

Design Calculation Sheet for ElementId

Designer:
Location:
City:
Country:

Date: 2020-06-22 08:03:21

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
45	(23.7,10,3)	(23.7,15,3)	5	0.78	0.63
44	(23.7,5,3)	(23.7,10,3)	5	0.78	0.63
43	(23.7,0,3)	(23.7,5,3)	5	0.78	0.63
2	(0,5,3)	(0,10,3)	5	0.89	0.71
3	(0,10,3)	(0,15,3)	5	0.89	0.71
1	(0,0,3)	(0,5,3)	5	0.89	0.71

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 0.89 t.m

Vd: 0.71 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.13 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 23.92 < 81.98 => Compact Web

c/tf= 3.95 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 94.24 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.15 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.11 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.93 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 0.71 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.05 \text{ t/cm}^2 \text{ a} = 0.03 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.07 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.03 \text{ t/cm}^2 \text{ a qmt} = 0.05 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.06 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.06 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
39	(21.1,10,3)	(21.1,15,3)	5	1.49	1.19
37	(21.1,0,3)	(21.1,5,3)	5	1.49	1.19
36	(19.8,10,3)	(19.8,15,3)	5	1.49	1.19
35	(19.8,5,3)	(19.8,10,3)	5	1.49	1.19
34	(19.8,0,3)	(19.8,5,3)	5	1.49	1.19
38	(21.1,5,3)	(21.1,10,3)	5	1.49	1.19
40	(22.4,0,3)	(22.4,5,3)	5	1.49	1.19
42	(22.4,10,3)	(22.4,15,3)	5	1.49	1.19
41	(22.4,5,3)	(22.4,10,3)	5	1.49	1.19

6	(1.5,10,3)	(1.5,15,3)	5	1.71	1.37
9	(3,10,3)	(3,15,3)	5	1.71	1.37
8	(3,5,3)	(3,10,3)	5	1.71	1.37
7	(3,0,3)	(3,5,3)	5	1.71	1.37
5	(1.5,5,3)	(1.5,10,3)	5	1.71	1.37
4	(1.5,0,3)	(1.5,5,3)	5	1.71	1.37
31	(18.5,0,3)	(18.5,5,3)	5	1.87	1.5
32	(18.5,5,3)	(18.5,10,3)	5	1.87	1.5
33	(18.5,10,3)	(18.5,15,3)	5	1.87	1.5
10	(4.5,0,3)	(4.5,5,3)	5	1.99	1.59
11	(4.5,5,3)	(4.5,10,3)	5	1.99	1.59
12	(4.5,10,3)	(4.5,15,3)	5	1.99	1.59

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 1.99 t.m

Vd: 1.59 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.26 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 27.93 < 81.98 => Compact Web

c/tf= 4.36 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 117.48 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.36 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.17 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.76 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.59 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.11 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.17 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.11 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.13 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.13 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
15	(6.5,10,3)	(6.5,15,3)	5	2.26	1.81
13	(6.5,0,3)	(6.5,5,3)	5	2.26	1.81
14	(6.5,5,3)	(6.5,10,3)	5	2.26	1.81
20	(10.5,5,3)	(10.5,10,3)	5	2.26	1.81
16	(8.5,0,3)	(8.5,5,3)	5	2.26	1.81
17	(8.5,5,3)	(8.5,10,3)	5	2.26	1.81

18	(8.5,10,3)	(8.5,15,3)	5	2.26	1.81
19	(10.5,0,3)	(10.5,5,3)	5	2.26	1.81
21	(10.5,10,3)	(10.5,15,3)	5	2.26	1.81
22	(12.5,0,3)	(12.5,5,3)	5	2.26	1.81
24	(12.5,10,3)	(12.5,15,3)	5	2.26	1.81
25	(14.5,0,3)	(14.5,5,3)	5	2.26	1.81
26	(14.5,5,3)	(14.5,10,3)	5	2.26	1.81
27	(14.5,10,3)	(14.5,15,3)	5	2.26	1.81
28	(16.5,0,3)	(16.5,5,3)	5	2.26	1.81
29	(16.5,5,3)	(16.5,10,3)	5	2.26	1.81
30	(16.5,10,3)	(16.5,15,3)	5	2.26	1.81
23	(12.5,5,3)	(12.5,10,3)	5	2.26	1.81

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 2.26 t.m

Vd: 1.81 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.4 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 29.65 < 81.98 => Compact Web

c/tf= 4.56 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 129.1 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.16 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.8 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.81 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.13 \text{ t/cm}^2 \text{ a} = 0.08 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.19 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.08 \text{ t/cm}^2 \text{ a qmt} = 0.13 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.15 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.15 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
58	(0,15,3)	(4.5,15,3)	4.5	2.14	1.45
46	(0,0,3)	(4.5,0,3)	4.5	2.14	1.45

