Рекуррентные нейронные сети с механизмом внимания для анализа тональности русских текстов

Иванов Илья Сергеевич¹
Бурцев Михаил Сергеевич²
Ботвиновский Евгений Александрович³

 1 студент, Московский Физико-Технический Институт 2 к.ф.-м.н., DeepHackLab 3 к.ф.-м.н., DeepHackLab

2017

Цель исследования

Исследовать новые методы анализа тональности текстов на русском языке с применением рекуррентных нейронных сетей и механизма внимания.

Проблемы

Сложная морфология русского языка.

Особенности лексикона пользователей соц. сети.

Малый объём данных для обучения.

Предположения

Зависимость класса от порядка слов в тексте.

Разная значимость слов в тексте при классификации.

Литература

- Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K., Gomzin A., Turdakov D.. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets. Computational Linguistics and Intellectual Technologies. Dialog, 2016.
- Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, Eduard H. Hovy. Hierarchical Attention Networks for Document Classification. HLT-NAACL, 2016.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR, 2014.

Постановка задачи классификации

Дано множество текстов (документов) $\mathfrak{D} = \{\mathbf{d}_i\}_{i=1}^n$.

Необходимо классифицировать документы из $\mathfrak D$ на три класса:

- положительной тональности (положительные);
- отрицательной тональности (отрицательные);
- не имеющие тональности (нейтральные).

Функционалы качества

- Точность (accuracy)
- 2 Макро-усредненная F-мера

В качестве классификатора предлагается использовать двунаправленную рекуррентную нейронную сеть с механизмом внимания.

Рекуррентная нейронная сеть

- В качестве классификатора используется двунаправленная рекуррентная нейронная сеть типа GRU (Gated Recurrent Unit) с механизмом внимания.
- Функцией ошибки является перекрёстная энтропия для трёх классов.

$$J(W) = -\sum_{i=1}^{n} \sum_{k=1}^{3} y_i^{(k)} \log \hat{y}_i^{(k)},$$
$$\hat{y}_i^{(k)} = \frac{\exp s_i^{(k)}}{\sum_{j=1}^{3} \exp s_i^{(j)}}$$

5 / 16

Двунаправленный GRU

Уравнения GRU

$$z_t = \sigma_g(W_z x_t + U_z h_{t-1}) \tag{1}$$

$$r_t = \sigma_g(W_r x_t + U_r h_{t-1}) \tag{2}$$

$$\tilde{h}_t = \tanh(Wx_t + U(r_t \circ h_{t-1})) \tag{3}$$

$$h_t = (1 - z_t) \circ \tilde{h}_t + z_t \circ h_{t-1}$$
 (4)

Уравнения механизма внимания

$$v_t = \tanh\left(W_\omega\left[\overrightarrow{h_t}, \overleftarrow{h_t}\right] + b_\omega\right)$$
 (5)

$$\alpha_t = \frac{\exp\left(v_t^T u_\omega\right)}{\sum_{j=1}^T \exp\left(v_j^T u_\omega\right)}$$
 (6)

$$v = \sum_{t=1}^{T} \alpha_t \left[\overrightarrow{h_t}, \overleftarrow{h_t} \right] \tag{7}$$

Наборы данных

В качестве коллекции документов $\mathfrak D$ используются следующие наборы данных:

- Сообщения пользователей соц. сети Twitter с упоминанием некоторых банков и телекоммуникационных компаний:
 - 3 класса
 - около 10 тыс. экземпляров
 - средняя длина документа 10 слов
- Отзывы на товары и рестораны:
 - 2 класса
 - около 70 тыс. экземпляров
 - средняя длина документа 60 слов
- Рецензии на фильмы:
 - 3 класса
 - около 30 тыс. экземпляров
 - средняя длина документа 290 слов

Вычислительный эксперимент

В ходе эксперимента сравниваются результаты предложенного алгоритма классификации с такими алгоритмами как двунаправленная рекуррентная нейронная сеть (без механизма внимания), метод опорных векторов и другие.

