MATH 595 (Group Cohomology) Notes

Jiantong Liu

November 1, 2023

1 Aug 21, 2023: Introduction

Group cohomology works over different settings of groups, like finite groups, profinite groups, and topological groups. The course will develop towards

- duality in $H^*(G, -)$, and
- focus on computations, e.g., spectral sequences.

We first establish some notations.

- Let G be a group. If G has a topology, that would also be part of the information of G.
- A (left) G-module is an abelian group M with an action map

$$G \times M \to M$$

 $(g, m) \mapsto g \cdot m = gm$

satisfying

- $-1 \cdot m = m$
- $-(gh) \cdot m = g \cdot (hm),$
- -q(m+m') = qm + qm'.

Remark 1.1. If G is a finite group, then the associated (non-commutative) group ring $\mathbb{Z}[G] := \bigoplus_{g \in G} \mathbb{Z}e_g$, where the multiplication is determined by $e_g e_h = e_{gh}$. Therefore, a G-module is just a $\mathbb{Z}[G]$ -module.

Example 1.2. • Trivial module \mathbb{Z} , or any abelian group with the trivial action $g \cdot a = a$.

- C_2 , or any group with $f: G \to C_2$, then G with C_2 as a quotient gives the sign representation \mathbb{Z}_{sgn} , with $g \cdot (a) = (-1)^{\rho(g)}a$.
- $\mathbb{Z}[G]$ is a G-module via the left multiplication action, and/or the conjugation action.

Definition 1.3 (Fixed points/Invariants). The set of fixed points of M over G is $M^G = \{m \in M \mid gm = m \ \forall g \in G\}$.

Definition 1.4 (Orbits/Coinvariants). The set of orbits of M over G is $M_G = M/(gm-m)$.

Example 1.5. If $M = \mathbb{Z}_{sgn}$, then everything gets multiplied by -1, so there are no fixed points. The orbits of M over G would be $\mathbb{Z}_{sgn}/(-2) \cong \mathbb{Z}/2\mathbb{Z}$.

Example 1.6. If
$$M=\mathbb{Z}[G]$$
, then the fixed points are $\mathbb{Z}\left\{\sum_{g\in G}e_g\right\}$.

Thinking in a categorical setting, we have a trivial action function $\mathbb{Z}\text{-Mod} \to G\text{-Mod}$, sending $ga \mapsto a$ for all $g \in G$ and $a \in A$. This gives an exact functor from Ab to G-Mod. Then this functor has a right adjoint () $^G: G\text{-Mod} \to Ab$, and a left adjoint () $_G: Ab \to G\text{-Mod}$. More specifically, M^G becomes the maximal trivial action submodule of M, namely $Hom_G(\mathbb{Z}, M)$; M_G becomes the largest quotient of M with trivial action, namely $\mathbb{Z} \otimes_{\mathbb{Z}[G]} M$. This simplifies to the tensor-hom adjunction in some sense. For a more detailed derivation of this, see Chapter 6.1 of Weibel.

Remark 1.7. In general, as in the category of G-sets, we have the orbit functor $X \mapsto X/G$ and the fixed point functor $X \mapsto X^G$. The orbit functor is left adjoint to the free G-set functor, and the fixed point functor is the right adjoint of the trivial G-set functor.

Remark 1.8. Read more about the setting in profinite groups with their topologies in Neukirch-Schmidt-Wingberg.

Definition 1.9 (Profinite Group). A profinite group of a collection of groups is $G = \varprojlim_i G_i$ as an inverse limit, where each G_i is a finite group of the form G/U_i for some open U_i . This gives a topology to the profinite group.

Remark 1.10. The groups rings $\mathbb{Z}[[G]] = \varprojlim_i \mathbb{Z}[G_i]$. For instance, let $G = \mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$, then $\mathbb{Z}_p[[G]] = \varprojlim_n \mathbb{Z}_p[\mathbb{Z}/p^n\mathbb{Z}]$, where each $\mathbb{Z}[\mathbb{Z}/p^n\mathbb{Z}] \cong \bigoplus_{i=0}^{n-1} \mathbb{Z}\{e_i\}$ where $e_i \cdot e_j = e_{ij}$. Therefore, $\mathbb{Z}_p[[G]]$ is now equivalent to $\varprojlim_n \mathbb{Z}_p[t]/(t^{p^n} - 1_e)$, and hence becomes a power series.

Remark 1.11. By a change of variables, this becomes $\varprojlim_n \mathbb{Z}_p[x]/(x^{p^n})$, but this only works in the finite group \mathbb{Z}_p case, and not in general for \mathbb{Z} .

Example 1.12. $\mathbb{Z}[C_n] \cong \mathbb{Z}\{e\} \oplus \mathbb{Z}\{g\} \oplus \mathbb{Z}\{g^2\} \oplus \cdots \oplus \mathbb{Z}\{g^{n-1}\} \cong \mathbb{Z}[g]/(g^n - 1_e)$.

2 Aug 23, 2023: Cohomology of groups

Definition 2.1. Let G be a group, then we have a diagram

$$EG^{\cdot}:\cdots \Longrightarrow G\times G \Longrightarrow G$$

where the arrows are given by

$$EG^n = G^{n+1} \xrightarrow{d_i} G^n$$

for all $0 \le i \le n$. In the sense of simplicial sets, we have $d_i(g_0, \ldots, g_n) = (g_0, \ldots, \hat{g}_i, \ldots, g_n)$.

Now let M be a G-module, then we define $X^n = X^n(G, M) = \operatorname{Map}_{\operatorname{Set}}(G^{n+1}, M)$. G now has an action on this set, given by

$$(g \circ f)(g_0, \dots, g_n) = gf(g^{-1}g_0, \dots, g^{-1}g_n).$$

The action on d^i 's are contravariant, namely we obtain $d^*_i: X_n \to X^{n+1}$ with an inherited structure. Note that M sits inside X^0 , therefore we have a complex (*):

$$0 \longrightarrow M \stackrel{\partial_0}{\longleftrightarrow} X^0 \stackrel{\partial_1}{\longrightarrow} X^1 \stackrel{\partial_2}{\longrightarrow} X^2 \stackrel{\partial_3}{\longrightarrow} \cdots$$

Here ∂_0 includes M as the constant functions into X, namely $\partial_0(m) = f$ for f(g) = m, and so on. In general, for n > 0, we have

$$\partial_n = \sum_{i=0}^n (-1)^i d_i^*.$$

Lemma 2.2. The complex $(*): M \to X$ is an exact complex of G-modules, i.e., $\partial^2 = 0$ and $\ker(\partial_{n+1}) = \operatorname{im}(\partial_n)$, and the ∂_i 's preserves the G-action. This is called the standard resolution of M as a G-module.

Proof. Exercise. □

Definition 2.3. The G-fixed points of the X^n 's are defined by $C^n(G, M) = (X^n(G, M))^G$, called the homogeneous n-cochains of G with coefficients in M. Because the complex preserves G-actions, then we obtain a complex of $C^n(G, M)$'s, given by

$$0 \longrightarrow C^0(G, M) \xrightarrow{\partial_0} C^1(G, M) \xrightarrow{\partial_1} \cdots$$

Remark 2.4. To see what the induced mapping is, suppose $A \to B$ is a G-module map, then there is an induced map of fixed points $A^G \to B^G$ by the restriction. In particular, let $a \in A$ be fixed with ga = a for all $g \in G$, then f(a) = f(ga) = gf(a).

Remark 2.5. In the complex of Definition 2.3, $\partial^2 = 0$ as well, but in general this is not an exact sequence.

Definition 2.6 (Group Cohomology). The group cohomology of G with coefficients in M is the collection

$$\{H^n(G,M)\}_{n\geqslant 0},$$

where $H^n(G,M):=H^n(C^{\boldsymbol{\cdot}}(G,M))=\ker(\partial:C^n\to C^{n+1})/\operatorname{im}(\partial:C^{n-1}\to C^n)$. We usually use the notion of cocycles $Z^n(G,M)=\ker(\partial:C^n\to C^{n+1})$ and coboundaries $B^n(G,M)=\operatorname{im}(\partial:C^{n-1}\to C^n)$.

Exercise 2.7. Show that $H^0(G, M)$ is isomorphic to M^G .

Definition 2.8. The inhomogeneous cochains $C_i(G, M)$ are given by

- $C_i^0 = M$, and
- for n > 0, $C_i^n = \operatorname{Map}(G^n, M)$,

with coboundary maps $\partial^{n+1}:C_i^n\to C_i^{n+1}$, given by

- $\partial^1(m)(g) = gm m$,
- $\partial^2(f)(g_1,g_2) = g_1f(g_2) f(g_1g_2) + f(g_1)$, and so on, with

•
$$\partial^{n+1}(f)(g_1,\ldots,g_{n+1}) = g_1f(g_2,\ldots,g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+1}) + (-1)^{n+1} f(g_1,\ldots,g_n)$$

This gives the inhomogeneous setting of this cochain.

Lemma 2.9. The maps

$$C^{n}(G, M) \to C_{i}^{n}(G, M)$$

$$(\varphi : G^{n+1} \to M) \mapsto (f : G^{n} \to M)$$

$$f(g_{1}, \dots, g_{n}) := \varphi(1, g_{1}, g_{1}g_{2}, \dots, g_{1}g_{2} \cdots g_{n})$$

give a cochain homotopy equivalence $C^{\cdot}(G,M) \xrightarrow{\sim} C_i(G,M)$, and hence this is a quasi-isomorphism.

Corollary 2.10. The cohomology $H^*(C_i(G, M)) \cong H^*(G, M)$.

Remark 2.11. Any cohomology class can be represented by a normalized inhomogeneous cocycle $f: G^n \to M$, i.e., $f(g_1, \ldots, g_n) = 0$ where $g_i = 1$ for some i.

Remark 2.12. Even for $G = C_2$, C_i^n or C^n get large as n grows.

Remark 2.13. • Using homological algebra, we can find other cochain complexes which computes group cohomology $H^*(G, M)$.

• We would also understand $H^*(G, M)$ as the failure of exactness of () $^G : G\text{-Mod} \to Ab$. Therefore, when taking the fixed points, the exact sequence may not be mapped to another exact sequence. In particular, if we take an exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

of G-modules, the induced sequence

$$0 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G$$

do not give a surjection at $B^G \to C^G$. One needs to take higher cohomology to obtain a long exact sequence. Hence, $()^G : G\text{-Mod} \to \text{Ab}$ is a left exact functor, but not necessarily right exact.

3 Aug 25, 2023: Cohomology of groups, continued

Example 3.1. Let G be C_2 , or any group with a surjection p onto C_2 , then it has an action on \mathbb{Z}_{sgn} given by $g \cdot a = (-1)^{p(g)} a$, therefore we have a short exact sequence

$$0 \longrightarrow \mathbb{Z}_{sgn} \stackrel{\times \, 2}{\longrightarrow} \mathbb{Z}_{sgn} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

and taking the fixed point functor we have

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z}.$$

Remark 3.2. Higher homologies measure the failure of exactness.

Remark 3.3. The collection $\{H^n(G,-)\}_{n\in\mathbb{Z}}$ satisfies

- $H^n(G, -) = 0$ for n < 0;
- for short exact sequence $0 \to A \to B \to C \to 0$ in G-Mod, we have a long exact sequence

$$0 \longrightarrow H^0(G,A) \longrightarrow H^1(G,B) \longrightarrow H^1(G,C) \stackrel{\delta}{\longrightarrow} H^1(G,A) \longrightarrow \cdots$$

where δ is the connecting homomorphism.

• the connecting homomorphisms δ are natural, i.e., given a commutating diagram

the induced diagram

$$H^{n}(G,C) \xrightarrow{\delta} H^{n+1}(G,A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{n}(G,C') \xrightarrow{\delta} H^{n+1}(G,A')$$

also commutes, and $\{H^n(G,-)\}_{n\in\mathbb{Z}}$ is a cohomological δ -functor. Note that a δ -functor is additive, and usually occurs in abelian categories.

Definition 3.4 (δ -functor). A map of δ -functors $T^* \to F^*$ is a collection of natural transformations $T^n \to F^n$, commuting with the δ 's, i.e.,

$$T^{n} \longrightarrow F^{n}$$

$$\downarrow_{\delta_{F}} \qquad \qquad \downarrow_{\delta_{F}}$$

$$T^{n+1} \longrightarrow F^{n+1}$$

A δ -functor T^* is universal if, given any other δ -functor F^* , a map $T^* \to F^*$ is uniquely determined by $T^0 \to F^0$.

Proposition 3.5. $H^*(G, -) : G\operatorname{-Mod} \to \operatorname{Ab}$ is a δ -functor.

Proof. We need to show:

- each $H^n(G, -)$ is a well-defined functor,
- the connecting homomorphisms δ 's gives a long exact sequence,
- the naturality of δ .

First, let $f: A \to B$ be in G-Mod, then $C^*(G, A) \to C^*(G, B)$ is equivalent to $\operatorname{Map}(G^{*+1}, A)^G \to \operatorname{Map}(G^{*+1}, B)^G$ by composition with f. One can show that this is equivariant, i.e., respects the G-action, so it is well-defined to take the fixed points, and thus commutes with ∂ 's.

Second, we need to apply the snake lemma. Given a short exact sequence $0 \to A \to B \to C \to 0$, we claim:

Claim 3.6. $0 \longrightarrow C^*(G, A) \longrightarrow C^*(G, B) \longrightarrow C^*(G, C) \longrightarrow 0$ is a short exact sequence of cochain complexes, i.e., $C^*(G, -) : G\text{-Mod} \to \text{coCh}$ is an exact functor.

Now take the complex

$$0 \longrightarrow C^{n}(G,A) \longrightarrow C^{n}(G,B) \longrightarrow C^{n}(G,C) \longrightarrow 0$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$0 \longrightarrow C^{n+1}(G,A) \longrightarrow C^{n+1}(G,B) \longrightarrow C^{n+1}(G,C) \longrightarrow 0$$

and quotient the boundaries everywhere (and thus lose the injectivity/surjectivity when applicable)

$$C^{n}(G,A)/B^{n}(G,A) \longrightarrow C^{n}(G,B)/B^{n}(G,B) \longrightarrow C^{n}(G,C)/B^{n}(G,C) \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow Z^{n+1}(G,A) \longrightarrow Z^{n+1}(G,B) \longrightarrow Z^{n+1}(G,C)$$

Taking the kernels and cokernels on ∂ 's, we obtain a complex

By the snake lemma, we obtain the long exact sequence.

Proposition 3.7. If $0 \to A \to B \to C \to 0$ is a short exact sequence such that $H^*(G,B) = 0$ for *>0 (or at least $H^n(G,B) = 0 = H^{n+1}(G,B)$), then $\delta: H^n(G,C) \to H^{n+1}(G,A)$ is an isomorphism.

Definition 3.8 (Acyclic, Cohomologically Trivial). A G-module M is

- acyclic if $H^*(G, M) = 0$ for * > 0,
- cohomologically trivial if $H^*(H, M) = 0$ for * > 0 and any (closed) subgroup $H \subseteq G$.

Definition 3.9 (Induced Module). Given any G-module M, the induced module $\operatorname{ind}_G(M) = \operatorname{Map}(G, M) = X^0(G, M)$.

Example 3.10. M could have the trivial action.

Exercise 3.11. For any M, the induced module of M over G is isomorphic (under the G-action) to the induced module of module given by forgetful action over G.

Remark 3.12. • $\operatorname{Ind}_G(-): G\operatorname{-Mod} \to G\operatorname{-Mod}$ is exact.

• We say A is an induced module if $A \cong \operatorname{Ind}_G(M)$ for some module M. If A is an induced G-module, then A is induced as an H-module for any subgroup $H \subseteq G$.

Lemma 3.13. Induced modules are cohomologically trivial.

Proof. There is an isomorphism

$$C^*(G, \operatorname{Ind}_G(M)) \cong X^*(G, M).$$

Remark 3.14. We have an equivariant inclusion of fixed points

$$M \hookrightarrow \operatorname{Ind}_G(M)$$

which is an embedding, and we take $Q \cong \operatorname{Ind}_G(M)/M$, then this extends to a short exact sequence

$$0 \longrightarrow M \hookrightarrow \operatorname{Ind}_G(M) \longrightarrow Q \longrightarrow 0$$

then $H^{n+1}(G,M) \cong H^n(G,Q)$. One say that $H^*(G,-)$ is effaceable. By Tohoku, an effaceable is universal.

4 Aug 28, 2023: First Cohomology of Groups

There are three ways to think about $H^1(G, M)$.

4.1 Crossed Homomorphims

Recall that $H^1(G, M) = Z_i^1(G, M)/B_i^1(G, M)$ as inhomogeneous cochains, where

- $Z_i^1(G,M) = \ker(\operatorname{Map}(G,M) \to \operatorname{Map}(G \times G,M)$ where the map sends $f \mapsto (g,h) \mapsto gf(h) f(gh) + f(g)$. The kernel of this is exactly the maps f such that f(gh) = gf(h) + f(g), and note that this is not a group homomorphism.
- $B_i(G,M) = \operatorname{im}(M \to \operatorname{Map}(G,M))$ given by $m \mapsto (g \mapsto gm m)$, where the image is called a principal crossed homomorphism.

Exercise 4.1. $B_i^1(G, M) \cong M/M^G$ as an isomorphism of $\mathbb{Z}[G]$ -modules.

Remark 4.2. If the *G*-action is trivial, then $H^1(G, M) = \text{Hom}_{Grp}(G, M)$.

Corollary 4.3. If G is a finite group with trivial action, then $H^1(G, \mathbb{Z}) = 0$.

Theorem 4.4 (Hilbert's Theorem 90). Let L/K be a Galois extension with (finite or profinite) Galois group G, then $H^1(G, L^{\times}) = 0$.

