

Ausarbeitung

Werkzeuge für die Algorithmenimplementierung auf Quantencomputern

im Rahmen der Projektarbeit-II

Timo Grautstück

Betreuer: Prof. Dr.-Ing. Ulf Niemeyer

Fachbereich: Informations- und Kommunikationtechnik

Abstract

Um sichere Datenübertragung zu gewährleisten, werden häufig asymmetrische Verschlüsselungsverfahren eingesetzt. Aktuell weit verbreitete sowie praktisch eingesetzte Verfahren basieren auf harten mathematischen Problemen wie der Faktorisierung ganzer Zahlen oder dem Berechnen diskreter Logarithmen. Diese Probleme lassen sich nicht effizient durch konventionelle Algorithmen auf Digitalrechnern lösen. Dies gilt jedoch nicht für Quantencomputer, durch vielversprechende Quantenalgorithmen wie dem von Shors erhofft man sich diese harten Probleme in Polynomialzeit zu lösen. Dies ist einer der schwerwiegendsten Gründe, warum Wirtschaft und Wissenschaftler quantensichere Kryptographie sowie Quantencomputer vorantreiben wollen. In dieser Arbeit sollen Grundlagen, sowie die Funktionsweise von Quantencomputern dargestellt werden. Darunter fällt auch die Simulation und reale Programmierung von Quantenschaltungen, sowie Quantenalgorithmen die einen Bezug zur modernen Kryptographie aufweisen.

Inhaltsverzeichnis

1.	Einleitung	1		
2.	Grundlagen Quantencomputer	2		
	2.1. Quantenbits	2		
	2.2. Multiple Quantenbits			
	2.3. Quantengatter			
	2.4. Quantenschaltungen	9		
3.	Programmierung von Quantencomputer	11		
	3.1. Software und Programmiersprachen	11		
	3.2. Simualtion	12		
	3.3. Quantum Hardware			
4.	Implementierung von Quantenalgorithmen	14		
	4.1. Algorithmenüberblick	14		
	4.2. Quanten Fourier-Transformation	15		
	4.3. Quanten-Phasenschätzung	15		
	4.4. Shors Algorithmus			
5.	Fazit	16		
	5.1. Zukünftige Arbeiten	18		
	5.2. Zusammenfassung	20		
Α.	Anhang	22		
В.	3. Literaturverzeichnis			

1. Einleitung

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

2. Grundlagen Quantencomputer

2.1. Quantenbits

Viele Jahre wissenschaftlicher und technologischer Fortschritt haben zur Entwicklung des Quantenbits, kurz *Qubit* beigetragen. Genau wie das klassische Bit, die kleinste Maßeinheit zur Darstellung von Informationsgehalt, kann auch das Quantenbit die Zustände 1 und 0 annehmen. Wesentlicher Unterschied zu einem klassischen Bit ist, dass es sich bei einem Qubit um ein Zweizustandssystem handelt, d.h. es kann sich zu einer gewissen Wahrscheinlichkeit in einem dieser beiden Zustände 1 oder 0 befinden. Hierbei ist wichtig, dass der Zustand dieses Quantenbits nur dann in Erfahren gebracht werden kann, indem es gemessen wird. Um den Zustand eines Qubits darzustellen werden Zustandsvektoren genutzt. Um diese Zustände mathematisch zu veranschaulichen wird die so genannte Dirac Noation |\rangle genutzt, dies ist die standard Notation, um in der Quantenmechanik Zustände darzustellen.

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{2.1}$$

Somit zeigt 2.1 die Basiszustände (*Computational basis state*) $|0\rangle$ und $|1\rangle$, welche eine orthogonale Basis bilden [1]. Es ist jedoch auch möglich, dass sich ein Quantenbit in einem Zustand befindet, der sich von diesen beiden unterscheidet.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \qquad \alpha, \beta \in \mathbb{C}$$
 (2.2)

Das heißt auch Linearkombinationen können aus diesen Zuständen gebildet werden 2.2. Dies wird als Superpostion oder auch Überlagerung bezeichnet, wobei α und β die Amplituden des Zustands $|\psi\rangle$ darstellen.

