Semaine du 04/01 au 08/01

1 Cours

Relations binaires

Généralités Réflexivité, symétrie, antisymétrie, transitivité. Exemples.

Relation d'ordre Définition. Ordre total, partiel.

Relation d'équivalence Définition. Classes d'équivalence. Les classes d'équivalence forment une partition.

Suites numériques

Suites classiques Suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires homogènes d'ordre 2.

Limite d'une suite Définition. Unicité. Vocabulaire : convergence et divergence. Passage d'inégalité à la limite.

Théorèmes d'existence de limites Opérations sur les limites. Théorèmes d'encadrement, de minoration et de majoration. Théorème de convergence monotone.

Suites définies de manière implicite Exemples (limites, sens de variation, développement asymtotique).

Comparaison asymptotique Comparaison des suites de référence : logarithme, puissance, exponentielle, factorielle. Formule de Stirling. Deux suites équivalentes sont de même signe à partir d'un certain rang. Comportement asymptotique de suites définies implicitement.

Suites extraites Définition. Si une suite admet une limite, alors toute suite extraite admet la même limite.

2 Méthodes à maîtriser

- On ne parle de la limite d'une suite qu'après avoir justifié son existence.
 - Certains théorèmes donnent l'existence et la valeur de la limite : opérations, encadrement, minoration, majoration.
 - D'autres ne donnent que l'existence de la limite : théorème de convergence monotone.
- Déterminer le sens de variation d'une suite :
 - signe de $u_{n+1} u_n$ (adapté aux sommes);
 - position de $\frac{u_{n+1}}{u_n}$ par rapport à 1 (adapté aux produits) si les u_n sont tous strictement positifs (mais on peut évidemment adapter si on a compris comment fonctionne ce critère).
- Déterminer le terme général d'une suite vérifiant une relation de récurrence linéaire homogène d'ordre 2 via l'équation caractéristique.
- Montrer qu'une suite monotone converge ou diverge (raisonnement par l'absurde éventuel pour le cas de divergence).

3 Questions de cours

Conjugaison Soit E un ensemble. On définit une relation binaire \sim sur E^E de la manière suivante : pour $(f,g) \in (E^E)^2$, on note $f \sim g$ lorsqu'il existe une bijection φ de E dans E telle que $f = \varphi^{-1} \circ f \circ \varphi$. Montrer que φ est une relation d'équivalence.

Constante γ d'Euler En admettant que $\ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$, montrer qu'il existe $\gamma \in [0,1]$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

Suite récurrente linéaire Déterminer le terme général d'une suite vérifiant une relation de récurrence linéaire homogène d'ordre deux à coefficients constants au choix de l'examinateur.

Somme binomiale (révision) Calculer
$$S_n = \sum_{k=0}^n k \binom{n}{k}$$
.

Somme binomiale (révision) Calculer
$$S_n = \sum_{k=0}^n \binom{2n}{2k}$$
 et $T_n = \sum_{k=0}^{n-1} \binom{2n}{2k+1}$.

Equation différentielle (révision) Résoudre une équation différentielle linéaire d'ordre deux à coefficients constants au choix de l'examinateur.

BCCP 89 (révision) Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{\frac{2i\pi}{n}}$.

- 1. On se donne $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k 1$.
- 2. On pose S = $\sum_{k=0}^{n-1} |z^k 1|$. Montrer que S = $\frac{2}{\tan \frac{\pi}{2n}}$.