

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000071926 A

(43) Date of publication of application: 07.03.00

(51) Int. CI

B60R 21/20 B60K 37/00

(21) Application number: 11263743

(22) Date of filing: 16.06.95

(62) Division of application: 07150661

(71) Applicant:

TOYODA GOSEI CO LTD

(72) Inventor:

TOTANI CHIHARU UENO TATSUHIRO HANABUSA HISAO NAGANO AKIYOSHI **FUJII TETSUYA OKUMURA KATSUHIRO** HORIUCHI NORIYUKI SASAJIMA MUNEAKI KATAGIRI KATSUHIRO HORIBA YUKIHIKO

(54) MANUFACTURE OF INTERIOR MEMBER FOR **ON-VEHICLE AIR BAG DEVICE**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a manufacturing method for an interior member for an on-vehicle air bag device easy for manufacturing by ensuring rigidity required for the interior member and easiness of door part opening at the time of air bag expansion.

SOLUTION: An interior member for an on-vehicle air bag device has a body 21 and a lid part 22 surrounded by the body 21 and formed to be continuous thereto for covering the folded air bag of the device. Also, the lid part 22 has a door part 23 for closing the folded air bag, a thin tear scheduled part 24 formed by recessing the surrounding reverse side of the door part 23 and to be torn at the time of air bag expansion, and a hinge part for connecting the door part 23 and the body 21 and acting as the rotational center of the door part 23 upon the tear of the tear scheduled part 24. In manufacturing, the body 21 is formed by injection molding a hard synthetic resin and then

the lid part 22 is formed by injection molding thermoplastic elastomer having compatibility with the hard synthetic resin of the body 21.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-71926 (P2000-71926A)

(43)公開日 平成12年3月7日(2000.3.7)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

B 6 0 R 21/20

B60K 37/00

B60R 21/20

B60K 37/00

Z

請求項の数5 OL (全 10 頁) 審査請求 有

(21)出願番号

特願平11-263743

(62)分割の表示

特願平7-150661の分割

(22)出顧日

平成7年6月16日(1995.6.16)

(71)出願人 000241463

豊田合成株式会社

愛知県西春日井郡春日町大字落合字長畑1

(72)発明者 戸谷 千春

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 上野 樹広

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(74)代理人 100076473

弁理士 飯田 昭夫 (外1名)

最終頁に続く

(54) 【発明の名称】 エアパッグ装置用内装部材の製造方法

(57)【要約】

【課題】内装部材に必要な剛性とエアバッグの膨張時の **扉部の開き易さとを確保して、容易に製造可能なエアバ** ッグ装置用内装部材の製造方法の提供。

【解決手段】エアバッグ装置用内装部材は、本体21 と、本体に周囲を囲まれ、かつ、本体につらなって、エ アバッグ装置の折り畳まれたエアバッグを覆う蓋部22 と、を備える。蓋部22は、折り畳まれたエアバッグを 覆う扉部23と、扉部の周囲の裏面側を凹ませてエアバ ッグの膨張時に破断する薄肉の破断予定部24と、破断 予定部の破断時に扉部と本体とを連結して扉部の回転中 心部位となるヒンジ部と、を備える。製造時には、本体 21を、硬質合成樹脂から射出成形によって形成し、本 体の成形後、蓋部22を、本体の硬質合成樹脂と相溶性 を有する熱可塑性エラストマーから、射出成形によっ て、形成する。

【特許請求の範囲】

【請求項1】 エアバッグ装置用内装部材が、本体と、 該本体に周囲を囲まれ、かつ、前記本体につらなって、 エアバッグ装置の折り畳まれたエアバッグを覆う蓋部 と、を備えて構成され、

前記蓋部が、折り畳まれた前記エアバッグを覆う扉部と、該扉部の周囲を凹ませて前記エアバッグの膨張時に破断する薄肉の破断予定部と、該破断予定部の破断時に前記扉部の回転中心部位となるヒンジ部と、を備えて構成されるエアバッグ装置用内装部材の製造方法であって

