Матлог. Основные записи

Кабашный Иван (@keba4ok) на основе лекций С. О. Сперанского 22 января 2020 г.

Основные моменты.

Содержание

1	Лекция 1.	3
2	Лекция 2.	4
3	Лекция 3.	5
4	Лекция 4.	7
5	Лекция 5.	10
6	Лекция 6.	11

1 Лекция 1.

Определение 1. *Конкатенация* - записали подряд два слова. (A - алфавит, A^* - слова).

Определение 2. *Подслово* - как есть, *вхождение* - учитываем, где начинается подслово. Если подслово стоит в начале, то мы его и называем *начало*, а обозначаем как $\psi \sqsubseteq \varphi$.

Определение 3. w[w'/u, k] - замена подслова w' на u, начинающегося в позиции k.

Определение 4. Фиксированное счётное множество Prop - *пропозициональные переменные*. Язык $\mathscr L$ классической пропозициональной логики состоит из переменных, а также символов \to , \lor , \land , \neg и круглых скобочек.

Определение 5. Form (формулы) - наименьшее множество слов в алфавите, замкнутое относительно следующих порождающих правил:

- если $p \in \text{Prop}$, то $p \in \text{Form}$;
- если $\{\varphi, \psi\} \subseteq$ Form, то $(\varphi * \psi) \in$ Form, где * любая из операций в определении выше (если отрицание, то отсительно одногой формулы, конечно).

Лемма 1. Пусть $\{\varphi, \psi\} \subseteq \text{Form } mаковы, что <math>\psi \sqsubseteq \varphi$. Тогда $\psi = \varphi$.

Доказательство. По индукции по мощности большей формулы. База - переменная, очевидно. Иначе ψ представляется в виде "композиции" единственным образом, тогда возьмём первую часть этой композиции и сравним с первой частью того, как φ представляется в виде "композиции". По предположению индукции они должны совпасть, продолжение тривиально.

Лемма 2. Каждую $\varphi \in \text{Form} \setminus \text{Prop}$ можно единственным способом представить в виде $(\theta \to \chi)$, $(\theta \lor \chi)$, $(\theta \land \chi)$ или $\neg \theta$, где $\{\theta, \chi\} \subseteq \text{Form}$ (это я везде безграмотно называю композицией).

 \Box

Доказательство. От противного по лемме 2.

Определение 6. Для каждой $\varphi \in$ Form определим $\mathrm{Sub}(\varphi) := \{ \psi \in$ Form $|\psi \preccurlyeq \varphi \}$ - $nod \phi op-$ мулы.

Лемма 3. Пусть $\varphi \in \text{Form.}$ Тогда каждое вхождение \neq или (является началом вхождения некоторой подформулы.

Доказательство. Возвратная индукция по длине формулы.

Лемма 4. Множество подслов φ - объединение множеств подслов элементов его композиции и его самого.

Доказательство. Из лемм выше.

Определение 7. Оценка (v) - произвольная функция из Prop в $\{0,1\}$, которую можно расширить и до Form (v^*) посредством применения операций к переменным. Если $v^*(\varphi)=1$, то порой пишут $v \Vdash \varphi$.

Определение 8. Формулу называют *выполнимой*, если $v \Vdash \varphi$ для некоторой оценки, и *общезначимой* (тождественно истинной или тавтологией), если $v \Vdash \varphi$ для всех оценок.

Определение 9. Формула семантически следует из множества формул и записывается $\Gamma \vDash \varphi$, если для любой оценки v, любоя формула из множества истина, то φ истина. Формулы называют семантически эквивалентны, и пишут $\varphi \equiv \psi$, если $\vDash \varphi \leftrightarrow \psi$.

2 Лекция 2.

В Гильбертовском исчислении для классической пропозициональной логики используются следующие схемы аксиом (implication, conjunction, disjunction, negotiation):

- (I1). $\varphi \to (\psi \to \varphi)$;
- (I2). $\varphi \to (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi));$
- (C1). $\varphi \wedge \psi \rightarrow \varphi$;
- (C2). $\varphi \wedge \psi \rightarrow \psi$;
- (C3). $\varphi \to (\psi \to \varphi \land \psi)$;
- (D1). $\varphi \to \varphi \lor \psi$;
- (D2). $\psi \to \varphi \lor \psi$;
- (D3). $(\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi));$
- (N1). $(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi);$
- (N2). $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$;
- (N3). $\varphi \vee \neg \varphi$,

