Computer Architecture (Integer Arithmetic)

Subhasis Bhattacharjee

Department of Computer Science and Engineering, Indian Institute of Technology, Jammu

September 18, 2023

Outline I

- Addition Single Bit Adder
- 2 Addition Multi-Bit Adder
- Ripple Carry Adder
- Carry Select Adder
- Carry Lookahead Adder
- 6 Integer Multiplication
- Booth Multiplier
- Better Way of Adding Partial Products
- Integer Division
- 10 Restoring-based Division
- Mon-Restoring-based Division

Addition - Sum and Carry

	Truth Table						
Inputs		Outputs					
а	b	Sum	Carry				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

Boolean Expressions

$$\mathsf{Sum} = a \oplus b = \overline{\mathsf{a}}.b + a.\overline{\mathsf{b}}$$

$$Carry = a.b$$

Symbol	Meaning	
	AND operation	
+	OR operation	
\oplus	XOR operation	

Half Adder

Half-Adder adds two 1 bit numbers (say, a and b) to produce 2 bits result (Sum and Carry).

Full Adder

Truth Table						
Inputs			Outputs			
а	b	Cin	Sum	C _{out}		
0	0	0	0	0		
0	1	0	1	0		
1	0	0	1	0		
1	1	0	0	1		
0	0	1	1	0		
0	1	1	0	1		
1	0	1	0	1		
1	1	1	1	1		

- It can add three 1 bit numbers (say, a, b, c) to produce a 2 bits (Sum and Carry) output.
- Usually, we take the Carry of previous (lower) bit as the 3rd input in Full-Adder. We call it c_{in} or Carry-In.
- Full Adder produces 2 outputs (Sum and c_{out}).
- c_{out} is termed as Carry out of this addition.

Full Adder - Boolean Expressions

Boolean Expressions for Full Adder

$$Sum = a \oplus b \oplus c_{in}$$

$$= a.\overline{b}.\overline{c_{in}} + \overline{a}.b.\overline{c_{in}} + \overline{a}.\overline{b}.c_{in} + a.b.c_{in}$$

$$c_{out} = a.b + a.c_{in} + b.c_{in}$$

Circuit for the Full Adder

Addition of two n bit numbers

- We start from the lsb
- Add the corresponding pair of bits and the carry in
- Produce a sum bit and a carry out

Observations - Multi-bit Adder Circuit & Carry Propagation

- We keep adding pairs of bits, and proceed from the lsb to the msb
- If a carry is generated, we add it to the next pair of bits
- At the last step, if a carry is generated, then it becomes the msb of the result
- The carry effectively ripples through the bits

Ripple Carry Adder

Working of Ripple Carry Adder

A and B are two n-bit Numbers

- Number the bits: A_0 to A_{n-1} and B_0 to B_{n-1}
- Isb \rightarrow A_0 and B_0
- ullet msb $o A_{n-1}$ and B_{n-1}

Add A + B

- Use a half adder to add A_0 and B_0 .
- Send the c_{out} to a full adder that adds: $A_1 + B_1 + c_{in}$.
- Proceed in a similar manner till the msb

Ripple Carry Adder - Computation Time

Time Computation based on Electronic Design / Chip Fabrication Process

- Assume:
 - ▶ Time of half adder: th
 - ightharpoonup Time of full adder: t_f
- Total Time Needed for Result: $t_h + (n-1)t_f$

Time complexity - Let *n* is the number of bits

Time complexity of a ripple carry adder: O(n)

Issues with Ripple Carry Adder - Computation Time

Issues:

- Addition proceeds from lsb to msb and one bit position at a time.
- It is very slow.
- O(n) is too big for doing just addition of two n-bit numbers.
- How many additions are there in Multiplication of two n-bit numbers.
- Can we find a better Adder?

Carry Select Adder

- Group bits into Groups of size (k) bits
- Ex: Adding two 32 bit numbers A and B, and k = 4, then we have 8 blocks of 4 bits each.
- Produce the result of each group with a small ripple carry adder.
- In this case, the carry propagates across groups
 - ▶ Time complexity is O(n)
 - Apparently, No benefit.
- But If all groups compute in parallel / simultaneously
 - ▶ How will a group know the carry of the preceding group?

