OBJECTIVE: To be able to generate new solution using firefly algorithm operator

OUTPUT: Source code and Short-Write ups with screenshots

TYPE OF PROJECT: Individual or Pair only

PROGRAM SPECIFICATIONS

1. Use the griewank function with dimension 5 as test function for this lab exercise.

- 2. Generate 10 fireflies as a population of solutions using pseudorandom number generator. After sorting, only try to compare the attractive (xj) and the least attractive firefly (xi) like what was done in the lecture notes/video. You may use the source code as presented in the lecture video.
- 3. Implement the Firefly Algorithm operator using the following parameter values. Please note that you will need to run the algo for EACH parameter setting below.

Test for β_0

	Param Setting 1	Param Setting 2
T	1.0	1.0
Attractiveness	1.0	10.0
param (β ₀)		
Levy Flight Param λ	2.0	2.0
Light absorption	1.0	1.0
coeff (γ)		

Test for γ

	Param Setting 1	Param Setting 2
T	1.0	1.0
Attractiveness	2.0	2.0
param (β ₀)		
Levy Flight Param λ	2.0	2.0
Light absorption	1.0	5.0
coeff (γ)		

Test for λ

	Param Setting 1	Param Setting 2
T	1.0	1.0
Attractiveness	2.0	2.0
param (β ₀)		
Levy Flight Param λ	2.0	10.0
Light absorption	1.0	1.0
coeff (γ)		

- 4. Provide analysis for the various parameter settings above. All answers below SHOULD be saved in the pdf file with the ff filename specs <familyname>_firefly.pdf (e.g. gamot_ firefly.pdf).
 - a. Run Test for β_0 Param Setting 1 for 5 times. Observe the fitness value of the old and the new firefly. Make a generalization on its performance based on the 5 runs that you conducted. Does increasing the Attractiveness parameter generally improve performance? Include the screenshots of old and new positions and fitness values for each of the 5 runs per parameter setting. Please see time 5:03

CMSC 173 Firefly Operator

- of the lecture video on what to screenshot. For the screenshot, you should have 10 screenshots in this section (5 per param setting)
- b. Do the same experiment using the "Test for γ " table of parameters. Does increasing the light absorption coeff parameter generally improve performance? Provide screenshots as instructed above as well.
- c. Do the same experiment using the "Test for λ " table of parameters. Does increasing the Levy Flight parameter generally improve performance? Provide screenshots as instructed above as well.
- 5. Submit the source code as well with the ff filename spec <familyname>_ firefly.py (e.g. gamot_firefly.py)
- 6. Zip the pdf and the python code in one file and submit in our LMS on or before the deadline date.