Relapse of Myocardial Infarction

Preeti Nagalamadaka, Alayna Binder, Isabella Shubert, Olivia Xiao

What is MI?

Heart muscle cannot get oxygen anymore and

fails to pump blood to rest of body

Recurrent MI

800,000

Heart attacks in the US every year

of these MI are recurrent

The Issue

1 in 3 patients die within a year after a recurrent MI

"Characterizing the predictors of recurrent AMI [acute MI] can improve survival rates of patients"

https://heart.bmj.com/content/107/4/313

Research Question

Which **covariates** are correlated with a **relapse of MI** at various time points in a patient's trajectory?

Project Timeline

Data Cleaning

Missing data & Imputation

02

Covariate

Analysis

Forward/ Backward Selection & Lasso Regression 03

Validation

Calibration & Discrimination

What does the data look like?

- Collected in the Krasnoyarsk Interdistrict Clinical Hospital in 1992-1995
- 1700 patients
- 111 input features and 12 complications
- 7.6% missing data
- Roughly 90% of patients did not have relapse of MI

Percentages in red show relapse rate in that age group

Missing Data

- Originally wanted to remove variables with missing data > 25%
- Looked into what the variables actually meant
- ECT Subset

by ECT

LC1 3ubset			
Serum CPK content	variable <chr></chr>	n_miss <int></int>	pct_miss <dbl></dbl>
Heredity on CHD	KFK_BLOOD	1696	99.76470588
	IBS_NASL	1628	95.76470588
Systolic by ECT Diastolic by	S_AD_KBRIG	1076	63.29411765
ECT \	D_AD_KBRIG	1076	63.29411765
	NOT_NA_KB	686	40.35294118
	LID_KB	677	39.82352941
NSAIDS by ECT	NA_KB	657	38.64705882
NSAIDS by ECI —	GIPER_NA	375	22.05882353
Lidocaine by ECT	NA_BLOOD	375	22.05882353
Eldocalifie by ECT	K_BLOOD	371	21.82352941
Use of opioids			

Missing Rows ECT

632 Overlapping

Opioids, NSAID, Lidocaine

1076 Overlapping

Systolic, Diastolic BP

1161 Overlapping

Imputing the Data

- **O patients** with complete data
- Used mice package in R to impute data
- Predictive mean matching

Before Imputation

After Imputation

Before Imputation

Did Sodium Increase?

Yes	No	NA
76.17%	1.64%	22.06%

Ratio of Yes:No is 97.89% to 2.11%

After Imputation

Did Sodium Increase?

Yes	No	NA
97.65%	2.35%	0%

Sodium in Serum Measures	Before Imputation Freq.	After Imputation Freq.
(110,115]	0.000	0.000
(115,120]	0.014	0.012
(120,125]	0.036	0.035
(125,130]	0.144	0.143
(130,135]	0.175	0.175
(135,140]	0.422	0.416
(140,145]	0.127	0.130
(145,150]	0.063	0.070
(150,155]	0.013	0.013
(155,160]	0.006	0.006

Potassium in Serum Measures	Before Imputation Freq.	After Imputation Freq.
(2,3.17]	0.057	0.054
(3.17, 4.33]	0.578	0.585
(4.33, 5.5]	0.318	0.315
(5.5,6.67]	0.038	0.037
(6.67, 7.83]	0.008	0.009
(7.83,9]	0.002	0.001

Splitting the Data

- Split into different time points
- Subsets
 - Admission (General) → 96 covariates
 - Anamnesis → 29 covariates
 - Hospital Admission → 40 covariates
 - Stay (General) → 9 covariates
 - ICU → 29 covariates
 - ECT → 5 covariates, 539 patients

Multicollinearity

Subset	Variable Removed
Admission (General)	ECG rhythm at time of admission (sinus)
Stay (General)	None
Anamnesis	Symptomatic hypertension
Hospital Admission	ECG rhythm at time of admission (sinus)
ICU	None
ECT	None

Project Timeline

01

Data Cleaning

Missing data & Imputation

02

Covariate

Analysis

Forward/ Backward Selection & Lasso Regression 03

Validation

Calibration & Discrimination

Model Selection -

Anamnesis Covariates

Positive Association

- Age
- Exertional angina pectoris
- 1st-degree AV block
- Obstructive chronic bronchitis
- Paroxysms of afib

Negative Association

- Chronic bronchitis
- Observing of arrhythmia

Anamnesis

	Estimate	$\Pr(> z)$
(Intercept)	-4.025	0.000
STENOK_AN	0.162	0.000
\mathbf{AGE}	0.020	0.014
zab_{leg_01}	-0.931	0.047
zab_{leg_02}	0.557	0.033
nr_03	0.820	0.064
nr 11	-0.966	0.189

Hospital Admission Covariates

Positive Association

- White blood cell count
- Tachycardia

Negative Association

- Time elapsed from beginning of CHD attack to hospital
- Premature ventricular contractions on ECG
- Frequent premature ventricular contractions on ECG

