¹²²Sn(⁹Be,4nγ):XUNDL-1 **2017Ch46**

Compiled (unevaluated) dataset from 2017Ch46.

Braz J Phys 47, 406 (2017).

Compiled by E.A. McCutchan (NNDC,BNL), Jan 2, 2018.

 $E(^9Be)=48$ MeV provided by the 15UD pelletron accelerator facility of the Inter-University Accelerator Center, New Delhi. Target was enriched to 99.3% and rolled to a thickness of 8.4 mg/cm². Measured Ey, Iy, $\gamma\gamma$, $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$ using the INGA array consisting of 14 Compton-suppressed HPGe detectors.

¹²⁷Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
309.0 [#]	11/2-	E(level): rounded value from the Adopted Levels of ¹²⁷ Xe in the ENSDF database.
828.1 [#]	$15/2^{-}$	
1508.7 [#]	$19/2^{-}$	
2312.9 [#]	$23/2^{-}$	
3202.5 [#]	$27/2^{-}$	
4137.6 [#]	$31/2^{-}$	
5098.8 [#]	35/2-	
6123 [#]	39/2-	
7199 <mark>#</mark>	$43/2^{-}$	
8334 [#]	$47/2^{-}$	

[†] From a least-squares fit to E γ , by compiler, except where noted.

$$\gamma$$
(127Xe)

DCO ratios determined from a matrix with events recorded at 90° along one axis with those at 148° on the other axis, with R_{DCO} =I γ at 148° (gated by γ at 90°) / I γ at 90° (gated by γ at 148°). For gates on pure quadrupole transitions, expected values are 1.0 and 0.5 for quadrupole and dipole transitions, respectively. A positive (negative) value of Δ_{asym} corresponds to a pure stretched electric (magnetic) transition.

E_{γ}	I_{γ}	$E_i(level)$	J_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
519.1	1000	828.1	15/2-	309.0	11/2-	E2	DCO=1.09 2
680.6	791 5	1508.7	19/2-	828.1	15/2-	E2	$\Delta_{\text{asym}} = 0.13 \ I.$ DCO=1.06 2
804.2	455 <i>3</i>	2312.9	23/2-	1508.7	19/2-	E2	$\Delta_{\text{asym}} = 0.12 \ I.$ DCO=1.06 2
889.6	241 <i>4</i>	3202.5	27/2-	2312.9	23/2-	E2	$\Delta_{\text{asym}} = 0.11 \ 2.$ DCO=1.01 3
935.1	106 2	4137.6	31/2-	3202.5	27/2-	E2	$\Delta_{\text{asym}} = 0.14 \ 3.$ DCO=0.99 4
961.2	41 <i>I</i>	5098.8	35/2-	4137.6	31/2-	E2	$\Delta_{\rm asym} = 0.11 \ 4.$ DCO=1.01 7 $\Delta_{\rm asym} = 0.08 \ 6.$
1023.8	15 <i>I</i>	6123	39/2-	5098.8	35/2-	Q	DCO=1.19 <i>15</i>
1076.1 1135.6	5 <i>1</i> ≈1.5	7199 8334	43/2 ⁻ 47/2 ⁻	6123 7199	39/2 ⁻ 43/2 ⁻	Q	DCO=1.01 25
1133.0	~ 1.5	055+	7//2	1177	73/2		

[†] From DCO and Δ_{asym} measurements in 2017Ch46.

[‡] As proposed in 2017Ch46, based on measured multipolarities and assumed band structure.

[#] Band(A): Negative parity $\nu h_{11/2}$ band.

¹²²Sn(⁹Be,4nγ):XUNDL-1 2017Ch46

Level Scheme

Intensities: Type not specified

Legend

¹²⁷₅₄Xe₇₃

¹²²Sn(⁹Be,4nγ):XUNDL-1 2017Ch46

Band(A): Negative parity $v\mathbf{h}_{11/2}$ band

¹²²Sn(⁹Be,4nγ):XUNDL-2 **2018Ch24**

 $Compiled \ (unevaluated) \ dataset \ from \ {\color{red}2018Ch24:} \ Phys \ Rev \ C \ 97, \ 054311 \ (2018).$

Compiled by J. Chen (NSCL, MSU), May 25, 2018.

