Formale Grundlagen der Informatik II 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto

SoSe 2015 24. Juni 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe G1 (Pränexe Normalform)

Seien f, g Funktionssymbole und R, S Relationssymbole mit jeweils der passenden Stelligkeit. Geben Sie zu den folgenden Formeln jeweils eine äquivalente Formel in pränexer Normalform an:

- (a) $(\forall xRx) \lor (\exists x \neg Rx)$
- (b) $(\forall xRxgz) \rightarrow \forall y(Sfy \lor y = z)$

Lösung:

- (a) $\forall x \exists y (Rx \lor \neg Ry)$
- (b)

$$(\forall xRxgz) \rightarrow \forall y(Sfy \lor y = z) \equiv \neg \forall xRxgz \lor \forall y(Sfy \lor y = z)$$
$$\equiv \exists x \neg Rxgz \lor \forall y(Sfy \lor y = z)$$
$$\equiv \exists x \forall y(\neg Rxgz \lor Sfy \lor y = z)$$
$$\equiv \exists x \forall y(Rxgz \rightarrow (Sfy \lor y = z))$$

Aufgabe G2 (Modellierung)

Ein Meteorologe versucht die zeitliche Entwicklung des Wetters an einem bestimmten Ort mit folgender Signatur in FO zu beschreiben:

$$S = \{0, N, <, P_S, P_R\}.$$

- 0 Konstante für den Starttag
- N 1-stelliges Funktionssymbol für den nächsten Tag
- < 2-stelliges Relationssymbol für die zeitliche Ordnung der Tage
- P_S, P_R 1-stellige Relationssymbole für Sonne und Regen

Formalisieren Sie die folgenden Aussagen in FO(S):

- (a) Auf Regen folgt (irgendwann) Sonnenschein.
- (b) Jeden zweiten Tag scheint die Sonne.
- (c) Wenn an einem Tag die Sonne scheint, gibt es innerhalb von drei Tagen wieder Regen.

Hinweis: Beachten Sie, dass diese Beschreibungen nicht eindeutig sind.

Lösung: Wir geben eine mögliche Lösung an.

- (a) $\forall x (P_R x \rightarrow \exists y (x < y \land P_S y))$
- (b) $\forall x (P_S x \vee P_S N x)$
- (c) $\forall x (P_S x \rightarrow (P_R N x \lor P_R N N x \lor P_R N N N x))$

Aufgabe G3 (Wörter und Sprachen)

Wir wollen Sprachen über dem Alphabet $\Sigma = \{a,b\}$ mit Hilfe der Prädikatenlogik definieren. Wie im Skript, S. 3, definieren wir zu einem nichtleeren Wort $w = a_1 \dots a_n \in \Sigma^+$ eine *Wortstruktur*

$$\mathcal{W}(w) = \left(\{1,\ldots,n\},<^{\mathcal{W}},P_a^{\mathcal{W}},P_b^{\mathcal{W}}\right)$$

wobei

$$P_a^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = a\} \text{ und } P_b^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = b\}.$$

(Wir schließen das leere Wort aus, da es keine leeren Strukturen gibt.) Ein Satz $\varphi \in FO(<, P_a, P_b)$ definiert dann die Sprache $L(\varphi) := \{ w \in \Sigma^+ \mid \mathcal{W}(w) \models \varphi \}$.

- (a) Welche Sprachen definieren die folgenden Formeln?
 - i. $\forall x \forall y (x < y \rightarrow ((P_a x \rightarrow P_a y) \land (P_b y \rightarrow P_b x)))$

ii.
$$\forall x \forall y ((x < y \land P_a x \land P_a y) \rightarrow \exists z (x < z \land z < y \land P_b z))$$

- (b) Geben Sie zu den folgenden Sprachen Formeln an, welche sie definieren.
 - i. $L((a+b)^*bb(a+b)^*)$
 - ii. $L((ab)^{+})$

Lösung:

- (a) Der erste Teil der ersten Formel besagt, dass rechts von einem a nur a stehen dürfen. Analog sagt der zweite Teil, dass links von einem b nur b stehen dürfen, also wird die Sprache $L(b^*(a+b)a^*)$ definiert. Die zweite Formel besagt, dass zwischen zwei a jeweils ein b auftauchen muss, also ist die definierte Sprache $L((b+ab)^*(a+b)b^*)$.
- (b)

$$\exists x \exists y (x < y \land \neg \exists z (x < z \land z < y) \land P_h x \land P_h y)$$

und

$$\forall x \forall y ((x < y \land \neg \exists z (x < z \land z < y)) \rightarrow (P_a x \longleftrightarrow P_b y)) \land \\ \forall x (\neg \exists y (y < x) \rightarrow P_a x) \land \forall x (\neg \exists y (x < y) \rightarrow P_b x)$$

Aufgabe G4 (Mächtigkeiten)

Betrachten Sie FO-Formeln zur Signatur $\{f\}$, wobei f ein einstelliges Funktionssymbol ist.

- (a) Geben Sie eine FO-Formel an, die besagt, dass die Trägermenge genau n Elemente enthält.
- (b) Geben Sie jeweils eine FO-Formel an, die genau dann von einer Struktur erfüllt wird, wenn die Interpretation von f
 - i. injektiv ist.
 - ii. surjektiv ist.
- (c) Geben Sie eine FO-Formel an, die erfüllbar ist, aber nur unendliche Modelle hat.

Lösung:

(a) Die Trägermenge enthält mindestens *n* Elemente:

$$\varphi = \exists x_1 \dots \exists x_n \bigwedge_{i \neq j} (x_i \neq x_j)$$

Die Trägermenge enthält höchstens *n* Elemente:

$$\psi = \forall x_1 \dots \forall x_{n+1} \bigvee_{i \neq j} (x_i = x_j).$$

Die Trägermenge enthält genau n Elemente:

$$\varphi \wedge \psi$$
.

- (b) $\varphi_{\text{inj}} := \forall x \forall y (f(x) = f(y) \rightarrow x = y),$ $\varphi_{\text{surj}} := \forall y \exists x (f(x) = y)$
- (c) $\varphi_{\text{inj}} \wedge \neg \varphi_{\text{surj}}$ oder $(\neg \varphi_{\text{inj}}) \wedge \varphi_{\text{surj}}$ oder $\varphi_{\text{inj}} \oplus \varphi_{\text{surj}}$. Wenn A eine endliche Menge ist, ist nämlich eine Funktion $f: A \to A$ genau dann injektiv, wenn sie surjektiv ist, genau dann, wenn sie bijektiv ist. Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit f(n) := 2n für alle $n \in \mathbb{N}$ ist aber injektiv und nicht surjektiv.

Aufgabe G5 (Spielsemantik)

Sei ≼ ein zweistelliges Relationssymbol in Infixnotation. Betrachten Sie den FO(≼)-Satz

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((x_4 \preccurlyeq x_1 \land x_4 \preccurlyeq x_2) \rightarrow x_4 \preccurlyeq x_3 \right) \right).$$

Sei $A = (A, \preceq^A)$ mit $A = \{0, 1, 2, 3, 4\}$ und

 $\preceq^{\mathcal{A}} = \{(0,0), (0,1), (0,2), (0,3), (0,4), (1,1), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (4,4)\}.$

Zeigen Sie $\mathcal{A} \not\models \varphi$, indem Sie eine Gewinnstrategie für den Falsifizierer angeben.

Hinweis:

- (a) Bringen Sie φ in Negationsnormalform φ' , und bestimmen Sie $SF(\varphi')$.
- (b) Skizzieren Sie die Struktur \mathcal{A} , und überlegen Sie inhaltlich, was die Subformeln von φ' bedeuten.
- (c) Geben Sie für alle relevanten Spielpositionen an, wie der Falsifizierer ziehen soll, um sicher zu gewinnen.

