מבוא לטופולוגיה – סיכום

2025 ביוני

תוכן העניינים

תוכן העניינים

4	24.3.2025-1 זר	שיעו	1
4	מבוא	1.1	
7	25.3.2025 - 2 Tr	שיעו	2
7	טופולוגיה — המשך	2.1	
9	31.3.2025 - 3 or	לטילזו	3
9		3.1	Ü
10	השלמות לרציפות	3.2	
10	השלמות לו ביפות	3.2	
12	7.4.2025-4 זור		4
12	אקסיומות ההפרדה	4.1	
15	אר 5 – 8.4.2025 – 5 דר	שיעו	5
15		5.1	
16	21.4.2025-6 ור	לווללוו	6
16		6.1	Ū
17	היים ב- היים ב קשירות		
1,		0.2	
19	ור 7 – 22.5.2025 – 7 יור	שיעו	7
19	קשירות – המשך	7.1	
20	28.4.2025 - 8 זר	שיעו	8
20	קשירות — סגירת פינות	8.1	
20	קומפקטיות	8.2	
22	קומפקטיות במרחבים מטריים	8.3	
23	29.4.2025-9 דר	שיעו	9
23		9.1	
25	5.5.2025-10 זר		10
			10
25	ַ קומפקטיות — משפט טיכונוף	10.1	
28	6.5.2025-11 איר	שיעו	11
29	12.5.2025-12 דר	שיעו	12
29	: קומפקטיזציה	12.1	
31	ור 13.5.2025 — 13	1277777	12
31	ה 13.3.2025 – 13.3.2025 – 13.5.2025 – 13.		13
31	משחק מזור		
31	מבוא לטופולוגיה אלגבריתמבוא לטופולוגיה אלגברית		
33	רר 14 – 19.5.2025 – 14 19.5.2025 – 14	ייזרנזר	11
	19.5.2025 — 14 החבורה היסודית		14
33	. מבוא לטופולוגיה אלגבו יוד — החבוד היהיטרו יוד	14.1	

תוכן העניינים

36	עור 15 – 20.5.2025 – 20.5.2025 עור 15 – עור	
36	1 החבורה היסודית	5.1
37	26.5.2025 — 16 צור	
37	ם הבורה יסודית וכוויצות	6.1
37	1 מרחבי כיסוי והעתקות כיסוי	6.2
39	27.5.2025 — 17 צור	17 שיו
39	"1 מרחבי כיסוי	7.1
40	3.6.2025 — צור 18	18 שיו
40	1 הרמות	8.1
41	2.6.2025 — 19 צור	19 שיו
41	1 בין מרחבי כיסוי להומוטופיה	9.1
43	20.6.2025 — 20 צור	שיז 20
14	16.6.2025-21 צור	21 שיו
44	2 משפט ואן־קמפן	1.1
46	17.6.2025-22 צור	22 שיו
46	2משפט ואן־קמפן — המשך	2.1

24.3.2025 - 1 שיעור 1

מבוא 1.1

 $f:\mathbb{R} o\mathbb{R}$ ומערים, באינפי 1 מתבוננים ב \mathbb{R} והגדרנו את מושג הגבול של סדרות, ולאחריו את המושג של פונקציה רציפה בעפר דיברנו על מרחבים מטריים, באינפי 1 המושג באינפי 3 כבר ראינו את את ווו $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים אם ולכל $x \in \mathbb{R}$ אם לכל אם לכל הייתה ש־f תיקרא המושג הכללי והרחב יותר של רציפות במרחבים מטריים. ניזכר בהגדרה של מרחב מטרי.

המקיימת, מטריקה) הנקראת מטריקה (הנקראת מטרי(X,d) באשר א קבוצה לא ריקה (מרחב מטרי) מרחב מטרי(X,d) האשר א המקיימת,

- $x,y \in X$ לכל d(x,y) = d(y,x) .1
- $d(x,y)=0\iff x=y$ וכך $\forall x,y\in X, d(x,y)\geq 0$.2
- $\forall x,y,z\in X, d(x,y)\leq d(x,y)+d(y,z)$ אי־שוויון המשולש, .3

דוגמה 1.1 נראה דוגמות למרחבים מטריים,

- d(x,y)=|x-y| יחד עם \mathbb{R} .1 $d_2(ar{x},ar{y})=\sqrt{\sum_{i=1}^n|x_i-y_i|^2}$ המוגדרת על־ידי (\mathbb{R}^n,d_2) .2
- $d_{\infty}(\bar{x},\bar{y})=\max_{1\leq i\leq n}|x_i-y_i|$, אינסוף, ואת מטריקת $d_p(\bar{x},\bar{y})=\left(\sum_{i=1}^n|x_i-y_i|^p\right)^{rac{1}{p}}$ את מוכל עבור \mathbb{R}^n נוכל עבור 3.
- $ho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ קבוצת את המטריקה עבור $[a,b] o \mathbb{R}$ עבור הרציפות הפונקציות הרציפות עבור $[a,b] o \mathbb{R}$

נראה את ההגדרה הפורמלית של רציפות,

קדים $\delta>0$ קיים $\epsilon>0$ עבור אם לכל הא רציפה שיf רציפה אז נאמר שיf עבור f:X o Y עבור f:X o Y עבור הגדרה 1.2 (רציפות) אז נאמר שי $\rho(f(x'), f(x)) < \epsilon$ אז $d(x', x) < \delta$ מאם

אבל יותר קל לדבר במונחים של קבוצות פתוחות.

 $B(r,x) = B_r(x) = \{z \in X \mid d(x,z) < r\}$ הגדרה מטרי, נסמן מרחב מטרי, עבור עבור (בדור) 1.3 הגדרה 1.3

 $f^{-1}(V)=\{x\in X\mid f(x)\in T$ מתקיים ב־Y מתקיים אם לכל עביפות הגדרה אברה אברה לרציפות תיקרא f:X o Y (הגדרה לרציפות) אברה 1.5 הגדרה לכל אביפות היקרא רציפות היקרא אביפות היקרא אביפות האברה לכל אביפות האבים האבי X- קבוצה פתוחה ב־V

הבאים, התנאים התנאים התנאים, au כך שמתקיימים התנאים הבאים, טופולוגיה, על au הגדרה 1.6 (טופולוגיה), חהי au קבוצה (לא ריקה), טופולוגיה על au היא אוסף

- $\bigcup_{\alpha\in I}U_{\alpha}\in au$ אז $\forall lpha\in I,U_{lpha}\in au$ כך שיס, I כך לקבוצת אינדקסים ל $\{U_{lpha}\}_{lpha\in I}$ אז איז כלומר לאיחוד, כלומר אינדקסים ל
 - $U\cap V\in au$ מתקיים מופיים, כלומר לכל לכל על סופיים, סופיים סופיים מגור לחיתוכים 3.

. הגדרה אל מרחב טופולוגיה על X, יקרא א קבוצה אר קבוצה לא קבוצה לא כאשר אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) זוג

 $U\in\Omega$ לכל $f^{-1}(U)\in au$ בעשם הגדרנו כבר מתי פונקציה f:X o Y עבור מרחבים טופולוגיים (X, au), איז היא רציפה, כאשר בעצם הגדרנו לכל מ סימון 1.8 איברי au יקראו קבוצות פתוחות.

הא היא קבוצה אם A איז המשלים של A או מרחב המשלים אם A, כלומר המשלים אם האברה אם הגורה, אברה אם האברה או היא קבוצה המשלים של האחר המשלים או מרחב טופולוגי אז תת־קבוצה Aפתוחה.

דוגמה באופן טריוויאלי כנביעה ערי, כלומר נגדיר טופולוגיה אין $au=\{U\subseteq X\mid \forall x\in U\exists r>0, B(x,r)\subseteq U\}$ מרחב מטרי, נגדיר זה יהי 1.2 דוגמה 1.2 יהי מהמרחב המטרי.

תרגיל 1.1 הוכיחו כי אכן זהו מרחב טופולוגי.

. יהי X קבוצה כלשהי, אז ניתן להגדיר על X טופולוגיה $\{\emptyset,X\}$ יהי עופולוגיה טופולוגיה טופולוגיה זו נקראת טופולוגיה אז ניתן להגדיר על X

. בולה אויה נגדיר $au_1=\mathcal{P}(X)$ נגדיר עבור קבוצה au_2 עבור קבוצה au_3 עבור קבוצה אויה נגדיר בולה נגדיר עבור דומה אוי עבור קבוצה אויה אויים ביינו דיים ביינו אויים ביינו ביינו אויים ביינו אויינו אויים ביינו אויים ב

24.3.2025 - 1 שיעור 1 מבוא 1.1

f: מתי איז שהיא רציפה התשובה היא שהיא היא הוא f: מתי א היא f: ווהי א רציפה תמיד. ווהי רציפה מתיד. מתי א מתי f: ווהי חלי. ווהי רציפה מתיד. מתי א דוגמה 1.5 מתי א מתיד. רציפה, תלוי בהגדרת הפונקציה, אבל במקרה שבו היא אכן רציפה, אז היא רציפה לעומה ההיא. לעומת זאת כל $(Y, au) o (X, au_1)$ רציפה. $f:(X,\tau_1) o (Y, au)$

הערה לא כל טופולוגיה נובעת ממטריקה. לדוגמה הטופולוגיה הטריוויאלית על מרחב עם לפחות 2 נקודות.

הערה המטריקה שביחס לטופולוגיה שמושרית ולכן $y \notin B(x,r)
eq X$ ולכן איז ו $y \notin B(x,r)$ ואז וואז $r = \frac{1}{2} d(x,y)$ אז נבחר נניח אז נייח וואז איז וואז וואס איז וואס . הקבוצה פתוחה קבוצה B(x,r) הקבוצה פתוחה.

 $\mathcal{F}=\{A\subseteq\mathbb{C}^n\mid\exists\{f_i\}_{i\in I}\subseteq\mathbb{C}[x_1,\ldots,x_n],A=\{(p_1,\ldots,p_n)\mid\forall i\in\mathbb{N}$ עבור איזשהו $X=\mathbb{C}^n$ נגדיר 1.6 נגדיר 1.6 נגדיר $I, f_i(p_1, \ldots, p_n) = 0\}$

, בסיס לטופולוגיה של X של תתי־קבוצות של בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס בסיס לטופולוגיה בסיס לטופולוג

 $x \in B$ כך ש־ $B \in \mathcal{B}$ יש $x \in X$.1

 $x \in C \subseteq A \cap B$ יש כך כך שי $x \in A \cap B$ ולכל $A, B \in \mathcal{B}$.2

טענה 1.11 עבור בסיס \mathcal{B} היא טופולוגיה, $au_{\mathcal{B}} = \{U \subseteq X \mid U \text{ is a union of elements of } \mathcal{B}\}$ היא טופולוגיה,

$$\forall \alpha \in I, B_{\alpha} \in \mathcal{B}, U = \bigcup_{\alpha \in I} B_{\alpha}$$

, אז מתקיים, אז איז סופי, אז אם ער אז או ער אז אוכחה. וכן וכן $U=\bigcup_{lpha\in I}B_lpha\in\mathcal{B}$ אז אז אז אם אז איז סופי, אז אז מתקיים, אז מתקיים, מכיוון ש־ $au_\mathcal{B}$ סגורה לחיתוך סופי, אז אם אם מתקיים,

$$U \cap V = (\bigcup_{\alpha \in I} B_{\alpha}) \cap (\bigcup_{\beta \in J} A_{\beta}) = \bigcup_{\alpha, \beta \in I \times J} B_{\alpha} \cap A_{\beta} = D$$

 $U\cap V=(\bigcup_{\alpha\in I}B_\alpha)\cap(\bigcup_{\beta\in J}A_\beta)=\bigcup_{\alpha,\beta\in I\times J}B_\alpha\cap A_\beta=D$ כך ש־ $C_{\alpha_0,\beta_0}\subseteq \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם אבל מהגדרת הבסיס פוימת קבוצה אבל מהגדרת הבסיס פוימת הבסיס פו . סופי. לכן הזיתות מצאנו בהתאם התאם ובהתאם $D\subseteq igcup_{(x,lpha,eta)} C_{x,lpha,eta}$ לכן לכן $B_{lpha_0}\cap A_{eta_0}$

 $\{B(x,rac{1}{n})\subseteq X\mid x\in$ אם מטרי, אז $\{B(x,r)\subseteq X\mid x\in X, r>0\}$ הוא טופולוגיה. אבל עכשיו נוכל להגדיר גם את מטרי, אז הערה . המטרי לטופולוגיה שהגדרנו למרחב הטופולוגיה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לאותה לטופולוגיה לאותה לאותה לטופולוגיה ל

תרגיל 1.2 הוכיחו שזהו אכן בסיס עבור המרחב הטופולוגי הנתון.

 $C = \{a + d\mathbb{Z} \mid a, d \in \mathbb{Z}, d \neq 0\}$, נניח ש" $\mathbb{Z} = \mathbb{Z}$, ונגדיר את הבסיס להיות אוסף הסדרות האריתמטיות הדו־צדדיות, כלומר $X = \mathbb{Z}$ $p\in p+dq\mathbb{Z}\subseteq$ אז $p\in (a+d\mathbb{Z})\cap (b+q\mathbb{Z})$, וננים כי זהו אכן בסיס (לטופולוגיה). נתבונן בזוג קבוצות ב $a+d\mathbb{Z},b+q\mathbb{Z}$, וננים כי זהו אכן בסיס (לטופולוגיה). אנו $. au_C$ נגדיר טופולוגיית. ($a+d\mathbb{Z}$) \cap ($b+q\mathbb{Z}$)

קבוצות סגורות הן משלימים לקבוצות פתוחות.

כל סדרה אריתמטית דו־צדדית אינסופית היא גם פתוחה וגם סגורה. בפרט חיתוך סופי של סדרות אריתמטיות הוא סגור. לכן המשלים שלו הוא פתוח. מסקנה 1.12 (משפט אוקלידס) יש אינסוף מספרים ראשוניים.

לכן את קבוצה פתוחה קבוצה לכן, את נניח בשלילה כי של ראשוניים, או עבור עבור p_1,\dots,p_k עבור עבור את מספר מפי של מספר מולילה כי שלילה כי של או עבור איניים, אוויים, או

$$\bigcup_{i=1}^k p_i \mathbb{Z} = \mathbb{Z} \setminus \{-1, 1\}$$

ולכן נובע ש־ $\{-1,1\}$ קבוצה פתוחה וזו כמובן סתירה.

טענה 1.13 (צמצום מרחב טופולוגי) עניח ש(X, au) מרחב טופולוגי, לכל $\emptyset
eq Y \subseteq X$ מרחב טופולוגי, נניח ש(X, au) מרחב טופולוגי, לכל 1.13 (צמצום מרחב טופולוגי) מרחב טופולוגי, $. au_Y = \{W \in au \mid W \subseteq Y\}$ אז $Y \in au$ אם $Y \in au$

טענה 1.14 (טופולוגיית מכפלה) נניח ש־ (X_1, au_1) ו־ (X_2, au_2) מרחבים טופולוגיים, אז נגדיר טופולוגיית מכפלה (X_1, au_1, au_1) על־ידי

$$\tau_{1,2} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

אז בסיס והטופולוגיית על־ידו נקראת על־ידו המכפלה. המכפלה דיטופולוגיית המכפלה דוא ד $au_{1,2}$ אז

דוגמה 1.8 נוכל לבנות כך מכפלה של כמות סופית או אינסופית של מכפלות טופולוגיות. עבור אוסף אינסופי (בן־מניה או לא בהכרח) אנו צריכים

24.3.2025 - 1 שיעור 1 1.1 מבוא

אז נגדיר ($\alpha \in I$ עבור (X_{α}, au_{α}) אז נגדיר להיזהר, נניח ש

$$au_b=\{\prod_{lpha\in I}U_lpha\mid oralllpha\in I, U_lpha\in au_lpha\}$$
 אם בסיס לטופולוגיה שנקרא טופולוגיית הקופסה. לעומת זאת נוכל להגדיר גם את

$$\tau_p = \{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha = X_\alpha \text{ for almost all } \alpha \in I \}$$

$$.\prod_{\alpha\in I}=\{f:I\to\bigcup_{\alpha\in I}X_\alpha\mid \forall \alpha\in I, f(x)\in X_\alpha\}$$
 כלומר

25.3.2025 - 2 שיעור 2

2.1 טופולוגיה – המשד

Z=בשיעור הקודם דיברנו על מכפלה של טופולוגיות, אמרנו שאם I קבוצת אינדקסים ולכל $lpha\in I$ גם lpha מרחב טופולוגי, אז נתבונן ביlpha בשיעור הקודם דיברנו על מכפלה של טופולוגיה על lpha.

הערה מגדירים.

$$\prod_{\alpha \in I} X_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} X_{\alpha}, \forall \alpha \in I, f(\alpha) \in X_{\alpha} \}$$

לאחר מכן נוכל להגדיר טופולוגיית מכפלה,

הגדרה 2.1 (טופולוגיית מכפלה) נגדיר את הבסיס,

$$\mathcal{B}_{\text{box}} = \{ \prod_{\alpha \in I} U_{\alpha} \mid \forall \alpha \in I, U_{\alpha} \subseteq X_{\alpha}, U_{\alpha} \in \tau_{\alpha} \}$$

ואת הבסיס.

$$\mathcal{B}_{\text{prod}} = \{ \prod_{\alpha \in I} V_{\alpha} \mid \forall \alpha \in I, V_{\alpha} \in \tau_{\alpha}, V_{\alpha} \subseteq X_{\alpha}, |\{\beta \in I \mid V_{\beta} \neq X_{\beta}\}| < \infty, V_{\alpha} = X_{\alpha} \text{ for almost every } \alpha \}$$

אלו הן מכפלות של טופולוגיות המהוות טופולוגיה.

$$\pi_lpha(f)=f(lpha)$$
 אז שנן הטלהו ל $lpha\in I,\pi_lpha:Z o X_lpha$ הטלות שנן אז ל $Z=\prod_{lpha\in I}X_lpha$ אז הגדרה (העתקות הטלה) אז הגדרה

 $\pi_{lpha}^{-1}(U_{lpha})\in au$ יתקיים תהינה ב־ X_{lpha} יתקיים שכל ההטלות עריך שלכל הרוצים אכן יקיימו אכן יקיימו עריים אכן יקיימו הביס, ערכל ההטלות הביס, אנו רוצים אכן יקיימו אכן יקיימו אכן יקיימו אכן יקיימו אכן יתקיים אכן יתקיים ערכל בחין כי ערכל בחין כי $\pi_{lpha}^{-1}(U_{lpha})=U_{lpha} imes\prod_{eta
eqlpha}X_{eta}$ יתקיים ערכל יתקיים ערכל המקור יהיה קבוצה פתוחה ב־ π_{lpha} .

$$C = \{ U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta} \mid \pi_{\alpha}^{-1}(U_{\alpha}) \in \tau \}$$

.] C=Xע כך של תת־קבוצות של X תהי קבוצה X קבוצה תהי קבוצה תהיקבוצות של עד תר־קבוצות הגדרה (מת־בסיס לטופולוגיה).

נגדיר את הסופיים הסופיים של איברי אוסף להיות כלומר $\mathcal{B}_C = \{\bigcap A \mid A \subseteq C, |A| < \infty\}$ הייות של איברי מתחבסים המושרה אוסף פתוחות) פתוחות פתוחות הוא בסים.

 $au_1\subseteq au_2$ אם אם au_2 אומרים ש au_1 חלשה חלשה אומרים על אומרים על au_1 טופולוגיות קבוצה au_1 אם אם au_2 אם אומרים ש au_1

, במכפלתם, נרצה להתבונן מושרה מתאים טופולוגי מרחב ונגדיר (X_i, au_i) ונגדיר לכל ($X_i,
ho_i$) כלל (רצה להתבונן מרחב מטריים (X_i, au_i) מהגדרנו זה עתה. אז נוכל להתבונן ב־ $(\prod X_i, au_{\mathrm{prod}})$ שהגדרנו זה עתה.

 $x,y\in Z$ לכל $Z=\prod_{i\in\mathbb{N}}X_i$ אטריקה מטריקה מרצה מרצה עבור אנות מטריים מטריים מטריים מטריים (מטריקה מכפלה) אז נגדיה, אז נגדיר, אז נגדיר,

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

ברור שפונקציה זו מוגדרת, וברור אף כי היא מקיימת את התכונה השנייה של מטריקות, אך לא ברור שהיא מקיימת את אי־שוויון המשולש, זהו תרגיל שמושאר לקורא.

. \mathcal{B}_{prod} טענה שווה ל-מכפלה שורית עם מטריקת מרכפלה מרחבים מרחבים עבור (X_i, au_i) עבור עבור $Z = \prod_{i=1}^\infty X_i$ שענה 2.6 מענה

 $au_
ho=\mathcal{B}_{
m prod}$ בסיס, אז נוכל להגדיר טופולוגיה (Z,
ho) מרחב מטרי, ו־ $\mathcal{B}_
ho=\{B(x,r)\mid x\in Z, r>0\}$ בסיס, אז נוכל להגדיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות שכל $B\in\mathcal{B}_{
m prod}$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת את שקילות הבסיסים.

