1025春	局数下期相	试题	(阿阳版)						
	顶选择题:								
((1)下列哪一个向量与曲线 $\Gamma(t) = (1+ \pm i)i + (1- \pm i)j + t^2k$ 在点, $P=(2,-2,1)$ 处的切线垂直?								
	(A) v= <1,2		(B) v= <1,2,2)		(C) v= <-1,		$(D) v = \langle -1, -2,$		
(2	(2)函数 $f(x,y,z)=x^2y+z^2$ 在点(1,2,0)处沿向量 $V=(1,2,2)$ 的方向的方向导数是								
	(A) 12		(B) 6		(c) 4		(D)2		
(2	的级数篇(1- a/n							
	(A)对任意实数 a 都收敛.				(B) 当 a ∈ (-1,1) 时收敛.				
	(C) 当a为任意正实数时收敛.				(D) 当 a 为任意、负 实 数 时 收 敛.				
(4	-) (x,y)->(0,0)	$\sin(xy))^{-x}$	+ y =						
	(A) 0		(B)1	(c)e.		D)极限不存在.		
15	f	(rcos0, r	$sin\theta$) $r dr d\theta =$						
	(A) 0 (B) 1 (5) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr d\theta =$ (A) $\int_{0}^{1} \int_{y}^{2y+y^{2}} f(x, y) dx dy$.				$\binom{C}{8}$ $\int_{1}^{2} \int_{-\sqrt{2x}-x^{2}}^{\sqrt{2x}-x^{2}} f(x,y) dy dx + \int_{0}^{2} \int_{-z}^{z} f(x,y) dy dx$				
	(B) $\int_{0}^{1} \int_{1-\sqrt{1-y^2}}^{y} f(x,y) dx dy$.					(D) $\int_0^2 \int_0^2 f(x,y) dy dx + \int_0^2 \int_0^{\sqrt{2x-x^2}} f(x,y) dy dx$			
	真空题:								
(1	(1) 曲面 xyz+e ^{xx} =0 在点(1,1,-1)处的切平面的方程是								
(2	(1) 曲面 $\chi yz + e^{2t\chi} = 0$ 在点, $(1,1,-1)$ 处的切乎面的方程是								
((3) 曲线 $r(t) = e^t cost i + e^t sint j + 2k$ 的曲率 $k =$								
((4) 差函数 $y=y(x)$ 的参数方程为 $x=2t+ln^2t$, $y=(t+lnt)^2$, $t>0$, 则 $\frac{d^2y}{dz^2} _{=t=1}=$								
($(5) \int_{0}^{1} \int_{z}^{1} x e^{-y^{3}} dy dx =$								
三、求	函数 f(x,y)=	$= \chi^{3} + 2 y^{2} -$	3331—124的所有	极值.					
四、(1	、求函数 $f(x,y) = \chi^3 + 2y^2 - 3\chi - 12y$ 的所有极值. (1) 求级数 篇 $\frac{(-1)^n(\chi-1)^m}{(n+2023) \ln n}$ 的收敛域.								
(:	(2) X取哪些值时上述级数绝对收敛,取哪些值时条件收敛.								
	5. 若上半球 $D= \chi^2 + y^2 + z^2 \le 1$, $z > 0$ 的密度函数为 $\delta(\chi, y, z) = z$, 计算此上半球的质心.								
六、已知同量场 F=(ysinz+2)i+(xsinz)j+(xy cosz)k. 是保护场,求下的势函数,并计算曲线积分									
	cF·dr. 181	里C是从点	(A(1,-2, 至)	到点B(2	,1,至)的	记滑曲线.			
,							如下曲面Si和S2	之间的闭区域,	
	这里 $S_1 := \frac{1}{3}(x_1, y_1, z) = z = (x^2 + y^2)^2 - 1^2$, $S_2 := \frac{1}{3}(x_1, y_1, z) = z = 4 - 4(x^2 + y^2)^2$.								
	使用散度定理	且来计算了	可量场下通过VI	的边界从	内向外的通	量(flux).			
							上二里	T10	

 Λ . 设曲面 S 是椭圆枷物面 $z=\chi^2+4y^2$ 在平面 z=| 下方的部分,曲面 S 的内法向量 n 的方向如下图所示. 计算 $\iint_S \nabla x F \cdot n \, d\sigma$, 这里 $F=(y+\chi^2|n(\chi^4+1))$ $i+(e^{\sin y}-\chi z)j+(\chi z^2+\cos(z^2+1))k$.