iPyrad – stats and output files

Let's go through the stats files for each step together

What happens after we've run iPyrad?

Step	Role of step	Stats file
1	Demultiplexing	s1_demultiplex_stats.txt
2	Filtering	s2_rawedit_stats.txt
3	Clustering within inds	s3_cluster_stats.txt
4	Error rate & heterozygosity	s4_joint_estimate.txt
5	Consensus reads	s5_consens_stats.txt
6	Clustering among inds	s6_cluster_stats.txt
7	Cleaning up	[project]_stats.txt

Step 1: demultiplexing & sorting

annes-mbp:s123456_stats_files eac\$ cat raw_file 64T64_P29_S1_L005_R1_001.fastq		_4_s1_demul ¹ cut_found l 71486579	
sample_name Rber_T1113a Rber_T1114 Rbla_D2864 Rbla_D2865 Rchi_T2034a Rchi_T2034b Rchi_T2049 Rneo_T480 Rneo_T527 Rsph_T25870 Rsph_T26064	total_reads 8159746 6091513 3232832 6239552 4801774 4598334 5507763 4418342 6657867 6653066 6761860 6801065		
sample_name Rber_T1113a Rber_T1113b Rber_T1114 Rbla_D2864 Rbla_D2865 Rchi_T2034a Rchi_T2034b Rchi_T2049 Rneo_T480 Rneo_T527 Rsph_T25870 Rsph_T26064 no match	true_bar ATTAC CATAT CGAAT ACTGG ACTTC CGGCT CGGTA CGTAC ATACG ATACG ATGAG CGTCG CTGAT	obs_bar ATTAC CATAT CGAAT ACTGG ACTTC CGGCT CGGTA CGTAC ATACG ATACG ATGAG CGTCG CTGAT	N_records 8159746 6091513 3232832 6239552 4801774 4598334 5507763 4418342 6657867 6653066 6761860 6801065 1562865

Step 2: trimming and filtering

annes-mbp:s1	23456_stats	_files eac\$ cat ranaddr	ad_total_4_s2_rawedit_s	tats.txt		
	reads_raw	trim_adapter_bp_read1	trim_quality_bp_read1	reads_filtered_by_Ns	reads_filtered_by_minlen	reads_passed_filter
Rber_T1113a	8159746	197667	2292799	3	3120	8156623
Rber_T1113b	6091513	143901	1672565	3	2199	6089311
Rber_T1114	3232832	74364	894147	2	1115	3231715
Rbla_D2864	6239552	129260	1756460	1	2390	6237161
Rbla_D2865	4801774	98276	1365355	0	1835	4799939
Rchi_T2034a	4598334	106437	1210241	0	1974	4596360
Rchi_T2034b	5507763	127490	1448659	3	2484	5505276
Rchi_T2049	4418342	101244	1188569	6	1928	4416408
Rneo_T480	6657867	148247	1855150	4	2567	6655296
Rneo_T527	6653066	151370	1834309	4	2641	6650421
Rsph_T25870	6761860	198727	2052813	2	2799	6759059
Rsph_T26064	6801065	186264	1983466	0	2944	6798121

Step 3: clustering within samples

annes-mbp:s1	.23456_stats_fil	es eac\$ cat r	ranaddrad_total_4_	_s3_cluster_stat/	s.txt					
	clusters_total	hidepth_min	clusters_hidepth	avg_depth_total	avg_depth_mj	avg_depth_stat	sd_depth_total	sd_depth_mj	sd_depth_stat	filtered_bad_align
Rber_T1113a		5.0	186114	8.22						
Rber_T1113b	686970	5.0	153957	7.21	25.88	25.88	244.56	516.16	516.16	743
Rber_T1114	360145	5.0	98887	7.40	22.21	22.21	194.27	370.33	370.33	0
Rbla_D2864	502812	5.0	127110	9.87	33.71	33.71	449.35	893.29	893.29	0
Rbla_D2865	432516	5.0	115912	8.70	27.53	27.53	364.51	703.78	703.78	0
Rchi_T2034a	536519	5.0	115983	6.54	23.71	23.71	444.86	956.60	956.60	686
Rchi_T2034b	591567	5.0	130989	7.04	25.42	25.42	501.90	1066.41	1066.41	779
Rchi_T2049	520647	5.0	113175	6.49	23.37	23.37	420.26	901.19	901.19	0
Rneo_T480	722831	5.0	157618	7.42	27.48	27.48	235.57	503.96	503.96	843
Rneo_T527	605126	5.0	143238	8.87	31.60	31.60	276.25	567.20	567.20	0
Rsph_T25870	820907	5.0	182201	6.76	24.04	24.04	212.45	450.52	450.52	0
Rsph_T26064	843798	5.0	186490	6.71	23.87	23.87	212.95	452.55	452.55	841

