MATH 325 Q1: LINEAR ALGEBRA III, PART 4

Decomposition of a vector into a sum of generalized eigenvectors

We use two facts about complex polynomials mentioned in Part 3 to prove the following result.

Theorem Let V be a vector space over \mathbb{C} and let $\alpha: V \to V$ be a linear map. Then any vector v can be written as a sum $v = v_1 + \cdots + v_l$ of generalized eigenvectors v_i of α .

Proof. Let

$$P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i}$$

be the characteristic polynomial of α , where $\lambda_1, \ldots, \lambda_l$ are all different eigenvalues of α . Let $v \in V$. By the Cayley-Hamilton Theorem we know that $P_{\alpha}(\alpha)(v) = 0$.

Case 1: α has only one eigenvalue, say $\lambda = \lambda_1$. Then $P_{\alpha}(T) = (T - \lambda)^n$, where $n = n_1 = \dim_{\mathbb{C}} V$ and so

$$0 = P_{\alpha}(\alpha)(v) = (\alpha - \lambda \cdot id_V)^n(v).$$

It follows that every $v \in V$ is in the generalized eigenspace K_{λ} , hence $K_{\lambda} = V$ and we get the trivial decomposition v = v.

Case 2: Assume now that α has at least two eigenvalues, i.e. $l \geq 2$. Fix an integer $1 \leq i \leq l$. Then

$$0 = P_{\alpha}(\alpha)(v) = \left[\prod_{j=1}^{l} (\alpha - \lambda_{j} \cdot id_{V})^{n_{j}} \right](v)$$
$$= (\alpha - \lambda_{i} id_{V})^{n_{i}} \left(\left[\prod_{j \neq i} (\alpha - \lambda_{j} \cdot id_{V})^{n_{j}} \right](v) \right).$$

Therefore, the vector

$$v_i' = \left[\prod_{j \neq i} (\alpha - \lambda_j \cdot \mathbf{I}_n)^{n_j} \right] (v)$$

is either 0, or a generalized eigenvector for λ_i . In both cases $v_i' \in K_{\lambda}(\alpha)$.

Since $\lambda_r \neq \lambda_s$ for $r \neq s$ the polynomials

$$f_i(T) := \prod_{j \neq i} (T - \lambda_j)^{n_j}, \ i = 1, \dots, l$$

do not have a common root. Therefore their g.c.d. is equal to 1 and this implies there are polynomials $h_1(T), \ldots, h_l(T)$, such that

$$1 = \sum_{i=1}^{l} h_i(T) \cdot f_i(T). \tag{1}$$

We have all tools to prove the required decomposition $v = v_1 + \cdots + v_l$. As we saw above the vector

$$v_i' = \left[\prod_{i \neq j} (\alpha - \lambda_j \cdot I_n)^{n_j}\right](v) = f_i(\alpha)(v)$$

lies in the generalized eigenspace K_{λ_i} for all $1 \leq i \leq l$, and so is

$$v_i = h_i(\alpha) (f_i(\alpha)(v))$$

(because K_{λ_i} is α -invariant). By (1) we have

$$v = \mathrm{id}_V(v) = \sum_{i=1}^l h_i(\alpha) (f_i(\alpha)(v)) = \sum v_i.$$

with $v_i \in K_{\lambda_i}$.

Examples.

(i) Let A be a 2 × 2-matrix with two different eigenvalues λ_1, λ_2 . Then, as we proved before, A is diagonalizable and

$$P_A(T) = (T - \lambda_1) \cdot (T - \lambda_2).$$

In above notation we have

$$f_1(T) = (T - \lambda_2)$$
 and $f_2(T) = (T - \lambda_1)$.

