EA721 - Princípios de Controle e Servomecanismos

1o. Semestre de 2004 - 1a. Prova - Prof. Paulo Valente **RA: Nome: Ass.:**

1. Considere o sistema de controle representado na Figura 1 com as sequintes definições:

$$C(s) = k$$
, $P(s) = \frac{1}{s(s+\alpha)}$, $F(s) = 1$ $(w = v = 0)$.

Dado que a faixa de passagem (ω_{FP}) de um sistema de segunda ordem com fator de amortecimento $\xi=0.7$ é igual à sua freqüência natural (ω_n), determine k e α para que a faixa de passagem do sistema em malha fechada seja de 100 rad/s.

2. Calcule a sensibilidade do sistema de controle em malha fechada da Figura 1 à variação do parâmetro $p=\alpha$, assumindo que

$$C(s) = k$$
, $P(s) = \frac{1}{s(s+1)(s+4)}$, $F(s) = s + \alpha$ $(w = v = 0)$.

Dado: $S_p^T = \frac{\partial T}{\partial p} \frac{p}{T}$.

3. Considere o sistema de controle da Figura 1 com as seguintes definições:

$$C(s) = k$$
, $P(s) = \frac{s + \alpha}{(s + \beta)^2}$, $F(s) = 1$ $(w = v = 0)$.

Determine k, α e β para que o sistema em malha fechada atenda as seguintes especificações de desempenho: erro de regime para entrada degrau $e_d=0.1$, fator de amortecimento $\xi=0.5$ e freqüência natural $\omega_n=\sqrt{10}$.

4. Considere o sistema de controle da Figura 1 com

$$C(s) = k$$
, $P(s) = \frac{1}{s^n(s+\alpha)}$, $F(s) = 1$ $(w = v = 0)$.

Determine o menor valor de $n \geq 0$), e os valores de k e α para o sistema em malha fechada atenda as seguintes especificações de desempenho: fator de amorteciemento $\xi=0.5$ e erro de regime para entrada rampa $e_r=0.01$ s^{-1} .

5. Considere o sistema de controle da Figura 1 com

$$C(s) = k_P + \frac{k_I}{s}, \quad P(s) = \frac{1}{s+\alpha}, \quad F(s) = 1 \qquad (w = v = 0).$$

Determine k_P , k_I e α para que os pólos do sistema em malha fechada sejam iguais a -1 + j e -1 - j e o erro de regime para entrada rampa seja $e_r = 0.1$.

6. Considere o sistema de controle da Figura 1 com

$$C(s) = \frac{1}{s+5}, \quad P(s) = \frac{100}{s+2}, \quad F(s) = 1 \qquad (v=0).$$

Determine o erro de regime total do sistema em malha fechada devido às entradas simultâneas R(s)=1/s e W(s)=1/s.

7. Determine o número de raízes da equação

$$s^6 + s^5 + s^4 + s^3 + s^2 + s + 1 = 0$$

no semi-plano direito do plano s através do critério de Routh-Hurwitz. Construa o Array de Routh e indique claramente o procedimento adotado.

Erros de Regime (F(s) = 1)

N	1/s	$1/s^{2}$	$1/s^{3}$	Constante
0	$1/(1+k_p)$	∞	∞	$k_p = \lim_{s \to 0} C(s) P(s)$
1	0	$1/k_v$	∞	$k_v = \lim_{s \to 0} sC(s)P(s)$
2	0	0	$1/k_a$	$k_a = \lim_{s \to 0} s^2 C(s) P(s)$

Figura 1: Sistema de controle em malha fechada.

Respostas

1.
$$k = 10000$$
, $\alpha = 140$;

2.
$$S_{\alpha}^{T} = \frac{-k\alpha}{s^{3} + 5s^{2} + (4+k)s + k\alpha};$$

3.
$$k = \sqrt{10} - 2$$
, $\alpha = 9/(\sqrt{10} - 2)$ e $\beta = 1$, ou $k = \sqrt{10} + 2$, $\alpha = 9/(\sqrt{10} + 2)$ e $\beta = -1$;

4.
$$n = 1$$
, $k = 10000 \text{ rad/s e } \alpha = 100$;

5.
$$k_P = 1.8$$
, $k_I = 2$ e $\alpha = 0.2$;

6. Erro =
$$-4.45$$
;

7. Duas raízes no semi-plano direito.