Doc No: AM100182-01
Patent

Please amend claims 1 and 15 to read as follows:

A method of preparing alpha-sulfonyl derivatives of the formula V:

$$z \xrightarrow[R_1]{O} SO_2R_3$$

$$V$$

wherein Z is H, QH, -NYOX, -OR₅ or -NR₅R₆;

X is hydrogen, alkyl of 1-6 carbon atoms, benzyl, hydroxyethyl, t-butyldimethylsilyl, trimethylsilyl or tetrahydropyranyl;

Y is hydrogen, alkyl of 1-6 carbon atoms, aryl of 6 to 10 carbon atoms, 5-10 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O and S, cycloalkyl of 3-6 carbon atoms, 5-10 membered cycloheteroalkyl; wherein said alkyl, aryl, heteroaryl, cycloalkyl and cycloheteroalkyl group of Y is optionally substituted on any atom capable of substitution, with 1 to 3 substituents selected from the group consisting of halogen, alkyl of 1-6 carbon atoms; alkenyl of 2-6 carbon atoms having from 1 to 3 double bonds; alkynyl of 2-6 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, -OR₅, =O, -CN, -COR₅, perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl of 1-4 carbon atoms, -OR₅, -OC(O)OR₅, -OR₅NR₅R₆, -OC(O)NR₅R₆, -OPO(OR₅)OR₆, -PO(OR₅)R₆, -OC(O)OR₅, -OR₅NR₅R₆, -OC(O)NR₅R₆, -NO₂, -N(R₅)SO₂R₆, -NR₅CONR₅R₆, -NR₅C(=NR₆)NR₅R₆, -NR₅C(=NR₆)N(SO₂R₅)R₆, -NR₅C(=NR₆)N(C=OR₅)R₆, -tetraxol-5-yl, -SO₂NHCN, -SO₂NHCONR₅R₆, phenyl, heteroaryl and 5-10 membered cycloheteroalkyl;

 R_1 and R_2 are each, independently, aryl of 6 to 10 carbon atoms; 5-10 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O and S; 5-10 membered cycloheteroalkyl; or R_1 and R_2 taken together with the carbon atom to which they are attached form a 5-10 membered cycloheteroalkyl ring; and wherein the aryl, heteroaryl, or cycloheteroalkyl, may be optionally substituted on any atom capable of substitution with from 1 to 3 substituents selected from halogen, alkyl of 1-6 carbon atoms; alkenyl of 2-6 carbon atoms having from 1

Docat No: AM100182-01 Patent

to 3 double bonds; alkynyl of 2-6 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, $-OR_5$, =O, -CN, $-COR_5$, perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl of 1-4 carbon atoms, $-CONR_5R_6$, $-S(O)_nR_5$, $-OPO(OR_5)OR_6$, $-PO(OR_5)R_6$, $-OC(O)OR_5$, $-OR_5NR_5R_6$, $-OC(O)NR_5R_6$, $-C(O)NR_5OR_6$, $-COOR_5$, $-SO_3H$, $-NR_5R_6$, $-N[(CH_2)_2]_2NR_5$, $-NR_5COR_6$, $-NR_5COOR_6$, $SO_2NR_5R_6$, $-NO_2$, $-N(R_5)SO_2R_6$, $NR_5CONR_5R_6$, $-NR_5C(=NR_6)NR_5R_6$, $-NR_5C(=NR_6)N(SO_2R_5)R_6$, $-NR_5C(=NR_6)N(C=OR_5)R_6$, -tetrazol-5-yl, $-SO_2NHCN$, $-SO_2NHCONR_5R_6$, phenyl,

heteroaryl and 5-10 membered cycloheteroalkyl;

 R_3 is alkyl of 1-18 carbon atoms, alkenyl of 2-18 carbon atoms having 1 to 3 double bonds, alkynyl of 2-18 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, 5-10 membered cycloheteroalkyl, aryl of 6 to 10 carbon atoms, 5-6 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O, and S; wherein said alkyl, alkenyl, alkynyl, cycloalkyl, cycloheteroalkyl, aryl and heteroaryl of R_3 may optionally be substituted on any atom capable of substitution with from 1 to 3 substituents selected from halogen, alkyl of 1-6 carbon atoms; alkenyl of 2-6 carbon atoms having from 1 to 3 double bonds; alkynyl of 2-6 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, $-OR_5$, =O, -CN, $-COR_5$, perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl

 R_4 is hydrogen; aryl; aralkyl, heteroaryl; heteroaralkyl, alkyl of 1-6 carbon atoms; cycloalkyl of 3-6 carbon atoms; $-C(O)_nR_5$, $-CONR_5R_6$ or SO_2R_5 ;

R₅ and R₆ are each independently hydrogen, optionally substituted aryl; 4-8 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O and S; cycloalkyl of 3-6 carbon atoms; 5-10 membered cycloheteroalkyl; alkyl of 1-18 carbon atoms; alkenyl of 2-18 carbon atoms or alkynyl of 2-18 carbon atoms; or R₅ and R₆ taken together with the nitrogen atom to which they are attached may form a 5-10 membered cycloheteroalkyl ring; and

