Genotype Coding

DNA Sequences at a SNP Position (T is risk allele)

Individual 1	Individual 2	Individual 3	Individual 4	Individual 5
СС	СТ	TT	СС	СТ

Genotype Coding Models

Coding Model	Individual 1	Individual 2	Individual 3	Individual 4	Individual 5	Mean
Additive (0,1,2) Count risk alleles	0	1	2	0	1	0.8
Dominant (0,1,1) 1 if any risk allele	0	1	1	0	1	0.6
Recessive (0,0,1) 1 if both alleles are risk alleles	0	0	1	0	0	0.2

The additive model is particularly valuable as genetic effects often scale with the number of risk alleles.

Standardized Genotype Vector $X = \frac{X_{raw} - mean}{sd}$

	Model	Individual 1	Individual 2	Individual 3	Individual 4	Individual 5	Mean	Sd
A	Additive	-0.96	0.24	1.43	-0.96	0.24	0.8	0.84

Minor Allele Frequency (MAF) Calculation

Step 1: Raw Genotype Data

Individual 1	Individual 2	Individual 3	Individual 4	Individual 5
CC	СТ	TT	СС	СТ
	C (Cytosine)		T (Thymine)	

Step 2: Count Alleles

All alleles extracted from genotypes from all individuals:

CC CT TT CC CT

Count: C: 7 (70%) T: 3 (30%)

Step 3: Calculate MAF

Major allele: C (70%) Minor allele: T (30%)

Minor Allele Frequency (MAF) = 0.3

Hardy-Weinberg Equilibrium

0.49 + 0.42 + 0.09 = 1

Linkage Disequilibrium (LD)

Non-random association between alleles at different genetic loci, where certain combinations occur more or less frequently than expected by chance

Raw Genotype Matrix

Standardized Genotyped Matrix

	Variant 1	Variant 2	Variant 3	
Individual 1	СС	СТ	AT	
Individual 2	TT	TT	AA	
Individual 3	СТ	СТ	AA	Standardi
Individual 4	СС	TT	AA	
Individual 5	СС	СС	тт	

	Variant 1	Variant 2	Variant 3		
Individual 1	-0.671	0.239	0.447		
Individual 2	1.565	-0.956	-0.671		
Individual 3	0.447	0.239	-0.671		
Individual 4	-0.671	-0.956	-0.671		
Individual 5	-0.671	1.434	1.565		

$$LD = R = \frac{X^T X}{N}$$

Linkage Disequilibrium (LD) Scores

Genetic Relationship Matrix (GRM)

Quantifying Genetic Similarity Between Individuals

Population with 5 individuals

Standardized Genotyped Matrix X

	Variant 1	Variant 2	Variant 3
Individual 1	-0.671	0.239	0.447
Individual 2	1.565	-0.956	-0.671
Individual 3	0.447	0.239	-0.671
Individual 4	-0.671	-0.956	-0.671
Individual 5	-0.671	1.434	1.565

Genetic Relationship Matrix (G)

C	_	XX^T
G	_	\overline{M}

		Individual 2	Individual 3	Individual 4	Individual 5
Individual 1	0.236	-0.526	-0.181	-0.026	0.498
Individual 2	-0.526	1.271	0.307	0.105	-1.157
Individual 3	-0.181	0.307	0.236	-0.026	-0.336
Individual 4	-0.026	0.105	-0.026	0.605	-0.657
Individual 5	0.498	-1.157	-0.336	-0.657	1.652

Single Marker Linear Regression and OLS

Odds, Odds Ratio and Logistic Regression

Odds

Definition:

$$Odds = \frac{p}{1 - p}$$

Example:

If disease risk = 20%, then Odds = 0.2/0.8=0.25 (1:4)

Odds Ratio

Definition:

$$OR = \frac{Odds_1}{Odds_2}$$

Interpretation:

