CHAPITRE 21

MATRICES D'UNE APPLICATION LINÉAIRE

Dans ce chapitre, tous les espaces vectoriels considérés sont de dimension finie.

1. Matrice d'un vecteur, matrice d'une application linéaire

Définition 1.1

Soit E un espace vectoriel de dimension finie n, $\mathscr{B}=(e_1,...,e_n)$ une base de E, x un vecteur de E. On note $(x_1,...,x_n)$ les coordonnées de x dans la base \mathscr{B} , donc $x=\sum_{i=1}^n x_i e_i$. La matrice de x dans la base \mathscr{B} est la

matrice colonne
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Définition 1.2

Soit $f: E \longrightarrow F$ une application linéaire, $\mathscr{B} = (e_1, ..., e_p)$ une base de $E, \mathscr{C} = (u_1, ..., u_n)$ une base de F. On pose

$$\forall j \in \{1, ..., p\}, \ f(e_j) = \sum_{i=1}^{n} a_{i,j} u_i.$$

La matrice $(a_{i,j})$ est appelée matrice de f dans les bases \mathscr{B} et \mathscr{C} et notée $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(f)$.

Théorème 1.3

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})_{n,p}(\mathbb{K})$. Il existe une unique application linéaire $f : \mathbb{K}^p \longrightarrow \mathbb{K}^n$ telle que $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(f) = A$, où \mathscr{B} et \mathscr{C} désignent les bases canoniques respectives de \mathbb{K}^p et \mathbb{K}^n .

On dit que f est l'application linéaire canoniquement associée à A.

2. Opérations matricielles

Théorème 2.1

Soient x et y deux vecteurs de E, $\mathcal B$ une base de E, λ et μ deux scalaires. Alors

$$\operatorname{Mat}_{\mathscr{B}}(\lambda x + \mu y) = \lambda \operatorname{Mat}_{\mathscr{B}}(x) + \mu \operatorname{Mat}_{\mathscr{B}}(y).$$

Théorème 2.2

Soient f et g deux applications linéaires de E dans F, \mathscr{B} une base de E et \mathscr{C} une base de F, λ et μ deux scalaires.

Alors

$$\operatorname{Mat}_{\mathscr{B}\mathscr{L}}(\lambda f + \mu g) = \lambda \operatorname{Mat}_{\mathscr{B}\mathscr{L}}(f) + \mu \operatorname{Mat}_{\mathscr{B}\mathscr{L}}(g).$$

Théorème 2.3

Soient $f: E \to F$ et $g: F \to G$ deux applications linéaires, $\mathscr{B}, \mathscr{C}, \mathscr{D}$ des bases respectives de E, F et G.

$$\operatorname{Mat}_{\mathscr{B},\mathscr{D}}(g \circ f) = \operatorname{Mat}_{\mathscr{C},\mathscr{D}}(g) \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(g).$$

Corollaire 2.4

 $(M_{n,p}(\mathbb{K}),+,.)$ est un \mathbb{K} -espace vectoriel isomorphe à $L(\mathbb{K}^p,\mathbb{K}^n)$.

Théorème 2.5

Soit $f: E \to F$ une application linéaire, \mathscr{B} une base de E, \mathscr{C} une base de F, et $A = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$. Alors f est un isomorphisme si et seulement si A est inversible.

Proposition 2.6

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})_n(\mathbb{K})$ inversible à droite : il existe $B \in \mathcal{M}_{n,p}(\mathbb{K})_n(\mathbb{K})$ telle que $AB = I_n$. Alors A est inversible et $B = A^{-1}$. De même si A est inversible à gauche.

3. Rang d'une matrice

Définition 3.1

Soit $A \in M_{n,p}(\mathbb{K})$. On définit le rang de A comme le nombre maximal de colonnes linéairement indépendantes de A. On note ce nombre $\operatorname{rg}(A)$.

Définition 3.2

Soit $(u_1, ..., u_k)$ une famille de vecteurs de E, et \mathscr{B} une base de E. La matrice de cette famille dans la base \mathscr{B} est la matrice dont les colonnes sont $\operatorname{Mat}_{\mathscr{B}}(u_j)$ pour tout $j \in [1, k]$.

