Sesión I: Robots en Directo

Juan González Gómez
Escuela Politécnica Superior
Universidad Autónoma de Madrid

Andrés Prieto-Moreno Torres
Ifara Tecnologías
Profesor asociado UAM

ÍNDICE

SKYBOT

- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo: "PuchoBot"
- Robot de exploración: "Observer"

Motivación:

Es preferible comenzar con algo básico y sencillo que te permita obtener resultados útiles, antes de abordar un tema complejo que te desborde.

<u>Características:</u>

- Estructura mínima de metacrilato
- Servomotores adaptados para movimiento continuo
- Electrónica de control y de potencia
- Dos sensores de infrarrojos
- Alimentación integrada
- Fácilmente clonable
- Robot Abierto (muy pronto ...)

Servomotor Futaba adaptado:

- http://www.iearobotics.com/proyectos/cuadernos/ct2/ct2.html
- Bajo Coste 12 €
- Caja reductora incorporada 3Kg/cm
- Velocidad adecuada para la iniciación

Estructura Metacrilato:

- Pegamento para Metacrilato
- 8 tornillos para los motores
- Goma extensible para las ruedas
- Torretas para la electrónica
- Rueda loca comercial

Sensor de infrarrojos:

- CNY70 (3€)
- Modulado en contínua -> corta distancia

Electrónica de control:

Electrónica de control:

- Tarjeta CT293 o equivalente
- Driver de Potencia 293

Funcionalidad:

Es capaz de seguir una línea negra de forma autónoma

Escuché y olvidé
Ví y recordé
Hice y comprendí

ÍNDICE

- SKYBOT
- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo: "PuchoBot"
- Robot de exploración: "Observer"

Servos (I)

Rango de giro: 180 grados

Modelo usado: Futaba 3003

• Muy útiles para la construcción de Robots articulados

Precio aprox: 12 euros

Servos (II)

Control por PWM

• Cambiando la anchura de la señal se consigue que se

posiciones en un punto u otro

Servos (III)

- Los servos tienen 3 pines
 - Masa
 - 5v
 - Señal de control: Por donde se
 - introduce la señal PWM
- Utilizando un microcontrolador es muy sencillo generar señales PWM

Servos (IV)

¿Cómo podemos mover servos desde el PC?

Una alternativa: Clientes-Servidores por el puerto serie

Los "ojos"

- Dos minicámaras
- 4 Servos del tipo Futaba 3003

Los "ojos"

· Cada ojo tiene dos grados de libertad

Los "ojos"

Escuché y olvidé
Ví y recordé
Hice y comprendí

ÍNDICE

- SKYBOT
- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo: "PuchoBot"
- Robot de exploración: "Observer"

Cube Revolutions

• ROBOT ÁPODO: No usa ni ruedas ni patas para desplazarse

Locomoción mediante ondas sinusoidales que recorren el cuerpo del gusano

Tercera generación:

...primero fue **CUBE..**

...después CUBE RELOADED...

Cube Revolutions: Características I

Construido mediante la unión de Módulos Y1

- Cada módulo tiene 1 grado de libertad
- Se utilizan servos Futaba 3003
- Material: PVC expandido

Cube Revolutions: Características II

Los módulos Y1 se pueden unir de dos formas diferentes

En fase

Desfasados

 La conexión fase-desfase permite construir robots ápodos que se muevan por un plano

Cube Revolutions: Características III

- Cube Revolutions está formado por 8 MODULOS Y1, conectados en FASE
- Sólo se puede mover en línea recta
- La electrónica y la alimentación están fuera del gusano

Cube Revolutions: Control

 Secuencias de movimiento generadas en el PC, a partir de ondas sinusoidales

Cube Revolutions: Control

Escuché y olvidé
Ví y recordé
Hice y comprendí

ÍNDICE

- SKYBOT
- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo: "PuchoBot"
- Robot de exploración: "Observer"

La Hormiga Benita

Motivación:

Probar con otro tipo de movimiento en los motores y ver la viabilidad de hacer robots articulados.

Características

- Robot Hexápodo con dos motores por pata
- Estructura resistente de aluminio con simple eje
- Capaz de avanzar, retroceder y girar a la izq. y der.
- Capacidad de movimiento autónomo

La Hormiga Benita: Estructura

La Hormiga Benita: Electrónica

La Hormiga Benita: Demo

Escuché y olvidé
Ví y recordé
Hice y comprendí

ÍNDICE

- SKYBOT
- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo:"PuchoBot"
- Robot de exploración: "Observer"

Pucho Bot

Motivación:

Probar robots articulados con extremidades que no necesiten ruedas para desplazarse. Comprobar agilidad para sortear obstáculos.

Características

- Robot Cuadrúpedo con tres motores por pata
- Estructura resistente de aluminio con doble eje
- Capaz de avanzar, retroceder y girar a la izq. y der.
- Capacidad de movimiento autónomo

Pucho Bot: Estructura

Pucho Bot: Electrónica

Pucho Bot: Control

Pucho Bot: Demo

Escuché y olvidé Ví y recordé Hice y comprendí

ÍNDICE

- SKYBOT
- Robots articulados: "los ojos"
- Robot ápodo: "Cube revolutions"
- Robot hexápodo: "La Hormiga Benita"
- Robot cuadrúpedo: "PuchoBot"
- Robot de exploración:"Observer"

Motivación:

Tener una plataforma móvil controlable desde el PC y con capacidad de emitir video. Se trata de probar algoritmos de visión en robots.

<u>Características</u>

- Robot tipo tanque. Desplazamiento con orugas
- Estructura resistente de aluminio
- Modem radio para la recepción y envío de información
- Cámara de video con Pan & Tilt para exploración
- Transmisor de Video

El robot se controla desde el PC mediante dos Canvas o Touch Pad

Con uno controlamos el movimiento y con el otro la posición de la cámara

El Video se puede digitalizar con una capturadora para verlo en un PC o directamente conectarlo a una TV.

Escuché y olvidé
Ví y recordé
Hice y comprendí

IEARobotics.....: http://www.iearobotics.com

Ifara Tecnologías...: http://www.ifara.com

CT293+ http://www.iearobotics.com/proyectos/ct293/ct293.html

Futabas...... http://www.iearobotics.com/proyectos/cuadernos/ct2/ct2.html

Robot Tritt.....: http://www.iearobotics.com/proyectos/tritt/tritt.html

Robot Cube....: http://www.iearobotics.com/personal/juan/doctorado/cube-reloaded/

Robot Pucho...: http://www.iearobotics.com/personal/andres/proyectos/pucho/pucho.html

Observer...... http://www.ii.uam.es/~mecatron/index.php3?seccion=4&pagina=6

