STAT 88: Lecture 9

Contents

Section 4.2: Waiting Times

Section 4.3: Exponential Approximations

Last time

Sec 4.1 Cummulative distribution function (CDF):

The CDF of a random variable X is $F(x) = P(X \le x)$.

Purpose The CDF is an alternative way to specify a distribution:

$$P(X = x) = P(X \le x) - P(X \le x - 1) = F(x) - F(x - 1).$$

 $\underline{\text{Use}}$ Solutions to many problems can be expressed in terms of CDF and Python has built-in CDF function.

Warm up: (Exercise 4.5.2) A random variable W has the distribution shown in the table below. Sketch a graph of the cdf of W.

w	-2	-1	0	1	3
P(W = w)	0.1	0.3	0.25	0.2	0.15

Computation You can use the stats module of SciPy to calculate CDF.

4.2. Waiting Times

Waiting Time to the first success:

Consider a sequence of independent and identically distributed (iid) trials, each of which results in a success or a failure. Let p be the chance of success and q the chance of failure (q = 1 - p).

Let $T_1 = \#$ trials until the first success. T_1 follows a distribution called "Geometric" distribution,

$$T_1 \sim \text{Geom}(p)$$
.

What is $P(T_1 = k)$?

What values does T_1 take?

What is the chance it takes at most 5 trials for 1st success?

CDF for Geom(p)?

Example: Cards are dealt one by one at random with replacement till the first ace appears. Let X be the number of cards dealt.

- (a) Find P(X = 39).
- (b) Find P(X > 20).

Waiting time till the rth success: Cards are dealt one by one at random with replacement till the fourth ace appears. Let X be the number of cards dealt.

- (a) Find P(X = 39).
- (b) Find P(X > 20).

Example: (Exercise 4.5.5) Cards are dealt one by one at random without replacement till the fourth ace appears. Let X be the number of cards dealt.

- (a) Find P(X = 39).
- (b) Find P(X > 20).

4.3. Exponential Approximations

A useful approximation from Calculus:

$$\log(1+\delta) \approx \text{ for small } \delta.$$

 $f(x) = \log x$ is locally flat at x = 1 with slope 1. Since $f'(x) = \frac{1}{x}$, so f'(1) = 1. So starting at x = 1 if run by δ , you rise by δ . So $\log(1 + \delta) \approx \delta$.

Example: Approximate $x = (1 - \frac{3}{100})^{100}$.

$$\log x = \log \left(1 - \frac{3}{100} \right)^{100} = 100 \cdot \log \left(1 - \frac{3}{100} \right) \approx 100 \left(-\frac{3}{100} \right).$$

So $x \approx e^{-3}$.

Give exponential approximation for

(a)
$$x = \left(1 - \frac{2}{1000}\right)^{5000}$$
.

(b) $(1-p)^n$ for large n and small p.