MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon!
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont**) nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek az értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

írásbeli vizsga 1411 2 / 17 2014. május 6.

I.

1. a)		
Egy kis téglalap oldalainak hossza x cm, illetve $x + 1$ cm, területe $x \cdot (x + 1)$ cm ² .	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feladat szövege szerint $720 \cdot x \cdot (x+1) = 2025$.	1 pont	
(A zárójelet felbontva és nullára rendezve:) $720x^2 + 720x - 2025 = 0$.	1 pont	$(45-tel\ egyszerűsítve: 16x^2+16x-45=0)$
(A megoldóképlettel) $x_1 = 1,25$; $x_2 = -2,25$.	1 pont	
A negatív gyök nem megoldása a feladatnak.	1 pont	
A téglalap rövidebb oldala tehát 1,25 cm, hosszabb oldala pedig 2,25 cm hosszú.	1 pont	
Ellenőrzés: 720·1,25·2,25 = 2025 igaz, tehát a válasz helyes.	1 pont	
Összesen:	7 pont	

1. b)		
12-vel azok a természetes számok oszthatók, amelyek 3-mal és 4-gyel is oszthatók.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Mivel $1 + 2 + 3 + 4 + 5 + 6 = 21$, ezért mind a 720 különböző hatjegyű szám osztható 3-mal.	1 pont	
Azok a hatjegyű számok oszthatók 4-gyel, amelyeknél az utolsó két számjegy 12, 16, 24, 32, 36, 52, 56 vagy 64.	1 pont	
Mindegyik végződés 4! (= 24) darab hatjegyű szám esetében fordul elő,	1 pont	
ezért a vizsgált számok között 8·24=192 darab 12-vel osztható van.	1 pont	
Összesen:	5 pont	

2.		
A (feladat szövege és a) négyzetgyök értelmezése miatt csak az 5-nél nem nagyobb pozitív egész szá- mok jöhetnek szóba, és ezek mindegyike meg is felel.	2 pont	Ha $x \le 5,2$, akkor $5,2-x \le 9$, $ebből-3,8 \le x$ (és x pozitív egész).
$H = \{1; 2; 3; 4; 5\}$	1 pont	
Ha $\log_b 2^6 = k$, akkor $b^k = 2^6 (= 64)$.	2 pont	
A <i>k</i> kitevő pozitív egész, ezért a <i>b</i> olyan pozitív egész szám lehet, melynek valamely pozitív egész kitevős hatványa 64-gyel egyenlő.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$2^6 = 4^3 = 8^2 = 64^1 = 64,$	2 pont*	Egy hiba esetén 1 pont, több hiba esetén 0 pont jár.
ezért $B = \{2; 4; 8; 64\}.$	1 pont*	
$H \cap B = \{2; 4\}$	1 pont	
$B \setminus H = \{8; 64\}$	1 pont	
Összesen:	11 pont	

A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

A "-gai jeloli 4 poniol az alabbi gonaolalmeneleri is megkapnalja a vizsgazo:			
Mivel a 2 prímszám, ezért b is csak a 2 valamelyik		Ez a pont akkor is jár, ha	
pozitív egész kitevőjű hatványa lehet (a számelmélet	1 pont	ez a gondolat csak a meg-	
alaptétele miatt).		oldásból derül ki.	
Emiatt a k pozitív egész szám a 6-nak osztója, tehát $k \in \{6; 3; 2; 1\}$.	2 pont	Egy hiba esetén 1 pont, több hiba esetén 0 pont jár.	
A megfelelő b értékek rendre 2, 4, 8, 64, tehát $B = \{2, 4, 8, 64\}$.	1 pont		

3. a)		
A nehezék térfogata egy forgáskúp és egy csonkakúp térfogatának összege.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
E 2 D 18° C E 2 D 18° C E 2 D	2 pont	Az AFB derékszögű háromszög egyik hegyesszögének meghatározása: 1 pont, az m magasság meghatározása szögfüggvénnyel: 1 pont.