Carry Select Adder - Example: 32 bits numbers and k = 4

Carry Select Adder - Better Implementation

Stage I: Add the numbers in all Groups in parallel

For each group, produce two results:

- $\{Sum_{Gi}^0, Carry_{Gi}^0\}$ = Assuming an input carry of **0** from previous group.
- $\{Sum_{Gi}^1, Carry_{Gi}^1\}$ = Assuming an input carry of 1 from previous group.

So, for each group we have two results (k-bits sum, 1-bit carry out).

Stage II: Carry Propagation & Finalizing Result

- Start at the least significant block (Input carry is 0).
- Choose the appropriate result from stage I $(\{Sum_{G0}^0, Carry_{G0}^0\})$
- ullet We now know the input carry $Carry^0_{G0}$ for the second block & Choose the appropriate result
- Result contains the input carry for the third block, and so on · · · .

Carry Select Adder – Stage II - Carry Propagation - Explanation

Stage II: Clarification

- Select the correct carry out of previous group, and,
 - ▶ use this to **select the result** of next group.
 - ▶ How to do this selection?
- This continue until all groups are processed from least-significant group to most-significant group.
- Input carry for least-significant group is 0 (known prior).

Carry Select Adder - Stage I & II

Carry Select Adder - Time Requirement

- Stage I:
 - \triangleright Each group size is k.
 - ▶ A group takes k units of time (A group is just a Ripple Carry Adder).
- Stage II:
 - ▶ There are n/k groups [i.e., G0 to G(k-1)]
 - ▶ Stage II takes (n/k) units of time (Carry propagation from least-significant group to most-significant group)
 - ▶ Total time : (k + n/k).
- Optimal value of $k = \sqrt{n}$.

Proof: Optimal value of $k = \sqrt{n}$

Total Time (T) = (k + n/k).

We see that, T is **minimized** when k = n/k, or, $k^2 = n$, or, $k = \sqrt{n}$.

- What does it signify?
- If n = 64 bits, then we should use 8 groups of 8-bits each. And the delay will be 16 units.

Carry Select Adder - Time Complexity

- T = $O(\sqrt{n} + \sqrt{n}) = O(\sqrt{n})$.
- Can we do better?

Carry Lookahead Adder

- The main problem in addition is the carry
- If we have a mechanism to compute the carry quickly, we are done
- Let us thus focus on computing the carry without actually performing an addition

Generate and Propagate Functions

Let us consider two corresponding bits of A and B (A_i and B_i).

Generate function:

- Generate function: A new carry is generated. denote as gi
- $g_i = A_i \cdot B_i$.
- Carry will be generated only if both bits $(A_i \text{ and } B_i)$ are 1.

Propagate function:

- Whether the bits $(A_i \text{ and } B_i)$ will propagate the input carry to the next stage? (i.e., Carry-out = carry-in).
- $p_i = A_i \oplus B_i$.
- Carry will be propagated to the next stage if exactly one of the bits (either A_i or B_i) is 1.

 g_i and p_i are Generate and Propagate functions at bit level.

Using the $g_i \& p_i$ Functions

- If we have the generate and propagate values for a bit pair, we can determine the carry out
- $C_{out} = g_i + p_i \cdot C_{in}$

Example 1: Compute g_i , p_i , and C_{out} .

Given: Let $A_i = 0$, $B_i = 1$. Let the input carry be C_{in} .

Answer:

•
$$g_i = A_i \cdot B_i = 0 \cdot 1 = 0$$

$$\bullet \ p_i = A_i \oplus B_i = 0 \oplus 1 = 1$$

•
$$C_{out} = g_i + p_i \cdot C_{in} = 0 + 1 \cdot C_{in} = C_{in}$$

Using the $g_i \& p_i$ Functions - Example 2 & 3

Example 2: Compute g_i , p_i , and C_{out} .

Given: Let $A_i = 1$, $B_i = 1$. Let the input carry be C_{in} .

Answer:

- $g_i = A_i \cdot B_i = 1 \cdot 1 = 1$ [i.e., this bit will generate Carry = 1 irrespective of C_{in}].
- $p_i = A_i \oplus B_i = 1 \oplus 1 = 0$
- $C_{out} = g_i + p_i \cdot C_{in} = 1 + 1 \cdot C_{in} = 1$

Example 3: Compute g_i , p_i , and C_{out} .

Given: Let $A_i = 0$, $B_i = 0$. Let the input carry be C_{in} .

