Coursework 2

Jennifer J. Stiens

Jennifer Stiens

j.j.stiens@gmail.com github.com/jenjane118/ngs_tutorials/coursework_2.md

Question 1

Compile a set of virulence-related genes in the AFPN02.1 strain and other E. coli strains and compare them.

First I went to the VFPB website (http://www.mgc.ac.cn/VFs/main.htm) and looked up 'virulence factors' associated with E. coli strains. The most common of these are: adherence, toxin, invasion, Type III translocated protein, and immune evasion. I can use these terms to annotate genes associated with virulence.

VFDB website, Escherichia Coli

a) Assemble a set of virulence-associated genes from public source or publication

From VFDB I was able to download a database of DNA sequences of core set of experimentally-verified virulence-associated genes. This will be used to extract genes (and relevant sequences) for the associated adhesion genes for searching and annotating the AFPN02.1 genome. (VFDB_setA_nt.fas) (http://www.mgc.ac.cn/VFs/download.htm) (Jin, et.al., 2007).

Using the information on the VFDB website (http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi? Genus=Escherichia), Brzuszkiewicz, et. al. (2011), and the spreadsheet of virulence genes from EHEC and EAEC strains from Cheung, et.al, (2011), I compiled a list of 18 pertinent virulence-related genes. There were many more genes available in the database, but these genes were selected because they are related to adhesion and toxin production. I used the gene names to select virulence-related genes from the VFDB.

						2011 outbreak		2001 case	EAEC	EHEC	
Feature	Virulence Factor	Related gene	VFDB ID	Length (bp)	Location	TY2482	C227-11	H112180280	01-09591	55989	Sakai
	Efa-1	r efa1	VFG1534	9672	Chromosome	_	_		_		7
	Intimin	r eae	VFG0739		Chromosome	_	_		_	_	_
EHEC Adherence	Paa	P paa	√FG0839		Chromosome	F	_		"	_	
l	ToxB	* toxB	VFG0845			F	_		_	_	
		- aggA	VFG0847				*		_		_
		▼ aggB	VFG0848	438	Plasmid				_		_
		aqqC	VFG0849	2529	Plasmid				7		_
EAEC Adherence	Aggregative adherence fimbriae	▼ agqD	VFG0850	759	Plasmid				7	P	_
		aafC	VFG0853	2571	Plasmid	7	7	7	7	7	
			VFG0852			7	7		_	P.	
		₹ agg3A	VFG0855	498	Plasmid						
		₹ aqq3B	VFG0856							•	
		✓ agg3C	VFG0857		Plasmid	7	7	7		•	
		₹ aqq3D	VFG0858			7	<u> </u>	7		•	
		✓ aggR	VFG0864								
		г аар	√FG0865	351	Plasmid						•
		aatP	VFG0866				<u> </u>			<u>r</u>	"
	Dispersin	aatA	√FG0867	1239						_	
	Dispersifi	Z aatB	VFG0868				<u> </u>			_	_
		aatC	√FG0869								_
		aatD	VFG0870			•	•			•	_
		hlyA	VFG0840								
	Hemolysin	✓ hlyB	VFG0841								
	Tremoty sin	hlvC	VFG0842								
EHEC Toxin		hlyD	√FG0843								
Erice Toxiii		stx1A	√FG0835		Chromosome						
	Shiga toxin	stx1B	VFG0836		Chromosome						
		stx2A	VFG0837		Chromosome						
		stx2B	VFG0838		Chromosome						
	EAEC heat-stable enterotoxin 1	astA	√FG0863	117			-			_	_
EASO To de	Plasmid-encoded enterotoxin	pet	VFG0862		Plasmid		· ·	ř	<u>/</u>		<u> </u>
EAEC Toxin	Pic	pic	VFG0861		Chromosome						_
	ShET1	set1A	VFG0859 VFG0860		Chromosome						_
		set1B			Chromosome						
		chuA	VFG0917		Chromosome					_	
		chuS	VFG0916 VFG0918		Chromosome Chromosome		+	-		_	7
UEC T	Ch	chuT	VFG0918 VFG0922		Chromosome						
HEC Iron uptake	Chu	chuU	VFG0922		Chromosome						
		chuW chuX	VFG0919	1338	Chromosome	_	_			-	
		chuY	VFG0920		Chromosome	_	+	+			
	EspP		VFG0921 VFG0844		Chromosome	2	7	7	7	7	
EHEC Protease	StcE	espP stcE	VFG0844 VFG0846		Plasmid	_				_	_
HEC Regulation	LEE encoded regulator		VFG0846 VFG0710		Chromosome		+				_
nec requiation	LEE encoded regulator	127	VFG0/10	r 39L	Jrun omosome			1		r	
				I			1	I			I
ack hoves repres	ent presence of genes (alignmen	t length in RLA	ST >=500	361							
	t potential truncation or internal rea				in BLAST <50%	and >0%).					
	ent absence of genes (no hits ret			miche rengen	55-57 < 30 %	210 -0 10 //		+			+

