Binôme 2:

Nom du répertoire :

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage

- CORRECTION -

Date

12/11/2013

DRAGON

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

# 1/jdd A - cellule REP 900MW (rep900.d)

## **Consignes**

La commande de lancement de DRAGON est un alias : « ./dragon.sh <jddFile> », où « <jddFile >» spécifie le nom du fichier de jdd à calculer qui doit être impérativement contenu dans un dossier nommé « data » dans le répertoire courant.

Lancer le jdd « rep900.d »

| <u>Questions</u>                                                                                                                                                                                              | <u>Réponses</u>                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Quel est le Keff obtenu ? Retouvez le laplacien géométrique dans le jdd et indiquez la dimension caractéristique d'un cœur critique constitué d'un réseau de cette cellule.  Dessinez la géométrie modélisée. | Les résultats sont conservés dans le fichier rep900.d.result Le Keff obtenu est : $0,99999$ Le laplacien géométrique est nommé « buckling », il vaut : $B^2 = 4.57567E - 03$ Ce qui correspond à un rayon caractéristique de 46 cm. |  |
| Indiquez en particulier sur le schéma :  • Les dimensions • Le nom des milieux • Les températures des milieux                                                                                                 | Gaine – 1000K  0,410 0,418  0,630 0,630 0,480                                                                                                                                                                                       |  |
| Quelle est la densité du modérateur ?                                                                                                                                                                         | La densité du modérateur est de <b>710 kg/m3</b> $d_{mod} = \frac{[H_2O]}{N_a} M_{H_2O}$ Avec $[H_2O] = 2.3754$ E-2 en $10^{24}$ at/cm³                                                                                             |  |
| Calculez :                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |  |
| La fraction volumique de                                                                                                                                                                                      |                                                                                                                                                                                                                                     |  |
| modérateur                                                                                                                                                                                                    | fraction volumique                                                                                                                                                                                                                  |  |
| <ul> <li>La fraction volumique de<br/>combustible</li> </ul>                                                                                                                                                  | modérateur 54,408%                                                                                                                                                                                                                  |  |
| Combustible                                                                                                                                                                                                   | combustible 33,264%                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage

Nom du répertoire :

Binôme 2:

- CORRECTION -

Date

12/11/2013

## **Consignes**

#### **Effet DOPPLER**

Créez deux jdd identiques au jdd A à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le rep900.dop\_p10.d)
- moins élevée de 10°C (nommez le rep900.dop\_m10.d)

| Questions                                      | <u>Réponses</u>                                       |
|------------------------------------------------|-------------------------------------------------------|
| Quels sont les Keff obtenus ?                  |                                                       |
|                                                | Nom du fichier Keff                                   |
|                                                | rep900.dop_p10.d 1,00023                              |
|                                                | <b>rep900.dop_m10.d</b> 0,99977                       |
|                                                |                                                       |
| Calculez le coefficient Doppler de la cellule. | Le coefficient DOPPLER de la cellule vaut -2,3 pcm/°C |
|                                                |                                                       |
|                                                |                                                       |
|                                                |                                                       |
|                                                |                                                       |

## **Consignes**

#### **Effet MODERATEUR**

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/H2O\_Tables/abaques.xlsx» permet de calculer la densité de l'eau légère en fonction de la température pour différentes pressions.



Créez deux jdd identiques au jdd A à l'exception de la température (et donc de la densité) du modérateur, sachant que la pression dans le circuit primaire en fonctionnement est de 155 bars:

- plus élevée de 10°C (nommez le rep900.mod\_p10.d)
- moins élevée de 10°C (nommez le rep900.mod\_m10.d)

Binôme 2:

**COMPTE RENDU - TP N°2** 

**Coef. de Contre-réaction Echelle Assemblage** 

- CORRECTION -

Date

12/11/2013

Nom du répertoire :

valeurs de densité de l'eau.

# Questions Réponses Placez sur la courbe ci-contre les 3 points de fonctionnement et faites apparaître les



|           | Concentrations (DRAGON) |            |
|-----------|-------------------------|------------|
| $d_{mod}$ | Н                       | 0          |
| 710       | 4,7508E-02              | 2,3754E-02 |
| 730       | 4,8846E-02              | 2,4423E-02 |
| 685       | 4,5835E-02              | 2,2918E-02 |

Quels sont les Keff obtenus?

| Nom du fichier   | Keff    |
|------------------|---------|
| rep900.mod_p10.d | 1,01155 |
| rep900.mod_m10.d | 0,98451 |

Calculez le coefficient Modérateur de la cellule dans les deux unités usuelles :

- (Δk/k)/(g/cm<sup>3</sup>)
- pcm/°C

Le coefficient MODERATEUR de la cellule vaut

- -132 pcm/°C
- -0,6 (Δk/k)/(g/cm³)

# **Consignes**

#### Efficacité du BORE

Créez deux jdd identiques au jdd A à l'exception de la concentration en bore, enrichi à 20% en B10, dans le modérateur :

- de 10 ppm (nommez le rep900.bore\_p10.d)
- de 100 ppm (nommez le rep900.bore\_p100.d)

| <u>Questions</u>              | <u>Réponses</u>     |         |
|-------------------------------|---------------------|---------|
| Quels sont les Keff obtenus ? |                     | _       |
|                               | Nom du fichier      | Keff    |
|                               | rep900. bore_p10.d  | 0,99257 |
|                               | rep900. bore_p100.d | 0,99925 |

Binôme 2:

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage

Nom du répertoire :

- CORRECTION -

Date

12/11/2013

Calculez l'efficacité différentielle du bore dans la cellule en pcm/ppm pour ces deux concentrations.

L'efficacité différentielle du bore de la cellule vaut

• -7,4 pcm/ppm

## **Consignes**

#### Coefficient DENSITE-MODERATEUR

Créez quatre jdd identiques au jdd A à l'exception de la concentration en bore, enrichi à 20% en B10, et de la température du modérateur, en combinant :

- des concentrations en bore :
  - o de 10 ppm
  - o de 100 ppm
- des températures de modérateur :
  - o plus élevée de 10°C
  - o moins élevée de 10°C

| <u>Questions</u>                                                         | <u>Réponses</u>                                               |         |
|--------------------------------------------------------------------------|---------------------------------------------------------------|---------|
| Quels sont les Keff obtenus ?                                            |                                                               |         |
|                                                                          | Nom du fichier                                                | Keff    |
|                                                                          | rep900.100ppm.modm10.d.result                                 | 1,00352 |
|                                                                          | rep900.100ppm.modp10.d.result                                 | 0,97709 |
|                                                                          | rep900.10ppm.modm10.d.result                                  | 1,01074 |
|                                                                          | rep900.10ppm.modp10.d.result                                  | 0,98363 |
| Calculez le coefficient Densité-Modérateur                               | Pour la concentration de 10 nnm :                             |         |
|                                                                          | Pour la concentration de 10 ppm :                             |         |
| de la cellule en pcm/°C pour les deux                                    | CDM = -136,3 pcm/°C                                           |         |
| concentrations.                                                          | Pour la concentration de 100 ppm :                            |         |
|                                                                          | CDM = -134,8 pcm/°C                                           |         |
| Recherchez la concentration en bore                                      | Pour cette cellule, la concentration en bore pour laquelle le |         |
| maximale admissible vis-à-vis de la sureté intrinsèque de cette cellule. | coefficient Densité-Modérateur devient nul est <b>8600ppm</b> |         |
| minimoeque de dette demare.                                              |                                                               |         |

## **Consignes**

#### Calcul de refroidissement total

L'état d'arrêt à froid final ultime d'une centrale correspond aux conditions normales de température et de pression. Créez un jdd semblable au jdd A dans les conditions d'arrêt à froid (nommez le rep900.froid.d)

| <u>Questions</u>          | <u>Réponses</u>                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------|
| Quel est le Keff obtenu ? | Les résultats sont conservés dans le fichier <b>rep900.froid.d.result</b> Le Keff obtenu est :  1.16601 |

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage

Nom du répertoire :

Binôme 2:

- CORRECTION -

Date

12/11/2013

Quel est le besoin en anti-réactivité pour amener le cœur d'une condition de fonctionnement à une condition d'arrêt à froid ultime ?

Il faut donc apporter au moins 14200pcm d'antiréactivité pour parvenir à rester sous-critique.

Recherchez la concentration en bore permettant d'avoir une marge d'antiréactivité de 1000 pcm dans cette

cellule en condition d'arrêt à froid.

Il est nécessaire d'introduire 1650ppm de bore environ.

# 2/jdd B - cellule SuperPhenix (spx.d)

#### **Consignes**

#### Lancer le jdd « spx.d »

#### **Ouestions** <u>Réponses</u> Quel est le Keff obtenu? Les résultats sont conservés dans le fichier spx.d.result Quelle est la dimension caractéristique Le Keff obtenu est: 1.00000 d'un cœur critique constitué d'un réseau de cette cellule. Le laplacien géométrique correspond à un rayon caractéristique de 82 cm. Dessinez la géométrie modélisée. Pastille - 1500K Gaine - 1300K Indiquez en particulier sur le schéma : Les dimensions Sodium – 800K Le nom des milieux 0,3685 Les températures des milieux 0,42926 Calculez: fraction volumique La fraction volumique de sodium 28,950% caloporteur combustible 52,360% La fraction volumique de combustible

## <u>Consignes</u>

#### **Effet DOPPLER**

Créez deux jdd identiques au jdd B à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le spx.dop\_p10.d)
- moins élevée de 10°C (nommez le spx.dop\_m10.d)

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage

Nom du répertoire :

Binôme 2:

- CORRECTION -

Date

12/11/2013

| <u>Questions</u> |  |
|------------------|--|
|------------------|--|

| Rér | onses |
|-----|-------|
|     |       |

Quels sont les Keff obtenus?

| Nom du fichier | Keff    |
|----------------|---------|
| spx.dop_p10.d  | 1,00006 |
| spx.dop_m10.d  | 0,99994 |

Calculez le coefficient Doppler de la cellule.

Le coefficient DOPPLER de la cellule vaut -0,57 pcm/°C

# **Consignes**

#### Effet de DILATATION SODIUM

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/Sodium\_Tables/abaques.xlsx» permet de calculer le coefficient de dilatation du sodium liquide en fonction de la température pour différentes pressions.



Créez deux jdd identiques au jdd B à l'exception de la température (et donc de la densité) du caloporteur, sachant que la pression dans le circuit primaire en fonctionnement est de 1 bar:

- Température sodium de 310°C (nommez le spx.nadil\_p10.d)
- Température sodium de 290°C (nommez le spx.nadil \_m10.d)

| <u>Questions</u>                            | <u>Réponses</u> |                   |
|---------------------------------------------|-----------------|-------------------|
| Placez sur la courbe ci-contre les 2 points | 950,02 kg/m3    | -> sodium à 0°C   |
| de fonctionnement et faites apparaître les  | 882,129 kg/m3   | <- sodium à 290°C |
| valeurs de densité de sodium                | 877,411 kg/m3   | <- sodium à 310°C |

Binôme 2:

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction **Echelle Assemblage** 

- CORRECTION -

Date

12/11/2013

Nom du répertoire :



| T°C   | [Na] en 10^24 at/cm3 |
|-------|----------------------|
| 290°C | 2,3096E-02           |
| 310°C | 2,2973E-02           |

Quels sont les Keff obtenus? Quels sont les Kinf obtenus?

| Nom du fichier  | Kinf    | Keff    |
|-----------------|---------|---------|
| spx.nadil_p10.d | 1,30910 | 1,00003 |
| spx.nadil_m10.d | 1,30939 | 1,00003 |

#### A l'aide du Kinf

Calculez le coefficient de dilatation sodium de la cellule dans les deux unités usuelles :

- $(\Delta k/k)/(g/c^3)$
- pcm/°C

Le coefficient de DILATATION SODIUM de la cellule vaut

- +0,8 pcm/°C
- $+0.05 (\Delta k/k)/(g/c^3)$

# **Consignes**

#### Effet de VIDANGE SODIUM

Créez un jdd semblable au jdd B en réduisant la densité de sodium aux valeurs suivantes :

- 90% de sa valeur nominale : vidange de 10% (nommez le spx.vid10.d)
- 50% de sa valeur nominale : vidange de 50% (nommez le spx. vid50.d)
- 0% de sa valeur nominale : vidange totale (nommez le spx. vid100.d)

Le \$ est une unité de réactivité très utilisée à l'international. Elle vaut la fraction des neutrons retardés, soit environ 370 pcm pour une cellule SuperPhénix neuve.

Binôme 2:

Nom du répertoire :

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction **Echelle Assemblage** 

- CORRECTION -

Date

12/11/2013

**Questions** 

<u>Réponses</u>

Quels sont les Kinf obtenus?

Calculez le coefficient de vidange (en \$)

| Nom du fichier | Kinf    | Coef. Vidange<br>(\$) |
|----------------|---------|-----------------------|
| spx. vid10.d   | 1,37154 | 0,9                   |
| spx. vid50.d   | 1,31076 | 4,7                   |
| spx. vid100.d  | 1,33539 | 10,0                  |

## **Consignes**

Question SuperBonus : SPX à froid

Soyez malin... chez vous.

| <u>Questions</u>                                                            | <u>Réponses</u>                                                                                                                  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Dans le cas d'un refroidissement total du primaire de SuperPhenix jusqu'aux | De toute évidence, à froid, les contre-réactions positives de<br>SuperPhénix conduisent le cœur dans un état très sous-critique. |
| conditions normales de température et de                                    | Cependant cette situation est impossible : en dessous de                                                                         |
| pression, quelle est l'état du cœur ?                                       | 100°C, le sodium se solidifie. SuperPhénix n'est donc jamais dans un état à froid ;)                                             |
| Dans quelle condition une telle situation pourrait arriver ?                |                                                                                                                                  |
|                                                                             |                                                                                                                                  |
|                                                                             |                                                                                                                                  |