See also 2017Ch46: Braz J Phys 47, 406 (2017), for another part of the level scheme from the same experiment and 2018CH29: Europhys.Lett. 121, 42001, for another part of the level scheme from the same experiment.

2018Ch24: E=48 MeV 9 Be beam was produced from the 15UD pelletron accelerator facility of the Inter-University Accelerator Centre, New Delhi. Target was 8.4 mg/cm² thick isotopically enriched (99.3%) 122 Sn. γ rays were detected with the INGA anti-Compton γ spectrometer. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (t), $\gamma\gamma$ (DCO), γ (lin pol). Deduced levels, J, π , band structures, half-life of an isomer, γ -ray multipolarities, configurations. Comparisons with theoretical calculations.

¹²⁷Xe Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0	1/2+		
124.8 <i>5</i>	$3/2^{+}$		
297.3 [@] 7	9/2-		
342.6 <mark>&</mark> 7	7/2+		
792.5 [@] 8	$13/2^{-}$		
938.5 <mark>&</mark> 8	$11/2^{+}$		
1466.9 [@] 9	$17/2^{-}$		
1621.9 <mark>&</mark> 9	$15/2^{+}$		
2243.7 [@] 10	$21/2^{-}$		
2394.4 <mark>&</mark> <i>10</i>	$19/2^{+}$		
2730.3 ^a 10	23/2+	28 ns <i>1</i>	$T_{1/2}$: from 429.5 γ (t) and 423.3 γ (t) with gate on 486.6 γ . Authors state that an additional systematic uncertainty of 8-10% may exist.
3159.8 [‡] <i>a</i> 11	$25/2^{+}$		
3583.2 ^{‡a} 11	$27/2^{+}$		
4104.1 [‡] <i>a</i> 11	29/2+		
4527.6 ^{‡a} 11	$31/2^{+}$		
5029.6 [‡] <i>a</i> 11	$(33/2^+)$		

[†] From a least-squares fit to γ -ray energies (by compiler), assuming $\Delta E \gamma = 0.5$ keV.

$\gamma(^{127}\mathrm{Xe})$

 Δ_{asym} is the linear polarization asymmetry, with a positive value for pure stretched electric transition and negative for magnetic. Expected DCO values are 1.0 and 0.5 for stretched quadrupole and dipole transition, respectively, with a gate on a pure quadrupole, and 2.0 and 1.0 with a gate on a pure dipole transition (2018Ch24).

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.‡	Comments
124.8	1000	124.8	3/2+	0.0 1/2+	M1	DCO=0.53 <i>1</i> DCO gate on 405.6 <i>y</i> .
172.5	538.2 64	297.3	9/2-	124.8 3/2+	E3	DCO=0.97 2 DCO gate on 124.8 γ . Δ_{asym} =-0.062 35.
						Mult.: 2018Ch24 give E1 multipolarity, which compiler assumes is

[‡] Newly found levels in 2018Ch24.

[#] As given in 2018Ch24, based on $\gamma\gamma(DCO)$, $\gamma(lin pol)$ and band assignments.

[®] Band(A): Band 1, based on 9/2⁻.

[&]amp; Band(B): Band 2, based on 7/2+.

^a Band(C): Band 3, based on 23/2+.

