Brute Force

Agenda

- 1. Overview
- 2. Sorting
- 3. Sequential Search & String Matching
- 4. Convex Hull (*)
- 5. Graph Search
- 6. Exhaustive Search
- 7. Summary

1. Overview

Learning objectives

- 1. Understand the **Brute Force** approach
- 2. Understand and apply:
 - Sorting Selection and Bubble Sorts
 - Sequential Search and String Matching
 - Computational geometry Convex hull problems
 - Graph Search
 - Exhaustive Search

Brute Force

Brute force is a straightforward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved.

Examples:

- 1. Computing *a*^{*n*} (multiply 'a' for *n* times)
- 2. Searching for a key of a given value in an unsorted list
- 3. Calculate the sum of a range

2. Sorting

Sorting

Examples

- Sorting Numbers (Sequential)
- Telephone book by surname, e.g., A, B, C, D...
- Sorting Books in Library (Dewey system)
- Sorting Individuals by Height (Feet and Inches)

Why do we study sorting?

- Important to build efficient searching algorithms and data structures, data compression.
- Heavily studied problem in computer science, with several widely celebrated algorithms.

Sorting

Formal definition:

- Given a sequence of *n* elements $x_1, x_2, ..., x_n \in S$
- Re-arrange the elements according to some ordering criteria.

Example

$$Sorted(A) = \{ 0 1 1 2 3 3 4 5 6 9 \}$$

Sorting Algorithms

- There are many sorting algorithms, such as:
 - Selection Sort
 - Insertion Sort
 - Bubble Sort
 - Merge Sort
 - Quick Sort
- The first three are the foundations for faster and more efficient algorithms

Brute Force: Selection Sort

Selection Sort is a Brute Force solution to the sorting problem.

- 1. Scan all *n* elements of the array to find the *smallest element*, and *swap* it with the *first element*.
- 2. Starting with the **second element**, scan the remaining *n* 1 elements to find the smallest element and swap it with the element in the second position.
- 3. Generally, on pass i ($0 \le i \le n 2$), find the smallest element in A[i ... n 1] and swap it with A[i].

Selection Sort

Selection Sort

- The list is divided into two sub-lists, sorted and unsorted, which are divided by an imaginary wall
- We find the smallest/largest element from the unsorted sub-list and swap it with the element at the beginning of the unsorted data
- After each selection and swapping, the imaginary wall between the two sub-lists move one element ahead, increasing the number of sorted elements and decreasing the number of unsorted ones
- Each time we move one element from the unsorted sub-list to the sorted sub-list, we say that we have completed a sort pass
- A list of n elements requires n-1 passes to rearrange the data

Selection Sort – Pseudocode

```
ALGORITHM SelectionSort (A[0...n-1])
/* Order an array using a brute-force selection sort. */
/* INPUT : An array A[0...n-1] of orderable elements. */
/* OUTPUT : An array A[0...n-1] sorted in ascending order. */
 1: for i = 0 to n - 2 do
                                      No need to sort the last value
    min = i
                                      Record position
   for j = i + 1 to n - 1 do
          if A[j] < A[min] then
 4:
             min = j
                                     Record position of the new
 5:
                                      smallest candidate
          end if
 6:
       end for
       swap A[i] and A[min]
 9: end for
```

Selection Sort - Analysis

- In general, we compare keys and move items (or exchange items) in a sorting algorithm (which uses key comparisons)
 - → So, to analyze a sorting algorithm we should count the number of key comparisons and the number of moves
- In selection sort, the outer "for" loop executes n-1 times
- We invoke swap function once at each iteration
 - → Total Swaps: n-1
 - → Total Moves: 3*(n-1) (Each swap has three moves)

Selection Sort – Analysis (cont.)

- The inner for loop executes the size of the unsorted part minus 1 (from 1 to n-1), and in each iteration we make one key comparison.
 - → # of key comparisons = 1+2+...+n-1 = n*(n-1)/2
 - → So, Selection sort is O(n²)
- The best case, the worst case, and the average case of the selection sort algorithm are same. → all of them are O(n²)
 - The behavior of selection sort algorithm does not depend on the initial organization of data
 - Since O(n²) grows rapidly, selection sort is appropriate only for small n
 - Although selection sort algorithm requires O(n²) key comparisons, it only requires O(n) moves
 - Selection sort could be a good choice if data moves are costly but key comparisons are not

Selection Sort – Time Complexity

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2} \in \mathcal{O}(n^2)$$

- Needs around n² / 2 comparisons and at most n − 1 exchanges.
- The running time is *insensitive* to the input, so the best, average, and worst case are essentially the same
 - Why?

