-Correction-Dichotomie et théorème de Rolle

- I - Le théorème des valeurs intermédiaires

- 1. Si I = [a, b] est un intervalle réel fermé borné et f une fonction continue de I dans \mathbb{R} telle que f(a) f(b) < 0, alors l'équation f(x) = 0 admet au moins une solution $\alpha \in]a, b[$.
- 2. (a) **Initialisation**: pour n = 0.

$$a_0 = a, b_0 = b$$
 et $\frac{a_0 + b_0}{2}$ est le milieu de $[a_0; b_0]$.

Si
$$f\left(\frac{a_0 + b_0}{2}\right) > 0$$
 alors $a_1 = a_0$, $b_1 = \frac{a_0 + b_0}{2}$, donc $a \leqslant a_0 \leqslant a_1 \leqslant b_1 \leqslant b_0 \leqslant b$.

Sinon,
$$a_1 = \frac{a_0 + b_0}{2}$$
, $b_1 = b_0$, donc $a \le a_0 \le a_1 \le b_1 \le b_0 \le b$.

Hérédité: on suppose la propriété vraie au rang n. En utilisant le même raisonnement que dans l'initialisation, on montre que la propriété est vraie au rang n+1.

Conclusion: $\forall n \in \mathbb{N}, \ a_0 \leqslant a_1 \leqslant b_1 \leqslant b_0 \leqslant b.$

- (b) Les suites (a_n) et (b_n) ont été construites en utilisant le principe de dichotomie donc à chaque étape, la longueur du segment $[a_n;b_n]$ est divisée par 2. Alors, pour tout entier n, $b_n a_n = \frac{b_0 a_0}{2^n}$. Ainsi, la suite $(b_n a_n)$ converge vers 0.
- (c) D'après le résultat démontré à la question 2.(a), la suite (a_n) est croissante majorée par b, donc elle converge : on note ℓ sa limite. De même, (b_n) est décroissante minorée par a, donc elle converge : on note ℓ' sa limite. Alors la suite suite $(b_n a_n)$ converge vers $\ell' \ell$. D'après la question précédente, $\ell' \ell = 0$ et finalement, $\ell = \ell'$.
- (d) Par construction, $\forall n \in \mathbb{N}, f(a_n) \leq 0.$

De plus, par continuité de la fonction f en ℓ , la suite $(f(a_n))$ converge vers $f(\ell)$.

En utilisant les deux résultats, on a : $f(\ell) \leq 0$.

Par un raisonnement analogue avec la suite (b_n) , on démontrer que $f(\ell) \ge 0$.

Finalement, $f(\ell) = 0$.

- II - Le théorème de Rolle

1. (a)

(b) Il semble que les suites (α_n) et (β_n) convergent vers un réel où la fonction change de sens de variation.

2. (a) Pour $x \in \left[a, \frac{a+b}{2}\right]$, on a $x + \frac{b-a}{2} \in \left[\frac{a+b}{2}, b\right]$, donc la fonction g est bien définie et continue sur [a, b].

Comme :

$$g(a) g\left(\frac{a+b}{2}\right) = \left(f\left(\frac{a+b}{2}\right) - f(a)\right) \left(f(b) - f\left(\frac{a+b}{2}\right)\right)$$
$$= \left(f\left(\frac{a+b}{2}\right) - f(a)\right) \left(f(a) - f\left(\frac{a+b}{2}\right)\right)$$
$$= -\left(f\left(\frac{a+b}{2}\right) - f(a)\right)^2 \le 0$$

le théorème des valeurs intermédiaires nous dit qu'il existe un réel $\alpha \in \left[a, \frac{a+b}{2}\right]$ tel que $g(\alpha) = 0$.

(b) Prenant
$$\beta = \alpha + \frac{b-a}{2} \in \left[\frac{a+b}{2}, b\right]$$
, on a $\beta - \alpha = \frac{b-a}{2}$ et :

$$f(\beta) - f(\alpha) = f\left(\alpha + \frac{b-a}{2}\right) - f(\alpha) = g(\alpha) = 0$$

soit:

$$f(\beta) = f(\alpha)$$

(c) Si
$$\alpha \in \left]a, \frac{a+b}{2}\right[$$
, on a alors $\beta \in \left]\frac{a+b}{2}, b\right[$ et il suffit de poser $(\alpha_1, \beta_1) = (\alpha, \beta)$.
Si $\alpha = a$, on a alors $\beta = \frac{a+b}{2}$, donc la fonction continue $f:[a,\beta] = \left[a,\frac{a+b}{2}\right] \to \mathbb{R}$ est telle que $f(a) = f(\beta)$ et en conséquence il existe $\gamma < \delta$ dans $[a,\beta]$ tels que $\delta - \gamma = \frac{\beta - a}{2} = \frac{b-a}{4}$ et $f(\gamma) = f(\delta)$.
Si $a < \gamma$, on a alors $a < \gamma < \delta < b$, $f(\gamma) = f(\delta)$ et $\delta - \gamma = \frac{b-a}{4} < \frac{b-a}{2}$, donc $(\alpha_1,\beta_1) = (\gamma,\delta)$ convient.
Si $\gamma = a$, on a alors $\delta = a + \frac{b-a}{4}$ et $f(a) = f(\delta) = f\left(a + \frac{b-a}{4}\right)$ avec $f(a) = f(\beta) = f\left(\frac{a+b}{2}\right)$, donc $f\left(a + \frac{b-a}{4}\right) = f\left(\frac{a+b}{2}\right)$ et considérant la fonction continue $f:\left[a + \frac{b-a}{4}, \frac{a+b}{2}\right] \to \mathbb{R}$, on trouve $[\alpha_1,\beta_1] \subset \left[a + \frac{b-a}{4}, \frac{a+b}{2}\right] \subset]a,b[$ tel que $\beta_1 - \alpha_1 = \frac{b-a}{8} < \frac{b-a}{2}$ tel que $f(\alpha_1) = f(\beta_1)$.