前記本体を、硬質合成樹脂から射出成形によって形成 し、前記本体の成形後、前記蓋部を、前記本体の硬質合 成樹脂と相溶性を有する熱可塑性エラストマーから、射 出成形によって、形成することを特徴とするエアバッグ 装置用内装部材の製造方法。

【請求項2】 前記本体の射出成形後、前記本体を射出成形した成形型内で、前記本体を移動させずに停止させた状態で、前記蓋部を射出成形して形成することを特徴とする請求項1に記載のエアバッグ装置用内装部材の製造方法。

【請求項3】 前記本体を射出成形する成形型が、スライドコアを備えて構成され、

前記スライドコアとともに前記成形型を型締めして前記本体を射出成形し、前記本体の射出成形後、前記スライドコアを後退させて、後退させて生じたスペースを使用して、前記蓋部を射出成形して形成することを特徴とする請求項2に記載のエアバッグ装置用内装部材の製造方法。

【請求項4】 前記蓋部が前記エアバッグ装置と連結されるブラケットを備えて構成され、

該ブラケットを、前記蓋部の射出成形時に同時に射出成 形して形成することを特徴とする請求項1乃至請求項3 のいずれかに記載のエアバッグ装置用内装部材の製造方 法。

【請求項5】 前記内装部材が、前記本体と前記蓋部との表面側に、連続する表皮層を配設させて構成され、前記表皮層を、前記本体の射出成形前に、前記本体を射出成形する成形型にセットし、セット後、型締めして前記本体を射出成形し、前記本体の射出成形後、前記蓋部を射出成形して形成することを特徴とする請求項1乃至請求項4のいずれかに記載のエアバッグ装置用内装部材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車の車内の前部に配置されるインストルメントパネル、車内側のドアトリム、シートバック等の自動車の内装部材の製造方法に関し、特に、内装部材の一部に、エアバッグ装置の折り畳まれたエアバッグを覆い、エアバッグの膨張時に開

く扉部を配置させているエアバッグ装置用内装部材の製造方法に関する。

[0002]

【従来の技術】従来、この種の内装部材では、特開平5 -162603号公報に記載されているインストルメントパネル(以下、インパネと略す)が知られており、その構成は、インパネ本体と、折り畳まれたエアバッグを覆う位置に配置される扉部と、扉部の周囲に配置されてエアバッグの膨張時に破断する破断予定部と、破断予定部の破断時に扉部とインパネ本体とを連結して扉部の回転中心部位となるヒンジ部と、を備えて構成され、インパネ本体・扉部・破断予定部・及びヒンジ部がフィラー入りのポリプロピレン等の同一の材質から形成されていた。

【0003】このようなインパネでは、インパネ本体としては、耐候性・耐熱性・剛性(形状保持性)・耐衝撃性を確保する必要がある。

【0004】一方、エアバッグの膨張時に破断する破断 予定部としては、破片を生じさせない破断し易さが必要 となり、扉部とインパネ本体とを連結するヒンジ部とし ては、展開性(扉部の開き易さ)等の性質が必要とな る。

【0005】しかし、剛性と、上記破断し易さや展開性とは、相反する性質となるため、両者の性質を満足する材質の選定が、副資材やそれらの混合量等の設定も含めて、難しかった。

【0006】また、扉部を保持するヒンジ部、あるいは、扉部を開かせるための扉部の周囲に配置される破断予定部、の肉厚の管理も厳格なものが要求されることとなっていた。

【0007】そのため、これらの作業の困難性を低減するために、剛性を確保し易い合成樹脂材料を選定し、ヒンジ部の展開性を確保するために、ヒンジ部を薄肉にするとともにアラミド繊維等からなる強靭で可撓性を有したネット等の補強材を配設させて、解決することとなっていた。

[8000]

