МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Универсальные алгебры и алгебра отношений ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студентки 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Зиминой Ирины Олеговны

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

СОДЕРЖАНИЕ

1.	Це	ль работы и порядок выполнения	3
2.	Ал	гебраическая операция и классификация свойств операций	4
3.	Ал	горитмы проверки свойств операций	5
,	3.1	Проверка ассоциативности.	5
,	3.2	Проверка коммутативности.	5
,	3.3	Проверка идемпотентности.	6
,	3.4	Проверка обратимости.	6
,	3.5	Проверка дистрибутивности.	7
4.	Oc	новные операции над бинарными отношениями	8
5.	Ал	горитмы операций над бинарными отношениями	8
	5.1	Объединение бинарных отношений	8
	5.2	Пересечение бинарных отношений	
	5.3	Дополнение бинарных отношений	9
	5.4	Обращение бинарных отношений	10
	5.5	Композиция бинарных отношений	10
6.	Oc	новные операции над матрицами	12
7.	Ал	горитмы основных операций над матрицами	12
,	7.1	Сложение двух матриц над конечным поле	12
,	7.2	Умножение матрицы на число над конечным полем	13
,	7.3	Умножение двух матриц над конечным полем.	13
,	7.4	Транспонирование матрицы над конечным полем	
,	7.5	Обращение матрицы над конечным полем.	14
8.	Pea	ализация рассмотренных алгоритмов	16
;	8.1	Алгоритмы для проверки свойств операций	16
;	8.2	Алгоритмы операций над бинарными отношениями	18
;	8.3	Алгоритмы основных операций над матрицами	
9.	Pe	шение задач по варианту 3	
3A	КЛ	ЮЧЕНИЕ	33

1. Цель работы и порядок выполнения

Цель работы — изучение основных понятий универсальной алгебры и операций над бинарными отношениями.

Порядок выполнения работы:

- 1. Рассмотреть понятие алгебраической операции и классификацию свойств операций. Разработать алгоритмы проверки свойств операций: ассоциативность, коммутативность, идемпотентность, обратимость, дистрибутивность.
- 2. Рассмотреть основные операции над бинарными отношениями. Разработать алгоритмы выполнения операции над бинарными отношениями.
- 3. Рассмотреть основные операции над матрицами. Разработать алгоритмы выполнения операций над матрицами.

2. Алгебраическая операция и классификация свойств операций

Алгебраическая операция: отображение $f:A^n\to A$ называется алгебраической п-арной операцией или просто алгебраической операцией на множестве A. При этом n называется порядком или арностью алгебраической операции f.

Также можно использовать мультипликативную запись с помощью символа \cdot то есть запись f(x, y) будет выглядеть как: $x \cdot y$.

Классификация свойств операций.

Бинарная операция \cdot на множестве A называется:

• ассоциативной, если $\forall x, y, z \in A$ выполняется равенство:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z;$$

• коммутативной, если $\forall x, y \in A$ выполняется равенство:

$$x \cdot y = y \cdot x$$
;

• идемпотентной, если $\forall x \in A$ выполняется равенство:

$$x \cdot x = x$$
;

- обратимой, если $\forall x, y \in A$ уравнения $x \cdot a = y$ и $b \cdot x = y$ имеют решение, причем единственное;
- дистрибутивной относительно операции +, если $\forall x, y, z \in A$ выполняются равенства:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z),$$

$$(y+z)\cdot x = (y\cdot x) + (z\cdot x);$$

3. Алгоритмы проверки свойств операций.

3.1 Проверка ассоциативности.

Входные данные: Таблица Кэли операции \cdot , множество элементов над операцией \cdot (двумерная матрица размерностью $N \times N$ и элементами cayleytable[i][j]).

Выходные данные: результат проверки на ассоциативность: «Ассоциативность выполняется» или «Ассоциативность не выполняется». Описание алгоритма:

- 1) Запускается цикл прохода по индексу x от 0-го до N-1.
- 2) Внутри цикла запускается цикл прохода по индексу y от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу z от 0-го до N-1.
- 4) Внутри циклов проверяется $\forall x, y, z$ элементов множества элементы cayleytable[i][j] таблицы Кэли по условию: если cayleytable[i][t] = cayleytable[p][k] (где t = cayleytable[j][k], p = cayleytable[i][j] для всех $0 \le i, j, k \le n 1$, где i соответствует номеру строки таблицы Кэли для элемента y, а j и k для x и z соответсвенно).
- 5) Если данное условие выполняется, то на выход идет сообщение: «Ассоциативность выполняется», иначе на выход идет сообщение: «Ассоциативность не выполняется».

Сложность алгоритма: $O(n^3)$.

3.2 Проверка коммутативности.

Входные данные: Таблица Кэли операции \cdot , множество элементов над операцией \cdot (двумерная матрица размерностью $N \times N$ и элементами cayleytable[i][j]).

Выходные данные: результат проверки на коммутативность: «Коммутативность выполняется» или «Коммутативность не выполняется». Описание алгоритма:

1) Запускается цикл прохода по индексу i от 0-го до N-1.

- 2) Внутри цикла запускается цикл прохода по индексу j от 0-го до N-1.
- 3) Проверяется условие $cayleytable[i][j] \neq cayleytable[j][i]$.
- 4) Если данное условие выполняется, то на выход идет сообщение: «Коммутативность не выполняется», иначе на выход идет сообщение: «Коммутативность выполняется».

Сложность алгоритма: $O(n^2)$.

3.3 Проверка идемпотентности.

Входные данные: Таблица Кэли операции \cdot , множество элементов над операцией \cdot (двумерная матрица размерностью $N \times N$ и элементами cayleytable[i][j]).

Выходные данные: результат проверки на идемпотентность: «Идемпотентность выполняется» или «Идемпотентность не выполняется». Описание алгоритма:

- 1) Запускается цикл прохода по индексу i от 0-го до N-1.
- 2) Проверяется условие $cayleytable[i][i] \neq i + 1$.
- 3) Если данное условие выполняется, то на выход идет сообщение: «Идемпотентность не выполняется», иначе на выход идет сообщение: «Идемпотентность выполняется».

Сложность алгоритма: O(n).

3.4 Проверка обратимости.

Входные данные: Таблица Кэли операции \cdot , множество элементов над операцией \cdot (двумерная матрица размерностью $N \times N$ и элементами cayleytable[i][j]).

Выходные данные: результат проверки на обратимость: «Обратимость выполняется» или «Обратимость не выполняется».

Описание алгоритма:

- 1) Запускается цикл прохода по индексу i от 0-го до N-1.
- 2) Внутри цикла запускается цикл прохода по индексу j от 0-го до N-1.
- 3) Проверяется условие cayleytable[i][j] = cayleytable[j][i] = 1).

4) Если данное условие выполняется, то на выход идет сообщение: «Обратимость выполняется», иначе на выход идет сообщение: «Обратимость не выполняется».

Сложность алгоритма: $O(n^2)$.

3.5 Проверка дистрибутивности.

Входные данные: Таблица Кэли операции \cdot , множество элементов над операцией \cdot (двумерная матрица размерностью $N \times N$ и элементами cayleytable[i][j]) и дополнительная таблица Кэли операции + (двумерная матрица размерностью $N \times N$ и элементами another cayleytable[i][j]). Относительно дополнительной таблицы Кэли осуществляется проверка дистрибутивности.

Выходные данные: результат проверки на дистрибутивность: «Дистрибутивность выполняется» или «Дистрибутивность не выполняется». Описание алгоритма:

- 1) Запускается цикл прохода по индексу x от 0-го до N-1.
- 2) Внутри цикла запускается цикл прохода по индексу y от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу z от 0-го до N-1.
- 4) Внутри циклов проверяется $\forall x, y, z$ элементов множества элементы cayleytable[i][j] и anothercayleytable[i][j] таблиц Кэли по условию: если cayleytable[i][t] = anothercayleytable [p][q] и cayleytable[t][i] = anothercayleytable [g][h] (где $t = anothercayleytable[j][k], p = cayleytable[i][j], q = cayleytable[i][k], g = cayleytable[j][i], h = cayleytable[k][i], для всех <math>0 \le i, j, k \le n 1$).
- 5) Если данное условие выполняется, то на выход идет сообщение: «Дистрибутивность выполняется», иначе на выход идет сообщение: «Дистрибутивность не выполняется».

Сложность алгоритма: $O(n^3)$.

4. Основные операции над бинарными отношениями

- Теоретико-множественные операции.

Объединение (U), пересечение (\cap), дополнение (\neg);

- Обращение бинарных отношений.

Обратным для бинарного отношения $\rho \subset A \times B$ является бинарное отношение $\rho^{-1} \subset B \times A$, которое определяется по формуле:

$$\rho^{-1} = \{(b, a) : (a, b) \in \rho\};$$

- Композиция бинарных отношений.

Композицией бинарных отношений $\rho \subset A \times B$ и $\sigma \subset B \times C$ является бинарное отношение $\rho \sigma \subset A \times C$, которое определяется по формуле: $\rho \sigma = \{(a,c): (a,b) \in \rho \text{ и } (b,c) \in \sigma \text{ для некоторого } b \in B\}.$

5. Алгоритмы операций над бинарными отношениями

5.1 Объединение бинарных отношений

Входные данные: матрицы matrixA и matrixB бинарных отношений с размерностью $N \times M$.

Выходные данные: результат объединения бинарных отношений. Описание алгоритма:

- 1) Создается вектор пар result_union.
- 2) Запускается цикл прохода по индексу i от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу j от 0-го до M-1.
- 4) Внутри циклов выполняется условие логического ИЛИ для элементов matrixA[i][j] и matrixB[i][j].
- 5) Результат добавляется в вектор пар $result_union$ в формате первый элемент равен i+1, второй элемент равен j+1.
- 6) Выводится построенный вектор пар result_union.

Сложность алгоритма: n * m.

5.2 Пересечение бинарных отношений

Входные данные: матрицы matrixA и matrixB бинарных отношений с размерностью $N \times M$.

Выходные данные: результат пересечения бинарных отношений.

Описание алгоритма:

- 1) Создается вектор пар result_intersection.
- 2) Запускается цикл прохода по индексу i от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу j от 0-го до M-1.
- 4) Внутри циклов выполняется условие логического И для элементов matrixA[i][j] и matrixB[i][j].
- 5) Результат добавляется в вектор пар $result_intersection$ в формате первый элемент равен i+1, второй элемент равен j+1.
- 6) Выводится построенный вектор пар result_intersection.

