International Environmental Agreements and Directed Technological Change: Evidence from the Ozone Regime Supporting Online Material

Eugenie Dugoua*
July 2, 2018

 $^{{\}rm *Assistant\ Professor\ in\ Environmental\ Economics,\ London\ School\ of\ Economics\ (starting\ Sept.).\ E-mail:\ eugenie.dugoua@columbia.edu.}$

Contents

1	Background on Ozone and the Montreal Protocol	3
2	Data	9
3	Difference-in-Differences	18
4	Topic Proportions	35
5	SCM	38
6	Robustness Checks	45
7	Annex A and B compounds	58
8	Others	65

1 Background on Ozone and the Montreal Protocol

- Figure 1 features a timeline of some key events related to CFCs and the Montreal protocol
- Figure 2 displays the actual and projected atmospheric concentrations of several ODS.
- Figure 3 shows the major CFCs by production volume, ozone-depleting potential, industrial sectors and countries by consumption volume in 1986, the year before Montreal was agreed.
- Table 1 shows the name and additional information about the molecules considered under PAFT and AFEAS.
- Table 2 shows the Montreal Protocol phaseout schedules

Figure 1: Timeline of events related to CFCs and the Montreal protocol

Figure 2: CFC concentrations: past and projected.

Figure 3: World consumption and production of ozone-depleting chemicals in 1986. Source: Parson (2003) page 174. Notes: MC stands for methyl chloroform.

Table 1: Details about substitutes to ODS. Information collected from (Parson 2003) and (Benedick 2009). Note: the cost of CFC-12 in 1986 was 0.65/lb.

Substitute	PAFT	AFEAS	Substitute for	Notes
Substitute	No, already	THE ELLE		cheapest, fastest substitute, already at large scale production
HCFC-22	marketed, toxicology known	Yes	Included in Annex C. CFC-11, CFC-12 in foams	at the end of 1986 but due to toxicity concerns, not appropriate for aerosol use. FDA approved it for foams in 1988 for fast foods and for grocery display packaging.
HCFC-142b	No, already marketed, toxicology known	Yes	CFC-11, CFC-12 but not ideal	Included in Annex C. Considered because already at small scale production in 1986 but their thermodynamic properties are very different and would have required changes in equipment and process. DuPont 1988 process for coproduction of HCFC 141b and 142b
HFC-152a	No, already marketed, toxicology known	Yes	CFC-11, CFC-12 but not ideal	Considered because already at small scale production in 1986 but their thermodynamic properties are very different and would have required changes in equipment and process.
HCFC-123	Yes	Yes	CFC-11 in refrigeration	Included in Annex C. Vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. estimated at \$1.5-2/lb in 1986. DuPont patent commercial synthesis route 1988. large plant in 1990 for production. Still some toxicity concerns.
HFC-134a	Yes	Yes	CFC-12 in refrigeration (car AC)	vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. estimated at \$3/lb in 1986. oct 1990 first commercial plant ICI, then DuPont. Both DuPont and ICI announced important catalyst breakthroughs in 1992, which roughly doubled their capacity.
HCFC-141b	Yes	Yes	CFC-11 in foams	Included in Annex C. Vapor pressure similar to CFC-11 and CFC-12 implied no need to change equipment. However no commercial experience. DuPont 1988 process for coproduction of HCFC 141b and 142b. Appeared to be the most promising alternative initially (1987-1988) but in late 1988 its ODP was found much higher than thought (about 10 percent). EPA banned its use as a solvent in 1993. required phase out of production by 2003. Moderate inflammability.
HCFC-124	Yes	Yes	CFC-114 in refrigeration and sterilization	Included in Annex C. Less suitable properties but could be used in blends
HCFC-125	Yes	Yes	CFC-115 in refrigeration and sterilization	less suitable properties but could be used in blends
HCFC-225ca	No, second rank candidate	Yes		Included in Annex C.
HCFC-225cb	No, second rank candidate	Yes		Included in Annex C.
HFC-32	No, second rank candidate	Yes	refrigeration	considered in blends for refrigeration. Inflammability and compressor discharge made it problematic alone. Both DuPont and ICI opened HFC-32 plants in the summer of 1992. by 1993, DuPont, Allied, ICI, and Atochem were all marketing various patented refrigerant blends
HFC-143a	No, second rank candidate	Yes	CFC-12 in refrigeration	less suitable properties but could be used in blends
HFC-245fa	No	No	CFC-11, HCFC-141b and HCFC-142b in foams	
HFC-365mfc	No	No	CFC-11, HCFC-141b and HCFC-142b in foams	

Table 2: Montreal Protocol Phaseout Schedules. Source: Benedick (2009)

Chemicals	1987 Montreal Protocol	1990 London Revisions	1992 Copenhagen Revisions	1995 Vienna Revisions	1995 Vienna (article 5)
Annex A/I Chlorofluorocarbons 11,12,113,114,115	baseline 1986 freeze 1989 20% 1993 50% 1998	baseline 1986 freeze 1989 50% 1995 85% 1997	baseline 1986 freeze 1989 75% 1994 100% 1996	no change	baseline 1995/97 freeze 1999 50% 2005 85%
Annex A/II Halons 1211, 1301, 2402	baseline 1986 freeze 1992	baseline 1986 freeze 1992 50% 1995 100% 2000	baseline 1986 freeze 1992 100% 1994	no change	baseline 1995/97 freeze 2002 50% 2005 100%
Annex B/I Other CFCs 10 chemi- cals	no controls	baseline 1989 20% 1993 85% 1997 100% 2000	baseline 1989 20% 1993 75% 1994 100% 1996	no change	baseline 1998/2000 20% 2003 85% 2007 100%
Annex B/II Carbon tetrachloride		baseline 1989 85% 1995 100% 2000	baseline 1989 85% 1995 100% 1996	no change	baseline 1998/2000 85% 2005 100% 2010
Annex B/III Methyl chloroform		baseline 1989 freeze 1993 30% 1995 70% 2000	baseline 1989 freeze 1993 50% 1994 100% 1996	no change	baseline 1998/2000 freeze 2013 30% 2005 70%
Annex C/I Hydrochlorofluorocarbor 40 chemicals	no controls as	mandatory re-porting nonbiding reso-lution on pase-out: 2020 if pos	baseline 1989 freeze 1996 35% 2004 65% 2010 90% 201	baseline 1989 one change	baseline 2015 freeze 2016 100% 2040
Annex C/II Hydrobromofluorocarbor 34 chemicals	no controls as	no controls	100% 1996	no change	100% 1996
Annex E Methyl bromide	no controls	no controls	baseline 1991 freeze 1995	baseline 1991 freeze 1995 25% 2001 50% 2005 100% 2010	baseline 1995/98 freeze 2002

2 Data

- Figure 4 displays the number of patents and articles per year
- Table 3 displays the list of molecules for each group: CFC substitutes, HAPs, as well as Annex A and Annex B compounds.
- Table 5 displays the list of substitutes and all their possible names scraped through SciFinder.
- Figure 6 plots the number of documents containing molecules of each group.
- Figure 7 plots the number of documents mentioning Annex A compounds.
- Figure 8 plots the number of documents mentioning Annex B compounds.
- Table 4 displays summary statistics of meta-data for patents for each group of molecules.
- Table 5 displays summary statistics of meta-data for articles for each group of molecules.

