Type Author Citation Literature Cutoff Date

Full Evaluation J. K. Tuli, E. Browne NDS 157, 260 (2019) 1-Mar-2019 $Q(\beta^-) = -7946 \ 8; \ S(n) = 12553 \ 7; \ S(p) = 7842 \ 8; \ Q(\alpha) = -4257 \ 6$ 2017Wa10

1989Ku11: $^{12}C(^{72}Ge,2n\gamma)$, E=215 MeV. Transient-field method, deduced g-factors.

1979Al19: Measured $\sigma(\theta)$, neutron time-of-flight, for g.s. in (3 He,n), E=25.4 MeV, Enriched target.

Isotope shift, RMS radii, hyperfine structure studies: 1993He12, 1993Hi11, 1993Ku19, 1994Bu06, 1994Lo12, 1990Bu12 (also

Theoretical calculations:

2016Da01 SDB band-head spin.

2016Mo18 Charge and mass rms radii.

2015Sa26 Low-lying levels, bands pn interacting boson model.

2014Zh43 Deformation parameter.

2010Fa08,2010ZhZQ,2009Fa14 spin-dependence of g-factors in gs band.

1988Si06), 1987Ea01 (also 1986Ea01), 1987An02 (also 1986An39).

2008Mi17 Half-life shell model.

2003Me26 2⁺ states, g-factors.

2003ReZZ Studied SDB.

2002Bu13 SDB transition quadrupole moments.

2002Li18 SDB transition energies, moements of inertia.

1999Gu11 Calculated cluster-decay probability.

1999Sa46 Hartree-Fock plus RPA.

1997Da16 SD band data, cranked-shell model.

1995Ba45 RMS radii, mean field.

1995Ba78 level energy vs deformation, constrained Hartree-Fock.

1995La07 relativistic mean-filed theory.

1994Do19 levels, mean field.

1994Iw05 level energies, Hartree Fock.

1994Na09 quasi-particle RPA.

1991Ch01 structure of superdeformed GDR.

1991Bo27, 1985Bo36, 1985Na02 microscopic analysis of deformation.

1990Ba11, 1983Bu09, 1984He07, 1995Ke09, 1996Ca10,1997Su08 interacting-boson model.

1982Fu03 cranked-shell model.

1983Ta03 pairing vibrations.

1980Ca23 Hartree-Fock calculation of binding energy and charge radius.

1971Ki16, 1973Og01 shell-model calculations.

82Sr Levels

Cross Reference (XREF) Flags

A $^{82}Y \beta^{+}$ decay E $^{84}Sr(p,t)$ B $^{56}Fe(^{29}Si,2pn\gamma)$ F $^{80}Kr(\alpha,2n\gamma)$ C $^{52}Cr(^{34}S,2p2n\gamma)$ G $^{58}Ni(^{30}Si,\alpha 2p\gamma),(^{28}Si,4p\gamma):SD$ D $^{70}Ge(^{16}O,2n2p\gamma)$

 $\begin{array}{cccc}
\underline{\text{E(level)}^{\dagger}} & \underline{\text{J}^{\pi \ddagger}} & \underline{\text{T}_{1/2}}^{\textcircled{@}} & \underline{\text{XREF}} \\
0^{d} & 0^{+} & 25.35 \text{ d } 3 & \underline{\text{ABCDEF}}
\end{array}$

Comments

%ε=100
T_{1/2}: from T_{1/2}=25.36 d *3* (HPGe, 2009Pi02; Ge(Li) 1987Ho06), 25.34 d *2* (ic, 2009Pi02), 25.34 d *5* (1987Ju02). others: 25.55 d *15* (1978Gr17) 25.0 d *4* (1958Sa20), 25.5 d *5* (1953Kr10).

Continued on next page (footnotes at end of table)

⁸²Sr Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{@}$	XREF	Comments
573.54 ^d 8	2+	8.9 ^{&} ps <i>4</i>	ABCDEF	$\Delta < r^2 > (^{88}Sr - ^{82}Sr) = 0.179 \text{ fm}^2$ 24 (1990Bu12,1988Si06); 0.182 fm ² 6 (1988Si06, deduced from data of 1987Ea01,1986Ea01); 0.169 fm ² 13 or 0.220 fm ² 15 (1987An02,1986An39). $\Delta < r^2 > (^{83}Sr - ^{82}Sr) = -0.017 \text{ fm}^2$ 7 (1996Li25). $\Delta < r^2 > (^{82}Sr - ^{81}Sr) = -0.053 \text{ fm}^2$ 8 (1996Li25). $\mu = +0.88$ 38 (2014Ku10)
				g=+0.44 <i>19</i> (2014Ku10) measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in ¹² C(⁷⁸ Kr,2αγ). Other g=0.47 <i>7</i> (2008Yu04,2010Fa08); values of g factors were read from figure 1 of 2008Yu04. J ^π : L(p,t)=2. T _{1/2} : other: 10.7 ps <i>21</i> from 1996Jo05 In ⁵⁸ Ni(²⁷ Al,3p), while studying ⁸² Y.
1175.71 ^c 8 1310.89 <i>13</i>	2 ⁺ 0 ⁺	7.5 ^{&} ps 24 <3.5 ns	ABCDEF A E	J^{π} : L(p,t)=2. J^{π} : L(p,t)=0.
J		0_		$T_{1/2}$: from $\gamma\gamma$ and $\beta\gamma$, ^{82}Y β^+ decay.
1328.54 ^d 10	4+	1.0 ^{&} ps 2	BCD F	 μ=+2.1 16 (2014Ku10) g=+0.53 39 (2014Ku10) measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in ¹²C(⁷⁸Kr,2αγ). Other g=0.46 8 (2008Yu04,2010Fa08); values of g factors were read from figure 1 of 2008Yu04. J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ).
1688.96 ^b 11	3+		BCD F	J^{π} : J=3 from $\gamma(\theta)$ of 1115 γ in (16 O,2n2p γ); E1 γ from 4 $^{-}$.
1865 5	2+	- 2 &r	A E	J^{π} : L(p,t)=2.
1996.02 ^c 10 2195 5	4 ⁺ 2 ⁺	1.3 ^{&} ps 4	BCD F E	J^{π} : stretched E2 cascade indicated by angular distribution and polarization in ($^{16}O,2n2p\gamma$). J^{π} : L(p,t)=2.
2229.47 ^d 11	6 ⁺	0.37 ps +15-11	BCD F	μ =3.5 5 (2008Yu04)
222).41	Ü	0.57 ps 175 77	BCD T	μ: From g=0.58 8 (2008 Yu04,2010 Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸ Ni(²⁸ Si,4pγ); values of g factors were read from figure 1 of 2008 Yu04. Jπ: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶ O,2n2pγ).
f				$T_{1/2}$: other value: 0.9 ps <i>I</i> from RDM, 70 Ge(16 O,2n2p γ).
2401.82^{f} 10	3 ⁻		B DE	J^{π} : L(p,t)=3.
2525.80 ^b 12 2665 5	5 ⁺ 0 ⁺		BCD E	J^{π} : $L(p,t)=0$.
2817.31^{f} 11	5-	3.0 ^{&} ps 6	BCDEF	μ =+2 2 (2014StZZ)
				 J^π: from γ(θ) and polarization in (¹⁶O,2n2pγ) indicating E1 transition to 4⁺. μ: From g-factor=+0.3 4 (1989Ku11), transient-field method.
2824.40 ^j 12	4-		BCD	J^{π} : based on $\gamma(\theta)$ and polarization of the 1136-keV decay γ , $^{70}\text{Ge}(^{16}\text{O},2\text{p}2\text{n}\gamma)$.
2836.26 ^c 12	6+	0.6 ^{&} ps 4	BCD F	J^{π} : stretched E2 cascade indicated by angular distribution and polarization in ($^{16}O,2n2p\gamma$).
2885 <i>5</i> 2920 <i>5</i>	(2 ⁺)		E E	J^{π} : $L(p,t)=(2)$.
3006.91^{i} 12	4-		В	J^{π} : D γ' s to 3 ⁺ and 4 ⁺ levels; decays to 3 ⁻ .
3073.28 ^g 14	(5 ⁻)		В	J^{π} : tentative assignment from the seven linking gammas which connect this state to 4 ⁺ , 6 ⁺ , 5 ⁻ , 6 ⁻ , and 7 ⁻ states. The four DCO ratios measured in (²⁹ Si,2pn γ) are consistent with this assignment.

⁸²Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{@}$	XREF	Comments
3086.23 ^j 12	6-		BCD	J ^{π} : γ to (5) ^{$-$} shows ΔJ=1 angular distribution, (¹⁶ O,2p2n γ); γ to 4 ^{$-$} is consistent with stretched E2.
3142.30 ^h 22	(5^{-})		В	J^{π} : fed by 465 γ from 7 ⁻ , and decays to 4 ⁺ .
3242.82 ^d 12	8+	0.24 ps +10-6	BCD F	 μ=6.6 10 (2008Yu04) μ: From g=0.82 12 (2008Yu04,2010Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸Ni(²⁸Si,4pγ); values of g factors were read from figure 1 of 2008Yu04. J^π: stretched E2 γ to 6⁺ state. g-factor=+0.7 1 (1989Ku11) transient-field method. T_{1/2}=0.76 ps 14 (1989Ku11).
3339.57 ⁱ 12	6-		B F	μ =+5.4 6 μ : From g-factor=+0.9 <i>I</i> (1989Ku11), transient-field method.
3476.96 ^b 15	7+		BCD	
3511.15 <i>13</i>	(7)-		CD	J^{π} : stretched E2 γ cascade indicated by angular distribution and polarization in (^{16}O ,2n2p γ).
3525.75 ^f 12	7-		BCD	J^{π} : from $\gamma(\theta)$ in (16 O,2n2p γ), consistent with DCO ratios of decay γ' s obtained in (29 Si,2pn γ).
3565.75 ⁸ 13	7-		BCD	J^{π} : DCO ratio of 801γ from 9 ⁻ state is consistent with Q.
3607.94 ^h <i>13</i>	7-		BCD	J^{π} : DCO ratio of 758 γ from 9 ⁻ state is consistent with Q.
3622.78 ^c 12	8+	0.7 ^{&} ps 4	BCD F	 μ=+5.6 8 (2014StZZ) J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ). μ: From g-factor=+0.7 <i>I</i> (1989Ku11), transient-field method.
3686.07 ^e 15	(8 ⁺) [#]		BCD F	J ^{π} : $\gamma(\theta)$ indicates probable ΔJ=0 transition to 8 ⁺ . DCO ratio of γ to 6 ⁺ is consistent with Q.
4033.49 ⁱ 15	8-		В	J^{π} : DCO ratio of γ to 6^- is consistent with Q.
4142.60 ^{<i>j</i>} 14 4248.4 10	8-		B C	J^{π} : stretched E2 γ to 6 ⁻ state.
4350.30 ^d 15	10 ⁺	0.14 ps +6-4	BCD F	J^{π} : DCO ratio of γ to 8^{+} is consistent with Q, M2 ruled out by RUL.
4366.82 ^f 14	9-		BCD	J^{π} : 841 γ to 7 ⁻ is consistent with Q.
4387.09 <i>14</i>	(9-)	0	CD	J^{π} : stretched E2 cascade indicated by angular distribution in (16 O,2n2p γ).
4423.85 ^c 14	10+	0.9 ^{&} ps 2	BCD	 μ=+11 5 (2014StZZ) J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ). μ: From g-factor=+1.1 5 (1989Ku11), transient-field method.
4472.85 ⁸ 14	9-		В	J^{π} : from DCO ratios of decay γ' s.
4492.5 ^b 4	9+		В	J^{π} : DCO ratio of γ to 7^+ is consistent with Q.
4637.34 ^e 18	$(10^+)^{\#}$	0.04	BC	J^{π} : DCO ratio of 1395 γ to 8 ⁺ state is consistent with Q.
4909.39 ⁱ 18	10-	0.36 ps + 11 - 8	BC	J^{π} : stretched E2 γ to 8 ⁻ state.
$5237.4^{j} 4$ $5308.15^{f} 17$	10 ⁻ 11 ⁻	0.30 ps +10-7	B BCD	J^{π} : stretched E2 γ to 9^- state.
5333.8 <i>15</i> 5392.31? <i>18</i>	12+	0.22	C D	W 104
5427.12 ^c 17 5468.9 10 5479.09 ^g 25	12 ⁺ (11 ⁻)	0.33 ps +11-8	BCD B B	J^{π} : stretched E2 γ to 10 ⁺ state.
5569.0 ^d 4 5738.2 ^e 5	12 ⁺ (12 ⁺) [#]	0.06 ps 6	ВС	J^{π} : DCO ratio of γ to 10^+ is consistent with Q, M2 ruled out by RUL.
5738.2° 5 5913.9 ⁱ 4	12-)"	0.27 ps +11-8	BC BCD	J^{π} : stretched E2 γ to 10^{-} state.
6367.2 ^f 3	13-	0.27 ps + 11 - 8 0.15 ps + 8 - 6	BCD BCD	J^{π} : stretched E2 γ to 10 state.
6450.1 11	1.0	0.13 ps ±0=0	В	J. Successed L2 y to 11 State.

