Stickelberger elements of non-ordinary modular forms

(joint work with Matthew Emerton and Tom Weston)

Robert Pollack — Boston University

Slides available at: http://math.bu.edu/~rpollack/

Classical Stickelberger elements

Fix an odd prime p, and consider the classical Stickelberger element

$$\theta_n = \frac{1}{p^n} \sum_{\substack{1 \le a \le p^n \\ p \nmid a}} a \cdot \sigma_a^{-1}$$

in $\mathbb{Q}[\mathcal{G}_n]$ where $\mathcal{G}_n \cong \operatorname{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})$.

The θ_n satisfy the interpolation property: for χ a primitive character on \mathcal{G}_n ,

$$\chi(\theta_n) = -L(\overline{\chi}, 0).$$

Stickelberger elements of modular forms

Let $f = \sum a_n q^n$ be an eigenform in $S_k(\Gamma_0(N))$ with $p \nmid N$.

 \star assume (for simplicity) that $a_n \in \mathbb{Q}$ for all n.

Set $G_n = \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})$ where \mathbb{Q}_n is the n-th level of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} .

The Stickelberger (or Mazur-Tate) element attached to f is a certain element

$$\theta_n(f) \in \mathbb{Z}_p[G_n]$$

which interpolates the algebraic part of the special values $L(f, \chi, 1)$ where χ a character of G_n .

Stickelberger elements of modular forms

More precisely, there exists an element $\theta_n(f) \in \mathbb{Z}_p[G_n]$ such that for χ a primitive character on G_n ,

$$\chi(\theta_n(f)) = \tau(\chi) \cdot \frac{L(f, \overline{\chi}, 1)}{\Omega_f} \in \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$$

where

- \star $\tau(\chi)$ is a Gauss sum,
- \star Ω_f is a certain complex period attached to f,
- \star $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ is some fixed embedding.

The element $\theta_n(f)$ is built out of the period integrals $\int_{\infty}^{a/p^n} f(z)dz$.

Working directly in $\mathbb{Z}_p[G_n]$

The p-adic L-function $L_p(f)$ can be constructed out of the sequence of $\theta_n(f)$.

However, when f is non-ordinary, the p-adic L-function is not an Iwasawa function, and one cannot directly attach μ -invariants and λ -invariants to f.

Rather than passing to a limit, we instead work directly with the elements $\theta_n(f)$, and study their Iwasawa invariants as elements of $\mathbb{Z}_p[G_n]$.

Main question: How do $\mu(\theta_n(f))$ and $\lambda(\theta_n(f))$ behave as $n \to \infty$?

Iwasawa invariants in the p-ordinary case

Let f be an eigenform of arbitrary weight such that

- \star f is p-ordinary i.e. a_p is a p-adic unit;
- * f admits no congruences to Eisenstein series modulo p. (Greenberg then conjectures that $\mu(L_p(f)) = 0$.)

In this case, the sequences

$$\{\mu(\theta_n(f))\}$$
 and $\{\lambda(\theta_n(f))\}$

stabilize as $n \to \infty$.

Indeed, these sequences stabilize to $\mu(L_p(f))$ and $\lambda(L_p(f))$.

Iwasawa invariants in the weight 2 non-ordinary case

Let f be an eigenform of weight 2 which is non-ordinary at p.

Then the sequences $\{\mu(\theta_{2n}(f))\}$, $\{\mu(\theta_{2n+1}(f))\}$ stabilize as $n\to\infty$, to say μ^+ and μ^- respectively.

The λ -invariants in this case grow without bound, but regularly. There exist constants λ^+ and λ^- such that for $n \gg 0$,

$$\lambda(\theta_n(f)) = q_n + \begin{cases} \lambda^+ & \text{if } 2 \mid n \\ \lambda^- & \text{if } 2 \nmid n, \end{cases}$$

where

$$q_n = \begin{cases} p^{n-1} - p^{n-2} + \dots + p - 1 & \text{if } 2 \mid n \\ p^{n-1} - p^{n-2} + \dots + p^2 - p & \text{if } 2 \nmid n. \end{cases}$$

[Kurihara, Perrin-Riou]

Iwasawa invariants in the weight 2 non-ordinary case

One again conjectures that

$$\mu^+ = \mu^- = 0$$

since a weight 2 form which is non-ordinary at p cannot be congruent to an Eisenstein series.

We note that the constructions of μ^{\pm} and λ^{\pm} depend heavily on the fact that the forms have weight 2.

What happens though in the non-ordinary case when the weight is greater than 2?

We start with some data...

Level	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	∞	0:0	0:0	0:2	0:6	0:20
26	1	0:0	0:0	0:2	0:6	0:20
32	∞	0:0	0:0	0:2	0:6	0:20
37	1	$\infty:\infty$	0:1	0:7	0:7	0 : 25
40	∞	0:0	0:0	0:2	0:6	0:20
46	∞	0:0	0:0	0:2	0:6	0:20
49	∞	0:0	0:0	0:2	0:6	0:20
52	∞	0:0	0:0	0:2	0:6	0:20
53	1	$\infty:\infty$	0:1	0:3	0:7	0:21
55	∞	0:0	0:0	0:2	0:6	0:20
56	∞	0:0	0:0	0:2	0:6	0:20

Here $\mu_n = \mu(\theta_n(f))$ and $\lambda_n = \lambda(\theta_n(f))$.

