3170111144 Yuhang Chen

ZHEJIANG UNIVERSITY - UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ECE 310 DIGITAL SIGNAL PROCESSING

Homework 7

Prof. Zhi-Pei Liang Due: April 2, 2021

1. The sequence $x[n] = \cos\left(\frac{\pi}{3}n\right)$, $-\infty < n < \infty$ was obtained by sampling the continuous-time signal $x_a(t) = \cos\left(\Omega_0 t\right)$, $-\infty < t < \infty$ at a sampling rate of 1000 samples/sec. What are two possible values of Ω_0 that could have resulted in the sequence x[n]?

- 2. The continuous-time signal $x_a(t) = \sin(10\pi t) + \cos(20\pi t)$ is sampled with a sampling period T to obtain the discrete-time signal $x[n] = \sin(\frac{\pi}{5}n) + \cos(\frac{2\pi}{5}n)$
 - a) Determine a choice for T consistent with this information.
 - b) Is your choice for T in part (a) unique? If so, explain why. If not, specify another choice of T consistent with the information given.
- 3. The continuous-time signal $x_a(t) = \cos(400\pi t)$ is sampled with a sampling period T to obtain a discrete-time signal $x[n] = x_a(nT)$
 - a) Compute and sketch the magnitude of the continuous-time Fourier transform of $x_a(t)$ and the discrete-time Fourier Transform of x[n] for T=1 ms.
 - b) Repeat part (a) for T=2 ms.
 - c) What is the maximum sampling period T_{max} such that no aliasing occurs in the sampling process?
- 4. The continuous-time signal $x_a(t)$ has the continuous-time Fourier transform shown in the figure below. The signal $x_a(t)$ is sampled with sampling interval T to get the discrete-time signal $x[n] = x_a(nT)$. Sketch $X_d(\omega)$ (the DTFT of x[n]) for the sampling intervals T = 1/100, 1/200 sec.

5. Let $x[n] = x_a(nT)$. Show that the DTFT of x[n] is related to the FT of $x_a(t)$ by

$$X_d(\omega) = \frac{1}{T} \sum_{\ell=-\infty}^{\infty} X\left(\frac{\omega + 2\ell\pi}{T}\right)$$

where $X_d(\omega)$ is the DTFT of x[n] and $X(\Omega)$ the FT of $x_a(t)$.

$$\chi[i] = \sin(\frac{\pi}{5}) + \cos(\frac{2\pi}{5}) = \chi_{\alpha}(\frac{1}{50})$$

$$\chi[\chi] = \sin\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) = \chi_{\alpha}\left(\frac{2}{50}\right)$$

i.e.
$$T = \frac{1}{100}S$$

By this we get also get

$$\chi[0], \chi[1], \chi[2]...$$

C)
$$T \angle \frac{2\pi}{\Omega_{\text{max}}} = \frac{2\pi}{400\pi} = \frac{1}{200} \text{S}$$

= 5 m/S

$$T = \frac{1}{200}$$

$$-\pi - \frac{\pi}{2}$$

$$=\frac{\partial}{\partial z}\int_{z-\partial z}^{z-\sqrt{N}}\int_{z-\partial z}^{z-\sqrt{N}}\chi_{\alpha}(\frac{w}{T})$$

$$= \sum_{j=0}^{\infty} \chi_{\alpha}(nT) e^{-jwL}$$
Hence,
$$= \frac{d}{d} e^{-jwL} + \chi_{\alpha}(\frac{w}{T})$$

$$= \sum_{j=0}^{\infty} \frac{1-e^{-jwL}}{1-e^{-jwL}} + \chi_{\alpha}(\frac{w+2LT}{T}) + \sum_{j=0}^{\infty} \chi_{\alpha}(\frac{w+2LT}{T})$$