Department of Mathematics Indian Institute of Technology Guwahati

MA 101: Mathematics I Series of real numbers

July-December 2019

Let (a_n) be a sequence of real numbers. An expression of the form

$$a_1 + a_2 + \cdots + a_n + \cdots$$

is called an infinite series. We use the notation: $\sum_{n=1}^{\infty} a_n$.

- (1) The number a_n is called the *n*-th term of the series.
- (2) $s_n = \sum_{k=1}^n a_k$ is called the *n*-th partial sum of the series.
- (3) If the sequence of partial sums (s_n) converges to a limit ℓ , we say that the series converges and its sum is ℓ .
- (4) If (s_n) diverges, we say that the series diverges.

Example 1. We have

- (1) The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ (where $a \neq 0$) converges if and only if |r| < 1.
- (2) The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent with sum 1.
- (3) The series $1 1 + 1 1 + \cdots$ is not convergent.
- (4) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Theorem 1 (Algebraic operations on series). Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent with sums x and y respectively. Then

- (a) $\sum_{n=1}^{\infty} (x_n + y_n)$ is convergent with sum x + y
- (b) $\sum_{n=1}^{\infty} \alpha x_n$ is convergent with sum αx , where $\alpha \in \mathbb{R}$

Theorem 2 (Necessary condition for convergence). If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$.

Proof. Let $s_n = \sum_{k=0}^{n} a_k$. Then $a_n = s_n - s_{n-1}$. Since $\sum_{k=0}^{\infty} a_k$ converges, so s_n and s_{n-1} will converge to the same limit, and hence $a_n \to 0$

Hence if $x_n \not\to 0$, then $\sum_{n=1}^{\infty} x_n$ cannot be convergent.

Remark 1. The condition $\lim_{n\to\infty} a_n = 0$ is not sufficient for the convergence of $\sum a_n$.

For example, $\frac{1}{n} \to 0$ but $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges.

Example 2. The following series are not convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{(n+3)(n+4)}$$

(a)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{(n+3)(n+4)}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$.

Theorem 3 (Monotone criterion). A series $\sum_{n=1}^{\infty} x_n$ of non-negative terms is convergent if and only if the sequence (s_n) is bounded above.

Proof. Since $x_n \geq 0$, so the sequence (s_n) of partial sums is increasing. By Monotone Convergence Theorem, (s_n) is convergent if and only if it is bounded above. Equivalently, $\sum_{n=1}^{\infty} x_n$ is convergent if and only if (s_n) is bounded above.

Example 3. (a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Solution. We have

$$s_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

$$\leq 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n}$$

$$= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 2 - \frac{1}{n}$$

$$< 2.$$

Thus, (s_n) is bounded above. Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

(b) $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Solution. We know that $s_n = \sum_{k=1}^n \frac{1}{n}$ is not bounded above. Hence $\sum_{n=1}^\infty \frac{1}{n}$ is divergent.

Theorem 4 (Cauchy criterion). A series $\sum_{n=1}^{\infty} x_n$ is convergent if and only if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$|x_{n+1} + \cdots + x_m| < \varepsilon \text{ for all } m > n \ge n_0.$$

Proof. We know that a sequence in \mathbb{R} is convergent if and only if it is a Cauchy sequence. Hence, the series $\sum_{n=1}^{\infty} x_n$ is convergent if and only if the sequence (s_n) of partial sums is Cauchy. Now, $s_n = \sum_{k=1}^n x_k$ is Cauchy if for given $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that for all $m > n \ge n_0$,

$$|s_m - s_n| = |x_{n+1} + \dots + x_m| < \varepsilon.$$

This completes the proof of the theorem.

Tests for convergence:

Theorem 5 (Comparison test). Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$, $0 \le x_n \le y_n$ for all $n \ge n_0$. Then

- (a) $\sum_{n=1}^{\infty} y_n$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.
- (b) $\sum_{n=1}^{\infty} x_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_n$ is divergent.

Proof. Clearly, $(a) \Leftrightarrow (b)$. So, we prove (a).

