

图像对齐算法

Image Alignment Algorithm

主 讲 人: 龚益群

公 众 号: 3D视觉工坊

- Forward Additive Image Alignment (前向加法)
- Forward Compositional Image Alignment (前向组合)
- Inverse Compositional Image Alignment (逆向组合)
- Lucas-Kanade Optical Flow
- Kanade-Lucas-Tomasi(KLT) Tracker
- Pyramidal Iterative KLT
- Others Improvements

Goal min
$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x})]^2$$

采用 Sum of Squared Differences (SSD)

Warped Image

Image Alignment

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

2D image transformation

$$\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})$$

2D image coordinate

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

Parameters of the transformation

$$\boldsymbol{p} = \{p_1, \dots, p_N\}$$

Warped image Pixel value at a coordinate

$$I(\boldsymbol{x}') = I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p}))$$

Affine Translation
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} p_1x + p_2y + p_3 \\ p_4x + p_5y + p_6 \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{p} = (p_1, p_2, p_3, p_4, p_5, p_6)^T$$

$$\sum_{\boldsymbol{x}} \left[\underline{I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p} + \Delta \boldsymbol{p}))} - T(\boldsymbol{x}) \right]^2$$

• 非线性问题,做一阶泰勒展开

$$egin{aligned} I(\mathbf{W}(m{x};m{p}+\Deltam{p})) &pprox I(\mathbf{W}(m{x};m{p})) + rac{\partial I(\mathbf{W}(m{x};m{p})}{\partialm{p}}\Deltam{p} \ &= I(\mathbf{W}(m{x};m{p})) + rac{\partial I(\mathbf{W}(m{x};m{p})}{\partialm{x}'}rac{\partial\mathbf{W}(m{x};m{p})}{\partialm{p}}\Deltam{p} \ &= I(\mathbf{W}(m{x};m{p})) + \nabla I rac{\partial\mathbf{W}}{\partialm{p}}\Deltam{p} \end{aligned}$$

• 得到线性近似函数

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^{2}.$$

$\mathbf{W}(x; p)$ 的 Jacobian

• 将变换按照坐标展开

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = (W_{x}(\mathbf{x}; \mathbf{p}), W_{y}(\mathbf{x}; \mathbf{p}))^{\mathrm{T}}$$

• 每个坐标对于每个参数求导

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{pmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \cdots & \frac{\partial W_x}{\partial p_n} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \cdots & \frac{\partial W_y}{\partial p_n} \end{pmatrix}.$$

$$\mathbf{W}(oldsymbol{x};oldsymbol{p}) = \left[egin{array}{c} p_1x + p_3y + p_5 \ p_2x + p_4y + p_6 \end{array}
ight]$$

$$\frac{\partial W_x}{\partial p_1} = x \qquad \frac{\partial W_x}{\partial p_2} = 0 \qquad \cdots$$

$$\frac{\partial W_y}{\partial p_1} = 0 \qquad \cdots$$

$$\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} = \left[\begin{array}{ccccc} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{array} \right]$$

Forward Additive

$$\hat{x} = \operatorname*{arg\,min}_{x} ||Ax - b||^2$$

• 各个变量的维度

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^{2}$$
1×2 2×6 6×1

求解方法

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p}))\} \right]^{2}$$

$$\mathbf{A} \mathbf{x} - \mathbf{b}$$

$$\hat{x} = \arg\min||Ax - b||^2$$
 $x = (A^{\top}A)^{-1}A^{\top}b$

对变量求导, 然后令其等于0

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\mathrm{T}} [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

其中
$$H = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\mathrm{T}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right].$$

使用加法更新, 迭代求解

$$\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$$
 Until $\|\Delta \mathbf{p}\| \leq \xi$

Forward Additive

Iterate:

- 1. Warp I with W(x; p) to compute I(W(x; p))
- 2. Compute the error image $T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 3. Warp the gradient of image I to compute ∇I
- 4. Evaluate the Jacobian $\frac{\partial W}{\partial p}$ at W(x; p)
- 5. Compute the steepest descent images $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
- 6. Compute the Hessian matrix $\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[\nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]$
- 7. Compute $\sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 8. Compute $\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 9. Update the parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$ until $||\Delta \mathbf{p}|| \le \xi$

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9	Total
O(nN)	O(N)	O(nN)	O(nN)	O(nN)	$O(n^2N)$	O(nN)	$O(n^3)$	O(n)	$O(n^2N + n^3)$

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

是否可以以其它的形式更新参数?

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

对参数进行增量扰动

Compositional Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

对warp进行增量扰动

Forward Compositional

加法策略

Forward Compositional

组合策略

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

进行线性化

新的更新方式

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \mathbf{0}); \mathbf{p})) + \nabla I(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^{2}. \quad \mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p}) \quad \text{Until} \quad ||\Delta \mathbf{p}|| \leq \xi$$

其中 $\mathbf{W}(\boldsymbol{x};\boldsymbol{0})$ 表示单位变换

其中 $W(x; p) \circ W(x; \Delta p) \equiv W(W(x; \Delta p); p)$

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}(\boldsymbol{x};\boldsymbol{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Warp的Jacobian是在0处展开,不 会改变随着迭代,可以提前计算

Forward Compositional

Per-compute:

4. Evaluate the Jacobian $\frac{\partial W}{\partial p}$ at $(\mathbf{x}; 0)$

Iterate:

- 1. Warp I with W(x; p) to compute I(W(x; p))
- 2. Compute the error image $T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 3. Compute the gradient $\nabla I(\mathbf{W})$ of image $I(\mathbf{W}(\mathbf{x};\mathbf{p}))$
- 5. Compute the steepest descent images $\nabla I(W) \frac{\partial W}{\partial p}$
- 6. Compute the Hessian matrix $H = \sum_{\mathbf{x}} \left[\nabla I(\mathbf{W}) \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[\nabla I(\mathbf{W}) \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]$
- 7. Compute $\sum_{\mathbf{x}} \left[\nabla I(\mathbf{W}) \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^{T} \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 8. Compute $\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I(\mathbf{W}) \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 9. Update the parameters $\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})$ until $||\Delta \mathbf{p}|| \le \xi$

Marin I							
ation							
Total							
O(n N)							
Ĭ.							
Step 2	Step 3	Step 5	Step 6	Step 7	Step 8	Step 9	Total
O(N)	O(N)	O(nN)	$O(n^2N)$	O(nN)	$O(n^3)$	$O(n^2)$	$O(n^2N + n^3)$
	Total O(n N) Step 2	Total O(n N) Step 2 Step 3	Total O(n N) Step 2 Step 3 Step 5	Total $O(n N)$ Step 2 Step 3 Step 5 Step 6	Total $O(n N)$ Step 2 Step 3 Step 5 Step 6 Step 7	Total $O(n N)$ Step 2 Step 3 Step 5 Step 6 Step 7 Step 8	Total $O(n N)$ Step 2 Step 3 Step 5 Step 6 Step 7 Step 8 Step 9

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

是否可以对模板进行warp变换?

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^{2}$$

对参数进行增量扰动

Compositional Alignment

$$\sum_{\boldsymbol{x}} [I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) + T(\boldsymbol{x})]^{2}$$

对warp进行增量扰动

Inverse Compositional Alignment

$$egin{aligned} \sum_{m{x}} \left[T(\mathbf{W}(m{x}; \Delta m{p}) - I(\mathbf{W}(m{x}; m{p}))
ight]^2 \ & ext{图像}T \text{ 和图像}I \text{ 的角色调换} \end{aligned}$$

组合策略

逆向组合策略

$$\sum_{\boldsymbol{x}} \left[T(\mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]^2$$

• 进行线性化

$$\sum_{\mathbf{x}} \left[T(\mathbf{W}(\mathbf{x}; \mathbf{0})) + \nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^{2}.$$

$$\sum_{\mathbf{x}} \left[T(\mathbf{x}) + \nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^{2}$$

不会改变

求解

$$H = \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]$$
可以提前计算

• 新的更新方式

$$\mathbf{W}(\mathbf{x};\mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x};\mathbf{p}) \circ \mathbf{W}(\mathbf{x};\Delta \mathbf{p})^{-1} \mathbf{Until} \|\Delta \mathbf{p}\| \leq \xi$$
 要求可逆

Per-compute:

- 3. Evaluate the gradient ∇T of image $T(\mathbf{x})$
- 4. Evaluate the Jacobian $\frac{\partial W}{\partial p}$ at $(\mathbf{x}; 0)$
- 5. Compute the steepest descent images $\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
- 6. Compute the Hessian matrix $H = \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[\nabla T \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]$

Iterate:

- 1. Warp I with W(x; p) to compute I(W(x; p))
- 2. Compute the error image $I(\mathbf{W}(\mathbf{x}; \mathbf{p})) T(\mathbf{x})$
- 7. Compute $\sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) T(\mathbf{x}) \right]$
- 8. Compute $\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[I(\mathbf{w}(\mathbf{x}; \mathbf{p})) T(\mathbf{x}) \right]$
- 9. Update the parameters $\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})^{-1}$ until $||\Delta \mathbf{p}|| \le \xi$

Pre-comp	utation				
Step 3	Step 4	Step 5	Step 6	Total	
O(N)	O(n N)	O(n N)	$O(n^2 N)$	$O(n^2 N)$	
Per iterati	on				
Step 1	Step 2	Step 7	Step 8	Step 9	Total
O(n N)	O(N)	O(n N)	$O(n^3)$	$O(n^2)$	$O(nN + n^3)$

Algorithm	For example	Complexity	can be applied to	
Forwards Additive	Lucas-Kanade (1981)	$O(n^2N + n^3)$	Any warp	
Forwards Compositional	Shum-Szeliski (2000)	$O(n^2N + n^3)$	Any semi-group	
Inverse Additive	Hager-Belhumeur (1998)	$O(nN + n^3)$	Simple linear 2D +	
Inverse Compositional	Baker-Matthews (2001)	$O(nN + kN + k^3)$	Any group	

^[1] Baker S, Matthews I. Lucas-Kanade 20 Years On: A Unifying Framework[J]. International Journal of Computer Vision, 2004, 56(3):221-255.

Optical Flow

3D视觉工坊

Forward Additive

An Iterative Image Registration Technique with an Application to Stereo Vision.

1981

Detection and Tracking of Feature Points.

1991

Good Features to Track.

1994

- 目标:估计出帧间像素的运动
- 假设1: 像素光度恒定 (像素对比需要)
- 假设2: 小运动 (线性化需要)
- 假设3:空间一致性,邻近点运动相似

$$I(x(t), y(t), t) = C$$

$$(\delta x, \delta y) = (u\delta t, v\delta t)$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

• 小运动, 因此进行线性化

$$I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x, y, t)$$

$$\frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = 0$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

Image gradients (at a point p)

temporal gradient

$$\nabla I^{\top} \boldsymbol{v} + I_{t} = 0$$

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \left\{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right\} \right]^{2}$$

$$I_x u + I_y v + I_t = 0$$

• 根据假设3,可以选一个5×5的patch

$$egin{aligned} I_x(m{p}_1)u + I_y(m{p}_1)v &= -I_t(m{p}_1) \ I_x(m{p}_2)u + I_y(m{p}_2)v &= -I_t(m{p}_2) \ &dots \ I_x(m{p}_{25})u + I_y(m{p}_{25})v &= -I_t(m{p}_{25}) \end{aligned}$$

$$\begin{bmatrix} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum\limits_{p\in P}I_xI_t \\ \sum\limits_{p\in P}I_yI_t \end{bmatrix}$$

LK Optical Flow

Aperture Problem

 a) A Black Object in Front of the Aperture

b) The Same Black Object Behind the Aperture

An Iterative Image Registration Technique with an Application to Stereo Vision.

1981

Kanade-Lucas-Tomasi

(KLT) Tracker

Detection and Tracking of Feature Points.

1991

Good Features to Track.

1994

Aperture Problem

Aperture Problem

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\mathrm{T}} [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

怎样选择合适的Patch?

$$H = \sum_{m{p}} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{+} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]$$
要求可逆

• 做如下假设,即变成光流

$$\mathbf{W}(oldsymbol{x};oldsymbol{p}) = \left[egin{array}{c} x+p_1 \ y+p_2 \end{array}
ight]$$

$$H = \sum_{\boldsymbol{x}} \begin{bmatrix} \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \end{bmatrix}^{\top} \begin{bmatrix} \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \end{bmatrix}$$

$$= \sum_{\boldsymbol{x}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\boldsymbol{x}} I_x I_x & \sum_{\boldsymbol{x}} I_y I_x \\ \sum_{\boldsymbol{x}} I_x I_y & \sum_{\boldsymbol{x}} I_y I_y \end{bmatrix}$$

像素选取策略

- 1. 计算每个像素的G矩阵的最小特征值 λ_m
- 2. 取整个图像中 λ_m 的最大值 λ_{max}
- 3. 保留 λ_m 大于 λ_{max} 的百分比(10% or 5%)值的像素
- 4. 对于留下的像素,取局部最大值,即在 3×3 的邻域内,这个像素的 λ_m 大于周围的像素
- 5. 保留和任意像素之间的距离都大于阈值 (10 or 5) 的像素

Linearisation Problem

• 当面对大运动,线性化会带来误差,需要大的积分窗口。

• 小窗口可能会有孔径问题,不够鲁棒,收敛慢。

怎样处理大运动的场景呢?