A kúp alapkörének sugara: $r = 2 \cdot \sin 54^{\circ}$ ($\approx 1,62$ cm).	1 pont	
A csonkakúp h magassága a CGD derékszögű háromszögből: $h=2\cdot\sin 72^\circ~(\approx 1,90~{\rm cm}).$	2 pont	A CGD derékszögű háromszög egy hegyesszögének meghatározása: 1 pont, a h magasság meghatározása szögfüggvénnyel: 1 pont.
A forgáskúp térfogata:		
$V_{\rm kúp} \approx \frac{1,62^2 \cdot 1,18 \cdot \pi}{3} (\approx 3,24 \text{ cm}^3).$	1 pont	
A csonkakúp térfogata (a fedőkör sugara 1 cm):		
$V_{\rm cskúp} \approx \frac{1,90 \cdot \pi}{3} \cdot (1,62^2 + 1,62 \cdot 1 + 1^2) \ (\approx 10,39 \ {\rm cm}^3).$	1 pont	
A nehezék térfogata: $(V_{\rm kúp} + V_{\rm cskúp} \approx) 13,6 ~\rm (cm^3).$	1 pont	Más, ésszerű és helyes kerekítésekkel kapott (egy tizedesjegyre kerekített) érték is elfogadható.
Összesen:	9 pont	

3. b)		
A gyakorisági táblázat:		Coul hib below at hit out
tömeg (gramm) 105 106 107 108 109 110	1 pont	Csak hibátlan táblázat esetén jár ez a pont.
gyakoriság 12 36 36 18 12 6		eseten jur ez u pont.
A 120 adat átlaga:		
$12 \cdot 105 + 36 \cdot 106 + 36 \cdot 107 + 18 \cdot 108 + 12 \cdot 109 + 6 \cdot 110$	1 pont	
120		
= 107 (gramm).	1 pont	
A 120 adat szórása:		
$12 \cdot 2^2 + 36 \cdot 1^2 + 36 \cdot 0^2 + 18 \cdot 1^2 + 12 \cdot 2^2 + 6 \cdot 3^2$	1 pont	
120		
$=\sqrt{1.7}\approx 1.3$ (gramm).	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a számítás részletezése nélkül (számológéppel) az átlagra és/vagy a szórásra helyes eredményt ad meg, akkor jár a megfelelő 2 pont. Részletezés nélküli (hibás) megoldásra azonban részpontszám nem adható.

4. a)		
Az f deriváltfüggvénye: $(f:]-2; 3[\rightarrow \mathbf{R}) f'(x) = 3x^2 - 3x - 6.$	1 pont	
f'zérushelyei: -1 és 2.	1 pont	
Az f' másodfokú függvény főegyütthatója pozitív, ezért f' értékei $x < -1$ esetén pozitívak, $-1 < x < 2$ esetén negatívak, $2 < x$ esetén pozitívak.	1 pont	Ez a pont jár egy helyes ábráért is.
Az f függvény menete ezek alapján: a]–2; –1]-on (szigorúan monoton) növekvő;	1 pont	Ez a pont nem jár, ha a vizsgázó nem veszi figyelembe az f függvény értelmezési tartományát, azaz nem vagy rosszul adja meg az intervallum bal oldali végpontját.
az $x = -1$ helyen (helyi) maximuma van,	1 pont	<u> </u>
amelynek értéke 3,5;	1 pont	
a [-1; 2]-on (szigorúan monoton) csökkenő;	1 pont	Ez a pont akkor is jár, ha az intervallum végpontja- it és a monotonitást jól adja meg a vizsgázó, de nyílt vagy félig nyílt in- tervallumot ír.
az $x = 2$ helyen (helyi) minimuma van,	1 pont	
amelynek értéke –10;	1 pont	
a [2; 3[-on (szigorúan monoton) növekvő.	1 pont	Ez a pont nem jár, ha a vizsgázó nem veszi figyelembe az f függvény értelmezési tartományát, azaz nem vagy rosszul adja meg az intervallum jobb oldali végpontját.
Összesen:	10 pont	J · · · · · · · · · · · · · · · · · · ·
O SSZCSCII.	- o Pont	

Megjegyzések:

1. Á monotonitási intervallumok megadásáért akkor is jár a megfelelő pont, ha a vizsgázó egyenlőtlenségekkel írja le jól a megfelelő intervallumokat.