82 Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
6543.6 ^c 4 6556.4 18	14+	0.25 ps +11-9	BCD C	J^{π} : stretched E2 γ to 12 ⁺ state.
6564.8 ⁸ 4	(13^{-})		В	
6937.0 ^d 5	(14^{+})	0.04 ps +6-3	BC	
7066.5 ⁱ 5 7534.6 11	14-	0.08 ps +5-4	BC B	J^{π} : stretched E2 γ to 12 ⁻ state.
7545.5 ^f 4 7788.2 ^g 5	15 ⁻ (15 ⁻)	0.12 ps 5	BC B	J^{π} : stretched E2 γ to 13 ⁻ state. J^{π} : DCO ratio of γ to (13 ⁻) state is consistent with Q, M2 ruled out by RUL.
7812.0 ^c 6 7936.1 20	16 ⁺	0.09 ps +5-4	BC C	J^{π} : stretched E2 γ to 14 ⁺ state.
8377.6 ⁱ 6	16-	0.14 ps 6	ВС	J^{π} : stretched E2 γ to 14 ⁻ state.
8434.6 ^d 6	(16^+)	<0.18 ps	ВС	J^{π} : stretched E2 γ to (14 ⁺) state.
8842.0 <i>f</i> 7	17-	0.08 ps 6	ВС	J^{π} : stretched E2 γ to 15 ⁻ state.
9167.4 ^g 7 9237.8 ^c 7 9478.1 23	(17 ⁻) 18 ⁺	0.05 ps +7-4	B BC C	J^{π} : DCO ratio of γ to 16 ⁺ is consistent with Q, M2 ruled out by RUL.
9842.6 ⁱ 12 10061.6 12	(18 ⁻) (18 ⁺)	<0.19 ^a ps	BC C	
10258.8 ^f 9 10709.4 ^g 12	(19 ⁻) (19 ⁻)	0.08 ps +6-4	BC B	
10872.4 ^c 9	(20^{+})	<0.21 ^a ps	BC	
11379.6 ⁱ 16	(20^{-})		BC	
11798.4 ^f 10	(21^{-})	<0.06 ^a ps	BC	
11837.6? <i>16</i>	(20^{+})		C	
12758.8 <i>13</i>	(22^{+})		C	
13005.7 ⁱ 19 13489.4 ^f 14	(22-)		BC	
13489.4 ⁷ 14 14832.7? 21	(23 ⁻) (24)		BC C	
14910.8 17	(24) (24^+)		C	
15409.4 <i>17</i>	(25)		C	
17246.9? 20	(26-)		C	
17616.5 20 x ^k	(27)		С	
	J		(J^{π} : ≈ 18 from 2003Le08. Others: $J \approx (19)$ from 1995Sm08.
1432.0+x ^k 10	J+2			
$3027.0+x^{k}$ 15	J+4			
$4783.0+x^{k}$ 18	J+6		(
$6703.1 + x^{k} 20$	J+8		(
$8780.1 + x^{k}$ 23	J+10		(
$11010.1 + x^{k} 25$	J+12		(
13393+x ^k 3	J+14		(
15938+x ^k 3	J+16		(
18674+x? ^k 3	J+18		(

[†] Levels with $\Delta E=5$ keV are from (p,t), all others are deduced from the adopted gammas. [‡] Within each band, the firm assignments come from DCO ratios in (29 Si,2pn γ), except as noted otherwise, whereas the uncertain assignments for the high energy members indicate that the DCO ratios are either not available or not conclusive.

⁸²Sr Levels (continued)

- # Tentative assignment in (29Si,2pnγ) supported by DCO ratios; positive parity from decay to positive parity states only.
- [®] From DSAM in ⁵⁶Fe(²⁹Si,2pnγ), unless stated otherwise.
- $^{\&}$ From recoil-distance Doppler shift, $^{66}Zn(^{19}F,p2n\gamma)$ (1981DeYW).
- ^a Effective half-life, not corrected for direct or side feeding (1994Ta01).
- ^b Band(A): π =+.
- ^c Band(B): π =+.
- d Band(C): π=+.
- ^e Band(D): π =+.
- ^f Band(E): π =-. Yrast odd-spin band.
- ^g Band(F): π =-. Second odd-spin band.
- ^h Band(G): π =-. Third odd-spin band.
- ⁱ Band(H): π =-. Yrast even-spin band.
- ^j Band(I): π =-. Second even-spin band.
- ^k Band(J): SD band (1995Sm08,1998Yu01,2003Le08). Q(intrinsic)=3.54 +15−14 (1999Le56,2003Le08,2004La18), 4.5 9 (1998Yu01). $β_2$ =0.50 from Q(intrinsic)=4.5 (1999Le56), calculated Q(intrinsic)=3.3 2 (for ⁷⁰Ge+¹²C cluster), 5.6 2 (for ⁵⁴Cr+²⁸Si cluster) (2001Bu02). Percent population=1.0-1.5 (1995Sm08), ≈2.5 (1998Yu01), 0.63 (2003Le08). Probable configuration= $v5^2π5^1(π1/2[431] α=-1/2)$ with π=-, α=1 (1998Yu01), $v5^1π5^0$ (1999Le56,2003Le08).

