Universidade Tecnológica Federal do Paraná

Engenharia da Computação Lógica Reconfigurável

Relatório (Atividade2)

Aluno: Arthur Henrique de Oliveira Petroli Professor orientador: Marcelo de Oliveira

Conteúdo

1	PinplanerEX1	1
2	Introdução	2
3	Código	3
4	Tabela—Mapa—Equação	4
5	Diagrama RTL	5
6	Simulação	6

1 PinplanerEX1

Figura 1: Pinplaner referente a atividade1

2 Introdução

Esta atividade envolve o projeto de um circuito digital simples, no qual quatro chaves (SW1, SW2, SW3, SW4) fazem parte do controle de uma máquina de cópias. A lógica por trás do circuito é que o sistema deve gerar uma saída alta (1) sempre que duas ou mais chaves estiverem fechadas ao mesmo tempo. No entanto, há uma restrição: as chaves SW1 e SW4 nunca estarão fechadas simultaneamente.

Os principais conceitos envolvidos incluem:

- Tabela-verdade: A primeira etapa do projeto consiste em definir a tabela-verdade do circuito, que mostra todas as possíveis combinações de entradas (chaves abertas ou fechadas) e suas respectivas saídas.
- Mapa de Karnaugh: Após construir a tabela-verdade, o Mapa de Karnaugh será usado para simplificar a expressão booleana que define a lógica do circuito.
- Equação booleana: A equação booleana simplificada resultante do Mapa de Karnaugh será usada para definir o comportamento do circuito digital.
- Implementação em VHDL: A implementação prática será feita em VHDL, uma linguagem de descrição de hardware amplamente usada para descrever circuitos digitais, seguida de simulação para verificar o funcionamento.
- Teste prático: O circuito será implementado fisicamente em uma placa, com as chaves como entradas e um LED como saída para indicar quando a condição (duas ou mais chaves fechadas) é satisfeita.

Esses conceitos combinam teoria de circuitos lógicos, simplificação de funções booleanas e implementação prática em hardware digital, sendo úteis para o desenvolvimento de sistemas de controle em eletrônica digital.

3 Código

Figura 2: Código referente a atividade

4 Tabela—Mapa—Equação

Figura 3: Tabela para o mapa de Karnaugh e equação booleana

5 Diagrama RTL

Figura 4: RTL referente a atividade

6 Simulação

Figura 5: Simulação referente a atividade