Сложность алгоритма: n * m.

5.3 Дополнение бинарных отношений

Входные данные: матрица matrix бинарного отношения с размерностью $N \times M$.

Выходные данные: результат дополнения бинарного отношения.

Описание алгоритма:

- 1) Создается вектор пар result_additions.
- 2) Запускается цикл прохода по индексу i от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу j от 0-го до M-1.
- 4) Внутри циклов проверяется условие если matrix[i][j] = 0.
- 7) Если условие выполняется, то matrix[i][j] добавляется в вектор $result_additions$ в формате первый элемент равен i+1, второй элемент равен j+1.
- 5) Выводится построенный вектор пар result_additions.

Сложность алгоритма: n * m.

5.4 Обращение бинарных отношений

Входные данные: матрица matrix бинарного отношения с размерностью $N \times M$.

Выходные данные: результат обращения бинарного отношения.

Описание алгоритма:

- 1) Создается транспонированная матрица $matrix_transposed$ бинарного отношения ρ с размерностью $M \times N$.
- 2) Создается вектор пар result_reversal.
- 3) Запускается цикл прохода по индексу i от 0-го до N-1.
- 4) Внутри цикла запускается цикл прохода по индексу j от 0-го до M-1.
- 5) Внутри циклов проверяется условие если $matrix_transposed[i][j] = 1$.
- 6) Если условие выполняется, то matrix[i][j] добавляется в вектор $result_reversal$ в формате первый элемент равен i+1, второй элемент равен j+1.
- 7) Выводится построенный вектор пар result_reversal.

Сложность алгоритма: n * m.

5.5 Композиция бинарных отношений

Входные данные: матрицы matrixA бинарных отношений с размерностью $N \times M$ и matrixB бинарных отношений с размерностью $R \times T$.

Выходные данные: результат композиции бинарных отношений.

Описание алгоритма:

- 1) Создается матрица $matrix\mathcal{C}$ размером $N \times T$.
- 2) Матрица matrixC является матричным произведением matrixA и matrixB.
- 3) Создается вектор пар result_composition.
- 4) Запускается цикл прохода по индексу i от 0-го до N-1.
- 5) Внутри цикла запускается цикл прохода по индексу j от 0-го до M-1.
- 6) Внутри циклов проверяется условие если matrix C[i][j] = 1.

- 7) Если условие выполняется, то matrixC[i][j] добавляется в вектор $result_composition$ в формате первый элемент равен i+1, второй элемент равен j+1.
- 8) Выводится построенный вектор парresult_composition.

Сложность алгоритма: n * t * m.

6. Основные операции над матрицами

- Сложение двух матриц.

Суммой матрицы A (размерностью $m \times n$ и элементами a_{ij}) и матрицы B (размерностью $m \times n$ и элементами b_{ij}) является матрица C (размерностью $m \times n$ и элементами c_{ij}), где $c_{ij} = a_{ij} + b_{ij}$ для всех $i = \overline{1,m}$ и $j = \overline{1,n}$.

- Умножение матрицы на число.

Произведение матрицы A (размерностью $m \times n$ и элементами a_{ij}) на число α является матрица C (размерностью $m \times n$ и элементами c_{ij}), где $c_{ij} = \alpha a_{ij}$ для всех $i = \overline{1,m}$ и $j = \overline{1,n}$.

- Умножение двух матриц.

Произведением матрицы A (размерностью $m \times n$ и элементами a_{ij}) на матрицу B (размерностью $m \times n$ и элементами b_{ij}) является матрица C (размерностью $m \times n$ и элементами c_{ij}), где $c_{ij} = \sum_{\rho=1}^n a_{ij} b_{ij}$ для всех $i = \overline{1,m}$ и $j = \overline{1,n}$.

- Транспонирование матрицы.

Транспонированной матрицей от матрицы A (размерностью $m \times n$ и элементами a_{ij}) является матрица A^T (размерностью $m \times n$ и элементами a_{ij}), где a_{ij} транспонированной матрицы = a_{ji} исходной матрицы.

- Обращение матрицы.

Обращение матрицы A (размерностью $m \times n$ и элементами a_{ij}) это получение матрицы A^{-1} , матрицы, при умножении которой на исходную матрицу A получается единичная матрица E. эта матрица, удовлетворяет равенству: $AA^{-1} = A^{-1}A = E$.

7. Алгоритмы основных операций над матрицами

7.1 Сложение двух матриц над конечным поле.

Входные данные: матрицы matrixA с размерностью $N \times M$ и matrixB с размерностью $R \times T$ и порядок поля order.

Выходные данные: матрица matrix C — результат сложения двух матриц над конечным полем или сообщение «Сложение матриц невозможно».

Описание алгоритма:

- 1) Проверяется условие возможности сложения матриц: если $N \neq R$ ИЛИ $M \neq T$, то выводится сообщение «Сложение матриц невозможно».
- 2) Иначе запускается цикл прохода по индексу і от 0-го до N-1.
- 3) Внутри цикла запускается цикл прохода по индексу ј от 0-го до М-1.
- 4) Внутри циклов составляется матрица matrixC: matrixC[i][j] = matrixA[i][j] + matrix[i][j].
- 5) При выводе matrixC результата сложения матриц matrixA и matrixB выводится matrixC[i][j] mod order.

