PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
 A01N 43/04, C07H 21/04, C12N 15/09,

A1

(11) International Publication Number:

WO 99/40789

(43) International Publication Date:

19 August 1999 (19.08.99)

(21) International Application Number:

PCT/US98/17908

(22) International Filing Date:

15/11, 15/85

28 August 1998 (28.08.98)

(30) Priority Data:

60/074,497 09/108,006 12 February 1998 (12.02.98)

30 June 1998 (30.06.98)

US US

(71) Applicants (for all designated States except US): REGENTS
OF THE UNIVERSITY OF MINNESOTA [US/US]; 1100
Washington Avenue South, Minneapolis, MN 55414-1226
(US). ALBERT EINSTEIN COLLEGE OF MEDICINE
OF YESHIVA UNIVERSITY [US/US]; 1300 Morris Park
Avenue, Bronx, NY 10461 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): STEER, Clifford, J. [US/US]; 1924 Pinehusrt Avenue, St. Paul, MN 55116-1339 (US). KREN, Betsy, T. [US/US]; 810 29th Avenue S., Minneapolis, MN 55454 (US). BANDYOPAD-HYAY, Paramita, T. [IN/US]; 23208 Cornerstone Drive, Yardely, PA 19067 (US). ROY-CHOWDHURY, Jayanta [US/US]; 139 Woodhollow Lane, New Rochelle, NY 10804-3435 (US).

(74) Agents: HANSBURG, Daniel; Kimeragen, Inc., 300 Pheasant Run, Newtown, PA 18940 (US) et al.

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHODS AND COMPOUNDS FOR THE GENETIC TREATMENT OF HYPERLIPIDEMIA

(57) Abstract

The present invention concerns the introduction of specific alterations in the genes that encode three apolipoproteins, Apo A1, Apo B and Apo E. The alternations in Apo A1 introduce a cysteine residue so the disulfide cross-linked Apo A1 homodimers and Apo A1/A2 heterodimers can be formed. The alterations in Apo B introduce stop codons or frame shift mutations that cause the production of a truncated Apo B protein. The alterations in Apo E introduce specific point mutations that have been identified as protective. The production in the liver of a subject of these altered proteins reduces the risk of the subjects developing atherosclerosis. In one embodiment the genetic alterations are introduced by use of chimeric, mixed RNA/DNA, duplex oligonucleotides.

ATTORNEY DOCKET NUMBER: 7991-086-99 SERIAL NUMBER: 09/685,403 REFERENCE: **BN**

WORLD INTELLECTUAL PROPERTY ORGANIZAT. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A01N 43/04, C07H 21/04, C12N 15/09, **A1** 15/11, 15/85

(11) International Publication Number: WO 99/40789

(43) International Publication Date:

19 August 1999 (19.08.99)

(21) International Application Number:

PCT/US98/17908

(22) International Filing Date:

28 August 1998 (28.08.98)

(30) Priority Data:

60/074,497 09/108,006

12 February 1998 (12.02.98) US

30 June 1998 (30.06.98)

US

(71) Applicants (for all designated States except US): REGENTS OF THE UNIVERSITY OF MINNESOTA [US/US]; 1100 Washington Avenue South, Minneapolis, MN 55414-1226 (US). ALBERT EINSTEIN COLLEGE OF MEDICINE OF YESHIVA UNIVERSITY [US/US]; 1300 Morris Park Avenue, Bronx, NY 10461 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): STEER, Clifford, J. [US/US]; 1924 Pinehusrt Avenue, St. Paul, MN 55116-1339 (US). KREN, Betsy, T. [US/US]; 810 29th Avenue S., Minneapolis, MN 55454 (US). BANDYOPAD-HYAY, Paramita, T. [IN/US]; 23208 Cornerstone Drive, Yardely, PA 19067 (US). ROY-CHOWDHURY, Jayanta [US/US]; 139 Woodhollow Lane, New Rochelle, NY 10804-3435 (US).

(74) Agents: HANSBURG, Daniel; Kimeragen, Inc., 300 Pheasant Run, Newtown, PA 18940 (US) et al.

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHODS AND COMPOUNDS FOR THE GENETIC TREATMENT OF HYPERLIPIDEMIA

(57) Abstract

The present invention concerns the introduction of specific alterations in the genes that encode three apolipoproteins, Apo A1, Apo B and Apo E. The alternations in Apo A1 introduce a cysteine residue so the disulfide cross-linked Apo A1 homodimers and Apo A1/A2 heterodimers can be formed. The alterations in Apo B introduce stop codons or frame shift mutations that cause the production of a truncated Apo B protein. The alterations in Apo E introduce specific point mutations that have been identified as protective. The production in the liver of a subject of these altered proteins reduces the risk of the subjects developing atherosclerosis. In one embodiment the genetic alterations are introduced by use of chimeric, mixed RNA/DNA, duplex oligonucleotides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ì							II miles mores.	
AL AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CI CM CN CU CZ DE DK EE	Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GE GH GN IE IL IS IT JP KE KG KP KR KZ LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe	
DK								
							•	
		LA	Liocna	SG	Singapore			1
L								

,

METHODS AND COMPOUNDS FOR THE GENETIC TREATMENT OF HYPERLIPIDEMIA

This application claims benefit of the priority of application Serial No. 60/074,497, filed February 12, 1998 and application Serial No. 09/108,006 filed June 30, 1998.

1. FIELD OF THE INVENTION

The invention concerns methods and compositions for the use of recombinagenic oligonucleobases *in vivo* for the correction of disease causing genetic defects and the prevention of disease by introducing genetic modifications into the genes that encode Apolipoprotein B (Apo B), Apolipoprotein E (Apo E) and Apolipoprotein A1 (Apo A1).

2. BACKGROUND TO THE INVENTION

2.1 THE USE OF CHIMERIC MUTATIONAL VECTORS TO EFFECT GENETIC CHANGES IN CULTURED CELLS

The inclusion of a publication or patent application in this specification is not an admission that the publication or the invention, if any, of the application occurred prior to the present invention or resulted from the conception of a person other than the present inventors.

The published examples of recombinagenic oligonucleobases are termed Chimeric Mutational Vectors (CMV) or chimeraplasts because they contain both 2'-O-modified ribonucleotides and deoxyribonucleotides.

An oligonucleotide having complementary deoxyribonucleotides and ribonucleotides and containing a sequence homologous to a fragment of the bacteriophage M13mp19, was described in Kmiec, E.B., et al., November 1994, Mol. and Cell. Biol. 14, 7163-7172. The oligonucleotide had a single contiguous segment of ribonucleotides. Kmiec et al. showed that the oligonucleotide was a substrate for the REC2 homologous pairing enzyme from *Ustilago maydis*.

Patent publication WO 95/15972, published June 15, 1995, and counterpart U.S. Patent No. 5,565,350 (the '350 patent) described duplex CMV for the introduction of genetic changes in eukaryotic cells. Examples in a *Ustilago maydis* gene and in the

murine ras gene were reported. The latter example was designed to introduce a transforming mutation into the ras gene so that the successful mutation of the ras gene in NIH 3T3 cells would cause the growth in soft agar of a colony of cells ("transformation"). The '350 patent reported that the maximum rate of transformation of NIH 3T3 was less than 0.1 %, i.e., about 100 transformants per 106 cells exposed to the ras duplex CMV. In the *Ustilago maydis* system, the rate of transformants was about 600 per 106. A chimeric vector designed to introduce a mutation into a human bcl-2 gene was described in Kmiec, E.B., February 1996, Seminars in Oncology 23, 188.

A duplex CMV designed to repair the mutation in codon 12 of K-ras was described in Kmiec, E.B., December 1995, Advanced Drug Delivery Reviews 17, 333-40. The duplex CMV was tested in Capan 2, a cell line derived from a human pancreatic adenocarcinoma, using LIPOFECTIN™ to introduce the duplex CMV into the Capan 2 cells. Twenty four hours after the duplex CMV was introduced, the cells were harvested and genomic DNA was extracted; a fragment containing codon 12 of K-ras was amplified by PCR and the rate of conversion estimated by hybridization with allele specific probes. The rate of repair was reported to be approximately 18%.

A duplex CMV designed to repair a mutation in the gene encoding liver/bone/kidney type alkaline phosphatase was reported in Yoon, K., et al., March 1996, Proc. Natl. Acad. Sci. 93, 2071. The alkaline phosphatase gene was transiently introduced into CHO cells by a plasmid. Six hours later the duplex CMV was introduced. The plasmid was recovered at 24 hours after introduction of the duplex CMV and analyzed. The results showed that approximately 30 to 38% of the alkaline phosphatase genes were repaired by the duplex CMV.

WO 97/41411 and counterpart United States Patent No. 5,760,012 to E.B. Kmiec, A. Cole-Strauss and K. Yoon, and the publication Cole-Strauss, A., et al., September 1996, SCIENCE 273, 1386 disclose duplex CMV that are used in the treatment of genetic diseases of hematopoietic cells, e.g., Sickle Cell Disease, Thalassemia and Gaucher Disease. United States Patent Application Serial No. 08/664,487, filed June 17, 1996, by E.B. Kmiec describes duplex CMV having non-natural nucleotides for use in specific, site-directed mutagenesis. The duplex CMV described in the applications and certain of the publications of Kmiec and his colleagues contain a central segment of

DNA:DNA homoduplex and flanking segments of RNA:DNA hybrid-duplex or 2'-OMe-RNA:DNA hybrid-duplex.

The work of Kmiec and his colleagues concerned cells that are mitotically active, i.e., proliferating cells, at the time they are exposed to CMV. Kmiec and colleagues used a CMV/liposomal macromolecular carrier complex in which the CMV were mixed with a pre-formed liposome or lipid vesicle. In such a complex the CMV are believed to adhere to the surface of the liposome.

Kren et al., June 1997, Hepatology **25**, 1462-1468, reported the successful use of a CMV in non-replicating, primary tissue-cultured rat hepatocytes to mutate the coagulation factor IX gene. Kren et al., March 1998, Nature Medicine **4**, 285 reported the use of a CMV *in vivo* to introduce a genetic defect in the same gene.

2.2 THE USE OF A POLYETHYLENIMINE MACROMOLECULAR CARRIER FOR IN VIVO AND IN VITRO TRANSFECTION

Branched chain polyethylenimine has been used as a carrier to introduce nucleic acids into eukaryotic cells both *in vivo* and *in vitro*. Boussif, O., et al., 1995, Proc. Natl. Acad. Sci. 92, 7297; Abdallah, B. et al., 1996, Human Gene Therapy 7, 1947. Boletta, A., et al., 1997, 8, 1243-1251. The *in vitro use of* galactosylated polyethylenimine to introduce DNA into cultured HepG2 hepatocarcinoma cell lines is reported by Zanta, et al., October 1, 1997, Bioconjugate Chemistry 8, 839-844. The coupling of a protein ligand, transferrin, to polyethylenimine and its use to introduce a test gene into cultured cells by use of the transferrin receptor is described in Kircheis, R., et al., 1997, Gene Therapy 4, 409-4-18. Branched chain polyethylenimines contain secondary and tertiary amino groups having a broad range of pK's and, consequently these polyethylenimines have a substantial buffering capacity at a pH where polylysine has little or no capacity, i.e., less than about 8. Tang, M.K., & Szoka, F.C., 1997, Gene Therapy 4, 823-832. The use of branched chain polyalkanylimines, including polyethylenimine as carriers for the introduction of nucleic acids into cells is described in WO 96/02655 to J-P. Behr et al.

The successful *in vivo* and *in vitro* use of linear polyethylenimine to transfect a gene is reported by Ferrari, S., et al., 1997, Gene Therapy 4, 1100-1106. Compositions

comprising a linear polyalkanylimine and a nucleic acid as disclosed in patent publication WO 93/20090 to S. Stein et al.

2.3 THE USE OF A LIPOSOMAL CARRIER FOR IN VIVO TRANSFECTION

The use of liposomes or lipid vesicles to introduce DNA encoding a foreign protein into cells has been described. The most frequently used techniques adhere the DNA to the surface of a positively charged liposome, rather than encapsulating the DNA, although encapsulated DNA techniques were known. United States Patent Nos. 4,235,871 and 4,394,448 are relevant. The field is reviewed by Smith, J.G., et al., 1993, Biochim. Biophy. Acta 1154, 327-340 and Staubinger, R.M., et al., 1987, Methods in Enzymology 185, 512. The use of DOTAP, a cationic lipid in a liposome to transfect hepatic cells *in vivo* is described in Fabrega, A.J., et al., 1996, Transplantation 62, 1866-1871. The use of cationic lipid-containing liposomes to transfect a variety of cells of adult mice is described in Zhu, N., et al., 1993, Science 261, 209. The use of phosphatidylserine containing lipids to form DNA encapsulating liposomes for transfection is described in Fraley, R., et al., 1981, Biochemistry 20, 6978-87.

2.4 THE USE OF THE ASIALOGLYCOPROTEIN RECEPTOR FOR HEPATOCELLULAR SPECIFIC TRANSFECTION

United States Patent Nos. 5,166,320 and 5,635,383 disclose the transfection of hepatocytes by forming a complex of a DNA, a polycationic macromolecular carrier and a ligand for the asialoglycoprotein receptor. In one embodiment, the macromolecular carrier was polylysine. The use of a lactosylcerebroside containing liposome to transfect a hepatocyte *in vivo* is described by Nandi, P.K., et al., 1986, J. Biol. Chem. **261**, 16722-16722. The use of asialofetuin-labeled liposomes to transfect liver cells with a reporter plasmid is described in Hara et al., 1995, Gene Therapy **2**, 764-788. The use of galactosylated poyethyleneimine to transfect cultured hepatocytes is described in Zanta M-A., et al. abst. pub. Oct. 1, 1997, Bioconjugate Chem., **8**, 839-844.

2.5 APO B100, APO B48 AND THE REDUCTION OF SERUM LDL

Hepatic and Intestinal Lipoprotein Secretion: Both the liver and the intestines make and export lipoproteins for the transport of lipids. The lipoproteins are termed very low density lipoproteins (VLDL) and chylomicrons, respectively. VLDL and chylomicrons differ in size and in their major protein components. The major protein of VLDL is Apo B100, consisting of 4536 amino acids; the major protein of chylomicrons is Apo B48, which consists of the N-terminal 2152 amino acids of Apo B100. Apo B48 and Apo B100 are encoded by a single gene, the transcript of which is modified at nucleotide 6666 (codon 2179) by a sequence specific cytidine deaminase, termed apolipoprotein B mRNA editing enzyme (APOBE). The action of this enzyme converts a C to U and results in a stop codon.

Both VLDL, which contain Apo B100, and chylomicrons, which contain Apo B48 transport triglycerides in the vascular system to a delivery site. However, after triglyceride hydrolysis and delivery VLDL are transformed into LDL, while chylomicrons are not. High levels of circulating LDL *per se* and a high LDL:HDL ratio increase the risk of arterial atherosclerosis. Hence, it has been suggested that increasing the ratio of Apo B48 to Apo B100 would have a beneficial effect.

In many species of mammals, e.g., rats and mice, a high percentage of the lipid secretions of both liver and intestine contain Apo B48. Such species have markedly lower ratios of LDL:HDL. Greve J., et al., 1995, Proc. Zool. Soc., Calcutta, 47, 93-100. In others, such as humans and rabbits, hepatocytes lack APOBE and the hepatocytes consequently produce only VLDL.

One strategy to reduce the atherosclerosis in humans has been to introduce the gene for the catalytic component of the apolipoprotein B editing enzyme (APOBEC-1) under the control of a constitutive promoter to convert Apo B100 transcripts into Apo B48 transcripts. The transient expression of APOBEC-1 in the hepatocytes of normal and genetically hyperlipidemic Watanabe rabbit does cause a transient reduction in the levels of LDL. Greeve, J., et al., 1996, J. Lipid Res. 37, 2001-17. However, the uncontrolled production of APOBEC-1 is mutagenic and may cause hepatocellular hyperplasia and hepatocellular carcinoma. Yamanaka, S., et al., 1995, Proc. Natl. Acad. Sci. 92, 8483-8487.

Individuals who are homozygous or mixed heterozygotes for genes encoding truncated Apo B100 have been observed. Malloy et al., 1981, J. Clin. Invest. 67, 1441; Hardman, D.A., et al., 1991, J. Clin. Invest. 88, 1722. These individuals have low or absent LDL. For example, deletion of nucleotides 5391-5394 results in a frame shift mutation and a shortened Apo B (B37). These patients are most often asymptomatic. Steinberg, D., et al., 1979, J. Clin. Invest. 64, 292; Young, S.G., et al., 1988, Science 241, 591; Young, S.G., 1987, J. Clin. Invest. 79, 1831. Reviewed Linton, M.F., 1993, J. Lipid. Res. 34, 521; Kane, J.P. & Havel, R.J., 1995, Chapt. 57, The METABOLIC BASIS OF INHERITED DISEASE, ed. Scriver et al. (McGraw Hill, New York). Similarly, as many as 1 in every 3,000 persons has a serum cholesterol level of 100 mg/dl or less because the individual is heterozygous for a truncated Apo B gene. *Ibid.*, p. 1866.

Truncations that result in an Apo B that are shorter than Apo B 31 do not circulate. Truncated Apo B 86, 87 and 90 have been observed. Apo B 86 and Apo B 87, are not associated with LDL while Apo B 90 is. Each mutation is associated with hypobetalipoproteinemia. Linton, M.L., et al., 1990, Clin. Res. 38, 286A (abstr.); Tennyson, G.E., et al., 1990, Clin. Res. 38, 482A (abstr.); Kruhl, E.S., et al., 1989, Arteriosclerosis 9, 856.

2.6 APO E POLYMORPHISM AND TYPE III HYPERLIPIDEMIA

Apolipoprotein E is the major ligand for the LDL receptor for lipoproteins that contain Apo B48. There are three allelic forms of human Apo E that differ from each other by one or two amino acids: Apo E2 (Cys¹¹² Cys¹⁵⁸); Apo E3 (Cys¹¹² Arg¹⁵⁸); and Apo E4 (Arg¹¹² Arg¹⁵⁸). There is considerable geographical variation in the prevalences of the alleles. Excluding Africa, E2 ranges between 4% and 12 %, E3 between 70% and 85% and E4 between 7.5 and 25%. In the Sudan, the prevalences are 8.1%, 61.9% and 29.1%, respectively. Mahley, R.W. & Rall, S.C., Jr., 1995, Chapt. 61, THE METABOLIC BASIS OF INHERITED DISEASE, ed. Scriver et al. (McGraw Hill, New York). Thus approximately 1% of the North American and European population are Apo E 2/2 homozygotes. Of these homozygotes approximately between 2% and 10% display type III hyperlipidemia. Paradoxically, however, Apo E 2/2 homozygotes that have not

developed overt Type III hyperlipidemia display lower than average LDL associated cholesterol. Davignon, J., 1988, Arteriosclerosis 8, 1.

The E4 allele is also associated with increased incidence of a major disease, Alzheimer's Disease, and with increased risk of coronary artery disease. Roses, A.D., 1996, Ann. NY Acad. Sci. **802**, 50-57; Okumoto, K., & Fujiki, Y., 1997, Nature Genetics **17**, 263; Kuusi, T., et al., 1989, Arteriosclerosis 9, 237. A polymorphism in the region 491 nt 5' to the transcription start site of the Apo E gene is also an independently associated with increased risk of Alzheimer's disease. Individuals homozygous for the -491-A genotype have an increased risk of Alzheimer's, while individuals homozygous or heterozygous for the -491 T genotype have no increased risk. Bullido, M.J., 1998, et al., Nature Genetics **18**, 69-71.

The E2 allele in most individuals is associated with the lowest levels of serum cholesterol and LDL. However, about 5% of E2/E2 homozygous persons who are subject to environmental or genetic stress develop type III hyperlipidemia. The most common stressors are hypothyroidism, untreated diabetes mellitus, alcoholism and marked weight gain. Removal of the stressor usually results in control of the hyperlipidemia. Rare patients with type III hyperlipidemia have mutant Apo E genes. Mahley & Rall, *ibid*. Table 61-5.

2.7 APO A1 AND HDL

High density lipoproteins (HDL) transport cholesterol and phospholipids from peripheral extraheptatic locations to the liver. In particular, HDL are believed to remove lipid deposits from vascular endothelial cells and that the observed negative correlation between the levels of HDL-cholesterol (HDL-C) and coronary artery disease is due to this function. Eisenberg, S., 1984, J. Lipid Research 25, 1017; Gordon, D.J., et al., 1986, Circulation 74, 1217. HDL are secreted by the liver and intestines as nacent HDL particles containing four molecules of apo A1, which is a 243 amino acid protein. The nascent HDL physically attract free cholesterol from cell membranes and/or other lipoproteins. The resulting particle contains apo A1, phospholipid, and cholesterol. Such particles are substrates for lecithin:cholesterol acyltransferase (LCAT), which esterifies the free cholesterol to cholesterol esters. The presence of the more hydrophobic cholesterol

esters transforms the nascent HDL initially to a more stable mature HDL3 and subsequently HDL3 particle.

Cholesterol ester transfer protein removes the esterified cholesterol from the HDL3 and HDL2 particles and transfers them into LDL and thence into hepatocytes through the LDL receptors.

Two mutations of apo A1 have been discovered wherein the levels of HDL are depressed. The mutations are missense mutations that replace an arginine with a cysteine amino acid. Weisgraber, K.H., et al., 1983, J. Biol. Chem. **258**, 2508 (apo A1 milano (Arg¬Cys)¹⁷³); Bruckert, E., et al., 1997, Atherosclerosis **128**, 121 (apo A1 R151C (Arg¬Cys)¹⁵¹). The mutation is dominant, i.e., HDL levels are depressed in affected individuals who are heterozygous for the mutation. An explanation for this is that the mutant apo A1 proteins form cystine linked heterodimers with wild apo A2 molecules, which are a minor apolipoprotein found in HDL, as well as homodimers.

Surprising even though the lipid profile, i.e., low HDL and elevated triglycerides, is one that ordinarily is associated with accelerated atherosclerosis, the mutations are not associated with atherosclerosis, but, rather, are believed to be protective of atheroscelerosis.

The mechanism of protection is not established. A large (N = 33) retrospective epidemologic study of apo A1 milano carriers shows that there is a low incidence of coronary artery disease in these individuals, however, the significance of this fact must be viewed in the context of similar low incidence among non-affected residents of the village Limone sul Garda. Gualandri, V., et al., 1985, Am. J. Hum.Gen. 37, 1083. *In vitro* studies indicate that the mutant apo A1 is not more effective in recruiting plasma membrane cholesterol. Bielicki, J.K., et al., 1997, Arterioscler Thromb Vasc Biol 17, 1637 There is direct evidence that the administration of exogenous apo A1 milano, but not wild type apo A1, in the form of a complex with phospholipids, is protective in an accepted model system of atherosclerosis. Ameli, S. et al., 1994, Circulation 90, 1935; Shah, P.K., et al., 1998, Circulation 97, 780.

3. SUMMARY OF THE INVENTION

The present invention concerns methods of treatment and/or prophylaxis which consists of the introduction of specific genetic alterations in genes of a subject individual. In one embodiment, the specific genetic alteration blocks the synthesis of Apo B100 and thereby reduces the level of LDL cholesterol. In an alternative embodiment, the specific alteration converts an Apo E4 allele to an Apo E3 or Apo E2 allele, which is associated with decreased risk of atherosclerosis and Alzheimer's Disease. In further alternative embodiments, the invention concerns the correction of inherited genetic defects in the genes of hepatocytes of individuals having a disease caused by such defects.

The present invention further comprises a method of treating and/or preventing atherosclerosis by causing mutations in the genes encoding apo A1 and compounds that are useful for the introduction of such mutations. The mutations useful for the practice of the invention are mutations that insert a cysteine residue that forms a cystine and results in the formation of homodimers and apo A2-containing heterodimers.

The embodiments of the invention can be practiced using any oligonucleotide or analog or derivative thereof, now known or hereafter developed, that can cause specific genetic alterations in the genome of the hepatocytes of the subject individual (hereafter a "recombinagenic oligonucleobase"), for example a chimeric mutational vector (CMV) as, for example, described in United States patent No. 5,565,350, No. 5,731,181, and No. 5,760,012. Alternatively, the recombinagenic oligonucleobase can be a heteroduplex mutational vector or a non-chimeric mutational vector as described in U.S. patent application No. 09/078,063 and No. 09/078,064, filed May 12, 1998, each of which are hereby incorporated by reference.

In a preferred embodiment the recombinagenic oligonucleobase is complexed with a macromolecular carrier to which is attached a specific ligand. The ligand is selected to bind to a cell-surface receptor that is internalized into hepatocytes through clathrin-coated pits into endosomes. The cell surface receptors that bind such ligands are termed herein "clathrin-coated pit receptors". Examples of hepatic clathrin-coated pit receptors include the low density lipoprotein (LDL) receptor and the asialoglycoprotein receptor.

In specific embodiments the macromolecular carrier can be 1) an aqueous-cored lipid vesicle of between 25 nm and 400 nm diameter, wherein the aqueous core contains the CMV; 2) a lipid nanosphere of between 25 nm and 400 nm diameter, having a lipid core, wherein the lipid core contains a lipophilic salt of the CMV; or 3) a polycationic salt of the CMV. Examples of polycations for such salts include polyethylenimine, polylysine and histone H1. In one embodiment the polycation is a linear polyethylenimine (PEI) salt having a mass average molecular weight greater than 500 daltons and less than 1.3 Md. Alternatively the polycation can be a branched-chain polyethylenimine.

4. BRIEF DESCRIPTION OF THE FIGURE

Figure 1 is a schematic of one embodiment of CMV useful in the invention.

Figures 2A-2C show the genomic sequence of human APO E gene with translation of exons. Introns are in lower case and exons are in upper case.

Figure 3A-3G shows the sequence of the human APO A1 gene (SEQ ID No. 59)

5. **DEFINITIONS**

The invention is to be understood in accordance with the following definitions.

An <u>oligonucleobase</u> is a polymer of nucleobases, which polymer can hybridize by Watson-Crick base pairing to a DNA having the complementary sequence.

Nucleobases comprise a base, which is a purine, pyrimidine, or a derivative or analog thereof. Nucleobases include peptide nucleobases, the subunits of peptide nucleic acids, and morpholine nucleobases as well as nucleosides and nucleotides. Nucleosides are nucleobases that contain a pentosefuranosyl moiety, e.g., an optionally substituted riboside or 2'-deoxyriboside. Nucleosides can be linked by one of several linkage moieties, which may or may not contain a phosphorus. Nucleosides that are linked by unsubstituted phosphodiester linkages are termed nucleotides.

An <u>oligonucleobase chain</u> has a single 5' and 3' terminus, which are the ultimate nucleobases of the polymer. A particular oligonucleobase chain can contain nucleobases of all types. An <u>oligonucleobase compound</u> is a compound comprising one or more oligonucleobase chains that are complementary and hybridized by Watson-Crick base pairing. Nucleobases are either deoxyribo-type or ribo-type. <u>Ribo-type nucleobases</u> are

pentosefuranosyl containing nucleobases wherein the 2' carbon is a methylene substituted with a hydroxyl, alkyloxy or halogen. Deoxyribo-type nucleobases are nucleobases other than ribo-type nucleobases and include all nucleobases that do not contain a pentosefuranosyl moiety.

An <u>oligonucleobase strand</u> generically includes both oligonucleobase chains and segments or regions of oligonucleobase chains. An oligonucleobase strand has a 3' end and a 5' end. When a oligonucleobase strand is coextensive with a chain, the 3' and 5' ends of the strand are also 3' and 5' termini of the chain.

A region is a portion of an oligonucleobase, the sequence of which is derived from some particular source, e.g., a CMV having a region of at least 15 nucleotides having the sequence of a fragment of the human ß-globin gene. A segment is a portion of a CMV having some characteristic structural feature. A given segment or a given region can contain both 2'-deoxynucleotides and ribonucleotides. However, a ribo-type segment or a 2'-deoxyribo-type segment contain only ribo-type and 2'-deoxyribo-type nucleobases, respectively.

6. DETAILED DESCRIPTION OF THE INVENTION

6.1 THE STRUCTURE OF THE CHIMERIC MUTATIONAL VECTOR

The Chimeric Mutational Vectors (CMV) are comprised of oligonucleobases, i.e., polymers of nucleobases, which polymers form Watson-Crick base pairs of purines and pyrimidines (hybridize), to DNA having the appropriate sequence. Each CMV is divided into a first and a second strand of at least 15 nucleobases each that are complementary to each other. The strands can be, but need not be, covalently linked. Nucleobases contain a base, which is either a purine or a pyrimidine or analog or derivative thereof. There are two types of nucleobases. Ribo-type nucleobases are ribonucleosides having a 2'-hydroxyl, substituted 2'-hydroxyl or 2'-halo-substituted ribose. All nucleobases other than ribo-type nucleobases are deoxyribo-type nucleobases. Thus, deoxy-type nucleobases include peptide nucleobases. As used herein, only a recombinagenic oligonucleobase that contains at least three contiguous ribo-type nucleobases that are hybridized to deoxyribo-type nucleobases are considered CMV.

The sequence of the first and second strands consists of at least two regions that are homologous to the target gene, i.e., have the same sequence as fragments of the target gene, and one or more regions (the "mutator regions") that differ from the target gene and introduce the genetic change into the target gene. The mutator region is located between homologous regions. In certain embodiments of the invention, each of the flanking homologous regions contains a ribo-type segment of at least three ribo-type nucleobases, that form a hybrid duplex, preferably at least six ribo-type nucleobases and more preferably at least ten ribo-type nucleobases in length, but not more than 25 and preferably not more than 20, more preferably not more than 15 ribo-type nucleobases. The hybrid-duplex-forming ribo-type oligonucleobase segments need not be adjacent to the mutator region. In certain embodiments of the invention the ribo-type oligonucleobase segments are separated from the mutator region by a portion of the homologous region comprising deoxyribo-type nucleobases. In these embodiments the mutator region is also composed of deoxyribo-type nucleobases. Accordingly, the mutator region and a portion of one or both homologous regions form an intervening segment of homo-duplex, which separates the two segments of hybrid-duplex.

The total length of all homologous regions is preferably at least 16 nucleobases and is more preferably from about 20 nucleobases to about 60 nucleobases in length.

Preferably, the mutator region consists of 20 or fewer bases, more preferably 6 or fewer bases and most preferably 3 or fewer bases. The mutator region can be of a length different than the length of the sequence that separates the regions of the target gene homology with the homologous regions of the CMV so that an insertion or deletion of the target gene results. When the CMV is used to introduce a deletion in the target gene there is no base identifiable as within the mutator region. Rather, the mutation is effected by the juxtaposition of the two homologous regions that are separated in the target gene. For the purposes of the invention, the length of the mutator region of a CMV that introduces a deletion in the target gene is deemed to be the length of the deletion. In one embodiment the mutator region is a deletion of from 6 to 1 bases or more preferably from 3 to 1 bases. Multiple separated mutations can be introduced by a single CMV, in which case there are multiple mutator regions in the same CMV. Alternatively multiple CMV can be used simultaneously to introduce multiple genetic changes in a single gene

or, alternatively to introduce genetic changes in multiple genes of the same cell. Herein the mutator region is also termed the heterologous region.

In one embodiment the CMV is a single oligonucleobase chain of between 40 and 100 nucleobases. In an alternative embodiment, the CMV comprises a first and a second oligonucleobase chain, each of between 20 and 100 bases; wherein the first chain comprises the first strand and the second chain comprises the second strand. The first and second chains can be linked covalently by other than nucleobases or, alternatively, can be associated only by Watson-Crick base pairings. In an alternative embodiment the CMV is a first strand which is a single oligonucleobase chain and a second strand, complementary to the first which consists of two oligonucleobase chains, which are linked to the first strand chain by linkers. The combined length of the two chains of the second strand is the length of the first strand.

Linkers: Covalent linkage of the first and second strands can be made by oligoalkanediols such as polyethyleneglycol, poly-1,3-propanediol or poly-1,4-butanediol. The length of various linkers suitable for connecting two hybridized nucleic acid strands is understood by those skilled in the art. A polyethylene glycol linker having from six to three ethylene units and terminal phosphoryl moieties is suitable. Durand, M. et al., 1990, Nucleic Acid Research 18, 6353; Ma, M. Y-X., et al., 1993, Nucleic Acids Res. 21, 2585-2589. A preferred alternative linker is bis-phosphorylpropyl-trans-4,4'-stilbenedicarboxamide. Letsinger, R.L., et alia, 1994, J. Am. Chem. Soc. 116, 811-812; Letsinger, R.L. et alia, 1995, J. Am. Chem. Soc. 117, 7323-7328, which are hereby incorporated by reference. Such linkers can be inserted into the CMV using conventional solid phase synthesis. Alternatively, the strands of the CMV can be separately synthesized and then hybridized and the interstrand linkage formed using a thiophoryl-containing stilbenedicarboxamide as described in patent publication WO 97/05284, February 13, 1997, to Letsinger R.L. et alia.

In a further alternative embodiment the linker can be a single strand oligonucleobase comprised of nuclease resistant nucleobases, e.g., a 2'-O-methyl, 2'-O-allyl or 2'-F-ribonucleotides. The tetranucleotide sequences TTT, UUUU and UUCG and the trinucleotide sequences TTT, UUU, or UCG are particularly preferred nucleotide linkers.

Nucleotides: In an alternative embodiment the invention can be practiced using CMV comprising deoxynucleotides or deoxynucleosides and 2'-O substituted ribonucleotides or ribonucleosides. Suitable substituents include the substituents taught by the Kmiec Application, C₁₋₆ alkane. Alternative substituents include the substituents taught by U.S. Patent No. 5,334,711 (Sproat) and the substituents taught by patent publications EP 629 387 and EP 679657 (collectively, the Martin Applications), which are hereby incorporated by reference. As used herein a 2' fluoro, chloro or bromo derivative of a ribonucleotide or a ribonucleotide having a substituted 2'-O as described in the Martin Applications or Sproat is termed a "2'-Substituted Ribonucleotide." Particular preferred embodiments of 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxy, 2'-propyloxy, 2'-allyloxy, 2'-hydroxylethyloxy, 2'-methoxyethyloxy, 2'-fluoropropyloxy and 2'-trifluoropropyloxy substituted ribonucleotides. In more preferred embodiments the 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxyethyloxy, and 2'-allyloxy substituted nucleotides.

2'-Substituted Ribonucleosides are defined analogously. Particular preferred embodiments of 2'-Substituted Ribonucleosides are 2'-fluoro, 2'-methoxy, 2'-propyloxy, 2'-allyloxy, 2'-hydroxylethyloxy, 2'-methoxyethyloxy, 2'-fluoropropyloxy and 2'-trifluoropropyloxy substituted ribonucleotides. In more preferred embodiment on the 2'-Substituted Ribonucleosides are 2'-fluoro, 2'-methoxy, 2'-methoxyethyloxy, and 2'-allyloxy substituted nucleotides.

The term "nuclease resistant ribonucleoside" encompasses 2'-Substituted Ribonucleosides, including 2'-Substituted Ribonucleotides and also all 2'-hydroxyl ribonucleosides other than ribonucleotides. In a preferred embodiment, the CMV preferably includes at least three and more preferably six nuclease resistant ribonucleosides. In one preferred embodiment the CMV contains no nuclease sensitive ribonucleosides. In an alternative preferred embodiment, every other ribonucleoside is nuclease resistant. Certain 2'-blocking groups can be more readily synthesized for purines or pyrimidines. In one embodiment of the CMV only the ribonucleoside purines or only the ribonucleoside pyrimdines are nuclease resistant.

Recombinagenic oligonucleobases, including non-chimeric mutational oligonucleobases and improved CMV and their use in eukaryotic cells and cell-free

systems are described in U.S. patent applications Serial No. 09/078,063, filed May 12, 1998, and Serial No. 09/078,064, filed May 12, 1998, which are each hereby incorporated in their entirety. These mutational oligonucleobases can be used in the same manner as the CMV described in this application.

