The Real Numbers

Jack Krebsbach

Sep 4

0.1 The Real Numbers

0.1.1 The irrationality of the square root of 2

0.1.2 Preliminaries

Notation

- → For all/each/every
- \exists \rightarrow There exists
- $\mathbb{R} \setminus \mathbb{Q} \to Irrationals$
- $\mathbb{R} \to \text{Real numbers}$
- $\mathbb{Z} \to \text{Integers}$
- $\mathbb{Q} \to \text{Rational numbers}$
- $\mathbb{N} \to \text{Natural numbers}$

- $BWOC \rightarrow By$ way of contradiction
- → → Contradiction
- ! → Unique/factorial
- ⊜ → End of proof (Quod Erat Demonstrandum)
- $\epsilon \rightarrow$ Epsilon, usually a small positive quantity
- $\ni \rightarrow$ Such that

Theorem 0.1.1

Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

Proof: ⇒ If a = b then we have |a - b| = 0. No matter which $\epsilon > 0 \in \mathbb{R}$ is chosen we have that $|a - b| = 0 < \epsilon$. Thus, a = b

 \Leftarrow Suppose, by way of contradiction, that $a \neq b$. We know that $\forall \epsilon > 0$ and $|a - b| < \epsilon$. Let $\epsilon_0 = \frac{|a - b|}{2}$, then it is clear that $|a - b| < \frac{|a - b|}{2} = \epsilon_0$ is false. Thus, with this contradiction we overturn our assumption and conclude a must equal b.

0.1.3 The Axiom of Completeness

Definition 0.1.1: Bounded Above

A set $A \subseteq \mathbf{R}$ is bounded above if there exists a number $b \in \mathbf{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A. Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbf{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition 0.1.2: The Supremum of a Set

A real number *s* is the *Supremum* or the least upper bound for a set $A \subseteq \mathbf{R}$ if:

- (i) *s* is an upper bound for *A*;
- (ii) if *b* is any upper bound for *A*, then $s \le b$.

Theorem 0.1.2 Lemma 1.3.8

Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq \mathbf{R}$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

Proof: \Rightarrow Let $s = \sup A$ and arbitrarily choose any $\epsilon > 0$. Suppose, by way of contradiction, there does not exist $a \in A$ with $a > s - \epsilon$. So for all $a \in A$ we have that $a \le s - \epsilon < s$. This means that $s - \epsilon$ is an upper bound of A. However, s is the supremum of or the least upper bound of A, so this is a contradiction. Thus, there must exist an element $a \in A$ such that $s - \epsilon < a$.

 \Leftarrow Let $\epsilon > 0$ and suppose there exists $a \in A$ with $s - \epsilon < a$ and we know that s is an upper bound of A. To show that s is the least upper bound, by way of contradiction, suppose that b < s and b is another upper bound of A.

Consider $\epsilon_0 = s - b > 0$. By hypothesis there exists a with $s - \epsilon_0 < a \implies s - (s - b) < a \implies b < a$. As we know that b is an upper bound of A this is impossible. Therefore it must be that $b \ge s$. Hence, $s \le b$ and $s = \sup A$.

⊜

(3)

0.1.4 Consequences of Completeness

Theorem 0.1.3 The Archimedes Property

- (a) For all $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that n > x.
- (b) For all $y \in \mathbb{R}$ with $y \neq 0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < y$.

Proof: (a) Suppose, by way of contradiction, that the natural numbers are bounded. Let $\alpha \in \mathbb{R}$ be an upper bound, so $n \leq \alpha$ for all $n \in \mathbb{N}$. Let $\beta = \sup \mathbb{N}$ [exists by completeness]. Now $\beta - 1$ is not an upper bound. By our theorem, there exists $n_0 \in \mathbb{N}$ such that $\beta - 1 < n_0$.

So $\beta < n_0 + 1 \in \mathbb{N}$. This is a contradiction because we assumed that β was the supremum of the natural numbers. Thus, \mathbb{N} is unbounded. For any $\alpha \in \mathbb{R}$, we can find a natural number that is larger than α .

(b) To show why be is the case you can consider $x = \frac{1}{y}$ where $y \neq 0$.

