### 15.094J: Robust Modeling, Optimization, Computation

Lecture 6: Robust Convex Optimization

February 2015

### Outline

- Motivation
- Robust Conic Optimization
- Exact and Relaxed Robustness
- Tractability
- Probabilistic Guarantees
- 6 Conclusions

### Motivation

- In earlier proposals (Ben-Tal and Nemirovski):
  - (a) RLOs become SOCPs
  - (b) Robust SOCPs become Semi-definite optimization problems (SDPs)
  - (c) Robust SDPs become NP-hard.
- In Contrast
  - (a) In Lecture 4, we have shown that RLO becomes LO.
  - (b) Today we show that Robust SOCPs stay SOCPs
  - (c) and Robust SDPs stay SDPs.
- RC inherits the complexity of the underlying deterministic problem.
- RC allows the user to control the tradeoff between robustness and optimality.
- RC is computationally tractable both practically and theoretically.



max

### Nominal vs Robust

Nominal

max 
$$f_0(x, \tilde{D}_0)$$
  
s.t.  $f_i(x, \tilde{D}_i) \ge 0$ ,  $i \in I$   
 $x \in X$ 

Exact Robust

max 
$$\min_{D_0 \in \mathcal{U}_0} f_0(x, D_0)$$
  
s.t.  $\min_{D_i \in \mathcal{U}_i} f_i(x, D_i) \ge 0, i \in I$  (1)  
 $x \in X$ 

## Uncertainty

Data uncertainty

$$\tilde{D} = D^0 + \sum_{j \in N} \Delta D^j \tilde{z}_j$$

Uncertainty sets

$$\mathcal{U} = \left\{ D \mid \exists u \in \Re^{|\mathcal{N}|} : D = D^0 + \sum_{j \in \mathcal{N}} \Delta D^j u_j, \|u\| \le \rho \right\}$$

# Modeling power

| Туре    | Constraint                           | D                                            | f(x, D)                                                                                     |  |
|---------|--------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|--|
| LO      | $a'x \geq b$                         | (a, b)                                       | a'x - b                                                                                     |  |
| QCQO    | $  Ax  _2^2 + b'x + c \le 0$         | $(A, b, c, d)$ $d^0 = 1/2, \Delta d^j = 0$   | $\frac{\frac{d - (b'x + c)}{2}}{-\sqrt{\ Ax\ _2^2 + \left(\frac{d + b'x + c}{2}\right)^2}}$ |  |
| SOCO(1) | $  Ax + b  _2 \le c'x + d$           | $(A,b,c,d)$ $\Delta c^j = 0, \Delta d^j = 0$ | $c'x+d-\ Ax+b\ _2$                                                                          |  |
| SOCO(2) | $  Ax+b  _2 \le c'x+d$               | (A,b,c,d)                                    | $c'x+d-\ Ax+b\ _2$                                                                          |  |
| SDO     | $\sum_{i=1}^n A_i x_i - B \in S_+^m$ | $(A_1,,A_n,B)$                               | $\lambda_{min}(\sum_{j=1}^{n}A_{i}x_{i}-B)$                                                 |  |

6 / 23

Lectures 6 15.094J-RO February 2015

### Exact and Relaxed Robustness

Exact Robustness (ER)

$$f\left(x,D^0+\sum_{j\in N}\Delta D^ju_j\right)\geq 0 \qquad \forall \|u\|\leq \rho.$$

Relaxed Robustness (RR)

$$f(x, D^0) + \sum_{j \in N} \left\{ f(x, \Delta D^j) v_j + f(x, -\Delta D^j) w_j \right\} \ge 0$$
$$\forall (v, w) \in \Re_+^{|N| \times |N|} \ \|v + w\| \le \rho.$$

7 / 23

Lectures 6 15.094J-RO February 2015

#### Theorem

- Assumption 1: Norms satisfy  $||u|| = ||u^+||, u_j^+ = |u_j|$ . Examples  $L_p$ -norms.
- Assumption 2: f satisfies: f(x, D) is concave in D for all  $x \in \mathbb{R}^n$ , f(x, kD) = kf(x, D), for all  $k \ge 0$ , D,  $x \in \mathbb{R}^n$ ,
- (a) Under Assumption 1 and f(x, A + B) = f(x, A) + f(x, B), ER and RR are equivalent.
- (b) Under Assumptions 1 and 2, if  $x^*$  satisfies RR, it satisfies ER also.