Figure 4: Total number of documents collected per year

HCFC 22	Khladon 125	
Chlorodifluoromethane	Pentafluoroethane	HCFC 134a
Algeon 22	R 125	1,1,1,2-Tetrafluoroethane
Algofrene 22 Algofrene 6	HCFC 141b	1,2,2,2-Tetrafluoroethane AK 134a
Arcton 22	1,1-Dichloro-1-fluoroethane	Arcton 134a
Arcton 4	1-Fluoro-1,1-dichloroethane	Ecolo Ace 134a
CFC 22	141B	F 134A
Daiflon 22	Asahiklin AK 141b	FC 134a
Difluorochloromethane	CFC 141b	Forane 134a
Difluoromethyl chloride	CG 141b	Freon 134a
Difluoromonochloromethane	Daiflon 141b	Fron 134a
Dymel 22	Dichlorofluoroethane	Genetron 134a
Electro-CF 22 F 22 (halocarbon)	F 141b Forane 141b	HC 134a HFA 134
FC 22	Forane DGX	HFA 134a
FC 22 (halocarbon)	Fron 141b	HFA P134a
FKW 22	Genesolv 2000	HFC 134a
Flugene 22	Genetron 141b	Halon 134A
Forane 22	HFA 141b	KLEA 134a
Freon 22	HFC 141b	Khladon 134a
Freon R 22	Isotron 141b	Meforex 134a
Frigen 22	Khladon 141b	Norflurane
Fron 22	R 141b	P 134A R 134a
Genetron 22 HFA 22	RC 14 Refrigerant 141b	RF 134a
Halon 22	Solkane 141b	Refrigerant R 134a
Haltron 22	Solkane 1415	SUVA 134a
Isceon 22	HCFC 142b	Solkane 134a
Isotron 22	1-Chloro-1,1-difluoroethane	TG 134a
Khladon 22	1,1-Difluoro-1-chloroethane	
Korfron 22	CFC 142b	HCFC 143a
Monochlorodifluoromethane	Daiflon 142b	1,1,1-Trifluoroethane
Propellant 22	Dymel 142	CFC 143A
R 22 Refrigerant 22	F 142b FC 142b	F 143A FC 143a
Refrigerant R 22	FKW 142b	Freon 143a
Solkane 22	Freon 142b	Fron 143a
Ucon 22	Fron 142b	HCF 143a
	Genetron 101	HFA 143a
HCFC 123	Genetron 142b	HFC 143a
2,2-Dichloro-1,1,1-trifluoroethane	HFA 142b	HFO 143a
1,1,1-Trifluoro-2,2-dichloroethane	Propellant 142B	Methylfluoroform
1,1,1-Trifluorodichloroethane	R 142b	R 143a
1,1-Dichloro-2,2,2-trifluoroethane	Solkane 142b	TG 143a
CFC 123 Dichloro(trifluoromethyl)methane	Iś-Chloroethylidene fluoride	HFC 245fa
F 123	HCFC 152a	1,1,1,3,3-Pentafluoropropar
F 123 (halocarbon)	1,1-Difluoroethane	1,1,3,3,3-Pentafluoropropar
FC 123	Algofrene 67	245fa
Freon 123	Dymel 152	Enovate 245
Fron 123	Dymel 152A	Enovate 245fa
HFA 123	Ethylidene fluoride	Enovate 3000
Khladon 123	F 152A	Genetron 245fa
R 123	FC 152a	*******
Solkane 123	FKW 152a Formacel Z 2	HFC 32 Difluoromethane
HCFC 124	From 152a	Ecolo Ace 32
2-Chloro-1,1,1,2-tetrafluoroethane	Genetron 152A	F 32
1,1,1,2-Tetrafluoro-2-chloroethane	HFA 152a	FC 32
1,1,1,2-Tetrafluorochloroethane	HFC 152a	Forane 32
1-Chloro-1,2,2,2-tetrafluoroethane	HFO 152a	Freon 32
CFC 124	Propellant 152A	Genetron 32
F 124	R 152a	HFA 32
F 124 (halocarbon)	Solkane 152a TG 152a	HFO 32
FC 124 Freon 124	HCFC-225ca	Methylene difluoride R 32
Fron 124	3,3-Dichloro-1,1,1,2,2-pentafluoropropane	R 32 (refrigerant)
Khladon 124	1,1,1,2,2-Pentafluoro-3,3-dichloropropane	it 32 (renigerant)
R 124	1,1-Dichloro-2,2,3,3,3-pentafluoropropane	HFC 365mfc
	Fron 225	1,1,1,3,3-Pentafluorobutane
HCFC 125	R 225b	2,2,4,4,4-Pentafluorobutane
Ethane, pentafluoro- (6CI,7CI,8CI,9CI)	R 225ca	
1,1,1,2,2-Pentafluoroethane		Forane 365mfc
1,1,2,2,2-Pentafluoroethane	HCFC-225cb	HFC 365
Ecolo Ace 125	1,3-Dichloro-1,1,2,2,3-pentafluoropropane	HFO 365mfc
F 125 FC 125	1,1,2,2,3-Pentafluoro-1,3-dichloropropane AK 225G	R 365 R 365mfc
FC 125 Freon 125	AK 225G AK 225cb	R 365mfc Solkane 365
Fron 125	Asahiklin AK 225G	Solkane 365mfc
HFA 125	HFC 225bc	Johnson Johnson
HFC 125	R 225a	
HFO 125	R 225cb	

Figure 5: List of substitutes and their possible names

CFC Substitutes	HCFC 22, HCFC 123, HCFC 124, HCFC 125, HCFC 141b, HCFC 142b, HCFC 225ca, HCFC 225cb, HFC 134a, HFC 143a, HFC 152a, HFC 245fa, HFC 32, HFC 365mfc
Annex A	${\rm CFC\ 11,\ CFC\ 12,\ CFC\ 113,\ CFC\ 114,\ CFC\ 115,\ HALON\ 1211,\ HALON\ 1301,\ HALON\ 2402}$
Annex B	CFC 13, CFC 111, CFC 112, CFC 211, CFC 212, CFC 213, CFC 214, CFC 215, CFC 216, CFC 217, Carbon tetrachloride, Methyl chloroform
HAPs	Acetaldehyde, Acetamide, Acetonitrile, Acetophenone, 2-Acetylaminofluorene, Acrolein, Acrylamide, Acrylic acid, Acrylonitrile, Allyl chloride, 4-Aminobiphenyl, Aniline, o-Anisidine, Asbestos, Benzene, Benzidine, Benzotrichloride, Benzyl chloride, Biphenyl, Bis(2-ethylhexyl)phthalate (DEHP), Bis(chloromethyl)ether, Bromoform, 1,3-Butadiene, Calcium cyanamide, Caprolactam, Captan, Carbaryl, Carbon disulfide, Carbonyl sulfide, Catechol, Chloramben, Chlordane, Chlorine, Chloroacetic acid, 2-Chloroacetophenone, Chlorobenzene, Chlorobenzilate, Chloroform, Chloromethyl methyl ether, Chloropene, Cresols/Cresylic acid, o-Cresol, m-Cresol, p-Cresol, Cumene, 2,4-D, salts and esters, DDE, Diazomethane, Dibenzofurans, 1,2-Dibromo-3-chloropropane, Dibutylphthalate, 1,4-Dichlorobenzene, 3,3-Dichlorobenzidene, Dichloroethyl ether ether), 1,3-Dichloropropene, Dichlorvos, Diethanolamine, N,N-Dimethylamiline, Diethyl sulfate, 3,3-Dimethoxybenzidine, Dimethyl aminoazobenzene, 3,3-Dimethyl benzidine, Dimethyl carbamyol chloride, Dimethyl formamide, 1,1-Dimethyl hydrazine, Dimethyl phthalate, Dimethyl sulfate, 4,6-Dinitro-ocresol, and salts, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 1,4-Dioxane, 1,2-Diphenylhydrazine, Epichlorohydrin, 1,2-Epoxybutane, Ethyl acrylate, Ethylene glycol, Ethylene imine, Ethylene oxide, Ethylene dibromide, Ethylene dichloride, Formaldehyde, Heptachlor, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Hexamethylene-1,6-diisocyanate, Hexamethylphosphoramide, Hexane, Hydrazine, Hydrochloric acid, Hydrogen fluoride, Hydrogen sulfide, Hydroquinone, Isophorone, Lindane, Maleic anhydride, Methanol, Methoxychlor, Methyl bromide, Methyl chloride, Methyl isocyanate, Methyl hydrazine, Methyl todide, Methyl isobutyl ketone, Methyl isocyanate, Methyl hydrazine, Methyl todide, Methyl isobutyl ketone, Methyl isocyanate, Nitroson-nemethylene, Nitroson-nemethylene diphenyl disocyanate, 4,4-Methylene dianiline, Naphthalene, Nitrosodimethylamine, N-Nitrosomorpholine, Parathion, Penbachloron

Table 3: List molecules in each treatment group

Vinylidene chloride, Xylenes, o-Xylenes, m-Xylenes, p-Xylenes

Figure 6: Total number of documents mentioning CFC substitutes (S), Annex A compounds (A), Annex B compounds (B) and HAPS (H). The right axis is relative to HAPs.

(a) Number of articles containing molecules from group A.

(b) Number of patents containing molecules from group A.

Figure 7: Total number of documents containing names of molecules from groups A.

(a) Number of articles containing molecules from group B.

(b) Number of patents containing molecules from group B.

Figure 8: Total number of documents containing names of molecules from groups B.

