第 1 章

基本変形と基本行列

行基本変形と基本行列

基本変形を行列のかけ算によって実現することができる

基本行列 基本変形 α を単位行列 E に行った結果を E_{α} とするとき、 E_{α} を α に対応する基本行列と呼ぶ

ref: 行列と行列式の基

礎 p85~86

ref: 長岡亮介 線形代数

入門講義 p58~61

行基本変形とは、次の3種類の操作であった

- i. 2 つの行を交換する
- ii. ある行に O でない数をかける
- iii. ある行の定数倍を他の行に加える

これらに対応して、行基本変形を表現する基本行列は、次の3種類がある

i. F(i,j): E の i 行と j 行を交換したもの $(i \neq j)$

ii. $G(i; c) : E \circ (i, j)$ 成分を 1 から c に置き換えたもの $(c \neq 0)$

iii. H(i,j;c): $E \circ (i,j)$ 成分を 0 から c に置き換えたもの $(i \neq j)$

行に関する基本変形は、基本行列を左からかけることに他ならない

基本行列による行基本変形の表現 行列 A に行基本変形 α を行って得られる行列を B とすると、

$$B = E_{\alpha}A$$

☎ 証明

 e_k を k 列目が 1 で他が 0 の横ベクトルとし、A の k 行目の行ベクトルを a_k とする

行の交換

基本行列 F(i,j) の k 行目は、

$$(F(i,j))_{k,*} = egin{cases} oldsymbol{e}_j & (k=i) \ oldsymbol{e}_i & (k=j) \ oldsymbol{e}_k & (k
eq i,j) \end{cases}$$

よって、F(i,j)A の k 行目は、

$$(F(i,j)A)_{k,*} = egin{cases} oldsymbol{a}_j & (k=i) \ oldsymbol{a}_i & (k=j) \ oldsymbol{a}_k & (k
eq i,j) \end{cases}$$

となり、i 行目と j 行目が交換されていることがわかる

行の定数倍

基本行列 G(i;c) の k 行目は、

$$(G(i;c))_{k,*} = \begin{cases} c \boldsymbol{e}_i & (k=i) \\ \boldsymbol{e}_k & (k \neq i) \end{cases}$$

よって、G(i;c)A の k 行目は、

$$(G(i;c)A)_{k,*} = \begin{cases} c\boldsymbol{a}_i & (k=i) \\ \boldsymbol{a}_k & (k \neq i) \end{cases}$$

となり、*i* 行目が *c* 倍されていることがわかる

行の定数倍の加算

基本行列 H(i, j; c) の k 行目は、

$$(H(i,j;c))_{k,*} = egin{cases} oldsymbol{e}_i + coldsymbol{e}_j & (k=i) \ oldsymbol{e}_j & (k=j) \ oldsymbol{e}_k & (k
eq i,j) \end{cases}$$

よって、H(i,j;c)A の k 行目は、

$$(H(i,j;c)A)_{k,*} = egin{cases} oldsymbol{a}_i + coldsymbol{a}_j & (k=i) \ oldsymbol{a}_j & (k=j) \ oldsymbol{a}_k & (k
eq i,j) \end{cases}$$

となり、i 行目に j 行目の c 倍が加えられていることがわか

る

列基本変形と基本行列

行基本変形と同様に、列に関する基本変形を考えることもできる

- i. 2 つの列を交換する
- ii. ある列に O でない数をかける
- iii. ある列の定数倍を他の列に加える

列に関する基本変形は、基本行列を右からかけることで実現できる

・ 基本行列による列基本変形の表現 行列 *A* に列基本変形 α を行って得られる行列を *B* とすると、

$$B = AE_{\alpha}$$

転置すると A になるような行列 A' を考える

$$A' = {}^t(A)$$

転置すると行と列が入れ替わるので、A' に「行」基本変形を施した 行列を転置すれば、A に同じ基本変形を列に関して施した行列が得 られる ref: 行列と行列式の基

礎 p87

ref: 長岡亮介 線形代数

入門講義 p61~62

適用したい基本変形を α とし、これを列に関して施す基本行列が E_{α} なら、これを行に関して施す基本行列は $^t(E_{\alpha})$ となる よって、

$$B = {}^{t}({}^{t}(E_{\alpha})A') = {}^{t}(A'){}^{t}({}^{t}(E_{\alpha})) = AE_{\alpha}$$

というように、積の転置を取ると積の順序が入れ替わることから、行 基本変形の場合とは積の順序が逆転することがいえる ■

基本行列の正則性

行基本変形も列基本変形も、基本行列によって定式化できる この考えをさらに進めるため、基本行列の性質を述べる

🕹 基本行列の正則性 基本行列は正則である

ref: 長岡亮介 線形代数 入門講義 p62

ref: 行列と行列式の基

礎 p86

証明 証明

基本行列の表す変形を考えれば、

$$F(i,j)F(i,j) = E$$

$$G(i;c)G(i;\frac{1}{c}) = G(i;\frac{1}{c})G(i;c) = E$$

$$H(i,j;c)H(i;-c) = H(i,j;-c)H(i,j;c) = E$$

が成り立つことがわかる

したがって、基本行列は逆行列を持つので正則である

つまり、各々の基本変形は可逆の変形、すなわち逆に戻ることのできる変 形である

基本行列の積と逆行列

行基本変形が基本行列を左からかけることに対応することから、行基本変形 とは線形写像であり、基本行列はその表現行列であるという見方もできる

そのため、行基本変形の合成は、基本行列の積として表現できる

このことから、行についての連続する複数の基本変形の繰り返しも可逆で あることがいえる

行基本変形を $A \xrightarrow{\alpha_k} \cdots \xrightarrow{\alpha_1} B$ と合成して得られる行変形は、 $E_{\alpha_1} \cdots E_{\alpha_k}$ を左からかけることで実現されるすなわち、

$$B = E_{\alpha_1} \cdots E_{\alpha_k} A$$

が成り立つ

個々の基本行列 $E_{\alpha_1},\ldots,E_{\alpha_k}$ は正則であるので、これらの積 $P=E_{\alpha_1}\cdots E_{\alpha_k}$ も正則である

上の証明から、正則行列 P に対して、その逆行列を P^{-1} とすると、

$$P^{-1}B = P^{-1}E_{\alpha_1}\cdots E_{\alpha_k}A = P^{-1}PA = A$$

が成り立つことになる

ここで、B=E の場合を考えると、 $P^{-1}E=A$ となるので、次のことがいえる

ref: 長岡亮介 線形代数 入門講義 p62~63

ref: 行列と行列式の基

礎 p86

* * 単位行列への行変形による逆行列の構成 正方行列 A の単位行列への行変形 $A \to E$ に対応する基本変形の積は、A の逆行列を与える

つまり、任意の正方行列は行基本変形だけで単位行列に変形でき、その基本行列の積から逆行列を求めることができる

この章で得られた定理を組み合わせると、次の定理が得られる

・基本行列の積による正則行列の表現 任意の正則行列はいく
つかの基本行列の積である

証明

A を正則行列とすると、A の逆行列 A^{-1} は行変形 $A \rightarrow E$ に対応する基本変形の積によって与えられる

さらに、基本行列の積による行変形の構成より、行変形 $A \rightarrow E$ に対し、

$$E = PA$$

を満たす正則行列 P が存在する

この等式より、 $A^{-1} = P$ となり、P も基本行列の積であることが

いえる

階数標準形

ref: 行列と行列式の基

礎 p87~88

ref: 長岡亮介 線形代数 入門講義 p75~78 任意の行列 A は、行基本変形により、次のような既約行階段行列に変形できる

ここからさらに、列の交換によって、主成分のある列を左に集めることが できる

ここで、r は零行ではない行の個数、すなわち A の階数である

さらに、列の掃き出しで、左上のブロックの成分 * をすべて 0 にできる

この形を、Aの階数標準形という

この形を得るまでの過程をまとめると、次のことがいえる

・ 基本変形による階数標準形の構成 任意の行列は、行と列の 基本変形を繰り返すことで、階数標準形に変形できる

ここで、P を行基本変形に対応する基本行列の積、Q を列基本変形に対応する基本行列の積とすると、A の階数標準形は PAQ で与えられる

・ 正則行列による階数標準形の構成 $m \times n$ 型行列 A に対して、行変形に対応する m 次正則行列 P、列変形に対応する n 次正則行列 Q が存在し、

B = PAQ

が階数標準形となる