HAI702I — **TD**s

Ivan Lejeune

13 octobre 2025

Table des matières

TD1 — Espaces vectoriels										2
$\mathrm{TD2}$ — Transformations linéaires										8
TD3 — Réduction des endomorphismes										14

TD1 — Espaces vectoriels

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 1.1.

Déterminer une base orthonormale directe dont le premier vecteur est colinéaire au vecteur (1,2,2).

Solution. On rappelle les définitions importantes :

- Deux vecteurs u et v sont orthogonaux si $\langle u, v \rangle = 0$.
- Une base est orthonormale si ses vecteurs sont de norme 1 et deux à deux orthogonaux.
- Une base est directe si le produit vectoriel du premier vecteur par le deuxième donne le troisième.

Commençons par choisir notre premier vecteur u. On veut u colinéaire à (1,2,2) donc on a

$$u = \lambda(1, 2, 2), \quad \lambda \in \mathbb{R}^*.$$

Ensuite on veut que u soit de norme 1:

$$||u|| = 1 \iff \sqrt{\sum_{i=1}^{3} u_i^2} = 1$$

$$\iff \sum_{i=1}^{3} u_i^2 = 1$$

$$\iff \lambda^2 (1^2 + 2^2 + 2^2) = 1$$

$$\iff 9\lambda^2 = 1$$

$$\iff \lambda = \pm \frac{1}{3}.$$

On prend $\lambda = \frac{1}{3}$, donc

$$u = \frac{1}{3}(1,2,2) \ .$$

Ensuite on veut choisir v. Il faut que v soit orthogonal à u:

$$\langle u, v \rangle = 0.$$

Si on note v' = (x, y, z), on a:

$$(u,v') = 0 \iff \frac{1}{3}(1,2,2) \cdot (x,y,z) = 0 \iff \frac{1}{3}(x+2y+2z) = 0. \iff x+2y+2z = 0.$$

Pour des questions de simplicité, on peut choisir x = 0, y = 1 et z = -1. Il faut ensuite normaliser v' pour obtenir v.

$$||v'|| = \sqrt{0^2 + 1^2 + (-1)^2} = \sqrt{2}.$$

On peut alors prendre $v = \frac{1}{\sqrt{2}}(0, 1, -1)$

Enfin, pour w, on peut faire le produit vectoriel $u \wedge v$ pour être sûr que la base soit directe. Il y a plusieurs manières de faire le calcul, ici on utilise le déterminant :

$$w = u \wedge v = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} = e_1 \begin{vmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} - e_2 \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ 0 & -\frac{1}{\sqrt{2}} \end{vmatrix} + e_3 \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} \end{vmatrix}.$$

2

On trouve:

$$w = \frac{1}{3\sqrt{2}}(-4, 1, 1)$$

On a alors notre base orthonormale directe :

$$\mathcal{B} = (u, v, w) = \left(\frac{1}{3}(1, 2, 2), \frac{1}{\sqrt{2}}(0, 1, -1), \frac{1}{3\sqrt{2}}(-4, 1, 1)\right)$$

On peut vérifier rapidement qu'on a bien :

- ||u|| = 1, ||v|| = 1 et ||w|| = 1.
- $\langle u, v \rangle = 0$, $\langle u, w \rangle = 0$ et $\langle v, w \rangle = 0$.
- $u \wedge v = w$.

Exercice 1.2.

Pour quelles valeurs de a les vecteurs suivant sont-ils coplanaires?

- (1,0,a),
- (a, 1, 0),
- (0, a, 1).

Solution. Trois vecteurs sont coplanaires si et seulement si la matrice formée par ces vecteurs a un déterminant nul. Ici on a :

$$\begin{vmatrix} 1 & 0 & a \\ a & 1 & 0 \\ 0 & a & 1 \end{vmatrix} = 1 + a^3.$$

On cherche donc les valeurs de a telles que :

$$1 + a^3 = 0 \iff a^3 = -1 \iff a = -1.$$

Il n'y a pas d'autres solutions réelles. On peut le vérifier en factorisant $a^3 + 1$:

$$a^3 + 1 = (a+1)(a^2 - a + 1).$$

où $a^2 - a + 1$ n'a pas de racines réelles.

