Prof: MEFTAH MONGI

58 059 297 Durée : 60 mn Devoir de contrôle de Mathématiques n° 7 Lycée : P. SOUSSE

58 059 297

Nom et prénom :

Nº:

A.S: 2023 - 2024

EXERCICE N°1 (5.5 points)

Al x et y étant deux réels positifs tel que $x \ge y$

1)a) Montrer que $\sqrt{x} - \sqrt{y} \le \sqrt{x - y}$

b) En déduire que pour tout entier naturel n non nul $\sqrt{(n+1)^2}$ $\sqrt{(n-1)^2} \le \sqrt{6n^2+2}$

2) On pose $S = \sqrt{3 \times 1^2 + 1} + \sqrt{3 \times 3^2 + 1} + \cdots + \sqrt{3 \times 2017^2 + 1} + \sqrt{3 \times 2019^2 + 1}$

Montrer que $S \ge 2020\sqrt{2010}$

B/ a, b, c et d étant quatre réels distincts.

a- Montrer que : $(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$.

b- Ecrire le nombre : 61×113 sous la forme de somme de deux carrés.

EXERCICE N°2 (5 points)

1) Résoudre dans IR: $\sqrt{5-|x|} < 2$

2) Résoudre dans IR *) $|x + 2| = -x^2 + 1 - \sqrt{2}$

**)
$$\frac{x-3}{2x+5} \ge 2$$

3)a)Montrer que pour tout réel x, on a : $\sqrt{x^2+1} \succ x$

b)Résoudre dans IR \square l'inéquation : $\frac{2x+3}{x-\sqrt{x^2+1}} \prec x + \sqrt{x^2+1}$

EXERCICE N°3(2.5 points)

1) Résoudre dans $IR: x^2 - 6x + 5 = 0$

2) B= $(\vec{\imath},\vec{\jmath})$ est une base dans l'ensemble des vecteurs et m un nombre réel

Déterminer les réels m pour que les vecteurs $\vec{u}\binom{m^2}{-1}$ et $\vec{v}\binom{5}{m^2-6}$ soient colinéaires

EXERCICE Nº4(7 points)

Dans un repère orthonormé $R=(c,\overline{i},\overline{j})$, on donne dans la figure cl-contre un triangle OAB rectangle en B avec OB=4 et ayant une aire égale à 6

1)a) Justifier que le point A a pour coordonnées (5,0)

b)Déterminer les coordonnées du point B

2)Soit I = A*O

. 58 059 297

Determiner l'ensemble des points M du plan tel que $\|\overrightarrow{MA} + \overrightarrow{MO}\| = \|2\overrightarrow{MA} - 2\overrightarrow{MB}\|$

58 059 297

58 059 297

confe

3) Soit $C(2, \frac{-5}{4})$ dans le repère R'= $(0, \overrightarrow{OI}, \overrightarrow{OB})$

a)Montrer que (AC)//(OB)

b)Déduire l'aire du triangle OBC

IL NE S'AGIT PAS DE TOUT FAIRE, IL S'AGIT DE BIEN FAIRE CE QUE L'ON PEUT FAIRE

1) a) soit A = Jx - Jy et B = Joe-y avec oc > y ana A2-B2= (Vx - Vy)2- Vx-y = x - 2 vxy + y - (x - y) = 00-25=4+4=00+4 = 2y-2J=y = 2Jy (Jy-J=) ctron y { sc (=) Ty { Toc donc Ty - Toc {0 et 25%),0 danc 254 (54-00) «0 d'an 12-B2 (0 ett -> A2 < B2 et A et B sont positifs donc A &B L'où Jx-Jy { Voc-y b) ch pase X = (n+1)3 et Y = (n-1)3. and n+1>n-1 (ne IN*) done (n+1)3> (n-1)3 donc X>, Y et d'après [2) a)] on a VX-VY (VX-Y d'où V(m+1)3 - V(n-1)3 { V(m+1)3- (n-1)3 danc V(n+1)3 - V(n-1)3 5 V(m)+3 n2 +3 m2 +3 m2 (3m+1 $(=) \sqrt{(m+1)^3} - \sqrt{(m-1)^3} \le \sqrt{6} n^2 + 2$ 2) & on a pour cout me IN*: V6n2+2), V(n+1)3'- Vn-13 => V2 V3n2+1 >, V(n+1)3 - V(n-1) y pour n = 1 ona ; => \(\frac{1}{3}n^2 + 1 \) \(\sigma \left(n+1)^3\) - \(\chi_n-1)^3\) (7 V3×12+1 7, V(1+1)3' - V(1-1)3' (=) $\sqrt{3} \times 1^2 + 1$ >, $\sqrt{2^3} - 0$ =) $\sqrt{3} \times 1^2 + 1$ >, 2 * pour n=3 ona: \(\frac{1}{3} \tag{2} + 1 \) \(\frac{1}{3} + 1 \) \(\frac{1}{3} + 1 \) (=) \(\frac{3}{3} \tag{2} + 1 \) \(\frac{43}{3} \) $(3 \times 3^2 + 1)$ (3 - 2)

pour n = 5 an $a: \sqrt{3} \times 5^2 + 1$ >, $\sqrt{(5+1)^3} - \sqrt{(5-1)^3}$ (=) $\sqrt{3} \times 5^2 + 1$ 7, $\sqrt{6} \sqrt{6} - 8$ Paul n = 7 and $: \sqrt{3} \times 7^2 + 1$ >, $\sqrt{(7+1)^3} - \sqrt{(7+1)^3}$ (7) $\sqrt{3} \times 7^2 + 1$ >, $\sqrt{602} - 6\sqrt{6}$ pour n= 2017 on a: $\sqrt{3} \times 9011^2 + 1$ > $\sqrt{(2017+1)^3} - \sqrt{(2017-1)^3}$ (=) $\sqrt{3} \times 2014^{2} + 1$ 7, $\frac{2018\sqrt{2018}}{\sqrt{2}} - \frac{2016\sqrt{2016}}{\sqrt{2}}$ PAUR $M = \frac{2019}{2019}$ and $\frac{1}{2}\sqrt{3} \times 2019^{2} + 1$ 7, $\frac{\sqrt{(2019+1)^{3}} - \sqrt{(2019-1)^{3}}}{\sqrt{2}}$ (=) $\sqrt{3} \times 2019^{2} + 1$ 7, $\sqrt{2019} \times 2018\sqrt{2019}$ 7 ona V3x12+1 + V3x32+1 + vent V3x2012+1 + 1 + V3x2012+1 70 $\frac{\sqrt{2} + \frac{8 - 2\sqrt{2}}{\sqrt{2}} + \frac{6\sqrt{6} - 8}{\sqrt{2}} + \frac{16\sqrt{2} - 6\sqrt{6}}{\sqrt{2}} + \frac{2090\sqrt{2020} - 2018\sqrt{208}}{\sqrt{2}}$ 5 >, (252) +3-252) + 656 (8+1652) (55) + 420 18 Vang - 2016 Vang + 2020 V3020 2018 V 2018' et \(\frac{20 20 \sqrt{2030}}{\sqrt{2}} => \quad \(\sqrt{\gamma} \), \(\lambda \text{20 20 \sqrt{20 10}} \)

et \(\sqrt{2010} \) > \(\sqrt{1010} \) donc \(\sqrt{\gamma} \), \(20 20 \sqrt{20 10} \)