2. A megfelelő pontszámok akkor is járnak, ha a vizsgázó a függvény menetének leírását az alábbihoz hasonló táblázattal adja meg helyesen.

x	-2 < x < -1	x = -1	-1 < x < 2	x = 2	2 < x < 3
f'	f'(x) > 0	f'(x) = 0	f'(x) < 0	f'(x) = 0	f'(x) > 0
f	1	maximum $f(-1) = 3,5$	\downarrow	$\begin{array}{c} \text{minimum} \\ f(2) = -10 \end{array}$	↑

írásbeli vizsga 1411 6 / 17 2014. május 6.

4. b)		
(A g az f-nek egyik primitív függvénye, ezért) $g(x) = \frac{x^4}{4} - \frac{x^3}{2} - 3x^2 + c \ (c \in \mathbf{R}).$	1 pont	Ez a pont nem jár, ha a vizsgázó nem ír konstans tagot (c-t).
Mivel $g(2) = 4 - 4 - 12 + c = 0$,	1 pont	
ezért $c = 12$,	1 pont	
és így $g(x) = \frac{x^4}{4} - \frac{x^3}{2} - 3x^2 + 12$.	1 pont	
Összesen:	4 pont	

II.

5. a) első megoldás		
$2x^3 - 5x^2 - 3x = x(2x^2 - 5x - 3) = 0$	1 pont	
(Egy szorzat akkor és csak akkor nulla, ha valamelyik tényezője nulla.) Látható, hogy <i>x</i> = 0 valóban gyök.	1 pont	
A többi gyököt a $2x^2 - 5x - 3 = 0$ egyenletből kaphatjuk.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ennek az egyenletnek a gyökei: $-\frac{1}{2}$ és 3, azaz a megadott három szám valóban gyök.	1 pont	
Másodfokú egyenletnek legfeljebb két (különböző valós) gyöke lehet, ezért nincs több gyök.	1 pont	
Összesen:	5 pont	

5. a) második megoldás		
$2x^3 - 5x^2 - 3x = x(2x^2 - 5x - 3) =$	1 pont	
=x(2x+1)(x-3)=0	2 pont	
A szorzat alakból látható, hogy a megadott számok mindegyike gyöke az egyenletnek.	1 pont	
Mivel egy szorzat akkor és csak akkor nulla, ha valamelyik tényezője nulla, ezért nincs több gyök.	1 pont	
Összesen:	5 pont	

5. a) harmadik megoldás		
A megadott értékek behelyettesítésével adódik, hogy	3 pont	
azok valóban gyökei az egyenletnek.	3 pont	
Harmadfokú egyenletnek legfeljebb három (különbö-	2 pont	
ző valós) gyöke lehet, ezért nincs több gyök.	2 point	
Összesen:	5 pont	

5. b)		
Legyen $y = \cos x$. A $2y^3 - 5y^2 - 3y = 0$ egyenletnek három valós gyöke van (az a) feladat igaz állítása miatt): $y_1 = 0$, $y_2 = -\frac{1}{2}$ és $y_3 = 3$.	1 pont	
(Mivel $-1 \le \cos x \le 1$, ezért) $y \ne 3$.	1 pont	
A $\cos x = 0$ egyenlet megoldásai: $x = \frac{\pi}{2} + k\pi$, ahol $k \in \mathbb{Z}$.	2 pont	Ha a vizsgázó a gyököket periódus nélkül radián- ban, vagy periódussal együtt fokokban, vagy a
A $\cos x = -\frac{1}{2}$ egyenlet megoldásai: $x = \pm \frac{2\pi}{3} + 2m\pi$, ahol $m \in \mathbb{Z}$.	2 pont	periódussal együtt "vegyesen" adja meg, akkor ebből a 2-2 pontból legfeljebb 1-1 pontot kaphat.
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó nem említi a $k \in \mathbb{Z}$ és/vagy az $m \in \mathbb{Z}$ feltételt, akkor ezért összesen 1 pontot veszítsen.

5. c) első megoldás		
Az exponenciális függvény értékkészlete a pozitív valós számok halmaza,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ezért $2 \cdot 8^x > 0$, $7 \cdot 4^x > 0$ és $3 \cdot 2^x > 0$ (bármely valós x esetén).	1 pont	
Az egyenlet bal oldalán álló összeg így (bármely valós <i>x</i> esetén) pozitív,	2 pont	
tehát valóban nincs megoldása az egyenletnek.	1 pont	
Összesen:	5 pont	

5. c) második megoldás		
Az egyenlet bal oldalán 2 ^x kiemelhető:	1 nont	
$2^{x} \cdot (2 \cdot 4^{x} + 7 \cdot 2^{x} + 3) = 0.$	1 pont	
(Mivel az exponenciális függvény értékkészlete a po-		
zitív valós számok halmaza, ezért) $2^x = 0$ nem lehet-	1 pont	
séges.		
Ezek után a $2 \cdot (2^x)^2 + 7 \cdot 2^x + 3 = 0$ (2 ^x -ben másod-	1 pont	
fokú) egyenletet kell vizsgálnunk.	1 point	
$2^x = -3 \text{ vagy } 2^x = -\frac{1}{2}$.	1 pont	
(Az exponenciális függvény értékkészlete miatt) ezek		
egyike sem lehetséges, tehát valóban nincs megoldá-	1 pont	
sa az egyenletnek.	Enant	
Osszesen:	5 pont	

6. a)		
A műszerek 7%-a hibásan méri a szöget, 5%-a pedig hibásan méri a távolságot.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Mivel a műszerek 2%-a mindkét adatot hibásan méri, ezért a hibás műszerek aránya: 5+7-2=10 százalék.	1 pont	
Egy hibátlan műszer választásának valószínűsége tehát 0,9.	1 pont	
Akkor lesz köztük legfeljebb 2 hibás, ha a hibás műszerek száma 0, 1 vagy 2.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége tehát, hogy a 20 kiválasztott műszer között legfeljebb 2 hibás lesz: $0.9^{20} + {20 \choose 1} \cdot 0.9^{19} \cdot 0.1 + {20 \choose 2} \cdot 0.9^{18} \cdot 0.1^{2}.$	2 pont	l pont jár, ha a vizsgázó a binomiális együttható- kat lehagyja.
A kérdezett valószínűség közelítőleg $(0,122+0,270+0,285\approx)~0,677.$	1 pont	Más, ésszerűen és helyesen kerekített vagy százalékban megadott érték is elfogadható.
Összesen:	7 pont	

6. b)		
h A (Jó ábra, amelyen a vizsgázó feltünteti a szövegnek megfelelő adatokat.)	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó ábra nélkül helyesen számol.
Az ATP háromszögből: $AT = \frac{h}{\text{tg }55^{\circ}} \ (\approx 0,700h).$	1 pont	
A <i>BTP</i> háromszögből: $BT = \frac{h}{\text{tg } 60^{\circ}} \ (\approx 0,577h).$	1 pont	A szabályos háromszög tulajdonságai miatt $BT = \frac{h}{\sqrt{3}}.$

Az <i>ATB</i> derékszögű háromszögből Pitagorasztétellel:	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\frac{h^2}{\text{tg}^2 55^\circ} + \frac{h^2}{\text{tg}^2 60^\circ} = 100 ,$	1 pont	
ebből $h \approx 11$.	2 pont	
A fa magassága (a TP távolság) körülbelül 11 méter.	1 pont	
Összesen:	9 pont	

7. a)		
Ha a sorozat második tagja a_2 , akkor (a számtani sorozat ismert tulajdonsága miatt) az első három tag átlaga (számtani közepe) is a_2 .	1 pont	
Ha a számtani sorozat differenciája d , akkor a szórásnégyzet: $\frac{(a_2-d-a_2)^2+0^2+(a_2+d-a_2)^2}{3}=6.$	1 pont	
Ebből $d^2 = 9$,	1 pont	
azaz (mivel a sorozat növekedő) $d = 3$ (ezt kellett bizonyítanunk).	1 pont	
Összesen:	4 pont	_

Megjegyzés:

Ha a vizsgázó behelyettesítéssel megmutatja, hogy bármely 3 differenciájú számtani sorozat esetén az első három tagjából álló adathalmaz szórásnégyzete 6, de nem igazolja azt, hogy más (pozitív) differencia esetén nem ennyi, akkor 2 pontot kapjon.

Ha egy (vagy több) konkrét, 3 differenciájú számtani sorozatra látja be azt, hogy az első három tagból álló adathalmaz szórásnégyzete 6, akkor 1 pontot kapjon.

7. b)		
Ha Barbara x éves, akkor Cili $x + 3$ éves, és így		
Dezső, Barbara és Edit életkora rendre $x - 6$, x , illet-	1 pont	
ve x + 12 év.		
(Mivel ez a három szám egy mértani sorozat három		
szomszédos tagja, így)	1 pont	
$(x-6)(x+12) = x^2$.		
A zárójeleket felbontva: $x^2 + 6x - 72 = x^2$,	1 pont	
ahonnan x = 12.	1 pont	
Ellenőrzés: Dezső, Barbara és Edit életkora 6, 12, il-		
letve 24 év, ez a három szám pedig valóban egy mér-	1 pont	
tani sorozat három szomszédos tagja.		
András tehát 9 éves (mert 3 évvel fiatalabb Barbará-	1 nont	
nál).	1 pont	
Összesen:	6 pont	

7. c) első megoldás		
Komplementer eseménnyel dolgozunk: nem felelnek meg azok az esetek, amelyekben a három lány három egymás melletti széken ül.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A három egymás melletti széket négyféleképpen lehet kiválasztani a hat közül.	1 pont	A három lányt egyetlen egységnek tekintve ez az egység és a három fiú 4!-féleképpen helyezhető el.
A három egymás melletti széken 3!-féleképpen foglalhat helyet a három lány, a megmaradt három helyen szintén 3!-féleképpen foglalhat helyet a három fiú.	1 pont	Egy egységen belül a lánnyok 3! különböző sorrendben ülhetnek.
A nem megfelelő elhelyezkedések száma tehát: $4 \cdot 6 \cdot 6 (= 144)$.	1 pont	A nem megfelelő elhe- lyezkedések száma tehát 4!·3! (= 144).
Hatan a hat egymás melletti székre 6!(= 720)-féleképpen ülhetnének le.	1 pont	
A megfelelő elhelyezkedések száma: (6! – 4·6·6=) 576.	1 pont	
Összesen:	6 pont	

7. c) második megoldás		
Ha nincs két lány, aki egymás mellett ül, akkor a sorrend FLFLFL, LFLFLF, LFLFFL vagy LFFLFL lehet.	1 pont	
Ha két lány egymás mellett ül a sor bal szélén, akkor a sorrend LLFLFF, LLFFLF vagy LLFFFL lehet. Ugyanígy három lehetőség van, ha két lány a sor jobb szélén ül egymás mellett.	1 pont	
Ha két lány valahol a sor közepén ül egymás mellett, akkor a sorrend FLLFFL, FLLFLF, FFLLFL, LFLLFF, FLFLLF vagy LFFLLF lehet.	1 pont	
Tehát csak a nemeket tekintve 16 különböző lehetséges sorrend van.	1 pont	
Minden ilyen sorrendben belül a lányok és a fiúk is 3!-féleképpen helyezkedhetnek el.	1 pont	
Így a megfelelő elhelyezkedések száma: 16·3!·3! = 576.	1 pont	
Összesen:	6 pont	

8. a) első megoldás		
Legyen $A(0; a)$ és $B(b; 0)$ (de $a^2 + b^2 \neq 0$).	1 pont	
Ekkor az AB szakasz felezőpontja $F\left(\frac{b}{2}; \frac{a}{2}\right)$.	1 pont	
Ekkor $\overrightarrow{FB}\left(\frac{b}{2}; -\frac{a}{2}\right)$.	1 pont	
Ha a négyzet középpontja a K pont, akkor \overrightarrow{FK} az \overrightarrow{FB} +90°-os vagy –90°-os elforgatottja, tehát	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\vec{FK}\left(\frac{a}{2};\frac{b}{2}\right) \text{ vagy } \vec{FK}\left(-\frac{a}{2};-\frac{b}{2}\right).$	1 pont	
Az F pont helyvektorát jelölje \mathbf{f} , ekkor a K pont helyvektora $\mathbf{k} = \mathbf{f} + \overrightarrow{FK}$, azaz $\mathbf{k} \left(\frac{a+b}{2}; \frac{a+b}{2} \right)$ vagy	1 pont	
$\mathbf{k}\left(\frac{b-a}{2};\frac{a-b}{2}\right).$	1 pont	
Tehát a <i>K</i> középpont koordinátái valóban vagy egyenlők, vagy egymás ellentettjei.	1 pont	
Összesen:	8 pont	

