Amendment to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of claims:

- 1. (Canceled)
- 2. (Canceled)
- 3. (Canceled)
- 4. (Currently Amended) The A process for preparing of claim 2, further comprising decarboxylation of the carboxylic group of compound 6, and coupling with a purine or pyrimidine base or its derivative, followed by deprotection to form a D- and or L-dioxolane nucleoside of formulae III-VI:

wherein

R is H, halogen, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₄, CH=CH₂, N₃C=CH₂, CO₂H, CO₂R', CONH₂, CN, CONHR', CH₂OH, CH₂CN, CH₂CH₂OH, CF₃, CH₂CH₂F, CH=CHCO₂H, CH=CHCO₂R', CH=CHCl, CH=CHBr, or CH=CHI;
R' is lower alkyl (C₁-C₄);

each X and Y are is independently H, halogen, OH, OCH3, SH, SCH3,

NH₂, NHR', NR'₂, or CH₃; and

Z is CH, or C-X[[-]];

comprising the steps of:

1) preparing compounds of formula VII or VIII:

by:

- a) oxidation of 1,2-O-protected-glycerol to an acid salt, or hydrolysis of methyl (R)- or (S)-1,2-O-protected-glycerate to form intermediate 1;
- b) alkylation of intermediate 1 with a compound of formula $X'CH_2CH(OR_6)_2$, wherein X' is halogen or pseudohalogen, and R_6 is alkyl or aralkyl $(C_{1-20})_5$;
- c) cyclization with an acid catalyst optionally with hydrolysis of the acetal;
- 2) hydrolyzing the ester group of the compound of formula VII or VIII followed by protection of the resulting alcohol under basic conditions to form a compound of formula 6 (including D- and L-isomers):

wherein R₇ is a protecting group;

- 3) decarboxylating the carboxylic group of compound 6; and
- 4) coupling with a purine or pyrimidine base or its derivative, followed by deprotection to form a D- and L-dioxolane nucleoside of formulae III-VI.

- 5. (Currently Amended) The process according to claim 42, wherein the base basic conditions used for hydrolysis of the ester of formula VII and VIII in step 2 include a base that is an organic or inorganic base or combination thereof.
- 6. (Original) The process of claim 5 wherein the base is an aqueous alkali or alkali earth metal base.
- 7. (Original) The process of claim 6, wherein the base is aqueous NaOH or aqueous KOH.
- 8. (Currently Amended) The process of claim <u>4</u>+, wherein the oxidation <u>in step 1</u> is conducted using an oxidizing agent selected from the group consisting of NaIO₄/RuCl₃ hydrate, NaIO₄ and KIO₄ and combinations thereof.
- 9. (Currently Amended) The process of claim 4, wherein decarboxylation in step 3 is carried out at from about -10 °C to 100 °C, in an aprotic solvent or water, or combination thereof.
- 10. (Original) The process of claim 9, wherein the solvent is an aprotic solvent.
- 11. (Currently Amended) The method process of claim 10, wherein the solvent is hexane, cyclohexane, toluene, ethyl acetate, THF, dioxane, acetonitrile, dichloromethane, dichloromethane, diethyl ether, dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide, or a combination thereof.
- 12. (Currently Amended) The process of claim $\underline{4}$ - $\underline{4}$, wherein the acid <u>catalyst in step 1</u> is a Lewis acid.
- 13. (Currently Amended) The process of claim $\underline{4}$ - $\underline{4}$, wherein the acid <u>catalyst in step 1</u> is BF₃ etherate.
- 14. (Currently Amended) The process of claim 4, comprising coupling the purine or pyrimidine base or its derivative by:
 - silylation of the <u>purine or pyrimidine</u> base or its derivative; and coupling of the silylated <u>purine or pyrimidine</u> base or its derivative to the compound of Formula 6 in the presence of a Lewis acid.
- 15. (Original) The process of claim 14, wherein the Lewis acid is selected from the group consisting of tin tetrachloride, titanium tetrachloride or trimethylsilyl triflate.

- 16. (Currently Amended) The process of claim 14, wherein the <u>purine or pyrimidine</u> base or its derivative is silylated with hexamethyldisilazane (HMDS).
- 17. (Original) The process of claim 4, further comprising isolating the nucleoside of formula II-VI in optically active form.
- 18. (Currently Amended) The process of claim 17, wherein the optically active form is isolated by resolution of the <u>a</u> racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase.
- 19. (Original) The process of claim 4, wherein the purine or pyrimidine base is selected from the group consisting of adenine, N⁶-alkyl-purines, N⁶-acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N⁶-benzylpurine, N⁶-halopurine, N⁶-vinylpurine, N⁶-acetylenic purine, N⁶-acyl purine, N⁶-hydroxyalkyl purine, N⁶-thioalkyl purine, N²-alkylpurines, N²-alkyl-6-thiopurines, thymine, cytosine, 5-fluoro-cytosine, 5-methylcytosine, 6-azapyrimidine, including 6-aza-cytosine, 2- and/or 4-mercapto-pyrimidine, uracil, 5-halouracil, including 5-fluorouracil, C⁵-alkylpyrimidines, C⁵-benzyl-pyrimidines, C⁵-halopyrimidines, C⁵-hydroxyalkyl purine, C⁵-amido-pyrimidine, C⁵-acetylenic pyrimidine, C⁵-acyl pyrimidine, C⁵-aminopyrimidine, N²-alkyl-purines, N²-alkyl-6-thiopurines, 5-azacytidinyl, 5-aza-uracilyl, triazolopyridinyl, imidazolopyridinyl, pyrrolopyrimidinyl, and pyrazolopyrimidinyl.
- 20. (New) The process of claim 4, wherein R_7 is acyl, silyl, alkyl or an aralkyl group (C_{1-20}).