1 Prove that a polynomial of degree n is uniformly continuous on \mathbb{R} if and only if n=0 or n=1.

Solution " $\Leftarrow=$ "

Suppose p(x) is a polynomial of degree n=0. Then $p(x)\equiv a$ for some $a\in\mathbb{R}$. Then for all $x,y\in\mathbb{R}$, |p(x)-p(y)|=0, so p(x) is uniformly continuous on \mathbb{R} .

Suppose p(x) is a polynomial of degree n=1. Then $p(x)=a_0+a_1x$ for some $a_0,a_1\in\mathbb{R}$ with $a_1\neq 0$. Fix $\varepsilon>0$ and choose $\delta=\frac{\varepsilon}{|a_1|}$. Then for all $x,y\in\mathbb{R}$ such that $|x-y|<\delta$, we have

$$|p(x) - p(y)| = |a_0 + a_1 x - (a_0 + a_1 y)| = |a_1||x - y| < |a_1| \frac{\varepsilon}{|a_1|} = \varepsilon.$$

Hence, by definition, p(x) is uniformly continuous on \mathbb{R} .

 $"\Longrightarrow"$

Let p(x) be a polynomial of degree $n \ge 2$. Then we can write $p(x) = \sum_{i=0}^{n} a_i x^i$, with $a_n \ne 0$.

Fix $\varepsilon > 0$ and let $\delta > 0$. Then for all $|x - y| < \delta \implies x - \delta < y < x + \delta$,

$$|p(x) - p(y)| = \left| \sum_{i=0}^{n} a_i x^i - \sum_{i=0}^{n} a_i y^i \right|$$

$$= \left| \sum_{i=1}^{n} a_i (x^i - y^i) \right|$$

$$= \delta \left| \sum_{i=1}^{n} a_i \sum_{k=0}^{i-1} x^{i-1-k} y^k \right|$$

$$\geq \delta \left| \sum_{i=1}^{n} a_i \sum_{k=0}^{i-1} x^{i-1-k} (x - \delta)^k \right| \xrightarrow{x \to \infty} \infty$$

Thus, for all $\delta > 0$, we can find x sufficiently large enough so that $|p(x) - p(y)| \ge \varepsilon$. Hence, polynomials of degree 2 or higher are not uniformly continuous.

2 Let $f: [0,1] \to [0,1]$ be a continuous function such that f(0) = 0 and f(1) = 1. Consider the sequence of functions $f_n: [0,1] \to [0,1]$ defined as follows:

$$f_1 = f$$
 and $f_{n+1} = f \circ f_n$ for $n \ge 1$

Prove that if $\{f_n\}_{n\geq 1}$ converges uniformly, then f(x)=x for all $x\in [0,1]$.

Solution Note that if $f_n \xrightarrow{n \to \infty} F$, then since f is continuous and f_n converges pointwise to F, we have that $f_{n+1} = f \circ f_n \xrightarrow{n \to \infty} f \circ F$. Thus, by uniqueness of limits, F(x) = f(F(x)), so F(x) is a fixed point of f for all $x \in [0, 1]$.

F(x) is not constant, since $F(0) = 0 \neq 1 = F(1)$. Moreover, as f_n converges uniformly to F, F is continuous on [0,1]. Since [0,1] is connected, F has the Darboux property on this interval.

Hence, for all $y \in [0,1]$, we there exists $x \in [0,1]$ such that $f(F(x)) = F(x) \implies f(y) = y$, as desired.

3 Let

$$\mathcal{F} = \big\{ f \in C(\mathbb{R}) \mid \lim_{|x| \to \infty} f(x) = 0 \big\}.$$

Show that \mathcal{F} is closed in $C(\mathbb{R})$.

Solution Let $f \in \mathcal{F}$. We claim that $\{f_n\}_{n\geq 1} \subseteq \mathcal{F}$ with $f_n : \mathbb{R} \to \mathbb{R}$, with $f_n = (1-\frac{1}{n})f$ belongs to \mathcal{F} and converges to f with respect to the uniform metric.

 f_n is continuous since it is the product of two continuous functions, $1 - \frac{1}{n}$ and f. Moreover, f_n is bounded above. Indeed, since $f \in C(\mathbb{R})$, there exists M such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$, which means that $|f_n(x)| \leq M(1 - \frac{1}{n})$ for all $x \in \mathbb{R}$, so $f_n \in C(\mathbb{R})$.