Step 4: error and heterozygosity estimates

```
annes-mbp:s123456_stats_files eac$ cat ranaddrad_total_4_s4_joint_estimate.txt
           hetero est error est
Rber_T1113a
             0.017304
                      0.003614
Rber T1113b 0.016984 0.003947
Rber_T1114 0.013945 0.003735
Rbla_D2864 0.012272
                      0.003026
Rbla D2865 0.011767
                      0.003267
Rchi_T2034a 0.012805
                      0.004117
Rchi_T2034b
             0.012760
                       0.003980
Rchi T2049
             0.012621
                      0.004130
Rneo_T480
             0.013120
                      0.003240
Rneo_T527
             0.013061
                       0.003019
             0.015218
Rsph T25870
                       0.003336
```

Step 5: consensus reads

annes-mbp:s123456_stats_files eac\$ cat ranaddrad_total_4_s5_consens_stats.txt										
	clusters_total filte	red_by_depth filt	tered_by_maxH	filtered_by_maxN	reads_consens	nsites	nhetero	heterozygosity		
Rber_T1113a	802220	616117	9508	51440	125155	14441503	94306	0.00653		
Rber_T1113b	686970	533023	7927	41265	104755	12086721	77660	0.00643		
Rber_T1114	360145	261266	4359	22034	72486	8354958	49676	0.00595		
Rbla_D2864	502812	375714	5299	25988	95811	11041382	43048	0.00390		
Rbla_D2865	432516	316609	4783	23661	87463	10080198	39347	0.00390		
Rchi_T2034a	536519	420546	5312	28675	81986	9443051	37534	0.00397		
Rchi_T2034b	591567	460588	5957	31686	93336	10751754	42516	0.00395		
Rchi_T2049	520647	407482	5150	27666	80349	9257660	36004	0.00389		
Rneo_T480	722831	565227	7209	37100	113295	13050647	46843	0.00359		
Rneo_T527	605126	461902	6419	30792	106013	12213584	43050	0.00352		
Rsph_T25870	820907	638714	8217	47983	125993	14527911	88732	0.00611		
Rsph_T26064	843798	657318	8364	48896	129220	14895268	89563	0.00601		

