Notations

Dans tout le problème, n désigne un entier naturel non nul : $n \in \mathbb{N}^*$.

— Dans ℰ_n = ℳ_{n,1} (ℝ) espace vectoriel réel de dimension n, on utilisera le produit scalaire canonique défini par :

$$\forall U, V \in \mathcal{E}_n, (U|V) = U^\top V$$

- On notera M_n = M_n(ℝ), l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Pour $A \in \mathcal{M}_n$, on notera $\ker(A)$ le noyau de A vu comme endomorphisme de \mathcal{E}_n .
- Dans \mathcal{M}_n , on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $\mathcal{G}_n = GL_n(\mathbb{R}) = \{M \in \mathcal{M}_n, \det(M) \neq 0\}$ désigne le groupe linéaire des matrices inversibles de \mathcal{M}_n .
- On sera enfin amené à utiliser des décompositions par blocs. On rappelle en particulier que si A, B, C, D, A', B',
 C', D' ∈ M_n on a alors dans M_{2n}:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

$$\det\begin{pmatrix} A & C \\ 0_n & D \end{pmatrix} = \det\begin{pmatrix} A & 0_n \\ C & D \end{pmatrix} = \det(A)\det(D)$$

I - Le groupe symplectique

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de \mathcal{M}_{2n} définie par :

$$J = \left(\begin{array}{cc} 0_n & -I_n \\ I_n & 0_n \end{array} \right)$$

On note:

$$\mathcal{S}_{p_{2n}} = \left\{ M \in \mathcal{M}_{2n}, \ M^{\top}JM = J \right\}$$

- Calculer J² et J[⊤] en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse.
- Vérifier que J ∈ S_{p₂n} et que pour tout réel α,

$$K(\alpha) = \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix} \in \mathcal{S}_{p_{2n}}$$

- 3. Pour tout $U \in \mathcal{G}_n$, vérifier que $L_U = \begin{pmatrix} U & \mathbf{0}_n \\ \mathbf{0}_n & (U^{-1})^\top \end{pmatrix}$ est dans $\mathcal{S}_{p_{2n}}$.
- Si M ∈ S_{p2n}, préciser les valeurs possibles de det(M).
- 5. Montrer que le produit de deux éléments de $\mathcal{S}_{p_{2n}}$ est un élément de $\mathcal{S}_{p_{2n}}$.
- 6. Montrer qu'un élément de $\mathcal{S}_{p_{2n}}$ est inversible et que son inverse appartient à $\mathcal{S}_{p_{2n}}$.
- 7. Montrer que si $M \in \mathcal{S}_{p_{2n}}$ alors $M^{\top} \in \mathcal{S}_{p_{2n}}$.

Soit M une matrice de \mathcal{M}_{2n} écrite sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \text{ avec } A, B, C, D \in \mathcal{M}_n$$

Déterminer les relations sur A, B, C, D caractérisant l'appartenance de M à Sp2n.