а также, одно $npaeuno\ eueoda$, которое называется $modus\ ponents$:

$$\begin{array}{ccc} \varphi & \varphi & \rightarrow & \psi \\ \hline & \psi & \end{array}$$

Определение 10. Пусть $\Gamma \subseteq \text{Form}$, тогда *выводом* из него в гильбертовском исчислении понимают конечную последовательность $\varphi_0, \dots, \varphi_n \ (n \in \mathbb{N})$ элементов Form, что для каждого $i \in \{0, \dots, n\}$ выполнено одно из следующиъ условий:

- φ_i аксиома;
- φ_i элемент Γ ;
- $\exists \{j,k\} \subseteq \{0,\ldots,i-1\}$ такие, что φ_k есть $\varphi_j \to \varphi_i$.

При этом, φ_n - заключение, а элементы Γ - гипотезы. Если φ выводится из Γ , то пишут $\Gamma \vdash \varphi$.

Основные свойства ⊢:

- монотонность;
- транзитивность;
- компактность (если $\Gamma \vdash \varphi$, то $\Delta \vdash \varphi$ для некоторого конечного $\Delta \subseteq \Gamma$).

Теорема 1. (О дедукции). Для любых $\Gamma \cup \{\varphi, \psi\} \subseteq \text{Form}$,

$$\Gamma \cup \{\varphi\} \vdash \psi \iff \Gamma \vdash \varphi \to \psi.$$

Доказательство. В одну правую сторону очевидно, в обратную - по индукции по $i \in \{0,1,\ldots,n\}$ показываем, что $\Gamma \vdash \varphi \to \psi_i$, там три случая, и все, кроме одного, тривиальны.

Введём обозначения: $\top := p \to p$ и $\bot := \neg \top$, где p - фиксированная пропозициональная переменная.

Следствие 1. Для любых $\Gamma \cup \{\varphi\} \subseteq Form$,

$$\Gamma \vdash \varphi \iff \vdash \bigwedge_{i=1}^{n} \psi_i \to \varphi$$

для некоторых $\{\varphi_1,\ldots,\varphi_n\}\subseteq \Gamma$.

Доказательство. Влево - очевидно, вправо - очевидно и применяется теорема о дедукции.

П

Лемма 5. Всякая аксиома гильбертовского исчисления для классической пропозициональной логики общезначима.

Теорема 2. (О корректности). Для любых $\Gamma \cup \{\varphi\} \subseteq \text{Form}$,

$$\Gamma \vdash \varphi \Longrightarrow \Gamma \vDash \varphi.$$

Доказательство. Фиксируем вывод $\varphi_0, \dots, \varphi_n = \varphi$. Затем рассматриваем произаольную оценку v такую что $v \Vdash \psi$ для всех $\psi \in \Gamma$ и покажем по индукции по $i \in \{0, \dots, n\}$, что $v \Vdash \varphi_i$.

Определение 11. $\Gamma \subseteq$ Form называется *простой теорией*, если оно обладает следующими свойствами:

- $\Gamma \neq \text{Form}$;
- $\{\varphi \in \text{Form } | \Gamma \vdash \varphi \} \subseteq \Gamma;$
- для любого $\varphi \lor \psi \in \Gamma$ верно $\varphi \in \Gamma$ или $\psi \in \Gamma$.

Лемма 6. Пусть Γ - простая теория, тогда для любых её элементов можно переписать действия над ними в рамках принадлежности к теории.

Лемма 7. (О расширении. а.к.а. Линденбаума). Пусть $\Gamma \cup \{\varphi\} \subseteq$ Form таковы, что $\Gamma \nvdash \varphi$. Тогда существует простая теория $\Gamma' \supseteq \Gamma$ такая, что $\Gamma' \nvdash \varphi$.

Доказательство. Рекурсивно докидываем к Γ элементы Form (их счётно).

3 Лекция 3.

Для каждой простой теории Γ определим оценку v_{Γ} по правилу $v_{\Gamma}(p):=1,$ если $p\in\Gamma$ и 0 иначе.

Лемма 8. Пусть Γ - простая теория. Тогда для любой $\varphi \in \mathrm{Form},$

$$v_{\Gamma} \Vdash \varphi \Longleftrightarrow \varphi \in \Gamma$$

Доказательство. Индукция по построению φ , используя лемму 6.

Теорема 3. (О сильной полноте \vdash). Для любых $\Gamma \cup \{\varphi\} \subseteq \mathrm{Form}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \Gamma \vDash \varphi.$$

В частности, $\Gamma \not\vdash \bot$ если и только если $\Gamma \not\vdash \bot$, а значит, Γ непротиворечиво если и только если Γ выполнимо.