Donc les vecteurs sont coplanaires si et seulement si a = -1

Exercice 1.3.

Soient u,v et w trois vecteurs de l'espace et $a\in\mathbb{R}.$ On considère l'équation vectorielle d'inconnue x suivante :

$$u \wedge x = v$$

- 1. Montrer que si l'équation admet une solution, alors u et v sont orthogonaux. On supposera dans la suite que u et v sont orthogonaux.
- 2. Déterminer toutes les solutions colinéaires à $u \wedge v$.
- 3. En déduire toutes les solutions de l'équation.
- 4. Déterminer les vecteurs solutions qui vérifient en outre $\langle x, w \rangle = a$.

Solution.

1. Si l'équation admet une solution alors par définition du produit vectoriel on a v orthogonal à u et x, donc en particulier v est orthogonal à u.

2. Une solution colinéaire à $u \wedge v$ s'écrit $x = \lambda(u \wedge v)$ avec $\lambda \in \mathbb{R}$. Calculons $u \wedge x$:

$$u \wedge x = u \wedge (\lambda(u \wedge v))$$

$$= \langle u, v \rangle \lambda v - \langle u, \lambda u \rangle v$$

$$= -\lambda \langle u, u \rangle v$$

$$= -\lambda \|u\|^2 v$$

Donc

$$-\lambda \|u\|^2 v = v$$

$$\iff -\lambda \|u\|^2 = 1$$

$$\iff \lambda = -\frac{1}{\|u\|^2}.$$

La solution colinéaire à $u \wedge v$ est donc :

$$x = -\frac{1}{\|u\|^2} (u \wedge v).$$

3. Une solution de l'équation $u \wedge x = v$ se situe sur le plan formé par u et $u \wedge v$. On va donc chercher une solution sous la forme :

$$x = \alpha u + \beta(u \wedge v), \quad \alpha, \beta \in \mathbb{R}.$$

On calcule:

$$u \wedge x = u \wedge (\alpha u + \beta(u \wedge v))$$

$$= \alpha(u \wedge u) + \beta(u \wedge (u \wedge v))$$

$$= 0 + \beta(\langle u, v \rangle u - \langle u, u \rangle v)$$

$$= -\beta ||u||^{2} v.$$

On en déduit :

$$-\beta \|u\|^2 v = v$$

$$\iff -\beta \|u\|^2 = 1$$

$$\iff \beta = -\frac{1}{\|u\|^2}.$$

Donc l'ensemble des solutions est :

$$\left\{x = \alpha u - \frac{1}{\|u\|^2} (u \wedge v) \mid \alpha \in \mathbb{R}\right\}$$

4. Non traité.

Exercice 1.4. *

Dans l'espace muni d'un repère orthonormal. On note \mathcal{D} la droite passant par le point A = (1,3,-2) et de vecteur directeur u = (2,1,0), \mathcal{P} le plan d'équation 2x - 3y + 5z = 7 et M le point de coordonnées (1,2,3).

- 1. Calculer la distance de M à la droite \mathcal{D} .
- 2. Calculer la distance de M au plan \mathcal{P} .

 Indication: remarquer que le point (1,0,1) appartient au plan \mathcal{P} .

Solution.

1. Il y a plusieurs manières de calculer la distance d'un point à une droite. Première méthode : on cherche le point X de la droite \mathcal{D} tel que le segment MX soit

orthogonal à la droite. Le point X de la droite $\mathcal D$ s'écrit :

$$X = A + \lambda u = (1, 3, -2) + \lambda(2, 1, 0) = (1 + 2\lambda, 3 + \lambda, -2).$$

On cherche λ tel que MX soit orthogonal à u, c'est-à-dire :

$$\langle MX, u \rangle = 0$$

$$\iff \langle X - M, u \rangle = 0$$

$$\iff \langle (1 + 2\lambda - 1, 3 + \lambda - 2, -2 - 3), (2, 1, 0) \rangle = 0$$

$$\iff \langle (2\lambda, 1 + \lambda, -5), (2, 1, 0) \rangle = 0$$

$$\iff 4\lambda + 1 + \lambda = 0$$

$$\iff 5\lambda + 1 = 0$$

$$\iff \lambda = -\frac{1}{5}.$$

On en déduit :

$$X = \left(1 - \frac{2}{5}, 3 - \frac{1}{5}, -2\right) = \left(\frac{3}{5}, \frac{14}{5}, -2\right).$$

