Universidade Estadual de Maringá Mestrado Acadêmico em Bioestatística

Bioestatística

Isolde Previdelli itsprevidelli@uem.br isoldeprevidelli@gmail.com

07 de Março 2017

Sumário

APRESENTAÇÃO DOS DADOS

Análise descritiva
Tipos de variáveis
Tabelas de frequências
Tabelas de frequências
Gráficos
Tabelas de frequências
Gráficos
Medidas de resumo numérico

APRESENTAÇÃO DOS DADOS

Análise descritiva •

- ⚠ Análise descritiva é primeiro contato do pesquisador com os dados
- Principal objetivo é explorar, resumir e sumarizar o comportamento dos dados.

Variável qualitativa

Nominal - São categorias que não podem ser ordenadas.

Exemplo: Sexo, condição de saúde de um paciente, bairro, etc

Ordinal - São categorias que seguem uma ordem natural.

Exemplo: Grau de instrução, intensidade de maratonista, gravidade de uma doença, etc.

Variável quantitativa

 Discreta - Seu campo de variação é um conjunto finito ou infinito enumerável, em geral são contagens.

Exemplo: Quantidade de pacientes com determinada doença, número de ovos do mosquito *aedes aegypti* em uma determinada região, etc

👠 Contínua - Seu campo de variação é um conjunto infinito não-enumerável

Exemplo: peso, altura e pressão sistólica de pacientes, etc.

Rank/Posto - Rank pode ser definido como o número que corresponde a posição de cada observação de uma amostra de valores.

Exemplo: Uma amostra com os valores 0, 1, 2, 2, 2, 4, 6.
Os ranks para esta amostra: 1,2,4,4,4,5,6

Porcentagem - É a proporção de indivíduos pertencentes a uma categoria e o número total de indivíduos considerados na amostra simples.

Exemplo: número de óbitos por acidentes de trânsito por faixa etária em um região divido pelo total de óbitos por acidentes de trânsito.

Exemplo: Razão entre o número total de óbitos de uma determinada região em um determinado período de tempo dividido pela população total desta região no mesmo período de tempo.

Escores - é uma pontuação dadas aos indivíduos de uma amostra para mensuar determinado risco ou chance que ocorrer um determinado evento de interesse. Exemplo: atendimento em um pronto socorro que após algumas informações serem coletadas, cada índivíduo recebe um escore e desta forma seu atendimento é classificado como urgente, pouco urgente ou sem urgência.

✓ Variáveis latentes - São variáveis não observáveis ou que não podem ser medidas diretamente. Desta forma são criadas escalas para poder mensurá-las.

Exemplo: Variáveis que representam sentimentos como felicidade ou depressão que podem ser medidas através de instrumentos analíticos psicológicos.

TABELAS

Tabela de frequência para variável raça

São ideais para resumir variáveis qualitativas e quantitativas discreta desde que esta última tenha um conjunto pequeno de valores diferentes.

Freq. Abs. (n_i)	Freq. Rel. (f_i)
96	0,508
26	0,138
67	0,354
189	1
	96 26 67

Tabela: SHAHBABA B., pág.23

n_i: frequência absoluta da classe

n: total da amostra

 $f_i = \frac{n_i}{n}$, frequência relativa da classe

TABELAS Exemplo

Tabela de frequência para uma variável quantitativa •

Considere um experimento em que foi envestigado em uma amostra de vinte e um pacientes de uma clínica médica, se o aumento da a ingestão de cálcio aumenta a pressão arterial:

Nível	Freq. Abs.((n_i) Freq. Rel. (f_i)
95⊢100	3	0,14
100⊢105	4	0,19
105⊢110	1	0,05
110⊢115	6	0,29
115⊢120	3	0,14
120⊢125	3	0,14
125⊢130	0	0,00
130⊢135	1	0,05

Tabela: http://www.ics.uci.edu/~babaks/BWR/Home_files/calcium.txt

HISTOGRAMA Exemplo

TABELAS Exemplo

Tabela de frequência para uma variável quantitativa •

E se juntarmos as três últimas classes? Como ficaria a tabela de frequência?

Nível	Freq. Abs. (n_i)	Freq. Rel. (f_i)
95⊢100	3	0,14
100⊢105	4	0,19
105⊢110	1	0,05
110⊢115	6	0,29
115⊢120	3	0,14
120⊢135	4	0,19

Tabela: http://www.ics.uci.edu/~babaks/BWR/Home_files/calcium.txt

HISTOGRAMA Exemplo

E o novo Histograma?