## Proof of part (a)

Under linearity, RR becomes

$$f\left(x,D^0+\sum_{j\in\mathcal{N}}\boldsymbol{\Delta}D^j(v_j-w_j)\right)\geq 0 \qquad \forall \|v+w\|\leq \rho, \quad v,w\geq \mathbf{0},$$

ER becomes

$$f\left(x,D^0+\sum_{j\in N}\Delta D^jr_j\right)\geq 0 \qquad \forall \|r\|\leq \rho.$$

• If x violates ER, there exists  $r, ||r|| \le \rho$  such that

$$f\left(x,D^0+\sum_{j\in N}\Delta D^jr_j\right)<0.$$

- Let  $v_i = \max\{r_i, 0\}$  and  $w_i = -\min\{r_i, 0\}$ .
- Clearly, r = v w and since  $v_j + w_j = |r_j|$ ,  $||v + w|| = ||r|| \le \rho$ .
- x violates RR.

4□ > 4□ > 4□ > 4□ > 4□ > 3□

9 / 23

## Proof of part (a), continued

• If x violates RR, then there exist  $v, w \ge \mathbf{0}$  and  $||v + w|| \le \rho$  such that

$$f\left(x,D^0+\sum_{j\in N}\Delta D^j(v_j-w_j)\right)<0.$$

- Let  $r_j = v_j w_j$  and we observe that  $|r_j| \le v_j + w_j$ .
- For norms satisfying  $||u|| = ||u^+||, u_i^+ = |u_i|$ ,

$$||r|| = ||r^+|| \le ||v + w|| \le \rho,$$

and hence, x violates ER.



10 / 23

Lectures 6 15.094J-RO February 2015

# Proof of part (b)

If x satisfies RR

$$f(x, D^0) + \sum_{i \in N} \left\{ f(x, \Delta D^j) v_j + f(x, -\Delta D^j) w_j \right\} \ge 0, \ \forall \|v + w\| \le \rho, \ v, w \ge \mathbf{0}.$$

From concavity and homogeneity

$$f(x, A + B) \ge \frac{1}{2}f(x, 2A) + \frac{1}{2}f(x, 2B) = f(x, A) + f(x, B).$$

Then

$$0 \le f(x, D^0) + \sum_{j \in N} \left\{ f(x, \Delta D^j) v_j + f(x, -\Delta D^j) w_j \right\} \le$$
$$f(x, D^0 + \sum_{j \in N} \Delta D^j (v_j - w_j))$$

for all  $||v + w|| \le \rho$ ,  $v, w \ge \mathbf{0}$ .



# Proof of part (b), continued

• In part (a) we established that

$$f(x, D^0 + \sum_{j \in N} \Delta D^j r_j) \ge 0 \qquad \forall ||r|| \le \rho$$

is equivalent to

$$f(x, D^0 + \sum_{i \in N} \Delta D^i(v_j - w_j)) \ge 0$$
  $\forall ||v + w|| \le \rho, \quad v, w \ge \mathbf{0},$ 

and thus x satisfies ER.

12 / 23

Lectures 6 15.094J-RO February 2015

## Tractability

RR is equivalent to

$$f(x, D^{0}) \ge \rho y$$

$$f(x, \Delta D^{j}) + t_{j} \ge 0 \quad \forall j \in N$$

$$f(x, -\Delta D^{j}) + t_{j} \ge 0 \quad \forall j \in N$$

$$||t||^{*} \le y$$

$$y \in \Re, \ t \in \Re^{|N|}.$$

Dual norm:  $||s||^* = \max_{||x|| \le 1} s'x$ .



## Tractability, continued

(a) Under Assumptions 1 and 2, RR is equivalent to RR'

$$f(x, D^0) \ge \rho \|s\|^*,$$

where

$$s_j = \max\{-f(x, \Delta D^j), -f(x, -\Delta D^j)\}, \quad \forall j \in N.$$

**(b)**  $f(x, D^0) \ge \rho ||s||^*$ , can be written as RR":

$$f(x, D^{0}) \ge \rho y$$

$$f(x, \Delta D^{j}) + t_{j} \ge 0 \qquad \forall j \in N$$

$$f(x, -\Delta D^{j}) + t_{j} \ge 0 \quad \forall j \in N$$

$$||t||^{*} \le y$$

$$y \in \Re. \ t \in \Re^{|N|}.$$



### Proof, part (a)

We introduce the following problems:

$$\begin{aligned} z_1 &= \max \quad a'v + b'w \\ \text{s.t.} \quad \|v + w\| \leq \rho \\ \quad v, w \geq \mathbf{0}, \end{aligned}$$
 
$$z_2 &= \max \quad \sum_{j \in N} \max\{a_j, b_j, 0\} r_j \\ \text{s.t.} \quad \|r\| \leq \rho, \end{aligned}$$

and show that  $z_1 = z_2$ .

