

planetmath.org

Math for the people, by the people.

proof of Gaussian maximizes entropy for given covariance

Canonical name ProofOfGaussianMaximizesEntropyForGivenCovariance

Date of creation 2013-03-22 12:19:35 Last modified on 2013-03-22 12:19:35 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 10

Author Mathprof (13753)

Entry type Proof Classification msc 94A17

Related topic QuadraticForm Related topic RelativeEntropy

Related topic MultidimensionalGaussianIntegral

Let f, K, ϕ be as in the http://planetmath.org/GaussianMaximizesEntropyForGivenCovarientry.

The proof uses the nonnegativity of relative entropy $D(f||\phi)$, and an interesting property of quadratic forms. If A is a quadratic form and p,q are probability distributions each with mean $\mathbf{0}$ and covariance matrix \mathbf{K} , we have

$$\int p \ x_i x_j \ dx_i dx_j = K_{ij} = \int q \ x_i x_j \ dx_i dx_j \tag{1}$$

and thus

 $\mathbf{0}$

$$\int Ap = \int Aq \tag{2}$$

Now note that since

$$\phi(\mathbf{x}) = ((2\pi)^n |\mathbf{K}|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{x}\right), \tag{3}$$

we see that $\log \phi$ is a quadratic form plus a constant.

$$\leq D(f||\phi)$$

$$= \int f \log \frac{f}{\phi}$$

$$= \int f \log f - \int f \log \phi$$

$$= -h(f) - \int f \log \phi$$

$$= -h(f) - \int \phi \log \phi \qquad \text{by the quadratic form property above}$$

$$= -h(f) + h(\phi)$$

and thus $h(\phi) \ge h(f)$.