Intern Detail

Field	Details
Name	Himesh Kumar
College	Rajkiya Engineering College, Banda
Branch	B.Tech-Information Technology
Roll Number	2207340130025
Internship	Smart Internz
Provider	
Internship	Data Analytics using PowerBI
Domain	
Project Title	Visualizing the Future of Farming: A PowerBI
	Project on Smart Irrigation and Plant Growth
Project Type	Group Project (Self-led)
Project	Predicting plant growth stages using
Description	environmental and management data with
-	PowerBI dashboards

Final Project on

Visualizing the Future of Farming: A PowerBI Project on Smart Irrigation and Plant Growth

- 1. Introduction
 - a. Project overviews
 - b. Objectives
- 2. Project Initialization and Planning Phase
 - a. Define Problem Statement
 - b. Initial Project Planning
 - c. Project Proposal (Proposed Solution)
- 3. Data Collection and Preprocessing Phase
 - a. Data Exploration and Preprocessing
 - b. Data Quality Report
 - c. Data Collection Plan and Raw Data Sources Identified
- 4. Data Visualization
 - a. Framing Business Questions
 - b. Developing Visualizations
- 5. Dashboard
 - a. Dashboard Design File
- 6. Report
 - a. Story Design File
- 7. Performance Testing
 - a. 7.1 Utilization of Data filters
 - b. 7.2 No of Calculation Field
 - c. 7.3 No of Visualization
- 8. Conclusion / Observation
- 9. Future Scope
- 10. Appendix
 - a. Source Code
 - b. GitHub & Project Demo Link

Introduction

Visualizing the Future of Farming: A PowerBI Project on Smart Irrigation and Plant Growth:

Project Overview

Agriculture is facing mounting pressure to feed a growing global population while minimizing environmental impact. With water scarcity and climate variability becoming more prominent challenges, the adoption of smart irrigation and precision farming is no longer optional—it's essential.

This project titled "Visualizing the Future of Farming" leverages Power BI to analyze and visualize agricultural data with a focus on smart irrigation and plant growth optimization. Using publicly available datasets and advanced data visualization techniques, the project provides actionable insights to help farmers, researchers, and policymakers make data-driven decisions.

The interactive dashboard screated showcase how data filtering, calculated fields, and key visualizations can highlight performance variations in different soil types (e.g., clay, loam, sand) and the impact of irrigation strategies on crop yield and plant health.

Objectives

- 11. To analyse plant growth data a cross multiples oil types using PowerBI.
- 12. To build interactive and dynamic dashboards that supports martirrigation decisions.
- 13. To provide insights on resource optimization like water usage and soil performance.
- 14. To demonstrate real-world use of Business Intelligence tools in agriculture.
- 15. To encourage the use of data-driven techniques for sustainable farming practices.

Project Initialization and Planning Phase

Date	29-07-2025
Team ID	нк
Project Name	Visualizing the Future of Farming:
Maximum Marks	3 Marks

Problem Statements:

The Customer Problem Statement helps you focus on what matters to create experiences people will love. A well-articulated customer problem statement allows you and your team to find the ideal solution for your customers' challenges. Through out the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.

Problem	l am	I'm trying to	But	Because	Which makes
Statement	(Customer)				me feel
(PS)					
PS-1	A small- scale farmer	Improve crop yield using smart irrigation	I don't have access to data- driven insights	Traditional methods don't tell me when and how much toirrigate	Frustrated and unsure about making the right farming decisions
PS-2	An agricultural officer	Track the efficiency of irrigation systems in different regions	Data from farms is unorganized and hard to interpret	There's no centralized tool that visualizes performance in real-time	Inefficient in decision-making and overwhelmed
PS-3	A farm equipment distributor	Understand what kind of irrigation solutions are most needed	I don't know what challenges farmers face with irrigation or crop growth	I lack real-time, location-based insights	Uncertain about customer needs and how to market effectively
PS-4	Anagri-tech consultant	Recommend sustainable farming practices	I don't have visualdatato support my analysis	My clients can't understand raw data without visuals	Less convincing, and my advice feels less credible