	Annex A	Annex B	CFC Substitutes	HAPs
Year	1988.38	1987.90	1992.55	1989.61
	(7.49)	(7.67)	(7.09)	(7.69)
D1	0.00	0.01	0.00	0.00
Education	0.02	0.01	0.02	0.02
	(0.12)	(0.11)	(0.14)	(0.14)
Company	0.97	0.97	0.97	0.96
company	(0.18)	(0.16)	(0.17)	(0.20)
	(0.10)	(0.10)	(0.11)	(0.20)
Government	0.02	0.01	0.01	0.02
	(0.13)	(0.10)	(0.07)	(0.13)
Facility	0.00	0.00	0.00	0.00
	(0.03)	(0.03)	(0.07)	(0.02)
Nonprofit	0.00	0.00	0.00	0.00
rvonprone	(0.04)	(0.05)	(0.00)	(0.07)
	(0.01)	(0.00)	(0.00)	(0.01)
Healthcare	0.00	0.00	0.00	0.00
	(0.00)	(0.01)	(0.00)	(0.02)
USA	0.59	0.47	0.61	0.56
	(0.49)	(0.50)	(0.49)	(0.50)
Europe	0.27	0.29	0.21	0.23
Lurope	(0.44)	(0.45)	(0.40)	(0.42)
	(0.44)	(0.40)	(0.40)	(0.42)
Japan	0.12	0.23	0.17	0.17
•	(0.32)	(0.42)	(0.37)	(0.38)
	` /	` '	` '	

Table 4: Summary statistics of meta-data for patents per group

	Annex A	Annex B	CFC Substitutes
Year	1986.88	1984.11	1989.78
	(7.52)	(8.17)	(7.25)
Citation Count	25.29	25.42	30.60
	(55.75)	(147.84)	(72.19)
NT 1 C A /1	9.95	0.00	2.05
Number of Authors	3.35	2.98	2.95
	(5.33)	(2.09)	(2.85)
Education	0.71	0.79	0.75
	(0.45)	(0.41)	(0.43)
	(0.10)	(0.11)	(0.10)
Company	0.12	0.07	0.12
	(0.33)	(0.25)	(0.32)
Government	0.08	0.08	0.11
	(0.28)	(0.27)	(0.31)
Fa a:1:4	0.16	0.11	0.11
Facility	(0.36)		
	(0.30)	(0.31)	(0.31)
Nonprofit	0.02	0.02	0.02
1	(0.15)	(0.13)	(0.13)
	,	,	()
Healthcare	0.02	0.02	0.02
	(0.14)	(0.15)	(0.15)
USA	0.41	0.27	0.36
	(0.49)	(0.44)	(0.48)
Europe	0.39	0.45	0.39
Бигоре	(0.49)	(0.50)	(0.49)
	(0.49)	(0.50)	(0.49)
Japan	0.09	0.10	0.12
- · I	(0.29)	(0.31)	(0.32)
	(===)	(=-=)	(=-=)

Table 5: Meta-Data of Articles per Group

3 Difference-in-Differences

- Figure 9 displays the average counts and log counts for the different molecule groups using the weak rule.
- Figure 10 shows the mean counts in articles for the different groups with method weak, intermediate and strong.
- Figure 11 shows the mean counts in patents for the different groups with method weak, intermediate and strong.
- Table 8 displays DiD specifications with bootstrap for patents for CFC substitutes.
- Table 9 displays DiD specifications with bootstrap for articles for CFC substitutes.
- Figure 12 displays DiD specifications with treatment effects by year for patents for CFC substitutes.
- Figure 13 displays DiD specifications with treatment effects by year for articles for CFC substitutes.
- Table 8 displays DiD specifications controlling for topic proportions for patents for CFC substitutes.
- Table 9 displays DiD specifications controlling for topic proportions for articles for CFC substitutes.
- Table 12 displays DiD specifications with bootstrap for patents for Annex A compounds.
- Table 13 displays DiD specifications with bootstrap for articles for Annex A compounds.
- Figure 15 displays DiD specifications with treatment effects by year for patents for Annex A compounds.
- Figure 14 displays DiD specifications with treatment effects by year for articles for Annex A compounds.
- Table 12 displays DiD specifications controlling for topic proportions for patents for Annex A compounds.
- Table 13 displays DiD specifications controlling for topic proportions for articles for Annex A compounds.
- Table 16 displays DiD specifications with bootstrap for patents for Annex B compounds.

- Table 17 displays DiD specifications with bootstrap for articles for Annex B compounds.
- Figure 17 displays DiD specifications with treatment effects by year for patents for Annex B compounds.
- Figure 16 displays DiD specifications with treatment effects by year for articles for Annex B compounds.
- Table 16 displays DiD specifications controlling for topic proportions for patents for Annex B compounds.
- Table 17 displays DiD specifications controlling for topic proportions for articles for Annex B compounds.

Figure 9: Mean Document Counts and Log Counts for the Different Molecule Groups Using the Weak Rule.

Notes: Here, I plot the yearly mean counts of documents related to each of the four molecule groups to gauge similarity in the pre-trends. In the article corpus, HAPs and Annex A seem to have a clear upward trend before 1987 while substitutes and Annex B seem somewhat flat. Since pre-trends appear to differ, all of the HAP molecules can not serve as good control.

Figure 10: Mean counts in log for the different groups for articles.

Figure 11: Mean counts in log for the different groups for articles.

Table 6: Patents: Diff-in-Diff. Additional Specifications

	(1)	(2)	(3)	(4)
Post 1987 x Substitutes	1.637*** (0.080)	1.637*** (0.078)		
Post 1987 x Substitutes x Years			0.215*** (0.018)	0.215*** (0.020)
Substitutes x Years			0.014 (0.011)	0.014 (0.012)
Years			0.003** (0.001)	0.003** (0.001)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped R-squared Observations	No 0.952 1344	Yes 0.952 1344	No 0.962 1344	Yes 0.962 1344

Standard errors in parentheses Dependent variable: Log count of patents Years are relative to 1987. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 7: Articles: Diff-in-Diff. Additional Specifications

	(1)	(2)	(3)	(4)
Post 1987 x Substitutes	0.668*** (0.068)	0.668*** (0.071)		
Post 1987 x Substitutes x Years			0.100*** (0.013)	0.100*** (0.013)
Substitutes x Years			-0.003 (0.006)	-0.003 (0.006)
Years			0.024*** (0.001)	0.024*** (0.002)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped	No	Yes	No	Yes
R-squared Observations	0.951 1680	0.951 1680	$0.950 \\ 1680$	$0.950 \\ 1680$

Standard errors in parentheses

Dependent variable: Log count of articles Years are relative to 1987. * p < 0.10, ** p < 0.05, *** p < 0.01

Figure 12: Patents: Differences-in-difference treatment effects by year

Figure 13: Articles: Differences-in-difference treatment effects by year

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1987 x Substitutes	1.637*** (0.080)	1.298*** (0.079)	1.253*** (0.080)			
Weighted mean proportion of topic 1		2.197*** (0.689)			1.446** (0.615)	
Weighted mean proportion of topic 2		0.330 (0.768)			0.130 (0.607)	
Weighted mean proportion of topic 3		1.685*** (0.396)			1.047^{***} (0.347)	
Weighted mean proportion of topic 4		1.072 (0.674)			1.613** (0.645)	
Weighted mean proportion of topic 5		-2.633*** (0.808)			-1.332** (0.655)	
Mean proportion of topic 1			3.491*** (0.932)			1.978** (0.820)
Mean proportion of topic 2			0.256 (0.831)			0.221 (0.676)
Mean proportion of topic 3			1.748*** (0.499)			1.514*** (0.414)
Mean proportion of topic 4			0.616 (0.854)			0.829 (0.708)
Mean proportion of topic 5			-4.380*** (1.069)			-2.908*** (0.825)
Post 1987 x Substitutes x Years				0.215*** (0.018)	0.193*** (0.017)	0.188*** (0.017)
Substitutes x Years				0.014 (0.011)	0.004 (0.009)	$0.005 \\ (0.009)$
Years				0.003** (0.001)	0.003** (0.001)	0.003** (0.001)
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.952 1344	0.961 1344	0.962 1344	0.962 1344	0.968 1344	0.968 1344

Standard errors in parentheses
Dependent variable: Log count of patents
Years are relative to 1987.
* p < 0.10, ** p < 0.05, **** p < 0.01

Table 8: Patents: Diff-in-Diff. Controlling for topic proportions.

