ast 2005

(a) Prove the Minimum Principle for harmonic functions, i.e., show that if u is harmonic in a region \(\Omega\) and u attains a minimum at a point \(\zeta\) \(\in \Omega\), then u is constant.

Pf Let u be harmonic and suppose 3 7. E 1 s.t. u(t.) = min u(2).

Since u is harmonic, I rzo such that u(zo) = 1 such that u(zo) = 1 such that u(zo) = 2 such that

U(20) = 1 52TT u/20+reit) dt V r cr2.

 $u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0) dt$

By continuity, ulto) = u(to+reit) vt vrerto

Thus, u(2) = u(20) in Br2 (20).

Consider $E = \{z \in \Omega : u(z) = u(z_0)\}$

ZOEE, SO E + Ø

E is closed by continuity.

By the above argument, if $z \in E$, then $Br_2(z) \subseteq E$, so E is open. By connectedness, $E = \Omega$, so $u(z) = u(z_0) \ \forall z \in \Omega$.

continued ...

(b) Suppose f is analytic in the unit disk Δ and continuous in $\overline{\Delta}$, and f(z), see real for |z|=1. Show that f is constant.

Pf: Assume f is nonconstant.

f(z) = u(x,y) + iv(x,y)

By assumption v(x,y) = 0 on |2|=1.

V(x,y) is harmonic since it's the imaginary part of an analytic function. So V(x,y) is continuous.

Since \overline{D} is compact, and by the minimum and maximum principle for harmonic functions, v attains a minimum and maximum on |z|=1. Thus, v = 0.

By the Cauchy-Riemann equations, $u_x = v_y$ and $u_y = -v_x$. Thus, $u_x = 0$, $u_y = 0$.

Hence, u(x,y) = c for some CER.

Therefore, f(z) = c, so f is constant.

Jast 2005

2) Let fand g be analytic and non-zero in a connected open set Ω . Suppose also that there exists a sequence of complex numbers $\Xi_n \in \Omega$ so that $\Xi_n \to \rho \in \Omega$ and for all positive integers n, $\frac{f'(\Xi_n)}{f(\Xi_n)} = \frac{g'(\Xi_n)}{g(\Xi_n)}$.

Show that there is a constant c so that g = cf.

Pf Let
$$h_1(z) = f'(z)$$
 and $h_2(z) = g'(z)$.

 $f(z)$ $g(z)$

h, he are analytic on 12 by assumption.

$$h_1(z_n) = h_2(z_n) \ \forall \ n \in \mathbb{N}, \ z_n \rightarrow p \in \Omega.$$

By the identity theorem, hi(2)= h2(2) YZEI,

i.e.,
$$\frac{f'(t)}{f(t)} = \frac{g'(t)}{g(t)}. \quad A$$

We want to show g = cf, i.e., $\frac{g}{f} = c$.

In other words, we WTS $\left(\frac{g}{f}\right)' = 0$ $\Rightarrow \frac{fg' - gf'}{f^2} = 0.$

We know A f'g = fg', i.e., f'g - fg' = 0. Therefore, g = cf. August 2005

(9) Suppose f is an entire function, f is bounded for $Re(z) \ge 0$, and f' is bounded for $Re(z) \le 0$. Prove that f is a constant.

Pf: Let &= line from 0 to w, where w & left half plane.

Let $|f'(z)| \leq M$ on $Re(z) \leq 0$ $|f(z)| \leq N$ on $Re(z) \geq 0$

Notice $f(\omega) = f(0) + \int_{\gamma} f'(t) dt$

 $|f(w)| \leq |f(o)| + M|w|$ $\leq M(|+|w|)$

Let r > |w|, by Cauchy's estimate, $|f''(w)| \leq \sup_{|z|=r} \frac{|f(z)|}{r^2} \leq \frac{\max\{N, M(1+|w|)\}}{r^2}$

 $\leq \max\{N,M(1+r)\}$

Let $r \to \infty$, then $|f''(\omega)| \to 0$. So f(z) = a + bz, but $|f(z)| \to \infty$ as $|z| \to \infty$ if $b \neq 0$. Thus, b = 0, so f is constant.