For office use only	Team Control Number	For office use only
T1	33650	F1
T2		F2
T3	Problem Chosen	F3
T4	Α	F4

2015 Mathematical Contest in Modeling (MCM) Summary Sheet

(Attach a copy of this page to each copy of your solution paper.)

Abstract

Ebola, a dreadful threat to human beings, draws worldwide attention after its latest outbreak in west Africa. Aiming at eradicating Ebola, we decompose our mission into three tasks: predicting the spread of the disease, drawing up the production plan of the medicine and establishing the optimal international and domestic delivery system.

The Model of Spread of Ebola borrows the theory of SIR model, but we refine it with an infectious rate which adjusts itself with respect to the ratio of infected population. By comparing the Natural Model with Predicting Model, we conclude that the interference of medicine is urgent which brooks no delay. We can also obtain the demand curve of the medicine.

The Model of Production uses linear and dynamic optimization to build an optimal manufacturing model in order to satisfy the demand of the medicine at the lowest possible cost.

The Model of Delivery is enlightened by the ant colony algorithm to obtain the most cost-effective and delivery-effective route. But we make progress by weighing the edges with comprehensive factors: the city's severity level and the distance, etc.

Take Action to Eradicate Ebola

Team #33650

February 9, 2015

Abstract

Ebola, a dreadful threat to human beings, draws worldwide attention after its

latest outbreak in west Africa. Aiming at eradicating Ebola, we decompose our mis-

sion into three tasks: predicting the spread of the disease, drawing up the produc-

tion plan of the medicine and establishing the optimal international and domestic

delivery system.

The Model of Spread of Ebola borrows the theory of SIR model, but we refine it

with an infectious rate which adjusts itself with respect to the ratio of infected pop-

ulation. By comparing the Natural Model with Predicting Model, we conclude that

the interference of medicine is urgent which brooks no delay. We can also obtain the

demand curve of the medicine.

The Model of Production uses linear and dynamic optimization to build an op-

timal manufacturing model in order to satisfy the demand of the medicine at the

lowest possible cost.

The Model of Delivery is enlightened by the ant colony algorithm to obtain the

most cost-effective and delivery-effective route. But we make progress by weighing

the edges with comprehensive factors: the city's severity level and the distance, etc.

Keywords: Ebola; SIR; Dynamic optimization; ACO algorithm

2

Team # 33650 Page 3 of 54

Contents

1	Intr	oductio	on	5
	1.1	Restat	rement of the Problem	6
2	Assı	umptio	n and Justifications	6
3	Mod	del Ove	erview	7
4	The	Model	of Spread of Ebola	8
	4.1	Assur	nptions	9
	4.2	Notat	ions	9
	4.3	Natur	al Model	11
		4.3.1	Model Establishment	11
		4.3.2	Parameter Evaluation	12
		4.3.3	Model Solution and Analysis	14
	4.4	Predic	eting Model	16
		4.4.1	Model Establishment	16
		4.4.2	Parameter Evaluation, Model Solution	16
5	The	Model	of Production	19
	5.1	Distri	bution Optimization	19
		5.1.1	Notations	20
		5.1.2	Assumptions	20
		5.1.3	Model Establishment	21
		5.1.4	Model Solution and Analysis	22

Team # 33650 Page 4 of 54

	5.2	Production Optimization	23
		5.2.1 Assumptions	23
		5.2.2 Notations	24
		5.2.3 Model Establishment	25
6	The	Model of Delivery	27
	6.1	International Delivery Optimization	29
	6.2	Domestic Delivery Optimization	32
7	Con	clusions	35
8	Lette	er for the world medical association	37
9	Sens	sitivity Analysis	38
	9.1	Sensitivity to μ	38
	9.2	Sensitivity to production/inventory cost ratio	39
10	Mod	del Assessment	42
	10.1	Advantages	42
	10.2	Weakness and Future Improvements	4 3
Αŗ	pend	dices	45
Ap	pend	dix A Matlab Code	45
Αŗ	pend	dix B Data 1	51
Αŗ	pend	dix C Data 2	52
Αŗ	pend	dix D Data 3	53

Team # 33650 Page 5 of 54

1 Introduction

Ebola, previously known as Ebola hemorrhagic fever, is a rare and deadly disease caused by infection with one of the Ebola virus species. It has a high case fatality rates typically around 60-70%.

Ebola was first discovered in 1976 near the Ebola River. Since then, outbreaks have appeared sporadically in Africa. But none of them has been as large and persistent as the current epidemic began in Guinea in December 2013.

As of 4th February 2015, a total of 22495 cases including 8981 deaths have been reported from the affected countries. Below is the Ebola epidemic's distribution map:

Figure 1: Geographical distribution of new and total confirmed cases

The unprecedented size and scale of this ongoing outbreak has the potential to destabilise already fragile local economies and healthcare systems, and fears of international spread of a Category A Priority Pathogen have made this a massive focus for international public health.

Team # 33650 Page 6 of 54

1.1 Restatement of the Problem

We need to build a mathematical model to optimize the eradication of Ebola. We know that some factories in America, Canada and China had successfully developed a new medication that is capable of stopping Ebola and curing patients whose disease is not advanced. We decompose the problem into five sub-problems:

- Build a model to simulate the process of the spread of the disease and determining the quantity of the medicine needed in future 60 months.
- **Build an sensible distribution plan.** Including how to distribute the quantity of drugs among all infected countries and the shortest route of drug.
- **Determine the production functions for different factories.** In particular, how many drugs should they produce each months to minimize its cost. distribution.
- **Simulate the process of domestic drug delivery.** Find the best route taking the cities' severity level and the geographical location into consideration.
- Prepare a 1-2 page non-technical letter for the world medical association to use in their announcement.

2 Assumption and Justifications

According to the data released by WHO on 24th December 2014, 27 036 out of 27 085 reported cases of Ebola come from Guinea, Liberia and Sierra Leone. So we decided to base our study on these three countries' situations to predict the future of infected population and determine the optimal medicine production and delivery. Our paper will be focusing on the epidemic spreading, medicine production and delivery for the **following 60 months.**

We will make the following simplifying assumptions:

1. There are no further infection between countries.

Team # 33650 Page 7 of 54

2. Compared with the three countries mentioned, countries with relatively low infected population would not be taken into consideration.

- 3. We define the spread of Ebola is under control, if the infected people among the whole population is under .01.
- 4. People cured from the disease will be permanently immuned from Ebola.
- 5. Drug resistance can be ignored due to the short disease period.
- 6. During the time inspected from March 22 to November 23 in 2014, no medicine is used in the infected areas.
- 7. The epidemic areas begin to use medicine from February 2015
- 8. The mandatory drug usage for each patient is 30 units for a month on average
- 9. The cost of medicine transportation is independent with the amount of medicine transported, be it by air or by road. It is only a function of distance.
- 10. There is no inventory cost in the regions where the medicine is in need.

3 Model Overview

In our paper, we choose Sierra Leone, Guinea and Liberia, where the virus spread especially rampant, to be our observational units. With three main models, we decompose the problem of Eradicating Ebola into three simplified tasks: the spread of the disease, the production of the medicine and the delivery of the medicine.

In the model of the Spread of Ebola, we first adapt the data release by WHO recording the infected population in nine inspected months in absence of medicine to build the Natural Spread Model. Then we obtain the fitting parameters λ , σ and K_I , which denote for contact rate, death rate caused by the Ebola and the upper limit of infective population that a country can tolerate. Using the parameters obtained along with a new recover parameter μ , which means the medicine will be used, we can visualize the transfer of population among susceptible, infected and dead or recovered groups for the

Team # 33650 Page 8 of 54

following 50 months. Comparing the data with and without medicine, we can conclude the necessity of medicine. Furthermore, it provides medicine manufacturers with useful information about how to determine the quantity of medicine produced in each month.

In the model of Production of Medicine, we assume only three manufacturers in the world are producing the medicine. With the method of linear optimization, we can figure out the minimum amount of products to supply in order to satisfy the demand in the infected areas. With the method of dynamic optimization, we can construct a scheme for each manufacturer about how to produce for each month so that they can not only satisfy the demand of the medicine, but also minimize their cost, which consists of production cost and inventory cost.

In the model of Delivery of Medicine, we are inspired by the method of ant colony algorithm to set a goal to find a shortest route. But we make some progress by weighing the edge with comprehensive factor, which is the city's severity level and the distance.

