Transition Based Parsing: Formulation

Pawan Goyal

CSE, IIT Kharagpur

Week 6, Lecture 2

Deterministic Parsing

Basic idea

Derive a single syntactic representation (dependency graph) through a deterministic sequence of elementary parsing actions

Deterministic Parsing

Basic idea

Derive a single syntactic representation (dependency graph) through a deterministic sequence of elementary parsing actions

Configurations

A parser configuration is a triple c = (S, B, A), where

- S: a stack $[..., w_i]_S$ of partially processed words,
- B: a buffer $[w_j,...]_B$ of remaining input words,
- A: a set of labeled arcs (w_i, d, w_j) .

Stack	Buffer	Arcs
[sent, her, a] $_{S}$	[letter, .] _B	$He \overset{\mathtt{SBJ}}{\longleftarrow} sent$

Transition System

A transition system for dependency parsing is a quadruple $S = (C, T, c_s, C_t)$, where

- C is a set of configurations,
- T is a set of transitions, such that $t: C \to C$,
- c_s is an initialization function
- $C_t \subseteq C$ is a set of terminal configurations.

Transition System

A transition system for dependency parsing is a quadruple $S = (C, T, c_s, C_t)$, where

- C is a set of configurations,
- T is a set of transitions, such that $t: C \to C$,
- c_s is an initialization function
- $C_t \subseteq C$ is a set of terminal configurations.

A transition sequence for a sentence *x* is a set of configurations

$$C_{0,m} = (c_o, c_1, \dots, c_m)$$
 such that

$$c_o = c_s(x), c_m \in C_t, c_i = t(c_{i-1})$$
 for some $t \in T$

Transition System

A transition system for dependency parsing is a quadruple $S = (C, T, c_s, C_t)$, where

- C is a set of configurations,
- T is a set of transitions, such that $t: C \to C$,
- c_s is an initialization function
- $C_t \subseteq C$ is a set of terminal configurations.

A transition sequence for a sentence x is a set of configurations

$$C_{0,m} = (c_o, c_1, \dots, c_m)$$
 such that $c_o = c_s(x), c_m \in C_t, c_i = t(c_{i-1})$ for some $t \in T$

Initialization: $([]_S, [w_1, \dots, w_n]_B, \{\})$

Termination: $(S, []_B, A)$

Transitions for Arc-Eager Parsing

Shift $\frac{([\ldots]_S, [W_i, \ldots]_B, A)}{([\ldots, W_i]_S, [\ldots]_B, A)}$

Left-Arc(
$$d$$
) $\frac{([\ldots, w_i]_S, [w_j, \ldots]_B, A)}{([\ldots]_S, [w_j, \ldots]_B, A \cup \{(w_j, d, w_i)\})}$ $\neg \text{HEAD}(w_i)$

Right-Arc(d) $\frac{([\ldots, w_i]_S, [w_j, \ldots]_B, A)}{([\ldots, w_i, w_j]_S, [\ldots]_B, A \cup \{(w_i, d, w_j)\})}$

Reduce $\frac{([\ldots, w_i]_S, B, A)}{([\ldots]_S, B, A)}$ $\vdash \text{HEAD}(w_i)$

Transitions:

Stack Buffer Arcs

[] $_S$ [He, sent, her, a, letter, .] $_B$

Example

Parse Example

Transitions: SH

Stack **Buffer**

 $[He]_S$ [sent, her, a, letter, .] $_{B}$

Transitions: SH-LA

Stack Buffer

[] $_S$ [sent, her, a, letter, .] $_B$

DOBJ DET
He sent her a letter .

Arcs

 $He \stackrel{\text{SBJ}}{\longleftarrow} sent$

Transitions: SH-LA-SH

Stack Buffer

[sent]_S [her, a, letter, .]_B

Arcs

 $He \stackrel{SBJ}{\longleftarrow} sent$

Transitions: SH-LA-SH-RA

Stack Buffer

[sent, her] $_S$ [a, letter, .] $_B$

Arcs

Example

Parse Example

Transitions: SH-LA-SH-RA-SH

Stack Buffer

[sent, her, a] $_S$ [letter, .] $_B$

Arcs

Example

Parse Example

Transitions: SH-LA-SH-RA-SH-LA

Stack Buffer

[sent, her]_S [letter, .]_B

Arcs

 $\begin{array}{c} \text{He} \xleftarrow{\text{SBJ}} \text{sent} \\ \text{sent} \xrightarrow{\text{IOBJ}} \text{her} \\ \text{a} \xleftarrow{\text{DET}} \text{letter} \end{array}$

Transitions: SH-LA-SH-RA-SH-LA-RE

Stack Buffer

 $[sent]_S$ $[letter, .]_B$

Arcs

 $\begin{array}{c} \text{He} \xleftarrow{\text{SBJ}} \text{sent} \\ \text{sent} \xrightarrow{\text{IOBJ}} \text{her} \\ \text{a} \xleftarrow{\text{DET}} \text{letter} \end{array}$

Transitions: SH-LA-SH-RA-SH-LA-RE-RA

Stack Buffer

[sent, letter]_S [.]_B

Arcs

He $\stackrel{\text{SBJ}}{\longleftarrow}$ sent sent $\stackrel{\text{IOBJ}}{\longrightarrow}$ her a $\stackrel{\text{DET}}{\longleftarrow}$ letter sent $\stackrel{\text{DOBJ}}{\longrightarrow}$ letter

Transitions: SH-LA-SH-RA-SH-LA-RE-RA-RE

Stack Buffer $[sent]_S$ $[.]_B$

Arcs

He $\stackrel{\text{SBJ}}{\longleftarrow}$ sent sent $\stackrel{\text{IOBJ}}{\longleftarrow}$ her a $\stackrel{\text{DET}}{\longleftarrow}$ letter sent $\stackrel{\text{DOBJ}}{\longrightarrow}$ letter

Transitions: SH-LA-SH-RA-SH-LA-RE-RA-RE-RA

Stack Buffer [sent, .] $_S$ [] $_B$

Arcs

 $\begin{array}{c} \text{He} \xleftarrow{\text{SBJ}} \text{ sent} \\ \text{sent} \xrightarrow{\text{IOBJ}} \text{ her} \\ \text{a} \xleftarrow{\text{DET}} \text{ letter} \\ \text{sent} \xrightarrow{\text{DOBJ}} \text{ letter} \\ \text{sent} \xrightarrow{\text{PUNC}} . \end{array}$