声明: © 2019, COMSOL Co. Ltd. 本课程包含的所有内容版权为 COMSOL 公司所有。 课程内容仅供参加本课程的用户学习使用,严禁个人或组织擅自以任何形式盗录、翻拍 及转载。所有未经 COMSOL 公司授权而使用本课程内容的行为均视为侵权行为, COMSOL 公司将保留追究其法律责任的权利。

COMSOL Multiphysics® 低频电磁场建模Part II

张 凯 应用工程师 COMSOL 中国

日程

- AC/DC模块简介
- 麦克斯韦方程理论
- 静电
- 电流、永磁体建模
- 磁场和线圈建模
- 电磁损耗及发热
- 电磁与机械耦合模型
- 建模技巧讲解

静电还是电流?

- 静电(es):
 - 电荷在表面分布,但不会移动;观测时间远小于电荷弛豫时间;系统完全电容性;忽略导电性。

$$\nabla \cdot (\varepsilon_0 \varepsilon_r \nabla V) = 0$$

- 电流(ec),稳态
 - 电荷移动形成稳态电流;电荷密度不 随时间变化;系统完全电阻性;忽略 介电特性

$$t_{obs} \gg \tau = \frac{\varepsilon}{\sigma}$$
 $\frac{\partial \rho}{\partial t} = 0$

$$\nabla \cdot (-\sigma \nabla V) = 0$$

电容和电阻特性

- 电流瞬态、频域
 - 传导电流和位移电流
 - 电荷随时间变化
 - 电导和介电特性均不可忽略
 - 观测时间与电荷弛豫时间相同量级。

$$\nabla \cdot \left(\sigma \mathbf{E} + \varepsilon_0 \varepsilon_r \frac{\partial \mathbf{E}}{\partial t} \right) = 0$$

$$\nabla \cdot (\sigma \mathbf{E} + j\omega \varepsilon_0 \varepsilon_r \mathbf{E}) = 0$$

电容器

- 类似电阻...
- 为计算场需添加空气域
- 几何需要包含引出结构
- 所需材料属性不同
- 稳态和频域下方程不同:

$$\nabla \cdot (-(\varepsilon_0 \varepsilon_r) \nabla V) = 0$$

$$\nabla \cdot (-(\sigma + j\omega \varepsilon_0 \varepsilon_r) \nabla V) = 0$$

DEMO: 平行板电容器的静电、瞬态和频域模拟

- 平行板电容器在静电、频域和瞬态条件下模拟
- 研究了电容器边缘场和域尺寸效应
- 频域模拟解析了介电材料中的损耗
- 充电行为的瞬态模拟与解析解一致

http://cn.comsol.com/model/frequency-domain-modeling-of-a-capacitor-12693 http://cn.comsol.com/model/transient-modeling-of-a-capacitor-in-a-circuit-12695 http://cn.comsol.com/model/computing-capacitance-12689

电容-稳态/频域:

■ 稳态: 所有区域无电流流过, 导体域等势, 绝缘体域无电流

$$\nabla \cdot \left(-\left(\varepsilon_0 \varepsilon_r \right) \nabla V \right) = 0$$

■ 频域:

$$\nabla \cdot \left(-\left(\sigma + j\omega \varepsilon_0 \varepsilon_r \right) \nabla V \right) = 0$$

产生损耗

$$\varepsilon_r = \varepsilon' - j\varepsilon'' \qquad \tan(\delta) = \frac{\sigma + \omega\varepsilon''}{\omega\varepsilon'}$$

损耗角

电路(cir)接口

- 应用:与电路仿真耦合
 - 使用SPICE接口
 - 支持SPICE电路("Netlist")导入
- 解变量: V和I回路(求解ODEs)
- 材料属性:不需要
 - 循环组件 +节点连接
- 计算: 耦合电路与 FEM 模型
- 求解类型:

稳态 (st) + 频域(freq) + 瞬态(tr)


```
* BJT Amplifier circuit
.OPTIONS TNOM=27
                 sin(0 1 10kHz)
                100
                10u
                 47k
                10k
                inductor
                 1k
                10u
                10k
.MODEL BJT NPN(Is=15f Ise=15f
+ Ikf=.3 Xtb=1.5 Ne=1.3 Nc=2 Rc=1
+ Cjc=7.5p Mjc=.35 Vjc=.75 Fc=.5
+ Cje=20p Mje=0.4 Vje=0.75
+ Vaf=75 Xtf=3 Xti=3)
.SUBCKT inductor V coil I coil
COMSOL: *
```


电路(cir)接口 - 详情

- 电路元件:
 - 接地、电阻、电容、电感
 - 电压 / 电流源 (电压 / 电流控制)
 - 子电路定义
 - 二极管、PN BJT、n-沟道 MOSFET

