

Introduction à l'apprentissage automatique

Léo Beaucourt

Contenu du cours

- 1. Intro: Qu'est ce que le Machine Learning?
- 2. L'apprentissage supervisé
 - 2.1 La régression linaire
 - 2.2 La régression logistique
 - 2.3 Les problèmes de biais et de variances
 - 2.4 Les arbres de décisions
- 3. L'apprentissage non supervisé
 - 3.1 Les algorithmes de clustering
 - 3.2 Analyse en composantes principales
- 4. L'apprentissage profond
 - 4.1 Les réseaux de neurones
 - 4.2 Les bonnes pratiques
 - 4.3 Les différentes architectures de NN

À propos de ce cours

- Introduction à l'apprentissage automatique (ou machine learning en anglais)
- En pratique: *Python*, *Jupyter*. Packages *numpy pandas*, *matplotlib*, *scikit-learn* et *tensorflow*.
- Pas de pré-requis mathématiques (à part les dérivées partielles, l'algébre linéaire, ...)
- Largement inspiré de l'excellent (et complet!) cours de Andrew Ng sur Coursera.

Allez, on démarre en douceur!

• Arthur Samuel:

► The field of study that gives computers the ability to learn without being explicitly programmed.

Tom Mitchell:

- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- L'idée: Une machine apprend *seule* à réaliser une tache complexe à l'aide de processus itératifs simple.

Les principaux types d'apprentissage:

Supervisé

- Utilise des données labélisées
- · La machine apprend par l'exemple
- Prédis le résultat pour de nouveaux événements
- · Problèmes de régression et de classification
- Regression linéaire et logistique
- Réseaux de Neurones
- Arbres de décisions

Non-supervisé

- Données non labélisées
- La machine apprend par elle même à indentifier une structure
- Évaluation des performances compliqué.
- Problèmes de classification, réduction de dimensions
- K-means
- Analyse en Composante Principale

Par renforcement

- Un agent A, effectue une action Ac, l'environnement E lui renvoie une récompense.
- Récompenses à court et long terme
- Utilisé par Deepmind (alphaGo)

2. L'apprentissage supervisé

- Utilise des données labélisées
- · La machine apprend par l'exemple
- Prédis le résultat pour de nouveaux événements
- Problèmes de régression et de classification
- Regression linéaire et logistique
- Réseaux de Neurones
- Arbres de décisions

2.1 La regression linéaire

• Déterminer une relation *linéaire* entre *input(s)* (features) et *output*:

⇒ Apprentissage Supervisé

- Prédiction d'une valeur continue (e.g. non discrète, non catégorielle)
- Applications:
 - Recherche de corrélations
 - En science, modélisation de phénomènes (physiques, biologiques, ...) après mesures
 - Dans le domaine médical: les études épidémiologique
 - Dans la finance/économie: prédictions des tendances, Capital Asset Pricing Model
 - **.**..

Sujet Data Science ⇒ Premier algorithme à tester!

2.1 Un exemple: le prix d'une carte graphique

- La propriété principale d'une carte Graphique: valeur de GPU
- On a un jeu de données, cad une liste de carte graphiques dont on connait le couple {GPU; prix}:

2.1 Construire un modèle (regression linéaire)

- Soit: x_1 la valeur de GPU de nos m carte graphiques, et y leur prix
- On cherche à déterminer le modèle pour prédire un prix \hat{y} à partir x_1 :

$$\hat{y} = h_{\theta}(x_1)$$

• On défini le paramètre θ_1 qui va lier x_1 à \hat{y} :

$$h_{\theta}(x) = \theta_1 x_1$$

• Rappel math: **fonction linéaire** f(x) = kx

2.1 Construire un modèle (regression linéaire)

ullet Initialisons aléatoirement la valeur de $heta_1$

C'est pas encore ça ...

2.1 La fonction de coût

- $\mathcal{J}(\theta)$: *véracité* de notre modèle
- Une définition possible: somme quadratique des erreurs

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=0}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

2.1 La fonction de coût

• On cherche à trouver la valeur de $heta_1$ qui **minimise** $\mathfrak{J}(heta)$

En Brute ...

