Работа 4.3.1 Дифракция

Шарапов Денис, Б05-005

Содержание

1	Аннотация	2
2	Результаты измерений и обработка данных	2
	2.1 Дифракция Френеля на щели	2
	2.2 Дифракция Фраунгофера на щели	3
	2.3 Дифракция Фраунгофера на двух щелях	3
	2.4 Влияние дифракции на разрешающую способность оптического инструмента	4
3	Вывод	4

1 Аннотация

Цель работы: Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

2 Результаты измерений и обработка данных

2.1 Дифракция Френеля на щели

Рис. 1: Схема лабораторной установки для наблюдения дифракции Френеля

Измерим ширину b щели S_2 с помощью микрометрического винта и поперечных салазок микроскопа:

$$b_{\text{микр}} = (2,740 \pm 0,005) \cdot 10^{-4} \ \text{м},$$

$$b_{\text{meль}} = (3,00 \pm 0,05) \cdot 10^{-4} \ \text{м}.$$

Зависимость координаты микроскопа от числа наблюдаемых полос представлена в таблице 1.

Таблица 1: Зависимость координаты микроскопа от числа наблюдаемых полос

n, шт	0	1	2	3	4	5
z, MM	481	475	467	462	460	459
a, MM	28	22	14	9	7	6
ξ , MM	_	110	124	121	124	128

Построим график зависимости $\xi(n)$ ($\xi_n = \sqrt{an\lambda}$, $\lambda = 546, 1$ нм).

Рис. 2: График зависимости $\xi(n)$

2.2 Дифракция Фраунгофера на щели

Рис. 3: Схема лабораторной установки для наблюдения дифракции Фраунгофера на щели

Настроим установку, с помощью винта поперечного перемещения микроскопа измерим координаты X_m нескольких дифракционных минимумов от -m до m. Занесём результаты в таблицу 2 (цена деления шкалы 0.02 мм).

Таблица 2: Координаты минимумов дифракционной картины

m	-4	-3	-2	-1	0	1	2	3	4
дел.	-58	-43	-29	-15	0	15	29	43	58
x, MM	-1, 16	-0.86	-0,58	-0,30	0	0,30	0,58	0,86	1,16

Puc. 4: График зависимости x(m)

2.3 Дифракция Фраунгофера на двух щелях

В установке для дифракции Фраунгофера для одной щели заменяем щель S_2 экраном Э с двумя щелями. В итоге получаем характерное распределение максимумов и минимумов.

Определим расстояние между темными полосками внутри центрального максимума. Посчитаем число светлых промежутков между ними

$$n = 6 \pm 1$$
.

Измерим ширину центрального максимума

$$X = 0,44 \pm 0,01$$
 mm.

По полученным данным определим расстояние между минимумами

$$\delta x = \frac{X}{n} = 73 \pm 10 \text{ MKM}.$$

Откуда получим расстояние между щелями

$$d = \frac{\lambda f_2}{\delta x} = 1,0 \pm 0,2 \text{ MM}.$$

2.4 Влияние дифракции на разрешающую способность оптического инструмента

Рис. 5: Исследование влияния дифракции на резрешающую способность оптического инструмента

Непосредственно из измерений получаем

$$d_0 = 0,93 \pm 0,05$$
 mm,

$$D_1 = 0,18 \pm 0,01$$
 MM,

$$D_2 = 0.36 \pm 0.01$$
 MM.

3 Вывод

В ходе работы было изучено явление дифракции света — дифракция Френеля на щели и на препятствии, дифракция Фраунгофера на одной и двух щелях.

- При исследовании явления дифракции Френеля на щели убедились, что ширина зон Френеля примерно равна ширине щели
- При исследовании явления дифракции Фраунгофера на щели получили значение ширины щели, примерно равно измеренному непосредственно с помощью регулятора ширины щели:

$$b_0 = 223 \text{ MKM}$$
 $b_f = 242 \text{ MKM}$

• При исследовании явления дифракции Фраунгофера на двух щелях было получено значение расстояния между щелями, примерно равное измеренному с помощью микроскопа:

$$d_0 = 0,93 \text{ mm}$$
 $d_f = 1 \text{ mm}$