

Recent Advances in Computer Vision

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

Simon Meister, Junhwa Hur, Stefan Roth

Presented by:

Soumyadeep Bhattacharjee

Contents

- Introduction
- **Motivation** 2.
- **Related Work** 3.
- **Unsupervised Loss** 4.
 - **Occlusion-aware Data Loss** a.
 - **Census Transform** b.
 - **Smoothness Loss**
 - **Consistency Penalty** d.
- **UnFlow (CNN)** 5.
 - **Network Architecture**
 - **Iterative Refinement**
- Results 6.
- **Limitations** 7.
- **Summary** 8.

Introduction

Optic Flow

Inter-frame displacement at each pixel resulting from spatio-temporal brightness variations

(a) Frame t

(b) Frame t+1

Introduction

Methods to determine Optic Flow

Traditional Methods:

- Block-matching
- Lucas–Kanade/Horn–Schunck
- General variational methods extensions and modifications

Recent advances:

Deep Learning methods using Convolutional Neural Networks (CNNs)

- Supervised: Predict the output from the labelled input data.
- Unsupervised: Learn inherent structure from unlabeled input data.
- Semi-supervised: Mixture of supervised and unsupervised techniques.

Motivation

Problem:

- Deep Learning methods are driven by large amounts of training data.
- Dense per-pixel ground truth is difficult to obtain for real world scenes

Alternative:

Using Synthetic Datasets [Sintel/SYNTHIA]

Pros:

Abundant ground truth (easier to obtain)

Cons:

Trade realism for quantity

Motivation

Domain Mismatch:

Intrinsic differences between Training and Testing images

Training Domain (Flying Chairs, SYNTHIA)

Domains of interest (KITTI, Middlebury)

Motivation

Solution:

An Unsupervised Loss based on:

- Occlusion aware bidirectional flow estimation
- Robust Census transform

This loss is used to train a CNN (end-to-end) to predict dense optic flow and *does not* assume access to the velocity pixel labels of the ground-truth

Advantages:

- Circumvents the need to leverage ground truth flow
- Removes dependency on Synthetic datasets

Related work

Supervised Learning

- The first end-to-end supervised learning of CNNs for optical flow was **FlowNet** (Dosovitskiy et al. 2015).
- A follow up work (Ilg et al. 2017) introduced the FlowNet2 family of networks.
 - Improved by stacking multiple FlowNet networks for iterative refinement
- Other Hybrid methods (use CNN to extract relevant features) include:
 - PatchBatch (Gadot and Wolf 2016),
 - Deep Discrete Flow (Guney and Geiger 2016)

Related work

Unsupervised Learning

- Yu, Harley, & Derpanis (2016) suggested an unsupervised method based on FlowNet
 - Simplistic proxy loss based on the classical brightness constancy.
- Zhu et al. 2017:
 - Combined proxy loss with proxy ground truth from a classical optical flow algorithm.
- Zhu and Newsam 2017
 - Replaced the underlying FlowNet architecture.

All of the unsupervised approaches were outperformed by the supervised FlowNetS.

Aim of this paper

- To investigate possible ways for improving the accuracy of unsupervised approaches
- ❖ To uncover whether Unsupervised methods are a viable alternative or addition to supervised learning.

www.vis.uni-stuttgart.de

Unsupervised Loss

Let $I_1, I_2: P \to \mathbb{R}^3$ be two temporally consecutive frames.

Our goal is to estimate:

- Forward optical flow $\mathbf{w}^f = (\mathbf{u}^f, \mathbf{v}^f)^T$ from I_1 to I_2
- The inverse (backward) flow $\mathbf{w}^{b} = (\mathbf{u}^{b}, \mathbf{v}^{b})^{T}$
- Symmetric Occlusion map = \mathbf{o}^f , \mathbf{o}^b

All loss terms are **symmetrical** (i.e., computed for both flow directions).

Unsupervised Loss

The unsupervised loss is a weighted sum of three individual loss terms:

- λ_S : Constant penalty for deviation from smoothness
- λ_C : Constant penalty for deviation from consistency

Detection of occluded pixels

Idea: Pixels are marked occluded whenever the mismatch between \boldsymbol{w}^f and \boldsymbol{w}^b is too large.

• The forward occlusion flag $o_x^f = 1$, whenever the following constraint is violated:

$$\left| \left. \mathbf{w}^f(\mathbf{x}) + \mathbf{w}^b \left(\mathbf{x} + \mathbf{w}^f(\mathbf{x}) \right) \right|^2 < \alpha_1 \left(\left| \left. \mathbf{w}^f(\mathbf{x}) \right|^2 + \left| \left. \mathbf{w}^b \left(\mathbf{x} + \mathbf{w}^f(\mathbf{x}) \right) \right|^2 \right) + \alpha_2 \right|$$

• Similarly, the backward occlusion flag o_x^b is defined with w^f and w^b interchanged

$$\alpha_1 = 0.01, \alpha_2 = 0.5$$

Occlusion-aware Data loss

The occlusion-aware data loss is now defined as:

$$E_D(\mathbf{w}^f, \mathbf{w}^b, o^f, o^b) =$$

$$\sum_{\mathbf{x} \in \mathbf{P}} \left[\left(1 - o_{\mathbf{x}}^{f} \right) \cdot \rho \left(f_{D} \left(I_{1}(\mathbf{x}), I_{2} \left(\mathbf{x} + \mathbf{w}^{f}(\mathbf{x}) \right) \right) \right) + o_{\mathbf{x}}^{f} \lambda_{p} \right]$$

+
$$(1 - o_x^b)$$
. $\rho \left(f_D \left(I_2(\mathbf{x}), I_1 \left(\mathbf{x} + \mathbf{w}^b(\mathbf{x}) \right) \right) \right) + o_x^b \lambda_p \right]$

- $f_D(I_1(x), I_2(x'))$: Photometric Difference
- $\rho(x) = (x^2 + \epsilon^2)^{\gamma}$: Robust Generalized Charbonnier Penalty function ($\gamma = 0.45$)
- λ_p : Constant penalty for occluded pixels to avoid the trivial solution

Occlusion-aware Data loss

Drawbacks:

The brightness constancy is NOT invariant to illumination changes common in realistic situations

Alternative:

The ternary census transform (Zabih and Woodfill 1994; Stein 2004) is used to compensate for additive and multiplicative illumination changes.

Census Transform

Idea: To extract order-dependent information from local neighborhood

Benefit: Provides photometric invariance to changes that preserve the intensity order within a locality

$$b(x,y) \coloneqq \begin{cases} \mathbf{0} & \text{if } x \le y \\ \mathbf{1} & \text{if } x > y \end{cases}$$

Comparison with the central pixel yields a binary census signature: $(0,1,0,0,0,0,1,1)^T$

-1

Ternary Census Transform

Benefit: Provides added robustness by introduction of threshold δ

$$t(x, y, \delta) \coloneqq \begin{cases} \mathbf{1} & y - x > \delta \\ \mathbf{0} & |x - y| \le \delta \\ -\mathbf{1} & x - y > \delta \end{cases}$$

$$y - x > \delta$$
$$|x - y| \le \delta$$
$$x - y > \delta$$

64	12	10		1	-1
34	33	33	→	1	Х
22	45	51		-1	1
					+

Smoothness Loss

Idea: Encourage collinearity of neighboring flows; achieve regularization

Method: Penalize large second derivatives of the flow

$$\begin{split} &E_{S}\big(\mathbf{w}^{f},\mathbf{w}^{b}\big) \\ &= \sum\nolimits_{\mathbf{x} \in P} \sum\nolimits_{(\mathbf{s},\mathbf{r}) \, \in \, N(\mathbf{x})} \rho\left(\mathbf{w}^{f}(\mathbf{s}) - 2\mathbf{w}^{f}(\mathbf{x}) + \mathbf{w}^{f}(\mathbf{r})\right) + \rho\left(\mathbf{w}^{b}(\mathbf{s}) - 2\mathbf{w}^{b}(\mathbf{x}) + \mathbf{w}^{b}(\mathbf{r})\right) \end{split}$$

N(x) consists of the horizontal, vertical, and both diagonal neighborhood around x

Consistency Penalty

Idea: For non-occluded pixels forward and backward flow must be similar.

