

MultAV: Multiplicative Adversarial Videos

AVSS 2021

Shao-Yuan Lo and Vishal M. Patel Johns Hopkins University

Recall: Adversarial Examples

$$x_{adv} = x + \delta$$

$$f(\mathbf{x}_{adv}) \neq y$$

Recall: Adversarial Examples

• Deep networks are vulnerable to adversarial examples.

Adversarial Videos

- Video is a stack of consecutive images.
- A naïve way to generate adversarial videos: Use image-based method directly.

$$x^{adv} = x + \epsilon \cdot sign(\nabla_x L(x, y; \theta))$$

Image:
$$x \in R^{C \times H \times W}$$

Video:
$$x \in R^{F \times C \times H \times W}$$

Multiplicative Adversarial Videos

Additive attack:

$$x_{adv} = x + \delta$$

Multiplicative attack:

$$x_{adv} = x \odot \delta$$

Multiplicative Adversarial Videos

• Add-L∞:

$$x^{adv} = x + \alpha \cdot sign(\nabla_x L(x, y; \theta))$$
$$|x^{adv} - x| \le \epsilon$$

Mult-L∞:

$$x^{adv} = x \odot \alpha^{sign(\nabla_{\chi}L(x,y;\theta))}$$

$$\max(\frac{x^{adv}}{x}, \frac{x}{x^{adv}}) \le \epsilon$$
 Ratio bound

Multiplicative Adversarial Videos

• Add-L2:

$$x^{adv} = x + \alpha \cdot \frac{\nabla_x L(x, y; \theta)}{\|\nabla_x L(x, y; \theta)\|_2}$$
$$\|x^{adv} - x\|_2 \le \epsilon$$

• Mult-L2:

$$x^{adv} = x \odot \alpha^{\frac{\nabla_{x}L(x,y;\theta)}{\|\nabla_{x}L(x,y;\theta)\|_{2}}}$$

$$\|\frac{x^{adv}}{x}\|_2 \le \epsilon$$
 Ratio bound

Signal-dependent Perturbation

• Mult-L∞:

$$x^{adv} = x \odot \alpha^{sign(\nabla_x L(x,y;\theta))}$$

$$x^{adv} = x + \left[x \odot \left(\alpha^{sign(\nabla_x L(x,y;\theta))} - 1\right)\right]$$

• Mult-L2:

$$x^{adv} = x \odot \alpha^{\frac{\nabla_x L(x,y;\theta)}{\|\nabla_x L(x,y;\theta)\|_2}}$$

$$x^{adv} = x + \left[x \odot \left(\alpha^{\frac{\nabla_x L(x,y;\theta)}{\|\nabla_x L(x,y;\theta)\|_2}} - 1\right)\right]$$

Visual Results

Quantitative Results

• Dataset: UCF-101

Network	Clean	Training	MultAV- ℓ_{∞}	$\text{MultAV-}\ell_2$	MultAV-ROA	MultAV-AF	MultAV-SPA
3D ResNet-18	76.90	Clean	7.19	2.67	2.30	0.26	4.02
3D ResNet-18	76.90	Mult	47.00	16.23	44.12	66.35	55.54
		Add	41.61	9.94	42.45	51.23	54.74
			(-5.39)	(-6.29)	(-1.67)	(-15.12)	(-0.80)
3D ResNet-18	70.82	Mult	42.69	14.75	39.31	60.53	48.37
+ 3D Denoise		Add	31.46	9.15	37.72	48.98	48.06
			(-11.23)	(-5.60)	(-1.59)	(-11.55)	(-0.31)
3D ResNet-18	69.47	Mult	41.87	14.04	40.34	58.97	47.48
+ 2D Denoise		Add	30.16	10.23	39.65	47.82	47.18
			(-11.71)	(-3.81)	(-0.69)	(-11.15)	(-0.30)

Feature Visualization

Conclusion

Propose a new attack method against video recognition networks:
 Multiplicative Adversarial Videos (MultAV).

• MultAV can generalize to not only Lp-norm attacks, but also different types of physically realizable attacks.

 MultAV challenges the defense approaches that tailored to resisting additive adversarial attacks. We hope to encourage the research community to look into more general and more powerful defense solutions for video recognition networks.