Probability and Statistics for Economics Cheat Sheet

Author: Sai Zhang (email me or check my Github page)

Random experiments

The outcome in a random experiment is unpredictable:

- outcome is too complicates or poorly
- outcome is designed to be unpredic-
- coincidences, or independent chains of events

Two examples

Random card shuffle experiment: take top card from a deck and insert randomly, to complete the shuffle of n cards, we need

$$T = n + \frac{n}{2} + \dots + \frac{n}{n-1} + 1 = n \log n$$

Random number generator:

$$x_{n+1} = \frac{ax_n + b}{c} - \left[\frac{ax_n + b}{c} \right]$$

the remainder after dividing by c, hence $x_{n+1} \in [0, c-1]$, let $u_{n+1} = \frac{x_{n+1}}{c}$, x_0, a, b, c all be integers. For very large a and good choice of b, c, the sequence u_1, u_2, \cdots is like a sequence of numbers randomly picked from [0, 1]

Probabilities

Probability is a number in [0,1] that measures the likelihood of an outcome or a set of outcomes.

Ways of assigning probabilities:

- **symmetry**: assume all outcomes are equally likely
- experimental method: relative frequency in repeated random experi-
- subjective method: assign probabilities using knowledge of random experiment
- market method

Elements of probability space

- **outcome space** Ω and outcomes $\omega \in \Omega$
- event $E, E \subset \Omega$
- probability function/measure P: $\mathcal{A} \rightarrow [0,1]$: a function from a col**lection** \mathcal{A} of subsets of Ω to the interval [**0**, **1**].

Classes of events

Events E_1, E_2, \cdots are just sets. They also follow the algebras of sets.

Some set algebras

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup A^C = U, A \setminus B = A \cap B^C$ $(\bigcup_{i=1}^{\infty} A_i)^C = \bigcap_{i=1}^{\infty} A_i^C$ $\left(\bigcap_{i=1}^{\infty} A_i\right)^C = \bigcup_{i=1}^{\infty} A_i^C$ $A \cup B = U, A \cap B = \emptyset \Leftrightarrow B = A^C$ $(A^C)^C = A$ $A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow A \setminus B =$ $\varnothing \Leftrightarrow B^C \subset A^C$

Two special relations:

- **disjoint**: $E_1 \cap E_2 = \emptyset$
- **partition**: $\bigcup_{i=1}^{\infty} E_i = \Omega$, $\{E_i\}$ are pairwise disjoint

σ -field and Borel σ -field

Definition of σ **-field**

A (a collection of subsets of Ω) is a σ -field if:

- $1 \varnothing \in \mathcal{A}$
- 2 $E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$
- 3 $E_1, E_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$

It is easy to see that: $\Omega \in \mathcal{A}$ (by 1), $\bigcap E_i^C \in \mathcal{A}, \bigcup E_i^C \in \mathcal{A}, \bigcap E_i \in \mathcal{A}$ as well

Two important σ -field:

- Trivial σ -field: $\mathcal{A} = \{\emptyset, \Omega\}$
- Largest σ -field: **powerset** of Ω , $\mathcal{P}(\Omega)$

Generating classes

When the powerset has too many events to be assigned probabilities to each event, we start from a set of events \mathcal{E} that we want to assign probabilities to. This \mathcal{E} is a generating class.

σ -field generated by \mathcal{E}

The **smallest** σ -field that contains \mathcal{E}

$$\sigma(\mathcal{E}) = \{ E \subseteq \Omega \mid E \in \mathcal{A}, \forall \mathcal{A} \supseteq \mathcal{E} \}$$

where A can be any σ -field (including the powerset).

Another way to write this definition is: for all the σ -fields that contain \mathcal{E} , $\{A_i \mid \mathcal{E} \subseteq A_i\}$, we have:

$$\sigma(\mathcal{E}) = \bigcap \mathcal{A}_i$$

This definition is based on the fact: any intersection of σ -fields is a σ -field, here is a proof:

Proof: \cap of two σ -fields is a σ -field

We can check the three definitions of σ -field: for \mathcal{F}_1 , \mathcal{F}_2 $1 \varnothing \in \mathcal{F}_1, \varnothing \in \mathcal{F}_2 \Rightarrow \varnothing \in \mathcal{F}_1 \cap \mathcal{F}_2$ $E \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow E^C \in \mathcal{F}_1, E^C \in \mathcal{F}_2 \Rightarrow \mathcal{F}_1 \in \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathcal{F}_2 \in \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathcal{F}_2 \in \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathcal{F}_2 \in \mathcal{F}_2 \in \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathcal{F}$