122 Sn(9 Be,4n γ):XUNDL-2 2018Ch24 (continued)

γ (127Xe) (continued)

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	Comments
217.8	117.4 48	342.6	7/2+	124.8 3/2+	(E2)	 a typo due to the ΔJ=3, Δπ=yes character of the transition based on known J^π assignments. DCO=0.64 2 DCO gate on 596.0γ. Δ_{asym}=+0.029 44. Mult.: 2018Ch24 give E2/M1, but M1 is inconsistent with ΔJ=2.
335.9	2.9 2	2730.3	23/2+	2394.4 19/2+	E2	DCO=1.00 18 DCO gate on 772.6y.
423.3 [†]	8.4 3	3583.2	27/2+	3159.8 25/2+	M1	DCO=0.41 4 DCO gate on 776.7 γ . Δ_{asym} =-0.032 53. I_{γ} : for 423.3+423.4 doublet.
423.4		4527.6	31/2+	4104.1 29/2+	M1	DCO=0.38 <i>15</i> DCO gate on 852.9γ.
429.5 [†]	21.0 4	3159.8	25/2+	2730.3 23/2+	M1	DCO=0.34 2 DCO gate on 776.7 γ . Δ_{asym} =-0.072 68.
486.6	35.8 6	2730.3	23/2+	2243.7 21/2	E1	DCO=0.61 4 DCO gate on 680.6 γ . Δ_{asym} =+0.027 46.
495.1	20.3 12	792.5	13/2-	297.3 9/2-	E2	DCO=1.02 21 DCO gate on 674.4γ.
502.2 [†]	2.2 1	5029.6	$(33/2^+)$	4527.6 31/2+	(M1)	DCO=0.29 10 DCO gate on 944.5γ.
520.8 [†]	3.3 4	4104.1	29/2+	3583.2 27/2+	M1	DCO=0.65 28 DCO gate on 852.9γ.
596.0	83.6 11	938.5	11/2+	342.6 7/2+	E2	DCO=1.07 5 DCO gate on 683.4 γ . Δ_{asym} =+0.123 24.
674.4	46.5 8	1466.9	17/2-	792.5 13/2	E2	DCO=0.98 10 DCO gate on 776.7γ.
683.4	74.0 <i>16</i>	1621.9	15/2+	938.5 11/2+	E2	Δ _{asym} =+0.100 56. DCO=1.10 8 DCO gate on 772.6γ.
772.6	22.3 5	2394.4	19/2+	1621.9 15/2+	E2	Δ_{asym} = +0.101 73. DCO=1.05 5 DCO gate on 683.4 γ .
776.7	55.9 7	2243.7	21/2-	1466.9 17/2	E2	Δ_{asym} =+0.145 71. DCO=1.14 14 DCO gate on 674.4 γ . Δ_{asym} =+0.093 39.
852.9 [†]	5.2 3	3583.2	27/2+	2730.3 23/2+	E2	DCO=1.31 38 DCO gate on 944.5γ.
925.4	1.7 7	5029.6	$(33/2^+)$	4104.1 29/2+	(E2)	
944.3	6.5 2	4104.1	29/2+	3159.8 25/2+	(E2)	I_{γ} : for 944.3+944.5 doublet.
944.5 [†]		4527.6	31/2+	3583.2 27/2+	E2	DCO=1.04 24 DCO gate on 852.9γ.

 $^{^{\}dagger}$ Newly observed transitions in 2018Ch24. ‡ From 2018Ch24 based on measured $\gamma\gamma(\text{DCO})$ and $\gamma(\text{lin pol}).$

¹²²Sn(⁹Be,4nγ):XUNDL-2 2018Ch24

 $^{127}_{54}\mathrm{Xe}_{73}$

122**Sn**(9**Be,4nγ):XUNDL-2** 2018Ch24

Band(C): Band 3, based on $23/2^+$

Band(B): Band 2, based on 7/2⁺

$$^{127}_{54}\mathrm{Xe}_{73}$$

¹²²Sn(⁹Be,4nγ):XUNDL-3 **2018Ch29**

Compiled (unevaluated) dataset from 2018Ch29: Europhys Lett 121, 42001 (2018).

Compiled by J. Chen (NSCL, MSU), July 20, 2018.

See also 2018Ch24: Phys Rev C 97, 054311 (2018), and 2017Ch46: Braz J Phys 47, 406 (2017) for other parts of the level scheme from the same experiment.

