## COL215

# Hardware Assignment 2

Khushi Mishra
2022TT12159

Lakshya Batra
2022TT12163

#### Introduction

Designing and implementing a circuit that displays a hexadecimal number on the 4 seven-segment display after taking the number as input from four switches on the Basys3 board (a four-bit number). Extending this logic to take a 16-bit input and display all 4 digits on the board, with the help of a timer circuit and a 4X1 MUX gate.

### Overall, Logic:



Part 1: Seven Segment Encoder Implementation

The seven-segment encoder consists of 4-bit input, and a seven-bit output, one corresponding to each cathode. Since we wanted an ACTIVE-LOW implementation, a NOT gate is put at start of the logic of each out bit.

The K-map for each output bit is shown below:

IN\_BITS: W, X, Y, Z

OUT\_BITS: a,b,c,d,e,f,g

### Truth Table:

| No. | w | Х | У | Z | а | b | С | d | е | f | g |
|-----|---|---|---|---|---|---|---|---|---|---|---|
| 0   | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1   | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 2   | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 3   | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 4   | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 5   | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 6   | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 7   | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 8   | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 9   | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| Α   | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| В   | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| С   | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| D   | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| E   | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| F   | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |

## K-Map:

• a: X'Z' + W'Y + XY + WZ' + W'XZ + WX'Y'

|    |    |    | ΥZ |    |    |
|----|----|----|----|----|----|
|    |    | 00 | 01 | 11 | 10 |
|    | 00 | 1  | 0  | 1  | 1  |
| MX | 01 | 0  | 1  | 0  | 1  |
|    | 11 | 1  | 1  | 1  | 0  |
|    | 10 | 1  | 1  | 1  | 1  |

• b: W'X' + X'Z' + W'Y'Z' + W'YZ + WY'Z

ΥZ

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 1  | 1  | 0  | 1  |
| 01 | 1  | 0  | 1  | 1  |
| 11 | 1  | 1  | 0  | 0  |
| 10 | 1  | 0  | 0  | 1  |

• c: W'Z' + W'Z + Y'Z + W'X + WX'

|    | YZ |    |    |    |    |  |  |  |  |
|----|----|----|----|----|----|--|--|--|--|
|    |    | 00 | 01 | 11 | 10 |  |  |  |  |
|    | 00 | 1  | 1  | 0  | 1  |  |  |  |  |
| MX | 01 | 1  | 1  | 1  | 1  |  |  |  |  |
|    | 11 | 1  | 1  | 0  | 1  |  |  |  |  |
|    | 10 | 0  | 1  | 0  | 1  |  |  |  |  |

• d: WY' + W'X'Z' + X'YZ + XY'Z + XYZ'

|    | YZ |    |    |    |    |  |  |  |
|----|----|----|----|----|----|--|--|--|
|    |    | 00 | 01 | 11 | 10 |  |  |  |
|    | 00 | 1  | 1  | 0  | 1  |  |  |  |
| MX | 01 | 1  | 1  | 1  | 1  |  |  |  |
|    | 11 | 1  | 1  | 0  | 1  |  |  |  |
|    | 10 | 0  | 1  | 0  | 1  |  |  |  |

|    |    |    | YZ |    |    |
|----|----|----|----|----|----|
|    |    | 00 | 01 | 11 | 10 |
|    | 00 | 1  | 0  | 1  | 1  |
| MX | 01 | 0  | 0  | 1  | 0  |
|    | 11 | 0  | 0  | 1  | 1  |
|    | 10 | 1  | 1  | 1  | 1  |

• f: Y'Z' + XZ' + WX' + WY + W'XY'

|    |    |    | YZ |    |    |
|----|----|----|----|----|----|
|    |    | 00 | 01 | 11 | 10 |
|    | 00 | 1  | 1  | 1  | 1  |
| MX | 01 | 0  | 1  | 0  | 1  |
|    | 11 | 0  | 0  | 1  | 1  |
|    | 10 | 0  | 1  | 1  | 1  |

• g:X'Y + YZ' + WX' + WZ + W'XY'

|   | YZ     |    |    |    |    |    |  |  |  |
|---|--------|----|----|----|----|----|--|--|--|
|   |        |    | 00 | 01 | 11 | 10 |  |  |  |
|   | $\sim$ | 00 | 0  | 1  | 0  | 1  |  |  |  |
|   | MX     | 01 | 0  | 1  | 1  | 1  |  |  |  |
|   |        | 11 | 1  | 0  | 1  | 1  |  |  |  |
| l |        | 10 | 1  | 1  | 1  | 1  |  |  |  |

#### Simulation Snapshot (Seven Segment Encoder):



Part B: Timer Circuit Implementation

The Basys3 board has a default frequency of 100Mz; To display a separate digit on each LED display, the corresponding anode signal needs to be activated in a cyclic manner. To avoid flickering, refresh rate should vary between 1kHz - 60Hz (1-16 ms period). The Timer entity is built for this logic.

Inputs: The default clk, and a reset signal.

Outputs: A new\_clk of decreased frequency, and a 'sel' signal for anode selection (ranges from 0 to 3, in a cyclic manner)

#### Simulation Snapshot:



Part 3: MUX gate implementation (Top level Entity)

Here, a Multiplexer module is implemented with four 4-bit inputs from slider switches and output going to 7-segment module. This is the top module of our implementation.

Inputs: It takes the new\_clk, sel signal (from timer circuit) and a 16-bit input (from the slider switches), and maps each output digit correspondingly according to the MUX logic.

Simulation Snapshot:

















## **Conclusion:**

We were able to implement the logic successfully, taking a 16 –bit input from the basys3 board, and displaying the corresponding numbers on the LEDs.