... essayons d'optimiser

2.1 La descente de gradient

- Algorithme pour arriver "rapidement" au minimum de $\mathcal{J}(\theta)$
- On va utiliser la *dérivation*: $\frac{d}{d\theta_1}\mathcal{J}(\theta)$:

Si $\mathcal{J}(\theta)$ est croissant: $\frac{d}{d\theta_1}\mathcal{J}(\theta)>0,$ Si $\mathcal{J}(\theta)$ est décroissant: $\frac{d}{d\theta_1}\mathcal{J}(\theta)<0$

2.1 La descente de gradient

• (Encore) un peu de math, la descente de gradient s'écrit:

Descente de gradient

- α s'appelle le taux d'apprentissage (*learning rate*) et c'est le **seul** paramètre de l'algorithme.
- On va itérativement modifier la valeur de θ_1 en fonction de la dérivée de $\mathcal{J}(\theta)$, jusqu'à minimiser $\mathcal{J}(\theta)$ (convergence).

2.1 La descente de gradient

Dérivons donc notre fonction de coût:

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=0}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=0}^{m} (\theta_1 x_1^{(i)} - y^{(i)})^2$$
$$\frac{d}{d\theta_1} \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=0}^{m} (\hat{y}^{(i)} - y^{(i)}) x_1^{(i)}$$

- Un peu de *hand-tunning*:
 - Le learning rate (α) est fixé à 0.03 (0.045 pour la démo)
 - Définissons une précision $\epsilon=0.0001$ qui nous servira à arrêter la descente de gradient

2.1 Préparation du dataset

- Bonne pratique de ML, pour tout les algos!
- On sépare **aléatoirement** les données en 2 (3) échantillons:
 - Entraînement / (Validation) / Test
 - ► 80 / 20 (70 / 30) ou 60 / 20 / 20
- Entraînement: utilisé pour la descente de gradient
- Validation: utilisé pour l'hyperparamètrage de l'algo
- Test: utilisé pour mesurer la performance du modèle

2.1 C'est parti!

- La descente de gradient c'est achevée au bout de quelques itérations
- On peut voir que $\mathcal{J}(\theta)$ a continuellement diminué à chaque itération

$$\theta_1 \approx 80$$
 $err_{train} \approx err_{test}$

2.1 On peut maintenant faire une prédiction

• Quel serait le prix de cartes avec 5, 10 et 14 Go de GPU?

On pourra les vendre autour de 400, 800 et 1100 euros!

2.1 Le choix du taux d'apprentissage

- Learning Rate Très important:
 - $ightharpoonup \alpha$ Trop grand: la descente de gradient diverge
 - $ightharpoonup \alpha$ Trop petit: la descente de gradient est très longue
- Pour choisir, on regarde l'évolution de la fonction de coût $\mathcal{J}(\theta)$ en fonction du nombre d'itérations:

2.1 Un mot sur la regression linéaire multivariables

- Ici, nous avons vu le cas avec une seule variable x_1 (on aurait pu rajouter un biais θ_0 , cad un terme constant: $\hat{y} = \theta_0 + \theta_1 x_1$)
- Le principe est le même, mais avec plusieurs variables x_i (donc plusieurs paramètres θ_i)
- Notre fonction hypothèse s'écrie alors:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta_0 + \sum_{i=1}^n \theta_i x_i$$

• **Astuce**: On définit $x_0 = 1$, et on re-écrit la fonction hypothèse:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 \cdots + \theta_n x_n = \sum_{i=0}^n \theta_i x_i$$

La fonction de coût reste inchangée

2.1 Un mot sur la regression linéaire multivariables

Dans le cas multivariables, la descente de gradient devient:

Descente de gradient (cas multivariables) Répéter jusqu'à convergence: { $\theta_0 := \theta_0 - \alpha \frac{d}{d\theta_0} \mathcal{I}(\theta)$ $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} \mathcal{I}(\theta)$ $\theta_2 := \theta_2 - \alpha \frac{d}{d\theta_2} \mathcal{I}(\theta)$ \cdots }

• Il est très important de simultanément changer les valeurs des paramètres.

