Announcements

- New schedule posted
- Assignment 2 due tomorrow at midnight
- Midterm on Tuesday (study! bring 1 page of notes)
- Project instructions, Assignment 3 posted on Tuesday
- Two interesting talks:
 - 1/29 @ 11A in E2 475: Rama Akkiraju, "We know your personality, writing tone, emotions and how you make decisions. What next?"
 - 2/1 @ 11A in E2 180: Jeff Ullman, "Computing Marginals using MapReduce"

Statistical Learning for Classification

Review of Basic Prob. Concepts

- \square Marginal probability P(A): "the fraction of possible world in which A is true"
 - Examples

A = Your paper will be accepted by SIGKDD 2015

A = It rains in Santa Cruz

A = A document contains the word "mining"

- \square Joint probability P(A, B)
- □ Conditional probability
 - P(A|B)=P(A, B)/P(B)
- □ Bayes' rule
 - P(A|B)=P(B|A)P(A)/P(B)

Classification as Supervised Statistical Learning

- □ Supervised learning
 - Given: input and output variables pairs (training data) $\{(x_1,y_1)(x_2,y_2)...(x_N,y_N)\}$
 - Learning: infer a function f(X) from the training data
 - Prediction: predict future outcomes y=f(x)

classification: $R^{|V|} \rightarrow \{0,1\}$ X $\xrightarrow{\text{classifier}}$ Prediction of category c

4

Major Steps for Supervised Learning

- Gathering a training set (input objects and corresponding outputs) from human or from other measurements
- \square Determine the input feature of the learned function (What's X)
 - Controlled vocabulary? Bag of words? Title only? Stemming? Stopping? Phrases? Linguistic Features? Meta data? Other contextual information?
 - Typically, the input object is transformed into a feature vector
 - This step influence the final performance of the system greatly
- □ Determine the functional form of the learned algorithm
 - Logistic regression? Neural network? Support Vector Machines?
- □ Determine the corresponding learning algorithm (ML or MAP or else)
- □ Learn: run the learning algorithm on the gathered training set
 - Optional: adjust the parameter via cross validation
- □ Test the performance on a test set

Two Statistical Learning Approaches

- ☐ Generative models
 - \square Model the joint probabilistic distribution p(c, X), and derive the conditional probability

$$P(c_{j} | X) = \frac{P(X | c_{j})P(c_{j})}{\sum_{i} P(X | c_{i})P(c_{i})}$$

- □ Examples: Naive Bayes
- □ Discriminative models
 - \square Model the conditional probability P(c|X) directly
 - □ Examples: decision tree, neural networks, support vector machines, boosting or bagging, regression (linear, polynomial ...), k nearest neighbor

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$\square$$
 Class: $P(C) = N_c/N$

e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

□ For discrete attributes, one approach is:

$$P(A_i \mid C_k) = |A_{ik}|/N_c$$

- where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- □ For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - □ Assume attribute follows a normal (or other) distribution

k

- □ Use data to estimate parameters of the distribution (e.g., mean and standard deviation)
- Once probability distribution is known, can use it to estimate the conditional probability $P(A_i|c)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

□ Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- □ For (Income, Class=No):
 - If Class=No
 - \square sample mean = 110
 - \square sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-\frac{(120-110)^2}{2(2975)}}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K) naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
• P(X|Class=No) = P(Refund=No|Class=No)

× P(Married| Class=No)

× P(Income=120K| Class=No)

