

Exam File Provided By The VofS IEEE Student Branch

ieee.usask.ca

Time: 3 hours

FINAL EXAMINATIO MATH 225.3

NO TEXTS, NO NOTES, NO CALCULATORS CLOSED BOOK

Values

- (a) How do you find the area of a parallelogram determined by a and b? [2]
- (b) How do you find the volume of the paralleliped determined by a and b and c? [2]
- (c) How do you find the angle between two intersecting planes ? [2]
- (d) If \vec{u} and \vec{v} are differentiable vector functions, c is a scalar, and f is scalar function, write the rules for [6] differentiating (ii) $\overrightarrow{cu}(t)$ (v) $\overrightarrow{u}(t) \times \overrightarrow{v}(t)$ f(t) u(t)(i) $\vec{Q}(t) + \vec{Y}(t)$ (iii) นี(t) • ⊽(t) (vi) (iv) น์(f(t))
- (e) (i) What is a smooth curve ? [4](ii) How do you find a tangent vector at a point of a smooth curve ?
 - (iii) How do you find the tangent line ?
 - (iv) How do you find a unit tangent vector ?
- [3] (f) (i) Define the linearization of f at (a, b, c). (ii) What is the linear approximation ?
 - (iii) What is the geometric interpretation of the linear approximation ?
- [4] (g) Explain how the Lagrange multiplier method works in finding the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k.
- [2] (h) Write an expression for the area of a surface with equation $x = f(y, z) , (y, z) \in D.$
 - 2. The temperature at a point (x, y, z) is given by

$$T(x, y, z) = 200e^{-x^2 - 3y^2 - 9z^2}$$

where T is measured in ${}^{\circ}C$ and x, y, z in meters.

- (a) Find the rate of change of temperature at the point P(2, -1, 2) in the direction [6] toward the point (3, -3, 3).
- (b) In which direction does the temperature increase fastest at P? [2]
- [2](c) Find the maximum rate of temperature increase at P.
- (a) Find an equation for the tangent plane to the ellipsoid $2x^2 + 3y^2 + z^2 = 12$ [4] 3.

at the point $(\sqrt{2}, \sqrt{2}, \sqrt{2})$.

(b) Find the points, if any, on the ellipsoid $2x^2 + 3y^2 + z^2 = 12$ where the tangent [6] plane is parallel to the plane 4x - 3y + z = 1.

- [10] 4. Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane 2x + 3y + z = 6.
- [8] 5. Evaluate $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^4} dx dy$ by reversing the order of integration.
- [6] 6. (a) Sketch the graphs of $r = 3\cos\theta$ and $r = 1 + \cos\theta$ and find the points where the graphs intersect.
- [8] (b) Find the area of the region inside $r = 3\cos\theta$ and outside $r = 1 + \cos\theta$.
- [7] 7. Find the work done by the force field

$$F(x,y) = \left(\frac{1}{x+y^2}\right)i + ye^xj$$

in moving an object along the curve with vector equation $r(t) = 4t^2i + tj$, $1 \le t \le 3$.

- [8] 8. Find the area of the surface z = xy which lies in the first octant and within the cylinder $x^2 + y^2 = 1$.
- [8] 9. Let S denote the solid bounded by the cylinder $y^2 + z^2 = 9$ and the planes y = 3x, y = 0, z = 0 in the first octant. Sketch a picture of S and find its volume.