InitialProjectPlanning

Date	29-07-2025
Team ID	НК
ProjectName	Visualizing the Future of Farming:
	A PowerBI Project on Smart Irrigation and Plant Growth
MaximumMarks	4Marks

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	UserStory/ Task	Story Point	Priority	Team Member	Sprin t Start Date	Sprint End Date (Planned)
Sprint -1	Data Collection & Preparation	USN-1	As a user, I want the data tobecollected from reliable agricultural sources sothat it reflects realistic conditions.	3	High	Self	21- 07- 2025	21-07- 2025
Sprint -1	Data Cleaning	USN-2	As a user, I want missing andduplicate data to be cleaned, ensuringthat thedataset is accurate.	2	High	Self	22- 07- 2025	23-07- 2025
Sprint -2	Data Modelling	USN-3	As a user, I want relationships between data tables to be clearly defined, so I can analyse theminPower BI.	3	Mediu m	Self	24- 07- 2025	24-07- 2025

Sprint -2	DashboardDesign	USN-4	As a user, I want to view plant growth performance by soil type, fertilizer, and irrigation via aninteractive dashboard.	4	High	Self	24- 07- 2025	27-07- 2025
Sprint -3	Smart Insights &Recommendation s	USN-5	As a user, I want the system to recommend best growth conditions basedonkey influencers.	3	Mediu m	Self	27- 07- 2025	27-07- 2025
Sprint -3	DashboardTesting	USN-6	As a user, I want to ensure the dashboard is error- free and filters work as expected.	2	Medium	Self	27- 07- 2025	27-07- 2025
Sprint -4	Project Documentation	USN-7	As a user, I want complete documentation for my Power BI solution, so it can be review edor reused.	2	Medium	Self	28- 07- 2025	28-07- 2025
Sprint -4	Fina IPresentation	USN-8	As a user, I want a summarized report and visuals to be readyforfinal evaluation.	2	High	Self	28- 07- 2025	28-07- 2025

Project Initialization and Planning Phase

Date	29-07-2025
Team ID	нк
ProjectTitle	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	3 Marks

Project Proposal

Project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Proposal

Project Over	view
Section	Details
Objective	The primary objective of this project is to design an interactive Power BI
	dashboard that visualizes the effects of environmental and operational factors
	(such as soil type, irrigation frequency, sunlight, humidity, and fertilizers) on
	plant growth, enabling farmers and Agri-policy makers to make data-driven
	decisions in smartfarming.
Scope	The scope of this project includes: - Collecting and cleaning agricultural and
	environmental datasets-Creating meaningful visualizations using PowerBI-
	Analysing the relationships between variables affecting plant growth - Providing
	actionable insights through user-friendly dashboards The project is limited to a
	single growing season and controlled environment data, with future potential
	for real-time integration and scaling.
Problem Sta	tement
Section	Details
Description	Farmers and agriculture professionals lack access to visual, data-driven insights
	that could help optimize irrigation, fertilizer use,and soil selection for better
	crop yield. Decisions are still largely made based on experience or traditional
	practices, which may not be efficient underchanging climate conditions.

Impact	Solving this problem empowers users with data-backed decisions, leading to: -	
	Improved crop yield and resource optimization-Reduced wastage of water and	
	fertilizer - Increased awareness and adoption of smart farming technologies -	
	Potential for scaling toward precision agriculture at regional and national levels	
Proposed So	Proposed Solution	

