Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 6

з дисципліни «МНД» на тему «Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами»

ВИКОНАВ: студент II курсу ФІОТ групи ІО-93 Прокопчук Д.І. Залікова - 9326

ПЕРЕВІРИВ: ас. Регіда П. Г.

Мета: Провести трьохфакторний експеримент і отримати адекватну модель – рівняння регресії, використовуючи рототабельний композиційний план.

Завдання:

- 1. Ознайомитися з теоретичними відомостями.
- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень x_1 , x_2 , x_3 . Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1; +1; -1; +1; -1; 0 для \overline{x}_1 , \overline{x}_2 , \overline{x}_3 .
- 3. Значення функції відгуку знайти за допомогою підстановки в формулу:

$$y_i = f(x_1, x_2, x_3) + random(10)-5,$$

де $f(x_1, x_2, x_3)$ вибирається по номеру в списку в журналі викладача.

- 4. Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- 5. Зробити висновки по виконаній роботі.

Алгоритм отримання адекватної моделі рівняння регресії

- 1) Вибір рівняння регресії (лінійна форма, рівняння з урахуванням ефекту взаємодії і з урахуванням квадратичних членів);
- 2) Вибір кількості повторів кожної комбінації (т = 2);
- 3) Складення матриці планування експерименту і вибір кількості рівнів (N)
- 4) Проведення експериментів;
- 5) Перевірка однорідності дисперсії. Якщо не однорідна повертаємося на п. 2 і збільшуємо т на 1);
- 6) Розрахунок коефіцієнтів рівняння регресії. При розрахунку використовувати натуральні значення х₁, х₂ и х₃.
- 7) Перевірка нуль-гіпотези. Визначення значимих коефіцієнтів;
- 8) Перевірка адекватності моделі рівняння оригіналу. При неадекватності повертаємося на п.1, змінивши при цьому рівняння регресії;

Варіант: 323

1	323	-5	15	-25	10	15	45	5 0+4 7*v1+3 6*v2+6 4*v3+6 8*v1*v1+0 3*v2*v2+5 3*v3*v3+3 2*v1*v2+0 9*v1*v3+2 7*v2*v3+0 1*v1*v2*v3
	323	-5	15	-25	10	15	45	5,0+4,7*x1+3,6*x2+6,4*x3+6,8*x1*x1+0,3*x2*x2+5,3*x3*x3+3,2*x1*x2+0,9*x1*x3+2,7*x2*x3+0,1*x1*x2*x3

Лістинг програми:

```
import numpy as np
from numpy.linalg import solve
   return matrix
   x3min = 15
   x3max = 45
   deltax3 = x3max - x03
```

```
x03, x03, -1.73 * deltax3 + x03,
        x1x3[i] = x1[i] * x3[i]
x1kv, x2kv, x3kv)))
    planning matrix with naturalized coeffs x = PrettyTable()
        dispersions.append(a / len(Y[i]))
```

```
for j in range(15):
            number lst.append(list for a[j][i])
        mx.append(sum(number lst) / len(number lst))
mx[9]],
a(10, 7), a(10, 8), a(10, 9), a(10, 10)]]
beta[6], beta[7], beta[8], beta[9], beta[10]))
    Gp = max(dispersions) / sum(dispersions)
```

```
coefs2 = []
            coefs2.append(beta[j])
            coefs1.append(beta[j])
        y_st.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i]
main(15, 3)
```

Результат виконання роботи:

+																		
1					M	аті	риця плану	/B	ання з н	ıa	гуралізова	ни	ими коефіц:	iε	нтами Х			
+	++																	
1	X1		X2		Х3		X1X2		X1X3		X2X3		X1X2X3		X1X1	X2X2	X3X3	
+																		
1	-5		-25		15		125		-75		-375		1875		25	625	225	
1	-5		-25		45		125		-225		-1125		5625		25	625	2025	
1	-5		10		15		-50		-75		150		-750		25	100	225	
1	-5		10		45		-50		-225		450		-2250		25	100	2025	
1	15		-25		15		-375		225		-375		-5625		225	625	225	
1	15		-25		45		-375		675		-1125		-16875		225	625	2025	
1	15		10		15		150		225		150		2250		225	100	225	
1	15		10		45		150		675		450		6750		225	100	2025	
1	-12.3		-7.5		30.0		92.25		-369.0		-225.0		2767.5		151.29	56.25	900.0	
1	22.3		-7.5		30.0		-167.25		669.0		-225.0		-5017.5		497.29	56.25	900.0	
1	5.0		-37.775		30.0		-188.875		150.0		-1133.25		-5666.25		25.0	1426.951	900.0	
1	5.0		22.775		30.0		113.875		150.0		683.25		3416.25		25.0	518.701	900.0	
1	5.0		-7.5		4.05		-37.5		20.25		-30.375		-151.875		25.0	56.25	16.403	
1	5.0		-7.5		55.95		-37.5		279.75		-419.625		-2098.125		25.0	56.25	3130.403	
Ī	5.0		-7.5		30.0		-37.5		150.0		-225.0		-1125.0		25.0	56.25	900.0	
+																		

+-					<u></u>	+								
1	Мат	рі	иця планува	ані	ня Ү	Ι								
+														
1	Y1	Ī	Y2	Ī	Y3	L								
+-		+		+		+								
1	1047.0	Ī	1041.0	1	1048.0	L								
1	8993.0	Ī	8990.0	1	8996.0	L								
1	1610.5	Ī	1612.5	1	1609.5	L								
1	11866.5	Ī	11867.5	1	11866.5	L								
1	416.0	Ī	416.0	1	423.0	L								
1	7403.0	Ī	7409.0	1	7404.0	L								
1	4269.5	Ī	4276.5	1	4269.5	L								
1	15673.5	Ī	15671.5	1	15664.5	L								
1	5555.187	Ī	5560.187	1	5556.187	L								
1	7396.907	Ī	7396.907	1	7401.907	L								
1	1356.795	1	1355.795	1	1356.795	L								
1	8079.9	Ī	8079.9	1	8082.9	L								
1	101.253	Ī	102.253	1	99.253	L								
1	15930.563	Ī	15928.563	1	15929.563	L								
1	4449.375	1	4444.375	1	4447.375	I								
+-		+		+		+								

Середні значення відгуку за рядками:
1045.333 8993.000 1610.833 11866.833 418.333 7405.333 4271.833 15669.833 5557.187 7398.574 1356.462 8080.900 100.920 15929.563 4447.042
Отримане рівняння регресії:
5.742 + 4.706 * X1 + 3.589 * X2 + 6.419 * X3 + 3.195 * X1X2 + 0.902 * X1X3 + 2.699 * X2X3+ 0.100 * X1X2X3 + 6.789 * X11^2 + 0.297 * X22^2 + 5.300 * X33^2 = 9

Експериментальні значення:
1044.222 8992.889 1608.706 11865.706 418.100 7406.101 4270.584 15669.585 5559.111 7398.467 1356.196 8082.984 102.985 15929.315 4447.029

Перевірка за критеріем Кохрена
бр = 0.18662952646239553
Дисперсія однорідна

Перевірка значущості коефіцієнтів за критерієм Стьюдента
Значущі коефіцієнти регресії: [5.742, 4.706, 3.589, 6.419, 3.195, 8.902, 2.699, 0.1, 6.789, 0.297, 5.3]
Незначущі коефіцієнти регресії: [3.742, 4.706, 3.589, 6.419, 3.195, 8.902, 2.699, 0.1, 6.789, 0.297, 5.3]
Значення з отриманним коефіцієнтами:
1044.222 8992.889 1608.706 11865.706 418.100 7406.101 4270.584 15669.585 5559.111 7398.467 1356.195 8082.984 102.983 15929.312 4447.029

Перевірка адекватності за критерієм Фішера Ep - 3 0481874250557444

Рівняння регресії неадекватне при рівні значимості (