Um zu Erfahren, zu welcher Wahrscheinlichkeit sich ein Quantenbit in einem bestimmten Zustand befindet, muss das Qubit gemessen werden. Für den Zustandsvektor $|\psi\rangle$ erhält man somit nach der Messung, mit der Wahrscheinlichkeit $|\alpha|^2$ das Ergebnis 0. Und mit der Wahrscheinlichkeit $|\beta|^2$ das Ergebnis 1.

$$p(|0\rangle) = |\langle 0|\psi\rangle|^{2}$$

$$\Rightarrow |\alpha\langle 0|0\rangle|^{2} + |\beta\langle 0|1\rangle|^{2}$$

$$= |\alpha|^{2}$$
(2.3)

Die Messung wird durchgeführt, indem das Innereprodukt über den Zustandsvektor und den zugehörigen Basiszustand gebildet und quadriert wird 2.3. Um eine Wahrscheinlichkeit von 1 zu gewährleisten, muss der Zustandsvektor normalisiert sein. Somit muss 2.4 für den Zustandsvektor gelten.

$$\langle \psi | \psi \rangle = 1$$

$$\Rightarrow |\alpha|^2 + |\beta|^2 = 1$$
(2.4)

Vor der Messung eines Qubits kann es sich in einem Kontinuum an Zuständen zwischen $|0\rangle$ und $|1\rangle$ befinden [1]. Das ermöglicht einem Quantenbit sich in den Zuständen $|0\rangle$ und $|1\rangle$ gleichzeitig zu befinden. Auf diesen Zustandsvektor wird oft zurückgegriffen, 2.5 soll diesen verdeutlichen.

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \tag{2.5}$$

Da der Zustandsvektor normalisiert sein muss 2.4, ist es möglich die allgemeine Darstellung eines Quantenbits 2.2 mit Hilfe des Additionstheorems $\sqrt{\sin(x)^2 + \cos(x)^2} = 1$ zu vereinfachen.

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle \qquad \theta, \phi \in \mathbf{R}$$
 (2.6)

Zustandsvektor $|+\rangle$ lässt sich somit durch $\phi=0$ und $\theta=\frac{\pi}{2}$ darstellen. 2.6 wird als Blochvektor bezeichnet, jeder Blochvektor lässt sich als Punkt auf einer dreidimensionalen Kugel (Bloch-Kugel) durch die Kugelkoordinaten ϕ und θ mit einem Radius von r=1 darstellen. Die Bloch-Kugel ist ein Unterraum des Hilbertraums.

Abbildung 2.1.: Darstellung von Quantenbits innerhalb der Bloch-Kugel

Jede Linearkombination zulässiger Vektoren innerhalb dieses Unterraums bilden wieder einen zulässigen Vektor, daher gibt es unendlich viele Punkte auf der Bloch-Kugel.

2.2. Multiple Quantenbits

Um Algorithmen oder aufwendige Berechnungen auf Quantencomputern auszuführen wird mehr als nur ein Qubit bzw. ein Bit an Information benöntigt. Daher ist es wichtig zu verstehen, wie einzelne Qubits miteinander Interagieren, sich zusammenfügen lassen und durch Vektoren beschrieben werden.

Das Kronecker-Produkt wird genutzt um Qubits Zusammenzuführen, bzw. deren kollektiven Zustand zu bilden. 2.7 zeigt zwei mögliche kollektive Zustände der Basiszustände aus 2.1.

$$|0\rangle \otimes |1\rangle = |01\rangle = \begin{bmatrix} 1 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ 0 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$|0\rangle \otimes |0\rangle = |00\rangle = \begin{bmatrix} 1 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ 0 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(2.7)$$

Somit lassen sich alle vier Basiszustände von zwei Qubits, aus den zwei Basiszuständen von einem Qubit durch das Kronecker-Produkt bilden. Man gehe davon aus, dass Zustände von mehreren Qubits sich also genau wie Zustände von einzelnen Qubits beschreiben lassen. n Qubits besitzen 2^n Amplituden, d.h. diese wachsen exponentiell mit der genutzten Anzahl an Qubits.

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle = \begin{bmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{bmatrix}$$
(2.8)

Eine allgemeine Darstellung eines Zustands von zwei Qubits zeigt 2.8, ein 4-Dimensionaler Vektor mit den jeweiligen Amplituden. Auch das quadrieren dieser Amplituden zeigt, mit welcher Wahrscheinlichkeit eines der 4 Ergebnisse 00, 01, 10, 11 nach der Messung der Qubits erhalten wird. Das heißt auch dieser Zustand muss durch seine Amplituden normalisiert sein, also gilt auch für den Zustandsvektor aus 2.8

$$|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1.$$
 (2.9)

Ebenso werden die Qubits wie in 2.3 dargestellt gemessen. Um z.B. die Wahrscheinlichkeit zu erfahren, das sich der Zustand $|\psi\rangle$ in Zustand $|11\rangle$ befindet wird folgende Messung durchgeführt

$$p(|11\rangle) = |\langle 11|\psi\rangle|^2 = |\alpha_{11}|^2.$$
 (2.10)

Ebenso können auch Messungen, nach den Basisvektoren $|0\rangle$ und $|1\rangle$ durchgeführt werden.