Answer:

$$\bullet \ g_i = A_i \cdot B_i = 0 \cdot 0 = 0$$

•
$$p_i = A_i \oplus B_i = 0 \oplus 0 = 0$$

•
$$C_{out} = g_i + p_i \cdot C_{in} = 0 + 0 \cdot C_{in} = 0$$

Notations - Summary

Let us consider two corresponding bits of A and B (A_i and B_i).

- ullet $C_{out}^i
 ightarrow { ext{output carry for i}}^{ ext{th}}$ bit pair
- ullet $C_{in}^i
 ightarrow input carry for ith bit pair$
- $g_i \rightarrow$ generate value for ith bit pair
- $p_i o$ propagate value for ith bit pair.

Derive Some Carry out bits - C_{out}^1 , C_{out}^2 , \cdots , C_{out}^n - Pg1

$$C_{out}^1$$

$$C_{out}^1 = g_1 + p_1 \cdot C_{in}^1$$

 C_{out}^2

$$C_{out}^{2} = g_{2} + p_{2} \cdot C_{in}^{2} = g_{2} + p_{2} \cdot C_{out}^{1}$$

$$= g_{2} + p_{2} \cdot (g_{1} + p_{1} \cdot C_{in}^{1})$$

$$= (g_{2} + p_{2} \cdot g_{1}) + p_{2} \cdot p_{1} \cdot C_{in}^{1}$$

 C_{out}^3

$$C_{out}^{3} = g_{3} + p_{3} \cdot C_{in}^{3} = g_{3} + p_{3} \cdot C_{out}^{2}$$

$$= g_{3} + p_{3} \cdot ((g_{2} + p_{2} \cdot g_{1}) + p_{2} \cdot p_{1} \cdot C_{in}^{1})$$

$$= (g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1}) + p_{3} \cdot p_{2} \cdot p_{1} \cdot C_{in}^{1}$$

Derive Some Carry out bits - C_{out}^1 , C_{out}^2 , \cdots , C_{out}^n - Pg2

C_{out}^4

$$C_{out}^{4} = g_{4} + p_{4} \cdot C_{in}^{4} = g_{4} + p_{4} \cdot C_{out}^{3}$$

$$= g_{4} + p_{4} \cdot ((g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1}) + p_{3} \cdot p_{2} \cdot p_{1} \cdot C_{in}^{1})$$

$$= (g_{4} + p_{4} \cdot g_{3} + p_{4} \cdot p_{3} \cdot g_{2} + p_{4} \cdot p_{3} \cdot p_{2} \cdot g_{1})$$

$$+ p_{4} \cdot p_{3} \cdot p_{2} \cdot p_{1} \cdot C_{in}^{1}$$

G and P for Multibit Systems

1 bit	$C_{out}^1 = \underbrace{g_1}_{G_1} + \underbrace{p_1}_{P_1} \cdot C_{in}^1$
2 bit	$C_{out}^2 = \underbrace{g_2 + p_2.g_1}_{G_2} + \underbrace{p_2.p_1}_{P_2}.C_{in}^1$
3 bit	$C_{out}^3 = \underbrace{g_3 + p_3. g_2 + p_3. p_2. g_1}_{G_3} + \underbrace{p_3. p_2. p_1}_{P_3}. C_{in}^1$
4 bit	$C_{out}^{4} = \underbrace{g_{4} + p_{4} \cdot g_{3} + p_{4} \cdot p_{3} \cdot g_{2} + p_{4} \cdot p_{3} \cdot p_{2} \cdot g_{1}}_{G_{4}} + \underbrace{p_{4} \cdot p_{3} \cdot p_{2} \cdot p_{1}}_{P_{4}} \cdot C_{in}^{1}$
n bit	$C_{out}^n = G_n + P_n.C_{in}^1$

Computing G and P Quickly

- Let us divide a block of n bits into two parts
- Let the carry out and carry in be: C_{out} and C_{in}
- We want to find the relationship between
- $G_{1,n}$, $P_{1,n}$ and $(G_{m+1,n}, G_{1,m}, P_{m+1,n}, P_{1,m})$
 - ▶ $G_{1,n}$ → denotes Carry Generate function for bits from 1 to n.
 - ▶ $P_{1,n}$ → denotes Carry Propagation function for bits from 1 to n.

