

CS 564: Database Management Systems Lecture 30: Column Store

Xiangyao Yu 4/8/2024

Module B3 Query Processing

Relational operators I

Relational operators II

Query optimization I

Query optimization II

Column Store

Outline

Data layout

Data encoding

Operators

Zone map

Data Storage Format

RELATION R

RID	SSN	Name	Age
1	0962	Jane	30
2	7658	John	45
3	3859	Jim	20
4	5523	Susan	52
5	9743	Leon	43
6	0618	Dan	37

NSM PAGE

N-ary Storage Model (NSM)

Data Storage Format

RELATION R

RID	SSN	Name	Age
1	0962	Jane	30
2	7658	John	45
3	3859	Jim	20
4	5523	Susan	52
5	9743	Leon	43
6	0618	Dan	37

NSM PAGE

PAX PAGE

N-ary Storage Model (NSM) Partition Attributes Across (PAX)

Column Store

Advantages of column store

- Encode data in compact layout
- Read relevant attributes only (projection is free!)

Column Store

Advantages of column store

- Encode data in compact layout
- Read relevant attributes only (projection is free!)

Disadvantage of column store

Update/Insertion is more expensive

NSM PAGE

PAX PAGE

Outline

Data layout

Data encoding

- Bit packing
- Run-length encoding (RLE)
- Delta encoding
- Dictionary encoding

Operators

Zone map

Data Encoding — Bit Packing

A: integer

35
6
178
93
12
54

00000000	00000000	00000000	00100011
00000000	00000000	00000000	00000110
00000000	00000000	00000000	10110010
00000000	00000000	00000000	01011101
00000000	00000000	00000000	00001100
00000000	00000000	00000000	00110110

Data Encoding — Bit Packing

A: integer

35
6
178
93
12
54

00000000	00000000	00000000	00100011
00000000	00000000	00000000	00000110
00000000	00000000	00000000	10110010
00000000	00000000	00000000	01011101
00000000	00000000	00000000	00001100
00000000	00000000	00000000	00110110

header
00100011
00000110
10110010
01011101
00001100
00110110

- Avoid storing leading zeros in a group of values
- Use bitwise operations to encode and decode

Data Encoding — Run-Length Encoding

A: string

Madison

Madison

Madison

Madison

Chicago

Chicago

Data Encoding — Run-Length Encoding

- Store data as (value, count) pairs
- Effective for compressing long sequences of repeated values

Data Encoding — Delta Encoding

A: integer

1000001
1000002
1000003
1000004
1000005
1000006

Data Encoding — Delta Encoding

A: integer

1000001	
1	
1	
1	
1	
1	

- Store the differences (or deltas) between consecutive values
- Ideal for data that changes gradually over time (e.g., timestamp, temperature, sensor values, etc.)
- Can apply bit packing and/or RLE on delta encoded data to further reduce data footprint

Data Encoding — Dictionary Encoding

A: string

Wisconsin

Illinois

Minnesota

Minnesota

Wisconsin

Illinois

Data Encoding — Dictionary Encoding

A: string Wisconsin Illinois Minnesota Minnesota Wisconsin

Illinois

Dictionary: ('Wisconsin': 0 'Illinois': 1 'Minnesota': 2)

Encoded data 0 1 2 2

Assign different integer identifier for all unique strings or symbols

Data Encoding — Dictionary Encoding

A: string

Wisconsin
Illinois
Minnesota
Minnesota
Wisconsin
Illinois

Dictionary Encoding

Encoded data

- Dictionary:

 ('Wisconsin': 0

 'Illinois': 1
 - 'Minnesota': 2)

- Assign different integer identifier for all unique strings or symbols
- Can avoid decoding for certain operators
 - state='Wisconsin' state=0
 - R.state=S.state

Data Encoding

Multiple encoding techniques can be applied in layers to further reduce data footprint

For example, dictionary-encoded data can be further compressed through bit packing, delta encoding, and/or run-length encoding

Layered encoding/decoding requires more computation

A: char[10]

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Minnesota

Minnesota

Minnesota

Minnesota

Illinois

Illinois

Illinois

Table size: 15*10=150 Bytes

A: char[10]

Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Minnesota Minnesota Minnesota Minnesota Illinois Illinois Illinois