Section	Details
Approach	Collect data from public sources and experimental setups-Clean, preprocess,
	and analyse data in Power BI - Design interactive visualizations using charts,
	slicers, decomposition trees, and key influencers-Provide insights into which
	environmental conditions and farming inputs lead to optimal growth-
	Summarize findings into actionable suggestions for farmers and policy makers
KeyFeatures	Dynamicfiltersforsoiltype,irrigation,andfertilizerselection-Decomposition
	treeforanalysinggrowthbysoiltypes-Keyinfluencersvisualtoidentifymajor
	drivers of growth - Donut charts and bar graphs for comparing fertilizer and
	humidity impact - Environment score calculation to simplify multi-variable
	evaluation-Data-drivenrecommendationsforsmartirrigationpractices

ResourceRequirements

ResourceType	Description	Specification/Allocation
Hardware		
ComputingResource	CPU/GPUspecifications,numberofcores	2xNVIDIAV100GPUs
Memory	RAMspecifications	8GB
Storage	Disk space for data,models, and logs	1TBSSD
Software		
Frameworks	Python frame works	Flask
Libraries	Additional libraries	scikit-learn,pandas, NumPy
Development Environment	IDE, version control	Jupyter Notebook, Git
Data		
Data	Source, size, format	Kaggle dataset, 10,000 images

Data Collection and Preprocessing Phase

Date	29-07-2025
Team ID	нк
ProjectTitle	Visualizing the Future of Farming:
	A Power BI Projecton Smart Irrigation and Plant Growth
Maximum Marks	10 Marks

Data Exploration and Preprocessing

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Data Exploration and Preprocessing

Section	Description
Data Overview	The data set contains 193 records and 7 columns, including: Soil Type,
	Sunlight Hours, Water Frequency, Fertilizer Type, Temperature, Humidity,
	and Growth Milestone. These fields are used to understand the
	relationship between
Data Cleaning	Minor text inconsistencies in categorical fields were normalized
	(e.g., "organic" vs. "Org"). All entries verified for logical accuracy
	(e.g.,temperature range and humidity values).
Data	Used Power Query for: Filtering data by soil type and fertilizer, sorting by
Transformation	growth milestones, creating new calculated columns (e.g.,
	Growth_per_Hour = Growth_Milestone / Sunlight_Hours), Pivoting to
	analyse fertilizer performance
Data Type	Converted Soil Type, Fertilizer Type, and Water Frequency to text format
Conversion	Ensured Temperature, Humidity, Sunlight Hours, and Growth Milestone
	are in numeric format.
ColumnSplitting	No splitting requiredMerged environmental metrics (Humidity,
andMerging	Temperature, Sunlight Hours) to for man Environmental Score for
	advanced insights.
DataModelling	Single-table model used (no complex relation ships needed).
	DAX measures created for insights: Average Growth, Growth Rate per
	Temperature, Max Growth b ySoil Type-Interactives licers and filters
	added for soil, water, and fertilizer type.
SaveProcessed	Cleaned data set saved within PowerBI (.pbix) fileBackup version of the
Data	processed data exported to Excel and CSV for reuse and external analysis.

Data Collection and Preprocessing Phase

Date	29-07-2025
Team ID	нк
ProjectTitle	Visualizing the Future of Farming: A Power BI Project on Smart Irrigation and PlantGrowth
Maximum Marks	3Marks

Data Quality Report

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
SmartFarming Data	Missing values in	Modera	Use mean imputation for missing
	humidityandsunlight	t e	values
	columns		orapplyKNNimputationifpatternsexist
Fertilizer Usage &	Inconsistentlabellingof	Low	Apply data standardization using string
Growth	fertilizer types (e.g.,		normalization techniques to unify all
	"Org","Organic","org."		entries(e.g.,convertalltolowercaseand
)		mapsynonyms).
Temperature &	Some extreme	High	Use Z-score method to detect and
Humidity Records	temperatureoutliers		removeoutliersorcapthemusingIQR-
	(e.g.,>70°C)thatare		based clipping.
	unrealistic		
Soil Performance Data	Duplicaterowswit	Modera	Use Power Query or pandas. drop
	h identical soil	te	duplicates()toremoveduplicateentries
	and		andretainuniquerecords.

