Teil 1: Differential rechnung im \mathbb{R}^n

an6: Mittelwertsatz und der Satz von Schwarz

Stichworte: MWS, stetig diff'bar, mehrfache partielle Ableitung, Satz von Schwarz

Literatur: [Hoff], Kapitel 9.5

6.1. Einleitung: Der MWS wird für Skalarfelder verallgemeinert.

6.2. Erinnerung: Hatten der MWS: Vor.: $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ stetig, in [a, b] diff'bar.

Beh.: $\exists t \in]a, b[: f(b) - f(a) = f'(t) \cdot (b - a).$

Dies ist so <u>nicht</u> übertragbar auf Abbildungen mit Werten in \mathbb{R}^2 :

Betrachte $f: \mathbb{R} \to \mathbb{R}^2, t \to \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \in \mathbb{R}^2 \text{ auf } [0, 2\pi].$ Aber: $f(2\pi) - f(0) = 0 \neq \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \cdot 2\pi$, da $||\begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}||_2 = 1$ für alle $t \in \mathbb{R}$.

6.3. Konvention/Vereinbarung: Betrachte also nur \mathbb{R}^1 -wertige Funktion (d.h. Skalarfelder), die auf $U\subseteq\mathbb{R}$ definiert sind, wo jeder Punkt $a\in U$ innerer Punkt von U ist. Für je zwei Punkte $a,b\in U\subseteq\mathbb{R}^n$ sei weiter die (Verbindungs-)Strecke $\overline{ab} \subseteq U$, wobei $\overline{ab} := \{a + t(b-a); t \in [0,1]\}$. U heißt dann Konvex (Konvexe Menge).

6.4. Mittelwertsatz:

Vor.: Sei $\overline{ab} \subseteq U \subseteq \mathbb{R}^n$ wie in 6.3, $f: U \to \mathbb{R}$ in allen Punkten von \overline{ab} diff'bar.

Beh.: $\exists c \in \overline{ab} \setminus \{a, b\}$ mit $\underline{f(b)} - \underline{f(a)} = f'(c) \cdot (b - a) = \langle f'(c)^T, b - a \rangle$.

Bew.: Setze h(t) := f(a + t(b - a)), $h: [0, 1] \to \mathbb{R}$, $t \mapsto a + t(b - a) \xrightarrow{f} h(t)$. Werde auf h den alten MWS An12.13 an:

 $\exists \xi \in]0,1[\text{ mit } h(1) - h(0) = h'(\xi)(1-0) \Rightarrow f(b) - f(a) = f'(a+\xi(b-a))(b-a) = f'(c) \cdot (b-a)$ $mit c := a + \xi \cdot (b - a) \in \overline{ab} \setminus \{a, b\}.$

6.5. Dies liefert folgende Möglichkeit zur Fehlerabschätzung:

Sei $b = a + \begin{pmatrix} \triangle \alpha_2 \\ \vdots \\ \triangle \alpha_n \end{pmatrix} \in \mathbb{R}^n$.