Colégio BBBB Bandeirantes BBBB BBBB

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 163005
3.0	Matemática	Álgebra	1.a Série	М	19/09/2016	
Questões	Testes	Páginas	Professor(es)		•	
11	5	9	Fábio Cáceres / Fátima	Regina / Sílvia	Guitti	

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	 Assinatura do	o Professor

Instruções

- 1. Coloque nome, número e turma em todas as folhas da prova.
- 2. A prova pode ser feita a lápis com respostas a tinta.
- 3. Questões rasuradas ou desorganizadas serão anuladas.
- 4. Não escreva no tampo da mesa. Existem espaços reservados para rascunho na própria prova.
- 5. Não é permitido o uso de calculadoras.

Boa sorte! Ótima prova!

Parte I: Testes (valor: 1,5)

01. Se $(0.0625)^{x+2} = 0.25$, então $(x+1)^6$ vale:

- a. $\frac{1}{2}$
- b. $\frac{1}{32}$
- c. $\frac{1}{64}$
- d. 64
- e. 32

02. (FUVEST) Se $x = \log_4 7$ e $y = \log_{16} 49$ então x - y é:

- a. log_47
- b. $log_{16}7$
- c. 1
- d. 2
- e. 0

03. (U.F.GO) Se $\log_2(x - y) = a e x + y = 8$, então $\log_2(x^2 - y^2)$ vale:

- a. 2 + a
- b. 3 + a
- c. 3*a*
- d. 8*a*
- e. 8 + a

04. (UFJF-adaptada) Dada a equação:

 $2^{3x-2} \cdot 8^{x+1} = 4^{x-1}$, podemos afirmar que a solução é um número:

- a. natural
- b. inteiro negativo
- c. racional maior que 1
- d. racional entre 0 e 1
- e. racional menor que 1.

05. (UNIFOR-CE) Se $16^{x-1} = \frac{1}{8}$ então $\log_2 x$ é:

- a. -2
- b. 2
- c. $-\frac{1}{2}$
- d. $\frac{1}{2}$
- e. $\frac{1}{4}$

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01	02	03	04	05
a.					
b.					
C.					
d.					
e.					

Aluno(a)	Turma	N.o	P 163005
			p 3

Parte II: Questões (valor: 8,5)

01. (valor: 1,0) Resolver as seguintes equações exponenciais sendo $U=I\!R$:

a.
$$(0,111...)^{x-2} = (3\sqrt{3})^{2x-4}$$

b.
$$4^x - 7 \cdot 2^x - 8 = 0$$

02. (valor: 0,6) Resolva o seguinte sistema:

$$\begin{cases} 2^x = \frac{1}{2^{4+y}} \\ 2x + y = 2 \end{cases}$$

03. (valor: 0,8) (Mack-Adaptada) Determine a soma das raízes da equação:

$$2^{2x+1} - 2^{x+4} = 2^{x+2} - 32$$

Aluno(a)	Turma	N.o	P 163005
			p 5

04. (valor: 0,6) (Mack-2013/Adaptada) Sejam as funções $f \in g$ de IR em IR, definidas por $f(x) = x^2 - 4x + 10$ e g(x) = -5x + 20. Determine o valor de:

$$\frac{f(4) - g(f(4))}{f(2) + g(f(2))}$$

05. (valor: 0,6) Dadas as funções f e g em IR, definidas por: f(x) = 3x - 2 e g(x) = 2x - 5, determine $[g(f(x))]^{-1}$

06. (valor: 0,7) Seja f a função bijetora cuja lei é dada por: $f(x) = \frac{x+3}{2x-4}$.

a. Determine $f^{-1}(x)$

- b. Dom. (f(x))
- c. Im. (f(x))
- d. Dom. $(f^{-1}(x))$
- e. Im. $(f^{-1}(x))$

07. (valor: 0,6) Sendo f(x) = 2x + 1 e $f(g(x)) = 2x^2 - 6x + 3$ determine g(x)

