The group G is isomorphic to the group labelled by [48, 33] in the Small Groups library Ordinary character table of $G \cong ((C4 \times C2) : C2) : C3$:

Trivial	Source	character	table of	λf	$G \simeq$	$((C4 \mathbf{x})$	C(2)	\cdot C2) \cdot	C3 at	n=2

This is source character table of $G = ((G + X + G Z) + G Z) + G Z$.																		
Normalisers N_i		1		N_2		N_3		N_4		N_5	N_6	N_7		N_8	N_9		N_{10}	
p-subgroups of G up to conjugacy in G		1		P_2		P_3		P_4		P_5	P_6	P_7		P_8	P_9		P_{10}	
Representatives $n_j \in N_i$	1a $3a$	3b	1a	3a	3b	1a	1a	3a	3b	1a	1a	1a $3a$	3b	1a	1 <i>a</i>	1 <i>a</i>	3a	3b
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 $	16 4	4	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} \right $	16 4 * E(3)	2 $4*E(3)$	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} \right] $	16 $4*E(3)$	$4*E(3)^2$	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $		2	8	2	2	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	8 2*E(3	_	8	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	8 2 * E(3)	2 * E(3)	8	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 2 \cdot \chi_{13} + 1 \cdot \chi_{14}$	24 0	0	0	0	0	4	0	0	0	0	0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	4 1	1	4	1	1	0	4	1	1	0	0	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} $	4 E(3)	$E(3)^{2}$	4	E(3)	$E(3)^{2}$	0		E(3)	$E(3)^2$	0	0	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	$4 E(3)^2$	E(3)	4	$E(3)^2$	E(3)	0	4 E	$E(3)^2$	E(3)	0	0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$		0	12	0	0	0	0	0	0	4	0	0 0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $	12 0	0	12	0	0	4	0	0	0	0	4	0 0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $	2 2	2	2	2	2	0	0	0	0	2	0	2 2	2	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0$	2 2 * E(3)		1	$2 * E(3)^2$	2 * E(3)	0	0	0	0	2	0	$2 2 * E(3)^2$	` /_	0	0	0	0	0
	2 2 * E(3	$2 * E(3)^2$	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	2	0	2 2 * E(3)	$2 * E(3)^2$	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $	6 0	0	6	0	0	2	6	0	0	2	2	0 0	0	2	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $	6 0	0	6	0	0	4	0	0	0	2	4	0 0	0	0	2	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 $		1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0$	1 $E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	1	1 E	$E(3)^2$	E(3)	1	1	$1 E(3)^2$	E(3)	1	1	1	$E(3)^{2}$	E(3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	1 I	E(3)	$E(3)^2$	1	1	1 E(3)	$E(3)^{2}$	1	1	1	E(3)	$E(3)^{2}$
											•						-	

- $P_2 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48)]) \cong C2$
- $P_3 = Group([(1,24)(2,5)(3,37)(4,38)(6,9)(7,13)(8,15)(10,17)(11,45)(12,46)(14,20)(16,22)(18,26)(19,28)(21,30)(23,31)(25,48)(27,33)(29,35)(32,39)(34,41)(36,42)(40,43)(44,47)]) \cong C2(3,32)(3,32)(3,32)(3,33$
- $P_4 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47,48)]) \cong C4$
- $P_5 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,17,6,5)(2,24,10,9)(3,30,14,13)(4,31,16,15)(7,37,21,20)(8,38,23,22)(11,41,27,26)(12,42,29,28)(18,45,34,33)(19,46,36,35)(25,47,40,39)(32,48,44,43)]) \cong C4$
- $P_7 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,17,6,5)(2,24,10,9)(3,30,14,13)(4,31,16,15)(7,37,21,20)(8,38,23,22)(11,41,27,26)(12,42,29,28)(18,45,34,33)(19,46,36,35)(25,47,40,39)(32,48,44,43)(19,20,36,37)(25,26,40,41)(32,33,44,45)]) \cong Q8$
- $P_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,33,42,46)(39,43,47,48), (1,2,6,10)(3,23,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,34,44,45)(28,$
- $P_9 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(25,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,24)(2,5)(3,37)(4,38)(6,9)(7,13)(8,15)(10,17)(11,45)(12,46)(14,20)(16,22)(18,26)(19,28)(21,30)(23,31)(25,48)(27,33)(29,35)(32,39)(34,41)(36,42)(40,43)(44,47), (1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,46,21,35)(8,9,23,24)(11,47,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,33,44,45)] \\ \cong D_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,47,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,48)(27,33)(29,35)(25,40)(26,41)(28,42)(27,33)(29,35)(27,33)(27,38)(27,33)(27,38)(27,38)(27,38)(27,33)(27,38)(2$
- $P_{10} = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,47,27,39)(12,38)(25,32,40)(13,47)(28,33,41,45)(28,35,42,46)(39,47)(43,48), (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(26,33,41,4$

