Weighted Hypergraph Transversals & Contextuality

Thomas C. Fraser^{1, 2, *}

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5

²University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

(Dated: August 24, 2017)

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

2

2

2

This is the abstract.

I. Introduction

CONTENTS

	A. Applications
II.	Marginal Satisfiability A. Definitions B. Linearity C. Polytope Projection D. Logical Contextuality
III.	An Observation A. An Antecedant Hierarchy B. Irreducibility C. Marginal Symmetries D. Curated Inequalities E. Relaxations
IV.	Weighted Hypergraph Transervals A. Preliminaries B. Hypergraph Transversals C. Adding Weights
V.	Conclusions
	Acknowledgments
	References

I. INTRODUCTION

A. Applications

II. MARGINAL SATISFIABILITY

A. Definitions

To every random variable v there corresponds a prescribed set of **outcomes** \mathcal{O}_v and a set of **events over** v denoted $\Omega(v)$ corresponding to the set of all functions of the form $\omega : \{v\} \to \mathcal{O}_v$. Evidently, $\Omega(v)$ and \mathcal{O}_v are isomorphic structures and their distinction can be confounding. There is rarely any harm in referring synonymously

$$\Omega(V) \equiv \{\omega : V \to \mathcal{O}_V \mid \forall v \in V, \omega(v) \in \mathcal{O}_v\}$$

Furthermore, the **domain** $\mathcal{D}(\omega)$ of an event ω is the set of random variables it valuates, i.e. if $\omega \in \Omega(V)$ then $\mathcal{D}(\omega) = V$.

For every $V' \subset V$ and $\omega \in \Omega(V)$, the **restriction of** ω **onto** V' (denoted $\omega|_{V'}$) corresponds to the unique event in $\Omega(V')$ that agrees with ω for all valuations of variables in V', i.e. $\forall v' \in V' : \omega|_{V'}(v') = \omega(v')$. Using this notational framework, a probability distribution or simply **distribution** p_V is a probability measure on $\Omega(V)$, assigning to each $\omega \in \Omega(V)$ a real number $\mathsf{p}_V(\omega) \in [0,1]$ such that $\sum_{\omega \in \Omega(V)} \mathsf{p}_V(\omega) = 1$. The set of all distributions over $\Omega(V)$ is denoted \mathcal{P}_V . Moreover, given $\mathsf{p}_V \in \mathcal{P}_V$ and $V' \subset V$, there is an induced distribution $\mathsf{p}_V|_{V'} \in \mathcal{P}_{V'}$ obtained by marginalizing p_V :

$$\mathsf{p}_V|_{V'}(\omega') = \sum_{\substack{\omega \in \Omega(V) \\ \omega|_{V'} = \omega'}} \mathsf{p}_V(\omega)$$

Presently, the reader is equipped with sufficient notation and terminology to comprehend the **marginal satisfiability problem**: given a collection of m distributions $\{p_{V_1}, \ldots, p_{V_m}\}$, does there exist a distribution $p_{\Lambda} \in \mathcal{P}_{\Lambda}$ where $\Lambda \equiv \bigcup_{i=1}^m V_m$ such that $\forall i : p_{\Lambda}|_{V_i} = p_{V_i}$?

To facilitate further discussion of this problem, several pieces of nomenclature will be introduced. First, the set $\mathcal{V} = \{V_1, \ldots, V_m\}$ is called the **marginal scenario** while its elements are called the **marginal contexts**. The collection of distributions $\mathsf{p}_{[\mathcal{V}]} \equiv \{\mathsf{p}_{V_1}, \ldots, \mathsf{p}_{V_m}\}^2$ is called the **marginal model** $[2]^3$. The distribution p_{Λ} , if it exists, is termed the **joint distribution**. Strictly speaking, as defined by [2], a marginal scenario forms an abstract simplicial complex, meaning it satisfies the supplementary required that all subsets of contexts are also

to either as outcomes. Nonetheless, a sheaf-theoretic treatment of contextuality [1] demands the distinction. Specifically for this work, the distinction becomes essential for the exploitation of marginal symmetries in Section III C. As a natural generalization we define the event over a collection of random variables $V = \{v_1, \ldots, v_n\}$ in a parallel manner:

^{*} tcfraser@tcfraser.com

 $^{^{\}rm 1}$ Throughout this document, it is assumed that all random variables are discrete and have finite cardinality.

² The subscript $[\mathcal{V}]$ is contained in square brackets for clarity; $\mathsf{p}_{[\mathcal{V}]}$ is *not* a distribution but a set of distributions over \mathcal{V} .

 $^{^3}$ In [1], $\mathsf{p}_{[\mathcal{V}]}$ is instead called an $empirical\ model.$

contexts, i.e. $\forall V \in \mathcal{V}: V' \subset V \Longrightarrow V' \in \mathcal{V}$. Throughout this section, we exclusively consider (without loss of generality) maximal marginal scenarios, restricting our focus to the contexts which are contained in no others. Finally, a marginal model $\mathbf{p}_{[\mathcal{V}]}$ is said to be **contextual**, and will be denoted $\mathbf{p}_{[\mathcal{V}]} \in \mathcal{C}$ if it does not admit a joint a distribution and **non-contextual** otherwise $(\mathbf{p}_{[\mathcal{V}]} \notin \mathcal{C})$. Equipped with additional terminology and notation, the marginal satisfiability problem now reads: given $\mathbf{p}_{[\mathcal{V}]}$, is $\mathbf{p}_{\mathcal{V}} \in \mathcal{C}$ or not?

- B. Linearity
- C. Polytope Projection
- D. Logical Contextuality
- III. AN OBSERVATION
- A. An Antecedant Hierarchy
 - B. Irreducibility
 - C. Marginal Symmetries
 - D. Curated Inequalities
 - E. Relaxations

IV. WEIGHTED HYPERGRAPH TRANSERVALS

- A. Preliminaries
- B. Hypergraph Transversals
 - C. Adding Weights
 - V. CONCLUSIONS

ACKNOWLEDGMENTS

Marginal Problems," IEEE Trans. Info. Theor. **59**, 803 (2011).

S. Abramsky and A. Brandenburger, "The Sheaf-Theoretic Structure Of Non-Locality and Contextuality," New J. Phys 13, 113036 (2011).

^[2] T. Fritz and R. Chaves, "Entropic Inequalities and