数值分析上机习题报告(1)

张宏毅 1500017736

March 5, 2017

Problem 1

Description

利用 Taylor 展开公式

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

编一段小程序上机用单精度计算 e^x 的函数值。分别取 x = 1, 5, 10, 15, 20, -1, -5, -10, -15, -20, 观察所得结果是否合理,如不合理请分析原因并给出解决方法。

Solution

我们利用 e^x 的 Taylor 级数的前 n 项和来作为 e^x 的近似值。在计算的过程中,我们可以认为,当通项 $a_k = x^k/k!$ 的绝对值足够小(比如小于 $\epsilon = 10^{-10}$)时,部分和已经基本收敛,近似值的计算就可以结束了。在实际计算中,注意到通项 $a_k = x^k/k!$ 之间存在关系 $a_k = a_{k-1} \cdot (x/k)$,因而通项可以通过递推得到,免去重复计算。具体代码(C)如下:

```
#include <stdio.h>
    #include <math.h>
 3
 4
    int main() {
 5
      int x[] = \{1, 5, 10, 15, 20, -1, -5, -10, -15, -20\};
       for (int i = 0; i < 10; ++i) { // For each x
 6
 7
          float ans = 0, add = 1; // Initialize ans
          for (int k = 1; fabs(add) > 1e-10; ++k) {
 8
                                     // Add a_{k-1} to ans
9
             ans += add;
10
             add = add * x[i] / k;
                                   // Calculate a_k
11
          printf("exp(%d) = %f\n", x[i], ans);
12
13
       }
14
```

计算得到的数值结果列表如表 1(a)。对于 x 是正数的情况,估计值基本符合预期,具有较小的相对误差。而对于 x 是负数的情况,计算中产生了非常大的相对误差,甚至出现了指数函数结果为负的情形! 这是非常不合理的。

表 1: 利用 Taylor 展开计算 $\exp(x)$

(a) 原始的数值计算结果

(b) 改进的数值计算结果

3	e ^x 的估计值	x	e^x 的估计值		x	e^x 的估计值
	2.718282	-1	0.367879	-	-1	0.367879
!	5 148.413193	-5	0.006738	-	-5	0.006738
10	22026.468750	-10	-0.000063	_	10	0.000045
15	3269017.500000	-15	0.021234	_	15	0.000000
20	485165216.000000	-20	-2.756675	_	20	0.000000

究其原因,主要是因为当 x < 0 时,通项 $a_k = x^k/k!$ 的符号是交错的,就会很容易出现两个绝对值相近的数字相减的情形,导致有效数字丢失。这样有效数字的丢失所带来的误差不断被放大,最后甚至会导致计算结果中一个有效数字都没有(如 x = -20 时)。一个可行的解决方法为: 当 x < 0 时,利用等式 $e^x = 1/e^{-x}$,先计算 e^{-x} 的近似值再取倒数,这样就可以避免两个符号相反的数字相加的情形,且保证了最终结果一定不会为负。经过改进后求得的数值结果列表如表 1(b)。

Problem 2

Description

对干积分

$$I_n = \int_0^1 \frac{x^n}{x+5} dx, \qquad n = 0, 1, 2, \cdots,$$

(1) 证明递推公式

$$\begin{cases} I_0 = \ln 1.2, \\ I_n = -5I_{n-1} + \frac{1}{n}, & n = 1, 2, \dots; \end{cases}$$

(2) 用上述递推公式计算 I_1, I_2, \cdots, I_{20} , 观察数值结果是否合理, 并说明原因。

Solution

先证明(1)中的递推公式成立。容易计算得初始条件

$$I_0 = \int_0^1 \frac{1}{x+5} dx = \ln(x+5)|_0^1 = \ln 1.2.$$

且当 $n \ge 1$ 时有递推关系

$$I_n = \int_0^1 \frac{x^{n-1}(x+5) - 5x^{n-1}}{x+5} dx = \int_0^1 x^{n-1} dx - 5 \int_0^1 \frac{x^{n-1}}{x+5} dx = -5I_{n-1} + \frac{1}{n}.$$

因而(1)中的递推公式成立。利用该递推公式依次计算 I_1,I_2,\cdots,I_{20} ,具体代码如下:

```
#include <stdio.h>
2
    #include <math.h>
3
4
   int main() {
5
     float integral = log(1.2);
6
       for (int i = 1; i \le 20; ++i) {
          integral = -5 * integral + 1.0/i;
7
          printf("I_%d = %f\n", i, integral);
8
9
10
```

计算得到的数值结果如表 2 所示。从表中可以看出,当 n < 10 时,计算的结果至少还在区间 (0,1) 内,尚可接受,而当 n > 10 时,积分的估计值出现了不可逆转的误差。理论上,简单分析可 知 $0 < I_{n+1} < I_n \le I_1 < 1$,即 $\{I_n\}$ 是位于区间 (0,1) 内的单调递减数列,因而 $n \ge 10$ 时的数值 计算结果既不合理也不可靠。

表 2. 有用是压力器(1)并 m											
\overline{n}	I_n 的估计值	n	I_n 的估计值	n	I_n 的估计值	n	I_n 的估计值				
1	0.088392	6	0.024381	11	-0.161940	16	550.045654				
2	0.058039	7	0.020951	12	0.893034	17	-2750.169434				
3	0.043138	8	0.020245	13	-4.388246	18	13750.903320				
4	0.034309	9	0.009886	14	22.012659	19	-68754.460938				
5	0.028457	10	0.050570	15	-109.996628	20	343772.375000				

表 2: 利用递推公式 (1) 计算 I_n

对该现象可以做出如下原因分析: 设积分的精确值为 I_n ,近似值为 \tilde{I}_n ,则序列 $\{I_n\}$ 和 $\{\tilde{I}_n\}$ 均符合递推公式(1),由此知 $(I_n-\tilde{I}_n)=-5(I_{n-1}-\tilde{I}_{n-1})$ 。若记 $e_n=|I_n-\tilde{I}_n|$ 为计算积分 I_n 时的绝对误差,则 $e_n=5e_{n-1}$,进而有

$$e_n = 5^n e_0.$$

这也就意味着,如果在计算 $I_0 = \ln 1.2$ 时产生了一个绝对误差 e_0 ,那么在递推的过程中,绝对误差 会被指数级地放大。当 n=10 时,放大的倍数 $5^{10}\approx 10^7$,导致了非常严重的有效数字丢失,因而利用该递推公式来计算 I_n 是不合适的。可以考虑提高数字精度、改变递推方式或者采用其他的数值积分方法来减小误差(双精度浮点数比单精度在这个问题中产生的计算误差要小得多)。