Lemme de Krasner

1 Preuve

Théorie de Galois et invariance de la valeur absolue.

2 Un exemple : $\mathbb{Q}_p(\zeta_p) = \mathbb{Q}_p((-p)^{\frac{1}{p-1}})$

C'est dingo : On peut montrer que si $\alpha = (-p)^{\frac{1}{p-1}}$ alors il existe j tel que

$$v_p(\alpha - (\zeta_p^j - 1)) \ge \frac{1}{p-1} + \epsilon$$

pour $0<\epsilon$ sachant que $v_p(\zeta_p^j-\zeta_p^k)=\frac{1}{p-1}$ si $j\neq k \mod p$. Pour ça on peut remarquer que

$$\prod_{j=1}^{p-1} (1 - \zeta_p^j) = p = -\alpha^{p-1}$$

d'où

$$\prod_{j=1}^{p-1} \frac{1-\zeta_p^j}{\alpha} = -1.$$

Maintenant si on calcule $\prod_{j=1}^{p-1} (\alpha - (1-\zeta_p^j))$ on remarque que en notant J_i les sous-ensembles de $\{1,\ldots,p-1\}$ de taille i:

$$\prod_{j=1}^{p-1} (\alpha - (1 - \zeta_p^j)) = 1 + S + (-1)$$

$$= \sum_{i=1}^{p-2} \sum_{(j_1, \dots, j_i) \in J_i} \alpha^i (1 - \zeta_p^{j_1}) \dots (1 - \zeta_p^{j_i})$$

maintenant la valuation est donnée par les sommes de produits de taille 1 (trace= p) et on a

$$v_p(\prod_{j=1}^{p-1}(\alpha - (1 - \zeta_p^j)) \ge v_p(\alpha) + v_p(p)$$

en particulier il doit exister j tel que

$$v_p(\alpha - (1 - \zeta_p^j)) \ge \frac{1}{(p-1)^2} + \frac{1}{p-1}$$

d'où ce qu'on veut.

Remarque 1. En fait je m'étais trompé sur le calcul mais j'ai mieux : On évalue $\phi_p(X+1)$ presque en α et comme $X\phi_p(X+1) = (X+1)^p - 1$ comme d'hab chaque coeff est divisible par p (!) d'où les autres sommes sont de valuations $\geq v_p(\alpha^i) + v_p(p)$ et le résultat. Attention nous on a une cancellation alors que $v_p(\phi_p(\alpha+1))$ y'a le coeff dominant qui est 1.