## Programming Selection Homework 3

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)



## Problem #1: Intervals

- Read in a number X, then read in 6 numbers: s1, e1, s2, e2, s3, e3 (s < e)</li>
  - These 6 numbers make up 3 intervals
  - Each interval is a range [start, end]
  - X is within a range if start <= X <= end</li>
  - e.g. 7 is in the range [5, 12], but isn't in [10, 20]
- Print out how many intervals within which X can be found
- Input:
  - $\circ$  7 1 10 5 6 4 40  $\Rightarrow$  2
    - Number 7 exists within 2 of the intervals: [1, 10] and [4, 40]
  - $\circ$  10 5 15 6 100 3 30  $\Rightarrow$  3
    - 10 exists within all 3 intervals: [5 15], [6 100], [3 30]
  - $\circ$  10 100 200 100 101 120 170  $\Rightarrow$  0 [X doesn't exist within any interval]



## Problem #2: Intersection of Two Intervals

- Read in 4 numbers representing 2 intervals, and print out the numbers showing where both intervals intersect. If they don't intersect, print -1
- Input:
  - 16 38 ⇒ 36
    - Interval [1 6] and [3 8] only intersects at [3, 6]
    - Why: interval [1, 6] has the numbers: {1, 2, **3, 4, 5, 6**}
    - And: interval [3, 8] contains the numbers: {3, 4, 5, 6, 7, 8}
    - So, the full shared range is {3, 4, 5, 6}, which means the intersection points are at [3, 6]
  - 1 15 20 30 ⇒ -1

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."