【発明が解決しようとする課題】しかし、このような補強材を利用する場合には、インパネを成形する際、作業者が手作業でいちいち可撓性を有した補強材を成形型の所定位置にセットする必要が生じ、インパネ等の内装部材の製造に手間がかかることとなっていた。

【0009】本発明は、上述の課題を解決するものであり、内装部材に必要な剛性とエアバッグの膨張時の扉部の開き易さとを確保して、容易に製造することができるエアバッグ装置用内装部材の製造方法を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明に係る製造方法は、エアバッグ装置用内装部材が、本体と、該本体に周

囲を囲まれ、かつ、前記本体につらなって、エアバッグ 装置の折り畳まれたエアバッグを覆う蓋部と、を備えて 構成され、前記蓋部が、折り畳まれた前記エアバッグを 覆う扉部と、該扉部の周囲を凹ませて前記エアバッグの 膨張時に破断する薄肉の破断予定部と、該破断予定部の 破断時に前記扉部の回転中心部位となるヒンジ部と、を 備えて構成されるエアバッグ装置用内装部材の製造方法 であって、前記本体を、硬質合成樹脂から射出成形によって形成し、前記本体の成形後、前記蓋部を、前記本体 の硬質合成樹脂と相溶性を有する熱可塑性エラストマー から、射出成形によって、形成することを特徴とする。

[0011]

【発明の効果】本発明に係る内装部材の製造方法では、 内装部材が、本体と、本体に周囲を囲まれ、かつ、本体 につらなって、エアバッグ装置の折り畳まれたエアバッ グを覆う蓋部と、を備えて構成され、本体が、硬質合成 樹脂製として、蓋部が、本体の硬質合成樹脂と相溶性を 有する熱可塑性エラストマーから形成されている。

【0012】すなわち、内装部材本体が、硬質合成樹脂製であるため、剛性を確保し易く、また、蓋部が、熱可塑性エラストマー製であるため、本体より弾力性を有し、ヒンジ部の展開性を確保し易い。そして、蓋部の破断予定部は、蓋部を凹ませて薄肉として形成しているため、支障無く破断させることができる。

【0013】なお、破断予定部を形成するための凹部は、蓋部の成形後、超音波ウエルダ等で形成したり、蓋部の成形時に成形型の凸形状で形成する。

【0014】そしてまた、内装部材の製造時には、本体を成形した後に蓋部を成形する2色成形で済み、従来の可撓性を有した補強材を所定位置にセットして製造する方法に比べ、本体が剛性を有していることから、蓋部の成形時に所定位置に配置させる作業を手作業で行なわなくとも、自動化し易く、容易に製造することが可能となる。

【0015】したがって、本発明に係るエアバッグ装置 用内装部材の製造方法では、内装部材に必要な剛性とエ アバッグの膨張時の扉部の開き易さとを確保して、容易 に製造することができる。

【 0 0 1 6 】そして、本体と蓋部との表面側に、連続する表皮層を配設すれば、内装部材の外観意匠を良好にすることができる。

【0017】なお、上記表皮層には、その裏面側における破断予定部の配置位置に、凹部を形成しておけば、破断予定部を破断させて扉部を開かせる際、応力集中を生じさせて表皮層を円滑に破断させることができ、扉部の展開を良好にさせることができる。

【0018】さらに、蓋部の裏面側の外周縁に、エアバッグ装置と連結されるブラケットを突設させておき、そのブラケットをエアバッグ装置と連結させれば、扉部とエアバッグ装置との位置決めが容易に行なえることとな

り、エアバッグの膨張時に、適確に**扉部を開かせること** とができる。

[0019]

【発明の実施の形態】以下、本発明の一実施形態を図面 に基づいて説明する。

【0020】第1実施形態の内装部材は、図1~3に示すように、インパネ10であり、本体11と、本体11に周囲を囲まれ、かつ、本体11と表面側を面一とするようにつらなって、エアバッグ装置1の折り畳まれたエアバッグ2を覆う蓋部12と、を備えて構成されている。

