Domača naloga 8. (samostojno reševanje):

8.1 Načrtovanje pasovno prepustnih KEO filtrov z linearno fazo s pomočjo okenskih funkcij.

Podobno kot v 1. nalogi (lab. vaja 8):

- določite izraz za odziv na enotin impulz pasovno prepustnega filtra (prepustni pas naj se nahaja med ω_{CL} in ω_{CH}).
- na najenostavnejši možni način določite tudi izraz za odziv na enotin impulz visokoprepustnega filtra.
- opišite vpliv izbire okenske funkcije na amplitudni odziv filtra?
- zakaj sploh uporabljamo okenske funkcije?

8.2 DFT: dodajanje ničel ("zero padding"), spektralna analiza in vpliv oken

Vemo, da pri izračunu DFT nekega končnega odseka signala dobimo frekvenčni odziv dolžine, ki je enaka številu vzorcev v odseku signala. Torej večje število vzorcev signala pomeni več točk na frekvenčni osi (t.i. frekvenčna rezolucija).

Imamo signal x_1 , ki je sestavljen iz dveh tonov (F_1 =1000Hz, F_2 =1100Hz, A_1 = A_2 =1, F_s =8000Hz). Tvorimo 32 vzorcev signala, izračunamo in prikažemo amplitudni odziv.

8.2.1 Naloge:

- Kaj opazite? Ali se oba tona lahko ločita v amplitudnem odzivu?
- Prvotnemu odseku signala lahko dodajate ničle in s tem povečujete število točk na frekvenčni osi amplitudnega odziva. Kaj opazite ?
- Kako bi dosegli, da bi v amplitudnem odzivu lahko razlikovali oba tona? Na kratko opišite postopek in utemeljite s prikazi.

Tvorimo še signal x_2 , ki je sestavljen iz dveh tonov ($F_1=1000$ Hz, $F_2=3000$ Hz, $A_1=1$, $A_2=0.001$, $F_3=8000$ Hz). Za oba signala (tudi x_1) tvorimo 64 vzorcev.

8.2.2 Naloge:

- V amplitudnem odzivu signala x₁ bi radi razlikovali med obema tonoma oziroma jih pravilno zaznali. Katera okna bi bila primerna v tem primeru in zakaj ? Odgovor tudi utemeljite s prikazi in razlago.
- V amplitudnem odzivu signala x₂ bi radi pravilno zaznali obe njegove sestavni komponenti tona. Katera okna bi bila primerna v tem primeru in zakaj? Odgovor tudi utemeljite s prikazi in razlago.