No: AM100182-01

n\is 1 or 2; or a pharmaceutical salt thereof, which comprises reacting a sulfonyl fluoride of the formula III

R₃'SO₂F

III

wherein R₃' is as hereinabove defined for R₃ with the proviso that R₃' does not contain a group that can form an anion under basic conditions; with a carbonyl compound of the formula IV:

wherein Z is H, OH, YNOX, -NR₅R₆ or OR₅, and X, Y, R₁, R₂, R₅, and R₆ are as hereinabove defined; in the presence of a metal hydride or amide base in an ether organic solvent at temperatures from about -78°C to about 30°C to produce an alpha-sulfonyl carbonyl compound of formula V;

any reactive substituent group(s) being protected during the reaction and removed thereafter; and further if desired isolating any chiral or stereoisomeric product as an individual isomer.

A method of preparing alpha-sulfonyl derivatives of the formula V:

$$Z \xrightarrow{\text{SO}_2 \text{R}_3} \text{SO}_2 \text{R}_3$$

wherein Wherein Z is H, OH, -NYOX, -OR5 or -NR5R6;

R₁ and R₂ are each, independently, aryl of 6 to 10 carbon atoms; 5-10 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O and S; 5-10 membered cycloheteroalkyl; or R₁ and R₂ taken together with the carbon atom to which they are attached form a 5-10 membered cycloheteroalkyl ring; and wherein the aryl, heteroaryl, or cycloheteroalkyl, may be optionally substituted on any atom capable of substitution with from 1 to 3 substituents selected from halogen, alkyl of 1-6 carbon atoms; alkenyl of 2-6 carbon atoms having from 1

AmendmentForm.dot - Rev 5/02

Page 4 of 12

AmendmentForm

Doc No: AM100182-01 Patent

to 3 double bonds; alkynyl of 2-6 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, $-OR_5$, =O, -CN, $-COR_5$, perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl of 1-4 carbon atoms, $-CONR_5R_6$, $-S(O)_nR_5$, $-OPO(OR_5)OR_6$, $-PO(OR_5)R_6$, $-OC(O)OR_5$, $-OR_5NR_5R_6$, $-OC(O)NR_5R_6$, $-C(O)NR_5OR_6$, $-COOR_5$, $-SO_3H$, $-NR_5R_6$, $-N[(CH_2)_2]_2NR_5$, $-NR_5COR_6$, $-NR_5COOR_6$, $SO_2NR_5R_6$, $-NO_2$, $-N(R_5)SO_2R_6$, $-NR_5CONR_5R_6$, $-NR_5C(=NR_6)NR_5R_6$, $-NR_5C(=NR_6)N(SO_2R_5)R_6$, $-NR_5C(=NR_6)N(SO_2NR_5R_6)$, $-NR_5C(=NR_6)N(SO$

R₃' is alkyl of 1-18 carbon atoms, alkenyl of 2-18 carbon atoms having 1 to 3 double bonds, alkynyl of 2-18 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, 5-10 membered cycloheteroalkyl, aryl of 6 to 10 carbon atoms, 5-6 membered heteroaryl having 1-3 heteroatoms selected from N, NR₄, O, and S; wherein said alkyl, alkenyl, alkynyl, cycloalkyl, cycloheteroalkyl, aryl and heteroaryl of R₃ may optionally be substituted on any atom capable of substitution with from 1 to 3 substituents selected from halogen, alkyl of 1-6 carbon atoms; alkenylof 2-6 carbon atoms having from 1 to 3 double bonds; alkynyl of 2-6 carbon atoms having from 1 to 3 triple bonds, cycloalkyl of 3-6 carbon atoms, -OR₅, =O, -CN, -COR₅, perfluoroalkyl of 1-4 carbon atoms, -O-perfluoroalkyl of 1-4 carbon atoms, $-CONR_5R_6$, $-S(O)_nR_5$, $-OPO(OR_5) \& R_6$, $-PO(OR_5)R_6$, $-OC(O)OR_5$, - $OR_5NR_5R_6$, $-OC(O)NR_5R_6$, $-C(O)NR_5OR_6$, $-COOR_5$, $-SO_3H$, $-NR_5R_6$, $-N[(CH_2)_2]_2NR_5$, $-NR_5COR_6$, $-NR_5COOR_6$, $SO_2NR_5R_6$, $-NO_2$, $-N(R_5)SQ_2R_6$, $-NR_5CONR_5R_6$, $-NR_5C(=NR_6)NR_5R_6$, $-NR_5C(=NR_6)N(SO_2R_5)R_6$, $-NR_5\dot{C}(=NR_6)N(C=OR_5)R_6$, -tetrazol-5-yl, -SO₂NHCN, -SO₂NHCONR₅R₆, phenyl, heteroaryl and 5-10 membered cycloheteroalkyl; provided that R₃' does not contain a group that can form an anion under basic conditions; or a pharmaceutically acceptable salt thereof, which comprises the steps of:

a) reacting a sulfonyl fluoride of formula III:

R₃'SO₂F

Ш

wherein R₃' is as defined in claim 1; with an enol ether of formula VIII:

A3