循环群与群同构

赵建华 陶先平

内容

- 同构与同态
- 循环群与生成元
- 循环群的子群
- 无限循环群与整数加群同构
- 有限循环群与相应的剩余加群同构

群同构与同构映射

- 群(G₁,)与(G₂,*)同构(G₁≅G₂)当且仅当:
 存在双射(同构映射)f: G₁→G₂, 满尺:
 对任意x,y∈G₁, f(x y) = f(x)*f(y)
 "先(G₁中的)运算后映射等于先映射后运算(G₂中的)"
- 例: 正实数乘群(R⁺,•)和实数加群(R,+)
 同构映射f: R⁺→R: f(x)=ln x

注意:可能有多个同构映射,如f(x)=lg x也是。

同构关系是等价关系

- 自反: 对任意群(G,), G≅G
 - 恒等映射 f(x)=x 是同构映射
- 对称:对任意群 $G_1, G_2,$ 若 $G_1 \cong G_2,$ 则 $G_2 \cong G_1$
 - 设从 G_1 到 G_2 的同构映射为f,则从 G_2 到 G_1 的同构映射是 f^{-1}
- 传递: 对任意群 G_1,G_2,G_3 , 若 $G_1\cong G_2$, 且 $G_2\cong G_3$, 则 $G_1\cong G_3$,
 - 设从 G_1 到 G_2 的同构映射为f,从 G_2 到 G_3 的同构映射为g,则设从 G_1 到 G_3 的同构映射f g

3阶群的唯一性

• 任意两个三阶群同构

$$1 \rightarrow a \quad 2 \rightarrow b \quad 3 \rightarrow c$$

0	1	2	3	
1	1	2	3	
2	2	3	1	
3	3	1	2	

*	a	b	c	
a	a	b	c	
h	h	8	a	

设a是单位元, cb=a必然成立, 否则

- ●如果cb=b, 则c=cbb⁻¹=bb⁻¹=a;
- •如果cb=c, 则b=c⁻¹cb=c⁻¹c=a

类似地, bc=a必然成立。

由ab=b, cb=a可知bb必然是c。

由ac=c, bc=a可知cc必然是b。

不同构的四阶群

		1	2	3	4	
1		1	2	3	4	
2		2	3	4	1	
3		3	4	1	2	
4		4	1	2	3	
四元循环群						

	1	2	3	4	
1	1	2	3	4	
2	2	1	4	3	
3	3		1	2	
4	4	3	2	1	
Klein四元群					

同态与同态映射

系统(G₁,)与(G₂,*)同态, 记做 (G₁~G₂)当且仅当:
 存在函数f: G₁→G₂, 满足:
 对任意x,y∈G₁, f(x y) = f(x) * f(y)

注意: 同构要求 ~ ~ 映射

- 如果上述f是满射,则称为满同态
- 同构是同态的特例。
- 例:整数加系统(Z,+)和对3剩余加系统(Z₃,+₃)
 - 同态映射: f: Z→Z₃, f(3k+r)=r, 这是满同态

一个满同态的例子

定义系统: $(\{e,o\},*)$

运算"*"的运算表如下:

*	e	0	A SOLD
e	e	0	
0	0	e	

见 $f: Z \rightarrow \{e,o\}$:

$$f(x) = \begin{cases} e & x \in \mathbb{Z} \\ o & x \in \mathbb{Z} \end{cases}$$

是从(Z,+)到 $(\{e,o\},*)$ 的满同态映射。

这可以用来证明: 1,2,...,1000这1000个自然数, 按照任意的组合实施加/减, 得到的结果不可能是1001。

如何证明两个群不同构

一定要证明: $(G_1,)$ 到 $(G_2,)$ 的任何映射都不可能是同构映射!

