The equivalence between the isomorphism between two objects, the isomorphism of the pushforward, and the isomorphism of the pushback

Ifan Howells-Baines

July 2025

This short project is dedicated to proving an important theorem. In summary, it states that we can learn a lot about an object X by considering it's relationships to other objects.

In this document we will denote the morphisms between objects X and Y in a category C by C(X,Y). It is often written as $\operatorname{Hom}_C(X,Y)$ or $\operatorname{Hom}(X,Y)$ if the category is clear from context. We will write maps on the right.

Theorem. Let X and Y be objects from a category C. Then the following are equivalent:

- 1. The morphism $f: X \to Y$ is an isomorphism;
- 2. For any object Z, the pushforward $f_{\star}: C(Z,X) \to C(Z,Y)$ is an isomorphism (of sets);
- 3. For any object Z, the pullback $f^*: C(Y,Z) \to C(X,Z)$ is an isomorphism (of sets).

Proof. We will prove $1 \Leftrightarrow 3$, then $1 \Leftrightarrow 2$, and finally $2 \Rightarrow 3$. For convenience, we have included relevant commutative diagrams in Figure 1.

 $(1 \Leftrightarrow 3)$ First, assume that f is an isomorphism. In other words, the inverse $f^{-1}: Y \to X$ exists. We want to show that the pullback f^* is an isomorphism of sets. We will do this by constructing a map and showing it is the inverse of f^* . Consider $(f^{-1})^*$, the pullback of f^{-1} . Let $g_1 \in C(Y, Z)$. Then

$$g_1 f^*(f^{-1})^* = f^{-1} f g_1 = g_1.$$

Similarly, let $g_2 \in C(X, Z)$. Then

$$g_2(f^{-1})^* f^* = f f^{-1} g_2 = g_2.$$

Hence $(f^{-1})^* = (f^*)^{-1}$, and f^* is an isomorphism.

Next, assume that f^* is an isomorphism for all Z. We want to show that f is an isomorphism. Take Z = X, so the pullback is a map between C(Y, X) and C(X, X). Since f is surjective, we can find a $h \in C(Y, X)$ such that $hf^* = fh = \mathrm{id}_X$. This seems like a good candidate for our inverse for f.

Now consider Z = Y, so the pullback is a map between C(Y,Y) and C(X,Y). Since

$$\mathrm{id}_Y f^\star = f \mathrm{id}_Y = f$$

and

$$(hf)f^* = f(hf) = (fh)f = \mathrm{id}_X f = f,$$

we can deduce that $hf = id_Y$ as f^* is injective. Therefore h is an inverse for f, and f is an isomorphism.

 $(1 \Leftrightarrow 2)$ The reasoning to this is very similar to above, so we omit it.

 $(2 \Rightarrow 3)$ Assume f_* is an isomorphism. From above, we know that f is an isomorphism, so f^{-1} exists. Consider the pullback $(f^{-1})^*: C(X,Z) \to C(Y,Z)$. Let $g_1 \in C(Y,Z)$. Then

$$g_1 f^*(f^{-1})^* = g_1 f f^{-1} = g.$$

Similarly, let $g_2 \in C(X, Z)$. Then

$$g_2(f^{-1})^* f^* = g_2 f^{-1} f = g.$$

As g_1 and g_2 were arbitary, we have shown that $(f^{-1})^* = (f^*)^{-1}$, and therefore f^* is an isomorphism.

 $X \xrightarrow{f} Y$ $g_2 f_* := f g_2 \xrightarrow{g} Z$

(a) The pushforward f_{\star} .

(b) The pullback f^* .

(c) The pushforward $(f^{-1})_{\star}$.

(d) The pullback $(f^{-1})^*$.

Figure 1: Commutative diagrams of pushforwards and pullbacks.