

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Luxemburger Str. 10, 13353 Berlin

Bachelorarbeit

Entwicklung einer Datenbank-Applikation für das "acaLoan-Raspi"-Projekt des PSE-Labors

Development of a database application for the "acaLoan-Raspi" project of the PSE laboratory

Oleksandra Baga

Beuth Hochschule für Technik Berlin
Matrikelnummer 849852
Bachelor of Engineering (B.Eng.)
Computer Engineering - Embedded Systems
E-Mail: oleksandra.baga@gmail.com

Supervisor Prof. Dr. Christian Forler

Fachbereich VI - Informatik und Medien Beuth Hochschule für Technik Berlin

31.10.2020

Contents

	Abb	ildungsverzeichnis	1								
	Abk	ürzungsverzeichnis	2								
1	Einleitung										
	1.1	Motivation und Aufgabestellung	3								
	1.2	Aufbau der Arbeit	4								
2	Theoretische Grundlagen										
	2.1	Grundlagen der Webanwendungen	8								
	2.2	Raspberry Pi Board und Betriebsystem	11								
	2.3	Kontaktlose Chipkartentechnik MIFARE	14								
	2.4	Sender-Empfänger-System mit RFID	14								
	2.5	Datenbanken mit Python und SQLite	14								
	2.6	HTTP für Design der verteilten Systeme	14								
	2.7	Django Framework	14								
	2.8	Serverseitige Web-API	14								
	2.9	Endliche Zustandsmaschine	14								
	2.10	Clientseitiges JavaScript	14								
3	Systemdesign										
	3.1										
	3.2	Systemarchitektur									
	3.3		15								
4	Implementierung 1										
	4.1	Register-Client	16								
		4.1.1 Installation des Betriebssystem	17								
		4.1.2 Installation der Treibers für RFID-Leser	18								
		4.1.3 Spannungsproblem und Lösung	19								
	4.2	Server	19								
	4.3	Display-Client	19								
5	Res	ults and conclusion	20								
	5.1	Results	20								

5.2	Conclusion					 	 		 . 20
Glossar									21
Literaturverzeichnis						25			

Abbildungsverzeichnis

Abb. 1	Das Raspi Loan-Board	6
Abb. 2	Schematische Darstellung der Client-Server Kommunikation	10
Abb. 3	Peripherieanschlüsse des Mikrocomputers	11
Abb. 4	The Raspberry Pi's system-on-chip (SoC)	12

Abkürzungsverzeichnis

AJAX Asynchrones Javascript und XML

BGA Ball Grid Array

CPU Central processing unit

DOM Document Object Model

GPU Graphic processing unit

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

SDRAM Synchronous dynamic random-access memory

SoC System-on-Chip

RAM Random-access memory

Raspi Raspberry Pi Board und Minicomputer

RFID Radio-frequency identification

URI Uniform Resource Identifier, Unified Resource Identifier

Einleitung 1

1.1 Motivation und Aufgabestellung

Die vorliegende Arbeit beschäftigt sich mit der Einwicklung einer Datenbank-Applikation für das PSE-Labor¹ (Labor für Pervasive Systems Engineering), das sich an der Beuth Hoschschule für Technik Berlin befindet und seit fast 5 Jahre ein wichtiger Teil des Studiums im Studiengänge Technische Informatik und Medieninformatik ist. Die zwei Mitaraber, Andreas Döpkens und Brian Schüler, beitragen selbstmotiviert zur den Projekte, die zwar räumlich im PSE-Labor der Beuth-Hochschule sind und betrieben werden können², wurden aber als "das acaLab" genannt, bei dem es sich sozusagen um ein virtuelles Labor in einem reellen Labor handelt. Die acaLab-Projekte sollen als interessante Mitarbeiter-Beiträge neben den individuellen Tätigkeiten im Fachbereich 6 der Beuth-Hochschule bereichern und werden deshalb auch exemplarisch jedes Jahr auf der Langen Nacht der Wissenschaften³ gezeigt. An dieser Stelle ist auch noch anzumerken, die acaLab-Projekte aus den Mitteln des PSE-Labors finanziert werden und damit möglichst viele Studierende für lehr- und erkenntnisreichen Abschlussarbeiten eingeladen sind, de der Vergabe die Aufgaben aus den acaLab-Projekten als Abschlussarbeiten spart dem Fachbereich ein Budget. Die Erkenntnisse und Ergebnisse aus den acaProjekt-Tätigkeiten sind später in die Lehre einfließen zu lassen.[TB] Meine Abschlussarbeit widmet sich dem neuen Projekt des Labors namens "acaLoan-Raspi".

Während im PSE-Labor stattfindenden Übungsveranstaltungen im Studiengang Technische Informatik werden vorhandene im PSE-Labor die Raspberry Pi Minicomputers (kurz: Raspi) an die Studierenden verliehen. Zu Beginn einer Laborübung werden die Raspi Boards den Studierenden vom Lehrkraft, der die Übung betreut, übergeben und am Ende der Laborübung zurückgezogen. Aus 16 vorhandenen im Labor Raspis, die markierte mit den Nummern 12-16 von Studierenden nach Hause (home-loan) genommen werden können.[TB]

Nachweislich ist das Vorgehen oft mit Reihe von Problemen verknüpft, die sich jedes Semester und fast jedes Mal wiederholen. Die folgenden Problemen wurden

¹https://www.http://labor.beuth-hochschule.de/pse

²https://labor.beuth-hochschule.de/pse/acalab-aktivitaeten-und-abschlussarbeiten/

³https://www.langenachtderwissenschaften.de/

von Mitarbeitern des Labors bereits festgestellt und regelmäßig verlangsamen den Prozess der Verleihung und Übungsführung:

