MSMS Project

Modelling, analysis and optimization of a Formula 1 DRS

System design

Objective:

- System description specifications
- Evaluation criteria
- Target values

Tools:

- Quality Function Deployment (QFD) House of Quality

Customer:

Reality

- 1. Internal groups
- 2. FIA
- 3. Pilot

Our project

- engine team
- aerodynamics team
- mechanical team

Requirements:

- Fixed sum method for relative importance
- Focus on the main ones

How important is it <x> if <y>?</y></x>	Importance
The force of the actuators of the DRS wins the external forces acting on it.	43
The DRS quickly switches between open and closed positions.	42
The DRS disturbs as little as possible the aerodynamics.	41
The change of state of the DRS happens without residual vibrations.	38
The DRS uses as little energy as possible.	34
The DRS weighs little	25
Failures are not allowed.	24
The DRS is resistant to the forces and vibrations acting on the vehicle.	22
Capable of working with any environment conditions.	14
Easy to install and disassemble	7
The DRS is made of standard parts.	6
Easy to maintain and repair.	4

HOQ

Main considerations a priori

- Different mechanisms as competitors
- High level analysis w.r.t. requirements and engineering specifications

Main considerations a posteriori

The final models and simulations mainly focus on:

- the opening times
- the mechanisms velocities
- the actuating forces
- the mechanisms masses

[ms]	+	Opening mechanism time	
[Hz]	←	Residual vibration frequency of the mechanism	
[mm]	←	Residual amplitude frequency of the mechanism	
Ξ	\$	Force of the actuator	
<u> </u>	+	Energy consumed by the actuator	
3	←	Drag coefficient of the entire mechanism	6
[hours]	←	Mean time between failures	
#	←	Steps required to install and disassemble the mechanism	
[days]	←	Time required to repair the mechanism	
[#]	→	Suppliers of the rarest component	
Z	\$	Maximum sustainable load	11
[g/m ³]	\$	Maximum operating humidity	
[]	\$	Maximum operating temperature	
[Hz]	\$	Maximum operating vibration frequency	
[mm]	\$	Maximum operating vibration amplitude	15
[9]	←	Mechanism mass	16

Kinematic analysis

Objective:

- Visualizing the mechanism
- 2. Computing the piston stroke
- 3. Analysis of the mechanism velocity

Tools:

- Direct kinematics
 - Position analysis
 - Velocity analysis
 - Acceleration analysis
- Inverse kinematics

Position analysis

Solution of the kinematic constraints

Position analysis

Inverse kinematics

Solved minimizing:

$$CostFunction(s(t)) = (Y_{upper_wing} - Y_{lower_wing} - imposedDistance)^2$$

Piston stroke that produces the opened configuration:

	Pod Pull	Pod Rocker	Pod Push
Piston stroke	35.58 mm	25.55 mm	45.50 mm

Velocity analysis

Velocity ratios between piston and wing movement

Aerodynamic data

Source:

 study on airflow characteristics of rear wing of F1 car, <u>link</u>

	Wing name	Chord [mm]
Main plane	BE50	290
Flap wing	NACA 2415	120

Status	Drag [N]	Down [N]
closed	145.51	819.12
open	51.32626	745.62

Dynamic Analysis

Objective:

- 1. Define a desired profile for the opening of the wing
- Determine the force required to follow the trajectory
- 3. Analyze the reaction forces
- 4. Analyze the effect of friction

Tools:

- Inverse Dynamics
- Direct Dynamics

Desired profile

Maximum Acceleration (Fixed time period)

- Most efficient repositioning possible.
- Highly discontinuous force required.

Desired profile

Minimum jerk (Fixed time period)

- Continuous and smooth acceleration.
- Higher maximum force required.

Dynamic scheme

External forces applied

Drag and downforce estimation:

(Work by Mauro Dimastrogiovanni, Giulio Reina and Andrea Burzoni)

Inverse Dynamics

Solving the inverse dynamics problem we obtain the *required force* to obtain the piston profile:

Direct Dynamics

Pod Pull

Substituting the obtained force profile and solving the DAE:

Direct Dynamic

Representation of the forces involved

Effect of friction

Pod Pull

 Considered the sliding friction between piston and chamber (Coulomb model):

$$F_A = sign\left(\frac{ds(t)}{dt}\right) \cdot \eta_{fric} \cdot abs\left(N_p(t)\right)$$

 Negative effect in the opening maneuver, positive effect in the closing repositioning.

Optimization

Objective:

Manipulation of L2, L3 and yA in order to:

- Minimize piston stroke
- Minimize overall weight
- Maximize wing opening velocity
- Reduce force required by the actuator

Tools:

- Functions sampling Cost functions minimization

Optimization

Definition of the cost function

(Each factor of the cost function has been normalized)

Optimization results

Pod Pull

Starting mechanism

L2 = 0.049 m L3 = 0.070 myA = 0.130 m

Optimized mechanism

$$L2 = 0.070 \text{ m}$$

 $L3 = 0.057 \text{ m}$
 $yA = 0.130 \text{ m}$

Optimization results

Pod Pull

Piston stroke:

0.0356 m *pre-optimization* 0.0215 m *post-optimization*

Velocity ratio (wing/piston stroke):

• Weight:

323.4 g pre-optimization 377.5 g post-optimization

Required piston force:

Control

Objective:

- More realistic simulation
- Estimate the value of the gain of proportional controllers

Tools:

- Position loop
- Position-velocity loop

Position Loop

Position-Velocity Loop

Position loop

Proportional controller on the position of the pod-pull mechanism

Note: increasing the gain up to 10⁶ is not enough to avoid errors and considerable vibrations.

Position-velocity loop

Proportional controller on the position of the pod-pull mechanism

Note: setting the gain of the two loops to 10⁴ gives very accurate results.

Hydraulic system

Objective:

- 1. Simulate a real hydraulic activation
- Calculate the valve aperture to get the a desired piston force profile

Tools:

Equations from MapleSim and lecture

Numerical integration

Objective:

Integrate the Maple equations with different methods of the Prof. Bertolazzi's library.

Steps:

- reduce the DAE (obtained with Lagrange) to first order
- reduce the DAE to an ODE
- apply Baumgarte stabilization
- export the code to Matlab
- integrate using the differents methods and with different steps

Evaluating...

Problem:

Even inserting the data and simplifying the forces the library call never print the code to export.