Exercise 4d

Question 1.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

$$\sin^{-1} x$$

Answer:

Principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Question 2.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Answer:

Principal value branch of $\cos^{-1} x$ is $[0, \pi]$

Question 3.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

tan⁻¹ x

Answer:

Principal value branch of $\tan^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Question 4.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

cot⁻¹ x

Answer:

Principal value branch of $\cot^{-1} x$ is $(0, \pi)$

Question 5.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Answer:

Principal value branch of $\sec^{-1} x$ is $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

Question 6.

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Answer:

Principal value branch of $\csc^{-1} x$ is $\left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right]$

Objective Questions

Question 1.

Mark the tick against the correct answer in the following:

The principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is

- A. $\frac{\pi}{6}$
- B. $\frac{5\pi}{6}$
- c. $\frac{7\pi}{6}$

D. none of these

Answer:

To Find:The Principle value of $\cos^{-1}(\frac{\sqrt{3}}{2})$

Let the principle value be given by x

Now, let $x = \cos^{-1}(\frac{\sqrt{3}}{2})$

$$\Rightarrow$$
 cos x= $\frac{\sqrt{3}}{2}$

$$\Rightarrow$$
 cos x=cos $(\frac{\pi}{6})$ (: cos $(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$)

$$\Rightarrow X = \frac{\pi}{6}$$

Question 2.

Mark the tick against the correct answer in the following:

The principal value of cosec⁻¹(2) is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{6}$
- C. $\frac{2\pi}{3}$
- D. $\frac{5\pi}{6}$

Answer:

To Find: The Principle value of $cosec^{-1}(2)$

Let the principle value be given by x

Now, let $x = cosec^{-1}(2)$

$$\Rightarrow$$
 cosec x = 2

$$\Rightarrow$$
 cosec x=cosec($\frac{\pi}{6}$) (: $\cos\left(\frac{\pi}{6}\right) = 2$)

$$\Rightarrow X = \frac{\pi}{6}$$

Question 3.

Mark the tick against the correct answer in the following:

The principal value of $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is

- A. $\frac{-\pi}{4}$
- B. $\frac{\pi}{4}$
- C. $\frac{3\pi}{4}$
- D. $\frac{5\pi}{4}$

Answer:

To Find: The Principle value of $\cos^{-1}(\frac{-1}{\sqrt{2}})$

Let the principle value be given by x

Now, let
$$x = \cos^{-1}(\frac{-1}{\sqrt{2}})$$

$$\Rightarrow$$
 cos x = $\frac{-1}{\sqrt{2}}$

$$\Rightarrow$$
 cos x= - cos $(\frac{\pi}{4})$ (: cos $(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$)

$$\Rightarrow \cos x = \cos(\pi - \frac{\pi}{4}) \ (\because -\cos(\theta) = \cos(\pi - \theta))$$

$$\Rightarrow X = \frac{3\pi}{4}$$

Question 4.

Mark the tick against the correct answer in the following:

The principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is

- A. $\frac{-\pi}{6}$
- B. $\frac{5\pi}{6}$
- c. $\frac{7\pi}{6}$

D. none of these

Answer:

To Find: The Principle value of $\sin^{-1}(\frac{-1}{2})$

Let the principle value be given by x

Now, let $x = \sin^{-1}(\frac{-1}{2})$

- \Rightarrow sin x = $\frac{-1}{2}$
- \Rightarrow sin x= sin($\frac{\pi}{6}$) (: sin($\frac{\pi}{6}$)= $\frac{1}{2}$)
- $\Rightarrow \sin x = \sin(-\frac{\pi}{6}) \ (\because -\sin(\theta) = \sin(-\theta))$
- $\Rightarrow X = -\frac{\pi}{4}$

Question 5.

Mark the tick against the correct answer in the following:

The principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is

- A. $\frac{-\pi}{3}$
- B. $\frac{2\pi}{3}$
- c. $\frac{4\pi}{3}$
- D. $\frac{\pi}{3}$

Answer:

To Find: The Principle value of $\cos^{-1}(\frac{-1}{2})$

Let the principle value be given by x

Now, let $x = \cos^{-1}(\frac{-1}{2})$

$$\Rightarrow$$
 cos x = $\frac{-1}{2}$

$$\Rightarrow$$
 cos x= - cos $(\frac{\pi}{3})$ (: cos $(\frac{\pi}{3}) = \frac{1}{2}$)

$$\Rightarrow \cos x = \cos(\pi - \frac{\pi}{3}) \ (\because -\cos(\theta) = \cos(\pi - \theta))$$

$$\Rightarrow X = \frac{2\pi}{3}$$

Question 6.

Mark the tick against the correct answer in the following:

The principal value of $\tan^{-1}\left(-\sqrt{3}\,\right)$ is

A.
$$\frac{2\pi}{3}$$

B.
$$\frac{4\pi}{3}$$

C.
$$\frac{-\pi}{3}$$

D. none of these

Answer:

To Find: The Principle value of $\tan^{-1}(-\sqrt{3})$

Let the principle value be given by x

Now, let
$$x = \tan^{-1}(-\sqrt{3})$$

⇒ tan x =
$$-\sqrt{3}$$

$$\Rightarrow$$
 tan x= - tan($\frac{\pi}{3}$) (: tan($\frac{\pi}{3}$)= $-\sqrt{3}$)

$$\Rightarrow \tan x = \tan(-\frac{\pi}{3}) (\because -\tan(\theta) = \tan(-\theta))$$

$$\Rightarrow X = -\frac{\pi}{3}$$

Question 7.

Mark the tick against the correct answer in the following:

The principal value of cot⁻¹ (-1) is

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{5\pi}{4}$$

D.
$$\frac{3\pi}{4}$$

Answer:

To Find: The Principle value of $\cot^{-1}(-1)$

Let the principle value be given by x

Now, let $x = \cot^{-1}(-1)$

 \Rightarrow cot x =-1

 \Rightarrow cot x= - cot($\frac{\pi}{4}$) (: cot($\frac{\pi}{4}$)= 1)

 \Rightarrow cot x=cot $(\pi - \frac{\pi}{4})$ (: $-\cot(\theta) = \cot(\pi - \theta)$)

 $\Rightarrow X = \frac{3\pi}{4}$

Question 8.

