Blanchard Importing and Distributing Co., Inc.

$$EOQ = \sqrt{\frac{2RS}{CK}}, \qquad ROP = \frac{3.5}{52} \times R$$

R: 1671 6월~ 1672년 5월 데이터를 이용하여 재계산

Annual Demand R

	Vodka	Gin	Scotch	Whiskey	Rum
June. 1971	284	150	127	217	33
July. 1971	343	257	96	207	35
Aug. 1971	368	179	85	186	51
Sept. 1971	230	83	61	171	16
Oct. 1971	162	72	67	205	15
Nov. 1971	246	89	103	266	26
Dec. 1971	252	181	131	257	43
Jan. 1972	114	42	39	654	22
Feb. 1971	210	166	82	177	11
March. 1972	303	142	68	163	28
April. 1972	275	133	66	162	61
May. 1972	463	213	38	256	55
Annual Demand	3250	1707	963	2921	396
Average	270.833	142.25	80.25	243.417	33

S: Bob, Eliot과 시간제 근로자 5명의 임금에 해당하는 Label Change Over Cost C: 생산 중에 발생하는 비용만 포함

Setup Cost S

S = Blending setup cost + size changeover cost + label changeover cost + order processing cost

Bob & Eliot = \$23000 / 246 / 8 = \$11.69

5 Part Timer = \$2.5 * 5 = \$12.5

S = label changeover cost = (\$11.69 + \$12.5) / 2 = \$12.095

Unit Cost C

C = Materials-beverage + Materials-packaging + Direct labor + State tax + Federal distilled spirits tax + Federal rectification tax + Customs duty + Variable overhead + Fixed overhead allocation

State Tax : 판매 시 발생하는 비용

Federal Distilled Spirits Tax : 지불 기한 한달

Fixed Overhead Allocation : 고정비용

	Vodka	Gin	Scotch	Whiskey	Rum
Materials-beverage	0.93	1.08	4.46	2.52	2.74
Materials-packaging	1.27	1.27	1.27	1.27	1.27
Direct Labor	0.1	0.1	0.1	0.1	0.1
Variable Overhead	0.5	0.5	0.5	0.5	0.5
Customs Duty			1.55		
Federal Rectification Tax				0.76	
Total Unit Cost	2.8	2.95	7.88	5.15	4.61

EOQ & ROP 수정

K: inventory Carrying Cost (Hurdle Rate) + 기타 Carrying Cost

Carrying Cost K

Inventory Carrying Cost: 자본비용 (이자율 9%) -> Hurdle Rate(기준 수익률) 20%

자본 할당(Capital Rationing) 존재: 자본의 부족으로 와인 산업(세전이익 20%)의 전문가와 생산 설비를 마련하지 못함 (Hard capital Rationing)

-> 자본비용으로 Hurdle Rate 사용 (10% ~ 30%)

$$K = 20\% + 2.5\% = 22.5\%$$

EOQ에 맞추어 Vodka, Gin은 생산량 감소, Scotch, Whiskey, Rum은 생산량 증가 필요 ROP를 통해 Vodka, Gin, Scotch 생산 필요, Whiskey, Rum 생산 불필요

EOQ & ROP

	Vodka	Gin	Scotch	Whiskey	Rum
Setup Cost (S)	12.095	12.095	12.095	12.095	12.095
Annual Demand (R)	3250	1707	963	2921	396
Carrying Cost (K)	22.50%	22.50%	22.50%	22.50%	22.50%
Unit Cost (C)	2.8	2.95	7.88	5.15	4.61
EOQ	353	249	115	247	96
ROP	219	115	65	197	27

$$EOQ = \sqrt{\frac{2RS}{CK}}, \qquad ROP = \frac{3.5}{52} \times R$$

현실과 부합하지 않는 EOQ system의 기본 가정들 & 추가적인 문제

EOQ system의 기본 가정

- 1. The demand rate is known and is a constant λ units per unit time.
 - -> Monthly Sales Data에 나와있는 16개월 치 데이터의 수요는 일정하지 않음
- 2. Shortages are not permitted.
 - -> 예상한 수요보다 더 많은 수요가 발생할 수 있어 재고 부족으로 이어질 수 있음
- 3. Order quantity is fixed at Q per cycle
 - -> 수요는 Monthly Sales Data에 나와있듯 매달 변해 Q는 매 Cycle마다 변동을 주어야 함
- 4. The cost structure fixed
 - -> 주문하는 품목의 수, 경기 변동 등으로 인해서 비용이 변할 수 있음.

추가 한계

- -1969년도 이후로 수요 데이터가 업데이트 되지 않음
- -리드타임을 고려하지 않아 급증하거나 급감하는 수요를 즉각적으로 반영하기에는 어려움
- -ROP에 수요만이 영향을 미침

불안정한 데이터 예측을 기반으로 운영하여 높은 Holding cost & Penalty cost 야기

높은 Holding cost & Penalty cost

적은 수의 데이터로 예측한 수요의 3.5주 분량보다 재고수준이 낮으면 그 제품을 생산 ⇒ 잘못된 수요 예측으로 인한 높은 Holding cost & Penalty cost

Size change에 대한 비용을 낮추기 위해서 일정 기간동안 단일 크기에 대한 제품만을 생산 ⇒ 불필요한 Holding cost , Penalty cost 야기