$\gamma(^{82}Sr)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} &	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^c	δ^{cf}	$\alpha^{m{e}}$	Comments
573.54	2+	573.64# 10	100	0 0+	E2		0.00245	$\alpha(K)$ =0.00216 3; $\alpha(L)$ =0.000243 4; $\alpha(M)$ =4.07×10 ⁻⁵ 6 $\alpha(N)$ =5.07×10 ⁻⁶ 7; $\alpha(O)$ =3.16×10 ⁻⁷ 5 B(E2)(W.u.)=48.3 22
1175.71	2+	602.15 [#] <i>10</i>	100 ^b 7	573.54 2+	M1(+E2)	+1.2 14	0.00196 24	B(M1)(W.u.) \leq 0.012; B(E2)(W.u.) \leq 49 α (K)=0.00173 21; α (L)=0.00019 3; α (M)=3.2×10 ⁻⁵ 5 α (N)=4.0×10 ⁻⁶ 6; α (O)=2.6×10 ⁻⁷ 3
		1175.6 <i>I</i>	10.4 8	0 0+	[E2]		4.07×10 ⁻⁴	B(E2)(W.u.)=0.15 5 α (K)=0.000356 5; α (L)=3.86×10 ⁻⁵ 6; α (M)=6.47×10 ⁻⁶ 9 α (N)=8.12×10 ⁻⁷ 12; α (O)=5.28×10 ⁻⁸ 8; α (IPF)=5.06×10 ⁻⁶ 8
1310.89	0^{+}	737.35 [‡] <i>10</i>	100	573.54 2 ⁺				
1328.54	4+	754.9 1	100	573.54 2+	E2		1.15×10 ⁻³	B(E2)(W.u.)=109 22 α (K)=0.001020 15; α (L)=0.0001127 16; α (M)=1.89×10 ⁻⁵ 3 α (N)=2.36×10 ⁻⁶ 4; α (O)=1.503×10 ⁻⁷ 21
1688.96	3 ⁺	359.9 <i>3</i> 512.9 2 1114.9 <i>I</i>	9 <i>3</i> 80 <i>12</i> 100 <i>15</i>	1328.54 4 ⁺ 1175.71 2 ⁺ 573.54 2 ⁺				
1865	2+	688.9 [‡] 4	31 19	1175.71 2+				
		1291.0 [‡] 6	100 19	573.54 2 ⁺				
		1865.3 [‡] <i>15</i>	31 19	$0 0^{+}$				
1996.02	4+	667.53 [#] 10	60 9	1328.54 4+	M1(+E2)	+0.3 7	0.00137 11	B(M1)(W.u.)=0.019 10; B(E2)(W.u.) \leq 25 α (K)=0.00122 10; α (L)=0.000132 12; α (M)=2.22×10 ⁻⁵ 20 α (N)=2.79×10 ⁻⁶ 24; α (O)=1.82×10 ⁻⁷ 12
		820.25 [#] 10	100 12	1175.71 2+	E2		9.34×10 ⁻⁴	B(E2)(W.u.)=34 <i>12</i> α (K)=0.000826 <i>12</i> ; α (L)=9.08×10 ⁻⁵ <i>13</i> ; α (M)=1.524×10 ⁻⁵ 22
								$\alpha(N)=1.91\times10^{-6} \ 3; \ \alpha(O)=1.219\times10^{-7} \ 17$
		1422.4 3	5 2	573.54 2+			4	
2229.47	6+	900.84 [#] <i>10</i>	100	1328.54 4+	E2		7.41×10^{-4}	B(E2)(W.u.)=1.2×10 ² +4-5 α (K)=0.000656 10; α (L)=7.18×10 ⁻⁵ 10; α (M)=1.205×10 ⁻⁵ 17
								$\alpha(N)=1.508\times10^{-6} \ 22; \ \alpha(O)=9.70\times10^{-8} \ 14$
2401.82	3-	712.4 [#] <i>I</i>	100 ^b 8	1688.96 3+				
2525.80	5+	1828.4 [#] <i>I</i> 529.8 2 837.1 <i>I</i>	29 ^b 8 13 4 100 22	573.54 2 ⁺ 1996.02 4 ⁺ 1688.96 3 ⁺				
2817.31	5-	1197.1 2 415.17 [#] 10	21 6 13 ^b 13	1328.54 4 ⁺ 2401.82 3 ⁻	[E2]		0.00655	$\begin{array}{l} \alpha(\mathrm{K}){=}0.00576~8;~\alpha(\mathrm{L}){=}0.000664~10;~\alpha(\mathrm{M}){=}0.0001115~16\\ \alpha(\mathrm{N}){=}1.377{\times}10^{-5}~20;~\alpha(\mathrm{O}){=}8.31{\times}10^{-7}~12 \end{array}$
1								

6

γ (82Sr) (continued)

						7(~-)	(**************************************	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} &	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{cf}	α^{e}	Comments
2817.31	5-	1489.00 [#] 10	100 ^b 13	1328.54 4+	E1		3.59×10 ⁻⁴	B(E1)(W.u.)= 3.2×10^{-5} 10 α (K)= 0.0001086 16; α (L)= 1.154×10^{-5} 17; α (M)= 1.93×10^{-6} 3 α (N)= 2.43×10^{-7} 4; α (O)= 1.602×10^{-8} 23; α (IPF)= 0.000237
2824.40	4-	422.6 <i>3</i> 828.4 2	7 2 16 <i>4</i>	2401.82 3 ⁻ 1996.02 4 ⁺				·
		1135.52 [#] 10	100 13	1688.96 3+	E1(+M2)	+0.03 5	2.11×10 ⁻⁴ 5	$\alpha(K)$ =0.000175 5; $\alpha(L)$ =1.86×10 ⁻⁵ 5; $\alpha(M)$ =3.12×10 ⁻⁶ 9 $\alpha(N)$ =3.93×10 ⁻⁷ 11; $\alpha(O)$ =2.58×10 ⁻⁸ 7; $\alpha(IPF)$ =1.430×10 ⁻⁵ 22
		1494.9 <i>3</i>	5 2	1328.54 4+				
2836.26	6+	606.65 [#] 10	50 ^b 3	2229.47 6+	M1(+E2)	+0.2 3	0.00170 7	B(M1)(W.u.)=0.05 4; B(E2)(W.u.) \leq 28 α (K)=0.00150 6; α (L)=0.000163 8; α (M)=2.74×10 ⁻⁵ 13 α (N)=3.45×10 ⁻⁶ 16; α (O)=2.26×10 ⁻⁷ 8
		840.24 [#] 10	100 ^b 8	1996.02 4+	E2		8.79×10 ⁻⁴	B(E2)(W.u.)=7.E+1 5 α (K)=0.000778 11; α (L)=8.54×10 ⁻⁵ 12; α (M)=1.434×10 ⁻⁵ 20 α (N)=1.79×10 ⁻⁶ 3; α (O)=1.148×10 ⁻⁷ 16
3006.91	4-	605.1 <i>1</i> 1010.7 2 1318.3 3 1677.6 4	60 20 20 10 100 20 40 10	2401.82 3 ⁻ 1996.02 4 ⁺ 1688.96 3 ⁺ 1328.54 4 ⁺				a(11)=1.77×10 3, a(0)=1.140×10 10
3073.28	(5 ⁻)	255.4 <i>3</i> 843.6 2 1077.4 2	7 7 64 14 100 21	2817.31 5 ⁻ 2229.47 6 ⁺ 1996.02 4 ⁺				
3086.23	6-	261.83 [#] 10 269.02 [#] 10 560.8 2	100 <i>9</i> 78 <i>9</i> 22 <i>4</i>	2824.40 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺				
3142.30	(5^{-})	1812.8 <i>4</i>	100	1328.54 4+				
3242.82	8+	1013.36# 10	100	2229.47 6+	E2		5.61×10 ⁻⁴	B(E2)(W.u.)= $1.0 \times 10^2 + 3 - 5$ α (K)= $0.000497 \ 7; \ \alpha$ (L)= $5.41 \times 10^{-5} \ 8; \ \alpha$ (M)= $9.08 \times 10^{-6} \ 13$ α (N)= $1.138 \times 10^{-6} \ 16; \ \alpha$ (O)= $7.36 \times 10^{-8} \ 11$
3339.57	6-	266.2 2 332.5 2 522.1 <i>I</i> 813.9 <i>I</i> 1110.3 2	4 <i>I</i> 8 2 100 <i>I</i> 2 16 <i>3</i> 16 <i>3</i>	3073.28 (5 ⁻) 3006.91 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺ 2229.47 6 ⁺				× × × × × × × × × × × × × × × × × × ×
3476.96	7+	951. <u>1</u> 5 [#] <i>10</i>	100	2525.80 5 ⁺				
3511.15	$(7)^{-}$	424 [@] g		3086.23 6-				
		694.04 <i>10</i>	100 7	2817.31 5	E2		1.44×10^{-3}	$\alpha(K)$ =0.001273 18; $\alpha(L)$ =0.0001413 20; $\alpha(M)$ =2.37×10 ⁻⁵ 4 $\alpha(N)$ =2.96×10 ⁻⁶ 5; $\alpha(O)$ =1.87×10 ⁻⁷ 3

Adopted Levels,	Gammas (continued)

γ (82Sr) (continued)

							/(")	(**************************************	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^C	δ^{cf}	α^e	Comments
3511.15	$(7)^{-}$	1281.1 [#] 2	4.6 ^b 8	2229.47	6+				
3525.75	7-	439.88 [#] <i>10</i>	8 2	3086.23	6-				
		451.9 <i>3</i>	4 1	3073.28					
		707.9 2	7 2	2817.31					
	_	1296.19 [#] <i>10</i>	100 12	2229.47		D(+Q)	+0.5 5		
3565.75	7-	479.3 2 492.7 <i>4</i>	17 <i>6</i> 1 <i>1</i>	3086.23 3073.28					
		748.3 2	1 <i>1</i> 14 <i>1</i>	2817.31					
		1336.5 2	100 13	2229.47					
3607.94	7-	465.4 2	30 8	3142.30					
		522.09 [#] 10	100 14	3086.23	6-	(M1+E2)	-0.7 5	0.0027 3	$\alpha(K)=0.00234$ 22; $\alpha(L)=0.00026$ 3; $\alpha(M)=4.4\times10^{-5}$ 5
		534.6 2	35 8	3073.28	(5-)				$\alpha(N)=5.5\times10^{-6} \ 6; \ \alpha(O)=3.5\times10^{-7} \ 3$
		771.8 2	68 68	2836.26					
		790.6 2	32 8	2817.31	5-				
		1378.6 2	73 19	2229.47					
3622.78	8+	379.96 [#] 10	8.8 ^b 9	3242.82					
		786.36 [#] <i>10</i>	100 <mark>b</mark> 7	2836.26	6+	E2		1.04×10^{-3}	$B(E2)(W.u.)=1.0\times10^2 6$
									$\alpha(K)=0.000918 \ 13; \ \alpha(L)=0.0001013 \ 15; \ \alpha(M)=1.699\times10^{-5}$
									24 $\alpha(N)=2.12\times10^{-6} \ 3; \ \alpha(O)=1.355\times10^{-7} \ 19$
		1393.5 [#] 1	18 <mark>b</mark> 6	2229.47	6+	[E2]		3.31×10^{-4}	$a(N)=2.12\times10^{-3}$, $a(O)=1.333\times10^{-19}$ B(E2)(W.u.)=1.0 7
		1393.3 1	10 0	2229.47	U	[E2]		3.31×10	$\alpha(K)=0.000249 \ 4; \ \alpha(L)=2.68\times10^{-5} \ 4; \ \alpha(M)=4.49\times10^{-6} \ 7$
									$\alpha(N)=5.65\times10^{-7} \text{ 8; } \alpha(O)=3.69\times10^{-8} \text{ 6; } \alpha(IPF)=5.01\times10^{-5} \text{ 7}$
3686.07	(8^{+})	443.28 [#] 10	100 15	3242.82					
		1456.2 [#] 3	36 11	2229.47					
4033.49	8-	507.9 3	8 2	3525.75 3339.57					
4142.60	8-	693.9 <i>1</i> 534.7 2	100 22 26 8	3607.94					
1112.00	O	577.0 2	31 8	3565.75					
		617.1 4	8 3	3525.75	7-				
		1056.3 <i>1</i>	100 23	3086.23	6-	E2 ^d		5.10×10^{-4}	$\alpha(K)=0.000452$ 7; $\alpha(L)=4.91\times10^{-5}$ 7; $\alpha(M)=8.25\times10^{-6}$ 12 $\alpha(N)=1.034\times10^{-6}$ 15; $\alpha(O)=6.69\times10^{-8}$ 10
4248.4		1005.6 [@]	100	3242.82	8+				4(1) 1100 1110 12, 4(0) 0107/110 10
4350.30	10 ⁺	1107.47 [#] <i>10</i>	100	3242.82	8+	(E2)		4.60×10^{-4}	$B(E2)(W.u.)=1.1\times10^2 +4-5$
									$\alpha(K)$ =0.000406 6; $\alpha(L)$ =4.41×10 ⁻⁵ 7; $\alpha(M)$ =7.40×10 ⁻⁶ 11 $\alpha(N)$ =9.28×10 ⁻⁷ 13; $\alpha(O)$ =6.02×10 ⁻⁸ 9; $\alpha(IPF)$ =8.58×10 ⁻⁷ 13
4366.82	9-	758.8 [#] 1	30 <mark>b</mark> 3	3607.94	7-				
	-		-		-				

 ∞

γ (82Sr) (continued)