Mark the tick against the correct answer in the following:

The principal value of $\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is

- A. $\frac{\pi}{6}$
- B. $\frac{-\pi}{6}$
- c. $\frac{5\pi}{6}$
- D. $\frac{7\pi}{6}$

To Find: The Principle value of $\sec^{-1}(\frac{-2}{\sqrt{3}})$

Let the principle value be given by x

Now, let $x = \sec^{-1}(\frac{-2}{\sqrt{3}})$

$$\Rightarrow$$
 sec $X = \frac{-2}{\sqrt{3}}$

$$\Rightarrow$$
 sec x= - sec $(\frac{\pi}{6})$ (: sec $(\frac{\pi}{6}) = \frac{2}{\sqrt{3}}$)

$$\Rightarrow$$
 sec x=sec($\pi - \frac{\pi}{6}$) (: $-\sec(\theta) = \sec(\pi - \theta)$)

$$\Rightarrow X = \frac{5\pi}{6}$$

Question 9.

Mark the tick against the correct answer in the following:

The principal value of $\csc^{-1}\left(-\sqrt{2}\right)$ is

- A. $\frac{-\pi}{4}$
- B. $\frac{3\pi}{4}$
- C. $\frac{5\pi}{4}$

D. none of these

Answer:

To Find: The Principle value of $cosec^{-1}(-\sqrt{2})$

Let the principle value be given by x

Now, let $x = \csc^{-1}(-\sqrt{2})$

$$\Rightarrow$$
 cosec x = $-\sqrt{2}$

$$\Rightarrow$$
 cosec x= - cosec($\frac{\pi}{4}$) (: $cosec(\frac{\pi}{4}) = \sqrt{2}$)

$$\Rightarrow$$
 cosec x=cosec($-\frac{\pi}{4}$) (\because $-cosec(\theta) = cosec(-\theta)$)

$$\Rightarrow X = -\frac{\pi}{4}$$

Question 10.

Mark the tick against the correct answer in the following:

The principal value of $\cot^{-1}\left(-\sqrt{3}\right)$ is

A.
$$\frac{2\pi}{6}$$

B.
$$\frac{\pi}{6}$$

c.
$$\frac{7\pi}{6}$$

D.
$$\frac{5\pi}{6}$$

Answer:

To Find: The Principle value of $\cot^{-1}(-\sqrt{3})$

Let the principle value be given by x

Now, let
$$x = \cot^{-1}(-\sqrt{3})$$

$$\Rightarrow$$
 cot x = $-\sqrt{3}$

$$\Rightarrow$$
 cot x= - cot($\frac{\pi}{6}$) (: $\cot(\frac{\pi}{6}) = \sqrt{3}$)

$$\Rightarrow$$
 cot x=cot($\pi - \frac{\pi}{6}$) (: $-cot(\theta) = \cot(\pi - \theta)$)

$$\Rightarrow X = \frac{5\pi}{6}$$

Question 11.

Mark the tick against the correct answer in the following:

The value of $\sin^{-1} \left(\sin \frac{2\pi}{3} \right)$ is

- A. $\frac{2\pi}{3}$
- B. $\frac{5\pi}{3}$
- c. $\frac{\pi}{3}$

D. none of these

Answer:

To Find: The value of $\sin^{-1}(\sin(\frac{2\pi}{3}))$

Now, let $x = \sin^{-1}(\sin(\frac{2\pi}{3}))$

$$\Rightarrow$$
 sin x = sin $(\frac{2\pi}{3})$

Here range of principle value of sine is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\sin^{-1}(\sin(\frac{2\pi}{3}))$$
 is

$$\Rightarrow$$
 sin x = sin $(\pi - \frac{\pi}{3})$ (::sin $(\frac{2\pi}{3})$ = sin $(\pi - \frac{\pi}{3})$)

 \Rightarrow sin x = sin $(\frac{\pi}{3})$ (:sin $(\pi - \theta)$ = sin θ as here θ lies in II quadrant and sine is positive)

$$\Rightarrow X = \frac{\pi}{3}$$

Question 12.

Mark the tick against the correct answer in the following:

The value of $\cos^{-1} \left(\cos \frac{13\pi}{6} \right)$ is

A.
$$\frac{13\pi}{6}$$

В.

C.
$$\frac{5\pi}{6}$$

D.
$$\frac{\pi}{6} \frac{7\pi}{6}$$

Answer:

To Find: The value of $\cos^{-1}(\cos(\frac{13\pi}{6}))$

Now, let $x = \cos^{-1}(\cos(\frac{13\pi}{6}))$

$$\Rightarrow$$
 cos x =cos $(\frac{13\pi}{6})$

Here ,range of principle value of \cos is $[0,\pi]$

$$\Rightarrow x = \frac{13\pi}{6} \notin [0,\pi]$$

Hence for all values of x in range $[0,\pi]$, the value of

$$\cos^{-1}(\cos(\frac{13\pi}{6}))$$
 is

$$\Rightarrow$$
 cos x =cos $(2\pi - \frac{\pi}{6})$ (:cos $(\frac{13\pi}{6})$ = cos $(2\pi - \frac{\pi}{6})$)

$$\Rightarrow \cos x = \cos(\frac{\pi}{6}) \ (\because \cos(2\pi - \theta) = \cos\theta)$$

$$\Rightarrow X = \frac{\pi}{6}$$

Question 13.

Mark the tick against the correct answer in the following:

The value of $\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$ is

- A. $\frac{7\pi}{6}$
- B. $\frac{5\pi}{6}$
- C. $\frac{\pi}{6}$

D. none of these

Answer:

To Find: The value of $tan^{-1}(tan(\frac{7\pi}{6}))$

Now, let $x = \tan^{-1}(\tan(\frac{7\pi}{6}))$

$$\Rightarrow$$
 tan x =tan $(\frac{7\pi}{6})$

Here range of principle value of tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{7\pi}{6} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\tan^{-1}(\tan(\frac{13\pi}{6}))$$
 is

$$\Rightarrow$$
 tan x = tan $(\pi + \frac{\pi}{6})$ (:tan $(\frac{7\pi}{6})$ = tan $(\pi + \frac{\pi}{6})$)

$$\Rightarrow$$
 tan x =tan $(\frac{\pi}{6})$ (:tan $(\pi + \theta)$ = tan θ)

$$\Rightarrow X = \frac{\pi}{6}$$

Question 14.

