AM II, LEI + BE: Sucessões numéricas (Revisão)

Marco Mackaaij

FCT, Universidade do Algarve

Definição

Definition (Sucessões)

Uma sucessão (numérica) é uma função $a: \mathbb{N} \to \mathbb{R}$. Notação: $a_n := a(n), (a_n)_{n \in \mathbb{N}}$ ou $(a_n)_{n=1}^{\infty}$.

Observação

Por vezes, a sucessão começa em n = d > 1. Nesse caso, escrevemos $(a_n)_{n=d}^{\infty}$.

Exemplo

$$a_n=\frac{1}{n}, \quad n\geq 1$$

O conceito de limite

Definition (Limite)

Diz-se que a sucessão $(a_n)_{n=d}^{\infty}$ converge para $a \in \mathbb{R}$ (o limite) se

$$\forall \epsilon > 0 \ \exists N \geq d \colon n > N \Rightarrow |a - a_n| < \epsilon.$$

Notação: $\lim_{n\to\infty} a_n = a$.

Quando $(a_n)_{n=d}^{\infty}$ tem um limite, a sucessão diz-se **convergente**. Caso contrário, diz-se **divergente**.

Exemplo

Vamos mostrar que $\lim_{n\to\infty}1/n=0$: Seja $\epsilon>0$. Então, para todo o $n>1/\epsilon$ verifica-se

$$\frac{1}{n} < \frac{1}{1/\epsilon} = \epsilon.$$

De forma análogoa

$$\lim_{n \to \infty} \frac{1}{n^a} = \begin{cases} 0 & \text{se } a > 0 \\ 1 & \text{se } a = 0 \\ \infty & \text{se } a < 0 \end{cases}$$

Propriedades elementares

Lemma (Propriedades elementares de limites de sucessões)

- ③ $\lim_{n\to\infty} (a_n/b_n) = \lim_{n\to\infty} a_n/\lim_{n\to\infty} b_n$, desde que $b_n \neq 0$ para todo o $n \in \mathbb{N}$ e $\lim_{n\to\infty} b_n \neq 0$;

- $m{0}$ se $a_n \leq b_n$ para todo $n \geq d$, então $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Exemplo

Sejam

$$p(n) = a_r n^r + a_{r-1} n^{r-1} + \dots + a_0$$

$$q(n) = b_s n^s + b_{s-1} n^{s-1} + \dots + b_0,$$

assumindo que $a_r, b_s \neq 0$.

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = \begin{cases} \pm \infty & \text{se } r > s \\ \frac{a_r}{b_r} & \text{se } r = s \\ 0 & \text{se } r < s. \end{cases}$$

•

•

•

$$\lim_{n \to \infty} \frac{2n^3 - 6n + 1}{n^2 + 10n - 6} = \lim_{n \to \infty} \frac{2n - 6n^{-1} + n^{-2}}{1 + 10n^{-1} - 6n^{-2}} = \lim_{n \to \infty} 2n = +\infty$$

$$\lim_{n \to \infty} \frac{3n^3 + 5n^2 - 6n + 1}{5n^3 - 6n^2 + 7n - 8} = \lim_{n \to \infty} \frac{3 + 5n^{-1} - 6n^{-2} + n^{-3}}{5 - 6n^{-1} + 7n^{-2} - 8n^{-3}} = \frac{3}{5}$$

$$\lim_{n \to \infty} \frac{n^2 - 3n + 2}{n^3 + 7n^2 - 8} = \lim_{n \to \infty} \frac{n^{-1} - 3n^{-2} + 2n^{-3}}{1 + 7n^{-1} - 8n^{-3}} = \frac{0}{1} = 0$$

Marco Mackaaij

Sucessões e funções

Proposição

Seja $f:]a, b[\to \mathbb{R}$ tal que $\lim_{x \to a} f(x) = \ell$. Suponhamos que $(a_n)_{n \in \mathbb{N}}$ é uma sucessão em]a, b[que converge para a. Então $(f(a_n))_{n \in \mathbb{N}}$ é uma sucessão convergente e

$$\lim_{n\to\infty} f(a_n) = \ell.$$

Exemplo

$$\lim_{n\to\infty} \frac{\sin(1/n)}{1/n} = \lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

Sucessões de Cauchy

Definition (Sucessões de Cauchy)

Uma sucessão $(a_n)_{n=d}^{\infty}$ diz-se **de Cauchy** se

$$\forall \epsilon > 0 \ \exists N \geq d \colon m, n > N \Rightarrow |a_m - a_n| < \epsilon.$$

Theorem

Uma sucessão real $(a_n)_{n=d}^{\infty}$ é convergente sse é de Cauchy.