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1987 x Substitutes	0.668*** (0.068)	0.224*** (0.057)	0.214*** (0.058)			
Weighted mean proportion of topic 1		0.905** (0.403)			1.058*** (0.390)	
Weighted mean proportion of topic 2		1.008*** (0.301)			0.936*** (0.298)	
Weighted mean proportion of topic 3		1.432*** (0.448)			1.140** (0.454)	
Weighted mean proportion of topic 4		1.211*** (0.357)			1.234*** (0.347)	
Weighted mean proportion of topic 5		1.077*** (0.316)			1.113*** (0.320)	
Mean proportion of topic 1			1.484*** (0.478)			1.659*** (0.466)
Mean proportion of topic 2			0.594 (0.378)			$0.448 \ (0.370)$
Mean proportion of topic 3			1.415*** (0.533)			1.122** (0.541)
Mean proportion of topic 4			1.360*** (0.460)			1.446*** (0.451)
Mean proportion of topic 5			0.991** (0.390)			1.052*** (0.393)
Post 1987 x Substitutes x Years				0.100*** (0.013)	0.051*** (0.011)	0.051*** (0.011)
Substitutes x Years				-0.003 (0.006)	-0.008* (0.004)	-0.009** (0.004)
Years				0.024*** (0.001)	0.022*** (0.001)	0.022*** (0.001)
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.951 1680	0.964 1680	0.964 1680	0.950 1680	0.963 1680	0.964 1680

Standard errors in parentheses Dependent variable: Log count of articles Years are relative to 1987. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 9: Articles: Diff-in-Diff. Controlling for topic proportions.

	(1)	(2)	(3)	(4)
Post 1987 x Annex A	0.168*** (0.058)	0.168*** (0.056)		
Post 1987 x Annex A x Years			0.007 (0.016)	0.007 (0.015)
Annex A x Years			0.008 (0.010)	0.008 (0.010)
Years			$0.002 \\ (0.002)$	0.002 (0.002)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped R-squared Observations	No 0.972 768	Yes 0.972 768	No 0.968 768	Yes 0.968 768

Standard errors in parentheses Dependent variable: Log count of patents Years are relative to 1987. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 10: Patents: Diff-in-Diff. Additional Specifications

	(1)	(2)	(3)	(4)
Post 1987 x Annex A	0.069 (0.073)	0.069 (0.080)		
Post 1987 x Annex A x Years			-0.008 (0.017)	-0.008 (0.019)
Annex A x Years			$0.006 \\ (0.008)$	$0.006 \\ (0.008)$
Years			0.028*** (0.002)	0.028*** (0.002)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped R-squared Observations	No 0.966 960	Yes 0.966 960	No 0.964 960	Yes 0.964 960

Standard errors in parentheses Dependent variable: Log count of articles Years are relative to 1987. * p < 0.10, ** p < 0.05, **** p < 0.01

Table 11: Articles: Diff-in-Diff. Additional Specifications

Figure 14: Patents: Differences-in-difference treatment effects by year

Figure 15: Articles: Differences-in-difference treatment effects by year

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1987 x Annex A	0.168*** (0.058)	0.127** (0.050)	0.127** (0.051)			
Weighted mean proportion of topic 1		2.057*** (0.770)			1.645** (0.802)	
Weighted mean proportion of topic 2		0.956 (0.776)			1.025 (0.806)	
Weighted mean proportion of topic 3		1.454*** (0.376)			1.406*** (0.377)	
Weighted mean proportion of topic 4		1.978*** (0.599)			2.242*** (0.624)	
Weighted mean proportion of topic 5		1.075 (0.821)			1.345 (0.837)	
Mean proportion of topic 1			2.080** (0.928)			1.505 (0.970)
Mean proportion of topic 2			1.171 (0.910)			1.264 (0.948)
Mean proportion of topic 3			1.408*** (0.435)			1.416*** (0.431)
Mean proportion of topic 4			2.019*** (0.777)			2.339*** (0.780)
Mean proportion of topic 5			0.920 (1.143)			1.154 (1.158)
Post 1987 x Annex A x Years				0.007 (0.016)	$0.015 \\ (0.013)$	0.013 (0.013)
Annex A x Years				$0.008 \\ (0.010)$	0.001 (0.008)	0.002 (0.008)
Years				$0.002 \\ (0.002)$	$0.002 \\ (0.002)$	$0.002 \\ (0.002)$
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.972 768	0.977 768	0.977 768	0.968 768	0.973 768	0.973 768

Standard errors in parentheses Dependent variable: Log count of patents Years are relative to 1987.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 12: Patents: Diff-in-Diff. Controlling for topic proportions.

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1987 x Annex A	0.069 (0.073)	-0.040 (0.060)	-0.052 (0.059)			
Weighted mean proportion of topic 1		0.763^* (0.422)			1.111** (0.440)	
Weighted mean proportion of topic 2		0.293 (0.448)			0.286 (0.442)	
Weighted mean proportion of topic 3		2.199*** (0.553)			1.973*** (0.554)	
Weighted mean proportion of topic 4		1.008** (0.448)			0.922** (0.449)	
Weighted mean proportion of topic 5		1.522*** (0.368)			1.488*** (0.367)	
Mean proportion of topic 1			1.624^{***} (0.477)			2.039*** (0.497)
Mean proportion of topic 2			-0.244 (0.554)			-0.275 (0.553)
Mean proportion of topic 3			2.292*** (0.673)			2.006^{***} (0.675)
Mean proportion of topic 4			$0.650 \\ (0.569)$			$0.600 \\ (0.580)$
Mean proportion of topic 5			1.881*** (0.468)			1.809*** (0.459)
Post 1987 x Annex A x Years				-0.008 (0.017)	-0.015 (0.013)	-0.016 (0.013)
Annex A x Years				$0.006 \\ (0.008)$	0.002 (0.006)	0.002 (0.006)
Years				0.028*** (0.002)	0.027*** (0.002)	0.026*** (0.002)
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.966 960	0.976 960	0.976 960	0.964 960	0.974 960	0.975 960

Standard errors in parentheses Dependent variable: Log count of articles Years are relative to 1987.
* p < 0.10, ** p < 0.05, **** p < 0.01

Table 13: Articles: Diff-in-Diff. Controlling for topic proportions.

	(1)	(2)	(3)	(4)
Post 1990 x Annex B	-0.002 (0.061)	-0.002 (0.061)		
Post 1990 x Annex B x Years			0.031 (0.019)	0.031 (0.019)
Annex B x Years			-0.014** (0.007)	-0.014* (0.007)
Years			0.006*** (0.001)	0.006*** (0.001)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped R-squared Observations	No 0.989 864	Yes 0.989 864	No 0.987 864	Yes 0.987 864

Standard errors in parentheses Dependent variable: Log count of patents Years are relative to 1990. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 14: Patents: Diff-in-Diff. Additional Specifications

	(1)	(2)	(3)	(4)
Post 1990 x Annex B	-0.251*** (0.065)	-0.251*** (0.059)		
Post 1990 x Annex B x Years			-0.040** (0.017)	-0.040*** (0.015)
Annex B x Years			-0.004 (0.005)	-0.004 (0.006)
Years			0.026*** (0.002)	0.026*** (0.002)
Year FE	Yes	Yes	No	No
Molecule FE	Yes	Yes	Yes	Yes
Bootstraped R-squared Observations	No 0.968 840	Yes 0.968 840	No 0.967 840	Yes 0.967 840

Standard errors in parentheses Dependent variable: Log count of articles Years are relative to 1990. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 15: Articles: Diff-in-Diff. Additional Specifications

Figure 16: Patents: Differences-in-difference treatment effects by year $\,$

Figure 17: Articles: Differences-in-difference treatment effects by year

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1990 x Annex B	-0.002 (0.061)	-0.091** (0.041)	-0.093** (0.042)			
Weighted mean proportion of topic 1		0.750** (0.370)			0.428 (0.360)	
Weighted mean proportion of topic 2		1.379*** (0.430)			1.603*** (0.486)	
Weighted mean proportion of topic 3		0.708*** (0.218)			0.775^{***} (0.215)	
Weighted mean proportion of topic 4		0.937** (0.394)			1.048*** (0.382)	
Weighted mean proportion of topic 5		1.481** (0.600)			1.436** (0.609)	
Mean proportion of topic 1			0.572 (0.412)			0.137 (0.383)
Mean proportion of topic 2			1.509*** (0.455)			1.721*** (0.520)
Mean proportion of topic 3			0.744^{***} (0.246)			0.841*** (0.236)
Mean proportion of topic 4			0.779^* (0.420)			0.959** (0.391)
Mean proportion of topic 5			1.856** (0.932)			1.814** (0.903)
Post 1990 x Annex B x Years				0.031 (0.019)	-0.007 (0.012)	-0.009 (0.012)
Annex B x Years				-0.014** (0.007)	-0.006 (0.004)	-0.005 (0.004)
Years				0.006*** (0.001)	0.006*** (0.001)	0.006*** (0.001)
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.989 864	0.994 864	0.994 864	$0.987 \\ 864$	0.992 864	0.992 864

Standard errors in parentheses Dependent variable: Log count of patents Years are relative to 1990.

* p < 0.10, ** p < 0.05, **** p < 0.01

Table 16: Patents: Diff-in-Diff. Controlling for topic proportions.

	(1)	(2)	(3)	(4)	(5)	(6)
Post 1990 x Annex B	-0.251*** (0.065)	-0.264*** (0.056)	-0.260*** (0.056)			
Weighted mean proportion of topic 1		1.660*** (0.509)			1.823*** (0.518)	
Weighted mean proportion of topic 2		0.342 (0.464)			0.391 (0.448)	
Weighted mean proportion of topic 3		1.328** (0.605)			1.104* (0.595)	
Weighted mean proportion of topic 4		0.545 (0.434)			0.454 (0.440)	
Weighted mean proportion of topic 5		0.818* (0.430)			0.872** (0.436)	
Mean proportion of topic 1			1.783*** (0.604)			2.063*** (0.609)
Mean proportion of topic 2			$0.266 \\ (0.602)$			0.191 (0.586)
Mean proportion of topic 3			1.096 (0.793)			0.799 (0.756)
Mean proportion of topic 4			0.715 (0.586)			0.684 (0.595)
Mean proportion of topic 5			$0.790 \\ (0.541)$			0.932^* (0.551)
Post 1990 x Annex B x Years				-0.040** (0.017)	-0.044*** (0.015)	-0.044*** (0.015)
Annex B x Years				-0.004 (0.005)	-0.004 (0.005)	-0.003 (0.005)
Years				0.026*** (0.002)	0.024^{***} (0.002)	0.024*** (0.002)
Year FE	Yes	Yes	Yes	No	No	No
Molecule FE	Yes	Yes	Yes	Yes	Yes	Yes
R-squared Observations	0.968 840	0.974 840	0.974 840	0.967 840	0.973 840	0.973 840

Standard errors in parentheses
Dependent variable: Log count of articles
Years are relative to 1990.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 17: Articles: Diff-in-Diff. Controlling for topic proportions.

4 Topic Proportions

- Table 18 shows the composition of the 5 topics in articles.
- \bullet Table 19 shows the composition of the 5 topics in patents.

Topic 1 - words	Topic 1 - prob	Topic 2 - words	Topic 2 - prob	Topic 3 - words	Topic 3 - prob
alderson	0.0110	xining	0.0074	sciatica	0.0064
paration	0.0062	sciatica	0.0058	leontein	0.0062
tano	0.0048	allot	0.0056	99 tc	0.0052
i97o	0.0042	references1part	0.0045	rsquared	0.0043
100with	0.0037	kiho	0.0043	alderson	0.0040
shoji	0.0035	proteinase	0.0043	linares	0.0037
governed	0.0034	ec	0.0038	${\it cubo}$ octahedral	0.0036
g1cnac	0.0034	3glucan	0.0034	twoyearold	0.0036
leontein	0.0032	boundary	0.0030	diisothiocyanat	0.0033
coherent	0.0030	bzr	0.0029	coherent	0.0031
iwt	0.0026	proteincarbohyd	0.0028	when	0.0029
ozonedepletion	0.0026	iwt	0.0026	siltclay	0.0028
salvatore	0.0025	ridines	0.0026	suhl	0.0027
suhl	0.0025	ircicopph32	0.0024	volumic	0.0024
chouroulinkov	0.0025	esc	0.0023	reoxida	0.0024
paren	0.0025	linares	0.0022	lindsay	0.0024
linares	0.0024	a3d	0.0022	op2	0.0023
flawlessly	0.0023	pmc	0.0022	85for	0.0023
sciatica	0.0022	thetase	0.0022	i97o	0.0023
cyclohexanes	0.0022	leontein	0.0022	ozonedepletion	0.0022

Topic 4 - words	Topic 4 - prob	Topic 5 - words	Topic 5 - prob
g1cnac	0.0068	guczi	0.0084
c5h9	0.0053	g1cnac	0.0073
kiho	0.0050	dioctyltin	0.0062
nndimethylamide	0.0048	12as	0.0055
experiments15	0.0048	100with	0.0047
22hydroxy	0.0047	lpy	0.0044
xining	0.0046	linares	0.0039
penetrance	0.0046	i97o	0.0034
guczi	0.0045	volumic	0.0034
cyclohexanes	0.0042	10e6	0.0034
aldopyranose	0.0034	macek	0.0033
paren	0.0033	silurian	0.0031
esc	0.0028	octagonal	0.0031
100with	0.0028	crocodile	0.0030
peonai	0.0027	paren	0.0030
noakowskiego	0.0026	leontein	0.0028
me0h	0.0026	methylhexane	0.0027
paration	0.0025	when	0.0026
when	0.0025	z4	0.0026
6570 degc	0.0025	heptanoic	0.0024

Figure 18: List of the 5 topics generated by the LDA model on articles.

Topic 1 - words	Topic 1 - prob	Topic 2 - words	Topic 2 - prob	Topic 3 - words	Topic 3 - prob
crotononitrile	0.0090	andreu	0.0141	neal	0.0323
remote	0.0063	sulfon	0.0075	isopropyltrimet	0.0276
dialkylhydantoi	0.0047	phosphatidylino	0.0072	inducers	0.0236
amineisocyanate	0.0043	$_{ m maker}$	0.0060	amineprotecting	0.0180
petronate	0.0041	isopropyltrimet	0.0058	heterophasic	0.0133
maker	0.0032	remote	0.0053	recrystallising	0.0119
sdspolyacrylami	0.0031	satterfield	0.0049	flavipes	0.0090
sulfosuccinimid	0.0030	recrystallising	0.0048	fmlp	0.0077
propanedioate	0.0030	neal	0.0042	tetraalkylphosp	0.0071
highmoisture	0.0029	pertechnetate	0.0040	ocallaghan	0.0071
isocyanatomethy	0.0028	brittleness	0.0040	topcoatings	0.0069
unseasoned	0.0028	crotononitrile	0.0037	photovolt	0.0045
hartog	0.0028	amineprotecting	0.0035	cocobetaine	0.0042
pathophysiologi	0.0026	drifting	0.0034	ceratophyllus	0.0039
fluorimetric	0.0025	dihomogammalino	0.0033	nitrofurantoin	0.0037
methylsulfonyle	0.0024	inducers	0.0032	berkshire	0.0036
behaving	0.0024	dialkylhydantoi	0.0030	wallenfels	0.0036
esterethers	0.0023	ciganek	0.0030	nnotriglycidyl	0.0035
varicose	0.0023	styreneglycidyl	0.0030	genbank	0.0035
dissoluble	0.0022	highmoisture	0.0029	carboxyphenoxy	0.0034

Topic 4 - words	Topic 4 - prob	Topic 5 - words	Topic 5 - prob
topcoatings	0.0071	trisethyl	0.0157
heterophasic	0.0054	maker	0.0128
neal	0.0052	amineprotecting	0.0066
$_{ m maker}$	0.0052	conservation	0.0064
inducers	0.0048	neal	0.0063
amineprotecting	0.0045	inducers	0.0059
recrystallising	0.0043	satterfield	0.0055
ceratophyllus	0.0042	recrystallising	0.0055
tripod	0.0041	alkoxyiminoc	0.0050
costabilisers	0.0037	delgado	0.0048
cconr	0.0037	isopropyltrimet	0.0046
varicose	0.0034	heterophasic	0.0045
isopropyltrimet	0.0032	brittleness	0.0043
satterfield	0.0032	ceftazidime	0.0041
aminco	0.0030	ocallaghan	0.0041
polycations	0.0028	ceratophyllus	0.0037
carnuba	0.0027	photovolt	0.0037
mutation	0.0027	hydroxyquinone	0.0037
holder	0.0026	polycations	0.0032
brittleness	0.0026	gequivalent	0.0031

Figure 19: List of the 5 topics generated by the LDA model on patents.

