COMPILER CONSTRUCTION

Concept of Top-Down Parsing(1)

• It parses an input string of tokens by tracing out the steps in a leftmost derivation.

- The example:
 - number + number, and corresponds to the parse tree

Concept of Top-Down Parsing(2)

The above parse tree corresponds to the leftmost derivations:

- (1) $exp \Rightarrow exp \ op \ exp$
- (2) => number op exp
- => number + exp
- (4) = number + number

Two kinds of Top-Down parsing algorithms

• Recursive-descent parsing:

- is quite versatile and suitable for a handwritten parser.

• *LL*(1) *parsing*:

- The first "L" refers to the fact that it processes the input from left to right;
- The second "L" refers to the fact that it traces out a leftmost derivation for the input string;
- The number "1" means that it uses only one symbol of input to predict the direction of the parse.

Contents

PART ONE

- 4.1 Top-Down Parsing by Recursive-Descent
- 4.2 *LL(1) Parsing*

PART TWO

- 4.3 First and Follow Sets
- 4.4 A Recursive-Descent Parser for the TINY Language
- 4.5 Error Recovery in Top-Down Parsers

4. Top-Down Parsing

PART ONE

4.1 Top-Down Parsing by Recursive-Descent

4.1.1 The Basic Method of Recursive-Descent

The idea of Recursive-Descent Parsing

- View the grammar rule for a non-terminal A as a definition for a procedure to recognize A
- The Expression Grammar:

```
exp \rightarrow exp \ addop \ term \mid term
addop \rightarrow + \mid -
term \rightarrow term \ mulop \ factor \mid factor
mulop \rightarrow *
factor \rightarrow (exp) \mid number
```

A recursive-descent procedure that recognizes a *factor*

```
procedure factor
begin
  case token of
  (: match(();
    exp;
   match());
 number:
   match (number);
 else error;
 end case;
end factor
```

- The <u>token</u> keeps the next token in the input (one symbol of look-ahead)
- The *match* procedure matches the next token with its parameter, advances the input if it succeeds, and declares error if it does not

Match Procedure

```
procedure match( expectedToken);
begin
 if token = expectedToken then
  getToken;
 else
  error;
 end if;
end match
```

Requiring the Use of EBNF

The corresponding EBNF is

```
exp \rightarrow term \{ addop term \}
addop \rightarrow + | -
term \rightarrow factor \{ mulop factor \}
mulop \rightarrow *
factor \rightarrow (exp) | number
```

• Write recursive-decent procedures for the remaining rules in the expression grammar is not as easy for *factor* (left recursion causes infinite loop)

4.1.2 Repetition and Choice: Using EBNF

An Example

• The grammar rule for an if-statement:

```
If-stmt → if ( exp ) statement

| if ( exp ) statement else statement
```

- Could not <u>immediately</u> distinguish the two choices because both start with the token **if**
- Put off the decision until we see the token **else** in the input

The EBNF of the if-statement

• *If-stmt* \rightarrow **if** (*exp*) *statement* [**else** *statement*]

Square brackets of the EBNF are translated into a test in the code for *ifstmt*.

```
if token = else then
  match (else);
  statement;
endif;
```

- Notes
 - EBNF notation is designed to mirror closely the actual code of a recursive-descent parser
 - So a grammar should always be translated into EBNF if recursivedescent is to be used.

```
procedure ifstmt;
     begin
      match( if );
      match( ( );
      exp;
      match();
      statement;
      if token = else then
        match (else);
        statement;
      end if;
     end ifstmt;
                    15
```

EBNF for Simple Arithmetic Grammar(1)

• The EBNF rule for $exp \rightarrow exp \ addop \ term \mid term$

```
exp \rightarrow term \{addop term\}
```

The curly bracket expressing repetition can be **translated into a loop** in the code for *exp*:

```
procedure exp;
begin
  term;
while token = + or token = - do
  match(token);
  term;
end while;
end exp;
```

EBNF for Simple Arithmetic Grammar(2)

• The EBNF rule for *term*: $term \rightarrow factor \{mulop factor\}$

```
Becomes the code:
```

```
procedure term;
begin
  factor;
  while token = * do
  match(token);
  factor;
  end while;
end term;
```

4.1.3 Further Decision Problems

More formal methods to deal with complex situation

- (1) It may be difficult to convert a grammar in BNF into EBNF form;
- (2) It is difficult to decide when to use the choice A → α and the choice A → β; if both α and β begin with nonterminals. Such a decision problem requires the computation of the First Set.

