

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ. ОБЛУЧАТЕЛИ УЛЬТРАФИОЛЕТОВЫЕ

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИСПЫТАНИЙ

FOCT 28369-89

Издание официальное

Редактор Р. С. Федорова Технический редактор Г. А. Теребинкина Корректор В. М. Смирнова

Сдано в наб. 10.01.90 Подп. в печ. 28.03.90 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,66 уч.-изд. **ж.** Тир. 8000

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 1519

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ. ОБЛУЧАТЕЛИ УЛЬТРАФИОЛЕТОВЫЕ

Общие технические требования и методы испытаний

ГОСТ

Nondestructive testing. Ultra-violet sources.

28369-89

General technical requirements and test methods

OKII 42 7629

Срок действия

с 01.01.91 до 01.01.96

Настоящий стандарт распространяется на ультрафиолетовые облучатели (далее — УФ-облучатели), предназначенные для облучения поверхности объектов при неразрушающем контроле с использованием люминесцентных дефектоскопических материалов.

1. КЛАССИФИКАЦИЯ

По конструктивному исполнению $У\Phi$ -облучатели подразделяют на стационарные, передвижные и переносные.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. УФ-облучатели должны быть изготовлены в соответствии с требованиями настоящего стандарта и технических условий на УФ-облучатели конкретного типа по рабочим чертежам, утвержденным в установленном порядке.
- 2.2. Ультрафиолетовая облученность (УФ-облученность) при номинальном напряжении питания в центре облучаемого поля приведена в таблице

Издание официальное

Перепечатка воспрещена

С Издательство стандартов, 1990

Исполнение У Ф-облучателя	Тип	УФ-облученность, мкВт/см² (отн. ед.)		
		до 01.01.92	01,61.92	
Переносной	Фокусирующий с мощностью лампы до 125 Вт на поле диа- метром 70 мм на расстоянии 300 мм от источника Рассеянного излучения с мощностью лампы до 125 Вт на поле	10000 (1000)	10500	
Передвижной и стационарный	постью лампы до 125 Бт на поле диаметром 100 мм на расстоянии 300 мм от источника Малогабаритный с напряжением электрического питания до 36 В на расстоянии 100 мм от источника Одноламповый и многоламповый фокусирующий с мощностью лампы до 125 Вт на поле диаметром 130 мм для каждой лам-	1400(140)	1500	
		500 (50)	800	i
	пы на расстоянии 400 мм от источника Одноламповый рассеянного излучения с мощностью лампы до 125 В на поле диаметром 200 мм	10000 (1000)	10500	ļ
	на расстоянии 300 мм от источника Двухламповый с общей мощностью ламп 250 Вт и размерами облучаемого поля 130×600 мм	2500 (250)	2600	3
	на расстоянии 400 мм от источника Одноламповый с мощностью лампы 400 Вт и размерами об-	2200 (220)	2500	i
	лучаемого поля 200×500 мм на расстоянии 400 мм от источника	4500 (450)	55 00	

Примечания:

1. В пределах облучаемого поля заданного размера отношение максимальной ультрафиолетовой облученности к минимальной должно быть не более 2. Допускаемое отклонение УФ-облученности устанавливают в технических условиях на УФ-облучатели конкретного типа.

2.3. Спектральный диапазон используемых в УФ-облучателях источников излучения должен быть 315—400 нм с преобладанием длины волны 365 нм. В качестве источников УФ-излучения следует использовать ртутные лампы в черных колбах, указанные в приложении 1, а также ртутные лампы с приставными светофильтрами из стекла УФС6 и УФС8 по ГОСТ 9411 и другие источники, обеспечивающие заданный спектральный диапазон.

- 2.4. Время установления рабочего режима должно быть 10 мин, с 01.01.92 8 мин.
- 2.5. Питание УФ-облучателей следует осуществлять от сети переменного тока частотой (50 ± 1) Гц при отклонениях напряжения сети от минус 10 до плюс 10% от номинального значения.

2.6. Потребляемая мощность УФ-облучателя устанавливается в технических условиях на УФ-облучатели конкретного типа.

- 2.7. Коэффициент мощности многоламповых УФ-облучателей должен быть не менее 0,85, одноламповых не менее 0,8; для УФ-облучателей общей мощностью 300 Вт и менее не нормируется
- 2.8. Требования к электрической изоляции УФ-облучателей по ГОСТ 21657.
- 2.9. Сопротивление изоляции УФ-облучателей при нормальных климатических условиях по ГОСТ 15150 должно быть не менее 20 МОм.
- 2.10. УФ-облучатели должны допускать непрерывную работу в течение 8 ч, включая время установления рабочего режима.
- 2.11. Средняя наработка на отказ УФ-облучателей должна быть не менее 17000 ч. Установленную безотказную наработку устанавливают в технических условиях на УФ-облучатель конкретного типа.