= 4/7 × 4/7 × 0.0072 = 0.0024
```

Since
$$P(X|No)P(No) > P(X|Yes)P(Yes)$$

Therefore $P(No|X) > P(Yes|X)$
=> $Class = No$

Exercise: Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Exercise: Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

=> Mammals

Naïve Bayes Classifier

- ☐ If one of the conditional probability is zero, then the entire expression becomes zero
- □ Solution: probability estimation with smoothing:

Original:
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace :
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

Naïve Bayes Classifier

□ Pros:

- Clear theoretical foundation
- Relatively effective, robust to isolated noise points
- Very simple
- Handle missing values by ignoring the instance during probability estimate calculations
- Fast: handles 10,000 attributes easily

□ Cons

- Wrong assumptions: Independence assumptions, models assumption (Multi-Variate Bernoulli, Multinomial, Gaussian etc.), One class per document assumption
- Classification accuracy is usually worse than many other methods, such as logistic regression, linear regression or support vector machines
- **Bad probabilistic estimation of P(c|x)**

Discriminative Models

- Focusing on estimating the decision boundary between classes or P(y|X)
- □ No explicit assumption on how the documents are generated
- □ For text classification task, usually the decision boundary is a linear separator
 - Assign a document to the positive class if h(X)=W^TX>0

Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
 - Outcome is linear combination of attributes

$$x = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

- Weights are calculated from the training data
- Predicted value for first training instance x⁽¹⁾

$$y^{(1)} = w_0 + w_1 x_1^{(1)} + w_2 x_2^{(1)} + \dots + w_k^{(1)} x_k = w_0 + \sum_{j=1}^{n} w_j x_j^{(1)}$$

Minimizing the squared error

- Choose k +1 coefficients to minimize the squared error on the training data
- Squared error: $\sum_{i=1}^n \left(y^{(i)} w_0 + \sum_{j=1}^k w_j x_j^{(i)} \right)^2$
- Derive coefficients using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
 - Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this is known as multiresponse linear regression
- Problem: membership values are not in [0,1] range, so aren't proper probability estimates

Discriminative Models

- Focusing on estimating the decision boundary between classes or P(y|X)
- □ No explicit assumption on how the documents are generated
- □ For text classification task, usually the decision boundary is a linear separator
 - Assign a document to the positive class if h(X)=W^TX>0

Linear models: logistic regression

- Builds a linear model for a transformed target variable
- Assume we have two classes
- Logistic regression replaces the target

$$P(1|x_1, x_2, ..., x_k)$$

by this target

$$\log \left(\frac{P(1|x_1, x_2, ..., x_k)}{1 - P(1|x_1, x_2, ..., x_k)} \right)$$

• Logit transformation maps [0,1] to $(-\infty, +\infty)$

Logit transformation

• Resulting model:

$$P(1|x_1, x_2, ..., x_k) = \frac{1}{1 + e^{-w_0 - w_1 x_1 - ... - w_k x_k}}$$

Example logistic regression model

• Model with $w_0 = 0.5$ and $w_1 = 1$:

• Parameters are found from training data using *maximum likelihood*

Linear models are hyperplanes

• Decision boundary for two-class logistic regression is where probability equals 0.5:

$$P(1|x_1, x_2, ..., x_k) = 1/(1 + \exp(-w_0 - w_1 x_1 - ... - w_k x_k))$$
 which occurs when $-w_0 - w_1 x_1 - ... - w_k x_k = 0$

• Thus logistic regression can only separate data that can be separated by a hyperplane

Maximum likelihood

- Aim: maximize probability of training data wrt parameters
- Can use logarithms of probabilities and maximize *log-likelihood* of model:

$$\sum_{i=1}^{n} y^{(i)} \log(P(1|x_1^{(i)}, x_2^{(i)}, ..., x_k^{(i)}) +$$

 $(1-y^{(i)})\log(1-P(1|x_1^{(i)},x_2^{(i)},...,x_k^{(i)})$ where the y⁽ⁱ⁾ are either 0 or 1

• Weights w_i need to be chosen to maximize log-likelihood (relatively simple method: *iteratively reweighted least squares*)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

How to Learn?

- \square Given evidence (data) E, find hypothesis (model) h
- □ Maximum likelihood (ML) estimation

$$h_{ML} = \underset{h}{\operatorname{arg\,max}} P(E \mid h_i)$$
 Data likelihood

□ Maximum a posteriori (MAP) estimation

Learning Logistic Regression Model

Maximum likelihood estimation

$$W_{ML} = \arg\max_{w} \prod_{i=1}^{t} p(y_i | x_i, W) = \arg\max_{w} \sum_{i=1}^{t} \log(p(y_i | x_i, W))$$

Usually a Gaussian prior

Maximum a posteriori (MAP) estimation

likelihood of training data

$$W_{MAP} = \arg \max_{w} \prod_{i=1}^{t} p(y_i \mid x_i, W) P(W)$$

$$= \arg \max_{w} \sum_{i=1}^{t} \log(p(y_i \mid x_i, W)) + \log(P(W))$$
likelihood of
Usually a Gaussian prior

training data

Document space (N)

Logistic Regression Classifier

☐ If the goal is to minimize classification error, classify X to the class if:

$$P(y = yes \mid X, W) = \frac{1}{1 + e^{-W^T X}} > 0.5 \Leftrightarrow W^T X > 0$$

linear separator

Linear Regression Model

 \square Modeling the conditional probability p(y|X) as a Normal distribution

Learning Linear Regression Model

□ Maximum likelihood estimation

$$W_{ML} = \arg\max_{w} \sum_{i=1}^{t} \log(p(y_i | x_i, W)) = \arg\max_{w} - \sum_{i=1}^{t} (y_i - W^T x_i)^2$$

□ Maximum a posteriori (MAP) estimation

Log likelihood Usually a Gaussian prior

of data
$$W_{MAP} = \arg \max_{w} \sum_{i=1}^{t} \log(p(y_i | x_i, W)) + \log P(W)$$

$$= \arg \max_{w} \sum_{i=1}^{t} (y_i - W^T x_i)^2 - \lambda (W - U)^2$$

Deviation from the prior mean

Document space (N)

Sum square error on training data

The Benefit of Using Prior P(W)

- Controlling model complexity: avoid overfitting
 - Similar to having a regularizer
- □ Avoiding the pain of zero probability
- □ Integrating expert/prior knowledge
- □ Integrating two classification algorithms
- □ Transfer learning
 - Using one task to help another task

Loss Function for Different Discriminative Classifiers

Some Empirical Performance

42

Comparison of Generative Models and Discriminative Models

	Generative	Discriminative
	Models	Models (LR, LR)
	(Naïve Bayes)	
Focus	P(X, y)	P(y X)
Training		\otimes
efficiency		
Effectiveness	OK	Good

Improving Simple Classifiers

- □ *Bagging:* Fit many large *t*rees to bootstrap-resampled versions of the training data, and classify by majority vote. (Variance reduction)
- *Boosting:* Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote. (Bias reduction)

Multiple classes

- Can perform logistic regression independently for each class (like multi-response linear regression)
- Problem: probability estimates for different classes won't sum to one
- Better: train coupled models by maximizing likelihood over all classes
- Alternative that often works well in practice: pairwise classification

Multi-Class Classification

classification: $R^{|V|} \rightarrow \{0,1\}^K$

regression: $R^{|V|} \rightarrow R^K$

V: the set of vocabularies

K: the number of classes

 $X_i \in R^{|V|}$: a document

	c_1	c_2	• • •	c_{i}	• • •	c_{K}
X_1	0	1	• • •	1		0
X_2	1	0		0		0
•••						
X _i	1	0		1		1
•••						
X_{M}						

Pairwise classification

- Idea: build model for each pair of classes, using only training data from those classes
- Problem? Have to solve k(k-1)/2 classification problems for k-class problem
- Turns out not to be a problem in many cases because training sets become small:
 - Assume data evenly distributed, i.e. 2n/k per learning problem for n instances in total
 - Suppose learning algorithm is linear in *n*
 - Then runtime of pairwise classification is proportional to $(k(k-1)/2)\times(2n/k)=(k-1)n$

Multiclass regression: hyperplane

■ Multi-response linear regression has the same problem. Class A is assigned if:

$$w_0^{(c=A)} + w_1^{(c=A)} x_1 + w_2^{(c=A)} x_2 + \dots + w_k^{(c=A)} x_k >$$

$$w_0^{(c=B)} + w_1^{(c=B)} x_1 + w_2^{(c=B)} x_2 + \dots + w_k^{(c=B)} x_k$$

□ Which happens when:

$$(w_0^{(c=A)} - w_0^{(c=B)}) + (w_1^{(c=A)} - w_1^{(c=B)})x_1 + (w_2^{(c=A)} - w_2^{(c=B)})x_2 + \dots + (w_k^{(c=A)} - w_k^{(c=B)})x_k > 0$$
... + $(w_k^{(c=A)} - w_k^{(c=B)})x_k > 0$

Multi-Class Classification Approaches

- □ Learn one binary classifier for each class
 - Assign a document to all classes that the corresponding classifiers says "yes"; or
 - Assign a document to the "best" class
- Many against many
 - Learn multiple classifiers
 - Each classifier assign a document to a set of classes
 - Assign a document to the class with the biggest votes from classifiers

Multinomial Logistic Regression

$$\Pr(Y_i = c) = \frac{e^{\boldsymbol{\beta}_c \cdot \mathbf{X}_i}}{\sum_{k=1}^K e^{\boldsymbol{\beta}_k \cdot \mathbf{X}_i}}$$

Because probabilities must sum to 1, one of β_c is completely determined once all the rest are known. Thus one can also use:

$$\Pr(Y_i = 1) = \frac{e^{\boldsymbol{\beta}_1' \cdot \mathbf{X}_i}}{1 + \sum_{k=1}^{K-1} e^{\boldsymbol{\beta}_k' \cdot \mathbf{X}_i}}$$

.

$$\Pr(Y_i = K - 1) = \frac{e^{\boldsymbol{\beta}'_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{k=1}^{K-1} e^{\boldsymbol{\beta}'_k \cdot \mathbf{X}_i}}$$
$$\Pr(Y_i = K) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{\boldsymbol{\beta}'_k \cdot \mathbf{X}_i}}$$

Linear models: the perceptron

- Don't actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane
- Assumption: data is *linearly separable*
- Algorithm for learning separating hyperplane: perceptron learning rule
- Hyperplane:

$$w_0 + w_1 x_1 + w_2 x_2 + \dots w_k x_k = 0$$

• If sum is greater than zero we predict the first class, otherwise the second class

The algorithm

Set all weights to zero

Until all instances in the training data are classified correctly

For each instance I in the training data

If I is classified incorrectly by the perceptron

If I belongs to the first class add it to the weight vector else subtract it from the weight vector

• Why does this work?

Consider situation where instance *a* pertaining to the first class has been added:

$$(w_0 + 1) + (w_1 + x_1)x_1 + (w_2 + x_2)x_2 + \dots + (w_k + x_k)x_k$$

This means output for a has increased by:

$$1 + x_1x_1 + x_2x_2 + \dots x_kx_k$$

This number is always positive, thus the hyperplane has moved into the correct direction (and we can show output decreases for instances of other class)

Perceptron as a neural network

Linear models: Winnow

- Another *mistake-driven* algorithm for finding a separating hyperplane
 - Assumes binary data (i.e. attribute values are either zero or one)
- Difference: *multiplicative* updates instead of *additive* updates
 - Weights are multiplied by a user-specified parameter $\alpha > 1$ (or its inverse)
- Another difference: user-specified threshold parameter θ
 - Predict first class if

$$w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k > \theta$$

The algorithm