OR = 1: No association

• OR > 1: Increased risk

OR < 1: Decreased Risk

Logistic Regression

Model:

logit(p(X)) = ln
$$\frac{p(X)}{1 - p(X)}$$

= $\beta_0 + \beta_1 X$

Relationship to OR:

$$OR = e^{\beta_1}$$

Application in Statistical Genetics

- Case-control studies: control (0) and case (1)
- GWAS: often identify the genetic variants associated with disease (0 or 1) using logistic regression

Summary Statistics

Summary Statistics

SNP	ВЕТА	SE	Z	Р	MAF
rs1	0.85	0.32	2.64	0.02	0.40
rs2	-0.31	0.28	-1.10	0.27	0.30
rs3	0.42	0.30	1.40	0.16	0.25

Small file size (MB)

BETA, Z and P

- **Beta** in the summary statistics can be $\hat{\beta}_{OLS}$ or $\hat{\beta}$ using any other method.
- BETA>0: the (risk of) trait increases if one carries the risk allele, and vice versa.
- $Z = \frac{\text{BETA}}{\text{SE}}$ and shares the same direction as **BETA**
- P suggests if the association is significant.

Covariates --- Confounder

When ancestry is not controlled for in the analysis, it might create a misleading association between genotype and trait

Covariates --- Collider

When we look at the cases (conditional on collider), a spurious association may appear between the two genetic variants.

Covariates --- Mediator

- Growth hormone mediates the relation between genetic variants and height, representing the causal pathway between them.
- When the mediator is controlled, one may fail to detect the association between genetic variant and the trait.

Marginal vs. Joint Effects

 $N \times 1$

Genotype

scalar

Genetic

Effect

Each variant is analyzed independently.

 $N \times 1$

Error

N

× 1

Trait

Joint Effects

(One model with all variants, $Y = X\beta + \varepsilon$)

$$Y = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \\ \vdots & \vdots & \vdots \\ X_{N1} & X_{N2} & X_{N3} \end{pmatrix} + \epsilon$$

Accounts the correlations between variants (i.e., LD)

Random Effect

Proportion of Variance Explain (PVE) and Heritability

measures how much of the total variation in a trait (like height or disease risk) can be attributed to specific variables in the statistical model (e.g., genetic variants).

PARTION OF PHENOTYPIC VARIANCE

PVE and Heritability

Phenotypic Variance:

 $Var(P) = Var(G) + Var(E) + 2Cov(G,E) + Var(\varepsilon)$

If we assume G and E are independent from each other:

- Genetic Variance (Broad-sense heritability H^2):= Var(A)+Var(D)+Var(R)+Var(I)
- Narrow-sense heritability h²:= Var(A)

Linear Mixed Model

Accounts for correlation between samples due to shared genetic background

Linear Mixed Model

$$Y = X\beta + g + \varepsilon$$

- β : fixed effect (genetic effect)
- **g**: random effect (grouping of samples)
 - g = Zu where $u \sim N(0, \sigma_u^2 G)$, G is the GRM

Fixed Effect Meta-Analysis

Synthesizes statistical evidence across multiple independent studies using weighted averaging techniques

Study 1 N1=5000

Sumstats 1

 β_1 SE_1 N_1

Study 2 N2=8000

Sumstats 2

 β_2 SE_2 N_2 ...

What we believe about β_1 and β_2 ?

Since this is a fixed effect model, the underlying true β is a fixed value, i.e., β_1 and β_2 should be fixed effect instead of a random effect.

Meta-Analysis

- $\beta = \frac{\sum_{i} w_{i} \beta_{i}}{\sum_{i} w_{i}}$
- w_i is the weight for study I, which can be:
 - Sample Size Weighting

$$w_i = \frac{N_i}{\sum_i N_i}$$

Inverse Variance Weighting

$$w_i = \frac{1}{SE^2}$$

 Equivalent to merging individuals from two studies together

Random Effect Meta-Analysis

Synthesizes statistical evidence across multiple independent studies assuming the true effect is a random variable

What we believe about β_1 and β_2 ?

Since this is a random effect model, the underlying true β is NOT a fixed value, and comes from a distribution, i.e., $\beta \sim N(\beta_0, \sigma_0^2)$. And β_1 and β_2 both comes from this distribution.