(a) Suppose that $\sum_{n=1}^{\infty} y_n$ is convergent. Then for given $\varepsilon > 0$, there is some $n_1 \in \mathbb{N}$ such that $|y_{n+1} + y_{n+2} + \cdots + y_m| < \varepsilon$ for all $m > n \ge n_1$. We also have $0 \le x_n \le y_n$ for all $n \ge n_0$. Let $n_2 = \max\{n_0, n_1\}$. Then for $m > n \ge n_2$, we have

$$|x_{n+1} + x_{n+2} + \dots + x_m| = x_{n+1} + x_{n+2} + \dots + x_m$$

$$\leq y_{n+1} + y_{n+2} + \dots + y_m$$

$$= |y_{n+1} + y_{n+2} + \dots + y_m|$$

$$< \varepsilon.$$

By Cauchy's criterion, the series $\sum_{n=1}^{\infty} x_n$ is convergent.

Alternative proof: Without loss of generality, we may assume that $0 \le x_n \le y_n$ for all $n \ge 1$ as we can always add or remove finitely many terms without affecting the nature (convergence/divergence) of the series. Let $s_n = \sum_{k=1}^n x_n$ and $t_n = \sum_{k=1}^n y_n$. Since $y_n \ge x_n \ge 0$ for all n, so (s_n) and (t_n) are increasing sequences and $s_n \le t_n$. If $\sum_{n=1}^{\infty} y_n$ is convergent, then (t_n) is convergent and hence bounded above. This implies that (s_n) is bounded above, and since (s_n) is increasing so it is convergent. This proves that $\sum_{n=1}^{\infty} x_n$ is convergent. This completes the proof of (a).

Example 4. (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$ is convergent.

Solution. We have $0 \leq \frac{1+\sin n}{1+n^2} \leq \frac{2}{n^2}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

(b)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$$
 is not convergent.

Solution. We have
$$\frac{1}{\sqrt{n(n-1)}} > \frac{1}{n} > 0$$
 for all $n \ge 2$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Theorem 6 (Limit comparison test). Let (x_n) and (y_n) be sequences of positive real numbers such that $\frac{x_n}{y_n} \to \ell \in \mathbb{R}$.

(a) If
$$\ell \neq 0$$
, then $\sum_{n=1}^{\infty} x_n$ is convergent if and only if $\sum_{n=1}^{\infty} y_n$ is convergent.

(b) If
$$\ell = 0$$
, then $\sum_{n=1}^{\infty} y_n$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.

(c) If
$$\ell = \infty$$
 and $\sum_{n=1}^{\infty} y_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ diverges.

Proof. Note that $\ell \geq 0$.

- (a) If $\ell \neq 0$, then $\varepsilon = \frac{\ell}{2} > 0$. Since $\frac{x_n}{y_n} \to \ell$, so there is some $n_0 \in \mathbb{N}$ such that $\frac{\ell}{2} < \frac{x_n}{y_n} < \frac{3\ell}{2}$ for all $n \geq n_0$. This implies $\frac{\ell}{2}y_n < x_n < \frac{3\ell}{2}y_n$ for all $n \geq n_0$. Applying the Comparison Test twice, we complete the proof.
- (b) Let $\varepsilon > 0$. Since $\frac{x_n}{y_n} \to 0$, so there is some $n_0 \in \mathbb{N}$ such that $0 < \frac{x_n}{y_n} < \varepsilon$ for all $n \ge n_0$. This implies $0 < x_n < \varepsilon \cdot y_n$ for all $n \ge n_0$. We now complete the proof by applying the Comparison Test.
- (c) If $\frac{x_n}{y_n}$ diverges to ∞ , then for given M>0 there is some n_0 such that $\frac{x_n}{y_n}>M$ for all $n\geq n_0$. This is, $x_n>M\cdot y_n$ for all $n\geq n_0$. Now applying the Comparison Test, we complete the proof.

Example 5. $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$ is convergent.

Solution. Let $x_n = \frac{n}{4n^3-2}$ and $y_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{n^3}{4n^3-2} = \lim_{n \to \infty} \frac{1}{4-\frac{2}{n^3}} = \frac{1}{4} \neq 0$. By Limit Comparison Test, the given series is convergent.

Theorem 7 (Cauchy's condensation test). Let (x_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_n$ is convergent if and only if $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is convergent.

Proof. Let $s_n = \sum_{k=1}^n x_k$ and $t_n = \sum_{k=1}^n 2^k x_{2^k}$. Since (x_n) is decreasing, we have

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} x_{k}$$

$$= x_{1} + x_{2} + (x_{3} + x_{4}) + (x_{5} + x_{6} + x_{7} + x_{8}) + \dots + (x_{2^{n-1}+1} + x_{2^{n-1}+2} + \dots + x_{2^{n}})$$

$$\geq x_{1} + x_{2} + 2x_{4} + 4x_{8} + \dots + 2^{n-1}x_{2^{n}}$$

$$= x_{1} + \frac{1}{2}(2x_{2} + 2^{2}x_{4} + 2^{3}x_{8} + \dots + 2^{n}x_{2^{n}}) = x_{1} + \frac{t_{n}}{2}.$$

Now, if $\sum_{n=1}^{\infty} x_n$ is convergent, then (s_n) is convergent. This implies that (s_{2^n}) is bounded and hence (t_n) is bounded above. By Monotone criterion, the series $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is convergent. On the other hand,

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} x_{k}$$

$$= x_{1} + (x_{2} + x_{3}) + (x_{4} + x_{5} + x_{6} + x_{7}) + \dots + (x_{2^{n-1}} + x_{2^{n-1}+1} + \dots + x_{2^{n}-1}) + x_{2^{n}}$$

$$\leq x_{1} + 2x_{2} + 4x_{4} + 8x_{8} + \dots + 2^{n-1}x_{2^{n-1}} + x_{2^{n}}$$

$$\leq x_{1} + 2x_{2} + 4x_{4} + 8x_{8} + \dots + 2^{n-1}x_{2^{n-1}} + 2^{n}x_{2^{n}}$$

$$= x_{1} + t_{n}.$$

Now, if $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is convergent then (t_n) is bounded and hence (s_{2^n}) is bounded above. Since (s_n) is increasing, so $s_n \leq s_{2^n}$ for all $n \geq 1$. This proves that (s_n) is bounded above and by Monotone criterion, the series $\sum_{n=1}^{\infty} x_n$ is convergent.

Example 6. We have

(a) p-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if and only if p > 1.

Solution. If $p \leq 0$, then clearly the series diverges as $\frac{1}{n^p} \not\to 0$. Let p > 0. Then the sequence $(1/n^p)$ of non negative terms is decreasing. By Cauchy's condensation test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if and only if $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p}$ is convergent. Now, the geometric series $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n$ is convergent if and only if $\frac{1}{2^{p-1}} < 1$, that is, if and only if p > 1.

(b) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent if and only if p > 1.

Solution. Let $f(x) = \frac{1}{x(\log x)^p}$ for all x > 1. Then $f: (1, \infty) \to \mathbb{R}$ is differentiable and $f'(x) = -\frac{(\log x)^{p-1}(\log x+p)}{x^2(\log x)^{2p}} \le 0$ for all $x > \max\{1, e^{-p}\} = a$ (say). Hence f is decreasing on (a, ∞) and so $f(n+1) \le f(n)$ for all $n \ge n_0$, where $n_0 \in \mathbb{N}$ is chosen to satisfy $n_0 > a$. Thus the sequence $\left(\frac{1}{n(\log n)^p}\right)_{n=n_0}^{\infty}$ of non-negative real numbers is decreasing. Since the series $\sum_{n=n_0}^{\infty} 2^n \cdot \frac{1}{2^n(\log 2^n)^p} = \sum_{n=n_0}^{\infty} \frac{1}{(\log 2)^p n^p}$ is convergent if and only if p > 1, by Cauchy's condensation test, $\sum_{n=n_0}^{\infty} \frac{1}{n(\log n)^p}$ is convergent if and only if p > 1. Consequently the given series is convergent if and only if p > 1.

Alternating series: An alternating series is an infinite series whose terms alternate in sign.

Example 7. (a)
$$\sum_{n=1}^{\infty} (-1)^n$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$.

Theorem 8 (Leibniz's test). Let (x_n) be a decreasing sequence of positive real numbers such that $x_n \to 0$. Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ is convergent.