Lastly,

$$\lim_{|x| \to \infty} f_n(x) = \lim_{|x| \to \infty} \left(1 - \frac{1}{n}\right) f(x) = \left(1 - \frac{1}{n}\right) \left(\lim_{|x| \to \infty} f(x)\right) = 0$$

and thus, $\{f_n\}_{n\geq 1}\subseteq \mathcal{F}$.

Let $\varepsilon > 0$. If $n_{\varepsilon} > \frac{1}{\varepsilon}$, then for all $n \geq n_{\varepsilon}$,

$$d(f, f_n) = \sup_{x \in \mathbb{R}} |f_n(x) - f(x)|$$

$$= \sup_{x \in \mathbb{R}} |f(x) - \left(1 - \frac{1}{n}\right) f(x)|$$

$$= \sup_{x \in \mathbb{R}} \left|\frac{1}{n}\right|$$

$$= \frac{1}{n} \le \frac{1}{n_{\varepsilon}} < \varepsilon$$

so $f_n \xrightarrow{n \to \infty} f$. Hence, $f \in \overline{\mathcal{F}} \implies \mathcal{F} = \overline{\mathcal{F}}$.

- 4 Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$. Find
 - a. an open set $D \subseteq \mathbb{R}$ such that f(D) is not open;
 - b. a closed set $F \subseteq \mathbb{R}$ such that f(F) is not closed;
 - c. a set $A \subseteq \mathbb{R}$ such that $f(\bar{A}) \neq \overline{f(A)}$.

Solution Note that f is continuous since it is the composition of two continuous functions: e^x and $-x^2$. Moreover, since $f'(x) = -2xe^{-x^2}$, f is strictly increasing on $(-\infty,0)$ and strictly decreasing on $(0,\infty)$. So, f(0) = 1 is the maximum value of f. Lastly, $\lim_{|x| \to \infty} e^{-x^2} = 0$, and \mathbb{R} is connected, so by the continuity of f, the image of f is the interval (0,1].

We claim that \mathbb{R} satisfies all three criteria. Note that \mathbb{R} is both closed and open.

- a. If $D = \mathbb{R}$, then f(D) = (0, 1], which is not open.
- b. If $F = \mathbb{R}$, then f(F) = (0, 1], which is not closed.
- c. If $A = \mathbb{R}$, note that $A = \overline{A}$ and $f(A) = (0,1] \implies \overline{f(A)} = [0,1]$. But $f(\overline{A}) = (0,1] \neq [0,1] = \overline{f(A)}$.

5 Let $\{F_n\}_{n\geq 1}$ be a sequence of closed sets such that $F_n\subseteq F_{n+1}$ for all $n\geq 1$. Set $F=\bigcup_{n\geq 1}F_n$ and $F_0=\emptyset$. For $n\geq 1$ we define

$$A_n = \left[(F_n \setminus F_{n-1}) \setminus \operatorname{Int} (F_n \setminus F_{n-1}) \right] \cup \left[\operatorname{Int} (F_n \setminus F_{n-1}) \cap \mathbb{Q} \right].$$

Let $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 2^{-n} & \text{if } x \in A_n \\ 0 & \text{if } x \notin \bigcup_{n \ge 1} A_n. \end{cases}$$

Show that f is discontinuous on F and continuous on $\mathbb{R} \setminus F$.

Solution We first show f is discontinuous on F.

Fix $n \ge 1$. Then $F_n = \bigcup_{i=1}^n F_i \setminus F_{i-1}$. This is true for n = 1 since clearly $F_1 = (F_1 \setminus \emptyset) \cup \emptyset$. Moreover, if we assume it is true for n, then

$$F_{n+1} = (F_{n+1} \setminus F_n) \cup F_n = (F_{n+1} \setminus F_n) \cup \bigcup_{i=1}^n F_i \setminus F_{i-1} = \bigcup_{i=1}^{n+1} F_i \setminus F_{i-1}$$

so by induction, it holds for all n.

Let $x \in F$. Then there exists $n \ge 1$ such that $x \in F_n \setminus F_{n-1}$.

Case 1: $x \in \text{Int}(F_n \setminus F_{n-1}) \cap \mathbb{Q}$

Then $x \in A_n \implies f(x) = 2^{-n}$.