*例:非零有理数乘群 $(Q-\{0\},\bullet)$ 和有理数加群(Q,+)不同构。

假设存在 $f: Q-\{0\} \rightarrow Q$,是同构映射,

注意: 必有f(1)=0 (否则, $f(1\bullet x)\neq f(1)+f(x)$)

 $f(-1)+f(-1)=f((-1)\bullet(-1))=f(1)=0$

因此: f(-1)=f(1), f 不是一对一的。

群中元素的阶

- 设a是群(G,*)中任一元素。正整数r是a的阶(记为|a|=r):
 - a^r = e (e是群G的单位元素)
 - 对任意正整数k, 若 $a^k = e$, 则 $k \ge r$

如果这样的k不存在,则称a有无限阶

元素阶的性质

- 设a的阶是r, 对任意正整数k, a^k=e 当且仅当 r能整除k
 - ⇒ 令 k = mr + i (m, i均为正整数,且 $0 \le i \le r 1$),则 $a^{mr + i} = (a^r)^{m*}a^i = a^i = e$ 因为i < r, i只能是0, 即k = mr
 - $\Leftarrow k = mr$, $ya^k = a^{mr} = (a^r)^m = e^m = e$
- 任何元素与其逆元素有相同的阶
 - 读|a|=r, $(a^{-1})^r=(a^r)^{-1}=e$, 因此 $(|a^{-1}|)|r$ 。
 - 令 $|a^{-1}|=t$, $a^t=((a^{-1})^{-1})^t=((a^{-1})^t)^{-1}=e$, 因此 $r|(|a^{-1}|)$,
 - 所以| a⁻¹|=r

循环群与生成元素

• 定义

- 设G是群,若存在 $a \in G$,使得 $G = \{a^k | k \in \mathbb{Z}\}$,则G称为循环群。
- 记法: <a>。
- -a 称为 生成元。

循环群的阶与生成元素的阶

- 有限(n阶)循环群:
 - 生成元a的阶为n.
 - $-G=\{a^0,a^1,a^2,...,a^{n-1}\}$, 其中 a^0 是单位元素。
- 无限循环群:
 - 生成元素a为无限阶元,
 - $-G = \{a^0, a^{\pm 1}, a^{\pm 2}, \dots\}$

循环群的例子

- 无限循环群:
 - 整数加群 (Z,+): 1是生成元素, 对任意整数 $i, i = 1^i$ 。
 - 1. 这里"乘幂"是对加法而言的
 - 2. i < 0时, 1ⁱ是负数;
 - 3.-1同样是生成元,如:5=(-1)-5。
- 有限循环群:
 - 剩余加群 ($\mathbb{Z}_{6}, +_{6}$): [1]是生成元素。
 - 注意: [5]也是生成元:
 - $[5]^0 = [0]; [5]^1 = [5]; [5]^2 = [4];$
 - $[5]^3=[3]$; $[5]^4=[2]$; $[5]^5=[1]$;

无限循环群与整数加群同构

建立G={a⁰,a^{±1},a^{±2},...}与Z={0,±1,±2,±3,...}之
 间的一一对应函数:

$$f:G\to Z$$
, 对任意 $a^k\in G$, $f(a^k)=k$ (k是整数)

- -只要 $a^k=a^h$, 必有k=h, 否则 $a^{k-h}=e$, a有有限阶 k-h(不妨设k>h)。因此f是函数。
- 显然是双射
- $-f(a^{k} a^{h}) = f(a^{k+h}) = k + h = f(a^{k}) + f(a^{h})$

n阶循环群与n阶剩余加群同构

• 建立 $G = \{a^0, a^1, a^2, ..., a^{n-1}\}$ 到 $Z_n = \{0, 1, 2, ..., n-1\}$ 的一一对应的函数:

$$f:G\to Z$$
, 对任意 $a^k\in G$, $f(a^k)=[k]$ (k是整数)

- 注意: 只要a^k=a^h, 必有[k]=[h], 否则, k,h除以n余数不同, 即k-h=qn+r(q是整数, r∈ {1,2,...,n-1}),
- 但 $a^{k-h}=e$ (不妨设k>h),即 $a^{k-h}=a^{qn+r}=a^r=e$,与a的阶是n矛盾。所以f是函数。
- 显然是双射
- $-f(a^k a^h) = f(a^{k+h}) = [k+_n h] = [k] +_n [h] = f(a^k) +_n f(a^h)$

无限循环群的生成元素

- 若a是无限循环群的生成元素,则a⁻¹(a的逆 元素)也是。
 - $-a^{k} = (a^{-1})^{-k}$
- 无限循环群只有两个生成元
 - 一设G=<a>。 *若b也是G的生成元*。则存在整数m 和t,满足: $a^m=b$, $b^t=a$, $\therefore a=b^t=(a^m)^t=a^{mt}$, $\therefore a^{mt-1}=e$, a是无限阶元素, $\therefore mt-1=0$, $\therefore m=t=1$ 或者m=t=-1, $\therefore b=a$ 或者 $b=a^{-1}$ 。

