Introduction to Embedded System Design

Lecture - 2: Modular Approach to Embedded System Design

Dhananjay V. Gadre
Associate Professor
ECE Division
Netaji Subhas University of
Technology, New Delhi

Badri Subudhi
Assistant Professor
Electrical Engineering Department
Indian Institute of Technology,
Jammu

Key Parameters for a Successful Embedded System

- Time to Market (4 week delay can lead to 30% drop in revenues)
- Overall System Cost

Choosing the Right Microcontroller

- Time to Market
 - Is the Microcontroller easy to use? High Level Language Supported?
- How Difficult to move to a different Device?
 Does a compatible device with more/less memory exist?
- What about Development Tools? assembler, compiler, debugger, emulators, eval kits?
- Support?

Choosing the Right Microcontroller-II

- Overall System Cost
 - Cost of Microcontroller + external components
 Cost of PCB
- Does the Microcontroller offer higher Integration upgrade?
 - more software features could be accommodated
- Hidden Costs?
 - stocking multiple devices, turn-around time, upgrade?

Microcontroller Classification

- 1. Memory Architecture:
 - Von Neumann
 - Harvard
- 2. Bit Handling Capacity
 - 4, 8, 16, 32, 64-bits
- 3. Instruction Set Architecture
 - CISC: Complex Instruction Set Computing
 - RISC: Reduced Instruction Set Computing
 - MISC: Minimal Instruction Set Computer
 - VLIW: Very Large Instruction Word

Current Favorites – The 8-bitters

- 8051 family more than 1000 variants, in varied packagings. Standard CISC
- Microchip's PIC RISC architecture.
- Cypress Semiconductor PSoC. CISC, complete system on chip with programmable analog blocks

(https://www.cypress.com/)

 Microchip's (ex-Atmel) AVR. RISC. 200+ chips

The 16-bitters

- Texas Instruments MSP430
- Microchip PIC24
- STMicroelectronics ST10
- NXP HC12 (Legacy), HC16

The 32-bitters

- 16/32-bit ARM family, 1000s of variants.
- Intel x86 family
- IBM's PowerPC (used in telecom apps)

Modular Approach to an Embedded System Design

Six Box Model for Embedded System Design

Any embedded device correlates to this generic model

Input Block

- User Input
 Push Button, Toggle Switch,
 SPST/SPDT/MPMT selector
 switches, Switch Matrix, Capacitive touch, Resistive touch, Reed switch (with a magnet input)
- Sound Microphone, Ultrasonic
- Magnetic Field
 Hall Effect, Inductor, Reed switch,
 Magnetometer
- Distance
 Ultrasonic ranger, IR proximity sensor
- Temperature
 Thermistor, RTD, Thermocouple,
 Semiconductor Sensor

- Light
 LDR, Photodiode, LED as sensor
- Strain/Force
 Strain gauge, FSR, Piezo
- Relative Position
 Shaft encoder (Stepper Motor as a shaft encoder),
 Gyroscope, Optocoupler,
 Linear potentiometer, GPS
- Image
 Camera (CMOS or CCD),
 Linear CCD array
- Time RTC, Clock + Counter

Output Block

- **Light**LED, RGB LED, Laser, IR
- Visual
 Seven Segment/Alphanumeric Display,
 Character LCD, Graphics LCD, TV
- Sound Speaker, Buzzer, Ultrasound
- Temperature
 Heater, Peltier module

Position

Stepper Motor (Microstepping mode), DC Motor, Servo Motor, Servo mechanism, Solenoid

- Flow Valve, Pump
- Haptic
 Vibration (Motor + asymmetric load)
- Print
 Thermal printer, Dot-matrix printer

Power Supply Block

- Energy Source?
- Regulator: Linear or Switching?
- If Switching, then Buck, Boost, Buck-Boost?
- Battery technologies?
- Supercapacitor?

Communication Links Block

- Inter-device Vs Intra-device
- Intra-device: UART, SPI, I2C

• Inter-device: UART, LIN (Local Interconnect Network), CAN, WiFi, Ethernet, USB, Bluetooth

Host and Storage Block

- Serial E2PROM
- SD Card

Electronic Glue

- Analog front end: Amplifiers, filters.
- Output: Power Switching (Low, high and both side switching)

Lecture - 2 Summary

- Key parameters of Embedded System Design
- Time to market and cost.
- Microcontroller Classification based on memory access, ISA, data bus width (Example Microcontroller families (8-bit, 16-bit and 32-bit examples)), Memory technologies, Memory interface busses.
- Modular approach to Embedded System Design using a Six Box Model of an Embedded System: Input, Output, Processor, Power Supply, Communication, Host.

Thank you!