(2)

```
/* (a2 +b2) (c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2
  (ac+bd)2+ (ad-bc)2 = a22 + 2acxbd) + b2d2+a2d2
2adx be + b2c2
  = 22 + 62 d2 + 22 d2 + 62 c2
      d'on (a2+b2)(c2+d2) = (ac+bd)+ (ad-bc)
b) ona 52+62=61 et 72+82=113
 on pose a=5; b=6; c=7 et d=8
 => (a2+b2) (c2+d2) = 61×113
  donc (5x++6x8)+(5x8-6x7)=61x113
  olane 61×113= $83+ (-2)2 => 61×113=782+ 22
Exe;
1) (E): \[ \sigma - |\pi| \le 2 \ C. E: il fant que 5 - |\pi| \\ 7,0
                         1x (5 (=) -5 (oc (5
 Pour tout oce [-5;5] ona: 5-1x/<4
    => 5- |x|-4 (0 (=> 1- |x| <0 (=> |x| 71
    danc oc € ]-00 5-1[ U]15+00[-
     dr on a sce [-5; 5]
d'on SIR= []-05-1[U]1;+0[) [[-5;5]
     (=) SIR = [-5)-1[ U]1;5]
 2) *) |x+2| = - x2 +1- J2
  C. E: il faut que -x2+1-12 7,0
      (=) \D = 1-4\J2 <0
                                      (J)
  etr - x2+1- V2 E IR_ pour tout xE IR donc 3R=0
```

**)
$$\frac{x-3}{2x+5}$$
 7,2 C.E: it faut que $2x+5 \neq 0$
 \Rightarrow pour tout $x \in |R| \left\{ \frac{-5}{2} \right\}$ on a:

 $\frac{x-3}{2x+5}$ 7,2 (=) $\frac{x-3}{2x+5} - \frac{2(2x+5)}{2x+5}$ 7,0

 $\Rightarrow \frac{5x-3}{2x+5} - \frac{4x-10}{2x+5} - \frac{3x-13}{2x+5}$ 7,0

 $\Rightarrow \frac{5x-3}{2x+5} - \frac{3x-13}{2x+5} - \frac{3x-13}{2x+5}$ 7,0

 $\Rightarrow \frac{5x-13}{2x+5} - \frac{5}{2} = \frac{5x-13}{2x+5} - \frac{5x-13}{2x+5} = \frac{5x-13$

 $\frac{E \times 3!}{4) \times 2^{2} - 6 \times + 5 = 0}$ 1 - 6 + 5 = 0 (a+b+c=0) Anc x' = 1 et x'' = 5

2) $\vec{u} \binom{m^2}{-1}$ et $\vec{v} \binom{5}{m^2-6}$ sont colinéaires donc $\det(\vec{u}, \vec{v}) = \binom{m^2}{-1} \binom{5}{m^2-6} = 0 \implies m^2(m^2-6) - (-5) = 0$ $\implies m^4 - 6m^2 + 5 = 0$

anpare: X = m² donc m² = 1 ou m² = 5

et pare
$$\delta(x,y)$$

et $AB = \sqrt{4} + \sqrt{4} + \sqrt{4} = 3$ et on $AB = \sqrt{4} + \sqrt{4} = \sqrt{4} = \sqrt{4} + \sqrt{4} = \sqrt$

donc m= 1 ou m= -1 ou m= 5 ou m= -5

Ex4:

1) a) the OAB in triangle rectangle in B danc $S_{OAB} = \frac{OB \times OAB}{2}$ =) $AB \times OB = 12$ (=) $AB = \frac{12}{OB} = \frac{12}{4} = 3$ from $AB^2 = OB^2 + BA^2 = 4^2 + 3^2 = 16 + 9 = 25 = 9$ $AO = \sqrt{25} = 5$ AE (O, 7) donc $OA = |x_A| = 5$ danc $x_A = 5$ on $x_A = -5$ Or AE [O, 7) et $y_A = 0$ $\Rightarrow A(5,0)$

Extra hot sha soon with the food

$$C(-2, -\frac{1}{4}) \text{ dans } R'(0, 0), 0)$$

$$\Rightarrow DC = 201 - \frac{1}{4} \text{ for}$$

$$ORD = \frac{1}{5} C - \frac{12}{5} C$$

$$\text{et } CT = \frac{5}{2} C \text{ carl}(\frac{5}{2})^{\circ}) \left[T - 4 \times 0\right]$$

$$\Rightarrow C = \frac{45}{5} C - \frac{12}{5} C \text{ carl}(\frac{5}{2})^{\circ}\right] \left[T - 4 \times 0\right]$$

$$\Rightarrow C = \frac{45}{5} C - \frac{12}{5} C$$