Machine Intelligence

Lecture 11: Planning

Thomas Dyhre Nielsen

Aalborg University

MI Autumn 2019

Tentative course overview

Topics:

- Introduction
- Search-based methods
- Constrained satisfaction problems
- Logic-based knowledge representation
- Representing domains endowed with uncertainty.
- Bayesian networks
- Inference in Bayesian networks
- Machine learning: classification
- Machine learning: Clustering
- Planning
- Multi-agent systems

MI Autumn 2019

Utility

A small quiz

Which of the following two lotteries would you prefer?:

- Lottery A = [\$1mill.],
- Lottery B = 0.1[\$5 mill.] + 0.89[\$1 mill.] + 0.01[\$0].

A small quiz

Which of the following two lotteries would you prefer?:

- Lottery A = [\$1mill.],
- Lottery B = 0.1[\$5mill.] + 0.89[\$1mill.] + 0.01[\$0].

What about these two?:

- Lottery C = 0.11[\$1mill.] + 0.89[\$0],
- Lottery D = 0.1[\$5mill.] + 0.9[\$0].

Values with certainty

What do you prefer

- \$100 or \$1000000 ?
- A 4 or 10 grade in the exam?

Lotteries

A **lottery** is a probability distribution over **outcomes**. E.g.

$$[0.4:\$100,\ 0.6:-\$20]$$

means: you win \$100 with probability 0.4, and loose \$ 20 with probability 0.6.

$$[0.3:00,\ 0.5:7,\ 0.2:10]$$

means: with probability 0.3 you get a 00, with probability 0.5 a 7, and with probability 0.2 a 10.

Preferences and Lotteries

Values with certainty

What do you prefer

- \$100 or \$1000000 ?
- A 4 or 10 grade in the exam?

Lotteries

A **lottery** is a probability distribution over **outcomes**. E.g.

$$[0.4:\$100,\ 0.6:-\$20]$$

means: you win \$100 with probability 0.4, and loose \$20 with probability 0.6.

$$[0.3:00,\ 0.5:7,\ 0.2:10]$$

means: with probability 0.3 you get a 00, with probability 0.5 a 7, and with probability 0.2 a 10.

Values with uncertainty

What do you prefer

• [1:\$1000000] or [0.5:\$ 0, 0.5:\$2100000]?

Preferences and Lotteries

Values with certainty

What do you prefer

- \$100 or \$1000000 ?
- A 4 or 10 grade in the exam?

Lotteries

A **lottery** is a probability distribution over **outcomes**. E.g.

$$[0.4:\$100,\ 0.6:-\$20]$$

means: you win \$100 with probability 0.4, and loose \$ 20 with probability 0.6.

$$[0.3:00,\ 0.5:7,\ 0.2:10]$$

means: with probability 0.3 you get a 00, with probability 0.5 a 7, and with probability 0.2 a 10.

Values with uncertainty

What do you prefer

- [1:\$1000000] or [0.5:\$ 0, 0.5:\$2100000]?
- [0.4:00, 0.1:7, 0.5:10] or [0.1:00, 0.8:7, 0.1:10]?

Utilities

Typically:

[1:\$1000000]is preferred over [0.5:\$ 0, 0.5:\$2100000]

Thus: preferences between lotteries with "money outcomes" are not always determined by **expected monetary value**.

Utilities

Typically:

[1:\$1000000]is preferred over [0.5:\$ 0, 0.5:\$2100000]

Thus: preferences between lotteries with "money outcomes" are not always determined by **expected monetary value**.

Preferences from utilities

The following is a classical result:

If preferences between lotteries obey a certain set of plausible rules, then there exists an assignment of real numbers (utilities) to all outcomes, such that one lottery is preferred over another if and only if it has a higher expected utility.