Proof. Let $f:G\to L^\times$ be a crossed homomorphism. We know the addition is given by f(gh)=gf(h)+f(g), and the multiplication is given by $f(gh)=(g\cdot f(h))f(g)$, where \cdot represents the group action. Now for any $l\in L^\times$, the multiplication with respect to l is given by $m_l=\sum\limits_{h\in G}f(h)(h\cdot l)$. We can first choose l so that $m_l\neq 0$, since the Galois

conjugates $h \cdot l$ over $l \in L$ are linearly independent. For $g \in G$, we have

$$g \cdot m_l = \sum_{h \in G} (g \cdot f(h))(gh \cdot l)$$

$$= \sum_{h \in G} \frac{f(gh)}{f(g)}(gh \cdot l)$$

$$= \frac{1}{f(g)} \sum_{h \in G} f(gh)(gh \cdot l)$$

$$= \frac{1}{f(g)} m_l.$$

Therefore, $f(g) = \frac{m_l}{g \cdot m_l}$. For any crossed homomorphism, there exists $m \in L^{\times}$ such that $f(g) = \frac{gm}{m}$, so every crossed homomorphism is principal.

Exercise 4.5. Let G acts over a commutative ring R, then $H^1(G, R^{\times})$ classifies invariant R-modules with a compatible G-action.

4.2 Non-abelian H^1 and Torsors

Let A be a group with G-action, so let the action $g \cdot a = {}^g a$. Hence, $g \cdot (ab) = {}^g a^g b$. Define the G-cocycles to be $f: G \to A$ such that $f(gh) = f(g)^g f(h)$. Two cocycles f and f' are said to be cohomologous as $f \sim f'$ if there exists $a \in A$ such that for all $g \in G$, $f'(g) = a^{-1} f(g)^g a$. This becomes an equivalence relation on the set of G-cocycles with coefficients in A, then $H^1(G,A)$ is the set of equivalence classes of G-cocycles. Now the first cohomology $H^1(G,A)$ has only a pointed set structure with distinguished point $f \equiv 1$, the constant function at 1.

Exercise 4.6. This definition is equivalent to the inhomogeneous cochain definition in the abelian case.

Definition 4.7. An A-torsor is a G-set X with action

$$X \times A \to A$$

 $(x, a) \mapsto xa$

that is free and transitive, i.e., for any $x, y \in G$, there exists a unique $a \in A$ such that y = xa. Moreover, the action $X \times A \to X$ respects the G-action, i.e., $g(xa) = gx^ga$.

Remark 4.8. • A is an A-torsor.

- An isomorphism of A-torsors is a bijection that respects the G- and A- action.
- If $A \subseteq B$ is a sub-G-group, then bA is an A-torsor.
- An A-torsor is a principal A-bundle on the classifying space BG.

Theorem 4.9. There is a canonical bijection of pointed sets

$$H^1(G, A) \cong \operatorname{Torsor}(G, A)$$

• The backwards map $\lambda: \operatorname{Torsor}(G,A) \to H^1(G,A)$ is defined as follows: for $x \in \operatorname{Torsor}(G,A)$, we want to define a cocycle $f(X): G \to A$. For arbitrary $x \in X$, note that for any $g \in G$, there exists a unique $f_x(g) \in A$ such that $g = x f_x(g)$ by the simple transitivity of the A-action on X. To see this is well-defined, if we have another $y \in X$, then y = xb for some $b \in A$, then $f_y(g) = b^{-1} f_x(g)^g b$, so f_x and f_y are cohomologous and define the same class in $H^1(G,A)$, which is defined to be the image $\lambda(X)$.

• To define $\mu: H^1(G,A) \to \operatorname{Torsor}(G,A)$, given a cocycle $f: G \to A$, let X_f be the group A, then the action of A on X_f is by multiplication on the right, and one can twist the G-action on it using cocycle $f: G \to A$ with $\bar{g}_X = f(g)g_X$, which defines an A-torsor. This is well-defined.

Remark 4.10. Suppose

$$1 \longrightarrow A \longrightarrow B \stackrel{p}{\longrightarrow} C \longrightarrow 1$$

is a short exact sequence of G-groups, i.e., A is a sub-G-group and $C \cong B/A$, then there is a long exact sequence

$$1 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G \stackrel{\delta}{\longrightarrow} H^1(G,A) \longrightarrow H^1(G,B) \longrightarrow H^1(G,C)$$

where δ is given by $\delta(c) = p^{-1}(c)$. For the exactness in the sense of pointed sets to work, the kernel is the subset mapping to the distinguished element.

4.3 EXTENSION SPLITTING

Consider the a split extension

$$1 \longrightarrow A \longrightarrow E \stackrel{p}{\longrightarrow} G \longrightarrow 1$$

That is, E is the direct product $A \times G$ with group action $(a,g)(a',g') = (a^ga',gg')$, and by definition E is the semidirect product $A \times G$. Equivalently, there exists a section (as group homomorphism) $s: G \to E$.

There is an equivalence relation on the set of sections to the projection $p: E \to G$, where the sections $s, s': G \to E$ are conjugates if there exists $a \in A$ such that $s'(g) = a^{-1}s(g)a$. We denote $\sec(E \to G)$ to be the conjugacy class of sections of p. Note that the class of trivial section $s: g \mapsto (1, g) \in E$ is the distinguished element.

Proposition 4.11. The pointed set $H^1(G, A)$ is isomorphic to $\sec(E \to G)$.

Proof. Take $\varphi \in \sec(E \to G)$, then the composition $G \xrightarrow{\varphi} E \xrightarrow{\pi_1} A$, where π_1 is the set-theoretic projection to the first component, defines a cocycle $G \to A$. Conversely, given a cocycle $f: G \to A$, the section is given by $g \mapsto (f(g), g)$. \square

Exercise 4.12. Expand the proof above.

Exercise 4.13. Describe $\mathbb{Z} \rtimes C_2$ where C_2 acts on \mathbb{Z} by inversion. How many sections are there of $\mathbb{Z} \rtimes C_2 \to C_2$?

Exercise 4.14. How many sections are there to the projection $D_{2n} \to C_2$?

5 Aug 30, 2023:
$$H^2$$
, abelian extensions, and Brauer Group

Suppose we have an abelian extension, that is, let A be abelian, the short exact sequence of group extensions

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \stackrel{p}{\longrightarrow} G \longrightarrow 1$$

is such that $E/i(A) \cong G$. Note that A can be regarded as a normal subgroup in E given this notation.

Note that two extensions are equivalent if there exists a group isomorphism $\varphi: E \to E'$ such that the diagram

commutes.

Consider the continuous functions

$$\varphi: G \times G \to A$$

such that $\varphi(g_1g_2,g_3) + \varphi(g_1,g_2) = \varphi(g_1,g_2g_3) + g_1\varphi(g_2,g_3)$. We know $H^2(G,M)$ is the quotient of all such functions over the coboundaries, i.e., the functions φ such that $\varphi(g_1,g_2) = f(g_1) - f(g_1g_2) + g_1f(g_2)$.

Now $E \cong A \times G$ can be considered as a bijection, so we pick a set-theoretic section $s: G \to E$ with s(1) = 1, and now every element in E is written as as(g) uniquely for some $a \in A$ and $g \in G$, we have

$$s(g)a = s(g)as(g)^{-1}s(g) = {}^gas(g).$$

Note that s may not be a homomorphism, but we have s(g)s(h) = f(g,h)s(gh) since s(g)s(h) and s(gh) are both lifts of gh.

As a consequence, we have

$$(s(g_1)s(g_2))s(g_3) = f(g_1, g_2)s(g_1g_2)s(g_3) = f(g_1, g_2)f(g_1g_2, g_3)s(g_1g_2g_3)$$

and

$$s(g_1)(s(g_2)s(g_3)) = s(g_1)f(g_2,g_3)s(g_2,g_3) = {}^{g_1}f(g_2,g_3)s(g_1)s(g_2g_3) = {}^{g_1}f(g_2,g_3)f(g_1,g_2g_3)s(g_1g_2g_3).$$

In additive notation, we have

$$f(g_1, g_2) + f(g_1g_2, g_3) = g_1f(g_2, g_3) + f(g_1, g_2g_3).$$

Therefore, f becomes an inhomogeneous 2-cocycle.

Proposition 5.1. The induced map $\lambda : \text{ext}(G, A) \to H^2(G, A)$ is a well-defined bijection between the set of equivalence classes of extensions and $H^2(G, A)$.

Example 5.2. The two elements in $H^2(C_2, \mathbb{Z}/4\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ are given by non-split extension of Q_8

$$0 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow Q_8 \longrightarrow C_2 \longrightarrow 1$$

and the identity element given by $D_8\cong \mathbb{Z}/4\mathbb{Z}\rtimes C_2$

$$0 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow D_8 \longrightarrow C_2 \longrightarrow 1$$

where D_8 has the action of C_2 over $\mathbb{Z}/4\mathbb{Z}$.

Proposition 5.3. An associative finite-dimensional K-algebra A is a CSA if and only if one of the following equivleent conditions hold:

- 1. Based-changed to the separable closure \bar{K} of K via $\bar{K} \otimes_K A$, $A \cong M_n(\bar{K})$ for some integer $n \geqslant 1$.
- 2. there exists a finite Galois extension L/K such that base-changed to L via $L \otimes_K A$, A becomes isomorphic to a matrix algebra $M_n(L)$ for some integer $n \ge 1$.
- 3. $A \cong M_n(D)$ matrix algebra for some $m \ge 1$ and some finite division algebra D over K.

A CSA A over K is said to be split over L if the above holds, i.e., $A \otimes_K L \cong M_n(L)$. One can define an equivalence class on CSAs, such that $A \sim B$ if and only if $A \otimes_K M_n(K) \cong B \otimes_K M_m(K)$. Now the Brauer group of K is the abelian group of equivalence classes of CSAs over K equipped with tensor product.

Suppose L/K is an extension, then there exists a homomorphism of base-change of algebras $Br(K) \to Br(L)$. We say the kernel $Br(L \mid K)$ is the relative Brauer group of K-CSAs that split over K. The absolute Brauer group is $Br(\bar{K} \mid K) = Br(K)$, then

$$\operatorname{Br}(K) = \bigcup_{L/K \text{ finite}} \operatorname{Br}(L \mid K).$$

Now let L/K be a finite Galois extension with Galois group G, and we pick a normalized inhomogeneous 2-cycle $\varphi: G \times G \to L^{\times}$ as the representative of its class, and we can construct A_{φ} as a K-CSA, then $A_{\varphi} = \bigoplus_{g \in G} Le_g$ has

dimension $|G|^2$, where e_g 's are the generators, with a multiplication operation $(le_g)(me_h) = l(g \cdot m)\varphi(g, h)e_{gh}$ which can be extended via distribution. A_{φ} is said to be the crossed product of L and G via φ .

Theorem 5.4. 1. A_{φ} is a split algebra over L.

- 2. If φ, φ' are two normalized inhomogeneous 2-cocycles, then $A_{\varphi} \sim A_{\varphi'}$ if and only if $\varphi \sim \varphi'$.
- 3. $A_{\varphi\varphi'} \sim A_{\varphi} \otimes_K A_{\varphi'}$.
- 4. Any K-CSA which is split over L is similar to a crossed product A_{φ} for some $\varphi: G \times G \to L^{\times}$.

Corollary 5.5. $H^2(G, L^{\times})$ is isomorphic to $Br(L \mid K)$, and $H^2(Gal(\bar{K}/K), \bar{K}^{\times})$ is isomorphic to Br(K).

6 SEPT 1, 2023: COHOMOLOGY OF CYCLIC AND FREE GROUPS

Recall that we can compute $H^*(G, M)$ using any acyclic resolution of M. We want to describe $H^*(G, M)$ for specific G using nice resolutions.

We have

$$\cdots \to G^3 \xrightarrow{\delta} G^2 \xrightarrow{\delta} G$$

and to obtain $X^*(G, M)$ we map out of the resolution and into M, so $\mathrm{Map}(G, M) \cong \mathrm{Hom}(\mathbb{Z}[G], M)$ as G-modules, and in general we obtain

$$\operatorname{Map}(G^k, M) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G]^{\otimes k}, M)$$

as \mathbb{Z} -modules.

We denote F^{st} to be the standard free resolution given by

$$\mathbb{Z}[G]^{\otimes k} \xrightarrow{d} \mathbb{Z}[G]^{\otimes (k-1)} \to \cdots \to \mathbb{Z}[G]^{\otimes 2} \xrightarrow{d_1 - d_0} \mathbb{Z}[G]$$

To obtain $X^*(G, M)$, we can map this into M. Now the standard resolution becomes an augmentation of \mathbb{Z} that makes $X^*(G, M)$ exact, free, and acyclic. The kernel of $\mathbb{Z}[G] \to \mathbb{Z}$ is the agumentation ideal of G as of $\mathbb{Z}[G]$. Since this is a G-equivariant map, then the augmentation ideal is a G-submodule of $\mathbb{Z}[G]$, as a free abelian group generated by the set $\{(g-1) \mid 1 \neq g \in G\}$.

Lemma 6.1. If $P_* \to \mathbb{Z}$ is any free resolution of \mathbb{Z} as a G-module, then for a G-module M, we have $H^*(G, M) \cong H^*(\operatorname{Hom}(P_*, M))^G$.

Proof. Since each P_i is free, then $\operatorname{Hom}(P_i, M)$ is an acyclic module, so $M \to \operatorname{Hom}(P_*, M)$ is an acyclic resolution of M. Now apply Proposition 2.28 in the notes.

Remark 6.2. $H^*(G, M) \cong \operatorname{Ext}^*_{\mathbb{Z}[G]}(\mathbb{Z}, M)$ as universal δ -functors.

Now let C_n be the cyclic group of order n, generated by element g, then $\mathbb{Z}[C_n] \cong \mathbb{Z}[g]/(g^n-1)$, so we have $0=g^n-1=(g-1)N_g$ in $\mathbb{Z}[C_n]$ where N_g is the norm element $N_g=1+g+\cdots+g^{n-1}$, so we have a free resolution of \mathbb{Z} :

$$\cdots \longrightarrow \mathbb{Z}[C_n] \xrightarrow{1-g} \mathbb{Z}[C_n] \xrightarrow{N_g} \mathbb{Z}[C_n] \xrightarrow{1-g} \mathbb{Z}[C_n] \xrightarrow{\varepsilon} \mathbb{Z}$$

where augmentation ε sends g to 1. This allows us to compute the cohomology of any C_n -modules.

Proposition 6.3. Let M be an C_n -module, then

$$H^i(G,M) = \begin{cases} M^G, & i = 0 \\ \{m \in M \mid N_g m = 0\}/(1-g)M, & i > 0 \text{ odd} \\ M^G/N_g M, & i > 0 \text{ even} \end{cases}$$

Proof. Taking $\operatorname{Hom}(P_*,M)^G$ gives

$$\cdots \longleftarrow M \xleftarrow[1-g]{} M \xleftarrow[N_g]{} M \xleftarrow[1-g]{} M \longleftarrow \cdots$$

Remark 6.4. If M has trivial action, then

$$H^{i}(G,M) = \begin{cases} M, & i = 0\\ M[n], & i > 0 \text{ odd}\\ M/n, & i > 0 \text{ even} \end{cases}$$

where M[n] is the n-torsion in M.

Now if $T = \mathbb{Z}$ be with generator t, then $\mathbb{Z}[T]$ is isomorphic to the Laurent polynomials, so we have a resolution

$$0 \longrightarrow \mathbb{Z}[T] \xrightarrow{1-t} \mathbb{Z}[T] \longrightarrow \mathbb{Z}$$

since (1-t) is not a zero-divisor of $\mathbb{Z}[T]$. Therefore, taking $\operatorname{Hom}(P_*,M)^T$ gives

$$0 \longleftarrow M \xleftarrow[1-t]{} M$$

$$H^{i}(T,M) = \begin{cases} M^{T}, & i = 0\\ M_{T}, & i = 1\\ 0, & \text{otherwise} \end{cases}$$

Now let X be a set, and let G_X be the free group on X.

Proposition 6.5. The augmentation ideal I_X is a free $\mathbb{Z}[G_X]$ -module, generated by the set $\{(x-1) \mid x \in X\}$, and so the exact sequence

$$0 \longrightarrow I_X \longrightarrow \mathbb{Z}[G_X] \longrightarrow \mathbb{Z} \longrightarrow 0$$

is a free resolution of \mathbb{Z} as a G_X -module.

Proof. As \mathbb{Z} -bases of I_X , we have $\{(g-1) \mid g \in G_X\}$, but $\{h(x-1) \mid h \in G, x \in X\}$ is also a \mathbb{Z} -linear basis for I_X . \square

Remark 6.6. Groups are free if and only if they have cohomological dimension 1.

7 Sept 6, 2023: Cup Product

Remark 7.1. 1. A crossed homomorphism would be a group homomorphism when G has trivial action on M.

2. If X is an A-torsor, then there is a given G-action and a right A-action so that $X \times A \to X$ is given by a diagonal action compatible to the G-action. Therefore, $g(x \cdot a) = gx \cdot ga$.

Definition 7.2. Let A and B be G-modules, then there is a notion of tensor product $A \otimes_G B$ as a G-module via the diagonal action $g(a \otimes b) = ga \otimes gb$. On the level of cochain, we have a cup product

$$C^{p}(G, A) \otimes C^{q}(G, B) \xrightarrow{\smile} C^{p+q}(G, A \otimes B)$$

$$(\alpha : G^{p+1} \to A) \otimes (\beta : G^{q+1} \to B) \mapsto (\alpha \smile \beta)$$

$$(g_{0}, \dots, g_{p+q}) \mapsto \alpha(g_{0}, \dots, g_{p}) \otimes \beta(g_{p}, \dots, g_{p+q})$$

Proposition 7.3. $\partial(\alpha \smile \beta) = (\partial \alpha) \cup \beta + (-1)^{|\alpha|} \alpha \smile \partial \beta$.

Corollary 7.4. • If α and β are cocycles, then $\alpha \smile \beta$ is also a cocycle.

• If α is a cocycle β is a coboundary, or vice versa, then $\alpha \smile \beta$ is a coboundary. Indeed, if $\beta = \partial \gamma$, then $\partial(\alpha \smile \gamma) = (-1)^{|\alpha|}\alpha \smile \beta$.

Therefore, on the level of cohomology, we have a (bilinear) cup product as well:

$$H^p(G,A) \otimes H^q(G,B) \to H^{p+q}(G,A \otimes B)$$

Example 7.5. • If p = q = 0, then

$$H^0(G, A) \otimes H^0(G, B) \cong A^G \otimes B^G \to H^0(G, A \otimes B) \cong (A \otimes B)^G$$

 $a \otimes b \mapsto a \otimes b$

• By extending this prioperty, we get a G-equivariant pairing $A \otimes B \to C$ and therefore

$$H^p(G,A) \otimes H^q(G,B) \xrightarrow{\smile} H^{p+q}(G,C).$$

Example 7.6. Let R be a commutative ring, and if there is a G-action on R, then the multiplication $m: R \otimes R \to R$ is G-equivariant, so we have a cup product

$$\smile: H^p(G,R) \otimes H^q(G,R) \to H^{p+q}(R)$$

This has the following properties:

- 1. This is natural in A, B, and C.
- 2. This is compatible with connecting homomorphism and exact sequences, that is,
 - Given short exact sequences

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

and

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

and pairing $A\otimes B\to C$, then this induces $A\otimes B\to C'$ and in the quotients we have $A''\otimes B\to C''$, so $\delta(\alpha\smile\beta)=\delta\alpha\smile\beta$, so we have a commutative diagram¹

$$A' \otimes B \longrightarrow A \otimes B \longrightarrow A'' \otimes B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

¹This may require the assumption that the modules are flat.

and thus

$$H^{o}(G, A'') \otimes H^{q}(G, B) \longrightarrow H^{p+q}(G, A'' \otimes B)$$

$$\downarrow^{\delta \otimes 1} \qquad \qquad \downarrow^{\delta}$$

$$H^{p+1}(G, A') \otimes H^{q}(G, B) \longrightarrow H^{p+q+1}(G, A' \otimes B)$$

• Given

$$0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$$

and

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

and pairings

so
$$\delta(\alpha \smile \beta) = (-1)^{|\alpha|} \alpha \smile \delta\beta$$

Proof. Let $\alpha = [a]$ for $a: G^{p+1} \to A$ and $\beta = [b]$ for $b: G^{q+1} \to B''$, then there is a lift $b: G^{q+1} \xrightarrow{\tilde{b}} B \to B''$. Then we have

$$C^{q}/B^{q}(B') \longrightarrow C^{q}/B^{q}(B) \longrightarrow C^{q}/B^{q}(B'') \longrightarrow 0$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$0 \longrightarrow Z^{q}(B') \longrightarrow Z^{q+1}(B) \longrightarrow Z^{q+1}(B'')$$

and by the snake lemma we have a connecting homomorphism over group cohomologies.

8 Sept 8, 2023: Restriction and Transfer

Recall that we have a chain-level cup product, and we extend it to the level of cohomology. The cup product has the following properties:

1. If p = q = 0, then the cup product is the natural composition

$$A^G \otimes B^G \to (A \otimes B)^G \to C^G$$

- 2. Functoriality.
- 3. We have $\delta(\alpha \smile \beta) = \delta(\alpha) \smile \beta$, and incorporating this with the exact sequence, we have $\delta(\alpha \smile \beta) = (-1)^{|\alpha|}\alpha \smile \delta(\beta)$.

By the universal property of the tensor product, there exists a unique bilinear pairing that also satisfies these properties. To prove this, we use dimension-shifting.

Remark 8.1. Let M be a module, and map it into the induced module with an extended short exact sequence

$$0 \longrightarrow M \longrightarrow \operatorname{Ind}^{G}(M) = \operatorname{Map}(G, M) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], M) \longrightarrow M_{1} \longrightarrow 0$$

Taking the fixed points, we have

$$0 \longrightarrow M^G \longrightarrow (\operatorname{Ind}^G(M))^G \longrightarrow (M_1)^G \longrightarrow H^1(G,M) \longrightarrow 0 \longrightarrow \cdots$$

$$\cdots \longrightarrow 0 \longrightarrow H^k(G, M_1) \stackrel{\cong}{\longrightarrow} H^{k+1}(G, M)$$

Here $(M_1)^G \to H^1(G, M)$ is a surjection. Now we know $\delta: H^i(G, M_1) \to H^{i+1}(G, M)$ is a surjection for i = 0, and is an isomorphism for i > 0.

Proceeding inductively, we define

$$0 \longrightarrow M_i \longrightarrow \operatorname{Ind}^G(M) \longrightarrow M_{i+1} \longrightarrow 0$$

If we start with $A \otimes B \to C$, then use property (3) repeatedly to the short exact sequence above, we get the uniqueness.

Example 8.2. Consider $G = C_2$, and consider the cohomology ring $H^*(C_2, \mathbb{F}_2)$. The action is obviously trivial. This induced the sequence with augmentation

$$0 \longrightarrow \mathbb{F}_2 \longrightarrow \mathbb{F}_2[C_2] \longrightarrow \mathbb{F}_2 \longrightarrow 0$$

The boundary map is $\delta: H^i(C_2, \mathbb{F}_2) \to H^{i+1}(C_2, \mathbb{F}_2)$ is an isomorphism for all i.

We know $H^i(C_2, \mathbb{F}_2) = \mathbb{F}_2\{x_i\}$, so we can write $x_{i+1} = \delta x_i$. The product $x_i \smile x_j = \delta^i x_0 \smile \delta^j x_0 = \delta^{i+j} x_0 \smile x_0 = \delta^{i+j} x_0 = x_{i+j}$. Hence, $H^*(C_2, \mathbb{F}_2) \cong \mathbb{F}_2[x]$ where $x = |x_1|$. Note that

$$H^{i}(C_{2}, M) = \begin{cases} M^{C_{2}}, & i = 0\\ \ker(N)/(\sim), & i \text{ odd}\\ M^{C_{2}}/N, & i > 0 \text{ even} \end{cases}$$

Remark 8.3. For odd prime p, we want to use the same method to calculate $H^i(C_p, \mathbb{F}_p)$ with trivial action, then this is $\{\mathbb{F}_p, i \geq 0\}$. For instance, if we look at $x_1 \smile x_1$, then this is $(-1)^{|x_1|}x_1 \smile x_1$, so this gives $2x_1 \smile x_1 = 0 \in H^2 = \mathbb{F}_p$, so this gives $x_1 \smile x_1 = 0$. Note that $H^*(C_p, \mathbb{F}_p) \cong \bigwedge(x_1) \otimes \mathbb{F}_p[y]$.

We now talk about the functoriality in G. Given G_1 acting on M_1 and G_2 acting on M_2 , and say $\varphi: G_1 \to G_2$ is a group homomorphism, and a map of modules $f: M_2 \to M_1$, then we say φ and f is a compatible pair of morphisms if for any $g \in G_1$, the diagram

$$\begin{array}{ccc} M_2 & \stackrel{f}{\longrightarrow} & M_1 \\ \varphi(g) & & \downarrow g \\ M_2 & \stackrel{f}{\longrightarrow} & M_1 \end{array}$$

This gives a map $C^*(G_2, M_2) \to C^*(G_1, M_1)$, and hence a map on cohomology $H^*(G_2, M_2) \to H^*(G_1, M_1)$. For instance, if $\varphi = \operatorname{id}$, we obtain the functoriality in M, as we previously saw. Similarly, if $f = \operatorname{id}$, and $M = M_2$ is a G_2 -module, on which $g_1 \cdot m = \varphi(g_1) \cdot m$.

There are some special situations from the relations above.

1. Conjugation: let $H \subseteq G$ be a subgroup, and we consider A to be a G-module, then there is restriction of G-action on A to H, so A becomes a H-module. Let $B \subseteq A$ be a H-submodule in this sense. This is preserved by the action of G, but not necessarily by the action of G. For any $g \in G$, let the right conjugation be $h^g = g^{-1}hg$ on h, and let $gH = gHg^{-1}$ on subgroup G. The compatible morphisms are now

$${}^gH \to H$$
 $h \mapsto h^g$

and

$$B \to gB$$
$$b \mapsto gb$$

Therefore, the induced maps on conjugation is given by $(g)_* = H^*(H, B) \to H^*({}^gH, gB)$. Therefore, $(g_1g_2)_* = (g_1)_*(g_2)_*$.

2. Inflation: suppose $H \lhd G$ is a normal subgroup. We have the canonical map $G \to G/H$. Let A be a G-module, then G/H acts on A^H , and we look at the inclusion $A^H \hookrightarrow A$. Now $\varphi: G \to G/H$ and $f: A^H \hookrightarrow A$ are compatible, so on the level of cohomology, we get an inflation map

$$\inf_{G}^{G/H}: H^*(G/H, A^H) \to H^*(G, A).$$

If we look at $H_1 \subseteq H_2 \triangleleft G$ where $H_i \triangleleft G$, we have $G \to G/H_1 \to G/H_2 \cong (G/H_1)/(H_2/H_1)$, then the inflation is

$$\inf_{G}^{G/H_1} \circ \inf_{G/H_1}^{G/H_2} = \inf_{G}^{G/H_2}$$
.

3. Restriction: Let $\varphi: H \hookrightarrow G$ and consider A A as G-module and H-module respectively. There is now a restriction map

$$\operatorname{res}_H^G: H^*(G,A) \to H^*(H,A)$$

Now if $H_1 \subseteq H_2 \subseteq G$, then

$$\operatorname{res}_{H_1}^G = \operatorname{res}_{H_1}^{H_2} \circ \operatorname{res}_{H_2}^G$$

Inflation and restriction fit in a long exact sequence.

Finally, we discuss corestriction/transfer/norm. Let G be a finite group and let M be a G-module, then we have $M^G \hookrightarrow M$ as inclusion. On the other way around, we have

$$\label{eq:transform} \begin{split} \operatorname{tr}/N: M \to M^G \\ m \mapsto \sum_{g \in G} gm. \end{split}$$

Let $\varphi: G_1 \to G_2$ and $f: M_2 \to M_1$ be compatible, then we denote $(\varphi, f)^* = H^*(G_2, M_2) \to H^*(G_1, M_1)$, with

$$G_1^{\times (*+1)} \longrightarrow G_2^{\times (*+1)} \longrightarrow M_2 \stackrel{f}{\longrightarrow} M_1$$

such that it follows composition, and $(\varphi, f)^*$ commutes with δ , i.e.,

$$0 \longrightarrow M'_2 \longrightarrow M_2 \longrightarrow M''_2 \longrightarrow 0$$

$$\downarrow^f \qquad \qquad \downarrow^f \qquad \qquad \downarrow^f$$

$$0 \longrightarrow M'_1 \longrightarrow M_1 \longrightarrow M''_1 \longrightarrow 0$$

and therefore we have a commutative square

$$H^{k}(G, M_{2}'') \xrightarrow{\delta} H^{k+1}(G_{2}, M_{2}')$$

$$\downarrow^{(\varphi, f)*} \qquad \qquad \downarrow^{(\varphi, f)*}$$

$$H^{k}(G_{1}, M_{1}'') \xrightarrow{\delta} H^{k+1}(G, M_{1}')$$

For $\alpha \in C^k(M_2'')/B^k$, we trace it back to $\tilde{\alpha} \in C^k(M_2)/B_k$, and α is sent to $Z^{k+1}(M_2'')$, but now that means $\tilde{\alpha}$ lands in the kernel of $Z^{k+1}(M_2) \to Z^{k+1}(M_2'')$, so this is in $Z^{k+1}(M_2')$.

$$C^{k}(M_{2})/B_{k} \longrightarrow C^{k}(M_{2}'')/B_{k} \longrightarrow 0$$

$$\downarrow \emptyset \qquad \qquad \downarrow \emptyset$$

$$0 \longrightarrow Z^{k+1}(M_{2}') \longrightarrow Z^{k+1}(M_{2}) \longrightarrow Z^{k+1}(M_{2}'')$$

Moreover, we have $(\varphi, f)^*(\alpha \smile \beta) = (\varphi, f)^*\alpha \smile (\varphi, f)^*\beta$, whenever the modules are compatible.

For transfer/corestriction, if $H \subseteq G$ is a subgroup with finite index, and M is a G-module, then we have

$$\operatorname{tr}_G^H:M^H\to M^G$$

$$m\mapsto \sum_{g\in G/H}gm$$

For instance, we have $\operatorname{tr}: \mathbb{Z}^H = \mathbb{Z} \to \mathbb{Z}^G = \mathbb{Z}$ is multiplication by [G:H]. Note that $H^*(X^*(G,M)^G) = H^*(G,M)$, but $H^*(X^*(G,M)^H) = H^*(H,M)$, and the latter maps to the former cohomology structure via the transfer mapping. Hence, we have $\operatorname{tr}_G^H: X^*(G,M)^H \to X^*(G,M)^G$ giving $\operatorname{tr}_G^H \equiv \operatorname{cores}_G^H: H^*(H,M) \to H^*(G,M)$. This is not a ring homomorphism.

Remark 9.1 (Properties). 1. tr commutes with δ , that is, for a short exact sequence of G-modules (hence a short exact sequence of H-modules),

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

then we have

$$H^{k}(H,C) \xrightarrow{\delta} H^{k+1}(H,A)$$

$$\text{tr} \downarrow \qquad \qquad \qquad \text{tr}$$

$$H^{k}(G,C) \xrightarrow{\delta} H^{k+1}(G,A)$$

- 2. If $H_1 \subseteq H_2 \subseteq G$ are subgroups with finite indices, then $\operatorname{tr}_G^{H_1} = \operatorname{tr}_G^{H_2} \operatorname{tr}_{H_2}^{H_1}$.
- 3. $\operatorname{tr}(\operatorname{res}(\alpha) \smile \beta) = \alpha \smile \operatorname{tr}(\beta)$. Now given a pairing $A \otimes B \to C$ of G-modules, with $H \subseteq G$, then

$$\begin{array}{cccc} H^i(H,A) & \otimes & H^j(H,B) \stackrel{\smile}{\longrightarrow} H^{i+j}(H,C) \\ & & & \downarrow^{\operatorname{tr}} & \downarrow^{\operatorname{tr}} \\ H^i(G,A) & \otimes & H^j(G,B) \stackrel{\smile}{\longrightarrow} H^{i+j}(G,C) \end{array}$$

Proof Idea. By dimension shifting, we reduce the case H^0 , in which we have an explicit description. We have $A^H \otimes B^H \to C^H$, so for $\alpha \in A^G$ and $\beta \in B^H$, we have $\operatorname{tr}(\alpha \otimes \beta) = \sum_{g \in G/H} g(\alpha \otimes \beta) = \sum_{g \in G/H} g\alpha \otimes \beta = \alpha \otimes \sum_{g \in G/H} g\beta$. \square

Example 9.2. Let R be a commutative ring with a G-action, then the restriction res : $H^*(G,R) \to H^*(H,R)$ is a ring homomorphism, so $H^*(H,R)$ is a $H^*(G,R)$ -algebra. The opposite side has tr is a map of $H^*(G,R)$ -modules where the cohomology of H is given the module structure from the restriction. This induces the Frobennius reciprocity.

Remark 9.3 (Other compatibilities). Let $K \subseteq H \subseteq G$ be (normal) subgroups, then $G \to G/K \to G/H$ are quotient maps. The restrictions of inclusions correspond to inflations of surjections: if $K \lhd G$, then $G \to G/K$ and $H \to H/K$, so $\inf_H^{H/K} \circ \operatorname{res}_{H/K}^{G/K} = \operatorname{res}_H^G \circ \inf_G^{G/K}$. Note that the maps are contravariants. Moreover, we have $\inf_G^{G/K} \circ \operatorname{cores}_{G/K}^{H/K} = \operatorname{cores}_G^H \circ \inf_H^{H/K}$.

If $H \triangleleft G$, then $\operatorname{res}_H^G \circ \operatorname{cor}_G^H = N_{G/H}$; also, $\operatorname{cor}_G^H \circ \operatorname{res}_H^G = [G:H]$.

10 Sept 13, 2023: Spectral Sequence

Whenever G is not cyclic or Q_8 , the group cohomology $H^*(G, M)$ would not have a small resolution. We know there is a pullback diagram

$$M \longrightarrow \prod_{p} M_{p}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_{\mathbb{Q}} \longrightarrow \prod_{p} (M_{p}^{n})_{\mathbb{Q}}$$

Here $M_{\mathbb{Q}}=M\otimes_{\mathbb{Z}}\mathbb{Q}$ is the base-change, and $M_p^n=\lim_i M/p^i$ is the completion. For finite group G, we have $H^*(G,M_{\mathbb{Q}})=M_{\mathbb{Q}}^G$ if *=0 and is trivial otherwise. Now we have the diagram

$$H^*(G,M) \xrightarrow{\operatorname{res}} H^*(\{e\},M)$$

$$\downarrow^{\operatorname{tr}}$$

$$H^*(G,M)$$

where $H^*(\{e\}, M)$ is M if *=0 and is otherwise trivial. Note that if *>0, then $H^*(G, M)$ is annihilated by |G|. Let $P \subseteq G$ be a Sylow p-subgroup, then if P is normal, then $H^*(G, M_p^n) \cong H^*(P, M_p^n)^{G/p}$. Therefore we have a normal series $\cdots \lhd P_2 \lhd P_1 \lhd P$ with simple enough quotients, e.g., as abelian series. Therefore, we need ways to reassemble the cohomology.