2018Ch29: E=48 MeV 9 Be beam was produced from the 15UD pelletron accelerator facility of the Inter-University Accelerator Centre, New Delhi. Target was 8.4 mg/cm² thick isotopically enriched 122 Sn. γ rays were detected with the INGA array of Compton-suppressed clover detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (DCO), γ (lin pol). Deduced levels, J, π , band structures, γ -ray multipolarities.

¹²⁷Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	1/2+	J^{π} : from Adopted Levels of ¹²⁷ Xe in ENSDF database.
124.8 a 5	3/2+	
297.3 [@] 7	$9/2^{-}$	
309.0 [#] 9	$11/2^{-}$	
342.6 <mark>&</mark> 7	7/2+	
530.5 ^a 7	$7/2^{+}$	
792.5 [@] 8	$13/2^{-}$	
828.1 [#] 8	$15/2^{-}$	
938.5 <mark>&</mark> 8	$11/2^{+}$	
1081.1 <mark>a</mark> 8	$11/2^{+}$	
1466.7 [@] 8	$17/2^{-}$	
1508.7 [#] 9	$19/2^{-}$	
1621.9 <mark>&</mark> 8	$15/2^{+}$	
1751.8 <mark>a</mark> 8	$15/2^{+}$	
2307.0 8	19/2+	E(level): The authors claim that the previously reported 2306+2307 doublet in 1993Wi19: Z Phys A 347, 71 (1993), should be a single level based on their $\gamma\gamma$ -coin analysis.
2394.5 <i>10</i> 2665.1 <i>9</i>	19/2+	J^{π} : from 2018Ch24.
2779.1 <i>9</i> 3275.8 <i>11</i>	23/2+	

- [†] From a least-squares fit to γ -ray energies (by compiler), assuming $\Delta E \gamma = 0.5$ keV.
- ‡ As given in 2018Ch29, based on $\gamma\gamma$ (DCO), γ (lin pol) and band assignments (in 2018Ch29 and 2018Ch24), unless otherwise noted.
- # Band(A): Band 1, based on 11/2-.
- [®] Band(B): Band 2, based on 9/2⁻.
- & Band(C): Band 3, based on 7/2+.
- ^a Band(D): Band 4, based on 3/2⁺.

γ (127Xe)

There are many unidentified γ peaks in the $\gamma\gamma$ -coin spectra gated by 472.1 γ , 555.1 γ , 638.6 γ , 683.4 γ and 685.1 γ , respectively. Δ_{asym} is the linear polarization asymmetry, with a positive value for pure stretched electric transition and negative for magnetic. Expected DCO values are 1.0 and 0.5 for stretched quadrupole and dipole transition, respectively, with a gate on a pure quadrupole, and 2.0 and 1.0 with a gate on a pure dipole transition (see 2018Ch24).

¹²²Sn(⁹Be,4nγ):XUNDL-3 2018Ch29 (continued)

γ (127Xe) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	Comments
124.8	3/2+	124.8 [‡]		0.0	1/2+		
297.3	9/2-	172.5 [‡]		124.8	3/2+		
342.6	7/2+	217.8 [‡]		124.8	3/2+		
530.5	7/2+	405.6		124.8			
792.5	13/2-	483.4		309.0			
		495.2		297.3	$9/2^{-}$		
828.1	$15/2^{-}$	519.1			$11/2^{-}$		
938.5	$11/2^{+}$	596.0		342.6			
1081.1	$11/2^{+}$	550.6		530.5			
1466.7	$17/2^{-}$	638.6		828.1			
		674.3		792.5			
1508.7	19/2-	680.6		828.1			
1621.9	15/2+	683.4		938.5			
1751.8	15/2+	670.6	27	1081.1		F0	DGO 105.7
2307.0	19/2+	555.1	27	1751.8	15/2	E2	DCO=1.05 7
							Δ_{asym} =+0.154 69.
		685.1	100	1621.9	15/2+	E2	I_{γ} : other: 32 from gate on 358.1 γ . DCO=1.05 6
		003.1	100	1021.9	13/2	152	$\Delta_{\text{asym}} = +0.094 \ 48.$
		798.3	20	1508.7	19/2-		DCO=0.78 14
		170.5	20	1300.7	17/2		I_{γ} : other: 21 from gate on 358.1 γ .
		840.2	8	1466.7	$17/2^{-}$	(D)	DCO=0.64 16
					- /	()	Mult.: DCO indicates $\Delta J=1$ (2018Ch29).
2394.5	$19/2^{+}$	772.6		1621.9	$15/2^{+}$		E_{γ} : seen in coincidence with 683.4 γ in Fig.3.
2665.1	•	358.1		2307.0			,
2779.1	$23/2^{+}$	472.1		2307.0		Q	DCO=1.07 5
						-	DCO gate on 685.1γ .
3275.8		610.7		2665.1			

 $^{^{\}dagger}$ From level scheme in Fig.2 of 2018Ch29, unless otherwise noted.

[‡] From 2018Ch24 for the same experiment. # From $\gamma\gamma$ -coin spectra gate on 472.1 γ . Values from gate on 358.1 γ are given under comments.

[@] From 2018Ch29 based on measured $\gamma\gamma$ (DCO) and γ (lin pol). Quoted values of DCO are from gate on 472.1 γ , unless otherwise

¹²²Sn(⁹Be,4nγ):XUNDL-3 2018Ch29

Level Scheme

Intensities: Relative photon branching from each level

 $^{127}_{54}\mathrm{Xe}_{73}$

¹²²Sn(⁹Be,4nγ):XUNDL-3 **2018Ch29**

122 Sn(9 Be,4n γ):XUNDL-4 **2020**Ch46

Compiled (unevaluated) dataset from 2020Ch46: Phys Lett B 811, 135854 (2020).

Compiled by J. Chen (NSCL, MSU), February 14, 2021.

2020Ch46: E=48 MeV 9 Be beam was produced from the 15UD pelletron accelerator of Inter-University Accelerator Centre (IUAC), New Delhi. Target was 8.4 mg/cm² thick 99.3% isotopically enriched 122 Sn. γ rays were detected with the INGA spectrometer, consisting of 14 Compton-suppressed HPGe clover detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (DCO), γ (lin pol). Deduced levels, J, π , band structures, γ -ray multipolarities, mixing ratios, transition strengths.

¹²⁷Xe Levels

E(level)&	$J^{\pi b}$	Comments
297 [†] a	9/2-	Additional information 1.
309 [‡] <i>a</i>	$11/2^{-}$	Additional information 2.
792.2 [#] <i>3</i>	$13/2^{-}$	
828.1 [‡] <i>3</i>	$15/2^{-}$	
960.1 [†] 3	$13/2^{-}$	
1369.1 [@] 4	$15/2^{-}$	
1466.7 [#] <i>4</i>	$17/2^{-}$	
1508.8 [‡] 4	$19/2^{-}$	
1704.0 7	$17/2^{-}$	
2104.5 4	$19/2^{-}$	
2243.5 [#] 5	$21/2^{-}$	
2312.9‡ 5	23/2-	
2549.3 † 5	21/2-	
2912.4 [@] 5	23/2-	
3113.5# 5	25/2-	
3202.7 [‡] 6	27/2-	
3455.0 [†] 5 3784.4 [@] 5	25/2-	
4086.7 [#] 6	27/2-	
4086.7° 6 4137.7 [‡] 7	29/2 ⁻ 31/2 ⁻	
4366.7 [†] 6	29/2 ⁻	
5098.9 [‡] 8	29/2 35/2 ⁻	
5132.0 [#] 7	33/2	
		based on 9/2

[†] Band(A): Band 2 based on 9/2⁻.

$$\gamma(^{127}Xe)$$

E_i(level)
$$J_i^{\pi}$$
 E_{γ}^{\dagger} I_{γ}^{\dagger} E_f J_f^{π} Mult. $\delta^{\#}$ Comments

792.2 $I_{3/2}^{-}$ 483.4 $I_{3/2}^{-}$ 483.4 $I_{3/2}^{-}$ 483.4 $I_{3/2}^{-}$ M1+E2 $I_{3/2}^{-}$ -2.1 2 $I_{3/2}^{-}$ R_{DCO}=0.303 21, Δ_{asym}=+0.058 32. DCO gate on 674.

495.0 $I_{3/2}^{-}$ 15 1 297 9/2 $I_{3/2}^{-}$ R_{DCO}=1.02 21, Δ_{asym}=+0.159 180. DCO gate on 674.

[‡] Band(B): Band 1 based on 11/2⁻.

[#] Band(C): Band 3 based on 13/2-.

[@] Band(D): Band 4 based on 15/2-.

[&]amp; From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.5$ keV (by compiler), unless otherwise noted.

^a Energy is rounded value from Adopted Levels of ¹²⁷Xe in ENSDF database.

^b As given in 2020Ch46, based on measured $\gamma\gamma$ (DCO), γ (lin pol) and band assignments.

¹²²Sn(⁹Be,4nγ):XUNDL-4 **2020Ch46** (continued)

γ (127Xe) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	Comments
828.1	15/2-	519.1	100	309	11/2-			$R_{DCO} = 1.09 \ 2, \ \Delta_{asym} = +0.13 \ I.$
960.1	13/2-	651.3	57 2	309	11/2-	M1+E2	+0.15 5	DCO gate on 681. R_{DCO} =0.717 69, Δ_{asym} =-0.012 137.
		662.9	100 2	297	9/2-			DCO gate on 744. $R_{DCO}=1.01 5, \Delta_{asym}=+0.091 90.$
1369.1	15/2-	408.9	13 <i>I</i>	960.1	13/2-			DCO gate on 744. R _{DCO} =0.69 <i>15</i> .
		541.2	20 2	828.1	15/2-			DCO gate on 663. R _{DCO} =0.88 <i>9</i> .
		576.8	100 3	792.2	13/2-	M1+E2	-1.7 +2-3	DCO gate on 519. R_{DCO} =0.245 28, Δ_{asym} =+0.051 37.
1466.7	17/2-	638.7	100 <i>I</i>	828.1	15/2-	M1+E2	-2.2 +2-1	DCO gate on 735. R_{DCO} =0.304 <i>15</i> , Δ_{asym} =+0.008 <i>36</i> .
		674.4	46 2	792.2	13/2-			DCO gate on 777. R _{DCO} =0.98 10, Δ _{asym} =+0.100 56.
1508.8	19/2-	680.6	100	828.1	15/2-			DCO gate on 777. $R_{DCO}=1.06 \ 2, \ \Delta_{asym}=+0.12 \ I.$
1704.0	17/2-	744.1	100 4	960.1	13/2-			DCO gate on 519. $R_{DCO}=1.03 \ 9, \ \Delta_{asym}=+0.066 \ 79.$
		875.9	24 2	828.1	15/2-	M1+E2	+0.26 10	DCO gate on 663. R _{DCO} =0.85 85, Δ _{asym} =-0.114 132.
2104.5	19/2-	595.8	53 <i>5</i>	1508.8				DCO gate on 519. R _{DCO} =0.67 19.
	- /	637.8	78 10	1466.7		M1+E2	-2.4 +9-7	DCO gate on 808. R _{DCO} =0.311 66, Δ _{asym} =+0.068 115.
		735.4	100 6	1369.1				DCO gate on 674. R _{DCO} =0.97 22, Δ _{asym} =+0.125 130.
2243.5	21/2-	734.8	100 2	1508.8		M1+E2	-2.4 1	DCO gate on 808. R_{DCO} =0.313 10, Δ_{asym} =+0.031 25.
2243.3	21/2	776.8	75 2			WIITEZ	-2. 4 1	DCO gate on 681.
2212.0	22.12-			1466.7				$R_{DCO}=1.14 \ 14, \ \Delta_{asym}=+0.093 \ 39.$ DCO gate on 674.
2312.9	23/2-	804.2	100	1508.8				$R_{DCO}=1.06 \ 2, \ \Delta_{asym}=+0.11 \ I.$ DCO gate on 681.
2549.3	21/2-	845.4	100 5	1704.0				R_{DCO} =0.95 9, Δ_{asym} =+0.164 65. DCO gate on 744.
2912.4	23/2-	1040.4 599.4	26 5	1508.8 2312.9				
	,	669.0	29 8	2243.5	$21/2^{-}$			D 102.17
		808.0	100 11	2104.5				R _{DCO} =1.02 <i>17</i> . DCO gate on 735.
		1403.6	26 6	1508.8	19/2			R _{DCO} =1.09 25. DCO gate on 681.
3113.5	25/2-	800.5	99 6	2312.9	23/2-	M1+E2	-2.9 +7-5	R_{DCO} =0.352 41, Δ_{asym} =+0.074 61. DCO gate on 804.
		870.0	100 6	2243.5	21/2-			R _{DCO} =0.98 <i>15</i> , Δ _{asym} =+0.181 <i>102</i> . DCO gate on 777.
3202.7	27/2-	889.6	100	2312.9	23/2-			R_{DCO} =1.01 3, Δ_{asym} =+0.14 3. DCO gate on 804.
3455.0	25/2-	905.6	100 12	2549.3	21/2-			R_{DCO} =1.01 <i>I3</i> , Δ_{asym} =+0.123 <i>169</i> . DCO gate on 744.
3784.4	27/2-	1142.5 581.9	34 11	2312.9 3202.7				Dec gue on 711.
3701.1	/-	670.9		3113.5				
		871.9 1471.5	100	2912.4				P = 1 05 23
		1471.5		2312.9	23/2			R _{DCO} =1.05 <i>23</i> . DCO gate on 804.