【0021】エアバッグ装置1について説明すると、エアバッグ装置1は、折り畳まれて収納される袋状のエアバッグ2と、エアバッグ2に膨張用のガスを供給するシリンダタイプのインフレーター3と、インフレーター3からのガスを拡散させてエアバッグ2内に流入させる筒状のディフューザー4と、エアバッグ2・インフレーター3・ディフューザー4の周囲を覆う箱形状のケース5と、を備えて構成されている。

【0022】なお、4 aは、インフレーター3からのガスをエアバッグ2内へ拡散させて流入させるガス流通孔であり、4 bは、ディフューザー4から複数突設されるボルトであり、これらのボルト4 bは、ナット6止めすることにより、ケース5、エアバッグ2、ディフューザー4を一体化するとともに、車両のフレームから突設されるブラケット7にエアバッグ装置1を取付固定するものである。

【0023】また、ケース5は、側壁部位が、インナーパネル5aとアウターパネル5bとの二重構造として構成され、アウターパネル5bには、切り起こされてインナーパネル5a側に延びる所定数の爪5cが形成されている。これらの爪5cは、後述するブラケット16を係止するものである。

【0024】蓋部12には、折り畳まれたエアバッグ2を覆う扉部13と、扉部13の周囲の裏面側を凹ませてエアバッグ2の膨張時に破断する薄肉の破断予定部14と、破断予定部14の破断時に扉部13と本体11とを連結して扉部13の回転中心部位となるヒンジ部15と、を備えて構成されている。

【0025】破断予定部14は、実施形態の場合、上方から見て、U字形に形成され、「U」の字の上端の間の部位に、ヒンジ部15が配設される構成としている。なお、破断予定部14を形成する凹部14aは、連続的に形成しても断続的に形成しても良い。

【0026】また、実施形態のインパネ10には、蓋部12の裏面側の外周縁に、四角筒形状に延びるブラケット16が突設され、ブラケット16には、エアバッグ装置1のケース5におけるアウターパネル5bの爪5cを挿入係止させる取付孔16aが形成されている。

【0027】そして、インパネ本体11は、フィラー入

りのポリプロピレン(PPF)から形成され、蓋部12 は、PPFと相溶性のあるオレフィン系熱可塑性エラストマー(TPO)から形成されている。なお、この蓋部 12は、PPFと相溶性のあるスチレン系熱可塑性エラストマー(SBC)から形成しても良い。SBCとしては、スチレン・エチレン・ブチレン・ブロックコポリマー(SEBS)、スチレン・ブタジエン・ブロックコポリマー(SBS)、スチレン・ブタジエン・プロックコポリマー(SBS)、スチレン・エチレン・プロックコポリマー(SEPS)がある。

【0028】インパネ本体11としての機械的性質としては、剛性を確保するため、曲げ弾性率を2000MPa以上とするものを使用する。

【0029】また、蓋部1200機械的性質としては、破断予定部14として、破片を生じさせない破断し易さが必要となり、ヒンジ部15として、展開性(扉部の開き易さ)が必要となるため、引張破断応力を $50\sim100$ Kgf/cm² の範囲のものを使用する。

【0030】さらに、実施形態のインパネ10には、インパネ本体11と蓋部12との表面側に、意匠性を高めるために、表皮層17が配設されている。この表皮層17は、表面側に配置されて感触の良好な軟質塩化ビニルから形成されるスキン層17aと、スキン層17aの裏面側に配置されて発泡ポリプロピレンからなる発泡層17bと、発泡層17bの裏面側に配置されてポリプロピレンやオレフィン系熱可塑性エラストマーからなるバリア層17cと、から構成されている。バリア層17cは、本体11や蓋部12を射出成形で形成する場合の、その射出材料の圧力や熱から、発泡層17bを保護するために設けられるものである。そして、この表皮層17自体は、予め三層構造のシート状として形成されている。

