ICT的演進 與商業模式的發展

陳正綱 博士 台科大資管系教授

Outline

- @ ICT Transformation
- Share Economy
- Artificial Intelligence
- @ Conclusion

Information, Computer, Telecommunication (ICT)

w/ internet

w/o internet

Wireless Mobile devices

Connected Devices

Independent Intranet/WS

4/60

Information, Computer, Telecommunication (ICT)

w/ internet

w/o internet

Wireless

Mobile devices

Connected Devices

Independent
Intranet/WS

6/60

7/60

科技新聞通訊社编輯部 2019年8月27日 己讀 1 分鐘

台電IBM大型主機維護,預算4,982萬

台灣電力股份有限公司8月28日招標「IBM大型電腦主機及周邊設備維護」,合約期間8年,預算49,820,400元。評選委員包括何永和、陳文生、游象甫、楊聰仁、蔡修竹、吳宏偉、林瑞祥。其中國立臺北教育大學教授游象甫經常獲邀參與政府資通標案評審;陳文生已退休,後三位為台電人員。

台電表示,廠商於履約期間(自108年12月04日起至111年12月08日止共8年,若決標日逾108年12月04日則以決標日起算共8年)負維護之責,使其能經常保持良好而可用之狀況;設備故障時,須於契約規定時限內負責修復至正常運作。修護期間須提供同等級備品替代運作,以利服務順暢運作。

根據招標規範,廠商除定期保養與故障修復外,尚需提供各維護地點維護標的之主機硬體操控 台(HMC; Hardware Management Console)到場支援服務。每年配合協助甲方辦理一 次「大型主機磁碟備援系統」備援演練,HMC/Console主機控制台、周邊設備虛擬磁帶 館、磁帶館及磁帶館管理軟體相關訊息回應與備援設定調整等。以及資安防護、教育訓練等。

(詳細規範以招標單位公告為準)

Information, Computer, Telecornmunication (ICT)

w/ internet

w/o internet

Wireless Mobile devices

Connected Devices

Independent Intranet/WS

10/60

11/60

domain knowledge

(馬達製造)

information technology (ITTS) management skills

(e化、優化)

12/60

domain knowledge

(連鎖餐飲, MOS)

information technology (ITTS) management skills

(e化、優化)

13/60

分組討論 (25分鐘)

- 1. 假設你們是新創的資訊系統整合(SI)公司 ,請問您會選擇幫哪一種產業或公司發展 系統或軟體?
- 2. 試說明做這樣的選擇與決定的原因和理由 是什麼?

15/60

最大醫療入口網站 最佳診所事業夥伴

Information, Computer, Telecommun cation (ICT)

w/ internet

w/o internet

Wireless Mobile devices

Connected Devices

Independent Intranet/WS

18/60

通路及行銷

網購平台

Yahoo、Momo、小三美日 等電商購物平台,具高曝光度

官網銷售

塑造品牌形象 官傳活動及創造互動

行動APP

搶佔全球行動商務市場 提供跨裝置行動體驗

展會行銷

開拓海外市場、爭取訂單 有效掌握女性商機

實體藥妝

進駐實體連鎖店 提供便利的試用服務

海外代理

引進全球高評價品牌 為消費者嚴選把關

國立合灣科技大學

19/60

Information, Computer, Telecommunication (ICT)

w/ internet

w/o internet

Wireless

Mobile devices

Connected Devices

Independent
Intranet/WS

20/60

innovative thinking (business model)

information technology

management skills

『共享經濟』就是藉由網路平台分享 你的資產、資源、時間及技能,而你 能從分享資源獲得金錢。

因為網路及智慧型裝置的普及,共享經濟近年開始蓬勃發展,而網路創新也創造了許多前所未見的商業模式。

UBER願景是「為世界帶來新的移動方式,透過APP的無縫方式連結司機,使城市中的行動變得更方便,帶給司機更多的業務以及人們更多乘車的選擇」;

LYFT的願景則是「提供社群成員受歡迎,可 負擔的共乘服務,解決車輛空位過多的問題, 透過運輸把人們連結在一起」

行程路線	配合乘客	駕駛原訂計劃
價格決定者	Uber	駕駛
平台抽成	20%	0%
訂價原則	營利	分攤車資

Sharing economy sector and traditional rental sector projected revenue growth

Sharing economy sectors

video streaming

Traditional rental sectors

P₂P

Regulation to Trust

Connected Society and Technologies

User Participation Big Data Algorithm

Insurance Escrow **Emergency Support**

將平台提供給供需雙方,建立個人對個人的交易型態,正屬於 P2P (or C2C) 的經濟模式。此一模式不僅省略了許多中間的複雜環節,在使用上也更為效率。

由於 P2P 在服務流程上更顯得精減,利益取得上也更為直接;因而在服務品質傳播上擁有高度優勢,更可以讓使用者在完成服務後,進而達到宣傳的擴散效益。

P2P的發展將成一種新的趨勢,甚至會對許多傳統及服務產業帶來巨大的變化與商機。除了交通及居家服務外,包含停車位、工作室租借,甚至技術服務等其他食衣住行方面,都將使共享經濟無所不在。

分組討論 (25分鐘)

- 1. 在瞭解共享經濟之後,請各組運用共享經濟的概念,思索一個目前可能沒有人做,而可以成立新創公司的商機。
- 2. 試說明上述商機的潛在市場大約有多大?

