

COPY NO. 36

CONTRACTOR REPORT ARLCD-CR-77003

BLAST PARAMETERS OF BS-NACO PROPELLANT

J. J. SWATOSH AND J. R. COOK
IIT RESEARCH INSTITUTE

P. PRICE
ARRADCOM PROJECT COORDINATOR

APRIL 1977

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Best Available Copy

The findings in this report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when no longer needed. Do not return to the originator.

LINCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER RECIPIENT'S CATALOG NUMBER Contractor Report /ARLCD+CR-77003 TITLE (and Subtitle) YPE OF REPORT & PERIOD COVERED BLAST PARAMETERS OF BS-NACO PROPELLANT. Final Repart. J. J. Swatosh, J. R. Cook of IITRI P. Price (Project Coordinator) of ARRADCOM PERFORMING ORGANIZATION NAME AND ADDRESS IIT Research Institute 10 West 35th Street Chicago, IL 60616 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ARRADCOM, LCWSL April 1977 Manufacturing Technology Division 13. NUMBER OF PAGES Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY MOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Peak blast pressure Positive impulse

CO. ABSTRACT (Continue on reverse side H necessary and identify by block number)

Experiments were performed with BS-NACO propellant in subscale and full-scale shipping/storage drum configurations and in full-scale conically shaped feed hopper configurations to determine the air-blast pressure and positive impulse resulting from the detonation of the material. Peak pressure and positive impulse were measured in the scaled distance range of approximately 2 to 25 ft/lb^{1/3}. TNT equivalency curves for both pressure and impulse were developed as a function of scaled distance. Based on the test results, BS-NACO propellant should be considered QD Class 2 material while in-process.

DD | FORM 3473 EDITION OF ! NOV 65 IS OBSOLETE

TNT equivalency BS-NACO propellant

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

115 550 the cabe or 1 - to 54

ACKNOWLEDGEMENTS

IIT Research Institute (IITRI) had conducted a program to determine the TNT equivalency of BS-NACO propellant. This work was conducted for Picatinny Arsenal, Manufacturing Technology Directorate (MTD), Dover, New Jersey, under Contract DAAA21-74-C-0521.

Technical guidance was provided by Messrs. P. Price, D. Westover, and S. Levmore of MTD. Personnel who contributed to the large-scale experiments conducted at Dugway Proving Ground, Dugway, Utah include A. K. Keetch and P. E. Miller of the Hazards Evaluation Office. Small-scale tests were conducted at IITR's explosive test site near LaPorte, Indiana.

IITRI staff who made major contributions to this effort include: M. Amor, J. Cook, C. Foxx, D. Hrdina, R. Joyce, G. Kutzer, H. Napadensky, and J. Swatosh, Jr.

TABLE OF CONTENTS

		Page No
Summar	у	Ī
Introduc	etion	4
Bac	ekground	4
Ob	jectives	4
Test Pro	ocedures	5
Tes	st Sites	5
Tes	st Configurations	5
Ve	rification Tests	10
Test Res	sults	10
TN	T Equivalency Calculations	13
Tables		
1	TNT equivalency of BS-NACO propellant	1
2	BS-NACO propellant tests	12
Figures		
1	Equivalency profiles	1
2	Peak pressure and positive impulse, BS-NACO	2
3	TNT equivalency, BS-NACO	3
4	IITRI Test area	6
5	DPG Test area	7
6	Cylindrical drum configuration	8
7	Feed hopper configuration	8
8	Simulated full-scale feed hopper	9
9	TNT hemisphere pressure and impulse curves	11
10	Peak pressure and scaled impulse, 50 lb BS-NACO	14
11	Peak pressure and scaled impulse, BS-NACO, long side of	15

12	Peak pressure and scaled impulse BS-NACO, short side shipping container, 110 lb	16
13	Peak pressure and scaled impulse, BS-NACO, feed hopper configuration, 330 lb	17
14	TNT equivalency, 110 lb shipping container	19
15	TNT equivalency, 330 lb feed hopper	19
Append	ixes	
Α	Field data sheets	21
В	Test data	27
C	Safety approval	41
Distribu	tion List	45

SUMMARY

Shipping containers and full-scale simulated feed hoppers containing 110 and 330 lb of BS-NACO propellant, respectively, were ignited with explosive boosters. Blast output was measured and TNT equivalency was computed based upon a comparison with the explosive blast output of a surface burst of a hemispherically shaped TNT charge. The results of these computations in terms of a TNT equivalency profile are presented in Table 1, and in Figures 1, 2, and 3.

Table 1
TNT equivalency of BS-NACO propellant

			TNT equ			
	3 ft/II	b ^{1/3}	9 ft/l	b ^{1/3}	18 ft/	/lb ^{1/3}
Configuration	P	1	P	<u> </u>	P	1
Shipping container (110 lb)						
Short side	30	10	15	10	-	
Long side	30	20	15	10	_	_
Feed hopper (330 lb)	25	45	30	35	25	35

Shipping Container

Feed Hopper

Fig 1 Equivalency profiles

Fig 2 Peak pressure and positive impulse, BS-NACO

Fig 3 TNT equivalency, BS-NACO

INTRODUCTION

Background

The US Army Materiel Command initiated a program to upgrade the safety standards of new and existing ammunition plants. In support of this program, the Manufacturing Technology Directorate of Picatinny Arsenal developed design standards for hardening protective structures to withstand the effects of the detonation of high explosives. Design and safety engineers require data pertinent to the maximum strength of a blast wave that may originate from any of the explosive or deflagrateable materials present in the plant. Since the airblast capabilities of BS-NACO propellant could not be obtained from the available literature, the Arsenal sought to establish TNT equivalencies of these materials.

