

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Database Systems

Chapter 3: Relational Model Normalization

session 2: Normal forms

Outline

1	Introduction to Normal Forms
2	The process of normalization
3	1NF, 2NF, 3NF
	BCNF

Normal forms

- □ Normalization works through a series of stages called normal forms.
- ☐ The first normal form (1NF), second normal form (2NF), and third normal form (3NF).
- □ From a structural point of view, 2NF is better than 1NF, and 3NF is better than 2NF.
- ☐For most purposes in business database design, 3NF is as high as you need to go in the normalization process.
- ☐ Highest level of normalization is not always most desirable

The process of normalization

- ☐ A relation is in first normal form (1NF) if:
 - ■No multivalued attributes or no repeating groups in the table. In other words, each row/column intersection contains one and only one value, not a set of values (Every attribute value is atomic)
 - A primary key has been defined, which uniquely identifies each row in the relation
- □All relations are in 1st Normal Form

☐ Example: Invoice tabular

Table with multivalued attributes, not in 1st normal form

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4–Dr Dresser	Oak	500.00	4
					4	Entertainment Center	Natural Maple	650.00	3

Note: this is NOT a relation

□Removing repeating groups

=>Invoice table with no multivalued attributes and unique rows

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4–Dr Dresser	Oak	500.00	4
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

□Select the primary key

There are four determinants in INVOICE, and their functional dependencies are the following:

OrderID → OrderDate, CustomerID, CustomerName, CustomerAddress CustomerID → CustomerName, CustomerAddress ProductID → ProductDescription, ProductFinish, ProductStandardPrice OrderID, ProductID → OrderedQuantity

- ■The only candidate key for INVOICE is the composite key consisting of the attributes OrderID and ProductID.
 - =>The invoice is in 1NF, but not a well-structured one

☐Anomalies in the table:

- ■Insertion—if new product is ordered for order 1007 of existing customer, customer data must be re-entered, causing duplication
- **Deletion**—if we delete the Dining Table from Order 1006, we lose information concerning this item's finish (Natural Ash) and price (\$800.00).
- **Update**—changing the price of product ID 4 requires update in several records

Why do these anomalies exist?

Because there are multiple entity types in one relation. This results in duplication and an unnecessary dependency between the entities

☐ Ex: Is the supplier table in 1NF?

s_id	status	city	part_id	quantity
S1	20	London	P1	300
			P2	200
			Р3	400
			P4	200
			P5	100
			P6	100
S2	10	Paris	P1	300
			P2	400
s3	10	Paris	P2	200
S4	20	London	P2	200
			P4	300
			P5	500

Second Normal Form (2NF)

- □A relation is in second normal form (2NF) if:
 - It is in 1NF
 - There is no partial dependency.
- ☐A partial functional dependency exists when a non-key attribute is functionally dependent on part (but not all) of the primary key
- □ If a relation in 1NF has a primary key with single attribute, it is automatically in 2NF.

Second Normal Form (2NF)

□Functional dependency diagram for INVOICE

- Primary key for relation is (OrderID, ProductID)
- There are following partial dependencies

OrderID → OrderDate, CustomerID, CustomerName, CustomerAddress ProductID → ProductDescription, ProductFinish, ProductStandardPrice

Therefore, it is NOT in 2nd Normal Form

Second Normal Form (2NF)

- ☐ To convert a relation with partial dependencies to 2NF, the following steps are required:
 - 1. Create a new relation for each primary key attribute (or combination of attributes) that is a determinant in a partial dependency. That attribute is the primary key in the new relation.
 - 2. Move the non-key attributes that are dependent on this primary key attribute (or attributes) from the old relation to the new relation

☐ Removing partial dependencies

Partial dependencies are removed, but there are still transitive dependencies

Exercises

□Ex1: Consider a relation R(A,B,C,D) with F = { AB -> C, A -> D}. Test whether R is in 2NF or not.

=> AB is an only candidate key. Why?

A and B are called prime attributes and C and D are non-prime attributes.

AB -> C satisfies 2NF. But, A -> D is partial dependency.

So, R is not in 2NF. Therefore, decomposing relation into 2 relations R1(A,B,C) and R2(A, D). R1,R2 is in 2NF.

nttp://vku.udn.vn/

Exercises

Consider the following relations, check whether them are in 2NF or not. If not, decompose it into 2NF.

- \square Ex2: The relation R(A,B,C,D) and F = { AB -> C, B -> D}.
- \square Ex3: The relation R(A,B,C,D,E) and F = { AB -> C, A -> D, B -> E}.

- ☐ A relation is in third normal form (3NF) if:
 - ■It is in 2NF
 - ■There is no transitive dependency.
- A transitive dependency in a relation is a functional dependency between the primary key and one or more non-key attributes that are dependent on the primary key via another non-key attribute
- In the other words, a transitive dependency exists when a *non-key* attribute can determine another non-key attribute

☐ There are 2 transitive dependencies in CustomerOrder relation:

OrderID → CustomerID → CustomerName OrderID → CustomerID → CustomerAddress

■Both CustomerName and CustomerAddres are uniquely identified by CustomerID but CustomerID is not part of the primary key.