Table size: 15*10=150 Bytes

Dictionary

'Wisconsin': 0

'Illinois': 1

'Minnesota': 2

0
0
0
0
0
0
0
0
2
2
2
2
1
1
1

 $\mathbf{0}$

Table size: 15*4=60 Bytes

A: char[10]

Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Minnesota Minnesota Minnesota Minnesota Illinois Illinois Illinois

Table size: 15*10=150 Bytes

Dictionary

'Wisconsin': 0

'Illinois': 1

'Minnesota': 2

value count

2

4

1

Table size: 6*4=24 Bytes

0	
0	
0	
0	
0	
0	
0 2 2 2 2	
2	
2	
2	
1	
1	
1	

1

Table size: 15*4=60 Bytes

A: char[10]

Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Wisconsin Minnesota Minnesota Minnesota Minnesota Illinois Illinois Illinois

Dictionary

'Wisconsin': 0 'Illinois': 1

'Minnesota': 2

Run-length encoding

value count

Table size: 6*4=24 Bytes

Bit packing

Table size: 6*1=6 Bytes

Table size: 15*10=150 Bytes

Table size: 15*4=60 Bytes

Outline

Data layout

Data encoding

Operators

- Projection
- Selection
- Join

Zone map

Projection

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

Read the needed columns only

– Projection is free!

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

SELECT sname, FROM Sailors WHERE rating > 7;

sid	sname
22	Dustin
29	Brutus
31	Lubber
32	Andy
58	Rusty
64	Horatio
71	Zorba
74	Horato

rating	
7	
1	
8	
8	
10	
7	
10	
9	

age
45
33
55
25
35
35
16
35

Bitmap for rows that satisfy the predicate

SELECT sname, FROM Sailors WHERE rating > 7; **Bitmap**

sid	sname
22	Dustin
29	Brutus
31	Lubber
32	Andy
58	Rusty
64	Horatio
71	Zorba
74	Horato

rating	age
7	45
1	33
8	55
8	25
10	35
7	35
10	16
9	35
	•

SELECT sname, FROM Sailors WHERE rating > 7;

Bitmap

sid
22
29
31
32
58
64
71
74

sname	
Dustin	
Brutus	
Lubber	
Andy	
Rusty	
Horatio	
Zorba	
Horato	

rating	age
7	45
1	33
8	55
8	25
10	35
7	35
10	16
9	35

SELECT sname, FROM Sailors WHERE rating > 7;

Produce the selection results using the sname column and the bitmap or the RowID list

Join

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

DIG	aay
101	10/10/98
102	10/10/98
104	11/12/98
101	9/5/98
102	9/8/98
103	9/8/98
	102 104 101 102

Reserves

Sailors

SELECT sname,
FROM Sailors S, Reserves R
WHERE S.sid = R.sid;

Join

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

sid	bid	day
22	101	10/10/98
22	102	10/10/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Reserves

Sailors

SELECT sname,
FROM Sailors S, Reserves R
WHERE S.sid = R.sid;

Read the join key columns and produce RowID pairs for matching tuples

Join

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

sid	bid	day
22	101	10/10/98
22	102	10/10/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Reserves

Sailors

SELECT sname,
FROM Sailors S, Reserves R
WHERE S.sid = R.sid;

Late materialize other columns using the RowID arrays

Outline

Data layout

Data encoding

Operators

Zone map

Reduce read IO cost for columns that have no index

Reduce read IO cost for columns that have no index

Row Group 1

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25

Row Group 2

sid	sname	rating	age
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

Reduce read IO cost for columns that have no index

Row Group 1

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25

Row Group 2

sid	sname	rating	age
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

Zone Map

cname	type	val
sid	min	22
sid	max	32
rating	min	1
rating	max	8

cname	type	val
sid	min	58
sid	max	74
rating	min	7
rating	max	10

Reduce read IO cost for columns that have no index

Row Group 1

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25

Row Group 2

sid	sname	rating	age
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horato	9	35

Zone Map

cname	type	val
sid	min	22
sid	max	32
rating	min	1
rating	max	8

cname	type	val
sid	min	58
sid	max	74
rating	min	7
rating	max	10

SELECT sname,
FROM Sailors S
WHERE rating < 6

Can skip row group 2 since min value for rating is 7

Summary

Data layout

Data encoding

- Bit packing
- Run-length encoding (RLE)
- Delta encoding
- Dictionary encoding

Operators

- Projection
- Selection
- Join

Zone map