INT102 Algorithmic Foundations And Problem Solving

Dynamic Programming ... Continued

Dr Jia WANG

Department of Computer Science

Last Class

- Longest Common Subsequence (LCS)
 - Assigned problem Find the LCS between "HUMAN" and "CHIMPANZEE"
 - Fill out the dynamic programming table
 - Trace back what the LCS is
 - Tri Tiling
 - Tree coloring
 - Global Alignment
 - Local Alignment

• The goal is to maximize the value of a knapsack that can hold at most W units (i.e., lbs or kg) worth of goods from a list of items I₀, I₁, ... I_{n-1}.

- Each item has 2 attributes:
 - 1) Value let this be v_i for item I_i
 - 2) Weight let this be w_i for item I_i

 The difference between this problem and the fractional knapsack one is that you CANNOT take a fraction of an item.

- You can either take it or not.
- Hence the name Knapsack 0-1 problem.

• Brute Force

- The naïve way to solve this problem is to cycle through all 2ⁿ subsets of the n items and pick the subset with a legal weight that maximizes the value of the knapsack.
- We can come up with a dynamic programming algorithm that will USUALLY do better than this brute force technique.

- As we did before we are going to solve the problem in terms of sub-problems.
 - Let's try to do that...
- Our first attempt might be to characterize a sub-problem as follows:
 - Let S_k be the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$.
 - What we find is that the optimal subset from the elements $\{I_0, I_1, ..., I_{k+1}\}$ may not correspond to the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$ in any regular pattern.
 - Basically, the solution to the optimization problem for S_{k+1} might NOT contain the optimal solution from problem S_k .

• Let's illustrate that point with an example:

ltem	Weight	<u>Value</u>
I _o	3	10
I ₁	8	4
l ₂	9	9
l ₃	8	11

The maximum weight the knapsack can hold is 20.

- The best set of items from $\{I_0, I_1, I_2\}$ is $\{I_0, I_1, I_2\}$
- BUT the best set of items from $\{I_0, I_1, I_2, I_3\}$ is $\{I_0, I_2, I_3\}$.
 - In this example, note that this optimal solution, $\{l_0, l_2, l_3\}$, does NOT build upon the previous optimal solution, $\{l_0, l_1, l_2\}$.
 - (Instead it build's upon the solution, $\{I_0, I_2\}$, which is really the optimal subset of $\{I_0, I_1, I_2\}$ with weight 12 or less.)

- So now we must re-work the way we build upon previous subproblems...
 - Let B[k, w] represent the maximum total value of a subset S_k with weight w.
 - Our goal is to find B[n, W], where n is the total number of items and W is the maximal weight, the knapsack can carry.
- So our recursive formula for subproblems:

```
B[k, w] = B[k - 1, w], \underline{if w_k > w}
= max { B[k - 1, w], B[k - 1, w - w_k] + v_k}, <u>otherwise</u>
```

- In English, this means that the best subset of S_k that has total weight w is:
 - 1) The best subset of S_{k-1} that has total weight w, or
 - 2) The best subset of S_{k-1} that has total weight w-w_k plus the item k

Knapsack 0-1 Problem - Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

 The best subset of S_k that has the total weight w, either contains item k or not.

- First case: $w_k > w$
 - Item k can't be part of the solution! If it was the total weight would be > w, which is unacceptable.
- Second case: $w_k \le w$
 - Then the item *k* can be in the solution, and we choose the case with greater value.

Knapsack 0-1 Algorithm

```
for w = 0 to W \{ // \text{Initialize } 1^{st} \text{ row to } 0's \}
 B[0,w] = 0
}
for i = 1 to n \{ // Initialize 1<sup>st</sup> column to 0's
 B[i,0] = 0
}
for i = 1 to n {
  for w = 0 to W  {
        if w_i \le w  { //item i can be in the solution
                 if v_i + B[i-1, w-w_i] > B[i-1, w]
                          B[i,w] = v_i + B[i-1,w-w_i]
                 else
                          B[i,w] = B[i-1,w]
        else B[i,w] = B[i-1,w] // w_i > w
```

