Lecture 9 Information Redundancy - Part III

ECE 422: Reliable and Secure Systems Design

Instructor: An Ran Chen

Term: 2024 Winter

Schedule for today

- Key concepts from last class
- Cyclic codes
 - Two properties: linear and cyclic
 - Generator polynomial
 - Encoding
 - Polynomial multiplication
- Next class: decoding and error detection in cyclic codes

Code distance in error detection

To detect d bit errors, the code distance for the codewords must be larger or equal to d+1.

Example

Code: {000, 001}

$$C_d = 1$$

Transmitting codeword: 000

A single-bit error happens, 000 becomes 001

We cannot tell there is an error in 001.

Analogy

Dictionary: {accept, accent}

Distance = 1

Typed word: accept

A typo happens, accept becomes accent

We cannot tell it is a typo.

Code distance in error correction

To correct d bit errors, the code distance for the codewords must be larger or equal to 2d+1.

Example

Code: {000, 111}

 $C^{q} = 3$

Transmitting codeword: 000

A single-bit error happens, 000 becomes 001

We can correct 001 to 000 (closest).

Analogy

Dictionary: {except, exception}

Distance = 3

Spelling word: except

A typo happens, except becomes eccept

We can correct the typo.

Error detection and correction

Extended Hamming codes

Extended Hamming code (even parity)

- There are six 1s in the whole block.
- That is an even number of 1s, the parity check at position 0 passes.
- However, the other parity checks (at position 1, 2 and 4) detect an error.
- Therefore, there are at least two errors.

Cyclic codes

Cyclic code is a special class of codes used in systems where burst errors can happen.

 Burst errors can happen in digital communication and storage devices (e.g., Disks, CDs)

Examples of cyclic codes:

- Cyclic Redundancy Check (CRC)
- Reed-Solomon codes (RS codes)

Burst error = more than one bits have been changed

Application of Reed-Solomon codes

RS codes have been widely applied in modern systems thanks to its efficiency in error correction.

Examples of modern systems:

- Data storage
 - o E.g., DVD and CD
- Satellite communication
 - E.g., Voyager II
- Hi-speed modems

Cyclic codes

Cyclic: any circular shift of a codeword produces another codeword

- Move the rightmost bit to the leftmost position
- Shift all other bits by one position to the right

For example:

- Consider the codeword 10110
- Circular shift by one position to the right: 01011
- Circular shift by two positions to the right: 10101
- ...

Cyclic codes are not necessary linear

Cyclic codes are not necessary linear.

- a linear code is code for which any linear combination of codewords is also a codeword.
- any linear combination of codewords is also a codeword

For cyclic codes, the addition of two codewords does not necessarily lead to another codeword.

A linear code is an error-correcting code for which any linear combination of codewords is also a codeword.

Example of linear/cyclic codes

Linear code

- Suppose the code {0000, 0100, 0011, 1100, 0111, 1000, 1011, 1111}
- The sum of any codewords must produce another codeword

Cyclic code

- Suppose the code {10110, 01011, 10101, 11010, 01101}
- Their sum does not produce a codeword

Addition for codewords

The notion of "addition" here is different from the ordinary addition of numbers.

- Done in a mod 2 arithmetic system
- The terms "addition" and "xor" are used interchangeably

It differs in two respects:

- No carry over, each bit is independent of each other bit
- 2 is the same as 0, so 1 and 1 is none.
 - \circ E.g., 1 + 0 ≡ 1 (mod 2)
 - \circ E.g., 1 + 1 ≡ 0 (mod 2)

+	0	1
0	0	1
1	1	0

Example of addition of codewords

For example:

Codeword 1: 10111

Codeword 2: 00011

Calculate the sum of these two codewords:

or

Cyclic codes are not necessary linear

Linear code

- Suppose the code {0000, 0100, 0011, 1100, 0111, 1000, 1011, 1111}
- The sum of any codewords must produce another codeword

A linear code is an error-correcting code for which any linear combination of codewords is also a codeword.

