《算法设计与分析》

第十二章 线性规划

马丙鹏 2023年12月11日

第十二章 线性规划

- 12.1 数学模型
- 12.2 图解法
- 12.3 标准型
- 12.4 基本概念
- 12.5 单纯形法

- ■1. 简要历史
 - □线性规划(Linear Programming; LP)通常研究资 源的最优利用、设备最佳运行等问题。
 - □例如,
 - >当任务或目标确定后,如何统筹兼顾,合理安排, 用最少的资源(如资金、设备、原标材料、人工、 时间等) 去完成确定的任务或目标:
 - >企业在一定的资源条件限制下,如何组织安排生 产获得最好的经济效益(如产品量最多、利润最 大)。
 - □线性规划是应用最广的数学模型

- 1. 简要历史
 - □L.V. Kantorovich
 - ▶苏联数学家、经济学家、1975年诺贝尔经济学奖获得者,1939年在《组织和计划生产的数学方法》一文中最早提出线性规划
 - **□**G.B. Dantzig
 - ▶1947年,给出一般的线性规划模型和单纯形法.
 - □L.G. Khachian
 - ▶苏联数学家,1979年椭球算法,多项式时间算法
 - □N. Karmarkar
 - >印度数学家,1984年投影算法

- 2. 应用模型举例
 - □例12.1 生产计划问题
 - ▶某企业在计划期内计划生产甲、乙两种产品。
 - ▶按工艺资料规定,每件产品甲需要消耗A材料 2公斤,消耗B材料1公斤,每件产品乙需要消耗A材料1公斤,消耗B材料1.5公斤。
 - ▶已知在计划期内可供材料分别为40、30公斤;
 - ▶每生产一件甲、乙两产品,企业可获得利润分别 为300、400元,如表12-1所示。
 - ▶假定市场需求无限制。
 - 》企业决策者应如何安排生产计划,使企业在计划 期内总的利润收入最大。 中国科学院大学

- 2. 应用模型举例
 - □例12.1 生产计划问题

》解: 设 x_1 、 x_2 分别为甲、乙产品的产量,数学模型为: $\frac{1}{8}$ 表12-1

$$\max Z = 300x_1 + 400x_2$$

$$\begin{cases} 2x_1 + x_2 \le 40 \\ x_1 + 1.5x_2 \le 30 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

产品 资源	甲	Z	现有资源
材料A	2	1	40
材料B	1	1.5	30
利润(元/件)	300	400	

- 2. 应用模型举例
 - □例12.1 生产计划问题
 - ▶线性规划的数学模型由决策变量 Decision variables, 目标函数 Objective function及约束条件 Constraints构成。称为三个要素。
 - >怎样辨别一个模型是线性规划模型?
 - ① 解决问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;
 - ②解决问题的约束条件是一组多个决策变量的线性不等式或等式。

■ 2. 应用模型举例

□例12.2某超市决定:营业员每周连续工作5天后连续 休息2天,轮流休息。根据统计,超市每天需要的营 业员如表12-2所示。 表12-2 营业员需要量统计表

星期	需要人数	星期	需要人数
_	300	五	480
<u> </u>	300	六	600
\equiv	350	日	550
四	400		

>超市人力资源部应如何安排每天的上班人数, 使 超市总的营业员最少。 中国科学院大学

■ 2. 应用模型举例 口例12.2

> \triangleright 解,设 x_i (j=1, 2, ..., 7)为休息2 天后星期一到星 期日开始上班的 营业员,则这个 问题的线性规划 模型为

$$\min Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

$$\begin{cases} x_1 + x_4 + x_5 + x_6 + x_7 \ge 300 \\ x_1 + x_2 + x_5 + x_6 + x_7 \ge 300 \\ x_1 + x_2 + x_3 + x_6 + x_7 \ge 350 \\ x_1 + x_2 + x_3 + x_4 + x_7 \ge 400 \\ x_1 + x_2 + x_3 + x_4 + x_5 \ge 480 \\ x_2 + x_3 + x_4 + x_5 + x_6 \ge 600 \\ x_3 + x_4 + x_5 + x_6 + x_7 \ge 550 \\ x_j \ge 0, j = 1, 2, \dots, 7 \end{cases}$$