Data Collection and
Preprocessing Phase

Data Quality Report

Template

Data Collection Plan & Raw Data Sources

Date	29-07-2025
Team ID	НК
Project Title	Visualizing the Future of Farming:
	A Power BI Project on Smart Irrigation and Plant Growth
Maximum Marks	2 Marks

Data Collection Plan & Raw Data Sources Identification

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavour.

Data Collection Plan

Section	Description		
Project Overview	This project aims to analyse the relationship between soil type,		
	irrigation frequency, environmental conditions (humidity, temperature,		
	sunlight), and plant growth performance. The objective is to create a		
	Power BI dashboard		
Data Collection	Thedatawascollectedfrommultiplesources, including a gricultural research		
Plan	datasets, public environmental data APIs, and manually recorded		
	experimental data from controlled farming environments.		
Raw Data Sources	Data includes environmental metrics, soil types, fertilizer types, and plant		
Identified	growth outcomes. Sources are in CSV and Excel formats.		

Raw DataSources

Source	Description	Location/URL	Format	Size	Access
Name					Permissions

Smart	Contains information on soil	[Custom/ Ofline	CSV	~1	Private	
Farming	type, water frequency,	Data]		MB	(Created for	
Data	humidity, temperature, and				project)	
	growth outcome.					
	Used for visualizing					
	environmental impact.					

Fertilizer Usage& Growth	Contains types of fertilizers used (organic, chemical, none) and associated plant growth milestones.	[Custom/Ofline Data]	Excel	~50 OK B	Private
Dataset 3: Temperatur e & Humidity Records	Environmenta I dataset showing average temperature and humidity acrossfarming zones.	https://data.go v.in	CSV	~5 MB	Public
Dataset 4: Soil Performanc e Data	Benchmark soil growth performance under different irrigation strategies from agriculture research articles.	https://www.k aggle.com/agri culture -dataset	Excel	~2 MB	Public

Business Question and Visualization Report

Date	29-07-2025
Team ID	Himesh Kumar
Project Na	Visualizing the Future of Farming:
	A Power BI Project on Smart Irrigation and Plant Growth
Maximum	5 Marks
Marks	

Visualization development refers to the process of creating graphical representations of data to facilitate understanding, analysis, and decision-making. The goal is to transform complex datasets into visual formats that are easy to interpret, enabling users to gain insights and make informed decisions. Visualization development involves selecting appropriate visual elements, designing layouts, and using interactive features to enhance the user experience. This process is commonly associated with data visualization tools and platforms, and it plays a crucial role in business intelligence, analytics, and reporting

Business Questions and Visualisation

The process involves defining specific business questions to guide the creation of meaningful and actionable visualizations in PowerBI. Well-framed questions help in identifying key metrics, selecting relevant data, and building visualisation that provide insights. To create a comprehensive Business Question and Visualization Report, follow these steps:

Q1. Which soil type supports the highest total plant growth?

Clay soil supports the highest total growth with 67 units, followed by sandy (64 units) and loam (62 units), as per the decomposition tree analysis.

Q2.What impact does temperature have on total plant growth?

A decrease in temperature below 60.59°C (sum) causes the average Total_Growth to decrease by 1.76 units, as shown by the Key Influencers visual.

Q3. Which watering frequency proves most beneficial for plant growth?

Daily watering frequency shows better and more consisten tgrowth results, especially when combined with clay soil.

Q4.Which fertilizer type contributes most to plant growth milestones?

Organic fertilizers account for the highest contribution (39.58%) to growth milestones, followed closely by chemical fertilizers (37.5%).

Q5. How does humidity affect overall plant growth?

Higher humidity levels correlate with better growth results, especially in clay soil conditions. Average humidity in optimal growth cases was around 59.11%.

Q6.What combination of conditions leads to optimal plant growth?

The best results were observed in clay soil, with daily watering, high humidity (around 59%), and moderate temperature (around 34°C), when organic fertilizers were used.

Q7. How can this dashboard benefit agricultural decision-makers?

