(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-347410 (P2002-347410A)

(43)公開日 平成14年12月4日(2002.12.4)

(51) Int.Cl.7	識別記号	FΙ			テーマコード(参考)
B60C 9/1	8	B60C 9	9/18		J
				:	M
9/0	8	9	9/08		В
11/0	0	11.	1/00		В
		審査請求	未請求	請求項の数4	OL (全 8 頁)
(21)出願番号	特願2001-159526(P2001-159526)	(71)出願人	00018323	33	
			住友ゴム	工業株式会社	
(22)出願日	平成13年5月28日(2001.5.28)		兵庫県神	戸市中央区脇	浜町3丁目6番9号
		(72)発明者	松永 聡	志	
				デ市中央区脇 プム工業株式会	英町3丁目6番9号 社内
		(74)代理人	10008296	38	
			弁理士	苗村 正 (名	外1名)

(54) 【発明の名称】 自動二輪車用タイヤ

(57)【要約】

【課題】 高速耐久性と旋回走行時の安定性をバランス 良く向上する。

【解決手段】 カーカス6とこのカーカス6の半径方向外側に配されたベルト層7とを具えた自動二輪車用タイヤである。ベルト層7は、小巾長尺の帯状プライがタイヤ周方向に螺旋巻きされることによって形成される。トレッドゴム2Gは、トレッド面2SをなしかつデュロメータA硬さが50~65度のゴムからなるキャップゴム層2Aと、その半径方向内側に配されかつキャップゴム層2AのゴムよりもデュロメータA硬さが大のゴムからなるベースゴム層2Bとを含む。またカーカス6とベルト層7との間に、トレッド部2を含んでタイヤ軸方向に延在するプライ離間ゴム層9を具える。

【特許請求の範囲】

【請求項1】トレッド部からサイドウォール部をへてビード部のビードコアに至りかつタイヤ赤道に対して70~90度の角度でコードを傾けて並列したカーカスプライからなるカーカスと、

このカーカスのタイヤ半径方向外側でトレッド部に配されしかも1本のコード又は複数本のコードが平行に引き揃えられたコード配列体をトッピングゴムで被覆した小巾長尺の帯状プライがタイヤ周方向に螺旋巻きされることによって形成されたベルトプライからなるベルト層とを有するタイヤ構造体を具えることによりトレッド部にタイヤ半径方向内外に重なるプライが配されるとともに、

両側のトレッド縁がタイヤ最大巾位置をなしかつトレッド面がタイヤ半径方向外側に凸の円弧状に湾曲した自動 二輪車用タイヤであって、

前記トレッド部において前記タイヤ構造体の半径方向外側に配されるトレッドゴムは、トレッド面をなしかつデュロメータA硬さが50~68度のゴムからなるキャップゴム層と、

このキャップゴム層のタイヤ半径方向内側に配されかつ 前記キャップゴム層のゴムよりもデュロメータA硬さが 大のゴムからなるベースゴム層とを含み、

かつ前記タイヤ構造体は、前記プライ間に、トレッド部 を含んでタイヤ軸方向に延在するプライ離間ゴム層を具 えることを特徴とする自動二輪車用タイヤ。

【請求項2】前記プライ離間ゴム層のゴムは、トッピングゴムとは異なるゴムからなるとともに、デュロメータA硬さが58~70度でありかつ該プライ離間ゴム層を挟むプライのコード間距離が0.8~3.5mmであることを特徴とする請求項1記載の自動二輪車用タイヤ。

【請求項3】前記プライ離間ゴム層は、前記カーカスプライと前記ベルトプライとの間、又は2枚のカーカスプライの間に配されたことを特徴とする請求項1又は2記載の自動二輪車用タイヤ。

【請求項4】前記プライ離間ゴム層のゴムは、前記キャップゴム層のゴムよりもデュロメータA硬さが大かつその差を2~7度としたことを特徴とする請求項1乃至3のいずれかに記載の自動二輪車用タイヤ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、直進走行性と高速 旋回時の安定性を維持しつつトレッド部の剛性を確保し うる自動二輪車用タイヤに関する。

[0002]

【従来の技術】近年、自動二輪車用タイヤにあっても、タイヤ骨格をなすカーカスのコードをタイヤ赤道に対して70~90度で傾けて配列したラジアル構造が多用されつつある。このようなラジアルタイヤは、通常、カーカスを強固にタガ締めするベルト層が配置される。

【0003】前記ベルト層は、自動車用タイヤの場合、コードをタイヤ赤道に対して15~40度程度で傾けた2枚のベルトプライを前記コードが互いに交差する向きに重ね合わせることにより、前記カーカスとでコードのトラス構造を形成しトレッド部の剛性を高めるものが一般的である。しかし、自動二輪車用タイヤの場合には、タイヤにキャンバー角を与えることでキャンバースラストを発生させ旋回走行を行うため、ベルト層を上述のように剛性の高いものとすると、キャンバースラストが低下し旋回走行時の安定性を悪化させる不具合がある。

【0004】そこで、自動二輪車用のラジアルタイヤにあっては、ベルト層を、コードをタイヤ周方向に対して5度以下の小角度としたベルトプライを用いて構成される。またペルトプライは、例えば1本のコード又は複数本のコードが平行に引き揃えられたコード配列体をトッピングゴムで被覆した小巾長尺の帯状プライをカーカスの外側でタイヤ周方向に螺旋巻きすることによって形成したいわゆるスパイラルベルトとしてタイヤの均一性を高めたものも提案されている。

20 [0005]

【発明が解決しようとする課題】上述のようなスパイラルベルトは、トレッド部の剛性を過度に高めることがない点で旋回走行においては好適な特性を示すが、その反面、トレッド部の剛性が低いために高速耐久性の悪化などを招きやすい。

【0006】本発明は、以上のような問題点に鑑み案出なされたもので、トレッド部に配されるトレッドゴムをキャップゴム層とベースゴム層とを含んで構成する他、カーカス又はベルト層などのプライ間に、トレッド部を含んでタイヤ軸方向に延在するトッピングゴムとは異なるゴムからなるプライ離間ゴム層を設けることなどを基本として、ベルト層をスパイラルベルトで構成することによって生じるトレッド部の剛性低下を最適に補うことにより、旋回走行性能、高速耐久性などをバランス良く向上しうる自動二輪車用タイヤの提供を目的としている。

[0007]

【課題を解決するための手段】本発明のうち請求項1の発明は、トレッド部からサイドウォール部をへてビード40 部のビードコアに至りかつタイヤ赤道に対して70~90度の角度でコードを傾けて並列したカーカスプライからなるカーカスと、このカーカスのタイヤ半径方向外側でトレッド部に配されしかも1本のコード又は複数本のコードが平行に引き揃えられたコード配列体をトッピングゴムで被覆した小巾長尺の帯状プライがタイヤ周方向に螺旋巻きされることによって形成されたベルトプライからなるベルト層とを有するタイヤ構造体を具えることによりトレッド部にタイヤ半径方向内外に重なるプライが配されるとともに、両側のトレッド縁がタイヤ最大巾60位置をなしかつトレッド面がタイヤ半径方向外側に凸の

円弧状に湾曲した自動二輪車用タイヤであって、前記トレッド部において前記タイヤ構造体の半径方向外側に配されるトレッドゴムは、トレッド面をなしかつデュロメータA硬さが50~65度のゴムからなるキャップゴム層と、このキャップゴム層のタイヤ半径方向内側に配されかつ前記キャップゴム層のゴムよりもデュロメータA硬さが大のゴムからなるベースゴム層とを含み、かつ前記タイヤ構造体は、前記プライ間に、トレッド部を含んでタイヤ軸方向に延在するプライ離間ゴム層を具えることを特徴としている。

【0008】なお「デュロメータA硬さ」は、JIS-K6253に基づくデュロメータータイプAによる硬さとして定義する。

【0009】また前記プライ離間ゴム層のゴムは、トッピングゴムとは異なるゴムからなるとともに、例えばデュロメータA硬さが58~70度でありかつ該プライ離間ゴム層を挟むプライのコード間距離を0.8~3.5mmとすることができる。また前記プライ離間ゴム層は、前記カーカスプライと前記ベルトプライとの間、又は2枚のカーカスプライの間に配することができる。また前20記プライ離間ゴム層のゴムは、前記ベースゴム層のゴムよりもデュロメータA硬さが大かつその差を2~7度とすることが特に望ましい。

[0010]

