Гиперболическая геометрия Лобачевского \mathbb{H}^2

Теория

Модель Пуанкаре в круге: Точки гиперболической плоскости в этой модели — это точки открытого единичного круга $D = \{(x,y) \mid x^2 + y^2 < 1\}$. Прямые — диаметры этого круга, либо окружности, ортогональные границе этого круга $\partial D = \mathbb{S}^1 = \{(x,y) \mid x^2 + y^2 \}$ $y^2 = 1$ }. Эта граница состоит из так называемых бесконечно удалённых точек плоскости Лобачевского и называется *абсолютом*. Эту модель часто называют конформно-евклидовой, поскольку углы между прямыми здесь равны евклидовым углам.

Модель Кэли-Клейна в круге: В этой модели точки снова суть точки открытого круга, а прямыми уже будут хорды этого круга. Пусть $A, B \in \mathbb{H}^2$ — две точки, а прямая AB пересекает абсолют в точках X,Y так, что эти 4 точки лежат в последовательности Y, A, B, X. Тогда расстояние между точками A и B в этой модели определяется по формуле

$$d(A,B) := \frac{1}{2} \ln \left(\frac{|AX|}{|BX|} : \frac{|AY|}{|BY|} \right).$$

Модель Пуанкаре в верхней полуплоскости: Здесь точками являются точки верхней комплексной полуплоскости $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$, а прямыми — прямые и окружности перпендикулярные вещественной прямой $\{ \text{Im } z = 0 \}$. Здесь группа движений $\text{Isom}(\mathbb{H}^2)$ состоит из дробно-линейных преобразований вида

$$z \mapsto \frac{az+b}{cz+d}$$
 $u \quad z \mapsto \frac{a(-\overline{z})+b}{c(-\overline{z})+d}$

где $a, b, c, d \in \mathbb{R}$ и ad - bc > 0. Здесь метрика определяется формулой

$$d(A,B) := |\ln(A,B,X,Y)|,$$

где $(z_1,z_2,z_3,z_4):=\frac{z_3-z_1}{z_3-z_2}:\frac{z_4-z_1}{z_4-z_2}$ — двойное отношение четверки комплексных точек. Векторная модель на гиперболоиде:

Рассмотрим теперь пространство Минковского $\mathbb{E}^{2,1}$ со скалярным умножением

$$(x,y) = -x_0y_0 + x_1y_1 + x_2y_2.$$

В качестве векторной модели пространства Лобачевского будем рассматривать одну из связных компонент гиперболоида

$$\mathbb{H}^2 = \{ x \in \mathbb{E}^{2,1} \mid (x,x) = -1, x_0 > 0 \}.$$

Расстояние здесь задается по формуле

$$\operatorname{ch} d(x, y) = -(x, y).$$

Теорема 1 Все эти 4 модели изоморфны (биективны и изометричны).

Задачи

Во всех задачах a, b, c — стороны гиперболического треугольника, а α, β, γ — противолежащие им углы.

- 1. Докажите, что $\alpha + \beta + \gamma < \pi$.
- **2.** Докажите, что в любом гиперболическом треугольнике корректно определены вписанные и описанные окружности.
- **3.** Могут ли все медианы и высоты гиперболического треугольника пройти через одну точку?
- **4.** (*) Докажите первую теорему косинусов для \mathbb{H}^2 : $\operatorname{ch} a = \operatorname{ch} b \operatorname{ch} c \cos \alpha \cdot \operatorname{sh} b \operatorname{sh} c$. Как выглядит теорема Пифагора на плоскости Лобачевского?
- **5.** (*) Докажите вторую теорему косинусов для \mathbb{H}^2 : $\cos \alpha + \cos \beta \cos \gamma = \operatorname{ch} a \cdot \sin \beta \sin \gamma$.
- **6.** Докажите теорему синусов для треугольника со сторонами a,b,c и противолежащими им углами α,β,γ в \mathbb{H}^2 : $\frac{\sin\alpha}{\sinh a} = \frac{\sin\beta}{\sinh b} = \frac{\sin\gamma}{\sinh c}$.