Carrera:

puntos 0-19	20-34	35-49	50-54	55-62	63-69	70-79	80-88	89-94	95-100
nota 1	2	3	4	5	6	7	8	9	10

1	2	3	4	Total	Nota
	- 3				

Parcial 2

Ejercicio 1. (20 puntos)

- (a) Dar el conjunto de divisores del número 20 720 y calcular su cardinal.
- (b) Calcular el mínimo común múltiplo entre 20 · 720 y 100.

Ejercicio 2. (18 puntos)

- (a) Enunciar el Pequeño Teorema de Fermat.
- (b) Sea $x \in \mathbb{Z}$ tal que $x^{71} \equiv -1$ (71). Calcular el resto de x dividido 71.

Ejercicio 3. (32 puntos) Supongamos que tenés que hacer un examen multiple choice que consta de 10 preguntas y en cada una tenés que elegir entre 5 respuestas posibles. Para fijar idea, digamos que las posibles respuestas se denominan a), b), c), d) y e).

(a) ¿De cuántas maneras distintas podés responder el examen?

- (b) ¿De cuántas maneras distintas podés responder el examen si queres elegir al menos una a)?
- (c) ¿De cuántas maneras podes responder el examen si queres elegir una misma consonante en las primeras 7 preguntas y una misma vocal en las 3 últimas?
- (d) ¿De cuántas maneras distintas podés responder el examen si queres elegir cuatro a), tres b), una c), una d) y una e)?

Ejercicio 4. (30 puntos) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar su respuesta.

- (a) Existe un número $d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ tal que el número 15646897d es divisible por 11.
- (b) $9^n + 7^{2n+1}$ es divisible por 8 para todo $n \in \mathbb{N}$.
- (c) Existe un grafo cuya lista de valencias es 4, 1, 1, 1, 1, 1.