2.12. Полный средний срок службы— 8 лет, а с 01.01.92—

10 лет

- 2.13. Среднее время восстановления и критерии отказов должны быть указаны в технических условиях на УФ-облучатели конкретного типа.
- 2.14. Устойчивость УФ-облучателей к воздействию температуры и влажности окружающего воздуха по ГОСТ 15150 для климатического исполнения УХЛ 4.2.

Допускается по требованию потребителя устанавливать диапазон рабочих температур от минус 10 до плюс 35°C.

- 2.15. УФ-облучатели должны быть устойчивы к воздействию атмосферного давления от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.).
- 2.16. По устойчивости к механическим воздействиям стационарные УФ-облучатели относятся к группе М1 ГОСТ 17516.
- 2.17. В транспортной таре УФ-облучатели должны выдерживать предельные климатические условия транспортирования:

температуру — от минус 50 до плюс 50°С;

относительную влажность — (95±3)% при температуре 35°C; воздействие транспортной тряски с ускорением 30 м/с² при частоте ударов от 80 до 120 ударов в минуту.

2.18. Защитные и защитно-декоративные покрытия наружных поверхностей УФ-облучателей — по ГОСТ 9.301 и ГОСТ 9.032.

2.19. Масса переносных УФ-облучателей с блоком питания, не встроенным в футляр для переноски, должна быть не более 4,85 кг, а с 01.01.92 — не более 4,0 кг

Массу передвижных и стационарных УФ-облучателей устанавливают в технических условиях на УФ-облучатели конкретного типа.

- 2.20. Требования безопасности
- 2.20.1. Требования электробезопасности по ГОСТ 12.2.007.0.
- 2.20.2. При работе с УФ-облучателями следует использовать средства индивидуальной защиты оператора халаты с длинными рукавами и перчатки из темной нелюминесцирующей хлопчатобумажной ткани.
- 2.20.3. Стационарные и передвижные УФ-облучатели должны быть снабжены встроенными или отдельными устройствами, защищающими лицо и глаза оператора от воздействия УФ-излучения.

Требования к защитным устройствам устанавливают в технических условиях на УФ-облучатели конкретного типа.

В качестве защитного материала, поглощающего УФ-излучение, следует применять полиимидную пленку типа ПМ марки А по техническим условиям толщиной не менее 30 мкм или другие материалы с аналогичными оптической плотностью и спектральной характеристикой.

2.20.4. Для индивидуальной защиты глаз следует применять защитные очки по ГОСТ 12.4.013:

закрытые с непрямой вентиляцией типа 3H со светофильтрами из цветного оптического стекла марки ЖС4 по ГОСТ 9411 толщиной не менее 2 мм — при контроле объектов в условиях затемнения при диффузно отраженном УФ-облучении;

закрытые с непрямой вентиляцией типа 3H или 3HP со светофильтрами C4-C9 — при наладке УФ-облучателей.

- 2.20.5. Допустимая УФ-облученность в зоне работы оператора устанавливается с учетом спектрального состава излучения и в соответствии с «Санитарными нормами ультрафиолетового излучения в производственных помещениях» № 4557—88 не должна превышать:
- 1) при наличии незащищенных участков поверхности кожи не более $0.2~{\rm M}^2$ и периода облучения до 5 мин, длительности паузмежду ними не менее 3 мин и общей продолжительности воздействия за смену до $60~{\rm Muh}$:

5000 мкВт/см² — для области УФ-А (315—400 нм),

- 5 мкВт/см² для области УФ-В (280—315 нм),
- 2) при наличии незащищенных участков поверхности кожи не более $0.2~{\rm M}^2$, общей продолжительности воздействия излучения

50% рабочей смены и длительности однократного облучения свыше 5 мин и более:

1000 мкВт/см² — для области УФ-А,

1 мкВт/см² — для области УФ-В,

- 3) при использовании специальной одежды и средств защиты лица и рук, не пропускающих УФ-излучение, допустимая УФ-облученность в области УФ-В (280—315 нм), не должна превышать 100 мкВт/см².
- 2.20.6. Предельно допустимая температура частей УФ-облучателей, с которыми соприкасается оператор при работе, не должна превышать:

40°C — для составных частей, выполненных из металла; 45°C — для составных частей, выполненных из материала с низкой теплопроводностью.

2.20.7. Конструкция УФ-облучателей должна соответствовать эргономическим требованиям ГОСТ 12.2.049.

Степень защиты от проникновения твердых тел и воды — по ΓΟCT 14254.

