Introduction to Data Structures ICS 240

Jessica Maistrovich

Metropolitan State University

Binary mplementing a Tree

Two possibilities: Array or Nodes

Recall Binary Trees

A binary tree is a special type of tree where each node can have two

Usually called leftChild and rightChild

Array Representation of Complete Binary Trees

- left child is at [2i+1]
- Right child is at [2i+2]
- parent is at [(i-1) /2]

Example

- 7 is stored at array index 2
 Its left child is at 2*2+1 = 5
 Its right child is at 2*2+2 = 6
 Its parent is at (2-1)/2 = 0

9

Can Arrays Be Used to Represent Incomplete **Trees**?

 It is hard to use arrays to represent incomplete trees because there will be many empty slots

Tree Representation using Nodes

Binary Tree Traversals

Binary Tree Traversals

- Tree traversal is the process of visiting each node in the tree exactly once
- There are three commonly used types of tree traversals
- preorder traversal _± root, left, right
- inorder traversal = left, root, right
- postorder traversal = left, right, root

Preorder Traversal - node, left, right

Inorder Traversal - left, node, right

Postorder Traverals - left, right, node

Tree Traversal – inorder()

```
public void inorder() {
   inorder(root);
}
```


Tree Traversal – inorder()

```
public void inorder() {
  inorder(0);
}
```

```
private void inorder(int i){
if (i < tree.length && tree[i] != null)
                                                                                                                  System.out.println(tree[i]);
                                                                                                                                            inorder (2*i+2);
                                                                                   inorder (2*i+1);
```


15	nu
14	llu n
13	nnll
12	llnu
11	llnu
10	null
6	4
8	nnll
7	llnu
9	llnu
2	13
4	9
က	1
2	14
1	က
0	7
index	contents

Binary Search Trees

Binary Search Tree (BST)

- A Binary Search Tree (BST) is a binary tree such that, for any given node n:
- All values in n's left subtree are less than or equal to the value in n
- All values in n's right subtree are greater than the value in n
- BST's are usually used to implement sorted lists of elements
- In a BST, we can implement add(),
 remove() and search() in log(n)

This is NOT a BST

Binary Search Tree Operations

- BST operations
- search() or countOccurrences()
- add()
- remove()
- All BST operations are done in 0 (BST height)
- Start at the root and then go down the tree
- For a **balanced** tree with height = log n all operations can be performed in O(log n)
- For a degenerate tree with height = n all operations are done in 0(n)

Contrasting Various List Implementations

	add	remove	search
Array (unordered)	0(1)	O(n)	O(n)
Sorted array	O(n)	O(n)	O(log n)
Linked list (unordered)	0(1)	O(n)	(u)O
BST	O(h)	O(h)	O(h)

BST $\boldsymbol{\omega}$ Searching

BST Search Operation

- To search for a value in a BST, start from the root and scan down until the value is found or you arrive at an empty subtree
- Descend using comparisons to make left/right decisions if (search value == node value) return true (found) else if (search_value < node_value) go to the left child

else if (search_value > node_value)

go to the right child

 Stop descending when move is impossible (no left or right child) and return false (or not found)

Examples of BST Search

Search for N

Search for C

The maximum number of comparisons to search a BST = tree height Average and best case is O(log n) when the tree is balanced Worst case O(n) when the tree is degenerate

Example of BST Search

Finding the Minimum Value in a BST

The minimum value is in the left-most node in the tree

start at root, if left is not null, go left (F) left is null, then B is the minimum (B)

• To find minimum: start at the root while (left!= null) go left

Finding the Maximum Value in a BST

 The maximum value is in the <u>right-most</u> node in the tree. • To find maximum: start at the root while (right != null) go right

element to BST Add

BST Add Operation

Build a BST by inserting the following values:

• 31,16,45,24,7,19,29

Will you get a different BST if you insert the values in a different order?

- Assume you want to build a BST from the following values:
- MN, IL, CA, TX, FL
- See the resulting BSTs if the values are inserted in the following orders:
- Case 1: IL,CA,TX,MN,FL
- Case 2: CA, FL, IL, MN, TX
- Case 3: TX,MN, IL,FL,CA
- Case 4: MN, CA, FL, TX, IL

BST Add Operation

BST Jelete element from

BST Delete Operation

- The node to be deleted can be one of the following three types:
- CASE 1: leaf node:
- Just remove the node from the tree
- CASE 2: has one child:
- Replace the node with its child
- CASE 3: has two children (left and right):
- Depending on the implementation, replace the node with either: the minimum element in its right subtree, or
- the maximum element in its left subtree

Leaf Deletion

Deleting a node with a single child

Deleting a node with two children, locate the successor node on the right-hand side (or predecessor on the left) and replace the deleted node (D) with the successor (E). Finally remove the successor node.

Extra

Binary Search Tree Animation

https://www.cs.usfca.edu/~galles/visualization/BST.html