 $E^{C} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$ $E^{C} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$ $E_{1}, \dots \in \mathcal{F}_{1} \cap \mathcal{F}_{2} \Rightarrow E_{1}, \dots \in \mathcal{F}_{1}, E_{1}, \dots \in \mathcal{F}_{2} \Rightarrow \bigcup E_{i} \in \mathcal{F}_{1}, \bigcup E_{i} \in \mathcal{F}_{2} \Rightarrow \bigcup E_{i} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$

Borel σ -field

Borel σ -field \mathcal{B} is a σ -field on \mathbb{R} , its generating class is the set of all open sub**sets** of \mathbb{R} . But \mathcal{B} 's generating class is not unique, a particularly important one is $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$. Here is a proof of this generating class can actually genera-

Proof: $\sigma(\mathcal{E}) = \mathcal{B}$

The proof is done in 2 steps:

- prove $\sigma(\mathcal{E}) \subseteq \mathcal{B}$: $\mathcal{E} = (-\infty, x] =$ $\bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right) \in \mathcal{B}$. And by the definition of σ -field generated by \mathcal{E} , we know that $\sigma(\mathcal{E}) = \bigcap \mathcal{A}_i \subseteq \dot{\mathcal{E}}$, hence $\sigma(\mathcal{E}) \subseteq \mathcal{B}$
- prove $\mathcal{B} \subseteq \sigma(\mathcal{E})$: each open set \mathcal{B} in \mathbb{R} can be written as $B = \bigcup_{i=1}^{\infty} (a_i, b_i)$. For each (a, b), we can rewrite it as $(a,b) = (-\infty,b) \cap (-\infty,a]^C$ where $(-\infty, b) = \bigcup_{n=1}^{\infty} \left(\infty, b - \frac{1}{n}\right)$. By the definition of σ -field, $\bigcup_{n=1}^{\infty} \left(\infty, b - \frac{1}{n} \right] \cap (-\infty, a]^{C} \in \sigma(\mathcal{E}),$ hence $B \in \sigma(\mathcal{E})$.

This is actually a special case of generating class arguments, which is used to show that all sets in a σ -field A have a certain property. It follows:

- for subsets of Ω that have the property, define the collection of them as \mathcal{E}
- show that $A \subseteq \sigma(\mathcal{E})$
- show that for $A_0 = \{A_{property} \in A\}$ with $\mathcal{E} \subseteq \mathcal{A}_0$, \mathcal{A}_0 is a sigma field (Since $\sigma(\mathcal{E})$ is the smallest σ -field that contains \mathcal{E} , $\sigma(\mathcal{E}) \subseteq \mathcal{A}_0$
- $\mathcal{A} \subseteq \sigma(\mathcal{E}) \subseteq \mathcal{A}_0 \subseteq \mathcal{A} \Rightarrow \mathcal{A} = \mathcal{A}_0$

Often it is difficult to show that A_0 is a σ -field, hence we introduce λ -systems. λ -systems

 A_0 is a λ -system if 1 $\Omega \in \mathcal{A}_0$

2 If $D_1, D_2 \in A_0$ and $D_2 \subseteq D_1$, then $D_1 \setminus D_2 = D_1 \cap D_2^C \in \mathcal{A}_0$

3 If D_n is an increasing sequence of sets in A_0 , then $\bigcup_{i=1}^{\infty} D_i \in A_0$

Two theorems link λ -systems and σ -fields:

Theorems of λ -systems/ σ -fields

- **Theorem 1**: If \mathcal{E} is closed under finite intersections, and if A_0 is a λ -system with $\mathcal{E} \subseteq \mathcal{A}_0$, then $\sigma(\mathcal{E}) \subseteq \mathcal{A}_0$.
- **Theorem 2**: a λ -system A_0 is a σ -field $\Leftrightarrow A_0$ is closed in finite intersections.

Choice of σ -field

The choice of σ -field is usually determined by the nature of the outcome space:

- discrete (countable) outcome space: powerset of Ω shall be chosen.
- continuous outcome space (real line): **Borel** σ -**field** shall be chosen.

Probability measure

Definition of probability measure

A probability measure is a function $P: \mathcal{A} \Rightarrow \mathbb{R}$ with a σ -field \mathcal{A} :

- 1 $\forall E \in \mathcal{A}, P(E) \geq 0$
- $P(\Omega) = 1$ 3 If E_1, E_2, \cdots are pairwise disjoint (and countable), $P(\bigcup_{i=1}^{\infty} E_i) =$ $\sum_{i=1}^{\infty} P(E_i)$

The usual way to specify probabilities using a probability model is to first assign probabilities to some simple collection of events \mathcal{E} , these assignments can be extended to $\sigma(\mathcal{E})$, this extension can usually be shown to be unique, giving a probability measure on $\sigma(\mathcal{E})$.

