Sprint-1 [Day-2]

N traversal

Description

You are given a matrix of size n x n. Find the Ntraversal of the matrix. Refer the following figure for better understanding.

Input

The first line contains T, the number of test cases. The first line of each test case contains N, the size of the square matrix.

Next N lines contain N space separated integers, denoting the values of the matrix.

Description

Given a square matrix of size N x N. Print the Z traversal of the matrix. Refer the figure given below for better understanding.

Input

The first line of the input contains T, the number of test cases. The first line of each test case contains N, the dimension of the square matrix.

Next N lines contains N space separated integers, denoting the values of the matrix.

Constraints

Output


```
for(i=1,j=n-2; i<=n-1 && j>=0; i++,j--) {
    res=res+arr[j][j]+" "
}
```



```
function Ztraversal(arr,n)
       res=" "
    tr for(i=0;i<=n-1;i++)
              res=res+arr[0][i]+" "
       i=1,j=n-2
    L₂ while(i<=n-1 && j>=0)
              res=res+arr[i][j]+" "
              j++
    for(i=1;i<=n-1;i++)
              res=res+arr[n-1][i]+" "
       return res
```

Description

Given a square matrix, you have to find the reverse U traversal of the matrix. Refer the sample I/O for better understanding. Refer the given figure for better understanding.

Note: No element should be visited more than once.

Lie: Ouz auz auz
$$\propto_{10}$$
 row: $n-1$

```
for(i=n-2;i>=1;i--)
{
    res=res+arr[n-1][i]+" "
}
```

```
=> col:0
Li ayo
                  0.20
                        \alpha_{10}
                                          vow: n-4 →0
     res=" "
    for(i=n-1;i>=0;i--)
                                                  Nested Loop
            res=res+arr[i][0]+" "
                                 => 20m: 0
                                    col: 1 → n-1
    for(i=1;i \le n-1;i++)
          res=res+arr[0][i]+" "
                             αμγ
                                    => Cot: n-1
                     Q 34
                                      10w; 1 → n-1
   for(i=1;i \le n-1;i++)
          res=res+arr[i][n-1]+" "
```

A	ь		2	2	Ч
0	0,00	Q ₀₁	002	0.03	Льц
1	0.10	On	an	Oys	ац
2	0.20	a 21	022	a ₂₃	Q24
3	azo	azı	0.32	Q33	<i>ો</i> રૂષ
ч	αμο	auı	۵۷رو	auz	Овц
					1

```
temp=" "
for(i=n-1;i>=0;i--)
        temp=temp+A[i][0]+" "
for(j=1;j<=n-1;j++)
       temp=temp+A[0][j]+" "
for(i=1;i \le n-1;i++)
        temp=temp+A[i][n-1]+" "
 for(j=n-2;j>=1;j--)
         temp=temp+A[n-1][j]+" "
```

Diamond Traversal

Description

Given a square matrix of odd length , print the matrix elements in the order shown in the figure :

100

 $\sqsubseteq_{\mathsf{l}_{\mathsf{l}}} \checkmark$