\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	Ι _γ &	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments
9-	801.11 [#] <i>10</i>	100 ^b 8	3565.75	7-	(E2)	9.91×10 ⁻⁴	$\alpha(K)$ =0.000876 13; $\alpha(L)$ =9.65×10 ⁻⁵ 14; $\alpha(M)$ =1.620×10 ⁻⁵ 23 $\alpha(N)$ =2.02×10 ⁻⁶ 3; $\alpha(O)$ =1.293×10 ⁻⁷ 19
	841.3 [#] <i>3</i>	32 ^b 4	3525.75	7-			
(9-)	876.0 [#] 1	100 ^b 18	3511.15 ((7)-	(E2)	7.93×10^{-4}	$\alpha(K)=0.000702 \ 10; \ \alpha(L)=7.69\times10^{-5} \ 11; \ \alpha(M)=1.291\times10^{-5} \ 18$ $\alpha(N)=1.616\times10^{-6} \ 23; \ \alpha(O)=1.037\times10^{-7} \ 15$
	1144.20 [#] <i>10</i>	88 <mark>b</mark> 7	3242.82 8	8+			
10+	801.11 [#] <i>10</i>	100 12	3622.78 8	8+	(E2)	9.91×10 ⁻⁴	B(E2)(W.u.)=78 22 α (K)=0.000876 13; α (L)=9.65×10 ⁻⁵ 14; α (M)=1.620×10 ⁻⁵ 23 α (N)=2.02×10 ⁻⁶ 3; α (O)=1.293×10 ⁻⁷ 19
	1180.98 [#] 10	16 2	3242.82	8+	[E2]	4.04×10^{-4}	$\alpha(K)$ =0.000353 5; $\alpha(L)$ =3.82×10 ⁻⁵ 6; $\alpha(M)$ =6.41×10 ⁻⁶ 9 $\alpha(N)$ =8.04×10 ⁻⁷ 12; $\alpha(O)$ =5.23×10 ⁻⁸ 8; $\alpha(IPF)$ =5.65×10 ⁻⁶ 8 B(E2)(W.u.)=1.8 5
9-	907.0 <i>I</i> 947.2 2	62 8 44 4 100 8	3525.75	7-			
9+							
(10^+)	213.5 3	10 3					
		38 7					
		72 10					
10-					A	4	2
	875.9 <i>1</i>	100	4033.49 8	8-	E2 ^a	7.94×10 ⁻⁴	B(E2)(W.u.)= $1.4 \times 10^2 + 4 - 5$ α (K)= $0.000702 \ 10$; α (L)= $7.70 \times 10^{-5} \ 11$; α (M)= $1.292 \times 10^{-5} \ 18$ α (N)= $1.616 \times 10^{-6} \ 23$; α (O)= $1.037 \times 10^{-7} \ 15$
10^{-}	1094.8 <i>3</i>	100	4142.60 8	8-			, , , , , , , , , , , , , , , , , , , ,
11-	941.32 [#] <i>10</i>	100	4366.82	9-	E2	6.67×10 ⁻⁴	$\alpha(K)=0.000590 \ 9; \ \alpha(L)=6.45\times10^{-5} \ 9; \ \alpha(M)=1.082\times10^{-5} \ 16$ $\alpha(N)=1.356\times10^{-6} \ 19; \ \alpha(O)=8.73\times10^{-8} \ 13$ $\alpha(N)=1.2\times10^{2} +3-4$
	1085.4 [@]	100	4248.4				
	1005.43 [#] <i>g</i> 10	100		(9-)			
12+	1003.26 [#] 10	100	4423.85	10+	E2	5.74×10^{-4}	B(E2)(W.u.)=80 +20-27 α (K)=0.000508 8 ; α (L)=5.54×10 ⁻⁵ 8 ; α (M)=9.30×10 ⁻⁶ 13 α (N)=1.165×10 ⁻⁶ 17 ; α (O)=7.53×10 ⁻⁸ 11
	1045 /	100	4423.85	10 ⁺			$u(11)-1.10J \wedge 10 = 1/1, u(0)-1.JJ \times 10 = 11$
(11^{-})		100 7					
	1128.8 <i>3</i>	62 4	4350.30	10 ⁺			
12+	1218.7 3	100			[E2]	3.83×10^{-4}	$\alpha(K)=0.000330\ 5;\ \alpha(L)=3.56\times10^{-5}\ 5;\ \alpha(M)=5.98\times10^{-6}\ 9$ $\alpha(N)=7.51\times10^{-7}\ 11;\ \alpha(O)=4.89\times10^{-8}\ 7;\ \alpha(IPF)=1.093\times10^{-5}\ 16$
` ′		100		` ′	7		
12-	1004.5 3	100	4909.39	10-	E2 ^d	5.73×10^{-4}	$B(E2)(W.u.)=1.0\times10^2 +3-4$
	9 ⁻ (9 ⁻) 10 ⁺ 9 ⁻ 9 ⁺ (10 ⁺) 10 ⁻ 11 ⁻ 12 ⁺ (11 ⁻) 12 ⁺ (12 ⁺)	9- 801.11# 10 841.3# 3 (9-) 876.0# 1 1144.20# 10 10+ 801.11# 10 1180.98# 10 9- 907.0 1 947.2 2 1230.3 2 9+ 1015.5 3 (10+) 213.5 3 287.0 2 951.2 2 1394.7 3 10- 521.7@8 875.9 1 10- 1094.8 3 11- 941.32# 10 1085.4@ 1005.43#8 10 12+ 1003.26# 10 1045 1 (11-) 1006.2 3 1128.8 3 12+ 1218.7 3 (12+) 1100.9 4	9- 801.11# 10 100b 8 841.3# 3 32b 4 (9-) 876.0# 1 100b 18 1144.20# 10 88b 7 10+ 801.11# 10 100 12 1180.98# 10 16 2 9- 907.0 1 62 8 947.2 2 44 4 1230.3 2 100 8 9+ 1015.5 3 100 (10+) 213.5 3 10 3 287.0 2 38 7 951.2 2 100 10 1394.7 3 72 10 10- 521.7@8 875.9 1 100 10- 1094.8 3 100 11- 941.32# 10 100 10- 1005.43#8 10 100 12+ 1003.26# 10 100 1045 1 100	9- 801.11# 10 100b 8 3565.75 841.3# 3 876.0# 1 100b 18 3525.75 (9-) 876.0# 1 100b 18 3511.15 1144.20# 10 88b 7 3242.82 10 100 12 3622.78 10+ 801.11# 10 100 12 3622.78 1180.98# 10 16 2 3242.82 3565.75 947.2 2 44 4 3525.75 1230.3 2 100 8 3242.82 3242.82 9+ 1015.5 3 100 3476.96 (10+) 213.5 3 10 3 4423.85 287.0 2 38 7 4350.30 951.2 2 100 10 3686.07 1394.7 3 72 10 3242.82 366.07 1394.7 3 72 10 3242.82 10- 521.7@8 4387.09 875.9 1 100 4033.49 4387.09 4366.82 10- 1094.8 3 100 4366.82 10- 1094.8 3 100 4366.82 10- 1094.8 3 100 4366.82 10- 1094.8 3 100 4366.82 10- 1094.8 3 100 4366.82 10- 1094.8 3 100 4366.82 10- 1006.2 3 100 7 4472.85 1128.8 3 62 4 4350.30 12+ 1006.2 3 100 7 4472.85 1128.8 3 62 4 4350.30 12+ 1218.7 3 100 4350.30 (12+) 1100.9 4 100 4637.34	9- 801.11# 10 100b 8 3565.75 7- 841.3# 3 32b 4 3525.75 7- 1144.20# 10 88b 7 3242.82 8+ 10+ 801.11# 10 100 12 3622.78 8+ 1180.98# 10 16 2 3242.82 8+ 1180.98# 10 16 2 3242.82 8+ 9- 907.0 1 62 8 3565.75 7- 1230.3 2 100 8 3242.82 8+ 10+ 1015.5 3 100 3476.96 7+ 1230.3 2 100 8 3242.82 8+ 9+ 1015.5 3 100 3476.96 7+ 1394.7 3 10 3 4423.85 10+ 287.0 2 38 7 4350.30 10+ 951.2 2 100 10 3686.07 (8+) 1394.7 3 72 10 3242.82 8+ 10- 521.7@8 4387.09 (9-) 875.9 1 100 4033.49 8- 10- 1094.8 3 100 4142.60 8- 11- 941.32# 10 100 4387.09 (9-) 1085.4@ 100 433.49 8- 10- 1094.8 3 100 4428.4 1005.43#8 10 100 4248.4 1005.43#8 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 1045 1 100 4423.85 10+	9 801.11# 10 100b 8 3565.75 7 (E2) 841.3# 3 32b 4 3525.75 7 (E2) 1144.20# 10 88b 7 3242.82 8+ 10+ 801.11# 10 100 12 3622.78 8+ (E2) 1180.98# 10 16 2 3242.82 8+ 1230.3 2 100 8 3242.82 8+ 1230.3 2 100 8 3242.82 8+ 10+ 1015.5 3 100 3476.96 7+ 1230.3 2 100 8 3242.82 8+ 9+ 1015.5 3 10 3 4423.85 10+ 287.0 2 38 7 4350.30 10+ 951.2 2 100 10 3686.07 (8+) 1394.7 3 72 10 3242.82 8+ 10- 521.7@8 4387.09 (9-) 875.9 1 100 4033.49 8- E2d 10- 1094.8 3 100 4142.60 8- 11- 941.32# 10 100 4366.82 9- E2 1085.4@ 100 4248.4 1005.43#8 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ 10- 1094.8 3 100 4248.4 1005.43#8 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4387.09 (9-) 12+ 1003.26# 10 100 4423.85 10+ E2 (11-) 1006.2 3 100 7 4472.85 9- 1128.8 3 62 4 4350.30 10+ 12+ 1218.7 3 100 4350.30 10+ [E2] (12+) 1100.9 4 100 4637.34 (10+)	9