Aluno(a)	Turma	N.o	P 163005
			p 7

08. (valor: 0,7) Determine o valor de S.

$$S = 3 \log_8 \sqrt[3]{2} + \log_3 (\log_2 8) + \frac{1}{6} \log_{\sqrt{2}} 0,0625$$

09. (valor: 0,8) Sabendo que $\log 2 = a$; $\log 3 = b$; $\log 7 = c$ determine o valor de:

a. log 315

b. $\log_{56} 84$

P 163005

p 8

- 10.
- a. (valor: 0,6) (INSPER-2013/Adaptada) Resolva a equação

$$\log_{x}(x+3) + \log_{x}(x-2) = 2$$

b. (valor: 0,7) (FUVEST-2010) Determine a solução do sistema de equações:

$$\begin{cases} \log_y (9x - 35) = 6 \\ \log_{3y} (27x - 81) = 3 \end{cases}$$

Aluno(a)	Turma	N.o	P 163005
			p 9

11. (valor: 0,8) Os biólogos dizem que há uma alometria entre duas variáveis, x e y, quando é possível determinar duas constantes, c e n, de maneira que $y = c \cdot x^n$.

Nos casos de alometria, pode ser conveniente determinar c e n por meio de dados experimentais. Consideremos uma experiência hipotética na qual se obtiveram os dados da tabela a seguir. Supondo que haja uma relação de alometria entre x e y e considerando $\log 2 = 0,301$. Determine o valor de n.

x	У
2	16
20	40

Obs: Alometria Substantivo feminino (Biologia) crescimento ou desenvolvimento anormal ou desproporcional de um órgão ou de uma parte de um organismo em relação ao conjunto.

BBBandeirantes

Parte I: Testes (valor: 1,5)

01. Se $(0.0625)^{x+2} = 0.25$, então $(x+1)^6$ vale:

- $(x+1)^6$

- b. $\frac{1}{32}$ -4x 8 = -2 -4x = 6
- $\left(-\frac{3}{2}+1\right)^{6}$

- c. $\frac{1}{64}$ $x = -\frac{3}{2}$

 $\left(-\frac{1}{2}\right)^6 = \frac{1}{64}$

- d. 64
- e. 32

Alternativa c.

02. (FUVEST) Se $x = \log_4 7$ e $y = \log_{16} 49$ então x - y é:

- a. $\log_4 7$
- $\log_{16} 49 = y$
- $\log o: x = y e x y = 0$

- b. $\log_{16} 7$
- $\log_{4^2} 7^2 = y$
- c. 1
- $\frac{2}{2}\log_4 7 = y$
- d. 2
- $y = \log_4 7$
- e. 0

Alternativa e.

03. (U.F.GO) Se $\log_2(x - y) = a$ e x + y = 8, então $\log_2(x^2 - y^2)$ vale:

- a. 2 + a
- $\log_2(x^2 y^2) = \log_2(x + y)(x y) = \log_2(x + y) + \log_2(x y)$
- b. 3 + a
- $\log_2 8 + a = 3 + a$
- c. 3*a*
- d. 8a
- e. 8 + a
- Alternativa **b**.

04. (UFJF-ADAPTADA) Dada a equação:

 $2^{3x-2} \cdot 8^{x+1} = 4^{x-1}$, podemos afirmar que a solução é um número:

a. natural.

- $2^{3x-2} \cdot 2^{3(x+1)} = 2^{2(x-1)} \Longrightarrow 2^{6x+1} = 2^{2x-2}$
- b. inteiro negativo.
- $6x + 1 = 2x 2 \Rightarrow 4x 3 \Rightarrow x = -\frac{3}{4}$ c. racional maior que 1.
- d. racional entre 0 e 1.
- e. racional menor que 1.
- Alternativa e.

