מגישים: אור מנדל 315524389 | עומר מיכאל 316334671 | ערן לוי

<u> סיכום - חלק 4</u>

הנדסת חלל מטלה 1 - במטלה זו התמקדנו בעוקב כוכבים.

בחלקה הראשון של המטלה, ניסחנו אלגוריתם פסאודו-קוד פשוט ויעיל ככל שניתן אשר מסתמך על ההתנהגות של אלגוריתם RANSAC אשר הומצא בשנת 1981 על ידי Fischler and Bolles ומטרתו היא למצוא את מרכזי הכוכבים עבור תמונה מסוימת .

נזכיר שמטרתו של אלגוריתם RANSAC הרגיל היא למצוא קו "הכי טוב" המפריד בין נקודות בגרף.

אלה שעומדים בתנאי ה-threshold נכנסים לקבוצה שנקראת inliers, ואלה שלא נכנסות לקבוצה שנקראת outliers.

מה שמעניין אותנו זאת קבוצת ה-inliers.

A data set with many outliers for which a line has to be fitted.

Fitted line with RANSAC; outliers have no influence on the result.

אותו קו צריך להיות קרוב לכמה שיותר נקודות, וזאת ע"י שימוש בפונקציית Least Squared.

באלגוריתם שלנו במקום קו אנחנו מתבוננים על מישור, וכמו ב-RANSAC באלגוריתם שלנו במקום קו אנחנו מתבוננים על מישור, וכמו ב-matching משתמשים בטכניקת "matching" כלומר התאמה של נקודות העומדות בתנאי כלשהו - threshold.

בחלקה השני של המטלה מימשנו את הפסאודו קוד אשר תיארנו לעיל, אשר מקבל תמונת כוכבים וממיר אותה לקובץ .csv המכיל בתוכו קואורדינטות מקבל תמונת כוכבים וממיר אותה לקובץ .x,y המייצג את ה-brightness ו-x,y,r,b הם מרכז כוכב.

קובץ זה מתאר לנו את המישור אשר מכיל את כל הכוכבים שבתמונה. בחלקה השלישי של המטלה מימשנו אלגוריתם המקבל כקלט שתי תמונות של כוכבים, מטרתו היא למצוא התאמה מיטבית בין התמונות, וזאת בהסתמך על אלגוריתם קיים - SIFT : Scale Invariant Feature Transformation. אלגוריתם SIFT מפצל כל תמונה לרמות/שכבות שמשתמש ב RANSAC עם זיהוי key points.

> במקרה שלנו ה key points הן ההתאמות הטובות של מרכזי כוכבים המשותפים בין 2 התמונות.

Scale

 Scan the image at different scales (pyramid) and scale each patch to the same size.

לבסוף יצרנו כפלט קובץ .csv אשר מכיל בתוכו מזהה ייחודי עבור כל כוכב ואת הקואורדינטות שלו בשתי התמונות שהתקבלו.

<u>ניסויים</u>

<u>קלט:</u>

image2

<u>פלט:</u>

b2		r2	y2	x2	b1	r1	y1	x1	id
	3.2514	8.1285	337.7008	1454.753	1.9679	4.9197	2979.101	115.3616	1
	2.3251	5.8129	2916.155	1173.397	2.6326	6.5815	491.1487	1300.677	2
	3.0077	7.5194	169.9924	3005.064	1.8705	4.6762	21.0061	1775.764	3
	2.4223	6.0556	154.1281	3004.282	2.0955	5.2388	565.1157	2072.52	4
	2.4223	6.0556	154.1281	3004.282	2.1668	5.4169	2655.414	2498.499	5

image1

image2

<u>פלט:</u>

b2	r2	y2	x2	b1	r1	y1	x1	id
2.7334	6.8335	1039.945	1017.497	4.5251	11.3127	84.0644	391.9872	1
2.5458	6.3645	376.9455	492.225	2.5408	6.3521	245.2081	486.5568	2
2.5458	6.3645	376.9455	492.225	2.5408	6.3521	245.2081	486.5568	3
2.5458	6.3645	376.9455	492.225	2.5408	6.3521	245.2081	486.5568	4
1.9671	4.9179	40.261	945.6624	1.967	4.9176	1109.668	1031.238	5
1.9671	4.9179	40.261	945.6624	1.967	4.9176	1109.668	1031.238	6
1.9671	4.9179	40.261	945.6624	1.967	4.9176	1109.668	1031.238	7
5.4158	13.5394	270.8236	1261.57	4.2636	10.6589	185.6799	1102.112	8
5.4158	13.5394	270.8236	1261.57	4.2636	10.6589	185.6799	1102.112	9
5.4158	13.5394	270.8236	1261.57	4.2636	10.6589	185.6799	1102.112	10
5.4158	13.5394	270.8236	1261.57	3.3497	8.3742	475.2135	1842.705	11
5.4158	13.5394	270.8236	1261.57	3.3497	8.3742	475.2135	1842.705	12
5.4158	13.5394	270.8236	1261.57	3.3497	8.3742	475.2135	1842.705	13
5.4158	13.5394	270.8236	1261.57	3.3497	8.3742	475.2135	1842.705	14