Контекст, метаязык

Будем обозначать большими греческими буквами середины алфавита, возможно с индексами, $(\Gamma, \Delta_1, ...)$ списки формул. Будем использовать, где удобно:

 $\Gamma \vdash \alpha$

Контекст, метаязык

Будем обозначать большими греческими буквами середины алфавита, возможно с индексами, $(\Gamma, \Delta_1, ...)$ списки формул. Будем использовать, где удобно:

$$\Gamma \vdash \alpha$$

Списки можно указывать через запятую:

$$\Gamma, \Delta, \zeta \vdash \alpha$$

Контекст, метаязык

Будем обозначать большими греческими буквами середины алфавита, возможно с индексами, $(\Gamma, \Delta_1, ...)$ списки формул. Будем использовать, где удобно:

$$\Gamma \vdash \alpha$$

Списки можно указывать через запятую:

$$\Gamma, \Delta, \zeta \vdash \alpha$$

это означает то же, что и

$$\gamma_1, \gamma_2, \ldots, \gamma_n, \delta_1, \delta_2, \ldots, \delta_m, \zeta \vdash \alpha$$

если

$$\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_n\}, \quad \Delta = \{\delta_1, \delta_2, \dots, \delta_m\}$$

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Доказательство «в две стороны», сперва «справа налево». Пусть $\Gamma \vdash \alpha \to \beta$, покажем $\Gamma, \alpha \vdash \beta$

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Доказательство «в две стороны», сперва «справа налево». Пусть $\Gamma \vdash \alpha \to \beta$, покажем $\Gamma, \alpha \vdash \beta$

То есть по условию существует вывод:

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \alpha \to \beta$$

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Доказательство «в две стороны», сперва «справа налево». Пусть $\Gamma \vdash \alpha \to \beta$, покажем $\Gamma, \alpha \vdash \beta$

То есть по условию существует вывод:

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \alpha \to \beta$$

Тогда следующая последовательность — тоже вывод:

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \alpha \to \beta, \alpha, \beta$$

Доказательство: $\Gamma \vdash \alpha \to \beta$ влечёт $\Gamma, \alpha \vdash \beta$

№ п/п	формула	пояснение
(1)	δ_1	в соответствии с исходным доказательством
(n - 1)		в соответствии с исходным доказательством
(n)	$\alpha \to \beta$	в соответствии с исходным доказательством
(n + 1)	α	гипотеза
(n+2)	β	Modus Ponens $n+1$, n

Доказательство: $\Gamma \vdash \alpha \rightarrow \beta$ влечёт $\Gamma, \alpha \vdash \beta$

№ п/п	формула	пояснение
(1)	δ_1	в соответствии с исходным доказательством
(n - 1)		в соответствии с исходным доказательством
(n)	$\alpha \to \beta$	в соответствии с исходным доказательством
(n + 1)	α	гипотеза
(n + 2)	β	Modus Ponens $n+1$, n

Вывод $\Gamma, \alpha \vdash \beta$ предоставлен, первая часть теоремы доказана.

Пусть даны формулы вывода

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \beta$$

Аналогично предыдущему пункту, перестроим вывод.

Пусть даны формулы вывода

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \beta$$

Аналогично предыдущему пункту, перестроим вывод. Построим «черновик» вывода, приписав lpha слева к каждой формуле:

$$\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_{n-1}, \alpha \to \beta$$

Пусть даны формулы вывода

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \beta$$

Аналогично предыдущему пункту, перестроим вывод. Построим «черновик» вывода, приписав lpha слева к каждой формуле:

$$\alpha \to \delta_1, \alpha \to \delta_2, \ldots, \alpha \to \delta_{n-1}, \alpha \to \beta$$

Данная последовательность формул не обязательно вывод: $\Gamma=\varnothing$, lpha=A

$$A \rightarrow B \rightarrow A$$

Пусть даны формулы вывода

$$\delta_1, \delta_2, \ldots, \delta_{n-1}, \beta$$

Аналогично предыдущему пункту, перестроим вывод. Построим «черновик» вывода, приписав lpha слева к каждой формуле:

$$\alpha \to \delta_1, \alpha \to \delta_2, \ldots, \alpha \to \delta_{n-1}, \alpha \to \beta$$

Данная последовательность формул не обязательно вывод: $\Gamma=\varnothing$, lpha=A

$$A \rightarrow B \rightarrow A$$

припишем А слева — вывод не получим:

$$A \rightarrow (A \rightarrow B \rightarrow A)$$

Доказательство.