More formal methods to deal with complex situation

- (3) It may be necessary to know what token legally coming from the non-terminal A, in writing the code for an ε -production: $A \rightarrow \varepsilon$. Such tokens indicate A may disappear at this point in the parse. This set is called the **Follow Set** of A.
- (4) It requires computing the First and Follow sets in order to **detect the errors as early as possible**. Such as ")3-2)", the parse will descend from *exp* to *term* to *factor* before an error is reported.

4.2 LL(1) Parsing

4.2.1 The Basic Method of LL(1) Parsing

Main idea

- LL(1) Parsing uses an **explicit stack** rather than recursive calls to perform a parse
- An example:
 - a simple grammar for the strings of balanced parentheses: $S \rightarrow (S)S \mid \varepsilon$
- The following table shows the actions of a top-down parser given this grammar and the string "()"

Table of Actions

Steps	Parsing Stack	Input	Action
1	\$S	()\$	$S \rightarrow (S) S$
2	\$S)S(()\$	match
3	\$S)S)\$	$S \rightarrow \varepsilon$
4	\$S))\$	match
5	\$S	\$	$S \rightarrow \varepsilon$
6	\$	\$	accept

General Schematic

- A top-down parser begins by pushing the start symbol onto the stack
- It accepts an input string if, after a series of actions, the stack and the input become empty
- A general schematic for a successful top-down parse:

```
$ StartSymbol Inputstring$
... //one of the two actions
... //one of the two actions
$ accept
```

Two Actions

The two actions

- Generate: Replace a <u>non-terminal A</u> at the top of the stack by a string α (in reverse) using a grammar rule $\underline{A} \rightarrow \alpha$
- Match: Match a token on the top of the stack with the current input token
- The list of generating actions in the above table:

$$S \Rightarrow (S)S \quad [S \rightarrow (S) S]$$
$$\Rightarrow ()S \quad [S \rightarrow \varepsilon]$$
$$\Rightarrow () \quad [S \rightarrow \varepsilon]$$

Which corresponds **precisely** to the steps in a leftmost derivation of string "()".

4.2.2 The LL(1) Parsing Table and Algorithm

Purpose and Example of LL(1) Table

- Purpose of the LL(1) Parsing Table:
 - To express the possible rule choices for a non-terminal A when A is at the top of parsing stack based on the next input token (the look-ahead).
- The LL(1) Parsing table for the following simple grammar: $S{\rightarrow}\,(S)S \mid \epsilon$

M[N,T]	()	\$
S	S→(S)S	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$

The General Definition of Table

- The table is a two-dimensional array indexed by non-terminals and terminals
- Contain production choices to use at the appropriate parsing step called M[N,T]
 - \bullet N is the set of non-terminals of the grammar
 - T is the set of terminals or tokens (including \$)
- Any entrances remaining empty
 - Represent potential errors

Table-Constructing Rule

- The table-constructing rule
 - If $A \rightarrow \alpha$ is a production choice, and there is a derivation $\alpha \xrightarrow{\star} a\beta$, where a is a token, then add $A \rightarrow \alpha$ to the table entry M[A, a];
 - If $A \rightarrow \alpha$ is a production choice, and there are derivations $\alpha \xrightarrow{*} \epsilon$ and S\$ $\Rightarrow \beta A \alpha \gamma$, where S is the start symbol and α is a token (or \$), then add $A \rightarrow \alpha$ to the table entry $M[A, \alpha]$;

A Table-Constructing Case

- The constructing-process of the following table
 - For the production: $S \rightarrow (S)S$, $\alpha = (S)S$, where a = (, this choice will be added to the entry M[S, (]];
 - Since S=>(S)S\$, rule 2 applies with $\alpha = \varepsilon$, $\beta = (A = S, a = 1)$, and $\gamma = S$ \$, so add the choice $S \rightarrow \varepsilon$ to M[S, 1]
 - Since S=>S\$, S $\rightarrow \epsilon$ is also added to M[S, \$].