Доказательство. Вправо - теорема о корректности, влево - от противного, рассматриваем Γ' , как в лемме 7.

Теорема 4. (О слабой полноте \vdash). Для любой $\varphi \in \text{Form}$,

$$\vdash \varphi \Longleftrightarrow \vDash \varphi$$

то есть, выводимость из пустого равносильна обзезначимости,

Теорема 5. (О компактности \models). Для любых $\Gamma \cup \{\varphi\} \subseteq \text{Form}$,

$$\Gamma \vDash \varphi \Longleftrightarrow \Delta \vDash \varphi$$

для некоторого конечного $\Delta \subseteq \Gamma$. В частности, $\Gamma \nvDash \bot$ тогда и только тогда, когда $\Delta \nvDash \bot$ для всех конечных $\Delta \subseteq \Gamma$, а значит, Γ выполнимо тогда и только тогда, когда всякое конечное подмножество Γ выполнимо.

Утверждение 1. Слабая полнота \vdash плюс компактность \models равно сильная полнота \vdash .

Определение 12. Сигнатура - четвёрка вида

$$\sigma = \langle \operatorname{Pred}_{\sigma}, \operatorname{Func}_{\sigma}, \operatorname{Const}_{\sigma}, \operatorname{arity}_{\sigma} \rangle,$$

где первые три - попарно непересекающиеся множества, а последнее - функция из $\operatorname{Pred}_{\sigma} \cup \operatorname{Func}_{\sigma}$ в $\mathbb{N} \setminus \{0\}$.

Определение 13. σ -структура - пара вида

$$\mathfrak{A} = \langle A, I_{\mathfrak{A}} \rangle,$$

где A - непустое множество, а $I_{\mathfrak{A}}$ - функция с областью определения $\operatorname{Pred}_{\sigma} \cup \operatorname{Func}_{\sigma} \cup \operatorname{Const}_{\sigma}$, такая что:

- для любого n-местного $P \in \operatorname{Pred}_{\sigma}$ верно $I_{\mathfrak{A}}(P) \subseteq A^n$;
- для любого m-местного $f \in \operatorname{Func}_{\sigma}$ верно $I_{\mathfrak{A}}(f): A^m \to A;$
- для любого $c \in \text{Const}_{\sigma}$ верно $I_{\mathfrak{A}}(c) \in A$.

При этом, A - носитель, а $I_{\mathfrak{A}}$ - интерпретация σ в \mathfrak{A} .

Определение 14. Пусть $\mathfrak A$ b $\mathfrak B$ - две σ -структуры. Говорят, что $\xi:A\to B$ есть *гомоморфизм* из $\mathfrak A$ в $\mathfrak B$, если выполнены следующие условия:

• для любого n-местного предиката и всех $(a_1, \ldots, a_n) \in A^n$,

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Rightarrow (\xi(a_1),\ldots,\xi(a_n))\in P^{\mathfrak{B}};$$

• для любого m-местного функционала и всех $(a_1, \ldots, a_m) \in A^m$,

$$\xi(f^{\mathfrak{A}}(a_1,\ldots,a_m)) = f^{\mathfrak{B}}(\xi(a_1),\ldots,\xi(a_m));$$

• для любой константы,

$$\xi(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$$

Определение 15. Инъективный гомоморфизм называют *сложением*, если выполнено усиление первого пункта, где следствие заменяется на равносильность.

Определение 16. Сюръективное вложение называют *изоморфизмом* и пишут $\mathfrak{A} \simeq \mathfrak{B}$, если они изоморфны, т.е. между ними существует изоморфизм.

Определение 17. *Автоморфизм* - изоморфизм на себя. $Aut(\mathfrak{A})$ - множество всех автоморфизмов \mathfrak{A} .

4 Лекция 4.

Определение 18.

$$Var := \{v_0, v_1, v_2, \ldots\}$$

есть фиксированное на всю жизнь счётное множество *предметных переменных* или просто *переменных*.

Определение 19. Язык \mathscr{L}_{σ} кванторной классической логики над сигнатурой σ состоит из элементов $\operatorname{Pred}_{\sigma} \cup \operatorname{Func}_{\sigma} \cup \operatorname{Const}_{\sigma} \cup \operatorname{Var}$, а также *символов связок*, *символов кванторов* и вспомогательных символов.

