Elementos de Aritmética

Aula 02: Múltiplos de um Inteiro

Profa Dra. Karla Lima

1 Propriedades das Operações

2 Múltiplos

3 Atividades de Aprofundamento

Propriedades das Operações

Como vimos na descrição da reta numérica, podemos ordenar os números inteiros. Podemos reescrever a definição de ordem como a seguir:

Definição

Dados $a, b \in \mathbb{Z}$, diz-se que a **é menor do que** b, e escreve-se a < b, para significar que existe algum $p \in \mathbb{Z}$ tal que b = a + p.

Como vimos na descrição da reta numérica, podemos ordenar os números inteiros. Podemos reescrever a definição de ordem como a seguir:

Definição

Dados $a, b \in \mathbb{Z}$, diz-se que a **é menor do que** b, e escreve-se a < b, para significar que existe algum $p \in \mathbb{Z}$ tal que b = a + p.

Por exemplo,

$$-1 < 3$$
.

pois

$$3 = -1 + 4$$
.

Exercício

Use os sinais de < e > para cada um dos itens abaixo:

- a) 0 ____ 1
- b) -2 ___ -4
- c) 3 ____8
- d) -3 ____ 8
- e) -2 ____5
- f) 6 ____ 0
- g) 0 ____ 6
- h) -10 ___ 26

A relação de ordem a < b tem as seguintes propriedades:

- Transitividade: Se a < b e b < c, então a < c.
- Tricotomia: Dados $a,b\in\mathbb{Z}$, exatamente uma das 3 alternativas seguintes a seguir:
 - ou a = b;
 - ou a < b e existe $p \in \mathbb{Z}$ tal que b = a + p;
 - ou b < a e existe $q \in \mathbb{Z}$ tal que a = b + q.

Proposição

São verdadeiras as seguintes afirmações:

- a) Se $a < b \in \mathbb{Z}$, então a + c < b + c.
- b) Sobre a compatibilidade da multiplicação com a ordem:
 - Se a < b e c > 0, então $c \cdot a < b \cdot c$.
 - Porém, se c < 0, c · a < b · c não é verdade. O correto é: c · b < b · a, quando a < b (o sinal inverte!).

Exercício

João, Maria, José e Carla estavam brincando com um jogo de tabuleiro que dura quatro rodadas e anotaram as pontuações de cada uma na Tabela 3.

	Rodada 1	Rodada 2	Rodada 3	Rodada 4
João	6	-4	-1	-2
Maria	-3	-3	-2	1
José	-2	-8	-4	5
Carla	5	-10	6	-4

Tabela: Pontuação em quatro rodadas.

Vence o jogo quem, após a soma das quatro rodadas, fizer menos pontos. Determine:

- a) Qual a ordem crescente dos resultados?
- b) Qual a colocação de cada participante ao final do jogo?

Operações Fechadas

Definição

Seja M um conjunto não vazio e \otimes uma operação entre elementos de M. Dizemos que \otimes é fechada se a \otimes b pertencer a M sempre que a e b forem elementos de M.

Assim, você pode entender uma operação fechada em um conjunto M como uma "máquina" que transforma dois elementos de um conjunto M em um outro elemento de M.

Figura: Entram $a \in b$ de M e sai um novo elemento ainda de M, o $a \otimes b$.

- As operações de adição e multiplicação são fechadas no conjunto dos números inteiros Z.
- Ou seja, a soma de números inteiros ainda é um número inteiro; a multiplicação de números inteiros ainda é, também, um número inteiro.

Múltiplos de Números Inteiros

PONTEIRO MENOR: 3 HORAS PONTEIRO MAIOR: (1 X 5) MINUTOS

PONTEIRO MAIOR: (8 X 5) MINUTOS

• Multiplicando 5 por diferentes números inteiros, obtemos:

$$5 \cdot (-2) = -10$$
, $5 \cdot (-1) = -5$, $5 \cdot 0 = 0$, $5 \cdot 1 = 5$, $5 \cdot 2 = 10$, $5 \cdot 3 = 15$, $5 \cdot 4 = 20$, $5 \cdot 5 = 25$, ...

 Dizemos que um número m é múltiplo do número inteiro 5 se ele pode ser escrito como

$$m = 5 \cdot p$$

onde p é também um número inteiro.

• Portanto, os múltiplos de 5 são:

$$\{\ldots,-15-10,-5,0,5,10,15,20,25,30,35,\ldots\}.$$

Definição de Múltiplos

Definição

Um número inteiro m é múltiplo de um número inteiro a se existir um número inteiro p tal que

$$m = a \cdot p$$
.

Ou seja, os múltiplos de um número \underline{a} podem ser encontrados multiplicando \underline{a} por diferentes números inteiros.

Exemplo

Considere a tabela abaixo e escreva os múltiplos listados de:

- a) -4 b) -3 c) -2 d) -1 e) 0 f) 1

- g) 1 h) 2 i) 3 j) 4

×	-4	-3	-2	-1	0	1	2	3	4
-4	16	12	8	4	0	-4	-8	-12	-16
-3	12	9	6	3	0	-3	-6	-9	-12
-2	8	6	4	2	0	-2	-4	-6	-8
-1	4	3	2	1	0	-1	-2	-3	-4
0	0	0	0	0	0	0	0	0	0
1	-4	-3	-2	-1	0	1	2	3	4
2	-8	-6	-4	-2	0	2	4	6	8
3	-12	-9	-6	-3	0	3	6	9	12
4	-16	-8	-8	-8	0	4	8	12	16

© Profa Dra. Karla Lima

- Como a tabela representa a multiplicação dos números de −4 a 4 entre si, os múltiplos estarão descritos em cada coluna (ou linha).
- Por exemplo, a coluna 1 lista os seguintes múltiplos de -4: {-16, -12, -8, -4, 0, 4, 8, 12, 16}.

×	-4	-3 12 9 6 3 0 -3 -6 -9 -8	-2	-1	0	1	2	3	4
-4	16	12	8	4	0	-4	-8	-12	-16
-3	12	9	6	3	0	-3	-6	-9	-12
-2	8	6	4	2	0	-2	-4	-6	-8
-1	4	3	2	1	0	-1	-2	-3	-4
0	0	0	0	0	0	0	0	0	0
1	-4	-3	-2	-1	0	1	2	3	4
2	-8	-6	-4	-2	0	2	4	6	8
3	-12	-9	-6	-3	0	3	6	9	12
4	-16	-8	-8	-8	0	4	8	12	16

Agora vamos trabalhar com generalizações, sem explicitar os inteiros envolvidos.

Proposição

Sejam dados números inteiros a, b e c, tais que a e b são múltiplos de c . Mostre que a+b também é múltiplo de c.

Proposição

Sejam dados números inteiros a, b e c, tais que a e b são múltiplos de c . Mostre que a+b também é múltiplo de c.

Demonstração: De fato, se a e b são múltiplos de c, então existem inteiros p e q tais que:

$$a = c \cdot p$$
 e $b = c \cdot q$.

Assim,

$$a + b = c \cdot p + c \cdot q$$

= $c \cdot (p + q)$ (pela propriedade distributiva).

$$a + b = c \cdot p + c \cdot q$$

= $c \cdot (p + q)$ (pela propriedade distributiva).

Vimos que a soma de pois números inteiros ainda é um número inteiro, logo:

$$a + b = c \cdot p + c \cdot q$$
$$= c \cdot (p + q)$$
$$= c \cdot m,$$

onde $m = p + q \in \mathbb{Z}$.

Pela definição de múltiplo, concluímos que a + b é múltiplo de c.

Atividades de Aprofundamento

Aprofunde o conhecimento:

- Clique aqui para exercícios de aprofundamento.
- Clique aqui e pratique com jogos.