(TIN 1)	Lecture on	TREE TENSON	R NETWORKS
CUANTUM } #SITES SYSTEM }	DIMENSION	PHYSICAL MIMENSION/LATTICE GEOMETRY 1D, 2D	OTHER L) STATISTICS SPIN/BOSON US FERM NITERACTIONS
QUANTUM HANY-BODY	(PURE) STATE		
14) = \(\int_{i_1i_{N}=1}^{d_1} \) \(\tag{T} \)	inin i1		
Ii, in in	TAI WARED WARIATION WAVEFUNCTION ANSATE		PHYSICAL DIMENSION 2 PHYSICAL DIMENS, d
FOR 1D HATRIX ÖSTEUND, SCHOUWÖC	(PRODUCT S' ROWMER; PRL 75, 3 K; ANN. PHYS 326, 9		ERY SUCCESSFUL STRITE SYSTEM FINITE SYSTEM
Tx-1x-1-1-	Seve	eral interesting	properties
1 Loopless (FINSTE	PBC) → CA	ANONICAL FORM WITH SINGLE-TENSOR PLE EIGENPROBLEI	CAN BE REACHED STD. UNEAR ALGEBRA 45 (NOT GENERALIZED)
2 Area-Law	FOR NONCRITICAL BIPARTITION ENTANGLEMENT	10 QUANTUM S Sent ≤ log.	TATES Salo
(3) Correlations	0, 0, 0 = (-1)-(-1)	10- 031) = Q1	TOR = I cq e - e/sq

WHAT IF I WANT TO REPRESENT A CRITICAL THEORY ?

S≈ & log L BUT S & log x => X > b L 6/6

NOT A BEALBREAKER BUT STILL

MERA

VIDAL; PRL 99, 220405 (2007)

HULTISCALE ENTANGLEMENT RENORMALIZATION ANSATZ

DISENTANGUERS

UNITARIES U

utu=uut=11

ISOMETRIES V A.

REPRESENT CRITICAL STATES AF FINITE X

(O, O, +e) = = = Z G e 19 PRES 80, 11310 (2009)

INTERESTING CONNECTIONS WITH HOWBRAPHY
HERA -> Ads/CFT

SWINGLE; PRD 86, 065007 (2012)

-> CANONICAL FORM CAN NOT BE ESTABLISHED

TO A NON-FLEXIBLE CANONICAL FORM HAS TO BE ENFORCED BY UNITARY DISENTANGLERS

L) CONSTRAINED PROBLEM OF LINEAR ALGGREA

-> GENERALIZED EIGENVALUE PROBLEMS

ALSO PEPS, PBCHPS, LPTN SUFFER FROM THIS BRAWBACK

FINALLY, THE SCALING OF ALGORITHM IS 28 OR WORSE

FOR COMPARISON SHORT RANGE X3d2; LONG RANGE WILL (X4d2, N2x3d2)

AN INTERESTING OPTION TO ADDRESS THESE PROBLEMS

[w] → 1 1 1

REMOVE ALL UNITARIES

TREE TENSOR NETWORK

R BINARY TTN ANSATZ

Establishing the CENTRAL GAUGE (TOWARDS ANY)

DETERMINE NETWORK-GEOMETRY DISTANCES

FROM THE TARGET NOSE

-> STEA 2:

FROM HIGHER TO WWER DISTANCES REPEAT

- OR DECOMPOSITION TOWARDS LOWER DISTANCE

- ABSORB (R) HATRIX INTO LOWER DISTANCE TENSOR

IT'S NOT ALWAYS UPWARD

TTN PROPERTIES

(TIN 3)

2 CRITICALITY AT FINITE & (EVEN THOUGH ENTANGLEMENT ENTROPY IS FRACTAL IN THE MARTITION)

 \hookrightarrow WE ASSUME A <u>BULK</u> OF HOMOGENEOUS TENSORS [GAUGES <u>UP</u>] \hookrightarrow LET US CALCULATE $\langle O_{j+e} \rangle$ WITH $J=2^q+1$ AND $\ell=2^K-1$

ALL THE REST OF THE TENSOR NETWORK CONTRACTS INTO A BENSITY MATRIX XXX

$$\langle \mathcal{O}_{j}^{\prime} \mathcal{O}_{j+2^{k}-1}^{\prime} \rangle = T_{2} \left[\rho_{1} T \left(D_{k}^{\prime}(\mathcal{O}) \otimes D_{k}^{\prime}(\mathcal{O}) \right) T^{\dagger} \right]$$

FOR AVERAGES

POWER-LAW CORRELATIONS

3 Algorithms that scale PRETTY WELL 24	(SINGLE TENSOR UPDATE
(SHORT RANGE LX4; LONG RANGE LX4; THREE BODY INTERACTION	$\leq \chi^6$
The DMRG-LIKE algorithm FOR TIN	GERSTER et a 90, 125154 (2011
TASK GROUND STATE OF AN HAHILTONIAN H: HINIMIZE (41H14) WITH CONSTRAINT (414)=1	
Lagrangian (41H14>-2(414)=L	

Lagrangian $\langle \Psi | H | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle = L$ Euler-Lagrange Equation $\frac{\partial L}{\partial \{\alpha\}} = 0$ FOR A BUNCH OF MARAHETERS $\{\alpha\}$ OF THE ANSAN

RULE Single-Tensor update {\alpha} = Tor

L> CONVERT THE TTN IN CENTRAL GAUGE TOWARDS MODE TO

L> FIX AU TENSORS EXCEPT TO AND VARIATE THAT

AFTER FINDING MINIMUM ENERGY &, CHANGE TENSOR AN REPEAT, JUST LIKE IN HEAN-FIELD.

The TIME-DEPENT VARIATIONAL ALGORITHM (TDVP) for TT) Evolve the TTN state 14mm) according to MPS-TAVP Schrödinger equation 1/14> = -iHI4> MOHN et al MRA 101,023617 (2022) TTN-TAVP (RULE) SINGLE TENSOR UPDATE (CHEAPEST 24) WRITE THE "INTERNAL TIME" FOR EACH SPACE, SPACE, STRIVAL L) OUR GOAL IS TO EVOLVE TO "+4" (ONE THE-STEP FORWARD)

INTEGRATE evolve T using Hell

JEIT) = -i HealT)

(T(0)) -> |T(+dt))

ANY SCHRÜBINGER INTEGRATOR, FOR EXAMPLE RUNGE-KUTTA SUBSTITUTE IN THE TTN

THE +2 LINK EVOLVED "TOO MUCH", WE NEED TO SEND IT BACKWARDS

ARCECI et al; PRI 128, 040501 (2022)

DRAWBACKS OF THE TTN Amsatz

- TRANSLATIONAL INVARIANCE IS BROKEN (ALSO FOR HERA)

 LY IMPOSSIBLE TO SIMULTANEOUSLY ENFORCE SCALE AND TRANSLATION

 ON A LATTICE
- Entanglement CLUSTERING due TO "UNFORTUNATE" PARTITIONS
 FERRIS; PRB 87, 125139 (2013)