1 Obecné pojmy

1.1 Grafy

- Neorientovaný graf (V, E) kde $e \in E$ sú dvojprvkové podmnožiny V (neusporiadné).
- Orientovaný graf (V, E) kde $E \subseteq V \times V$.
- Izomorfixmus grafov $G \simeq H$: $f: V(G) \to V(H)$ t.ž. $(u, v) \in E(G)$ iff $(f(u), f(v)) \in E(H)$.
- Planárny (rovinný) graf: Dá sa nakresliť do roviny bez pretínania hrán.
- (Silno) súvislá komponenta zo všetký vrcholov viem dosiahnuť všetky vrcholy.

1.2 VÝROKOVÁ LOGIKA

- Booleovská funkcia $F:[0,1]^n\to [0,1].$ Operátory $\wedge,\vee,\neg,$ \Longrightarrow,\dots sú funkcie.
- Formula v systéme $\mathcal{L}(F_0,...,F_n)$: $\varphi::=x\in Var\mid F_i(\varphi_0,...,\varphi_m)$
- Modelom formule je valuácia literálov $v: Var \rightarrow [0,1] \colon v \models \varphi$
- Pravdivá/nepravdivá $v \models \varphi$, splniteľná $\exists v : v \models \varphi$, tautológia $\forall v : v \models \varphi \ (\models \varphi)$
- φ je tautologický dôsledok: $T \models \varphi$ (bez ohľadu na model)
- Normálny tvar: CNF/DNF (klauzula, duálna klauzula, literál)

1.3 Logika prvého rádu

- Premenné Var: x, ..., funkčné symboly $F: f_0, ...,$ predikátové symboly $\mathcal{P}: P_0, ...$
- Jazyk: Sada funkčných a predikátových symbolov
- Realizácia \mathcal{M} : Univerzum M, relácie $P_i\subseteq M^m$, funkcie $f_i:M^m\to M$
- S rovnosťou vs. bez rovnosti
- Term: $t := x \in Var \mid f_i(t_0, ..., t_m)$
- Formula $\varphi ::= P_i(t_0,...,t_m) \mid (t_0=t_1) \mid \varphi_0 \to \varphi_1 \mid \neg \varphi_0 \mid \exists x : \varphi$
- Modelom formule je realizácia a valuácia $v: Var \to M \colon (\mathcal{M}, v) \models \varphi$
- Pravdivá $\mathcal{M} \models \varphi$ (bez ohľadu na valuáciu)
- φ je sémantický dôsledok: $T \models \varphi$ (bez ohľadu na model)
- Teória T je množina axiómov. Teória má model M ak sú v nej všetky axiómy T pravdivé.

1.4 Odvodzovacie systémy

- Sada (generických) axiómov a syntaktických odvodzovacích pravidiel.
- Dôkaz: Postupnosť $\varphi_0, \varphi_1, \dots$ kde φ_i je axióm, alebo φ_i vznikne pravidlom z $\varphi_j : j < i$.
- Dokázateľná formula: $\vdash \varphi$, Dokázateľná z predpokladu: $T \vdash \varphi$
- Korektnosť: Dokázateľné je pravdivé ($\vdash \varphi \implies \models \varphi$)
- Úplnosť: Pravdivé je dokázateľné ($\models \varphi \implies \vdash \varphi$)
- Sporná = všetky formule sú dokázateľné.

1.5 LTS a Kripkeho štruktúra

- $LTS = (S, A, \Delta)$ stavy, akcie a prechody $\Delta \subseteq S \times A \times S$
- $K = (S, T, s_0, L)$ kde $T \subseteq S \times S$, inicálny stav s_0 a proposition labelling $L : S \to 2^{AP}$. Väčšinou chcem T totálnu.
- Prechodový systém T je množina prechodov kde prechod je deterministická funkcia ($T \subseteq \mathcal{P}(S \to S)$). Interpretujem ako že mám pomenované prechody.

