Powerdomains in Isabelle/HOLCF

Brian Huffman

Portland State University

Galois Technical Seminar, February 26, 2008

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

Background

I assume familiarity with some basic domain theory:

- Bottoms (⊥)
- Complete partial orders (□)
- Limits of chains
- Monotone and continuous functions

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- 2 Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

A powerdomain is

- a monad
- with a nondeterministic choice operator

Powerdomains adapt the notion of powersets to work with domain theory.

A powerdomain is

- a monad
- with a nondeterministic choice operator

Powerdomains adapt the notion of powersets to work with domain theory.

A powerdomain is

- a monad
- with a nondeterministic choice operator

Powerdomains adapt the notion of powersets to work with domain theory.

A powerdomain is

- a monad
- with a nondeterministic choice operator

Powerdomains adapt the notion of powersets to work with domain theory.

What are Powerdomains Good For?

Powerdomains are good for reasoning about

- Nondeterministic algorithms
 - Write algorithms monadically in a powerdomain
 - Works with arbitrary recursion
- Parallel computation
 - Resumption monad transformer models interleaving
 - Powerdomain models nondeterministic scheduler

What are Powerdomains Good For?

Powerdomains are good for reasoning about

- Nondeterministic algorithms
 - Write algorithms monadically in a powerdomain
 - Works with arbitrary recursion
- Parallel computation
 - Resumption monad transformer models interleaving
 - Powerdomain models nondeterministic scheduler

What are Powerdomains Good For?

Powerdomains are good for reasoning about

- Nondeterministic algorithms
 - Write algorithms monadically in a powerdomain
 - Works with arbitrary recursion
- Parallel computation
 - Resumption monad transformer models interleaving
 - Powerdomain models nondeterministic scheduler

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- 2 Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

Good for modeling in Haskell:

Executable

- Not abstract enough
- Problems with partial/infinite values

Good for modeling in Haskell:

Executable

- Not abstract enough
- Problems with partial/infinite values

Good for modeling in Haskell:

Executable

- Not abstract enough
- Problems with partial/infinite values

Good for modeling in Haskell:

Executable

- Not abstract enough
- Problems with partial/infinite values

Examples Using List Monad in Haskell

- Monadic merge sort with nondeterministic comparison
- Nondeterministically choosing a node in a tree

Monads with Nondeterministic Choice

Haskell type class for monads with nondeterministic choice operator

Haskell lists can model nondeterministic computation

```
mergesort :: (Monad m) =>
  (a \rightarrow a \rightarrow m Bool) \rightarrow [a] \rightarrow m [a]
mergesort r [] = return []
mergesort r [x] = return [x]
mergesort r xs = do ys' <- mergesort r ys
                       zs' <- mergesort r zs
                       xs' <- merge r ys' zs'
                       return xs'
  where (ys,zs) = split xs
```

```
merge :: (Monad m) =>
  (a \rightarrow a \rightarrow m Bool) \rightarrow [a] \rightarrow [a] \rightarrow m [a]
merge r xs [] = return xs
merge r [] ys = return ys
merge r (x:xs) (y:ys) =
  do b < -r x y
     if b then do zs <- merge r xs (y:ys)
                     return (x:zs)
            else do zs <- merge r (x:xs) ys
                      return (y:zs)
```

```
r1, r2 :: (MultiMonad m) =>
  (Int, a) -> (Int, a) -> m Bool
r1 (x,_) (y,_) =
  case compare x y of
    LT -> return True
    GT -> return False
    EQ -> return True +|+ return False
r2 (x,_) (y,_) =
 return (x \le y) + |+ return (x < y)
```

```
dataset :: [(Int, String)]
dataset =
  [(3,"foo"),(2,"bar"),(1,"baz"),(2,"wibble")]
```

- r1 is basically equivalent to r2
- mergesort r1 dataset should be equivalent to mergesort r2 dataset
- What happens in Haskell?

