Seminar 1

In this seminar you will study:

- Composition of Functions
- Inverse Functions
- Sketching Graphs of Functions
- Modulus Inequalities

Composition of functions

Example:

Given
$$f(x) = 2x + 3$$
 and $g(x) = x^2 + 1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

Solution:

$$(f \circ g)(x) = f(g(x))$$

$$= f(x^2 + 1)$$

$$= 2(x^2 + 1) + 3$$

$$= 2x^2 + 5$$

$$(g \circ f)(x) = g(f(x))$$

= $g(2x + 3)$
= $(2x + 3)^2 + 1$
= $4x^2 + 12x + 10$

Inverse functions

Example: Given $f(x) = \frac{2x-3}{x+4}$, $x \neq -4$, find the formula for $f^{-1}(x)$.

Solution:

Step 1: Let
$$y = f(x) = \frac{2x-3}{x+4}$$

Step 2: Express
$$x$$
 as a function of y : $y = \frac{2x-3}{x+4} \Rightarrow xy+4y=2x-3$ $\Rightarrow x(y-2)=-3-4y$ $\Rightarrow x = \frac{4y+3}{2-y}$

Step 3: $f^{-1}(x)$ is obtained by replacing y with x on the RHS:

$$f^{-1}(x) = \frac{4x+3}{2-x}, \ x \neq 2$$

Sketching graphs of functions

Example: Sketch the graph of $y = (x-3)^2 + 4$

-1

Solution:

(a) To start with,

the function $y = x^2$

(b) Shift the graph of draw the graph of $y = x^2$ to the right by 3 units to give $y = (x - 3)^2$

(c) Shift the resultant graph upwards by 4 units: $y = (x - 3)^2 + 4$

Modulus Inequalities

Example: Solve $|4x-1| \geq 7$.

Solution:

$$|4x-1| \ge 7 \quad \Rightarrow \quad \pm (4x-1) \ge 7$$

$$\Rightarrow (4x-1) \ge 7$$
 or $-(4x-1) \ge 7$

$$\Rightarrow 4x > 8$$

$$\Rightarrow x \ge 2$$

$$\Rightarrow -4x + 1 \ge 7$$

$$\Rightarrow -4x > 6$$

$$\Rightarrow -4x \ge 6$$

$$\Rightarrow x \le -\frac{3}{2}$$

Note the change in the inequality

Thus
$$x \leq -\frac{3}{2}$$
 or $x \geq 2$ i.e. $x \in \mathbb{R} - \left(-\frac{3}{2}, 2\right)$