EXAMEN DE ARQUITECTURA DE COMPUTADORES. La Rábida, 7 de Septiembre de 2017

	Valor de cada: Respuesta correcta + 0.1 Respuesta incorrecta - 0.05 No respuesta - 0.05	TIEMPO REALIZACIÓN EXAMEN: 45 minutos Espacio para res	spuesta ↓↓↓↓↓							
1	Atendiendo a las características de los sistemas mici desarrolladas por el fabricante CRAY que soportan ca considerarse:		D							
	A) Micro computadores B) Mini computadores	C) Grandes computadores D) Súper computadores								
	Sea una arquitectura segmentada sobre la que aplican	, 1								
	procesador:									
2	A) Estamos mejorando el tiempo de ejecución de instrucción	, <u>-</u>	A							
	B) Estamos mejorando sólo la productividad de la máquina									
	Atendiendo a la definición de productividad estudiada pa									
3	A) Aumenta cuando aumenta el tiempo de ejecución de instrucción	realizadas por unidad de tiempo	C							
3	B) Disminuye cuando disminuye el tiempo de ejecución de	1	C							
	instrucción	D) ivingulia de las affiliaciones afferiores es correcta								
	Sea un sistema computador del que conocemos su frecuer	ncia de oneración, f = 3 GHz:								
4	A) Podemos conocer su productividad	C) Podemos conocer su CPI	В							
	B) Podemos conocer su tiempo de ciclo	D) El tiempo de ciclo es independiente de la frecuencia								
	Sea un microprocesador con un CPI _{medio} = 3, y frecuencia	de operación de 2,5 GHz:								
5	A) El tiempo de ciclo es de 1,2 ns	C) El tiempo de ejecución de instrucción es de 3 ns	В							
	B) El tiempo de ejecución por instrucción=1,2 ns	D) No es posible conocer el tiempo de ciclo								
	Sea la máquina A que dedica 5 seg. en ejecutar un progra									
6	A) La máquina A es el 100% más rápida que B	C) La máquina B es el 100% más rápida que A	C							
	B) La máquina B es el 50% más rápida que A	D) No es posible comparar los dos rendimientos								
7	Sea el miroprocesador Raspberry Pi 2 con 4 MIPS a 1 G A) Dedica 1 ns a cada instrucción	Hz: C) Dedica 2,5 μs a cada instrucción	ъ							
/	B) Dedica de media 250 ciclos para cada instrucción	D) Dedica 0,25 ciclos a cada instrucción	В							
	Cuando se habla de algoritmos de reemplazo (Aleatorio,									
8	A) Búsqueda de los bloques en memoria	C) Escritura o actualización de los bloques	D							
	B) Organización de la memoria caché	D) Sustitución de bloques en memoria caché								
	Atendiendo a los tipos de fallos de caché (forzosos, de con									
	A) El fallo forzoso se da siempre cuando la memoria caché									
9	está llena	fallo de capacidad	D							
		D) El fallo de conflicto se puede dar cuando hay hueco en								
	memoria caché	la memoria caché								
	Atendiendo al formato de dirección en un sistema compu									
10	A) Es el mismo para la función de correspondencia directa C) No permite conocer cuántas palabras tiene cada bloque y totalmente asociativa									
	B) Es el mismo para todas las funciones de correspondencia	D) Ninguna de las afirmaciones anteriores es correcta								
	Para conocer si un bloque solicitado se encuentra en mem									
	A) La correspondencia T. Asociativa necesita tantos		A							
11	comparadores como bloques tiene la memoria caché	comparadores como bloques tiene la memoria principal								
	B) Siempre se necesitan un comparador por memoria	D) Siempre se necesita un comparador por cada palabra								
	La/s técnica/s estudiada/s para mejorar el rendimiento de	· · · · · · · · · · · · · · · · · · ·								
12										
	B) Memoria multinivel D) Acelerar el caso común (ley de Amdahl)									
	De los algoritmos de reemplazo, el que penaliza al bloque									
13	A) FIFO	C) Aleatorio	В							
	B) LFII	D) LRII	ı							

C) La escritura nunca implica acceso a M. Principal

C) Banco de Registros exclusivamente

D) Ninguna de las afirmaciones anteriores es correcta

D) Ninguna de las afirmaciones anteriores es correcta

D

 \mathbf{A}

De las estrategias de escritura para reemplazar un bloque de memoria caché:

