DISTRIBUTED COMPUTING AND MAPREDUCE

CKME 134 – BIG DATA ANALYTICS TOOLS

RYERSON UNIVERSITY

SPRING 2015

General Course Information

- Instructor
 - Shaohua Zhang
 - Ryerson shaohua.zhang@ryerson.ca
 - Personal shaohua.zhang@live.com
- □ GA
 - Behjat Soltanifar
 - <u>behjat.soltanifar@ryerson.ca</u>
- Lectures
 - 6:30~8:30
 - ENGLG06
- Lab
 - 8:30~9:30
 - 285 Victoria St (403/404)
 - Take the elevator to 4FL

Course Outline (subject to change)

- Intro to Big Data
- Distributed Computing and MapReduce
- 3. Hadoop Ecosystem
- 4. Intro to Hive
- 5. Pig
- 6. Advanced Pig
- 7. Hadoop PerformanceOptimization

- Big Data Use Cases:

 Location Intelligence and

 Marketing Analytics
- 9. Big Data Use Cases:Recommendation Engine andComputational Advertising
- 10. Hadoop In Action: BuildingData Pipelines
- 11. Beyond Hadoop: Spark
- 12. Beyond Hadoop: Real-Time Analytics

Assignment Schedule

Date	Out	In
Assignment 1	Jan 12	No Due Date
Assignment 2	Hive	
Assignment 3	Pig	
Assignment 4	Data Pipeline	

Lecture 1 Recap

Course Blackboard
Lecture 1 Review
Watson and future of analytics
Questions from students

Lecture 1 Recap - Review

- Big Data Introduction
- Big Data Use Cases
- Data Analytics Tooling
- 4. Big Data Job Market
- 5. Big Data Challenges
 - file://localhost/Users/DSinmotion/Dropbox/Startup/Ry ersonToolsCourse/Winter 2015/Session1-Introductionto-big-data-analytics-tools.pptx - 43. 4. Big Data Challenges

Session 1 Recap – Watson and Future of Analytics

- DeepQA Project The JeopardyGame
- Future of analytics
 - Computers will replace human to some extent
 - Watson
 - Deep Learning
 - Machine learning automation
 - Enterprise Miner, KXEN etc.
 - Vincent Granville → consulting (analytics automation)
- We're still in the early days
 - Human judgment is still critical
 - We need many more Watson like projects to make it real

Building Watson: An Overview of the DeepQA Project http://www.aaai.org/ojs/index.php/aimagazine/article/download/2303/2165
Building Watson: A Brief Overview of the DeepQA Project (youtube) https://www.youtube.com/watch?v=3G2H3DZ8rNc
Your cognitive future: How next-gen computing changes the way we live and work: <a href="https://www-

935.ibm.com/services/us/gbs/thoughtleadership/cognitivefuture/

Session 1 Recap - Questions From You

- Students with advanced tools knowledge
 - Start building your data science portfolio
 - Build your github repo
 - Join open source projects
 - Kaggle a place to polish your machine learning skills and learn from other great data scientists
 - Build something real

Session 1 Recap - Questions From You

- Students business/marketing background who are
 NOT interested in pursuing data scientist career
 - Being good with data is becoming increasingly important
 - Most MBA programs are opening data analytics courses
 - Orgs are becoming more and more data driven
 - Communities are building user-friendly big data platforms for you
 - SQL, scripting languages are your friends
 - Understanding basic stats/data mining concepts are very helpful when communicating with the data team

Big Data Use Case: News & Media

- Newspaper (Globe and Mail, NYT, Bloomberg)
 - \Box Content curation \rightarrow editor vs. computer
 - Which piece of news should make the headline?
 - Content classification (topic modeling)
 - Lead generation
 - Where do you get new digital subscribers from?
 - Online advertising → Profile your existing user base and then bid on those user attributes
 - Traditional media → Where/when do you place your ads?
 - Revenue
 - Subscription model
 - Advertising publisher revenue optimization
 - User tracking/understanding
 - How do you track your readers?
 - Browser session based
 - Email subscription
 - User demographic prediction
 - Content personalization
 - News recommendation
- Big data
 - Hadoop, text mining, topic modeling, recommendation etc.

Big Data Use Case: News & Media

- Bloomberg
 - News Recommender
 - Big data engineer (15k ~ 20k salary)
 - http://www.slideshare.net/Hadoop Summit/shah-june27-425pmroom210av2
 - http://www.youtube.com/watch?v=nNAbBXc1EYo
- □ New York Times
 - Content digitization
 - The New York Times used Amazon's EC2 compute cloud to crunch through four terabytes of scanned archives from the paper, converting them to PDFs for the Web

Lecture 2 - Outline

- Distributed Computing
- MapReduce
- Algorithms
 - Word Count
 - K-Means
- Beyond MapReduce

Distributed Computing

Single Node Architecture

- Traditionally, computation has been CPU bound
 - Complex computation on small data
- For decades, the primary push is to increase the computing power of a single machine

Scale Up vs. Scale Out

- Single Node Architecture
 - Scaling up advantage
 - Programming is easier than distributed computing
 - Faster processing on smaller data
 - Scale up disadvantage
 - Hardware cost
 - Scalability
- Advantage of scale-out systems
 - Scalability
 - Cost

Traditional Distributed Systems: Problems

- Problems with traditional distributed systems:
 - Complex programming model
 - Network bandwidth is the bottleneck
 - It is difficult to deal with partial failures of the system
 - Typically at compute time,
 data is copied to the compute
 nodes
 - This doesn't scale to today's big data problems!

Data Becomes the Bottleneck

- Traditional distributed systems don't scale to today's Internetscale data
- Getting data to the computer processor becomes the bottleneck
 - □ Disk I/O is slow
 - Network bandwidth is bottleneck
- □ Solution → moving computation to the data!

Modern Distributed Computing Cluster

Cluster architecture

A medium-to -large Hadoop cluster consists of a two-level or three-level architecture built with rack-mounted servers. Each rack of servers is interconnected using a 1 Gigabyte Ethernet switch. Each rack-level switch is connected to a cluster-level switch (which is typically a larger port-density 10GbE switch).

NOTE: DataNodes, NodeManagers, and RegionServers are typically co-deployed.

Big Data Made Possible

Hardware

- Big cluster of commodity machines at lower cost
 - Faster processor
 - Cheaper memory
 - Bigger hard drive space
 - Faster network bandwidth

Software

Algorithms to allow parallel computing (map-reduce)

MapReduce

Setting the Expectation

- If your goal is to become a data analyst, you probably don't have to learn MapReduce programming
 - Alternatively, you need to be good with Pig/Hive
 - \blacksquare Still, it is important to under the M/R basics
- But if you want to become a Hadoop data architect, data engineer or research engineer or maybe data scientist who work with very large data...
 - You'll need to understand M/R programming patterns well
 - You'll still use Pig/Hive 80% of your time, but being able
 M/R allows you to do more complex data processing
 - Writing customized UDF (user-defined functions) in Pig/Hive also requires a good understanding M/R

MapReduce

- MapReduce is a computing model that decomposes
 large data manipulation jobs into individual tasks that
 can be executed in parallel across a cluster of servers
- Each node processes data stored on that node
- Consists of two phases
 - Map
 - Reduce

MapReduce

- Automatic parallelization and distribution
 - It makes M/R programming much easier
- Developer simply need to focus on writing the map and reduce functions
- M/R is written in Java
- It also supports Python Streaming
 - writing map and reduce function in python

MapReduce - Toy Example

MapReduce - Map & Reduce

Word Count Example

- Word Count is a classic programming example, used in many tutorials
- Counting word occurrences is widely used in many natural language processing related tasks
 - TF-IDF (Term Frequency-Inverse Document Frequency) is key input into many complex algorithms such as PageRank and document classification

Note: we will walk through TF-IDF in more detail in later lectures

Word Count Explained

- The WordCount program reads/scans through the document line by line
- It tokenizes/splits the line by delimiters (space, tab etc.)
- Each occurrence of a word/term will increment the corresponding word count by 1

```
I wish to wish the
wish you wish to
wish but if you
wish the wish the
witch wishes, I
won't wish the wish
you wish to wish
```

Document

```
---> 1 1
wish ---> 111111111111
 to ---> 111
                                    to ---> 3
 the ---> 1111
                                   the
                                         ---> 1
                                   you ---> 3
you ---> 111
but ---> 1
                                   but ---> 1
 if ---> 1
                                        ---<del>></del> 1
witch ---> 1
                                  witch ---> 1
wishes ---> 1
                                  wishes ---> 1
                                  won't ---> 1
won't ---> 1
```

Word Count - MapReduce

MapReduce handles these automatically for you!!


```
MapReduce
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    public void map(LongWritable key, Text value, Context context)
        StringTokenizer tokenizer = new StringTokenizer(line);
 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values, Context context)
```

package org.myorg;

import java.io.IOException; import java.util.*;

import org.apache.hadoop.fs.Path;

private Text word = new Text();

throws IOException, InterruptedException { String line = value.toString();

throws IOException, InterruptedException {

public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "wordcount"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class);

job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1]));

for (IntWritable val : values) { sum += val.get();

while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); context.write(word, one);

