Curso Internacional de Desagregación de Estimaciones en Áreas Pequeñas usando R

Indicadores de pobreza y métodos directos

División de Estadísticas Comisión Económica para América Latina y el Caribe

2020

- Introducción
- 2 Indicadores comunes de pobreza y desigualdad
- 🔞 Métodos directos para la desagregación de datos de pobreza
- Métodos directos: Estimadores Horvitz-Thompson y Hájek
- Métodos directos: Estimadores GREG y de calibración
- 6 Resultados: Estimación de ingreso medio en sectores de Montevideo

Referencias

- ©018) Molina, Isabel. Estudio de los límites de desagregación de datos en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.
- (2015) Rao, J.N.K y Isabel Molina. Small Area Estimation. Second ed. Wiley Series in Survey Methodology.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de po

- Una encuesta es realizada con un tamaño muestral establecido.
- Después de una encuesta realizada, a menudo se produce una demanda para estimaciones en áreas más desagregadas.
- Por ejemplo, se realiza un muestreo para estimar niveles de pobreza en departamentos, pero después, el cliente quiere que se realicen estas estimaciones a nivel de municipio.

- Cuando eso pasa, se puede aumentar los tamaños muestrales en las áreas en las que sea necesario.
- Hay varios métodos para mejorar el diseño muestral.
- No obstante, esto podría ser caro, y el cliente podría pedir más de lo que es posible.

- Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".
- "áreas" pueden ser no solo áreas geográficas, sino también grupos socioeconómicos, o un cruce de ambos tipos.
- A la hora de estimar indicadores en estas áreas, se puede usar un estimador directo, lo que usa solamente los datos de la encuesta para esa área.
- Habitualmente son insesgados o prácticamente insesgados con respecto al diseño muestral.
- En esta presentación nos enfocaremos en estos estimadores.

- Como se ha dicho, en algunas áreas, el tamaño muestral es demasiado pequeño, lo que incrementa errores de muestro en los estimadores directos para esas áreas.
- Cuando esto pasa, estas áreas se llaman areas pequeñas.
- Esto no refiere al tamaño poblacional del área, sino áreas para las que no se disponen estimadores directos eficientes debido a tamaños muestrales pequeños.

Indicadores comun	es de pobreza y desigualda	d Métodos directos	

- El indicador más común para medir pobreza es la incidencia o tasa de pobreza, también se conoce como tasa en riesgo de pobreza.
- Otro indicador es la brecha de la pobreza, que mide la magnitud de pobreza en lugar de frecuencia.
- Estos dos son parte de una familia de indicadores más amplia definidos por Foster, Greer y Thorbecke (1984), que llamaremos indicadores FGT.
- Ambos indicadores tienen la ventaja de ser aditivos.

- Llamemos U a la población objetivo de tamaño N, la cuál se divide en D subpoblaciones de tamaños N_1, \ldots, N_D .
- Llamemos E_{di} al poder adquisitivo (e.g.medida de ingresos o gastos) del individuo i en área d.
- Llamamos z al umbral predefinido de pobreza, por debajo del cual un individuo se considera en riesgo de pobreza.

• Los indicadores FGT para el área d pueden ser definidos por:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z), \quad d = 1, \dots, D, \ \alpha \ge 0$$

donde $I(E_{di} < z)$ es una función indicadora que toma el valor 1 si $E_{di} < z$ y 0 en caso contrario. Note que:

- Con $\alpha = 0$, obtenemos la tasa de pobreza
- Con $\alpha = 1$, obtenemos la *brecha de pobreza*

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de po

Métodos directos para la desagregación de datos de pobreza

Métodos directos

 En esta sección, se describirán estimadores directos para la media de una variable en un área, dada por:

$$\overline{Y}_d = N_d^{-1} \sum_{i=1}^{N_d} Y_{di}$$

donde Y_{di} es el valor de la variable de individuo i en área d.

Métodos directos

Los indicadores FGT.

$$F_{\alpha,di} = \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z),$$

también se pueden escribir en la forma de la diapositiva anterior.

- Llamemos $F_{\alpha d}$ a la media de $Y_{di} = F_{\alpha,di}$ en el dominio d.
- Entonces,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

• Este parámetro solo usa los datos del dominio d en cuestión.

 $Introducci\'on\ \ Indicadores\ comunes\ de\ pobreza\ y\ desigualdad\ \ M\'etodos\ directos\ para\ la\ desagregaci\'on\ de\ datos\ de\ pobreza\ para\ la\ de\ pobreza\ para\ la\ de\ pobreza\ para\ para\$

Métodos directos: Estimadores Horvitz-Thompson y Hájek

- El estimador de Horvitz-Thompson es insesgado con respecto al diseño muestral para la media de área d, \bar{Y}_d .
- El estimador HT está definido como

$$\hat{\overline{Y}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} Y_{di}$$

 En donde w_{di} el es peso de muestreo dado por la siguiente expresión

$$w_{di} = \frac{1}{\pi_{d,i}}$$

• $\pi_{d,i} = Pr(i \in s)$ es la probabilidad de inclusión del elemento a la muestra.

- El estimador de Horvitz-Thompson también es insesgado con respecto al diseño muestral para el total de área d, $Y_d = \sum_{i=1}^{N_d} Y_{di}$.
- Está dado por la siguiente expresión

$$\hat{Y}_d = \sum_{i \in s_d} w_{di} Y_{di}$$

• Al contrario que en la estimación para medias, para este caso no se necesita conocer el tamaño poblacional, N_d .

• Un estimador para la varianza del estimador HT viene dado por

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\hat{Y}}_d) = N_d^{-2} \left\{ \sum_{i \in s_d} \sum_{j \in s_d} (w_{di} w_{dj} - w_{d,ij}) Y_{di} Y_{dj} \right\}$$

En donde $w_{d,ij} = \frac{1}{\pi_{d,ij}}$ y $\pi_{d,ij} = Pr(i, j \in s)$.

• Este estimador es insesgado si $\pi_{di} > 0$ y

$$\pi_{d,ij} > 0$$

para todo i, j.

• Si se supone que $w_{d,ij} \approx w_{di} w_{dj}$, el estimador queda definido por:

$$\widehat{\mathsf{var}}_\pi(\hat{ar{Y}}_d) = \mathsf{N}_d^{-2} \sum_{i \in \mathsf{s}_d} \mathsf{w}_{di}(\mathsf{w}_{di} - 1) \mathsf{Y}_{di}^2$$

 Como se ha mencionado, los indicadores FGT se pueden escribir como una media para individuos en un área,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

ullet Por consiguiente, el estimador HT de $F_{lpha d}$ es,

$$\hat{F}_{\alpha d} = N_d^{-1} \sum_{i \in s_d} w_{di} F_{\alpha, di}$$

• Podemos usar el estimador HT, $\hat{Y}_d = \sum_{i \in s_d} w_{di} Y_{di}$, para estimar el total poblacional, es decir,

$$\hat{Y} = \sum_{d=1}^{D} \hat{Y}_d = \sum_{d=1}^{D} \sum_{i \in s_d} w_{di} Y_{di}$$

• Esta propiedad se llama benchmarking, donde los estimadores para áreas desagregadas suman al estimador para el total.

Métodos directos: Horvitz-Thompson (HT), comentario sobre benchmarking

 Cuando no se cumple la propiedad de benchmarking, es común ajustar de la siguiente manera:

$$\hat{Y}_d^{AEST} = \hat{Y}_d^{EST} \frac{\hat{Y}}{\sum_{d=1}^{D} \hat{Y}_d^{EST}}, \quad d = 1, \dots, D$$

Métodos directos: Hájek

- Aunque el estimador HT es insesgado, puede tener una varianza muy grande bajo el diseño muestral.
- El estimador de Hájek es ligeramente sesgado pero con una varianza menor que la de HT, escrito de la siguiente forma,

$$\hat{ar{Y}}_d^{HA} = \hat{N}_d^{-1} \sum_{i \in s_d} w_{di} \, Y_{di}, \, \, \mathsf{donde} \, \, \hat{N}_d = \sum_{i \in s_d} w_{di}$$

 Observe que no se necesita conocer el tamaño poblacional como con el estimador de Horvitz-Thompson.

Métodos directos: Hájek

- Un estimador de la varianza de Hájek, \hat{Y}_d^{HA} , se obtiene con un proceso de linealización de Taylor.
- Si suponemos que $\pi_{d,ij} \approx \pi_{di}\pi_{dj}$ para todo $j \neq i$, y que todo $\pi_{di} > 0$, obtenemos:

$$\widehat{\mathsf{var}}_\pi(\hat{ar{Y}}_d^{HA}) = \hat{N}_d^{-2} \sum_{i \in s_d} w_{di} (w_{di} - 1) (Y_{di} - \hat{ar{Y}}_d^{HA})^2$$

Métodos directos: Hájek

- Como se ha mencionado, variables FGT se pueden escribir como una media para individuos en un área.
- ullet Por consiguiente, el estimador de Hájek de $F_{lpha d}$ es,

$$\hat{F}_{\alpha d}^{HA} = \hat{N}_d^{-1} \sum_{i \in s_d} w_{di} F_{\alpha, di}$$

Resumen de estimadores HT y Hájek

- Indicadores objetivos:
 - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).
 - Pueden ser funciones de variables de interés, por ejemplo, $F_{\alpha,di} = f(E_{di})$.
- Requerimientos de datos:
 - Pesos muestrales w_{di} para individuos en grupo d.
 - Para algunos estimadores se necesita conocer el tamaño poblacional del área N_d .

