R para Ciência de Dados: Exploração e Visualização de Dados

Instituto de Matemática e Estatística Universidade Federal da Bahia

Profa Carolina & Prof Gilberto

Preparando o ambiente

Durante o curso

- Usaremos nas aulas: posit.cloud.
- Recomendamos instalar e usar R com versão pelo menos 4.1: cran.r-project.org.
- usaremos o framework tidyverse:
 - ► Instalação: install.packages("tidyverse")

Na sua casa

- IDE recomendadas: RStudio e VSCode.
 - ► Caso você queira usar o *VSCode*, instale a extensão da linguagem R: REditorSupport.
- Outras linguagens interessantes: python e julia.
 - python: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender.
 - julia: linguagem interpretada para análise de dados, lançada em 2012, promete simplicidade e velocidade.

A linguagem R

A precursora da linguagem R: S.

- R é uma linguagem derivada do S.
- S foi desenvolvido em fortran por John Chambers em 1976 no Bell Labs.
- S foi desenvolvido para ser um ambiente de análise estatística.
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação.

História da linguagem R

- Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia.
- Em 1996, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre.
- Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R.

Motivos para usar R

- Constante melhoramento e atualização.
- Portabilidade (roda em praticamente todos os sistemas operacionais).
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes.
- Gráficos de maneira relativamente simples.
- Interatividade.
- Um grande comunidade de usuários (especialmente útil para resolução de problemas).

Onde estudar fora de aula?

Livros

- Nível cheguei agora aqui: zen do R.
- Nível Iniciante: R Tutorial na W3Schools.
- Nível Iniciante: Hands-On Programming with R.
- Nível Intermediário: R for Data Science.
- Nível Avançado: Advanced R.

Em pt-br

- Curso R: material.curso-r.com.
- ecoR: ecor.ib.usp.br.

O que você pode fazer quando estiver em apuros?

consultar a documentação do R:

```
help(mean)
?mean
```

- Peça ajuda a um programador mais experiente.
- Consulte o pt.stackoverflow.com.
- Use ferramentas de busca como o google e duckduckgo.com.

```
log("G")
```

Na ferramenta de busca, pesquise por

```
Error in \log("G"): non-numeric argument to mathematical function
```

Operações básicas

```
1 + 1 ## [1] 2
```

Substração

```
2 - 1
## [1] 1
```

Multiplicação

```
3 * 3
## [1] 9
```

Divisão

```
3 / 2
## [1] 1.5
```

Potenciação

```
## [1] 8
```

2^3

Operações básicas Exercício

Qual o resultado das seguintes operações?

- 05.32 + 7.99
- 2 5.55 10
- 3.33 * 5.12
- **4.** 1 / 4.55
- **5** 5¹.23

Os dados no R

- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical).
- Estrutura de dados: atomic vector (a estrutura de dados mais básicA no R), matrix, array, list e data.frame (tibble no tidyverse).
- Estrutura de dados Homogênea: vector, matrix e array.
 - array é uma estrutura de dados multidimensional para armazenar sequências de matrizes (ou sequência de arrays). Para detalhes sobre array, consulte Arrays in R.
- Estrutura de dados Heterôgenea: list e data.frame (tibble no tidyverse).

Funções na linguagem R

Função: é uma ação e tem os seguinte componentes na ordem:

- nome da função
- parênteses
- argumentos posicionais
- argumentos nomeados

example:

```
read_xlsx('data/raw/casas.xlsx', sheet=1)
```

Funções na linguagem R Exercício

- Obtenha ajuda para mean usando a função help.
- Calcule o logaritmo de 10 na base 3 usando a função log.
- Leia o conjunto de dados amostra_enem_salvador.xlsx usando a função read_xlsx do pacote readxl.

Tipo de dados no R

Número inteiro

```
class(1L)
## [1] "integer"
```

Número real

```
class(1.2)
## [1] "numeric"
```

Número complexo

```
class(1 + 1i)
## [1] "complex"
```

Tipo de dados no R

Número lógico ou valor booleano

```
class(TRUE)
## [1] "logical"
```

Caracter ou string

```
class("Gilberto")
## [1] "character"
```

Vetor

- Agrupamento de valores de mesmo tipo em um único objeto.
- Criação de vetor:
 - ► c(...)
 - ▶ vector('<tipo de dados>', <comprimento do vetor>)
 - \triangleright seq(from = a, to = b, by = c).

Vetor de caracteres

```
vetor_nomes <- c("Gilberto", "Sassi")
vetor_nomes
## [1] "Gilberto" "Sassi"
vetor_texto_vazio <- vector("character", 3)
vetor_texto_vazio
## [1] "" "" ""</pre>
```

Vetor de números reais

```
vetor_numerico <- c(0.2, 1.35)
vetor_numerico
## [1] 0.20 1.35

vetor_vazio <- vector("double", 3)
vetor_vazio
## [1] 0 0 0

vetor_seq <- seq(from = 1, to = 3.5, by = 0.5)
vetor_seq
## [1] 1.0 1.5 2.0 2.5 3.0 3.5</pre>
```

Vetor de números inteiros

```
vetor_inteiros <- c(1L, 2L)
vetor_inteiros
## [1] 1 2
vetor_inteiros_vazio <- vector("integer", 3)
vetor_inteiros_vazio
## [1] 0 0 0</pre>
```

Vetor lógico

```
vetor_logico <- c(TRUE, FALSE)
vetor_logico
## [1] TRUE FALSE

vetor_logico_vazio <- vector("logical", 3)
vetor_logico_vazio
## [1] FALSE FALSE FALSE</pre>
```

Matriz

- Agrupamento de valores de mesmo tipo em um único objeto de dimensão
 2.

