Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar **Naměřeno:** 20. května 2025

Obor: F **Skupina:** Út 14:00 **Testováno:**

Úloha č. **6:** Zeemanův jev

1. Úvod

Cílem úlohy je změřit rozdíl vlnových délek při štěpení spektrálních čar kadmiové lampy v přítomnosti magnetického pole pomocí Fabr-Perotova interferometru. Z naměřených dat dopočítáme Bohrův magneton μ_B a zjistíme jakou polarizaci má takto vyzářené světlo.

2. Teorie

2.1. Fabry-Perotův interferometr

Fabry-Perotův interferometr je obvykle několik mm tlustá průhledná destička pokrytá na obou stranách vrstvou odrážející většinu dopadajícího záření. Při průchodu paprsku interferometrem potom dochází k násobným odrazům a následné interferenci série propuštěného záření podobně jako je to schematicky znázorněné na Obrázku 1.

Obrázek 1: Chod paprsků ve Fabry-perotově interferometru.

Obrázek 2: Zobrazení interferenčního obrazce spojkou.

Rozdíl optických drah dvou sousedních vycházejících paprsků má velikost $2nd\cos\alpha_m$, takže podmínka konstruktivní interference v aproximaci pro malé úhly je

$$m\lambda = 2nd\cos\alpha_m \approx 2nd\left(1 - \frac{\alpha_m^2}{2}\right)$$
 (1)

kde d je šířka interferometru, m je některé celé číslo a λ vlnová délka světla. Ke konstruktivní interferenci tedy dochází jen pro některé úhly dopadu $\Theta_m \approx n\alpha_m$, takže světlo dopadající na interferometr

musí částečně divergovat. Paprsek dál prochází skrz dvě spojky fungující jako dalekohled o zvětšení Z a nakonec do objektivu kamery o ohniskové vzdálenosti f. Velikost obrazu r_m je potom

$$r_m = f \tan(Z\Theta_m) \approx f Z \Theta_m \approx f Z n \alpha_m$$
 (2)

a dosazením z (1) dostáváme vztah

$$r_m = f Z n \sqrt{2 - \frac{m\lambda}{nd}}. (3)$$

Pokud na interferometr dopadá světlo o dvou velmi blízkých vlnových délkách λ_a a λ_b , bude se rozdíl čtverců jejich poloměrů obrazu řádu m lišit o

$$r_{b,m}^2 - r_{a,m}^2 = (fZn)^2 \frac{m}{nd} \left(\lambda_a - \lambda_b\right). \tag{4}$$

A podělením výrazem

$$r_{a,m}^2 - r_{a,m+1}^2 = (fZn)^2 \frac{\lambda_a}{nd}$$

dostáváme vztah pro rozdíl vlnočtů

$$\frac{r_{b,m}^2 - r_{a,m}^2}{r_{a,m}^2 - r_{a,m+1}^2} = \frac{m}{\lambda_a} \left(\lambda_a - \lambda_b \right)$$

$$\frac{r_{b,m}^2 - r_{a,m}^2}{r_{a,m}^2 - r_{a,m+1}^2} = m\lambda_b \left(\frac{1}{\lambda_b} - \frac{1}{\lambda_a} \right)$$

$$\frac{r_{b,m}^2 - r_{a,m}^2}{r_{a,m}^2 - r_{a,m+1}^2} \approx 2nd \left(\frac{1}{\lambda_b} - \frac{1}{\lambda_a} \right)$$

Rozdíl energie dvou paprsků o různých vlnových délkách je potom

$$\Delta E = \frac{hc}{2nd} \frac{r_{b,m}^2 - r_{a,m}^2}{r_{a,m}^2 - r_{a,m+1}^2} \tag{5}$$

