MATH 254 – Hon. Analysis I Prof. V. Jakšić Solutions for Assignment II.

1. Let $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$ be two sets bounded from above. The sum of A and B is the set

$$A + B = \{a + b : a \in A, b \in B\},\$$

Prove that A + B is bounded from above and that

$$\sup(A+B) = \sup A + \sup B.$$

Solution:

Since A and B are bounded from above, $\sup A$ and $\sup B$ exist and

$$a \le \sup A \qquad \forall a \in A$$
 (1)

$$b \le \sup B \qquad \forall b \in B. \tag{2}$$

Let $c \in A + B$ be arbitrary, then $\exists a \in A, b \in B$ such that c = a + b. By (1) and (2),

$$c = a + b \le \sup A + \sup B.$$

Since $c \in A + B$ was arbitrary, we conclude

$$c \le \sup A + \sup B \qquad \forall c \in A + B$$

and therefore that $\sup A + \sup B$ is an upper bound of A + B. This also shows A + B is bounded from above.

Note that $\sup(A+B) = \sup A + \sup B$ if and only if the folloing hold:

- (i) $\sup A + \sup B$ is an upper bound for A + B, and
- (ii) for any $\epsilon > 0$, sup $A + \sup B \epsilon$ is not an upper bound for A + B.

We already showed (i), so we need only show (ii). Let $\epsilon > 0$ be arbitrary. Since $\sup A$ is the supremum of A, $\sup A - \epsilon/2$ is not an upper bound of A. Similarly, $\sup B - \epsilon/2$ is not an upper bound of B. Therefore, $\exists a_{\epsilon} \in A, b_{\epsilon} \in B$ such that

$$a_{\epsilon} > \sup A - \epsilon/2$$
 (3)

$$b_{\epsilon} > \sup B - \epsilon/2. \tag{4}$$

Let $c_{\epsilon} = a_{\epsilon} + b_{\epsilon}$ (note that $c_{\epsilon} \in A + B$). Then, by (3) and (4),

$$c_{\epsilon} = a_{\epsilon} + b_{\epsilon} > \sup A + \sup B - \epsilon.$$

Hence, $\sup A + \sup B - \epsilon$ is not an upper bound of A + B. Since ϵ was arbitrary, we have (ii) and hence,

$$\sup A + \sup B = \sup(A + B).$$

Q.E.D.

Remarks:

(i) The quantifiers (such as "∃" (there exists) and "∀" (for all)) and the order in which they appear is very important in these proofs. To illustrate this, consider the two statements

$$\exists M \in \mathbb{R} \text{ such that } a \leq M \quad \forall a \in A$$
 (5)

$$\forall a \in A, \exists M \in \mathbb{R} \text{ such that } a \leq M.$$
 (6)

The first one $(i.e.\ (5))$ is the statement that M is an upper bound of the set A (it is therefore true whenever A is bounded from above). Note that since " $\exists M \in \mathbb{R}$ " appears before " $a \leq M \quad \forall a \in A$ ", M does not (cannot) depend on a. The second one $(i.e.\ (5))$ is always true (tautology). Indeed, since " $\exists M \in \mathbb{R}$ " appears after " $\forall a \in A$ ", M is allowed to depend on a and therefore $M = a \in A \subset \mathbb{R}$ trivially satisfies the inequality.

(ii) The supremum of a set S is not necessarily an element of the set S. It is not true that the supremum of S is the "maximum of the set S". To see this, consider $S := \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. One can show sup S = 1, but $1 \notin S$. Also note that S has no maximum.

2. Using only field axioms of \mathbb{R} (Definition 2.1.1 in the book), prove that

$$(-1) \cdot (-1) = 1.$$

Write every step of the proof carefully indicating which field property you are using.

Solution:

There were many ways to do this, but here is one

$$\begin{aligned} 1 &= 1 \cdot 1 \\ &= (1+0) \cdot (1+0) \\ &= (1+(1+(-1))) \cdot (1+(1+(-1))) \\ &= 1 \cdot (1+(1+(-1))) + (1+(-1)) \cdot (1+(1+(-1))) \\ &= 1 \cdot (1+(1+(-1))) + (1+(-1)) \cdot (1+(1+(-1))) \\ &= 1+(1+(-1)) + (1+(-1)) \cdot (1+(1+(-1))) \\ &= 1+(1+(-1)) + (1+(-1)) \cdot (1+(-1)) \\ &= 1+(1+(-1)) + (1+(-1)) + (1+(-1)) \cdot (1+(-1)) \\ &= 1+(1+(-1)) + (1+(-1)) \\ &= 1+0+0+(1+(-1)) \cdot (1+(-1)) \\ &= 1+(1+(-1)) \cdot (1+(-1)) \\ &= 1+(1+(-1)) + (-1) \cdot (1+(-1)) \\ &= 1+1+(-1)+(-1) \cdot (1+(-1)) \\ &= 1+1+(-1)+(-1)+(-1) \cdot (-1)) \\ &= 1+1+(-1)+(-1)+(-1)+(-1) \cdot (-1)) \\ &= 1+(1+(-1))+(1+(-1)+(-1)) \\ &= 1+(1+(-1))+(1+(-1)+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(-1) \\ &= 1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(-1))+(1+(-1)) \\ &= 1+(1+(1+(-1))+(1+(1+(-1))+(1+(1+(-1)) \\ &= 1+(1+(1+(1+(1))+(1+(1+(1))) \\ &= 1+(1+(1+(1))+(1+(1+(1))+(1+(1+(1)) \\ &= 1+(1+(1+(1))+(1+(1+(1))+(1+(1+(1)) \\ &= 1+(1+(1+(1))+(1+(1+(1))+(1+(1+(1)) \\ &= 1+(1+(1+(1))+(1+(1+$$

