Môn: TOÁN 10

Thời gian làm bài: 90 phút; Đề gồm 03 trang

Mã đề 136

A. PHÂN TRẮC NGHIỆM (30 câu; 6,0 điểm)

Câu 1: Cho tam thức $f(x) = ax^2 + bx + c$, $(a \ne 0)$, $\Delta = b^2 - 4ac$. Ta có $f(x) \le 0$ với $\forall x \in R$ khi và chỉ khi:

$$\mathbf{A.} \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} a \le 0 \\ \Delta < 0 \end{cases}$$

$$\mathbf{C.} \begin{cases} a < 0 \\ \Delta \ge 0 \end{cases}$$

$$\mathbf{D.} \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}$$

Câu 2: Trong mặt phẳng *Oxy*, phương trình nào sau đây là phương trình đường tròn?

A.
$$x^2 + 2y^2 - 4x - 8y + 1 = 0$$
.

B.
$$x^2 + y^2 - 4x + 6y - 12 = 0$$
.

C.
$$x^2 + y^2 - 2x - 8y + 20 = 0$$
.

D.
$$4x^2 + y^2 - 10x - 6y - 2 = 0$$
.

Câu 3: Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

A.
$$\frac{x^2}{2} + \frac{y^2}{3} = 1$$

A.
$$\frac{x^2}{2} + \frac{y^2}{3} = 1$$
 B. $\frac{x^2}{9} - \frac{y^2}{8} = 1$ **C.** $\frac{x}{9} + \frac{y}{8} = 1$

C.
$$\frac{x}{9} + \frac{y}{8} = 1$$

D.
$$\frac{x^2}{9} + \frac{y^2}{1} = 1$$

Câu 4: Giá trị nào của x cho sau đây **không** là nghiệm của bất phương trình $2x-5 \le 0$

A.
$$x = -3$$

B.
$$x = \frac{5}{2}$$

C.
$$x = 4$$

D.
$$x = 2$$

Câu 5: Cho hai điểm A(3;-1), B(0;3). Tìm tọa độ điểm M thuộc Ox sao cho khoảng cách từ Mđến đường thẳng AB bằng 1

A.
$$M\left(\frac{7}{2};0\right)$$
 và $M\left(1;0\right)$.

B.
$$M(\sqrt{13};0)$$
.

C.
$$M(4;0)$$
.

D.
$$M(2;0)$$
.

Câu 6: Trong mặt phẳng Oxy, đường tròn (C): $x^2 + y^2 + 4x + 6y - 12 = 0$ có tâm là:

A.
$$I(-2;-3)$$
.

C.
$$I(4;6)$$
.

D.
$$I(-4;-6)$$
.

Câu 7: Trong mặt phẳng Oxy, đường tròn đi qua ba điểm A(1;2), B(5;2), C(1;-3) có phương trình là:

A.
$$x^2 + y^2 + 25x + 19y - 49 = 0$$
.

B.
$$2x^2 + y^2 - 6x + y - 3 = 0$$
.

C.
$$x^2 + y^2 - 6x + y - 1 = 0$$
.

D.
$$x^2 + y^2 - 6x + xy - 1 = 0$$
.

Câu 8: Cho $\sin \alpha .\cos(\alpha + \beta) = \sin \beta$ với $\alpha + \beta \neq \frac{\pi}{2} + k\pi$, $\alpha \neq \frac{\pi}{2} + l\pi$, $(k, l \in \mathbb{Z})$. Ta có:

A.
$$\tan(\alpha + \beta) = 2\cot\alpha$$
.

B.
$$\tan(\alpha + \beta) = 2\cot\beta$$
.

C.
$$\tan(\alpha + \beta) = 2 \tan \beta$$
.

D.
$$\tan(\alpha + \beta) = 2 \tan \alpha$$
.

Câu 9: Rút gọn biểu thức $A = \frac{\sin 3x + \cos 2x - \sin x}{\cos x + \sin 2x - \cos 3x}$ $(\sin 2x \neq 0; 2\sin x + 1 \neq 0)$ ta được:

A.
$$A = \cot 6x$$
.

B.
$$A = \cot 3x$$
.

C.
$$A = \cot 2x$$
.

D.
$$A = \tan x + \tan 2x + \tan 3x$$
.

Câu 10: Mệnh đề nào sau đây đúng?