Example

				Expected Utility
Outcomes: Utilities:	00	7	10	
Utilities:	-5	5	10	
Lottery 1:	0.4	0.1 0.8	0.5 0.1	3.5
	0.1	8.0	0.1	4.5

Utility of Money

Also "money outcomes" have a utility. Utility function of a **risk-averse** agent:

Utility of Money

Also "money outcomes" have a utility. Utility function of a risk-averse agent:

Sure \$ 300k preferred over
 [0.5:\$ 0, 0.5:\$ 1000k]

Utility of Money

Also "money outcomes" have a utility. Utility function of a risk-averse agent:

- Sure \$ 300k preferred over
 [0.5:\$ 0, 0.5:\$ 1000k]
- Sure \$ 350k preferred over
 [2/3:\$ 200,1/3:\$ 800k]

Digression: Insurance business

Assume Utility(\$ 999k)=0.9997:

Then agent is indifferent between lotteries

[1:\$ 999k] and [0.0003:0, 0.9997:\$ 1000k]

and prefers

[1:\$ 999.4k] over [0.0003:0, 0.9997:\$ 1000k]

Interpretation:

• right lottery: 0.03 risk of loosing a \$ 1000k property

left lottery: buying insurance against that risk for \$ 600.

Digression: Insurance business

Assume Utility(\$ 999k)=0.9997:

Then agent is indifferent between lotteries

and prefers

Interpretation:

- right lottery: 0.03 risk of loosing a \$ 1000k property
- left lottery: buying insurance against that risk for \$ 600.

The insurance company prefers

```
[0.0003:0, 0.9997:$ 1000k] over [1:$ 999.4k]
```

→ the insurance company has a different utility function (near linear).

Recall:

- Lottery A = [\$1mill.],
- $\bullet \ \, \mathsf{Lottery} \,\, B = 0.1 [\$5 \mathrm{mill.}] + 0.89 [\$1 \mathrm{mill.}] + 0.01 [\$0].$
- Lottery C = 0.11[\$1mill.] + 0.89[\$0],
- Lottery D = 0.1[\$5mill.] + 0.9[\$0].

Recall:

- Lottery A = [\$1mill.],
- Lottery B = 0.1[\$5mill.] + 0.89[\$1mill.] + 0.01[\$0].
- Lottery C = 0.11[\$1mill.] + 0.89[\$0],
- Lottery D = 0.1[\$5mill.] + 0.9[\$0].

A preferred over $B \Rightarrow$

$$\begin{array}{ll} U(\$1m) > 0.1U(\$5m) + 0.89U(\$1m) + 0.01U(\$0) \\ \Rightarrow & 0.11U(\$1m) > 0.1U(\$5m) + 0.01U(\$0) \end{array}$$

Recall:

- Lottery A = [\$1mill.],
- Lottery B = 0.1[\$5mill.] + 0.89[\$1mill.] + 0.01[\$0].
- Lottery C = 0.11[\$1mill.] + 0.89[\$0],
- Lottery D = 0.1[\$5mill.] + 0.9[\$0].

A preferred over $B \Rightarrow$

$$U(\$1m) > 0.1U(\$5m) + 0.89U(\$1m) + 0.01U(\$0)$$

$$\Rightarrow 0.11U(\$1m) > 0.1U(\$5m) + 0.01U(\$0)$$

D preferred over $C \Rightarrow$

$$\begin{array}{l} 0.1U(\$5m) + 0.9U(\$0) > 0.11U(\$1m) + 0.89U(\$0) \\ \Rightarrow \quad 0.1U(\$5m) + 0.01U(\$0) > 0.11U(\$1m) \end{array}$$

Recall:

- Lottery A = [\$1mill.],
- Lottery B = 0.1[\$5mill.] + 0.89[\$1mill.] + 0.01[\$0].
- Lottery C = 0.11[\$1mill.] + 0.89[\$0],
- Lottery D = 0.1[\$5mill.] + 0.9[\$0].

A preferred over $B \Rightarrow$

$$\begin{array}{ll} U(\$1m) > 0.1U(\$5m) + 0.89U(\$1m) + 0.01U(\$0) \\ \Rightarrow & 0.11U(\$1m) > 0.1U(\$5m) + 0.01U(\$0) \end{array}$$

D preferred over $C \Rightarrow$

$$\begin{array}{ll} 0.1U(\$5m) + 0.9U(\$0) > 0.11U(\$1m) + 0.89U(\$0) \\ \Rightarrow & 0.1U(\$5m) + 0.01U(\$0) > 0.11U(\$1m) \end{array}$$

Contradiction! Explanations:

- People do not maximize expected utility
- The utility of \$ 0 also depends on in which lottery \$ 0 were "won"

Factored Utility

So far: outcomes seen as unstructured states. When states are described by features, then overall utility often a combination of utility factors derived from different features.