【0031】なお、表皮層17の厚さは、0.8~6.2mとして、スキン層17aの厚さが0.4~0.7mm、発泡層17bの厚さが0~4.0mm、バリア層17cの厚さが0.4~1.5mm、としている。また、蓋部12の近傍のインパネ本体11の厚さは、3.5mm、蓋部12の扉部13やヒンジ部15の厚さは、3.5mmとしている。

【0032】第1実施形態のインパネ10の製造について述べると、図4に示すように、まず、予め真空成形により所定形状に賦形しておいた表皮層17を成形型18の割型18aにセットした後(図4の上段参照)、型締めして、インパネ本体11を射出成形で形成する(図4の中段参照)。なお、この成形型18は、本体11と蓋部12とを成形可能な2段スライドコア仕様の射出成形型であり、割型18a・18bとを備えるとともに、割型18bには、蓋部12を成形可能な四角筒形状のスライドコア18cと四角柱形状のスライドコア18cと四角柱形状のスライドコア18cと加入では、割型されている。そして、本体11の成形時には、割型

18b内に配置された四角筒形状のスライドコア18c と四角柱形状のスライドコア18dとを表皮層17に押 し付けておく。

【0033】インパネ本体11を成形したならば、本体11を移動させずに停止させた状態で、スライドコア18cを大きく戻すように下げて後退させるとともに、スライドコア18dを少し下げて後退させ、スライドコア18c・18dを後退させて生じたスペースを使用して、ブラケット16を備えた蓋部12(この成形時には、破断予定部14の凹部14aや取付孔16aは形成されていない)を射出成形により形成する(図4の下段参照)。

【0034】そして、蓋部12が固化すれば、型開きさせて離型させ、破断予定部14の凹部14aと取付孔16aとを超音波ウエルダ等で形成すれば、インパネ10を製造することができる。なお、破断予定部14の凹部14aを形成する際には、表皮層17にも、破断予定部14の配置位置に、連続的若しくは断続的に凹部17dを形成しておく。

【0035】このように製造したインパネ10は、車両に装着した後、エアバッグ装置1と連結させる際には、各ボルト4bを利用して一体化したエアバッグ装置1のケース5におけるインナーパネル5aとアウターパネル5bとの間にブラケット16を挿入して、各爪5cを取付孔16aに挿入係止させ、インパネ10とエアバッグ装置1とを連結させるとともに、ブラケット7を各ボルト4bにナット6止めし、ブラケット7の他端を図示しないフレームに固定させれば、インパネ10と連結させてエアバッグ装置1を車両に装着することができる。なお、インパネ10には、車両に装着する際、所定の計器等を配設させることとなる。

【0036】そして、所定時、インフレーター3からガスが吐出されれば、そのガスがディフューザー4のガス流通孔4aを経てエアバッグ2内に流入され、エアバッグ2は、破断予定部14と表皮層17の凹部17dの部位とを破断させて、ヒンジ部15を回転中心として扉部13を開かせ、大きく膨張することとなる。

【0037】以上のように、この第1実施形態のインパネ10では、インパネ本体10が、硬質合成樹脂製であるため、剛性を確保し易く、また、蓋部12が、熱可塑性エラストマ一製であるため、本体11より弾力性を有し、ヒンジ部15の展開性を確保し易い。そして、蓋部12の破断予定部14は、蓋部12の裏面側を凹ませて薄肉として形成しているため、支障無く破断させることができる。また、本体11と蓋部12とは、蓋部12が本体11と相溶性を有した材質から形成されているため、接合力が高く、剥れ等は生じない。

【0038】そしてまた、インパネ10の製造時には、本体11を成形した後に蓋部12を成形する2色成形で済み、従来の可撓性を有した補強材を所定位置にセット

して製造する方法に比べ、本体11が剛性を有している ことから、蓋部12の成形時に所定位置に配置させる作 業を手作業で行なわなくとも、2段スライドコア仕様の 成形型18を使用して、自動化して成形できることか ら、容易に製造することが可能となる。

【0039】なお、実施形態の成形型18を使用することなく、本体11を成形した後、蓋部12を成形する成形型に本体11をセットしてインサート成形してインパネ10を製造しても良く、その場合でも、本体11が剛性を有しているため、容易にロボット等で本体11を把持して移送できるため、容易に製造できる効果を得ることができる。

【0040】したがって、第1実施形態のインパネ10では、インパネ本体11に必要な剛性とエアバッグ2の 膨張時の扉部13の開き易さとを確保して、容易に製造 することができる。

【0041】さらに、第1実施形態のインパネ10では、本体11と蓋部12との表面側に、連続する表皮層17が配設されているため、外観意匠を良好にすることができる。そして、表皮層17には、その裏面側における破断予定部14の配置位置に、凹部17dが形成されているため、破断予定部14を破断させて扉部13を開かせる際、凹部17dの部位に応力集中を生じさせて表皮層17を円滑に破断させることができ、扉部13の展開を良好にさせることができる。

【0042】さらにまた、第1実施形態のインパネ10では、蓋部12の裏面側の外周縁に、エアバッグ装置1と連結されるブラケット16が突設されているため、ブラケット16を利用して、インパネ10とエアバッグ装置1と連結させれば、扉部13とエアバッグ装置1との位置決めが容易に行なえることとなり、エアバッグ2の膨張時に、適確に扉部13を開かせることとができる。【0043】図5・6に示す第2実施形態のインパネ20は、表皮層17を設けない点を除いて、第1実施形態と同様に、本体21がPPFから形成され、蓋部12がTPOから形成されており、表皮層17を設けた効果を除いて、第1実施形態と同様な効果を得ることができる。

【0044】そして、表皮層17を設けていないが、第2実施形態のインパネ20では、本体21と蓋部22とが表面側を面一とするようにつらなって形成されるとともに、蓋部22の材料が本体21の材料と相溶性を有しており、さらに、破断予定部24が、裏面側を凹ませて形成されているだけであるため、本体21と蓋部22との境界の表面側に切れ目や分れ目等が発生せず、外観を良好にすることができる。

【0045】また、第2実施形態のインパネ20では、 蓋部22に設ける破断予定部24が、上方から見て

「H」字形状に形成されており、エアバッグ2の膨張時に開く扉部23を2つとしており、このように構成して

も良い。ちなみに、各扉部23のヒンジ部25は、破断 予定部24の端部に設けられることとなる。

【0046】なお、このインパネ20の成形に使用する成形型28は、図7に示すように、割型28a・28bを備えて、割型28bに、蓋部22を成形するための四角筒形状のスライドコア28cと、略四角柱形状のスライドコア28dと、スライドコア28d内に配設されて破断予定部24の裏面側の凹部24aを形成するスライドコア28eと、を備えて構成されている。

【0047】そして、成形時には、スライドコア28c・28dの先端を割型28aに当接させるようにして、型締めし、本体21を成形する(図7の上段参照)。

【0048】ついで、本体21を移動させずに停止させた状態で、スライドコア28cを大きく戻すように下げて後退させるとともに、スライドコア28dを少し下げて後退させ、さらに、スライドコア28eをスライドコア28dから突出させて、スライドコア28c・28dを後退させて生じたスペースを使用して、ブラケット26を備えた蓋部22を成形し(図7の下段参照)、蓋部22が固化すれば、型開きさせて離型させ、ブラケット26の取付孔26aを超音波ウエルダ等で形成すれば、インパネ20を簡単に製造することができる。

【0049】さらに、第2実施形態のインパネ20では、ブラケット26をエアバッグ装置1のケース5と連結させる手段として、両者の取付孔5d・26aを挿通させるリベット27を利用しており、このように、リベット27や他のボルト・ナットを利用して、ブラケット26をケース5と連結させるようにしても良い。