Medidas de resumo numérico

Medidas de resumo numérico •

- ↑ Tendência central
- **∧** Separatrizes
- Assimetria e curtose

Medidas de Tendência Central

Média aritmética •

⚠ Indica o valor em torno do qual há um equilíbrio na distribuição dos dados:

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

obs:
$$\bar{x} + K = \bar{x} + K$$

obs: $\bar{x} * K = \bar{x} * K$

Medidas de Tendência Central

Mediana e Moda ●

- ∧ Mediana: É valor central em um conjunto de dados ordenado:
- Moda: É o valor mais frequente em um conjunto de dados

Amplitude total •

★ É a diferença entre o valor máximo e mínimo

$$\Delta = x_{(max.)} - x_{(min.)}$$

Desvio médio absoluto •

↑ É o cálculo da média dos desvios absolutos.

$$dma = \sum_{i=1}^{n} \frac{|x_i - \bar{x}_{obs}|}{n}$$

Variância •

∧ Quantifica a variabilidade dos dados em torno da média.

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n-1}$$

obs:
$$s^2 + K = s^2$$

obs: $s^2 * K = s^2 * K^2$

Desvio Padrão •

Quantifica a variabilidade dos dados na mesma escala em que eles foram medidos.

$$s = \sqrt{Var(x)} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}}$$

Coeficiente de variação •

⚠ É uma medida relativa que avalia o percentual de variabilidade em relação a média observada.

$$cv = 100 \frac{s}{\bar{x}}$$

Exemplo

SHAHBABA B., pág.33 •

- Considere a seguinte amostra: $x_1 = (74, 80, 79, 85, 81)$, a média é: $\bar{x_1} = 79.8$
- \bigwedge Se trocarmos o valor 74 por 47, $x_2 = (47, 80, 79, 85, 81)$? O que acontece?
- \bigwedge A média muda para $\bar{x_2} = 74, 4$.
- Lesse novo valor resume bem os dados?
- \bigwedge A mediana de de x_1 e x_2 é igual a 80, ou seja, é uma medida mais robusta a *outliers*.

Exemplo

SHAHBABA B., pág.35 •

- Considere agora duas amostras sobre medidas da pessão do sangue (mmHg) para dois tipos de pacientes:
- \land Paciente A, x = (95, 98, 96, 95, 96)
- \bigwedge Paciente B, y = (85, 106, 88, 105, 96)
- Λ As médias são iguais: $\bar{x} = \bar{y} = 96$
- \bigwedge As medianas também são iguais: $\tilde{x} = \tilde{y} = 96$

Exemplo

SHAHBABA B., pág.35 ●

Paciente A	١	Paciente B			
x _i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	Уi	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
95	-1	1	85	-11	121
98	2	4	106	10	100
96	0	0	88	-8	64
95	-1	1	105	9	81
96	0	0	96	0	0
\sum	0	6	Σ	0	367

$$\begin{array}{l} s_x^2 2 = \frac{6}{4} = 1, 5 \ s_y^2 = \frac{367}{4} = 91, 5 \\ s_x = \sqrt(1, 5) = 1, 22 \ s_y = \sqrt{91, 5} = 9, 56 \end{array}$$

Separatrizes

Percentis, Decis e Quartis •

∧ São medidas que dividem os dados em um número de partes iguais.

Separatrizes Boxplot

Assimetria

Assimetria •

Analisa a proximidade ou o afastamento de um conjunto de dados em relação à distribuição Gaussiana.

$$As = \frac{\mu_3}{\sigma^3}$$

- \bigwedge Se As = 0, distribuição é simétrica
- ∧ Se As > 0, distribuição assimétrica a direita (positiva)
- \bigwedge Se As < 0, distribuição assimétrica a esquerda (negativa)

Assimetria

Assimetria •

caracterizar a forma da distribuição quanto ao seu achatamento.

$$k = \frac{\mu_4}{\sigma^4}$$

- \bigwedge k < 0, distribuição Platicúrtica
- $\bigwedge k = 0$, distribuição Mesocúrtica
- \bigwedge k > 0, distribuição Leptocúrtica

Curtose