Selection Sort – Why use it

- Selection sort only makes O(n) writes but $O(n^2)$ reads.
- When writes (to array) are much more expensive than reads, selection sort may have an advantage, e.g., flash memory.
- Also, for small arrays (10 20 elements), selection sort is relatively efficient and simple to implement.

'Stable' Sorting Algorithms

- A sorting method is stable if it preserves the relative order of duplicate keys in the file.
- Why? Think about sorting last names and first names separately
- Not all sorting methods are stable.

Is Selection Sort Stable?

- Question: is Selection Sort stable?
- Consider the following example and apply Selection Sort on them:

Another Brute Force sort...

Bubble Sort

 A bubble sort iteratively compares adjacent items in a list and swaps them if they are out of order.

Bubble Sort – Motivation

- One of the classic (and elementary) sorting algorithms, originally designed and efficient for tape disks, but with random access memory, it doesn't have much use these days.
- But insightful to study it and to understand why other sorting algorithms are superior in one or more aspects.
- It is simple to code.

Bubble Sort – Idea

- First iteration, *compare each adjacent pair* of elements and swap them if they are out of order. Eventually largest element gets propagated to the end.
- Second iteration, repeat the process,
 - but only from first to 2nd last element (last element is in its correct position). Eventually second largest element is at the 2nd last element.
- Repeat until all elements are sorted.

Bubble Sort

Bubble Sort

- The list is divided into two sub-lists: unsorted and sorted
 - Bubble sort compares adjacent integers and exchanges them if they are out of order
 - The largest element is bubbled from the unsorted list and moved to the sorted sub-list
 - After that, the wall moves one element backwards, increasing the number of sorted elements and decreasing the number of unsorted ones
- Given a list of n elements, bubble sort requires up to n-1 passes to sort the data

Bubble Sort – Pseudocode

```
ALGORITHM BubbleSort (A[0...n-1])
/* Order an array using a bubble sort. */
/* INPUT : An array A[0...n-1] of orderable elements. */
/* OUTPUT : An array A[0...n-1] sorted in ascending order. */
 1: for i = 0 to n - 2 do
                                        Traverse to 2<sup>nd</sup> last element only
       for j = 0 to n - 2 - i do
                                        Keep traversing and swapping but
                                        leave the sorted part alone
           if A[j + 1] < A[j] then
 3:
              swap A[j] and A[j+1]
 4:
           end if
 5:
       end for
 6:
 7: end for
```

Bubble Sort – Time Complexity

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} [(n-2-i)-0+1] = \sum_{i=0}^{n-2} (n-1-i)$$
$$= \frac{(n-1)n}{2} \in \mathcal{O}(n^2)$$

Bubble Sort – Time Complexity

- Best case: if original file is already sorted
 - o about $n^2/2$ comparisons & 0 exchanges $O(n^2)$.
- Worst case: if original file is sorted in reverse order
 - o about $n^2/2$ comparisons & $n^2/2$ exchanges $O(n^2)$.
- Average case: if original file is in random order
 - o about $n^2/2$ comparisons & less than $n^2/2$ exchanges O(n^2).

Is bubble sort stable?

Improved Bubble Sort

- This modification attempts to reduce redundant iterations,
 by checking if any exchanges takes place in each pass.
- If there were no exchanges in the current iteration, the sorting is stopped after the current iteration.
- Early-Termination Bubble Sort

Improved Bubble Sort – Complexity

- **Best case** when the original file is already sorted, only one pass is needed, n-1 comparisons, 0 exchanges O(n).
- Worst case No improvement over the original implementation $O(n^2)$.
- Average case Depending on the data set, few iterations can be eliminated at the end of the sort.
- Therefore, the number of passes is less than n-1, and hence cost is lower than the original implementation. The complexity is still likely to be $O(n^2)$.

