学校编码: 10384

学 号: 23320170155540

博士学位论文

水下目标识别研究与应用

Research and Application of Underwater Target Recognition

苗永春

指导教师姓名:

专业名称: 通信与信息系统

论文提交日期: 2021 年 6月

论文答辩日期: 2021 年 6月

学位授予日期: 2021 年 9月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活动规范(试行)》。

另外,该学位论文为()课题(组)的研究成果,获得()课题(组)经费或实验室的资助,在()实验室完成。(请在以上括号内填写课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)。

本人声明该学位论文不存在剽窃、抄袭等学术不端行为,并愿意承担因学术不端行为所带来的一切后果和法律责任。

声明人 (签名): 指导教师 (签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等 规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文 (包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库 被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论 文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影 印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1. 经厦门大学保密委员会审查核定的涉密学位论文,于 年 月 日解密,解密后适用上述授权。

() 2. 不涉密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。涉密学位论文应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

摘要

目前水下目标识别的应用中,主要分为两个方向,一个方向是基于被动探测,对水下声音(噪声)进行特征提取,再进行水下目标噪声的识别;另一个方向是利用成像声纳,采集到水下目标的水声图像后,对其进行图像处理以及特征提取,再使用分类器实现水下目标的识别。

关键词: 水声; 多目标识别; 应用。

Abstract

In order to exploit ·····.

Key Words: Acoustic; multi-target recognition; Application

目 录

摘	要		I
第	1章	绪论	1
	1.1	本论文研究的目的和意义	1
	1.2	国内外研究现状及发展趋势	1
		1.2.1 *** 研究现状	1
		1.2.2 *** 研究进展	2
		1.2.3 ****	2
第	2 章	结论与展望	3
参	考文	献	5
附	录 A	***	7
附	录 B	复 ARMA(2,2)-GARCH(1,1) 平稳条件推导	9
攻ì	渎博	士学位期间取得的学术成果 1	13
致	谢		15

CONTENTS

Contents

At	stra	ct		Ш
1	Intr	oduct	ion	1
	1.1	The p	ourpose of this thesis	1
	1.2	devel	opment trend	1
		1.2.1	Research status	1
		1.2.2	Research progress	2
		1.2.3	***	2
2	Cor	clusio	ons	3
Re	ferei	ices		5
A	Ap	pendix	X ***	7
В	Ap	pendix	K **	9
Lis	st of	Public	cations	13
Th	anks	·		15

第1章 绪论

1.1 本论文研究的目的和意义

海洋占地球表面积的 71%,发生在海洋之中、海洋表面以及海面之上的事件在很大程度上影响着我们的生活。因此,海事遥感和监视具有重要的意义。雷达自 19 世纪 30 年代发明以来,一直在这些领域扮演着重要的角色。

[?????]

1.2 国内外研究现状及发展趋势

1.2.1 *** 研究现状

舰船和潜艇等在航行的过程中会产生较大的辐射噪声,这种噪声会以声波的形式 向四周传播。由于在海水这一介质中声波有着较好的抗衰减特性,声波在水下可以较 远距离地传播,这就为舰船噪声提取和目标分类识别等操作提供[?]。

*** 结果如图1.1所示

图 1.1 ** 结果

表 1.1 *****

1	2	3	5
甲 子	乙 丑	 丙 寅	

1.2.2 *** 研究进展

首例 *** 是 ** 公司开发成功的 ……。

1.2.3 ****

第2章 结论与展望

注释主要用于对文章篇名、作者及文内某一特定内容作必要的解释或说明。篇名、作者注置于当页地脚;对文内有关特定内容的注释可夹在文内(加圆括号),也可排在当页地脚。序号用带圆圈的阿拉伯数字表示。