Matriz de caracteres

```
matriz_texto <- matrix(c("a", "b", "c", "d"), nrow = 2)
matriz_texto

## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"</pre>
```

Matriz de números reais

```
matriz_num_real <- diag(c(1.1, 2.3, 3.3))
matriz_num_real

## [,1] [,2] [,3]
## [1,] 1.1 0.0 0.0
## [2,] 0.0 2.3 0.0
## [3,] 0.0 0.0 3.3</pre>
```

Matriz de inteiros

Matriz de valores lógicos

```
matriz_logica <- rbind(
   c(TRUE, FALSE),
   c(TRUE, TRUE)
)
matriz_logica
## [,1] [,2]
## [1,] TRUE FALSE
## [2,] TRUE TRUE</pre>
```

Estrutura de dados homogênea Exercício

Crie as seguintes matrizes e vetores:

- (João Joana Josué Joaquina)
- $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2.5 & 0 \\ 0 & 0 & 3.1 \end{pmatrix}$
- (TRUE TRÚE FALSE) (0,1 0,2 0,3 0,4 0,5)

Operações com vetores númericos (double, integer e complex).

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor.
- Slicing: extrair parte de um vetor

Slicing

Selecionando todos os elementos entre o primeiro e o quinto.

```
letras <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
letras[1:5]
## [1] "a" "b" "c" "d" "e"</pre>
```

Adição (vetores númericos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 - vetor_2
## [1] -5 -5 -5 -5 -5</pre>
```

Substração (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 - vetor_2
## [1] -5 -5 -5 -5 -5</pre>
```

Multiplicação (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 * vetor_2
## [1] 6 14 24 36 50</pre>
```

Divisão (vetores numéricos)

```
vetor_1 <- 1:5
vetor_2 <- 6:10
vetor_1 / vetor_2
## [1] 0.1666667 0.2857143 0.3750000 0.4444444 0.5000000</pre>
```

Realize as seguintes operações envolvendo vetores:

- $(1 \ 2 \ 3) / (0, 1 \ 0, 05 \ 0, 33)$

Operações com matrizes númericas (double, integer e complex).

- Operações básicas: adição, substração, multiplicação e divisão (realizadas em cada elemento das matrizes).
- Outras operações elementares:
 - ► Multiplicação de matrizes (vide multiplicação de matrizes): A % * 8 B
 - ▶ Inversão de matrizes (vide inversão de matrizes): solve (A)
 - ► Matriz transposta (vide matriz transposta): t (A)
 - ► Determinante (vide determinante de uma matriz): det (A)
 - Solução de sistema de equações lineares (vide sistema de equações lineares): solve (A, b)

Exemplo

Cada pessoa de uma equipe de quatro pessoas divide a administração de duas regiões (A e B) conforme as matrizes abaixo:

Postos de venda da região A

```
postos_regiao_a <- rbind(
  c(2, 4), # primeira linha
  c(1, 5) # segunda linha
)</pre>
```

Postos de venda da região B

```
postos_regiao_b <- rbind(
  c(23, 19), # primeira linha
  c(44, 12) # segunda linha
)</pre>
```

Soma de vetores

Número de total de postos de venda administrados por cada pessoa.

```
postos <- postos_regiao_a + postos_regiao_b
postos
## [,1] [,2]
## [1,] 25 23
## [2,] 45 17</pre>
```

Subtração de vetores

Número de postos de venda da região A, conhecendo o total de número de postos e o número de postos de venda região B.

```
# postos de venda da região A
postos_regiao_a <- postos - postos_regiao_b
postos_regiao_a
## [,1] [,2]
## [1,] 2 4
## [2,] 1 5</pre>
```

Suponha que cada pessoa consiga vender um determinado número de produtos por posto de venda conforme a matriz abaixo.

```
produtos_pessoa <- rbind(
    c(4, 2),
    c(1, 3)
)</pre>
```

A quantidade de produtos vendidos por pessoa na região A é dado por:

```
vendas_regiao_a <- postos_regiao_a * produtos_pessoa
vendas_regiao_a

## [,1] [,2]
## [1,] 8 8
## [2,] 1 15</pre>
```

Imagine que temos o número de produtos vendidos por pessoa na região A e sabemos o número de postos de cada pessoa na equipe na região A. Então, podemos descobrir o número de produtos vendidos por um posto para cada pessoa.

```
vendas_regiao_a / postos_regiao_a
## [,1] [,2]
## [1,] 4 2
## [2,] 1 3
```

Outras operações importantes com matrizes

Código em R	Descrição da operação
A %0% B	produto diádico $A \cdot B^T$
crossprod(A, B)	$A \cdot B^{T}$
crossprod(A)	$A \cdot A^T$
diag(x)	retorna uma matrix diagonal com diagonal igual a ${\bf x}$
diag(A)	retorna um vetor com a diagona de A
diag(k)	retorna uma matriz diagona de ordem k

Estrutura de dados homogênea Exercício

Realizei as seguinte operações envolvendo as matrizes:

Estrutura de dados heterogênea

Lista

- Agrupamento de valores de tipos diversos e estrutura de dados.
- Criação de listas: list(...) e vector("list", <comprimento da lista>).

Estrutura de dados heterogênea Exercício

Crie uma lista, chamada informacoes_pessoais com os seguintes campos:

- nome: seu nome
- idade: sua idade
- informacao_profissional: uma lista com os seguintes campos:
 - ► escolaridade: escolaridade
 - profissao: variável qualitativa com os valores possíveis: funcionário público, funcionário da iniciativa privada, estudante e desempregado
- matriz: inclua uma matriz de números reais de dimensão 2 × 2

Estrutura de dados heterogênea

- Agrupamento de dados em tabela, onde: cada coluna é uma variável; cada linha é uma observação. Usamos a tabela tidy:
 - Cada variável em uma única coluna
 - ► Cada unidade observacional em uma única linha
- Criação de tibble: tibble(...) e tribble(...).

tibble (data frame)

