

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «I

«Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 6

По курсу: «Моделирование»

Тема: «Моделирование Люберецкого МФЦ»

Студент: Керимов А. Ш.

Группа: ИУ7-74Б

Оценка (баллы): _____

Преподаватель: Рудаков И. В.

Оглавление

1 Формализация		рмализация	3
	1.1	Задание	3
	1.2	Концептульная модель	3
	1.3	Переменные и уравнения имитационной модели	3
	1.4	Вероятность отказа в обслуживании	4
2 Результат работы		5	
Вывод			6

1 Формализация

1.1 Задание

В Люберецкий МФЦ приходят клиенты через интервал времени 4 ± 2 минуты и становятся в очередь к терминалу по получению талонов. На получение талона в среднем у клиента уходит 3 ± 1 минуты. Далее равновероятно клиенты становятся в одну из трёх очередей за услугами типа 1, 2 или 3: оформление документов, получение документов, остальные услуги. На обслуживание клиентов в каждом окне соответственно уходит 15 ± 5 , 10 ± 2 , 30 ± 10 минут. С вероятностью $p_{\text{возвр}}=0.33$ клиент после получения услуги типа 1 становится обратно в очередь для получения талона на следующую услугу. Максимальная длина L любой очереди в условиях пандемии — 5 человек. Промоделировать процесс обработки 1000 клиентов.

1.2 Концептульная модель

Рис. 1.1: Концептуальная модель

В процессе взаимодействия клиентов с Люберецким МФЦ возможно:

- Режим нормального обслуживания, т. е. клиент получил услугу.
- Режим отказа в обслуживании клиента, когда очередь, в которую становится клиент, заполнена.

1.3 Переменные и уравнения имитационной модели

- Эндогенные переменные: время получения талона на терминале, время обслуживания *i*-м окном, размеры очередей.
- Экзогенные переменные: число обслуженных клиентов и число клиентов получивших отказ по каждой очереди.

1.4 Вероятность отказа в обслуживании

$$P_{\text{отк}} = \frac{C_{\text{отк}}}{C_{\text{отк}} + C_{\text{обс}}},\tag{1.1}$$

2 Результат работы

Моделирование Люберецкого МФЦ производилось событийным принципом. Результаты работы программы представлены на рисунке 2.1.

Рис. 2.1: Результаты работы программы

Вывод

Промоделирован процесс обработки запросов в Люберецком МФЦ. Представлена концептульная схема в терминах СМО. Определены эндогенные и экзогенные переменные и уравнения модели. Разработана программа, позволяющая определить количество потерянных клиентов и вероятность отказа в обслуживании.