Past methods for siting and the design of individual components of explosive manufacturing and related facilities have been based on gross quantities of explosives or propellants. Present day technology has shown that cost effective yet safe facilities can be built, if design criteria is based on the actual explosive output of the materials involved.

A facility designer requires information on the blast pressure-time history, characterized by peak pressure and positive impulse. A considerable amount of prior work has been performed in establishing the airblast parameters of TNT. Consequently, for facility designs involving other energetic materials the design information can be expressed in terms of TNT equivalency. In this report information is presented for peak pressure, positive impulse, pressure TNT equivalency, and impulse TNT equivalency.

Benefits to be realized through this study include significant cost savings, by avoiding the overdesign of structures, and improved safety of personnel by the installation of adequate blast protection.

Objectives

Experimentally determine the maximum airblast output; peak overpressure and positive impulse of BS-NACO propellant.

Determine the TNT equivalencies of BS-NACO propellant by comparing its measured pressure and positive impulse with those produced by the detonation of an unconfined hemispherical charge of TNT.

TEST PROCEDURES

Test Sites

Subscale tests were conducted at the IITRI explosive research laboratory near LaPorte, Indiana. A schematic diagram of the test area physical arrangement is shown in Figure 1. It consists of two concrete slabs 75 ft long by 10 ft wide in which 12 pressure transducers were installed. The pressure transducers were mounted flush with the top surface of the concrete slab in mechanically isolated steel plates. The charges were located at ground zero (GZ) as indicated on Figure 4. The BS-NACO charges were always set on a steel witness plate, on level ground.

Large-scale tests were performed at Dugway Proving Ground, Utah at a remote desert site. A schematic plan view of the test site is shown in Figure 5. Radiating from GZ were two 40-ft-wide by 500-ft-long level land areas cleared of brush.

Pressure gages were located at discrete intervals in the cleared areas of the test site. The gages were flush-mounted in steel plates which in turn were flush-mounted with the ground surface. Determination of the location of a particular gage was based on anticipated overpressures from the test material.

Test Configurations

Three test configurations were tested. The first was a cylindrical cardboard drum full of BS-NACO multiperforated (0.048 inch web size) propellant. The cardboard drum was 19 inches long by 11 inches in diameter. Each contained 50 lb of propellant. Figure 6 illustrates how cylindrical Comp C4* explosive boosters were placed into the BS-NACO propellant at the top of the charge. The cylinderical Comp C4 boosters had a 1:1 aspect ratio. A cardboard cover was placed over the top of each drum. A small hole was cut into the cover so that the blasting cap could be put into the system last.

The second test configuration was a full-size metal shipping container, measuring 10 by 16 inches by 28-1/2 inches high. They were of rugged steel construction and offered heavy confinement to the propellant. Each shipping container contained 110 lb, net weight, of BS-NACO. Cylinderical Comp C4 boosters were located inside the containers near the top of the charge. The containers were set upright on the ground at GZ over a steel witness plate.

Composition C4, a plastic explosive containing 91% RDX, 2.1% polyisobutylene, 1.6% motor oil, 5.3% di (2-ethylhexyl) sebacate.

Fig 5 DPG test area

Fig 6 Cylindrical drum configuration

The third configuration was a full-scale feed hopper configuration as shown in the cutaway illustration in Figure 7. The feed hopper was constructed from 0.25-inch-thick 6061 T651 aluminum sheets rolled and welded into the shape shown. Aluminum supports, Figure 8, were welded into the lower conically shaped portion of the hopper to steady the hopper in an upright position.

The hoppers were loaded with approximately 330 lb of BS-NACO propellant through an 8-inch diameter hole in the top. The propellant was allowed to mound up in the hoppers as shown in Figure 7. Fifteen pound cubic shaped Comp C4 explosive boosters were positioned in the propellant as shown.

Fig 7 Feed hopper configuration

Fig. 8. Simulated full-scale feed hopper

Verification Tests

During the course of this test program several field verification tests were performed to confirm the recording accuracy of the pressure and impulse measuring systems. They consisted of measuring the peak pressure and positive impulse from 5 to 100 lb hemispherical Comp C4 explosive charges. Each charge was set on a steel witness plate at ground level.

Pressure and impulse data obtained from the Comp C4 verification shots are compared to established TNT hemispherical surface burst data (the increased energetics of Comp C4 is accounted for). All of the gage systems used in these tests had been prejously calibrated in a laboratory using accepted standards. The laboratory calibrations were used throughout the program. The verification tests indicated that the instrumentation systems were functioning properly.

The resulting pressure and impulse data points for the various scaled distances of the verification shots are plotted in Figure 9. The close groupings of the various sets of points provides a good basis of confidence in proper functioning of the blast gages. The line that passes through the "peak overpressure" gage points is a TNT pressure curve used as a standard; it was generated by Kingery, BRL 1344, 1966. The line passing through the "scaled positive impulse" points was generated by IITRI for Comp C4. It utilizes a 1.25 factor to convert the weight of Comp C4 to the equivalent weight of TNT. Both of these reference curves are built into the IITRI computer program. Consequently, all of the TNT equivalencies shown in this report are computed from these reference curves.

