```
In [1]: # Dependencies and Setup
        %matplotlib inline
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        from scipy.stats import sem
        # Hide warning messages in notebook
        import warnings
        warnings.filterwarnings('ignore')
        # File to Load (Remember to Change These)
        mouse_data_file = "data/mouse_drug_data.csv"
        clinical trial file = "data/clinicaltrial data.csv"
        # Read the Mouse and Drug Data and the Clinical Trial Data
        mouse_data_df = pd.read_csv(mouse_data_file)
        clinical_trial_df = pd.read_csv(clinical_trial_file)
        # Combine the data into a single dataset
        combined_trial_df = pd.merge(clinical_trial_df,mouse_data_df,
                                          how='outer', on='Mouse ID')
        # Display the data table for preview
        combined_trial_df.head()
```

Out[1]:

Drug	Metastatic Sites	Tumor Volume (mm3)	Timepoint	Mouse ID	
Capomulin	0	45.000000	0	b128	0
Capomulin	0	45.651331	5	b128	1
Capomulin	0	43.270852	10	b128	2
Capomulin	0	43.784893	15	b128	3
Capomulin	0	42.731552	20	b128	4

Tumor Response to Treatment

```
In [2]: # Store the Mean Tumor Volume Data Grouped by Drug and Timepoint
    trial_data = combined_trial_df[['Drug', 'Timepoint', 'Tumor Volume (mm3)']]

# Convert to DataFrame

total_volume_data = trial_data.groupby(['Drug', 'Timepoint'], as_index = False)[
    'Tumor Volume (mm3)'].mean()
    tumor_response_data = pd.DataFrame(total_volume_data)

# Preview DataFrame

tumor_response_data.head(5)
```

Out[2]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	45.000000
1	Capomulin	5	44.266086
2	Capomulin	10	43.084291
3	Capomulin	15	42.064317
4	Capomulin	20	40.716325

Out[3]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	0.000000
1	Capomulin	5	0.448593
2	Capomulin	10	0.702684
3	Capomulin	15	0.838617
4	Capomulin	20	0.909731

```
In [4]: # Minor Data Munging to Re-Format the Data Frames

# df.pivot_table('no of medals', ['Year', 'Country'], 'medal')
mean_data_pivot_table = combined_trial_df.pivot_table('Tumor Volume (mm3)', [
    'Timepoint'], 'Drug')

# Preview that Reformatting worked
mean_data_pivot_table.head()
```

Out[4]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramica
Timepoint								
0	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.0000
5	44.266086	46.503051	47.062001	47.389175	46.796098	47.125589	47.248967	43.9448
10	43.084291	48.285125	49.403909	49.582269	48.694210	49.423329	49.101541	42.5319
15	42.064317	50.094055	51.296397	52.399974	50.933018	51.359742	51.067318	41.4950
20	40.716325	52.157049	53.197691	54.920935	53.644087	54.364417	53.346737	40.2383

```
In [5]: # Minor Data Munging to Re-Format the Data Frames

# df.pivot_table('no of medals', ['Year', 'Country'], 'medal')
sem_error_pivot_table = error_data_df.pivot_table('Tumor Volume (mm3)', ['Time point'], 'Drug')

# Preview that Reformatting worked
sem_error_pivot_table.head()
```

Out[5]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	દ
Timepoint									
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
5	0.448593	0.164505	0.235102	0.264819	0.202385	0.218091	0.231708	0.482955	0
10	0.702684	0.236144	0.282346	0.357421	0.319415	0.402064	0.376195	0.720225	0
15	0.838617	0.332053	0.357705	0.580268	0.444378	0.614461	0.466109	0.770432	0
20	0.909731	0.359482	0.476210	0.726484	0.595260	0.839609	0.555181	0.786199	0
4								1	

```
# Generate the Plot (with Error Bars)
sem_pivot = sem_error_pivot_table[['Capomulin', 'Infubinol', 'Ketapril', 'Placeb
drug data = mean data pivot table[['Capomulin', 'Infubinol','Ketapril','Placeb
ax1 = drug_data['Capomulin'].plot(kind='line', yerr = sem_pivot['Capomulin'],
linewidth=1, marker= 'o', color='red', label ='Capomulin')
ax2 = drug_data['Infubinol'].plot(kind='line',yerr = sem_pivot['Infubinol'],li
newidth=1, marker= '^', color='blue', label = 'Infubinol')
ax3 = drug_data['Ketapril'].plot(kind='line',yerr = sem_pivot['Ketapril'], lin
ewidth=1, marker= 's', color='green', label='Ketapril')
ax4 = drug_data['Placebo'].plot(kind='line',yerr = sem_pivot['Placebo'], linew
idth=1, marker= 'v', color='black', label='Placebo')
plt.legend(loc='upper left')
plt.title("Tumor Response to Treatment")
plt.xlabel("Time (Days)")
plt.ylabel("Tumor Volume (mm3)")
plt.axes().yaxis.grid()
# Save the Figure
plt.savefig("../Images/treatment.png")
# Show the chart
plt.show()
```