■ 耦合选择:

- 外部 U vs. I ← → FEM 模型提供电压, ODE 计算电流
- 外部 I vs. U ←→ FEM 模型提供电流, ODE 计算电压
- 外部 I终端, 仅适用于(ec/ecs), 类似 I vs. U

电流,壳(ecs)接口

■ 类似电流(ec), 但为薄壳(1D或 2D)

▲ ◇ 预置研究

∭ 频域

── 小信号分析,频域

├─ 稳态

₩ 瞬态

http://cn.comsol.com/showroom/gallery/465/

电流边界条件

- 常用边界条件:
 - 接地
 - 电势
 - 终端
 - 电绝缘

- 其他边界条件:
 - 悬浮电位 (表面电压恒定但未知)
 - 法向电流密度(指定电流出口或出口)
 - 接触阻抗 (低电导率/介电常数*边界)
 - 电屏蔽 (高电导率*边界)
 - 电接触 (经验电导系数关系边界)

接触阻抗 (ec, ecs)

- 用来模拟低电导率/介电常数薄间隙
- 仅适用内部边界,切向无电流流过
- 描述电阻和电容效应
- 假设电流垂直流入边界, 电压不连续:

接触阻抗

 $\boldsymbol{n} \cdot \boldsymbol{J}_1 = -\boldsymbol{n} \cdot \boldsymbol{J}_2 = \frac{\sigma}{d_S} (V_1 - V_2) s$

分布阻抗 (ec, ecs)

- 域表面的高电阻薄层
- 只适用于外部边界
- 切向无电流流过
- 描述电阻和电容效应

▼ 分布阻抗

V_{ref} 0 层明细表: 薄层

表面厚度:

电导率:

5[mm]

电屏蔽(ec, ecs)

- 用来模拟高电导率或介电常数边界
- 方程: $n \cdot (J_1 J_2)$ 不一定为零:
 - 边界上每个节点允许存在电流的净流入或者流出
 - 电流可以沿边界上切线方向流动,并可存在任何一处
- 在瞬态模拟中,位移电流可以在边界上切线方向流动
- 类似于"介电屏蔽"

悬浮电位 (es, ec, ecs)

- 完美导电薄层 (ec, ecs)
- | 集总电源 (ec, ecs) 或电极 (es)

练习: 薄层边界条件模拟

- http://cn.comsol.com/showroom/gallery/12623/
- http://cn.comsol.com/showroom/gallery/12621/
- http://cn.comsol.com/showroom/gallery/12651/
- http://cn.comsol.com/showroom/gallery/12625/

电流误区

- 在非导体域中求解稳态电流问题
 - 控制方程: $\nabla \cdot (\sigma \nabla V + \varepsilon_0 \varepsilon_r (\partial \nabla V / \partial t)) = 0$
 - 如果 $\sigma = 0$ 那么 $\nabla \cdot (\varepsilon_0 \varepsilon_r (\partial \nabla V / \partial t)) = 0$
 - 如果存在稳定电流 $\partial/\partial t$ → 0
 - 控制方程变为 $\nabla \cdot \mathbf{0} = 0$
 - 出现报错!
- 求解频域问题
 - 控制方程: $-\nabla \cdot ((\sigma + j\omega \varepsilon_0 \varepsilon_r)\nabla V) = 0$
 - 如果 ω 较大($σ + jωε_0ε_r$) $\sim jωε_0ε_r$ 求解数值解
 - 将会导致错误结果,因为位移电流抑制了传导电流

- 玻璃
- $\varepsilon_r \varepsilon_0 \sim 4.2 \times 10^{-12} \, [\text{F/m}]$
- $\sigma \sim 1 \times 10^{-14} \, [\text{S/m}]$

数值问题

$$\nabla \cdot \left(-\left(\sigma + j\omega \varepsilon_0 \varepsilon_r \right) \nabla V \right) = 0$$

当这两项相差很大 (~1e6) 时,容易造成方程病态

$$\varepsilon_r = \varepsilon' - j\varepsilon''$$

$$\tan(\delta) = \frac{\sigma + \omega \varepsilon''}{\omega \varepsilon'}$$

Loss tangent

在空气中 σ = 0, $\epsilon_r \epsilon_0$ = 8.854×10⁻¹² F/m; 当ω也很小时,方程近似于: $-\nabla \cdot ((0)\nabla V) = 0$

解决办法: 给空气赋值较小电导率, 或选用直接求解器

需要计算焦耳热时才考虑导体,尽量满足: $\frac{\sigma_{metal}}{\sigma_{dielectric}} \leq 10^6$

总结: 电场模拟选择哪个接口?