A.
$$\cos 2a = \cos^2 a - \sin^2 a$$
.

B.
$$\cos 2a = \cos^2 a + \sin^2 a$$
.

C.
$$\cos 2a = 2\cos^2 a + 1$$
.

D.
$$\cos 2a = 2\sin^2 a - 1$$
.

Câu 11: Trong mặt phẳng Oxy, đường thẳng d: x-2y-1=0 song song với đường thẳng có phương trình nào sau đây?

A.
$$x + 2y + 1 = 0$$
.

B.
$$2x - y = 0$$
.

C.
$$-x + 2y + 1 = 0$$
. **D.** $-2x + 4y - 1 = 0$.

D.
$$-2x + 4y - 1 = 0$$

Câu 12: Đẳng thức nào sau đây là đúng

$$\mathbf{A.} \, \cos \left(a + \frac{\pi}{3} \right) = \cos a + \frac{1}{2} \, .$$

B.
$$\cos\left(a + \frac{\pi}{3}\right) = \frac{1}{2}\sin a - \frac{\sqrt{3}}{2}\cos a$$
.

C.
$$\cos\left(a + \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\sin a - \frac{1}{2}\cos a$$
.

D.
$$\cos\left(a + \frac{\pi}{3}\right) = \frac{1}{2}\cos a - \frac{\sqrt{3}}{2}\sin a$$
.

Câu 13: Rút gọn biểu thức $A = \sin(\pi + x) - \cos(\frac{\pi}{2} + x) + \cot(2\pi - x) + \tan(\frac{3\pi}{2} - x)$ ta được:

A.
$$A = 0$$

B.
$$A = -2 \cot x$$

$$\mathbf{C.} \ A = \sin 2x$$

$$\mathbf{D.} \ A = -2\sin x$$

Câu 14: Cho tam giác $\triangle ABC$, mệnh đề nào sau đây đúng?

A.
$$a^2 = b^2 + c^2 + 2bc \cos A$$

B.
$$a^2 = b^2 + c^2 - 2bc \cos A$$

C.
$$a^2 = b^2 + c^2 - 2bc \cos C$$

D.
$$a^2 = b^2 + c^2 - 2bc \cos B$$

Câu 15: Tập nghiệm của bất phương trình $\sqrt{x-1} \le \sqrt{x^2-4x+3}$ là:

A.
$$\{1\} \cup [4; +\infty)$$

B.
$$(-\infty;1] \cup [3;+\infty)$$

C.
$$(-\infty;1] \cup [4;+\infty)$$

D.
$$[4; +\infty)$$

Câu 16: Cho tam giác $\triangle ABC$ có b = 7; c = 5, $\cos A = \frac{3}{5}$. Đường cao h_a của tam giác $\triangle ABC$ là:

A.
$$\frac{7\sqrt{2}}{2}$$
.

C. $8\sqrt{3}$.

D. $80\sqrt{3}$.

Câu 17: Cho $\cos \alpha = -\frac{2}{5} \left(\frac{\pi}{2} < \alpha < \pi \right)$. Khi đó $\tan \alpha$ bằng

A.
$$\frac{\sqrt{21}}{3}$$

B.
$$-\frac{\sqrt{21}}{5}$$

C.
$$\frac{\sqrt{21}}{5}$$

D.
$$-\frac{\sqrt{21}}{2}$$

Câu 18: Mệnh đề nào sau đây sai?

A.
$$\cos a \cos b = \frac{1}{2} \left[\cos \left(a - b \right) + \cos \left(a + b \right) \right]$$

A.
$$\cos a \cos b = \frac{1}{2} \Big[\cos \big(a - b \big) + \cos \big(a + b \big) \Big].$$
 B. $\sin a \cos b = \frac{1}{2} \Big[\sin \big(a - b \big) - \cos \big(a + b \big) \Big].$

C.
$$\sin a \sin b = \frac{1}{2} \left[\cos \left(a - b \right) - \cos \left(a + b \right) \right]$$

C.
$$\sin a \sin b = \frac{1}{2} \Big[\cos (a-b) - \cos (a+b) \Big]$$
. D. $\sin a \cos b = \frac{1}{2} \Big[\sin (a-b) + \sin (a+b) \Big]$.

