Exercise Session 5

Theory

Service calls

Exercise

Use the node you implemented in Exercise 2 & 3 and add a service server that can start/stop the robot. This functionality could be used as an emergency stop.

- 1. Implement a service server (Lecture 4, Slide 8) that can start and stop the robot. Use the std_srvs/SetBool service type for this task.
- 2. Run the simulation and call the service you have implemented from the terminal using rosservice call to start and stop the robot (Lecture 4, Slide 4/7).

OPTIONAL

- A. Create a *separate node* that stops the robot if it is *too close to an obstacle* using the laser measurements. Use the service you have implemented above.
- B. Create a *separate node* that stops the robot *after a crash has occurred* with the stop service you have implemented above. For this, plot and analyse the data of the IMU under the topic /imu/data with rqt_multiplot and develop a method to detect a crash.

Evaluation

	Stop Husky using the service call.	[50%]
	Start Husky using the service call.	[50%]
OF	PTIONAL	
	Automatically triggered emergency stop when too close to an obstacle	[Bonus 25%]
	Automatically triggered emergency stop after crashing with an obstacle	[Bonus 25%]

