

Cloud Native and Sustainability - Current state of Green System Architecture and Software

Cloud Native Linz, January 24th, 2024

Erik AuerDevOps Enthusiast, Founder of WhizUs
DevOps. Cloud Native. Kubernetes. Do it WhizUs!

Some words about me ...

Agenda

CO2 equivalent

Energy Market

Climate Change Monitoring & Regulations

Green Software & Principles

CO₂ Measurement

DEMO: Cloud Native Ways of Green Software Principles

Carbon dioxide equivalent

Carbon dioxide equivalent

Measurement of Greenhouse Gases

environmental impact of 1 tone greenhouse gases in comparison to the impact of 1 tone CO2

Abbreviation: CO2e, CO2eq

Energy Market

Market

Futures

- long term
- fixed prices
- ensures energy delivery continuity

Spot Market

- Short term (days/hours)
- for unexpected energy needs

OTC - Trading

trading volumes and pricing are reached individually

Power Plants

Energy Supplier

Consumer

Cost of electricity generation

measures how much carbon (CO2e) is emitted per kilowatt-hour (KWh) of electricity consumed

Standard Unit: gCO2eq/kWh

mix of lower- and the higher-carbon sources

Demand goes down: Prefer buy less energy from fossil fuel plants

Demand goes up: Prefer buy renewable energy

But: fossil fuel plants are more flexible

Example - Austria 2016

79% renewable energy

Climate Change Monitoring & Regulations

Climate Change Monitoring

Paris Climate Agreement

Goal: keep the rise in global mean temperature to 2 degree compared to preindustrial levels (preferred level of 1,5 degree)

United Nations Framework Convention on Climate (UNFCCC)

Preventing "dangerous" human interference with the climate system.

IPCC (Intergovernmental Panel on Climate Change)

Provide governments at all levels with scientific information that they can use to develop climate policies

EU Regulation

Rat der EU Pressemitteilung 21. Juni 2022 23:15

Neue Vorschriften für die Nachhaltigkeitsberichterstattung von Unternehmen: vorläufige politische Einigung zwischen Rat und Europäischem Parlament

Ab wann gelten die Vorschriften?

Die Anwendung der Vorschriften erfolgt in drei Stufen:

- am 1. Januar 2024 für Unternehmen, die bereits der Richtlinie über die Angabe nichtfinanzieller Informationen unterliegen:
- am 1. Januar 2025 für große Unternehmen, die derzeit nicht der Richtlinie über die Angabe nichtfinanzieller Informationen unterliegen;
- am 1. Januar 2026 für börsennotierte KMU sowie für kleine und nicht komplexe Kreditinstitute und firmeneigene Versicherungsunternehmen.

Es werden detailliertere
Berichtspflichten eingeführt und es
wird sichergestellt, dass große
Unternehmen verpflichtet sind,
Informationen zu
Nachhaltigkeitsfragen wie
Umweltrechten, sozialen Rechten,
Menschenrechten und GovernanceFaktoren zu veröffentlichen.

Green Software

Green Software

discipline at the intersection of climate science, software design, electricity markets, hardware, and data center design

carbon-efficient software, meaning it emits the least carbon possible

Principles: Energy Efficiency, Carbon Awarness, Hardware Efficiency

Principles

Energy Efficiency

Power usage effectiveness - computing energy vs. overhead supporting energy

15 kw / 10 kw = PUE 1.5

Energy Efficiency

Energy Proportionality – relationship between power and utilization

Carbon Awareness

Shift to Renewables caused by economic reasons

Accelerate by making renewable plants more profitable

Use more electricity when carbon intensity is lower

Carbon Awareness

DEMAND SHIFTING

Spatial Shifting

Moving computation to physical locations with lower carbon intensity.

DEMAND SHAPING

Low Carbon Intensity

increase the demand; do more in your applications.

Temporal Shifting

Shift to another time, when carbon intensity is lower.

High carbon Intensity

decrease demand; do less in your applications.