- 2. 应用模型举例
 - 口例12.2
 - ▶最优解:

1	X1	0	C1	404	>=	300	104
2	X2	67	C2	301	>=	300	1
3	X 3	146	C3	350	>=	350	0
4	X4	170	C4	400	>=	400	0
5	X5	97	C5	480	>=	480	0
6	X6	120	C6	600	>=	600	0
7	X7	17	C7	550	>=	550	0

>Z=617 (人)

▶注:表中是取整数后的结果 中国科学院大学 University of Chinese Academy of Sciences 10

- 2. 应用模型举例
 - □例12.3 合理用料问题
 - ▶某汽车需要用甲、乙、丙三种规格的轴各一根, 这些轴的规格分别是1.5, 1, 0.7 (m), 这些轴需 要用同一种圆钢来做, 圆钢长度为4 m。
 - ▶现在要制造1000辆汽车,最少要用多少圆钢来生 产这些轴?
 - \triangleright 解:是一个条材下料问题,设切口宽度为零。设一根圆钢切割成甲、乙、丙三种轴的根数分别为 y_1 , y_2 , y_3 ,则切割方式可用不等式 $1.5y_1+y_2+0.7y_3 \le 4$ 表示,求这个不等式关于 y_1 , y_2 , y_3 的非负整数解。

- 2. 应用模型举例
 - □例12.3 合理用料问题
 - ▶像这样的非负整数解共有10组,也就是有10种下 料方式,如表12-3所示。

表12-3 下料方案

方案 规格	1	2	3	4	5	6	7	8	9	10	需求量
y ₁ (根)	2	2	1	1	1	0	0	0	0	0	1000
y_2	1	0	2	1	0	4	3	2	1	0	1000
y_3	0	1	0	2	3	0	1	2	4	5	1000
余料(m)	0	0.3	0.5	0.1	0.4	0	0.3	0.6	0.2	0.5	

- 2. 应用模型举例
 - □例12.3 合理用料问题
 - 》设 x_j (j=1, 2..., 10) 为第j种下料方案所用圆钢的根数。则用料最少数学模型为:

$$\min Z = \sum_{j=1} x_{j}$$

$$\begin{cases} 2x_{1} + 2x_{2} + x_{3} + x_{4} + x_{5} \ge 1000 \\ x_{1} + 2x_{3} + x_{4} + 4x_{6} + 3x_{7} + 2x_{8} + x_{9} \ge 1000 \\ x_{2} + 2x_{4} + 3x_{5} & x_{7} + 2x_{8} + 4x_{9} + 5x_{10} \ge 1000 \\ x_{j} \ge 0, j = 1, 2 \dots 10 \end{cases}$$

- 2. 应用模型举例
 - □例12.3 合理用料问题
 - ▶求下料方案时应注意,余料不能超过最短毛坯的 长度;
 - ▶最好将毛坯长度按降的次序排列,即先切割长度 最长的毛坯,再切割次长的,最后切割最短的, 不能遗漏了方案。
 - ▶如果方案较多,用计算机编程排方案,去掉余料较长的方案,进行初选。

■ 2. 应用模型举例

□例12.3 合理用料问题

> Z = 812.5

1	X1	500
2	X2	0
3	X3	0
4	X4	0
5	X5	0
6	X6	62.5
7	X7	0
8	X8	0
9	X9	250
10	X10	0

- 2. 应用模型举例
 - □例12.4 配料问题。
 - ▶ 某钢铁公司生产一种合金,要求的成分规格是: 锡不少于28%,锌不多于15%,铅恰好10%,镍 要界于35%~55%之间,不允许有其他成分。
 - ▶钢铁公司拟从五种不同级别的矿石中进行冶炼, 每种矿物的成分含量和价格如表12-4所示。
 - ▶矿石杂质在治炼过程中废弃,现要求每吨合金成本最低的矿物数量。假设矿石在冶炼过程中,合金含量没有发生变化。