Computing G and P Quickly - II

Computing Cout

$$C_{out} = G_{m+1,n} + P_{m+1,n} \cdot C_{sub}$$

$$= G_{m+1,n} + P_{m+1,n} \cdot (G_{1,m} + P_{1,m} \cdot C_{in})$$

$$= [G_{m+1,n} + P_{m+1,n} \cdot G_{1,m}] + [P_{m+1,n} \cdot P_{1,m} \cdot C_{in}]$$

$$= G_{1,n} + P_{1,n} \cdot C_{in}$$

Computing G and P

$$G_{1,n} = G_{m+1,n} + P_{m+1,n} \cdot (G_{1,m})$$

 $P_{1,n} = P_{m+1,n} \cdot P_{1,m}$

Insight into Computing G and P quickly

Insight:

- We can compute G and P for a large block
- By first computing G and P for smaller sub-blocks
- And, then combining the solutions to find the value of G and P for the larger block

Fast algorithm to compute G and P:

- Use divide-and-conquer
- Compute G and P functions in $O(\log(n))$ time

Carry Lookahead Adder - Stage I

- Compute G and P functions for all the blocks
- Combine the solutions to find G and P functions for sets of 2 blocks
- Combine the solutions fo find G and P functions for sets of 4 blocks
- and, so on...
- Find the G and P functions for a block of size: 32 bits (all bits).

Carry Lookahead Adder – Stage I

CLA Adder - Stage I

- Compute G, P for increasing sizes of blocks in a tree like fashion
- Time taken :
 - ▶ Total: log(n) levels
 - ▶ Time per level : O(1)
 - ▶ Total Time : $O(\log(n))$

CLA Adder - Stage II

Connection of the G,P Blocks

- Each G,P block represents a range of bits (r2, r1) for (r2 > r1)
 - ▶ The (r2, r1) G,P block is connected to all the blocks of the form (r3, r2+1)
 - ► The carry out of one block is an input to all the blocks that it is connected with
- Each block is connected to another block at the same level, and to blocks at lower levels

Operation of CLA - Stage II

- We start at the leftmost blocks in each level
 - ▶ We feed an input carry value of Cin1
 - ► Each such block computes the output carry, and sends it to the all the blocks that it is connected to
- Each connected block
 - Computes the output carry
 - Sends it to all the blocks that it is connected to
- The carry propagates to all the 2 bit RC adders

CLA - Time Complexity

- In a similar manner, the carry propagates to all the RC adders at the zeroth level
- Each of them compute the correct result
- Time taken by Stage II:
 - ► Time taken for a carry to propagate from the (16,1) node to the RC adders
 - $ightharpoonup O(\log(n))$
- Time taken by Stage I: $O(\log(n))$
- Total time : $O(\log(n) + \log(n)) = O(\log(n))$

Time Complexities of Various Adders

- Ripple Carry Adder: O(n)
- Carry Select Adder: $O(\sqrt{n})$
- Carry Lookahead Adder: $O(\log(n)$

Integer Multiplication

Multiplication Example


```
Multiplicand = 13, Multiplier = 9
Product = 117
```

Basic Multiplication

- Consider the lsb of the multiplier
 - ▶ If it is 1, write the value of the multiplicand
 - ▶ If it is 0, write 0
- For the next bit of the multiplier
 - ▶ If it is 1, write the value of the multiplicand shifted by 1 position to the left
 - ▶ If it is 0, write 0
- Keep going...

Size of the Product:

If the multiplier has m bits, and the multiplicand has n bits, The product requires (m+n) bits.

Some Definitions

Partial sum:

Partial sum: It is equal to the value of the multiplicand left shifted by a certain number of bits, or it is equal to 0.

Partial product:

Partial product: It is the sum of a set of partial sums.

Multiplying 32 bit numbers

- Let us design an iterative multiplier that multiplies two 32 bit signed values to produce a 64 bit result
- Multiplying two signed 32 bit numbers, and saving the result as a 32 bit number is the same as
- Multiplying two unsigned 32 bit numbers (assuming no overflows)

Theorem on 2's Complement Number

Theorem

A signed *n* bit number $A = A_{1\cdots n-1} - A_n 2^{n-1}$.

Where,

 A_i is the ith bit in A's 2's complement based binary representation (the first bit i.e., A_1 is the LSB).

 $A_{1\cdots n-1}$ is a binary number containing the first n-1 digits of A's binary 2's complement representation.

