Unclassified

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY	Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3 . DISTRIBUTION/AVAILABILITY OF REPORT			
26. DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.				
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)				
HDL-TR-2161						
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (If applicable)		7a. NAME OF MONITORING ORGANIZATION				
Harry Diamond Laboratories	SLCHD-ST-AP					
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)				
2800 Powder Mill Road Adelphi, MD 20783-1197						
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
U.S. Army Laboratory Command	AMSLC					
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER			
2800 Powder Mill Road Adelphi, MD 20783-1145		PROGRAM ELEMENT NO. P6.2.H25	PROJECT NO.	TASK NO.	ACCESSION NO.	
11. TITLE (Include Security Classification)		F6.2.F125	AH25	L		
The Potential and Electric Fields of	a Conducting Sphere i	n the Presence	of a Charged Co	onductin	ig Plane	
12. PERSONAL AUTHOR(S) Clyde A. Morrison						
13a. TYPE OF REPORT 13b. TIME	14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT					
Summary FROM A 16. SUPPLEMENTARY NOTATION	ug 88 TO Nov 88	June 1989			32	
HDL project : 142914, AMS code: 612120.H250012						
17. COSATI CODES	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify i	by block number)	
FIELD GROUP SUB-GROUP	Electrostatics,	spherical harmonics				
	1					
The solution is given to Laplace's equation for a conducting sphere above a ground plane. The solution includes the presence of a uniform electric field perpendicular to the ground plane. The arbitrary constants in the solution are determined by applying the boundary conditions on the plane and on the sphere. Formulas are given for the evaluation of the potential and electric fields at an arbitrary field point. All the resulting formulas are expressed in a style suitable for computation. The computational results will form the basis of a future comparison report.						
20. DISTRIBUTION / AVAILABILITY OF ABSTRAC	21. ABSTRACT SECURITY CLASSIFICATION Unclassified					
22a. NAME OF RESPONSIBLE INDIVIDUAL Clyde A. Morrison		include Area Code		FFICE SYMBOL LCHD-ST-AP		

Foreword

Thirty-some years ago Nick Karayianis and I tackled a problem in electrostatics which was similar to the one discussed here. At that time, I was fresh from a course in special functions taught by E. D. Rainville at the University of Michigan and I imparted my newly acquired wisdom to Nick. A few years later, Nick finished his doctorate at Indiana University and returned the favor by teaching me Racah algebra and angular momentum theory. In that exchange, I received more than I gave. During the course of "breaking the neck" of this problem, I frequently thought of our earlier problem and missed Nick's able guidance. This report would have been much better with his assistance.

Accesio	n For				
NTIS	CRA&I	A			
DTIC	TAB				
Unanno	ounce d				
Justific	ation				
By Distribu		y Codes			
Dist	Avail and/or Special				
A-1					

Contents

		Page
Foi	reword	. 3
1.	Introduction	. 7
2.	Solution to Laplace's Equation	. 7
3.	Evaluation of the Constants A_n and B_n	. 10
4.	The Potential and the Electric Fields	. 13
5.	Conclusion	. 17
Ac	knowledgements	. 18
Re	ferences	. 19
Fig	gure 1. Coordinate system of the two spheres	. 8
Dis	stribution	31
	Appendices	
A. -	— Expansion of $P_k(\cos \psi)/R^{k+1}$ in terms of $P_n(\cos \theta)$	21
В	— Fixed Charge on the Sphere	25

1. Introduction

In this report we derive expressions for the electric potential and electric fields produced by a charged conducting sphere above a conducting plane. We were unable to find the problem done (potential and electric fields at an arbitrary field point) in a number of standard textbooks on electrostatics [1-7].* Further, textbooks on spherical harmonics did not give the solution [8-10]. Also, a preliminary search of the literature revealed a number of related problems, of which two are cited here [11, 12]. These latter references approach the problem using bipolar coordinates and refer to a number of internal memoranda which are difficult to obtain.

In most of those references where the geometry of the problem was similar to the one considered here, the discussion centered around finding the capacitance of the system. In a few references, the problem of the electric field at a very particular point (for example, the surface of the sphere) was considered. Here we are interested in finding the potential and, consequently, the electric fields at an arbitrary field point. Thus the possibility of finding the problem done in a textbook or monograph is rather slim, but an extensive literature search would quite possibly find the problem. Since an extensive search would take considerable time, we decided to do the problem while the search was underway, and as of this date we have not located a usable solution. In our analysis, we use spherical coordinates throughout.

2. Solution to Laplace's Equation

We consider a conducting sphere of radius a, at potential V, located at a height h above a conducting plane. The potential of the plane is chosen to be zero. To simplify the problem, we replace the conducting plane by an identical sphere at potential -V, located at -h below the plane. The coordinate system is shown in figure 1.

^{*}References are listed at the end of this report.

Figure 1. Coordinate system of the two spheres.

We consider the upper sphere first. The two linearly independent solutions to Laplace's equation $(\nabla^2 \phi = 0)$ in a coordinate system centered on the upper sphere are

$$r^n P_n(\cos \theta)$$
 (1)

and

$$\frac{1}{r^{n+1}} P_n(\cos \theta) , \qquad (2)$$

where n = 0, 1, 2, ..., and the $P_n(\cos \theta)$ are the Legendre polynomials [13]. For convenience, we list the first few Legendre polynomials:

$$\begin{split} P_0(\cos\theta) &= 1 \ , \\ P_1(\cos\theta) &= \cos\theta \ , \\ P_2(\cos\theta) &= (3\cos^2\theta - 1)/2 \ , \\ P_3(\cos\theta) &= [(5\cos^2\theta - 3)\cos\theta]/2 \ , \end{split}$$

and the general relations,

$$\begin{split} P_n(-\cos\theta) &= (-1)^n P_n(\cos\theta) \ , \\ nP_n(\cos\theta) &= (2n-1)\cos\theta P_{n-1}(\cos\theta) - (n-1)P_{n-2}(\cos\theta) \ . \end{split}$$

This last relation is used recursively to generate $P_n(\cos \theta)$ for n > 2 using the n = 0 and n = 1 polynomials as initial values.

The solutions given in equation (1) diverge for large r and are discarded. The solutions in equation (2) have no singularities in the region $a \le r < \infty$ and are retained. Similarly, the retained solutions for the lower sphere are

$$\phi \sim \frac{1}{R^{n+1}} P_n(\cos \psi) \quad . \tag{3}$$

The potential associated with the uniform electric field is given by

$$\Phi_E = -Ez \quad . \tag{4}$$

The general solution for the potential is given by multiplying the solutions given by equations (2) and (3) by arbitrary constants and summing over n to obtain

$$\phi = \sum_{n=0}^{\infty} \frac{A_n}{r^{n+1}} P_n(\cos \theta) + \sum_{n=0}^{\infty} \frac{B_n}{R^{n+1}} P_n(\cos \psi) - Ez \quad . \tag{5}$$

The problem then is to evaluate A_n and B_n by using the boundary conditions

$$\phi = V$$
, for $r = a$,
 $\phi = -V$, for $R = a$, (6)

and

$$\phi = 0$$
, for $z = 0$.

In equations (2) through (6) we have avoided introducing the arguments in the potential ϕ because the particular variables will depend on which boundary condition is considered.

3. Evaluation of the Constants A_n and B_n

The simplest boundary condition is the last of equation (6). On the plane z = 0, we have r = R and $\theta = \pi - \psi$ so that

$$\cos \theta = -\cos \psi$$

and

$$P_n(-\cos \psi = (-1)^n P_n(\cos \psi) .$$

Then from equation (5) we have

$$0 = \sum_{n} \left[(-1)^{n} A_{n} + B_{n} \right] \frac{P_{n} (\cos \psi)}{r^{n+1}} ; \qquad (7)$$

and since each $P_n(\cos \psi)/r^{n+1}$ is linearly independent for each n, we have

$$B_n = (-1)^{n+1} A_n . (8)$$

To obtain explict values for A_n we shall use the first boundary condition in equation (6). In order to do this we need the expansion of $P_n(\cos \psi)/R^{n+1}$ in terms of $P_n(\cos \theta)$. This expansion is given in a number of places [14, 15] in very general form, and the result is derived heuristically in appendix A. Since we are to use the first boundary condition in equation (6), we use the expansion given in equation (A-12) of appendix A which, with obvious changes, is

$$\frac{P_k (\cos \psi)}{R^{k+1}} = \sum_{n} (-1)^n \binom{n+k}{n} \frac{r^n}{(2h)^{n+k+1}} P_n(\cos \theta) , \qquad (9)$$

where $\binom{n+k}{n}$ is a binomial coefficient.

Substituting equation (9) into equation (5) gives

$$\phi(r,\theta) = \sum_{n} \left[\frac{A_n}{r^{n+1}} + \sum_{k=0}^{\infty} B_k (-1)^n \binom{n+k}{n} \frac{r^n}{(2h)^{n+k+1}} \right] P_n(\cos \theta) - E[h + r P_1(\cos \theta)] ,$$
 (10)

where we have written

$$z = h + r \cos \theta$$

= $h + rP_1(\cos \theta)$.

From the first of equation (6), the potential at the surface of the upper sphere, $\phi(a, \theta) = V$, we obtain

$$V = \sum_{n} \left[\frac{A_n}{a^{n+1}} + \sum_{k} (-1)^{n+k+1} \frac{a^n}{(2h)^{n+k+1}} \binom{n+k}{n} A_k \right] P_n(\cos \theta) - E[h + a P_1(\cos \theta)] , \qquad (11)$$

where we have used equation (8) to eliminate B_k in favor of A_k . Since the $P_n(\cos \theta)$ are orthogonal, for each n we can write

$$V = U_0 - \lambda \sum_{k} (-\lambda)^k U_k - Eh ,$$

$$0 = U_1 - \lambda \sum_{k} (-\lambda)^{k+1} \binom{k+1}{k} U_k - Ea ,$$

and (12)

$$0 = U_n - \sum_{k} (-\lambda)^{k+n} \binom{n+k}{k} U_k \quad for \quad n > 1 .$$

In equation (12), U_n and λ are defined by

$$U_n = \frac{A_n}{a^{n+1}}$$

and

$$\lambda = \frac{a}{2h} .$$

The system of equations given in equation (12) can be written compactly in matrix form as

$$\vec{F} = (1 - \lambda G) \cdot \vec{U} , \qquad (13)$$

where \vec{F} is the column vector with components

$$F_0 = V + Eh , \qquad (14)$$

$$F_1 = Ea , (15)$$

$$F_n=0, n>1,$$

 $\underline{1}$ is the unit matrix, with elements δ_{nm} , \underline{G} is the symmetric matrix with components

$$G_{nm} = (-\lambda)^{n+m} \binom{n+m}{n} , \qquad (16)$$

and \vec{U} is the column vector with components U_n given in equation (12).

The formal solution to equation (13) is

$$\vec{U} = \vec{B} \cdot \vec{F} , \qquad (17)$$

where B is

$$\tilde{B} = (1 - \lambda \tilde{G})^{-1}
= 1 + \lambda \tilde{G} + \lambda^2 \tilde{G}^2 + \lambda^3 \tilde{G}^3 + \dots$$
(18)

The result given in equation (18) can be quite deceptive in that not all the λ dependence is explicit; the matrix G also contains λ as shown in equation (16). All the constants (V, a, E, and h) are contained in F_0 and F_1 , and equation (17) determines each U_n in terms of these constants. Also, since

 \underline{B} is symmetric, equation (17) can be written $\overrightarrow{U} = \overrightarrow{F}^T \cdot \underline{B}$, if convenient (\overrightarrow{F}^T) in the transpose vector — a row vector).

For a given potential, V, on the sphere, the charge Q on the sphere can be determined* from equation (12). By Gauss' law, the charge is determined by A_0 or $A_0 = Q$ (and therefore $(U_0 = Q/a)$). Hence,

$$\frac{Q}{Q} = B_{00}F_0 + B_{01}F_1$$
,

and from (14),

$$\frac{Q}{a} = B_{00}(V + Eh) + B_{01}Ea . {19}$$

Thus, a knowledge of the two components of B determine the charge on the sphere. We shall discuss equation (19) further when we consider the case when the charge on the sphere is fixed.

4. The Potential and the Electric Fields

Having determined the constants U_n by equation (12), it is necessary to determine the potential ϕ and the field components $E_r (= -\partial \phi/\partial r)$, and $E_{\theta} (= -\partial \phi/r\partial \theta)$ using the U_n . Substituting U_n for A_n and $B_n = (-1)^{n+1}A_n$ into equation (10), we have

$$\phi = \sum_{n} \left[\left(\frac{a}{r} \right)^{n+1} U_n - \left(\frac{r}{a} \right)^n \lambda \sum_{m} G_{nm} U_m \right] P_n - E \left[h + r \left(P_1 \right) \right] , \qquad (20)$$

$$E_{r} = \sum_{n} \left[(n+1) \left(\frac{a}{r} \right)^{n+2} U_{n} + n \left(\frac{r}{a} \right)^{n-1} \lambda \sum_{m} G_{nm} U_{m} \right] \frac{P_{n}}{a} + E P_{1} , \quad (21)$$

$$E_{\theta} = \sum_{n} \left[\left(\frac{a}{r} \right)^{n+2} U_n - \left(\frac{r}{a} \right)^{n-1} \lambda \sum_{m} G_{nm} U_m \right] \frac{T_n}{a} - E T_1 \quad , \tag{22}$$

where

$$T_n = -\frac{dP_n}{d\theta}$$
.

^{*}In MKS units replace Q by $Qi(4\pi\epsilon_0)$, where $4\pi\epsilon_0 = 1.112650 \times 10^{-12}$ F/m.

From equation (13) we can write $\lambda \sum_{m} G_{nm} U_m = U_n - F_n$, and using this result in equations (20), (21), and (22) we can express these equations in terms of U_n and F_n .

We now let

$$X_{0} = \left(\frac{a}{r} - 1\right)U_{0} + V ,$$

$$X_{n} = \left[\left(\frac{a}{r}\right)^{n+1} - \left(\frac{r}{a}\right)^{n}\right]U_{n} , n > 0 ,$$
(23)

and

$$Y_0 = \left(\frac{a}{r}\right)^2 \frac{U_0}{a} ,$$

$$Y_n = \left[(n+1) \left(\frac{a}{r}\right)^{n+2} + n \left(\frac{r}{a}\right)^{n-1} \right] \frac{U_n}{a} , n > 0 .$$
(24)

 Z_0 is set to zero since $T_0 = 0$ (see eq (27)),

$$Z_{n} = \left[\left(\frac{a}{r} \right)^{n+2} - \left(\frac{r}{a} \right)^{n-1} \right] \frac{U_{n}}{a} , n > 0 .$$
 (25)

Using equations (23), (24), and (25) in (20) through (22), we have

$$\phi(r,\theta) = \overrightarrow{X}(r) \cdot \overrightarrow{P}(\theta)$$

$$E_r(r,\theta) = \overrightarrow{Y}(r) \cdot \overrightarrow{P}(\theta)$$

$$E_{\theta}(r,\theta) = \overrightarrow{Z}(r) \cdot \overrightarrow{T}(\theta)$$
(26)

for r < 2h.

