SOCIO-ECOLOGICAL RISK FACTORS FOR CAMPYLOBACTER INFECTION IN RURAL MADAGASCAR

EMORY

ROLLINS SCHOOL OF PUBLIC HEALTH Marisa Wong Environmental Health April 12th, 2023

PIVOT

BACKGROUND

- Diarrhea in Madagascar
 - 11% overall deaths
 - 9.9% deaths in children <5
- Transmission methods for *Campylobacter*²
- Rural Malagasy communities practice subsistence farming
- Pivot and Centre ValBio (CVB) currently facilitate healthcare to villages bordering the Ranomafana National Park³

McGee E, et al.

AIMS

- 1. Conduct a literature review
- 2. Develop a Directed Acyclic Graph (DAG)
- 3. Estimate 3 Prevalence Ratios of exposure to sick domestic animal ownership, contact with wild lemurs, ingestion of wildlife meat, and *Campylobacter* infection
- 4. Produce a report that is shared with the research team, Principal Investigator, CVB, and Pivot

METHODS

"Eco-Epidemiology of Diarrheal Disease" 2017 project dataset courtesy of Dr. Thomas Gillespie (Emory ENVS)

Search String	Results
((("Zoonoses"[Mesh]) AND "Madagascar"[Mesh]) AND "Epidemiological Models"[Mesh])	0 articles
(("Zoonoses"[Mesh]) AND "Epidemiological	4,846
Models"[Mesh]) OR "Zoonoses/epidemiology"[MeSH]	articles
(("Zoonoses"[Mesh]) OR "Bacterial Zoonoses"[Mesh])	157
AND "Regression Analysis"[Mesh]	articles
((("Zoonoses"[Mesh]) OR "Bacterial Zoonoses"[Mesh]) OR "Stomach Diseases"[Mesh]) AND "Regression Analysis"[Mesh]	3,871 articles
(((("Zoonoses"[Mesh]) OR "Bacterial	
Zoonoses"[Mesh]) OR "Dysentery"[Mesh]) OR	241
"Waterborne Diseases"[Mesh]) AND "Regression	articles
Analysis"[Mesh]	

RESULTS

Table 2. Participant Characteristics from the Eco-Epidemiology of Diarrheal Disease Study (2017), Stratified by Ownership of a Sick Domestic Animal

	Owns a Sick Domestic Animal (N=39)	Does Not Own a Sick Domestic Animal (N=89)	Missing (N=40)	Overall (N=168)
Currently Experiencing Diarrhea				
Yes	6 (15.4%)	4 (4.5%)	1 (2.5%)	11 (6.5%)
No	33 (84.6%)	85 (95.5%)	39 (97.5%)	157 (93.5%)
Has access to a Handwashing Area				
Yes	0 (0%)	4 (4.5%)	0 (0%)	4 (2.4%)
No	39 (100%)	85 (95.5%)	40 (100%)	164 (97.6%)
Encountered Wild Lemurs in the last 4 weeks				
Contact with Lemurs	7 (17.9%)	16 (18.0%)	2 (5.0%)	25 (14.9%)
No Contact with Lemurs	32 (82.1%)	68 (76.4%)	37 (92.5%)	137 (81.5%)
Missing	0 (0%)	5 (5.6%)	1 (2.5%)	6 (3.6%)
Eaten Wildlife Meat in the last 4 weeks				
Has Eaten Wildlife Meat	3 (7.7%)	1 (1.1%)	2 (5.0%)	6 (3.6%)
Has Not Eaten Wildlife Meat	36 (92.3%)	83 (93.3%)	38 (95.0%)	157 (93.5%)
Missing	0 (0%)	5 (5.6%)	0 (0%)	5 (3.0%)

Table 3. Adjusted Prevalence Ratios of Ecological Exposures among Children under 5 in the Eco-Epidemiology of Diarrheal Disease Study (2017)

	Exposed N (%)	Adjusted Prevalence Ratio	95% Confidence Interval
Ownership of Sick Domestic Animals	39 (23.2)	2.60	[0.96 – 7.04]
Encountered Wild Lemurs in the last 4 weeks	25 (14.9)	0.98	[0.39 – 2.47]
Ate Wildlife Meat in the last 4 weeks	6 (3.6)	1.16	[0.19 – 6.93]

DISCUSSION

- Hypothesis: all 3 exposures would have a significant, harmful effect
- Applies epidemiologic methods and tools to infectious disease ecology
- In resource limited settings, my findings suggest two things:
 - 1. Devote resources to caring for sick domestic animals as a preventive measure for *Campylobacter* infections
 - 2. Investigate asymptomatic Campylobacter in rural communities

Strengths

- Highlights a rural, understudied, resource limited population
- Utilizes statistically significant findings from previous literature to inform approach

Weaknesses

- Lack of variability in data
- Cannot estimate causal relationship due to the study design
- Current generalizability

RECOMMENDATIONS

• Additional research is needed to understand the true relationship between wild and domestic animal exposures and enteric diseases, especially in rural and resource-limited communities

- Madagascar Ministry of Health and One Health
 - Incorporate environmental health and animal health professionals in diarrheal disease surveillance and outbreak response
 - Provide resources and funding to organizations like CVB and Pivot to build the healthcare capacity in rural areas
 - Educate rural communities on the importance of WASH and the potential of animal-human transmission

ACKNOWLEDGEMENTS

Stephen Mugel, MS – Thank you for your ongoing support, advice, and guidance throughout this project!

Dr. Gillespie – Thank you for sharing your work and knowledge in infectious disease ecology.

THANK YOU

Marisa Wong
Environmental Health
marisa.wong@emory.edu

REFERENCES

¹GBD Compare | IHME Viz Hub. Accessed September 25, 2022.

http://vizhub.healthdata.org/gbd-compare

²Young KT, Davis LM, DiRita VJ. Campylobacter jejuni: molecular biology and pathogenesis. *Nat Rev Microbiol*. 2007;5(9):665-679. doi:10.1038/nrmicro1718

³Pivot | PIVOT HEALTH. Accessed September 25, 2022. https://www.pivotworks.org/health/

⁴Mcgee E, Vaughn S. Of lemurs and louse flies: The biogeochemical and biotic effects of forest disturbance on Propithecus edwardsi and its obligate ectoparasite Allobosca crassipes in Ranomafana National Park, southeastern Madagascar. *American journal of primatology*. 2017;79. doi:10.1002/ajp.22676

⁵One Health Trust. Accessed April 5, 2023. https://onehealthtrust.org/projects/indiazoosystems/