the fact that,

$$v\mathrm{Hor}_{(x,p)}(e_4) = \frac{v}{p^4}X - \frac{v^2p^A}{p^4}\mathrm{Hor}_{(x,p)}\left(\frac{1}{v}e_A\right) - \frac{vp^3}{p^4}\mathrm{Hor}_{(x,p)}(e_3),$$

and

$$rac{v
ho^A}{
ho^4} \sim 1, \qquad rac{v
ho^3}{
ho^4} \sim rac{1}{v}.$$

For vertical parts, $V_{(4+A)} = \frac{p^4}{v}^T \mathrm{Ver}_{(x,p)} \left(\frac{1}{v} e_A \right)$ is of size $\frac{p^4}{v}$, so $J_{(4+A)}(s) \sim \frac{sp^4}{v} < 1$.

Finally, $V_{(4)} = v \operatorname{Hor}_{(x,p)}(e_4) + p^{4T} \operatorname{Ver}_{(x,p)}(e_4)$ gives $J_{(4)}(s) \sim v(s)$.

Estimates for f

Use these facts to conclude

$$|v|e_4(f)| \le C,$$
 $|e_3(f)| \le C,$ $|v|\frac{1}{v}e_A(f)| \le C \text{ for } A = 1, 2.$ $|e_4(f)| \le C \text{ for } A = 1, 2.$ $|e_4(f)| \le C,$ $|e_4(f)| \le C,$ $|e_4(f)| \le C$ for $|$

Note that Jf satisfies,

$$Jf(x,p) = Jf(\exp_s(x,p)).$$

Can therefore repeat to obtain estimates for higher order derivatives.

Error terms will involve higher order derivatives of ψ so have to estimate in appropriate \mathcal{L}^2 spaces.

Geometry of Null Geodesics

Decay estimates for \mathcal{T} follow from understanding geometry of null geodesics and estimates for derivatives of f.

If λ is a null geodesic in Minkowski space with,

$$\dot{\lambda}(s) = p^{A}(s)e_{A} + p^{3}(s)e_{3} + p^{4}(s)e_{4},$$

can easily see,

$$v(s)^2|p^A(s)|\leq C, \qquad v(s)^2|p^3(s)|\leq C, \qquad |p^4(s)|\leq C.$$

Geometry of Null Geodesics

Decay estimates for \mathcal{T} follow from understanding geometry of null geodesics and estimates for derivatives of f.

If λ is a null geodesic in Minkowski space with,

$$\dot{\lambda}(s) = p^{A}(s)e_{A} + p^{3}(s)e_{3} + p^{4}(s)e_{4},$$

can easily see,

$$|v(s)|^2 |p^A(s)| \le C, \qquad |v(s)|^2 |p^3(s)| \le C, \qquad |p^4(s)| \le C.$$

In general can be seen, using pointwise bounds for Γ , through geodesic equations:

$$\dot{p}^{\mu}(s) + \Gamma^{\mu}_{\alpha\beta}p^{\alpha}(s)p^{\beta}(s) = 0,$$

or, according to guess,

$$\frac{d}{ds}p^{4}(s) = \mathcal{O}(v(s)^{-2}), \quad \frac{d}{ds}v(s)^{2}p^{3}(s) = \mathcal{O}(v(s)^{-2}), \quad \frac{d}{ds}v(s)^{2}p^{A}(s) = \mathcal{O}(v(s)^{-2}).$$

Zeroth Order Estimates for Energy Momentum Tensor

With these bounds estimates for the energy momentum tensor are straightforward,

$$T^{\alpha\beta}(x) = \int_{P_x} f p^\alpha p^\beta d\mu_{P_x} \le \varepsilon_0 \int_{P_x} \mathbb{1}_{\mathrm{supp}(f)} p^\alpha p^\beta d\mu_{P_x} \le \frac{C\varepsilon_0}{v^q},$$

with q depending on α, β , using the fact that $P_x \cap \text{supp}(f)$ is shrinking as $v \to \infty$.

Given bounds for derivatives of f, higher order derivatives of $\mathcal T$ are estimated the same way.