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 2.14 t.m

Vd: 1.45 ton

Service Limit State

Combo: LIVE

Span: 4.5 m

Load: -0.33 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 29.65 < 81.98 => Compact Web

c/tf= 4.56 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 129.1 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.11 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.44 cm < dall= 1.5 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.45 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.1 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.15 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.1 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.12 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.12 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
61	(18.5,15,3)	(23.7,15,3)	5.2	3.23	1.88
49	(18.5,0,3)	(23.7,0,3)	5.2	3.23	1.88
59	(4.5,15,3)	(10.5,15,3)	6	3.77	1.91
47	(4.5,0,3)	(10.5,0,3)	6	3.77	1.91
54	(0,10,3)	(4.5,10,3)	4.5	4.2	2.82
50	(0,5,3)	(4.5,5,3)	4.5	4.2	2.82

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 4.2 t.m

Vd: 2.82 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.33 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 32.39 < 81.98 => Compact Web

c/tf= 4.81 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 154.92 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.3 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.19 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.69 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.82 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.2 \text{ t/cm}^2 \text{ a} = 0.13 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.3 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.13 \text{ t/cm}^2 \text{ a qmt} = 0.2 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.24 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.24 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

	Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
- 1				. ,	, ,	, ,

57	(18.5,10,3)	(23.7,10,3)	5.2	6.33	3.67
53	(18.5,5,3)	(23.7,5,3)	5.2	6.33	3.67
55	(4.5,10,3)	(10.5,10,3)	6	7.39	3.72
51	(4.5,5,3)	(10.5,5,3)	6	7.39	3.72
60	(10.5,15,3)	(18.5,15,3)	8	7.51	2.85
48	(10.5,0,3)	(18.5,0,3)	8	7.51	2.85

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 7.51 t.m

Vd: 2.85 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.38 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 36.23 < 81.98 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 193.65 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE300

fact= 1.35 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.14 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.85 ton

Rleast= 3.07 ton

N= 3 with Pitch= 70 mm & Full Layout: (35;70 70 35)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.16 \text{ t/cm}^2 \text{ a} = 0.11 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.26 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.11 \text{ t/cm}^2 \text{ a qmt} = 0.16 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.2 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.19 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 210 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
56	(10.5,10,3)	(18.5,10,3)	8	14.74	5.56
52	(10.5,5,3)	(18.5,5,3)	8	14.74	5.56

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 14.74 t.m

Vd: 5.56 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.75 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 40.24 < 81.98 => Compact Web

c/tf= 5.35 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 232.38 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE400

fact= 1.27 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.82 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=5.56 ton

Rleast= 3.72 ton

N= 3 with Pitch= 93 mm & Full Layout: (46;93 93 47.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.18 \text{ t/cm}^2 \text{ a} = 0.17 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.34 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.17 \text{ t/cm}^2 \text{ a qmt} = 0.18 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.24 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.21 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 280 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
69	(10.5,5,0)	(10.5,5,3)	3	-13.02
74	(10.5,10,0)	(10.5,10,3)	3	-13.02
70	(18.5,5,0)	(18.5,5,3)	3	-12.36
75	(18.5,10,0)	(18.5,10,3)	3	-12.36
68	(4.5,5,0)	(4.5,5,3)	3	-9.84
73	(4.5,10,0)	(4.5,10,3)	3	-9.84
64	(10.5,0,0)	(10.5,0,3)	3	-6.7
79	(10.5,15,0)	(10.5,15,3)	3	-6.7
65	(18.5,0,0)	(18.5,0,3)	3	-6.36
80	(18.5,15,0)	(18.5,15,3)	3	-6.36
63	(4.5,0,0)	(4.5,0,3)	3	-5.08
78	(4.5,15,0)	(4.5,15,3)	3	-5.08
71	(23.7,5,0)	(23.7,5,3)	3	-5.05
76	(23.7,10,0)	(23.7,10,3)	3	-5.05
67	(0,5,0)	(0,5,3)	3	-4.37
72	(0,10,0)	(0,10,3)	3	-4.37
81	(23.7,15,0)	(23.7,15,3)	3	-2.64
66	(23.7,0,0)	(23.7,0,3)	3	-2.64
77	(0,15,0)	(0,15,3)	3	-2.29
62	(0,0,0)	(0,0,3)	3	-2.29

Design Limit state:

Combo: 1*Dead + 1*Live

Nd: -13.02 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf = 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 89.55 < 100

fc= 0.24 t/cm^2 < Fc= 0.88 t/cm^2