The advantage of our model is that it is logic, concise and comprehensive. It can be very easy for readers to understand, because the three parts that we decompose our model into are connected logically. The disadvantage is the insufficient of data and information, which could probably leads to some inaccurate result.

4 The Model of Spread of Ebola

We base our model on the situation of Sierra Leone. Our data is from WHO official website, recording the cases infected with Ebola virus from March 22 to Novermber 23 in 2014. According to our data, we obtain our fitting parameters λ_0 , σ and K_I . Then we use the parameters and data of initial infective population i_0 to build differential equations model, which is noted as **Natural Model**. By analyzing the results and figures of the

Team # 33650 Page 9 of 54

model, we know the spread of Ebola when there is no medicine. Compared with **Natural Model**, we refine our model considering the effect of medicine, and name it **Predict Model**. Then we can study the transfer of population among susceptible, infective and removed groups and the behavior of infective population curve. This information will be vital to the determination of the production of the medicine.

4.1 Assumptions

- 1. Since the time inspected is short, death rate and birth rate have no influence on the effective contact λ_0 and λ .
- 2. During the disease spread period, we divide people into susceptible people, infective people and removed people(in which people are cured or dead), and the total number N stays constant.

4.2 Notations

All the variables and constants used in this paper are listed in **Table 1** and **Table 2**.

Table 1: Symbol Table-Constants

Symbol	Units	Definition			
\overline{N}	unitless	The total number of people during the			
		inspected time.			
K_I	unitless	The maximum proportion of infected			
		population that a country can tolerate.			
μ	unitless	The proportion of cured people because of the			
		medicine every year.			
σ	unitless	The proportion of people who is dead of the			
		disease.			
λ_0	unitless	Infective rate in natural condition. We define it			
		as natural effective contact .			
i_0	unitless	The proportion of patient in the initial time.			

Team # 33650 Page 10 of 54

Table 2: Symbol Table-Variables

Symbol	Units	Definition			
s(t)	unitless	The proportion of susceptible in total number.			
i(t)	unitless	The proportion of infective in total number.			
r(t)	unitless	The proportion of removed people in total			
		number, consisting of people recovered from			
		and dead of the disease.			
λ	unitless	Infective rate under the interference of			
		government. We define it as effective contact .			

4.3 Natural Model

4.3.1 Model Establishment

We choose our data not only because of the rampant spread of Ebola virus and the instant update of information during the period from March 22 to November 23 in 2014, but also because there is no interference of medicine during that period. In this sense, we can simulate the natural spread of Ebola virus with abundant and accurate data.

Basically, governments and organizations would not be at the mercy of a virus, instead, they would take measures after the outbreak of a disease. For example, isolate suspected patients from public.contact. This leads to a non-constant effective contact, which becomes smaller as the epidemic gets severe. In our case, the effective contact

$$\lambda = (1 - \frac{i(t)}{K_I})\lambda_0 \tag{1}$$

An infective person can have average effective contact to a susceptible person at rate of λ , infecting the susceptible person .This is to say, the Ni(t) infective people account for $\lambda Ns(t)i(t)$ infected people everyday. In the natural condition, we obtain

$$N\frac{dr}{dt} = \sigma Ni \tag{2}$$

Team # 33650 Page 11 of 54

$$N\frac{di}{dt} = \lambda Nsi - \sigma Ni \tag{3}$$

according to our assumption, we know

$$s(t) + i(t) + r(t) = 1$$
 (4)

Since the susceptible people could convert to infective people,

$$\frac{ds}{dt} = -\lambda si\tag{5}$$

if we let the initial ratio of infective people be i_0 , the initial ratio of susceptible people be s_0 , we build our model as below:

$$\frac{di}{dt} = \lambda si - \sigma i, i(0) = i_0$$

$$\frac{ds}{dt} = -\lambda si, s(0) = s_0$$
(6)

$$\frac{ds}{dt} = -\lambda si, s(0) = s_0 \tag{7}$$

4.3.2 Parameter Evaluation

We obtain the fitting parameter from the actually data of reported cases of illness and death toll from March 2014 to November 2014 in Sierra Leone, Guinea and Liberia.

Team # 33650 Page 12 of 54

Date		Sierra Leone₄						
Date₀	cases of illness₽	Death toll₽	Infection rates₽					
2014/3/224	0↔	0₽	0₽					
2014/4/22&	0€	0↔	0₽					
2014/5/22&	0€	0↔	0↔					
2014/6/22&	140.4₽	39.5₽	2.18011E-05₽					
2014/7/224	448.3₽	210.7₽	6.97634E-05₽					
2014/8/224	₽ 910₽ 392₽		0.000014171₽					
2014/9/22₽	1813₽	593₽	0.000028232₽					
2014/10/22₽	3706₽	1539₽	0.00057711₽					
2014/11/224	6210.5₽	1280.7₽	0.000964284					

Figure 2: Sierra Leone Data

Datas	Guineae ³						
Date₽	cases of illness₽	Death toll₽	Infection rates₽				
2014/3/22₽	49₽	29₽	0.000004375₽				
2014/4/22₽	205.5₽	132.5₽	1.83482E-05₽				
2014/5/22₽	255.5₽	172.3₽	2.28125E-05₽				
2014/6/22₽	392.2₽	4.2₽	3.50255E-05₽				
2014/7/22₽	424₽	317.7₽	3.78571E-05₽				
2014/8/22₽	910₽	392₽	5.57653E-05₽				
2014/9/22₽	1048₽	641₽	9.35714E-05₽				
2014/10/22₽	2014/10/22& 1540&		0.000140952₽				
2014/11/22₽	2119.5₽	1252.3₽	0.000189241₽				

Figure 3: Guinea Data

Team # 33650 Page 13 of 54

D-4	Liberia ₆					
Date∉	cases of illness₽	Death toll	Infection rates₽			
2014/3/22₽	0€	043	0₽			
2014/4/22₽	30.1₽	12.4₽	0.47540E-05₽			
2014/5/22₽	12.9₽	9.6₽	0.04423E-05₽			
2014/6/22₽	49₽	32.1₽	0.77649E-05₽			
2014/7/22₽	211.6₽	121.9₽	3.35317E-05₽			
2014/8/22₽	1082₽ 624₽		0.000171462₽			
2014/9/22₽	3022₽	1578₽	0.000478889₽			
2014/10/22₽	4665₽	2705₽	0.000737667₽			
2014/11/22₽	7112.3₽	2998.1₽	0.001124606ಳ			

Figure 4: Liberia Data

The results of parameter evaluation are shown in **Table 3**

Table 3: Parameters-Natural Model

Parameters	Sierra Leone	Guinea	Liberia	
λ_0	.92	.61	.93	
σ .15		.15	.13	
K_I .5		.5	.5	

4.3.3 Model Solution and Analysis

Furthermore, the following figures show the relationship between i(t) and s(t)

Team # 33650 Page 14 of 54

Figure 5:

We obtain the similar graphs of Guinea and Liberia in the same way¹:

¹For the complete data table, please check the appendix

Team # 33650 Page 15 of 54

Figure 6:

Figure 7:

Team # 33650 Page 16 of 54

The three graphs together give us an intuitive view that, with no use of medicine, the infective rate will hit the peak at about .3 around the 30th month, and the susceptible rate would keep decrease until it goes to the lower limit.

4.4 Predicting Model

4.4.1 Model Establishment

According to our assumption, the epidemic areas begin to use medicine from February 2015. This means that infected people can be cured due to the medicine, which is to say

$$r(t) = \sigma + \mu \tag{8}$$

in which μ can be interpreted as the effect of the medicine Having modified the Natural Model, and plugged in the fitting parameters we build the Predicting Model in the very same manner and obtain

$$\frac{di}{dt} = \lambda si - \sigma i - \mu i, i(0) = i_0$$

$$\frac{ds}{dt} = -\lambda si, s(0) = s_0$$
(10)

$$\frac{ds}{dt} = -\lambda si, s(0) = s_0 \tag{10}$$

4.4.2 Parameter Evaluation, Model Solution

We assume that:

$$\mu = 0.4 \tag{11}$$

and we still use the parameters λ_0 , σ and K_I in **Table 3** in our Predicting Model.

The chart below shows how we fitted i(t) and s(t) with respective to t^2 :

²For the compose type of the article, we do not show the whole data here, but please check them in the appendix if necessary.

