Agregadores de Classificadores para Análise de Sentimentos

Alison Pereira Ribeiro Prof^a Dr^a Nádia F. F. da Silva

> Universidade Federal de Goiás Instituto de Informática – INF Goiânia - Goiás - Brasil

alisonrib17@gmail.com, nadia@inf.ufg.br

Dezembro de 2018

Visão Geral

- Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuros
- Referências

- Introdução
- Objetivos
- 3 Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- 8 Trabalhos Futuros
- Referências

Introdução

- O que é Análise de Sentimentos?
- Quais os desafios da área?
- Como buscar soluções para os problemas da AS?

Introdução

Exemplo 1

- "Vingadores Guerra Infinita foi incrível! Obrigado Marvel! :D", positivo.
- "Eu ainda não assisti a nova temporada de Black Mirror.", neutro.
- "As propostas desses candidatos são péssimas, nunca vi pior! Estamos perdidos!", negativo.

- 1 Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- 8 Trabalhos Futuros
- Referências

Objetivos

Objetivo Geral

Estudar e desenvolver modelos de Inteligência Artificial para Análise de Sentimentos para aplicações reais.

Objetivos

Objetivo Geral

Estudar e desenvolver modelos de Inteligência Artificial para Análise de Sentimentos para aplicações reais.

Objetivos Específicos

- Explorar métodos de Análise de Sentimentos;
- Implementar abordagens que aproveitem a variedade dos métodos;
- Divulgar os resultados obtidos.

- 1 Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- 8 Trabalhos Futuros
- Referências

Metodologia

- Pré-processamento;
- Representação vetorial dos tweets;
- Abordagens;
- Algoritmos.

Pré-processamento

- Remoção de links;
- Remoção de números;
- Remoção de caracteres especiais;
- Stop words;
- Lowercase;
- Stemming.

Pré-processamento

Exemplo 3.1

• "Eu odeio meu computador da @apple. Foi 3500 dólares pelo ralo", negativo

Remoção de números

• "Eu odeio meu computador da @apple. Foi dólares pelo ralo", negativo

Remoção de caracteres especiais

• "Eu odeio meu computador da apple Foi dólares pelo ralo", negativo

Pré-processamento

Stop words

• "Eu odeio computador apple dólares ralo", negativo

Lowercase

• "eu odeio computador apple dólares ralo", negativo

Stemming

- Reduz uma palavra em sua forma canônica, em seu morfema;
- Por exemplo casa, casas, casinhas e casarão resultam no mesmo morfema: cas.

Representação vetorial dos tweets

- Bag-of-Words:
 - Verificação de ocorrência;
 - TF-IDF.
- Word Embeddgins [Bengio et al. 2003];
- n-gramas:
 - unigrama;
 - bigrama;
 - unigrama + bigrama.

Representação vetorial dos tweets

Exemplo 3.2

- Tweet1: "Não gosto de smartphone muito grande", negativo.
- Tweet2: "Gostei desse smartphone azul", positivo.

Representação

	não	gosto	gostei	smartphone	grande	muito	azul
Tweet1	1	1	0	1	1	1	0
Tweet2	0	0	1	1	0	0	1

Tabela: Representação vetorial dos tweets.

Abordagens

- Aprendizado de Máquina;
- Dicionários Léxicos;
- Emoticons;
- Part-of-Speech;
- Combinações de vários métodos.

Algoritmos

- Multinomial Naive Bayes [Da Silva et al. 2014];
- Support Vector Machine [Rosenthal et al. 2014];
- Random Forest [Saleiro et al. 2017];
- Logistic Regression [Mittal et al. 2012];
- Ensembles [Fouad et al. 2018].

- 1 Introdução
- Objetivos
- 3 Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuros
- Referências

Datasets

- Sanders;
- HCR;
- SemEval-2018.

Sanders

Sanders [Sanders, 2011]

- Possui 5.513 tweets classificados como positivos, negativos, neutros e irrelevantes;
- Tweets irrelevantes foram desconsiderados;
- Base coletada a partir de quatro tópicos: @apple, #google, #microsoft e #twitter.

HCR

HCR [Speriosu et al. 2011]

- Construído a partir da hashtag #hcr;
- Dados de treinamento, desenvolvimento e teste;
- Tweets classificados como positivos, negativos, neutro e irrelevantes;
- Tweets irrelevantes foram desconsiderados.

SemEval-2018

SemEval-2018 [Barbieri et al. 2018]

- Tweets coletados com a API do Twitter;
- Geolocalização do tweets é no EUA;
- 500 mil tweets para treinamento, 50 mil para desenvolvimento e 50 mil para teste;
- Problema multiclasse: 20 classes (emojis).

- 1 Introdução
- Objetivos
- 3 Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuros
- 9 Referências

- Aprendizado de Máquina;
- Dicionários léxicos:
 - Opinion Lexicon;
 - SenticNet;
 - SemEval-2015 Lexicon.
- Emoticons:
- Part-of-Speech;
- Dicionário léxico + Emoticons;
- Combinação dos três dicionários léxicos;
- Dicionário léxico + Emoticons + Part-of-Speech.

Aprendizado de Máquina (Machine Learning)

- No método baseado em ML, representa-se os tweets através do Bag-of-Words (ou Word Embeddings), utilizando n-gramas;
- Posteriormente aplica-se algum algoritmo de classificação.

	termo ₁ termo ₂		 termo _n
tweet ₁	1	0	 0
tweet ₂	0	0	 1
tweet3	0	1	 0
	•••		
tweet _n	1	0	 0

Tabela: Representação dos tweets com método de ML.

Opinion Lexicon

- Possui 4.783 léxicos positivos 2.006 negativos;
- Estratégia proposta por [Mohammad et al. 2013];
- Conta as palavras do dicionário;
- Se o número de termos positivos for maior que negativos, então o tweet é positivo;
- Caso contrário, o tweet é negativo;
- No caso de empate, o tweet é neutro.

SenticNet

- Conta com 50.000 palavras classificadas como positivas e negativas;
- Estratégia proposta por [Mohammad et al. 2013];
- Conta as palavras do dicionário;
- Se o número de termos positivos for maior que negativos, então o tweet é positivo;
- Caso contrário, o tweet é negativo;
- No caso de empate, o tweet é neutro.

SemEval-2015 Lexicon

- Possui 1515 termos de sentimentos:
- Cada palavra possui uma pontuação (número real);
- Soma a pontuação das palavras encontradas nos tweets:

$$n = \sum_{i=1}^{N} Ki \tag{1}$$

• Rotulação dos tweets por meio da proposta apresentada:

$$x = \begin{cases} positivo, & se & n > 0\\ negativo, & se & n < 0\\ neutro, & se & n = 0 \end{cases}$$
 (2)

Part-of-Speech (POS)

- Categoriza cada palavra na respectiva classe sintática, como: verbo, pronome, advérbio, entre outros;
- Pacote utilizado de Stanford [Manning et al. 2014];
- Rotula as palavras dos tweets e conta o número de tags;

	CC	JJ	VB	 NN	classe
tweet1	0	2	0	 0	positivo
tweet2	1	0	3	 0	negativo
tweet3	0	2	0	 0	neutro
tweet₁	1	0	2	 0	positivo

Tabela: Representação dos tweets com método de POS.

Emoticons

- Emoticon Sentiment Lexicon;
- Contém 476 *emoticons*, distribuídos em 179 com sentimento positivo, 278 com sentimento negativo e 20 com sentimento neutro;
- Se é encontrado um emoticon positivo no tweet, então o tweet é positivo, essa lógica se repete no caso de econtrar um emoticon negativo ou neutro;
- Nesse método pode haver que um tweet não tenha emoticon.

Combinações dos métodos

- Mantidas as mesmas abordagens descritas anteriormente;
- Dicionário léxico + Emoticons:
- Combinação dos três dicionários léxicos;
- Dicionário léxico + Emoticons + Part-of-Speech.

- 1 Introdução
- Objetivos
- 3 Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuros
- 9 Referências

Resultados: ERI-GO 2017

Resultados - Sanders

Método	Algoritmo	Acc. (%)
Aprendizado de Máquina	LR	78,10
Part-of-Speech (POS)	LR	77,40
Opinion Lexicon	LR	78,85
SemEval-2015 Lexicon	LR	77,67
SenticNet Lexicon	SVM	77,35
Emoticons	LR	77,91
Opinion Lex. + Emoticons	LR	78,56
Léxicos combinados	SVM	78,40
Opinion Lex. + Emoticons + POS	LR	78,48

Resultados: ERI-GO 2017

Resultados - HCR

Método	Algoritmo	Acc. (%)
Aprendizado de Máquina	SVM	64,47
Part-of-Speech (POS)	LR	63,20
Opinion Lexicon	SVM	65,70
SemEval-2015 Lexicon	LR	64,03
SenticNet Lexicon	SVM	64,86
Emoticons	LR	62,99
Opinion Lex. + Emoticons	LR	65,07
Léxicos combinados	SVM	65,90
Opinion Lex. + Emoticons + POS	SVM	66,32

Resultados: Revista FSMA

Resultados - Sanders

Método	Acc. (%)	P (%)	R (%)	F1 (%)
Aprendizado de Máquina	76,89	69,91	65,64	67,50
Part-of-Speech	76,14	68,54	65,35	66,78
Opinion Lex.	79,09	76,20	64,22	68,41
SemEval-2018 Lex.	76,25	68,40	64,11	65,95
SenticNet Lexicon	76,11	68,47	64,26	66,06
Emoticons	75,71	67,83	63,65	65,44
Opinion Lex. + Emoji	76,01	68,47	64,26	66,06
Léx. comb.	76,68	68,97	66,30	67,52
Op. Lex. + Emoji + POS	78,96	74,81	65,21	68,77
Ensemble	78,37	74,40	63,83	67,50
GloVe (WE)	79,36	75,82	64,89	68,85

Resultados: Revista FSMA

Resultados - HCR

Método	Acc. (%)	P (%)	R (%)	F1 (%)
Aprendizado de Máquina	65,44	62,83	59,36	60,47
Part-of-Speech	63,61	62,03	57,97	59,29
Opinion Lex.	69,11	66,78	62,67	63,90
SemEval-2018 Lex.	65,44	63,54	58,17	59,53
SenticNet Lexicon	64,83	62,99	58,00	59,34
Emoticons	62,69	63,32	57,03	58,86
Opinion Lex. + Emoji	64,83	62,31	58,52	59,57
Léx. comb.	64,53	61,46	61,59	61,52
Op. Lex. + Emoji + POS	62,69	61,25	59,60	60,23
Ensemble	65,44	61,89	59,29	59,97
GloVe (WE)	68,22	70,31	63,34	65,34

Resultados: SemEval 2018

Observações

- Base de dados muito grande;
- Apenas 10% utilizada para o treinamento;
- 30^a colocação;
- 1° Colocado utilizou SVM e RNN [Çöltekin et al. 2018].

Resultados

Modelo	F1	P	R	Acc
WE+BoW-LR	21.497	26.208	20.843	31.588
WE+BoW-SVM	21.023	27.034	21.403	32.570
BoW-LR	20.351	24.923	19.824	30.830
BoW-SVM	20.194	26.659	20.518	31.966
BoW-RF	15.793	19.890	15.310	25.842
Tübingen-Oslo	35.991	36.551	36.222	47.094

- 1 Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuro
- Referências

Instituto de Informática

Conclusões

Considerações finais

- Explorar métodos de Análise de Sentimentos;
- Implementar abordagens que aproveitem a variedade dos métodos;
- Divulgar os resultados obtidos.

Conclusões

Considerações finais

- Explorar métodos de Análise de Sentimentos;
- Implementar abordagens que aproveitem a variedade dos métodos;
- Divulgar os resultados obtidos.

Publicações

- Artigo publicado na 5^a Escola Regional de Informática;
- Artigo publicado na Revista de Sistemas de Informação da Faculdade Salesiana Maria Auxiliadora;
- Artigo publicado no SemEval-2018 Task 2 Emoji Prediction in Tweets.

- 1 Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- 8 Trabalhos Futuros
- Referências

Trabalhos Futuros

Objetivo de pesquisa

Estudar algoritmos de *Deep Learning*, especificamente sobre Redes Neurais Recorrentes.

Trabalhos Futuros

Objetivo de pesquisa

Estudar algoritmos de *Deep Learning*, especificamente sobre Redes Neurais Recorrentes.

Tema do SemEval-2019 Task 5

 Detecção multilíngue de discurso de ódio contra imigrantes e mulheres no Twitter. FIM.

Perguntas?

- 1 Introdução
- Objetivos
- Metodologia
 - Pré-processamento
 - Representação vetorial dos tweets
 - Abordagens
 - Algoritmos
- 4 Datasets
 - Sanders
 - HCR
 - SemEval-2018
- 5 Aplicações dos Métodos
- 6 Resultados
- Conclusões
- Trabalhos Futuros
- Referências

Instituto de Informática

B. Pang e L. Lee, "Opinion mining and sentiment analysis", Found. Trends Inf. Retr., vol. 2, no 1-2, pp. 1-135, jan. de 2008, issn: 1554-0669. doi:10.1561/1500000011. endereço:http://dx.doi.org/10.1561/1500000011.

N. F. SILVA, "Análise de sentimentos em textos curtos provenientes de redes sociais", Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2016.

Da Silva, N. F., Hruschka, E. R., and Hruschka Jr, E. R. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66:170–179.

Félix, Nádia. and P. Ribeiro, Alison. (2018). #TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets.

- Wang, Y., Huang, M., & Zhao, L. (2016). Attention-based lstm for aspect-level sentiment classification. In Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 606-615).
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

47 / 52

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.

M. Speriosu, N. Sudan, S. Upadhyay e J. Baldridge, "Twitter polarity classification with label propagation over lexical links and the follower graph", em Proceedings of the First Workshop on Unsupervised Learning in NLP, sér. EMNLP '11, Edinburgh, Scotland: Association for Computational Linguistics, 2011, pp. 53–63, isbn:978-1-937284-13-8. endereço:http://dl.acm.org/citation.cfm ?id=2140458.2140465.

N. J. Sanders, "Sanders-twitter sentiment corpus", Sanders Analytics LLC, 2011.

S. M. Mohammad, S. Kiritchenko e X. Zhu, "Nrc-canada: Building the state-of-the-art in sentiment analysis of tweets", CoRR, vol. abs/1308.6242, 2013.endereço:http://arxiv.org/abs/1308.6242.

C. D. Manning, M. Surdeanu, J. Bauer, J. Fin-kel, S. J. Bethard e D. McClosky, "The StanfordCoreNLP natural language processing toolkit", emAssociation for Computational Linguistics (ACL) System Demonstrations, 2014, pp.55-60.endereço:http:

//www.aclweb.org/anthology/P/P14/P14-5010.

Computational Linguistics.

Çöltekin, Çağrı, and Taraka Rama. "Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction." Proceedings of The 12th International Workshop on Semantic Evaluation. 2018.

S. Rosenthal, A. Ritter, P. Nakov e V. Stoyanov, "Semeval-2014 task 9: Sentiment analysis in twitter", em Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 73–80.

P. Saleiro, E. M. Rodrigues, C. Soares e E. Oliveira, "Feup at semeval-2017 task 5: Predicting sentiment polarity and intensity with financial word embeddings", ArXiv preprint arXiv:1704.05091, 2017.

M. Fouad, T. Gharib e A. Mashat, Efficient twitter sentiment analysis system with feature selection and classifier ensemble, jan. de 2018.

Mittal, Anshul, and Arpit Goel. "Stock prediction using twitter sentiment analysis." Standford University, CS229 (2011 http://cs229.stanford.edu/proj2011/ GoelMittal-StockMarketPredictionUsingTwitterSentimentAnalysis. pdf) 15 (2012).

Y. Bengio, R. Ducharme, P. Vincent e C. Jauvin, "A neural probabilistic language model", Journal of machine learning research, vol. 3, n o Feb, pp. 1137–1155, 2003.

Alison Instituto de Informática Dezembro de 2018

51 / 52

Agregadores de Classificadores para Análise de Sentimentos

Alison Pereira Ribeiro Prof^a Dr^a Nádia F. F. da Silva

Universidade Federal de Goiás Instituto de Informática – INF Goiânia - Goiás - Brasil

alisonrib17@gmail.com, nadia@inf.ufg.br

Dezembro de 2018