19 Фільтри

Окрім збіжності напрямленостей, існує ще один вид узагальненої збіжності — збіжність фільтрів. Ця ідея базується на альтернативному означенні збіжної послідовності: послідовність x_n називається збіжною до точки x_0 , якщо для будь-якого околу U цієї точки доповнення до прообразу $f^{-1}(U)$ є скінченною підмножиною з \mathbb{N} , де $f: \mathbb{N} \to X$ — відображення, що задає послідовність. Якщо множину \mathbb{N} замінити абстрактним простором E, в якому виділено сім'ю підмножин F, що має певні загальні властивості, то можна дати розумне означення узагальненої збіжності.

§19.1 Фільтри

Означення 19.1. Сім'я підмножин \mathfrak{F} множини X називається фільтром на X, якшо:

- 1. Сім'я \mathfrak{F} непорожня.
- 2. $\varnothing \notin \mathfrak{F}$.
- 3. Якщо $A, B \in \mathfrak{F}$, то $A \cap B \in \mathfrak{F}$.
- 4. Якщо $A \in \mathfrak{F}$, $A \subset B \subset X$, то $B \in \mathfrak{F}$.

Наслідок 19.1

 $X \in \mathfrak{F}$.

Наслідок 19.2

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \in \mathfrak{F}.$$

Наслідок 19.3

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \neq \varnothing.$$

Приклад 19.1

Система Ω_x усіх околів точки x у топологічному просторі X є фільтром.

§19.2 Бази фільтрів

Означення 19.2. Непорожня сім'я підмножин $\mathfrak D$ множини X називається базою фільтра, якщо:

- 1. $\varnothing \notin \mathfrak{D}$;
- 2. $\forall A, B \in \mathfrak{D} \ \exists C \in \mathfrak{D} : C \subset A \cap B$.

Означення 19.3. Нехай $\mathfrak D$ — база фільтра. Фільтром, що **породжений** базою $\mathfrak D$, називається сім'я $\mathfrak F$ усіх множин $A\subset X$, що містять як підмножину хоча б один елемент бази $\mathfrak D$.

Вправа 19.1. Довести, що фільтр, породжений базою, дійсно є фільтром.

Доведення. Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні, адже фільтр містить як підмножину свою непорожню базу, і порожня множина не є надмножиною ніякоїмножини окрім порожньої, а база її не містить. Перевіримо тепер другі дві аксіоми.

Перетин: якщо $A, B \in \mathfrak{F}$ то $\exists C, D \in \mathfrak{D}$ такі, що $C \subset A$ і $D \subset B$, а тоді $\exists E \in \mathfrak{D}$: $E \subset C \cap D$, і тому $E \subset A \cap B$ і, як наслідок, $A \cap B \in \mathfrak{F}$.

Надмножина: якщо $A \in \mathfrak{F}$ то $\exists B \in \mathfrak{D} \colon B \subset A$, а тому $B \subset C$ для усіх $C \supset A$ і, як наслідок, $C \in \mathfrak{F}$.

Приклад 19.2

Якщо X — топологічний простір, $x_0 \in X$, \mathfrak{D} — сукупність усіх відкритих множин, що містять x_0 , то фільтр, породжений базою \mathfrak{D} , є фільтром \mathfrak{M}_{x_0} , що складається з усіх околів точки x_0 .

Означення 19.4. Нехай $\{x_n\}_{n=1}^{\infty}$ — послідовність елементів множини X. Тоді сім'я $\mathfrak{D}_{\{x_n\}}$ "хвостів" послідовності $\{x_n\}_{n=N}^{\infty}$ є базою фільтра. Фільтр $\mathfrak{F}_{\{x_n\}}$, породжений базою $\mathfrak{D}_{\{x_n\}}$, називається фільтром, **асоційованим** з послідовністю $\{x_n\}_{n=1}^{\infty}$.

§19.3 Образи фільтрів і баз фільтрів

Теорема 19.1

Нехай X,Y — множини, $f:X\to Y$ — функція, $\mathfrak D$ — база фільтра в X. Тоді сім'я $f(\mathfrak D)$ усіх множин вигляду $f(A),\,A\in\mathfrak D$ є базою фільтра в Y.

Доведення. Виконання першої аксіоми бази фільтра є очевидним, адже образ непорожньої множини — непорожня множина. Нехай f(A), f(B) — довільні елементи сім'ї $f(\mathfrak{D}), A, B \in D$. За другою аксіомою існує таке $C \in \mathfrak{D}$, що $C \subset A \cap B$. Тоді $f(C) \subset f(A) \cap f(B)$. Отже друга аксіома виконується і для сім'ї $f(\mathfrak{D})$.

Наслідок 19.4

Якщо \mathfrak{F} — фільтр на X, то $f(\mathfrak{F})$ — база фільтра в Y.

