Incremental Transitive Closure for Zonal Abstract Domain

Kenny Ballou Elena Sherman

Boise State University Boise, Idaho United States of America

May 2022

Outline

- Background
 - Zonal Domain
 - Canonical Representations
- 2 Incremental Algorithm
 - Example of how the incremental algorithm works
- 3 Experimental Results
- 4 Conclusion
- 5 Future Work

Zonal Domain

$$x - y \le 2$$
$$0 - x \le -11$$

Zonal state representation of data-flow analysis invariant

Example Data Flow Graph

Computed Invariants for Data Flow Graph

Example Zonal Invariants Computed via Data Flow Analysis

Equality Comparisons During Fixed-Point Computation

Zonal Domain with Transitive Closure

Canonical Representation

(a) Original state from Analysis

(b) State with inferred relationships

- Transitive closure property: $\forall i, j, k : E_{ij} \leq E_{ik} + E_{kj}$
- Required operation for state comparison
- Provides feasibility information
- Equality comparison is expensive due to computational cost of closure being $\Theta(n^3)$ and due to the frequency of its use.

Observations Leading to Incremental Algorithm

- All-pairs shortest path algorithm dominates analysis time
 - Floyd-Warshall algorithm, for example, is $\Theta(n^3)$
- Fixed-Point computation already propagates fully-closed Zonal state

Starting with a fully-closed Zonal State

$$x - y \le 2$$

$$x - y \le 2$$
$$-x \le -11$$

$$x - a \le 2$$
$$-x \le -11$$
$$-y \le -9$$

$$0-y \leq \min(\infty, -11+2)$$

$$x - a \le 2$$
$$-x \le -11$$
$$-y \le -9$$

$$-y \le -9$$

$$x - y \le 2$$
$$-x \le -11$$
$$-y \le -9$$

$$y - x \le \min(\infty, \infty + -11)$$

We finish with a closed Zonal state

$$x - y \le 2$$
$$-x \le -11$$
$$-y \le -9$$

Experimental Results

- Benchmarks: 63 Java methods
- Methods were divided into three groups based on instructions count
- Average analysis time computed from 3 analysis runs for each sample method

Experimental Results Show Significant Difference in Runtime

Analysis Timing Results (ms) using Incremental Closure (blue) and Standard Closure (red) Algorithms

Conclusion

- Propagating canonical states presents some advantages in weakly-relational domains such as Zonal Domain.
- Incrementally computing the closure reduces the overall analysis time.
- Some transfer functions can be simplified, e.g., forget.

Future Work

Explore incremental approaches for other canonical representations, e.g., Larsen Reduction.

Thank you

Questions?

The work reported here was supported by the U.S. National Science Foundation under award CCF-19-42044.