Sucessões de Cauchy

Provar que uma sucessão convergente é também de Cauchy é simples (mas o recíproco é mais difícil de provar):

- Suponhamos que $\lim_{n\to\infty} a_n = a$.
- Seja $\epsilon > 0$. Então, existe $N \geq d$ tal que

$$|a-a_n|<rac{\epsilon}{2}$$

para todo o n > N.

• Logo, para todos os m, n > N verifica-se

$$|a_n-a_m|=|a_n-a+a-a_m|\leq |a_n-a|+|a-a_m|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

Ou seja, a sucessão é de Cauchy.

Seja

$$a_n := \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n} = 0,99\dots 9.$$

• Então para qualquer n > m

$$a_n - a_m \leq \frac{1}{10^m}.$$

Logo $(a_n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy.

 Todas as dízimas são sucessões de Cauchy de números racionais.

ullet Vamos mostrar que $\lim_{n o \infty} a_n = 1$. Ou seja

$$0,999...=1!$$

(Daqui por diante, usamos a notação 0, (9) := 0,999...)

Note-se que

$$9a_n = 10a_n - a_n$$

$$= 9 + \frac{9}{10} + \dots + \frac{9}{10^{n-1}} - \left(\frac{9}{10} + \dots + \frac{9}{10^{n-1}} + \frac{9}{10^n}\right)$$

$$= 9 - \frac{9}{10^n}.$$

• Portanto, $\lim_{n\to\infty} 9a_n = 9$, o que implica que $\lim_{n\to\infty} a_n = 1$.

Sucessões monótonas e limitadas

Definition (Sucessões monótonas)

Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se **monotonamente crescente/decrescente** se $a_n \leq a_m$ (resp. $a_n \geq a_m$) sempre que $n \leq m$.

Definition (Sucessões limitadas)

Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se **limitada** superiormente/inferiormente se existe $N\in\mathbb{N}$ tal que $a_n\leq N$ (resp. $a_n\geq N$), para todo o $n\in\mathbb{N}$.

Exemplo

A sucessão $(1/n)_{n\in\mathbb{N}}$ é monotonamente descrescente:

$$\frac{1}{n} \ge \frac{1}{m} \quad \Leftrightarrow \quad n \le m.$$

A sucessão também é limitada inferiormente, porque 1/n > 0 para todo o $n \in \mathbb{N}$.

Critério de monotonia limitada

Theorem (Critério de monotonia limitada)

Toda a sucessão monotonamente crescente (decrescente) e limitada superiormente (inferiormente) é convergente.

Demonstração:

- Seja $(a_n)_{n\in\mathbb{N}}$ monotonamente crescente e limitada superiormente.
- Define

$$a := \sup\{a_n \mid n \in \mathbb{N}\}.$$

• Seja $\epsilon > 0$. Existe $N \in \mathbb{N}$ tal que $a - \epsilon < a_N \le a$. Como a sucessão é monotonamente crescente: $a - \epsilon < a_n \le a$ para todo o $n \ge N$, ou seja $\lim_{n \to \infty} a_n = a$.

Exemplo

A sucessão $(b_n)_{n\in\mathbb{N}}$, onde

$$b_n = \left(1 + \frac{1}{n}\right)^n,$$

é monotonamente crescente e limitada superiormente, logo converge. Por definição,

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e.$$

Demonstração

Pelo Binómio de Newton:

$$b_{n} = \sum_{r=0}^{n} {n \choose r} \frac{1}{n^{r}};$$

$$b_{n+1} = \sum_{r=0}^{n+1} {n+1 \choose r} \frac{1}{(n+1)^{r}}.$$

Por isso

$$b_{n+1} - b_n = \sum_{r=0}^n \left[\binom{n+1}{r} \frac{1}{(n+1)^r} - \binom{n}{r} \frac{1}{n^r} \right] + \frac{1}{(n+1)^{n+1}}.$$

Demonstração

Note-se que

$$\binom{n}{r}\frac{1}{n^r} = \frac{n(n-1)\cdots(n-r+1)}{r!n^r}$$
$$= \frac{1}{r!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{r-1}{n}\right).$$

Analogamente

$$\binom{n+1}{r} \frac{1}{(n+1)^r} = \frac{1}{r!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{r-1}{n+1} \right).$$

Logo $b_n \leq b_{n+1}$ para todo o $n \in \mathbb{N}$, ou seja, a sucessão $(b_n)_{n \in \mathbb{N}}$ é monotonamente crescente.