2.1 Un mot sur la regression linéaire multivariables

Pour illustrer: régression linéaire à deux dimensions

2.1 Affinons notre modèle de carte graphiques

- Plus de features: chipset, fréquence, consommation, ...
- Il va falloir explorer et nettoyer les données:
 - Gestion des données manquantes / abbérantes
 - Features engineering
 - Normaliser le dataset (pour accélérer la descente de gradient)

2.1 Régression linéaire multivariables: Résultats

- On utilise la même valeur de $\epsilon = 0.0001$ et $\alpha = 0.03$
- Plus long! Mais meilleur résultats:
- Modèle simple: $err \approx 100$
- Modèle multivariable: $err \approx 30$

2.1 Pour conclure sur la régression linéaire

- **Regression Linéaire:** \hat{y} est une valeur *continue*
 - Valeur discrète: Regression Logistique (classification)
- Le résultat \hat{y} dépend **linéairement** des variables x_i si:

$$\hat{y} = \theta_1 x_1 + \dots + \theta_n x_n = \sum_{i=1}^n \theta_i x_i$$

- Apprentissage supervisé: y est connu pour chaque x₁ dans le jeu de données d'entrainement
- Facile à implémenter (encore plus avec Scikit-learn ...), rapide: bon point de départ sur un sujet

2.1 Features scaling

- Lorsque les variables n'ont pas la même échelle, la descente de gradient peut prendre beaucoup de temps
- Normaliser les variables: $-1 \le x_i \le 1$

	Feature Scaling	Mean normalization
Start range	$x_{min} \leq x \leq x_{max}$	$x_{min} \leq x \leq x_{max}$
Transformation	$x := \frac{x - x_{min}}{x_{max} - x_{min}}$	$x := x - x_{mean}$
New range	$0 \le x \le 1$	$(x_{min} - x_{mean}) \le x \le (x_{max} - x_{mean})$

- En combinant les deux: $x := \frac{x x_{mean}}{x_{max} x_{min}} \Rightarrow -1 \le x \le 1$
- **Remarque:** Il est possible de remplacer $x_{max} x_{min}$ par l'écart type:

$$\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

- Classification: prédire un nombre limités de valeurs discrètes
 - Classification binaire: Deux valeurs possibles: Vrai ou Faux (spam / non spam)
 - Classification multiclasse: plusieurs valeurs possibles (camion, voiture, piétons, vélos, ...)
- Classification binaire: En utilisant la régression linaire?
 - ▶ $y \in \{0,1\}$ ⇒ On défini un seuil S pour $h_{\theta}(x)$:

$$h_{\theta}(x) \ge S \rightarrow y = 1$$

 $h_{\theta}(x) < S \rightarrow y = 0$

- **Problème:** On voudrait que $0 \le h_{\theta}(x) \le 1$
 - ⇒ Il faut redéfinir notre fonction hypothèse!

- Modèle de la régression logistique:
 - ▶ On utilise la **Fonction Sigmoïde** $g(z) = \frac{1}{1+e^{-z}}$

$$z = \sum_{i=0}^{n} \theta_i x_i$$

$$h_{\theta}(x) = g(z)$$

$$0 < h_{\theta}(x) < 1$$

• Classification: On prédit une probabilité

• On change également la fonction de coût:

$$\mathfrak{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Avec:

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- Et la Classification multiclasse ? $y \in \{0, 1, 2, ..., n\}$
- La descente de gradient ne permet pas de la résoudre
- On peut tricher en utilisant la méthode 'One-vs-all':
 - On remplace le problème multiclasse par n + 1 problèmes binaire
 - Probabilité que *y* soit dans une classe, les autres sont regroupés dans une deuxième classe *virtuelle*:

$$h_{\theta}^{(0)} = P(y = 0|x; 0)$$

 $h_{\theta}^{(1)} = P(y = 1|x; 0)$
...
 $h_{\theta}^{(n)} = P(y = n|x; 0)$
prediction = $max_i(h_{\theta}^{(i)}(x))$

Algorithme d'optimisation avancés: Conjugate gradient, (L-)BFGS, . . .