- 静电 (es)
 - 静电场,无电流
- 电流 (ec)
 - 时谐电场
 - 直流电
 - 交流电,忽略电感效应(趋肤深度 >> 几何)
- 电流, 壳 (ecs)
 - 薄层中电流,近似为边
- 电路 (cir)
 - 以电路与 FEM 模型耦合

磁场模拟

模型中无电流	静磁场	交流磁场	瞬态磁场
$\nabla \cdot (\mu \mathbf{H}) = 0$ $\mathbf{H} = -\nabla V_m$	$\nabla \times \mathbf{H} = \mathbf{J}$ $\mathbf{B} = \nabla \times \mathbf{A}$ $\mathbf{H} = \mu^{-1} \mathbf{B}$	$(j\omega\sigma - \omega^{2}\varepsilon)\mathbf{A} + \nabla \times \mathbf{H} = \mathbf{J}$ $\mathbf{B} = \nabla \times \mathbf{A}$ $\mathbf{H} = \mu^{-1}\mathbf{B}$	$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times \mathbf{H} = \mathbf{J}$ $\mathbf{B} = \nabla \times \mathbf{A}$ $\mathbf{H} = \mu^{-1} \mathbf{B}$
其中 V _m 是磁标量势	A 是磁矢量势, J 是电流密度, 它们能同时求解,或单独分 析	附加项代表感应电流和位移电流	控制方程中不包括位移电流

磁场:如何选择接口?

- ■磁场
 - 磁场是由已知电流或线圈域激励
 - 时谐效应可以得到感应电流
- 磁场和电场
 - 与磁场线圈域中的电压激励类似
 - 时谐效应可以得到感应电流
- 磁场,无电流
 - 永磁体产生的静态磁场
- 磁场公式
 - 超导体
- 电路
 - 耦合模型与外部电路

磁场, 无电流(mfnc)接口

- 应用:
 - 磁介质中的静磁场, 无电流源;
 - 永磁铁,磁性材料;
 - 忽略电流
- 解变量:标量磁势, Vm

$$\nabla \cdot (-\mu_0 \nabla V_m + \mu_0 \mathbf{M}) = 0$$
• 计算:

- 磁场: H = -grad(Vm)
- -磁感应强度: B = μO*μr *H
- 磁力(麦克斯韦应力张量)
- 求解类型: 稳态(st) + 瞬态(tr)

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = 0$$

$$\mathbf{H} = -\nabla V_m$$

$$V_m$$

▲ ~ 预置研究 ፫ 稳态 ៤ 瞬态

磁场, 无电流-材料属性

■ 材料中可以定义 μ_r 或 B(H)

■ 可以选择材料本构:

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$$

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$$

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$$

磁性材料建模

■ 相对磁导率:

- 线性材料 $\mu = \mu_0 \mu_r$
- 比例系数为磁导率
- 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} [H/m]$
- 空气和非磁性材料的相对磁导率 μ_r 默认为1

• BH或HB曲线:

- 用于稳态或时域下的非线性磁性材料建模
- 可通过外部文件导入数据
- 无磁滞
- 初始磁化为零

磁饱和曲线

- 非线性磁性材料库
 - 150+ 材料的B-H 和H-B曲线
- B-H 曲线
 - -B = f(H)
 - 使用磁标势
 - 估算方式: Vm→ H → B
- H-B 曲线
 - -H=g(B)
 - 使用磁矢势
 - 估算方式: A → B → H

- Casting
- Dasting
- Diron Powder
- Alloy Powder Core

磁性材料建模

• 等效HB曲线

- 频域下的非线性磁性材料建模分析
- 通过APP把常规的HB曲线转化为等效HB曲线数据导到模型中
- 通过平均能量方法获得频域下的BH或HB曲线
- 无磁滞
- 磁滞 Jiles-Atherton 模型
 - 各向同性材料中的旋转场
 - 各向异性材料
- 外部材料函数
 - 导入C(.dll) 编写的外部材料函数
 - 导入磁滞或不可逆材料属性
 - 通过C调用 FORTRAN 函数
 - 用户定义高斯点处的状态变量

http://www.comsol.com/blogs/accessing-external-material-models-for-magnetic-simulations/https://www.comsol.com/model/vector-hysteresis-modeling-20671https://www.comsol.com/blogs/model-magnetic-materials-in-the-frequency-domain-with-an-app/

力的计算

- COMOSL内置电磁力的计算功能,同时也可支持自定义
 - Maxwell应力张量(内置)
 - 带电粒子追踪(内置)
 - 洛伦兹力积分(内置)
 - 虚功原理(敏感性分析接口)
 - Biot-Savart's 定律积分(PDE接口)
 - Arrkio's 方法

https://www.comsol.com/blogs/how-to-analyze-an-induction-motor-a-team-benchmark-model/