【発明の実施の形態】以下、本発明の実施の一形態を図面に基づき説明する。図1において、本実施形態の自動二輪車用タイヤ(以下、単に「タイヤ」ということがある)1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつカーカス6の外側に配されるベルト層 307とからなるタイヤ構造体10を具える。

【0011】また、本実施形態のタイヤ1は、高い旋回性能を確保するために、トレッド部2の両側のトレッド縁Teがタイヤ最大巾位置をなすとともに、トレッド面2Sは、タイヤ半径方向外側に凸で円弧状に滑らかに湾曲している。なお前記トレッド面2Sの湾曲形状は、特に限定されるものではないが、バンク角度が高まるにつれて接地巾が増大しうるように、タイヤ赤道Cからトレッド縁Teに向かって、トレッド面2Sの曲率半径を漸増させることが特に好ましい。

【0012】前記カーカス6は、本例ではトレッド部2からサイドウォール部3をへてビード部4のビードコア5に至る本体部6aと、その両側に連設されかつ前記ビードコア5の周りをタイヤ軸方向内側から外側に向かって折返される折返し部6bとを具える1枚以上、本例では1枚のカーカスプライ6Aから構成される。前記カーカスプライ6Aの折返し部6bは、タイヤ横剛性をバランス良く向上するために、その半径方向外端6eのビードベースラインBLからの高さH1を、ビードベースラインBLから前記トレッド縁下eまでのトレッド縁高さ50

H t の例えば $0.6 \sim 1.2$ 倍、より好ましくは $0.75 \sim 1.0$ 倍とすることが望ましい。また例えばカーカス $6 \approx 2$ 枚以上のカーカスプライで形成した場合には、少なくとも 1 枚のカーカスプライの折返し部 6 b の高さ H $1 \approx 1$ を前記高さに規制するのが良い。

【0013】また前記カーカスプライ6Aは、図1のトレッド部2を部分的に拡大した図2に示すように、カーカスコード6Cをタイヤ赤道に対して70~90°の角度で配列したコード配列体の両側をトッピングゴム6G10にて被覆して形成されている。このトッピングゴム6Gには、天然ゴムを主体としたゴム組成物が使用される。また前記カーカスコード6Cとしては、ポリエステル、ナイロン、レーヨン等の有機繊維コードが好適に用いられるが、必要に応じてスチールコードが採用されうる。また図2の如く、カーカスプライ6Cの内側には、空気を透過し難い例えばブチル系のゴムからなるインナーライナ層iが付設される。

【0014】又カーカス6は、前記カーカスプライ6Aの本体部6aと折返し部6bとの間に、ビードコア5から半径方向外方に先細状にのびるビードエーペックスゴム8が配されており、これによってビード部4の曲げ剛性を向上している。このビードエーペックスゴム8は、ビード部4を補強し、タイヤに必要な縦剛性、横剛性を確保するために、例えばデュロメータA硬さが70~90度、より好ましくは75~85度のゴムを用いるのが好ましい。

【0015】前記ベルト層7は、ベルトコードをタイヤ 赤道に対して0~5°の角度で配列した1枚以上、本例 では1枚のベルトプライ7Aから構成される。またこの ベルトプライ7Aは、例えば図3(A)に示すように、 ベルトコード70の複数本(例えば2~10本程度)を 互いに平行に引き揃えかつトッピングゴム7Gで被覆し た小巾長尺の帯状プライ11がタイヤ周方向に螺旋巻き されることによって形成されたスパイラルのベルトプラ イを用いている。前記帯状プライ11は、図3(B)に 示すように、例えばその側縁11 e が互いにオーバラッ プするように巻き付けることや、図示はしていないが、 側縁11eを接して巻き付ける方法、さらには側縁11 eを離間させて巻き付けるものなど、種々の態様でカー カス6のタイヤ半径方向外側に形成することができる。 また帯状プライ11の巾PWは、例えば4~10mmのも のが好適であり、また2層以上に重ねて巻き付けること

【0016】このようなスパイラルのベルトプライは、プライの重ね継ぎ部分が存在しないため、該継ぎ部分でのプライの接着剥離を抑制できしかも曲率の大きいトレッド面を有する自動二輪車用タイヤにおいて精度良くベルト層7を形成しうるなどタイヤの均一性に優れるため、高速耐久性を高める上で特に好ましいものとなる。また前記ベルトコード7Cとしては、例えばポリエステ