M[N,T]	()	\$
S	S→(S) S	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$

Rule 1: $\alpha = > *a\beta$ i.e., $a \in first(\alpha)$

Rule 2: S=>* $\beta Aa\gamma$ i.e., $a \in follow(A)$

Properties of LL(1) Grammar

- Definition of LL(1) Grammar
 - A grammar is an LL(1) grammar if the associated LL(1) parsing table has at most one production in each table entry
- An LL(1) grammar cannot be ambiguous

A Parsing Algorithm Using the LL(1) Parsing Table

(* assumes \$ marks the bottom of the stack and the end of the input *)

```
push the start symbol onto the top of the parsing stack; while the top of the parsing stack \neq \$ and the next input token \neq \$ do if the top of the parsing stack is terminal a and the next input token is a then (* match *) pop the parsing stack; advance the input;
```

A Parsing Algorithm Using the LL(1) Parsing Table

else if the top of the parsing stack is non-terminal A and the next input token is terminal a and parsing table entry M[A,a] contains production $A \rightarrow$

```
then (* generate *)
pop the parsing stack;
for i:=n downto 1 do
push X<sub>i</sub> onto the parsing stack;
else error;
if the top of the parsing stack = $ and the next input token = $ then accept
else error
```

Example: If-Statements

• The LL(1) parsing table for simplified grammar of if-statements:

```
statement \rightarrow if-stmt | other if-stmt \rightarrow if (exp) statement else-part else-part \rightarrow else statement | \epsilon exp \rightarrow 0 | 1
```

M[N,T]	If	Other	Else	0	1	\$
Statement	Statement → if-stmt	Statement → other				
If-stmt	If-stmt → if					
Else-part			Else-part → else statement Else-part → ε			Else-part → ε
Ехр				$Exp \rightarrow 0$	$Exp \rightarrow 1$	

Notice for Example: If-Statement

- The entry M[else-part, else] contains two entries, i.e. the dangling else ambiguity.
- Disambiguating rule: always prefer the rule that generates the current look-ahead token over any other, and thus the production

Else-part \rightarrow else statement over Else-part $\rightarrow \epsilon$

With this modification, the above table will become unambiguous

The parsing based LL(1) Table

• The parsing actions for the string:

If (0) if (1) other else other

• (for conciseness, statement= S, if-stmt=I, else-part=L, exp=E, if=i, else=e, other=o)

Steps	Parsing Stack	Input	Action
1	\$S	i(0)i(1)oeo\$	S→I
2	\$I	i(0)i(1)oeo\$	I→i(E)SL
3	\$LS)E(i	i(0)i(1)oeo\$	Match
4	\$ LS)E((0)i(1)oeo \$	Match
5	\$ LS)E	0)i(1)oeo \$	E→0
6	\$ LS)0	0)i(1)oeo \$	Match
7	\$ LS))i(1)oeo \$	Match
8	\$ LS	i(1)0e0 \$	S→I
9	\$ LI	i(1)0e0 \$	I→i(E)SL
10	\$ LLS)E(i	i(1)0e0 \$	Match
11	\$ LLS)E((1)oeo \$	Match
12	\$ LLS)E	1)oeo \$	E→1
13	\$ LLS)1	1)oeo \$	Match
14	\$ LLS))oeo \$	match
15	\$ LLS	oeo \$	S→o
16	\$ LLo	oeo \$	match
17	\$ LL	eo \$	L→eS
18	\$ LSe	eo \$	Match
19	\$ LS	o \$	S→o
20	\$ Lo	o \$	match
21	\$ L	\$	$L \rightarrow \varepsilon$ 39
22	\$	\$	accept

4.2.3 Left Recursion Removal and Left Factoring

Left Recursion Removal

Left recursion is commonly used to make operations left associative:

$$\exp \rightarrow \exp addop term \mid term$$

Immediate left recursion:

The left recursion occurs only within the production of a single non-terminal.

$$\exp \rightarrow \exp + \operatorname{term} | \exp - \operatorname{term} | \operatorname{term}$$

Indirect left recursion:

Never occur in actual programming language grammars, but be included for completeness.

$$A \rightarrow Bb \mid \dots$$

$$B \rightarrow Aa \mid ...$$

CASE 1: Simple Immediate Left Recursion

- $A \rightarrow A\alpha | \beta$ Where α and β are strings of terminals and non-terminals; β does not begin with A.
- The grammar will generate the strings of the form βa^n
- We rewrite this grammar rule into two rules:

$$A \rightarrow \beta A'$$

To generate β first;

$$A' \rightarrow \alpha A' | \epsilon$$

To generate the repetition of α , using right recursion.