2.2. Normální Zeemanův jev

Každý i-tý elektron v obalu atomu má svůj magnetický moment $\vec{\mu}_{ji}$ daný jeho kvantovými čísly, nebo se nachází v superpozici více možných stavů. Přivedením magnetického pole $B\hat{z}$ na atom dojde ke kolapsu superpozice celkového magnetického momentu $\vec{\mu}_J = \sum_i \vec{\mu}_{ji}$ a je možné sledovat štěpení spektrálních čar, kvůli nepatrným rozdílům potenciální energie U jednotlivých stavů s různými momenty $\vec{\mu}_J$.

$$U = -\vec{\mu}_J B \hat{z} \tag{6}$$

V případě Normálního Zeemanova jevu nastává přechod mezi singletovými stavy, kde celkový spin elektronů je nulový a proto je celkový moment hybnosti daný pouze orbitálním momentem.

$$\vec{J} = \vec{L}$$
 $|\vec{L}| = \sqrt{L(L+1)}\hbar$ $L_z = m_l\hbar$ (7)

Magnetický moment potom spočítáme podle vztahu

$$\vec{\mu}_J = -g_J \frac{e}{2m_e} \vec{J} \tag{8}$$

kde m_e a e je hmotnost a náboj elektronu a g_J je Landého faktor, který pro S=1 a L=J vychází $g_J=1$. Dosazením do vztahu (6) dostáváme

$$U = -m_l \frac{e\hbar}{2m_e} B = -m_l \mu_B B \tag{9}$$

kde μ_B je Bohrův magneton. V praktiku budeme pozorovat spektrum kadmia, které má v základním stavu plný poslední valenční orbital $4d^{10}$ a proto má i nulový celkový spin, který se při přechodech nemění. V jeho spektru můžeme nalézt čáru s vlnovou délkou $\lambda=643$ nm, která odpovídá přechodu mezi orbitaly $4d^{10}5s5d \rightarrow 4d^{10}5s5p$, při kterém platí výběrové pravidlo $\Delta m_l=0,\pm 1$ a dochází ke štěpení energie stavů

$$pro \Delta m = \pm 1 \qquad \Delta E = \pm \mu_B B \tag{10}$$

Prostřední čára vyzářená při $\Delta m=0$ se označuje π a takové fotony nutně musí mít složku momentu hybnosti $j_z=0$, takže se muže šířit jen ve směru kolmém na \hat{z} a bude lineárně polarizované ve směru \hat{z} . Čáry odpovídající $\Delta m=\pm 1$ se označují σ^\pm a budou kruhově polarizované v ploše xy s $j_z=\pm \hbar$. Pokud je pozorujeme ve směru kolmém k \hat{z} , potom se plocha xy projektuje na přímku a světlo je lineárně polarizované kolmo na osu \hat{z} .

2.3. Anomální Zeemanův jev

Anomální Zeemanův nastává při přechodu mezi stavy s nenulovým spinem. V takovém případě se změna magnetického momentu rozkládá na Orbitální i spinovou složku a štěpení probíhá mnohonásobně štěpení spektrální čáry.

3. Postup měření

Kadmiová lampa s dvěma elektromagnety je umístěná na otočném stolku ve kterém jsou otvory kterými je možné vyzářené světlo pozorovat buď kolmo, nebo rovnoběžně s magnetickým polem. Na optické lavici je za stolkem postupně umístěna irisová clona , Fabry-Perotův interferometr a dalekohled složený ze dvou spojek o ohniskových vzdálenostech $f_1=30~{\rm cm}$ a $f_2=5~{\rm cm}$, které obraz zvětšují $Z=30/5=6~{\rm krát}$ a za nimi ještě filtr červeného světla s kamerou. Poloměry interferenčních kroužků se odečítají digitálně z fotek a ke zjištění polarity světla můžu použít polarizátory, a čtvrtvlnnou nebo půlvlnnou destičku.

