Mergesort Recurrence

$$T(1) = c$$

$$f(n) = 2T(n/2) + cn$$
 (if $n > 1$)

Let's make this easier by assuming n is a power of two:

$$n = 2^j$$
$$j = \log_2(n)$$

Now we can rewrite our equations:

$$T(2^{0}) = c$$

 $f(2^{j}) = 2T(2^{j-1}) + cn$ (if $j > 0$)

Now we can introduce a new function, $f(j) = T(2^j)$, and we have

$$f(0) = c$$

 $f(j) = 2f(j-1) + c2^{j}$

Let's try to solve this recurrence.

Solve the recurrence

$$f(0) = c$$

 $f(j) = 2f(j-1) + c2^{j}$

Get lots of equations

$$f(j) = 2f(j-1) + c2^{j}$$

$$2f(j-1) = 2^{2}f(j-2) + c2(2^{j-1})$$

$$= 2^{2}f(j-2) + c2^{j}$$

$$2^{2}f(j-2) = 2^{3}f(j-3) + c2^{2}(2^{j-2})$$

$$= 2^{3}f(j-3) + c2^{j}$$

$$\cdots$$

$$2^{k-1}f(j-(k-1)) = 2^{k}f(j-k) + c2^{j}$$

$$\cdots$$

$$2^{j-1}f(j-(j-1)) = 2^{j}f(j-j) + c2^{j}$$

 $2^{j-1}f(j-1) = c2^j + c2^j$

Simplify and cancel

$$f(0) = c$$

 $f(j) = 2f(j-1) + c2^{j}$

Cancelling:

$$f(j) = 2f(j-1) + c2^{j}$$

$$2f(j-1) = 2^{2}f(j-2) + c2^{j}$$

$$2^{2}f(j-2) = 2^{3}f(j-3) + c2^{j}$$

$$\cdots$$

$$2^{k-1}f(j-(k-1)) = 2^{k}f(j-k) + c2^{j}$$

$$\cdots$$

$$2^{j-1}f(1) = c2^{j} + c2^{j}$$

Gives

$$f(j) = c2^{j} + \sum_{k=1}^{j} c2^{j}$$
$$= (j+1)c2^{j}$$

Remembering $f(j) = T(2^j)$

$$T(1) = c$$

$$T(n) = 2T(n/1) + cn$$
 (if $n > 1$)

$$n = 2^j$$
$$j = \log_2(n)$$

$$f(0) = c$$

 $f(j) = 2f(j-1) + c2^{j}$

$$f(j) = (j+1)c2^{j}$$

$$T(n) = T(2^{j})$$

$$= f(j)$$

$$= (j+1)c2^{j}$$

$$= (\log_{2}(n) + 1)c2^{\log_{2}(n)}$$

$$= cn \log_{2}(n) + cn$$

$$= \Theta(n \lg(n))$$