La distance cherchée est donc :

$$d(M, \mathcal{D}) = ||MX||$$

$$= \sqrt{\left(\frac{3}{5} - 1\right)^2 + \left(\frac{14}{5} - 2\right)^2 + (-2 - 3)^2}$$

$$= \sqrt{\frac{4}{25} + \frac{16}{25} + 25}$$

$$= \sqrt{\frac{4 + 16 + 625}{25}}$$

$$= \sqrt{\frac{645}{25}}$$

$$= \frac{\sqrt{645}}{5}.$$

Deuxième méthode : on utilise la formule de la distance d'un point à une droite :

$$d(M,\mathcal{D}) = \frac{\|AM \wedge u\|}{\|u\|}.$$

On a:

$$AM = M - A = (1 - 1, 2 - 3, 3 - (-2)) = (0, -1, 5).$$

Calculons le produit vectoriel :

$$AM \wedge u = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -1 & 5 \\ 2 & 1 & 0 \end{vmatrix} = e_1 \begin{vmatrix} -1 & 5 \\ 1 & 0 \end{vmatrix} - e_2 \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} + e_3 \begin{vmatrix} 0 & -1 \\ 2 & 1 \end{vmatrix} = -5e_1 + 10e_2 + 2e_3.$$

On en déduit :

$$||AM \wedge u|| = \sqrt{(-5)^2 + 10^2 + 2^2} = \sqrt{25 + 100 + 4} = \sqrt{129}.$$

De plus:

$$\|u\| = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{5}.$$

On trouve donc:

$$d(M,\mathcal{D}) = \frac{\sqrt{129}}{\sqrt{5}} = \frac{\sqrt{645}}{5}$$

2. De même, il y a plusieurs manières de calculer la distance d'un point à un plan. Première méthode : on cherche le point Y du plan \mathcal{P} tel que le segment MY soit orthogonal au plan. Le plan \mathcal{P} est orthogonal au vecteur normal n = (2, -3, 5). Ainsi, Y s'écrit :

$$Y = M + \mu n = (1, 2, 3) + \mu(2, -3, 5) = (1 + 2\mu, 2 - 3\mu, 3 + 5\mu).$$

On cherche μ tel que Y appartienne au plan, c'est-à-dire :

$$2(1+2\mu) - 3(2-3\mu) + 5(3+5\mu) = 7$$

$$\iff 2+4\mu - 6 + 9\mu + 15 + 25\mu = 7$$

$$\iff 38\mu + 11 = 7$$

$$\iff 38\mu = -4$$

$$\iff \mu = -\frac{2}{19}.$$

On en déduit :

$$Y = \left(1 - \frac{4}{19}, 2 + \frac{6}{19}, 3 - \frac{10}{19}\right)$$
$$= \left(\frac{15}{19}, \frac{44}{19}, \frac{47}{19}\right).$$

La distance cherchée est donc :

$$d(M, \mathcal{P}) = ||MY||$$

$$= \sqrt{\left(\frac{15}{19} - 1\right)^2 + \left(\frac{44}{19} - 2\right)^2 + \left(\frac{47}{19} - 3\right)^2}$$

$$= \sqrt{\frac{16}{361} + \frac{36}{361} + \frac{100}{361}}$$

$$= \sqrt{\frac{16 + 36 + 100}{361}}$$

$$= \sqrt{\frac{152}{361}}$$

$$= \frac{\sqrt{152}}{19}.$$

Deuxième méthode : on utilise la formule de la distance d'un point à un plan :

$$d(M, \mathcal{P}) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}},$$

où ax + by + cz + d = 0 est l'équation du plan et $M = (x_0, y_0, z_0)$. Ici, a = 2, b = -3, c = 5 et

d = -7. On a :

$$d(M, \mathcal{P}) = \frac{|2 \cdot 1 - 3 \cdot 2 + 5 \cdot 3 - 7|}{\sqrt{2^2 + (-3)^2 + 5^2}}$$
$$= \frac{|2 - 6 + 15 - 7|}{\sqrt{4 + 9 + 25}}$$
$$= \frac{|4|}{\sqrt{38}}$$
$$= \frac{4}{\sqrt{38}} = \frac{4\sqrt{38}}{38} = \frac{2\sqrt{38}}{19} = \frac{\sqrt{152}}{19}.$$

