Data requirements & Library

CWI Autumn School - Scientific Machine Learning and Dynamical Systems

Urban Fasel

Imperial College London

Literature

- Data requirements: sampling duration & rate:
 - KP Champion, SL Brunton, JN Kutz (2019) Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings.
- Rational functions:
 - NM Mangan, SL Brunton, JL Proctor, JN Kutz (2016) Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics.
 - K Kaheman, JN Kutz, SL Brunton (2020) SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
- Curse of dimensionality
 - K Champion, B Lusch, JN Kutz, SL Brunton (2019) <u>Data-driven discovery of coordinates and governing equations</u>.
 - P Gelß, S Klus, J Eisert, C Schütte (2019) Multidimensional Approximation of Nonlinear Dynamical Systems.
 - JC Loiseau, SL Brunton (2018) <u>Constrained sparse Galerkin regression</u>.
 - Y Guan, SL Brunton, I Novosselov (2021) <u>Sparse nonlinear models of chaotic electroconvection</u>.
 - A Kaptanoglu et al (2021) <u>Promoting global stability in data-driven models of quadratic nonlinear dynamics</u>.

SINDy – sparse regression

$$\Rightarrow \hat{\boldsymbol{\xi}}_k = \operatorname{argmin}_{\boldsymbol{\xi}_k} \| \dot{\mathbf{X}}_k - \mathbf{\Theta}(\mathbf{X}) \boldsymbol{\xi}_k \|_2^2 + \lambda \| \boldsymbol{\xi}_k \|_0$$
 least squares ℓ_0 -penalized

Identified System

Tutorial outline

Data requirements

- Sampling duration & rate
- Noise
- Disambiguating multiple consistent models

- Rational functions
- Curse of dimensionality

Data requirements

- Sampling duration & rate
- Noise
- Disambiguating multiple consistent models

Data requirements – Sampling duration & rate

- attractor
- average portion of attractor sampled from to discover correct system (correct sparsity pattern)

Duration

 No need to sample full attractor to identify correct model

Rate

- Higher rate improves identification
 - ... or can reduces duration

However: clean data ...

Data requirements – noise

Noisy measurements

- SINDy performance drops drastically
- Need denoising/filtering data
 - Low-pass filter
 - Total variation regularized derivative
 - Avoids noise amplification of finitedifference methods
 - PDE: polynomial interpolation

Noise robust SINDy

- Weak form & ensemble SINDy
 - Discussed in next lecture

SL Brunton, JL Proctor, JN Kutz (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. (supplementary material)

Data requirements – disambiguating models

Linear oscillator

Cubic Hopf normal form

$$\dot{x} = \omega y$$

$$\dot{y} = -\omega x$$

$$\dot{x} = \mu x + \omega y - Ax(x^2 + y^2)$$

$$\dot{y} = -\omega x + \mu y - Ay(x^2 + y^2)$$

Multiple consistent models

- Collecting dynamical system data on attractor
 - Simplest model: linear oscillator
 - Other valid model: cubic Hopf normal form
 - → Both models describe limit cycle behavior
 - SINDy: cubic and linear terms are parallel in Θ(X) if we only sample data on circle
- Collect data from different experiments
 - Different initial conditions exciting different transient
 - Improves conditioning of library matrix Θ(X)

- General approach
- Rational functions
- Curse of dimensionality

Library – general approach

General approach to selecting the library

- Start with linear terms → DMD model
 - Check accuracy
 - error reconstructing X
 - model prediction error
- Increase order
 - Add quadratic, then higher order polynomials
- Trigonometric functions
- Generally: try small, isolated libraries first

- General approach
- Rational functions
- Curse of dimensionality

Library – rational functions

Extending SINDy: handle larger classes of dynamical systems

- Rational function: $\dot{x}_k = \frac{f_N(\mathbf{x})}{f_D(\mathbf{x})} \rightarrow f_N(\mathbf{x}) f_D(\mathbf{x})\dot{x}_k = 0 \rightarrow \Theta(\mathbf{X}, \dot{x}_k)\boldsymbol{\xi}_k = \mathbf{0}$
 - difficult to describe as a linear combination of library features
 - e.g. biological systems: Michaelis-Menten dynamics: $\dot{x} = 0.6 \frac{1.5x}{0.3+x}$

(a) data collection

(b) sparse regression over many candidate nonlinear terms

(C) selection and reconstruction

SINDy-PI algorithm

- Test multiple possible left-hand sides (in parallel):
 - Move candidate terms to LHS
- 2. Calc model prediction error
- 3. Select best model:
 - Sparsity & accuracy