План эксперимента

- Предобработать наборы текстов
- Реализовать двунаправленный GRU с механизмом внимания (Python + TensorFlow)
- Провести подбор оптимальных гиперпараметров и обучить модель
- Протестировать модель на отложенной выборке
- Оравнить результаты с другими алгоритмами

Предобработка данных

- Токенизация (NLTK)
- ② Лемматизация (PyMorphy2)
- Векторизация слов (Word2Vec, обученный на русскоязычном корпусе из социальных медиа)
- Дополнение последовательностей нулями до максимальной длины (zero-padding)

Таблица: F1-мера различных моделей на кросс-валидации (CV) и тестовой подвыборке для набора с твитами

	Banks		Telecommunication companies	
	5-fold CV (mean, std)	test	5-fold CV (mean, std)	test
Bi-GRU	0.74, 0.02	0.48	0.62, 0.01	0.52
Bi-GRU + Attention	0.74, 0.02	0.51	0.60, 0.02	0.49
2-layer GRU,				
reversed sequences	0.62, -	0.55	0.66, -	0.56
(Arhipenko)				
Bi-GRU (Arhipenko)	0.62, -	-	0.65, -	-
LSTM (Arhipenko)	0.60, -	-	0.64, -	-
CNN (Arhipenko)	-	0.48	-	0.47
SVM baseline	-	0.46	-	0.46
Majority baseline	-	0.31	-	0.19

11 / 16

Таблица: Результаты эксперимента со смешиванием обучающей и тестовой выборок

	Banks			Telecommunication			
				companies			
	cross-validation			cross-va	alidation	test	
	train	train+test	test	train	train+test	lest	
Bi-GRU	0.74, 0.02	0.71, 0.02	0.48	0.62, 0.01	0.62, 0.01	0.52	
Bi-GRU+Attention	0.74, 0.02	0.72, 0.01	0.51	0.60, 0.02	0.62, 0.01	0.49	

Таблица: Качество различных моделей на кросс-валидации (CV) и тестовой подвыборке для набора с отзывами

	Reviews				
	10-fo	test			
	accuracy	F1	accuracy	F1	
Bi-GRU	0.906, 0.003	0.863, 0.007	0.901	0.861	
Bi-GRU+Attention	0.907, 0.004	0.865, 0.007	0.900	0.861	
CNN	0.901, 0.003	0.854, 0.005	0.896	0.844	
SVM	0.897, 0.004	0.838, 0.006	0.895	0.836	
Majority baseline	-	-	0.793	0.442	

Таблица: Качество различных моделей на кросс-валидации (CV) и тестовой подвыборке для набора с рецензиями

	Reviews				
	10-fo	test			
	Accuracy	F1	Accuracy	F1	
Bi-GRU	0.833, 0.004	0.647, 0.005	0.807	0.640	
Bi-GRU+Attention	0.837, 0.004	0.655, 0.006	0.811	0.648	
CNN	0.821, 0.005	0.649, 0.005	0.775	0.637	
SVM	0.824, 0.003	0.541, 0.003	0.798	0.375	
Majority baseline	-	-	0.735	0.282	

Заключение

- Реализован алгоритм двунаправленной рекуррентной нейронной сети с механизмом внимания для классификации тональности русскоязычных текстов. Код отлажен и выложен в открытый доступ
- Проведён подбор гиперпараметров и обучены модели на вышеупомянутых наборах данных
- Проведено сравнение результатов с предложенными ранее алгоритмами
- Подготовлен отчет по результатам работы

Дальнейшее исследование

Изучение применимости более сложных и глубоких архитектур для анализа тональности русскоязычных текстов.

Исследование применимости данной модели в качестве модуля для нейронной сети, генерирующей сообщения с заданной тональностью.

Приложение. Визуализация механизма внимания

- 1. Почему-то не приходят смс-сообщения для подтверждения входа
- 2. IPhone-овское приложение от Сбербанка самое удобное в России
- 3. Заведение вполне приличное, кухня хорошая, но маловато выбора, зато с напитками никакой проблемы выбора нет!! много сортов пива и других более крепких напитков. из минусов можно сказать только черезмерная громкость живой музыки по выходным. соседа не слышно....