05. (UNIFOR-CE) Se $16^{x-1} = \frac{1}{8}$ então $\log_2 x$ é:

a. -2

- $\log_2 x = \log_2 \frac{1}{4} = -2$

b. 2

 $16^{x-1} = \frac{1}{8}$ $2^{4x-4} = 2^{-3}$

c. $-\frac{1}{2}$

4x = 1

d. $\frac{1}{2}$

 $x = \frac{1}{4}$

- e. $\frac{1}{4}$
- Alternativa **a**.

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01	02	03	04	05
a.					X
b.			Χ		
C.	Χ				
d.					
e.		Χ		Χ	

Parte II: Questões (valor: 8,5)

- 01. (valor: 1,0) Resolver as seguintes equações exponenciais sendo U = IR:
- a. $(0,111...)^{x-2} = (3\sqrt{3})^{2x-4}$ $\left(\frac{1}{9}\right)^{x-2} = (3 \cdot 3^{\frac{1}{2}})^{2x-4}$

$$3^{-2x+4} = 3^{3x-6}$$

$$-2x + 4 = 3x - 6$$

$$-5x = -10$$

$$x = 2$$
 $S = \{2\}$

$$S = \{2\}$$

b. $4^x - 7 \cdot 2^x - 8 = 0$

$$2^{2x} - 7 \cdot 2^x - 8 = 0$$
 fazendo $2^x = p$

fazendo
$$2^x = p$$

$$p^2 - 7p - 8 = 0$$

$$(p-8)(p+1)=0$$

$$p = 8$$
, $p = -1$

$$p = 2^x \Rightarrow 2^x = 8 \Rightarrow x = 3$$

$$p = 2^x \Rightarrow 2^x = -1, x \notin IR$$

$$S = \{3\}$$

02. (valor: 0,6) Resolva o seguinte sistema:

(valor. 0,6) Resolva o seguinte sistema.
$$\begin{cases} 2^x = \frac{1}{2^{4+y}} \Rightarrow 2^x = 2^{-4-y} \Rightarrow x = -4 - y \Rightarrow x + y = -4 \\ 2x + y = 2 \end{cases}$$

$$\begin{cases} x + y = -4 \\ 2x + y = 2 \end{cases} \Rightarrow \begin{cases} -x - \cancel{y} = 4 \\ 2x + \cancel{y} = 2 \end{cases}$$

$$x = 6$$

$$x = 6$$

$$x + y = -4 \Rightarrow 6 + y = -4 \Rightarrow y = -10$$

$$S = \{(6, -10)\}$$

03. (valor: 0,8) (MACK-ADAPTADA) Determine a soma das raízes da equação:

$$2^{2x+1} - 2^{x+4} = 2^{x+2} - 32$$

$$2^{2x} \cdot 2 - 2^{x} \cdot 2^{4} = 2^{x} \cdot 2^{2} - 32$$

$$2 \cdot 2^{2x} - 16 \cdot 2^{x} - 4 \cdot 2^{x} + 32 = 0$$

$$2 \cdot 2^{2x} - 20 \cdot 2^{x} + 32 = 0$$

$$2^{2x} - 10 \cdot 2^{x} + 16 = 0$$

$$2^{x} = p$$

$$p^{2} - 10p + 16 = 0$$

$$p^{2} - 10p + 16 = 0$$

$$p^{2} - 2 \Rightarrow x = 1$$

$$(p - 2) (p - 8) = 0$$

$$2^{x} = p \Rightarrow 2^{x} = 8 \Rightarrow x = 3$$

$$p = 2, p = 8$$
Soma das raízes: $1 + 3 = 4$

04. (valor: 0,6) (Mack-2013/Adaptada) Sejam as funções $f \in g$ de IR em IR, definidas por $f(x) = x^2 - 4x + 10$ e g(x) = -5x + 20. Determine o valor de:

$$\frac{f(4) - g(f(4))}{f(2) + g(f(2))}$$

$$f(4) = 4^{2} - 4 \cdot 4 + 10$$

$$f(4) = 10$$

$$g(f(4)) = g(10) = -30$$

$$f(2) = 4 - 8 + 10 = 6$$

$$g(f(2)) = g(6) = -10$$

$$\frac{f(4) - g(f(4))}{f(2) + g(f(2))} = \frac{10 + 30}{6 - 10} = \frac{40}{-4} = -10$$
Resposta: -10