Step 6: clustering among samples

```
annes-mbp:s123456_stats_files eac$ cat ranaddrad_total_4_s6_cluster_stats.txt
vsearch v2.0.3 linux x86 64, 441.6GB RAM, 64 cores
/home1/02576/rdtarvin/miniconda2/lib/python2.7/site-packages/bin/vsearch-linux-x86 64 -c
shuf.tmp -strand plus -query_cov 0.75 -minsl 0.5 -id 0.91 -userout /scratch/02576/rdtarv
n/ddrad_rana-R1/clust_91 across/clust_91.htemp -userfields query+target+qstrand -maxacce
76/rdtarvin/ddrad rana-R1/clust 91 across/s6 cluster stats.txt
Started Sat Apr 14 17:40:19 2018140144637 nt in 1215862 seqs, min 35, max 130, avg 115
      Alphabet nt
   Word width 8
     Word ones 8
        Spaced No
        Hashed No
        Coded No
      Stepped No
        Slots 65536 (65.5k)
       DBAccel 100%
Clusters: 544377 Size min 1, max 216, avg 2.2
Singletons: 302459, 24.9% of seqs, 55.6% of clusters
Finished Sat Apr 14 18:21:11 2018
Elapsed time 40:52
Max memory 1.7GB
```

```
annes-mbp:ranaddrad_total_4_outfiles eac$ cat ranaddrad_clust_91_stats.txt
## The number of loci caught by each filter.
## ipyrad API location: [assembly].stats dfs.s7 filters
                        total_filters applied_order retained_loci
total prefiltered loci
                               241918
                                                         241918
filtered_by_rm_duplicates
                                3698
                                              3698
                                                         238220
filtered by max indels
                                 598
                                               598
                                                         237622
filtered_by_max_snps
                              2758
                                              405
                                                         237217
filtered_by_max_shared_het
                                                         233111
                            4605
                                              4106
filtered_by_min_sample
                             155829
                                           154606
                                                          78505
filtered_by_max_alleles
                               10303
                                              3112
                                                          75393
total_filtered_loci
                               75393
                                                          75393
```

```
## The number of loci recovered for each Sample.
## ipyrad API location: [assembly].stats_dfs.s7_samples
              sample_coverage
Rber T1113a
                        53940
Rber_T1113b
                        50492
Rber T1114
                        42060
Rbla D2864
                        38768
Rbla D2865
                        37157
Rchi T2034a
                        23740
Rchi_T2034b
                        25406
Rchi T2049
                        23533
Rneo_T480
                        50410
Rneo T527
                        51033
Rsph T25870
                        38178
Rsph_T26064
                        38113
## The number of loci for which N taxa have data.
## ipyrad API location: [assembly].stats_dfs.s7_loci
    locus_coverage
                    sum_coverage
1
2
3
4
5
6
7
8
9
10
              20462
                            20462
              16781
                            37243
               8956
                            46199
               9561
                            55760
               5745
                            61505
               6073
                            67578
               3031
                            70609
11
              1921
                            72530
12
               2863
                            75393
```

```
## The distribution of SNPs (var and pis) per locus.
## var = Number of loci with n variable sites (pis + autapomorphies)
## pis = Number of loci with n parsimony informative site (minor allele in >1 sample)
## ipyrad API location: [assembly].stats_dfs.s7_snps
                      pis sum_pis
          sum_var
     var
    5966
                   16402
    7425
             7425
                   11992
                             11992
    8015
            23455
                   10407
                             32806
    8283
            48304
                    8717
                             58957
            80508
                    7341
                             88321
    8051
    7412
           117568
                    5896
                            117801
    6714
           157852
                    4605
                            145431
           197178
                            169518
    5618
                     3441
    4621
           234146
                    2459
                            189190
    3892
           269174
                    1714
                            204616
           297744
    2857
                     1059
                            215206
    2122
           321086
                      620
                            222026
12
    1511
           339218
                      335
                            226046
13
     996
           352166
                            228451
                      185
14
     697
           361924
                      118
                            230103
           368764
15
     456
                       51
                            230868
16
     280
           373244
                            231300
17
     211
           376831
                            231589
                       17
18
     124
           379063
                            231643
19
      86
           380697
                            231719
20
      56
           381817
                            231719
```

## Final Sample stats summary											
	state	reads_raw	reads	_passed_filter	clusters_total	clusters_hidepth	hetero_est	error_est	reads_consens	loci_in_assembly	
Rber_T1113a	7	8159746		8156623	802220	186114	0.017304	0.003614	125155	53940	
Rber_T1113b	7	6091513		6089311	686970	153957	0.016984	0.003947	104755	50492	
Rber_T1114	7	3232832		3231715	360145	98887	0.013945	0.003735	72486	42060	
Rbla_D2864	7	6239552		6237161	502812	127110	0.012272	0.003026	95811	38768	
Rbla_D2865	7	4801774		4799939	432516	115912	0.011767	0.003267	87463	37157	
Rchi_T2034a	7	4598334		4596360	536519	115983	0.012805	0.004117	81986	23740	
Rchi_T2034b	7	5507763		5505276	591567	130989	0.012760	0.003980	93336	25406	
Rchi_T2049	7	4418342		4416408	520647	113175	0.012621	0.004130	80349	23533	
Rneo_T480	7	6657867		6655296	722831	157618	0.013120	0.003240	113295	50410	
Rneo_T527	7	6653066		6650421	605126	143238	0.013061	0.003019	106013	51033	
Rsph_T25870	7	6761860		6759059	820907	182201	0.015218	0.003336	125993	38178	
Rsph_T26064	7	6801065		6798121	843798	186490	0.014984	0.003384	129220	38113	

iPyrad –output files

Two main files I want to go over:

