Classification of Depressed and Non-Depressed
Subjects and Predicting their MADRS Score
Using Machine Learning

Submitted by: Shivam Kasat

Guided by:

Dr. Sonali Agarwal

Overview

- Objectives
- Using Awesome Backgrounds
- Engage your Audience
- Capture Audience Attention

Introduction

- What is Depression?
- What is motor activity data?
- How can we use this sensor based data?
- Use of Machine learning in Psychology.

Objectives

- Classification of depressed and Non-depressed subjects based on their motor activity data.
- Multi-class classification of subjects into Nodepression, Mild-depression, severe-depression.
- Prediction of MADRS score of the subject which later can be used for classification.

Motivation

- The COVID-19 pandemic
- Change in lifestyle
- Increasing work load
- Depression in teenagers

Associated Challenges & Research Gap

- Dataset size
- Imbalanced dataset
- Improvisation in model performance
- Multi-class classification

Dataset Explained

- Dataset size
- Data type
- Data content

C+ <class 'pandas.core.frame.DataFrame'>
RangeIndex: 55 entries, 0 to 54
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	number	55 non-null	object	
1	days	55 non-null	int64	
2	gender	55 non-null	int64	
3	age	55 non-null	object	
4	afftype	23 non-null	float64	
5	melanch	20 non-null	float64	
6	inpatient	23 non-null	float64	
7	edu	53 non-null	object	
8	marriage	23 non-null	float64	
9	work	23 non-null	float64	
10	madrs1	23 non-null	float64	
11	madrs2	23 non-null	float64	
<pre>dtypes: float64(7), int64(2), object(3)</pre>				
memory usage: 5.3+ KB				

memory usage: 5.3+ K

Work Plan

- Binary Classification
 - Dataset Preparation
 - Classification task
- Multiclass Classification
 - Dataset preparation
 - Classification task
- MADRS score prediction
 - Dataset Preparation
 - Prediction task

Binary Classification

- Dataset Preparation
- Data Modeling

Binary Classification Results

Without Oversampling

	Accuracy	F1-Score	Precision	Recall
AdaBoost	0.71	0.56	0.56	0.56
XGBoost	0.74	0.58	0.61	0.56
CatBoost	0.78	0.63	0.65	0.60
GBM	0.72	0.52	0.57	0.48
1D CNN	0.63	0.65	0.66	0.60

Binary Classification Results

With oversampling on training set

	Accuracy	F1-Score	Precision	Recall
AdaBoost	0.70	0.70	0.70	0.71
XGBoost	0.72	0.72	0.72	0.73
CatBoost	0.78	0.78	0.78	0.78
GBM	0.76	0.76	0.67	0.76

Multi-class Classification

- Dataset Preparation
- Data Modeling

Multi-class Classification Results

Without Oversampling

	Accuracy	F1-Score	Precision	Recall
AdaBoost	0.82	0.82	0.82	0.82
XGBoost	0.86	0.86	0.87	0.86
CatBoost	0.85	0.85	0.85	0.85
GBM	0.84	0.84	0.85	0.84
1D CNN	0.83	0.84	0.85	0.84

Multi-class Classification Results

With Oversampling on training set

	Accuracy	F1-Score	Precision	Recall
AdaBoost	0.89	0.89	0.89	0.89
XGBoost	0.87	0.87	0.87	0.87
CatBoost	0.89	0.89	0.89	0.89
GBM	0.88	0.88	0.88	0.88
1D CNN	0.83	0.84	0.83	0.85

MADRS Score Prediction

With and without oversampling no major changes in results.

	MAE	MSE
AdaBoost	1.68	8.60
XGBoost	1.32	7.01
1D CNN	2.31	9.56

Conclusion

- Tree based ensemble models can be used to classify subjects as depressed and non-depressed, Also they can be used to classify subjects into no-depression, milddepression & severe depression. CatBoost ensemble model can be preferred over others.
- Tree based ensemble model performed well and thus can be used to predict MADRS.
- The results can be improved further with more data, as we saw improvement in results with oversampling.
- This work can be used in smartwatche & smartphone applications to warn users about mental health.