Indica el lugar donde pueden estar almacenados los operandos en una máquina de 2 direcciones:

A) La postescritura aumenta los accesos a M. Principal

B) Todas suponen el mismo número de accesos

A) Banco de registros, Memoria y Pila

B) Registro Acumulador

15

			a con arquitectura	a Von Neumann, si implica 4 ciclos de							
16	reloj y la activación de 17 señales de o				C						
10	A) La instrucción la componen 4 microprogramas C) La instrucción la compone 1 microprograma B) La instrucción la componen (17+4) microinstrucciones D) La instrucción la componen (17/4) microinstrucciones										
	Sea una unidad de control microprogramada con secuenciamiento explícito y 8 bits en el campo código de operación y memoria de control de 500 posiciones. Indica cuál de las siguientes afirmaciones es cierta:										
17	A) La etapa traductora será de 256 posiciones x 500 C) No necesita ni etapa traductora ni memoria de control										
	B) La etapa traductora será de 256 posici			afirmaciones anteriores es correcta							
	De las siguientes instrucciones, indica										
18	A) RETI y CMP .4, #0		C) CALL y RET		В						
	B) BZ A0005h		D) CMP.4, #0 y BNZ A0005h								
	Sea la arquitectura DLX estudiada qu	ie no realiza operac	iones multiciclo:								
19		datos serán de tipo		r riesgos por dependencia de datos de	A						
17	RAW		tipo RAR								
	B) Sólo presenta riesgos estructurales		D) Presentará riesg								
			l fabricante ha p	rogramado el registro SR para que							
20	inicialmente contenga el valor F00001 A) El resto de registros deben contender		C) La nila sa anau	entra definida a partir de esa dirección	D						
20	B) El programa cargador (boot-strap)				v						
	partir de esa dirección	estara annacenado a	D) Miligulia de las	annuaciones anteriores es correcta							
	Atendiendo al esquema de la arquited	tura DLX estudiads	en el Tema 3 v 4.	corresponde a:							
21	A) Un computador de 4 direcciones		C) Un computado		В						
	B) Un computador de 3 direcciones		D) Un computador	de 1 dirección							
	Sea un sistema del que se dice que la										
22	A) La ejecución de RET implica increm		, .	e un CALL implica incrementar SP	\mathbf{C}						
	B) La ejecución de RET implica increm			e un CALL implica incrementar SR							
	Sea un sistema con unidad de control				_						
23	A) Tiene almacenado un único micropro			idos dos microprogramas	В						
	B) Estos sistemas no almacenan microp			oo de secuenciamiento							
	instrucción de 32 bits:	on Neumann, and	io de palabra de	memoria de 16 bits y formato de							
24	A) El incremento de RI se hará en 2 uni	dades	C) El incremento o	le RD se hará en 2 unidades	D						
	B) El incremento de PC y SP se hará en		,	debería ser de 2 bytes							
	Sea la arquitectura DLX, al ejecutar										
25	A Se modificará todo el registro R2	· · ·	C) Se modificarán los dos bytes más significativos de R2								
	B) Se modificará todo el registro R1		D) Ninguna de las	afirmaciones anteriores es correcta							
	La arquitectura supersegmentada:										
	A) Obliga a realizar a la vez las mismas fases de una misma C) Sólo permite realizar múltiples operaciones con										
26	instrucción	0 1 1: .: .	número escalares	<i>c</i>	D						
	B) Permite realizar a la vez las mismas fases de distintas D) Ninguna de las afirmaciones anteriores es correcta										
	instrucciones Sea el extracto del bucle:	que pasa a ser de la	forma								
	LOOP:	LOOP:	i iui ilia.								
	ADDF F0, F2, F4	ADDF F0, F	2. F4								
	SF 0(R1), F0	SF 0(R1), F0	*	estaríamos aplicando:							
	SUB R1, R1, #8	SUB R1, R1,									
27	BNEZ R1, LOOP	ADDF F0, F			A						
		SF 0(R1), F0									
		SUB R1, R1,	, #8								
	A) Desenrollado del bucle	•••••	C) Segmentación software								
	B) Planificación de traza		D) Planificación del bucle								
	El objetivo de la arquitectura VLIW	es:	,								
28	A) Tener un registro de instrucción de mayor tamaño C) Aumentar el grado de segmentación del sistema										
	B) Reduce el número de detenciones D) Tener un mayor repertorio de instrucciones										
		ctura re <mark>visada para</mark>	las instrucciones o	le salto, la ejecución de la instrucción							
29	BEQZ R1, A0000h implica:				D						
_,	A) Un riesgo de control C) Un riesgo estructural										
	B) Un riesgo por dependencia de datos	/	D) No implica nin								
	En un sistema computador, las caract	teristicas básicas que									
30	A) Capacidad y velocidad de memoria R) Frequencia CPI requento de instru	ociones y consoided	C) MIPS y capacio		D						
	B) Frecuencia, CPI, recuento de instrucciones y capacidad D) Frecuencia, CPI y recuento de instrucciones de memoria										
	de memoria										

