Department of molecular science and nanosystems Prof. A. Alla

Exercise Sheet 5

Exercise 1: Prepare a script that computes the roots of the problem f(x) = 0 with the following methods

- a) Bisection method
- b) Chord's method
- c) Secant Method
- d) Newton's Method

INPUT:

- a, b the boundary of the domain,
- *f* the function
- x_0 the initial condition
- \bullet ε the stopping criteria

OUTPUT:

- \bullet number of iterations k to converge
- ullet the plot of the sequence $\{x_k\}$ for $k=0,1,\ldots,k_{max}$
- ullet order of convergence p_k for each iteration of the method.

You might then test your code for the following functions

- a) $f(x) = x^2 x 2$
- b) $f(x) = \sqrt{x+2} x$
- c) $f(x) = 1 + \frac{2}{x} x$
- d) $f(x) = x + 2(\log(x) 1)$
- e) $f(x) = e^x x^2$
- f) $f(x) = \frac{1}{x} e^{\sqrt{x}}$
- g) $f(x) = x e^{-x^2}$
- h) $f(x) = x^3 \sin(x)$

Exercise 2 Prepare a script that computes the roots of $F:\mathbb{R}^2 o \mathbb{R}^2$ using

- Newton's method
- Approximation of the Jacobian

Test your code for the following examples:

- $F(x,y)=(x+2y-3,2x^2+y^2-5)$ where $J_F(x,y)=\begin{pmatrix}1&2\\4x&2y\end{pmatrix}$. One solution can be found in $[1,2]\times[0.5,1.5]$ and it is $(x,y)\approx(1.488,0.756)$. Are there other roots?
- $F(x,y)=(x^2+y^2-1,\sin\frac{\pi}{2}x+y^3)$ where $J_F(x,y)=\left(\begin{array}{cc} 2x & 2y \\ \frac{\pi}{2}\cos\frac{\pi}{2}x & 3y^2 \end{array}\right)$. One solution can be approximated by $(x,y)\approx(0.4761,-0.8794)$. Are there other roots?

Compare the CPU times for the two methods, the order of convergence and the number of iterations needed to achieve the desired tolerance.