Geometry Algebra Pen Notes

Kion Conio

October 30, 2020

1 The Algebra of vectors

1.1 Vectors and its Algebraic Operations

1.1.1 Vectors

Definition A quantity with both magnitude and direction is called a vector. e.g. Force, velocity, acceleration, displacement, etc.

Notation Directed line segment: \rightarrow . We could draw a graph to make our proof.

- A directed line segment has a Initial point and a Terminal point.
- \overrightarrow{AB} . An arrow upper the letters.
- α : bold and lower case Roman letter.
- Sometimes, \vec{a}, \underline{u}
- Magnitude, size, length: $|\alpha|, |\overrightarrow{AB}|$

Relevent Concepts Two vectors are equal if and only if their magnitude and direction are the same. No matter where they start.

The vector with zero magnitude is called the **zero vector**, denoted by **0**. **0** is the only vector is the only vector with specific direction. We have:

$$\overrightarrow{AB} = \overrightarrow{0} \iff A = B$$

A vector with magnitude 1 is called **unit vector**.

A vector having the same length, but opposite direction of \vec{a} , is called the negative of \vec{a} , denoted by $-\vec{a}$. Its a whole notation, not an operation. Thus

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

1.1.2 Operations

Addition of vectors The sum of two vectors \vec{a} and \vec{b} written as

$$\vec{a} + \vec{b} = \vec{c}$$

 \vec{c} is a vector.

Defined by **triangle method**, that is

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Defined by $\mathbf{parallelogram}$ \mathbf{method} ...

Proposition of Vectors For vectors \vec{a} , \vec{b} , and \vec{c} , the addition satisfies:

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$, commutative law,
- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$, association law.
- $\vec{a} + \vec{0} = \vec{a}$
- $\vec{a} + (-\vec{a}) = \vec{0}$
- Vectors with addition is an abel group.

First two we draw a graph to prove it. Then we prove the rest ones.

3. Set
$$\vec{a} = \overrightarrow{AB}$$
 and $\vec{0} = \overrightarrow{BB}$. Then $\vec{a} + \vec{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \vec{a}$

4. Set
$$\vec{a} = \overrightarrow{AB}$$
. Then $-\vec{a} = \overrightarrow{BA}$. Thus, $\vec{a} + (-\vec{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \vec{0}$

Definition We can define the difference of two vectors \vec{a} and \vec{b} to be $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

Triangular Inequality For any vectors \vec{a} and \vec{b} , we have

$$|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$$

1.2 Scalar multiplication

Definition The product of vector \vec{a} and a scalar λ , wirtten as $\lambda \vec{a}$, is a vector, defined by

$$|\lambda \vec{a}| = |\lambda||\vec{a}|$$

Direction

- $\lambda > 0$, $\lambda \vec{a}$ has the same direction as \vec{a}
- $\lambda < 0$, $\lambda \vec{a}$ has the opposite direction as \vec{a}

Proposition

- $\lambda \vec{a} = \vec{0} \iff \lambda = 0 \quad or \quad \vec{a} = \vec{0}$
- $1 \ \vec{a} = \vec{a}, \quad (-1)\vec{a} = -\vec{a}$
- $\lambda \mu \vec{a}$) = $(\lambda \mu) \vec{a}$
- $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ distributive law
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ distributive law

Proof

- $\lambda \vec{a} = \vec{0} \iff |\lambda \vec{a}| = |\vec{0}| = 0 \iff |\lambda||\vec{a}| = 0 \iff |\lambda| = 0 \text{ or } |\vec{a}| = 0 \iff \lambda = 0$
- •
- ..
- $|\lambda(\mu \vec{a})| = |\lambda||\mu \vec{a}|$
 - $= |\lambda| |\mu| |\vec{a}|$
 - $=(|\lambda||\mu|)|\vec{a}|$
 - $= |(\lambda \mu)\vec{a}|$

That is, $\lambda(\mu \vec{a})$ and $(\lambda \mu)\vec{a}$ has the same **length**.

Then we consider the **direction**.

Case 1.
$$\lambda \mu = 0$$
, $\vec{0} = (\lambda \mu)\vec{a} = \lambda(\mu \vec{a})$

Case 2. $\lambda \mu > 0$, Trivially, $\lambda(\mu \vec{a})$ has the same direction as \vec{a} ;

 $(\lambda \mu)\vec{a}$ has the same direction as \vec{a} ;

Case 3. $\lambda \mu < 0$, Trivially, $\lambda(\mu \vec{a})$ has the opposite direction of \vec{a} ;

 $(\lambda \mu)\vec{a}$ has the opposite direction of \vec{a} ;

Thus, we can see that $\lambda(\mu \vec{a})$ has the same direction as $(\lambda \mu)\vec{a}$.

Hence,

$$(-\lambda)\vec{a} = (-1)\lambda\vec{a} = (-1)(\lambda\vec{a}) = -\lambda\vec{a}$$

If $\lambda = 0$ or $\mu = 0$ or $\vec{a} = \vec{0}$, it is easily to see that $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$. consider $\lambda \neq 0$ or $\mu \neq 0$ or $\vec{a} \neq \vec{0}$. 1° assume that $\lambda > 0, \mu > 0$ then,

$$|(\lambda + \mu)\vec{a}| = |\lambda + \mu||\vec{a}|$$

$$= (\lambda + \mu)|\vec{a}|$$

$$= \lambda|\vec{a}| + \mu|\vec{a}|$$

$$= |\lambda||\vec{a}| + |\mu||\vec{a}|$$

$$= |\lambda\vec{a}| + |\mu\vec{a}| \quad (for \quad \vec{a} \parallel \vec{a})$$

$$= |\lambda\vec{a}| + \mu\vec{a}|$$

 2° If one of λ, μ is negative, we can put the terms containing the negative scalars to the other side of the equation.

For example:

$$\lambda>0, \mu<0, \lambda+\mu<0$$

$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a} \iff -\mu \vec{a} = \lambda \vec{a} + [-(\lambda + \mu)\vec{a}]$$
$$\iff \lambda \vec{a} + (-(\lambda + \mu))\vec{a} = (-\mu)\vec{a}$$

(which back to the case of $\lambda > 0, \mu > 0, \lambda + \mu > 0$)

• Case 1:
$$\lambda = 0$$
, or $\vec{a} = \vec{0}$, or $\vec{b} = \vec{0}$
Case 2: $\lambda \neq 0$, or $\vec{a} \neq \vec{0}$, or $\vec{b} \neq \vec{0}$
 $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b} \text{(Graph...(similarity of triangle))}$

1.3 Collinear and Coplanar Vectors

Definition When we move some vectors to the same initial point, if they are on the same line or plane, then we say these vectors are **collinear** or **coplanar**.

Trivially,

- $\vec{0}$ Is collinear with any vector.
- Collinear vectors must be coplanar.
- Any two vectors must be coplanar.

1.3.1 Collinear Vectors

Notation two vectors are collinear \iff their directions are the same or opposite. We write $\vec{a} \parallel \vec{b}$

5

Proposition For vectors \vec{a} and \vec{b} , if there exists a scalar λ s.t. $\vec{b} = \lambda \vec{a}$, then \vec{a}, \vec{b} are collinear.

Theorem (Existence): Assume that $\vec{a} \neq \vec{0}$. If \vec{a}, \vec{b} collinear, then there exists scalar λ s.t. $\vec{b} = \lambda \vec{a}$.

Proof If $\vec{b} = \vec{0}$, then $\lambda = 0$

Consider $\vec{b} \neq \vec{0}$, then

$$\vec{b} = |\vec{b}| \frac{\vec{b}}{|\vec{b}|} = \begin{cases} \frac{\vec{b}}{|\vec{a}|}, & \vec{a} \text{ and } \vec{b} \text{ have the same direction} \\ \frac{-|\vec{b}|}{|\vec{a}|}, & \vec{a} \text{ and } \vec{b} \text{ have the opposite direction} \end{cases}$$

(Uniqueness): Assume that $\vec{b} = \lambda' \vec{a}$ Then

$$(\lambda - \lambda')\vec{a} = \vec{0}For \quad \vec{a} \neq \vec{0} \Rightarrow \quad \lambda = \lambda'$$

1.3.2 Three coplanar Vectors

Proposition For vectors $\vec{a}, \vec{b}, \vec{c}$ if there exists scalar λ, μ , such that $\vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\vec{a}, \vec{b}, \vec{c}$ are coplanar. (Graph...)

Proof If $\vec{a} = \vec{0}$, then $\vec{c} = \lambda \vec{b}$, so vectors $\vec{b} \parallel \vec{c}$, then $\vec{a}, \vec{b}, \vec{c}$ are Coplanar;

If $\vec{a} \neq \vec{0}$, then consider two cases:

Case 1: $\vec{a} \parallel \vec{b}$. Thus, there exist k s.t. $\vec{b} = k\vec{a}$.

Hence, $\vec{c} = \lambda \vec{a} + \mu \vec{b} = \lambda \vec{a} + \mu k \vec{a} = (\lambda + \mu k) \vec{a}$.

Therefore, $\vec{c} \parallel \vec{a}$.