TEST RESULTS

The appendixes of this report contain field data sheets which give test descriptions and evaluations of each test after they were shot. They also contain the raw test data and the computer printout of TNT equivalencies for individual data points. All of the scaled quantities noted in this report have been corrected to include the weight of the booster, in terms of its equivalent weight of BS-NACO in the total charge weight.

All of the tests conducted with BS-NACO propellant are tabulated in Table 2. After every test uninitiated propellant was observed in the test area. In addition the pressure-time waveforms were multipeaked indicating that the reactions were nonideal. The peak pressures reported herein are the maximum values measured and are not necessarily the first peak pressure in the pressure-time pulse.

Fig 9 TNT hemisphere pressure and impulse curves

Table 2

BS-NACO propellant tests

Test	Configuration	Charge Weight (W _c , 1b)	Booster Weight (W _b , 1b)	Wb/W (percent)	Comments
NA-1	Cardboard Drum	50	2.5	5.0	Incomplete Ignition
NA -2	Cardboard Drum	50	5.0	10.0	Incomplete Ignition
NA-3	Shipping Container	110	5.0	4.5	Incomplete Ignition
NA - 4	Shipping Container	110	5.0	4.5	Incomplete Ignition
NA-5	Shipping Container	110	5.0	4.5	Incomplete Ignition
NA-6	Shipping Container	110	5.0	4.5	Incomplete Ignition
C-NACO-1	-1 Feed Hopper	332-3/4	15.0	4.5	Incomplete Ignition
C-NACO-2	-2 Feed Hopper	328	15.0	4.6	Incomplete Ignition
C-NACO-3	-3 Feed Hopper	335-1/4	15.0	4.5	Incomplete Ignition

The two 50 lb tests, NA-1 and 2, were conducted to determine the TNT equivalency range of the material and to determine the booster size for maximum blast output. The results of the 50 lb cardboard drum tests have been plotted in Figure 10. The highest peak pressures and positive impulses were recorded when the larger, 5 lb, booster was used to ignite the BS-NACO propellant. This size represents 10% of the BS-NACO charge weight. Since the TNT equivalency of BS-NACO propellant turns out to be very small the booster weight in equivalent pounds of BS-NACO is large. Consequently the data become distorted when a large booster weight correction factor is applied to obtain the total charge weight. For this reason a smaller size, 4.5% by weight, booster was used for the remainder of the tests.

The peak pressure and positive impulse data recorded during the full-size metal shipping container tests have been plotted in Figures 11 and 12. The containers were oriented such that the small side of the container was normal to one gage line and the larger side of the container was normal to the other gage line. One would expect the blast output profiles in the two normal directions to be dissimilar due to the asymmetry of the shipping container. However, the peak pressure data are so scattered that no generalization can be made as to which direction the pressure is greater. The amount of material detonating was different in each of the three tests as evidenced by the scatter in the peak pressure data. Curves are drawn through the maximum pressure points. A designer should assume that the worse case condition, in terms of peak pressure, may occur.

Positive impulse measurements show less data scatter between tests, however, curves have been drawn through the maximum scaled impulse points. In general, scaled positive impulse is greater in the direction normal to the long side of the shipping container.

Three tests were conducted with BS-NACO propellant in a simulated full-scale feed hopper configuration. The results of the pressure and positive impulse measurements are plotted in Figure 13. There is comparatively little scatter in the data between tests. Average eye-fit curves have been drawn through all of the data points for both peak pressure and scaled positive impulse.

TNT Equivalency Calculations

TNT equivalency calculations were made for 110 and 330 lb test results. TNT equivalency is defined as the ratio of charge weights (i.e., TNT weight divided by test material weight) that will give the same peak pressure (or positive impulse) at the same radial distance from the charge. The weight of the booster, in an equivalent test

Fig. 10. Peak pressure and scaled impulse, 50 lb BS-NACO

Fig 11 Peak pressure and scaled impulse, BS-NACO, long side of shipping container, 110 lb

Fig 12 Peak pressure and scaled impulse, BS-NACO, short side shipping container, 110 lb

Fig 13 Peak pressure and scaled impulse, BS-NACO, feed hopper configuration, 3301b

material weight measure, is included in the total charge weight during the computational procedure. Calculations were made from the average peak pressure and scaled positive impulse eye-fit curves of the 330 lb test data. The maximum scaled positive impulse curves for the 110 lb tests was used to compute TNT equivalency. However, the greater of the two maximum peak pressure curves, Figures 11 and 12, was used to compute peak pressure equivalency for the 110 lb shipping container configuration. Consequently the peak pressure TNT equivalency for this configuration is applicable to both measurement directions, Figure 14. TNT equivalency for the 330 lb feed hopper is shown in Figure 15. Positive impulse TNT equivalency is considerably higher for the 330 lb tests than it is for the 110 lb tests. The equivalencies values quoted in the summary section of this report are based upon the results illustrated in Figures 14 and 15.

