18-100 Introduction to Electrical and Computer Engineering

Lecture 04 Semiconductors, Diodes, and Light Emitting Diodes (LEDs)

Are you here?

Let us know and win prizes.

Course Syllabus

18-100: *Introduction to Electrical and Computer Engineering*

Spring 2025

Instructor: Greg Kesden

Office Location: HH A205

Email Address: gkesden@andrew.cmu.edu

Office Hours: https://www.andrew.cmu.edu/~gkesden/schedule.html

Instructor: Mark Budnik

Office Location: HH A212

Email Address: mbudnik@andrew.cmu.edu

Office Hours: Monday, 2-4pm or by appointment

М

W

М

W

W

М

W

М

W

М

W

М

W

М

W

13-Jan

15-Jan

20-Jan

22-Jan

29-Jan

3-Feb

5-Feb

10-Feb

12-Feb

17-Feb

19-Feb

24-Feb

26-Feb

3-Mar

5-Mar

4

5

6

7

27-Jan M

Carnegie Mellon

L06: Professional Identity, Professional Responsibility, and Ethics

L01: Intro, Physics, EM, Leveling Students

Martin Luther King Celebration (No Lecture)

L07: Capacitors, RC Time Constants, RC Circuits

L04: Semiconductors, Diodes, LEDs

L08: Inductors, RL Time Constants, 555

L09: Binary, Logic Gates, Boolean Logic

L10: Latches, Registers, RAM, Flip-Flops

L05: MOSFETs to Simple Gates

L02: Circuits Basics

Exam 1

L11: Computers

L12: Op Amps SPRING BREAK

SPRING BREAK

L03: Equivalent Circuits

Objectives of this Lecture

- Semiconductors
- Diodes
- Light Emitting Diodes (LEDs)

Conductors vs. Insulators

- Material conductivity is a material electrical property
- More free electrons, more current can flow

Conductors have many free electrons

Gold, copper, aluminum, salt water...

Rubber, glass, plastic, rust...

Conductors vs. Insulators vs. Semiconductors

- Material conductivity is a material electrical property
- More free electrons, more current can flow

Conductors have many free electrons

Gold, copper, aluminum, salt water...

Semiconductors have a few free electrons

Silicon, germanium, gallium arsenide...

Start with a Block of Pure, Electrically Neutral Silicon (Or Another Semiconductor) Column

Start with a Block of Pure, Electrically Neutral Silicon:

Start with a Block of Pure, Electrically Neutral Silicon: Strong Covalent Bonds Make It an Insulator

= Si = Si = Si =

= Si = Si = Si =

Phosphorus Has One Extra Valence Electron (5/8)

Phosphorus Has One Extra Valence Electron

Phosphorus Has One Extra Valence Electron

+	II		II		Ш		Ш		11		Ш		H		Ш		
+	= Si	=	_														
																	l .

Boron Has One Fewer Valence Electron (3/8)


```
= Si =
= Si =
       \mathbf{B} = Si = Si = Si = Si = Si =
= Si =
```


= Si = Si = Si = Si =

$$= Si = Si = Si = Si$$

$$= Si = Si = Si = Si$$

= Si = Si = Si

Si = Si Si = = Si = Si = Si = Si =

= Si = Si = Si = Si =

Add a Small Amount of Boron (extra h⁺) and Phosphorus (extra e⁻) to Separate Areas

Fewer Electrons
P-Type Silicon

N-Type Silicon

Extra (e⁻) and Missing (h⁺) Electrons Are Free to Diffuse (Randomly Drift Around)

Fewer Electrons P-Type Silicon N-Type Silicon

Extra Electrons (e⁻)

Extra (e⁻) and Missing (h⁺) Electrons Are Free to Diffuse (Randomly Drift Around)

Fewer Electrons

P-Type Silicon

N-Type Silicon

Extra (e⁻) and Missing (h⁺) Electrons Are Free to Diffuse (Randomly Drift Around)

