1) Beck Excercise 3.1. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $L \in \mathbb{R}^{p \times n}$, and $\lambda \in \mathbb{R}_{++}$. Consider the regularized least squres (RLS) problem

$$min_{x \in \mathbb{R}^n} ||Ax - b||^2 + \lambda ||Lx||^2.$$

Show that the RLS problem has a unique solution if and only if $Null(A) \cap Null(L) = \{0\}$. Here, for a matrix B, Null(B) denotes the null space of B, $\{x : Bx = 0\}$.

We'll first prove the forward case using contradiction. Assume the RLS problem has a unique solution x^* . Suppose a non-zero vector v, where $v \in Null(A)$ and $v \in Null(L)$. This implies that Av = 0 and Lv = 0.

Evaluate $min_{x \in \mathbb{R}^n} ||Ax - b||^2 + \lambda ||Lx||^2$ at $x^* + v$. We get $min_{x \in \mathbb{R}^n} ||A(x^* + v) - b||^2 + \lambda ||L(x^* + v)||^2$ = $min_{x \in \mathbb{R}^n} ||Ax^* + Av - b||^2 + \lambda ||Lx^* + Lv||^2$

Recall that Ax = 0 and Lx = 0.

So we get $min_{x \in \mathbb{R}^n} ||Ax^* - b||^2 + \lambda ||Lx^*||^2$.

Since both x^* and x^*+v map to the same thing, x^* is not unique if $Null(A) \cap Null(L) \neq \{0\}$.

Now for the backwards case. Assume $Null(A) \cap Null(L) = \{0\} \implies min_{x \in \mathbb{R}^n} ||Ax - b||^2 + \lambda ||Lx||^2$

Take the spectral norm of $||Ax - b||^2 + \lambda ||Lx||^2$:

 $(Ax - b)^T (Ax - b) + \lambda ((Lx)^T (Lx))$

 $\implies A^T A x^T x - 2b^T A x + b^T b + \lambda L^T L x^T x$

Set $\nabla f(x) = 0$.

 $\implies 2xA^TA - 2Ab^T + \lambda L^TL2x = 0$

 $\implies 2xA^AA + \lambda L^TL2x = 2A^Tb$

 $\implies x(A^TA + \lambda L^TL) = A^Tb$

Obviously $B^TB\succeq 0$ for any matrix B, therefore $A^TA\succeq 0$ and $\lambda L^TL\succeq 0$ (since $\lambda>0$).

As a result $x = A^T b (A^T A + \lambda L^T L)^{-1}$.

Since $(A^T A + \lambda L^T L)$ is invertible, the solution is unique.

2) Beck Excercise 3.2. Generate thirty points (x_i, y_i) , i = 1, 2, ..., 30.

Find the quadratic function $y = ax^2 + bx + c$ that best fits the points in the least squares sense. Indicate what are the parameters a, b, c found by the least squares solution and plot the points along with the derived quadratic function. The resulting plot should look like the one in Figure 3.5.

Note: For this problem, please also submit a copy of the code you used to solve the problem.


```
import numpy as np from matplotlib import pyplot as plt  \begin{split} x &= \text{np.linspace} \left(0\,,\ 1,\ 30\right) \\ y &= 2*x**2 - 3*x + 1 + 0.05*\text{np.random.randn} \left(*x.\text{shape}\right) \end{split}   A &= \text{np.zeros} \left(\left(x.\text{size}\,,\ 3\right)\right) \\ \text{for i in range} \left(A.\text{shape} \left[1\right]\right): \\ A &[:\,,i\,] = x**i \end{split}   \text{coefficients} &= \text{np.linalg.lstsq} \left(A,\ y,\ \text{rcond=None}\right) \left[0\right] \\ \text{print} \left("\left\{0:1.4f\right\}\ x^2 + \left\{1:1.4f\right\}\ x + \left\{2:1.4f\right\}".\text{format} \left(\text{coefficients} \left[2\right],\ \text{coefficient} \right) \\ \text{plt.plot} \left(x,\ y,\ 'r.',\ x,\ A \ @ \ \text{coefficients},\ 'b'\right) \end{split}
```

```
\begin{array}{l} plt.\,xlim\,([\,0\,\,,\,\,\,1\,]) \\ plt.\,ylim\,([\,-0.4\,,\,\,\,1\,]) \\ plt.\,show\,() \end{array}
```