Cyclic code

- Suppose the code {10110, 01011, 10101, 11010, 01101}
- Their sum does not produce a codeword

For cyclic codes, the addition of two codewords does not necessarily lead to another codeword.

Properties of linear cyclic codes

In practice, cyclic codes designed for error detection and correction should have two main properties:

Property 1: Linear

The sum of any two or more codewords in C is again a codeword in C.

Property 2: Cyclic

For a codeword in C, all its cyclic shifts are also codewords.

Example of linear cyclic codes

Code {000000, 100100, 110110, 010010, 011011, 001001, 101101, 111111} is both linear and cyclic.

Question: Prove that the above code contains both cyclic and linear properties.

Property 1: Linear

• The sum of any two or more codewords in C is again a codeword in C.

Property 2: Cyclic

For a codeword in C, all its cyclic shifts are also codewords.

Example of linear cyclic codes

Question: Is the code {000, 100, 010, 001} a linear cyclic code?

Polynomials

Cyclic codes represent codewords as polynomials.

• E.g., a codeword $[a_0 a_1 ... a_{n-1}]$ is represented as a polynomial

$$a(x) = a_0.x^0 + a_1.x^1 + ... + a_{n-1}.x^{n-1}$$

Polynomials

Cyclic codes represent codewords as polynomials.

• E.g., a codeword $[a_0 a_1 ... a_{n-1}]$ is represented as a polynomial

$$a(x) = a_0.x^0 + a_1.x^1 + ... + a_{n-1}.x^{n-1}$$

Note that:

- Since the code is binary, the coefficients are 0 and 1
- For example, $d(x) = 1 \cdot x^0 + 0 \cdot x^1 + 1 \cdot x^2 + 1 \cdot x^3$ represents the data (1011)
- Polynomial: x³ + x² + 1

Polynomials

The degree of a polynomial equals to its highest exponent:

• E.g., the degree of $1 + x^1 + x^3$ is 3

A cyclic code with the **generator polynomial** of degree (n-k) detects all burst errors affecting (n-k) bits or less.

- n is the number of bits in codeword
- k is the number of bits in data

Generator polynomial

Generator polynomial, denoted as g(x), is used to:

- encode the data polynomial into codeword polynomial.
- decode the codeword polynomial back to the data polynomial.

Encoding

Multiply data polynomial by generator polynomial:

$$c(x) = d(x).g(x)$$

• g(x) is the generator polynomial for a linear cyclic code of length n if and only if g(x) divides $1 + x^n$ without a reminder.

$$1 + x^n \mod g(x) = 0$$

Multiplication in modulo 2 arithmetic = AND operation

Polynomial multiplication

To multiply two polynomials:

- multiply each term in one polynomial by each term in the other polynomial
- add those answers together, and simplify if needed

$$d(x) = (1011) = x^3 + x^2 + 1$$

 $g(x) = x^3 + x + 1$ Data bits $k = 4$

$$\frac{1}{1x^0 + 0x^1 + 1x^2 + 1x^3}$$

$$c(x) = d(x).g(x)$$

$$= (x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^6 + x^4 + x^3 + x^5 + x^3 + x^2 + x^3 + x + 1$$

$$= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + 1$$

Length n = 7

Cyclic property on multiplication

Suppose a codeword $\{b_0b_1b_2b_3\}$, and $g(x) = (x^4 - 1) \equiv 0$, or $x^4 \equiv 1$

$$c(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

Let's multiply the codeword by x:

$$x.c(x) = x(b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$x.c(x) = b_0x + b_1x^2 + b_2x^3 + b_3x^4$$