Proof. Since (x_n) is decreasing, we have

$$s_{2n+1} = \sum_{k=1}^{2n+1} (-1)^{k+1} x_k = x_1 - x_2 + x_3 - \dots + x_{2n-1} - x_{2n} + x_{2n+1}$$
$$= s_{2n-1} - x_{2n} + x_{2n+1} = s_{2n-1} - (x_{2n} - x_{2n+1}) \le s_{2n-1}.$$

Hence, the subsequence (s_{2n+1}) is decreasing. Since (x_n) is decreasing and x_n 's are positive, we have

$$s_{2n+1} = x_1 - x_2 + x_3 - \dots + x_{2n-1} - x_{2n} + x_{2n+1}$$

= $(x_1 - x_2) + (x_3 - x_4) + \dots + (x_{2n-1} - x_{2n}) + x_{2n+1} \ge 0.$

Thus, the subsequence (s_{2n+1}) is bounded below. Hence, it is convergent. Similarly,

$$s_{2n+2} = x_1 - x_2 + x_3 - \dots + x_{2n-1} - x_{2n} + x_{2n+1} - x_{2n+2}$$

= $s_{2n} + (x_{2n+1} - x_{2n+2}) \ge s_{2n}$

and

$$s_{2n} = x_1 - x_2 + x_3 - \dots - x_{2n-2} + x_{2n-1} - x_{2n}$$

= $x_1 - (x_2 - x_3) - (x_4 - x_5) - \dots - (x_{2n-2} - x_{2n-1}) - x_{2n} \le x_1.$

Thus, the subsequence (s_{2n}) is increasing and bounded above.

Let $s_{2n-1} \to \ell_1$ and $s_{2n} \to \ell_2$. We have $x_{2n} = s_{2n-1} - s_{2n}$. Since $x_n \to 0$, so $\ell_1 = \ell_2$. This proves that the subsequences (s_{2n-1}) and (s_{2n}) converge to the same limit, and hence (s_n) is convergent. That is, the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ is convergent.

Example 8. By Leibniz's test, the alternating harmonic series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ converges.

Definition 1. $\sum_{n=1}^{\infty} x_n$ is called absolutely convergent if $\sum_{n=1}^{\infty} |x_n|$ is convergent. $\sum_{n=1}^{\infty} x_n$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_n$ is convergent but $\sum_{n=1}^{\infty} |x_n|$ is divergent.

Example 9. The series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges. But $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Hence, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges conditionally.

Theorem 9. Every absolutely convergent series is convergent.

Proof. Let $\sum_{n=1}^{\infty} x_n$ be absolutely convergent. Let $t_n = \sum_{k=1}^n |x_k|$. Then (t_n) is convergent and hence Cauchy. Let $\varepsilon > 0$. Then there is some $n_0 \in \mathbb{N}$ such that $|t_m - t_n| < \varepsilon$ for all $m, n \ge n_0$. Let $s_n = \sum_{k=1}^n x_k$. Now, for $m > n \ge n_0$,

$$|s_m - s_n| = |x_m + x_{m-1} + \dots + x_{n+1}|$$

 $\leq |x_m| + |x_{m-1}| + \dots + |x_{n+1}|$
 $= t_m - t_n$
 $= |t_m - t_n|$
 $\leq \varepsilon$.

Hence, (s_n) is Cauchy and so it is convergent. Equivalently, $\sum_{n=1}^{\infty} x_n$ is convergent.

Theorem 10 (Comparison test-II). Let (x_n) be a series of real numbers. Then $\sum_{n=1}^{\infty} x_n$ converges absolutely if there is an absolutely convergent series $\sum_{n=1}^{\infty} y_n$ and some $n_0 \in \mathbb{N}$ satisfying $|x_n| \leq |y_n|$ for all $n \geq n_0$.

Theorem 11 (Limit comparison test-II). Let (x_n) and (y_n) be sequences of nonzero real numbers such that $\left|\frac{x_n}{y_n}\right| \to \ell \in \mathbb{R}$.

- (a) If $\ell \neq 0$, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent iff $\sum_{n=1}^{\infty} y_n$ is absolutely convergent.
- (b) If $\ell = 0$, then $\sum_{n=1}^{\infty} y_n$ is absolutely convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is absolutely convergent.

