

Practical Multi-Key Homomorphic Encryption for More Flexible and Efficient Secure Federated Average Aggregation

IEEE CSR Cyber Security and Resilience Workshop on Privacy-Preserving Data Processing and Analysis (2P-DPA)

Venice, Italy, 31 July - 2 August 2023

Alberto Pedrouzo-Ulloa

apedrouzo@gts.uvigo.es

Joint work with A. Boudguiga, O. Chakraborty, R. Sirdey, O. Stan, M. Zuber name.surname@cea.fr

Outline

- Introduction
- HE for Secure Aggregation
- Undressing HE
- What's under the clothes
- Some outfit comparisons
- Conclusions

Introduction

A little bit about Federated Learning and its problems

Example scenario for Federated Learning

- FL allows the training of ML models without explicit sharing of training data.
- A central server (**Aggregator**) aggregates the local training updates from Data Owners (DOs).
- Cross-silo FL: a model is built from the training sets of a reduced number of servers.
 - They are always available and computationally powerful.

- Initially proposed to avoid moving the training data out
 - reducing communication costs and "ensuring data privacy."
- Some example attacks:
 - Is in the database of a particular hospital?
 - Can we reconstruct attributes of the people in the database?

$$\mathsf{Risk}_1 = 3 \cdot \mathsf{Age} + 1 \cdot \mathsf{Weight}$$

$$Risk_2 = 4 \cdot Age + 0.5 \cdot Weight$$

$$Risk_3 = 2 \cdot Age + 1.5 \cdot Weight$$

$$\mathsf{Risk}_{\mathsf{Agg}} = 3 \cdot \mathsf{Age} + 1 \cdot \mathsf{Weight}$$

The aggregator is the most dangerous party!

A toy example and some privacy risks

Some example attacks:

HE for Secure Aggregation

Achieving protection against the aggregator

Secure Aggregation: Protection against the aggregator

Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.

Secure Aggregation: Protection against the aggregator

- Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.
 - It seems to be a perfect fit for secure aggregation.
 - It respects the communication flow of unprotected FL.

Secure Aggregation: Protection against the aggregator

- Single-key HE imposes the need of
 - a trusted decryptor.
 - o non-colluding assumption among Aggregator and decryptor.

- Our scenario requires to incorporate multiple keys into HE.
 - Prevents decryption without permission of other participants.

Single key

Multiple keys

(S)HE looks nice, but maybe too many clothes for FL

Our motivation:

- Many works address the problem of secure aggregation in FL.
- To the best of our knowledge, HE has not been yet fully optimized for this setting.

Our objective:

Tailor and optimize HE constructions for secure average aggregation.

We propose:

 A lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule.

Undressing HE: a talk with "streaptease"

This is not what it seems

First outfit: Using a BFV-type encryption

Public key generation:

$$PK = Enc(0) = (a, b = -(as + e))$$

- Encryption:
 - We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\operatorname{Enc}(m) = (c_0 = \operatorname{PK}[0]u + e_0, c_1 = \operatorname{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

First outfit: Using a BFV-type encryption

Public key generation:

$$\mathsf{PK} = \mathsf{Enc}(0) = (a, b = -(as + e))$$

- Encryption:
 - We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\mathsf{Enc}(m) = (c_0 = \mathsf{PK}[0]u + e_0, c_1 = \mathsf{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

First outfit: Using a BFV-type encryption

Public key generation:

$$PK = Enc(0) = (a, b = -(as + e))$$

- Encryption:
 - We encrypt a message $m \in R_p = \mathbb{Z}_p[X]/(1+X^n)$

$$\operatorname{Enc}(m) = (c_0 = \operatorname{PK}[0]u + e_0, c_1 = \operatorname{PK}[1]u + e_1 + \underbrace{\Delta}_{\lfloor q/p \rfloor} \cdot m) \in R_q^2$$

Multiple keys with an (L-out-of-L) threshold variant of BFV:

$$\mathsf{SK} = s = s_1 + \ldots + s_L$$

Each Data Owner can encrypt with its own secret key.

$$(a, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a(\sum_{i} s_{i}) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

• There is no need to send "a".

Each Data Owner can encrypt with its own secret key.

$$(a, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a(\sum_{i} s_{i}) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

There is no need to send "a".

Each Data Owner can encrypt with its own secret key.

$$(a, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a(\sum_{i} s_{i}) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

• There is no need to send "a".

Each Data Owner can encrypt with its own secret key.

$$(\mathbf{x}_i, b_i = as_i + e_i + \Delta \cdot m_i)$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(\sum_{i} b_{i} = a\left(\sum_{i} s_{i}\right) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

• There is no need to send "a".

$$\lfloor as_i \rceil_p = \lfloor p/q \cdot as_i \rceil$$

- The public key is not needed:
 - Each Data Owner can encrypt with its own secret key.

$$(a), b_i = as_i + e_i + \Delta \cdot m_i$$

- Encrypted updates can be aggregated on the fly:
 - By sharing the same "a", then "b" components are directly aggregated.

$$\left(a, \sum_{i} b_{i} = a(\sum_{i} s_{i}) + \sum_{i} e_{i} + \Delta \cdot \sum_{i} m_{i} = as + e + \Delta \cdot m\right)$$

There is no need to send "a".

