Отчет по лабораторной работе 1.1.4 «Измерение интенсивности радиационного фона»

Головинов Г.А. Б02-304 Долгопрудный, 2023

1 Аннотация

Цель работы: измерить интенсивность радиационного фона, используя статистические методы обработки экспериментальных данных.

Используемые инструменты: Счётчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счётчиком.

2 Основные теоретические сведения

Космические лучи разделяются на первичные и вторичные: первичные приходят к нам из космоса, а вторичные - лучи, которые появляются из-за взаимодействия первых с атмосферой Земли. Природа первичных космических лучей до сих пор частично остаётся загадкой. Большая их часть находит своё начало в недрах Солнца, где быстро двигающиеся заряженные частицы являются продуктами термоядерных реакций.

Счётчик Гейгера-Мюллера

Принцип работы счётчика Гейгера-Мюллера основывается на ударной ионизации. Когда заряженная частица попадает в детектор (цилиндрический конденсатор), она ионизирует атомы благородных газов, которые ионизируют следующие. Такая цепная реакция (еще ее называют лавинообразной) показывается как изменение импеданса конденсаторадетектора, что изменяет протекающий через него ток. Соответственно, когда мы видим резкий скачок тока, мы можем говорить о наблюдении частицы.

Рис. 1: Подключение счётчика Гейгера к установке

3 Результаты измерений и обработка данных

3.1 Данные для обработки

Таблица 1: Число срабатываний счётчика за 20 с.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	25	27	27	30	23	31	26	16	22	35
10	26	29	29	26	22	22	29	29	32	24
20	18	33	28	29	27	35	34	18	17	26
30	25	31	33	28	26	26	26	27	28	34
40	14	18	28	30	26	19	26	34	23	33
50	30	23	28	24	28	34	24	32	24	33
60	36	31	28	30	14	26	18	27	29	31
70	31	23	36	33	36	33	23	31	26	19
80	32	27	29	30	28	27	22	34	24	29
90	23	20	17	22	27	26	25	37	26	33
100	34	37	30	37	20	30	36	30	25	25
110	22	27	27	29	25	36	25	28	33	28
120	32	22	29	21	36	28	28	32	30	33
130	32	25	25	35	24	32	35	18	28	25
140	28	28	29	32	29	32	38	32	19	31
150	23	26	28	21	26	26	30	29	37	33
160	17	23	26	36	30	23	25	19	26	20
170	32	27	18	25	22	33	38	28	37	26
180	23	20	34	28	26	21	25	29	26	23
190	20	24	28	25	32	20	30	29	23	32

Таблица 2: Данные для построения гистограммы для $\tau=10~{\rm c}$

Число импульсов n_i	4	5	6	7	8	9	10
Число случаев	2	2	3	7	14	23	28
Доля случаев w_n	0.0050	0.0050	0.0075	0.0175	0.0350	0.0575	0.0700
Число импульсов n_i	11	12	13	14	15	16	17
Число случаев	37	27	45	52	43	29	27
Доля случаев w_n	0.0925	0.0675	0.1125	0.1300	0.1075	0.0725	0.0675
Число импульсов n_i	18	19	20	21	22	23	24
Число случаев	26	13	6	4	5	4	2
Доля случаев w_n	0.0150	0.0100	0.0125	0.0100	0.0050	0.0025	0.0650

Таблица 3: Число срабатываний счётчика за 40 с.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	52	57	54	42	57	55	55	44	58	56
10	51	57	62	52	43	56	61	52	53	63
20	32	58	45	60	56	53	52	62	56	57
30	67	58	40	45	60	65	69	69	54	45
40	59	59	55	56	53	43	39	53	62	59
50	71	67	50	66	50	49	56	61	53	61
60	54	50	64	60	63	57	60	56	53	53
70	56	61	61	70	50	49	49	52	59	70
80	40	62	53	44	46	59	43	55	66	63
90	43	62	47	54	49	44	53	52	59	55

Рис. 2: Гистограммы для $\tau=10~{\rm c}$ и $\tau=40~{\rm c}$

3.2 Обработка результатов

Среднее за $\tau=10$ с: $\langle n_{10}\rangle=\frac{1}{N_1}\sum_{i=1}^{N_1}n_i\approx 13,725$ част. За $\tau=40$ с: $\langle n_{40}\rangle=\frac{1}{N_2}\sum_{i=1}^{N_2}n_i\approx 54,9$ част.

Подтвердим соотношение $\sigma \approx \sqrt{\langle n \rangle}$:

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (\langle n_{10} \rangle - n_i)^2} \approx 3,67 \quad \sigma_1 = \sqrt{\langle n_{10} \rangle} \approx 3,7$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (\langle n_{40} \rangle - n_i)^2} \approx 7,66 \quad \sigma_2 = \sqrt{\langle n_{10} \rangle} \approx 7,41$$

Тут будет опущена таблица, с данными для построения гистограммы для $\tau=40$ с, так как они были сгенерированы автоматически, бины гистограммы - нецелые числа, эта информация бесполезна в табличном виде, поэтому останется представлена только на рисунке. Информация, полученная с помощью кода была несколько раз проверена разными способами, например, просуммировав столбцы гистограммы мы получаем 1.

Стандартная и относительная погрешность для $\langle n_{10} \rangle$:

$$\sigma_{n10} = \frac{\sigma_1}{\sqrt{N_1}} = 0,185 \quad \varepsilon_{n10} = \frac{\sigma_{n10}}{\langle n_{10} \rangle} = 1,35\%$$

$$n_{10} = 13,725 \pm 0,185 \tag{1}$$

Для $\langle n_{40} \rangle$:

$$\sigma_{n40} = \frac{\sigma_2}{\sqrt{N_2}} = 0,766 \quad \varepsilon_{n40} = \frac{\sigma_{n40}}{\langle n_{40} \rangle} = 1,40\%$$

$$n_{40} = 54,900 \pm 0,766 \tag{2}$$

Относительные погрешности ε для $\tau=10$ с и $\tau=40$ с оказались очень близки, что подтверждает формулу:

$$\varepsilon_n = \frac{1}{\sqrt{\langle n \rangle N}}$$

Таблица 4: Сравнение полученного распределения с случайным

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка, %		
$\pm \sigma_1 = \pm 3, 7$	288	72,00	68,26		
$\pm \sigma_2 = \pm 7, 4$	381	95,25	95,44		

4 Обсуждение результатов и выводы

В ходе работы мы измерили среднее количество детекций счётчиком Гейгера за интервалы времени $\tau=10$ с и $\tau=40$ с, с достаточно высокой точностью. Относительная погрешность измерений $\varepsilon<1,4\%$

Высокая точность измерений преимущественно связана с большим количеством индивидуальных экспериментов, в случае $\tau=10$ с. N=400, а в случае $\tau=40$ с. N=100. Это позволило существенно уменьшить вклад случайной погрешности на измеренную величину. В работе были применены методы обработки данных для изучения статистических закономерностей, было построено две гистограммы для наглядного изображения полученных данных.