¹²²Sn(⁹Be,4nγ):XUNDL-4 **2020Ch46** (continued)

$\gamma(^{127}\text{Xe})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$\delta^{\!\#}$	Comments
4086.7	29/2-	884.0	63 9	3202.7 27/2	M1+E2	-3.1 + 19 - 11	$R_{DCO}=0.366~88, \Delta_{asym}=+0.048~82.$
							DCO gate on 890.
		973.1	100 7	3113.5 25/2			$R_{DCO}=0.99\ 13,\ \Delta_{asym}=+0.162\ 130.$
							DCO gate on 870.
4137.7	$31/2^{-}$	935.1	100	3202.7 27/2			$R_{DCO}=0.99 \ 4, \ \Delta_{asym}=+0.11 \ 4.$
							DCO gate on 889.
4366.7	29/2-	912.0	100	3455.0 25/2			$R_{DCO} = 0.96 \ 20.$
							DCO gate on 744.
		1163.7		3202.7 27/2			
5098.9	$35/2^{-}$	961.2	100	4137.7 31/2			$R_{DCO}=1.01\ 7,\ \Delta_{asym}=+0.08\ 6.$
							DCO gate on 935.
5132.0	$33/2^{-}$	994.4		4137.7 31/2			R _{DCO} =0.33 14.
							DCO gate on 935.
		1045.2	100	4086.7 29/2			$R_{DCO} = 1.08 \ 30.$
							DCO gate on 973.

[†] From 2020Ch46. $\Delta E \gamma$ is not given in 2020Ch46 and assumed to be 0.5 keV in the fitting; a 3% additional uncertainty in intensity due to efficiency calibration as stated by authors has been added in quadrature (by compiler).

 $^{^{\}ddagger}$ From measured $\gamma\gamma(\text{DCO})$ and $\gamma(\text{lin pol})$ asymmetry by 2020Ch46.

[#] Extracted from comparisons of measured DCO ratios with theoretical calculations (2020Ch46).

¹²²Sn(⁹Be,4nγ):XUNDL-4 2020Ch46

Level Scheme

Intensities: Relative photon branching from each level

¹²²Sn(⁹Be,4nγ):XUNDL-4 **2020**Ch46