- Studierende kennen ihre am Semesteranfang zugewiesene Gruppennummer auch nach mehreren Wochen nicht und geben den Lehrkraft einen Board mit einer falschen Registriernummer, der einer anderen Gruppe früher zugewiesen wurde und nur von der zugewiesenen Gruppe benutzt werden darf.
- Studierende versuchen einen Board nach Hause auszuleihen, der zu den Lab-Boards gehört und nur im Labor während der Übungszeit verliert werden darf. Außerplanmäßig von Studierenden darf Lab-Board nicht ausgeliehen und auch mit nach Hause (home-loan) nicht genommen werden.
- Es gibt ein Verwaltungsaufwand für die ausleihbaren Home-Boards, die von den Studierenden für jeweils eine Woche mit nach Hause genommen werden können. Die Mitarbeiter müssen handlich die Studentenname, Matrikelnummer, Board und Zeit am Zettel registrieren und in einer Woche überprüfen, ob alle ausgeliehenen Boards pünktlich ins Labor zurückgekommen sind.
- Erfahrungsgemäß können Studierende nach Ablauf der Frist ein Ausleihgerät in einem sehr üblen Zustand der Verschmutzung oder Zerstörung zurückgeben, dass es besteht eine Notwendigkeit den Zustand des Gerätes stets zu kontrollieren, damit es immer bekannt wird, zum welchen Zeitraum Raspi Board zum letzten Mal funktionsfähig war und von wem ausgeliehen wurde.
- Falls gilt ein Raspi Board als verloren, es sollte eine Möglichkeit geben, alle vorherigen Ausleihen anzuschauen und festzustellen, von welchem Studierende es ausgeliehen und nicht zurückgegeben wurde. Mit den Zettelchen, auf denen einen Name von Studierende und eine Board Nummer gemerkt werden, ist es zu aufwändig nachvollziehen.

Somit ist schlusszufolgern, dass eine Notwendigkeit das Verleihprozedere für die Loan-Boards (Lab und Home) mit modernen Mitteln der Technischen Informatik zu lösen schon dringend besteht und eine lohnenswerte Aufgabe für zukünftige Abschlussarbeit ist.

1.2 Aufbau der Arbeit

Obwohl das Thema der Bachelorarbeit "Entwicklung eine Datenbank-Applikation" lautet, ist es keine einzige Aufgabe nur eine Datenbank zur Ausleihverwaltung zu

schrieben ist. Es lässt sich die folgenden Struktur definieren, indem drei verteilte Teilen zu entwickeln ist.

Erstens wird an einem uComputer ein sogenannten Register-Client realisiert. Dafür ein RFID-Leser an uComputer angeschlossen wird. Register-Client ist neben dem Eingangstür eines kleinen Lagerraums des PSE-Labors zu platzieren ist, wo Raspi-Boards aufbewahrt werden. Es ist geplant, dass Studierende einen Board selbst aus dem Fach nehmen könnte und dann mit Hilfe des Register-Clients den genommenen Board auf sich oder seine Gruppe registrieren lassen. Der Register-Client hat selbst keinen Zugriff zur Datenbank und sollte nur die abgelesene Daten von der Smartcard der Studierende zur Server schicken.

Zweitens ist ein Display-Client zu entwickeln, der den Studierenden es zulässt, die Begrüßung des System und eine Beschreibung die für Ausleihe notwendigen Schritten zu sehen. Es sollte in einem Browser-Fenster die aktuelle Server-Kommunikation und Auskunft angezeigt wird, ob die Ausleihe gelang oder ein Fehler aufgetreten war. Ein Android/iOS-Tablett ist eine gute Wahl für die technische Realisierung, da es die Kommunikation zwischen den Mensch und das System leicht und ohne erweiterte Hinweise zulässt.

Drittens ist ein Web-Server für die Datenbank-Applikation schließlich zu implementieren. Er umfasst alle Datensätze über die vorhandenen im Labor Raspi-Boards, registrierten zum Kurs Studierenden und die abgewickelten Leihvorgänge. Web-Server wird mit einem Web-Framework Django erstellt. Django verfügt nun über die Funktionalität und Datenbasis, um die dafür erforderlichen Aktionen durchzuführen. Als Web-Framework bietet Django eine Reihe von Komponenten und Funktionen (Benutzerauthentifizierung, Hochladen von Dateien, Umgang mit Daten usw.), die bei jeder Webanwendungen benötigt werden. Mit einem Web-Framework muss ein Entwickler keine Zeit damit verschwenden, denselben Code von Grund auf neu jedes Mal zu schreiben.

Wie erfolgt nun die Abwicklung des eigentlichen Leihvorgangs von der Ausleihe bis zur Rückgabe eines Boards? Zuerst wird eine Studentenkarte am Register-Client ablesen und nachdem sollte einen Name und die Anzahl schon ausgeliehenen Boards am Display-Client angezeigt werden. Falls der Studierende zum Kurs zugelassen ist, darf dann ein gewünschten Board am Register-Client abgelesen werden. Es ist möglich, dass zu den schon ausgeliehenen Lab-Board noch zusätzlich einen Home-Board nach Hause mitgenommen wird. Das abgelesene Board ist entweder auszuleihen oder zurückzugeben. Sämtliche im Verleih befindlichen Geräte werden von den Mitarbeitern des Labors regelmäßig nach jeder Übung vor dem nächsten Ausleihevorgang auf Funktionsfähigkeit geprüft. Es kann sein, dass einem Studierenden die Home-Loan-Absicht eines Boards (12-16) verweigert wird, da in der Vergangenheit schon

einmal vom Studierende ein Board in einem inakzeptabel Zustand zurückgeben war und die Ursachen mit den Mitarbeiter des Labor nicht geklären hat. Falls der Studierende, dem Home-Loan verboten wurde, ein Board auszuleihen versucht, wird eine Fehlermeldung auf dem Bildschirm gezeigt und der Leihvorgang mit dem Fehlerzustand terminiert.

Abb. 1: Das Raspi Loan-Board

Nachdem nun grundlegenden Funktionsweisen der Bestandteilen des Verteilten Systems geklärt sind, geht es zur Auswahl der Hardware. Der wichtigste Aspekt beim Hardwarekauf ist einerseits das vorhandene Budget des PSE-Labors und zum Anderen die Aufgaben, die zusammenspielenden Hardware erfüllen sollen. Zunächst müssen die 16 für die Ausleihe zur Verfügung stehenden Raspi Loan-Boards mit einem geeigneten RFID-Tag ausgestattet werden. Es ist selbstklebende NFC Tags zu verwenden, die klein und dünn sind und lassen sich auf der Rückseite des Schutzschirms zu befestigen und ein Aussicht und Funktionen des Geräts nicht zu beeinflussen. Es ist nicht unerwähnt zu lassen, dass Tags nicht