Câu 19: Trong mặt phẳng Oxy, vécto nào dưới đây là một vécto pháp tuyến của đường thẳng d: $\begin{cases} x = -2 - t \\ y = -1 + 2t \end{cases}$

A.
$$\vec{n}(-2;-1)$$

B.
$$\vec{n}(2;-1)$$

C.
$$\vec{n}(-1;2)$$

D.
$$\vec{n}(1;2)$$

Câu 20: Tập nghiệm của bất phương trình $\frac{2x-1}{3x+6} \le 0$ là:

$$\mathbf{A.}\left(-\frac{1}{2};2\right)$$

$$\mathbf{B.} \left[\frac{1}{2}; 2 \right] \qquad \qquad \mathbf{C.} \left(-2; \frac{1}{2} \right]$$

$$\mathbf{C.}\left(-2;\frac{1}{2}\right]$$

D.
$$\left[-2; \frac{1}{2} \right]$$

Câu 21: Cho tam thức bậc hai $f(x) = -2x^2 + 8x - 8$. Trong các mệnh đề sau, mệnh đề nào đúng?

$$\mathbf{A}$$
, $f(x) < 0$ với mọi $x \in R$

B.
$$f(x) \ge 0$$
 với mọi $x \in R$

C.
$$f(x) \le 0$$
 với mọi $x \in R$

D.
$$f(x) > 0$$
 với mọi $x \in R$

Câu 22: Trong mặt phẳng Oxy, cho biết điểm M(a;b) (a>0) thuộc đường thẳng d: $\begin{cases} x=3+t \\ y=2+t \end{cases}$ và cách

đường thẳng $\Delta: 2x - y - 3 = 0$ một khoảng $2\sqrt{5}$. Khi đó a+b là:

Câu 23: Tập nghiệm S của bất phương trình $\sqrt{x+4} > 2-x$ là:

A.
$$S = (0; +\infty)$$

B.
$$S = (-\infty; 0)$$

C.
$$S = (-4;2)$$

D.
$$S = (2; +\infty)$$

Câu 24: Cho đường thẳng d: 2x + 3y - 4 = 0. Vécto nào sau đây là một vécto pháp tuyến của đường thẳng d?

A.
$$\vec{n} = (3:2)$$

A.
$$\overrightarrow{n_1} = (3;2)$$
. **B.** $\overrightarrow{n_2} = (-4;-6)$. **C.** $\overrightarrow{n_3} = (2;-3)$.

C.
$$\overrightarrow{n_3} = (2; -3)$$
.

D.
$$\overrightarrow{n_4} = (-2;3)$$
.

Câu 25: Trong các công thức sau, công thức nào đúng?

A.
$$\cos(a-b) = \cos a \cdot \sin b + \sin a \cdot \sin b$$
.

B.
$$\sin(a-b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
.

C.
$$\sin(a+b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
.

D.
$$\cos(a+b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$
.

Câu 26: Tìm côsin góc giữa 2 đường thẳng Δ_1 : 2x + y - 1 = 0 và Δ_2 : $\begin{cases} x = 2 + t \\ y = 1 - t \end{cases}$.

A.
$$\frac{\sqrt{10}}{10}$$
.

B.
$$\frac{3}{10}$$
.

C.
$$\frac{3}{5}$$
.

D.
$$\frac{3\sqrt{10}}{10}$$
.

Câu 27: Tất cả các giá trị của tham số m để bất phương trình $\frac{-x^2+2x-5}{x^2-mx+1} \le 0$ nghiệm đúng với mọi $x \in R$?

A.
$$m \in \emptyset$$

B.
$$m \in (-2; 2)$$

C.
$$m \in (-\infty; -2] \cup [2; +\infty)$$

D.
$$m \in [-2;2]$$

Câu 28: Trong mặt phẳng Oxy, viết phương trình chính tắc của elip biết một đỉnh là A₁ (-5; 0), và một tiêu điểm là $F_2(2; 0)$.

A.
$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$
.

A.
$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$
. **B.** $\frac{x^2}{29} + \frac{y^2}{25} = 1$. **C.** $\frac{x^2}{25} + \frac{y^2}{21} = 1$. **D.** $\frac{x^2}{25} + \frac{y^2}{29} = 1$.

