book: Which functions are easier to optimize?

PROPERTY 1: How consitive is the function?

Sharp bump is not good for UD.

A small step in x -> Large change in flx).

1. LIPSCHITZNESS: [Function doesn't change much for a step]

f is L-lipschitz if $(f: \mathbb{R}^d \to \mathbb{R})$

+ x,y |f(x) - f(y)| ≤ L ||x-y||,

La distance between & and A.

What if function is:

2. SMDOTHNESS: [Gradient should also not change quickly]

f is β -smooth if $\forall \alpha, y \quad || \nabla f(\alpha) - \nabla f(y) ||_2 \leq \beta \cdot ||\alpha - y||_2$

SMOOTHNESS IS STRICTER THAN LIPSCHITZNESS

if f is B-smooth => f is L-Lipschitz.

only if the input values

are bounded!

Example:

f:
$$\mathbb{R} \to \mathbb{R}$$

 $f(x) = ax^2 + bx + c$
 $f'(x) = 2ax + b$
If $f'(x) = f'(y) = 2a|x - y|$
 $=> f$ is $(2a) = Smooth$
 $f(x) = f(y) = ax^2 + bx + c - (ay^2 + by + c)$
 $= a(x^2 - y^2) + b(x - y)$
 $= (x - y) [a(x + y) + b]$
So if $(x - y)$ is bounded, we can
 $Sort$ of $Sort$ is Lipschitz.
But cannot be proven explicitly
 $Sort$ for $Sort$ $Sort$

THEOREM 1: MONOTONICITY OF 60

f :s a β -smooth function, if $\eta \leq \frac{1}{\beta}$. Then, $f(x_{i+1}) \leq f(x_i) - \eta || \nabla f(x_i)||^2$

"6D monotonically decreases the function value".

x: = x:-, - m of (a:-,)

11 \rangle f(x) - \rangle f(y) 112 \le \beta \cdot 1) \angle 2

PROOF OF MONOTONICSTY :

Assume univariate function f: R -> R

Smoothness upper bound: f is β -smooth $(f:R\rightarrow R)$ $\forall a,b$ $f(b) \leq f(a) + f'(a) \cdot (b-a) + \frac{\beta}{2} (b-a)^2$ \Rightarrow So we can create a parabola as a function of β , such that parabola is above the function.

[β ensures that the parabola is above but as close as possible]

PROOF: Based on Taylor's Theorem

$$f(x+h) = f(x) + f'(x) \cdot h + f''(x) \cdot \frac{h^2}{2} + ...$$

Taylor's theorem

:
$$f(x+h) = f(x) + f'(x) \cdot h + \int_{0}^{1} f'(x+h)$$

- $f'(x)$.

with a remainder term

PROOF OF MONOTONICITY FOR UNIVERSITE CASE:

$$t(x^{i+1}) = t(x^i - \lambda t_i(x^i))$$

Use smoothness opper bound:

$$f(b) \leq f(a) + f'(a) \cdot (b-a) + \frac{\beta}{2} (b-a)^2$$

$$f(x_{i+1}) = f(x_i) - \eta f_1(x_i)^2$$

$$= f(x_i) - \eta f_1(x_i)^2 + \frac{1}{\beta} \eta^2 f_1(x_i)^2$$

$$= f(x_i) - \eta f_1(x_i)^2 + \frac{1}{\beta} \eta^2 f_1(x_i)^2$$

$$= f(x_i) - \eta f_1(x_i)^2 + \frac{1}{\beta} \eta^2 f_1(x_i)^2$$

$$= f(x_i) - \eta f_1(x_i)^2$$

Smoothness upper bound for multivariate functions: $f: Rd \rightarrow R$

If
$$f$$
 is β -smooth, then
$$\forall x,y \quad f(y) \leq f(x) + \langle \nabla f(x),y-x\rangle + \frac{\beta}{2} ||y-x||_2^2$$
 (inner-product)