2.3 Les problèmes de biais et de variance

- Underfitting: modèle trop simple (pas assez de variables)
- Overfitting: modèle trop complexe, deux manière de résoudre:
 - Réduire le nombres de variables ou changer les paramètres du modèle
 - Utiliser des méthodes de régularisation

2.3 La régularisation

- Contraindre les paramètres θ_i sans réduire le nombre de variables
- On ré-écrit la fonction de coût avec le terme de régularisation:

$$\mathfrak{J}(\theta) = \frac{1}{2m} (\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2)$$

- λ: Paramètre de régularisation
- Si λ est trop grand: risque d'underfitting
- Si $\lambda = 0$: pas de régularisation.
- **Remarque:** On ne régularise pas le terme constant $heta_0$

2.4 Les arbres de décisions

- Effectue une prédiction (regression ou classification) par une succession de decision simples: *if-else-then* sur les différentes variables
- Arbre = suite de décisions (noeuds) ammenant à une prédiction (feuille)

 La complexité de la structure de données qu'il est possible de représenter avec une arbre de décision est proportionelle à la profondeur de l'arbre

Un arbre pour déterminer la probabilité de survie des passagers du Titanic (depuis Wikipedia)

2.4 Les arbres de décisions: Apprentissage

- La meilleure séparation possible est déterminée:
 - Toutes les variables/sélection possibles
 - Celle qui minimise une fonction de coût
- L'échantillon d'entrainement est séparé suivant cette décision, créant ainsi deux feuilles (sous-échantillon)
- On recommence l'opération tant que l'on a pas atteint la profondeur voulue ou bien que la pureté de chaque feuille atteint un niveau satisfaisant (à déterminer)

Remarque: Il est possible d'utiliser la même variables pour différents noeud.

2.4 Les arbres de décisions

- Ces algorithmes sont faciles à interpréter (et à visualiser)
- Tout les types de données (catégorielle, numérique, ...) peuvent être mélangés
- Rapide et peu gourmand en ressource pour comprendre des structures de données complexes:

- Risque d'overfitting (sur-apprentissage) du modèle qui se généralise mal
- Algorithmes très sensibles au jeu de données d'entrainement

2.4 Les arbres de décisions: méthodes d'ensemble

- Pour pallier les faiblesse des arbres de décision, on les utilise comme base learners dans des méthodes qui en regroupe plusieurs
- Il existe deux familles de méthodes:
 - averaging: plusieurs estimateurs (learners) indépendant dont on moyenne les prédictions (Random Forests, . . .)
 - **boosting**: plusieurs estimateurs combinés (*AdaBoost*, *XGBoost*, . . .)

2.4 Exemple d'algorithme d'averaging: Random Forests

- Bagging: Chaque estimateur (arbre) de l'ensemble est construit à partir d'un sous-échantillon aléatoire (avec replacement) de l'échantillon d'entrainement (Bootstrap aggregating)
- Features bagging: La meilleure séparation possible sur un sous-échantillon aléatoire des variables
- Soit f_b , l'arbre entrainé sur le sous-échantillons b ($b \in [1, B]$), on calcule la prédiction globale en moyennant les prédictions de tout les arbres:

$$\hat{f} = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$$

 Cette méthode obtient de meilleure performance car elle réduit la variance du modèle sans accroitre le biais

2.4 Exemple d'algorithme de boosting: AdaBoost

- L'apprentissage d'un même *learner* est répété en modifiant le jeu de données à chaque itération
- On utilise des poids: w_i pour $i \in [1, N]$. Initialement: $w_i = 1/N$
- À chaque itération, le poids des exemples correctement prédits diminue tandis que celui des exemples dont les prédictions sont fausse augmente
- L'algorithme devient plus sensibles aux exemples difficiles à prédire

2.4 Exemple d'algorithme de boosting: XGBoost

- Obtient d'excellent résultats sur la plupart des cas d'usages (classification et régression)
- Des arbres sont générés aléatoirement comme pour les random forests
- Mais au lieu de moyenner les prédictions, on additionne les prédictions
 - À chaque étape, des arbres sont générés et on sélectionne celui qui optimise la fonction d'objectif (une fonction de coût + une fonction qui mesure la complexité du modèle)
 - On additionne la prédiction de cet arbre à la prédiction du modèle et on recommence jusqu'à atteindre une performance suffisante

$$\hat{y}_{i}^{(0)} = 0
\hat{y}_{i}^{(1)} = \hat{y}_{i}^{(0)} + f_{1}(x_{i}) = f_{1}(x_{i})
\hat{y}_{i}^{(2)} = \hat{y}_{i}^{(1)} + f_{2}(x_{i}) = f_{1}(x_{i}) + f_{2}(x_{i})
\dots
\hat{y}_{i}^{(t)} = \hat{y}_{i}^{(t-1)} + f_{t}(x_{i}) = \sum_{i=1}^{t} f_{k}(x_{i})$$

