Partiel 2022/2023

Lundi 7 novembre 2022, 16h-18h Documents et internet non-autorisés Faites ce que vous pouvez, et ne vous en faites pas Il n'est pas nécessaire de tout traiter pour avoir 20/20

Exercice 1 (Topologie codénombrable). Soit X un ensemble non dénombrable. On note \mathcal{D}_0 l'ensemble des parties de X de complémentaire au plus dénombrable et \mathcal{D} la réunion $\mathcal{D}_0 \cup \{\emptyset\}$.

- 1. Montrer que \mathcal{D} est une topologie sur X.
- 2. Cette topologie est-elle séparée?
- 3. Soit $x \in X$.
 - (a) Soit $(V_i)_{i \in I}$ une base de voisinage de x. Montrer que $\bigcap_{i \in I} V_i = \{x\}$. (On dit que X est accessible, ou T1).
 - (b) Montrer que *x* ne possède pas de base de voisinage dénombrable.
- 4. Montrer que tout suite convergente à valeurs dans *X* est stationnaire.
- 5. On suppose, uniquement dans cette question, que $X = \mathbb{R}$.
 - (a) Montrer que $\mathrm{Id}:(X,\mathcal{D})\to(\mathbb{R},|\cdot|)$ est séquentiellement continue.
 - (b) Est-elle continue?
- 6. Montrer que *X* est connexe.
- 7. Soit $A \subset X$ une partie quasi-compacte de X.
 - (a) Montrer que A est finie.
 - (b) L'espace topologique A, muni de la topologie induite, est-il compact?

Exercice 2 (Une conséquence du théorème de Baire).

Soit $f:[0,+\infty)\to\mathbb{R}$ continue telle que $\lim_{n\to\infty}f(nx)=0$ pour tout x>0. Le but est d'établir que $\lim_{x\to\infty}f(x)=0$.

- 1. Fixons $\varepsilon > 0$. Montrer que pour tout entier $n \ge 1$, $A_n := \{x \ge 0 : \forall k \ge n, |f(kx)| \le \varepsilon\}$ est fermé dans $[0, +\infty)$.
- 2. En déduire que pour tout $\varepsilon > 0$, il existe n tel que A_n contient un intervalle ouvert non-vide.
- 3. En déduire que $\lim_{x\to\infty} f(x) = 0$.

Exercice 3 (Compacité et connexité de groupes de matrices). On munit $\mathcal{M}_n(\mathbb{R}) \equiv \mathbb{R}^{n \times n}$ de la topologie usuelle.

- 1. Montrer que le groupe linéaire $GL_n(\mathbb{R}) := \{M \in \mathcal{M}_n(\mathbb{R}) : \det(M) \neq 0\}$ n'est ni compact ni connexe.
- 2. Montrer que le groupe orthogonal $O_n(\mathbb{R}) := \{M \in \mathcal{M}_n(\mathbb{R}) : MM^\top = I_n\}$ est compact.
- 3. Montrer que $O_n(\mathbb{R})$ n'est pas connexe.
- 4. Montrer que le groupe spécial orthogonal $SO_n(\mathbb{R}) := \{M \in O_n(\mathbb{R}) : \det(M) = 1\}$ est connexe par arcs. Indication : $M \in SO_n(\mathbb{R})$ ssi $\exists P \in O_n(\mathbb{R})$ t.q. $M = P \operatorname{Diag}(R(\theta_1), \dots, R(\theta_r), I_{n-2r})P^\top$, $R(\theta) := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.
- 5. Montrer que $O_n(\mathbb{R})$ a deux composantes connexes qui le sont par arcs.
- 6. Déterminer les composantes connexes de $\operatorname{GL}_n(\mathbb{R})$ et montrer qu'elles le sont par arcs. Indication : si $M \in \operatorname{GL}_n(\mathbb{R})$ alors $M = DT_{i_1,j_1}(\lambda_1) \cdots T_{i_r,j_r}(\lambda_r)$, avec $D := \operatorname{Diag}(1,\ldots,1,\det(M))$, $T_{i,j}(\lambda) := I_n + \lambda E_{i,j}$, et $(E_{i,j})_{i',j'} := \mathbf{1}_{(i',j')=(i,j)}$, pour des réels $\lambda_1,\ldots,\lambda_r$, et des entiers $1 \le r \le n, \ 1 \le i_1 \ne j_1,\ldots,i_r \ne j_r \le n$.

Exercice 4 (Groupes topologiques). On dit qu'un groupe (G,\cdot) est un groupe topologique, s'il est muni d'une topologie qui rend continues les applications $(x,y) \in G^2 \mapsto xy$ et $x \in G \mapsto x^{-1}$. Dans tout l'exercice, on fixe un groupe topologique G de neutre 1 et H un sous-groupe de G. On rappelle que G/H désigne l'ensemble des classes d'équivalence par l'action à gauche de H sur G i.e. $g_1 \sim g_2 \iff g_1^{-1}g_2 \in H$, et que ces classes sont de la forme gH.