```
df <- tibble(nome = c("João", "Josué"), idade = c(20, 21))
glimpse(df)
## Rows: 2
## Columns: 2
## $ nome <chr> "João", "Josué"
## $ idade <dbl> 20, 21
```

Operações em um tibble

Algumas funções úteis depois de aprender a carregar os dados no R.

Código em R	Descrição
head()	Mostra as primeiras linhas de um tibble
tail()	Mostra as últimas linhas de um tibble
glimpse()	Impressão de informações básicas dos dados
add_case() OU add_row()	Adiciona uma nova observação

Estrutura de dados heterogênea Exercício

Realize as seguintes operações no dataset iris (disponível no R):

- imprima um resumo sobre o dataset iris
- pegue as 5 primeiras linhas de iris
- pegue as 5 últimas linhas de iris
- adicione Joaquim de 30 anos ao tibble df para obter o seguinte dataset:

nome	idade	
João	20	
Josué	21	
Joaquim	30	

Concatenação de listas

```
lista 1 <- list("a", "b")
lista 2 \leftarrow list(1, 2)
lista_final <- c(lista_1, lista_2)</pre>
lista final
## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
##
## [[3]]
## [1] 1
##
## [[4]]
## [1] 2
```

Slicing a lista

```
lista_final[1:2]
## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
```

Acessando elemento pela ordem

```
# Acessando o segundo elemento da lista d.
lista_final[[2]]
## [1] "b"
```

Acessando elemento usando \$

```
lista <- list(elemento_1 = 1, elemento_2 = "docente")
lista$elemento_2
## [1] "docente"</pre>
```

Slicing uma lista com ["nome"]

Obtendo os nomes dos elementos em um lista

Estrutura de dados heterogênea Exercício

Recupe e imprima as seguintes informações da lista informações_pessoais:

- os três primeiros campos de informacoes_pessoais
- os nomes dos campos de informacoes_pessoais
- campo nome de informacoes_pessoais
- o terceiro campo de informacoes_pessoais

Valores especiais em $\ensuremath{\mathbb{R}}$

Valores especiais	Descrição	Função para identificar
NA (Not Available)	Valor faltante.	is.na()
NaN (Not a	Resultado do cálculo	is.nan()
Number)	indefinido.	
Inf (Infinito)	Valor que excede o	is.inf()
	valor máximo que sua	
	máquina aguenta.	
NULL (Nulo)	Valor indefinido de	is.null()
	expressões e funções	
	(diferente de NaN e	
	NA)	

Parênteses 1: guia de estilo no R

O nome de um objeto precisa ter um *significado*. O nome deve indicar e deixar claro o que este objeto é ou faz qualquer pessoa precisa entender o que este objeto é ou faz.

- Use a convenção do R:
 - Use apenas letras minúsculas, números e underscore (comece sempre com letras minúsculas).
 - Nomes de objetos precisam ser substantivos e precisam descrever o que este objeto é ou faz (seja conciso, direto e significativo).
 - ► Evite ao máximo os nomes que já são usados (buit-in) do R.Por exemplo: c.
 - Coloque espaco depois da vírgula.
 - ► Não coloque espaço antes nem depois de parênteses. Exceção: Coloque um espaço () antes e depois de if, for ou while, e coloque um espaço depois de ().
 - ► Coloque espaço entre operadores básicos: +, -, *, == e outros. Exceção: ^.

Para mais detalhes, consulte: guia de estilo do tidyverse.

Parênteses 2: estrutura de diretórios

Mantenha uma estrutura (organização) consistente de diretórios em seus projetos.

- Sugestão de estrutura:
 - data: diretório para armazenar seus conjuntos de dados.
 - * raw: dados brutos.
 - ★ processed: dados processados.
 - scripts: código fonte do seu projeto.
 - ▶ figures: figuras criadas no seu projeto.
 - output: outros arquivos que não são figuras.
 - ▶ previous: arquivos da versão anterior do projeto.
 - notes: notas de reuniões e afins.
 - ► relatorio (ou artigos): documento final de seu projeto.
 - documents: livros, artigos e qualquer coisa que são referências em seu projeto.

Para mais detalhes, consulte esse guia do curso-r: diretórios e .Rproj.

Lendo dados no R

Leitura de arquivos no formato x1sx ou x1s

- Pacote: readxl do tidyverse (instale com o comando install.packages('readxl'))
- Parêmetros das funções read_xls (para ler arquivos .xls) e read_xlsx (para ler arquivos .xlsx):
 - ▶ path: caminho até o arquivo.
 - ▶ sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação oficial do *tidyverse*: documentação de read_x1.

Lendo dados no R

Leitura de arquivos no formato x1sx ou x1s

```
library(tidyverse)
library(readxl)
dados iris <- read xlsx("data/raw/iris.xlsx")</pre>
dados_iris <- clean_names(dados_iris)</pre>
glimpse(dados_iris)
## Rows: 150
## Columns: 5
## $ comprimento_sepala <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5
## $ comprimento_petala <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1
## $ largura_petala <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, (
## $ especies
                   <chr> "setosa", "setosa", "setosa", "setos
```

Lendo dados no R Exercício

Leia o dataset dados_leitura.xlsx usando o pacote readxl.

Lendo dados no R

As formatações dos arquivos csv

- csv: comma separated values (valores separados por coluna). O separador varia em diferentes sistemas de medidas.
- No sistema métrico:
 - As casas decimais são separadas por ,
 - O agrupamento de milhar é marcada por .
 - As colunas dos arquivos de texto são separadas por ;
- No sistema imperial inglês (UK e USA):
 - As casas decimais são separadas por .
 - ► O agrupamento de milhar é marcada por ,
 - ► As colunas dos arquivos de texto são separadas por ,

Preste atenção em como o seus dados estão armazenados!

Leitura de arquivos no formato csv

- Pacote: readr do tidyverse (instale com o comando install.packages('readr')).
- Parêmetros das funções read_csv (sistema imperial inglês) e read_csv2 (sistema métrico):
 - ▶ path: caminho até o arquivo.

Para mais detalhes, consulte a documentação oficial do *tidyverse*: documentação de read_r.

Lendo dados no R

Leitura de arquivos no formato csv

```
dados_mtcarros <- read_csv2("data/raw/mtcarros.csv")</pre>
dados mtcarros <- clean names (dados mtcarros)
glimpse(dados mtcarros)
## Rows: 32
## Columns: 11
## $ milhas por galao <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 1
## $ eixo
                <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2
## $ peso
                <dbl> 2.620, 2.875, 2.320, 3.215, 3.4
## $ velocidade
                <dbl> 16.46, 17.02, 18.61, 19.44, 17.
## $ forma
                <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1
## $ transmissao
               <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
## $ marchas
                <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4
## $ carburadores
                <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4
```

Lendo dados no R Exercício

Leia o dataset dados_leitura.csv usando o pacote readr.

Lendo dados no R

Leitura de arquivos no formato ods

- Pacote: readODS (instale com o comando install.packages('readODS')).
- Parêmetros das funções read_ods:
- path: caminho até o arquivo.
 - ► sheet: especifica a planilha do arquivo que será lida.
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15.
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis.

Para mais detalhes, consulte a documentação do *readODS*: documentação de readODS.

Lendo dados no R

Leitura de arquivos no formato ods

```
dados_dentes <- read_ods("data/raw/crescimento_dentes.ods")
dados_dentes <- clean_names(dados_dentes)

## Rows: 60
## Columns: 3
## $ comprimento <dbl> 4.2, 11.5, 7.3, 5.8, 6.4, 10.0, 11.2
## $ suplemento <chr> "Vitamina C", "Vitamina
```

Lendo dados no R Exercício

Leia o dataset dados_leitura.ods usando o pacote readODS.

Salvando dados no R

Salvar no formato . csv (sistema métrico)

write_csv2 é parte do pacote readr.

```
write_csv2(dados_dentes, file = "data/processed/nome.csv")
```

Salvar no formato .xlsx

write_xlsx é parte do pacote writexl.

```
write_xlsx(dados_dentes, path = "data/processed/nome.xlsx")
```

Salvar no formato ods

write_ods é parte do pacote readODS.

```
write_ods(dados_toothgrowth, path = "data/processed/nome.ods")
```

Salvando dados no R Exercício

- ① Salve o objeto milhas do pacote dados como milhas.ods na pasta output do seu projeto.
- 2 Salve o objeto diamante do pacote dados como diamante.csv na pasta output do seu projeto.
- 3 Salve o objeto velho_fiel do pacote dados como velho_fiel.xlsx na pasta output do seu projeto.

Estatística Descritiva no R Gráficos e Tabelas

Alguns conceitos básicos

- População: todos os elementos ou indivíduos alvo do estudo.
- Amostra: parte da população.
- Parâmetro: característica numérica da população. Usamos letras gregas para denotar parâmetros populacionais.
- Estatística: função ou cálculo da amostra
- Estimativa: característica numérica da amostra, obtida da estatística computada na amostra. Em geral, usamos uma estimativa para estimar o parâmetro populacional.
- Variável: característica mensurável comum a todos os elementos da população.
 - Usamos letras maiúsculas do alfabeto latino para representar uma variável.
 - Usamos letras minúsculas do alfabeto latino para representar o valor observado da variável em um elemento da amostra.

Exemplo

- População: todos os eleitores nas eleições gerais de 2022.
- Amostra: 3.500 pessoas abordadas pelo datafolha.
- Variável: candidato a presidente de cada pessoa.
- Parâmetro: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores.
- Estatística: porcentagem de pessoas que escolhem o lula
- Estimativa: porcentagem de pessoas que escolhem Lula como presidente entre todos os eleitores da amostra de 3.500 pessoas entrevistas pelo datafolha.

Classificação de variáveis

Figura 1: Classificação de variáveis.

Tabela de frequência – Variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B ₁	<i>n</i> ₁	<i>f</i> ₁	100 · f ₁ %
B_2	n_2	f_2	100 · f ₂ %
:	:	:	:
B_k	n_k	f_k	100 ⋅ <i>f_k</i> %
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de distribuição de frequências Variável qualitativa

- Pacote: tabyl, adorn_totals e adorn_pct_formatting do janitor (instale com o comando install.packages ('janitor')).
- tabylcria a tabela de distribuição de frequências e tem os seguintes parâmetros:
 - dat: data frame ou vetor com os valores da variável que desejamos tabular.
 - var1: nome da primeira variável.
 - var2: nome da segunda variável (opcional).
- adorn_totals: adiciona uma linha com os totais de cada coluna
- adorn_pct_formatting: acrescenta o sinal de porcentagem e tem o seguinte parâmetro:
 - ► digits: o número de casas decimais depois da vírgula
- rename (do pacote dplyr) muda os nomes das colunas para português no seguinte formato:
 - ▶ "novo nome" = "velho nome"

Para mais detalhes, consulte a documentação oficial do *janitor*: documentação de taby1.

Tabela de distribuição de frequências Variável qualitativa

```
tab <- tabyl(dados iris, especies) |>
 adorn totals() |>
 adorn_pct_formatting(digits = 2) |>
 rename (
    "Espécies" = especies, "Frequência" = n,
    "Porcentagem" = percent
t.ab
##
     Espécies Frequência Porcentagem
##
       setosa
                      50
                             33.33%
## versicolor
                     50 33.33%
## virginica
                    50 33.33%
##
        Total
                  150 100.00%
```

Tabela de distribuição de frequências Variável qualitativa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa a tabela de distribuição de frequências para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação usada pelo IBGE)
- tp_cor_raca: raça (segundo classificação usada pelo IBGE)

Tabela de distribuição de frequências Variável quantitativa discreta

Muito semelhante a tabela de distribuição de frequência para variáveis qualitativas.

X	frequência	frequência relativa	porcentagem
<i>X</i> ₁	<i>n</i> ₁	<i>f</i> ₁	100 · f ₁ %
<i>X</i> ₂	n_2	f_2	100 · f ₂ %
:	:	:	:
X_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra e $\{x_1, \ldots, x_k\}$ são os números que são valores únicos de X na amostra.

Tabela de distribuição de frequências Variável quantitativa discreta

