ANÁLISE DE INIQUIDADES INTERSECCIONAIS NA OCORRÊNCIA DE OBESIDADE EM ADULTOS BRASILEIROS

26/11/2024

09:40 - 11:00

MARCOS FANTON (UFSM) - <u>marcos.fanton@ufsm.br</u>
HELENA CONSTANTE (Uni. Sheffield) - <u>lenaconstante@gmail.com</u>
RAQUEL CANUTO (UFRGS) - raquel.canuto@ufrqs.br

INTRODUÇÃO

A obesidade é uma doença que obteve um aumento expressivo nos últimos 50 anos em todo o mundo, compondo parte do fenômeno denominado transição nutricional (Popkin, 2002).

É crucial, nesse sentido, compreender não só seus determinantes (globais e contextuais), como as subpopulações com maior risco para a elaboração de políticas públicas direcionadas.

INTRODUÇÃO

No entanto, embora haja estudos (Ferreira, 2019; Alvim, 2020; Canella, 2020; Jesus, 2020) que mapeiem sua prevalência e incidência de acordo com diferentes características e *status* socioeconômicos (como gênero, raça/etnia, classe econômica, nível de escolaridade), a grande maioria aborda tais variáveis

- (1) como características exclusivamente individuais e/ou biológicas; e
- (2) através de técnicas estatísticas que consideram os efeitos de tais características isoladamente.

INTRODUÇÃO — Justificativa

A partir da teoria interseccional, é possível questionar se a **convergência** dessas diferentes características produz **efeitos interativos** (de privilégio ou opressão) na ocorrência de obesidade em grupos específicos quando consideradas *como* características contextuais ou sociais.

Mulher + Negra + Lésbica ≠ MulherNegraLésbica (Bowleg, 2008)

INTRODUÇÃO — Objetivos

Objetivo 1: Analisar a prevalência de obesidade na população brasileira a partir dos dados da PNS-2019 com foco em **estratos sociais interseccionais**.

Objetivo 2: Implementar o uso da análise quantitativa interseccional *Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy* (**I-MAIHDA**) em dados populacionais brasileiros.

MÉTODO — Dados

Foram analisados dados provenientes da **Pesquisa Nacional da Saúde** (**PNS**) de 2019, inquérito de âmbito nacional com representatividade da população residente em domicílios particulares permanentes no Brasil. A PNS permite investigar temas relacionados à saúde, além de embasar políticas públicas voltadas à melhoria da saúde e bem-estar da população brasileira (STOPA et al. 2019).

Esse estudo utilizou apenas dados dos indivíduos que foram selecionados para responder ao questionário do morador (90.846 respondentes) e aplicou critérios de inclusão.

MÉTODO — Dados

MÉTODO — Variável dependente

O desfecho do estudo é a obesidade.

Em primeiro lugar, foi calculado o Índice de Massa Corpórea (IMC) dos respondentes através do autorrelato de altura (em metro) e peso (em quilograma).

Indivíduos com IMC ≥ 30kg/m² foram classificados com obesidade (sim) e o restante sem obesidade (não).

MÉTODO — Variáveis independentes

Foi construída a variável **Estrato Social** através da combinação de:

- 1. **Gênero:** homem, mulher
- 2. **Raça:** branco, preto e pardo
- 3. **Idade (ano):** tercil1 (18-34), tercil2 (35-48), tercil3 (49-65)
- 4. Renda (salário-mínimo): baixa (<1 SM), média (1-3SM), alta (>3SM)
- 5. **Educação (nível)**: baixa (sem instrução ensino fundamental incompleto), média (fundamental e ensino médio completo), alta (ensino superior incompleto ou escolaridade superior)

MÉTODO — Variável dependente

Exemplo:

Mulher-Parda-Idade(tercil1)-RendaMédia-EducaçãoMédia

MÉTODO — Variável dependente

Ao todo, foram formados **162** estratos sociais:

2(gênero) x 3(raça) x 3(idade) x 3(renda) x 3(educação) = 162 estratos

Contudo, apenas **159 estratos sociais** possuíam observações na amostra do estudo.

Foi empregada Análise Multinível de Heterogeneidade Individual e Acurácia Discriminatória (Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy [MAIHDA]) com abordagem interseccional, implementada por Evans et al. (2018, 2019, 2024). Foi empregada análise multinível logística, considerando-se o desfecho obesidade (sim/não). Modelos foram implementados em R (Evans et al. 2024).

I-MAIHDA emprega uma regressão multinível em que o estrato social é definido como **contexto ou estrutura de nível superior** — assim como escola, hospital, empresa, local de trabalho, bairro, cidade, etc.

Emprega-se um modelo de dois níveis de coeficientes aleatórios, em que indivíduos (**nível 1**) estão agrupados em estratos sociais (**nível 2**).

Estratos sociais devem ser interpretados como *proxies* para **contextos sociais interseccionais.** Nesse sentido, a posição ou *status* social interseccional não é interpretado como um conjunto de características biológicas e/ou individuais. Ela define a posição social no qual indivíduos se situam na sociedade, o que envolve um conjunto de sistemas de poder que interagem entre si.

Distribuição das características sociais segundo a amostra analítica e prevalência de obesidade (IMC≥30kg/m²). Pesquisa Nacional de Saúde, 2019.

	Distribuição da Amostra		Obesidade	
	n	% (IC 95%)	% (IC 95%)	
Gênero				
Homem	34467	47.94 (47.28-48.59)	19.81 (18.84-20.82)	
Mulher	37429	52.06 (51.41-52.72)	23.22 (22.33-24.13)	
Raça				
Branca	30628	42.6 (41.82-43.39)	21.11 (20.22-22.26)	
Preta	8505	11.83 (11.39-12.29)	23.96 (22.4-25.59)	
Parda	32763	45.57 (44.84-46.3)	21.42 (20.52-22.34)	
Idade				
Tercil 1	26278	36.55 (35.85-37.26)	16.13 (15.11-17.21)	
Tercil 2	22964	31.94 (31.32-32.57)	25.16 (23.75-26.64)	
Tercil 3	22654	31.51 (30.92-32.1)	24.28 (23.34-25.25)	
Renda (SM)				
Baixa (≤1 SM)	37738	52.49 (51.62-53.36)	21.24 (20.31-22.19)	
Média (1 – 3 SM)	26350	36.65 (35.91-37.4)	22.58 (21.39-23.81)	
Alta (> 3 SM)	7808	10.86 (10.25-11.49)	19.91 (18.47-21.44)	
Escolaridade				
Baixa	21245	29.55 (28.87-30.24)	23.48 (22.52-24.47)	
Média	34503	47.99 (47.27-48.71)	21.41 (20.19-22.69)	
Alta	16148	22.46 (21.68-23.27)	19.46 (18.4-20.57)	
Total	71896	100.00	21.59 (20.80-22.40)	

Modelo nulo: composto apenas pelo intercepto (sem variáveis explicativas). Pretende-se estimar a probabilidade um indivíduo *i* ter obesidade em cada estrato social *j*.

Modelo de efeitos principais aditivos (ajustado): composto pelas variáveis utilizadas na composição do estrato social (gênero, raça, idade, renda e educação). Permite estimar a probabilidade estimada total de obesidade em cada estrato social e o quanto da probabilidade estimada pode ser atribuída a efeitos aditivos (*OR*) e a efeitos interativos (estratos sociais).

FANTON, MARCOS ET AL, ANÁLISE DE INIQUIDADES INTERSECCIONAIS...

	Modelo Nulo		Modelo Aleatório		
Coeficiente	Odds Ratios	IC(95%)	Odds Ratios	IC(95%)	
Intercepto	0.27 ***	0.25 - 0.29	0.19	0.16 - 0.21	
Gênero (Mulher)			1.10	1.00 - 1.20	
Raça (Preta)			1.16	1.03 - 1.30	
Raça (Pardo)			1.02	0.92 - 1.13	
Idade (Tercil2)			1.57 ***	1.40 - 1.75	
Idade (Tercil3)			1.53 ***	1.37 - 1.71	
Renda (Média)			1.07	0.97 - 1.19	
Renda (Alta)			0.97	0.86 - 1.10	
Educação (Média)			1.00	0.89 - 1.11	
Educação (Alta)			0.90	0.80 - 1.01	
Efeitos aleatórios					
σ^2	3.29 3.29		29		
τ_{OO}	0.10 _S	0.10 stratum		0.05 stratum	
ICC	0.03		0.01		
N	159 s	tratum	159 stratum		
Observações	71896 71896		96		
R ² Marginal/R ² Condicional	0.000	0.030	0.015 /	0.029	
		* p<0	0.05 ** p<0.01	*** p<0.00	

Medidas de **acurácia discriminatória** foram especificadas para compreender e mensurar a influência contextual dos estratos sociais e a similaridade *intraclasse* e a diferença *entre* outras classes dos indivíduos (a heterogeneidade individual).

Os modelos (nulo e ajustado) possuem poder de discriminação limitada (**AUC** = 0.5 e 0.59). Porém, isso é esperado, dado que a probabilidade estimada do desfecho depende exclusivamente do estrato social.

Obesidade Estimada por Estratos Sociais

Top 10 Estratos com Maior Prevalência

	Obesidade	
Estrato	(%)	IC(95%)
Mulher-Preta-Idade(t2)-Renda(Baixa)-Educação(Baixa)	33.27	(28.11, 38.98)
Mulher-Preta-Idade(t3)-Renda(Baixa)-Educação(Média)	30.28	(24.79, 35.82)
Mulher-Parda-Idade(t2)-Renda(Baixa)-Educação(Baixa)	29.81	(26.31, 33.12)
Mulher-Preta-Idade(t2)-Renda(Baixa)-Educação(Média)	29.71	(25.24, 34.60)
Mulher-Preta-Idade(t3)-Renda(Baixa)-Educação(Baixa)	29.48	(25.09, 34.06)
Mulher-Parda-Idade(t2)-Renda(Média)-Educação(Baixa)	29.40	(24.43, 35.17)
Mulher-Preta-Idade(t3)-Renda(Alta)-Educação(Média)	28.97	(21.07, 38.09)
Mulher-Preta-Idade(t2)-Renda(Média)-Educação(Baixa)	28.84	(21.36, 37.50)
Mulher-Preta-Idade(t2)-Renda(Média)-Educação(Alta)	28.38	(22.28, 34.89)
Homem-Preto-Idade(t2)-Renda(Média)-Educação(Média)	28.31	(23.28, 34.25)

Obesidade Estimada por Estratos Sociais

Top 10 Estratos com <u>Menor</u> Prevalência

0|---!-|--|-

	Obesidade	
Estrato	(%)	IC(95%)
Mulher-Branca-Idade(t1)-Renda(Alta)-Educação(Alta)	10.41	(8.02, 13.53)
Homem-Pardo-Idade(t1)-Renda(Baixa)-Educação(Média)	11.80	(10.03, 13.61)
Homem-Pardo-Idade(t1)-Renda(Baixa)-Educação(Baixa)	12.70	(10.58, 15.09)
Mulher-Branca-Idade(t1)-Renda(Média)-Educação(Alta)	12.78	(10.19, 15.89)
Mulher-Parda-Idade(t1)-Renda(Alta)-Educação(Alta)	12.94	(9.79, 17.16)
Mulher-Branca-Idade(t2)-Renda(Alta)-Educação(Alta)	13.25	(10.64, 16.47)
Homem-Branco-Idade(t1)-Renda(Alta)-Educação(Alta)	13.40	(10.63, 16.72)
Homem-Branco-Idade(t1)-Renda(Baixa)-Educação(Baixa)	13.57	(10.66, 16.89)
Mulher-Parda-Idade(t1)-Renda(Baixa)-Educação(Alta)	14.30	(11.63, 17.62)
Homem-Branco-Idade(t1)-Renda(Baixa)-Educação(Alta)	14.33	(10.89, 18.57)

CONCLUSÃO

A implementação da I-MAIHDA para se discutir obesidade (e outros desfechos em saúde) na população brasileira permite:

- Analisar os efeitos interativos para todos estratos interseccionais sem uma categoria de referência específica, ampliando a compreensão da heterogeneidade dos indivíduos intra- e interclasses.
- 2. Unificar teoria e método ao (1) compreender características e *status* socioeconômicos como fatores contextuais (e não individuais); e (2) embasar a reflexão sobre como diferentes sistemas de privilégio e opressão influenciam a saúde e o bem-estar de grupos sociais.

OBRIGADO!

Contato:

Marcos Fanton

marcos.fanton@ufsm.br

Repositório GitHub:

https://github.com/marcosfanton/ maihda_pns19-obesity

Financiamento:

MINISTÉRIO DA SAÚDE