(индукция по длине вывода). Утверждение: если данная последовательность n высказываний — вывод $\Gamma, \alpha \vdash \beta$, то его можно перестроить в $\Gamma \vdash \alpha \to \beta$.

- ightharpoonup База (n=1): частный случай перехода (без М.Р.).
- ▶ Переход. Пусть $\delta_1, \dots, \delta_{n+1}$ исходный вывод. И пусть (по индукционному предположению) уже перестроен вывод $\delta_1, \dots, \delta_n$ в вывод $\Gamma \vdash \alpha \to \delta_n$. Достроим его. Рассмотрим 3 случая.
 - 1. δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$ (выполнено без доказательства в новом выводе)

Доказательство.

(индукция по длине вывода). Утверждение: если данная последовательность n высказываний — вывод $\Gamma, \alpha \vdash \beta$, то его можно перестроить в $\Gamma \vdash \alpha \to \beta$.

- ightharpoonup База (n=1): частный случай перехода (без М.Р.).
- ▶ Переход. Пусть $\delta_1, \dots, \delta_{n+1}$ исходный вывод. И пусть (по индукционному предположению) уже перестроен вывод $\delta_1, \dots, \delta_n$ в вывод $\Gamma \vdash \alpha \to \delta_n$. Достроим его. Рассмотрим 3 случая.
 - 1. δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$ (выполнено без доказательства в новом выводе)
 - 2. δ_{n+1} гипотеза α

Доказательство.

(индукция по длине вывода). Утверждение: если данная последовательность n высказываний — вывод $\Gamma, \alpha \vdash \beta$, то его можно перестроить в $\Gamma \vdash \alpha \to \beta$.

- ightharpoonup База (n=1): частный случай перехода (без М.Р.).
- ▶ Переход. Пусть $\delta_1, \dots, \delta_{n+1}$ исходный вывод. И пусть (по индукционному предположению) уже перестроен вывод $\delta_1, \dots, \delta_n$ в вывод $\Gamma \vdash \alpha \to \delta_n$. Достроим его. Рассмотрим 3 случая.
 - 1. δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$ (выполнено без доказательства в новом выводе)
 - 2. δ_{n+1} гипотеза α
 - 3. δ_{n+1} получено по правилу Modus Ponens из предыдущих формул δ_j и $\delta_k=\delta_j o \delta_{n+1}.$

В каждом из случаев можно дополнить черновик до полноценного вывода.

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай аксиомы

№ п/п	новый вывод	пояснение
(1)	$\alpha \to \delta_1$	
(2)	$\alpha \to \delta_2$	
(<i>n</i>)	$\alpha \to \delta_n$	
	$\alpha \to \delta_{n+1}$	δ_{n+1} — аксиома, либо $\delta_{n+1} \in \Gamma$

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай аксиомы

№ п/п	новый вывод	пояснение
(1)	$\alpha o \delta_1$	
(2)	$\alpha o \delta_2$	
(n + 0.3)	$\delta_{n+1} \to \alpha \to \delta_{n+1}$	схема аксиом 1
(n + 0.6)	δ_{n+1}	аксиома, либо $\delta_{n+1} \in \Gamma$
(n + 1)	$\alpha \to \delta_{n+1}$	Modus Ponens $n+0.3$, $n+0.6$

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай $\delta_i = \alpha$

№ п/п	новый вывод	пояснение
(1)	$lpha ightarrow \delta_1$	
(2)	$\alpha \to \delta_2$	
	$lpha ightarrow (lpha ightarrow lpha) \ (lpha ightarrow (lpha ightarrow lpha)) ightarrow (lpha ightarrow lpha) ightarrow lpha) ightarrow lpha) ightarrow (lpha ightarrow lpha)$	Сх. акс. 1 Сх. акс. 2
,	$(\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha)$ $\alpha \to (\alpha \to \alpha) \to \alpha$ $\alpha \to \alpha$	M.P. $n + 0.2$, $n + 0.4$ Cx. akc. 1 M.P. $n + 0.8$, $n + 0.6$

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \rightarrow \beta$, случай Modus Ponens