3) Beck Excercise 3.3. Write a function circle_fit whose input is an $n \times m$ matrix A, the columns of A are the m vectors in \mathbb{R}^n to which the circle should be fitted. The call to the function will be of the form

$$(x, r) = circle_fit(A)$$

Note: For this problem, report the output (x, r) for this set of points and a plot of the circle together with the 5 points. Also submit a copy of the code you used to solve the problem.

from circle_fit import taubinSVD import matplotlib.pyplot as plt

```
def circle_fit(points):
    xc, yc, r, sigma = taubinSVD(points)
```

$$\operatorname{return} \ \left(\left(\, \operatorname{xc} \, , \ \operatorname{yc} \, \right) \, , \ r \, \right)$$

$$points \, = \, \left[\left[0 \; , \; \; 0 \right] \; , \; \; \left[0 \; .5 \; , \; \; 0 \right] \; , \; \; \left[1 \; , \; \; 0 \right] \; , \; \; \left[1 \; , \; \; 1 \right] \; , \; \; \left[0 \; , \; \; 1 \right] \right]$$

$$(x, r) = circle_fit (points)$$

for point in points:

plt.scatter(point[0], point[1])

plt.gca().add_patch(circle)

plt.show()

4) Beck Exercise 4.8. Let $f: \mathbb{R}^n - > \mathbb{R}$ be given by $f(x) = \sqrt{1 + ||x||^2}$. Show that $f \in C_1^{1,1}$.

Hint: Show that $0 \le u^T \nabla^2 f(x) u \le ||u||^2 \ \forall u \in \mathbb{R}^n$ and apply Theorem 4.20. Theorem 4.20: Let $f \in C^2(\mathbb{R}^n)$, the following are equivalent: a) $f \in C_L^{1,1}(\mathbb{R}^n)$ b) $||\nabla^2 f(x)|| \le L \ \forall x \in \mathbb{R}^n$

$$\frac{d}{dx}(1+||x||^2)^{\frac{1}{2}}$$

$$=\frac{1}{2}(1+||x||^2)^{-\frac{1}{2}} \cdot 2x$$

$$=x \cdot (1+||x||^2)^{-\frac{1}{2}}$$

$$\frac{d}{dx}(x \cdot (1+||x||^2)^{-\frac{1}{2}})$$

$$= x \cdot \frac{d}{dx}((1+||x||^2)^{-\frac{1}{2}}) + \frac{d}{dx}(x) \cdot ((1+||x||^2)^{-\frac{1}{2}})$$

$$= x \cdot (-\frac{1}{2}(1+||x||^2)^{-\frac{3}{2}} \cdot 2x^T) + xx^T \cdot (1+||x||^2)^{-\frac{1}{2}}$$

$$= -(1+||x||^2)^{-\frac{3}{2}} \cdot xx^T + I_n \cdot (1+||x||^2)^{-\frac{1}{2}}$$

Let $a = (1 + ||x||^2)^{-\frac{1}{2}}$

$$= -a^3 x x^T + aI_n = aI_n - a^3 x x^T$$

Show that: $0 \le u^T (aI_n - a^3 x x^T) u \le ||u||^2 \ \forall u \in \mathbb{R}^n$

$$\implies au^T I_n u - a^3 u^T x x^T u$$

$$\implies a||u||^2 - a^3 u^T x x^T u$$

$$\Rightarrow a||u||^{2} - a^{3}||u||^{2}||x||^{2}$$

$$\Rightarrow ||u||^{2}(a - a^{3}||x||^{2})$$

$$||u||^{2} \ge ||u||^{2}(a - a^{3}||x||^{2}) \ge 0$$

$$\Rightarrow 1 \ge a - a^{3}||x||^{2} \ge 0$$

$$\Rightarrow 1 \ge (1 + ||x||^{2})^{-\frac{1}{2}} - (1 + ||x||^{2})^{-\frac{3}{2}}||x||^{2} \ge 0$$