We have then

$$\frac{1}{\lambda_2 - \lambda_1} \cdot (T - \lambda_1) + \frac{-1}{\lambda_2 - \lambda_1} \cdot (T - \lambda_2) = 1.$$

Then for a vector v in \mathbb{C}^2 we get the decomposition

$$v = \frac{-1}{\lambda_2 - \lambda_1} \cdot (A - \lambda_2 \cdot I_2) \cdot v + \frac{1}{\lambda_2 - \lambda_1} \cdot (A - \lambda_1 \cdot I_2) \cdot v = v_1 + v_2$$

with (again in above notation)

$$v_1 := \frac{-1}{\lambda_2 - \lambda_1} \cdot (A - \lambda_2 \cdot I_2) \cdot v$$

in $E_{\lambda_1} \subseteq K_{\lambda_1}$ and

$$v_2 := \frac{1}{\lambda_2 - \lambda_1} \cdot (A - \lambda_1 \cdot I_2) \cdot v$$

in $E_{\lambda_2} \subseteq K_{\lambda_2}$ (in this case we have actually $E_{\lambda_i} = K_{\lambda_i}$ for i = 1, 2).

(ii) Consider the 3×3 -matrix

$$A = \left(\begin{array}{ccc} 2 & -1 & 2 \\ 3 & -2 & 5 \\ 2 & -2 & 4 \end{array}\right).$$

We compute the characteristic polynomial

$$P_A(T) = T^3 - 4T^2 + 5T - 2 = (T-1)^2 \cdot (T-2)$$

and so A has two different eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$. The polynomials $f_i(T)$ are then (in above notation) $f_1(T) = T - 2$ and $f_2(T) = (T-1)^2$. Then $(-T) \cdot (T-2) + (T-1)^2 = 1$ and so (inserting A for T) we have

$$I_3 = (-A) \cdot (A - 2 \cdot I_3) + (A - I_3)^2$$

which implies that a vector $v \in \mathbb{C}^3$ has the decomposition $v = v_1 + v_2$ with

$$v_1 := (-A) \cdot (A - 2 \operatorname{I}_3) \cdot v$$

in K_{λ_1} and

$$v_2 := (A - I_3)^2 \cdot v$$

in K_{λ_2} . For instance we get the following decomposition for the

vector
$$v = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
: We compute first

$$(-A)\cdot(A-2I_3) = \begin{pmatrix} -1 & 2 & -3 \\ -4 & 5 & -6 \\ -2 & 2 & -2 \end{pmatrix}$$
 and $(A-I_2)^2 = \begin{pmatrix} 2 & -2 & 3 \\ 4 & -4 & 6 \\ 2 & -2 & 3 \end{pmatrix}$.

Hence

$$v_1 = (-A) \cdot (A - 2 \cdot I_3) \cdot v = \begin{pmatrix} -1 & 2 & -3 \\ -4 & 5 & -6 \\ -2 & 2 & -2 \end{pmatrix} \cdot v = \begin{pmatrix} -3 \\ -9 \\ -4 \end{pmatrix}$$

and

$$v_2 = (A - I_3)^2 \cdot v = \begin{pmatrix} 2 & -2 & 3 \\ 4 & -4 & 6 \\ 2 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 4 \end{pmatrix}.$$

Uniqueness

Our next aim is now to show that the decomposition of a vector into a sum of generalized eigenvectors for the various eigenvalues is unique, *i.e.* if

$$\sum_{i=1}^{l} v_i = v = \sum_{i=1}^{l} w_i$$

with $v_i, w_i \in K_{\lambda_i}$ then $v_i = w_i$ for all $1 \le i \le l$. To this end we first show the following result which also plays some role later on.

Lemma. Let λ be an eigenvalue of α and $\nu \neq \lambda$ another complex number. Then the \mathbb{C} -linear map

$$(\alpha - \nu \cdot \mathrm{id}_V)^m : K_\lambda \longrightarrow K_\lambda, \ v \longmapsto (\alpha - \nu \cdot \mathrm{id}_V)^m(v)$$

is an isomorphism for all integers $m \geq 0$.

Proof. Since a \mathbb{C} -linear map of a finite dimensional \mathbb{C} -vector space into itself is an isomorphism if and only if its kernel is trivial, we have only to prove that for any $v \neq 0$ in K_{λ} we have $(\alpha - \nu \cdot \mathrm{id}_{V})^{m}(v) \neq 0$. Since $v \in K_{\lambda}$ there is some $d \geq 1$, such that $(\alpha - \lambda \cdot \mathrm{id}_{V})^{d}(v) = 0$.