As $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} and Int $(F_n \setminus F_{n-1})$ is open, there exists $\{x_k\}_{k \geq 1} \subseteq \text{Int}(F_n \setminus F_{n-1}) \cap (\mathbb{R} \setminus \mathbb{Q})$ with $x_k \xrightarrow{k \to \infty} x$. But each $x_k \notin A_i$ for all $i \geq 1$. Hence, $f(x_k) = 0$ for all $k \geq 1$, so

$$f(x_k) \xrightarrow{k \to \infty} 0 \neq 2^{-n} = f(x).$$

So, in this case, f is not continuous at x.

Case 2: $x \in (F_n \setminus F_{n-1}) \setminus \operatorname{Int}(F_n \setminus F_{n-1})$

Then $x \in A_n \implies f(x) = 2^{-n}$.

If Int $(F_n \setminus F_{n-1}) = \emptyset$, then since the only connected subsets of \mathbb{R} are intervals, x must be isolated. But then we can't have $\lim_{y\to x} f(y) = 2^{-n}$ since there are no other points close to x whose image under f is 2^{-n} .

Otherwise, there exists $\{x_k\}_{k\geq 1}\subseteq \operatorname{Int}(F_n\setminus F_{n-1})\cap (\mathbb{R}\setminus \mathbb{Q})$ such that $x_k\xrightarrow{k\to\infty} x$. But then

$$f(x_k) = 0 \xrightarrow{k \to \infty} 0 \neq f(x) = 2^{-n}.$$

so in this case, f is not continuous at x.

Case 3: $x \in \text{Int}(F_n \setminus F_{n-1}) \cap (\mathbb{R} \setminus \mathbb{Q})$

Then $x \notin A_i$ for all $i \geq 1$, so f(x) = 0. As \mathbb{Q} is dense in \mathbb{R} and $\operatorname{Int}(F_n \setminus F_{n-1})$ is open, there exists $\{x_k\}_{k>1} \subseteq \operatorname{Int}(F_n \setminus F_{n-1}) \cap \mathbb{Q}$ with $x_k \xrightarrow{k \to \infty} x$. But then $x_k \in A_n$, so

$$f(x_k) = 2^{-n} \implies f(x_k) \xrightarrow{k \to \infty} 2^{-n} \neq 0 = f(x).$$

So in this case, f is not continuous at x.

Thus, in all cases, f is discontinuous at $x \in F$.

We next show that f is continuous on $\mathbb{R} \setminus Q$.

For $x \in \mathbb{R} \setminus F$, then $x \notin A_n$ for all $n \ge 1$. Indeed, $x \notin F = \bigcup_{n \ge 1} F_n \setminus F_{n-1}$, so for all $n \ge 1$, $x \notin F_n \setminus F_{n-1} \implies x \notin A_n$. Thus, for all $x \in \mathbb{R} \setminus F$, $f(x) \equiv 0$, so f is continuous on $\mathbb{R} \setminus F$.

- **6** Let (X,d) be a metric space with at least two points and let $\mathcal{A} \subseteq C(X)$ be an algebra that is dense in the metric space C(X).
 - a. Show that A separates points on X.
 - b. Show that A vanishes at no point in X.

See pages 161–162 in Rudin's textbook for the definitions.

Solution a. Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$. Consider f continuous and bounded such that $f(x_1) > f(x_2)$. If $f \in \mathcal{A}$, then we are done. Otherwise, as \mathcal{A} is dense in C(X), there exists $\{f_n\}_{n\geq 1} \subseteq \mathcal{A}$ such that $f_n \xrightarrow{n\to\infty} f$ with respect to the uniform metric.

By definition, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$|f(x) - f_n(x)| \le \sup_{x \in X} |f(x) - f_n(x)| < \frac{f(x_1) - f(x_2)}{2}$$

$$\implies f(x) + \frac{f(x_2) - f(x_1)}{2} < f_n(x) < f(x) + \frac{f(x_1) - f(x_2)}{2}$$

for all $x \in X$. Evaluating the inequality at x_1 and x_2 yields

$$\frac{f(x_2) + f(x_1)}{2} < f_n(x_1)$$

$$f_n(x_2) < \frac{f(x_1) + f(x_2)}{2}$$

$$\implies f_n(x_2) < f_n(x_1).$$

Hence, \mathcal{A} separates points on X.

b. Let $x_0 \in X$. Then consider $f(x) \equiv 1$, which is continuous and bounded. It clearly doesn't vanish at x_0 . If $f \in \mathcal{A}$, then we're done. Otherwise, as \mathcal{A} is dense, there exists $\{f_n\}_{n\geq 1} \subseteq \mathcal{A}$ such that $f_n \xrightarrow{n\to\infty} f$ uniformly.