Library – rational functions

Belousov-Zhabotinsky reaction

4 coupled PDE with rational nonlinearities

$$\frac{\partial x}{\partial \tau} = \frac{1}{\varepsilon} \left(\frac{fz(q-x)}{q+x} + x - x^2 - \beta x + s \right) + \frac{D_x}{D_u} \Delta x,$$

$$\frac{\partial z}{\partial \tau} = x - z - \alpha z + \gamma u + \frac{D_z}{D_u} \Delta z,$$

$$\frac{\partial s}{\partial \tau} = \frac{1}{\varepsilon_2} (\beta x - s + \chi u) + \frac{D_s}{D_u} \Delta s,$$

$$\frac{\partial u}{\partial \tau} = \frac{1}{\varepsilon_3} \left[\alpha z - \left(\gamma + \frac{\chi}{2} \right) u \right] + \frac{D_u}{D_u} \Delta u,$$

- SINDy-PI accurately identifies correct PDE
 - Not possible with standard SINDy
 - MATLAB: https://github.com/dynamicslab/SINDy-PI
 - PySINDy: <u>interactive notebook</u>

- General approach
- Rational functions
- Curse of dimensionality

Library – curse of dimensionality

Challenge: Sparse regression quickly becomes intractable

- e.g. large state dimension or large order of polynomials
- \rightarrow Reduce dimension of the state x

1. Dimensionality reduction:

- SVD/PCA/POD
 - Original SINDy paper 2016: identify dynamics of POD mode amplitudes
- Autoencoders: simultaneously discover coordinates and sparse models
 - Nonlinear generalization of PCA → can possibly further reduce state dimension
 - Optimizer jointly minimizes autoencoder reconstruction loss and SINDy loss
 - Autoencoder loss: $\|\mathbf{x} \psi(\phi(\mathbf{x}))\|_2^2$
 - SINDy loss: $\|\dot{\mathbf{z}} \mathbf{\Theta}(\mathbf{z})\mathbf{\Xi}\|_2^2 + \lambda \|\mathbf{\Xi}\|_0$
 - Paper: K Champion, B Lusch, JN Kutz, SL Brunton (2019) <u>Data-driven discovery of coordinates and governing equations</u>.

Library – curse of dimensionality

Challenge: Sparse regression quickly becomes intractable

- e.g. large state dimension or large order of polynomials
- → Different method to compute least squares (pseudo inverse)

2. Tensor SINDy

- Generalize SINDy library approach to include tensor train formulations
 - Using low-rank tensor decomposition to learn high dimensional dynamics
- Example: Kuramoto model → 100 coupled oscillators on a ring
 - Significantly reduces memory consumption and computational cost
- Paper: P Gelß et al (2019) <u>Multidimensional Approximation of Nonlinear Dynamical Systems</u>.

Library – curse of dimensionality

3. Include prior knowledge to constrain the library

- Physical symmetries, energy-preserving quadratic nonlinearities, ...
- Constrained SINDy: $\operatorname{argmin}_{\Xi} \|\dot{\mathbf{X}} \mathbf{\Theta}(\mathbf{X})\mathbf{\Xi}\|_{2}^{2} + \lambda \|\mathbf{\Xi}\|_{0}$ subject to $\mathbf{C}\boldsymbol{\xi} = \boldsymbol{d}$
 - $\xi = \Xi(:)$, vectorized form of coefficient matrix
 - With STLS: constraints are imposed via Lagrange multipliers → penalized least squares
- Electroconvection: Dielectric fluid between parallel electrodes under strong unipolar injection
 - Unsteady ionic convection leads to electric field variation and consequently the unsteady flow patterns
- **Trajectories exhibit symmetries** → system invariant with respect to some transformations:

 - Symmetries constrain library: e.g. \dot{a}_1 dynamics invariant to switching sign of a_2 and/or a_3 .
 - \rightarrow \dot{a}_1 library terms with odd powers of either a_2 or a_3 must vanish
 - → these constraints reduce library size and "simplify" problem:

	<i>a</i> ₁	a_2	<i>a</i> ₃	a_1^2	$a_{1}a_{2}$	a_1a_3	a_2^2	a_2a_3	a_3^2	a_1^3	$a_1^2 a_2$	$a_1^2 a_3$	$a_1 a_2^2$	$a_{1}a_{2}a_{3}$	$a_1 a_3^2$	a_2^3	$a_2^2 a_3$	$a_2a_3^2$	a_3^3
\dot{a}_1	<i>ξ</i> ₁						$oldsymbol{\xi}_2^*$		$-\xi_{2}$	ξ ₃			5 4		 5 ₄				
\dot{a}_2		ξ_5			$-\xi_2^*$						ξ_6					5 7		ξ_8	
\dot{a}_3			ξ_5			5 ₂						\$ 6					<i>5</i> ₈		5 7

- 1st paper on constrained SINDy: JC Loiseau, SL Brunton (2018) Constrained sparse Galerkin regression.
- Electroconvection: Y Guan et al(2021) <u>Sparse nonlinear models of chaotic electroconvection</u>.
- SINDy models enforcing stable dynamics: A Kaptanoglu et al (2021) Promoting global stability in data-driven models of quadratic nonlinear dynamics. → GitHub

Charge density from electroconvection simulation

electroconvection data

POD modes

mode coefficients

Tutorial summary

Data requirements

- Sampling duration & rate
- Noise
- Disambiguating multiple consistent models

- Rational functions
- Curse of dimensionality

