CS 218 Design and Analysis of Algorithms

Nutan Limaye

Module 3: NP hardness and reductions

In Module 1 and 2 we saw many problems that are efficiently solvable.

In Module 1 and 2 we saw many problems that are efficiently solvable.

One might feel that indeed all problems ARE efficiently solvable.

In Module 1 and 2 we saw many problems that are efficiently solvable.

One might feel that indeed all problems ARE efficiently solvable.

Is this true?

In Module 1 and 2 we saw many problems that are efficiently solvable.

One might feel that indeed all problems ARE efficiently solvable.

Is this true?

The answer is

In Module 1 and 2 we saw many problems that are efficiently solvable.

One might feel that indeed all problems ARE efficiently solvable.

Is this true?

The answer is we do not know.

In Module 1 and 2 we saw many problems that are efficiently solvable.

One might feel that indeed all problems ARE efficiently solvable.

Is this true?

The answer is we do not know.

There are problems believed to be impossible to solve efficiently.

There are problems believed to be impossible to solve efficiently.

Unfortunately, many of them are extremely important problems.

There are problems believed to be impossible to solve efficiently.

Unfortunately, many of them are extremely important problems.

Which we would like to solve efficiently.

There are problems believed to be impossible to solve efficiently.

Unfortunately, many of them are extremely important problems.

Which we would like to solve efficiently.

In this module we will see some examples of such problems.

There are problems believed to be impossible to solve efficiently.

Unfortunately, many of them are extremely important problems.

Which we would like to solve efficiently.

In this module we will see some examples of such problems.

We will also build a theory around such problems.

There are problems believed to be impossible to solve efficiently.

Unfortunately, many of them are extremely important problems.

Which we would like to solve efficiently.

In this module we will see some examples of such problems.

We will also build a theory around such problems.

Jobs and processors.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule ${\cal S}$ is an ordering of these jobs on the two processors.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule ${\cal S}$ is an ordering of these jobs on the two processors.

E.g. If we have jobs J_1, J_2, J_3, J_4 . A schedule $S = (\sigma_1, \sigma_2)$ could be $(\langle 1, 4 \rangle, \langle 3, 2 \rangle)$.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule ${\cal S}$ is an ordering of these jobs on the two processors.

E.g. If we have jobs J_1, J_2, J_3, J_4 . A schedule $S = (\sigma_1, \sigma_2)$ could be $(\langle 1, 4 \rangle, \langle 3, 2 \rangle)$.

This says that schedule job 1 followed by job 4 on P_1 and schedule job 3 on followed by 2 on P_2 .

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule ${\cal S}$ is an ordering of these jobs on the two processors.

E.g. If we have jobs J_1, J_2, J_3, J_4 . A schedule $S = (\sigma_1, \sigma_2)$ could be $(\langle 1, 4 \rangle, \langle 3, 2 \rangle)$.

This says that schedule job 1 followed by job 4 on P_1 and schedule job 3 on followed by 2 on P_2 .

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule $S = (\sigma_1, \sigma_2)$ is an ordering of these jobs on the two processors.

Let S_1 be the set of jobs scheduled on P_1 .

Jobs and processors.

We have 2 processors. P_1 , P_2 .

We have jobs J_1, \ldots, J_n with durations d_1, \ldots, d_n , respectively. We assume that d_i s are positive integers.

A schedule $S = (\sigma_1, \sigma_2)$ is an ordering of these jobs on the two processors.

Let S_1 be the set of jobs scheduled on P_1 .

The total completion time of a schedule S is $\max \{\sum_{i \in S_1} d_i, \sum_{i \in \lceil n \rceil \setminus S_1} d_i \}$.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

No begin and end times, just durations.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

No begin and end times, just durations.

Multiple processors instead of just one.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

No begin and end times, just durations.

Multiple processors instead of just one.

All jobs must be eventually done.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

No begin and end times, just durations.

Multiple processors instead of just one.

All jobs must be eventually done.

Will this problem be harder or easier to solve?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

Quite similar to the interval scheduling problem from Module 1.

Some key differences.

No begin and end times, just durations.

Multiple processors instead of just one.

All jobs must be eventually done.

Will this problem be harder or easier to solve?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A possible schedule. $S = (\langle 1, 3, 5, \dots, n-1 \rangle, \langle 2, 4, 6, \dots, n \rangle).$

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A possible schedule. $S = (\langle 1, 3, 5, \dots, n-1 \rangle, \langle 2, 4, 6, \dots, n \rangle)$. Say n even.

Will this work?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A possible schedule. $S = (\langle 1, 3, 5, \dots, n-1 \rangle, \langle 2, 4, 6, \dots, n \rangle)$. Say n even.

Will this work?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A greedy heuristic.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A greedy heuristic.

Schedule a job on the processor which is currently least loaded.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A greedy heuristic.

Schedule a job on the processor which is currently least loaded.

Will this work?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A greedy heuristic.

Schedule a job on the processor which is currently least loaded.

Will this work?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Sort the jobs in ascending order of their duration.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Sort the jobs in ascending order of their duration.

Use this order and do as before, i.e.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Sort the jobs in ascending order of their duration.

Use this order and do as before, i.e.

Schedule a job on the processor which is currently least loaded.

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Sort the jobs in ascending order of their duration.

Use this order and do as before, i.e.

Schedule a job on the processor which is currently least loaded.

Will this work?

Given: jobs j_1, \ldots, j_n with durations d_1, \ldots, d_n respectively

Find: a schedule for these jobs on 2 processors that

minimises the total completion time.

A modified greedy heuristic.

Sort the jobs in ascending order of their duration.

Use this order and do as before, i.e.

Schedule a job on the processor which is currently least loaded.

Will this work?