

Bruna Do Espirito Santo Souza Layane Grazielle Sousa Dias Pedro Ivo Santana Melo

## Arquitetura

SmartPark

Trabalho apresentado na disciplina de Padrões de Arquitetura de Software

> Orientador: Dr. Jacson Rodrigues Barbosa

Goiânia



| 1. Introdução                                         | 4  |
|-------------------------------------------------------|----|
| 1.1 Finalidade                                        | 4  |
| 1.2 Escopo                                            | 4  |
| 1.3 Definições, Acrônimos e Abreviações               | 4  |
| 1.4 Visão Geral                                       | 4  |
| 2. Contexto da Arquitetura                            | 5  |
| 2.1 Funcionalidades e Restrições Arquiteturais        | 5  |
| 2.2 Atributos de Qualidades Prioritários              | 6  |
| 2.2.1 Métricas para avaliar os atributos de qualidade | 6  |
| 2.3 Tecnologias                                       | 7  |
| 3. Representação da Arquitetura Candidata             | 7  |
| 3.1 Diagrama pub/sub do sistema                       | 8  |
| 4. Visão Geral                                        | 8  |
| 4.1 Descrição                                         | 8  |
| 4.2 Componentes Principais:                           | 9  |
| 4.2.1 Publishers:                                     | 9  |
| 4.2.2 Subscribers:                                    | 9  |
| 4.2.3 Tópicos:                                        | 9  |
| 4.2.4 Gêmeo Digital:                                  | 9  |
| 5. Decisões arquiteturais                             | 9  |
| 5.1 Requisitos Arquiteturalmente Significativos       | 9  |
| 6. Ponto de vista dos Casos de Uso                    | 10 |
| 6.1 Descrição                                         | 10 |
| 6.2 Visão de Casos de Uso                             | 10 |
| 7. Ponto de vista do Projetista                       | 11 |
| 7.1 Descrição                                         | 11 |
| 7.2 Visão em Módulos                                  | 11 |
| 8. Ponto de vista de Segurança                        | 12 |
| 8.1 Descrição                                         | 12 |
| 8.2 Visão de Segurança                                | 12 |
| 9. Ponto de vista do Fluxo de Dados                   | 13 |
| 9.1 Descrição:                                        | 13 |
| 9.1 Publicação de Dados:                              | 13 |
| 9.2 Assinatura e Processamento:                       | 13 |
| 9.3 Atualização do Gêmeo Digital:                     | 14 |
| 10. Aspectos de computação ubíqua contemplados        | 14 |
| 10.1 Ciência de contexto:                             | 14 |
| 10.2 Continuidade:                                    | 14 |
| 10.3 Consistência:                                    | 14 |



| 10.4 Complementariedade:                                                         | 14 |
|----------------------------------------------------------------------------------|----|
| 10.5 Descrição do conceito de gêmeo digital será integrado na aplicação/sistema. | 15 |

## 1. Introdução

## 1.1 Finalidade

A principal finalidade deste documento é definir os aspectos essenciais da Arquitetura de Software, sendo direcionado aos stakeholders do projeto, possuindo grande foco para os Desenvolvedores e para a Equipe de implantação.



#### 1.2 Escopo

O "SmartPark" é um estacionamento inteligente, que visa facilitar a busca por vagas de estacionamento, economizando tempo e reduzindo o tráfego desnecessário. O sistema fará isso através da identificação da chegada do motorista e da condução do mesmo até o estacionamento mais próximo, além de trazer uma visualização da situação do estacionamento para usuários administradores.

#### 1.3 Definições, Acrônimos e Abreviações

Id.: Identificador.

**Software:** Conjunto de documentações, guias, metodologias, processos, códigos e ferramentas para a solução de um problema.

Stakeholder: Indivíduo, grupo ou organização que possua interesse no Sistema.

Visão Arquitetural: Produto resultante da interpretação de um Stakeholder do sistema.

**Arquitetura de Software:** Forma como os componentes são agrupados com o objetivo de construir um software ou sistema.

**Ponto de Vista Arquitetural**: Produto resultante da execução de uma Visão Arquitetural. **Javascript:** Linguagem de programação de alto nível, de propósito geral, interpretada, de sintaxe concisa e clara.

#### 1.4 Visão Geral

De maneira simples, o documento visa descrever a estrutura geral do sistema a ser desenvolvido, incluindo etapas de organização lógica e física, bem como de componentes e suas relações e ainda acerca de possíveis interfaces.

As principais decisões de projeto, restrições e metodologias adotadas para o desenvolvimento do projeto estão descritas e detalhadas. Além disso, vale ressaltar que esse Projeto Arquitetural se trata de um processo contínuo, sendo assim é suscetível a possíveis melhorias futuras.

## 2. Contexto da Arquitetura

## 2.1 Funcionalidades e Restrições Arquiteturais



| Tipo                | ld. do Documento de Requisitos |
|---------------------|--------------------------------|
| História de Usuário | HU-01                          |
| História de Usuário | HU-02                          |
| História de Usuário | HU-03                          |
| História de Usuário | HU-04                          |
| História de Usuário | HU-05                          |
| História de Usuário | HU-06                          |
| História de Usuário | HU-07                          |
| História de Usuário | HU-08                          |
| História de Usuário | HU-09                          |
| História de Usuário | HU-10                          |
| História de Usuário | HU-11                          |

#### Requisitos não funcionais

**RNF 01 - Usabilidade:** o sistema deve ser intuitivo e fácil de usar para os usuários, com uma interface amigável que permita uma experiência simples e eficiente durante a entrada, saída e busca por vagas de estacionamento.

RNF 02 - Escalabilidade: o sistema deve ser capaz de lidar com um aumento no número de usuários, dispositivos e operações sem comprometer o desempenho. Ele deve ser escalável para acomodar um crescimento futuro de demanda sem perda de eficiência

**RNF 03 - Flexibilidade:** O sistema deve ser flexível o suficiente para se adaptar a diferentes configurações de estacionamento e requisitos específicos de cada local.

**RNF 04 - Resistência a falhas:** O sistema deve ser robusto e capaz de lidar com falhas de componentes individuais sem impactar significativamente a funcionalidade global. Deve ser projetado para garantir a disponibilidade contínua, mesmo em situações de falha, com mecanismos de recuperação rápidos.

RNF 05 - Segurança: O sistema deve garantir a proteção dos dados do usuário.

#### 2.2 Atributos de Qualidades Prioritários



Para garantir a ciência de contexto o usuário precisa fazer login e permitir acesso em tempo real da sua localização. Com isso em vista, o atributo de qualidade de maior prioridade para o projeto é a **segurança** dos dados fornecidos pelo usuário.

Ainda sob o ponto de vista da qualidade, é necessário incluir na arquitetura elementos que contribuam com a **usabilidade** do sistema, sendo o segundo atributo de maior prioridade no projeto, visando uma experiência de uso mais agradável.

Em terceiro nível de prioridade estão os atributos de **escalabilidade**, sendo capaz de lidar com um aumento no número de usuários, dispositivos e operações sem comprometer o desempenho. E em quarto nível de prioridade o de **resistência a falhas**, garantindo a disponibilidade contínua das informações.

#### 2.2.1 Métricas para avaliar os atributos de qualidade

#### RNF 01 - Usabilidade:

- Tempo de Aprendizado: avaliar o tempo que um usuário leva para se familiarizar e aprender a usar o sistema.
- Taxa de Erros: número de erros cometidos pelos usuários durante a operação do sistema, indicando a eficiência e facilidade de uso.
- Satisfação do Usuário: pesquisas ou avaliações para medir a satisfação geral dos usuários em relação à usabilidade do sistema.

#### RNF 02 - Escalabilidade:

- Desempenho sob Carga: tempo de resposta e eficiência quando há aumento significativo na carga de usuários.
- Capacidade de Usuários Concorrentes: número máximo de usuários que podem interagir simultaneamente com o sistema sem degradação significativa no desempenho.

#### RNF 04 - Resistência a falhas:

- Tempo de Recuperação: tempo necessário para o sistema se recuperar de uma falha e voltar ao seu estado operacional normal.
- Taxa de Disponibilidade: calcular o tempo total que o sistema está disponível em relação ao tempo total.

#### RNF 05 - Segurança:

- Taxa de Incidentes de Segurança: número de incidentes de segurança relatados em um determinado período.
- Controle de Acesso: medir a eficácia dos mecanismos de controle de acesso para prevenir acessos não autorizados.



## 2.3 Tecnologias

Linguagem de programação back-end: Java

Linguagens para o front-end: HTML, CSS e Javascript Ambiente de execução: Aplicativo e navegador web

Frameworks: Bootstrap e JQuery

**Broker:** Cliente MQTT Móvel

Autenticação: Firebase

Nuvem: AWS (Servidor EC2)

Hospedagem para controle de versão: Github Sensores: Proximidade e GPS de celulares Android

## 3. Representação da Arquitetura Candidata

O padrão escolhido para implementação do software SmartPark, foi o pub/sub usando um Broker MQTT. Esse é um modelo assíncrono de comunicação onde os participantes são divididos em publicadores, responsáveis por enviar mensagens para canais centrais, e assinantes, que indicam interesse em receber mensagens de canais específicos. Essa abordagem promove o desacoplamento entre os componentes do sistema, permitindo escalabilidade, flexibilidade e resiliência a falhas.



## 3.1 Diagrama pub/sub do sistema



## 4. Visão Geral



## 4.1 Descrição

Na visão geral é criada uma representação visual que fornece uma visão geral de um sistema ou processo. Ele mostra as principais entidades envolvidas e suas interações de forma simplificada.



Na visão geral da distribuição do sistema, temos 2 tipos de sensores, que serão os publicadores nos tópicos do broker MQTT e 2 tipos de clientes, que serão assinantes dos tópicos no servidor EC2 da AWS.

## 4.2 Componentes Principais:

#### 4.2.1 Publishers:

Sensores de Proximidade: Publicam informações sobre a ocupação das vagas em tempo real.

Sensores de Localização: Publicam dados sobre a localização de dispositivos móveis, indicando a presença de usuários no estacionamento

#### 4.2.2 Subscribers:

Servidor Central: Atua como um assinante para os dados publicados pelos sensores. É responsável por processar e distribuir as informações relevantes para outros componentes do sistema.

#### 4.2.3 Tópicos:

Tópico de Proximidade: Onde os sensores de proximidade publicam o estado em tempo real das vagas no estacionamento.

Tópico de Localização: Onde os sensores de ocupação de vagas publicam informações sobre a presença de dispositivos móveis.

#### 4.2.4 Gêmeo Digital:

Atualização por Subscrição: O gêmeo digital pode ser atualizado por subscrição aos tópicos relevantes, mantendo-se sincronizado com os dados do mundo real.

## 5. Decisões arquiteturais

## 5.1 Requisitos Arquiteturalmente Significativos

| ID | RAS | Descrição do Cenário |
|----|-----|----------------------|
|----|-----|----------------------|



| 01 | Segurança            | O sistema deve ser fácil de usar e entender                                                                                    |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 02 | Usabilidade          | O sistema deve ser fácil de usar e entender.                                                                                   |
| 03 | Escalabilidade       | O sistema deve ser capaz de lidar com um aumento no número de usuários, dispositivos e operações sem comprometer o desempenho. |
| 04 | Resistência a falhas | O sistema deve garantir a disponibilidade contínua das informações                                                             |

#### 6. Ponto de vista dos Casos de Uso

## 6.1 Descrição

Na análise de requisitos, é criada uma visão de casos de uso para fornecer uma base para o planejamento da arquitetura e outros artefatos. Essa visão representa os casos de uso e cenários que o usuário terá, além de classes e riscos técnicos relevantes para a arquitetura do sistema. A visão de casos de uso é considerada em cada iteração do ciclo de vida do software.

#### 6.2 Visão de Casos de Uso

Os requisitos funcionais foram utilizados para compor os casos de uso, resumindo as principais funcionalidades do sistema nos diagramas abaixo:





Figura 3: Casos de uso

## 7. Ponto de vista do Projetista

## 7.1 Descrição

O ponto de vista de projetista é um dos pontos de vista arquiteturais que se concentra nas decisões de projeto e nas preocupações técnicas específicas relacionadas à implementação do sistema. Ele fornece informações detalhadas e orientações para os projetistas e desenvolvedores envolvidos na construção do sistema.

#### 7.2 Visão em Módulos

- Módulo de Autenticação/Registro:
  - Responsável pelo cadastro e autenticação dos usuários no sistema.
  - Funcionalidades: registro de novos usuários, login, recuperação de senha, gerenciamento de sessões.



- Módulo das Vagas do estacionamento:
  - Responsável por atualizar o status das vagas do estacionamento.
- Módulo de Direcionamento a vaga disponível:
  - Responsável por direcionar o usuário para a vaga de estacionamento disponível mais próximo

#### Estrutura Hierárquica:

- 1. Módulo de Autenticação/Registro
- 2. Módulo de Vagas do estacionamento
- 3. Módulo de Direcionamento à vaga disponível

## 8. Ponto de vista de Segurança

#### 8.1 Descrição

É uma perspectiva específica dentro da arquitetura de um sistema que foca nos aspectos relacionados à proteção, privacidade e segurança das informações e dos recursos do sistema. Essa visão tem como objetivo identificar os requisitos de segurança, estabelecer as estratégias e controles de segurança adequados, e definir as medidas e práticas que devem ser implementadas para garantir a integridade, disponibilidade e confidencialidade do sistema.

#### 8.2 Visão de Segurança

- Autenticação e Controle de Acesso:
  - Implementar um sistema de autenticação robusto para garantir que apenas usuários autenticados tenham acesso ao sistema.
  - Utilizar técnicas de controle de acesso para definir permissões e restrições de acordo com o papel ou perfil do usuário.

#### - Proteção de Dados:

 Utilizar técnicas de criptografia para proteger dados confidenciais, como senhas de usuários e informações pessoais.



 Garantir que as informações sensíveis sejam armazenadas de forma segura e acessíveis apenas para usuários autorizados.

#### - Prevenção de Injeção de Código:

 Implementar mecanismos de validação e sanitização de dados para evitar ataques de injeção de código, como SQL injection e XSS (Cross-Site Scripting).

#### - Proteção contra Ataques de Força Bruta:

 Implementar mecanismos de segurança que limitem o número de tentativas de login, como bloqueio de contas após várias tentativas falhas.

#### - Proteção de APIs e Integrações:

- Utilizar autenticação e autorização adequadas para proteger as APIs utilizadas na integração com os serviços de streaming.
- Validar e filtrar dados recebidos e enviados pelas APIs, evitando a exposição de informações sensíveis.

#### 9. Ponto de vista do Fluxo de Dados

## 9.1 Descrição:

O ponto de vista do fluxo de dados oferece uma visão holística da movimentação de informações dentro do sistema. Este fluxo é crucial para entender como os dados são capturados, processados e distribuídos.

#### 9.1 Publicação de Dados:

A entrada de dados será por sensores de proximidade e localização publicam dados nos tópicos correspondentes sempre que houver uma alteração relevante.

#### 9.2 Assinatura e Processamento:

O servidor central atua como assinante, recebendo e processando dados dos sensores. Ele pode usar algoritmos para otimizar a alocação de vagas e atualizar o gêmeo digital.



#### 9.3 Atualização do Gêmeo Digital:

O gêmeo digital, por meio de um mecanismo de subscrição, é atualizado automaticamente com as mudanças nos tópicos de proximidade e localização, refletindo o estado atual do estacionamento.

## 10. Aspectos de computação ubíqua contemplados

#### 10.1 Ciência de contexto:

Utilizando a localização do usuário e comparando com a entrada do estacionamento, quando essa localização for a mesma iniciar a rota da vaga mais próxima.

## 10.2 Continuidade:

Com a adaptabilidade das informações de status da vaga, para *smartphones* uma visão em lista e para *desktop* um mapa.

#### 10.3 Consistência:

Com uma UI e experiência do usuário que é consistente entre as versões *mobile* e *desktop*.

## 10.4 Complementariedade:

Com múltiplos dispositivos de interface que se complementam - versão *mobile* do administrador com uma lista das vagas do estacionamento e a versão *desktop* com um mapa do estacionamento e dashboard



# 10.5 Descrição do conceito de gêmeo digital será integrado na aplicação/sistema.

O gêmeo digital representará o estacionamento físico, dando uma visualização do estacionamento, das vagas disponíveis e seus status ao usuário cliente e admin. Ele também irá indicar o melhor caminho para a vaga disponível mais próxima. Além disso, o gêmeo digital irá colher os dados sobre seu gêmeo físico, como: tempo de permanência, ocupação durante o dia, meses com mais movimento, etc.