图形化界面中的标准力计算

- 在指定区域上将力或力矩定义为任意变量进行查看或调用
- 自动进行积分
- 空间力贡献(maxwell 应力张量或洛伦兹力贡献)

磁化区域上的Maxwell 表面应力张量

电磁力计算方法

■ 带电粒子受力:

$$\mathbf{F} = \mathbf{q}\mathbf{E} + \mathbf{q}(\mathbf{v} \times \mathbf{B})$$

电场力 磁场力

举例: 粒子回旋运动轨迹计算(粒子追踪接口案例)

■ 洛伦兹力积分

$$\frac{\mathrm{d}\mathbf{F}}{\mathrm{d}V} = \rho(\mathbf{v} \times \mathbf{B}) = \mathbf{J} \times \mathbf{B} \qquad \mathbf{F} = \int \mathbf{J} \times \mathbf{B} \, \mathrm{d}V$$

电磁力计算方法

■ Maxwell 表面应力张量(COMSOL标准形式)

$$\mathbf{F} = \int \frac{\mathrm{d}\mathbf{F}}{\mathrm{d}V} \, dV \qquad \qquad \frac{\mathrm{d}\mathbf{F}}{\mathrm{d}V} = \nabla \cdot \mathbf{T}$$

■ 通过应力张量的面积分代替体积分(高斯散度定律)

$$\mathbf{F} = \int\limits_{V} \nabla \cdot \mathbf{T} \, dV = \oint\limits_{S} \mathbf{T} \cdot \mathbf{n} \, dA$$

- 可能不足: 磁体表面非连续性及"尖端"附近的表面法向不确定性有时会影
 - 响结果准确性。
 - 添加/修改积分区域;加密网格等

背景: Maxwell 应力张量

■ 带电粒子:

$$\mathbf{F} = q\mathbf{E} + q(\mathbf{v} \times \mathbf{B})$$

■ 带电粒子区域:

$$\mathbf{F} = \int_{V} \rho \mathbf{E} + \rho (\mathbf{v} \times \mathbf{B}) dV$$
$$F = \frac{d\mathbf{F}}{dV} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$$

■ 通过场代替申荷和申流:

$$\rho = \nabla \cdot \mathbf{D}$$

$$\rho = \nabla \cdot \mathbf{D} \qquad \qquad \mathbf{J} = \nabla \times \mathbf{H} - \dot{\mathbf{D}}$$

■ 适用于所有区域(即使是真空)的公式:

$$F = \varepsilon_0 [(\nabla \cdot \mathbf{E})\mathbf{E} + (\mathbf{E} \cdot \nabla)\mathbf{E}] + \frac{1}{\mu_0} [(\nabla \cdot \mathbf{B})\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{B}] - \frac{1}{2}\nabla \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2\right) - \varepsilon_0 \frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B})$$

DEMO: 永磁体的磁场

- 磁场模拟的介绍案例,分析了典型的马蹄形磁铁和铁棒
- 使用对称来减少问题大小
- 计算了磁场和力

http://cn.comsol.com/showroom/gallery/78/

边界条件

■ 常用边界条件:

- 磁绝缘 (磁场线平行)

- 零磁标量势 $\mathbf{n} \cdot \mathbf{B} = 0$ (磁场线垂直)

■ 其他边界条件: V_m=0

- 磁通密度 (指定边界磁场)

- 低薄磁导率间隙 (低磁导率边界)

- 磁屏蔽 (高磁导率边界)

■ 在多数情况下,最重要的特征为域条件。磁绝缘从外部边界条件产生

低薄磁导率间隙

- 用来模拟低磁导率间隙
 - 空气
 - 薄片
- 有磁标量势公式
- 示例:
 - 中间区域: $\mu_r = 500$
 - 被空气包围: $\mu_r = 1$
 - 薄裂隙: $\mu_r = 1$
- 场线在裂隙周围移动

练习:

■ 潜艇的磁场特征

- 一 行驶在水面或水下的船引起了可探测的地球磁场局部 扰动
- 基于预先所知的船体磁属性知识,船的磁场特征能通 过产生适当强度和方向的抵消磁场而减少

- 仅模拟 Halbach 转子 8 个向外通量聚焦磁极中的一个
- 评估了直角坐标和柱坐标中的磁通密度
- 使用参数化曲线特征计算了转子内外的磁场

http://cn.comsol.com/showroom/gallery/291/

http://cn.comsol.com/showroom/gallery/14369/