DEFORMATION OF GALOIS REPRESENTATIONS

A notes for the number theory seminar at YMSC, 2022 Update on October 7, 2022

YIJUN YUAN®

We are given either a number field K and a finite set of primes S, or a local field F, and we are given a representation of either $G_{K,S}$ or G_F into $\mathrm{GL}_n(k)$, where k is a finite field. We want to try to understand all possible lifts of this representation to $\mathrm{GL}_n(A)$, where A is a complete noetherian local ring with residue field k.

-Fernando Q. Gouvêa (cf. [Gou01])

Main reference: [Böc13; Maz89]

Motivation and history of deformation theory: [Maz97; Gou01]

1. Deformations of representations of profinite groups

Notations.

p prime number

 \mathbb{F} finite field of char. p

 $W(\mathbb{F})$ ring of Witt vectors¹ over A

G profinite group

 $V_{\mathbb{F}}$ finite $\mathbb{F}[G]$ -module with continuous G-action

d dimension of $V_{\mathbb{F}}$

 $\beta_{\mathbb{F}}$ a \mathbb{F} -basis of $V_{\mathbb{F}}$

1.1. Deformation functors.

Notations.

 $\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ category of complete Noetherian local $W(\mathbb{F})$ -algebra with residue field \mathbb{F}

 $\mathfrak{Ar}_{W(\mathbb{F})}$ full sub-category of finite local Artinian $W(\mathbb{F})$ -algebras

 \mathfrak{m}_A maximal ideal of $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$

Remark 1.1 (???). Via the $W(\mathbb{F})$ -structure, the residue field of any $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ is canonically isomorphic to \mathbb{F} .

Definition 1.2. Let $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

- (1) A deformation of $V_{\mathbb{F}}$ to A is a pair (V_A, ι_A) , such that
 - (a) V_A is A[G]-module, finite free over A, with continuous G-action;
 - (b) $\iota_A: V_A \otimes_A \mathbb{F} \xrightarrow{\cong} V_{\mathbb{F}}$ is G-equivariant.
- (2) A framed deformation of $(V_{\mathbb{F}}, \beta_{\mathbb{F}})$ to A is a triple (V_A, ι_A, β_A) , where
 - (a) (V_A, ι_A) is a deformation of $V_{\mathbb{F}}$ to A;

We view \mathbb{F} as an A-module via the canonical projection $A \to A/\mathfrak{m}_A = F$

 $^{^1}W(\mathbb{F})$ is the unique (up to unique isomorphism) complete discrete valuation ring which is absolutely unramified (uniformizer= p) and has residue field \mathbb{F} .

(b) β_A is a A-basis of V_A which reduces to $\beta_{\mathbb{F}}$ under ι_A .

Set
$$D_{V_{\mathbb{F}}}, D_{V_{\mathbb{F}}}^{\square} : \mathfrak{Ar}_{W(\mathbb{F})} \to \operatorname{Set},$$

$$D_{V_{\mathbb{F}}}(A) = \{ deformations \ of \ V_{\mathbb{F}} \ to \ A \} / \cong,$$

$$D_{V_{\mathbb{F}}}^{\square}(A) = \{ framed \ deformations \ of \ (V_{\mathbb{F}}, \beta_{\mathbb{F}}) \ to \ A \} / \cong .$$

Remark 1.3.

(1) The <u>FIXED</u> basis $\beta_{\mathbb{F}}$ gives the isomorphism $V_{\mathbb{F}} \cong \mathbb{F}^d$ as vector space. Thus we can view $V_{\mathbb{F}}$ as $\bar{\rho}: G \to \mathrm{GL}(V_{\mathbb{F}}) = \mathrm{GL}_d(\mathbb{F})$: a d-dimensional \mathbb{F} -representation of G. Then

$$D_{V_{\mathbb{F}}}^{\square}(A) = \{ \rho : G \to \operatorname{GL}_d(A) \text{ lifting } \bar{\rho} \},$$

$$\begin{array}{c} \textit{Does not guarantee $\beta_A \leadsto \beta_{\mathbb{F}}!$} \\ \hline D_{V_{\mathbb{F}}}(A) = D_{V_{\mathbb{F}}}^{\square}(A) / \textit{action by conjugates of } \ker(\mathrm{GL}_d(A) \to \mathrm{GL}_d(\mathbb{F})). \\ \hline \textit{Not always representable!} \end{array}$$