3. Sequential Search & String Matching

Sequential Search

 Sequential search or linear search involves scanning each element of the entire collection sequentially until the key is found

```
Algorithm SequentialSearch(A[0...n],K)
i = 0;
while (i < n && A[i] != K)
i = i + 1;
if i < n return i
else return -1</pre>
```

Sentinel Technique

 A sentinel value is a special value in the context of an algorithm that uses its presence as a condition of termination, typically in a loop or recursive algorithm. (Wikipedia)

Algorithm SequentialSearch(A[0...n],K)

```
i = 0
A[n] = k // increase the array by 1
while (A[i] != K)
    i = i + 1;
if i < n return i
return -1</pre>
```

Sequential Search – Analysis

Case	Best	Average	Worst
Item is present	1	n/2	n
Item is not present	n	n	n

What if we have an ordered list?

We can early-terminate a sequential search too

String Matching

- Given a string of *n* characters called the **text** and a string
 of *m* characters (m<=n) called the **pattern**, find a substring
 of the text that matches the pattern.
- For example:
 - "RMIT IS THE BEST UNIVERSITY" (text)
 - "UNIV" (pattern)

String Matching – Idea

- Align the pattern against the first m characters of the text.
- Start matching the corresponding pair of characters from left to right until either all the m pairs are matched,
- Or if the missing pair is found, the pattern is shifted one position to the right and character comparisons are resumed, starting again from the 1st character.

String Matching – Idea

RMIT IS THE BEST UNIVERSITY UNIV RMIT IS THE BEST UNIVERSITY

UNIV

String Matching – Pseudocode

```
Algorithm BruteForceStringMatch (T[0...n-1],P[0...m-1])
for i = 0 to n-m
    j = 0
    while j < m and P[j] = T[i+j] do
        j = j + 1
    if j = m return i
return -1</pre>
```

String Matching – Analysis

- Worst case: The algorithm may have to make all m comparisons before shifting the pattern, and this can happen for each of the n-m+1 tries, i.e., m(n-m+1). Therefore, the worst case is O(nm).
- For example:
 - Text = AAA...AAAAH
 - Pattern = AAAAH

String Matching – Analysis

- Average Case: O(n+m) = O(n).
- Best Case: O(m) (if m is found in first place—m comparisons are needed), or O(n) (if m is not found—check n times)
- For example:
 - Text = AAA...AAAAH
 - Pattern = AAA or BBB

4. Convex Hull (*)

Convex hull problem

 The convex hull of a set of points is the smallest convex polygon that contains all the points, i.e., all the points are "within" the polygon.

A Brute Force solution for Convex Hull problem

Idea: If we can identify all the line segments/adjacent pairs
of points that form the boundary of the convex hull, then we
have the convex hull.

Brute Force Convex Hull - Pseudocode

- The straight line through $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ can be defined by: ax + by = c, where $a = y_2 y_1$, $b = x_1 x_2$, $c = x_1y_2 x_2y_1$
- For all the points in one of the half-plane, ax + by > c; For all the points in the other half-plan, ax + by < c; For all the points on the line, ax + by = c
- We check whether the expression ax + by = c has the same sign at each of these points

A Brute Force solution for Convex Hull problem

• Complexity of algorithm: Since there are $O(n^2)$ pairs of points to examine, and each check requires going through O(n) remaining points, the algorithm is $O(n^3)$.

The java.awt.geom package

- The java.awt.geom package defines classes for geometry objects and operations
- Point2D: represents a point(x, y) in a 2D space. The concrete classes are Point2D.Float and Point2D.Double
- Line2D: represents a line segment in a 2D space. The concrete classes are Line2D.Float and Line2D.Double

The java.awt.geom package

- The Line2D.relativeCCW()
 method returns 1/-1/0 when
 rotating a line (p1, p2) to
 reach a target point in
 counterclockwise direction or
 opposite direction
- Use it to determine if 2 points are on the same side of a line segment

5. Graph Search

What is a Graph?

- G = (V, E)
- Set of vertices (nodes) V = [v1, v2, v3, etc.]
- Set of edges (arcs, connections) E = [(vs₁, ve₁), (vs₂, ve₂), etc.] in which vs_i and ve_i are members of V
- If (vs_i, ve_i) belongs to E means (ve_i, vs_i) also belongs to E,
 G is called undirected; otherwise, it is directed
- If each edge is assigned a numeric value, it is called weighted graph; otherwise, it is unweighted
- A graph is acyclic if it does not contain any cycles (for example, a tree); otherwise, it is cyclic

What is a Graph?