6.2 THE GENE-SPECIFIC STRUCTURE OF THE CHIMERIC MUTATIONAL VECTOR

Figure 1 shows a diagram of a CMV according to one embodiment of the invention. In the Figure segments "a" and "c-e" are target gene specific segments of the CMV. The sequence of segment "a" and "c-e" are complements of each other. The sequence of segments "f" and "h" are also complements of each other but are unrelated to the specific target gene and are selected merely to ensure the stability of hybridization in order to protect the 3' and 5' ends. Additional protection of the 3' and 5' ends can be accomplished by making the 5' and 3' most internucleotide bonds a phosphorothioate, phosphonate or any other nuclease resistant bond. The sequence of segments "f" and "h" can be 5'-GCGCG-3' or permutations thereof. Segments "g" and "b" can be any linker that covalently connects the two strands, e.g., four unpaired nucleotides or an alkoxy oligomer such as polyethylene glycol. When segments "g" and "b" are composed of other than nucleobases, then segments "a", "c-f" and "h" are each an oligonucleobase chain.

The ribo-type nucleobase segments are segments "c" and "e," which form hybrid-duplexes by Watson-Crick base pairing to the complementary portions of segment "a." The segment "a" can have the sequence of either the coding or non-coding strand of the gene.

Table I contains SEQ ID No. 4 - No. 21 and Table III contains SEQ ID No. 22-25 and 54-58, which are examples of the sequences that can be used to practice the invention. The mutator region in each case is underlined and in bold. CMV having a segment "a" with a sequence selected from the sequences of Table I can be used to practice the invention. Alternatively, segment "a" may have the sequence of the complement of a sequence of Table I. As used herein, a CMV or other type of recombinagenic oligonucleobase comprises a sequence if either strand of the CMV or recombinagenic oligonucleobase comprises the sequence or comprises a sequence containing ribo-type nucleobases with uracil bases replacing thymine bases. Thus, for

example, a CMV having the sequence 5'-agucuggaugGGTAAgccgcccuca-3' (SEQ ID No. 26) is considered to have the sequence of SEQ ID No: 4, wherein the lower case letters denote ribo-type nucleobases and the UPPER CASE letters denote deoxyribo-type nucleobases.

Subjects can be treated with a recombinagenic oligonucleobase specific for Apo B or Apo E according to the guidance of the Factor IX example below. More particularly the recombinagenic oligonucleobase can be given in divided doses at intervals that permit determining of the phenotypic effect of the dose, i.e., evaluation of the extent of the decline in LDL cholesterol and observation for adverse reactions. A reduction of the subject's fasting LDL serum cholesterol to below the level of the 5th percentile of the agematched population (80-90 mg/dl) can be used as a therapeutic end point; alternatively reduction of fasting LDL serum cholesterol to below the average age-matched normal value (100-140) can be used. The number and size of the dose(s) can be modified to control the extent of the phenotypic effects. In the event that reversal of the specific genetic changes appear desirable, a recombinagenic oligonucleobase having a sequence appropriate to reverse the specific changes can be administered so that the fraction of unmodified Apo B or Apo E genes can be increased. Modification of the dose size and number and the administration of a reversing recombinagenic oligonucleobase permits the adjustment of the number of altered genes in the subject so that a predetermined amount of the phenotypic change can be effected.

6.2.1 Specific Alterations of the Apo B Gene

SEQ ID No. 1 contains the Apo B amino acid sequence and SEQ ID No. 2 contains the Apo B cDNA sequence.

The level of serum cholesterol and particularly of LDL-associated cholesterol can be reduced in a subject by introducing mutations into the subject's hepatic Apo B genes. The mutation can be any mutation that causes termination of the Apo B translation product between amino acid 1433 (Apo B 31) and amino acid 3974 (Apo B 87). (The amino acid numbering for Apo B in this specification refers to the 4553 amino acid primary translation product, i.e., mature Apo B100 plus the 27 amino acid leader sequence. Mature Apo B 100 consists of 4536 amino acids and mature Apo B 48 consists

of 2152 amino acids.) Preferably the translation product is terminated between amino acids 1841 (Apo B 40) and 2975 (Apo 65). The translation product can be terminated by introducing a frameshift mutation, i.e., by adding or deleting one or two nucleotides from the gene, or by introducing a stop codon (a TAA, TAG or TGA). The preferred stop codon is TAA. To monitor the introduction of the mutation it is preferred to have the mutation introduce or remove a palindromic sequence, which is the substrate of a restriction enzyme.

The sequence of the CMV is selected to have two homologous regions of at least 10 nucleobases and preferably at least 12 nucleobases each with a fragment of the Apo B gene located between nucleotides encoding amino acid 1433 (nt 4425) and 3974 (nt 12,048) and preferably located between the nucleotides encoding amino acids 1841 (nt 5649) and 2975 (nt 9051). In this specification, nt 6666 is the first nucleotide of codon 2180, the nucleotide that is converted by APOBE. In a preferred embodiment, the two homologous regions are separated by a single nucleobase in the sequence of the Apo B gene, where the CMV introduces a base substitution in the Apo B gene. Alternatively, the two homology regions can be adjacent in the Apo B gene and separated by a single or double nucleobase in the CMV, such that a one or two base insertion results from the action of the CMV on the Apo B gene. Alternatively, the homologous regions can be separated in the Apo B gene by one or two nucleotides that are deleted from the sequence of the CMV, such that the action of the CMV results in a one or two base deletion in the gene.

Nucleotides 4425-12,048 of the Apo B cDNA are encoded by exon 26 (nt 4342-11913), exon 27 (nt 11914 - 12028) and exon 28 (nt 12029-12212); see Table I, and GENBANK Accession No. 19828, which is hereby incorporated by reference. When an alteration is to be made at a position 3' of nt 11913, attention must be paid to the exon/intron boundary. Mutations that are located within 10-15 nucleotides of the exon/intron boundary must be identified so that the homology region of the CMV continues with the sequence of the intron and not the exon.

The homologous regions can be each from 10 to about 15 nucleobases in length; the two regions need not be of the same length. The fraction of nucleobases that contain a guanine or cytosine base is a design consideration (the GC fraction). It is preferred that

when the homologous region contains 12 or fewer nucleobases, the GC fraction be at least 33% and preferably at least 50%. When the GC fraction is less than 33% the length of the homologous regions is preferably 13, 14 or 15 nucleobases.

Table I contains 18 exemplary embodiments, SEQ ID No. 4-21 and Table III contains 9 exemplary embodiments, SEQ ID No. 22-25 and 54-58, of CMV sufficient for the practice of the embodiments of the invention described in this section. Suitable CMV can be made using nt 3-23 of SEQ ID No. 4-10, 12, and 16-20. SEQ ID NO. 11 and 13-15 have a lower GC fraction; CMV sufficient for the practice of the invention can be made containing residues 3-25 of SEQ ID NO. 11 and 13-15.

6.2.2 Specific Alterations of the Apo E Gene

In a further embodiment, the invention consists of introducing specific alterations to the Apo E gene. E4 homozygous individuals are at increased risk for atherosclerosis, particularly coronary artery disease, and Alzheimer's disease. Therefore, one embodiment of the present invention is the introduction of the substitution Arg—Cys at residues 112, to convert an E4 allele to an E3 allele, and optionally at residue 158 to convert an E3 or E4 allele into an E2 allele of an Apo E gene of an hepatocyte of a subject. The substitutions can be introduced using an oligonucleobase containing the sequence of nt 3-23 of SEQ ID No. 22 and No. 23 or complement thereof and more preferably of an oligonucleobase containing SEQ ID No. 22 and No. 23 or complement thereof. In addition, in individuals lacking genetic or environment stressors, the E2 allele results in a lowered LDL level and a decreased risk of atherosclerosis and coronary artery disease. Thus, these risks in an E3/E3 individual can be reduced by introduction of the (Arg—Cys)¹⁵⁸ substitution to convert the individual Apo E genes to E2 alleles.

Apo E2/E2 homozygous individuals who are suffering from Type III hyperlipidemia can be treated by converting E2 alleles to E3 alleles by making a Cys→Arg¹⁵⁸ substitution. Such a substitution can be made using an oligonucleobase containing the sequence of nt 3-23 of SEQ ID No. 24 or complement thereof and more preferably of an oligonucleobase containing SEQ ID No. 24 or complement thereof.

Independent of the Apo E allele, individuals who are homozygous for -491-A are at increased risk to develop Alzheimer's Disease. Bullido, M.J., 1998, et al., Nature

Genetics **18**, 69-71. These individuals can be advantageously treated with an oligonucleobase containing the sequence of nt 3-23 of SEQ ID No. 25.

6.2.3 Repair of Mutations of the Apo B and Apo E Gene

SEQ ID No. 3 contains the Apo E genomic DNA sequence.

A further embodiment of the invention concerns the use of CMV to repair mutations in the Apo B and Apo E genes that cause hypobetalipoproteinemia and dysbetaliproteinemia, respectively. Mutations that are located within 10-15 nucleotides of the exon/intron boundary must be identified so that the homology region of the CMV continues with the sequence of the intron and not the exon. The genomic sequence of Apo E4 indicating the exon and intron boundaries is given in Paik et al., 1985, Proc. Natl. Acad. Sci. 82, 3445, which is hereby incorporated by reference. The exon/intron boundaries of the Apo B gene are given in Table II along with the GENBANK accession numbers for the genomic sequence of Apo B.

6.2.4 Specific Alterations of the Apo A1 Gene

Apo A1 is a 243 amino acid protein. Amino acids 99-230 are encoded by six tandem duplications of a 66 base pair prototype sequence. The duplications are between 80 % and 64 % homologous to the consensus sequence. Without limitation as to theory the conformation of amino acids 120 to 230 is believed to be helical. The sequence of the amino acids is such that the helix is amphipathic, i.e., the helix has a hydrophobic face and a hydrophilic face, which contains polar amino acids.

The mutations most suitable for the practice of the invention are substitutions of polar amino acids by cysteine. Particularly suitable mutations are at arginine residues that are located next to other polar amino acids because the arginine codon used in apo A1 (CGC) can be converted into a TGC cysteine codon by a single base change. Thus, particularly suitable sites for mutations according to the present invention are arginine 149, 151, 153, 171 and 173.

6.3 FORMULATIONS SUITABLE FOR IN VIVO USE

The prior art formulations of CMV and a macromolecular carrier are of limited utility for *in vivo* use because of their low capacity for CMV and because the CMV is not protected from extracellular enzymes. The invention provides three alternative macromolecular carriers that overcome the limitations of the prior art. The carriers are polyethylenimine (PEI), aqueous-cored lipid vesicles, which are also termed unilamellar liposomes and lipid nanospheres.

Each of the carriers can be further provided with a ligand that is complementary to a cell-surface protein of the target cell. Such ligands are useful to increase both the amount and specificity of the uptake of CMV into the targeted cell. In one embodiment of the invention the target cell is a hepatocyte and the ligand is a galactose saccharide or lactose disaccharide that binds to the asialoglycoprotein receptor.

6.3.1 <u>Polycationic Carriers</u>

The invention can be practiced using any polycation that is non-toxic when administered to cells *in vitro* or to subjects *in vivo*. Suitable examples include polybasic amino acids such as polylysine, polyarginine, basic proteins such as histone H1, and synthetic polymers such as the branched-chain polyethylenimine:

The invention can be practiced with any branched chain polyethylenimine (PEI) having an average molecular weight of greater than about 500 daltons, preferably greater than between about 10 Kd and more preferably about 25 Kd (mass average molecular weight determined by light scattering). The upper limit of suitability is determined by the toxicity and solubility of the PEI. Toxicity and insolubility of molecular weights greater than about 1.3 Md makes such PEI material less suitable. The use of high molecular weight PEI as a carrier to transfect a cell with DNA is described in Boussif, O. et al., 1995, Proc. Natl. Acad. Sci. 92, 7297, which is hereby incorporated by reference. PEI solutions can be prepared according to the procedure of Boussif et al.

The CMV carrier complex is formed by mixing an aqueous solution of CMV and a neutral aqueous solution of PEI at a ratio of between 9 and 4 PEI nitrogens per CMV phosphate. In a preferred embodiment the ratio is 6. The complex can be formed, for

example, by mixing a 10 mM solution of PEI, at pH 7.0 in 0.15 M NaCl with CMV to form a final CMV concentration of between 100 and 500 nM.

In addition a ligand for a clathrin-coated pit receptor can be attached to the polycation or to a fraction of the polycations. In one embodiment the ligand is a saccharide or disaccharide that binds to the asialoglycoprotein receptor, such as lactose, galactose, or N-acetylgalactosamine. Any technique can be used to attach the ligands. The optimal ratio of ligand to polyethylene subunit can be determined by fluorescently labeling the CMV and injecting fluorescent CMV/molecular carrier/ligand complexes directly into the tissue of interest and determining the extent of fluorescent uptake according to the method of Kren et al., 1997, Hepatology 25, 1462-1468.

Good results can be obtained using a 1:1 mixture of lactosylated PEI having a ratio of 0.4-0.8 lactosyl moieties per nitrogen and unmodified PEI. The mixture is used in a ratio of between 4 and 9 PEI nitrogens per CMV phosphate. A preferred ratio of oligonucleotide phosphate to nitrogen is 1:6. Good results can be obtained with PEIs having a mass average molecular weight of 25 Kd and 800 Kd which are commercially available from Aldrich Chemical Co., Catalog No. 40,872-7 and 18,197-8, respectively. Linear PEI such as that described in Ferrarri, S., et al., 1997, Gene Therapy 4, 1100-1106 and sold under the trademark EXGEN 500TM is particularly suitable for the practice of the invention because of its lower toxicity compared to branched-chain PEI.

In an alternative embodiment the polycationic carrier can be a basic protein such as histone H1, which can be substituted with a ligand for a clathrin-coated pit receptor. A 1:1 (w/w) mixture of histone and CMV can be used to practice the invention.

6.3.2 Lipids that Are Useful in Carriers

The selection of lipids for incorporation into the lipid vesicle and lipid nanosphere carriers of the invention is not critical. Lipid nanospheres can be constructed using semi-purified lipid biological preparations, e.g., soybean oil (Sigma Chem. Co.) and egg phosphatidyl choline (EPC) (Avanti Polar Lipids). Other lipids that are useful in the preparation of lipid nanospheres and/or lipid vesicles include neutral lipids, e.g., dioleoyl phosphatidylcholine (DOPC), and dioleoyl phosphatidyl ethanolamine (DOPE), anionic lipids, e.g., dioleoyl phosphatidyl serine (DOPS) and cationic lipids, e.g., dioleoyl

trimethyl ammonium propane (DOTAP), dioctadecyldiamidoglycyl spermine (DOGS), dioleoyl trimethyl ammonium (DOTMA) and DOSPER (1,3-di-oleoyloxy-2-(6-carboxy-spermyl)-propyl-amide tetraacetate, commercially available from Boehringer-Mannheim). Additional examples of lipids that can be used in the invention can be found in Gao, X. and Huany, L., 1995, Gene Therapy 2, 710. Saccharide ligands can be added in the form of saccharide cerebrosides, e.g., lactosylcerebroside or galactocerebroside (Avanti Polar Lipids).

The particular choice of lipid is not critical. Hydrogenated EPC or lysolecithin can be used in place of EPC. DPPC (dipalmitoyl phosphatidylcholine), can be incorporated to improve the efficacy and/or stability of the delivery system.

6.3.3 The Construction of Lipid Nanosphere Carriers

Lipid nanospheres can be constructed by the following process. A methanol or chloroform methanol solution of phospholipids is added to a small test tube and the solvent removed by a nitrogen stream to leave a lipid film. A lipophilic salt of CMV is formed by mixing an aqueous saline solution of CMV with an ethanolic solution of a cationic lipid. Good results can be obtained when the cationic species are in about a 4 fold molar excess relative to the CMV anions (phosphates). The lipophilic CMV salt solution is added to the lipid film, vortexed gently followed by the addition of an amount of neutral lipid equal in weight to the phospholipids. The concentration of CMV can be up to about 3% (w/w) of the total amount of lipid.

After addition of the neutral lipid, the emulsion is sonicated at 4°C for about 1 hour until the formation of a milky suspension with no obvious signs of separation. The suspension is extruded through polycarbonate filters until a final diameter of about 50 nm is achieved. When the target cell is a reticuloendothelial cell the preferred diameter of the lipid nanospheres is about 100-200 nm. The CMV-carrying lipid nanospheres can then be washed and placed into a pharmaceutically acceptable carrier or tissue culture medium. The capacity of lipid nanospheres is about 2.5 mg CMV/ 500 μ l of a nanosphere suspension.

6.3.4 The Construction of Lipid Vesicles

A lipid film is formed by placing a chloroform methanol solution of lipid in a tube and removing the solvent by a nitrogen stream. An aqueous saline solution of CMV is added such that the amount of CMV is between 20% and 50% (w/w) of the amount of lipid, and the amount of aqueous solvent is about 80% (w/w) of the amount of lipid in the final mixture. After gentle vortexing the liposome-containing liquid is forced through successively finer polycarbonate filter membranes until a final diameter of about 50 nm is achieved. The passage through the successively finer polycarbonate filter results in the conversion of polylamellar liposomes into unilamellar liposomes, i.e., vesicles. When the target cell is a reticuloendothelial cell the preferred diameter of the lipid nanospheres is about 100-200 nm. The CMV-carrying lipid nanospheres can then be washed and placed into a pharmaceutically acceptable carrier or tissue culture medium.

The CMV are entrapped in the aqueous core of the vesicles. About 50% of the added CMV is entrapped.

A variation of the basic procedure comprises the formation of an aqueous solution containing a PEI/CMV condensate at a ratio of about 4 PEI imines per CMV phosphate. The condensate can be particularly useful when the liposomes are positively charged, i.e., the lipid vesicle contains a concentration of cations of cationic lipids such as DOTAP, DOTMA or DOSPER, greater than the concentration of anions of anionic lipids such as DOPS. The capacity of lipid vesicles is about 150 μ g CMV per 500 μ l of a lipid vesicle suspension.

In a preferred embodiment the lipid vesicles contain a mixture of the anionic phospholipid, DOPS, and a neutral lipid such as DOPE or DOPC. Other negatively charged phospholipids that can be used to make lipid vesicles include dioleoyl phosphatidic acid (DOPA) and dioleoyl phosphatidyl glycerol (DOPG). In a more preferred embodiment the neutral lipid is DOPC and the ratio of DOPS:DOPC is between 2:1 and 1:2 and is preferably about 1:1. The ratio of negatively charged to neutral lipid should be greater than 1:9 because the presence of less than 10% charged lipid results in instability of the lipid vesicles because of vesicle fusion.

A particular lipid vesicle formulation can be tested by using the formulation to transfect a target cell population with a plasmid of about 5.0 kb in length that expresses

some readily detectable product in the transfected target cell. Lipid vesicles can be used to transfect a cell with the plasmid if the plasmid is condensed with PEI at an imine:phosphate ratio of about 9-4:1. The capacity of the lipid vesicle formulation to transfect a cell with a plasmid is indicative of the formulation's capacity to introduce a CMV into a cell and effect a transmutation.

Certain lipids, particularly the polycationic lipids, can be toxic to certain cell lines and primary cell cultures. The formulation of the lipid vesicles should be adjusted to avoid such toxic lipids.

Ligands for clathrin-coated pit receptors can be introduced into the lipid vesicles by a variety of means. Cerebrosides, such as lactocerebroside or galactocerebroside can be introduced into the lipid mixture and are incorporated into the vesicle to produce a ligand for the asialoglycoprotein receptor.

In an alternative embodiment the lipid vesicle further comprises an integral membrane protein that inserts itself into the lipid bilayer of the vesicle. In a specific embodiment the protein is a fusigenic (F-protein) from the virus alternatively termed Sendai Virus or Hemagglutinating Virus of Japan (HVJ). The preparation and use of F-protein containing lipid vesicles to introduce DNA into liver, myocardial and endothelial cells have been reported. See, e.g., U.S. Patent No. 5,683,866, International Application PCT JP97/00612 (published as WO 97/31656). See also, Ramani, K., et al., 1996, FEBS Letters 404, 164-168; Kaneda, Y., et al., 1989, J. Biol. Chem. 264, 121126-12129; Kaneda, Y., et al., 1989, Science 243, 375; Dzau, V.J., et al., Proc. Natl. Acad. Sci. 93, 11421-11425; Aoki, M., et al., 1997, J.Mol.Cardiol. 29, 949-959.

6.4 THE USE OF THE FORMULATIONS IN VIVO

The CMV of the invention can be parenterally administered directly to the target organ at a dose of between 50 and 250 μ g/gm. When the target organ is the liver muscle or kidney, the CMV/macromolecular carrier complex can be injected directly into the organ. When the target organ is the liver, intravenous injection into the hepatic or portal veins of a liver, having temporarily obstructed circulation can be used. Alternatively the CMV/macromolecular complex can further comprise a hepatic targeting ligand, such as a

lactosyl or galactosyl saccharide, which allows for administration of the CMV/macromolecular complex intravenously into the general circulation.

When the target organ is the lung or a tissue thereof, e.g., the bronchiolar epithelium CMV/macromolecular complex can be administered by aerosol. Small particle aerosol delivery of liposomal/DNA complexes is described in Schwarz L.A., et al., 1996, Human Gene Therapy 7, 731-741.

When the target organ is the vascular endothelium, as for example in von Willebrand's Disease, the CMV/macromolecular complex can be delivered directly into the systemic circulation. Other organs can be targeted by use of liposomes that are provided with ligands that enable the liposome to be extravasated through the endothelial cells of the circulatory system.

For enzymatic defects, therapeutic effects can be obtained by correcting the genes of about 1% of the cells of the affected tissue. In a tissue in which the parenchymal cells have an extended life, such as the liver, treatments with CMV can be repeatedly performed to obtain an increased therapeutic effect.

7. EXAMPLES

- 7.1 CMV/MACROMOLECULAR CARRIER COMPLEXES
- 7.1.1 Lipid Nanospheres

Materials

Egg phosphatidylcholine (EPC), DOTAP and galactocerebroside (Gc) (Avanti Polar Lipids); soybean oil (Sigma Chemical Co.); dioctadecyldiamidoglycyl spermine (DOGS®) (Promega).

Methods

EPC, DOTAP and Gc were previously dissolved at defined concentrations in chloroform or anhydrous methanol and stored in small glass vials in desiccated containers at -20°C until use. EPC (40-45 mg), DOTAP (200 μ g) and Gc (43 μ g) solutions were aliquoted into a small 10 x 75 mm borosilicate tube and solvents removed under a stream of nitrogen. CMV were diluted in 0.15 M NaCl (~80-125 μ g/250-300 μ l); DOGS (as a 10 mg/ml solution in ethanol) was diluted into 250-300 μ l 0.15 M NaCl at 3-5 times the weight of added CMV. The two solutions were mildly vortexed to mix contents and then CMV solution was added slowly to the DOGS solution. The contents were mixed by gentle tapping and inverting the tube a few times. The DOGS-complex solution was added to the dried lipids followed by soybean oil (40-45 mg), the mixture was vortexed on high for a few seconds and bath sonicated in a FS-15 (Fisher Scientific) bath sonicator for ~1 hr in a 4°C temperature controlled room. Occasionally, the tube was removed from the bath and vortexed. When a uniform looking, milky suspension was formed (with no obvious separation of oil droplets), it was extruded through a series of polycarbonate membranes down to a pore size of 50 nm. Preparations were stored at 4°C until use and vortexed before use.

7.1.2 Negatively Charged Targeted Lipid Vesicles

Materials

Dioleoyl phosphatidylcholine (DOPC), dioleoyl phosphatidylserine (DOPS), galactocerebroside (Gc) or lactosylcerebroside, (Avanti Polar Lipids).

Methods

DOPS, DOPC and Gc at a molar ratio of 1:1:0.16 (500 μ g total lipid) were dissolved in chloroform:methanol (1:1 v/v) and then dried under a stream of nitrogen to obtain a uniform lipid film. The CMV were diluted in 500 μ l of 0.15 M NaCl (approximately 100-250 μ g/500 μ l). The solution was added to the lipid film at room temperature. Lipids were dispersed entirely by alternate mild vortexing and warming (in a water bath at 37-42 °C). After a uniform milky suspension was formed, it was extruded through a series of polycarbonate membranes (pore sizes 0.8, 0.4, 0.2, 0.1 and 0.05 μ m) using a Liposofast mini-extruder. Extrusion was done 5 to 7 times through each pore size. After preparation, lipid vesicles were stored at 4 °C until use. Under these conditions the lipid vesicles were stable for at least one month. The final product can be lyophilized.

7.1.3 Neutral Targeted Lipid Vesicles

Materials

Dioleoyl phosphatidylcholine (DOPC), dioleoyl phosphatidylethanolamine (DOPE), galactocerebroside (Gc) or lactosylcerebroside, (Avanti Polar Lipids).

Methods

DOPC, DOPE and Gc (1:1:0.16 molar ratio) or DOPC:Gc (1:0.08) were dissolved in chloroform:methanol (1:1 v/v) and then dried under a stream of nitrogen to obtain a uniform lipid film. The oligonucleotides (or chimeric molecules) were diluted in 500 μ l of 0.15 M NaCl (approximately 100-250 μ g/500 μ l). The solution was added to the lipid film at room temperature. Lipids were dispersed entirely by alternate mild vortexing and warming (in a water bath at 37-42°C). After a uniform milky suspension was formed, it was extruded through a series of polycarbonate membranes (pore sizes 0.8, 0.4, 0.2, 0.1 and 0.05 μ m) using a Liposofast® mini-extruder. Extrusion was done 5 to 7 times through each pore size. After preparation, lipid vesicles were stored at 4°C until use. The size of the lipid vesicles of the preparation was stable for about 5 days.

Materials

Dioleoyl phosphatidylcholine (DOPC), dioleoyl trimethylammonium propane (DOTAP), galactocerebroside (Gc) or lactosylcerebroside, (Avanti Polar Lipids). Polyethylenimine (PEI) (M.W. 800 Kd), Fluka Chemicals.

Methods

DOPC, DOTAP and Gc (6:1:0.56 molar ratio) (500 μg total lipid) were dissolved in chloroform:methanol (1:1 v/v) and then dried under a stream of nitrogen to obtain a uniform lipid film. PEI was diluted to a concentration of 45 mg/100 ml using water. pH of the solution was adjusted to ~7.6 using HCl. This PEI stock solution was prepared fresh each time and was equivalent to approximately 50 nmol amine/µl. CMV were diluted into 0.15 M NaCl at a concentration of ~125 μ g in 250 μ l. PEI was further diluted into 250 μ l 0.15 M NaCl so that approximately 4 moles of PEI amine were present per mole of oligonucleotide/chimeric phosphate. PEI solution was added dropwise to the CMV solution (both at room temperature) and vortexed for 5-10 minutes. The PEI-complex solution was then added to the lipid film and the lipids dispersed as described above. After a uniform milky suspension was formed, it was extruded through a series of polycarbonate membranes (pore sizes 0.8, 0.4, 0.2, 0.1 and 0.05 μ m) using a Liposofast® mini-extruder. Extrusion was done 5 to 7 times through each pore size. After preparation lipid vesicles were stored at 4°C until use. Under these conditions the lipid vesicles were stable for at least one month. For longer and improved stability the final product can be lyophilized.

7.1.5 Lactosylated-PEI/PEI Complexes

PEI (25 kDa) was purchased from Aldrich Chemical (Milwaukee, WI). PEI (800 kDa) was purchased from Fluka chemicals (Ronkonkoma, NY, USA). Lactosylation of the PEI was carried out by modification of a previously described method for the conjugation of oligosaccharides to proteins. Briefly, 3 to 5 ml of PEI (0.1 to 1.2 M monomer) in ammonium acetate (0.2 M) or Tris buffer (0.2 M) (pH 7.6) solution was incubated with 7 to 8 mg of sodium cyanoborohydride (Sigma Chemical Co., St. Louis, MO) and

approximately 30 mg of lactose monohydrate (Sigma Chemical Co., St. Louis, MO). Reaction was carried out in polypropylene tubes, tightly capped in a 37°C shaking water bath. After 10 days the reaction mixture was dialyzed against distilled water (500 ml) for 48 h with 1 to 2 changes of water. The purified complex was sterile filtered through 0.2 μ m filter and stored at 4°C. The amount of sugar (as galactose) associated with PEI was determined by the phenol-sulphuric acid method.

The number of moles of free amine (primary + secondary) in the lactosylated PEI was determined as follows: a standard curve was set up using a 0.02M stock solution of PEI; several aliquots of the stock were diluted to 1ml using deionized water in glass tubes, then 50 μ l of Ninhydrin reagent (Sigma Chemical Co., St. Louis, Mo) was added to each tube and vortexed vigorously for 10 sec. Color development was allowed to proceed at room temperature for 10 to 12 min. and then O.D. was read (within 4 minutes) at 485 nm on a Beckman DU-64 spectrophotometer. 20 to 50 μ l aliquots of the L-PEI samples were treated as above and the number of moles of free amine was determined from the standard curve. Lactosylated-PEI (L-PEI) complexes were prepared as follows: an equivalent of 3 mmol of amine as L-PEI and 3 mmol of amine as PEI, per mmol of RNA/DNA phosphate, were mixed together and diluted in 0.15M NaCI as required; the mixture was added dropwise to a solution of the chimeric and vortexed for 5 min.

To verify complete association of the chimeric oligonucleotides with PEI or L-PEI, gel analysis (4% LMP agarose) of the uncomplexed and complexed chimerics was performed. To determine the degree of protection against nuclease degradation provided by complexation of the chimerics, samples were treated with RNAse and DNAse. After a chloroform phenol extraction, the complexes were dissociated using heparin (50 units/ μ g nucleic acid) and the products analyzed on a 4% LMP agarose gel.

7.2 DEMONSTRATION OF PEI/CMV MEDIATED ALTERATION OF RAT AND HUMAN FACTOR IX Materials. Fetal bovine serum was obtained from Atlanta Biologicals, Inc.
(Atlanta, GA). The terminal transferase, fluorescein-12-dUTP, Expand™ high fidelity PCR system, dNTPs and high pure PCR template preparation kit were obtained from Boehringer Mannheim Corp. (Indianapolis, IN). Reflection™ NEF-496 autoradiography

film and ReflectionTM NEF-491 intensifying screens were from DuPont NEN® Research Products (Boston, MA). Polyethylenimine (PEI) 800 kDa was obtained from Fluka Chemical Corp. (Ronkonkoma, NY). The [y-32P]ATP was obtained from ICN Biochemicals, Inc. (Costa Mesa, CA). pCRTM2.1 was obtained from Invitrogen (San Diego, CA). OPTIMEMTM, Dulbecco's modified Eagle's medium, William's E medium and oligonucleotides 365-A and 365-C were from Life Technologies, Inc. (Gaithersburg, MD). Spin filters of 30,000 mol wt cutoff were purchased from Millipore Corp. (Bedford, MA). Dil and SlowFadeTM antifade mounting medium were obtained from Molecular Probes, Inc. (Eugene, OR). T4 polynucleotide kinase was purchased from New England Biolabs, Inc. (Beverly, MA). MSI MagnaGraph membrane was purchased from Micron Separations, Inc. (Westboro, MA). The primers used for PCR amplification were obtained from Oligos Etc., Inc. (Wilsonville, OR). Tetramethylammonium chloride was purchased from Sigma Chemical Company (St. Louis, MO). All other chemicals were molecular biology or reagent grade and purchased from Aldrich Chemical Company (Milwaukee, WI), Curtin Matheson Scientific, Inc. (Eden Prairie, MN), and Fisher Scientific (Itasca, IL).

Oligonucleotide synthesis. Chimeric RNA/DNA oligonucleotides HIXF, RIXF and RIXR were synthesized. The CMV were prepared with DNA and 2'-O-methyl RNA phosphoramidite nucleoside monomers on an ABI 394 synthesizer. The DNA phosphoramidite exocyclic amine groups were protected with benzoyl (adenosine and cytidine) and isobutyryl (guanosine). The protective groups on the 2'-O-methyl RNA phosphoramidites were phenoxyacetyl for adenosine, isobutyryl for cytidine, and dimethylformamide for guanosine. The base protecting groups were removed following synthesis by heating in ethanol/concentrated ammonium hydroxide for 20 h at 55°C. The crude oligonucleotides were electrophoresed on 15% polyacrylamide gels containing 7 M urea, and the DNA visualized using UV shadowing. The chimeric molecules were eluted from the gel slices, concentrated by precipitation and desalted using G-25 spin columns. Greater than 95% of the purified oligonucleotides were full length.

The sequence of the wild type and "mutant" rat Factor IX are

(SEQ ID No. 27)

wt AAA GAT TCA TGT GAA GGA GAT AGT GGG GGA CCC CAT GTT

Lys Asp Ser Cys Glu Gly Asp Ser Gly Gly Pro His Val

(SEQ ID No. 28)

(SEQ ID No. 29)

mt AAA GAT TCA TGT GAA GGA GAT CGT GGG GGA CCC CAT GTT

Arg

The structure of the RIXR, RIXF and HIXR CMV is as follows: Chimeric Oligonucleotides

```
RIXR
                                  (SEQ ID No. 30)
 TGCGCG-ccccagggggTGCTAgaggaaguguT
\mathbf{T}
                                        T
T
 TCGCGC GGGGTCCCCCACGATCTCCTTCACAT
       31 51
    RIXRc
                                  (SEQ ID No. 31)
 TGCGCG-acacuuccucTAGCAcccccuggggT
T
                                       T
T
                                       T
 TCGCGC TGTGAAGGAGATCGTGGGGGACCCCT
       31 51
    RIXF
                                  (SEQ ID No. 32)
 TGCGCG-acacuuccucTAGCAcccccuggggT
\mathbf{T}
                                        Т
Т
                                        T
 TCGCGC TGTGAAGGAGATCGTGGGGGACCCCT
       3' 5'
```


Uppercase letters are deoxyribonucleotides, lower case letters are 2'OMeribonucleotides. The nucleotide of the heterologous region is underlined.

Cell Culture, transfections and hepatocyte isolation. HuH-7 cells were maintained in Dulbecco's modified Eagle's medium containing 10% (vol/vol) heat inactivated fetal bovine serum in a humidified CO₂ atmosphere at 37°C. Twenty four hours prior to transfection 1 x 10⁵ cells were plated per 35 mm culture dish. At the time of transfection, the cells were rinsed twice with OPTIMEM™ media and transfections were performed in 1 ml of the same media. Eighteen hours after transfection, 2 ml of Dulbecco's modified Eagle's medium containing 20% (vol/vol) heat inactivated fetal bovine serum was added to each 35 mm dish and the cells maintained for an additional 30 h prior to harvesting for DNA isolation. A PEI (800 kDa) 10 mM stock solution, pH 7.0, was prepared. Briefly, the chimeric oligonucleotides were transfected with 10 mM PEI at 9 equivalents of PEI nitrogen per chimeric phosphate in 100 μ I of 0.15 M NaCl at final concentrations of either 150 nM (4 μ g), 300 nM (8 μ g) and 450 nM (12 μ g). After 18 h, an additional 2 ml of medium was added and reduced the chimeric concentrations to 50 nM, 100 nM, and 150 nM, respectively, for the remaining 30 h of culture. HuH-7 vehicle control transfections utilized the same amount of PEI as was used in the HuIXF transfections, but substituted an equal volume of 10 mM Tris-HCl pH 7.6 for the oligonucleotides.

Primary rat hepatocytes were isolated from 250 g male Sprague-Dawley rats (Harlan Sprague-Dawley, Inc., Indianapolis, IN) by a two step collagenase perfusion as previously described (Fan et al., Oncogene 12:1909-1919, 1996, which is hereby incorporated by reference) and plated on Primaria™ plates at a density of 4 x 10⁵ cells per 35 mm dish. The cultures were maintained in William's E medium supplemented with 10% heat inactivated FBS, 26 mM sodium bicarbonate, 23 mM HEPES, 0.01 U/ml.

insulin, 2 mM L-glutamine, 10 nM dexamethasone, 5.5 mM glucose, 100 U/ml penicillin and 100 U/ml streptomycin. Twenty four hours after plating, the hepatocytes were washed twice with the same medium and 1 ml of fresh medium added and the cells transfected using PEl/chimeric oligonucleotide complexes at the identical concentrations as for the HuH-7 cells. After 18 h, an additional 2 ml of the medium was added and the cells harvested 6 or 30 h later.