- (2) Mazur only consdier $D_{V_{\mathbb{R}}}$, which describes representations lifting $V_{\mathbb{R}}$ up to isomorphism. Add "base condition" $\leadsto D_{V_{\overline{\nu}}}^{\square}$.
- (3) Often consider deformation functors on $\mathfrak{Ar}_{\mathcal{O}} = \text{category of local artinian } \mathcal{O}\text{-algebra with}$ residue field \mathbb{F} , where \mathcal{O} is ring of integers of a finite totally ramified extension of $W(\mathbb{F}) \left| \frac{1}{n} \right|$ $(\mathcal{O}/\pi\mathcal{O}\cong\mathbb{F}).$

For example, let K be a p-adic field with residue field \mathbb{F}_q , ring of integers \mathcal{O}_K , then $K/W(\mathbb{F}_q)\left[\frac{1}{p}\right]$ is totally ramified and $W(\mathbb{F}_q)\left[\frac{1}{p}\right]/\mathbb{Q}_p$ is unramified.

1.2. Representability.

1.2.1. A finiteness condition.

Definition 1.4 (Mazur). A profinite group G has finiteness condition Φ_p , if \forall open subgroup $G' \subset G$, $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty$.

Remark 1.5.

- (1) (Burnside basis theorem) $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty \Leftrightarrow \text{maximal pro-p quotient of } G'$ is topologically finitely generated
- (2) $\operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) \cong \operatorname{Hom}_{\operatorname{cont}}(G'^{\operatorname{ab}}, \mathbb{F}_p).$

Example 1.6 (by CFT). The following groups have Φ_p :

- (1) The Galois group $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$, with K a p-adic field.
- (2) The galois group $\mathcal{G}_{F,S} = \operatorname{Gal}(F_S/F)$, where F is a number field, S is a finite set of places of F and $F_S \subset \overline{F}$ is the maximal extension of F unramified outside S.
- 1.2.2. Main proposition.

prop: 1587 Proposition 1.7 (Mazur). If G has Φ_p , then

(1) The functor $D_{V_{\mathbb{R}}}^{\square}$ is pro-representable by some $R_{V_{\mathbb{R}}}^{\square} \in \widehat{\mathfrak{Ar}}_{W(\mathbb{R})}$, i.e.

$$D_{V_{\mathbb{F}}}^{\square}(A) \cong \operatorname{Hom}_{W(\mathbb{F})}\Big(\begin{array}{c} R_{V_{\mathbb{F}}}^{\square} \, , A \Big), \\ \\ \text{which is functorial in } A \in \mathfrak{At}_{W(\mathbb{F})}. \end{array} \Big) \text{ universal framed deformation ring}$$

(2) If $\operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, then $D_{V_{\mathbb{F}}}$ is pro-representable by some $R_{V_{\mathbb{F}}} \in \widehat{\mathfrak{At}}_{W(\mathbb{F})}$. niversal deformation ring

(1) (???) $R_{V_x}^{\square}$ is unique up to unique isomorphism; the identity map in $\operatorname{Hom}(R_{V_x}^{\square}, R_{V_x}^{\square})$ gives rise to a universal framed deformation over $R_{V_{\mathbb{F}}}^{\sqcup}$.

REFERENCES 3

- (2) $R_{V_{\mathbb{F}}}^{\square}$ exists without Φ_p , but maybe no longer noetherian.
- (3) $(???)\mathbb{F} \hookrightarrow \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) \leadsto write "=" in \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}.$

Proof of Proposition 1.7.

(1) G finite \rightsquigarrow profinite.

• (FORMAL) CONSTRUCTION:

Suppose G is finite. Set

$$G = \langle g_1, \cdots, g_s | r_1(g_1, \cdots, g_s), \cdots, r_t(g_1, \cdots, g_s) \rangle$$

a presentation. Define

$$\mathcal{R} = W(\mathbb{F})[X_{i,j}^k | i, j = 1, \cdots, d; k = 1, \cdots, s]/\mathcal{I},$$

where

$$\mathcal{I} = \langle r_l(X^1, \cdots, X^s) - \mathrm{id} \rangle_{1 \le l \le t}, X^k = (X_{i,j}^k)_{d \times d}.$$

To make \mathcal{R} complete, local, noetherian, take

$$\mathcal{J} = \ker(\mathcal{R} \to \mathbb{F}, X^k \mapsto \bar{\rho}(g_k), k = 1, \cdots, s),$$

and set $R_{V_{\mathbb{F}}}^{\square} = \varprojlim_{n} \mathcal{R}/\mathcal{J}^{n}$ to be the \mathcal{J} -adic completion of \mathcal{R} . Besides that, we set $\rho_{V_{\mathbb{F}}}^{\square} : G \to \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}), g_{k} \mapsto \mathrm{image} \ \mathrm{of} \ X^{k} \ \mathrm{in} \ \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}).$ **VERIFICATION:**

Take $\rho \in D^{\square}_{V_{\sigma}}(A)$, where $\rho : G \to GL_d(A)$. Define

 $\mathfrak{F}_{\rho} \in \mathrm{Hom}_{W(\mathbb{F})}\Big(R_{V_{\mathbb{F}}}^{\square}, A\Big), \overline{\mathrm{entries \ of} \ X^{k}} \mapsto \mathrm{corresponding \ entries \ of} \ \rho(g_{k}), \forall k = 1, \cdots, s.$

Then \mathfrak{F}_{ρ} induces $\widehat{\mathfrak{F}_{\rho}}: \mathrm{GL}_d(R_{V_{\mathbb{F}}}^{\square}) \to \mathrm{GL}_d(A)$. It's immediate to check that $\rho = \widehat{\mathfrak{F}_{\rho}} \circ \rho_{V_{\mathbb{F}}}^{\square}$ and $\widehat{\mathfrak{F}_{\rho}}$ is unique choice to make the diagram commute. Thus, $\mathfrak{F}: \rho \mapsto \mathfrak{F}_{\rho}$ gives the pro-representability when G is finite.

• When G is profinite, we have $G = \varprojlim_i G/H_i$, where $H_i \subset \ker(\bar{\rho})$ are open normal subgroups. For every i, one has a universal pair $(R_i^{\square}, \rho_i^{\square})$ by previous construction. Passing by limits, we define

$$\left(R_{V_{\mathbb{F}}}^{\square},\rho_{V_{\mathbb{F}}}^{\square}\right)=\varprojlim_{i}\Bigl(R_{i}^{\square},\rho_{i}^{\square}\Bigr), \text{with } R_{V_{\mathbb{F}}}^{\square}\in\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}.$$

We will show in [Section 1.4, TBA] that $R_{V_{\mathbb{F}}}^{\square}$ is noetherian.

(2) By Schlessinger's representability criterion (cf. [Section 1.7, TBA]) or by Kisin's work (cf. [Section 2.1, TBA by Y. Chen]).

References

Bockle2013 [Böc13] G. Böckle. "Deformations of Galois Representations". In: L. Berger et al. *Elliptic Curves, Hilbert Modular Forms and Galois Deformations*. Springer Basel, 2013, pp. 21–115. DOI: 10.1007/978-3-0348-0618-3_2.

Gouvea2001 [Gou01] F. Q. Gouvêa. "Deformations of Galois representations". In: Arithmetic Algebraic Geometry. Ed. by B. Conrad and K. Rubin. American Mathematical Society, 2001, pp. 235–406. URL: http://www.ams.org/books/pcms/009/05.

Mazur1989 [Maz89] B. Mazur. "Deforming Galois Representations". In: *Galois Groups over* ℚ. Ed. by Y. Ihara, K. Ribet, and J.-P. Serre. Vol. 16. Springer US, 1989, pp. 385–437. DOI: 10.1007/978-1-4613-9649-9_7.

REFERENCES 4

Mazur1997 [Maz97

[Maz97] B. Mazur. "An Introduction to the Deformation Theory of Galois Representations". In: Modular Forms and Fermat's Last Theorem. Ed. by G. Cornell, J. H. Silverman, and G. Stevens. Springer New York, 1997, pp. 243–311. DOI: 10.1007/978-1-4612-1974-3_8.