Musterlösung zum Übungsblatt 11 der Vorlesung " Grundbegriffe der Informatik"

Aufgabe 11.1

Aufgabe 11.2

a) Rechtslineare Grammatik: $G=(\{S,A\},\{a,b\},S,\{S\to abA,A\to aA\mid bbA\mid ba\})$ Endlicher Akzeptor:

b) Rechtslineare Grammatik: $G=(\{S,A\},\{a,b\},S,\{S\to aS\mid bS\mid abA,A\to aA\mid bA\mid \epsilon\})$ Endlicher Akzeptor:

c) Rechtslineare Grammatik: $G=(\{S\},\{a,b\},S,\{S\to aS\mid abS\mid ba\})$ Endlicher Akzeptor:

Aufgabe 11.3

- 1. $G' = (\{S_0, S, Y\}, \{a, b\}, S_0, \{S_0 \to S \mid \epsilon, s \to aS \mid baS \mid aY, Y \to abY \mid baY \mid aS \mid bS_0\})$
- 2. Wir führen ein neues Nichtterminalsymbol S_0 ein. Dann ist $G'=(N\cup\{S_0\},T,s_0,P'),$ wobei P'
 - alle Produktionen aus P enthält, bei denen auf der rechten Seite ein Nichtterminalsymbol vorkommt,
 - die Produktionen $S_0 \to S \mid \epsilon$,
 - für jede Produktion der Form $A \to w$ mit $A \in N$ und $w \in T^*$ die Produktion $A \to wS_0$ enthält.

Aus S_0 lässt sich dann zum einen das leere Wort ableiten und zum anderen für jedes Wort $w \in L(G)$ das Wort wS_0 . Aus diesem S_0 kann man nun entweder wieder das leere Wort ableiten oder weitere Wörter aus L(G).

Damit lässt sich aus S_0 jedes Wort aus $L(G)^*$ ableiten.

Hinweis: Man muss ein neues Startsymbol einführen. Würde man einfach die Produktion $S \to \epsilon$ hinzufügen sowie aus jeder Produktion der Form $A \to w$ die Produktion $A \to wS$ machen, könnte dies zu Problemen führen, wie man am Beispiel der Grammatik aus Aufgabenteil 1 sieht:

Für die Grammatik
$$G'=(N,T,S,P')$$
 mit $N=\{S,Y\},T=\{a,b\}$ und $P=\{S\to\epsilon\mid aS\mid baS\mid aY,Y\to abY\mid baY\mid aS\mid bS\}$ gehört aa zu $L(G')$, aber nicht zu $L(G)^*$:
$$S\Rightarrow aY\Rightarrow aaS\Rightarrow aa.$$