Sistemas Electrónicos

Capítulo 6: Circuitos Digitais

Parte 1

Sistemas Electrónicos - 2020/2021

Sumário

- Introdução inversor lógico básico;
- Conceitos base e métricas de um circuito digital: tensões características, margens de ruído, *fan-out* e *fan-in*, desempenho, potência;
- Inversor CMOS Modelo simplificado, propriedades;
- Característica de transferência (VTC);
- Resposta transitória;
- Potência dissipada.

Introdução

Consideremos o circuito em que:

$$V_T = 1V, k = 100 \mu A/V^2, R_D = 10 K\Omega, V_{DD} = 5V.$$

• Se $V_i < V_T$ o MOSFET fica cortado, pelo que $I_{DS} = \theta$ e portanto $V_O = V_{DD} = 5V$.

• Se $V_i = V_{DD}$ o MOSFET conduz, muito provavelmente na região linear:

$$I_{DS} = k \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^{2} \right] = k \left[2(V_{DD} - V_T)V_0 - V_0^{2} \right]$$

Além disso sabemos que:

$$V_o = V_{DD} - R_D I_{DS}$$

 $V_o = V_{DD} - R_D I_{DS}$ Substituindo aqui a equação de I_{DS} e resolvendo com os valores dados, obtemos:

$$V_{o} = 0.6V$$

O que confirma a região linear do MOSFET.

E. Martins, DET Universidade de Aveiro

6.1 - 3

Sistemas Electrónicos - 2020/2021

Introdução

Portanto:

V_i	V_o
$<$ V_T	5 <i>V</i>
5 <i>V</i>	0.6V

- O circuito funciona como um inversor lógico (uma porta lógica NOT) se considerarmos:
 - \succ '0' \Leftrightarrow Tensão inferior a V_T
 - \succ '1' \Leftrightarrow Tensão igual a V_{DD}

6.1-5

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

Inversor ideal

Na saída: níveis lógicos

são:

$$\triangleright$$
 '0' $\Leftrightarrow V_o = \theta V$

$$\triangleright$$
 '1' $\Leftrightarrow V_o = V_{DD}$

Conceitos base e métricas de um

circuito digital

• Na entrada: o inversor usa o limiar $V_{DD}/2$ para distinguir entre os níveis lógicos 1 e 0:

$$\triangleright$$
 '0': $0 < V_i < V_{DD}/2$

$$>$$
 '1': $V_{DD}/2 < V_i < V_{DD}$

• Margem de ruído = $V_{DD}/2$

Inversor real

• Os inversores reais não apresentam características de transferência tão perfeitas.

E. Martins, DET Universidade de Aveiro

6.1-7

Sistemas Electrónicos - 2020/2021

Tensões características de uma porta lógica

- V_{OH} : Tensão de saída no estado '1': calculado como f(0);
- V_{OL} : Tensão de saída no estado '0': calculado como $f(V_{OH})$;
- V_{IH} : Tensão de entrada mínima do nível lógico '1';
- V_{IL}: Tensão de entrada máxima do nível lógico '0';
- V_{IH} e V_{IL} : definem-se nos pontos onde dVo/dVi = -1;
- V_M : Tensão de limiar da porta: define-se no ponto onde $V_M = f(V_M)$.

Robustez e margens de ruído

• Para que duas portas lógicas possam funcionar correctamente quando ligadas entre si é necessário que

Margens de ruído:

Margem de ruído '1':

$$NM_H = V_{OH} - V_{IH}$$

Margem de ruído '0':

$$NM_L = V_{IL} - V_{OL}$$

• As margens de ruído medem a capacidade do circuito manter os níveis lógicos na saída perante variações no processo de fabrico, ruído e temperatura.

E. Martins, DET Universidade de Aveiro

6.1-9

Sistemas Electrónicos - 2020/2021

Fan-out e fan-in

- Fan-Out: Número de portas ligadas à saída de uma porta driver. Portas carga são iguais à porta driver;
- Fan-Out máximo: Maior número de portas carga que é possível ligar à saída de uma porta driver mantendo especificações mínimas de robustez e performance;

Fan-in M

Desempenho

• A *performance* de um circuito digital é expressa pela máxima frequência a que o circuito funciona correctamente. Esta é condicionada pelos *tempos de propagação*.