№ п/п	новый вывод	пояснение
(1)	$lpha ightarrow \delta_1$	
(2)	$lpha ightarrow \delta_2$	
(<i>j</i>)	$\alpha \to \delta_j$	
(<i>k</i>)	$\alpha \to \delta_j \to \delta_{n+1}$	
(n + 0.6)	$(\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $(\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\alpha \to \delta_{n+1}$	Cx. akc. 2 M.P. j , $n + 0.3$ Modus Ponens $n + 0.6$, k

Некоторые полезные правила

Лемма (Правило контрапозиции)

Каковы бы ни были формулы α и β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Некоторые полезные правила

Лемма (Правило контрапозиции)

Каковы бы ни были формулы lpha и eta, справедливо, что \vdash $(lpha o eta) o (\lnoteta o \lnotlpha)$

Лемма (правило исключённого третьего)

Какова бы ни была формула α , $\vdash \alpha \lor \neg \alpha$

Лемма (об исключении допущения)

Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.

Доказательство.

Доказывается с использованием лемм, указанных выше.

Теорема о полноте исчисления высказываний

Теорема

Если $\models \alpha$, то $\vdash \alpha$

Специальное обозначение

Определение (условное отрицание)

Зададим некоторую оценку переменных, такую, что $[\![\alpha]\!]=x$. Тогда условным отрицанием формулы α назовём следующую формулу $(\![\alpha]\!]$:

Аналогично записи для оценок, будем указывать оценку переменных, если это потребуется / будет неочевидно из контекста:

$$(\neg X)^{X:=J} = \neg \neg X \qquad (\neg X)^{X:=M} = \neg X$$

Также, если $\Gamma=\gamma_1,\gamma_2,\ldots,\gamma_n$, то за (Γ) обозначим $(\gamma_1),(\gamma_2),\ldots(\gamma_n)$.

Таблицы истинности и высказывания

Рассмотрим связку «импликация» и её таблицу истинности:

$\llbracket A rbracket$	$[\![B]\!]$	$[\![A \to B]\!]$	формула
Л	Л	И	$\neg A, \neg B \vdash A \rightarrow B$
Л	И	N	$\neg A, B \vdash A \rightarrow B$
И	Л	Л	$\neg A, B \vdash \neg (A \rightarrow B)$
И	И	N	$A, B \vdash A \rightarrow B$

Таблицы истинности и высказывания

Рассмотрим связку «импликация» и её таблицу истинности:

$\llbracket A rbracket$	$\llbracket B rbracket$	$[\![A \to B]\!]$	формула
Л	Л	И	$\neg A, \neg B \vdash A \rightarrow B$
Л	И	N	$\neg A, B \vdash A \rightarrow B$
И	Л	Л	$\neg A, B \vdash \neg (A \rightarrow B)$
И	И	N	$A, B \vdash A \rightarrow B$

Заметим, что с помощью условного отрицания данную таблицу можно записать в одну строку:

$$(A), (B) \vdash (A \rightarrow B)$$

Теорема (О полноте исчисления высказываний) $E c n u \models \alpha, \tau o \vdash \alpha$

Теорема (О полноте исчисления высказываний)

Eсли $\models \alpha$, то $\vdash \alpha$

1. Построим таблицы истинности для каждой связки (*) и докажем в них каждую строку:

$$(\varphi), (\psi) \vdash (\varphi \star \psi)$$

Теорема (О полноте исчисления высказываний)

Если $\models \alpha$, то $\vdash \alpha$

1. Построим таблицы истинности для каждой связки (\star) и докажем в них каждую строку:

$$(\varphi), (\psi) \vdash (\varphi \star \psi)$$

2. Построим таблицу истинности для α и докажем в ней каждую строку:

$$(\exists) \vdash (\alpha)$$

Теорема (О полноте исчисления высказываний)

Eсли $\models \alpha$, то $\vdash \alpha$

1. Построим таблицы истинности для каждой связки (*) и докажем в них каждую строку:

$$(\varphi), (\psi) \vdash (\varphi \star \psi)$$

2. Построим таблицу истинности для lpha и докажем в ней каждую строку:

$$(\exists) \vdash (\alpha)$$

3. Если формула общезначима, то в ней все строки будут иметь вид ($|\Xi|$) $\vdash \alpha$, потому от гипотез мы сможем избавиться и получить требуемое $\vdash \alpha$.

