AE1MCS: Mathematics for Computer Scientists

Huan Jin University of Nottingham Ningbo China

Assessment

- 25% coursework
 - coursework 1: 10%
 - coursework 2: 15%
- 75% final exam:
 - 2 hours written exam
 - No calculator (Permutations and combinations below 10 should be calculated.)
 - Cover all the topics in lectures and tutorials

Topics Covered by AE1MCS

- Propositional Logic
- 2 Predicate Logic
- 3 Inference Rules
- Proof Techniques
- 5 Sets
- 6 Functions
- 7 Relations
- 8 Counting
- 9 Probability

Propositional Logic

- To gain a good understanding of the definitions of proposition, propositional variable and logical operators;
- To gain a good understanding of other definitions: tautology, contradiction, contingency, logical equivalence, converse, contrapositive and inverse.
- To be able to draw **truth tables** and use them as a tool to solve logical problems;
- To be able to apply important logical equivalences to solve logical problems.

Propositional Logic

- Propositions
- Logical Operators
- Tautology, Contradiction and Contingency
- Logical Equivalence
- Converse, Contrapositive and Inverse
- 32 Rules

Some Important Logical Equivalences

	Equivalence	Name
1	$p \wedge T \equiv p$	Identity laws
2	$ oldsymbol{ ho} ee \mathcal{F} \equiv \mathcal{p}$	
3	$p \lor T \equiv T$	Domination laws
4	$p \wedge F \equiv F$	
5	$p \lor p \equiv p$	Idempotent laws
6	$p \wedge p \equiv p$	
7	$\neg(\neg p) \equiv p$	Double negation law
8	$p \lor q \equiv q \lor p$	Commutative laws
9	$p \wedge q \equiv q \wedge p$	

Some Important Logical Equivalences

	Equivalence	Name
10	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
11	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
12	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
13	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
14	$ eg(p \wedge q) \equiv eg p \vee eg q$	De Morgan's laws
15	$ eg(p \lor q) \equiv eg p \land eg q$	
16	$oldsymbol{p}ee(oldsymbol{p}\wedgeoldsymbol{q})\equivoldsymbol{p}$	Absorption laws
17	$\rho \wedge (\rho \vee q) \equiv \rho$	
18	$ ho ee eg ho \equiv \overline{T}$	Negation laws
19	$p \wedge eg p \equiv F$	

Huan Jin AE1MCS 7/32

Logical Equivalences involving Implications

20	$ extcolor{black}{p} ightarrow extcolor{black}{q} \equiv eg extcolor{black}{p} ee extcolor{black}{q}$
21	$ extstyle p ightarrow q \equiv eg q ightarrow eg p$
22	$ extcolor{black}{p}ee q\equiv eg p ightarrow q$
23	$p \wedge q \equiv \lnot (p o \lnot q)$
24	$ eg(p o q)\equiv p\wedge eg q$
25	$(p ightarrow q) \wedge (p ightarrow r) \equiv p ightarrow (q \wedge r)$
26	$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
27	$(p ightarrow q) \lor (p ightarrow r) \equiv p ightarrow (q \lor r)$
28	$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

8/32

Logical Equivalences involving Bi-Implications

$$\begin{array}{c|c} 29 & p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \\ 30 & p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ 31 & p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \\ 32 & \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q \\ \end{array}$$

Predicate Logic

- To gain a good understanding of the definitions of universal quantification, existential quantification and logical equivalence involving quantifiers;
- To be able to translate between English expressions and quantified expressions.
- To be able to apply De Morgan's laws to negate quantified expressions.
- To be able to apply important logical equivalences to solve logical problems.
- To be able to use predicate logic as a tool to solve problems.

Predicate Logic

- Predicates
- Universal and Existential Quantification
- Logical Equivalences involving Quantifiers
- De Morgan's Laws for Quantifiers

Let P(x), Q(x), and R(x) be the statements "x is a professor", "x is ignorant," and "x is vain," respectively. Express each of these statements using quantifiers; logical connectives; and P(x), Q(x), and R(x), where the domain consists of all people.

- No professors are ignorant.
- All ignorant people are vain.
- No professors are vain.

A common but not universal pattern:

- The universal quantifier is very often followed by an implication, because a universal statement is most often of the form 'given any x, if it has property A then it also has property B'.
- The existential quantifier is very often followed by a conjunction, because an existing statement is most often of the from 'there exists an x with property A, which also has property B'.

Inference Rules

- To be able to understand inference rules.
- To be able to use inference rules to solve logical problems.

Inference Rules

- Modus Ponens and Modus Tollens
- Hypothetical syllogism
- Disjunctive syllogism
- Addition
- Simplification
- Conjunction
- Resolution

Inference Rules for Quantified Statements

- Universal instantiation
- Universal generalization
- Existential instantiation
- Existential generalization

Proof Techniques

- To be able to understand different methods of proving theorems.
- To be able to apply different methods to construct proofs.

Proof Techniques

- Direct Proof
- Proof by Contraposition
- Proof by Contradiction
- Proof by Cases
- Proof by Induction

Proof Format (1)

- 1. A sequence of logical equivalences with reasons for each step
 - Propositional logic (For example, page 35 in slides of "Propositional logic", for the laws without a name, please define it yourself.)
 - Predicate logic (For example, page 33 in slides of "predicate logic")
 - Set (for example, p30 in slides of ?Set?)

