

Figure 3.11 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot on the left and as the corresponding polar plot on the right.

which is called the *von Mises* distribution or the *circular normal*. Here the parameter θ_0 corresponds to the mean of the distribution, whereas m, which is known as the *concentration* parameter, is analogous to the inverse variance (i.e. the precision) for the Gaussian. The normalization coefficient in (3.129) is expressed in terms of $I_0(m)$, which is the zeroth-order modified Bessel function of the first kind (Abramowitz and Stegun, 1965) and is defined by

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp\{m\cos\theta\} \, d\theta.$$
 (3.130)

Exercise 3.31

For large m, the distribution becomes approximately Gaussian. The von Mises distribution is plotted in Figure 3.11, and the function $I_0(m)$ is plotted in Figure 3.12.

Now consider the maximum likelihood estimators for the parameters θ_0 and m for the von Mises distribution. The log likelihood function is given by

$$\ln p(\mathcal{D}|\theta_0, m) = -N \ln(2\pi) - N \ln I_0(m) + m \sum_{n=1}^{N} \cos(\theta_n - \theta_0).$$
 (3.131)

Setting the derivative with respect to θ_0 equal to zero gives

$$\sum_{n=1}^{N} \sin(\theta_n - \theta_0) = 0. \tag{3.132}$$

To solve for θ_0 , we make use of the trigonometric identity

$$\sin(A - B) = \cos B \sin A - \cos A \sin B \tag{3.133}$$

Exercise 3.32

from which we obtain