Fig 14 TNT equivalence, 110 lb shipping container Impulse-Scaled Distance, ft/lb^{1/3}

Fig 15 TNT equivalency, 330 lb feed hopper

APPENDIX A FIELD DATA SHEETS

TEST MATERIAL BS-NACO PROPELLANT

TEST NO.	CHARGE WEIGHT	CONFIGURATION	BOOSTER WEIGHT	COMMENTS
NA-1	50#	CAROBOARD DRUM, 19"XII" DIAM		UNBURNT NACC IN AREA POSTTEST
NA-2	50#	DITTO	5.0# <i>C</i> 4	DITTO
NA-3	110#	STEEL SHIPPING CONTAINER	5.0# C4	DITTO
NA-4	110#	DITTO	50# C4	DITTO
NA -5	110#	DITTO	50 [#]	DITTO
NA-E	110#	DITTO	5.0 [#]	DITTO
				•

IITRI PROJECT NO. 46342	DATA SHEET NO
TEST TITLE C-NACO-I FEED HOPPER	DATE 4-16-75
TEST SAMPLE NACO PROPELLANT	TIME 1620 HES.
SAMPLE WEIGHT 332 3/4 LB.	TEMP 53°F
IGNITER 2-ENGINEER SPECIALS (#8)	HUMID 39 %
BOOSTER 15 LB. CH BLOCK, & 614"CUBE	BARO 25.33 IN. HG.
HIGH SPEED CAMERA (1000 cps) YES	WIND 2100 @ 21 KNOTS

PIELD EVALUATION: APPARENT CRATER SIZE: ~ 9' DIAM × 16' DEPTI+

INCOMPLETE IGNITION A SMALL QUANITY OF BLACKENED

GRAINS FOUND IN AREA POSTTEST.

SMALL PIECES OF FEED HOPPER RECOVERED.

TEST ENGINEER: J. SWATOSH

IITRI PROJECT NO. <u>26342</u>	DATA SHEET NO
TEST TITLE C-NACO-2 FEED HOPPER	DATE 4.17.5
TEST SAMPLE NACO PROPELLANT	TIME 450 His.
SAMPLE WEIGHT 1 328 LB.	TEMP 11°F
IGNITER 2-ENGINEER SPECIALS (#8)	HUMID 65%
BOOSTER 15 LB. CA BLOCK & GY"CUBE	BARO 25.29 IN. HC.
HIGH SPEED CAMERA (1000 cps) YES	WIND 350° @ 11 KNOTE

PIELD EVALUATION:

APPARENT CRATER SIZE: 29/2 DIAMX HOLD H

CONSIGNATION MACKETED

LARGE BLACKENED HECES OF ALUM, PERSYETEED.

BURNT SIECE OF NAKO FORMULIN CITATION POSTEST.

TEST ENGINEER:

IITRI PROJECT NO. 16342	DATA SHEET NO
TEST TITLE C-NACO-3 FEED HOPPER	DATE 4-18-5
TEST SAMPLE NACO PROPELLANT	TIME 1400 HRS.
SAMPLE WEIGHT 335 4 LB.	TEMP 47°F
IGNITER L-ENGINEER SPECIALS (#8)	HUMID 51%
BOOSTER 15 LB. C4 FLOCK, = 64"CUBE	BARO 25 57 N. 46.
HIGH SPEED CAMERA (1000 cps) NO	WIND 330° @ 11 KNOTS

APPARENT CRATER SIZE: * II' DIAMX M" DEPTH.

LARGE BLACKFHED PIECES OF ALUM. RECOVERED.

EURNT SIECES OF NACO FOUND IN CRATER FOUNTEST.

TEST ENGINEER: - SWATOSH

APPENDIX B
TEST DATA

TEST PATA

ĸ	þ	•	
(FT)	(PSIG)	(PST=#5)	t
50 LHS	(2.5 (4) 0	RUM I	/r = 1.7
8.75	31.20	49.40	
-	-	-	
-			
- •	· ·		
•	. •		
	•		
_			
- •	=		
_		-	
80.71	1.26	4.45	
50 LMS	(5 LR) DRU	M LZD	a 1.7
P.75	104.00		
11.72	48.40	39.20	
11.98	60.20	39.00	
16.94	28.10	10.30	
16.98	21.90	29.40	
		19.40	
27.00	12.00	20.00	
-	-		
	•	7.41	
80.71		6.86	
	(FT) 50 LHS A.75 A.772 11.9A 16.97 11.97 16.97 39.67 50 LHS 6.77 50 LHS 6.77 11.94 16.97 11.94 16.97 11.94 16.97 11.94 16.97 11.94 16.97 11.94 16.97	(FT) (PSIG) 50 LHS (2.5 LH) D R.75 31.20 R.79 90.90 11.72 31.00 11.9A 34.40 16.9A 15.10 16.9A 15.30 26.97 7.0A 27.00 6.05 39.47 3.76 39.73 3.44 R0.6H 1.39 R0.71 1.26 50 LHS (5 LR) DRU R.75 104.00 11.72 48.40 11.98 60.20 11.98 60.20 11.98 60.20 11.98 60.20 11.98 60.20 11.98 7 9.74 27.00 12.00 39.47 5.43 39.73 4.77 R0.6H 1.74	(FT) (PSIG) (PSI=MS) 50 LHS (2.5 LH) DRUM 1 R.75 31.20 49.40 R.79 90.90 27.10 11.72 31.00 22.90 11.98 34.40 22.00 16.98 15.10 13.40 16.98 15.30 12.30 26.97 7.08 11.80 27.00 6.05 12.20 39.47 3.76 8.23 39.47 3.76 8.23 40.68 1.39 5.16 80.71 1.26 4.45 50 LHS (5 LR) DRUM L/O R.75 104.00 == 11.72 48.40 39.20 11.98 60.20 39.00 16.94 28.10 10.30 16.94 28.10 10.30 16.94 28.10 10.30 16.94 28.10 10.30 26.97 9.74 19.40 27.00 12.00 20.00 39.47 5.43 13.30 39.47 5.43 39.73 4.77 14.30 R0.68 1.74 7.81