Consequently $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

Proof Format(1)

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Answer:

$$\neg(p \to q)$$

$$\equiv \neg(\neg p \lor q)$$

$$\equiv \neg(\neg p) \land \neg q$$

$$\equiv p \land \neg q.$$

Show that $\neg \forall x \, (P(x) \to Q(x))$ and $\exists x \, (P(x) \land \neg Q(x))$ are logically equivalent.

Answer:

$$\neg \forall x (P(x) \to Q(x))
\equiv \exists x \neg (P(x) \to Q(x))
\equiv \exists x \neg (\neg P(x) \lor Q(x))
\equiv \exists x (P(x) \land \neg Q(x))$$

Proof Format(1)

Let A, B, and C be sets. Show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

Solution: We have

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cap \overline{C})$$
 by the first De Morgan law
$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$
 by the second De Morgan law
$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$
 by the commutative law for intersections
$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$
 by the commutative law for unions.

Proof Format (2)

2. Steps and reasons: Rules of Inference(for example, page 15, 23, 24 in slides of ?Rule of inferences?)

Show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

Solution: Let p be the proposition "You send me an e-mail message," q the proposition "I will finish writing the program," r the proposition "I will go to sleep early," and s the proposition "I will wake up feeling refreshed." Then the premises are $p \to q$, $\neg p \to r$, and $r \to s$. The desired conclusion is $\neg q \to s$. We need to give a valid argument with premises $p \to q$, $\neg p \to r$, and $r \to s$ and conclusion $\neg q \to s$.

This argument form shows that the premises lead to the desired conclusion.

Step	Reason
1. $p \rightarrow q$	Premise
2. $\neg q \rightarrow \neg p$	Contrapositive of (1)
3. $\neg p \rightarrow r$	Premise
4. $\neg q \rightarrow r$	Hypothetical syllogism using (2) and (3)
5. $r \rightarrow s$	Premise
6. $\neg q \rightarrow s$	Hypothetical syllogism using (4) and (5)

Proof Format (3)

3. Natural Language

- Propositional logic
- Predicate logic
- Set (tutorial examples, please do not use Venn diagram to prove.)
- Function (tutorial examples)
- Counting (tutorial examples)
- Probability (tutorial examples)
- Relations

Proof Format (3)

Claim proof methods in the beginning, say direct proof, contraposition, contradiction, equivalence, counterexamples, cases, induction, etc.

Prove that $\sqrt{2}$ is irrational.

Proof.

Suppose $\sqrt{2}$ is rational. Then there exist integers p and q with $q \neq 0$ such that $\sqrt{2} = p/q$ and p and q do not have any common factor. Thus, $2 = p^2/q^2$. $p^2 = 2q^2$. Thus, p^2 is even. Since if n is odd, then n^2 is odd (proved in previous slides), p is even. Hence there exists an integer k such that p = 2k. Then $p^2 = (2k)^2 = 2q^2$. $q^2 = 2k^2$. Thus q^2 is even, hence q is even. Thus, p and q are both even, which contradicts the fact that p and q do not have any common factor. \Box

Set

- Set Notations
- Empty Set and Singleton Set
- Venn Diagram
- Subset, Proper Subset, and Equal Sets
- Power Sets, Cartesian products
- Set Operations
- Set Identities

Set Identities

	Identity	Name
1	$A \cap U = A$	Identity laws
2	$A \cup \emptyset = A$	
3	$A \cup U = U$	Domination laws
4	$A \cap \emptyset = \emptyset$	
5	$A \cup A = A$	Idempotent laws
6	$A \cap A = A$	
7	$\overline{(\overline{A})} = A$	Complementation law
8	$A \cup B = B \cup A$	Commutative laws
9	$A \cap B = B \cap A$	

Set Identities

	Identity	Name
10	$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
11	$A\cap (B\cap C)=(A\cap B)\cap C$	
12	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
13	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$	
14	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
15	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	
16	$A \cup (A \cap B) = A$	Absorption laws
17	$A \cap (A \cup B) = A$	
18	$A \cup \overline{A} = U$	Complement laws
19	${m A}\cap \overline{m A}=\emptyset$	

Function

- What is a function?
- One-to-One Function, Onto Functions, One-to-one Correspondence
- Inverse Function, Invertible Function
- Compositions of Functions

Counting

- Basic Counting Principles
 - Product Rule
 - Sum Rule
 - Subtraction Rule (Principle of Inclusion-Exclusion)
 - Division Rule
- The Pigeonhole Principle
- Permutations and Combinations

Relation

- Relations on a Set
- Reflexive, Symmetric, Antisymmetric, Transitive Relations
- Combining Relations
- Composite of Relations
- Equivalence Relations
- Partial Orderings

Probability

- Probability of an event
- Conditional probability
- Bayes' theorem
- Expected value and variance
- Many discrete probabilities (Uniform, Bernoulli, Binomial, Geometric, Poisson)

Some suggestions

- Be well-prepared!
- Understand the concepts and definitions.
- Practice
 - Try to solve some problems given in the textbook.
 - Express your answers **clearly** in English.
 - Use simple words.
 - Write less but to the point!
- Sleep well! :-)

Good Luck!

32 / 32