Method: Deviations from flow consistency is penalized.

$$E_{C}(\mathbf{w}^{f}, \mathbf{w}^{b}, o^{f}, o^{b}) = \sum_{\mathbf{x} \in P} (1 - o_{\mathbf{x}}^{f}) \cdot \rho \left(\mathbf{w}^{f}(\mathbf{x}) + \mathbf{w}^{b} \left(\mathbf{x} + \mathbf{w}^{f}(\mathbf{x}) \right) \right) + \left(1 - o_{\mathbf{x}}^{b} \right) \cdot \rho \left(\mathbf{w}^{b}(\mathbf{x}) + \mathbf{w}^{f} \left(\mathbf{x} + \mathbf{w}^{b}(\mathbf{x}) \right) \right)$$

- w^f, w^b: Forward & backward flow
- $\rho(x)$: Charbonnier Penalty function
- of, ob: Occlusion flags

Backward warping

Idea: Compute losses in a subdifferentiable way for use with backpropagation

Method: Bilinear sampling at flow-displaced positions (i.e., backward warping).

E.g.: To compare $I_1(x)$ and $I_2(x + w^f)$, we backward-warp I_2 using w^f

Schematic of the unsupervised loss

Training the CNN

• The CNN is bi-directionally trained using the comprehensive unsupervised loss (E) as the objective

Forward flow: Input images I_1 (first frame), I_2 (second frame)

Backward flow: Input images I_2 , I_1 (order reversed)

Network architecture

The basic CNN used in UnFlow is based on FlowNet [Dosovitskiy et al. 2015]:

- FlowNet- Simple
- FlowNet Correlated

Encoder-Decoder architecture of FlowNet

Network architecture [Flow-Net Simple]

- Two input images are stacked together and fed through a generic network
- Allows the network to decide by itself how to process the image pair to extract the motion information.

Network architecture [Flow-Net Corr]

- Processes two image frames in two separate input streams
- Explicitly correlates them at a later step
- Compresses the result with a CNN encoder down to a sixth of the original resolution

Network architecture

The decoder part (refinement network),

- Implements a **skip-layer** architecture that combines information from various levels of the contractive part with "upconvolving" layers to iteratively refine the coarse flow predictions.
- Dense flow is predicted after each up-sampling.
- The last flow estimate is then bilinearly up-sampled to the original resolution.

Computing the unsupervised loss

Idea:

To guide the learning process at multiple resolutions

Method:

- Calculate the loss for all intermediate predictions from the refinement network
- Combine them by taking a weighted average.

$$E_{unsup} = \sum_{i} \lambda_{l}^{i} E_{i}$$

E_i: Loss Evaluated from Layer i

 λ_l^i : Weight

Iterative Refinement / Stacking

Idea: Improve results by training for large displacement flows

 I_1 , I_2 : Images; I_2' : Backward warped image; E: Error estimate; w: Flow estimate

Supervised loss for Fine-tuning (optional)

Idea:

Enable generic pre-training of supervised networks for datasets with limited amounts of ground truth.

Method:

Compute the network loss by comparing the bilinearly up-sampled **final flow** estimate to the **ground truth** flow at all pixels for which ground truth is available.

$$E_{\text{sup}}(\mathbf{w}^{\text{f}}) = \sum_{\mathbf{x} \in P} v_{\mathbf{x}}^{\text{f}} \, \rho(\mathbf{w}^{\text{f}}(\mathbf{x}) - \mathbf{w}_{\text{gt}}^{\text{f}}(\mathbf{x}))$$

 $v_x^f=1\text{, if there is valid ground truth at pixel }x\text{ , else }v_x^f=0$

Metrics

- Average Endpoint Error (AEE):
 Average Euclidean distance of prediction to ground-truth flow vectors
- KITTI Outliers:
 Ratio of pixels where flow estimate is wrong by both 3 pixels and 5% (at least)

\(\sigma S\)

Baseline vs. UnFlow (KITTI 2015)

Original Images (overlaid)

Ground truth flow

Baseline [Yu et al.]