有限循环群的生成元

- 设 $G=\langle a \rangle$,且|a|=n,则对任意不大于n的正整数r,gcd(n,r)=1 *iff.* a^r 是G的生成元。
 - $-\Rightarrow$ 设gcd(n,r)=1, 则存在整数u,v, 使得: ur+vn=1, \therefore a=a^{ur+vn}=(a^r)^u(aⁿ)^v=(a^r)^u。则: G中任意元素a^k 可以表示为(a^r)^{uk}。
 - \Leftarrow 设a^r是G的生成元,令gcd(n,r)=d且r=dt,则 $(a^r)^{n/d}=(a^n)^t=e$, $\therefore |a^r||(n/d)$,但 $|a^r|=n$, $\therefore d=1$

n阶循环群的 生成元素的阶 必定是n

有限循环群的生成元

• 有限循环群不同的生成元素的个数

n阶循环群G的生成元的个数恰好等于不大于n的与n互质的正整数的个数。

- 这个量是n的函数: 欧拉函数φ(n)

循环群的子群

- 循环群的子群仍然是循环群
 - 子群H中最小正方幂元即为H的生成元。
 - 设最小正方幂元素为am, 证明H=<am>
 - 任给a^t∈H, 令t=qm+r, 其中q为整数, 0≤r≤m-1。
 - 由子群的封闭性, $a^{qm} \in H$, ∴ $a^{-qm} \in H$, $a^{t-qm} = a^{r} \in H$ 。
 - •但H中最小正方幂元素为am, ::r只能是0。
 - $\therefore a^t = a^{qm} = (a^m)^q$

循环群的子群

无限循环群的生成元必是无限阶的

- 无限循环群只有唯一的有限子群: {e}
 - 假设G有t阶有限子群H, 且H≠{e}, 则设H的最小正方幂元为a^m, 则a^m=e, 矛盾。
- N阶循环群中,对n的每一个整除因子d,n阶循环群G恰好 有一个d阶子群
 - 有:以an/d为生成元可构成一个d阶子群,设它为H。
 - 恰有一个: 如果 H_1 =< a^m >也是d阶子群,则 a^{md} =e,所以 kn=md,也就是m=k(n/d),因此: a^m = $(a^{n/d})^k$ ∈H,即 H_1 ⊆H,但 H_1 与H等势,所以 H_1 =H

群的直积

给定两个群: (S,), (T,*), 定义笛卡儿乘积
 S×T上的运算⊗如下:

$$\langle s_1, t_1 \rangle \otimes \langle s_2, t_2 \rangle = \langle s_1 \ s_2, t_1 * t_2 \rangle$$

- (S×T, ⊗) 是群
 - 结合律: $\langle (r_1 \ s_1) \ t_1, (r_2 * s_2) * t_2 \rangle$ = $\langle r_1 \ (s_1 \ t_1), r_2 * (s_2 * t_2) \rangle$
 - -单位元素: <1_S, 1_T>
 - 逆元素: <s, t> 的逆元素是 <s-1, t-1>
 - (其中: s, s⁻¹∈S, t, t⁻¹∈T)

循环群的直积

- $C_m \times C_n \cong C_{mn}$ 当且仅当m,n 互质。其中 C_k 表示k阶循环群。
 - 若m,n互质,要证明 $C_m \times C_n \cong C_{mn}$ 只需证明 $C_m \times C_n$ 是循环群。这只需证明 $C_m \times C_n$ 含有阶为mn的元素。
 - (a,b)^{mn} =(e₁,e₂), 其中a,b, e₁,e₂分别是C_m和C_n的生成元素和单位元。
 - 若 $(a,b)^k = (e_1,e_2)$, k必是m,n的公倍数,如果k < mn,则m,n有公约数mn/k > 1,这与m,n互质矛盾。
 - 所以: (a,b)的阶是mn。
 - 若 $C_m \times C_n \cong C_{mn}$,则 $C_m \times C_n$ 是循环群,设其生成元是(s,t),则 (s,t)的阶是mn,若gcd(m,n)=k>1,则(s,t)^{mn/k}=(e₁,e₂),这与(s,t) 的阶是mn矛盾。

作业

p.204-- 26-28