Означення 19.5. Образом фільтра \mathfrak{F} при відображенні f називається фільтр $f[\mathfrak{F}]$, породжений базою $f(\mathfrak{F})$, тобто

$$A \in f[\mathfrak{F}] \iff f^{-1}(A) \in \mathfrak{F}.$$

19 Фільтри

Теорема 19.2

Нехай $\mathfrak{C} \subset 2^X$ — непорожня сім'я множин. Тоді аби існував фільтр $\mathfrak{F} \supset \mathfrak{C}$ (тобто такий, що усі елементи сім'ї \mathfrak{C} є елементами фільтра \mathfrak{F}) необхідно і достатньо, щоб \mathfrak{C} була центрованою.

Доведення. **Необхідність.** Якщо \mathfrak{F} — фільтр і $\mathfrak{F} \supset \mathfrak{C}$, то будь-який скінчений набір A_1, A_2, \ldots, A_n елементів сім'ї \mathfrak{C} буде складатися з елементів фільтра \mathfrak{F} . Отже,

$$\bigcap_{i=1}^{n} A_i \neq \varnothing.$$

Достатність. Нехай \mathfrak{C} — центрована сім'я. Тоді сім'я \mathfrak{D} усіх множин виду

$$\bigcap_{i=1}^{n} A_i, \quad n \in \mathbb{N}, \quad A_1, A_2, \dots, A_n \in \mathfrak{C}$$

буде базою фільтра. Як фільтр $\mathfrak F$ треба взяти фільтр, породжений базою $\mathfrak D$.

§19.4 Фільтри, породжені базою

Означення 19.6. Нехай \mathfrak{F} — фільтр на X. Сім'я множин \mathfrak{D} називається базою фільтра \mathfrak{F} , якщо \mathfrak{D} база фільтра і фільтр, породжений базою \mathfrak{D} , збігається з \mathfrak{F} .

Теорема 19.3 (критерій бази фільтра \mathfrak{F})

Для того щоб $\mathfrak D$ була базою фільтра $\mathfrak F$, необхідно і достатнью, щоб виконувалися дві умови:

- 1. $\mathfrak{D} \subset \mathfrak{F}$;
- 2. $\forall A \in \mathfrak{F} \exists B \in \mathfrak{D} : B \subset A$.

Вправа 19.2. Доведіть цю теорему.

Доведення. **Необхідність.** Без першої з цих умов \mathfrak{F} замалий щоб бути породженим базою \mathfrak{D} (не містить якоїсь із множин бази), а без другої — завеликий (містить якусь множину A, яка не є надмножиною жодної із множин бази).

Достатність. Зрозуміло, що за таких умов усі множини фільтра \mathfrak{F} будуть належати фільтру, породженому базою \mathfrak{D} . Відповідно, питання полягає у тому, щоб у породженому фільтрі не опинилося зайвих множин. Розглянемо якусь множинк A з нього. Вона є надмножиною якогось елемента B бази. З першої умови випливає, що фільтр \mathfrak{F} також містить B. Тоді він містить і множину A як надмножину B. Отже, породжений базою \mathfrak{D} фільтр не може бути ані більшим ані меншим від фільтра \mathfrak{F} , і теорема доведена.

Означення 19.7. Нехай F — фільтр на X і $A \subset X$. Слідом фільтра \mathfrak{F} на A називається сім'я підмножин $\mathfrak{F}_A = \{A \cap B \mid B \in \mathfrak{F}\}.$

Теорема 19.4

Для того щоб слід \mathfrak{F}_A фільтра \mathfrak{F} був фільтром на A, необхідно і достатньо, щоб усі перетини $A \cap B$, $B \in \mathfrak{F}$ були непорожніми.

Вправа 19.3. Доведіть цю теорему.

Доведення. **Необхідність.** Якщо $A \cap B$ порожня для якогось $B \in \mathfrak{F}$, то \mathfrak{F}_A містить $A \cap B = \emptyset$, тобто точно не є фільтром, адже не задовольняє першу аксіому.

Достатність. Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні. Перевіримо другі дві аксіоми.

Перетин. Якщо $B,C\in\mathfrak{F}_A$, то $\exists D,E\in\mathfrak{F}$: $B=D\cap A,\,C=E\cap A.$ Тоді $B\cap C=(D\cap A)\cap(E\cap A)=(D\cap E)\cap A\in\mathfrak{F}.$

Надмножина. Якщо $B \in \mathfrak{F}_A$, $C \supset B$, $C \subset A$, то $\exists D \in \mathfrak{F}$: $B = D \cap A$. Тоді $C \cup D \supset D$, тобто $C \cup D \in \mathfrak{F}$, а тому $(C \cup D) \cap A = (C \cap A) \cup (D \cap A) = C \cup B = C \in \mathfrak{F}_A$. \square

Наслідок 19.5

Зокрема, якщо $A \in \mathfrak{F}$, то \mathfrak{F}_A — фільтр.

§19.5 Література

- [1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 99–102).
- [2] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 481–484).