Team # 33650 Page 17 of 54

	Sierra Le	one		
	Natural		Prediction	
Time	i(t)	s(t)	i(t)	s(t)
0	2.18E-05	0.999978	2.18E-05	0.999978
1	4.71E-05	0.999948	4.71E-05	0.999948
2	0.000102	0.999883	0.000102	0.999883
3	0.000219	0.999743	0.000219	0.999743
4	0.000473	0.999439	0.000473	0.999439
5	0.001019	0.998787	0.001019	0.998787
6	0.002191	0.997385	0.002191	0.997385
7	0.004685	0.994398	0.004685	0.994398
8	0.009914	0.988121	0.009914	0.988121
9	0.020522	0.975321	0.020404	0.975327
10	0.040709	0.950692	0.035197	0.952395
11	0.074922	0.908004	0.057085	0.916897
12	0.123507	0.844683	0.085619	0.867088
13	0.17858	0.766949	0.117284	0.804994
14	0.228355	0.686537	0.146399	0.736162
15	0.265576	0.612103	0.16865	0.666473
16	0.289469	0.546451	0.18222	0.600065
17	0.302437	0.488947	0.187609	0.539034
18	0.307285	0.438297	0.186498	0.483883
19	0.306479	0.393035	0.180485	0.43473
20	0.301661	0.352173	0.17096	0.391558
21	0.293905	0.315219	0.159264	0.35378
22	0.283999	0.281773	0.146434	0.320709

Figure 8: The relationship between i(t) and s(t) in Sierra Leone

Figure 9 shows the relationship between i(t) and s(t) in Sierra Leone:

Figure 9: Comparison between natural model and prediction model in Sierra Leone

Team # 33650 Page 18 of 54

As we can see, when there is no medicine, which is shown in blue and brown curve, the infective rate would hit the peak at .3 in the 18th month, and the susceptible rate would keep going downward and become stable at .05 from 40th month. In contrast, with the use of medicine, which is shown in yellow and purple curve, it is notable that the height and duration of the peak in infective rate decreases. And the stable susceptible rate increases as well. Along with the similar results in Guinea and Liberia, the graph indicates that the medicine could be of great help in the epidemic areas. In the same manner, we can obtain the relationship between s(t) and i(t) in Guinea and Liberia, respectively:

Figure 10: Comparison between natural model and prediction model in Guinea

Team # 33650 Page 19 of 54

Figure 11: Comparison between natural model and prediction model in Liberia

5 The Model of Production

5.1 Distribution Optimization

We build this linear optimization model to determine:

The minimum demand for each factory to produce the medicine, in order to ensure that every country can get the amount of the medicine they need in a unit time. Furthermore, we will use the results of this model to decide the quantity of medicine produced in each factory in a time unit.

Team # 33650 Page 20 of 54

5.1.1 Notations

Table 4: Symbol Table-Distribution Model

Symbol	Value	Definition
\overline{i}	1, 2, 3	denotes for factory in the US, China and
		Canada, respectively.
$oldsymbol{j}$	1, 2, 3	denotes for epidemic country Sierra Leone,
		Guinea and Liberia, respectively
d_{ij}		denotes for the quantity of medicine
		transported from factory i to country j .
D_i		donotes the total demand for factory i .
lpha	1.5	means the actual demand is α times the
		theoretical demand in case of emergency and
		delivery loss.
γ	30	means the dose for a patient for one course of
		treatment is 30.
$i_j(t)$		the infected rate in Sierra Leone, Guinea and
		Liberia, respectively.

5.1.2 Assumptions

- 1. Only 3 factories in the world are producing medicine, they locate in the US, China and Canada, respectively.
- 2. Medicine produced by each factory has identical effect on Ebola virus.
- 3. The demand for medicine is larger than the amount we calculated from i(t) in the prediction model, in case of the loss during the delivery and emergency.
- 4. The course of treatment is $\gamma = 30$ doses for each patients.
- 5. The unit of time is one month, which means the demand we get from this model would be in terms of each month.
- 6. The transport of the medicine is from three designated airports in the US, China

Team # 33650 Page 21 of 54

and Canada to the capital airport of each country.

5.1.3 Model Establishment

$$\begin{aligned} & \min & d_{11} + d_{12} + d_{13} \\ & \min & d_{21} + d_{22} + d_{23} \\ & \min & d_{31} + d_{32} + d_{33} \\ & \text{s.t.} & d_{11} + d_{21} + d_{31} \geq \alpha \gamma N i_1(t) \\ & d_{12} + d_{22} + d_{32} \geq \alpha \gamma N i_2(t) \\ & d_{13} + d_{23} + d_{33} \geq \alpha \gamma N i_3(t) \end{aligned}$$

Since d_{ij} is non-negative, we can simplify the model by replacing the objective function with

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}$$

and we get

min
$$D = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}$$

s.t $d_{11} + d_{21} + d_{31} \ge \alpha \gamma N i_1(t)$
 $d_{12} + d_{22} + d_{32} \ge \alpha \gamma N i_2(t)$
 $d_{13} + d_{23} + d_{33} \ge \alpha \gamma N i_3(t)$

If we plug in the data we get from Predicting Model of each $i_j(t)$, we can obtain d_{ij} , which means we can thus determine the quantity each factory should delivery to each country. The result is shown in **Table 12** 3 :

³For the compose type of the article, we do not show the whole data here, but please check them in the appendix if necessary.

Team # 33650 Page 22 of 54

5.1.4 Model Solution and Analysis

	The demand of medicine for each factor								,				
time		d11	d12	d13	d21	d22	d23	d31	d32	d33	D1	D2	D3
	0	2029.253	790.3808	313.541	2029.253	790.3808	313.541	2029.253	790.3808	313.541	3133.175	3133.175	3133.175
	1	4382.352	1252.01	697.7923	4382.352	1252.01	697.7923	4382.352	1252.01	697.7923	6332.155	6332.155	6332.155
	2	9455.641	1991.186	1557.34	9455.641	1991.186	1557.34	9455.641	1991.186	1557.34	13004.17	13004.17	13004.17
	3	20371.13	3132.889	3392.149	20371.13	3132.889	3392.149	20371.13	3132.889	3392.149	26896.16	26896.16	26896.16
	4	44025.58	4929.465	7596.967	44025.58	4929.465	7596.967	44025.58	4929.465	7596.967	56552.01	56552.01	56552.01
	5	94815.35	7817.747	16922.83	94815.35	7817.747	16922.83	94815.35	7817.747	16922.83	119555.9	119555.9	119555.9
	6	203929.4	12419.05	37526.65	203929.4	12419.05	37526.65	203929.4	12419.05	37526.65	253875.1	253875.1	253875.1
	7	436111.1	19692.64	83418.59	436111.1	19692.64	83418.59	436111.1	19692.64	83418.59	539222.3	539222.3	539222.3
	8	922824.2	31090.49	184492.4	922824.2	31090.49	184492.4	922824.2	31090.49	184492.4	1138407	1138407	1138407
	9	1899179	49182.99	405498.4	1899179	49182.99	405498.4	1899179	49182.99	405498.4	2353861	2353861	2353861
	10	3276120	77969.46	878432.9	3276120	77969.46	878432.9	3276120	77969.46	878432.9	4232522	4232522	4232522

Figure 12: The demand of medicine for each country

From **Table 12** we notice that the demand for three factories is the same, which is to say:

$$D_1 = D_2 = D_3 (12)$$

This is because three factories face the same demand curve from three countries, so the optimal choice is to divided the demand into three equal parts. We plot the demand curve for each factory in **Figure 13**.

Team # 33650 Page 23 of 54

Figure 13: The demand of medicine for each country

5.2 Production Optimization

According to the results from distribution optimization, each factory faces the same demand curve. So we only need to analyze the production of one factory, say the Mapp Biopharmaceutical Inc[2] from the US, to minimize its cost.

5.2.1 Assumptions

- 1. There are three factories[2][5][6] selling the identical medicine.
- 2. Due to the limitation of technology, the maximum production for each month is $\hat{X_k}$.

Team # 33650 Page 24 of 54

- 3. The quantity produced would increase every month by β .
- 4. The production would start from Feb 2015 and last for 60 month.

5.2.2 Notations

Table 5: Symbol Table-Production Optimization

Symbol	Value	Definition
$\overline{x_k}$		denotes for quantity produced in kth month.
$\overline{i_k}$		denotes for inventory quantity at the beginning
		of kth month.
c_0		donotes for the fixed cost of production of the
		factory.
m		denotes for the marginal cost of production.
$c(x_k)$	$c_0 + mx_k$	denotes for the production cost of kth month.
I		means the cost for preserving unit inventory.
$h(i_k)$	Ii_k	means the cost for preserving inventory in kth
		month.
$\hat{X_k}$	5000	denotes for the maximum production in kth
		month.
$oldsymbol{eta}$.08	denotes for the growth rate of production in
		each month.
f_k	$c(x_k) + h(i_k)$	means the total cost in kth month.
F_k	$F_{k+1} + f_k$	means the cost for preserving unit inventory.

