# Rainbow connection of graphs with diameter 2\*

Hengzhe Li, Xueliang Li, Sujuan Liu

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, China

lhz2010@mail.nankai.edu.cn; lxl@nankai.edu.cn; sjliu0529@126.com

#### Abstract

A path in an edge-colored graph G, where adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. It is known that for a graph G with diameter 2, to determine rc(G) is NP-hard. So, it is interesting to know the best upper bound of rc(G) for such a graph G. In this paper, we show that  $rc(G) \leq 5$  if G is a bridgeless graph with diameter 2, and that  $rc(G) \leq k+2$  if G is a connected graph of diameter 2 with k bridges, where  $k \geq 1$ .

**Keywords**: Edge-coloring, Rainbow path, Rainbow connection number, Diameter **AMS subject classification 2010**: 05C15, 05C40

## 1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to book [1] for graph theoretical notation and terminology not described here. A path in an edge-colored graph G, where adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. An edge-coloring of graph G is a rainbow edge-coloring if every two distinct vertices of graph G are connected by a rainbow path. The rainbow connection number rc(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. It is easy to see that  $diam(G) \leq rc(G)$  for any connected graph G, where diam(G) is the diameter of G.

<sup>\*</sup>Supported by NSFC.

The rainbow connection number was introduced by Chartrand et al. in [5]. It is of great use in transferring information of high security in multicomputer networks. We refer the readers to [3, 6] for details.

Chartrand et al. [5] considered the rainbow connection number of several graph classes and showed the following proposition and theorem.

**Proposition 1.** [5] Let G be a nontrivial connected graph of size m. Then

- (i) src(G) = 1 if and only if G is a complete graph;
- (ii) rc(G) = m if and only if G is a tree;
- (iii)  $rc(C_n) = \lceil n/2 \rceil$  for each integer  $n \geq 4$ , where  $C_n$  is a cycle with size n.

**Theorem 1.** [5] For integers s and t with  $2 \le s \le t$ ,

$$rc(K_{s,t}) = \min\{\lceil \sqrt[s]{t} \rceil, 4\},$$

where  $K_{s,t}$  is the complete bipartite graph with bipartition X and Y, such that |X| = s and |Y| = t.

Krivelevich and Yuster [7] investigated the relation between the rainbow connection number and the minimum degree of a graph, and showed the following theorem.

**Theorem 2.** [7] A connected graph G with n vertices and minimum degree  $\delta$  has  $rc(G) < \frac{20n}{5}$ .

In fact, Krivelevich and Yuster [7] made the following conjecture.

Conjecture 1. [7] If G is a connected graph with n vertices and  $\delta(G) \geq 3$ , then  $rc(G) < \frac{3n}{4}$ .

Schiermeyer showed that the above conjecture is true by the following theorem, and that the following bound is almost best possible since there exist 3-regular connected graphs with  $rc(G) = \frac{3n-10}{4}$ .

**Theorem 3.** [8] If G is a connected graph with n vertices and  $\delta(G) \geq 3$  then,

$$rc(G) \le \frac{3n-1}{4}.$$

Chandran et al. studied the rainbow connection number of a graph by means of connected dominating sets. A dominating set D in a graph G is called a two-way dominating set if every pendant vertex of G is included in D. In addition, if G[D] is connected, we call D a connected two-way dominating set.

**Theorem 4.** [4] If D is a connected two-way dominating set of a graph G, then

$$rc(G) \le rc(G[D]) + 3.$$

Let G be a graph. The *eccentricity* of a vertex u, written as  $\epsilon_G(u)$ , is defined as  $\max\{d_G(u,v) \mid v \in V(G)\}$ . The radius of a graph, written as rad(G), is defined as  $\min\{\epsilon_G(u) \mid u \in V(G)\}$ . A vertex u is called a center of a graph G if  $\epsilon_G(u) = rad(G)$ .

Basavaraju et al. evaluated the rainbow connection number of a graph by its radius and chordality (size of a largest induced cycle), and presented the following theorem.

**Theorem 5.** [2] For every bridgeless graph G,

$$rc(G) \le rad(G)\zeta(G),$$

where  $\zeta(G)$  is the size of a largest induced cycle of the graph G.

They also showed that the above result is best possible by constructing a kind of tight examples.

Chakraborty et al. investigated the hardness and algorithms for the rainbow connection number, and showed the following theorem.