Note that if ||x|| is getting smaller, the hessian gets bigger. Also, if ||x|| is getting bigger, the hessian gets smaller. Also, the norm is by definition ≥ 0 .

$$\begin{split} \lim_{||x|| \to \infty} \frac{1}{\sqrt{1 + ||x||^2}} - \frac{||x||^2}{(1 + ||x||^2)^{\frac{3}{2}}} \\ &\approx \frac{1}{\sqrt{||x||^2}} - \frac{||x||^2}{||x||^3} \\ &\approx \frac{1}{||x||} - \frac{1}{||x||} = 0 \end{split}$$

The constants and whatnot don't matter since no matter what, you are ending up with a higher power of ||x|| in the denominator, which means that term will always go to 0 as ||x|| gets large.

The smallest possible value of ||x|| is (0,0).

Plugging it in gives:

$$\frac{1}{\sqrt{1+0}} - \frac{0}{0+1} = 1$$

So the min is 0 and the max is 1, so the inequality holds and the function is in $C_1^{1,1}$.

5) Beck Excercise 5.2. Consider the Freudenstein and Roth test function

$$f(x) = f_1(x)^2 + f_2(x)^2, x \in \mathbb{R}^2$$

where

$$f_1(x) = -13 + x_1 + ((5 - x_2)x_2 - 2)x_2,$$

$$f_2(x) = -29 + x_1 + ((x_2 + 1)x_2 - 14)x_2.$$

i) Show that the function f has three stationary points. Find them and prove that one is a global minimizer, one is a strict local minimum, and the third is a saddle point.

Now we have to classify these 3 stationary points.

$$\frac{\partial^2 f}{\partial x_2^2} = 2(5 - 8x_2 + 6x_2 - 28) = 2(-3x_2 - 23) = -6x_2 - 46$$

Evaluate $\frac{\partial^2 f}{\partial x_2^2}$ at the stationary points.

By looking at the sign, we get that:

(5, 4) is a saddle point

$$\left(15 + \frac{8}{3}\left(1 + \sqrt{\frac{11}{2}}\right), \frac{2}{3}\left(1 + \sqrt{\frac{11}{2}}\right)\right)$$
 is a local minimum. $\left(15 + \frac{8}{3}\left(1 - \sqrt{\frac{11}{2}}\right), \frac{2}{3}\left(1 - \sqrt{\frac{11}{2}}\right)\right)$ is a local minimum.

Plug into f(x) to find out which is the global minimizer.

If we plug this into a calculator, we find that that he first local minimum gives ≈ 148.71 and the second local minimum gives ≈ 277.44 .

That means that the global minimizer is:

$$\left(15 + \frac{8}{3}\left(1 + \sqrt{\frac{11}{2}}\right), \frac{2}{3}\left(1 + \sqrt{\frac{11}{2}}\right)\right)$$

since 148.71 < 277.44.

- ii) Use Python to employ the following three methods on the problem of minimizing f:
 - a) the gradient method with backtracking and parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.
 - b) the hybrid Newton's method with parameters $(\alpha, \beta) = (0.5, 0.5)$
- c) the damped Gauss-Newton method with a backtracking line search strategy with parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.

All the algorithms should use the stopping criteria $||\nabla f(x)|| \le 10^{-5}$. Each algorithm should be employed four times on the following four starting points: $(-50,7)^T$, $(20,7)^T$, $(20,-18)^T$, and $(5,-10)^T$. For each of the four starting points, compare the number of iterations and point to which each method converged. If a method did not coverge, explain why.