Team # 33650 Page 25 of 54

5.2.3 Model Establishment

We base our model on dynamic optimization. It is obvious that

$$i_{k+1} = i_k + x_k - dk \tag{13}$$

$$f_k(x_k) = c(x_k) + h(i_k) \tag{14}$$

$$=c_0+mx_k+Ii_k (15)$$

$$= c_0 + mx_k + I(i_k + x_k - d_k) (16)$$

From (13) to (16), we can easily imagine that, when demand is satisfied, the less the production is, the less it would have to cost.

However the factory has to produce more than what is demanded sometimes, since chances are, it can foresee that demand would be larger than their maximum production in the following months. So in the months when the demand is higher than the maximum production or after which the demand would be higher than maximum production, inventory would occur.

Inspired by greedy algorithm [7], we optimize production of each month respectively, from the last to the first. When we add those local optimized solution together, we would obtain the overall optimized result, thus determining the production of each month.

$$F_k = \min c(x_k) + h(i_k) + F_{k+1}, i_{k+1} = i_k + x_k - dk$$
(17)

$$x_k \le \hat{X}_k (1+\beta)^{k-1} \tag{18}$$

We run the codes in Matlab, with the assigned parameters $m=10, h=1^4$, and get the result as below⁵:

⁴The information about the production of medicine is so limited that we can only make a ball-park estimate of the proportional relationship between marginal cost and inventory cost.

⁵Here we only show the graph in the paper, please check the complete data in Appendix C

Team # 33650 Page 26 of 54

Time	0	1	2	3	4	5	6	7	8	9
Production	3394	3426	3492	3631	3927	4557	83853	91399	99624	108590
Demand	31.33175	63.32155	130.0417	268.9616	565.5201	1195.559	2538.751	5392.223	11384.07	23538.61
				i			i			
Time	10	11	12	13	14	15	16	17	18	19
Production	118363	129015	140626	153282	167077	182113	198503	216368	235841	257066
Demand	42325.22	72824.81	117392.7	166850.9	216992.2	259594.5	289799	306868.3	312964.2	310793
Time	20	21	22	23	24	25	26	27	28	29
Production	280201	321982	309697	298133	288244	280847	276313	274267	274013	274612
Demand	303160.9	292710.8	281543.2	271030.4	262039.8	255315.5	251193.6	249334	249103.1	249648.6

Figure 14: Partial Data for the Production and Demand

Figure 15: Optimized Production Curve and Demand Curve

As it is shown in the graph, during the first five months the amount produced is equal to the amount demanded. From 6th month to 14th month, the production is higher than what is demanded, accumulating the inventory for the peak of the demand. From month

Team # 33650 Page 27 of 54

14 to month 22, the maximum production is less than the demand, from 22th month to 52th month the production would be larger than then demand. After the month 52, the production is equal to the demand.⁶

6 The Model of Delivery

Drugs are not common commodity, they usually requires a high standard of storage atmosphere, such as a certain range of temperature and humidity, avoid sunshine contact and be strictly sealed. So it is crucial that drugs arrived at where they needed timely and with as little damage as possible.

We simplify the cost of delivery as an linear function of transported distance, which is to say, the transport cost can be written as:

$$Z_i = Z_0 + k * L_i \tag{19}$$

where Z_0 is the fixed cost of each transportation and L_i is the distance of transportation. Therefore, the question can be simplified as how to determining the shortest route of delivery.

In our model, we use **the Ant colony optimization algorithms** for both International and Domestic Delivery System. Here's a brief summary of our algorithm: [3]

An ant is a simple computational agent in the ant colony optimization algorithm. It iteratively constructs a solution for the problem at hand. The intermediate solutions are referred to as solution states. At each iteration of the algorithm, each ant moves from a state x to state y, corresponding to a more complete intermediate solution. Thus, each ant k computes a set $A_k(x)$ of feasible expansions to its current state in each iteration, and moves to one of these in probability. For ant k, the probability p_{xy}^k of moving from state x to state y depends on the combination of two values, viz., the attractiveness η_{xy} of the move, as computed by some heuristic indicating the a priori desirability of that

⁶please see the detailed information in excel Appendix C

Team # 33650 Page 28 of 54

move and the trail level τ_{xy} of the move, indicating how proficient it has been in the past to make that particular move.

The trail level represents a posteriori indication of the desirability of that move. Trails are updated usually when all ants have completed their solution, increasing or decreasing the level of trails corresponding to moves that were part of "good" or "bad" solutions, respectively.

In general, the kth ant moves from state x to state y with probability

$$p_{xy}^{k} = \frac{(\tau_{xy}^{\alpha})(\eta_{xy}^{\beta})}{\sum_{y \in \text{allowed}_{y}} (\tau_{xy}^{\alpha})(\eta_{xy}^{\beta})}$$
(20)

where

 au_{xy} is the amount of pheromone deposited for transition from state x to y, $\alpha \geq 0$ is a parameter to control the influence of au_{xy} , η_{xy} is the desirability of state transition xy (a priori knowledge, typically $1/d_{xy}$, where d is the distance) and $\beta \geq 1$ is a parameter to control the influence of η_{xy} . τ_{xy} and η_{xy} represent the attractiveness and trail level for the other possible state transitions.

When all the ants have completed a solution, the trails are updated by

$$\tau_{xy} \leftarrow (1 - \rho)\tau_{xy} + \sum_{k} \Delta \tau_{xy}^{k} \tag{21}$$

where τ_{xy} is the amount of pheromone deposited for a state transition xy, ρ is the pheromone evaporation coefficient and $\Delta \tau_{xy}^k$ is the amount of pheromone deposited by kth ant, typically given for a Travelling salesman problem problem (with moves corresponding to arcs of the graph) by

$$\Delta \tau_{xy}^{k} = \begin{cases} Q/L_{k} & \text{if ant } k \text{ uses curve } xy \text{ in its tour} \\ 0 & \text{otherwise} \end{cases}$$
 (22)

where L_k is the cost of the kth ant's tour (typically length) and Q is a constant.

The general algorithm is relatively simple and based on a set of ants, each making

Team # 33650 Page 29 of 54

one of the possible round-trips along the cities. At each stage, the ant chooses to move from one city to another according to some rules:

- 1. It must visit each city exactly once;
- 2. A distant city has less chance of being chosen (the visibility);
- 3. The more intense the pheromone trail laid out on an edge between two cities, the greater the probability that that edge will be chosen;
- 4. Having completed its journey, the ant deposits more pheromones on all edges it traversed, if the journey is short;
- 5. After each iteration, trails of pheromones evaporate.

Figure 16: ACO algorithm

6.1 International Delivery Optimization

We assume that the drug is delivered at the beginning of each month from the international airport of the US, China and Canada to the international airport of Guinea, Liberia and Sierra Leone. Each flight should stop three times to delivery the drugs to Guinea, Liberia and Sierra Leone. We here using the geographical coordinates to determine the optimal route of airplane:[9]

Team # 33650 Page 30 of 54

	Χ	Υ
Beijing	40.04	116.35
New York	40.38	-73.46
Vancouver	49.11	-123.11
Sierra Leone	8.36	-13.11
Liberia	6.14	-10.22
Guinea	9.34	-13.36

Figure 17: Geographical coordinates of international airports

Using the ACO algorithm, where L_{ij} , the distance between $Region_i$ and $Region_j$ is defined as the Euler distance of the two cities:

$$L_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
 (23)

Figure 18: The optimal route departed from Beijing to Liberia, Sierra Leone and Guinea

Using Matlab and the data of coordinates, we can easily determine the optimal route for three flights, which are

 $China: Beijing \longleftrightarrow Liberia \longleftrightarrow Sierra\ Leone \longleftrightarrow Guinea \longleftrightarrow Beijing$

Team # 33650 Page 31 of 54

Figure 19: Beijing to Liberia Route

 $US: \quad New\ York \longleftrightarrow Guinea \longleftrightarrow Liberia \longleftrightarrow Sierra\ Leone \longleftrightarrow New\ York$

Figure 20: New York to Guinea Route

 $Canada: Vancouver \longleftrightarrow Sierra\ Leone \longleftrightarrow Liberia \longleftrightarrow Guinea \longleftrightarrow Vancouver$

Team # 33650 Page 32 of 54

Figure 21: Vancouver to Sierra Leone Route

6.2 Domestic Delivery Optimization

We apply the same method for Domestic Delivery System, after the medicine arrived at the capital airport, it must be transported to local hospitals as soon as possible at the lowest cost. We assume that the time and cost of transportation are linear functions of the distance of transportation. The question can be therefore simplified as to find the shortest route of domestic delivery. We use Sierra Leone as an example to illustrate how it works:

The geographic coordinates and shortest route of Sierra Leone							
	W X Y		Υ		Shortest Route		
1 KAMBIA	4	7.839946	-12.8271		3		
2 PORTLOKO	5	8.766904	-12.7879		1		
3 FREETOWN	5	8.483516	-13.2346		10		
4 BOMBALI	5	8.886213	-12.0554		8		
5 KOINADUGU	4	9.575572	-11.5628		9		
6 KONO	4	8.474062	-10.7949		11		
7 TONKOLILI	4	8.736843	-11.93		12		
8 MOYAMBA	4	8.160825	-12.4335		13		
9 BO	4	7.955323	-11.7425		6		
10 BONTHE	1	7.526584	-12.5051		5		
11 PUJEHUN	3	7.350485	-11.7184		7		
12 KENEMA	5	7.863337	-11.198		4		
13 KAILAHUN	5	8.094744	-10.7046		2		

Figure 22: The optimal domestic delivey route of Sierra Leone[9]

Team # 33650 Page 33 of 54

In **Figure 22**, blue background emphasis represents the captical of the nation where international airport is located. X,Y represents the coordinates of local hospitals. W represents the severity level of each region, which takes value of 1-5 according to the number of confirmed cases of each region.[1]

Figure 23: The severity level table: confirmed cases of each region

Using the ACO algorithm, where L_{ij} , the distance between $Region_i$ and $Region_j$ is defined as not only the distance of the two cities, but weighted by the average severity level of the two cities:

$$L_{ij} = \frac{\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}}{\frac{W_i + W_j}{2}}$$
(24)

And the shortest route and the shortest distance are shown in Table 24

Team # 33650 Page 34 of 54

Figure 24: The shortest route and the shortest distance of Sierra Leone

By combining the severity map and the shortest route together, we get:

Figure 25: Sierra Leone Delivery Route Map [1]

Similarly, we can obtain the optimal route for Liberia and Guinea, the rest of the results are shown in appendix.

Team # 33650 Page 35 of 54

Figure 26: The shortest route and the shortest distance of Guinea

Figure 27: The shortest route and the shortest distance of Liberia

7 Conclusions

• By executing the model for the Spread of Ebola, we obtain the fitted parameters of infected rate, death rate and the upper limit of infected population that a country can tolerate shown in Table 3. Plugging in the fitted parameters, we can obtain

Team # 33650 Page 36 of 54

the variation trends of infected rate and susceptible rate in Figure 2, Figure 3 and

Figure 4. And the complete data is shown in Appendix data 1. From these result,

we draw the conclusions that the effect of the medicine is significant for the erad-

icating of Ebola, in that both the peak of infected population and duration of the

peak would decrease with the use of medicine. The comparison of the situations

between with and without medicine are shown in Figure 9, Figure 10 and Figure 11.

We then use these conclusion as the basis for quantity produced for manufacturers.

The results in the Distribution Optimization Model shows how each manufacturer

would distribute the product it has produced to three infected countries, as shown

in Figure 12, Figure 13 and Appendix data 2. We come to the conclusion that total

amount produced and the distribution to each country for each manufacturer are

identical. And the demand curve of the medicine that the manufacturers are facing

has the same trend as the infected rate curve, as we expect.

The results of the Production Optimization Model shows how the manufacturers

would balance their production and inventory each month in order to satisfy the

demand for the medicine as well as reduce the production cost as much as possible.

The results are shown in Figure 15 and Appendix data 2. We can draw conclusions

that the manufacturers can reduce their cost if they decide to produce the inven-

tory as late as possible and as less as possible.

• The results of the Delivery System provide us with the blue print about the route

along which the medicine will be delivered in order to deliver the medicine to the

cities which are in most desperate need and cost least on traffic as well. After we

run the codes in Matlab, we obtained the optimized international delivery route as

below:

the US: New York-> Guinea-> Liberia-> Sierra Leone-> New York

China: Beijing-> Liberia-> Sierra Leone-> Guinea-> Beijing

Canada: Vancouver-> Sierra Leone-> Liberia-> Guinea-> Vancouver

Team # 33650 Page 37 of 54

The domestic optimized route are displayed in Fig25, Fig27 and Fig26.

8 Letter for the world medical association

Dear World Medical Association staff,

Based on our mathematical model, we are honorable to provide this announcement as below:

West Africa is the critical region to control the spread of Ebola. With substantial proportion of population getting involved in this battle against Ebola, Sierra Leone, Guinea and Liberia have become the center of this medical assistance. We can makea a fairly conservative prediction based on mathematical computing. With no interference from medicine, a peak of 30% of the whole population in the infected area would occur at around September in 2015. In contrast, if we introduce the new medicine, which proved to be effective with the cure rate of .4, the peak of the infected population would be 18% of the whole population at around September in 2015, and the duration of the spike in the infected population would have a notable decrease. We can predict that we the disease will be under control in 30 months. In conclusion, it is necessary and urgent to introduce new medicine to eradicate the disease.

I would introduce the production system and delivery system respectively to show how we will endeavor to reduce the loss from Ebola at our best effort. Considering the backward economy of the area in question, medicine manufactures may have no incentive to research on and produce the medicine in need. However, considering the urgent situation of Ebola, joint efforts from governments, the UNs and NGOs must be made to raise fund for research and development of this medicine. Up until now, there are three countries in the world producing the medicine. They are company Mapp Biopharmaceutical Inc from the US, Sihuan Pharmacy from China and TekmiraPharmaceuticals from Cananda. And their supply of the medicine would satisfy the demand.

In the beginning of each month, the medicine produced would first be transported from each factory to the three countries' international airports. They then would be delivered to each capital city of each province. Since each city is infected at different levels, Team # 33650 Page 38 of 54

and the cost of traffic is different from city to city, the delivery route would base on the optimization of the comprehensive integral of infected degree and traffic cost. Which is to say, our delivery system is not only the most economic one, but also the most effective one in terms of saving lives.

In the meantime, we would definitely take action to prevent people from getting infected. We would try our best to improve the medical and sanitary condition of the infected area, to advocate the knowledge of preventing the disease. And we would keep testing and assessing our predict model, to keep track of the data, and to provide the most accurate and updated information to the public.

Best Regard,

XXX

9 Sensitivity Analysis

Some inputs of our model may be hard to obtain or there might be some uncertainty in our inputs. Both these kinds of deviation might influence the result of our model. To test the robustness of our model, we implement a sensitivity analysis. We test our model for the spread of Ebola in the cure rate μ , and the model of manufacturing in the ratio of marginal production cost and marginal inventory cost. The analysis proves that our model does not demonstrate a chaotic behavior, showing a good sensitivity.

9.1 Sensitivity to μ

We alternate μ , the cure rate of the medicine, from 0.24 to 0.48, to test the sensitivity of our model with respect to μ .

Team # 33650 Page 39 of 54

Figure 28: The prediction model with different μ

From **Figure 28** ,we notice that, as μ increases, the highest infection rate decreases. Also, the peak of i(t) arrives later. But the big trend and shape of the figure remain unchanged as we alternate μ , showing that our model is robust.

9.2 Sensitivity to production/inventory cost ratio

We define the ratio between marginal production cost of each factory m and marginal inventory cost I to be the production/inventory cost ratio:

$$\theta = \frac{m}{I} \tag{25}$$

Team # 33650 Page 40 of 54

This ratio represent the relationship between production plan and inventory plan. If keeping inventory is relatively expensive, the factory would have more incentive to produce as much as they needed in order to lower the cost. If production is relatively expensive, the factory would have more incentive to produce more before the peak of demand arrives to prepare themselves for the need in the future. We plot the curve of production/inventory at 8:1, 10:1 and 12:1 respectively.

Demand	F	roductio	n
	8:1	10:1	12:1
31.33	1395	3394	2473
63.32	2081	3426	2505
130.04	3968	3492	59405
268.96	5553	3631	61985
565.52	9940	3927	62281
1195.56	15490	4557	62911
2538.75	43853	83853	64255
5392.22	51399	91399	91399
11384.07	69624	99624	99624
23538.61	78590	108590	108590
42325.22	88363	118363	118363
72824.81	99015	129015	129015
117392.66	100634	140626	140626
166850.89	113228	153282	153282
216992.17	137073	167077	167077
259594.49	152133	182113	182113
289798.95	178503	198503	198503
306868.31	196334	216368	216368

Figure 29: The production model with different θ

Team # 33650 Page 41 of 54

Figure 30: The production model with $\theta=8:1$

Figure 31: The production model with $\theta=10:1$

Team # 33650 Page 42 of 54

Figure 32: The production model with $\theta = 12:1$

From the table we notice that, as θ increases, the factory tends to produce more at the beginning of production and produce less when the demand reaches its peak. In realistic, the ratio is different from factory to factory, if we consider the ratio to be different for each factory, we need to rearrange the demand for each factory to optimize its manufacturing.

10 Model Assessment

10.1 Advantages

- The parameters in our Natural Model, are fitted from the data, which is more accurate than assigning some random data as most infectious disease models do.
- The effective contact λ in the Natural Model has a negative relationship with infected rate, which is more realistic because governments and organizations would take measure when the spread of the disease is rampant. The changing λ is more practical than a fixed one.
- In the Medicine Delivery Model, we weigh the edges of ant colony algorithm with comprehensive combination of city's severity level and distance. This could lead

Team # 33650 Page 43 of 54

to not only a very cost-saving but also a life-saving route.

• We organize our tasks in a very logical way, which makes the whole paper understandable.

10.2 Weakness and Future Improvements

- Since time given is very limited, our model only analyzes some of the most concerned problems with relatively simplified parameters. If possible, we would like to make such improvements to refine our model as below:
- If the manufacturers also produce an effective vaccine, then the contact $\text{rate}\lambda_0$ would decrease with respect to time. Based on our model, we can speculate that, it would contract the peak of the infective rate further, and would control the spread of Ebola in shorter period of time.
- When we put weighs on the ants colony algorithm, we only take the severity level
 and distance between cities into consideration. In fact, we can refine our model
 by considering more factors like the city's population density, level of medical and
 sanitary conditions and climate etc.
- In our model, we only consider the scenario where medicine is imported from other counties. If with sufficient time, we could collect more information about the requirements of establishing a temporary factory in infected areas, and optimize the producing and delivery conditions. By comparing the conclusions with that of the importing case, we may end up with a different scheme.
- We assume that the unit of medicine production and delivery is counted in month.

Team # 33650 Page 44 of 54

But in reality, we can discuss the production cycle and delivery cycle to optimize the results.

References

- [1] World Health Organization. Ebola Response Roadmap Situation Report 24 December 2014.
- [2] http://en.wikipedia.org/wiki/ZMapp
- [3] $http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms$
- [4] http://www.mappbio.com/productdevelopment.html
- [5] http://www.sihuanpharm.com/index.php?a = indexm = Personnelinfoid = 79l = en
- [6] http://www.tekmira.com/
- [7] http://en.wikipedia.org/wiki/Greedy_algorithm
- $[8] \ http://maps.who.int/MapGallery/$
- [9] http://www.google.cn/maps
- [10] World Health organization. Ebola Response Roadmap 28 August 2014.
- [11] Houqing Zhou, Youzhuan Xu. A Mathematical Model for the Amount of Infected of Ebola December 2014
- [12] Qiyuan Jiang, Jinxing Xie, Jun Ye. Mathematical Models 4th Edition
- [13] Zhonggeng Han, Xiaoli Guo, Jianping Du, Jingxu Liu, Yuan Tian Analysis of American University students Mathematical Contest in Modeling 2nd Edition

Team # 33650 Page 45 of 54

Appendices

Appendix A Matlab Code

Here are simulation programmes we used in our model as follow.

Natural Model:

```
ts=0:120;
x0=[0.000004375,0.999995625];
[t,x]=ode45('Guiill',ts,x0);
[t,x]
plot(t,x(:,1),t,x(:,2))
xlabel('i')
ylabel('s')
h=legend('infective rate','susceptible rate');
set(h,'Fontsize',15)
gtext('i(t)')
gtext('s(t)')
title('infective and susceptible rateline'),grid,pause,
plot(x(:,2),x(:,1)),grid,
```

Predicting Model:

```
%ts=0:100;
%x0=[0.000021801,0.999978199];
%[t,x]=ode45('ill',ts,x0);
%[t,x]
%[t,y]=ode45('ill2',ts+12,y0);
%plot(t,x(:,1),t,x(:,2),t,y(:,1),t,y(:,2))
%xlabel('i')
%ylabel('i')
%ylabel('s')
%h=legend('infective rate','susceptible rateaf,afinfective rate','susceptible rate');
%set(h,'Fontsize',20)
%gtext('i(t)')
%gtext('s(t)')
%title('infective and susceptible rateline'),grid,
%%plot(x(:,2),x(:,1)),grid,
ts=0:60;
```

Team # 33650 Page 46 of 54

```
x0=[0.000004375, 0.999995625];
[t,x]=ode45('Gill',ts,x0);
[t,y]=ode45('Gill2',ts,x0);
plot(t,x(:,1),t,x(:,2))
%tr=11:90;
y0=[0.1235, 0.8765];
[t,y] = ode45('ill2',ts,y0);
plot(ts,x(:,1),ts,x(:,2),ts,y(:,1),ts,y(:,2))
plot(ts, y(:, 1), ts, y(:, 2))
xlabel('time unit: month')
ylabel('rate')
h=legend('infective rate','susceptible rate','infective rate','susceptible rate');
set(h,'Fontsize',20)
gtext('natrual model')
gtext('prediction model')
gtext('natrual model')
gtext('prediction model')
title ('Comparision between natrual model and prediction model in Guinea'), grid,
plot(x(:,2),x(:,1)),grid,
```

Distribution Optimization:

```
for i=1:61

c=[1;1;1;1;1;1;1;1];
a=[1,0,0,1,0,0,1,0,0;0,1,0,0,1,0;0,0,1,0,0,1,0,0,1];
b=B(i,:)';
[x,y]=linprog(c,-a,-b,[],[],zeros(9,1))
X(i,:)=x'
Y(i,:)=y
end
```

Production Optimization:

```
function v = Obj(k, x, u, d, h, f, c)
if u==0,
t=0;
else
t=1;
```

Team # 33650 Page 47 of 54

```
end
v=C(k)*t+H(k)*u+F(k)*(x+u-d(k));
function [opt, fval] = prdcStoreProb(x0, x00, d, m, b, H, F, C, Decision Obj, Trans)
x=state(d, m, x0, x00);
[opt, fval] = dynprog(x0, x00, d, m, b, H, F, C, Decision, Obj, Trans)
function y = Trans(k, x, u, d)
y=x+u-d(k);
function x=state(d,m,x0,x00)
t=1;
n=length(d);
while t<=n;</pre>
g(t) = sum(d(t:n));
t=t+1;
end
tmax=max(g(2:n));
x=nan*ones(tmax+1,n);
x(1,1) = x0;
x(1,n)=x00;
tt=2;
while tt<=n-1;
t(tt) = min(m(tt), g(tt));
x(1:t(tt)+1,tt) = (0:t(tt))';
tt=tt+1;
end
function y = Trans(k, x, u, d)
y=x+u-d(k);
```

Ant Colony Optimization, the ACO model:

 $NC_max=100;$

```
%function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length] = ACATSP(C,NC_max,m,Alpha,Beta,Rho
m=40;
Alpha=1;
Beta=5;
Rho=0.2;
Q=10;
n=size(C,1);
D=zeros(n,n);
```

Team # 33650 Page 48 of 54

```
R_best=zeros(NC_max,n);
L_best=zeros(NC_max, 1);
for i=1:n
for j=1:n
if i~=j
D(i,j) = (((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5);
else
D(i,j)=eps;
D(j,i) = D(i,j);
end
end
Eta=1./D;
Tau=ones(n,n);
Tabu=zeros(m,n);
NC=1;
R_best=zeros(NC_max,n);
L_best=inf.*ones(NC_max,1);
L_ave=zeros(NC_max, 1);
while NC<=NC_max</pre>
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos, randperm(n)];
Tabu(:,1) = (Randpos(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k) = (Tau(visited(end), J(k))^Alpha) * (Eta(visited(end), J(k))^Beta);
```