Direct injection of chimeric oligonucleotides into liver. Male Sprague-Dawley rats (~175 g) were maintained on a standard 12 h light-dark cycle and fed ad libitum standard laboratory chow. The rats were anesthetized, a midline incision made the liver exposed. A clamp was placed on the hepatic and portal veins as they enter the caudate lobe, and 75 μg of the 1:9 chimeric/PEI complex was injected in a final volume of 250 - 300 μl directly into the caudate lobe. The lobe remained ligated for 15 min and then blood flow was restored by removing the clamp. After suturing the incision the animals were allowed to recover from the anesthesia and given food and water ad libitum. Vehicle controls were done substituting an equal volume of Tris-HCl pH 7.6 for the chimeric oligonucleotides. Twenty-four and 48 h post-injection the animals were sacrificed, the caudate lobe removed and the tissue around the injection site dissected for DNA isolation. DNA was isolated and the terminal exon of the rat factor IX gene was amplified by PCR.

Nuclear uptake of the chimeric molecules. Chimeric duplexes were 3' end-labeled using terminal transferase and fluorescein-12-dUTP according to the manufacturer's recommendation, and were then mixed with unlabeled oligonucleotides at a 2:3 ratio. Transfections were performed as described above and after 24 h the cells were fixed in phosphate buffered saline, pH 7.4, containing 4% paraformaldehyde (wt/vol) for 10 min at room temperature. Following fixation, the cells were counterstained using a 5 μM solution of Dil in 0.32 M sucrose for 10 min according to the manufacturer's recommendation. After washing with 0.32 M sucrose and then phosphate buffered saline, pH 7.4, the cells were coversliped using SlowFade™ antifade mounting medium in phosphate buffered saline and examined using a MRC1000 confocal microscope (BioRad, Inc., Hercules, CA). The caudate lobes of liver *in situ* were injected with fluorescently-labeled chimerics as described above and harvested 24 h post-

injection. The lobes were bisected longitudinally, embedded using OCT and frozen. Cryosections were cut ~10 μ m thick, fixed for 10 min at room temperature using phosphate buffered saline, pH 7.4, containing 4% paraformaldehyde (wt/vol). Following fixation, the cells were counterstained using a 5 μ M solution of Dil in 0.32 M sucrose for 10 min according to the manufacturer's recommendation. After washing with 0.32 M sucrose and then phosphate buffered saline, pH 7.4, the sections were coversliped using SlowFadeTM antifade mounting medium and examined using a MRC1000 confocal microscope (BioRad, Inc.). The collection series for the fixed cells and sectioned tissue were made at 1 μ m steps to establish the presence of the chimeric in the nucleus.

DNA isolation and cloning. The cells were harvested by scrapping 24 and 48 h after transfection. Genomic DNA larger than 100-150 base pairs was isolated using the high pure PCR template preparation kit according to the manufacturer's recommendation. PCR amplification of a 317-nt fragment of the eighth exon in the human liver factor IX gene was performed with 500 ng of the isolated DNA. The primers used were 5'-CATTGCTGACAAGGAATACACGAAC-3' (SEQ ID No. 34) and 5'-ATTTGCCTTTCATTGCACACTCTTC-3' (SEQ ID No. 35) corresponding to nucleotides 1008-1032 and 1300-1324, respectively, of the human factor IX cDNA. Primers were annealed at 58°C for 20 sec, elongation was for 45 sec at 72°C and denaturation proceeded for 45 sec at 94°C. The sample was amplified for 30 cycles using Expand Hifidelity™ polymerase. PCR amplification of a 374-nt fragment of the rat factor IX gene was performed with 500 ng of the isolated DNA from either the primary hepatocytes or liver caudate lobe. The primers used were 5'-ATTGCCTTGCTAGACTGGATAAC-3' (SEQ ID No. 36) and 5'-TTGCCTTTCATTGCACATTCTTCAC-3' (SEQ ID No. 37) corresponding to nucleotides 433-457 and 782-806, respectively, of the rat factor IX cDNA. Primers were annealed at 59°C for 20 sec, elongation was for 45 sec at 72°C and denaturation proceeded for 45 sec at 94°C. The sample was amplified for 30 cycles using Expand Hi-fidelity™ polymerase. The PCR amplification products from both the human and rat factor IX genes were subcloned into the TA cloning vector pCR™2.1 according to the manufacturer's recommendations, and the ligated material used to transform frozen competent Escherichia coli.

Colony hybridization and sequencing. Eighteen to 20 h after plating, the colonies were lifted onto MSI MagnaGraph nylon filters, replicated and processed for hybridization according to the manufacturer's recommendation. The filters were hybridized for 24 h with 17 mer oligonucleotide probes 365-A (5'-AAGGAGATAGTGGGGGA-3') (SEQ ID No. 38) or 365-C (5'AAGGAGATCGTGGGGGA-3') (SEQ ID No. 39), where the underlined nucleotide is the target of the mutagenesis. The probes were ³²P-end-labeled using [y-³²]ATP (>7,000 Ci/mmol) and T4 polynucleotide kinase according to the manufacturer's recommendations. Hybridizations were preformed at 37°C in 2X sodium chloride sodium citrate containing 1% SDS, 5X Denhardt's and 200 µg/ml denatured sonicated fish sperm DNA. After hybridization, the filters were rinsed in 1X sodium chloride phosphate EDTA, 0.5% SDS and then washed at 54°C for 1 h in 50 mM Tris-HCl, pH 8.0 containing 3 M tetramethylammonium chloride, 2 mM EDTA, pH 8.0, 0.1% SDS. Autoradiography was performed with NEN® Reflection film at -70°C using an intensifying screen. Plasmid DNA was prepared from colonies identified as hybridizing with 365-A or 365-C using Qiagen minprep kit (Chatsworth, CA) and subjected to automatic sequencing using the mp13 reverse primer on an ABI 370A sequencer (Perkin-Elmer, Corp., Foster City, CA).

Results In Vivo

Chimeric oligonucleotides were fluorescein-labeled and used to determine whether direct injection into the caudate lobe of the liver was feasible. The results indicated that the hepatocytes adjacent to the injection site within the caudate lobe showed uptake of the fluorescently-labeled chimeric molecules similar to that observed in isolated primary hepatocytes and HuH-7 cells. Although some punctate material was present in the cytoplasm, the labeled material was detected primarily in the nucleus. In fact, only nuclear labeling was observed in hepatocytes farthest from the injection site. The unlabeled PEI/RIXF chimeric complexes and vehicle controls were injected directly into the caudate lobe using the same protocol and the animals sacrificed 24 and 48 h post-injection. Liver DNA was isolated as described in Methods, subjected to PCR amplification of a 374 nt sequence spanning the targeted nt exchange site. Following

subcloning and transformation of *Escherichia coli* with the PCR amplified material, duplicate filter lifts of the transformed colonies were performed. The filters were hybridized with ³²-labeled 17-mer oligonucleotides specific for either 365-A (wild-type) or 365-C (factor IX mutation) and processed post-hybridization as described in Methods. Rats which received direct hepatic injection of the RIXF chimeric molecules exhibited a A-C conversion frequency of ~1% at both 24 and 48 h. In contrast, the vehicle controls showed no hybridization with the 365-C probe. Colonies that hybridized with the 365-C probe from the RIXF treated animals were cultured, the plasmid DNA isolated and subjected to sequencing to confirm the A-C conversion. The ends of the amplified 374-nt fragment correspond exactly with the primers and the only nucleotide change observed was an A-C at the targeted exchange site.

7.3 DEMONSTRATION OF LACTOSYLATED-PEI/CMV MEDIATED ALTERATION OF RAT FACTOR IX 7.3.1 Results

CMV complexed to a mixture of lactosylated-PEI and PEI was prepared using the RIXR oligonucleotide as described in Section 6.1.5 above. A CMV directed to the complementary strand of the same region of the factor IX was also constructed (RIXR_C). Conversion of the targeted nucleotide at Ser³⁶⁵ by the chimeric oligonucleotides The nuclear localization of the fluorescently-labeled chimeric molecules indicated efficient transfection in the isolated rat hepatocytes. The cultured hepatocytes were then transfected with the unlabeled chimeric molecules factor $RIXR_C$ and RIXR at comparable concentrations using 800 kDa PEI as the carrier. Additionally, vehicle control transfections were performed simultaneously. Forty eight hours after transfection, the cells were harvested and the DNA isolated and processed for hybridization as described in Section 6.1.5. The A→C targeted nucleotide conversion at Ser³⁶⁵ was determined by hybridization of duplicate colony lifts of the PCR-amplified and cloned 374-nt stretch of exon 8 of the factor IX gene (Sarkar, B., Koeberl, D. D. & Somer, S. S., "Direct Sequencing of the activation peptide and the catalytic domain of the factor IX gene in six species," Genomics, 6, 133-143, 1990.) The 17 mer oligonucleotide probes used to distinguish between the wild-type 365-A (5'-AAGGAGATAGTGGGGGA-3') (SEQ ID No. 40) or converted 365-C (5'-AAGGAGATCGTGGGGGA-3') (SEQ ID No. 41) corresponded to nucleotides 710 through 726 of the cDNA sequence.

The overall frequency of conversion of the targeted nucleotide was calculated by dividing the number of clones hybridizing with the 365-C oligonucleotide by the total number of clones hybridizing with both oligonucleotide probes. The results are summarized in Table III for RIXR_C. A \rightarrow C conversion at Ser³⁶⁵ was observed only in primary hepatocytes transfected with the RIXR or RIXR_C. Similar conversion frequencies were observed in hepatocytes transfected with RIXR or RIXR_C. Neither vehicle transfected cells nor those transfected with other chimeric oligonucleotides yielded any clones hybridizing with the 365-C oligonucleotide probe (unpublished observations). Additionally, no hybridization of the 365-C oligonucleotide probe was observed to clones derived from DNA isolated from untreated hepatocytes and PCR-amplified in the presence of 0.5 to 1.5 μ g of the oligonucleotides. The A \rightarrow C conversion rate in the isolated hepatocytes was also dose dependent using lactosylated PEI derivatives as described in Section 6.1.5 and was as high as 19%. RT-PCR and hybridization analysis of RNA isolated from cultured cells transfected in parallel with lactosylated PEIs demonstrated A \rightarrow C conversion frequencies ranging from 11.9 to 22.3%.

Site-directed nucleotide exchange by chimeric oligonucleotides in intact liver

The fluorescein-labeled oligonucleotides were also used to determine cellular uptake of the chimeric molecules after direct injection into the caudate lobe of the liver. The results indicated that hepatocytes adjacent to the injection site in the caudate lobe showed uptake of the fluorescently-labeled chimerics similar to that observed in the isolated rat hepatocytes. Although some punctate material was present in the cytoplasm of the hepatocytes, the labeled material was primarily present in the nucleus. In fact, only nuclear labeling was observed in those areas farthest from the injection site. The unlabeled RIXR chimeric oligonucleotides and vehicle controls were then administered *in vivo* by tail vein injection of the 25 kDa PEI and liver tissue harvested 5 days post-injection. Liver DNA was isolated and subjected to PCR amplification of a 374-nt sequence spanning the targeted nucleotide exchange site, using the same primers as those used with the primary hepatocytes. Following subcloning and transformation of *E. coli*

with the PCR-amplified material, duplicate filter lifts of the transformed colonies were done. The filters were hybridized with the same 32 P-labeled 17-mer oligonucleotides specific for either 365-A (wild-type) or 365-C (mutant) and processed post-hybridization. Rats treated with 100 μ g of the RIXR chimeric oligonucleotides exhibited an A \rightarrow C conversion frequency ranging from 13.9% to 18.9%, while those that received a total of 350 μ g in two injections showed 40% conversion. In contrast, the vehicle controls showed no hybridization with the 365-C probe. RT-PCR hybridization of isolated RNA indicated A \rightarrow C conversion frequencies of 26.4% to 28.4% in the high dose livers. The APTT for vehicle-treated rats ranged from 89.7% to 18l.9% of control values (131.84% \pm 32.89%), while the APTT for the oligonucleotide-treated animals ranged from 48.9% to 61.7% (53.8% \pm 4.8%).

The APTT times for a 1/10 dilution of rat test plasma in Hepes buffer (50 mM Hepes/100 mM NaCl/0.02% NaN₃, pH 7.4) were determined for both normal (n = 9) and the double injected animals (n = 3). The factor IX activity of duplicate samples was determined from a log-log standard curve that was constructed from the APTT results for dilution (1:10 to 1:80) of pooled plasma from 12 normal male rats, 6-8 weeks old. The APTT results for the normal rats ranged from 89.7% to 181.9% of the control values (mean = 131.84% \pm 32.89%), while the APTT results for the double injected animals ranged from 49.0% to 61.7% (mean 53.8% \pm 5.8%). The APTT clotting time in seconds for the normal rats ranged from 60.9 seconds to 81.6 seconds (mean = 71.3 \pm 7.3 seconds) while the APTT times ranged from 92.3 seconds to 98.6 seconds (mean = 96.3 \pm 2.9 seconds) for the double-infected rats.

Sequence analysis of the mutated factor IX gene in isolated hepatocytes and intact liver

Direct sequencing of the wild-type and mutated genes was performed to confirm the results from the filter hybridizations in both the *in vitro* and *in vivo* studies. At least 10 independent clones hybridizing to either 365-A or 365-C from the intact liver or isolated hepatocytes were analyzed. The results of the sequencing indicated that colonies hybridizing to 365-A (Fig. 6, top panel) exhibited the wild-type IX sequence, i.e. an A at Ser³⁶⁵ of the reported cDNA sequence. In contrast, those colonies derived from the factor RIXR_C transfected primary hepatocytes hybridizing to the 365-C oligonucleotide probe

converted to a C at Ser³⁶⁵. The same A→C conversion at Ser³⁶⁵ was observed in the clones derived from the transfected rat liver that hybridized with the 17 mer 365-C oligonucleotide probe. The entire 374-nt PCR amplified region of the factor IX gene was sequenced for all the clones and no alteration other than the indicated changes at Ser³⁶⁵ was detected. Finally, the start and end points of the 374-nt PCR amplified genomic DNA derived from both the primary hepatocytes and the intact liver corresponded exactly to those of the primers used for the amplification process, indicating that the cloned and sequenced DNA was derived from genomic DNA rather than nondegraded chimeric oligonucleotides.

Table III Percent A→C conver	sion at Ser365 of rat facto	r IX genomic DNA	by colony lift
hybridizations			
PEI Deliver System	365 _e C clones	Total clones	A-C

PEI Deliver System		365-C clones	Total clones	A-C (%)
PEI 800 kDa ¹ In vitro	Concentration 150 nM	24	572	4.2
	300	31	367	8.5
	450	63	502	12.5
Lac-PEI 800 kDa In vitro	90	18	337	5.3
	180	34	300	11.3
	270	47	253	18.6
Lac-PEI 25 kDa In vitro	90	28	527	5.3
	180	53	417	12.7
	270	60	305	19.7
Lac-PEI 25 kDa² In vivo x1	<u>Dose</u> 100 μg	24	166	14.5
		71	386	18.4
		50	360	13.9
Lac-PEI 25 kDa				
In vivo x2	$350~\mu\mathrm{g}$	237	601	39.4
		228	563	40.5
		271	678	40.0

¹The data shown for the primary hepatocyte transfections represents a mean of two experiments.

²The *in vivo* chimeric/PEI complexes were administered in a volume of 300 μ l of 5% dextrose by tail vein injection. The results of three animals at each dose are shown individually.

7.3.2 Materials and Methods

In vivo delivery of the chimeric oligonucleotides. Male Sprague-Dawley rats (Harlan Sprague-Dawley, Inc.) (~50 g) were maintained on a standard 12 h light-dark cycle and fed ad libitum standard laboratory chow. Vehicle controls and lactosylated 25 kDa PEI at a ratio of 6 equivalents of PEI nitrogen per chimeric phosphate were administered in 300 μl of 5% dextrose (Abdallah, B. et al., "A powerful nonviral vector for *in vivo* gene transfer into the adult mammalian brain: polyethylenimine:, *Human Gene Therapy*, 7, 1947-1954, 1996.). The aliquots were administered by tail vein injection either as a single dose of 100 μg or divided dose of 150 μg and 200 μg on consecutive days. Five days post-injection, liver tissue was removed for DNA and RNA isolation. DNA was isolated as previously described (Kren, B. T., Trembley, J. H. & Steer, C. J., "Alterations in mRNA stability during rat liver regeneration," *Am. J. Physiol.*, 270, G763-G777, 1996) for PCR amplification of exon 8 of the rat factor IX gene. RNA was isolated for RT-PCR amplification of the same region as the genomic DNA using RNAexol and RNAmate (Intermountian Scientific Corp., Kaysville, UT) according to the manufacturer's protocol.

Factor IX activity assay. Blood samples from vehicle (n = 9) and oligonucleotide-treated (n = 3) rats were collected 20 days after the second tail vein injection in 0.1 vol. of 0.105 M sodium citrate/citric acid. After centrifugation at 2,500 x g and then 15,000 x g the resulting plasma was stored at -70°C. The factor IX activity was determined from activated partial thromboplastin time (APTT) assays. Briefly, 50 μ l of APTT reagent (DADE, Miami, FL), 50 μ l of human factor IX-deficient plasma (George King Biomedical, Overland, KS), and 50 μ l of 1/10 dilution of rat test plasma in Hepes buffer (50 mM Hepes/100 mM NaCl/0.02% NaN₃, pH 7.4) were incubated at 37°C for 3 min in an ST4 coagulometer (American Bioproducts, Parsippany, NJ). Clotting was initiated by addition of 50 μ l of 33 mM CaCl₂ in Hepes buffer. Factor IX activity of duplicate samples was determined from a log-log standard curve constructed from the APTT results for dilution (1:10 to 1:80) of pooled plasma from normal male rats (n = 12).

DNA/RNA isolation and cloning. The cells were harvested by scrapping 48 h after transfection. Genomic DNA larger than 100-150 base pairs was isolated using the high

pure PCR template preparation kit (Boehringer Mannheim, Corp., Indianapolis, IN). RNA was isolated using RNAzolTM B (Tel-Test, Inc., Friendswood, TX), according to the manufacturer's protocol. PCR amplification of a 374-nt fragment of the rat factor IX gene was performed with 300 ng of the isolated DNA from either the primary hepatocytes or liver tissue. The primers were designed as 5'-ATTGCCTTGCTGGAACTGGATAAAC-3' (SEQ ID No. 42) and 5'TTGCCTTTCATTGCACATTCTTCAC-3' (SEQ ID No. 43) (Oligos Etc., Wilsonville, OR) corresponding to nucleotides 433-457 and 782-806, respectively, of the rat factor IX cDNA. Primers were annealed at 59°C for 20 sec, elongation was for 45 sec at 72°C and denaturation proceeded for 45 sec at 94°C. The sample was amplified for 30 cycles using Expand Hi-fidelityTM polymerase (Boehringer Mannheim, Corp.). The PCR amplification products from both the hepatocytes and intact liver factor IX genes were subcloned into the TA cloning vector pCR™2.1 (Invitrogen, San Diego, CA), and the ligated material used to transform frozen competent E. coli. To rule out PCR artifacts 300 ng of control DNA was incubated with 0.5, 1.0 and 1.5 μ g of the oligonucleotide prior to the PCR-amplification reaction. Additionally, 1.0 μ g of the chimeric alone was used as the "template" for the PCR amplification.

RT-PCR amplification was done utilizing the Titian[™] one tube RT-PCR system (Boehringer Mannheim, Corp.) According to the manufacturer's protocol using the same primers as those used for the DNA PCR amplification. To rule out DNA contamination, the RNA samples were treated with RQ1 DNase free RNase (Promega Corp., Madison, WI) and RT-PCR negative controls of RNased RNA samples were performed in parallel with the RT-PCR reaction. Each of the PCR reactions were ligated into the same TA cloning vector and transformed into frozen competent *E. coli*.

Colony hybridization and sequencing. Eighteen to 20 h after plating, the colonies were lifted onto MSI MagnaGraph nylon filters, replicated and processed for hybridization according to the manufacturer's recommendation. The filters were hybridized for 24 h with 17 mer oligonucleotide probes 365-A (5'AAGGAGATAGTGGGGGA-3') (SEQ ID No. 44) OR 365-C (5'-AAGGAGATCGTGGGGGGA-3') (SEQ ID No. 45) (Life technologies, Inc., Gaithersburg, MD), where the underlined nucleotide is the target for

mutagenesis. The probes were ³²P-end-labeled using (γ- ³²P) ATP (>7,000 Ci/mmol) and T4 polynucleotide kinase (New England Biolabs, Inc., Beverly MA). Hybridizations were performed at 37°C in 2X sodium chloride sodium citrate containing 1% SDS, 5X Denhardt's and 200 μg/ml denatured sonicated fish sperm DNA. After hybridization, the filters were rinsed in 1X sodium chloride sodium phosphate EDTA, 0.5% SDS and then washed at 54°C for 1 h in 50 mM Tris-HCl, pH 8.0 containing 3 M tetramethylammonium chloride, 2 mM EDTA, pH 8.0, 0.1% SDS (Melchior, W. B. & Von Hippel, P. H. "Alteration of the relative stability of dA.dT and dG.dC base pairs in DNA," Proc. Natl. Acad. Sci. USA, 70, 298-302, 1973.). Autoradiography was performed with NEN*Reflection film at -70°C using an intensifying screen. Plasmid DNA was prepared from colonies identified as hybridizing with 365-A or 365-C using Qiagen miniprep kit (Chatsworth, CA) and subjected to automatic sequencing using the mp13 forward and reverse primers as well as a gene specific primer, 5'GTTGACCGAGCCACATGCCTTAG-3' (SEQ ID No. 46) corresponding to nucleotides 616 to 638 of the rat factor IX cDNA using an ABI 370A sequencer (Perkin-Elmer, Corp., Foster City, CA).

7.4 EXAMPLES OF CMV USEFUL FOR THE REDUCTION OF LDL LEVELS IN HUMANS

A CMV suitable for the modification of Apo B having a sequence comprising the sequence of SEQ ID No: 5 is given below.

```
Apo B 41/UR (mut→WT) (SEQ ID No. 47)

u GCGCG gac ccg acc gaa <u>u</u>uc ggu aac ugu au

u

u

u

u

cGCGC CTG GGC TGG CTT AAG CCA TTG ACA Tu
```

A CMV suitable for the modification of Apo B having a sequence comprising the sequence of SEQ ID No: 12 is given below.

```
Apo B 5/U88 (mut→WT) (SEQ ID No. 48)

u GCGCG cug uuc aaa gug uaC GGA TCC ucu uug acu gac gau
u
u
u
u CGCGC GAC AAG TTT CAC ATG CCT AGG AGA AAC TGA CTG CTu
```

7.5 CORRECTION OF A CRIGLER-NAJJAR-LIKE MUTATION IN THE GUNN RAT

Mutant rats with hyperbilirubinemia, termed Gunn rats, have a single nucleotide deletion in the gene encoding bilirubin-uridinediphosphoglucuronate glucuronosyltransferase (*UGT1A1*). Roy Chowdhury, J., et al., 1991, J. Biol. Chem. **266**, 18294. Human patients with Crigler-Najjar syndrome type I also have mutations of the *UGT1A1* gene, resulting in life-long hyperbilirubinemia and consequent brain damage. Bosma, P.J., et al., 1992, FASEB J. **6**, 2859; Jansen, P.L.M., et al., Progress In Liver Diseases, **XIII**, Boyer, J.L., & Ockner, R.K., editors (W.B. Saunders, Phil. 1995), pp 125-150. The structure of CN3, a CMV designed to correct the Gunn rat mutation is given below.

```
CN3 (mut WT) (SEQ ID No. 49)

T GCGCG gg gac uua caG GAC CTT TAC uga ctt cua T

T

T

T CGCGC CC CTG AAT GTC CTG GAA ATG ACT GCC GAT T
```

Gunn rat primary cultured hepatocytes were treated with 150 nM CN3 according to the above protocol except that the carrier was either the negatively charged glycosylated lipid vesicles of section 6.2.2 or a lactosylated-PEI carrier at a ratio of

oligonucleotide phosphate to imine of 1:4. The results were 8.5% conversion with the negatively charged liposome and 3.6% conversion with lactosylated-PEI carrier.

Gunn rats were injected with 1 mg/Kg of CN3 complexed with either 25 kDa Lac-PEI or complexed with negatively charged Gc lipid vesicles (Gc-NLV) as described above. The rate of gene conversion was determined by cloning and hybridization according to the procedure described for factor IX. The results shown below indicate that between about 15% and 25% of the copies of the *UGT1A1* gene were converted.

I	requency of Insertion of G at nucleotide 1239 of the UGT-1 Gene
(In Gunn R	

Vehicle	Dosage	G Clones/Total Clones	Frequency (%)
Gc-NLV	l mg	112/815	15.4
		208/761	27.3
		185/974	18.9
		39/273	14.6 ¹
		78/403	19.3 ²
25 kDa PEI	1 mg	188/838	22.4
(Lactosylated)		254/1150	22.1
		245/997	24.6

¹Initial conversion frequency determined.

A Gunn rat was injected on five successive days with 1mg/Kg of CN3 complexed with 25 kDa Lac-PEI as above. Twenty five days after the final injection the serum bilirubin had declined from 6.2 mg/dl to 3.5 mg/dl and remained at that level for a further 25 days.

7.6 CORRECTION OF A FACTOR IX MUTATION IN DOG

The Chapel Hill strain of dogs, which has a $(G \rightarrow A)^{1477}$ mutation that results in hemophilia in the animals, was used to obtain primary cultured hepatocytes. Four CMV to correct this mutation have been synthesized.

²Conversion frequency determined 7 days after 70% partial hepatectomy.

K3 (mut	:→WT	')							(SEQ	ID N	lo.	52)
gcgcg	auu	caa	aga	auu	gac	c cu	aau	aau	cga	CCC	cu	·
												u
CGCGC 3'	TAA 5'	GTT	TCT	TAA	CTG	<u>G</u> GA	TTA	TTA	GCT	GGG	Gu	u
(4 (mut)	.→wT)							(SEQ	ID N	Io.	53)
gcgcg	auu	caa	aga	auu	gac	<u>u</u> cu	aau	aau	cga	CCC	cu	•
												u u
CGCGC	TAA	GTT	TCT	TAA	CTG	GGA	TTA	TTA	GCT	GGG	Gu	ч
	gegeg CGCGC 3' K4 (mut gegeg	gcgcg auu CGCGC TAA 3' 5' K4 (mut-WT gcgcg auu	CGCGC TAA GTT 3' 5' (4 (mut-WT) gcgcg auu caa	gcgcg auu caa aga CGCGC TAA GTT TCT 3' 5' K4 (mut-WT) gcgcg auu caa aga	gcgcg auu caa aga auu CGCGC TAA GTT TCT TAA 3' 5' K4 (mut-WT) gcgcg auu caa aga auu	gcgcg auu caa aga auu gac CGCGC TAA GTT TCT TAA CTG 3' 5' K4 (mut-WT) gcgcg auu caa aga auu gac	gcgcg auu caa aga auu gac ccu CGCGC TAA GTT TCT TAA CTG GGA 3' 5' K4 (mut-WT) gcgcg auu caa aga auu gac ucu	gcgcg auu caa aga auu gac ccu aau CGCGC TAA GTT TCT TAA CTG GGA TTA 3' 5' K4 (mut-WT) gcgcg auu caa aga auu gac ucu aau	gcgcg auu caa aga auu gac ccu aau aau CGCGC TAA GTT TCT TAA CTG GGA TTA TTA (4 (mut-wr) gcgcg auu caa aga auu gac ucu aau aau	gcgcg auu caa aga auu gac ccu aau aau cga CGCGC TAA GTT TCT TAA CTG GGA TTA TTA GCT 3' 5' (SEQ gcgcg auu caa aga auu gac ucu aau aau cga	gegeg auu caa aga auu gac ccu aau aau cga ccc CGCGC TAA GTT TCT TAA CTG GGA TTA TTA GCT GGG 3' 5' (SEQ ID N gegeg auu caa aga auu gac ucu aau aau cga ccc	gegeg auu caa aga auu gac ccu aau aau cga ccc cu CGCGC TAA GTT TCT TAA CTG GGA TTA TTA GCT GGG Gu

DIX1 differs from DIX3 by the replacement of the intervening DNA segment with 2'-O-methyl RNA and replacement of the tetrathymidine linkers with tetrauracil. DIX 4 differs from DIX3 in that the mutational vector contains a mismatch in the mutator region. In DIX4 the 5' (lower) strand encodes the desired (wild-type) sequence while the 3' (upper) strand has the sequence of the target, i.e., the mutant sequence.

The hepatocytes were treated with 360 nM DIX1 complexed in either 25 kDa Lac-PEI or galactocerebroside-containing aqueous-cored, negatively charged lipid vesicles (Gc-NLV). The results are given in the table below.

Frequency of conversion of A to G at nucleotide 1477 of the Factor IX Gene (Primary Hepatocytes from the Chapel Hill Strain of Hemophilia B Dogs)

Vehicle	Number of Times Transfected	Concentration	G Clones/Total Clones	Frequency (%)
Gc-NLV	Once	360 nM	30/195	15.44
			30/218	13.76
	Twice		30/118	25.4
Lac-PEI	Once*	360 nM	20/141	14.2
25 kDa			48/348	13.3
	Twice		21/107	19.6

^{*}RT-PCR on parallel transfected cultures gave an A to G conversion frequency of 11.1%

Each of the DIX2-DIX4 were also tested on primary cultured dog hepatocytes as above. The results showed that DIX2 worked poorly, possibly due to the low (25%) GC percentage. The subsequent experiments the results of DIX3 were about 16% conversion, while a parallel experiments DIX1 gave 10% conversion and the results of DIX4 were about as good as DIX1.

Exon No.	cDNA Boundary	GenBank Accession No. Sequence Reference
1	126 to 207	M19808
2	208 to 246	M19808
3	247 to 362	M19809
4	363 to 508	M19810
5	509 to 662	M19811
6	663 to 818	M19812
7	819 to 943	M19813
8	944 to 1029	M19813
9	1030 to 1249	M19815
10	1250 to 1477	M19816
11	1478 to 1595	M19818
12	1596 to 1742	M19818
13	1743 to 1954	M19820
14	1955 to 2192	M19820
15	2193 to 2359	M19821
16	2360 to 2561	M19823
17	2562 to 2729	M19824
18	2730 to 2941	M19824
19	2942 to 3124	M19825
20	3125 to 3246	M19825
21	3247 to 3457	M19827
22	3458 to 3633	M19828
23	3634 to 3821	M19828
24	3822 to 3967	M19828
25	3968 to 4341	M19828
26	4342 to 11913	M19828
27	11914 to 12028	M19828
28	12029 to 12212	M19828
29	12213 to 13816	M19828

SEQ 1D	TABLEI	#J/D	NA Change	Ą	Ą	%APOB100	Restriction
Ņ.	Sequence (5' → 3')			Change			Site
4	AGTCTGGATGGGIAAGCCGCCCTCA	15	A⇒I	K≕Stop	1701	36.9	None
2	CTGGGCTGGCTTAAGCCATTGACAT	13	C⇒A	S=TAA	1876	40.8	+CTTAAG
9	GCTCTCTGGGGAIAACATACTGGGC	14	<u>1</u> <u></u> 2	E⇒Stop	1921	41.8	None
7	GATGCCGTTGAGIAGCCCCAAGAAT	13	A⇒T	K⇒Stop	2047	44.5	None
80	GAGAGGAATCGA <u>I</u> AAACCATTATAG	10	C-⇒1	Q=Stop	2085	45.4	+ ATCGAT
6	TGTAAGAAAATA <u>A</u> AGAGCAGCCCTG	10	C₽A	Y≕Stop	2110	45.9	None
10	GCAGCCCTGGGAIAACTCCCACAGC	16	A⇒T	K⇒Stop	2116	46.0	None
11	GCAAGCTAATGATTA <u>G</u> CTGAATTCATTCAAT	80	T≖G	Y⇒Stop	2124	46.2	+AGCT
12	CAAGTTTCACATGCCIAGGAGAAACTGACTG	=	A⇒T	K⇒Stop	2138	46.5	+CCTAGG
13	ATATACAAATTGCAT <u>G</u> AGATGATGCCAAAAT	6	D ≈ I	L=Stop	2159	47.0	+CATG
4.	AAACTATCTCAACTG I AGACATATATGATAC	ω	C⇒Ţ	Q⇔Stop	2174	47.3	-CTGCAG
15	GCTAATATTATTGAT <u>T</u> AAATCATTGAAATTA	٣	Ω⇒Τ	E⇒Stop	2204	48.0	+TTAA
16	TGATGAGCACTA <u>G</u> CATATCCGTGTA	1	T∍C	Y⇒Stop	2216	48.3	+CTAG
17	CTGCAGCTTIAGAGACACATAC	12	A-T	K⇒Stop	2270	49.4	-CTTAAG
18	AACAGTGAGCTGIAGTGGCCCGTTC	14	<u>1</u> ⇔	Q⇒Stop	2684	58.6	None
19	CAGACTTCCGTT <u>A</u> ACCAGAAATCGC	12	Ţ.	L⇒Stop	2712	59.2	+GTTAAC
20	AAAGGGTCATGG <u>T</u> AATGGGCCTGCC	14	A⇔T	K⇒Stop	2930	64.0	None
21	ACATATATGATA <u>I</u> AATITGATCAGT	2	1≈ 0	Q⇒Stop	2180	47.5	Physiologic

	Seq II	2	23	2.	25	54	55	56	27	ď
	O No.	22	3	24	23	4	2	.0	_	~~
	Seq ID No. Sequence (5' → 3')	ATGGAGGACGTG <u>I</u> GCGGCCGCCTGG	GACCTGCAGAAG <u>I</u> GCCTGGCAGTGT	GACCTGCAGAAGCGCCTGGCAGTGT	TAAGGTCAGGAGITTGAGACCAGCC	GGCGAGGACATGIGCGACCGGGCGC	$GAGATGCGCGAC\mathbf{I}GCGCGCGCCCCC$	CGCGACCGCGCGTGCGCCATGTGG	AGCGACCAGCTG I GCCAGCGCTTGG	CACCTCCACTCACTCCCC
Table III	#2/5	18	15	16	13	19	20	20	17	19
	AA Change	R⇒C	R≕C	C . R	Ϋ́	R⇒C	R⇒C	R⇒C	R⇒C	B
	NA Change	(=)	C⇒T	_	A⇒T	[*]	<u></u>	C + T	T ↑	<u> </u>
	¥	112	158	158	491	149	151	153	171	173
	Gene	Apo E	Apo E	Apo E	Apo E	Apo Al	Apo Al	Apo Al	Apo Al	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

WE CLAIM

- 1. A method of reducing LDL in the blood of a subject comprising altering an Apo B gene of a hepatocyte of the subject such that the transcript of the altered Apo B gene contains an in-frame stop codon whereby the altered gene encodes a protein having at least 1433 amino acids and not more than 3974 amino acids.
- 2. The method of claim 1, which further comprises the steps of determining the effect on the level of LDL of the alteration of the Apo B genes in the subject and subsequently adjusting the number of altered Apo B genes in the subject.
- 3. The method of claim 1, wherein the altered gene encodes a protein having at least 1841 amino acids and not more than 2975 amino acids.
- 4. The method of any one of claims 1-3, wherein the altered gene encodes a protein having a sequence of a fragment of SEQ ID No. 1, which fragment is at least amino acids 1-1841 and not more than amino acids 1-2975.
- 5. The method of any one of claims 1-4 which comprises administering a recombinagenic oligonucleobase which comprises a first and a second homologous region each having a sequence of at least 10 nucleobases selected from nt 4342-11913 of SEQ ID No: 2, whereby the alteration of the Apo B gene is effected.
- 6. The method of any one of claims 1-5, wherein the subject's fasting LDL serum cholesterol is reduced to below 140 mg/dl.
- 7. A composition for the modification of a human Apo B gene comprising an oligonucleobase which oligonucleobase comprises:
 - a. a first and a second homologous region that are each at least 8 nucleobases in length and together at least 20 nucleobases in length, which homologous regions are each homologous with a fragment of the sequence of nt 5649-9051 of SEQ ID No. 2, and

- a heterologous region that is disposed between the first and second homologous region,
 such that the introduction of the sequence of the heterologous region into the
 Apo B gene results in the truncation of the protein encoded thereby.
- 8. The composition of claim 7, in which the first and the second homologous regions each comprises at least 3 contiguous nucleobase-pairs of hybrid-duplex.
- 9. The composition of claim 7 or 8, in which the sum of the lengths of the first and second homologous regions is not more than 60 nucleobases in length.
- 10. The composition of any one of claims 7-9, in which the homologous regions together comprise between 9 and 25 nucleobase pairs of hybrid-duplex.
- 11. The composition of any one of claims 7-10, in which the GC fraction of each homologous region is at least 33%.
- 12. The composition of any one of claims 7-10, in which the GC fraction of a homologous region is at least 50%.
- 13. The composition of any one of claims 7-10, in which the sequence of the oligonucleobase comprises the sequence of at least a 21 nucleobase fragment of any one of SEQ ID No. 4-21 or the complement thereof.
- 14. The composition of any one of claims 7-10, in which the sequence of the oligonucleobase comprises the sequence of at least a 25 nucleobase fragment of any one of SEQ ID No. 4-21 or the complement thereof.
- 15. The composition of any one of claims 7-14 which further comprises:
 - a. an aqueous carrier; and
 - b. a macromolecular carrier selected from the group consisting of

- i. an aqueous-cored lipid vesicle, wherein the aqueous core contains the oligonucleobase,
- ii. a lipid nanosphere, which comprises a lipophilic salt of the oligonucleobase, and
- iii. a polycation having an average molecular weight of between 500 daltons and 1.3 Md wherein the polycation forms a salt with the oligonucleobase.
- 16. The composition of claim15, in which the macromolecular carrier further comprises a ligand for a clathrin-coated pit receptor.
- 17. The composition of claim16, in which the clathrin-coated pit receptor is selected from the group consisting of the receptors for transferrin, nicotinic acid, carnitine, insulin and insulin like growth factor-1.
- 18. The composition of claim 16, in which the clathrin-coated pit receptor is an asialoglycoprotein receptor.
- 19. The composition of any one of claims 15-18, in which the macromolecular carrier is a negatively charged, aqueous-cored lipid vesicle.
- 20. The composition of any one of claims16-18, in which the aqueous-cored lipid vesicle further comprises a cerebroside.
- 21. The composition of any one of claims 15-20, in which the aqueous-cored lipid vesicle comprises dioleoylphosphatidylcholine and dioleoylphosphatidylserine.
- 22. The composition of any one of claims 16, 18, 19 and 21 wherein the macromolecular carrier is an aqueous-cored lipid vesicle that comprises a fusigenic F-protein.

- 23. The composition of any one of claims 15-22, in which the oligonucleobase comprises:
 - a first and a second homologous region that are together at least 16 and not more than 60 nucleobases in length, which regions are homologous with a target gene of a mammal; and
 - b. a heterologous region that is disposed between the first and second homologous region and is at least 1 and not more than 20 nucleobases in length, which is heterologous with the target gene and which contains the alteration.
- A method of treatment and/or prophylaxis in a subject comprising altering an Apo E gene of a hepatocyte of the subject by introducing a substitution selected from the group (Arg→Cys)¹¹², (Arg→Cys)¹⁵⁸ and (Cys→Arg)¹⁵⁸.
- 25. The method of claim 24, wherein the subject is homozygous for Apo E4 and the alteration comprises the substitution (Arg-Cys)¹¹².
- 26. The method of claim 24 or 25, which comprises administering a chimeric mutational vector having a sequence which comprises SEQ ID No: 22.
- 27. The method of claim 24, wherein the treatment or prophylaxis comprises reducing the subject's fasting serum LDL cholesterol level and the alteration comprises the substitution (Arg-Cys)¹⁵⁸.
- 28. The method of claim 24 or 27, which comprises administering a chimeric mutational vector having a sequence which comprises SEQ ID No: 23.
- 29. The method of claim 24, wherein the subject suffers from Type III hyperlipidemia and the alteration comprises the substitution (Cys¬Arg) 158.

- 30. The method of claim 24 or 29, which comprises administering a recombinagenic oligonucleobase having a sequence which comprises SEQ ID No: 24.
- 31. A composition for the alteration of a human Apo E gene comprising a recombinagenic oligonucleobase having a sequence comprising the sequence of at least a 21 nucleobase fragment of any one of SEQ ID No. 22 25 or the complement thereof.
- 32. A method of ameliorating atherosclerosis in a subject comprising altering an Apo A1 gene of a hepatocyte of the subject such that the altered Apo A1 protein forms dimers.
- 33. The method of claim 32, which further comprises the steps of determining the effect on the level of HDL of the alteration of the Apo A1 genes in the subject and subsequently adjusting the number of altered Apo A1 genes in the subject.
- 34. The method of claim 32, wherein the altered gene encodes a protein having a cysteine for arginine substitution at a position selected from the group consisting of residue 149, 151, 153, 171 and 173.
- 35. The method of claim 34, wherein the method comprises the administration of a recombinagenic oligonucleobase having a sequence comprising the sequence of at least 20 nucleotides of SEQ ID No. 54, No. 55, No. 56, No. 57 and No. 58.
- 36. The method of claim 35, which comprises the step of administering to the subject a composition comprising:
 - a) the recombinagenic oligonucleobase;
 - b) an aqueous carrier; and
 - c) a macromolecular carrier selected from the group consisting of

- (i) an aqueous-cored lipid vesicle, wherein the aqueous core contains the oligonucleobase,
- (ii) a lipid nanosphere, which comprises a lipophilic salt of the oligonucleobase, and
- (iii) a polycation having an average molecular weight of between 500 daltons and 1.3 Md wherein the polycation forms a salt with the oligonucleobase.
- 37. The method of claim 36, wherein the macromolecular carrier is a negatively charged, aqueous-cored lipid vesicle.
- 38. The method of claim 36, wherein the macromolecular carrier further comprises a ligand for a clathrin-coated pit receptor.
- 39. The method of claim 38, wherein the clathrin-coated pit receptor is an asialoglycoprotein receptor.
- 40. The method of claim 32, which comprises administering to the subject a composition comprising:
 - a) a recombinagenic oligonucleobase;
 - b) an aqueous carrier; and
 - c) a macromolecular carrier selected from the group consisting of
 - (i) an aqueous-cored lipid vesicle, wherein the aqueous core contains the oligonucleobase,
 - (ii) a lipid nanosphere, which comprises a lipophilic salt of the oligonucleobase, and
 - (iii) a polycation having an average molecular weight of between 500 daltons and 1.3 Md wherein the polycation forms a salt with the oligonucleobase.
- 41. The method of claim 40, wherein the macromolecular carrier is a negatively charged, aqueous-cored lipid vesicle.

- 42. The method of claim 40, wherein the macromolecular carrier further comprises a ligand for a clathrin-coated pit receptor.
- 43. The method of claim 42, wherein the clathrin-coated pit receptor is an asialoglycoprotein receptor.
- 44. A composition for the modification of a human Apo A1 gene comprising an oligonucleobase which oligonucleobase contains a sequence which comprises a fragment having the sequence selected from the group consisting of SEQ ID No. 54, No. 55, No. 56, No.57 and No. 58.
- 45. The composition of claim 44, which further comprises:
 - a) an aqueous carrier; and
 - b) a macromolecular carrier selected from the group consisting of
 - (i) an aqueous-cored lipid vesicle, wherein the aqueous core contains the oligonucleobase,
 - (ii) a lipid nanosphere, which comprises a lipophilic salt of the oligonucleobase, and
 - (iii) a polycation having an average molecular weight of between 500 daltons and 1.3 Md wherein the polycation forms a salt with the oligonucleobase.
- 46. The composition of claim 45, in which the macromolecular carrier further comprises a ligand for a clathrin-coated pit receptor.
- 47. The composition of claim 46, in which the clathrin-coated pit receptor is selected from the group consisting of the receptors for transferrin, nicotinic acid, carnitine, insulin and insulin like growth factor-1.
- 48. The composition of claim 46, in which the clathrin-coated pit receptor is an asialoglycoprotein receptor.

- 49. The composition of any one of claims 45-48, in which the macromolecular carrier is a negatively charged, aqueous-cored lipid vesicle.
- 50. The composition of any one of claims 46-48, in which the aqueous-cored lipid vesicle further comprises a cerebroside.
- 51. The composition of any one of claims 45-50, in which the aqueous-cored lipid vesicle comprises dioleoylphosphatidylcholine and dioleoylphosphatidylserine.
- 52. The composition of any one of claims 46, 48, 49 and 51 wherein the macromolecular carrier is an aqueous-cored lipid vesicle that comprises a fusigenic F-protein.

RIBO- OR DEOXYRIBO-TYPE

DEOXYRIBO-TYPE

RIBO-TYPE

LINKER

SEGMENT BOUNDARIES

FIG.1

FIG. 2A

1 CGGAGGTGAAGGACGTCCTTCCCCAGGAGCCGgtgagaagcgcagtcgggggcacgggggatgagctcagggggctctagaaa 83 gagetgggaccetgggaagecetggeetecaggtagteteaggagagetaeteggggtegggettggggaggaggagegg 165 gggtgaggcaagcagcaggggactggacctgggaagggctgggcagcagaagacgacccgacccgctagaaggtggggtgggg 247 agagcagctggactgggatgtaagccatagcaggactccacgagttgtcactatcattatcgagcacctactgggtgtcccc 329 agtgteetcagatetecataactggggagecaggggcagegacaeggtagetageegtegattggagaaetttaaaatgagg 411 ${\tt actgaattagctcataaatggaacacggcgcttaactgtgaggttggagcttagaatgtgaagggaatgaggaatgcgag}$ 493 575 657 atgtgctgggattaggetgttgcagataatgcaacaaggettggaaggetaacetgggggtgaggeegggttgggggegetgg 739 gggtgggaggagtcctcactggcggttgattgacagtttctccttccccagACTGGCCAATCACAGGCAGGAAGATGAAGGT 821 903 ${\tt tcctcacctcaacctcctggccccattcagacagaccctgggccccctcttctgaggcttctgtgctgcttcctggctctga}$ 1067 acagcgatttgacgctctctgggcctcggtttcccccatccttgagataggagttagaagttgttttgttgttgttgt 1149 tgttgtttttttttttgagatgaagtctcgctctgtcgcccaggctggagtgcagtggcgggatctcggctcactgca 1231 agetecgeeteccaggtecacgecattetectgeeteageeteccaagtagetgggactacaggcacatgecaccacacceg 1313 actaacttttttgtattttcagtagagaggggtttcaccatgttggccaggctggtctggaactcctgacctcaggtgatc

FIG. 2B

1395	tgcccgtttcgatctcccaaagtgctgggattacaggcgtgagccaccgcacctggctgg
1477	tgcaggcagatagtgaataccagacacggggcagctgtgatctttattctccatcacccccacacagccctgcctg
1559	acaaggacactcaatacatgcttttccgctgggccggtggctcacccctgtaatcccagcactttgggaggccaaggtggga
1641	ggatcacttgagcccaggagttcaacaccagcctgggcaacatagtgagaccctgtctctactaaaaatacaaaaattagcc
1723	aggcatggtgccacacacctgtgctctcagctactcaggaggctgaggcaggaggatcgcttgagcccagaaggtcaaggtt
1805	gcagtgaaccatgttcaggccgctgcactccagcctgggtgacagagcaagaccctgtttataaatacataatgctttccaa
1887	gtgattaaaccgactcccccctcaccctgcccaccatggctccaaagaagcatttgtggagcaccttctgtgtgcccctagg
19 69	tagetagatgeetggaeggggteagaaggaeeetgaeeetgaeettgaaettgtteeacacagGATGCCAGGCCAAGGTGGAG
2051	CAAGCGGTGGAGACAGAGCCGGAGCCGGAGCTGCGCCAGCAGACCGAGCGGCAGCGGCAGCGCCAGCGGGAACTGGCACTGG Q A V E T E P E P E L R Q Q T E W Q S G Q R W E L A L GTCGCTTTTGGGATTACCTGCCCTTGCGCACTGGCACTGG
2133	GTCGCTTTTGGGATTACCTGCGCTGGGTGCAGACACTGTCTGAGCAGGTGCAGGAGGAGCTGCTCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCAGGTCACCCA
2215	GGAACTGAGGTGAGGTGAGGTGCCCCATGGTGGGCCCTGGTGGGGGGGG
2297	cccctgtcgctaagtcttggggggcctgggtctctgctggttctagcttcctcttcccatttctgactcctggctttagctc
2379	tetggaattetetetetegetttgtetetetetetetete
2461	ccttccctagctcttttatatagagacagagagatggggtctcactgtgttgcccaggctggtcttgaacttctgggctcaa
2543	gegatectecegecteggecteceaaagtgetgggattagaggeatgageacettgeeeggecteetagetecttettegte
2625	tctgcctctgccctctgcatctgcatctgtctctgtctccttctctcggcctctgccccgttcctctccctc
2707	· · · · · · · · · · · · · · · · · · ·

FIG. 2C

2789	gccctctcggccgcagGGGGTGATGGACGAGACCATGAAGGAGTTGAAGGCCTACAAATCGGAACTGGAGGAACAACTGAC
	A L M D E T M K E L K A Y K S E L E E Q L T
2871	
	CCCGGTGGCGGAGACGCGGCACGGCTGTCCAAGGAGCTGCAGGCGCGCAGGCCCGGCTGGGCGCGACATGGAGGAC P V A E E T R A R L S K E L Q A A Q A R L G A D M E D
2953	
	V C G R L V Q Y R G E V Q A M L G Q E T E E L R V R L
3035	CCTCCCACCTGCGCB ACCTGCGCGB ACCTGCGCGCGB ACCTGCGCGCGB ACCTGCGCGCGB ACCTGCGCGCGB ACCTGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC
	CCTCCCACCTGCGCAAGCTGCGTAAGCGGCTCCTCCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGG A S H L R K L R K R L L R D A D D L Q K R L A V Y Q A G
3117	
3117	
3199	
3281	AGATGGGCAGCCCGACCCCGACCCCGACCCGACCCGACC
	The state of the s
	AGATGGGCAGCCGGACCGCCTGGACGAGGTGAAGGAGCAGGTGGCGGAGGTGCGCGCCAAGCTGGAGGAGGAGCAGGC E M G E R T R D R L D E V K E Q V A E V R A K L D
3363	CCAGCAGATACGCCTGCAGGCCGAGGCCAGGCCGAGGCCGAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCAGGCCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCCAGGAGG
	CCAGCAGATACGCCTGCAGGCCGAGGCCAGGCCGAGGCCGAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCAGGCCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCCAGGAGG
	CCAGCAGATACGCCTGCAGGCCGAGGCCTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M O R
3363	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGCTGGTGGAGAAGGTTCGAGGAGACGTTCGAGCCCTGGTGGAGAAGACATGCAGCGC CAGTGGGCCGGGCTGGAGAAGGTTCGAGGAGAAGGTTCGAGGCCGGTGGAGAAGGTTCGAGGCCGGTTGGAGAGACGTTCGAGGCCGGTTGGAGAGACGTTCGAGGCCGGGTTGGAGAGACGTTCGAGGCCGGGTTGGAGAGACGTTCGAGGCCGGGTTGGAGAGACGTTCGAGGCCGGGTTGGAGAGACGTTCGAGGCGGGTTGGAGAGACGTTCGAGGCGGGTTGGAGAGACGTTGGAGGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGTTGGAGGCGGGTTGGAGGAGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGATGGAGAGACGTTGGAGGAGAGACGTTGGAGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACATGGAGAGACATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACGATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACGATGGAGAGACGATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGACATGGAGAGAGA
3363 3445	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D W H
3363 3445	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D W H
3363 3445 3527	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D N H CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCGCGCGAGAGCCCTGTCCCCGGC
3363 3445	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D N H CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCGCGCGAGAGCCCTGTCCCCGGC
3363 3445 3527 3609	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGCTGGTGGAGAAGGTGCAGGCCTGCCGTGGGCACCCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D N H CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCGCGCGCAGCCTGCAGCGGAGACCCTGTCCCCGCC CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCCTTGCCTCCTGCCTCCGCGCAGCCTGCAGCGGGAGACCCTGTCCCCGCC CCAGCCGTCCTCCTGGGGTGGACCCCTAGTTTAATAAAGATTCACCAAGTTTCACGCAtctgctggcctccccctgtgatttc
3363 3445 3527 3609	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGCTGGTGGAGAAGGTGCAGGCCTGCCGTGGGCACCCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D N H CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCGCGCGCAGCCTGCAGCGGAGACCCTGTCCCCGCC CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCCTTGCCTCCTGCCTCCGCGCAGCCTGCAGCGGGAGACCCTGTCCCCGCC CCAGCCGTCCTCCTGGGGTGGACCCCTAGTTTAATAAAGATTCACCAAGTTTCACGCAtctgctggcctccccctgtgatttc
3363 3445 3527 3609	CCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGC Q Q I R L Q A E A F Q A R L K S W F E P L V E D M Q R CAGTGGGCCGGGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCCCTGTGCCCAGCGACAATCACTGAACGC Q W A G L V E K V Q A A V G 6 S A A P V P S D N H CGAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCGCGCGAGAGCCCTGTCCCCGGC

cagcgtccct tcccatggag gcctgcagca agcttgctgt cttaagttcc tgaagtagtc cctcccagcc agactgcgag ggttcaggcc acttataata cccactcag tgaggtgatg aaccatcggg cccacagctg ggtttctcac ctggcagcaa gtacgtggat cttgggaaaa aggcctgtgg tgggccccac ccatqtcccc tgcctgcaag aagactgtgg aagggcccac ggaggagtcc gcccacacac agacctgcaa gggagggag cacgccccgc tccttgaact ggcttatcag ggctgcttag cccagctcaa cgctctgtgc gctgaaggca ggatgaaagc cctaggagcc agaggcagca cagatctcag ctcggcattt tggccactgt aaggctccgc cagggggcag gggtcacagc tctgatgagc agccacattg gaggtccttc cctgcccagc tctccttggt aatggcaact cccacccggg ccctgccctg acagagetga gccagggctg actctggctc cgggggaagg tgcaagagct ggtattataa gcttctgcat aggaaattaa tgtcccctaa cctcctgggc cctttcggct gggagccagg gtgaaggacc tcccagtttg agggcagggg tctccaggca tcacctaata gtgatcacag gcatagaagc ctcctctgct ggggaggcag gaggacaggg cacaatggac gaaccccgac aacccttgac agtcccaggg cagcaacagg ctgccccggc gggtacctga aaataggccc ggagcacggg aggtcccca gacgggtagg cgtggcccac ccaagettgg cccacctca ctgggatcga agactatgtg cctggggttg ggccgagtcc ccggaatgga tgcccgatgc tcttcaccac tgcgctggag gctggtggtg cctctgccaa tgagtgcagg ctatttgccc gaccagtgag ctgcagacat gcactggtgg gcccccactg gtcctgctgc aaggaatat aatgagtggg cttctcctcc tgatattaat cctaaatccc tacacacat ggteteeet cccagagccc acagcggcag aaggacccag aagccagact gatggagaaa agaccagggc cacttcact gagaggagaa ctaaagaaga gggaaggga tccctggaat stacactaca ttgcccactc acattgccag accetacact aaggaggtgc cagaccctgg ttgccccagg acctggctgc ccaggccctt gggctttctc tggccccctc accttggccg gcctgatctg gatgaacccc gtgctcaaag cagctaaagt gatgatgttg agatggtctg tgcaaaggac tgtagcaagc gctgtcttcg 121 181 241 301 361 481 541 421 601 781 661 721 841 961 901 1021 1141 1381 1201 1261 1081

gataatatat ttggttgaga gggctcaccc ctccagccta cgaacagctc cctgaggcaa ggacgacttc gctgcgcgca gagcccactg gcatctggcc caaggagaac cacgeteage gctggagagc cacccagtga gtgggaagca ೧೧೦೮೮೮೩೮೮೮ cccagactgg cttacgagtg ggacnaggca cctgcagcct ttccccgtcc gcgggacgga gcaagtgaag cagacacttc atacttttta ggcaggggtg gtgtcaccca ctgtctcacc gcaagctgcg agacagaggg agccctacct aggtggagcc ttgaggctct aagagaagct cgctgcgcac agcatctgag tgctgcccgt agaagctcaa cgtttccaaa tccgggggag caactccgtg cgcntggctg aagtcacagc tcaaacaagg agcagtcggg ctgtcagcgg ggtcccgggt acctctcaaa ccagctctgt ggcctggcgg tccaccttca ccgcggacag ctcaaccctt ctggaaaagg gccaaggtgc taccgccaga cacgagetge catgtggacg gccgcgcgcc cgccaaggcc aaggccaccg gagtacacta tcagaataaa tgcggggaca cggatctcaa acctgctgga agtagaaagg tgaaaggggc tttagctggg agcccagccg attggggttt taattcaaaa ggcaccagtc aacggggcat cactgcacct gaggccagcc cagcgtgacc ctgggataac ggaggtgaag ccagaagctg gatggagctc cgcgcgcgcc ccagcgcttg cgaggacctc gtaccacgcc cgctctcgag ttcccggtgc tagagggggg gacttcctgc acgttggagg gcaaggctca ccaggtgccc cagcggttgc agcettetee agccactggg actacttac aacgtaactg ccagctgcac aatgctaggc ggggcgctgg acaactggga cccaggagtt aggatctgga ggcaggagga agggcgcgcg tgcgcgaccg acgagctgcg gactggccga agcccgcgct gcttcctgag gaagaaaaa tttgggagaa ctggagcagg gccaagatcg gtctgcctta ggccaggaaa caatccaagg gtccgtatag tcagggagcc ttgcgcctgt tttggagacc gtgcctcggt gtgtactgga ctgataggct aagctccttg ggccctgtga gagatgagca cagaagaagt gagctccaag ggcgaggaga ccctacagcg ggcggcgcca gagaaggcca ttcaaggtca ggcgcccgcc gattattat gcctttggcc acgtcttagg agggagtaga aagccacaga ರಿಂತಿರಿತಿರಿತಿಂತ gtctgaggcg cgcttggagt ccagaggtgt 1441 501 561 1621 1681 1741 801 1861 1921 1981 2041 2101 2161 2281 2221 2401 2461 2341 2521 2581 2821 2641 2701 2761

ccagaaacag gctccatgcc aaattcacca tctcactgca atgaggacac aggcagcgct ggtcgggtgc tcacttcagg taaaaataca ggaaggctga tcatgccact aaaaaaag tattctcaca ctgcacgcac ttttgcccc tgtatcttag ctctcagccc caacagcagt ctggatgtac acaaaactgt tggccctgcc agttttttga acctgacatc gcttctttt cccatcccqc acccctgcg ctgagtaaga atatctgtgc cagagcatgg aggatgggct agagtgtgcg ggtgggcgta ctgtctctac ccagctacta tgagccgaaa ctgcagggcc ccatctccag aaaaaaaa catgcctgtg aatgtcccg tccagagcta gtgctgagat ccaggtgggg gctcaaggtc cataggagtg tccgggccac gggctctctg gagaccttgt tcccactact ccagtcctcc agaagctggc agatgctctc ccatcagacg agtgaacagc attattgaaa gggaggctga tggtgaaacc acccgtaatc gaggtcacag ccagctaaaa ggtgtgcagg ctcatgtctg cccatgtcc taccetetet ttcctaacct ctagatacgg aaagcagtct taacacctga gctgacctgg acttagaata tgcagctctc cctctattgg agtatecece cagccctggc gcagtggaag tttatttcca ggctagattg tegettgeee gccatccatg ccagcacttt ctggccaata ggtggcttgc ctgggaggca gagcaagact agttcacatg cctccttgca gtgccttccc teggeeceat ggctttttag ggaacatttt tttcagagag aaggagtccc aatacacgca tcaagccatc tggccaagtg aaggaagcag tcacaaggcc ctcttctgc ctcaggcaca caggtacatt acctgtgacg gcctgtaatc cccacatcct tgcacccctg tgagaccagc cagctggcat tegettgaac ctgggcgacg ctggcactca gctcacggtc agatctggca ccctggataa taaaggagtg ggagccctac ggtctgggtg cctggggaat gagatctgta aactgagcag tctgtgatgc tggggacaca acttttcttc ccgcggcttc atgccaccc ccacctcttg tactacatta tgaagcctgg ttttagaccc ggtggctcaa gccaggagtt aaaaaaat ggcaggagaa gcactccagc agtgtgtggc atggcttcac tgacctccct tcatgcaggc ctaccctagg catccagcca agagagaagc tgatgccact acgtgctggc tttctgcacc tctgaagagt tttcgggtgg 2881 2941 3001 3061 3241 3301 3121 3181 3361 3421 3541 3601 3781 3481 3661 3721 3841 3901 3961 4201 4261

FIG.

8/11

tcagctcaac aaacggttcg gttgtatcca ctaagagggc gtgcctcgtt acagtctcaa tcaagtcatg tttgaccttc gagatgaaga gcctccatgc cttcccatg tccagcttta gagcactgag acccaaggag ccacggctga agtcagggga taacggtgct cacccatgtc acgacagccc atccttgcag tatgcccctg tcattgtttt ggtaggacag tgatctgggg gtgctgtgcc gccaagaata tcacgtgcgc gggcacacac aagggcccag gtaaacacac agggggtacg tattgtcctg tcctacctta agcctcggcc tagagcgctg cagcttcttg tggggtagga ccctaaatc agattgcagg tctcaggcag aacttgtcct atgggaccca acttcactgg gagaagagat ctcagatgtt gtcaaggctg ctctgagcag attagttgtg gtccggtccc aagtggtgga ttacgtgcag cctacggtgg cctcctccct acagttttga ggctggcatg tcagcaaact ggagggtgat agaaggtgga cccacagaac ccactcatag aggcatgagg gaagccctgg ggtattgagg gaactcagag ggtcacccag gtaggcaacc cacctctca tccaggtcac gccaccctgg gatgtgaaag aacctggtgg tggaggattg caccactcca tcacggcaaa ggctgatatc ggtcagctcc tcaagcatct gcccatccgg tatcaaagta ggcagggtac caggcatagt cccagctacc ccagtgccca ttgcgacggc gagggggcc acctacaggg gtggacttgg ccaaatccca tgaagccatc aggaccacac gaactcctct cccacagct ccctgccatc agggtgggga ggagttgcac ggaaagtcat acaacattga catttcaatc aagaaactga ccaacctcta cactgcccc ggatagggga acttaagtgc cctaacagtt tgtcaaggaa cagagactag tggagtctgt gatggcacac agcatgcctg cttttaagca ttcagggaac ggcaggaatc ggataggcag acctcagggt cagggcatga gacaccagtc acaagtcaaa agcaccacct acaaagtgac cctctcattt ggtcccagga tgtaatcatg aacgetetet ctttacatgt gcatcttact taggtggcct ctctgatgac ttgtgcagca cgcacaaagc aactgaggcc ctgcctgacc cccagacaca ttgggaggcc aatactgtcc ctggcaggat agttggtctg ccagtagtct agcaacagag cccactggac tgagacctca gaaccccagc ggcctgaggc ctgtgcaaac agggaggcag 4381 4501 4561 4441 4681 4741 4801 4621 4861 4921 4981 5041 5101 5161 5221 5281 5341 5401 5461 5521 5581 641 5701

atgggcaggg aaataacac atgccagcta tagaacaaag accettagee aggagccggg cgcctcctgt tgcacatgcc aggtggaaca aaaactqqtc aggaaaatgg ggcaggagga catctctgct tacttgggag cgagatggca gaagaagaaa aaagagaaag gaaagaaga ggaaaggaaa ggagggacct aggccctgtg cattccattg gggatgggg acgctgctca caaagtgaga cacctctgct gagagtactg cccaggtct cccaaggcaa tattgtgaac atggactgtt gcctgagctc tgatgatctg tgtccaccac ccttcagaaa taatcccagc gggaggccga ggtgaaaccc tgcagtgagc aaaaaaaa agaaagaaag aagaaagaaa gaaagggaaa ccgggagaaa agcctgacaa ggagcacctc agctggcagg ggactcctgc ttctcatctg tgtttatgaa taggggagag ctcacactgg ggtggggcct gtactggtcc tgagcaatac gtgtgaaccc atctaatgcc atggaaaat tctagccaga ccagcacttt tggccaacat cgcgtgcctg agacggaggt agactccatt gaaaaaggaa aaaggaaaga gaaagagaaa ctcccgcagc taggactgct gaatggaggc aggggaggct gggccacctg ggactaagaa agcctcaatt gagaaggag cacacttctg aattgggtca tcatagatag ggtgggtgag tctcatagga ccttatgaga gcctgtaatc aagaccaacc ccgctggccc ggaccactgc ggtgtggtgg tgacagaggg tgaacccggg gggaaagaaa ggaaagaaag aagaaaata ddcdcddccc tctgtcatct gcacaggccc 999c999t99 ctggcctgct aatcgctctg ccggttctgg agaggaagga gggtgaggtg cacgggcttg aacccccaag ggccttacat gtggagggct cgaagtgagt aaaaccatcc aaaaggctga agtggctcgt tcaggaattc aaattagctg gagaatgggt ccagcctggg aaggaagaga aagaaagaaa gaaagaaaga gggctaaac cagtctcaac aggctgaaga accagggcag gcgggtgtac caggtcacct taccccaaag atgccagtca gcaggatggg cagaagcact cagggtcccc ctgcacagca cagatcaagt agggatctag cctggtgcca ggccaggcgc tccctgagg gcttcatccc aaaatacaa gctgaggcag gaaagagaga ccactgcact aaagaaaaga aagaaagaaa atggaaatga gggaggaatg aggaaagagg ttgggatctc agggaggcca 5761 5821 5881 5941 6001 6061 6241 6121 6301 6361 6421 6181 6481 6541 6601 6721 6781 6841 6901 6961 7081 6661 7141

m

FIG

10/11

ctgagaaggg gtggatcggc cccaagttgc aggagcgcca caaggaagtg aggtggcgtg ctcctgctca aggaggtggg cttccaggcc ggactgatct cctaagcctg atgtagcttt gtgggggca tgctggctgg tacactacac gcaggagggt gcgctgggca atgcagcaag ccgccagccc ccttcctagc aggccagcgc cagccccaag aacaagtggg agtggctcgc ctgcatgaag gactgggatc tctgttcctg gctgagtggg ggcagaggcc ctccctgggg taggggccgg cgaggcccaa actgcggtct ttcctccagc ttctggccct accacact atgatgaggg gggtgtccag cgctgctgtc tctccaggct acatactatt gagcagacag aggacccagg gagcctcatt gcttggacat ctccctccac cagacttgag accgggcatc tcatgtagcc aaagagcagg ccacccattg agtgcttacg gcatggcacc ctctggaccc ggcgagggat ccagaaggag acatcaaggc tgtctaaggc cacttccago tttgggtgat catcctcctc tcttcaggtt agcaagtgct gcaggcactg gcctgaggca gggatgaact actgagtcca tgggcctggg aggggaaatg tttcaggccc ggggcttctt ggcacagaag gtggcgtgct gctcctgagg tcctgcttga agteceacea acccggggct gtccccatgc gctgggtctg actggtgagc accagactga gctgtgtgtc aggactgggc cacttggagc gcctccatgt ccttagctct tgacactat gctgcctcta ctccagggca ggagatgagg agaggggtga tccctaggag gaactggggg ggctggtgag cacactggaa ttggagtaaa ggcggtcttg ggcctctgaa gccctggggc ccccagccc aacaaggagt ggcacccag tagaacctta cagaaaaccc cagccaacat ggggaacctg cacctcccgg cagaaggggg tgtctggggt tccgaggctt gageteetet acctggagca tttatatcat gctgaccagt agttgggaaa atgagctcag cccagggaga ctcagccttt agcctggagt tggggggtgt aggcatcctc gtgcatcctt ctccaccctg ctctggacga ggagggcaac gccctaagg tcctgtgagg tacgggctct tgggatggag ccgtccagtc tcagtttccc aagaatgagg gggcaagtga cccgtccagc gctgggcagg agagggcatt aaggtcacct tgactggctc ccctgaacac tctgacctgt cgggcgggag tgcagcccag tegggeeeat tggcttgggc 7261 7381 7201 7321 7501 7561 7621 7681 7741 7441 7801 7861 7921 7981 8101 8161 8221 8281 8041 8401 8461 8341 581

11/11

FIG. 3G

ctgggtttca cctgtgtgcc aggccgctca tggacccact ccttcctggg ttttgccctc ctctcgttca acctccatct ccgccccac gagaagcgca agctcacagc ccctcccagc agcccccac ggggttggtg aggeteceta aggactgatt ctcacccagc gtgtagggca tacatcaaca agcccccacc aagagc tacagggctg gcgagtgctg ctcccctga cetttgeece ctgggggagg 999ct99999 aaggcctggt atccaggcag ccaccgccgc gagcccgagg gataacatcc ttcctcagtg 8641 8701 8761 8821 8881 8941

SEQUENCE LISTING

<110> 1. Steer, Clifford J.