TEST DATA

```
ĸ
                    P
                             I
        (FT)
                 (PSIG)
                         (PSI-MS)
NA-3N+ 110 LH (5LH)+ STEEL SHIPPING CUNTAINER+ LONG SIDE
                            80.20
        8.86
                 187.00
       11.77
                  75.50
                            60.70
       17.03
                  49.70
                            30.30
       27.03
                  13.30
                            19.60
       39.79
                            13.50
                   5.22
       80.78
                             6.57
                   1.46
NA-3E, 110 LB (5LB). STEEL SHIPPING CONTAINER. SHOPT SIDE
        8.78
                            42.90
                  92.40
       16.96
                  25.60
                            25.00
                            18.70
       26.99
                  12.10
       39.49
                   5,52
                            13.10
                             6.81
       60.69
                   1.49
NA-4N+ 110 LB (5LB) + STEEL SHIPPING CONTAINER + SHORT SIDE
                  76.90
        8.86
                            71.00
       11.77
                  52.40
                            39.00
                  33.50
       17.03
                            19.20
                            16.50
       27.03
                  20.50
       39.79
                   5.54
                            14.20
                   1.49
                             6.75
       80.78
NA-4E+ 110 LB (5LB)+ STEEL SHIPPING CONTAINER+ LONG SIDE
        A.76
                 136.00
                             . .
       11.97
                  55.20
                            66.30
                  31.50
       16.96
                            36.20
       26.99
                   9.85
                            21.00
       39.49
                   4.73
                            15,40
                             6.92
       80.69
                   1.41
NA-5N+ 110 LB (5LB) + STEEL SHIPPING CONTAINER + LONG SIDE
        A. A6
                 156.00
                            85.60
       11.77
                  71.40
                            48.20
                  32.30
       17.03
                            30.70
                            20.60
       27.03
                  14.20
                            14.90
       39.79
                   6.82
```

5.99

2.09

80.78

TEST DATA

	Ħ	P	I		
	(FT)	(PSIG)	(PSI-MS)		
N4-5E+	110 LB	(5L8) • ST	EEL SHIPPING	CUNTAINER.	SHORT SIDE
	8.78	131.00	• •		
	16.96	47.40	28.90		
		22.50			
	39.49	3.71	13.20		
		1.55			
NA-6N+	110 LB	(SLB) + ST	EEL SHIPPING	CONTAINER.	SHORT SIDE
	8,56	129.00	• •		
	11.77	50.60	13.00		
		20.30			
	27.03	13.00	17.10		
	39.79	4.22	13.00		
	80.78	1.55	5.86		
NA-6E+	110 LB	(5L8)+ 8T	EEL SHIPPING	CONTAINER.	LONG SIDE
	8.78	97.00	45.50		
	16.96	20.80	28.40		
	26.99	10.70	18,20		
		4.38			
		1.46			

TEST DATA

R	ρ	I	
(FT)	(PSIG) (P51-M5)	
(C)MACO-1.	332.75= N	ACO AND 15#	(4
16.04		_	
26.04			
59.00			
36.04			
36.08			
60.03			
60.08			
100.10			
100.10			
169.10 169.20			
104.5	1.0	7 11.10	
(C)NAC0-2+	328= NACO	AND 15= C4	
16.04	104.0	0 104.00	
16.09			
26.04			
36.04			
36.08			
60.03			
60.08			
100.1			
100.10		3 19.30	
169.10			
169.20	1.1	9 10.40	
(C)NACO-3+	335.25# N	ACO AND 15=	C 4
16.04	64.3	0 96.40	
26.00			
26.09			
36.04		0 52.40	
36.08			
60.03	5.3	5 27.40	
60.06			
100.10	3.1	1 21.70	
100.10			
169.10	1.2	4 12.40	
169.20	1.2	6 11.00	

The Contract of the Contract o

RESULTS
EXPERIMENTAL
SHMMARY DF

NORTH AND EAST BLAST LINES

BASED ON INDIVIDUAL DATA POINTS

	F0-1	(%)		34.17	A.73	10.45	0.47		4.03	12.14	13.14	11.40	10.66	18.73	13.80
	F (2 = P	(%)			23,56	11.13	15.07	14.34	14.Au	17.92	12.34	17.76	14,37	18.24	13.37
	LAMRDA-I	1/3 (FT/LB)		2.25	00.5	2.73	2.17	3,59	3.39	6.39	7. 2.	9.43	9.56	26.01	19,39
	LAMADA	173 (FT/LB)	7.1 =	1.32	2.21	2.15	05.6	40.4	40.7	4.63	4.41	01.6	9.SP	19.87	
1/3	3/1	(b3/su=1sa)	DRUM LIFE	12.69	9.00	~	C	9	57.2	⋖.	0	٥	œ		1.07
	a.	(180)	(3.5 LH)	31.20	26.06	31.00	34.40	15.10	15.30		4.05	3.76		1.34	1.26
	Œ	(FT)	SH 1 05	A. 75	7	11.72	40.0	40.4	40.6	20.07	27.00	10.47	39.73	£ C • ○ £	80.71
	12.81	۲ ع	N - 1												

