Regresión Poisson

Ciprian C Hdz.

Consideraremos el dataset **dataCar** que corresponde a datos de pólizas de seguro de vehículos de un año de duración suscritas en 2004 a 2005. Esta tabla contiene 67, 856 pólizas por usuario. Las variables/columnas que contiene la tabla son

Feature	Description
veh value	The value of the vehicle in \$10,000s
exposure	Percentage of year of coverage from 0-1
clm	Whether a claim was filed
numclaims	The number of claims filed
claimcst0	Claim amount (including 0 for no claim)
veh_body	vehicle body type
veh_age	1 (youngest), 2, 3, 4
gender	Gender of policyholder
area	Geographic region
agecat	1 (youngest), 2, 3, 4, 5, 6

Estudiamos primero la naturaleza de los datos:

```
#Estudiamos la naturaleza (tipo) de cada variable
str(dataCar)
```

```
'data.frame': 67856 obs. of 11 variables:
$ veh_value: num 1.06 1.03 3.26 4.14 0.72 2.01 1.6 1.47 0.52 0.38 ...
$ exposure : num 0.304 0.649 0.569 0.318 0.649 ...
$ clm : int 0 0 0 0 0 0 0 0 0 0 ...
$ numclaims: int 0 0 0 0 0 0 0 0 0 0 ...
$ claimcst0: num 0 0 0 0 0 0 0 0 0 0 ...
$ veh_body : Factor w/ 13 levels "BUS", "CONVT", ..: 4 4 13 11 4 5 8 4 4 4 ...
$ veh_age : int 3 2 2 2 4 3 3 2 4 4 ...
$ gender : Factor w/ 2 levels "F", "M": 1 1 1 1 1 2 2 2 1 1 ...
$ area : Factor w/ 6 levels "A", "B", "C", "D", ..: 3 1 5 4 3 3 1 2 1 2 ...
$ agecat : int 2 4 2 2 2 4 4 6 3 4 ...
$ X_OBSTAT_: Factor w/ 1 level "01101 0 0 0": 1 1 1 1 1 1 1 1 1 1 ...
```

Notemos que clm, numclaims, claimcst0 son variables enteras, sin embargo, si observamos más a detalle:

```
unique(dataCar$clm)

0.1

unique(dataCar$agecat)

2.4.6.3.5.1
```

unique(dataCar\$veh_age)

 $3 \cdot 2 \cdot 4 \cdot 1$

El código unique() nos da los valores únicos de las respectivas columnas, con esto nos damos cuenta que en realidad son variables categóricas, de esta manera, para hacerle saber a R esta información hacemos uso de la función as.factor()

```
dataCar$veh_age=as.factor(dataCar$veh_age)
dataCar$agecat=as.factor(dataCar$agecat)
dataCar$numclaims=as.numeric(dataCar$numclaims)
dataCar$clm=as.factor(dataCar$clm)
```

Existe una variable que no se encuentra reportada, esta es X_OBSTAT_, dado que no tenemos información de ella, la quitamos de la siguiente forma:

```
dataCar$X_OBSTAT_=<mark>NULL</mark>
```

Revisamos de nuevo las variables:

str(dataCar)

Modelación¹ Queremos estimar el número de reclamos (numclaims) respecto al porcentaje de cobertura (exposure), pues podríamos pensar que a mayor cobertura o exposición, es más probable que en ese año la póliza tenga un siniestro. La exposición es un número entre 0 y 1, por ejemplo, si solamente se aseguró 6 meses la exposición es entonces del 50 %. veamos cómo se ve el histograma de sólo el número de reclamos.

¹ La gráfica de barras rosa representa la frecuencia relativa del número de siniestros (en porcentajes), esto ayuda a enfatizar la forma (aparentemente) exponencial de los datos. El código correspondientes es:

```
tabla=prop.table(table(dataCar$numclaims))
```

barplot(100*tabla,col='lightpink', main='Número de siniestros')

Notemos que su distribución no es (aparentemente) normal, sino más bien una tipo exponencial, aunado a que estamos considerando el conteo del número de reclamos (es decir, una variable entera no negativa). También debemos de considerar el porcentaje de cobertura, esto conlleva a pensar que la variable respuesta es realmente una tasa de cambio: Número de reclamos/ porcentaje de cobertura del seguro. La forma en que la variable respuesta está representada nos indica que un posible modelo de ajuste de regresión es mediante la regresión Poisson.

Modelos Lineales Generalizados (MLG). Justamente el caso en que la variable respuesta (número de reclamos en estos casos) no corresponden a una distribución normal, sino a una distribución de la familia exponencial (distribución Poisson), conlleva a hablar de modelos lineales generalizados. En particular, si la variable respuesta² se distribuye Poisson hablamos de la regresión Poisson.

Una forma de aportar evidencia sobre la conjetura anterior es la siguiente: sabemos que la distribución Poisson tiene la particularidad que justamente la media y la varianza coinciden.

0.072757014854987

También podemos intentar ajustar una normal mediante el gaplot.