ル、ナイロン、レーヨン、芳香族ポリアミド繊維などの 有機繊維コード、特に芳香族ポリアミド繊維コードが好 適に用いられるが、必要に応じてスチールコードなども 採用しうる。なおベルト層7のタイヤ軸方向の外端7 e は、トレッド縁Teの近傍、本例ではトレッド縁Teを 通るトレッド法線Nよりも僅かにタイヤ軸方向内方に位 置している。

【0017】次に前記トレッド部2において前記タイヤ構造体10の半径方向外側に配されるトレッドゴム2Gは、本実施形態ではトレッド面2Sをなしかつデュロメ 10ータA硬さが50~68度のゴムからなるキャップゴム層2Aと、このキャップゴム層2Aのタイヤ半径方向内側に配されかつ前記キャップゴム層2AのゴムよりもデュロメータA硬さが大のゴムからなるベースゴム層2Bとで構成されている。

【0018】上述のようにスパイラルのベルトプライ7 Aを用いたベルト層7を具えるタイヤの場合、このベル ト層7によるトレッド部の剛性の調節が困難であり、高 速耐久性と旋回時等の操縦安定性とをバランス良く向上 するためには、前記ベースゴム層2Bのゴムのデュロメ 20 ータA硬さHs1を、キャップゴム層2Aのゴムのデュ ロメータA硬さHs2よりも大とすることが必要であ る。そして、この硬質側のベースゴム層2Bによってト レッド部2に必要なトレッド剛性が付与され、かつ高速 走行時の遠心力等によるトレッド部2の変形が抑制され ることによってトレッド部2の内部発熱が低減され、高 速耐久性が向上しうる。また軟質側のキャップゴム層2 Aにより、キャンバー角を与えた旋回走行時における路 面追従性、直進走行時のグリップ力、および乗り心地性 等が高められうる。なお前記キャップゴム層2Aのゴム のデュロメータA硬さが50度未満の場合には、ゴムが 過度に柔軟化し耐摩耗性が著しく低下する傾向があり、 逆に68度を超える場合には、トレッド面2Sが過度に 硬くなることにより、路面追従性、グリップ力などが低 下する傾向がある。より好ましくは、キャップゴム層2 AのゴムのデュロメータA硬さは58~65度とするこ とが望ましい。

【0019】また本実施形態では、前記キャップゴム層 2Aの厚さt1とベースゴム層2Bの厚さt2との比 (t1/t2)は、好ましくは1.0~4.0、より好 40 ましくは1.5~3.0に設定される。また本実施形態では、前記比(t1/t2)の値は、タイヤ赤道Cの位置からトレッド縁Teの位置に向かって漸減するものを例示している。これにより、主として直進走行時に路面と接地するタイヤ赤道付近の接地領域では、キャップゴム層2Aの厚さt1を大きく確保することで高いグリップ力と優れた乗り心地やショック吸収性を得ることが可能となり、また旋回走行時に路面と接地するトレッド縁付近の接地領域では、硬質のゴムからなるベースゴム層2Bの厚さt2を大きく確保することで腰くだけ感を防 50

止し旋回走行時の路面追従性を維持しつつ大きなキャンバースラストを発生させるのに役立つ。このような観点より、前記比(t1/t2)は、例えばタイヤ赤道Cの位置において2.0~4.0、より好ましくは2.5~3.0とし、かつトレッド縁Te側の端部で1.0~2.5、より好ましくは1.5~2.0とすることが望ましい。

【0020】なおタイヤ半径方向内側に位置するベースゴム層2Bは、高速耐久性の観点から、そのゴムの損失係数 $\tan\delta$ 1を、キャップゴム層2Aのゴムの損失係数 $\tan\delta$ 2よりも小かつ0.15~0.30の範囲に規制することが好ましい。これによりトレッドゴム2Gの内部発熱を抑制し、高速走行時の熱破壊などをより高速域側に移行させうる。ここで、損失係数 $\tan\delta$ 1、 $\tan\delta$ 2は、岩本製作所製の粘弾性スペクトロメータを用い、周波数10Hz、温度70℃、動歪2%にて測定した値とする。