Sistemas Electrónicos - 2020/2021

Potência

• É um dos aspectos de maior importância nos actuais circuitos digitais;

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t)dt$$

Potência total = Potência estática + Potência dinâmica;

- Potência estática: consumida pelo circuito quando a saída está estável num dos estados lógicos;
- Potência dinâmica: consumida pelo circuito quando a saída muda de estado.

Inversor CMOS

E. Martins, DET Universidade de Aveiro

6.1-13

Sistemas Electrónicos - 2020/2021

Inversor CMOS – Modelo simplificado

- Complementary MOS: usa um transístor NMOS e um PMOS;
- Tecnologia dominante desde meados dos anos 80.

Modelo simplificado de funcionamento

CMOS - propriedades

- Excursão rail-to-rail (0 a V_{DD}) => margens de ruído elevadas;
- Niveis lógicos e funcionalidade não dependem do tamanho relativo dos MOSFETs. Circuito é *ratioless*;
- Não existe caminho DC entre V_{DD} e a massa => potência estática é nula (em primeira aproximação);
- A configuração simétrica permite que o inversor apresente uma VTC simétrica bem como tempos de propagação, tp_{HL} e tp_{LH} , iguais.

E. Martins, DET Universidade de Aveiro

6.1-15

Sistemas Electrónicos - 2020/2021

Inversor CMOS - VTC

Regiões de funcionamento de MN

MN on se $V_i > V_{TN}$.

MN linear se: $V_{GD} > V_{TN} \iff V_i - V_o > V_{TN} \iff V_0 < V_i - V_{TN}$

e saturado na condição contrária.

Inversor CMOS - VTC

Regiões de funcionamento de MP

MP on se
$$V_{SG}>\mid V_{TP}\mid \iff V_{DD}-V_i>\mid V_{TP}\mid \iff V_i< V_{DD}-\mid V_{TP}\mid$$

MP linear se
$$V_{DG} > |V_{TP}| \iff V_o - V_i > |V_{TP}| \iff V_0 > V_i + |V_{TP}|$$

e saturado na condição contrária.

E. Martins, DET Universidade de Aveiro

6.1-17

Sistemas Electrónicos - 2020/2021

Inversor CMOS - VTC

MN e MP estarão saturados para $V_i - V_{TN} < V_0 < V_i + |V_{TP}|$

A tensão de limiar V_M = V_i = V_O ocorre nesta zona e pode ser obtida pela equação I_{DSN} = I_{SDP}

Inversor CMOS - VTC

Como ambos os transistores estão saturados na região de transição:

$$k_N(V_i - V_{TN})^2 = k_p(V_{DD} - V_i - |V_{TP}|)^2$$

$$\operatorname{com} K_R = k_P / k_N.$$

$$V_{M} = \frac{V_{TN} + \sqrt{K_{R}} \left(V_{DD} - \left|V_{TP}\right|\right)}{1 + \sqrt{K_{R}}}$$

• Para maximizar as margens de ruído interessa posicionar V_M em $V_{DD}/2$, ou seja, a meio da excursão lógica. Da expressão conclui-se que isso é conseguido se $K_R = 1$ ($k_N = k_P$) e $V_{TN} = /V_{TP}/.$

E. Martins, DET Universidade de Aveiro

6.1-19

Sistemas Electrónicos – 2020/2021

Dimensionamento dos transístores

Dado que
$$k_N = \frac{1}{2} \mu_n C_{OX} \left(\frac{W}{L} \right)_N$$
 e $k_P = \frac{1}{2} \mu_p C_{OX} \left(\frac{W}{L} \right)_P$

então

$$K_R = \frac{k_P}{k_N} = \frac{\mu_p.(W/L)_P}{\mu_n.(W/L)_N}$$

Como em geral $\mu_n/\mu_p \approx 2$ a 4, o inversor será simétrico se

$$\frac{(W/L)_P}{(W/L)_N} \approx 2 \ a \ 4$$

Inversor CMOS: Resposta transitória e potência dissipada

E. Martins, DET Universidade de Aveiro

6.1-21

Sistemas Electrónicos - 2020/2021

Resposta transitória do inversor CMOS

- Velocidade com que a saída muda de estado lógico depende do valor das capacidades...
 - Internas intrínsecas aos transístores do inversor;
 - Externas das ligações e de carga.

Modelo de Capacidade Concentrada

• Em lugar de considerarmos individualmente cada uma das capacidades intrínsecas dos transístores, consideramos um único condensador na saída, C_L , que representa o efeito combinado de todas as capacidades parasitas.

6.1-22

Resposta transitória do inversor CMOS

Tempo de propagação tp_{HL}

• Entrada transita de $0 \rightarrow 1 \Rightarrow$ saída muda de $1 \rightarrow 0$.

• I_{M1av} é a corrente média em M1.

E. Martins, DET Universidade de Aveiro

6.1-23

Sistemas Electrónicos - 2020/2021

Resposta transitória do inversor CMOS

Tempo de propagação tp_{LH}

• Entrada transita de $1 \rightarrow 0 \Rightarrow$ saída muda de $0 \rightarrow 1$.

I_{M2av} é a corrente média em M2.

Cálculo de tp_{HL}

Para $V_o = V_I = V_{DD}$ temos M1 saturado pelo que

$$I_{M1} = I_1 = k_N (V_{DD} - V_{TN})^2$$

Para $Vo = V_2 = V_{DD}/2$ temos M1 linear pelo que

$$I_{M1} = I_2 = k_N \left[2(V_{DD} - V_{TN}) \frac{V_{DD}}{2} - \left(\frac{V_{DD}}{2} \right)^2 \right] =$$

$$=k_{N}V_{DD}\left(\frac{3V_{DD}}{4}-V_{TN}\right)$$

O tempo de propagação será dado por

$$t_{pHL} = \frac{\Delta V}{I_{M1av}} C_L \qquad \begin{array}{c} \text{com } \Delta V = V_{DD}/2 \text{ e} \\ I_{M1av} \text{ igual à média} \\ \text{aritmética de } I_1 \text{ e } I_2 \end{array}$$

E. Martins, DET Universidade de Aveiro

6.1 - 25

Sistemas Electrónicos - 2020/2021

Potência

- Potência total = Potência estática + Potência dinâmica;
- Potência estática: é praticamente zero porque em qualquer um dos estados lógicos há sempre um transístor cortado.

Potência dinâmica

- É a potência solicitada à fonte de alimentação para carregar a capacidade de carga;
- A energia solicitada à fonte de alimentação quando a saída faz a transição 0 → 1 é:

$$E_{VDD} = \int_{0}^{\infty} i_{DD} \cdot V_{DD} dt = V_{DD} \int_{0}^{\infty} C_{L} \cdot \frac{dV_{o}}{dt} dt = C_{L} \cdot V_{DD} \int_{0}^{V_{DD}} dV_{o} = C_{L} \cdot V_{DD}^{2}$$

- A energia armazenada no condensador é $E_C = \frac{1}{2}C_L V_{DD}^2$
- ullet Ou seja, de toda a energia solicitada à fonte de alimentação, metade fica armazenada em C_L e a outra metade é dissipada no transístor PMOS.

E. Martins, DET Universidade de Aveiro

6.1 - 27

Sistemas Electrónicos - 2020/2021

Potência dinâmica

- Na transição da saída de 1 → 0 o condensador descarrega sobre o NMOS;
- Num ciclo de comutação (transição 0 →1 seguida de transição 1 →0) de período
 T=1/f, a potência solicitada à fonte de alimentação é pois

$$P_{dyn} = \frac{C_L V_{DD}^{2}}{T} = C_L V_{DD}^{2} f$$

- Reduções substanciais da potência dissipada podem ser conseguidas diminuindo a tensão de alimentação;
- Dada a dependência directa com f, o circuito deve ser operado à frequência mínima necessária.