Example

- $\exp \rightarrow \exp \underline{addop \ term} | \underline{term}$
- To rewrite this grammar to remove left recursion, we obtain (α = addop term and β = term)

 $exp \rightarrow term exp'$

exp' \rightarrow addop term exp' | ϵ

$$A
ightarrow eta A'$$
To generate eta first;
 $A'
ightarrow lpha A' \mid \epsilon$
To generate the repetition of $lpha$

CASE2: General Immediate Left Recursion

$$A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_n|\beta_1|\beta_2|\dots|\beta_m$$

Where none of β_1,\dots,β_m begin with A .

The solution is similar to the simple case:

$$A \rightarrow \beta_1 A' |\beta_2 A'| \dots |\beta_m A'$$

 $A' \rightarrow \alpha_1 A' |\alpha_2 A'| \dots |\alpha_n A'| \epsilon$

Example

• $\exp \rightarrow \exp + term | \exp - term | term$

Remove the left recursion as follows:

exp \rightarrow term exp' exp' \rightarrow + term exp' | - term exp' | ϵ

Notice

- Left recursion removal does not change the language, but
 - Change the grammar and the parse tree
- This change causes a complication for the parser

Example

Simple arithmetic expression grammar

```
\exp \rightarrow \exp addop term | term
addop \rightarrow +|-
term \rightarrow term mulop factor | factor
mulop \rightarrow*
factor \rightarrow(exp) | number
```

After removal of the left recursion

```
exp \rightarrow term exp'

exp'\rightarrow addop term exp' | \epsilon

addop \rightarrow +|-

term \rightarrow factor term'

term' \rightarrow mulop factor term' | \epsilon

mulop \rightarrow*

factor \rightarrow(exp) | number
```

The LL(1) parsing table for the new grammar

M[N,T]	(number)	+	-	*	\$
Exp	exp	exp →					
	\rightarrow	term					
	term	exp'					
	exp'						
Exp'			exp' →	exp' →	exp' →		exp' →
			ε	addop	addop		ε
				term	term		
				exp'	exp'		
Addop				addop	addop		
				→ +	→ -		
Term	term	term →					
	\longrightarrow	factor					
	factor	term'					
	term'						
Term'			term'	term'	term'	term'	term'
			$\rightarrow \varepsilon$	$\rightarrow \varepsilon$	$\rightarrow \varepsilon$	\rightarrow	$\rightarrow \varepsilon$
						mulop	
						factor	
						term'	
Mulop						mulop	
						→*	
factor	factor	factor					
	\longrightarrow	\rightarrow					
	(expr)	number					

Left Factoring

• Left factoring is required when two or more grammar rule choices share a common prefix string, as in the rule

$$A \rightarrow \alpha \beta | \alpha \gamma$$

• Example:

stmt-sequence→stmt; stmt-sequence | stmt stmt→s

- An LL(1) parser cannot distinguish between the production choices in such a situation
- The solution in this simple case is to "factor" the α out on the right and rewrite the rule as two rules:

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta | \gamma$

Algorithm for Left Factoring

While there are changes to the grammar do For each non-terminal A do Let α be a prefix of maximal length that is shared by two or more production choices for A If α≠ε then Let $A \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_n|$ be all the production choices for A and suppose that $\alpha_1, \alpha_2, \dots, \alpha_k$ share α , so that $A \rightarrow \alpha \beta_1 |\alpha \beta_2| \dots |\alpha \beta_k |\alpha_{k+1}| \dots |\alpha_n|$, the β_i 's share no common prefix, and $\alpha_{k+1},...,\alpha_n$ do not share α Replace the rule $A \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_n|$ by the rules

$$A \rightarrow \alpha A' |\alpha_{k+1}| \dots |\alpha_n$$

 $A' \rightarrow \beta_1 |\beta_2| \dots |\beta_k$

Example 4.4

• Consider the grammar for statement sequences, written in right recursive form:

Stmt-sequence→stmt; stmt-sequence | stmt
Stmt→s

Left Factored as follows:

Stmt-sequence→stmt stmt-seq'
Stmt-seq'→; stmt-sequence | ε