CURS 3

ELEMENTE DE TOPOLOGIE TOPOLOGIA UNUI SPATIU METRIC

1) NOTIUNI ELEMENTARE DE TEORIA MUL-TIMILOR

Definitia 1. Fie $X\neq\varnothing.$ Multime
a $\wp\left(X\right)=.\{A|\,A\subseteq X\}$ se numeste multimea partilor lui X.

Observatie. $A \subseteq X \Leftrightarrow A \in \wp(X)$

Definitia 2. a) Fie A,B doua multimi. Multimea $A \setminus B = \{x \in A | x \notin B\}$ se numeste diferenta multimilor A si B.

- b) Fie A, B doua multimi cu $A \subseteq B$. Multime
a $B \setminus A = C_B A$ se numeste complementara multimi
i A in raport cu multime
a B.
- c) Fie $(A_i)_{i\in I}$ o familie de multimi din $\wp(X)$. Multimea $\bigcup_{i\in I} A_i = \{x \in X | \exists i \in I \ ast fel \ incat \ x \in A_i\}$ se numeste reuniunea familiei de multimi $(A_i)_{i\in I}$.
- d) Fie $(A_i)_{i\in I}$ o familie de multimi din $\wp(X)$. Multimea $\bigcap_{i\in I}A_i=\{x\in X|\ x\in A_i\forall i\in I\}$ se numeste intersectia familiei de multimi $(A_i)_{i\in I}$.

Teorema 1. Fie $(A_i)_{i\in I}$ o familie de multimi din $\wp(X)$. Sunt adevarate afirmatiile

$$C_X(\bigcup_{i\in I} A_i) = \bigcap_{i\in I} C_X A_i$$

$$C_X\left(\bigcap_{i\in I}A_i\right) = \bigcup_{i\in I}C_XA_i.$$

2) NOTIUNI GENERALE DESPRE SPATII TOPOLOGICE

Definitia 3. a) O familie de multimi $\tau\subseteq\wp\left(X\right)$ se numeste topologie pe X daca indeplineste urmatoarele conditii:

(i)
$$\varnothing, X \in \tau$$

(ii)
$$G_1, G_2 \in \tau \Rightarrow G_1 \cap G_2 \in \tau$$

(iii)
$$G_i \in \tau \forall i \in I \Rightarrow \bigcup_{i \in I} G_i \in \tau$$
.

b) Se numeste spatiu topologic o multime nevida X pe care se defineste o topologie $\tau\subseteq\wp\left(X\right)$.

Notatie. (X, τ)

Exemple de spatii topologice.

- 1) $X \neq \emptyset$
- $\tau = \wp(X)$ topologie pe X.
- 2) $X \neq \emptyset$

 $\tau = \{\emptyset, X\}$ topologie pe X.

Definitia 4. Fie (X, τ) un spatiu topologic.

- a) O multime $G\subseteq X$ se numeste multime deschisa relativ la topologia τ daca $G\in \tau$.
- b) O multime $F\subseteq X$ se numeste multime inchisa relativ la topologia τ daca $C_XF\in\tau$.
- c) O multime $V\subseteq X$ se numeste vecinatate a punctului $x_0\in X$ daca $\exists G\in \tau$ astfel incat $x_0\in G\subseteq V$.

Notatie. $V_{\tau}(x_0) = \{V \subseteq X | V \text{ vecinatate a punctului } x_0\}$

Definitia 5. Fie (X, τ) un spatiu topologic.

a) O multime $K\subseteq X$ se numeste multime compacta relativ la topologia τ daca din orice acoperire cu multimi deschise a lui K se poate exrtrage o subacoperire finita.

$$K\subseteq\bigcup_{i\in I}G_i,G_i\in\tau\forall i\in I\Rightarrow\exists J\subseteq I$$
 submultime finita astfel in
cat $K\subseteq\bigcup_{i\in J}G_i$

- b) O multime $A \subseteq X$ se numeste multime neconexa relativ la topologia τ daca $\exists G_1, G_2 \in \tau$ astfel incat $G_1 \cap A \neq \emptyset, G_1 \cap A \neq \emptyset, (G_1 \cap A) \cap (G_2 \cap A) = \emptyset$ si $A = (G_1 \cap A) \cup (G_2 \cap A)$.
- c) O multime $A\subseteq X$ se numeste multime conexa relativ la topologia τ daca aceasta nu este multime neconexa.

Definitia 6. Fie (X, τ) un spatiu topologic, $A \subseteq X$ si $x_0 \in X$.

- a) Elementul $x_0 \in X$ se numeste punct interior al multimii A daca $A \in V_{\tau}(x_0)$. Multimea $A = \{x_0 \in X | x_0 \text{ punct interior al multimii } A\}$ se numeste interiorul multimii A.
- b) Elementul $x_0 \in X$ se numeste punct de aderenta al multimii A daca $V \cap A \neq \emptyset \forall V \in V_{\tau}(x_0)$. Multimea $\overline{A} = \{x_0 \in X | x_0 \text{ punct de aderenta al multimii } A\}$ se numeste aderenta (inchiderea) multimii A.
- c) Elementul $x_0 \in X$ se numeste punct de acumulare al multimii A daca $V \cap (A \setminus \{x_0\}) \neq \emptyset \forall V \in V_\tau(x_0)$. Multimea $A' = \{x_0 \in X \mid x_0 \text{ punct de acumulare al multimii } A\}$ se numeste multimea punctelor de acumulare ale multimii A.
- d) Elementul $x_0 \in X$ se numeste punct de acumulare al multimii A daca $\exists V_0 \in V_\tau(x_0)$ astfel incat $V_0 \cap A = \{x_0\}$. Multimea $IzoA = \{x_0 \in X \mid x_0 \text{ punct izolat al multimii } A\}$ se numeste multimea punctelor izolate ale multimii A.
 - e) Multimea $\overline{A} \cap \underline{C}_X \underline{A}$ se numeste frontiera topologica a multimii A.

Notatie. $FrA = \overline{A} \cap C_X A$

Teorema 1. (Proprietatile multimilor inchise) In orice spatiu topologic (X, τ) sunt adevarate urmatoarele afirmatii:

- a) \emptyset, X sunt multimi inchise relativ la topologia τ ;
- b) Daca $F_1 \subseteq X$ si $F_2 \subseteq X$ sunt multimi inchise, atunci $F_1 \cup F_2$ este multime inchisa;
- c) Daca $(F_i)_{i\in I}$ este o familie de multimi inchise, atunci $\bigcap_{i\in I} F_i$ este multime inchisa

Teorema 2. (proprietatile vecinatatilor unui punct) In orice spatiu topologic (X, τ) sunt adevarate urmatoarele afirmatii:

- a) Daca $V \in V_{\tau}(x_0)$ si $V \subseteq W$, atunci $W \in V_{\tau}(x_0)$;
- b) Daca $V_1, V_2 \in V_{\tau}(x_0)$, atunci $V_1 \cap V_2 \in V_{\tau}(x_0)$ si $V_1 \cup V_2 \in V_{\tau}(x_0)$.

Teorema 3. In orice spatiu topologic (X,τ) sunt adevarate urmatoarele afirmatii:

- a) $\overline{C_X}A = C_X \overset{0}{A} \ \forall A \subseteq X;$
- b) $\overset{\circ}{C_X}A = C_X\overline{A} \ \forall A \subseteq X;$

c) $FrA = \overline{A} \backslash \overset{0}{A} \ \forall A \subseteq X$. Teorema 4. Fie (X, τ) un spatiu topologic si $A \subseteq X$.

a) Multimea $\overset{0}{A}$ are urmatoarele proprietati

$$\overset{0}{A}\subseteq A$$

$$G \in \tau, G \subseteq A \Rightarrow G \subseteq \overset{0}{A}$$

$$A \in \tau \Leftrightarrow A = \overset{0}{A}.$$

b) Multimea \overline{A} are urmatoarele proprietati

$$A \subseteq \overline{A}$$

 $A \subseteq F, F \ multime \ inchisa \Rightarrow \overline{A} \subseteq F$

A multime inchisa $\Leftrightarrow A = \overline{A}$.

c) Multimea A' are urmatoarele proprietati

$$A' \subseteq \overline{A}$$

$$\overline{A} = A \cup A'$$

A multime inchisa $\Leftrightarrow A' \subseteq A$.

d) Multimea IzoA are urmatoarele proprietati

$$IzoA \subseteq A \backslash A'$$
.

