# TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second

A Revolutionary Approach to Tabular Classification

Authors: Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter

Name: Pruthvik Sheth

#### The Tabular Data Challenge

- Tabular data is the most common data type in real-world ML applications
- Deep learning has struggled with tabular data
- Gradient-Boosted Decision Trees (GBDTs) still dominate
- Traditional approach: fit a new model from scratch for each dataset



#### TabPFN Architecture



- Prior-Data Fitted Network (PFN)
- Trained offline once to approximate Bayesian inference
- In-context learning (ICL) capability
- Single forward pass for prediction

#### The Power of Priors in Machine Learning

- Novel prior incorporating causal reasoning
- Mixture of Bayesian Neural Networks (BNNs) and Structural Causal Models (SCMs)
- Preference for simple structures (Occam's razor)
- Fully Bayesian about hyperparameters







# How TabPFN Works: From Training to Inference



- Offline training phase with synthetic datasets
- 2. Online inference phase with real datasets
- Single forward pass yielding predictions

# Performance Breakthrough: Speed and Accuracy

- TabPFN achieves state-of-the-art performance in seconds
- 230× speedup on CPU compared to baselines
- 5,700× speedup on GPU
- Competitive with complex AutoML systems



# Decision Boundary Visualization: Smooth and Intuitive

| Input data | Nearest<br>Neighbors | Logistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Simple MLP | Gaussian<br>Process | Decision<br>Tree | Catboost | ASKL2 | TabPFN |
|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------------------|----------|-------|--------|
| - Au       | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |                  |          |       |        |
|            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |                  |          |       |        |
| - Elisand  |                      | A STATE OF THE PARTY OF THE PAR |            | 9                   |                  | - CO     |       |        |
|            | 1                    | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | · · · · · ·         | , F.             |          |       | . S    |

# In-depth Analysis: Strengths and Weaknesses

- TabPFN learns smooth functions compared to GBDTs
- Less robust to uninformative features than GBDTs
- Somewhat sensitive to feature rotations
- Biased towards simple causal explanations



#### Synthetic vs. Real Data: How Well Does the Prior Work?



- The prior generates datasets similar to real-world data
- Complex feature dependencies are captured
- Causal structures provide realistic relationships
- Visual similarity between synthetic and real datasets

#### Practical Applications: Where TabPFN Excels

- Small to medium-sized datasets (≤ 1,000 samples)
- Purely numerical features (≤ 100 features)
- Quick prototyping and experimentation
- Resource-constrained environments
- Time-sensitive applications
- Educational settings

#### **Current Limitations**

- Scales to small datasets only (quadratic complexity)
- Limited to datasets with ≤ 1,000 training examples
- Limited to ≤ 100 purely numerical features
- Less effective with categorical features and missing values
- Lower robustness to uninformative features

- Scaling to larger datasets
- Improved handling of categorical features
- Better handling of missing values
- Enhanced robustness to uninformative features
- More efficient transformer architectures

#### Broader Impact: Democratizing ML

#### Potential benefits:

- Reduced carbon footprint
- Increased accessibility of ML
- Democratization of sophisticated techniques
- Real-time applications
- Educational benefits

# Conclusion: A New Paradigm for Tabular Classification

- TabPFN represents a radical change to tabular classification
- Single forward pass replaces traditional model fitting
- State-of-the-art performance in seconds
- Foundation in causal reasoning and Bayesian inference
- Available at: https://github.com/automl/TabPFN



#### References and Further Reading

#### Full citation:

 Hollmann, N., Müller, S., Eggensperger, K., & Hutter, F. (2023). TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. Published as a conference paper at ICLR 2023.

#### Links to related resources:

Paper: <a href="https://arxiv.org/abs/2207.01848">https://arxiv.org/abs/2207.01848</a>

• GitHub: <a href="https://github.com/automl/TabPFN">https://github.com/automl/TabPFN</a>