

1.	The smallest positive integer n for	or which $\left(\frac{1+i}{1-i}\right)^n=1$, is mathongo					
2.	If the real part of the complex num		, ,					
3.	If $\left \frac{z-25}{z-1} \right = 5$, find the value of $ z $		/// mathongo		///. mathongo	///. r	nathongo	
	(1) 3			(2) 4				
	(3) 5 mathongo			(4) 6				
4.	If $\frac{z-\alpha}{z+\alpha}$ is purely imaginary and $ z $	$ \epsilon =82$ then $lpha$ is $(lpha\in$	R)					
	(1) 2			(2) 4				
///. E	(3) 3 nongo /// mathongo							
5.	The region represented by $\{z=x\}$ (1) $y^2 \geq 2(x+1)$			(2) 2 . 2				
	$(1) y^2 \ge 2(x+1)$ $(3) y^2 \le \left(x + \frac{1}{2}\right)$			$(4) y^2 \ge x + 1$	$\frac{1}{2}$ mathongo			
,								
6.	The principal argument of the con	mplex number $\frac{(1+1)}{-2i}$	$\frac{(1+\sqrt{3}1)}{(-\sqrt{3}+i)}$ is					
	(1) $\frac{19\pi}{12}$	21,	(()	(2) $-\frac{7\pi}{12}$				
	(3) $-\frac{5\pi}{12}$ If $(1+i)(1+2i)(1+3i)$ (1			(4) $\frac{5\pi}{12}$				
7.	If $(1+i)(1+2i)(1+3i)$ (1	$(1+\mathrm{ni})=lpha+\mathrm{i}eta$, the	en 2 . 5 . 10					
	(1) $\alpha - i\beta$			(2) $\alpha^2 - \beta^2$				
///.	(3) $\alpha^2 + \beta^2$	/// mathongo	///. mathongo	(4) None of thes	mathongo			
0.	If z_1 and z_2 are two complex number (1) $Im\left(\frac{z_1}{z_2}\right) = 0$	ibers such that $ z_1 = $	$ z_2 + z_1 - z_2 , z_1 > 1$	(2) $Re\left(\frac{z_1}{z_2}\right) = 0$				
	(3) $Re\left(\frac{z_1}{z_2}\right) = Im\left(\frac{z_1}{z_2}\right)$			(4) $Im\left(\frac{z_1}{z_2}\right) = 0$				
•				$(1) Im \left(\frac{\overline{z_2}}{z_2}\right) = 1$				
9.	The equation $z^2 = \overline{z}$ has (1) No solution $z^2 = \overline{z}$ mathomaco			(2) Two solution				
	(3) Four solutions				ns mathongo number of solutions			
10.	The complex number which satis	fy the equation $z + \sqrt{2}$	$\sqrt{2} \mathbf{z}+1 +\mathbf{i}=0$ is					
	(1) 4 - i /// mathongo			(2) $4 + i$				
	(3) -2 - i			(4) $2 + i$				