Embodied Carbon – carbon that is used during manufacturing and disposing hardware

Amortization – Extending the lifespan of hardware – Example: 4 years

Amortization - Extending the lifespan of hardware - Example: 5 years

Device Utilization

Measurement

Greenhouse Gas Protocol (GHG)

- **Scope 1**: Direct emissions from **operations** owned or controlled by the reporting organization, such as on-site fuel combustion or fleet vehicles.
- Scope 2: Indirect emissions related to emission generation of purchased energy, such as heat and electricity.
- Scope 3: Other indirect emissions from all the other activities you are engaged in.
 Including all emissions from an organization's supply chain; business travel for employees,
 and the electricity customers may consume when using your product.

Software Carbon Intensity (SCI)

DEMO

Using Kepler

- Still in Alpha
- No support for ARM64

```
(*|kind-kind:kepler-operator)→ tmp git:(v1alpha1) docker pull quay.io/sustainabl
e_computing_io/kepler:release-0.7.2
release-0.7.2: Pulling from sustainable_computing_io/kepler
no matching manifest for linux/arm64/v8 in the manifest list entries
```

Still unstable setup scripts

```
env:
    name: RELATED_IMAGE_KEPLER
    value: <KEPLER_IMG>
    image: quay.io/sustainable_computing_io/kepler-operator:0.10.0
    imagePullPolicy: IfNotPresent
    livenessProbe:
        httpGet:
```


Calculation of M:

need data for carbon emitted through the hardware;

data from supplier, e.g. environmental report for product

Excerpt from environmental report

Carbon footprint			
Mac mini (M1, 2020)		Mac mini (2018)	
Apple M1 chip with 256GB SSD storage	172 kg CO ₂ e	3.6GHz quad-core Intel Core i3 with 256GB SSD storage	263 kg CO₂e
Apple M1 chip with 512GB SSD storage	197 kg CO₂e	3.0GHz 6-core Intel Core i5 with 512GB SSD storage	284 kg CO2e

Assumption - 5 year hardware life span

Calculation of I:

environmental papers/analysis from country/region where server is placed

data from energy supplier ("Stromkennzeichnung")

Excerpt from "Stromkennzeichnung" of Wien Energie (Versorgermix)

Umweltauswirkungen	
CO2-Emissionen	108,00 g/kWh
radioaktiver Abfall	0,00 mg/kWh

Excerpt from statistics of Umweltbundesamt Austria

Beispiele für CO ₂ -Emissionen von Verbrauchern		Quelle
durchschnittlicher Jahres-Stromverbrauch – 1-Personen-Haushalt (1.927 kWh/a)	ca.	390 kg THGE-Control

I = 390 / 1927 = 0,20238... kgCO2e/kWh

Excerpt from "Stromkennzeichnung" of Wien Energie (Produktmix)

Energieträger	Anteil
Wasserkraft	77,59 %
Windenergie	12,33 %
feste oder flüssige Biomasse	5,03 %
Sonnenergie	1,93 %
erneuerbare Gase	3,12 %
Summe	100,00 %
Umweltauswirkungen	
CO2-Emissionen	0,00 g/kW
radioaktiver Abfall	0,00 mg/kW

Not suitable for calculation of CO2 emissions

Measurement of E:

Possible with Kepler

E = 0.197 * 365 = = 71 kWh


```
SCI = ((E * I) + M) per R
= (71 * 0,20238...) + 39,4 per R
= 53,76... kgCO2e per R
```


What is R?

R ...

... per Device per year

... per user

Cloud Native Technologies

Cloud Native Technologie	Description
Kepler	Support you to measure your carbon emission
Scaphandre	https://github.com/hubblo-org/scaphandre
KEDA	Autoscaling – to improve energy efficiency/hardware efficiency
CNCF Sustainability Landscape	https://tag-env-sustainability.cncf.io/landscape/

References

Description	URL
Green Software Basics	https://learn.greensoftware.foundation/
Umweltbundesamt Austria	https://www.umweltbundesamt.at/energie
Kepler	https://sustainable-computing.io/

Want more Cloud Native - Join Austrians first KCSP!

Erik AuerDevOps Enthusiast, Founder of WhizUs
DevOps. Cloud Native. Kubernetes. Do it WhizUs!