Team # 33650 Page 49 of 54

```
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu (1, :) = R_best (NC-1, :);
end
L=zeros(m, 1);
for i=1:m
R=Tabu(i,:);
for j=1: (n-1)
L(i) = L(i) + D(R(j), R(j+1));
end
L(i) = L(i) + D(R(1), R(n));
L_best(NC) =min(L);
pos=find(L==L_best(NC));
R_{\text{best}}(NC,:) = Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
Delta_Tau=zeros(n,n);
for i=1:m
for j=1: (n-1)
\texttt{Delta\_Tau}\left(\texttt{Tabu}\left(\texttt{i},\texttt{j}\right),\texttt{Tabu}\left(\texttt{i},\texttt{j}+1\right)\right) = \texttt{Delta\_Tau}\left(\texttt{Tabu}\left(\texttt{i},\texttt{j}\right),\texttt{Tabu}\left(\texttt{i},\texttt{j}+1\right)\right) + \texttt{Q}/\texttt{L}(\texttt{i});
Delta_Tau(Tabu(i,n), Tabu(i,1)) = Delta_Tau(Tabu(i,n), Tabu(i,1)) + Q/L(i);
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
```

Team # 33650 Page 50 of 54

```
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave,'r')
title('The shortest route')
```

Natural Model and Prediction Model Result Data Table for 60 months

	Sierra Le			
	Natural	r	Prediction	
Time		s(t)	i(t)	s(t)
0				
1				0.99995
2				0.99988
3				0.99974
4			0.00047	0.99944
5			0.00102	0.99879
6	0.00102	0.99738	0.00102	0.99738
7	0.00469	0.9944	0.00469	0.9944
8	0.00991	0.98812	0.00991	0.98812
9	0.02052	0.97532	0.0204	0.97533
10	0.04071	0.95069	0.0352	0.95239
11				0.9169
12				
13				
14			0.11728	0.73616
15			0.1464	0.66647
16		0.54645	0.18222	0.60006
17	0.28947		0.18222	0.53903
18		0.48895 0.4383		0.53903
19	0.30728 0.30648	0.4383	0.1865	0.48388
20			0.18049	
	0.30166	0.35217	0.17096	0.39156
21 22	0.29391	0.31522	0.15926 0.14643	0.35378 0.32071
	0.284	0.28177		
23	0.27249		0.13313	0.29196
24				
25			0.10644	
26				
27			0.08232	
28			0.07172	0.20198
29	0.18827	0.12741	0.06214	0.19149
30	0.17395	0.11457	0.0536	0.18269
31	0.16005	0.10345	0.04605	0.17531
32	0.1467	0.09381	0.03942	0.16914
33	0.13399	0.08548	0.03365	0.16397
34	0.12197	0.07829		0.15964
35		0.07209		0.15599
36		0.06678		0.15293
37				
38				
39				0.14647
40	0.06584		0.01057	0.14498
41	0.05903		0.00892	0.14371
42	0.05285	0.04718	0.00752	0.14264
43	0.04726	0.04526	0.00634	0.14175
44	0.04222	0.0436	0.00534	0.14101
45	0.03768	0.04215	0.0045	0.14038
46	0.0336	0.04089	0.00379	0.13985
47	0.02994			0.13941
48				0.13903
49				0.13872
50		0.03724		0.13846
51	0.01877		0.0016	0.13824
52		0.03602	0.00134	0.13805
53	0.01483	0.03552	0.00113	0.1379
54	0.01317	0.03508	0.00095	0.13776
55	0.0117	0.03469	0.0008	0.13765
56	0.01039	0.03435	0.00067	0.13756
57	0.00922	0.03405	0.00056	0.13748
58	0.00818		0.00047	0.13742
59			0.0004	0.13736
60	0.00644	0.03334	0.00033	0.13732

Liberia	i	i		
	Natural	i	Prediction	
Time	i(t)	s(t)		s(t)
	4.8E-06		4.8E-06	
	1.1E-05	0.99999	1.1E-05	0.99999
	2.4E-05		2.4E-05	0.99997
	5.1E-05	0.99994	5.1E-05	0.99994
	0.00012	0.99987	0.00012	0.99987
!	0.00026		0.00026	0.9997
	0.00057		0.00057	0.99934
	0.00126		0.00126	0.99853
	0.0028		0.0028	0.99675
	0.00615		0.00615	0.99284
10 11			0.01332 0.02798	0.98446 0.96722
1:				
1:				
14			0.11692	0.82118
1!				
10			0.17219	0.67775
1			0.18695	0.60887
18			0.19308	0.54555
19			0.19209	0.48863
20	0.33003	0.41659	0.18589	0.43808
2	0.32856	0.37518	0.17618	0.39342
2:			0.16424	0.35421
2:			0.15085	0.32028
24				
2!				
20		0.21728	0.10919	0.24511
2			0.09633	0.22713
29			0.08435 0.07341	0.21203 0.19935
30			0.06354	0.1887
3.			0.05474	0.17978
32			0.04697	0.1723
3		4	0.04017	0.16605
34			0.03424	0.16081
3!			0.02911	0.15643
30	0.1489	0.07136	0.0247	0.15279
3.	0.13679	0.0649	0.02092	0.14977
38	0.12534	0.05932		
30				
40				0.14329
4			0.01064	0.14179
4:			0.00896	0.14054 0.13949
4.			0.00755 0.00636	0.13949
4!			0.00534	0.13786
40				
4			0.00378	0.13724
48				
49				
50			0.00224	0.13561
5	0.03466	0.02868	0.00188	0.13535
52	0.03119	0.02787	0.00158	0.13513
5			0.00133	0.13495
54			0.00111	0.1348
5!			0.00094	0.13467
50			0.00079	0.13456
5			0.00066	0.13448
58			0.00055	0.1344
59			0.00046	0.13434
60	0.01323	0.02401	0.00039	0.13428

Guinea				
Cunica	Natural		Prediction	
Time			i(t)	s(t)
0			4.4E-06	
1			6.9E-06	
!			1.1E-05	
3			1.7E-05	
4			2.7E-05	
5			4.3E-05	
6	6.9E-05	0.99991	6.9E-05	0.99991
7	0.00011	0.99986	0.00011	0.99986
8	0.00017	0.99977	0.00017	0.99977
9	0.00027	0.99964	0.00027	0.99964
10	0.00043	0.99943	0.00043	0.99943
11			0.00068	
12			0.00108	
13			0.00147	
14			0.002	
15			0.00271	0.99534
16			0.00367	0.99343
17	0.01033	0.98623	0.00495	0.99087
18	0.01594	0.97867	0.00666	0.98743
19 20	0.02427	0.96737 0.95095	0.00892	0.98285 0.97681
20	0.03621 0.0526	0.93095	0.01186 0.01565	0.96892
22		0.89741	0.02044	0.95874
23		0.85929	0.02636	0.94583
24			0.02030	
25				
26				
27			0.06043	
28			0.07014	
29	0.22816	0.57381	0.07937	0.80008
30	0.23525	0.53191	0.08754	0.76682
31	0.23861	0.493	0.09425	0.73275
32	0.23889	0.4569	0.09929	0.69862
33	0.23672	0.42336	0.10256	0.66506
34	0.23256	0.39227	0.10404	
35		0.36358	0.10386	
36		0.3372	0.10221	
37				
38				
39 40			0.09109	
41	0.18399 0.17416	0.25136 0.23432	0.08608 0.08075	0.47426 0.45456
42	0.17416	0.23432	0.08073	0.43456
43	0.15437	0.20485	0.0697	0.42049
44	0.14464	0.19216	0.06423	0.40588
45	0.13511	0.1807	0.05891	0.39273
46	0.12587	0.17037	0.0538	0.38092
47		0.16108	0.04896	0.37035
48	0.1084		0.04439	
49	0.10026	0.14523	0.04014	
50			0.03619	
51		0.13246	0.03255	0.33835
52		0.12705	0.02922	0.33242
53	0.07197	0.1222	0.02617	0.32717
54	0.06598	0.11784	0.02341	0.3225
55	0.06041	0.11394	0.0209	0.31836
56	0.05523	0.11045	0.01864	0.3147
57	0.05045	0.10731	0.0166	0.31146
58 59		0.1045	0.01477	0.30859
		0.10197	0.01313	
60	0.03822	0.09971	0.01166	0.30381

