Kernel Support Vector Machines

In this exercise sheet, we will implement a kernel SVM. Our implementation will be based on a generic quadratic programming optimizer provided in CVXOPT (python-cvxopt package, or directly from the website www.cvxopt.org). The SVM will then be tested on the UCI breast cancer dataset, a simple binary classification dataset accessible via the scikit-learn library.

1. Building the Gaussian Kernel (5 P)

As a starting point, we would like to implement the Gaussian kernel, which we will make use of in our kernel SVM implementation. It is defined as:

$$k(x,x') = \exp\Big(-rac{\|x-x'\|^2}{2\sigma^2}\Big)$$

• Implement a function getGaussianKernel that returns for a Gaussian kernel of scale σ , the Gram matrix of the two data sets given as argument.

```
In [1]: import numpy,scipy,scipy.spatial

def getGaussianKernel(X1,X2,scale):
    ### TODO: REPLACE BY YOUR OWN CODE
    import solutions
    K = solutions.getGaussianKernel(X1,X2,scale)
    return K
    ###
```

2. Building the Matrices for the CVXOPT Quadratic Solver (20 P)

We would like to learn a nonlinear SVM by optimizing its dual. An advantage of the dual SVM compared to the primal SVM is that it allows to use nonlinear kernels such as the Gaussian kernel. The dual SVM consists of solving the following quadratic program:

$$\max_lpha \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{ij} lpha_i lpha_j y_i y_j k(x_i, x_j) \qquad ext{subject to:} \qquad 0 \leq lpha_i \leq C \qquad ext{and} \ \sum_{i=1}^N lpha_i y_i = 0.$$

We would like to rely on a CVXOPT solver to obtain a solution to our SVM dual. The function cvxopt.solvers.qp solves an optimization problem of the type:

$$egin{array}{ll} \min_{m{x}} & rac{1}{2}m{x}^ op Pm{x} + m{q}^ op m{x} \ & ext{subject to} & Gm{x} \preceq m{h} \ & ext{and} & Am{x} = m{b}. \end{array}$$

which is of similar form to our dual SVM (note that \boldsymbol{x} will correspond to the parameters $(\alpha_i)_i$ of the SVM). We need to build the data structures (vectors and matrices) that makes solving this quadratic problem equivalent to solving our dual SVM.

Implement a function getQPMatrices that builds the matrices P, q, G,
 h, A, b (of type cvxopt.matrix) that need to be passed as argument
 to the optimizer cvxopt.solvers.qp.

```
import cvxopt.cvxopt.solvers
cvxopt.solvers.options['show_progress'] = False

def getQPMatrices(K,T,C):
    ### TODO: REPLACE BY YOUR CODE
    import solutions
    P,q,G,h,A,b = solutions.getQPMatrices(K,T,C)
    return P,q,G,h,A,b
    ###
```

3. Computing the Bias Parameters (10 P)

Given the parameters $(\alpha_i)_i$ the optimization procedure has found, the prediction of the SVM is given by:

$$f(x) = ext{sign} \Big(\sum_{i=1}^N lpha_i y_i k(x,x_i) + heta \Big)$$

Note that the parameter θ has not been computed yet. It can be obtained from any support vector that lies exactly on the margin, or equivalently, whose associated parameter α is not equal to 0 or C. Calling one such vector " x_M ", the parameter θ can be computed as:

$$heta = y_M - \sum_{j=1}^N lpha_j y_j k(x_M, x_j)$$

• Implement a function getTheta that takes as input the Gram Matrix used for training, the label vector, the solution of our quadratic program, and the hyperparameter C. The function should return the parameter θ .

```
In [3]: def getTheta(K,T,alpha,C):
    ### TODO: REPLACE BY YOUR CODE
    import solutions
    theta = solutions.getTheta(K,T,alpha,C)
```

4. Implementing a class GaussianSVM (15 P)

All functions that are needed to learn the SVM have now been built. We would like to implement a SVM class that connects them and make the SVM easily usable. The class structure is given below and contains two functions, one for training the model, and one for applying it to test data.

