Uppsala Universitet Matematiska Institutionen

T Erlandsson

SVAR OCH ANVISNINGAR

1. En bas för nollrummet består av t
 ex de två vektorerna $\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ och $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

En bas för värderummet är t
 ex $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

2. För alla a. Eftersom det $A = 1 + a^2 \neq 0$ för alla a är matrisen A invertibel och ekvationen $A\mathbf{x} = \mathbf{b}$ har entydig lösning för alla \mathbf{b} .

3.
$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

4. T ex bildar de tre vektorerna $\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$ och $\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$ en sådan bas eftersom planets

vektorer är av formen

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

- 5. Eftersom matrisen är triangulär är egenvärdena lika med elementen på diagonalen, dvs $\lambda_0=0$ och $\lambda_1=1$ vilka båda är av multipliciteten ett. Då dessa två egenvärden är olika är matrisen diagonaliserbar.
- 6. Matrisen har egenvärdena 0 och 1 av multipliciteten ett respektive två. En bas för egenrummet $E(1)=\mathrm{Nul}\,(A-1\cdot I)$ är t ex

$$\left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right].$$

Eftersom dimensionen av egenrummet E(1) är ett och dimensionen av egenrummet E(0) också är ett finns alltså inte en bas av egenvektorer i \mathbb{R}^3 till matrisen. Denna är alltså inte diagonaliserbar.

7. $\mathbf{u} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$ ligger på linjen och avbildas på sig själv under ortogonal projektion på linjen.

Vektorn \mathbf{u} är alltså egenvektor med egenvärdet 1. $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ är ortogonal mot linjen och avbildas på nollvektorn $\mathbf{0} = 0 \cdot \mathbf{v}$ under ortogonal projektion på linjen. Vektorn \mathbf{v} är alltså egenvektor med egenvärdet 0.

- 8. $\frac{1}{3}$.
- 9. Den kvadratiska formens matris är $\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$ som har egenvärdena $\lambda_1 = 5$ och $\lambda_2 = -3$. Det finns alltså en ON-bas i vilken hyperbeln har ekvationen $5y_1^2 3y_2^2 = 1$. Hyperbeln skär alltså y_1 -axeln i punkterna $\pm \frac{1}{\sqrt{5}}$. Avståndet mellan dessa punkter är $\frac{2}{\sqrt{5}}$.
- 10. Vi söker tal c_1 och c_2 , ej båda lika med noll, sådana att $c_1(1+t)^2+c_2(1-t)^2=(1+t)(1-t)$. Detta är en identitet, dvs likheten ska gälla för alla t. Sätter vi t=1 följer att $c_1=0$ och sätter vi t=-1 följer att $c_2=0$. Det finns alltså ingen sådan likhet. Därför tillhör (1+t)(1-t) inte W.
 - 1. n=4 och m=2. Matrisens rang är ett som är lika med dimensionen av kolonnrummet (värderummet). En bas för kolonnrummet är t ex

$$\left[\begin{array}{c}1\\1\end{array}\right].$$

Enligt dimensionssatsen (rangsatsen) är dimensionen för nollrummet lika med 4-1=3. En bas för nollrummet är t ex

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

2. Matrisen för den kvadratiska formen är $A=\begin{bmatrix}1&\frac{1}{4}\\\frac{1}{4}&1\end{bmatrix}$. Egenvärdena är

 $\lambda_1 = \frac{5}{4}$ och $\lambda_2 = \frac{3}{4}$. Symmetriaxlarna är parallella med motsvarande egenrum. En bas för $E(\frac{5}{4})$ är $\begin{bmatrix} 1\\1 \end{bmatrix}$ och en bas för $E(\frac{3}{4})$ är $\begin{bmatrix} -1\\1 \end{bmatrix}$.

EXTRA UPPGIFT

$$y_1 = c_1 e^{3x} - c_2 e^{-x}$$
 och $y_2 = c_1 e^{3x} + c_2 e^{-x}$.