EXAMEN DE ARQUITECTURA DE COMPUTADORES

La Rábida, 7 de Septiembre de 2017

PROBLEMA 1. (2,5 ptos.). Un sistema computador (sin memoria virtual) tiene una memoria principal de 1024 Kpalabras de 8 bits cada una de ellas y una memoria caché de 16 Kpalabras, con función de correspondencia Asociativa por Conjuntos, bloques con un tamaño de 512 palabras y conjuntos de 8 bloques.

- a) Justificar e indicar para la Memoria Principal y para la Memoria Caché:
 - 1) La capacidad en bytes.
 - 2) El número de bloques.
- b) Mostrar el formato de la dirección que define la unidad central de proceso en base a la función de correspondencia empleada, definiendo cada uno de los campos en los que se divide.

Se supone que, después de haber estado la memoria caché "vacía" (*instante 0*), a continuación en el *instante 1* se encuentran en la memoria caché los bloques de memoria principal B0, B1, B2, B3, B4, B5, B6, B8, B9 y B12, leídos en ese orden y todas sus direcciones ordenadamente una vez. Suponer que el algoritmo de reemplazamiento de bloques es el FIFO (First In, First Out).

- c) Mostrar el contenido de la memoria caché en el instante 1.
- d) Identificar cuántos fallos de caché se han producido y de qué tipo hasta ese *instante 1*.

A continuación, la CPU lee la secuencia de direcciones de memoria: 511, 1024, 1536, y 5120 (*instante 2*), según el orden marcado en la misma.

- e) Mostrar el contenido de la memoria caché en el instante 2.
- f) Entre el *instante 1* y el *instante 2*, ¿cuántos fallos y de qué tipo se han producido?.
- g) Desde el *instante 0* hasta el *instante 2*, ¿cuántos aciertos se han producido?.
- h) Indicar la frecuencia de uso de cada uno de los bloques contenidos en la memoria caché en el *instante 2*.

A continuación, la CPU lee las direcciones 6145, 8192 y 8193 (instante 3), en ese orden.

- i) Mostrar el contenido de la Memoria Caché en el instante 3.
- j) Entre el *instante 2* y el *instante 3*, ¿cuántos aciertos y fallos se han producido y en qué direcciones?
- k) Hasta ese instante 3, ¿cuál es la frecuencia de uso del bloque 12?

PROBLEMA 2. (2,25 ptos.). Para el sistema computador representado en la figura, y para la secuencia de instrucciones siguiente:

Dirección de Memoria	Instrucción
(en hexadecimal)	(en ensamblador)
B0000h	DIV .1, .2
B0001h	NOP
C0000h	MOVE [00120h], .5
C0001h	RETI

- 1. Mostrar los formatos de las instrucciones.
- 2. Definir la secuencia de operaciones elementales y el solapamiento posible de las mismas. Especificar la secuencia según el flujo marcado por el programa propuesto, y considerando una sola vez la ejecución de cada instrucción. La última instrucción ejecutada es la de NOP.
- Definir el valor de las señales de control correspondiente a la secuencia de operaciones elementales: SP,D ← SP+1 y RM ← SR, realizadas en el menor tiempo posible. Mostrar únicamente el valor de las señales que intervienen directamente en dicha operación.

Teniendo en cuenta:

- a) PRIMERA INSTRUCCIÓN: La instrucción de división, DIV, con direccionamiento directo absoluto a registro. Al comienzo de la ejecución, el contenido del registro R2 es cero, provocando un cepo o trap en la ejecución de la instrucción. La dirección donde se encuentra el comienzo de la Rutina de Servicio a la Interrupción es la C0000h
- b) SEGUNDA INSTRUCCIÓN: La instrucción de No Operación, NOP.
- c) TERCERA INSTRUCCIÓN: La instrucción de transferencia MOVE, con modo de direccionamiento directo absoluto a registro para el primer operando e indirecto absoluto a memoria para el segundo operando.
- d) CUARTA INSTRUCCIÓN: La instrucción de retorno de interrupción, RETI.
- e) Las operaciones con la unidad aritmético-lógica se realizan en un periodo.
- f) Los cálculos de las direcciones de los operandos en memoria especificados con direccionamiento relativo, se realizarán después del periodo de decodificación.
- g) El resultado de una operación o el operando destino va a ser siempre el especificado en primer lugar en la instrucción de ensamblador.
- h) Las operaciones de L/E en memoria se realizan durante dos periodos.
- i) La pila, que se implementa en el sistema con el registro SP (puntero de pila), funciona de la siguiente forma: 1) La pila crece hacia direcciones decrecientes. 2) El registro puntero

- de pila indica la dirección de memoria principal en la que se va a introducir el próximo dato en la pila.
- j) Para cuando hay que salvar el contenido de SR y el de PC, siempre se almacenará primero el de SR.

PROBLEMA 3. (2,25 ptos.). El siguiente fragmento de código se ejecuta en un procesador DLX. En dicho procesador la etapa MEM requiere 1 ciclo de reloj. Las latencias (en ciclos de reloj) de las unidades funcionales son las siguientes: Sumador/restador entero: 1; Sumador/restador flotante: 2; y Multiplicador/Divisor: 3 (las dos últimas unidades funcionales para operaciones están **segmentadas**).

```
LW R2, 20(R1)
SW 10(R2), R5
LW R3, 10(R5)
LF F0, 30(R5)
ADD R4, R3, R5
SUB R5, R3, R4
FMUL F6, F4, F3
FADD F4, F0, F6
```

- a) Suponiendo que la memoria tiene un único puerto de acceso y que no hay adelantamiento, indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; e indicar si existen bloqueos en la cadena y a qué se deben.
- b) Repetir el apartado a) para una versión del DLX que incluya **adelantamiento** (bypass) **generalizado** y suponiendo que la **memoria** tiene **dos puertos de acceso** (uno para instrucciones y otro para datos). Indicar el estado de cada instrucción durante los ciclos de ejecución del código; calcular el número de ciclos necesarios para ejecutar este código; e indicar si existen bloqueos en la cadena y a qué se deben. Indicar claramente los datos que se adelantan y entre qué etapas actúa el bypass.

Etapa	Instrucción ALU	Carga/Almacenamiento	Salto/Bifurcación
IF	$IR \leftarrow M[PC]$	IR ← M[PC]	IR ← M[PC]
	PC ← PC+4	PC ← PC+4	PC ← PC+4
ID	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2	A ← Rs1; B ← Rs2
	PC1 ← PC	PC1 ← PC	PC1 ← PC
	IR1 ← IR	IR1 ← IR	IR1 ← IR
EX	ALU _{output} ← A op (B or (IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)	MAR ← A+(IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁	Salto
		SMDR ← B	ALU _{output} ← PC1+IR1 ₁₆) ¹⁶ ##IR1 ₁₆₃₁)
			Cond ← (Rs1 op 0);
			Bifurcación
			ALU _{output} ← PC1+ IR1 ₂₆) ⁶ ##IR1 ₆₃₁)
MEM	ALUoutput1 ← ALUoutput	LMDR ← M[MAR]	If (cond):
		О	PC ← ALU _{output}
		M[MAR] ← SMDR	
WB	Rd ← ALU _{output} 1	$Rd \leftarrow LMDR$	

Tabla. Eventos en cada etapa de la segmentación de DLX diferenciados según el tipo de instrucción.

	Apellidos:	Nombre:																													
	ado a) 2, 20 (R1)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	0 (R2), R5																														
LW R	3, 10(R5)																														
LF F	0, 30(R5)																														
ADD	R4, R3, R5																														
	R5, R3, R4																														
	F6, F4, F3																														
FADD	F4, F0, F6																														
	ado b)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	2, 20(R1)																														
	0(R2), R5																														
	3, 10(R5)																														
	0, 30(R5)																														
	R4, R3, R5																														
	R5, R3, R4																														
	F6, F4, F3																														
	F4, F0, F6																														
Detenciones						Detenciones								Adelantamientos							Adelantamientos										