

Correlation

- Correlation is a statistical measure of association that describes how strongly and in what direction two variables are related.
- Correlation ≠ Causation

Warm Up

- Over the summer of 2025 we measured ice cream sales and drowning events in Key West
- Key Lime flavored ice cream and drowning events both went up over the summer compared to the winter
- Are Key Lime ice cream and drowning related?

Obviously Not

- You will see lots of examples where people over interpret correlation
- If one thing goes up (or down) and the other goes up (or down) then they must be related.
- Not true! Always think it through

Core concepts

- Measures association between two variables
- Numeric range: -1 (perfect negative) to +1 (perfect positive)
 - True of most (if not, all) measures of correlation (there are a lot of different types)

Correlation and Data Science

- Correlation measures the degree of association between two (or more) variables.
- It tells us how much information one variable carries about another.
- Useful for:
 - Detecting redundancy in features (highly correlated predictors).
 - Identifying candidate relationships for feature selection and feature engineering.
 - Exploring relationships between independent ↔ dependent variables.
- At its heart: correlation is about shared information content and whether variables move together in a systematic way.

Feature Engineering & Selection

- Redundant features
 - If two independent variables are highly correlated, they contain overlapping information.
 - Example: "height in inches" and "height in cm" → drop one.
- Multicollinearity in modeling
 - Strongly correlated predictors can distort regression coefficients.
 - Example: "age" and "years since college" in a salary model.
- Feature reduction
 - Correlation heatmaps can guide which variables to keep or combine.
 - Example: many correlated survey items → reduce with PCA.
- Creating new features
 - Weakly correlated features may be combined to capture interaction.
 - Example: "hours studied" and "sleep" may individually correlate weakly with GPA, but together have stronger predictive power.
- Correlation with target variable
 - Helps prioritize variables for exploration.
 - Example: checking which predictors are most associated with churn (dependent variable).

Types of Correlation

- Comes in different flavors depending on:
 - Shape of relationship (linear vs. nonlinear).
 - Data type (continuous, ordinal, binary).
 - Assumptions (parametric vs. non-parametric).

Types of Correlation 2

- Pearson's r (parametric)
 - Measures linear association between two continuous variables.
 - Sensitive to outliers.
- Spearman's ρ (rank-based)
 - Measures monotonic association using ranked data.
 - Works with ordinal data, robust to outliers.
- Kendall's τ (pairwise concordance)
 - Based on agreement/disagreement of pairs.
 - More interpretable in small samples or with ties.
- Point-Biserial
 - One variable continuous, one binary (0/1).
 - Example: gender (binary) vs. test score.
- Partial Correlation
 - Correlation between two variables controlling for a third (or more).
 - Useful for handling confounding variables.

- Why Different Correlation Types?
 - Different data, different tools ->
 continuous, ordinal, binary, or
 confounded variables each need
 their own measure.
 - Shape matters → Pearson only sees linear; Spearman/Kendall catch monotonic curves.
 - Avoid misinterpretation → the "right" method can reveal strong links that look weak otherwise.
- Bottom line: The right correlation type helps you find and interpret real relationships.

Pearson Correlation

- The most common type, r, ranges from -1 to 1
- For the correlation coefficient itself (<u>descriptive use</u>):
 - Linearity: The relationship between X and Yshould be approximately linear.
 - Continuous variables: Both should be measured on an interval or ratio scale.
 - No significant outliers: Outliers can drastically inflate or deflate r
- For significance testing (<u>inference</u>):
 - Bivariate normality: The pair (X,Y) should follow a joint normal distribution.
 - Homoscedasticity: The spread of Y values is similar across the range of X (equal variance).
 - Independence of observations: Each pair is independent of others
- Which do we need in data science? Description or inference?

Pearson's Correlation Coefficient (r)

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \, \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

$$r = rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Spearman's p

- Definition: Non-parametric measure of monotonic association between two variables
- Based on ranks, not raw values → robust to outliers & skewed data
- Captures increasing or decreasing trends (not just linear)

Spearman's cont'd.

Spearman's Rank Correlation Calculation ($\rho = 0.50$)

Х	Rank X	Y	Rank Y	d = RankX - RankY	d^2
10.0	1.0	15.0	1.0	0.0	0.0
20.0	2.0	40.0	4.0	-2.0	4.0
30.0	3.0	25.0	2.0	1.0	1.0
40.0	4.0	50.0	5.0	-1.0	1.0
50.0	5.0	35.0	3.0	2.0	4.0

$$ho = 1 - rac{6\sum d_i^2}{n(n^2-1)}$$
 $egin{aligned} d_i = \operatorname{rank}(x_i) - \operatorname{rank}(y_i) \ n = \operatorname{number of pairs} \end{aligned}$

$$\rho = \text{Pearson}(\operatorname{rank}(X), \operatorname{rank}(Y))$$

Spearman vs Pearson

Kendall's Tau (τ) – Definition

- Non-parametric correlation measure
- Based on concordant vs. discordant pairs
- Concordant: for any two observations, if ranks of *X* and *Y* move in the same direction.
- Discordant: if ranks of *X* and *Y* move in opposite directions.

