АНАЛИЗ СВЯЗЫВАНИЯ ИОНОВ МАГНИЯ С РНК

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Студент: Тихонова Полина

Руководитель: М.А. Ройтберг И.И. Цитович

П

АКТУАЛЬНОСТЬ РАБОТЫ

ТИПЫ СВЯЗЫВАНИЙ ИОНОВ МАГНИЯ

1. Сайт-специфическое связывание

2. Специфическое связывание через воду

3. Диффузионное

ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ

WEBFEATURE, METALIONRNA

WEBFEATURE

METALIONRNA

- $W(n)(d_1, \alpha_1; \dots d_n, \alpha_n) = -RT \ln g^{(n)}(d_1, \alpha_1; \dots d_n, \alpha_n),$
 - $g^{(n)}$ функция корреляции для n частиц, показывает экспериментально наблюдаемую частоту контактов катиона c со смежной парой атомов a,b;
 - d расстояние между ионом и атомом b;
 - α угол (a, c, b).

РАЗРАБОТКА СОБСТВЕННОЙ МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

ПОСТАНОВКА ЗАДАЧИ

- Источник данных банк PDB с аннотациями от URS Database.
- **2 набора данных** структуры с наилучшим разрешением / наибольшим числом ионов.
- Элемент выборки нуклеотид / фрагмент нуклеотида / атом
- Целевой признак наличие магния в радиусе 3 / 5 / 7 / 3-7 Å.

Всего 24 выборки.

Всего 361 - 383 признаков.

ВЫБОР НАБОРА ДАННЫХ

Классификатор: Random Forest

- + не склонен к переобучению;
- + работает с разными типами признаков;
- + быстро работает.

Распределения вероятностей предсказаний Random Forest

Лучшее разрешение, до 5 Å

Лучшее разрешение, до 7 Å

--- 0.52

Sites

Non-sites

ВЫБОР НАБОРА ДАННЫХ

Классификатор: Random Forest

- + не склонен к переобучению;
- + работает с разными типами признаков;
- + быстро работает.

Распределения вероятностей предсказаний Random Forest

Лучшее разрешение, до 5 Å

Лучшее разрешение, до 7 <u>Å</u>

АНАЛИЗ ДАННЫХ

- Пропущенные значения.
- Разреженные признаки
- Скоррелированные признаки.

Пропущенные значения встречаются в:

- Углах;
- Спариваниях;
- Информации о нуклеотидах.

Заполнение нулями не нарушает логики интерпретации признаков.

АНАЛИЗ ДАННЫХ

- Пропущенные значения.
- Разреженные признаки
- Скоррелированные признаки.

Большая часть спариваний являются неинформативными признаками.

Остается 170 признаков, дисперсия которых выше выбранного порога (0.015).

АНАЛИЗ ДАННЫХ

- Пропущенные значения.
- Разреженные признаки
- Скоррелированные признаки.

Наиболее скоррелированные группы признаков:

- 1. thetaapp, etapp, splay, thetap, theta;
- 2. e.z, epsilon;
- 3. v0, dp, sszp;
- 4. v1, p, phase.angle;
- 5. v2, tm;
- 6. v3, delta.

ОБЩИЙ ВИД МОДЕЛИ

- Препроцессинг данных (тренировочной и тестовой выборки).
 - Заполнение пропущенных значений нулями.
 - Удаление признаков с маленькой дисперсией.
 - Удаление скоррелированных признаков.
- Тренировка модели.
 - Балансирование выборки: элементы не сайты связывания отбираются случайным образов в количестве, равном числу сайтов связывания.
 - Тренировка RandomForest с параметрами:
 - Max_depth = 26
 - Min_samples_leaf = 20
 - Max_features = 0.7
- Предсказание натренированной модели на тестовой выборке.

ВАЛИДАЦИЯ РЕЗУЛЬТАТОВ

Validation < 2003

Распределения вероятностей

ВАЛИДАЦИЯ ОТДЕЛЬНЫХ ЦЕПОЧЕК

СРАВНЕНИЕ С СУЩЕСТВУЮЩИМИ СЕРВИСАМИ

АППРОКСИМАЦИЯ КООРДИНАТ ИОНОВ С ПОМОЩЬЮ K-MEANS

k-means разделяет атомы, предсказанные RandomForest, на k групп.

Оптимальное к определяется по качеству покрытия:

 $|\{a \in A | \min(d(a,c)) \le 7, c \in C\}|$

|A|

где **A** — множество предсказанных атомов,

С – множество центров кластеров.

Оптимальный порог покрытия = 0.85

Ион магния

Атом, близкий к иону

18

АППРОКСИМАЦИЯ КООРДИНАТ ИОНОВ С ПОМОЩЬЮ K-MEANS

ЗАКЛЮЧЕНИЕ

- Таким образом, в ходе этой работы был разработан алгоритм, который для некоторых структур способен достаточно точно определять количество ионов магния, а также вычислять их приближенные координаты.
- На данный момент <u>не существует универсального алгоритма</u>, точно определяющего координаты ионов магния для всех существующих структур.
- В дальнейшем стоит выделить группы структур, для которых координаты ионов магния хорошо распознаются, и тренировать алгоритмы для этих групп.

METALIONRNA С ЗАДАННЫМ ЧИСЛОМ ИОНОВ

462d

(HIV-I genomic RNA dimerization initiation site)

РАССТОЯНИЯ ОТ ИОНОВ ДО ФРАГМЕНТОВ НУКЛЕОТИДОВ