Mark the tick against the correct answer in the following:

The value of $\cot^{-1} \left(\cot \frac{5\pi}{4}\right)$ is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{-\pi}{4}$$

c.
$$\frac{3\pi}{4}$$

D. none of these

Answer:

To Find: The value of $\cot^{-1}(\cot(\frac{5\pi}{4}))$

Now, let $x = \cot^{-1}(\cot(\frac{5\pi}{4}))$

$$\Rightarrow$$
 cot x =cot $(\frac{5\pi}{4})$

Here range of principle value of cot is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{5\pi}{4} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\cot^{-1}(\cot(\frac{5\pi}{4}))$$
 is

$$\Rightarrow$$
 cot x = cot $(\pi + \frac{\pi}{4})$ (:cot $(\frac{5\pi}{4})$ = cot $(\pi + \frac{\pi}{4})$)

$$\Rightarrow$$
 cot x =cot $(\frac{\pi}{4})$ (:cot $(\pi + \theta)$ = cot θ)

$$\Rightarrow X = \frac{\pi}{4}$$

Question 15.

Mark the tick against the correct answer in the following:

The value of $\sec^{-1}\left(\sec\frac{8\pi}{5}\right)$ is

- A. $\frac{2\pi}{5}$
- B. $\frac{3\pi}{5}$
- c. $\frac{8\pi}{5}$

D. none of these

Answer:

To Find: The value of $\sec^{-1}(\sec(\frac{8\pi}{5}))$

Now, let
$$x = \sec^{-1}(\sec(\frac{8\pi}{5}))$$

$$\Rightarrow$$
 sec x =sec $(\frac{8\pi}{5})$

Here range of principle value of sec is $[0,\pi]$

⇒
$$X = \frac{8\pi}{5}$$
 $\notin [0,\pi]$

Hence for all values of x in range $[0,\pi]$, the value of

$$\sec^{-1}(\sec(\frac{8\pi}{5}))$$
 is

$$\Rightarrow$$
 sec x =sec $(2\pi - \frac{2\pi}{5})$ (:sec $(\frac{8\pi}{5})$ = sec $(2\pi - \frac{2\pi}{5})$)

$$\Rightarrow$$
 sec x =sec $(\frac{2\pi}{5})$ (:sec $(2\pi - \theta)$ = sec θ)

$$\Rightarrow X = \frac{2\pi}{5}$$

Question 16.

Mark the tick against the correct answer in the following:

The value of $\csc^{-1}\left(\csc\frac{4\pi}{3}\right)$ is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{-\pi}{3}$$

c.
$$\frac{2\pi}{3}$$

D. none of these

Answer:

To Find: The value of $\csc^{-1}(\csc(\frac{4\pi}{3}))$

Now, let
$$x = \csc^{-1}(\csc(\frac{4\pi}{3}))$$

$$\Rightarrow$$
 cosec x =cosec $(\frac{4\pi}{3})$

Here range of principle value of cosec is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{4\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$cosec^{-1}(cosec(\frac{4\pi}{3}))$$
 is

$$\Rightarrow$$
 cosec x =cosec $(\pi + \frac{\pi}{3})$ (:cosec $(\frac{4\pi}{3})$ = cosec $(\pi + \frac{\pi}{3})$)

$$\Rightarrow$$
 cosec x =cosec $\left(-\frac{\pi}{3}\right)$ (:cosec $(\pi + \theta)$ = cosec $(-\theta)$)

$$\Rightarrow X = -\frac{\pi}{3}$$

Question 17.

Mark the tick against the correct answer in the following:

The value of $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$ is

A.
$$\frac{3\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{-\pi}{4}$$

D. none of these

Answer:

To Find: The value of $tan^{-1}(tan(\frac{3\pi}{4}))$

Now, let
$$x = \tan^{-1}(\tan(\frac{3\pi}{4}))$$

$$\Rightarrow$$
 tan x =tan $(\frac{3\pi}{4})$

Here range of principle value of tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{3\pi}{4} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\tan^{-1}(\tan(\frac{3\pi}{4}))$$
 is

$$\Rightarrow$$
 tan x =tan $(\pi - \frac{\pi}{4})$ (:tan $(\frac{3\pi}{4})$ = tan $(\pi - \frac{\pi}{4})$)

$$\Rightarrow$$
 tan x =tan $\left(-\frac{\pi}{4}\right)$ (:tan $\left(\pi - \theta\right)$) = tan $\left(-\theta\right)$)

$$\Rightarrow X = -\frac{\pi}{4}$$

Question 18.

Mark the tick against the correct answer in the following:

$$\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right) = ?$$

A. 0

B.
$$\frac{2\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer:

To Find: The value of $\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})$

Now, let
$$x = \frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})$$

$$\Rightarrow x = \frac{\pi}{3} - \left(-\sin^{-1}\left(\frac{1}{2}\right)\right) \left(\because \sin(-\theta) = -\sin(\theta)\right)$$

$$\Rightarrow X = \frac{\pi}{3} - \left(-\frac{\pi}{6}\right) (\because \sin \frac{\pi}{6} = \frac{1}{2})$$

$$\Rightarrow X = \frac{\pi}{3} + \frac{\pi}{6}$$

$$\Rightarrow X = \frac{3\pi}{6} = \frac{\pi}{2}$$

Question 19.

Mark the tick against the correct answer in the following:

The value of $\sin \left(\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{1}{2} \right) = ?$

- A. 0
- B. 1
- C. -1
- D. none of these

Answer:

To Find: The value of $\sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$

Now, let
$$x = \sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$$

$$\Rightarrow x = \sin(\frac{\pi}{2}) \ (\because \sin^{-1}\theta + \cos^{-1}\theta = \frac{\pi}{2})$$

$$\Rightarrow$$
 x = 1 (: $\sin\left(\frac{\pi}{2}\right) = 1$)

Question 20.