- 2. Kren, Betsy T.
- 3. Bandyopadhyay, Paramita
- 4. Roy-Chowdhury, Jayanta
- <120> Methods and Compounds for the Genetic Treament of Hyperlipidemia

<130> 7991-033-228

<150> 60/074,497

<151> 1998-02-12

<150> 09/108,006

<151> 1998-06-30

<160> 59

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 4563

<212> PRT

<213> Homo Sapiens

<400> 1

Met Asp Pro Pro Arg Pro Ala Leu Leu Ala Leu Leu Ala Leu Pro Ala

1 5 10 15

Leu Leu Leu Leu Leu Ala Gly Ala Arg Ala Glu Glu Met Leu

Leu Leu Leu Leu Leu Ala Gly Ala Arg Ala Glu Glu Met Leu 20 25 30

Glu Asn Val Ser Leu Val Cys Pro Lys Asp Ala Thr Arg Phe Lys His
35 40 45

Leu Arg Lys Tyr Thr Tyr Asn Tyr Glu Ala Glu Ser Ser Gly Val

Pro Gly Thr Ala Asp Ser Arg Ser Ala Thr Arg Ile Asn Cys Lys Val 65 70 75 80

Glu Leu Glu Val Pro Gln Leu Cys Ser Phe Ile Leu Lys Thr Ser Gln
85 90 95

Cys Ile Leu Lys Glu Val Tyr Gly Phe Asn Pro Glu Gly Lys Ala Leu 100 105 110

Leu Lys Lys Thr Lys Asn Ser Glu Glu Phe Ala Ala Ala Met Ser Arg 115 120 125

Tyr Glu Leu Lys Leu Ala Ile Pro Glu Gly Lys Gln Val Phe Leu Tyr 130 135 140

Pro Glu Lys Asp Glu Pro Thr Tyr Ile Leu Asn Ile Lys Arg Gly Ile 145 150 155 160

Ile Ser Ala Leu Leu Val Pro Pro Glu Thr Glu Glu Ala Lys Gln Val

170

Leu Phe Leu Asp Thr Val Tyr Gly Asn Cys Ser Thr His Phe Thr Val

Lys Thr Arg Lys Gly Asn Val Ala Thr Glu Ile Ser Thr Glu Arg Asp

2/11

FIG. 2A

	cctatccctgggggagggggggggggggggggggggggg
3	CGGAGGTGAAGGACGTCCTTCCCCAGGAGCCGgtgagaagegeagtegggggeaegggggatgageteaggggcctctagaaa
65	gagetgggaccetgggaagecetggeeteeaggtagteteaggagagetaeteggggtegggettggggagagggagagggg
47	gggtgaggcaagcaggagggactggacctgggaaggggctgggcagcagagacgacccgacccgctagaaggtggggtgggg
29	agageagetggaetgggatgtaageeatageaggaeteeacgagttgteactateattategageacetaetgggtgteece
11	agtgtcctcagatctccataactggggagccaggggcagcgacacggtagctagc
93	actgaattageteataaatggaacaeggegettaaetgtgaggttggagettagaatgtgaagggagaatgaggaatgegag
75	actgggactgagatggaaccggcggtggggaggggggggg
57	atggaggccgacctggggatggggggagataagagaggaccaggagggag
39	atgtgctgggattaggctgttgcagataatgcaacaaggcttggaaggctaacctggggtgaggccgggttgggggcgctgg
21	gggtgggaggagtcctcactggcggttgattgacagtttctccttccccagACTGGCCAATCACAGGCAGGAAGATGAAGGT M K V
03	TCTGTGGGCTGCGTTGCTGGTCACATTCCTGGCAGGT&tggggggggggggggggggggttgctcgggttccccccggctcctc
85	tcctcacctcaacctcctggccccattcagacagaccctgggccccctcttctgaggcttctgtgctgcttcctggctctga
L067	acagcgatttgacgctctctgggcctcggtttccccccatccttgagataggagttagaagttgttttgttgttgttgtttgt
1149	tgttgttgttttgtttttttgagatgaagtetegetetgtegeeeaggetggagtgeagtgggggateteggeteaetgea
1231	ageteegeeteeeaggteeaegeeatteteetgeeteageeteeeaagtagetgggaetaeaggeacatgeeaceacaceeg
1313	actaacttttttgtattttcagtagagacggggtttcaccatgttggccaggctggtggaactggtgaccaggctggt

Lys Ser Val Ser Ile Pro Ser Leu Asp Pro Ala Ser Ala Lys Ile Glu 645 650 Gly Asn Leu Ile Phe Asp Pro Asn Asn Tyr Leu Pro Lys Glu Ser Met 660 665 Leu Lys Thr Thr Leu Thr Ala Phe Gly Phe Ala Ser Ala Asp Leu Ile 680 Glu Ile Gly Leu Glu Gly Lys Gly Phe Glu Pro Thr Leu Glu Ala Leu 695 700 Phe Gly Lys Gln Gly Phe Phe Pro Asp Ser Val Asn Lys Ala Leu Tyr 710 715 Trp Val Asn Gly Gln Val Pro Asp Gly Val Ser Lys Val Leu Val Asp 725 730 His Phe Gly Tyr Thr Lys Asp Asp Lys His Glu Gln Asp Met Val Asn 740 745 Gly Ile Met Leu Ser Val Glu Lys Leu Ile Lys Asp Leu Lys Ser Lys 760 Glu Val Pro Glu Ala Arg Ala Tyr Leu Arg Ile Leu Gly Glu Glu Leu 775 780 Gly Phe Ala Ser Leu His Asp Leu Gln Leu Leu Gly Lys Leu Leu 790 795 Met Gly Ala Arg Thr Leu Gln Gly Ile Pro Gln Met Ile Gly Glu Val 805 810 Ile Arg Lys Gly Ser Lys Asn Asp Phe Phe Leu His Tyr Ile Phe Met 820 825 Glu Asn Ala Phe Glu Leu Pro Thr Gly Ala Gly Leu Gln Leu Gln Ile 840 Ser Ser Ser Gly Val Ile Ala Pro Gly Ala Lys Ala Gly Val Lys Leu 855 Glu Val Ala Asn Met Gln Ala Glu Leu Val Ala Lys Pro Ser Val Ser 870 875 Val Glu Phe Val Thr Asn Met Gly Ile Ile Ile Pro Asp Phe Ala Arg 885 890 Ser Gly Val Gln Met Asn Thr Asn Phe Phe His Glu Ser Gly Leu Glu 905 Ala His Val Ala Leu Lys Pro Gly Lys Leu Lys Phe Ile Ile Pro Ser Pro Lys Arg Pro Val Lys Leu Leu Ser Gly Gly Asn Thr Leu His Leu 935 Val Ser Thr Thr Lys Thr Glu Val Ile Pro Pro Leu Ile Glu Asn Arg 950 955 Gln Ser Trp Ser Val Cys Lys Gln Val Phe Pro Gly Leu Asn Tyr Cys 965 970 Thr Ser Gly Ala Tyr Ser Asn Ala Ser Ser Thr Asp Ser Ala Ser Tyr 985 Tyr Pro Leu Thr Gly Asp Thr Arg Leu Glu Leu Glu Leu Arg Pro Thr 1000 1005 Gly Glu Ile Glu Gln Tyr Ser Val Ser Ala Thr Tyr Glu Leu Gln Arg 1015 1020 Glu Asp Arg Ala Leu Val Asp Thr Leu Lys Phe Val Thr Gln Ala Glu 1030 1035 Gly Ala Lys Gln Thr Glu Ala Thr Met Thr Phe Lys Tyr Asn Arg Gln 1045 1050 Ser Met Thr Leu Ser Ser Glu Val Gln Ile Pro Asp Phe Asp Val Asp 1065 Leu Gly Thr Ile Leu Arg Val Asn Asp Glu Ser Thr Glu Gly Lys Thr

		1075					1080					1085			
Ser	Tyr 1090		Leu	Thr	Leu	Asp 1095		Gln	Asn	Lys	Lys 1100		Thr	Glu	Val
Ala 1105		Met	Gly	His	Leu 1110		Cys	Asp	Thr	Lys 1115	Glu	Glu	Arg	Lys	
		1727	Tle	Cor			λνα	T.OU	Gl n		Glu	- ד ת	7~~	C	1120
				1125	;				1130)			_	1135	i
Ile	Leu	Ala	His 1140		Ser	Pro	Ala	Lys 1145		Leu	Leu	Gln	Met 1150	_	Ser
Ser	Ala	Thr	Ala	Tyr	Gly	Ser	Thr	Val	Ser	Lys	Arg	Val	Ala	Trp	His
		1155			-		1160			-		1165		•	
Tyr	Asp 1170		Glu	Lys	Ile	Glu 1175		Glu	Trp	Asn	Thr 1180		Thr	Asn	Val
Asp			Lvs	Met	Thr			Phe	Pro	Val	Asp		Ser	Δen	Туг
1185		-1-	-7-		1190					1195		LCu.	501	ASP	1200
		Ser	Leu	His			Ala	Asn	Ara		Leu	asp	His	Ara	
	4			1205					1210					1215	
Pro	Gln	Thr	Asp			Phe	Arq	His			Ser	Lvs	Leu		
			1220					1225		2		7	1230		
Ala	Met	Ser	Ser	Trp	Leu	Gln	Lvs			Glv	Ser	Leu			Thr
		1235		-			1240			1		1245		-1-	
Gln	Thr			qaA	His	Leu			Leu	Lvs	Glu			Leu	Gln
	1250					1255				-1-	1260				0111
Asn	Met	Gly	Leu	Pro	qsA			Ile	Pro	Glu	Asn		Phe	Leu	Lvs
1269		-			1270					127					1280
Ser	Asp	Gly	Arq	Val	Lys	Tyr	Thr	Leu	Asn		Asn	Ser	Leu	Lvs	
	•	•	_	1285		-1-			1290					1295	
Glu	Ile	Pro	Leu	Pro	Phe	Glv	Glv	Lvs			Arg	Asp	Leu		
			1300				2	1309			5	Е	1310		
Leu	Glu	Thr	Val	Arg	Thr	Pro	Ala			Phe	Lys	Ser			Phe
		1319		_			1320				- 4	1325		2	
His	Leu	Pro	Ser	Arg	Glu	Phe			Pro	Thr	Phe			Pro	Lvs
	1330			_		1335					1340				1
Leu	Tyr	Gln	Leu	Gln	Val			Leu	Gly	Val	Leu	Asp	Leu	Ser	Thr
134					1350				_	135					1360
Asn	Val	Tyr	Ser	Asn	Leu	Tyr	Asn	Trp	Ser		Ser	Tyr	Ser	Gly	Gly
				136		-		-	137			•		1379	
Asn	Thr	Ser	Thr	Asp	His	Phe	Ser	Leu	Arg	Ala	Arg	Tyr	His	Met	Lvs
											•		1390		•
Ala	Asp	Ser	Val	Val	Asp	Leu	Leu	Ser	Tyr	Asn	Val	Gln	Gly	Ser	Gly
		139			-		140		_			140			-
Glu	Thr	Thr	Tyr	Asp	His	Lys	Asn	Thr	Phe	Thr	Leu	Ser	Cys	Asp	Gly
	141					141					1420		•	-	-
Ser	Leu	Arg	His	Lys	Phe	Leu	Asp	Ser	Asn	Ile	Lys	Phe	Ser	His	Val
142				_	143		_			143					1440
Glu	Lys	Leu	Gly	Asn	Asn	Pro	Val	Ser	Lys		Leu	Leu	Ile	Phe	Asp
				144					145					145	
Ala	Ser	Ser	Ser	Trp	Gly	Pro	Gln	Met	Ser	Ala	Ser	Val	His		
			146					146					147		-
Ser	Lys	Lys	Lys	Gln	His	Leu	Phe	Val	Lys	Glu	Val	Lys	Ile	Asp	Gly
		147					148		•			148			•
Gln	Phe	Arg	Val	Ser	Ser	Phe	Tyr	Ala	Lys	Gly	Thr	Tyr	Gly	Leu	Ser
	149	0				149			•	-	150				
Сув	Gln	Arg	Asp	Pro	Asn	Thr	Gly	Arg	Leu	Asn	Gly		Ser	Asn	Leu
150			*		151		-			151					1520

				Ser 1525					15 30					1535	
Tyr	Glu	qaA	Gly 1540	Thr	Leu	Ser	Leu	Thr 1545		Thr	Ser	qaA	Leu 1550		Ser
Gly		Ile 1555		Asn	Thr	Ala	Ser 1560		Lys	Tyr	Glu	Asn 1565	_	Glu	Leu
Thr	Leu 1570		Ser	Asp	Thr	Asn 1575		Lys	Tyr	Lys	Asn 1580		Ala	Thr	Ser
Asn 1585		Met	Asp	Met	Thr 1590		Ser	Lys	Gln	Asn 1595		Leu	Leu	Arg	Ser 1600
Glu	Tyr	Gln	Ala	Asp 1605		Glu	Ser	Leu	Arg 1610		Phe	Ser	Leu	Leu 1615	
Gly	Ser	Leu	Asn 1620	Ser	His	Gly	Leu	Glu 1625		Asn	Ala	Asp	Ile 1630		Gly
Thr	Asp	Lys 1635		Asn	Ser	Gly	Ala 1640		Lys	Ala	Thr	Leu 1645		Ile	Gly
Gln	Asp 1650		Ile	Ser	Thr	Ser 1659		Thr	Thr	Asn	Leu 1660	_	Cys	Ser	Leu
Leu 1669		Leu	Glu	Asn	Glu 1670		Asn	Ala	Glu			Leu	Ser	Gly	
		T _i vs	Leu	Thr			Glv	Δτα	Dhe	1675		Hie	Δen	בומ	1680
		_		1689	5		_	_	1690)				1695	5
Phe	Ser	Leu		Gly	Lys	Ala	Ala			Glu	Leu	Ser		_	Ser
71-	Ma esa	a 1	1700		T1.	T	G 3	1705		a	.	.	1710		
AIA	TAL	171:		Met	11e	Leu	172		Asp	ser	гуѕ	1725		Pne	Asn
Phe	Lys 1730		Ser	Gln	Glu	Gly 173		Lys	Leu	Ser	Asn 1740		Met	Met	Gly
						~	_				1,1	,			
Ser	Tyr	Ala	Glu	Met	Lvs	Phe	Asp	His	Thr	Asn	Ser	Leu	Asn	Ile	Ala
174	5			Met	1750)	_			1755	5				1760
174	5 Leu	Ser	Leu	Asp 176	1750 Phe) Ser	Ser	Lys	Leu 1770	1755 Asp	Asn	Ile	Tyr	Ser 177	1760 Ser
174	5 Leu	Ser	Leu	Asp 1769 Lys	1750 Phe) Ser	Ser	Lys Asn	Leu 1770 Leu	1755 Asp	Asn	Ile	Tyr Pro	Ser 1779 Tyr	1760 Ser
174 Gly Asp	Leu Lys	Ser Phe	Leu Tyr 178	Asp 176: Lys 0	1750 Phe Gln	Ser Thr	Ser Val	Lys Asn 1785	Leu 1770 Leu	1755 Asp O Gln	Asn Leu	Ile Gln	Tyr Pro	Ser 177! Tyr	1760 Ser Ser
174 Gly Asp	5 Leu Lys Val	Ser Phe Thr	Leu Tyr 178 Thr	Asp 1769 Lys O Leu	1750 Phe Gln Asn	Ser Thr Ser	Ser Val Asp 180	Lys Asn 1785 Leu 0	Leu 1770 Leu E Lys	1755 Asp O Gln Tyr	Asn Leu Asn	Ile Gln Ala 180	Tyr Pro 179 Leu 5	Ser 177! Tyr O Asp	1760 Ser Ser
174 Gly Asp	5 Leu Lys Val	Ser Phe Thr 179	Leu Tyr 178 Thr	Asp 176: Lys 0	1750 Phe Gln Asn	Ser Thr Ser	Ser Val Asp 180 Leu	Lys Asn 1785 Leu 0	Leu 1770 Leu E Lys	1755 Asp O Gln Tyr	Asn Leu Asn	Ile Gln Ala 1809 Leu	Tyr Pro 179 Leu 5	Ser 177! Tyr O Asp	1760 Ser Ser
174 Gly Asp Leu Thr	Leu Lys Val Asn	Ser Phe Thr 1799 Asn	Leu Tyr 178 Thr 5 Gly	Asp 1769 Lys O Leu	1750 Phe Gln Asn	Ser Thr Ser Arg 181	Ser Val Asp 180 Leu	Lys Asn 1785 Leu O Glu	Leu 1770 Leu Lys Pro	1755 Asp O Gln Tyr	Asn Leu Asn Lys 1820	Ile Gln Ala 1809 Leu	Tyr Pro 179 Leu 5 His	Ser 177! Tyr 0 Asp Val	1760 Ser Ser Leu
174 Gly Asp Leu Thr Gly 182	Leu Lys Val Asn 181 Asn	Ser Phe Thr 1799 Asn O Leu	Tyr 178 Thr 5 Gly Lys	Asp 1769 Lys O Leu Lys	1750 Phe 5 Gln Asn Leu Ala 1830	Ser Thr Ser Arg 181 Tyr	Ser Val Asp 180 Leu 5	Lys Asn 1785 Leu O Glu Asn	Leu 1770 Leu Lys Pro	Asp Gln Tyr Leu Glu 1839	Asn Leu Asn Lys 1820 Ile	Ile Gln Ala 1809 Leu O Lys	Tyr Pro 179 Leu His	Ser 1779 Tyr O Asp Val	1760 Ser Ser Leu Ala Tyr 1840
174 Gly Asp Leu Thr Gly 182	Leu Lys Val Asn 181 Asn	Ser Phe Thr 1799 Asn O Leu	Tyr 178 Thr 5 Gly Lys	Asp 1769 Lys Leu Lys Gly	1750 Phe Gln Asn Leu Ala 1830 Ala	Ser Thr Ser Arg 181 Tyr	Ser Val Asp 180 Leu 5	Lys Asn 1785 Leu O Glu Asn	Leu 1770 Leu Lys Pro Asn	Asp Gln Tyr Leu Glu 1839	Asn Leu Asn Lys 1820 Ile	Ile Gln Ala 1809 Leu O Lys	Tyr Pro 179 Leu His	Ser 1779 Tyr O Asp Val Ile	1760 Ser Ser Leu Ala Tyr 1840 Val
174 Gly Asp Leu Thr Gly 182 Ala	Leu Lys Val Asn 181 Asn 5	Ser Phe Thr 179: Asn Leu Ser	Leu Tyr 178 Thr Gly Lys Ser	Asp 1769 Lys Leu Lys Gly Ala 184	1750 Phe Gln Asn Leu Ala 1830 Ala	Ser Thr Ser Arg 181 Tyr	Ser Val Asp 180 Leu 5 Gln Ser	Lys Asn 1785 Leu O Glu Asn Ala	Leu 1770 Leu Lys Pro Asn Ser 1850	Asp Gln Tyr Leu Glu 1839 Tyr	Asn Leu Asn Lys 1820 Ile Lys	Ile Gln Ala 1809 Leu O Lys Ala	Tyr Pro 179 Leu His His	Ser 1779 Tyr O Asp Val Ile Thr	1760 Ser Ser Leu Ala Tyr 1840 Val
174 Gly Asp Leu Thr Gly 182 Ala	Leu Lys Val Asn 181 Asn 5	Ser Phe Thr 179: Asn Leu Ser	Leu Tyr 178 Thr Gly Lys Ser	Asp 1769 Lys Lys Gly Ala 184 Gly	1750 Phe Gln Asn Leu Ala 1830 Ala	Ser Thr Ser Arg 181 Tyr	Ser Val Asp 180 Leu 5 Gln Ser	Lys Asn 1785 Leu O Glu Asn Ala	Leu 1770 Leu Lys Pro Asn Ser 1850	Asp Gln Tyr Leu Glu 1839 Tyr	Asn Leu Asn Lys 1820 Ile Lys	Ile Gln Ala 1809 Leu O Lys Ala	Tyr Pro 179 Leu His His	Ser 1779 Tyr O Asp Val Ile Thr 1850 Asp	1760 Ser Ser Leu Ala Tyr 1840 Val
174 Gly Asp Leu Thr Gly 182 Ala	Leu Lys Val Asn 1810 Asn 5 Ile	Ser Phe Thr 1799 Asn Leu Ser Val	Leu Tyr 1780 Thr Gly Lys Ser Gln 186 Ala	Asp 1769 Lys Lys Gly Ala 184 Gly	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val	Ser Thr Ser Arg 181 Tyr Leu Glu	Ser Val Asp 180 Leu Gln Ser	Lys Asn 1785 Leu O Glu Asn Ala Ser 1866	Leu 1770 Leu Lys Pro Asn Ser 1850 His	Asp Gln Tyr Leu Glu 183: Tyr	Asn Leu Asn Lys 1820 Ile Lys Lys	Ile Gln Ala 1809 Leu C Lys Ala Asn	Tyr Pro 179 Leu His His Asp Thr 187	Ser 1779 Tyr O Asp Val Ile Thr 1850 Asp	1760 Ser Ser Leu Ala Tyr 1840 Val
174 Gly Asp Leu Thr Gly 182 Ala Ala	Leu Lys Val Asn 181 Asn Lys Gly Leu	Ser Phe Thr 179: Asn Leu Ser Val Leu 187 His	Leu Tyr 1780 Thr Gly Lys Ser Gln 186 Ala	Asp 1769 Lys Lys Gly Ala 184 Gly	1750 Phe 5 Gln Asn Leu Ala 1830 Ala Val	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe	Lys Asn 1785 Leu O Glu Asn Ala Ser 1865 Met	Leu 1770 Leu Lys Pro Asn Ser 1850 His	Asp Gln Tyr Leu Glu 183: Tyr O Arg	Asn Leu Asn Lys 1820 Ile Lys Leu Asn Met	Ile Gln Ala 1809 Leu O Lys Ala Asn Tyr 188 Ala	Tyr Pro 179 Leu His His Asp Thr 187 Asn	Ser 177: Tyr 0 Asp Val Ile Thr 185: Asp 0	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile
174 Gly Asp Leu Thr Gly 182 Ala Ala Ser	Leu Lys Val Asn 181 Asn Lys Gly Leu 189	Ser Phe Thr 179: Asn Leu Ser Val Leu 187 His	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala Phe	Asp 1769 Lys O Leu Lys Gly Ala 184 Gly O Ser Ser	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val Ala Asn	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe 5	Lys Asn 1785 Leu Glu Asn Ala Ser 1865 Met O	Leu 1770 Leu Lys Pro Asn Ser 1850 His Ser Ser	Asp Gln Tyr Leu Glu 1839 Tyr O Arg Thr	Asn Leu Asn Lys 182 Ile Lys Leu Asn Met 190	Ile Gln Ala 1809 Leu C Lys Ala Asn Tyr 188 Ala O	Tyr Pro 179 Leu His His Asp Thr 187 Asn 5	Ser 177: Tyr 0 Asp Val Ile Thr 185: Asp 0 Ser	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile Asp
174 Gly Asp Leu Thr Gly 182 Ala Ala Ser	Leu Lys Val Asn 181 Asn Lys Gly Leu 189 Thr	Ser Phe Thr 179: Asn Leu Ser Val Leu 187 His	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala Phe	Asp 1769 Lys O Leu Lys Gly Ala 184 Gly O Ser Ser	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val Ala Asn	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189 Thr	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe 5	Lys Asn 1785 Leu Glu Asn Ala Ser 1865 Met O	Leu 1770 Leu Lys Pro Asn Ser 1850 His Ser Ser	Asp Gln Tyr Leu Glu 1839 Tyr O Arg Thr	Asn Leu Asn Lys 1820 Ile Lys Leu Asn Met 190 Lys	Ile Gln Ala 1809 Leu C Lys Ala Asn Tyr 188 Ala O	Tyr Pro 179 Leu His His Asp Thr 187 Asn 5	Ser 177: Tyr 0 Asp Val Ile Thr 185: Asp 0 Ser	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile
174 Gly Asp Leu Thr Gly 182 Ala Ala Ala Ser Met	Leu Lys Val Asn 181 Asn Lys Gly Leu 189 Thr	Ser Phe Thr 179: Asn Leu Ser Val Leu 187 His O Ile	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala 5 Phe Asp	Asp 1769 Lys Lys Gly Ala 184 Gly O Ser Ser	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val Ala Asn His 191	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189 Thr	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe 5 Asn	Lys Asn 1785 Leu O Glu Asn Ala Ser 186 Met O Arg Gly	Leu 1770 Leu Lys Pro Asn Ser 1850 His Ser Ser	Asp Gln Tyr Leu Glu 183: Tyr Arg Arg Thr Val Gly 191	Asn Leu Asn Lys 1820 Ile Lys Leu Asn Met 190 Lys	Ile Gln Ala 180 Leu Lys Ala Asn Tyr 188 Ala O Leu	Tyr Pro 179 Leu His His Asp Thr 187 Asn pro Ala	Ser 1779 Tyr 0 Asp Val Ile Thr 1855 Asp 0 Ser Phe	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile Asp Thr Trp 1920
Thr Gly 182 Ala Ala Ala Ser Met 190 Gly	Leu Lys Val Asn 181 Asn Ile Lys Gly Leu 189 Thr 5	Ser Phe Thr 1799 Asn Leu Ser Val Leu 187 His O Ile His	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala Phe Asp	Asp 1769 Lys Lys Gly Ala 184 Gly O Ser Ala Gly 192	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val Ala Asn His 191 Gln 5	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189 Thr Leu	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe 5 Asn	Lys Asn 1785 Leu Glu Asn Ala Ser 1866 Met O Arg Gly Ser	Leu 1770 Leu Lys Pro Asn Ser 1856 His Ser Ser Asn Lys 193	Asp Gln Tyr Leu Glu 1839 Tyr Arg Thr Val Gly 191 Phe	Asn Leu Asn Lys 1820 Lys Leu Asn Met 190 Lys Leu	Ile Gln Ala 1809 Lys Ala Asn Tyr 188 Ala O Leu Leu	Tyr Pro 179 Leu His His Asp Thr 187 Asn pro Ala	Ser 1779 Tyr O Asp Val Ile Thr 1850 Asp O Ser Phe Leu Ala 193	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile Asp Thr Trp 1920 Glu
Thr Gly 182 Ala Ala Ala Ser Met 190 Gly	Leu Lys Val Asn 181 Asn Ile Lys Gly Leu 189 Thr 5	Ser Phe Thr 1799 Asn Leu Ser Val Leu 187 His O Ile His	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala Phe Asp Thr	Asp 1769 Lys Lys Gly Ala 184 Gly O Ser Ala Gly 192 Thr	1750 Phe 5 Gln Asn Leu Ala 1830 Ala 5 Val Asn His 1911 Gln 5	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189 Thr Leu	Ser Val Asp 180 Leu 5 Gln Ser Phe Asp 188 Phe 5 Asn	Lys Asn 1785 Leu Glu Asn Ala Ser 1866 Met O Arg Gly Ser	Leu 1770 Leu Lys Pro Asn Ser 1856 His Ser Ser Asn Lys 193	Asp Gln Tyr Leu Glu 1839 Tyr Arg Thr Val Gly 191 Phe	Asn Leu Asn Lys 1820 Lys Leu Asn Met 190 Lys Leu	Ile Gln Ala 1809 Lys Ala Asn Tyr 188 Ala O Leu Leu	Tyr Pro 179 Leu His His Asp Thr 187 Asn pro Ala	Ser 1779 Tyr O Asp Val Ile Thr 1850 Asp O Ser Phe Leu Ala 193	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile Asp Thr Trp 1920 Glu
Thr Gly 182 Ala Ala Ala Ser Met 190 Gly Pro	Leu Lys Val Asn 181 Asn Ile Lys Gly Leu 189 Thr Glu Leu	Ser Phe Thr 1799 Asn Leu Ser Val Leu 187 His O Ile His	Leu Tyr 178 Thr Gly Lys Ser Gln 186 Ala Phe Asp Thr	Asp 1769 Lys Lys Gly Ala 184 Gly O Ser Ala Gly 192 Thr	1750 Phe Coln Asn Leu Ala 1830 Ala Color Asn His 191 Coln Fee	Ser Thr Ser Arg 181 Tyr Leu Glu Ile Val 189 Thr Leu Ser	Ser Val Asp 180 Leu Ser Phe Asp 188 Phe Tyr His	Lys Asn 1789 Leu Glu Asn Ala Ser 1869 Met O Arg Gly Ser Asp 194	Leu 1770 Leu Lys Pro Asn Ser 1855 His Ser Ser Asn Lys 193 Tyr	Asp Gln Tyr Leu Glu 1839 Tyr Arg Thr Val Gly 191 Phe Lys	Asn Leu Asn Lys 1820 Ile Lys Leu Asn Met 190 Lys Leu Gly	Ile Gln Ala 1809 Lys Ala Asn Tyr 188 Ala O Leu Leu Ser	Tyr Pro 179 Leu His His Asp Thr 187 Asn Pro Ala Lys Thr	Ser 1779 Tyr O Asp Val Ile Thr 185 Asp O Ser Phe Leu Ala 193 Ser O	1760 Ser Ser Leu Ala Tyr 1840 Val 5 Ile Asp Thr Trp 1920 Glu

		1955					1960					1965			
Ser	Ala 1970		Leu	Thr	Pro	Ala 1975		Gln	Thr		Thr 1980		Lys	Leu	Lys
Thr 1985		Phe	Asn	Asn	Asn 1990		Tyr	Ser		Asp 1995		Asp	Ala	Tyr	Asn 2000
Thr	Lys	Asp	Lys	Ile 2005		Val	Glu	Leu	Thr 2010		Arg	Thr	Leu	Ala 2015	•
Leu	Thr	Leu	Leu 2020		Ser	Pro		Lys 2025	Val		Leu	Leu	Leu 2030	Ser	
Pro	Ile	Asn 2035		Ile	Asp			Glu		Arg	Asp	Ala 2045	Val		Lys
Pro	Gln 2050	Glu		Thr	Ile		Ala	Phe	Val	Lys	Tyr 2060	Asp		Asn	Gln
Asp 2065	Val		Ser	Ile	Asn 2070	Leu		Phe	Phe	Glu 2075	Thr		Gln	Glu	Tyr 2080
		Arg	Asn	Arg 2085	Gln		Ile	Ile	Val 2090	Val		Glu	Asn	Val 2095	Gln
Arg	Asn	Leu	Lys 2100	His		Asn	Ile	Asp 2105	Gln		Val	Arg	Lys 2110	Tyr	
Ala	Ala	Leu 2115	Gly		Leu	Pro	Gln 2120	Gln		Asn	Asp	Tyr 2125	Leu		Ser
Phe	Asn 2130		Glu	Arg	Gln	Val 2135	Ser	His	Ala	Lys	Glu 2140	Lys		Thr	Ala
Leu 2145		Lys	Lys	Tyr	Arg 2150	Ile		Glu	Asn	Asp 2155	Ile		Ile	Ala	Leu 2160
		Ala	Lys	Ile 2165	Asn		Asn	Glu	Lys 2170	Leu		Gln	Leu	Gln 2175	Thr
Tyr	Met	Ile	Gln 2180	Phe		Gln	Tyr	Ile 2185	Lys		Ser	Tyr	Asp 2190	Leu	
Asp	Leu	Lys 2195		Ala	Ile	Ala	Asn 2200	Ile		Asp	Glu	Ile 2205	Ile		Lys
Leu	Lys 2210		Leu	Asp	Glu	His 2215	Tyr	His	Ile	Arg	Val 2220	Asn		Val	Lys
Thr 2225		His	Asp	Leu	His 2230	Leu		Ile	Glu	Asn 2235	Ile		Phe	Asn	Lys 2240
Ser	Gly	Ser	Ser	Thr 2245	Ala		Trp	Ile	Gln 2250	Asn		Asp	Thr	Lys 225	Tyr
Gln	Ile	Arg	11e 226					Lys 2265	Leu	Gln			-	Arg	
Ile	Gln	Asn 2275		qaA	Ile	Gln	His 228	Leu	Ala	Gly	Lys	Leu 228		Gln	His
Ile	Glu 229		Ile	Asp	Val	Arg 229!	Val	Leu	Leu	Asp	Gln 230	Leu		Thr	Thr
Ile 230		Phe	Glu	Arg	Ile 231	Asn		Val	Leu	Glu 231	His		Lys	His	Phe 2320
		Asn	Leu	Ile 232	Gly		Phe	Glu	Val 233	Ala		Lys	Ile	Asn 233	Ala
Phe	Arg	Ala	Lys 234	Val		Glu	Leu	Ile 234!	Glu		Tyr	Glu	Val 235	Asp	
Gln	Ile	Gln 235		Leu	Met	Asp	Lys 236	Leu		Glu	Leu	Ala 236	His		Tyr
Lys	Leu 237	Lys 0	Glu	Thr	Ile	Gln 237	Lys	Leu	Ser	Asn	Val 238	Leu		Gln	Val
Lys 238		ГÀЗ	Asp	Tyr	Phe 239	Glu		Leu	Val	Gly 239	Phe		Asp	Asp	Ala 2400

	Lys	Lys	Leu	Asn 2405		Leu	Ser		Lys 2410		Phe	Ile	Glu	Asp 2415	
Asn	Lys	Phe	Leu 2420		Met	Leu		Lys 2425	-	Leu	Lys	Ser	Phe 2430	_	Tyr
His	Gln	Phe	Val	Asp	Glu	Thr	Asn	Asp	Lys	Ile	Arg	Glu	Val	Thr	Gln
		2435					2440				•	2445			
Arg	Leu	Asn	Glv	Glu	Ile	Gln	Ala	Leu	Glu	Leu	Pro	Gln	Lvs	Ala	Glu
	2450		1			2455					2460		-1-		
			T.em	Dhe	T.eu			Thr	Lys	Δla			λla	Val	Tur
2465		цys	LCu	1110	2470		Olu	LIII		2475		Val	nra	val	_
		0	T	a1			Y	т1.				- 1 -	3		2480
Leu	GIU	ser	Leu			Thr	тÀг	11e	Thr		тте	TTE	Asn		
				2485					2490				_	2495	
Gln	Glu	Ala			Ser	Ala	Ser		Ala	His	Met	Lys	Ala	Lys	Phe
			2500					2505					2510		
Arg	Glu	Thr	Leu	Glu	Asp	Thr	Arg	Asp	Arg	Met	Tyr	Gln	Met	Asp	Ile
		2519	5				2520)				2525	5		
Gln	Gln	Glu	Leu	Gln	Arg	Tyr	Leu	Ser	Leu	Val	Gly	Gln	Val	Tyr	Ser
	2530)				2535	5				2540)			
Thr	Leu	Val	Thr	Tyr	Ile	Ser	Asp	Trp	Trp	Thr	Leu	Ala	Ala	Lys	Asn
2545				•	2550		•	•	-	2555				•	2560
		Asp	Phe	Ala			Tvr	Ser	Ile			Trn	Δla	Lvs	
		F		2565			-1-		2570					2575	
Mat	Lare	λla	T.011			Gln.	Gly	Dho	Thr		Dro	@l.,	TIO		
Mec	пуs	ALA			GIU	GIII	СТУ			VAI	PIO	GIU			IIII
~ 1.	.	a 1 .	258		_		_,	258		_	_		2590		
шe	ьeu			Met	Pro	Ala			Val	Ser	Leu			Leu	Gln
		259		_			260					260			
Lys	Ala	Thr	Phe	Gln	Thr	Pro	Asp	Phe	Ile	Val			Thr	Asp	Leu
	2610					261					2620				
Arg	Ile	Pro	Ser	Val			Asn	Phe	Lys	Asp	Leu	Lys	Asn	Ile	Lys
2625						_				0.00	-				
2625)				263)				263	•				2640
		Ser	Arg	Phe			Pro	Glu	Phe			Leu	Asn		
		Ser	Arg	Phe 2645	Ser		Pro	Glu	Phe 2650	Thr		Leu	Asn		Phe
Ile	Pro			2649	Ser	Thr			2650	Thr	Ile			Thr 265	Phe
Ile	Pro			2649 Phe	Ser	Thr		Phe	2650 Val	Thr	Ile		Val	Thr 2659 Lys	Phe
Ile His	Pro Ile	Pro	Ser 266	2649 Phe 0	Ser Thr	Thr	Asp	Phe 266	2650 Val 5	Thr) Glu	Ile Met	ГЛа	Val 267	Thr 2659 Lys 0	Phe Ile
Ile His	Pro Ile	Pro Thr	Ser 266 Ile	2649 Phe 0	Ser Thr	Thr	Asp Leu	Phe 266 Asn	2650 Val	Thr) Glu	Ile Met	Lys Gln	Val 267 Trp	Thr 2659 Lys 0	Phe Ile
Ile His Ile	Pro Ile Arg	Pro Thr 267	Ser 266 Ile	2649 Phe O Asp	Ser Thr Gln	Thr Ile Met	Asp Leu 268	Phe 266 Asn	2 65 (Val 5 Ser	Thr) Glu Glu	Ile Met Leu	Lys Gln 268	Val 267 Trp	Thr 2 65 9 Lys O Pro	Phe Ile Val
Ile His Ile	Pro Ile Arg Asp	Pro Thr 267 Ile	Ser 266 Ile	2649 Phe O Asp	Ser Thr Gln	Thr Ile Met Asp	Asp Leu 268 Leu	Phe 266 Asn	2650 Val 5	Thr) Glu Glu	Ile Met Leu Asp	Lys Gln 268 Ile	Val 267 Trp	Thr 2 65 9 Lys O Pro	Phe Ile Val
Ile His Ile Pro	Pro Ile Arg Asp 2690	Pro Thr 267 Ile	Ser 266 Ile 5 Tyr	2645 Phe O Asp Leu	Ser Thr Gln Arg	Thr Ile Met Asp	Asp Leu 268 Leu 5	Phe 266 Asn 0 Lys	2650 Val 5 Ser Val	Thr) Glu Glu Glu	Ile Met Leu Asp 2700	Lys Gln 268 Ile	Val 267 Trp 5 Pro	Thr 2659 Lys O Pro Leu	Phe Ile Val Ala
Ile His Ile Pro	Pro Ile Arg Asp 2690 Ile	Pro Thr 267 Ile	Ser 266 Ile 5 Tyr	2645 Phe O Asp Leu	Ser Thr Gln Arg Asp	Thr Ile Met Asp 269	Asp Leu 268 Leu 5	Phe 266 Asn 0 Lys	2 65 (Val 5 Ser	Thr Glu Glu Glu Glu	Met Leu Asp 2700	Lys Gln 268 Ile	Val 267 Trp 5 Pro	Thr 2659 Lys O Pro Leu	Phe Ile Val Ala Glu
Ile His Ile Pro Arg 2705	Pro Ile Arg Asp 2690 Ile	Pro Thr 267 Ile Thr	Ser 266 Ile 5 Tyr Leu	2649 Phe O Asp Leu Pro	Ser Thr Gln Arg Asp 271	Thr Ile Met Asp 269 Phe	Asp Leu 268 Leu 5 Arg	Phe 266 Asn 0 Lys Leu	2650 Val 5 Ser Val	Thr Glu Glu Glu Glu 271	Ile Met Leu Asp 2700 Ile	Lys Gln 268 Ile O Ala	Val 2670 Trp 5 Pro	Thr 265! Lys 0 Pro Leu	Phe Ile Val Ala Glu 2720
Ile His Ile Pro Arg 2705	Pro Ile Arg Asp 2690 Ile	Pro Thr 267 Ile Thr	Ser 266 Ile 5 Tyr Leu	2649 Phe Asp Leu Pro	Ser Thr Gln Arg Asp 271	Thr Ile Met Asp 269 Phe	Asp Leu 268 Leu 5 Arg	Phe 266 Asn 0 Lys Leu	2650 Val 5 Ser Val Pro	Glu Glu Glu Glu Glu Phe	Ile Met Leu Asp 2700 Ile	Lys Gln 268 Ile O Ala	Val 2670 Trp 5 Pro	Thr 2659 Lys Pro Leu Pro	Phe Ile Val Ala Glu 2720 Leu
Ile His Ile Pro Arg 2705 Phe	Pro Ile Arg Asp 2690 Ile Ile	Pro Thr 267 Ile Thr Thr	Ser 266 Ile 5 Tyr Leu Pro	Phe Asp Leu Pro Thr	Ser Thr Gln Arg Asp 271 Leu	Thr Ile Met Asp 269 Phe O Asn	Asp Leu 268 Leu 5 Arg	Phe 266 Asn 0 Lys Leu Asn	2650 Val 5 Ser Val Pro Asp 2730	Thr Glu Glu Glu Glu Phe	Ile Met Leu Asp 2700 Ile Gln	Lys Gln 268 Ile Ala Val	Val 2670 Trp 5 Pro Ile Pro	Thr 2659 Lys Pro Leu Pro Asp 2739	Phe Ile Val Ala Glu 2720 Leu 5
Ile His Ile Pro Arg 2705 Phe	Pro Ile Arg Asp 2690 Ile Ile	Pro Thr 267 Ile Thr Thr	Ser 266 Ile 5 Tyr Leu Pro	Phe Asp Leu Pro Thr	Ser Thr Gln Arg Asp 271 Leu	Thr Ile Met Asp 269 Phe O Asn	Asp Leu 268 Leu 5 Arg	Phe 266 Asn 0 Lys Leu Asn	2650 Val 5 Ser Val Pro	Thr Glu Glu Glu Glu Phe	Ile Met Leu Asp 2700 Ile Gln	Lys Gln 268 Ile Ala Val	Val 2670 Trp 5 Pro Ile Pro	Thr 2659 Lys Pro Leu Pro Asp 2739	Phe Ile Val Ala Glu 2720 Leu 5
Ile His Ile Pro Arg 2705 Phe	Pro Ile Arg Asp 2690 Ile Ile	Pro Thr 267 Ile Thr Thr	Ser 266 Ile 5 Tyr Leu Pro	Phe Asp Leu Pro Thr 272!	Ser Thr Gln Arg Asp 271 Leu	Thr Ile Met Asp 269 Phe O Asn	Asp Leu 268 Leu 5 Arg	Phe 266 Asn 0 Lys Leu Asn	2650 Val 5 Ser Val Pro Asp 2730 Ile	Thr Glu Glu Glu Glu Phe	Ile Met Leu Asp 2700 Ile Gln	Lys Gln 268 Ile Ala Val	Val 2670 Trp 5 Pro Ile Pro	Thr 265! Lys Pro Leu Pro Asp 273! Glu	Phe Ile Val Ala Glu 2720 Leu 5
Ile His Ile Pro Arg 2705 Phe His	Pro Ile Arg Asp 2690 Ile Ile	Thr 267 Ile Thr Ile	Ser 266 Ile 5 Tyr Leu Pro Glu 274	Phe Asp Leu Pro Thr 2729 Phe	Ser Thr Gln Arg Asp 271 Leu Gln	Thr Ile Met Asp 269 Phe O Asn	Asp Leu 268 Leu 5 Arg Leu Pro	Phe 266 Asn O Lys Leu Asn His 274	2650 Val 5 Ser Val Pro Asp 2730 Ile	Thr Glu Glu Glu Glu Phe Ser	Met Leu Asp 2700 Ile Gln His	Lys Gln 268: Ile O Ala Val	Val 2670 Trp 5 Pro Ile Pro Ile 275	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu	Phe Ile Val Ala Glu 2720 Leu Val
Ile His Ile Pro Arg 2705 Phe His	Pro Ile Arg Asp 2690 Ile Ile	Thr 267 Ile Thr Ile	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly	Phe Asp Leu Pro Thr 2729 Phe	Ser Thr Gln Arg Asp 271 Leu Gln	Thr Ile Met Asp 269 Phe O Asn	Asp Leu 268 Leu 5 Arg Leu Pro	Phe 266 Asn 0 Lys Leu Asn His 274 Ile	2650 Val 5 Ser Val Pro Asp 2730 Ile	Thr Glu Glu Glu Glu Phe Ser	Met Leu Asp 2700 Ile Gln His	Lys Gln 268: Ile O Ala Val	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu	Phe Ile Val Ala Glu 2720 Leu Val
Ile His Ile Pro Arg 2705 Phe His	Pro Ile Arg Asp 2690 Ile Ile Ile Thr	Thr 267 Ile Thr Ile Pro	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly	2649 Phe Asp Leu Pro Thr 2729 Phe O Lys	Ser Thr Gln Arg Asp 271 Leu Gln Leu	Thr Ile Met Asp 269 Phe Asn Leu Tyr	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu	Glu Glu Glu Glu 271: Phe Ser Lys	Ile Met Leu Asp 2700 Ile Gln His Ile	Lys Gln 268 Ile Ala Val Thr Gln 276	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu Pro	Phe Ile Val Ala Glu 2720 Leu Val Leu
Ile His Ile Pro Arg 2705 Phe His	Pro Ile Arg Asp 2690 Ile Ile Ile Thr	Thr 267 Ile Thr Ile Pro Phe 275 Leu	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly	2649 Phe Asp Leu Pro Thr 2729 Phe O Lys	Ser Thr Gln Arg Asp 271 Leu Gln Leu	Thr Ile Met Asp 269 Phe O Asn Leu Tyr	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0	2650 Val 5 Ser Val Pro Asp 2730 Ile	Glu Glu Glu Glu 271: Phe Ser Lys	Ile Met Leu Asp 2700 Ile Gln His Ile	Lys Gln 2689 Ile Ala Val Thr Gln 276	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu Pro	Phe Ile Val Ala Glu 2720 Leu Val Leu
Ile His Ile Pro Arg 2705 Phe His Pro	Pro Ile Arg Asp 2690 Ile Ile Thr Thr	Thr 267 Ile Thr Ile Pro Phe 275 Leu	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp	Phe Asp Leu Pro Thr 272! Phe O Lys	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn	Thr Ile Met Asp 269 Phe O Asn Leu Tyr Ala 277	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu Gly	Glu Glu Glu Glu 271: Phe Ser Lys Asn	Met Leu Asp 2700 Ile Gln His Ile Gly 278	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser 5	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu Pro Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn	Pro Ile Arg Asp 2690 Ile Ile Thr Thr 2770 Glu	Thr 267 Ile Thr Ile Pro Phe 275 Leu	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp	Phe Asp Leu Pro Thr 272! Phe O Lys	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn Ala	Thr Ile Met Asp 269 Phe O Asn Leu Tyr Ala 277 Ala	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu	Glu Glu Glu Glu Glu Phe Ser Lys Asn	Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser 5	Thr 2659 Lys Pro Leu Pro Asp 2739 Glu Pro Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn 2785	Asp 2690 Ile Ile Ile Thr Thr Glu	Pro Thr 267 Ile Thr Ile Pro Phe 275 Leu 0 Ala	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp	Phe O Asp Leu Pro Thr 272: Phe O Lys Ala Ile	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn Ala 279	Thr Ile Met Asp 269 Phe O Asn Leu Tyr Ala 277 Ala 0	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp 5	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0 Ile	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu Gly Thr	Glu Glu Glu Glu 271: Phe Ser Lys Asn Ala 279	Ile Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys 5	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr O	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser 5 Thr	Thr 2655 Lys Pro Leu Pro Asp 2733 Glu Pro Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala Lys 2800
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn 2785	Asp 2690 Ile Ile Ile Thr Thr Glu	Pro Thr 267 Ile Thr Ile Pro Phe 275 Leu 0 Ala	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp	2649 Phe Asp Leu Pro Thr 2729 Phe Lys Ala Ile Asn	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn Ala 279 Phe	Thr Ile Met Asp 269 Phe O Asn Leu Tyr Ala 277 Ala 0	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp 5	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0 Ile	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu Gly Thr	Glu Glu Glu Glu Glu 271! Phe Ser Lys Asn Ala 279 Asn	Ile Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys 5	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr O	Val 2670 Trp 5 Pro Ile Pro Ile 275 Ser 5 Thr	Thr 2655 Lys Pro Leu Pro Asp 273 Glu Pro Ser Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala Lys 2800 Asn
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn 2785 Leu	Pro Ile Arg Asp 2690 Ile Ile Thr Thr 2770 Glu 5	Pro Thr 267 Ile Thr Ile Pro Phe 275 Leu Ala Val	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp Gly Leu	Phe O Asp Leu Pro Thr 272! Phe O Lys Ala Ile Asn 280	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn Ala 279 Phe	Thr Ile Met Asp 269 Phe Asn Leu Tyr Ala 277 Ala 0 Asp	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp 5 Ser	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0 Ile Gln	2650 Val Ser Val Pro Asp 2730 Ile 5 Leu Gly Thr	Glu Glu Glu Glu Glu 271! Phe Ser Lys Asn Ala 279 Asn	Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys Ala	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr Gly Gln	Val 2670 Trp 5 Pro Ile 275 Ser 5 Thr Glu Leu	Thr 2655 Lys Pro Leu Pro Asp 273 Glu Pro Ser Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala Lys 2800 Asn 5
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn 2785 Leu	Pro Ile Arg Asp 2690 Ile Ile Thr Thr 2770 Glu 5	Pro Thr 267 Ile Thr Ile Pro Phe 275 Leu Ala Val	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp Gly Leu Asn	Phe O Asp Leu Pro Thr 272! Phe O Lys Ala Ile Asn 280 Pro	Ser Thr Gln Arg Asp 271 Leu Gln Leu Asn Ala 279 Phe	Thr Ile Met Asp 269 Phe Asn Leu Tyr Ala 277 Ala 0 Asp	Asp Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp 5 Ser	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0 Ile Gln Lys	2650 Val 5 Ser Val Pro Asp 2730 Ile 5 Leu Gly Thr Ala 281 Glu	Glu Glu Glu Glu Glu 271! Phe Ser Lys Asn Ala 279 Asn	Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys Ala	Lys Gln 2689 Ile Ala Val Thr Gln 276 Thr Gly Gln	Val 267 Trp 5 Pro Ile Pro Ile 275 Ser Thr Glu Leu Phe	Thr 2659 Lys Pro Leu Pro Asp 273 Glu Pro Ser Ser 281 Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala Lys 2800 Asn 5
Ile His Ile Pro Arg 2705 Phe His Pro Phe Asn 2785 Leu Pro	Pro Ile Arg Asp 2690 Ile Ile Ile Thr Thr 2770 Glu Glu Lys	Thr 267 Ile Thr Ile Pro Phe 275 Leu Ala Val	Ser 266 Ile 5 Tyr Leu Pro Glu 274 Gly 5 Asp Gly Leu Asn 282	Phe O Asp Leu Pro Thr 272! Phe O Lys Ala Ile Asn 280 Pro O	Ser Thr Gln Arg Asp 271 Leu S Gln Leu Asn Ala 279 Phe Leu	Thr Ile Met Asp 269 Phe Asn Leu Tyr Ala 277 Ala 0 Asp Ala	Leu 268 Leu 5 Arg Leu Pro Ser 276 Asp 5 Ser Phe Leu	Phe 266 Asn 0 Lys Leu Asn His 274 Ile 0 Ile Gln Lys 282	2650 Val 5 Ser Val Pro Asp 2730 Ile 5 Leu Gly Thr Ala 281 Glu	Glu Glu Glu Glu Glu 271! Phe Ser Lys Asn Ala 279 Asn O Ser	Ile Met Leu Asp 2700 Ile Gln His Ile Gly 278 Lys Ala Val	Lys Gln 268; Ile Ala Val Thr Gln 276 Thr Gly Gln Lys	Val 2670 Trp 5 Pro Ile 2755 Ser 5 Thr Glu Leu Phe 283	Thr 2655 Lys Pro Leu Pro Asp 273 Glu Pro Ser Ser 281 Ser	Phe Ile Val Ala Glu 2720 Leu Val Leu Ala Lys 2800 Asn Ser

	2021	-										_		
	2835		_			2840					2845	_		
Ala Ile 285		Gly	Lys	Ser	Asn 2855		Val	Ala	Ser	Leu 2860		Thr	Glu	Lys
Asn Thr	Leu	Glu	Leu	Ser	Asn	Gly	Val	Ile	Val	Lys	Ile	Asn	Asn	Gln
2865				2870		_			287	-				2880
Leu Thr	Leu	Asp	Ser 2885		Thr	Lys	Tyr	Phe 2890		Lys	Leu	Asn	Ile 2895	Pro
Lys Leu	Asp	Phe 2900		Ser	Gln	Ala	Asp 2905	Leu		Asn	Glu	Ile 2910	Lys	
Leu Leu	Lys 291		Gly	His	Ile			Thr	Ser	Ser	Gly 2925		Gly	Ser
Trp Lys		Ala	Cys	Pro	Arg 2935		Ser	Asp	Glu	Gly 2940		His	Glu	Ser
Gln Ile	Ser	Phe	ጥኮጵ	Tla			Dro	Lou	mh ~			<i>a</i> 1	T 011	C
	561	rne	TILL			GIY	PIO	Leu			Pne	GIY	ьец	
2945		_	_	2950				_	295					2960
Asn Lys			2965	5				2970	כ				2975	5
Glu Ser		2980)				2985	5				2990	כ	
Asp Ser	Gln 299		Val	Gly	His	Ser 3000		Leu	Thr	Ala	Lys 3009		Met	Ala
Leu Phe	Gly	Glu	Gly	Lys	Ala	Glu	Phe	Thr	Gly	Arq	His	Asp	Ala	His
301 Leu Asr	.0				301	5			_	3020)	_		
3025	Cly	цуз	V CL 1			1111	neu	цуь			Leu	Pile	Pne	
	_			3030					303		_			3040
Ala Glr			304	5				3050)				3055	5
Lys Val	. Arg	Phe 3060		Leu	Arg	Leu	Thr 3069		Lys	Ile	Asp	Phe 3076		Asn
Asn Tyr	Ala	Leu	Phe	Leu	Ser	Pro	Ser	Ala	Gln	Gln	Ala	Ser	Tro	Gln
Val Ser	307	5				308	0				308	5		
309		1129	FIIC	VOII	309		пур	TAT	ASII			PHE	ser	Ala
		~1								310				_
Gly Asr	Asn	GIU	Asn			GIu	Ala	His	Val	Gly	Ile	Asn	Gly	Glu
3105				311	_				311					3120
Ala Asr	Leu	Asp	Phe 312:		Asn	Ile	Pro	Leu 313		Ile	Pro	Glu	Met 313	
Leu Pro	Tyr	Thr 314	_	Ile	Thr	Thr	Pro 314		Leu	Lys	Asp	Phe		Leu
Trp Glu	Lys 315		Gly	Leu	Lys	Glu 316	Phe		Lys	Thr	Thr 316	Lys		Ser
Phe Asp	Leu		Val	Lys		Gln	-	Lys	Lys		Lys		Arg	His
		_	_	_	317					318				
Ser Ile	rnr	Asn	Pro	Leu	Ala	Val	Leu	Cys	Glu	Phe	Ile	Ser	Gln	Ser
3185				319					319					3200
Ile Lys	Ser	Phe	Asp 320		His	Phe	Glu	Lys 321		Arg	Asn	Asn	Ala 321	
Asp Phe	e Val	Thr 322	Lys 0	Ser	Tyr	Asn	Glu 322	Thr		Ile	Lys	Phe 323	Asp	
Tyr Lys	Ala 323	Glu		Ser	His	Asp 324	Glu		Pro	Arg		Phe		Ile
Pro Gly	y Tyr		Val	Pro		Val		Val	Glu				Phe	Thr
325		_			325					326				
Ile Glu 3265	ı Met	Ser	Ala		Gly n		Val	Phe	Pro		Ala	Val	Ser	Met

Pro	Ser	Phe	Ser	Ile 3285		Gly	Ser	Asp	Val 3290		Val	Pro	Ser	Tyr 3295	
Leu	Ile	Leu	Pro	Ser	Leu	Glu	Leu	Pro	Val	Leu	His	Val	Pro	Arg	Asn
			3300)				3305	5				3310)	
Leu	Lys	Leu	Ser	Leu	Pro	Asp	Phe	ГÀЗ	Glu	Leu	Cys	Thr	Ile	Ser	His
		3315	5				3320)				3325	5		
Ile	Phe	Ile	Pro	Ala	Met	Glv	Asn	Ile	Thr	Tvr	Asp	Phe	Ser	Phe	Live
	3330					3335				- 1 -	3340				~, ·
Cox			T 3 -	mb	T			3		~1		-	_	~	_
		vai	TIE	IIII			Int	Asn	Ala			Pne	Asn	Gln	Ser
3345					3350					3355					3360
Asp	Ile	Val	Ala	His	Leu	Leu	Ser	Ser	Ser	Ser	Ser	Val	Ile	Asp	Ala
				3365					3370					3375	
Leu	Gln	Tvr	Lvs	Leu	Glu	Gly	Thr	Thr			Thr	λνα	Larg	Arg	
		-1-								пси	1111	AT 9			GIY
_	_	_	3380			_		3385					3390		
ьeu	Lys	Leu	Ala	Thr	Ala	Leu	Ser	Leu	Ser	Asn	Lys	Phe	Val	Glu	Gly
		3395					3400					3405			
Ser	His	Asn	Ser	Thr	Val	Ser	Leu	Thr	Thr	Lvs	Asn	Met	Glu	Val	Ser
	3410					3415				_4 -	3420				
Val			Thr	Thr	Tara			T10	Dwa	T7 -			14 - A	Asn	D 1
		TILL	1111	1111			GIII	116	PIO			Arg	met	Asn	
3425		_			3430					3435					3440
Lys	Gln	Glu	Leu	Asn	Gly	Asn	Thr	Lys	Ser	Lys	Pro	Thr	Val	Ser	Ser
				3445	5				3450)				345	5
Ser	Met	Glu	Phe	Lvs	Tvr	azA	Phe	Asn	Ser	Ser	Met	Len	ጥላታ	Ser	Thr
			3460		- 1 -			3465				шец	3470		1111
7 J -	T	~3			3	**! _	~			_		_			_
Ата	пув			vaı	Asp	HIS			Ser	Leu	Glu	Ser	Leu	Thr	Ser
		347					3480					3485			
Tyr	Phe	Ser	Ile	Glu	Ser	Ser	Thr	Lys	Gly	Asp	Val	Lys	Gly	Ser	Val
	3490					3495		_	-	_	3500		•		
Leu			Glu	Tvr	Ser			Tle	Δla	Sar			Acn	mp.~	The
	Ser		Glu	Tyr		Gly		Ile	Ala		Glu		Asn	Thr	-
3505	Ser	Arg			3510	Gly)	Thr			3519	Glu 5	Ala			3520
3505	Ser	Arg		Ser	3510 Thr	Gly)	Thr			3519	Glu 5	Ala		Thr	3520
3505 Leu	Ser Asn	Arg Ser	Lys	Ser 3525	3510 Thr	Gly) Arg	Thr	Ser	Val	3519 Lys	Glu 5 Leu	Ala	Gly	Thr	3520 Ser
3505 Leu	Ser Asn	Arg Ser	Lys	Ser 3525	3510 Thr	Gly) Arg	Thr	Ser	Val	3519 Lys	Glu 5 Leu	Ala	Gly	Thr	3520 Ser
3505 Leu	Ser Asn	Arg Ser	Lys Asp	Ser 3525 Ile	3510 Thr	Gly) Arg	Thr	Ser Glu	Val 3530 Val	3519 Lys	Glu 5 Leu	Ala	Gly Phe	Thr 3539 Ala	3520 Ser
3505 Leu Lys	Ser Asn Ile	Arg Ser Asp	Lys Asp 3540	Ser 3525 Ile	3510 Thr 5 Trp	Gly Arg Asn	Thr Ser Leu	Ser Glu 354	Val 3530 Val	3519 Lys O Lys	Glu Eeu Glu	Ala Gln Asn	Gly Phe	Thr 353! Ala	3520 Ser Gly
3505 Leu Lys	Ser Asn Ile	Arg Ser Asp	Lys Asp 3540 Leu	Ser 3525 Ile	3510 Thr 5 Trp	Gly Arg Asn	Thr Ser Leu Tyr	Ser Glu 3549 Ser	Val 3530 Val	3519 Lys O Lys	Glu Eeu Glu	Ala Gln Asn His	Gly Phe 3550 Ser	Thr 3539 Ala	3520 Ser Gly
3505 Leu Lys Glu	Ser Asn Ile Ala	Arg Ser Asp Thr 355!	Lys Asp 3540 Leu	Ser 3525 Ile) Gln	3510 Thr Trp Arg	Gly Arg Asn Ile	Thr Ser Leu Tyr 3560	Ser Glu 3549 Ser	Val 3530 Val 5 Leu	3515 Lys O Lys Trp	Glu Leu Glu	Ala Gln Asn His 3569	Gly Phe 3550 Ser	Thr 3539 Ala D Thr	3520 Ser Gly Lys
3505 Leu Lys Glu	Ser Asn Ile Ala	Arg Ser Asp Thr 355!	Lys Asp 3540 Leu	Ser 3525 Ile) Gln	3510 Thr Trp Arg	Gly Arg Asn Ile	Thr Ser Leu Tyr 3560	Ser Glu 3549 Ser	Val 3530 Val 5 Leu	3515 Lys O Lys Trp	Glu Leu Glu	Ala Gln Asn His 3569	Gly Phe 3550 Ser	Thr 353! Ala	3520 Ser Gly Lys
3505 Leu Lys Glu	Ser Asn Ile Ala	Arg Ser Asp Thr 3559	Lys Asp 3540 Leu	Ser 3525 Ile) Gln	3510 Thr Trp Arg	Gly Arg Asn Ile	Thr Ser Leu Tyr 3560 Leu	Ser Glu 3549 Ser	Val 3530 Val 5 Leu	3515 Lys O Lys Trp	Glu Leu Glu	Ala Gln Asn His 3568	Gly Phe 3550 Ser	Thr 3539 Ala D Thr	3520 Ser Gly Lys
Joseph Lys Glu Asn	Ser Asn Ile Ala His 3570	Arg Ser Asp Thr 3559 Leu	Lys Asp 3540 Leu Gln	Ser 3525 Ile) Gln Leu	3510 Thr 5 Trp Arg	Gly Arg Asn Ile Gly 357	Thr Ser Leu Tyr 3560 Leu	Ser Glu 3545 Ser)	Val 3530 Val Leu Phe	3519 Lys Lys Lys Trp	Glu Leu Glu Glu Asn 3580	Ala Gln Asn His 3565 Gly	Gly Phe 3550 Ser Glu	Thr 3539 Ala) Thr	3520 Ser Gly Lys
Lys Glu Asn Ser	Asn Ile Ala His 3570 Lys	Arg Ser Asp Thr 3559 Leu	Lys Asp 3540 Leu Gln	Ser 3525 Ile) Gln Leu	3510 Thr 5 Trp Arg Glu	Arg Asn Ile Gly 3579	Thr Ser Leu Tyr 3560 Leu	Ser Glu 3545 Ser)	Val 3530 Val Leu Phe	J519 Lys Lys Trp Thr	Glu Leu Glu Glu Asn 3580 Met	Ala Gln Asn His 3565 Gly	Gly Phe 3550 Ser Glu	Thr 3539 Ala D Thr	3520 Ser Gly Lys Thr
Lys Glu Asn Ser 3585	Ser Asn Ile Ala His 3570 Lys	Arg Ser Asp Thr 3555 Leu Ala	Asp 3540 Leu Gln Thr	Ser 3525 Ile) Gln Leu Leu	3510 Thr Trp Arg Glu Glu 3590	Gly Arg Asn Ile Gly 3579 Leu	Thr Ser Leu Tyr 3560 Leu Ser	Glu 3549 Ser Phe	Val 3530 Val 5 Leu Phe	J519 Lys Lys Trp Thr Gln 3599	Glu Leu Glu Glu Asn 3580 Met	Ala Gln Asn His 3569 Gly Ser	Gly Phe 3550 Ser Glu Ala	Thr 3539 Ala Thr His	3520 Ser Gly Lys Thr Val
Lys Glu Asn Ser 3585	Ser Asn Ile Ala His 3570 Lys	Arg Ser Asp Thr 3555 Leu Ala	Asp 3540 Leu Gln Thr	Ser 3525 Ile Cln Leu Leu	3510 Thr Trp Arg Glu Glu 3590 Gln	Gly Arg Asn Ile Gly 3579 Leu	Thr Ser Leu Tyr 3560 Leu Ser	Glu 3549 Ser Phe	Val 3530 Val 5 Leu Phe	J519 Lys Lys Trp Thr Gln 3599	Glu Leu Glu Glu Asn 3580 Met	Ala Gln Asn His 3569 Gly Ser	Gly Phe 3550 Ser Glu Ala	Thr 3539 Ala) Thr	3520 Ser Gly Lys Thr Val
Lys Glu Asn Ser 3585 Gln	Ser Asn Ile Ala His 3570 Lys Val	Arg Ser Asp Thr 3555 Leu Ala His	Lys Asp 3540 Leu Gln Thr	Ser 3525 Ile Cln Leu Leu Ser 3605	3510 Thr Trp Arg Glu Glu 3590 Gln	Gly Arg Asn Ile Gly 3579 Leu Pro	Thr Ser Leu Tyr 3560 Leu Ser Ser	Ser Glu 354! Ser Phe Pro	Val 3530 Val 5 Leu Phe Trp Phe 3610	Lys Lys Lys Trp Thr Gln 3599	Glu Leu Glu Glu Asn 3580 Met Asp	Ala Gln Asn His 3565 Gly Ser Phe	Gly Phe 3550 Ser Glu Ala Pro	Thr 353! Ala Thr His Leu Asp 361!	3520 Ser Gly Lys Thr Val 3600 Leu
Lys Glu Asn Ser 3585 Gln	Ser Asn Ile Ala His 3570 Lys Val	Arg Ser Asp Thr 3555 Leu Ala His	Lys Asp 3540 Leu Gln Thr	Ser 3525 Ile Cln Leu Leu Ser 3605	3510 Thr Trp Arg Glu Glu 3590 Gln	Gly Arg Asn Ile Gly 3579 Leu Pro	Thr Ser Leu Tyr 3560 Leu Ser Ser	Ser Glu 354! Ser Phe Pro	Val 3530 Val 5 Leu Phe Trp Phe 3610	Lys Lys Lys Trp Thr Gln 3599	Glu Leu Glu Glu Asn 3580 Met Asp	Ala Gln Asn His 3565 Gly Ser Phe	Gly Phe 3550 Ser Glu Ala Pro	Thr 353! Ala Thr His Leu Asp 361!	3520 Ser Gly Lys Thr Val 3600 Leu
Lys Glu Asn Ser 3585 Gln	Ser Asn Ile Ala His 3570 Lys Val	Arg Ser Asp Thr 3555 Leu Ala His	Asp 3540 Leu 6 Gln Thr Ala	Ser 3525 Ile Cln Leu Leu Ser 3605 Ala	3510 Thr Trp Arg Glu Glu 3590 Gln	Gly Arg Asn Ile Gly 3579 Leu Pro	Thr Ser Leu Tyr 3560 Leu Ser Ser	Ser Glu 3545 Ser Phe Pro Ser Asn	Val 3530 Val 5 Leu Phe Trp Phe 3610	Lys Lys Lys Trp Thr Gln 3599	Glu Leu Glu Glu Asn 3580 Met Asp	Ala Gln Asn His 3565 Gly Ser Phe	Gly Phe 3550 Ser Glu Ala Pro Lys	Thr 3535 Ala Thr His Leu Asp 3615	3520 Ser Gly Lys Thr Val 3600 Leu
Lys Glu Asn ser 3585 Gln Gly	Asn Ile Ala His 3570 Lys Val Gln	Arg Ser Asp Thr 3555 Leu Ala His	Asp 3540 Leu 5 Gln Thr Ala Val 3620	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala	3510 Thr Trp Arg Glu 3590 Gln Leu	Gly Arg Asn Ile Gly 3579 Leu Pro Asn	Thr Ser Leu Tyr 3560 Leu Ser Ser	Glu 3549 Ser Phe Pro Ser Asn 3629	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr	JS19 Lys Lys Trp Thr Gln JS99 His	Glu Leu Glu Glu Asn 3580 Met Asp	Ala Gln Asn His 3569 Gly Ser Phe Gln	Gly Phe 3550 Ser Glu Ala Pro Lys 3630	Thr 3535 Ala Thr His Leu Asp 3615 Ile	Ser Ser Gly Lys Thr Val 3600 Leu Arg
Lys Glu Asn ser 3585 Gln Gly	Asn Ile Ala His 3570 Lys Val Gln	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn	Asp 3540 Leu Gln Thr Ala Val 3620 Glu	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala	3510 Thr Trp Arg Glu 3590 Gln Leu	Gly Arg Asn Ile Gly 3579 Leu Pro Asn	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His	Ser Glu 3545 Ser Phe Pro Ser Asn 3625 Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr	JS19 Lys Lys Trp Thr Gln JS99 His	Glu Leu Glu Glu Asn 3580 Met Asp	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser	Thr 3535 Ala Thr His Leu Asp 3615	Ser Ser Gly Lys Thr Val 3600 Leu Arg
Lys Glu Asn Ser 3585 Gln Gly Trp	Asn Ile Ala His 3570 Lys Val Gln Lys	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 363	Asp 3540 Leu Gln Thr Ala Val 3620 Glu	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala Val	3510 Thr Trp Arg Glu 3590 Gln Leu	Gly Arg Asn Ile Gly 3579 Leu Pro Asn Ile	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr	January 19 19 19 19 19 19 19 19 19 19 19 19 19	Glu Leu Glu Glu Asn 3580 Met Asp Asp	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser	Thr 3535 Ala Thr His Leu Asp 3615 Ile	Ser Ser Gly Lys Thr Val 3600 Leu Mrg Val
Lys Glu Asn Ser 3585 Gln Gly Trp	Asn Ile Ala His 3570 Lys Val Gln Lys	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 363	Asp 3540 Leu Gln Thr Ala Val 3620 Glu	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala Val	3510 Thr Trp Arg Glu 3590 Gln Leu	Gly Arg Asn Ile Gly 3579 Leu Pro Asn Ile	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr	January 19 19 19 19 19 19 19 19 19 19 19 19 19	Glu Leu Glu Glu Asn 3580 Met Asp Asp	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser	Thr 3535 Ala Thr His Leu Asp 3615 Ile	Ser Ser Gly Lys Thr Val 3600 Leu Ser Val Val
Lys Glu Asn Ser 3585 Gln Gly Trp	Asn Ile Ala His 3570 Lys Val Gln Lys	Arg Ser Asp Thr 3559 Leu Ala His Glu Asn 3639 Ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala Val	3510 Thr Trp Arg Glu 3590 Gln Leu	Gly Arg Asn Ile Gly 3579 Leu Pro Asn Ile	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr	January 19 19 19 19 19 19 19 19 19 19 19 19 19	Glu Leu Glu Glu Asn 3580 Met Asp Asp	Ala Gln Asn His 3565 Gly Ser Phe Gln Gln 3645 Ile	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser	Thr 3535 Ala Thr His Leu Asp 3615 Ile	Ser Ser Gly Lys Thr Val 3600 Leu Ser Val Val
Lys Glu Asn Ser 3585 Gln Gly Trp Glu	Ser Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650	Arg Ser Asp Thr 3559 Leu Ala His Glu Asn 3639 Ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn	Ser 3525 Ile Gln Leu Ser 3605 Ala Val	3510 Thr Trp Arg Glu 3590 Gln Leu Arg	Gly Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5	Lys Lys Trp Thr Gln 3599 His Lys Ser Leu	Glu Leu Glu Glu Asn 3580 Met Asp Asn Phe Asp	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser Ala	Thr 3539 Ala Thr His Leu Asp 3619 Ile O	Ser Gly Lys Thr Val 3600 Leu Arg Val Ser
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu	Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu	Arg Ser Asp Thr 3559 Leu Ala His Glu Asn 3639 Ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn	Ser 3525 Ile Gln Leu Ser 3605 Ala Val	3510 Thr Trp Arg Glu 3590 Gln Leu Arg	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5	Trp Thr Gln 3599 His Cys Ser Leu Ile	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile	Gly Phe 3550 Ser Glu Ala Pro Lys 3630 Ser Ala	Thr 3535 Ala Thr His Leu Asp 3615 Ile	Ser Ser Gly Lys Thr Val 3600 Leu Ser Val Ser Tyr
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu 3665	Ser Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu 5	Arg Ser Asp Thr 3559 Leu Ala His Glu Asn 3639 Ser	Asp 3540 Leu 5 Gln Thr Ala Val 3620 Glu 5 Asn	Ser 3525 Ile Cln Leu Leu Ser 3605 Ala Val Asp	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys Leu	Ser Glu 3549 Ser Phe Pro Ser Asn 3629 Ser Ala	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5 Gly His	Trp Thr Gln 3599 His C Lys Lys	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile	Ala Gln Asn His 3565 Gly Ser Phe Gln Gln 3645 Ile	Phe 3550 Ser Glu Ala Pro Lys 3630 Ser Ala	Thr 3535 Ala Thr His Leu Asp 3615 Ile Gln Gly Val	Ser Ser Gly Lys Thr Val 3600 Leu Arg Val Ser Tyr 3680
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu 3665	Ser Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu 5	Arg Ser Asp Thr 3559 Leu Ala His Glu Asn 3639 Ser	Asp 3540 Leu 5 Gln Thr Ala Val 3620 Glu 5 Asn	Ser 3525 Ile Cln Leu Leu Ser 3605 Ala Val Asp Leu Trp	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg 3670 Asp	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys Leu	Ser Glu 3549 Ser Phe Pro Ser Asn 3629 Ser Ala	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5 Gly His	Trp Thr Gln 3599 His C Lys Lys	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile	Ala Gln Asn His 3565 Gly Ser Phe Gln Gln 3645 Ile	Phe 3550 Ser Glu Ala Pro Lys 3630 Ser Ala	Thr 3539 Ala Thr His Leu Asp 3619 Ile Offin	Ser Ser Gly Lys Thr Val 3600 Leu Arg Val Ser Tyr 3680
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu 3665 Asp	Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu Lys	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 3635 Ser Gly ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn His	Ser 3525 Ile Cln Leu Leu Ser 3605 Ala Val Asp Leu	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg 3670 Asp	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys Leu Leu	Ser Glu 3549 Ser Phe Pro Ser Asn 3629 Ser Ala Lys	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5 Gly His Asn Leu 369	Trp Thr Gln 3599 His Lys Ser Leu Ile 3679 Asp	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile Val	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile Leu Thr	Phe 3550 Ser 6 Glu Ala Pro Lys 3630 Ser 6 Ala Pro Thr	Thr 3535 Ala Thr His Leu Asp 3615 Ile Gln Gly Val ser	Ser Gly Lys Thr Val 3600 Leu Arg Val Ser Tyr 3680 Ile
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu 3665 Asp	Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu Lys	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 3635 Ser Gly ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn His	Ser 3525 Ile Cln Leu Leu Ser 3605 Ala Val Asp Leu	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg 3670 Asp	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys Leu Leu	Ser Glu 3549 Ser Phe Pro Ser Asn 3629 Ser Ala Lys	Val 3530 Val 5 Leu Phe Trp Phe 3610 Thr 5 Gly His Asn Leu 369	Trp Thr Gln 3599 His Lys Ser Leu Ile 3679 Asp	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile Val	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile Leu Thr	Phe 3550 Ser 6 Glu Ala Pro Lys 3630 Ser 6 Ala Pro Thr	Thr 3535 Ala Thr His Leu Asp 3615 Ile Gln Gly Val ser	Ser Gly Lys Thr Val 3600 Leu Arg Val Ser Tyr 3680 Ile
Lys Glu Asn Ser 3585 Gln Gly Trp Glu Leu 3665 Asp	Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu Lys	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 3635 Ser Gly ser	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn His	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala Val Asp Leu Trp 3688 His	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg 3670 Asp	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe	Thr Ser Leu Tyr 3560 Leu Ser Ser Ala His 3640 Lys Leu Leu	Glu 354! Ser Phe Pro Ser Asn 362! Ser Ala Lys Lys Ser	Val 3530 Val 5 Leu Phe 3610 Thr 5 Gly His Asn Leu 3690	Trp Thr Gln 3599 His Lys Ser Leu Ile 3679 Asp	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile Val	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile Leu Thr	Phe 3550 Ser Glu Ala Pro Lys 3630 Ser Ala Pro Thr	Thr 3539 Ala Thr His Leu Asp 3619 Ile Gln Gly Val Ser 3699 Thr	Ser Gly Lys Thr Val 3600 Leu Arg Val Ser Tyr 3680 Ile
Lys Glu Asn Ser 3588 Gln Gly Trp Glu Leu 3668 Asp	Ser Asn Ile Ala His 3570 Lys Val Gln Lys Leu 3650 Glu Lys Arg	Arg Ser Asp Thr 3555 Leu Ala His Glu Asn 3635 Ser Gly Ser Arg	Asp 3540 Leu Gln Thr Ala Val 3620 Glu Asn His Leu Gln 3700	Ser 3525 Ile Gln Leu Leu Ser 3605 Ala Val Asp Leu Trp 3689 His	3510 Thr Trp Arg Glu 3590 Gln Leu Arg Gln Arg 3670 Asp	Arg Asn Ile Gly 3579 Leu Pro Asn Ile Glu 3659 Phe Arg	Thr Ser Leu Tyr 3560 Leu Ser Ala His 3640 Lys Leu Leu Val	Ser Glu 354! Ser Phe Pro Ser Asn 362! Ser Ala Lys Lys Ser 370!	Val 3530 Val 5 Leu Phe 3610 Thr 5 Gly His Asn Leu 3690 Thr	January 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Glu Glu Glu Asn 3580 Met Asp Asn Phe Asp 3660 Ile Val	Ala Gln Asn His 3569 Gly Ser Phe Gln Gln 3649 Ile Leu Thr	Phe 3550 Ser 6 Glu Ala Pro Lys 3630 Ser 6 Ala Pro Thr	Thr 3539 Ala Thr His Leu Asp 3619 Ile Gln Gly Val Ser 3699 Thr	Ser Ser Gly Lys Thr Val 3600 Leu Ser Tyr 3680 Ile Lys