SHMMADY NE FXPERIMENTAL RESILTS

KARTH AND EAST HEAST LINES

HASED ON INDIVIDUAL NATA POINTS

σ	1/3 1/4 1/4		a * ⊕ u
	1/1	1/3	
•1sa) (isa)		(FT/LP) (%	(%)
SO LAS (S LA) NRUM	L/n = 1.7		
٥٥			.73
			e G
6 02°04	2.4	2,89 31.	. 65
	4.14		.57
	30.00		
	7.60		æ ∿.
	F.74		940
3,17	9.60		72.
	07.0		۲.
1.74 1.91	19.43	10.7A 74.	24.37
	70 0		.54

SUMMARY OF EXPERIMENTAL RESULTS

NORTH AND EAST BLAST LINES

BASED ON INDIVIDUAL DATA POINTS

E .	(x)		6.7	7.2	14.30	3.3	2.2	0.8		8,91	8.65	•	11.28	-
6 0 0	(x)		1.2	9.6	39.13	7.7	5.0	•		~	2.9	0.1	16.69	7.4
LAMEDALI	1/3 (FT/LB)	LONG SIDE	1	1	3.18	0	7		SHORT SIDE	10	0	•	7.21	40
LAMBUARP	1/3 (FT/LB)	CONTAINER	~	N	3.40	N	J	13,85	CONTAINER.	1.54	3.14	5.19	7.48	13.98
1/3	(PSI-M8/L8)	STEEL SHIPPING	5.0	0	5	•	7.	7	STEEL SHIPPING	•	3	7.	2.39	7
a .	(PSI)	LB (5LB),	7.0	5,5	49.70	3.3	5.2	1.46	LB (5LB)+	2.4	25.60	2.1	5,52	1.49
E 20	1	NA-3N. 110	₩.	1.7	17.03	7.0	4.	0.7	NA-3E. 110		6.9	6.9	39.49	0.6

SUMMARY OF EXPERIMENTAL REGULTS

NORTH AND EAST BLAST LINES

BASED ON INDIVIDUAL DATA POINTS

	ť	٢/٢ : با	6		6	1
- 120 A	1	1/1	MACGET!			→ 9 14
(FT)	(PSI)	(PSI-MS/LB)	(FT/LB)	(FT/LB)	(x)	(x)
NA-4N. 110	LB (5LB)	NA-4N, 110 L8 (5LB), STEEL SHIPPING	CONTAINER	SHORT SIDE		
8.86		13.97	1.47	1.74	5.54	28.83
11.77	52.40	7.21	2,12	2.18	10,20	12.72
17.03		2.98	3.28	7.04	21,10	3.90
27.03		2,91	2.44	4.77	49.65	8.55
39.79		79.0	7.56	7.41	17,35	13.71
80.78		1.24	14.01	14.79	7.49	11.52
NA-4E. 110 LB (5LB).	18 (SLB)	STEEL SHIPPING	CONTAINER	LONG SIDE		
8.76		•	1.67	•	17,51	•
11.97		13.24	2.21	2,39	12.25	39.80
16.96		6.98	3.24	3.27	16.73	20.83
56.99		3.95	5.01	5.07	13,22	15.16
39.60		2.91	7.22	7.40	11.31	16.08
80.09	1.41	1.27	13.47	14.85	5.87	12.13
NA-5N. 110	LB (5LB).	STEEL SHIPPING	CONTAINER.	LONG SIDE		
8.86		16.48	1.72	1.77	23.01	38.89
11.77		9.27	2.24	2.26	10.04	20.38
17.03		5.76	3.27	3.19	19.86	14.72
27.03		3.86	5.30	5.06	27.30	14.57
39.79		2.80	7.81	7.48	27.46	15,21
60.78	5.09	1.06	15.63	14.27	22.12	8.63

SUMMARY OF EXPERIMENTAL RESULTS

NORTH AND EAST BLAST LINES

BASED ON INDIVIDUAL DATA POINTS

E0.	(*)		•	12.74	16.27	11.47	12.29		•	0 + 0	9.37	11.26	8.17		10.51	10.09	12,23	10.98	10.00	3,82
М 6	(*)		16,37	35.96	26.90	5.05	9 · 0 t		16.51	8.06	23,19	8,33	69.8		60.6	28.08	8.35	15.77	66.8	6.88
LAMBOA-I	(FT/LE	SHORT SIDE	•	3.14	5.10	7.23	14.87	SHORT SIDE	•	3.04	28.7	7.27	14.17	LONG SIDE	1.59	2.16	3.12	26.7	7.10	12.48
LAMBDA-P	(FT/LB)	CONTAINER	1.06	3,37	5.46	6.43	14.26	CONTAINER	1.68	2.98	5.25	7.00	14.28	CONTAINER	1.56	2,35	86.2	5.09	7.01	13,83
	(B3/SM-IS4)	NA-SE, 110 LB (5LB). STEEL SHIPPING					1.28	STEEL SHIPPING	•	4.55	3.05	2.37	1.03	STEEL SHIPPING	8.25	6.32	5.23	3.32	2,25	.71
a .	(ISd)	LB (5LB).	131.00	47.40	22,50	3.71	1.55	re (218)	129.00	20.30	13.00	4.22	1.55	LR (5LB).	97.00	89.80	20.80	10.76	4.36	1.46
82 89 (0 14) 1- +	(FT)	NA-5E. 110	8.78	16.96	56.99	39.49	64.00	NA-6N+ 110 LB (5LB)+	98.6	17.03	27.03	39,79	80.18	NA-6E, 110 LR (5LB).	8.78	11.97	16,96	56.95	39.49	69.08

SUMMARY OF EXPERIMENTAL RESULTS

ODD AND EVEN BLAST LINES

BASED ON INDIVIDUAL DATA POINTS

		1/3				
LST R	a.	1/1	LAMBUA-P	LAMBDA-1	я Э	E U - I
IYPE (FT)	(PSI)	1/3 (PSI-MS/LH)		1/3 (FT/LH)	(%)	(%)
(C) NACO-1.	332.75#	NACO AND 15#	CA+ FEED HUPPER	CONT.		
16.04	102.00	15.87	2.17	2,23	26.18	77.67
26.04	42.20	12.59	3.59	3.65	37.19	7
26.09	31.80		3.52	•	24.21	,
36.04	25,50	9.20	5.03	5.05	52,72	59.23
36.08	17.50		4.92	•	29.54	
60.03	7.38	3.81	8.27	A.16	37.25	27.91
80.08	6.18		9.14	8,36	20.40	51.00
100.10	5.69		3.5	1	24.41	40.32
100.10	2.26		3.0	1	15.51	57.06
169.10	1.28		2.6	23,38	22.32	40.53
169.20	1.07	1.52	21.68	23,10	14.90	30.56
(C) NACO-2+	328# NACO	10 AND 158 C4+	FEED HOPPER CO	CONF.		
16.04	104.00	14.46	~	2,23	27.39	42.14
16.09	62.70	10.12	?	2,16	11,54	22.19
26.04	41,30	10.65	9	3.64	36.54	44.54
36.04	17.10	6.39	76.7	20.7	28.53	\$1.85
36.08	16.90	•	•	•	28.08	•
60.03	97.9	3.66	~	8.10	29.43	26.25
60.09	79.9	4.78	4	8,35	30.80	41.41
100.10	5.66	2.73	3.5	13.82	23.93	35.53
100.10	2.63	2.46	3.4	13.79	75.24	33.75
169.10	1.22	1.61	2.5	23,29	19.67	33.77
169.20	1.19	1.42	22.43	23.07	.~?	27.40

公司,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也没有一个人,我们也会会会会会,我们也会会会会会会,我们也会会会会会会 一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也会会会会会会会会会会会会会会会会会会会会会会会会会

SUMMARY OF EXPERIMENTAL RESULTS

ODD AND EVEN BLAST LINES

BASED ON INDIVIOUAL DATA POINTS

		2/1				
TEST R	Q.	5 X X X X	LAMBUA-P	LAMBDA-1	E 0 = P	E 0 = 1
(FT)	(18d)	(PSI-MS/LB)	(FT/LB)	_	(x)	(*)
(C) NACO-3.	335,258	335.258 NACO AND 158 C4. FEED HUPPER	4. FEED HUPPER	CONF.		
16.04	64.30	13.23	5.03	2,20	11.68	35,63
56.04	33.50	7,92	3.52	3.54	25.92	28.53
26.09	32.00	11,90	3.51	3.64	24.67	58.5
36.04	17.50	7.22	4.89	96.7	28.90	38.47
36.08	16.10		4.87	•	25,29	
60.03	5.35	3.71	7.43	8.12	18.76	26.59
80.04	7.42	5.47	8.26	8,36	37.46	51.57
100,10	3.11	000	13.72	13.81	34.45	40.04
100,10	2.57	2.61	13.54	13.68	21.41	95.40
169.10	1.24	1.70	22.45	23,23	70.40 7	\$6.54
169.20	1.26	1.50	22.54	23.02	21.22	29.05

APPENDIX C
SAFETY APPROVAL

DEPARTMENT OF THE ARMY

HEADQUARTERS, UNITED STATES ARMY ARMAMENT COMMAND ROCK ISLAND, ILLINOIS 61201

REPLY TO ATTENTION OF:

2 1 AUG 1975

AMSAR-SFA

SUBJECT: Preliminary Report, TNT Equivalency of BS-NACO Propellant

Commander, US Army Materiel Command, ATTN: AMCSF-E

Inclosed test report is forwarded for your review and approval. Based on the test results, it is recommended that BS-NACO propellant be considered a wholly Class 2 propellant with Class 2 QD requirements being the separation distances.

FOR THE COMMANDER:

1 Incl

GLENN S. LEACH
Safety Menager

CF:

AMSAR-PPI-C w/e incl

AMCSF-E (21 Aug 75) 1st Ind

SUBJECT: Preliminary Report, TMT Equivalency of BS-NAC() Propellant

HQ, US Army Materiel Command, 5001 Bisenhower Ave., Alexandria, VA 22333 17 September 1975

TO: Commander, US Army Armament Command, ATTN: AMSAR-SFA, Rock Island, IL 61201

Based on the information submitted, this office agrees that subject propellant should be considered QD Class 2 material while in-process.

FOR THE COMMANDER!

