Claims:

10

15

20

25

- A composition for improving the properties of a cementitious composition, comprising a fluid blend of
- 5 (i) at least one polyalkylene oxide, the alkylene oxide units being ethylene and propylene oxides;
 - (ii) at least one aqueous paraffin emulsion; and
 - (iii) at least one siloxane compound that is at least one of liquid and soluble in at least one of water and aqueous alkali.
 - 2. A composition according to claim 1, in which the siloxane is selected from those that correspond to the general formula I:

$$R = X_{a} = \underbrace{Si}_{CH_{3}} \underbrace{CH_{3}}_{CH_{3}} \underbrace{C$$

where m and n are independently from 1-2000, preferably from 1-500 and more preferably from 1-200, a, b, and c are independently either 0 or 1 and X, Y and Z are selected from

-O-;

- -O-(CH₂)₁₋₃₀-, this moiety being at least one of linear, branched and containing at least one ring;
- -(CH₂)₁₋₃₀-, this moiety being at least one of linear, branched and containing at least one ring;
 - $-CH_2-CH_2-CH_2-O-$;

5

10

15

25

30

-CH₂-CH₂-CH₂-O-CH₂-CHOH-CH₂-; -CH₂-CH₂-CH₂-O-CH₂-CHOH-CH₂-O-; -CH₂-CH₂-CH₂-O-CH₂-CHOH-CH₂-N-;

and R, R' and R'' are independently selected from at least one of hydrogen, C₁₋₁₀₀ alkyl, C₆₋₃₀ aryl, C₇₋₃₀ aralkyl; C₇₋₃₀ alkaryl; C₁₋₃₀ hydroxyalkyl; C₃₋₂₀₀ polyhydroxyalkyl; polyether consisting of from 2-200 identical or different C₁₋₁₅ oxyalkylene units; C₁₋₃₀ aminoalkyl; polyiminopolyalkylene having from 1-20 identical or different C₂₋₁₅ alkylene units; polyiminopolyoxyalkylene having from 1-20 identical or different C₂₋₁₅ oxyalkylene units; C₃₋₃₀ quaternary ammonium, optionally completely or partially ionised with at least one anion; C₄₋₃₀ betaine; carboxyl, optionally completely or partially ionised with any suitable cation; C₄₋₃₀ polycarboxyalkyl, optionally completely or partially ionised with at least one cation; sulpho group, optionally completely or partially ionised with at least one cation; thiosulpho group, optionally completely or partially ionised with at least one cation; epoxide group; glycidyl; acrylate; C₁₋₃₀ ester; polyester consisting of from 2-200 C₂₋₁₅ diacid and diester monomer units; and esters of inorganic acids, all alkyl chains being at least one of linear, branched and comprising at least one ring.

- 20 3. A composition according to claim 1 or claim 2, in which the siloxane is selected from those of Formula I in which a, b, and c are all 1 and X, Y and Z are selected from
 - -O-(CH₂)₁₋₃₀-, this moiety being linear or branched;
 - $-(CH_2)_{1-30}$ -, this moiety being linear or branched;
 - -CH₂-CH₂-CH₂-CHOH-CH₂-;

and R, R' and R'' are independently selected from at least one of hydrogen; hydroxy; polyether consisting of from 2-200 identical or different C_{2-6} oxyalkylene units, with the proviso that, if there is present more than one type of oxyalkylene unit, there shall be present at least two of each unit; C_{3-30} quaternary ammonium, optionally completely or partially ionised with at least one anion; C_{4-30} betaine;

11

carboxyl, optionally completely or partially ionised with at least one cation; sulpho group, optionally completely or partially ionised with at least one cation; thiosulpho group, optionally completely or partially ionised with at least one cation; glycidyl; and acrylate; all alkyl chains being at least one of linear, branched and comprising at least one ring.

4. A composition according to any one of claims 1-3, in which the siloxane is selected from those of Formula I in which m and n are independently selected from 1-200, a, b, and c are all 1 and X, Y and Z are selected from

10

15

20

25

5

```
-O-(CH<sub>2</sub>)<sub>1-12</sub>-;
-(CH<sub>2</sub>)<sub>1-12</sub>-;
-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CHOH-CH<sub>2</sub>-;
```

- and R, R' and R'' are independently selected from at least one of hydrogen; hydroxy; polyether consisting of from 2-200 identical or different C₂₋₆ oxyalkylene units, with the proviso that, if there is present more than one type of oxyalkylene unit, there shall be present at least two of each unit; C₃₋₃₀ quaternary ammonium, optionally completely or partially ionised with at least one anion; C₄₋₃₀ betaine; carboxyl, optionally completely or partially ionised with at least one cation; glycidyl; and acrylate; all alkyl chains being capable of being linear or branched.
- 5. A composition according to any one of claims 1-4, in which the siloxane is selected from those of Formula I in which m is from 1-30 and n is from 1-100, a, b, and c are all 1 and X, Y and Z are selected from

```
-O-(CH<sub>2</sub>)<sub>1-6</sub>-;
-(CH<sub>2</sub>)<sub>1-6</sub>-;
-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CHOH-CH<sub>2</sub>-;
```

30

and R, R' and R'' are independently selected from at least one of hydrogen; hydroxy; polyether consisting of from 2-200 identical or different C₂₋₆ oxyalkylene

5

units, with the proviso that, if there is present more than one type of oxyalkylene unit, there shall be present at least two of each unit; C_{3-20} quaternary ammonium, optionally completely or partially ionised with at least one anion; C_{4-10} betaine and carboxyl, optionally completely or partially ionised with at least one cation; all alkyl chains being capable of being linear or branched.

- 6. A composition according to any one of claims 1-5 in which the polyalkylene oxide is polyethylene oxide.
- 7. A composition according to any one of claims 1-6 in which the weight-average molecular weight of the polyalkylene oxide is 100,000-8,000,000, preferably 2,000,000-5,000,000.
- A composition according to any one of claims 1-7 in which the paraffin emulsion is
 an ionically-emulsified paraffin mixture with a fusion point of 45-51°C and a particle size of less than 2μM.
- A method of modifying the properties of a cementitious composition, comprising adding to a fluid cementitious mix a composition according to any one of claims 1 8.
 - 10. A cementitious mix having improved properties, which composition comprises a chemical composition according to claims 1-8.