```
tab <- tabyl(dados_mtcarros, carburadores) |>
 adorn totals() |>
 adorn_pct_formatting(digits = 2) |>
 rename (
    "Carburadores" = carburadores, "Frequência" = n,
    "Porcentagem" = percent
t.ab
##
   Carburadores Frequência Porcentagem
##
                                21.88%
##
                        10
                               31.25%
                               9.38%
##
                        10 31.25%
                              3.12%
##
                              3.12%
          Total
                        32 100.00%
```

Tabela de distribuição de frequências Variável quantitativa discreta Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa a tabela de distribuição de frequências para a variável q005: número de pessoas que moram na casa da(o) candidata(o).

Tabela de frequência Variável quantitativa contínua

x: variável quantitativa contínua

Tabela 7: Tabela de frequências para a variável quantitativa contínua.

X	Frequência	Frequência relativa	Porcentagem
$[I_0, I_1)$	n_1	$f_1 = \frac{n_1}{n_1 + \cdots + n_k}$	$p_1 = f_1 \cdot 100$
$[I_1, I_2)$	n_2	$f_1 = \frac{n_1}{n_1 + \dots + n_k}$ $f_2 = \frac{n_2}{n_1 + \dots + n_k}$	$p_2 = f_2 \cdot 100$
:	:	<u>:</u>	:
$[\mathit{I}_{k-1},\mathit{I}_{k}]$	n_k	$f_k = \frac{n_k}{n_1 + \dots + n_k}$	$p_k = f_k \cdot 100$

- menor valor de $X = I_0 \le I_1 \le \cdots \le I_{k-1} \le I_k =$ maior valor de X
- n_i é número de valores de X entre l_{i-1} e l_i
- l_0, l_1, \ldots, l_k quebram o suporte da variável X (*breakpoints*).
- l_0, l_1, \dots, l_k são escolhidos de acordo com a teoria por trás da análise de dados

Recomendações:

- use l_0, l_1, \dots, l_k igualmente espaçados
- e use a regra de Sturges para determinar o valor de k:
 - ► $k = 1 + \log 2(n)$ onde n é tamanho da amostra
 - ► Se 1 + log 2(n) não é um número inteiro, usamos $k = \lceil 1 + \log 2(n) \rceil$.

Tabela de frequência Variável quantitativa contínua

Primeiro agrupamos os valores em faixas usando a regra de Sturges.

```
k <- ceiling(1 + log(nrow(dados_iris)))
dados_iris2 <- mutate(
  dados_iris,
  comprimento_sepala_int = cut(
    comprimento_sepala,
    breaks = k,
    include.lowest = TRUE,
    right = FALSE
  )
)</pre>
```

Tabela de frequência Variável quantitativa contínua

Agora podemos contar a frequência de cada intervalo.

```
tabyl(dados_iris2, comprimento_sepala_int) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Comprimento de sépala" = comprimento_sepala_int,
    "Frequência absoluta" = n,
    "Porcentagem" = percent
)
```

##	Comprimento de sépala	Frequência	absoluta	Porcentagem
##	[4.3,4.81)		16	10.67%
##	[4.81,5.33)		30	20.00%
##	[5.33,5.84)		34	22.67%
##	[5.84,6.36)		28	18.67%
##	[6.36,6.87)		25	16.67%
##	[6.87,7.39)		10	6.67%
##	[7.39,7.9]		7	4.67%
##	Total		150	100.00%

Tabela de frequência Variável quantitativa contínua Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa as seguintes tabelas de distribuição de frequências:

- nu_nota_mt (nota da prova em matemática): l_0, l_1, \ldots, l_k são igualmente espacos com $l_k l_{k-1} = 100$
- nu_nota_cn (nota da prova de ciências humanas): use a regra de Sturges

Gráficos no R

- Pacote: ggplot2
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas.
- Começamos com um camada com os dados ggplot (dados), e vamos adicionando as camadas de anotações, e sumários estatísticos.
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics.
- Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas).

Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Gráficos no R

Estrutura básica de ggplot2

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

Lista com extensões do ggplot2: extensões do ggplot2.

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes.
- Gráfico de matriz de correlação: ggcorrplot.
- Gráfico quantil-quantil: qqplotr.

Gráficos no R

Gráfico de barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar(x = <variável no eixo x>, y = ..prop.. * 100).
- Argumentos adicionais:
 - ▶ fill: mudar a cor do preenchimento das figuras geométricas.
 - color: mudar a cor da figura geométrica.
- Rótulos dos eixos
 - ► Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>).
 - ► Trocar o eixo-x pelo eixo-y: coord_flip().

Gráfico de barras Variável qualitativa

Gráfico de barras para a variável qualitativa especies do conjunto de dados iris.xlsx.

```
ggplot(dados_iris) +
  geom_bar(mapping = aes(especies), fill = "blue") +
  labs(x = "Espécies", y = "Frequência") +
  theme_minimal()
```

setosa

versicolor

Espécies

virginica

Gráfico de barras Variável qualitativa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras para as seguintes variáveis:

- tp_sexo: gênero que a pessoa se identifica (segundo classificação do IBGE)
- tp_cor_raca: raça autodeclarada (segundo classificação do IBGE)

Tabela de distribuição de frequências Variável quantitativa discreta

De maneira similar, podemos contar quantas vezes cada valor de uma variável quantitativa discreta foi amostrado.

frequência	frequência relativa	porcentagem
n ₁	<i>f</i> ₁	100 · f ₁ %
n_2	f_2	100 ⋅ <i>f</i> ₂ %
n_3	f_3	100 ⋅ <i>f</i> ₃ %
i	:	÷
n_k	f_k	100 ⋅ <i>f_k</i> %
'n	1	100%
	n ₁ n ₂ n ₃ : n _k	n_1 f_1 n_2 f_2 n_3 f_3 \vdots \vdots n_k f_k

Em que *n* é o tamanho da amostra.

Tabela de distribuição de frequências Variável quantitativa discreta

Vamos construir a tabela de distribuição de frequências para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.