Virulence genes (Brzuszkiewicz, et al, 2011)

```
## help for this code came from (https://infoplatter.wordpress.com/2013/10/15/
## extracting-specific-fasta-records-from-a-multi-fasta-file/)
## grabs all ecoli files and sequences
awk 'BEGIN {RS=">"}/Escherichia/{print">"$0}' VFDB_setA_nt.fas \
> ecoli_vfdb_genes.fas
## grabs all files with these genes
cat ecoli_vfdb_genes.fas | awk \
'BEGIN {RS=">"}/aggR|agg3B|aat|astA|hlyA|sepA
|aggA|setA|espP|setC|aat|fimH|fimA|cpxA|cpxR|csgA|elfA|stx/
{print">"$0}' > virulence_vfdb_genes.fa
```

These have really elaborate headings, so I needed to make them much more simple:

```
## removes part of heading before gene name, replaces with '>'
cat virulence_vfdb_genes.fa | sed 's/^>.*(.*)\s(/>/g' > temp.fa
## removes rest of heading after gene name
cat temp.fa | sed 's/)\s.*$//g' > virulence_vfdb_editedgenes.fa
## remove extra blank lines between records
cat virulence_vfdb_editedgenes.fa | sed -e 's/^ *//; s/ *$//; /^$/d' \
> vfdb_virulence_genes.fa
```

b) Build a separate set of virulence-associated genes in the annotation file created for AFPN02.1

The next step is to work with the annotation.gff file to retrieve annotations based on

'virulence', 'adherence', 'toxin', 'invasion' and 'Type III' (short for Type III aggregative adherence fimbriae) and convert into .bed format.

```
cat annotation.gff | grep -E 'virulence|adherence|toxin|invasion|Type III' | awk 'BEGIN {FS="\t"} split($9, captured, /[(=);]/) >=10 {print "sequence1" "\t" $4 "\t" $5 "\t" captured[10] "\t" captured[4] "\t" $7}' > present_in_AFPN02_virulence_genes.bed
```

Then we have to retrieve the DNA sequence for these genes and save in fasta format:

```
/s/software/bedtools/v2.27.1/bin/bedtools getfasta -name -s -fi \ ${st_path}/results_GC/annotation/genome.fna -bed \ present in AFPNO2 virulence genes.bed -fo present in AFPNO2 virulence genes.fasta
```

A bit more formatting to get rid of extra elements in the heading:

```
cat present_in_AFPN02_virulence_genes.fasta | sed 's/(.*//g' \
> present_in_AFRN02_virulence_genes.fasta
# to remove extra info in square brackets
cat present_in_AFPN02_virulence_genes.fasta | sed '/[.*]/d' > \
present_in_AFPN02_virulence_genes.fasta
#
```

Then we have to combine the two files:

```
cat present_in_AFPN02_virulence_genes.fasta vfdb_virulence_genes.fa \
> final_comparison_virulence.fasta
cp present_in_AFPN02_virulence_genes.fasta vfdb_virulence_genes.fa \
final_comparison_virulence.fasta ${st_path}/results_GC/wholeGenomeExamples
```

c) Use BRIG to visualise which of the virulence genes are present/absent in E. coli strains

To run brig, use the following command:

/s/software/brig/BRIG-0.95-dist/brig.sh

BRIG: Blast Ring Image Generator (brig.sourceforge.net)

Most of the virulence genes were present in AFPN02.1. However, hylA was only identified with a short sequence, aggA was completely missing, esp was mostly missing, though some parts were present at lower identity, fimH was completely missing, stxA was more weakly identified, and agg3B was more weakly identified. The other shiga-toxin genes, stx2A/B were present in the AFPN02.1 strain, as well as in the sakai strain, which is a EHEC (enterohemmoraghic) strain, but isn't present at all in the other strains, except for short regions of identity with the other EHEC strain. The EHEC strain seemed the most different from the other strains, with only short regions of identity spread out over the genome, however, it seemed there were hits in all of the genes.

Question 2

Select ONE of the virulence genes (or if you prefer one operon) present in AFPN02.1 and study this gene/operon in more detail including its biological action/mechanism phylogeny.

I have chosen to take a closer look at the gene aggR, 'aggregative regulator', a putative transcriptional activator that regulates many virulence factors including genes for adherence and toxin production (www.uniprot.org/uniprot/P43464). The aggR gene is part of a family of AraC transcriptional activators, regulatory proteins that bind DNA and control the expression of a whole host of other genes. The product of aggR is a DNA binding protein is aobut 30KDa in size, with a conserved helix-turn-helix motif (Navarro-Garcia, 2013).