• Suppose  $r^*$  is an optimal solution to  $z_2$ . For all  $j \in N$ , let

$$\begin{aligned} v_j &= w_j = 0 & \text{if max}\{a_j, b_j\} \leq 0 \\ v_j &= |r_j^*|, w_j = 0 & \text{if } a_j \geq b_j, a_j > 0 \\ w_j &= |r_j^*|, v_j = 0 & \text{if } b_j > a_j, b_j > 0. \end{aligned}$$



## Proof part (a), continued

- Observe that  $a_j v_j + b_j w_j \ge \max\{a_j, b_j, 0\} r_j^*$  and  $w_j + v_j \le |r_j^*| \ \forall j \in N$ .
- If  $v^+ \le w^+$ ,  $||v|| \le ||w||$ .
- Then  $\|v+w\| \leq \|r^*\| \leq \rho$ , and thus v,w are feasible in  $z_1$  leading to

$$z_1 \ge \sum_{j \in N} (a_j v_j + b_j w_j) \ge \sum_{j \in N} \max\{a_j, b_j, 0\} r_j^* = z_2.$$

- Conversely, let  $v^*$ ,  $w^*$  be an optimal solution to  $z_1$ .
- Let  $r = v^* + w^*$ . Clearly  $||r|| \le \rho$  and observe that

$$r_j \max\{a_j,b_j,0\} \geq a_j v_j^* + b_j w_j^* \ \forall j \in \textit{N}.$$

• Therefore, we have

$$z_2 \ge \sum_{j \in N} \max\{a_j, b_j, 0\} r_j \ge \sum_{j \in N} (a_j v_j^* + b_j w_j^*) = z_1,$$

leading to  $z_1 = z_2$ .



16 / 23

15.094J-RO February 2015

## Proof part (a), continued

- $V = \{(v, w) \in \Re_{+}^{|N| \times |N|} \|v + w\| \le \rho\}.$
- Then,

$$\begin{aligned} & \min_{(v,w) \in \mathcal{V}} \sum_{j \in N} \left\{ f(x, \Delta D^j) v_j + f(x, -\Delta D^j) w_j \right\} \\ &= & - \max_{(v,w) \in \mathcal{V}} \sum_{j \in N} \left\{ -f(x, \Delta D^j) v_j - f(x, -\Delta D^j) w_j \right\} \\ &= & - \max_{\{\|r\| \le \rho\}} \sum_{j \in N} \left\{ \max\{-f(x, \Delta D^j), -f(x, -\Delta D^j), 0\} r_j \right\} \end{aligned}$$

- Since  $\|s\|^* = \max_{\|x\| \le 1} s'x$ , we obtain  $\rho \|s\|^* = \max_{\|x\| \le \rho} s'x$ , i.e., RR' follows.
- Note that  $s_j = \max\{-f(x, \Delta D^j), -f(x, -\Delta D^j)\} \ge 0$ , since otherwise there exists an x such that  $s_j < 0$ , i.e.,  $f(x, \Delta D^j) > 0$  and  $f(x, -\Delta D^j) > 0$ . From Assumption 2  $f(x, \mathbf{0}) = 0$ , contradicting the concavity of f(x, D).

Lectures 6 15.094J-RO February 2015 17 / 23

# Proof, part (b)

- Suppose that *x* is feasible in RR'.
- Let t = s and  $y = ||s||^*$ ,
- We can easily check that (x, t, y) are feasible in RR".
- Conversely, suppose, x is infeasible in RR', that is,

$$f(x,D^0)<\rho\|s\|^*.$$

- Since,  $t_j \geq s_j = \max\{-f(x, \Delta D^j), -f(x, -\Delta D^j)\} \geq 0$
- We have  $v^+ \le w^+$ ,  $||v||^* \le ||w||^*$ .
- Thus,  $||t||^* \ge ||s||^*$ , leading to

$$f(x, D^0) < \rho ||s||^* \le \rho ||t||^* \le \rho y,$$

i.e., x is infeasible in RR".