P Nucleus Has One Additional Positive ChargeB Nucleus Has One Less Positive Charge

Electrons diffuse to areas of lower concentration

Electrical & Computer ENGINEERING

P Nucleus Has One Additional Positive ChargeB Nucleus Has One Less Positive Charge

Charged Barrier (~0.7V) Prevents More Diffusion

Electrical & Computer ENGINEERING

Negative Crystal P-Type Silicon

Extra Electrons N-Type Silicon

Charged Barrier (~0.7V) Prevents More Diffusion

Electrical & Computer ENGINEERING

P-Type Silicon

N-Type Silicon

Larger Positive Voltage (+0.7V) Overcomes B⁻ / P⁺ Barrier

Lots of current can flow

Apply a Negative Diode Voltage (-1V) Almost No Diode Current Flows

Apply a Negative Diode Voltage (-1V) Almost No Diode Current Flows

Apply a Negative Diode Voltage (-1V) Almost No Diode Current Flows

Almost no current flows

hree distinct regions of operation

Diodes are relatively complicated, so we use **models** (**approximations**) to make our work easier

Knee Model 18-100

 $I_D = 0$ A for $V_D \le V_{KNEE}$

+ V_D - "Reverse Bias" $(V_D < 0 \text{V})$

"Forward Bias" Region $(V_D > 0V)$

Three Rules:

 $I_D = 0$ A for $V_D \le V_{KNEE}$

"Reverse Bias" $(V_D < 0V)$

Three Rules:

• If $V_D < V_{KNFE}$, $I_D = 0$ A

Three Rules:

- If $V_D < V_{KNEE}$, $I_D = 0$ A
- If $V_D = V_{KNEE}$, $I_D \ge 0$ A

Knee Model 18-100

 $I_D = 0$ A for $V_D \le V_{KNEE}$

"Reverse Bias" $(V_D < 0 \text{V})$

Three Rules:

- If $V_D < V_{KNEE}$, $I_D = 0$ A
- If $V_D = V_{KNEE}$, $I_D \ge 0$ A
- $V_D \le V_{KNEE}$

Knee Model 18-100

 $I_D = 0$ A for $V_D \le V_{KNEE}$

KIVEE

"Reverse Bias" $(V_D < 0 \text{V})$

Three Rules:

- If $V_D < V_{KNEE}$, $I_D = 0$ A
- If $V_D = V_{KNEE}$, $I_D \ge 0$ A
- $V_D \leq V_{KNEE}$, $I_D \leq V_{KNEE}$

~0.7V for silicon diodes

~2V for red LEDs

~2.5V for green LEDs

~3V for blue LEDs

$$(V_{KNEE}=0.7V)$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

$$+1V = V_2 + (I_2)(1000)$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = \frac{V_D}{V_D} + V_R$$

$$+1V = V_D + (I_D)(100\Omega)$$

Assume diode is on: $V_D = V_{KNEE}$

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon

$$+1V = V_D + V_R$$
 Assume diode is on: $V_D = V_{KNEE}$

$$+1V = V_D + (I_D)(100\Omega) = 0.7V + (I_D)(100\Omega)$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

 $+1V = V_{D} + V_{R}$

$$I_D =$$

+1V =

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon

$$+1V = V_D + V_R$$
 Assume diode is on: $V_D = V_{KNEE}$
 $+1V = 0.7V + (I_D)(100\Omega)$

$$(100\Omega)$$

$$=0.7V + (I_D)(100\Omega)$$

$$I_D = (1V - 0.7V)/100\Omega = 3mA$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$
 Assume

$$+1V = V_D + (I_D)(100\Omega) = 0.7V + (I_D)(100\Omega)$$

$$I_D = \left(1V - 0.7V\right) / 100\Omega = 3mA$$

Check assumption:

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

$$+1V = V_D + (I_D)(100\Omega) = 0.7V + (V_D)(100\Omega)$$

 $I_D = (1V - 0.7V)/100\Omega = 3mA$

Check assumption: If diode is on, $I_D \ge 0$ A

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

 $+1V = V_D + (I_D)(100\Omega) = 0.7V + (V_D)(100\Omega)$

 $I_D = (1V - 0.7V)/100\Omega = 3mA$

Check assumption: If diode is on,
$$I_D \ge 0$$
A

 $3mA \ge 0A$, assumption confirmed!