2.4 Arbres de décision: *Titanic*

	Decision Tree	Random Forest	AdaBoost	XGBoost
Accuracy (%)	77.6	81.1	83.2	83.9

3 L'apprentissage non-suppervisé

- Données non labélisées
- La machine apprend par elle même à indentifier une structure
- Évaluation des performances compliqué.
- Problèmes de classification, réduction de dimensions
- K-means, Mean Shift, Gaussian Mixture Model
- Analyse en Composante Principale

3.1 Les algorithmes de clustering

- Clustering: Se rapproche d'un problème de classification (sans labels)
- Ces algorithmes cherchent à rassembler les exemples en cluster
- À la différence des arbres de décision, le choix du cluster ne s'effectue pas par une suite de décisions simple, mais en déterminant la plus petite distance possible dans l'espace des variables
- Utilisés pour la segmentation d'utilisateurs/marchés dans le commerce en ligne mais aussi en génétique
- Il faut (dans la majorité des cas) définir au préalable le nombre de clusters à construire (hyperparamètre du modèle)

3.1 K-means

- Sépare les données en *K* clusters *C* d'égale variance (dispersion)
- Soit les centroïdes, la moyenne des échantillons dans chaque cluster
- K-means modifie la position des centroïdes jusqu'à trouver la valeur qui minimise l'écart moyens des échantillons vis-à-vis de son cluster correspondant
- Critère de minimisation: **inertie**: $I = \sum_{k=0}^K \sum_{x \in C_k} ||x \mu_k||^2$
- La performance du K-means est fortement dépendante de son initialisation (Solution: plusieurs initialisation → moyenne)
- Le *K-means* ne fonctionne pas avec des variables catégorielles (il existe des adaptations). Il est préférable de normaliser les variables.

3.1 Clustering: Iris dataset, K-means result

3.1 Mean Shift

- Cherche les zones de fortes densité en modifiant itérativement la position de centroïdes
- Des *centroïdes* de rayons *R* sont aléatoirement initialisés
- Ils sont déplacés vers la région de plus haute densité (nombres de points dans le rayon R)
- On continue jusqu'à maximiser la densité de chaque centroïde
- Plusieurs centroïdes dans une zone: celui avec la plus haute densité est conservé
- l'ensemble du dataset est labelisé (plus petite distance)
- Le Mean Shift détermine le nombre optimal de clusters pour la valeur du rayon choisie (R)

3.1 Clustering: Iris dataset, Mean Shift result

3.1 Gaussian mixture models

- Hypothèse: la structure des données est compatible avec un mélange de gaussiènne
- On ajuste les paramètres de N gaussiènnes jusqu'à trouver ceux qui collent le mieux aux données

- Algorithme d'ajustement: **espèrance-maximisation**, on cherche à maximiser la fonction de *log-likelihood* (fonction de vraissemblance)
- Intuitivement: on cherche les paramètres qui rendent la distribution de données observée la plus probable

3.1 Clustering: Iris dataset, GMM result

3.2 Analyse en composantes principales

- PCA (Composants principal analysis): Algorithme de réduction de dimensions
- Transforme un problème à n variables en un problème à n' variables (avec n' < n)
- Explore les corrélations entre les variables pour les regrouper (pondération): Pertes d'informations
- Très utile pour:
 - Pre-stage d'un algorithme de clustering (peut améliorer les performances)
 - Pour faire de la visualisation en 2D de données à plus haute dimension

3.2 Analyse en composantes principales

- Exemple d'utilisation: digit dataset:
 - ► 64 variables \Rightarrow 10 pour initialiser le K-means
 - ► 64 ⇒ 2 pour la visualisation

4. L'apprentissage profond

- **Deep Learning** = *Réseaux de Neurones* (avec plus d'une couche cachée)
- Conceptualisés dans les années 80 et début 90, l'explosion de la puissance de calcul disponibles a rendu possible leur exploitation
- Qu'est ce que ça a à voir avec le cerveaux? Pas grand chose en fait
 ... à part une analogie avec la structure des neurones
- Utilisé principalement dans le cadre de l'apprentissage supervisé
 - ► Image classifiers, Object detection
 - Speech recognition
 - Machine traduction (DeepL)
 - Voiture autonomes
 - . . .
- Données structurées/non-structurées:
 - Les humains sont bons pour interpréter des données non-structurées