On the other hand since $\lambda \neq \nu$ the polynomials $(T - \lambda)^d$ and $(T - \nu)^m$ have no common root, their g.c.d. is equal to 1, hence there are polynomials h(T) and k(T), such that

$$1 = h(T) \cdot (T - \nu)^m + k(T) \cdot (T - \lambda)^d.$$

Substituting α instead of T we have

$$v = \mathrm{id}_{V}(v)$$

$$= \left[h(\alpha) \cdot (\alpha - \nu \cdot \mathrm{id}_{V})^{m} + k(\alpha) \cdot (\alpha - \lambda \cdot \mathrm{id}_{V})^{d} \right](v)$$

$$= h(\alpha) \left((\alpha - \nu \cdot \mathrm{id}_{V})^{m}(v) \right) + k(\alpha) \left((\alpha - \lambda \cdot \mathrm{id}_{V})^{d}(v) \right)$$

$$= h(\alpha) \left((\alpha - \nu \cdot \mathrm{id}_{V})^{m}(v) \right),$$

the last equation since $(\alpha - \lambda \cdot id_V)^d(v) = 0$. Therefore

$$(\alpha - \nu \cdot \mathrm{id}_V)^m(v) \neq v$$

(because
$$v \neq 0$$
).

By induction we then get the following

Corollary. Let λ be an eigenvalue of α and ν_1, \ldots, ν_r complex numbers, which are all $\neq \lambda$. Then the \mathbb{C} -linear map

$$K_{\lambda} \longrightarrow K_{\lambda}, v \longmapsto \Big[\prod_{i=1}^{r} (\alpha - \nu_{i} \cdot \mathrm{id}_{V})^{m_{i}}\Big](v)$$

is an isomorphism for all integers $m_1, \ldots, m_r \geq 0$.

We now pass to the following result which summarizes all our previous discussions.

Theorem. Let $\alpha: V \to V$ be a linear map with characteristic polynomial

$$P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i},$$

where $\lambda_1, \ldots, \lambda_l$ are all different eigenvalues of α . Then:

(i) If $v \in K_{\lambda_i}$ for some $1 \le i \le l$ we have

$$(\alpha - \lambda_i \cdot \mathrm{id}_V)^{n_i}(v) = 0.$$

(ii) Every vector $v \in V$ can be uniquely written as a sum

$$v = v_1 + v_2 + \ldots + v_l$$

with $v_i \in K_{\lambda_i}$ for $i = 1, \ldots, l$.

Proof. (i) Fix an integer $1 \le i \le l$. By the corollary above

$$\left[\prod_{j\neq i} (\alpha - \lambda_j \cdot \mathrm{id}_V)^{n_j}\right](w) \neq 0$$

for all $w \neq 0$ in K_{λ_i} . Hence if $w = (\alpha - \lambda_i \cdot id_V)^{n_i}(v) \neq 0$ also

$$0 \neq \left[\prod_{j \neq i} (\alpha - \lambda_j \cdot i d_V)^{n_j} \right] \left((\alpha - \lambda_i \cdot i d_V)^{n_i}(v) \right)$$
$$= \left[\prod_{j=1}^l (\alpha - \lambda_j \cdot i d_V)^{\mu_j} \right] (v)$$
$$= P_{\alpha}(\alpha)(v).$$

So the assumption $(\alpha - \lambda_i \cdot id_V)^{n_i}(v) \neq 0$ leads to $P_{\alpha}(\alpha)(v) \neq 0$, which contradicts the Cayley-Hamilton Theorem. Thus,

$$(\alpha - \lambda_i \cdot \mathrm{id}_V)^{\mu_i}(v) = 0.$$

(ii) The existence of the sum decomposition has been already proven. It remains to show uniqueness. Assume

$$\sum_{i=1}^{l} v_i = v = \sum_{i=1}^{l} w_i$$

with $v_i, w_i \in K_{\lambda_i}$ for all $1 \le i \le l$.