ausgelesen werden können, wenn diese auf einen metallischen Gegenstand/Oberfläche geklebt wurden, da die Kommunikation aus physischen Gründen zwischen Tag und Lesegerät gestört werden kann. Die Raspi Loan-Boards sind mit einem Schutzschirm aus dem ein transparenter thermoplastischer Kunststoff geschützt und es wurde ins Labor getestet, dass die geklebte auf der Rückseite RFID-Tag lassen sich ablesen und den Board auf RFID Chip-Kartenleser zu platzieren. Erfolgreich getestet wurde RFID Leser/Schreiber ACR122U ⁴, der wurde auf der Basis der 13,56 MHz kontaktlosen (RFID) Technologie entwickelt. Der ACR122U USB Kartenleser unterstützt nicht nur Mifare ® Technologien, sondern auch alle vier Typen von NFC -Tags. Diese Anforderung ist für vorliegende Abschlussarbeit wichtig, da Studierenden-Ausweise der Beuth Hochschule mit dieser Technologie gelesen werden können. Desweiteren soll an dem oben genannten Register-Client der dort angeschlossene RFID Chip-Kartenleser über geeignete Software in Betrieb genommen und die eingelesenen Daten an den Server übermittelt werden. Dafür wird ein Raspberry Pi⁵ verwendet, der zählt zu den beliebtesten Single Board Computern zält und lässt die andere Schnittstellen anzubinden. Der kompakter Einplatinencomputer wenig verbraucht Strom aber dennonch genügend Power für ein Linuxbetriebsystem liefert. Detaillierte Beschreibungen zu jeder getroffenen Auswahl finden Sie im entsprechenden Abschnitt des Kapitels "Theoretische Grundlagen"

⁴https://www.conrad.de/de/p/rfid-reader-acr122u-nfc-usb-802554010.html

⁵https://www.raspberrypi.org/

Theoretische Grundlagen

Als schon im Abschnitt "Einleitung" erwähnt wurde, bei der Aufgabestellung es um eine Entwicklung einer Webanwendung geht. Die zu realisierende Software basiert sich, wie die meisten Webanwendungen, auf einer Client-Server-Architektur, wobei der Client Informationen eingibt, während der Server die eingegebene Daten empfängt, bearbeitet und speichert. Eine Webanwendung ist ein Computerprogramm, das eine bestimmte Funktion unter Verwendung eines Webbrowsers als Client ausführt. Die Webanwendung kann so einfach wie ein Kontaktformular auf einer Website oder so komplex wie eine Textverarbeitungs- oder Bildbearbeitungsprogramm sein, die Sie auf Ihr Computer im Browser ausführen können. Um die Webanwendung zu starten, muss der Benutzer keine zusätzlichen Programme installieren. Sie wird auf jedem Gerät mit Browser und Internetzugang ausgeführt. Der Client ist nicht vom Betriebssystem auf dem Computer des Benutzers abhängig. Bei der Entwicklung von Webanwendungen müssen daher keine separaten Versionen für Windows, Linux, Mac OS und andere Betriebssysteme geschrieben werden. Zur Implementierung der Clientseite werden HTML, CSS, JavaScript und Ajax verwendet. Zum Erstellen der Serverseite von Webanwendungen werden Programmiersprachen wie PHP, ASP, ASP.NET, Perl, C / C ++, Java, Python, Ruby und NodeJS verwendet. In dem vorherigen Schritt wurde es die Entscheidung getroffen, die Serverseite mit Web-Framework Django zu erstellen. Django wird mit einem leichten Webserver geliefert, mit dem eine Website schnell zum Laufen gebracht werden kann, ohne Zeit mit der Einrichtung eines Servers verschwenden zu müssen. Wenn der Entwicklungsserver von Django gestartet wird, überwacht er die Codeänderungen in Echtzeit. Es wird nach dem Ändern des Codes automatisch neu geladen.

In der zu realisierenden Abschlussarbeit ist auch notwendig einen dritten Teil namens Register-Client zu entwickeln, an dem ein RFID-Leser angeschlossen wird. Der Register-Client verfügt selbst über keinen Datenbank und darf nur die abgelesene Daten dem Server schicken. Es geht um eine Simplex-Verbindung, da ein Nachrichtenverkehr asymmetrisch ist, weil der Register-Client keine Daten vom Server zurückbekommen darf und über den erfolgreiche oder gescheiterte Leihvorgang nicht wissen muss. Für die Implementierung des Register-Clients wird uComputer Raspberry Pi benutzt, der möglicherweise nicht der einzige Single-Board-Computer (SBC) auf dem Markt ist, aber bei weitem der beliebteste und schon zur Verfügung im PSE-Labor steht und ergänzend nicht geliefert werden muss. Der

Raspberry Pi wird von einer großen Anzahl von Menschen verwendet und viele offizielle und inoffizielle Ressourcen und Produkte umfasst - von Büchern und Zubehör bis zu Schulungen. Dank der Raspberry Pi Foundation werden regelmäßig neue SBC-Modelle veröffentlicht. Der Raspberry Pi eignet sich aufgrund seiner hohen Rechenleistung gut als Desktop-Computer und völlig für die Verwendung in oben geschrieben Zwecken passt .

2.1 Grundlagen der Webanwendungen

In diesem Kapitel werden die grundlegenden Begriffe zum Entwerfen und Erstellen eines Webanwendung erläutert. Hierbei liegt unser Fokus nicht auf den grafischen Aspekten der Browserfunktionalität (d. H. Dem Layout von Seiten, dem Rendern von Bildern). Stattdessen konzentrieren wir uns auf die Probleme im Zusammenhang mit der Verarbeitung von HTTP-Anfragen und -Antworten. Webanwendungen können abhängig von den verschiedenen Kombinationen ihrer Hauptkomponenten in verschiedene Bestandteilen unterteilt werden. Erstens wird Das Backend (Backend oder Serverteil der Anwendung) auf einem Remotecomputer ausgeführt, der von dem Endnutzer weit entfernt werden kann oder im anliegenden Raum stehen kann. Es ist in verschiedenen Programmiersprachen zu schrieben. Die Abschlussarbeit wird auf Python Sprache programmiert. Zweitens ist Das Frontend (Frontend oder Client-Teil der Anwendung) im Browser des Benutzers auszuführen. Die Webanwendung könnte theoretisch nur aus dem Client-Teil bestehen, wenn Benutzerdaten nicht länger als eine Sitzung gespeichert werden müssen. Dies aber ist nicht der Fall der Abschlussarbeit, da die Studentenkarten und der Verlauf des Verleihablaufs mindestens für ein laufenden Semester gespeichert werden muss, damit die Mitarbeiter des PSE-Labor immer eine Zugang zu allen gespeicherten vorherigen Leihvorgangs von der Ausleihe bis zur Rückgabe eines Boards. Es ist vorgesehen, dass am Ende des Semester nach dem letzte Rückgabe eines Boards die Datensätzen des zu Ende gegangen Semesters gelöscht wird.