【0021】また本実施形態のタイヤ構造体10は、前記プライ間に、トレッド部2を含んでタイヤ軸方向に延在するトッピングゴム6G、7Gとは異なるゴムからなるプライ離間ゴム層9を具えている。このようなプライ離間ゴム層9は、本例では前記カーカスプライ6Aと前記ベルトプライ7Aとの間に配され、カーカスプライ6Aのカーカスコード6Cとベルトプライ7Aのベルトコード7Cとをタイヤ半径方向に離間させる。なおプライ離間ゴム層9は、生産性を向上すべくトッピングゴムと同一のゴム材にて構成することもできる。

【0022】従来のタイヤでは、カーカスプライ6Aとベルトプライ7Aとは、接して配されるため、タイヤ構造体10に作用する曲げモーメントは各プライのコードの曲げ剛性によって負担される。しかしながら、本例のようにカーカスプライ6Aとベルトプライ7Aとの間にプライ離間ゴム層9を介在させることにより、タイヤ構造体に作用する曲げモーメントは、トレッド部2において各プライのコードの曲げ剛性に加え、各プライ間で挟まれて圧縮変形するプライ離間ゴム層9の耐圧縮剛性などによって負担できる。このため、タイヤ構造体10、ひいてはタイヤ1のトレッド部2の剛性を補うことが可能となり、高速走行時の変形を抑制して耐久性などを向上できる。

【0023】また前記プライ離間ゴム層9は、その厚さを調節することによって、図2に示す如く、このプライ離間ゴム層9を挟むカーカスプライ6Aのカーカスコード6Cと、ベルトプライ7Aのベルトコード7Cとの間のコード間距離Sを種々調節することができる。またこのコード間距離Sが小さすぎると、タイヤ構造体10のトレッド部2を補強する効果が低下し、逆にこのコード間距離Sが大きすぎるとタイヤ重量の増大や発熱による耐久性の低下といった不具合がある。このような観点より、このコード間距離Sは、例えば0.8~3.5mm、

より好ましくは1.0~2.0mm、さらに好ましくは 1.0~1.5mmとすることが望ましい。なおプライ離 間ゴム層9は、そのタイヤ軸方向の両端部を厚さが徐々 に減じる先鋭状としており、これによって過度の剛性段 差が生じるのを緩和している。また、前記コード間距離 Sは、この両端部を除いた平均値とする。

【0024】またプライ離間ゴム層9のゴムは、柔らか すぎると前記効果が低下してしまい、逆に過度に硬いと 旋回走行時の安定性が低下するおそれがある。このため プライ離間ゴム層9のゴムは、カーカスプライ6A、ベ 10 しくは15~25%に設定している。これにより、サイ ルトプライ7Aの各トッピングゴム6G、7Gよりもデ ュロメータA硬さを大、例えばデュロメータA硬さが5 8~70度、より好ましくは60~65度、さらに好ま しくは62~64度とすることが望ましい。とりわけプ ライ離間ゴム層9のゴムのデュロメータA硬さHs3 は、前記キャップゴム層2AのゴムのデュロメータA硬 さHs2よりも大かつその差(Hs3-Hs2)を2~ 7度とすることが特に望ましい。これにより、トレッド 部2を最も効果的に補強でき、旋回走行時の安定性と高 速走行時の耐久性とを特にバランス良く向上できる。 【0025】またプライ離間ゴム層9において、「トレ ッド部2を含んでタイヤ軸方向に延在する」とは、プラ

イ離間ゴム層9が、前記トレッド法線N、Nで挟まれる 領域を少なくとも含むことが望ましい。本例のプライ離 間ゴム層9は、前記トレッド法線N、Nをタイヤ軸方向 外側に超えかつ前記カーカスプライ6Aの折返し部6b の外端6eをタイヤ半径方向内側に超えて終端するもの を例示する。この際、プライ離間ゴム層9の外端は、カ ーカスプライ6Aの本体部6aと折返し部6bとの間に 果的に高めうる点で望ましい。

【0026】図4には本発明の他の実施形態を示してい る。本例では、カーカス6が2枚のカーカスプライ6 A、6Bで構成されており、プライ離間ゴム層9がその カーカスプライ6A、6Bの間に配されたものを例示し ている。このような構成によっても、トレッド部2を補 強でき高速耐久性の向上に役立つ。特に本例では、ほぼ 平行をなすカーカスプライ6A、6B間でプライ離間ゴ ム層9が挟まれることによってカーカス6の曲げ剛性が 格段に向上し、高速耐久性をより一層高めうる。また図 1、図4において、前記プライ離間ゴム層9と前記折返 し部6 bとのタイヤ半径方向に沿った重なり長さしは、 例えば前記トレッド縁高さTeの5~40%、より好ま ドウォール部3の剛性についてもより効果的に補強しう る。