Определение 20. $\operatorname{Term}_{\sigma}$ - наименьшее множество слов в алфавите \mathcal{L}_{σ} , замкнутое относительно следующих порождающих правил:

- если $x \in \text{Var}$, то $x \in \text{Term}_{\sigma}$;
- если $c \in \text{Const}_{\sigma}$, то $c \in \text{Term}_{\sigma}$;
- если $f \in \operatorname{Func}_{\sigma}$, $\operatorname{arity}_{\sigma}(f) = n$ и $\{t_1, \ldots, t_n\} \subseteq \operatorname{Term}_{\sigma}$, то

$$(t_1,\ldots,t_n)\in \mathrm{Term}_{\sigma}$$
.

Элементы $\operatorname{Term}_{\sigma}$ называют σ -термами.

Определение 21. $_{\sigma}$ - наименьшее множество слов в алфавите \mathscr{L}_{σ} , замкнутое относительно следующих порождающих правил:

• если $P \in \text{Pred}$, $\text{arity}_{\sigma}(P) = n$ и $\{t_1, \ldots, t_n\} \subseteq \text{Term}_{\sigma}$, то

$$P(t_1,\ldots,t_n) \in \text{Form}_{\sigma};$$

• если $\{\Phi, \Psi\} \subseteq \text{Form}_{\sigma}$, то

$$\{(\Phi \to \Psi), (\Phi \lor \Psi), (\Phi \land \Psi), \neg \Phi\} \subseteq \operatorname{Form}_{\sigma};$$

 \bullet если $\Phi \in \operatorname{Form}_{\sigma}$ и $x \in \operatorname{Var}$, то

$$\{\forall x \ \Phi, \exists x \ \Phi\} \subseteq \operatorname{Form}_{\sigma}.$$

Элементы которого называются σ -формулами. Атомарными формулами называются формулы, которые не содержат ни символов связок, ни символов кванторов. Их множество - Atom_{σ} .

Примечание 1. Для понимания, кажется, Term - выражения с переменными, константами, действиями и т.д., а вот Form - сравнения выражений (в частности), логические утверждения, кванторные.

Определение 22. Для любых $t \in \operatorname{Term}_{\sigma}$ и $\Phi \in \operatorname{Form}_{\sigma}$ определим

$$\operatorname{sub}(t) := \{ s \in \operatorname{Term}_{\sigma} | s \leq t \},$$

$$\operatorname{Sub}(\Phi) := \{ \Psi \in \operatorname{Form}_{\sigma} | \Psi \leq \Phi \},$$

которые называются соответственно подтермами и подформулами.

Лемма 9. Пусть $\{t,s\} \subseteq \text{Тегт}_{\sigma}$ таковы, что $t \sqsubseteq s$. Тогда t=s.

Пемма 10. (О единственности представления термов). Всякий $t \in \operatorname{Term}_{\sigma} \setminus (\operatorname{Var} \cup \operatorname{Const}_{\sigma})$ можно единственным образом представить в виде $f(t_1, \ldots, t_n)$, где $f \in \operatorname{Func}_{\sigma}$, $\operatorname{arity}_{\sigma}(f) = n \ u \ \{t_1, \ldots, t_n\} \subseteq \operatorname{Term}_{\sigma}$.

Лемма 11. Пусть $t \in \operatorname{Term}_{\sigma} u f \in \operatorname{Func}_{\sigma}$. Тогда всякое вхождение f в t является началом вхождения некоторого подтерма.

Лемма 12. (О подтермах). Пусть $t \in \text{Term}_{\sigma}$.

- $ecnu\ t \in Var \cup Const_{\sigma}, \ mo\ sub(t) = \{t\};$
- $ecnu\ t = f(t_1, \ldots, t_n)$, $ede\ f \in \operatorname{Func}_{\sigma}$, $\operatorname{arity}_{\sigma}(f) = n\ u\ \{t_1, \ldots, t_n\} \subseteq \operatorname{Term}_{\sigma}$, mo

$$sub(t) = sub(t_1) \cup \ldots \cup sub(t_n) \cup \{t\}.$$

Лемма 13. (О единственности представления атомов). Всякий $\Phi \in \text{Atom}$ можно единственными образом представить в виде $P(t_1,\ldots,t_n)$, где $P \in \text{Pred}_{\sigma}$, $\text{arity}_{\sigma}(P) = n$ и $\{t_1,\ldots,t_n\} \subseteq \text{Term}_{\sigma}$.