Incl wd

Chief Bafety Office

DISTRIBUTION LIST

	Copy No.
Commander	
US Army Armament Research & Development Command	1
ATTN: DRDAR-CG DRDAR-LCM-E	2
DRDAR-LCM-E DRDAR-LCM-S	3-26
DRDAR-SF	3-20 27
DRDAR-TSS	28-32
Dover, NJ 07801	20-32
Chairman	
Dept of Defense Explosive Safety Board	
Forrestal Bldg, GB-270	33-34
Washington, DC 20314	
Administrator	
Defense Documentation Center	
ATTN: Accessions Division	35–46
Cameron Station	
Alexandria, VA 22314	
Commander	
Department of the Army	
Office, Chief Research, Development and Acquisition	
ATTN: DAMA-CSM-P	47
Washington, DC 20310	
Office, Chief of Engineers	
ATTN: DAEN-MCZ	48
Washington, DC 20314	
Commander	
US Army Materiel Development & Readiness Command	
ATTN: DRCSF	49
DRCDE	50
DRCRP	51
DRCIS	52
Eisenhower Avenue	
Alexandria, VA 22333	
•	

Comma		
DARCON	Installations & Services Agency	
ATTN:	DRCIS-RI	53
Rock Isi	land, IL 61201	
Directo		
Indust	rial Base Engineering Activity (IBEA)	
ATTN:	DRXIB-MT and EN	54
ROCK 1	sland, IL 61201	
Commar	nder	
US Arm	y Materiel Development & Readiness Command	
ATTN:	DRCPM-PBM	55
	DRCPM-PBM-S	56
	DRCPM-PBL-L	57-58
	DRCPM-PBM-E	59-60
Dover, N	NJ 07801	
Commar	nder	
US Arn	ny Armament Materiel Readiness Command	
ATTN:	DRSAR-SF	61-63
	DRSAR-SC	64
	DRSAR-EN	65
	DR SAR-PPI	66
	DR SAR-PPI-C	67
	DRSAR-RD	68
	DRSAR-IS	69
	DRSAR-ASF	70
Rock Isla	and, IL 61201	_
Comman	nder .	
Edgewoo	od Arsenal	
ATTN:		71
	SAREA-MTD	72
Aberdeer	n Proving Ground, MD 21010	,,,
Comman	der	
Frankfor	rd Arsenal	
ATTN:	SARFA-T	73
Philadelp	ohia, PA 19137	

Director	
DARCOM Field Safety Activity	
ATTN: DRXOS-ES	74-75
Charlestown, IN 47111	
Commander	
US Army Engineer Division	
ATTN: HNDED	76
PO Box 1600-West Station	
Huntsville, AL 35809	
Commander	77
Radford Army Ammunition Plant	
Radford, VA 24141	
Commander	78
Badger Army Ammunition Plant	
Baraboo, WI 53913	
Commander	79
Indiana Army Ammunition Plant	
Charlestown, IN 47111	
Commander	80
Holston Army Ammunition Plant	
Kingsport, TN 37660	
Commander	81
Lone Star Army Ammunition Plant	
Texarkana, TX 75501	
Commander	82
Milan Army Ammunition Plant	
Milan, TN 38358	
Commander	83
Iowa Army Ammunition Plant	
Middletown, IA 52638	

Commander	84
Joliet Army Ammunition Plant	
Joliet, IL 60436	
Commander	85
Longhorn Army Ammunition Plant	
Marshall, TX 75670	
Commander	86
Louisiana Army Ammunition Plant	
Shreveport, LA 71130	
Commander	87
Cornhusker Army Ammunition Plant	
Grand Island, NB 68801	
Commander	88
Ravenna Army Ammunition Plant	
Ravenna, OH 44266	
Commander	89
Newport Army Ammunition Plant	
Newport, IN 47966	
Commander	90
Volunteer Army Ammunition Plant	
Chattanooga, TN 37401	
Commander	91
Kansas Army Ammunition Plant	
Parsons, KS 67357	
District Engineer	92
US Army Engineering District, Mobile	
Corps of Engineers	
PO Box 2288	
Mobile, AL 36628	

District Engineer	93
US Army Engineering District, Ft. Worth	
Corps of Engineers	
PO Box 17300	
Ft. Worth, TX 76102	
District Engineer	94
US Army Engineering District, Omaha	
Corps of Engineers 6014 US PO & Courthouse	
215 N 17th Street	
Omaha, NB 78102	
District Engineer	95
US Army Engineering District, Baltimore	
Corps of Engineers	
PO Box 1715	
Baltimore, MD 21203	
District Engineer	96
US Army Engineering District, Norfolk	
Corps of Engineers	
803 Front Street	
Norfolk, VA 23510	
Division Engineer	97
US Army Engineering District, Huntsville	
PO Box 1600, West Station	
Huntsville, AL 35807	
Commander	98
Naval Ordnance Station	
Indianhead, MD 20640	
Commander	99
US Army Construction Engr Research Laboratory	
Champaign, IL 61820	
Commander	100
Dugway Proving Ground	

Dugway, UT 84022

Commander Savanna Army Depot Savanna, IL 61704	101
Civil Engineering Laboratory Naval Construction Battalion Center ATTN: L51 Port Hueneme, CA 93043	102
Commander Naval Facilities Engineering Command (Code 04, J. Tyrell) 200 Stovall Street Alexandria, VA 22322	103
Commander Southern Division Naval Facilities Engineering Command ATTN: J. Watts PO Box 10068 Charleston, SC 29411	104
Commander Western Division Naval Facilities Engineering Command ATTN: W. Morre San Bruno, CA 94066	105
Officer in Charge Trident Washington, DC 20362	106
Officer in Charge of Construction Trident Bangor, WA 98348	107
Commander Atlantic Division Naval Facilities Engineering Command Norfolk, VA 23511	108

Commander
Naval Ammunition Depot
Naval Ammunition Production Engineering Center
Crane, IN 47522