Q.E.D.

Remarks:

The axiom of existence of the 0 element (A3) is states that there $\exists 0 \in \mathbb{R}$ such that a + 0 = 0 + a = a for any $a \in \mathbb{R}$. It does not state that $a \cdot 0 = 0 \cdot a = 0$ for any $a \in \mathbb{R}$ (if you wanted to use it, you had to show it). Also, the existence of negative elements (A4) does not state uniqueness of the negative element to a real number a. Finally, it is not given as an axiom that -(-a) = a.

3. Show that there exists no rational number r such that $r^2 = 3$.

Solution:

We proceed by contradiction. Assume $r^2=3$ and $r\in\mathbb{Q}$. Then we can write r as an irreducible fraction r=n/m where $m\in\mathbb{N}$ and $n\in\mathbb{Z}$ are coprime $(\gcd(m,n)=1)$. Then, $3=r^2=(n/m)^2=n^2/m^2\Leftrightarrow 3m^2=n^2$.

If m is even, then m^2 is even and $3m^2$ is even so that n^2 is even and n is even, contradicting the fact that m and n are coprime. We conclude m is odd, which implies m^2 and $3m^2$ are odd so that n^2 and n are odd.

We can therefore write m=2k+1 for some $k\in\mathbb{Z},\ n=2\ell+1$ for some $\ell\in\mathbb{Z}$. Then, we must have

$$3(2k+1)^{2} = (2\ell+1)^{2}$$

$$\Leftrightarrow 12k^{2} + 12n^{2} + 3 = 4\ell^{2} + 4\ell + 1$$

$$\Leftrightarrow 12k^{2} + 12n^{2} + 3 + (-1) = 4\ell^{2} + 4\ell + 1 + (-1)$$

$$\Leftrightarrow 12k^{2} + 12n^{2} + 2 = 4\ell^{2} + 4\ell$$

$$\Leftrightarrow 6k^{2} + 6k + 1 = 2\ell^{2} + 2\ell$$

$$\Leftrightarrow 2(2k^{2} + 3k) + 1 = 2(\ell^{2} + \ell).$$

Note that the LHS is an odd integer equal to an even integer on the RHS. This is a contradiction. We conclude that there is no $r \in \mathbb{O}$ such that $r^2 = 3$.

4. Let $x, y, z \in \mathbb{R}$. Show that |x - y| + |y - z| = |x - z| if and only if $x \le y \le z$ or $x \ge y \ge z$.

Solution:

It is useful to first analyze under what condition equality holds in the triangle inequality $|a+b| \le |a| + |b|$:

$$|a+b| = |a| + |b|$$

$$\Leftrightarrow |a+b|^2 = (|a|+|b|)^2 \qquad \text{(since both sides are non-negative)}$$

$$\Leftrightarrow (a+b)^2 = |a|^2 + 2|a||b| + |b|^2$$

$$\Leftrightarrow a^2 + 2ab + b^2 = a^2 + 2|a||b| + b^2$$

$$\Leftrightarrow 2ab = 2|ab|$$

$$\Leftrightarrow ab = |ab|$$

$$\Leftrightarrow ab \ge 0$$

Thus $|a+b| = |a| + |b| \Leftrightarrow ab \ge 0$.

Now we prove the problem: Let a := x - y and b := y - z. Then a + b = (x - y) + (y - z) = x - z. Thus, as shown above:

$$\begin{split} |\underbrace{x-y}_a| + |\underbrace{y-z}_b| &= |\underbrace{x-z}_{a+b}| \Leftrightarrow (x-y)(y-z) \geq 0 \\ &\Leftrightarrow (x-y \geq 0 \text{ and } y-z \geq 0) \text{ or } (x-y \leq 0 \text{ and } y-z \leq 0) \\ &\Leftrightarrow (x \geq y \text{ and } y \geq z) \text{ or } (x \leq y \text{ and } y \leq z) \\ &\Leftrightarrow (x \geq y \geq z) \text{ or } (x \leq y \leq z). \end{split}$$

5. If $a \in \mathbb{R}$, a > -1, prove by induction that

$$(1+a)^n \ge 1 + na$$

for all $n \in \mathbb{N}$.