Шаг 1. Лемма о связках

Запись

$$(\varphi), (\psi) \vdash (\varphi \star \psi)$$

сводится к 14 утверждениям:

Шаг 2. Обобщение на любую формулу

Лемма (Условное отрицание формул)

Пусть пропозициональные переменные $\Xi = X_1, \dots, X_n$ — все переменные, которые используются в формуле α . И пусть задана некоторая оценка переменных. Тогда, $(|\Xi|) \vdash (|\alpha|)$

Шаг 2. Обобщение на любую формулу

Лемма (Условное отрицание формул)

Пусть пропозициональные переменные $\Xi = X_1, \dots, X_n$ — все переменные, которые используются в формуле α . И пусть задана некоторая оценка переменных. Тогда, $(|\Xi|) \vdash (|\alpha|)$

Доказательство.

Индукция по длине формулы α .

- ▶ База: формула α атомарная, т.е. $\alpha = X_i$. Тогда при любом Ξ выполнено $((\Xi)^{X_i:=N} \vdash X_i)$ и $((\Xi)^{X_i:=N} \vdash X_i)$.
- lacktriangle Переход: $lpha=arphi\star\psi$, причём (\equiv) \vdash (arphi) и (\equiv) \vdash (ψ)

Шаг 2. Обобщение на любую формулу

Лемма (Условное отрицание формул)

Пусть пропозициональные переменные $\Xi = X_1, \dots, X_n$ — все переменные, которые используются в формуле α . И пусть задана некоторая оценка переменных. Тогда, $(\Xi) \vdash (\alpha)$

Доказательство.

Индукция по длине формулы α .

- ▶ База: формула α атомарная, т.е. $\alpha = X_i$. Тогда при любом Ξ выполнено $(\Xi)^{X_i := \Pi} \vdash X_i$ и $(\Xi)^{X_i := \Pi} \vdash X_i$.
- ▶ Переход: $\alpha = \varphi \star \psi$, причём (\equiv) \vdash (φ) и (\equiv) \vdash (ψ) Тогла построим вывол:

Тогда построим вывод:

$$(1)\dots(n)$$
 (φ) индукционное предположение $(n+1)\dots(k)$ (ψ) индукционное предположение $(k+1)\dots(l)$ $(\varphi\star\psi)$ лемма о связках: (φ) и (ψ) доказаны выше, значит, их можно использовать как гипотезы

Шаг 3. Избавляемся от гипотез

Лемма

Пусть при всех оценках переменных (Ξ) $\vdash \alpha$, тогда $\vdash \alpha$.

Шаг 3. Избавляемся от гипотез

Лемма

Пусть при всех оценках переменных (Ξ) $\vdash \alpha$, тогда $\vdash \alpha$.

Доказательство.

Индукция по количеству переменных n.

ightharpoonup База: n=0. Тогда $\vdash lpha$ есть из условия.

Шаг 3. Избавляемся от гипотез

Лемма

Пусть при всех оценках переменных (Ξ) $\vdash \alpha$, тогда $\vdash \alpha$.

Доказательство.

Индукция по количеству переменных n.

- ightharpoonup База: n=0. Тогда $\vdash lpha$ есть из условия.
- ▶ Переход: пусть $(X_1, X_2, ... X_{n+1}) \vdash \alpha$. Рассмотрим 2^n пар выводов:

$$\frac{(|X_1, X_2, \dots X_n|), \neg X_{n+1} \vdash \alpha \qquad (|X_1, X_2, \dots X_n|), X_{n+1} \vdash \alpha}{(|X_1, X_2, \dots X_n|) \vdash \alpha}$$

При этом, $(X_1, X_2, \dots X_n) \vdash \alpha$ при всех оценках переменных $X_1, \dots X_n$. Значит, $\vdash \alpha$ по индукционному предположению.

Заключительные замечания

Теорема о полноте — конструктивна. Получающийся вывод — экспоненциальный по длине.

Несложно по изложенному доказательству разработать программу, строящую вывод.

Вывод для формулы с 3 переменными — порядка 3 тысяч строк.

Критика доказательств чистого сущестования

Теорема

Существует пара иррациональных чисел a u b, такая, что a^b — рационально.

Критика доказательств чистого сущестования

Теорема

Существует пара иррациональных чисел a и b, такая, что a^b — рационально.