Da in den letzten Jahren sich Webanwendungen rasant weiterentwickelt und die Desktop-Lösungen schrittweise ersetzt haben und sind zu einem wesentlichen Bestandteil des Geschäfts in der modernen Welt geworden haben, es sollte auch nicht unerwähnt bleiben, welche Vorteile die Webanwendungen haben:

 Zugriff von jedem Gerät Die Webanwendung kann überall auf der Welt von einem Computer, Tablet oder Smartphone zugegriffen und verwendet werden.
 Notwendig ist, dass dem Gerät eine Internetverbindung zur Verfügung steht.

- die Kostenersparnis Webanwendungen können auf allen Plattformen ausgeführt werden und müssen nicht mehr separat für Android und iOS entwickelt werden.
- Anpassungsfähigkeit Wenn native Anwendungen bestimmte Betriebssysteme erfordern, jedoch können jedes Betriebssystem (Windows, MAC, Linux usw.) und jeder Browser (Internet Explorer, Opera, FireFox, Google Chrome usw.) für die Arbeit mit einer Webanwendung.) verwendet werden.
- Keine Software zum Herunterladen Es ist günstig und einfach dem Endnutzer zu liefern, zu warten und zu aktualisieren. Das Aktualisieren auf die neueste Version erfolgt beim nächsten Laden der Webseite.
- **Netzwerksicherheit** Das Websystem verfügt über einen einzigen Einstiegspunkt, der zentral geschützt und konfiguriert werden kann.
- Skalierbarkeit Mit zunehmender Belastung des Systems ist es nicht erforderlich, die Leistung des Computer von Endbenutzer zu erhöhen. Mit einer Webanwendung kann in der Regel nur mithilfe von Hardwareressourcen eine größere Datenmenge verarbeitet werden, ohne den Quellcode neu zu schreiben und die Architektur ändern zu müssen.
- Verhinderung von Datenverlust Benutzerdaten werden in der "Cloud" gespeichert, für deren Integrität die Hosting-Anbieter verantwortlich sind, deswegen vom Verlust geschützt, falls die Festplatte des Computers beschädigt wird.

Als nächstes geht die Frage nach, wie Client und Server miteinander kommunizieren können. Der Client spricht mit dem Server über das HTTP-Protokoll. Das HTTP-Protokoll setzt die Verwendung einer Client-Server-Datenübertragungsstruktur voraus. Die Clientanwendung generiert eine Anforderung und sendet sie an den Server. Anschließend verarbeitet die Serversoftware diese Anforderung, generiert eine Antwort und sendet sie an den Client zurück. Die Clientanwendung kann dann weiterhin andere Anforderungen senden, die auf ähnliche Weise behandelt werden. Wenn ein Webserver eine Anforderung zum Bereitstellen einer statischen Webseite erhält, sendet er die Seite direkt an den Browser.[Ado] Wenn jedoch eine dynamische Seite angefordert wird, sind die Handlungsweise des Webservers nicht so einfach. Der Server übergibt die Seite an ein spezielles Programm, das die letzte Seite bildet. Ein solches Programm wird als Anwendungsserver bezeichnet. Der Anwendungsserver liest den Code auf der Seite, rendert die letzte Seite gemäß dem gelesenen Code und entfernt sie dann von der Seite. Als Ergebnis all dieser Operationen wird eine statische Seite erhalten, die an den Webserver übertragen wird, der sie wiederum an den Client-Browser sendet. Alle Seiten, die der Browser empfängt, enthalten nur

HTML-Code.[Ado] Schematische Darstellung des Prozesses kann man auf der Abbildung 2[Ado] ansehen. Die Anforderung kann mit den GET-Methoden erfolgen, wenn wir Daten empfangen möchten, und mit POST, wenn wir die Daten ändern möchten. Die Anfrage enthält auch den Host (Site-Domain), den Anfragetext (wenn es sich um eine POST-Anfrage handelt) und viele zusätzliche technische Informationen.

Abb. 2: Schematische Darstellung der Client-Server Kommunikation

Das HTTP-Protokoll ist ein zustandsloses Protokoll auf Anwendungsebene und bietet keine Speicherung von Informationen über die Sitzung des Benutzers; jede Datenübertragung wird als neue Sitzung betrachtet. Da HTTP per Definition ein zustandsloses Protokoll ist, wurde es nicht für die Unterstützung dauerhafter Verbindungen entwickelt. Eine Verbindung sollte lange genug dauern, damit ein Browser eine Anfrage senden und eine Antwort erhalten kann. Eine Verlängerung der Lebensdauer einer Anfrage darüber hinaus wurde nicht unterstützt.[RR03, p.62]

Am Rande sei auch eine weitere Technologie erwähnt, die uns ständig begegnet. Cache (Cache) ist ein Konzept in der Entwicklung, bei dem häufig verwendete Daten, anstatt jedes Mal aus der Datenbank abgerufen, berechnet oder auf andere Weise vorbereitet, an einem schnell zugänglichen Ort gespeichert werden. Einige Beispiele für die Verwendung des Caches:

- Django erhielt eine Anfrage, Daten für ein Diagramm in einem Bericht abzurufen. Daten aus der Datenbank werden abgeholt, vorbereitet und abgelegt in einer Datenbank mit schnellem Zugriff z.B. "memcached", die beispielsweise für eine Stunde zwischengespeichert wird. Bei der nächsten Anfrage werden die notwendigen Daten sofort von "memcached" erhalten und an das Frontend gesendet. Wenn es festgestellt wird, dass die Daten nicht mehr relevant sind, werden sie ungültig beziehungsweise gelöscht aus dem Cache.
- CDN-Anbieter (Content Delivery Network) werden zum Zwischenspeichern statischer Dateien verwendet. Hierbei handelt es sich um Servers auf der ganzen Welt, die für die Bereitstellung statischer Inhalte optimiert sind. Manch-

mal ist es effizienter, Bilder, Videos und JS-Skripte auf einem CDN anstatt auf Ihrem eigenen Server abzulegen.

 In allen Browsern ist das statische Zwischenspeichern von Dateien standardmäßig aktiviert. Da die Website nicht zum ersten Mal geöffnet wird, werden die dazugehörige Daten aus dem Zwischenspeichern viel schneller geladen. Der Nachteil für den Entwickler ist, dass bei aktiviertem Cache die vorgenommenen Änderungen nicht immer sofort sichtbar sind.