Lösung: Die Relation $\preceq^{\mathcal{A}}$ ist reflexiv, transitiv und antisymmetrisch und damit eine partielle Ordnung. Die Struktur \mathcal{A} kann folgendermaßen als Graph dargestellt werden:

 $\mathcal{A} \models \varphi$ bedeutet, dass es zu zwei Elementen x_1 und x_2 ein Element x_3 mit $x_3 \preccurlyeq x_1$ und $x_3 \preccurlyeq x_2$ gibt, sodass für jedes x_4 mit $x_4 \preccurlyeq x_1$ und $x_4 \preccurlyeq x_2$ auch $x_4 \preccurlyeq x_3$ gilt. Für eine partielle Ordnung \preccurlyeq drückt φ also aus, dass es zu je zwei Elemente x_1 und x_2 ein größtes Element unter den Elementen gibt, die kleiner als x_1 und x_2 sind. Man überprüft leicht, dass für $x_1 \mapsto 3$ und $x_2 \mapsto 4$ kein x_3 mit der benötigten Eigenschaft existiert, also $\mathcal{A} \not\models \varphi$. Als nächstes formen wir φ in Negationsnormalform um:

$$\varphi \equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((x_4 \preccurlyeq x_1 \land x_4 \preccurlyeq x_2) \rightarrow x_4 \preccurlyeq x_3 \right) \right)$$

$$\equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left(\neg (x_4 \preccurlyeq x_1 \land x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right) \right)$$

$$\equiv \underbrace{\forall x_1 \forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right) \right)}_{=:\varphi'}$$

Wir zeigen nun, dass für beliebige $a_1, a_2, a_3, a_4 \in A$ der Falsifizierer in der Spielposition $(\varphi', (a_1, a_2, a_3, a_4))$ eine Gewinnstrategie hat: Angenommen der Falsifizierer zieht von der Position

$$\left(\forall x_1 \forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right) \right), (a_1, a_2, a_3, a_4) \right)$$

nach

$$\left(\forall x_2 \exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right) \right), (3, a_2, a_3, a_4) \right)$$

und von dort nach

$$\left(\exists x_3 \left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right) \right), (3, 4, a_3, a_4) \right)$$

dann hat der Verifizierer fünf Möglichkeiten zu ziehen:

 $a_3 \mapsto 3$:

$$\left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right), (3, 4, 3, a_4) \right)$$

dann kann der Falsifizierer nach

$$(x_3 \preceq x_1 \land x_3 \preceq x_2, (3, 4, 3, a_4))$$

und

$$(x_3 \preceq x_2, (3, 4, 3, a_4))$$

ziehen und gewinnt wegen $A \not\models 3 \preceq 4$.

 $a_3 \mapsto 4$:

$$\left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right), (3, 4, 4, a_4) \right)$$

dann kann der Falsifizierer nach

$$(x_3 \preceq x_1 \land x_3 \preceq x_2, (3, 4, 4, a_4))$$

und

$$(x_3 \preceq x_1, (3, 4, 4, a_4))$$

ziehen und gewinnt wegen $A \not\models 4 \preceq 3$.

 $a_3 \mapsto 1$:

$$\left((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \left((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \right), (3, 4, 1, a_4) \right)$$

dann kann der Falsifizierer nach

$$\left(\forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right), (3, 4, 1, a_4) \right)$$

und

$$\Big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3, (3,4,1,2)\Big)$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 2 \preccurlyeq 1$, $\mathcal{A} \vDash 2 \preccurlyeq 3$ und $\mathcal{A} \vDash 2 \preccurlyeq 4$.

 $a_3 \mapsto 0$:

$$\Big((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3\big), (3, 4, 0, a_4)\Big)$$

dann kann der Falsifizierer nach

$$\left(\forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right), (3, 4, 0, a_4) \right)$$

und

$$(\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (3, 4, 0, 2)$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 2 \preccurlyeq 0$, $\mathcal{A} \models 2 \preccurlyeq 3$ und $\mathcal{A} \models 2 \preccurlyeq 4$.

 $a_3 \mapsto 2$:

$$\Big((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3\big), (3, 4, 2, a_4)\Big)$$

dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (3, 4, 2, a_4))$$

und

$$(\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (3, 4, 2, 1)$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 1 \leq 2$, $\mathcal{A} \models 1 \leq 3$ und $\mathcal{A} \models 1 \leq 4$.

Also hat der Falsifizierer eine Gewinnstrategie, und es gilt $\mathcal{A} \not\models \varphi$.