		3715					3720					3725			
Lys	Phe 3730	Ile	Ile	Pro	Gly	Leu 3735		Leu	Asn	Asp	Leu 3740		Ser	Val	Leu
Val 3745		Pro	Thr	Phe	His 3750		Pro	Phe	Thr	Asp 3755		Gln	Val	Pro	Ser 3760
Cys	Lys	Leu	Asp	Phe 3765		Glu	Ile	Gln	Ile 3770		Lys	Lys	Leu	Arg 3775	
Ser	Ser	Phe	Ala 3780		Asn	Leu	Pro	Thr 3785		Pro	Glu	Val	Lys 3790		Pro
Glu	Val	Asp 3795		Leu	Thr	Lys	Tyr 3800		Gln	Pro	Glu	Asp 3805	Ser		Ile
Pro	Phe 3810	Phe	Glu	Ile	Thr	Val 3819		Glu	Ser	Gln	Leu 3820	Thr		Ser	Gln
Phe 3825		Leu	Pro	Lys	Ser 3830		Ser	Asp	Gly	Ile 3839		Ala	Leu	Asp	Leu 3840
		Val	Ala	Asn 3845	Lys		Ala	Asp	Phe 3850	Glu		Pro	Thr	Ile 3855	Ile
Val	Pro	Glu	Gln 3860	Thr		Glu	Ile	Pro 3869	Ser		Lys	Phe	Ser 3870	Val	
Ala	Gly	Ile 3875	Ala		Pro	Ser	Phe 3880	Gln		Leu	Thr	Ala 3889	Arg		Glu
Val	Asp 3890	Ser		Val	Tyr	Asn 3895	Ala		Trp	Ser	Ala 3900	Ser		Lys	Asn
Lys 3905	Ala	Asp	Tyr	Val	Glu 391	Thr		Leu	Asp		Thr	Cys	Ser	Ser	
		Phe	Leu	Glu 3925	Tyr		Leu	Asn	Val 3930				His		
Glu	Asp	Gly	Thr 3940	Leu		Ser	Lys	Thr 394	Lys		Thr	Phe	Ala 3950		
Asp	Phe	Ser 3959	Ala		Tyr	Glu	Glu 396	Asp	-	Lys	Tyr	Glu 3969	Gly		Gln
Glu	Trp	Glu		Lys	Ala	His 397	Leu		Ile	Lys	Ser 3980	Pro		Phe	Thr
Asp 3989	Leu	His	Leu	Arg	Tyr	Gln		Asp	Lys	Lys 3999	Gly	-	Ser	Thr	
		Ser	Pro	Ala 4009	Val		Thr	Val	Gly	Met	-	Met	Asp		4000 Asp
Asp	Asp	Phe			Trp	Asn			Tyr	-	Pro	Gln			
Asp	Lys	Lys	Leu	-		Phe	Lys			Leu	Arg				Ser
Asp		4035 Glu		Gln	Ile				Trp	Glu				Ala	Ser
			Thr	Ser				Asn	Val				Thr	Gly	Val
406! Leu	-	Asp	Tyr				Tyr	His				Thr	Gly		
Leu	Arg	Glu				Lys	Leu	Arg	409 Arg		Leu	Gln	Asp	4099 His	5 Ala
Glu	Trp	Val	410 Tyr		Gly	Ala				Ile	Asp	Asp	4110 Ile		Glu
Arg	Phe	411! Gln		Gly	Ala				Thr	Gly				Glu	Trp
Lys	413 Asp		Ala	Gln				Gln	Glu				Gln	Glu	Gly
414	Þ				415	0				415	5				4160

Gln	Ala	Ser	Phe	Gln	Gly	Leu	Lys	Asp		Val	Phe	Asp	Gly		
_		_		416					4170					4175	5
Arg	Val	Thr	Gln 4180	Glu)	Phe	His	Met	Lys 418	Val	Lys	His	Leu	Ile 4190		Ser
Len	Tle	Acn	Dhe	T.O.I	7 an	Dho	nua			a 1	n 1	_	4130	,	
		4195	5				4200)		Gln		4205	5		
Gly	Ile	Tyr	Thr	Arg	Glu	Glu	Len	Cvs	Thr	Met	Dhe	Tla	7~~	C1.,	17- 1
	4210)				4215	5				4220)			
GIY	Thr	vaı	Leu	Ser	Gln	Val	Tyr	Ser	Lys	Val	His	Asn	Gly	Ser	Glu
4225	5				4230)				4235			-		4240
Ile	Leu	Phe	Ser	Tvr	Phe	Gln	Asn	Len	Val	Ile	Thr	Lou	Dro	Dh.	7270
				4245							1111	шец	PIU		
T 011	71	T	TT2 _		-		_		4250	,				4255	5
пеп	Arg	гув	HIS	гув	Leu	шe	Asp	Val	Ile	Ser	Met	Tyr	Arg	Glu	Leu
			4260					4265					4270	}	
Leu	Lys	Asp	Leu	Ser	Lys	Glu	Ala	Gln	Glu	Val	Phe	Lvs	בומ	Tla	Cln
		4275	5		•		4280							116	GIII
Sar	Len			mb w	~1	777			_	_		4285			
DCT	TIELL	пуъ	TILL	1111	GIU	vaı	Leu	Arg	Asn	Leu	GIn	Asp	Leu	Leu	${\tt Gln}$
	4290					4295					4300)			
Phe	Ile	Phe	${\tt Gln}$	Leu	Ile	Glu	qaA	Asn	Ile	Lys	Gln	Leu	Lvs	Glu	Met
4305	5				4310)	-			4315			-,-		
Lvs	Phe	Thr	Tyr	T.011			The rac	T1.	01 -	A310	, ~1	-7	_		4320
_,,		1111	- y -	100	116	ASII	IÀT	TTE		Asp	GIU	тте	Asn	Thr	Ile
	_			4325					4330					4335	;
Phe	Asn	Asp	\mathtt{Tyr}	Ile	Pro	Tyr	Val	Phe	Lys	Leu	Leu	Lys	Glu	Asn	Leu
			4340)				4345	5			•	4350		
Cvs	Leu	Asn	Leu	His	Lve	Dhe	Acn			Ile	C1 =	7	4330		a 1
- 4		4355			_, _	1 110	43.66	GIU	FILE	TIE	GIII			Leu	Gin
a 1	n 1 -				_		4360					4365	5		
GIU	Ala	ser	Gin	GIU	ьeu	GIn	Gln	Ile	His	Gln	Tyr	Ile	Met	Ala	Leu
	4370)				4375	5				4380)			
Arg	Glu	Glu	Tyr	Phe	Asp	Pro	Ser	Tle	Val	Glv	Trn	Thr	T=1	Laza	Tyr
4385	;		•		4390)				4395	₽	****	Vai		
		T 011	a 1	a 1				_	_	4395					4400
IAT	GIU	ьeu	GIU	GIU	гуз	TTE	Val	Ser	Leu	Ile	Lys	Asn	Leu	Leu	Val
				4405					4410					4415	;
Ala	Leu	Lys	Asp	Phe	His	Ser	Glu	Tvr	Ile	Val	Ser	Ala	Ser	Agn	Dhe
		_	4420)				4425					4430		FIIC
Thr	Ser	Gln			C0~	~1 ~	37- 3			5 1	_				_
	DCI	4435	Пец	261	Set	GIII			GIn	Phe	ьeu	Hıs	Arg	Asn	Ile
		4435					4440					4445			
Gln	Glu	\mathtt{Tyr}	Leu	Ser	Ile	Leu	Thr	Asp	Pro	Asp	Gly	Lvs	Glv	Lvs	Glu
	4450)				4455	;				4460	1			
Lvs	Ile	Ala	Glu	Len	Ser	Δla	Thr	777	C1-	C1	T1-	, 	T		Gln
4465	:				4470	, A.a	1111	AIA	GIII	Giu	TTE	тте	гув	ser	
										4475					4480
Ala	ile	Ala	Thr	Lys	Lys	Ile	Ile	Ser	Asp	Tyr	His	Gln	Gln	Phe	Arg
				4485	5				4490)				4495	
Tyr	Lys	Leu	Gln	Agn	Phe	Ser	Asn	Gln	T. 611	Ser	7 cn	T1	<i>T</i>	01	T
-	-		4500	,			7100	4505	. шец	PET	Asp	ıyı			гаг
Dh-	т1 -	3 3-			_	_	_	4505					4510	l	
rne	тте	ALA	GIU	Ser	Lys	Arg	Leu	Ile	Asp	Leu	Ser	Ile	Gln	Asn	Tyr
		4515	;				4520)				4525			-
His	Thr	Phe	Leu	Ile	Tyr	Ile	Thr	Glu	Len	Leu	Laze	Lara	T 6	C1-	C
	4530	ı	- =-		-1-	4535			_cu	⊥-¢u			neu	GIU	ser
ጥኮ፦			Ma-	7	D			-	_		4540	_			
1111	TIII	AdT	MEC	ASN	Pro	Tyr	met	гав	Leu	Ala	Pro	Gly	Glu	Leu	Thr
4545	•				4550)				4555					4560
Ile	Ile	Len													

<212> DNA <213> Homo Sapiens

<400> 2

gaggagcccg	cccagccagc	cagggccgcg	aggccgaggc	caggccgcag	cccaggagcc	60
gccccaccgc	agetggegat	ggacccgccg	aggcccgcgc	tgctggcgct	gctggcgctg	120
cetgegetge	tgctgctgct	getggeggge	gccagggccg	aagaggaaat	gctggaaaat	180
greageetgg	tetgtecaaa	agatgcgacc	cgattcaagc	acctccggaa	gtacacatac	240
aactatgagg	ctgagagttc	cagtggagtc	cctgggactg	ctgattcaag	aagtgccacc	300
aggatcaact	gcaaggttga	gctggaggtt	ccccagctct	gcagcttcat	cctgaagacc	360
agccagtgca	tcctgaaaga	ggtgtatggc	ttcaaccctg	agggcaaagc	cttgctgaag	420
aaaaccaaga	actctgagga	gtttgctgca	gccatgtcca	ggtatgagct	caagctggcc	480
attccagaag	ggaagcaggt	tttcctttac	ccggagaaag	atgaacctac	ttacatectg	540
aacatcaaga	ggggcatcat	ttctgccctc	ctggttcccc	cagagacaga	agaagccaag	600
caagtgttgt	ttctggatac	cgtgtatgga	aactgctcca	ctcactttac	cgtcaagacg	660
aggaagggca	atgtggcaac	agaaatatcc	actgaaagag	acctggggca	gtgtgatcgc	720
ttcaagccca	tccgcacagg	catcagccca	cttgctctca	tcaaaggcat	gacccgcccc	780
ttgtcaactc	tgatcagcag	cagccagtcc	tgtcagtaca	cactggacgc	taagaggaag	840
catgtggcag	aagccatctg	caaggagcaa	cacctcttcc	tgcctttctc	ctacaagaat	900
aagtatggga	tggtagcaca	agtgacacag	actttgaaac	ttgaagacac	accaaagatc	960
aacagccgct	tctttggtga	aggtactaag	aagatgggcc	tcgcatttga	gagcaccaaa	1020
tccacatcac	ctccaaagca	ggccgaagct	gttttgaaga	ctgtccagga	actgaaaaaa	1080
ctaaccatct	ctgagcaaaa	tatccagaga	gctaatctct	tcaataagct	ggttactgag	1140
ctgagaggcc	tcagtgatga	agcagtcaca	tctctcttgc	cacagctgat	tgaggtgtcc	1200
agccccatca	ctttacaagc	cttggttcag	tgtggacagc	ctcagtgctc	cactcacatc	1260
ctccagtggc	tgaaacgtgt	gcatgccaac	ccccttctga	tagatgtggt	cacctacctg	1320
gtggccctga	tccccgagcc	ctcagcacag	cagctgcgag	agatetteaa	catqqcqaqq	1380
gatcagcgca	gccgagccac	cttgtatgcg	ctgagccacg	cggtcaacaa	ctatcataaq	1440
acaaacccta	cagggaccca	ggagctgctg	gacattgcta	attacctgat	ggaacagatt	1500
caagatgact	gcactgggga	tgaagattac	acctatttga	ttctqcqqqt	cattggaaat	1560
atgggccaaa	ccatggagca	gttaactcca	gaactcaagt	cttcaatcct	gaaatgtgtc	1620
caaagtacaa	agccatcact	gatgatccag	aaagctgcca	tccaggetet	gcggaaaatg	1680
gagcctaaag	acaaggacca	ggaggttctt	cttcagactt	tccttgatga	tactteteea	1740
ggagataagc	gactggctgc	ctatcttatq	ttgatgagga	gtccttcaca	ggcagatatt	1800
aacaaaattg	tccaaattct	accatgggaa	cagaatgagc	aagtgaagaa	ctttataact	1860
tcccatattg	ccaatatett	gaactcagaa	gaattggata	tccaagatct	gaaaaagtta	1920
gtgaaagaag	ttctgaaaga	atctcaactt	ccaactgtca	tagacttcag	aaaattotot	1980
cggaactatc	aactctacaa	atctqtttct	attccatcac	ttgacccagc	ctcagccaaa	2040
atagaaggga	atcttatatt	tgatccaaat	aactaccttc	ctaaagaaag	catoctoasa	2100
actaccetca	ctgcctttqq	atttqcttca	gctgacctca	tcgagattgg	cttggaagga	2160
aaaggctttg	agccaacatt	ggaagetett	tttgggaagc	aaggatttt	cccagagaga	2220
gtcaacaaag	ctttqtactq	ggttaatggt	caagttcctg	atggtgtctc	taaggtetta	2280
gtggaccact	ttggctatac	caaagatgat	aaacatgagc	aggatatogt	aaatggaata	2340
atgctcagtg	ttgagaaget	gattaaagat	ttgaaatcca	aggacatggc	adatggaata	2400
gcctacctcc	gcatcttggg	agaggagett	ggttttgcca	atctccatca	cctccacctc	2460
ctgggaaagc	tacttctgat	agataccac	actctgcagg	gccccacga	catasttass	2520
gaggtcatca	ggaagggete	aaagaatgac	ttttttcttc	agtagatett	gatgattgga	2520
gcctttgaac	tccccactgg	agctggatta	cagttgcaaa	tatetteate	taaaataatt	2640
gctcccqqaq	ccaaqqctqq	agtaaaacto	gaagtagcca	acatocecca	toaacteete	2700
gcaaaaccct	ccatatetat	ggagtttgtg	acaaatatgg	acatgeagge	tagactggtg	
gctaggagtg	gggtccagat	gaacaccaac	ttcttccacg	actorcates	agaggattt	2760 2820
gttgccctaa	aacctgggaa	gctgaagttt	atcattcctt	cccaaaaaa	ggaggeteat	
ctqctcaqtq	qaqqcaacac	attacattte	atatataaa	ccccaaagag	ggtgatccca	2880
cctctcatta	agaacaggga	atcetaates	gtttggaa-	aaatatta=	ggrgatecea	2940
tactocacct	caggcgctta	cticaaccc	gtttgcaagc	adylettee	rggcctgaat	3000
		caacgee	ayuudadag.	actecgeete	ctactatccg	3060

ctgaccgggg acaccagatt agagctggaa ctgaggccta caggagagat tgagcagtat 3120 tetgteageg caacetatga getecagaga gaggacagag cettggtgga taccetgaag 3180 tttgtaactc aagcagaagg tgcgaagcag actgaggcta ccatgacatt caaatataat 3240 cggcagagta tgaccttgtc cagtgaagtc caaattccgg attttgatgt tgacctcgga 3300 acaateetea gagttaatga tgaatetaet gagggeaaaa egtettacag aeteaeeetg 3360 gacattcaga acaagaaaat tactgaggtc gccctcatgg gccacctaag ttgtgacaca 3420 aaggaagaaa gaaaaatcaa gggtgttatt tccatacccc gtttgcaagc agaagccaga 3480 agtgagatec tegeceactg gtegeetgee aaactgette tecaaatgga etcatetget 3540 acagettatg getecacagt ttecaagagg gtggeatgge attatgatga agagaagatt 3600 gaatttgaat ggaacacagg caccaatgta gataccaaaa aaatgacttc caatttccct 3660 gtggatctct ccgattatcc taagagcttg catatgtatg ctaatagact cctggatcac 3720 agagtccctc aaacagacat gactttccgg cacgtgggtt ccaaattaat agttgcaatg 3780 ageteatgge tteagaagge atetgggagt etteettata eccagaettt geaagaecae 3840 ctcaatagcc tgaaggagtt caacctccag aacatgggat tgccagactt ccacatccca 3900 gaaaacctct tcttaaaaag cgatggccgg gtcaaatata ccttgaacaa gaacagtttg 3960 aaaattgaga ttootttgoo ttttggtggo aaatootoca gagatotaaa gatgttagag 4020 actgttagga caccagccct ccacttcaag tctgtgggat tccatctgcc atctcgagag 4080 ttccaagtcc ctacttttac cattcccaag ttgtatcaac tgcaagtgcc tctcctgggt 4140 gttctagacc tctccacgaa tgtctacagc aacttgtaca actggtccgc ctcctacagt 4200 ggtggcaaca ccagcacaga ccatttcagc cttcgggctc gttaccacat gaaggctgac 4260 totgtggttg acctgottto ctacaatgtg caaggatotg gagaaacaac atatgaccac 4320 aagaatacgt tcacactatc atgtgatggg tctctacgcc acaaatttct agattcgaat 4380 atcaaattca gtcatgtaga aaaacttgga aacaacccag tctcaaaagg tttactaata 4440 ttcgatgcat ctagttcctg gggaccacag atgtctgctt cagttcattt ggactccaaa 4500 aagaaacagc atttgtttgt caaagaagtc aagattgatg ggcagttcag agtctcttcg 4560 ttctatgcta aaggcacata tggcctgtct tgtcagaggg atcctaacac tggccggctc 4620 aatggagagt ccaacctgag gtttaactcc tcctacctcc aaggcaccaa ccagataaca 4680 ggaagatatg aagatggaac cetetecete acetecacet etgatetgea aagtggeate 4740 attaaaaata ctgcttccct aaagtatgag aactacgagc tgactttaaa atctgacacc 4800 aatgggaagt ataagaactt tgccacttct aacaagatgg atatgacctt ctctaagcaa 4860 aatgcactgc tgcgttctga atatcaggct gattacgagt cattgaggtt cttcagcctg 4920 ctttctggat cactaaattc ccatggtctt gagttaaatg ctgacatctt aggcactgac 4980 aaaattaata gtggtgctca caaggcgaca ctaaggattg gccaagatgg aatatctacc 5040 agtgcaacga ccaacttgaa gtgtagtctc ctggtgctgg agaatgagct gaatgcagag 5100 cttggcctct ctggggcatc tatgaaatta acaacaaatg gccgcttcag ggaacacaat 5160 gcaaaattca gtctggatgg gaaagccgcc ctcacagagc tatcactggg aagtgcttat 5220 caggccatga ttctgggtgt cgacagcaaa aacattttca acttcaaggt cagtcaagaa 5280 ggacttaagc tctcaaatga catgatgggc tcatatgctg aaatgaaatt tgaccacaca 5340 aacagtctga acattgcagg cttatcactg gacttctctt caaaacttga caacatttac 5400 agetetgaea agttttataa geaaaetgtt aatttaeage tacageeeta ttetetggta 5460 actactttaa acagtgacct gaaatacaat gctctggatc tcaccaacaa tgggaaacta 5520 cggctagaac ccctgaagct gcatgtggct ggtaacctaa aaggagccta ccaaaataat 5580 gaaataaaac acatctatgc catctcttct gctgccttat cagcaagcta taaagcagac 5640 actgttgcta aggttcaggg tgtggagttt agccatcggc tcaacacaga catcgctggg 5700 ctggcttcag ccattgacat gagcacaaac tataattcag actcactgca tttcagcaat 5760 gtcttccgtt ctgtaatggc cccgtttacc atgaccatcg atgcacatac aaatggcaat 5820 gggaaactcg ctctctgggg agaacatact gggcagctgt atagcaaatt cctgttgaaa 5880 gcagaacctc tggcatttac tttctctcat gattacaaag gctccacaag tcatcatctc 5940 gtgtctagga aaagcatcag tgcagctctt gaacacaaag tcagtgccct gcttactcca 6000 gctgagcaga caggcacctg gaaactcaag acccaattta acaacaatga atacagccag 6060 gacttggatg cttacaacac taaagataaa attggcgtgg agcttactgg acgaactctg 6120 gctgacctaa ctctactaga ctccccaatt aaagtgccac ttttactcag tgagcccatc 6180 aatatcattg atgctttaga gatgagagat gccgttgaga agccccaaga atttacaatt 6240 gttgcttttg taaagtatga taaaaaccaa gatgttcact ccattaacct cccatttttt 6300 gagacettge aagaatattt tgagaggaat egacaaacea ttatagttgt actggaaaac 6360

~+~~~~~						
gracagagaa	acctgaagca	catcaatatt	gatcaatttg	taagaaaata	cagagcagcc	6420
cugggaaaac	tcccacagca	agctaatgat	tatctgaatt	cattcaattc	ggagagagaa	6480
gtttcacatg	ccaaggagaa	actgactgct	ctcacaaaaa	agtatagaat	tacagaaaat	6540
yararacaaa	Ligitattaga	tgatgccaaa	atcaacttta	atqaaaaact	atctcaacto	6600
cagacatata	tgatacaatt	tgatcagtat	attaaagata	gttatgattt	acatgatttg	6660
aaaatagcta	ttgctaatat	tattgatgaa	atcattgaaa	aattaaaaag	tettgatgag	6720
cactateata	tccgtgtaaa	tttagtaaaa	acaatccatg	atctacattt	gtttattgaa	6780
aatattgatt	ttaacaaaag	tggaagtagt	actgcatcct	ggattcaaaa	tgtggatact	6840
aagcaccaaa	tcagaatcca	gatacaagaa	aaactgcagc	agcttaagag	acacatacag	6900
aatatagaca	tccagcacct	agctggaaag	ttaaaacaac	acattgaggc	tattgatgff	6960
agagigettt	tagatcaatt	gggaactaca	atttcatttq	aaagaataaa	tgatgttctt	7020
gageatgtea	aacactttgt	tataaatctt	attggggatt	ttgaagtagc	tgagaaaatc	7080
aatycctca	gagecaaage	ccatgagtta	atcgagaggt	atgaagtaga	ccaacaaatc	7140
caggttttaa	tggataaatt	agtagagttg	gcccaccaat	acaaqttqaa	ggagactatt	7200
cagaagctaa	gcaatgtcct	acaacaagtt	aagataaaag	attactttga	gaaattggtt	7260
ggatttattg	atgatgctgt	caagaagctt	aatgaattat	cttttaaaac	attcattgaa	7320
gatgttaaca	aattccttga	catgttgata	aagaaattaa	agtcatttga	ttaccaccac	7380
tttgtagatg	aaaccaatga	caaaatccqt	gaggtgactc	agagactcaa	taataaaatt	
caggctctgg	aactaccaca	aaaaqctgaa	gcattaaaac	tattttaaa	CCSSCGGGGG	7440
gccacagttg	cagtgtatct	ggaaagccta	caggacacca	aaataacctt	astastast	7500
tggttacagg	aggetttaag	ttcagcatct	ttggctcaca	tgaaggggaa	attegenese	7560
actctagaag	atacacgaga	ccgaatgtat	caaatggaca	ttcaccacca	actocgagag	7620
tacctgtctc	tggtaggcca	ggtttatage	acacttgtca	cctacattta	tasttaataa	7680
actcttgctg	ctaagaacct	tactgacttt	gcagagcaat	attetatee	cgattggtgg	7740
aaacgtatga	aagcattggt	agagcaaggg	ttcactgttc	ctcaaatca	agattgggct	7800
gggaccatgc	ctqcctttga	agtcagtctt	caggetette	agaaaccaa	gaccatcctt	7860
cctgatttta	tagtccccct	aacagatttg	aggattccat	agaaagctat	crecagaca	7920
gacttaaaaa	atataaaaat	cccatccagg	ttttccacac	cagectagat	aaacttcaaa	7980
accttccaca	ttccttcctt	tacaattgac	tttgtagaaa	tasasatasa	Catecttaac	8040
accattgacc	agatgctgaa	cagtgaggtg	cagtggcccg	ttaaaastat	gatcatcaga	8100
gatctgaagg	tqqaqqacat	teetetageg	agaatcaccc	tagangacht	atateteagg	8160
gaaatcgcaa	ttccagaatt	cataatocca	actctcaacc	ttaatgattt	tasaattasa	8220
gaccttcaca	taccagaatt	ccagcttccc	cacatctcac	acacaattca	agtagatagt	8280
tttggcaagc	tatacagtat	tctgaaaatc	caatctcctc	ttttaaastt	agracerace .	8340
gctgacatag	ggaatggaac	cacctcacca	aacgaagcag	gtatcgcage	ttaataat	8400
gccaaaggag	agtccaaatt	agaagttete	aattttgatt	ttcaageage	tagage	8460
tcaaacccta	agattaatcc	actaacteta	aaggagtcag	taaaattata	cgcacaactc	8520
ctgagaacgg	agcatgggag	tgaaatgctg	ttttttggaa	ataatattaa	cagcaagtac	8580
aacacagtgg	caagtttaca	Cacacaaaaa	aatacactgg	acyclattga	gggaaaatca	8640
gtcaagataa	acaatcaget	taccetggat	accacactgg	agettagtaa	tggagtgatt	8700
atccccaaac	tggacttctc	tagtcagget	agcaacacta gacctgcgca	aacacttcca	caaattgaac	8760
aaaqctqqcc	acatagcatg	gacttcttct	ggaaaagggt	acgagatcaa	gacactgttg	8820
agatteteag	atgagggaac	acatoaatoa	ggaaaagggt	catggaaatg	ggcctgcccc	8880
acttcctttc	gactgtccaa	taacatcaat	caaattagtt	tcaccataga	aggacccctc	8940
gtttatgaat	ctaactacat	caagaccaat	agcaaacacc	taagagtaaa	ccaaaacttg	9000
Cagcatgtgg	accacaatat	tataaataat	aaacttgaaa	ttcaatcaca	agtcgattcc	9060
gcagagttta	ctagagaga	tastastast	aaaggcatgg	cactgtttgg	agaagggaag	9120
aattotott	tettte	cgatgeteat	ttaaatggaa	aggttattgg	aactttgaaa	9180
	ccccccage	ccagccattt	gagatcacoo	catccacaaa.	caatgaaggg	9240
-accegaaag	cagaaaaa	actaaggtta	acadddaada	tagacttcct	gaataagtat	9300
geactgetee	Lyagicccag	rgcccaqcaa	gcaagttggc	aagtaagtgc	taggttgaat	9360
cagcacaagc	acaaccaaaa	tttctctgct	ggaaacaacq	agaacattat	ggagggggat	9420
gcaggaacaa	arggagaage	aaatctggat	ttcttaaaca	ttcctttaac	aattootoaa	9480
acgegeetat	Cttacacaat	aatcacaact	cctccactga	aagatttctc	totatoggaa	9540
adadcaggct	tgaaggaatt	Cttgaaaacg	acaaaqcaat	catttgattt	aagtgtaaaa	9600
Journalia	ayaaaaacaa	acacaggcat	tccatcacaa	atcctttggc	tgtgctttgt	9660

gagtttatca gtcagagcat caaatccttt gacaggcatt ttgaaaaaaa cagaaacaat 9,720 gcattagatt ttgtcaccaa atcctataat gaaacaaaaa ttaagtttga taagtacaaa 9780 gctgaaaaat ctcacgacga gctccccagg acctttcaaa ttcctggata cactgttcca 9840 gttgtcaatg ttgaagtgtc tccattcacc atagagatgt cggcattcgg ctatgtgttc 9900 ccaaaagcag tcagcatgcc tagtttctcc atcctaggtt ctgacgtccg tgtgccttca 9960 tacacattaa teetgecate attagagetg ceagteette atgteectag aaateteaag 10020 ctttctcttc cagatttcaa ggaattgtgt accataagcc atatttttat tcctgccatg 10080 ggcaatatta cctatgattt ctcctttaaa tcaagtgtca tcacactgaa taccaatgct 10140 gaacttttta accagtcaga tattgttgct catctccttt cttcatcttc atctgtcatt 10200 gatgcactgc agtacaaatt agagggcacc acaagattga caagaaaaag gggattgaag 10260 ttagccacag ctctgtctct gagcaacaaa tttgtggagg gtagtcataa cagtactgtg 10320 agettaacca egaaaatat ggaagtgtea gtggeaacaa ecacaaaage ecaaatteea 10380 attttgagaa tgaatttcaa gcaagaactt aatggaaata ccaagtcaaa acctactgtc 10440 tetteeteea tggaatttaa gtatgattte aattetteaa tgetgtaete tacegetaaa 10500 ggagcagttg accacaagct tagcttggaa agcctcacct cttacttttc cattgagtca 10560 tctaccaaag gagatgtcaa gggttcggtt ctttctcggg aatattcagg aactattgct 10620 agtgaggcca acacttactt gaattccaag agcacacggt cttcagtgaa gctgcagggc 10680 acttccaaaa ttgatgatat ctggaacctt gaagtaaaag aaaattttgc tggagaagcc 10740 acactecaac geatatatte eetetgggag cacagtaega aaaaccaett acagetagag 10800 ggcctctttt tcaccaacgg agaacataca agcaaagcca ccctggaact ctctccatgg 10860 caaatgtcag ctcttgttca ggtccatgca agtcagccca gttccttcca tgatttccct 10920 gaccttggcc aggaagtggc cctgaatgct aacactaaga accagaagat cagatggaaa 10980 aatgaagtee ggatteatte tgggtettte cagageeagg tegagettte caatgaceaa 11040 gaaaaggcac accttgacat tgcaggatcc ttagaaggac acctaaggtt cctcaaaaat 11100 atcatcctac cagtctatga caagagctta tgggatttcc taaagctgga tgtaaccacc 11160 agcattggta ggagacagca tettegtgtt teaactgeet ttgtgtacae caaaaaceee 11220 aatggctatt cattctccat ccctgtaaaa gttttggctg ataaattcat tattcctggg 11280 ctgaaactaa atgatctaaa ttcagttctt gtcatgccta cgttccatgt cccatttaca 11340 gatcttcagg ttccatcgtg caaacttgac ttcagagaaa tacaaatcta taagaagctg 11400 agaacttcat catttgccct caacctacca acactccccg aggtaaaatt ccctgaagtt 11460 gatgtgttaa caaaatattc tcaaccagaa gactccttga ttcccttttt tgagataacc 11520 gtgcctgaat ctcagttaac tgtgtcccag ttcacgcttc caaaaagtgt ttcagatggc 11580 attgctgctt tggatctaaa tgcagtagcc aacaagatcg cagactttga gttgcccacc 11640 atcatcgtgc ctgagcagac cattgagatt ccctccatta agttctctgt acctgctgga 11700 attgccattc cttcctttca agcactgact gcacgctttg aggtagactc tcccgtgtat 11760 aatgccactt ggagtgccag tttgaaaaac aaagcagatt atgttgaaac agtcctggat 11820 tccacatgca gctcaaccgt acagttccta gaatatgaac ttaatgtttt gggaacacac 11880 aaaatcgaag atggtacgtt agcctctaag actaaaggaa catttgcaca ccgtgacttc 11940 agtgcagaat atgaagaaga tggcaaatat gaaggacttc aggaatggga aggaaaagcg 12000 cacctcaata tcaaaagccc agcgttcacc gatctccatc tgcgctacca gaaagacaag 12060 aaaggcatct ccacctcagc agcctcccca gccgtaggca ccgtgggcat ggatatggat 12120 gaagatgacg acttttctaa atggaacttc tactacagcc ctcagtcctc tccagataaa 12180 aaactcacca tattcaaaac tgagttgagg gtccgggaat ctgatgagga aactcagatc 12240 aaagttaatt gggaagaaga ggcagcttct ggcttgctaa cctctctgaa agacaacgtg 12300 cccaaggcca caggggtcct ttatgattat gtcaacaagt accactggga acacacaggg 12360 ctcaccctga gagaagtgtc ttcaaagctg agaagaaatc tgcaggacca tgctgagtgg 12420 gtttatcaag gggccattag ggaaattgat gatatcgacg agaggttcca gaaaggagcc 12480 agtgggacca ctgggaccta ccaagagtgg aaggacaagg cccagaatct gtaccaggaa 12540 ctgttgactc aggaaggcca agccagtttc cagggactca aggataacgt gtttgatggc 12600 ttggtacgag ttactcaaga attccatatg aaagtcaagc atctgattga ctcactcatt 12660 gattttctga acttccccag attccagttt ccggggaaac ctgggatata cactagggag 12720 gaactttgca ctatgttcat aagggaggta gggacggtac tgtcccaggt atattcgaaa 12780 gtccataatg gttcagaaat actgttttcc tatttccaag acctagtgat tacacttcct 12840 ttcgagttaa ggaaacataa actaatagat gtaatctcga tgtataggga actgttgaaa 12900 gatttatcaa aagaagccca agaggtattt aaagccattc agtctctcaa gaccacagag 12960

```
gtgctacgta atcttcagga ccttttacaa ttcattttcc aactaataga agataacatt
                                                                    13020
aaacagctga aagagatgaa atttacttat cttattaatt atatccaaga tgagatcaac
                                                                    13080
acaatcttca atgattatat cccatatgtt tttaaattgt tgaaagaaaa cctatgcctt
                                                                    13140
aatcttcata agttcaatga atttattcaa aacgagcttc aggaagcttc tcaagagtta
                                                                    13200
cagcagatec atcaatacat tatggeeett egtgaagaat attttgatee aagtatagtt
                                                                    13260
ggctggacag tgaaatatta tgaacttgaa gaaaagatag tcagtctgat caagaacctg
                                                                   13320
ttagttgctc ttaaggactt ccattctgaa tatattgtca gtgcctctaa ctttacttcc
                                                                    13380
caacteteaa gteaagttga geaatttetg cacagaaata tteaggaata tettageate
                                                                    13440
cttaccgatc cagatggaaa agggaaagag aagattgcag agctttctgc cactgctcag
                                                                    13500
gaaataatta aaagccaggc cattgcgacg aagaaaataa tttctgatta ccaccagcag
                                                                    13560
tttagatata aactgcaaga tttttcagac caactctctg attactatga aaaatttatt
                                                                    13620
gctgaatcca aaagattgat tgacctgtcc attcaaaact accacacatt tctgatatac
                                                                    13680
atcacggagt tactgaaaaa gctgcaatca accacagtca tgaaccccta catgaagctt
                                                                    13740
gctccaggag aacttactat catcctctaa ttttttaaaa gaaatcttca tttattcttc
                                                                    13800
ttttccaatt gaactttcac atagcacaga aaaaattcaa aatgcctata ttgatcaaac
                                                                    13860
catacagtga gccagccttg cagtaggcag tagactataa gcagaagcac atatgaactg
                                                                    13920
gacctgcacc aaagctggca ccagggctcg gaaggtctct gaactcagaa ggatggcatt
                                                                    13980
ttttgcaagt taaagaaaat caggatctga gttattttgc taaacttggg ggaggaggaa
                                                                    14040
caaataaatg gagtctttat tgtgtatcat
                                                                    14070
```

```
<210> 3
<211> 3805
<212> DNA
<213> Homo Sapiens
<220>
<221> exon
<222> (71) ... (114)
<223> Exon 1
<221> exon
<222> (872)...(937)
<223> Exon 2
<221> exon
<222> (2031)...(2223)
<223> Exon 3
<221> exon
<222> (2805)...(3663)
<223> Exon 4
```