Hospital Admission

	Estimate	$\Pr(> \mathbf{z})$
(Intercept)	-2.629	0.000
L_BLOOD	0.056	0.013
TIME_B_S	-0.041	0.172
$ritm_ecg_p_07$	0.396	0.032
$n_r_{ecg_p_03}$	-0.439	0.123
$n_r_{ecg_p_04}$	-0.470	0.323

ICU Covariates

Positive Association

- Use of anticoagulants
- Use of opioid drugs (1st & 2nd day)
- Relapse of pain (3rd day)
- Paroxysms of ventricular tachycardia at the time of admission

Negative Association

- Diastolic BP
- Presence of inferior MI
- Use of Trental
- Use of calcium channel blockers

	Estimate	$\Pr(> \mathbf{z})$
(Intercept)	-2.297	0.000
D_AD_ORIT	-0.003	0.508
inf_im	-0.132	0.045
GEPAR_S_n	0.477	0.023
R_AB_3_n	0.934	0.000
GT_POST	1.898	0.012
NA_R_2_n	0.380	0.042
TRENT_S_n	-0.416	0.079
ANT_CA_S_n	-0.271	0.130
$NA_R_1_n$	0.186	0.067

ECT Covariates

Positive Association

- Diastolic BP
- Use of NSAIDs

Negative Association

None

	Estimate	$\Pr(> z)$
(Intercept)	-4.083	0.000
D_AD_KBRIG	0.013	0.167
NOT_NA_KB	0.683	0.165

Project Timeline

01

Data Cleaning

Missing data & Imputation

02

Covariate

Analysis

Forward/ Backward Selection & Lasso Regression 03

Validation

Calibration & Discrimination

1 Presence of lateral MI

- 5 White blood cell count
- 9 Cardiogenic shock at time of admission to ICU

- Use of calcium channel blockers in ICU
- 6 Exertional angina pectoris in the anamnesis
- Ventricular
 fibrillation at time of admission to ICU

11

Paroxysms of AFIB in anamnesis

7 Ist-degree AV block at time of admission

Chronic bronchitis in anamnesis

Increase of sodium in serum

Paroxysms of ventricular tachycardia at time of admission

- Diabetes mellitus in anamnesis
- Use of trental in ICU
- Persistent form of AFIB at the time of admission to hospital,

Use of liquid nitrates in the ICU

- Incomplete RBBB
 at the time of
 admission to
 hospital
- 21 Complete RBBB in anamnesis,

Use of heparin in ICU

18) Age

ECG rhythm at the time of admission to hospital – AFIB

Coronary heart disease in recent weeks

First degree AV block in anamnesis

Logistic Regression

v		5 / 1 D
	Estimate	$\Pr(> z)$
(Intercept)	-5.806	0.000
lat_im	0.144	0.121
$\mathbf{ANT}_{\mathbf{CA}_{\mathbf{S}_{\mathbf{n}}}}$	-0.344	0.059
$ m nr_03$	0.891	0.060
$GIPER_NA$	0.766	0.113
L_BLOOD	0.071	0.003
STENOK_AN	0.166	0.000
$n_p_{ecg_p_03}$	-1.762	0.091
$n_r_{ecg_p_09}$	2.438	0.098
K_SH_POST	-29.529	0.974
zab_leg_01	-1.071	0.041
FIB_G_POST	1.346	0.067
${ m endocr}_01$	0.354	0.114
$NITR_S$	0.360	0.139
$GEPAR_S_n$	0.436	0.044
IBS_POST	0.265	0.043
$TRENT_S_n$	-0.410	0.095
$n_p_ecg_p_11$	1.329	0.005
\mathbf{AGE}	0.029	0.001
np_01	21.731	0.996
$n_r_{ecg_p_06}$	-28.850	0.977
np_10	16.741	0.976
$ritm_ecg_p_02$	-0.783	0.153

Accuracy: 0.90588

AUC: 0.743145

Final Model - Stay

Relapse of pain (3rd day)

Use of opioid drugs in ICU (2nd day)

2 Use of opioid drugs in ICU (1st day)

Use of opioid drugs in ICU (3rd day)

Final Model - Stay

Logistic Regression

	Estimate	$\Pr(> z)$
(Intercept)	-2.545	0.000
R_AB_3_n	0.747	0.001
NA_R_1_n	0.168	0.090
NA_R_2_n	0.463	0.014
$NA_R_3_n$	0.157	0.578

Final Model - Stay

Accuracy: 0.9019 AUC: 0.55028

Conclusions

- Produced 2 models that aims to help doctors identify patients who are at risk of relapse of MI
- Identified important covariates at each time point in the patient trajectory that are important in predicting the relapse of MI

Future Directions

- Use a more recent dataset
- Run more machine learning models
- Test our models on different data

References

Choueiry, George. "Quantifying Health." *QUANTIFYING HEALTH*, 26 Oct. 2019, quantifyinghealth.com/stepwise-selection/.

"Heart Disease Facts." *Centers for Disease Control and Prevention*, 15 May 2023, www.cdc.gov/heartdisease/facts.htm.

Song, Jiali, et al. "Incidence, Predictors, and Prognostic Impact of Recurrent Acute Myocardial Infarction in China." *Heart*, 1 Feb. 2021, heart.bmj.com/content/107/4/313.

Thank You!

Questions?

LINK