Oft werden Zusammensetzungen aus einzelnen Qubits auch Quantenregister genannt, eine allgemeine und kompakte Form dieser Quantenregister aus [2], sieht folgendermaßen aus

$$R = \sum_{i=0}^{2^n - 1} \alpha_i |i\rangle \tag{2.11}$$

Somit entspricht $|0\rangle, |1\rangle, \dots, |2^n - 1\rangle$ den Zuständen $|0 \dots 0\rangle, |0 \dots 1\rangle, \dots, |1 \dots 1\rangle$.

2.3. Quantengatter

Um Informationen bzw. Bits zu manipulieren, werden Schaltungen benötigt welche Gatter beinhalten. Dies gilt für klassische Rechner und Quantencomputer. Um in der Digitaltechnik die Funktionsweise von Gattern darzustellen werden gerne Wahrheitstabellen genutzt (rechte Spalte Tabelle 2.1). Bekannte Gatter-Typen aus der Digitaltechnik, wie der Negation oder dem Exklusiv-ODER können auch in der Welt der Quantencomputer abgebildet werden. Jedoch ist der Aufbau dieser Gatter etwas gewöhnungsbedürfdig, denn die Realisierung eines auf n Qubits operierenden Gatters erfolgt durch eine unitäre $2^n \times 2^n$ -Matrix. Die Anwendung eines Gatters auf einen Zustandvektor entspricht mathematisch also einer unitären Transformation und führt eine Rotation auf der Bloch-Kugel aus. Dies geschieht durch die Bildung des Skalarprodukts über der unitären Matrix und dem Zustandvektor.

Eine Matrix wird als unitär bezeichnet, wenn das Produkt aus dieser Matrix und dessen adjungierte Matrix eine Einheitsmatrix bildet.

$$I = A^{\dagger} A \tag{2.12}$$

Die Adjungierte Matrix wird gebildet, indem alle Einträge in dieser Matrix komplex konjungiert und transponiert werden.

$$A^{\dagger} = A^{*T} \tag{2.13}$$

Somit sind alle Quantengatter unitäre Matrizen, genau wie die drei aus der Quantenmechnik bekannten Paulimatrizen X,Y und Z Tabelle 2.1. Diese führen eine Rotation von π um die x,y und z-Achse auf der Bloch-Kugel durch. Das Hadamard-Gatter H ermöglicht eine Abweichung der Basiszustände $|0\rangle$ und $|1\rangle$ und erzeugt eine Superposition dieser Zustände [3]. Dies wären die Zustandvektoren $|+\rangle$ und $|-\rangle$, welche auch auf der Bloch-Kugel in Abbildung 2.1 zu erkennen sind.

Zwei parametrisierte Gatter, das P-Gatter (Phasen-Gatter) und U-Gatter die nicht

in Tabelle 2.1 aufgeführt sind, erlauben die Spezifizierung von sämtlichen Gattern bzw. unedlich vielen Gattern die auf einem Qubit operieren.

$$P(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix} \qquad \phi \in \mathbf{R}$$

$$U(\theta, \phi, \lambda) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -e^{i\lambda}\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} \qquad \theta, \phi, \lambda \in \mathbf{R}$$

$$(2.14)$$

Matrix	Schaltungssymbol	Wahrheitstabelle
$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ q\rangle$ — X —	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	q angle — Y —	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	q angle — Z —	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$ q\rangle$ — H —	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$ q\rangle$ — S	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$	$ q\rangle$ — T —	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabelle 2.1.: Grundlegende 1-Qubit Gatter

Aus dem P-Gatter lassen sich die Gatter Z, S und T konstruieren. 2.15 zeigt die

Spezifizierung des S- und T-Gattes durch das Phasengatter.

$$P\left(\phi = \frac{\pi}{2}\right) = S$$
 $P(\phi = \pi) = Z.$ (2.15)