UnFlow

Baseline vs. UnFlow (KITTI 2015)

Original **Images** (overlaid)

Baseline [Yu et al.]

UnFlow

FlowNetS, UnupFlowNet vs. UnFlow (KITTI 2012)

The KITTI 2012 error map scales linearly between 0 (black) and ≥ 5 pixels error (white).

Baseline (Yu et al.) vs. UnFlow-C [KITTI 2012]

- Brightness constancy → census loss
 - Reduces AEE by 35%

Data loss	Smoothness Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order	7.20	31.93%
Census	1st-order	4.66	20.85%

Baseline (Yu et al.) vs. UnFlow-C [KITTI 2012]

- 1st → 2nd order smoothness
 - Reduces AEE by 5% and outliers by 17%

Data loss	Smoothness Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order	7.20	31.93%
Census	1st-order	4.66	20.85%
Census	2nd-order	4.40	17.22%

Baseline (Yu et al.) vs. UnFlow-C [KITTI 2012]

- Forward-backward mechanisms (occlusion masking & consistency)
 - Reduces AEE by 14%

Data loss	Smoothness	Occlusion	AEE (All)	Outliers (All)
Brightness	1st-order		7.20	31.93%
Census	1st-order		4.66	20.85%
Census	2nd-order		4.40	17.22%
Census	2nd-order	Forward-backward check	3.78	16.44%

Baseline (Yu et al.) vs. UnFlow-C [KITTI 2012]

- UnFlow reduces AEE and outliers by 48%
- Similar observations on KITTI 2015

Data loss	Smoothness	Occlusion	AEE (AII)	Outliers (All)
Brightness	1st-order		7.20	31.93%
Census	1st-order		4.66	20.85%
Census	2nd-order		4.40	17.22%
Census	2nd-order	Forward-backward check	3.78	16.44%

Previous Unsupervised networks vs. UnFlow

• UnFlow reduces AEE by up to 66%

Method	AEE (All) 2012 train
UnsupFlownet [Yu et al.]	11.3
DSTFlow [Ren et al.]	10.43
UnFlow-C	3.78

Supervised networks vs. UnFlow

• UnFlow reduces AEE by up to 49% (FlowNetS, 2012)

Method	AEE (All) 2012 train	AEE (All) 2015 train
UnsupFlownet [Yu et al.]	11.3	
DSTFlow [Ren et al.]	10.43	16.79
FlowNetS+ft [Dosovitskiy et al.]	7.5	
FlowNet2-C [Ilg et al.]		11.36
UnFlow-C	3.78	8.80

Supervised networks vs. UnFlow

• UnFlow even performs slightly better on off-domain data

Method	AEE (All) 2012 train	AEE (All) 2015 train	AEE (All) Middlebury
UnsupFlownet [Yu et al.]	11.3		
DSTFlow [Ren et al.]	10.43	16.79	
FlowNetS+ft [Dosovitskiy et al.]	7.5		0.98
FlowNet2-C [Ilg et al.]		11.36	
UnFlow-C	3.78	8.80	0.88

Limitations

- The amount of information that can be gained from the available data is limited by how realistically the problem is modeled by the loss.
- A parameter search for the weighting between the loss terms increases the total computation time for training a model on a new domain for the initial run

Summary

- Unsupervised learning of optic flow circumvents the need for ground truth
- The image data is modelled by an aggregated Loss incorporating:
 - Occlusion handling
 - Photometric invariance via Census transform
 - Second order flow smoothness
- This loss is used to train a CNN based on FlowNetS and FlowNetC
 - Iterative Refinement UnFlow CSS
 - Optional Supervised loss for fine-tuning
- Reports substantial improvements over previous methods