Сложность алгоритма: n * m.

7.2 Умножение матрицы на число над конечным полем.

Входные данные: матрица matrix с размерностью $N \times M$, порядок поля order и число x, на которое умножается матрица.

Выходные данные: результат умножения матрицы на число над конечным полем.

Описание алгоритма:

- 1) Запускается цикл прохода по индексу і от 0-го до N-1.
- 2) Внутри цикла запускается цикл прохода по индексу і от 0-го до М-1.
- 3) Внутри цикла происходит вывод элементов матрицы matrix, где каждый элемент умножается на число x и (matrix[i][j]*x)mod order.

Сложность алгоритма: n * m.

7.3 Умножение двух матриц над конечным полем.

Входные данные: матрицы matrixA с размерностью $N \times M$ и matrixB с размерностью $R \times T$ и порядок поля order.

Выходные данные: матрица matrixD — результат умножения двух матриц над конечным полем или сообщение «Умножение матриц невозможно».

Описание алгоритма:

- 1) Проверяется условие возможности сложения матриц: если M=R, то запускается цикл прохода по индексу і от 0-го до N-1.
- 2) Внутри цикла запускается цикл прохода по индексу ј от 0-го до Т-1.
- 3) Внутри цикла запускается цикл прохода по индексу q от 0-го до R-1.
- 4) Внутри циклов составляется матрица matrixD: matrixD[i][j] = matrixD[i][j] + matrixA[i][q] * matrix[q][j].
- 5) Иначе выводится сообщение «Умножение матриц невозможно».
- 6) При выводе matrixD результата умножения матриц matrixA и matrixB выводится matrixD[i][j] mod order.

Сложность алгоритма: n * t * r.

7.4 Транспонирование матрицы над конечным полем.

Входные данные: матрица matrix с размерностью $N \times M$ и порядок поля order.

Выходные данные: транспонированная матрица matrix с размерностью $M \times N$ над конечным полем.

Описание алгоритма:

- 1) Запускается цикл прохода по индексу і от 0-го до М-1.
- 2) Внутри цикла запускается цикл прохода по индексу ј от 0-го до N-1.
- 3) Внутри цикла происходит формирование матрицы matrixtransposed: matrixtransposed[i][j] = matrix[j][i].
- 4) При выводе matrixtransposed результата транспонирования матрицы matrix выводится matrixtransposed[i][j] mod order.

Сложность алгоритма: n * m.

7.5 Обращение матрицы над конечным полем.

Входные данные: матрицы matrix с размерностью $N \times N$ и порядок поля order.

Выходные данные: обращенная матрица с размерностью $N \times N$ над конечным полем или сообщение «Матрица является вырожденной». Описание алгоритма:

- 1) Вычисляется определитель матрицы.
- 2) Проводится проверка матрицы на возможность нахождения обратной матрицы: если при делении определителя на порядок поля остаток отделения равен нулю, то на выход идёт сообщение «Матрица является вырожденной» и выполнение программы прекращается.
- 3) Иначе продолжается вычисление обращенной матрицы.
- 4) Формируется матрица algdop матрица алгебраических дополнений для матрицы matrix.
- 5) Формируется матрица *algdoptransposed* результат транспонирования матрицы *algdop*.
- 6) Вычисляется *detinverse* обратный элемент в конце по модулю.
- 7) Преобразуется матрица $algdop_transposed$: запускается проход по матрице от элемента algdoptransposed[0][0] до элемента algdoptransposed[N-1][N-1] по индексу i от 0-го до N-1 и по индексу j от 0-го до N-1 и каждый algdoptransposed[i][j] умножается на detinverse.
- 8) Запускается цикл прохода по индексу i от 0-го до N-1.
- 9) Внутри цикла запускается цикл прохода по индексу j от 0-го до N-1.
- 10) Внутри циклов проверяется условие: если $algdoptransposed[i][j] \ge 0$, то algdoptransposed[i][j] = algdoptransposed[i][j] mod order.
- 11) Иначе algdoptransposed[i][j] = $(algdoptransposed[i][j] \ mod \ order) + order.$
- 12) На выход идёт матрица algdoptransposed. Сложность алгоритма: n^4 .

