Testul W

Copyright 2005 Gabriel Dimitriu

June 8, 2005

Exercitiu 1 Folosind testul W si pentru $\alpha = 0.05$ sa se verifice ipoteza $H_0: m_e = 50; H_1: m_e > 50$ cu ajutorul datelor: 57, 45.5, 46, 52.5, 53, 58, 48, 71, 52, 57.5, 58, 44, 35.5, 54, 65.5.

Demostratie Deoarece folosim testul W vom face tabelul:

11100	oracic .	D coarce i	COLODIIII CCDC	CLI VV	OIII IU
i	x_i	$x_i - 50$	$ x_i - 50 $	R_i	R_i^s
1	57	7	7	9	9
2	45.5	-4.5	4.5	7	-7
3	46	-4	4	5.5	-5.5
4	52.5	2.5	2.5	3	3
5	53	3	3	4	4
6	58	8	8	11.5	11.5
7	48	-2	2	1.5	-1.5
8	71	21	21	15	15
9	52	2	2	1.5	1.5
10	57.5	7.5	7.5	10	10
11	58	8	8	11.5	11.5
12	44	-6	6	8	-8
13	35.5	-14.5	14.5	13	-13
14	54	4	4	5.5	5.5
15	65.5	15.5	15.5	14	14
~ .	_				

Calculez

$$w = \sum_{i=1}^{n} R_i^s = 50$$

Calculam

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{50}{\sqrt{16 \cdot 17 \cdot 31/6}} = \frac{50}{37.48} = 1.33$$

Din tabel luam $Z_{1-\alpha} = Z_{0.95} = 1.65$.

Deoarece $Z_{calc} = 1.33 < Z_{1-\alpha} = 1.65$ vom accepta ipoteza H_0 .

Exercitiu 2 Folosind testul W si pentru $\alpha = 0.05$ sa se verifice ipoteaza $H_0: m_e = 1.14; H_1: m_e > 1.14$ utilizind urmatorul set de date: 1.2, 1.18, 1.25, 1.29, 1.12, 1.11, 1.19, 1.23, 1.31, 1.20, 1.13, 1.23, 1.06, 1.17.

Demostratie Deorece folosim testul W vom face urmatorul tabel:

Calculam

$$w = \sum_{i=1}^{n} R_i^s = 74$$

Acum calculam

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{74}{\sqrt{\frac{15 \cdot 16 \cdot 29}{6}}} = 2.17$$

Din tabel avem $Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.65$.

Deoarece $Z_{calc}=2.17>Z_{1-\alpha}=1.65$ vom respinge ipoteza H_0 .

Exercitiu 3 Folosind testul W si pentru $\alpha = 0.05$ sa se verifice ipotezele $H_0: m_e = 22; H_1: m_e > 22$ pentru urmatorul set de date: 21.5, 18.95, 19.4, 18.55, 19.15, 22.35, 22.9, 22.2, 23.1.

Demostratie Deoarece vom folosi testul W vom face urmatorul tabel

ciliosti atie Decarece vom lolosi testui vi								
i	x_i	$x_i - 22$	$ x_i - 22 $	R_i	R_i^s			
1	21.5	-0.5	0.5	3	-3			
2	18.95	-3.05	3.05	8	-8			
3	19.4	-2.6	2.6	6	-6			
4	18.55	-3.45	3.45	9	-9			
5	19.15	-2.85	2.85	7	-7			
6	22.35	0.35	0.35	2	2			
7	22.9	0.9	0.9	4	4			
8	22.2	0.2	0.2	1	1			
9	23.1	1.1	1.1	5	5			
Calculam								

$$w = \sum_{i=1}^{n} R_i^s = -21$$

Calculam

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{-21}{\sqrt{10 \cdot 11 \cdot 21/6}} = -1.07$$

Din tabel avem $Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.65$.

Deoarece $Z_{calc} = -1.07 < Z_{1-\alpha} = 1.65$ vom accepta ipoteza $H_0. \;\;\blacksquare$

Exercitiu 4 Folosind testul W pentru $\alpha = 0.05$ sa se verifice ipotezele $H_0: m_e = 7.20; H_1: m_e > 7.20$ pentru urmatorul set de date: 8.25, 9.16, 9.55, 7, 6.55, 8.72, 6.7, 7.05, 7.2, 6.94, 7.16, 9.55, 5.98, 6.18, 7.82, 8.36.

