The implication of renewable power variation for large scale energy storage

Fokko Mulder Delft University of Technology Faculty of Applied Sciences

f.m.mulder@tudelft.nl

H₂ Gas storage: MOF's

J. Phys.Chem C 114 (2010) 10648

H₂ Gas storage: water stable MOF's

Chem. Comm. 47 (2011) 5244

Destabilisation of MgH₂:

J. Phys. Chem. C 2012 J.Am.Chem.Soc. 2013

Nanoionics: solid state electrolytes

Adv. Funct. Mater. 2010 & 2011

Impact of nanostructuring on Li battery materials

JACS 2005, 2007, 2009, 2011, Adv.Mat. 2009 Nature 2002, Acc Chem. Res. 2013

High effective energy density of Li battery + 100%

WO Patent 2,013,012,334 Adv. Ener. Mat. 2013, El.Chem.Comm. 2013

General TU Delft:

- Energy as a main research area
- 5 times winner of 3000 mile World Solar Challenge

How to get to a number for the future scale for energy storage?

Start from a scenario

2012

World energy use; Global Energy Assessment 2012

Renewables...

Light switch on continents!

(day/night and summer/winter)

DESERTEC plan

0°

Most people live on the Northern hemisphere above 20°

Large area still shows large wind power fluctuations

Varying output of renewables on an extended grid

Future sun + wind compared to electricity use

Renewable peak power becomes large compared to peak use

What to do with too much electricity?

- use electricity for more applications (EV, heating,...)
- match supply & demand by long/short term storage

2050:

Short term: 0.2 EJ

NL ~ 44 kWh/house

Daily averages...

2050: Short term: 0.2 EJ

NL ~ 44 kWh/house

2030: 2050:

10 EJ = 29 EJ =

2800TWh 8000TWh

Note EU Roadmap: -80% CO₂ in 2050

Price effects in Germany during the day:

- Reducing daily price for renewables
- Reducing daily price for fossile power
- High investments in parallel infrastructure
- → Deteriorating earnings at higher cost (for all)

Large scale energy storage is required for economic renewable energy implementation

Energy densities of storage technologies

Solutions for large EJ scale energy storage?

efficiency Long term Short term capacity EJ scale $e^{-} \rightarrow e^{-}$ ++_{0.82} Hydropower ++ Compressed air + 0.75² ++ Batteries Research ++ _{0.85²} ++ Hydrogen under--/--0.65 2 x0.85 2 + ground storage $NH_3(l)$ ++ ++ + 0.3x0.65 $C_nH_mO_p$ ++ ++CO₂ from air?

Storage options for large scales: to be developed (!)

- batteries
- For the short term only (low J/€)
- Requires long life, cheap batteries

- H₂

- Requires large scale storage method itself
- Can partially be fed in gas-grid

(max 10% ~5GW in Germany, limited compared to <u>current</u> 22GW PV record)

 $- C_k H_n O_m$

- Synthetic conventional fuels
- Requires a carbon source

- NH₃

- Is already produced & stored at large scale, but not from renewables.
- In industrial environment only (safety).
- Low efficiency

- heat

- Conversion losses may be recovered as heat, CHP

Preferably abundant elements!

Periodic Table of the Elements Electronegativity http://chemistry.about.com A8 ©2010 Todd Helmenstine Н About Chemistry He 2.20 2A no data 10 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Be Ne 1 57 no data 12 18 Si Mg Ar Na 3B 1.31 5B 6B 2B 2.58 0.93 8B 1B no data 21 22 23 25 26 30 28 33 20 Ti V Cr Mn Fe Ni K Ca Sc Cu Zn Co Ga Ge As Se Br Kr 1.63 1.83 1.91 0.82 1.00 1.36 1.54 1.66 1.55 1.88 1.90 1.65 2.01 2.18 2.55 2.96 1.81 3.00 38 39 45 48 54 37 41 42 49 52 53 Rb Sr Y Nb Tc Rh Cd Zr Mo Ru Pd Aq Sb Te In Sn Xe 0.95 1.22 1.33 2.16 2.2 2.28 2.20 2.05 2.1 2.66 0.82 1.9 1.93 1.69 1.78 1.96 2.6 55 56 57-71 72 73 78 82 85 86 74 76 77 79 81 84 75 80 83 Ba Hf Ta W Os lr Pt TI Pb Bi At Hg Rn Cs Re Au Po 0.79 0.89 2.36 1.9 2.2 2.20 2.28 2.00 1.62 2.33 2.02 2.0 2.2 Lanthanides 88 87 89-103 *** Elements > 104 exist only for very short half-lifes and the data is unknown.*** Fr Ra 0.89 Actinides 62 68 Ce Pr Nd Eu Gd Tb Er Yb Sm Dy Ho Tm Lanthanides La Pm Lu 1.24 1.10 1.12 1.13 1.14 1.13 1.17 1.2 1.2 1.2 1.22 1.23 1.25 1.1 1.27 89 90 91 92 93 94 95 97 100 102 103 101 Th U Pu Am Bk Cf Pa Np Cm Es Fm Md No Actinides Ac Lr 1.1 1.3 1.5 1.38 1.36 1.28 1.3 1.3 1.3 1.3 no data

Acknowledgements

- **TU Delft:** Wouter Borghols, Vincent Verhoeven, Gijs Schimmel, Lucas Haverkate, Winkee Chan, Deepak Singh, Anna Grzech, Sarita Singh, Ignatz de Schepper, Jouke Heringa, Lambert van Eijck, Tobias Pfeiffer, Andreas Schmidt-Ott, Stephan Eijt, Marnix Wagemaker, Erik Kelder, Joop Schoonman
- **ISIS (Oxford, UK):** Laurent Chapon, Winfried Kockelmann, Ron Smith
- U Nijmegen: Ernst Van Eck, Arno Kentgens
- ILL (Grenoble, France): Mark Johnson Mohamed Zbiri
- ANSTO (Menay, Australia): Don Kearley
- And others

Neutron diffraction measurements

Images of the inside of the material, visualizing the hydrogen

Local Sidereal Time

Solar power:
Large variations
during the day.
Large difference
between seasons

Wind power ~v³:
Also large variations
during the day:
wind is driven by
surface temperature
(this becomes visible for very
large grid, e.g. 3000x3000km²)