0.1.5 Examples

1. Show that $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$.

Proof: Suppose otherwise, that the intersection is no the empty set, and let $x \in \bigcap_{n=1}^{\infty}$. Then it follows $x \in (0, \frac{1}{n})$ for all $n \in \mathbb{N}$. By the corollary of the Archimedes Property, there exists $n_{\star} \in \mathbb{N}$ with $\frac{1}{n_{\star}} < x$. Then there does not exist x such that $x \in \bigcap_{n=1}^{\infty} (0, \frac{1}{n})$. Therefore, $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$.

2. Show there does not exist a smallest positive number

Proof: To show that there does not exist a smallest positive number, suppose otherwise. Let $x \in \mathbb{R}^+$. By Archimedes property there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < x$. So x cannot be the smallest.

Theorem 0.1.4 The Nested Cells Property

For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \le x \le b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a non-empty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof: Let

$$A = \{a_1, a_2, a_3, \dots\}$$

and

$$B = \{b_1, b_2, b_3, \dots\}.$$

A is bounded above by one element of *B* and *B* is bounded below by any $a \in A$. Let $x = \sup A$ which implies that $a_n \le x$ for all $n \in \mathbb{N}$. Since *b* is an upper bound of *A* and $x = \sup A$, we have that $x \le b_n$ for all *n* and that $a_n \le x \le b_n$ for all *n*. Thus, $x \in [a_n, b_n]$ for all *n* and $x \in \bigcap_{n=1}^{\infty} I_n$.

0.1.6 Intersection Examples

- $\bigcap (0, \frac{1}{n}) = \emptyset$
- $\cap [0, \frac{1}{n}] = \{0\}$
- $\bigcap (0, \frac{1}{n}] = \emptyset$
- $\bigcap (-\frac{1}{n}, \frac{1}{n}) = \{0\}$

Theorem 0.1.5 Density of $\mathbb Q$ in $\mathbb R$

Let $a, b \in \mathbb{R}$. Then there exist $n \in \mathbb{Q}$ with a < r < b.

Proof: Since $a, b \in \mathbb{R}$, without loss of generality let a < b. Now, we have that b - a > 0. By the corollary to the Archimedes principle there exist $n_{\star} \in \mathbb{N}$ with $\frac{1}{n_{\star}} < b - a$.

Consider $n_{\star}a \in \mathbb{R}$. Pick $m \in \mathbb{N}$ so that

$$m-1 \leq n_{\star}a < m$$
.

In other words, we choose the smallest of natural numbers greater than $n_{\star}a$. By chance, it may be that one less than that number is $n_{\star}a$. so we end up with the equality $m-1 \leq n_{\star}a$.

We have that

$$n_{\star}a < m \implies a < \frac{m}{n_{\star}}$$

and,

$$m \leq n_{\star}a + 1$$
,

because we know that

$$m-1 \leq n_{\star}a$$
.

Next,

$$\frac{1}{n_{\star}} < (b-a) \implies 1 < n_{\star}(b-a) \implies 1 < n_{\star}b - n_{\star}a \implies n_{\star}a < n_{\star}b - 1 \implies a < \frac{n_{\star}b - 1}{n_{\star}} \implies a < b - \frac{1}{n_{\star}}.$$

We take

$$m \le n_{\star}a + 1 < n_{\star}[b - \frac{1}{n_{\star}}] + 1 = n_{\star}b - 1 + 1 = n_{\star}b$$

So, $m < n_{\star}b$ which means $\frac{m}{n_{\star}} < b$.

0.1.7 Cardinality

Definition 0.1.3: 1-1 and onto

- $f: a \rightarrow b$ is 1-1 if $a_1 \neq a_2$ implies that $f(a_1) \neq f(a_2)$.
- $f: a \to b$ is onto if for every $b \in B$ there exists $a \in A$ such that f(a) = b.

Definition 0.1.4: Cardinality

A set *A* has the same cardinality as *B* if there exists a 1-1 and onto function, $f: A \to B$. We have |A| = |B| or A B.

