Overview: Why Analyze Algorithm Efficiency?

Analyzing an algorithm's efficiency helps us predict **how it will perform as input sizes grow**, without needing to run it on every possible dataset. This is crucial for understanding **scalability** and choosing the most appropriate algorithm for a problem.

What Is Asymptotic Notation?

Asymptotic notation describes the *growth rate* of an algorithm's running time (or space usage) as the input size **n** increases. It abstracts away constants and lower-order terms, focusing only on the dominant behavior.

The key notations used are:

- **Big-O** (**O**) Worst-case upper bound
- **Big-\Omega** (Ω) Best-case lower bound
- **Big-\Theta** (Θ) Tight (exact) bound
- **little-o** (o) Strictly less than an upper bound
- **little-\omega** (ω) Strictly greater than a lower bound

How It's Used in Algorithm Analysis

Let's say an algorithm has the running time:

$$T(n) = 3n^2 + 2n + 7$$

As **n** grows large, the term $3n^2$ dominates, so we describe it as:

$$T(n)=\mathcal{O}(n^2)$$

This means the **execution time increases quadratically** with input size, and all other terms are ignored in asymptotic analysis.

Common Function Classes (From the Book)

In Chapter 4 of the textbook, the authors identify **seven fundamental functions** used frequently in asymptotic analysis:

Function Type	Growth	Example	
Constant	O(1)O(1)O(1)	Accessing array index	
Logarithmic	$O(\log f \circ n)O(\log n)O(\log n)$	Binary search	
Linear	O(n)O(n)O(n)	Linear search	
Log-linear	$O(n\log f \circ n)O(n \setminus \log n)O(n\log n)$	Merge sort	
Quadratic	$O(n2)O(n^2)O(n2)$	Bubble sort	
Cubic	$O(n3)O(n^3)O(n3)$	Triple nested loops	
Exponential	$O(2n)O(2^n)O(2n)$	Brute-force subset search	

These help categorize and compare algorithms based on their efficiency.

Analytical Techniques

The book introduces several techniques for analyzing algorithms:

- **Loop counting**: Estimate the number of iterations
- **Recurrence relations**: Used for recursive algorithms (e.g., divide-and-conquer)
- **Big-O justification techniques**: Loop invariants, mathematical induction

Practical Implication

- O(n) is scalable.
- $O(n^2)$ becomes inefficient for large input sizes.
- O(\log n) is highly efficient and desirable in search operations.

Understanding asymptotic notation allows developers to **optimize code**, select better algorithms, and predict performance before deployment.

Conclusion:

Asymptotic notation provides a mathematical framework for comparing algorithm efficiency independent of hardware. It's a cornerstone of algorithm design and evaluation, helping identify which solutions are scalable and practical for large datasets.