Metastatic Response to Treatment

```
In [7]: # Store the Mean Met. Site Data Grouped by Drug and Timepoint

met_data = combined_trial_df[['Drug', 'Timepoint', 'Metastatic Sites']]

# Convert to DataFrame

mean_met_data=met_data.groupby(['Drug','Timepoint'])['Metastatic Sites'].mean
()
met_response_mean_data = pd.DataFrame(mean_met_data)

# Preview DataFrame

met_response_mean_data.head()
```

Out[7]:

Metastatic Sites

Drug	Timepoint	
	0	0.000000
	5	0.160000
Capomulin	10	0.320000
	15	0.375000
	20	0.652174

Out[8]:

Metastatic Sites

Drug	Timepoint	
	0	0.000000
	5	0.074833
Capomulin	10	0.125433
	15	0.132048
	20	0.161621

```
In [9]: # Minor Data Munging to Re-Format the Data Frames
    met_mean_raws_to_column = met_response_mean_data.pivot_table('Metastatic Site
    s', ['Timepoint'], 'Drug')

# Preview that Reformatting worked
    met_mean_raws_to_column.head()

# Preview that Reformatting worked
```

Out[9]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	ક
Timepoint									
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
5	0.160000	0.380952	0.280000	0.304348	0.260870	0.375000	0.320000	0.120000	0
10	0.320000	0.600000	0.666667	0.590909	0.523810	0.833333	0.565217	0.250000	0
15	0.375000	0.789474	0.904762	0.842105	0.857143	1.250000	0.764706	0.333333	0
20	0.652174	1.111111	1.050000	1.210526	1.150000	1.526316	1.000000	0.347826	0

```
In [10]: # Minor Data Munging to Re-Format the Data Frames
met_error_raws_to_column = met_error_data_df.pivot_table('Metastatic Sites', [
'Timepoint'], 'Drug')

# Preview that Reformatting worked
met_error_raws_to_column.head()

# Preview that Reformatting worked
```

Out[10]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	દ
Timepoint									
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
5	0.074833	0.108588	0.091652	0.098100	0.093618	0.100947	0.095219	0.066332	0
10	0.125433	0.152177	0.159364	0.142018	0.163577	0.115261	0.105690	0.090289	0
15	0.132048	0.180625	0.194015	0.191381	0.158651	0.190221	0.136377	0.115261	0
20	0.161621	0.241034	0.234801	0.236680	0.181731	0.234064	0.171499	0.119430	0
4								ı	

```
In [11]:
         # Generate the Plot (with Error Bars)
         met sem pivot = met error raws to column[['Capomulin', 'Infubinol','Ketapril',
         'Placebo']]
         met drug data = met mean raws to column[['Capomulin', 'Infubinol', 'Ketapril',
         'Placebo']]
         ax1 = met_drug_data['Capomulin'].plot(kind='line', yerr = met_sem_pivot['Capom
         ulin'], linewidth=1, marker= 'o', color='red', label ='Capomulin')
         ax2 = met drug data['Infubinol'].plot(kind='line',yerr = met sem pivot['Infubi
         nol'],linewidth=1, marker= '^', color='blue', label = 'Infubinol')
         ax3 = met_drug_data['Ketapril'].plot(kind='line',yerr = met_sem_pivot['Ketapri
         l'], linewidth=1, marker= 's', color='green', label='Ketapril')
         ax4 = met_drug_data['Placebo'].plot(kind='line',yerr = met_sem_pivot['Placebo'
         ], linewidth=1, marker= 'v', color='black', label='Placebo')
         plt.legend(loc='best')
         plt.title("Metastatic spred during Treatment")
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Met. sites")
         plt.xlim(-2,48)
         plt.axes().yaxis.grid()
         # Save the Figure
         plt.savefig("../Images/Metastat spred.png")
         # Show the Figure
         plt.show()
```


