

Facultad de Ingeniería

Carrera de Ingeniería Electrónica Carrera de Telecomunicaciones y Redes Carrera de Ingeniería Mecatrónica

CURSO

Señales y Sistemas – EL178

TEMA

Señales Sistemas Continuos Propiedades Básicas de los sistemas

PROFESOR

Ing. Christian del Carpio Damián

¿QUÉ ES UNA SEÑAL?

Una señal es una función que depende de una o más variables, que transportan información acerca de la naturaleza de un fenómeno físico.

Una señal es denotada por ejemplo como x(t)

CLASIFICACIÓN DE SEÑALES

- Señales en tiempo continuo y en tiempo discreto
- Señales determinísticas, señales aleatorias
- Señales pares, señales impares
- Señales periódicas, señales no periódicas
- Señales de energía, señales de potencia

OPERACIONES SOBRE SEÑALES

Operaciones sobre la variable independiente

- Escalamiento de tiempo
- Reflexión
- Corrimiento en tiempo

SEÑALES ELEMENTALES

La señal continua exponencial compleja es de la forma

$$x(t) = Ce^{at}$$

Donde "C" y "a" son, en general, números complejos. Dependiendo de los valores de estos parámetros, la exponencial compleja puede adoptar varias características diferentes.

Función exponencial real continua

$$x(t) = Ce^{at} \qquad C \neq 0, a \in \Re$$

Función periódica exponencial compleja y senoidal

$$x(t) = e^{j\omega_o t}$$

Una propiedad importante de esta señal consiste en que es periódica

Función periódica exponencial compleja y senoidal

La señal senoidal tiene la forma

$$x(t) = A\cos(\omega_o t + \phi)$$

Usando la relación de Euler, se tiene

$$e^{j\omega_0 t} = \cos(\omega_0 t) + jsen(\omega_0 t)$$

$$e^{-j\omega_0 t} = \cos(\omega_0 t) - jsen(\omega_0 t)$$

De manera similar se tiene

$$A\cos(\omega_0 t + \phi) = \frac{A}{2}e^{j\omega_0 t}e^{j\phi} + \frac{A}{2}e^{-j\omega_0 t}e^{-j\phi}$$

$$Asen(\omega_0 t + \phi) = \frac{A}{2j} e^{j\omega_0 t} e^{j\phi} - \frac{A}{2j} e^{-j\omega_0 t} e^{-j\phi}$$

Señales exponenciales complejas generales

$$x(t) = Ce^{at}$$
 $C, a \in Complejos$

- (a) Señal senoidal creciente
- (b) Señal senoidal decreciente

SEÑAL ESCALÓN UNITARIO

La función escalón unitario continua se define como:

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

SEÑAL IMPULSO UNITARIO

La función impulso unitario se define como:

$$\delta(t) = 0$$
 para $t \neq 0$

У

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

SEÑAL RAMPA UNITARIA

La función rampa unitaria continua se define como:

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

¿QUÉ ES UN SISTEMA?

Una entidad que manipula una o más señales para llevar a cabo una función, produciendo de este modo nuevas señales

SISTEMAS CONTINUOS

Un sistemas continuo es aquel en el cual las señales continuas de entrada son transformadas en señales continuas de salida.

La relación entrada – salida de un sistema continuo se denota como

SISTEMAS CONTINUOS

Interconexión de los sistemas

Interconexión en serie

Interconexión en paralelo

SISTEMAS CONTINUOS

Interconexión de los sistemas

Interconexión con retroalimentación

Sistemas con y sin memoria

Se dice que un sistema es sin memoria si su salida para cada valor de la variable independiente en un tiempo dado depende solamente de la entrada en ese mismo tiempo.

Sistemas con y sin memoria

Ejemplo 1

Sea $x(t) \rightarrow y(t)$

$$y(t) = Rx(t)$$

Ejemplo 2

Sea $x(t) \rightarrow y(t)$

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$

Sistemas con y sin memoria

Ejemplo 1

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = Rx(t)$$

sin memoria

Ejemplo 2

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau$$

con memoria

Sistemas con y sin memoria

Ejemplo 3

Sea
$$x(t) \rightarrow z(t)$$

$$z(t) = x(t+5)$$

Ejemplo 4

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = (t+5)x(t)$$

Sistemas con y sin memoria

Ejemplo 3

Sea
$$x(t) \rightarrow z(t)$$

$$z(t) = x(t+5)$$

con memoria

Ejemplo 4

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = (t+5)x(t)$$

sin memoria

Sistemas con y sin memoria

Ejemplo 5

Sea
$$x(t) \rightarrow m(t)$$

$$m(t) = x(5)$$

Ejemplo 6

Sea
$$v(t) \rightarrow i(t)$$

$$i(t) = a_0 + a_1 v(t) + a_2 v^2(t) + a_3 v^3(t) + \dots$$

Sistemas con y sin memoria

Ejemplo 5

Sea
$$x(t) \rightarrow m(t)$$

$$m(t) = x(5)$$

con memoria

Ejemplo 6

Sea
$$v(t) \rightarrow i(t)$$

$$i(t) = a_0 + a_1 v(t) + a_2 v^2(t) + a_3 v^3(t) + \dots$$

sin memoria

Invertibilidad y sistemas inversos

Se dice que un sistema es invertible si distintas entradas producen distintas salidas

Invertibilidad y sistemas inversos

Ejemplo 7

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = 2x(t)$$

Ejemplo 8

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x^2(t)$$

Invertibilidad y sistemas inversos

Ejemplo 7

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = 2x(t)$$

invertible

Ejemplo 8

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x^2(t)$$

no invertible

Invertibilidad y sistemas inversos

Ejemplo 9

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x^5(t)$$

Ejemplo 10

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \frac{1}{L} \int_{-\infty}^{t} x(\tau) d\tau$$

<u>Invertibilidad y sistemas inversos</u>

Ejemplo 9

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x^5(t)$$

invertible

Ejemplo 10

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \frac{1}{L} \int_{-\infty}^{t} x(\tau) d\tau$$

invertible

Causalidad

Se dice que un sistema es causal si su salida en cualquier instante de tiempo depende sólo de los valores de la entrada en el momento presente y en el pasado.

Causalidad

Ejemplo 11

Sea $x(t) \rightarrow y(t)$

$$y(t) = x(t-1)$$

Ejemplo 12

Sea $x(t) \rightarrow y(t)$

$$y(t) = x(t) - x(t+1)$$

Causalidad

Ejemplo 11

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x(t-1)$$

causal

Ejemplo 12

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x(t) - x(t+1)$$

no causal

Causalidad

Ejemplo 13

Sea $x(t) \rightarrow y(t)$

$$y(t) = x(-t)$$

Ejemplo 14

Sea $x(t) \rightarrow y(t)$

$$y(t) = \int_{0}^{t+a} x(\tau)d\tau$$

Causalidad

Ejemplo 13

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x(-t)$$

no causal

Ejemplo 14

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \int_{-\infty}^{t+a} x(\tau) d\tau$$

causal si a≤0

Estabilidad

Se dice que un sistema entrada acotada – salida acotada es estable si y solo si, una entrada acotada produce una salida acotada. La salida de tal sistema no diverge si la entrada no diverge.

$$\forall k_1 > 0, \exists k_2 > 0, tal que$$

$$|x(t)| < k_1 - \infty < t < \infty \implies |y(t)| < k_2 - \infty < t < \infty$$

Estabilidad

Ejemplo 15

Sea $x(t) \rightarrow y(t)$

$$y(t) = tx(t)$$

Ejemplo 16

Sea $x(t) \rightarrow y(t)$

$$y(t) = e^{x(t)}$$

Estabilidad

Ejemplo 15

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = tx(t)$$

no estable

Ejemplo 16

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = e^{x(t)}$$

estable

Invarianza en el tiempo

Un sistema es invariante en el tiempo si un corrimiento de tiempo en la señal de entrada ocasiona un corrimiento de tiempo en la señal de salida.

Invarianza en el tiempo

Ejemplo 17

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \sin(x(t))$$

Ejemplo 18

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = tx(t)$$

Invarianza en el tiempo

Ejemplo 17

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \sin(x(t))$$

invariante

Ejemplo 18

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = tx(t)$$

variante

Invarianza en el tiempo

Ejemplo 19

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x(2t)$$

Invarianza en el tiempo

Ejemplo 19

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x(2t)$$

variante

<u>Linealidad</u>

Un sistema lineal continuo, es aquel que posee la importante propiedad de superposición: si una entrada consiste en la suma ponderada de varias señales, entonces la salida es simplemente la superposición (es decir, la suma ponderada) de las respuestas del sistema a cada uno de estas señales.

<u>Linealidad</u>

Si se tiene

$$x_1(t) \rightarrow y_1(t)$$

$$x_2(t) \rightarrow y_2(t)$$

Entonces, el sistema es lineal si:

La respuesta a
$$x_1(t) + x_2(t)$$
 es $y_1(t) + y_2(t)$

La respuesta a ax_1(t) es $ay_1(t)$

<u>Linealidad</u>

Una consecuencia directa de la propiedad de superposición es que, para sistemas lineales, una entrada que sea cero en todo tiempo da una salida cero en todo tiempo.

Linealidad

Ejemplo 20

Sea $x(t) \rightarrow y(t)$

$$y(t) = 5x(t)$$

Ejemplo 21

Sea $x(t) \rightarrow y(t)$

$$y(t) = x^2(t)$$

Linealidad

Ejemplo 20

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = 5x(t)$$

lineal

Ejemplo 21

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = x^2(t)$$

no lineal

Linealidad

Ejemplo 22

Sea $x(t) \rightarrow y(t)$

$$y(t) = \sin(x(t))$$

Ejemplo 23

Sea $x(t) \rightarrow y(t)$

$$y(t) = 2x(t) + 3$$

Linealidad

Ejemplo 22

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = \sin(x(t))$$

no lineal

Ejemplo 23

Sea
$$x(t) \rightarrow y(t)$$

$$y(t) = 2x(t) + 3$$

no lineal

FUENTE:

OPPENHEIM, A.- WILLSKY, A. "Señales y Sistemas" Pearson Education, 2ª ed., 1998