<400> 3

cctatecetg	ggggagggg	cgggacaggg	ggagccctat	aattggacaa	gtctgggatc	60
cttgagtcct	actcagcccc	agcggaggtg	aaggacgtcc	ttccccaga	accactasas	120
200000000		9,33,33-3		cccccagga	gccggcgaga	120
agegeageeg	ggggcacggg	gatgagctca	ggggcctcta	gaaagagctg	ggaccctggg	180
aagccctggc	ctccaggtag	teteaggaga	actactoons	~*~~~		
	<u>-</u> 550m5	cccuggaga	geracicggg	arcadacrra	gggagaggag	240
gagcgggggt	gaggcaagca	qcaqqqqact	ggacctggga	aggactagas	36636666	200
300000000		2 3333	25335a	~999cc999c	agcagagacg	300
accegaceeg	ctagaaggtg	gggtggggag	agcagctgga	ctgggatgta	agccatagca	360
ggactccacg	agttgtgagt	ataattataa		333, 3		•••
ggactccacg	agecyceact	accactateg	agcacctact	gggtgtcccc	agtgtcctca	420
gatctccata	actogggage	Cagggggagg	gacacggtag	ctacactac		400
	- 2233-3-	55550490	gacacggcag	cragecyteg	attggagaac	480
tttaaaatga	ggactgaatt	agctcataaa	tggaacacgg	cacttaacta	taaaattaa	540
aattaaa.te	 		- 55	-goodaaceg	cgaggttgga	240
gcttagaatg	cgaagggaga	argaggaatg	cgagactqqq	actgagatgg	aaccoocoot	600
		-		5 5 55		

ggggagggg	tggggggatg	gaatttgaac	cccgggagag	gaagatggaa	ttttctatgg	660
aggeegacet	ggggatgggg	agataagaga	agaccaggag	ggagttaaat	agggaatggg	720
rrgggggcgg	cttggtaaat	gtgctgggat	taggctgttg	cagataatgc	aacaaggctt	780
ggaaggctaa	cctggggtga	ggccgggttg	ggggcgctgg	gggtgggagg	agtcctcact	840
ggcggttgat	tgacagtttc	tccttcccca	gactggccaa	tcacaggcag	gaagatgaag	900
grrcrgrggg	ctgcgttgct	ggtcacattc	ctggcaggta	tgggggcggg	gcttgctcga	960
ttecceeege	tcctcccct	ctcatcctca	cctcaacctc	ctggccccat	tcagacagac	1020
cctgggcccc	ctcttctgag	gcttctgtgc	tgcttcctgg	ctctgaacag	cgatttgacg	1080
crererggge	ctcggtttcc	cccatccttg	agataggagt	tagaagttgt	tttattatta	1140
rrgrrrgrrg	ttgttgtttt	gtttttttga	gatgaagtct	cgctctgtcg	cccaggetgg	1200
agtgcagtgg	cgggatctcg	gctcactgca	agctccgcct	cccaggtcca	cgccattctc	1260
ctgcctcagc	ctcccaagta	gctgggacta	caggcacatg	ccaccacacc	cgactaactt	1320
ttttgtattt	tcagtagaga	cggggtttca	ccatgttggc	caggetggte	tqqaactcct	1380
gacctcaggt	gatctgcccg	tttcgatctc	ccaaagtgct	gggattacag	gcqtqaqcca	1440
cegeacetgg	ctgggagtta	gaggtttcta	atgcattgca	ggcagatagt	gaataccaga	1500
cacggggcag	ctgtgatctt	tattctccat	cacccccaca	cagccctgcc	tggggcacac	1560
aaggacactc	aatacatgct	tttccgctgg	gccggtggct	cacccctgta	atcccaqcac	1620
tttgggaggc	caaggtggga	ggatcacttg	agcccaggag	ttcaacacca	gcctgggcaa	1680
catagtgaga	ccctgtctct	actaaaaata	caaaaattag	ccaggcatqq	tgccacacac	1740
ctgtgctctc	agctactcag	gaggctgagg	caggaggatc	gcttgagccc	agaaggtcaa	1800
ggttgcagtg	aaccatgttc	aggccgctgc	actccagcct	gggtgacaga	gcaagaccct	1860
gtttataaat	acataatgct	ttccaagtga	ttaaaccgac	tccccctca	ccctqcccac	1920
catggctcca	aagaagcatt	tgtggagcac	cttctgtgtg	cccctaggta	gctagatgcc	1980
tggacggggt	cagaaggacc	ctgacccgac	cttgaacttg	ttccacacaq	gatgccaggc	2040
caaggtggag	caagcggtgg	agacagagcc	ggagcccgag	ctgcgccagc	agaccgagtg	2100
gcagagcggc	cagcgctggg	aactggcact	gggtcgcttt	toggattacc	tacactacat	2160
gcagacactg	tctgagcagg	tgcaggagga	gctgctcagc	tcccaggtca	cccaggaact	2220
gaggtgagtg	tccccatcct	ggcccttgac	cctcctggtg	ggcggctata	cctcccaga	2280
tccaggtttc	attctgcccc	tgtcgctaaq	tcttgggggg	cctagatete	tactaattat	2340
agcttcctct	tcccatttct	gactcctqqc	tttagctctc	togaattoto	teteteaget	2400
ttgtctctct	ctcttccctt	ctgactcagt	ctctcacact	catactaact	ctatctatat	2460
ccttccctag	ctcttttata	tagagacaga	gagatggggt	ctcactgtgt	tacccaaact	2520
ggtcttgaac	ttctgggctc	aagcgatect	cccgcctcgg	cctcccaaag	tactagget	2520
agaggcatga	gcaccttgcc	cqqcctccta	gctccttctt	catctctaca	tetecestet	2640
gcatctgctc	totgcatctq	tetetatete	cttctctcgg	cctctacccc	attacttata	
tccctcttgg	gtctctctqq	ctcatcccca	tctcgcccgc	cccatcccad	contrates	2700
ccgcctcccc	actgtgcgac	accetecese	cctctcggcc	acaaaaaaa	astassass	2760
accatgaagg	agttgaaggc	ctacaaatcg	gaactggagg	ascasetese	gatggatgag	2820
gaggagacgc	qqqcacqqct	gtccaaggag	ctgcaggcgg	caccaccac	ceeggegeg	2880
gacatggagg	acqtqtqcqq	ccacctaata	cagtaccgcg	acasactass	gergggegeg	2940
ggccagagca	ccgaggagct	acaaatacac	ctcgcctccc	acetacasa	ggecatgete	3000
cgactactac	gcgatgccga	tgacctgcag	aagcgcctgg	accigegeaa	getgegtaag	3060
cacaaaaaca	CCGagggggg	cctcaccaca	atacacacac	cagiglacca	ggccggggcc	3120
caddaccaca	tacagaccac	cactotogoc	atccgcgagc	geetggggee	cctggtggaa	3180
gcccagacct	addacasaca	actagagge	tccctggccg	gccagccgct	acaggagcgg	3240
gaccacctaa	accacctcaa	geegegegeg	cggatggagg	agatgggcag	ccggacccgc	3300
qcccaqcaga	tacqcctqca	ggagcaggtg	gcggaggtgc	gcgccaagct	ggaggagcag	3360
cccctaataa	aagacatgca	gcaccaataa	ttccaggccc	yccccaagag	ctggttcgag	3420
ataggraces	acaccacaca	totocosses	gccgggctgg	rggagaaggt	gcaggctgcc	3480
atgcgacccc	acccacccc	atacataata	gacaatcact	gaacgccgaa	gcctgcagcc	3540
toccaree	agccatcotc	gradeteetg	cctccgcgca	gcctgcagcg	ggagaccctg	3600
acquatctqq	tagactaga	cryyygrgga	ccctagttta	ataaagattc	accaagtttc	3660
gccacatac	taccacacaca	ttata	ctctaagccc	cagcctcagt	ttctctttct	3720
ttotototo	ccttttttt	tttt	cctcctctcc	acctgtgtct	gtgtgtatct	3780
						3805

```
<210> 4
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <223> Therapeutic Oligonucleotide Fragment
      <400> 4
agtotggatg ggtaagccgc cctca
                                                                         25
      <210> 5
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 5
ctgggctggc ttaagccatt gacat
                                                                         25
      <210> 6
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 6
gctctctggg gataacatac tgggc
                                                                         25
      <210> 7
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 7
gatgccgttg agtagcccca agaat
                                                                         25
      <210> 8
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 8
gagaggaatc gataaaccat tatag
                                                                         25
```

```
<210> 9
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 9
tgtaagaaaa taaagagcag ccctg
                                                                          25
      <210> 10
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 10
gcagccctgg gataactccc acagc
                                                                          25
      <210> 11
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 11
gcaagctaat gattagctga attcattcaa t
                                                                         31
      <210> 12
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 12
caagtttcac atgcctagga gaaactgact g
                                                                         31
      <210> 13
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 13
atatacaaat tgcatgagat gatgccaaaa t
                                                                         31
```

```
<210> 14
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <223> Therapeutic Oligonucleotide Fragment
      <400> 14
aaactatctc aactgtagac atatatgata c
                                                                          31
      <210> 15
      <211> 31
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 15
gctaatatta ttgattaaat cattgaaatt a
                                                                         31
      <210> 16
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 16
tgatgagcac tagcatatcc gtgta
                                                                         25
      <210> 17
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 17
ctgcagcagc tttagagaca catac
                                                                         25
      <210> 18
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 18
aacagtgagc tgtagtggcc cgttc
                                                                         25
```

```
<210> 19
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <223> Therapeutic Oligonucleotide Fragment
      <400> 19
cagacttccg ttaaccagaa atcgc
                                                                         25
      <210> 20
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 20
aaagggtcat ggtaatgggc ctgcc
                                                                         25
      <210> 21
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Olignucleotide Fragment
      <400> 21
acatatatga tataatttga tcagt
                                                                         25
      <210> 22
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 22
atggaggacg tgtgcggccg cctgg
                                                                         25
      <210> 23
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 23
gacctgcaga agtgcctggc agtgt
                                                                         25
```

```
<210> 24
       <211> 25
       <212> DNA
      <213> Artificial Sequence
       <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 24
gacctgcaga agcgcctggc agtgt
                                                                          25
      <210> 25
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment
      <400> 25
taaggtcagg agtttgagac cagcc
                                                                          25
      <210> 26
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Therapeutic Oligonucleotide Fragment-DNA and RNA
      <400> 26
agucuggaug ggtaagccgc ccuca
                                                                         25
      <210> 27
      <211> 39
      <212> DNA
      <213> R. Rattus
      <400> 27
aaagattcat gtgaaggaga tagtggggga ccccatgtt
                                                                         39
      <210> 28
      <211> 13
      <212> PRT
      <213> R. Rattus
      <400> 28
Lys Asp Ser Cys Glu Gly Asp Ser Gly Gly Pro His Val
                                     10
      <210> 29
      <211> 39
      <212> DNA
      <213> R. Rattus
```

<400> 29			
aaagattcat gtgaaggaga tcgtggggga ccccatgtt			39
010 00			
<210> 30 <211> 68			
<211> 66 <212> DNA			
<213> Artificial Sequence			
Aleiticiai Sequence			
<220>			
<223> Therapeutic Oligonucleotide-DNA	and PMA		
i i i i i i i i i i i i i i i i i i i	and KWA		
<400> 30			
ggggtccccc acgatctcct tcacattttu gugaaggaga	tegtqqqqqa	ccccacacat	60
tttcgcgc	0 00000	-5-5-50	68
			30
<210> 31			
<211> 68			
<212> DNA			
<213> Artificial Sequence			
(220)			
<220>			
<223> Therapeutic Oligonucleotide-DNA	and RNA		
<400> 31			
tgtgaaggag atcgtggggg acccettttg ggguccccca	cgarcuccuu	cacagegegt	60
5.5.			68
<210> 32			
<211> 68			
<212> DNA			
<213> Artificial Sequence			
-			
<220>			
<223> Therapeutic Oligonucleotide-NDA	and RNA		
400			
<400> 32			
tgtgaaggag atcgtggggg acccettttg ggguccccca	cgatcuccuu	cacagegegt	60
tttcgcgc			68
<210> 33			
<211> 68			
<212> DNA			
<213> Artificial Sequence			
sequence			
<220>			
<223> Therapeutic Oligonucleotide-DNA	and PNA		
i James de Grand	una lain		
<400> 33			
tgtcaaggag atcgtggggg accccttttg gggucccca	cgatcuccuu	gacagogogt	60
tttcgcgc		J303030	68
•••			- -
<210> 34			
<211> 25			
<212> DNA			
<213> Artificial Sequence			

<220> <223> PCR Primer	
<400> 34	
cattgctgac aaggaataca cgaac	25
<210> 35	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 35	
atttgccttt cattgcacac tcttc	25
<210> 36	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> PCR primer	
<400> 36	
attgccttgc tggaactgga taac	24
<210> 37	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 37	
ttgcctttca ttgcacattc ttcac	25
<210> 38	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide Probe	
<400> 38	
aaggagatag tggggga	17
<210> 39	
<211> 17	
<212> DNA	
<213> Artificial Sequence	

	<220>	
	<223> Oligonucleotide Probe	
	<400> 39	
aaggag	atcg tggggga	17
	<210> 40	
	<211> 17	
	<212> DNA	
,	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide Probe	
	<400> 40	
aaggag	atag tggggga	17
	<210> 41	
	<211> 17	
	<212> DNA	
,	<213> Artificial Sequence	
	.224	
	<220>	
,	<223> Olignucleotide Probe	
	<400> 41	
	atcg tggggga	
aaggagi	accy cyyyyda	17
	<210> 42	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> PCR primer	
	•	
	<400> 42	
	ttgc tggaactgga taaac	25
		ب ک
•	<210> 43	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
•	<220>	
•	<223> PCR primer	
	<400> 43	
ttgccti	ttca ttgcacattc ttcac	25
	<210 > 44	
	<211> 17	
	<212> DNA	
•	<213> Artificial Sequence	

·	
<220>	
<223> Oligonucleotide Probe	
<400> 44	
aaggagatag tggggga	17
	Ι,
<210> 45	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide Probe	
<400> 45	
aaggagatcg tggggga	17
	- '
<210> 46	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 46	
gttgaccgag ccacatgcct tag	23
<210> 47	
<211> 68	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Therapeutic Olignucleotide-DNA and RNA	
<400> 47	
ctgggctggc ttaagccatt gacatuuuua ugucaauggc uuaagccagc ccaggcgcgu	60
uuucgcgc	68
<210> 48	
<211> 88	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Therapeutic Oligonucleotide-DNA and RNa	
<400> 48	
gacaagtttc acatgcctag gagaaactga ctgctuuuua gcagucaguu ucucctaggc	60
augugaaacu ugucgcgcgu uuucgcgc	88
<210> 49	
<211> 76	

<400> 53

<2	213> Artificial Sequence	
_		
- - -	(220)	
<2;	223> Therapeutic Oligonucleotide-DNA and RNA	
<4	:400> 49	
_	atgt cetggaaatg actgeegatt tttauettea gueattteea ggae	
	yttt togogo	_
222-2-5-	,	76
<2	210> 50	
<2	211> 80	
<2	212> DNA	
<2	213> Artificial Sequence	
	4	
<2	:220>	
<2:	223> Therapeutic Oligonucleotide-DNA and RNA	
	5	
<4	400> 50	
taagtttc	ctt aactgggatt attagctggg gttttcccca gctaataatc ccag	gttaaga 60
aacuuagc	gege gttttegege	80
		00
<2	210> 51	
<2	211> 68	
<2	212> DNA	
<2	213> Artificial Sequence	
	:220>	
<2:	223> Therapeutic Oligonucleotide-DNA and RNA	
	:400> 51	
gtttctta	aac tgggattatt agctgttttc agcuaataat cccaguuaag aaac	egegegt 60
tttcgcgc	jc	68
	0.00	
	210> 52	
	2211> 80	
	212> DNA	
<2.	213> Artificial Sequence	
-21	:220>	
ζ2.	223> Therapeutic Oligonucleotide-DNA and RNA	
-41	400> 52	
aacuuage	ctt aactgggatt attagetggg guuuucccca gcuaauaauc ccag	
		80
<2	210> 53	
	2211> 80	
	2212> DNA	
	213> Artificial Sequence	
<22	220>	
<22	223> Therapeutic Oligonucleotide-DNA and RNA	
	MAN DIR WANT COLLEGE THE WANT WANTE	

taagtttett aactgggatt attagetggg guuuucceca gcuaauaauc ucaguuaaga aacuuagege guuuucgege	60 80
<210> 54	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Therapeutic Oligonucleotide Fragment	
<400> 54	
ggcgaggaca tgtgcgaccg ggcgc	25
<210> 55	
<211> 25	
<212> DNA <213> Artificial Sequence	
72139 Arctrictar Sequence	
<220>	
<223> Therapeutic Oligonucleotide Fragment	
<400> 55	
gagatgegeg actgegegeg egece	25
<210> 56	
<211> 25	
<212> DNA <213> Artificial Sequence	
<213> Altilicial Sequence	
<220>	
<223> Therapeutic Oligonucleotide Fragment	
<400> 56	
cgcgaccgcg cgtgcgca tgtgg	25
<210> 57	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Therapeutic Oligonucleotide Fragment	
<400> 57	5.5
agcgaccagc tgtgccagcg cttgg	25
<210> 58	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Therapeutic Oligonucleotide Fragment	

```
<400> 58
gagctgcgcc agtgcttggc cgcgc
                                                                      25
      <210> 59
      <211> 8966
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> CDS
      <222> (703)...(748)
      <221> CDS
      <222> (1678)...(2280)
      <400> 59
60
tecetggaat getggtggtg ggggaggeag teteettggt ggaggagtee eagegteeet
                                                                     120
ecceteccet ectetgecaa cacaatggae aatggeaact geceacaeae teccatggag
                                                                     180
gggaagggga tgagtgcagg gaaccccgac cccacccggg agacctgcaa gcctgcagca
                                                                     240
etececteee geceeeactg aaccettgae ecetgeeetg caegeeeege agettgetgt
                                                                     300
ttgcccactc ctatttgccc agtcccaggg acagagetga teettgaact ettaagttee
                                                                     360
acattgccag gaccagtgag cagcaacagg gccagggctg ggcttatcag cctcccagcc
                                                                     420
cagaccetgg etgeagacat aaataggeee tgeaagaget ggetgettag agactgegag
                                                                     480
aaggaggtge gteetgetge etgeceegge actetggete eccageteaa ggtteaggee
                                                                     540
ttgccccagg ccgggcctct gggtacctga ggtcttctcc cgctctgtgc ccttctcctc
                                                                     600
acctggctgc aatgagtggg ggagcacggg gcttctgcat gctgaaggca ccccactcag
                                                                     660
ccaggccctt cttctcctcc aggtccccca cggcccttca ggatgaaagc tgcggtgctg
                                                                     720
accttggccg tgctcttcct gacgggtagg tgtcccctaa cctaggagcc aaccatcggg
                                                                     780
gggctttctc cctaaatccc cgtggcccac cctcctgggc agaggcagca ggtttctcac
                                                                     840
tggccccctc tcccccacct ccaagcttgg cctttcggct cagatctcag cccacagctg
                                                                     900
gcctgatctg ggtctcccct cccaccctca gggagccagg ctcggcattt ctggcagcaa
                                                                     960
gatgaacccc cccagagccc ctgggatcga gtgaaggacc tggccactgt gtacgtggat
                                                                    1020
gtgctcaaag acagcggcag agactatgtg tcccagtttg aaggctccgc cttgggaaaa
                                                                    1080
cagctaaagt aaggacccag cctggggttg agggcagggg cagggggcag aggcctgtgg
                                                                    1140
gatgatgttg aagccagact ggccgagtcc tcacctaata tctgatgagc tgggccccac
                                                                    1200
agatggtctg gatggagaaa ccggaatgga tctccaggca gggtcacagc ccatgtccc
                                                                    1260
tgcaaaggac agaccagggc tgcccgatgc gtgatcacag agccacattg tgcctgcaag
                                                                    1320
tgtagcaagc ccctttccct tcttcaccac ctcctctgct cctgcccagc aagactgtgg
                                                                    1380
gctgtcttcg gagaggagaa tgcgctggag gcatagaagc gaggtccttc aagggcccac
                                                                    1440
tttggagacc aacgtaactg ggcaccagtc ccagctctgt ctccttttta gctcctctct
                                                                    1500
gtgcctcggt ccagctgcac aacggggcat ggcctggcgg ggcaggggtg ttggttgaga
                                                                    1560
gtgtactgga aatgctaggc cactgcacct cegeggacag gtgtcaccca gggctcaccc
                                                                    1620
ctgatagget ggggcgctgg gaggccagee etcaaceett etgteteace etccageeta
                                                                    1680
aagctccttg acaactggga cagcgtgacc tccaccttca gcaagctgcg cgaacagctc
                                                                    1740
ggccctgtga cccaggagtt ctgggataac ctggaaaagg agacagaggg cctgaggcaa
                                                                    1800
gagatgagca aggatctgga ggaggtgaag gccaaggtgc agccctacct ggacgacttc
                                                                    1860
cagaagaagt ggcaggagga gatggagctc taccgccaga aggtggagcc gctgcgcgca
                                                                    1920
gagetecaag agggegegeg ceagaagetg caegagetge aagagaaget gageecaetg
                                                                     1980
ggcgaggaga tgcgcgaccg cgcgcgccc catgtggacg cgctgcgcac gcatctggcc
                                                                     2040
ccctacagcg acgagetgcg ccagegettg geogegegee ttgaggetet caaggagaac
                                                                    2100
ggcggcgcca gactggccga gtaccacgcc aaggccaccg agcatctgag cacgctcagc
                                                                    2160
gagaaggcca agcccgcgct cgaggacctc cgccaaggcc tgctgcccgt gctggagagc
                                                                    2220
ttcaaggtca gcttcctgag cgctctcgag gagtacacta agaagctcaa cacccagtga
                                                                     2280
ggcgcccgcc gccgccccc ttcccggtgc tcagaataaa cgtttccaaa gtgggaagca
                                                                     2340
```

gettettet titiggaagaa tagaggggg tgeggggaca teegggggag eeegggaggg 2400 gcctttggcc ctggagcagg gacttcctgc cggatctcaa caactccgtg cccagactgg 2460 acgtettagg gecaagateg acgttggagg acctgetgga egentggetg ettacgagtg 2520 agggagtaga gtotgootta goaaggotoa agtagaaagg aagtoacago ggacnaggoa 2580 aagccacaga caatccaagg ccaggtgccc tgaaaggggc tcaaacaagg cctgcagcct 2640 gtctgaggcg ggccaggaaa cagcggttgc tttagctggg agcagtcggg ttccccgtcc 2700 ccagaggtgt gtccgtatag agccttctcc agcccagccg ctgtcagcgg gcgggacgga 2760 geggggegee teagggagee ageeactggg attggggttt ggteeegggt geaagtgaag 2820 egettggagt ttgegeetgt ceteetttae taatteaaaa aceteteaaa cagacaette 2880 cettttette teacaaggee agtateeece teecaetaet eecateeege eeagaaacag 2940 eegeggette eteaggeaca geagtggaag ceagteetee acceetgeg getecatgee 3000 atgccaccc ctctttctgc cagccctggc agaagctggc ctgagtaaga aaattcacca 3060 ccacctcttg caggtacatt tttatttcca agatgctctc atatctgtgc tctcactgca 3120 tectecette eccacatest ggetagattg ceateagaeg cagageatgg atgaggaeae 3180 tgaagcetgg acctgtgacg tegettgeec agtgaacage aggatggget aggeageget 3240 ttttagaccc tgcaccctg gccatccatg attattgaaa agagtgtgcg ggtcgggtgc 3300 ggtggctcaa gcctgtaatc ccagcacttt gggaggctga ggtgggcgta tcacttcagg 3360 gccaggagtt tgagaccagc ctggccaata tggtgaaacc ctgtctctac taaaaataca 3420 aaaaaaaat cagctggcat ggtggcttgc acccgtaatc ccagctacta ggaaggctga 3480 ggcaggagaa tcgcttgaac ctgggaggca gaggtcacag tgagccgaaa tcatgccact 3540 3600 agtgtgtggc ctggcactca agttcacatg ggtgtgcagg catgcctgtg tattctcaca 3660 tgacctccct gctcacggtc cctccttgca ctcatgtctg aatgtccccg ctgcacgcac 3720 atggetteac agatetggea gtgeetteec taccetetet etgeagggee ttttgeecee 3780 teatgeagge coetggataa teggeeceat ecceatgtee ceateteeag tgtatettag 3840 ctaccctagg taaaggagtg ggctttttag ttcctaacct tccagagcta caacagcagt 3900 catccagcca ggtctgggtg ggaacatttt ctagatacgg gtgctgagat ctctcagccc 3960 agagagaage cetggggaat tttcagagag aaageagtet eeaggtgggg etggatgtae 4020 tgatgccact gagatctgta aaggagtccc taacacctga cataggagtg acaaaactgt 4080 tttctgcacc aactgagcag aatacacgca gctgacctgg gctcaaggtc tggccctgcc 4140 acgtgctggc tctgtgatgc tggccaagtg ccttcgcctc tccgggccac agttttttga 4200 totgaagagt ggagocotac toaagcoato tgcagototo gggotototg acctgacato 4260 tttcgggtgg tggggacaca aaggaagcag cctctattgg gagaccttgt gcttcttttt 4320 ggtcccagga cactgccccc caccactcca gtccggtccc aagggcccag tcagctcaac 4380 tgtaatcatg acaacattga tcaagcatct ttacgtgcag gtgctgtgcc aaacggttcg 4440 aacgctctct catttcaatc tcacggcaaa cctacggtgg agggggtacg gttgtatcca 4500 ctttacatgt aagaaactga ggctgatatc aagtggtgga gccaagaata gtgcctcgtt 4560 geatettaet ecaaceteta geceateegg ceteeteest teaegtgege etaagaggge 4620 taggtggcct ggatagggga ggtcagctcc acagttttga gtaaacacac acagtctcaa 4680 ctctgatgac acttaagtgc caggcatagt ggctggcatg gggcacacac tcaagtcatg 4740 ttgtgcagca cctaacagtt tatcaaagta tcagcaaact tattgtcctg tttgaccttc 4800 cgcacaaagc tgtcaaggaa ggcagggtac ggagggtgat tcctacctta gagatgaaga 4860 aactgaggcc cagagactag cccagctacc agaaggtgga tagagcgctg gcctccatgc 4920 ctgcctgacc tggagtctgt ccagtgccca cccacagaac agcctcggcc ctttcccatg 4980 eccagacaca gatggcacac ttgcgacggc ccactcatag cagettettg tecagettta 5040 ttgggaggcc agcatgcctg gagggggcc aggcatgagg tggggtagga gagcactgag 5100 aatactgtcc cttttaagca acctacaggg gaagccctgg agattgcagg acccaaggag 5160 ctggcaggat ggataggcag gtggacttgg ggtattgagg tctcaggcag ccacggctga 5220 agttggtctg acctcagggt ccaaatccca gaactcagag aacttgtcct taacggtgct 5280 ccagtagtct ttcagggaac tgaagccatc ggtcacccag cccctaaatc agtcagggga 5340 agcaacagag cagggcatga gaacteetet gtaggcaace atgggaccca cacccatgte 5400 cccactggac gacaccagtc aggaccacac caccctctca acttcactgg acgacagccc 5460 tgagacetea ggeaggaate ceceaeaget gecaeeetgg gagaagagat ateettgeag 5520 gaaccccagc acaagtcaaa ccctgccatc tccaggtcac ctcagatgtt tatgccctg 5580 ggcctgaggc acaaagtgac agggtgggga gatgtgaaag gtcaaggctg tcattgtttt 5640

ctgtgcaaac agcaccacct ggagttgcac aacctggtgg ctctgagcag ggtaggacag 5700 agggaggcag cctctcattt ggaaagtcat tggaggattg attagttgtg tgatctgggg 5760 caggicacci aatcgcicig agccicaatt tictcatcig caaagigaga aaataacacc 5820 taccccaaag ccggttctgg ggactaagaa tgtttatgaa cacctctgct atgccagcta 5880 atgccagtca gggtgaggtg gagaagggag taggggagag gagagtactg atgggcaggg 5940 gcaggatggg agaggaagga cacacttctg ctcacactgg ccccaggtct tagaacaaag 6000 cagaagcact cacgggcttg aattgggtca ggtggggcct cccaaggcaa acccctagcc 6060 cagggtcccc aacccccaag tcatagatag gtactggtcc atggactgtt aggagccggg 6120 ctgcacagca cgaagtgagt ggtgggtgag tgagcaatac gcctgagctc cgcctcctgt 6180 cagatcaagt ggccttacat tctcatagga gtgtgaaccc tattgtgaac tgcacatgcc 6240 agggatctag gtggagggct ccttatgaga atctaatgcc tgatgatctg aggtggaaca 6300 getteatece aaaaccatee eegetggeee atggaaaaat tgteeaccae aaaactggte 6360 cctggtgcca aaaaggctga ggaccactgc tctagccaga ccttcagaaa aggaaaatgg 6420 ggccaggcgc agtggctcgt gcctgtaatc ccagcacttt gggaggccga ggcaggagga 6480 teceetgagg teaggaatte aagaceaace tggecaacat ggtgaaacce catetetget 6540 aaaaatacaa aaattagctg ggtgtggtgg cgcgtgcctg taatcccagc tacttgggag 6600 gctgaggcag gagaatgggt tgaacccggg agacggaggt tgcagtgagc cgagatggca 6660 6720 gaaagagaga aaggaagaga gggaaagaaa gaaaaaggaa agaaagaaag aaagagaaag 6780 aaagaaaaga aagaaagaaa ggaaagaaag aaaggaaaga aagaaagaaa gaaagaaaga 6840 aagaaagaaa gaaagaaaga aagaaaaata gaaagagaaa gaaagggaaa ggaaaggaaa 6900 atggaaatga gggctaaaac ggcgcggccc taggactgct ccgggagaaa ggagggacct 6960 gggaggaatg cagtotcaac totgtoatot otocogcago agootgacaa aggcootgtg 7020 aggaaagagg aggctgaaga gcacaggccc aggggaggct ggagcacctc cattccattg 7080 ttgggatctc accagggcag gggcgggtgg gaatggaggc agctggcagg ggggatgggg 7140 agggaggeca gegggtgtae etggeetget gggeeacetg ggaeteetge aegetgetea 7200 gtgcatcctt ggcggtcttg gtggcgtgct tcatgtagcc ctgcatgaag ctgagaaggg 7260 aggcatecte ggcetetgaa geteetgagg aaagageagg getgagtggg gtggategge 7320 ctctggacga gccctggggc tcctgcttga ccacccattg gactgggatc cccaagttgc 7380 ctccaccetg cccccagece agtcccacca agtgcttacg ggcagaggec aggagegeca 7440 ggagggcaac aacaaggagt accegggget geatggcace tetgtteetg caaggaagtg 7500 tectgtgagg ggcaccccag gtecccatge etetggacce etecetgggg aggtggegtg 7560 gcccctaagg tagaacctta gctgggtctg ccagaaggag taggggccgg ctcctgctca 7620 tacgggctct cagaaggggg actggtgagc ggcgagggat cgaggcccaa aggaggtggg 7680 tgggatggag cagaaaaccc accagactga acatcaaggc actgcggtct ggactgatct 7740 cogtocagto cagocaacat gotgtgtgtc tttgggtgat ttctggccct cttccaggcc 7800 tragtttere tgtctggggt aggartggge tgtctaagge ttcctccage cctaageetg 7860 aagaatgagg ggggaacctg cacttggagc cacttccagc cccaccccct atgtagcttt 7920 gggcaagtga cacctcccgg gcctccatgt tcttcaggtt atgatgaggg gtgggggca 7980 cccgtccagc tccgaggett ccttagetet agcaagtget tctccagget tgctggctgg 8040 gctgggcagg gagctcctct tgcccctctt catcctcctc ccctcctct tcccctcccc 8100 agagggcatt acctggagca gctgcctcta gggatgaact gagcagacag gcaggagggt 8160 totgacotgt tttatatoat otocagggoa goaggoactg aggacocagg gogotgggoa 8220 aaggtcacct gctgaccagt ggagatgagg gcctgaggca gggtgtccag atgcagcaag 8280 cgggcgggag agttgggaaa tccctaggag actgagtcca cgctgctgtc ccgccagccc 8340 tgcagcccag atgagctcag gaactggggg tgggcctggg gagcctcatt ccttcctagc 8400 tgactggctc cccagggaga ggctggtgag aggggaaatg gcttggacat aggccagcgc 8460 tegggeecat eteageettt cacaetggaa ttteaggeec etecetecae cageeceaag 8520 ccctgaacac agcctggagt agagggtga ggggcttctt cagacttgag aacaagtggg 8580 tggcttgggc tggggggtgt ttggagtaaa ggcacagaag accgggcatc agtggctcgc 8640 aaggeetggt tacagggetg ageteacage ceeteecage acetecatet etgggtttea 8700 atccaggcag gcgagtgctg ctcacccage agecccccae ccgcccccae cctgtgtgcc 8760 ccaccgccgc ctccccctga gtgtagggca ggggttggtg gagaagcgca aggccgctca 8820 gagecegagg cetttgeece tecetecace aggeteceta ttttgeecte tggacceact 8880 gataacatcc ctgggggagg agccccacc aggactgatt ctctcgttca ccttcctggg 8940

ttcctcagtg gggctggggg aagagc

	·				
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A01N 43/04; C07H 21/04; C12N 15/09, 15/11, 15/85 US CL :435/440, 455, 471, 490; 514/44; 536/23.1, 23.5, 24.1, 24.2					
	According to International Patent Classification (IPC) or to both national classification and IPC				
	DS SEARCHED				
	ocumentation searched (classification system followed	·			
U.S. :	435/440, 455, 471, 490; 514/44; 536/23.1, 23.5, 24.1	, 24.2			
Documentat	ion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) APS. BIOSIS, EMBASE, MEDLINE, DERWENT					
search ter	ms: apo? Idl? low density lipoprotein? cholesterol?	atheroscleros? clathrin?			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ag	propriate, of the relevant passages	Relevant to claim No.		
A,P	US 5,736,157 A (WILLIAMS) 07 Ap	ril 1998, see entire document.	1-4, 7-9, 24-50		
A,E	US 4,772,549 A (FROSSARD) 20 document.	September 1988, see entire	1-4, 7-9, 24-50		
			•		
			····		
Furth	er documents are listed in the continuation of Box C	See patent family annex.			
	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl			
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention		
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider			
cite	current which may throw doubts on priority claim(s) or which is sot to establish the publication date of another citation or other scial reason (as specified)	when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be		
"O" doe	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination		
"P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed					
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report		
22 DECEMBER 1998 0 5 FEB 1999			999		
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks	Authorized Officer	Vas		
Washington, D.C. 20231 Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	70C		
	• • •	1 1 414 billotte 110. (102) 200-0130			

In ational application	No.
PCT/US98/17908	

Box 1	ı c	observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1.		Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
² . [Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3. [x	Claims Nos.: 5-6, 10-23, 51-52 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box	H	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This	inte	emational Searching Authority found multiple inventions in this international application, as follows:		
1. [As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2. [As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3. [As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
4. [No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Rem	ark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.		