1) Determine which integration technique would be used to solve the following integration problems. Do not work the problem completely.

$$A) \int \frac{dx}{x^2 - 4x + 13}$$

J)
$$\int \frac{x}{\sqrt{x^2+4x+8}} dx$$

$$B) \int \frac{x^2}{2x^3 - 1} dx$$

K)
$$\int \frac{2x^2 - 9x}{(x-2)^3} dx$$

C)
$$\int (\cos\theta + 1)^2 d\theta$$

L)
$$\int_{1}^{e} \frac{\ln x}{x} dx$$

D)
$$\int x^3 \ln x \, dx$$

M)
$$\int \tan^4 \theta \ d\theta$$

E)
$$\int \frac{\csc^2 x}{\cot^3 x} dx$$

N)
$$\int \frac{e^{1/x}}{x^2} dx$$

F)
$$\int e^{2x} \cos 3x \, dx$$

$$O) \int_0^{\frac{\pi}{4}} x \cos x dx$$

G)
$$\int \cos^3 \theta \sin^4 \theta \ d\theta$$

P)
$$\int \frac{x^2 - 4x + 7}{(x+1)(x^2 - 2x + 3)} dx$$

$$H) \int \frac{x^2}{\sqrt{2x-x^2}} dx$$

$$Q) \int x^2 e^{2x} dx$$

$$I) \quad \int \frac{2s}{\sqrt[3]{6-5s^2}} ds$$

Integration by Substitution

$$2) \int \frac{2s}{\sqrt[3]{6-5s^2}} ds$$

$$3) \int \frac{x^2}{2x^3 - 1} dx$$

$$4) \int_{1}^{e} \frac{\ln x}{x} dx$$

$$5) \int \frac{\csc^2 x}{\cot^3 x} dx$$

6)
$$\int \frac{dx}{x^2 - 4x + 13}$$

$$7) \int \frac{e^{1/x}}{x^2} dx$$

Trigonometric Integrals

8)
$$\int \cos^3 \theta \sin^4 \theta \ d\theta$$

9)
$$\int (\cos\theta + 1)^2 d\theta$$

10)
$$\int \tan^4 \theta \ d\theta$$

Integration by Parts

$$11) \int x^3 \ln x \, dx$$

11)
$$\int x^3 \ln x \, dx$$
 12) $\int_0^{\frac{\pi}{4}} x \cos x \, dx$ 13) $\int e^{2x} \cos 3x \, dx$ 14) $\int x^2 e^{2x} \, dx$

$$13) \int e^{2x} \cos 3x \, dx$$

$$14) \int x^2 e^{2x} \, dx$$

Integration by Trigonometric Substitution

$$15) \int \frac{x}{\sqrt{x^2 + 4x + 8}} dx$$

$$16) \int \frac{x^2}{\sqrt{2x-x^2}} dx$$

Integration Using Partial Fractions

17)
$$\int \frac{x^2 - 4x + 7}{(x+1)(x^2 - 2x + 3)} dx$$

18)
$$\int \frac{2x^2 - 9x}{(x - 2)^3} dx$$

Improper Integrals

$$19) \int_{0}^{\infty} xe^{-2x} dx$$

20)
$$I = \int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} dx$$

21)
$$\int_{1}^{5} \frac{dx}{(x-3)^2}$$