

ASSIGNMENT COVER SHEET

Electronic or manual submission

Form: SSC-115-07-06

UNIT CODE: ENS1161	NAME OF STUDENT (PRINT	•	STUDENT ID. NO.
	PONCE	MARTIN	10371381
TITLE: COMPUTER FUNDAMENTALS	FAMILYNAME	FIRST NAME	
NAME OF TUTOR (PRINT CLEARL)	Y)		DUE DATE
WLOD	DZIMIERZ GORNISIEWICZ		3-OCT-14
Topic of assignment			1
	ASSIGNMENT :	2	
Group or tutorial (if applicable)	Course		Campus
WLODZIMIERZ GORNISIEWICZ	U67 BACHELOR OF IN	FORMATION TECHNOLOGY	ES
l certify that the attached assignment is my own acknowledged.	n work and that any material drawi	n from other sources has been	OFFICE USE ONLY
Copyright in assignments remains my property. I assessment, review and/or record keeping purpo assignment for plagiarism. Should the reproducti ourpose other than those mentioned above, appr	ises. I note that the University reservion of all or part of an assignment be	es the right to check my required by the University for any	
f handing in an assignment in a paper or other n completely and that you certify as above.	physical form, sign here to indicate	e that you have read this form, filled	it
Signature	Da	ate 21-SEPT-14	
OR, if submitting this paper electronically as pe you have read this form and filled it in complete submission. Any electronic responses to this	ely and that you certify as above. F	lease include this page in/with your	

PROCEDURES AND PENALTIES ON LATE ASSIGNMENTS

Admission, Enrolment and Academic Progress Rule 24(6) and Assessment Policy

- A student who wishes to defer the submission of an assignment must apply to the lecturer in charge of the relevant unit or course for an extension of the time within which to submit the assignment.
- Where an extension is sought for the submission of an assignment the application must:
 - be in writing preferably before the due date; and
 - set out the grounds on which deferral is sought.
- Assignments submitted after the normal or extended date without approval shall incur a penalty of loss of marks.

Academic Misconduct Rules (Students)

All forms of cheating, plagiarism or collusion are regarded seriously and could result in penalties including loss of marks, exclusion from the unit or cancellation of enrolment.

ASSIGNMENT RECEIPT

To be completed by the student if a receipt is required (not normally given)

UNIT

NAME OF STUDENT

STUDENT ID. NO.

NAME OF LECTURER

RECEIVED BY

Topic of assignment

DATE RECEIVED

Edith Cowan University ENS1161: Computer Fundamentals Assignment 2

Martin Ponce ID: 10371381

September 25, 2014

Contents

1	Que	estion 1	4
	1.1	Write down the values of: $g(f(h(7))) \& h^{-1}(g^{-1}(3)) \ldots$	4
	1.2	Construct a table of values for $h(g^{-1}(x))$	
	1.3	Construct a table for $f(f(x))$	
	1.4	Construct a table for $h^{-1}(x)$, and draw its graph	
2	Que	estion 2	6
	2.1	Find the matrices $M(A)$ and $M(B)$ that represent the relations A and B	6
	2.2	Find the matrices $M(A)^T$ and $M(B)^T$ that represent the relations A^{-1} and B^{-1}	6
	2.3	Consider the two queries	7
3	Que	estion 3	8
	3.1	A: Base number conversion	8
	3.2	B: Fractions	6
	3.3	C: Addition	10
	3.4	D: BCD additions	11
4	Que	estion 4	11
	4.1	1100 0000	12
	4.2	0011 1111	12
	4.3	0010 1011	12
	4.4	1100 1010	13
	4.5	1100 1011	13
	46	Question 5	14

1 Question 1

Consider the functions f, g and h, all defined on the set $\{0, 1, 2, 3, ..., 12\}$.

Table 1:
$$f(x)$$

Table 2:
$$g(x)$$

Table 3:
$$h(x)$$

1.1 Write down the values of: $g(f(h(7))) \& h^{-1}(g^{-1}(3))$

$$g(f(h(7))) = 2$$

$$h(7) = 12$$

$$f(12) = 6$$

$$g(6) = 2$$

$$h^{-1}(g^{-1}(3)) = 7$$

$$g^{-1}(3) = 12$$

$$h^{-1}(12) = 7$$

1.2 Construct a table of values for $h(g^{-1}(x))$

Table 4:
$$h(g^{-1}(x))$$

1.3 Construct a table for f(f(x))

What can you conclude about the inverse of f? Function f(x) is it's own inverse, or involution.

1.4 Construct a table for $h^{-1}(x)$, and draw its graph

Figure 1: $h^{-1}(x)$ graph

2 Question 2

Suppose there is a set of growers $G = \{a, b, c, d\}$, a set of retailers $R = \{e, f, g\}$, and a set of customers $C = \{m, n, p, q, r\}$.

There are two relations A and B on $G \times R$ and $R \times C$ respectively, defined by:

aAe, aAg, bAf, cAf, cAg, dAe and eBn, eBq, fBp, gBm, gBr

xAy means "grower x sold goods to retailer y", and $yA^{-1}x$ means "retailer y bought goods from grower x"

2.1 Find the matrices M(A) and M(B) that represent the relations A and B

Figure 2: M(A) and M(B) matrices

$$M(A) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} M(B) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

2.2 Find the matrices $M(A)^T$ and $M(B)^T$ that represent the relations A^{-1} and B^{-1}

Figure 3: $M(A)^T$ and $M(B)^T$ matrices

$$M(A)^{T} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \quad M(B)^{T} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.3 Consider the two queries

Which customers have received goods that came from the same grower/s as those goods received by A: customer p? B: customer q?

Find the logical matrix products M(A)M(B) and then $M(B)^TM(A)^T$, and finally $M(B)^TM(A)^TM(A)M(B)$, and hence answer the queries.

Figure 4: M(A)M(B) and $M(B)^TM(A)^T$ matrices

$$M(A)M(B) = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \quad M(B)^{T}M(A)^{T} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Figure 5: $M(B)^T M(A)^T M(A) M(B)$ matrix

$$M(B)^{T}M(A)^{T}M(A)M(B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

2.3.1 A: Customer p

Customers p, m and r received goods from Growers b and c.

2.3.2 B: Customer q

Customers q, m, n and r received goods from Growers a and d.

3 Question 3

3.1 A: Base number conversion

Consider the following table:

Figure 6: Question 3 table

decimal	octal	binary	hexadecimal
133 -	-	→ -	
102 -	→ -	→ -	→
+	_	- +	_ +

3.1.1 Convert each of the decimal numbers in the first column to octal

Table 7: Decimal to octal

Decimal	Octal	Binary	Hexadecimal
133_{10}	205_{8}		
$\overline{102_{10}}$	1468		

3.1.2 Convert the two octal numbers to binary

Table 8: Octal to binary

Decimal	Octal	Binary	Hexadecimal
133_{10}	205_{8}	$1000\ 0101_2$	
$\overline{102_{10}}$	1468	$0110\ 0110_2$	

3.1.3 Convert the two binary numbers to hexadecimal

Table 9: Binary to hexadecimal

Decimal	Octal	Binary	Hexadecimal
$\overline{133_{10}}$	205_{8}	$1000\ 0101_2$	85 ₁₆
102_{10}	146_{8}	$0110\ 0110_2$	66 ₁₆

3.1.4 Add the two hexadecimal numbers

Table 10: Hexadecimal sum

Decimal	Octal	Binary	Hexadecimal
133 ₁₀	205_{8}	$1000\ 0101_2$	85 ₁₆
$\overline{102_{10}}$	1468	$0110\ 0110_2$	66 ₁₆
			EB_{16}

3.1.5 Convert the hexadecimal sum to binary, then to octal and then to decimal

Table 11: Sum to binary, octal and decimal

Decimal	Octal	Binary	Hexadecimal
133_{10}	205_{8}	$1000\ 0101_2$	85 ₁₆
$\overline{102_{10}}$	146_{8}	$0110\ 0110_2$	66 ₁₆
235_{10}	353_{8}	$1110\ 1011_2$	EB_{16}

3.2 B: Fractions

3.2.1 Convert the decimal fraction 0.21875 to binary

$$0.21875 * 2 = 0.4375$$

 $0.4375 * 2 = 0.875$
 $0.875 * 2 = 1.75$
 $0.75 * 2 = 1.5$
 $0.5 * 2 = 1.0$

$$0.21875_{10} = 0.00111_2$$

3.2.2 Convert the decimal fraction 0.40625 to binary

$$0.40625 * 2 = 0.8125$$

$$0.8125 * 2 = 1.625$$

$$0.625 * 2 = 1.25$$

$$0.25 * 2 = 0.5$$

$$0.5 * 2 = 1.0$$

3.2.3 Add the two binary fractions from 3.2.1 and 3.2.2

3.2.4 Convert the binary fraction from 3.2.3 to decimal

$$10100_2 = 20_{10}$$
$$20_{10} * 2^5 = 0.625_{10}$$
$$0.10100_2 = 0.625_{10}$$
$$0.21875_{10} + 0.40625_{10} = 0.625_{10}$$

3.3 C: Addition

Add the following, given that 3.3.1 is binary, 3.3.2 is octal and 3.3.3 is hexadecimal:

3.3.1 Binary addition

3.3.2 Octal addition

3.3.3 Hexadecimal addition

3.4 D: BCD additions

Perform "BCD additions" on the following pairs of hexadecimal numbers. Show all your working.

$3.4.1 \quad 23267 + 49684$

$3.4.2 \quad 592778 + 183983$

4 Question 4

For each of the following, suppose that two 8-bit binary numbers have been added. In each case the 8-bit output is given and the values of the N, V and C flags. For each case give the correct answer as a decimal number:

A: If the result is interpreted as the sum of **unsigned** integers

B: If the result is interpreted as the sum of **signed** integers.

Table 12: 8-bit output

	8-bit output	N	V	\mathbf{C}
1	1100 0000	1	1	0
2	0011 1111	0	1	1
3	0010 1011	0	0	1
4	1100 1010	1	0	0
5	1100 1011	1	0	1

4.1 1100 0000

4.1.1 Unsigned

1100 0000 with flag C = 0: 8-bit output.

$$1100 \ 0000_2$$

$$= C0_{16}$$

$$= 192_{10}$$

4.1.2 Signed

1100 0000 with flags N=1 and V=1: Positive 16-bit output.

$$0000\ 0000\ 1100\ 0000_2$$

= $00C0_{16}$
= $+\ 192_{10}$

4.2 0011 1111

4.2.1 Unsigned

0011 1111 with flag C = 1: 16-bit output

$$0000\ 0001\ 0011\ 1111_2$$

= $13F_{16}$
= 319_{10}

4.2.2 Signed

0011 1111 with flags N=0 and V=1: Negative 16-bit output.

$$1111\ 1111\ 0011\ 1111_2$$
 1's complement = 0000 0000 1100 0000_2
$$+1 = 0000\ 0000\ 1100\ 0001_2$$
 = C1₁₆
$$= -193_{10}$$

$4.3 \quad 0010 \ 1011$

4.3.1 Unsigned

0010 1011 with flag C = 1: 16-bit output

$$0000\ 0001\ 0010\ 1011_2$$

= $12B_{16}$
= 299_{10}

4.3.2 Signed

0010 1011 with flags N=0 and V=0: Positive 8-bit output.

$$0010 \ 1011_2$$
= $2B_{16}$
= $+43_{10}$

4.4 1100 1010

4.4.1 Unsigned

1100 1010 with flag C = 0: 8-bit output

$$1100 \ 1010_2$$
= CA_{16}
= 202_{10}

4.4.2 Signed

1100 1010 with flags N = 1 and V = 0: Negative 8-bit output.

$$1100 \ 1010_2$$
1's complement = $0011 \ 0101_2$
 $+1 = 0011 \ 0110_2$
= 36_{16}
= -54_{10}

4.5 1100 1011

4.5.1 Unsigned

1100 1011 with flag C = 1: 16-bit output.

$$0000\ 0001\ 1100\ 1011_2$$

= $1CB_{16}$
= 459_{10}

4.5.2 Signed

1100 1011 with flag N=1 and V=0: Negative 8-bit output.

$$1100 \ 1011_2$$
 1's complement = 0011 0100_2

$$+1 = 0011 \ 0101_2$$
 = 35_{16}
 = -53_{10}

4.6 Question 5

Table 13: Question 5 answers

No.	Cols in array	Row No.	Col No.	Seq. Pos.
1	14	5	11	67
2	36	1	27	27
3	9	4	8	35
4	28	17	11	459
5	30	4	8	98
6	45	7	30	300
7	24	4	13	85