추가 한계

+) Label changeover이 이루어지는 시간 - 유휴시간 존재

체계적인 수식을 통해 위험도와 불확실성을 줄인 EOQ/ROP 모델 선호

EOQ/ROP 모델 선호 이유

대차대조표에서, Blanchard사는 자산 중 재고자산이 매우 높은 비중을 차지 ⇒ 평균적인 재고비용의 절감 절실

개선 방안

상황을 고려한 수요 예측과 데이터의 지속적인 업데이트

과거 데이터로부터 수요에 대한 Trend와 Seasonality 고려

현실에 맞게 EOQ/ROP 모델을 개선 : Holding cost, Penalty cost, Safety stock 그리고 Lead time ⇒ Lot size reorder point system의 도입

Iteration 0,

$$Q_0 = EOQ = \sqrt{2K\lambda/h}$$
 $O|P|$, $F(R_0) = 1 - \frac{hQ_0}{P\lambda} = 1 - \frac{h}{p\lambda}\sqrt{\frac{2K\lambda}{h}} = 1 - \frac{1}{p}\sqrt{\frac{2hK}{\lambda}}$

Iteration t,

$$Q_t = \sqrt{\frac{2\lambda[K + pn(R_{t-1})}{h}}$$
 and $F(R_t) = 1 - \frac{hQ_t}{p\lambda}$

추가 개선 방안

규모의 경제와 범위의 경제 고려

⇒ 생산량에 따른 Unit cost의 변화도 무시할 수 없음

통상적으로 회사에서 Unit cost를 감소시키는 방법

⇒ 생산량 증가에 따른 감소 : '규모의 경제'

⇒ 생산 종류에 따른 감소 : '범위의 경제'

두 가지 효과를 고려하여, Unit cost의 절감 효과를 고려

1. 시도표를 통한 계절성 판단

2. Seaonal Factor을 통한 계절성 판단

주기 4달

Vodka	Gin	Scotch	Whiskey	Rum
0.790721	0.860363	1.058911	0.836214	0.541176
1.036813	1.058305	1.041014	0.895473	0.964706
1.13767	1.11122	1.291573	0.881207	1.560784
1.034796	0.970113	0.608501	1.387106	0.933333

주기 8달

Vodka	Gin	Scotch	Whiskey	Rum
0.584972	0.482117	0.870992	0.807682	0.392157
0.77055	0.55267	1.103654	0.978875	0.941176
0.978316	0.99951	1.682327	0.998628	1.364706
0.67171	0.78001	0.626398	1.837037	0.752941
0.99647	1.238609	1.246831	0.864746	0.690196
1.303076	1.563939	0.978374	0.812071	0.988235
1.297025	1.22293	0.90082	0.763786	1.756863
1.397882	1.160216	0.590604	0.937174	1.113725

3. 분해법을 이용한 계절성 강도 측정: Vodka, Scotch, Rum

분해법

$$y_t = T_t + S_t + R_t$$

계절성 강도 측정

$$F_{s} = max \left(0.1 - \frac{Var(R_{t})}{Var(S_{t} + R_{t})} \right)$$

주기별 계절성 강도 결과

주기	Vodka	Gin	Scotch	Whiskey	Rum
2	0.03	0.03	0.51	0.19	0.33
3	0.12	0.07	0.04	0.24	0 (-0.02)
4	0.77	0.28	0.70	0.26	0.87
5	0.31	0.55	0.54	0.44	0.40
6	0.31	0.35	0.62	0.55	0.29
7	0.63	0.80	0.26	0.55	0.62

4. D8 F검정을 통한 계절성 강도 검정: Vodka, Scotch, Rum

추세가 조정된 데이터

계절성 강도 측정

$$\sum_{j=1}^{l} \sum_{i=1}^{N} (x_{ij} - \bar{x}_{..})^2 = N \sum_{j=1}^{l} (\bar{x}_{.j} - \bar{x}_{..})^2 + \sum_{j=1}^{l} \sum_{i=1}^{N} (x_{ij} - \bar{x}_{.j})^2$$

$$S^2 = S_B^2 + S_R^2$$

$$F_S = \frac{S_B^2/(l-1)}{S_R^2/(n-l)}, \sim F(l-1, n-l)$$

기준:7

계절성 강도 결과

	Vodka	Gin	Scotch	Whiskey	Rum
S_B^2	31845.38	9401.35	9141.99	48450.01	1752.50
S_R^2	7245.00	18586.81	3017.15	101969.1.	201.40
F_s	16.12	1.85	11.11	1.74	31.91

Boss에게 전달할 제안 사항

-EOQ 모델의 개선과 꾸준한 데이터 업데이트

(1)의 new EOQ-ROP / (4)의 Lot size reorder point system

-유연한 수요예측

수요의 Trend, seasonality, 변동성 파악으로 정상성 파악

- ⇒ MA 등 / Winter's Method 등 이용 or SARIMA 이용
- +) 홍보/마케팅팀의 데이터를 통한 데이터 분석

-시스템 효율화

라벨 교체 프로세스가 병목 현상의 원인

⇒ 라벨 교체 장비를 교체한다면 Label Changeover cost 감소 + 전체 공정 시간의 단축

Boss에게 전달할 제안 사항

- -Warehouse layout의 변화
- -여분의 창고자리 활용

생산라인 증설 ⇒ Label Changeover Cost 감소, 리드타임 감소 추가 사업 진행

-판매 종류, 병 크기의 종류 축소

158종류의 controlled stock 종류 축소

⇒ 수요 예측 단순화 및 Label Changeover Cost 감소

-더 나은 비용 구조

판매가를 높여 수요가 감소하더라도 수익이 감소하지 않는다면, 재고 감소 베블런 효과 기대

-수익이 좋은 소매점 확대

연간 수익 400만 달러 중 300만 달러가 7개 소매점의 수익

제안 Layout