Das *U*-Gatter ermöglicht die Spezifizierung jeglicher Gatter, z.B. kann das Hadamard-Gatter folgendermaßen durch das *U*-Gatter spezifiziert werden

$$U\left(\theta = \frac{\pi}{2}, \phi = 0, \lambda = \pi\right) = H. \tag{2.16}$$

Somit kann es eine große Menge an nützlichen Gattern geben, die auf einem Qubit operieren. Es ist möglich diese Gatter auch auf meheren Qubits operieren zu lassen. Diese Gatter werden dann kontrollierte Gatter gennant, da diese ein oder mehrere kontrollierende Qubits (controlled qubits) und ein Zielqubit (target qubit) beinhalten. Tabelle 2.2 zeigt oft genutzte Gatter die auf mehr als einem Qubit operieren.

Ein kontrolliertes Gatter funktioniert folgendermaßen: Immer dann wenn sich die kontrolliernden Bits im Zustand 1 befinden wird eine Transformation auf das Zielbit ausgeführt. Die meisten dieser kontrollierten Gatter können durch 1-Qubit Gatter und dem kontrollierten X-Gatter (CNOT o. CX) rekonstruiert werden [4]. Das heißt auch, das alle in Tabelle 2.2 dargestellten Gatter, die selbe unitäre Transformation wie die Gatter aus Tabelle 2.1 ausführen. Diesmal jedoch nur auf das Zielbit, immer genau dann wenn das kontrollierende Bit 1 ist.

Bei dem Aufbau einer Quantenschaltung ist es somit wichtig zu wissen, welches Qubit als kontrolliertes Bit und welches als Zielbit für ein Gatter dient. Aus diesem Grund erhalten in dieser Ausarbeitung die kontrollierten Gatter einen Index. In diesem stellen die ersten Zahlen die kontrollierenden Bits und die letzte Zahl das Zielbit dar. 2.17 zeigt die Zusammensetzung der beiden möglichen Matrizen für das CX-Gatter.

$$CX_{01} = |0\rangle\langle 0|\otimes I + |1\rangle\langle 1|\otimes X$$

$$CX_{10} = I\otimes|0\rangle\langle 0| + X\otimes|1\rangle\langle 1|$$
(2.17)

Dabei ist $|x\rangle\langle x|$ das äußere Produkt. $\langle x|$ ist der komplex konjungiert und transponiert Vektor von $|x\rangle$ und I die Einheitsmatrix.

Ein wichtiges Gatter in Tabelle 2.2 ist das *SWAP*-Gatter, welches die Funktion erfüllt die Zustände der beiden Qubits zu Tauschen. Auch dieses Gatter kann z.B. nur durch CX-Gatter aufgebaut werden 2.2. Jeodch ist dies nicht der einzige Weg

Abbildung 2.2.: SWAP-Gatter realisiert aus 3 kontrollierten CX-Gattern

ein SWAP-Gatter aus anderen Gattern zu realisieren.

Matrix	Schaltungssymbol	Wahrheitstabelle
$CX_{01} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$ q_0\rangle \longrightarrow q_1\rangle \longrightarrow$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$CZ_{01} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$	$ q_0\rangle$ $ q_1\rangle$ $ Z$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{array}{c c} q_0\rangle \\ q_1\rangle \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$CCX_{012} = \begin{bmatrix} I_2 & 0_2 & 0_2 & 0_2 \\ 0_2 & I_2 & 0_2 & 0_2 \\ 0_2 & 0_2 & I_2 & 0_2 \\ 0_2 & 0_2 & 0_2 & X \end{bmatrix}$	$ q_0\rangle$ $ q_1\rangle$ $ q_2\rangle$	$ \begin{array}{ c c c c c } \hline Fall & q_0q_1q_2\rangle & CCX_{012} q_0q_1q_2\rangle \\ \hline 1 & 000\rangle & 000\rangle \\ 2 & 001\rangle & 001\rangle \\ 3 & 010\rangle & 010\rangle \\ 4 & 011\rangle & 011\rangle \\ 5 & 100\rangle & 100\rangle \\ 6 & 101\rangle & 101\rangle \\ 7 & 110\rangle & 111\rangle \\ 8 & 111\rangle & 110\rangle \\ \hline \end{array} $
$CP_{10} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\phi} \end{bmatrix}$	$ q_0\rangle$ P $ q_1\rangle$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabelle 2.2.: Ausgewählte 2-, 3-Quanten Gatter