 An undirected, weighted, and cyclic graph

 A directed, unweighted, and acyclic graph

Adjacency Matrix

- For a graph of N vertices, use a N x N matrix E (i.e. a 2D array) where E[i, j] = 1 if vertex i and vertex j are connected (i.e., there is an edge connecting them), 0 otherwise
- If a graph is weighted, E[i, j] stores the weight of the edge connecting vertices i and j
- E = [[0, 5, 6, 2]] [5, 0, 0, 4] [6, 0, 0, 3][2, 4, 3, 0]]

Adjacency List

 For a graph of N vertices, use N linked lists, one per node, and each stores the list of that node's neighbours

- E[0] -> B -> C
- E[1] -> C
- E[2] = null
- E[3] -> B

Graph Traversal

- Depth-First Search (DFS)
- Breadth-First Search (BFS)
- Mark a node after visiting it to prevent visiting again (we don't need this step when traversing a tree, why?)

Depth-First Search – Idea

- 1. Choose an arbitrary vertex and mark it visited
- 2. From the current vertex, proceed to an unvisited, adjacent vertex and mark it visited
- 3. Repeat 2nd step until a vertex is reached which has no adjacent, unvisited vertices (dead-end)
- 4. The algorithm halts when there are no unvisited vertices

Depth-First Search – Pseudocode

```
ALGORITHM DFS (G)
/* Implement a Depth First Traversal of a graph. */
/* INPUT : Graph G = \langle V, E \rangle */
/* OUTPUT : Graph G with its vertices marked with consecutive */
/* integers in initial encounter order. */
                                              > number of nodes visited
 1: count = 0
 2: for i = 0 to v do
                                              mark all nodes unvisited
      Marked[i] = 0
 4: end for
 5: for i = 0 to v do
                                            > visit each unmarked node
       if not Marked[i] then
           DFSR(i)
       end if
 9: end for
```

Depth-First Search – Pseudocode

```
ALGORITHM DFSR (v)
/* Recursively visit all connected vertices. */
/* INPUT : A starting vertex v */
/* OUTPUT : Graph G with its vertices marked with consecutive */
/* integers in initial encounter order. */

    increment the node visited counter

 1: count = count + 1
 2: Marked[v] = 1
                                            3: for v' \in V adjacent to v do
                                       if not Marked[v'] then

    □ unmarked adjacent nodes

         DFSR (v')
    end if
 7: end for
```

Depth-First Search Complexity

A DFS search can be implemented with graphs represented as:

- Adjacency matrices with complexity = O(|V|²)
 - It is a graph traversal, so we need to iterate over all vertices (/V / of these).
 - For each vertex, we need to check the neighbours of it. For the matrix representation, the only way we can guarantee to find all neighbours of vertex i is to do a linear scan across its row in the matrix, which has |V| elements.
 - o So $|V|^* |V|$ gives $O(|V|^2)$ complexity. The traversal also needs to setup visited status, which requires O|V| complexity, but the quadratic term dominates.

Breadth-First Search – Idea

- 1. Choose an arbitrary vertex *v* and mark it visited.
- 2. Visit and mark (visited) each of the adjacent(neighbour) vertices of *v* in turn.
- 3. Once all neighbours of *v* have been visited, select the first neighbour that was visited, and visit all its (unmarked) neighbours.
- 4. Then select the second visited neighbour of *v*, and visit all its unmarked neighbours.
- 5. The algorithm halts when we visited all vertices.

DFS vs. BFS

	DFS	BFS
Applications	connectivity,	connectivity,
	acyclicity	acyclicity,
		shortest
		paths
Efficiency for adjacency matrix	$\Theta(V^2)$	$\Theta(V^2)$
Efficiency for adjacency lists	$\Theta(V + E)$	$\Theta(V + E)$

6. Exhaustive Search

Another Brute Force solution...

Exhaustive Search

- A brute force solution involving enumerating/generating all possible solutions, then selecting the "best" one.
- Typically applied to combinatorial problems, and insightful
 to study brute force solutions to them, as some problems
 can only be solved optimally by exhaustive search.