Proposition 3.3

Soit $(u_1, ..., u_k)$ une famille de vecteurs de E, et $\mathscr B$ une base de E. Soit A la matrice de cette famille dans la base $\mathscr B$. Alors $\operatorname{rg}(A) = \operatorname{rg}(u_1, ..., u_k)$.

Corollaire 3.4

Soit $(u_1, ..., u_n)$ une famille de vecteurs de E, \mathscr{B} une base de E, P la matrice de $(u_1, ..., u_n)$ dans la base \mathscr{B} . On suppose dim E = n de sorte que $P \in M_n(\mathbb{K})$. Alors $(u_1, ..., u_n)$ est une base de E si et seulement si P est inversible.

Proposition 3.5

Soit $f: E \to F$ une application linéaire, $\mathscr B$ une base de $E, \mathscr C$ une base de $F, A = \operatorname{Mat}_{\mathscr B,\mathscr C}(f)$. Alors $\operatorname{rg}(f) = \operatorname{rg}(A)$.

Proposition 3.6

Soit $A \in M_{n,p}(\mathbb{K})$ et A' la matrice obtenue à partir de A en effectuant une opèration élémetaire sur les lignes ou les colonnes de A. Alors $\operatorname{rg}(A) = \operatorname{rg}(A')$.

Corollaire 3.7

Soit (S) un système linéaire de matrice A. Alors rg(A) = rg(S).

Proposition 3.8

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})_{n,p}(\mathbb{K})$ de rang r. Alors il existe $P \in GL_n(\mathbb{K}), Q \in GL_p(\mathbb{K})$ telles que $A = PJ_rQ$ où $J_r = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$.

4. Formules de changement de bases

Définition 4.1

Soient $\mathscr{B} = (e_1, ..., e_n)$ et $\mathscr{C} = (u_1, ..., u_n)$ deux bases de E. La matrice de passage de la base \mathscr{B} à la base \mathscr{C} est la matrice de la famille \mathscr{C} dans la base \mathscr{B} . On la note $P_{\mathscr{B} \to \mathscr{C}}$.

Proposition 4.2

Avec les notations précédentes, $P_{\mathscr{B}\to\mathscr{C}} = \mathrm{Mat}_{\mathscr{C},\mathscr{B}}(\mathrm{id}_E)$.

Corollaire 4.3

Avec les notations précédentes, $P_{\mathscr{B} \to \mathscr{C}}^{-1} = P_{\mathscr{C} \to \mathscr{B}}$.

Théorème 4.4: Formule de changement de bases pour les vecteurs

Soient $\mathscr{B} = (e_1, ..., e_n)$ et $\mathscr{C} = (u_1, ..., u_n)$ deux bases de E. Soit $x \in E$. Alors $\operatorname{Mat}_{\mathscr{B}}(x) = P_{\mathscr{B} \to \mathscr{C}} \operatorname{Mat}_{\mathscr{C}}(x)$.

Théorème 4.5: Formule de changement de bases pour les applications linéaires

Soit f une application linéaire de E dans F, \mathscr{B}_1 et \mathscr{B}_2 deux bases de E, \mathscr{C}_1 et \mathscr{C}_2 deux bases de F. On pose P la matrice de passage de \mathscr{B}_1 à \mathscr{B}_2 et Q la matrice de passage de \mathscr{C}_1 à \mathscr{C}_2 . Alors

$$\operatorname{Mat}_{\mathscr{B}_2,\mathscr{C}_2}(f) = Q^{-1} \operatorname{Mat}_{\mathscr{B}_1,\mathscr{C}_1}(f) P.$$

5. Application aux calculs de puissances de matrices

Notation 5.1

On note diag $(\lambda_1,...,\lambda_n)$ la matrice diagonale dont les coefficients diagonaux sont $\lambda_1,...,\lambda_n$.

$$\operatorname{diag}(\lambda_1, ..., \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Proposition 5.2

Soit $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ une matrice diagonale. Alors pour tout $k \in \mathbb{N}^*$, $D^k = \operatorname{diag}(\lambda_1^k, ..., \lambda_n^k)$.