- .vcf file: this is a file commonly used as input into many other (mostly population genetics-based) programs
- .loci file: this is iPyrad-specific and gives us some important information

- Contains information about genotypes, quality, and read depth, along with sequence data (sometimes even more!)
- vcftools is a useful software for analyzing vcf files

Let's take a look at some SNP sequence data for three samples:

(I realize that if this was your entire dataset, sites 1 and 3 wouldn't be considered SNPs because they're invariant, but just assume that you have other samples with variable sites at sites 1 and 3)

Transpose the data:

This is exactly the format that the vcf file uses!

#CHROM POS ID REF ALT QUALFILTER INFO FORMAT CAS178_KS CAS265A_KS CAS276_KS

CAS276 KS

#CHROM	POS	ID	REF	ALT	QUALFILTER	INF0	FORMAT	CAS178 KS	CAS265A KS
RAD_0	12	loc0_pos11							
RAD_0	15	loc0_pos14							

loc0_pos22

RAD 0

```
CAS178_KS CAS265A_KS CAS276_KS

G
W
T
T
T
```

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad_v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
#CHROM POS ID
                        REF ALT QUALFILTER INFO
                                                             FORMAT
                                                                         CAS178 KS
        12 loc0 pos11
RAD 0
RAD 0
        15 loc0 pos14
RAD_0
        23 loc0 pos22
```

CAS265A_KS CAS276_KS

CAS265A KS

CAS276 KS

CAS178 KS

```
##fileDate=2021/09/28
##source=ipvrad v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=CATG, Number=1. Type=String, Description="Base Counts (CATG)">
                        REF ALT QUALFILTER INFO
#CHROM POS ID
                                                              FORMAT
                                                                          CAS178 KS
            loc0_pos11
                                 13 PASS
                                             NS=113; DP=4086 GT: DP: CATG
RAD 0
        15 loc0_pos14
RAD 0
                                     PASS
                                             NS=112:DP=4086 GT:DP:CATG
RAD_0
            loc0_pos22
                                     PASS
                                             NS=114; DP=4086 GT: DP: CATG
```

CAS265A KS CAS276 KS

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad_v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
                        REF ALT QUALFILTER INFO
#CHROM POS ID
                                                            FORMAT
                                                                        CAS178 KS
                                13 PASS
                                            NS=113;DP=4086 GT:DP:CATG
RAD 0
        12 loc0 pos11 G
RAD 0
        15 loc0 pos14
                               13
                                    PASS
                                            NS=112:DP=4086 GT:DP:CATG
RAD_0
        23 loc0 pos22 T
                                            NS=114;DP=4086 GT:DP:CATG
                                    PASS
```

quality information

CAS265A_KS CAS276_KS

```
CAS178_KS CAS265A_KS CAS276_KS

G
W
T
T
T
```

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad_v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
#CHROM POS ID
                        REF ALT QUALFILTER
                                            INF0
                                                             FORMAT
                                                                         CAS178 KS
        12 loc0 pos11 G
                                            NS=113; DP=4086
                                                             GT:DP:CATG
RAD 0
                                13 PASS
        15 loc@ pos14
RAD 0
                                    PASS
                                            NS=112:DP=4086
                                                             GT: DP: CATG
RAD 0
        23 loc0 pos22
                                13
                                    PASS
                                            NS=114; DP=4086
                                                             GT:DP:CATG
```

CAS265A KS CAS276 KS

```
CAS178_KS CAS265A_KS CAS276_KS

G
W
T
T
T
```

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=CATG,Number=1,Type=String,Description="Base Counts (CATG)">
#CHROM POS ID
                        REF ALT QUALFILTER
                                           INFO
                                                             FORMAT
                                                                         CAS178 KS
                                                            GT:DP:CATG
                                            NS=113; DP=4086
RAD 0
        12 loc0 pos11
                                13 PASS
        15 loc@ pos14
RAD 0
                                13 PASS
                                            NS=112:DP=4086
                                                            GT:DP:CATG
            loc0 pos22
                                    PASS
                                            NS=114; DP=4086
                                                            GT:DP:CATG
RAD_0
```