It provides interactive visual insights on how different environmental and input factors impact growth, enabling data-driven decisions for crop planning and irrigation policy.

Q8.What are the key insights for future smart irrigation systems?

Future systems should:

- 1. Prioritize clay- based fields
- 2. Automate watering frequency based on temperature and humidity
- 3. Promote use of organic fertilizers
- 4. Use real-time environmental monitoring to adjust irrigation dynamically

Dashboard Design

Date	30-07-2025
Team ID	нк
Project Name	Visualizing the Future of Farming:
Maximum Marks	5 Marks

Activity1: Interactive and visually appealing

dashboards Description:

This Power BI dashboard provides an interactive, data-driven insight in to how various factors—such as soil type, irrigation frequency, temperature, humidity, sunlight, and fertilizer type—affect plant growth.

It helps farmers, agriculture officers, and consultants to makes marter irrigation and soil management decisions by analysing environmental data and plant performance metrics.

Dashboard Components Used:

Component	Description / Purpose
Table	Displays detailed data by soiltype, watering frequency, humidity,
	sunlight, an temperature. This allows users to scan raw values and
	understand environmental conditions per soil type.
Waterfall Chart -	Illustrate show changes in temperature affect total plant growth.The
Avg Temperature	increas decrease bars show how growth varies across temperature
by Temperature	bands.
KeyInfluencersVisual	Automatically identifies the most significant factor influencing
	Total_Growth. In this case, it shows that when temperature drops below
	60.59, growth decreases by 1.76 units on average.
Donut Chart -	Represents the distribution of plan growth milestones across fertilizer
Growth Milestone	types organic, chemical, ornone. This helps users compare fertilizer
by Fertilizer Type	effectiveness.
BarChart-	Displays average humidity distribution, giving an overview of
AvgHumidity by Humidity	environmental moisture levels across the dataset.
Decomposition Tree	Breaksdown Total Growth by Soiltype (clay,sandy,loam), allowing
	users to visually drill into which soil performs best in terms of growth.

Insights Gained:

- 5. Clay soil shows the highest total growth, followed by sandy and loam.
- 6. **Temperature** has a direct impact on growth—lower temps significantly reduce performance.
- 7. **Organic and chemical fertilizers** perform much better than using none.
- 8. **Daily watering** appears to work better in certain soil types like clay.
- 9. Claysoil showed the highest total plant growth (67units) compared to sandy (64) and loam (62).
- 10. **Daily watering frequency** provided more consistent growth results, especially inclayand sandy soils.
- 11. Temperature plays a crucial role:
- 12. When the **sum of temperature drops below 60.59**, the average plant growth **decreases by 1.76 units**.
- 13. **Humidity** and **sunlight** levels were more optimalinelay soils, contributing to better growth performance.
- 14. Organic and chemical fertilizers led to the majority of growth milestones:

15. Organic: **39.58**%16. Chemical: **37.5**%17. Nofertilizer: **22.92**%

UseCases:

- 18. Farmers can determine the ideal soil and watering conditions.
- 19. Agri-scientists can research environmental impact on growth.
- 20. Government planners can support data-driven farming policies.

Report

Date	29-07-2025
Team ID	HK
Project Name	Visualizing the Future of Farming:
Maximum Marks	5 Marks

The report provides ananalysis of soil conditions and their impact on plant growth:

1. SunlightExposure:

- a. Clay soil received the highest average sunlight at 7.27 hours
- b. Sandy soil followed with 6.76 hours
- c. Loam soil received 6.41 hours

2. Humidity Levels:

- a. Humid conditions had the highest average humidit yat 74.02%
- b. This was 75.53% higher than dry areas (41.23%)
- c. Moderate humidity was recorded at 60.10%

3. Temperature Effects:

- a. Temperature significantly impacted growth
- b. Cold temperature ranges decreased growth performance by 9.70 units compared to warm conditions
- 4. Watering Frequency and Growth:
 - a. Daily watering resulted in the highest growth milestones (51%)
 - b. Weekly watering followed at 49%
 - c. Bi-weekly watering was also mentioned but percentage not specified

5. Additional Data:

- a. Current humidity:58.16%
- b. Current sunlight: 6.76
- c. Current temperature:25.08

There port highlights the importance of various environmental factors on plantgrowth, emphasizing the roles of soil type, sunlight exposure, humidity, temperature, and watering frequency.