- $N_3 = Group([(1,24)(2,5)(3,37)(4,38)(6,9)(7,13)(8,15)(10,17)(11,45)(12,46)(14,20)(16,22)(18,26)(19,28)(21,30)(23,31)(25,48)(25,40)(12,49)(23,31)(25,48)(27,33)(29,35)(32,39)(34,41)(36,42)(40,43)(44,47), \\ (1,2,6,10)(3,7,14,21)(4,8,16,23)(5,9,17,24)(11,18,27,34)(12,19,29,36)(13,20,30,37)(15,22,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,46)(39,47)(43,48)] \\ \cong C4 \times C2$
- $N_4 = Group([(1,2,6,10)(3,7,14,21)(4,8,16,23)(5,40)(3,7,14,21)(4,8,16,23)(5,40)(25,4$
- $N_5 = Group([(1,17,6,5)(2,24,10,9)(3,44,43),(1,2,6,10)(3,44,43),$
- $N_6 = Group([(1,24)(2,5)(3,37)(4,38)(6,9)(7,13)(8,15)(12,48)(25,31,37)(4,38)(6,9)(7,13)(8,15)(12,48)(25,31,38)(25,32,40,44)(26,33,41,45)(28,35,42,40)(36,47)(43,48),(1,2,6,10)(3,41,45)(28,32,44)(36,42)(40,43)(44,47),(1,4,6,16)(2,31,38)(25,32,40,44)(26,33,41,45)(28,36,42)(11,25,27,40)(13,42,30,28)(18,32,34,44)(20,46,37,35)(26,47,41,39)(33,48,45,43)(25,32,40,44)(26,33,41,45)(28,36,42)(21,30,43,45)(28,36,43,45)(28,$
- $N_8 = Grow([1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(9,24)(11,27,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,33,44,45), (1,2,6,10)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(9,24)(11,27,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,33,44,45), (1,2,6,10)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(9,24)(11,27,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,34,44)(20,46,37,35)(26,47,41,39)(33,48,45)(13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,34,44)(20,46,37,35)(26,47,41,39)(33,48,45)(13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,42)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,23)(28,48,24)(21,48,24)(28,48,24)(2$

 $|\chi_4|$ 1 -1 E(3) 1 1 -E(3) -1 -1 $E(3)^2$ E(3) $-E(3)^2$ -E(3) $E(3)^2$ $-E(3)^2$ $|\chi_6|$ 1 1 E(3) 1 1 E(3) 1 1 $E(3)^2$ E(3) $E(3)^2$ E(3) $E(3)^2$ $|\chi_8|$ 2 2 * E(4) -1 0 -2 -E(4) 0 -2 * E(4) -1 1 -E(4) E(4) 1 E(4) $| \chi_9 | 2 - 2*E(4) - E(3) 0 - 2 E(12)^7 0 2*E(4) - E(3)^2 E(3) E(12)^{11} - E(12)^7 E(3)^2 - E(12)^{11}$ $|\chi_{10}|$ 2 -2*E(4) $-E(3)^2$ 0 -2 $E(12)^{11}$ 0 2*E(4) -E(3) $E(3)^2$ $E(12)^7$ $-E(12)^{11}$ E(3) $-E(12)^7$ $|\chi_{11}|$ 2 2 * E(4) -E(3) 0 -2 -E(12)⁷ 0 -2 * E(4) -E(3)² E(3) -E(12)¹¹ E(12)⁷ E(3)² E(12)¹¹ $\chi_{14} \mid 3 \qquad 3 \qquad 0 \qquad -1 \quad 3 \qquad 0 \qquad -1 \qquad 3 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$

- $N_9 = Group([(1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(9,24)(11,47)(12,29)(13,30)(15,31)(18,34)(19,20,36,37)(25,38,40,42)(32,34)(33,45)(32,34)(43,47)(43,48)(19,20,36,37)(25,38,40,42)(32,34)(33,45)(33,45)(33,$
- $(C4 \times C2) : C3 \times (C4 \times C2) : C3 \times (C4 \times C2) : C4 \times (C4 \times C4) : C4 \times (C4$