上海交通大学 2013-2014 学年第一学期《矩阵理论》试卷

	姓名	学号	教	师姓名	成绩
	一. 单项选择题(每题 3 分, 共 15 分)				
जिते उ	$U = \{A$	$= (a_{ij}) \in V a_{12} + a_{23}$	3 阶实矩阵构成的实线性空间. 设 a_{ij}) $\in V \mid a_{12} + a_{23} + a_{31} + a_{32} = 0$ }, $W = \{A \in V \mid A^T - A = 0\}$		
则 (I	$\operatorname{im}\left(U\bigcap W\right)$ = $(\mathbf{A})3$	• •	$(\mathrm{C})5$	$(\mathrm{D})6$	
则上	甲. (U + W) 丙. X + (U (:述四个等式(X 是线性空间 V 的任 $X = (U + X) \cap (V + X)$ 恒成立的个数为((B) 1	(X+X); Z. $(X+W);$ T. $(X+W)$	$(U+W)\cap X=($	$U \cap X) + (W \cap X);$ $X \cap U) + (X \cap W).$
	` ,	` ,	` '	` ,	
则上	甲. A 存在三 丙. A 存在 Q 二述四个命题()R 分解 恒成立的个数为(乙. <i>A</i> 存在谱分解 丁. <i>A</i> 存在奇异值).		
	` ,	, ,	` ,	` ,	
	$(\mathbf{A}) \parallel A^2 \parallel_F$	1	$\mathbf{(B)} \ \ A^2\ _F$	$= \ A^*A\ _F$	
	(C) $ A _F =$	$= \sup_{x \neq 0} \frac{x^* A x}{x^* x}$	$(\mathbf{D}) \parallel A \parallel_F^2$	$= \sup_{x \neq 0} \frac{x^* A^* A x}{x^* x}$	
	5. 设 n 阶矩阵 A 满足条件 $A^2 = I$,则 $e^A = ($).				
	(A) eI	(B) eA (C) $\frac{1}{2}[($	$(e+e^{-1})I + (e-e^{-1})I$	(D) $\frac{1}{2}$ [($[e-e^{-1}]I + (e+e^{-1})A]$
	二. 填空题(每题 3 分, 共 15 分)				
随变		$(z,z)^T)=(x+2y-z,$ 項间 $Im(\sigma^*)$ 的一个标		欧氏空间 R ³ 上的	的线性变换,则σ的伴).
	7. 设两个 3	阶矩阵 A 与 B 满足翁	条件 $A \neq 0, A^2 = 0,$	$B^2 = I$. 如果 $I +$	-B 的零空间 N(A) 的
维数		$egin{array}{ll} A-B & A+B \ A+B & A-B \end{array} igg)$ 的机).
果 x		$x_1, x_2, \cdots, x_n)^T, y =$ 拒阵 xy^T 的三角分解		:两个 / 维向量,	其中 $x_1 = y_1 = 1$. 如)
	9. 设 $A = \left(\begin{array}{c} \end{array} \right)$	$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,则 $\cos($	At) = ().

).

Penrose 逆为(

10. 设 α, β 是两个正交的 $n \ (n \ge 2)$ 维向量,且 $\alpha^* \alpha = \beta^* \beta = 4$,则矩阵 $\alpha \beta^* + \beta \alpha^*$ 的 Moore-

- 三. 计算题与证明题 (11-14 题每题 15 分, 15题 10 分, 共 70 分)
- 11. 设 $U=\{(x,y,z,w)\,|\,x+y+z+w=0\},\;W=\{(x,y,z,w)\,|\,x-y+z-w=0\}$ 是通常欧氏空间 \mathbb{R}^4 的两个子空间.
 - (1) 求 $U \cap W$, U + W 的维数与各自的一组标准正交基;
 - (2) 求U的一个2维子空间 U_0 使得其正交补空间 $U_0^{\perp} \subseteq W$;
 - (3) 设 σ 是 \mathbb{R}^4 上的正交投影变换使得 $Ker(\sigma) = U$, 求 σ 在标准基下的矩阵.

12. 设有 $n (n \ge 2)$ 阶实对称矩阵

$$A = \begin{pmatrix} 1 + a_n^2 & a_1 & 0 & \cdots & 0 & 0 & a_n \\ a_1 & 1 + a_1^2 & a_2 & \cdots & 0 & 0 & 0 \\ 0 & a_2 & 1 + a_2^2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-2} & 1 + a_{n-2}^2 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & a_{n-1} & 1 + a_{n-1}^2 \end{pmatrix}$$

其中 a_i ($1 \le i \le n$) 为实数. 记 $x = (x_1, x_2, \dots, x_n)^T$, $f(x) = f(x_1, x_2, \dots, x_n) = x^T A x$.

- (1) 判断集合 $U = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ 是否为 \mathbb{R}^n 的子空间; 如果是, 求其维数; 如果否, 求其生成的子空间的维数;
- (2) 设存在 \mathbb{R}^n 的内积 (\bullet, \bullet) 使得对任意 $x \in \mathbb{R}^n$ 有 (x, x) = f(x), 求 a_i $(1 \le i \le n)$ 的值; 并求向量 $\alpha = (1, 0, \dots, 0)^T$ 与 $\beta = (1, 1, \dots, 1)^T$ 在该内积下的长度与夹角.

13. 设
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$
.

- (1) 求 A 的 Jordan 标准形 J;
- (2) 计算 e^{At} ;
- (3) 设 $x(0) = (1, 1, 1)^T$. 求定解问题x'(t) = Ax(t)的解.

- 14. 设两个 n 阶 Hermite 矩阵 A,B 的谱分解分别为 $A=UDU^*,B=V\Lambda V^*$, 其中 U,V 均为 酉矩阵, $D={
 m diag}\,(a_1,\cdots,a_s,0,\cdots,0),\Lambda={
 m diag}\,(b_1,\cdots,b_t,0,\cdots,0)$ 是对角矩阵, $a_i\neq 0,1\leq i\leq s,b_j\neq 0,1\leq j\leq t$. 记 I 是 n 阶单位矩阵.
 - (1) 求 $C = A e^{iB}$ 的奇异值分解;
 - (2) 求 分块矩阵 $M = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ 的奇异值分解;
 - (3) 求 分块矩阵 $N=\left(egin{array}{c}A\\I\end{array}
 ight)$ 的 Moore-Penrose 广义逆.

15. 设 $V=M_n(\mathbb{C})$ 是全体n 阶复矩阵构成的复线性空间, $A,B\in V$. 对任意 $X\in V$,定义 $\sigma(X)=AX-XB$. 证明: A 与 B 没有公共特征值的充分必要条件是对任意 n 阶矩阵 $C\in V$,存在唯一的 n 阶矩阵 $X\in V$ 使得 $\sigma(X)=C$.