05. (valor: 0,6) Dadas as funções $f \in g$ em IR, definidas por: f(x) = 3x - 2 e g(x) = 2x - 5, determine $[g(f(x))]^{-1}$

$$g(f(x)) = 2 \cdot (3x - 2) - 5 = 6x - 4 - 5$$

$$g(f(x)) = 6x - 9$$

$$g(f(x))^{-1} = ?$$

$$y = 6x - 9$$

$$x = 6y - 9 \Rightarrow 6y = x + 9$$

$$y = \frac{x + 9}{6}$$

Resposta:
$$[g(f(x)]^{-1}(x) = \frac{x+9}{6}$$

06. (valor: 0,7) Seja f a função bijetora cuja lei é dada por: $f(x) = \frac{x+3}{2x-4}$.

a. Determine
$$f^{-1}(x)$$

$$y = \frac{x+3}{2x-4}$$

$$x = \frac{y+3}{2y-4}$$

$$2xy - 4x = y + 3$$

$$2xy - y = 3 + 4x$$

$$y(2x-1) = 3 + 4x \Rightarrow y = \frac{3+4x}{2x-1} \Rightarrow f^{-1}(x) = \frac{3+4x}{2x-1}$$

- b. Dom. $(f(x)) = \{x \in IR/x \neq 2\}$
- c. Im. $(f(x)) = \left\{ y \in IR/y \neq \frac{1}{2} \right\}$
- d. Dom. $(f^{-1}(x)) = \left\{ x \in IR / x \neq \frac{1}{2} \right\}$
- e. Im. $(f^{-1}(x)) = \{ y \in IR/y \neq 2 \}$
- 07. (valor: 0,6) Sendo f(x) = 2x + 1 e $f(g(x)) = 2x^2 6x + 3$ determine g(x)

$$f(g(x)) = 2x^2 - 6x + 3$$

Seja:
$$g(x) = p$$

$$f(p) = 2x^2 - 6x + 3$$

$$2p + 1 = 2x^2 - 6x + 3$$

$$p = \frac{2x^2 - 6x + 2}{2}$$

$$p = x^2 - 3x + 1$$

$$g(x) = p \Rightarrow g(x) = x^2 - 3x + 1$$

08. (valor: 0,7) Determine o valor de S.

$$S = 3 \underbrace{\log_8 \sqrt[3]{2}}_{A} + \underbrace{\log_3 (\log_2 8)}_{B} + \frac{1}{6} \underbrace{\log_{\sqrt{2}} 0,0625}_{C}$$

S = 3A + B +
$$\frac{1}{6}$$
 C \Rightarrow 3 · $\frac{1}{9}$ + 1 + $\frac{1}{6}$ · (-8) = $\frac{1}{3}$ + 1 - $\frac{4}{3}$ = 0

Resposta: S = 0

Calculando:

$$A = \log_8 \sqrt[3]{2}$$

$$B = \log_3(\log_2 8)$$

$$\log_{\sqrt{2}} 0,0625 = C$$

$$8^{A} = 2^{\frac{1}{3}}$$

$$B = \log_3 3$$

$$2^{\frac{1}{2}C} = 2^{-4}$$

$$2^{A} = 2^{\frac{1}{3}}$$

$$B = 1$$

$$\frac{1}{2}C = -4$$

$$A = \frac{1}{9}$$

$$C = -8$$

09. (valor: 0,8) Sabendo que $\log 2 = a$; $\log 3 = b$; $\log 7 = c$ determine o valor de:

