

Réseaux véhiculaires et nonterrestres: Essaims de nanosatellites

Contexte, contraintes et enjeux actuels

Evelyne Akopyan, TéSA - Toulouse INP

17/10/2023

Présentation

- Formation d'ingénieure Télécommunications (INSA Lyon, 2020)
- Ingénieure de recherche Big Data (LICIT-CEREMA, 2020-2021)
- Doctorante co-encadrée IRIT-ENAC (TéSA-CNES, 2021): Architectures réseaux résilientes pour les essaims de nanosatellites

Nanosatellites

Classification, déploiement et état de la recherche

Qu'est-ce qu'un nanosatellite?

- Satellite artificiel miniaturisé dont la masse est généralement comprise entre 1 et 10 kg
- Principal intérêt : coûts de production et de lancement
- Recherche sur les essaims de nanosatellites : 8 publications en 2000, 300 en 2022 (références Google Scholar)
 - Réseaux de satellites : > 6000 résultats
 - Covid-19 : > 60 000 résultats

Classification

CATEGORY	WEIGHT	SIMILAR IN SIZE TO A
LARGE	More than 1,000 kg	
MEDIUM	500-1,000 kg	
MINI	100-500 kg	
MICRO	10-100 kg	
NANO	1-10 kg	

Format des nanosatellites

- CubeSat : format de nanosatellites défini par une taille standard (1Unit, ou 1U)
 - Généralement un cube de 10 cm de côté

Formations en vol

- Constellation : groupe de satellites synchronisés dont les zones de couverture au sol sont complémentaires, permettant d'assurer un service stable (accès GPS, Internet)
- Trailing: groupe de satellites orbitant sur le même trajet et séparés par des intervalles définis, permettant d'observer des évolutions temporelles (météorologie, cartographie)
- Cluster : groupe de satellites particulièrement dense, permettant d'assurer des services en très haute résolution (interférométrie)

Formation: essaim

- Formation dérivée du cluster
- Chaque nanosatellite est sur une orbite proche des autres, mais différente
- Les positions ne sont pas fixées : apparence désorganisée

Représentation simulée d'un essaim

Exemples de formations

Constellation: Galileo

Trailing: Landsat-7 et EO-1

Cluster/essaim

Les essaims dans la nature

Pourquoi s'intéresser aux essaims?

- Utilisation de plusieurs satellites moins coûteux et plus simples pour réaliser le travail d'un plus grand satellite
- Augmentation de la résilience de la mission
- Possibilité de collecter des données depuis l'espace plutôt que la Terre (traditionnel)

Exemple d'application

Observation de l'espace

James Webb ▲ Hubble ▼

Interféromètre ALMA, Atacama 🛦

Association des signaux d'ALMA et Hubble

Utilité de l'interférométrie

- Fréquences d'intérêt : <100 MHz</p>
 - Cartographie du ciel, de l'espace lointain
 - Observation des signaux issus du Big Bang
- Instruments actuels : interféromètres terrestres
- Sources d'erreurs :
 - Ionosphère
 - Interférences terrestres (RFI)

VLA, Nouveau-Mexique (USA)

Objectif de la mission

- Mettre un essaim de 100 nanosatellites en orbite autour de la Lune
 - Pas d'ionosphère!
 - Protection contre les RFI

Création d'un radiotélescope spatial distribué

Principe de fonctionnement

- 1. Echantillonnage des données (60 à 600 Mb/s)
- 2. Transfert des données et calcul de l'image spatiale
- 3. Envoi de l'image à la station terrestre
- 4. Prise en compte d'éventuels correctifs

Contraintes majeures

Contraintes de communication

Le réseau de l'essaim se base exclusivement sur les liaisons inter-satellites (ISL).

- Vitesse de déplacement des satellites (1 à 10 km/s)
- Distance inter-satellites (env. 30 km)
- Pas de géolocalisation
- Volume de données à transmettre (env. 5 Gbits/sat)
 - Collisions
 - Pertes de paquets
 - Congestion
- Absence de données expérimentales !

Propriétés du réseau

Approche basée sur la théorie des graphes

Description du système

- Essaim de 100 nanosatellites identiques
- Antennes de communication omnidirectionnelles
- Mobilité par rapport à la Lune (pseudo-périodique)
- Mobilité intra-essaim (quasi-déterministe)
- Connaissance des positions relatives basée sur la distance inter-satellite

Description du dataset

Les données sont générées synthétiquement en suivant les lois de Kepler.