Conclusion / Observation

The "FutureGrow Tech—SmartFarming" PowerBI project successfully demonstrates the power o fdata visualization and analytics in modern agriculture. By analysing key parameters such as soil type, nutrient levels, and crop performance, the project provides farmers, agronomists, and stakeholders with a data- driven approach to enhance crop yield and optimize farming practices.

Key Observations:

- 1. Soil Types (Clay, Loam, Sand) exhibit varying performance based on different nutrient levels and crop suitability.
- 2. Through calculated KPI sand visualizations, users can easily identify which soil performs best for specific crop types.
- 3. Utilization offilters, slicers, and calculated fields enhances user interactivity and provides a customized view of data.
- 4. The dashboard empowers users with quick insights formaking informed decisions, promoting sustainable agriculture.
- 5. Performance testing validates that the report is optimized with efficient use of resources, ensuring smooth operation even with large datasets.

OverallImpact:

This project bridges the gap between technology and traditional farming, showcasing how PowerBI can transform agricultural data into actionable insights. It serves as a scalable model for future implementations across various regions and crop types, contributing to the advancement of smart farming practices in India and beyond.

Future Scope

The current project lays the foundation for data-driven decision-making in smartfarming. However, to further enhance its capabilities and impact, several future developments can be envisioned:

1. Integration with IoT Sensors

Description:Real-time data from IoT devices (e.g., soil moisture sensors, weather stations) can be integrated directly into Power BI.

Benefit:Enables live monitoring and predictive insights for crop health and irrigation scheduling.

2. Predictive Analytics with Machine Learning

Description: Leverage AzureML or Python / Rscripts with in PowerBI to predict crop yields, pest risks, and soil degradation.

Benefit: Allows for proactive planning and early warning systems to improve farm productivity.

3. Geo-Spatial Analysis

Description: Incorporate geographical datavisualization (using Arc GI Sor map visuals in PowerBI) to analyse regional performance.

Benefit: Helps in region-wise crop performance tracking and soil quality mapping.

4. MobileDashboard Accessibility

Description: Optimize dashboards for mobile devices through PowerBI Mobile.

Benefit: Farmers and agronomists can accessin sights on the field, increasing convenience and actionability.

5. ExpansiontoOtherCropTypesandRegions

Description:Extend the model to include a wider variety of crops and diverse soil zones. Benefit: Makes the solution scalable for different states and farming ecosystems.

6. Multi-LanguageSupport

Description: Add support for regional languages within the

PowerBI reports. Benefit:Ensures inclusive access for non-

English-speaking users across India.

Appendix

Project Resources

1. Source Code & Data Files

- a. The data preprocessing, DAX calculations, and Power Query transformations used in this project are available in the Power BI .pbix file.
- b. FileName: Future Grow Tech—Smart Farming.pbix

2. GitHub Repository

- a. All project resources, documentation, and version control are hosted on GitHub.
- b. GitHubLink
- c. .https://github.com/hime8858/Power-Bi-Project

3. Project Demo Video

a. A brief walk through of the dashboard with features explanation.

https://youtu.be/wkdfE1YSNNc?si=u-apJbr4wiEpBAWy

AdditionalResources

1. **DataSource**:[Kaggle, FAOUSDA, Indian Gov-data.gov.in]

2. ToolsUsed:

- a. Microsoft Power BI
- b. Microsoft Excel (for preprocessing)
- c. Power Query Editor
- d. DAX (Data Analysis Expressions)