Resumen de estimadores HT y Hájek

- Ventajas:
 - El estimador HT es insesgado y el de Hájek es ligeramente sesgado.
 - Ambos son consistentes cuando n_d crece.
 - Son no paramétricos porque no se supone nada de la distribución de Y_{di}.

Resumen de estimadores HT y Hájek

- Desventajas:
 - Son muy ineficientes para áreas con tamaños de muestra pequeños.
 - No se puede calcular un estimador cuando n_d = 0, o cuando el área no es muestreada.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de p

Métodos directos: Estimadores GREG y de calibración

- El estimador generalizado de regresión (generalized regression),
 GREG, utiliza información auxiliar.
- Este estimador requiere el total $\mathbf{X}_d = \sum_{i=1}^{N_d} \mathbf{x}_{di}$, o la media $\overline{\mathbf{X}_d} = N_d^{-1} \sum_{i=1}^{N_d} \mathbf{x}_{di}$, para el área d.
- El vector \mathbf{x}_{di} consiste de valores de p variables auxiliares relacionadas con Y_{di} , para el individuo i en el área d.

Asumamos que existe un modelo de la forma

$$Y_{di} = \mathbf{x}'_{di}\beta_d + \epsilon_{di}, \quad i = 1, \dots, N_d$$

Entonces, podemos definir un estimador

$$\hat{\mathbf{B}}_d = \left(\sum_{i \in s_d} w_{di} \mathbf{x}_{di} \mathbf{x}'_{di} / c_{di}\right)^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di} Y_{di} / c_{di}$$

• En el modelo, los errores ϵ_{di} son independientes con esperanza igual a 0 y varianza $\sigma^2 c_{di}$, con $c_{di} > 0$ siendo constantes que representan la posible heteroscedasticidad, $i = 1, \ldots, N_d$.

- ullet $\hat{\overline{\mathbf{X}}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di}$ es el estimador de HT de $\overline{\mathbf{X}}_d$
- ullet Podemos usar la regresión mencionada para estimar \overline{Y}_d
- Este estimador está dado por:

$$\hat{\overline{Y}}_{d}^{GREG} = \hat{\overline{Y}}_{d} + \left(\overline{\mathbf{X}}_{d} - \hat{\overline{\mathbf{X}}}_{d}\right)' \hat{\mathbf{B}}_{d}$$

- El estimador GREG es más eficiente que el estimador directo \overline{Y} si las variables auxiliares \mathbf{x}_{di} están linealmente relacionadas con Y_{di} ,
- No es fácil encontrar auxiliares \mathbf{x}_{di} relacionadas con $F_{\alpha,di} = I\{(z-E_{di})/z\}^{\alpha}I(E_{di} < z)$, porque es una función compleja.

• Si $\pi_{d,ij} \approx \pi_{di}\pi_{dj}$, para $j \neq i$, el estimador de varianza para GREG viene dado por:

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\widehat{Y}}_{d}^{\mathsf{GREG}}) = N_{d}^{-2} \sum_{i \in s_{d}} w_{di}(w_{di} - 1) \widetilde{e}_{di}^{2}$$

donde
$$\tilde{e}_{di} = Y_{di} - \mathbf{x}'_{di} \hat{\mathbf{B}}_{d}$$
.

Métodos directos: Estimador de calibración

- Este método utiliza los pesos calibrados h_{di} para estimar el total de una variable de interés usando p variables auxiliares.
- h_{di} son los pesos más cercanos a los pesos originales, w_{di}, sujeto a

$$\sum_{i \in s_d} h_{di} \mathbf{x}_{di} = \mathbf{X}_d$$

Una posibilidad viene dada por

$$h_{di} = w_{di} \left\{ 1 + \mathbf{x}'_{di} \left(\sum_{i \in s_d} w_{di} \mathbf{x}'_{di} / c_{di} \right)^{-1} \left(\mathbf{X}_d - \sum_{i \in s_d} w_{di} \mathbf{x}'_{di} / c_{di} \right) \right\}, i \in s_d$$

Métodos directos: Estimador de calibración

ullet El estimador de calibración de $ar{Y}_d$ se obtiene igual que el estimador de HT

$$\hat{\bar{Y}}_d^{CAL} = N_d^{-1} \sum_{i \in s_d} h_{di} Y_{di}$$

 Se puede mostrar que, bajo ciertas condiciones de regularidad, el estimador de calibración es asintóticamente igual al GREG y comparten la misma varianza asintótica.

