Distribution	PMF/PDF and Support	Expected Value	Variance	\mathbf{MGF}
Bernoulli $Bern(p)$	P(X = 1) = p $P(X = 0) = q = 1 - p$	p	pq	$q+pe^t$
Binomial $Bin(n, p)$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$ $k \in \{0, 1, 2, \dots n\}$	np	npq	$(q+pe^t)^n$
$\begin{array}{c} \text{Geometric} \\ \text{Geom}(p) \end{array}$	$P(X=\times)=\left(\operatorname{l-\vartheta}\right)^{\mathbf{v}}\vartheta$	<u>1-0</u>	1- ð	
Negative Binomial $NBin(r, p)$	$P(X = n) = {r+n-1 \choose r-1} p^r q^n$ $n \in \{0, 1, 2, \dots\}$	rq/p	rq/p^2	$(\frac{p}{1-qe^t})^r, qe^t < 1$
Hypergeometric $\mathrm{HG}_{\mathbf{c}}\mathrm{om}(w,b,n)$	$P(X = k) = {w \choose k} {b \choose n-k} / {w+b \choose n}$ $k \in \{0, 1, 2, \dots, n\}$	$\mu = \frac{nw}{b+w}$	$\left(\frac{w+b-n}{w+b-1}\right)n\frac{\mu}{n}(1-\frac{\mu}{n})$	messy
Poisson $Pois(\lambda)$	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	$e^{\lambda(e^t-1)}$
$\begin{array}{c} \text{Uniform} \\ \text{Unif}(a,b) \end{array}$	$f(x) = \frac{1}{b-a}$ $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Normal $\mathcal{N}(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in (-\infty, \infty)$	μ	σ^2	$e^{t\mu+\frac{\sigma^2t^2}{2}}$
Exponential $\text{Expo}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, t < \lambda$
Gamma Gamma (a, b)	$f(x) = \frac{1}{\Gamma(a)} (\boldsymbol{b} x)^a e^{-\boldsymbol{b} x} \frac{1}{x}$ $x \in (0, \infty)$	<u>a</u> b	$\frac{a}{b^2}$	$\left(\frac{b}{b-t}\right)^a$, $t < b$
$\begin{array}{c} \operatorname{Beta} \\ \operatorname{Beta}(a,b) \end{array}$	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$ $x \in (0,1)$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{(a+b+1)}$	messy
Log-Normal $\mathcal{LN}(\mu, \sigma^2)$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-(\log x - \mu)^2/(2\sigma^2)}$ $x \in (0, \infty)$	$\theta = e^{\mu + \sigma^2/2}$	$\theta^2(e^{\sigma^2}-1)$	doesn't exist
Chi-Square χ_n^2	$\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2} \\ x \in (0, \infty)$	n	2n	$(1-2t)^{-n/2}, t < 1$
Student- t t_n	$\frac{\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+x^2/n)^{-(n+1)/2}}{x \in (-\infty, \infty)}$	0 if n > 1	$\frac{n}{n-2}$ if $n > 2$	doesn't exist