- \triangleright 2⁵, 3³, 7¹⁰, $\sqrt{2}^2$ рациональны;
- $ightharpoonup 2^{\sqrt{2}}, e^{\pi}$ иррациональны;
- задача выглядит довольно сложно.

Критика доказательств чистого сущестования

Теорема

Существует пара иррациональных чисел a и b, такая, что a^b — рационально.

Доказательство.

Рассмотрим $a=b=\sqrt{2}$ и рассмотрим a^b . Возможны два варианта:

- 1. $a^b = \sqrt{2}^{\sqrt{2}}$ рационально;
- 2. $a^b = \sqrt{2}^{\sqrt{2}}$ иррационально; отлично, тогда возьмём $a_1 = \sqrt{2}^{\sqrt{2}}$ и получим

$$a_1^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2$$

Интуиционизм

"Over de Grondslagen der Wiskunde" (Брауэр, 1907 г.) Основные положения:

- 1. Математика не формальна.
- 2. Математика независима от окружающего мира.
- 3. Математика не зависит от логики это логика зависит от математики.

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть lpha, eta — некоторые конструкции, тогда:

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть lpha, eta — некоторые конструкции, тогда:

ightharpoonup lpha & eta построено, если построены lpha и eta

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть lpha, eta — некоторые конструкции, тогда:

- ightharpoonup lpha & eta построено, если построены lpha и eta
- ightharpoonup $\alpha \lor \beta$ построено, если построено α или β , и мы знаем, что именно

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть lpha, eta — некоторые конструкции, тогда:

- ightharpoonup lpha & eta построено, если построены lpha и eta
- ightharpoonup $\alpha \lor \beta$ построено, если построено α или β , и мы знаем, что именно
- lacktriangle lpha o eta построено, если есть способ перестроения lpha в eta

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть α , β — некоторые конструкции, тогда:

- ightharpoonup lpha & eta построено, если построены lpha и eta
- ightharpoonup $\alpha \lor \beta$ построено, если построено α или β , и мы знаем, что именно
- lacktriangle lpha o eta построено, если есть способ перестроения lpha в eta
- ▶ ⊥ конструкция, не имеющая построения

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

Пусть lpha, eta — некоторые конструкции, тогда:

- ightharpoonup lpha & eta построено, если построены lpha и eta
- ightharpoonup $\alpha \lor \beta$ построено, если построено α или β , и мы знаем, что именно
- lacktriangle lpha o eta построено, если есть способ перестроения lpha в eta
- ▶ ⊥ конструкция, не имеющая построения
- ightharpoonup построено, если построено $lpha
 ightarrow \bot$

Дизъюнкция

Конструкция $\alpha \vee \neg \alpha$ не имеет построения в общем случае. Что может быть построено: α или $\neg \alpha$?

Дизъюнкция

Конструкция $\alpha \vee \neg \alpha$ не имеет построения в общем случае. Что может быть построено: α или $\neg \alpha$?

Возьмём за lpha нерешённую проблему, например, $P=\mathit{NP}$

Дизъюнкция

Конструкция $\alpha \vee \neg \alpha$ не имеет построения в общем случае. Что может быть построено: α или $\neg \alpha$?

Возьмём за lpha нерешённую проблему, например, $P=\mathit{NP}$

Авторам в данный момент не известно, выполнено P=NP или же $P \neq NP$.

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Давайте дадим следующий смысл пропозициональным переменным:

- ▶ A идёт дождь
- ▶ В светит солнце
- С в прошлом году я получил пятёрку по матанализу

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Давайте дадим следующий смысл пропозициональным переменным:

- ▶ A идёт дождь
- ▶ В светит солнце
- ▶ С в прошлом году я получил пятёрку по матанализу

Импликацию можно понимать как «формальную» и как «материальную».

lacktriangle Материальная импликация A o B для автора в данный момент выполнена, поскольку дождя за окном не идёт.

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Давайте дадим следующий смысл пропозициональным переменным:

- ▶ A идёт дождь
- ▶ В светит солнце
- С в прошлом году я получил пятёрку по матанализу

Импликацию можно понимать как «формальную» и как «материальную».

- lacktriangle Материальная импликация A o B для автора в данный момент выполнена, поскольку дождя за окном не идёт.
- lacktriangle Формальная импликация A o B места не имеет.