- Let's run our algorithm on the following data:
 - n = 4 (# of elements)
 - W = 5 (max weight)
 - Elements (weight, value): (2,3), (3,4), (4,5), (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

// Initialize the base cases
for
$$w = 0$$
 to W
 $B[0,w] = 0$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

It	er	ns	:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	Ø	0	0	0	0
1	0	Ŏ				
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$w = 1$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else **B[i,w]** = **B[i-1,w]** //
$$w_i > w$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0_	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$\mathbf{w} = 2$$

$$\mathbf{w} - \mathbf{w}_i = 0$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0 _	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$\mathbf{w} = 3$$

$$w-w_i = 1$$

if
$$w_i \le w$$
 //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 4$
 $w - w_i = 2$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$\mathbf{w} = 5$$

$$w - w_i = 3$$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$else$$

$$B[i,w] = B[i-1,w]$$

$$else \ B[i,w] = B[i-1,w]$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 1$$

$$w-w_i = -2$$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w]$$

$$B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$

|--|

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	1 3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 2$
 $w-w_i = -1$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = v_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:	

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$

 $B[i,w] = v_i + B[i-1,w-w_i]$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Ite	ms:	

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0_	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 4$
 $w-w_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

|--|

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $w = 5$
 $w-w_i = 2$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	3	, 4	4	7
3	0	•0	v 3	† 4		
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 1..3$
 $w-w_i = -3..-1$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w]$$

$$B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$

lt	۵.	m) C '	
1 (<u>. ر</u>	11	<u> </u>	_

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 4$
 $\mathbf{w} = \mathbf{w}$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else
$$B[i,w] = B[i-1,w]$$
else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$

$$v_i = 5$$

$$w_i = 4$$

$$\mathbf{w} = 5$$

$$\mathbf{w} - \mathbf{w}_i = 1$$

if
$$w_i \le w$$
 //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	1 0	13	4	5	7
4	0	• 0	* 3	* 4	* 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $w = 1..4$
 $w-w_i = -4..-1$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w]$$

$$B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$

items:

1: (2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	▼ 7

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 5$
 $\mathbf{w} - \mathbf{w}_i = 0$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

We're DONE!!

The max possible value that can be carried in this knapsack is \$7

Knapsack 0-1 Algorithm

- This algorithm only finds the max possible value that can be carried in the knapsack
 - The value in B[n,W]

 To know the *items* that make this maximum value, we need to trace back through the table.

```
    Let i = n and k = W
    if B[i, k] ≠ B[i-1, k] then
    mark the i<sup>th</sup> item as in the knapsack
    i = i-1, k = k-w<sub>i</sub>
    else
    i = i-1 // Assume the i<sup>th</sup> item is not in the knapsack
    // Could it be in the optimally packed knapsack?
```

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	1 7
4	0	0	3	4	5	7

Items:

Knapsack:

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	1 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

Knapsack:

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

Items:

Knapsack:

Item 2

$$i = 2$$

$$k = 5$$

$$v_i = 4$$

$$w_i = 3$$

$$B[i,k] = 7$$

$$B[i-1,k] = 3$$

$$k - w_i = 2$$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Knapsack: Item 2

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
B[i,k] = 3
B[i-1,k] = 0
 $k - w_i = 0$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

Knapsack: 1: (2,3) Item 2 Item 1

2: (3,4)

3: (4,5)

4: (5,6)

 $v_i = 3$

 $w_i = 2$

B[i,k] = 3

B[i-1,k] = 0

 $k - w_i = 0$

k = 0, so we're DONE!

The optimal knapsack should contain:

Item 1 and Item 2

Knapsack 0-1 Problem - Run Time

for
$$w = 0$$
 to W
 $B[0,w] = 0$ $O(W)$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

$$O(n)$$

What is the running time of this algorithm? O(n*W)

Remember that the brute-force algorithm takes: $O(2^n)$

Knapsack Problem

- 1) Fill out the dynamic programming table for the knapsack problem to the right.
- Trace back through the table to find the items in the knapsack.

References

 Slides adapted from Arup Guha's Computer Science II Lecture notes:

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/

Additional images:

www.wikipedia.com xkcd.com