Discrete Ω : Dice roll

For the problem of rolling a single dice, the probability measure can be defined as

- σ -field A: powerset of Ω
- probability measure: $P(E) = \frac{\#E}{6}$

This construction can be extended to all discrete outcome spaces: starting by assigning probabilities p_i to single outcomes and define $P(E) = \sum_{i \in E} p_i$.

Here is a special case of discrete Ω : random experiments with equally likely outcomes, i.e., $\Omega = \{\omega_i\}_{i=1}^I, P(\omega_i) =$ $\frac{1}{T}, P(E) = \frac{\#E}{T}.$

4 cases of equally likely Ω

Consider the problem of selecting k elements from *n* distinct elements, the number of selections N_s has 4 cases:

- Ordered without replacement: $N_s =$
- Ordered with replacement: $N_s = n^k$
- Unordered without replacement: $N_s =$ $\frac{n!}{k!(n-k)!} = \binom{n}{k}$
- Unordered with replacement: $S_n =$

Continuous Ω : Borel σ -field \mathcal{B}

For the probability measure on \mathcal{B} can be defined as

probabilities on $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$

 $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$ is closed under finite intersection, hence, we need to show $\forall B \in \mathcal{B}, P(B) = P'(B)$, that is, \mathcal{E} has a unique probability measure.

Consider $\mathcal{B}_0 = \{B \in \mathcal{B} \mid P(B) = P'(B)\}\$, which is a λ -system. For an increasing sequence B_n of events in \mathcal{B}_0 , $P(B) = P(B_1 \cup B_2)$ $(B_2 \backslash B_1) \cup \cdots \cup (B_n \backslash B_{n-1}) = P(B_1) + (P(B_2) - \cdots)$ $P(B_1) + \cdots + (P(B_n) - P(B_{n-1})) = \lim P(B_n)$ then $P(B) = \lim P(B_n) = \lim P'(B_n) =$ P'(B). Now $\mathcal{E} \subseteq \mathcal{B}_0$ is closed under finite intersections, then by Thm.1 of λ -system, $\sigma(\mathcal{E}) \subseteq \mathcal{B}_0 \subseteq \mathcal{B}$, then $\mathcal{B} = \sigma(\mathcal{E})$, hence $\forall B \in \mathcal{B}, P(B) = P'(B)$.

Properties of probability measures

- $P(E^C) = 1 P(E), P(\emptyset) = 0, P(E) \le 1$
- $P(E_2 \setminus E_1) = P(E_2 \cap E_1^C) = P(E_2) P(E_2 \cap E_2)$
- $P(E_1 \cup E_2) = P(E_1 \cup (E_2 \setminus E_1)) = P(E_1) +$ $P(E_2) - P(E_1 \cap E_2)$ $-E_1 \subseteq E_2 \Rightarrow E_2 = E_1 \cup (E_2 \setminus E_1) \Rightarrow$
- $P(E_1) \leq P(E_2)$
- $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$
- Bonferroni inequality: $P(E_2 \cap E_1) \ge$ $P(E_1) + P(E_2) - 1$
- Law of total probability: for a partition of Ω , $\{E_i\}$, $P(A) = \sum_{i=1}^{\infty} P(A \cap \hat{E}_i)$
- Boole's inequality: $P(\bigcup_{i=1}^{\infty} E_i) \leq$

The proof of all these results relies on the step to transform the object set to a **union** of pairwise disjointed sets.

For all subsets of \mathbb{R} , it is impossible to assign probabilities to them. The proof takes advantage of a series of uncountable, disjointed subsets centered at irrational

Random variable

numbers.

Definition of random varibles

For a probability space (Ω, \mathcal{A}, P) , a random variable *X* is a function $X : \Omega \to \mathbb{R}$ s.t. $\forall B \in$ Borel σ -field \mathcal{B} , $E = \{\omega \mid X(\omega) \in B\} \in \mathcal{A}$.

Another way of stating it is: X takes a value in $B \Leftrightarrow w \in E$ i.e., event E happens. Thus, $Pr(X \in B) = Pr(E)$

2 things to keep in mind

- $E = X^{-1}(B)$ (X^{-1} does **NOT** necessarily
- X is Borel measurable

Properties of X^{-1}

- $-X^{-1}(B^C) = (X^{-1}(B))^C$
- $-X^{-1}\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\bigcup_{i=1}^{\infty}X^{-1}(B_{i})$

Borel Measurability

Borel measurability of a random variable X (function) is established separately by the countability of outcome space Ω .

Countable Ω

For a countable Ω , $X : \Omega \to \mathbb{R}$ is Borel measurable if σ -field on Ω , \mathcal{A} , is the **powerset**

Uncountable Ω

Let $\mathcal{E} \subseteq \mathcal{B}$ be a generating class of Borel σ -field \mathcal{B} , for an uncountable Ω and its σ -field \mathcal{A} , X is Borel measurable if $\forall E \in$ $\mathcal{E}, X^{-1}(E) \in \mathcal{A}$.

We use a generating class argument to pro-

Step 1: Define $C = \{B \in \mathcal{B} \mid X^{-1}(B) \in \mathcal{A}\}$, since $\forall E \in \mathcal{E}, X^{-1}(E) \in \mathcal{A}$, we know $\mathcal{E} \subseteq \mathcal{C}$.

Step 2: Check \mathcal{C} is a σ -field: $i \mathcal{O} \in \mathcal{C}$

ii $B \in \mathcal{C} \Rightarrow X^{-1}(B) \in \mathcal{A} \Rightarrow X^{-1}(B^C) =$ $X^{-1}(B)^C \in \mathcal{A} \Rightarrow B^C \in \mathcal{C}$

iii $B_1, B_2, \dots \in \mathcal{C} \Rightarrow X^{-1}(B_1), \dots \in \mathcal{A} \Rightarrow$ $X^{-1}(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} X^{-1}(B_i) \in \mathcal{A}$

Step 3: Since \mathcal{B} is the smallest σ -field containing \mathcal{E} (definition of generating class), \mathcal{C} is a σ -field containing \mathcal{E} , $\mathcal{B} \subseteq \mathcal{C}$; by the definition of C, $C \subseteq B$. Hence C = B, meaning that $\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$, and X is Borel measurable.

Borel measurability has some important applications:

Continuous $X : \mathbb{R} \to \mathbb{R}$

For the probability space $(\mathbb{R}, \mathcal{B}, P)$ and a **continuous** $X : \mathbb{R} \to \mathbb{R}$ is Borel measurable.

X_{sup} and X_{inf} of X_n

For a sequence of random variables, $\{X_n\}_{n=1}^{\infty}$, $\hat{X}_{\text{sup}} = \sup_n X_n$ and $X_{\text{inf}} =$ $\inf_{n} X_n$ are also Borel measurable. A brief proof: Take (x, ∞) as a generating class for \mathcal{B} , X_n being random variables \Rightarrow $\{w \mid X_n(w) > x\} \in \mathcal{A} \Rightarrow \bigcup_n \{w \mid X_n(w) > x\} =$ $\{w \mid X_{\sup}(w) > x\} \in \mathcal{A}$. Taking $(-\infty, x]$ as the generating class can proof for X_{inf} .

Again, for a sequence of random variables, $\{X_n\}_{n=1}^{\infty}$, if $\lim_{n\to\infty} X_n = X$ exists, X is a random variable.

A brief proof: we know

 $\liminf_{n\to\infty} X_n(\omega) = \sup_n \inf_{m\geq n} X_m(\omega)$

 $\limsup_{n\to\infty} X_n(\omega) = \inf_n \sup_{m>n} X_m(\omega)$

then it is easy to see $\liminf_{n\to\infty} X_n \le$ $X = \lim_{n\to\infty} X_n \le \limsup_{n\to\infty} X_n$. If $\lim_{n\to\infty} X_n = X$ exists, the three limits are all equal and all Borel measurable.

Algebras of random variables

If X, Y are random variables, Z = X + Y is Borel measurable. A brief proof: take the generating class $\mathcal{E} = \{(x, \infty)\}\$, then for $A = \{\omega \mid Z(\omega) > z\}\$, we have $X(\omega) + Y(\omega) > z \Leftrightarrow X(\omega) > z - Y(\omega)$.

Here is the trick: We can always find a ra tional number r s.t. $X(\omega) > r > z - Y(\omega)$, and $A = \bigcup_{r} (\{\omega \mid X(\omega) > r\} \cap \{\omega \mid Y(\omega) > z - r\})$

Since rational numbers are countable, X and Y are both Borel measurable, A is in A, hence Z is Borel measurable.

For the collection of all Borel measurable functions $\mathcal{M} = \{X : \Omega \Rightarrow \mathbb{R}\}\ (\mathcal{M}^+ \text{ for }$ non-negative functions), We focus on a special class:

Simple functions

$$X(\omega) = \sum_{i}^{n} \alpha_{i} I_{A_{i}}(\omega)$$

- I_A is the indicator function of event A
- $A_i \in \mathcal{A}, i = 1, \dots, n$ are a partition of Ω
- α_i are constants

Why are they important: each nonnegative borel measurable function can be approximated by an increasing **sequence** of simple functions!