5 SCM

- Figure 21 displays the results of the synthetic control method for OSD-substitutes with 5 LDA topics for the strong, intermediate and weak criteria for assigning articles to treatment groups.
- Figure 20 displays the results of the synthetic control method for OSD-substitutes with 5 LDA topics for the strong, intermediate and weak criteria for assigning articles to treatment groups.
- Figure 23 displays the results of the synthetic control method for Annex A compounds with 5 LDA topics for the strong, intermediate and weak criteria for assigning articles to treatment groups.
- Figure 22 displays the results of the synthetic control method for Annex A compounds with 5 LDA topics for the strong, intermediate and weak criteria or assigning articles to treatment groups.
- Figure 25 displays the results of the synthetic control method for Annex B compounds with 5 LDA topics for the strong, intermediate and weak criteria for assigning articles to treatment groups.
- Figure 24 displays the results of the synthetic control method for Annex B compounds with 5 LDA topics for the strong, intermediate and weak criteria for assigning articles to treatment groups.

Figure 20: Synthetic Control for Substitutes in Patents (LDA 5 topics, weighted means, small pool)

Figure 21: Synthetic Control for Substitutes in Articles (LDA 5 topics, weighted means, small pool)

Figure 22: Synthetic Control for Annex A Compounds in Patents (LDA 5 topics, weighted means, small pool)

Figure 23: Synthetic Control for Annex A Compounds in Articles (LDA 5 topics, weighted means, small pool)

Figure 24: Synthetic Control for Annex B Compounds in Patents (LDA 5 topics, weighted means, small pool)

Figure 25: Synthetic Control for Annex B Compounds in Articles (LDA 5 topics, weighted means, small pool)

6 Robustness Checks

- Figure 26 plots the number of documents per year per group and per method.
- Table 18 displays the number of articles per group and assignment method.
- Table 19 displays the number of patents per group and assignment method.
- Table 20 displays the performance Summary of Several SCM Implementations for Patents Assuming Anticipation.
- Table 21 displays the performance Summary of Several SCM Implementations for Articles Assuming Anticipation.
- Table 22 displays the performance Summary of Several SCM Implementations for Patents, with counts (not log).
- Table 23 displays the performance Summary of Several SCM Implementations for Articles, with count (not log).
- Table 24 displays the performance Summary of Several SCM Implementations for Patents, with count (not log), for Annex A.
- Table 25 displays the performance Summary of Several SCM Implementations for Articles, with count (not log), for Annex A.
- Table 26 displays the performance Summary of Several SCM Implementations for Patents, with count (not log), for Annex B.
- Table 27 displays the performance Summary of Several SCM Implementations for Articles, with count (not log), for Annex B.
- Table 28 displays the performance Summary of Several SCM Implementations for Patents, without log.
- Table 29 displays the performance summary of Several SCM Implementations for Articles, without log.
- Table 30 displays the performance Summary of Several SCM Implementations for Patents, without log, for Annex A.
- Table 31 displays the performance Summary of Several SCM Implementations for Articles, without log, for Annex A.
- Table 32 displays the performance Summary of Several SCM Implementations for Patents, without log, for Annex B.

• Table 33 displays the performance Articles, without log, for Annex B.	of	Several	SCM	Implementations for

Figure 26: Counts per year per group and per method in articles and patents.

10 11 18)			0)		
11 8	15	30	52	102	417	2	2	2	6313	2699	6695
<u>∞</u>	18	40	57	127	438	2	3	3	6912	7238	7315
	31	45	64	143	465	1	1	∞	7359	2693	7784
18	24	37	92	158	517	3	3	10	7833	8200	8287
10	14	29	65	138	501	5	9	∞	8023	8393	8471
12	24	38	99	145	499	4	5	11	8455	8815	8904
10	21	43	09	130	499	2	2	7	8866	9248	9325
14	22	42	52	102	464	3	5	14	9234	9605	9663
21	56	51	61	132	510	ro	9	11	10070	10459	10538
23	28	57	09	127	460	က	5	13	10406	10764	10837
21	28	48	65	125	446	2	5	6	11547	11882	11950
26	39	59	73	158	533	2	3	15	12485	12880	12975
27	36	55	59	134	481	2	2	13	12466	12833	12915
23	38	99	80	143	505	5	∞	15	14025	14397	14473
32	43	85	73	128	488	ಬ	7	14	14397	14785	14850
30	45	80	84	146	503	4	ಬ	15	15063	15442	15516
23	36	29	74	159	493	4	4	19	15136	15497	15589
40	64	92	104	169	206	7	6	18	16032	16384	16472
28	39	22	88	147	529	5	11	24	17231	17644	17715
29	52	84	93	167	532	5	6	27	18076	18470	18564
29	92	143	93	164	532	7	21	40	17998	18394	18489
34	45	75	100	173	539	20	29	45	20505	20898	20986
40	64	134	98	183	547	22	46	83	20564	20983	21110
38	53	100	111	184	588	24	38	29	20984	21428	21522
40	29	118	66	164	543	21	41	75	21248	21670	21767
26	44	104	29	138	496	22	44	78	22263	22672	22773
14	31	94	89	134	508	30	61	106	23342	23776	23875
25	40	104	64	135	494	29	43	91	24622	25062	25154
24	39	84	54	128	420	25	47	80	23403	23746	23851
21	45	84	47	92	392	24	38	72	23421	23761	23833

Table 18: Number of articles per molecule groups.

ا <u>ي</u> ـ	_	ಣ	1	1	က	က	00	ນ	00	6	20	0	2	9	00	П	2	6	00	4	9	2	_	_∞
H weak	15057	13393	1375	977	1215	1356	11318	1132	1258	1314	1189	1285	1282	1527	1475	1510	1529	1568	1512	1495	1540	1649	1938	2031
H interm	15009	13331	13704	9733	12120	13527	11291	11294	12567	13120	11860	12814	12782	15238	14695	15018	15210	15603	15037	14856	15337	16398	19285	20244
S weak	64	09	65	22	99	81	58	65	99	09	20	55	61	20	106	120	168	177	180	211	202	223	249	220
S interm	ರ	4	0	4	က	4	6	7	11	6	∞	0	3	11	32	41	29	64	70	65	59	22	91	73
B weak	1040	945	892	645	747	764	695	589	208	720	712	689	929	992	740	738	682	669	591	641	616	705	695	299
${\bf B}$ interm	33	29	27	19	24	24	29	18	17	20	20	22	22	28	23	30	26	33	35	50	33	24	38	39
A weak	280	246	298	221	261	278	222	189	223	211	266	246	233	242	236	282	317	258	250	243	235	260	252	237
A interm	59	26	51	40	39	38	42	38	29	35	53	65	56	53	51	71	64	65	55	48	49	64	42	44
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999

Table 19: Number of patents per molecule groups.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
weak	unweighted	whole sample	0.10	0.01	0.64	1991
weak	weighted	small pool	0.17	0.00	1.03	1991
weak	weighted	whole sample	0.18	0.04	0.83	1990
weak	unweighted	small pool	0.22	0.00	1.07	1991

Table 20: Performance Summary of Several SCM Implementations for Patents Assuming Anticipation.

Notes: For these experiments, the treatment year is redefined as 1985 and the synthetic control constructed using data until 1983. The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the intermediate rule as outcome variable, weighted topic proportions as covariates, and the whole sample of HAPs as donor pool. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic j for molecule i is the mean proportion of topic j across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
unweighted weighted unweighted weighted	whole sample	0.34	0.029	1.25	1990
	whole sample	0.36	0.119	1.01	1990
	small pool	0.45	0.050	1.07	1990
	small pool	0.48	0.050	1.25	1990

Table 21: Performance Summary of Several SCM Implementations for Articles Assuming Anticipation.

Notes: For these experiments, the treatment year is redefined as 1985 and the synthetic control constructed using data until 1983. The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the intermediate rule as outcome variable, weighted topic proportions as covariates, and the whole sample of HAPs as donor pool. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic i for molecule i is the mean proportion of topic i across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate intermediate intermediate intermediate weak weak weak weak	unweighted weighted unweighted unweighted weighted weighted weighted unweighted	small pool small pool whole sample whole sample whole sample whole sample small pool	3.54 3.57 3.85 4.25 8.12 8.41 8.52 12.49	0.00 0.00 0.00 0.01 0.00 0.00 0.00	72.05 71.77 71.24 71.88 84.52 100.92 110.45 113.09	1990 1990 1990 1990 1992 1992 1992 1992

Table 22: Performance Summary of Several SCM Implementations for Patents, with counts (not log).

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate intermediate intermediate intermediate weak weak weak	weighted unweighted unweighted weighted weighted unweighted unweighted unweighted unweighted	small pool small pool whole sample whole sample small pool small pool whole sample whole sample	1.54 1.78 1.96 2.03 2.65 2.86 4.44 5.65	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006	35.17 35.52 35.04 35.39 44.08 42.6 45.81 46.73	1990 1990 1992 1992 1990 1990 1998 1994

Table 23: Performance Summary of Several SCM Implementations for Articles, with count (not log).

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate	weighted	small pool	12.50	0.55	-4.06	_
intermediate	unweighted	whole sample	13.24	0.43	-10.01	_
intermediate	weighted	whole sample	13.70	0.42	-9.67	_
intermediate	unweighted	small pool	14.12	0.70	-1.46	_
weak	unweighted	whole sample	22.96	0.55	-15.9	_
weak	weighted	whole sample	23.17	0.55	-9.99	_
weak	weighted	small pool	31.34	0.80	-12.52	_
weak	unweighted	small pool	32.33	0.60	-27.3	_

Table 24: Performance Summary of Several SCM Implementations for Patents, with count (not log), for Annex A.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate intermediate weak intermediate weak weak intermediate weak	unweighted weighted unweighted unweighted unweighted weighted weighted weighted	whole sample whole sample small pool whole sample small pool small pool small pool	6.93 7.36 8.02 8.24 8.27 8.63 8.72 15.51	0.218 0.200 0.260 0.300 0.276 0.250 0.250 0.700	-9.31 -10.02 4.25 -4.43 2.15 -10.03 2.71 20.58	1990 1990 1990 1990 1990 - 1990 1990

Table 25: Performance Summary of Several SCM Implementations for Articles, with count (not log), for Annex A.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate	unweighted	small pool	13.21	0.45	-19.0	_
intermediate	unweighted	whole sample	13.50	0.45	-17.5	
intermediate	weighted	whole sample	14.37	0.38	-19.42	
intermediate	weighted	small pool	18.77	0.45	-30.44	_
weak	weighted	whole sample	65.39	0.29	-131.54	_
weak	unweighted	whole sample	66.32	0.29	-123.98	_
weak	unweighted	small pool	98.83	0.25	-199.65	
weak	weighted	small pool	122.56	0.35	-243.17	_

Table 26: Performance Summary of Several SCM Implementations for Patents, with count (not log), for Annex B.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
intermediate	weighted	whole sample	37.09	0.161	-87.39	-
intermediate	unweighted	whole sample	41.97	0.166	-101.2	_
intermediate	unweighted	small pool	78.55	0.550	-197.83	_
weak	unweighted	whole sample	84.71	0.129	-248.24	_
weak	weighted	whole sample	90.61	0.169	-243.75	_
intermediate	weighted	small pool	97.29	0.600	-247.15	_
weak	weighted	small pool	191.98	0.300	-655.45	_
weak	unweighted	small pool	197.01	0.400	-640.63	_

Table 27: Performance Summary of Several SCM Implementations for Articles, with count (not log), for Annex B.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
weak	weighted	DD subset	Log Count	0.12	0.00	0.92	1990
weak	unweighted	DD subset	Log Count	0.15	0.00	0.87	1990
intermediate	weighted	DD subset	Log Count	0.45	0.10	1.67	1989
intermediate	unweighted	DD subset	Log Count	0.46	0.10	1.68	1989
intermediate	weighted	DD subset	Count	3.70	0.02	67.43	1990
intermediate	unweighted	DD subset	Count	3.86	0.02	67.48	1990
weak	weighted	DD subset	Count	6.42	0.00	101.53	1992
weak	unweighted	DD subset	Count	8.06	0.00	82.73	1992

Table 28: Performance Summary of Several SCM Implementations for Patents, without log.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
intermediate	unweighted	DD subset DD subset	Log Count	0.40	0.025	1.03	1992
intermediate	weighted		Log Count	0.44	0.025	0.99	1990
weak	weighted		Log Count	0.48	0.262	0.79	1990
weak	unweighted	DD subset DD subset DD subset	Log Count	0.51	0.366	0.72	1990
intermediate	unweighted		Count	2.82	0.000	30.63	1992
intermediate	weighted		Count	3.97	0.000	27.59	1992
weak weak	unweighted weighted	DD subset DD subset	Count Count	5.37 5.41	0.000 0.000	$31.68 \\ 33.68$	_

Table 29: Performance Summary of Several SCM Implementations for Articles, without log.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
weak	unweighted	DD subset	Log Count	0.16	0.75	0.2	1992
weak	weighted	DD subset	Log Count	0.16	1.00	-0.09	_
intermediate	weighted	DD subset	Log Count	0.23	0.67	0.01	_
intermediate	unweighted	DD subset	Log Count	0.23	0.75	-0.07	_
intermediate	weighted	DD subset	Count	14.55	0.33	-28.8	_
intermediate	unweighted	DD subset	Count	15.86	0.88	-3.67	_
weak	weighted	DD subset	Count	31.62	0.62	-31.27	_
weak	unweighted	DD subset	Count	32.47	0.75	-21.03	_

Table 30: Performance Summary of Several SCM Implementations for Patents, without log, for Annex A.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
intermediate	weighted	DD subset	Log Count	0.31	0.333	0.37	1990
weak	unweighted	DD subset	Log Count	0.31	0.500	0.24	1990
weak	weighted	DD subset	Log Count	0.32	0.250	0.64	1990
intermediate	unweighted	DD subset	Log Count	0.32	0.348	0.23	1990
intermediate	weighted	DD subset	Count	9.40	0.375	11.55	1990
intermediate	unweighted	DD subset	Count	9.96	0.348	11.49	1990
weak	unweighted	DD subset	Count	13.21	0.458	11.76	_
weak	weighted	DD subset	Count	13.59	0.333	26.28	1990

Table 31: Performance Summary of Several SCM Implementations for Articles, without log, for Annex A.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
weak	unweighted	DD subset	Log Count	0.12	0.44	-0.21	_
weak	weighted	DD subset	Log Count	0.13	0.30	-0.24	_
intermediate	unweighted	DD subset	Log Count	0.17	0.39	-0.22	_
intermediate	weighted	DD subset	Log Count	0.24	0.82	-0.2	_
intermediate	unweighted	DD subset	Count	14.03	0.50	-20.97	_
intermediate	weighted	DD subset	Count	17.08	0.50	-18.95	_
weak	weighted	DD subset	Count	114.58	0.33	-216.19	_
weak	unweighted	DD subset	Count	116.97	0.37	-205.94	_

Table 32: Performance Summary of Several SCM Implementations for Patents, without log, for Annex B.

Rule	Topic Means	Donor Pool	Outcome	Pre RMSPE	p-value	ATE	Year
intermediate	weighted	DD subset	Log Count	0.22	0.000	-0.54	_
intermediate	unweighted	DD subset	Log Count	0.22	0.067	-0.54	_
weak	unweighted	DD subset	Log Count	0.28	0.667	-0.08	_
weak	weighted	DD subset	Log Count	0.28	0.857	-0.08	_
intermediate	unweighted	DD subset	Count	40.47	0.200	-120.52	_
intermediate	weighted	DD subset	Count	41.99	0.267	-133.11	_
weak	weighted	DD subset	Count	116.41	0.905	-44.25	1988
weak	unweighted	DD subset	Count	116.41	0.905	-44.25	1988

Table 33: Performance Summary of Several SCM Implementations for Articles, without log, for Annex B.

