CS 207: Discrete Structures

Instructor: S. Akshay

Aug 4, 2015 Lecture 08 – Basic mathematical structures Equivalence relations and partitions, posets

Recap: Relations

Definition: Relation

▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

- ▶ All functions are relations.
- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a-b \text{ is even } \}.$
- Relational databases are practical examples.

Recap: Relations

Definition: Relation

▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

- ▶ All functions are relations.
- ► $R_1(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z}, a b \text{ is even } \}.$
- Relational databases are practical examples.

Representations of a relation from A to B.

As a set of ordered pairs of elements, i.e., subset of $A \times B$, as a directed graph, as a (database) table.

Special types of relations

▶ Reflexive: $\forall a \in S, aRa$.

▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

▶ Equivalence: Reflexive, Symmetric and Transitive.

Relation	Refl.	Symm.	Trans.	Equiv.
aRb if students a and b take	✓	✓	✓	√
same set of courses				
$ \overline{\{(a,b) \mid a,b \in \mathbb{Z}, (a-b)\}} $	✓	✓	✓	√
$\mod 2 = 0\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$				
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}}$				
$ \overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \mid b\}} $				
$\{(a,b) \mid a,b \in \mathbb{R}, a-b < 1\}$				
$\overline{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}}$				
$\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc)\}$				

Partitions of a set – grouping "like" elements

Definition

A partition of a set S is a set P of its subsets such that

- if $S' \in P$, then $S' \neq \emptyset$.
- $\bigcup_{S' \in P} S' = S : \text{ its union covers entire set } S.$
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set S gives rise to a canonical equivalence relation R on S, namely,

ightharpoonup aRb if a and b belong to the same set in the partition of S.

Partitions of a set – grouping "like" elements

Definition

A partition of a set S is a set P of its subsets such that

- if $S' \in P$, then $S' \neq \emptyset$.
- ▶ $\bigcup_{S' \in P} S' = S$: its union covers entire set S.
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set S gives rise to a canonical equivalence relation R on S, namely,

ightharpoonup aRb if a and b belong to the same set in the partition of S.

Is the converse true? Can we generate a partition from every equivalence relation?

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Do the proof formally.)

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.

(H.W.): Write the formal proofs of (1) and (2).

More "applications" of equivalence relations

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ▶ Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p\\q \end{bmatrix}$.

More "applications" of equivalence relations

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ▶ Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p\\q \end{bmatrix}$.
- ▶ With this definition, why are addition and multiplication "well-defined"?

More "applications" of equivalence relations

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- \blacktriangleright Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p\\q \end{bmatrix}$.
- ▶ With this definition, why are addition and multiplication "well-defined"?

Can we define integers and real numbers starting from naturals by using equivalence classes?

Cut-and-paste

Consider the relation $R([0,1]) = \{aRb \mid a, b \in [0,1], \text{ either } a = b \text{ or } a = 1, b = 0, \text{ or } a = 0, b = 1\}.$

ightharpoonup Is R an equivalence relation? What does it define?

Cut-and-paste

Consider the relation $R([0,1]) = \{aRb \mid a, b \in [0,1], \text{ either } a = b \text{ or } a = 1, b = 0, \text{ or } a = 0, b = 1\}.$

- \blacktriangleright Is R an equivalence relation? What does it define?
- ▶ This is [0,1] in which the end-points have been related to each other.
- ▶ So the equivalence classes form a "loop", since end-points are joined. If we imagine [0, 1] as a 1-length string, we have glued its ends!

Forming 2D objects

Consider a rectangular piece of the real plane, $[0,1] \times [0,1]$.

- ▶ Define $R_1([0,1] \times [0,1])$ by $(a,b)R_1(c,d)$ if
 - (a,b) = (c,d) or
 - b = d, a = 0, c = 1 or
 - b = d, c = 0, a = 1.

Is R_1 an equivalence relation? What do its equivalence classes define?

Forming 2D objects

Consider a rectangular piece of the real plane, $[0,1] \times [0,1]$.

- ▶ Define $R_1([0,1] \times [0,1])$ by $(a,b)R_1(c,d)$ if
 - (a,b) = (c,d) or
 - b = d, a = 0, c = 1 or
 - b = d, c = 0, a = 1.

Is R_1 an equivalence relation? What do its equivalence classes define?

- ▶ Define $R_2([0,1] \times [0,1])$ by $(a,b)R_2(c,d)$ if
 - (a,b) = (c,d) or
 - ▶ $a, b, c, d \in \{0, 1\}.$

Is R_2 an equivalence relation? What does it define?

Can you build even more interesting "shapes"? Torus? Mobius strip?!

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$.

Consider $\{(a,b)\mid a,b\in\mathbb{Z},a\leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Examples:

- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}.$
- $R_2(\mathcal{P}(S)) = \{ (A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B \}.$

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a,b \in S$ aRb and bRa implies a=b.

Examples:

- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}.$
- $R_2(\mathcal{P}(S)) = \{ (A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B \}.$

Definition

A partial order is a relation which is reflexive, transitive and anti-symmetric.

Partial orders and equivalences relations

- ▶ Reflexive: $\forall a \in S, aRa$.
- ▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.
- ▶ Anti-symmetric: $\forall a, b \in S$, aRb, bRa implies a = b.
- ▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

Partial orders and equivalences relations

▶ Reflexive: $\forall a \in S, aRa$.

▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Anti-symmetric: $\forall a, b \in S, aRb, bRa \text{ implies } a = b.$

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

	Reflexive	Transitive	Symmetric	Anti-symmetric
Equivalence	✓	✓	✓	
relation				
Partial order	✓	\checkmark		\checkmark

Partial orders and equivalences relations

▶ Reflexive: $\forall a \in S, aRa$.

▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Anti-symmetric: $\forall a, b \in S, aRb, bRa \text{ implies } a = b.$

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

	Refl.	Anti-Sym	Trans.	PO
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$				

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$				

▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order?

	Refl.	Anti-Sym	Trans.	PO
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≼).

	Refl.	Anti-Sym	Trans.	PO
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	✓
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\overline{\{((a,b),(c,d)) \mid (a,b),(c,d) \in C\}}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
 - i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	ТО
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√	×
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
 - i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	ТО
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	✓	×
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ightharpoonup A total order is a partial order \preceq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?

	Refl.	Anti-Sym	Trans.	PO	ТО
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	√	✓	✓	√	_
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√	×
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } a = c, b \le d\}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?
- ▶ (H.W): Can a relation be neither symmetric nor anti-symmetric?

Partially ordered sets (Posets)

Definition

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) .

Partially ordered sets (Posets)

Definition

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) .

Examples

- (\mathbb{Z}, \leq) : integers with the usual less than or equal to relation.
- ▶ $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- \triangleright (\mathbb{Z}^+ , |): positive integers with divisibility relation.