Daraus lässt sich die Schlussfolgerung ziehen, dass eine Webanwendung für einen Endnutzer wie eine Website aussieht, auf der die Webseiten mit teilweise oder vollständig nicht formatiertem Inhalt sich befinden. Die Endfertigung des Inhalts findet nur dann statt, nachdem ein Website-Besucher die Seite vom Webserver angefordert hat.

In diesem Kapitel wurden die Grundlagen der Webanwendungen und des HTTP-Protokolls erörtert. Diese Diskussion war nicht als umfassende Beschreibung aller Funktionen gedacht, eher als Überblick über das Verständnis und die Arbeit mit aktuellen Stand der Technologie und zukünftigen Verwendung der entwickelte Software im PSE-Labor.

2.2 Raspberry Pi Board und Betriebsystem

Abb. 3: Peripherieanschlüsse des Mikrocomputers

Raspberry Pi ist ein Einplatinencomputer, wobei die verschiedene Teile des Computers, die sich normalerweise auf separaten Platinen befinden, werden hier nur auf einer dargestellt. Wie die meisten Einplatinencomputer ist der Raspberry Pi so klein wie eine Kreditkarte. Jedoch bedeutet das nicht, dass er nicht leistungsstark ist: Ein Raspberry Pi kann alles, was ein größerer und leistungsfähiger Computer kann, aber nicht unbedingt gleich schnell. Der Produktname kombiniert Raspberry-Himbeer- und Pi- die Kraiszahl Pi. Das Himbeerbild wurde zum Logo des Projekts. Der Raspberry Pi ist eine kostengünstige Plattform - sein empfohlener

Verkaufspreis beträgt weniger als 50€. Ein Mikrocomputer verfügt über alle Funktionen eines Personal Computer (PC): Prozessor, Speicher, Betriebssystem, Anschluss

an einen Monitor (TV), die Vernetzung. Der Raspberry Pi verfügt im Gegensatz zu einem PC über zusätzliche Peripheriegeräte wie GPIO-Ports (General Purpose Input / Output). Über diese Pins kann der Mikrocomputer mit der elektronischen Welt der Sensoren, Bildschirmen und Aktoren interagieren. In Abbildung 3[Pri] sind die Anschlüsse schematisch dargestellt.

Abb. 4: The Raspberry Pi's system-on-chip (SoC)

Für die Entwicklung der Abschlussarbeit und die Verwendung im Labor wird Raspberry Pi 3 Model B+ benutzt, an dem der RFID Leser angeschlossen wird. Das Modell "Raspberry Pi 3 B" ist eine kontinuierliche Weiterentwicklung zum Vorgängermodell "Raspberry Pi 2 B". Der Raspberry Pi 3 enthält einen Quad-Core-Prozessor mit 1,2 GHz von Broadcom und einen SDRAM-Arbeitsspeicher mit 1 GByte. Wie jeder Com-

puter besteht der Raspberry Pi aus verschiedenen Komponenten, von denen jede eine Rolle in der Zusammenarbeit spielt. Die erste und wohl wichtigste davon befindet sich direkt über dem Mittelpunkt auf der Oberseite der Platine (Abbildung 1-2) und ist mit einer Metallkappe bedeckt: dem System-on-Chip (SoC). Der Name Systemon-Chip ist ein guter Indikator dafür, was wird gefunden, wenn die Metallabdeckung abgenommen wird: einen Siliziumchip, der eine integrierte Schaltung ist und den Großteil des Raspberry Pi-Systems enthält. Dazu gehören die Zentraleinheit (CPU), die gemeinhin als "Gehirn" eines Computers bezeichnet wird, und die Grafikverarbeitungseinheit (GPU), die die visuelle Seite der Dinge übernimmt.[Hal19, p. 11] Auf der Unterseite des Raspberry Pi befindet sich einen weiteren Chip, der wie ein kleines schwarzes Plastikquadrat aussieht. Dies ist der Direktzugriffsspeicher (RAM) des Mikrocomputers. Wenn am Pi gearbeitet wird, wird die laufende Arbeit auf dem RAM gespeichert. Nur wenn die Daten explizit auf die microSD-Karte geschrieben werden, dann werden sie zum nächsten Verwendung gespeichert und nach dem Ausschalten nicht gelöscht. Zusammen bilden diese Komponenten die flüchtigen und nichtflüchtigen Speicher des Pi: Der flüchtige RAM verliert seinen Inhalt, wenn der Pi ausgeschaltet wird, während die nichtflüchtige microSD-Karte seinen Inhalt behält. Der Raspberry Pi nicht den Austausch des aktuellen RAM-Chips. Der aktuelle RAM-Chip ist als BGA-Gehäuse direkt auf die Oberseite der CPU gelötet, was das Entfernen und / oder Ersetzen sehr schwierig macht, selbst wenn Sie den kompatiblen größeren Speicherchip finden könnten. Die Aufbau des Pi Der unterstützt den Austausch des aktuellen RAM-Chips nicht. Der aktuelle RAM-Chip ist als BGA-Gehäuse direkt auf die Oberseite der CPU gelötet. Das Hartlöten macht das Entfernen und / oder Ersetzen des RAMs sehr schwierig und deshalb es ist beim Kauf des bestimmtes Board auf die Große des RAMs zu achten.

Die Besonderheiten des Raspberry Pi 3 ist, dass WLAN nach IEEE 802.11 b/g/n und Bluetooth Low Energy onboard sind und nicht durch externe USB-Adapter nachgerüstet werden müssen. Es ist für die vorgesehene Aufgabe wichtig ist, da die erforderlichen Komponenten nicht zusätzlich gekauft werden muss, was das Budget der PSE-Labors erspart und eine gewisse Zeit nicht geplant muss, dass die zusätzlich gekauften Komponenten irgendwie zum funktionieren bringen. Hier gab es in der Vergangenheit immer wieder Schwierigkeiten mit der Hardware-Erkennung oder Treiber-Probleme.

Die ARMv8-Architektur enthält Cortex-A53-Rechenkerne, die bei gleichem Takt schneller sind als die alten Cortex-A7-Kerne des Raspberry Pi 2 B. Von der 64-Bit-Fähigkeiten der ARMv8-Architektur profitiert allerdings nur neue Software, da 64 Bit auf der Hardware-Seite allerdings vom Betriebssystem und der Software auch unterstützt werden muss. Die folgende Liste gibt es eine kurzen Ansicht auf die Architektur des Mikrocomputers.