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*;

public class WordCount {

int sum = 0:

job.setMapperClass(Map.class); job.setReducerClass(Reduce.class);

job.waitForCompletion(true);

Hive

```
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'docs' OVERWRITE INTO TABLE docs;
CREATE TABLE word counts AS
SELECT word, count(1) AS count FROM
  (SELECT explode(split(line, '\s')) AS word FROM docs) w
GROUP BY word
ORDER BY word:
```

K-Means Clustering

- Clustering Use Cases
 - Customer value segmentation
 - High value customer
 - Behavior segmentation
 - Marketing
 - Sales
 - Product
 - Location clustering
 - Multi-stage algorithms
 - Stage 1 \rightarrow clustering
 - Stage 2 → classification

□ Kmeans → Iterative algorithm until convergence

- Select K points at random as cluster centroids (centers)
- 2. For each data point, assign it to the closest center
 - Now we formed K clusters
- 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
- If the new centers are different from the old centers (previous iteration) →
 Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are different from the old centers (previous iteration) →
 Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are different from the old centers (previous iteration) →
 Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are different from the old centers (previous iteration) →
 Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- □ Kmeans → Iterative algorithm until convergence
 - Sect K points at random as cluster voids (centers)
 - 2. For data point, assign it to the closest (1)
 - Now formed K clusters
 - 3. For each clust O e-compute the centers
 - E.g., in the case D points →
 - X: average over all xis points in the cluster
 - Y: average over all y-diports in the cluster
 - 4. If the new centers are significated different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- □ Kmeans → Iterative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - 4. If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - 4. If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- □ Kmeans → Iterative algorithm until convergence
 - Sect K points at random as cluster poids (centers)
 - 2. For data point, assign it to the closest (1)
 - Now Formed K clusters
 - 3. For each clust O e-compute the centers
 - E.g., in the case D points →
 - X: average over lixis points in the cluster
 - Y: average over all y-automatis in the cluster
 - 4. If the new centers are significated different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- □ Kmeans → Iterative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - 4. If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- Kmeans terative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - 4. If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

- ☐ Kmeans → Iterative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

Meets convergence criteria

- □ Kmeans → Iterative algorithm until convergence
 - Select K points at random as cluster centroids (centers)
 - 2. For each data point, assign it to the closest center
 - Now we formed K clusters
 - 3. For each cluster, re-compute the centers
 - E.g., in the case of 2D points →
 - X: average over all x-axis points in the cluster
 - Y: average over all y-axis points in the cluster
 - If the new centers are significantly different from the old centers (previous iteration)
 - Set the new centers then Go to Step 2
 - Otherwise, stop

Meets convergence criteria

Distributed K-Means - MapReduce

Map-side

- Each map reads the K-centroids + one block from dataset
- Assign each point to the closest centroid
- Output <centroid, point>

Reduce-side

- Gets all points for a given centroid
- Re-compute a new centroid for this cluster
- Output: <new centroid>

Iteration Control

- Compare the old and new set of Kcentroids
 - If similar → Stop
 - Else
 - If max iterations has reached → Stop
 - Else → Start another Map-Reduce Iteration

Use of combiners

- Similar to the reducer
- Computes for each centroid the local sums (and counts) of the assigned points
- Sends to the reducer <centroid, <partial sums>>

Use of single reducer

- Amount of data to reducers is very small
- Single reducer can tell whether any of the centers has changed or not
- Creates a single output file

Distributed K-Means - MapReduce

Recommended Readings - MapReduce

- (Google) Google MapReduce (link)
- (Google) The Google File System (<u>link</u>)
- (Microsoft) Scaling up vs scale out for hadoop: time to rethink? (<u>link</u>)
- (Google) Vision paper: towards an understanding of the limits of mapreduce computation (<u>link</u>)
- (Twitter) MapReduce is good enough? If all you have is a hammer, throw away everything that is not a nail! (<u>link</u>)

Recommended Readings – MapReduce/Hadoop

■ Books

- Hadoop: The Definitive Guide Chap 2
- Mining of Massive Datasets Chap 2.1,2.2
- Data-Intensive Text Processing with MapReduce Chap 2

Recommended Readings – Data Analytics

- The Data Analytics Handbook
 - https://www.teamleada.com/handbook#download

Recommended Reading – Linux Commands

- Data Science at the Command Line
 - http://datascienceatthecommandline.com