Пемма 14. Пусть $\{\Phi, \Psi\} \subseteq \text{Form}_{\sigma}$ таковы, что $\Phi \sqsubseteq \Psi$. Тогда $\Phi = \Psi$.

Лемма 15. (О единственности представления формул). Всякую $\Phi \in \text{Form}_{\sigma} \setminus \text{Аtom}_{\sigma}$ можно единственным образом представить в виде комбинации формул (одной или двух) и символов связок или символов кванторов.

Лемма 16. Пусть $\Phi \in \text{Form}_{\sigma}$. Тогда всякое вхождение \neg , $(, \forall unu \exists e \Phi$ является началом вхождения некоторой подформулы.

Лемма 17. $\Pi ycmb \ \Phi \in \text{Form}_{\sigma}$.

- $Ecnu \ \Phi \in Atom_{\sigma}, \ mo \ Sub(\Phi) = \{\Phi\};$
- Если $\Phi = (\Theta \circ \Omega)$, где $\{\Theta, \Omega\} \subseteq \operatorname{Form}_{\sigma} u \circ \in \{\to, \land, \lor\}$, то

$$Sub(\Phi) = Sub(\Theta) \cup Sub(\Omega) \cup \{\Phi\};$$

• $Ecnu \ \Phi = \neg \Theta$, $ede \ \Theta \in Form_{\sigma}$, $unu \ \Phi = Q \times \Theta$, $ede \ x \in Var$, $\Theta \in Form_{\sigma} \ u \ Q \in \{\forall, \exists\}$, mo

$$Sub(\Phi) = Sub(\Theta) \cup \{\Phi\}.$$

Определение 23. Пусть $\Phi \in \text{Form}_{\sigma}$, $x \in \text{Var}$ и $Q \in \{\forall, \exists\}$. Тогда каждое вхождение Qx в Φ является началом вхождения некоторой подформулы, причём последнее определяется однозначно; его называют *областью действия* данного вхождения Qx. Вхождение x в Φ называется *связанным*, если оно входит в область действия какого-нибудь вхождения $\forall x$ или $\exists x$, и *свободным* иначе. Далее, говорят, что x является *свободной переменной* в Φ , если x есть хотя бы одно свободное вхождение в x

Скажем, что $FV(\Phi)$ - множество $z \in V$ аг таких, что у z имеется хотя бы одно свободное вхождение в Φ . Интуитивно, элементы этого множества играют роль параметров Φ , а запись $\Phi(x_1, \ldots, x_l)$ указывает на то, что $FV(\Phi) \subseteq \{x_1, \ldots, x_l\}$.

Определение 24.

$$\operatorname{Sent}_{\sigma} := \{ \Phi \in \operatorname{Form}_{\sigma} | \operatorname{FV}(\Phi) = \emptyset \} /$$

Элементы которого называют σ -предложениями. Они могут выступать в качестве нелог. аксиом.

Определение 25. t называем csofodhum dля nodcmanosku вместо x в Φ , если ни одно из csofodhum вхождений x в Φ не находится в области действия квантора по переменной из t.

Определение 26. Означивание переменных - функции из Var в A. Каждое означивание v в $\mathfrak A$ можно расширить до $\overline v$: Term $_{\sigma} \to A$ естественным образом:

$$\overline{v}(x) := v(x);$$

$$\overline{v}(c) := c^{\mathfrak{A}};$$

$$\overline{v}(f(t_1, \dots, t_n)) := f^{\mathfrak{A}}(\overline{v}(t_1), \dots, \overline{v}(t_n)).$$

А через v_a^x (x - переменная, a - элементA) будет обозначаться особенное означивание такое, что оно равно $v_a^x(y) = a$, если y = x и v(y) - иначе.

Определение 27. Определим $\mathfrak{A} \Vdash \Phi[v]$ индукцией по построению Φ . Короче, надо просто расписать все логические связки и кванторы, что они означают. Когда эта вещь выполнена, мы будем говорить, что Φ *истично* в \mathfrak{A} при v.

Определение 28. Пусть $\Gamma \subseteq \operatorname{Sent}_{\sigma}$. Поворят, что $\mathfrak A$ является моделью Γ и пишут $\mathfrak A \Vdash \Gamma$, если $\mathfrak A \Vdash \Phi$ для всех $\Phi \in \Gamma$.