- System-on-Chip: BCM2837 64 Bit ARMv8 von Broadcom
- Prozessor: Quad-Core-Prozessor mit 1,2 GHz
- GPU: Dual-Core-GPU VideoCore IV mit OpenGL ES 2.0 und OpenVG mit Hardwarebeschleunigung und 1080p30 H.264 High-Profile-Decoding
- Arbeitsspeicher: 1 GByte LPDDR2-SDRAM
- WLAN: BCM43143 onboard für IEEE 802.11b, g und n im 2,4 GHz-Bereich
- Bluetooth: Bluetooth Classic und Low Energy (BLE) onboard (Bluetooth 4.1)

Eines der beliebtesten Betriebssysteme für den Raspberry Pi ist das Raspbian-Betriebssystem. Das Raspbian-Betriebssystem Raspbian basiert auf der ARM-Version von Debian 8 Jessie, ist für die Raspberry Pi-Hardware optimiert und enthält die Standardprogramme wie die LibreOffice Office Suite, einen Webbrowser, Claws Mail, eine leichtgewichtige Desktop-Umgebung und einige Programmier-Lernwerkzeuge. Neuere Versionen des Betriebssystems Raspbian verfügen über einen völlig modernen Chromium-Browser, mit dem auch komplexe Webseiten korrekt angezeigt werden können. Um eine Information auf einem großen Bildschirm anzuzeigen, wird Chromium nur im Vollbildmodus gestartet, den Mauszeiger ausgeblendet und den Bildschirmschoner ausgeschaltet. Es gibt verschiedene Möglichkeiten, Raspbian auf einem Raspberry Pi 3 zu installieren. Die erste besteht darin, das Dienstprogramm NOOBS zu verwenden, die zweite darin, den Inhalt des Bildes des Betriebssystem direkt auf die Karte zu schreiben. Während der Entwicklung des Register-Clients wurde

das Betriebssystem auf MicroSD-Karte geschrieben. Das Raspbian-Betriebssystem bootet von einer Micro-SD-Karte und das gesamte Betriebssystem läuft von der Karte.

Nach der kurzen Beschreibung der Raspberry Pi Architektur und sein Betriebssystem Raspbian ist schlusszufolgern, dass die Verwendung eines Raspberry Pi Mikrocomputers für die Implementierung des Register-Klient mit dem angeschlossenen RFID Leser ist eine lohnenswerte Entscheidung für in dieser Abschlussarbeit geschriebenen Aufgabe.

- 2.3 Kontaktlose Chipkartentechnik MIFARE
- 2.4 Sender-Empfänger-System mit RFID
- 2.5 Datenbanken mit Python und SQLite
- 2.6 HTTP für Design der verteilten Systeme
- 2.7 Django Framework
- 2.8 Serverseitige Web-API
- 2.9 Endliche Zustandsmaschine
- 2.10 Clientseitiges JavaScript

Systemdesign

- 3.1 Anforderungen und User Stories
- 3.2 Systemarchitektur
- 3.3 Endliche Zustandsmaschine

Implementierung 4

In meiner Abschlussarbeit präsentiere ich die praktische Lösung für das PSE-Labor der Beuth Hochschule für Technik Berlin. Die gesamte Aufgabe lässt sich in drei Bestandteile unterteilen: Register-Client, Server und Display-Client. Erstens wird Register-Client implementiert, damit wird RFID Leser am Raspberry Pi Mikrocomputer angeschlossen, alle Treiber installiert und auf Python Programmierung Sprache die Software geschrieben, die die ständige Überwachung des empfangenden von RFID Leser Daten zulässt und die Verbindung mit dem Server zulässt. Falls die empfangene Daten korrekt sind, d.h. eine richtige MIFARE Studentenkarte oder einen richtigen RFID-Transponder abgelesen wurde, schickt die Software die abgelesene Daten zum Server ab. Der Server ist der zweite Bestandteil der Abschlussarbeit und wird mit Hilfe Django Framework, Django Finite State Machine auf Python Programming Sprache implementiert. Server enthält die Datenbank mit die Datensätzen über die alle im PSE-Labor vorhandenen ausleihenden Boards, die zum Modul im laufenden Semester registrierten Studenten und geschehenen Ausleihe/Rückgabe-Vorgänge. Es wird von Server überprüft, ob eine von Register-Client abgelesene Studentenkarte einem zugelassenen für die Ausleihe Student gehört und die entsprechenden Information auf Display-Client geschickt. Es wird auch von Server bestätigt, ob für die Ausleihe/Rückgabe neben dem RFID-Leser gehaltenen Raspi Board dem Student ausgeliehen/vom Student zurückgegeben werden darf. Darauf aufbauend, wird der dritte Teil namens ein Display-Client als dynamische HTML-Seite realisiert, die eine Verbindung zum Server Mithilfe des HTTP-Protokolls und eingebauten im Browser Kommunikationsmittel die asynchrone Nachrichten zu schicken, bereitstellt. Für die dynamische Aktualisierung des Inhalts der Webseite und einen Zugang zum asynchronen HTTP-Client wird jQuery benutzt.

4.1 Register-Client

Das folgende Kapitel beschäftigt sich mit der Implementierung des Register-Client auf Raspberry Pi Board mit angeschlossenen RFID-Leser. Dieser Teil der verteilte System lässt sich wie folgendes unterteilen. Zuerst wurde das Betriebssystem Raspbian auf Board zum Leben gebracht und dann die alle notwendigen für RFID-Leser Treiber installiert. Nach dem der RFID-Leser funktionieren angefangen und die Daten von

RFID-Transponder abgelesen hat, wurde die nächste Herausforderungen gelöst: die Struktur die zu empfangenen Daten wurde verstanden, richtig bearbeitet, eine JSON-Datei erstellt und durch die HTTP-Protokoll dem Server geliefert.

4.1.1 Installation des Betriebssystem

Der vorhandene für die Abschlussarbeit Raspberry Pi 3 Model B+ wurde nicht als Starter Kit mir übergeben, dann wurde es zusätzlich benötigt[Hal19, pp. 21-22]:

- **USB-Netzteil** mit einer Nennleistung von 2,5 A (2,5 A) oder 12,5 Watt (12,5 W) und einem Micro-USB-Anschluss.
- microSD-Karte, die als permanenter Speicher des Raspberry Pi dient; Alle von Benutzer erstellten Dateien und die installierte Software sowie das Betriebssystem selbst werden auf der microSD-Karte gespeichert.
- USB-Tastatur und -Maus, mit denen den Raspberry Pi gesteuert werden kann.
 Fast jede kabelgebundene oder kabellose Tastatur und Maus mit USB-Anschluss funktioniert mit dem Raspberry Pi.
- Das HDMI-Kabel, das Ton und Bilder vom Raspberry Pi auf Fernseher oder Monitor überträgt. Sie müssen nicht viel Geld für ein HDMI-Kabel ausgeben.