In equation (26), the components of \vec{P} are the Legendre polynomials and the components of \vec{T} are $-dP_n/d\theta$. The first few values of \vec{T} are

$$T_0 = 0,$$

 $T_1 = \sin \theta,$
 $T_2 = 3 \sin \theta \cos \theta,$
and the recursion relation is
 $T_n = n(P_{n-1} - \cos \theta P_n)/\sin \theta$. (27)

The above results are for r < 2h; for r > 2h we have to use the expansion for $P_k(\cos \psi)/R^{k+1}$ in terms of $P_n(\cos \theta)$ given in appendix A in equation (A-13). The solution for U_n given in equation (17) still holds, so we can write

$$\phi = \sum_{n} \left[U_n - W_n \right] \left(\frac{a}{r} \right)^{n+1} P_n - Ea \left(\frac{h}{a} + \frac{r}{a} P_1 \right) , \qquad (28)$$

where

$$W_n = \frac{1}{(-\lambda)^n} \sum_{m=0}^n \lambda^m \binom{n}{m} U_m ,$$

and the field components are given by

$$E_{r} = \sum_{n} (n+1)[U_{n} - W_{n}] \left(\frac{a}{r}\right)^{n+2} \frac{P_{n}}{a} + EP_{1} , \qquad (29)$$

and

$$E_{\theta} = \sum_{n} \left[U_{n} - W_{n} \right] \left(\frac{a}{r} \right)^{n+2} \frac{T_{n}}{a} - ET_{1} . \tag{30}$$

In equations (28), (29), and (30), we let

$$X'_{0} = -Eh ,$$

$$X'_{1} = \left(\frac{a}{r}\right)^{2} [U_{1} - W_{1}] - \text{Er} ,$$

$$X'_{n} = \left(\frac{a}{r}\right)^{n+1} [U_{n} - W_{n}], n > 1 ,$$
(31)

$$Y'_{1} = 0 ,$$

$$Y'_{1} = 2\left(\frac{a}{r}\right)^{3} (U_{1} - W_{1}) \frac{1}{a} + E ,$$

$$Y'_{n} = (n+1)\left(\frac{a}{r}\right)^{n+2} (U_{n} - W_{n}) \frac{1}{a}, n > 1 ,$$
(32)

and

$$Z'_{0} = 0 ,$$

$$Z'_{1} = \left(\frac{a}{r}\right)^{3} (U_{1} - W_{1}) \frac{1}{a} - E ,$$

$$Z'_{n} = \left(\frac{a}{r}\right)^{n+2} (U_{n} - W_{n}) \frac{1}{a}, n > 1 .$$
(33)

Then, as in equation (26), we have

$$\phi = \vec{X}'(r) \cdot \vec{P}(\theta) ,$$

$$E_{r} = \vec{Y}'(r) \cdot \vec{P}(\theta) ,$$

$$E_{\theta} = \vec{Z}'(r) \cdot \vec{T}(\theta) ,$$
(34)

for r > 2h.

The $\overrightarrow{P}(\theta)$ and $\overrightarrow{T}(\theta)$ in equation (34) are the same as in equation (26).

The results given in equations (26) and (34) constitute a solution for the entire region $a < r < \infty$ and $0 < \theta < \pi$. The procedure consists in finding the coefficients U_n for given V, a, h, and E by using equation (17). After this, we find the components of \vec{X} (\vec{X}), \vec{Y} (\vec{Y}), and \vec{Z} (\vec{Z}) for r < 2h (r > 2h) using equation (26) (eq (34)).

As discussed following equation (19), when the charge Q on the sphere is fixed, it is necessary to determine V from equation (19) as

$$V = \frac{Q}{aBm} - Eh - \frac{B_{01}}{Bm} Ea . \qquad (35)$$

In order to obtain V, we need to evaluate B_{00} and B_{01} , and the result from appendix B for general B_{0n} is given as

$$B_{0n} = \delta_{0n} + (-\lambda)^n \sum_{n} \lambda^p \frac{(A_{p-1})^n}{(A_p)^n} , \qquad [B-24]$$

where

$$A_p = A_{p-1} - \lambda^2 A_{p-2}$$
 [B-20]

with

$$A_0 = A_1 = 1$$
 . [B-21]

The values of B_{00} and B_{01} can be calculated using these results.

The solution to the problem where the charge Q is fixed is then obtained by determining V by using equation (35). We then insert this V into equations (14) and (15) to determine \vec{F} and continue as in the case in which V is given (eq (26) for r < 2h; eq (34) for r > 2h).

5. Conclusion

The results derived here constitute a formal solution to the potential and the fields for a conducting sphere at a given potential V (or charge Q) at height h above a charged conducting plane. Preliminary calculations show that the potential and fields are sufficiently represented by equations (26) and (34) even for a modest number of terms (\sim 10). However, the region

near r=2h is not well represented by these equations. The reason for this can be traced back to equations (A-12) and (A-13). The series represented in these equations become conditionally convergent near r=2h and diverge at r=2h. If it is important to evaluate equations (26) and (34) in this region, either analytical methods or computational methods will have to be devised. One way of handling this problem is to compute, at values of θ , a number of values for ϕ , E_r , and E_{θ} to be evaluated for r<2h and r>2h. An interpolation formula is used in the immediate vicinity of r=2h. The results given in equations (26) and (34) will be used in a following report where we calculate $\phi(r,\theta)$, $E_r(r,\theta)$, and $E_{\theta}(r,\theta)$ for a number of interesting cases.

Acknowledgements

The author wishes to thank Don Wortman, John Bruno, and Greg Turner for various suggestions during the process of development of this work. Also, for the contributing discussion and encouragement I thank Dave Hull, Mike Wren, and Barry Stann. Particularly, since the problem originated from the last three coworkers, I wish to thank them for the hours of enjoyment the problem has provided.

