CS411 Database Systems

02: ER Model

The New Contract on Lecture: Students

Students:

- Please attend class and participate.
- Please sit in the front rows so we are together.
- Please interact with instructor (signal, ask, answer).
 - Please do not fall asleep or ...

The New Contract on Lecture: Instructor

• Instructor:

- Will be do my best to prepare.
- Will respect each question.
- Will not rush to cover all the materials.
- Will make sure online students hear well.
- Will not fall asleep or ...

Why Do We Learn This?

Data Modeling = E-R diag.

~ How do I expresse data?

~ How do I think about duta?

Steps in Building a DB Application

- Suppose you are working on CS411 project
- Step 0: pick an application domain
 - we will talk about this later
- Step 1: conceptual design
 - discuss with your team mates what to model in the application domain
 - need a modeling language to express what you want
 - ER model is the most popular such language
 - output: an ER diagram of the app. domain

Steps in Building a DB Application

- Step 2: pick a type of DBMS
 - relational DBMS is most popular and is our focus
- Step 3: translate ER design to a relational schema
 - use a set of rules to translate from ER to rel. schema
 - use a set of schema refinement rules to transform the above rel. schema into a good rel. schema
- At this point
 - you have a good relational schema on paper

Steps in Building a DB Application

- Subsequent steps include
- Subsequent steps include query language query la language qu programming language" called SQL
 - ordinary users cannot interact with the database directly
 - and the database also cannot do everything you want
 - hence write your application program in C++, Java, Perl, etc to handle the interaction and take care of things that the database cannot do
- So, the first thing we should start with is to learn ER model ...

ER Model

- Gives us a language to specify
 - what information the db must hold
 - what are the relationships among components of that information
- Proposed by Peter Chen in 1976
- What we will cover
 - basic stuff
 - constraints
 - weak entity sets
 - design principles

Entities and Attributes

- Entities
 - real-world objects distinguishable from other objects
 - described using a set of attributes

Attributes

stockprice

- each has an atomic domain: string, integers, reals, etc.
- Entity set: a collection of similar entities

Relations

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of
- $A=\{1,2,3\}, B=\{a,b,c,d\},\ R=\{(1,a),(1,c),(3,b)\}$

makes is a subset of Product x Company:

More about relationships ...

Multiplicity of E/R Relationships

Q: Example scenarios for each case?

one-one:

many-one

many-many

3 - Way Multiway Relationships

How do we model a purchase relationship between buyers. Address Photographic Product

Product

Product

Purchase

Store

Person

John

Person

Can still model as a mathematical set (how?)

Purchase & Posson X Bod X Store

Arrows in Multiway Relationships

Arrows in Multiway Relationships

Q: how do I say: "invoice determines store"?

A: no good way; best approximation:

Q: Why is this incomplete?

Roles in Relationships

What if we need an entity set twice in one relationship?

Roles in Relationships

What if we need an entity set twice in one relationship?

Attributes on Relationships

Q: Attributes vs. Entities on Relationships?

Relationships: Summary

- Modeled as a mathematical set
- Binary and multiway relationships
- Converting a multiway one into many binary ones
- Constraints on the degree of the relationship
 - many-one, one-one, many-many
 - limitations of arrows
- Attributes of relationships
 - not necessary, but useful

Subclasses in ER Diagrams

Warning: Viewers' Discretion Please

