MCV4U - Unit 5 Test
Exponential & Trig Functions

Name: _			
Date:			

Mark: _____

Answer all questions on this paper. Be sure to show <u>all</u> applicable work and express all answers in simplest form. Marks are awarded for presentation and technical correctness.

For questions 1 - 4, fill in the blanks with the correct answer. (1 mark each)

- 1. What famous Swiss mathematician introduced the number e?
- 2. Evaluate: $\ln e^{3x-1}$
- 3. The value of 'e' to three decimal places is ______
- 4. Differentiate the following:

a)
$$y = e^{4x^2 - 7x}$$

$$f(x) = 4x^3 \cos x$$

c)
$$f(x) = (\tan 5x)^2$$

d)
$$y = 6^{3x+2}$$

e)
$$y = \cos(2^x)$$

f)
$$f(x) = \frac{e^{\cos x}}{x}$$

$$y = x \ln 2x$$

h)
$$y = \sin^3(5x^2 - 4x)$$

i)
$$f(x) = \log_7(x^2 + x + 1)$$

$$y = 3^x \log_3 x$$

5. Determine the equation of the line tangent to the graph of $y = x e^x$ at the point where x = 2. Use "e" in your answer. ie, no decimals.

[4]

6. If $f(t)=10^{3t-5} \cdot e^{2t^2}$, then find the value(s) of t so that f'(t)=0.

[4]

7. A ladder needs to be carried horizontally around a corner joining two corridors, which are 1 m and 0.8 m wide. Calculate the length of the longest ladder that can be carried around this corner. See diagram below.

8. Sketch the function $f(x) = x^3 e^x$. Be sure to state and explain the following: Domain, intercepts, equations of asymptotes, critical numbers, intervals of increase and decrease, interval(s) of concavity, maximum and minimum points and point(s) of inflection(s). Include interval chart(s) in this question. [10]

9. Suppose that a particle moves along so that at time t measured in seconds, its position in meters is given by $s(t) = 5\sin(2t)$. $t \in [0, \pi]$ When is the particle changing direction.

10. Prove that $\frac{d}{dx}(\cot x) = -\csc^2 x$

11. Prove that the derivative of $y = 2^x$ is $y' = 2^x \ln 2$ two different ways; one using first principles and the other using logarithmic differentiation.