2.20.8. Схема условного обозначения УФ-облучателей приведена в приложении 2.

Номенклатура основных показателей, необходимых при разработке технических заданий на ОКР и технических условий на УФ-облучатели конкретного типа, приведена в приложении 3.

методы испытаний

3.1. Все испытания, кроме климатических и испытаний по п. 2.5, проводят при нормальных условиях:

температуре окружающего воздуха (20 ± 5) °C;

относительной влажности от 30 до 80%; атмосферном давлении от 84 до 106,7 кПа;

напряжении питающей сети (220 ± 4,4) В;

частоте питающей сети (50 ± 1) Гц.

3.2. Соответствие конструкторской документации (п. 2.1) и требованиям безопасности (пп. 2.20.1—2.20.5; 2.20.7; 2.20.8) проверяют внешним осмотром и измерительным инструментом, обеспечивающим требуемую точность.

3.3. Проверка УФ-облученности (п. 2.2)

В затемненном помещении закрепляют УФ-облучатель на за-

данном расстоянии от горизонтальной поверхности стола.

На световое пятно, создаваемое УФ-облучателем, накладывают лист миллиметровой бумаги с контурами облучаемого поля заданных размеров, совмещая при этом центр облучаемого поля с центром светового пятна. По истечении времени установления рабочего режима измеряют УФ-облученность в центре и в точках на границе облучаемого поля с помощью радиометров со спектральным диапазоном 315—400 нм или приспособления для измерения УФ-облученности по методике, изложенной по ГОСТ 18442.

Количество точек, в которых измеряется УФ-облученность, и их расположение на облучаемом поле устанавливают в техниче-

ских условиях на УФ-облучатели конкретного типа.

 $Y\Phi$ -облучатель считают выдержавшим испытание, если $Y\Phi$ -облученность в центре облучаемого поля соответствует требованиям п. 2.2, а в точках на границе облучаемого поля отличается от значений в центре поля не более чем в 2 раза.

3.4. Спектральный диапазон (п. 2.3) проверяют сравнением значений спектрального диапазона с требованиями нормативнотехнической документации на источники УФ-излучения и (или)

светофильтры.

3.5. Время установления рабочего режима (п. 2.4) и продолжительности непрерывной работы (п. 2.10) проверяют по методике п. 3.3 в центре облучаемого поля по истечении времени, указанного в пп. 2.4 и 2.10.

3.6. Работоспособность УФ-облучателя при отклонениях напряжения питания (п. 2.5) проверяют по методике п. 3.3 в центре облучаемого поля, устанавливая предельное напряжение питания в соответствии с требованиями п. 2.5.

УФ-облучатель считают выдержавшим испытание, если УФ-облученность в центре облучаемого поля соответствует допускаемым значениям, установленным в технических условиях на УФ-облучатели конкретного типа.

3.7. Потребляемую мощность S в вольтамперах (п. 2.6) и коэффициент мощности сос ф (п. 2.7) измеряют с помощью амперметра, вольтметра и ваттметра и вычисляют соответственно по формулам:

$$S = U \cdot I,$$

$$\cos \varphi = \frac{P}{U \cdot I},$$

где U — напряжение питания, B;

I — потребляемый ток, A;

Р — активная мощность, Вт.

УФ-облучатель считают выдержавшим испытания, если потребляемая мощность и коэффициент мощности соответствуют значениям, установленным в технических условиях.

3.8. Проверка электрической прочности изоляции (п. 2.8) и сопротивления изоляции (п. 2.9) — по ГОСТ 21657.

3.9. Показатель безотказности (п. 2.11), средний срок службы (п. 2.12), среднее время восстановления (п. 2.13), требования к покрытиям (п. 2.18) проверяют по методике, установленной в

технических условиях на УФ-облучатели конкретного типа.

3.10. Для проверки работоспособности при воздействии рабочих климатических условий (пп. 2.14; 2.15) помещают УФ-облучатель в климатическую камеру, повышают (понижают) температуру до 35°С (10°С) и выдерживают в течение 2 ч. Испытания проводят по методике п. 33.

3.11. Устойчивость к механическим воздействиям (п. 2.16) проверяют по методике, указанной в технических условиях на УФ-

облучатели конкретного типа.

3.12. Проверка устойчивости к воздействию пре-дельных климатических условий транспортирования (п. 2.17)

3.12.1. УФ-облучатель в транспортной таре помещают в климатическую камеру, понижают (повышают) температуру в камере до минус 50°С (плюс 50°С) и выдерживают в течение 6 ч. Извлекают УФ-облучатель из камеры, освобождают от транспортной тары, выдерживают в нормальных условиях в течение 6 ч и проводят испытания по методике п. 3.3.