2.4. Quantenschaltungen

Eines der wichtigsten Elemente in Quantenschaltungen, wurde in der vorherigen Sektion 2.3 besprochen, die Quantengatter. Denn die Quantenschaltung ist eine geordnete Sequenz von Quantengattern, Messungen und Initialisierungen [3]. Sie beschreiben ein Modell das genutzt wird, um Berechnungen auf Quantencomputern durchzuführen. D.h. immer dann wenn eine Berechnung auf einem Quantencomputer durchgeführt wird, kann diese Berechnung auch in Form einer Quantenschaltung dargestellt werden. Die meisten Berechnungen basieren jedoch schon vor ihrer Ausführung auf vorher erstellte Quantenschaltungen. Was genau eine Quantenschaltung ist und wie diese Funktionieren, soll in dieser Sektion durch ein Beispiel verdeutlicht werden.

Eine relativ einfache Schaltung, mit einem jedoch ziemlich effektiven Ergebnis zeigt Abbildung 2.3. Diese Schaltung kann genutzt werden um einen maximal

Abbildung 2.3.: Quantenschaltung zur Erzeugung von Bell-Zuständen

verschränkten Zustand zu erzeugen. Diese Zustände werden Bell-Zustände (*Bell-State*) genannt 2.18. Diese spielen eine zentralle Rolle in der Quanteninformation und sind unter anderem Grundbestandteil der Quantenteleportation und Quantenkryptographie.

Ein Zustand wird als verschränkt bezeichnet, wenn er nicht in ein Produkt von Zuständen der einzelnen Bits zerlegt werden kann [2]. Als maximal verschränkt bezeichnet man den Zustand dann, wenn deren Bits maximal stark gekoppelt sind. D.h. jedes an diesem Zustand beteiligte Qubit, wird stets das selbe Ergebnis liefern. Ebenso muss der Einfluss der Messung dieser einzelnen Qubits auf das endgültig gemessene Ergebnis gleich sein.

$$|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$|\beta_{01}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

$$|\beta_{10}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

$$|\beta_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$
(2.18)

Die Schaltung 2.3 ist von links nach rechts zu lesen und enthält bisher nur zwei Qubits, ein Hadamard-Gatter und ein CX-Gatter. Die geraden Linien sollen den

Zeitablauf der Qubits darstellen. Um nun das Ergebnis dieser einzelnen Qubits zu erhalten müssen diese gemessen und das Ergebnis auf klassische Bits übertragen werden. Dazu muss die Schaltung folgendermaßen erweitert werden 2.4. Das neu hinzugekommene Symbol steht nun für eine Messung. Das Ergebnis die-

Abbildung 2.4.: Messen von Qubits in der Schaltung zur Ereugung von Bell-Zuständen

ser Messung wird in einem klassischen Bit gespeichert, doppelte Linien stehen in Quantenschaltungen also für klassische Bits.

Es gibt eine Menge an Schaltungen die interessante Probleme lösen oder Algorithmen implementieren, z.B. die Implementierung des Bernstein-Vazirani Problems [5]. Oder die Implementierung des bekannten Quantensuchalgorithmus von Grover [6]. All diese Schaltungen sind unterschiedlich aufgebaut haben aber einige Gemeinsamkeiten, sie sind azyklisch und erlauben somit keine Rückführung. Für die Schaltungen gilt auch, dass das Zusammenführen der Qubits ohne Gatter oder das Kopieren der Qubits nicht erlaubt ist [1].

3. Programmierung von Quantencomputer

In dem vorherigen Kapitel wurde die Funktionsweise von Quantenbits, Quantengattern und Quantenschaltungen erläutert. Dies sind wesentliche Grundlagen von Quantencomputern, welche zum Verständnis seiner Funktionsweise benötigt werden. In den folgenden Kapitel steigt der praktische Anteil, den in diesem Kapitel sollen Werkzeuge vorgestellt werden um Quantencomputer zu programmieren oder Quantenschaltungen zu simulieren.

3.1. Software und Programmiersprachen

IBM ermöglicht durch ihre Onlineplattform IBM Quantum [7] den Zugang zu reelen Quantencomputern oder zu simulierten Quantencomputern auf Leistungsfähiger Hardware. IBM Quantum bietet durch das Werkzeug Quantum Composer einen einfachen Einstieg in den Bereich der Quantencomputer für Neueinsteiger. Quantum Composer ermöglicht durch Ziehen und Ablegen (*Drag and Drop*), Quantenschaltungen aufzubauen. Auch vorgefertigte Schaltungen/Algorithmen werden angeboten und können vom Benutzer ausgeführt, verändert und angepasst werden. Auf Grundlage dieser Schaltungen wird Code generiert, dieser kann falls nötig vom Benutzer beliebig verändert und angepasst werden. Abbil-

Abbildung 3.1.: Quantum-Halbaddierer simuliert auf den simulator_mps

dung 3.1 zeigt die Oberfläche des Quantum Composers. Nördlich kann der Benutzer die erstellte Schaltung sehen und bearbeiten. Südlich des Bildes kann die Wahrscheinlichkeit der Ausgabe sowie dessen Zustand innerhalb der Q-Kugel

betrachtet werden.

Die Ausführung dieser Schaltung bzw. dieses Programms auf einem realen Quantencomputer, oder die Simulation auf einem HPC (*High Performance Computer*) in der Cloud, wird durch den IBM Quantum Service ausgeführt. Der IBM Quantum Service bezeichnet diese Schaltungen als Jobs und verwaltet diese durch einen kubernetes Cluster. Dieses Cluster beinhaltet einen Runtime Manager, Runtime Job und einen Execution Kernel.

Fortgeschrittene Benutzer haben durch das Quantum Lab und Qiskit die Möglichkeit in der Cloud Juypter-Notebooks zu verfassen. Durch die quelloffenen Programmierschnittstelle (*API*) Qiskit, wird es ermöglicht Quantencomputer auch lokal auf Ebene von Schaltungen und Algorithmen zu programmieren. Dabei möchte Qiskit eine standardisierte API entwickeln, die für verschiedenste Benutzergruppen geeignet ist [8]. Um Schaltungen auf unterschiedlicher Hardware interpretieren lassen zu können, werden die in Qiskit erzeugten Objekte von JSON zu OpenQASM umgewandelte. OpenQASM ist dabei jedoch keine Ausgangssprache oder die Instruktionen einer Zielmaschine, sondern eine Zwischendarstellung (*intermediate representation* (*IR*)) [9]. In Anhang A wird der Code eines Quanten-Halbaddieres in Qiskit und OpenQASM dargestellt.

3.2. Simualtion

In Sektion 2.2 wurde der exponentielle Anstieg der Amplituden für die Nutzung von Qubits schon angesprochen. Aus diesem Grund ist die Simulation von Quantencomputern nur effizient mit einer Anzahl von \approx 20 Qubits möglich. Selbst die Simulation von Quantencomputern mit 100 Qubits ist auf sehr leistungsfähigen Supercomputer momentan nicht möglich [3].

Trotzdem ermöglicht IBM Quantum mit dem Simulator simulator_stabilizer und simulator_mps den Zugriff auf eine Simulationsmaschine mit 5000 und 100 Qubits. Das liegt daran, dass es unterschiedliche Simulationstypen gibt. Die Simulation eines Systems mit bis zu 5000 Qubits kann durch die Verbesserung des Gottesman-Knill Theorem [10] ermöglicht werden. Dieses Theorem erlaubt es Stabilisator-schaltung (stabilizer circuits), effizient d.h. in polynomieller Zeit zu simulieren. Dabei versteht man unter einer Stabilisatorschaltung, eine Quantenschaltung die nur aus Clifford-Gattern besteht. Darunter fallen CNOT-, Hadamard- und Phasen-Gatter. Somit können auf diesem Simulationstyp auch nur Schaltungen simuliert werden die aus Clifford-Gattern bestehen.

Die auf der Onlineplattform IBM Quantum genutzten Simualtionstypen, sowie verfügbaren Simulatoren sind auf der Abbildung 3.2 veranschaulicht.

Abbildung 3.2.: Verfügbare Simulatoren bei IBM Quantum

3.3. Quantum Hardware

Die verschiedenen Simulationtypen von Quantencomputern klingen viel versprechend, jedoch ist auch die reale Quantenhardware heutzutage ziemlich fortgeschritten. Denn IBM Quantum hat es geschafft einen Chip zu entwickeln, der die 100-Qubit Grenze überschreitet und somit auch die Möglichkeiten der Simulation.