Obrázek 3: Schéma aparatury

4. Výsledky měření

4.1. Interpolace magnetické indukce

Závislost intenzity magnetické indukce na proudu procházejícím cívkami uvnitř kadmiové lampy jsem dostal naměřenou v zadání skrz tabulku 1. Data jsem vykreslil do Grafu 1 a fitoval je polynomem třetího řádu $B(I) = aI^3 + bI^2 + cI + d$ ze kterého vyšly parametry

$$a = 0.21 \pm 0.02 \text{ mTA}^{-3}$$

 $b = 2.9 \pm 0.4 \text{ mTA}^{-2}$

$$c = 5.0 \pm 2 \text{ mTA}^{-1}$$

 $d = 1.9 \pm 3 \text{ mT}$

I(A)	B (mT)	I(A)	B (mT)
1.03	73	4.66	295
1.89	124	5.05	319
2.60	166	5.53	348
2.97	188	6.06	381
3.86	248	6.54	409
7.10	444	8.06	500
7.50	468	8.47	524
8.96	549	9.50	573
9.95	594	10.46	613

Tabulka 1: Intenzita magnetického pole v závislosti na proudu.

Graf 1: Graf závislosti intenzity magnetického pole na proudu.

4.2. Ověření funkčnosti Fabry-Perotova interferometru

Elektromagnety jsem zatím nechal vypnuté a vyfotil interferenční obrazec nerozštěpené spektrální čáry. Ze vztahu (1) vyplývá, že pokud pozorujeme paprsky pohybující se pod malými úhly Θ_m , bude $m \approx \frac{2nd}{\lambda}$, takže nějaké velké číslo, které není jednoduché zjistit. Zárověň podle vztahu (1) by měly poloměry kroužků s rostoucím m klesat, takže ty kroužky které vidím přeindexuju od nejmenšího s $m_0 = m_{max}$ jako $m = m_{max} - p$. Aby naměřená data odpovídala vztahu (3), musí být závislost lineární, což se podařilo ověřit a můžu přejít k měření štěpení spektrálních čar.

$$a = \frac{(fZ)^2 n\lambda}{d} = (86 \pm 1) \cdot 10^{-9} \text{ m}^2$$
(11)

Graf 2: Závislost čtverce poloměru kroužků na indexu p

4.3. Bohrův magneton

Tentokrát jsem cívkami nechal téct proud I a pomalu ho zvyšoval, než se kolem I=5A začaly interferenční kroužky viditelně dělit na tři. Pro několik hodnot proudu jsem potom měřil poloměry vsěch kroužků o třech různých řádech, takže celkem 9 poloměrů číslovaných od R_1 do R_9 . Výsledný rozdíl energií od střední π čáry je potom dopočítaný podle vztahu (5) a všechna data jsou uvedená v Tabulce 2.

I(A)	$R_3 \text{ (mm)}$	$R_2 \text{ (mm)}$	$R_1 \text{ (mm)}$	$\Delta E_1 \cdot 10^{-24} \; (\mathrm{J})$	$\Delta E_2 \cdot 10t^{-24} \text{ (J)}$
4.94	0.1963	0.1652	0.1248	2.982	3.108
5.85	0.2013	0.1630	0.1201	3.702	3.222
6.58	0.2060	0.1820	0.1144	2.470	5.316
7.45	0.2098	0.1630	0.1065	4.629	4.040
8.36	0.2145	0.1653	0.0997	4.957	4.612
9.38	0.2169	0.1646	0.0897	5.293	5.053
I(A)	$R_6 \text{ (mm)}$	$R_5 \text{ (mm)}$	$R_4 \text{ (mm)}$	$\Delta E_1 \cdot 10^{-24} \; (\text{J})$	$\Delta E_2 \cdot 10t^{-24} \text{ (J)}$
4.94	0.3454	0.3267	0.3081	3.334	3.132
5.85	0.3469	0.3298	0.3055	3.070	4.096
6.58	0.3491	0.3295	0.3026	3.529	4.511
7.45	0.3542	0.3284	0.3008	4.672	4.607
8.36	0.3567	0.3273	0.2990	5.335	4.702
9.38	0.3572	0.3284	0.2966	5.238	5.273
I(A)	$R_9 \text{ (mm)}$	$R_8 \text{ (mm)}$	$R_7 \text{ (mm)}$	$\Delta E_1 \cdot 10^{-24} \text{ (J)}$	$\Delta E_2 \cdot 10t^{-24} \text{ (J)}$
4.94	0.4530	0.4376	0.4238	3.639	3.154
5.85	0.4537	0.4379	0.4224	3.737	3.538
6.58	0.4564	0.4393	0.4159	4.063	5.309
7.45	0.4574	0.4374	0.4158	4.748	4.889
8.36	0.4599	0.4384	0.4152	5.124	5.254
9.38	0.4634	0.4384	0.4121	5.981	5.934

