Laborationsinformation

Information om Python

Observera att Python (via numpy) klarar av vektor- och matrisoperationer.

Python-lathund

Skriv programmet med valfri texteditor (t ex emacs), och spara i en fil med namn med extension ".py", t.ex. "PellesEgenSimplexmetodNr1.py". (Observera att Unix gör skillnad på gemener och versaler.)

Skriv först i filen from numpy import *, för att kunna använda finesserna i numpy. Observera att index för vektorer och matriser vanligtvs börjar med 0 (inte 1) i Python.

Vad ska åstadkommas	Python (numpy)
Hjälp om <funktion>.</funktion>	help(<funktion>)</funktion>
Skalärprodukt av två vektorer a och b	dot(a,b)
Produkt av matris A och vektor x dvs. Ax	dot(A,x)
Transponat av matris A , dvs. A^T	A.T
Beräkna invers B^{-1} .	linalg.inv(B)
Lösa ut x ur $Bx = b$.	linalg.solve(B,b)
Beräkna $A^T y$.	dot(A.T,y)
Elementvis $a * b$, a/b .	a*b, a/b
Finn minimum av vektorn x .	min(x)
Finn index till minimum av vektorn x .	argmin(x)
Index till vissa element i vektorn x .	nonzero(x>0.5)
Antal rader, m , och kolumner, n , i A .	[m,n]=shape(A)
Bilda $m \times n$ -matrix med nollor.	zeros((m,n))
Bilda $m \times m$ enhetsmatris.	eye(m)
Normen av skillnaden mellan vektorerna x och y	linalg.norm(x-y)
Vektorn $(1,2,3,4,5,6,7)$	range(1,7)
Kolumnerna i A som ges av indexen i t .	A[:,t]
Skriv ut 'text' på skärmen.	<pre>print('text')</pre>
Skriv ut värdet på z snyggt på skärmen.	<pre>print('z = '+repr(z))</pre>
Skriv ut värdena i vektor x snyggt på skärmen.	<pre>print('x: '+', '.join(map(str,x)))</pre>
Spara tid i t. (Notera skillnaden mellan före och efter.)	t=time.time()
Upprepa för $j = 1 \dots, n$.	for j in range(1,n)
Extrahera de värden i vektorn a som inte finns	setdiff1d(a,b)
i vektorn b (resultatet blir sorterat).	
While-sats.	while e > 0:
	e = e - 1
If-sats.	if i == j:
	a[i,j] = 2
	elseif abs[i-j] == 1:
	a[i,j] = -1
	else:
	a[i,j] = 0
	end

Hur man läser in filnamn och läser in data från filer framgår av filen "lp_init.py". Den körs med kommandot python lp_init.py datafilnam.