MODELO DE PRIMER PARCIAL

1) Se desea identificar a cuatro elementos A, Q, L y T:

El elemento A es el cuarto metal alcalino; el nucleido ⁹⁰ Q tiene 52 neutrones ; el isoelectrónico con el catión K ⁺ ; la CEE del elemento T es 3s ² 3p ² .	aniór	n divale	ente d	e L es
a) Identificar los elementos con sus símbolos químicos.				
b) Ordenar los átomos (neutros), según radio atómico creciente, justificar.				
c) Ordenar los átomos (neutros), según energía de ionización creciente, justificar.				
d) Indicar configuración electrónica externa de los elementos A y L.				

2) Calcular la frecuencia y la energía de una radiación de 480nm. Dato: h = 6,63 × 10⁻³⁴ J.s. Velocidad de la luz: $c = 2,998 \times 10^{8} \text{ m/s}$.

3) a-) Completar la siguiente tabla indicando el tipo de compuesto inorgánico correspondiente a cada sustancia. Indicar que tipo de uniones presentan los compuestos ubicados en los casilleros: a. b. v. e.

sustancia. Indicar que tipo de dinones presentarios compuestos abicados en los casilieros. a, b y e.				
a- Na ₂ O	d- Cu(OH) ₂		g- NaCl	
b- CO ₂	e- HI		h- PH ₃	
c- HNO ₃	f- CaCO₃		i- H ₂ SO ₄	

b-) Escribir la estructura de Lewis y fórmulas desarrollada (si la poseen) de los compuestos a, b y e.

c-) Dadas las siguientes sustancias, mencionar las fuerzas intermoleculares o interacciones que presentan

C-) Da	das las signicintes sustancias, incrisionar las lucizas intermoleculares o interacciones que presentan
HF	
CO ₂	
NH ₃	

4) Dadas las siguientes fórmulas, clasificar a qué tipo de compuestos orgánicos corresponden.

Tipo de compuesto

Tipo de compuesto

p p		I I
CH ₃ – CH ₂ – OH	$CH_2 = CH - CH_2 - CH_3$	
О 	CH ₃ -CH ₂ -CH ₂ -C	

5) Si reaccionan 2,5 Kg de cinc con 900 g de ácido sulfúrico (80 % de pureza) con un rendimiento del 80 %, según la siguiente reacción:

$$Zn + H_2SO_4 \rightarrow H_2 + ZnSO_4$$

Determinar

Determinar.	
a) La masa y los moles de sal formados	

6) Se disuelven 70 g de HCl en 154 g de agua. La densidad de la solución obtenida es de 1,2 g/cm³. Calcular la concentración de la solución expresada como: a) Molaridad b) %m/m. Dato: densidad del agua 1 g/cm³.

a) Molaridad	b) % m/m