[0027]

【実施例】タイヤサイズが190/50ZR17(73 W)のタイヤを表1の仕様に基づいて夫々試作するとと もに各試供タイヤの性能についてテストを行った。テス トの内容は次の通りである。

【0028】(1)高速耐久性

タイヤをリム(17×MT6.00)、内圧(290k 20 Pa)、荷重(1.75kN)の条件の下で、キャンバ 一角O度で、230km/Hの速度より10分毎に10km /Hずつ速度を高め、タイヤが破壊するまでの速度と、 その速度での走行時間を求め、両者をハイフンで区切っ て示している。速度、時間とも大きい方が良好である。

【0029】(2)操縦安定性

試供タイヤを、自動二輪車(排気量1000cm³)の後 輪に装着し、テストコースを旋回走行、直進走行を含め て走行したときのハンドリング感、路面追従性、グリッ プ感、安定性などを総合的にドライバーのフィーリング 配されることにより、サイドウォール部3の剛性をも効 30 により10点満点で評価した。数値が大きいほど良好で ある。テストの結果を表1に示す

[0030]

【表1】

1.0

		実施例1	実施例2	東施列3	実施例4	実施例5	比较例1	比較例2	9
	キャップゴム層 ・デュロメータA硬さHs1(度) ・損失正損tan δ1	0 9	0 9	0.9	6.2	6.2	0 9	6 0	
2 5 7 JL ~	ペースゴム層 ・デュロメータA硬さHs 2 (度) ・損失正損tan δ 2	0.2	7.0	7 0	7.0	7.0	7.0	l	
1	比(t 1/t 2) [タイヤ赤道位置~トレッド線位置]	24	2 3	2.3	2.4	2.4	2.4	-	
Ą	カーカス ・コード材料 ・コード角度 (対タイヤ赤道) (°) ・カーカスプライ教				ナ 900 70枚				
イヤ構造は	ベルト層 ・コード材料 ・コード角度(対タイヤ赤道) (゜) ・ベルトプライ数				メチール 0 1枚				
ŧ	プライ離問ゴム層 ・デュロメータA硬さH83 (度) ・配数位置 ・配数位置 でのコード配配準 (平均mm)	6 4 水小小間 1.2	5 8 カーカス/ベルト間 1.2	6 7 加小以(M)]]	64 4-43/44時間 0.8	64 办-42/小阳 3.5		64 かが附 1.2	
テだ	高速耐久性(速度一時間)	330km/h-353	310km/h-75	320km/h− 5 ∯	330㎞/h-1分	320km/h-0分	320km/h-7分	310km/h-9 分	
平	長 操縦安定性(10点法)	8.0	6.5	6.0	7.0	ç, S	6.0	5.0	1
					•	-			(

[0031]

【発明の効果】以上説明したように、請求項1記載の発 明では、トレッドゴムを硬さを規制したキャップゴム層 とベースゴム層とを含んで構成するとともに、カーカ ス、ベルト層を含むタイヤ構造体のプライ間に、トレッ ド部を含んでタイヤ軸方向に延在するプライ離間ゴム層 40 を設けることにより、ベルト層を帯状プライの螺旋巻き で構成したことによって生じるトレッド部の剛性低下を 最適に補うことができ、旋回走行性能と高速耐久性とを バランス良く向上しうる。

9

【0032】また請求項2記載の発明では、プライ離間 ゴム層のゴムを、デュロメータA硬さと、該プライ離間 ゴム層を挟むプライのコード間距離とを一定範囲に規制 したことにより、タイヤ構造体のトレッド領域を最適に 補強でき、より一層、高速耐久性を向上しうる。

【0033】また請求項4記載の発明のように、プライ*50 2 トレッド部

*離間ゴム層のゴムを、ベースゴム層のゴムよりもデュロ メータA硬さが大かつその差を2~7度としたときに は、トレッド部の剛性をタイヤ半径方向外側に向かって 漸減させうるなど、トレッド部の補強効果を高め、より 一層、高速耐久性を向上しうる。