4. L'apprentissage profond

Large NN, Medium NN, Small NN, Traditional learning algo-

Depuis deeplearning.ai coursera

4.1 Les réseaux neurones

- 1 input layer $\Rightarrow L 1$ hidden layer \Rightarrow 1 output layer
- $n^{[l]}$ cellules (neurones) pour la couche l, m variables (input layer: $n^{[0]}$)
- $W^{[l]}, b^{[l]}$: paramètres de la couche l ($W^{[l]} \in \mathbb{R}^{(n^{[l]} \times n^{[l-1]})}, b^{[l]} \in \mathbb{R}^{(n^{[l]} \times 1)}$)

4.1 Un neurone *i* de la couche *l*

• 2 étapes de calculs:

$$igspace{-2mm} z_i^{[l]} = \sum_{j=0}^{n^{[l-1]}} w_{ij}^{[l]} imes a_j^{[l-1]} + b_i^{[l]}$$
 Où, $a^{[0]} = x$

 $ightharpoonup a_i^{[l]} = f^{[l]}(z_i^{[l]})$

Où, $f^{[l]}(z)$ est la fonction d'activation

4.1 Une couche *l* de neurones

- On répète l'opération pour chaque neurone *i* de la couche *l*
- Plus efficace de réfléchir en multiplication de matrices:

$$z^{[l]} = \begin{bmatrix} z_1^{[l]} \\ z_2^{[l]} \\ \vdots \\ a_{n^{[l]}}^{[l]} \end{bmatrix} = \begin{bmatrix} w_{11}^{[l]} & w_{12}^{[l]} & \dots & w_{1n^{[l-1]}}^{[l]} \\ w_{21}^{[l]} & w_{22}^{[l]} & \dots & w_{2n^{[l-1]}}^{[l]} \end{bmatrix} \begin{bmatrix} a_1^{[l-1]} \\ a_2^{[l-1]} \\ \vdots \\ a_{n^{[l-1]}}^{[l-1]} \end{bmatrix} + \begin{bmatrix} b_1^{[l]} \\ b_2^{[l]} \\ \vdots \\ b_{n^{[l]}}^{[l]} \end{bmatrix}$$

- ullet Que l'on réécrira: $z^{[l]} = W^{[l]} a^{[l-1]} + b^{[l]}$
- Puis: $a^{[l]} = f^{[l]}(z^{[l]})$

4.1 Tous les exemples à la fois

- On a vu le cas avec un exemple, mais si on veux faire les m exemples en une fois? for-loop? ⇒ Matrices!
- On vectorise: $X \in \mathbb{R}^{n imes m}$, plus généralement: $A^{[l]}(Z^{[l]}) \in \mathbb{R}^{n^{[l]} imes m}$

$$A^{[l]} = egin{bmatrix} a_1^{[l](1)} & a_1^{[l](2)} & \dots & a_1^{[l](m)} \ a_2^{[l](1)} & a_2^{[l](2)} & \dots & a_2^{[l](m)} \ & & \ddots & \ a_{n^{[l]}}^{[l](1)} & a_{n^{[l]}}^{[l](2)} & \dots & a_{n^{[l]}}^{[l](m)} \end{bmatrix}$$

- Les étapes de calculs s'écrivent: $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$
- ullet Puis: $A^{[l]}=f^{[l]}(Z^{[l]})$

4.1 Les 4 principales fonctions d'activations

• Logistique:

• Tangente-hyperbolique:

• Rectified Linear Unit:

Leaky ReLU:

• Si $\hat{y} \in \{0,1\}$: **Logistique**. Les autres neurones: **ReLU**

4.1 Forward propagation

- Input X : 3 variables $(n^{[0]} = 3)$
- 2 couches cachées ($n^{[1]} = n^{[2]} = 4$): **ReLU**
- Output: $n^{[3]} = 1$: Logistique