Exemple 5.3

Soit
$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & 1 \\ -2 & 2 & 2 \end{pmatrix}$$
.

Soit $\mathscr{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et f l'endomorphisme canoniquement associé à $A:\mathrm{Mat}_{\mathscr{B}}(f)=A$.

On cherche une base \mathscr{C} de \mathbb{R}^3 telle que $\mathrm{Mat}_{\mathscr{C}}(f)$ soit diagonale.

(1) Analyse. Soit $\mathscr{C} = (u_1, u_2, u_3)$ une base de \mathbb{R}^3 et a, b, c tels que $\operatorname{Mat}_{\mathscr{C}}(f) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$.

On a alors $u_1 \neq 0$ et $f(u_1) = au_1$, $u_2 \neq 0$ et $f(u_2) = bu_2$, $u_3 \neq 0$ et $f(u_3) = cu_3$. On cherche donc à résoudre des équations de la forme $f(u) = \lambda u$ avec $u \neq 0$.

On pose u = (x, y, z). Ainsi

$$f(u) = \lambda u \iff \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & 1 \\ -2 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix} \iff \begin{cases} x+y-z=2\lambda x \\ -x+3y+z=2\lambda y \\ -x+y+z=\lambda z \end{cases}$$

$$\iff \begin{cases} (1-2\lambda)x+y-z=0 \\ -x+(3-2\lambda)y+z=0 \\ x-y-(1-\lambda)z=0 \end{cases} \iff \begin{cases} 2(1-\lambda)y+(-1+(1-\lambda)(1-2\lambda))z=0 \\ 2(1-\lambda)y+\lambda z=0 \\ x-y+(\lambda-1)z=0 \end{cases}$$

$$\iff \begin{cases} 2\lambda(2-\lambda)z=0 \\ 2(1-\lambda)y+\lambda z=0 \\ x-y+(\lambda-1)z=0 \end{cases}$$

On voit que ce système a des solutions non nulles si et seulement si $1 - \lambda = 0$ ou $\lambda(2 - \lambda) = 0$, si et seulement si $\lambda \in \{0, 1, 2\}$.

Avec $\lambda = 0$, on trouve y = 0 et x = z. Donc en posant $u_1 = (1, 0, 1)$, on aura $f(u_1) = 0.u_1$.

Avec $\lambda = 1$, on trouve z = 0 et x = y. Donc en posant $u_2 = (1, 1, 0)$, on aura $f(u_2) = 1.u_2$.

Avec $\lambda = 2$, on trouve x = 0 et z = y. Donc en posant $u_3 = (0, 1, 1)$, on aura $f(u_3) = 2 \cdot u_3$.

(2) Synthèse. On pose $u_1 = (1,0,1)$, $u_2 = (1,1,0)$, $u_3 = (0,1,1)$. Montrons que $\mathscr{C} = (u_1,u_2,u_3)$ est une base de \mathbb{R}^3 . Pour cela, on va montrer que la matrice de passage P de \mathscr{B} à \mathscr{C} est inversible, et déterminer son inverse (on en aura besoin pour la suite).

On a
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.
Soient $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

$$PX = Y \iff \begin{cases} x+y=a \\ y+z=b \\ x+z=c \end{cases} \iff \begin{cases} x=\frac{1}{2}(a-b+c) \\ y=\frac{1}{2}(a+b-c) \\ z=\frac{1}{2}(-a+b+c) \end{cases}$$

Donc P est inversible et $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$. Donc \mathscr{C} est bien une base de \mathbb{R}^3 .

D'après la formule de changement de base, $A=\mathrm{Mat}_{\mathscr{B}}(f)=P\,\mathrm{Mat}_{\mathscr{C}}(f)P^{-1}=PDP^{-1}$ avec $D=\begin{pmatrix}0&0&0\\0&1&0\\0&0&2\end{pmatrix}$.