```
tab <- tabyl(dados_mtcarros, carburadores) |>
  adorn_totals() |>
  adorn_pct_formatting(digits = 2) |>
  rename(
    "Número de carburadores" = carburadores,
    "Frequência (absoluta)" = n,
    "Porcentagem" = percent
)
tab
```

##	Número	de	carburadores	Frequência	(absoluta)	Porcentagem
##			1		7	21.88%
##			2		10	31.25%
##			3		3	9.38%
##			4		10	31.25%
##			6		1	3.12%
##			8		1	3.12%
##			Total		32	100.00%

Gráfico de barras Variável quantitativa discreta

Gráfico de barras para a variável quantitativa discreta carburadores do conjunto de dados mtcarros.csv.

- after_stat (prop) retorna a frequência relativa ou proporção de um valor (ou categoria) de uma variável.
- after_stat(count) retorna a frequência absoluta de um valor (ou categoria) de uma variável.

```
ggplot(dados_mtcarros) +
  geom_bar(
    mapping = aes(carburadores, after_stat(100 * prop)),
    fill = "#002f81"
) +
  labs(x = "Número de carburadores", y = "Porcentagem") +
  theme_minimal()
```


Gráfico de barras Variável quantitativa discreta Exercício

- Para a variável q005 do conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de barras onde o eixo y é a frequência absoluta.
- Para a variável q005 do conjunto de dados
 amostra_enem_salvador.xlsx, construa o gráfico de barras onde o
 eixo y é a frequência relativa.
- Para a variável q005 do conjunto de dados
 amostra_enem_salvador.xlsx, construa o gráfico de barras onde o
 eixo y é a porcentagem.

Histograma

Para variávieis quantitativas contínuas, geralmente não construímos gráficos de barras, e sim uma figura geométrica chamada de *histograma*.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- Cada faixa de valor $[l_{i-1}, l_i)$, i = 1, ..., n, será representada por um barra com área f_i , i = 1, ..., n.
- Como cada barra terá área igual a f_i e base $I_i I_{i-1}$, e a altura de cada barra será $\frac{f_i}{l_i l_{i-1}}$.
- $\frac{f_i}{l_i-l_{i-1}}$ é denominada de densidade de frequência.
- Podemos usar os seguintes parâmetros (obrigatório o uso de apenas um deles):
 - bins: número de intervalos no histograma (usando, por exemplo, a regra de Sturges)
 - ▶ binwidth: tamanho (ou largura) dos intervalos
 - ▶ breaks: os limites de cada intervalo

Histograma

Figura 2: Representação de uma única barra de um histograma.

Denside de frequência

Histograma

```
ggplot (dados_iris) +
  geom histogram (
     aes(x = comprimento_sepala, y = after_stat(density)),
    bins = k.
     fill = "#002f81"
     +
  theme minimal() +
  labs(
     x = "Comprimento de Sépala",
     y = "Densidade de Frequência"
Densidade de Frequência
0.0
0.1
 0.0
                               Comprimento de Sépala
```

Histograma Exercício

- Para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma onde os intervalos tem o mesmo tamanho igual a 100.
- Para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx, construa o histograma usando a regra de Sturge.

Medidas resumo

Variável quantitativa

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa *bem* todos os valores.

- Média: $\overline{X} = \frac{X_1 + \cdots + X_n}{n}$.
- Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

- Variância: $s^2 = \frac{(x_1 \overline{X})^2 + \dots + (x_n \overline{X})^2}{n-1}$.
- **Desvio padrão:** $s = \sqrt{s^2}$ (mesma unidade dos dados).
- Coeficiente de variação $cv = \frac{s}{x} \cdot 100\%$ (adimensional, ou seja, "sem unidade").

(IME-UFBA) R para Ciência de Dados 89/138

Medidas resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

```
dados iris |>
 summarise(
   media = mean (comprimento sepala),
   mediana = median (comprimento sepala),
   dp = sd(comprimento sepala),
   cv = dp / media
## # A tibble: 1 x 4
## media mediana dp
                           CV
## <dbl> <dbl> <dbl> <dbl>
## 1 5.84 5.8 0.828 0.142
```

Medidas resumo: exemplo

Podemos usar a função group_by para calcular medidas resumo por categorias de uma variável qualitativa.

```
tabela <- dados iris |>
 group by (especies) |>
 summarise(
   media = mean (comprimento sepala),
   mediana = median(comprimento sepala),
   dp = sd(comprimento sepala),
   cv = dp / media
tabela
## # A tibble: 3 \times 5
## especies media mediana dp cv
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 setosa 5.01 5 0.352 0.0704
## 2 versicolor 5.94 5.9 0.516 0.0870
## 3 virginica 6.59 6.5 0.636 0.0965
```

Medidas de resumo Exercício

- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados amostra enem salvador.xlsx por gênero (tp sexo).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_mt do conjunto de dados
 amostra enem salvador.xlsx por raça (tp cor raca).
- Calcule média, mediana, o desvio padrão e coeficiente de variação para a variável nu_nota_cn do conjunto de dados amostra enem salvador.xlsx por raça (tp cor raca).

Quantis

Ideia

q(p) é um valor que satisfaz;

- 100 · p% das observações é no máximo q(p)
- $100 \cdot (1-p)$ % das observações é no mínimo q(1-p)

Alguns quantis especiais

- Primeiro quartil: $q_1 = q(0, 25)$
- Primeiro quartil: $q_2 = q(0,5)$
- Primeiro quartil: $q_3 = q(0,75)$

Quantis