Theorem of simple functions

For $\forall X \in \mathcal{M}^+$,

$$X_n(\omega) = 2^{-n} \sum_{i=1}^{4} I_{X \ge \frac{i}{2^n}}(\omega)$$

satisfies $0 \le X_1(\omega) \le \cdots \le X_n(\omega)$ and $X_n(\omega) \to X(w), \forall \omega \in \Omega.$

Proof of $I_A(\omega)$ **approximation**

Step 1: increasing

Let $\sum_{i=1}^{4^n} I_{X \ge \frac{i}{2n}}(\omega) = C$ then it is easy to show that $\sum_{i=1}^{4^{n+1}} I_{X \ge \frac{i}{2^{n+1}}}(\omega) \ge 2C$,

hence $X_n = \frac{C}{2^n}$, $X_{n+1} \ge \frac{2C}{2^{n+1}} = X_n$ Step 2: approximation There are two

scenarios: (a) $X(\omega) = \infty$. It will give $X_n(\omega) =$ $2^{-n} \sum_{i=1}^{4^n} I_{X \ge \frac{i}{2^n}}(\omega) = 2^n$, hence

 $\lim_{n\to\infty} X_n(\tilde{\omega}) = \infty = X$

(b) $X(\omega) < \infty$. For sufficiently large n, we can find a $k \in \{0, 1, \dots, 4^n - 1\}$ such that $k2^{-n} \le X < (k+1)2^{-n}$, and $X_n = k2^{-n}$. Hence $|X - X_n| \le$ $2^{-n} \to 0 \Rightarrow X_n \to X$

Expectation and integration

Start from the simple case: $X(\omega) = \sum_{i=1}^{n} \alpha_i I_{A_i}(\omega) \Rightarrow E(X) =$ $\sum_{i=1}^{n} \alpha_i P(A_i) \Rightarrow E(X) = \int_{\Omega} X(\omega) dP(\omega) =$ $\int X dP$.

For general random variables, we take advantage of the increasing sequences of simple function X_n that asymptotically approaches X.

Def. of E(X): non-negative X

For simple functions X_s ,

$$E(X) = \int X dP = \sup_{X_s} \{ E(X_s) \mid X \ge X_s \}$$

Properties of E(X)

- $\forall A \in \mathcal{A}, E(I_A) = P(A)$
- $E(\mathbf{0} = 0)$, where **0** is the null function that assigns 0 to all $\omega \in \Omega$
- **linearity**: $\forall \alpha, \beta \geq 0$ and nonnegative Borel measurable functions X. Y

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$$

- If $\forall \omega \in \Omega, X(\omega) \leq Y(\omega), E(Y) = E(X) +$ $E(Y-X) \geq E(X)$

For **arbitrary** random variable X, we can write $X(\omega) = X_{+}(\omega) - X_{-}(\omega)$ with

 $-\min\{X(\omega), 0\}$. Now X_+ and X_- are both non-negative, and:

Def. of E(X): arbitrary X

For random variable $X = X_{+} - X_{-}$,

$$E(X) = E(X_{+}) - E(X_{-}) = \int_{\Omega} X_{+} dP - \int_{\Omega} X_{-} dP$$

For E(X) to be well-defined, we need E(|X| $) < \infty$, i.e., X is integrable.

By introducing Jensen's inequality: $\forall \lambda \in$ (0,1), and a convex *f*:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

we have the following properties for a convex function *f* :

E(f(x)) for a convex f

For a convex $f : \mathbb{R} \to \mathbb{R}$, we have: - f is **Borel measurable**: let E = $\{x \mid f(x) \in (-\infty, t]\}$, since f is convex, $\forall x_1, x_2 \in E, f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)x_2 \leq \lambda f(x_1) + ($ $(1-\lambda)f(x_2) \le t$. Hence, E is an interval on \mathbb{R} , f is Borel measurable. - $\forall x, x_0, f(x) \ge f(x_0) + \alpha(x - x_0)$ where α

is a constant (may depend on x_0). And, derive **two features of** E(f(x)): - $E(f(X)_{-}) < \infty$ if $E(|X|) < \infty$: we know

 $f(x) \ge f(x_0) + \alpha(x - x_0) \ge -|f(x_0)| |\alpha|(|x|+|x_0|)$, hence $E(|X|) < \infty \Rightarrow$ $E(f(X)_{-}) < E(|X|) < \infty$

- Take $x_0 = E(X)$ get E(f(X)) > f(E(X)) + f(E(X)) $\alpha(E(X) - E(X)) \Rightarrow E(f(X)) \ge f(E(X))$

Lebesgue integrals

In $E(X) = \int X dP$, P assigns probability 1 to Ω . Lebesgue measure assigns probability 0 to \emptyset .