Out[12]:

	Drug	Timepoint	Mouse Count
0	Capomulin	0	25
1	Capomulin	5	25
2	Capomulin	10	25
3	Capomulin	15	24
4	Capomulin	20	23

```
In [13]: # Minor Data Munging to Re-Format the Data Frames
    survival_data_pivot_table = survival_data_df.pivot_table('Mouse Count', ['Time
    point'], 'Drug')
    # Preview the Data Frame
    survival_data_pivot_table.head()
```

Out[13]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	Stela
Timepoint									
0	25	25	25	25	25	25	26	25	
5	25	21	25	23	23	24	25	25	
10	25	20	21	22	21	24	23	24	
15	24	19	21	19	21	20	17	24	
20	23	18	20	19	20	19	17	23	
4									•

```
In [14]: # Generate the Plot (Accounting for percentages)
         selected drug data = survival data df.pivot table('Mouse Count', ['Timepoint'
         ], 'Drug')[['Capomulin', 'Infubinol', 'Ketapril', 'Placebo']]
         selected drug data =selected drug data.div(selected drug data.iloc[0,0]).multi
         ply(100)
         # Preview the Data Frame
         selected drug data
         # Generate the Plot
         selected_drug_data.plot(kind ='line', style = ['ro-','b^-','gs-','kv-'])
         plt.legend(loc='best')
         plt.title("Survival during Treatment")
         plt.xlabel("Time (Days)")
         plt.ylabel("Survival rate(%)")
         plt.xlim(-3,50)
         plt.ylim(30,110)
         plt.grid()
         # Save the Figure
         plt.savefig("../Images/Survival Rate.png")
         # Show the Figure
         plt.show()
```


Summary Bar Graph

```
In [15]: # Calculate the percent changes for each drug

    trial_mean_data =combined_trial_df.groupby(['Drug','Timepoint'])['Tumor Volume
    (mm3)'].mean()
    trial_mean_data

# Preview DataFrame

def first_last(df):
    return df.ix[[0, -1]].pct_change().iloc[[-1]].multiply(100)

percent_change_data = trial_mean_data.groupby(level=0, group_keys=False).apply
    (first_last).reset_index()

percent_change_df = percent_change_data.drop(['Timepoint'], axis = 1)
    percent_change_df
```

Out[15]:

	Drug	Tumor Volume (mm3)
0	Capomulin	-19.475303
1	Ceftamin	42.516492
2	Infubinol	46.123472
3	Ketapril	57.028795
4	Naftisol	53.923347
5	Placebo	51.297960
6	Propriva	47.241175
7	Ramicane	-22.320900
8	Stelasyn	52.085134
9	Zoniferol	46.579751

```
In [16]: # Store all Relevant Percent Changes into a Tuple
          selected drug = ['Capomulin', 'Infubinol', 'Ketapril', 'Placebo']
          tuples = [tuple(x) for x in percent change df.values if x[0] in selected drug]
          # Orient widths. Add Labels, tick marks, etc.
          def select color(percentage):
              if percentage < 0:</pre>
                  return 'g'
              else:
                  return 'r'
          plt.bar(selected drug,
                  [x[1] for x in tuples],
                  align ='center', width=1.0,
                  color= [select color(x[1]) for x in tuples],
                  alpha=1.0)
          plt.grid()
          plt.title("Survival during Treatment")
          plt.ylabel("% tumor volume change")
          plt.title("tumor change over 45 days")
          plt.xticks(np.arange(0.5, 4, step=0.999))
          # Use functions to label the percentages of changes
          plt.xlim(-0.7, 3.7)
          plt.ylim(-30,70)
          def label position(percentage):
              if percentage < 0:</pre>
                  return -5
              else:
                  return 5
          # Call functions to implement the function calls
          for index, (drug, percentage) in enumerate(tuples):
              plt.text(index,
                       label position(percentage),
                       str(round(percentage,0)) + '%',
                       color='w', fontweight='bold',ha='center', va='center')
          # Save the Figure
          plt.savefig("../Images/change.png")
          # Show the Figure
          plt.show()
```


In []: