

R Statistics

Part of Future Connect Media's IT Course

Statistics Introduction

Statistics is a branch of **mathematics** and a **fundamental** tool for **data analysis** and **decision-making**. It involves the collection, analysis, interpretation, and presentation of data. Statistics is used in a wide range of fields, including **science**, **business**, **economics**, **social sciences**, and more.

Statistics Introduction

Some basic statistical numbers include:

- Mean, median and mode
- Minimum and maximum value
- Percentiles
- Variance and Standard Deviation
- Covariance and Correlation
- Probability distributions

Statistics Introduction

The R language was developed by two statisticians. It has many built-in functionalities, in addition to libraries for the exact purpose of statistical analysis.

Basic Statistics Concepts Probability Mode Median **Variance** Basic Standard **Statistics** Mean Deviation **Concepts ₩** WallStreetMojo

Data Set

A data set, also known as a dataset, is a **collection of data** that is organized in **a structured manner.** Data sets can come in various forms and can be used for a wide range of purposes, such as **statistical analysis**, **research**, **machine learning**, and more.

Obs	vehicle	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
1	Volvo 14	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
2	Toyota C	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
3	Datsun 7	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
4	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
5	Merc 240	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
6	Porsche	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
7	Fiat X1-	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
8	Honda Ci	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
9	Lotus Eu	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
10	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1

Data set

There is a popular built-in data set in R called "**mtcars**" (Motor Trend Car Road Tests), which is retrieved from the 1974 Motor Trend US Magazine.

Example:

Print the mtcars data set mtcars

> mtcars											
		cy1					qsec	VS		gear	carb
Mazda RX4	21.0	_	160.0					0	1	4	4
Mazda RX4 Wag	21.0		160.0						1	4	4
Datsun 710	22.8		108.0				18.61		1	4	1
Hornet 4 Drive	21.4		258.0						0	3	1
Hornet Sportabout	18.7		360.0						0	3	2
Valiant	18.1		225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3		360.0					0	0	3	4
Merc 240D	24.4	4	146.7			3.190		1	0	4	2
Merc 230	22.8		140.8				22.90		0	4	2
Merc 280	19.2		167.6						0	4	4
Merc 280C	17.8		167.6					1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3		275.8					0	0	3	3
Merc 450SLC	15.2		275.8					0	0	3	3
Cadillac Fleetwood			472.0					0	0	3	4
Lincoln Continental								0	0	3	4
Chrysler Imperial	14.7	8	440.0					0	0	3	4
Fiat 128	32.4	4	78.7			2.200		1	1	4	1
Honda Civic	30.4		75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9		71.1			1.835		1	1	4	1
Toyota Corona	21.5		120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5		318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2		304.0					0	0	3	2
Camaro Z28	13.3		350.0					0	0	3	4
Pontiac Firebird	19.2		400.0					0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3			2.140		0	1	5	2
Lotus Europa	30.4	4				1.513		1	1	5	2
Ford Pantera L	15.8		351.0					0	1	5	4
Ferrari Dino	19.7		145.0					0	1	5	6
Maserati Bora	15.0		301.0					0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

Data Set

Get Information:

Use the **dim()** function to find the dimensions of the data set, and the **names()** function to view the names of the variables:

Example:

Data_Cars <- mtcars # create a variable of the mtcars data set for better organization

Use dim() to find the dimension of the data set dim(Data_Cars)

Use names() to find the names of the variables from the data set names(Data_Cars)

Data set

Use the **rownames()** function to get the name of each row in the first column, which is the name of each car:

Example:

Data_Cars <- mtcars

rownames(Data_Cars)

```
> rownames(Data_Cars)
                            "Mazda RX4 Wag"
                                                   "Datsun 710"
 [1] "Mazda RX4"
 [4] "Hornet 4 Drive"
                            "Hornet Sportabout"
                                                   "Valiant"
                            "Merc 240D"
    "Duster 360"
                                                   "Merc 230"
                            "Merc 280C"
                                                   "Merc 450SE"
[10] "Merc 280"
[13] "Merc 450SL"
                            "Merc 450SLC"
                                                   "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial"
                                                  "Fiat 128"
[19] "Honda Civic"
                            "Toyota Corolla"
                                                   "Toyota Corona"
     "Dodge Challenger"
                            "AMC Javelin"
                                                   "Camaro Z28"
     "Pontiac Firebird"
                            "Fiat X1-9"
                                                   "Porsche 914-2"
[28] "Lotus Europa"
                            "Ford Pantera L"
                                                   "Ferrari Dino"
[31] "Maserati Bora"
                            "Volvo 142E"
> |
```

Max & Min

You learned from the R Math chapter that R has several built-in math functions. For example, the **min()** and **max()** functions can be used to find the lowest or highest value in a set:

Example:

Find the largest and smallest value of the variable hp (horsepower).

```
Data_Cars <- mtcars
> pata_Cars <- mtcars
>
max(Data_Cars$hp)
min(Data_Cars$hp)
[1] 335
> min(Data_Cars$hp)
[1] 52
> |
```

Mean, Median, & Mode

In statistics, there are often three values that interests us:

- •Mean The average value
- •Median The middle value
- •Mode The most common value

Mean

To calculate the average value (mean) of a variable from the mtcars data set, find the sum of all values, and divide the sum by the number of values.

Sorted observation of wt (weight)

1.513	1.615	1.835	1.935	2.140	2.200	2.320	2.465
2.620	2.770	2.780	2.875	3.150	3.170	3.190	3.215
3.435	3.440	3.440	3.440	3.460	3.520	3.570	3.570
3.730	3.780	3.840	3.845	4.070	5.250	5.345	5.424

Mean

Luckily for us, the mean() function in R can do it for you:

Example:

• Find the average weight (wt) of a car:

Data_Cars <- mtcars

mean(Data_Cars\$wt)

```
> Data_Cars <- mtcars
>
> mean(Data_Cars$wt)
[1] 3.21725
> |
```

Median

The median value is the value in the middle, after you have sorted all the values. If we take a look at the values of the **wt** variable (from the **mtcars** data set), we will see that there are two **numbers** in the middle:

Sorted observation of wt (weight)

1.513	1.615	1.835	1.935	2.140	2.200	2.320	2.465
2.620	2.770	2.780	2.875	3.150	3.170	3.190	3.215
3.435	3.440	3.440	3.440	3.460	3.520	3.570	3.570
3.730	3.780	3.840	3.845	4.070	5.250	5.345	5.424

Median

Example:

```
Find the mid point value of

weight (wt):
Data_Cars <- mtcars

median(Data_Cars$wt)

> Data_Cars <- mtcars
>

median(Data_Cars$wt)

[1] 3.325
```

 \geq

Mode

The mode value is the value that appears the most number of times. R does not have a function to calculate the mode. However, we can create our own function to find it.

If we take a look at the values of the **wt** variable (from the **mtcars** data set), we will see that the numbers **3.440** are often shown:

Sorted observation of wt (weight)

1.513	1.615	1.835	1.935	2.140	2.200	2.320	2.465
2.620	2.770	2.780	2.875	3.150	3.170	3.190	3.215
3.435	3.440	3.440	3.440	3.460	3.520	3.570	3.570
3.730	3.780	3.840	3.845	4.070	5.250	5.345	5.424

Mode

Example:

>

Percentiles are used in statistics to give you a number that describes the value that a given percent of the values are lower than.

If we take a look at the values of the **wt** (weight) variable from the **mtcars** data set:

Observation of wt (weight)

1.513	1.615	1.835	1.935	2.140	2.200	2.320	2.465
2.620	2.770	2.780	2.875	3.150	3.170	3.190	3.215
3.435	3.440	3.440	3.440	3.460	3.520	3.570	3.570
3.730	3.780	3.840	3.845	4.070	5.250	5.345	5.424

What is the 75. percentile of the weight of the cars? The answer is 3.61 or 3 610 lbs, meaning that 75% or the cars weight 3 610 lbs or less:

Example:

```
Data_Cars <- mtcars
```

c() specifies which percentile you want quantile(Data_Cars\$wt, c(0.75))

```
> Data_Cars <- mtcars
>
> # c() specifies which percentile you want
> quantile(Data_Cars$wt, c(0.75))
  75%
3.61
> |
```


Quartiles:

Quartiles are data divided into four parts, when sorted in an ascending order:

- 1. The value of the first quartile cuts off the first 25% of the data
- 2. The value of the second quartile cuts off the first 50% of the data
- 3. The value of the third quartile cuts off the first 75% of the data
- 4. The value of the fourth quartile cuts off the 100% of the data
- Use the quantile() function to get the quartiles.

If you run the **quantile()** function without specifying the **c()** parameter, you will get the percentiles of 0, 25, 50, 75 and 100:

Example:

```
Data_Cars <- mtcars
```

quantile(Data_Cars\$wt)

Future Connect Training Institute

Website: https://www.fctraining.co.uk/