Assignment 1

EE24BTECH11007 - Arnav Makarand Yadnopavit

1)
$$\lim_{n \to \infty} \frac{\left(1^2 - 1\right)(n-1) + \left(2^2 - 2\right)(n-2) + \dots + \left((n-1)^2 - (n-1)\right) \cdot 1}{\left(1^3 + 2^3 + \dots + n^3\right) - \left(1^2 + 2^2 + \dots + n^2\right)}$$
a) $\frac{2}{3}$ b) $\frac{3}{4}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$

- 2) Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is the sum of areas of all the triangles formed in this process, then:
 - a) $P = 36\sqrt{3}Q^2$
- b) $P^2 = 6\sqrt{3}Q$ c) $P^2 = 72\sqrt{3}Q$ d) $P^2 = 36\sqrt{3}Q$
- 3) Suppose the solution of the differential equation $\frac{dy}{dx} = \frac{(2+\alpha)x-\beta y+2}{\beta x-2\alpha y-(\beta y-4\alpha)}$ represents a circle passing through the origin. Then the radius of this circle is:
 - a) $\frac{1}{2}$

b) 2

- c) $\frac{\sqrt{17}}{2}$
- d) $\sqrt{17}$
- 4) If A is a square matrix of order 3 such that det(A) = 3 and

$$det\left(adj\left(-4adj\left(-3adj\left(3adj\left((2A)^{-1}\right)\right)\right)\right)\right)=2^{m}3^{n}$$

, then m + 2n is equal to:

a) 4

c) 2

- d) 3
- 5) If z_1 and z_2 are two distinct complex numbers such that $\left|\frac{z_1-2z_2}{\frac{1}{2}-z_1\overline{z_2}}\right|=2$, then
 - a) both z_1 and z_2 lie on the same circle.
 - b) either z_1 lies on a circle of radius 1 or z_2 lies on a circle of radius $\frac{1}{2}$.
 - c) z_1 lies on a circle of radius $\frac{1}{2}$ and z_2 lies on a circle of radius 1.
 - d) either z_1 lies on a circle of radius $\frac{1}{2}$ or z_2 lies on a circle of radius 1.
- 6) If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315th position in this arrangement is:
 - a) NRAGPU
- b) NRAPUG
- c) NRAPGU
- d) NRAGUP
- 7) Let $\vec{a} = 6\hat{i} \hat{j} \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $|\vec{c}| \ge 6$, $|\vec{a} \cdot \vec{c}| = 6 |\vec{c}|$, $|\vec{c} \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 60°, then $\left| \left(\vec{a} \times \vec{b} \right) \times \vec{c} \right|$ is equal to:
 - a) $\frac{9}{2}(6 + \sqrt{6})$ b) $\frac{9}{2}(6 \sqrt{6})$ c) $\frac{3}{2}\sqrt{3}$

- d) $\frac{3}{2}\sqrt{6}$
- 8) Suppose for a differentiable function h, h(0) = 0, h(1) = 1, and h(0) = h(1) = 2. If

$$g(x) = h(e^x) e^{h(x)}$$

, then g'(0) is equal to:

	a) -1	b) 1	c) 2	d) 0
11)	Let $f(x) = \frac{1}{7 - \sin 5x}$ be a function defined on \mathbb{R} . Then the range of the function $f(x)$ is equal to:			
	a) $\left[\frac{1}{7}, \frac{1}{6}\right]$	b) $\left[\frac{1}{8}, \frac{1}{6}\right]$	c) $\left[\frac{1}{7}, \frac{1}{5}\right]$	d) $\left[\frac{1}{8}, \frac{1}{5}\right]$
12)	If $P(6,1)$ is the orthocenter of the triangle whose vertices are $A(-2,5)$, $B(8,3)$, and $C(h,k)$, then the point C lies on the circle:			
	a) $x^2 + y^2 - 61 = 0$	b) $x^2 + y^2 - 74 = 0$	c) $x^2 + y^2 - 52 = 0$	d) $x^2 + y^2 - 65 = 0$
13)	Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = ((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i}$. Then the square of the projection of \vec{a} on \vec{b} is:			
	a) 2	b) $\frac{1}{3}$	c) $\frac{1}{5}$	d) $\frac{2}{3}$
14)	Let $\mathbf{P}(\alpha, \beta, \gamma)$ be the image of the point $\mathbf{Q}(3, -3, 1)$ in the line $\frac{x-0}{1} = \frac{y-3}{1} = \frac{z-1}{-1}$ and \mathbf{R} be the point $(2, 5, -1)$. If the area of the triangle PQR is λ and $\lambda^2 = 14K$, then K is equal to:			
	a) 81	b) 36	c) 18	d) 72
15)	Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A defined by xRy if and only if $4x \le 5y$. Let m be the number of elements in R and n be the minimum number of elements from $A \times A$ that are required to be added to R to make it a symmetric relation. Then $m + n$ is equal to:			
	a) 23	b) 25	c) 26	d) 24

c) 8

10) If the area of the region $\{(x,y): \frac{a}{x^2} \le y \le \frac{1}{x}, 1 \le x \le 2, 0 < a < 1\}$ is $(\log_e 2) - \frac{1}{7}$, then the value of 7a - 3 is equal to:

d) 4

c) $e^{2\pi} < (2\pi)^e$ d) $e^{\pi} > \pi^e$

a) 3

a) $(2e)^{\pi} > \pi^{(2e)}$

b) 5

b) $e^{\pi} < \pi^e$

9) If the function $f(x) = \left(\frac{1}{x}\right)^{2x}$; x > 0 attains the maximum value at $x = \frac{1}{e}$, then: