roduction PDDL Optimisation Discussion Conclusion

The Floortile Problem

DD2380 Artificial Intelligence

Group Project

October 17th, 2017 KTH Royal Institute of Technology

Group 22:

HEDSTRÖM Anna LEGAT Antoine PICÓ ORISTRELL Sandra VEGA RAMÍREZ David 940307 – 3027 950311 – T297 940531 – T268 961202 – T031 annaheds@kth.se legat@kth.se sandrapo@kth.se dvr@kth.se

Plan

Introduction

PDDL

Optimisation

Discussion

Conclusion

Introduction

International Planning Competition

Floortile domain

N robots

Deterministic environment

Paint_up and Paint_down restriction

Only paint with Black and White

Robots can not stand on a painted tile

How we solved the problem?

PDDL

Optimisation

Plan

Introduction

PDDL

Optimisation

Discussion

Conclusion


```
Init (Tile(T_1)(T_2) \land ... Tile(T_n) \land Tile(Rob_1)Robot(Rob_2) \land ... Robot(Rob_n) \land Color(White) \land Color(Black) \land
Color(Color) \land (RobotAt(Robt_1, T_3) \land (RobotAt(Robt_2, T_2) \land (AvailableColor(White) \land (AvailableColor(Black) \land (Avail
  (RobotHas(Rob_1, White) \land (RobotHas(Rob_2, Black) \land (Clear(T_1)(Clear(T_2) \land (Clear(T_3) \land (Clear(T_n) \land (Up(T_3, T_1) \land (Up
  (Up(T_4, T_2) \land (Up(T_5, T_n) \land (Down(T_1, T_3) \land (Down(T_2, T_4) \land (Down(T_5, T_n) \land (Right(T_2, T_1) \land (Right(T_2, T_3) \land (Righ(T_2, T_3) \land (R
  (Right(T_5, T_n) \land (Left(T_1, T_2) \land (Left(T_3, T_2) \land (Left(T_5, T_n)))
                          Goal (Painted(T_1, Black) \land (Painted(T_2, White)(T_1, \land Black) \land (Painted(T_2, White) \land (Painted(T_2, Color, ))
                          Action(Change-Color)
                          PRECOND: (RobotHas(r_1, c_1) \land AvailableColor(c_1))
                          EFFECT: (RobotHas(r_1, c_1)\neg RobotHas(r_1, c_2))
                          Action(Paint-Up)
                          PRECOND: (RobotHas(r_1, c_1) \land RobotAt(r_1, t_x) \land Up(t_y, t_x) \land Clear(t_y)
                          EFFECT: Clear(t_n)\neg Painted(t_n)
                          Action(Paint-Down)
                          PRECOND: (RobotHas(r_1, c_1) \land RobotAt(r_1, t_x) \land Down(t_u, t_x) \land Clear(t_u)
                          EFFECT: Clear(t_n)\neg Painted(t_n)
                          Action(Up)
                          PRECOND: RobotAt(r_1, t_x) \wedge Up(ty, t_x) \wedge Clear(t_y)
```



```
\label{eq:effect:robotAt} \begin{split} & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(r_1,t_x) \wedge Clear(t_x) \neg Clear(t_y) \neg Painted(t_y) \\ & \mathsf{Action}(\mathsf{Down}) \\ & \mathsf{PRECOND:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_x) \wedge Down(t_y,t_x) \wedge Clear(t_y) \\ & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(r_1,t_x) \wedge Clear(t_x) \neg Clear(t_y) \neg Painted(t_y) \\ & \mathsf{Action}(\mathsf{Right}) \\ & \mathsf{PRECOND:} \ \mathsf{RobotAt}(2_1,t_x) \wedge Right(t_y,t_x) \wedge Clear(t_y) \\ & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(r_1,t_x) \wedge Clear(t_x) \neg Clear(t_y) \\ & \mathsf{Action}(\mathsf{Left}) \\ & \mathsf{PRECOND:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_x) \wedge Left(t_y,t_x) \wedge Clear(t_y) \\ & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(\mathsf{r}_1,t_x) \wedge Clear(t_y) \\ & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(\mathsf{r}_1,t_x) \wedge Clear(t_y) \neg Clear(t_y) \neg Painted(t_y) \\ & \mathsf{EFFECT:} \ \mathsf{RobotAt}(\mathsf{r}_1,t_y) \neg RobotAt(\mathsf{r}_1,t_x) \wedge Clear(t_y) \neg Clear(t_y) \neg Painted(t_y) \\ \end{split}
```


Interpretation

1	0	3
0	0	2
3	0	1
0	0	0

 $\label{eq:figure} \mathbf{Figure} - \mathsf{Robot} \ \mathsf{representation}$

Valu	ue Use
0	The Cell is clear
1	Cell has been painted white
2	Cell has been painted black
3	Robot is in top of the cell

TABLE - Meaning of the values in the matrix

Interpretation

_		_	400	400
1	1	2	100	100
_	_	_		

FIGURE - Board representation

Position	Use
1	X coordinate
2	Y coordinate
3	Current paint
4	Remaining black paint
5	Remaining white paint

 $\ensuremath{\mathrm{TABLE}}$ – Meaning of the values in the vector

FIGURE - Python code schematic

FIGURE - States traversal

roduction PDDL Optimisation Discussion Conclusio

Implementation

FIGURE - Obtaining possible states

Algorithm 1 Planning algorithm

```
1: procedure Planning(robots.initialState,targetState)
        state its defined as [robots,initialState,sequenceMoves]
 2:
       q \leftarrow queue of states
 3:
       memory ← dictionary of states
       q \leftarrow \text{push [robots,initialState,[]]}
        while:
       if a is empty then
 7:
           break
       current \leftarrow top(a)
10:
       pop(a)
        if memory[current] == true) then
11:
12:
            continue
13:
        if current[1] == targetState then
14:
            return current
        memory[current] = true
15:
16:
        newPossibleStates \leftarrow getSequence(current[0], 0, current[1], targetState].
17:
        For possible in newPossibleStates:
       q \leftarrow push [possible[0], possible[1], current[2].append(possible[2])
18:
29:
       goto For
        goto while.
21:
22:
        return null.
```

FIGURE - Planning algorithm

Algorithm 2 getSequence algorithm

- 1: procedure GetSequence(robots,index,state,targetState,movements) if index == len(robots then
- resStates.append([robots,index,movements]
- 5:
- $nextMovements \leftarrow getPossiblesFOC(robot[index], state, targetState)$ For next in nextMovements:
- getPossibles(robots,index+1,next[0],targetState,movements.append(next[1]) 8: goto For
- 10: if index == 0 then 11:
 - return resStates

FIGURE - getSequence


```
(painted tile(3,1) black) < (painted tile(2,1) white) < (painted tile(1,1) black);
(painted tile(3,2) white) < (painted tile(2,2) black) < (painted tile(1,2) white);
(painted tile(3,3) black) < (painted tile(2,3) white) < (painted tile(1,3) black).
```

FIGURE – Forced Ordering Constraints

```
Algorithm 3 getPossiblesFOC algorithm
1: procedure GETPOSSIBLES(ROBOT, STATE, TARGETSTATE)
      movements = [up.down.left.right]
      For mov in movements:
       aux = trvMovement(mov.robot.state)
      if aux == NULL then
          res.append(aux)
      goto For
      if tryMovement(up,robot,state) and paintedColumn(robot,state) and state[robot[0:1]] == robot[2] then
10:
          res.append(paintUp(robot,state))
11:
      if tryMovement(downt,robot,state) and paintedColumn(robot,state) and state[robot[0:1]] == robot[2] then
12-
          res.append(paintDown(robot,state))
       res.append(changeColor(robot.state))
14:
       res.append(still(robot,state))
15:
      return res
```

FIGURE - getPossiblesFOC

Demo

Demonstration

Case studies

Case 0 : Algorithms	Algorithm without using FOCAlgorithm using FOC
Case 1 : Number of robots	2 robots3 robots4 robots
Case 2: Pattern	Target: all tiles paintedTarget: some tiles painted
Case 3: Size	(3,3) (3,4) (5,4) (5,5) (5,6) (4,3) (4,4) (4,5) (6,5) (6,6)

FIGURE - Different case studies in PDDL

Case 2: Different Patterns

Plan

Introduction

PDDI

Optimisation

Discussion

Conclusion

- t* the time needed for complete board
- ullet cell(i,j,t) the state of cell (i,j) at time t. 0= not painted, 1= painted
- painting(i, j, t, r) = 1 if robot r is painting cell (i, j) at time t
- State of the robots
 - \triangleright y(t,r) the vertical position of robot r at time t
 - ightharpoonup x(t,r) the horizontal position of robot r at time t
 - color(t, r) the current color of robot r at time t. 1 = white, 0 = black
 - ▶ stockO(t, r) the current stock of black paint of robot r at time t
 - ightharpoonup stock1(t, r) the current stock of white paint of robot r at time t
- Actions of the robot
 - ▶ paint(t, r) = 1 if robot r is painting at time t
 - ▶ move(t, r) = 1 if robot r is moving at time t
 - switch(t, r) = 1 if robot r is switching color at time t


```
\min t^*
such that \sum \operatorname{cell}(i,j,t^*) = nm
             paint(t,r) + move(t,r) + switch(t,r) < 1 \quad \forall t,r
             cell(x(t,r),y(t,r),t)=0 \quad \forall t,r
             x(t,r) = x(t,r') \Rightarrow y(t,r) \neq y(t,r') \quad \forall r,r' \neq r
             y(t,r) = y(t,r') \Rightarrow x(t,r) \neq x(t,r') \quad \forall r, r' \neq r
             paint(t,r) = 1 \Rightarrow painting(x(t,r),y(t,r)+1,t,r)
                     + painting(x(t,r),y(t,r)-1,t,r)=1 \quad \forall t,r
             \mathtt{paint}(t,r) = 1 \Rightarrow \sum_{:::} \mathtt{painting}(i,j,t,r) = 1 \quad \forall t,r
             paint(t, r) = 0 \Rightarrow painting(i, j, t, r) = 0 \quad \forall i, j, t, r
             \texttt{cell}(i,j,t) = 0 \text{ and } \sum \texttt{painting}(i,j,t,r) \geq 1 \Rightarrow \texttt{cell}(i,j,t+1) = 1 \quad \forall i,j,t \leq 1 
             cell(i, j, t) = 1 \Rightarrow cell(i, j, t + 1) = 1 \quad \forall i, j, t
```

Complete board

One action at a time
Not stand on paint
One robot per cell – 1
One robot per cell – 2

Painting update Painting only one cell

> Not painting Cells update

Stay painted

KTH

```
\mathtt{cell}(i,j,t) = 0 \text{ and } \sum \mathtt{painting}(i,j,t,r) = 0 \Rightarrow \mathtt{cell}(i,j,t+1) = 0 \quad \forall i,j,t \in \mathbb{N}
move(t,r) = 1 \Rightarrow |y(t+1,r) - y(t,r)| + |x(t+1,r) - x(t,r)| = 1 \quad \forall t, r
move(t,r) = 0 \Rightarrow |y(t+1,r) - y(t,r)| + |x(t+1,r) - x(t,r)| = 0 \quad \forall t, r
\operatorname{switch}(t,r) = 1 \Rightarrow |\operatorname{color}(t+1,r) - \operatorname{color}(t,r)| = 1 \quad \forall t,r
switch(t,r) = 0 \Rightarrow color(t+1,r) = color(t,r) \quad \forall t,r
paint(t,r) = 1 and color(t,r) = 0 \Rightarrow stock0(t+1,r) = stock0(t,r) - 1
       and stock1(t+1,r) = stock1(t,r) \quad \forall t, r
paint(t,r) = 1 and color(t,r) = 1 \Rightarrow stock1(t+1,r) = stock1(t,r) - 1
       and stockO(t+1,r) = stockO(t,r) \quad \forall t,r
paint(t,r) = 0 \Rightarrow stockO(t+1,r) = stockO(t,r)
       and stockO(t+1,r) = stockO(t,r) \quad \forall t, r
paint(t,r) = 1 and color(t,r) = 1 \Rightarrow pattern(x(t,r) + 1, y(t,r))
       = color(t, r) \quad \forall t, r
1 < y(t,r) < n, 1 < x(t,r) < m \quad \forall t,r
t^*, y(t, r), x(t, r), \text{stockO}(t, r), \text{stockI}(t, r) \in \mathbb{Z}^+ \quad \forall t, r
cell(i, j, t), painting(i, j, t, r), color(t, r), paint(t, r), move(t, r),
      switch(t,r) \in \{0,1\} \quad \forall i,j,t,r
```

Not painted

Moving Not moving Switching colors

Not switching

Decrement black stock

Decrement white stock

Constant stocks

Respect pattern Stay inside the board Integer variables

Binary variables

Solver

"IBM ILOG CPLEX CP Optimizer is a necessary and important complement to the optimization specialists' toolbox for solving real-world operational planning and scheduling problems – without a significant investment in R&D."

Demo

Demonstration

troduction PDDL Optimisation Discussion Conclusio

Case studies

(a) 1.63608 (b) 36.309 (c) 117.117

Plan

Introduction

PDDL

Optimisation

Discussion

Conclusion

Discussion

PDDL

Optimisation

Plan

Introduction

PDDL

Optimisation

Discussion

Conclusion

Conclusion

Applications

Future work