```
dados iris |>
 group_by(especies) |>
 summarise(
   q1 = quantile(comprimento_sepala, 0.25),
   q2 = quantile(comprimento_sepala, 0.5),
   q3 = quantile(comprimento_sepala, 0.75),
   frequencia = n()
## # A tibble: 3 x 5
## especies q1 q2 q3 frequencia
## <chr> <dbl> <dbl> <dbl> <int>
## 1 setosa 4.8 5 5.2
                                     50
## 2 versicolor 5.6 5.9 6.3
                                     50
## 3 virginica 6.22 6.5 6.9
                                     50
```

n () calcula a frequência de cada valor de uma variável qualitativa.

Quantis Exercício

- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por gênero (tp_sexo). Inclua uma coluna com a frequência da variável tp_sexo.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_mt do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.
- Calcule o primeiro quartil, segundo quartil e o terceiro quartil para a variável nu_nota_cn do conjunto de dados amostra_enem_salvador.xlsx por raça (tp_cor_raca). Inclua uma coluna com a frequência da variável tp_cor_raca.

Medida de dispersão: distância entre q_3 e q_1

Diferença de quartis: $dq = q_3 - q_1$

Assimetria à direita ou positiva:

- frequências diminuem à direita no histograma
- q_2 perto q_1 : $q_2 q_1 < q_3 q_2$

Assimetria à esquerda ou negativa: frequências diminuem à esquerda no histograma

- o frequências diminuem à direita no histograma
- q_2 perto q_3 : $q_2 q_1 > q_3 q_2$

Assimetria

Gráficos lado a lado com patchwork

- patchwork permite que colocar gráficos lado a lado com
 - ► +: figuras ao lado
 - ► \: figuras embaixo
- Para mais detahes, visite a documentação do patchwork

```
sepala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_sepala)) +
  labs(x = "", y = "Comprimento de Sépala") +
  ylim(c(0, 10)) +
  theme_minimal()
petala <- ggplot(dados_iris) +
  geom_boxplot(aes(x = "", y = comprimento_petala)) +
  labs(x = "", y = "Comprimento de Pétala") +
  ylim(c(0, 10)) +
  theme_minimal()
sepala + petala</pre>
```


Diagrama de caixa Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa o diagrama de caixa para as variáveis nu_nota_mt e nu_nota_cn e os coloque lado a lado usando o pacote patchwork.

Gráficos Duas variáveis

Ideia: estudar a associação entre duas variáveis quantitativas.

Gráfico de dispersão

```
ggplot(dados_iris) +
  geom_point(aes(comprimento_petala, comprimento_sepala)) +
  labs(
    x = "Comprimento de pétala",
    y = "Comprimento de sépala"
  theme minimal()
                                Comprimento de pétala
```

Gráfico de dispersão Exercício

Para o conjunto de dados amostra_enem_salvador.xlsx, construa o gráfico de dispersão entre as variáveis nu_nota_mt e nu_nota_cn.

Inclua o argumento nomeado alpha = 0.1 na função geom_point para incluir opacidade no gráfico de dispersão. Isso ajuda quando temos amostra de tamanho médio e grande.

Associação entre duas variáveis qualitativas

Ideia

Sejam X e Y duas variáveis qualitativas com os seguintes valores possíveis:

- \bullet $X: A_1, \cdots, A_r$
- \bullet $Y: B_1, \cdots, B_s$

Desejamos estudar a associação entre X e Y.

Associação entre X e Y

Suponha que A_i tenha porcentagem $100 \cdot f_i \cdot \%$. Então, X e Y são:

- não associados: se ao conhecermos o valor de Y para um elemento da população, **continuamos** com a porcentagem $100 \cdot f_i\%$ deste elemento ter valor de X igual a A_i
- associados: se ao conhecermos o valor de Y para um elemento da população, alteramos a porcentagem 100 · fi% deste elemento ter valor de X igual a A_i

Associação entre duas variáveis qualitativas Gráfico de barras

Vamos checar a associação entre fundacao_tipo e geral_condicao.

Associação entre duas variáveis qualitativas Gráfico de barras

Podemos agrupar as barras por grupos para analisar a associação entre duas variáveis qualitativas.

Associação entre duas variáveis qualitativas Gráfico de barras Exercício

- Verifique se existe associação entre as variáveis q006 e tp_cor_raca do conjunto de dados amostra_enem_salvador.xlsx usando gráfico de gráficos usando o position=fill.
- Verifique se existe associação entre as variáveis q006 e tp_sexo do conjunto de dados amostra_enem_salvador.xlsx usando gráfico de gráficos usando o position=dodge.

Comparação de medianas usando Diagrama de caixa

Podemos comparar medianas de diferentes grupos usando o diagrama de caixa.

```
ggplot(dados_iris) +
  geom_boxplot(aes(x = especies, y = comprimento_sepala)) +
  labs(x = "Espécies", y = "Comprimento de Sépala") +
  theme_minimal()
```


Comparação de medianas usando Diagrama de caixa Exercício

- Para o conjunto de dados amostra_enem_salvador.xlsx, compare a variável nu_nota_mt por raça (tp_cor_raca).
- Para o conjunto de dados amostra_enem_salvador.xlsx, compare a variável nu_nota_cn por raça (tp_cor_raca).
- Coloque os dois gráficos acima lado a lado usando o pacote patchwork.

Vamos usar o pacote gt para customizar a apresentação de uma tabela.

A ideia do pacote gt é melhorar apresentação por camadas.

Para mais detalhes, visite documentação do pacote gt

Vamos usar um exemplo para ensinar como usar o pacote gt.

```
tab <- dados_iris |>
  group_by(especies) |>
  summarise(
    m_petala = mean(comprimento_petala),
    dp_petala = sd(comprimento_petala),
    q1_petala = quantile(comprimento_petala, probs = 0.25),
    q2_petala = quantile(comprimento_petala, probs = 0.5),
    q3_petala = quantile(comprimento_petala, probs = 0.75),
    cv_petala = dp_petala / m_petala
)
tab
```

Cabeçalho da tabela: legenda e sub-legenda da tabela.

- tab_header: permite incluir legenda (title) e sub-legenda na tabela (subtitle)
- gtsave: permite salvar objeto gtnos formatos .html, .tex e .docx.
- md: permite formatação usando a sintaxe markdown.
 - ► Para mais detalhes sobre markdown, consulte *cheatsheet* do markdown

```
gt_tab <- gt(tab) |>
  tab_header(
    title = md("**Comprimento de pétala**"),
    subtitle = md("_Algumas estatísticas descritivas_")
)
gtsave(gt_tab, "output/tabela.html")
gtsave(gt_tab, "output/tabela.tex")
gtsave(gt_tab, "output/tabela.docx")
```

Salvando tabelas com o pacote gt Exercício

- ① Calcule a média, o desvio padrão, o primeiro quartil, o segundo quartil e o terceiro quartil para a variável nu_nota_mt por raça (tp_cor_raca) do conjunto de dados amostra_enem_salvador.xlsxe salve o resultado em objeto tab.
- 2 Crie um objeto gt com nome gt_tab a partir da tabela em tab.
- Inclua uma legenda com o texto "Nota em matemática por raça" e sublegenda "Edição 2021" com a função tab_header.