Mark the tick against the correct answer in the following:

If
$$x \neq 0$$
 then $\cos (\tan^{-1} x + \cot^{-1} x) = ?$

- B. 1
- C. 0
- D. none of these

Answer:

Given: $x \neq 0$

To Find: The value of $cos(tan^{-1}x + cot^{-1}x)$

Now, let $x = cos(tan^{-1}x + cot^{-1}x)$

$$\Rightarrow x = \cos\left(\frac{\pi}{2}\right) \ (\because \tan^{-1}\theta + \cot^{-1}\theta = \frac{\pi}{2})$$

$$\Rightarrow$$
 x = 0 (: cos $\left(\frac{\pi}{2}\right)$ = 0)

Question 21.

Mark the tick against the correct answer in the following:

The value of $\sin\left(\cos^{-1}\frac{3}{5}\right)$ is

- A. $\frac{2}{5}$
- B. $\frac{4}{5}$
- c. $\frac{-2}{5}$
- D. none of these

Answer:

To Find: The value of $\sin(\cos^{-1}\frac{3}{5})$

Now, let $x = \cos^{-1}\frac{3}{5}$

$$\Rightarrow$$
 cos x = $\frac{3}{5}$

Now , $\sin x = \sqrt{1 - \cos^2 x}$

$$=\sqrt{1-(\frac{3}{5})^2}$$

$$=\frac{4}{5}$$

$$\Rightarrow X = \sin^{-1}\frac{4}{5} = \cos^{-1}\frac{3}{5}$$

Therefore,

$$\sin(\cos^{-1}\frac{3}{5}) = \sin(\sin^{-1}\frac{4}{5})$$

Let, $Y = \sin(\sin^{-1}\frac{4}{5})$

$$\Rightarrow \sin^{-1} Y = \sin^{-1} \frac{4}{5}$$

$$\Rightarrow Y = \frac{4}{5}$$

Question 22.

Mark the tick against the correct answer in the following:

$$\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = ?$$

A.
$$\frac{4\pi}{3}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{5\pi}{3}$$

Answer:

To Find: The value of $\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3}))$

Here, consider $\cos^{-1}(\cos(\frac{2\pi}{3}))$ (

: the principle value of cos lies in the range $[0,\pi]$ and since $\frac{2\pi}{3} \in [0,\pi]$)

$$\Rightarrow$$
 $\cos^{-1}(\cos(\frac{2\pi}{3})) = \frac{2\pi}{3}$

Now, consider $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$

Since here the principle value of sine lies in range $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and since $\frac{2\pi}{3} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$

$$\Rightarrow \sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}(\sin(\pi - \frac{\pi}{3}))$$

$$=\sin^{-1}(\sin(\frac{\pi}{3}))$$

$$=\frac{\pi}{2}$$

Therefore,

$$\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{2\pi}{3} + \frac{\pi}{3}$$

$$=\frac{3\pi}{3}$$

 $=\pi$

Question 23.

Mark the tick against the correct answer in the following:

$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = ?$$

A.
$$\frac{\pi}{3}$$

B.
$$\frac{-\pi}{3}$$

c.
$$\frac{5\pi}{3}$$

D. none of these

Answer:

To Find: The value of $tan^{-1}(\sqrt{3}) - sec^{-1}(-2)$

Let,
$$x = \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$$

$$\Rightarrow x = \frac{\pi}{3} - [\pi - \sec^{-1}(2)] \ (\because \tan(\frac{\pi}{3}) = \sqrt{3} \ and \ \sec^{-1}(-\theta) = \pi - \ \sec^{-1}(\theta))$$

$$\Rightarrow X = \frac{\pi}{3} - [\pi - \frac{\pi}{3}]$$

$$\Rightarrow X = \frac{\pi}{3} - \left[\frac{2\pi}{3}\right]$$

$$\Rightarrow X = -\frac{\pi}{3}$$

Question 24.

Mark the tick against the correct answer in the following:

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2} = ?$$

A.
$$\frac{2\pi}{3}$$

B.
$$\frac{3\pi}{2}$$

C.
$$2\pi$$

D. none of these

Answer:

To Find: The value of $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$

Now, let $x = \cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$

$$\Rightarrow x = \frac{\pi}{3} + 2\left(\frac{\pi}{6}\right) \left(\because \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \text{ and } \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\right)$$

$$\Rightarrow X = \frac{\pi}{3} + \frac{\pi}{3}$$

$$\Rightarrow X = \frac{2\pi}{3}$$

Question 25.

Mark the tick against the correct answer in the following:

$$\tan^{-1} 1 + \cos^{-1} \left(\frac{-1}{2} \right) + \sin^{-1} \left(\frac{-1}{2} \right) = ?$$

Α. π

B.
$$\frac{2\pi}{3}$$

c.
$$\frac{3\pi}{4}$$

D.
$$\frac{\pi}{2}$$

Answer:

To Find: The value of $\tan^{-1} 1 + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(\frac{-1}{2})$

Now, let $x = \tan^{-1} 1 + \cos^{-1} (\frac{-1}{2}) + \sin^{-1} (\frac{-1}{2})$

$$\Rightarrow X = \frac{\pi}{4} + [\pi - \cos^{-1}(\frac{1}{2})] + [-\sin^{-1}\frac{1}{2}]$$

$$\because \tan\left(\frac{\pi}{4}\right) = 1 \ and \ \cos^{-1}(-\theta) = \left[\pi - \cos^{-1}\theta\right] and \ \sin^{-1}(-\theta) = -\sin^{-1}\theta)$$

$$\Rightarrow X = \frac{\pi}{4} + \left[\pi - \frac{\pi}{3}\right] + \left[-\frac{\pi}{6}\right]$$

$$\Rightarrow X = \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$$

$$\Rightarrow X = \frac{3\pi}{4}$$

Question 26.

