MAN: Множество Мандельброта

Математическое моделирование: интерполяция.

Возьмём за основу предыдущую работу. Множеством Жюлиа для комплексного параметра с называлось множество таких точек комплексной плоскости z, для которых итерационный процесс $z \to z^2 + c$ не расходился к бесконечности. Множеством Мандельброта называется множество **комплексных параметров** c, для которых итерационный процесс, начинающийся с z=0, не расходится (остаётся ограниченным). Оно изображается не в плоскости z=(x,y), а в плоскости параметров c=(p,q).

- В множестве Жюлиа фиксировали c, рисовали плоскость значений z_0 .
- В множестве Мандельброта фиксируем z_0 , рисуем плоскость значений c.

Этапы работы:

- 0. **Изучите и поправьте решение предыдущей задачи (0 баллов)**. Вам предлагается готовое решение (шаблон) предыдущей задачи JUL. При возникновении ошибок компиляции (из-за несоответствия стандарту Си) внесите необходимые исправления. Отключите анимацию. Переместите отображение Жюлиа в левую часть экрана. Видим два одинаковых множества. Как и в прошлой работе пока для Жюлиа возьмите c = (-0.12375, 0.56508), и область $X \times Y = [-2, 2] \times [-3, 3]$.
- 1. **Нарисуйте множество Мандельброта (+1 балл).** Измените программу так, чтобы в левой половине экрана отображалась **внешность** множества Жюлиа, а в правой внешность множества Мандельброта.
 - Функцию IsInside заменитt на IsOutside (исправьте и название, и наполнение). Снаружи ставьте белую точку, внутри **не трогайте** цвет по умолчанию (чёрный).
 - Скопируйте функцию в IsOutsideMandelbrot, которую вызовите для правой половины экрана. Для Мандельброта возьмите область $P \times Q = [-2.75, 1.25] \times [-3, 3]$, внесите необходимые изменения, в остальном код такой же, что в Жюлиа (при z = 0).
- 2. **Добавьте полосатую раскраску (+1 балл).** Раскрасьте внешность множества в зависимости от количества итераций, потребовавшихся для того, чтобы добраться до "бесконечности".
 - Положите $N_{\text{max}} = 1023$, $R_{\text{max}} = 2$.
 - Из функции IsOutside возвращайте не просто TRUE/FALSE, а в случае TRUE характеристику того, как близко точка находится к множеству количество шагов $N_{\rm max}$ i (>0, !=FALSE).
 - Нечётные шаги закрашивайте белым, чётные синим (LABCOLOR_DARK_CYAN). Внутренность остаётся неизменно чёрной.
 - После того, как всё заработает, возьмите для Жюлиа параметр $c=(-0.835,\ 0.2321)$, а для Мандельброта отобразите область

 $[-0.7454356, -0.7454215] \times [0.1129986, 0.113019]$. И слева, и справа будут видны интересные узоры.

3. Реализуйте плавную раскраску (+1 балл).

- Вычислите безразмерный параметр $t = n/(N_{\text{max}} + 1) \in [0,1)$, поправьте его, возведя в куб: $t \to t^3 \in [0,1)$, чтобы добавить нужную нам нелинейность (подобрано эмпирически для данной задачи).
- С помощью параметра t получите цвет из палитры из K_{\max} цветов, заданной преподавателем, для чего отобразить интервал [0,1) на $[0,K_{\max}-1)$. При этом параметру t будет соответствовать целый номер цвета k в палитре и вещественный остаток $\alpha \in [0,1)$. Этот остаток используйте для интерполяции между соседними цветами в палитре: $RGB = (1-\alpha)RGB[k] + \alpha RGB[k+1]$.
- Используйте функцию LabSetColorRGB(r, g, b) для выбора цвета, чтобы увидеть красивое сине-голубое множество Жюлиа и желто-оранжевое множество Мандельброта.

```
static color_t s_palette[] = {
    {0x00, 0x00, 0xFF}, {0x00, 0xFF, 0xFF}, {0xFF, 0xFF, 0x00},
    {0xFF, 0x00, 0x00}, {0xFF, 0xFF, 0x00}, {0x00, 0xFF, 0xFF},
    {0x00, 0x00, 0xFF},
};
```

