

Digital-Halftoning

C.-C. Jay Kuo University of Southern California

Gray-Scale Image Halftoning

Objective

- Use black-white (two-tone) images to render gray-level images
- Why called halftoning?
 - Normalize intensities of gray-level images to [0,1]
 - Need to find a threshold to split it into two values 0 or 1
 - How to do thresholding?
 - Fixed thresholding does not work properly

Halftoning by Simple Thresholding

Gray-Level Image Halftoning Example

Digital halftoning: A process that converts from 8bpp to 1bpp

1bpp: 0/1, 1: black ink -> dark, 0: no ink -> white (background color)

Why: paper printing versus screen display

Document Printing

Goal and Methods

Goal: Rendering the illusion
of gray-level images on two-tone
Lisplay devius, e.g. printers
A davkn vegin -> doncer black pixels per
aves
A whiter region () sparren blade pixels per avea.
A whiter region () sparser blade pixels per aver. 2 Commonly used methods - Dithering

Software versus Hardware

How to measure the performance of different algorithms? Good HW. - higher opi The performance gap hetween good and poor halftorn algorithms is small. Prov HW. - low dpi. the The performance gap is larger

Performance Evaluation

Dithering (1)

Dithering (2)

Dithering via Additive White Noise

Granulavity patterns

Lue to the low freg prace

spectrum

Dithering via Additive Blue Noise

Practical Dithering Algorithm (1)

Instead of using additive noise, adopt adaptive thresholding

Practical Dithering Algorithm (2)

$$I_{2n}(i,j) = \begin{bmatrix} 4 \times I_{n}(i,j) + 1 & 4 \times I_{n}(i,j) + 2 \\ 4 \times I_{n}(i,j) + 3 & 4 \times I_{n}(i,j) \end{bmatrix}$$

$$I_2(i,j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

Practical Dithering Algorithm (3)

Summary

Shortcomings of Dithering

Texture-like visual patterns

Error Diffusion (1)

Error Diffusion (2)

E(j,k)= F(j,k)-66j,k)	*
feed back. to neighboring p	ine]
Ewar Diffusion made.	
Floyd-Steinburg. (1995)	
16 (000)	A C

Error Diffusion (3)

Error diffusion filter

Error Diffusion with Serpentine Scanning

- The first, third, fifth, ... rows
 - Left-to-right scanning
- The second, fourth, sixth, ... rows
 - Right-to-left scanning

1st vow	07070 070
2nd row	94040
3rd row	0-7-0-70
4th Yow (0-60-60
	4

Error Diffusion Filters

left-to-right
$\frac{1}{16} \begin{pmatrix} 0 & 0 & 0 \\ 7 & 0 & 0 \\ 1 & 5 & 3 \end{pmatrix}$

Examples of Error Diffusion

Basic Color Science

Color Mixing

- Get more colors based on the primary colors
 - Additive color mixing
 - RGB
 - Subtractive color mixing
 - CMY

Additive Color Mixing

Additive mixture

- Overlap Spotlights in dark rooms
- Primary colors
 - Red long wavelengths
 - Green middle wavelengths
 - Blue short wavelengths
- Secondary colors
 - Magenta
 - Cyan
 - Yellow
- Applications
 - CRT phosphors
 - multiple projectors aimed at a screen
 - Polachrome slide film

Additive color mixing with red, green, blue primary colors

Additive color mixing

When colors combine by adding the color spectra. Example color displays that follow this mixing rule: CRT phosphors, multiple projectors aimed at a screen, Polachrome slide film.

Red and green make...

Yellow!

Subtractive Color Mixing

- Subtractive color mixing
 - Employed with paints and pigments
 - Primary colors
 - Yellow white light subtracts blue (short wavelengths)
 - Magenta white light subtracts green (middle wavelengths)
 - Cyan white light subtracts red (long wavelengths)
 - All lights are subtracted black

Demo

Ink Color	Absorbs	Reflects	Appears
C	Red light	Green and Blue light	Cyan
M	Green light	Red and Blue light	Magenta
Y	Blue light	Red and Green light	Yellow
M + Y	Green & Blue light	Red light	Red
C+Y	Red and Blue light	Green light	Green
C+M	Red and Green light	Blue light	Blue

Color subtraction with primary filters

Subtractive color mixing

When colors combine by *multiplying* the color spectra. Examples that follow this mixing rule: most photographic films, paint, cascaded optical filters, crayons.

Cyan and yellow (in crayons, called "blue" and yellow)

make...

Green!

Subtractive Color Mixing - Example

Illuminate colored filters with white light from behind*

*Image source: *HyperPhysics*

CMY (or CMYK)

- CMY is used for printing (subtractive color mixing)
- CMYK models adds pure black (K) to the mix a richer black and less ink consumption
- Directly specifying colors in CMY is complicated, but conversion from RGB model is simple
 - Some corrections are required when converting CRT-colors RGB to inkcolors CMY
 - To produce more colors, tricks like halftoning and dithering must be used

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Ideally, CMY model is simply transposition of RGB Model

Color Models (or Spaces)

- Three types of cones suggests color is a 3D quantity
- A color model is a 3D (or N-D) unique representation of a color
- What to use is application oriented
- Example
 - RGB TV monitors, cameras, computer graphics, etc.)
 - CMY (or CMYK) color printing
 - YIQ / YUV TV broadcasting
 - HSI / HSV color image manipulation → user-oriented
 - CIE L*u*v* / CIE L*a*b* Image retrieval equal visual variance

hardware-oriented

Color Image Halftoning

Color Image Halftoning Example

Digital color halftoning: A process that converts from 24bpp to 8 options

Color cartridge: cyan, magenta, yellow (CMY)

Cyan: 0/1 -> one dot of a cyan ink

Magenta: 0/1 -> one dot of a magenta ink

Yellow: 0/1 -> one dot of a yellow ink

CMY (or CMYK) Color Space

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

The CMY model is the complementary of the RGB Model

Color Digital Halftoning

- Conversion from the RGB color space to the CMY color space
- Baseline:
 - Perform digital halftoning on C, M, Y channels separately
 - Quantization and error diffusion on C, M, Y channels individually
 - The quality does not look good
 - Why?
- Improvement
 - Minimal Brightness Variation Criterion (MBVC)
 - To reduce halftone noise, select from within all halftone sets by which the desired color may be rendered, the one whose brightness variation is minimal

MBVC

The brightness scale of eight basic colors

Color Space Partitioned Into 6 Tetrahedral Volumes

MVBC Color Halftoning

Algorithm

- Find the corresponding tetrahedral volume for a given pixel
- Quantize its color to that of its nearest corner
- Diffuse the error to its neighboring pixels in C, M, Y channels

Another Algorithm: DBS

[FIG7] Halftone generated by the colorant-based DBS algorithm. The image is printed at 100 dpi.

Zoom-In on Strawberries