Resumen de estimadores GREG y de calibración

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:
 - Pesos muestrales w_{di} para individuos de la muestra en el área d.
 - ullet Para el estimador de la media, tamaño poblacional del área N_d .
 - ullet Observaciones muestrales de las p variables auxiliares.
 - Totales \mathbf{X}_d o medias $\bar{\mathbf{X}}_d$ poblacionales de las p variables auxiliares.

Resumen de estimadores GREG y de calibración

Ventajas:

- Son aproximadamente insesgados con respecto al diseño muestral.
- Pueden mejorar a los estimadores directos básicos si el modelo de regresión tiene buen poder predictivo.
- No requieren la verificación del modelo considerado para las variables de interés Y_{di} ; son no paramétricos.

Resumen de estimadores GREG y de calibración

- Desventajas:
 - Pueden ser ineficientes para áreas pequeñas.
 - No se pueden calcular en áreas con un tamaño muestro n_d igual a 0.

 $Introducci\'on\ \ Indicadores\ comunes\ de\ pobreza\ y\ desigualdad\ \ M\'etodos\ directos\ para\ la\ desagregaci\'on\ de\ datos\ de\ pobreza\ para\ la\ de\ pobreza\ para\ la\ de\ pobreza\ para\ para\$

Resultados: Estimación de ingreso medio en sectores de Montevideo

Horvitz Thompson: Hombres y Mujeres en Montevideo

ntotal	Hombres	Mujeres
121	20461	13277
167	24837	18694
186	14299	15951
319	26635	21965
320	28784	23314
495	23223	22414
3165	11148	10435
3556	10897	10742
3950	38932	34943
3963	11080	10473
4373	8750	8167
6302	24576	22823
	121 167 186 319 320 495 3165 3556 3950 3963 4373	121 20461 167 24837 186 14299 319 26635 320 28784 495 23223 3165 11148 3556 10897 3950 38932 3963 11080 4373 8750

$Horvitz\ Thompson:\ Hombres\ y\ Mujeres\ en\ Montevideo$ Ingresos de hombres y mujeres en Montevideo con el estimador HT

Hájek: Hombres y Mujeres en Montevideo

sec2	ntotal	Hombres	Mujeres
2	121	18088	16120
1	167	26363	21644
3	186	16294	15896
4	319	23786	22044
6	320	26723	24798
5	495	20874	21706
21	3165	11539	11424
13	3556	8248	8384
18	3950	33081	32103
11	3963	8954	8675
17	4373	8612	8377
10	6302	22186	20929

Hájek: Hombres y Mujeres en Montevideo Ingresos de hombres y mujeres en Montevideo con el estimador Hájek

GREG: Hombres y Mujeres en Montevideo

sec2	ntotal	Hombres	Mujeres
2	121	21410	14107
1	167	25468	19861
3	186	15921	16981
4	319	26809	22819
6	320	29710	24484
5	495	23763	23282
21	3165	13125	11901
13	3556	11156	10862
18	3950	38789	35391
11	3963	11510	10977
17	4373	10473	9777
10	6302	25921	23589

GREG: Hombres y Mujeres en Montevideo Ingresos de hombres y mujeres en Montevideo con el estimador GREG

Comparando los estimadores: Hombres

		1		
sec2	ntotal	HT	Hajek	GREG
2	121	20461	18088	21410
1	167	24837	26363	25468
3	186	14299	16294	15921
4	319	26635	23786	26809
6	320	28784	26723	29710
5	495	23223	20874	23763
21	3165	11148	11539	13125
13	3556	10897	8248	11156
18	3950	38932	33081	38789
11	3963	11080	8954	11510
17	4373	8750	8612	10473
10	6302	24576	22186	25921

Comparando los estimadores: Hombres Ingresos de hombres en Montevideo con estimadores directos

Comparando los estimadores: Mujeres

sec2	ntotal	HT	Hajek	GREG
2	121	13277	16120	14107
1	167	18694	21644	19861
3	186	15951	15896	16981
4	319	21965	22044	22819
6	320	23314	24798	24484
5	495	22414	21706	23282
21	3165	10435	11424	11901
13	3556	10742	8384	10862
18	3950	34943	32103	35391
11	3963	10473	8675	10977
17	4373	8167	8377	9777
10	6302	22823	20929	23589

$Comparando\ los\ estimadores:\ Mujeres\ \\ \text{Ingresos}\ \text{de mujeres}\ \text{en}\ \text{Montevideo}\ \text{con}\ \text{estimadores}\ \text{directos}$

25

¡Gracias!

¡Gracias!