Assignment 2 - Report

Pietro Alovisi

Gradient Check

To check the correctness of the algorithm I computed the maximum of the absolute value of the difference of the weight matrices and the bias vector:

$$max(|W_1 - W_{1 \ num}|)$$

 $max(|W_2 - W_{2 \ num}|)$
 $max(|b_1 - b_{1 \ num}|)$
 $max(|b_2 - b_{2 \ num}|)$

Where \cdot_{num} represents the numerical computed value. All these values were smaller than 1e-6 for different initialization and for different choiches of λ . The numerical step used was h=1e-5.

Network Performance

First I tested the network using the parameters in the Assignment instruction. My results to replicate Figure 3 and 4 in the instructions are respectively represented in Figure 1 and 2

λ search

I have done a preliminary search for λ in the range $(10^{-5}, 10^1)$ for a total of 30 samples. The result is shown in Figure 3.

Then with a second, more focused, search in the interval $(10^{-5}, 10^{1})$, I obtained the results shown in Figure 4.

Full data with best λ

Figure 1: Representation of the cost, loss and performance of the network during training usign as parameters $n_s = 500$, $\lambda = 0.01$ for 1 cycle.

Figure 2: Representation of the cost, loss and performance of the network during training usign as parameters $n_s=800,\,\lambda=0.01$ for 1 cycle.

Figure 3: Results for different lambdas.

Figure 4: Results for different lambdas.