Note: For this problem, additionally submit a copy of the code you used to solve the problem.

- 6) Beck Exercise 5.3. Let f be a twice continuously differentiable function satisfying $LI_n \succeq \nabla^2 f(x) \succeq mI_n$ for some L > m > 0 and let x^* be the unique minimizer of f over \mathbb{R}^n .
 - i) Show that

$$f(x) - f(x^*) \ge \frac{m}{2}||x - x^*||^2$$

for any $x \in \mathbb{R}^n$.

First, the second order taylor expansion of f around x^* is:

$$f(x) \approx f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(G) (x - x^*)$$

for some G in the line segment $[x, x^*]$.

Since x^* is the minimizer of f, $\nabla f(x^*) = 0$, so

$$f(x) \approx f(x^*) + \frac{1}{2}(x - x^*)^T \nabla^2 f(L)(x - x^*)$$

By the definition, $\nabla^2 f(G)$ is positive definite and the smallest eigenvalue $\geq m$.

So.

$$(x - x^*)^T \nabla f((G)(x - x^*)) \ge m||x - x^*||^2$$

Substituting this back into our taylor expansion gives:

$$f(x) \ge f(x^*) + \frac{m}{2}||x - x^*||^2$$

$$\implies f(x) - f(x^*) \ge \frac{m}{2} ||x - x^*||^2$$

for any $x \in \mathbb{R}^n$.

ii) Let $\{x_k\}_{k\geq 0}$ be the sequence generated by the damped Newton's method with constant step-size $t_k = \frac{m}{L}$. Show that

$$f(x_k) - f(x_{k+1}) \ge \frac{m}{2L} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k).$$

for any $x \in \mathbb{R}^n$.

Damped Newton's method:

$$x_{k+1} = x_k - t_k(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

With $t_k = \frac{m}{L}$, we have:

$$x_{k+1} = x_k - \frac{m}{L} (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Let
$$\lambda_k^2 = \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Goal:

$$f(x_k) - f(x_{k+1}) \ge \frac{m}{2L} \lambda_k^2$$

Quadratic taylor approximation of f around x_k :

$$f(y) \approx f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2} (y - x_k)^T \nabla^2 f(x_k) (y - x_k)$$

Let $y = x_{k+1}$. We then get:

$$f(x_{k+1}) \approx f(x_k) + \nabla f(x_k)^T ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + \frac{1}{2} ((x_k - \frac{m}{L}(\nabla^2 f(x_k))^{-1} \nabla f(x_k)) - x_k)^T \nabla^2 f(x_k) + x_k \nabla^2$$

Simplification:

$$f(x_{k+1}) \approx f(x_k) - \frac{m}{L} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k) + \frac{m^2}{2L^2} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla^2 f(x_k) (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Since $\nabla^2 f(x)$ is positive definite, we can simplify this to:

$$\frac{m^2}{2L^2} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k) \le \frac{m}{2L} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

We can deduce from this that:

$$f(x_k) - f(x_{k+1}) \ge \frac{m}{2L} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

iii) Show that $x_k \to x^*$ as $k \to \infty$.

Combining the inequalities from i and ii, we get:

$$f(x_{k+1}) \le f(x_k) - \frac{m}{2L} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

 x^* is the global minimizer, so f is bounded below by $f(x^*)$. This means that $f(x_k)$ is decreasing and bounded below by $f(x^*)$. So, $f(x_k)$ converges to some value G.

This implies that $f(x_k) - f(x_{k+1})$ approaches 0 as $k \to \infty$.

Now, from our inequality,

$$\nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k) \to 0$$

as $k \to \infty$.

Because $\nabla^2 f(x)$ is positive definite and $\leq L$ and $\geq m$, that means that

$$\nabla f(x_k) \to 0$$

as $k \to \infty$. But $\nabla f(x_k)$ is only 0 at x^* , so $x_k \to x^*$ as $k \to \infty$.