Evaluating Multiple Reinforcement Learning Agents in the Frozen Lake Environment: Scalability and Stochasticity

CS 4/5756 Robot Learning Group 3: Sophia Pham (tpp38) & Julie Jeong (sj598)

Problem & Environment

Frozen Lake - Gymnasium

- 1. Action Space: Discrete (4)
- 2. Observation Space:
 - 4×4: Discrete (16)
 - 5×5: Discrete (25)
- 3. Rewards:
 - +1 Reach goal
 - +0 Reach hole/frozen
- 4. **Slippery:** If true the player will move in intended direction with probability of 1/3

Research Hypothesis

Hypothesis 1: Scalability

Function approximation methods and policy gradient algorithms (REINFORCE, Actor-Critic) outperform tabular Q-learning as grid size increases

Hypothesis 2: Stochasticity

Policy gradient methods are more robust to stochasticity (is_slippery=True) compared to tabular and function approximation methods

Approach

Experiments:

- 1. 4×4 and 5×5 grids
- 2. Deterministic and Stochastic conditions
- → Agents trained over 5000 episodes

Key Takeaway 1

Policy gradient and function approximation methods are effective for scaling to larger environments

Key Takeaway 2

Stochastic environments challenge tabular methods, but function approximation shows surprising strength

Key Takeaway 3

Actor-Critic stands out as the most consistently reliable approach across all settings

Evaluation Rewards Averaged over 100 Iterations

	Size	Slippery	Random Bellman	Q-Learning	Approx. Function LR	Reinforce	Actor-Critic
Setting 1	4	false	0.14	1.0	0.89	1.0	0.99
Setting 2	4	true	0.08	1.0	0.92	0.64	0.92
Setting 3	5	false	0.0	0.71	0.54	0.5	0.97
Setting 4	5	true	0.01	0.53	0.97	1.0	0.71

Conclusion

Hypothesis 1:

As the grid size increases (from 4×4 to 5×5), function approximation methods and policy gradient algorithms (REINFORCE, Actor-Critic) will perform better than tabular Q-learning due to their ability to handle larger state-action spaces

 \rightarrow Proven to be **TRUE**

Hypothesis 2:

When the environment is stochastic (is_slippery=True), policy gradient methods will show greater adaptability compared to tabular Q-learning and function approximation

→ Proven to be **PARTIALLY TRUE**

5×5 Grid & Slippery Actor-Critic