Case 2: $\vec{a} \parallel \vec{b}$, then \vec{c} is the diagnod of the parallelogram formed by $\lambda \vec{a}, \mu \vec{b}$

Theorem Assume that \vec{a}, \vec{b} are **not collinear**, then for any vector \vec{c} on the plane determined by \vec{a} and \vec{b} , there exist **unique** scalars λ, μ s.t.

$$\vec{c} = \lambda \vec{a} + \mu \vec{b}$$

Proof 1°We first prove the existence of λ, μ .

(Graph...)

We can wrote $\vec{c} = \vec{c_1} + \vec{c_2}, \vec{c_1} \parallel \vec{a}, \vec{c_2} \parallel \vec{b}$,

Since $\vec{a}, \vec{b} \neq \vec{0}$,

 $\exists \lambda, \mu, \quad \vec{c}_1 = \lambda \vec{a}, \vec{c}_2 = \mu \vec{b}$

Then,
$$\vec{c} = \lambda \vec{a} + \mu \vec{b}$$

2°Suppose that $\vec{c} = \lambda' \vec{a} + \mu' \vec{b}$
We see that $(\lambda - \lambda') \vec{a} + (\mu - \mu') \vec{b} = \vec{0}$
If $\lambda \neq \lambda'$, then
$$\vec{a} = -\frac{\mu - \mu'}{\lambda - \lambda'} \vec{b}$$

then $\vec{a} \parallel \vec{b}$, which is a contradiction.

thus,
$$\lambda = \lambda'$$
, we have $(\mu - \mu')\vec{b} = \vec{0}$
Since $\vec{b} \neq \vec{0}, \mu = \mu'$

1.3.3 Three Non-coplanar Vectors

Theorem If $\vec{a}, \vec{b}, \vec{c}$ are not coplaner, then or any vector \vec{u} , there exist unique scalars $\lambda, \mu, \nu, \text{s.t.}$

$$\vec{u} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}$$

Proof 1°Existence of λ, μ, ν

(Graph...)

2°Assume that

$$\vec{u} = (\lambda - \lambda^*)\vec{a} + (\mu - \mu^*)\vec{b} + (\nu - \nu^*)\vec{c}$$

Suppose $\lambda \neq \lambda^*$, then

$$\vec{a} = -\frac{\mu - \mu^*}{\lambda - \lambda^*} \vec{b} - \frac{\nu - \nu^*}{\lambda - \lambda^*} \vec{c}$$

Showing that $\vec{a}, \vec{b}\vec{c}$ are coplaner. This is a contradiction.

Hence, $\lambda = \lambda^*$, We have

$$(\mu - \mu^*)\vec{b} + (\nu - \nu^*)\vec{c} = \vec{0}$$

Using the similar argument in the proof of the last theorem, we know that $\mu=\mu^*,\nu=\nu^*$ $(\vec{b}\ |\!|\!|\vec{c})$

1.3.4 Three Points on the same line

Point C is on the line segment AB if and only if there exist scalar $\lambda, \mu \geq 0 \quad (\lambda + \mu = 1)$ s.t.

$$\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$$

for any point O.

Proof Point C is on $AB \iff \overrightarrow{AC} \parallel \overrightarrow{AB}$.

$$\iff |\overrightarrow{AC}| \le |\overrightarrow{AB}|$$

$$\iff \exists \mu \in [0,1] \quad s.t. \quad \overrightarrow{AC} = \mu \overrightarrow{AB}$$

$$\iff \overrightarrow{OC} - \overrightarrow{OA} = \mu(\overrightarrow{OB} - \overrightarrow{OA})$$

$$\iff \overrightarrow{OC} = (1-\mu)\overrightarrow{OA} + \mu \overrightarrow{OB}$$

$$\iff \overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}, \quad (\lambda + \mu = 1)$$

1.4 Affine Coordinate System

1.4.1 Coordinate System

By a theorem of **1-2**, if $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ are not coplanar, then for any vector \vec{a} , there exist unique scalar a_1 , a_2 , a_3 s.t.

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$$

The ordered tripe (a_1, a_2, a_3) is called the coordinate of \vec{a} .

It can be show that the mapping $\vec{a} \mapsto (a_1, a_2, a_3)$ is a one-to-one correspondence.

We simply write $\vec{a} = (a_1, a_2, a_3)$

Obviously, $\vec{e}_1 = (1, 0, 0)$, $\vec{e}_2 = (0, 1, 0)$, $\vec{e}_3 = (0, 0, 1)$

Origin + Basis = Coordinate System

$$[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$$

If $\vec{e}_1 \perp \vec{e}_2$, $\vec{e}_2 \perp \vec{e}_3$, $\vec{e}_1 \perp \vec{e}_3$ and \vec{e}_1 , \vec{e}_2 , \vec{e}_3 are unit vectors, then $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$ is called the Cartesian coordinate system.

