

EOM-EE calculation of formaldehyde (CH₂O)

EOM-EE method:

- computes excited states (conserving the number of α and β electrons)
- yields accurate excitation energies
- describes multiconfigurational wavefunction with single reference formalism
- can compute excited-state gradients and properties

EOM-EE calculation of Formaldehyde (CH₂O)

- Import geometry (formaldehyde.xyz) into IQmol
- Use singlet reference (charge=0, multiplicity=1)
- Request singlets and triplets using EE_SINGLETS and EE_TRIPLETS
- Request transition properties: CC TRANS PROP = true
- Look at the EOM amplitudes and MOs to assign state character

```
$rem
METHOD = EOM-CCSD
BASIS = 6-31G**

EE_SINGLETS = [1,1,1,1] ! for calculating 4 singlet excited states from 4 irreps
! the order of irreps are: [A<sub>1</sub>, A<sub>2</sub>, B<sub>1</sub>, B<sub>2</sub>] for C<sub>2v</sub>

EE_TRIPLETS = [1,1,1,1] ! for calculating 4 triplet excited states from 4 irreps
MEM_TOTAL = 4000

METHOD = EOM-CCSD

CC_TRANS_PROP = true ! to request transition properties
!MOLDEN_FORMAT = true ! NTOs are generated in the molden format
!NTO_PAIRS = 2 ! 4 NTO pairs per transition
!STATE_ANALYSIS = true
$end
```

For generating NTOs: add STATE_ANALYSIS = true, NTO_PAIRS = 2, and MOLDEN_FORMAT = true

(This is not yet implemented in IQmol, need to visualize separately)

EOM-EE calculation of formaldehyde (CH₂O)

For each EOM-EE state you should get the following sections in the output

1) Excitation energies and orbital description

EOMEE transition 1/A1 Total energy = -113.64401221 a.u. Excitation energy = 10.6423 eV. R0^2 = 0.0006 R1^2 = 0.9034 R2^2 = 0.0966 Res^2 = 8.21e-06 Conv-d = yes

Amplitude	Transitions be	etween orbitals	
-0.5231	1 (B2) A	->	2 (B2) A
-0.5231	1 (B2) B	->	2 (B2) B
0.3878	2 (B1) A	->	3 (B1) A
0.3878	2 (B1) B	->	3 (B1) B
-0.1152	1 (B1) A	->	3 (B1) A
-0.1152	1 (B1) B	->	3 (B1) B

Summary of significant orbitals:

Number 5 8 7 5 8 7 11 9	Type Occ Occ Occ Occ Vir Vir	Alpha Alpha Alpha Beta Beta Beta Alpha	Irrep 1 (B1) 2 (B1) 1 (B2) 1 (B1) 2 (B1) 1 (B2) 3 (B1) 2 (B2)	Energy -0.7024 -0.4394 -0.5360 -0.7024 -0.4394 -0.5360 0.3229 0.1271
9 11	Vir	Beta	3 (B1)	0.1271
9	Vir	Beta	2 (B2)	0.1271

2) Transition properties

State A: ccsd: 0/A1
State B: eomee_ccsd/rhfref/singlets: 1/A1
Energy GAP = 0.391097 a.u. = 10.642306 eV
Transition dipole moment (a.u.):
 A->B: 0.183608 (X 0.000000, Y 0.000000, Z 0.183608)
 B->A: 0.381190 (X 0.000000, Y 0.000000, Z 0.381190)
Oscillator strength (a.u.): 0.018249
Transition angular momentum against gauge origin (a.u.):
 A->B: (X 0.000000i, Y 0.000000i, Z 0.000000i)
 B->A: (X 0.000000i, Y 0.000000i, Z 0.000000i)
Norm of one-particle transition density matrix:
 A->B: 0.909370; B->A: 0.968533

EOM-EE **Energy** Osc. EOM-EE **Energy** Osc. (eV) Strength (eV) **Strength** state state $^{1}A_{1}$ 3A_1 10.64 0.02 6.08 0.0 3A_2 $^{1}A_{2}$ 3.98 0.00 3.58 0.0 $^{1}B_{1}$ ³**B**₁ 9.56 0.19 8.56 0.0 3B_2 $^{1}B_{2}$ 9.42 0.01 8.46 0.0

The oscillator strength for the triplet states is zero as they are spinforbidden

||gamma^AB||*||gamma^BA||: 0.880755

Transition between the excited states can also be computed

CHEM EOM-EE calculation of formaldehyde (CH₂O)

- NTOs are in the filename.out.plots folder. The NTOs are named as ccsd_eomee_ccsd_rhfref_singlets_i_j_nto.mo (for jth state in the ith irrep). We plotted the NTOs with the jmol plotting software.
- 2. Each NTO pair is associated with a singular value (σ). It is negative for holes and positive for particles. σ = 0.49738 means 49% of the wavefunction is accounted for by this NTO pair.
- 3. The number of NTO pairs we need to consider depends on the participation ratio (PR_NTO). If PR_NTO is close to 1, we take 1 NTO pair.
- 4. NTOs for some electronic excitations in formaldehyde are shown below.