Теорема 6. Пусть ξ - изоморфизм из $\mathfrak A$ на $\mathfrak B$. Тогда для каждой σ -формулы Φ и любого означивания v в $\mathfrak A$,

$$\mathfrak{A} \Vdash \Phi[v] \iff \mathfrak{B} \Phi[v \circ \xi].$$

Доказательство. Примем $\mu:=v\circ\xi$, заметим, что $\overline{\mu}(t)=\xi(\overline{v}(t))$, а потом провернём индукции по построению Φ .

Определение 29. Для произвольного класса \mathscr{K} σ -структур Предположим

$$\operatorname{Th}(\mathscr{K}) := \{ \Phi \in \operatorname{Sent}_{\sigma} \mid \mathfrak{A} \Vdash \Phi \text{ для всех } \mathfrak{A} \in \mathscr{K} \}.$$

Говорят, что \mathfrak{A} и \mathfrak{B} элементарно эквивалентны, если $\mathrm{Th}(\mathfrak{A}) = \mathrm{Th}(\mathfrak{B})$.

Следствие 2. Изоморфные структуры элементарно эквивалентны.

5 Лекция 5.

Определение 30. $S \subseteq A^l$ называется *определимым в* \mathfrak{A} , если существует σ -формула $\Phi(x_1, \ldots, x_l)$ такая, что

$$S = \{ \vec{a} \in A^l | \mathfrak{A} \Vdash \Phi[\vec{a}] \};$$

в этом случае говорят, что Φ определяет S в $\mathfrak A$.

Определение 31. $\operatorname{supp}(n)$ - множество всех простых делителей $n \in \mathbb{N}$.

Утверждение 2. Пусть S определимо в \mathfrak{A} . Тогда для любого $\xi \in \operatorname{Aut}(\mathfrak{A})$,

$$\xi[S] \subseteq S$$
,

то есть, S замкнуто относительно автоморфизмов \mathfrak{A} .

Утверждение 3. σ -структуру \mathfrak{A} называют нормальной, если = интерпретируется в \mathfrak{A} как настоящее равенство, то есть, $=^{\mathfrak{A}}$ совпадает с id_A .

Определение 32. Е q_{σ} - множество состоящее из σ -предложений

- $\bullet \ \forall x \ x = x;$
- $\forall x \forall y (x = y \rightarrow y = x)$;
- $\forall x \forall y \forall z (x = y \land y = z \rightarrow x = z);$

а также всех σ -предложений видов

- $\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (\vec{x} = \vec{y} \rightarrow (P(\vec{x}) \leftrightarrow P(\vec{y})));$
- $\forall x_1 \forall y_1 \dots \forall x_m \forall y_m (\vec{x} = \vec{y} \rightarrow f(\vec{x}) = f(\vec{y})),$

где $P \in \operatorname{Pred}_{\sigma}$ и $f \in \operatorname{Func}_{\sigma}$, причём $\operatorname{arity}_{\sigma}(P) = n$ и $\operatorname{arity}_{\sigma}(f) = m$. Под аксиомами равенства для σ понимают элементы $\operatorname{Eq}_{\sigma}$.

Определение 33. Обозначим за \mathfrak{A}' нормальную σ -структуру с носителем $A_{/=\mathfrak{A}}$ такую, что мы заменяем константы и функционалы \mathfrak{A} (произвольная модель Eq_{σ}) на их классы эквивалентности по равенству, и оставляем все предикаты.

Теорема 7. Для любых σ -формул Φ и означивания v в $\mathfrak A$

$$\mathfrak{A} \Vdash \Phi[v] \Longleftrightarrow \mathfrak{A}' \Vdash \Phi[v'],$$

r de v' отображает каждую $x \in Var \ e \ [v(x)].$

Доказательство. Для начала, как в ещё одном недавнем доказательстве заметим, что для всех $t \in \mathrm{Term}_{\sigma}$,

$$\overline{v}' = [\overline{v}(t)],$$

что несложно доказывается индукцией по построению t, а затем опять же, индукция по постоению самой Φ .

 $Cnedcmeue\ 3.\$ Для каждого $\Gamma\subseteq \mathrm{Sent}_{\sigma}$ следующие условия эквивалентны:

- у Г есть нормальная модель;
- у $\Gamma \cup \text{Eq}_{\sigma}$ есть модель.

Определение 34. σ -формулу Φ называют

- выполнимой, если $\mathfrak{A} \Vdash \Phi[v]$ для некоторых \mathfrak{A} и v;
- общезначимой, если $\mathfrak{A} \Vdash \Phi[v]$ для всех \mathfrak{A} и v.