For $H \triangleleft G$ we know there is a G/H-action on $H^*(H, M)$ via conjugation, so we can calculate $H^*(G/H, H^*(H, M))$, hence calculate $H^*(G, M)$ using Lyndon-Hochschild-Serre spectral sequences.

We will first look at Bockstein spectral sequences. We start by looking at the sequence

$$\cdots \subseteq p^2 \mathbb{Z} \subseteq p \mathbb{Z} \subseteq \mathbb{Z}$$

and factors each inclusion $p^k\mathbb{Z}\subseteq p^{k-1}\mathbb{Z}$ via $p^k(\mathbb{Z}/p\mathbb{Z})$, then we have cohomology $H^*(G,M/p)[p]$, thus calculate $H^*(G,M)$. (Here the attachment by p is given by tensoring $\mathbb{Z}[v_0]$ with grading p.) In general, we construct the abstract version as filtered cochain complex, with

$$\cdots \subseteq F^{p+1}C^* \subseteq F^pC^* \subseteq \cdots \subseteq C^*$$

so we can map each term to the graded version $\operatorname{gr}^p C^*$. We denote the inclusions by i and the projections to the graded versions by π . The goal is to understand $H^*(C^*)$ from the building blocks $H^*(\operatorname{gr}^* C^*)$. There exists the factoring

This is the E_1 -page of the spectral sequence, given by $E_1^{p,q} = H^q(\operatorname{gr}^p)$. We denote $d_1 : H^q(\operatorname{gr}^p) \to H^{q+1}(\operatorname{gr}^{p+1})$ as the composition. Obviously $d_1^2 = 0$.

Now the E_2 -page is given by $H^*(E_1, d_1)$. For $a \in \ker(d_1)$, the map i induces $\tilde{\delta} \mapsto \delta a$ by lifting, so $\pi(\tilde{\delta a}) \in H^{q+1}(\operatorname{gr}^{p+2}) = E_1^{p+2,q+1}$, with $d_1(\pi(\tilde{\delta a})) = \pi \delta \pi(\tilde{\delta a}) = 0$. We then define $d_2([a]) = [\pi(\tilde{\delta a})] \in E_2$. We then proceed inductively and find higher pages. This is usually done by calculating derived pages.

Recall that: if H is a finite group, A is a finite H-module, then an extension of H by A is a group G such that

$$0 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 1$$

is exact, where the H-module structure on A is realized via conjugation $h \cdot a = hah^{-1} \in G$. We already know that the equivalence classes of extensions of H by A correspond to $H^2(H,A)$, where $A \rtimes H$ corresponds to $0 \in H^2(H,A)$.

Theorem 11.1. Let p be an odd prime, $|G| = p^{n+1}$, and G contains \mathbb{Z}_q for $q = p^n$ as a subgroup. If this is the case, then G is either $\mathbb{Z}_{p^{n+1}}$, $\mathbb{Z}_q \times \mathbb{Z}_p$, or $\mathbb{Z}_q \rtimes \mathbb{Z}_p$, where the generator $e \in H$ acts on $1 \in \mathbb{Z}_q$ by $e1e^{-1} = 1 + p^{n-1}$. We denote $H = \mathbb{Z}_p$ in this case.

Proof. We want to look at the short exact sequence

$$0 \longrightarrow \mathbb{Z}_q \longrightarrow G \longrightarrow H \longrightarrow 1$$

where $H = \mathbb{Z}_p$.

Lemma 11.2. If p is an odd prime, and there exists integer a such that $a^p \equiv 1 \pmod{p^n}$ for $n \geq 2$, then $a \equiv 1 \pmod{p^{n-1}}$.

Subproof. This is trivial if a=1. If $a\neq 1$, let d(a) be the largest possible integer d such that $a\equiv 1\pmod{p^d}$. It suffices to show that $d(a)\geqslant n-1$. By Fermat's Little theorem, we have $d(a)\geqslant 1$. We now want to show $d(a^p)=d(a)+1$. Indeed, let $a=1+p^db$, then using the binomial theorem, we have $a^p=(1+p^db)^p=1+p^{d+1}b+\cdots$ where the omitted terms have higher order of p^{d+2} . However, $d(a^p)\geqslant n$, so $d(a)\geqslant n-1$.

Now let

$$0 \longrightarrow \mathbb{Z}_q \longrightarrow G \longrightarrow H \longrightarrow 1$$

be the extension with |H| = p, then the H-module of \mathbb{Z}_q is given by a map $\varphi : H \to \operatorname{Aut}(\mathbb{Z}_q) \cong \mathbb{Z}_q^{\times}$. Since |H| is prime, then φ is either trivial or injective.

If φ is trivial, then $h1h^{-1}=1$ for all $h\in H$, so G is an abelian group. By the fundamental theorem of abelian groups, we know G is either $\mathbb{Z}_{p^{n+1}}$ or $\mathbb{Z}_q\times\mathbb{Z}_p$.

If φ is injective, then $n \ge 2$, otherwise the size of H is larger than the size of the units. Given some element $h \in H$ such that $h1h^{-1} = k$, then $k^p \equiv 1 \pmod{p^n}$. By Lemma 11.2, $k = 1 + p^{n-1}b$ for some $b \in \mathbb{Z}_p$. Because φ is injective, then the image of φ has size p, but every element in the image has the form of k, therefore the image is just the set of such elements. Let $e \in H$ be a generator such that $e1e^{-1} = 1 + p^{n-1}$. Now let $A = \mathbb{Z}_q$ with this H-module structure, and it suffices to show that $H^2(H,A) = 0$, then we have the semidirect product only.

Since H and A are both cyclic groups, we write down the periodic resolution to be

$$A \xrightarrow{e-1} A \xrightarrow{N} A \xrightarrow{e-1} A \xrightarrow{N} A \xrightarrow{N} \cdots$$

where N is the norm element $\sum\limits_{h\in H}h$. We know the action via e-1 on 1 is $(e-1)\cdot 1=(1+p^{n-1})-1=p^{n-1}$, so $\ker(e-1)=p\mathbb{Z}/q\mathbb{Z}$; the action via N is $N\cdot 1=\sum\limits_{b\in\mathbb{Z}_p}(1+p^{n-1}b)\equiv p\pmod{p^n}$, therefore the image of the norm map is $\operatorname{im}(\mathbb{Z})=p\mathbb{Z}/q\mathbb{Z}$ as well. Therefore, $H^2(H,A)=0$.

Corollary 11.3. If we have a p-group G with $p \neq 2$, then there is a unique subgroup of order p and a unique subgroup of index p.

Let H be a normal subgroup of G, then we consider the free $\mathbb{Z}[H]$ -resolution

$$\mathbb{Z} \longleftarrow C_H^0 \longleftarrow C_H^1 \longleftarrow C_H^2 \longleftarrow \cdots$$

and we can try turning it into a free G-resolution of $\mathbb{Z}[G/H]$ by taking the tensor via

$$\mathbb{Z} \otimes \mathbb{Z}[G/H] \cong \mathbb{Z}/[G/H] \longleftarrow C_H^* \otimes \mathbb{Z}[G/H]$$

Because $\mathbb{Z}[H] \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G] \cong \mathbb{Z}[G]$, then we have

$$\mathbb{Z}[G/H] \cong \mathbb{Z} \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G] \longleftarrow C_H^* \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]$$

Now given an arbitrary free $\mathbb{Z}[G/H]$ -resolution and we want to map the given resolution to it.

$$\mathbb{Z} \longleftarrow D^0_{G/H} \cong \mathbb{Z}[G/H] \longleftarrow D^1_{G/H} \cong \mathbb{Z}[G/H]^m \longleftarrow \cdots$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$C_H^* \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G] \leftarrow \cdots (C_H^* \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G])^m$$

The vertical maps are resolved as G-modules by using the resolution of $\mathbb{Z}[G/H]$. We claim that there are horizontal maps that gives a double complex whose total complex is a resolution of \mathbb{Z} as a G-module.

Example 11.4. Consider the dihedral group $D_{2n} \triangleright C_n$, so $D_{2n}/C_n \cong C_2$. In particular, say D_{2n} is generated by τ of order n and T of order n, so n is generated by n and n and n is generated by n is generated by n and n is generated by n is g

$$D^*: \mathbb{Z} \longleftarrow \mathbb{Z}[T]/(T^2-1) \xleftarrow[T-1]} \mathbb{Z}[T]/(T^2-1) \xrightarrow[T-1]} \mathbb{Z}[T]/(T^2-1)$$

and

$$C^*: \mathbb{Z} \longleftarrow \mathbb{Z}[\tau]/(\tau^n - 1) \longleftarrow_{\tau - 1} \mathbb{Z}[\tau]/(\tau^n - 1) \longleftarrow_{N_{\tau}} \mathbb{Z}[\tau]/(\tau^n - 1) \longleftarrow_{\tau - 1} \cdots$$

and so on. Therefore we have an induced resolution given by

$$\mathbb{Z}[T]/T^2 \longleftarrow \mathbb{Z}[D_{2n}] \leftarrow_{\tau-1} \mathbb{Z}[D_{2n}] \leftarrow_{N_{\tau}} \mathbb{Z}[D_{2n}] \leftarrow_{\tau-1} \mathbb{Z}[D_{2n}] \leftarrow_{N_{\tau}} \cdots$$

Now let the sequence of $D_{G/H}^n$'s be of

$$\mathbb{Z} \longleftarrow \mathbb{Z}[T]/T^{2} \xleftarrow[T-1]{} \mathbb{Z}[T]/T^{2} \xleftarrow[T-1]{} \mathbb{Z}[T]/T^{2} \xleftarrow[T-1]{} \mathbb{Z}[T]/T^{2} \xleftarrow[T-1]{} \cdots$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \cdots$$

$$\cdots \longleftarrow \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \cdots$$

$$\tau^{-1} \uparrow \qquad \tau^{-1} \uparrow \qquad \tau^{-1} \uparrow \qquad \tau^{-1} \uparrow \qquad \qquad \tau^{-1} \uparrow \qquad \cdots$$

$$\mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \cdots$$

$$\mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \cdots$$

$$\uparrow \qquad \qquad \uparrow \qquad \cdots$$

$$\cdots \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \qquad \mathbb{Z}[D_{2n}] \xleftarrow[T-1]{} \cdots \cdots$$

$$\cdots \qquad \cdots \qquad \cdots$$

The horizontal maps are hard to construct, they may look like $\tau - 1$, but we need to introduce signs at certain places.

We will build the resolution out of this diagram, using double complexes, where horizontal differential ∂^v and vertical differential ∂^h satisfies $\partial^v \partial^h + \partial^h \partial^v = 0$ between $C^{i,j}$'s. There now exists a total complex Tot with

$$(\operatorname{Tot}^{\oplus}(C^{*,*}))_n = \bigoplus_{i+j=n} C^{i,j}$$

and

$$(\operatorname{Tot}^{\prod}(C^{*,*}))_n = \prod_{i+j=n} C^{i,j}$$

so each degree of the total complex is given by a collection of terms with the same fixed total degree. From the above, we have

One can fill in the diagram so that each square anticommutes, so that this becomes a double complex.

Example 12.1. If we calculate $H^*(D_{2n}, \mathbb{F}_2)$, we would find the differentials of the total complex to be zero, therefore the cohomology (after taking $\text{Hom}(C^{*,*}, \mathbb{F}_2)$) is just determined by the number of copies in the total complex, enumerated on \mathbb{F}_2 .

If we think of the quaternions Q_8 instead, with the presentation $\langle \tau, T \mid \tau^2 = T^2 = (\tau T)^2, \tau^4 = 1 \rangle$, then we obtain

To make this a complex, we need to add notions of differentials, where we find a nullhomotopic map so that given a term in some degree and any term in the following degree, there exists a differential from the former to the latter.

We think of $H \triangleleft G$ with $G \twoheadrightarrow G/H$, then as we discussed before there are chains

$$\mathbb{Z} \longleftarrow \mathbb{Z}[G/H] \longleftarrow \cdots$$

$$\uparrow$$

$$\mathbb{Z}[G]$$

$$\uparrow$$

$$\vdots$$

and therefore this gives an anti-commute square

$$C_{i,j} \xleftarrow{\partial_h} C_{i+1,j}$$

$$\underset{\partial_v}{\partial_v} \uparrow \qquad \qquad \uparrow_{\partial_v}$$

$$C_{i,j+1} \xleftarrow{\partial_h} C_{i+1,j+1}$$

where ∂_v and ∂_h are G-equivariant.

Theorem 13.1. In this situation, there are equivariant maps, where $d_0 = \partial_v : C_{i,j} \to C_{i,j-1}, d_2 : C_{i,j} \to C_{i-2,j+1}$, and so on, with $d_r : C_{i,j} \to C_{i-r,j+r-1}$, so that these differentials commute with the augmentation maps $\varepsilon_i : C_{i,0} \to B_i$, that is, $\varepsilon d_1^C = d_1^B \varepsilon$ and such that

$$\cdots \xrightarrow{\sum d_r} \bigoplus_{i+j=n} C_{i,j} \xrightarrow{\sum d_r} \bigoplus_{i+j=n-1} C_{i,j} \xrightarrow{\sum d_r} \cdots$$

is a free resolution of the trivial G-module $\mathbb Z$.

We will filter $C_{*,*}$ by $(F^pC_{*,*})_n = \bigoplus_{\substack{i+j=n, i\geqslant p \ \text{gives a spectral sequence with page 2 as } E_2^{p,q} = H^p(G/H, H^q(H, M)).$

Example 13.2. Consider

$$0 \longrightarrow C_4 \longrightarrow Q_8 \longrightarrow C_2 \longrightarrow 0$$

with B_* given by $\mathbb{Z}[C_2]$'s, and $C_{i,j} = \mathbb{Z}[Q_8]$. The E_2 -page is now $H^p(C_2, H^q(C_4, \mathbb{Z}/2\mathbb{Z}))$, and as τ acts trivially on the resolution, then $d_2 = \pm (\tau + 1)$ is the zero map on the spectral sequence. One can show that $d_3 = \pm T$. There will then be periodicity on the picture for d_4 and so on.

Now the spectral sequence gives us $H^p(G/H, H^q(H, M)) \Rightarrow H^{p+q}(G, M)$, and therefore the E_{∞} -page, with $\operatorname{gr}^* H^{p+q} \cong \bigoplus_{p+q} E_{\infty}^{p,q}$. In the example above we see $H^0(Q_8, \mathbb{Z}_2) \cong \mathbb{Z}_2$ since the filtration ends there; $\operatorname{gr}^* H^1(Q_8, \mathbb{Z}_2) \cong \mathbb{Z}_2$

 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$; $\operatorname{gr}^* H^2(Q_8, \mathbb{Z}_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$; $H^3 = \mathbb{Z}/2\mathbb{Z}$. This describes a general picture of H^{4k+i} , and we can remove the graded version and yields the same result.

We think of how $H^p(G/H, H^q(H, M))$ turns into $H^{p+q}(G, M)$. We know $d_r: E_r^{p,q} \to E_r^{p+r,q-r+1}$, and we consider total degree n.

- If n = 0, then $H^0(G/H, H^0(H, M)) \cong H^0(G, M)$.
- If n = 1, then we have a long exact sequence

$$0 \succ H^1(G/H, H^0(H, M)) \stackrel{inf}{\succ} H^1(G, M) \stackrel{res}{\succ} H^0(G/H, H^1(G, M)) \stackrel{d_2}{\succ} H^2(G/H, H^0(H, M)) \stackrel{inf}{\succ} H^2(G, M) \stackrel{\alpha}{\succ} Q \succ 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

More generally, we get a filtration on $H^n(G, M)$ with associated grading $E^{p,n-p}_\infty \cong E^{p,n-p}_R$ for some $R \gg 0$. In the exact sequence above, we obtain

$$0 \longrightarrow H^1(G/H, H^0(H, M)) \cong E_{\infty}^{1,0} \xrightarrow{inf} H^1(G, M) \longrightarrow \ker(d_2) \cong E_{\infty}^{0,1} \longrightarrow 0$$

and correspondingly $\operatorname{coker}(d_2) = E_{\infty}^{2,0}$ with Q given by

$$ker(d_2^{1,1}) \cong E_{\infty}^{1,1} \hookrightarrow Q \xrightarrow{\pi} ker(d_3)^{0,2} \cong E_{\infty}^{0,2}$$

so that $res = \pi \alpha$. The edge maps are given by

$$E_{\infty}^{n,0} \longleftrightarrow H^{n}(G,M)$$

$$\uparrow \qquad \qquad \uparrow_{inf}$$

$$E_{2}^{n,0} = H^{n}(G/H,H^{0}(H,M))$$

and

$$H^n(G,M) \xrightarrow{res} E^{0,n}_{\infty}$$

$$\downarrow^{H^0(G/H,H^n(H,M))}$$

Example 14.1. Consider giving $H^p(C_2, H^q(C_2, \mathbb{Z}_2))$ to $H^{p+q}(C_4, \mathbb{Z}_2)$. The thing we want to calculate is the spectral sequence of

$$C^{p,q} = X^p(G/H, X^q(G, M)^H)^{G/H}.$$

Given $f_i \in C^{p_i,q_i}$, we take

$$C^{p_1,q_1} \times C^{p_2,q_2} \xrightarrow{\ \smile \ } X^{p_1+p_2}(G/H,X^{q_1}(G,M)^H \otimes X^{q_2}(G,M)^H)^{G/H} \xrightarrow{\ \smile \ } X^{p_1+p_2}(G/H,X^{q_1+q_2}(G,M)^H)^{G/H}$$

and so $d_r(x\smile y)=d_r(X)\smile y+(-1)^{|x|}x\smile d_r(y)$. Therefore this satisfies some kind of Leibniz's rule. We conclude that $E_2^{*,*}\cong \mathbb{F}_2[x,y]$. Therefore the arrows takes on grid other than ones of the form x^{2n} and $x^{2n}y$, which is given by the E_3 -page and beyond. We conclude that $E_4\cong E_\infty=\mathbb{F}_2[x^2]\otimes\bigwedge(y)$.

We will work over \mathbb{F}_2 -coefficients today. We were trying to calculate the spectral sequence via

$$1 \longrightarrow C_2 \longrightarrow C_{2^n} \longrightarrow C_{2^{n-1}} \longrightarrow 0$$

Here $H^*(C_2) = \mathbb{F}_2[x]$ where |x| = 1.

Proposition 15.1. $H^*(C_{2^n}) \cong \mathbb{F}_2[x_n, y_n]/(x_n^2)$ for some $x_n \in H^1$ and $y_n \in H^2$ and n > 1.

On the E_2 -page, we need to move (0,1) to somewhere so that the total degree 1 would have only one piece of information, so we move (0,1) to (2,0), and similarly (n,1) to (n+2,0). In general, $E_{\infty}^{*,*}\cong E_3^{*,*}\cong \mathbb{F}_2[x^2]\otimes \mathbb{F}_2[x_{n-1}]/x_{n-1}^2$. We identify the column of p=1 to be x_{n-1} and column of p=2 to be y_{n-1} and we identify $y_{n-1}=x_{n-1}^2$. In general, $[f]\in E_{\infty}^{p,q}$ is equivalent to $F^pH^*(G)/F^{p+1}H^*(G)$, and given also $[f']\in E_{\infty}^{p',q'}$ for, then $[f][f']\in E_{\infty}^{p+p',q+q'}$, then [ff']=[f][f'] modulo $F^{p+p'+1}H^*(G)$.

The edge maps are

$$H^k(G/H) \cong H^k(C_{2^{n-1}}) \xrightarrow{inf} H^k(G) \cong H^k(C_2) \xrightarrow{res} H^k(H) \cong H^k(C_2)$$

where inf is an isomorphism for k=0,1 and zero otherwise, and res is an isomorphism for even k, and is zero otherwise. Note that if $G=\lim G_i$ for finite groups G_i 's, then $H^*(G)\cong \operatorname{colim}_{i,inf}H^*(G_i)$.

Corollary 15.2. $H^*(\mathbb{Z}_2; \mathbb{F}_2) \cong \mathbb{F}_2[x]/x^2$ for $x \in H^1$.

If we think of $H^*(D_{2n})$, then we already have $C_{2^{n-1}} \to D_D 2^n \to C_2$, so $H^p(C_2, H^q(C_{2^{n-1}})) \Rightarrow H^*(D_{2^n})$ already collapses. For n=1, we have C_2 ; for n=2, we have $C_2 \times C_2$ and resolve the cohomology by Kunneth isomorphism $H^*(C_2 \times C_2) \cong \mathbb{F}_2[x,y]$ for $x,y \in H^1$. For $n \geqslant 3$, $E_2^{**} \cong H^*(C_2) \otimes H^*(C_{2^{n-1}}) \cong \mathbb{F}_2[e] \otimes \mathbb{F}_2[x]/x^2 \otimes \mathbb{F}_2[y]$. Since higher pages vanishes, this is also E_∞^{**} . Let $\mathcal{X} = [x] \in H^1(D_{2^n})$, and $\mathcal{Y} = [y]$ and $\mathcal{E} = [e]$, then $\mathcal{X}^2 \in \mathbb{F}_2\{\mathcal{EX}, \mathcal{E}^2\}$. Eventually this would be hard to compute, so we would look at something different.

If we think of $D_8 \cong \langle T, \tau \mid T^2 = 1 = \tau^4, T\tau T = \tau' \rangle$, then we have $C_2 \cong \langle \tau^2 \rangle \to D_8 \to C_2 \times C_2$. Similarly, $E_2 \cong \mathbb{F}_2[e] \otimes \mathbb{F}_2[x,y]$, where e^i 's are on position (1,i+1) and $d_2(e) = \alpha x^2 + \beta y^2 + \gamma xy$, so we obtain maps of spectral sequences to our sequence $C_2 \cong \langle \tau^2 \rangle \to D_8 \to C_2 \times C_2$, including

$$C_2 \longrightarrow C_2 \times C_2 \longrightarrow C_2 = \langle \tau T \rangle$$

$$C_2 \cong \langle \tau^2 \rangle \longrightarrow C_4 \longrightarrow C_2 \cong \langle \tau \rangle$$

$$C_2 \longrightarrow C_2 \times C_2 \longrightarrow C_2 \cong \langle \tau \rangle$$

When we say a map of spectral sequences we mean $f^*: E_r^{*,*} \to \tilde{E}_r^{*,*}$ by sending $d_r(x)$ to $d_r(f^*x)$, as maps of differential graded algebras. From one of the sequence above, we obtain

$$H^*(C_2, H^*(C_2)) \Rightarrow H^*C_2 \times C_2$$

with $d_2(e)=0$. Take our original sequence with $H^*(C_2,H^*(C_2\times C_2))\Rightarrow H^*(D_8)$, we send this to above by $e\mapsto e$, $x\mapsto x$, and $y\mapsto 0$, then by naturality (as we compare with the sequence above), we note $d_2(e)=\alpha x^2+\beta y^2+\gamma xy$ where $\alpha=0$; similarly we note $\beta=0$ by comparing with another sequence. Therefore $d_2(e)=\gamma xy$.

The cohomology rings $H^*(G, F)$ we referred to today are with respect to $F = \mathbb{F}_p$ where p is a prime.

Theorem 16.1 (Evans-Venkov Theorem). For any finite group G, the cohomology ring $H^*(G; \mathbb{F}_p)$ is Noetherian.

Proof. Suppose we know this holds for p-groups, then for an arbitrary group G, take its Sylow p-subgroup $P \subseteq G$. The cohomology rings give a restriction res: $H^*(G) \to H^*(P)$ where $H^*(P)$ is Noetherian. By assumption, we know $\operatorname{tr}: H^*(P) \to H^*(G)$ is the backwards mapping, and that $\operatorname{tr} \circ \operatorname{res} = [G:P]$, therefore this is an isomorphism. The transfer is then surjective and the restriction is injective. Therefore, $H^*(G)$ is the subring of a Noetherian ring, then $H^*(G)$ is Noetherian, as the retraction tr is fully faithful. Alternatively, we can show that $I_1 \subseteq I_2 \subseteq \cdots \subseteq H^*(G)$ stabilizes: we note that

$$res(I_1) \cup H^*(P) \subseteq res(I_2) \cup H^*(P) \subseteq \cdots \subseteq H^*(P)$$

stabilizes. Let $x \in \operatorname{res}(I_k) \cup H^*(P)$, i.e., $x = \operatorname{res}(a_k) \smile b$ for some choices of a_k and b. Taking the transfer, we have $\operatorname{tr}(x) = \operatorname{tr}(\operatorname{res}(a_k) \smile b) = a_k \smile \operatorname{tr}(b)$. The point being I_k 's and $(\operatorname{res}(I_k) \smile H^*(P))$ are now composes to be an isomorphism, therefore we identify them to be the same. In particular, if $a_j \in I_k \setminus I_{k-1}$, so taking the restriction we end up in $\operatorname{res}(I_{k-1}) \smile H^*(P)$, then sending it back via trace multiplies it by a unit, so it should end up in I_{k-1} again.

We now need to show that $H^*(P)$ is Noetherian for all finite p-groups P. By an induction on order of P, for $H^*(C_p) = \wedge(e) \otimes \mathbb{F}_p[y]$, and given a central extension $C_p \lhd P \twoheadrightarrow \bar{P}$, we need to show that the statement holds for P given it holds for \bar{P} . We consider the spectral sequence $E_2^{i,j}: H^i(\bar{P},H^j(C_p)) \Rightarrow H^{i+j}(P)$, the \bar{P} -action on $H^j(C_p)$ is trivial since every action of p-group on \mathbb{F}_p is always trivial, therefore the E_2 -page decomposes as the tensor product of two cohomology rings, so $E_2^{*,*} = H^*(\bar{P}) \otimes_{\mathbb{F}_p} H^*(C_p) = H^*(P)[e,y]/e^2$. $E_2^{*,*}$ is Noetherian as a tensor product of two Noetherian rings. One can show that

- by induction, we can show that $E_r^{*,*}$ is Noetherian (the kernel of each d_r map will be finitely-generated over $E_r^{*,0}$ as an algebra), and
- moreover, there is $N \gg 0$ such that $E_N^{*,*} \cong E_\infty^{*,*}$.

It then allows us to conclude that E_{∞} is Noetherian, hence H^*P) is Noetherian as well.

Suppose we have a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

of G-modules, then we obtain $H^k(G,C) \to H^{k+1}(G,A)$ as a connecting homomorphism.

Example 16.2. Consider

$$0 \longrightarrow \mathbb{Z}_p \longrightarrow \mathbb{Z}_{p^2} \longrightarrow \mathbb{Z}_p \longrightarrow 0$$

then we obtain Bockstein $\beta: H^k(G,\mathbb{Z}/p) \to H^{k+1}(G,\mathbb{Z}_p)$. So we have $\beta: H^*(G,\mathbb{F}_p) \to H^{k+1}(G,\mathbb{F}_p)$. This map is

- natural in G;
- a derivation, i.e., $\beta(x \smile y) = \beta x \smile y + (-1)^{|x|} x \smile \beta y$;
- $\beta^2 = 0$.

These are called the Steenrod operations, with $P^0 = \mathrm{id}: H^*(G) \to H^*(G)$, and $P^i: H^i(G) \to H^{i+2(p-1)i}(G)$, satisfying

- 1. if |x| = 2k, then $P^{k}(x) = x^{p}$,
- 2. if |x| < 2k, then $P^k(x) = 0$, and
- 3. $P^k(x \smile y) = \sum_{i=0}^k (P^i x) \smile (P^{k-i} y).$

Example 16.3. For example, $H^*(C_p) \cong \wedge(e) \otimes \mathbb{F}_p[y]$, with $\beta(e) = y$, $\beta(y) = 0$, and $p^1(y) = y^p$.

Let p be odd, and all coefficients are over the field \mathbb{F}_p . The Steenrod operations P^i for $i \ge 0$ is given by

$$P^i: H^m(-) \to H^{m+2(p-1)i}(-)$$

satisfying

- 1. $P^2 = id$;
- 2. if |x| = 2n, then $P^n x = x^p$;
- 3. if |x| < 2n, then $P^n x = 0$;

4.
$$P^n(x \smile y) = \sum_{i+j=n} P^i x \smile P^j y$$
,

as well as the algebraic relations, e.g., $P^1P^1=2P^2$, as Adem relations.

Definition 17.1 (Steenrod Algebra). The Steenrod algebra is $A^* = \mathbb{F}_p \langle \beta, P^i, i \geq 1 \rangle / \sim$, where \sim is given by Adem relations.

Definition 17.2 (Milnor's Q_i -operations). Denote $Q_0 = \beta$, $Q_i = [P^{p^{i-1}}, Q_{i-1}]$, e.g., $Q_1 = [P^1, \beta] = P^1\beta - \beta P^1$; $Q_2 = [P^p, P^1\beta - \beta P^1] = P^pP^1\beta + \cdots$. The key fact is that $Q_i(x \smile y) = (Q_i x) \smile y + (-1)^{|Q_i||x|}x \smile Q_{i-1}$.

Example 17.3. $H^*(C_p)$ is the exterior algebra $\bigwedge(x) \otimes \mathbb{F}_p[y]$ where |x| = 1 and |y| = 2, with $\beta x = y$. Then $Q_1 x = (P^1\beta - \beta P^1)(x) = y^p$; $P^p y^p = y^{p^2} = Q_2 x$. In general, $Q_i x = y^{p^i}$.

Definition 17.4 (Fiber Bundle, Principal Bundle). A fiber bundle is the diagram $F \to E \xrightarrow{\pi} B$, where B is the base space, E is the total space, and F is the fiber, such that for any $b \in B$, there exists a neighborhood U of b such that $\pi^{-1}(U) \simeq U \times F$, with certain compatibility.

A principal G-bundle is a fiber bundle with fiber G. In this case, E inherits a free G-action.

Remark 17.5. If G is a finite group, then this gives a finite covering.

For a nice enough group G, there is a classifying space BG characterized by the fact that if X is a CW complex, then homotopy classes of map from X to BG, denoted [X,BG], correspond to the principal G-bundles over X, such that there is a universal principal G-bundle

$$EG$$

$$\downarrow$$
 BG

where EG is contractible, with the universal property that given $f: X \to BG$, there is a pullback f^*EG with respect to these maps.

Remark 17.6. • If G is a finite group, then $\pi_k(BG) = \begin{cases} G, k = 1 \\ 0, k \neq 1 \end{cases}$ and therefore BG = K(G, 1).

• For a group A and integer $n \ge 0$, K(A, n) is a space with

$$\pi_m(K(A,n)) = \begin{cases} A, m = n \\ 0, m \neq n \end{cases}$$

If $n \ge 2$, A needs to be abelian for these structures to exist.

Example 17.7. 1. $B(G \times H) = BG \times BH$.

2. If $G = H \rtimes K$, then the classifying space BG is isomorphic to the fiber product $BH \rtimes_K EK = (BH \rtimes EK)/\Delta$ with respect to the diagonal K-action Δ .

3. Let $H^n = \prod_n H$ be a product of n copies of H. Permuting these H's gives an action Σ_n on H^n , then there is the wreath product $H^n \rtimes \Sigma_n = H \wr \Sigma$. The classifying space $B(H \wr \Sigma_n) \simeq (BG)^n \times_{\Sigma_n} E\Sigma_n$. More generally, for a space X, we can permute the copies and get a fiber bundle

$$X^n \times_{\Sigma_n} E\Sigma$$

$$\downarrow$$

$$B\Sigma_n$$

where $F = X^n$. This bundle has a section

$$s: B\Sigma_n \to X^n \times_{\Sigma_n} E\Sigma_n$$

 $s_x(y) = (x, \dots, x, \tilde{y}).$

Definition 17.8 (Serre Spectral Sequence). Given a fiber bundle $F \to E \to B$, there is a spectral sequence given by $H^i(B, H^j(F)) \Rightarrow H^{i+j}(E)$.

Example 17.9. For $H \triangleleft G$, the sequence $BH \rightarrow BG \rightarrow B(G/H)$ gives the Lyndon-Hochschild spectral sequences.

Example 17.10. Consider $X^p \to X^p \times_{C_p} EC_p \to BC_p$, it gives

$$H^{i}(BC_{p}, H^{j}(X^{p})) \Rightarrow H^{i+j}(X^{p} \times_{C_{p}} EC_{p}).$$

We have

$$H^*(BC_p, H^*(X^p)) \Rightarrow H^*(X^p \times_{C_p} EC_p).$$

where $H^*(X^p) \cong H^*(X)^{\otimes p}$, which decomposes as a direct sum of free and trivial terms. Let $C_p = \langle T \rangle / (T^p - 1)$. The free terms are generated by the image of $1 + T + \cdots + T^{p-1}$, and the trivial terms are of the form $x \otimes \cdots \otimes x$, i.e., fixed by the permutation action on C_p .

Again, we work on cohomology with coefficients in \mathbb{F}_p .

Let Σ_n act on X^n for some space X. (Similarly, the action of C_n on X^n gives $X^n \times_{C_n} EC_n$) The space $X^n \times_{\Sigma_n} E\Sigma_n$ has a free contractible Σ_n -space as Σ_n -fiber $X^n \times E\Sigma_n$. For instance, define $H2\Sigma_n = H^n \rtimes \Sigma_n$, then $B(H2\Sigma_n) = (BH)^n \times_{\Sigma_n} E\Sigma_n$. We will show that the spectral sequence for these collapses at E_2 -page. Note that given a fibration $F \to E \to B$, there is a spectral sequence $H^i(F, H^j(B)) \Rightarrow H^{i+j}(E)$, for instance take $H \lhd G \to G/H$, then we have a fibration $BH \to BG \to B(G/H)$. For instance, take the fibration $X^n \to X^n \times_{\Sigma_n} E\Sigma_n \xrightarrow{\pi} B\Sigma_n$. This gives a spectral sequence $H^i(\Sigma_n, H^j(X)^{\otimes n}) \Rightarrow H^{i+j}(X^n \times_{\Sigma_n} E\Sigma_n)$. Note that π has a section $s(y) = (x, \dots, x, \tilde{y})$. Looking at the edge homomorphisms $\pi^* : H^i(B\Sigma_n) \to E_\infty^{i,0} \to H^i(X^n \times_{\Sigma_n} E\Sigma_n)$, there is also a retraction hence $d_r : E_r^{*,*} \to E_r^{i,0}$'s are zero.

Let G be a finite group, then BG = K(G,1), so by definition $\pi_n(BG)$ is G if n=1 and is zero otherwise. If A is abelian group, then there are (Eilenberg-Maclane) spaces K(A,n) for all $n \ge 0$, with $\pi_k(K(A,n))$ being A if n=k and is zero otherwise.

Remark 18.1. • there is a fibration $K(A, n-1) \to E \to K(A, n)$ where E is contractible. Therefore, K(A, n-1) is the loop space on K(A, n).

- If X is a space and A is an abelian group, then $H^n(X;A)$, as a representable functor, is given by the homotopy classes [X,K(A,n)] of maps of spaces.
- K(A, n) is an ∞ -loop space.
- $\tilde{H}^m(\mathbb{F}_p, j)$ is 0 if $m \leq j$, is $\mathbb{F}_p\{\iota_i\}$ if m = j.

Consider $X^p \to X^p \times_{C_p} EC_p \to BC_p$, so we have $H^i(BC_p, H^j(X)^{\otimes p}) \Rightarrow H^*(X^p \times_{C_p} EC_p)$.

Lemma 18.2. Let V be an \mathbb{F}_p -vector space, and let $V^{\otimes p}$ be a space with cyclic permutation acting upon it, then $V^{\otimes p}$ is isomorphic to a direct sum of free and trivial portions via action by C_p . The trivial portion is generated by the diagonal image $(v \otimes \cdots \otimes v)$ for some $v \in V$; the free portion is generated by the image of $(1 + T + \cdots + T^{p-1}) = N_T$, if we consider $C_p = \langle T \rangle$.

 $\text{Remark 18.3.} \ \ H^*(X)^{\otimes p} = \bigoplus_{j_1+\dots+j_p} H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) = H^0(C_p,V^{\otimes p}) \oplus H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) = H^0(C_p,V^{\otimes p}) \oplus H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) = H^0(C_p,V^{\otimes p}) \oplus H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) = H^0(C_p,V^{\otimes p}) \oplus H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) = H^0(C_p,V^{\otimes p}) \oplus H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and so} \ \ H^*(C_p,V^{\otimes p}) \otimes H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and} \ \ H^*(C_p,V^{\otimes p}) \otimes H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \ \text{and} \ \ H^*(C_p,V^{\otimes p}) \otimes H^{j_1}(X) \otimes H^{j_2}(X) \otimes \dots \otimes H^{j_p}(X) \otimes H^{j_p$

 $\cdots \oplus H^*(C_p, \text{diag})$, where the first terms are image of norm maps, and the last term is the portion representing the fixed points.

Exercise 18.4. Show that classes in $H^0(C_p, H^*(X^{\otimes p}))$ which are in the image of transfer are permanent cycles.

What about $H^0(C_p, \mathbb{F}_p\{w \otimes \cdots \otimes w\}) \subseteq H^*(X)^{\otimes C_p}$? Let $w \in H^j(X)$, so w is represented by $f_w : X \to K(\mathbb{F}_p, j)$, so the pullback $f_w^*(\iota_j) = w$. We have a fiber diagram

We interpret this as having the first few rows above the zeroth row as $K(\mathbb{F}_p, j)$, so all differentials vanishes in this class: in the reduced cohomology, we see the cohomology starts at m=j, everything below would be the image of transfer map, which gives as free summands and has no higher cohomology. Hence, the first non-zero differential would have been $\iota_j^{\otimes p}$ onto the zeroth row, but this is not allowed since it has no higher cohomology, so when we pullback w, we have $d_r(i_j^p)=0$ and therefore $d_r(w^{\otimes p})=0$. By Leibniz rule, everything vanishes since this generates everything.

Theorem 19.1 (Evans-Venkos). $H^*(G, \mathbb{F}_p)$ is Noetherian if G is a finite group.

Proof. We reduce the proof to p-groups and induct on orders of G. This works for C_p as a base case. We can also extend $C_p \lhd E \twoheadrightarrow G$ for some G with a smaller order than E, then there is a spectral sequence by $H^i(G, H^j(C_p)) \Rightarrow H^{i+j}(E)$. To run the induction, we need to know that

Proposition 19.2. The spectral sequence above collapses at a finite stage.

Subproof. Given $C_p \lhd E \twoheadrightarrow G$, we can write $E = \prod_{i=1}^{|G|} g_i C_p$ for some $g_i \in E$ as coset representatives of E/G. Note that this extension is central so the action on C_p is trivial, but not trivial on E. Now $h \in G$ will permute the $g_i C_p$'s, so there is a group homomorphism $G \to \Sigma_{|G|}$, hence $C_p^{|G|} \rtimes \Sigma_{|G|} = C_p \wr \Sigma_{|G|} \longleftrightarrow E$, and

$$C_p^{|G|} \longrightarrow C_p \wr \Sigma_{|G|} \longrightarrow \Sigma_{|G|}$$

$$\stackrel{\triangle}{\uparrow} \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$C_p \longrightarrow E \longrightarrow G$$

Therefore this gives a mapping of spectral sequences, from $H^*(\Sigma_{|G|}, H^*(C_p^{|G|})) \Rightarrow H^*(C_p \wr \Sigma_{|G|})$ to $H^*(G, H^*(C_p)) \Rightarrow H^*(E)$. Now $H^*(G)$ is $\mathbb{F}_p[x]/(x^2) \otimes \mathbb{F}_p[y]$ where |x|=1 and |y|=2. Therefore, $H^*(G,H^*(G)) \cong H^*(G) \otimes \mathbb{F}_p[x,y]/(x^2)$. Recall that the first spectral sequence collapses at E_2 , and we want to see the second spectral sequence collapses at finite stage. Also note that $H^*(G)$, the bottom row of the spectral sequence, is all zeros, so we need to find the action on $\mathbb{F}_p[x,y]/(x^2)$. This corresponds to the zeroth column of the spectral sequence. Since $y^{|G|}=f^*(y^{\otimes |G|})$, then $y^{|G|}=f^*(y^{\otimes |G|})$, then $y^{|G|}=f^*(y^{\otimes |G|})$.

is a permutation cycle in the spectral sequence
$$H^*(G, H^*(C_p)) \Rightarrow H^*(E)$$
. Hence, $E_{\infty}^{*,*} \cong \mathbb{F}_p[y^{|G}] \otimes \left(\bigoplus_{j < 2|G|} E_{\infty}^{i,j} \right)$.

The rows are now $y^{[G]}$ -cyclic, i.e., $1, x, y, xy, \ldots, y^{[G]}$, and arrows cannot cross this cycle anymore, since it is cyclic and would end up in the same class again. Therefore, the spectral sequence collapses at the 2|G|-page.

Definition 19.3. An elementary abelian p-group is of the form $C_n^{\times r}$.

If G is a finite group, then we can approximate the spectral sequence over G by these elementary abelian p-groups.

Theorem 19.4 (Quillen). If $w \in H^*(G)$ is such that the restriction $res(w) \in H^*(V)$ for all elementary abelian subgroup V of G is nilpotent, then w is nilpotent.

Proof. It suffices to show that if $\operatorname{res}(w) = 0 \in H^*(V)$ for all V, then w is nilpotent. This is because $H^*(V) = \mathbb{F}_p[y_1, \dots, y_r] \otimes \wedge (x_1, \dots, x_r)$, so any nilpotent element in $H^(V)$ squares to zero.

We can reduce this to the case where G is a p-group. If $w \in H^*(G)$ is nilpotent, then the transfer $\operatorname{tr}(w) \in H^(P)$ into Sylow p-subgroup is nilpotent, and vice versa (invertible).

We have an extension $H \triangleleft G \rightarrow C_p$, so we assume inductively we know the result for H. Take $w \in H(G)$, then $\mathrm{res}(w)$ to elementary abelian groups is nilpotent, so by the inductive procedure we know $\mathrm{res}(w) \in H^*(H)$ is nilpotent, then take w to some power and the restriction in $H^*(H)$ would become zero. Therefore, we just need to show that if $w \in \ker(\mathrm{res}(H^*(G) \rightarrow H^*(H)))$, then w is nilpotent.

If we regard $H^*(H)$ of C_p as the zeroth column in the spectral sequence, then for $w \in \ker(\operatorname{res}_H^G)$, $w \in F^1H^*(G)$, where F^i is the filtration on columns i and higher.

Recall:

Theorem 20.1. Let G be a finite group, then if $w \in H^*(G)$ is such that w restricts to a nilpotent element in the cohomology of elementary abelian subgroups of G, then w is nilpotent. That is, res : $H^*(G) \to \lim_{V \subseteq G} H^*(V)$ where V's are elementary abelian, then kernel consists of nilpotent elements. That is, res is an f-isomorphism.

Proof. We reduced the proof to the case of p-groups, and we proceed inductively on $H \hookrightarrow G \to C_p$. If we consider the spectral sequence of $H^*(C_p, H^j(H)) \Rightarrow H^{i+j}(G)$, then the firs trow of the diagram would be $1, x, y, xy, y^2, \ldots$, and note that every term starting from 2 has a factor of y.

Note that for any Γ -module M, M an \mathbb{F}_p -vector space, then $H^*(\Gamma, M)$ is a module over $H^*(\Gamma, \mathbb{F}_p)$, i.e., $M \otimes_{\mathbb{F}_p} \mathbb{F}_p \cong M$, then $H^*(C_p, H^i(H))$ is a module over $H^*(C_p) \cong \bigwedge(x) \otimes \mathbb{F}_p[y]$, then

Claim 20.2.
$$E_2^{i \geqslant 2,*} = F^2(H^*(G)) \subseteq (y)$$
.

We need to show that if $w \in \ker(\operatorname{res}(H^*(G) \to H^*(H)))$, then w is nilpotent. The kernel of the restriction would be $F^1(H^*(G))$, so whenever w is in the kernel of the restriction, $w^2 \in F^2H^*(G)$. Run an induction on r to show $\smile [y]: E_r^{i,j} \to E_r^{i+2,y}$ is surjective for all i,j. This means some power of w will be divisible by the image of some class in $H^1(G)$ over Bockstein β . Therefore, some power of w is divisible by all $\beta(H^1(G))$. (Note that $H^1(G) = \operatorname{Hom}(G, \mathbb{Z}/p\mathbb{Z})$ where G is a p-group, so this is non-trivial.) Therefore, this power of w is a product of (βx_i) 's. To see this, we note $H_i \to G \xrightarrow{x_i} C_p$ has x_i 's as generators of $H^1(G)$. Let $w \in H^1(G)$, then we can assume inductively that some power of w restricts to 0 in every proper subgroup. From the spectral sequence for $H_i \lhd G \xrightarrow{x_i} C_p$, then this power of w is $(\beta x_i) \cdots$

Lemma 20.3. Let G be a p-group. Then G is not elementary abelian if and only if there are non-zero classes $v_1, \ldots, v_k \in H^1(G)$ such that $\beta(v_1)\beta(v_k) = 0$.

Subproof. Consider $G' = [G,G]G^p \to G \xrightarrow{x_1,\dots,x_r} C_p^{\times r}$ where x_1,\dots,x_r are generators of $H^1(G)$, and it suffices to check that the map $G \to C_p^{\times r}$ is an H_1 -isomorphism. Eventually, finding such v_i 's in $H^1(G)$ is equivalent to having $\beta(v_i)$ not linearly independent in $H^2(G)$. We have

$$H^1(C_p^{\times r}) \stackrel{\sim}{\longrightarrow} H^1(G) \longrightarrow H^1(G') \stackrel{d_2}{\longrightarrow} H_2(C_p^{\times r}) \longrightarrow H^2(G).$$

then the statement above is equivalent to $d_2 \neq 0$. This forces $H^1(G^1)$ is zero, so we have an H^1 -isomorphism as required.

Therefore, this power of w has to be zero.

Definition 21.1. Let G be a finite group, M be a G-module. The norm map $Nm_G: M \to M$ sends m to $\sum_{g \in G} gm$, so

$$M \xrightarrow{Nm_G} M$$

$$\downarrow \qquad \uparrow$$

$$M_G \xrightarrow{Nm_G} M^G$$

Definition 21.2.

$$\hat{H}^*(G, M) = \begin{cases} H_{-*-1}(G, M), & * \leq -2 \\ \ker(Nm_G), & * = -1 \\ \operatorname{coker}(Nm_G), & * = 0 \\ H^*(G, M), & * \geq 1 \end{cases}$$

Example 21.3. Let $G = C_p$ and $M = \mathbb{Z}$, we have

$$\cdots \longrightarrow \mathbb{Z}[C_p] \xrightarrow{1-g} \mathbb{Z}[C_p] \xrightarrow{N_g} \mathbb{Z}[C_p] \xrightarrow{1-g} \mathbb{Z}[C_p] \xrightarrow{N_g} \mathbb{Z}[C_p] \xrightarrow{1-g} \mathbb{Z}[C_p] \xrightarrow{\varepsilon} \mathbb{Z}[$$

where $\varepsilon \cdot g \mapsto 1$. We have

$$Nm_{C_p}(m) = \sum_{i=0}^{p-1} g^i m = \sum_{i=0}^{p-1} m = pm,$$

therefore $\operatorname{coker}(Nm) = \mathbb{Z}/p\mathbb{Z}$ and $\operatorname{ker}(Nm) = 0$. Therefore

$$\hat{H}^*(C_p, \mathbb{Z}) = \begin{cases} \mathbb{Z}/p\mathbb{Z}, * \text{ even} \\ 0, * \text{ odd} \end{cases}$$

More generally,

$$\hat{H}^*(C_p, M) = \begin{cases} M^G/N_g M, & * \text{ even} \\ \{m \in M : N_g M = 0\}/(1 - g)M, & * \text{ odd} \end{cases}$$

Definition 21.4. A complete resolution F_* of G is an exact sequence

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \xrightarrow{d_0} F_{-1} \longrightarrow \cdots$$

of finitely-generated free $\mathbb{Z}[G]$ -modules along with an element $e \in F_{-1}$ which is G-fixed and generates d_0 .

To obtain a complete resolution, we get

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \xrightarrow{Nm_G} \operatorname{Hom}(F_0, \mathbb{Z}) \longrightarrow \cdots$$

$$\mathbb{Z} \xrightarrow{\varepsilon^*}$$

where $e = \varepsilon^*(1)$. Conversely, given a complete resolution F, because e is G-fixed, F_{-1} is $\mathbb{Z}[G]$ -free, e generates a copy of $\mathbb{Z} \subseteq F_{-1}$. Therefore we have

$$\cdots \longrightarrow F_0 \xrightarrow{d_0} F_{-1} \longrightarrow \cdots$$

for $\varepsilon: F_+ \to \mathbb{Z}$ and $\mu: \mathbb{Z} \to F$.

Definition 21.5. $\hat{H}^*(G, M) = H^*(\text{Hom}_G(\hat{F}_*, M)).$

Intuitively, we can compare $F^* \otimes_G M$, so $\operatorname{Hom}(F, \mathbb{Z}) \otimes_G M \cong \operatorname{Hom}_G(F, M)$.

Lemma 21.6. Let F be a finitely-generated free $\mathbb{Z}[G]$ -module, so $Nm_{\mathbb{Z}[G]}(F\otimes M)_G\to (F\otimes M)^G$ is an isomorphism.

To connect this definition with the previous one, we consider \hat{F}_* , $\operatorname{Hom}_G(\hat{F}_*, M)$ for n < 0, then $\operatorname{Hom}_G(F_n, M) \cong F^n \otimes M$. We can write F^+ as the complex $F_* \to \mathbb{Z}$ with augmentation $\varepsilon : F_0 \to \mathbb{Z}$, and $\operatorname{Hom}((F^-)^{\times}, \mathbb{Z})$ as $\mathbb{Z} \to F_{-1} \to F_{-2} \to \cdots$ where $G_{\mu} : \mathbb{Z} \to F_{-1}$. Therefore, $\hat{H}^n = H_{-n-1}(G, M)$ for $n \leq -2$ and is $H^n(G, M)$ for $n \geq -1$.

Lemma 21.7 (Shapiro). $\hat{H}^*(H, M) \cong \hat{H}^*(G, \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} M)$ where $H \subseteq G$ and M is an H-module.

For augmentation $\varepsilon: P_* \to \mathbb{Z}$, then let \tilde{P}_* be the cone of ε .

Definition 21.8. The Tate complex is $T(G, M) = \tilde{P}_* \otimes \operatorname{Hom}(P_*, M)$. In this sense, we can also define $\hat{H}^*(G, M) = H_{-*}(T_*(G, M)^G)$.

Let G be a finite group, a complete resolution would be

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \xrightarrow[\varepsilon]{} F_{-1} \longrightarrow \cdots$$

so that $\hat{H}^*(G, M) = H^*(\operatorname{Hom}_G(F_*, M))$ and $\hat{H}_*(G, M) = H_*(F_* \otimes_G M)$. Observe that $\hat{H}^*(G, \mathbb{Z}[G]) = 0$. More generally, induced modules satisfy $\hat{H}^*(G, \operatorname{Ind}_G(M)) = 0$ and $\hat{H}^*(G, \operatorname{Ind}_G^H(M)) \cong \hat{H}^*(H, M)$.

Corollary 22.1 (Dimension Shifting). For any finitely-generated module M, there are K and Q with

$$0 \longrightarrow M \longrightarrow \operatorname{Ind}_G(M) \longrightarrow Q \longrightarrow 0$$

and

$$0 \longrightarrow K \longrightarrow \operatorname{Ind}_G(M) \longrightarrow M \longrightarrow 0$$

such that $\hat{H}^i(G, M) \cong \hat{H}^{i+1}(G, K) \cong \hat{H}^{i-1}(G, Q)$. (Recall that if M is a G-module, then $\operatorname{Ind}_G(U(M)) \cong_G \mathbb{Z}[G] \otimes M$, where U is the forgetful functor and $\mathbb{Z}[G] \otimes M$ has the diagonal action.

Example 22.2. Let $G = C_n = \langle T \rangle$, with $y \in H^2(C_n, \mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$ be the generator. The exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}[C_n] \xrightarrow{1-T} \mathbb{Z}[C_n] \longrightarrow \mathbb{Z} \longrightarrow 0$$

where I is the augmentation ideal, as the kernel/cokernel of the sequences. Therefore $\hat{H}^{i-2}(C_n,\mathbb{Z})\cong \hat{H}^i(C_n,\mathbb{Z})\cong \hat{H}^{i+2}(C_n,\mathbb{Z})$.

Because the middle terms are free, this gives $H^0(-,\mathbb{Z}) \to H^1(-,I) \xrightarrow{\cong} H^2(-,\mathbb{Z})$.

