CLAIMS

	∠₹.	A pr	epolymer, prepared by reacting a mixture comprising:		
		(a)	at least one multifunctional compound,		
		(b)	at least one diisocyanate, and		
5		(c)	at least one diol,		
			wherein said diol has a weight average molecular weight		
	of at i	most 7	7000,		
			said prepolymer has a viscosity of at most 100,000 cps at		
	70°C,	and			
10			said prepolymer, when reacted with an excess of water,		
	forms a hydrogel polymer.				
	2.	A pre	epolymer, prepared by reacting a mixture comprising:		
		(a)	at least one triisocyanate,		
		(b)	at least one diisocyanate, and		
15		(c)	at least one polyalkylene oxide,		
			wherein a molar ratio of (a):(b):(c) in said mixture is 0.9-		
	1.1:1.8-3.3:1.2-3.3,				
			said at least one polyalkylene oxide has a weight average		
	molec	ular w	eight of at most 7000, and		
20			said prepolymer, when reacted with an excess of water,		
	forms a hydrogel polymer.				
	3.	A pre	epolymer, prepared by reacting a mixture comprising:		
		(a)	at least one triol,		
		(b)	at least one diisocyanate, and		
25		(c)	at least one polyalkylene oxide,		
			wherein a molar ratio of (a):(b):(c) in said mixture is 0.9-		
	1.1:1.8	8-2.2:4	4.5-5.5,		
			said at least one polyalkylene oxide has a weight average		
	molec	ular w	reight of at most 7000, and		

said prepolymer, when reacted with an excess of water, forms a hydrogel polymer.

4. The prepolymer of Claim 2, wherein said molar ratio of (a):(b):(c) in said mixture is 0.97-1.1.03:1.94-2.06:1.94-2.06, and

said at least one polyalkylene oxide has a weight average molecular weight of 1000-2000.

- 5. The prepolymer of Claim 3, wherein said molar ratio of (a):(b):(c) in said mixture is 0.97-1.1.03:1.94-2.06:4.85-5.15, and said at least one polyalkylene oxide has a weight average molecular weight of 1000-2000.
- 6. The prepolymer of Claim 4, wherein said prepolymer has a viscosity of 1000 to 50,000 cps at 70°C.
- 7. The prepolymer of Claim 5, wherein said prepolymer has a viscosity of 1000 to 50,000 cps at 70°C.
 - 8. A prepolymer of formula I:

5

10

$$0 = C = N - X$$

$$NH - CO - Z - CO$$

$$V - N - C$$

$$V -$$

Formula I

wherein X is a trivalent organic group containing 3-20 carbon atoms;

Y is a divalent organic group containing 3-20 carbon atoms;

Z is an oligomer consisting of monomer units selected from the group consisting of -(CH₂-CH₂-O)-, -(CH₂-CH(CH₃)-O)-, -(CH(CH₃)-CH₂-O)-, -(CH(CH₂-CH₃)-O)-, -(CH(CH₂-CH₃)-CH₂-O)- and -(CH(CH₃)-CH(CH₃)-O)-, and

Z has a weight average molecular weight of at most 7000.

9. A prepolymer of formula II:

5

Formula II

wherein X is a trivalent organic group containing 3-20 carbon atoms;

Y is a divalent organic group containing 3-20 carbon atoms; Z is an oligomer consisting of monomer units selected from the group consisting of -(CH₂-CH₂-O)-, -(CH₂-CH(CH₃)-O)-, -(CH(CH₃)-CH₂-O)-, -(CH(CH₂-CH₃)-O)-, -(CH(CH₂-CH₃)-O)- and -(CH(CH₃)-CH(CH₃)-O)-, and

Z has a weight average molecular weight of at most 7000.

	10.	The prepolymer of Claim 8, wherein Y is a divalent aliphatic group, Z has a weight average molecular weight of 1000-2000, and said prepolymer has a viscosity of 1000 to 50,000 cps at 70°C.	
5	11.	The prepolymer of Claim 9, wherein	
		Y is a divalent aliphatic group,	
		Z has a weight average molecular weight of 1000-2000, and said prepolymer has a viscosity of 1000 to 50,000 cps at 70°C.	
	12.	A mixture, comprising:	
10		(i) water, and	
		(ii) the prepolymer of Claim 2.	
	13.	A mixture, comprising:	
		(i) water, and	
		(ii) the prepolymer of Claim 3.	
15	14.	A mixture, comprising:	
		(i) water, and	
		(ii) the prepolymer of Claim 8.	
	15.	A mixture, comprising:	
		(i) water, and	
20		(ii) the prepolymer of Claim 9.	
	16.	The mixture of Claim 12, consisting essentially of:	
		(i) said water, and	
		(ii) said prepolymer.	
	17.	The mixture of Claim 13, consisting essentially of:	
25		(i) said water, and	
		(ii) said prepolymer.	

-32-The mixture of Claim 14, consisting essentially of: 18. (i) said water, and (ii) said prepolymer. 19. The mixture of Claim 15, consisting essentially of: (i) said water, and (ii) said prepolymer. 20. The mixture of Claim 12, wherein said mixture has a viscosity of 15 to 500 cps at 50°C. The mixture of Claim 13, wherein said mixture has a viscosity of 21. 15 to 500 cps at 50°C. 22. The mixture of Claim 14, wherein said mixture has a viscosity of 15 to 500 cps at 50°C. 23. The mixture of Claim 15, wherein said mixture has a viscosity of 15 to 500 cps at 50°C. A polyurethane hydrogel, prepared by reacting the prepolymer of Claim 2 with an excess of water. A polyurethane hydrogel, prepared by reacting the prepolymer 25. of Claim 3 with an excess of water. A polyurethane hydrogel, prepared by reacting the prepolymer 26. of Claim 8 with an excess of water.

