Seminar Project

Team Presentation

Team Composition

Albert Jiménez Telecom engineer MsC

Marc Górriz Blanch Telecom engineer BsC

Dennj Osele Automation engineer

Michele Compri Telecom engineer MsC

Adria Romero Telecom engineer BsC

Task 1 Architecture

Hardware

- Server
 - Very Slow: 6~7h to train MNIST with 12 epochs

- Our own computers
 - Faster than Server but still slow
 - 1~2h to train MNIST with 12 epochs
 - Only 2 available

Problem: Computational Bottleneck!

Software

- ▶ Keras
 - Python language
 - Simplicity

Custom Architecture

- We use it to train MNIST dataset
- Adadelta optimizer
- Batches of 128 images
- 1h to train

Parameters Table

	Parameters	Memory
Conv 1	320	~ 1.25 kB
Conv 2	9248	~ 36.125 kB
Conv 3	4624	~18 kB
FC 1	247936	~ 968.5 kB
FC 2	1290	~ 5 kB
Total	263418	~ 1MB

Results

MNIST

We achieve a 99% accuracy

Task 2 Training

Proposed Architecture

- We use it to train MNIST dataset
- Adadelta optimizer
- Batches of 128 images

Overfitting

We create overfitting by removing the dropout layers and increasing the number of parameters of our FC layer

We observe the difference with the proposed model

Training

Overfitting and solutions in MNIST

Without dropout and adding complexity (More parameters on FC)

Our proposed Architecture

Changing the batch size

 Larger batches = More data available when uploading the weights = Better update

We observe the difference with the proposed model

Training

Change the size of batches in MNIST dataset.

Batch Normalization

Normalize using the statistics from the batches

Improves convergence speed

Can act as a regularizer

A bit slower to train

Batch Normalization

Batch normalization on CIFAR-10

Without norm

Batch normalized

Data Augmentation

Feed the network with modified data to increase its invariance to rotation, scaling, translation...

In our experiment maybe adding noise. We would need more epochs to perform a fair comparison.

Training

Real time Data augmentation in CIFAR10

Without data augmentation

With data augmentation

Task 3 Visualization

Objective

See the difference in the filter weights and activations through the process of training

Convolutional Layer 1 - 32 filter weights

First epoch

Last epoch

Convolutional Layer 1 - Activations

First epoch

Last epoch

- No much change in the weights & activations due to the little loss of this specific dataset when training
- Allows us to see that each filter is focused in capturing different properties of the image (Edges, texture...)

Task 4 Transfer Learning

Objective

Fine-Tune on VGG-16

We have the scripts ready to train!

However, loss and accuracy not decreasing

(We think that there is a data problem when loading the images or that they may not correspond with the labels)

We have not been able to finish that task.

(We did not have resources → Human, Computers)

Task 5 Deep Dream

Deep Dream

- ∨ VGG16
- 2 different transformations applied to different layers
- Parameters:
 - Continuity -> create artificial blur in the image
 - <u>Dream</u> -> L2 norm.(make image darker)
 - <u>Jitter</u> -> replacing each pixel with random pixel from neighborhood

Deep Dream Results

Different Conv Layers(2 & 5)

Deep Dream Results

Same Layers(5), different settings(dream=0.8)

Conclusions

Conclusions

We were very limited by not having computational resources.

