

Centro de Enseñanza Técnica Industrial

Organismo Público Descentralizado Federal Guadalajara, Jalisco, México

MATERIA SISTEMAS EXPERTOS

"Investigación 3"

Stephanie Vianney Aguila Rivera 22310212

PROF. Mauricio Alejandro Cabrera Arellano

Ingeniería en Mecatrónica

Grupo 7F

13 de Septiembre de 2025

Centro de Enseñanza Técnica Industrial

Organismo Público Descentralizado Federal Guadalajara, Jalisco, México

En sistemas expertos , el estudio de la inferencia lógica resulta fundamental, ya que estos sistemas se basan en la capacidad de razonar automáticamente a partir de una base de conocimientos. Para lograrlo, utilizan los motores de inferencia , que son los encargados de aplicar reglas lógicas y derivar nuevas conclusiones a partir de hechos conocidos. Dichos motores emplean distintos métodos de inferencia para garantizar la validez de los razonamientos, siendo los más representativos el modus ponens y el modus tollens . Estos principios lógicos permiten que un sistema experto pueda tomar decisiones, diagnosticar problemas o proponer soluciones de manera similar al razonamiento humano, convirtiéndose en un pilar dentro del diseño e implementación de este tipo de tecnologías.

Motores de inferencia

Un motor de inferencia es el mecanismo lógico que permite a un sistema basado en conocimiento (como un sistema experto o un sistema de reglas) razonar automáticamente a partir de hechos y reglas almacenadas en una base de conocimiento.

Su función principal es aplicar reglas lógicas para derivar nueva información o tomar decisiones.

Características principales:

- Se apoyan en reglas de producción (del tipo SI... ENTONCES...).
- Utilizan algoritmos de búsqueda para encontrar conclusiones válidas.
- Funcionan mediante dos estrategias principales:
 - 1. Encadenamiento hacia adelante (forward chaining): parte de los hechos y aplica reglas hasta llegar a conclusiones.
 - 2. Encadenamiento hacia atrás (backward chaining): parte de una hipótesis o conclusión deseada y busca si los hechos la sustentan.

Motores de inferencia en la actualidad

En la actualidad, los motores de inferencia son usados en distintos ámbitos, a veces como sistemas independientes y otras veces integrados a técnicas modernas de IA. Algunos ejemplos:

• Sistemas expertos en medicina (diagnóstico de enfermedades).

SEP SECRETARÍA DE EDUCACIÓN PÚBLICA

Centro de Enseñanza Técnica Industrial

Organismo Público Descentralizado Federal Guadalajara, Jalisco, México

- Motores de reglas empresariales (*Drools* , *Jess* , *CLIPS*), usados para automatizar decisiones en finanzas, seguros o comercio.
- Sistemas de recomendación híbridos , que combinan reglas lógicas con aprendizaje automático.
- Lenguajes lógicos como *Prolog*, muy usados en IA simbólica.
- IA explicable (XAI): donde los motores de inferencia aportan trazabilidad y justificación a los resultados obtenidos.

En un contexto más actual, aunque la IA estadística y de aprendizaje automático es dominante, los motores de inferencia siguen siendo muy útiles cuando se necesita pensamiento lógico, transparencia y explicabilidad.

Métodos de inferencia

Los métodos de inferencia son formas de razón válidas que permiten derivar conclusiones a partir de premisas. Algunos de los más importantes en lógica proposicional son:

- Modus Ponens (afirmación del antecedente).
- Modus Tollens (negación del consecuente).
- Silogismo hipotético.
- Silogismo disyuntivo.
- Reducción al absurdo.

Estos métodos son las "herramientas" que los motores de inferencia emplean para validar y deducir información.

Modus Ponens

Es uno de los razonamientos deductivos más básicos y fundamentales.

- Formato general:
 - 1. PAG→Q(si P, entonces Q).
 - 2. PAG.
 - $3. \Rightarrow QQQ.$

SEP SECRETARÍA DE EDUCACIÓN PUBLICA

Centro de Enseñanza Técnica Industrial

Organismo Público Descentralizado Federal Guadalajara, Jalisco, México

Ejemplo:

- 1. Si estudio, aprobaré el examen.
- 2. Estudié.
- 3. Por lo tanto, aprobé el examen.

Se trata de un razonamiento válido , porque si las premisas son verdaderas, la conclusión necesariamente también lo es.

Modus Tollens

Es un razonamiento deductivo basado en la negación del consecuente.

- Formato general:
 - 1. $PAG \rightarrow Q(si P, entonces Q)$.
 - 2. ¬Q
 - 3. ⇒¬P

Ejemplo:

- 1. Si el motor funciona, entonces el coche arranca.
- 2. El coche no arranca.
- 3. Por lo tanto, el motor no funciona.

Este análisis también es válido , y se usa frecuentemente en diagnósticos o pruebas de hipótesis.

Los motores de inferencia son el "cerebro lógico" de los sistemas expertos. Hoy en día siguen siendo importantes, sobre todo en aplicaciones donde se requiere explicabilidad y pensamiento lógico estructurado .

Los métodos de inferencia como el *modus ponens* y el *modus tollens* son reglas de razonamiento clave que aseguran la validez de las conclusiones.

https://github.com/vianneyaguila/SE_AguilaRivera_7F.git