CAS265A KS CAS276 KS

CAS178 KS

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
#CHROM POS ID
                        REF ALT QUALFILTER INFO
                                                            FORMAT
                                                                        CAS178 KS
                                                                                            CAS265A KS
                                                                                                                 CAS276 KS
                                                            GT DP: CATG
                                            NS=113; DP=4086
RAD 0
                                13 PASS
        12 loc0 pos11 G
        15 loc0 pos14 T
                            A 13 PASS
                                            NS=112:DP=4086
RAD 0
                                                            GT DP: CATG
        23 loc0 pos22 T
                                13 PASS
                                            NS=114; DP=4086 GT DP: CATG
RAD_0
```

CAS276 KS

CAS265A KS

First item: GT (genotype); this is commonly coded with 0s and 1s, separated by a /

NS=113; DP=4086

NS=112:DP=4086

NS=114;DP=4086 GT DP:CATG

CAS178 KS

13 PASS

13 PASS

A 13 PASS

RAD 0

RAD 0

RAD_0

12 loc0_pos11 G 15 loc0_pos14 T

loc0 pos22

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
#CHROM POS ID
                        REF ALT QUALFILTER INFO
                                                             FORMAT
                                                                         CAS178 KS
                                                                                             CAS265A KS
                                                                                                                  CAS276 KS
```

CAS276 KS

0/0

0/0

0/0

0/0

0/0

0/0

CAS265A KS

First item: GT (genotype); this is commonly coded with 0s and 1s, separated by a /

GT DP: CATG

GT DP: CATG

```
CAS178_KS CAS265A_KS CAS276_KS

G
W
T
T
T
```

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad_v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=CATG, Number=1, Type=String, Description="Base Counts (CATG)">
#CHROM POS ID
                         REF ALT QUALFILTER INFO
                                                              FORMAT
                                                                          CAS178 KS
                                                              GT: DP: CATG
RAD 0
            loc0 pos11
                                 13 PASS
                                             NS=113; DP=4086
                                                                          0/0:19
        15 loc0 pos14
                                             NS=112; DP=4086
                                                              GT: DP: CATG
RAD 0
                                     PASS
                                                                          0/1:19
                                             NS=114; DP=4086
RAD 0
        23 loc@ pos22
                                 13
                                     PASS
                                                                          0/0:19
                                                             GT: DP: CATG
```

```
CAS265A KS CAS276 KS 0/0:43 0/0:39 0/0:43 0/0:39 0/0:39
```

Second item: DP (read depth)

```
##fileformat=VCFv4.0
##fileDate=2021/09/28
##source=ipyrad_v.0.9.81
##reference=pseudo-reference (most common base at site)
##phasing=unphased
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP.Number=1.Type=Integer.Description="Read Depth">
##FORMAT=<ID=CATG,Number=1,Type=String,Description="Base Counts (CATG)">
#CHROM POS ID
                                                             FORMAT
                                                                          CAS178 KS
                        REF ALT QUALFILTER INFO
                                                             GT: DP: CATG
RAD 0
            loc0 pos11
                                13 PASS
                                            NS=113; DP=4086
                                                                         0/0:19:0.0.0.19
        15 loc0 pos14
                                            NS=112; DP=4086
                                                             GT: DP: CATG
                                                                         0/1:19:0,10,9,0
RAD 0
                                    PASS
RAD 0
            loc0 pos22
                                13
                                    PASS
                                            NS=114: DP=4086
                                                             GT: DP: CATG
                                                                         0/0:19:0,0,19,0
```

Third item: CATG (# reads per base)

Bioinformatics pipelines differ in the type (and amount) of information contained within the vcf file

