CPE301 - SPRING 2018

Design Assignment 3

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Atmega328P
- FTDI chip
- Mini USB to USB cable
- Switch
- Breadboard
- Resistors (mainly 100 ohms)
- LED (red)
- Power supply

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
#define F_CPU 8000000UL
#define UBRR_9600 51 // for 8Mhz with .2% error

#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include <stdint.h>

// Function Declarations
void read_adc(void);
void adc_init(void);
void USART_init( unsigned int ubrr );
void USART_tx_string( char *data );
volatile unsigned int adc_temp;
char outs[20];
```

```
int main(void)
                                  // Initialize the ADC (Analog / Digital Converter)
      adc_init();
                                  // Initialize the USART (RS232 interface)
      USART_init(UBRR_9600);
                                           // we're alive!
      USART_tx_string("Connected!\r\n");
                                                       // wait a bit
      delay ms(125);
                                               //timer1 interrupt register
      TIMSK1 = (1 << TOIE1);
      TCNT1 = 34286;
                                                       //timer counts to this value
      TCCR1A = 0;
      TCCR1B = (1 < < CS12);
                                                       //256 prescaler
      sei();
      while(1)
      {
                           // wait for interrupt
      }
}
ISR (TIMER1_OVF_vect)
                                                       //overflow interrupt
             TCCR1B = 0;
                                                              //stop the counter
             read adc();
             snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp); // print ADC value
             USART_tx_string(outs);
             _delay_ms(125);
                                                              // wait a bit
             TCNT1 = 34286;
             TCCR1B = (1 < < CS12);
}
void adc_init(void)
       /** Setup and enable ADC **/
      ADMUX = (0<<REFS1) | // Reference Selection Bits
       (1<<REFS0)
                                         // AVcc - external cap at AREF
       (1<<ADLAR)
                                 // ADC left Adjust Result
       (0<<MUX2)
                                         // Analog Channel Selection Bits
       (0<<MUX1)
                                         // ADC0 Pin
       (0<<MUX0);
      ADCSRA = (1 << ADEN) | // ADC ENable
                                         // ADC Start Conversion
       (1<<ADSC)
       (1<<ADATE)
                                  // ADC Auto Trigger Enable
                                         // ADC Interrupt Flag
       (0<<ADIF)
                                         // ADC Interrupt Enable
       (0<<ADIE)
       (1<<ADPS2)
                                  // ADC Prescaler Select Bits
       (0<<ADPS1)
       (1<<ADPS0);
}
/* READ ADC PINS*/
void read_adc(void)
      unsigned char i =4;
                                                       //set i to 4- make 4 readings
      adc_temp = 0;
                                                       //initialize ADC TEMP
      while (i--)
       {
```

```
ADCSRA |= (1<<ADSC);
           while((ADCSRA & (1<<ADIF)) == 0);</pre>
           adc_temp += ADCH*2;
                                            //sum up 4 readings
           _delay_ms(50);
     adc_temp = adc_temp / 4;
                                            // Average of four samples
}
/* INIT USART (RS-232) */
void USART init( unsigned int ubrr )
     UBRR0H = (unsigned char)(ubrr>>8);
     UBRR0L = (unsigned char)ubrr;
     UCSR0B = (1 << TXEN0) | (1 << RXEN0);
                                        // Enable receiver, transmitter
     }
/* SEND A STRING TO THE RS-232*/
void USART_tx_string( char *data )
{
     while ((*data != '\0'))
                                      //loop until the end of the string
           UDR0 = *data;
           _delay_ms(125);
                                                       // wait a bit
           data++;
     }
}
```

3. Flow chart

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Picture taking from Putty with the displayed values, in one point, we can see that the value increasing, I touched the sensor to make sure that the sensor is reading correctly.

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/b5qD7vp0Rd0

7. GITHUB LINK OF THIS DA

git@github.com:EilatAvidan/microcon.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Eilat Avidan