Homework 1

John J Li

2021 January 26

Please excuse this atrocious attempt at LaTex. I have just begun learning and I am still unfamiliar with some of the scripts.

But after 500+ lines of code and many hours, I have decided that perhaps my way of writing LaTex is not the most effecient method to do homework.

Problem 1:

a) 11001001010110

$$2^{13} + 2^{12} + 2^9 + 2^6 + 2^4 + 2^2 + 2 = \boxed{12886}$$

b) 0001011110

$$2^6 + 2^4 + 2^3 + 2^2 + 2^1 = \boxed{94}$$

c) 101010110010

$$2^{11} + 2^9 + 2^7 + 2^5 + 2^4 + 2 = 2738$$

Problem 2:

a) 823

Bit 0
$$\begin{vmatrix} \frac{823}{2} = (2)411 + 1 \Rightarrow 1 \end{vmatrix}$$

Bit 1 $\frac{411}{2} = (2)205 + 1 \Rightarrow 1$

Bit 2 $\frac{205}{2} = (2)102 + 1 \Rightarrow 1$

Bit 3 $\frac{102}{2} = (2)51 + 0 \Rightarrow 0$

Bit 4 $\frac{51}{2} = (2)25 + 1 \Rightarrow 1$

Bit 5 $\frac{25}{2} = (2)12 + 1 \Rightarrow 1$

Bit 6 $\frac{12}{2} = (2)6 + 0 \Rightarrow 0$

Bit 7 $\frac{6}{2} = (2)3 + 0 \Rightarrow 0$

Bit 8 $\frac{3}{2} = (2)1 + 1 \Rightarrow 1$

Bit 9 $\frac{1}{2} = (2)0 + 1 \Rightarrow 1$

Bit 10 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$

Bit 11 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$

823 in binary is 001100110111_2

b) 209

Bit 0
$$\frac{209}{2} = (2)104 + 1 \Rightarrow 1$$

Bit 1 $\frac{104}{2} = (2)52 + 0 \Rightarrow 0$
Bit 2 $\frac{52}{2} = (2)26 + 0 \Rightarrow 0$
Bit 3 $\frac{26}{2} = (2)13 + 0 \Rightarrow 0$
Bit 4 $\frac{13}{2} = (2)6 + 1 \Rightarrow 1$
Bit 5 $\frac{6}{2} = (2)3 + 0 \Rightarrow 0$
Bit 6 $\frac{3}{2} = (2)1 + 1 \Rightarrow 1$
Bit 7 $\frac{1}{2} = (2)0 + 1 \Rightarrow 1$
Bit 8 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$
Bit 9 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$
Bit 10 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$
Bit 11 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$

209 in binary is 000011010001_2

Problem 3:

a) 1011000101000010111₂

 $0101\ 1000\ 1010\ 0001\ 0111 \Rightarrow$

 $58A17_{16}$

b) 1938₁₀

Bit 0
$$\frac{1938}{16} = (16)124 + 2 \Rightarrow 2$$

Bit 1 $\frac{124}{16} = (16)7 + 12 \Rightarrow 12 \Rightarrow C$
Bit 2 $\frac{7}{16} = (16)0 + 7 \Rightarrow 7$

 $7C2_{16}$

Problem 4:

a) 2FACED

$$\begin{array}{c} 2\Rightarrow 2\times 16^5 \\ F\Rightarrow 15\times 16^4 \\ A\Rightarrow 10\times 16^3 \\ C\Rightarrow 12\times 16^2 \\ E\Rightarrow 14\times 16^1 \\ D\Rightarrow 13\times 16^0 \end{array}$$

$$2 \times 16^5 + 15 \times 16^4 + 10 \times 16^3 + 12 \times 16^2 + 14 \times 16^1 + 13 \times 16^0 = \boxed{3124461}$$

Problem 5:

$$G = B(C+A) \oplus ((A'B) + (B+C)')$$

If ABC = 110, respectively, G would equal 1

Problem 6:

