An Approach to Berger's Conjecture

Sarasij Maitra

Berger's Conjecture (Around 1963)

Let k be a perfect field.

Let $R = \frac{k[[X_1...,X_n]]}{I}$ be a local k-algebra of dimension one which is a domain.

Then R is regular if and only if the module of differentials $\Omega_{R/k}$ is torsion-free.

An Invariant-Main Tool of Attack

Definition

Let R be as before. For any R-module M, let

$$\mathrm{h}(M) := \min\{\lambda(R/J) \mid M \to J \to 0, J \subset R\}.$$

Main Theorem

Theorem

Let R be as before. Assume that $I \subset (X_1, \dots, X_n)^{s+1}$ for some $s \ge 1$. If

$$h(\Omega_{R/k}) \le \binom{n+s}{s} \left(\frac{s}{s+1}\right),$$

then Berger's Conjecture is true.

Relationship with the Conductor ideal

Theorem

Let R be as before. For any ideal J:

$$h(J) = \lambda \left(\frac{R}{J}\right) \iff \mathfrak{C}\omega \subset J\omega$$

 $(\mathfrak{C}-conductor\ ideal,\ \omega-canonical\ module)$

Relationship with the Conductor ideal

Theorem

Let R be as before. For any ideal J:

$$h(J) = \lambda \left(\frac{R}{J}\right) \iff \mathfrak{C}\omega \subset J\omega$$

 $(\mathfrak{C}-conductor\ ideal,\ \omega-canonical\ module)$

In particular for R Gorenstein,

$$h(\Omega_{R/k}) \le \lambda(R/\mathfrak{C}).$$

—Thank You—