VA-FuncionNoLineal

J. Abellán

20 de septiembre de 2016

Función de variable aleatoria

El caso $Y = Y(X) = X^2$

- Sea la variable aleatoria $X \sim N(\mu_X, \sigma_X)$
- Sea $Y = Y(X) = X^2$
- ¿Cómo será la función de distribución de $Y, f_Y(y)$?

De acuerdo con el teorema:

$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy}(y) \right|$$

Comprobaremos el teorema de la forma habitual: generando al azar un número grande de valores de la variable normal X y transformándolos de acuerdo con la función Y = Y(X). A continuación haremos el histograma de los valores de Y.

Queremos ver como se modifica $f_Y(y)$ al variar el parámetro μ_X

$$y = y(x) = x^2$$

Ymp = 91.95

$$< X > = -10$$
, $deX = 2$

 $y = y(x) = x^2$

Ymp = 18.24

$$<$$
X $> = -5$, deX = 2

$$Ymp = 0.87$$

$$< X > = -2$$
, $deX = 2$

 $y = y(x) = x^2$

$$Ymp = 0.42$$

$$=0$$
, $deX=2$

Ymp = 0.82

$$< X > = 2$$
, $deX = 2$

 $y = y(x) = x^2$

Ymp = 13.85

$$<$$
X $>$ = 5, deX = 2

Ymp = 96.79

$$< X > = 10, deX = 2$$