Exhaustive Search – Idea

- Generate a list of all potential solutions to the problem in a systematic manner.
- Evaluate potential solutions one by one, disqualifying infeasible ones, and keeping track of the best one found so far.
- When all items have been evaluated, announce the best solution(s)found.

Knapsack Problem

Given n items of known weights w_1, \ldots, w_n and the values v_1, \ldots, v_n and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack

Knapsack Brute Force Algorithm

- 1. Consider all subsets of the set of *n* items.
- Compute the total weight of each subset in order to identify feasible subsets (the ones with the total not exceeding the knapsack's capacity).
- 3. Find the subset of the largest value among them.

Complexity: Since the number of subsets of an n-element set is 2^n , an exhaustive search produces an $O(2^n)$ algorithm.

Knapsack Problem

Knapsack Problem – Solution

Subset	Total Weight	Total Value
	0	\$0
{1}	7	\$42
{2 }	3	\$12
{3}	4	\$40
{4 }	5	\$25
{1,2}	10	\$36
{1,3}	11	Not Possible
{1,4}	12	Not Possible
{2,3}	7	\$52
$\{2,4\}$	8	\$37
{3,4}	9	\$65
$\{1, 2, 3\}$	14	Not Possible
$\{1, 2, 4\}$	15	Not Possible
$\{1, 3, 4\}$	16	Not Possible
$\{2,3,4\}$	12	Not Possible
$\{1, 2, 3, 4\}$	19	Not Possible

Pruning

- When generating possible solutions, if the current state is impossible to be a part of the solution, the generating process can stop proceeding further and try new branches instead. This is called pruning
- For example, if w1 + w2 > the knapsack's capacity, we should stop generating subsets that contain both item1 and item2

Generating Subsets

- Input: a list of elements [E1, E2, E3, ...]
- Algorithm
 - Going through the list
 - At each position, either Select or Not Select that element
 - Then, recursively apply the same process to the next element
 - If the current element is the last element, output the current subset (if an element is Selected, it is included in the current subset; otherwise, it is not)

Generating Subsets - Pseudocode

```
generate subset(input arr, selected states, cur idx)
     if cur idx == size
         process subset(selected states)
     // SELECTED
     selected states[cur idx] = true
     generate subset (input arr, selected states,
 cur idx + 1)
     // NOT SELECTED
     selected states[cur idx] = false
     generate subset (input arr, selected states,
 cur idx + 1)
```

Travelling Salesman Problem

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- Assume the list of cities is given in an array C[0..N]
- Each route is a permutation of the elements of C
- The number of permutations of a set of N element is N!, hence the complexity of this solution is O(N!)

Travelling Salesman Problem

 What is the solution to the problem instance on the right?

Generating Permutations

- Input: a list of elements [E1, E2, E3, ...]
- Algorithm
 - Maintain: Remaining elements and Current permutation
 - Going through all Remaining elements, for each X
 - Move X from Remaining elements to the end of Current permutation
 - Call the method recursively
 - Move X from Current permutation to Remaining elements
 - If Remaining elements is empty, the elements in Current permutation form a valid permutation

Generating Permutations - Pseudocode

```
    permute(in arr, taken arr, cur arr, cur idx)

      if cur idx == size
          process permutation (cur arr)
      for i = 0 to size -1
          if (taken[i]) continue
          cur arr[cur idx] = input arr[i]
          taken[i] = true
          generate perm (in arr, taken arr,
  cur arr, cur idx + 1)
          taken[i] = false
```

8-Queens Problem

- How to place eight queens on a chess board so that no two queens can attack each other?
- Use an array col[0..7] to store the row indices of 8 columns
- Each solution must be a permutation of [0, 1, 2, 3, 4, 5, 6, 7]?
- Generate permutation and check for validity at each step

Image source: https://www.aiai.ed.ac.uk/~gwickler/eightqueens.html

To finish...

Learning objectives

- 1. Understand the **Brute Force** approach
- 2. Understand and apply:
 - Sorting Selection and Bubble Sorts
 - Sequential Search and String Matching
 - Computational Geometry Convex hull problems
 - Graph Search: DFS, BFS
 - Exhaustive Search
 - Generating Subsets
 - Generating Permutations

RMIT Classification: Trusted