【0050】さらにまた、第1・2実施形態のインパネ10・20では、エアバッグ装置1と連結させるために、四角筒形状のブラケット16・26を設けたものを示したが、これらのブラケット16・26は、エアバッグ装置1のエアバッグ2の周囲を囲むケース5に連結されれば、筒形状に形成する必要はなく、単に、板状のブラケットとして、ケース5に連結させても良い。

【0051】そして、エアバッグ装置1を蓋部12・22の裏面側に精度良く配置できれば、ブラケット16・26は不要となり、図8~10に示す第3・4・5実施形態のインパネ30・40・50のように構成しても良い。

【0052】図8に示す第3実施形態のインパネ30は、本体31がPPFから形成され、2つの扉部33・上方から見て「H」字形状に配設される破断予定部34・ヒンジ部35を備えた蓋部32が、SEBSから形成されて、本体31と蓋部32との表面側に表皮層17が配設されて構成されており、ブラケット16の無い点を除いて、第1実施形態のインパネ10と同様な効果を奏する。

【0053】図9に示す第4実施形態のインパネ40は、本体41がPPFから形成され、2つの扉部43・

上方から見て「H」字形状に配設される破断予定部44・ヒンジ部45を備えた蓋部42が、TPOから形成されて、本体41と蓋部42との表面側に軟質塩化ビニル製の表皮層47が配設されて構成されており、ブラケット16の無い点と、表皮層47に発泡層が配設されておらず、ソフトな感触が若干低下する点を除いて、第1実施形態のインパネ10と同様な効果を奏する。

【0054】図10に示す第5実施形態のインパネ50は、本体51がPPFから形成され、2つの扉部53・上方から見て「H」字形状に配設される破断予定部54・ヒンジ部55を備えた蓋部52が、TPOから形成されて構成されており、ブラケット26の無い点を除いて、第2実施形態のインパネ20と同様な効果を奏する。

【0055】なお、第1~5実施形態では、インパネ10・20・30・40・50について説明したが、勿論、本発明は、インパネ以外のエアバッグ装置のエアバッグを覆うように配設されるドアトリム・シートバック等の自動車内装部材に利用することができる。

【図面の簡単な説明】

【図1】本発明の第1実施形態の使用態様を示す断面図 である。

【図2】同実施形態の斜視図である。

【図3】同実施形態とエアバッグ装置との連結構造を示す斜視図である。

- 【図4】同実施形態の成形工程を示す断面図である。
- 【図5】第2実施形態の使用態様を示す断面図である。
- 【図6】同実施形態の斜視図である。
- 【図7】同実施形態の成形工程を示す断面図である。
- 【図8】第3実施形態の使用態様を示す断面図である。
- 【図9】第4実施形態の使用態様を示す断面図である。
- 【図10】第5実施形態の使用態様を示す断面図であ 2

【符号の説明】

1…エアバッグ装置、

2…エアバッグ、

10・20・30・40・50… (内装部材) インパ ネ

- 11 · 21 · 31 · 41 · 51 · · 本体、
- 12.22.32.42.52…蓋部、
- 13.23.33.43.53…扉部、
- 14 · 24 · 34 · 44 · 54 · · 破断予定部、
- 14a·24a…凹部、
- 15・25・35・45・55…ヒンジ部、
- 16・26…ブラケット、
- 17.27…表皮層、
- 17d…凹部、
- 18 · 28 · · 成形型、
- 18c · 18d · 28c · 28d · · · スライドコア。

【図1】

【図5】

【図7】

办

【図8】

【図9】

【図10】

フロントページの続き

(72)発明者 英 久雄

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 永野 昭義

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 藤井 哲也

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 奥村 勝廣

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 堀内 範之

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 笹島 宗昭

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 片桐 勝広

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 堀場 幸彦

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内