```
while some instances are misclassified

for each instance a in the training data

classify a using the current weights

if the predicted class is incorrect

if a belongs to the first class

for each a<sub>i</sub> that is 1, multiply w<sub>i</sub> by alpha

(if a<sub>i</sub> is 0, leave w<sub>i</sub> unchanged)

otherwise

for each a<sub>i</sub> that is 1, divide w<sub>i</sub> by alpha

(if a<sub>i</sub> is 0, leave w<sub>i</sub> unchanged)
```

- Winnow is very effective in homing in on relevant features (it is attribute efficient)
- Can also be used in an on-line setting in which new instances arrive continuously (like perceptron)

Balanced Winnow

- Winnow doesn't allow negative weights and this can be a drawback
- Balanced Winnow maintains two weight vectors, one for each class: Instance is classified as belonging to the first class (of two classes) if:

$$(w_0^+ - w_0^-) + (w_1^+ - w_1^-)x_1 + (w_2^+ - w_2^-)x_2 + \dots + (w_k^+ - w_k^-)x_k > \theta$$

```
while some instances are misclassified for each instance a in the training data classify a using the current weights if the predicted class is incorrect if a belongs to the first class for each a_i that is 1, multiply \mathbf{w}_i^{\ t} by alpha and divide \mathbf{w}_i^{\ t} by alpha (if a_i is 0, leave \mathbf{w}_i^{\ t} and \mathbf{w}_i^{\ t} unchanged) otherwise for each a_i that is 1, multiply \mathbf{w}_i^{\ t} by alpha and divide \mathbf{w}_i^{\ t} by alpha (if a_i is 0, leave \mathbf{w}_i^{\ t} and \mathbf{w}_i^{\ t} unchanged)
```

Other Practical Concerns

- Controlling model complexity
 - Feature selection, smoothing (coefficient shrinkage): Ridge regression, lasso regression, Bayesian prior
- □ Over fitting (cross-validation, leave one out)
- □ Cost sensitive learning
 - Classify a ham as spam is more costly than the other way around
- □ Unbalanced samples and rare classes: 0.01% positive vs. 99.99% negative samples
- Biased samples
 - User only provides feedback on documents she reads
 - While she may not not read randomly
- □ Noisy label