

# Computational Models to Estimate Semantic Transparency of English Compounds and Chinese Words using Latent Semantic Analysis

Hsueh-Cheng Wang<sup>1</sup>, Li-Chuan Hsu<sup>2</sup>, Yi-Min Tien<sup>3</sup>, and Marc Pomplun<sup>1</sup>

<sup>1</sup> Department of Computer Science, University of Massachusetts at Boston <sup>2</sup> Department of Psychology, Chung Shan Medical University, Taiwan

<sup>3</sup>Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taiwan



# - A compound word is a word composed of at least two free constituents that refer to a new concept. Transparency Category:

- Opaque-Opaque (OO, honeymoon)
- Transparent-Opaque (TO, staircase)
- Opaque-Transparent (OT, dragonfly)
- Transparent-Transparent (TT, farmland)
- Transparency ratings are often subjective and vary across raters.
- How are compound words represented in the mental lexicon and how does a rater access meanings and decide "T" or "O"?

English Compounds

### Latent Semantic Analysis (LSA)

- A computational model may be a way to average across subjective differences of estimating semantic transparency.
- LSA is a method to represent the meaning of words by statistical computations applied to a text corpus (Landauer & Dumais, 1997).
- A term-to-document co-occurrence matrix is established from a corpus. Then singular value decomposition (SVD) is used to reduce the dimensions of the original matrix.
- The meaning of each term is represented as a vector in semantic space.
- Represent mental lexicon using LSA (see Jones & Mewhort, 2007)

#### Chinese Words

#### Model 1: Whole word vs. each of its constituents.

|    | Whole Word | 1st Constituent | 2nd Constituent | LSA C1 | LSA C2 |
|----|------------|-----------------|-----------------|--------|--------|
| 00 | honeymoon  | honey           | moon            | 0.03   | 0.01   |
| TO | staircase  | stair           | case            | 0.57   | 0.07   |
| OT | dragonfly  | dragon          | fly             | 0.12   | 0.43   |
| TT | farmland   | farm            | land            | 0.55   | 0.67   |

- Semantic space of English: an LSA web site is freely available (http://lsa.colorado.edu/, accessed September, 2010; see Dennis, 2007).
- Access the meaning of the compound and each of its constituents. Each word, irrespective of how many meanings or senses it has, is represented by a single vector. However, when a word is used in different contexts, context appropriate word senses emerge (Kintsch, 2002).
- LSA value for any two terms (either compound or its constituents) ranges between -1 and 1, but rarely goes below 0.

|    | Whole Word       | 1st Character | 2nd Character    | LSA C1 | LSA C2 |
|----|------------------|---------------|------------------|--------|--------|
| 00 | 壽司 (sushi)       | 壽 (age)       | 司 (in charge of) | 0.06   | 0.01   |
| TO | 字母 (letter)      | 学 (character) | 母 (mother)       | 0.50   | 0.06   |
| OT | 垂死 (almost dead) | 垂 (hanging)   | 死 (dead)         | 0.08   | 0.28   |
| TT | 球場 (ball court)  | 球 (ball)      | 場 (court)        | 0.56   | 0.39   |

- Semantic space of Chinese: our previous studies (Wang et al., 2010; Chen, Wang, & Ko, 2009).
- Unlike English, Chinese words are written without spaces in a sequence of characters. The concept of a word is not as clearly defined in Chinese as it is in English.
- Not all characters are stand-alone words in corpus, and therefore the representation of character in mental lexicon may be different.
- A character might be shared by many words, but the meaning of the character and those words may not be consistent.

## Model 2: Whole word vs. dominant meaning of each of its constituent

|               | butter | butterfly | buttercup | butterfingers | buttermilk | butterscotch | butterfat | butterwick |
|---------------|--------|-----------|-----------|---------------|------------|--------------|-----------|------------|
| butter        | 1      |           |           |               |            |              |           |            |
| butterfly     | 0.04   | 1         |           |               |            |              |           |            |
| buttercup     | 0.09   | 0.09      | 1         |               |            |              |           |            |
| butterfingers | 0      | -0.05     | -0.06     | 1             |            |              |           |            |
| buttermilk    | 0.44   | -0.01     | 0.12      | 0.01          | 1          |              |           |            |
| butterscotch  | 0.45   | 0.05      | -0.02     | 0.02          | 0.35       | 1            |           |            |
| butterfat     | 0.12   | -0.04     | 0.04      | 0             | 0.11       | 0.16         | 1         |            |
| butterwick    | -0.01  | 0.01      | 0.12      | -0.03         | 0.09       | 0.03         | 0.04      | 1          |



- 1. Find words containing a constituent that a rater possibly activates.
- 2. Compute LSA value between each word pair.
- 3. Hierarchical clustering algorithm and a given threshold
- 4. The cluster with the highest sum of word frequency is considered the dominant meaning.
- 5. Compute LSA value between compound and the dominant meaning (a single vector representing the words in the cluster).





- The representation of meaning of a character may be different from an English constituent.
- Model 2 assumes that a rater accesses the dominant meaning of a character when the character has multiple (inconsistent) meanings.
- Model 2 takes the polysemy of a character into account and works even when a character is not a standalone word.
- Model 2 is especially useful for the Chinese language.

## **Evaluations - Receiver Operating Characteristic (ROC)**

% False Alarm (T responses to O)

- We reanalyzed the transparency rating materials in Frisson et al. (2008)
- ROC analysis (Green & Swets, 1966) was performed and the area under the curve (AUC) was used as measurement.
- The results of Model 1 and Model 2 are compatible.
  - The representation of a constituent is close to the computed dominant meaning.
  - Human raters access the dominant meaning to perform transparency judgments.



% False Alarm (T response to O)

- We reanalyzed the transparency rating materials in Tsai (1994) and Lee (2007).
- Model 2 outperforms Model 1 and is a better approach for predicting transparency of characters of two-character Chinese words.
  - The polysemy of a character may affect the accuracy of Model 1, given that there is no context for the transparency judgment task.
- Some constituents are not stand-alone words.
- Chinese readers might learn the polysemy of characters implicitly from polymorphemic words.

#### **Discussion and Conclusions**

- The most important outcome of the current study is to offer a different perspective and an opportunity to represent mental lexicon and examine the lexical processing, which may reflect the polysemy of constituents and how raters access meanings.
- Corroborating evidence from two different languages was presented, and Model 1 is suggested for English and Model 2 is suggested for Chinese.
- The selection of a threshold might be involved in the transparency judgments by human raters and each participant might have a different threshold for the "cut-off" of opacity.
- The results could be adapted to further Chinese reading research using eye movements to examine how Chinese words are accessed, whether as a single entity in the mental lexicon or via its characters during a transparency rating task (no context) and natural reading (with context).