

Embrayages

PROBLEME

Accoupler ou désaccoupler a volonté deux arbres (moteur et récepteur).

Les moyens technologiques vus précédemment (les accouplements et les limiteurs de couples) ne le permettent pas.

Solution: Utilisation d'un Embrayage

FONCTION

Dans une chaîne de transmission de puissance, l'embrayage est un mécanisme qui se situe entre l'organe moteur et l'organe récepteur. Il permet à un operateur disposant d'une commande extérieure, d'accoupler ou de séparer, progressivement ou non, les arbres respectivement solidaires du moteur et du récepteur.

EMBRAYAGE: Classification

Pour classifier les types d'embrayage, on peut retenir deux choses :

- le principe d'entrainement entre le moteur et le récepteur (par frottement, par obstacles, etc...).
- la nature de la commande extérieure

Embrayages instantanés

Principe	Nature de la commande extérieure	Désignation	Applications	
Contact direct entre deux solides indéfor- mables sans possibilité de glissement :	Mécanique; Electromagnétique; Hydraulique; Pneumatique.	Embrayage à crabots	Machines- outils	
$A = \begin{bmatrix} A & B \\ A & A \end{bmatrix}$				
0: bâti ; 1: arbre moteur ; 2: arbre récepteur; 3: flasque à crabots; 4: commande extérieure.				

Embrayages instantanés: réalisation

Réalisation:

C'est un embrayage par un obstacle escamotable. L'inconvénient majeur de ce dispositif est que le changement d'état doit se faire a l'arrêt. Voici, cidessous, deux réalisations avec une commande mécanique, l'une par tenons, l'autre par cannelures.

Embrayages instantanés: réalisation

- 1: Entrée (ou sortie); 2: Sortie (ou entrée); 3: Crabot (tenons);
- 4: Fourchette, commandant la translation du crabot (3); 5: Doigt d'indexage.

Embrayages instantanés: réalisation

- 1: Entrée (ou sortie) ; 2: Première sortie (ou entrée);
- 2': Deuxième sortie (ou entrée) 3: Crabot (cannelures);
- 4: Fourchette, commandant la translation du crabot (3).

Embrayages progressifs

Nature de la commande extérieure	Désignation	Applications
- Mécanique- Electromagnétique- Hydraulique- Pneumatique	Embrayage à disque monodisque ou multi- disques	Automobiles, Motos

0: bâti; 1: arbre moteur ; 2: arbre récepteur; 3: mécanisme d'embrayage; 4: Commande extérieure; 5: Disque d'embrayage; 6: Ressort.

Mécanique Electromagnétique Hydraulique Pneumatique

Embrayage conique

Machines agricoles

UIC

Pr Mr EL OUALIDI

Embrayages progressifs:

Réalisation

On retrouve dans cette catégorie les embrayages a disques. Le couple transmissible est lie :

- 1. à l'étendue de la surface de contact ;
- 2. au coefficient de frottement ;
- 3. à l'effort presseur.

Embrayages progressifs: réalisation

4

Embrayages progressifs: Multidisque

Embrayage multidisques à commande manuelle.

Afin d'augmenter le couple transmissible, on peut aussi augmenter le nombre de surfaces en contact, on réalise ainsi un embrayage multidisques.

Exemple:

- 1: Entrée (ou sortie);
- 2: Sortie (ou entrée);
- 3: Cloche, disposant de cannelures intérieures;
- 4: Levier assurant l'existence de l'effort presseur;
- 5: Disque en liaison glissière avec la cloche (3);
- 6: Disque en liaison glissière par rapport au moyeu (9);
- 7: Levier de commande:
- 8: Coulisseau, dont la translation est commandée par la rotation du levier (7);
- 9: Moyeu, disposant de cannelures extérieures.

UIC Pr Mr EL OUALIDI

Embrayage conique

Embrayage conique.

Au lieu de se faire sur des disques, le contact s'opère sur une surface conique.

L'exemple présente sert d'inverseur du sens de marche.

Description du fonctionnement :

Pour un sens donne de la fréquence de rotation N1, deux sens sont possibles en ce qui concerne la fréquence de rotation N2, selon l'embrayage active : (translation du bicorne (5), vers la cloche (4) qui est a gauche ou celle qui est a droite), résulte de la liaison pivot (8/7) d'axe 8associee a la liaison pivot (6/8) d'axe 6.

(l'excentration \ll **e** \gg apparait dans la vue suivant F).

Calcul du couple transmissible par un embrayage: cas d'un embrayage à disque

- Cf (Nm) le couple maximal transmissible par l'embrayage,
- N (N), l'effort presseur axial générateur de la pression de contact,
- f le coefficient de frottement²,
- r_2 le rayon extérieur de la surface frottante,
- r_1 le rayon intérieur de la surface frottante.

Calcul du couple transmissible par un embrayage: cas d'un embrayage à disque

On peut donc exprimer l'effort presseur N et en déduire la valeur de p :

$$dN = p \cdot dS \Rightarrow N = p \cdot S \Rightarrow p = \frac{N}{\pi (r_2^2 - r_1^2)}$$

On peut ensuite exprimer le couple transmissible à la limite à l'adhérence :

$$dCf = r \cdot dT \Rightarrow dCf = rf \cdot dN \Rightarrow dCf = rfp \cdot dS$$

On intègre sur l'ensemble de la surface de friction et on obtient :

$$Cf = \int_{r_1}^{r_2} 2\pi r^2 f p \cdot dr \Rightarrow Cf = \frac{2\pi}{3} f p (r_2^3 - r_1^3)$$

On remplace alors p par sa valeur en fonction de l'effort presseur N et on trouve :

$$Cf = \frac{2}{3}Nf\frac{(r_2^3 - r_1^3)}{(r_2^2 - r_1^2)}$$

Calcul du couple transmissible par un embrayage: cas d'un embrayage conique

Calcul du couple transmissible par un embrayage: cas d'un embrayage conique

$$dS = r \cdot d\theta dl = \frac{r \cdot dr d\theta}{\sin \alpha}$$

On peut en déduire le couple élémentaire transmissible à l'équilibre strict :

$$dC = r \cdot dT = f \cdot p \cdot \frac{r^2}{\sin \alpha} \cdot dr d\theta$$

En intégrant sur l'ensemble de la surface frottante, on en déduit le couple maximal transmissible par ce type d'embrayage :

$$C = \int_0^{2\pi} \int_{r_1}^{r_2} f \cdot p \cdot \frac{r^2}{\sin \alpha} \cdot dr d\theta = \frac{2\pi}{3} f \cdot p \cdot \frac{(r_2^3 - r_1^3)}{\sin \alpha}$$

Il reste à relier la pression à l'effort presseur N :

$$N = \int_{0}^{2\pi} \int_{r_{1}}^{r_{2}} dN \cdot \sin \alpha = \int_{0}^{2\pi} \int_{r_{1}}^{r_{2}} p dS \cdot \sin \alpha = p \cdot \pi (r_{2}^{2} - r_{1}^{2})$$

$$C = \frac{2N}{3 \sin \alpha} f \cdot \frac{(r_{2}^{3} - r_{1}^{3})}{(r_{2}^{2} - r_{1}^{2})}$$
HIC Pr Mr EL QUALIDI