■ 2. 应用模型举例

□例12.4 配料问题。

表12-4 矿石的金属含量

合金 矿石	锡%	锌%	铅%	镍%	杂质	费用(元/t)
1	25	10	10	25	30	340
2	40	0	0	30	30	260
3	0	15	5	20	60	180
4	20	20	0	40	20	230
5	8	5	15	17	55	190

- 2. 应用模型举例
 - □例12.4 配料问题。
 - \triangleright 解: 设 x_j (j=1,2,...,5) 是生产一个单位的合金所需第j 种矿石数量,得到下列线性规划模型

$$\min Z = 340x_1 + 260x_2 + 180x_3 + 230x_4 + 190x_5$$

$$0.25x_1 + 0.4x_2 + 0.2x_4 + 0.08x_5 \ge 0.28$$

$$0.1x_1 + 0.15x_3 + 0.2x_4 + 0.05x_5 \le 0.15$$

$$0.1x_1 + 0.05x_3 + 0.15x_5 = 0.1$$

$$0.25x_1 + 0.3x_2 + 0.2x_3 + 0.4x_4 + 0.17x_5 \le 0.55$$

$$0.25x_1 + 0.3x_2 + 0.2x_3 + 0.4x_4 + 0.17x_5 \ge 0.35$$

$$0.7x_1 + 0.7x_2 + 0.4x_3 + 0.8x_4 + 0.45x_5 = 1$$

$$x_{i} \ge 0, j = 1, 2, \dots, 5$$

- 2. 应用模型举例
 - □例12.4 配料问题。
 - ▶注意,矿石在实际冶炼时金属含量会发生变化,建模时应将这种变化考虑进去,有可能是非线性关系。
 - ▶配料问题也称配方问题、营养问题或混合问题, 在许多行业生产中都能遇到。
 - ▶最优解:

1	X1	0
2	X2	0.3333
3	Х3	0
4	X4	0.5833
5	X5	0.6667

Z=347.5

中国科学院大学

- 2. 应用模型举例
 - □例12.4 配料问题。
 - ▶问题:如果允许有杂质,但含量不能超过1%,该 如何修改模型?
 - \triangleright 设第i种矿石剩余的杂质的比例为 y_i ,i=1,2,...,5,
 - ▶增加或修改如下约束:

$$y_1 \le 0.3$$

$$y_2 \le 0.3$$

$$y_3 \le 0.6$$

$$y_4 \le 0.2$$

$$y_5 \le 0.55$$

- 2. 应用模型举例
 - □例12.4 配料问题。
 - ▶合金总量约束为

$$(0.7 + y_1)x_1 + (0.7 + y_2)x_2 + (0.4 + y_3)x_3 + (0.8 + y_4)x_4 + (0.45 + y_5)x_5 = 1$$

▶杂质含量约束为

$$y_1 x_1 + y_2 x_2 + y_3 x_3 + y_4 x_4 + y_5 x_5 \le 0.01$$

- ▶故问题模型变为......
- 》解: 设 x_j (j=1, 2, ..., 5) 是生产一个单位的合金所需第j 种矿石数量,第i 种矿石剩余的杂质的比例为 y_i , i=1, 2, ..., 5,得到下列非线性规划模型