We fix $1 \le i \le l$. From the above equation we get

$$v_i - w_i = \sum_{j \neq i} (w_j - v_j).$$

By (i) we have

$$(\alpha - \lambda_i \cdot id_V)^{n_j}(w_i - v_i) = 0$$

for all $1 \leq j \leq l$. Therefore using the fact that polynomials in α commute with each other we have

$$\left[\prod_{k\neq i} (\alpha - \lambda_k \cdot \mathrm{id}_V)^{n_k}\right] (w_j - v_j) = 0$$

for all $j \neq i$. Hence

$$\left[\prod_{k\neq i} (\alpha - \lambda_k \cdot \mathrm{id}_V)^{n_k}\right] \left(\sum_{j\neq i} (w_j - v_j)\right) = \sum_{j\neq i} \left[\prod_{k\neq i} (\alpha - \lambda_k \cdot \mathrm{id}_V)^{n_k}\right] (w_j - v_j) = 0,$$

and so also

$$\left[\prod_{k\neq i} (\alpha - \lambda_k \cdot \mathrm{id}_V)^{n_k}\right] (v_i - w_i) = 0.$$

But by the corollary above the linear map $\left[\prod_{k\neq i}(\alpha-\lambda_k\cdot\mathrm{id}_V)^{n_k}\right]$ is an isomorphism on K_{λ_i} and so v_i-w_i has to be zero, i.e. $v_i=w_i$. We are done.

The dimensions of the subspaces K_{λ_i}

Let α be as in the theorem with characteristic polynomial

$$P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i}.$$

Let $(v_j^{(i)})_{1 \leq j \leq m_i}$ be a basis of K_{λ_i} for $i = 1, \ldots, l$, and B_i the matrix of the restriction of $\alpha : V \to V$ to the α -invariant subspace K_{λ_i} with respect to this basis.

Question: What are the eigenvalues of B_i ?

We proved above that for all complex numbers $\nu \neq \lambda_i$ the $\mathbb C$ -linear map

$$K_{\lambda_i} \longrightarrow K_{\lambda_i}, x \longmapsto (\alpha - \nu \cdot \mathrm{id}_V)(x)$$

is an isomorphism, and so in particular $(\alpha - \nu \cdot \mathrm{id}_V)(x) \neq 0$ for all $x \in K_{\lambda_i} \setminus \{0\}$, or equivalently $\alpha(x) \neq \nu \cdot x$ for all $x \neq 0$ in K_{λ_i} and all $\nu \neq \lambda_i$. But B_i is the matrix of the \mathbb{C} -linear map $K_{\lambda_i} \longrightarrow K_{\lambda_i}$, $x \mapsto \alpha(x)$ with respect to the basis $(v_j^{(i)})_{1 \leq j \leq n_i}$ and so λ_i is the only eigenvalue of B_i . Hence we have

$$P_{B_i}(T) = (T - \lambda_i)^{m_i}, \qquad (2)$$

where $m_i = \dim_{\mathbb{C}} K_{\lambda_i}$, for all $i = 1, \ldots, l$.

We need the following fact.

Lemma The union of the ordered bases $(v_j^{(i)})_{1 \leq j \leq n_i}$ is a basis of V.

Proof. Indeed, to prove that these vectors are linearly independent assume that

$$\sum_{i=1}^{l} \left(\sum_{j=1}^{m_i} a_{ij} \cdot v_j^{(i)} \right) = 0.$$

Then by uniqueness part of the theorem we have $\sum_{j=1}^{m_i} a_{ij} \cdot v_j^{(i)} = 0$ for all $i = 1, \dots, l$, and so since the vectors $v_1^{(i)}, \dots, v_{m_i}^{(i)}$ are linear independent

also $a_{ij} = 0$ for all i, j. By the existence part of the theorem we see that these vectors gen-

The matrix of α with respect to this basis is then

erate V. Hence their union is a basis.

$$\begin{pmatrix}
B_1 & O_{n_1 \times n_2} & \dots & O_{n_1 \times n_l} \\
O_{n_2 \times n_1} & B_2 & & O_{n_2 \times n_l} \\
\vdots & & \ddots & \vdots \\
O_{n_l \times n_1} & & \dots & B_l
\end{pmatrix},$$

and so we have

$$P_{\alpha}(T) = \prod_{i=1}^{l} P_{B_i}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{m_i}.$$

But we also have

$$P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i}$$

and so we conclude:

Corollary. Let $\alpha: V \longrightarrow V$ be a \mathbb{C} -linear map with characteristic polynomial $P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i}$, where $\lambda_1, \ldots, \lambda_l$ are all different eigenvalues of α , then $n_i = \dim_{\mathbb{C}} K_{\lambda_i}$ for all $1 \leq i \leq l$.