

Question

How Can we prove

0 is an eigenvalue of $A \iff A$ is singular (*)0 is Not an eigenvalue of $A \iff A$ is non-singular.

Recall the definition: $det(\lambda I - A) = 0 \iff \lambda$ is an eigenvalue of $A \cdot 0$ " \Rightarrow " of (*).

If 0 is an eigenvalue of A, det(0.I-A)=0

 \Rightarrow det (-A) = 0

 \Rightarrow det(A)=0

-) A is singular.

Ø "⇐ " of (*).

If A is singular, det (A) = 0

 \Rightarrow det (-A) = 0

=) det(0.I-A)=0

=) 0 is an eigenvalue of A.

pusting 10 and 20 together to get,

0 is an eigenvalue of $A \iff A$ is singular (*)

Since we have proved (*) is true, the contraposition of (*) should be also true, which is,

O is Not an eigenvalue of A (A is non-singular . 1991