■ 2. 应用模型举例

$$\min Z = 340x_1 + 260x_2 + 180x_3 + 230x_4 + 190x_5$$

$$0.25x_1 + 0.4x_2 + 0.2x_4 + 0.08x_5 \ge 0.28$$

$$0.1x_1 + 0.15x_3 + 0.2x_4 + 0.05x_5 \le 0.15$$

$$0.1x_1 + 0.05x_3 + 0.15x_5 = 0.1$$

$$0.25x_1 + 0.3x_2 + 0.2x_3 + 0.4x_4 + 0.17x_5 \le 0.55$$

$$0.25x_1 + 0.3x_2 + 0.2x_3 + 0.4x_4 + 0.17x_5 \ge 0.35$$

$$(0.7 + y_1)x_1 + (0.7 + y_2)x_2 + (0.4 + y_3)x_3 + (0.8 + y_4)x_4 + (0.45 + y_5)x_5 = 1$$

$$y_1 x_1 + y_2 x_2 + y_3 x_3 + y_4 x_4 + y_5 x_5 \le 0.01$$

$$y_1 \le 0.3, y_2 \le 0.3, y_3 \le 0.6, y_4 \le 0.2, y_5 \le 0.55$$

$$x_{j}, y_{j} \ge 0, j = 1, 2, \dots, 5$$

- 2. 应用模型举例
 - □例12.5投资问题
 - 》某投资公司拟将 5000万元的资金 用于国债、地方 国债及基金三种 类型证券投资, 每类各有两种。
 - 》每种证券的评级、 到期年限及每年 税后收益率见表 12-5所示。

表12-5 证券投资方案

序 号	证券类型	评 级	到期 年限	每年税后 收益率(%)
1	国债1	1	8	3.2
2	国债2	1	10	3.8
3	地方债 券1	2	4	4.3
4	地方债 券2	3	6	4.7
5	基金1	4	3	4.2
6	基金2	5	4	4.6

- 2. 应用模型举例
 - □例12.5投资问题
 - ▶决策者希望: 国债投资额不少于1000万, 平均到 期年限不超过5年, 平均评级不超过2。
 - ▶问每种证券各投资多少使总收益最大。
 - \triangleright 解设 x_j (j=1, 2, ..., 6)为第j种证券的投资额,目标函数是税后总收益为

$$Z = (8 \times 3.2x_1 + 10 \times 3.8x_2 + 4 \times 4.3x_3 + 6 \times 4.7x_4 + 3 \times 4.2x_5 + 4 \times 4.6x_6)/100$$

>资金约束:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 5000$$

- 2. 应用模型举例
 - □例12.5投资问题
 - ▶国债投资额约束: $x_1 + x_2 \ge 1000$
 - >平均评级约束:

$$\frac{x_1 + x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6}{x_1 + x_2 + x_3 + x_4 + x_5 + x_6} \le 2$$

>平均到期年限约束:

$$\frac{8x_1 + 10x_2 + 4x_3 + 6x_4 + 3x_5 + 4x_6}{x_1 + x_2 + x_3 + x_4 + x_5 + x_6} \le 5$$

- 2. 应用模型举例
 - □例12.5投资问题
 - >整理后得到线性规划模型

$$\max Z = 0.256x_1 + 0.38x_2 + 0.172x_3 + 0.282x_4 + 0.126x_5 + 0.184x_6$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 5000 \\ x_1 + x_2 \ge 1000 \\ -x_1 - x_2 + x_4 + 2x_5 + 3x_6 \le 0 \\ 3x_1 + 5x_2 - x_3 + x_4 - 2x_5 - x_6 \le 0 \\ x_j \ge 0, j = 1, 2, \dots, 6 \end{cases}$$

▶决策结果: X=(250, 750, 3500, 0, 500, 0) Z=1014

- 2. 应用模型举例
 - □例12.6均衡配套生产问题
 - ▶某产品由2件甲、3件乙零件组装而成。
 - ▶两种零件必须经过设备A、B上加工,每件甲零件在A、B上的加工时间分别为5分钟和9分钟,每件 乙零件在A、B上的加工时间分别为4分钟和10分钟。
 - ▶现有2台设备A和3台设备B,每天可供加工时间为8小时。为了保持两种设备均衡负荷生产,要求一种设备每天的加工总时间不超过另一种设备总时间1小时。
 - ▶怎样安排设备的加工时间使每天产品的产量最大。