Demonstração

Para mostrar que a sucessão é limitada superiormente, note-se que

$$b_n = \sum_{r=0}^n \frac{n(n-1)\cdots(n-r+1)}{r! n^r} \le \sum_{r=0}^n \frac{1}{r!}$$

е

$$r! = 1 \cdot 2 \cdot 3 \cdots r \ge 2^{r-1}.$$

Logo

$$b_n \le 1 + \sum_{r=1}^n \frac{1}{2^{r-1}} < 1 + \frac{1}{1 - (1/2)} = 3$$

Portanto $b_n \leq 3$ para todo o $n \in \mathbb{N}$.

Enquadramento

Theorem (Critério dos limites enquadrados)

Suponhamos que

$$a_n \leq b_n \leq c_n$$

para todo o $n \ge d$. Então

$$\lim_{n\to\infty} a_n = \ell \wedge \lim_{n\to\infty} c_n = \ell \quad \Rightarrow \quad \lim_{n\to\infty} b_n = \ell.$$

Exemplo 1

Seja $(b_n)_{n\in\mathbb{N}}$ a sucessão cujo termo geral é

$$b_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + 2n + 1}}.$$

Repare que

$$\frac{2n+1}{n+1} \le b_n \le \frac{2n+1}{\sqrt{n^2+1}}$$

É fácil demonstrar que

$$\lim_{n \to \infty} \frac{2n+1}{n+1} = \lim_{n \to \infty} \frac{2n+1}{\sqrt{n^2+1}} = 2.$$

Logo $\lim_{n\to\infty} b_n = 2$, pelo Teorema dos Limites Enquadrados.

Exemplo '

Vamos provar que $\lim_{n\to\infty} n^{1/n} = 1$.

Consideremos $b_n := n^{1/n} - 1$. Basta provar $\lim_{n \to \infty} b_n = 0$.

Usando apenas um dos termos do Binómio de Newton, para todo o n > 2:

$$n=(b_n+1)^n\geq \frac{n(n-1)}{2}b_n^2.$$

Logo

$$0 < b_n \le \sqrt{2/(n-1)}$$
.

O resultado segue do Teorema dos Limites Enquadrados, porque $\lim_{n\to\infty}\sqrt{2/(n-1)}=0$.

Usando o Critério dos limites enquadrados, é possível provar que

Exemplo

$$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

para qualquer $x \in \mathbb{R}$ fixo.

Subsucessões

Definition

Uma **subsucessão** de $(a_n)_{n\in\mathbb{N}}$ é uma sucessão

$$(a_{p_n})_{n\in\mathbb{N}}$$
,

onde $p: \mathbb{N} \to \mathbb{N}$ é uma função estritamente crescente e $p_n = p(n)$.

Exemplo

Seja $a_n = (-1)^n$. Então há duas subsucessões constantes, a dos termos pares e a dos termos ímpares:

$$a_{2n} = 1$$
 e $a_{2n-1} = -1$

para todo o $n \in \mathbb{N}$.

Critério dos sublimites

Proposição (Critério dos sublimites)

Uma sucessão $(a_n)_{n\in\mathbb{N}}$ converge para a sse todas as suas subsucessões convergem para a.

- Em particular, a sucessão $((-1)^n)_{n\in\mathbb{N}}$ diverge, porque tem duas subsucessões com limites diferentes.
- No entanto, a sucessão dos módulos converge, porque $|(-1)^n|=1$ para todo o $n\in\mathbb{N}$.

Exemplo

Seja

$$a_n=\frac{(-1)^n}{n}.$$

Como no exemplo anterior, os termos pares são positivos e os termos ímpares negativos, mas

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=0.$$

Observação

Portanto, a convergência de $(a_n)_{n\in\mathbb{N}}$ implica a convergência de $(|a_n|)_{n\in\mathbb{N}}$, mas o recíproco é falso em geral.

- Seja $p \colon \mathbb{N} \to \mathbb{N}$ uma função monotonamente crescrente e define $p_n := p(n)$.
- Então

$$\left(\left(1+\frac{x}{p_n}\right)^{p_n}\right)_{n\in\mathbb{N}}$$

é uma subsucessão de

$$\left(\left(1+\frac{x}{n}\right)^n\right)_{n\in\mathbb{N}}$$

para qualquer $x \in \mathbb{R}$ fixo.

Logo

$$\lim_{n\to\infty} \left(1 + \frac{x}{p_n}\right)^{p_n} = \lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

Exemplo

$$\lim_{n \to \infty} \left(1 + \frac{5}{3n^2 + 6n - 1} \right)^{3n^2 + 6n - 1} = e^5$$

Note-se que $3x^2 + 6x - 1$ é monotonamente crescente, porque

$$(3x^2 + 6x - 1)' = 6x + 6 > 0 \Leftrightarrow x > -1.$$

