Graphes et algorithmes: TD4

Exercice 1

Sujet

Donner le déroulement de l'algorithme du parcours en profondeur sur le graphe orienté ci-dessous, en prenant pour sommet origine le sommet c. Préciser les dates de découverte et de fin de traitement de chaque sommet.

Résolution

- On suppose que les sommets sont traités dans l'ordre alphabétique des identifiants.
 - Nombre à gauche : date de découverte
 - Nombre à droite : date de fin de traitement
 - Contour gris: sommet en cours de traitement
 - o Contour noir : sommet déjà traité
 - Contour blanc : sommet non traité
 - Flèche verte : transition utilisée
- ullet On a du relancer l'algorithme à partir du sommet d pour découvrir tout le graphe.

Exercice 3

Sujet

Appliquer l'algorithme de parcours en largeur au graphe non orienté suivant, en partant du sommet s.

Résolution

$$F=\{s\}$$

$$F = \{s, r, w\}$$

 $F=\{\not s,r,w\}$

$$egin{aligned} F &= \{ \not r, w \} \ F &= \{ \not w, v \} \ F &= \{ \not v, t, y \} \end{aligned}$$

$$F = \{t, y\}$$

 $F = \{y, u\}$
 $F = \{y, z\}$

Exercice 4

Sujet

Soit G un graphe orienté sur lequel on effectue un parcours en profondeur d'abord depuis un sommet donné. Ce parcours ne permet pas d'atteindre tous les sommets du graphe : que pouvez-vous en déduire ?

Résolution

G n'est donc pas fortement connexe car il existe un sommet s qui ne peut pas atteindre tous les autres sommets.

Exercice 6

Sujet

Proposer une version itérative du parcours en profondeur.

Résolution

Nous pouvons remplacer les appels récursifs par l'utilisation d'une pile :

```
Couleur[y] ← gris;
    d[y] ← temp;
    temp ← temp + 1;
    p[y] ← x;
    sinon
        Couleur[x] ← noir;
        f[x] ← temp;
        temp ← temp + 1;
        depiler(P);
    fin si
    fin tant que
fin
```

Exercice 7

On considère le graphe non orienté simple $G=\left(S,A
ight)$ suivant :

- 1. Est-ce que les listes $L_1=(2,5,4,3,1,6,7,8)$ et $L_2=(5,7,8,2,4,1,3,6)$ qui donnent l'ordre dans lequel les sommets ont été découverts, peuvent être obtenues par l'algorithme de parcours en profondeur?
- 2. Même question pour le parcours en largeur, avec les listes $L_1=(6,5,7,8,2,4,1,3)$ et $L_2=(1,2,3,4,5,6,7,8)$.

Résolution

Question 1

- ullet L_1 : oui, car on a bien découvert les sommets dans l'ordre donné par la liste.
- L_2 : non, car après 8 on revient à 7 et on a découvert 6 et non 2.

Question 2

- L_1 : non, car on empile 5 avant 7 donc on doit traiter 2 avant 8.
- ullet L_2 : oui, car on a bien découvert les sommets dans l'ordre donné par la liste.