References

- 1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).
- 2. W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York (1950).
- 3. W. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, Cambridge, Mass. (1955).
- 4. L. Page and N. Adams, *Principles of Electricity*, Van Nostrand, New York (1949).
- 5. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).
- 6. P. M. Morse and H. Feshbach, *Methods of Theoretical Physics*, Vols I and II McGraw-Hill, New York (1953).
- 7. J. H. Jeans, The Mathematical Theory of Electricity and Magnetism, Cambridge, Mass. (1925).
- 8. E. W. Hobson, Spherical and Ellipsoidal Harmonics, Cambridge, Mass. (1931).
- 9. T. M. MacRobert, Spherical Harmonics, Dutton, New York (1927).
- 10. E. T. Whittaker and G. N. Watson, *Modern Analysis*, Cambridge, Mass. (1935).
- 11. M. H. Davis, Electrostatic Field and Force on a Dielectric Sphere near a Conducting Plane A Note on the Application of Electrostatic Theory to Water Droplets, Am. J. Phys. 37 (1969), 26.
- 12. M. H. Davis, Two Charged Spherical Conductors in a Uniform Electric Field: Forces and Field Strengths, Q. J. Mech. Appl. Math. 17 (1964), 499.
- 13. E. D. Rainville, Special Functions, MacMillan, New York (1960), Ch 10.

- 14. B. R. Judd, Angular Momentum Theory for Diatomic Molecules, Academic Press, New York (1975).
- 15. C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Springer-Verlag (1988).
- 16. Nick Karayianis, Certain Summations Involving Binomial Coefficients and Their Relation to Dyson's Conjecture, Harry Diamond Laboratories, HDL-TR-1217 (April 1964), 7.
- 17. John Bruno, private communication.

Appendix A. — Expansion of $P_k(\cos \psi) / R^{k+1}$ in terms of $P_n(\cos \theta)$

In the main body of the report, we used the formal expressions from Judd¹ and Morrison² for the expansion of $P_k(\cos \psi)/R^{k+1}$ in terms of $P_n(\cos \theta)$. Because of the very general nature of the expansion it is useful to have an independent check. To do this, we consider the expansion (from eq (13))

$$\frac{1}{R} = \sum_{l=0}^{\infty} (-1)^l \frac{r^1}{x^{l+1}} P_e(\cos \theta) \qquad r < x$$
 (A-1)

$$= \sum_{l=0}^{\infty} (-1)^{l} \frac{x^{l}}{r^{l+1}} P_{e}(\cos \theta) \qquad r > x , \qquad (A-2)$$

where

$$R = \sqrt{x^2 + r^2 + 2xr\cos\theta} \tag{A-3}$$

and

$$x + r \cos \theta = R \cos \Psi . \tag{A-4}$$

(In the final result we let x = 2h.)

Our method consists of taking successive derivatives of 1/R with respect to x and using (A-4) to cast the result into the desired form. First consider

$$\frac{d}{dx}\left(\frac{1}{R}\right) = -\frac{R_x}{R^2} \quad , \tag{A-5}$$

where

$$R_x = \frac{dR}{dx} .$$

¹B. R. Judd, Angular Momentum Theory for Diatomic Molecules, Academic Press, New York (1975).

²C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Springer-Verlag (1988).

From (A-3) we have

$$R_x = \frac{x + r \cos \theta}{R} \quad ,$$

and using (A-4) we obtain $R_x = \cos \psi$. Since $P_1(\cos \psi) = \cos \psi$, we have

$$\frac{d}{dx}\left(\frac{1}{R}\right) = \frac{-P_1(\cos\psi)}{R^2} . \tag{A-6}$$

Repeating this process we obtain

$$\frac{d^2}{dx^2} \left(\frac{1}{R} \right) = \frac{2 P_2(\cos \psi)}{R^3} , \qquad (A-7)$$

$$\frac{d^3}{dx^3} \left(\frac{1}{R} \right) = \frac{-6 P_3 (\cos \psi)}{R^4} . \tag{A-8}$$

In obtaining these results, it is convenient to express all higher derivatives in terms of R_r :

$$R_{xx} = (1 - R_x^2)/R$$
 ,
 $R_{xxx} = (3 R_x^2 - 3 R_x)/R^2$.

This procedure keeps the size of the algebraic expressions under control.

On the right side in expression (A-1) we consider only the x-dependent part as

$$\frac{1}{R} \sim \frac{1}{x^{l+1}}$$

$$\frac{d}{dx} \left(\frac{1}{R}\right) \sim -(l+1) \frac{1}{x^{l+2}}$$

$$\frac{d^2}{dx^2} \left(\frac{1}{R}\right) \sim (l+1)(l+2) \frac{1}{x^{l+3}}$$

$$\frac{d^3}{dx^3} \left(\frac{1}{R}\right) \sim -(l+1)(l+2)(l+3) \frac{1}{x^{l+4}}$$
(A-9)

and consider the binomial coefficient $\binom{l+k}{l}$, which is l, l+1, (l+1)(l+2)/2, (l+1)(l+2)(l+3)/6 for k=0, 1, 2, and 3, respectively. So we write

$$\frac{d^{k}}{dx^{k}} \left(\frac{1}{R}\right) = (-1)^{k} \ k! \ \frac{P_{k} (\cos \psi)}{R^{k+1}} \quad , \tag{A-10}$$

and

$$\frac{d^k}{dx^k} \left(\frac{1}{x^{l+1}} \right) = (-1)^k \ k! \binom{l+k}{l} \frac{l}{x^{l+k+1}} \quad ; \tag{A-11}$$

thus, with x set to 2h, we obtain

$$\frac{P_k (\cos \psi)}{R^{k+1}} = \sum_{l=0}^{\infty} (-1)^l \binom{l+k}{l} \frac{r^l}{x^{l+k+1}} P_l (\cos \theta) , \qquad r < x. \quad (A-12)$$