Demostratie Deorece utilizam testul W vom face urmatorul tabel

	i	x_i	$x_i - 7.2$	$ x_i - 7.2 $	R_i	R_i^s	
	1	8.25	1.05	1.05	9	9	
	2	9.16	1.96	1.96	13	13	
	3	9.55	2.35	2.35	14.5	14.5	
	4	7	-0.2	0.2	3	-3	
	5	6.55	-0.65	0.65	7	-7	
	6	8.72	1.52	1.52	12	12	
	7	6.7	-0.5	0.5	5	-5	
	8	7.05	-0.15	0.15	2	-2	
	9	7.2	0	0	0	0	
	10	6.94	-0.26	0.26	4	-4	
	11	7.16	-0.04	0.04	1	-1	
	12	9.55	2.35	2.35	14.5	14.5	
	13	5.98	-1.22	1.22	11	-11	
	14	6.18	-1.02	1.02	8	-8	
	15	7.82	0.62	0.62	6	6	
	16	8.36	1.16	1.16	10	10	
Calculam							
						10	

$$w = \sum_{i=1}^{n} R_i^s = 38$$

Calculam de asemenea

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{38}{\sqrt{17 \cdot 18 \cdot 33/6}} = 0.93$$

Din tabel avem avem $Z_{1-\alpha}=Z_{1-0.05}=Z_{0.95}=1.65$. Deoarece $Z_{calc}=0.93< Z_{1-\alpha}=1.65$ vom accepta ipoteza H_0 .

Exercitiu 5 Fie m_e mediana diferentei (x-y) si vom verifica su ajutorul testului w ipotezele in cazul $\alpha = 0.05$ H_0 : $m_e = 0$; H_1 : $m_e > 0$ pentur urmatorul set de date: (17.1,19.6), (14.6,12.3), (17.3,19.4), (18.5,14.3), (13.5,18.6), (13.7,14.7), (15.4,15.4), (18.4,16.3), (16.6,16.2), (9.1,12.5), (11.5,8.1), (7.5,8.4), (19.6,17.5), (6.4,9.1), (16.5,18.6), (19.8,17.7), (14.3,13.2).

Demostratie Deoarece utilizam testul W vom face urmatorul tabel

$$w = \sum_{i=1}^{n} R_i^s = 25$$

Calculam de asemenea

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{25}{\sqrt{18 \cdot 19 \cdot 35/6}} = 0.56$$

Din tabel avem $Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.65$. Deoarece $Z_{calc} = 0.56 < Z_{1-\alpha} = 1.65$ vom accepta ipoteza H_0 .

Exercitiu 6 Fie m_e mediatoarea diferentei x-y sa se verifice utilizind testul W la pragul $\alpha = 0.05$ ipotezele $H_0: m_e = 0; H_1: m_e > 0$ pentru urmatorul set de date: (8.32, 7.80), (6.45, 7), (5.95, 6.2), (7.36, 8.14), (7.83, 8.33), (7.30, 8.15), (5.4, 5.55), (6.9, 8.1), (7.4.8), (8.17, 7.77), (6.68, 7.18), (6.95, 8.45),(7.26, 8.56), (15.43, 7.28), (8.14, 6.44).

Demostratie Deoarece folosim testul vem vom realiza tabelul

 $\operatorname{Calculam}$

$$w = \sum_{i=1}^{n} R_i^s = -18$$

Calculam de asemenea

$$Z_{calc} = \frac{w}{\sqrt{\frac{(n+1)(n+2)(2n+1)}{6}}} = \frac{-18}{\sqrt{16 \cdot 17 \cdot 31/6}} = -0.48$$

Din tabel avem $Z_{1-\alpha}=Z_{1-0.05}=Z_{0.95}=1.65$. Deoarece $Z_{calc}=-0.48< Z_{1-\alpha}=1.65$ vom accepta ipoteza H_0 .