18° Quiz - 5 - λεπτά

Σε ένα L-R κύκλωμα αποφόρτισης, το αρχικό ρεύμα τη χρονική στιγμή t = 0 είναι I_0 . Το ολικό φορτίο το οποίο έχει κινηθεί μέσω της αντίστασης έως ότου η ενέργεια στο πηνίο L έχει ελαττωθεί στο $\frac{1}{4}$ της αρχικής τιμής είναι:

(A)
$$\frac{LI_0}{R}$$
 (B) $\frac{LI_0}{2R}$ (Γ) $\frac{LI_0}{\sqrt{2}R}$ (Δ) $\frac{\sqrt{2}LI_0}{R}$

Η ενέργεια που είναι αποθηκευμένη στο πηνίο είναι: $E_m^0 = \frac{1}{2}LI_0^2$

Όταν η ενέργεια ελαττωθεί στο ¼ το ρεύμα είναι I_f : $E_m^f = \frac{1}{4}E_m^0 \Rightarrow \frac{1}{8}LI_0^2 = \frac{1}{2}LI_f^2 \Rightarrow I_f = \frac{I_0}{2}$

Το ρεύμα σε ένα R-L κύκλωμα αποφόρτισης είναι: $I(t) = I_0 e^{-t/\tau}$ όπου $\tau = L/R$

Άρα όταν $I_f=\frac{I_0}{2}$ αντικαθιστώντας στην χρονική εξίσωση του ρεύματος: $\frac{I_0}{2}=I_0e^{-t/\tau}$ $\Rightarrow \frac{1}{2}=e^{-t/\tau} \Rightarrow -ln2=-t/\tau \Rightarrow t=\tau ln2 \Rightarrow t=\frac{L}{R}ln2$

Το φορτίο που διαπερνά την αντίσταση θα είναι: $dQ = Idt = (I_0 e^{-t/\tau})dt$

Άρα το ολικό φορτίο που διαρρέει την αντίσταση στο χρονικό διάστημα $[0, \tau ln 2]$ είναι:

$$q = \int_{t_i}^{t_f} I_0 e^{-t/\tau} dt \Rightarrow q = \frac{I_0}{(-1/\tau)} e^{-\frac{t}{\tau}} \Big|_{0}^{t_{l_1}} \Rightarrow q = -I_0 \tau \left(e^{-ln2} - 1 \right) \Rightarrow q = -\frac{I_0 L}{R} \left(\frac{1}{2} - 1 \right) = \frac{I_0 L}{2R}$$