BTVN T3 ML1

Hoang Dieu Linh

October 2022

Exercise 1:

We have : $t = y(w, x) + \varepsilon$, While $\varepsilon \approx N(0, \sigma^2)$

If $\mu(\varepsilon) \neq 0$ we just adjust bias of y : $\mu(\varepsilon) = 0$ $\Rightarrow P(t) = N(t|y(w,x), \sigma^2)$

Suppose: $t_n = y(x_n, w) + \varepsilon$ $\Rightarrow P(t_n) = N(t_n | y(x_n, w), \varepsilon^2)$

Generality: Maximum for all point, we use maximum likelihood function: $P(t|x,w,\beta)=\prod_{n=1}^N N(t_n|y(x,w),\beta^{-1})$

Simplize:

Simplize:

$$\log(P(t|x, w, \beta)) = \sum_{n=1}^{N} (\log(N(t_n|y(x, w), \beta^{-1})))$$

$$= \frac{-\beta}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{N}{2} \log(\beta) - \frac{N}{2} \log(2\pi)$$

Maximum likelihood:

Max
$$\log(P(t|x, w, \beta)) = -\text{Max } \frac{\beta}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$$

= Min $\frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$

So minimize P we have: $P = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$ to find w

Suppose:

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}; t = \begin{pmatrix} t_1 \\ t_2 \\ \dots \\ t_n \end{pmatrix}; w = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$$

By minimizing P, we can find w. P is called Mean Squared Error Loss(MSE):

$$L = \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n, w))^2$$

we have: $y(x_n, w) = w_1 x_v + w_0$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} w_1 x_1 & w_0 \\ w_2 x_2 & w_0 \\ \dots & \dots \\ w_n x_n & w_0 \end{pmatrix} = XW$$

$$t - y = \begin{pmatrix} t_1 - y_1 \\ t_2 - y_2 \\ \dots \\ t_n - y_n \end{pmatrix}$$

$$\Rightarrow L = ||t - y||_i^2 = ||t - Xw||_i^2 = (t - Xw)^T (t - Xw)$$

We have:
$$\frac{\partial(L)}{\partial(w)} = 2X^T(t - Xw) = 0$$

$$\Leftrightarrow X^T t = X^T X w$$

$$\Leftrightarrow w = (X^T X)^{-1} X^T t$$

Excersice 4:

We have X is a matrix m x n, so X^TX is an square matrix m x m. Precisely when the rank of X is m (which forces $n \ge m$).

The key observation is that for $v \in R^m, Xv = 0$ if and only if $X^TXv = 0$. For the non-trivial implication, if $X^TXv = 0$, then $v^TX^TXv = 0$, that is $(Xv)^TXv = 0$, which implies that Xv = 0.

If the rank of X is m, this means that X is one-to-one when acting on \mathbb{R}^m . So by the observation, X^TX is one-to-one, which makes it invertible (as it is square).

Conversely, if the rank of X is less than m, there exists $v \in \mathbb{R}^m$ with Xv = 0. Then $X^TXv = 0$, and X^TX cannot be invertible.