7 Annex A and B compounds

- Table ?? displays the performance summary of the main SCM implementations for patents for Annex A.
- Table 35 displays the performance summary of the main SCM implementations for articles for Annex A.
- Table 36 displays the performance summary of the main SCM implementations for patents for Annex B.
- Table 37 displays the performance summary of the main SCM implementations for articles for Annex B.
- Figure 27 displays the SCM graphs for Annex A compounds using the weak rule (LDA 5 topics)
- Figure 28 displays the SCM graphs for Annex B compounds using the weak rule (LDA 5 topics, unweighted means)

Table 34: Performance summary of the main SCM implementations for patents for Annex A.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
weak	weighted	whole sample	0.10	0.43	-0.0	_
weak	unweighted	whole sample	0.11	0.51	-0.01	_
weak	unweighted	small pool	0.14	0.80	-0.09	_
weak	weighted	small pool	0.14	0.85	-0.03	_
intermediate	unweighted	whole sample	0.19	0.60	-0.02	_
intermediate	weighted	whole sample	0.19	0.62	-0.01	_
intermediate	weighted	small pool	0.20	0.55	0.07	_
intermediate	unweighted	small pool	0.21	0.70	0.09	_

Notes: The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the weak rule as outcome variable. Using weighted or unweighted topic proportions as covariates does change much the pre-RMSPE. Using the whole sample of HAPs as donor pool or only the diff-in-diff subset yields similar results. The p-values are the best fitted synthetic controls indicate significance at the 95% level since p-values are smaller than 0.05. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic j for molecule i is the mean proportion of topic j across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Table 35: Performance summary of the main SCM implementations for articles for Annex A.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
weak	unweighted	small pool	0.15	0.250	-0.12	_
weak	unweighted	whole sample	0.15	0.471	0.08	_
weak	weighted	whole sample	0.16	0.296	0.18	_
intermediate	unweighted	small pool	0.21	0.550	-0.03	1990
intermediate	weighted	small pool	0.22	0.200	0.04	1990
intermediate	unweighted	whole sample	0.22	0.395	0.01	1990
intermediate	weighted	whole sample	0.24	0.435	0.05	1990
weak	weighted	small pool	0.25	0.400	0.33	1990

Notes: The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the intermediate rule as outcome variable, weighted topic proportions as covariates, and the whole sample of HAPs as donor pool. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic j for molecule i is the mean proportion of topic j across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Table 36: Performance summary of the main SCM implementations for patents for Annex B.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
weak	weighted	whole sample	0.08	0.14	-0.18	_
weak	unweighted	whole sample	0.08	0.17	-0.16	_
weak	unweighted	small pool	0.12	0.25	-0.23	_
weak	weighted	small pool	0.15	0.35	-0.28	_
intermediate	unweighted	small pool	0.16	0.45	-0.17	_
intermediate	unweighted	whole sample	0.16	0.58	-0.13	_
intermediate	weighted	whole sample	0.17	0.61	-0.14	_
intermediate	weighted	small pool	0.24	0.40	-0.32	_

Notes: The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the weak rule as outcome variable. Using weighted or unweighted topic proportions as covariates does change much the pre-RMSPE. Using the whole sample of HAPs as donor pool or only the diff-in-diff subset yields similar results. The p-values are the best fitted synthetic controls indicate significance at the 95% level since p-values are smaller than 0.05. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic j for molecule i is the mean proportion of topic j across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Table 37: Performance summary of the main SCM implementations for articles for Annex B.

Rule	Topic Means	Donor Pool	Pre RMSPE	p-value	ATE	Year
weak	unweighted	whole sample	0.15	0.036	-0.32	_
weak	weighted	whole sample	0.16	0.112	-0.28	_
intermediate	weighted	whole sample	0.18	0.188	-0.23	_
intermediate	unweighted	whole sample	0.19	0.077	-0.36	_
weak	weighted	small pool	0.38	0.200	-0.86	_
weak	unweighted	small pool	0.40	0.300	-0.86	_
intermediate	unweighted	small pool	0.43	0.250	-0.72	_
intermediate	weighted	small pool	0.46	0.350	-0.78	_

Notes: The table is ranked according to the magnitude of the pre-RMPSE with smaller pre-RMPSE at the top of the table. The lower the pre-RMPSE, the better the fit between the synthetic control and the treated unit over pre-treatment years. Hence, the lower the pre-RMPSE, the more credible it is that the synthetic control appropriately proxies the counterfactual. The best implementation seems to call for using Log Count from the intermediate rule as outcome variable, weighted topic proportions as covariates, and the whole sample of HAPs as donor pool. "Rule" corresponds to the rule used for assigning documents to molecule. "Donor Pool" indicates what sample of HAPs is used in the SCM procedure. For "subset", the sample of HAPs used corresponds to the subset found to have the pre-treatment slope closest to the treated unit. "Topic Means" indicates the procedure for aggregating the topic proportions at the molecule level. If "weighted", the calculated proportion of topic j for molecule i is the mean proportion of topic j across all documents mentioning molecule i, weighted by the number of times the molecule appears in the document. "Outcome" is either the count of documents, or the log count. Since the RMSPE calculated on a logarithmized variable is necessarily smaller than when the variable is not logarithmized, I compute the log value of the Pre RMSPEs when the outcomes are the non-logged counts so to provide a way to gauge magnitude differences with the logged counts.

Figure 27: Synthetic control for Annex A compounds using the weak rule (LDA 5 topics) Notes: Figures 27a and 27b display the results of the synthetic control method for Annex A compounds for patents and articles. In all cases, the method is implemented using the topic proportions of a LDA model with 5 topics and the weak rule for assigning documents to molecule groups. Weighted means of topic proportions are used for patent and unweighted means for articles because these are the specifications that yielded lowest pre-RMPSE. The graphs on the left-hand side represent the raw effect, that is the observed time series of the treated group along with the time series of the constructed control. On the right-hand sides are shown the placebo tests, the non-parametric tests to evaluate the significance of the results; black lines show the effect on the treated group relative to the control group, while each gray line is a placebo test performed on an unit drawn from the donor pool.

(b) Articles: raw effect (left) and placebo tests (right)

Figure 28: Synthetic control for Annex B compounds using the weak rule (LDA 5 topics, unweighted means)

Notes: Figures 28a and 28b display the results of the synthetic control method for Annex B compounds for articles and patents. In all cases, the method is implemented using the topic proportions of a LDA model with 5 topics and the weak rule for assigning documents to molecule groups. Weighted means of topic proportions are used for patent and unweighted means for articles because these are the specifications that yielded lowest pre-RMPSE. The graphs on the left-hand side represent the raw effect, that is the observed time series of the treated group along with the time series of the constructed control. On the right-hand sides are shown the placebo tests, the non-parametric tests to evaluate the significance of the results; black lines show the effect on the treated group relative to the control group, while each gray line is a placebo test performed on an unit drawn from the donor pool.

8 Others

- Figure 29 is an example of a patent granted to DuPont in 1982.
- Figure 30 is an example of a patent granted to DuPont in 1998.

_	nited S	States Patent [19]	[11] 4,311,863 [45] Jan. 19, 1982
[54]	PROCESS 1,1,1,2-TE	FOR THE MANUFACTURE OF TRAFLUOROETHANE	FOREIGN PATENT DOCUMENTS
[75]	Inventor:	William H. Gumprecht, Wilmington, Del.	697404 11/1964 Canada 570/228 OTHER PUBLICATIONS
[73]	Assignee:	E. I. Du Pont de Nemours & Company, Wilmington, Del.	Hudlicky, Chem. Org. Fluorine Compounds, p. 104 (1961).
[21]	Appl. No.:	158,464	Primary Evanium Dallant E. C.
[22]	Filed:	Jun. 11, 1980	Primary Examiner—Delbert E. Gantz Assistant Examiner—Joseph A. Boska
[51]	Int. Cl.3	C07C 17/20	Attorney, Agent, or Firm-F. J. Crowley
[52] [58]	U.S. Cl	570/170 arch 570/170, 162, 123, 163	[57] ABSTRACT
[56]		References Cited	2-Chloro- and 2-bromo-1,1,1-trifluoroethane react with potassium, cesium or rubidium fluoride in aqueous solu-
	U.S. 1	PATENT DOCUMENTS	tion at elevated temperature under autogenous pressure
3	3,644,545 2/	1972 Buchanan 260/653.7	to produce 1,1,1,2-tetrafluoroethane.
4	4,132,741 1/1	1978 Bell	8 Claims, No Drawings

Figure 29: Snapshot of a patent

References

Benedick, Richard Elliot (2009). Ozone Diplomacy: New Directions in Safeguarding the Planet. Harvard University Press.

Parson, Edward A (2003). Protecting the Ozone Layer: Science and Strategy. Oxford University Press.

Figure 30: Snapshot of a patent