Theorem 12 (Ratio Test). Let $\sum_{n=1}^{\infty} x_n$ be a series of nonzero real numbers. Let

$$a = \liminf \left| \frac{x_{n+1}}{x_n} \right| \quad and \quad A = \limsup \left| \frac{x_{n+1}}{x_n} \right|.$$

Then

- (1) If A < 1, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.
- (2) If a > 1, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Proof. (1) Let A < 1. Let $B \in \mathbb{R}$ be such that A < B < 1. Put $\varepsilon = B - A$. We have

$$A = \limsup \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} y_n,$$

where $y_n = \sup \left\{ \frac{|x_{k+1}|}{|x_k|} : k \ge n \right\}$. Since $\varepsilon = B - A > 0$, so there is some $n_0 \in \mathbb{N}$ such that

$$0 < y_n < A + \varepsilon = B$$
 for all $n \ge n_0$, that is, $\frac{|x_{n+1}|}{|x_n|} < B$ for all $n \ge n_0$.

This yields $|x_{n_0+k}| < |x_{n_0}|B^k$ for all $k \ge 1$. Since 0 < B < 1, so $\sum_{k=1}^{\infty} |x_{n_0}|B^k = |x_{n_0}|\sum_{k=1}^{\infty} B^k$

is convergent. Therefore, by Comparison Test, $\sum_{k=1}^{\infty} |x_{n_0+k}|$ is also convergent. This proves

that $\sum_{n=1}^{\infty} x_n$ converges absolutely.

(2) Suppose that $a = \liminf \left| \frac{x_{n+1}}{x_n} \right| > 1$. Let $b \in \mathbb{R}$ such that 1 < b < a. Let $\varepsilon = a - b$. We have

$$a = \liminf \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} z_n,$$

where $z_n = \inf \left\{ \frac{|x_{k+1}|}{|x_k|} : k \ge n \right\}$. Since $\varepsilon = a - b > 0$, so there is some $n_0 \in \mathbb{N}$ such that

$$a - \varepsilon < z_n$$
 for all $n \ge n_0$, that is, $\frac{|x_{n+1}|}{|x_n|} > b$ for all $n \ge n_0$.

This yields $|x_{n_0+k}| > |x_{n_0}|b^k > |x_{n_0}|$ for all $k \ge 1$. Thus, $\lim_{n \to \infty} |x_n| \ge |x_{n_0}|$. This proves that $x_n \not\to 0$, and therefore $\sum_{n=1}^{\infty} x_n$ is divergent.

Remark 2. If $\left|\frac{x_{n+1}}{x_n}\right| \to \ell$, then $a = A = \ell$.

Example 10. We have

- (a) The series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is convergent.
- (b) The series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is not convergent.
- (c) The series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ is convergent for any $x \in \mathbb{R}$.

Remark 3. If $\ell = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then the Ratio test is inconclusive. For example, for both the series $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$, $\ell = 1$. However, $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Theorem 13 (Root Test). Let $\sum_{n=1}^{\infty} x_n$ be a series of real numbers. Let $A = \limsup \sqrt[n]{|x_n|}$. Then

- (1) If A < 1, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.
- (2) If A > 1, then $\sum_{n=1}^{\infty} x_n$ is divergent.
- (3) The test is inconclusive if A = 1.

Proof. (1) Let A < 1. Let $B \in \mathbb{R}$ be such that A < B < 1. Put $\varepsilon = B - A$. We have

$$A = \limsup \sqrt[n]{|x_n|} = \lim_{n \to \infty} y_n,$$

where $y_n = \sup \left\{ \sqrt[k]{|x_k|} : k \ge n \right\}$. Since $\varepsilon = B - A > 0$, so there is some $n_0 \in \mathbb{N}$ such that

 $0 < y_n < A + \varepsilon = B$ for all $n \ge n_0$, that is, $|x_n| < B^n$ for all $n \ge n_0$.

Since 0 < B < 1, so $\sum_{n=1}^{\infty} B^n$ is convergent. Therefore, by Comparison Test, $\sum_{n=1}^{\infty} |x_n|$ is also

convergent. This proves that $\sum_{n=1}^{\infty} x_n$ converges absolutely.

(2) Let A > 1. Let $B \in \mathbb{R}$ be such that A > B > 1. Put $\varepsilon = A - B$. Then there exists some $n_0 \in \mathbb{N}$ such that

$$B = A - \varepsilon < y_n \text{ for all } n \ge n_0.$$

Thus, $y_n > 1$ for all $n \ge n_0$. From this, we find that $|x_n| > 1$ for infinitely many values of n. Hence x_n does not converse to 0. This proves that $\sum_{n=1}^{\infty} x_n$ is divergent.