Mark the tick against the correct answer in the following:

$$\tan \left[2 \tan^{-1} \frac{1}{5} - \frac{\pi}{4} \right] = ?$$

A.
$$\frac{7}{17}$$

B.
$$\frac{-7}{17}$$

c.
$$\frac{7}{12}$$

D.
$$\frac{-7}{12}$$

Answer:

To Find: The value of $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4})$

Consider, $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}) = \tan(\tan^{-1}(\frac{2(\frac{1}{5})}{1-(\frac{1}{5})^2})-\frac{\pi}{4})$

$$(\because 2 \tan^{-1} x = \tan^{-1}(\frac{2x}{1-x^2}))$$

$$= \tan(\tan^{-1}(\frac{\frac{2}{5}}{1 - \frac{1}{25}}) - \frac{\pi}{4})$$

$$= \tan(\tan^{-1}(\frac{5}{12}) - \frac{\pi}{4})$$

=
$$\tan(\tan^{-1}(\frac{5}{12}) - \tan^{-1}(1))$$
 (: $\tan(\frac{\pi}{4})=1$)

$$= \tan(\tan^{-1}(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}))$$

$$(\tan^{-1} x - \tan^{-1} y = \tan^{-1} (\frac{x-y}{1+xy})$$

$$= \tan(\tan^{-1}(\frac{-7}{17}))$$

$$\tan(2\tan^{-1}\frac{1}{5} - \frac{\pi}{4}) = \frac{-7}{17}$$

Question 27.

Mark the tick against the correct answer in the following:

$$\tan\frac{1}{2}\left(\cos^{-1}\frac{\sqrt{5}}{3}\right) = ?$$

A.
$$\frac{\left(3-\sqrt{5}\right)}{2}$$

B.
$$\frac{\left(3+\sqrt{5}\right)}{2}$$

C.
$$\frac{\left(5-\sqrt{3}\right)}{2}$$

D.
$$\frac{\left(5+\sqrt{3}\right)}{2}$$

Answer:

To Find: The value of $\tan \frac{1}{2}(\cos^{-1} \frac{\sqrt{5}}{3})$

Let,
$$x = \cos^{-1} \frac{\sqrt{5}}{3}$$

$$\Rightarrow$$
cos x = $\frac{\sqrt{5}}{3}$

Now, $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3})$ becomes

 $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3}) = \tan \frac{1}{2}(x) = \tan \frac{x}{2}$

$$= \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \sqrt{\frac{1 - (\frac{\sqrt{5}}{3})}{1 + \frac{\sqrt{5}}{3}}}$$

$$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}$$

$$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\times\sqrt{\frac{3-\sqrt{5}}{3-\sqrt{5}}}$$

$$\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3}) = \frac{3-\sqrt{5}}{2}$$

Question 28.

Mark the tick against the correct answer in the following:

$$\sin\left(\cos^{-1}\frac{3}{5}\right) = ?$$

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{5}$$

c.
$$\frac{3}{5}$$

D. none of these

Answer:

To Find: The value of $\sin(\cos^{-1}\frac{3}{5})$

Let,
$$x = \cos^{-1} \frac{3}{5}$$

$$\Rightarrow$$
cos x = $\frac{3}{5}$

Now, $\sin(\cos^{-1}\frac{3}{5})$ becomes $\sin(x)$

Since we know that $\sin x = \sqrt{1 - \cos^2 x}$

$$=\sqrt{1-(\frac{3}{5})^2}$$

$$\sin(\cos^{-1}\frac{3}{5}) = \sin x = \frac{4}{5}$$

Question 29.

Mark the tick against the correct answer in the following:

$$\cos\left(\tan^{-1}\frac{3}{4}\right) = ?$$

- A. $\frac{3}{5}$
- B. $\frac{4}{5}$
- c. $\frac{4}{9}$

D. none of these

Answer:

To Find: The value of $cos(tan^{-1}\frac{3}{4})$

Let
$$x = \tan^{-1} \frac{3}{4}$$

⇒tan
$$x = \frac{3}{4}$$

$$\Rightarrow \tan x = \frac{3}{4} = \frac{opposite side}{adjacent side}$$

We know that by pythagorus theorem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, Hypotenuse = 5

$$\Rightarrow$$
 cos $X = \frac{adjacent \ side}{hypotenuse} = \frac{4}{5}$

Since here $x = tan^{-1} \frac{3}{4}$ hence $cos(tan^{-1} \frac{3}{4})$ becomes cos x

Hence,
$$\cos(\tan^{-1}\frac{3}{4}) = \cos x = \frac{4}{5}$$

Question 30.

Mark the tick against the correct answer in the following:

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} = ?$$

- A. 1
- B. 0
- c. $\frac{-1}{2}$
- D. none of these

Answer:

To Find: The value of sin $\{\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})\}$

Let,
$$x = \sin{\{\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})\}}$$

$$\Rightarrow x = \sin \{\frac{\pi}{3} - (-\sin^{-1}\frac{1}{2})\} (: \sin^{-1}(-\theta) = -\sin \theta)$$

$$\Rightarrow x = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right)$$

$$\Rightarrow x = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

Question 31.

Mark the tick against the correct answer in the following:

$$\sin\left(\frac{1}{2}\cos^{-1}\frac{4}{5}\right) = ?$$

A.
$$\frac{1}{\sqrt{5}}$$

B.
$$\frac{2}{\sqrt{5}}$$

c.
$$\frac{1}{\sqrt{10}}$$

D.
$$\frac{2}{\sqrt{10}}$$

Answer:

To Find: The value of $\sin(\frac{1}{2}\cos^{-1}\frac{4}{5})$

Let
$$x = \cos^{-1}\frac{4}{5}$$

$$\Rightarrow$$
 cos x = $\frac{4}{5}$

Therefore $\sin(\frac{1}{2}\cos^{-1}\frac{4}{5})$ becomes $\sin(\frac{1}{2}x)$, i.e $\sin(\frac{x}{2})$

We know that
$$\sin\left(\frac{x}{2}\right) = \sqrt{\frac{1-\cos x}{2}}$$

$$=\sqrt{\frac{1-\frac{4}{5}}{2}}$$

$$=\sqrt{\frac{\frac{1}{5}}{\frac{5}{2}}}$$

$$\sin\left(\frac{x}{2}\right) = \frac{1}{\sqrt{10}}$$

Question 32.

Mark the tick against the correct answer in the following:

$$\tan^{-1}\left\{2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right\} = ?$$

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- c. $\frac{3\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer

To Find: The value of $tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$

Let ,
$$x = \tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$$

$$\Rightarrow x = \tan^{-1}\left\{2\cos\left(2\left(\frac{\pi}{6}\right)\right)\right\} \left(\because \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\right)$$

$$\Rightarrow x = \tan^{-1}(2\cos\frac{\pi}{3})$$

$$\Rightarrow x = \tan^{-1}(2(\frac{1}{2})) = \tan^{-1} 1 = \frac{\pi}{4} (\because \cos(\frac{\pi}{3}) = \frac{1}{2} \text{ and } \tan(\frac{\pi}{4}) = 1)$$

Question 33.