Level	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	∞	0:0	0:0	0 :2	0 :6	0 : 20
26	1	0:0	0:0	0 :2	0 :6	0 : 20
32	∞	0:0	0:0	0 :2	0 :6	0 : 20
37	1	$\infty:\infty$	0:1	0 :7	0 :7	0 : 25
40	∞	0:0	0:0	0 :2	0 :6	0 : 20
46	∞	0:0	0:0	0 :2	0 :6	0 : 20
49	∞	0:0	0:0	0 :2	0 :6	0 : 20
52	∞	0:0	0:0	0 :2	0 :6	0 : 20
53	1	$\infty:\infty$	0:1	0 :3	0 :7	0 : 21
55	∞	0:0	0:0	0 :2	0 : 6	0 : 20
56	∞	0:0	0:0	0 :2	0 :6	0 : 20

The conjecture that $\mu^+ = \mu^- = 0$ is holding up.

Level	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	∞	0:0	0:0	0:2	0:6	0:20
26	1	0:0	0:0	0:2	0:6	0:20
32	∞	0:0	0:0	0:2	0:6	0:20
37	1	∞ : ∞	0:1	0:7	0:7	0:25
40	∞	0:0	0:0	0:2	0:6	0:20
46	∞	0:0	0:0	0:2	0:6	0:20
49	∞	0:0	0:0	0:2	0:6	0:20
52	∞	0:0	0:0	0:2	0:6	0:20
53	1	∞ : ∞	0:1	0:3	0:7	0:21
55	∞	0:0	0:0	0:2	0:6	0:20
56	∞	0:0	0:0	0:2	0:6	0:20

The λ -invariants all follow the pattern 0,0,2,6,20 except for the red lines; this pattern corresponds to the case of $\lambda^+ = \lambda^- = 0$.

At level 37, $\lambda^+ = 5$ and $\lambda^- = 1$ and at level 53, $\lambda^+ = \lambda^- = 1$.

Level	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	1	0:0	0:2	0:6	0:20	0:60
26	1	0:0	0:2	0:6	0:20	0:60
32	∞	0:0	0:2	0:6	0:20	0:60
37	1	1:0	1:1	0:7	0 : 25	0:61
40	1	0:0	0:2	0:6	0:20	0:60
46	2	0:0	0:2	0:6	0:20	0:60
49	∞	0:0	0:2	0:6	0:20	0:60
52	1	0:0	0:2	0:6	0:20	0:60
53	1	1:0	2:0	0:7	0:21	0:61
55	1	0:0	0:2	0:6	0:20	0:60
56	1	0:0	0:2	0:6	0:20	0:60

These are all forms of level less than 60 which are non-ordinary at 3 and not congruent to an Eisenstein series.

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	∞	0:0	0:0	0:2	0:6	0:20
26	1	0:0	0:0	0:2	0:6	0:20
32	∞	0:0	0:0	0:2	0:6	0:20
37	1	$\infty:\infty$	0:1	0:7	0:7	0 : 25
40	∞	0:0	0:0	0:2	0:6	0:20
46	∞	0:0	0:0	0:2	0:6	0:20
49	∞	0:0	0:0	0:2	0:6	0:20
52	∞	0:0	0:0	0:2	0:6	0:20
53	1	$\infty:\infty$	0:1	0:3	0:7	0 : 21
55	∞	0:0	0:0	0:2	0:6	0:20
56	∞	0:0	0:0	0:2	0:6	0:20

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	1	0:0	0:2	0:6	0:20	0:60
26	1	0:0	0:2	0:6	0:20	0:60
32	∞	0:0	0:2	0:6	0:20	0:60
37	1	1:0	1:1	0:7	0 : 25	0:61
40	1	0:0	0:2	0:6	0:20	0:60
46	2	0:0	0:2	0:6	0:20	0:60
49	∞	0:0	0:2	0:6	0:20	0:60
52	1	0:0	0:2	0:6	0:20	0:60
53	1	1:0	2:0	0:7	0:21	0:61
55	1	0:0	0:2	0:6	0:20	0:60
56	1	0:0	0:2	0:6	0:20	0:60

It appears that

$$\lambda(\theta_n(f)) = q_{n+1} + \lambda^{\mp}(f_2)$$

where f_2 is the congruent form in weight 2.

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\boxed{\mu_4:\lambda_4}$
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0 : 54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0:6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0:6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2 : 1	0:7	0 : 25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0:6	0:18	0 : 54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0 : 54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0:6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0:6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2:1	0:7	0:25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0:6	0:18	0 : 54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0 : 55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0 : 6	0:18	0 : 54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0 : 6	0:20	0:60
53	1/2	1:0	1/2 : 1	0:7	0 : 21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0 : 55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0:6	0:18	0 : 54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2:1	0:7	0:21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	μ_0 : λ_0	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	μ_4 : λ_4
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0 : 54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0:6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0:6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2:1	0:7	0:25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0:6	0:18	0 : 54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0 : 55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0:6	0:18	0 : 54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2:1	0:7	0:21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	1/2	0:0	0:2	0:6	0:20	0:60
26	1/2	0:0	0:2	0:6	0:20	0:60
32	1/2	0:0	0:2	0:6	0:20	0:60
37	1/2	1:0	1/2:1	0:7	0:25	0:61
40	1/2	0:0	0:2	0:6	0:20	0:60
46	1/2	0:0	0:2	0:6	0:20	0:60
49	1/2	0:0	0:2	0:6	0:20	0:60
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2:1	0:7	0:21	0:61
55	1/2	0:0	0:2	0:6	0:20	0:60
56	1/2	0:0	0:2	0:6	0:20	0:60
58	1/2	2:0	1:1	1:3	0:21	0:65

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
17	1	0:0	0:2	0:6	0:20	0:60
26	1	0:0	0:2	0:6	0:20	0:60
32	∞	0:0	0:2	0:6	0:20	0:60
37	1	1:0	1:1	0:7	0 : 25	0:61
40	1	0:0	0:2	0:6	0:20	0:60
46	2	0:0	0:2	0:6	0:20	0:60
49	∞	0:0	0:2	0:6	0:20	0:60
52	1	0:0	0:2	0:6	0:20	0:60
53	1	1:0	2:0	0:7	0:21	0:61
55	1	0:0	0:2	0:6	0:20	0:60
56	1	0:0	0:2	0:6	0:20	0:60
58	1	2:0	1:1	1:3	0:21	0:65

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0 : 54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0:6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0 : 6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2 : 1	0:7	0 : 25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0 : 6	0:18	0 : 54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0:54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0:6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0:6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2 : 1	0:7	0 : 25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0:6	0:18	0:54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0 : 55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0 : 6	0:18	0 : 54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2 : 1	0:7	0 : 21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0:55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0:6	0:18	0:54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2 : 1	0:7	0 : 21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	μ_0 : λ_0	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	μ_4 : λ_4
11	1	1:0	1:1	1:3	1:9	1:27
11	1	0:0	1:0	0:6	0:18	0:54
17	2	1:0	3:0	1:5	1:21	1:47
17	1/2	0:0	0:2	0 : 6	0:20	0:60
26	∞	1:0	2:1	1:5	1:17	1:47
26	1/2	0:0	0:2	0:6	0:20	0:60
32	∞	1:0	2:1	1:5	1:19	1:47
32	1/2	0:0	0:2	0:6	0:20	0:60
37	2	1:0	2:1	1:5	1:17	1:47
37	1/2	1:0	1/2 : 1	0:7	0:25	0:61
38	1	1:0	1:1	1:3	1:9	1:27
38	1	0:0	1:0	0:6	0:18	0:54
40	2	2:0	1:2	1:6	1:16	1:48
40	1/2	0:0	0:2	0:6	0:20	0:60
43	1	1:0	1:1	1:3	1:9	1:27
43	1	3:0	1:1	0:7	0:19	0:55
46	4	2:0	1:2	1:8	1:16	1:50
46	1/2	0:0	0:2	0:6	0:20	0:60
47	1	1:0	1:1	1:3	1:9	1:27
47	1	0:0	1:0	0:6	0:18	0:54
49	1/2	2:0	1:2	1:6	1:16	1:48
49	1/2	0:0	0:2	0:6	0:20	0:60
52	2	2:0	2:2	1:6	1:18	1:48
52	1/2	0:0	0:2	0:6	0:20	0:60
53	1/2	1:0	1/2 : 1	0:7	0:21	0:61
53	2	2:0	1:2	1:8	1:16	1:50
55	2	2:0	1:2	1:6	1:16	1:48
55	1/2	0:0	0:2	0:6	0:20	0:60

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
11	1	0:0	1:0	0:6	0:18	0:54
38	1	0:0	1:0	0:6	0:18	0:54
43	1	3:0	1:1	0:7	0:19	0:55
47	1	0:0	1:0	0:6	0:18	0:54
61	1	2:0	1:1	0:7	0:19	0:55
65	1	1:0	2:0	0:7	0:19	0:55
67	1	0:0	0:2	1:2	0:20	0:56

Level	$\operatorname{ord}_p a_p$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	$\mu_4:\lambda_4$
11	1	0:0	1:0	0:6	0:18	0:54
38	1	0:0	1:0	0:6	0:18	0:54
43	1	3:0	1:1	0:7	0:19	0:55
47	1	0:0	1:0	0:6	0:18	0:54
61	1	2:0	1:1	0:7	0:19	0:55
65	1	1:0	2:0	0:7	0:19	0:55
67	1	0:0	0:2	1:2	0:20	0:56

Pattern appears to be

$$\lambda(\theta_n(f)) = p^n - p^{n-1} + \lambda$$

for some constant λ .

Weight 2 forms which are ordinary at 3

Level	$\mu(L_p(f))$	$\lambda(L_p(f))$
11	0	0
38	0	0
43	0	1
47	0	0
61	0	1
65	0	1
67	0	2

This table lists all forms of weight 2 which are ordinary at 3 and not congruent to any Eisenstein series (mod 3).

These forms are all congruent to the corresponding form in weight 6.

Congruences to weight 2

All of the red and blue forms in the previous tables were congruent to some weight 2 form.

Given an eigenform $f \in S_k(\Gamma_0(N))$ we wish to describe intrinsically whether or not f is admits a congruence to weight 2.

Set $\overline{\rho}_f:G_{\mathbb Q}\to \mathrm{GL}_2(\mathbb F_p)$ equal to the associated residual Galois representation of f.

- \star we assume throughout that $\overline{\rho}_f$ is irreducible;
- \star this is equivalent to assuming that f is not congruent to any Eisenstein series modulo p.

Whether or not f is congruent to a weight 2 form can be read off of the local representation $\overline{\rho}_f|_{G_{\mathbb{Q}_{\infty}}}$.

Local residual representation in weight 2 – ordinary case

If g is an eigenform of weight 2 on $\Gamma_0(N)$ which is p-ordinary, then

$$\overline{
ho}_g |_{G_{\mathbb{Q}_p}}$$
 is reducible,

and

$$\left. \overline{\rho}_g \right|_{I_p} \cong \begin{pmatrix} \omega & * \\ 0 & 1 \end{pmatrix}$$

where I_p is the inertia group at p, and ω is the mod p cyclotomic character.

Local residual representation in weight 2 - non-ordinary case

If g is an eigenform of weight 2 on Γ which is non-ordinary at p, then

$$\overline{
ho}_g |_{G_{\mathbb{Q}_p}}$$
 is irreducible,

and

$$\overline{\rho}_g|_{I_p} \cong \begin{pmatrix} \omega_2 & 0 \\ 0 & \omega_2^p \end{pmatrix}$$

where ω_2 and ω_2^p are the fundamental characters of level 2.

Assumptions

Therefore, for the remainder of the talk, we will assume for our eigenform $f \in S_k(\Gamma_0(N))$, we have

$$\overline{
ho}_fig|_{I_p}\cong egin{pmatrix} \omega & * \ 0 & 1 \end{pmatrix} \quad ext{or} \quad egin{pmatrix} \omega_2 & 0 \ 0 & \omega_2^p \end{pmatrix}.$$

For technical reasons, we will further assume that * is peu ramifée and non-zero.

By (the weight part) of Serre's conjecture, this implies that f is congruent to a form of weight 2 on $\Gamma_0(N)$.

Theorem A

Let f be an eigenform in $S_k(\Gamma_0(N))$ which is non-ordinary at p and such that $\overline{\rho}_f$ is irreducible and satisfies the local conditions of the previous slide. If

$$2 < k < p^2 + 1,$$

then there exists a congruent eigenform $g \in S_2(\Gamma_0(N))$ such that

1.
$$\mu(\theta_n(f)) = 0$$
 for $n \gg 0 \iff \mu(g) = 0$ (resp. $\mu^{\pm}(g) = 0$);

2. if $\mu(\theta_n(f)) = 0$ for $n \gg 0$, then

$$\lambda(\theta_n(f)) = \begin{cases} p^n - p^{n-1} + \lambda(g) & \text{ if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is reducible,} \\ q_{n+1} + \lambda^{\mp}(g) & \text{ if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is irreducible.} \end{cases}$$

[Note g is p-ordinary if and only if $\overline{\rho}_f \big|_{G_{\mathbb{Q}_p}}$ is reducible.]

Remark on Theorem A

We will actually show that there is a congruence

$$\theta_n(f) \equiv \operatorname{cor}_{n/n-1}(\theta_{n-1}(g)) \pmod{p},$$

where

$$\operatorname{\mathsf{cor}}_{n/n-1}: \mathbb{Z}_p[G_{n-1}] \longrightarrow \mathbb{Z}_p[G_n]$$

is the corestriction map.

In general,

$$\mu(\mathsf{cor}_{n/n-1}(\theta)) = \mu(\theta)$$

and

$$\lambda(\operatorname{cor}_{n/n-1}(\theta)) = p^n - p^{n-1} + \lambda(\theta).$$

which explains the conclusions of Theorem A.

Higher weights?

What happens outside of the weight range $2 < k < p^2 + 1$?

Consider the elliptic curve E given by 26A which has supersingular reduction at p=3. If $\overline{\rho}=E[3]$, then

- $\star \quad \overline{\rho}|_{G_{\mathbb{Q}_p}}$ is an irreducible representation.
- \star Moreover, $\lambda^+ = \lambda^- = 0$.

We now vary the weight and consider modular forms f with $\overline{\rho}_f \cong \overline{\rho}$.

Forms with $\overline{\rho}_f=\overline{\rho}=E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$
2	1	0:0	0:0	0:2	0:6
4	1	0:0	0:2	0:6	0:20
6	1/2	0:0	0:2	0:6	0:20
8	1/2	0:0	0:2	0:6	0:20
10	1	1:0	1:2	1:6	1:20
12	3	1:0	1:2	1:6	1:20
12	1/2	0:0	0:2	0:6	0:20
14	1/2	0:0	0:2	0:6	0:20
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20
16	2	2:0	3:1	2:6	2:20
16	1	1:0	1:2	1:6	1:20
18	6	4:0	4:2	4:8	4:24
18	2	2:0	2:2	2:6	2:20
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20

Forms with $\overline{\rho}_f = \overline{\rho} = E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$
2	1	0:0	0:0	0:2	0:6
4	1	0:0	0:2	0:6	0:20
6	1/2	0:0	0:2	0:6	0:20
8	1/2	0:0	0:2	0:6	0:20
10	1	1:0	1:2	1:6	1:20
12	3	1:0	1:2	1:6	1:20
12	1/2	0:0	0:2	0:6	0:20
14	1/2	0:0	0:2	0:6	0:20
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20
16	2	2:0	3:1	2:6	2:20
16	1	1:0	1:2	1:6	1:20
18	6	4:0	4:2	4:8	4:24
18	2	2:0	2:2	2:6	2:20
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20

Theorem A applies to the red lines where 2 < k < 10.

Forms with $\overline{\rho}_f = \overline{\rho} = E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$
2	1	0:0	0:0	0:2	0:6
4	1	0:0	0:2	0:6	0:20
6	1/2	0:0	0:2	0:6	0:20
8	1/2	0:0	0:2	0:6	0:20
10	1	1:0	1:2	1:6	1:20
12	3	1:0	1:2	1:6	1:20
12	1/2	0:0	0:2	0:6	0:20
14	1/2	0:0	0:2	0:6	0:20
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20
16	2	2:0	3:1	2:6	2:20
16	1	1:0	1:2	1:6	1:20
18	6	4:0	4:2	4:8	4:24
18	2	2:0	2:2	2:6	2:20
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20

In these red lines, μ is positive.

Forms with $\overline{\rho}_f=\overline{\rho}=E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$
2	1	0 : 0	0 : 0	0:2	0:6
4	1	0 : 0	0:2	0:6	0: 20
6	1/2	0 : 0	0 : 2	0:6	0 : 20
8	1/2	0 : 0	0 : 2	0:6	0 : 20
10	1	1:0	1:2	1:6	1: 20
12	3	1:0	1:2	1:6	1: 20
12	1/2	0 : 0	0:2	0 : 6	0 : 20
14	1/2	0 : 0	0:2	0:6	0 : 20
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20
16	2	2 : 0	3:1	2:6	2 : 20
16	1	1 : 0	1 : 2	1 : 6	1: 20
18	6	4:0	4:2	4:8	4:24
18	2	2 : 0	2 : 2	2 : 6	2 : 20
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20

It appears though that the λ -invariants behave beautifully!

Forms with $\overline{\rho}_f = \overline{\rho} = E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$
2	1	0:0	0:0	0:2	0:6
4	1	0:0	0:2	0:6	0:20
6	1/2	0:0	0:2	0:6	0:20
8	1/2	0:0	0:2	0:6	0:20
10	1	1:0	1:2	1:6	1:20
12	3	1:0	1:2	1:6	1:20
12	1/2	0:0	0:2	0:6	0:20
14	1/2	0:0	0:2	0:6	0:20
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20
16	2	2:0	3:1	2:6	2:20
16	1	1:0	1:2	1:6	1:20
18	6	4:0	4:2	4:8	4:24
18	2	2:0	2:2	2:6	2:20
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20

Except for this line...whose λ -invariant pattern is 0,2,8,24,74,222...

Forms with $\overline{\rho}_f = \overline{\rho} = E[3]$

Weight	$\operatorname{ord}_p(a_p)$	μ_0 : λ_0	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	μ_3 : λ_3
22	4	4:0	5:1	4:6	4:20
22	2	6:0	2:2	2:6	2:20
22	1	1:0	1:2	1:6	1:20
22	4	5:0	4:2	4:6	4:20
22	1	1:0	1:2	1:6	1:20
24	2	2:0	2:2	2:6	2:20
24	2	2:0	2:2	2:6	2:20
24	9/2	4:0	4:2	4:8	4:24
24	1/2	1/2:0	1/2 : 2	1/2 : 6	1/2 : 20
26	7	6:0	6:2	6:8	6:24
26	3	3:0	3:2	3 : 6	3:20
26	1/2	1/2:0	1/2 : 2	1/2 : 6	1/2 : 20
26	3	3:0	3 : 2	3 : 6	3:20
28	4	5:0	4:2	4:6	4:20
28	4	4:0	5:1	4:6	4:20
28	3	3:0	3:2	3:8	3:24
28	5	5:0	5:2	5:8	5:24
28	1	1:0	1:2	1:6	1:20
30	5/2	3/2 : 0	3/2 : 2	3/2 : 6	3/2 : 20
30	1/2	0:0	0:2	0:6	0:20
30	5	5:0	5:2	5:8	5:24
30	5	5:0	5:2	5:8	5:24
32	6	6:0	6:2	6:8	6:24
32	6	6:0	6:2	6:8	6:24

...and all of these. How can we explain this?

Modular symbols

For R a commutative ring, let

$$V_g(R) := \operatorname{Sym}^g(R^2)$$

which we view as homogeneous polynomials of degree g in R[X,Y], and let

$$\Delta_0 := \mathrm{Div}^0(\mathbb{P}^1(\mathbb{Q})) = \mathsf{degree} \; \mathsf{zero} \; \mathsf{divisors} \; \mathsf{on} \; \mathbb{P}^1(\mathbb{Q}).$$

We then define the space of $V_g(R)$ -valued modular symbols of level $\Gamma_0(N)$ as

$$\mathsf{MS}_{\Gamma_0(N)}(V_g(R)) := \mathrm{Hom}_{\Gamma_0(N)}(\Delta_0, V_g(R)),$$

the space of linear maps form Δ_0 to $V_g(R)$ which commute with the action of $\Gamma_0(N)$.

Modular symbols

For example, for $f \in S_k(\Gamma_0(N), \mathbb{C})$, we have a modular symbol

$$\xi_f \in \mathsf{MS}_{\Gamma_0(N)}\left(V_{k-2}(\mathbb{C})\right)$$

such that

$$\xi_f(\lbrace r \rbrace - \lbrace s \rbrace) = 2\pi i \int_s^r f(z)(zX + Y)^{k-2} dz.$$

The period Ω_f

Set

$$\xi_f^+ := \frac{\xi_f + \xi_f \left| \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right|}{2};$$

then a theorem of Shimura implies that there exists a complex number Ω_f such that ξ_f^+ takes values in $V_{k-2}(\mathbb{Q})\Omega_f$.

We thus view

$$\varphi_f := \xi_f^+ / \Omega_f$$

as taking values in $V_{k-2}(\mathbb{Q}_p)$.

The period Ω_f is only well-defined by to a \mathbb{Q} -scalar. We further pin it down by insisting that φ_f takes values in $V_{k-2}(\mathbb{Z}_p)$ and at least one value for which one monomial coefficient is a p-adic unit.

This uniquely determines Ω_f up to scaling by a p-unit.

Stickelberger elements again

We now precisely define our Stickelberger elements. Set

$$\tilde{\theta}_n(f) = \sum_{\sigma_a \in \mathcal{G}_n} c_a \cdot \sigma_a \in \mathbb{Z}_p[\mathcal{G}_n]$$

where

$$c_a$$
 = the coefficient of Y^{k-2} of $\varphi_f(\{\infty\} - \{a/p^n\})$.

Then $\theta_n(f)$ is given by projecting $\tilde{\theta}_{n+1}(f)$ into $\mathbb{Z}_p[G_n]$ via the natural map $\mathcal{G}_{n+1} \to G_n$.

Lower bounds on μ

There is an obvious lower bound for the μ -invariant of $\theta_n(f)$. Set

$$\mu_{\min}(f) = \min_{D \in \Delta_0} \operatorname{ord}_p \left(\text{coefficient of } Y^{k-2} \text{ in } \varphi_f(D) \right);$$

That is, $\mu_{\min}(f)$ is the minimum valuation of the coefficients of Y^{k-2} occurring in the values of φ_f .

Since φ_f is normalized so that some coefficient is a non-unit, we can have that $\mu_{\min}(f) > 0$.

We have the obvious inequality,

$$\mu(\theta_n(f)) \ge \mu_{\min}(f)$$

since $\theta_n(f)$ is constructed out of the coefficients of Y^{k-2} of certain values of φ_f .

Forms with $\overline{\rho}_f=\overline{\rho}=E[3]$ with $\mu_{\rm min}$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	μ_{min}
2	1	0:0	0:0	0 :2	0 :6	0
4	1	0:0	0:2	0 :6	0 : 20	0
6	1/2	0:0	0:2	0 :6	0 : 20	0
8	1/2	0:0	0:2	0 :6	0 : 20	0
10	1	1:0	1:2	1 :6	1 : 20	1
12	3	1:0	1:2	1 :6	1 : 20	1
12	1/2	0:0	0:2	0 :6	0 : 20	0
14	1/2	0:0	0:2	0 : 6	0 : 20	0
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20	$\frac{3}{2}$
16	2	2:0	3:1	2 :6	2 : 20	2
16	1	1:0	1:2	1 :6	1 : 20	1
18	6	4:0	4:2	4 : 8	4 : 24	4
18	2	2:0	2:2	2 :6	2 : 20	2
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20	$\frac{1}{2}$

Forms with $\overline{\rho}_f=\overline{\rho}=E[3]$ with $\mu_{\rm min}$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	μ_{min}
20	5	3:0	3:2	3 :6	3 : 20	3
20	1/2	0:0	0:2	0 : 6	0 : 20	0
20	5/2	2:0	2:2	2 :6	2 : 20	2
22	4	4:0	5:1	4 :6	4 : 20	4
22	2	6:0	2:2	2 :6	2 : 20	2
22	1	1:0	1:2	1 :6	1 : 20	1
22	4	5:0	4:2	4 :6	4 : 20	4
22	1	1:0	1:2	1 :6	1 : 20	1
24	2	2:0	2:2	2 :6	2 : 20	2
24	2	2:0	2:2	2 :6	2 : 20	2
24	9/2	4:0	4:2	4 : 8	4 : 24	4
24	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20	$\frac{1}{2}$
26	7	6:0	6:2	6 : 8	6 : 24	6
26	3	3:0	3:2	3 :6	3 : 20	3

Theorem B

Let f be an eigenform in $S_k(\Gamma_0(N))$ with the same hypotheses on $\overline{\rho}_f$ as before and such that

$$0 < \operatorname{ord}_p(a_p) < \begin{cases} p-1 & \text{ if } \overline{\rho}_f \big|_{G_{\mathbb{Q}_p}} \text{ is reducible.} \\ p & \text{ if } \overline{\rho}_f \big|_{G_{\mathbb{Q}_p}} \end{cases}$$
 is irreducible,

Then there exists a congruent eigenform $g \in S_2(\Gamma_0(N))$ such that

1.
$$\mu(\theta_n(f)) = \mu_{\min}(f) \text{ for } n \gg 0 \iff \mu(g) = 0 \text{ (resp. } \mu^{\pm}(g) = 0);$$

2. if $\mu(\theta_n(f)) = \mu_{\min}(f)$ for $n \gg 0$, then

$$\lambda(\theta_n(f)) = \begin{cases} p^n - p^{n-1} + \lambda(g) & \text{if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is reducible,} \\ q_{n+1} + \lambda^{\mp}(g) & \text{if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is irreducible.} \end{cases}$$

Forms with $\overline{\rho}_f = \overline{\rho} = E[3]$

Weight	$\operatorname{ord}_p(a_p)$	$\mu_0:\lambda_0$	$\mu_1:\lambda_1$	$\mu_2:\lambda_2$	$\mu_3:\lambda_3$	μ_{min}
2	1	0:0	0:0	0:2	0:6	0
4	1	0:0	0:2	0:6	0:20	0
6	1/2	0:0	0:2	0:6	0:20	0
8	1/2	0:0	0:2	0:6	0:20	0
10	1	1:0	1:2	1:6	1:20	1
12	3	1:0	1:2	1:6	1:20	1
12	1/2	0:0	0:2	0:6	0:20	0
14	1/2	0:0	0:2	0:6	0:20	0
14	5/2	$\frac{3}{2}$: 0	$\frac{3}{2}$: 2	$\frac{3}{2}$: 6	$\frac{3}{2}$: 20	$\frac{3}{2}$
16	2	2:0	3:1	2:6	2:20	2
16	1	1:0	1:2	1:6	1:20	1
18	6	4:0	4:2	4:8	4:24	4
18	2	2:0	2:2	2:6	2:20	2
18	1/2	$\frac{1}{2}$: 0	$\frac{1}{2}$: 2	$\frac{1}{2}$: 6	$\frac{1}{2}$: 20	$\frac{1}{2}$

Theorem B applies to all of these forms except the two red lines.

Proofs - a map from weight k to weight 2

For $k \equiv 2 \pmod{p-1}$, the map

$$V_{k-2}(\mathbb{F}_p) \to \mathbb{F}_p$$

 $P(X,Y) \mapsto P(0,1)$

is $\Gamma_0(Np)$ -equivariant, and thus induces a map

$$\mathsf{MS}_{\Gamma_0(Np)}\left(V_{k-2}(\mathbb{F}_p)\right) \to \mathsf{MS}_{\Gamma_0(Np)}\left(\mathbb{F}_p\right).$$

Composing with restriction then gives a map

$$\alpha: \mathsf{MS}_{\Gamma_0(N)}\left(V_{k-2}(\mathbb{F}_p)\right) \to \mathsf{MS}_{\Gamma_0(N_p)}\left(\mathbb{F}_p\right).$$

The map α is equivariant for the action of the full Hecke-algebra.

An (easy) theorem of Ash-Stevens implies that the map

$$\alpha: \mathsf{MS}_{\Gamma_0(N)}\left(V_{p-1}(\mathbb{F}_p)\right) \hookrightarrow \mathsf{MS}_{\Gamma_0(Np)}\left(\mathbb{F}_p\right).$$

is injective.

Thus, if

$$\overline{\varphi}_f \in \mathsf{MS}_{\Gamma_0(N)}\left(V_{p-1}(\mathbb{F}_p)\right)$$

denotes the reduction mod p of φ_f , then

$$\alpha(\overline{\varphi}_f) \in \mathsf{MS}_{\Gamma_0(Np)}\left(\mathbb{F}_p\right)$$

is non-zero Hecke-eigensymbol whose eigenvalues are congruent to the eigenvalues of $f \mod p$.

The existence of the non-zero Hecke-eigensymbol

$$0 \neq \alpha(\overline{\varphi}_f) \in \mathsf{MS}_{\Gamma_0(Np)}\left(\mathbb{F}_p\right)$$

then implies (by another theorem of Ash-Stevens) that there exists an eigenform

$$h \in S_2(\Gamma_0(Np))$$

which is congruent to f.

In particular, the form h is non-ordinary at p, which implies that

$$h$$
 is p -old.

[Indeed any p-new form on $\Gamma_0(Np)$ with weight 2 is p-ordinary.]

Let $g \in S_2(\Gamma_0(N))$ denote the associated p-new eigenform such that h(z) is in the span of g(z) and g(pz).

We wish to compare $\overline{\varphi}_g$ to $\alpha(\overline{\varphi}_f)$ to make a connection between the associated Stickelberger elements.

Note that we cannot expect equality, as the former is a T_p -eigensymbol on $\Gamma_0(N)$ while the latter is a U_p -eigensymbol on $\Gamma_0(Np)$.

However, a direct computation shows that

$$\overline{\varphi}_g \mid \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

is a U_p -eigensymbol and has the same system of eigenvalues as $\alpha(\overline{\varphi}_f)$.

Mod p multiplicity one then implies that for some $c \in \mathbb{F}_p^{\times}$

$$\alpha(\overline{\varphi}_f) = c \cdot \overline{\varphi}_g \mid \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

One then computes that

$$\theta_n(f) \equiv c \cdot \mathsf{cor}_{n/n-1}(\theta_{n-1}(g)) \pmod{p}$$

The relations

$$\mu(\mathsf{cor}_{n/n-1}(\theta)) = \mu(\theta)$$

and

$$\lambda(\mathsf{cor}_{n/n-1}(\theta)) = p^n - p^{n-1} + \lambda(\theta)$$

then imply our theorem.

For other weights less than $p^2 + 1$

For weights in the range

$$p+1 < k < p^2+1$$

a similar argument works. The key difference is that the map

$$\alpha: \mathsf{MS}_{\Gamma_0(N)}\left(V_{k-2}(\mathbb{F}_p)\right) \to \mathsf{MS}_{\Gamma_0(Np)}\left(\mathbb{F}_p\right)$$

is no longer injective.

Nonetheless, one can check that in this weight range, $\alpha(\overline{\varphi}_f) \neq 0$ as long as $\overline{\rho}_f$ satisfies the local conditions previously described.

Once we know that $\alpha(\overline{\varphi}_f) \neq 0$, the remainder of the argument goes through unchanged.

The general case?

