

CS 4364/6364 Machine Learning

Fall Semester 9/12/2023 Lecture 6. Linear Regression

John Sipple jsipple@gwu.edu

Regression Problem

Input matrix $\mathbf{X} \in \mathbb{R}^{N imes p}$ with N examples and p dimensions

$$\mathbf{X}^\intercal = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\}$$

with input labels $\mathbf{y} \in \mathbb{R}^N$

Each example is denoted as a pair $(m{x}_1,y_1), (m{x}_2,y_2), \ldots, (m{x}_N,y_N)$

Given a new point \boldsymbol{x} , we would like to predict y:

$$\hat{y} = f(x)$$

Example Data Set for Regression

Types of input features

Quantitative inputs

Transformation of an input via log, square root, square

Polynomial (i.e. basis expansion)

Numeric coding of qualitative values

Feature crosses or interactions

Hypothesis

We can predict or approximate y with a linear function:

$$\hat{\mathbf{y}} = f(X) = eta_0 \mathbf{x}_0 + eta_1 \mathbf{x}_1 + eta_2 \mathbf{x}_2 + \dots + eta_p \mathbf{x}_p = eta_0 + \sum_{i=1}^r \mathbf{x}_i eta_i$$

where $\mathbf{x}_0 = \mathbf{1}_p$

And redefine X slightly:

$$\mathbf{X}^{\intercal} = \{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\} \in \mathbb{R}^{N imes (p+1)}$$

Given vector $\hat{oldsymbol{eta}}$ we can make predictions $\hat{f y}$

$$\hat{m{y}} = \mathbf{X}\hat{m{eta}}$$

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Linear Regression with Least Squares

Optimization

Find the best w that minimizes the Euclidean, L_2 , loss with respect to β

$$L(oldsymbol{eta}) = N ||\mathbf{y} - f(\mathbf{X})||_2^2 = \sum_{i=1}^N (y_i - f(x_i))^2 = \sum_{i=1}^N (y_i - eta_0 - \sum_{j=1}^p x_{i,j}eta_j)^2$$

Least Squares Optimization

Rewrite in matrix form and simplify the equation

$$L(\beta) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - \mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} - (\mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}\mathbf{y} + (\mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - \mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} - ((\mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}\mathbf{y})^{\mathsf{T}} + \boldsymbol{\beta}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\boldsymbol{\beta}$$

$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - \mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} - \mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\boldsymbol{\beta}$$

$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\boldsymbol{\beta}$$

Least Squares Optimization

Solve for the Derivative:

$$\nabla_{\boldsymbol{\beta}} L(\boldsymbol{\beta}) = -2 \boldsymbol{X}^{\mathsf{T}} \mathbf{y} - 2 \boldsymbol{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\beta} = -2 \boldsymbol{X}^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$

Set the derivative to 0:

$$\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

Least Squares Optimization

Solve for β :

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\intercal} \boldsymbol{X})^{-1} \mathbf{X}^{\intercal} \mathbf{y}$$

Place β in the original equation, and predict y:

$$\hat{\boldsymbol{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Regularization

Least squares solution is not stable

- Small perturbation in the input leads to a dramatic change in the output
- Form of overfitting

Two Simple, Contrived Examples

Linear Regression with Regularization

Fluctuation of values tend to cause instability, so favor smaller values for β Add a penalty term λ to large β coefficients:

$$\hat{oldsymbol{eta}}^{ridge} = rg\min_{eta} \Biggl\{ \sum_{i=1}^N \left(y_i - eta_0 - \sum_{j=1}^p x_{i,j} eta_j
ight)^2 + \lambda \sum_{j=1}^p eta_j^2 \Biggr\}$$

Ridge Regression (L2 Regularization)

Include the penalty term in our L2 Loss function:

$$L(\boldsymbol{\beta}, \lambda) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta}$$

Derive the gradient and set to 0:

$$\nabla_{\boldsymbol{\beta}} L(\boldsymbol{\beta}, \lambda) = 0$$

Then solve for updated coefficients:

$$\hat{\boldsymbol{\beta}}^{ridge} = (\mathbf{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Lasso Regression: Replace L2 Penalty in Ridge with the L1 Penalty

$$\hat{oldsymbol{eta}}^{lasso} = rg\min_{eta} \left\{ rac{1}{2} \sum_{i=1}^{N} \left(y_i - eta_0 - \sum_{j=1}^{p} x_{i,j} eta_j
ight)^2 + \lambda \sum_{j=1}^{p} |eta_j|
ight\}$$

Adds a nonlinearity, and there is no closed-form solution

Solved via Quadratic Programming or Coordinate Descent

Unlike Ridge, Lasso sets small coefficients to 0

Ridge vs. Lasso Regression

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Bias and Variance Tradeoff

FIGURE 2.11. Test and training error as a function of model complexity.