EXPERIMENT NO. 1

Estimation of ferrous ion (Fe^{2+}) in a given solution by permanganometry

Chemicals required

- 1. Oxalic acid
- 2. KMnO₄
- 3. Mohr salt solution
- 4. H₂SO₄
- 5. Phosphoric acid

Apparatus required

- 1. Conical flask
- 2. Burette
- 3. Pipette
- 4. Glass rod

Procedure

STEP-1: Standarisation of KMnO₄ solution by Standard (N/10) oxalic acid solution:

Take 10ml of (N/10) Oxalic acid solution in a conical flask with the help of pipette and add 15 ml of 1:4 H_2SO_4 solution and 50ml (approx.) of distilled water, heat the mixture **just to boiling** (i.e. very hot state but not boiling) and then titrate the mixture in warm condition against $KMnO_4$ solution till the colour changes from colourless to pink. Take the burette reading and repeat the experiment after washing the conical flask properly.

TABLE 1

No. of observation	Vol. of Oxalic acid taken	Vol. of KMnO ₄ sol. Required	Average vol. of KMnO ₄
1	10 mL		
2	10 mL		
3	10 mL		

Calculation: $V_1S_1 = V_2S_2$; $V_1 = Vol.$ of Oxalic acid (= 10 mL); $V_2 = Av.$ vol. of KMnO₄ sol.

 S_1 = Strength of Oxalic acid (= N/10); S_2 = Strength of KMnO₄ sol. in (N)

STEP-2: Estimation of Fe^{±2} in a given sample:

Write down the sample no. from the volumetric flask body of the given solution.

Add distilled water within the volumetric flask containing ferrous ion sample and make up the volume to 100 ml, shake the solution well and make the solution homogeneous.

Take 10ml of this diluted Fe^{+2} solution with the help of pipette (after cleaning it properly) in a conical flask, add 15ml of 1:4 H_2SO_4 and add 2-3ml of glacial Phosphoric acid and titrate the mixture against $KMnO_4$, till pink colour appears. Note the burette reading and repeat the experiment.

TABLE 2

No. of observation	Vol. of Fe ⁺²	Vol. of KMnO ₄	Average vol. of KMnO ₄
1	10 mL		Let it is V ₃
2	10 mL		
3	10 mL		

Reactions: $KMnO_4 + H_2C_2O_4 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + CO_2 + H_2O_4 + MnSO_4 + CO_2 + MnSO_4 + MnSO$

$$Fe^{+2} + MnO_4^- + 8H^+ \rightarrow Fe^{+3} + Mn^{+2} + 4H_2O$$

Calculation:

Equivalent weight of Fe⁺²=56

Thus, 1000 mL of 1N KMnO₄ solution \equiv 56 g of Fe²⁺

Hence, Amount of Fe⁺² in 10 mL of dil. sol.= $(V_3 \times S_2 \times 0.056)$ g

Amount of Fe⁺² in a given sample (i.e. total 100 mL) = $(V_3 \times S_2 \times 0.56)$ g.

EXPERIMENT NO. 2

Estimation of total hardness of water sample by complexometric EDTA <u>titration</u>

Chemicals Required

- 1. 100 mL tap water
- 2. pH = 10 buffer solution (Dissolve 17.5 g of A.R. NH₄Cl in 142 ml concentrated NH₃ (sp. gr. 0.88-0.90) and dilute it to 250 mL)
- 3. EBT indicator solution (0.4% methanolic solution)
- 4. 0.01(M) di-sodium salt of EDTA

Apparatus Required

- 1. Conical flask (250 mL)
- 2. Burette
- 3. Pipette
- 4. Glass rod

Theory

The hardness of water is due to the presence of dissolved calcium and magnesium salts. Disodium versenate dihydrate (m.w = 372.24), the disodium salt of versine or EDTA (Ethylene diamine tetra-acetic-acid), is used to estimate the hardness of water. The structure of the salt is given below:

EDTA has four or six atoms which are available for the formation of co-ordination bonds with a metal cation in such a way that a stable 1:1 co-ordination complex is formed.

The reaction between a metal ion, M⁺² with EDTA, (H₂Y⁻²) is represented below:

$$M^{+2} + H_2Y^{-2} = MY^{-2} + 2H^+$$

The reaction shows that one gm-ion of the complex compound forming H_2Y^{-2} reacts in all cases with one gm-ion of the metal ion and in each case two gm-ions of H^+ are produced.

The sample solution (containing the metal ion that is to be estimated) is to be buffered to a desired pH=10. It is then titrated directly with 0.01M EDTA solution using Eriochrome Black-T (EBT) indicator. The colour of the solution changes from wine/purple-red to pure blue.

Eriochrome Black-T (EBT) is Sodium-1- (1-hydroxy-2-naphthylazo)-6-nitro-2-napthol-4-sulphonate. This is also known as Solochrome Black-T or WDFA. In strongly acidic solution this azo-dye tends to polymerise to a red brown product, and consequently the indicator is rarely applied in the EDTA titration of solutions more acidic than pH=6.5. The structure of the indicator is shown below:

The sulphonic acid group gives up its proton long before the pH range of 7-12, which is of immediate interest for metal-ion indicator use. Only the dissociation of the phenolic H-atoms need be considered, and so the dyestuff may be represented by H_2D^- . The two-pK values of these two H-atoms are 6.3 and 11.5 respectively. Below pH=5.5, the solution of Eriochrome Black T is red due to H_2D^- , between pH 7 and 11 it is blue due to H_2D^- and above pH=11.5 it is yellowish-orange due to D^{-3} .

In the pH range 7-11, the addition of metallic salts produces a brilliant change in colour from blue to red.

$$M^{+2} + HD^{-2} = MD^{-} + H^{+}$$
(blue) (red)

The structure of metal EBT complex is shown below.

Procedure:

Part-I: Estimation of hardness of water using EDTA solution

Accurately 100-ml tap water is taken in a conical flask using a measuring cylinder. Approx. 10 drops of ammonia-buffer solution (pH=10) is added to the conical flask such that the smell of ammonia becomes persistent.

1 drops of EBT indicator is added to the conical flask. A 50-ml burette is filled up to the zero mark with 0.01M EDTA solution. The EDTA solution is added drop-wise to the conical flask with constant swirling during the titration till the colour changes from wine/purple-red to blue. The titration is repeated twice to obtain concordant values. The readings are given in table 1.

Results & Discussions

Table 1: Estimation of hardness of water using EDTA solution

Sl No.	Vol. of hard water	Burette Reading		Vol. of EDTA	Mean volume of	Hardness of water sample
	sample (mL)	Initial	Final	consumed (mL)	EDTA (V mL)	(ppm)
1	100					
2	100					

3	100				
		I	l	l	

Calculation:

 $1000 \text{ ml } 1(M) \text{ EDTA solution} \equiv 100 \text{ gm of } CaCO_3$

1 ml 0.01M EDTA solution \equiv 1 mg of $CaCO_3$

V ml 0.01M EDTA solution \equiv V mg of CaCO₃

100 ml hard water contains V mg of CaCO₃

1000 ml hard water contains 10V mg of CaCO₃

 \therefore Hardness = 10V mg/L = mg / L =ppm

Conclusion

- 1. The total hardness of tap water tested is in the range of 100 mg/l 150 mg/l in terms of $CaCO_3$ equivalent .
 - 2. EDTA is a stronger ligand than EBT towards the bivalent metal cations e.g. $Ca^{+2}\&\ Mg^{+2}\ .$