Nondeterministic Choice with Binary Trees

```
data Tree a = Node (Tree a) (Tree a) | Leaf a

pick (Leaf a) = return a
pick (Node l r) = pick l +|+ pick r

mirror (Leaf a) = Leaf a
mirror (Node l r) = Node (mirror r) (mirror l)
```

• pick (mirror t) should be equivalent to pick t

Nondeterministic Choice with Binary Trees

What happens in Haskell?

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

• Return and bind satisfy monad laws

② Bind distributes over choice operator

$$(a + | + b) >>= f == (a >>= f) + | + (b >>= f)$$

Choice operator is associative, commutative, idempotent

$$(a + | + b) + | + c == a + | + (b + | + c)$$

 $a + | + b == b + | + a$
 $a + | + a == a$

• Return and bind satisfy monad laws

2 Bind distributes over choice operator

$$(a + | + b) >>= f == (a >>= f) + | + (b >>= f)$$

Choice operator is associative, commutative, idempotent

$$(a + | + b) + | + c == a + | + (b + | + c)$$

 $a + | + b == b + | + a$
 $a + | + a == a$

• Return and bind satisfy monad laws

2 Bind distributes over choice operator

$$(a + | + b) >>= f == (a >>= f) + | + (b >>= f)$$

Ohoice operator is associative, commutative, idempotent

In addition:

• All operations must be monotone and continuous

```
return x = \{x\}

a >>= f = (\bigcup x \in a. f x)

a + |+ b = a \cup b
```

- Set operations satisfy the monad laws
- Set union is associative, commutative, and idempotent
- What about monotonicity and continuity?
 - First we must define a complete partial order...

```
return x = \{x\}

a >>= f = (\bigcup x \in a. f x)

a + |+ b = a \cup b
```

- Set operations satisfy the monad laws
- Set union is associative, commutative, and idempotent
- What about monotonicity and continuity?
 - First we must define a complete partial order...

```
return x = \{x\}

a >>= f = (\bigcup x \in a. f x)

a + |+ b = a \cup b
```

- Set operations satisfy the monad laws
- Set union is associative, commutative, and idempotent
- What about monotonicity and continuity?
 - First we must define a complete partial order...

```
return x = \{x\}

a >>= f = (\bigcup x \in a. f x)

a + |+ b = a \cup b
```

- Set operations satisfy the monad laws
- Set union is associative, commutative, and idempotent
- What about monotonicity and continuity?
 - First we must define a complete partial order...

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

The Subset Ordering Does Not Work

The subset relation (\subseteq)

- is a partial order on sets
- is complete (unions give least upper bounds)

But not all operations are monotone w.r.t (\subseteq)

• $x \sqsubseteq y$ does not imply that $\{x\} \subseteq \{y\}$

The Subset Ordering Does Not Work

The subset relation (\subseteq)

- is a partial order on sets
- is complete (unions give least upper bounds)

But not all operations are monotone w.r.t (\subseteq)

• $x \sqsubseteq y$ does not imply that $\{x\} \subseteq \{y\}$

Monotonicity Implies Certain Equivalences

Theorem

Let $x \sqsubseteq y \sqsubseteq z$.

Then as elements of a powerdomain, $\{x, y, z\} = \{x, z\}$.

Proof

- From $y \sqsubseteq z$ have $\{x,y,z\} \sqsubseteq \{x,z,z\}$ (monotonicity)
- Hence $\{x, y, z\} \sqsubseteq \{x, z\}$ (idempotency)
- From $x \sqsubseteq y$ have $\{x, x, z\} \sqsubseteq \{x, y, z\}$ (monotonicity)
- Hence $\{x,z\} \sqsubseteq \{x,y,z\}$ (idempotency)
- Finally have $\{x, y, z\} = \{x, z\}$ (antisymmetry)

Monotonicity Implies Certain Equivalences

Theorem

Let $x \sqsubseteq y \sqsubseteq z$.

Then as elements of a powerdomain, $\{x, y, z\} = \{x, z\}$.

Proof.

