Review "ContextIoT"

Name: Wenhui Zhang

Paper Name:

Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z. M., ... & Unviersity, S. J. (2017). ContexIoT: Towards providing contextual integrity to applified IoT platforms. In *Proceedings of The Network and Distributed System Security Symposium* (Vol. 2017).

Contribution:

This paper deploys system that provides contextual permission prompts in SmartThings apps, ContexIoT. ContexIoT is a context-based permission system for applified IoT platforms that provides contextual integrity by supporting fine-grained context identification for sensitive actions, and runtime prompts with rich context information to help users perform effective access control.

Motivation:

Design flaws in current IoT platform permission models have been reported recently, exposing users to significant harm such as break-ins and theft. Thus, a new access control model is needed for both current and future IoT platforms.

Related works:

Context concept various as following:

Related		Decision made					
work	UID/GID	UI Activity	Control flow	Runtime value	Data flow	in context?	
ACG	~	V	×	×	×	~	
CRePE	~	×	×	~	×	×	
AppContext	V	X	V	X	V	X	
AppFence	V	X	X	X	V	X	
Aurasium	V	V	X	V	X	V	
FlaskDroid	V	X	X	V	X	X	
SEAndroid	V	X	X	X	X	X	
SEACAT	V	V	X	V	X	V	
TaintDroid	V	V	X	V	V	V	
TriggerScope	V	X	V	X	V	X	
ContexIoT	~	N/A	~	V	V	v 9	

Methodology:

Context definition in ContexIoT is at the inter-procedure control and data flow levels.

Fig. 2: ContexIoT overview with a concrete example showing our context-based access control

Results:

Evaluation is done on data set of Attacks Migrated From Mobile Platform (https://sites.google.com/site/iotcontextualintegrity/attack/existing-iot-attacks).

Take away:

TABLE I: A taxonomy of reported IoT attacks and their applicability to the SmartThings platform

Problem area	Attack description	Platform	Attack vectors	References	Applicable to ST?
Vulnerable authentication	Backdoor pin code injec- tion	SmartThings	Stealing OAuth tokens; Inject command into Web Service SmartApp	[35]	✓
	Get remote shell of de- vice	Telnet-capable IoT devices	Weak/default password; Credential included in the image; Unprotected debugging interface	[53], [69], [12]	N/A
	Leaking information / creating seizures using strobed light	Smart connected LEDs	Unsecured device pairing procedure	[57]	√
	Impersonate device to steal data	Bonjour-supported IoT devices	Unable to handle name collision in the local network	[24]	N/A
Malicious app/firmware	Door lock pin code snooping	SmartThings	Overprivilege due to the SmartApp-SmartDevice coarse-binding	[35]	✓
	Disabling vacation mode	SmartThings	Misusing logic of a benign SmartApp to do event spoofing	[35]	✓
	Fake alarm	SmartThings	Controlling device without gaining appropriate capability	[35]	✓
	Surreptitious surveillance	Sony surveillance camera	Installed with malware in the device retailing process	[17]	✓
	Spyware	Barcode scanner	Preloaded with malicious firmware	[5]	✓
Problematic usage scenario	Undesired unlocking	BLE Smart locks	Misusing BLE range to confirm the physical prox- imity of user	[40]	✓
	BLE relay unlocking	BLE Smart locks	Misusing BLE range to confirm physical proximity of user; BLE Replay attack	[40], [38]	✓
	Lock access revocation / logging evasion	DGC lock	Failing to ensure state consistency between device and server	[40]	✓

TABLE II: A taxonomy of smartphone malware classes and their applicability to the SmartThings platform

	Category and descriptions	References	Applicable to ST?
	Repackaging: Malicious logic are enclosed into high-profile apps to trick user to download	[27], [74], [26], [42]	✓
Installation	App update: Malicious payloads are downloaded during the app update process for disguising purpose	[66], [74]	✓
	Drive-by Download: Enticing user to download the "interesting" or "feature-rich" apps	[74]	✓
	Remote command: Attacker controlled remote input, e.g., incoming SMS	[74], [39]	✓
Activation	User events: Event triggered by the user, e.g., button click	[39]	✓
	System events: Event generated by the system, e.g., boot complete event	[74], [46]	✓
	Abusing permission: malicious app logic abuses the privilege granted to the app	[39], [31], [51]	✓
	Exploiting weakness of general system design: generic system mechanisms such as IPC	[63], [23]	✓
	Exploiting weakness of platform specific features: techniques specific to platform, e.g., native code	[19], [20], [49], [47]	✓
Adversary	Exploiting system vulnerability: security flaws and bugs in the system e.g., root exploits	[59], [71], [43], [65], [18]	N/A
technique	Shadow payload: disguise malicious payload using obfuscation or encryption techniques	[74], [55]	✓
	Side channel: carry out malicious payload using covert channel	[32], [70], [72], [29]	✓
	Remote control: Taking control of user's device with C&C servers	[74], [46]	✓
Malicious payload	Spyware: Aiming to gather information from the victims without their knowledge	[39], [31], [51], [72], [48]	✓
	Adware: Downloading and displaying unwanted ads on the user's device	[58], [46], [42]	✓
	Ransomware: Installed covertly to DoS the device and demands a ransom payment to restore it	[45], [43]	✓
	Privilege escalation: Exploiting a bug or design flaw of the system to gain elevated access	[59], [65], [73], [47]	N/A