8. a) második megoldás		
Legyen pl. $A(0; a)$ és $B(b; 0)$ (de $a^2 + b^2 \neq 0$).	1 pont	
Ekkor $\overrightarrow{AB}(b;-a)$,	1 pont	
\overrightarrow{BC} pedig az \overrightarrow{AB} -nak +90°-os vagy –90°-os elforgatottja.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Tehát $\overrightarrow{BC}(a;b)$ vagy $\overrightarrow{BC}(-a;-b)$.	1 pont	
A B csúcs helyvektorát jelölje b , ekkor a C csúcs		
helyvektora $\mathbf{c} = \mathbf{b} + \overrightarrow{BC}$, azaz	1 pont	
$\mathbf{c}(a+b;b)$ vagy		
$\mathbf{c}(b-a;-b)$.	1 pont	
K az AC szakasz felezőpontja, ezért		
$K\left(\frac{a+b}{2};\frac{a+b}{2}\right) \text{ vagy } K\left(\frac{b-a}{2};\frac{a-b}{2}\right).$	1 pont	
Tehát a K középpont koordinátái valóban vagy	1 pont	
egyenlők, vagy egymás ellentettjei.	-	
Osszesen:	8 pont	

írásbeli vizsga 1411 12 / 17 2014. május 6.

8. a) harmadik megoldás		
(A négyzet(ek) középpontja(i) az AB átmérőjű kör és az AB szakasz felezőmerőlegesének metszéspontjaként adódnak.) Az AB átmérőjű kör egyenlete: $\left(x - \frac{b}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 = \frac{a^2 + b^2}{4}.$	1 pont	
AB felezőmerőlegesének egyenlete: $bx - ay = \frac{b^2 - a^2}{2}.$	1 pont	
A második egyenletből: $y = \frac{2bx + a^2 - b^2}{2a}$.	1 pont	
Behelyettesítve a kör egyenletébe: $x^2 - bx + \frac{b^2}{4} + \left(\frac{2bx - b^2}{2a}\right)^2 = \frac{a^2 + b^2}{4},$ majd egyszerűbb alakra hozva: $4x^2 - 4bx + b^2 - a^2 = 0.$	2 pont	
Megoldások: $x_1 = \frac{b-a}{2}$, $x_2 = \frac{b+a}{2}$.	1 pont	
Visszahelyettesítés után kapjuk: $y_1 = \frac{a-b}{2}, \ y_2 = \frac{a+b}{2}.$	1 pont	
$x_1 = -y_1$ és $x_2 = y_2$, azaz valóban teljesül az állítás. Összesen:	1 pont 8 pont	

Megjegyzések:

Ha a vizsgázó egy (vagy több) konkrét négyzet koordinátáival végzi el a számításokat, akkor ezért legfeljebb 4 pontot kaphat.

Ha számítások nélkül, egy ábráról olvassa le egy (vagy több) konkrét négyzet középpontjának koordinátáit, akkor ezért legfeljebb 1 pontot kaphat.

8. b) első megoldás		
A négyzet körülírt körének sugara az átló fele, azaz $5\sqrt{2}$.	1 pont	
A körülírt kör egyenlete: $(x-7)^2 + (y-7)^2 = 50$.	1 pont	
A kör y tengelyen lévő pontjait az $x = 0$ helyettesítéssel, az x tengelyen lévő pontjait az $y = 0$ helyettesítéssel adódó egyenlet adja meg.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kapott két egyenlet $(y-7)^2 = 1$, illetve $(x-7)^2 = 1$.	1 pont	
Ezeknek a megoldásai $y_1 = 6$ és $y_2 = 8$, illetve $x_1 = 6$ és $x_2 = 8$.	1 pont	
Tehát a tengelyeken négy pont lehet a négyzet valamelyik csúcsa: a (0; 6), a (0; 8), a (6; 0) és a (8; 0) pontok.	1 pont	
(Figyelembe véve, hogy két szomszédos csúcs távolsága 10 egység) két megoldás adódik: $A_1(0; 6)$ és $B_1(8; 0)$, illetve $A_2(0; 8)$ és $B_2(6; 0)$.	2 pont	
Összesen:	8 pont	

8. b) második megoldás		
Ha a négyzet két csúcsa $A(0; a)$ és $B(b; 0)$, akkor a	1	
négyzet oldalhossza $\sqrt{a^2 + b^2}$.	1 pont	
Mivel (az a) feladat szerint) a négyzet középpontja		
$\left(\frac{a+b}{2};\frac{a+b}{2}\right)$		
ezért megoldandó az alábbi egyenletrendszer:	2 pont	
$\begin{cases} \frac{a+b}{2} = 7\\ \sqrt{a^2 + b^2} = 10 \end{cases}.$	•	
Az első egyenletből: $a = 14 - b$, ezt a másodikba he-	1 ,	
lyettesítve: $\sqrt{(14-b)^2 + b^2} = 10$.	1 pont	
Rendezve: $b^2 - 14b + 48 = 0$.	1 pont	
Ennek megoldásai $b_1 = 6$ és $b_2 = 8$.	1 pont	
$a_1 = 8 \text{ \'es } a_2 = 6.$	1 pont	
Tehát két ilyen négyzet van, a kérdéses csúcsok: $A_1(0; 6)$ és $B_1(8; 0)$, illetve $A_2(0; 8)$ és $B_2(6; 0)$.	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó egy ábráról helyesen leolvassa a feladat megoldásait, akkor ezért 2 pontot kapjon. Ha a talált megoldásokról megmutatja, hogy azok valóban megfelelnek a feladat feltételeinek, akkor ezért további 2 pont jár. Ha azt is megmutatja, hogy más megoldása nem lehet a feladatnak, akkor maximális pontszámot kaphat.

9. a)		
(Használjuk az ábra jelöléseit!) Ha a szekrény magassága x méter, akkor szélessége (az ábrán látható egyenlő szárú derékszögű háromszögek miatt) $4\sqrt{2}-2x$ (m),	2 pont	
a térfogata pedig $V(x) = 0.6x(4\sqrt{2} - 2x)$ (m ³) $(0 < x < 2\sqrt{2})$.	1 pont	
Az $x \mapsto 0.6x(4\sqrt{2} - 2x)$ másodfokú függvénynek két zérushelye van, a 0 és a $2\sqrt{2}$,	1 pont*	
így a negatív főegyüttható miatt ennek a függvény- nek a maximuma a két zérushelye számtani közepé- nél,	1 pont*	Ez a pont jár más helyes indoklásért (pl. egy jó áb- ráért) is.
az $x = \sqrt{2}$ helyen lesz.	1 pont*	
(Mivel a $\sqrt{2}$ eleme a feladat értelmezési tartományának, ezért) a legnagyobb térfogatú szekrény magassága $\sqrt{2} \approx 1,41$ méter,	1 pont	
szélessége pedig $2\sqrt{2} \approx 2,83$ méter lesz. Összesen:	1 pont 8 pont	

Megjegyzések:

- 1. A vizsgázó akkor is maximális pontszámot kaphat, ha megállapítja, hogy a téglatest egyik oldala rögzített, ezért elegendő csak a szekrény előlapjának területével foglalkoznia.
- 2. Ha a vizsgázó válaszában nem szerepel mértékegység, akkor ezért összesen 1 pontot veszítsen.

3. A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

5.11 Sail Jetoli & Politici al altaest Solitarial interioret is megnaphanja a vizsgazo.		
Az $x \mapsto 0.6x(4\sqrt{2} - 2x)$ másodfokú függvény deriváltfüggvénye: $x \mapsto 2.4\sqrt{2} - 2.4x$.	1 pont	
A deriváltfüggvény zérushelye az $x = \sqrt{2}$,	1 pont	
itt a deriváltfüggvény pozitívból negatívba megy át, ezért ez az eredeti függvénynek maximumhelye.	1 pont	Ez a pont jár, ha a vizs- gázó a második derivált előjelével indokol helye- sen.

