パターン認識と学習 深層学習(2)

管理工学科 篠沢佳久

資料の内容

- 深層学習(2)
 - □ 畳み込みニューラルネットワーク*(2)
 - □ 主な畳み込みニューラルネットワーク
 - 畳み込みニューラルネットワークの応用
 - 物体検出(Detection)
 - Semantic Segmentation
 - 画像生成

主な畳み込みニューラルネットワーク

ILSVRC

主な畳み込みニューラルネットワーク

■ ILSVRC*におけるエラー率の向上

^{*}ILSVRC(ImageNet Large Scale Visual Recognition Challenge)

Image Net

(http://www.image-net.org/)

クラス数 21,841 画像数 14,197,122

AlexNet(A. Krizhevsky,2012)(1)

図: A. Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks, Advances in neural information processing systems, 2012

AlexNetの工夫①

- ReLU関数
- データ拡張
 - □ 256×256の大きさの画像から224×224の大きさの画像 を切り出す
 - □水平反転
- ドロップアウト
- Overlapping Pooling
 - □ 領域をかぶらせてプーリングを行なう

データ拡張

- 学習データに人工的な操作を施す
 - □ 移動,回転,拡大,縮小

縮小:拡大

AlexNetの工夫②

■ 局所応答正規化(Local Response Normalization, LRN)

■ 学習後のフィルター

ZFNet (Matthew D. Zeiler and Rob Fergus)

■ AlexNetの改良

図: M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks, 2014

VGG (Visual Geometry Group) 1

K.Simonyan, A.Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2015

VGG (Visual Geometry Group) 2

表記方法 (バッチサイズB, チャネル数, Y, X)

VGGの工夫①

画像

フィルター(5×5)

画像

フィルター(3×3)

畳み込み

フィルター(3×3)

VGGの工夫②

VGG-A(11層) から多層化

ConvNet Configuration					
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

GoogLeNet (C. Szegedy, 2014)

GooLeNet(Inception-v3)

GoogLeNetの工夫①

Inception

特徴マップ (B, C, Y, X)

> フィルター (M, 1, 1)

新たな特徴マップ (B, M, Y, X)

C>Mの場合 特徴マップを削減

GoogLeNetの工夫②

GoogLeNetの工夫4

■ 全結合層

GoogLeNetの工夫⑤

Global Average Pooling (GAP)

ResNet (Microsoft Research Asia, 2015)

ResNetの工夫①

ResNetの工夫②

ResNet(34層)

Batch Normalization

ミニバッチ

$$B = \{x_1, x_2, \cdots, x_m\}$$

平均

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i$$

$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

標準偏差
$$\sigma_B = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$

$$y_i \leftarrow \gamma \hat{x}_i + \beta$$

Densely Connected Convolutional Networks (DenseNet)

Denseブロック

SEnets (Squeeze-and-Excitation Networks)

SE(Squeeze-and-Excitation)ブロック

CNNを利用する際に考えるべきこと

- アーキテクチャー
- ハイパーパラメータ
- 計算時間の削減

畳み込みネットワークの学習(1)

- 設定すべきネットワークの構造に関する手法、パラメータ
 - □ アーキテクチャ,層の構成,層の総数
 - □ 畳み込み層
 - フィルターのサイズ、フィルター数、ストライド、パディング
 - □ プーリング層
 - 種類(最大プーリング, 平均プーリング, Lpプーリング)
 - サイズ,ストライド,パディング
 - □ 全結合層
 - ニューロン数
 - □ 活性化関数
 - シグモイド関数、ReLU関数、恒等関数

畳み込みネットワークの学習②

- 学習に関する手法、パラーメータ
 - □ 学習方法
 - モーメント法, AdaGrad, RMSProp, AdaDelta, Adam
 - □ ミニバッチの大きさ
 - SGD, ミニバッチ, バッチ
 - □ 学習係数
 - □ エポック数, 早期停止
 - □ 結合係数の初期化
 - LeCunの初期化, Xavierの初期化
 - □ 正則化
 - □ ドロップアウト

畳み込みネットワークの学習③

- データに関する手法、パラメータ
 - □データの正規化
 - 標準化,無相関化,白色化
 - □ データ拡張

畳み込みネットワークの応用

畳み込みネットワークの応用

- 物体検出(Detection)
 - R-CNN(Regions with CNN feature)
 - YOLO(You Only Look Once)
- Semantic Segmentation
 - SegNet
 - U-Net
- 画像生成
 - 敵対的生成ネットワーク(Generative Adversarial Network)

物体認識①

Categorization Classification (分類)

木

草原

空

雲

Detection (物体検出)

Semantic Segmentation

木, 草原

空

雲

物体認識②

① 物体領域の候補はどこに存在するのか (物体領域の候補の検出)

② 物体領域には何が存在するのか(クラス分類)

①②の処理を同時に行なう

物体認識③

①物体領域の候補の検出

② クラス分類

プリンター

R-CNN (Regions with CNN feature)

物体領域の候補の検出

スライディングウィンドウ法

選択的検索法(Selective Search)

特徵抽出(転移学習)

SVMによる再学習

飛行機?

R-CNNによる物体検出

Fast R-CNN

図: Ross Girshick, Fast R-CNN, International Conference of Computer Vision, 2015

Faster R-CNN

図: Shaoqing Ren, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS, 2015

YOLO (You Only Look Once)

YOLO (You Only Look Once)

Semantic Segmentation

Semantic Segmentation

エンコーダ・デコーダ

畳み込み層

プーリング層

畳み込みネットワーク(CNN)

全結合層

ソフトマックス層

クラス分類

Full Convolutional Network (FCN)

アップサンプリング層

エンコーダ(畳み込み)

デコーダ(逆畳み込み)

VGG16の畳み込みネットワーク

ブー	ノング	

12	34	5	11
7	9	16	31
24	16	39	0
45	21	33	10

34	31
45	39

12	4	
16	21	

アップサンプリング

0	12	0	0
0	0	0	4
0	0	21	0
16	0	0	0

pooling Indices

U-Net

グレースケール画像のカラー化

敵対的生成ネットワーク

(GAN: Generative Adversarial Network)

Discriminator

Discriminatorは、学習データを正、Generatorにより生成されたデータを偽と判定するように学習

Generator

- Generatorは、学習データと同じ確率分布となるデータを生成するように学習
- Discriminatorに誤認識させる(騙す)ように学習
 - →Discriminatorからの出力D(G(x))を1

$$L_G = \frac{1}{N} \sum_{i=1}^{N} \log(1 - D(G(z_i)))$$

GANの学習方法

Discriminator→Generator→ Discriminator→Generator・・・
と交互に学習

Deep Convolutional GAN (DCGAN)

生成された画像

Conditional GAN (CGAN)

Pix2Pix

グレースケール画像のカラー化

Pix2Pixによる生成画像

畳み込みニューラルネットワークのまとめ

現在, さまざまなアイデア, モデルが日々提案されています.

■ ぜひとも、いろいろと調べて、動かしてみて下さい、

(本日の)参考文献

- J.デイホフ: ニューラルネットワークアーキテクチャ入門, 森北出版(1992)
- P.D.Wasserman: ニューラル・コンピューティング, 理論と実際, 森北出版(1993)
- C.M.ビショップ:パターン認識と機械学習(上),シュプリンガー・ジャパン(2007)
- 岡谷貴之:深層学習,講談社(2015)
- 瀧雅人:これならわかる深層学習入門,講談社(2017)
- 原田達也:画像認識,講談社(2017)