Cyclic property on multiplication

Suppose a codeword $\{b_0b_1b_2b_3\}$, and $g(x) = (x^4 - 1) \equiv 0$, or $x^4 \equiv 1$

$$c(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

Let's multiply the codeword by x:

$$x.c(x) = x(b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$x.c(x) = b_0x + b_1x^2 + b_2x^3 + b_3x^4$$

$$x.c(x) = b_3 + b_0x + b_1x^2 + b_2x^3$$

Cyclic property on multiplication

Suppose a codeword $\{b_0b_1b_2b_3\}$, and $g(x) = (x^4 - 1) \equiv 0$, or $x^4 \equiv 1$

$$c(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

Let's multiply the codeword by x:

$$x.c(x) = x(b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$x.c(x) = b_0x + b_1x^2 + b_2x^3 + b_3x^4$$

$$x.c(x) = b_3 + b_0 x + b_1 x^2 + b_2 x^3$$

Take-home: x.c(x) is basically shifting c(x) by one position

codeword {b₃b₀b₁b₂} is a circular shift of {b₀b₁b₂b₃}

$$d(x) = (1011000) = x^3 + x^2 + 1$$
 $c(x) = d(x).g(x)$
 $g(x) = x^3 + x + 1$ $= (x^3 + x^2 + 1).(x^3 + x + 1)$

$$(x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^3.(x^3 + x^2 + 1) + x.(x^3 + x^2 + 1) + (x^3 + x^2 + 1)$$

$$d(x) = (1011000) = x^3 + x^2 + 1$$
 $c(x) = d(x).g(x)$
 $g(x) = x^3 + x + 1$ $= (x^3 + x^2 + 1).(x^3 + x + 1)$

$$(x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^3.(x^3 + x^2 + 1) + x.(x^3 + x^2 + 1) + (x^3 + x^2 + 1)$$

$$1011000 \rightarrow 1x^{0} + 0x^{1} + 1x^{2} + 1x^{3} + 0x^{4} + 0x^{5} + 0x^{6} + 0x^{7}$$

$$d(x) = (1011000) = x^3 + x^2 + 1$$
 $c(x) = d(x).g(x)$
 $g(x) = x^3 + x + 1$ $= (x^3 + x^2 + 1).(x^3 + x + 1)$

$$(x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^3.(x^3 + x^2 + 1) + x.(x^3 + x^2 + 1) + (x^3 + x^2 + 1)$$

Shift 1011000 by three positions to the right

$$d(x) = (1011000) = x^3 + x^2 + 1$$
 $c(x) = d(x).g(x)$
 $g(x) = x^3 + x + 1$ $= (x^3 + x^2 + 1).(x^3 + x + 1)$

$$(x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^3.(x^3 + x^2 + 1) + x.(x^3 + x^2 + 1) + (x^3 + x^2 + 1)$$

Shift 1011000 by one position to the right

$$= 00010111 + 0101100$$

$$d(x) = (1011000) = x^3 + x^2 + 1$$
 $c(x) = d(x).g(x)$
 $g(x) = x^3 + x + 1$ $= (x^3 + x^2 + 1).(x^3 + x + 1)$

$$(x^3 + x^2 + 1).(x^3 + x + 1)$$

$$= x^3.(x^3 + x^2 + 1) + x.(x^3 + x^2 + 1) + (x^3 + x^2 + 1)$$

$$= 11111111 = x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + 1$$

Example: (7, 4) cyclic code

Question: Find a generator polynomial for (7, 4) cyclic code.

Answer:

(7, 4) cyclic code means 7 bits to encode 4 bits of data (n=7, k=4).

g(x) must contain the two following properties:

- g(x) should be of a degree (n k) = 7 4 = 3
- g(x) should divide 1+x⁷ without a remainder

Two important properties to remember:

- g(x) has a degree (n-k)
- g(x) divides 1 + xⁿ without a remainder

1+x⁷ can be factored as:

$$1+x^7 = (1+x+x^3)(1+x^2+x^3)(1+x)$$

• so, we can choose for g(x) either $1+x+x^3$ or $1+x^2+x^3$

Next class: decoding and error detection in cyclic codes