06.02.2021 Problems - Codeforces

у2018-4-4. Математика, криптография

A. Multiple primality test

1.5 seconds, 256 megabytes

An integer $p \geq 2$ is called <u>prime</u>, if it doesn't have any positive integer divisors except 1 and p.

For every integer given in input find out, whether it is a prime number.

Input

First line contains an integer n ($2 \le n \le 500\,000$), the number of integers to test.

The i-th of the next n lines contains a_i (2 $\leq a_i \leq 2 \cdot 10^7$), an integer to test.

Output

The i-th line should contain "YES", if a_i is prime, and "NO", otherwise.

input		
4		
60 14		
14		
3		
55		
output		
NO		
NO		
YES		
NO		

B. Multiple factorization

2 seconds, 256 megabytes

Find the factorization for all given integers.

Input

First line contains an integer n ($2 \le n \le 300000$), the number of integers to factorize

The *i*-th of the next *n* lines contains a_i ($2 \le a_i \le 2 \cdot 10^6$).

Output

The i-th line should contain the factorization of a_i as a list of prime numbers in non-decreasing order.

input
1
50
14
3
55
output
2 2 3 5
2 7
3
5 11

C. Primality Check

2 seconds, 64 megabytes

You are given n integers a_i . Check for each integer whether it is prime or not.

Input

The first line of the input contains n ($1 \le n \le 1000$). Each of the next n lines contains one integer a_i ($1 \le a_i \le 10^{18}$).

Output

If a_i is prime then on a separate line output YES, otherwise, output NO.

D. Chinese Reminder Theorem

2 seconds, 64 megabytes

Solve the following system in integers.

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

It is guaranteed that n and m are relatively prime. You should choose the smallest non-negative value.

Input

The input file consists of four integers a, b, n and m ($1 \le n$, $m \le 10^6$, $0 \le a < n$, $0 \le b < m$).

Output

The sole line of the output should contain the smallest non-negative value that satisfies the constraints.

input	
1 0 2 3	
output	
3	

input	
3 2 5 9	
output	
38	

Statement is not available on English language

E. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $\{ed\equiv 1\pm od\{(p-1)(q-1)\}\}$ (заметим, что $\{(p-1)(q-1)=\phi(n)\}\}$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C=M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: $n, e, C, n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\phi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M \le n$), которое было зашифровано такой криптосхемой.

входные данные	
143 113 41	
выходные данные	
123	
входные данные	
9173503 3 4051753	
выходные данные	
111111	

Statement is not available on English language

F. Задача для второклассника

2 секунды, 256 мегабайт

Вам даны два числа. Необходимо найти их произведение.

Входные данные

Входные данные состоят из двух строк, на каждой из которых находится целое одно **целое** число, длина которого не превосходит двухсот пятидесяти тысяч символов.

Выходные данные

Выведите произведение данных чисел.

входные д	анные
2	
2	
выходные	данные
4	

входные данные
1 -1
выходные данные
-1

Statement
is not
available
on
English
language

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

входные данные	
101010101	
выходные данные	
4	

входные данные
101001
выходные данные
0

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform