Problem Set #1

Equitability in Voice Assistants

Aparna Ayyah & Matt Ho (Team 77)

Methodology

- PROBLEM CONTEXT

 Current Voice Assistant
 limitations
- 2 DATASETS OVERVIEW
 Indic TTS + CommonVoice

3. CUSTOM MODEL PERFORMANCE RNN Model + Spectrograms

TEXT UNDERSTANDING

N-Gram Model Improvements

5. CONCLUSIONS
Summary of Improvements

Inequity in Voice Assistants

Dataset

Historically drawn from standard, "White" dialects

Prediction Error

Word error rate up to 2x
higher for accented
speakers vs White
speakers

Positive Feedback Loop

Skews future models because of current error

Key Underserved Factors

Accented Speech
Those with accents may
pronounce or phrase
commands differently

Speech Impairment
Voice Assistants have a
long way to go with
accessibility

Children
Children interact with
and arrange words
differently than adults

Scanlon, Dr. Patricia. "Voice Assistants Don't Work for Kids: The Problem with Speech Recognition in the Classroom."

Masina, Fabio, et al. "Investigating the Accessibility of Voice Assistants With Impaired Users:

Mixed Methods Study."

Data Composition

English Speakers Worldwide

The Training Data is not representative of Users.

82.2%

Voice Assistant Sequence

Improvements in Speech to Text

Datasets

Indic TTS

Open Source Speech Dataset:

- Created by Indian Government
- Has extensive audio of Indian accents + phrasing
- Recorded by researchers
- Used for our Custom Model

CommonVoice

Open Source Speech Dataset:

- Created by Mozilla
- Similar to the (proprietary) datasets used by Amazon, Google, etc.
- User and Volunteer Generated
- Used by DeepSpeech (Voice Recognition Engine)

Custom Model Components

Comparison of Models

	Generic DeepSpeech	Trained Custom Model
Training Data	Standard	Indian Accents
Epochs	20	20
Word Error Rate	0.44	0.16
Word Accuracy	0.56	0.84

K-Fold Cross Validation

Epoch

Improvements in Text to Action

N-Gram Model

N-Gram Method

- Used by conventional models
- Calculate probability of the next word given the past n-1 words
- N = 4 (for large scale, working models)

Advantages

 Uses some context in prediction (N amount)

Limitations

 Misses longer range dependencies

Modified N-Gram Model

Additional Improvements

Setting Context

- Classifying by Intent:
 - Saying "Temperature" for temperature related commands
 - Adds to time taken, but increases accuracy

Repetition + Learning

- Ask again if unsure:
 - "Sorry, could you repeat that?"
- Track frequent errors

Conclusions

Speech to Text

- Currently training datasets are not robust enough
 - Natural Variations (like accent) can and will occur
- Mirroring population composition with training data improves model performance
 - Users can input preferred model ("select dialect") to improve voice assistant performance

Text to Action

- Text to Action understanding can be improved
 - Understand long range context
- Allow User to set "context"
 - Helps reduce misunderstandings in word choice

Thank You!

synchrony

"Compared to 'traditional' forms of discrimination, automated discrimination is more abstract and unintuitive, subtle, intangible, and difficult to detect"

—Al Expert Sandra Wachter