【図面の簡単な説明】

【図1】本発明の一実施形態を示す自動二輪車用タイヤ の断面図である。

【図2】そのトレッド部を拡大して示す部分拡大図であ る。

【図3】(A)は帯状プライの斜視図、(B)はその巻 き付けを説明する断面略図である。

【図4】本発明の他の実施形態を示す自動二輪車用タイ ヤの部分断面図である。

【符号の説明】

12 6A、6B カーカスプライ

2G トレッドゴム

2a キャップゴム層

2 b ベースゴム層

3 サイドウォール部

4 ビード部

5 ビードコア

6 カーカス

7 ベルト層

7A ベルトプライ

9 プライ離間ゴム層

10 タイヤ構造体

Te トレッド縁

28 トレッド面

【図1】 【図3】

(B)

【図2】

【図4】

DERWENT-ACC-NO: 2003-485896

DERWENT-WEEK: 200346

COPYRIGHT 2010 DERWENT INFORMATION LTD

TITLE: Tire for two-wheeled motor

vehicle, has cap and base rubber

layers of tread rubber with different hardness, and ply

separating rubber layer formed between carcass and belt layer

INVENTOR: MATSUNAGA S

PATENT-ASSIGNEE: SUMITOMO RUBBER IND LTD[SUMR]

PRIORITY-DATA: 2001JP-159526 (May 28, 2001)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

JP 2002347410 A December 4, 2002 JA

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-
			DATE
JP2002347410A	N/A	2001JP-	May
		159526	28,
			2001

INT-CL-CURRENT:

TYPE	IPC DATE
CIPP	B60C9/18 20060101
CIPS	B60C11/00 20060101
CIPS	B60C9/08 20060101

ABSTRACTED-PUB-NO: JP 2002347410 A

BASIC-ABSTRACT:

NOVELTY - Tread rubber (2G) formed on the radial outer side of the tire structure, includes a cap rubber and base rubber layers (2A,2B) of different durometer A hardness. A ply separating rubber layer (9) is extended to a tire axial direction between carcass (6) and belt layer (7) with tread (2).

DESCRIPTION - A carcass has ply formed with cords in juxtaposition at an angle of 70-90degrees with respect to the tire equator. A bead core of the bead layer passes from the tread to the sidewall. The tread is overlapped along the tire radial direction, on the belt layer with belt ply (7A). The belt ply is formed by spiral winding of small width elongate strip-shaped ply formed with several cords in parallel which is distributed on the outer side of the carcass. The tread edge of both sides is provided in the tire maximum width position and the tread surface is curved to the circular arc shape convex on the tire radial direction outer side. The cap rubber layer is made of rubber having durometer A hardness of 50-68degrees. The rubber of base rubber layer has hardness greater than that of the cap rubber layer. The belt layer rubber has durometer A

hardness of 58-70degrees made of different rubber and distance between the cords is 0.8-3.5 mm. The ply separating rubber layer is distributed between the carcass ply and the belt ply or between the carcass ply of two sheets. The durometer A hardness of rubber in ply separating rubber layer is 2-7degrees in difference with that of the cap rubber layer.

USE - For two-wheeled motor vehicle.

ADVANTAGE - Prevents reduction of rigidity of the tread and improves turning drive performance and high speed durability. Tread area of a tire structure is reinforced optimally. Rigidity of a tread is dwindled towards the tire radial direction outer side.

DESCRIPTION OF DRAWING(S) - The figure shows a partially enlarged view of tread of tire for motor bicycles.

Tread (2)

Cap rubber and base rubber layers (2A, 2B)

Tread rubber (2G)

Carcass (6)

Belt layer (7)

Belt ply (7A)

Ply separating rubber layer (9)

CHOSEN-DRAWING: Dwg.2/4

TITLE-TERMS: TWO WHEEL MOTOR VEHICLE CAP BASE

RUBBER LAYER TREAD HARD PLY SEPARATE FORMING CARCASS BELT

DERWENT-CLASS: A95 Q11

CPI-CODES: A12-T01B;

ENHANCED-POLYMER-INDEXING: Polymer Index [1.1]

018 ; H0124*R;

Polymer Index [1.2] 018; ND01; Q9999 Q9234 Q9212; Q9999 Q9256*R Q9212; B9999 B3792 B3747; B9999 B4079 B3930 B3838 B3747; B9999 B5287

B5276; K9416;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 2003-130317

Non-CPI Secondary Accession Numbers: 2003-386424