Iterative Multiplier

- Multiplicand (N), Multiplier (M), Product(P) = MN
- U is a 33 bit register and V is a 32 bit register
- beginning: V contains the multiplier, U = 0
- UV is one register for the purpose of shifting.

Iterative Multiplication Algorithm

Algorithm 1: Algorithm to multiply two 32 bit numbers and produce a 64 bit result

```
Data: Multiplier in V, U = 0, Multiplicand in N
Result: The lower 64 bits of UV contains the product
i \leftarrow 0
for i < 32 do
     i \leftarrow i + 1
     if LSB of V is 1 then
          if i < 32 then
               U \leftarrow U + N
          end
          else
               U \leftarrow U - N
           end
     end
     UV \leftarrow UV >> 1 (arithmetic right shift)
end
```

Example

3*(-2)

-7 * (-7)

-7 * (-7)

11001010

Algorithm - Explanation

- Take a look at the lsb of V
 - ▶ If it is $0 \rightarrow do$ nothing
 - ▶ If it is $1 \rightarrow \mathsf{Add} \ \mathsf{N}$ (multiplicand) to U
- Right shift
 - ▶ Right shifting the partial product is the same as left shifting the multiplicand, which Needs to be done in every step.
- Last step: lsb of V = msb of M (multiplier)
 - ▶ If it is $0 \rightarrow do$ nothing
 - ▶ If it is 1 then
 - Multiplier is negative
 - Recall: $A = A_{1 \dots n-1} A_n 2^{n-1}$.
 - Hence, we need to subtract the multiplicand if the msb of the multiplier is 1.

Iterative Multiplication - Time Complexity

- There are n loops
 - Each loop takes log(n) time
 - ▶ Each time we need to addition & Best Addition (eg, Carry Lookahead Adder) takes $O(\log n)$ time.
- Total time: $O(n \log(n))$

Booth Multiplier

Booth Multiplier

- We can make our iterative multiplier faster
- ullet If there are a continuous sequence of 0s in the multiplier o do nothing
- If there is a continous sequnce of 1s
 - ▶ Assume there is a continuous sequence of 1s from ith bit to jth bit
 - ▶ We Need to perform (j i + 1) additions.
 - ▶ Can we do something smart?

A continuous sequence of 1s from ith bit to jth bit can be written:

$$M = \sum_{k=i}^{k=j} 2^k = 2^{j+1} - 2^i$$

Booth Multiplication Idea

For a Sequence of 1s

- Subtract the multiplicand when we scan **bit i** (count starts from 0)
- Keep shifting the partial product
- Add the multiplicand(N), when we scan bit (j+1)
- This process, effectively adds $(2^{j+1}-2^i)*N$ to the partial product
- Exactly, what we wanted to do.

Operation of the Algorithm

- Consider bit pairs in the multiplier
- (current bit, previous bit)
- Take actions based on the bit pair
- Action table

(current bit, previous bit)	Action
0,0	-
1,0	subtract multiplicand from U
1,1	-
0,1	add multiplicand to U

Booth's Algorithm

Algorithm 2: Booth's Algorithm to multiply two 32 bit numbers to produce a 64 bit result

```
Data: Multiplier in V, U = 0, Multiplicand in N
Result: The lower 64 bits of UV contain the result
i ← 0
prevBit ← 0
for i < 32 do
    i \leftarrow i + 1
    currBit ← LSB of V
    if (currBit, prevBit) = (1,0) then
         II \leftarrow II - N
    end
    else if (currBit, prevBit) = (0,1) then
         II \leftarrow II + N
    end
    prevBit ← currBit
     UV \leftarrow UV >> 1 (arithmetic right shift)
end
```

Example 1

Example 2

Booth Algorithm - Time Complexity

- $O(n\log(n))$
- Worst case input (sequence of alternating 0's and 1's)
- Multiplier = 10101010...

