Quiz 1 (30 points) - This is a closed book, open notes quiz. Solutions

1. (8 points) Use the definition of Big-O to show $n^2 + 4n + 8 \in O(n^2)$

Solution:

$$n^2 + 4n + 8 \le cn^2$$
 Definition of Big-O
$$8 \le cn^2 - n^2 - 4n$$
 Subtract $(n^2 + 4n)$
$$8 \le 5n^2 - n^2 - 4n$$
 Let $c = 5$
$$8 \le 4n^2 - 4n$$
 Combine n^2 terms
$$2 \le n^2 - n$$
 Divide by 4

The above inequality is true for n = 2, and as n grows from there, the RHS grows while the LHS remains constant. So we can let $n_0 = 2$.

2. (8 points) Use the definition of Ω to show $n^2+4n+8\in\Omega(n^2)$

Solution:

$$n^2+4n+8\geq cn^2 \qquad \text{Definition of }\Omega$$

$$n^2+4n+8-cn^2\geq 0 \qquad \text{Subtract }cn^2$$

$$n^2+4n-cn^2\geq -8 \qquad \text{Subtract }8$$

$$n^2-cn^2+4n\geq -8 \qquad \text{Rearrange terms}$$

$$n^2-n^2+4n\geq -8 \qquad \text{Let }c=1$$

$$4n\geq -8 \qquad \text{Combine }n^2 \text{ terms}$$

$$n\geq -4 \qquad \text{Divide by }4$$

The above inequality is true for all $n \ge 0$, so we can let $n_0 = 0$.

3. (5 points) Show $n^2 + 4n + 8 \in \Theta(n^2)$

Solution:

Since $n^2 + 4n + 8 \in O(n^2)$ and $n^2 + 4n + 8 \in \Omega(n^2)$, $n^2 + 4n + 8 \in \Theta(n^2)$

4. (9 points) Show that if $g(n) \in O(f(n))$, then $a \cdot g(n) \in O(f(n))$, for any constant a > 0

Solution:

Since $g(n) \in O(f(n))$, then there exists a positive real constant c and a non-negative integer n_0 , such that for all $n \ge n_0$

$$g(n) \le c \cdot f(n)$$
 By definition of Big-O

 $a \cdot g(n) \le a \cdot c \cdot f(n)$ Multiply by the constant a

$$a \cdot g(n) \le c' f(n)$$
 Let $c' = a \cdot c$

Since a > 0 and c > 0, $c' = a \cdot c > 0$. So by the definition of Big-O, $a \cdot g(n) \in O(f(n))$.