

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

www. tremenabers.com

			1 hour 15 minutes
Paper 3 (Exter	nded)	Octo	ober/November 2014
CHEMISTRY			0620/32
CENTRE NUMBER		CANDIDATE NUMBER	
NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. This document consists of 13 printed pages and 3 blank pages.

An	imp	ortant aspect of chemistry is purity and methods of purification.
(a)	Giv	ve an example of substances used in everyday life which must be pure.
		[1]
(b)	A li	st of techniques used to separate mixtures is given below.
		chromatography crystallisation diffusion dissolving
		evaporation filtration fractional distillation simple distillation
	(i)	From the list, choose the most suitable technique to separate the following.
		water from sea-water
		helium from a mixture of helium and methane
		ethanol from a mixture of ethanol and propanol
		iron filings from a mixture of iron filings and water
		a mixture of two amino acids, glycine and alanine
		[5]
	(ii)	Describe how you would obtain a pure sample of copper(II) sulfate-5-water crystals from a mixture of copper(II) sulfate-5-water with copper(II) oxide using some of the techniques listed above.
		[4]
		[Total: 10]

2	Aluminium ic	abtained by	the reduction	of aluminium	ione to	aluminium atoms.
_	Aluminium is	obtained by	the reduction	oi aiuiiiiiiiiiiiiii	10115 10	alummum aloms.

(8	a)	Write	an i	onic	equat	ion fo	r the	red	uction	of a	an a	alumini	um	ion to	an a	ıluminium	atom.	

[2]

- **(b)** The original method of extracting aluminium involved the reduction of aluminium chloride using the reactive metal sodium. Aluminium obtained by this method was very expensive due to the high cost of extracting sodium from sodium chloride.
 - (i) Complete the equation for this reduction.

$$AlCl_3$$
 +Na \rightarrow + [2]

(ii) How can sodium metal be obtained from sodium chloride?

[2]	

(c) In the modern method, aluminium is obtained by the electrolysis of aluminium oxide (alumina) dissolved in molten cryolite, Na₃AlF₆.

(i)	The major ore of aluminium is impure aluminium oxide.
	What is the name of this ore?

	[1]

(ii) This ore is a mixture of aluminium oxide, which is amphoteric, and iron(III) oxide which is basic.

Explain how these two oxides can be separated by the addition of aqueous sodium hydroxide.

(iii)	Give two reasons why the electrolyte contains cryolite.
	101
(iv)	The mixture of gases evolved at the positive electrode includes:
	carbon dioxide
	carbon monoxide
	fluorine
	oxygen
	Explain the presence of these gases in the gaseous mixture formed at the positive electrode. Include at least one equation in your explanation.
	[5]
	najor use of aluminium is the manufacture of pots and pans. One reason for this is its istance to corrosion.
(i)	Explain why aluminium, a reactive metal, is resistant to corrosion.
<i>(</i> 11)	[1]
(ii)	Suggest two other reasons why aluminium is suitable for making pots and pans.
	[2]
	[Total: 19]

3 (a) A hydrocarbon has the following structural formula.

	11 11	
(i)	State the molecular formula and the empirical formula of this hydrocarbon.	
	molecular formula	
	empirical formula	 [2]
(ii)	Draw the structural formula of an isomer of the above hydrocarbon.	. —.
		[1]
(iii)	Explain why these two hydrocarbons are isomers.	
(iv)	Are these two hydrocarbons members of the same homologous series? Give a reason for your choice.	
(b) Alk	enes can be made from alkanes by cracking.	
(i)	Explain the term <i>cracking</i> .	
(ii)	One mole of an alkane, when cracked, produced one mole of hexane, C_6H_{14} , and t moles of ethene. What is the molecular formula of the original alkane?	

- (c) Alkenes are used in polymerisation reactions and addition reactions.
 - (i) Draw the structural formula of the product formed by the addition polymerisation of but-2-ene. Its formula is given below.

structural formula

[2]

[3]

[Total: 14]

2	Zino	c is a	n important metal. Its uses include making alloys and the construction of dry cells (batteries	s).
((a)	Nar	ne an alloy which contains zinc. What is the other metal in this alloy?	
		nan	ne of alloy	
		othe	er metal in alloy	
				[2]
((b)	The	main ore of zinc is zinc blende, ZnS.	
		(i)	The ore is heated in the presence of air to form zinc oxide and sulfur dioxide. Write the equation for this reaction.	
				[2]
		(ii)	Give a major use of sulfur dioxide.	
				[1]
	(c)	zino	c can be obtained from zinc oxide in a two step process. Aqueous zinc sulfate is made from coxide and then this solution is electrolysed with inert electrodes. The electrolysis is similated to copper(II) sulfate with inert electrodes.	
		(i)	Name the reagent which will react with zinc oxide to form zinc sulfate.	
				[1]
		(ii)	Complete the following for the electrolysis of aqueous zinc sulfate.	
			Write the equation for the reaction at the negative electrode.	
			Name the product at the positive electrode.	
			——————————————————————————————————————	•••
			The electrolyte changes from zinc sulfate to	 [3]

(d) A dry cell (battery) has a central rod, usually made of graphite. This is the positive electrode which is surrounded by the electrolyte, typically a paste of ammonium chloride and manganese(IV) oxide, all of which are in a zinc container which is the negative electrode.