参考文献

附录 A ***

附录相关内容…

附录 B 复 ARMA(2,2)-GARCH(1,1) 平稳条件推导

 $\varphi(z)=0$ 和 $\psi(z)=0$ 的所有根必须落在单位圆之外。将 $\{\varphi_i\}_{i=1}^2$ 和 $\{\psi_i\}_{i=1}^2$ 写为

$$\varphi_i = a_i + jb_i \tag{B-1}$$

$$\psi_i = c_i + jd_i \tag{B-2}$$

考虑 $\varphi(x) = 0$,我们有

$$\operatorname{Re}(x_{1}) = -\frac{b_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$-\frac{a_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$-\frac{a_{1}a_{2} + b_{1}b_{2}}{2(a_{2}^{2} + b_{2}^{2})}$$
(B-3)

$$\operatorname{Im}(x_{1}) = -\frac{a_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\operatorname{arg}\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$+ \frac{b_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\operatorname{arg}\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$+ \frac{a_{1}b_{2} - a_{2}b_{1}}{2(a_{2}^{2} + b_{2}^{2})}$$
(B-4)

$$\operatorname{Re}(x_{2}) = \frac{b_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$+ \frac{a_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$- \frac{a_{1}a_{2} + b_{1}b_{2}}{2(a_{2}^{2} + b_{2}^{2})}$$
(B-5)

$$\operatorname{Im}(x_{2}) = \frac{a_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$-\frac{b_{2}}{2(a_{2}^{2} + b_{2}^{2})} \sqrt[4]{(a_{1}^{2} - b_{1}^{2} + 4a_{2})^{2} + (2a_{1}b_{1} + 4b_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(a_{1}^{2} - b_{1}^{2} + 4a_{2} + j(2a_{1}b_{1} + 4b_{2})\right)\right)$$

$$+\frac{a_{1}b_{2} - a_{2}b_{1}}{2(a_{2}^{2} + b_{2}^{2})}$$
(B-6)

类似地,考虑 $\psi(z) = 0$,我们有

$$\operatorname{Re}(z_{1}) = -\frac{d_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$-\frac{c_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$-\frac{c_{1}c_{2} + d_{1}d_{2}}{2(c_{2}^{2} + d_{2}^{2})}$$
(B-7)

$$\operatorname{Im}(z_{1}) = -\frac{c_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$+\frac{d_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$+\frac{c_{1}d_{2} - c_{2}d_{1}}{2(c_{2}^{2} + d_{2}^{2})}$$
(B-8)

$$\operatorname{Re}(z_{2}) = \frac{d_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$+ \frac{c_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$- \frac{c_{1}c_{2} + d_{1}d_{2}}{2(c_{2}^{2} + d_{2}^{2})}$$
(B-9)

$$\operatorname{Im}(z_{2}) = \frac{c_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \sin\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$-\frac{d_{2}}{2(c_{2}^{2} + d_{2}^{2})} \sqrt[4]{(c_{1}^{2} - d_{1}^{2} - 4c_{2})^{2} + (2c_{1}d_{1} - 4d_{2})^{2}}$$

$$\times \cos\left(\frac{1}{2}\arg\left(c_{1}^{2} - d_{1}^{2} - 4c_{2} + j(2c_{1}d_{1} - 4d_{2})\right)\right)$$

$$+\frac{c_{1}d_{2} - c_{2}d_{1}}{2(c_{2}^{2} + d_{2}^{2})}$$
(B-10)

其中, $Re(\cdot)$ 和 $Im(\cdot)$ 分别表示对复数取实部和虚部, $arg(\cdot)$ 表示角度。因此,复 ARMA(2,2)- GARCH(1,1)的平稳条件可以写为

$$Re(x_1)^2 + Im(x_1)^2 > 1$$
 (B-11)

$$Re(x_2)^2 + Im(x_2)^2 > 1$$
 (B-12)

$$Re(z_1)^2 + Im(z_1)^2 > 1$$
 (B-13)

$$Re(z_2)^2 + Im(z_2)^2 > 1$$
 (B-14)

攻读博士学位期间取得的学术成果

[1] Yongchun Miao, Haixin Sun and Jie Qi. Synchro-Compensating Chirplet Transform[J]. IEEE Signal Processing Letters 25(9), 2018, 1413-1417. (SCI)

致 谢

本论文的工作是在导师 ……。