Pyramidal Iterative KLT

Goal: Let u be a point on image I. Find its corresponding location v on image J

Build pyramid representations of I and J: $\{I^L\}_{L=0,\ldots,L_m}$ and $\{J^L\}_{L=0,\ldots,L_m}$

Initialization of pyramidal guess:

$$\mathbf{g}^{L_m} = [g_x^{L_m} \ g_x^{L_m}]^T = [0 \ 0]^T$$

for $L = L_m$ down to 0 with step of -1

Location of point **u** on image I^L :

$$\mathbf{u}^L = [p_x \ p_y]^T = \mathbf{u}/2^L$$

Derivative of
$$I^L$$
 with respect to x : $I_x(x,y) = \frac{I^L(x+1,y) - I^L(x-1,y)}{2}$

Derivative of I^L with respect to y:

$$I_y(x,y) = \frac{I^L(x,y+1) - I^L(x,y-1)}{2}$$

Spatial gradient matrix:

$$G = \sum_{x=p_{x}-\omega_{x}}^{p_{x}+\omega_{x}} \sum_{y=p_{y}-\omega_{y}}^{p_{y}+\omega_{y}} \begin{bmatrix} I_{x}^{2}(x,y) & I_{x}(x,y) I_{y}(x,y) \\ I_{x}(x,y) I_{y}(x,y) & I_{y}^{2}(x,y) \end{bmatrix}$$

Initialization of iterative L-K:

$$\overline{\nu}^0 = [0 \ 0]^T$$

Pyramidal Iterative KLT

for k = 1 to K with step of 1 (or until $\|\overline{\eta}^k\|$ < accuracy threshold)

Image difference:

$$\delta I_k(x,y) = I^L(x,y) - J^L(x + g_x^L + \nu_x^{k-1}, y + g_y^L + \nu_y^{k-1})$$

Image mismatch vector:

$$\bar{b}_k = \sum_{x=p_x-\omega_x}^{p_x+\omega_x} \sum_{y=p_y-\omega_y}^{p_y+\omega_y} \begin{bmatrix} \delta I_k(x,y) I_x(x,y) \\ \delta I_k(x,y) I_y(x,y) \end{bmatrix}$$

Optical flow (Lucas-Kanade): $\bar{\eta}^k = G^{-1} \bar{b}_k$

$$\overline{\eta}^k = G^{-1} \, \overline{b}_k$$

Guess for next iteration:

$$\overline{\nu}^k = \overline{\nu}^{k-1} + \overline{\eta}^k$$

end of for-loop on k

Final optical flow at level L:

$$\mathbf{d}^L = \overline{\nu}^K$$

Guess for next level L-1:

$$\mathbf{g}^{L-1} = [g_x^{L-1} \ g_y^{L-1}]^T = 2(\mathbf{g}^{\mathbf{L}} + \mathbf{d}^L)$$

end of for-loop on L

Final optical flow vector:

$$\mathbf{d} = \mathbf{g}^0 + \mathbf{d}^0$$

Location of point on J:

$$\mathbf{v} = \mathbf{u} + \mathbf{d}$$

Solution: The corresponding point is at location ${\bf v}$ on image J

Other Improvements

针对光度恒定假设改进

使用Locally-scaled sum of squared differences(LSSD)

$$r_i(\boldsymbol{\xi}) = \frac{I_{t+1}(\mathbf{T}\mathbf{x}_i)}{\overline{I_{t+1}}} - \frac{I_t(\mathbf{x}_i)}{\overline{I_t}} \quad \forall \mathbf{x}_i \in \Omega.$$

• 使用全局光度变换模型

$$\sum_{\mathbf{x}} \left[\mathbf{e}^{a} I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + b - T(\mathbf{x}) \right]^{2}$$

• 假设梯度不变进行跟踪

Other Improvements

针对鲁棒性改进

• 改变Patch的形状,应对旋转等特殊运动

针对鲁棒性改进

• 使用Robust Kernel Function, 加权处理外点

$$\sum_{\mathbf{x}} \mathbf{\rho} \left(I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right)^{2}$$

• 使用仿射变换模型

- yves Bouguet J. Pyramidal implementation of the lucas kanade feature tracker[J]. Intel Corporation, Microprocessor Research Labs, 2000, 1.
- Baker S, Matthews I. Lucas-kanade 20 years on: A unifying framework[J]. International journal of computer vision, 2004, 56(3): 221-255.
- http://www.cs.cmu.edu/~16385/

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导,近1000+的星球成员为创造更好的AI世界共同进步,知识星球入口:

欢迎关注3D视觉工坊

我们这里有3D视觉算法、VSLAM算法、计算机视觉、 深度学习、自动驾驶、图像处理等干货分享!

如果你也想成为主讲人,欢迎加入我们。

▶报名方式:请发送邮件至vision3d@yeah.net

公众号

交流群请添加客服

Thanks