To have distributed decryption, each DO has to send $\lfloor as_i \rceil_p$ but it also decrypts the input ciphertext!

Proposed solution

Take it off all, but carefully

Masking the secret keys: $(a, b_i = a(s_i + \operatorname{share}_i) + e_i + \Delta \cdot m_i)$

$$\left(\sum_{i} b_{i}\right) = a(s + \sum_{i} \operatorname{share}_{i}) + e = a \underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

- Additive secret shares of zero \sum_{i} share_i = 0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.

Masking the secret keys: $(a, b_i = a(s_i + \operatorname{share}_i) + e_i + \Delta \cdot m_i)$

$$\left(\sum_{i} b_{i}\right) = a(s + \sum_{i} \operatorname{share}_{i}) + e = a \underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

Building blocks:

- Additive secret shares of zero \sum_{i} share i=0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.

$$\left(\sum_{i} b_{i}\right) = a(s + \sum_{i} \operatorname{share}_{i}) + e = a \underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

- Additive secret shares of zero \sum_i share i=0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way: $\mathbf{Lemma 1} \quad (\mathbf{Lemma 1} \quad \mathbf{P}^{N} \quad \text{and} \quad \mathbf{r} = \mathbf{r} + \mathbf{r} \quad \text{and} \quad \mathbf{r} = \mathbf{r} + \mathbf{r} \quad \mathbf{r} \quad \mathbf{r} = \mathbf{r} + \mathbf{r} \quad \mathbf{r} \quad \mathbf{r} \quad \mathbf{r} = \mathbf{r} + \mathbf{r} \quad \mathbf{r} \quad$

Lemma 1 (Lemma 1 [3]). Let
$$p|q$$
, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.

$$\left(\sum_{i} b_{i}\right) = a(s + \sum_{i} \operatorname{share}_{i}) + e = a \underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

- Additive secret shares of zero \sum share_i = 0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.

$$\left(\sum_{i} b_{i}\right) = a(s + \sum_{i} \operatorname{share}_{i}) + e = a \underbrace{s}_{\sum_{i} s_{i}} + \underbrace{e}_{\sum_{i} e_{i}} + \Delta \cdot \underbrace{m}_{\sum_{i} m_{i}}$$

- Additive secret shares of zero \sum_{i} share_i = 0
- A PRF is used to agree in the same "a" per each round.
- Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \mod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \mod p\right) \leq \frac{2npNB}{q}$.

- Next lemma is used to remove the error in a distributed way:
 - Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.
- It can be used to show that $\lfloor b \rceil_p = \lfloor as + e \rceil_p + m \neq \lfloor as \rceil_p + m$ with at most probability $\Pr(\mathsf{Ev})$

• By bounding $Pr(Ev) \leq 2^{-\kappa}$:

$$q \ge 4 \cdot n^2 \cdot N_{\text{AggRounds}} \cdot N_{\text{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B_{\text{Init}}^2 \cdot 2^{\kappa}$$

- Next lemma is used to remove the error in a distributed way:
 - Lemma 1 (Lemma 1 [3]). Let p|q, $\boldsymbol{x} \leftarrow R_q^N$ and $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e} \bmod q$ for some $\boldsymbol{e} \in R_q^N$ with $\|\boldsymbol{e}\|_{\infty} < B < q/p$. Then $\Pr\left(\lfloor \boldsymbol{y} \rceil_p \neq \lfloor \boldsymbol{x} \rceil_p \bmod p\right) \leq \frac{2npNB}{q}$.
- It can be used to show that $\lfloor b \rceil_p = \lfloor as + e \rceil_p + m \neq \lfloor as \rceil_p + m$ with at most probability $\Pr(\mathsf{Ev})$

• By bounding $Pr(Ev) \leq 2^{-\kappa}$:

$$q \geq 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B_{\mathsf{Init}}^2 \cdot 2^{\kappa}$$

What's under the clothes

Some nice surprises

Dishonest Data Owners

$$\operatorname{Enc}(0) = (a,b) \in R_q^2$$

$$\operatorname{Enc}(s) = (a-\Delta,b) \in R_q^2$$

$$\operatorname{Enc}(s)$$

$$\operatorname{Enc}(s)$$

$$\operatorname{Enc}(m_2)$$

$$\operatorname{Enc}(m_2)$$

$$\operatorname{Enc}(m_3)$$

$$\operatorname{Enc}(m_3)$$

$$\operatorname{PK} = \operatorname{Enc}(0)$$

$$\operatorname{Aggregated Model}$$

$$\operatorname{Aggregation}$$

Some nice properties

- Limiting ciphertexts' malleability
 - By assuming the Common Reference String (CRS) model, a different "a" term is fixed per each aggregation round.
- Stronger semi-honest DOs:
 - As there is no public key, DOs cannot generate encryptions of the global secret key.

