Data Engineer Coding Assignment

21 June 2019

The purpose of this assignment is to demonstrate your ability to implement a simple, shareable solution in R or Python that a teammate would be able to make use of. The exercise should take less than 2 hours of your time, and provides an opportunity to showcase your skills in setting up a simple data pipeline. There's no need to carry out analysis and demonstration, though – in this hypothetical scenario, you are deploying a script to capture metadata from an online source and setting up a starting point for a teammate to build on for data exploration and modeling.

Prerequisites

For this exercise you need to have the following tools and languages installed on your machine:

- R/ Python
- Apache Airflow
- Depends on your decision about the destination database, you need to have postgreSQL or having access to AWS

Part 1: Data Capture

We would like for you to create a simple script implemented in Python or R, which pulls metadata on the latest N paper submissions from the Computer Science arXiv, which is currently hosted by Cornell University. It can be accessed at https://arxiv.org/list/cs/new, and through an RSS feed at https://arxiv.org/list/cs/new, and through an RSS feed at https://arxiv.org/rss/cs. If you aren't familiar with the arXiv project (pronounced "archive" – the X represents the Greek letter chi), it's an active repository for sharing scientific research in mathematics, physics and computer science, among others – almost all papers in the fields of mathematics and physics are self-archived on the arXiv repository. It's an excellent resource as well for Artificial Intelligence and Machine Learning research.

In retrieving data, the fields of interest include the paper's title, link and text description. These data should be saved to a small database, for which you can use any appropriate solution (e.g., PostgreSQL, CSV or Redshift). It may be helpful to connect to the arXiv's RSS feed for data Collection.

Part 2: Scheduler

Once deployed, prepare a simple AirFlow DAG to run the script in a periodic basis (e.g., every M minutes/hours). It will need to check for new publications within the set of the N latest papers and push their metadata into the database.

Note: you can use any open-source libraries/packages that are appropriate.

Please include documentation, in the form of a git README file.

Part 3: Demo

We would like you to present what you've built in the form of a brief demo, along with an overview of your approach and steps. Use Git for this exercise and share the packaged repo in your submission.

Notes

The time limit for this exercise is 2 hours. The focus of this exercise is to create a simple data pipeline which highlights your skills in technical execution and communication. Feel free to tune the collection interval and/or size of the dataset accordingly to simplify as needed; you'll need just enough data to ensure the capture and processing steps are working correctly, and can use your best judgement on a practical deployment test.

As bonus items:

Leverage AWS for implementation and deployment of the scripts (e.g. implementing redshift and Amazon S3 Buckets)