Relatório 03: Sensores Resistivos

Ana Letícia Pereira - RA 119065 Milena Lumi Hangai - RA 184654 Rafael Picasso Tóth - RA 223706 Tomás Conti Loesch - RA 224991

1. AFIRMAÇÃO DE HONESTIDADE

A equipe declara que este relatório que está sendo entregue foi escrito por ela e que os resultados apresentados foram medidos por ela durante as aulas de F 329 no 2S/2020. Declara ainda que o relatório contém um texto original que não foi submetido anteriormente em nenhuma disciplina dentro ou fora da Unicamp.

2. INTRODUÇÃO

O experimento 3 tem como objetivo estudar o comportamento de sensores resistivos, mais especificamente o termistor e o resistor sensível a luz (LDR).

Para o termistor, temos a hipótese de que conforme a temperatura aumenta, o valor da resistência diminui. Pois com o aumento da temperatura, é esperado que aumente a quantidade de portadores de cargas, logo, há um aumento na corrente (sem alterar o valor da tensão), fazendo com que a resistência diminua. Portanto, avaliamos a relação de resistência (Ω) com a temperatura (${}^{\circ}C$) para este componente e veremos se encaixa no modelo previsto na equação (1), que é a equação prevista para a relação entre a resistência e temperatura pelos fabricantes de termistor.

Já para o LDR, será estudado o comportamento deste componente de acordo com a tensão de saída e a posição de uma fonte de luz considerada puntiforme. O objetivo é conseguir relacionar a tensão de saída com a distância (entre o sensor e a fonte de luz) através de um gráfico gerado pelos dados experimentais. Espera-se que se o LDR estiver pouco exposto a fonte de luz, a sua resistência seja alta, assim como mostra no gráfico 4. Além disso, espera-se também que a tensão diminua conforme a distância aumenta.

3. MATERIAIS E MÉTODOS

Para a realização do vídeo-experimento que analisamos, foi utilizado um multímetro (como ohmímetro e como voltímetro), um termômetro de álcool, água quente, uma protoboard, uma fonte de tensão, uma fonte de luz e por fim, os componentes estudados: LDR e Termistor. Para uma compreensão melhor do experimento, o grupo montou o circuito de LDR no software TinkerCad. Além disso, também foi utilizado o programa SciDavis para a montagem de gráficos que comprovem as hipóteses sendo testadas.

Para a montagem deste relatório, o grupo começou lendo o roteiro disponibilizado na plataforma Moodle da disciplina e seguindo as orientações do mesmo, então, os dados fornecidos através dos vídeos-experimentos foram organizados em um banco de dados para facilitar o estudo e a montagem dos gráficos posteriormente. Com isso, o grupo escolheu alguns dados que seriam mais coerentes para a plotagem dos gráficos no programa SciDavis. Com o auxílio do manual do multímetro, as incertezas associadas ao experimento foram calculadas para que, por fim, possamos tirar as conclusões finais a respeito deste experimento.

4. TERMISTOR

Os termistores são resistências que exibem uma variação do valor nominal em função da temperatura, utilizando misturas de cerâmicas de óxidos semicondutores (ex: magnésio, níquel, cobalto, cobre, o ferro, etc.) no caso das resistências com coeficiente de temperatura negativo e de titanato de bário, no caso de coeficiente de temperatura positivo.

No caso do termistor, será testado experimentalmente a validade da equação (1), com o componente sendo exposto a uma variação de 20°C a 55°C. Com a obtenção dos dados através dos vídeos-experimentos, podemos conseguir o gráfico de R_{NTC} x T (gráfico 1) e $ln(R_{NTC})$ x $\frac{1}{T}$ (gráfico 2) sendo que R_{NTC} é o valor da resistência do termistor. Utilizando o SciDavis para a linearização da equação (1), conseguimos obter os valores para A e B, que são A = 0,00264 \pm 0,00044 e B = 3018,513 \pm 51,533, com a = -5,937 \pm 0,166 e b = 3.018,513 \pm 51,533 para a equação y = a + bx.

O gráfico 1 de R_{NTC} x T, que diz respeito a um gráfico dos dados da temperatura e resistência sem linearização prévia, mostra um comportamento exponencial, onde o valor da resistência diminui exponencialmente conforme a

temperatura aumenta. No gráfico 2 de $ln(R_{NTC})$ x $\frac{1}{T}$, temos linearidade dos dados, confirmando o modelo apresentado na equação (1).