1.6 Trace ekvivalencia a bisimulácia

- Trace: jeden beh v LTS
- Trace ekvivalencia = množiny behov systémov sú rovnaké.
- Relácia R je bisimulácia ak spĺňa, že ak $(s,t) \in R$ a $(s,a,s') \in \Delta_0$, tak musí existovať $(t,a,t') \in \Delta_1$ t.ž $(s',t') \in R$ a to isté opačne.
- Dva stavy sú bisimulačne ekvivalentné ak existuje nejaké bisimulácia v ktorej sú v relácií.
- \bullet Relácia bisimilarity \sim je najväčšia ekvivalencia ktorá je súčasne bisimulácia.
- Pozn.: Môžem mať situáciu kedy p simuluje q a q simuluje p, ale rôznymi reláciami a teda neviem zostrojiť jednu bisimuláciu ktorá ich zjednotí (Príklad: jeden proces sa rozhodne neskôr a druhý sa rozhodne buď hneď alebo neskôr.)

1.7 Omega automaty

- Omega regulárne jazyky sú tvaru $U.V^{\omega}$ kde U a V sú regulárne jazyky.
- Buchi automat $(Q, \Sigma, \delta, s_0, F)$ stavy, abeceda, prechodová relácia (nedeterministická), inicálny stav, akceptujúce stavy.
- \bullet Automat akceptuje ak sa v slove nachádza stav z F nekonečne často.
- ullet Zobecnený Buchiho automat: Miesto F mám množinu množín stavov a akceptujem ak prejdem každou z nich nekonečne často.

1.8 CPO A FIXED POINT

- Complete lattice (úplný svaz): Každá podmnožina má suprémum aj infimum.
- Complete partial order (CPO): Každá nekonečná postupnosť $a_0 \sqsubseteq a_1 \sqsubseteq \dots$ má v množine súprémum.
- Directed complete partial order (DCPO): Každá directed množina má suprémum. Directed množina
 je taká že po dvoch tam majú prvky upper bound.
- Pozn.: každý complete lattice je aj CPO, každý konečný complete lattice je aj DCPO.
- Veta o pevnom bode (Knaster-Tarski): Pre complete lattice (L, \leq) a monotónnu funkciu $f: L \to L$ platí, že aj fixed pointy f tvoria complete lattice.
- Veta o pevnom bode (Kleene): Pre DCPO (L, \leq) a Scott-spojitú (monotónnu) funkciu $f: L \to L$ existuje najmenší pevný bod ktorý a je suprémom postupnosti $f^n(\perp)$. (Zjednodušenie je pre konečný complete lattice a monotónnu funkciu)

1.9 LTL

- $\bullet \ \varphi ::= true \mid p \mid \neg \varphi \mid \varphi \vee \varphi \mid X \ \varphi \mid \varphi \ U \ \psi$
- Iné operátory: $F\varphi = true\ U\varphi,\ G = \neg F \neg \varphi,\ \varphi\ R\ \psi = \neg (\neg \varphi\ U\ \neg \psi)$ a $\varphi\ W\ \psi = (\varphi\ U\ \psi) \lor G\varphi$
- Formula ktorú nevyjadrím v CTL: $F(G(\phi))$

1.10 CTL

- $\varphi ::= true \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid AX \varphi \mid E/A[\varphi \ U \ \psi]$
- Iné operátory: $EX\varphi = \neg AX \neg \varphi$, $E/AF\varphi = E/A[true\ U\ \varphi]$, $E/AG\varphi = \neg A/EF \neg \varphi$
- Formula ktorú nevyjadrím v LTL: $AG(EF(\phi))$

1.11 REAL TIME SYSTEMS

- Procesor (aktívny), zdroj (pasívny), job (jednotka práce), task (periodicky sa opakujúci job)
- Release time r, execution time e, relative/absolute deadline d/D, period p, completion time C, response time C-r, utilization $\frac{e}{p}$, density tasku $\frac{e}{\min(p,D)}$ ($\frac{e}{d-r}$ pre job)
- Hard: verification, Soft: validation
- Tasks: Periodic (hard), Aperiodic (soft), Sporadic (hard)

1.12 Distribuované systémy

- Komunikujúce procesy prepojené sieťou (Iné modely: MapReduce).
- Sieť je buď synchrónna alebo asynchrónna (všeobecnejšie).
- Komunikácia je drahá Komunikačná zložitosť (počet, res. veľkosť správ)
- Sieť môže mať rôznu topológiu: ring, star, grid, hypercube, torus, tree, complete graph, unknown
- Zlyhania procesov: nečakaný delay, jednorázové zlyhanie, zlyhanie a zotavenie, bizantínske zlyhanie
- Zlyhania siete: nečakaný delay, packet loss, packet duplication, packet reordering, bizantínske zlyhanie