By definition, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$f(x) - f_n(x) \le \sup_{x \in X} |f(x) - f_n(x)| < \frac{1}{2} \implies f_n(x_0) > \frac{1}{2}.$$

Hence, \mathcal{A} vanishes at no point in X.

7 a. Show that given any continuous function $f:[0,1]\times[0,1]\to\mathbb{R}$ and any $\varepsilon>0$ there exist $n\in\mathbb{N}$ and functions $g_1,\ldots,g_n,h_1,\ldots,h_n\in C([0,1])$ such that

$$\left| f(x,y) - \sum_{k=1}^{n} g_k(x) h_k(y) \right| < \varepsilon \quad \text{for all} \quad (x,y) \in [0,1] \times [0,1].$$

- b. If f(x,y) = f(y,x) for all $(x,y) \in [0,1] \times [0,1]$, can this be done with $g_k = h_k$ for each $1 \le k \le n$? Justify your answer!
- **Solution** a. Consider the compact metric space $([0,1] \times [0,1], d_2)$, where d_2 is the Euclidean metric. Consider the set $\mathcal{A} = \{P(x,y) \mid P \text{ is a polynomial}\} \subseteq C([0,1] \times [0,1])$. We claim that this is an algebra on $C([0,1] \times [0,1])$ that separates points and vanishes nowhere.

It is clearly an algebra. If $f, g \in \mathcal{A}$, then we can write

$$f(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} x^{i} y^{j}$$

$$g(x,y) = \sum_{i=0}^{p} \sum_{j=0}^{q} b_{ij} x^{i} y^{j}.$$

fg will be a polynomial of degree n+m+p+q, f+g will be a polynomial of degree max $\{n+m,p+q\}$, and cf will clearly be a polynomial, for $c \in \mathbb{R}$.

We now show that it separates points. Let $(x_0, y_0), (x_1, y_1) \in \mathbb{R}^2$ such that $x \neq x_1$ or $y \neq y_1$. Then $f(x, y) = a(x - x_0) + b(y - y_0)$, where $a, b \neq 0$. separates them. Indeed, $f(x_0, y_0) = 0$, and $f(x_1, y_1) \neq 0$ since at least one of $(x - x_0)$ and $(y - y_0)$ is non-zero.

Lastly, it clearly vanishes at no point—take the constant polynomial $f(x,y) \equiv 1$.

By Stone-Weierstrass, \mathcal{A} is dense in $C([0,1] \times [0,1])$.

Since $[0,1] \times [0,1]$ compact, f is continuous and bounded on that interval, so $f \in C([0,1] \times [0,1])$. So, there exists $\{P_n\}_{n\geq 1}$ such that $P_n \xrightarrow{n\to\infty} f$ with respect to the uniform metric (i.e., P_n converges to f uniformly). Thus, for all $\varepsilon > 0$ and $(x,y) \in [0,1] \times [0,1]$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \geq n_{\varepsilon}$,

$$|f(x,y) - P_n| < \varepsilon$$

Pick $N \geq n_{\varepsilon}$. Since P_N is a polynomial, we can write it in the form

$$P_N(x,y) = \sum_{i=0}^n A_i x^{p(i)} y^{q(i)}$$

for some $n \in \mathbb{N}$, $A_i \in \mathbb{R}$, and $p, q : \mathbb{N} \to \mathbb{N}$. Thus, taking $g_k(x) = A_k x^{(k)}$ and $h_k(y) = y^{q(k)}$ gives

$$\left| f(x,y) - \sum_{k=0}^{n} g_k(x) h_k(y) \right| = \left| f(x,y) - \sum_{k=0}^{n} A_p x^{p(k)} y^{q(k)} \right| < \varepsilon$$

as desired.

b. No. Consider $f(x,y) = f(y,x) \equiv -1$. Then suppose there exist g_1, \ldots, g_k that satisfy (a). If x = y, we have

$$\left| f(x,x) - \sum_{k=1}^{n} g_k^2(x) \right| \ge |f(x,x)| = 1$$

which does not satisfy what we want.