1. Montrer que H est ouvert dans G si et seulement si $1 \in \mathring{H}$.

- 2. Montrer que si *H* est ouvert, alors *H* est fermé.
- 3. Montrer que G est séparé si et seulement si $\{1\}$ est fermé.
- 4. Montrer que si H est fermé, alors G/H est séparé.
- 5. On note G_0 la composante connexe de 1. Montrer que G_0 est un sous-groupe fermé et distingué. On rappelle qu'un sous-groupe est distingué si pour tous $g \in G$, $h \in G_0$, $ghg^{-1} \in G_0$.
- 6. Montrer que si H et G/H sont connexes, alors G est connexe.

Exercice 5 (Sous-groupes compacts de $GL_n(\mathbb{R})$). Dans ce problème, on va montrer que les sous-groupes compacts de $GL_n(\mathbb{R})$ sont conjugués à un sous-groupe de $O_n(\mathbb{R})$.

Rappels et notations : On fixe un entier $n \in \mathbb{N}^*$.

- On note $O_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}); AA^\top = I_n\}$ le sous-groupe de $GL_n(\mathbb{R})$ constitué des matrices orthogonales.
- On dit que deux sous-groupes G et H de $GL_n(\mathbb{R})$ sont conjugués s'il existe $g \in GL_n(\mathbb{R})$, $G = gHg^{-1}$.
- Si *E* est un \mathbb{R} -espace vectoriel, une partie $A \subset E$ est dite convexe si pour tout $x, y \in A, \lambda \in [0, 1], \lambda x + (1 \lambda)y \in A$.
- Si E est un \mathbb{R} -espace vectoriel et $A \subset E$, l'enveloppe convexe de A, noté conv(A) est l'intersection de tous les convexes contenant A.
- On note $S_n(\mathbb{R})$ l'ensemble des matrice symétriques réelles, $S_n^+(\mathbb{R})$ celles qui sont positives et $S_n^{++}(\mathbb{R})$ les matrices symétriques définies positives.
- 1. On fixe un espace vectoriel normé *E*.
 - (a) Si $A \subset E$, montrer que

$$conv(A) = \left\{ \sum_{i=1}^{p} \lambda_i x_i; p \in \mathbb{N}, x_1, \dots x_p \in A, \lambda_i \ge 0, \sum_{i=1}^{p} \lambda_i = 1 \right\}$$

(b) Démontrer le théorème de Carathéodory : si E est de dimension n et $A \subset E$, alors

$$conv(A) = \left\{ \sum_{i=1}^{n+1} \lambda_i x_i; x_1, \dots x_{n+1} \in A, \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1 \right\}$$

- (c) En déduire que si E est de dimension n et si A est compacte, alors conv(A) est compacte.
- (d) (Bonus). On suppose désormais que E est un espace de Banach. Montrer que si $A \subset E$ est compacte, alors $\overline{\text{conv}(A)}$ est compacte. On pourra montrer qu'elle est précompacte (= pour tout $\varepsilon > 0$, admet un ε -réseau.)
- 2. Dans cette question, on souhaite démontrer le **théorème de Kakutani :** $Soit(E, \|\cdot\|)$ un espace euclidien, $K \subset E$ une partie convexe compacte non vide et $G \subset GL(E)$ un sous-groupe compact tel que pour tout $g \in G$, $g(K) \subset K$. Alors, il existe $x \in K$ tel que pour tout $g \in G$, g(x) = x.
 - (a) On définit sur E une application $N: E \to \mathbb{R}_+$ par $N(x) := \sup_{g \in G} \|g(x)\|$
 - i. Montrer que N est une norme sur E.
 - ii. Soit $x, y \in E$. Montrer que $N(x + y) = N(x) + N(y) \iff \exists \lambda \ge 0, x = \lambda y$ ou $y = \lambda x$.
 - (b) Montrer qu'il existe un unique $x \in K$ tel que $N(x) = \inf_{y \in K} N(y)$.
 - (c) Conclure.
- 3. On fixe un sous-groupe $G \subset GL_n(\mathbb{R})$ compact et on veut montrer qu'il est conjugué à un sous-groupe de $O_n(\mathbb{R})$.
 - (a) En appliquant le théorème de Kakutani, montrer qu'il existe $B \in S_n^{++}(\mathbb{R})$ telle que $\forall g \in G, gBg^{\top} = B$. *Indication: on pourra considérer* $A = \{BB^{\top}, B \in G\}$ *et* K = conv(A).
 - (b) Démontrer que G est conjugé à un sous groupe de $O_n(\mathbb{R})$. On rappelle qu'il existe $R \in S_n^{++}(\mathbb{R})$ tel que $R^2 = B$.