PROOF OF MONOTONICITY FOR ALL FUNCTIONS: $f(x_{i+1}) = f(x_i - \eta \nabla f(x_i))$ \downarrow x

$$\begin{aligned}
&\{ t(x_i) - \frac{1}{u} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u_{5} b} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) - u \| \Delta t(x_i) \|_{2}^{2} + \frac{1}{u} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) + \Delta t(x_i) \|_{2}^{2} + \frac{1}{u} \| \Delta t(x_i) \|_{2}^{2} \\
&\{ t(x_i) + \Delta t(x_i) + \Delta t(x_i) \|_{2}^{2} + \frac{1}{u} \|_{2}$$

Summary:

$$\rightarrow$$
 60 makes progress as long as $\eta \leq 1/\beta$
(Theory to practice):

Practical tricks:

1. Find largest
$$\eta$$
 such that

 $f(x_i - \eta \nabla f(x_i)) \leq f(x_i) - \frac{\eta}{2} \| \nabla f(x_i) \|^2$ (2)

 $(eg: start with $\eta = 1$

if (a) holds, continue, else try $\eta = \frac{1}{2}$,...

2. Can also do "Backtracking line search"

to pick right η .$

-> Monotonicity 7> We converge to the global minimum.

CONVEX FUNCTIONS

[Magic Ingredient in optimization]

Convex: $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the tangent plane at any point is below the curve.

Equivalently:

$$\rightarrow \forall u, v , \lambda \in (0,1) \quad f(\lambda u + (1-\lambda)v) \leq \lambda \cdot f(u) + (1-\lambda) \cdot f(v)$$

$$\rightarrow \forall u, v, f(u) + \langle \nabla f(u), v - u \rangle \leq f(v)$$
 $\downarrow \qquad \qquad \qquad \downarrow$

the tangent function

$$g: \mathbb{R} \to \mathbb{R} , \quad \omega \in \mathbb{R}^d$$

$$g_{\omega}: \mathbb{R}^d \to \mathbb{R}$$

$$g_{(x)} = g(\langle \omega, \alpha \rangle)$$

Example: e is a convex function.

$$g_{\omega}: \mathbb{R}^d \to \mathbb{R}$$
 as

=>
$$x^2$$
 is a convex function => $f(x) = \langle w, x \rangle^2$ is a convex function.

=>
$$(x-a)^2$$
 is a convex function

=>
$$f(\omega)$$
: $(<\omega, >>-a)^2$ is a convex function.

WHY CONVEXITY:

$$L(\theta) := \frac{1}{n} \stackrel{n}{\underset{i=1}{\overset{n}{\rightleftharpoons}}} l(h_{\theta}(\alpha_i), \Psi_i)$$

Dataset
$$(x, y)$$
, (x_2, y_2) ..., (x_n, y_n)

Least Squares Regression:

halx;
$$\{\theta, x_i\}$$
 inner-product $l(ha(x_i), g_i) = (\langle \theta, x_i \rangle - y_i)^2$

LSR ERM:
$$L(\theta) = \frac{1}{2} \left(\langle \theta, x_i \rangle - \psi_i \right)^2$$

is a convex function in 0.

L, ERM:
$$L_{1}(\theta) = \frac{1}{2} \frac{2}{3} | \langle \theta, \alpha; \gamma - \psi; |$$

is a convex function in B.

"LALSO" :
$$L(\theta) = \frac{1}{2} \left(2\theta, x_i > -4i \right)^2 + \lambda \left(|\theta_i| + |\theta_i| + \dots + |\theta_n| \right)$$

CONVEX OPTIMIZATION IS EVERYWHERE!

THEOREM: If I is B- Smooth and convex, then

(if
$$\eta \in V_B$$
) $f(\alpha_k) \leq f(\alpha_k) + \frac{2\beta \cdot ||\alpha_0 - \alpha_k||}{k}$
global γ number of iterations optimum

(Remark: Minimizing a convex function is "easy")

for a given accuracy and we know p,

we know the number of iterations needed,

to reach within that accuracy of the

global optimum.

(Aemork: If f is L-Lipschitz, then
$$f(x_k) \in f(x_k) + L \cdot ||x_0 - x_k||$$