La distance cherchée est donc :

$$d(M,\mathcal{P}) = \frac{\sqrt{152}}{19}.$$

Exercice 1.5. *

Déterminer la projection orthogonale Δ' de la droite Δ d'équation :

$$\begin{cases} x = 1 + 2\lambda \\ y = -1 + \lambda \\ z = 2 \end{cases}$$

dans le plan \mathcal{P} d'équation x + y + z = 1.

Solution. Non traité.

Exercice 1.6. *

Calculer l'équation de la sphère de centre (1,1,1) et dont le plan tangent est x+y+z=2.

Solution. Non traité.

TD2 — Transformations linéaires

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 2.1 Transformation de \mathbb{R}^2 .

Ecrire pour chaque application linéaire ci dessous la matrice (dans la base canonique) de :

- 1. la rotation d'angle θ et de centre (0,0),
- 2. la projection sur la droite $\operatorname{Vect} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$,
- 3. la symétrie par rapport à la droite $\operatorname{Vect} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

Solution.

1. La matrice de la rotation d'angle θ et de centre (0,0) est :

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

2. On sait que la projection d'un vecteur u sur la droite définie par v est :

$$\mathbf{p}_{u/v} = \frac{\langle u, v \rangle \cdot v}{\|v\|^2}.$$

Il nous faut trouver l'image des vecteurs de la base canonique par la projection. Donc :

$$\begin{split} \mathbf{p}_{e_1/v} &= \frac{\left< e_1, v \right> \cdot v}{\|v\|^2} \\ &= \frac{1 \times a_1 + 0 \times a_2}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \\ &= \frac{a_1}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \frac{a_1^2}{a_1^2 + a_2^2} \\ \frac{a_1 a_2}{a_1^2 + a_2^2} \end{pmatrix}. \end{split}$$

On a l'image de e_1 . On fait de même pour e_2 :

$$\begin{aligned} \mathbf{p}_{e_2/v} &= \frac{\langle e_2, v \rangle \cdot v}{\|v\|^2} \\ &= \frac{0 \times a_1 + 1 \times a_2}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \\ &= \frac{a_2}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \frac{a_1 a_2}{a_1^2 + a_2^2} \\ \frac{a_2}{a_2^2 + a_2^2} \end{pmatrix}. \end{aligned}$$

Enfin, on met le tout ensemble pour obtenir la matrice :

$$P_{p/v} = \begin{pmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1 a_2}{a_1^2 + a_2^2} \\ \frac{a_1 a_2}{a_1^2 + a_2^2} & \frac{a_2}{a_1^2 + a_2^2} \end{pmatrix} = \frac{1}{a_1^2 + a_2^2} \begin{pmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{pmatrix}.$$

3. La symétrie par rapport à la droite définie par v est la transformation suivante :

8

$$S = e_1 + 2d = e_1 + 2(p_{e_1/v} - e_1) = 2p_{e_1/v} - e_1.$$

où $d = p_{e_1/v} - e_1$. Alors :

$$P_{S/v} = 2P - I_2 = \begin{pmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2}{a_1^2 + a_2^2} - 1 \end{pmatrix}.$$

Exercice 2.2.

Soit $a,b\in\mathbb{R}^3.$ On note $a_{\perp b}$ le vecteur projeté de a sur le plan orthogonal à b.

- 1. Exprimer $a_{\perp b}$ en fonction de a et b.
- 2. Démontrer que $a_{\perp b} = \frac{(b \wedge a) \wedge b}{\|b\|^2}$.
- 3. Trouver une matrice $M \in \mathbb{R}^{3\times 3}$ telle que $a_{\perp b} = Ma$. Est-elle inversible?

Solution. Non traité.

Exercice 2.3 Inverser des matrices sans calculs.

1. Soit

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Montrer que $A^2 = 2I_3 - A$. En déduire que A est inversible et calculer A^{-1} .

2. Soit

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}.$$

Calculer $A^3 - A$. En déduire que A est inversible et calculer A^{-1} .

3. Soit $A \in \mathbb{R}^{n \times n}$ une matrice nilpotente, c'est-à-dire qu'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible et déterminer son inverse.

Solution.

1. On calcule:

$$A^{2} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} = 2I_{3} - A.$$

Donc $A^2 = 2I_3 - A$. Il en suit

$$A^{2} = 2I_{3} - A \iff A^{2} + A = 2I_{3}$$

$$\iff \frac{1}{2}(A^{2} + A) = I_{3}$$

$$\iff A\left(\frac{1}{2}(A + I_{3})\right) = I_{3}.$$

Donc A est inversible et

$$A^{-1} = \frac{1}{2}(A + I_3)$$

2. On calcule:

$$A^{2} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{pmatrix}.$$

9

$$A^{3} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}.$$

On remarque alors que

$$A^{3} - A = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I_{3}.$$

Comme précédemment, on en déduit que A est inversible et

$$A^{-1} = \frac{1}{4}(A^2 - I_3).$$

3. Soit $A \in \mathbb{R}^{n \times n}$ une matrice nilpotente. On cherche un inverse X de sorte que $(I_n - A)X = I_n$. On remarque que dans le cadre des réels, l'inverse de 1 - x est $\frac{1}{1 - x}$. Mais aussi :

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k.$$

On pose alors Y un tel candidat :

$$Y = I_n + A + A^2 + A^3 + \dots = \sum_{k=0}^{p} A^k.$$

Où p est le plus petit entier tel que $A^p = 0$. Il suit alors :

$$(I_n - A)Y = Y - AY$$

$$= \sum_{k=0}^{p} A^k - A \sum_{k=0}^{p} A^k$$

$$= \sum_{k=0}^{p} A^k - \sum_{k=0}^{p} A^{k+1}$$

$$= \sum_{k=0}^{p} A^k - \sum_{k=1}^{p+1} A^k$$

$$= \sum_{k=0}^{p} A^k - \sum_{k=1}^{p} A^k - A^{p+1}$$

$$= I_n + \sum_{k=1}^{p} A^k - \sum_{k=1}^{p} A^k - 0$$

$$= I_n.$$

Notre candidat était bien choisi, donc I_n – A est inversible et

$$(I_n - A)^{-1} = \sum_{k=0}^p A^k$$
.

Exercice 2.4 Déterminant d'une matrice triangulaire. *

Démontrer que le déterminant d'une matrice triangulaire est le produit de ses entrées diagonales.

Solution. Soit M une matrice triangulaire. On peut supposer sans perte de généralité que M est triangulaire supérieure (en effet, le déterminant d'une matrice est le même que celui de sa transposée). Alors M s'écrit :

$$\begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & \cdots & m_{1,n} \\ 0 & m_{2,2} & m_{2,3} & \cdots & m_{2,n} \\ 0 & 0 & m_{3,3} & \cdots & m_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & m_{n,n} \end{pmatrix}$$

On peut développer le calcul du déterminant :

$$\det(M) = m_{1,1} \det\begin{pmatrix} m_{2,2} & m_{2,3} & \cdots & m_{2,n} \\ 0 & m_{3,3} & \cdots & m_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_{n,n} \end{pmatrix}$$

En faisant une simple récurrence, on trouve :

$$\det(M) = m_{1,1} \times m_{2,2} \times m_{3,3} \times \cdots \times m_{n,n} = \prod_{i=1}^{n} m_{i,i}.$$

c'est-à-dire le produit des entrées diagonales.

Exercice 2.5 Inverser des matrices avec calculs.

A l'aide du pivot de Gauss, dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

1. Soit

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

2. Soit

$$B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

Solution. Appliquons le pivot de Gauss aux matrices A et B.

