Extra credit problems

Math 427

- 0. Find a mistake or misprint in the book. (The score depends on the type of mistake.)
- 1. Describe all the motions of the Manhattan plane.
- 2. Construct a metric space \mathcal{X} and a distance preserving map $f: \mathcal{X} \to \mathcal{X}$ that is not a motion of \mathcal{X} .
- 3. Note that the following quantity

$$\tilde{\measuredangle}ABC = \begin{bmatrix} \pi & \text{if} & \measuredangle ABC = \pi \\ -\measuredangle ABC & \text{if} & \measuredangle ABC < \pi \end{bmatrix}$$

can serve as the angle measure; that is, the axioms hold if one changes everywhere \measuredangle to $\tilde{\measuredangle}.$

- (a). Show that \angle and $\tilde{\angle}$ are the only possible angle measures on the plane.
- (b). Show that without Axiom IIIc, this is not longer true.
- 4. Let M be the midpoint of the side [AB] of $\triangle ABC$ and M' be the midpoint of the side [A'B'] of $\triangle A'B'C'$. Assume C'A' = CA, C'B' = CB, and C'M' = CM. Prove that $\triangle A'B'C' \cong \triangle ABC$.
- 5. (solved) Show that a composition of three reflections in the sides of a nondegenerate triangle does not have a fixed point.
- 6. Consider triangle $\triangle ABC$ with $D \in (AC)$ such that $(BD) \perp (AC)$, and points N and M such that AN = DC, CM = AD, $(AN) \perp (AB)$ and $(CM) \perp (BC)$. Prove that M and N are equidistant form B.
- 7. Lines ℓ and m are tangent to two circles of radiuses r and R on such a way the circles are on one side of ℓ and on different sides of m. Let A and B be tangential points of ℓ and Q be the point of intersection ℓ and m. Show that

$$QA \cdot QB = R \cdot r.$$

8. Given two parallel lines ℓ and m and a point P, use only ruler to construct the line through P parallel to ℓ and m. (You can play with the java applet "Third parallel line" on anton-petrunin.github.io/birkhoff/car/.)

9. Let ABC be a nondegenerate triangele and $A' \in (BC), B' \in (CA), C' \in (AB)$ be the points such that

$$2\cdot \angle AA'B \equiv 2\cdot \angle BB'C \equiv 2\cdot \angle CC'A \equiv \tfrac{2}{3}\pi.$$

Show that the triangle formed by the lines (BB'), (CC'), and (AA'), is congruent to $\triangle ABC$.