For x < r in (A-5) the result corresponding to equation (A-11) becomes

$$\frac{d^k}{dx^k} x^l = k! \binom{l}{l-k} x^{l-k} ,$$

with k < l. Then we obtain, after the substitution x = 2h,

$$\frac{P_k (\cos \psi)}{R^{k+1}} = \sum_{l=k}^{\infty} \frac{(2h)^{l-k}}{r^{l+1}} (-1)^{k+l} \binom{l}{k} P_l (\cos \theta) , \qquad r > 2h. \quad (A-13)$$

Appendix B. — Fixed Charge on the Sphere

When the charge on the sphere is specified rather than the voltage, it is useful to write the boundary conditions given in equations (14) and (15) as

$$U = B_{00}F_0 + B_{01}F_1$$

$$U = B_{00}(V - Eh) + B_{01}Ea ,$$
(B-1)

and by Gauss' law the charge on the sphere, Q, determines A_0 ; that is,

$$A_0 = Q . (B-2)$$

Then from equation (12), $U_0 = Q/a$ and from (B-1) we obtain*

$$V = [Q/a - (B_{00}h + B_{01}a) E]/B_{00} , (B-3)$$

and we notice that when E = 0 we obtain

$$Q = cV , (B-4)$$

where $c = aB_{00}$.

As $\lambda \to 0$ $(h \to \infty)$ we know that $B_{00} = 1$ and the capacitance becomes c = a, which is the usual expression for the capacitance for a sphere of radius a. From equation (B-3) we see that it would be convenient to evaluate the potential of the sphere and use the results in the calculation of the potential E_r and E_a , as is done for the case when V is given.

In equation (18) we defined the matrix B as

$$B = (1 - \lambda G)^{-1} \quad , \tag{B-5}$$

which we can expand as

$$\underline{B} = \underline{1} + \lambda \underline{G} + \lambda^2 \underline{G}_2 + \cdots \lambda^P \underline{G}_P + \cdots , \qquad (B-6)$$

^{*}If we are using MKS units we replace Q/a by $Q/(4\pi E_n a)$.

and we need B_{0n} for n = 0 and 1. For the first few terms in (B-6) we have

$$B_{0n} = \delta_{0n} + \lambda G_{0n} + \lambda^2 (G^2)_{0n} + \lambda^3 (G^3)_{0n} + \dots , \qquad (B-7)$$

and for a given term

$$(G^P)_{0n} = \sum_k G_{0k} (G^{P-1})_{kn}$$
, (B-8)

and for p = 2

$$(G^2)_{0n} = \sum_{k} G_{0k} G_{kn} . (B-9)$$

Using

$$G_{nm} = (-\lambda)^{n+m} \binom{n+m}{m}$$

in (B-9),

$$(G^2)_{0n} = (-\lambda)^n \sum_k \lambda^{2k} \binom{k+n}{k}$$
, (B-10)

since

$$G_{0k} = (-\lambda)^k .$$

The sum in equation (B-10) can be done and is given by

$$\sum_{k=0}^{\infty} y^k \binom{k+n}{k} = \frac{1}{(1-y)^{n+1}} , \qquad (B-11)$$

where y < 1. (This value of y is much larger than we need. In our case, the largest value of y is 1/4.)

Using (B-11) in equation (B-10) we obtain

$$(G^2)_{0n} = \frac{(-\lambda)^n}{(1-\lambda^2)^{n+1}} . (B-12)$$

Extending this result to the next term gives

$$(G^{3})_{0n} = \sum_{k} (G^{2})_{0k} G_{kn}$$

$$= \frac{(-\lambda)^{n}}{1 - \lambda^{2}} \sum_{k} \frac{\lambda^{2k}}{(1 - \lambda^{2})^{k}} {k \choose k},$$
(B-13)

and from equation (B-11) we get

$$G_{0n}^3 = \frac{(-\lambda)^n (1 - \lambda^2)^n}{(1 - \lambda^2 - \lambda^2)^{n+1}} . (B-14)$$

We have written the denominators in (B-14) in the particular form so that if we let the denominator in (B-13) be A_2 and the denominator in (B-14) be A_3 , we have

$$A_3 = A_2 - \lambda^2$$
 (B-15)

For

$$(G^4)_{0n} = \sum_{k} (G^3)_{0k} G_{kn}$$
, (B-16)

we have

$$(G^4)_{0n} = \frac{(-\lambda)^n}{A_3} \sum \lambda^2 \frac{A_2^k}{A_3^k} {k+n \choose k},$$
 (B-17)

and from equation (B-11),

$$(G^4)_{0n} = (-\lambda)^n \frac{A_3^n}{(A_3 - \lambda^2 A_2)^{n+1}} . (B-18)$$

If we now let

$$A_4 = A_3 - \lambda^2 A_2$$
, (B-19)

we get $(G^4)_{0n} = (-\lambda)^n \frac{A_3^n}{A_4^{n+1}}$.

