NATIONAL ACADEMY FOR LEARNING

REVISION WORKSHEET

MAY 2023

12 ISC - PHYSICS

TOPIC: ELECTROSTATICS

1 MARK

- 1. State the unit of electric permittivity in terms of the base SI units.
- 2. If the distance between two equal point charges is doubled and their individual charges are also doubled, what would happen to the force between them?
- 3. Maximum torque acting on an electric dipole of moment 3 x 10^{-29} Cm in a uniform Electric field E is 6 x 10^{-25} Nm.Find E. (Ans : 2x 10^4 N/C)
- 4. A stationary oil drop between two parallel plates has a charge of 3.2×10^{-19} C and weight of 1.6×10^{-14} N. What is the Electric Field acting on the drop. (5X 10^4 N/C).
- 5. What is a Gaussian Surface? State Gauss's Law.

2 Mark

- 6. Draw a graph to show showing the variation of electric field, as one moves from the centre of a charged metal ball to a point on its surface and then to a far-off outside point.
- 7. An infinite line charge produced a field of $9x \cdot 10^4 \text{N/C}$ at a distance of 2 cm. Calculate the linear charge density. (1X 10^{-7} C/m)
- 8. Two-point charges Q1 = 400 μ C and Q2 = 100 μ C are kept fixed, 60 cm apart in vacuum. Find the intensity of the electric field at the mid-point of the line joining Q₁ and Q2.

9.	Obtain an expression for Intensity of Electric Field in end on position or axial position of an electric dipole.
10.	Four-point charges are placed at the corners of a square of side 2 cm. The charges are in order from the left base corner of the square as we move anti clock wise given as $+2Q$, $-Q$, $+Q$ and $-2Q$. Find the magnitude of the Electric field at the center of the square. (1.3 x 10^6 N/C)