(approximation) $(V_{KNFF}=0.7V)$

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

 $+1V = V_D + (I_D)(100\Omega) = 0.7V + (V_D)(100\Omega)$

$$I_D = (1V - 0.7V)/100\Omega = 3mA$$

Check assumption: If diode is on, $I_D \ge 0$ A $3mA \ge 0A$, assumption confirmed!

Using the Diode Knee Model $(V_{KNEE} = 0.7V)$ (appro

(approximation)

KVL is always true. It does not depend upon the diode being on.

$$+1V = V_D + V_R$$

Let's try a different input voltage

Using the Diode Knee Model $(V_{KNEE} = 0.7V)$

(approximation)

KVL is always true. It does not depend upon the diode being on.

 $+0.6V = V_D + (I_D)(100\Omega)$

$$(V_{KNEE} = 0.7V)$$
 (approximation)

KVL is always true. It does not depend upon

Assume diode is on: $V_D = V_{KNEE}$ $+0.6V = V_D + (I_D)(100\Omega)$

$$(V_{KNEE} = 0.7V)$$
 (approximation)

KVL is always true. It does not depend upon the diode being on.

$$\frac{+0.6\text{V}}{100} = V_D + (I_D)(100\Omega)$$

$$+0.6V = 0.7V + (I_D)(100\Omega)$$

Assume diode is on: $V_D = V_{KNEE}$

Using the Diode Knee Model $(V_{KNEE} = 0.7V)$

(approximation)

KVL is always true. It does not depend upon the diode being on.

$$+0.6\mathbf{V} = V_D + (I_D)(100\Omega)$$

 $+0.6V = 0.7V + (I_D)(100\Omega)$

 $I_D =$

$$(V_{KNEE} = 0.7V)$$
 (approximation)

KVL is always true. It does not depend upon the diode being on.

$$\frac{+0.6V}{+0.6V} = V_D + (I_D)(100\Omega)$$

$$+0.6V = 0.7V + (I_D)(100\Omega)$$

$$I_D = (0.6V - 0.7V)/100\Omega = -1mA$$

Using the Diode Knee Model $(V_{KNEE} = 0.7V)$

KVL is always true. It does not depend upon the diode being on.

$$+0.6\mathbf{V} = V_D + (I_D)(100\Omega)$$

 $+0.6V = 0.7V + (I_D)(100\Omega)$

$$I_D = (0.6V - 0.7V)/100\Omega = -1mA$$

Check assumption: If diode is on, $I_D \ge 0$ A

Using the Diode Knee Model $(V_{KNEE} = 0.7V)$

(approximation)

KVL is always true. It does not depend upon the diode being on.

$$+0.6V = V_D + (I_D)(100\Omega)$$

 $+0.6V = 0.7V + (I_D)(100\Omega)$

$$I_D = (0.6V - 0.7V)/100\Omega = -1mA$$

Check assumption: If diode is on, $I_D \ge 0$ A -1mA ≥ 0A, assumption was wrong!

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+0.6V = V_D + (I_D)(100\Omega)$$

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$\frac{+0.6V}{} = V_D + (I_D)(100\Omega)$$

$$+0.6V = V_D + (0A)(100\Omega)$$

$$(V_{KNEE} = 0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$\frac{+0.6V}{} = V_D + (I_D)(100\Omega)$$

$$+0.6V = V_D + (0A)(100\Omega)$$

$$V_D =$$

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+0.6V = V_D + (I_D)(100\Omega)$$

Diode is off:
$$I_D = 0$$
A

$$+0.6V = V_D + (0A)(100\Omega)$$

$$V_D = \frac{+0.6\text{V}}{-(0\text{A})(100\Omega)} = +0.6\text{V}$$

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+0.6\mathbf{V} = V_D + (I_D)(100\Omega)$$

Diode is off:
$$I_D = 0$$
A

$$+0.6V = V_D + (0A)(100\Omega)$$

$$V_D = \frac{+0.6\text{V}}{-(0\text{A})(100\Omega)} = +0.6\text{V}$$

$$V_R = \frac{0.6 \text{V}}{0.6 \text{V}} - 0.6 \text{V} = 0 \text{V} = (\frac{0 \text{A}}{0.00})(100 \Omega)$$

$$(V_{KNEE}=0.7V)$$

KVL is always true. It does not depend upon the diode being on.

$$+0.6\mathbf{V} = \mathbf{V_D} + (\mathbf{I_D})(100\Omega)$$

Diode is off: $I_D = 0A$

$$+0.6V = V_D + (0A)(100\Omega)$$

$$V_D = +0.6V - (0A)(100\Omega) = +0.6V$$

$$V_R = 0.6V - 0.6V = 0V = (0A)(100\Omega)$$

Diode is off: $I_D = 0$ A, and $V_D = 0.6$ V < V_{KNEE}

Falls

quickly

Three distinct regions of operation

Diodes are relatively complicated,
so we use **models** (**approximations**)

to make our work easier

Knee Model 18-100

 $I_D = 0$ A for $V_D \le V_{KNEE}$

KIVEE

"Reverse Bias" $(V_D < 0 \text{V})$

Three Rules:

- If $V_D < V_{KNEE}$, $I_D = 0$ A
- If $V_D = V_{KNEE}$, $I_D \ge 0$ A
- $V_D \leq V_{KNEE}$, $I_D \leq V_{KNEE}$

~0.7V for silicon diodes

~2V for red LEDs

~2.5V for green LEDs

~3V for blue LEDs

Diodes IRL (In Real Life)

Light Emitting Diodes (LEDs)

Lighting

Wiring Diodes

Red $(V_{KNEE} = 2V)$ Green $(V_{KNEE} = 2.5V)$ & Blue $(V_{KNEE} = 3V)$

Blue $(V_{KNEE} = 3V)$ LEDs

Red $(V_{KNEE} = 2V)$

Green $(V_{KNEE} = 2.5V)$ &

Blue ($V_{KNEE} = 3V$)

LEDs: Find I_{Supply}

Red $(V_{KNEE} = 2V)$

Green $(V_{KNEE} = 2.5V)$ &

Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Red $(V_{KNEE} = 2V)$ Green $(V_{KNEE} = 2)$

Green $(V_{KNEE} = 2.5V)$ &

Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Red $(V_{KNEE} = 2V)$ Green $(V_{KNEE} = 2.5V)$ & Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Red $(V_{KNEE} = 2V)$ Green $(V_{KNEE} = 2.5V)$ & Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Green ($V_{KNEE} = 2.5V$) & Blue ($V_{KNEE} = 3V$)

LEDs: Find I_{Supply}

Assume On $(V_D = V_{KNEE})$

KVL is always true: $5V = I_{Red}(1k\Omega) + 2V$

LEDs: Find I_{Supply}

Assume On $(V_D = V_{KNEE})$

KVL is always true: $5V = I_{Red}(1k\Omega) + 2V$ $5V = I_{Green}(1k\Omega) + 2.5V$

 $1k\Omega$

2025 01 24A

Green $(V_{KNEE} = 2.5V)$ &

Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Assume On $(V_D = V_{KNEE})$

KVL is always true:

 $5V = I_{Red}(1k\Omega) + 2V$ $5V = I_{Green}(1k\Omega) + 2.5V$

 $5V = I_{Blue}(1k\Omega) + 3V$

5V

 $1k\Omega$

 I_{Red}

 $1k\Omega$

Carnegie Mellon

 $1k\Omega$

 $1k\Omega$ $1k\Omega$ I_{Red}

Assume On
$$(V_D = V_{KNEE})$$

Blue $(V_{KNEE} = 3V)$

LEDs: Find I_{Supply}

Green $(V_{KNEE} = 2.5V)$ &

 $I_{Rod} = 3.0 \text{mA}$ $I_{Green} = 2.5 \text{mA}$ $I_{Blue} = 2.0 \text{mA}$

Assumption Confirmed $(I_D=0A)$

2025 01 24A

 $I_D = 0A$

Assume On $(V_D = V_{KNEE})$

KVL is always true:

$$I_{SE}$$

$$5V = I_{Red} (1k\Omega) + 2V$$

$$5V = I_{Green} (1k\Omega) + 2.5$$

$$5V = I_{Blue} (1k\Omega) + 3V$$

$$I_R$$
.5V I_G

$$I_{Red} = 3.0 \text{mA}$$
 $I_{Green} = 2.5 \text{mA}$

 $I_D = 0A$

$$5V = I_{Green}(1k\Omega) + 2.5V$$
 $I_{Green} = 2.5mA$
 $5V = I_{Blue}(1k\Omega) + 3V$ $I_{Blue} = 2.0mA$

= 7.5 mA

Light

Light Emitting Diode (LED)

Converts electrical energy to photon energy

$$E_{Photon} \approx (e^{-})(V_{KNEE})$$

$$V_{KNEE,RED\,LED} \approx 2V$$

$$E_{Photon} \approx (1.60x10^{-19}C)(2V) = 3.20x10^{-19}J$$

 $f = \frac{c}{2}$

Longer

Anode

leg

 $E_{Photon} = hf$

$$E_{Photon} = \frac{hc}{2} \qquad 3.20x10^{-19} J = \frac{\left(6.63x10^{-34} J \cdot s\right)\left(3.00x10^{-8} m / s\right)}{2}$$

$$(3.00x10^{-8} m/s)$$

diode

Epoxy

case -

Lens

Light-emitting semiconductor

Light Emitting Diode (LED)

DC vs. AC Power Systems

AC Voltages:

$$P(t) = \frac{V(t)}{R}$$

$$P(t) = \frac{V^2(t)}{R}$$

$$P(t) = \frac{V^2(t)}{R}$$

$$P(t) = \frac{V^2(t)}{R}$$

$$P(t) = \frac{V^2(t)}{R}$$

$$P(t) = \frac{V^{2}(t)}{R}$$

$$P_{DC,Avg} = \frac{(120V_{DC})^{2}}{1\Omega} = 14.4kW$$

$$P_{AC,Avg} = \frac{(170V/\sqrt{2})^{2}}{100} = 14.4kW$$

$$P_{AC,Avg} = \frac{1}{1}\Omega$$

$$P_{AC,Avg} = \frac{\left(170V/\sqrt{2}\right)^2}{1}\Omega = 14.4kW$$

$$P(t) = \frac{V^{2}(t)}{R}$$

$$P_{DC,Avg} = \frac{(120V_{DC})^{2}}{1\Omega} = 14.4kW$$

$$P_{AC,Avg} = \frac{(170V/\sqrt{2})^{2}}{1} = 14.4kW$$

$$P_{AC,Avg} = \frac{(170V/\sqrt{2})^{2}}{1} = 14.4kW$$

How Do We Convert AC Power to DC?

-25

-25

Diode Full-Wave Rectifier

• Two diodes conduct, two diodes act as open circuits

Diode Full-Wave Rectifier

Two diodes conduct, two diodes act as open circuits

Diode Full-Wave Rectifier

Two diodes conduct, two diodes act as open circuits

What Do You Need to Do Next?

- 1. Take the **Lecture 4 Quiz** on canvas!
- 2. Check out Piazza and Gradescope

