

Binary Adder/Subtractor

4-bit Binary Adder

This is also called Ripple Carry Adder, because of the construction with full adders are connected in cascade.

Subscript i:	3	2	1	0	Coll II
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

4-bit Binary Adder

4-bit BinaryAdder-Subtractor

 $M = 1 \rightarrow subtractor$; $M = 0 \rightarrow adder$

Full Adder

Combinational circuit that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

The truth table for the full adder is listed below:

x	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$= x y z = (x y) z$$

$$C = x'yz + xy'z + xyz' + xyz$$

$$= z(x'y + xy') + xy(z' + z)$$

$$= (x y) z + xy$$

Implementation of full adder

Thank You