

Malware Analysis Chapter 0: Malware Analysis Primer

王志

zwang@nankai.edu.cn updated on 5th Sep. 2021

College of Cyber Science Nankai University 2021/2022

计算机病毒及其防治技术

- 学分: 3
- 教学:
 - 2021-2022学年第一学期(1-17周)
 - 星期一 8: 00-9: 40 , 津南公教楼A区114
- 实验:
 - 2021-2022学年第一学期(3-17周)
 - 星期一 12: 00-13: 40, 津南实验楼A区210

计算机病毒及其防治技术

• 授课教师: 王志

• 办公室: 网安学院605

• 邮箱: <u>zwang@nankai.edu.cn</u>

- Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
 - Michael Sikorski and Andrew Honig

恶意代码分析实战。日新月异

课程教材和拓展阅读资料

- 逆向工程核心原理,【韩】李承远 著,武传海 译,人民邮电出版社;
- •加密与解密,段钢编著,电子工业出版社;
- Intel汇编语言程序设计,Assembly Language for Intel-Based Computers(Fifth Edition),【美】Kip R. Irvine著,温玉杰、梅广宇、罗云彬等译,电子工业出版社;

课程教材和拓展阅读资料

- Practical Reverse Engineering, Bruce Dang, Alexandre Gazet and Elias Bachaalany, Wiley;
- IDA Pro 权威指南(第二版),【美】Chris Eagle 著,石华耀、段桂菊译,人民邮电出版社
- 有趣的二进制,【日】爱甲健二 著,周自恒 译, 人民邮电出版 社

学堂在线(xuetangx.com)

课程介绍

计算机病毒分析课程是信息安全专业的一门基础课程。通过课程学习,学生将深入了解操作系统的内部工作机制,进行计算机病毒的逆向分析,剖析病毒的内部逻辑和恶意行为,为进一步从事信息安全相关的工作打下坚实基础。

学堂在线(xuetangx.com)

- (2021秋) 计算机病毒分析(慕课)
 - 课前预习视频
 - 课后讨论
 - 课后练习题
 - 实验报告提交

- PART1: Basic Analysis
 - Chapter1: Basic Static Analysis
 - Chapter2: Malware Analysis in Virtual Machines
 - Chaper3: Basic Dynamic Analysis
 - ++ Yara

- PART 2: Advanced Static Analysis
 - Chapter 4: A Crash Course in x86 Disassembly
 - Chapter 5: IDA Pro
 - Chapter 6: Recognizing C Code Constructs in Assembly
 - Chapter 7: Analyzing Malicious Windows Programs
 - ++ IDA Python

- PART 3: Advanced Dynamic Analysis
 - Chapter 8: Debugging
 - Chapter 9: OllyDbg
 - Chapter 10: Kernel Debugging with WinDbg
 - + Cuckoo

- PART 4: Malware Functionality
 - Chapter 11: Malware Behavior
 - Chapter 12: Covert Malware Launching
 - Chapter 13: Data Encoding
 - Chapter 14: Malware-Focused Network Signature
 - ++ Machine Learning Techniques

- The goals of malware analysis
- Malware analysis techniques
- Types of Malware
- General rules for malware analysis

The Goals of Malware Analysis

AVTEST Total Malware

Total malware

Every day, over 350,000 new malware and potentially unwanted applications.

允公允帐日新月异

https://threatmap.checkpoint.com/

たなた機 日 新月 月 https://cybermap.kaspersky.com/

南阁大學

Nankai University

https://map.lookingglasscyber.com/

九公元化 日科月升

下面哪些系统或设备可能被计算机病毒感染?

- A 计算机、智能手机
- B 打印机、网络路由器
- **」** 摄像头、智能家居设备
- 智能汽车、智能电网、智慧城市

允公允继日新月岳 Malware Used as a Cyber Weapon Against Critical Infrastructure

Nankai University

Machine Learning

Machine Learning and Detection Models

Machine Learning is Eating the World

ML is not a panacea

Machine Learning is Eating the World

恶意代码与人工智能系统的博弈

机器学习的前提假设是数据分布具有稳定性

Concept Drift

(概念漂移)

 $\exists x : p_{t_0}(x, y) \neq p_{t_1}(x, y)$

机器学习加快了计算机病毒的进化过程

100% security is not exist

- Polymorphic and Metamorphic
- Mimicry Attack
- Gradient Descent Attack
- Poisoning Attack

The Goals of Malware Analysis

- Exactly what happened
- Ensure you've located all infected machines and files
- Dissect the suspect files
- Find signatures for detection
- Build detection models based on machine learning
- How to measure and contain the damage

允公允然 日新月是 Dissecting

- Dissecting malware to understand
 - How it works
 - How to identify it
 - How to defeat or eliminate it
- A critical part of incident response

Signatures

- Host-based signatures
 - Identify files or registry keys on a victim computer that indicate an infection
 - Focus on what the malware did to the system, not the malware itself
 - Different from antivirus signatures
- Network signatures
 - Detect malware by analyzing network traffic
 - More effective when made using malware analysis

Yara引擎

```
rule silent_banker : banker
    meta:
         description = "This is just an example"
         threat_level = 3
         in_the_wild = true
    strings:
         a = \{6A \ 40 \ 68 \ 00 \ 30 \ 00 \ 00 \ 6A \ 14 \ 8D \ 91\}
         b = \{8D \ 4D \ BO \ 2B \ C1 \ 83 \ CO \ 27 \ 99 \ 6A \ 4E \ 59 \ F7 \ F9\}
         $c = "UVODFRYSIHLNWPEJXQZAKCBGMT"
    condition:
         $a or $b or $c
```

Identify and classify malware families based on textual or binary patterns

Malware Analysis Techniques

Malware Analysis Technique

	Static Analysis	Dynamic Analysis
Basic Analysis	Basic Static	Basic Dynamic
Advanced Analysis	Advanced Static	Advanced Dynamic

Static vs. Dynamic Analysis

- Static Analysis
 - Examines malware without running it
 - Tools: VirusTotal, strings, a disassembler like IDA Pro
- Dynamic Analysis
 - Run the malware and monitor its effect
 - Use a virtual machine and take snapshots
 - Tools: RegShot, Process Monitor, Process Hacker, CaptureBAT
 - RAM Analysis: Mandant Redline and Volatility

- Basic static analysis
 - View malware without looking at instructions
 - Tools: VirusTotal, strings
 - Quick and easy but fails for advanced malware and can miss important behavior
- Basic dynamic analysis
 - Easy but requires a safe test environment
 - Not effective on all malware

- Advanced static analysis
 - Reverse-engineering with a disassembler
 - Complex, requires understanding of assembly code, constructs, OS concepts
- Advanced Dynamic Analysis
 - Run code in a debugger
 - Examines internal state of a running malicious executable

Backdoor

Allows attacker to control the system

Botnet

• All infected computers receive instructions from the same Command-and-Control (C&C) server

Downloader

- Malicious code that exists only to download other malicious code
- Used when attacker first gains access

- Information-stealing malware
 - Sniffers, keyloggers, password hash grabbers
- Launcher
 - Malicious program used to launch other malicious programs
 - Often uses nontraditional techniques to ensure stealth or greater access to a system
- Rootkit
 - Malware that conceals the existence of other code
 - Usually paired with a backdoor

允公允能日新月异

- Scareware
 - Frightens user into buying something

- Spam-sending malware
 - Attacker rents machine to spammers
- Worms or viruses
 - Malicious code that can copy itself and infect additional computers
- Ransomware
 - encrypt victim's data as hostage
 - ask for ransom to recover the data

- Backdoor: remote access
- Botnet: a army
- Downloader: install other malware
- Lancher: run other malware
- Rootkit: conceal malware
- Worm or Virus: recruit new machines
- Trojan or Ransomware: make money

允公允能日新月异

Mass vs. Targeted Malware

- Mass malware
 - Intended to infect as many machines as possible
 - Most common type
- Targeted malware (APT)
 - Tailored to a specific target
 - Very difficult to detect, prevent, and remove
 - Requires advanced analysis
 - Ex: Stuxnet

General Rules for Malware Analysis

General Rules for Malware Analysis

- Don't Get Caught in Details
 - You don't need to understand 100% of the code
 - Focus on key features
- Try Several Tools
 - If one tool fails, try another
 - Don't get stuck on a hard issue, move along
- Malware authors are constantly raising the bar
 - cat-and-mouse game

General Rules

• If anything is certain, it is that change is certain. The world we are planning for today will not exist in this form tomorrow.

-- Philip Crosby

