TA Review 3

Schedule

1. Homework 3

VaR and CVaR

2. Performance Evaluation, Hedging, Tracking

- Collinearity
- Performance Evaluation
- Hedging vs. Tracking: Alpha?

3. Tips for the Midterm

- Flexible functions
- Unittests

Homewor 3

Factor decomposition of return variation

A Linear Factor Decomposition (LFD) of \tilde{r}^i onto the factor \mathbf{x}_t is given by the regression,

$$\tilde{r}_t^i = \alpha + \boldsymbol{\beta}^{i,\mathsf{x}} \mathbf{x}_t + \epsilon_t$$

- ▶ The variation in returns is decomposed into the variation explained by the benchmark, x_t and by the residual, ϵ_t .
- These factors, x, in the LFD should give a high R-squared in the regression if they really explain the variation of returns well.

The problem of collinearity

When should we be most worried about collinearity?

- Evaluating performance
 - Tracking
 - Hedging

Evaluating Performance

$$r_t = \alpha + \beta r_{t,SPY} + \beta r_{t,IEF} + \varepsilon_t$$

What is alpha in this regression?

- Timing
- Selection
- Luck? Problem of small sample sizes

Is this alpha any good? Look at IR and \mathbb{R}^2

Hedging vs. Tracking

Hedge: **invest** in r_t

Tracking: **no access** to r_t

Hedge: remove unwanted risk from "factors"

Tracking: **get** risk from r_t investing in "factors"

	Hedge	Track
Where do invest?	Buy left side, sell right	Buy right side
Volatility of the error	Basis risk	Tracking error
If I include alpha, what should I hope for in the out-of-sample?	Big alpha, small error	Small alpha, small error

Hedging vs. Tracking

Should I include alpha?

Include an intercept?

In regression for optimal hedge ratio, should we include a constant, (alpha?) Depends on our purpose...

- ▶ Do we want to explain the total return (including the mean) or simply the excess-mean return?
- In short samples, mean returns may be estimated inaccurately, (whether in r^i or \tilde{r}^i ,) so we may want to include α (eliminate means) to focus on explaining variation.

Regression Simulation