- Implement the function fit that makes use of the functions getGaussianKernel , getQPMatrices , getTheta you have already implemented. The function should learn the SVM model and store the support vectors, their label, $(\alpha_i)_i$ and θ into the object (self).
- Implement the function predict that makes use of the stored information to compute the SVM output for any new collection of data points

```
In [4]:
    def __init__(self,C=1.0,scale=1.0):
        self.C, self.scale = C, scale

    def fit(self,X,T):
        ### TODO: REPLACE BY YOUR CODE
        import solutions
        solutions.fit(self,X,T)
        ###

    def predict(self,X):
        ### TODO: REPLACE BY YOUR CODE
        import solutions
        Y = solutions.predict(self,X)
        return Y
        ####
```

5. Analysis

The following code tests the SVM on some breast cancer binary classification dataset for a range of scale and soft-margin parameters. For each combination of parameters, we output the number of support vectors as well as the train and test accuracy averaged over a number of random train/test splits. Running the code below should take approximately 1-2 minutes.

```
In [5]: import numpy,sklearn.datasets,numpy

D = sklearn.datasets.load_breast_cancer()
X = D['data']
T = D['target']
```

```
T = (D['target'] == 1)*2.0-1.0
for scale in [30,100,300,1000,3000]:
    for C in [10,100,1000,10000]:
        acctrain,acctest,nbsvs = [],[],[]
        svm = GaussianSVM(C=C,scale=scale)
        for i in range(10):
            # Split the data
            R = numpy.random.mtrand.RandomState(i).permutation(len(X))
            Xtrain, Xtest = X[R[:len(R)//2]]*1, X[R[len(R)//2:]]*1
            Ttrain, Ttest = T[R[:len(R)//2]]*1, T[R[len(R)//2:]]*1
            # Train and test the SVM
            svm.fit(Xtrain,Ttrain)
            acctrain += [(svm.predict(Xtrain)==Ttrain).mean()]
            acctest += [(svm.predict(Xtest)==Ttest).mean()]
            nbsvs += [len(svm.X)*1.0]
        print('scale=%9.1f C=%9.1f nSV: %4d train: %.3f test: %.3f'%(
            scale,C,numpy.mean(nbsvs),numpy.mean(acctrain),numpy.mean(acc
    print('')
```

```
scale=
         30.0 C=
                      10.0 nSV:
                                 183 train: 0.997
                                                  test: 0.921
scale=
          30.0 C=
                     100.0 nSV:
                                 178 train: 1.000 test: 0.918
scale=
          30.0 C=
                    1000.0 nSV:
                                 184 train: 1.000 test: 0.918
scale=
         30.0 C= 10000.0 nSV:
                                 182 train: 1.000 test: 0.918
        100.0 C=
                      10.0 nSV:
                                 117
                                     train: 0.965 test: 0.935
scale=
scale=
        100.0 C=
                     100.0 nSV:
                                97 train: 0.987
                                                  test: 0.940
scale=
         100.0 C=
                    1000.0 nSV:
                                 85 train: 0.998 test: 0.932
scale=
        100.0 C= 10000.0 nSV:
                                71 train: 1.000 test: 0.926
scale=
        300.0 C=
                                 88 train: 0.939 test: 0.924
                      10.0 nSV:
scale=
        300.0 C=
                     100.0 nSV:
                                 48 train: 0.963 test: 0.943
scale=
        300.0 C=
                    1000.0 nSV:
                                 36 train: 0.978 test: 0.946
scale=
        300.0 C= 10000.0 nSV:
                                 32 train: 0.991
                                                 test: 0.941
scale=
        1000.0 C=
                      10.0 nSV:
                                 66 train: 0.926 test: 0.916
scale=
        1000.0 C=
                     100.0 nSV:
                                 55 train: 0.935 test: 0.929
scale=
        1000.0 C=
                    1000.0 nSV:
                                 49 train: 0.956 test: 0.946
scale=
        1000.0 C= 10000.0 nSV:
                                 38 train: 0.971 test: 0.951
        3000.0 C=
                      10.0 nSV:
                                 87 train: 0.912
scale=
                                                  test: 0.903
        3000.0 C=
                                 68 train: 0.926 test: 0.919
scale=
                     100.0 nSV:
                                 58 train: 0.934 test: 0.929
scale=
        3000.0 C=
                    1000.0 nSV:
scale=
        3000.0 C= 10000.0 nSV:
                                 49 train: 0.953 test: 0.943
```

We observe that the highest accuracy is obtained with a scale parameter that is neither too small nor too large. Best parameters are also often associated to a low number of support vectors.