(3) Let $x_n = \frac{1}{n}$. Then A = 1 and we know that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. Again, if $x_n = \frac{1}{n^2}$ then

also
$$A = 1$$
. However, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Remark 4. If $\sqrt[n]{|x_n|} \to \ell$, then $A = \limsup \sqrt[n]{|x_n|} = \ell$.

Example 11. (a) The series $\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$ is convergent.

Solution. Taking $x_n = \frac{(n!)^n}{n^{n^2}}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n!}{n^n} = 0$ (since $\lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$). Hence by the root test, the given series is convergent.

(b) The series $\sum_{n=1}^{\infty} \frac{5^n}{3^n+4^n}$ is not convergent.

Solution. Taking $x_n = \frac{5^n}{3^n + 4^n}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{5}{(3^n + 4^n)^{\frac{1}{n}}} = \frac{5}{4}$ (since $\lim_{n \to \infty} (3^n + 4^n)^{\frac{1}{n}} = 4$, as shown earlier by using Sandwich theorem). Hence by the root test, the given series is not convergent.

Given a series $\sum_{n=1}^{\infty} x_n$, we can construct many other series $\sum_{n=1}^{\infty} y_n$ by leaving the order of the terms x_n fixed, but inserting parentheses that group together finite number of terms. For example, the following series

$$1 - \frac{1}{2} + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6} + \frac{1}{7}\right) - \frac{1}{8} + \left(\frac{1}{9} - \dots + \frac{1}{13}\right) - \dots$$

is obtained by grouping the terms in the alternating harmonic series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$.

Theorem 14. Grouping of terms of a convergent series does not change the convergence and the sum. However, a divergent series can become convergent after grouping of terms.

Proof. Let $\sum_{n=1}^{\infty} x_n$ be convergent. Suppose that the series $\sum_{n=1}^{\infty} y_n$ is obtained from $\sum_{n=1}^{\infty} x_n$ by grouping the terms. Then we have

$$y_1 = x_1 + x_2 + \dots + x_{n_1}, \ y_2 = x_{n_1+1} + x_{n_1+2} + \dots + x_{n_2}, \ \dots$$

Let (s_n) and (t_n) be the sequences of partial sums of $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$, respectively. Then

$$t_1 = y_1 = s_{n_1}, \ t_2 = y_1 + y_2 = s_{n_2}, \cdots$$

Thus, (t_n) is a subsequence of (s_n) . Since $\sum_{n=1}^{\infty} x_n$ is convergent, so (s_n) is convergent. Therefore, (t_n) is also convergent and converges to the limit of (s_n) . This proves that the grouped series $\sum_{n=1}^{\infty} y_n$ is convergent and its sum is same as $\sum_{n=1}^{\infty} x_n$.

It is clear that the converse to this theorem is not true. We know that the series $\sum_{n=1}^{\infty} (-1)^n$ diverges. However, the grouping

$$(-1+1) + (-1+1) + \cdots + (-1+1) + \cdots$$

converges to 0.

Definition 2 (Rearrangement of series). A series $\sum_{n=1}^{\infty} y_n$ is called a rearrangement of a series $\sum_{n=1}^{\infty} x_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $y_n = x_{f(n)}$ for all $n \in \mathbb{N}$.

Theorem 15. Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example 12. Let $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = s$. Then,

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \dots = \frac{3}{2}s.$$

Solution. We first note that by Leibniz's test, the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ converges. Let

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = s. \tag{1}$$

Then the series $\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \dots = \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \dots)$ converges to $\frac{1}{2}s$. It follows that the series

$$0 + \frac{1}{2} - 0 - \frac{1}{4} + 0 + \frac{1}{6} - 0 - \frac{1}{8} + \dots = \frac{1}{2}s$$
 (2)

Hence the series $(1+0)+(-\frac{1}{2}+\frac{1}{2})+(\frac{1}{3}-0)+(-\frac{1}{4}-\frac{1}{4})+(\frac{1}{5}+0)+\cdots$, which is the sum of the series (1) and (2), converges to $s+\frac{1}{2}s=\frac{3}{2}s$. Therefore it follows that $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\cdots=\frac{3}{2}s$.

Theorem 16 (Riemann's rearrangement theorem). Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series.

- (1) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series has the sum s.
- (2) There exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series diverges.