Examples

1. Show that $\mathbb{N} \sim \mathbb{Z}$.

Proof:

$$f(n) = \begin{cases} odd & \frac{n-1}{2} \\ even & -\frac{n}{2} \end{cases}$$

☺

2. Show that $[0,1] \sim [\pi, 5]$.

Proof:

$$y = (5 - \pi)x + \pi$$

☺

Is $(0,1] \sim (\pi,5)$? Yes but we need to be careful how we show.

Definition 0.1.5: Infinite

- A set is *finite* if $|A| = |\mathbb{N}_n| n \in \mathbb{N}$
- A set is *infinite* if it is not *finite*.

Definition 0.1.6: Countable

- An infinite set is *countable* if $|A| = |\mathbb{N}|$.
- An infinite set is *uncountable* if it is not *countable*.

Examples

- 1. Q?
- 2. $\mathbb{R} \setminus \mathbb{Q}$?
- 3. $\mathbb{R} \setminus \mathbb{Q}$?
- 4. Is the union of countable sets countable?

Theorem 0.1.6

Let |A| = n and |B| = m. Then $A \cup B$ is finite.

Proof: Let

$$A = \{a_1, a_2, \dots, a_n\}$$

and

$$B = \{b_1, b_2, \dots, b_m\}.$$

Define $n_1 = \min\{k : k \in \mathbb{N}, b_k \notin A\}$ and $n_2 = \min\{k : b_k \notin A, k > n_1\}$. Generally, $n_j = \min\{k : b_k \in A, k > n_{j-1}\}$. Then |A| = n and $|B \setminus A| = j$.

$$f(l) = \begin{cases} a_l & l \le n \\ b_l & n+1 \le l \le n+j \end{cases}$$

☺

Theorem 0.1.7

The subset, A, of a finite set B is finite. That is $A \subset B$ is finite if B is finite.l

Proof: Let |B| = n, $B = \{b_1, b_2, \dots, b_n\}$.

Then let

$$n_1=\min\{k\colon b_k\in A\},\,$$

 $n_2 = \min\{k \colon b_k \in A, k > n_1\},\$

and

$$n_i = \min\{k : b_k \in A, k > n_{i-1}\}.$$

Define the bijections $f: \mathbb{N}_{n_i} \to A$ where $f(j) = b_{n_i}$ is a finite bijection.

(3)

Theorem 0.1.8

Let *A* and *B* be sets with $A \subset B$.

- 1. If *B* is countable, then *A* is countable or finite.
- 2. If *A* is uncountable, then *B* is uncountable.

Proof: 1. Since B is countable let $B = \{b_j : j \in \mathbb{N} : To "count" A let <math>n_1 = \min\{k : b_k \in A\}$ and $n_2 = \min\{k : b_k \in A, k > n_1\}$. Generally,

$$n_i = \min\{k : b_k \in A, k > n_{i-1}\}.$$

If there does not exist $k \in b_k \in A$ then |A| = m, which is finite. We have a function $f(m) = b_{n_m}$ which is onto A in a 1-1 manner.

2. Contrapositive of 1!

(2)

Theorem 0.1.9

The countable union of countable sets is countable.

Proof: Let A_n where $n \in \mathbb{N}$ be a collection of countable sets. So that $A_n = \{A_1, A_2, \dots\}$. We can list off elements in each set within the collection $A_n = \{a_{nm} : m \in \mathbb{N}\}$. We want to show that $\bigcup_{n=1}^{\infty} \{a_{nm} : m \in \mathbb{N}\}$ is countable. Consider $f(a_{nm}) = 2^n 3^m$. This is 1-1 by prime factorization, known as the Fundamental Theorem of Arithmetic. The set $\{2^n 3^m : n, m \in \mathbb{N}\} \subset \mathbb{N}$ and is countable.

Theorem 0.1.10

 \mathbb{Q} is countable.

Proof: Consider $A_n = \{\frac{m}{n} : m \in \mathbb{N}\}$. Then $\bigcup_{n=1}^{\infty} A_n$ is countable. The set $B_n = \{-\frac{m}{n} : m \in \mathbb{N}\}$ is also countable. The set $\{0\}$ is finite and thus countable. Altogether we have

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} A_n \cup \bigcup_{n=1}^{\infty} B_n \cup \{0\}$$

is countable by the previous theorem.

☺