- Removing transitive dependencies by the following steps:
 - 1. For each non- key attribute(s) that is a determinant in a relation, **create a new relation**. That attribute (s) becomes the primary key of the new relation.
 - 2. Move all of the attributes that are functionally dependent on the primary key of the new relation from the old to the new relation.
 - 3. Primary key in the new relation serve as a foreign key in the old relation.

☐ The results of applying the steps to the relation CustomerOrder

The CustomerOrder relation is divided into 2 relations Customer and Order =>These relation are in 3NF

☐A relational schema showing these four relations and their associations in ERD

□Ex1: Is the **Inventory** relation in 3 NF? **Inventory**

Part_ID	Warehouse_ID	Quantity	Warehouse_address
1	1	5	Kathmandu
1	2	3	Lalitpur
2	1	2	Kathmandu
3	1	2	Kathmandu
4	2	4	Lalitpur

☐ The dependency is shown below:

□Ex2: Is the **Customer** relation in 3 NF?

CustID	CustName	Creditlimit	RepNum	RepFName	RepLName
101	KMC	15000	15	Ishan	Maskey
202	Teaching Hospital	20000	25	Santosh	Sharma
303	Manmohan Memorial	18000	15	Ishan	Maskey
305	Star Hospital	12000	50	Kiran	Chemjong
505	B and B	20000	25	Santosh	Sharma

☐ The dependency is shown below:

Exercises

Are the following relations in 3NF? If not, decompose them into 3NF.

- \square Ex3: Consider a relation R(A,B,C,D) with FDs { AB -> C, C -> D}.
- \square Ex4: Consider the relation R(A,B,C,D, E) and F = { AB -> C, B -> D, D -> E }.

- ☐ A relation is in BCNF if:
 - It is in 3NF
 - ■For every functional dependency X-> Y, X (called determinant) should be the **candidate key** of the relation.
- ☐BCNF can be violated only when the table contains more than one candidate key.
- ☐When a table contains only one candidate key, the 3NF and the BCNF are equivalent.

- □Example 1: Is the following relation in BCNF?

 R(A, B, C, D)

 F= { A ->BCD; BC ->AD; D->B}
- ⇒Above relation is in 3NF. Why?
- ⇒2 Candidate keys is A and BC. Why?
- But FD: D->B, D is not a candidate key.
- So the relation R violates BCNF.
- Thus, we break the relation R into 2 relation R1(\underline{A} , D, C) and R2 (\underline{D} , B), then R1, R2 are in BCNF.

- □Ex2: Is the following relation in BCNF?

 R(A, B, C, D)

 F= { AB ->CD; AC ->BD; C->B}
- ⇒Above relation is in 3NF (no partial dependencies and no transitive dependencies the C->B: one key/prime attribute determines another key/prime attribute)
- ⇒2 Candidate keys is AB and AC
- And FD: C->B, C is not a candidate key.
- So the relation R violates BCNF. Thus, we break the relation R into 2 relation R1 and R2, then R1, R2 are in BCNF with R1(A, C, D), R2 (C,B)

□Ex3: Is the Student relation in BCNF?

STU_ID	STAFF_ID	CLASS_CODE	ENROLL_GRADE
125	25	21334	A
125	20	32456	С
135	20	28458	В
144	25	27563	С
144	20	32456	В

With FDs:

{Stu_ID, Staff_ID} -> {Class_code, Enroll_Grade} Class_Code -> Staff_ID

- => 2 problems with the Student relation:
 - •Update anomaly: if a different staff member is assigned to teach class 32456, two rows will require updates
 - •deletion anomaly: if student 135 drops class 28458, information about who taught that class is lost
- ☐ The relation has 2 candidate keys: {Stu_ID, Staff_ID} and {StudentID, Class_Code}
- ☐ And Class Code -> Staff ID violates BCNF.
- □So, decomposition to BCNF into 2 relations with Student(Stu ID, Class Code, Enroll_Grade) and Class(Class Code, Staff_ID)

http://vku.udn.vn/

BCNF (Boyce-Codd Normal Form)

- □Ex4: Consider the relation R(A,B,C,D) and F = { AB -> C, C -> D}. Is the relation in BCNF?
- =>AB is only one candidate key. Why?
- □A,B are key/prime attributes and C,D are non-key/non-prime attributes.
- □C -> D is transitive dependency (a non-key attribute determine another non-key attribute). So, R is not in 3NF. Therefore, R is not in BCNF as well.
- ☐ To convert to 3NF, decompose R into two relations R1(A,B,C) and R2(C,D). Now the relations will be in BCNF as well.

Exercises

Determine whether the following relations is in BCNF or not? If not, decompose the relation with its NF.

 \square Ex1: Determine whether relation R(A,B,C) with F = { AB -> C, C -> A}

□Ex2: The relation StudMajor(<u>StdNo</u>, <u>Major</u>, Advisor) with FDs {StdNo, Major -> Advisor, Advisor ->

Major

<u>STDNO</u>	<u>MAJOR</u>	ADVISOR
123	PHYSICS	EINSTEIN
123	MUSIC	MOZART
456	BIOLOGY	DARWIN
789	PHYSICS	BOHR
999	PHYSICS	EINSTEIN

ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Thank You !