Forward propagation

$$egin{array}{llll} X & \in & \mathbb{R}^{3 imes m} & Y & \in & \mathbb{R}^{1 imes m} \ W^{[1]} & \in & \mathbb{R}^{4 imes 3} & b^{[1]} & \in & \mathbb{R}^{4 imes 1} \ Z^{[1]} & \in & \mathbb{R}^{4 imes m} & A^{[1]} & \in & \mathbb{R}^{4 imes m} \ W^{[2]} & \in & \mathbb{R}^{4 imes 4} & b^{[2]} & \in & \mathbb{R}^{4 imes 1} \ Z^{[2]} & \in & \mathbb{R}^{4 imes m} & A^{[2]} & \in & \mathbb{R}^{4 imes m} \ W^{[3]} & \in & \mathbb{R}^{1 imes 4} & b^{[3]} & \in & \mathbb{R}^{1 imes 1} \ Z^{[3]} & \in & \mathbb{R}^{1 imes m} & A^{[3]} & \in & \mathbb{R}^{1 imes m} \ \end{array}$$

$$\begin{split} Z^{[1]} &= W^{[1]}X + b^{[1]} \\ A^{[1]} &= f^{[1]}(Z^{[1]}) = relu(Z^{[1]}) \\ Z^{[2]} &= W^{[2]}A^{[1]} + b^{[2]} \\ A^{[2]} &= f^{[2]}(Z^{[2]}) = relu(Z^{[2]}) \\ Z^{[3]} &= W^{[3]}A^{[2]} + b^{[3]} \\ \hat{Y} &= A^{[3]} = f^{[3]}(Z^{[3]}) = \sigma(Z^{[3]}) \end{split}$$

4.1 Backward propagation

- C'est l'algorithme d'apprentissage des réseaux de neurones
- On définit la fonction de coût:

$$\mathcal{J}(W^{[1]},\ldots,W^{[L]},b^{[1]},\ldots,b^{[L]}) = \frac{1}{m}\sum_{i=1}^{m}L(\hat{y}^{(i)},y^{(i)})$$

• On utilise la descente de gradient:

4.1 Backward propagation

• On va propager l'erreur $\hat{Y} - Y$ pour modifier les valeurs des paramètres $W^{[l]}$ et $b^{[l]}$ du réseau de neurones

$$\begin{array}{l} dZ^{[3]} = A^{[3]} - Y \\ dW^{[3]} = \frac{1}{m} dZ^{[3]} A^{[2]T} \\ db^{[3]} = \frac{1}{m} \sum dZ^{[3]} \\ dZ^{[2]} = W^{[3]T} dZ^{[3]} * relu'(Z^{[2]}) \\ dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]T} \\ db^{[2]} = \frac{1}{m} \sum dZ^{[2]} \\ dZ^{[1]} = W^{[2]T} dZ^{[2]} * relu'(Z^{[1]}) \\ dW^{[1]} = \frac{1}{m} dZ^{[1]} X^T \\ db^{[1]} = \frac{1}{m} \sum dZ^{[1]} \end{array}$$

• Pour que l'apprentissage fonctionne: **Initialisation aléatoire** W, b

4.2 Les bonnes pratiques: préparer les donneés

- On sépare les données en trois sous-échantillons:
 - ► **Train:** (60%) échantillon d'entrainement avec lequel on applique la *forward-backward propagation*
 - ► Validation: (20%) échantillon qui nous permet de mesurer les performances du modèle pour différentes valeurs d'hyperparamètres et différentes architectures
 - ► **Test:** (20%) échantillon de test qui donne la performance du modèle final
- Il est important de séparer les données en différents sous-échantillons de test pour être sûr que le modèle de généralise bien
- S'assurer que les sous-échantillons proviennent de la même source et soient représentatifs

4.2 Les bonnes pratiques: biais et variance

- Si $\mathcal{J}_{train}(W,b) >> \mathcal{J}_{valid}(W,b)$: problème de variance: **Overfitting**
- Si $\mathcal{J}_{train}(W,b) pprox \mathcal{J}_{valid}(W,b) >> 0$: problème de biais: **Underfitting**
- Comment diagnostiquer? deux valeurs à regarder:
 - Erreur de l'échantillon d'entrainement: terr
 - Erreur de l'échantillon de validation: v_{err}
- ullet On estime le cas idéal (Bayes ou opérateur humain): pprox 0%

4.2 Les bonnes pratiques: courbes d'apprentissage

 Entrainer un algo en augmentant le nombre d'exemples et monitorer l'évolution de l'erreur:

Biais et variance [Coursera]

4.2 Les bonnes pratiques: Que faire?

4.3 Les différentes architectures de NN

Différentes architectures pour différents usages:

Merci! Des questions?

Léo Beaucourt: lbeaucourt@agaetis.fr