Алгоритм РРМ-А

5 января 2023 г. 1:26

Контекстное адаптивное арифметическое кодирование

Его идея заключается в том, чтобы кодировать каждый символ, учитывая как можно больше предыдущих символов t - кол-во предыдущих символов, учитываемых алгоритмом (контекст)

- ullet Если распределение вероятностей вида $\hat{p}(x_{t+1}|x_1,...,x_t)$ возможно оценить с достаточной точностью, то арифметический кодер может использовать эти вероятности для достижения максимального сжатия, т.е., среднюю длину кодового слова, близкую к $H(X|X^{\infty})$.
- Каждое условие соответствует источнику без памяти, к которому может быть применено универсальное кодирование.
- Избыточность адаптивного кодирования приближается к нулю с ростом длины кодируемой последовательности. Поэтому в каждый контекст должно попасть достаточное количество символов, т.е., контекстов не должно быть слишком много.
- Эффективность такого кодирования сильно зависит от метода оценки вероятностей.

Строка (как бы подстрока входной последовательности) $m{s}=m{x}_{t-d+1}^t$ длины $d\leq D$, предшествующая x_{t+1} , является контекстом для x_{t+1} , если $oldsymbol{s}$ уже появлялось в $oldsymbol{x}_1^{t-1}.$

D - ограничение на память и на вычислительную сложность

Пример определения контекста двух букв (отмеченных красным)

Пример. THE_CAT_IN_THE_CAR_ATE_THE_RAT

t	буква	контекст
16	Α	THE_C
27	R	THE_

PPM - prediction by partial matching - предсказание по частичному совпадению Основные этапы кодирования символа x_{t+1} :

- $oldsymbol{0}$ Выполняется поиск контекста $oldsymbol{s} = oldsymbol{x}_{t-d+1}^t$ наибольшей длины d, не превышающей D.
- $oldsymbol{0}$ Для всех возможных значений символа x_{t+1} вычисляются оценки условных вероятностей символа при известном контексте \boldsymbol{s} .
- $oldsymbol{0}$ Значение символа x_{t+1} кодируется арифметическим кодом в соответствии с вычисленной условной вероятностью.
- D параметр алгоритима.
- ullet Вероятность того, что символ $x_{t+1}=a$ после контекста $oldsymbol{s} = oldsymbol{x}_{t-d+1}^t$ может быть оценена как

$$\hat{
ho}_t(a|oldsymbol{s}) = rac{ au_t(oldsymbol{s},a)}{ au_t(oldsymbol{s})}.$$

- ullet Если буква для данного контекста не встречалась, т.е. $au_t(oldsymbol{s},a)=0$, то арифметический кодер не сможет использовать $\hat{
 ho}_t(a|m{s})=0.$ Поэтому используется *esc*-символ.
- Если $\hat{p}_t(a|\mathbf{s}) = 0$, то передаётся esc-символ и контекст

укорачивается на одну букву. Тот же алгоритм в ином представлении-----

- 1: Находим наибольшее d такое, что $\hat{p}_t(oldsymbol{x}_{t-d+1}^t) > 0$, $d \leq D$.
- 2: Выбираем контекст $oldsymbol{s} \leftarrow oldsymbol{\mathcal{R}}^{oldsymbol{o}}_{t-d+1}$ ва ота буква при нашем контексте s не встречалась...
- 3: while $\hat{p}_t(x_{t+1}|s) = 0$ do
- Кодируем esc в соответствии с $\hat{p}_t(esc|\mathbf{s})$.
- Уменьшаем длину контекста: $d \leftarrow d-1$, $s \leftarrow x_{t-d+1}^t$ nd while контекст нашелся (хотя бы длиной в 1 символ) 6: end while
- 7: **if** d > 0 **then**
- 8:
- Kодируемит женна $oldsymbol{ iny GP}$ контекста не было, но символ появлялся 9: else
- if $\hat{p}_t(x) > 0$ then 10:
- 11: Кодиружное жата іне выхотот, в е сим в оми не роф (вел) ялся
- 12:
- Передаём esc и кодируем x_{t+1} в соответствии с равномерным 13: распределением на не встречавшихся в ${m x}_1^t$ буквах.
- 14: end if

Алгоритм A:

15: end if

$$\hat{
ho}_t(a|\#) = rac{ au_t(oldsymbol{a})}{t+1}; \qquad \hat{
ho}_t(esc|\#) = rac{1}{t+1}, au_t(oldsymbol{a}) > 0$$

$$\hat{
ho}_t(a|oldsymbol{s}) = rac{ au_t(oldsymbol{s}, oldsymbol{a})}{ au_t(oldsymbol{s}) + 1}; \quad \hat{
ho}_t(esc|oldsymbol{s}) = rac{1}{ au_t(oldsymbol{s}) + 1}, au_t(oldsymbol{s}, oldsymbol{a}) > 0$$

Принцип "исключений" алгоритма РРМ

Предположим, мы нашли контекст s, и оказалось, что для него нужно передавать esc-символ, т.е. ни разу не было буквы а за этим контекстом s.

Передаем esc-символ и сокращаем контекст на 1.

Далее:

После получения esc декодер всё еще не знает x_{t+1} , но он знает, какие символы не могут быть на этой позиции. Это символы, которые следовали за контекстом s, когда он появлялся ранее. Это знание позволяет уточнять вероятность $\hat{\rho}(x_{t+1}|s')=(s_{d-1},...,s_1)$.

Список исключаемых символов растёт, если esc снова передаётся.

Исключение некоторых символов увеличивает оценку вероятности для оставшихся символов, т.е., увеличивает сжатие.

Пример.

- Рассмотрим контекст $s="\kappa o p"$ за которым следует буква "au"", причем " $\kappa o p au"$ ранее не встречалось. При этом предположим, что ранее после s встречались "a" и" c".
- Передаём esc и укорачиваем контекс do s dop
- \bullet Тогда $\tau_t'(\mathsf{op}) = \tau_t(\mathsf{op}) \tau_t(\mathsf{opa}) \tau_t(\mathsf{opc})$.