CISC 1003 - EXPLORING ROBOTICS

GEARS

Motors

- Compared with all other types of actuators, direct current (DC) motors are simple, inexpensive, easy to use, and easy to find.
- Motors have a copper wire wound in a way that creates magnetic fields
 - These "push" the rotor inside of the motor around in a circle.

Motors

- To make a motor run, you need to provide it with electrical power in the right voltage range.
 - Low voltage, slower movement.
 - Higher voltage, faster movement
 - but more wear on the motor and can burn out if run fast for too long.
 - Like a lightbulb on a battery. More voltage means a brighter light.

Motors

ELECTRIC MOTORS

- Gears are wheels with teeth. Gears mesh together and make things turn.
- Gears are used to transfer motion or power from one moving part to another.

 Combining different gears is used to change the speed and torque (turning force) of motors.

Gears – The Purpose

- Sports cars go fast (have speed) but cannot pull any weight.
- Big trucks can pull heavy loads (have power), but cannot go fast.
- Gears cause this.
 - Gears increase or decrease the power or speed,

Compound Gears

- Compound gears are used in engines, workshop machines and in many other mechanical devices.
- In the diagram, gear 'A' is actually two gears attached to each other
 - and they rotate around the same center.
- Compound gears may be used so that the final gear in a gear train rotates at the correct speed

Compound Gears

SOME PHYSICS

- Energy is the ability to do work
- Measured in Joules
- Work: The action of a force to cause displacement of an object
 - Work(J) = Force (N) x distance (m)
 - 1 joule = 1 Newton * 1 meter

- Here, in this figure, we can say that the work done upon the weight against gravity is
- (Mass × acceleration due to gravity) × Displacement
- $= (25 \times 2 \times 9.8) \times 2 = 980 \text{ J}$

- Who has done the most work?
 - Work = Force x Distance

- Who has done the most work?
 - Work = Force x Distance

- Torque is a measure of the force that can cause an object to rotate about an axis.
- TORQUE measures ROTATIONAL FORCE
- $TORQUE = FORCE \times DISTANCE$ = $FORCE \times Radius$
 - RADIUS of the rotational circumference.

Figure 1: Opening a door with maximum torque.

- Torque is the twisting force or rotational force applied by your hand that causes rotation
- You apply torque three times when you simply open a locked door:
 - turning the key, turning the doorknob, and pushing the door open so it swings on its hinges!

- Example: opening a door:
 - Torque is the angular force that the person exerts

- What if your door knob was closer to the hinge?
 - But you used the same force to open it?
 - It would be much harder to open
 - Torque is smaller
 - $TORQUE = FORCE \times DISTANCE = FORCE \times Radius$

Gearing of motors

- Combining different gears is used to change the speed and torque (turning force) of motors.
- Work, as defined in physics, is the product of force and distance.
 - Work = force × distance
 - Distance moved in the direction of the force
- Gears rotate around their axis in a certain velocity
 - Rotational Velocity is specified in Rotations Per Minute.

Gearing of Motors

- Torque provided by motor is typically constant
- For a wheel on the ground, torque needed to turn wheel equals to overcome friction
 - $Torque = F_f * Radius$
- For a larger wheel, smaller rotational force will be provided by same engine
 - Harder to turn larger wheels
 - Think of a truck vs. car, who has the bigger engine?

• Increase Torque/Reduce Speed

- Both the input gear (driven gear) and the output gear each have a set number of teeth
- The ratio between these two gears can be used to find the torque and speed of the output gear
 - if the input torque/speed to the driven gear is known.

- Output Speed = (Input gear / Output gear) *
 Input Speed
- Output Torque = (Output gear / Input gear) *
 Input Torque

Gears - example

- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What are the output speed and torque?

Gears - example

- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What are the output speed and torque?
 - Output speed = (10 /20) * 100 = 50 rpm
 - Output torque = (20 / 10) * 1 = 2 joules

Gears for Weight Lifting

Weight Lifting Test

Combining Gears

Combining Gears

- What happens to the speed?
- What happens to the torque?

Combining Gears

- What happens to the speed?
- What happens to the torque?

Gear System

Compound Gears

Gear Ratio

Gears – The Purpose

Gears are generally used for one of four different reasons:

- To reverse the direction of rotation
- To increase or decrease the speed of rotation
- To move rotational motion to a different axis
- To keep the rotation of two axis synchronized

Rotational and Linear Velocity

- Both wheels touch the ground and rotate at 120rpm
- Which wheel will travel further?
 - Larger wheel will travel further!
 - Can we calculate its linear velocity?

- Rotational Velocity (RV) to Linear Velocity (LV) conversion:
 - Find the Circumference (C) of the circles: $C = 2 \times \pi \times r$ inches (where r is the radius)
 - Where r = radius
 - Linear Velocity = $C \times Rotational \ Velocity$

- Find the Circumference (C) of the circles:
 - $C = 2 \times \pi \times r$ inches (where r is the radius)
- Larger circle: $C_1 = 2 \times \pi \times 6 = 37.70 \ inches$
- Smaller circle: $C_2 = 2 \times \pi \times 3 = 18.85$ inches

RV to LV conversion:

- Linear Velocity = C x Rotational Velocity
 (120 rpm speed of both circles)

 Larger wheel:
 - $V_l = 37.70 * 120 = 4524 inches/min$
 - Smaller wheel:
 - $V_2 = 18.85 * 120 = 2262 inches/min$

Rotational and Linear Velocity

- Note:
 - Rotational Velocity is specified in Rotations Per Minute.
 - Linear Velocity is usually specified in Feet Per Minute

Tangenial and Linear Velocity

 Tangential velocity is the linear speed of any object moving along a circular path

- Tangential velocity is the linear component of the speed of any object moving along a circular path.
 - The object moves at a distance r from the center
 => the body's velocity is directed tangentially at any instant.

Lab time!

Let's work with our robots!