9

γ (82Sr) (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbb{E}_f	J_f^π	Mult. ^C	α^e	Comments
								$\alpha(K)=0.000507 \ 8; \ \alpha(L)=5.52\times10^{-5} \ 8; \ \alpha(M)=9.27\times10^{-6} \ 13$ $\alpha(N)=1.162\times10^{-6} \ 17; \ \alpha(O)=7.51\times10^{-8} \ 11$
6367.2	13-	1059.0 2	100	5308.15	11-	E2	5.07×10^{-4}	$\alpha(K)$ =0.000449 7; $\alpha(L)$ =4.88×10 ⁻⁵ 7; $\alpha(M)$ =8.20×10 ⁻⁶ 12 $\alpha(N)$ =1.028×10 ⁻⁶ 15; $\alpha(O)$ =6.66×10 ⁻⁸ 10
6450 1		1000 1	100	5.405.40	10+			$B(E2)(W.u.)=1.3\times10^2 +6-8$
6450.1		1023 <i>1</i>	100	5427.12		A	4	
6543.6	14 ⁺	1116.5 <i>3</i>	100	5427.12	12 ⁺	E2 ^d	4.52×10^{-4}	B(E2)(W.u.)=62 +23-28
								$\alpha(K)=0.000399 \ 6; \ \alpha(L)=4.33\times10^{-5} \ 6; \ \alpha(M)=7.27\times10^{-6} \ 11$ $\alpha(N)=9.11\times10^{-7} \ 13; \ \alpha(O)=5.91\times10^{-8} \ 9; \ \alpha(IPF)=1.133\times10^{-6} \ 19$
6556.4		1222.6 [@]	100	5333.8				$u(11) - 3.11 \times 10 - 13$, $u(0) - 3.31 \times 10 - 3$, $u(111) - 1.133 \times 10 - 13$
6564.8	(13^{-})	1085.7 3	100	5479.09	(11^{-})			
6937.0	(14^{+})	1368.0 <i>3</i>	100	5569.0		[E2]	3.35×10^{-4}	$\alpha(K)=0.000258 \ 4; \ \alpha(L)=2.78\times10^{-5} \ 4; \ \alpha(M)=4.67\times10^{-6} \ 7$
								$\alpha(N)=5.87\times10^{-7} 9$; $\alpha(O)=3.84\times10^{-8} 6$; $\alpha(IPF)=4.35\times10^{-5} 7$
								$B(E2)(W.u.)=1.4\times10^2 +42-8$
7066.5	14-	1152.6 <i>3</i>	100	5913.9	12-	E2 ^d	4.23×10^{-4}	$B(E2)(W.u.)=1.6\times10^2 +9-11$
								$\alpha(K)=0.000372$ 6; $\alpha(L)=4.03\times10^{-5}$ 6; $\alpha(M)=6.76\times10^{-6}$ 10
75246		001.1	100	65.40.6	4.4			$\alpha(N)=8.49\times10^{-7} \ 12; \ \alpha(O)=5.52\times10^{-8} \ 8; \ \alpha(IPF)=3.01\times10^{-6} \ 5$
7534.6		991 <i>I</i>	100	6543.6		d	105 10-4	
7545.5	15-	1178.3 <i>3</i>	100	6367.2	13	E2 ^d	4.06×10^{-4}	B(E2)(W.u.)= $1.0 \times 10^2 4$ α (K)= $0.000354 5$; α (L)= $3.84 \times 10^{-5} 6$; α (M)= $6.44 \times 10^{-6} 9$
								$\alpha(K)=0.000354 \text{ 5}; \ \alpha(L)=3.84\times10^{-6} \text{ 6}; \ \alpha(M)=6.44\times10^{-6} \text{ 9}$ $\alpha(N)=8.08\times10^{-7} 12; \ \alpha(O)=5.26\times10^{-8} \text{ 8}; \ \alpha(IPF)=5.35\times10^{-6} \text{ 9}$
7788.2	(15^{-})	1223.4 3	100	6564.8	(13^{-})			$u(N) = 0.00 \times 10$ 12, $u(O) = 3.20 \times 10$ 0, $u(IFF) = 3.33 \times 10$ 9
7812.0	16+	1268.4 4	100	6543.6	. ,	E2 d	3.62×10^{-4}	B(E2)(W.u.)=9.E+1+4-5
								$\alpha(K)=0.000303 \ 5; \ \alpha(L)=3.27\times10^{-5} \ 5; \ \alpha(M)=5.48\times10^{-6} \ 8$
								$\alpha(N)=6.89\times10^{-7}\ 10;\ \alpha(O)=4.49\times10^{-8}\ 7;\ \alpha(IPF)=2.04\times10^{-5}\ 3$
7936.1		1379.6 [@]	100	6556.4				
8377.6	16-	1311.1 <i>4</i>	100	7066.5	14-	E2 d	3.48×10^{-4}	B(E2)(W.u.)=49 22
								$\alpha(K)=0.000282$ 4; $\alpha(L)=3.05\times10^{-5}$ 5; $\alpha(M)=5.11\times10^{-6}$ 8
						1		$\alpha(N)=6.42\times10^{-7} 9$; $\alpha(O)=4.19\times10^{-8} 6$; $\alpha(IPF)=2.98\times10^{-5} 5$
8434.6	(16^{+})	1497.6 <i>3</i>	100	6937.0	(14^{+})	E2 ^d	3.26×10^{-4}	$\alpha(K)=0.000215 \ 3; \ \alpha(L)=2.31\times10^{-5} \ 4; \ \alpha(M)=3.88\times10^{-6} \ 6$
								$\alpha(N)=4.87\times10^{-7}$ 7; $\alpha(O)=3.19\times10^{-8}$ 5; $\alpha(IPF)=8.35\times10^{-5}$ 12
00.42.0	15-	1206 7 7	1.00		1.5-	Fod	2.52 12-4	B(E2)(W.u.)>20
8842.0	17-	1296.5 5	100	7545.5	15	E2 ^d	3.53×10^{-4}	B(E2)(W.u.)=9.E+1 7 α (K)=0.000289 4; α (L)=3.12×10 ⁻⁵ 5; α (M)=5.23×10 ⁻⁶ 8
								$\alpha(K)=0.000289 \ 4; \ \alpha(L)=3.12\times10^{-5} \ 5; \ \alpha(M)=5.23\times10^{-6} \ 8$ $\alpha(N)=6.57\times10^{-7} \ 10; \ \alpha(O)=4.29\times10^{-8} \ 6; \ \alpha(IPF)=2.65\times10^{-5} \ 4$
9167.4	(17^{-})	1379.2 4	100	7788.2	(15^{-})			$u(11) - 0.57 \wedge 10 = 10, u(0) - 4.27 \wedge 10 = 0, u(11 \Gamma) - 2.05 \times 10 = 4$
9237.8	18+	1425.7 4	100		16 ⁺	[E2]	3.27×10^{-4}	B(E2)(W.u.)=9.E+1+36-5
								$\alpha(K)=0.000237 \ 4; \ \alpha(L)=2.56\times10^{-5} \ 4; \ \alpha(M)=4.29\times10^{-6} \ 6$
								$\alpha(N)=5.39\times10^{-7} 8$; $\alpha(O)=3.52\times10^{-8} 5$; $\alpha(IPF)=5.93\times10^{-5} 9$