Mark the tick against the correct answer in the following:

If
$$\cot^{-1}\left(\frac{-1}{5}\right) = x$$
 then $\sin x = ?$

- A. $\frac{1}{\sqrt{26}}$
- B. $\frac{5}{\sqrt{26}}$
- c. $\frac{1}{\sqrt{24}}$

D. none of these

Answer:

Given:
$$\cot^{-1} \frac{-1}{5} = x$$

To Find: The value of sin x

Since,
$$x = \cot^{-1} \frac{-1}{5}$$

$$\Rightarrow$$
cot $x = \frac{-1}{5} = \frac{adjacent \ side}{opposite \ side}$

By pythagorus theroem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, Hypotenuse = $\sqrt{26}$

$$\Rightarrow \sin x = \frac{opposite \ side}{hypotenuse} = \frac{5}{\sqrt{26}}$$

Question 34.

Mark the tick against the correct answer in the following:

$$\sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = ?$$

- A. $\frac{\pi}{2}$
- Β. π
- c. $\frac{3\pi}{2}$
- D. none of these

Answer:

To Find: The value of $\sin^{-1}(\frac{-1}{2}) + 2\cos^{-1}(\frac{-\sqrt{3}}{2})$

Let,
$$x = \sin^{-1}(\frac{-1}{2}) + 2\cos^{-1}(\frac{-\sqrt{3}}{2})$$

$$\Rightarrow x = -\sin^{-1}(\frac{1}{2}) + 2 \left[\pi - \cos^{-1}(\frac{\sqrt{3}}{2})\right] ($$

$$\because \sin^{-1}(-\theta) = -\sin^{-1}(\theta) \text{ and } \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta))$$

$$\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\pi - \frac{\pi}{6}\right]$$

$$\Rightarrow$$
 x = $-\left(\frac{\pi}{6}\right) + 2\left[\frac{5\pi}{6}\right]$

$$\Rightarrow X = -\frac{\pi}{6} + \frac{5\pi}{3}$$

$$\Rightarrow X = \frac{3\pi}{2}$$

Tag:

Question 35.

Mark the tick against the correct answer in the following:

$$\tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}}) = ?$$

- A. $\frac{\pi}{2}$
- Β. π
- c. $\frac{3\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer:

To Find: The value of $tan^{-1}(-1) + cos^{-1}(\frac{-1}{\sqrt{2}})$

Let,
$$x = \tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}})$$

$$\Rightarrow$$
x = - tan⁻¹(1) + (π - cos⁻¹($\frac{1}{\sqrt{2}}$))

$$(\because \tan^{-1}(-\theta) = -\tan^{-1}(\theta) \text{ and } \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta))$$

$$\Rightarrow X = -\frac{\pi}{4} + (\pi - \frac{\pi}{4})$$

$$\Rightarrow X = -\frac{\pi}{4} + \frac{3\pi}{4}$$

$$\Rightarrow X = \frac{\pi}{2}$$

Question 36.

Mark the tick against the correct answer in the following:

$$\cot\left(\tan^{-1}x + \cot^{-1}x\right) = ?$$

A. 1

B.
$$\frac{1}{2}$$

Answer:

To Find: The value of cot $(\tan^{-1} x + \cot^{-1} x)$

Let,
$$x = \cot(\tan^{-1} x + \cot^{-1} x)$$

$$\Rightarrow x = \cot\left(\frac{\pi}{2}\right) \left(\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}\right)$$

$$\Rightarrow x = 0$$

Question 37.

Mark the tick against the correct answer in the following:

$$\tan^{-1} 1 + \tan^{-1} \frac{1}{3} = ?$$

A.
$$\tan^{-1} \frac{4}{3}$$

B.
$$\tan^{-1} \frac{2}{3}$$

Answer:

To Find: The value of $tan^{-1} 1 + tan^{-1} \frac{1}{3}$

Let,
$$x = \tan^{-1} 1 + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} (\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}}) = \tan^{-1} 2$$

Question 38.

Mark the tick against the correct answer in the following:

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = ?$$

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer

To Find: The value of $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$

Let,
$$x = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{3} \times \frac{1}{2} \right)} \right) = \tan^{-1} 1 = \frac{\pi}{4}$$

Question 39.

Mark the tick against the correct answer in the following:

$$2 \tan^{-1} \frac{1}{3} = ?$$

A.
$$\tan^{-1} \frac{3}{2}$$

B.
$$\tan^{-1} \frac{3}{4}$$

C.
$$\tan^{-1} \frac{4}{3}$$

D. none of these

Answer:

To Find: The value of $2 \tan^{-1} \frac{1}{3}$ i.e, $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$

Let,
$$x = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{2}}{1 - \left(\frac{1}{3} + \frac{1}{3}\right)} \right) = \tan^{-1} \frac{3}{4}$$

Question 40.

Mark the tick against the correct answer in the following:

$$\cos\left(2\tan^{-1}\frac{1}{2}\right) = ?$$

A.
$$\frac{3}{5}$$

B.
$$\frac{4}{5}$$

C.
$$\frac{7}{8}$$

D. none of these

Answer:

To Find: The value of cos $(2 \tan^{-1} \frac{1}{2})$

Let,
$$x = \cos(2 \tan^{-1} \frac{1}{2})$$

$$\Rightarrow$$
x = cos (tan⁻¹ $\frac{1}{2}$ + tan⁻¹ $\frac{1}{2}$)

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2} = \tan^{-1}(\frac{\frac{1}{2} + \frac{1}{2}}{1 - (\frac{1}{2} + \frac{1}{2})}) = \tan^{-1}\frac{4}{3}$$

$$\Rightarrow$$
x = cos (tan⁻¹ $\frac{4}{3}$)

Now, let
$$y = \tan^{-1} \frac{4}{3}$$

$$\Rightarrow$$
 tan y = $\frac{4}{3} = \frac{opposite \, side}{adjacent \, side}$

By pythagorus theroem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, Hypotenuse = 5

$$\Rightarrow$$
 cos (tan⁻¹ $\frac{4}{3}$)=cos y = $\frac{3}{5}$

Question 41.

