HW 3 - JA - Karnaugh Maps

22 Owner	J John Akujobi		
⊚ Туре	Homework		
Created time	@September 5, 2023 10:06 PM		
Due Date	@September 13, 2023		
	In progress		

homework3.docx homework3.pdf

Q1

1. Calculate the minimal sum-of-products (SOP) and product-of-sums (POS) using Karnaugh Maps for the truth tables

Q1 A

1.	Α	В	Υ
	0	0	0
	0	1	1
	1	0	1
	1	1	1

POS

- Y = A+B
- Cost = 3

SOP

• Y = A + B

Q1B

Α	В	С	Υ	
0	0	0	0	
0	0	1	1	A'.B'.C
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	A.B.C'
1	1	1	1	A.B.C

SOP:

- Y = A.B + (A'.B'.C)
- Cost = 11

POS:

• Y = (B+C).(A+C).(A+B').(A'+B)

• Cost = 17

Karnaugh Maps HW 1b.cv

POS Circuit

c. What is the \underline{cost} of the two circuits? State which is cheaper, SOP or POS.

Q1a

• SOP = 3

- POS = 3
- They were the same

Q1b

- SOP =
- POS =
- was cheaper tha

Q 2

2. Find minimal Boolean equations for the truth table below using both SOP and POS forms using K-maps.

Α	В	С	D	Υ
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X

Α	В	С	D	Υ
1	1	1	1	1

K-Maps

SOP

- $\bullet \quad Y = AB + AC + AD' + BD + B'D'$
- $\bullet \quad Y = AB + AC + AD' + BD + B'D'$
- $\bullet \quad Y = A.B + A.C + A.D'$
- Cost = 14

SOP Q2-1 HW3.cv

POS

• Y = A.(B+C+D')

POS Q2-1 HW3.cv

- 1. Determine which circuit is cheaper
 - The POS circuit is cheaper
- 2. Draw the circuit for the <u>cheapest implementation</u> using only NAND gates (if sum-of-products form) or NOR gates (if product-of-sums form). You may also use inverters if needed.

NAND Gates of Q2A HW 3.cv

Using NOR gates

Q3

Calculate the minimal SOP and POS for the following function using K-maps:

1. Write two sentences on your solution to SOP; is it unique?

$$F(A,B,C,D) = \Pi (0,1,2,4,8,15)$$

POS:

• (A+B+C) . (A+B+D) . (A+C+D) . (B+C+D) . (A'+B'+C'+D')

SOP:

- AC' + BC'D + AC'D + AB'D + AB'C + ACD' + BCD' + ABD' + A'BC + A'BD + A'CD + B'CD
- It looks like it can be simplified by bring groups together, but after trying multiple times, it looked like it could not be simplified more.

• Each of the groups had only one input that was inversed. Eg C in BC'D