a.
$$\log 315 = \log 3^2 \cdot 5 \cdot 7 = 2 \log 3 + \log 5 + \log 7$$

$$2b + \log 5 + c \Rightarrow 2b + 1 - a + c$$

$$\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - a$$

b.
$$\log_{56} 84$$

 $\log_{56} 84 = \frac{\log 84}{\log 56} = \frac{\log 2^2 \cdot 3 \cdot 7}{\log 2^3 \cdot 7}$

$$\frac{2 \log 2 + \log 3 + \log 7}{3 \log 2 + \log 7} = \frac{2a + b + c}{3a + c}$$

a. (valor: 0,6) (INSPER-2013/ADAPTADA) Resolva a equação:

$$\log_{x}(x+3) + \log_{x}(x-2) = 2 \qquad \log_{x}(x+3)(x-2) = 2$$
C.E.: $x+3 > 0 \Rightarrow x > -3$ $x = 2$ $x = 3$ $x = 4$

$$x > 0, x \neq 1 \qquad x = 6$$
Dom Val: $x \in R/x > 2$ $x = 6$

$$x = 6$$

$$x = 6$$

b. (valor: 0,7) (FUVEST-2010) Determine a solução do sistema de equações:

$$\begin{cases} \log_y (9x - 35) = 6 \Rightarrow y^6 = 9x - 35 \rightarrow 1 \\ \log_{3y} (27x - 81) = 3 \Rightarrow (3y)^3 = 27x - 81 \\ 27y^3 = 27x - 81 \\ y^3 = x - 3 \end{cases}$$
Elevando ao quadrado membro a membro
$$(y^3)^2 = (x - 3)^2$$

$$y^6 = x^2 - 6x + 9 \rightarrow 2$$

Comparando as equações (1) e (2)

$$y^{6} = 9x - 35$$

 $y^{6} = x^{2} - 6x + 9$
Temos: $x^{2} - 15x + 45 + 44 = 0$
 $x = + 11$ ou $x = + 44$
Determinando y
 $y^{3} = 1x - 3$
Se $x = 11 \Rightarrow y^{3} = 8 \Rightarrow y = 2$

Se $x = 4 \Rightarrow y^3 = 1 \Rightarrow y = 1 \Rightarrow$ não convém, pela condição de existência

$$S = \{11, 2\}$$

11. (valor: 0,8) Os biólogos dizem que há uma alometria entre duas variáveis, x e y, quando é possível determinar duas constantes, c e n, de maneira que $y = c \cdot x^n$.

Nos casos de alometria, pode ser conveniente determinar c e n por meio de dados experimentais. Consideremos uma experiência hipotética na qual se obtiveram os dados da tabela a seguir. Supondo que haja uma relação de alometria entre x e y e considerando $\log 2 = 0.301$. Determine o valor de n.

Obs: Alometria

Substantivo feminino (Biologia) crescimento ou desenvolvimento anormal ou desproporcional de um órgão ou de uma parte de um

organismo em relação ao conjunto.

X	y
2	16
20	40

 $y = c \cdot x^n \rightarrow \text{vamos substituir os valores da tabela.}$

$$1 \quad \int 16 = c \cdot 2^n$$

$$(2)$$
 $40 = c \cdot 20^n$

Dividindo-se membro a membro, equação 2 pela equação 1 temos:

$$\frac{40}{16} = \frac{\cancel{c} \cdot 20^n}{\cancel{c} \cdot 2^n}$$

$$\frac{40}{16} = \left(\frac{20}{2}\right)^{n} \Rightarrow 10^{n} = \frac{10}{4} \Rightarrow n = \log\left(\frac{10}{4}\right) \\
n = \log 10 - \log 4 \\
n = 1 - 2\log 2 \\
n = 1 - 2 \cdot (0,301) \\
n = 0,398$$