Parallel Multiplier

Tree Based Adder for Partial Sums

Time Complexity

- There are log(n) levels
- Each level takes
 - ightharpoonup Maximum log(2n) time
 - ▶ Adds two 2*n* bit numbers
- Total time: $O(\log(n) * \log(n)) = O(\log(n)^2)$

Better Way of Adding Partial Products

Carry Save Adder

- A + B + C = D + E
- Takes three numbers, and produces two numbers

Carry Save Adder - Example

Example 1

A	1011
В	1101
C	0001
E	0111
D	1001-

Example 2

1-bit CSA Adder

- Add three bits a, b, and c
 - ightharpoonup such that a + b + c = 2d + e
 - d and e are also single bits
- We can conveniently set
 - e to the sum bit
 - ▶ d to the carry bit74

Wallace Tree Multiplier

Basic Idea:

- Generate n partial sums
- Partial sum : $P_i = 0$, if the ith bit in the multiplier is 0
- $P_i = N \ll (i-1)$, if the the ith bit in the multiplier is 1
- Can be done in parallel: O(1) time
- Add all the n partial sums Use a tree based adder

Tree of CSA Adders

Tree of CSA Adders - Operations

- Group the partial sums into sets of 3
 - Use an array of CSA adders to add 3 numbers (A,B,C) to produce two numbers (D,E).
 - ▶ Hence, reduce the set of numbers by 2/3 in each level
- After $log_{3/2} n$ levels, we are left with only two numbers
 - ▶ size of each number = 2n bits.
- Use a CLA adder to add them

Wallace Tree Multiplier - Time Complexity

- Time to generate all the partials sums = O(1)
- Time to reduce n partial sums to sum of two numbers
 - ▶ Number of levels $\rightarrow O(\log(n))$
 - ▶ Time per level $\rightarrow O(1)$
 - ▶ Total time for this stage $\rightarrow O(\log(n))$
- Last step
 - ▶ Size of the inputs to the CLA adder \rightarrow (2n − 1) bits
 - ▶ Time taken $\rightarrow O(\log(n))$
- Total Time : O(log(n))

Integer Division

Integer Division

- Let us only consider positive numbers
 - \triangleright N = DQ + R
 - N → Dividend
 - ightharpoonup D Divisor
 - ightharpoonup Q o Quotient
 - ightharpoonup R
 ightharpoonup R Remainder
- Properties
 - ▶ Property 1: R < D, R >= 0
 - ▶ Property 2: Q is the largest positive integer satisfying the equation (N = DQ +R) and Property 1

How to Reduce the Problem

- We need to find Q_n
- We can try both values: 0 and 1
 - ▶ First try 1

• If:
$$N - D2^{n-1} >= 0$$
, $Q_n = 1$ (maximize the quotient)

- ▶ Otherwise it is 0
- Once we have reduced the problem
 - ▶ We can proceed recursively

Iterative Divider

Initial Value:

V holds the dividend (N), U=0

Restoring Division

Algorithm 3: Restoring algorithm to divide two 32 bit numbers

Data: Divisor in D, Dividend in V, U=0Result: U contains the remainder (lower 32 bits), and V contains the quotient $i \leftarrow 0$ for i < 32 do $i \leftarrow i + 1$ /* Left shift UV by 1 position */ $UV \leftarrow UV << 1$ $U \leftarrow U - D$ if $U \geq 0$ then $q \leftarrow 1$

end else

end

 $\begin{array}{l} U \leftarrow U + D \\ q \leftarrow 0 \end{array}$

LSB of $V \leftarrow q$

/* Set the quotient bit

Restoring Division - Example

Restoring Division Algorithm - Explanation

Iteratively Do This:

- Consider each bit of the dividend
- Try to subtract the divisor from the U register
 - ▶ If the subtraction is successful, set the relevant quotient bit to 1
 - ▶ Else, set the relevant quotient bit to 0
- Left shift

Restoring Division - Time Complexity

- There are *n* iterations.
- Each iteration takes log(n) time
- Total time: $n \log(n)$

Restoring vs Non-Restoring Division

- We need to restore the value of register U
- Requires an extra addition or a register move
- Can we do without this?
 - Non Restoring Division

Non-Restoring-based Division

Algorithm 4: Non-restoring algorithm to divide two 32 bit numbers

```
Algorithm 4: Non-restoring algorithm to divide two 32 bit numbers
Data: Divisor in D, Dividend in V, U = 0
Result: U contains the remainder (lower 32 bits), and V contains the quotient
for i < 32 do
      i \leftarrow i + 1
      /* Left shift UV by 1 position
      IIV - IIV << 1
      if U \ge 0 then
            11 ← 11 - D
      end
      else
            U \leftarrow U + D
      end
      if U \ge 0 then
             q \leftarrow 1
      end
      else
            q \leftarrow 0
      end
      /* Set the quotient bit
      lsb of V \leftarrow q
if U < 0 then
      II \leftarrow II + D
end
```

Non-Restoring Division - Example