8. Реализация рассмотренных алгоритмов

8.1 Алгоритмы для проверки свойств операций.

```
#include <iostream>
#include <windows.h>
#include <vector>
using namespace std;
bool associative(vector<vector<int>>& cayley table) {
    for (int x = 0; x < size(cayley_table); ++x) {</pre>
        for (int y = 0; y < size(cayley_table); ++y) {</pre>
             for (int z = 0; z < size(cayley_table); ++z) {</pre>
                 if (cayley_table[y][cayley_table[x][z] - 1]
                 != cayley_table[cayley_table[y][x] - 1][z]) {
                     return false;
             }
        }
    }
    return true;
}
bool commutativity(vector<vector<int>>& cayley table) {
    for (int i = 0; i < size(cayley table); ++i) {</pre>
        for (int j = 0; j < size(cayley table); ++j) {
             if (cayley table[i][j] != cayley table[j][i]) {
                 return false;
        }
    return true;
}
bool idempotency(vector<vector<int>>& cayley table) {
    for (int i = 0; i < size(cayley table); ++i) {</pre>
        if (cayley_table[i][i] != i + 1) {
            return false;
    }
    return true;
}
bool invertibility(vector<vector<int>>& cayley table) {
    for (int i = 0; i < size(cayley table); ++i) {</pre>
        for (int j = 0; j < size(cayley_table); ++j) {</pre>
             if (!(cayley_table[i][j] == cayley_table[j][i] && cayley_table[i][j]
== 1)){
                 return false;
        }
    return true;
bool distributivity(vector<vector<int>>& cayley table) {
    cout << "Другая таблица Кэли:" << endl;
```

```
vector<vector<int>>> another cayley table(size(cayley table),
vector<int>(size(cayley_table)));
    for (int i = 0; i < size(another cayley table); ++i) {</pre>
        for (int j = 0; j < size(another cayley table); ++j) {
            cin >> another cayley table[i][j];
        }
    }
    for (int x = 0; x < size (another cayley table); ++x) {
        for (int y = 0; y < size(another_cayley_table); ++y) {</pre>
            for (int z = 0; z < size (another cayley table); ++z) {
                int p = another cayley table[y][z] - 1;
                int q = cayley table[x][y] - 1;
                int m = cayley_table[x][z] - 1;
                int g = another cayley table[y][z] - 1;
                int h = cayley table[y][x] - 1;
                int u = cayley table[z][x] - 1;
                if (cayley table[x][p] != another cayley table[q][m] ||
                    cayley table[g][x] != another cayley table[h][u]) {
                    return false;
                }
            }
        }
    return true;
int main() {
    SetConsoleOutputCP(CP UTF8);
    cout << "Количество элементов" << endl;
    int n:
    cin >> n;
    cout << "Таблица Кэли:" << endl;
    vector<vector<int>> cayley table(n, vector<int> (n));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            cin >> cayley table[i][j];
    if (associative(cayley table)) {
        cout << "Ассоциативность выполянется" << endl;
    } else {
        cout << "Ассоциативность не выполняется" << endl;
    if (commutativity(cayley table)) {
        cout << "Коммутативность выполянется" << endl;
    } else {
       cout << "Коммутативность не выполняется" << endl;
    if (idempotency(cayley table)) {
        cout << "Идемпотентность выполняется" << endl;
    } else {
        cout << "Идемпотентность не выполняется" << endl;
    if (invertibility(cayley table)) {
        cout << "Обратимость выполняется" << endl;
```

```
} else {
    cout << "Обратимость не выполняется" << endl;
}

if (distributivity(cayley_table)) {
    cout << "Дистрибутивность выполняется" << endl;
} else {
    cout << "Дистрибутивность не выполняется" << endl;
}

return 0;
}</pre>
```

```
Количество элементов

Таблица Кэли:

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

Ассоциативность выполянется
Коммутативность выполянется
Идемпотентность не выполняется
Обратимость не выполняется
Другая таблица Кэли:

1 2 3 1 3

1 3 2 3 4

1 1 1 4 5

4 3 2 1 1

4 3 5 2 3

Дистрибутивность не выполняется
```

8.2 Алгоритмы операций над бинарными отношениями.

- Объединение и пересечение бинарных отношений.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>
using namespace std;
```

```
int main() {
    SetConsoleOutputCP(CP UTF8);
    cout << "Размерность матриц A и B (n m)" << endl;
    int n, m;
    cin >> n >> m;
    cout << "Матрица A:" << endl;
    vector<vector<int>> matrix A(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix_A[i][j];
    }
    cout << "Матрица В:" << endl;
    vector<vector<int>> matrix B(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix B[i][j];
    }
    vector<pair<int, int>> result union;
    for (int i = 0; i < n; ++i) {</pre>
        for (int j = 0; j < m; ++j) {
            if (matrix A[i][j] || matrix_B[i][j]) {
                result union.push_back({i + 1, j + 1});
            }
        }
    vector<pair<int, int>>> result_intersection;
    for (int i = 0; i < n; ++i) {</pre>
        for (int j = 0; j < m; ++j) {
            if (matrix A[i][j] && matrix B[i][j]) {
                result intersection.push back({i + 1, j + 1});
        }
    cout << "Результат объединения бинарных отношений: " << endl;
    cout << "[ ";
    for (auto q : result union) {
        cout << "(" << q.first << ", " << q.second << ")" << ", ";
    cout << "]" << endl;</pre>
    cout << "Результат пересечения бинарных отношений: " << endl;
    cout << "[ ";
    for (auto q : result intersection) {
       cout << "(" << q.first << ", " << q.second << ")" << ", ";
    cout << "]" << endl;</pre>
   return 0;
}
```

