THALES

Arnaud Gardille 1 Ola Ahmad ²

¹Paris-Saclay University, France

²Thales Digital Solutions, Montreal, Canada

Why is reinforcement learning rarely used in industry?

- Able to achieve goals in complex environments.
- Difficult to train.
- Lack of interpretability
- Risk of OOD utilisation.

OOD: The intrinsic limitation of machine learning

ML algorithms fail out of their training distribution (OOD).

In the context of RL: **OOD dynamic**: when the transitions of the deployment environment differ from those of the agent training environment.

→ An effective method to quickly detect OOD dynamic appears to be a prerequisite to the use of RL in safety-critical systems.

Comparison to existing methods:

Deep learning methods can estimate the agent network's confidence, which can be used as an OOD metrics [1]. However:

- Require a particular intervention of the agent's network.
- Fail facing temporally correlated data (iid assumption).

Assumptions

- Environments modeled as MDP: $\mathcal{T}(S_{t-1}, A_{t-1}) = S_t$.
- We have a model $\mathcal{M} \approx \mathcal{T}_{\text{train}}$ of the training environment.
- Prediction error: $\mathcal{M} \mathcal{T}_{\mathsf{train}} \sim \mathcal{N}(0, \cdot)$
- \mathcal{M} will be a biased estimator of \mathcal{T}_{OOD} .

Proposed method

- Sample models estimation: $M(S_{t-1}, A_{t-1}) = \hat{S}_t$
- Observe real transition: $\mathcal{T}(S_{t-1}, A_{t-1}) = S_t$

Then **update the statistical test**:

Method architecture

Test whether (τ) : $\mathcal{M} - \mathcal{T}_{\text{train}} \sim \mathcal{N}(0, \widehat{\sigma})$ (1)

Improvement: train $\mathcal{M}'(S_{t-1}, A_{t-1}) \approx \sigma(S_{t-1}, A_{t-1})$

 \rightarrow Replace $\widehat{\sigma}$ with \mathcal{M}'

What to use as a model of the training environment?

• If possible, use $\mathcal{T}_{\text{train}}$.

We need to be able to sample from any (S_{t-1}, A_{t-1}) .

• Train a supervised model $M(S_{t-1}, A_{t-1}) \approx S_t$ using an in-distribution trajectory datasets.

Experimental Results

Emergency breaking scenario on a realistic autonomous driving simulator:

- State: speed v_t and perceived distance to the frontal obstacle d_t .
- Action: intensity of beaking or acceletation.
- Reward = right speed + huge penalty if collision.
- Trained models: MLP trained with MSE for regression.
- Distance estimator: ResNet18 fin-tuned for regression.

Model's error in speed prediction normalized globally (left) and locally (right). Impact of local normalization on the expressiveness of the error:

Evolution of the p-values as a function of sample size T:

Conclusion and Discussions

- ✓ Dynamic OOD detected with high confidence.
- Method completely independent from the agent.
- * Requires a model of the environment.
- * Stability should be improved.

Perspectives

- Investigate replacing Student's t-test by the martingales method of [1]11.
- Other agents may choose among several decisions. → predict a gaussian mixture!
- Explore a decision transformer as an integrated model.
- How to create efficient models for high-dimensional states?
- Evaluate our method on the benchmark proposed in [4].

References

- [1] Feiyang Cai and Xenofon Koutsoukos. Real-time out-of-distribution detection in learning-enabled cyber-physical systems, 2020. URL https://arxiv.org/abs/2001.10494.
- [2] Jianyu Chen, Zhuo Xu, and Masayoshi Tomizuka. End-to-end autonomous driving perception with sequential latent representation learning. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020.
- [3] Terrance DeVries and Graham W. Taylor. Learning confidence for out-of-distribution detection in neural networks, 2018. URL https://arxiv.org/abs/1802.04865.
- [4] Aaqib Parvez Mohammed and Matias Valdenegro-Toro. Benchmark for out-of-distribution detection in deep reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021. URL https://openreview.net/forum?id= bvC9rzKqi1b.