Высказывание общезначимо в И.В. и не выполнено в ВНК-интерпретации:

$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

Давайте дадим следующий смысл пропозициональным переменным:

- ▶ A идёт дождь
- ▶ В светит солнце
- С в прошлом году я получил пятёрку по матанализу

Импликацию можно понимать как «формальную» и как «материальную».

- lacktriangle Материальная импликация A o B для автора в данный момент выполнена, поскольку дождя за окном не идёт.
- lacktriangle Формальная импликация A o B места не имеет.

Формализация

Формализация интуиционистской логики возможна, но интуитивное понимание — основное.

Определение

Аксиоматика интуиционистского исчисления высказываний в гильбертовском стиле: аксиоматика КИВ, в которой 10 схема аксиом

$$(10) \quad \neg \neg \alpha \to \alpha$$

заменена на

(10
$$\mu$$
) $\alpha \rightarrow \neg \alpha \rightarrow \beta$

Теория моделей: битовые шкалы и множества как модели для КИВ

Оценка: размер шкалы n (множество X) и функция $f:P\to 2^n-1$ $(f:P\to \mathcal{X}).$

КИВ	Битовые шкалы	Множества
V	$0 \dots 2^n - 1$	$\mathcal{P}(X)$
истина	1 shl n - 1	X
$\llbracket \alpha \& \beta \rrbracket$	$\llbracket lpha rbracket$ and $\llbracket eta rbracket$	$\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$
$[\![\alpha\vee\beta]\!]$	$\llbracket lpha rbracket$ or $\llbracket eta rbracket$	$\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$
$[\![\alpha \to \beta]\!]$	(not $\llbracket lpha rbracket$) and $\llbracket eta rbracket$	$(X\setminus \llbracket\alpha\rrbracket)\cup \llbracket\beta\rrbracket$
$\llbracket \neg \alpha \rrbracket$	(not $\llbracket \alpha rbracket$) and (1 shl n - 1)	$X\setminus \llbracket lpha rbracket$

Пример

Пусть
$$X=\{\Box,\star,\circ\},\,A=\{\Box\},\,B=\{\circ\},\,$$
 тогда $\mathbb{A} \to A \lor B \mathbb{I} = (X \setminus \{\Box\}) \cup (\{\Box\} \cup \{\circ\}) = \emptyset$

$$[A \to A \lor B] = (X \setminus \{\Box\}) \cup (\{\Box\} \cup \{\circ\}) = \{\star, \circ\} \cup \{\Box, \circ\} = X$$
$$[A \to B] = (X \setminus \{square\}) \cup \{\circ\} = \{\star, \circ\} \neq X$$

Теория моделей ИИВ: топологическая модель

Оценка задаётся пространством $\langle X,\Omega
angle$ и функцией $f:P
ightarrow \Omega.$

И.В.	Множества (КИВ)	Топология (ИИВ)
V	$\mathcal{P}(X)$	Ω
истина	X	X
$\llbracket \alpha \& \beta \rrbracket$	$\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$	$\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$
$[\![\alpha\vee\beta]\!]$	$\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$	$\llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$
$[\![\alpha \to \beta]\!]$	$(\pmb{X}\setminus \llbracket\alpha\rrbracket)\cup \llbracket\beta\rrbracket$	$((X \setminus \llbracket \alpha \rrbracket) \cup \llbracket \beta \rrbracket)^{\circ}$
$\llbracket \neg \alpha \rrbracket$	$X\setminus \llbracket lpha rbracket$	$(X\setminus \llbracket lpha rbracket)^\circ$

Определение

 $\models lpha$, если $[\![lpha]\!]$ истинно во всех пространствах при всех функциях оценки.

Теорема

ИИВ с топологической интерпретацией корректна и полна.

Закон исключённого третьего не выполнен в ИИВ

Несколько схожих формулировок (упорядочены по убыванию силы): $\alpha \to \neg \neg \alpha$, $\alpha \lor \neg \alpha$, $((\alpha \to \beta) \to \alpha) \to \alpha$.

Теорема

 $ot \vdash A \lor \neg A$ в интуиционистском исчислении высказываний.

Доказательство.

$$X=\mathbb{R},\ A=(0,1), \ \mathbb{R}A\vee\neg A\mathbb{I}=(0,1)\cup((-\infty,0]\cup[1,\infty))^\circ=(-\infty,0)\cup(0,1)\cup(1,\infty)\neq\mathbb{R}$$