On procède de manière analogue dans le cas où $\alpha = \frac{a+b}{2}$ et $\beta = b$.

- 3. On procède par récurrence sur $n \geq 0$.Les intervalles $[\alpha_0, \beta_0] = [a, b]$ et $[\alpha_1, \beta_1]$ sont construits. Supposant le résultat acquis jusqu'au rang $n-1 \geq 1$, la question précédente appliquée à la fonction continue $f: [\alpha_{n-1}, \beta_{n-1}] \to \mathbb{R}$ nous assure de l'existence de $[\alpha_n, \beta_n] \subset]\alpha_{n-1}, \beta_{n-1}[$ répondant à la question.
- 4. Pour tout entier $n \in \mathbb{N}^*$, on a :

$$a < \alpha_{n-1} < \alpha_n < \beta_n < \beta_{n-1} < b$$

donc les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ sont strictement monotones et bornées. Il en résulte qu'elles convergent vers ℓ et ℓ' dans]a,b[respectivement (de $a<\alpha_1<\alpha_n<\beta_n<\beta_1< b$ pour $n\geq 2$,

on déduit que $a < \alpha_1 \le \ell \le \ell' \le \beta_1 < b$).

Faisant tendre n vers l'infini dans les égalités :

$$\forall n \in \mathbb{N}^*, \ 0 < \beta_n - \alpha_n \le \frac{\beta_{n-1} - \alpha_{n-1}}{2}$$

on obtient $0 \le \ell' - \ell \le \frac{\ell - \ell'}{2}$, soit $\ell - \ell' = 0$ et $\ell = \ell'$.

- 5. (a) Par stricte monotonie, on a $a < \alpha_n < \ell < \beta_n < b$ pour tout $n \in \mathbb{N}^*$.
 - (b) Par définition du nombre dérivé.
 - (c) En se rappelant que $f(\alpha_n) = f(\beta_n)$, on a :

$$u_n v_n = \frac{f(\ell) - f(\alpha_n)}{\ell - \alpha_n} \frac{f(\beta_n) - f(\ell)}{\beta_n - \ell} = -\frac{(f(\ell) - f(\alpha_n))^2}{(\ell - \alpha_n)(\beta_n - \ell)} < 0$$

donc:

$$0 \le \left(f'(\ell)\right)^2 = \lim_{n \to +\infty} u_n v_n \le 0$$

soit $(f'(\ell))^2 = 0$ et $f'(\ell) = 0$.

- III - Applications

- 1. (a) On note h la fonction définie sur \mathbb{R} par $h(x) = \frac{f(b) f(a)}{b a}(x a) + f(a)$. Alors h est une fonction affine qui coı̈ncide avec f en a et b.
 - (b) On note g la fonction définie sur [a;b] par g(x)=f(x)-h(x). Ainsi définie, g est une fonction continue sur [a;b], dérivable sur]a;b[et telle que g(a)=g(b)=0. D'après le théorème de Rolle, il existe $c \in]a;b[$ tel que g'(c)=0.

Or
$$\forall x \in]a; b[, g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Ainsi, $g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Leftrightarrow f(b) - f(a) = (b - a)f'(c).$

2. (a) On suppose que f est croissante sur [a;b]. Soit $c \in]a;b[$ et $x \in]c;b[$. Puisque f est croissante sur [a;b] alors $f(x)-f(c) \ge 0$

$$\begin{array}{ccc}
f(x) - f(c) & \geqslant & 0 \\
\Rightarrow & \frac{f(x) - f(c)}{x - c} & \geqslant & 0 \\
\Rightarrow & \lim_{x \to c} \frac{f(x) - f(c)}{x - c} & \geqslant & 0 \\
\Rightarrow & f'(c) & \geqslant & 0
\end{array}$$

Réciproquement, on suppose f' positive sur]a;b[. Soient α , $\beta \in [a;b]$ avec $\alpha < \beta$. D'après le théorème des accroissements finis, il existe $c \in]\alpha;\beta[$ tel que $f(\beta)-f(\alpha)=(\beta-\alpha)f'(c)$. Or $f'(c) \ge 0$ donc $f(\beta)-f(\alpha) \ge 0$ et finalement $f(\beta) \ge f(\alpha)$.

- (b) Raisonnement identique à celui de la question précédente.
- (c) Soient α , $\beta \in [a; b]$ tels que $\alpha < \beta$. f est continue sur $[\alpha; \beta]$, dérivable sur $]\alpha; \beta[$. D'après le théorème des accroissements finis, il existe $c \in]\alpha; \beta[$ tel que $f(\beta) f(\alpha) = (\beta \alpha)f'(c)$. Or f'(c) > 0 et $\beta \alpha > 0$, donc $f(\beta) > f(\alpha)$. Ainsi f est strictement croissante sur [a; b].
- (d) La réciproque du résultat précédent est fausse. La fonction cube est strictement croissante sur \mathbb{R} et pourtant sa dérivée s'annule en 0.