9. b) első megoldás		
(Az azonos színű ingeket megkülönböztetve) az első		
három napon $7 \cdot 6 \cdot 5$ (= 210) különböző (egyenlően	1 pont	
valószínű) lehetőség van a három ing kiválasztására.		
Kedvező esemény az, ha (valamilyen sorrendben)		Ez a pont akkor is jár, ha
mindegyik színből pontosan egyet vagy három sárga	1 pont	ez a gondolat csak a meg-
inget választott Kovács úr.		oldásból derül ki.
Egy adott színsorrendben (például fehér-kék-sárga)		
2·2·3 különböző módon lehet három inget kiválasz-	1 pont	
tani.		
Három adott szín sorrendje 3!-féle lehet,	1 pont	
tehát három különböző színű inget 2·2·3·3! külön-	1 pont	
böző módon választhat ki Kovács úr.	1 pont	
A három sárga inget 3! különböző sorrendben vá-	1 pont	
laszthatja ki.	1 point	
A kedvező esetek száma $2 \cdot 2 \cdot 3 \cdot 3! + 3! (= 78)$.	1 pont	
A kérdezett valószínűség tehát:		A százalékban megadott
$2 \cdot 2 \cdot 3 \cdot 3! + 3! - 78 - 13 (\sim 0.371)$	1 pont	helyes válasz is elfogad-
$\frac{2 \cdot 2 \cdot 3 \cdot 3! + 3!}{7 \cdot 6 \cdot 5} = \frac{78}{210} = \frac{13}{35} \ (\approx 0.371).$		ható.
Összesen:	8 pont	

9. b) második megoldás		
Ha csak az ingek színeit tekintjük, akkor a színeket $\frac{7!}{2! \cdot 2! \cdot 3!} = 210$ -féleképpen lehet sorba rendezni (és e sorrendek mindegyike ugyanakkora valószínűségű).	1 pont	A 7 ing helyett a színeket rendezzük sorba: 2 fehé- ret, 2 világoskéket és 3 sárgát.
Ezek közül a kedvező sorrendek azok, melyekben vagy három különböző szín vagy 3 sárga van az első három helyen.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Három különböző szín 3! = 6-féleképpen adható meg az első három helyre.	1 pont	
Ekkor a maradék négy helyre az 1 fehér, 1 világos- kék és 2 sárga szín $\frac{4!}{2!}$ = 12 különböző sorrendben adható meg.	1 pont	
Ez 6·12 = 72 olyan lehetőség, amelyben az első három helyen három különböző szín áll.	1 pont	
Ha az első három helyen sárga szín áll, akkor a maradék 4 helyre a 2 fehér és 2 világoskék szín $\frac{4!}{2! \cdot 2!} = 6 \text{ különböző sorrendben adható meg.}$	1 pont	
A kedvező esetek száma összesen $72 + 6 = 78$.	1 pont	
A kérdezett valószínűség tehát: $\frac{78}{210} = \frac{13}{35}$ ($\approx 0,371$).	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	8 pont	

0 b) h 12h 11/2		
9. b) harmadik megoldás Megfelelők azok az esetek, amelyekben Kovács úr az első három napon különböző színű ingeket viselt, illetve amelyekben az első három napon sárga inget	1 pont	Ezek a pontok akkor is járnak, ha ezek a gondo- latok csak a megoldásból derülnek ki.
viselt. Az ingek színének kiválasztása egymástól függetlenül történik, tehát alkalmazható a valószínűségek	1 pont	
szorzási szabálya. Annak a valószínűsége, hogy a három különböző színű ing közül például az első sárga, a második fehér, a harmadik világoskék: $\frac{3}{7} \cdot \frac{2}{6} \cdot \frac{2}{5} \left(= \frac{2}{35} \right)$.	1 pont	
Ugyanennyi a valószínűsége annak, hogy a három különböző színű ing sorrendje sárga-világoskék- fehér.	1 pont	
Annak a valószínűsége, hogy a három különböző színű ing közül a sárga a második, illetve a harmadik, szintén egyformán $\frac{4}{35}$.	1 pont	
Tehát annak valószínűsége, hogy az első három napon három különböző színű inget választ Kovács úr: $3 \cdot \frac{4}{35} = \frac{12}{35}$.	1 pont	
Annak a valószínűsége, hogy az első három napon sárga inget választ Kovács úr: $\frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} \left(= \frac{1}{35} \right)$.	1 pont	
A kérdezett valószínűség tehát: $\frac{12}{35} + \frac{1}{35} = \frac{13}{35} \ (\approx 0.371).$	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	8 pont	