Dieser Prozessor heißt IBM-Eagle und ist ein 127-Qubit Quantenprozessor, bestehend aus einem Interposer, einer Verkabelungsebene, einer Resonatorebene und Qubitebene [11]. Der IBM Eagle ist eine Kombination von Techniken aus vorherigen Quantenprozessoren, diese 3D-Packaging-Technik soll auch für den noch erscheinenden Condor-Prozessor mit über 1.000 Qubits geeignet sein. Durch die Nutzung des heavy-hexagon Qubit-Layouts [12] aus dem vorherigen Falcon Prozessor wird das Pontential für Fehlerraten reduziert. Um die Menge an Elektronik und Verkablung im Inneren des Chips zu reduzieren, wird das aus dem vorherigen Hummingbird R2 Chip bekannte Auslesemultiplexing genutzt.

IBM Quantum verfügt über 22 unterschiedliche Quantensysteme mit maximal 127 Qubits. Jedoch hat der standartmäßige Benutzer nur Zugriff auf sieben dieser Systeme mit maximal 5 Qubits.

4.Implementierung von Quantenalgorithmen

Quantencomputer sollen effizient Probleme lösen die durch klassische Algorithmen nicht effizient gelöst werden können. Der Grundbaustein von Quantenalgorithmen sind die Quantenschaltungen 2.4, denn sie dienen zur Entwicklung dieser. Jedoch ist die Entwicklung von Algorithmen nicht trivial und erfordert eine Menge Aufwand und Einfallsreichtum. Quantenalgorithmen sollen efizienter sein als klassische, dies ist ebenso ein weiterer Faktor wodurch die Entwicklung von Quantenalgorithmen erschwert wird.

4.1. Algorithmenüberblick

Die bisher bekantesten Quantenalgorithmen bieten eine quadratische und exponentielle Beschleunigung gegenüber klassischen. Dies ist der Shors Algorithmus bzw. (Shors Quantum Fourier Transformation) und der Grovers Algorithmus.

Beide Algorithmen lösen unterschiedliche Probleme, z.B. ist der Grover Algorithmus ein Suchalgorithmus, der zur ungeordneten Suche dient. Dieser kann genutzt werden um in großen Datenbeständen z.B. ein Minimum oder Maximum zu finden. Aber auch für die Suche nach Schlüsseln in Kryptosystemen wie dem Datenverschlüsselungsstandard (*DES*) bietet der Grover Algorithmus eine schnellere Laufzeit als klassische Algorithmen.

Der Shors Algorithmus kann zur Berechnung diskreter Logarithmen oder der Zerlegung ganzer Zahlen genutzt werden. Da der Shors Algorithmus dies in Polynomialzeit tut, sind asymmetrische Verschlüsselungsverfahren wie z.B. RSA und Diffie-Hellman Schlüsselaustausch von Quantencomputern bedroht. Aus diesem Grund versucht man Quantensichere Verfahren zu Standartisieren. Somit sollen asymmetrische Verfahren wie McElliece, Crystal-Kyber, NTRU und Saber die man als Quantensicher bezeichnet, in naher Zukunft bedrohte Verfahren ersetzen. Gegen die Verdopplung der Schlüsselgrößen in symmetrischen Verschlüsselungsverfahren ist auch der Grovers Algorithmus machtlos, bzw. benötigt auch er zu viel Zeit um valide Schlüssel zu finden. Aus diesem Grund, ist der Shors Algorithmus für die Kryptographie und Post-Quanten-Kryptographie von größerer Bedeutung.

Der Shors-Algorithmus kann Probleme wie z.B. die Faktorisierung von Fastprimzahlen in polynomieller Zeit berechnen, da dieser Algotihmus einen Quantenanteil besitzt, der zum Finden von Perioden (periodic finding) dient. Somit ist der Shors Algorithmus in der Lage auch Probleme zu Lösen, die in das Finden von Perioden (periodic finding) dient.

den von Perioden gewandelt werden können. Um diesen Teil des Algorithmus zu verstehen, müssen zwei weitere Quantenalgorithmen verstanden werden, die Quanten-Fourier-Transformation und die Quanten-Phasenschätzung.