- From $y \sqsubseteq z$ have $\{x,y,z\} \sqsubseteq \{x,z,z\}$ (monotonicity)
- Hence $\{x,y,z\} \sqsubseteq \{x,z\}$ (idempotency)
- From $x \sqsubseteq y$ have $\{x, x, z\} \sqsubseteq \{x, y, z\}$ (monotonicity)
- Hence $\{x,z\} \sqsubseteq \{x,y,z\}$ (idempotency)
- Finally have $\{x, y, z\} = \{x, z\}$ (antisymmetry)

- Define $(a \sqsubseteq^{\sharp} b) \iff (\forall y \in b. \exists x \in a. x \sqsubseteq y)$
 - "everything in b is above something in a"
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its upward-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\sharp})
- Satisfies an additional law: $a \cup b \sqsubseteq^{\sharp} a$
 - Union is greatest lower bound (meet) w.r.t. (□[‡])

- Define $(a \sqsubseteq^{\sharp} b) \iff (\forall y \in b. \exists x \in a. x \sqsubseteq y)$
 - "everything in b is above something in a"
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its upward-closure
- All operations are monotone w.r.t. (□[‡])
- Satisfies an additional law: $a \cup b \sqsubseteq^{\sharp} a$
 - Union is greatest lower bound (meet) w.r.t. (□[‡])

- Define $(a \sqsubseteq^{\sharp} b) \iff (\forall y \in b. \exists x \in a. x \sqsubseteq y)$
 - "everything in b is above something in a"
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its upward-closure
- All operations are monotone w.r.t. (□[‡])
- Satisfies an additional law: $a \cup b \sqsubseteq^{\sharp} a$
 - Union is greatest lower bound (meet) w.r.t. (□[‡])

- Define $(a \sqsubseteq^{\sharp} b) \iff (\forall y \in b. \exists x \in a. x \sqsubseteq y)$
 - "everything in b is above something in a"
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its upward-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\sharp})
- Satisfies an additional law: $a \cup b \sqsubseteq^{\sharp} a$
 - Union is greatest lower bound (meet) w.r.t. (□[‡])

- Define $(a \sqsubseteq^{\flat} b) \iff (\forall x \in a. \exists y \in b. x \sqsubseteq y)$
 - "everything in a is below something in b"
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its downward-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\sharp})
- Satisfies an additional law: $a \sqsubseteq^{\flat} a \cup b$
 - Union is least upper bound (join) w.r.t. (□^b)

- Define $(a \sqsubseteq^{\flat} b) \iff (\forall x \in a. \exists y \in b. x \sqsubseteq y)$
 - "everything in a is below something in b"
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its downward-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\sharp})
- Satisfies an additional law: $a \sqsubseteq^{\flat} a \cup b$
 - Union is least upper bound (join) w.r.t. (□^b)

- Define $(a \sqsubseteq^b b) \iff (\forall x \in a. \exists y \in b. x \sqsubseteq y)$
 - "everything in a is below something in b"
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its downward-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\sharp})
- Satisfies an additional law: $a \Box^{\flat} a \cup b$
 - Union is least upper bound (join) w.r.t. (□^b)

- Define $(a \sqsubseteq^{\flat} b) \iff (\forall x \in a. \exists y \in b. x \sqsubseteq y)$
 - "everything in a is below something in b"
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its downward-closure
- All operations are monotone w.r.t. (□[‡])
- Satisfies an additional law: $a \sqsubset^{\flat} a \cup b$
 - Union is least upper bound (join) w.r.t. (□)

- Define $(a \sqsubseteq^{\natural} b) \iff (a \sqsubseteq^{\sharp} b) \land (a \sqsubseteq^{\flat} b)$
- Partial preorder on sets (not antisymmetric)
 - Every set equivalent to its convex-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\natural})
- Satisfies no additional laws
 - Is the continuous free algebra satisfying powerdomain axioms

- Define $(a \sqsubseteq^{\natural} b) \iff (a \sqsubseteq^{\sharp} b) \land (a \sqsubseteq^{\flat} b)$
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its convex-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\natural})
- Satisfies no additional laws
 - Is the continuous free algebra satisfying powerdomain axioms

- Define $(a \sqsubseteq^{\natural} b) \iff (a \sqsubseteq^{\sharp} b) \land (a \sqsubseteq^{\flat} b)$
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its convex-closure
- All operations are monotone w.r.t. (\sqsubseteq^{\natural})
- Satisfies no additional laws
 - Is the continuous free algebra satisfying powerdomain axioms

- Define $(a \sqsubseteq^{\natural} b) \iff (a \sqsubseteq^{\sharp} b) \land (a \sqsubseteq^{\flat} b)$
- Partial *preorder* on sets (not antisymmetric)
 - Every set equivalent to its convex-closure
- All operations are monotone w.r.t. (□[□])
- Satisfies no additional laws
 - Is the continuous free algebra satisfying powerdomain axioms

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

Powerdomains of Lifted 2-Element Type

Powerdomains of Lifted 2-Element Type

Powerdomains of Lifted 2-Element Type

Powerdomains of Lifted 3-Element Type

Argument Type

Lower Powerdomain

Powerdomains of Lifted 3-Element Type

Argument Type

$\{\bot, A, B, C\}$ $\{\bot, A, B\} \quad \{\bot, A, C\} \quad \{\bot, B, C\}$ $\{\bot, A\} \quad \{\bot, B\} \quad \{\bot, C\}$

Powerdomains of Lifted 3-Element Type

Argument Type

Convex Powerdomain

$$\{A,B,C\}$$

$$\{\bot,A,B,C\}$$

$$\{\bot,A,B\} \qquad \{\bot,A,C\} \qquad \{\bot,B,C\}$$

$$\{A,B\} \qquad \{\bot,A,C\} \qquad \{\bot,B,C\}$$

$$\{A,B\} \qquad \{\bot,B\} \qquad \{\bot,C\}$$

$$\{\bot,B\} \qquad \{\bot,C\}$$

Powerdomains of 4-Element Lattice

Powerdomains of 4-Element Lattice

Powerdomains of 4-Element Lattice

Argument Type

Convex Powerdomain

Notes on Different Kinds of Powerdomains

- Upper
 - $a \sqsubseteq b \iff a$ has more possible outcomes than b
 - Union is strict: $\bot \cup a = \bot$
 - "Possibly not terminating is just as bad as never terminating"
 - Good for modeling total correctness
- Lower
 - $a \sqsubseteq b \iff a$ has fewer possible outcomes than b
 - Bottom is identity for union: $\bot \cup a = a$
 - "I don't care about execution paths that don't terminate"
 - Good for modeling partial correctness
- Convex
 - Distinguishes more values than upper or lower
 - Agnostic on total vs. partial correctness

Notes on Different Kinds of Powerdomains

- Upper
 - $a \sqsubseteq b \iff a$ has *more* possible outcomes than b
 - Union is strict: $\bot \cup a = \bot$
 - "Possibly not terminating is just as bad as never terminating"
 - Good for modeling total correctness
- Lower
 - $a \sqsubseteq b \iff a$ has fewer possible outcomes than b
 - Bottom is identity for union: $\bot \cup a = a$
 - "I don't care about execution paths that don't terminate"
 - Good for modeling partial correctness
- Convex
 - Distinguishes more values than upper or lower
 - Agnostic on total vs. partial correctness

Notes on Different Kinds of Powerdomains

- Upper
 - $a \sqsubseteq b \iff a$ has *more* possible outcomes than b
 - Union is strict: $\bot \cup a = \bot$
 - "Possibly not terminating is just as bad as never terminating"
 - Good for modeling total correctness
- Lower
 - $a \sqsubseteq b \iff a$ has fewer possible outcomes than b
 - Bottom is identity for union: $\bot \cup a = a$
 - "I don't care about execution paths that don't terminate"
 - Good for modeling partial correctness
- Convex
 - Distinguishes more values than upper or lower
 - Agnostic on total vs. partial correctness

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- 2 Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

A powerdomain type contains

- singletons
- binary unions
- limits of chains
- nothing else

- All finite nonempty sets
- Only those infinite sets needed for completeness

Defining CPOs Using Ideal Completion

- Let (\preceq) be a reflexive, transitive relation
- An ideal A is a set that is
 - nonempty $(\exists x. x \in A)$
 - downward-closed $(\forall y \in A. \forall x \leq y. x \in A)$
 - directed $(\forall x, y \in A. \exists z \in A. x \leq z \land y \leq z)$
- Principal ideals have a maximum element
 - $\{a \mid a \leq x\}$ is the principal ideal generated by x
 - $x \leq y$ implies $\{a \mid a \leq x\} \subseteq \{a \mid a \leq y\}$
- The set of ideals over (\preceq) is a CPO
 - The union of a chain of ideals is an ideal

Defining CPOs Using Ideal Completion

- Let (\preceq) be a reflexive, transitive relation
- An ideal A is a set that is
 - nonempty $(\exists x. x \in A)$
 - downward-closed $(\forall y \in A. \forall x \leq y. x \in A)$
 - directed $(\forall x, y \in A. \exists z \in A. x \leq z \land y \leq z)$
- Principal ideals have a maximum element
 - $\{a \mid a \leq x\}$ is the principal ideal generated by x
 - $x \leq y$ implies $\{a \mid a \leq x\} \subseteq \{a \mid a \leq y\}$
- The set of ideals over (\preceq) is a CPO
 - The union of a chain of ideals is an ideal

Defining CPOs Using Ideal Completion

- Let (\leq) be a reflexive, transitive relation
- An ideal A is a set that is
 - nonempty $(\exists x. x \in A)$
 - downward-closed $(\forall y \in A. \forall x \leq y. x \in A)$
 - directed $(\forall x, y \in A. \exists z \in A. x \leq z \land y \leq z)$
- Principal ideals have a maximum element
 - $\{a \mid a \leq x\}$ is the principal ideal generated by x
 - $x \leq y$ implies $\{a \mid a \leq x\} \subseteq \{a \mid a \leq y\}$
- The set of ideals over (\preceq) is a CPO
 - The union of a chain of ideals is an ideal

Defining CPOs Using Ideal Completion

- Let (\preceq) be a reflexive, transitive relation
- An ideal A is a set that is
 - nonempty $(\exists x. x \in A)$
 - downward-closed $(\forall y \in A. \forall x \leq y. x \in A)$
 - directed $(\forall x, y \in A. \exists z \in A. x \leq z \land y \leq z)$
- Principal ideals have a maximum element
 - $\{a \mid a \leq x\}$ is the principal ideal generated by x
 - $x \leq y$ implies $\{a \mid a \leq x\} \subseteq \{a \mid a \leq y\}$
- The set of ideals over (\preceq) is a CPO
 - The union of a chain of ideals is an ideal

Examples of Ideal Completion

Example

Naturals with (\leq) ordering

 \bullet (\le) is not a complete ordering

In ideal completion

- Finite *n* represented by $\{a \mid a \leq n\}$
- ullet Infinite value ω represented by ${\mathbb N}$

Examples of Ideal Completion

Example

Pairs of naturals with $(a,b) \leq (c,d)$ iff $a \leq c$ and $b \leq d$

• Example: $(3,5) \leq (4,7)$, but $(3,5) \not \leq (7,4)$

In ideal completion

- Finite (m, n) represented by $\{(a, b) | a \le m \land b \le n\}$
- (ω, n) represented by $\{(a, b) | b \le n\}$
- \bullet (ω,ω) represented by $\mathbb{N} \times \mathbb{N}$

Examples of Ideal Completion

Example

Lists with $xs \leq ys$ iff xs is a prefix of ys

• Example: $(3,5) \leq (4,7)$, but $(3,5) \not \leq (7,4)$

In ideal completion

- Finite [1,2,3] represented by $\{[],[1],[1,2],[1,2,3]\}$
- Infinite [1, 1, 1...] represented by $\{xs \mid xs \text{ contains all } 1s\}$

What About Antisymmetry?

- \bullet (\preceq) does not need to be antisymmetric
- If x and y are equivalent w.r.t. (\preceq)
 - i.e. $x \leq y$ and $y \leq x$
 - then $\{a \mid a \leq x\} = \{a \mid a \leq y\}$
- Ideal completion handles equivalence classes automatically

Defining Powerdomains by Ideal Completion

- Define type constructor for nonempty finite sets
 - Basis of finite elements for powerdomains
- Define partial preorder relations (\sqsubseteq^{\sharp}), (\sqsubseteq^{\flat}), (\sqsubseteq^{\natural})
 - All 3 powerdomains have the same abstract basis
- Define each powerdomain using ideal completion
 - Upper = Ideal(⊑[‡])
 - Lower = $Ideal(\sqsubseteq^{\flat})$
 - Convex = $Ideal(\sqsubseteq^{\natural})$

- Let f be a monotone function on an abstract basis
 - For all x and y, $x \leq y$ implies $f(x) \sqsubseteq f(y)$
- There is a unique function g on the ideal completion such that
 - g is continuous
 - $g(\{a \mid a \leq x\}) = f(x)$ for all x
- Function g is given by $g(A) = \bigsqcup_{x \in A} f(x)$
 - Proving that this limit exists is not easy!
- All powerdomain operations are defined using this method

- Let f be a monotone function on an abstract basis
 - For all x and y, $x \leq y$ implies $f(x) \sqsubseteq f(y)$
- There is a unique function g on the ideal completion such that
 - g is continuous
 - $g(\{a \mid a \leq x\}) = f(x)$ for all x
- Function g is given by $g(A) = \bigsqcup_{x \in A} f(x)$
 - Proving that this limit exists is not easy!
- All powerdomain operations are defined using this method

- Let f be a monotone function on an abstract basis
 - For all x and y, $x \leq y$ implies $f(x) \sqsubseteq f(y)$
- There is a unique function g on the ideal completion such that
 - g is continuous
 - $g(\{a \mid a \leq x\}) = f(x)$ for all x
- Function g is given by $g(A) = \bigsqcup_{x \in A} f(x)$
 - Proving that this limit exists is not easy!
- All powerdomain operations are defined using this method

- Let f be a monotone function on an abstract basis
 - For all x and y, $x \leq y$ implies $f(x) \sqsubseteq f(y)$
- There is a unique function g on the ideal completion such that
 - g is continuous
 - $g(\{a \mid a \leq x\}) = f(x)$ for all x
- Function g is given by $g(A) = \bigsqcup_{x \in A} f(x)$
 - Proving that this limit exists is not easy!
- All powerdomain operations are defined using this method

Outline

- Motivation
 - Introduction to Powerdomains
 - Limitations of the List Monad for Nondeterminism
- Properties of Powerdomains
 - Axiomatization of Powerdomains
 - Powerdomain Orderings
 - Visualizing Powerdomains
- Formalization in Isabelle
 - Definition in Terms of Finite Elements
 - Using Powerdomains in Isabelle

Integration with Axiomatic Constructor Classes

- Axiomatic Constructor Classes in Isabelle/HOLCF
 - Joint work with John Matthews & Peter White, 2005
 - Formalized axiomatic classes for Functor and Monad
 - Defined resumption monad transformer
- Now extended to support powerdomains
 - Axiomatic class for powerdomains
 - Powerdomain operations use overloaded syntax
 - Can apply resumption monad transformer to powerdomains

Example Proofs in Isabelle

- The Haskell examples shown earlier have been formalized
 - With powerdomains, the properties are actually true!
- See it in action

Summary

- Powerdomains are well-suited for reasoning about nondeterminism in functional programs.
- You can do proofs about powerdomains right now in Isabelle/HOLCF.

- Future work
 - Proofs about parallel code, using monad transformers.