Kendall's Formula

$$au = rac{C-D}{inom{n}{2}}$$

- C = number of concordant pairs
- D = number of discordant pairs
- (n choose 2) = total number of pairs

Kendall's Derivation

Obs	Х	Υ
Α	1	12
В	2	15
С	3	14
D	4	10

Pair	Compare X	Compare Y	Result
(A, B)	1 < 2	12 < 15	Concordant
(A, C)	1 < 3	12 < 14	Concordant
(A, D)	1 < 4	12 > 10	Discordant
(B, C)	2 < 3	15 > 14	Discordant
(B, D)	2 < 4	15 > 10	Concordant
(C, D)	3 < 4	14 > 10	Concordant

$$au = rac{C-D}{inom{n}{2}} = rac{4-2}{6} = rac{2}{6} = 0.333$$

Correlation Pitfalls

Sampson's Paradox

Summary

Method	Data Type / Assumptions	Captures	Formula / Idea	Pros	Cons
Pearson's r	Continuous, linear, approx. normal	Linear association (strength & direction)	Covariance standardized by SDs	Simple, widely used, intuitive	Sensitive to outliers; misses nonlinear or monotonic-only trends
Spearman's ρ	Ordinal or continuous (nonlinear OK)	Monotonic association via ranks	Pearson's r on ranks, or 1-6∑d2n(n2-1)1 - \frac{6\sum d^2}{n(n^2-1)} (no ties)	Handles skew/outliers, good for large n, similar to Pearson	Less robust than Kendall in small nn; still influenced by big rank changes
Kendall's τ	Ordinal or continuous (robust to ties)	Pairwise agreement probability	τ=C-D(n2)\tau = C - D}{\binom{n}{2}}	Interpretable as probability, robust in small n, good with ties	Usually smaller values than Spearman; more conservative, lower power

Point Biserial Correlation

- Special case of Pearson's correlation.
- Used when:
 - One variable is continuous (e.g., exam score, height).
 - The other is binary/dichotomous (e.g., male/female, treatment/control, yes/no).
- Tells us whether the two groups (0 vs. 1) differ systematically on the continuous variable.
- Values range from -1 to +1, just like Pearson.

Point Biserial Formula

- M1 = mean of group coded "1"
- M0 = mean of group coded "0"
- s = standard deviation of all scores

$$r_{pb}=rac{M_1-M_0}{s}\cdot\sqrt{rac{n_1n_0}{n^2}}$$

- n1, n0 = group sample sizes
- n = total sample size

Point Biserial Example

Student	Group (0 = No, 1 = Yes)	Exam Score
А	0	72
В	0	68
С	0	75
D	1	85
E	1	90
F	1	88

$$r_{pb} = rac{87.7 - 71.7}{8.35} \cdot \sqrt{rac{3 imes 3}{6^2}} pprox 0.96$$

Partial Correlation

- Definition: Correlation between X and Y after removing the effect of a third variable Z.
- Controls for confounders → isolates the "direct" relationship.
- Bridges correlation ←→ causation ideas.

Partial Correlation and Data Science

- Multicollinearity: avoid redundant predictors.
- Causal thinking: helps distinguish spurious correlations.
- Model diagnostics: closer to regression coefficients.
- Example:
 - Shoe size \leftrightarrow Reading ability (correlated).
 - Both related to Age.
 - Partial correlation controlling for Age → near zero.

Concept and Formula

$$r_{XY \cdot Z} = rac{r_{XY} - r_{XZ} r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

In Practice

Correlation in Data Science Takeaways

- Correlation = information overlap between variables
 - Measures strength and direction of association
 - Helps detect redundancy, spurious patterns, and potential predictive power
- Different flavors for different data
 - Pearson: linear, continuous
 - Spearman & Kendall: monotonic, rank-based, robust
 - Point-biserial: binary variables
 - Partial: isolates association by controlling confounders
- Why it matters in Data Science
 - Guides feature selection & engineering
 - Detects multicollinearity in models
 - Forms the foundation for causal reasoning

Up Next (Next Lecture)

- More correlation measures & when to use them
- Hands-on: heatmaps and correlation matrices for multi-variable EDA
- Visual workflows: pair plots & feature redundancy checks
- Transition: how correlation ≠ causation → confounding