Theorem 22.3. There is a unique product (i.e., for a pairing $A \otimes B \to C$ of G-modules, we get a pairing $\hat{H}^k(G,A) \otimes \hat{H}^m(G,M) \to \hat{H}^{k+m}(G,C)$) on \hat{H}^* satisfying

- on \hat{H}^0 , it is induced by $A^G \times B^G \to C^G$, and that
- the connecting homomorphism δ satisfies $\delta(a\smile b)=\delta a\smile b+(-1)^{|a|}a\smile \delta b$, and $\delta(a\smile b)=(-1)^{|a||b|}\delta(b\smile a)$.

Proof. Uniqueness is the direct result of dimension shifting. For existence, it suffices to construct a suitable pairing on standard Tate cochains. We build a standard resolution $X_* \to \mathbb{Z}$ where $X_i = \mathbb{Z}[G^{i+1}] \cong \mathbb{Z}[G]^{\otimes (i+1)}$ and so \hat{X}_* is the diagram given by

$$X_* \xrightarrow{\mathbb{Z}} \operatorname{Hom}(X_*, \mathbb{Z})$$

For $i>0, X_{-i}\cong \mathbb{Z}[G]^{\otimes i}$, so we need suitable maps $\varphi_{p,q}:X_{p+q}\to X_p\otimes X_q$ for all $p,q\in\mathbb{Z}$ because

$$\hat{C}^p(A) \otimes \hat{C}^q(B) = \operatorname{Hom}_G(X_p, A) \otimes \operatorname{Hom}_G(X_q, B) \longrightarrow \operatorname{Hom}_G(X_p \otimes X_q, C) \xrightarrow{\varphi_{p,q}^*} \operatorname{Hom}_G(X_{p+q}, C) = \hat{C}^{p+q}(C).$$

This allows us to write down what $\varphi_{p,q}$ is supposed to be.

Example 22.4. Consider

$$\hat{H}^p(G,\mathbb{Z})\otimes\hat{H}^{-p}(G,\mathbb{Z})\to\hat{H}^0(G,\mathbb{Z})$$

given by $f:G^{p+1}\to\mathbb{Z}$ and $g:G^p\to\mathbb{Z}$ in $\hat{H}^p(G,\mathbb{Z})$ and $\hat{H}^{-p}(G,\mathbb{Z})$ respectively, then

$$(f \smile g)(\sigma_0) = \sum_{\tau_i \in G} f(\sigma_0, \dots, \sigma_p) \cdot g(\tau_p, \dots, \tau_1)$$

but actually

$$\hat{H}^p(G,\mathbb{Z}) \otimes \hat{H}^{-p}(G,\mathbb{Z}) \to \hat{H}^0(G,\mathbb{Z}) = \mathbb{Z}/|G|$$

is a perfect pairing, i.e., $\hat{H}^{-p}(G,\mathbb{Z}) \cong \operatorname{Hom}(\hat{H}^p(G,\mathbb{Z}),\mathbb{Z}/|G|)$.

Remark 22.5. Let R be a ring with a G-action, then $H^*(G,R) \to \hat{H}^*(G,R)$ is a ring homomorphism.

For the case
$$G = C_n$$
, this gives $H^*(G, \mathbb{Z}) \cong \mathbb{Z}[y]/ny \to \hat{H}^*(G, \mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}[y^{\pm 1}].$

More generally, for any C_n -module M, $H^*(C_n, M) \to \hat{H}^*(C_n, M)$ is a map between a module over $H^*(C_n, \mathbb{Z})$ and a module over $\hat{H}^*(C_n, \mathbb{Z})$. This map is therefore the inversion of y (due to the cup product structure). For instance, $\hat{H}^*(C_p, \mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z}[x, y/x^2)[y^{-1}]$.

For a general G, if we have an exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow F_{k-1} \longrightarrow \cdots \longrightarrow F_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

where F_i 's are G-free, then for $y_k \in \hat{H}^k(G,\mathbb{Z})$, then if we cup with y_k , we get an isomorphism $\hat{H}^n(G,M) \cong \hat{H}^{n+k}(G,M)$.

Recall that we have $\hat{H}^i(G,\mathbb{Z})\otimes\hat{H}^{-i}(G,\mathbb{Z})\to\hat{H}^0(G,\mathbb{Z})$. More generally,

Proposition 23.1. For a G-module M, $\hat{H}^i(G, M^{\vee}) \otimes \hat{H}^{-i-1}(G, M) \xrightarrow{\smile} \hat{H}^{-1}(G, \mathbb{Q}/\mathbb{Z})$ where we denote $M^{\vee} = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z}) = \frac{1}{|G|} \mathbb{Z}/\mathbb{Z}$ is a perfect pairing.

Proof. Use dimension shifting to reduce it to i=0, then check explicitly. Recall for cyclic group G, we have

$$\hat{H}^n(G,M) \otimes \hat{H}^2(G,\mathbb{Z}) \xrightarrow{\sim} \hat{H}^{n+2}(G,M)$$

from

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}[G] \xrightarrow{1-\sigma} \mathbb{Z}[G] \longrightarrow \mathbb{Z} \longrightarrow 0$$

(When regarding $\mathbb{Z}[G]$'s as free modules, we have the second cohomology by noting the coboundary occurs twice.)

Definition 23.2 (Class Module). C is called a class module if for all subgroups H of (finite group) G,

1.
$$H^1(H,C) = 0$$
;

2. $H^2(H,C) = \mathbb{Z}/|H|$, where the generator is called the fundamental class.

For any C and $\gamma \in H^2(G,C)$, i.e., $\gamma:G\times G\to C$ is an inhomogenous cocycle, we define $C(\gamma)=C\oplus\bigoplus_{1\neq g\in G}\mathbb{Z}b_g$ where

 b_g is a formal basis element. The G-action is given by $g \cdot b_n = b_{gh} - g_g + \gamma(g,h)$ and $b_1 = \gamma(1,1)$. The composition $\gamma: G \times G \to C \to C(\gamma)$ is a coboundary. $(\gamma = \delta\beta, \beta(g) = b_g)$. Therefore, $\gamma \in \ker(H^2(G,C) \to H^2(G,C(\gamma)))$. We have an exact sequence

which gives $\hat{H}^0(G,\mathbb{Z}) = \mathbb{Z}/|G|\mathbb{Z} \xrightarrow{\cong} \hat{H}^1(G,I_G) \xrightarrow{\delta} \hat{H}^2(G,C)$.

Theorem 23.3. $\delta^2: \hat{H}^n(H,\mathbb{Z}) \to \hat{H}^{n+2}(H,C)$ is $\delta^2(x) = x \smile \gamma_H$, where $\gamma_H = \operatorname{res}_H^G(\gamma)$. Moreover, the following are equivalent:

- 1. $C(\gamma)$ is cohomologically trivial.
- 2. C is a class module with fundamental class γ .
- 3. δ^2 is an isomorphism for all n and all H.

Proof. (1) \Rightarrow (2): $\hat{H}^{1}(H, C) \cong \hat{H}^{0}(H, I_{G}) \cong \hat{H}^{-1}(H, \mathbb{Z}) = 0$ and $\hat{H}^{2}(H, C) = \hat{H}^{0}(H, \mathbb{Z}) = \mathbb{Z}/|H|\mathbb{Z}$. (2) \Rightarrow (1): We have

$$0 = \hat{H}^1(H,C) \longrightarrow \hat{H}^1(H,C(\gamma)) \longrightarrow \hat{H}^1(H,I_G) \longrightarrow \hat{H}^2(H,C) \longrightarrow \hat{H}^2(H,C(\gamma)) \longrightarrow \hat{H}^2(H,I_G)$$

By dimension shifting on $0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z}$, we have $\hat{H}^1(I_G) = \hat{H}^0(\mathbb{Z}) = \mathbb{Z}/|H|\mathbb{Z}$, and so $\hat{H}^2(H,C) = \mathbb{Z}/|H|\mathbb{Z}$, but it follows by a zero map to $\hat{H}^2(H,C(\gamma))$, therefore the map $\hat{H}^1(H,I_G) \to \hat{H}^2(H,C)$ is also the zero map. We then note that $\hat{H}^1(H,C(\gamma)) = 0 = \hat{H}^2(H,C(\gamma))$. This implies $C(\gamma)$ is cohomologically trivial.

Theorem 23.4 (Nakayama-Tate). If C is a class module with fundamental class γ , then

$$\hat{H}^i(G, \operatorname{Hom}(M, C)) \otimes \hat{H}^{2-i}(G, M) \xrightarrow{\smile} \hat{H}^2(G, C)$$

is a perfect pairing in the sense that $\operatorname{Hom}(\hat{H}^{2-i}(G,M),\mathbb{Q}/\mathbb{Z})\cong \hat{H}^i(G,\operatorname{Hom}(M,C))$. Note $\operatorname{Hom}(\hat{H}^{2-i}(G,M),\mathbb{Q}/\mathbb{Z})\cong \operatorname{Hom}(\hat{H}^{2-i}(G,M,H^2(G,C)))$.

For a class module C, choose the generator γ of $\hat{H}^2(G,C)$, so γ is represented by $c:G\times C\to C$ and defines a map $G^{ab}\to C^G/N_GC=\hat{H}^0(G,C)$. Now we have $\hat{H}^2(G,\mathbb{Z})\otimes\hat{H}^0(G,C)\to\mathbb{Z}/|G|$. Therefore, by connecting $0\to\mathbb{Z}\to\mathbb{Q}\to\mathbb{Q}/\mathbb{Z}\to 0$, we have $\hat{H}^2(G,\mathbb{Z})\cong\hat{H}^1(G,\mathbb{Q}/\mathbb{Z})=(G^{ab})^\vee$. Therefore $G^{ab}=\hat{H}^2(G,\mathbb{Z})^\vee\cong\hat{H}^0(G,C)$. Therefore, γ defines an isomorphism, with inverse extends to $C^G\to G^{ab}$.

Remark 24.1. If *A* is *k*-torsion, then $\operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}(A, \mathbb{Z}/k\mathbb{Z})$.

Theorem 24.2. Let G be a profinite group, $G = \lim_{u} G/uG$ where G/uG is finite, then $H^*(G, M) \cong \operatorname{colim}_u H^*(G/uG.M^u)$.

By Tate cohomology, $\hat{H}^{>0}(G,M)=H^{>0}(G,M)$ and for $i\leqslant 0$ we have $\hat{H}^i(G,M)=\lim_{\text{deflation}}\hat{H}^i(G/u,M^u)$.

Let $P_* \to \mathbb{Z}$ be some projective/free G-resolution, so we obtain $H_*((P_* \otimes M)/G) = H^*(\operatorname{Hom}(P_*, M)^G) = H^*(G, M)$.

For $U \subseteq V \subseteq G$, we have $G/uG \twoheadrightarrow G/vG$, then we define the deflation to be the composition of norm and coinflation,

$$def: H_j(G/uG, M^u) \cong H_j(P_* \otimes M^u)/(G/uG) \xrightarrow{coinf} H_j(G/vG, (M^u)/v) \xrightarrow{norm} H_j(G/v, M^v).$$

Let k be a number field, then we may study $H^*(\operatorname{Gal}(\bar{k}/k), -)$. Over the localization k_p , we may want to study $\operatorname{Gal}(\bar{k}_p/k_p)$ in the same way as \mathbb{C}/\mathbb{R} with absolute Galois group C_2 . Note that $\operatorname{Gal}(\bar{k}_p/k_p)$ has finite cohomological dimension. To do this, we have patched Tate cohomology by putting duality in $\operatorname{Gal}(\bar{k}_p/k_p)$ and periodicity for C_2 together.

For finite groups, Tate cohomology gives $H^*(G, \mathbb{F}_p) \to \lim_{V \subseteq G} H^*(V, \mathbb{F}_p)$, where V is an elementary abelian subgroup,

has nilpotent kernel and cokernel. This is based on $H^*(C_p, \mathbb{F}_p) = \mathbb{F}_p[y] \otimes \bigwedge(x)$ and $\hat{H}^*(C_p, \mathbb{F}_p) = \mathbb{F}_p[y^{\pm 1}] \otimes \bigwedge(x)$. Another idea is that if Γ is any group, then we have $H^*(\Gamma, \mathbb{F}_p) \to \lim_{G \subseteq \Gamma} H^*(G)$ where $G \subseteq \Gamma$ is a finite group. The question is how well does this approximate.

Farrell has the following version of Tate cohomology. We say Γ is of virtual cohomological dimension k, if there exists a finite index subgroup $U \subseteq \Gamma$ with codimension k. If the virtual cohomological dimension of Γ is finite, then

- 1. $\hat{H}^*(\Gamma, M) = H^*(\Gamma, M)$ for * > k,
- 2. if the cohomological dimension of Γ is finite, then $\hat{H}^*(\Gamma, M) = 0$.

When G is finite, we have complete resolutions

of free $\mathbb{Z}[G]$ -modules since $\operatorname{Hom}(\mathbb{Z}[G], \mathbb{Z}] \cong \mathbb{Z}[G]$.

Definition 25.1. For any Γ , a complete resolution of Γ is an acyclic complex F_* of projective Γ -modules, as well as a projective resolution $P_* \to \mathbb{Z}$ such that $F_r \cong P_r$ for $r \gg 0$, then $\hat{H}^*(\Gamma, M) = H^*(\operatorname{Hom}_{\Gamma}(F_*, M))$.

Remark 25.2. • There is a complete resolution such that $F_n \cong P_n$ for all n greater than the virtual cohomological dimension of Γ .

• Any two complete resolutions are chain equivalent.

Note that if $H^k(G,M)=0$ for all k>n, then the cohomological dimension of G is n. This implies there is a projective resolution of $\mathbb{Z} \leftarrow P_0 \leftarrow \cdots \leftarrow P_n \leftarrow 0$ and vice versa.

Example 25.3. If G has finite cohomological dimension, $F_* = 0$, $P_* \to \mathbb{Z}$ has finite projective resolution. This is a complete resolution.

Lemma 25.4. If G has finite cohomological dimension, then any acyclic complex F_* of projectives is chain contractible.

Proof. Take $0 \to K \to F_k \to \cdots \to F_{k-n} \to B \to 0$, then $H^i(G,B) = H^{i+n}(G,K) = 0$, so B is projective therefore B as the kernel of differentials, which indicates we have a splitting on the image of differentials. We have chain nullhomotopy.

Recall that a complete resolution is $(F_*, P_* \to \mathbb{Z})$ where F_* is an unbounded acyclic complex of projectives, and $P_* \to \mathbb{Z}$ are projective resolutions. That means for G such that $\operatorname{vcd}(G) < \infty$, $\hat{H}^*(G, M) = H^*(\operatorname{Hom}_G(F_*, M))F_* \cong P_*$ in high dimensions.

To construct this, let $U \subseteq G$ be of finite cohomological dimension, say cd(U) = n = vcd(G), take any $P_* \to \mathbb{Z}$, then this is projective as a U-resolution. Since the resolution has finite length, we can let K be the kernel of the final map and get an exact sequence of finite length

$$\cdots \longrightarrow K \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

In particular, K is U-projective. Therefore,

$$\cdots \longrightarrow P_{n+1} \longrightarrow P_n \longrightarrow K \longrightarrow 0$$

is a projective resolution of K.

Eventually we build K_1 as the cokernel of $K_0 \to \operatorname{Map}(G/U, K)$, and build K_i as the cokernel of $K_{i-1} \to \operatorname{coind}_U^G(K_{i-1})$ for $i \ge 2$.

Remark 26.1. Key features:

- $\hat{H}^*(G, M) \cong H^*(G, M)$ for * > vcd(G), and
- $\hat{H}^*(G, M)$ can be computed from the cohomology of finite subgroups of G.

Properties:

- Long exact sequences
- Shapiro's lemma: $\hat{H}^*(G, \operatorname{Ind}_H^G M) = \hat{H}^*(H, M)$.

To give a cup product structure, we need $F_* \to F_* \hat{\otimes} F_*$ where $(F_* \hat{\otimes} F_*)_n = \prod_{i+j=n} F_i \otimes F_j$. It suffices to construct

$$\begin{array}{cccc} F_{2m} & \longrightarrow & F_m \otimes F_m \\ \downarrow & & \downarrow \\ P_{2m} & \longrightarrow & P_m \otimes P_m \end{array}$$

for $m > \operatorname{vcd}(G)$. By manipulation, we get $F_{2m} \to F_{m+k} \otimes F_{m-k}$ with dimension shifting.

Consider

$$0 \longrightarrow \mathbb{Z} \longrightarrow D_{\infty} \longrightarrow C_2 \longrightarrow 1$$

with non-trivial C_2 -action on D_{∞} . We claim that D_{∞} and $\mathbb{Z} \times C_2$ has isomorphic Farrell-Tate cohomology. Let $G = \mathbb{Z} \times C_2$.

Lemma 27.1. If G_1 has finite cohomological dimension, and G_2 has finite virtual cohomological dimension, then $P_* \otimes F_*$, where P_* is a projective resolution of \mathbb{Z} as G_1 -module, and F_* is a complete resolution of G_2 , is a complete resolution of $G_1 \times G_2$.

Corollary 27.2. $\hat{H}^*(G_1 \times G_2) \cong H^*(G_1) \otimes \hat{H}^*(G_2)$.

Example 27.3.
$$\hat{H}^*(\mathbb{Z} \times C_2, \mathbb{F}_2) = \mathbb{F}_2[e, x^{\pm 1}]/e^2$$
 where $|e| = 1 = |x|$.

For D_{∞} , consider the spectral sequence $\hat{H}^p(C_2, H^q(\mathbb{Z}, \mathbb{F}_2)) \Rightarrow \hat{H}^{p+q}(D_{\infty})$. Since $H^q(\mathbb{Z}, \mathbb{F}_2) = \mathbb{F}_2[e]/e^2$, then the only differential is d_2 , so this collapses to $\hat{H}^*(D_{\infty})$. The graded structure on this is $\mathbb{F}_2[e, x^{\pm 1}]/e^2$, with ring structure such that either [x][e] = [xe] or $[x][e] = [xe] + [x^2]$. (Turns out the second one is the multiplication structure.)