3) TOPOLOGIA UNUI SPATIU METRIC

 $T\acute{e}orema~5.$ Orice spatiu metric (X,d) este spatiu toplogic.

Distantei $d: X \times X \to \mathbb{R}$ i se asociaza topologia $\tau_d \subseteq \wp(X)$ definita in felul urmator

$$\tau_{d} = \{\varnothing\} \cup \{G \subseteq X | G \neq \varnothing, \forall x \in G \exists r > 0 \text{ astfel incat } B(x_{0}, r) \subseteq G \}.$$

Definitia 6. a) Topologia τ_d se numeste topologia asociata distante
id.

- b) Multimea $G \subseteq (X, d)$ se numeste deschisa daca $G \in \tau_d$.
- c) Multimea $F \subseteq (X, d)$ se numeste inchisa daca $C_X F \in \tau_d$. Exemple.
- 1) (R, d)

$$d(x,y) = |x - y| \, \forall x, y \in \mathbb{R}$$

 $\tau_d \stackrel{not}{=} \tau_{\mathbb{R}}$ topologia uzuala a lui $\mathbb{R}.$

2) $n \ge 2$

 (\mathbb{R}^n, d_2)

$$d_2: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, d_2\left((x_1, x_2, ..., x_n), (y_1, y_2,, y_n)\right) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + ... + (x_n - y_n)^2}$$

$$\tau_{d_2} \stackrel{not}{=} \tau_{\mathbb{R}^n} \text{ topologia uzuala a lui } \mathbb{R}^n.$$

Teorema 6. Fie (X, d) un spatiu metric, $A \subseteq X, x_0 \in A$.

- a) $V \in V_{\tau_d}(x_0) \Leftrightarrow \exists r > 0 \text{ ast fel incat } B(x_0, r) \subseteq V.$
- b) $x_0 \in A \Leftrightarrow \exists r > 0 \text{ ast fel incat } B(x_0, r) \subseteq A.$
- c) $x_0 \in \overline{A} \Leftrightarrow A \cap B(x_0, r) \neq \emptyset \forall r > 0.$
- d) $x_0 \in A' \Leftrightarrow A \cap (B(x_0, r) \setminus \{x_0\}) \neq \emptyset \forall r > 0$.
- e) $x_0 \in IzoA \Leftrightarrow \exists r > 0 \text{ astfel incat } B(x_0, r) \cap A = \{x_0\}.$

Teorema 7. Fie (X,d) un spatiu metric. Multimea $K \subseteq (X,\tau_d)$ este compacta daca si numai daca $\forall (x_n)_{n\in\mathbb{N}}$ sir din K exista $x_0 \in K$ si $(x_{n_k})_{k\in\mathbb{N}}$ subsir ai sirului $(x_n)_{n\in\mathbb{N}}$ astfel incat $\lim_{n\to\infty} x_{n_k} = x_0$.

ai sirului $(x_n)_{n\in\mathbb{N}}$ astfel incat $\lim_{k\to\infty} x_{n_k} = x_0$.

Definitia 7. O multime $A\subseteq (X,d)$ se numeste multime marginita daca $\exists a\in X, r>0$ astfel incat $A\subseteq B(a,r)$.

Teorema Heine-Borel. O multime $K \subseteq (\mathbb{R}^n, \tau_{\mathbb{R}^n})$ este compacta daca si numai daca K este multime inchisa si marginita.

Definitia 8. Multimea nevida $A\subseteq\mathbb{R}$. se numeste interval daca $\forall x,y\in A$ cu $x\leq y$ si $\forall z\in\mathbb{R}$ cu $x\leq z\leq y$ avem ca $z\in A$.

Teorema 8. Multimea $A \subseteq \mathbb{R}$ este conexa daca si numai daca $A = \emptyset$ sau A este interval in \mathbb{R} .

..