Определение 35. Пусть $\Phi \in \operatorname{Form}_{\sigma}$ и x_1, \ldots, x_l - в точности все элементы $\operatorname{FV}(\Phi)$ в порядке их появления в Φ . Определим тогда *универсальное замыкание* $\tilde{\forall}$ - $\forall x_1 \ldots \forall x_l \Phi$ и *экзистенциальное замыкание* $\tilde{\exists}$ аналогично.

Определение 36. Пусть $\Gamma \subseteq \operatorname{Sent}_{\sigma}$ и $\Phi \in \operatorname{Form}_{\sigma}$. Говорят, что Φ семантически следует из Γ , и пишут $\Gamma \models \Phi$, если для любой \mathfrak{A} ,

$$\mathfrak{A} \Vdash \Gamma \Longrightarrow \mathfrak{A} \Vdash \tilde{\forall} \Phi.$$

Если выполнено $\models \Phi \leftrightarrow \Psi$, то такие формулы называют *семантически эквивалентными* и пишут $\Phi \equiv \Psi$.

Определение 37. σ -формула Φ называется бескванторной, если в ней нет кванторов.

Определение 38. Под пренексными нормальными формами понимаются σ -формулы вида

$$Q_1x_1\dots Q_lx_l\Psi$$
,

где Q_i - кванторы, x_i - переменные и Ψ бескванторная.

6 Лекция 6.

Сейчас будет Гильбертовское исчисление для кванторной логики. В моём понимании, это как некоторый апдейт пропозициональной, во многом они схожи, достаточно только взглянуть на *схемы аксиом*:

- (I1). $\Phi \to (\Psi \to \Phi)$;
- (I2). $\Phi \to (\Psi \to \Theta) \to ((\Phi \to \Psi) \to (\Phi \to \Theta));$
- (C1). $\Phi \wedge \Psi \rightarrow \Phi$;
- (C2). $\Phi \wedge \Psi \rightarrow \Psi$;
- (C3). $\Phi \to (\Psi \to \Phi \land \Psi)$:

- (D1). $\Phi \to \Phi \lor \Psi$;
- (D2). $\Psi \to \Phi \vee \Psi$;
- (D3). $(\Phi \to \Theta) \to ((\Psi \to \Theta) \to (\Phi \lor \Psi \to \Theta));$
- (N1). $(\Phi \to \Psi) \to ((\Phi \to \neg \Psi) \to \neg \Phi)$;
- (N2). $\neg \Phi \rightarrow (\Phi \rightarrow \Psi)$;
- (N3). $\Phi \vee \neg \Phi$:
- (Q1). $\forall x \Phi \to \Phi(x/t)$, где t свободен для x в Φ ;
- (Q2). $\Phi(x/t) \to \exists x \Phi$, где t свободен для x в Φ .

 $\Pi pume uanue\ 2.\ B$ случаях, когда = содержится в Pred_{σ} , элементы Eq_{σ} также будут считаться аксиомами нашего исчисления.

Также имеется modus ponens (MP):

И два новых "кванторных" правила вывода:

$$\begin{array}{ccccc} \underline{\Psi} & \to & \underline{\Phi} \\ \hline \underline{\Psi} & \to & \forall x \underline{\Phi} \end{array} (BR1) \qquad \underline{\mu} & & \underline{\underline{\Phi}} & \to & \underline{\Psi} \\ \hline \exists x \underline{\Phi} & \to & \underline{\Psi} \end{array} (BR2),$$

где $x \notin \mathrm{FV}(\Psi)$, и они традиционно называются *правилами Бернайса*.

Определение 39. Bывоd - опять-таки, конечная последовательность Φ_0, \ldots, Φ_n элементов Form σ такую, что для каждого i от 0 до n выполнено одно из следующих условий:

- Φ_i аксиома;
- Φ_i элемент Γ ;
- Φ_i полудчается из некоторых предшествующих по (MP);
- Φ_i получается из некоторой предшествующей по (BRi).

 Φ_n - заключение, а элементы Γ - гипотезы. Пишут $\Gamma \vdash \Phi$, если существует вывод из Γ с заключением Φ .

Определение 40. Φ *опровержима* в Γ , если $\Gamma \vdash \neg \Phi$; Φ *независма* от Γ , если $\Gamma \nvdash \Phi$ и $\Gamma \nvdash \neg \Phi$.