On en déduit que pour tout k, $A^k = (PDP^{-1})^k = (PDP^{-1})(PDP^{-1})...(PDP^{-1}) = PD^kP^{-1}$, donc

$$A^k = \frac{1}{2} \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^k \end{array} \right) \left(\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 - 2^k & 1 + 2^k & 2^k - 1 \\ -2^k & 2^k & 2^k \end{array} \right).$$

6. Transposition

Définition 6.1

Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in M_{n,p}(\mathbb{K})$. La transposée de A est la matrice ${}^tA = (a_{j,i}) \in M_{p,n}(\mathbb{K})$.

Proposition 6.2

La transposition est linéaire.

Proposition 6.3

Soient $A \in M_{n,p}(\mathbb{K})$ et $B \in M_{p,q}(A)$. On a $^t(AB) = (^tB)(^tA)$.

Corollaire 6.4

Soit $A \in GL_n(\mathbb{K})$. Alors ${}^tA \in GL_n(\mathbb{K})$ et $({}^tA)^{-1} = {}^t(A^{-1})$.

Définition 6.5

Soit $A \in M_n(\mathbb{K})$. On dit que

- (1) A est symétrique si $A = {}^{t} A$;
- (2) A est antisymétrique si $A = -^t A$.

Proposition 6.6

Pour toute matrice $A \in M_{n,p}(\mathbb{K})$, $rg(^tA) = rg(A)$.

7. Trace

Définition 7.1

Soit $A \in M_n(\mathbb{K})$. La trace de A est la somme des coefficients diagonaux de A. On la note $\operatorname{tr}(A)$.

Proposition 7.2

La trace est linéaire.

Proposition 7.3

 $\forall A \in M_n(\mathbb{K}), \operatorname{tr}(^t A) = \operatorname{tr}(A).$

Proposition 7.4

 $\forall A \in M_{n,p}(\mathbb{K}), \forall B \in M_{p,n}(\mathbb{K}), \operatorname{tr}(AB) = \operatorname{tr}(BA).$

Proposition 7.5

Soient A et B deux matrices semblables. Alors tr(A) = tr(B).

Définition 7.6

Soit $f \in L(E)$. On appelle trace de f la trace de la matrice de f relativement à n'importe quelle base de E. On la note $\operatorname{tr}(f)$.

Proposition 7.7

Soit p un projecteur. Alors tr(p) = rg(p).

8. Matrices par blocs

Définition 8.1

On appelle matrice par blocs une matrice construite à partir d'autres matrices $A_{i,j}$ suivant le schéma ci-dessous

$$\begin{pmatrix}
A_{1,1} & A_{1,2} & \dots & A_{1,p} \\
A_{2,1} & A_{2,2} & \dots & A_{2,p} \\
\vdots & & \ddots & \vdots \\
A_{n,1} & A_{n,2} & & A_{n,p}
\end{pmatrix}$$

les blocs diagonaux $A_{i,i}$ étant des matrices carrées.

Proposition 8.2: Produit par blocs

Soit
$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,p} \\ \hline A_{2,1} & A_{2,2} & \dots & A_{2,p} \\ \hline \vdots & & \ddots & \vdots \\ \hline A_{n,1} & A_{n,2} & & A_{n,p} \end{pmatrix}$$
 et $B = \begin{pmatrix} B_{1,1} & B_{1,2} & \dots & B_{1,q} \\ \hline B_{2,1} & B_{2,2} & \dots & B_{2,q} \\ \hline \vdots & & \ddots & \vdots \\ \hline B_{p,1} & B_{p,2} & & B_{p,q} \end{pmatrix}$ deux matrices par blocs. Si pour

tout i, j, k, le nombre de colonnes du bloc $A_{i,j}$ est égal au nombre de lignes du bloc $B_{j,k}$, alors le produit AB peut être calculé par blocs : en posant C = AB, on a

$$C = \begin{pmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,q} \\ \hline C_{2,1} & C_{2,2} & \dots & C_{2,q} \\ \hline \vdots & & \ddots & \vdots \\ \hline C_{n,1} & C_{n,2} & & C_{n,q} \end{pmatrix}$$

avec pour tout $i, j, C_{i,j} = \sum_{k=1}^{p} A_{i,k} B_{k,j}$.