The conclusions I drew from the data set is that there are multiple hotspots of popular scooter usage. The operation time cost (how long it takes to charge all the scooters) is the total amount of charge all the scooters can have i.e 25,667 * 5 (number of scooters * max charge level) which is 128,335 - the total charge level of the scooters currently which is 64,069. 128,335 - 64,069 is 64,266. So 64,266 / 5 is equal to the operation time cost to charge all the scooters. Dividing by 5 because i am assuming it takes one hour to jump from one charge level to the next i.e one hour to go from 0-1, one hour to go from 1-2 and so on. The operation time cost to charge all the scooters to a charge level of 5 is roughly 12,854 hours. Efficiency in this case is defined by having the most number of scooters at a charge level of 5 in the shortest amount of time because when scooters are at a charge level of 5 the more usage comes from them on a daily basis and therefore results in higher profits and I believe that my method would accomplish this best, the hotspots I discovered using a scatter plot of all the (x,y) coordinates. I believe the most efficient way to charge all the scooters is to go to each of these hotspots and take the scooters that are at a charge level of 4 and charge them to five. Then move on to scooters with a charge level of 3, then 2, then 1, and finally 0. After charging each scooter at these different charge levels i would drop them off in the area with three nearby hotspots (shown in scatterplot in GitHub repo).