Основные свойства \vdash - опять:

- монотонность (если $\Gamma \subseteq \Delta$ и $\Gamma \vdash \Phi$, то $\Delta \vdash \Phi$);
- транзитивность (если $\Delta \vdash \Psi$ для всех $\Psi \in \Gamma$, и $\Gamma \vdash \Phi$, то $\Delta \vdash \Phi$);
- компактность (если $\Gamma \vdash \Phi$, то $\Delta \vdash \Phi$ для некоторого конечного $\Delta \subseteq \Gamma$).

Определение 41. Пусть ξ : Prop \to Form_{σ}. Для всякой пропозицональной формулы φ обозначим $\xi \varphi$ - результат замены (всех вхождений) каждой $p \in$ Prop в φ на $\xi(p)$.

Утверждение 4. Пусть ξ : Prop \rightarrow Form $_{\sigma}$ и $\vdash \varphi$ (в пропозициональном исчислении). Тогда $\vdash \xi \varphi$ (уже в кванторном исчислении).

Доказательство. Фиксируем вывод $\varphi_0, \dots, \varphi_n = \varphi$, а затем рассмотрим $\xi \varphi_0, \dots, \xi \varphi_n = \xi \varphi$, и нетрудно показать, что это также вывод, там только аксиомы и MP.

 $\mathit{Cnedcmeue}\ 4.\ \mathrm{Пусть}\ \xi: \mathrm{Prop} \to \mathrm{Form}_\sigma\ \mathrm{u} \vDash \varphi\ (\mathrm{в}\ \mathrm{смыслe}\ \mathrm{пропозициональной}\ \mathrm{логикu}).\ \mathrm{Тогдa}\ \vdash \xi \varphi.$

Доказательство. В силу теоремы о (слабой) полноте для пропозиционального исчисления мы имеем $\vdash \varphi$, а потому $\vdash \xi \varphi$.

Утверждение 5. Для любых $\Gamma \subseteq Sent_{\sigma}$, $\Phi \in Form_{\sigma}$ и $x \in Var$.

$$\Gamma \vdash \Phi \iff \Gamma \vdash \forall x \Phi.$$

Доказательство. В правую сторону: пусть $\Gamma \vdash \Phi$. Значит, $\Gamma \vdash \top \to \Phi$. Применяем BR1, получаем $\Gamma \vdash \top \to \forall x \Phi$. Таким образрм, $\Gamma \vdash \forall x \Phi$.

В обратную: пусть $\Gamma \vdash \forall x \Phi$. Используем аксиому $\forall x \Phi \to \Phi$ (Q1), откуда легко получаем $\Gamma \vdash \Phi$.

Примечание 3. Таким образом, мы получили правило обобщения (GR):

$$\frac{\Phi}{\forall x \Phi}$$

Следствие 5. Для любых $\Gamma \subseteq \operatorname{Sent}_{\sigma}$ и $\Phi \in \operatorname{Form}_{\sigma}$,

$$\Gamma \vdash \Phi \iff \Gamma \vdash \tilde{\forall} \Phi.$$

Теорема 8. (О дедукции). Для любых $\Gamma \cup \{\Phi\} \subseteq \operatorname{Sent}_{\sigma} u \ \Psi \in \operatorname{Form}_{\sigma}$.

$$\Gamma \cup \{\Phi\} \vdash \Psi \iff \Gamma \vdash \Phi \rightarrow \Psi.$$

Доказательство. В левую сторону очевидно, в правую точно так же, как и в изначальной теореме о дедукции, разве что надо рассмотреть новые случаи BR1 и BR2. \Box

Следствие 6. Для любых $\Gamma \subseteq \operatorname{Sent}_{\sigma}$ и $\Phi \in \operatorname{Form}_{\sigma}$,

$$\Gamma \vdash \Phi \iff \vdash \bigwedge_{i=1}^{n} \Psi_{i} \to \Phi$$

для некоторых $\{\Psi_1, \ldots, \Psi_n\} \subseteq \Gamma$.

Лемма 18. Пусть $\xi: \operatorname{Prop} \to \operatorname{Form}_{\sigma} u \vDash \varphi$ (в смысле пропозициональной логики). Тогда $\vDash \xi \varphi$.

Лемма 19. Пусть Φ - аксиома кванторного исчисления. Тогда $\models \Phi$.

Теорема 9. (О корректности). Для любых $\Gamma \subseteq \operatorname{Sent}_{\sigma} u \Phi \in \operatorname{Form}_{\sigma}$,

$$\Gamma \vdash \Phi \Longrightarrow \Gamma \vDash \Phi.$$