## Dual norm

| Norms               | u                                               | $  t  ^* \leq y$                                                                             |
|---------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|
| L <sub>2</sub>      | $  u  _2$                                       | $  t  _2 \leq y$                                                                             |
| $L_1$               | $  u  _1$                                       | $t_j \leq y, \forall j \in N$                                                                |
| $L_{\infty}$        | $  u  _{\infty}$                                | $\sum_{j\in N} t_j \leq y$                                                                   |
| $L_p$               | $  u  _p$                                       | $\left(\sum_{j\in N} t_j^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}} \le y$                       |
| $L_2 \cap L_\infty$ | $\max\{\ u\ _2,\rho\ u\ _{\infty}\}$            | $  s - t  _2 +$                                                                              |
|                     |                                                 | $rac{1}{ ho}\sum_{j\in N}s_j\leq y,s\in\Re_+^{ N }$                                         |
| $L_1 \cap L_\infty$ | $\max\{\tfrac{1}{\Gamma}\ u\ _1,\ u\ _\infty\}$ | $\Gamma p + \sum_{j \in N} s_j \le y$<br>$s_j + p \ge t_j, \ p \in \Re_+, s \in \Re_+^{ N }$ |



Lectures 6 15.094J-RO February 2015 19 / 23

### Size

- Independent Pertubations
- Example

$$\left(\begin{array}{cc} a_1 & a_2 \\ a_2 & a_3 \end{array}\right) x_1 + \left(\begin{array}{cc} a_4 & a_5 \\ a_5 & a_6 \end{array}\right) x_2 \succeq \left(\begin{array}{cc} a_7 & a_8 \\ a_8 & a_9 \end{array}\right),$$

$$\tilde{a}_i = a_i^0 + \Delta a_i \tilde{z}_i$$
.

•  $f(x, \Delta d^1) + t_1 \ge 0$  becomes

$$\lambda_{\textit{min}}\left(\left(egin{array}{ccc} \Delta a_1 & 0 \ 0 & 0 \end{array}
ight)x_1+\left(egin{array}{ccc} 0 & 0 \ 0 & 0 \end{array}
ight)x_2-\left(egin{array}{ccc} 0 & 0 \ 0 & 0 \end{array}
ight)
ight)+t_1\geq 0,$$

as  $t_1 \ge -\min\{\Delta a_1 x_1, 0\}$  or equivalently as linear constraints  $t_1 \ge -\Delta a_1 x_1, t_1 \ge 0$ .



# Tractability

|                    | $L_{\infty}$ | $L_1$  | $L_2$ | $L_2 \cap L_\infty$ |
|--------------------|--------------|--------|-------|---------------------|
| Num. Vars.         | n+1          | 1      | 1     | 2 N +1              |
| Num. linear Const. | 2n + 1       | 2n + 1 | 0     | 3  <b>N</b>         |
| Num SOC Const.     | 0            | 0      | 1     | 1                   |
| LO                 | LO           | LO     | SOCO  | SOCO                |
| QCQO               | SOCO         | SOCO   | SOCO  | SOCO                |
| SOCO(1)            | SOCO         | SOCO   | SOCO  | SOCO                |
| SOCO(2)            | SOCO         | SOCO   | SOCO  | SOCO                |
| SDO                | SDO          | SDO    | SDO   | SDO                 |



### Probabilistic Guarantees

If  $\tilde{z} \sim \mathcal{N}(0, I)$ , under the  $L_2$  norm:

$$P(f(x, \tilde{D}) < 0) \le \frac{\sqrt{e\rho}}{\alpha} e^{\left(-\frac{\rho^2}{2\alpha^2}\right)}$$

| Problem | $\alpha$        | $\rho$                             |
|---------|-----------------|------------------------------------|
| LO      | 1               | $O(\log(1/\epsilon))$              |
| SOCO(1) | 1               | $O(\log(1/\epsilon))$              |
| SOCO(2) | $\sqrt{2}$      | $O(\log(1/\epsilon))$              |
| QCQO    | $\sqrt{2}$      | $O(\log(1/\epsilon))$              |
| SDO     | $\sqrt{\log m}$ | $O(\sqrt{\log m}\log(1/\epsilon))$ |

#### Conclusions

- Given a conic optimization problem, we proposed a robust counterpart of the same character as original, thus preserving computational tractability.
- Size of the proposed problem is very similar to original; depends on the norm we use; best results for  $L_2$  norm.
- Probabilistic guarantee allows to select parameter controlling robustness and optimality.