10

γ (82Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. ^c	α^{e}	Comments
9478.1		1542 [@]	100	7936.1				
9842.6	(18 ⁻)	1465 <i>I</i>	100	8377.6	16-	[E2]	3.25×10^{-4}	$\alpha(K)$ =0.000225 4; $\alpha(L)$ =2.42×10 ⁻⁵ 4; $\alpha(M)$ =4.05×10 ⁻⁶ 6 $\alpha(N)$ =5.10×10 ⁻⁷ 8; $\alpha(O)$ =3.34×10 ⁻⁸ 5; $\alpha(IPF)$ =7.19×10 ⁻⁵ 11 B(E2)(W.u.)>21
10061.6	(18^{+})	1626.9 [@]	100	8434.6	(16^+)			
10258.8	(19-)	1416.8 5	100	8842.0	17-	[E2]	3.28×10^{-4}	B(E2)(W.u.)=6.E+1 +3-5 α (K)=0.000240 4; α (L)=2.59×10 ⁻⁵ 4; α (M)=4.34×10 ⁻⁶ 6 α (N)=5.46×10 ⁻⁷ 8; α (O)=3.57×10 ⁻⁸ 5; α (IPF)=5.67×10 ⁻⁵ 8
10709.4	(19 ⁻)	1542 <i>1</i>	100	9167.4	(17^{-})		4	5
10872.4	(20+)	1634.6 5	100	9237.8	18 ⁺	[E2]	3.44×10^{-4}	$\alpha(K)$ =0.000181 3; $\alpha(L)$ =1.94×10 ⁻⁵ 3; $\alpha(M)$ =3.25×10 ⁻⁶ 5 $\alpha(N)$ =4.09×10 ⁻⁷ 6; $\alpha(O)$ =2.69×10 ⁻⁸ 4; $\alpha(IPF)$ =0.0001396 20 B(E2)(W.u.)>11
11379.6	(20^{-})	1537 <i>1</i>	100	9842.6	(18^{-})			
11798.4	(21-)	1539.6 5	100	10258.8	(19 ⁻)	[E2]	3.29×10^{-4}	$\alpha(K)$ =0.000204 3; $\alpha(L)$ =2.19×10 ⁻⁵ 3; $\alpha(M)$ =3.67×10 ⁻⁶ 6 $\alpha(N)$ =4.61×10 ⁻⁷ 7; $\alpha(O)$ =3.02×10 ⁻⁸ 5; $\alpha(IPF)$ =9.96×10 ⁻⁵ 14 B(E2)(W.u.)>51
11837.6?	(20^+)	1776 [@]	100	10061.6	(18^{+})			
12758.8	(22^{+})	1886.4 [@]	100	10872.4	(20^+)			
13005.7	(22^{-})	1626 <i>1</i>	100	11379.6	(20^{-})			
13489.4	(23 ⁻)	1691 <i>I</i>	100	11798.4	(21 ⁻)			
14832.7?	(24)	1827 [@]	100	13005.7	(22^{-})			
14910.8	(24^{+})	2152 [@]	100	12758.8	(22^{+})			
15409.4	(25)	1920 [@]	100	13489.4	(23 ⁻)			
17246.9?	(26 ⁻)	2336 [@]	100	14910.8	(24+)			
17616.5 1432.0+x	(27) J+2	2207 [@] 1432 <i>I</i>	100 100 ^a	15409.4 x	(25)			
3027.0+x	J+2 J+4	1432 <i>I</i> 1595 <i>I</i>	100 ^a	x 1432.0+x	J I±2			
4783.0+x	J+6	1756 <i>1</i>	100 ^a	3027.0+x				
6703.1+x	J+8	1920 <i>1</i>	100 <mark>a</mark>	4783.0+x				
8780.1+x	J+10	2077 1	100 ^a	6703.1+x				
11010.1+x	J+12	2230 1	100 ^a	8780.1+x				
13393+x	J+14	2383 1	100 ^a 100 ^a	11010.1+x				
15938+x 18674+x?	J+16 J+18	2545 <i>1</i> 2736 ⁸	100 ^a	13393+x 15938+x	J+14 J+16			

[†] From ⁵⁶Fe(²⁹Si,2pn γ), unless otherwise stated. For SD band, values are from ⁵⁸Ni(³⁰Si, α 2p γ),(²⁸Si,4p γ):SD. [‡] From ⁸²Y β ⁺ decay.

γ (82Sr) (continued)

- # From ⁷⁰Ge(¹⁶O,2n2pγ).
- [@] From ${}^{52}Cr({}^{34}S,2p2n\gamma)$.
- & γ branching from each level deduced from (²⁹Si,2pn γ), except as noted otherwise.
- ^a Relative intensity within the SD band.
- ^b From 70 Ge(16 O,2n2p γ).
- ^c From $\gamma(\theta)$ and linear polarization observed in ($^{16}\text{O},2\text{n}2\text{p}\gamma$), except as noted otherwise.
- ^d From DCO ratios obtained in ⁵⁶Fe(²⁹Si,2pnγ) and RUL.
- ^e Additional information 2.
- f If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(**H**): *π*=–

Band(G): *π*=-

3607.94

 $\frac{7^-}{(5^-)}$