The result in (B-19) suggests the form

$$A_p = A_{p-1} - \lambda^2 A_{p-2}$$
, (B-20)

with

$$A_0 = 1$$

and

$$A_1 = 1 ,$$

an assumption consistent with A_2 and A_3 given above. To check the result, we calculate $(G^p)_{0n}$ using (B-20). That is,

$$(G^p)_{0n} = \sum_k (G^{p-1})_{0k} G_{kn}$$

$$(G^p)_{0n} = (-\lambda)^n \frac{(A_{p-1})^n}{(A_{p-1} - \lambda^2 A_{p-2})^{n+1}},$$
 (B-22)

and with the result given in (B-20) gives

$$G_{0n}^{p} = (-\lambda)^{n} \frac{(A_{p-1})^{n}}{(A_{p})^{n+1}}$$
 (B-23)

Then with the result of (B-23) substituted into equation (B-7) we obtain

$$B_{0n} = \delta_{0n} + (-\lambda)^n \sum_{p=1}^{\infty} \lambda_p \frac{(A_{p-1})^n}{(A_p)^{n+1}} , \qquad (B-24)$$

and this result with the A_p given by the recursion relation in (B-20) gives a convenient form for computation of B_{00} and B_{01} for use in equation (B-3) to determine the potential of the sphere.

It would be nice, from an analytic point of view, to be able to calculate B_{nm} from (B-6) by calculating each power of G directly. However for $(G^2)_{nm}$ we have

$$(G^2)_{nm} = (-\lambda)^{n+m} \sum_{k=0}^{\infty} \lambda^{2k} \binom{n+k}{k} \binom{k+m}{k} , \qquad (B-25)$$

but we have not been able to do the sum in closed form. Karayianis¹ has shown that

$$\sum_{k=0}^{\infty} \lambda^{2k} \binom{n+k}{k} \binom{k+m}{k} = \frac{1}{(1-\lambda^2)^{n+m+1}} \sum_{k} \lambda^{2k} \binom{n}{k} \binom{m}{k} ,$$

which is Euler's transformation for the hypergeometric function $F(a, b; c; \lambda^2)$ given by Rainville² and does not appear to be capable of further simplification.

¹Nick Karayianis, Certain Summations Involving Binomial Coefficients and Their Relation to Dyson's Conjecture, Harry Diamond Laboratories, HDL-TR-1217 (April 1964), 7.

²E. D. Rainville, Special Functions, MacMillan, New York (1960), Ch 10.

DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICQAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22304-6145

DIRECTOR
NIGHT VISION & ELECTRO-OPTICS LABORATORY
ATTN TECHNICAL LIBRARY
ATTN R. BUSER
FT BELVOIR, VA 22060

DIRECTOR
DEFENSE NUCLEAR AGENCY
ATTN TECH LIBRARY
WASHINGTON, DC 20305

UNDER SECRETARY OF DEFENSE RES & ENGINEERING ATTN TECHNICAL LIBRARY, 3C128 WASHINGTON, DC 20301

COMMANDER
US ARMY ARMAMENT MUNITIONS &
CHEMICAL COMMAND (AMCCOM)
US ARMY ARMAMENT RESEARCH &
DEVELOPMENT CENTER
ATTN DRDAR-TSS, STINFO DIV
DOVER, NJ 07801

COMMANDER
ATMOSPHERIC SCIENCES LABORATORY
ATTN TECHNICAL LIBRARY
WHITE SANDS MISSILE RANGE, NM 88002

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN SLCBR-DD-T (STINFO)
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY ELECTRONICS WARFARE LABORATORY
ATTN J. CHARLTON
ATTN DELET-DD
FT MONMOUTH, NJ 07703

COMMANDING OFFICER
USA FOREIGN SCIENCE & TECHNOLOGY CENTER
FEDERAL OFFICE BUILDING
ATTN DRXST-BS, BASIC SCIENCE DIV
CHARLOTTESVILLE, VA 22901

COMMANDER
US ARMY MATERIALS & MECHANICS
RESEARCH CENTER
ATTN DRXMR-TL, TECH LIBRARY
WATERTOWN, MA 02172

US ARMY MATERIEL COMMAND 6001 EISENHOWER AVE ALEXANDRIA, VA 22333-0001

US ARMY MATERIEL SYSTEMS ANALYSIS
ACTIVITY
ATTN DRXSY=MP (LIBRARY)
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
US ARMY MISSILE & MUNITIONS
CENTER & SCHOOL
ATTN ATSK-CTD-F
ATTN DRDMI-TB, REDSTONE SCI INFO CENTER
REDSTONE ARSENAL, AL 35809

COMMANDER
US ARMY RESEARCH OFFICE (DURHAM)
ATTN M. STROSIO
ATTN M. CIFTAN
ATTN B. D. GUENTHER
PO BOX 12211
RESEARCH TRIANGLE PARK, NC 27709

COMMANDER
US ARMY RSCH & STD GRP (EUROPE)
FPO NEW YORK 90510

COMMANDER
US ARMY TEST & EVALUATION COMMAND
ATTN TECH LIBRARY
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
US ARMY TROOP SUPPORT COMMAND
ATTN DRXRES-RTL, TECH LIBRARY
NATICK, MA 01762