The demand of medicine for each factory

time	d11	d12	d13	d21	d22	d23		132	d33	D1	D2	D3	Pr	oduction	Demand
	0 2029.25	790.381	313.541	2029.25	790.381	313.541	2029.25	790.381	313.541	3133.17	3133.17	3133.17		3394	31.3317
	1 4382.35	1252.01	697.792		1252.01	697.792	4382.35	1252.01	697.792	6332.15	6332.15	6332.15		3426	63.3215
	2 9455.64	1991.19	1557.34	9455.64	1991.19	1557.34	9455.64	1991.19	1557.34	13004.2	13004.2	13004.2		3492	130.042
	3 20371.1	3132.89	3392.15	20371.1	3132.89	3392.15	20371.1	3132.89	3392.15	26896.2	26896.2	26896.2		3631	268.962
	4 44025.6	4929.46	7596.97	44025.6	4929.46	7596.97	44025.6	4929.46	7596.97	56552	56552	56552		3927	565.52
	5 94815.3	7817.75	16922.8	94815.3	7817.75	16922.8	94815.3	7817.75	16922.8	119556	119556	119556		4557	1195.56
	6 203929	12419.1	37526.6	203929	12419.1	37526.6	2039291	12419.1	37526.6	253875	253875	253875		83853	2538.7
	7 436111	19692.6	83418.6	436111	19692.6	83418.6	436111	19692.6	83418.6	539222	539222	539222		91399	5392.22
		31090.5	184492	922824	31090.5	184492	922824	31090.5	184492	1138407	1138407	1138407		99624	11384.
	9 1899179	49183	405498	1899179	49183	, — - — - — -	1899179	49183				2353861		108590	23538.
1	0 3276120	77969.5	878433	3276120	77969.5	878433	3276120	77969.5	878433	4232522	4232522	4232522		118363	42325.
1	1 5313479	123374		5313479		:				7282481				129015	72824.
	2 7969514			7969514			7969514							140626	11739
	3 1.1E+07			1.1E+07			1.1E+07				1.7E+07			153282	16685
1	4 1.4E+07			1.4E+07		. — - — - — -	1.4E+07		7711386	. — . — . —	2.2E+07			167077	21699
	5 1.6E+07			1.6E+07		. — - — - — -	1.6E+07	489525	9771894	2.6E+07				182113	25959
	6 1.7E+07			1.7E+07		. — - — - — -	1.7E+07			2.9E+07				198503	28979
	7 1.7E+07			1.7E+07		·	1.7E+07		1.2E+07					216368	30686
							1.7E+07				3.1E+07			235841	31296
				*		. — - — - — -	1.7E+07							257066	31079
							1.6E+07			3E+07	3E+07	3E+07		280201	30316
							1.5E+07							321982	29271
							1.4E+07							309697	28154
							1.2E+07							298133	27103
							1.1E+07						j	288244	26204
							9907528							280847	25531
							8743385							276313	25119
							7662756							274267	24933
							6675426							274013	24910
							5784338							274612	24964
				*			4989266			. — . — . —				274932	24994
							4286178							274159	24923
							3669472							271766	24706
							3132610							267411	24700
							2668118							260953	23722
							2267314							252451	22950
				*			1922703							242188	22017
				*			1628108			. — . — . —				230561	20960
						. — - — - — -	1377441			2E+07	2E+07	2E+07		217949	19813
		1.6E+07		1164697		. — - — - — -	1164697				1.9E+07			204680	18607
				*		. — - — - — -									
4		1.6E+07 1.5E+07		*	1.6E+07 1.5E+07	832125 701494				1.7E+07 1.6E+07				191046 177312	17367 16119
<u>4</u>		1.4E+07		*	1.4E+07	. — - — - — -				1.5E+07				163720	14883
<u>4</u>		1.4E+07 1.3E+07		*	1.4E+07 1.3E+07	498042	589832				1.4E+07			150474	13679
<u>4</u>		1.3E+07 1.2E+07			1.3E+07 1.2E+07	498042	497079				1.4E+07 1.3E+07			137711	12519
<u>4</u>		1.2E+07 1.1E+07		*	1.2E+07 1.1E+07	. — - — - — -					1.3E+07 1.1E+07			125545	11413
<u>4</u>		9719931			9719931		352418			1E+07	1.1E+07 1E+07	1.1E+07 1E+07		114055	10368
<u>4</u>		8844405			8844405					9390107				103291	93901.
		8020331			8020331	, — - — - — -	249530				8479335			93272	93901. 84793.
<u>4</u>		7251177		+	7251177		210003			7637148					
		6537935					176652							84008	76371.
5					6537935 5880570					6862360				75486	68623.
5		5880570				!				6153204				61532	6153
							124879								55071.
			87558.2			87558.2				4920938					49209.
	4 88334.9						88334.9								43904.
							74252.31								39117.
		. —				, — - — - — -	62404.3								34811.
							52459.8							30944	
							44112.8							27488	27488.
							37085.3							24396	24396.
6	u 31170.8	2106598	25716.3	31170.8	2106598	25/16.3	31170.8	2106598	25/16.3	2163485	2163485	2163485	i i	21635	21634.9

Production	Demand
3394	31.3317
3426	63.3215
3492	130.042
3631	268.962
3927	565.52
4557	1195.56
83853	2538.75
91399	5392.22
99624	11384.1
108590	23538.6
118363	42325.2
129015 140626	72824.8 117393
153282	166851
167077	216992
182113	259594
198503	289799
216368	306868
235841	312964
257066	310793
280201	303161
321982	292711
309697	281543
298133	271030
288244	262040
280847	255316
276313	251194
274267	249334
274013	249103
274612	249649
274932	249940 249236
274159 271766	247236
267411	247000
260953	237229
252451	229501
242188	220171
230561	209602
217949	198136
204680	186073
191046	173679
177312	161193
163720	148837
150474	136794
137711	125192
125545	114132
114055	103687
103291	93901.1
93272	84793.3
84008	76371.5
75486 61532	68623.6 61532
55072 49209	55071.9 49209.4
49209	49209.4
39118	39117.7
34812	34811.5
30944	30947.7
27488	27488.4
24396	24396.1
21635	21634.9

The geographic	coordina	tes and	shortest	route of Guinea
	W	Χ	Υ	Shortest Route
1 YOMOU	2	7.56635	-9.2536	26
2 DABOLA	2	10.7507	-11.117	10
3 KOUROUSSA	2	10.6566	-9.8999	8
4 SIGUIRI	3	11.4272	-9.1552	12
5 FARANAH	3	10.0334	-10.734	9
6 KISSIDOUGO	3	9.18183	-10.088	1
7 KANKAN	3	10.6483	-9.4059	13
8 BEYLA	3	8.6814	-8.6353	11
9 LOLA	3	7.79803	-8.4651	6
10 KEROUANE	4	9.26679	-9.0169	5
11 GUECKEDOU	4	8.54317	-10.123	2
12 NZEREKORE	4	7.838	-8.801	18
13 MACENTA	5	8.55008	-9.4652	15
14 DALABA	2	10.6896	-12.257	14
15 PITA	2	11.0598	-12.395	20
16 MALI	1	17.7624	-1.7888	17
17 BOKE	1	10.9381	-14.302	21
18 TOUGUE	1	11.4356	-11.666	19
19 FRIA	1	10.368	-13.584	22
20 TELIMELE	3	10.9002	-13.033	25
21 BOFFA	3		-14.051	24
22 DUBREKA	3	9.79285	-13.525	23
23 KINDIA	3	10.0692	-12.851	3
24 FORECARIAH	3	9.43212	-13.06	7
25 COYAH	4	9.71582	-13.344	4
26 CONAKRY	4	9.34	13.36	16

Team # 33650 Page 54 of 54

The geographic	coordina	ates and	shortest	route of Liberia	
	W	Χ	Υ	Shortest	Route
1 GRAND GEDEH	1	-26.699	19.876	1	5
2 GRAND KUR	1	-26.789	15.75	1	4
3 MARYLAND	1	-25.329	14.385		9
4 SINOE	2	-29.186	16.684		7
5 GBARPOLU	2	-34.097	24.902		4
6 RIVER GEE	2	-25.482	17.328		2
7 RIVERCESS	3	-31.429	17.931		3
8 LOFA	3	-37.314	22.133		6
9 GRANDBASSA	3	-32.952	19.285		1
10 LOFA	4	-31.979	27.617	1	2
11 BONG	4	-31.078	22.956	1	1
12 NIMBA	4	-28.465	24.172	1	0
13 BOMI	4	-35.484	22.542		5
14 MARGIBI	4	-33.944	21.417	1	3
15 MONTSERRADO	5	-34.809	21.095		8

Figure 33: The geographic coordinates and shortest route of Liberia