1. Pour A, on a:

$$\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
1 & 2 & 1 & | & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{L_2 \leftarrow L_2 - L_1}
\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
2 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow L_3 - 2L_1}
\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & -1 & -3 & | & -2 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow L_3 + L_2}
\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -4 & | & -3 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow -\frac{1}{4}L_3}
\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}$$

$$\xrightarrow{L_2 \leftarrow L_2 + L_3}
\begin{pmatrix}
1 & 1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & | & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow L_1 - 2L_3}
\begin{pmatrix}
1 & 1 & 0 & | & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & | & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow L_1 - L_2}
\begin{pmatrix}
1 & 0 & 0 & | & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 1 & 0 & | & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & | & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{pmatrix}$$

On est arrivé jusqu'à la matrice identité, donc A est inversible et

$$A^{-1} = -\frac{1}{4} \begin{pmatrix} 1 & 1 & -3\\ 1 & -3 & 1\\ -3 & 1 & 1 \end{pmatrix}.$$

2. Pour B, on a:

$$\begin{pmatrix}
1 & 4 & 7 & 1 & 0 & 0 \\
2 & 5 & 8 & 0 & 1 & 0 \\
3 & 6 & 9 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{L_2 \leftarrow L_2 - 2L_1}
\begin{pmatrix}
1 & 4 & 7 & 1 & 0 & 0 \\
0 & -3 & -6 & -2 & 1 & 0 \\
3 & 6 & 9 & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow L_3 - 3L_1}
\begin{pmatrix}
1 & 4 & 7 & 1 & 0 & 0 \\
0 & -3 & -6 & -2 & 1 & 0 \\
0 & -6 & -12 & -3 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow L_3 - 2L_2}
\begin{pmatrix}
1 & 4 & 7 & 1 & 0 & 0 \\
0 & -3 & -6 & -2 & 1 & 0 \\
0 & 0 & 0 & +1 & -2 & +1
\end{pmatrix}$$

L'algorithme s'arrête avant de trouver la matrice identité, donc B n'est pas inversible.

Exercice 2.6 Décomposition d'une rotation. *

On appelle cisaillement horizontal (x-shear) les transformations linéaires de \mathbb{R}^2 dont la matrice (dans les bases canoniques) est de la forme

$$H_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
 avec $x \in \mathbb{R}$.

On appelle cisaillement vertical (y-shear) les transformations linéaires de \mathbb{R}^2 dont la matrice

(dans les bases canoniques) est de la forme

$$V_y = \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix} \quad \text{avec } y \in \mathbb{R}.$$

- 1. Représenter l'effet de ces transformations sur la base canonique.
- 2. Soit $R_{-\theta}$ la matrice de rotation d'angle $-\theta \in \mathbb{R}$. Démontrer la décomposition suivante :

$$R_{-\theta} = H_{-\tan(\frac{\theta}{2})} V_{-\sin(\theta)} H_{\tan(\frac{\theta}{2})}.$$

Solution. Non traité.

Exercice 2.7. *

Soit A une matrice carrée à coefficients réels. Si A est inversible, est-ce que A^t est inversible? Si oui, quel est son inverse? Justifier.

Solution. Non traité.

TD3 — Réduction des endomorphismes

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 3.1 Vrai ou Faux.

- 1. En dimension finie, un endomorphisme admet un nombre fini de vecteurs propres.
- 2. Si A est diagonalisable, alors A^2 l'est aussi.
- 3. Si A^2 est diagonalisable, alors A l'est aussi.
- 4. Tout endomorphisme d'un espace vectoriel réel de dimension impaire admet au moins une valeur propre.
- 5. La somme de deux matrices diagonalisables est diagonalisable.

Solution.

- 1. Faux, on peut multiplier un vecteur propre par un scalaire.
- 2. Vrai, si $A = PDP^{-1}$ avec D diagonale, alors $A^2 = PD^2P^{-1}$ est aussi diagonale.
- 3. Faux, la matrice

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

n'est pas diagonalisable mais $A^2 = 0$ l'est. Montrons-le :

$$\mathsf{Det}(A - \lambda I_2) = \lambda^2$$

La seule valeur propre est donc 0 et le sous-espace associé est de dimension $1 \le 2$ car $E_0(e_2) = 0$.