General Definition

Let V be a set of objects called **vectors**. Assume

- 1. **Vector Addition:** Two vectors \mathbf{v} and \mathbf{w} can be added and denote this operation by $\mathbf{v} + \mathbf{w}$.
- 2. **Scalar Multiplication:** Any vector \mathbf{v} can be multiplied by any number (scalar) a and denote this operation by $a\mathbf{v}$.

The set V is called a **vector space** if

1. Axioms for the vector addition:

A1. Closed: $\mathbf{v}, \mathbf{w} \in V \Rightarrow \mathbf{v} + \mathbf{w} \in V$.

A2. Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.

A3. Associativity: $\mathbf{v} + (\mathbf{w} + \mathbf{z}) = (\mathbf{v} + \mathbf{w}) + \mathbf{z}$.

A4. Existence of a zero vector: $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$.

A5. Existence of a negative: For each \mathbf{v} , there is a \mathbf{w} such that $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} = \mathbf{0}$.

2. Axioms for the scalar multiplication:

 $\boxed{\text{S1.}} \ \mathbf{v} \in V \Rightarrow a\mathbf{v} \in V.$

 $\boxed{S2.} \ a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}.$

 $\boxed{\text{S3.}} \ (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$

 $\boxed{\text{S4.}} \ a(b\mathbf{v}) = (ab)\mathbf{v}.$

 $\boxed{\text{S5.}} \ 1\mathbf{v} = \mathbf{v}.$