APPLICATION OF STATISTICAL LEARNING ALGORITHMS TO BREAST CANCER DIAGNOSTICS

BREAST CANCER

- Second most common cancer among women in the US
- Early diagnostics plays a crucial role in the success of the treatment

OUR GOALS

- Classification of tumors based on the tissue samples as benign and malignant
- Improving the efficiency of diagnostics
- Getting insight into which characteristics of the tissue are most indicative for the diagnosis

BREAST CANCER WISCONSIN DATA SET

- Made available by UCI Machine Learning Repository
- 569 samples of tissue: 357 benign and 212 malignant sample
- Split the data 50/50 into training and testing data.

PREDICTORS

10 geometrical features of the cells:

radius, texture, perimeter, area, smoothness, compactness, concavity (severity of concave portions of the contour), concave points (number of concave portions of the contour), symmetry, fractal dimension.

For each of them: mean, standard error and "worst" value for the sample of the cells.

Hence 30 predictors from 10 groups in total.

PREDICTORS

LOGISTIC REGRESSION

- One of the simplest possible models
- Does not perform variable selection or shrinkage
- Still, it yields a pretty good result

Error rate on testing data: 0.053

LOGISTIC REGRESSION WITH ELASTIC NET PENALTY

Penalty of the form:

$$P_{\lambda}(\beta) = \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right)$$

 α , λ chosen by cross validation.

- Performs variable selection.
- We expect it to perform better than the unpenalized logistic regression.

LOGISTIC REGRESSION WITH ELASTIC NET PENALTY

Results:

Selected variables: all of them except for texture mean, compactness mean, concavity standard error, concave points standard error, symmetry standard error, compactness worst.

Error rate on testing data: 0.025

Improvement in the predictive capability but still too many predictors in the model to have good interpretability.

LOGISTIC REGRESSION WITH GROUP LASSO PENALTY

Penalty of the form:

$$P_{\lambda}(\beta) = \lambda \sum_{g=1}^{G} \left\| \beta_{I_g} \right\|_{2}$$

where each of the covariates is grouped into one of G groups and β_{I_g} is a subvector of β which contains the coefficients corresponding to the covariates from the g-th group.

Potentially helpful when we have a <u>natural grouping</u> of the covariates, just like in our case (10 geometrical features of the cells).

LOGISTIC REGRESSION WITH GROUP LASSO PENALTY

Results:

Selected variables: all of them except for the ones from the group of perimeter.

Error rate on testing data: 0.055

Practically no improvement from unpenalized logistic regression both in terms of predictive capability and variable selection.

LOGISTIC REGRESSION WITH SPARSE GROUP LASSO PENALTY

Penalty of the form:

$$P_{\lambda}(\beta) = \lambda \left(\alpha \sum_{j=1}^{p} |\beta_{j}| + (1 - \alpha) \sum_{g=1}^{G} \|\beta_{I_{g}}\|_{2} \right)$$

combination of the sparse group and lasso penalties.

LOGISTIC REGRESSION WITH SPARSE GROUP LASSO PENALTY

Selected covariates:

- radius (mean, standard error, worst)
- texture (mean, worst)
- smoothness (worst)
- concavity (mean, worst)
- concave points (mean, standard error, worst)
- symmetry (worst)

Error rate on testing data: 0.028

IMPROVING PREDICTION ACCURACY

ARTIFICIAL NEURAL NETWORK

Error function: cross-entropy

Optimization algorithm: resilient backpropagation with weight backtracking

Error rate on testing data: 0.035

ENSEMBLE METHOD

- We will now attempt to combine the Neural Network with the Elastic Net Logistic Regression.
- We will lose the interpretability of the Logistic Regression but hopefully we can obtain better accuracy of prediction.
- We will use a particular version of Stacking Classifier.

STACKING CLASSIFIER

STACKING CLASSIFIER

Training:

- Train both classifiers on training data.
- Apply them to obtain the probabilities for the validation data.
- Train a meta-classifier on the probabilities for the validation data.

Evaluating:

- Apply the original classifiers to testing data to obtain probabilities.
- Make predictions by using the meta-classifier on these probabilities.

META-CLASSIFIERS AND THEIR PERFORMANCE

Logistic Regression
 Error rate on testing data: 0.137

LDA
 Error rate on testing data: 0.137

QDA
 Error rate on testing data: 0.109

SUMMARY

Algorithm	Logistic Regression	Elastic Net Logistic Regression		Sparse Group Lasso Logistic Regression	Artificial Neural Network	Ensemble Method
Error rate	0.053	0.025	0.055	0.028	0.035	0.109

FURTHER INVESTIGATION

- Improving the ensemble method utilized instead of fixing the validation portion of the data use cross-validation and average over the resulting models.
- Incorporating more algorithms into the analysis, for example random forest.
- Attempting to control the percentage of false negative diagnoses of a malignant tumor at a fixed level, lower than the one achieved now.
- Attempting to perform inference on some of the models.
 Unfortunately, using bootstrap did not give any conclusive results because of the nature of the penalties we used.

CONCLUSIONS

• The covariates seem to be very predictive of the diagnosis with the best classifier (the Elastic Net Logistic Regression) having its error rate at just 2.5%.

• Potentially, this number could be improved by applying better tuned ensemble methods.

REFERENCES

[1] Breast Cancer Wisconsin Data Set https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

[2] Package 'msgl', by Martin Vincent [aut], Niels Richard Hansen [ctb, cre] https://cran.r-project.org/web/packages/msgl/msgl.pdf

[3] Stacking Classifier, by Bhavesh Bhatt https://www.youtube.com/watch?v=sBrQnqwMpvA&list=LL&index=2