Matemáticamente:

Si sólo consideramos Y como una variable de conteo (solo toma valores no negativos enteros), entonces

 $numClaims_i \sim Poisson(\mu_i)$ donde buscamos estimar μ_i mediante la relacioń

$$\log(\mu_i) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

Si además en particular la variable respuesta representa cierta tasa, entonces lo anterior se transforma en

 $\frac{numClaims_i}{exposure_i} \sim Poisson(\mu_i)$ donde buscamos estimar μ_i mediante la relacion

$$\log(\mu_i) = \log(exposue_i) + \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p.$$

² Que realmente en nuestro caso, el número de reclamos/ el porcentaje es lo que se distribuye Poisson.

Finalmente ajustamos el modelo en R y observamos la salida.

```
Deviance Residuals:
  Min
         1Q
            Median
                    30
                         Max
-0.9069 -0.4521 -0.3457 -0.2212
                       4.5350
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
         (Intercept)
veh_value
         0.023980
                0.017251 1.390 0.16451
veh_bodyCONVT -1.677911
                0.668319 -2.511 0.01205 *
veh_bodyMCARA -0.369072   0.409609   -0.901   0.36757
-1.108652 0.322203 -3.441 0.00058 ***
veh_bodyUTE
veh_age2
         0.054363 0.044623 1.218 0.22312
        veh age3
        veh_age4
        -0.026181 0.030135 -0.869 0.38495
genderM
areaB
         0.053158 0.042802 1.242 0.21425
        0.005108 0.038994 0.131 0.89577
areaC
        -0.110402 0.052973 -2.084 0.03715 *
areaD
        -0.031935 0.057878 -0.552 0.58111
areaE
areaF
         0.063729 0.066158 0.963 0.33541
        -0.173250 0.054187 -3.197 0.00139 **
agecat2
        -0.230051 0.052896 -4.349 1.37e-05 ***
agecat3
        -0.256934   0.052744   -4.871   1.11e-06 ***
agecat4
        -0.474475   0.059120   -8.026   1.01e-15 ***
agecat5
agecat6
        -0.453279   0.067686   -6.697   2.13e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
(Dispersion parameter for poisson family taken to be 1)
  Null deviance: 25507 on 67855
                       degrees of freedom
Residual deviance: 25332 on 67828
                       degrees of freedom
AIC: 34823
Number of Fisher Scoring iterations: 6
```

Interpretación de la salida: Si las covariables incrementan en una unidad, la variable de conteo o razón incrementara por un factor de exp(covariable).

Es decir, los valores (exponenciados) de cada coeficiente es el **factor multiplicativo** que usamos para calcular el número estimado de siniestros cuando cada variable se incrementa en 1 unidad. En particular, cuando la variable es categórica, el coeficiente exponenciado es el término multiplicativo relativo al nivel base. Por otro lado, como los coeficientes relacionados a agecat son negativos, a medida que aumenta la edad del conductor, el número de reclamos o siniestros disminuye.

Selección de variables

Mediante el uso de la librería leaps, podemos hacer uso del método de selección de variables para observar si podemos reducir el modelo a uno más parsimonioso.

Primero convertimos la tabla de datos en una matriz numérica.

```
%%R
#Matriz numérica
X=dataCar[-c(3,4,5,11)]
y=dataCar[,4]
Xy=cbind(X,y)
```

donde -c(3,4,5,11) corresponde a quitar las columnas 3,4,5 y 11 del dataframe.

```
%%R
subset=bestglm(Xy=Xy, family=poisson(link='log'),IC='BIC', method='exhaustive',offset=log(Xy$exposure))
R[write to console]: Morgan-Tatar search since family is non-gaussian.
R[write to console]: Note: factors present with more than 2 levels.

%%R|
#Vemos las variables que quedan para el mejor modelo:
subset$BestModel

Call: glm(formula = y ~ ., family = family, data = Xi, weights = weights,
offset = ..1)

Coefficients:
(Intercept) veh_value exposure agecat2 agecat3 agecat4
-1.39887 0.04843 -0.47434 -0.16755 -0.22244 -0.24782
agecat5 agecat6
-0.46184 -0.44367

Degrees of Freedom: 67855 Total (i.e. Null); 67848 Residual
Null Deviance: 25510
Residual Deviance: 25330 AIC: 34780
```

Esto nos dice que un posible modelo para utilizar es usando las variables es dejar el intercepto, veh_value y agecat2. Ajustamos el modelo:

```
Call:
qlm(formula = numclaims ~ veh_value + agecat, family = poisson(link = "log"),
    data = dataCar, offset = log(exposure))
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1275 -0.4541 -0.3481 -0.2228 4.4981
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
agecat2 -0.16964 0.05390 -3.148 0.00165 **
agecat3 -0.22741 0.05240 -4.340 1.43e-05 ***
agecat4 -0.25190 0.05244 -4.804 1.56e-06 ***
agecat5 -0.47171 0.05872 -8.033 9.50e-16 ***
agecat6 -0.45266 0.06695 -6.761 1.37e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 25507 on 67855 degrees of freedom
Residual deviance: 25396 on 67849 degrees of freedom
AIC: 34845
Number of Fisher Scoring iterations: 6
```

Notamos que ahora todas son significativas.

Trabajo Futuro.: Aunque el modelo de selección de variables puede ser una alternativa, es importante realizar un análisis posterior comparando ambos modelos, por ejemplo mediante un análisis ANOVA.

Observación: El resultado de bestglm para el método de mejor subcojunto puede variar dependiendo de la métrica seleccionada.