4.2. Quanten Fourier-Transformation

Die Quanten Fourier-Transformation (QFT), transformiert einen Basiszustand $|x\rangle$ zu einem Fourierzustand $|\tilde{x}\rangle$ [3]. Die QFT ist die Anwendung der Diskreten Fourier-Transformation (DFT) auf Quantenzustände, somit unterscheidet diese sich minimal zur Berechnung von Fourierkoeffizienten mittels DFT.

$$DFT \Rightarrow X[k] = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}kj} \cdot x[j]$$

$$QFT \Rightarrow |\tilde{x}\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}xj} \cdot |j\rangle$$
(4.1)

Die Berechnung der QFT kann somit auf ein Quantenregister 2.2 ausgeführt werden. Bei der Quantum Fourier-Transformation entspricht $N=2^n$, dabei ist n die Anzahl der genutzten Qubits. Es ist möglich die QFT auch als Produkt auszuschreiben.

$$|\tilde{x}\rangle = \frac{1}{\sqrt{N}} \left(|0\rangle + e^{-i\frac{2\pi x}{2^1}} |1\rangle \right) \otimes \left(|0\rangle + e^{-i\frac{2\pi x}{2^2}} |1\rangle \right) \otimes \ldots \otimes \left(|0\rangle + e^{-i\frac{2\pi x}{2^n}} |1\rangle \right) \tag{4.2}$$

4.3. Quanten-Phasenschätzung

4.4. Shors Algorithmus

5. Fazit

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-corper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis portitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero

dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

5.1. Zukünftige Arbeiten

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-corper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget

nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

5.2. Zusammenfassung

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullam-corper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget

nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

A.Anhang

```
from qiskit import QuantumRegister,\
    ClassicalRegister, QuantumCircuit
qreg_q = QuantumRegister(3, 'q')
creg_c = ClassicalRegister(2, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.x(qreg_q[0])
circuit.x(qreg_q[1])
circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
circuit.measure(qreg_q[2], creg_c[1])
circuit.measure(qreg_q[1], creg_c[0])
OPENQASM 2.0;
include "qelib1.inc";
qreg q[3];
creg c[2];
x q[0];
x q[1];
ccx q[0], q[1], q[2];
cx q[0], q[1];
measure q[2] \rightarrow c[1];
measure q[1] \rightarrow c[0];
```

B.Literaturverzeichnis

- [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
- [2] M. Homeister, *Quantum Computing verstehen*. Computational Intelligence, Springer Fachmedien Wiesbaden, 2022.
- [3] A. Abbas, S. Andersson, A. Asfaw, A. Corcoles, L. Bello, Y. Ben-Haim, M. Bozzo-Rey, S. Bravyi, N. Bronn, L. Capelluto, A. C. Vazquez, J. Ceroni, R. Chen, A. Frisch, J. Gambetta, S. Garion, L. Gil, S. D. L. P. Gonzalez, F. Harkins, T. Imamichi, P. Jayasinha, H. Kang, A. h. Karamlou, R. Loredo, D. McKay, A. Maldonado, A. Macaluso, A. Mezzacapo, Z. Minev, R. Movassagh, G. Nannicini, P. Nation, A. Phan, M. Pistoia, A. Rattew, J. Schaefer, J. Shabani, J. Smolin, J. Stenger, K. Temme, M. Tod, E. Wanzambi, S. Wood, and J. Wootton., Learn Quantum Computation Using Qiskit. IBM, 2020.
- [4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, "Elementary gates for quantum computation," *Physical Review A*, vol. 52, pp. 3457–3467, nov 1995.
- [5] J. Du, M. Shi, X. Zhou, Y. Fan, B. Ye, R. Han, and J. Wu, "Implementation of a quantum algorithm to solve the bernstein-vazirani parity problem without entanglement on an ensemble quantum computer," *Physical Review A*, vol. 64, sep 2001.
- [6] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe, "Complete 3-qubit grover search on a programmable quantum computer," *Nature Communications*, vol. 8, dec 2017.
- [7] IBM, "Ibm quantum," 2021. https://quantum-computing.ibm.com/ Visited: 2022-05-10.
- [8] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen, J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp, J. Gomez, M. Hush, A. Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks, E. Winston, C. J. Wood, J. Wootton, and J. M. Gambetta, "Qiskit backend specifications for openqasm and openpulse experiments," 2018.
- [9] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, "Open quantum assembly language," 2017.
- [10] S. Aaronson and D. Gottesman, "Improved simulation of stabilizer circuits," *Physical Review A*, vol. 70, nov 2004.

- [11] J. Chow, O. Dial, and J. Gambetta, "Ibm quantum breaks the 100 qubit processor barrier," 2021. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle Visited: 2022-05-14.
- [12] P. Nation, H. Paik, A. Cross, and Z. Nazario, "The ibm quantum heavy hex lattice," 2021. https://research.ibm.com/blog/heavy-hex-lattice Visited: 2022-05-14.