2023-10-15

Task 1

The implementation of Value Iteration, Howard's Policy Iteration and Value function using linear programming algorithms.

1.a Value Iteration

We initialise the value $vector(V^0)$ with all zeros, and apply Bellman Optimality Operator(B^*) – defined by Transition function T, Reward function R – repeatedly until convergence.

For convergence we consider $||V^{t+1} - V^t|| < \text{tol}$, tol = 1e-7 and we also consider that $||V^* - V^t|| < \text{tol}$, to enforce this, we have

$$\gamma^N \cdot ||V_0 - V^*|| < exttt{tol}$$

since $||V^* - V^N|| < \gamma^N \cdot ||V_0 - V^*||$

$$N\log\gamma + \log||V_0 - V^*|| < \log(\mathtt{tol})$$

$$\because V^0 = 0$$

$$\frac{\log(||V^*||/\mathtt{tol})}{\log(1/\gamma)} < N$$

for numerical stability, $\epsilon=1e-7$

$$\frac{\log(||V^*||/\mathtt{tol})}{\epsilon + \log(1/\gamma)} < N$$

Since, from our definition V^t has converged to a value($||V^{t+1} - V^t|| < tol$) we check, if that value is indeed optimal within tolerance.

$$\frac{\log(||V^t||/\mathtt{tol})}{\epsilon + \log(1/\gamma)} < N$$

We also define MAX_ITER=1E6 for maximum number of iterations to run before terminating, to ensure algorithm terminate always.

Observation: Value iteration converge very slow if $\gamma=1$ as expected.

1.b Howard's Policy Iteration

Starting from a random policy π^0 , we repeatedly apply policy improvement step and get better policy. Since we need to do policy evaluation in each step, There are two methods – Value Iteration with Bellman operator (B^π) , inverting the matrix $I - \gamma \cdot T^\pi$. Matrix Inversion is faster for small number of states but Value Iteration is faster for large number of states. For our implementation, we use matrix inversion. Matrix multiplication becomes non-invertible for $\gamma=1$, so we set the values of terminal states to 0 and for the rest we calculate using matrix inversion of truncated matrices which doesn't include terminal state transitions.

Observation: Howard's PI is the fastest algorithm out of all 3, and thus our default algorithm as well.

1.c Linear Programming

We use PuLP solver to encode this as linear program. The objective is to maximise $-\sum_s V(s)$ subject to some inequality constraints and some equality constraints described below.

Inequality Constraints:

$$V(s) \geq \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \}, \forall s \in S, a \in A$$

Equality Constraints:

$$V(s) = 0, \forall s \in S_{terminal}$$

Equality constraints are required in case $\gamma = 1$

Task 2

Designing MDP for the football game.

2.a Formulation

We map each state [B1, B2, R, P] to a number s which varies from [1, 8192], we have 2 extra states $\{0, 8193\}$. 0 is the terminal state, which the last state before game ends without a goal. If game ends with a goal, the terminal state is 8193. The transition function is defined by the rules of the game and the corresponding probabilities, once the players decides an action $\{0...9\}$. The reward function is zeros for almost all transitions except when transitioning to s=8193, when the reward is 1. The expected reward of each state gives us the value function which is also the probability of winning(since $\mathbb{E}[r]=p\dot{1}+(1-p)\cdot 0=p)$ given the starting state is that particular state. This is all done in encoder.py

2.b Comparison & Inferences

Since as p increases the probability of failure of an attempted movement increases ($\{2p, 0.5 + p, p\}$ are probabilities that the game ends depending upon the case), thus the probability of winning decreases.

Since as q increases the probability of success of an attempted pass or goal increases (for passing $\{0.5*(q-0.1*\max(|x_{B1}-x_{B2}|,|y_{B1}-y_{B2}|)),q-0.1*\max(|x_{B1}-x_{B2}|,|y_{B1}-y_{B2}|),\}$ are probabilities that the attempted pass succeeds, $\{q-0.2*(3-x_{distance}),0.5*(q-0.2*(3-x_{distance}))\}$ depending upon the case), thus the probability of winning increases.