Lebesgue measure ($\Omega = \mathbb{R}$) is defined as m([a,b]) = b - a and Lebesgue measure of a point is 0. Hence m((a,b)) = b - a. Open intervals (a, b) are a generating class, mcan be uniquely extended to all sets in the Borel σ -field \mathcal{B} .

Lebesgue integral is then $\int_{-\infty}^{\infty} f(x) dx$ (NOT $\int_{\mathbb{D}} f \, dm$).

Lebesgue and Riemann integral

The relation between Lebesgue integral and Riemann integral:

- Same notation: $\int_{\infty}^{\infty} f(x) dx$
- If f is integrable $(\int_{-\infty}^{\infty} |f(x)| dx < \infty)$, and Riemann integral exists, the two
- If $\int_{-\infty}^{\infty} f(x)_+ dx = \int_{-\infty}^{\infty} f(x)_- dx = \infty$, Lebesgue integral is NOT defined, but Riemann integral $\lim_{t\to\infty} \int_{-t}^t f(x) dx$ may exist.

 $X_{+}(\omega) = \max\{X(\omega), 0\}$ and $X_{-}(\omega) = \text{The last group of properties of expectati-}$ ons regards convergence:

Convergence properties of E(X)

Three properties are especially important: (1) Monotone convergence: if \hat{X}_n is an increasing sequence of non-negative random variables, i.e. $0 \le X_1 \le X_2 \le$ $\cdots \leq X_n$, then

$$\lim_{n\to\infty} X_n = X \Rightarrow \lim_{n\to\infty} E(X_n) = E(X)$$

(2) **Fatou's Lemma**: for $X_1, \dots, X_n \ge 0$, $E(\liminf_{n\to\infty} X_n) \le \liminf_{n\to\infty} E(X_n)$

(3) **Dominated convergence**: if X_1, \dots, X_n are integrable $(E(|X_i|) < \infty)$, and there is a non-negative, integrable random variable Y s.t. $|X_i(\omega)| \le Y(\omega), \forall \omega \in$ Ω , $\forall i = 1, \dots, n$, then

$$\lim_{n \to \infty} X_n = X \Rightarrow \lim_{n \to \infty} E(X_n) = E(X)$$
(1) is used to prove (2), (2) is used to pro-

Proof of \rightarrow **properties of** E(X)

Monotone convergence: Fatou's Lemma:

Dominated convergence:

Sets of measure 0

ve (3):

For integrals/expectations, the zero probability events $\{E \in \mathcal{A} \mid P(E) = 0\}$ can be neglected. This gives:

Expectation equality E(X) = E(Y)

If random variables *X* and *Y* satisfy that for event $E = \{\omega \mid X(\omega) \neq Y(\omega)\}\$, P(E) = 0, then E(X) = E(Y).

This is very easy to prove:

Proof of E(X) = E(Y)

We have

$$E(X) = E(X \cdot I_{X=Y}) + E(X \cdot I_{X\neq Y})$$

$$E(Y) = E(Y \cdot I_{Y=X}) + E(Y \cdot I_{Y\neq X})$$

 $E(X \cdot I_{X \neq Y} = E(Y \cdot I_{Y \neq X} = 0, \text{ because it })$ is an integral over E and P(E) = 0.

Distribution of random variables

For a random variable $X : \Omega \to \mathbb{R}$, we can replace (Ω, \mathcal{A}, P) by $(\mathbb{R}, \mathcal{B}, P_X)$, get:

Distribution of X

The **distribution** of *X* is the measure $P_X: \mathcal{B} \to \mathbb{R}$, defined by

$$P_X(B) = P(X^{-1}(B)) = \Pr(X \in B)$$

The **joint distribution** of a vector of random variables $X = (X_1, \dots, X_N)^T$ is defined as

$$P_X(C) = P(X^{-1}(C)) = \Pr(X \in C)$$

where $C \in \mathcal{B}^N$, \mathcal{B}^N is the Borel σ -field in \mathbb{R}^N , generated by the sets $B_1 \times \cdots \times B_n$ $B_N = \{(x_1, \dots, x_N) \mid x_i \in B_i, B_i \in \mathcal{B}\}\$

Distribution function

For the probability space of random variable $X: (\mathbb{R}, \mathcal{B}, P_X)$, P_X is determined by assigning probabilities to \mathcal{B} 's generating class $\mathcal{E} - \{(-\infty, x] \mid x \in \mathbb{R}\}$, hence

Distribution function $F_X(x)$

The **distribution function** F_X of X is defined as

$$F_X(x) = P_X\left((-\infty, x]\right)$$

This is just the CDF. $F_X : \mathbb{R} \to [0,1]$ and uniquely determines P_X . We can also write it as $F_X(x) = E(I_{X < x})$.

