TERMODINÁMICA. EXAMEN 3

1. Dos sistemas tienen las siguientes ecuaciones de estado.

$$\frac{1}{T_1} = \frac{3}{2}R\frac{N_1}{U_1} \qquad \frac{1}{T_2} = \frac{5}{2}R\frac{N_2}{U_2}$$

El número de moles del primer sistema es $N_1=2$ y del segundo $N_2=3$. Los dos sistemas se separan por una pared diatérmica. La energía total del sistema compuesto es U_0 . ¿Cuál es la energía de cada sistema y la temperatura en el equilibrio?

2. En la vecindad del estado T_0 , v_0 , el volumen de un sistema de un mol, se observa que varía de acuerdo con la relación

$$v = v_0 + a(T - T_0) + b(p - p_0)$$

Calcular la transferencia de calor dQ del sistema si el volumen molar se cambia por un pequeño incremento $dv = v - v_0$ a temperatura constante T_0 .

3. Obtener $(\partial H/\partial V)_{T,N}$ en términos de cantidades que se puedan medir en el laboratorio.