**Theorem 6.** [3] Given a graph G, deciding if rc(G) = 2 is NP-Complete. In particular, computing rc(G) is NP-Hard.

It is well-known that almost all graphs have diameter 2. So, it is interesting to know the best upper bound of rc(G) for a graph G with diameter 2. Clearly, the best lower bound of rc(G) for such a graph G is 2. In this paper, we give the upper bound of the rainbow connection number of a graph with diameter 2. We show that if G is a bridgeless graph with diameter 2, then  $rc(G) \leq 5$ , and that  $rc(G) \leq k + 2$  if G is a connected graph of diameter 2 with k bridges, where  $k \geq 1$ .

The end of each proof is marked by a  $\square$ . For a proof consisting of several claims, the end of the proof of each claim is marked by a  $\triangle$ .

## 2 Main results

We need some notations and terminology first. Let G be a graph. The k-step open neighbourhood of a vertex u in G is defined by  $N_G^k(u) = \{v \in V(G) \mid d_G(u,v) = k\}$  for  $0 \le k \le diam(G)$ . We write  $N_G(u)$  for  $N_G^1(u)$  simply. Let X be a subset of V(G), and denote by  $N_G^k(X)$  the set  $\{u \mid d_G(u,X) = k, u \in V(G)\}$ , where  $d_G(u,X) = \min\{d_G(u,x) \mid x \in X\}$ . For any two subsets X, Y of V(G),  $E_G[X, Y]$  denotes the set  $\{xy \mid x \in X, y \in Y, xy \in E(G)\}$ . Let c be a rainbow edge-coloring of G. If an edge e is colored by i, we say that e is an i-color edge. Let P be a rainbow path. If  $c(e) \in \{i_1, i_2, \ldots, i_r\}$  for any  $e \in E(P)$ , then P is called an  $\{i_1, i_2, \ldots, i_r\}$ -rainbow path. Let  $X_1, X_2, \ldots, X_k$  be disjoint vertex subsets of G. Notation  $X_1 - X_2 - \cdots - X_k$  means that there exists some desired rainbow path  $P = (x_1, x_2, \ldots, x_k)$ , where  $x_i \in X_i$ ,  $i = 1, 2, \ldots, k$ .

**Theorem 7.** Let G be a connected graph of diameter 2 with  $k \ge 1$  bridges. Then  $rc(G) \le k + 2$ .

*Proof.* G must have a cut vertex, say v, since G has bridges. Furthermore, v must be the only cut vertex of G, and the common neighbor of all other vertices due to diam(G) = 2. Let  $G_1, G_2, \ldots, G_r$  be the components of G - v. Without loss of generality, assume that  $G_1, G_2, \ldots, G_k$  are the all trivial components of G - v. We consider the following two cases to complete this proof.

Case 1. k = r.

In this case, we provide each bridge with a distinct color from  $\{1, 2, ..., k\}$ . It is easy to see that this is a rainbow edge-coloring. Thus  $rc(G) \le k \le k + 2$ .

### Case 2. k < r.

In this case, first provide each bridge with a distinct color, and denote by  $c_1$  this edge-coloring. Next color the other edges as follows. Let F be a spanning forest of the disjoint union  $G_{k+1} + G_{k+2} + \cdots + G_r$  of  $G_{k+1}, G_{k+2}, \ldots, G_r$ , and let X and Y be any one of the bipartition defined by this forest F. We provide a 3-edge-coloring  $c_2 : E(G_{k+1} + G_{k+2} + \cdots + G_r) \to \{1, k+1, k+2\}$  of G defined by

$$c_2(e) = \begin{cases} k+1, & if \ e \in E[v, X]; \\ k+2, & if \ e \in E[v, Y]; \\ 1, & otherwise. \end{cases}$$

We show that the edge-coloring  $c_1 \cup c_2$  is a rainbow edge-coloring of G in this case. Pick any two distinct vertices u and w in V(G). If one of u and w is v, then u - w is a rainbow path. If at least one of u and w is a trivial component of G - v, then u, v, w is a rainbow path connecting u and w. Thus we suppose  $u, w \in X \cup Y$ . If  $u \in X$  and  $w \in Y$ , or  $w \in X$  and  $u \in Y$ , then u, v, w is a rainbow path connecting u and w. If  $u, w \in X$ , or  $u, w \in Y$ , without loss of generality, assume  $u, w \in X$ . Pick u, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and v, v, v, w is a rainbow path connecting u and

By this all possibilities have been exhausted and the proof is thus complete.  $\Box$ 

**Tight examples:** The upper bound of Theorem 7 is tight. The graph  $(kK_1 \cup rK_2) \vee v$  has a rainbow connection number achieving this upper bound, where  $k \geq 1, r \geq 2$ .

**Proposition 2.** Let G be a bridgeless graph with order n and diameter 2. Then G is either 2-connected, or G has only one cut vertex v. Furthermore, v is the center of G with radius 1.

*Proof.* Let G be a bridgeless graph with diameter 2. Suppose that G is not 2-connected, that is, G has a cut vertex. Since diam(G) = 2, G has only one cut vertex, say v. Let  $G_1, G_2, \ldots, G_k$  be the components of G - v where  $k \geq 2$ . If some vertex, without loss of

generality, say  $u \in V(G_1)$ , is not adjacent to v, then  $d_G(u, w) \geq 3$  for any  $w \in V(G_2)$ . This conflicts with the fact that diam(G) = 2. So v is the center of G with radius 1.

**Lemma 1.** Let G be a bridgeless graph with diameter 2. If G has a cut vertex, then  $rc(G) \leq 3$ .

**Remark 1.** This lemma can be proved by a similar argument for Theorem 7. It can also be derived from Theorem 5.

**Lemma 2.** Let G be a 2-connected graph with diameter 2. Then  $rc(G) \leq 5$ .

*Proof.* Pick a vertex v in V(G) arbitrarily. Let

$$B = \{u \in N_G^2(v) \mid there \ exists \ a \ vertex \ w \in N_G^2(v) \ such \ that \ uw \in E(G)\}.$$

We consider the following two cases distinguishing either  $B \neq \emptyset$  or  $B = \emptyset$ .

Case 1.  $B \neq \emptyset$ .

In this case, the subgraph G[B] induced by B has no isolated vertices. Thus there exists a spanning forest F in G[B], which also has no isolated vertices. Furthermore, let  $B_1$  and  $B_2$  be any one of the bipartition defined by this forest F. Now divide  $N_G(v)$  as follows.

Set  $X, Y = \emptyset$ . For any  $u \in N_G(v)$ , if  $u \in N_G(B_1)$ , then put u into X. If  $u \in N_G(B_2)$ , then put u into Y. If  $u \in N_G(B_1)$  and  $u \in N_G(B_2)$ , then put u into X. By the above argument, we know that for any  $x \in X$  ( $y \in Y$ ), there exists a vertex  $y \in Y$  ( $x \in X$ ) such that x and y are connected by a path P with length 3 satisfying  $(V(P) \setminus \{x, y\}) \subseteq B$ .

We have the following claim for any  $u \in N_G(v) \setminus (X \cup Y)$ .

Claim 1. Let  $u \in N_G(v) \setminus (X \cup Y)$ . Then either u has a neighbor  $w \in X$ , or u has a neighbor  $w \in Y$ .

Proof of Claim 1. Let  $u \in N_G(v) \setminus (X \cup Y)$ . Pick  $z \in B_1$ , then u and z are nonadjacent since  $u \notin X \cup Y$ . Moreover, diam(G) = 2, so u and z have a common neighbor w. We say that  $w \notin N_G^2(v)$ , otherwise,  $w \in B$  and  $u \in X \cup Y$ , which contradicts the fact that  $u \notin X \cup Y$ . Moreover, we say that  $w \notin N_G(v) \setminus (X \cup Y)$  by a similar argument. Thus w must be contained in  $X \cup Y$ .

By the above claim, for any  $u \in N_G(v) \setminus (X \cup Y)$ , either we can put u into X such that  $u \in N_G(Y)$ , or we can put u into Y such that  $u \in N_G(X)$ . Now X and Y form a partition of  $N_G(v)$ .

For any  $u \in N_G^2(v) \setminus B$ , let

$$A = \{ u \in N_G^2(v) \mid u \in N_G(X) \cap N_G(Y) \};$$

$$D_1 = \{ u \in N_G^2(v) \mid u \in N_G(X) \setminus N_G(Y);$$

$$D_2 = \{ u \in N_G^2(v) \, | \, u \in N_G(Y) \setminus N_G(X) \}.$$

We say that at least one of  $D_1$  and  $D_2$  is empty. Otherwise, there exist  $u \in D_1$  and  $v \in D_2$  such that  $d_G(u,v) \geq 3$ , which contradicts the fact that diam(G) = 2. Without loss of generality, assume  $D_2 = \emptyset$ .

First, we provide a 5-edge-coloring  $c: E(G) \setminus E_G[D_1, X] \to \{1, 2, \dots, 5\}$  defined by

$$c(e) = \begin{cases} 1, & if \ e \in E_G[v, X]; \\ 2, & if \ e \in E_G[v, Y]; \\ 3, & if \ e \in E_G[X, Y] \cup E_G[Y, A] \cup E_G[B_1, B_2]; \\ 4, & if \ e \in E_G[X, A] \cup E_G[X, B_1]; \\ 5, & if \ e \in E_G[Y, B_2], \ or \ otherwise. \end{cases}$$

Next, we color the edges of  $E_G[X, D_1]$  as follows. For any vertex  $u \in D_1$ , color one edge incident with u by 5 (solid lines), the other edges incident with u are colored by 4 (dotted lines). See Figure 1.



Figure 1. Figure 2

We have the following claim for the above coloring.

- Claim 2. (i) For any vertex  $x \in X$ , there exists a vertex  $y \in Y$  such that x and y are connected by a  $\{3, 4, 5\}$ -rainbow path in G v.
- (ii) For any vertex  $y \in Y$ , there exists a vertex  $x \in X$  such that x and y are connected by a  $\{3,4,5\}$ -rainbow path in G-v.
  - (iii) For any  $u, u' \in D_1$ , there exists a rainbow path connecting u and u'.
  - (iv) For any  $u \in D_1$  and  $u' \in X$ , there exists a rainbow path connecting u and u'.

Proof of Claim 2. First, we show that (i) and (ii) hold. We only prove part (i), since part (ii) can be proved by a similar argument. By the procedure of constructing X and Y, we know that for any  $x \in X$ , either there exists a vertex  $y \in Y$  such that  $xy \in E(G)$ , or there exists a vertex  $y \in Y$  such that x and y are connected by a path P with length 3 satisfying  $(V(P) \setminus \{x,y\}) \subseteq B$ . Clearly, this path is a  $\{3,4,5\}$ -rainbow path.

Next, we show that (iii) holds. Let  $u, u' \in D_1$ . For any  $y \in Y$ , since diam(G) = 2, we have that u and y have a common adjacency vertex  $w \in X$ . Furthermore, without loss of generality, assume that uw has color 5. Then u - w - y - v - w' - u' is a rainbow path connecting u and u', where u' is adjacent to w' by a 4-color edge u'w'.

Finally, we show that (iv) holds. For any  $y \in Y$ , since diam(G) = 2, we have that u and y have a common adjacency vertex  $w \in X$ . Thus u - w - y - v - u' is a rainbow path connecting u and u'.

It is easy to see that the above edge-coloring is rainbow in this case from Figure 1 and Table 1.

|       | v | X           | Y           | A           | $B_1$           | $B_2$               | $D_1$             |
|-------|---|-------------|-------------|-------------|-----------------|---------------------|-------------------|
| v     |   | v - X       | v-Y         | v - X - A   | $v-X-B_1$       | $v-X-B_1-B_2$       | $v-X-D_1$         |
| X     |   | Claim 2 and | X - v - Y   | X-v-Y-      | X-v-Y-          | $X-v-Y-B_2$         | Claim 2           |
|       |   | Y - v - X   |             | A           | $B_2 - B_1$     |                     |                   |
| Y     |   | _           | Claim 2 and | Y-v-X-      | Y-v-X-          | $Y - v - X - B_1 -$ | $Y-v-X-D_1$       |
|       |   |             | X - v - Y   | A           | $B_1$           | $B_2$               |                   |
| A     |   | _           | _           | A - X - v - | A - Y - v -     | A-X-v-Y-            | A-Y-v-X-          |
|       |   |             |             | Y - A       | $X - B_1$       | $B_2$               | $D_1$             |
| $B_1$ |   | _           | _           | _           | $B_1 - X - v -$ | $B_1 - X - v - Y -$ | $B_1 - B_2 - Y -$ |
|       |   |             |             |             | $Y - B_2 - B_1$ | $B_2$               | $v - X - D_1$     |
| $B_2$ |   |             | _           | _           | _               | $B_2 - B_1 - X -$   | $B_2-Y-v-X-$      |
|       |   |             |             |             |                 | $v-Y-B_2$           | $D_1$             |
| $D_1$ | _ | _           | _           | _           |                 |                     | Claim 2           |

Table 1. The rainbow paths in G

#### Case 2. $B = \emptyset$ .

In this case, clearly,  $N_G(u) \subseteq N_G(v)$  for any  $u \in N_G^2(v)$ . To show a rainbow coloring of G, we need to construct a new graph H. The vertex set of H is  $N_G(v)$ , and the edge set is  $\{xy \mid x, y \in N_G(v), x \text{ and } y \text{ are connected by a path } P \text{ with length at most 2 in } G - v,$  and  $V(P) \cap N_G(v) = \{x, y\}$ .

#### Claim 3. The graph H is connected.

Proof of Claim 3. Let x and y be any two distinct vertices of H. Since G is 2-connected, x and y are connected by a path in G - v. Assume that  $P = (x = v_0, v_1, \dots, v_k = y)$  is a shortest path between x and y in G - v.

If k=1, then by the definition of H, x and y are adjacent in H. Otherwise,  $k\geq 2$ . Since diam(G)=2,  $v_i$  is adjacent to v, or  $v_i$  and v have a common neighbor  $u_i$  if  $d_G(v,v_i)=2$ . For any integer  $0\leq i\leq k-1$ , if  $d_G(v,v_i)=1$  and  $d_G(v,v_{i+1})=1$ , then  $v_i$  and  $v_{i+1}$  are contained in V(H), and adjacent in H. If  $d_G(v,v_i)=1$  and  $d_G(v,v_{i+1})=2$ , then  $v_i$  and  $u_{i+1}$  are contained in V(H), and adjacent in H. If  $d_G(v,v_i)=2$  and  $d_G(v,v_{i+1})=1$ , then  $u_i$  and  $v_{i+1}$  are contained in V(H), and adjacent in H. If  $d_G(v,v_i)=2$  and  $d_G(v,v_{i+1})=2$ , then  $u_i$  and  $u_{i+1}$  should be contained in B, which contradicts the fact that  $B=\emptyset$ . Thus, there exists a path between x and y in H. The proof of Claim 3 is complete.

Let T be a spanning tree of H, and let X and Y be the bipartition defined by this tree. Now divide  $N_G^2(v)$  as follows: for any  $u \in N_G^2(v)$ ,

let 
$$A = \{ u \in N_G^2(v) \mid u \in N_G(X) \cap N_G(Y) \};$$

and for any  $u \in N_G^2(v) \setminus A$ ,

let 
$$D_1 = \{ u \in N_G^2(v) \mid u \in N_G(X) \setminus N_G(Y) \},$$
  

$$D_2 = \{ u \in N_G^2(v) \mid u \in N_G(Y) \setminus N_G(X) \}.$$

We say that at least one of  $D_1$  and  $D_2$  is empty. Otherwise, there exist  $u \in D_1$  and  $v \in D_2$  such that  $d_G(u, v) \geq 3$ , which contradicts the fact that diam(G) = 2. Without loss of generality, assume  $D_2 = \emptyset$ . Then A and  $D_1$  form a partition of  $N_G^2(v)$  (see Figure 2).

First, we provide a 4-edge-coloring  $c: E(G) \setminus E_G[D_1, X] \to \{1, 2, \dots, 4\}$  defined by

$$c(e) = \begin{cases} 1, & if \ e \in E_G[v, X]; \\ 2, & if \ e \in E_G[v, Y]; \\ 3, & if \ e \in E_G[X, Y] \cup E_G[Y, A]; \\ 4, & if \ e \in E_G[X, A], \ or \ otherwise. \end{cases}$$

Next, we color the edges of  $E_G[X, D_1]$  as follows. For any vertex  $u \in D_1$ , color one edge incident with u by 5 (solid lines), the other edges incident with u are colored by 4 (dotted lines). See Figure 2.

Now, we show that the above edge-coloring is a rainbow in this case from Figure 2 and Table 2.

|       | v | X           | Y           | A         | $D_1$           |
|-------|---|-------------|-------------|-----------|-----------------|
| v     |   | v - X       | v - Y       | v - X - A | $v-X-D_1$       |
| X     | _ | Claim 2 and | X - v - Y   | X-v-Y-    | Claim 2         |
|       |   | Y - v - X   |             | A         |                 |
| Y     | _ | _           | Claim 2 and | Y-v-X-    | $Y-v-X-D_1$     |
|       |   |             | X - v - Y   | A         |                 |
| A     | _ | _           | _           | A-X-v-    | A-Y-v-X-        |
|       |   |             |             | Y - A     | $D_1$           |
| $D_1$ | _ | _           | _           | _         | $D_1 - A - Y -$ |
|       |   |             |             |           | $v-X-D_1$       |

Table 2. The rainbow paths in G

By this both possibilities have been exhausted and the proof is thus complete.  $\Box$ 

Combining Proposition 2 with Lemmas 1 and 2, we have the following theorem.

**Theorem 8.** Let G be a bridgeless graph with diameter 2. Then rc(G) < 5.

A simple graph G which is neither empty nor complete is said to be  $strongly\ regular$  with parameters  $(n, k, \lambda, \mu)$ , denoted by  $SRG(n, k, \lambda, \mu)$ , if  $(i)\ V(G) = n$ ;  $(ii)\ G$  is k-regular; (iii) any two adjacent vertices of G have  $\lambda$  common neighbors; (iv) any two nonadjacent vertices of G have  $\mu$  common neighbors. It is well known that a strongly regular with parameters  $(n, k, \lambda, \mu)$  is connected if and only if  $\mu \geq 1$ .

Corollary 1. If G is a strongly regular graph, other than a star, with  $\mu \geq 1$ , then  $rc(G) \leq 5$ .

*Proof.* If  $\mu \geq 2$ , then G is 2-connected. Thus  $rc(G) \leq 5$  by Theorem 8. If  $\mu = 1$  and  $\lambda \geq 1$ , then G is bridgeless. Thus  $rc(G) \leq 5$  by Theorem 8. Thus, the left case is that  $\mu = 1$  and  $\lambda = 0$ .

First, suppose that G is a tree. Then  $G \cong K_2$  since G is regular. But this contradicts the fact that G is a strongly regular graph.

Next, suppose that G is not a tree. We claim that all the induced cycles of G have length 5. If G has an induced cycle with length 3, then there exist two adjacent vertices u and v in C such that  $|N_G(u) \cap N_G(v)| \geq 1$ , which conflicts with  $\lambda = 0$ . If G has an induced cycle with length 4, then there exist two nonadjacent vertices u and v in C such that  $|N_G(u) \cap N_G(v)| \geq 2$ , which conflicts with  $\mu = 1$ . Otherwise, G has an induced cycle C with length at least 6. Then there exist two nonadjacent vertices u and v in C such that  $|N_G(u) \cap N_G(v)| = 0$ , which conflicts with  $\mu = 1$ .

We say that G is bridgeless. By contradiction, let e = uv be a bridge. Then there exist two components, say  $G_1$  and  $G_2$ , in G - v. Since G is not a tree, there exists a cycle C contained in  $G_1$  (or  $G_2$ ). Without loss of generality, assume that  $u \in V(G_1)$  and  $C \subseteq G_1$ . Pick  $w \in C$  such that  $u \notin N_G(w)$  (There exists such a vertex, since all the induced cycles of G have length 5). Then v and w are nonadjacent, and  $N_G(v) \cap N_G(w) = \emptyset$ , which conflicts with  $\mu = 1$ . Thus G is bridgeless. Therefore  $rc(G) \leq 5$  by Theorem 8.

**Remark.** From [4] we know that the complete bipartite graph  $K_{2,n}$  has a diameter 2, and its rainbow connection number is 4 for  $n \ge 10$ . However, we failed to find an example for which the rainbow connection number reaches 5.

### References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number and radius, arXiv:1011.0620v1 [math.CO].
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Combin. Optimization, in press.

- [4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, arXiv:1010.2296v1 [math.CO].
- [5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
- [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connectivity of a graph, Networks 54(2009), 75-81.
- [7] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-91.
- [8] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, In Fiala, J., Kratochvl, J., and Miller, M., editors, Combinatorial Algorithms, Lecture Notes in Computer Science Vol.5874 (2009), 432-437. Springer Berlin / Heidelberg.