Die Arbeit mit einem RaspberryPi setzt ein paar Anfangsinvestitionen voraus, die auch von den angestrebten Aufgaben und Projekten abhängen. Zuerst gäbe es die Möglichkeiten, dass der gekaufte Raspberry Pi Board bereits ein Betriebssystem darauf installiert hätte. Aber es war nicht der Fall von vorhandenen im PSE-Labor Board. Um ein Betriebssystem auf diesen Raspberry Pi zu bringen, muss eine SD-Karte mit einem Betriebssystem-Image "geflasht" werden. Dafür zunächst wurde die Distribution von der Website Raspbian.org herunterladen und die MicroSD-Karte in den Kartenleser eines vorhandenen im PSE-Labor PC eingelegt. Anschließend wurde mit dem Macintosh Disk Utility-Dienstprogramm das heruntergeladene und entpackte Betriebssystem für den RaspberryPi auf eine Speicherkarte geschrieben. Dann ist die Karte in Raspberry Pi einzulegen. Der Raspi ist damit betriebsbereit und muss für die zukünftigen Anwendungen noch konfiguriert werden. Wenn der Pi zum ersten Mal eingeschaltet wird, wird viel Text auf dem Bildschirm angezeigt. Diese werden als Startmeldungen bezeichnet. Wenn Raspbian zum ersten Mal gestartet wurde, kann es ein oder zwei Minuten dauern, um die Nutzung des freien Speicherplatzes auf der microSD-Karte optimal anzupassen. Beim nächsten Start geht es schneller. Schließlich ist kurz ein Fenster mit dem Raspberry Pi-Logo zu sehen, dann wird Terminal Fenster angezeigt, in dem es einloggt werden muss. Zum ersten Einloggen wird den Standardbenutzername "pi" und das Standardkennwort "raspberry" verwendet. Um Register-Client vor sowohl Online-Bedrohungen als auch von Missbrauch im Labor zu schützen, wurde das Standardkennwort sofort geändert. Der nächste Schritt ist Raspbian bis zur Version "Raspbian mit dem Raspberry Pi Desktop" zu aktualisieren, damit die grafische Benutzeroberfläche und Chromium Browser zu Verfügung stehen können. Dies kann mit dem Terminalbefehl gemacht werden:

```
sudo apt-get install lxde-core xserver-xorg xinit
```

Dann ist der Raspberry Pi erneut zu laden. Nachdem Raspberry Pi-Logo wieder angezeigt wurde, wäre der Raspbian-Desktop zu sehen. Somit gilt Betriebssystem als vollständig installiert und kann benutzt werden. Das war aber nicht der Fall mit dem vorhandenen Hardware, da es plötzlich eine Boot-Schleife vorkam, nachdem der Mikrocomputer eingeschaltet wurde und der Startvorgang nicht abgeschlossen werden konnte. Anstatt das zum Benutzung bereiteten Betriebssystem mit der grafische Benutzeroberfläche zu sehen, wird eine Schleife erzeugt, in der die Startvorgang kontinuierlich und wiederholt ausgeführt wurde und somit eine Nutzung der Mikrocomputers unmöglich ist. Nach den mehreren Recherchen wurde es vermutet, dass es durch eine unzureichende Stromversorgung verursacht werden könnte. Es wurde aber zuerst nicht versucht, einen USB-Netzteil zu wechseln, da die anderen USB-Netzteil man durch PSE-Labor bestellen und eine Zeit abwarten muss. Jedoch wurde eine erzeugte Boot-Schleife mit einem anderen Terminalbefehl erfolgreich gelöst:

```
sudo apt-get install --reinstall pcmanfm
```

Bei der Arbeit mit dem Mikrocomputer tritt jedoch später ein Problem mit der Stromversorgung auf. Der Fall kann im entsprechenden Kapitel 4.1.3 nachgelesen werden.

4 1 2 Installation der Treibers für RFID-Leser

Obwohl Raspbian mit einer Reihe von Software vorinstalliert ist, wird es aber zusätzlich benötigt, die Treiber für RFID-Leser zu installieren. Es sollte an dieser Stelle auch noch angemerkt werden, dass am Anfang der Entwicklungsprozess ein anderen RFID-Leser angeschlossen wurde als der, den in der Abschlussarbeit zu beschreiben und zu beobachten ist. Zuerst wurde die Treiber für Reiner SCT CyberJack RFID Basis[SCT] installiert. Die Schritte sollten in der Abschlussarbeit nicht unerwähnt bleiben, da die damals für den ersten RFID-Leser installierte Treiber und Daemons (Appendix 5.2) wurden endlich für den zweiten RFID-Leser benutzt, mit dem die Entwicklung der Aufgabe abgeschlossen wurde. Der Grund für die Hardwareaustausch ist die festgestellte Tatsache, dass Reiner SCT CyberJack RFID

Leser die Studentenkarten nicht ablesen konnte. Obwohl in der Spezifikation es steht, dass die Reiner RFID-Leser kontaktlose RFID Chipkarten wie eID mit dem neuen Personalausweis (nPA), GeldKarte oder eTicketing unterstützt, wurde es unmöglich mit den MIFARE-Transponder 13,561 MHz Funkbereich ins Spiel zu bringen. Die die Studierenden-Ausweise der Beuth sollten mit dieser Technologie gelesen werden und somit ist diese Anforderung für die vorliegende Abschlussarbeit wichtig.

4.1.3 Spannungsproblem und Lösung

Das offizielle Raspberry Pi-Netzteil ist die empfohlene Wahl, da es den schnell wechselnden Strombedarf des Raspberry Pi bewältigen kann. KEYBOARD bwohl einige Tastaturen im Gaming-Stil mit bunten Lichtern möglicherweise zu viel Strom verbrauchen, um zuverlässig verwendet zu werden.

4.2 Server

4.3 Display-Client

Results and conclusion

- 5.1 Results
- 5.2 Conclusion

Glossar

AJAX

AJAX (asynchrones Javascript und XML) ist der allgemeine Name für Technologien, mit denen asynchrone Anforderungen (ohne erneutes Laden von Seiten) an den Server gestellt und Daten ausgetauscht werden können. Da die Client- und Serverteile der Webanwendung in verschiedenen Programmiersprachen geschrieben sind, müssen zum Austausch von Informationen die Datenstrukturen (z. B. Listen und Wörterbücher), in denen sie gespeichert sind, in das JSON-Format konvertiert werden.

