

SPEECH SENTIMENT ANALYSIS

USING RECURSIVE NEURAL NETWORKS (LSTM)

- To achieve accuracy in predicting the sentiment of the speech
- Attempt to extend text-based sentiment analysis to speech
- Incorporated word sequencing on training data, and LSTM model for fitting the same

TRAINING DATASET

Sentiment140 Dataset

*Courtesy of Stanford

1.6 Million

Real Extracted Tweets

6 VARIABLES

Sentiment, Tweet ID, Date, Query,

Username, Text of the tweet

2 SENTIMENTS

Positive, negative

^{*} Citation: Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), p.12.

Procedure

	sentiment	id	date	flag	user	text	
0	0	1467810369	Mon Apr 06 22:19:45 PDT 2009	NO_QUERY	_TheSpecialOne_	@switchfoot http://twitpic.com/2y1zl - Awww, t	
1	0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by	
2	0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Man	
3	0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire	
4	0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	@nationwideclass no, it's not behaving at all	

1599995	4	2193601966	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	AmandaMarie1028	Just woke up. Having no school is the best fee	
1599996	4	2193601969	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	TheWDBoards	TheWDB.com - Very cool to hear old Walt interv	
1599997	4	2193601991	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	bpbabe	Are you ready for your MoJo Makeover? Ask me f	
1599998	4	2193602064	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	tinydiamondz	Happy 38th Birthday to my boo of allI time!!!	
1599999	4	2193602129	Tue Jun 16 08:40:50 PDT 2009	NO_QUERY	RyanTrevMorris	happy #charitytuesday @theNSPCC @SparksCharity	
1600000 rows × 6 columns							

Wordcount v Freq by Sentiment

Pre-Processing

Clean tweets by removing link, user and special characters

Remove stopwords

Obtain tokenized versions of tweets and use stemming

Feature Engineering

Tweets' text converted to corpus

Corpus (text) converted to feature vector (numeric) using word2vec

Word feature vectors help ready input for the neural network

- Two layer neural net that processes text input
- Inputs text corpus and gives word feature vector as output
- Groups contextually similar words in the vector space,
 mathematically, using cosine distance

w2v model.most similar("silly")

```
[('dumb', 0.4478142559528351),
  ('stupid', 0.4135172963142395),
  ('funny', 0.40255165100097656),
  ('retarded', 0.3919326066970825),
  ('weird', 0.38109514117240906),
  ('wierd', 0.35878676176071167),
  ('childish', 0.35817572474479675),
  ('rude', 0.33793044090270996),
  ('mean', 0.3277094066143036),
  ('insensitive', 0.3249208927154541)]
```


Neural Network Model Definition

Neural RNN-LSTM Network defined

Model: "sequential 1" Layer (type) Output Shape Param # embedding 1 (Embedding) (None, 300, 300) 100652400 dropout 1 (Dropout) (None, 300, 300) 0 (None, 100) 160400 1stm 1 (LSTM) dense 1 (Dense) (None, 1) 101 Total params: 100,812,901 Trainable params: 160,501

Non-trainable params: 100,652,400

Fitting and Evaluation

Test and Validation Results

Fitting and Evaluation

Results on Test Set

• Accuracy: 0.8384401202201843

• Loss: 0.3755808174610138

Fitting and Evaluation

Results on Test Set

	precision	recall
NEGATIVE	0.83	0.84
POSITIVE	0.84	0.84

Speech Sentiment Prediction

Inputting Speech from Microphone

- Speech recognition capabilities incorporated using the SpeechRecognition Python module
- Recognized speech is then converted to text for analysis

Speech Sentiment Prediction

Prediction

Classified sentiment label, as well as the sentiment score is returned

```
Go ahead and say something using the device microphone!

it's a beautiful day outside

predict(text)

{'label': 'POSITIVE', 'score': 0.9126543998718262}
```

Challenges

Detection of sarcasm, double-negation

Contextual-sentiment detection problem alleviated but still present

Computational time

Complexities in integrating tone and emotion detection

Difficulties with dialects and pace of speech

Business Applications

- Monitoring call center and customer support performance
- Gauging Consumer Responses
- Opinion Analysis via interviews
- Developing branding and marketing strategies
- Detection of hate speech in online videos and podcasts

- References -

- Sentiment140 dataset: Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), p.12.
- word2vec: Distributed Representations of Words and Phrases and their Compositionality, Tomas Mikolov, Ilya
 Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, Google Inc., (2013)
- SpeechRecognition: Zhang, Anthony. 2017. Speech Recognition (version 3.8).
- LSTM Neural Networks: Sepp Hochreite, Jürgen Schmidhuber, Neural Computation, Volume 9 Issue 8,
 November 15, 1997