Exam 3 - Practice 1

Notice:

• This is a take home exam. Submit the screenshots of your answers and upload to Canvas by Dec 5

Problem 1.

Given that

$$f(x) = x^3 - 3x^2 + 1$$

Find all the intervals where

- a. f(x) is increasing
- b. f(x) is decreasing
- c. f(x) is concave upward
- d. f(x) is concave downward

$$f(x) = x^{2} - 3x^{2} + 1$$

$$f(x) = 3x^{2} - 6x$$

$$= 3x (x-2)$$

$$f'(x) = 0$$

$$\begin{cases}
3x (x-2) = 0 \\
4x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
54y^{2} : & \text{Solve } f'(y) = 0
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 2
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x = 0, & x = 3
\end{cases}$$

$$\begin{cases}
x =$$

- $\begin{cases} f(x) & \text{is increasing an positive intervals of } f'(x) : \\ (-\infty, 0) & \text{and } (2, \infty) \end{cases}$
- f(t) is decreasing on negative intervals of f'(t):

$$f''(x) = (3x^2 - (x))' = 6x - 6$$

= $6(x - 1)$

$$f''(\chi) = 0$$
 (=) $\boxed{\chi = 1}$

f(x) is concave upward on postive intervals of f''(x) (1, ab)

f(x) is concau down on negative intervals of

Problem 2

Find all the relative extrema of

$$f(x) = x^{4} - 12x^{3}$$

$$f'(x) = 4x^{3} - 36x^{2} = 4x^{2}(x - 9)$$

$$St \quad f'(x) = 0 \quad \text{for } Ard \quad \text{Stakkmary points}:$$

$$=) \qquad 4x^{2}(x - 9) = 0$$

$$=) \qquad 4x^{2} = 0 \quad \text{or} \quad x - 9 = 0$$

$$=) \qquad x = 0 \quad \text{or} \quad x = 9$$

$$\Leftrightarrow Sign \quad \text{chart of} \quad f'(x)$$

$$f(9) = q^{9} - 12 \cdot q^{3} = -2187$$

There is no realative maximum.

Problem 3

Find an relative extrema of $f(x) = x^4 - 3x^2 + x + 1$ using gradient descent.

using the formula:

$$x_{n+1} = y_n - \gamma \cdot f'(x_n)$$

we have:
$$f'(x) = 4x^3 - 6x + 1$$

$$\gamma = 0.1$$
 and $x_0 = 0$

$$\chi_0 = 0$$

me have:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$= -0.1$ $1_{2} = y_{1} - \gamma \left(4y_{1}^{3} - 6y_{1} + 1\right)$
$Y_2 = Y_1 - 7 (4y_1^3 - 6y_1 + 1)$
= - 0.2596
$A_3 = A_2 - \gamma \left(4A_1^2 - 6A_2 + 1\right)$
= -0.50834
$x_4 = x_3 - 7 (4x_3^2 - 6x_3 + 1)$
= -1,222147
45 = x4 - 7 (4x4 - 6x4+
= -1.325

1 v 1 2 59
X 6 = -1.289
$v_{4} = -1.305$
V6 = -1.2987
$x_q = -1.3017$
110 = -1.3004°
$\kappa_{11} = -1.30$
X12 = -1.30077
$x_{13} = -1.70087$
X14 = -1.300 827
X15 = -1.30084T
1

Problem 4

since
$$x_n$$
 is conversing, we still have a klastic extring is when $x_n = 1.300845$

Find the absolute maximum and absolute minimum of $f(x) = x^3 - 6x^2 + 9x + 1$ on the interval [5, 7].

me hore: f'(x) = 3x2 - 12x +9 = 3(x2 - 4x + 3) = 3(x-1)(x-3)

$$f'(x) = 0$$
 (=) $x = 1, x = 3$

$$f(1) = 5$$

$$f(3) = 1$$

$$C(s) = 2$$

$$f(7) = 113$$

$$S(A) = 113$$

In absolute min is:
$$f(3) = 1$$

Problem 5

The given equation has one (real) solution. Approximate the solution by Newton's method.

$$x^3 - 2x - 2$$

$$\chi_{n+1} =$$

we have:
$$x_{n+1} = y_n - \frac{f(x_n)}{f'(y_n)}$$

$$f'(x) = 3x^2 - 2$$

$$\Rightarrow 1 + 1 = 1 - \frac{x_n^3 - 2x_n - 2}{3x_n^2 - 2}$$

n \	<i>y</i> a
0	Xo = 1
1	3
	$v_1 = v_0 - \frac{x_0 - 2x_0 - 2}{2}$
	$3x_0^2-2$
	= 4
	X2 = 282
	×3 = 2.14
	×4 = 1.892
	15 = 1.772
	x6 = 1.769
	X ₇ = 1.769
	x8 = 1.769

Since x_n is convergiry, we stop here.

The solution is $x \approx 1.769$