C.
$$\frac{x^2}{25} + \frac{y^2}{21} = 1$$

D.
$$\frac{x^2}{25} + \frac{y^2}{29} = 1$$
.

Câu 29: Cho nhị thức bậc nhất f(x) = 23x - 20. Khẳng định nào sau đây đúng?

A.
$$f(x) > 0$$
 với $\forall x \in \left(-\infty; \frac{20}{23}\right)$

B.
$$f(x) > 0$$
 với $\forall x > -\frac{5}{2}$

C.
$$f(x) > 0$$
 với $\forall x \in R$

D.
$$f(x) > 0$$
 với $\forall x \in \left(\frac{20}{23}; +\infty\right)$

Câu 30: Trong mặt phẳng (Oxy), cho điểm M(2;1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là:

A.
$$2x - y - 3 = 0$$

B.
$$x - 2y = 0$$

C.
$$x + 2y - 4 = 0$$

D.
$$x - y - 1 = 0$$

B. PHẨN TỰ LUẬN (4,0 điểm)

Câu 1. (1,0 điểm)

Giải bất phương trình: $\frac{x^2 - 7x + 12}{x^2 + 4} \le 0$

Câu 2. (1,5 điểm)

a. Cho
$$\sin x = \frac{3}{5}$$
 với $\frac{\pi}{2} < x < \pi$ tính $\tan \left(x + \frac{\pi}{4} \right)$

b. Chứng minh:
$$\sin\left(a + \frac{\pi}{4}\right) \sin\left(a - \frac{\pi}{4}\right) = -\frac{1}{2}\cos 2a$$

Câu 3. (1,5 điểm)

Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD; các điểm M, N, P lần lượt là trung điểm của AB, BC và CD; CM cắt DN tại điểm I(5;2). Biết $P\left(\frac{11}{2};\frac{11}{2}\right)$ và điểm A có hoành độ âm.

- a. Viết phương trình tổng quát đường thẳng đi qua hai điểm I, P.
- b. Tìm toa đô điểm A và D.

---- HÉT ----

ĐÁP ÁN VÀ BIỂU ĐIỂM MÔN TOÁN 10

(Gồm 03 trang)

A. PHẦN TRẮC NGHIỆM (6,0 điểm)

Câu	Mã đề 136	Mã đề 208	Mã đề 359	Mã đề 482	Ghi chú
1	А	Α	D	С	
2	В	С	А	D	
3	D	А	С	С	
4	С	А	В	D	
5	Α	С	А	В	
6	Α	А	С	С	
7	С	D	А	А	
8	D	В	В	В	
9	С	С	Α	В	
10	Α	Α	В	В	
11	D	D	В	В	
12	D	В	D	В	
13	Α	D	В	С	
14	В	В	В	С	
15	Α	Α	С	D	
16	Α	D	В	С	
17	D	В	В	D	
18	В	В	D	Α	
19	Α	В	D	Α	
20	С	С	Α	Α	
21	С	Α	Α	Α	
22	В	Α	С	D	
23	Α	В	С	Α	
24	В	В	D	В	
25	В	D	С	D	
26	D	С	D	Α	
27	В	С	С	D	
28	С	С	Α	С	
29	D	D	В	Α	
30	С	D	D	Α	