A polyurethane hydrogel, prepared by reacting the prepolymer

5

10

15

20

27.

of Claim 9 with an excess of water.

28. A polyurethane hydrogel, comprising units of formula III

Formula III

wherein X is a trivalent organic group containing 3-20 carbon

atoms;

5

10

Y is a divalent organic group containing 3-20 carbon atoms; Z is an oligomer consisting of monomer units selected from the group consisting of -(CH₂-CH₂-O)-, -(CH₂-CH(CH₃)-O)-, -(CH(CH₃)-CH₂-O)-, -(CH(CH₂-CH₃)-O)-, -(CH(CH₂-CH₃)-O)- and -(CH(CH₃)-CH(CH₃)-O)-, and

Z has a weight average molecular weight of at most 7000.

29. A polyurethane hydrogel, comprising units of formula VI

Formula VI

wherein X is a trivalent organic group containing 3-20 carbon

atoms;

Y is a divalent organic group containing 3-20 carbon atoms; Z is an oligomer consisting of monomer units selected from the group consisting of -(CH₂-CH₂-O)-, -(CH₂-CH(CH₃)-O)-, -(CH(CH₃)-CH₂-O)-, -(CH(CH₂-CH₃)-O)-, -(CH(CH₂-CH₃)-O)-, and -(CH(CH₃)-CH(CH₃)-O)-, -(CH(CH₃)-O)-, -(CH(CH₃)-CH₃)-O)-, -(CH₃)-CH₃-CH₃)-O)-, -(CH₃)-CH₃-CH

10 and

Z has a weight average molecular weight of at most 7000.

- The polyurethane hydrogel of Claim 28, whereinY is a divalent aliphatic group, andZ has a weight average molecular weight of 1000-2000.
- 31. The polyurethane hydrogel of Claim 29, whereinY is a divalent aliphatic group, andZ has a weight average molecular weight of 1000-2000.

15

	32. Claim 24.	A contact lens, comprising the polyurethane hydrogel of
	33. Claim 25.	A contact lens, comprising the polyurethane hydrogel of
5	34. Claim 26.	A contact lens, comprising the polyurethane hydrogel of
	35. Claim 27.	A contact lens, comprising the polyurethane hydrogel of
10	36.	A method of forming a contact lens, comprising: molding the mixture of Claim 12, to form a contact lens.
	37.	A method of forming a contact lens, comprising: molding the mixture of Claim 13, to form a contact lens.
	38.	A method of forming a contact lens, comprising: molding the mixture of Claim 14, to form a contact lens.
15	39.	A method of forming a contact lens, comprising: molding the mixture of Claim 15, to form a contact lens.
	40. a fully hydr	The method of Claim 36, wherein said contact lens is formed in ated state.
20	41. a fully hydr	The method of Claim 37, wherein said contact lens is formed in ated state.
	42. a fully hydr	The method of Claim 38, wherein said contact lens is formed in ated state.
	43.	The method of Claim 39, wherein said contact lens is formed in

a fully hydrated state.

44. A method of forming a contact lens, comprising:
molding a mixture comprising (a) a prepolymer, and (b) water, to
form a contact lens,

wherein said contact lens comprises a polyurethane hydrogel, and

said contact lens is formed in a fully hydrated state.

- 45. The method of Claim 44, wherein said prepolymer has a viscosity of at most 100,000 cps at 70°C.
- 46. The prepolymer of Claim 44, wherein said prepolymer has a viscosity of 1000 to 50,000 cps at 70°C.
- 47. The method of Claim 36, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 48. The method of Claim 37, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 49. The method of Claim 38, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 50. The method of Claim 39, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 51. The method of Claim 44, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 52. The method of Claim 45, wherein said molding is carried out with a circular turntable installation having a plurality of molding stations.
- 53. The method of Claim 36, wherein said molding is one member selected from the group consisting of cast molding, thermoforming, compression molding, and injection molding.

10

5

15

20

- 54. The method of Claim 53, wherein said injection molding is reactive injection molding.
 - 55. A precursor to a polyurethane hydrogel having Formula (VIII):

Formula (VIII)

wherein X is a trivalent organic group containing 3-20 carbon atoms;

Y is a divalent organic group containing 3-20 carbon atoms; Z is an oligomer consisting of monomer units selected from the group consisting of -(CH2-CH2-O)-, -(CH2-CH(CH3)-O)-, -(CH(CH3)-O)- and -(CH(CH3)-CH2-O)- and -(CH(CH3)-O)-, and

5

Z has a weight average molecular weight of at most 7000, L is either hydrogen or forms a double bond, and Q is selected from the group consisting of carboxylic acid, hydrogen and O=C, provided that when Q is O=C, L forms a double bond between nitrogen and the carbon atom of the carbonyl.

56. A precursor to a polyurethane hydrogel having Formula (IX):

Formula (IX)

wherein X is a trivalent organic group containing 3-20 carbon atoms;

Y is a divalent organic group containing 3-20 carbon atoms; Z is an oligomer consisting of monomer units selected from the group consisting of -(CH₂-CH₂-O)-, -(CH₂-CH(CH₃)-O)-, -(CH(CH₂-CH₃)-O)-, -(CH(CH₂-CH₃)-CH₂-O)- and -(CH(CH₃)-CH(CH₃)-O)-, and

Z has a weight average molecular weight of at most 7000,

L is either hydrogen or forms a double bond, and Q is selected from the group consisting of carboxylic acid, hydrogen and O=C, provided that

5

10

when Q is O=C, L forms a double bond between nitrogen and the carbon atom of the carbonyl.