Map-Reduce

Distributed File System
Computational Model
Scheduling and Data Flow
Refinements

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Single Node Architecture

Machine Learning, Statistics

"Classical" Data Mining

Motivation: Google Example

- 10 billion web pages
- Average size of webpage = 20KB
- 10 billion * 20KB = 200 TB
- Disk read bandwidth = 50 MB/sec
- Time to read = 4 million seconds = 46+ days
- Even longer to do something useful with the data

Cluster Architecture

Each rack contains 16-64 commodity Linux nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Cluster Computing Challenges (1)

- Node failures
 - A single server can stay up for 3 years (1000 days)
 - 1000 servers in cluster => 1 failure/day
 - 1M servers in cluster => 1000 failures/day
- How to store data persistently and keep it available if nodes can fail?
- How to deal with node failures during a longrunning computation?

Cluster Computing Challenges (2)

- Network bottleneck
 - Network bandwidth = 1 Gbps
 - Moving 10TB takes approximately 1 day
- Distributed programming is hard!
 - Need a simple model that hides most of the complexity

Map-Reduce

- Map-Reduce addresses the challenges of cluster computing
 - Store data redundantly on multiple nodes for persistence and availability
 - Move computation close to data to minimize data movement
 - Simple programming model to hide the complexity of all this magic

Redundant Storage Infrastructure

Distributed File System

- Provides global file namespace, redundancy, and availability
- E.g., Google GFS; Hadoop HDFS

Typical usage pattern

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Ensures persistence and availability

Chunk servers also serve as compute servers

Bring computation to data!

Distributed File System

Chunk servers

- File is split into contiguous chunks (16-64MB)
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data