Tutorial -4

Name: HARSH RASTOGI Class follows: 6
Section: F university Roll Not. 2016761

1) $T(n) = 3T(n/2)fn^2$ $T(n) = a T(n/b) + f(n^2)$ $a \ge 1, b \ge 1$ On compairing, $a = 3, b = 2, f(n) = n^2$ None, $C = log_b a = log_b 3 = 1.584$ $n^c = n^{1.584} < n^2$ $\therefore f(n) \ge n^c$ $\therefore T(n) = O(n^2)$

2) $T(m) = 4T(m/2) + n^2$ a > 1, b > 1 $a = 4, b = 2, f(n^2) = n^2$ $c = log_2 + = 2$ $n^c = n^2 \Rightarrow f(m) = n^2$ $T(m) = O(n^2 log_2 n)$

3) $T(n) = T(n/2) + 2^n$ a = 1, b = 2 $f(m) = 2^n$ $c = log_0 a = log_0 o = 0$ $n^c = n^c = 1$ $f(m) > n^c$ $T(n) = 0(2^n)$

$$T(n) = 2^{n}T(n/2) + n^{n}$$
 $a = 2^{n}$
 $b = 2$, $f(n) = n^{2}$
 $c = log_{2}a = log_{2}2^{n}$
 $n^{c} \rightarrow n^{n}$
 $f(n) = n^{c}$
 $f(n) = n^{c}$

5.
$$T(n) = 16T(n/a) + n$$

 $a = 16, b = 4$
 $f(n) = n$
 $C = log_{4}16 = log_{4}(4^{2}) = 2log_{4}4$
 $= 2$

$$n^{c} = n^{2}$$
 $f(m) < n^{c}$
 $T(m) = 0(m^{2})$

6.
$$T(n) = 2T(n/2) + n\log n$$
 $a = 2$, $b = 2$
 $f(n) = n\log n$
 $c = \log 2 = 1$
 $n^c = n^2 = n$
 $n\log n > n^c$
 $f(n) > n^c$
 $T(n) = 0 (n\log n)$

7.
$$T(n) = 2T(n/2) + n \log n$$

$$q = 2, b = 2, f(n) = n \log n$$

$$c = \log_2 2 = 1$$

$$n^c = n' = n$$

$$\therefore f(n) < n'$$

$$\therefore f(n) < n'$$

$$\therefore T(n) = O(n)$$

8)
$$T(m) = 2T(n/4) + n^{\circ.51}$$

 $a = 2$, $b = 4$, $f(n) = n^{\circ.51}$
 $c = log_{0}a = log_{4}2 = 0.5$
 $n^{\circ} \le n^{\circ.51}$
 $f(n) > n^{\circ}$
 \vdots $T(n) = 0 (n^{\circ.51})$

9.) T(n) = 0.5T(n/2)+1/n + a = 0.5, b = 2 a > 1 but here a is 0.5 So, we cannot apply Master's Theorem.

10.
$$T(n) = 16T(n/4) + n!$$
 $a = 16, b = 4, f(n) = n!$
 $c = loga = logal6 = 2$
 $n^{c} = n^{2}$
 $t = n! > n^{2}$
 $t = n! > n^{2}$
 $c = loga = logal = logal$
 $c = loga = logal = 2$
 $n^{c} = n^{2}$
 $f(n) = logal$
 $c = logal = logal$
 $c =$

12.
$$7(m) = sqort(m) + T(m/2) + logn$$

 $\rightarrow a = sin, b = 2$
 $\therefore c = log_{ba} = log_{2} = sin = \frac{1}{2} log_{2} = sin = \frac{1}{2}$

13.
$$T(m) = 3T(m/2) + n$$

 $\Rightarrow a = 3, b = 2 \text{ if } (m) = m$
 $c = \log_{10} a = \log_{23} = 1.5849$
 $n^{c} = n^{1.5989}$
 $n < n^{c} = n^{1.5989}$
 $n < n^{c} = n^{1.5989}$

14.
$$T(n) = 3T(n/3) + squt(n)$$

 $\Rightarrow a = 3, b = 3$
 $c = squa = squa = 1$
 $n^c = n' = n$
As, $squt(n) < n$

15.
$$T(m) = 4T(m/2) + m$$

 $a = 4$, $b = 2$
 $c = log_0 = log_0 + 2$
 $c = log_0 = log_0 + 2$
 $m < m^2 (for any constant)$
 $f(m) < m^2$
 $f(m) = 0 (m^2)$

16.
$$T(n) = 3T(n/4) - fnlogn$$

 $q=3$, $b=4$, $f(n) = nlogn$
 $C = log_{10}\alpha = log_{4}3 = 0.792$
 $n^{c} = n^{0.792}$
 $n^{o.792} < nlogn$
 $T(n) = o(nlogn)$

$$17 \cdot T(m) = 3T(m/3) + n/2$$

 $a = 3, b = 3$
 $c = loga = log_3 = 1$
 $f(m) = n/2$

:.
$$n^{c} = n' = n$$

 $f(n) \ge n^{c}$
:. $T(n) = O(n)$

$$(8.7 \text{ Cm}) = 67 (n/3) + 10^{2} \cdot \log n$$

$$a = 6, b = 3$$

$$c = \log_{10} a = \log_{10} 6 = 1.6309$$

$$n^{c} = n^{1.6309} < n^{2} \log n$$
As, $n^{1.6309} < n^{2} \log n$

19.
$$T(n) = 4T(n/2) + rlogn$$

 $a = 4, b = 2, f(n) = n$
 $logn$
 $c = log ba = log 4 = 2$
 $logn$
 $logn$
 $logn$
 $logn$
 $logn$

20.
$$7(n) = 647(n/8) - n^2 \log n$$

 $q = 64, b = 8$
 $C = \log_{6} a = \log_{8} (8^2)$

$$C = 2$$

$$n^{c} = n^{2}$$

$$n^{2} \log_{n} > n^{2}$$

$$T(n) = 0 (n^{2} \log_{n})$$

21.
$$T(m) = 77(n/3) + m^2$$

 $a = 7$, $b = 3$, $f(n) = n^2$
 $c = log_{3}a = log_{3}7 = 1.7712$
 $n^c = n'7712$
 $n'.7712$
 $n'.7712$
 $n'.7712$
 $n'.7712$
 $n'.7712$

22.
$$T(n) = T(n/2) + N(2 - \cos n)$$

 $a = 1, b = 2$
 $c = \log \ln = \log_{1} = 0$
 $n^{c} = N^{c} = 1$
 $n((2 - \cosh)) > n^{c}$
 $T(n) = O(n(2 - \cosh))$