(i)	Draw an arrow on the diagram to indicate the direction of electron flow.	[1]
(ii)	Suggest why the electrolyte is a paste.	
		[1]
(iii)	The following changes occur in a dry cell. For each change, decide if it is oxidation or reduction and give a reason for your choice).
	Zn to Zn ²⁺	
	manganese(IV) oxide to manganese(III) oxide	
		 [2]

[Total: 13]

(a)	a) Glucose, sucrose and starch are all carbohydrates. Their formulae are:						
	suc	cose, $C_6H_{12}O_6$, rose, $C_{12}H_{22}O_{11}$, rch, $(C_6H_{10}O_5)_n$.					
	(i)	Identify two common features in the formulae of these carbohydrates.					
	(ii)	Draw the structure of a complex carbohydrate, such as starch. The formula of gluco can be represented by	se,				
		Include three glucose units in the structure.					
			[2]				
			[~]				
(b)		rch hydrolyses to glucose in the presence of the enzyme, amylase. at is meant by the term <i>enzyme</i> ?					
			[2]				

(c) The effect of temperature on this reaction can be studied by the experiment shown below. Starch and iodine form a blue-black colour.

Glucose and iodine do not form a blue-black colour.

The experiment is set up as in the diagram and the time measured for the mixture to change from blue-black to colourless. The experiment is repeated at different temperatures. Typical results of this experiment are given in the table below.

experiment	temperature /°C	time for blue-black colour to disappear /min			
А	20	30			
В	40	15			
С	70	remained blue-black			

(i)	Put the experiments in order of reaction rate – slowest first and fastest last.	
		[2]
(ii)	Explain why the reaction rates in experiments A and B are different.	
		[3]
(iii)	Suggest why the colour remains blue-black in experiment C.	
		[1]

[Total: 12]

Sul	furic	acid is an important acid, both in the laboratory and in industry. acid is manufactured in the Contact Process. Originally, it was made by heating me and by burning a mixture of sulfur and potassium nitrate.	etal					
(a)	a) Give a major use of sulfuric acid.							
			[1]					
(b)		roup of naturally occurring minerals have the formula of the type $FeSO_4$.x H_2O where x is 5, 6 or 7. The most common of these minerals is iron(II) sulfate-7-water.	s 1,					
	(i)	When this mineral is heated gently it dehydrates.						
		$FeSO_4.7H_2O \implies FeSO_4 + 7H_2O$ green pale yellow						
		Describe how you could show that this reaction is reversible.						
			[2]					
	(ii)	When the $iron(II)$ sulfate is heated strongly, further decomposition occurs.						
		$2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$						
		The gases formed in this reaction react with water and oxygen to form sulfuric acid. Explain how the sulfuric acid is formed.						
			•••••					
			[2]					
((iii)	A mineral of the type FeSO ₄ .xH ₂ O contains 37.2% of water. Complete the calculation to determine x.						
		mass of one mole of $H_2O = 18g$						
		mass of water in 100 g of $FeSO_4$.x $H_2O = 37.2$ g						
		number of moles of H ₂ O in 100 g of FeSO ₄ .xH ₂ O =						
		mass of $FeSO_4$ in 100 g of $FeSO_4$.x $H_2O =g$						
		mass of one mole of $FeSO_4 = 152 g$						
		number of moles of FeSO ₄ in 100 g of FeSO ₄ .xH ₂ O =						
		x =						
			[4]					

(c) When a mixture of sulfur and potassium nitrate is burned and the products are dissolved in

wat	er, sulfuric acid is formed.	
(i)	The sulfuric acid formed by this method is not pure. It contains another acid. Deduce the identity of this acid.	
		[1]
(ii)	The heat causes some of the potassium nitrate to decompose. Write the equation for the action of heat on potassium nitrate.	
		[2]
	[Total:	12]

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He lium 2	20 Neon 10 At Ar Argon	84 Krypton 36	131 Xe Xenon 54	Rn Radon		175 Lu Lutetium 71	
	IIA		19 Fluorine 9 35.5 C.1 Chlorine	80 Br Bromine 35	127	At Astatine 85		173 Yb Ytterbium 70	
	Ν		16 Oxygen 8 32 32 Sulfur 16	Selenium 34	1			169 Tm Thulium	Md delevium
	>		Nitrogen 7 7 31 31 Phosphorus 15	75 AS Arsenic	Sb Antimony 51			167 Er Erbium 68	H
	I/		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium		207 Pb Lead 82		165 Ho Holmium 67	
			11 Beron 5 At Aluminium 13	70 Ga Galium	115 n Indium	204 T 1 Thallium		162 Dy Dysprosium 66	
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	rkelium
				64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	E min
Group				59 K Nickel 28	Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre				59 Co Cobalt	103 Rh Rhodium 45	192 r r		Sm Samarium 62	Pu Plutonium
		T Hydrogen		56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Neptunium
				55 Mn Manganese 25	Tc n Technetium 43	186 Re Rhenium 75		Neodymium 60	238 C Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Yangsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium	93 Nobium	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 T Titanium	91 Zr Zirconium 40	178 # Hafnium		1	nic mass Ibol nic) number
				Scandium 21	89 ×	139 La Lanthanum *	227 Ac Actinium	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a × σ
	_		Lithium 3 23 8 Sodium 11	39 K Potassium	85 Rb Rubidium 37	133 Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.