

Stacked Self-Attention Networks for Visual Question Answering

Qiang Sun, Yanwei Fu

Academy for Engineering & Technology, Fudan University
School of Data Science, Fudan University
Fudan-Xinzailing joint research centre for big data
ZheJiang Xin ZaiLing Technology Co. LTD

1. Introduction

□ Motivation

- Stacked self-attention can be applied to learn the relations between objects.
- Bert-based question embedding model can be effective in VQA.

2. Methodology

Overview of stacked self-attention network

- The image is embedded by Faster R-CNN.
- The question is embedded by Bert-based model.
- Self-attention is applied to generate relations between objects.
- Question-guided attention is used to extract the visual features.

Question Embedding by BERT

The question embedding is calculated as the average of the last four hidden layers in BERT.

$$H = BERT(Q, attention_mask)$$

$$q_b = Avg([H_{-1}; H_{-2}; H_{-3}; H_{-4}])$$

3. Experimental Results

☐ Compared Methods:

- MCB
- MF-SIG-VG
- Bottom-up

☐ Results on VQA2.0:

Average Precision

	Test-dev				Test-std			
Models	Yes/No	Number	Other	Overall	Yes/No	Number	Other	Overall
MCB [5]	-	-	-	-	78.82	38.28	53.36	62.27
MF-SIG-VG [24]	81.29	42.99	55.55	64.73	-	-	-	-
bottom-up [15]	81.82	44.21	56.05	65.32	82.20	43.90	56.26	65.67
our full model	82.81	42.60	56.58	65.80	83.24	42.01	56.78	66.14

Table 1: Results on the test-dev and test-std splits of VQA v2.0 dataset.

☐ Ablation Study:

Average Precision

Models	Yes/No	Number	Other	Overall	
our full model	82.81	42.60	56.58	65.80	
w/o BERT	78.49	40.67	53.46	62.32	
/- C-1C A +++!	00.01	40.00	E (10	/F /O	

Table 2: Ablation study on the VQA v2.0 test-dev dataset. "w/o BERT" stands for the model using GRU instead of BERT component; "w/o Self-Attention" stands for the model without self-attention mechanism.

□ Visualization of attention:

What is the dog doing?
Predict: laying down
Ans: laying down

Is the boy playing baseball?
Predict: yes
Ans: yes

What is the bike on? Predict: grass
Ans: grass

How many women are in the image? Predict: 2
Ans: 3

[5] A. Fukui, D. Park, D. Yang, et al. 2016. Multimodal compact bilinear pooling for visual question answering and visual grounding. arXiv preprint arXiv:1606.01847 2016 [15] D. Teney, P. Anderson, X. He, and A. van den Hengel. Tips and tricks for visual question answering: Learnings from the 2017 challenge. In CVPR, June 2018 [24] Chen Zhu, Yanpeng Zhao, Shuaiyi Huang, Kewei Tu, and Yi Ma. Structured attentions for visual question answering. In ICCV 2017