 $\mathsf{Enc}(m_3)$

 $\begin{array}{c} \mathsf{PK} = \mathsf{Enc}(0) \\ s_3 \end{array}$

Aggregation

Some nice properties

Limiting ciphertexts' malleability

 \circ By assuming the Common Reference String (*CRS*) model, a different "a" term is fixed per each aggregation round.

Stronger semi-honest DOs:

As there is no public key, DOs cannot generate encryptions of the global secret key.

 $\mathsf{Enc}(m_3)$

 $\mathsf{PK} = \mathsf{Enc}(0)$

Aggregation

Some outfit comparisons

Comparing with others HE-based solutions

Comparison with other solutions

M: Model Size N: Number of DOs n: lattice dimension M≈ constant·n	Ours [2]	[5]	[3]	[4]	[6]
Agg. Comp. Cost	O(MN) add.	O(MN) mult.	O(MN) add.	O(MN) add.	O(MN²)
DO Comp. Cost	LWE: O(Mn) mult. RLWE: O(M logM) mult.	<i>O</i> (<i>M</i>) exp.	O(M logM) mult.	O(M logM) mult.	O(MN + N ²)
Total Com. Cost	O(MN)	O(MN)	O(MN)	O(MN)	$O(MN + N^2)$
Multiple Keys	V	0	0	<u> </u>	<u> </u>
Passive parties	V	V	V	V	V
Malicious Agg.	✓ Verify Agg.	Verify Agg.	0	0	only DOs input privacy if $T > N/2$
Assumptions	LWE/RLWE	Paillier	RLWE	RLWE	T non-colluding DOs
Flexible Dec.	only DOs contributing to aggregated model	0	0	0	required T out of N

Conclusions

When you go to the beach, all you truly need is a bathing suit!

Conclusions

- We tailor and optimize HE constructions for secure average aggregation.
- Multi-key homomorphic encryption mitigates collusion attacks between aggregator and data owners.
- We propose a lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule.
 - Communication cost per party is reduced approximately
 - by a half with RLWE.
 - from quadratic to linear in terms of lattice dimension if considering LWE.
 - Interesting new features against more malicious parties

References:

- [1] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti, "Sok: Secure aggregation based on cryptographic schemes for federated learning," Proc. Priv. Enhancing Technol., vol. 2023, no. 1, pp. 140–157, 2023.
- [2] Alberto Pedrouzo-Ulloa, Aymen Boudguiga, Olive Chakraborty, Renaud Sirdey, Oana Stan, and Martin Zuber, "Practical multi-key homomorphic encryption for more flexible and efficient secure federated aggregation (preliminary work)," IACR Cryptol. ePrint Arch., p. 1674, 2022.
- [3] Arnaud Grivet Sébert, Renaud Sirdey, Oana Stan, and Cédric Gouy-Pailler, "Protecting data from all parties: Combining FHE and DP in federated learning," CoRR, vol. abs/2205.04330, 2022.
- [4] Christian Mouchet, Juan Ramón Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-Pierre Hubaux, "Multiparty homomorphic encryption from ring-learning-with-errors," Proc. Priv. Enhancing Technol., vol. 2021, no. 4, pp. 291–311, 2021.
- [5] Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-Pailler, and Renaud Sirdey, "A secure federated learning framework using homomorphic encryption and verifiable computing," 2021, pp. 1–8.
- [6] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth, "Practical secure aggregation for privacy-preserving machine learning," in ACM SIGSAC CCS. 2017, pp. 1175–1191, ACM.

Proposed solution: some extra details

The distributed decryption introduces an extra error component

$$e_{\text{distributed}} = \lfloor as \rceil_p - \sum_i \lfloor as_i \rceil_p$$

• It can be removed with an additional rounding phase (q > p' > p)

$$\begin{split} \Pr(\mathsf{Ev}) & \leq \frac{2 \cdot n \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p' \cdot B_{\mathsf{Agg}}}{q} \\ q & \geq 4 \cdot n^2 \cdot N_{\mathsf{AggRounds}} \cdot N_{\mathsf{Ctxts.PerRound}} \cdot p \cdot L^2 \cdot B_{\mathsf{Init}}^2 \cdot 2^{\kappa} \end{split}$$

Input per DO	Decryption share per DO	Aggregator output	Decrypted result
$N_{ModelParam} \cdot \log_2 q$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p'$	$N_{ModelParam} \cdot \log_2 p$

Table 2. Communication costs per party in each aggregation round.

Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

○ General cancer risk 2:350 per 100000 people (aged 45 - 49)

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND I'LL TELL YOU WHO YOU ARE

Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

General cancer risk 2: 350 per 100000 people (aged 45 - 49)

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND I'LL TELL YOU WHO YOU ARE

• Membership inference:

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

- General cancer risk 2: 350 per 100000 people (aged 45 49)
- "Cancer risk" knowing that \(\bigcap \) is contained in the training data: 1 per 2 people