BGA

BGA oder Ball Grid Array ist eine Art oberflächenmontiertes Gehäuse, das in elektronischen Produkten zur Montage integrierter Schaltkreise wie Mikroprozessoren, FP-GAs, WiFi-Chips usw. verwendet wird. Die Anschlüsse liegen in Form von Lötkugeln vor, die in einem Gitter angeordnet wie Muster auf der Unterseite des Gehäuses sind, um den für die Verbindungen verwendeten Bereich zu vergrößern.

Daemon

Ein Unix-Daemon ist ein Programm, das "im Hintergrund" ausgeführt wird, ohne dass die Steuerung über ein Terminal erforderlich ist, und dem Benutzer die Möglichkeit bietet, andere Prozesse "im Vordergrund" auszuführen. Der Dämon kann entweder von einem anderen Prozess gestartet werden, z. B. von einem der Systemstartskripte, ohne auf ein Steuerterminal zuzugreifen, oder vom Benutzer von einem beliebigen Terminal aus. In diesem Fall "entführt" der Dämon das Terminal jedoch nicht, während es ausgeführt wird.

DOM

DOM (Document Object Model) ist die Struktur einer HTML-Seite. Bei der Arbeit mit dem DOM werden HTML-Tags (Elemente auf einer Seite) gefunden, hinzugefügt, geändert, verschoben und entfernt.

GPU

Die Grafikverarbeitungseinheit ist ein programmierbarer Prozessor, der auf das Rendern aller Bilder auf dem Computerbildschirm spezialisiert ist. Eine GPU bietet die schnellste Grafikverarbeitung, und für Gamer ist die GPU eine eigenständige Karte, die an den PCI Express (PCIe) -Bus angeschlossen ist. GPUs wurden ursprünglich entwickelt, um Bilder für Computergrafik zu erstellen, jedoch seit Anfang 2010 können GPUs auch verwendet werden, um Berechnungen mit großen Datenmengen zu beschleunigen.

HOST

Host - Dies der Name der IP-Adresse für den Webserver, auf den zugegriffen wird. Dies ist normalerweise der Teil der URL, der unmittelbar auf den Doppelpunkt und zwei Schrägstriche folgt. [RR03, p.31]

HTML-Vorlage

Eine HTML-Vorlage ist eine intelligente HTML-Seite, die Variablen anstelle bestimmter Werte verwendet und verschiedene Operatoren bereitstellt: if (if-then), for-Schleife (Durchlaufen einer Liste) und andere. Das Abrufen einer HTML-Seite aus einer Vorlage durch Ersetzen von Variablen und Anwenden von Operatoren wird als Vorlagenrendering bezeichnet. Die resultierende Seite wird dem Benutzer angezeigt. Falls einen anderen Abschnitt zu öffnen ist, muss ein anderen Musters geladen werden. Wenn andere Daten in der Vorlage verwendet werden müssen, werden sie vom Server angefordert. Alle Formularübermittlungen mit Daten sind auch AJAX-Anforderungen an den Server.

HTTP

HTTP steht für HyperText Transfer Protocol, Hypertext Transfer Protocol". HTTP ist ein weit verbreitetes Datenübertragungsprotokoll, das ursprünglich für die Übertragung von Hypertextdokumenten vorgesehen war (Dokumente, die möglicherweise Links enthalten, mit denen Sie den Übergang zu anderen Dokumenten organisieren können). Die Basis dieses Protokolls ist eine Anforderung von einem Client (Browser) an einen Server und eine Serverantwort an einen Client.

JSON

JSON (JavaScript Object Notation) ist ein universelles Format für den Datenaustausch zwischen einem Client und einem Server. Es ist eine einfache Zeichenfolge, die in jeder Programmiersprache verwendet werden kann.

PORT

Dies ist ein optionaler Teil der URL, der die Portnummer angibt, die der Zielwebserver abhört. Die Standardportnummer für HTTP-Server ist 80, einige Konfigurationen sind jedoch so eingerichtet, dass sie eine alternative Portnummer verwenden. In diesem Fall muss diese Nummer in der URL angegeben werden. Die Portnummer wird direkt mit einem Doppelpunkt, der unmittelbar auf den Servernamen oder die Adresse folgt, eingegeben.[RR03, p.31]

RFID

RFID (englisch radio-frequency identification oder "Identifizierung mit Hilfe elektromagnetischer Wellen") bezeichnet eine Technologie für Sender-Empfänger-Systeme und wird bei der Abschlussarbeit verwendet, um die vorhandenen zur Ausleihe Raspberry Pi Boards zu markieren und identifizieren.

URI

Uniform Resource Identifier ist ein Pfad zu einer bestimmten Ressource (z.B. einem Dokument), für die eine Operation ausgeführt werden muss (z. B. bei Verwendung der GET-Methode bedeutet dies das Abrufen einer Ressource). Einige Anforderungen

beziehen sich möglicherweise nicht auf eine Ressource und in diesem Fall kann der Startzeile anstelle des URI ein Sternchen (Symbol "*") hinzugefügt werden.

Literaturverzeichnis

- [Ado] Adobe. Understand web applications. https://helpx.adobe.com/dreamweaver/user-guide.html/dreamweaver/using/web-applications.ug.html. abgerufen am 29. September 2020.
- [Hal19] Gareth Halfacree. *The Offical Raspberry Pi. How to use your new computer. Beginner's Guide.* aspberry Pi Press; 3rd Revised edition, 2019. ISBN: 1912047586.
- [Pri] Author: SV 2d/3d Printing. Raspberry Pi programming basics. https://api-2d3d-cad.com/microcomputer-programming-basics/. abgerufen am 03. Oktober 2020.
- [RR03] Leon Shklar und Richard Rosen. Web Application Architecture. Principles, protocols and practices. John Wiley & Sons Ltd, 2003. ISBN: 0-471-48656-6.
- [SCT] Reiner SCT. cyberJack® RFID basis. Chipkartenleser für den neuen Personalausweis. https://shop.reiner-sct.com/chipkartenleser-fuer-die-sicherheitsklasse-3/cyberjack-rfid-basis. abgerufen am 04. Oktober 2020.
- [TB] Beuth Hochschule für Technik Berlin. acaLab: Aktivitäten und Abschlussarbeiten. https://labor.beuth-hochschule.de/pse/acalab-aktivitaeten-und-abschlussarbeiten. abgerufen am 21. August 2020.