Alan Turing (1912-1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher and theoretical biologist.

Turing Machine Turing Award

"Can Machines Think?"

Turing Test is a test of a machine's ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human.

"Can Machines Think?"

"Are there imaginable digital computers which would do well in the *imitation game*?"

Artificial Intelligence (AI)

「人工智慧」的概念是由美國科學家John McCarthy於 1955年提出,目標為使電腦具有類似人類學習及解決複雜問 題、抽象思考、展現創意等能力,能夠進行推理、規劃、學 習、交流、咸知和操作物體,應用領域非常廣泛,近年大行 其道的個人語音助理如蘋果Siri、微軟Cortana,以及分別擊 敗人類西洋棋與圍棋高手的IBM Deep Blue、Google DeepMind AlphaGo都是人工智慧研究的結晶,同時電腦作 書譜曲寫劇本等創造性事物也陸續出現。隨著研發技術飛速 進展,人工智慧深入如醫療、金融等生活層面指日可待。 (來源: 維基百科)

AI-1st Wave

1950s

模仿人腦的結構,因而有AI的概念。 受到當時的技術限制而平息下來。

AI-2nd Wave

1980s

基於數據而取代專家做各種判斷 數據範圍狹小而未能普及

AI-3rd Wave

基於無數的數據,加上能找出特徵而自我學習的深層 學習等技術,不僅有計算能力,更能重現人的直覺。

過去:根據人的指示處理數據

現在:解釋數據的意義而自行判斷

Strong AI

電腦科學家當然希望可以直接模仿生物的神經元運作,因此設計 數學模型來模擬動物神經網絡的結構與功能。

所謂人工神經網絡(Artificial Neural Network)是一種仿造神經 元運作的函數演算,能接受外界資訊輸入的刺激,且根據不同刺 激影響的權重轉換成輸出的反應,或用以改變內部函數的權重結 構,以適應不同環境的數學模型。透過多層次的神經元締結而成 的人工神經網絡,在函數表現上可以保有更多「被刺激」的「記 億一。

代表:深度學習(deep learning)

Strong AI

深度學習 Deep Learning

目前AI發展方向的主流。其概念主要是複合多層複雜結構的人工 神經網絡,並將其中函數作多重非線性轉換,使之增加高度抽象 化資料、記憶資料影響能力。

簡單來說,即是大量的訓練樣本、龐大的計算能力、靈巧的神經 網路結構設計三者結合,目前深度學習已深入應運於語音辨識、 影像辨識, Google AlphaGo也是奠基於深度學習,而能掌握抽 象概念。讓電腦進行深度學習主要有三個步驟:設定好類神經網 路架構、訂出學習目標、開始學習。

Weak AI

要讓機器有智慧,並不一定要真正賦予它思考能力,可以大量閱讀、儲存資料並具有分辨的能力,就足以幫助人類工作。

弱人工智慧意指如果一台機器具有博聞、強記(可以快速掃描、儲存大量資料)與分辨的能力,它就具有表現出人工智慧的能力。

強人工智慧則是希望建構出的系統架構可媲美人類,可以思考並做出適當反應,真正具有人工智慧。

代表:機器學習 (Machine Learning)

Weak AI

機器學習 Machine Learning

機器學習是可以尋找適合讓電腦做預測或數學模型分類的一種演 算方法。這種演算方法主要透過蒐集大量原始數據與標準答案, 以訓練資料調整且選擇相應的數學模型,同時並藉由驗證資料比 對計算分類結果,來判定模型是否適合用來預測或分類。

機器學習的發展方向,是在設計、分析一些讓電腦可以自動「學 習」的演算法,讓機器得以從自動分析資料的過程中建立規則, 並利用這些規則對還沒有進行分析的未知資料進行預測。過程中, 時常運用**統計學**技巧,並轉化成電腦程式,進而計算出資料的分 界條件來做預測。

Natural Language Processing

(NLP,自然語言處理)

要讓機器「理解」人類的語言

- 1. 從人類到電腦——讓電腦把人類的語言轉換成程式可以處理的型式
- 2. 從電腦回饋到人——把電腦所演算的成果轉換成人類可以理解的語言表達出來。

Natural Language Processing

(NLP,自然語言處理)

自然語言處理又可分為不同的階段,包含:語音或文字辨識、自 動分詞與詞性標注、語句生成與文本朗讀等。主要著重如何以電 腦處理並運用自然語言,並企圖讓機器「理解」人類的語言。

語音智慧助理讓人能和機器說話,無非是近年行動裝置普及後, 最令人興奮的進展之一。

例如:今天會不會下雨? --->降雨機率10% --->不太會下雨

Microsoft 把AI技術打包成API

語音

Bing Speech API

雙向轉換語音與文字,從而了解使用者的想法 說話者辨識**API**

使用語音來辨識及驗證說話者

搜尋

Bing 搜尋API

供應用程式使用的Web、影像、影片及新聞搜尋API

Bing 自動建議 API

將搜尋用的智慧型自動建議選項提供給應用程式

辨識

人臉識別 API

偵測、分析、組織及標記相片中的臉孔

Emotion API

利用表情辨識個人化使用者體驗

Computer Vision API

從影像擷取可操作的資訊

語言

Language Understanding

Intelligent Service

教導應用程式理解使用者發出的命令

Text Analytics API

輕鬆解讀意見與話題,了解使用者需求

Web Language Model API

透過網路規模資料訓練,預測語言模型

Bing 拼字檢查 API

偵測並校正應用程式中的拼字錯誤

知識

Recommendations API

預測並建議客戶想要的商品

Academic Knowledge API

充分利用 Microsoft Academic Graph 中豐富的學術內容

由FDA批准的、利用深度學習診斷心臟病的應用。 Arterys系統平均需要15秒來產生一個案例的結果, 而一個專業的人類分析師將需要在30分鐘到一小時

之間的時間來完成。 最有趣的是,數據越多,

Arterys系統就越準確。

Mendel.ai公司專注於發展機器學習理解個別癌症病例和推薦臨床試驗。在最新公佈的資料中,AI對於最終治療方案的推薦超過了任何一個腫瘤學家的知識庫。

由Google的TensorFlow和他們的新分支Verily開發的深度 學習演算法,在今年年初剛剛募集了8億美元。這將為醫療 保健帶來更加智慧的新未來。

臺灣AI的可能機會

電子商務 = (軟體 + 服務)的數位經濟

臺灣的硬體廠商在哪裡?

人工智慧或機器學習的演算法

相對成熟的演算法包成特定的系統晶片 (System on Chip, SOC)

『AI技術整合IC化』 ---> 技術創新

IoT (物聯網或智慧聯網)

是互聯網(網際網路)、傳統電信網等資訊承載體,讓所有能行使獨立功能的普通物體實現互聯互通的網路。

「物聯網是一個『物』(Things) 能自動對電腦通信,物件本身也能彼此互通的世界,它以人類利益為服務要件。」

「所有東西的網際網路」「物物相連的互聯網」

AIoT = AI + IoT(人工智能聯網)

IoT: 感官

AI:大腦

有助企業減少成本、提升效率、發掘新的商機、進而發展出新的營運模式。

產業應用:

智慧醫療

智慧城市

智慧零售

智慧農業

智慧製造

產業應用:智慧醫療

AIOT = AI + IOT

產業應用:智慧醫療

問題:設備故障導致客戶(醫院和診所)停工時間增加

AIoT解法:

需要每天監控 15,000 台設備 (MRI, CT等)和 20,000 個事件代碼以及感應器訊息。西門子醫療最終決 定使用機器學習和物聯網功能來分析其全球系統的即時數 據,這有助於在故障發生的前幾天預測出潛在的停機時間, 最終也取得了能夠提前 5 到 10 天預測設備故障,預測準 確率大於 70%, 誤報率小於 20% 的進步, 達成對客戶 的醫療軟硬體進行即時監控和預防性維護。

52/60

產業應用:智慧城市

產業應用:智慧城市

問題:監測高速公路、水路及橋梁系統

解法:

數據實驗室在運河、道路及橋樑裝設感測器,即時蒐集大量數據,並使用邊際運算進行實時的分析,並即時用圖表和地圖呈現,供官員決策參考如有效利用有限的公共資源,以及更安全的控制生態系統,保持荷蘭公民的安全(如洪水等事件的判斷因應)和行動。

54/60

產業應用:智慧零售

產業應用:智慧製造

產業應用:智慧製造

問題:製程良率及生產效能,維持輪胎圓型弧度

解法:

運用 IOT 蒐集生產線設備所產出的資料,在產線異 常時產生警報,導入 AI(人工智慧)之後,設備可以自己 學習、或是從其他設備學習,產生自動的「行動」。影響 製程的兩大變數為溫度與角度。第一個機器手臂的溫度與 角度資料,透過人工智慧分析計算後,將數據傳給下一個 製程,第二個機器手臂將可以即時調整相對應並且正確的 溫度和角度。如此一來,整個製作良率及效能將大幅提升。

產業應用:

智慧醫療

智慧城市

智慧零售

智慧農業

智慧製造

產業應用:智慧農業

Conclusion

@ ICT vs. 商業模式

innovating thinking

● AIoT 應用