3.12.2. УФ-облучатель в транспортной таре помещают в климатическую камеру, повышают температуру в камере до 35°С и влажность до (95±3)%, выдерживают в течение 6 ч. Извлекают УФ-облучатель из камеры, освобождают от транспортной тары, выдерживают в нормальных условиях в течение 6 ч и проводят испытание по методике п. 3.3.

3.13. Проверку устойчивости к воздействию транспортной тра

тряски (п. 2.17) проводят на стенде имитации транспортной тряски. Для этого УФ-облучатель в транспортной таре закрепляют на платформе испытательного стенда, устанавливают на стенде параметры в соответствии с требованиями п. 2.17 и проводят испытания в течение 2 ч.

Освобождают УФ-облучатель от транспортной тары, проверяют отсутствие механических повреждений и ослаблений крепле-

ют отсутствие механических повреждений и ослаблений креплений и проводят испытания по методике п. 3.3.

3.14. Массу (п. 2.19) проверяют взвешиванием на весах общего применения с погрешностью не более ±0,05 кг.

3.15. УФ-облученность в зоне работы оператора (п. 2.20.6) и температуру составных частей УФ-облучателей, с которыми соприкасается оператор при работе (п. 2.20.7), определяют по методике, установленной в технических условиях на УФ-облучатели конкретного типа.

ПРИЛОЖЕНИЕ 1

77,

Рекомендуемое

ТИПЫ РТУТНЫХ ЛАМП

ДРУФ 125-3, ДРУФЗ 125-3 по ТУ 16-89 ИФМР. 675640.003.ТУ

ПРИЛОЖЕНИЕ 2 Обязательное

СХЕМА УСЛОВНОГО ОБОЗНАЧЕНИЯ УФ-ОБЛУЧАТЕЛЯ

Примеры условного обозначения: Переносной ультрафиолетовый облучатель с УФ-облученностью при номинальном напряжении питания в центре облучаемого поля 10000 мкВт/см²: $\mathcal{Y}\Phi O$ -3—10000

Стационарный ультрафиолетовый облучатель с УФ-облученностью при номинальном напряжении питания в центре облучаемого поля $2500~{\rm mkBt/cm^2}$: ${\it Y\PhiO-1-2500}$

ПРИЛОЖЕНИ**Е 3** Обязательное

Номенклатура основных показателей, устанавливаемых при разработке технического задания и технических условий на УФ-облучатели

	Примен	яемость в НТД				
Наименование показателя	ТЗ на ОКР	ТУ				
Показатели назначения						
УФ-облученность, мкВт/см²	+	+				
Спектральный диапазон, нм Время установления рабочего ре- жима, мин	+	+ + +				
жима, мин Коэффициент мощности облуча- теля	±	土				
Время непрерывной работы, ч Габаритные размеры	+ +	++				
Показатели надежности						
Средняя наработка на отказ, ч Установленная безотказная нара-	± +	++				
ботка, ч Полный средний срок службы, лет Среднее время восстановления ра- ботоспособности состояния, ч	_	++				
Показатели экономного использования материалов и энергиз-						
Масса Потребляемая мощность, В·А	+	++				
Показатели устойчивости к внешним воздействиям						
Устойчивость к воздействию кли-	+	+				
матических факторов Устойчивость к воздействию ме- ханических факторов	-	+ ,				
Показатели б	безопасности					
Электрическое сопротивление изо-	±	+				
Электрическая прочность изоляции токоведущих цепей, В	±	+				
Эстетические показатели						
Показатель тщательности покрытия и отделки поверхности	-	+				

Примечание. «Знак «+» означает применяемость, знак «-» — неприменяемость, знак « \pm » — ограниченную применяемость соответствующего показателя качества.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления СССР

РАЗРАБОТЧИКИ

- Г. Г. Газизова, А. С. Боровиков, Т. И. Багрянцева, Е. М. Иванова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 14.12.89 № 3744
- 3. Срок первой проверки 1993 г. Периодичность проверки — 5 лет
- 4. ВЗАМЕН ГОСТ 4.177—85 (в части капиллярных дефектоскопов)
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
FOCT 9.032—74 FOCT 9.301—86 FOCT 12.2.007.0—75 FOCT 12.2.049—80 FOCT 12.4.013—85 FOCT 9411—81 FOCT 14254—80 FOCT 15150—69 FOCT 17516—72 FOCT 18442—80 FOCT 21657—83	2.18 2.18 2.20.1 2.20.8 2.20.4 2.3, 2.20.4 2.20.8 2.9, 2.14 2.16 3.3 2.8, 3.8		