The two functions are not equal

A	В	С	D	B'CD	ВС	AB'D	ABD'	Y
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	1	0	1	0	1
1	1	0	0	0	0	0	1	1
1	1	0	1	0	0	0	0	0
1	1	1	0	0	1	0	1	1
1	1	1	1	0	1	0	0	1

A	В	\mathbf{C}	D	A+B+C'	B+D	A+C+D	B'+C'+D'	Z
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	1	1	0
0	0	1	1	0	1	1	1	0
0	1	0	0	1	0	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0
1	0	0	1	1	1	1	1	1
1	0	1	0	1	0	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	0	0

Problem 7:

a can be either 0 or 1, but b has to be the opposite of a. For example, if a is 0 then b is 1 or vice versa.

Problem 8:

a) 101101 + 010101

b) 000101 + 010010

Problem 9:

a) +20

010100

b) -30

 $+30 \Rightarrow 011110$

100010

Problem 10:

a) 110000

 $110000 \Rightarrow 010000$

$$-16$$

b) 011010

Problem 11:

a) 7 + 18

$$+7 \Rightarrow 000111$$

 $+18 \Rightarrow 010010$

b) 12-29

$$+12 \Rightarrow 001100$$

$$+29 \Rightarrow 011101$$

 $\text{-}29 \Rightarrow 100011$

Problem 12:

A	В	ight] C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Problem 13:

- a) 2 great gross + 7 gross + 4 dozen + 10 cans
 - 2 great gross $\Rightarrow 2 \times 12^3$
 - $7~{\rm gross} \Rightarrow 7 \times 12^2$
 - $4~\mathrm{dozen} \Rightarrow 4\times12^1$

$$10 \text{ cans} \Rightarrow 10 \times 12^0$$

$$2 \times 12^3 + 7 \times 12^2 + 4 \times 12^1 + 10 \times 12^0 = \boxed{4522}$$

b) 6903₁₀

Bit 0
$$\begin{vmatrix} \frac{6903}{12} = (12)575 + 3 \Rightarrow 3 \end{vmatrix}$$

Bit 1 $\begin{vmatrix} \frac{575}{12} = (12)47 + 11 \Rightarrow 11 \end{vmatrix}$
Bit 2 $\begin{vmatrix} \frac{47}{12} = (12)3 + 11 \Rightarrow 11 \end{vmatrix}$
Bit 3 $\begin{vmatrix} \frac{3}{12} = (12)0 + 3 \Rightarrow 3 \end{vmatrix}$

3 great gross + 11 gross + 11 dozen + 10 cans

Problem 14:

Bit 0
$$\frac{2021}{2} = (2)1010 + 1 \Rightarrow 1$$

Bit 1 $\frac{1010}{2} = (2)505 + 0 \Rightarrow 0$
Bit 2 $\frac{505}{2} = (2)252 + 1 \Rightarrow 1$
Bit 3 $\frac{252}{2} = (2)126 + 0 \Rightarrow 0$
Bit 4 $\frac{126}{2} = (2)63 + 1 \Rightarrow 1$
Bit 5 $\frac{63}{2} = (2)31 + 1 \Rightarrow 1$
Bit 6 $\frac{31}{2} = (2)15 + 1 \Rightarrow 1$
Bit 7 $\frac{15}{2} = (2)7 + 1 \Rightarrow 1$
Bit 8 $\frac{7}{2} = (2)3 + 1 \Rightarrow 1$
Bit 9 $\frac{3}{2} = (2)1 + 1 \Rightarrow 1$
Bit 10 $\frac{1}{2} = (2)0 + 1 \Rightarrow 1$
Bit 10 $\frac{1}{2} = (2)0 + 1 \Rightarrow 1$
Bit 11 $\frac{0}{2} = (2)0 + 0 \Rightarrow 0$

2021 in unsigned binary is $\boxed{0111111100101_2}$

 $0111111100101 \Rightarrow 0111\ 1110\ 0101$

 $7E5_{16}$

Problem 15: Problem 16: