SEMINAR 8

- 1) Let V be a K-vector space, $S \leq_K V$ and $x, y \in V$. We denote $\langle S, x \rangle = \langle S \cup \{x\} \rangle$. Show that if $x \in V \setminus S$ and $x \in \langle S, y \rangle$ then $y \in \langle S, x \rangle$.
- 2) Let V be a K-vector space and $\alpha, \beta, \gamma \in K$, $x, y, z \in V$ such that $\alpha \gamma \neq 0$ and $\alpha x + \beta y + \gamma z = 0$. Show that $\langle x, y \rangle = \langle y, z \rangle$.
- 3) Is the real vector space $\mathbb{R}_3[X] = \{ f \in \mathbb{R}[X] \mid \deg f \leq 3 \}$ generated by the set

$${f_1 = 3X + 2, \ f_2 = 4X^2 - X + 1, \ f_3 = X^3 - X^2 + 3}$$
?

Why?

- 4) Let V, V' be K-vector spaces, $f: V \to V'$ a linear map, $A \leq_K V$ and $A' \leq_K V'$. Show that:
 - a) $f(A) = \{ f(a) \in V' \mid a \in A \} \leq_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$
- 5) In the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ we consider

$$\mathbb{R}_{o}^{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is odd} \}, \ \mathbb{R}_{e}^{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is even} \}.$$

Show that $\mathbb{R}_{o}^{\mathbb{R}}$ si $\mathbb{R}_{e}^{\mathbb{R}}$ are subspaces of $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = \mathbb{R}_{o}^{\mathbb{R}} \oplus \mathbb{R}_{e}^{\mathbb{R}}$.

6) Show that the property of being a direct summand is transitive.