Em relação ao experimento de aplicação (EA) presente no roteiro, levando em consideração as incertezas associadas a um termistor, podemos dizer que não é possível determinar se uma pessoa está ou não com febre de acordo com a equação (3). Isso pois calculando a incerteza da temperatura através da equação (4), temos um valor $\delta T = 7,533 \, \text{K}$, ou seja, a incerteza é maior que os intervalos T < 310,5K, 310,5K < T < 311,5K e T > 311,5K. Assim, o termistor como um termômetro clínico com a sua incerteza não permitiria distinguir as temperaturas para cada estado

Além disso, não podemos afirmar que o termistor é um dispositivo ôhmico, pois não temos dados suficientes para fazer sua curva característica e analisar o gráfico, assim como fizemos com o resistor e o diodo no experimento anterior. Entretanto, se pensarmos numa temperatura tendendo a infinito, a resistência tende a não variar, podendo assim ser considerado como um dispositivo ôhmico.

5. LDR

As foto-resistências são componentes de circuito cujo valor nominal da resistência elétrica é função da intensidade da radiação eletromagnética incidente, construídas com base em materiais semicondutores.

Ao estudar o comportamento do LDR, estamos também realizando o experimento observação (EO) presente no roteiro da disciplina. Portanto, vamos analisar o comportamento deste dispositivo de acordo com a tensão de saída e a posição de uma fonte de luz através dos dados obtidos nos vídeos-experimentos e do gráfico 3 de Tensão (V) x Distância (cm) obtido.

É válido lembrar que para a plotagem do gráfico 3 as distâncias utilizadas foram da soma entre a distância do LDR até a ponta da protoboard com a medida vista na fita métrica e para a obtenção do valor da tensão de saída, primeiramente coletamos o valor da tensão à luz ambiente e subtraímos os valores do vídeo deste mesmo valor.

A partir do gráfico 3, é possível observar que quando a fonte de luz está a uma distância maior que 18cm do LDR, é como se o componente estivesse somente sob a luz ambiente, logo, a tensão medida não varia significativamente. Já quando a distância é menor que 18cm, o valor da tensão aumenta significativamente.

6. INCERTEZAS

Neste experimento, Em relação ao aparelho utilizado, temos as incertezas da calibração do multímetro (tanto para ohmímetro quanto para voltímetro), a incerteza de leitura do multímetro e a incerteza combinada entre as mesmas. Além das incertezas associadas ao aparelho utilizado, também temos as incertezas associadas ao termômetro de álcool, ao paquímetro, a fita métrica e as incertezas de leituras dos mesmos. Todas as incertezas e os cálculos estão apresentados na Tabela 1.

7. CONCLUSÕES

Por fim, avaliando os resultados obtidos e considerando suas respectivas incertezas é possível concluir que o modelo apresentado na equação (1) é adequado funciona para calcular o valor da resistência do termistor a partir de uma dada temperatura.

Através dos dados obtidos pelo vídeo-experimento representados na tabela 3 e pelo gráfico 3, conseguimos concluir que conforme a distância diminui, ou seja, conforme a fonte de luz fica mais próxima do sensor, a tensão aumenta. Portanto, a hipótese inicial para o LDR apresentada no tópico I. INTRODUÇÃO deste mesmo relatório é válida.

8. FIGURAS E TABELAS

Incerteza	Cálculo
Incerteza da calibração do voltímetro ($u_{c.v.}$)	$u_{c.v.} = \frac{(0.003 \cdot V + 0.002)}{\sqrt{3}}$
Incerteza da leitura ($u_{l,v}$)	$u_{l.v.} = \frac{0.001}{2\sqrt{3}}$

Incerteza combinada ($u_{comb.v.}$)	$u_{comb.v.} = \sqrt{u_{c.v.}^2 + u_{l.v.}^2}$
Incerteza da calibração do ohmímetro ($u_{c.o.}$)	$u_{c.o.} = \frac{(0,008 \cdot R + 0,3)}{\sqrt{3}}$
Incerteza da leitura ($u_{l.o.}$)	$u_{l.o.} = \frac{0.1}{2\sqrt{3}}$
Incerteza combinada ($u_{comb.o.}$)	$u_{comb.v.} = \sqrt{u_{c.o.}^2 + u_{l.o.}^2}$
Incerteza do termômetro (u_t)	$u_t = \frac{1}{2\sqrt{6}}$
Incerteza da paralaxe (u_p)	$u_p = 0,1$
Incerteza combinada entre termômetro e paralaxe $(u_{comb.t.p.})$	$u_{comb.t.p.} = \sqrt{u_t^2 + u_p^2}$
Incerteza da fita métrica (u_f)	$u_f = \frac{0.5}{2\sqrt{6}}$
Incerteza do paquímetro ($u_{paq.}$)	$u_{paq.} = 0.005$
Incerteza combinada entre fita e paquímetro $(u_{comb.f.paq.})$	$u_{comb.f.paq.} = \sqrt{u_f^2 + u_{paq.}^2}$

