Vi indsætter punkterne (x_1, y_1) og (x_2, y_2) i forskriften for potensfunktionen.	$f(x_1) = b \cdot x_1^a = y_1$ $f(x_2) = b \cdot x_2^a = y_2$
Vi dividerer udtrykket for y_2 med udtrykket for y_1 .	$\frac{y_2}{y_1} = \frac{b \cdot x_2^a}{b \cdot x_1^a}$
Da b er ganget på udtrykket både i tælleren og i nævneren, lader vi b gå ud.	$\frac{y_2}{y_1} = \frac{x_2^a}{x_1^a}$
Vi anvender regnereglen $\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$.	$\frac{y_2}{y_1} = \left(\frac{x_2}{x_1}\right)^a$
Vi tager logaritmen på begge sider af lighedstegnet.	$\log\left(\frac{y_2}{y_1}\right) = \log\left(\left(\frac{x_2}{x_1}\right)^a\right)$
Vi anvender logaritmeregnereglen $\log(x^a) = a \log(x)$	$\log\left(\frac{y_2}{y_1}\right) = a\log\left(\frac{x_2}{x_1}\right)$
Vi isolerer a ved at dividere med $\log \left(\frac{x_2}{x_1}\right)$ på begge sider af lighedstegnet	$\frac{\log\left(\frac{y_2}{y_1}\right)}{\log\left(\frac{x_2}{x_1}\right)} = a$
Vi anvender regnereglen $\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$	$\frac{\log(y_2) - \log(y_1)}{\log(x_2) - \log(x_1)} = a$
Vi er nu færdige	