AggR is called the 'master virulence regulator', as it regulates many other known virulence factors (Morin, 2013). Among the first of these identified are the genes encoding AAF, the aggregative adherence fimbriae. These proteins help the bacterium to adhere to the intestinal mucosa in a characteristic 'stacked-brick' pattern, which stimulates an inflammatory response in these cells, leading to diarrhea (Morin, et.al, 2013). The presence of AggR is essential for expression of AAF genes located on pAA plasmids. Another function is to regulate the expression and secretion of dispersin (by regulating aap and aat genes), another gene product involved in adherence to intestinal mucosa (Figure 1) (Sheikh, et al., 2001). In fact, microarray data has indicated that at least 44 genes are under the control of AggR, 23 of them on the bacterial chromosome, including many secretory proteins. 20 of these are found in what is called a 'pathogenicity island', a cluster of virulence genes that is obtained by a bacterium through horizontal gene transfer (Morin, 2013).

Figure 1. Map of aap-aggR loci from two E. coli strains producting AAF/II and AAF/I (Sheikh, 2001)

To explore the phylogenetic origins of the aggR gene, I extracted the fasta sequence from the edited file of virulence genes I obtained from the Virulence Factor Database and ran a blast search.

```
cat vfdb_virulence_genes.fa | awk 'BEGIN {RS=">"}/aggR/{print">"$0}' > aggR.fa
```

I submitted this sequence to nBlast, using the nr/nt database, optimised for 'more dissimilar sequences'. All of the hits were to E. coli, many to various plasmids that have been sequenced (Figure 2). It seems to be a gene found predominantly in enterobacteria, specifically, E. coli. The presence of AggR in the genome, is sometimes considered indicative of a 'typical EAEC' strain (Navarro-Garcia, 2013).

Figure 2. Phylogenetic tree showing evolutionary relationships of aggR gene among E. coli strains.

I thought it might be interesting to see if there were any more interesting results using the protein sequence. I obtained the FASTA protein sequence from uniprot (https://www.uniprot.org/uniprot/P43464)

>sp|P43464|AGGR_ECOLX Transcriptional activator AggR OS=Escherichia coli OX=562 GN=aggR MKLKQNIEKEIIKINNIRIHQYTVLYTSNCTIDVYTKEGSNTYLRNELIFLERGINISVR LQKKKSTVNPFIAIRLSSDTLRRLKDALMIIYGISKVDACSCPNWSKGIIVADADDSVLD TFKSIDHNDDSRITSDLIYLISKIENNRKIIESIYISAVSFFSDKVRNTIEKDLSKRWTL AIIADEFNVSEITIRKRLESEYITFNQILMQSRMSKAALLLLDNSYQISQISNMIGFSST SYFIRLFVKHFGITPKQFLTYFKSQ

and used it in a psi-blast query (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=

blastp&PAGE_TYPE=BlastSearch&BLAST_SPEC=&LINK_LOC=blasttab&LAST_PAGE=blastn) on a standard nr protein database. The results were slightly more interesting, showing that the protein is from the AraC family of transcriptional regulators and related to other genes involved with adhesion, such as the CFA/I fimbrial subunit D. The phylogenetic tree shows the relationship between this family of DNA-binding transcriptional regulators among bacteria, with AraC protein family members from Salmonella and Citrobacter as distant homologues (Figure 3).

Figure 3. Psi-blastp results and phylogenetic tree for AggR protein.

References

Brzuszkiewicz, E., Thürmer, A., Schuldes, J., Leimbach, A., Liesegang, H., Meyer, F.-D., ... Daniel, R. (2011). Genome sequence analyses of two isolates from the recent

Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Archives of Microbiology, 193(12), 883–891. https://doi.org/10.1007/s00203-011-0725-6

Cheung, M., Li, L., Nong, W., & Kwan, H. (2011). 2011 German Escherichia coli O104:H4 outbreak: Whole-genome phylogeny without alignment. BMC Research Notes, 4(December). https://doi.org/10.1186/1756-0500-4-533

Jin, Q., Sun, L., Yang, J., Chen, L., & Yu, J. (2007). VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Research, 36(Database), D539–D542. https://doi.org/10.1093/nar/gkm951

Morin, N., Santiago, A. E., Ernst, R. K., Guillot, S. J., & Nataro, J. P. (2013). Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infection and Immunity, 81(1), 122–132. https://doi.org/10.1128/IAI.00676-12

Navarro-Garcia, F. (2015). Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiology Spectrum, 2(6), 1–19. https://doi.org/10.1128/microbiolspec.ehec-0008-2013

Sheikh J, Czeczulin JR, Harrington S, et al. (2002). A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest., 110(9), 1329–1337. doi:10.1172/JCI16172

The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47: D506-515 (2019). (www.uniprot.org/uniprot/P43464)