OFFICE OF NAVAL RESEARCH ATTN J. MURDAY ARLINGTON, VA 22217

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN CODE 2620, TECH LIBRARY BR
ATTN CODE 6551, L. ESTEROWITZ
WASHINGTON, DC 20375

HQ, USAF/SAMI WASHINGTON, DC 20330

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
WASHINGTON, DC 20234

DISTRIBUTION (cont'd)

NASA LANGLEY ATTN N. BARNES ATTN P. L. CROSS HAMPTON, VA 23665

DIRECTOR ADVISORY GROUP ON ELECTRON DEVICES ATTN SECTRY, WORKING GROUP D 201 VARICK STREET NEW YORK, NY 10013

ALLIED ADVANCED APPLICATION DEPT ATTN A. BUDGOR 31717 LA TIEMDA DRIVE WESTLAKE VILLAGE, CA 91362

ENGINEERING SOCIETIES LIBRARY ATTN ACQUISITIONS DEPT 345 EAST 47TH STREET NEW YORK, NY 10017

DIRECTOR LAWRENCE RADIATION LABORATORY ATTN HELMUT A. KOEHLER LIVERMORE, CA 94550

MARTIN MARIETTA ATTN F. CROWNE ATTN R. LEAVITT ATTN J. LITTLE ATTN T. WORCHESKY ATTN D. WORTMAN 1450 SOUTH ROLLING ROAD BALTIMORE, MD 21227

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ATTN V. BAGNATO ROOM 26-251 77 MASS AVE CAMBRIDGE, MA 02139

NATIONAL OCEANIC & ATMOSPHERIC ADM ENVIRONMENTAL RESEARCH LABS ATTN LIBRARY, R-51, TECH RPTS BOULDER, CO 80302

SCIENCE APPLICATIONS, INC ATTN T. ALLIK 1710 GOODRIDGE DRIVE McCLEAN, VA 22102

COMMANDER CHINA LAKE, CA 93555

US ARMY LABORATORY COMMAND ATTN TECHNICAL DIRECTOR, AMSLC-CT INSTALLATION SUPPORT ACTIVITY ATTN LEGAL OFFICE, SLCIS-CC

USATSC ATTN RECORD COPY, AMSLC-IM-TS ATTN TECHNICAL REPORTS BRANCH, AMSLC-IM-TR (2 COPIES)

HARRY DIAMOND LABORATORIES ATTN D/DIVISION DIRECTORS ATTN LIBRARY, SLCHD-TL (3 COPIES) ATTN LIBRARY, SLCHD-TL (
ATTN CHIEF, SLCHD-NW-EP
ATTN CHIEF, SLCHD-NW-EH
ATTN CHIEF, SLCHD-NW-ES
ATTN CHIEF, SLCHD-NW-R
ATTN CHIEF, SLCHD-NW-TN
ATTN CHIEF, SLCHD-NW-RP
ATTN CHIEF, SLCHD-NW-CS
ATTN CHIEF, SLCHD-NW-TS
ATTN CHIEF, SLCHD-NW-RS
ATTN CHIEF, SLCHD-NW-P
ATTN CHIEF, SLCHD-NW-P ATTN LIBRARY, SLCHD-TL (WOODBRIDGE) ATTN CHIEF, SLCHD-PO ATTN CHIEF, SLCHD-ST-C ATTN CHIEF, SLCHD-ST-RS ATTN CHIEF, SLCHD-ST-RA ATTN CHIEF, SLCHD-TT ATTN WALTER, SANDER, SLCIS-CP-TD ATTN WILLIS, B., SLCHD-IT-EB ATTN ZABLUDOWSKI, B., SLCHD-IT-EB ATTN MILETTA, J. R., SLCHD-NW-EP ATTN MCLEAN, F. B., SLCHD-NW-RP ATTN SATTLER, J., SLCHD-PO-P ATTN LIBELO, L., SLCHD-ST-MW ATTN NEMARICH, J., SLCHD-ST-SB ATTN WEBER, B., SLCHD-ST-SA ATTN BAHDER, T. SLCHD-ST-AP ATTN BENCIVENGA, B., SLCHD-ST-AP ATTN BRODY, P., SLCHD-ST-AP ATTN BRUNO, J., SLCHD-ST-AP ATTN DROPKIN, H., SLCHD-ST-AP ATTN EDWARDS, SLCHD-ST-AP ATTN HANSEN. A., SLCHD-ST-AP ATTN HAY. G., SLCHD-ST-AP ATTN NEIFELD, R., SLCHD-ST-AP ATTN PENNISE, C., SLCHD-ST-SP ATTN SIMONIS, G., SLCHD-ST-AP ATTN STEAD, M., SLCHD-ST-AP ATTN STELLATO, J., SLCHD-ST-AP ATTN TOBIN, M., SLCHD-ST-AP ATTN TURNER, G., SLCHD-ST-AP (10 COPIES) ATTN WORTMAN, D., SLCHD-ST-AP ATTN HULL, D., SLCHD-ST-SA (10 COPIES) NAVAL WEAPONS CENTER
ATTN WRENN, M., SLCHD-ST-SA (10 COPIES)
ATTN CODE 343, TECHNICAL INFORMATION
DEPARTMENT
ATTN GARVIN C., SLCHD-ST-SS ATTN GOFF, J., SLCHD-ST-SS ATTN LEAVITT, R. P., SLCHD-ST-AP ATTN MORRISON, C., SLCHD-ST-AP (10 COPIES)