Example

Two component utility function:

RHC	SWC	Utility
rhc	SWC	5
rhc	SWC	3
rhc	SWC	0
rhc	SWC	5

RLoc	MW	Utility
CS	mw	0
CS	\overline{mw}	2
off	mw	0
off	\overline{mw}	2
lab	mw	0
lab	mw	2
mr	mw	5
mr	mw	2

Utility of full outcome (state) is sum of utility factors:

$$U(\langle \textit{off}, \textit{rhc}, \overline{\textit{swc}}, \overline{\textit{mw}}, \textit{rhm} \rangle) = 3 + 2 = 5$$

Assumption: the utility contribution from one factor is independent of the values of other factors. E.g.: (*rhc,swc*) should perhaps be worth less than 5 when at the same time (*mr,mw*), because mail needs to be delivered first (the two utility factors are **substitutes**).

Single-Stage Decision Networks

Decisions and Lotteries

Simple decisions can be seen as choices over lotteries. Graphical representation of study example:

prepare_some,prepare_all

		Dutcom	е
Decision	00	7	10
prepare_some	0.4	0.1	0.5
prepare_all	0.1	8.0	0.1

Outcome	Utility
00	-5
7	5
10	10

Feature Based Models

Decisions, outcomes and utilities can all be composed of features or factors:

Two components of decision: prepare *some/all*, start preparations *sooner/later* Two utility factors: utility of grade, and utility (cost) of preparation time Outcome composed of *Grade*, *Attempt*

Graph represents:

- One utility factor depends on Attempt and Grade, another only on Start
- Both the *Prepare* and *Start* decision influence the probabilities for *Grade*.

	Acc	ident
WhichWay	true	false
short	0.2	0.8
long	0.01	0.99

WearPads	WhichWay	Accident	Utility
true	short	true	35
true	short	false	95
true	long	true	30
true	long	false	75
false	short	true	3
false	short	false	100
false	long	true	0
false	long	false	80

Structure

A Single-Stage Decision Network is a directed acyclic graph with three types of nodes:

- Decision Nodes D
- Chance Nodes C
- Utility Nodes U

The graph must have the following structure:

- All decision nodes are connected in one linear sequence (representing the order in which the different sub-decisions are taken)
- The only parent of a decision node is its predecessor in the order
- Chance Nodes can have Decision Node and Chance Node parents
- Utility Nodes can have Decision Node and Chance Node parents

Structure

A Single-Stage Decision Network is a directed acyclic graph with three types of nodes:

- Decision Nodes D
- Chance Nodes C
- $\bullet \ \ \text{Utility Nodes } \mathbf{U}$

The graph must have the following structure:

- All decision nodes are connected in one linear sequence (representing the order in which the different sub-decisions are taken)
- The only parent of a decision node is its predecessor in the order
- Chance Nodes can have Decision Node and Chance Node parents
- Utility Nodes can have Decision Node and Chance Node parents

Tables

- No table is associated with decision nodes (only the list of available decisions)
- A chance node is labeled with a conditional probability table that specifies for each value assignment to its parents (decision and chance nodes) a probability distribution over the domain of the chance node.
- A utility node is labeled with a utility table that specifies for each value assignment to its parents (decision and chance nodes) a utility value.

SSDN Semantics

A **possible world** ω is an assignment of values to all decision and chance variables. An SSDN defines:

ullet For each assignment $\mathbf{D}=\mathbf{d}$ of values to the decision nodes a probability distribution

$$P(\omega \mid \mathbf{D} = \mathbf{d})$$

over possible worlds.

ullet For each possible world ω a utility value

$$U(\omega)$$

14

SSDN Semantics and solutions

SSDN Semantics

A **possible world** ω is an assignment of values to all decision and chance variables. An SSDN defines:

ullet For each assignment ${f D}={f d}$ of values to the decision nodes a probability distribution

$$P(\omega \mid \mathbf{D} = \mathbf{d})$$

over possible worlds.

ullet For each possible world ω a utility value

$$U(\omega)$$

Solving an SSDN

To solve a single-stage decision network (or problem) means to find the decisions ${\bf d}$ that maximize the expected utility

$$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d}) = \sum_{\omega} U(\omega) P(\omega \mid \mathbf{D} = \mathbf{d})$$

	WearPads	WhichWay	Accident	Utility
	true	short	true	35
٦	true	short	false	95
I	true	long	true	30
4	true	long	false	75
I	false	short	true	3
J	false	short	false	100
	false	long	true	0
	false	long	false	80

 $P(\textit{Accident} \mid \textit{WhichWay}) \cdot U(\textit{WearPads}, \textit{WhichWay}, \textit{Accident}) =$

-				
	WearPads	WhichWay	Accident	$P(\omega \mid \mathbf{D} = \mathbf{d}) \cdot U(\omega)$
Ī	true	short	true	0.2⋅ 35
	true	short	false	0.8⋅ 95
	true	long	true	0.01 · 30
	true	long	false	0.99. 75
	false	short	true	0.2⋅ 3
	false	short	false	0.8⋅ 100
	false	long	true	0.01 · 0
	false	long	false	0.99 80

 $P(\textit{Accident} \mid \textit{WhichWay}) \cdot U(\textit{WearPads}, \textit{WhichWay}, \textit{Accident}) =$

WearPads	WhichWay	Accident	$P(\omega \mid \mathbf{D} = \mathbf{d}) \cdot U(\omega)$
true	short	true	0.2⋅ 35
true	short	false	0.8⋅ 95
true	long	true	0.01 · 30
true	long	false	0.99⋅ 75
false	short	true	0.2⋅ 3
false	short	false	0.8⋅ 100
false	long	true	0.01 · 0
false	long	false	0.99 80

 $\textstyle\sum_{\textit{Accident}} P(\textit{Accident} \mid \textit{WhichWay}) \cdot \textit{U}(\textit{WearPads}, \textit{WhichWay}, \textit{Accident}) =$

WearPads	WhichWay	$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d})$
true	short	$0.2 \cdot 35 + 0.8 \cdot 95 = 83$
true	long	$0.01 \cdot 30 + 0.99 \cdot 75 = 74.55$
false	short	0.2 · 3 + 0.8 · 100= 80.6
false	long	0.01 · 0 + 0.99 · 80= 79.2

To solve a single-stage decision network (or problem) means to find the decisions ${\bf d}$ that maximize the expected utility

$$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d}) = \sum_{\omega} U(\omega) P(\omega \mid \mathbf{D} = \mathbf{d})$$

To solve a single-stage decision network (or problem) means to find the decisions ${\bf d}$ that maximize the expected utility

$$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d}) = \sum_{\omega} U(\omega) P(\omega \mid \mathbf{D} = \mathbf{d})$$

Solving by (Chance) variable elimination

Let $P(C_1 \mid \textit{par}(C_1)), \dots, P(C_n \mid \textit{par}(C_n))$ be the conditional probability tables associated with the chance nodes, and $U_1(\textit{par}(U_1)), \dots, U_k(\textit{par}(U_k))$ the utility tables of the utility nodes. Then

• For each $i = 1, \dots, k$:

$$\prod_{i=1}^{n} P(C_i \mid \textit{par}(C_i)) U_j(\textit{par}(U_j))$$

is a table in the variables \mathbf{D}, \mathbf{C} . Each row in the table corresponds to a possible world $\omega \sim (\mathbf{D} = \mathbf{d}, \mathbf{C} = \mathbf{c})$. The entry for that row is equal to $U_i(\omega)P(\omega \mid \mathbf{D} = \mathbf{d})$.

To solve a single-stage decision network (or problem) means to find the decisions ${\bf d}$ that maximize the expected utility

$$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d}) = \sum_{\omega} U(\omega) P(\omega \mid \mathbf{D} = \mathbf{d})$$

Solving by (Chance) variable elimination

Let $P(C_1 \mid par(C_1)), \dots, P(C_n \mid par(C_n))$ be the conditional probability tables associated with the chance nodes, and $U_1(par(U_1)), \dots, U_k(par(U_k))$ the utility tables of the utility nodes. Then

• For each $j = 1, \ldots, k$:

$$\prod_{i=1}^{n} P(C_i \mid \textit{par}(C_i)) U_j(\textit{par}(U_j))$$

is a table in the variables \mathbf{D}, \mathbf{C} . Each row in the table corresponds to a possible world $\omega \sim (\mathbf{D} = \mathbf{d}, \mathbf{C} = \mathbf{c})$. The entry for that row is equal to $U_i(\omega)P(\omega \mid \mathbf{D} = \mathbf{d})$.

• The expected utility factor U_j of decision $\mathbf{D}=\mathbf{d}$ is obtained by summing the chance variables out of that table:

$$\mathcal{E}(U_j \mid \mathbf{D} = \mathbf{d}) = \sum_{\mathbf{C}} \prod_{i=1}^n P(C_i \mid \textit{par}(C_i)) U_j(\textit{par}(U_j))$$

To solve a single-stage decision network (or problem) means to find the decisions ${\bf d}$ that maximize the expected utility

$$\mathcal{E}(U \mid \mathbf{D} = \mathbf{d}) = \sum_{\omega} U(\omega) P(\omega \mid \mathbf{D} = \mathbf{d})$$

Solving by (Chance) variable elimination

Let $P(C_1 \mid par(C_1)), \dots, P(C_n \mid par(C_n))$ be the conditional probability tables associated with the chance nodes, and $U_1(par(U_1)), \dots, U_k(par(U_k))$ the utility tables of the utility nodes. Then

• For each $j = 1, \ldots, k$:

$$\prod_{i=1}^{n} P(C_i \mid \textit{par}(C_i)) U_j(\textit{par}(U_j))$$

is a table in the variables \mathbf{D} , \mathbf{C} . Each row in the table corresponds to a possible world $\omega \sim (\mathbf{D} = \mathbf{d}, \mathbf{C} = \mathbf{c})$. The entry for that row is equal to $U_i(\omega)P(\omega \mid \mathbf{D} = \mathbf{d})$.

• The expected utility factor U_j of decision $\mathbf{D} = \mathbf{d}$ is obtained by summing the chance variables out of that table:

$$\mathcal{E}(U_j \mid \mathbf{D} = \mathbf{d}) = \sum_{\mathbf{C}} \prod_{i=1}^n P(C_i \mid \textit{par}(C_i)) U_j(\textit{par}(U_j))$$

 The decisions that maximize the expected utility can be found from the sum of the expected utility factors:

$$maxEU(\mathbf{D}) = \max_{\mathbf{D} = \mathbf{d}} \sum_{i=1}^{k} \sum_{\mathbf{C}} \prod_{i=1}^{n} P(C_i \mid par(C_i)) U_j(par(U_j))$$

Sequential Decisions

Generalization

SSDNs are generalized to sequential decision problems by:

- several decisions are taken (in a fixed order)
- some chance variables may be *observed* before the next decision is taken

Examples

- Doctor first decides which test to perform, then observes test outcome, then decides which treatment to prescribe
- Before we decide to take the umbrella with us, we observe the weather forecast
- A company first decides whether to develop a certain product, then observes the customer reaction in a test market, then decides whether to go into full production.

Example: Fire scenario

Fire alarm example extended with

- two decisions: CheckSmoke ∈ {yes, no}, Call ∈ {call, do_not_call}
- one more random variable SeeSmoke ∈ {yes, no}
- a utility function depending on Fire, CheckSmoke, Call (composed of two factors: one depending on CheckSmoke, one on Fire and Call)

CheckSmoke	Fire	Call	Utility
yes	yes	call	-220
yes	yes	do_not_call	-5020
yes	no	call	-220
yes	no	do_not_call	-20
no	yes	call	-200
no	yes	do_not_call	-5000
no	no	call	-200
no	no	do_not_call	0

We assume that the decision maker doesn't forget: the *no-forgetting assumption*

Poker Example

Chance variables:

- $OH_0, OH_1, OH_2, MH_0, MH_1, MH_2 \in \{$ nothing, ace, 2 of a kind, 2 aces, flush, straight, straight flush $\}$ represent my and opponent's hand after 0,1,2 card exchanges
- ullet $BH \in \{me, opponent, draw\}$ represents who has the better hand after the exchanges
- $OFC \in \{0,1,2,3\}, OSC \in \{0,1,2\}$ represent how many cards opponent changes in first/second exchange

Decision variables:

- $MFC \in \{0,1,2,3\}, \, MSC \in \{0,1,2\}$ represent how many cards I exchange in first/second exchange
- $D \in \{ fold, call \}$ represents whether I decide to fold or call after second exchange

Utility function:

	I)
BH	fold	call
me	-1	2
opponent	-1	-2
draw	-1	0

Induced order on observations and decisions:

$$\{MH_0\} \prec \textcolor{red}{MFC} \prec \{MH_1, OFC\} \prec \textcolor{red}{MSC} \prec \{MH_2, OSC\} \prec \textcolor{red}{D} \prec \{OH_0, OH_1, OH_2, BH\}$$

MI Autumn 2019 Sequential Decisions 2

Decision Function

A **Decision Function** for a decision node D is an assignment of a decision d to each possible configuration of D's parents.

Example:

yes yes yes no	call do not call
yes yes no	do not call
yes no yes	do_not_call
yes no no	do_not_call
no yes yes	call
no yes no	do_not_call
no no yes	do_not_call
no no no	do_not_call

CheckSmoke	SeeSmoke	Call
yes	yes	(1,0)
yes	no	(0,1)
no	yes	(0,1)
no	no	(0,1)
yes	yes	(1,0)
yes	no	(0,1)
no	yes	(0,1)
no	no	(0,1)
	yes yes no no yes yes no	yes yes yes no no yes no no yes yes yes no no yes no no yes no no no

Policy

Policy encoding

Policies

A **Policy** π consists of one decision function for each decision node.

 General strategy for actions (decisions), taking into account the possible (uncertain) effects of previous actions

Expected Utility

As before: possible worlds ω are assignments for all decision and chance variables.

• A policy π defines a probability distribution

$$P(\omega \mid \pi)$$

over possible worlds:

- if ω contains assignments to a decision node D and its parents which is not consistent with the decision function for D: $P(\omega \mid \pi) = 0$.
- Otherwise: $P(\omega \mid \pi)$ is the product of all conditional probability values for the assignments to chance nodes C, given the assignment to the parents of C
- Each possible world has a utility

$$U(\omega)$$

Obtain expected utility of a policy

$$\mathcal{E}(U \mid \pi) = \sum_{\omega} U(\omega) P(\omega \mid \pi)$$

Optimal Policy

An optimal policy is a policy with maximal expected utility (among all possible policies).

Initial distributions:

norain	0.7
rain	0.3

Weather	Umb	Value
norain	take	20
norain	leave	100
rain	take	70
rain	leave	0

Weather	Fcast	Value
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

Initial distributions:

uistributions.		
Weather	Value	
norain	0.7	
rain	0.3	

Weather	Umb	Value
norain	take	20
norain	leave	100
rain	take	70
rain	leave	0

Weather	Fcast	Value
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

Combine the factors

Compine the factors				
Umb	Weather	Fcast	Value	
take	norain	sunny	9.8	
take	norain	cloudy	2.8	
take	norain	rainy	1.4	
take	rain	sunny	3.15	
take	rain	cloudy	5.25	
take	rain	rainy	12.6	
leave	norain	sunny	49	
leave	norain	cloudy	14	
leave	norain	rainy	7	
leave	rain	sunny	0	
leave	rain	cloudy	0	
leave	rain	rainy	0	

Initial distributions:

uistributions.		
Weather	Value	
norain	0.7	
rain	0.3	

Weather	Umb	Value
norain	take	20
norain	leave	100
rain	take	70
rain	leave	0

Weather	Fcast	Value
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

Combine the factors

COIIIDIII	e tile lactor	5	
Umb	Weather	Fcast	Value
take	norain	sunny	9.8
take	norain	cloudy	2.8
take	norain	rainy	1.4
take	rain	sunny	3.15
take	rain	cloudy	5.25
take	rain	rainy	12.6
leave	norain	sunny	49
leave	norain	cloudy	14
leave	norain	rainy	7
leave	rain	sunny	0
leave	rain	cloudy	0
leave	rain	rainy	0

 \Rightarrow_{\sum} Weather

Umb	Fcast	Value
take	sunny	12.95
take	cloudy	8.05
take	rainy	14
leave	sunny	49
leave	cloudy	14
leave	rainy	7

Initial distributions:

aistributions.	
Weather	Value
norain	0.7
rain	0.3

Weather	Umb	Value
norain	take	20
norain	leave	100
rain	take	70
rain	leave	0

	eather	Fcast	Value
no	rain	sunny	0.7
no	rain	cloudy	0.2
no	rain	rainy	0.1
rai	n	sunny	0.15
rai	n	cloudy	0.25
rai	n	rainy	0.6

Marginalising out Umb

Umb	Fcast	Value
take	sunny	12.95
take	cloudy	8.05
take	rainy	14
leave	sunny	49
leave	cloudy	14
leave	rainy	7

 $^{\max}$ Umb $^{f:}$

Fcast	Val
sunny	49.0
cloudy	14.0
rainy	14.0

 $rg \max_{f} Umb^{f}$:

Fcast Umb
sunny leave
cloudy leave
rainy take

Initial distributions:

uistributions.	
Weather	Value
norain	0.7
rain	0.3

Value
00
20
100
70
0

Weather	Fcast	Value
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

Marginalising out Umb

Umb	Fcast	Value
take	sunny	12.95
take	cloudy	8.05
take	rainy	14
leave	sunny	49
leave	cloudy	14
leave	rainy	7

 $^{\max}$ Umb f :

Fcast	Val
sunny	49.0
cloudy	14.0
rainy	14.0

 $rg \max_{}$ Umb f

Fcast	Umb
sunny	leave
cloudy	leave
rainy	take

Fcast	Umb
sunny	(0,1)
cloudy	(0,1)
rainy	(1,0)
Talliy	(1,0)

Initial distributions:

uistributions.	
Weather	Value
norain	0.7
rain	0.3

	Weather	Umb	Value
	norain	take	20
	norain	leave	100
	rain	take	70
	rain	leave	0
I	Idili	leave	U

Weather	Fcast	Value
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

Marginalising out Umb

Umb	Fcast	Value
take	sunny	12.95
take	cloudy	8.05
take	rainy	14
leave	sunny	49
leave	cloudy	14
leave	rainy	7

 $^{\max}$ Umb $^{f:}$

Fcast Val sunny 49.0 cloudy 14.0 rainy 14.0

 $rg \max_{f} U$ mb f :

Fcast Umb
sunny leave
cloudy leave
rainy take

Fcast	Umb
sunny	(0,1)
cloudy	(0,1)
rainy	(1,0)

We now have a new decision problem with one decision less. This decision problem can be solved using the same procedure until no decisions are left!

Intuition

- Given values assigned to its parents, the last decision node can be seen as a single-stage decision.
- When all decisions following a given decision D are taken according to fixed decision rules, then D also behaves like a single-stage decision.
- Backward strategy:
 - find the decision rule for the last decision *D* that is not yet eliminated.
 - eliminate D by replacing it with the resulting utility factor
- Formal way of "What would I do if ..." reasoning

Variable Elimination

- 1. $DFs = \emptyset$ // Set of decision functions
- 2. Fs= all conditional probability and utility tables
- 3. while there are decision nodes
- 4. sum out all random variables that are not parents of a decision node // Fs now contains a factor F that depends on one decision node D // and (a subset of) its parents*/
- 5. Add $max_D F$ to Fs
- 6. Add $arg max_D F$ to DFs
- 7. Sum out remaining random variables
- 8. Return *DFs* and product of remaining factors (expected utility of optimal policy)

Value of Information

Collecting Information

- CheckSmoke is aimed at determining (with some uncertainty) the true state of Smoke (or even Fire)
- Test (medical example) is aimed at determining the true state of Disease

Value of information

Question: what is it worth to know the exact state of Forecast F when making decision Umbrella?

Answer: Compare maximal expected utilities of

Collecting Information

- CheckSmoke is aimed at determining (with some uncertainty) the true state of Smoke (or even Fire)
- Test (medical example) is aimed at determining the true state of Disease

Value of information

Question: what is it worth to know the exact state of a random variable ${\cal C}$ when making decision ${\cal D}$?

Answer: compute

- the expected value *val*₀ of optimal policy in given decision network
- the expected value val_1 of optimal policy in modified decision network:
 - ullet add an edge from C to D and all subsequent decisions
- $val_1 val_0$ is the value of knowing C.

Properties of Value of Information

- Value of information is always non-negative
- Value of knowing C for decision D is zero, if no observed value of C can change the decision rule, i.e. for all values \mathbf{p} of existing parents of D, and all values c of C, the optimal decision given (\mathbf{p}, c) is the same as the optimal decision given (\mathbf{p}) .