Mark the tick against the correct answer in the following:

$$\sin\left[2\tan^{-1}\frac{5}{8}\right]$$

A.
$$\frac{25}{64}$$

B.
$$\frac{80}{89}$$

c.
$$\frac{75}{128}$$

D. none of these

Answer:

To Find: The value of sin $(2 \tan^{-1} \frac{5}{8})$

Let,
$$x = \sin(2 \tan^{-1} \frac{5}{8})$$

We know that $2 \tan^{-1} x = \sin^{-1}(\frac{2x}{1+x^2})$

$$\Rightarrow x = \sin(\sin^{-1}(\frac{2(\frac{5}{8})}{1+(\frac{5}{8})^2}) = \sin(\sin^{-1}(\frac{80}{89})) = \frac{80}{89}$$

Question 42.

Mark the tick against the correct answer in the following:

$$\sin\left[2\sin^{-1}\frac{4}{5}\right]$$

- A. $\frac{12}{25}$
- B. $\frac{16}{25}$
- c. $\frac{24}{25}$

D. None of these

Answers

To Find: The value of $\sin (2 \sin^{-1} \frac{4}{5})$

Let,
$$x = \sin^{-1} \frac{4}{5}$$

⇒sin x =
$$\frac{4}{5}$$

We know that $\cos x = \sqrt{1 - \sin^2 x}$

$$=\sqrt{1-(\frac{4}{5})^2}$$

Now since, $x = \sin^{-1}\frac{4}{5}$, hence $\sin(2\sin^{-1}\frac{4}{5})$ becomes $\sin(2x)$

Here, sin(2x) = 2 sin x cos x

$$=2\times\frac{4}{5}\times\frac{3}{5}$$

$$=\frac{24}{25}$$

Question 43.

Mark the tick against the correct answer in the following:

If $\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$ then x = ?

- A. $\frac{1}{2}$
- B. $\frac{1}{4}$
- c. $\frac{1}{6}$

D. None of these

Answer:

To Find: The value of $\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$

Now, $\tan^{-1} x = \tan^{-1} 1 - \tan^{-1} \frac{1}{3}$ (: $\tan \frac{\pi}{4} = 1$)

Since we know that $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x-y}{1+xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} (\frac{1 - \frac{1}{3}}{1 + \frac{1}{3}}) = \tan^{-1} \frac{1}{2}$$

$$\Rightarrow \tan^{-1} x = \tan^{-1} \frac{1}{2}$$

$$\Rightarrow X = \frac{1}{2}$$

Question 44.

Mark the tick against the correct answer in the following:

If
$$\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$$
 then x = ?

- A. 1
- B. -1
- C. 0
- D. $\frac{1}{2}$

Answer:

To Find: The value of $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}(1+x) + \tan^{-1}(1-x) = \tan^{-1}(\frac{(1+x)+(1-x)}{1-(1+x)(1-x)})$$

$$= \tan^{-1}(\frac{2}{1 - (1 - x^2)})$$

$$= \tan^{-1}(\frac{2}{x^2})$$

Here since $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$

$$\Rightarrow \tan^{-1}(\frac{2}{x^2}) = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1}(\frac{2}{x^2}) = \tan^{-1}(\infty) \ (\because \tan\frac{\pi}{2} = \infty)$$

$$\Rightarrow \frac{2}{x^2} = \infty$$

$$\Rightarrow \chi^2 = \frac{2}{\infty}$$

$$\Rightarrow x = 0$$

Question 45.

Mark the tick against the correct answer in the following:

If
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$
 then $(\cos^{-1} x + \cos^{-1} y) = ?$

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- C. π
- D. $\frac{2\pi}{3}$

Answer

Given:
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$

To Find: The value of $\cos^{-1} x + \cos^{-1} y$

Since we know that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

$$\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

Similarly
$$\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y$$

Now consider $\cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} - \sin^{-1} x + \frac{\pi}{2} - \sin^{-1} y$

$$=\frac{2\pi}{2}-[\sin^{-1}x+\sin^{-1}y]$$

$$=\pi-\frac{2\pi}{3}$$

$$=\frac{\pi}{3}$$

Question 46.

Mark the tick against the correct answer in the following:

$$(\tan^{-1} 2 + \tan^{-1} 3) = ?$$

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{3\pi}{4}$$

Answer:

To Find: The value of tan⁻¹ 2+tan⁻¹ 3

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 2 + \tan^{-1} 3 = \tan^{-1} (\frac{2+3}{1-(2\times 3)})$$

$$= \tan^{-1}(\frac{5}{-5})$$

$$= \tan^{-1}(-1)$$

Since the principle value of tan lies in the range $[0,\pi]$

$$\Rightarrow \tan^{-1}(-1) = \frac{3\pi}{4}$$

Question 47.

Mark the tick against the correct answer in the following:

If $tan^{-1}x + tan^{-1}3 = tan^{-1}8$ then x = ?

- A. $\frac{1}{3}$
- B. $\frac{1}{5}$
- C. 3
- D. 5

Answer:

Given: $tan^{-1} x + tan^{-1} 3 = tan^{-1} 8$

To Find: The value of x

Here $tan^{-1}x+tan^{-1}3 = tan^{-1}8$ can be written as

 $tan^{-1} x = tan^{-1} 8 - tan^{-1} 3$

Since we know that $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x-y}{1+xy}\right)$

 $\tan^{-1} x = \tan^{-1} 8 - \tan^{-1} 3 = \tan^{-1} (\frac{8-3}{1+(8\times 3)})$

$$= \tan^{-1}(\frac{5}{25})$$

$$=\tan^{-1}(\frac{1}{5})$$

$$\Rightarrow X = \frac{1}{5}$$

Question 48.

Mark the tick against the correct answer in the following:

If $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$ then x = ?

- A. $\frac{1}{2}$ or -2
- B. $\frac{1}{3}$ or -3
- C. $\frac{1}{4}$ or -2
- D. $\frac{1}{6}$ or -1

Answer

Given: $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$

To Find: The value of x

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

 $\Rightarrow \tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} (\frac{3x + 2x}{1 - (3x \times 2x)})$

 $=\tan^{-1}(\frac{5x}{1-6x^2})$

Now since $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$

 $\tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} 1 \ (\because \tan \frac{\pi}{4} = 1)$

 $\Rightarrow \tan^{-1}(\frac{5x}{1-6x^2}) = \tan^{-1} 1$

 $\Rightarrow \frac{5x}{1-6x^2} = 1$

$$\Rightarrow 6x^2 + 5x - 1 = 0$$

$$\Rightarrow$$
x = $\frac{1}{6}$ or x= -1

Question 49.

Mark the tick against the correct answer in the following:

$$\tan\left\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right\} = ?$$

- A. $\frac{13}{6}$
- B. $\frac{17}{6}$
- c. $\frac{19}{6}$
- D. $\frac{23}{6}$

Answer:

To Find: The value of $\tan \{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\}$

Let
$$x = \cos^{-1}\frac{4}{5}$$

$$\Rightarrow$$
 cos x = $\frac{4}{5}$ = $\frac{adjacent\ side}{hypotenuse}$

By pythagorus theroem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, opposite side = 3

$$\Rightarrow \tan x = \frac{opposite \, side}{adjacent \, side} = \frac{3}{4}$$

$$\Rightarrow$$
x =tan⁻¹ $\frac{3}{4}$

Now $\tan \{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\} = \tan \{\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\}$

Since we know that $tan^{-1}x + tan^{-1}y = tan^{-1}(\frac{x+y}{1-xy})$

$$\tan \{\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\} = \tan (\tan^{-1}(\frac{\frac{3}{4} + \frac{2}{3}}{1 - (\frac{3}{4} + \frac{2}{3})}))$$

$$= \tan (\tan^{-1}(\frac{17}{6}))$$

$$=\frac{17}{6}$$

Question 50.

Mark the tick against the correct answer in the following:

$$\cos^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4} = ?$$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

c.
$$\frac{\pi}{3}$$

D.
$$\frac{3\pi}{4}$$

Answer:

To Find: The value of $\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}$

Now $\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}$ can be written in terms of tan inverse as

$$\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4} = \tan^{-1} \frac{1}{9} + \tan^{-1} \frac{4}{5}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} (\frac{x+y}{1-xy})$

$$\Rightarrow \tan^{-1}\frac{1}{9} + \tan^{-1}\frac{4}{5} = \tan^{-1}(\frac{\frac{\frac{1}{9} + \frac{4}{5}}{5}}{1 - (\frac{1}{9} \times \frac{4}{5})})$$

$$= \tan^{-1}(\frac{41}{41})$$

$$=\tan^{-1}(1) = \frac{\pi}{4}$$

Question 51.

Mark the tick against the correct answer in the following:

Range of sin⁻¹ x is

A.
$$\left[0, \frac{\pi}{2}\right]$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer:

To Find: The range of $\sin^{-1} x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sin^{-1}(x)$ can be obtained from the graph of

 $Y = \sin x$ by interchanging x and y axes.i.e, if (a,b) is a point on $Y = \sin x$ then (b,a) is

The point on the function $y = \sin^{-1}(x)$

Below is the Graph of range of $\sin^{-1}(x)$

From the graph, it is clear that the range of $\sin^{-1}(x)$ is restricted to the interval

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

Question 52.

Mark the tick against the correct answer in the following:

Range of cos⁻¹ x is

Α. [0, π]

B.
$$\left[0, \frac{\pi}{2}\right]$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer:

To Find: The range of $\cos^{-1} x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the range of $\cos^{-1}(x)$

From the graph, it is clear that the range of $\cos^{-1}(x)$ is restricted to the interval

 $[0,\pi]$

Question 53.

Mark the tick against the correct answer in the following:

Range of tan⁻¹ x is

$$A.\left(0,\frac{\pi}{2}\right)$$

B.
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer:

To Find: The range of tan⁻¹ x

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = tan^{-1}(x)$ can be obtained from the graph of

Y = tan x by interchanging x and y axes.i.e, if (a,b) is a point on Y = tan x then (b,a) is the point on the function $y = tan^{-1}(x)$

Below is the Graph of the range of $tan^{-1}(x)$

From the graph, it is clear that the range of $\tan^{-1}(x)$ is restricted to any of the intervals like $[-\frac{3\pi}{2},-\frac{\pi}{2}]$, $[-\frac{\pi}{2},\frac{\pi}{2}]$, $[\frac{\pi}{2},\frac{3\pi}{2}]$ and so on. Hence the range is given by

$$(-\frac{\pi}{2},\frac{\pi}{2}).$$

Question 54.

Mark the tick against the correct answer in the following:

Range of $sec^{-1} x$ is

$$A.\left[0,\frac{\pi}{2}\right]$$

B. $[0, \pi]$

C.
$$\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$$

D. None of these

Answer:

To Find:The range of $sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the range of $sec^{-1}(x)$

From the graph, it is clear that the range of $\sec^{-1}(x)$ is restricted to interval

$$[0,\pi]-\{\frac{\pi}{2}\}$$

Question 55.

Mark the tick against the correct answer in the following:

Range of coses⁻¹ x is

$$\mathsf{A.}\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$$

B.
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

$$\text{C.}\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

D. None of these

Answer:

To Find: The range of $cosec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \csc^{-1}(x)$ can be obtained from the graph of

Y = cosec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cosec x then (b,a) is the point on the function $y = cosec^{-1}(x)$

Below is the Graph of the range of $\csc^{-1}(x)$

From the graph it is clear that the range of $cosec^{-1}(x)$ is restricted to interval

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

Question 56.

Mark the tick against the correct answer in the following:

Domain of cos-1 x is

A. [0, 1]

B. [-1, 1]

C. [-1, 0]

D. None of these

Answer:

To Find: The Domain of $\cos^{-1}(x)$

Here, the inverse function of cos is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the domain of $\cos^{-1}(x)$

From the graph, it is clear that the domain of $\cos^{-1}(x)$ is [-1,1]

Question 57.

Mark the tick against the correct answer in the following:

Domain of sec⁻¹ x is

A. [-1, 1]

B. $R - \{0\}$

C. R - [-1, 1]

D. R – {-1, 1}

Answer:

To Find: The Domain of $\sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the domain of $\sec^{-1}(x)$

From the graph, it is clear that the domain of $\sec^{-1}(x)$ is a set of all real numbers excluding -1 and 1 i.e, R – [-1,1]