Mỗi câu đúng: 0,2đ

B. PHẦN TỰ LUẬN (4,0 điểm)

CÂU	ĐÁP ÁN	ÐIỀM			
<u>Câu 1</u> .	Giải bất phương trình sau $\frac{x^2 - 7x + 12}{x^2 - 4} \le 0$				
(1,0 điểm)	Xét $f(x) = \frac{x^2 - 7x + 12}{x^2 - 4}$:TXĐ: $D = R \setminus \{-2, 2\}$				
	Bảng xét dấu $f(x)$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	Từ bảng xét dấu bất phương trình đã cho có tập nghiệm $S = (-2; 2) \cup [3; 4]$				
<u>Câu 2</u> .	1) Cho $\sin x = \frac{3}{5} \text{ v\'oi } \frac{\pi}{2} < x < \pi \text{ Tính } \tan(x + \frac{\pi}{4})$				
(1,5 điểm)	2) Rút gọn biểu thức $A = \sin(a + \frac{\pi}{4})\sin(a - \frac{\pi}{4})$				
1. (1,0 điểm)	Từ $\sin^2 x + \cos^2 x = 1 \Rightarrow \cos x = \pm \sqrt{1 - \sin^2 x} = \pm \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}$				
(-,)	$Vi \frac{\pi}{2} < x < \pi \text{ nên } \cos x = -\frac{4}{5} \text{ có } \tan x = -\frac{3}{4}$				
	Ta có $\tan(x + \frac{\pi}{4}) = \frac{\tan x + \tan \frac{\pi}{4}}{1 - \tan x \cdot \tan \frac{\pi}{4}} = \frac{-\frac{3}{4} + 1}{1 + \frac{3}{4}} = \frac{1}{7}$	0,25			
2. (0,5 điểm)	Chứng minh $\sin(a + \frac{\pi}{4})\sin(a - \frac{\pi}{4}) = -\frac{1}{2}\cos 2a$				
	C\(\delta \sin(a + \frac{\pi}{4})\sin(a - \frac{\pi}{4}) = \frac{1}{2} \left[\cos \frac{\pi}{2} - c\cos 2a \right] = -\frac{1}{2}\cos 2a				
<u>Câu 3.</u> (1,5 điểm)	Trong mặt phẳng tọa độ Oxy cho hình vuông $ABCD$; các điểm M , N và P lần lượt là trung điểm của AB , BC và CD ; CM cắt DN tại điểm $I(5;2)$. Biết $P\left(\frac{11}{2};\frac{11}{2}\right)$ và điểm A có hoành độ âm.				
	a. Viết phương trình tổng quát đường thẳng đi qua hai điểm I,P b. Tìm tọa độ điểm A và D.				
	$Ta có \overrightarrow{IP} = (\frac{1}{2}; \frac{7}{2})$				
	Đường thẳng IP nhận véc tơ $\overrightarrow{IP}(\frac{1}{2};\frac{7}{2})$ làm một véc tơ chỉ phương nên có	0,25			
	Véc tơ pháp tuyến $\vec{n}(7;-1)$ Phương trình IP : $7(x-5) - (y-2) = 0$ 7x - y - 33 = 0	0,25			

CÂU	ĐÁP ÁN				
	b) Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD, các điểm M, N và P lần lượt là trung điểm của AB, BC và CD; CM cắt DN tại điểm $I(5;2)$. Tìm tọa độ các đỉnh hình vuông, biết $P\left(\frac{11}{2};\frac{11}{2}\right)$ và điểm A có hoành độ âm. Tìm tọa độ A và D				
	Gọi H là giao điểm của AP với DN. Dễ chứng minh được CM \perp DN, tứ giác APCM là hình bình hành suy ra HP IC, HP là đường trung bình của tam giác ΔDIC , suy ra H là trung điểm ID; Có tam giác ΔAID cân tại A, tam giác ΔDIC vuông tại I nên AI = AD và IP = PD. $\Rightarrow \Delta AIP = \Delta ADP$ hay AI \perp IP.				
	Đường thẳng AI đi qua I và vuông góc IP nên có PT: $\begin{cases} x = 5 + 7t \\ y = 2 - t \end{cases}$ $IP = \left \overrightarrow{IP} \right = \frac{5\sqrt{2}}{2}$	0,25			
	Gọi $A(5 + 7t; 2 - t)$; $AI = 2IP$ suy ra $t = 1$ hoặc $t = -1$. Do A có hoành độ âm nên $t = -1$. $A(-2; 3)$.	0,25			
	Đường thẳng đi qua AP có PT: $x - 3y + 11 = 0$ Đường thẳng đi qua DN có PT: $3x + y - 17 = 0$ $\{H\} = AP \cap DN \Rightarrow H(4;5).$ H là trung điểm ID \Rightarrow D(3; 8) Vậy: A(-2; 3); D(3; 8).	0,25			

Lưu ý:

- Trên đây là hướng dẫn chấm bao gồm các bước giải cơ bản, học sinh phải trình bày đầy đủ, hợp logic mới cho điểm.
- Mọi cách giải khác đúng đều được điểm tối đa.
- Câu 3b nếu không có hình vẽ không chấm điểm.