- 2. 应用模型举例
 - □例12.6均衡配套生产问题
 - \triangleright 解: 设 x_1 、 x_2 为每天加工甲、乙两种零件的件数,则产品的产量是

 $y = \min(\frac{1}{2}x_1, \frac{1}{3}x_2)$

▶设备A、B每天加工工时的约束为

$$5x_1 + 4x_2 \le 2 \times 8 \times 60$$
$$9x_1 + 10x_2 \le 3 \times 8 \times 60$$

➤要求一种设备每台每天的加工时间不超过另一种 设备1小时的约束为

$$\left| (5x_1 + 4x_2) - (9x_1 + 10x_2) \right| \le 60$$

■ 2. 应用模型举例

□例12.6均衡配套生产问题

▶约束线性化。将绝对值约束写成两个不等式

$$(5x_1 + 4x_2) - (9x_1 + 10x_2) \le 60$$

$$-(5x_1 + 4x_2) + (9x_1 + 10x_2) \le 60$$

▶目标函数线性化。产品的产量y 等价于

$$y \le \frac{1}{2} x_1, y \le \frac{1}{3} x_2$$

>整理得到线性规划模型

$$\max Z = y$$

$$\begin{cases} y \le \frac{1}{2} x_1 \\ y \le \frac{1}{3} x_2 \\ 5x_1 + 4x_2 \le 960 \\ 9x_1 + 10x_2 \le 1440 \\ -4x_1 - 6x_2 \le 60 \\ 4x_1 + 6x_2 \le 60 \\ y > x_1 > x_2 \ge 0 \end{cases}$$

- 2. 线性规划的一般模型
 - 口一般地,假设线性规划数学模型中,有m个约束,有n个决策变量 x_j , j=1, 2..., n,目标函数的变量系数用 c_j 表示, c_j 称为价值系数。约束条件的变量系数用 a_{ij} 表示, a_{ij} 称为工艺系数。约束条件右端的常数用 b_i 表示, b_i 称为资源限量。则线性规划数学模型的一般表达式可写成

$$\max(\min)Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le (\vec{x} = , \ge)b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le (\vec{x} = , \ge)b_2 \end{cases}$$

- 2. 线性规划的一般模型
 - □为了书写方便,上式也可写成:

$$\max(\min)Z = \sum_{j=1}^{n} c_j x_j$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq (\overrightarrow{\mathbb{P}} =, \geq) b_{i} & i = 1, 2, \dots, m \\ x_{j} \geq 0, j = 1, 2, \dots, n \end{cases}$$

口在实际中一般 $x_j \ge 0$,但有时 $x_j \le 0$ 或 x_j 无符号限制。

第十二章 线性规划

- 12.1 数学模型
- 12.2 图解法
- 12.3 标准型
- 12.4 基本概念
- 12.5 单纯形法

12.2 图解法

- ■1. 图解法的步骤:
 - ① 求可行解集合。
 - ▶分别求出满足每个约束包括变量非负要求的区域, 其交集就是可行解集合,或称为可行域;
 - ② 绘制目标函数图形。
 - ▶先过原点作一条矢量指向点(c₁, c₂),矢量的方向就是目标函数增加的方向,称为梯度方向,再作一条与矢量垂直的直线,这条直线就是目标函数图形;
 - ③ 求最优解。
 - ▶依据目标函数求最大或最小移动目标函数直线, 直线与可行域相交的点对应的坐标就是最优解。

12.2 图解法

- ■1. 图解法的步骤:
 - □一般地,将目标函数直线放在可行域中
 - □ 求最大值时直线沿着矢量方向移动
 - □求最小值时沿着矢量的反方向移动

12.2 图解法

- ■1. 图解法的步骤:
 - □由以上例题可知,线性规划的解有4种形式:
 - ① 有唯一最优解(例12-7例12-8)
 - ② 有多重解(例12-9)
 - ③ 有无界解(例12-10)
 - ④ 无可行解(例12-11)
 - ▶1、2情形为有最优解
 - ▶3、4情形为无最优解

End