```
##fileformat=VCFv4.2(angsd version)
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INF0=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=RA, Number=1, Type=String, Description="Reference Allele (included since ANGSD places the MAJOR allele under REF)">
##INF0=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=AF, Number=A, Type=Float, Description="Minor Allele Frequency">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=AD, Number=., Type=Integer, Description="Allelic depths for the major and minor alleles in the order listed">
##FORMAT=<ID=GP,Number=G,Type=Float,Description="Genotype Probabilities">
##FORMAT=<ID=PL,Number=G,Type=Float,Description="Phred-scaled Genotype Likelihoods">
##FORMAT=<ID=GL,Number=G,Type=Float,Description="scaled Genotype Likelihoods (loglikeratios to the most likely (in log10))">
#CHROM POS ID REF ALT QUALFILTER INFO
                                                                    FORMAT
                                                                                    ind0
                           PASS
                                    NS=73;DP=1342;RA=G;AF=0.079071 GT:DP:AD:GP:GL 0/0:10:10.0:0.999832,0.000168,0.000000:0.000000,-3.010338,-15.012766
chr1
       825 . C T .
                            PASS
                                    NS=76; DP=456; RA=C; AF=0.050129
                                                                    GT:DP:AD:GP:GL 0/0:7:7,0:0.999176,0.000824,0.000000:0.0000000,-2.107237,-14.923611
chr1
chr1
       1019.
                            PASS
                                    NS=73;DP=474;RA=A;AF=0.074571
                                                                    GT:DP:AD:GP:GL 0/0:4:4,0:0.990028,0.009972,0.000000:0.000000,-1.204135,-10.716633
```

Let's go back to the original data but change it so that it's actually three SNPs and add another sample:

```
CAS178_KS G A T

CAS265A_KS T T A When we get our sequence data though, we do not know which SNPs occur on which loci

F10175_FL G A A
```

This information is what the .loci file tells us (using the entire locus, not just the SNPs)!


```
CAS178_KS
GAT

CAS265A_KS
TA

CAS276_KS
GTT

F10175_FL
GAA
```

3 SNPs, 1 locus

Before we look at the .loci file for these samples, let's think about what these SNPs are telling us (from a phylogenetic perspective)

3 SNPs, 1 locus

SNP 2 is a synapomorphy (PI)

SNP 3 is a synapomorphy (PI)

3 SNPs, 1 locus

iPyrad's .loci file not only gives us information about which SNPs are contained within each locus, but it also tells us which SNPs are autapomorphies and which are synapomorphies (PIs)

iPyrad's .loci file not only gives us information about which SNPs are contained within each locus, but it also tells us which SNPs are autapomorphies and which are synapomorphies (PIs)

3 SNPs, 1 locus

This is what the .loci file looks like:

CAS178_KS AATTCTCAAATGATGTGTAAATATATTGATTTCTGACCT

CAS265A_KS AATTCTCAAATGATGTGTAAATATATTGTTTACTGACCT

CAS276_KS AATTCTCAAATGATGTGTAAATATATTGTTTTCTGACCT

F10175_FL AATTCTCAAATGATGTGTAAATATATTGATTACTGACCT

// - * * * | 0 | ← locus number

Site 1 is an autapomorphy ("variable") (–) and sites 2 and 3 are synapomorphies ("phylogenetically informative") (*)

CAS178_KS CAS265A_KS CAS276_KS F10175_FL

3 SNPs, 3 loci
Site 1 is variable (–) and
Sites 2 and 3 are phylogenetically informative (*)

0

2

CAS178 KS AATTCTCAAATGATGTGTAAATATATTGATTTCTGACCT CAS265A KS AATTCTCAAATGATTTGTAAATATATTGATTTCTGACCT CAS276 KS AATTCTCAAATGATGTGTAAATATATTGATTTCTGACCT F10175 FL AATTCTCAAATGATGTGTAAATATATTGATTTCTGACCT CAS178_KS GCTGCTCTCGACCCCGTTCTCATTGAGGACAAGGATAAG CAS265A KS GCTGCTCTCGACCCCGTTCTCTTTTGAGGACAAGGATAAG CAS276 KS GCTGCTCTCGACCCCGTTCTCTTTTGAGGACAAGGATAAG F10175 FL GCTGCTCTCGACCCCGTTCTCATTGAGGACAAGGATAAG CAS178 KS TAGACAGTGTGCAACGAAGAAGACTGGAAGGTAAATTGT CAS265A KS TAGACAGAGTGCAACGAAGACTGGAAGGTAAATTGT CAS276 KS TAGACAGTGTGCAACGAAGAAGACTGGAAGGTAAATTGT F10175 FL TAGACAGAGTGCAACGAAGACTGGAAGGTAAATTGT