^{*} V é o valor da tensão medida em [V] e R é o valor da resistência medida em [Ω]

Tabela 1: Incertezas associadas ao experimento e seus respectivos cálculos

1/T	RNTC	In(RNTC)
0,00338	73,30000	4,29456
0,00334	64,30000	4,16356
0,00332	59,30000	4,08261
0,00329	53,20000	3,97406
0,00326	50,20000	3,91602
0,00326	48,90000	3,88978
0,00324	45,10000	3,80888
0,00322	43,00000	3,76120
0,00321	41,40000	3,72328
0,00318	38,90000	3,66099
0,00317	37,80000	3,63231
0,00316	36,60000	3,60005
0,00314	34,60000	3,54385
0,00313	33,40000	3,50856
0,00313	32,10000	3,46886
0,00312	31,10000	3,43721
0,00310	29,50000	3,38439
0,00308	27,40000	3,31054

Tabela 2: dados de $\frac{1}{T}$, R_{NTC} e $ln(R_{NTC})$ utilizados pelo grupo para plotagem dos gráficos 1 e 2

Distância (cm)	Tensão (V)
49,15	0,008
45,65	0,009
41,65	0,010
34,65	0,013
31,65	0,015
29,65	0,017
27,65	0,019
25,65	0,020
23,65	0,023
21,65	0,027
19,65	0,031
17,65	0,034
15,65	0,043
13,65	0,050
11,65	0,058
9,65	0,084
7,65	0,134
5,65	0,201
3,65	0,377
1,65	0,889

Tabela 3: dados da distância e tensão utilizados para plotagem do gráfico * a distâncias calculada é a soma entre a distância do LDR até a ponta da protoboard com a medida vista na fita métrica

^{*} Para a obtenção de $\frac{1}{T}$ foi primeiramente feita a conversão de °C para K

Gráfico 1: dados da resistência do termistor em relação a temperatura

Gráfico 2: linearização da equação 1 com os dados obtidos através do vídeo experimento

Gráfico 3: dados de tensão e distância para o LDR retirados do vídeo experimento

Gráfico 4: Resistência x Luminosidade de um LDR

9. EQUAÇÕES UTILIZADAS

Equação referente ao modelo proposto por fabricantes de termistor para a relação entre resistor $[\Omega]$ e temperatura [K]

$$R_{NTC} = A \cdot e^{B/T} (1)$$

Fazendo a linearização da equação (1), obtemos:

$$ln(R_{NTC}) = ln(A) + \frac{B}{T} (2)$$

Podemos também manipular a equação (2) para obtermos o valor de T em função de R_{NTC} :

$$T = \frac{B}{ln(R_{NTC}) - ln(A)}$$
 (3)

Para calcular a incerteza da temperatura dada pela equação (3):
$$\delta T^2 = \left(\frac{\partial T}{\partial A}\right)^2 \delta A^2 + \left(\frac{\partial T}{\partial B}\right)^2 \delta B^2 + \left(\frac{\partial T}{\partial R_{NTC}}\right)^2 \delta R_{NTC}^2$$
 (4)

Substituindo os valores e fazendo as derivadas parciais temos que:

$$\delta T = 7,533$$

10. REFERÊNCIAS

JÚNIOR, José Jair Alves Mendes; JUNIOR, Sérgio Luiz Stevan. LDR E SENSORES DE LUZ AMBIENTE: FUNCIONAMENTO E APLICAÇÕES. Semana de Eletrônica e Automação SEA 2013, Universidade Tecnológica Federal do Paraná – UTFPR – Ponta Grossa – Brasil, 2013. Disponível em: https://www.researchgate.net/profile/Jose Mendes Junior/publication/287958715 LDR E SENSORES DE LUZ AMBIENTE FUNCIONAMENTO E APLICACOES/links/567a9c7508ae19758380fa45/LDR-E-SENSORES-DE-LUZ-AMBIENTE-FUNCIONAMENTO-E-APLICACOES.pdf>