```
o tab_source: inclusão de _fonte de dados_dentes

gt_tab <- gt_tab |>
  tab_source_note(
    source_note = md("**Fonte:** Elboração própria.")
)
gt_tab
```

Comprimento de pétala Algumas estatísticas descritivas

especies	m_petala	dp_petala	q1_petala	q2_petala	q3_petala	cv_petala
setosa	1.462	0.1736640	1.4	1.50	1.575	11.878522
versicolor	4.260	0.4699110	4.0	4.35	4.600	11.030774
virginica	5.552	0.5518947	5.1	5.55	5.875	9.940466

Salvando tabelas com o pacote gt Exercício

Inclua fonte de dados usando a função tab_source_note como texto "Fonte: elaboração própria." no objeto qt_tab.

Rótulo (legenda) para grupo de linhas

tab_row_group: permite colocar um rótulo para um grupo de linhas.

```
gt_tab <- gt_tab |>
  tab_row_group(
    rows = c(1, 3),
    label = md("_Espécies principais_")
)
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

especies	m_petala	dp_petala	q1_petala	q2_petala	q3_petala	cv_petala
Espécies p	rincipais					
setosa	1.462	0.1736640	1.4	1.50	1.575	11.878522
virginica	5.552	0.5518947	5.1	5.55	5.875	9.940466
versicolor	4.260	0.4699110	4.0	4.35	4.600	11.030774

Rótulo (legenda) para grupo de linhas Exercício

Inclua um *rótulo* para as linhas pardas e pretas com o texto "negras" no objeto gt_tab.

Rótulo (legenda) para grupo de colunas

tab_spanner: permite rótulo para grupo de colunas.

```
gt_tab <- gt_tab |>
  tab_spanner(
    columns = c(
      q1_petala,
      q2_petala,
      q3 petala
   ),
    label = "Ouantis"
  ) |>
  tab_spanner(
    columns = c(dp_petala, cv_petala),
    label = "Dispersão"
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

		Dispersão		Quantis			
especies	m_petala	dp_petala cv_petala q1		q1_petala	q2_petala	q3_petala	
Espécies principais							
setosa	1.462	0.1736640	11.878522	1.4	1.50	1.575	
virginica	5.552	0.5518947	9.940466	5.1	5.55	5.875	
versicolor	4.260	0.4699110	11.030774	4.0	4.35	4.600	

Rótulo (legenda) para grupo de colunas Exercício

Inclua um *rótulo* pra as colunas do primeiro quartil, segundo quartil e terceiro quartil com o texto "Quartis" no objeto gt_tab.

Movendo as colunas na tabela

- cols_move_to_start: move uma ou mais colunas para o início da tabela.
- ocls_move_to_end: move uma ou mais colunas para o fim da tabela.
- cols_move: move uma ou mais colunas para depois um determinada coluna.

```
qt tab <- qt tab |>
  cols move to start (
    columns = c(especies, dp petala, cv petala)
  ) |>
  cols move to end(
    columns = m petala
  ) |>
  cols move (
    after = cv petala,
    columns = c(q1\_petala, q2\_petala, q3\_petala)
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

	Dispe	ersão				
especies	ies dp_petala cv_petala		q1_petala	q2_petala	q3_petala	m_petala
Espécies p	Espécies principais					
setosa	0.1736640	11.878522	1.4	1.50	1.575	1.462
virginica	0.5518947	9.940466	5.1	5.55	5.875	5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Movendo as colunas na tabela Exercício

Deixe as colunas de gt_tab na seguinte ordem: raça, média, primeiro quartil, segundo quartil, terceiro quartil e desvio padrão usando as funções cols move to start, cols move e cols move to end.

Atualizando as colunas

cols_label: permite atualizar os rótulos das colunas.

```
gt_tab <- gt_tab |>
  cols_label(
    especies = md("**Espécies**"),
    dp_petala = "Desvio padrão",
    cv_petala = "Coeficiente de variação",
    q1_petala = md("*Q1*"),
    q2_petala = md("*Q2*"),
    q3_petala = md("*Q3*"),
    m_petala = "Média"
  )
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

	Dispers	Quantis				
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies principais						
setosa virginica	0.1736640 0.5518947	11.878522 9.940466	1.4 5.1	1.50 5.55	1.575 5.875	1.462 5.552
versicolor	0.4699110	11.030774	4.0	4.35	4.600	4.260

Atualizando as colunas Exercício

Para o objeto gt_tab, garante que as colunas tenham os seguintes nomes: Raça, Média, Desvio padrão, Primeiro quartil, Segundo quartil e Terceiro quartil.

Formatação de valores

fmt_number: formatação de valores numéricos de uma ou mais colunas.

```
gt_tab <- gt_tab |>
  fmt number (
    columns = c(
      dp_petala, q1_petala, q2_petala,
      q3_petala, m_petala
    decimals = 2,
    dec mark = ", ",
    sep mark = "."
  ) |>
  fmt number(
    columns = cv_petala,
    decimals = 2,
    dec mark = ", ",
    sep mark = ".",
    patter = "\{x\} \setminus \%"
gt_tab
```

Comprimento de pétala

Algumas estatísticas descritivas

	Dispers	Quantis				
Espécies	Desvio padrão	CV	Q1	Q2	Q3	Média
Espécies principais						
setosa	0,17	11,88 %	1,40	1,50	1,58	1,46
virginica	0,55	9,94 %	5, 10	5,55	5,88	5, 55
versicolor	0,47	11,03 %	4,00	4,35	4,60	4, 26

Formatação de valores Exercício

No objeto gt_tab, para as colunas numéricas coloque "," para o separador de casa decimal e "." para o agrupador de milhar.