1.4.2 Algebraic Operations Using Coordinate

Theorem In an affine coordinate system $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$, assume that $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$, then,

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

8

Proof

$$\vec{a} + \vec{b}$$

$$= (a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3) + (b_1\vec{e}_1 + b_e\vec{b}_2 + b_3\vec{e}_3)$$

$$= (a_1 + b_1)\vec{e}_1 + (a_2 + b_2)\vec{e}_2 + (a_3 + b_3)\vec{e}_3$$

$$k\vec{a} = (ka_1, ka_2, ka_3)$$

Proof

$$k\vec{a} = k(a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3) = ka_1\vec{e}_1 + ka_2\vec{e}_2 + ka_3\vec{e}_3$$

Corollary Coordinary of \overrightarrow{AB} = Coordinate of B - Coordinate A

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

now let's assume that we have three vectors $\vec{a}, \vec{b}, \vec{c},$

1.4.3 Scalar Products of Vectors

Definition The scalar product (or inner product, or dot product) of two vectors \vec{a} and \vec{b} is a scalar, denoted by $\vec{a} \cdot \vec{b}$, and is defined by

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos < \vec{a}, \vec{b} >$$

where $\langle \vec{a}, \vec{b} \rangle \in [0, \pi]$

Proposition

- $\vec{a} \cdot \vec{a} = |\vec{a}|^2 \ge 0 \Rightarrow |\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (commutative)
- $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$ ($\vec{0}$ is perpendicular to any vectors)
- Cauchy-Schwarz inequality $|\vec{a} \cdot \vec{b}| \leq |\vec{a}| |\vec{b}|$, the equation holds if and only if \vec{a} is collinear with \vec{b} .

Theorem

- $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\lambda \vec{b})$
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

Example Law of Cosine

In triangle ABC

$$\vec{c} \cdot \vec{c} = (\vec{a} + \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos C$$

Example Three height of $\triangle ABC$ concurrent. Claim that $\overrightarrow{CO} \perp \overrightarrow{AB}$.

$$\overrightarrow{CO} \cdot \overrightarrow{AB} = \dots = 0$$

Calculate $\vec{a} \cdot \vec{b}$ Using Coorinates In an affine coordinate system $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$. Assume that $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$, Then

$$\vec{a} \cdot \vec{b} = \sum a_i \vec{e_i} \cdot \sum b_i \vec{e_i} = \dots$$

In particular, in the Cartesian coordinate system,

$$\vec{a} \cdot \vec{b} = \sum a_i b_i$$

Moreover,

$$\begin{split} |\vec{a}| &= \sqrt{\sum a_i^2} \\ \cos &< \vec{a}, \vec{b}> = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sum a_i b_i}{\sqrt{\sum a_i^2} \sqrt{\sum b_i^2}} \end{split}$$

Example In a regular tentrahedron ABCD, E is the midpoint of AB and F is the midpoint of CD. Every length equals to a. Find $|\overrightarrow{EF}|$.

Construct an affine c.s. $[A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]$. Write

$$\vec{e_1} = \overrightarrow{AB}, \vec{e_2} = \overrightarrow{AC}, \vec{e_3} = \overrightarrow{AD}$$

$$\overrightarrow{AF} = \frac{1}{2}(\vec{e_2} + \vec{e_3}) = (0, \frac{1}{2}, \frac{1}{2})$$

$$\overrightarrow{AE} = \dots$$

Since $\vec{e}_i^2 = a^2$, $\vec{e}_i \cdot \vec{e}_j = \frac{1}{2}a^2$

$$\overrightarrow{EF}^2 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^2 = \frac{a^2}{2}$$

Thus $|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}a$

1.4.4 Vector Product of Vectors

Definition The vector product (or cross product) of two vectors \vec{a} and \vec{b} is a vector, denoted by $\vec{a} \times \vec{b}$, and is defined by

magnitude: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin < \vec{a}, \vec{b}> \quad$ direction: Right hand rule

Note: $|\vec{a} \times \vec{b}| = \text{area of parallelogram formed by } \vec{a}, \vec{b}$

Proposition

•
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

•
$$\vec{a} \times \vec{b} = \vec{0} \iff \vec{a} \parallel \vec{b}$$

•
$$(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}) = \vec{a} \times (\lambda \vec{b})$$

•
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Introdection to Determinant

$$\left| \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right| = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3}$$