Contrôle d'informatique

Durée: 1 heure

Ce contrôle est constitué de deux exercices indépendants.

Exercice 1

On considère une fonction continue $f:[a,b] \to \mathbb{R}$ ainsi que son intégrale $I = \int_{a}^{b} f(t) dt$.

Pour tout entier $n \ge 1$ on note $(x_{n,0}, x_{n,1}, \dots, x_{n,n})$ la subdivision de pas régulier de [a, b] en n intervalles, et :

- $-R_n(f)$ le résultat du calcul approché de I par la méthode du rectangle gauche composite pour cette subdivision;
- $-M_n(f)$ le résultat du calcul approché de I par la méthode du point milieu composite pour cette subdivision;
- $-T_n(f)$ le résultat du calcul approché de I par la méthode du trapèze composite pour cette subdivision.

Question 1.

- a) Rappeler l'expression de $x_{n,k}$ en fonction de n et de k, puis l'expression de $R_n(f)$ en fonction de n et des $x_{n,k}$.
- b) Prouver que $T_n(f) = R_n(f) + \frac{b-a}{n} \left(\frac{f(b)-f(a)}{2} \right)$.
- c) Pour $j \in [[0, n-1]]$, exprimer $x_{2n,2j}$ et $x_{2n,2j+1}$ en fonction de $x_{n,j}$ et $x_{n,j+1}$, puis prouver que

$$R_{2n}(f) = \frac{R_n(f) + M_n(f)}{2}.$$

Question 2. Rédiger en Python une fonction milieu qui prend en arguments la fonction f, les réels a et b et un entier n et qui renvoie la valeur de $M_n(f)$.

La méthode dichotomique des trapèzes consiste à calculer les termes de la suite $(T_{2^p}(f))$ jusqu'à réaliser la condition d'arrêt $|T_{2^p}(f) - T_{2^{p-1}}(f)| \le \varepsilon$.

Question 3.

- a) À l'aide des questions 1b et 1c, donner pour $p \ge 1$ l'expression de $T_{2p}(f)$ en fonction de $T_{2p-1}(f)$ et $M_{2p-1}(f)$.
- b) En utilisant cette formule et la fonction milieu, rédiger en Python une fonction trap_dicho qui prend en arguments la fonction f, les réels a et b et la précision ε et qui renvoie le première valeur de $T_{2^p}(f)$ qui réalise la condition $|T_{2^p}(f) T_{2^{p-1}}(f)| \le \varepsilon$.

Exercice 2

Dans tout cet exercice, f désigne une fonction de classe \mathscr{C}^2 définie sur \mathbb{R} et à valeurs réelles, vérifiant la condition : $\forall x \in \mathbb{R}$, $-2 \le f'(x) \le -1$.

Question 4. Montrer que $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} f(x) = -\infty$, et en déduire l'existence d'un unique réel c vérifiant f(c) = 0.

On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par la donnée d'une condition initiale $x_0\in\mathbb{R}$ et la relation de récurrence $x_{n+1}=g(x_n)$, où g est la fonction $g:x\mapsto x+\alpha f(x)$, avec $\alpha\in]0,1[$ fixé.

Question 5.

- a) Montrer l'existence d'un réel $k \in [0,1[$ tel que pour tout $x \in \mathbb{R}$, $|g'(x)| \le k$.
- b) Prouver que pour tout $n \in \mathbb{N}$, $|x_n c| \le k^n |x_0 c|$ et en déduire la convergence de la suite $(x_n)_{n \in \mathbb{N}}$.

Question 6. Montrer que la convergence de la suite $(x_n)_{n\in\mathbb{N}}$ est d'ordre 1 si $\alpha \neq -\frac{1}{f'(c)}$, et au moins d'ordre 2 sinon.

Question 7.

- a) Peut-on dans la pratique choisir $\alpha = -\frac{1}{f'(c)}$? Si on choisit de remplacer α par $-\frac{1}{f'(x_n)}$ dans la relation de récurrence, quelle méthode obtient-on?
- b) Pour une valeur de α arbitraire, comment peut-on interpréter graphiquement la construction de x_{n+1} à partir de x_n ?