נתחיל בתנאי הראשון, ונקבע $U_k\in au_k$ כלשהו. מספיק להראות שקבוצה מהצורה $U_k imes\prod_{i\neq k}X_i$ פתוחה בי0 עבור $U_k\in \mathbb{N}$ בית עבור בונסם ביל להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 1 על להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 ועישנו 1 על מרחב זה 1 שישנו 1 על מרחב זה 1 על מרחב 1 שישנו 1 על מרחב ביע מוחה בי1 בין מוחה ביע מוחה

25.3.2025 - 2 שיעור 2 25.3.2025 טופולוגיה – המשך

קיים $Z=\prod_{i\in\mathbb{N}}X_i$ ב־ $\frac{s}{2^k}$ סביב $\frac{s}{2^k}$ את הכדור בחדיוס או לכן נבחן את המפלה כולו. איז או מרחב מתקיים בחבר z=1 אז מרחב מתקיים את התנאי לבסיס. נניח ש"z=1 אז איז לבסיס. נניח ש"כדור שעתה בחרנו מקיים את התנאי לבסיס. נניח ש"כz=1 המטרה שלנו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס.

$$\frac{s}{2^k} > \rho(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} \ge \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\implies s > \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\implies \rho_k(x_k, y_k) < r$$

$$\implies y_k \in B_r(x_k) \subseteq U_k$$

, נעבור לתנאי השני, נתבונן בכדור הפתוח סביב Z סביב, $B_r(x)$, $x\in Z$ כאשור השני, נתבונן בכדור הפתוח מוגדר להיות,

$$B_r(x) = \left\{ y \in Z \mid \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} < r \right\}$$

, אל-ידי, המוגדרת על-ידי, כלומר הזנב של את טור הזנב להסום את כלומר המוגדרת א $V\subseteq Z$ תהי המטריקה את כלומר הזנב להסום את כלומר כלומר המוגדרת לV=Zיהי להי המטריקה את כלומר הזנב להמוגדרת כלומר המוגדרת על-ידי, כלומר המוגדרת

$$V = \left\{ (y_1,\ldots,y_M) \in \prod_{i=1}^M \mid \sum_{i=1}^M rac{1}{2^i} rac{
ho_i(x_i,y_i)}{1+
ho_i(x_i,y_i)} < rac{r}{2}
ight\}$$
ואנו טוענים כי $V imes \prod_{i=M+1}^\infty X_i \subseteq B_r(x)$ ואנו טוענים כי

П

31.3.2025 - 3 שיעור 3

3.1 סגירות

בדיוק כמו במרחבים מטריים, גם במרחב טופולוגי נרצה לדון במניפולציות על קבוצות במרחב, נתחיל בהגדרת הקונספט של סגור של קבוצה במרחב מופולוני

A של הסגור את הסגור. נגדיר על קבוצה $A\subseteq X$ הגדרה ותהי קבוצה מרחב טופולוגי) היי היי (סגור של קבוצה כשלהי. הסגור של $A\subseteq X$ מרחב טופולוגי) מרחב טופולוגיA את את הסגור המכילה את A, כלומר,

$$\overline{A} = \bigcap_{X \setminus F \in \tau} F$$

בהתאם נקבל מספר תכונות ראשוניות ודומות לתכונות שראינו בעבר,

למה 3.2 התכונות הבאות מתקיימות.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 .1

. כאשר במקרה זה אין בהכרח שוויון. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. 2

, אז מתקיים, אז מתקיים, $A=\mathbb{Q}, B=\mathbb{R}\setminus\mathbb{Q}$ וכן $X=\mathbb{R}$ שוויון, נגדיר שוויון, מתקיים, אז מתקיים, אז מתקיים,

$$\emptyset = \overline{\emptyset} = \overline{A \cap B} \subsetneq \overline{A} \cap \overline{B} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

טענה 3.3 אם (X, au) מרחב טופולוגי ו(X, au) אז,

$$x \in \overline{A} \iff \forall U \in \tau, x \in U \to U \cap A \neq \emptyset$$

Aאם ורק אם כל קבוצה פתוחה ביב הנקודה לא Aאם ורק אם כל קבוצה פתוחה סביב הנקודה לא A

 $x
otin \overline{A}\iff \exists U\in au, x\in U\land U\cap A=\emptyset$ הטענה, כלומר שלילת את נראה הוכחה. נראה הוכחה

Aל-אבל מהגדרתה וזרה פתוחה אבל $x\in X\setminus \overline{A}$ ולכן ולכן נניח שי $x\notin \overline{A}$ אבל נניח נניח אבל

 $x
otin \overline{A}\subseteq F$ בכיוון השני אם יש $x
otin \overline{A}\subseteq F$ פתוחה כך ש־ $U\cap A=\emptyset$ אז ע $U\cap A=\emptyset$ ובהכרח בכיוון השני אם יש

 $A^\circ = igcup_{U \in au, U \subset A} U$, הגדרה את הפנים את נגדיר את נגדיר ושפה) אנדרה 3.4 הגדרה

כלומר הפנים הוא איחוד כל הקבוצות הפנימיות הפתוחות של A, ובשל הסגירות של הטופולוגיה לאיחוד, נקבל כך את הקבוצה הפתוחה הגדולה ביותר שחלקית ל- $A = \overline{A} \setminus A^\circ$ היותר $A = \overline{A} \setminus A^\circ$

נבחין בהגדרה של סביבה ונשתמש בהגדרה זו כדי להגדיר מונח חדש.

 $.x \in U \subseteq L$ יש כך ער פרימת קבוצה פתוחה $t \in U \subseteq L$ יש כל באמר של באמר איז מביבה של נקודה) נאמר של $t \in L$

אם אם הצטברות של היא נקודת הצטברות $x\in A$ ו תת־קבוצה כלשהי, והי $x\in A$ ו נקודת הצטברות של חדוב טופולוגי, תהי $x\in A$ ו תת־קבוצה כלשהי, ו־ $x\in A$ ו נקודה מ־x שונה מ־x, כלומר,

$$\forall U \in \tau, x \in U \implies \exists y \in (U \setminus \{x\}) \cap A$$

A את קבוצת נקודות ההצטברות של A' נסמן ב-

נרצה להסתכל על נקודות הצטברות כנקודות שלא משנה כמה קרוב אנחנו מסתכלים אליהן, עדיין נוכל למצוא בסביבתן נקודות נוספות. במובן הזה ברור שהן נמצאות בקרבת נקודות בפנים, אך עלולות להיות גם נקודות לא פנימיות שמקיימות טענה כזו.

 $\overline{A}=A\cup A'$ מענה 3.7 מתקיים

היא אוסף כל \overline{A} היא אוסף הטענה ש־ \overline{A} או או $x\in A\subseteq \overline{A}$ אז או אוסף היא אוסף כל $x\in A$ שונה מ \overline{A} או אוסף היא אוסף כל $x\in A\cup A'$ או אוסף כל $x\in A\cup A'\subseteq \overline{A}$ או הנקודות שבכל סביבה שלהן המכילה את $x\in A\cup A'\subseteq \overline{A}$ היא אוסף כל העובע ש־ $x\in A\cup A'\subseteq \overline{A}$

בכיוון השני נניח ש־ $X \in A$ אז לכל $x \notin A$ אז לכל $x \in A$ אז לכל $x \in A$ אז מתקיים $x \in A$ אז מתקיים $x \in A$ אז מעאנו ש־ $X \in A$ אז מצאנו ש־ $X \in A$ אז מצאנו ש־ $X \in A$ ונובע משני $X \in A$ כך ש־ $X \in A$ אז מצאנו ש־ $X \in A$ מובע משני $X \in A$ נובע משל $X \in A$ וובע משני $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$ אז מצאנו ש־ $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$ אז מצאנו ש־ $X \in A$ החלקים ש־

31.3.2025 - 3 שיעור 3 שיעור 3

3.2 השלמות לרציפות

f:X o Y היונקפט לדון בקונספט של רציפות באופן רחב יותר. בהינתן (Y, au_Y) מרחב טופולוגי ו־X קבוצה כלשהי, ופונקציה רחב יותר. בהינתן ניזכר בהגדרה 1.2 לדון בקונספט של רציפה.

X איא מהבסיס משרית מושרית עליו ולהגדיר לבסיס ולהרחיבה הרחיבה היא תת־בסיס, היא הת־בסיס, ואפשר הרחיבה לבסיס ולהגדיר עליו $\{f^{-1}(U) \mid U \in au_Y\}$

מענה 3.8 מענה X עבורה f רציפה עבור טופולוגיה זו, וזו הטופולוגיה ווז חלשה f לישור על f

 $\{U\subseteq Y\mid f^{-1}(U)\in au_X\}$ את נוכל להגדיר f:X o Y נוכל עם פונקציה עם יחד עם וקבוצה לשהי ווו ויוו הטופולוגיה וווו הטופולוגיה ביותר על עם ביותר על עם עם עם ועם ועם לבנות בסיס וטופולוגיה על f באופן דומה ביותר על עם ביותר ע

טענה 3.9 (שקילות לרציפות) יהיו מרחבים טופולוגיים (X, au_X), ותהי אז התנאים הבאים שקולים, יהיו מרחבים טופולוגיים (שקילות לרציפות)

- 1.2 רציפה לפי f .1
- X^{-1} סגורה $f^{-1}(F)$, $F\subseteq Y$ סגורה ב-2. .2 הגדרה זו עוזרת לנו לדון בקבוצות סגורות במקום פתוחות
- Xבסיס לטופולוגיה של $f^{-1}(B)$ מתקיים ש $B\in\mathcal{B}$ אז לכל Y אז לכל פתוחה ב-3 הגדרה זו מאפשרת לנו לדון בבסיסים ובכך לפשט את העבודה עם טופולוגיות
- x של סביבה $f^{-1}(W)$ מתקיים שf(x) של $W\subseteq Y$ סביבה של $x\in X$ לכל .4
- רציפה. $f\mid_{U_{lpha}}:U_{lpha} o Y$ מתקיים $lpha\in\Omega$ מתקיים $lpha\in\Omega$, כך שלכל lpha, כך שלכל lpha, כל שלכל lpha, כלומר lpha,
 - . רציפה. $f\mid_{F_i}:F_i\to Y$ כך שכל $1\leq i\leq n$ סגורות עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$
 - $f(\overline{A}) \subseteq \overline{f(A)}$ מתקיים $A \subseteq X$ לכל.

. תוחות שירות על קבוצות הרציפות של משלימים הגדרה שירות מהגדרה על קבוצות פתוחות. בובע $1 \iff 2$

- היא איחוד השני כל קבוצה הטענה. לכיוון השני כך להראות היא קבוצה פתוחה, ונוכל כך להראות את נכונות הטענה. לכיוון השני כל קבוצה היא איחוד $f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha})$, של קבוצות מהבסיס, U_{α} , ור
- $x\in f^{-1}(U)\subseteq$ ש־ט פתוחה, לכן נובע ש־ט $f(x)\in U\subseteq W$ אז קיימת אז קיימת של $f(x)\in W\subseteq Y$ וכן $f(x)\in W\subseteq Y$ אז פתוחה. $f^{-1}(U)$ כאשר כאשר באטר פתוחה.
- היא $f^{-1}(U)$ הנחה אז צריך להראות ש $f^{-1}(U)$ פתוחה. תהי תהי $f^{-1}(U)$ אם צריך להראות שבריך להראות או פתוחה אז צריך להראות פתוחה. על $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה. פתוחה אז פתוחה אז פתוחה אז פתוחה, ונסיק ש $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$
 - . נוכל לבחור כיסוי טריוויאלי. נוכל לבחור נוכל כיסוי נוכל וויאלי. ביסוי נוכל לבחור נוכל לבחור נוכל לבחור נוכל לבחור כיסוי טריוויאלי.
- - . נבחר את לכיסוי סגור של עצמה. $1 \Longrightarrow 6$
- עששינו החוכחה דומה למהלך עששינו $f\mid_{F_i}:F_i\to Y$, ונניח גם שלכל של כיסוי סגור כיסוי סגור כיסוי על כיסוי $X=\bigcup_{i=1}^nF_i$ רציפה. כעת החוכחה דומה למהלך שעשינו $X=\bigcup_{i=1}^nF_i$ ב־1, אבל כעת אפיון רציפות בעזרת X, ואיחוד סופי על סגורות הוא סגור.
- - סגורה, אז, $F \subseteq Y$ מגורה, אז, $7 \implies 2$

$$f(\overline{f^{-1}(F)}) \overset{\text{finith}}{\subseteq} \subseteq \overline{F} \overset{\text{finith}}{=} F \ \Longrightarrow \ \overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

31.3.2025 - 3 שיעור 3 שיעור 3

, לכן, $f^{-1}(F)\subseteq\overline{f^{-1}(F)}$ מהגדרת סגור נוכל להסיק ש

$$\overline{f^{-1}(F)} = f^{-1}(F)$$

Xב סגורה סגורה $f^{-1}(F)$ ובפרט

נבחן תכונה מעניינת שלא תשרת אותנו רבות, אך כן מעלה שאלות,

 $x\mapsto x_1$ הקבועה הקבועה לוכן וכן $f_0=Id$ נסמן נקבי, $f_t:X o X$ כאשר כאשר להעניה נסמן גם

f(t,x)=(1-t)x נגדיר על־ידי המוגדרת f:I imes I o I ואת את מה 3.2 נגדיר 3.2 נגדיר

. באותו באותו באותו $\mathbb R$ כוויצה $\mathbb R$ נגדיר $f:I imes \mathbb R$ על־ידי על $f:I imes \mathbb R$ ונקבל שגם $X=\mathbb R$ נגדיר

תרגיל 3.1 הראו כי S^1 לא כוויץ.

נחזור לדבר על פונקציות רציפות.

f(x)(i)=xכך לכל $f:(\mathbb{R}, au_\mathbb{R}) o(\mathbb{R}^\mathbb{N}, au)$ לכל לכל 3.2 נתבונן בי

הקופסה. עופולוגיית אי לא רציפה הופלוגיית המכפלה, טופולוגיית הקופסה כהעתקה כאשר לא רציפה או לא רציפה הראו שי f

פתרון בתבונן ב T_n בעופולוגיית הקופסה היא לא קבוצה פתוחה, אך עד הקופסה היא לא פתרון פתרון זוהי קבוצה פתוחה, אך עד הקופסה היא לא העדיפה. אך $T_n=1$ בעופולוגיית הקופסה היא לא רציפה.

לעומת זאת בטופולוגיית המכפלה היא אכן רציפה.

רציפה ערכית די־חד ערכית $f:X\to Y$ היא העתקה איז מופולוגיים שני מרחבים בין שני מרחבים הומיאומורפיזם (הומיאומורפיזם הומיאומורפיזם בין שני מרחבים טופולוגיים X,Y היא היא.

ביניהן. f:X o Y ביניהן הומיאומורפיות אם ביניהן ביניהן יקראו יקראו די ביניהן. X

אנו נרצה להסתכל על הומיאומורפיזם כאיזומורפיזם של מרחבים טופולוגיים.

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2} > 0$$

. ולכן המרחבים המרחבים על, ואכן היא הול ולכן $f(x) \xrightarrow{x \to -\infty} 0, f(x) \xrightarrow{x \to \infty} 1$ ולכות, ואף הד-חד ערכית, לבסוף ולכות ולכן ולכן היא גם על, ואכן המרחבים הומיאומורפים.

 $z\mapsto rac{z-i}{z+i}$ על־ידי $\psi:\eta o D$ נגדיר גם $D=\{z\in\mathbb{C}\mid |z|<1\}$ ואת ואת $\eta=\{z=x+iy\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}$ נגדיר את נגדיר את הוכחה כי זהו אכן הומיאומורפיזם מושארת לקורא.

נבחין כי הדוגמה האחרונה אינה אלא העתקת מביוס, העתקה קונפורמית ואנליטית.

נבחן אבל חד־חד ערכית $[0,2\pi) o S^1$ השני השני השני ערכית, לא חד־חד ערכית לדוגמה, לדוגמה, לדוגמה, לדוגמה, לא חד־חד לא לדוגמה, לא חד־חד לדוגמה, לה

נניח שיש העתקה חד־חד ערכית אך מן הצד השני ונוציא מ־J נקודה יחידה, אז נקבל איחוד זר של שתי קבוצות זרות, אך מן הצד השני הוצאת נקודה יחידה מהמעגל משאיר אותו כקבוצה קשירה. ההוכחה המלאה אומנם סבוכה יותר, אך הצבענו פה על הבדל מהותי בין שני המרחבים.

. הראו כי \mathbb{R}^2 לא הומיאומורפים מרגיל 3.3 הראו כי

?האם גם \mathbb{R}^2 ו- \mathbb{R}^3 הומיאומורפים

 $f(U)\subseteq Y$ מתקיים (סגורה) פתוחה לכל אם לכל (סגורה) העתקה תיקרא העתקה f:X o Y העתקה העתקה פתוחה (סגורה) ב-3.12 העתקה פתוחה (סגורה) ב-Y

. המוגדרת ולא סגורה היא רציפה, היא היא $f(x)=x^2$ ידי על-ידי המוגדרת המוגדר העיפה, זוגמה היא הוגדרת לידי המוגדרת המוג

. האות אבל אבל רציף, הוא הוא הוא $x\mapsto x$ ידי על־ידי המוגדר ($(0,1)\hookrightarrow\mathbb{R}$ השיכון השיכון אבל דוגמה 3.7

. ביפה. אך אך אר סגורה, סגורה היא טריוויאלית טריוויאלית המוגדרת $\{a,b\} o \{a,b\}$

 \Box

7.4.2025 - 4 שיעור 4

אקסיומות ההפרדה 4.1

מטרתנו היא לאפיין את הקונספט של הפרדה, כלומר מתי אנו יכולים לחסום חלקים שונים במרחב הטופולוגי בקבוצות פתוחות. במקרים המטריים אף ראינו בעבר כמה הפרד היא מועילה, היא פתח לדיון נרחב.

הגדרה אם להפרדה אם x,y ניתנים להפרדה אם קיימות קבוצות שה $x,y \in X$. נאמר ש $x,y \in X$ ניתנים להפרדה אם קיימות קבוצות פתוחות $x,y \in X$ כך שהקבוצות האלה זרות, וכן $x,y \in X$

עבור $x \in U, A \subseteq V$ אם להפרדה ניתנים והאיבר שהקבוצה נאמר נאמר $x \in X, A \subseteq X$ עבור

. וזרות. $A\subseteq U, B\subseteq V$ ביתנות להפרדה ניתנות $A\cap B=\emptyset$ כך ש־ $A, B\subseteq X$ לבסוף נאמר ש

עתה משהגדרנו את הקונספט הכללי של הפרדה, נגדיר באופן בהיר ועקבי סוגים שונים של "רמת" ההפרדה שמרחב טופולוגי מקיים.

האקסיומות את עבור $i\in\{0,1,2,3,4\}$ עבור עבור את מקיים את מקיים את יקרא מרחב איקרא יקרא מרחב מופולוגי א יקרא מרחב א יקרא מרחב T_i אם הוא מקיים את האקסיומות מרחב א יקרא יקרא מרחב מופולוגי א יקרא מרחב א יקרא מר

- אחרת אך את הנקודות אחת שמכילה פתוחה פתוחה קבוצה $x,y\in X$ לכל , T_0
- הענייה את הנקודה המכילה את המכילה את המכילה את אחת הנקודות את אחת המכילה את קיימת פתוחה המכילה את אחת אחת אחת $x,y\in X$ קיימת פתוחה המכילה את $x\in U,y\notin U$ בך ש־ $x\neq y$ אז קיימת אז הראשונה. כלומר אם אז קיימת דער מדינה בילים את המכילה המכילה את המכילה המכילה את המכילה את המכילה את המכילה המכילה את המכילה את המכילה המכילה המכילה את המכילה המכי
- - ניתנות להפרדה x, אונם X בותנות להפרדה x, אונם X בותנות להפרדה x, אונם X ביתנות להפרדה המרחב הוא T_3
 - ניתנות להפרדה $A,B\subseteq X$ אם המרחב אם שכל זוג תלי, כלומר כלומר ניתנות להפרדה אם T_1 אם המרחב הוא T_4

נעבור למספר טענות הנוגעות לסוגי ההפרדה השונים.

סגורה. $\{x\}\subseteq X$ סגורה אם חלקיים אם מתקיים אם T_1

U=u בקבל שגם $x\notin U_y$ כך ש $U_y\subseteq X$ פתוחה קבוצה פתוחה בקבימת לכל $x\notin X$ אז לכל $x\in X$ אז לכל איז נקבל שגם $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה. אבל מההגדרה שסיפקנו ל-U נקבל ש $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה.

טענה 4.4 אם מרחב מטרי הוא T_n אז הוא גם $T_1 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ מענה 4.4 אז הוא גם T_n אז הוא גם T_n אז הוא גם ווענה 4.4 אקסיומות ההפרדה) מענה T_n אז הוא גם ווענה T_n אז הוא גם ווענה א

בעוד שלא נוכיח טענה זו, נבהיר כי היא נובעת ישירות מהגדרת ההפרדה. נבחין כי המספור הוא עתה לא ארעי כפי שאולי היינו שוגים לחשוב, אלא האקסיומות מסודרות לפי "כוחן" בהפרדת דברים במרחב. נמשיך ונראה טענה שתיצוק משמעות למרחבים נורמליים.

V סענה $A\subseteq U$ קיימת למרחב וורמלי) אם ורק אם לכל קבוצה סגורה A וורמלי אם ורק אם לכל קבוצה פתוחה אם מענה $A\subseteq U$ מרחב מרחב וורמלי) אם $A\subseteq V\subseteq \overline{V}\subseteq U$

כלומר לכל קבוצה סגורה וקבוצה פתוחה שמכילה אותה, יש קבוצה פתוחה ביניהן כך שגם הסגור שלה ביניהן.

תוחות פתוחות, ולכן יש קבוצות וזרות, ולכן יש פתוחות בקבוצה פתוחות. בכיוון הראשון נניח שX נורמלי וכן ש $A\subseteq U$ קבוצה סגורה אוכלת בקבוצה פתוחות. בכיוון הראשון נניח ש $A\subseteq V\subseteq V\subseteq X\setminus W\subseteq U$ כך ש $A\subseteq V\subseteq V\subseteq X\setminus W\subseteq U$ נובע ש $A\subseteq V\subseteq V$ כך ש $A\subseteq V\subseteq V$ ברע שיש אוכן אוכן ולכן יש קבוצות פתוחות.

, כך שמתקיים, פתוחה על קיימת קבוצה פתוחה על אז קיימת קבוצה על גויח השני, נניח ש $A,B\subseteq X\setminus B$ בכיוון זרות ולכן אז קבוצות סגורות סגורות ולכן אז קיימת פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז המתקיים,

$$A \subset V \subset \overline{V} \subset X \setminus B$$

 $V\cap (X\setminus \overline{V})=\emptyset$ ונובע גם ונובע $B\subseteq X\setminus \overline{V}$ ולכן

טענה 4.6 (תX imes X) שקול למרחב האוסדורף, X imes X מרחב האוסדורף, כלומר מרחב X imes X מענה פולוגיית המכפלה.

7.4.2025-4 שיעור 4 שיעור 4

, כי, נבחין כי, $U_{x,y}\cap V_{x,y})\cap \Delta_X=\emptyset$ מרחב האוסדות, כלומר $y\in V_{x,y}$ וי $x\in U_{x,y}$ שי x
eq y לכל לכל מרחב האוסדורף. לכל מרחב האוסדורף. לכל מרחב האוסדורף.

$$X \times X \setminus \Delta_X = \bigcup_{x \neq y} (U_{x,y} \times V_{x,y})$$

ובטופולוגיית המכפלה זוהי קבוצה פתוחה.

בכיוון השני נניח ש־ $(x,y)\in (X\times X)\setminus \Delta_X$ או א x
eq y פתוחה, אם $X\times X\setminus \Delta_X$ או הגדרת טופולוגיית בכיוון השני נניח ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ ואף ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ פתוחות כך ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$

 T_i טענה Y_i או גם אז גם אז גם Y_i הוא מרחב אז גם א גם א גם א גם א גם א גם או גם אז גם אז גם אז גם אז מרחב אז גם אז מרחב אז גם אז מרחב ווא מרחב אז גם א

. T_3 בעבור הטענה נובעת ישירות מהגדרת אקסיומות ההפרדה עבור הטענה נובעת ישירות הטענה וובעת אקסיומות ההפרדה וובעת ישירות מהגדרת אקסיומות החובעת ישירות מהגדרת אקסיומות אקסיומות וובעת ישירות הטענה וובעת ישירות מהגדרת אקסיומות החובעת ישירות הטענה וובעת ישירות המענה עבור החובעת ישירות המענה עבור החובעת ישירות החובעת החובעת החובעת החובעת ישירות החובעת הח

המחבים דוגמות דוגמות שבו נוכל מענה אל Tounter examples in Topology $.T_4$ הארה מענה זו לא נכונה עבור למצוא דוגמות רבות למרחבים באלה.

X אוז גם $X \times Y$ אז גם $i \in \{1,2,3\}$ טענה X אם מרחבים אם אוז מכפלה) אם אוז מרחבי מכפלה אז גם X אוז גם אוז מרחבי

הקבוצה, את נוכל להגדיר אז $(x,y)\in X imes Y$ אם עבור T_1 אם הוכחה.

$$(X \times (Y \setminus \{y\})) \cup ((X \setminus \{x\}) \times Y)$$

זוהי קבוצה סגורה מהגדרת טופולוגיית המכפלה.

. רגולריX imes Y בניח שלינו להראות ועלינו T_1 ורגולריים הם X,Y הם בניח עניח הטענה עבור להוכחת הטענה בל המX,Y הם המX,Y

 $z\in V, C\subseteq W, Z\setminus W\subseteq$ בי כך כך אורות זרות מגורות סגורה, $z\notin C$ סגורה, נטמן בעבור להוכחת הלמה, לכיוון הראשון בעבור להוכחת הלמה, בעבור להוכחת הלמה, לכיוון הראשון בעבור לכיוון הראשון בעבור לכיוון הראשון בעבור בעבור בעבור בעבור לכיוון הראשון בעבור בעבור בעבור בעבור לכיוון הראשון בעבור ב

האפיון האחרון והחשוב שנראה עתה למרחבים המקיימים אקסיומות הפרדה הוא הקשר למרחבים מטריים.

 T_4 מענה (אז מטריי, אז הוא מטריים) אם מטריים מטריי, אז הוא מרחב מטרי, אז הוא מענה

הוכחה. נניח ש $X \subseteq X$ תת־קבוצה כלשהי ו $X \in X$. נרחיב את הגדרת המטריקה להגדרת הקוטר, כלומר נאמר שמתקיים,

$$\rho(x, E) = \inf\{\rho(x, y) \mid y \in E\}$$

.3 מטענה מטענה כמסקנה כמסקנה אז p(x,E)>0 אז או $x\notin E$ רה סגורה ב

 $V=igcup_{b\in B}B_{
ho(b,A)}(b)$ ו בניח ש $U=igcup_{a\in A}B_{
ho(a,B)}(a)$ אז אי $a\in A,\
ho(a,B)>0, \forall b\in B,\
ho(b,A)>0$ בניח זרות. $A,B\subseteq X$ הן פתוחות וזרות.

נעיר שהכיוון ההפוך נקרא מרחב מטריזבילי, ונעסוק בנושא זה בהמשך הקורס. נעבור לדוגמות.

 T_1 אבל א T_2 אבל הוא מרחב X הוא במקרה הא X במקרה אבל א $X=\{x,y\}$ עם הטופולוגיה אבל א גדיר $X=\{x,y\}$

7.4.2025-4 שיעור 4 שיעור 4 4

במקרה הה בסיס של כל הקבוצות שמשלימן סופי, כלומר מהבסיס של המושרית מהבסיס של במקרה מהבסיס על נגדיר אבל נגדיר במקרה מהבסיס של כל הקבוצות שמשלימן במקרה לא במקרה המושרית המושרית המחבר במקרה הא החבר במקרה המושרית מהבסיס של כל המחבר במקרה המושרית מהבסיס במקרה המושרית מהבסיס של כל המחבר במקרה המושרית ה

, יחד עם הבסיס, \mathbb{R} הקבוצה מעל כמרחב כמרחב הטופולוגי הבסיס, נגדיר את נגדיר נגדיר הטופולוגי $\mathbb{R}_{\frac{1}{m}}$

$$\mathcal{B} = \{(a,b) \in \mathbb{R}^2 \mid a < b\} \cup \{(a,b) \setminus \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \mid x, y \in \mathbb{R}, x < y\}$$

ההוכחה ש־ \mathcal{B} מושארת לקורא.

. נבחין אוסדורף, שגם שגם שגם להסיק לכן נוכל מרחב האוסדורף, וזו האחרונה היא תחב האוסדורף, אוסדורף, לכן נוכל מיותר של $\mathbb{R}_{\frac{1}{n}}$ מרחב האוסדורף.

נראה ש־ $\mathbb{R}_{\frac{1}{n}}$ לא $\mathbb{R}_{\frac{1}{n}}$ (כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־ $0\in U$ בחין כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־0 כו 0 כי 0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה מהצורה 0 עבור 0 עבור 0 פתוחה אז 0 ש־0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה לבן 0 מכילה 0 בינה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה בסיס, לכן 0 מכילה איבר בסיס, לוביה בסיס, לוביה

$.T_4$ אבל אבל אברחב שהוא למרחב נראה נראה 4.5 נראה דוגמה 4.5 נראה אבר

 $\mathbb{R}_L imes \mathbb{R}_L$ אז T_3 בפרט גם לכן בפרט אז הוא \mathbb{R}_L אז הוא $L=\{[a,b)\mid a< b, a,b\in\mathbb{R}\}$ עם הבסיס עם הנוצרת על \mathbb{R}_L אז הטפולוגיה הנוצרת על מכפלות מרחבי הפרדה.

היא הטופולוגיה הדיסקרטית, ולכן כל תת־קבוצה ה' מושרית על מ' \mathbb{R}^2_L היא מושרית כל תת־קבוצה בחין כי הטופולוגיה הדיסקרטית, ולכן כל תת־קבוצה ברצה להראות ב' \mathbb{R}^2_L , בשיעור הבא נראה את המשך הסתירה ל' T_4 :

8.4.2025 - 5 שיעור 5

אקסיומות ההפרדה — המשך 5.1

נמשיך בהוכחת הסתירה עבור הדוגמה האחרונה מהשיעור הקודם.

. ערכית, ולכן הד־חד שהיא שהכיח לנו להוכיח ונותר מתירה, ולכן מקבלת ערכית, ולכן ψ

וזה בלתי $\mathcal{P}(L)\hookrightarrow\mathcal{P}(D)\hookrightarrow L$ אז נוכל לבנות איז $|\mathbb{R}|=|L|$ אבל שיכון שיכון שיכון \mathbb{R} . יש לנו שיכון שיכון שיכון $\mathcal{P}(D)\hookrightarrow\mathbb{R}$ אפשרי.

 T_4 במרחבי במיוחד משמעותית נסיים עם למה

f:X o [0,1] אם X מרחב טופולוגי T_4 , אז לכל זוג קבוצות סגורות זרות $C,D\subseteq X$, קיימת פונקציה רציפה T_4 אז לכל זוג קבוצות סגורות T_4 אוריסון) אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון.

קהוח, עבור ווער C_0 כי סטורה C_0 נניח ש־ C_0 מניח ש־ C_0 נניח ש־ C_0 וכן C_0 וכן C_0 וכן C_0 סטורה אלכן פרוחה. נניח ש־ C_0 מרחב באופן רקורסיבי קבוצות מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות ווער מדי מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות ווער מדי מדובר בקבוצה מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות מדובר בקבוצה בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה בקבוצה

$$C_0 \subseteq V_{\frac{1}{2n}} \subseteq C_{\frac{1}{2n}} \subseteq V_{\frac{2}{2n}} \subseteq C_{\frac{2}{2n}} \dots$$

ונגדיר לכל $x \in X$ את הפונקציה,

$$f(x) \begin{cases} \inf\{t \in [0,1] \mid x \in V_t\} & \exists t, x \in V_t \\ 1 & \text{else} \end{cases}$$

אנו טוענים ש־f מקיימת את האמור, כלומר f(x)=C לכל f(x)=1, וכן f(x)=f(x)=0 הציפה. נשים לב ש־f(x)=f(x)=0 אנו טוענים ש־f(x)=f(x)=0 מקיימת את האמור, כנחין גם שעבור f(x)=x נובע ש־f(x)=x לאף f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־להראות רציפות. אנו יודעים בחיל מקור של קבוצה שכל מקור של קבוצה של f(x)=x מספיק לבדוק את הרציפות עבור תת־בסיס של הקטע, שכל מקור של קבוצה פתוחה הוא פתוח. נבחר את תת־הבסיס f(x)=x ווא לכל f(x)=x מספיק לבדוק את הרציפות עבור ב"f(x)=x מחוח. בחר את תת־הבסיס f(x)=x ווא לכל שביע מספיק לבדוק את הרציפות עבור ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של הקטע, שכל מספיק לבדוק את הרציפות ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של האמרקיים,

$$x \in f^{-1}([0,b))$$

 $f^{-1}([0,b))\subseteq$ אז נובע ש $f^{-1}([0,b))\subseteq$ אז לכן קיים $f^{-1}([0,b))$ מספר דיאדי (מהצורה הדרושה). לכן $f^{-1}([0,b])$ לכן קיים $f^{-1}([0,b])$ מספר דיאדי (מהצורה $f^{-1}([0,b])$ נניח שר $f^{-1}([0,b])$ אז שו מצאנו ש $f^{-1}([0,b])$ ווע שר $f^{-1}([0,b])$ אז מצאנו ש $f^{-1}([0,b])$ אז $f^{-1}([0,b])$ או $f^{-1}([0,b])$

21.4.2025 - 6 שיעור 6

6.1 אקסיומות מנייה

ראינו עד כה מספר שימושים לבסיסים של טופולוגיה, הגדרה 1.10. עתה נגדיר הגדרה משלימה לבסיס בהקשר מקומי.

 $x\in U_i$ בך שר $\{U_i\}_{i\in I}$ אם אם קבוצות של קבוצה אז נקודה כלשהי, אז נקודה מרחב אז מרחב מרחב אז מרחב מופולוגיה בנקודה) אז הגדרה (בסיס לטופולוגיה או בסיס לקבוצות פתוחות של $x\in X$ אם לכל קבוצה פתוחה $x\in U_i\subseteq V$ שר בסיס לטופולוגיה או בסיס לקבוצות פתוחות של x אם לכל קבוצה פתוחה מדער מיים לעופולוגיה או בסיס לקבוצות פתוחות של x אם לכל קבוצה פתוחה של $x\in V$

בהתאם נגדיר את ההגדרה המהותית הראשונה שעוסקת במנייה.

הגדרה אם לכל $x\in X$ קיים בסיס לפתוחות של מקיים את מקיים את מקיים ממרחב בסיס לפתוחות של המנייה הראשונה אם לכל לכל מקיים בסיס לפתוחות של משבסיס בן־מנייה.

הגדרה 6.3 (אקסיומת המנייה השנייה) נאמר שמרחב X מקיים את אקסיומת המנייה השנייה השנייה (אקסיומת המנייה באים בן־מניה ל־X

הגדרה 6.4 מרחב לינדולף) X יקרא מרחב לינדולף, אם לכל כיסוי פתוח של X יש כיסוי בן־מניה.

 $X\subseteq \bigcup_{lpha\in J}U_lpha$ בלומר אם כך כיסוי פתוח, אז כיסוי כיסוי אב כלומר אב כלומר כלומר כיסוי כיסוי אז כיסוי פתוח, אוני ביסוי פתוח, אוני ביסוי פתוח, אוני פתוח, אוני ביסוי ביסוי פתוח, אוני ביסוי פתוח, אוני ביסוי פתוח, אוני ביסוי ביסוי ביסוי פתוח, אוני ביסוי ביסוי

. עתה משהגדרנו שפה לדבר בה על הקונספט של מנייה במרחבים טופולוגיים, נוכל לעבור למספר טענות.

טענה 6.6 מרחב רגולרי המקיים את אקסיומת המנייה השנייה הוא נורמלי.

 T_4 המקיים את אקסיומת המנייה השנייה ד T_3 בפרט מרחב

הוכחה. נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות נורמליות, נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות וואנו רוצים למצוא להן הפרדה. לכל $a\in A$ כך ש־ $a\notin B$ יש קבוצה פתוחה $a\in U_a\subseteq \overline{U}_a\subseteq X\setminus B$ כאשר $a\in U_a\subseteq A$ (כאשר $a\in A$), כאשר $a\in A$ וואכן האוסף $a\in A$ האוסף $a\in A$ האוסף $a\in A$ הווכל לכתוב אותו על־ידי $a\in A$ (כאשר $a\in A$), כאשר אפשר למצוא קיבלנו ש־ $a\in A$ באותו אופן אפשר למצוא $a\in A$ באותו אופן אפשר למצוא $a\in A$ באותו אופן אפשר למצוא $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כך ש־ $a\in A$ כך ש־ $a\in A$ כך ש־ $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$

לכל $S=\bigcup_{k\in\mathbb{N}}S_k$ נגדיר בהתאם $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{U}_{a_k}$ וכן $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ נגדיר בהתאם לכל $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדיר אז $K\in\mathbb{N}$ אז החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ אם החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ בי אלה קבוצות פתוחות. נבחין כי $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדוק ש־ $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ אם החיתוך לא ריק, אז $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ולכן נובע,

$$S_m = U_{b_k} \setminus \bigcup_{i=1}^k \overline{T}_i \supseteq T_n$$

וזו סתירה.

נרצה לדון בקשר שבין מרחבים מטריים למרחבים טופולוגיים.

הגדרה 6.7 (מרחב מטריזבילי) מרחב טופולוגיX נקרא מטריזבילי אם קיימת מטריקה על X שמשרה את הטופולוגיה.

כבר ראינו שכל מטריקה משרה טופולוגיה שמקיימת את T_4 , עתה נרצה להבין מתי בדיוק טופולוגיה אכן מושרית מאיזושהי מטריקה. T_4 תת־מרחב של מרחב מטריזבילי הוא מטריזבילי.

משפט 6.8 (משפט המטריזביליות של אורסון) אם X מרחב טופולוגי T_{i} המקיים את אקסיומת המנייה, אז X מטריזבילי.

, המכפלה עם המכפלה וויע סופולוגיית עם במרחב מטרי במרחב במרחב המכפלה הוא הכללי הרעיון הכללי הוא לשכן במרחב מטרי ב

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n}$$

 $\psi(X)$ ל־ל מ־ל העתקה ערכית ערכית לי ע $\psi:X o [0,1]^{\mathbb{N}}$ ולבנות העתקה

 $x\in V_{xy}\subseteq$ בסיס בחצות למצוא ניתן ניתן $x\in U_{xy},y\in W_{xy}$ כך כך ער ער x
eq yיש פתוחות זרות $x\neq y$ יש פתוחות זרות לכל לכל

21.4.2025 - 6 שיעור 6 6.2 קשירות

אוריסון קיימת של אוריסון בת־מניה. הברמניה. אז $\Lambda=\{(u,u)\in\mathcal{B}^2\mid\emptyset\not\subseteq V\subseteq\overline{V}\subseteq U\}$ אוריסון באוסף כל מבונן באוסף $\overline{V}_{xy}\subseteq U_{xy}$ רציפות. רציפות איא הומיאומורפיזם. על־ידי $\psi:X o\psi(X)$ על־ידי ערכית טוענים כי ψ היא היא ענים כי ψ היא הומיאומורפיזם. על־ידי $\psi:X o[0,1]^\mathbb{N}$ בטופולוגיית המכפלה שקולה לרציפות בכל קורדינטה, לכן מרציפות g_k לכל g_k מרציפות בכל קורדינטה, לכן מרציפות שלכל g_k לכל מרציפות בכל הציפות שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית במחשבים במושבים במחשבים במושבים במחשבים במושבים במחשבים במחשבים במושבים במחשבים במושבים במושב ש"ע $g_k(y)=1, g_k(x)=0$ ו־ם. אנו $g_k=f_{(v,u)}$ יש $x\in V\subseteq \overline{V}, y\in X\setminus U$ בראות הומיאומורפיזם. אנו $x\in V\subseteq V$ $W\subseteq X$ אלכל צריך להראות אלכל ביץ, כלומר באיפה כאשר איז $\psi^{-1}:E o X$ שלכל שלכל אריד להראות ערכית, וצריך להראות שלכל $k(x)\in\mathbb{N}$ יהי $x\in V\subseteq\overline{V}$ בר ש־ $V\in\mathcal{B}$ כך שימת $X\in U\subseteq W$ כך שימת ער קיימת $X\in U\subseteq W$ פתוחה ב־ $X\in U$ לכל היימת $X\in U\subseteq W$ כך שימת פתוחה, שגם $\int_{x\in W}g_{k(x)}^{-1}([0,1))=W$ ונובע ש־ $x\in g^{-1}([0,1))\subseteq U\subseteq W$ אז $g_{k(x)}\mid_{X\setminus U}=1$ וכן ומתקיים, $g_{k(x)}(x)=0$ וכן ש־ $g_{k(x)}=f_{(v,u)}$ אז מרש ,ולכן, $g_{k(x)}^{-1}=\psi^{-1}\circ\pi_{k(x)}^{-1}$ ולכן ולכן $g_{k(x)}=\pi_{k(x)\circ\psi}$

$$W = \bigcup_{x \in W} \psi^{-1}(\pi_{k(x)}^{-1}([0,1))) = \psi^{-1}(\bigcup_{x \in W} \pi_{k(x)}^{-1}([0,1)))$$

 $.\psi(W)=(igcup_{x\in W}\pi_{k(x)}^{-1}([0,1)))\cap E$ ונובע

6.2 קשירות

הגדרה 6.9 (קשירות) מרחב טופולוגי X יקרא קשיר אם לא ניתן להציג אותו כאיחוד של שתי קבוצות פתוחות זרות לא ריקות.

הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. זאת שכם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות אורה. הארה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. הארה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של הפוצות סגורות. תו. פתוחות, U^C , V^C וכמובן $U^C \cup V^C = X$ אז $U \cap V = \emptyset$

(a,b),[a,b],(a,b],[a,b] מהן תתי־הקבוצות של \mathbb{R} התשובה היא קטעים, (a,b), מהן תתי־הקבוצות הקשירות של

היא קבועה. היא קשיר אם היסקרטית, היא הדיסקרטית, עם היא או או הדיסקרטית, היא קבועה. הערה מרחב מרחב או היא קשיר אם היא קשיר אם היא קבועה.

טענה 6.10 (תכונות של קשירות) התכונות הבאות מתקיימות,

- קשירה f(X) אם f:X o Y קשיר f:X o Y אם .1
 - קשירה אז \overline{A} קשירה אז $A\subseteq X$ השירה.
- קשירה $\bigcup_{\alpha\in I}A_{\alpha}$ אז $\alpha\in I$ כך לכל $A_{\alpha}\cap A_{\beta}\neq\emptyset$ כך ש־ $\beta\in I$ כך שירה קשירות וקיים $\{A_{\alpha}\}_{\alpha\in I}$ אז מת כוכב, אם $\{A_{\alpha}\}_{\alpha\in I}$
 - קשירה $Y=\prod_{\alpha\in I}X_{\alpha}$ אם קשירים או מרחבים טופולוגיים קבוצת אם $\{X_{\alpha}\}_{\alpha\in I}$.4

אבל $f(A)=\{0\}$ אבל הכלליות נניח ש־ \overline{A} לא קשירה, לכן נובע שיש $f:\overline{A} o \{0,1\}$ לא קבועה. בלי הגבלת מענה 2. נוכיח את טענה 2. נוכיח את טענה 2. הייסור, לכן נובע שיש . חזו סתירה ולכן $\overline{A}\subseteq f^{-1}(\{0\})$ שי סגורה ונובע אילכן חזו סתירה ולכן $A\subseteq f^{-1}(\{0\})$ סגורה ולכן וזו סתירה.

A imes B אז שירים קשירים טופולוגיים מרחבים אם A,B אם עדר. שיר להראות ונרצה ונרצה טופולוגיים מרחבים או מרחבים ל $\{X_{lpha}\}_{lpha \in I}$ מרחבים או נעבור להוכחת טענה A,B מרחבים טופולוגיים ונרצה להראות ש קשיר, כנביעה מטענה 3, שכן,

$$A \times B = (\bigcup_{a \in A} \{a\} \times B) \cup (\bigcup_{b \in B} A \times \{b\})$$

 $A\times B=(\bigcup_{a\in A}\{a\}\times B)\cup (\bigcup_{b\in B}A\times \{b\})$ נרצה למצוא תת־קבוצה של $f:I\to \bigcup X_\alpha$ כאשר קבע, $f\in Y$ נקבע, נגדיר. נגדיר אפופה של אתריקבוצה של למצוא הבחירה. נקבע $P_F = \{h \in Y \mid h(\alpha) = f(\alpha) \forall \alpha \notin F\}$ כאשר $Z = \{h \in Y \mid |\{\alpha \in I \mid h(\alpha) \neq f(\alpha)\}| < \infty\} = \bigcup_{F \subseteq I, |F| < \infty} P_F$ אנו טוענים שתי שרא שרC קשירה היא שרC קשירה היא שרC קשירה היא שרכל קשירה היא שרכל קשירה היא שרבר קשירה, השנייה היא שרבר קשירה אנו טוענים שתי טענות, הראשונה היא שלכל C. מהגדרת מופולוגיית מהגדרת מהגדרת אהכפלה. $P_F\cong\prod_{y\in F}X_y$

נבהיר שמטרתנו הייתה למצוא קבוצה צפופה על ולהשתמש בטענה על סגור על סגור על צפופה. עשינו זאת על-ידי הוכחה למקרים סופיים עם למת $Z_F=\{h\in\prod_{lpha\in I}X_lpha=Y\mid$ נגדיר גדיר הבא הכוכב. בשלב הכוכב המכפלה קשירה המכפלה קשירה המכפלה המכפלה הכוכב. בשלב הבא הכוכב המכפלה אם נגדיר , $f_F(lpha)=f(lpha)$, או $f_F:I\setminus F o igcup_{lpha\in I\setminus F}X_lpha$ עבור $Y_F imes\{f_F\}$, שווה לי עבור Z_F או $\forall eta\notin F, h(eta)=f(eta)\}$ נקונן מספיק להתבונן אפופה ולכן קבוצה שכן אפופה לכל על מתקיימים מתקיימים לכל אכן אכן קבוצה קשירה, את שכן קבוצה לכל בוצה על בוצה על לכל לכל על אכן לכל אויב בוער בוצר על אפופה ולכן אפופה ולכן אפופה ולכן אפופה ולכן להתבונן בוער איינוער איינ בבסים שהגדרנו בעזרתו את טופולוגיית מתכפלה, כל מתקיים $\emptyset
eq B \in \mathcal{B}$ מתקיים שלכל של הטופולוגיית שלכל בסים שהגדרנו בעזרתו את מתקיים שלכל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים שלכל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים של הטופולוגיית המכפלה, בתחום של הטופולוגיית המכפלה, בתחום של הטופולוגיית המכפלה, בתחום של הטופולוגיית הטופולוגית הטופול g(eta)=f(eta)כך ש־ $g\in B$ כך לכל $\emptyset
eq U_lpha\subseteq X_lpha$ סופית ו $F\subseteq I$ סופית כאשר הוא מהצורה $G\in B$ כך ש־ $G\in B$ סופית ו $G\in B$ סופית ו $G\in B$ סופית ו

21.4.2025 - 6 שיעור 6 6.2

, אז נגדיר, או היושהי איזושהי מ־ $\emptyset
eq \emptyset$, מ־ $\emptyset : A \notin F$ לכל

$$B \ni g(\alpha) = \begin{cases} h(\alpha) & \alpha \in F \\ f(\alpha) & \alpha \notin F \end{cases}$$

 $g\in Z_F\subseteq Z$ נטען כי $g\in Z$, זאת שכן

22.5.2025 - 7 שיעור 7

7.1 קשירות – המשך

התוחה וקשירה $x\in X$ אם לכל סביבה W של $x\in X$ אם לכל קשיר מקומית בנקודה אוא קשיר מקומית אם און נאמר שהמרחב הטופולוגי הוא קשיר מקומית לכל $x\in X$ האמר שx קשיר מקומית אם x קשיר מקומית לכל $x\in X$

x את מכילה אשר המקסימלית הקשירות הקבוצה הת-הקבוצה במרחב במרחב x במרחב במרחב רכיב קשירות) רכיב הקשירות של

. $\bigcup_{x \in Z \subset X} Z$ את אכן קיימת אכן הטופולוגיה, לאיחוד אסגירות הסגירות בשל הסגירות אכן אכן הערה

. $\{\frac{1}{3}\}$ ־ש היא התשובה התשובה ב־ \mathbb{Q} ? ב־לוגמה 7.1 מה הוא רכיב הקשירות של

lpha(a) ל־lpha(a) נאמר שזוהי מסילה ביA היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל־lpha(a) הגדרה lpha(a) מסילה lpha(a) היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lpha(a) האמסילה lpha(a) מסילה בין lpha(a) היא פונקציה רציפה lpha(a) ל-lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lp

כך $x\in U\subseteq W$ המרחה של x יש קבוצה לכל סביבה אם לכל מקומית קשיר מסילתית המרחב א קשיר מסילתית מקומית ב־x אם לכל סביבה איש של על המרחב א קשירה מסילתית.

 $x \in X$ קשיר מסילתית מקומית אם x קשיר מסילתית מקומית לכל בהתאם

נתעניין להבין מה הקשר בין ארבעת מושגי הקשירות שראינו זה עתה. נתחיל בתכונה חשובה של קשירות מסילתית.

מסילתית אחf(X) אם אז $f:X\to Y$ ו מסילתית אסילתית אם 7.6 אם 7.6 מענה

lpha(0)=p' כך ש־ lpha:[0,1] o X הוכחה. יהיו f(p')=p, f(q')=q כך ער p', $q'\in X$ כך ש־ p', אז קיימות נקודות a יהיו a כך ש־ a כך ש־ a כך ש־ a כר ביפות היא רציפות היא רציפות היא רציפות היא רציפות היא רציפות היא מסילה המקשרת את a ל־ a מסילה a ביa a מסילה a יהיא רציפות היא רצ

עתה נראה את הקשר בין קשירות וקשירות מסילתית.

. מענה 7.7 אם X קשיר מסילתית אז X קשיר

לא קשיר $f(X)=\{0,1\}$ אבל $f(X)=\{0,1\}$ אבל דיסקרטית כך שי $f:X \to \{0,1\}$ אבל אבל אבל קשיר אז אם אם הוכחה. אם לא קשיר אז יש פונקציה רציפה לו אבל היים הטופולוגיה הדיסקרטית כך לא קשיר.

נבחין כי קשירות לא גוררת קשירות מסילתית, נראה דוגמה מתאימה.

X=0 נבחין כי \mathbb{R}^2 נבחין ארף הסגור של גרף הסגור של \mathbb{R}^2 , ונניח של \mathbb{R}^2 , ווהי תת-קבוצה של \mathbb{R}^2 , זוהי תת-קבוצה של \mathbb{R}^2 , ונניח של הסגור אל קשיר מסילתית, א קיימת מסילה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה \mathbb{R}^2 , סגור של קבוצה קשירה הוא קשיר ולכן סגור זה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה $\alpha(0)=(0,0), \alpha(1)=(1,\sin 1)$ כך שר $\alpha:[0,1]\to X$

28.4.2025 - 8 שיעור 8

- קשירות פינות - 8.1

דוגמה 8.1 נראה מרחב קשיר אך איננו קשיר מקומית. זהו מרחב המסרק,

$$(\{0\}\times[0,1])\cup\{[0,1]\times\{0\}\}\bigcup_{n\in\mathbb{N}}\{\frac{1}{n}\}\times[0,1]$$

מן הצד השני ראינו גם כי קשירות לא גוררת קשירות מסילתית.

,(0,1]ב־ $\sin \frac{1}{x}$ של גרף של \mathbb{R}^2 הצמצום אב **8.2** הצמצום אונמה

$$Y = (\{0\} \times [0,1]) \cup \{(x, \sin\frac{1}{x}) \mid 0 < x \leq 1\}$$

מרחב זה הוא קשיר שכן הוא צמצום של מרחב קשיר והגרף רציף כתמונה של פונקציה רציפה ממרחב קשיר (קטע).

,נניח בשלילה שY קשיר מסילתית ולכן יש בפרט מסילה $\alpha:[0,1] o Y$ כך שמתקיים,

$$\alpha(0) = (0,0), \qquad \alpha(1) = (1, \sin 1)$$

נמצא . $lpha_1(t_1)=rac{1}{2}$ כך ש־ $rac{1}{2}$ ס כך $t_1<1$ ממשפט ערך הביניים קיים $lpha_1(t_1)=0$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ ממשפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ משמתקיים,

$$\alpha(t_2) = (?, -1)$$

ואכן מאפיון ענקבל שלנקודות האה נקודות ככה סדרה של לבנות ככה מדרה של נוכל לבנות אלה יש גבול ($\alpha(t_3)=(?,1)$ שלנקודות היינה לגבולות נקבל.

$$\alpha(0) = \lim_{n \to \infty} t_n = \lim_{n \to \infty} (-1)^n$$

אבל גבול זה לא קיים.

מענה 8.1 אם X קשיר וקשיר מסילתית מקומית אז X קשיר מסילתית.

, הותוה, אנו יודעים גם אנו יודעים אנו אנו יודעים ש־ $A \neq \emptyset$ ולכן אנו יודעים ש־ $A \neq 0$ ונתבונן במחלקת הקשירות של $a \in A$ ונסמנו אנו יודעים מסילתית ולכן בפרט ישנה סביבה של $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$

נטען גם כי A סגורה, הראינו שבמרחב קשיר מסילתית מקומית כל רכיב קשירות מסילתית הוא קבוצה פתוחה, אבל זה גורר שכל רכיב קשירות מסילתית האחרים. מסילתית האחרים.

A=Xאבל $x_0\in A$ אבל אבל $A\in\{X,\emptyset\}$ אז

8.2 קומפקטיות

. הגדרה של X יש תת־כיסוי סופי. אם לכל כיסוי פתוח של א יש תת־כיסוי סופי. מרחב טופולוגי א יקרא קומפקטי אם לכל כיסוי פתוח של א יש תת־כיסוי סופי.

 $X=igcup_{lpha\in I_0}U_lpha$ שים סופי כך אז קיים $X=igcup_{lpha\in I}U_lpha$ כך שר $\{U_lpha\}_{lpha\in I}$ כך פרוח המכיל את איז היא שלכל אוסף קומפקטית אם היא מרחב קומפקטי כתת־מרחב של X, זה נכון באופן דומה עבור כיסוי פתוח המכיל את $K\subseteq X$ תיקרא קומפקטית אם היא מרחב קומפקטי

נראה הגדרה שקולה בניסוח של קבוצות סגורות,

$$\bigcap_{\alpha \in I_0} F_\alpha = \emptyset$$

. הטומה אסורה אם ורק אם ורק אם היא קומפקטית היא $A\subseteq\mathbb{R}^n$ העת־קבוצה שתת־קבובה האינו בקורסים בקורסים שתת־קבוצה או

עבור המקרה של $A \subseteq \mathbb{R}$ עבור המקרה של

$$A\subseteq\bigcup_{n\in\mathbb{N}}(-n,n)=\mathbb{R}$$

28.4.2025 - 8 שיעור 8

$$V \cap (\bigcup_{i=1}^{N} U_{a_n}) = \emptyset$$

. בהמשך. יותר כללית ולכן $V \subseteq \mathbb{R} \setminus A$ ולכן ולכן ענה יותר מענה לכיוון ולכן א ולכן ולכן ולכן ערכה אולכן ולכן ולכן א ולכן ולכן אולכן ולכן אולכן ולכן אולכן אולכן אולכן אולכן ולכן אולכן אולכן ולכן אולכן ולכן אולכן אולכן ולכן אולכן אולכן ולכן אולכן אולכן אולכן ולכן אולכן א

היא סגורה, אוסדורף X היא טענה מופרים במרחב במרחב הומפקטית לל היא היותר, כל היא סגורה, הוכחנו כרגע מענה הזקה יותר, כל תת־קבוצה קומפקטית

היא $A=\{a\}$ הטריוויאלית, אז הטריוויאלית, קיימים מרחבים איימה קיימים אינה סגורה. לדוגמה האינה קומפקטית עם תת־קבוצה קומפקטית אינה סגורה. לדוגמה אבל לא סגורה.

טענה A אם X קומפקטית ו $A\subseteq X$ סגורה אז א קומפקטית.

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I} U_{\alpha}$$

וקיבלנו כי יש למרחב תת־סיכוי סופי. כלומר יש $I_0\subseteq I$ סופית כך שמתקיים,

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I_0} U_{\alpha}$$

 $A \subseteq \bigcup_{\alpha \in I_{\alpha}} U_{\alpha}$ ולכן

טענה X מרחב איז פונקציה רציפה של מרחב f:X o Y מרחב אם מרחב לומר אם אם למרחב ווייע למרחב מופולוגי מרחב אומפקטית. f:X o Y אז אז $f(X)\subseteq Y$ אז אז אומפקטית.

טענה 8.6 אם X מרחב האוסדורף קומפקטי אז X מרחב רגולרי.

 $.b \notin A$ ונקודה סגורה סגורה בין להפריד אפשר וגן אפשר חב ורק אם ורק אם מתקיימת רגולריות הוכחה. רגולריות אפשר אפ

 U_a,V_a עבור $a\in U_a,b\in V_a$ שיש פתוחות פובע שיש פתוחות כל $a\in A$ כך שי $a\in A$ קומפקטית, נובע שיA קומפקטית, או נובע שי $A\in U$ סגורה עבור $A\subseteq U$ סגורה עבור או נובע שי $A\subseteq U$ ולכן קיימות נקודות בקודות $A\subseteq U$ שיש בA בין או ולכן קיימות נקודות בקודות בחוחות בחוחות זרות כך שי $A\subseteq U$ ולכן קיימות נקודות בקודות בחוחות בחוחות בקודות בקודות בקודות בקודות בקודות בקודות בקודות בחוחות בקודות בק

. היא הומיאומורפיזם ערכית ערכית ערכית הד-חד ערכית f:X o Y , מסקנה מופולוגי מחדם מחדם ערכית ערכית או מסקנה ערכית ווי

עלינו עלינו להראות רק ש־f מקיימת ש־ f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל תת־קבוצה סגורה f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכן מקיימת ש־ f^{-1} סגורה. f^{-1} סגורה אבל f^{-1} סגורה ולכן היא קומפקטית ולכן נובע ש־ f^{-1} סגורה. f^{-1} סגורה להראות ש־ f^{-1} סגורה.

. מרחב מרחב אז א מרחב האוסדורף קומפקטי אז א מרחב נורמלי. אם אם 8.8 מענה

 $B\subseteq$ ו זרות, זרות, אז לכל $b\notin A$ מתקיים $b\notin A$ מתקיים $b\in B$ פתוחות זרות, אז לכל $A,B\in X$ קתי קבוצות סגורות וזרות, אז לכל $B\subseteq U_b$ מתקיים $A,B\in X$ קתי קבוצות הללו מפרידות הללו מפרידות הללו מפרידות הא סגורה במרחב קומפקטי ולכן $B\subseteq \bigcup_{i=1}^n V_{b_i}$ כיסוי פתוח סופי, וכן $A,B\subseteq X$ ושתי הקבוצות הללו מפרידות בין A ל $B\subseteq X$ ופתוחות.

טענה $f:X o\mathbb{R}$ רציפה, אז, רציפה, אז מרחב מופולוגי קומפקטי וX

- הסומה (וסגורה) הסומה f(X) .1
- מקסימום ומינימום f^- מקסימום 2.
- . נניח X מטריזבילי ותהי ρ המטריקה אז f רציפה במידה שווה.

הוכחה. נוכיח את הטענות,

. היא סגורה חסומה. \mathbb{R} היא קומפקטית ותת-קבוצה קומפקטית $f(X)\subseteq\mathbb{R}$ היא סגורה וחסומה.

2. נניח ש־A ולכן כל A מקיים של A ולכן כל A הוא הסופרימום של A ולכן כל עם מקיים מער מחקבל וסופי, נסמן גם A מקיים A מקיים A מתקבל וסופי, נסמן גם A בA מתקבל ובע אם כך ש־A בובע אם כך ש־A בובע אם כך ש־A בובע אם כך ש־A לכל A בובע אם כך ש־לכל בובע אם כך ש־לכל בובע אם כך ש־לכל בובע אם כל בובע אם כך ש־לכל בובע אם בובע אם

$$\bigcup_{i=1}^{n} F_{\epsilon_i} = A \cap [M - \delta, M]$$

עבור $\delta = \min\{\epsilon_1, \ldots, \epsilon_n\}$ נובע אם כך,

$$A\cap\{M\}=\bigcap_{\epsilon>0}(A\cap[M-\epsilon,M])=\bigcap_{\epsilon>0}F_\epsilon\neq\emptyset$$

 $M\in A=f(X)$ ולכן נסיק ולכן ולכן

3. מושאר כתרגיל, אבל רמז הוא מספר לבג לכיסוי.

8.3 קומפקטיות במרחבים מטריים

לא נגדיר אך ניזכר במספר הגדרות חשובות מעולם המרחבים המטריים, הן סדרות קושי, שלמות, חסימות לחלוטין. בהינתן שאנו מכירים את המונחים הללו. נעבור למשפט, אך לפני זה נגדיר מונח חדש שיעזור לנו בהוכחת משפט זה.

הכיסוי אם הכיסוי לבג אז (מספר לבג) אז $\lambda>0$ אז אז X אז פיסוי פתוח של הכיסוי מטרי, ויהי ויהי אמפר לבג של מספר לבג אז מספר לבג של הכיסוי אם הגדרה 8.11 אז $B_\lambda(x)\subseteq U_\alpha$ בך ש־ $\alpha\in I$ לכל לבל אז קיים X

 $lpha\in I$ לכל $U_lpha
ot\equiv B_{rac{1}{n}}(x)$ כך שי $x\in X$ שי $n\in\mathbb{N}$ לכל לראות זאת, לכל מספר לבג. כדי לראות מספר לבג. כדי לראות מספר מסריים מטריים קומפקטיים, תמיד שמספר לבג. כדי לראות זאת, לכל מקומפקטיות סדרתית ונקבל סתירה.

הערה באופן כללי קומפקטיות לא גוררת קומפקטיות סדרתית וגם לא להיפך.

X בואה דוגמה שמצביה שקומפקטיות סדרתית לא גוררת קומפקטיות. נגדיר I=[0,1] וכן I=[0,1] עם טופולוגיית המכפלה. אוכרת דוגמה אוכרים של משפט טיכונוף שנוכיח בהמשך. נגדיר $Y=\{x=(x_i)_{i\in I}\in X\mid |\{\alpha\in I\mid x=1\}|\leq \aleph_0\}$ כתת־מרחב של עם הטופולוגיה המושרית ממנו. אנו טוענים כי Y קומפקטי סדרתית אבל לא קומפקטי.

 $(\alpha,\alpha_1,\ldots,\alpha_n\in I$ נסמן לכל מצד שני, לכל $Y\subseteq igcup_{lpha\in I}U_lpha$ וכן פתוחה, וכן $U_lpha=\{x\in X\mid x_lpha=0\}$ נסמן לכל מצד מצר, לא קומפקטי, לכל לא קומפקטי, לכל ו

$$Y \not\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

 $y_n\in\{0,1\}^J$ עבור $J=igcup_{n=1}^\infty J_n$ עבור lpha
otin J לכל לכל $y_n(lpha)=0$ בת־מניה בת־מניה בת־מניה לכל לכל לכל לכל עבור $J_n\subseteq[0,1]$ עבור לכל מטריים) אז התנאים הבאים שקולים, אז התנאים מטריים מטריים מטריים מטריים מטריים.

- קומפקטיX .1
- קומפקטי סדרתית X .2
- שלם וחסום לחלוטין X .3

 $1\implies 2\implies 3\implies 2\implies 1$ הסדר את המשפט הסדר בו נוכיח את הסדר בו הסדר

29.4.2025 - 9 שיעור 9

- קומפקטיות קומפקטיות 9.1

נמשיך במתן דוגמות,

דוגמה 2.1 נגדיר X, X קומפקטי ממשפט טיכונוף שנוכיח בהמשך. פראה דוגמה למרחב קומפקטי סדרתית שאינו קומפקטי. נגדיר I=[0,1] וכן I=[0,1] וכן I=[0,1] שנוכיח בהמשפט טיכונוף שנוכיח בהמשפט $\alpha\in I$ בגדיר גם $Y=\{x=(x_i)_{i\in I}\in X\mid |\{\alpha\in I\mid x=1\}|\leq\aleph_0\}$ אנו טוענים כי Y אנו טוענים כי Y אנו און על־ידי קבוצות Y, על־ידי קבוצות של Y, על־ידי קבוצות של Y, על־ידי קבוצות של Y, אות שכן אם Y בוצה פתוחה, וכן זהו כיסוי של Y, ביסוי של Y, אות שכן אם Y בוצה פתוחה, אז, על־ידי קבוצות אז,

$$\bigcup_{i=1}^{n} U_{\alpha_i} \subseteq \{x \in X \mid \exists 1 \le i \le n, x_{\alpha} = 0\}$$

,ובמקרה זה נבחר $Z=Z_{lpha}$ עבור,

$$Z_{\alpha} = \begin{cases} 1 & \alpha = \alpha_i, 1 \le i \le n \\ 0 & \text{else} \end{cases}$$

, לכל $y^n=(y^n_\alpha)_{\alpha\in I}$ כאשר $\{y^n\}_{n=1}^\infty\subseteq Y$ תהי סדרתית. תהי קומפקטית עתה כי עתה כי $J_n=\{\alpha\in I\mid y^n_\alpha=1\}$

ונבחין כי \aleph_0 נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$ נתבונן במרחב הטופולוגי $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם מטרי. רעינו שיש מטריקה על $\{0,1\}^I\to\{0,1\}^I\to\{0,1\}^I$ שמתאימה לטופולוגיית המכפלה. נגדיר את ההטלות $J=\bigcup_{n\in\mathbb{N}}J_n$ כאשר $J=\bigcup_{n\in\mathbb{N}}J_n$ מתכנסת. מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$

דוגמה 9.2 נראה דוגמה למרחב קומפקטי שאינו קומפקטי סדרתית.

 $f_n:[0,1] o$ לאשר $\{f_n\}_{i=1}^\infty\subseteq X$ כלומר $\{f_n\}_{i=1}^\infty\subseteq X$ מטיכונוף שוב $\{f_n\}$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty\subseteq T$ מקיימת $\{f_n\}_{i=1}^\infty$ מטיכונוף שוב $\{f_n\}_{i=1}^\infty$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty$ ניתן לכתוב כפיתוח בינארי, $\{f_n\}_{i=1}^\infty$ עבור $\{f_n\}_{i=1}^\infty$ ומתקיים, $\{f_n\}_{i=1}^\infty$ נוכל למשל לבחור את הפיתוח שמחלצות את הספרה ה־ $\{f_n\}_{i=1}^\infty$ מהמספר שהן מקבלות. נניח של $\{f_n\}_{i=1}^\infty$ יש כאשר, נגדיר עתה מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$ נגדיר עדור מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$

$$s_m = \begin{cases} 1 & m = n_{2k} \\ 0 & \text{else} \end{cases}$$

ונחשב,

$$f_{n_k}(s) = \begin{cases} 1 & k \in 2\mathbb{N} \\ 0 & k \in 2\mathbb{N} + 1 \end{cases}$$

. ולכן f_{n_k} לא מתכנסת

מצאנו שתי דוגמות שאכן מעידות על זה שקומפקטיות וקומפקטיות סדרתית לא גוררות אחת את השנייה במרחבים כלליים.

 $\prod_{lpha\in I} X_lpha$ אז $lpha\in I$ אז מכפלה של מרחב משפט סיכונוף) משפט חימון היא קומפקטיים היא קומפקטיים, כלומר אם מכפלה של מרחבים טופולוגיים קומפקטיים היא קומפקטיי. עם טופולוגיית המכפלה הוא קומפקטי.

 $Y=W_\omega$ אבל ש־בים אבל שאכן X_1,X_2 מרחבים אבל ארניים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. נניח בשלילה שאכן X_1,X_2 מרחבים טופולוגיים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. לכן יש $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לא קומפקטי. לכן יש $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לא קומפקטי. לכן יש $Y=(a,b)\in Y$ בסיס פתוחה שמכילה את $Y=(a,b)\in Y$ אשר ניתנת לכיסוי על־ידי מספר סופי של קבוצות מהאוסף $Y=(a,b)\in Y$, וזה בלתי אפשרי כי $Y=(a,b)\in Y$ פתוחה ולכן מכילה קבוצת בסיס שמכילה את $Y=(a,b)\in Y$

נטען כי יש $A\in X_1$ כך שלא קיימת קבוצה פתוחה $A\in X_2$ כך ש־ $a\in U$ כך ש־ $a\in U$ נניח בשלילה פרוצות מרסים. נניח באלא קיימת קבוצה פתוחה בתוחה בתוחה על אינים על על־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את $a\in X_1$ של־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצה פתוחה, ולכן קיימות עלכן קיימות עלכן קיימות $A=U_a$ כיסוי פתוח, אבל על קומפקטית ולכן קיימות על־ידי בשל ההנחה כי אין תת־כיסוי סופי על־ $A=U_a$ אוניים בשל ההנחה כי אין תת־כיסוי סופי על־ידי דאת כמובן סתירה בשל ההנחה כי אין תת־כיסוי סופי.

29.4.2025 - 9 שיעור 9 9 שיעור 9

עתה נטען כי יש $b\in X_2$ כך שלכל קבוצה פתוחה $a\in U\subseteq X_1$ ולכל פתוחה $b\in V\subseteq X_2$, הקבוצה לגיתנת לכיסוי סופי על־ידי קבוצות על־ידי קבוצות $a\in U\subseteq X_1$ ביתנת לכיסוי סופי על־ידי קבוצות אלכל של ביתנת לכיסוי סופי כזה. לכן $b\in X_2$ ו־ $X_2=\bigcup_{b\in X_2}V_b$ ניתנת לכיסוי $U_b\times V_b$ ביתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times\bigcup_{i=1}^kV_{b_i}\subseteq\bigcup_{i=1}^kU_{b_i}\times V_{b_i}$ מחקיים על בחירת מהטענה הקודמת. ער אך זו האחרונה ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_2$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ X_1 ניתנת לכיסוי סופי, ולכן קיבלנו ש־ X_2

5.5.2025 - 10 שיעור 10

10.1 קומפקטיות – משפט טיכונוף

ניזכר בכמה הגדרות שמגיעות אליהו מתורת הקבוצות.

הגדרה 10.1 (קבוצה סדורה) סדר על קבוצה, או קבוצה סדורה, הוא הזוג הסדור (X,\leq) , כאשר X קבוצה ו־ (X,\leq) יחס דו־מקומי רפלקסיבי, אנטי־סימטרי וטרנזיטיבי.

הגדרה 10.2 (סדר טוב) סדר טוב הוא סדר קווי, כלומר יש יחס לפחות לאחד הכיוונים בין כל שני איברים בקבוצה, וכן שלכל תת-קבוצה של X יש מינימלי ביחס הסדר.

עיקרון הסדר הטוב מעיד שלכל קבוצה יש סדר טוב כלשהו שמוגדר עליה, והוא שקול לאקסיומת הבחירה.

בשיעור הקודם הוכחנו את משפט טיכונוף למקרה הסופי, עתה נראה את ההוכחה עבור המקרה הכללי. נבחין כי משפט טיכונוף שקול לאקסיומת הבחירה (ולעיקרון הסדר הטוב), ולכן במהלך ההוכחה נהיה מחויבים להשתמש באקסיומה.

באינדוקציה באינדוקציה. נניח בשלילה ש־ $Y=\prod_{\alpha\in I}X_{\alpha}$ אינה קומפקטית, כלומר של כיסוי פתוח שאין לו תת־כיסוי סופי, נסמן את הכיסוי הזה $Y=\prod_{\alpha\in I}X_{\alpha}$ נבנה באינדוקציה לכל Y=T איזשהו בסיס טופולוגי ל-Y, המכילה תת־הקבוצה,

$$\prod_{\alpha \le \gamma} \{X_{\alpha}\} \times \left(\prod_{\gamma < \alpha} X_{\alpha}\right) \tag{1}$$

או את,

$$\prod_{\alpha<\gamma}\{a_\alpha\}\times\prod_{\gamma\leq\alpha}X_\alpha \tag{2}$$
אז אינה ניתנת לכיסוי על־ידי אוסף סופי של a_α . נבנה את באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את על לכל על־ידי אוסף סופי של U אינה ניתנת לכיסוי על־ידי אוסף סופי של

אז a_{α} אז a_{γ} אנה ניתנת לכיסוי על־ידי אוסף סופי של A_{γ} . נבנה את a_{γ} באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את a_{γ} או בנה את a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה בסיס שמכילה את a_{γ} אינרים, יהיו סודרים עוקבים, אלו שמתקבלים מהוספת 1 לאיבר קיים כלשהו, ויש איברים גבוליים, עליהם נסתכל כאיברים אינסופיים, גבול בראי החיבור של איברים אחרים. כדי להתמודד עם הקושי הזה ולהשתמש באינדוקציה טרנספיניטית, מסתכלים על איברים גבוליים אלה או כאיברים מינימליים בקבוצה המתאימה להם, או כסופרימום של קבוצת האיברים הקטנים.

ענדרש. \mathcal{F} אנח סופי של \mathcal{F} ואז מצאנו אנח לכיסוי על־ידי תת־אוסף סופי של פוצת בסיס המקיימת אנח בסיס מפרימת על־ידי תת־אוסף סופי של \mathcal{F} וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ על או שיש קבוצה בסיס בסיס מפרימת שלילת הטענה. בסיס בחין כי,

$$a_{\gamma} \in \pi \gamma(W_{a_{\gamma}})$$

קבוצה פתוחה, אז מתקיים,

$$X_{\gamma} = \bigcup_{\alpha_{\gamma} \in X_{\gamma}} \pi_{\gamma}(W_{a_{\gamma}})$$

אז יש תת־כיסוי סופי,

$$X_{\gamma} = \bigcup_{i=1}^{k} \pi_{\gamma}(W_{a_{\gamma}^{i}})$$

,נגדיר, יש תת־כיסוי סופי על־ידי איברי $igcup_{i=1}^k W_{a^i_\gamma}$ לכן לקבוצה

$$V_i = \left(\prod_{j=1}^k \pi_{\gamma^<}(W_{a^i_\gamma})\right) \times \pi_{\gamma}(W_{a^i_\gamma}) \times \prod_{\alpha > \gamma} X_\alpha$$

, אז, $\pi_{\gamma^<}:Y o\prod_{lpha<\gamma}X_lpha$ כאשר

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^<}(W_{a_\gamma^j})\right) \times \left(\bigcup \pi_{\gamma}(W_{a_\gamma^i})\right) \times \prod_{\alpha > \gamma} X_\gamma$$

ולכן,

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^{<}}(W_{a_\gamma^i})\right) \times \left(\prod_{\alpha \ge \gamma} X_\alpha\right)$$

וקיבלנו סתירה כי הנחנו שהקבוצה הזו לא ניתנת לכיסוי סופי בעזרת איברי ${\mathcal F}$, ובכל זאת מצאנו כיסוי סופי כזה.

, מתקיים, טרנספיניטית לכל אכל לכל לכל מקבלים טרנספיניטית טרנספיניטית לכן לכל אכל לכן מקבלים טרנספיניטית לכן אינדוקציה לכן אינדוקציה אינ

$$Y = \prod_{\alpha \in I} X_{\alpha} \ni f = (a_{\gamma})_{\gamma \in I}$$

מתקיים $\alpha>\gamma_0$ כך שלכל $\gamma_0\in I$ יש איבר בסיס איבר $S_lpha=X_lpha$, ולכמעט כל $W=\prod_{lpha\in I}S_lpha$ כך שלכל $f\in W\subseteq L$ סתקיים ולכן יש איבר בסיס, $S_lpha=X_lpha$ ולכן קיבלנו איבר בסיס,

$$\prod_{\alpha \le \gamma_0} \{a_\alpha\} \times \prod_{\alpha > \gamma_0} X_\alpha \subseteq L$$

וסתירה.

אנו כבר יודעים כי אנו יכולים לראות קומפקטיות גם כך שאם Z קומפקטי אז לכל L אוסף סופי של קבוצות סגורות ב־Z עם תכונת החיתוך הסופי, יש חיתוך לא טריוויאלי.

הגדרה 10.3 (תכונת החיתוך הסופי) נאמר שלאוסף L של תתי-קבוצות של קבוצה Z יש את תכונת החיתוך הסופי, אם לכל תת-קבוצה סופית של יש חיתוך לא טריוויאלי. L

יהיה נוח להסתכל על אפיון אחר,

טענה 10.4 (שקילות לקומפקטיות) מרחב טופולוגי Z הוא קומפקטי אם לכל אוסף L של תתי־קבוצות Z עם תכונת החיתוך הסופי, מתקיים D ש־D D ש-D .

נעבור למספר טענות לקראת משפט שנראה בהמשך.

טענה 10.5 אם לאוסף קבוצות $L_{eta}=\{\pi_{eta}(A)\mid A\in L\}$ יש את תכונת החיתוך הסופי, אז גם לי $L\subseteq\prod_{lpha\in I}X_{lpha}$ יש את תכונת החיתוך הסופי ביחס לי- X_{eta} .

אומנם לא נוכיח טענה זו, אבל נשים לב שהיא נובעת באופן ישיר מהאפיון הנוסף לקומפקטיות ושימוש בקבוצות הסגורות המושרות מהסגור שהגדרנו על L.

טענה 10.6 אם L אוסף תתי־קבוצות של Y המקיים את תכונת החיתוך הסופי, אז L מוכל באוסף תתי־הקבוצות של Y עם תכונת החיתוך הסופי, כך שהאוסף מקסימלי.

החורה החיתוך הסופי, זו קבוצה את תכונת המקיימות המקיימות $\Omega=\{C_{\alpha}\}$, $L\subseteq C\subseteq \mathcal{P}(Y)$ של כל תתי-הקבוצות החיתוך מחלקית על-ידי הכלה, ולכן מהלמה של צורן נובע שאכן יש איבר מקסימלי כזה.

נראה טענה כללית נוספת ובעלת חשיבות.

 $\bigcap_{i=1}^n A_i \in M$ גם $A_1, \ldots, A_m \in M$ ולכל $m \in \mathbb{N}$.1

 $B\in M$ אז $A\cap B
eq\emptyset$ אם $A\in M$ אז $B\subseteq R$ אז $B\subseteq A$ אם .2

גם כאן, ההוכחה היא ברורה ונובעת מהמקסימליות, ומושארת כתרגיל לקורא.

נעבור להוכחה נוספת למשפט טיכונוף, תוך שימוש בטענות שראינו זה עתה.

עם אסימלי עם $L\subseteq M\subseteq \mathcal{P}(Y)$ יש הסופי. עם תכונת החיתוך עם הכל עם אכל לכל לכל לכל לכל לכל אין איז הסופי. עם עם החיתוך הסופי. איז לכל לכל לכל לכל לכל איז איז החיתוך הסופי. איז החיתוך הסופי.

 $M_{\alpha} = \{\pi_{\alpha}(A) \mid A \in M\}$ לכל α נגדיר

 $y_lpha\in igcap_{A\in M_lpha}\overline{A}$ את lpha את הכונת החיתוך הסופי. נובע ש־ X_lpha קומפקטי ו־ $X_lpha=0$. נבחר לכל את $M_lpha\subseteq \mathcal{P}(X_lpha)$ ל-

, מקיימת $y=(y_\alpha)_{\alpha\in I}\in\prod_{\alpha\in I}X_\alpha=Y$ הנקודה כי נוכיח אנו נוכיח אנו

$$y\in\bigcap_{B\in M}\overline{B}\subseteq\bigcap_{A\in L}\overline{A}$$

שמקיימת $y\in W\subseteq Y$ כסיס $y\in \overline{B}$ ונראה שכל קבוצת בסיס $y\in W$ בסיס מחוחה שמכילה את חותכת את חותכת את חותכת שכל קבוצת בסיס $y\in W$ בסיס היא חיתוך של מספר סופי של קבוצות $y\in W$ באוסף עבור $y\in W$ עבור בסיס $y\in W$ פתוחה. מטענה 10.7 באוסף $y\in W$ בסיס של חיתוך של מספר סופי של קבוצה $y\in W$ באוסף $y\in W$ מקסימלי ולכן אם $y\in W$ כזו כך ש־ $y\in W$ כזו כך ש־ $y\in W$ ביבר ב־ $y\in W$ מספר סופי של $y\in W$ מספר סופי של $y\in W$ חותך כל איבר ב־ $y\in W$ נובע ש־ $y\in W$ נובע ש־ $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אך אלה ב־ $y\in W$ חותך כל איבר ב- $y\in W$

אז גם $y_{\beta}\in\pi_{\beta}(D)$ גם $D\in M$ נובע שלכל $A=\pi_{\beta}(D),D\in M$ וכן $y_{\beta}\in\bigcap_{A\in M_{\beta}}\overline{A}$ אז גם $y_{\beta}\in Z_{\beta}$ עבור $y_{\beta}\in Z_{\beta}$ פתוחה, ולכן $y_{\beta}\in\pi_{\beta}(D)$ גם $y_{\beta}\in Z_{\beta}$ וויתוך זה לא ריק, כפי שרצינו להראות. $y_{\beta}\in\pi_{\beta}(Z_{\beta})=y_{\beta}\cap D$ גם אז גם $y_{\beta}\in\pi_{\beta}(D)$ אז גם $y_{\beta}\in Z_{\beta}$ פרט חיתוך זה לא ריק. לכן גם $y_{\beta}\in\pi_{\beta}(D)$

6.5.2025 - 11 שיעור 11

בהינתן מרחב טופולוגי X האם יש מרחב קומפקטי שמכיל את X? נענה על שאלה זו בהרצאה הקרובה. נתחיל בהגדרת הרעיון באופן פורמלי.

 $X=\overline{X}$ וגם $X\subseteq Y$ בך שר Y כך מרחב קומפקטיזציה אוגם X של X של אוגם X היא מרחב קומפקטיזציה (קומפקטיזציה) אוגם

ועתה משיש לנו טרמינולוגיה מתאימה, נוסיף הגדרה שתעזור לנו.

הגדרה 11.2 (מרחב טופולוגי קומפקטי מקומית) מרחב טופולוגי $x\in X$ הגדרה 11.2 (מרחב טופולוגי קומפקטית) מרחב טופולוגי $x\in X$ יש סביבה הגדרה הגדרה מקומית X-ב-תוחה $x\in W\subseteq C$ היימת וקיימת $x\in C\subseteq X$ פתוחה ב-

. [0,1]ו־ן S^1 הם X, הם קומפקטיזציה להצוא שני מרחבים שני מרחבים שני אני למצוא קומפקטיזציה למצוא ונרצה למצוא דוגמה 11.1 X

 $\hat{X}=Y=X\cup\{\infty\}$ משפט 11.3 (תנאי מרחב קומפקטי מקומית לקומפקטיות) אם X מרחב טופולוגי קומפקטי מקומית והאוסדורף, אז המרחב עבור עם הטופולוגיה, דשה חדשה לקודה הטופולוגיה, $\infty \notin X$

$$\hat{\tau} = \tau \cup \{Y \setminus K \mid K \subseteq X, K \text{ is compact}\}$$

הוא מרחב קומפקטי והאוסדורף.

 $\{V_{lpha}\mid V_{lpha}=$ י שקולה זו שקולה ל"כוצה ע"כ נניח ש"ל פופי. נניח ש"ל סופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. נראה החילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. בראה החילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. בישרא החילה ל"כומר סגורה לאיחודים וסגורה לחיתוך סופי. בישרא החילה ש"ל סופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. בישרא החילה ש"ל סופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך החילה ש"ל סופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. , כי, נבחין השנייה השניה העונה Ω ואת זו הראשונה העמפקטית. נסמן את קומפקטית. כאשר אינ השנייה העניה או הראשונה הער $K_{\alpha}\subseteq X$

$$\bigcup_{\alpha \in I} V_{\alpha} = \bigcup_{V \in \Lambda} V \cup \bigcup_{V \in \Omega} V = U \cup \bigcup_{U \in \Omega} U$$

,כך שמתקיים, בל מההגדרה קיימת $J\subseteq I$

$$\bigcup_{\alpha \in J} (Y \setminus K_{\alpha}) = Y \setminus \bigcap_{\alpha \in J} K_{\alpha}$$

 $V\cup igcup_{U\in\Omega} U=V\cup (Y\setminus K)$ נובע ש־נבע האוסדורף ולכן סגורה, לכן גם סגורה, לכן גם סגורה ולכן קומפקטית כמוכלת האוסדורף וכל $\bigcap K_lpha$ היא סגורה, לכן גם עבור K קומפקטית.

. סגורה לחיתוכים סופיים, כנביעה מהשלמה לאיחודים $\hat{ au}$

 $V\in au$ אם $A=X\cap V$ שי $V\in\hat au$ על א משרה את au על א משרה בטופולוגיה בטופולוגיה בטופולוגיה את את דעל א פתוחה באת $A\subseteq X$ היא פתוחה בטופולוגיה משרה את את דעל א משרה את דער את היא פתוחה בטופולוגיה בעופולוגיה המושרים. אז, $V=Y\setminus K$ אם $AX\cap V=V\in au$ אז, אז בוודאי

$$A = X \cap V = X \cap (Y \setminus K) = X \setminus K \in \tau$$

כי X סגורה, זאת שכן K קומפקטית ו־X האוסדורף.

מרחב את $U,W\in au\subseteq \hat{ au}$ מרחב פתוחות את $y,y'\in X$ המפרידות את $y,y'\neq \infty$ ו המפרידות את $y,y'\in Y$ מרחב האוסדורף כי אם אוסדורף כי אוסדורף כי אם אוסדורף כי אוסדורף בי אוסדורף כי אוסדורף כי אוסדורף כי אוסדורף בי אוסדורף בי אוסדורף כי אוסדורף בי אוסדורף $y\in W,Y\setminus C$ אם Xים קומפקטית ב־X, אם אם $Y\in W$ ביש קומפקטית מקומית אולכן על $Y'=\infty$ אם אם אם $Y\in U,y'\in W,U\cap W=\emptyset$ $\hat{\tau}$ והן פתוחות ב

על פתוח של $\{V_{lpha}\cap X\mid V_{lpha}\in L\}$ קולכן $\infty\in V_{lpha_0}=Y\setminus K$ יש אל ביסוי פתוח של כיסוי נניח של עלה ער $\{V_{lpha}\}=L$ כיסוי פתוח של כיסוי פתוח של , כך שמתקיים, כיסוי פתוח של א שכן שכן מוס פתוח של כיסוי פתוח של כיסוי כיסוי ל $\{V_{lpha}\cap X\mid V_{lpha}\in L\}$. $K\subseteq X$

$$K \subseteq \bigcup_{i=1}^{N} (V_{\alpha_i} \cap X)$$

 $.Y = igcup_{i=1}^N V_{lpha_i}$ ונסיק ש־

מצאנו קומפקטיזציה על־ידי הוספת נקודה יחידה.

. בלבד, ו־ ∞ נקודה בלבד, בלבד, אחרת אחרת או קומפקטי אז אינו קומפקטי או בלבד, אחרת אחרת או אינו הערה אם אינו קומפקטי אז

z:X o z, ב־ $X\hookrightarrow X$ כך ש־Xכך שלנו עתה היא להראות שאם א מרחב האוסדורף קומפקטי מקומי אז יש מרחב קומפקטי, נסמן z(X), F=C(X,[0,1]) וכן שכל פונקציה רציפה וחסומה של X ניתנת להרחבה לפונקציה של $\overline{z}(X)=X$. נגדיר (גדיר עיפה $\overline{z}(X)$ אוסף כל הפונקציות הרציפות מ־ $X \in F$ ולכל $x \in X$ ולכל $x \in X$ אוסף כל הפונקציות המכפלה, אז נקבל שלכל $x \in X$ ולכל $x \in X$ אוסף כל הפונקציות המכפלה, אז נקבל שלכל $x \in X$ ולכל $x \in X$ Z(X) של אם הסגור קומפקטיזציה ב־ \dot{X} תסומן ב־z(X) הסגור של התמונה .

12.5.2025 - 12 שיעור 12

12.1

נמשיך עם המשפט שדנו בו בשיעור הקודם.

משפט 12.1 (סטון־צ'ק) אם X מרחב טופולוגי האוסדורף קומפקטי מקומית אז קיים מרחב טופולוגי קומפקטי האוסדורף Y כך שקיים שיכון משפט X ניתנת לפונקציה רציפה על T כך שההרחבה יחידה. T וכל פונקציה רציפה וחסומה על T ניתנת להרחבה לפונקציה רציפה על T כך שהארחבה יחידה.

הרחב המכפלה $[0,1]^F$ ממשפט טיכונוף זהו מרחב X o [0,1] נתבונן הרציפות הרציפות אוסף הפונקציות הרציפות הרציפות X o [0,1] נתבונן במרחב המכפלה F = C(X,[0,1]) ממשפט טיכונוף זהו מרחב $X o [0,1]^F$ קומפקטי וכמו־כן הוא האוסדורף. נגדיר העתקה $X o [0,1]^F$ על־ידי $X o [0,1]^F$ על־ידי גדיר גם $X o [0,1]^F$ נגדיר גם $X o [0,1]^F$ קומפקטית כי היא תת־קבוצה סגורה של מרחב קומפקטי, וכן $X o [0,1]^F$ היא האוסדורף כתת־מרחב של מרחב האוסדורף.

. בדוק, אז הומיאומורפיזם, איז הוכך ערכית ערכית דר־חד העתקה היא הומיאומורפיזם, איז שיכון ערכית איז ערכית ערכית אז היא שיכון אם איכון אז בדוק.

עבור חד־חד ערכיות תהינה $f(x_1)\neq f(x_2)$ כך ש־ $f\in F$ אנו טוענים כי $x_1,x_2\in X$ בהינתן טענה זו נסיק עבור חד־חד ערכיות תהינה $\iota(x_1)\neq\iota(x_2)$ ולכן $\iota(x_1)(f)\neq\iota(x_2)(f)$

יש בחורף. עבור מרחב קומפקטי והאוסדורף. ניזכר בלמה של אוריסון, עבור מרחב קומפקטי והאוסדורף. ניזכר $U_1 \cap U_2 = \emptyset$ מהאוסדורף עבור מרחב כך שריסון U_1, U_2 פתוחות ב־ $U_1, U_2 \in U_1$ בננה פונקציה רציפה על $U_1, U_2 \in U_1$ קבוצות סגורות קומפקטיות סביב $U_1, U_2 \in U_1$, כך שמהלמה של אוריסון יתקיים $U_1, U_2 \in U_1$ נבנה פונקציה רציפה על $U_1, U_2 \in U_1$

נותר להראות ש־ $\iota(X) = \iota(X)$ היא הומיאומורפיזם. כלומר צריך להראות שכל קבוצה פתוחה ש $\iota: X \to \iota(X)$ מקיימת ש $\iota: X \to \iota(X)$ היא פתוחה, וגם להראות ש־ $\iota: X \to \iota(X)$

ער שיש $x\in W$ פתוחה ולא ריקה, אנו רוצים להראות ש־ $\iota(W)$ פתוחה. תהי עוד אז פתוחה ולא ריקה, אנו רוצים להראות ש $\iota(W)$ פתוחה. עבור $U\supseteq W$ עבור עובור $U\supseteq W$ וכן ש־U

 $\pi_f: [0,1]^F o [0,1]$ בהיר כי $\iota(x) \in V \cap \iota(X) \subseteq \iota(W)$ היא פתוחה כך היא פתוחה כי $V = \pi_f^{-1}([0,1])$. נמשיך ונטען כי

 $a_f=\inf\{f(x)\mid x\in X\}, b_f=$ עבור עבור את נבחן את $ilde{F}=\{f:X o\mathbb{R}\mid f ext{ is bounded and continuous}$ היו $\sup\{f(x)\mid x\in X\}$

eta(X)סימון ב-נינו ב-ממן את המרחב א נסמן 12.2 סימון

משפט 12.3 (הרחבה רציפה לפונקציות במרחבים קומפקטיים מקומית) יהי X מרחב קומפקטי מקומית האוסדורף, G קומפקטי והאוסדורף. אז כל $\hat{\varphi}: \beta(X) o C$ ניתנת להרחבה רציפה $\varphi: X o C$

הורחיב $g_j=\pi_j\circ \varphi:X o [0,1]$ יש פונקציה $f\in J$ יש פונקציה על הרחיב G אז ניתן להרחיב פרן שיש שיכון $g(\beta(X))\subseteq C$ אז $g_j=\pi_j\circ \varphi:X o [0,1]$ יש פונקציה הרציפה באופן רציף. נסמן $g(\beta(X))\subseteq C$ אז $g_j=g(X)$ הפונקציה הרציפה באופן רציף. נסמן $g_j=g(X)$ באופן רציף. נסמן $g_j=g(X)$ אנו מסיקים ש־ $g(X)\subseteq C$ באשר בוחנים את $g(X)\subseteq C$ באופן של $g(X)\subseteq C$ אנו מסיקים ש־ $g(X)\subseteq C$ אנו מסיקים של $g(X)\subseteq C$

טענה $X\hookrightarrow Y_i$ נניח ש־ $X\hookrightarrow Y_i$ מרחב האוסדורף קומפקטי מקומית ו־ Y_1,Y_2 קומפקטיות האוסדורף עם שיכונים $X\hookrightarrow Y_i$ צפופים כך שכל פונקציה רציפה וחסומה מ־X ל־X ניתנת להרחבה רציפה של Y_1,Y_2 , אז Y_1,Y_2 הומיאומורפים.

. פנים שלה שלה לסגור לסגור לסגור, $\overline{(A)}^\circ=\emptyset$ אם דלילה אם תיקרא קבוצה עופולוגי. קבוצה מרחב מופולוגי. קבוצה אם אם 12.5 מרחב מופולוגי. קבוצה אם אם מרחב מופולוגי

. דלילות). ב־ \mathbb{R} הן דלילות). ב־ \mathbb{R} בילות). ב־ \mathbb{R} בילות).

מהצד השני $\mathbb{Q} \subset \mathbb{R}$ לא דלילה.

הגדרה 12.6 (קטגוריה ראשונה ושנייה) קבוצה תיקרא מהקטגוריה הראשונה אם היא איחוד בן־מניה של קבוצות דלילות, אחרת נאמר שהיא מהקטגוריה השנייה.

משפט 12.7 בייר) האוסדורף או מרחב מטרי שלם, משפט או מרחב מטרי שלם, משפט משפט מייר) או משפט מייר

אז לכל אוסף בן־מניה $\bigcup_{n=1}^{\infty}A_n$ של קבוצות דלילות מתקיים שלאיחוד של $\{A_n\}_{n=1}^{\infty}$ יש פנים ריק.

12.5.2025 - 12 שיעור 12 שיעור 12 12.5.2025

. בפופה $\bigcap_{n=1}^\infty U_n$ אז וצפופות פתוחות קבוצות הן $\left\{U_n\right\}_{n=1}^\infty$ שאם שקול לטענה המשפט הערה הערה הערה און $\left\{U_n\right\}_{n=1}^\infty$

הוכחה. המשפט הוא למעשה שני משפטים על שני תנאים שונים, אנו נוכיח את המקרה של מרחב קומפקטי האוסדורף, והמקרה השני מושאר כתרגיל ומשתמש בעקרונות דומים.

$$a_n \in V_n \subseteq \overline{V}_n \subseteq U_{n-1}$$

, ולכן, אוסף מביניהן סופי מספר שכל המקיימות סגורות קבוצות אוסף אוסף האוסף האוסף האוסף $\{\overline{V}_n\}$ האוסף האוסף האוסף ולכן, האוסף לא האוסף ה

$$\bigcap_{n=1}^{\infty} \overline{V}_n \neq \emptyset$$

 $.U \not\subseteq \bigcup_{n=1}^\infty A_n$ נסיק ש $.b \in U$ אבל אבל , $b \notin \bigcup_{n=1}^\infty A_n$ נסיק ש $.b \in \bigcap \overline{V}_n$ ויהי

 $X\setminus\{x\}$ האטברות הצטברות היא היא בקודה אם כל נקודה מושלם מרחב מרחב (מרחב מושלם) מרחב הגדרה 12.8 הגדרה

מסקנה אז X אז אז לא בן־מניה. מסקנה אוסדורף מרחב מרחב מרחב נניח ש־X

הגדרה 12.10 (תכונת בייר) נאמר שמרחב X הוא מרחב בייר אם מתקיים שלאיחוד בן־מניה של קבוצות דלילות אין פנים.

מתקיים $x_0\in X$ מתקיים על X כך שלכל X כך מלכל נניח ש־X היא סדרת פונקציות רציפות על מרחב בייר ו־X מתקיים מטרי, ונניח ש־X מרחב מטרי, ונניח ש־X מתקיים מרחב בייר ו־X מרחב מטרי, אז X רציפה בקבוצה צפופה של נקודות.

X= מתקיים $\epsilon>0$ אז לכל $B_n(\epsilon)=\{x\in X\mid \forall m,n\in\mathbb{N},\ d(f_n(x),f_m(x))\leq\epsilon\}$ אז לכל $\epsilon>0$ אז לכל פנים. $t\in S$ מתקיים אז לכל $t\in S$ מתקיים פנים. $t\in S$ זוהי קבוצה סגורה עם פנים, ולכן לאיזושהי קבוצה באיחוד אמור להיות פנים.

13.5.2025 - 13 שיעור 13

13.1 השלמות לקומפקטיזציה

לניח (כלשהי, ונניח $f:X \to Y$ ווניח בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש־Y מרחב מטרי וגם ש $f:X \to Y$ בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש $f:X \to Y$ או $\lim_{n \to \infty} f_n(x) = f(x)$ גם $f:X \to Y$ גם גום $f:X \to Y$ או $f:X \to Y$ או נניח שלכל $f:X \to Y$ בייר (לאיחוד בן־מניה של דלילות בייר).

הוכחה. תת־קבוצה פתוחה של מרחב בייר היא מרחב בייר (ביחס לטופולוגיה המושרית עליה), נגדיר גם,

$$\forall \epsilon > 0, N \in \mathbb{N}, \ B_N(\epsilon) = \{ x \in X \mid \forall n, m \ge N, \ |f_n(x) - f_m(x)| \le \epsilon \}$$

אז $\bigcup_{k=1}^\infty U(rac{1}{k})$ וכן נובע ש־ $B_N^\circ = U(\epsilon) = U(\epsilon)$ פתוחה וצפופה. f רציפה ב־ $B_N^\circ = U(\epsilon)$ צפופה כי X מרחב בייר. $U(\epsilon) = U(\epsilon)$ מרחב בייר. סוף ההוכחה מושאר כתרגיל.

משחק מזור 13.2

עתה נדון במשחק מזור (Mazur).

סגור קטע בוחר בוחר אנו מניחים כי יש לנו שני שחקנים, א' וב'. נניח גם כי קיימת $A\subseteq [0,1]=I_0$ משחק מזור) אנו מניחים כי יש לנו שני שחקנים, א' וב'. נניח גם כי קיימת $I_1\subseteq I_2$ או וב' יבחר אר $I_1\subseteq I_2$ וב' יבחר בוחר או וב' יבחר אר $I_1\subseteq I_2$ וב' יבחר שחקן א' מנצח אם ורק אם $I_1\subseteq I_2$ וב' יבחר אר מנצח אם ורק אם מנצח אם ורק אם מנצח אור בוחר קטע סגור וב' יבחר אר מנצח אם ורק אם מנצח אם ורק אם מנצח אור בוחר קטע סגור וב' יבחר אר מנצח אם ורק אם מנצח אור בוחר המנצח אור מנצח אם מנצח אור בוחר המנצח אור מנצח אור בוחר המנצח אור מנצח אור בוחר המנצח המנ

תרגיל 13.1 האם יש אסטרטגיית ניצחון? אם יש, מה התנאים שלה ולמי?

13.3 מבוא לטופולוגיה אלגברית

Xעל שקילות שקירות יחס אררב איז וויט מרחב מרחב עניח מנייה. נניח אלמרחבי מתחב מרחב מרחב מנייה. נניח איז ווי

סימון 23.2 נסמן מחלקות שקילות של X ב־X על־ידי,

$$[x] = [x]_R = \{ y \in X \mid (x, y) \in R \}$$

וכן נסמן,

$$X/R = \{ [x] \mid x \in X \}$$

 $\pi(x) = [x]$ על־ידי $\pi: X o X/R$ וכן

אנו רוצים למצאו טופולוגיה על X/R החזקה ביותר כך ש־ π היא רציפה. נגדיר $L\subseteq X/R$ להיות פתוחה אם ורק אם $\pi^{-1}(L)\subseteq X$ פתוחה. X/R שהיא על T שהיא על T שהיא על T באופן דומה נוכל להגדיר בצורה כזו טופולוגיה בהינתן פונקציה T שהיא על T

. מעגל. אינהג למעשה ([0,1] בהינתן X/R בהינתן X/R בהינתן $X=\{0,1\}$ ונקבל ש $X=\{0,1\}$ ונקבל $X=\{0,1\}$ יתנהג למעשה כמו מעגל.

 \mathbb{R}/\sim עבור \mathbb{R}/\mathbb{Z} עבור למעגל שוב. נהוג לסמן עבור אוב לכל $x\sim x+n$ עבור לכל עבור עבור אוב. $X=\mathbb{R}$

קס $x\in U\subseteq X$ יש סביבה פתוחה אם לכל $x\in X$ אם לכל ממימד (ממימד אוקלידי הקרא אוקלידי מקומית) מרחב מופולוגי אוקלידי מקומית אוקלידי מקומית ממימד מאחקיים,

- \mathbb{R}^n ב- הפתוח היחידה לכדור לכדור הומיאומורפית ל
 - \mathbb{R}^{n} הומיאומורפית ל- U
 - \mathbb{R}^n ב פתוחה לקבוצה הומיאומורפית הומיאומורפי

כאשר התנאים הללו שקולים.

הבאות, ממימד n אם מתקיימות התכונות הבאות, ירעה ירעה איריעה טופולוגית מחב טופולוגית מחב אם התכונות הבאות, אותר הבאות, אותר מחב אותר מחב אותר התכונות הבאות, אותר הבאות הבאותר הבאו

- n אוקלידי מקומית ממימד X .1
 - האוסדורף X .2
 - מרחב מנייה שנייה X .3

13.5.2025 - 13 שיעור 13 מבוא לטופולוגיה אלגברית מבוא 13.5.2025 מבוא אלגברית

נראה מספר דוגמות ליריעות.

n ממימד מופולוגית יריעה איז היא של פתוחה פתוחה כל תת־קבוצה כל 13.3 היא דוגמה כל כל ה

. היא א יריעה, היא שפת למעשה מעשה $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ כבחין בחין 13.4 דוגמה 13.4

דוגמה 13.5 בקבוק קליין הוא יריעה.

, כלומר, הוא יריעה, ועבור $U\subseteq\mathbb{R}^n$ עבור $f:U o\mathbb{R}$ רציפה בירעה, הוא גרף גרף גרף גרף או 13.6 דוגמה

$$\{(x, f(x)) \in \mathbb{R}^{n+1} \mid x \in U\}$$

היא יריעה טופולוגית.

נבחין כי עבור n=1 יש רק סוג אחד של יריעה קומפקטית, המעגל. עבור n=2 יש לנו את הספירה, את הטורוס, מתומן הקסם ואת בקבוק קליין. בהרצאות הבאות ניכנס לתחום הטופולוגיה האלגברית, ונפתח כלים לאפיון של מרחבים כאלה.

19.5.2025 - 14 שיעור 14

היסודית - מבוא לטופולוגיה אלגברית - מבוא לטופולוגיה אלגברית

המטרה שלנו היא להיות מסוגלים לענות על השאלה הבאה,

תרגיל השאלה האם בין מרחבים לענות על השאלה שנתונים X,Y מרחבים לענות על השאלה האם בין מרחבים טופולוגיים? כלומר, נניח שנתונים בין מרחבים טופולוגיים? הומיאומורפיים

בעולם של אלגברה לינארית לדוגמה אפיינו בצורה מדויקת שקילות של מרחבים לינאריים, פה המצב מורכב ומסועף יותר, ונצטרך להבין לעומק האובייקטים שאנו דנים בהם כדי שנוכל לאפיין אותם.

. האם S^2 האם הומיאומורפיים הטורוס הדו־מימדי הדו־מימדי החספירה הדו־מימדי החספירה הדו־מימדי האם S^2

. פתרון באותו לכווץ לכווץ לכווץ למסילה אבל לא כל מסילה לכווץ לכווץ באותו בי S^2 ביתן לכווץ באותו כל מסילה כל מסילה לא כל מסילה לכווץ באותו האופן.

וחחיל רהגדרות

הציפה היא העתקה ה f_0 ל־ f_0 היא הומוטופיה אז הומוטופיה היהין היא העתקה האחבים וופולוגיים האדרה $f_0,f_1:X\to Y$ היא העתקה האחבים האדרה וופיה היהים אז הומוטופיה היהים אופיה. $H:[0,1]\times X\to Y$

$$\forall x \in X, \ H(0,x) = f_0(x), H(1,x) = f_1(x)$$

 $H_s(x) = H(s,x)$ לפעמים נכתוב אם

 $x_0 \in X$ עבור $f_1(x) = x_0$ להעתקה קבועה $f_0(x) = x$ בהרצאות אם יש הומוטופיה שמרחב כוויץ אם יש הומוטופיה מהעתקת הזהות בהרצאות קודמות הגדרנו שמרחב כוויץ אם יש הומוטופיה מהעתקת הזהות בהעתקה להעתקה קבועה אם יש הומוטופיה בהעתקת הזהות בהעתקת הזהות בהעתקה הזהות אם בהעתקת הזהות בהעתקה בהעת בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהע

סימון $p,q\in X$ ובהינתן $\gamma:[0,1]\to X$ ידי מסילה מסילה אז הגדרנו 14.2 סימון

$$\Omega(X,p,q) = \{\gamma: [0,1] \rightarrow X \mid \gamma(0) = p, \gamma(1) = q, \gamma \text{ is continuous path} \}$$

 q^- ים מ־ q^- ים מרחב כל המסילות הרציפות מ

H: אם קיימת ביניהן, כלומר אם שה וש הומוטופיות אם א הומוטופיות מסילות מסילות מסילות מסילות חומוטופיות אם א הגדרה $\gamma_0,\gamma_1\in\Omega(X,p,q)$ הומוטופית מסילות הומוטופית מסילות $t\in[0,1]$ ביניהן, כלומר אם $t\in[0,1]$ ביניהן, כלומר אם קיימת $t\in[0,1]$ ביניהן, כלומר אם קיימת $t\in[0,1]$ ביניהן, כלומר אם קיימת מסילות מ

$$H(0,t) = \gamma_0(t), \quad H(1,t) = \gamma_1(t), \quad \forall s \in [0,1], \ H(s,0) = p = \gamma_0(0) = \gamma_1(0), H(s,1) = q = \gamma_0(1) = \gamma_1(1)$$

הרעיון הוא שיש לנו דרך "להעביר" כל מסילה בין הנקודות באופן רציף מאחת לשנייה. הרעיון לא זר למי שלמד אנליזה על יריעות, שם השתמשנו בכלי דומה לזה כדי לאפיין קשר בין מסילות, ראינו שאם כל שתי מסילות הומוטופיות בשדה משמר מקומית, אז הוא משמר.

סענה 14.4 היחס על (X,p,q), המוגדר על־ידי $\gamma_0\sim\gamma_1$ אם ורק אם קיימת הומוטופיה ביניהן, הוא חס שקילות.

 $H(s,t)=\gamma(t)$ נבחר $\gamma\in\Omega(X,p,q)$ בהינתן הוכחה. רפלקסיביות,

 $\gamma_1\sim\gamma_0$ על המעידה המעידה אז זו הומוטופיה, גניח ש $\gamma_0\sim\gamma_1$ אז על כך. בגדיר על כך. נגדיר אז הומוטופיה המעידה אז זו הומוטופיה המעידה על כך. נגדיר סימטריה, נניח ש

, נגדיר על־ידי, $\gamma_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ מנים ש־ $\eta_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ נגדיר על־ידי, ננים ש־ $\eta_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ נגדיר על־ידי, ננים ש־

$$F(s,t) = \begin{cases} H(2s,t) & s \in [0,\frac{1}{2}] \\ G(2s-1,t) & \text{otherwise} \end{cases}$$

עלינו לבדוק שאכן F הומוטופיה מלמת ההדבקה, אותה נגדיר אות שי $s=rac{1}{2}$ אותה לבדוק את המלמת היטב, כלומר לבדוק שאכן F הומוטופיה לבדוק את המקרה לבדוק את המקרה ולהראות שי $s=rac{1}{2}$

למה 14.5 (למת הדבקה) נניח שY מרחב טופולוגי ונניח ש $A\cup B=Y$ עבור קבוצות סגורות. תהי $Y\to G$ פונקציה כך ש $A\cup B=Y$ רציפה וכן $A\cup B=Y$ רציפה. אז נובע ש $A\cup B=Y$ רציפה.

, אבל, גם כן. אבל סגורה אבריך מתקיים $f^{-1}(C)$ מתקיים מורה אבל שלכל סגורה אבל,

$$f^{-1}(C)(f^{-1}(C) \cap A) \cup (f^{-1}(C) \cap B) = (f \upharpoonright A)^{-1}(C) \cup (f \upharpoonright B)^{-1}(C)$$

ולכן הטענה נובעת ישירות.

 $\pi_1(X,p,q)=\Omega(X,p,q)/\sim$ נסמן, Fundamental group הגדרה של מרחב של מרחב של מרחב (החבורה היסודית של החבורה היסודית של החבורה היסודית של החבורה היסודית האומרים, באנגלית

 $\pi_1(X,p)=\Omega(x,p)/\sim$ אם $\Omega(X,p)=\Omega(x,p,p)$ אז נסמן גם p=q אם $\Omega(X,p)=\Omega(x,p,p)$ אז נסמן גם

 $\pi_1(X,p)$ המנוקב המרחב של היסודית החבורה $\pi_1(X,p)$ נגדיר

נשים לב כי זוהי הגדרה אפריורית, כלומר לא הראינו בשום צורה שזוהי אכן חבורה, וכרגע זהו רק שם. אנו רוצים עתה להראות שזו אכן חבורה ושהגדרה זו תלויה בטופולוגיה שלנו בלבד.

, נוכל להגדיר, γ_0,γ_1 לכל לכל γ_0,γ_1 בוכל להגדיר, או מסילות מ־q ל־p הו מסילות כל זוג מסילות וב-2p ובר במרחב במרחב p ובר להגדיר, נוכל להגדיר,

$$H(s,t) = \gamma_1(t) \cdot s + \gamma_0(t) \cdot (1-s)$$

 $\pi_1(\mathbb{R}^2,p)=\mathbb{R}^2$ גם ש־ $p\sim q$. נסיק גם ש־בפות, ולכן פונקציות הומוטופיה הומוטופיה אכן זוהי אכן $H:[0,1] imes[0,1] o \mathbb{R}^2$ נסיק גם ש

נראה דוגמה למרחב בו לא כל המסילות הומוטופיות.

דוגמה 14.3 נבחן הפעם את לנו עדיין את היכולת להוכיח אלו $\gamma_1(t)=1+e^{\pi i-\pi it}$ ולמרות היכולת להוכיח את נבחן נבחן נבחן נבחן הפעם את אי־השקילות. את הקורס פונקציות מרוכבות כבר יודע שמהגרסה המורחבת למשפט האינטגרל של קושי נובע שהאינטגרל המסילות שתי המסילות שונה, ובהמשך נראה טיעון שדומה לטיעון זה עבור הוכחת אי־השקילות.

ניזכר בהגדרת החבורה,

, המתקיים, כך שמתקיים, כד $G^2 o G$ היא ופעולה קבוצה הכולל היא זוג הכורה (תבורה) אורה הגדרה הגדרה הגדרה (תבורה)

- $a\cdot (b\cdot c)=(a\cdot b)\cdot c$ מתקיים $a,b,c\in G$ לכל. .1
- $g \in G$ לכל $e \cdot g = g \cdot e = g$ כך שי $e \in G$ לכל ליכל איבר ניטרלי, קיים איבר פון מיים ל
- לייטרלי האיבר e עבור $g \cdot h = h \cdot g = e$ כך שים $h \in G$ קיים קפר, לכל .3

. האיבר ההופכי של $g \in G$ הוא יחיד.

אז נגדיר מסילה . $lpha\in\Omega(X,a,b),eta\in\Omega(X,b,c)$ נניח ש- $a,b,c\in X$ מוניח ש-פופולוגי וניח ש- $a,b,c\in X$ מרחב טופולוגי וניח ש- $a*\beta:[0,1]\to X$ מוגדרת על־ידי, $\alpha*\beta:[0,1]\to X$ בר ש- $\alpha*\beta:[0,1]\to X$ שר בר ש- $\alpha*\beta:[0,1]\to X$ מוגדרת על־ידי,

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & 0 \le t \le \frac{1}{2} \\ \beta(st - 1) & \text{otherwise} \end{cases}$$

נבחין כי $\alpha * \beta$ מוגדרת היטב מלמת ההדבקה.

 $lpha*(eta*\gamma), (lpha*eta)*\gamma\in$ אז א $lpha\in\Omega(X,x_0,x_1), eta\in\Omega(X,x_1,x_2), \gamma\in\Omega(X,x_2,x_3)$ הערה נניח ש־ $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה שות. $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה שות.

 $lpha*eta\simlpha'*eta'$ אז $eta\simlpha'$ אז $eta\simlpha'\in\Omega(X,b,c)$ יטענה 14.9 נניח שי

את ההוכחה לא נראה, אבל היא נובעת ישירות מהגדרת מחלקות השקילות.

מסקנה 14.10 אפשר להגדיר את פעולת השרשור על מחלקות הומוטופיה, כלומר הפעולה מוגדרת היטב על מחלקות שקילות.

נסמן במקרה זה $[\alpha]*[\beta]=[\alpha*\beta]$ נסמן במקרה זה נסמן

סענה 14.11 לכל $\gamma \in \pi_1(X,x_2,x_3)$ י ו' $[eta] \in \pi(X,x_1,x_2)$, $[lpha] \in \pi_1(X,x_0,x_1)$ לכל 14.11 לכל

$$([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$$

הגדרה של α אם קיימת של מסילה. מסילה מסילה מסילה מסילה על מסילה מסילה

 $\alpha = [eta]$ טענה 14.13 אם eta רפרמטריזציה של lpha אז $lpha \sim eta$ אז $lpha \sim eta$ אם 14.13 מענה

הוכחה. $\psi \in \Omega([0,1],0,1)$ אז $\psi = \iota \circ \psi$ ומתקיים ומתקיים, $\iota(t) = t$ מסילות, כל שתי מסילות על המכפלה על המכפלה $\psi : [0,1] \to [0,1] \to [0,1]$ מסילות

עם אותן קבוצה קמורה, קבוצה קמורה, ונגדיר, אם כך lpha, eta: [0,1] o A עבור קמורה, ונגדיר, ונגדיר, אותן נקודות קצה בקבוצה קמורה אותן נקודות האותן נקודות אותן האותן האותן אותן האותן האותן אותן האותן ה

$$H(s,t) = s\beta(t) + (1-s)\alpha(t) \in A$$

 $lpha\sim eta$ אז מבדיקה ולכן היא הומוטופיה אהל שאכן שאכן אז מבדיקה אז מבדיקה שאכן

. השרשור הער יחד חבורה היא $\pi_1(X,x_0)$ 14.14 מסקנה מסקנה

. מקיים אסוציאטיביות. u(vw)=(uv)w מתקיים $u,v,w\in\pi_1(X,x_0)$ מקיימת שלכל מקיימת שלכל אסוציאטיביות. הפעולה $\pi_1(X,x_0)$ לכל $\pi_1(X,x_0)$ לכל היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $e=[c_{x_0}]$ ונבחין כי לכל $t\in[0,1]$ היא איבר ניטרלי ביחס $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $e=[c_{x_0}]$ ונבחין כי לכל $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל פעולה.

 $u\in\pi_1(X,x_0)$ כלומר לכל $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\overline{\alpha}(t)=\alpha(1-t)$ על־ידי $\overline{\alpha}\in\Omega(\Omega,x_1,x_0)$ נגדיר מסילה מסילה $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\alpha*\overline{\alpha}=c_{x_0}$ כלומר לכל $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ נגדיר מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה לכל מסילה מ

נסיים בטענה המושארת כתרגיל לקורא.

. טענה 14.15 אם אם מרחב כוויץ אז $\pi_1(X,x_0)$ אז מרחב מרחב אם 14.15 טענה

20.5.2025 - 15 שיעור 15

15.1 החבורה היסודית

 $\pi_1(X,x_1)$ ו- $\pi_1(X,x_0)$ אז החבורות $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ ו- α

על־ידי, $f_{\alpha}:\Omega(X,x_{0}) \rightarrow \Omega(X,x_{1})$ על־ידי, נגדיר העתקה

$$f_{\alpha}(\gamma) = \overline{\alpha} * \gamma * \alpha$$

לכל γ וכאשר הזו נראה שההעתקה הזו משרה העתקה זו משרה העתקה הזו היא ההפוכה ל $\overline{\alpha}$ וכאשר $\gamma \in \Omega(X,x_0)$ לכל ולבסוף נראה שאף איזומורפיזם.

כדי להראות שאם $\gamma,\gamma'\in\Omega(X,x_0)$ שאם להראות אז מספיק להראות הומוטופיות הומוטופיות אז מספיק להראות הומוטופיות העתקה $\hat{f}_{lpha}:\pi_1(X,x_0)\to\pi_1(X,x_1)\to\pi_1(X,x_1)$ מסילות הומוטופיות אז גם $\hat{f}_{lpha}([\gamma])=[\overline{lpha}*\gamma*lpha]$ למעשה אנו כבר יודעים זאת ישירות מהעובדה ש־ $\pi_1(X,x_0)$ חבורה, ולכן נוכל להגדיר $\pi_1(X,x_0)$ אם $\hat{f}_{lpha}([\gamma])$ אז, $[\gamma_1],[\gamma_2]\in\pi_1(X,x_0)$

$$\hat{f}_{\alpha}([\gamma_1][\gamma_2]) = \hat{f}_{\alpha}([\gamma_1 * \gamma_2]) = [\overline{\alpha} * \gamma_1 * \gamma_2 * \alpha]$$

ומהצד השני,

$$\hat{f}_{\alpha}([\gamma_1])\hat{f}_{\alpha}([\gamma_2]) = [\overline{\alpha} * \gamma_1 * \alpha] \cdot [\overline{\alpha} * \gamma_2 * \alpha] = [\overline{\alpha} * \gamma_1 * \alpha * \overline{\alpha} * \gamma_2 * \alpha] = [\overline{\alpha} * \gamma_1 * \gamma_2 * \alpha]$$

ונסיק כי זהו הומומורפיזם.

 $\hat{g}_{lpha}\circ\hat{f}_{lpha}$ בעבור לבדיקת איזומורפיזם. נניח ש־ $\hat{g}_{lpha}:\pi_1(X,x_1)\to\pi_1(X,x_1)$ נגדיר נגדיר לבדיקת איזומורפיזם. נניח ש־ $e=\hat{f}_{lpha}([\gamma])$ איבר היחידה ב־ $e=\hat{f}_{lpha}([\gamma])$ נובע, נניח ש־ $\hat{f}_{lpha}\circ\hat{g}_{lpha}=\mathrm{id}_{\pi_1(X,x_1)}$ לכל ל $\hat{g}_{lpha}(\beta)=[lpha*\beta*\overline{lpha}]$ וכן $[eta]\in\pi_1(X,x_1)$ נובע, נניח ש־ $\hat{f}_{lpha}\circ\hat{g}_{lpha}=\mathrm{id}_{\pi_1(X,x_1)}$

$$(\hat{g}_{\alpha} \circ \hat{f}_{\alpha})(\gamma) = \hat{g}_{\alpha}(\hat{f}_{\alpha})(\gamma) = \hat{g}_{\alpha}([\overline{\alpha} * \gamma * \alpha]) = [\alpha * \overline{\alpha} * \gamma * \alpha * \overline{\alpha}] = [\gamma]$$

. ולכן נסיק שאכן \hat{f}_{lpha} איזומורפיזם. $\hat{g}_{lpha}\circ\hat{f}_{lpha}=\mathrm{id}_{\pi_{1}(X,x_{0})}$ איזומורפיזם.

ניזכר בהגדרה 3.10, המדברת על כוויצות.

. טריוויאלית אם $\pi_1(X,x_0)$ אז כוויץ מרחב אם X אם הערה

 $x_0\in X$ ל־ל $\pi_1(X,x_0)=\{e\}$ מרחב מסילתית הX פשוט קשר ש־X פשוט קשר) נאמר הגדרה 15.2 מרחב פשוט קשר) אבדרה

הגדרה זו היא בעצם הרעיון שאנו יכולים לצמצם באופן רציף את המרחב שלנו.

. כוויץ אז X אז X אז עיוות של Y ו־ $Y = \{y_0\}$ אם 15.1 דוגמה

 $x_0 \in X$ ל־ל מ־ל מיש נסג עיוות מ־ל כוויץ אז יש נסג כוויץ אז יש האם 15.1 תרגיל

ונרצה $\alpha:[0,1] \to X$ ונרשה של הכיווץ. נניח ש $\alpha:[0,1] \to X$ על־ידי ההעתקה של הכיווץ. נניח של הכיווץ. נניח ש $\alpha:[0,1] \to X$ על־ידי ההעתקה של הכיווץ. נגדיר את ההעתקה, $\alpha:[0,1] \to X$

$$G(s,t) = \begin{cases} \alpha(2t) & 0 \le t \le \frac{s}{2} \\ H(s, \gamma(\frac{t - \frac{s}{2}}{1 - s})) & \frac{s}{2} \le t \le 1 - \frac{s}{2}, s < 1 \\ \alpha(2 - 2t) & \frac{s}{2} \le t \le 1 \end{cases}$$

אנו טוענים כי G היא העתקה רציפה, ובמקרה זה G מגדירה הומוטופיה בין γ ל־ $\alpha*\overline{\alpha}\sim c_{x_0}$. כדי להראות זאת נשתמש בעובדה ש־G מגדירה הומוטופיה בין וומפקטית גם כן.

26.5.2025 - 16 שיעור 16

16.1 חבורה יסודית וכוויצות

נמשיך ונדון בבעיה שהצגנו בפעם הקודמת. X כוויץ אם יש נקודה יחידה כך שיש הומוטופיה מכל המרחב לנקודה הזו. מהצד השני מרחב הוא נסג עיוות אם מתקיים מצב דומה עם תת־מרחב. הפעם נאמר שכל מרחב שהוא נסג עיוות לנקודה גורר שהוא כוויץ לנקודה, אבל גם נראה דוגמה נגדית למצב ההפוד.

משפט 16.1 אם X כוויץ אז X פשוט קשר.

הכיווץ. $F:I\times X o X$ של הכיווץ.

 $eta_y(s) = \alpha_x(t) = F(t,x)$ המקיימות מסילות מסילות בשרשור מסילתית. לכל זוג נקודות $x,y \in X$, נתבונן בשרשור $\alpha_x * \beta_y$ שתי מסילתית של $x,y \in X$ ו־ב $x,y \in X$ השרשור שלהן כמובן מעיד על קשירות מסילתית של $x,y \in X$

, נגדיר, קודם לכן. שהגדרנו שהגדרנו שה המסילה $lpha=lpha_{x_0}$ את ונבחן $\gamma\in\Omega(X,x_0)$ תהי תהי $1=|\pi_1(X,x_0)|$

$$G(s,t) = \begin{cases} \alpha(t) & 0 \le t \le \frac{s}{2} \\ F(s, \gamma(\frac{t-\frac{s}{2}}{1-s})) & \frac{s}{2} \le t \le 1 - \frac{s}{2}, s < 1 \\ \alpha(2-2t) & 1 - \frac{s}{2} \le t \le 1 \end{cases}$$

העתקה זו מעבירה את המסילה ל־lpha ולכן מוכיחה שיש רכיב יחיד בחבורה היסודית של המרחב, אבל עלינו להראות שהיא בכלל רציפה. בבירור היא העתקה זו מעבירה את המסילה ל־lpha ולכן מוכיחה שיש רכיב יחיד בנפרד, זאת כהרכבת העתקות רציפות. נותר לנו לבדוק את שתי הנקודות שמחברות את הקטעים הללו. אם s < 1 או בראה $t = 1 - rac{s}{2}$ אז הרציפות נובעת מלמת ההדבקה. נותר עלינו לבדוק את $t = 1 - rac{s}{2}$ אז יש סביבה פתוחה כלשהי t < 1 - 1 ומתקיים t < 1 - 1 ומתקיים t < 1 - 1 אז יש סביבה פתוחה באופן דומה עם t < 1 - 1 אז נוכל לפעול באופן דומה עם t < 1 - 1 וכים סביבה פתוחה דומה. אם t < 1 - 1 אז נוכל לפעול באופן דומה עם t < 1 - 1

$$F(1,y) \in U$$

יש ולכן של סיסוי פתוח של $\{W_x\}_{x\in\gamma(I)}$ א פתוחה. אז $x\in W_x\subseteq X$ ו־ $r_x<1$ כאשר על כאשר $V_x=(r_x,1]\times W_x$ כיסוי פתוח בלי הגבלת הכלליות $V_x=(r_x,1]\times V_x$ פתוחה. אז $V_x=(r_x,1]\times V_x$ קומפקטית ולכן יש הגבלת הכלליות אוני ביסוי סופי ולכל על פיים $V_x=(r_x,1]\times V_x$ קומפקטית ולכן יש הגבלת הכלליות אוני ביסוי פתוח של $V_x=(r_x,1]\times V_x$

$$F(p,x) \in U$$

 $G(p,q) \in U$ גם $rac{p}{2} < q < 1 - rac{p}{2}$ ורי $r כך שיר <math>(p,q) \in I imes I$ גם עובע שלכל

מרחבי כיסוי והעתקות כיסוי 16.2

יש $b\in B$ העתקת כיסוי אם היא רציפה, תיקרא העתקת העתקה מרחבים טופולוגיים, מרחבים מרחבה B,E יהיו (העתקת כיסוי אם הגדרה 16.2 הגדרה להצגה מרחבים טופולוגיים, מבור $p^{-1}(U)$ ביתן $p^{-1}(U)$ ביתן $b\in U\subseteq B$ העתקת פרוחה מביבה פתוחה מדער מיחוד מרחבים מרחבים מביבה מב

$$p^{-1}(U) = \biguplus_{\alpha \in \Omega} V_{\alpha}$$

כך שלכל $p\mid_{V_{lpha}}:V_{lpha}
ightarrow U$, $lpha\in\Omega$ כך שלכל

p מכוסה על־ידי אחידה על־ידי מכוסה על־ידי מ

B נקרא מרחב כיסוי של בקרא למרחב למרחב ל

טענה 16.3 כל העתקת כיסוי היא העתקה פתוחה.

 $y\in V_{lpha_0}$.p(y)=x ש־ש $y\in W$ ותהי $x\in p(W)$ תהי פתוחה. עב הראות שגם שגם להראות שגם אונרשה שגם הראות שגם שגם $p(W)\subseteq B$ פתוחה. עד הומיאומורפיזם. או $p|_{V_{lpha_0}}(W\cap V_{lpha_0})$ אונרשה הומיאומורפיזם. או $p|_{V_{lpha_0}}(W\cap V_{lpha_0})$

נעבור לדוגמות.

. ביסוי העתקת הזהות, היא וול $\mathrm{id}_B:B o B$ ביסוי ווגמה דוגמה וול $\mathrm{id}_B:B o B$

. העתקת היא העתקת הצמצום, העתקת העתקת $p: B imes \{1, 2, \dots, n\} o B$ ווגמה 16.2 דוגמה

. העתקת הישר למעגל, אף היא העתקת הישר ($t\mapsto (\cos(2\pi t),\sin(2\pi t))$ או לחלופין או $t\mapsto e^{2\pi it}$, אף היא העתקת הישר 16.3

. נכחן העתקת זו העתקת אר בידי על-ידי $p:\mathbb{C} \to \mathbb{C} \setminus \{0\}$ את נכחן 16.4 דוגמה 16.4 בהן את

27.5.2025 - 17 שיעור 17

מרחבי כיסוי

נעסוק היום בהרמות במרחבי כיסוי.

מסילה רציפה. $\gamma:I o B$ העתקת כיסוי ו־p:E o B מסילה עניה משפט 17.1 (הרמה של מסילות) משפט

 $ilde{\gamma}(0)=e_0$ יש מסילה רציפה ויחידה $ilde{\gamma}:I o E$ כך ש־ $ilde{\gamma}:I o E$ יש מסילה רציפה שי $e_0\in p^{-1}(b_0)$ אז לכל יש או לכל ויסמן או מסילה רציפה ויחידה

p איד על־ידי אחיד מכוסה אשר שר U_b שי סביבה שי $b \in B$ אחיד לכל נקודה. לכל נקודה

$$p^{-1}(U_b) = \biguplus V_\alpha^b$$

נניח שfבניח שfבניח לכל fביסוי פתוח של fביסוי פתוח של fביסוי פתוח של fביסוי פתוח של fביסוי, כיסוי פתוח של fביסוי פתוח של פתוח ש

$$\gamma([t_j, t_{j+1}]) \subseteq U_b$$

ולכן נגדיר, $\gamma(t_j)\in U_b$ כך ש' $ilde{\gamma}(t_j)\in V_{lpha_0}^b$ כך יחיד כך ש' α_0 יחיד מואומורפיזם. הומיאומורפיזם ולכן אולכן $p|_{V_lpha^b}:V_lpha^b\to U_b$ כך ש' $p^{-1}(U_b)=\biguplus V_lpha^b$ ולכן נגדיר,

$$\tilde{\gamma}(t) = (p|_{V_{\alpha}^b})^{-1}(\gamma(t))$$

 $t_j \leq t \leq t_{j+1}$ לכל

יזוהי $p\circ \tilde{\gamma}=\gamma$ וזוהי מסילה רציפה היא מסילה הדבקה מלמת נגיע ל-j=nמלמת נגיע של חזרות, כאשר נגיע מסילה הדבקה מסילה מסילה מסילה מסילה יחידה.

משפט 17.2 תביפה, אז יש הרמה יחידה $E:I imes I\to B$ נניח ש־ $p(e_0)=b_0$. נניח ש $p:E\to B$ רציפה, אז יש הרמה יחידה $p:E\to B$ כך משפט $\tilde F:I imes I\to B$ היא הומוטופיה של מסילות אז גם $\tilde F$ היא הומוטופיה של מסילות.

3.6.2025 - 18 שיעור 18

18.1 הרמות

p:E o B העתקת ביסוי. ראינו כי אם p:E o B העתקת החבורה היסודית של מרחב טופולוגי קשיר מסילתית. לאחר מכן דיברנו על מרחבי כיסוי. ראינו כי אם p:F=f=f העתקת f:[0,1] o E מסילה כך שf:[0,1] o E מסילה כך שf:[0,1] o E וf:[0,1] o E אז קיימת הרמה היחדה f:[0,1] o E משפט 18.1 חהי f:[0,0] o E העתקת כיסוי ותהי f:[0,1] o E נסמן f:[0,0] o E תהי f:[0,0] o E אז קיימת הרמה יחידה f:[0,0] o E המקיימת f:[0,0] o E

בנוסף, אם F הומוטופיה בין מסילות בין מסילות אז $ilde{F}$ גם היא הומוטופיה בין מסילות.

קיימת $b\in F(I\times I)$ קומפקטית. לכל נקודה $F(I\times I)$ קומפקטית. בתבונן בתמונה $F(I\times I)$ קומפקטית ובחן את הסביבות המספר לבג $F(I\times I)$ קומפקטית. לכיסוי הפתוח $F(I\times I)$ את הסביבות. נבחן את הסביבות $F(I\times I)$ במרמות של מסילות. אם $F(I\times I)$ אז $F(I\times I)$ בחלידי $F(I\times I)$ במרמות הרמה לצמצומים $F(I\times I)$ במרמות של מסילות. אם $F(I\times I)$ במרמות את ההעתקה לכלל הריבועים. קיבלנו שימוש ברציפות ובחירת $F(I\times I)$ בעיפה עבור ריבוע אחד בתוך $F(I\times I)$ בוכל להמשיך כך ולבנות את ההעתקה לכלל הריבועים. קיבלנו עדיפה הרמה היא יחידה לפי אותו טיעון ששימש אותנו ליחידות של הרמת מסילות. בקודות קצה אז זו הומוטופיה של מסילות עם נקודות קצה אז זו הומוטופיה של מסילות עם נקודות קצה. הרמה קצה.

מסקנה f,g מסילות של \tilde{f},\tilde{g} הרמות הו \tilde{f},\tilde{g} הרמות הונה f,g המתחילות ב-f,g המתחילות הומוטופיות הונה f,g המתחילות הומוטופיות הומוטופית הומוטומית הומוטומית הומוטומית הומוטומית הומוטומית הומוטומית הומוטומית הומוטומ

הרמה הרמה F קיימת הומוטופיה F להומוטופיה הומוטופיה ברF ו־F בר עד F כך ש־F כך F בר F להומוטופיה F קיימת הרמה הומוטופיה F המקיימת \tilde{F} המקיימת \tilde{F}

$$\tilde{F}|_{I\times\{0\}} = \tilde{f}, \quad \tilde{F}|_{I\times\{1\}} = \tilde{g}$$

 $ilde{f}(1) = ilde{g}(1)$ בפרט לכן ל- $ilde{g}$ ל' ל $ilde{f}$ ולכן היא הומוטופיה בין

9.6.2025 - 19 שיעור 19

19.1 בין מרחבי כיסוי להומוטופיה

נמשיך ישירות מתוצאות השיעור הקודם ונבחין במספר מסקנות.

מסקנה 19.1 אם $p:E o \tilde{lpha}, \tilde{eta}$ הרמות כיסוי, אז לכל זוג הרמות p:E o B אם הן הומוטופיות מסקנה 19.1 מסקנה $\tilde{lpha}, \tilde{eta}, \tilde{eta}$ העתקת כיסוי, אז לכל זוג מסילות מסילות $\tilde{lpha}, \tilde{eta}$ מסקנה $\tilde{lpha}, \tilde{eta}$ מתקיים גם $\tilde{lpha}(1) = \tilde{eta}(1)$ מתקיים גם $\tilde{lpha}(0) = \tilde{eta}(0)$

 $\Phi:\pi_1(B,b_0) o p^{-1}(\{b_0\})=p^{-1}(b_0)$ ההעתקה מתקבלת מתקבלת בפרט

, אז, פשוט־קשר בתרגול כי בתרגול בתרגול בי בתרגול בי

$$\Phi: \pi_1(B, b_0) \to p^{-1}(b_0)$$

 $SO(3)=\{A\in$ את נגדיר על. $\mathbb{R}P^3$ עבור על. על בור עבור $\pi_1(\mathbb{R}P^n)\simeq \mathbb{Z}/n\mathbb{Z}$ ש"כיח להוכיח בזה נגדיר ערכית ועל. השתמשנו בזה כדי להוכיח ש"כיח ביו על. $\mathbb{R}P^3\simeq SO(3)$ אנו טוענים כי $\mathbb{R}P^3\simeq SO(3)$ אבורת הסיבובים של $\mathbb{R}P^3\simeq SO(3)$

(נניח ש־E קשיר מסילתית, ונסמן $p:(E,e_0) o (B,b_0)$ נניח ביסוי, נניח ש־E נניח שפט 19.2

$$G = \pi_1(B, b_0), \quad H = p_*(\pi_1(E, e_0))$$

,כאשר $p_*([\gamma]) = [p \circ \gamma]$ ו־ $H \leq G$ כאשר אז במקרה זה מתקיים,

- ערכית $p_*:\pi_1(E,e_0)\to p_1(BB,b_0)$.1
- $H \setminus G = \{ Hg \mid g \in G \}$ לבין $p^{-1}(b_0)$ כין ערכית ועל ביד התאמה הד
- $ilde{f}(0)=e_0$ מסתיימת ב $ilde{f}(0)=e_0$ כך ש $ilde{f}:[0,1] o E$ אם ורק אם ההרמה איבר $f\in\Omega(B,b_0)$ מסתיימת ב $f\in\Omega(B,b_0)$.3

כך $\tilde{\gamma}\in\Omega(E,e_0)$ שי שי טריוויאלי. נניח שי להראות ארכית די להוכיח שי p_* חד־חד ערכית של חבורות ולכן כדי להוכיח שי להוכיח שי להראות שי להראות שי להראות של חבורות ולכן כדי להוכיח שי להוכיח שי להראות שי להראות שי להוכיח שי להוביח שי להוכיח שי להוביח שי להוביח שי להוביח שי להוביח שי להוביח שי ל

$$p_*([\tilde{\gamma}]) = 1 \in \pi_1(B, b_0)$$

למסילה $t\mapsto e_0$ המסילה ב־E מהמטופיה להומוטופיה ערים גרים הקבועה למסילה למסילה למסילה $\gamma=p\circ\tilde{\gamma}$ המסילה לכן לכן לכן לכן ליימנו. $\tilde{\gamma}$

נתבונן בשני איברים,

$$[f], [g] \in \pi_1(B, b_0)$$

אנו רוצים להראות כי,

$$H[f] = H[g] \iff \Phi([f]) = \Phi([g])$$

נסמן את ההרמות $ilde{f}(0)= ilde{g}(0)=e_0$ כך ש־ $ilde{f}, ilde{g}$ ולכן,

$$H[f] = H[q] \iff \tilde{f}(1) = \tilde{q}(1)$$

,נניח ש־ $[f] \in H[g]$, אז,

$$f \sim h * g$$

 $ilde{f}(1)= ilde{g}(1)$ עבור $h=p\circ ilde{h}$ כך ש־ $ilde{h}\in \Omega(E,e_0)$ כאורה מסילה מסילה קיימת מסילה ($h\in H$ עבור $h=f\circ ilde{h}$ עבור $h=f\circ ilde{h}$ עבור $h=f\circ ilde{h}$ כאשר $f\circ ilde{h}$ אז,

$$\tilde{h} * \tilde{g} = \tilde{f} * \overline{\tilde{g}} * \tilde{g} \sim \tilde{f} \implies [h][g] = [f], [f] \in H[g]$$

 $[\tilde{f}] \in H[\tilde{q}]$ אז

 $\pi_1(S^1,1)\simeq \mathbb{Z}$ 19.3 משפט

נניח ש־ $[f],[g]\in\pi_1(S^1,1)$ אז,

$$\Phi([f]) = n, \quad \Phi([g]) = m.$$

 $ilde{I}(f*g)=[f]*[g]$ נתבונן ב $ilde{I}(g)=0$. נתבונן ב $ilde{I}(g)=0$. נתבונן ב $ilde{I}(g)=0$ אם $ilde{I}(g)=0$ אם $ilde{I}(g)=0$ או נבחן את $ilde{I}(g)=0$ ונחשב את $ilde{I}(g)=0$. נגדיר,

$$T_n(\tilde{g}): [0,1] \to \mathbb{R}, \qquad T_n(\tilde{g})(t) = \tilde{g}(t) + n$$

 \mathbb{R} הרמה שזו הרמה ל $ilde{f}*T_n(ilde{g})$ הרשה את השרשור לבנות הרמה ה $ilde{g}(0)+n=0+n=n$ ו די הרמה ל $T_n(ilde{g})(0)=n$ וקל לראות שזו הרמה ל $T_n(ilde{g})$ המתיחה ב-0 על המסילה I. לכן,

$$\Phi([f][g]) = \Phi([f * g]) = (\tilde{f} * T_n(\tilde{g}))(1) = m + n$$

 $ho
ho
ho=\mathrm{id}_Y=\mathrm{id}_Y$ ער פרער איז איז העתקה רציפה מ"ל איז הערקביה מ"ל ער"ל תר"מרחב. רטרקציה איז תר"ל ער"ל איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז משרה הומומורפיזם חד"ל איז העתקת השיכון איז משרה הומומורפיזם העתקת השיכון איז משרה הומומורפיזם העתקת השיכון איז משרה הומומורפיזם העתקת השיכון איז איז משרה הומומורפיזם העתקת השיכון איז משרה הומומורפיזם העתקת העתקת השיכון איז משרה הומומורפיזם העתקת העתק

$$\iota_{Y_*}: \pi_1(Y, y_0) \to \pi_1(X, y_0)$$

 $.U \to V \to W$ העתקות העתקות וכן שיf,gש וכן טופולוגיים מרחבים U,V,Wש נניח הוכחה. הוכחה

$$f_*: \pi_1(U, u_0) \to \pi_1(V, v_0), \qquad g_*: \pi_1(V, v_0) \to \pi_1(W, w_0)$$

,ומתקיים $g\circ f:U o W$ אז

$$(g \circ f)_{\star}: \pi(U, u_0) \to \pi_1(W, w_0)$$

 $(g \circ f)_* = g_* \circ f_*$ כך ש

, ונקבל א $Y \to X \to Y$ אז א
 $\iota_Y: Y \hookrightarrow X$ ר ונקבל $\rho: X \to Y$ יש

$$\mathrm{id}_{\pi_1(Y,y_0)} = (\rho \circ \iota_Y)_* = (\rho \circ \iota_Y)_* = \rho_* \circ (\iota_Y)_*$$

מסקנה 19.6 (משפט נקודת השבת של בראואר) לכל העתקה רציפה לבר $D=\overline{B}(0,1)\subseteq\mathbb{R}^2$ עבור 19.6 מסקנה לכל העתקה שבת.

הטריוויאלית ולכן אין רטרקציה הטריוויאלית. אין שיכון של \mathbb{Z} בחבורה הטריוויאלית גם בחבורה גם אבל גם $\pi_1(D,1)=1$ גם גם $\pi_1(S^1,1)=1$ אבל גם $S^1\hookrightarrow D$ הסגור לשפה שלו.

נניח ש $\rho(x)$ להיות נקודת החיתוך של קרן מ־f(x) להיות נקודת שבת נבנה רטרקציה. לכל $t \in D$ לכל מבת שאין לה נקודות שבת נבנה רטרקציה. לכל $t \in D$ שבור $t \in D$ עבור $t \in D$

10.6.2025 - 20 שיעור 20

ננסח שוב את המשפט שראינו אתמול,

משפט נניח ש $(E,e_0) \to (B,b_0)$ העתקת כיסוי, אז,

שיכון
$$p_*:\pi_1(E,e_0)\to\pi_1(B,b_0)$$
 .1

ערכית, ערכית הד-חד משרה $\Phi:\pi_1(B,b_0) o p^{-1}(b_0)$ משרה העתקה. 2

$$\overline{\Phi}: p_*(\pi_1(E, e_0)) \backslash \pi_1(B, b_0) \to p^{-1}(b_0)$$

היא על Φ אם E קשיר מסילתית אז Φ היא על

, כך שמתקיים, סיים, וניח ש־I imes X o Y הוא העתקה ל־I imes X o Y תת־מרחב. נסג עיוות מ־I imes X o Y מרחב טופולוגי ו

$$\forall x \in X, \ D(1,x) \in Y, \quad D(0,x) = x, \quad \forall y \in Y, \ D(s,y) = y$$

ערכי, משרה הומומורפיזם $\iota_Y:Y\hookrightarrow X$ הערקת הערקעיה. לכן הערקציה. לכן היא רטרקצידי על־ידי על־ידי המוגדרת על־ידי ho(x)=D(1,x)

$$\iota_{Y*}: \pi_1(Y, y_0) \to \pi_1(X, x_0)$$

, ביניהן ויש הומוטופיה רציפות, העתקות $f,g:(X,x_0) o (Y,y_0)$ אם 20.1 למה

$$H:I\times X\to Y$$

רציפה, אז מתקיים g_st , כאשר,

$$f_*, g_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

משפט 20.2 אם $Y\subseteq X$ משפט 20.2

$$(\iota_Y)_*: \pi_1(Y, y_0) \to \pi_1(X, y_0)$$

איזומורפיזם.

על. על על Xי מי רטרקציה מי חדרת והיא חבורות שהיא של חבורות נותר להראות נותר להראות על. נותר להראות אנו כבר יודעים כי וודעים כי $D:I\times X\to Y$ נסג עיוות נגדיר, נניח גם ש $Y:I\times X\to Y$. נותר להראות האיא על. על $[\gamma]$

$$L: I \times I \to X, \quad L(s,t) = D(s,\gamma(t))$$

ולכן,

$$L(0,t) = D(0,\gamma(t)) = \gamma(t)$$

ונסיק ש־L(1,t) מסילה ב־Y וש־ל מסילה ב

$$\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}) = \mathbb{Z}$$
 20.3 טענה

, ונגדיר, $S^1\hookrightarrow\mathbb{R}^2\setminus\{(0,0)\}$ ונגדיר,

$$D(t,x) = x + t\left(\frac{x}{\|x\|} - x\right)$$

וקיבלנו את הטענה.

 $g\circ f\sim \mathrm{id}_X$ שקילות הומוטופית) נאמר ש $g:Y\to X$ ויך במקרה שה שקולים הומוטופית שקולים הומוטופית שקילות הומוטופית שקילות הומוטופית שקילות הומוטופית שקילות הומוטופית שקילות הומוטופית שקילות הומוטופית של g^{-1} הומוטופית של הומוטופית של $f\circ g\sim \mathrm{id}_Y$.

תרגיל 20.1 הוכיחו כי זהו אכן יחס שקילות.

 $y_0=f(x_0)$ כאשר $f_*:\pi_1(X,x_0) o\pi_1(Y,y_0)$ אם f:X o Y שקולים הומוטופית וf:X o Y העתקת שקילות הומוטופית, אז (20.5 איזומורפיזם.

16.6.2025 - 21 שיעור 21

משפט ואן־קמפן 21.1

היום נעסוק בהוכחת משפט ואן־קמפן. משפט זה יאפשר לנו לחשב את החבורה היסודית של מרחבים שונים. לדוגמה של שמונה ושל גרפים קשירים. נתחיל בניסוח הכי פשוט של המשפט, ומשם אולי נמשיך לגרסות המורכבות יותר.

, היבור, אז נעסוק איבר, אז נעסוק חופשית עם יוצר אחד היא $\mathbb Z$ וכאן נחשוב עליה כחבורה בלומר חופשית עם יוצר אחד היא $\mathbb Z$

$$\langle a \rangle = \{ e = a^0, a, a^2, \ldots \}$$

 (a,a^{-1}) את עם המילים את $W(\{a\})$ את נסמן בי

. המצומצמות המילים המילים $F(\{a\})\subseteq W(\{a\})$ נסמן לכן נסמן $aaa^{-1}aa\in W(\{a\})$ המילה 21.2 המילה

הרעיון הוא להסתכל על חבורות חופשיות כחבורות שמורכבות כחבורות המורכבות שמכפלת אותיות, כלומר אוסף מחרוזות. פעולת הכפל על הרעיון הוא להסתכל על חבורות מצומצמת. ברור כי $\mathbb{Z}\simeq F(\{a\})$

 $.\langle a \rangle$ את $F(\{a\})$ נסמן ב־21.1 נסמן סימון

הגדרה בווצרת על־ידי S היא אוסף כל המילים המצומצמות, $S=\{a,b\}$, אז החבורה הנוצרת על־ידי S היא אוסף כל המילים המצומצמות, כלומר אוסף המכפלות הסופיות של איברי S והאיברים ההופכיים להם.

$$W(S) = \{ s_0^{\varepsilon_0} s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} \mid s_i \in S, \varepsilon_i \in \{\pm\} \}$$

F(S)ניתן לעבור בכמות צעדים סופית ליה W(S)ה מכל מילה מל מכילה את הצירוף הצעדים סופית ליה מכל מילה ב $u,w\in W(S)$ מכל מילה מצומצמת היידה, כאשר שתי מילים עות שקולות אם ניתן לעבור מאחת שקולה למילה מצומצמת שקינו בהגדרת הצמצום.

נבחין כי F(S) היא חבורה כחבורת מנה או כאוסף מצומצם (כאשר זה האחרון יותר נוח) ויחד עם פעולת השרשור היא מהווה חבורה. עלינו להוכיח כי מתקיימת אסוציאטיביות במקרה זה, ההוכחה היא ישירה ולא מאוד מעניינת. בשלב הבא נבנה גרף המוגדר על־ידי איברי F(S), כלומר יהיה כי מתקיימת אסוציאטיביות במקרה זה, ההוכחה היא ישירה ולא מאוד מעניינת. בשלב הבא w=w' אז יש קשר בין w ל־'w וכן הלאה. הגרף המתקבל הוא w=w' ווא w=w' הוא קשיר וחסר מעגלים ולכן גם עץ. לעץ זה נקרא w ונגדיר העתקות,

$$L_a: T \to T, L_a(w) = \begin{cases} aw & w \neq a^{-1}w' \\ w' & w = a^{-1}w' \end{cases}, \quad L_b: T \to Tb_a(w) = \begin{cases} bw & w \neq b^{-1}w' \\ w' & w = b^{-1}w' \end{cases}$$

אלו המחבורה היזומורפית ל-F(S) שהגדרנו. במקרה היו הוצרת על הידי הוצרת על יחס החבורה הנוצרת על יחס החבורה הנוצרת על האחבורה הנוצרת על החבורה הנוצרת על החבורה במקרה האחבורה הנוצרת על האחבורה במקרה האחבורה הנוצרת על החבורה במקרה אחבורה הנוצרת על החבורה במקרה המחבורה הנוצרת על החבורה הודים החבורה החב

אנו רוצים מושג כללי יותר של מכפלה חופשית על חבורות. לצורך כך נאפיין את התכונה של חבורה חופשית.

 $arphi:\langle S
angle
ightarrow G$ יש הומומורפיזם יחיד לכל העתקה ולכל העתקה הגדרה לכל החבורה של החבורה החופשית. לכל הבורה לכל העתקה האוניברסליות של החבורה החופשית. לכל חבורה $G=\langle S
angle$ המקרה זה נאמר שG=G חופשית.

החבורה חופשית במובן שהגדרת פונקציה נקבעת באופן חופשי על־ידי האיברים המגדירים אותה. עתה משהגדרנו תכונה כללית, נוכל לדון בחבורה החבורה משהיג נקבעת באופן חבורה G החבורה החופשית על G מאופיינת כך שהיא חבורה G עם העתקה G כך שלכל חבורה החופשית על G מאופיינת כך שהיא חבורה G יש הומומורפיזם החבור החופשית על G מאופיינת כך שהיא חבורה G במתואר.

 $\iota_A:A o$ בימומורפיזמים אולי עם זוג חבורה עליהן. נרצה להגדיר מכפלה להגדיר היידה), נרצה להגדיר איבר חבורה A,B תהינה חבורה למעט אולי איבר היידה), נרצה להגדיר מכפלה $\varphi:H o G$ קיים הומומורפיזם יחיד $\varphi:H o G$ כך שלכל חבורה G והומומורפיזמים של האומורפיזמים להגדיר מכפלה חבורה של האומורפיזמים וועד מכפלה האומורפיזמים וועד מכפלה האומורפיזמים וועד מכפלה האומורפיזמים מכפלה האומורפיזמים וועד מכפלה האומורפים וועד מומורפים וועד מומורפים וועד מכפלה האומורפים וועד מכפלה האומורפ

$$\varphi_A = \varphi \circ \iota_A, \quad \varphi_B = \varphi \circ \iota_B$$

A,B טענה A*Bיש הופשית עם תכונה כזו והיא יחידה עד כדי איזומורפיזם, נסמו אותה ב-2 מתכפלה החופשית של

 $g_1g_2\cdots g_m\in A$, כך שאם A*B, כך מכפלה המילים המילים שאיבריה הם תהיה תהיה תהופשית המכפלה החופשית מעל A*B

16.6.2025 - 21 שיעור 21 משפט ואן־קמפן 21.1

, נגדיר את, מילים מאשר יוגדר מעליהן, נגדיר מילים מלה, אלה תקראנה מילים מאשר מיליהן. מאשר מיליהן מאשר מיליהן מיליה A*B

$$(g_1\cdots g_m)(h_1\cdots h_k)$$

 $g_mh_1
eq e$ והמכפלה בחבורה אז שייכות לאותה חבורה אז מדברים מילה מצומצמת. אם מדברים מילה מדוברה אז מחברים שונות אז מחברים ומקבלים מילה מצומצמת. אם h_1,g_m שייכות לאותה אז מחברים ומקבלים מילה $h_1,g_m=e$ אז נגדיר את המילה $g_m=e$ אז נגדיר את המילה $g_m=e$ אז נגדיר את המילה $g_m=e$ אז נגדיר את המילה הולמת.

תרגיל 21.2 מקבלים חבורה, ובהתאם ההגדרה היא טובה. בנוסף A*B משוכנות ב־A*B לבסוף גם A*B מקיימת את התכונה האוניברסלית. ברגיל 21.2 מקבלים חבורה חופשית על שני יוצרים. באופן דומה $\mathbb{Z}*\mathbb{Z}$ אתייה חבורה חופשית עם שלושה יוצרים.

משפט 21.6 (ואן־קמפן, ניסוח ראשון) נניה ש־X מרחב טופולוגי קשיר מסילתית ונניה שיש שתי תתי־קבוצות פתוחות X קשירות משפט 21.6 (ואן־קמפן, ניסוח ראשון) נניה ע"X מרחב טופולוגי קשיר מסילתית כך ש"X בי ע"ט קשר X איזשהו X בי ע"ט קשר (בפרט קשיר מסילתית). אז,

$$\pi_1(X, x_0) \simeq \pi_1(U, x_0) * \pi_1(V, x_0)$$

מסקנה עם שני יוצרים. נבחר U כחלק השמאלי עבור חופשית עבור F_2 עבור $\pi_1(X)\simeq F_2$ אז מתקיים 8, אז מתקיים בצורת אם אם X היא המרחב הטופולוגי בצורת אז מתקיים ללא נקודות קצה. עבור V באופן דומה החלק הימני ללא נקודות קצה.

תרגיל 21.3 מה קורה במקרים של גרפים סופיים כלליים?

ראשית נתבונן במספר סופי של מעגלים עם נקודה יחידה משותפת (מעין פרח), נקבל חבורה חופשית הנוצרת על־ידי מספר הלולאות הסגורות יוצרים. נעבור להוכחת המשפט.

הוכחה. אנו טוענים כי יש איזומורפיזם,

$$\varphi: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi(X, x_0)$$

נשים, כאשר הם מושרים המומורפיזם ($\alpha:\pi_1(U,x_0)\to\pi_1(X,x_0)$ בשים מהשיכונים, מושרים מהשיכונים, מושרים מהשיכונים, $\alpha:\pi_1(U,x_0)\to\pi_1(X,x_0)$

$$\iota_U:(U,x_0)\hookrightarrow (X,x_0),\quad \iota_V:(V,x_0)\hookrightarrow (X,x_0)$$

. לעיל. שציינו ההרמה את המקיים $\pi_1(U,x_0)*\pi_1(V,x_0) o \pi_1(X,x_0)$ ההרמה שציינו לעיל.

אנו טוענים כי φ הוא על. נתבונן במסילה $\gamma\in\Omega(X,x_0)$ המייצגת איבר המייצגת איבר להראות ש איבר להראות על. נתבונן במסילה $\gamma\in\Omega(X,x_0)$ המייצגת איבר $\gamma:[0,1]\to X$ מכוסה על-ידי שתי קבוצות פתוחות, מועתק ל־ $\gamma:[0,1]\to X$ אנו יודעים כי $\gamma:[0,1]\to X$ כך ש־ $\gamma:[0,1]\to X$ העתקה רציפה. $\gamma:[0,1]\to X$ מכוסה על-ידי שתי קבוצות פתוחות, בעזרת שימוש במספר לבג ניתן למצוא $\gamma:[0,1]\to X$

$$0 = t_0 < t_1 < \dots < t_n = 1$$

כך שהצמצום של $\gamma([t_i,t_{i+1}])\subseteq W_i$ מוכל ב־V. נסמן W_i קבוצות פתוחות ב־V או מוכל ב־V מובטח יש כאלה מפתיחות $\gamma([t_i,t_{i+1}])$ מוכל ב-V או מוכל ב־V מובטח או מוכל ב-V ולכן מוכל ב-V

$$\gamma \sim (\gamma_0 * \tau_1^{-1}) * (\tau_1 * \gamma_2 * \tau_2^{-1}) * \cdots (\tau_{n-1} * \gamma_n * \tau_n)$$

ונקבל,

$$[\gamma] = [\gamma_0 * \tau_i^{-1}] * \cdots * [\tau_{n-1} * \gamma_n]$$

ומכאן נובע שההעתקה היא על.

17.6.2025 - 22 שיעור 22

-משפט ואן־קמפן משפט 22.1

נמשיך בהוכחת המשפט בניסוחו שראינו.

, אעבור, בראה ערכית. כלומר ערכית עלינו להראות בי עלינו ערה ערכית. כלומר נראה שעבור, הוכחה. ראינו כי φ

$$\gamma_1 \in \Omega(U, x_0), \gamma_2 \in \Omega(V, x_0), \dots, \gamma_n \in \Omega(V \vee U, x_0)$$

מתקיים,

$$g = [\gamma_1][\gamma_2] \cdots [\gamma_n] \in \pi_1(U, x_0) * \pi_1(V, x_0)$$

מקיים $[\gamma_i]=r$ בחבורה במכפלה החופשית. נבחין כי יתכן ש $[\gamma_i]=r$ בחבורה בעצם האיבר הטריוויאלי במכפלה החופשית. נבחין כי יתכן ש $[\gamma_i]=r$ בחבורה בעצם בייתכן $[\gamma_i]=r$ בחבורה $[\gamma_i]=r$ בחבורה בייתכן $[\gamma_i]=r$ או בי $[\gamma_i]=r$ או בי $[\gamma_i]=r$ בחבורה בייתכן שיחים בייתכן האיבר הטריוויאלי בייתכן שיחים לבייתכן בחבורה בייתכן בחבורה בייתכן בחבורה בייתכן בייתכן שיחים בייתכן בחבורה בייתכן ביי

$$\varphi(g) = [\gamma_1 * \cdots * \gamma_n]$$

ונסמן Y=Y=1 נניח של Y=Y=1 נניח של Y=Y=1 נניח של למלבנים קטנים כך למלבנים קטנים כך נניח של Y=Y=1 נניח של אינפי Y=Y=1 למלבנים קטנים כך שכל אחד מהם מועתק לתוך Y=1 או לתוך Y=1 או לתוך Y=1 או לתוך של אינפי Y=1 או לארבעה מלאה, קרי הלוקה מלאה, קרי הלון מועתקים כל אחד לY=1 או לY=1 אם כולם מועתקים לY=1 מלבן נסתכל במלבנים שמכילים קודקוד זה, יש בין אחד לארבעה כאלה, המלבנים הללו מועתקים כל אחד לY=1 או בחר מסיחה סגורה המוכלת בY=1 נבחר באופן דומה מסילה בY=1 במקרה הדומה, ואם חלק מהמלבנים בY=1 וחלק בY=1 או הקודקוד בY=1 ונבחר מסילה בY=1 וחלק בY=1 או הקודקוד בY=1 ונבחר מסילה בY=1 וונבחר מסילה ב

נתבונן בהומוטופיה H מצומצמת לצלע התחתונה I imes I, כלומר ל־I imes I, ואז אפשר לבחון את המילה לאורכה. נעבור מהמילה הזאת למילה ארוכה יותר על־ידי בחינת החלוקה העדינה יותר של הצלע התחתונה. נחליף את γ_1 במילה מהצורה,

$$(\alpha_1^1 \tau_1 * \tau_1^{-1} \tau_2 * \cdots)$$

למילה, $[\gamma_1] \cdots [\gamma_n]$ מילה, עוברים כך מ- $[\gamma_n]$

$$[\alpha_1^1 \tau_1][\tau_1^1 * \alpha_2^1 * \tau_2] \cdots [\alpha_n^1 * \tau_n]$$

. ארכיות שנוכל הדרחד העתקה רציפה העתקה Hר מ־Hר שנוכל להרכיב ונקבל

הגדרות ומשפטים

הגדרות ומשפטים

4	הגדרה 1.1 (מרחב מטרי)
4	הגדרה 1.2 (רציפות)
4	\dots הגדרה 1.3 (כדור) הגדרה
4	$\dots\dots\dots\dots$ הגדרה 1.4 (קבוצה פתוחה)
4	הגדרה 1.5 (הגדרה שקולה לרציפות)
4	הגדרה 1.6 (טופולוגיה)
4	הגדרה 1.7 (מרחב טופולוגי)
4	1.9 הגדרה (קבוצה סגורה)
5	הגדרה 1.10 (בסים לטופולוגיה)
5	טענה 1.13 (צמצום מרחב טופולוגי)
5	טענה 1.14 (טופולוגיית מכפלה)
7	הגדרה 2.1 (טופולוגיית מכפלה)
7	הגדרה 2.2 (העתקות הטלה)
7	הגדרה 2.3 (תת־בסים לטופולוגיה)
7	הגדרה 2.4 (טופולוגיה חלשה)
7	הגדרה 2.5 (מטריקת מכפלה)
9	הגדרה 3.1 (סגור של קבוצה במרחב טופולוגי)
9	הגדרה 3.4 (פנים ושפה)
9	הגדרה 3.5 (סביבה של נקודה)
9	הגדרה 3.6 (נקודת הצטברות)
10	טענה 3.9 (שקילות לרציפות)
11	הגדרה 3.10 (מרחב כוויץ)
11	(הומיאומורפיזם) 3.11
11	הגדרה 3.12 (העתקה פתוחה וסגורה)
12	הגדרה 4.1 (איברים ניתנים להפרדה)
12	ה (אקסיומות הפרדה)
12	טענה 4.4 (גרירת אקסיומות ההפרדה)
12	טענה 4.5 (שקילות למרחב נורמלי)
12	טענה 4.6 (תנאי שקול למרחב האוסדורף)
13	טענה 4.7 (אקסיומות הפרדה בתתי־מרחבים)
13	טענה 4.8 (אקסיומות הפרדה במרחבי מכפלה)
13	טענה 4.9 (הפרדה במרחבים מטריים)
16	הגדרה 6.1 (בסים לטופולוגיה בנקודה)
16	ה הגדרה 6.2 (אקסיומת המנייה הראשונה)
16	ה.דרה 6.3 (אקסיומת המנייה השנייה)
16	הגדרה 6.4 (מרחב לינדולף)
16	הגדרה 6.5 (מרחב ספרבילי)
16	ה מרחב מטריזבילי)
16	משפט 6.8 (משפט המטריזביליות של אורסון)
17	
17	טענה 6.10 (תכונות של קשירות)
19	הגדרה 7.1 (קשירות מקומית)

הגדרות ומשפטים

19	7.2 (רכיב קשירות)	הגדרד
19		הגדרד
19		הגדרד
19	7.5 (קשירות מסילתית מקומית)	הגדרד
20		הגדרד
20	8.3 (שקילות לקומפקטיות)	הגדרד
22	8.10 (התכנסות סדרה במרחב טופולוגי)	הגדרד
22		הגדרד
22	8.12 (שקילות לקומפקטיות במרחבים מטריים)	משפט
23		משפט
25		הגדרד
25		הגדרה
26	10.3 (תכונת החיתוך הסופי)	הגדרה
26	לקומפקטיות)	: טענה
28		
28		
28		
29	12.1 (סטון־צ'ק)	
29	12.3 (הרחבה רציפה לפונקציות במרחבים קומפקטיים מקומית)	
29	(קבוצה דלילה) 12.5 (קבוצה דלילה) 12.5	
29	12.6 (קטגוריה ראשונה ושנייה)	
29	12.7 (בייר)	
30	2.8 (מרחב מושלם)	
30	12.10 (תכונת בייר)	
31	13.1 (משחק מזור)	
31	13.3 (אוקלידיות מקומית)	
31	13.4 (יריעה טופולוגית)	
33	14.1 (הומוטופיה)	
33	14.3 (מסילות הומוטופיות)	
34	14.6 (החבורה היסודית של מרחב טופולוגי)	
34	11.0 (חבורה)	
34	14.8 (שרשור של מסילות)	
34	14.12 (רפרמטריזציה של מסילה)	
36	14.12 (א פו מטו וציו של מט (א)	
36	15.3 (נסג עיוות)	
37		
37	16.2 (העתקת כיסוי)	
39	2.17 (הרמה של מסילות)	
39	17.2	
40	18.1	
41		
41		
42	19.4 (רטרקציה)	וועווו

הגדרות ומשפטים

43																																			20	0.2	ופט	מע
43																											(1	פיו	וטו	ומו	ו ה	יוח.	זקיי	w)	20	.4	רד	הגז
43																																			20).5	ופט	מע
44																						(ים	בר	אי	ני	מי	עכ	ית	פש	חרו	הו	בור	(חו	21	.2 ;	רד	הגז
44																	ת)	שי	ופי	i Ti	7 7	רד	בו	הח	ל	W	יות	סל	בר	וביו	87	תו	כונ.	ת)	21	.3	רד	הגז
44																												(זית	פע.	חו	ה'ה	כפי	מ)	21	.5	רד	הגז
45																									. ((ון	אש	ר:	סוד	בי	, 7 <u>=</u>	ומכ	נך־כ	(וא	21	.6	ופט	מע