

ACADEMIC GRADUATE STUDIES AND RESEARCH DIVISION SECOND SEMESTER 2023-2024

Course Handout (Part -II)

Date: 12.08.2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CE G551

Course Title : Dynamics of Structures

Instructor-in-charge : Dr. Mohan S C

Scope and Objective of the Course:

Scope: Natural phenomena and manmade events usually impose forces of time-dependent variability on various civil engineering structures and considerations of these are essential to design a structure resistant to dynamic forces. Hence, this course is focused on analysis of structures, subjected to dynamic loads such as earthquake, wind excitations.

Learning Objectives: After the successful completion of this course, the students should be able to:

- 1. Formulate equation of motion of Single and Multi-Degree of Freedom systems under free and forced vibrations.
- 2. Evaluating the response of Single and Multi-Degree of Freedom systems under free and forced vibration with and without damping.
- 3. Evaluating the response of Multi-Degree of Freedom systems using approximate and numerical methods
- 4. Analyze the structures subjected to dynamic loading using finite element method
- 5. Evaluate the lateral forces of a multi-storied building subjected to wind load.
- 6. Perform dynamic analysis of structures in Frequency domain

Student Learning Outcomes (SLOs) assessed in this course – (a), (b), (e), (i), (j), and (k).

Text Book:

1. Chopra, Anil K. "Dynamics of Structures: Theory and applications to earthquake engineering", Pearson Edu., 5th edition, 2017.

Reference Books:

- 1. R.W. Clough and J. Penzien, "Dynamics of Structures", Third edition, McGraw Hill International edition, 2003.
- 2. M. Mukhopadhyay, "Structural Dynamics: Vibrations & Systems" Ane's Student Edition, 2010.
- 3. Patrick Paultre. "Dynamics of Structures" Wiley, Reprint 2013.
- 4. Mario Paz, Y H Kim "Structural Dynamics Theory and Computation", 6th Edition 2019.
- 5. L. Meirovitch, "Elements of Vibration Analysis", 2nd Ed., McGraw-Hill, 1986.
- 6. Daniel J. Inman, "Engineering Vibration", Prentice Hall of India Ltd., 2001.
- 7. Singiresu S. Rao, "Mechanical Vibrations" Pearson Education.2010.
- 8. N.C. Nigam, "Introduction to Random Vibration", MIT Cambridge, 1983.
- 9. E. Siniu and R.H. Scanlan, "Wind effects on structures: fundamentals and applications to design", John wiley and sons, 1997.
- 10. L. Fryba, "Dynamics of Railway Bridges", Thomas Telford, 1996.
- 11. P.Agarwal, and M. Shrikhande, "Earthquake resistant design of structures", Prentice-Hall India.2006.
- IS 875 (Part-III):2015-Design Loads (Other than Earthquake) for Buildings and Structures
 — Code of Practice Part 3 Wind Loads

Course Plan

Lec No.	Learning Objective	Topics to be covered	TB/R B	SLO*			
Introduction to Dynamics of Structures							
1	Study the fundamental concept of dynamics and develop an equation of motion	Introduction and Scope of dynamic analysis of structures; origins of vibration theory and experiment; review of earlier concepts: D'Alembert's principle, equations of motion.	Ch.1	(a)			
2-3	for simple structures	Elements of a structural system: springs, mass; Springs in parallel and series; methods to formulate equations of motion: Newton's equation of motion, natural frequency.	16	(a)			
Single Degree of Freedom (SDOF) System (Discrete Mass Systems)							
4-5	Evaluate the displacement, velocity and acceleration response of SDOF system with and without damping under free and various forced	displacement, systems), Damping & their types, Damping velocity and ratio, Damped (non-conservative systems)		(a), (e)			
6-8		Forced vibration of conservative and non- conservative (dissipative or damped) systems under harmonic & periodic loading, Dynamic Response factor, Resonance	Ch.3 TB	(a), (e)			
9-11	vibrations	Forced vibration of conservative and dissipative systems under arbitrary dynamic loading like impulse, step, ramp, etc. Response of SDOF system under support excitation	Ch.4 TB	(a), (b), (e)			
Multi Degree of Freedom (MDOF) Systems (Discrete Mass Systems)							
12-15	Formulate an equation of motion and evaluate displacement, velocity and	Equation of motion for MDOF, Natural frequencies, Modeshapes, Damping matrix, Rayleigh damping, non-proportional damping	Ch.9- 11 TB	(a), (e)			
16-18	acceleration response of MDOF system (with and without damping)	Modal analysis of MDOF systems, orthogonality conditions, Free and forced vibration response of MDOF with and without damping	Ch.12 TB	(a), (e)			

19-22	under free and forced vibrations	Respons excited analysis, absolute	Ch.13 TB	(a), (b), (e)			
23-26	Evaluate approximately the dynamic properties and response of MDOF system using approximate methods and numerical methods	Approxi frequence method; Different and lines	(a), (e)				
Free Vibration of Continuous Mass Systems							
27-29	Derive and solve the equation of motion for a continuous mass system subjected to free vibration	Equations of motion for continuous system; natural frequency and mode shapes of continuous system. undamped free vibration response of continuous system. Ch.16 TB			(a), (e)		
Finite 1	Element Modeling a	nd Dyna	mic Analysis				
30-32	Dynamic analysis of structures using Finite Element Method (FEM)		beam, plane frame, and multi-story		(a), (b), (e), (i), (j), (k)		
33-35	Analyze some o vibration absorption techniques		Base isolation, tuned mass dampers etc.		(a), (e)		
Wind loads on structure							
36-40	on multi-story building wind pressure, effect of terrain. /			Notes / RB-3	(a), (e), (i). (j), (k)		
Frequency Domain Analysis of Structures							
41-42	Dynamic analysis of structures in Frequency domain		Equation of motion in Frequency domain, Response of Multi-degree systems in frequency domain, Applications.		(a), (e)		

*Student Learning Outcomes

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme:

Component	Weightage (%)	Duration	Evaluation Date & Time	Nature of Component				
Mid Semester Test	25	90 min	12/10 - 4.00 - 5.30PM	СВ				
Assignments (3 No.)	15	1 week each	Continuous	OB				
Lab (10 No.)	15	2 hour per week	Continuous	OB				
Project (1 No.)	10	2 months	Nov 2023	OB				
Comprehensive Exam	35	120 min	07/12 FN	СВ				

Chamber Consultation Hour: Th, 4-5PM.

Notices: Notice concerning to the course will be displayed in Google classroom

Make-up Policy: Make-up will be granted only to genuine cases with prior permission from the IC. Make ups will not be given to students who contact the IC after the evaluation component.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