For arbitrary weight $k \equiv 2 \pmod{p-1}$, the following argument is tempting.

Set $r = \mu_{\min}(f) + 1$. Consider the $\Gamma_0(Np^r)$ -equivariant map

$$V_{k-2}(\mathbb{Z}_p) \to \mathbb{Z}/p^r\mathbb{Z}$$

$$P(X,Y) \to P(0,1) \pmod{p^r},$$

inducing

$$\alpha_r : \mathsf{MS}_{\Gamma_0(N)} \left(V_{k-2}(\mathbb{Z}_p) \right) \to \mathsf{MS}_{\Gamma_0(Np^r)} \left(\mathbb{Z}/p^r \mathbb{Z} \right).$$

By construction, $\alpha_r(\varphi_f) \neq 0$, and moreover this symbol takes values in

$$\mathsf{MS}_{\Gamma_0(Np^r)}\left(p^{r-1}\mathbb{Z}/p^r\mathbb{Z}\right)\cong \mathsf{MS}_{\Gamma_0(Np^r)}\left(\mathbb{F}_p\right).$$

The general case?

Since we are assuming the $\overline{\rho}_f$ has Serre weight 2, there exists some eigenform $g \in S_2(\Gamma_0(N))$ congruent to f.

Again $\overline{\varphi}_g \mid \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix}\right)$ has the same system of Hecke-eigenvalues as $\alpha_r(\varphi_f)$.

However, mod p multiplicity one now fails on level $\Gamma_0(p^rN)$ if r>1.

Indeed, all of the symbols

$$\overline{\varphi}_g \mid \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, \ \overline{\varphi}_g \mid \begin{pmatrix} p^2 & 0 \\ 0 & 1 \end{pmatrix}, \dots, \ \overline{\varphi}_g \mid \begin{pmatrix} p^r & 0 \\ 0 & 1 \end{pmatrix}$$

have the same system of Hecke-eigenvalues as $\alpha_r(\varphi_f)$.

A conjecture

We propose the following "salvage" of mod p multiplicity one.

Conjecture: Let \mathfrak{m} denote a maximal ideal of the Hecke algebra attached to $S_2(\Gamma_0(N), \overline{\mathbb{Q}}_p)$ whose associated residual representation $\overline{\rho}_{\mathfrak{m}}$ is irreducible and of Serre weight 2. Then, for $r \geq 1$,

$$\dim_{\mathbb{F}_p} \mathsf{MS}_{\Gamma_0(Np^r)}\left(\mathbb{F}_p\right)\left[\mathfrak{m}\right] = r.$$

We can verify this conjecture when $\overline{\rho}_f\big|_{G_{\mathbb{Q}_p}}$ is reducible under some hypotheses. The proof relies on p-adic local Langlands and local-global compatibility.

Consequences

Assuming this conjecture, we then have that

$$\alpha_r(\varphi_f) \in \left\langle \overline{\varphi}_g \mid \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, \ \overline{\varphi}_g \mid \begin{pmatrix} p^2 & 0 \\ 0 & 1 \end{pmatrix}, \dots, \ \overline{\varphi}_g \mid \begin{pmatrix} p^r & 0 \\ 0 & 1 \end{pmatrix} \right\rangle$$

and thus

$$\alpha_r(\varphi_f) = b_1 \cdot \overline{\varphi}_g \mid \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} + b_2 \cdot \overline{\varphi}_g \mid \begin{pmatrix} p^2 & 0 \\ 0 & 1 \end{pmatrix} + \dots + b_r \cdot \overline{\varphi}_g \mid \begin{pmatrix} p^r & 0 \\ 0 & 1 \end{pmatrix}$$

for some $b_i \in \mathbb{F}_p$.

If $b_1 \neq 0$, a similar computation yields the same theorem on λ -invariants as before.

However, if $b_1=0$ and $b_2\neq 0$, we obtain a different pattern of λ -invariants. When p=3 the pattern is

Theorem C

Let f be an eigenform in $S_k(\Gamma_0(N))$ such that $\overline{\rho}_f$ is irreducible and of Serre weight 2, and we assume the previous conjecture.

Then there exists a congruent eigenform $g \in S_2(\Gamma_0(N))$ and an integer

$$\delta_f \geq 1$$

such that

1.
$$\mu(\theta_n(f)) = \mu_{\min}(f)$$
 for $n \gg 0 \iff \mu(g) = 0$ (resp. $\mu^{\pm}(g) = 0$);

2. if $\mu(\theta_n(f)) = \mu_{\min}(f)$ for $n \gg 0$, then

$$\lambda(\theta_n(f)) = \begin{cases} p^n - p^{n-\delta_f} + \lambda(g) & \text{if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is reducible,} \\ p^n - p^{n-\delta_f} + q_{n-\delta_f} + \lambda^{\mp}(g) & \text{if } \overline{\rho}_f\big|_{G_{\mathbb{Q}_p}} \text{ is irreducible.} \end{cases}$$

The invariant δ_f

The δ_f -invariant of Theorem C appears to be a new and quite mysterious invariant attached to f.

Indeed, as this invariant appears in formulas for the λ -invariant of Stickelberger elements, it affects p-adic valuations of special values of L-series. Thus, conjecturally, it should affect sizes of Selmer groups.

Questions:

- ★ Is this invariant global or local?
- * How large can it get? (We only have examples where $\delta_f = 1$ or 2.)
- * Can we see it on the algebraic side?