We now start talking about duality. Recall that $H^*(G) \cong H^*(BG)$, so if BG is an orientable compact manifold, then Poincare duality holds in $H^*(G)$.

Example 27.4. For
$$G = \mathbb{Z}^{\oplus n}$$
, we have $BG = \prod_n S^1$.

Let G be a group of finite cohomological dimension n, so there exists a projective resolution $P_* \to \mathbb{Z}$ such that $P_i = 0$ for i > n. Therefore $H^n(G, -)$ is a right exact functor, so there exists M such that $H^n(G, M) \neq 0$. Take a free $F \to M$ then $H^n(G, F) \neq 0$. Therefore, $H^n(G, \mathbb{Z}[G]) \neq 0$.

Corollary 27.5. The cohomological dimension of G is the maximal value n such that $H^n(G, \mathbb{Z}[G]) \neq 0$.

Remark 27.6. $\mathbb{Z}[G]$ has a left and right G-action, so $H^n(G,\mathbb{Z}[G])$ has a right G-action, hence we have a tensor product $H^n(G,\mathbb{Z}[G]) \otimes_{\mathbb{Z}[G]} M$ for any (left) G-module M, with a map into $H^m(G,M)$ by $f \otimes m \mapsto (g \mapsto f(g)m)$.

Proposition 27.7. If G has cohomological dimension n, and is of type FP, i.e., has a projective resolution $P_* \to \mathbb{Z}$ with each P_i finitely-generated over $\mathbb{Z}[G]$ and $P_i = 0$ for all i > n, then $H^n(G, \mathbb{Z}[G]) \otimes_{\mathbb{Z}[G]} M \to H^n(G, M)$ is an isomorphism for any M.

Let $D = H^n(G, \mathbb{Z}[G])$, then $D \otimes M$ is a G-module via $g \cdot (d \otimes m) = dg^{-1} \otimes gm$, then $D \otimes_{\mathbb{Z}[G]} M = (D \otimes M)_G = H_0(G, D \otimes M)$.

Proof. As a natural transformation of right exact functors, this commutes with direct sums and general colimits, so it suffices to check for $M = \mathbb{Z}[G]$.

This extends to an isomorphism

$$H_i(D \otimes M) \cong H^{n-i}(G, M).$$

If so, G is called a duality group.

Theorem 27.8. If G is FP with cohomological dimension n, then G is a duality group if and only if $H^i(G, \mathbb{Z}[G]) = 0$ for $i \neq n$ and $H^n(G, \mathbb{Z}[G])$ is a torsion-free abelian group.

Proof. Suppose G is a duality group, then we have $H_i(D \otimes M) \cong H^{n-i}(G, M)$, so take $M = \mathbb{Z}[G] \otimes \mathbb{Z}/k\mathbb{Z}$ of $\mathbb{Z}[G]$, then M is induced, hence $D \otimes M$ is also induced. Therefore, $H_{>0}(G, D \otimes M) = 0$, so $H^{\neq n}(G, M) = 0$. Take

$$0 \longrightarrow \mathbb{Z}[G] \xrightarrow{k} \mathbb{Z}[G] \longrightarrow \mathbb{Z}[G] \otimes \mathbb{Z}/k\mathbb{Z} \longrightarrow 0$$

and therefore we have $H^n(G,\mathbb{Z}[G])\cong H^n(G,\mathbb{Z}[G])$ since $H_1(G,D\otimes\mathbb{Z}/k\mathbb{Z}[G])=H^{n-1}(G,\mathbb{Z}/k\mathbb{Z}[G])=0.$

Now suppose $T_i(M) = H^{n-i}(M)$, then it is a homological δ -functor, and $T_{i>0}$ is effaceable, i.e., for all M, there exists $F \to M$ such that $T_i(F) = 0$. Let $U_i(M) = H_i(G, D \otimes M)$, then this is also a homological δ -functor that is effaceable for i > 0. By the previous theorem we know $T_0 \cong U_0$, we have the duality.

Suppose G is a group with finite cohomological dimension n. Let $D=H^n(G,\mathbb{Z}[G])$, then $H_0(G,D\otimes M)\cong H^n(G,M)$.

We say
$$G$$
 is a duality group if $H_i(G, D \otimes M) \cong H^{n-i}(G, M)$, which is equivalent to having $H^*(G, \mathbb{Z}[G]) = \begin{cases} 0, * \neq n \\ D, * = 0 \end{cases}$

and D is torsion-free. (In particular, the Poincare duality is when $D = \mathbb{Z}$. In addition, we say it is an oreintable poincare duality group if $D \cong \mathbb{Z}$ as G-modules.)

Now suppose G is virtual in addition with cohomological dimension N, i.e., there exists $U \subseteq G$ such that $[G:U] < \infty$ and has finite cohomological dimension.

We say G is a virtual duality group is there exists subgroup $U \subseteq G$ of finite index such that U is a duality group. We have $D_U = H^n(U, \mathbb{Z}[U]) \cong H^n(G, \mathbb{Z}[G])$. (This holds as U-modules but has no information of G-action.) Therefore, G is a virtual duality group if and only if $H^*(G, \mathbb{Z}[G])$ is 0 for $* \neq n$ and is torsion-free for * = n.

Example 28.1. $G = D_{\infty}$ is a virtual duality group with virtual cohomological dimension 1 and $\mathbb{Z} \subseteq D_{\infty}$ is the infinite cyclic group as duality group with index 2.

Example 28.2. The classifying space $B\mathbb{Z}$ of \mathbb{Z} is S^1 , therefore \mathbb{Z} is a Poincare duality group. If G is a free group on k > 1 generators, then BG is a wedge of k circles, thus $H^0(G, \mathbb{Z}[G]) = 0$, $H^1(G, \mathbb{Z}[G]) = D$, and $(D \otimes \mathbb{Z})_G \cong H^1(G, \mathbb{Z}) = \mathbb{Z}^k$.

We say D is a dualizing module. Suppose G is a virtual duality group, what is the (co)homology of M? We need to build a complete resolution for G. Take $P_* \to \mathbb{Z}$ and $Q_* \to D$ as projective resolutions. Note that $H^*(\operatorname{Hom}_G(P_*, \mathbb{Z}[G]))$ is D if *=n and is 0 otherwise. We will denote $\bar{A}=\operatorname{Hom}_G(A,\mathbb{Z}[G])$. If we look at the complex

$$0 \to \bar{P}_0 \to \cdots \to \bar{P}_n \to \bar{P}_{n+1} \to \cdots$$

with $\delta_n: \bar{P}_n \to \bar{P}_{n+1}$, then there is an embedding $\ker(\delta_n) \longleftrightarrow \bar{P}_n$, with $\ker(\delta_n) \twoheadrightarrow D$. Therefore, there is Q_0 surjecting into D, therefore gives a lift into $\ker(\delta_n)$, thus this defines $Q_0 \to \bar{P}_0$. Using the acyclic complex, this gives lifts $Q_i \to \bar{P}_{n-i}$ inductively as quasi-isomorphisms. Therefore, this gives an acyclic complex C_* of

$$\bar{P}_0 \oplus Q_{n-1} \to P_1 \oplus Q_{n-2} \to \cdots \to \bar{P}_{n-2} \oplus Q_1 \to \bar{P}_{n-1} \oplus Q_0 \to \bar{P}_n.$$

Claim 28.3. $F_* = \bar{C}_*$ is a complete resolution for G.

Proof. This is given by

$$\cdots \to P_{n+1} \to P_n \to P_{n-1} \oplus \bar{Q}_0 \to \cdots \to P_0 \oplus \bar{Q}_{n-1} \to \bar{Q}_n \to \bar{Q}_{n+1} \to \cdots$$

Corollary 28.4. For m < -1, we have $\hat{H}^m(M) \cong H_{n-m-1}(D \otimes M)$. For $n \ge m \ge -1$, we have a long exact sequence by using image of transfer, as

$$\hat{H}^{-1}(M) \hookrightarrow H_n(D \otimes M) \to H^0(M) \to \hat{H}^0(M) \to \cdots \to H_0(D \otimes M) \to H^n(M) \twoheadrightarrow \hat{H}^n(M).$$

For m > n, $H^m(M) \cong \hat{H}^m(M)$.

Corollary 28.5. If G is a duality group, then $H^m(M) \cong H_{n-m}(D \otimes M)$.

Let K be a non-Archimedean local field, as a finite extension over \mathbb{Q}_p or $\mathbb{F}_p((t))$. Suppose $p \nmid n, m$, then we have the intuition to denote $\left(\frac{m}{p}\right) = 1$ if and only if $x^n - m$ splits modulo p, which is equivalent to p splits in $\mathbb{Q}(\sqrt[n]{m})/\mathbb{Q}$, which is equivalent to p splits in $\mathbb{Q}(\sqrt[n]{m})/\mathbb{Q}$, which is equivalent to p splits in $\mathbb{Q}(\sqrt[n]{m})/\mathbb{Q}$.

$$\left(\frac{m}{p}\right)\sqrt[n]{m} = \operatorname{Frob}_{\mathbb{Q}(\sqrt[n]{m})/\mathbb{Q}}(p)\sqrt[n]{m}$$

This gives a map

$$I_{\mathbb{Q}} \to \operatorname{Gal}(K/\mathbb{Q})$$

 $p \mapsto \operatorname{Frob}_{K/\mathbb{Q}}(p) = \left(\frac{K/\mathbb{Q}}{p}\right)$

which factors over $I_{\mathbb{Q}}/N_{K/\mathbb{Q}}(I_K)$.

We want to prove that

Theorem 29.1. For any finite abelian extension L/K, we have an isomorphism

$$\varphi_{L/K}: K^{\times}/N_{L/K}L^{\times} \to \operatorname{Gal}(L/K).$$

To do this, we will look at the commutative diagram

$$\begin{array}{ccc} K^{\times} & \xrightarrow{\varphi_k} & \operatorname{Gal}(K^{\operatorname{ab}}/K) \\ \downarrow & & \downarrow \\ H^0(\operatorname{Gal}(L/K, L^{\times}) = K^{\times}/N_{L/K}L^{\times} \xrightarrow{\varphi_{L/K}} & \operatorname{Gal}(L/K) \end{array}$$

We will use the following notations:

- \mathcal{O}_K as the ring of integers,
- $p_K = \pi_K \mathcal{O}_K$ with π_K being the uniformizer,
- $k = \mathcal{O}_K/p_K$,
- $U_K = \mathcal{O}_K^{\times}$, and $U_k^{(i)} = 1 + \pi^k \mathcal{O}_K$. Therefore, $U_k^{(i)}/U_k^{i+1} \cong k$.

Therefore, we want

$$\varphi_K(\pi)|_{K^{un}} = \operatorname{Frob}_K.$$

We will denote $H^r(G, L^{\times}) =: H^r(L/K)$. Suppose L/E/K is an intermediate extension, we have the inflation map

$$H^r(E/K) \to H^r(L/K)$$
.

Suppose L/K is unramified, then $G \cong \operatorname{Gal}(l/k)$. By Hilbert Theorem 90, $H^1(G, L^{\times}) = 0$ implies $H^1(G, U_L) = 0$. Therefore $L^{\times} = \pi_L^{\mathbb{Z}} U_L \cong \mathbb{Z} \times U_L$. We can start by calculating $H^r(G, l^{\times}) = 0$ and $H^r(G, l) = H^r(G, kG) = H^r(1, k) = 0$ by Shapiro's theorem. That means $H^r(G, U_L) = 0$. To see this, we look at the norm map

$$U_k^{(i)}/U_k^{(i+1)} \to U_L^{(i)}/U_L^{(i+1)}$$

For $x \in U_k$, there exists $y_0 \in U_L$, therefore $xNy_0^{-1} \in U_k^{(1)}$, and therefore there exists $y_1 \in U_L^{(1)}$ such that $x(Ny_0y_1)^{-1} \in U_k^{(2)}$. Proceeding inductively, $y = \prod y_i$ satisfies $xNy^{-1} \in \bigcap U_k^{(i)}$, and by completion this is just 1, so $xNy^{-1} = 1$. Hence, $H^0(G, U_L) = 0$. Recall that $H^1(G, U_L) = 0$ as well, therefore (Tate) cohomology of U_L vanishes and we only care about \mathbb{Z} in $L^\times = \mathbb{Z} \times U_L$. This gives $H^r(G, L^\times) \cong H^r(G, \mathbb{Z})$, and therefore there is an invariant map

$$H^2(G, L^{\times}) \cong H^2(G, \mathbb{Z}) \cong H^1(G, \mathbb{Q}/\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$

defined by $f \mapsto f(\alpha)$. This means we have an isomorphism

$$\operatorname{Hom}(\operatorname{Gal}(K^m/K) \cong \widehat{\mathbb{Z}}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\cong} \mathbb{Q}/\mathbb{Z}$$

$$\hat{\mathbb{Z}} \mapsto \mathbb{Z}/m\mathbb{Z} \, \Big| \qquad \qquad \Big| \qquad \qquad \Big|$$

$$\operatorname{Hom}(\operatorname{Gal}(L/K) \cong \mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\cong} \frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z}$$

Now suppoise L/K is ramified, then $H^2(\bar{K}/K) = H^2(K^{ur}/K)$ since $\bar{K} \cong \operatorname{Br}(\bar{K}/K) \cong \operatorname{Br}(K)$ is the Brauer group, the group of central simple algebras under certain conditions. Let L be a finite extension of K in $\bar{K}/L/K$, then using the spectral sequence of

$$1 \longrightarrow \operatorname{Gal}(L/K) \longrightarrow \operatorname{Gal}(\bar{K}/K) \longrightarrow \operatorname{Gal}(\bar{K}/K) \longrightarrow 0$$

we have

As we denote $G = \operatorname{Gal}(L/K)$, then we denote the subgroup $H = \operatorname{Gal}(L/E)$. Therefore we have $H^1(H, L^{\times}) = 0$ and $H^2(H, L^2) \cong \mathbb{Z}/[L : E]\mathbb{Z}$ where L^{\times} is the class module. By Tate's theorem, we have an isomorphism

$$G^{\mathrm{ab}} = H_1(G, \mathbb{Z}) = H^0(G, \mathbb{Z}) \xrightarrow{\cong} H^2(G, L^{\times}) = K^{\times}/N_L^{\times}$$

and we define $\varphi_{L/K}: K^{\times}/N_L^{\times} \xrightarrow{\cong} \operatorname{Gal}(L/K)^{\operatorname{ab}}$ as its inverse. When L/K is finite abelian, then we have an isomorphism $K^{\times}/N_L^{\times} \cong \operatorname{Gal}(L/K)$, so taking the colimit, we have

$$\begin{array}{ccc} K^{\times} & \stackrel{\varphi_{K}}{\longrightarrow} \operatorname{Gal}(K^{\operatorname{ab}}/K) \\ \downarrow & & \downarrow \\ K^{\times}/N_{L}^{\times} & \stackrel{\varphi_{L/K}}{\longrightarrow} \operatorname{Gal}(L/K) \end{array}$$

where the bottom map is defined by $\pi_K \mapsto \operatorname{Frob}_{L/K}$ as the generator.

We want to show the following: let G be FP with finite virtual cohomological dimension, and suppose elementary abelian subgroups of G have rank at most 1, then $\hat{H}^*(G, M) \cong \prod \hat{H}^*(N_G(V), M)$ with equivariant cohomology, where M is p-local, and the product runs through V as conjugacy classes of non-trivial elementary abelian subgroups. In particular, when $*> \operatorname{vcd}(G)$, this is isomorphic to $H^*(G, M)$.

This is a consequence of a more general formula $\hat{H}^*(G, M) \cong \hat{H}^*_G(|\mathcal{A}|)$: let \mathcal{A} be a poset of non-trivial elementary abelian subgroups of G, with conjugation action, then $|\mathcal{A}|$ is its geometric realization. In particular, the rank of VR is the number of generators.

Let X be a G-CW complex, intuitively, X has a cell decomposition which is respected by it sG-action.

Definition 30.1. Let M be a G-module, then we define the equivariant cohomology by

$$H_G^*(X; M) = H^*(\text{Hom}_G(P_*, C^*(X; M)))$$

where P_* is a projective resolution of \mathbb{Z} and $C^*(X;M)$ is a complex of abelian groups with a G-action.

Example 30.2. 1. X = * with trivial action, then $H_G^*(*, M) = H^*(G, M)$.

2. X = G/H with translation action, $H_G^*(X; M) = H^*(H; M)$.

To calculate this, we filter $\operatorname{Hom}_G(P_*, C^*(X, M))$ in two ways (over the double complex) and gets two spectral sequences:

- $E_2^{p,q} = H^p(G, H^q(X; M)) \Rightarrow H_G^{p+q}(X; M)$, and
- $E_1^{p,q} = \bigoplus H^q(G_\sigma, M) \Rightarrow H_G^{p+q}(X, M)$, where the direct sum runs through orbits of p-cells in X, i.e., let G_σ be the stabilizer of a p-cell σ .

Example 30.3. If G acts on X freely, then $H_G^*(X;M) = H^*X/G; \tilde{M}$; where M has a G-action, so \tilde{M} is the local system over this action. In particular, if M has trivial G-action, then this is just M.

For Farrell-Tate cohomology, we can do something similar. Let F_* be a (Farrell-)Tate complete resolution for G, then $\hat{H}_G^*(X;M) = H^*(\operatorname{Hom}_G(F_*,C^*(X;M))$. We observe that if $Y \hookleftarrow X$ is a G-subspace such that the isotropy group G_σ is trivial for every cell in $X \backslash Y$, then the inclusion generates an isomorphism $\hat{H}_G^*(X,M) \cong \hat{H}_G^*(Y,M)$ by the spectral sequence.