```
Размерность матриц A и B (n m) 3 2
Матрица A:
1 0
1 1
0 1
Матрица B:
1 1
0 0
0 0
Результат объединения бинарных отношений:
[ (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), ]
Результат пересечения бинарных отношений:
[ (1, 1), ]
```

– Дополнение и обращение бинарных отношений.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>
using namespace std;
int main() {
    SetConsoleOutputCP(CP UTF8);
    cout << "Размерность матрицы (n m):" << endl;
    int n, m;
    cin >> n >> m;
    cout << "Матрица: " << endl;
    vector<vector<int>> matrix(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix[i][j];
    }
    vector<vector<int>>> matrix transposed(m, vector<int> (n));
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j){
            matrix transposed[i][j] = matrix[j][i];
        }
    }
    vector<pair<int, int>> result additions;
    for (int i = 0; i < n; ++i) {
```

```
for (int j = 0; j < m; ++j) {
        if (!matrix[i][j]) {
            result additions.push back(\{i + 1, j + 1\});
    }
}
vector<pair<int, int>> result_reversal;
for (int i = 0; i < m; ++i) {</pre>
    for (int j = 0; j < n; ++j) {
        if(matrix transposed[i][j]){
            result reversal.push back({i + 1, j + 1});
    }
}
cout << "Результат дополнения бинарного отношения: " << endl;
cout << "[ ";
for (auto q : result_additions) {
    cout << "(" << q.first << ", " << q.second << ")" << ", ";
cout << "]" << endl;</pre>
cout << "Результат обращения бинарного отношения: " << endl;
cout << "[ ";
for (auto q : result reversal) {
    cout << "(" << q.first << ", " << q.second << ")" << ", ";
cout << "1" << endl;
return 0;
```

1

```
Размерность матрицы (n m):

3 4

Матрица:

0 1 0 1

1 1 0 0

0 0 1 1

Результат дополнения бинарного отношения:
[ (1, 1), (1, 3), (2, 3), (2, 4), (3, 1), (3, 2), ]
Результат обращения бинарного отношения:
[ (1, 2), (2, 1), (2, 2), (3, 3), (4, 1), (4, 3), ]
```

- Композиция бинарных отношений.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>
```

```
using namespace std;
int main() {
    SetConsoleOutputCP(CP UTF8);
    cout << "Размерность матрицы A (n m)" << endl;
    int n, m;
    cin >> n >> m;
    cout << "Матрица A:" << endl;
    vector<vector<int>>> matrix_A(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix_A[i][j];
        }
    }
    cout << "Размерность матрицы В (r t)" << endl;
    int r, t;
    cin >> r >> t;
    cout << "Матрица В:" << endl;
    vector<vector<int>>> matrix B(r, vector<int> (t));
    for (int i = 0; i < r; ++i) {
        for (int j = 0; j < t; ++j) {
            cin >> matrix B[i][j];
    }
    vector<vector<int>> matrix C(n, vector<int> (t));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < t; ++j) {
            matrix C[i][j] = 0;
            for (int w = 0; w < m; ++w) {
                matrix_C[i][j] += matrix_A[i][w] * matrix_B[w][j];
            if (matrix C[i][j] > 1) {
                matrix C[i][j] = 1;
            }
        }
    vector<pair<int, int>> result composition;
    for (int i = 0; i < n; ++i) {</pre>
        for (int j = 0; j < t; ++j) {
            if (matrix C[i][j]) {
                result composition.push back(\{i + 1, j + 1\});
            }
        }
    cout << "Результат композиции бинарных отношений: " << endl;
    if (m == r) {
        cout << "[ ";
        for (auto q : result composition) {
            cout << "(" << q.first << ", " << q.second << ")" << ", ";
        cout << "]" << endl;
    } else {
       cout << "Произведение матриц невозможно" << endl;
```

```
return 0;
}
```

```
Размерность матрицы A (n m)

2 4

Матрица A:

1 0 0 1

0 0 1 1

Размерность матрицы B (r t)

4 3

Матрица B:

0 1 1

1 0 1

1 1 1

0 0 1

Результат композиции бинарных отношений:

[ (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), ]
```

8.3 Алгоритмы основных операций над матрицами.

- Сложение и умножение двух матриц над конечным полем.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>
using namespace std;
int main() {
   SetConsoleOutputCP(CP UTF8);
   cout << "Размерность матрицы A (n m)" << endl;
    int n, m;
   cin >> n >> m;
    cout << "Матрица A:" << endl;
    vector<vector<int>> matrix A(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
           cin >> matrix A[i][j];
        }
    cout << "Размерность матрицы В (r t)" << endl;
    int r, t;
```

```
cout << "Матрица В:" << endl;
    vector<vector<int>>> matrix_B(r, vector<int> (t));
    for (int i = 0; i < r; ++i) {
        for (int j = 0; j < t; ++j) {
            cin >> matrix_B[i][j];
        }
    }
    cout << "Введите порядок поля:" << endl;
    int order;
    cin >> order;
    vector<vector<int>> matrix_C(n, vector<int> (m));
    if (n != r || m != t) {
        cout << "Сложение матриц невозможно" << endl;
    } else {
        for (int i = 0; i < n; ++i){
            for (int j = 0; j < m; ++j) {
                matrix C[i][j] = matrix A[i][j] + matrix B[i][j];
        }
        cout << "Результат сложения матриц А и В:" << endl;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                cout << setw(4) << matrix C[i][j] % order << ' ';</pre>
            cout << endl;</pre>
        }
    }
    vector<vector<int>> matrix D(n, vector<int> (t));
    if (m == r) {
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < t; ++j) {
                matrix D[i][j] = 0;
                for (int q = 0; q < r; ++q) {
                    matrix D[i][j] += matrix A[i][q] * matrix B[q][j];
            }
        }
        cout << "Результат умножения матриц А и В: " << endl;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < t; ++j) {
                cout << setw(4) << matrix D[i][j] % order << ' ';</pre>
            cout << endl;</pre>
        }
    } else {
        cout << "Умножение матриц невозможно" << endl;
   return 0;
}
```

cin >> r >> t;

```
Размерность матрицы A (n m)
Матрица А:
Размерность матрицы В (r t)
Матрица В:
Введите порядок поля:
Результат сложения матриц А и В:
   3
        3
             3
   3
        3
             3
   3
        3
             3
Результат умножения матриц А и В:
   2
        3
   0
       6
             5
             6
```

- Умножение матрицы на число над конечным полем.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>

using namespace std;

int main() {

   SetConsoleOutputCP(CP_UTF8);

   cout << "Размерность матрицы (n m):" << endl;
   int n, m;
   cin >> n >> m;

   cout << "Матрица: " << endl;
   vector<vector<int>> matrix(n, vector<int> (m));
```

```
for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix[i][j];
        }
    }
    cout << "Число, на которое умножается матрица: " << endl;
    int x;
    cin >> x;
    cout << "Введите порядок поля:" << endl;
    int order;
    cin >> order;
    cout << endl << "Результат умножения матрицы на число:" << endl;
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
           cout << setw(4) << matrix[i][j] * x % order<< ' ';</pre>
        cout << endl;</pre>
   return 0;
}
```

```
Размерность матрицы (n m):
2 4
Матрица:
3 5 6 2
8 4 5 3
Число, на которое умножается матрица:
2
Введите порядок поля:
6
Результат умножения матрицы на число:
0 4 0 4
4 2 4 0
```

- Транспонирование матрицы над конечным полем.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>

using namespace std;
int main() {
```

```
SetConsoleOutputCP(CP UTF8);
   cout << "Размерность матрицы (n m):" << endl;
    int n, m;
    cin >> n >> m;
    cout << "Матрица: " << endl;
    vector<vector<int>> matrix(n, vector<int> (m));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix[i][j];
        }
    }
    cout << "Введите порядок поля:" << endl;
    int order;
    cin >> order;
   vector<vector<int>> matrix transposed(m, vector<int> (n));
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j){
            matrix transposed[i][j] = matrix[j][i];
        }
    cout << endl << "Транспонированная матрица:" << endl;
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            cout << setw(4) << matrix transposed[i][j] % order << ' ';</pre>
        cout << endl;</pre>
   return 0;
}
```

```
Размерность матрицы (n m):
2 4
Матрица:
32 11 43 12
26 72 9 10
Введите порядок поля:
5
Транспонированная матрица:
2 1
1 2
3 4
2 0
```

- Обращение матрицы над конечным полем.

```
#include <iostream>
#include <iomanip>
#include <windows.h>
#include <vector>
#include <cmath>
using namespace std;
int Get minor(vector<vector<int>>& matrix, vector<vector<int>>& matrix alg, int
x, int y, int size) {
    int xCount = 0;
    int yCount = 0;
    for (int i = 0; i < size; ++i) {</pre>
        if (i != x) {
            yCount = 0;
            for (int j = 0; j < size; ++j) {
                if (j != y) {
                    matrix alg[xCount][yCount] = matrix[i][j];
                    ++yCount;
                1
            } ++xCount;
        }
    }
    return 0;
}
int Find determinant (vector<vector<int>>& matrix, int size) {
    if (size == 1) {
        return matrix[0][0];
    } else {
        int det = 0;
        vector<vector<int>> minor(size - 1, vector<int> (size - 1));
        for (int i = 0; i < size; ++i) {</pre>
            Get_minor(matrix, minor, 0, i, size);
            det += pow(-1, i) * matrix[0][i] * Find_determinant(minor, size -
1);
        }
        return det;
    1
}
void Find alg dop(vector<vector<int>>& matrix, int size, vector<vector<int>>&
matrix alg) {
    int det = Find determinant(matrix, size);
    if (det > 0) {
        det = -1;
    } else {
        det = 1;
    vector<vector<int>> minor(size - 1, vector<int> (size - 1));
    for (int i = 0; i < size; ++i) {</pre>
        for (int j = 0; j < size; ++j) {
```

```
Get_minor(matrix, minor, i, j, size);
            if ((i + j) % 2 == 0) {
                matrix_alg[i][j] = -det * Find determinant(minor, size - 1);
            } else {
                matrix alg[i][j] = det * Find determinant(minor, size - 1);
        }
   }
}
void gcdExtended (int a, int b, int& x, int& y)
    if (a == 0) \{ x = 0; y = 1; return; \}
   int x 1, y 1;
   gcdExtended (b % a, a, x 1, y 1);
   x = y 1 - (b / a) * x 1;
   y = x 1;
   return;
}
int main() {
    SetConsoleOutputCP(CP UTF8);
   cout << "Размерность матрицы для обращения (n): " << endl;
   int n:
   cin >> n;
   cout << "Матрица для обращения: " << endl;
   vector<vector<int>>> matrix(n, vector<int> (n));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
           cin >> matrix[i][j];
    }
    int det = Find determinant(matrix, n);
    int det inverse = 0;
    int rrr = 0;
    cout << "Введите порядок поля:" << endl;
    int order;
    cin >> order;
    if (det % order == 0) {
        cout << "Матрица является вырожденной" << endl;
    }
    vector<vector<int>> alg dop(n, vector<int> (n));
    Find_alg_dop(matrix, n, alg_dop);
    vector<vector<int>>> alg dop transposed(n, vector<int> (n));
    for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
            alg dop transposed[i][j] = alg dop[j][i];
    }
    for (int i = 0; i < n; ++i) {
```

```
for (int j = 0; j < n; ++j) {
            alg_dop_transposed[i][j] = alg_dop_transposed[i][j] % order;
    }
    gcdExtended (abs(det), order, det inverse, rrr);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            alg_dop_transposed[i][j] = alg_dop_transposed[i][j] * det_inverse;
    }
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (alg dop transposed[i][j] >= 0) {
                alg_dop_transposed[i][j] = alg_dop_transposed[i][j] % order;
            } else {
                alg dop transposed[i][j] = (alg dop transposed[i][j] % order) +
order;
            }
        }
    }
   cout << "ОБращенная матрица по модулю " << order << " : " << endl;
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            cout << alg dop transposed[i][j] << ' ';</pre>
        cout << endl;</pre>
   return 0;
}
```

```
Размерность матрицы для обращения (n):

3
Матрица для обращения:
6 24 1
13 16 10
20 17 15
Введите порядок поля:
26
ОБращенная матрица по модулю 26 :
8 5 10
21 8 21
21 12 8
```

9. Решение задач по варианту 3.

Вариант 3.
Задание 1.
Pemerue: 9 6 6 a a Min-bo fa, b, ed f. Apoxogee6 no been montruye encompan 6 6 6 6 6 c a 6 d c bemonnenene yenoburg: \(\forall \times y, y, z \in To: \times (y \cdot z) = (x \cdot y) \cdot z d a 6 c d
1) (a.a). a = b.a = b 6) (b.c). a = b.a = b 11)(d.a). a = a.a = b
2) (a.b) · a = b · a = b · b · (c·a) = b · a = b d · (a·a) = d · b = b
a.(b.a)=a.b=b 7)(b.d).a=b.a=b 12)(d.b).a=b.a=b
) (a·c)·a = a·a = 6
a.(c.a) = a.a = 6 8)(c.a).a = a.a = 6 13)(d.d).a = d.a = a
) (a·d)·a = a·a = b
a. (d.a) = a.a = 6 9) (c.b). a = b.a = 6 14) (b.b). a = b.a = 6
$(b \cdot a) \cdot a = b \cdot a = b$ $(c \cdot (b \cdot a)) = c \cdot b = b$ $(b \cdot (ba)) = b \cdot b = b$
6. (a.a) = 6. 6 = 6 10) (c.d) · a = c.a = a 15) (c.c) · a = d.a = a
с·(d·a)=c·a=a c·(c·a)=c·a=a и т.д. в имоге поеле проверки веех возможных варисијант элементо
ыхенилось, имо все комбинации удолетвориям условию, значим
провермения аперации аесоциантьна.

3aganue 2.

Haimm
$$A^2 + (10 - \frac{3}{2}) \cdot A + \frac{3}{2} \cdot E$$
, $29e A = \begin{pmatrix} 1 - 2 \\ -3 & 3 \end{pmatrix}$, $E - egunu + haw motipuya$

Percence:

1) $A^2 = \begin{pmatrix} 1 - 2 \\ -3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 - 2 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} 7 - 8 \\ -12 & 15 \end{pmatrix}$
2) $(10 - 3|2) \cdot A = 8 \cdot 5 \cdot \begin{pmatrix} 1 - 2 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} 8.5 & -17 \\ -25.5 & 25.5 \end{pmatrix}$
3) $\frac{3}{2} \cdot E = 1.5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \quad 4) \begin{pmatrix} 7 - 8 \\ -12 & 15 \end{pmatrix} + \begin{pmatrix} 8.5 & -17 \\ -25.5 & 25.5 \end{pmatrix} = \begin{pmatrix} 1.5.5 & -25 \\ -37.5 & 40.5 \end{pmatrix}$
5) $\begin{pmatrix} 15.5 & -25 \\ -37.5 & 40.5 \end{pmatrix} + \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} = \begin{pmatrix} 1.7 & -25 \\ -37.5 & 42 \end{pmatrix}$

Outbean: $\begin{pmatrix} 17 & -25 \\ -37.5 & 42 \end{pmatrix}$
Percence:

$$\begin{pmatrix} -1 & 3 & 3 \\ 1 & 2 & 7 \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 \\ 1 & 8.5 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 1 & 8.5 \\ -3 & 3 \end{pmatrix}$$
Percence:

$$\begin{pmatrix} -1 & 3 & 3 \\ 1 & 2 & 7 \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 \\ 1 & 8.5 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} -1 - 3 + 3 \cdot 1 + 3 \cdot 3 \\ 1 \cdot -3 + 2 \cdot 1 + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 + 3 + (-9) - 2 + 2859 \\ -3 \cdot 2 - 1 + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} -3 & 32.5 \\ -3 & 32.5 \end{pmatrix}$$
Outbean: $\begin{pmatrix} -3 & 32.5 \\ -22 & 40 \end{pmatrix}$

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе были рассмотрены алгебраические операции и классификация свойств операций, операции над бинарными отношениями и выполнение операций над матрицами над конечным полем.

Результатом работы является: алгоритмы для проверки свойств операции, алгоритмы для выполнения операций над бинарными отношениями и алгоритмы для выполнения операции над матрицами над конечным полем. Была осуществлена программная реализация описанных алгоритмов и проведено тестирование программ.