04 NEURAL NETWORKS

THÉO GACHET

UNE SÉRIE DE FORMATIONS

PARTIE 1: SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

Introduction to Machine Learning Regression with multiple input Classification PARTIE 2 :
ADVANCED
LEARNING ALGORITHMS

Neural Networks

Neural Networks training
Advice for applying Machine Learning
Decision Trees

PARTIE 3: UNSUPERVISED LEARNING, RECOMMENDERS, REINFORCEMENT LEARNING

Unsupervised Learning Recommander Systems Reinforcement Learning

04 NEURAL NETWORKS

NEURAL NETWORKS INTUITION

Neurons and the brain Demand Prediction Example : Recognizing Images

NEURAL NETWORK MODEL

Neural network layer
More complex neural networks
Inference: making predictions
(forward propagation)
Lab: Neurons and Layers

TENSORFLOW IMPLEMENTATION

Inference in code
Data in TensorFlow
Building a neural network
Lab: Coffee Roasting in TensorFlow

MINITEL

Neurons and the Brain

Origins: Algorithms that try to mimic the brain

Biological Neuron

Simplified mathematical model of a neuron

Demand Prediction

1 / NEURAL NETWORKS INTUITION

By adding hidden layers to the NN architecture, you get a multilayer perception.

MINITEL

Neural Network layer

2 / NEURAL NETWORK MODEL

activation function

activation value

of layer
$$l$$
, unit j

$$= a_{j}^{[e]} = g(\vec{w}_{j}^{[e]} \cdot \vec{a}^{[e-1]} + l_{j}^{[e]})$$

LAB-01

NEURONS AND LAYERS

Inference in code

Building a Neural Network

model compile: defines a loss function and specifies a compile optimization model fit: runs gradient descent and fits the weights to the data

```
model.compile(
    loss = tf.keras.losses.BinaryCrossentropy(),
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),
)
model.fit(
    Xt,Yt,
    epochs=10,
)
```

Matrix Multiplication (NumPy)

LДВ-02

COFFEE ROASTING IN TENSORFLOW

04 NEURAL NETWORKS

NEURAL NETWORKS INTUITION

Neurons and the brain Demand Prediction Example : Recognizing Images

NEURAL NETWORK MODEL

Neural network layer
More complex neural networks
Inference: making predictions
(forward propagation)
Lab: Neurons and Layers

TENSORFLOW IMPLEMENTATION

Inference in code
Data in TensorFlow
Building a neural network
Lab: Coffee Roasting in TensorFlow

04 NEURAL NETWORKS

THÉO GACHET