- 1. **A bird is at a point P(4, -1, -5) and sees two points P1(-1, -1,0) and P2(3, -1, -3). At time t = 0, it starts flying with a constant speed of 10 m/s to be in line with points P1 and P2 in the minimum possible time t. Find t, if all coordinates are in kilometers.**
- 2. **In the figure, F1 and F2, the two unknown forces give a resultant force of $80\sqrt{3}$ N along the y-axis. It is required that F2 must have the minimum magnitude. Find the magnitudes of F1 and F2.**

- 3. **A particle is displaced from A \equiv (2,2,4) to B \equiv (5, -3, -1). A constant force of 34 N acts in the direction of \overrightarrow{AP} , where P \equiv (10,2, -11). (Coordinates are in m). (i) Find the \overrightarrow{F} . (ii) Find the work done by the force to cause the displacement.**
- 4. **Three concurrent forces of the same magnitude are in equilibrium. What is the angle between the force? Also, name the triangle formed by the force as sides:-**
 - (A) 60° equilateral triangle
 - (B) 120° equilateral triangle
 - (C) 120°, 30°, 30° an isosceles triangle
 - (D) 120° an obtuse-angled triangle
- 5. **The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between two forces is:-**
 - (A) 150°
 - (B) 90°
 - (C) 60°
 - (D) 120°
- 6. **The resultant of two forces acting at an angle of 120° is 10 kgwt and is perpendicular to one of the forces. That force is:**
 - (A) 10√3 kgwt
 - (B) 20√3 kgwt
 - (C) 10 kgwt
 - (D) 10√3 kgwt

- 7. **If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7}$ Q, then P/Q is:-**
 - (A) 1
 - (B) 3/2
 - (C) 2
 - (D) 4
- 8. **A body placed in free space is simultaneously acted upon by three forces $\vec{F1}$, $\vec{F2}$, $\vec{F3}$, The body is in equilibrium, and the forces $\vec{F1}$, and $\vec{F2}$, are known to be 36 N due north and 27 N due east, respectively. Which of the following best describes the force $\vec{F3}$, ?**
 - (A) 36 N due south.
 - (B) 53 N due 60° south of east
 - (C) 45 N due 53° south of west
 - (D) 45 N due 37° north of west
- 9. **Find the resultant of the following two vectors \vec{A} and \vec{B} . \vec{A} : 40 units due east and ;
- \vec{B} : 25 units 37 \circ north of west**
 - (A) 25 units 37° north of west
 - (B) 25 units 37 o north of east
 - (C) 40 units 53° north of west
 - (D) 40 units 53° north of east
- 10. **Two vectors \vec{a} and \vec{b} add to give a resultant $\vec{c} = \vec{a} + \vec{b}$. In which of these cases is the angle between \vec{a} and \vec{b} maximum: (a, b, c represent the magnitudes of respective vectors)**
 - (A) c = a + b
 - $(B) c^2 = a^2 + b^2$
 - -(C)c = a b
 - (D) cannot be determined
- 11. **Let $|\vec{A1}| = 3$, $|\vec{A2}| = 5$, and $|\vec{A1} + \vec{A2}| = 5$. The value of $(2\vec{A1} + 3\vec{A2}) \cdot (3\vec{A1} 2\vec{A2})$ is**
 - (A) -106.5
 - (B) -118.5
 - -(C) 99.5
 - (D) -112.5
- 12. **In the cube of side a shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be**

- (A) 1/2a(^j i^)
- (B) 1/2a(i^ k^)
- (C) 1/2a(^j k^)
- (D) 1/2a(k^ i^)
- 13. **Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A} + \vec{B})$ is n times the magnitude of $(\vec{A} \vec{B})$. The angle between \vec{A} and \vec{B} is**
 - (A) $\cos^{4}((n-1)/(n+1))$
 - $-(B) \cos^{-1}((n^2-1)/(n^2+1))$
 - $-(C) sin^{-1}((n-1)/(n+1))$
 - $-(D) sin^{-1}(n/(n^{2}+1))$
- 14. **COLUMN-I contains a vector diagram of three vectors \vec{a} , \vec{b} , \vec{c} , and COLUMN-II contains vector**

(A)	\vec{c} \vec{b}	(p)	$\vec{a} - (\vec{b} + \vec{c}) = 0$
(B)	\vec{c} \vec{b}	(q)	$\vec{b} - \vec{c} = \vec{a}$
(C)	\vec{a} \vec{b}	(r)	$\vec{a} + \vec{b} = -\vec{c}$
(D)	\overrightarrow{b}	(s)	$\vec{a} + \vec{b} = \vec{c}$

1. (100 s)

2. $(120 \text{ N}, 40\sqrt{3} \text{ N})$

3. $(16\hat{i} - 30\hat{k}, 198 \text{ J})$

4. (B)

5. (D)

6. (D)

7. (C)

8. (C)

9. (B)

10. (C)

11. (B)

12. (A)

13. (B)

14. $A \rightarrow r; B \rightarrow s; C \rightarrow p; D \rightarrow q$