- Trajectoires de 100 nanosatellites
 - Système de coordonnées (x,y,z) centré sur la Lune
 - Positions relevées toutes les 10 secondes
 - Durée de l'échantillonnage : 100 000 secondes (10 000 échantillons)
- Temps de révolution des satellites : env. 5h (env. 1800 échantillons)

Outil de simulation

- Module Python3 fait maison : swarm_sim
- Définition des objets Swarm et Node
- Opérations de base
- Calcul de métriques
- Visualisation...

Hypothèses de connexion

Deux satellites peuvent communiquer s'il existe un ISL entre eux, i.e. s'ils sont dans la portée de communication l'un de l'autre.

- Un ISL est un lien duplex
- Tous les satellites ont la même portée (30 km)
- Tous les paquets de données font la même taille (5 Gbits)
- Les messages (données, signalisation) sont émis en broadcast
- S'il y a un ISL entre A et B, les messages émis sont forcément reçus

Caractérisation de la connectivité

- Importance de l'étude du voisinage des nœuds en fonction de la portée
 - Voisinage direct (degré)
 - Voisinage étendu (k-vicinity)
- Distribution des voisins hétérogène : présence de nœuds faiblement et fortement connectés

Caractérisation de la disponibilité

- Inter-Contact Time (ICT): temps écoulé entre deux connexions sur un ISL donné
 - 0% ICT : ISL disponible en permanence
 - 100% ICT : ISL indisponible, les deux nœuds ne sont jamais en contact direct
 - Moyenne >80% ICT

Conclusions sur les propriétés

- Répartition hétérogène de la connectivité : certains nœuds sont directement connectés à +30% du réseau, mais certains n'ont aucun voisin.
- Disponibilité variable des ISL pour la majorité des paires de nœuds.
 Certaines paires ont une connexion assurée en permanence, d'autres ne seront jamais en contact direct.

Gestion de la redondance

Améliorer la résilience du réseau tout en limitant la congestion des ISL

Définition du problème

- Soit un essaim de N nœuds (N = 100)
- Chaque nœud reçoit N 1 paquets de données utiles des autres nœuds
- Chaque nœud calcule l'image inter-corrélée globale de l'espace
- La même image est calculée N fois, ce qui est très redondant (risque négligeable de perdre l'image), mais trop lourd en termes de charge du réseau!

Estimation de la charge du réseau

- Et si on divisait l'essaim en groupes ?
- Nombre de paquets à émettre = nombre d'émissions intra-groupe + nombre d'émissions intergroupes

Solution envisagée

- Calculer l'image x fois, en échangeant moins de paquets
- Principe : subdiviser l'essaim en x groupes de nœuds et échanger les données entre ces groupes
 - Approche : Division équitable (rassembler les nœuds pour former des groupes aux caractéristiques proches de l'essaim global)

Pourquoi pas du clustering?

Technique	Clustering	Fair Division
Principe	Rassembler les nœuds caractéristiquement proches dans un même groupe	Diviser l'essaim en sous- graphes caractéristiquement représentatifs
Métriques	Degré moyen, coefficient de clustering, densité de graphe, taille d'échantillon, diamètre	
Avantages	Les nœuds dans un même groupe sont homogènes	Les sous-graphes sont équitables entre eux
Inconvénients	Les groupes ne sont pas équitables entre eux	Les sous-graphes ne sont pas forcément connexes

Rappel des métriques

- Average Degree (AD): nombre moyen de voisins par nœud dans un groupe/essaim
- Average Clustering Coefficient (ACC): ratio moyen, par nœud, entre le nombre de liens entre ses voisins et le nombre maximal théorique de ces liens dans un groupe/essaim
- Graph Density (GD): ratio entre le nombre de liens existants et le nombre maximal de liens possibles dans un groupe/essaim
- Sample size (N_i) : taille de l'échantillon
- Diamètre (Dia): plus grand plus court chemin entre tous les nœuds d'un groupe/essaim

En conclusion...

- Essaim de nanosatellites : système distribué mobile fortement hétérogène
- Besoin d'une approche hybride afin d'optimiser le fonctionnement du système
- Besoin de limiter la redondance des paquets afin d'éviter la congestion du réseau
 - Subdiviser le réseau en sous-réseaux distincts