Solution:

Base case: For n = 1, we indeed have $(1 + a)^1 = (1 + a) \ge 1 + 1 \cdot a$.

<u>Induction step:</u> Assume $(1+a)^k \ge 1 + ka$, $k \in \mathbb{N}$. We want to show $(1+a)^{k+1} \ge 1 + (k+1)a$. Indeed,

$$(1+a)^{k+1} = (1+a)^k \cdot (1+a)$$
 by associativity
$$\geq (1+ka) \cdot (1+a)$$
 by induction hypothesis and since $a > -1$
$$= 1 \cdot (1+a) + (ka) \cdot (1+a)$$
 by distributivity
$$= 1+a+ka+ka^2$$
 by distributivity and multiplicative identity
$$= 1+a(1+k)+ka^2$$
 by associativity and distributivity
$$\geq 1+a(1+k).$$
 since $ka^2 > 0$

Note that in the second step $a > -1 \Rightarrow a+1 > 0$ and therefore $(1+a)^k \ge 1 + ka \Rightarrow (1+a)^k \cdot (1+a) \ge (1+ka) \cdot (1+a)$.

By induction, we have shown that $(1+a)^n \ge 1 + an$ for all $n \in \mathbb{N}$.

6. For any $A \subseteq \mathbb{R}$ we define

$$-A = \{-a : a \in A\}$$

Suppose that A is bounded from above. Prove that -A is bounded from below and that

$$\inf(-A) = -\sup A$$

Solution:

We start by showing that $-\sup A$ is a lower bound for -A. Let $a \in A$ be arbitrary. Then $a \le \sup A$ and thus $-\sup A \le -a$. Since a was arbitrarily chosen this means that $-\sup A \le -a$ for all $a \in A$ i.e. $-\sup A$ is a lower bound for -A. This especially proves that -A is bounded below.

In order to prove that $\inf(-A) = -\sup A$ we need to show two things:

- (i) $-\sup A$ is a lower bound for -A, and
- (ii) For any $\epsilon > 0$, $-\sup A + \epsilon$ is not a lower bound for -A.

We just proved (i) above, so all that remains to do is to show (ii). Let $\epsilon > 0$ be arbitrary. Since $\sup A$ is the least upper bound for A, $\sup A - \epsilon < \sup A$ is not an upper bound for A i.e. there exists an $a \in A$ with $\sup A - \epsilon < a$. Then $-\sup A + \epsilon > -a$ which means that $-\sup A + \epsilon$ is not a lower bound for -A. This proves (ii) and therefore that $\inf(-A) = -\sup A$.

Q.E.D.

Remark:

By substituting -A for A we obtain the result that if A is bounded below then $\inf(A) = -\sup(-A)$. This especially shows that the infimum exists. So the completeness property of \mathbb{R} also implies that any subset of \mathbb{R} that is bounded below has an infimum in \mathbb{R} .

7. Let $x \in \mathbb{R}$ be irrational and $r \in \mathbb{Q}$, $r \neq 0$, be rational. Prove that x + r and $x \cdot r$ are irrational.

Solution:

We prove both statements via proof by contradiction, using the fact that the set \mathbb{Q} of all rational numbers is a field. We will prove all statements directly from the field axioms.

 $\underline{x+r}$: Assume that x+r is rational. Since r is rational, its additive inverse -r is rational. Since $\mathbb Q$ is closed under addition, $(x+r)+(-r)\stackrel{\mathrm{assoc}}{=} x+(r+(-r))=x+0=x$ is rational, which is a contradiction. Thus the assumption is wrong and x+r is irrational. (Note that the statement is trivially valid in the case r=0 i.e. the condition $r\neq 0$ is not needed for this part of the problem.)

Q.E.D.

 $\underline{x\cdot r}$: Assume that $x\cdot r$ is rational. Since $r\neq 0$ is rational, its multiplicative inverse 1/r is rational. Since $\mathbb Q$ is closed under multiplication, $(x\cdot r)\cdot (1/r)\stackrel{\mathrm{assoc.}}{=} x\cdot (r\cdot (1/r))=x\cdot 1=x$ is rational, which is a contradiction. Thus the assumption is wrong and $x\cdot r$ is irrational. (Note that the condition $r\neq 0$ is essential for this part of the problem: it can be shown (using field axioms only, see Theorem 2.1.2 of Bartle and Sherbert) that $x\cdot 0=0$ and thus rational for all $x\in \mathbb R$.)