Properties of F_X

 F_X has the following properties:

$$x \ge y \Rightarrow F_X(x) \ge F_X(y)$$

Proof: $x \ge y \Rightarrow (-\infty, y] \subseteq (-\infty, x] \Rightarrow F_X(y) = P_X((-\infty, y]) \le$ $F_X(x) = P_X((\infty, x])$

(b) Continuous from the right:

$$\lim_{y \to x+} F_X(y) = F_X(x)$$

Proof: $F_X(x + 1/n) = E(I_{X < x + 1/n}).$ $I_{X < x+1/n} \le 1$, $\lim_{n \to \infty} I_{x < x+1/n} =$ $I_{x < x}$, by dominance convergence, $\lim_{n\to\infty} F_X(x+1/n) = F_X(x)$. Same logic gives Pr(X < x) = $\lim_{v \to x-} F_X(v) = F_X(x-).$

(c) If $Pr(X = \infty) = Pr(X = -\infty) = 0$ then, $\lim_{x\to-\infty} F_X(x)$ $0,\lim_{x\to\infty}F_X(x)=1.$ **Proof**: use $\lim_{n\to\infty} I_{X<-n}=0$.

The properties give some facts about the continuity of F_X and probability of

- F_X is always right continuous, but not always continuous.
- Since $I_{X=x} = \lim_{n\to\infty} I_{x-1/n < X \le x}$, we have $\Pr(X = x) =$ $\lim_{n\to\infty} (F_X(x) - F_X(x-1/n))$ $F_X(x) - F_X(x-)$.
- If Pr(X = x) > 0, F_X is **discontinuous** in x, the jump at x is Pr(X = x).

Function of random variable

With a Borel measurable function f: $\mathbb{R} \to \mathbb{R}$, $Y = f \circ X : \Omega \to \mathbb{R}$ is a random variable, i.e., Borel measurable.

distribution of $Y = f \circ X$

 $Y: \mathbb{R} \to \mathbb{R}$ is defined on $(\mathbb{R}, \mathcal{B}, P_X)$

$$Pr(Y \in B) = P_X(\{x | f(x) \in B\})$$
$$= P(\{\omega | f(X(\omega)) \in B\})$$

and Y is a simple function on \mathbb{R} and

$$Y = \sum_{i=1}^{n} \alpha_{i} I_{B_{i}}(x) = \sum_{i=1}^{n} \alpha_{i} I_{X^{-1}(B_{i})}(\omega)$$

where $\{B_i\}$ is partition of \mathbb{R} , $\{X^{-1}(B_i)\}$ is hence a partition of Ω .

expectation of $Y = f \circ X$

The expectation of $Y = f \circ X$ is

$$E(Y) = \int_{\mathbb{R}} f(x) dP_X(x) = \sum_{i=1}^n \alpha_i P_X(B_i)$$
$$= \sum_{i=1}^n \alpha_i P(X^{-1}(B_i))$$
$$= \int_{\Omega} f(X(\omega)) dP(\omega) = E(f(X))$$

It is in general true that: integral of f on $(\mathbb{R}, \mathcal{B}, P_X)$ is equal to integral of f(X)on (Ω, \mathcal{A}, P) . Since $F_X(x)$ and $P_X(x)$ both determine the distribution of X, $\int_{\mathbb{R}} f(x)dP_X =$

Absolute continuity of *P*

 $\int_{\mathbb{R}} f(x) dF_X$.

The goal: to calculate probability by sum**mation** $P = \sum_{i} I_{A}(x_{i}) f(x_{i})$ or **integration** $P = \int I_A(x) f(x) dx$.

We start by finding a measure μ for P, μ and P are both defined on (Ω, A) , and μ is easier to compute.

Requirement of μ

- 1 $\forall E \in \mathcal{A}, \mu(E) \geq 0$
- 2 $\mu(\emptyset) = 0$ (instead of $P(\Omega) = 1$)
- 3 If E_1, E_2, \cdots are pairwise disjoint (and countable), $\mu(\bigcup_{i=1}^{\infty} E_i) =$

 $\sum_{i=1}^{\infty} \mu(E_i)$

* μ is σ -finite: $\exists \{A_i\}^{\infty}$, a countable partition of Ω , with $\mu(A_i) < \infty$. Probability measure P is always σ -**finite** since $P(\Omega) = 1$

The most important condition of this transfer of measure is absolutely conti-

P is absolutely continuous

For P, μ defined on A, P is **absolutely** continuous w.r.t. *µ* if

$$\mu(A) = 0 \Rightarrow P(A) = 0$$

 μ is the dominating measure, $P \ll \mu$

Now, we want to show $P \ll \mu \Rightarrow \int I_A dP =$ $\int I_A f(\omega) d\mu$, where f is the density of P w.r.t. μ . We need the following theorem:

Theorem: measure change P to μ

For probability measure P and measure μ defined both on (Ω, A) , $\exists N$ with $\mu(N) = 0$ and a non-negative Borel measurable $f:\Omega\to\mathbb{R}$, s.t. for nonnegative Borel measurable $g: \Omega \to \mathbb{R}$,

$$\int_{\Omega} g(\omega) dP(\omega) = \int_{\Omega} \frac{g(\omega) I_N(\omega) dP(\omega)}{=0 \text{ if } P \ll \mu}$$
$$+ \int_{\Omega} g(\omega) f(\omega) d\mu(\omega)$$

And for any other \tilde{N} and \tilde{f} also satisfy this, they must be the same w.r.t. P and

$$P(N \setminus \tilde{N}) = P(\tilde{N} \setminus N) = 0$$

$$\mu(N \setminus \tilde{N}) = \mu(\tilde{N} \setminus N) = 0$$

$$P(\{x \mid f(x) \neq \tilde{f}(x)\}) =$$

$$\mu(\{x \mid f(x) \neq \tilde{f}(x)\}) = 0$$

The idea is to split up the integral into two regions: N and N^C . Absolute con**tinuity** gives the integral on N is 0, the **theorem** gives that the integral on N^C w.r.t. P can be changed into an integral w.r.t. μ with the density f.

Two important target measures are coun-

ting measure and Lebesgue measure. They are both defined on Borel σ -field \mathcal{B} , hence the outcome space must be \mathbb{R} .

Two dominating measures: m and ν

For a probability P_X on the space $(\mathbb{R}, \mathcal{B}, P_X)$, two most common dominating measures are:

- Lebesgue measure m for conti**nuous** X: for P_X that assigns probability 0 to countable sets of **points**
- counting measure ν for discrete X: for P_X^- that assigns probability 0 to sets in B that do NOT contain any of the outcomes of the countable image of X.

If the image of X is the integers \mathcal{I} the for P_X assigning probability 0 to sets in R that do NOT containing integers, $\nu(B) = \#B \cap \mathcal{I}$ can be used.

Mixed measure $m + \nu$ for mixed **discrete-continuous** X: image of X is the union of an interval and a countable set, $P_X(B) = 0$ when B is neither an interval nor the target countable set (integers, etc.).

With dominating measures defined, we have the integrals as

For $P_X = \int I_B(x) dP(x)$

For the three cases, we have:

(a) $P_X \ll m$:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) dx$$

(b) $P_X \ll \nu$:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) d\nu(x)$$

$$= \sum_{B \cap \mathcal{I}} f_X(i) = \sum_{B \cap \mathcal{I}} P_X(\{i\})$$

$$= \sum_{B \cap \mathcal{I}} \Pr(X = i)$$

(c) $P_X \ll m + \nu$:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) d(m + \nu)$$
$$= \int_{\mathbb{R}} I_B(x) f_X(x) dx$$
$$+ \int_{\mathbb{R}} I_B(x) f_X(x) d\nu$$

Where $f_X(x) = \Pr(X = x)$

For the density function $f_X(x): \mathbb{R} \to \mathbb{R}$ defined on $(\mathbb{R}, \mathcal{B})$, it is actually a **Borel** measurable random variable.

Properties of $f_X(x)$

density function $f_X(x)$ has the following properties: - non-negative: $\forall x \in \mathbb{R}, f_X(x) \ge 0$

- integrate to 1 If *X* is continuous:

$$1 = P_X ((-\infty, \infty)) = \int_{\mathbb{R}} f_X(x) dx$$

If *X* is discrete:

$$1 = P_X ((-\infty, \infty)) = \int_{\mathbb{R}} f_X(x) d\nu$$
$$= \sum_{i=-\infty}^{\infty} f_X(i) = 1$$

How can we find $f_X(x) = \Pr(X) = x$?