Tabulka 2: Naměřená data Zeemanova jevu

Získané rozdíly energie jsou vykreslené do Grafu 3 v závislosti na intenzitě magnetické indukce B a výsledná závislost je fitovaná přímkou podle vztahu (10), odkud vychází výsledná hodnota Bohrova magentonu

$$\mu_B = (10.2 \pm 0.7)10^{-24} \text{ Am}^2$$
 (12)

Graf 3: Graf závislosti rozdílu energie fotonů oproti základnímu přechodu na intenzitě magnetického pole v lampě.

4.4. Polarizace spektrálních čar

Když pozorujeme kadmiovou lampu ve směru kolmém na magentickou indukci, měly by podle teorie být paprsky odpovídající π i σ polarizované lineárně. π rovnoběžně s \vec{B} a σ kolmo. Pro ověření této skutečnosti stačí vzít polarizační filtr a umístit ho před kameru. Pokud byla osa polarizátoru souběžná s \vec{B} , byla vidět jen střední čára, pokud byla kolmá byly vidět jen dvě vnější.

V případě pozorování světla ze směru rovnoběžného s magnetickou indukcí by střední čára neměla být vidět vůbec a ostatní dvě by měly mít kruhovou polarizaci s opačnou točivostí. Když jsem otočil stolek s lampou o 90°, tak opravdu prostřední čára zmizela a vnější dvě čáry měly stejnou intenzitu bez ohledu na otočení polarizátoru. K ověření, že jde o kruhovou polarizaci je možné použít čtvrtvlnnou destičku, která kruhově polarizované světlo převede na lineárně polarizované a o tom se dá zase rozhodnout polarizačním filterm. Při jeho otáčení uvidíme dvě maxima od sebe otočené o 90° což odpovídá různé točivosti polarizací.

4.5. Anomální Zeemanův jev

Ve spektru kadmia se nachází i spektrální čára o vlnové délce $\lambda=508.588$ nm, která vzniká při přechodu $4d^{10}5s6s \to 4d^{10}5s5p$. V tomto případě je celkový spinový moment nenulový a proto se v magnetickém poli tato čára štěpí anomálně. Na optickou lavici jsem umístil zelený filtr místo červeného a při zapnutí magnetického pole by se mělo vzniknout 9 různých spektrálních čar. Ty ale nebyli příliš dobře rozlišitelné.

5. Závěr

V tomto praktiku jsem pomocí Fabry-Perotova interferometru ověřil, že štěpení energiových hladin spektrálních čar při normálním Zeemanově jevu se řídí lineárním vztahem (10) a zněj byl určený Bohrův magneton $\mu_B = (10.2 \pm 0.7) 10^{-24} \text{ Am}^2$, zatímco tabulková hodnota je $\mu_B = 9.274 \cdot 10^{-24} \text{ Am}^2$. Největším důvodem chyby je pravděpodobně nepřesné odečítání poloměrů kružnic v interferenčním obrazci, protože ne vždycky byli přesné kružnice a nebyli příliš ostré.

V druhé části úlohy jsem ověřil, že polarizace pozorovaných spektrálních čar odpovídá teorii.

Reference

[1] Návod k úloze https://is.muni.cz/auth/el/sci/jaro2025/F4210/um/fp3-6_Zeeman.pdf.