From the definition of the **Kronecker delta symbol** (Equation (1.14))
$$\delta_{ik} = \begin{cases} 0 & \text{if } i \neq k \\ 1 & \text{if } i = k \end{cases}$$

and **permutation symbol** (or **Levi-Civita density**) (Equation (1.67))

 $\epsilon_{ijk} = \begin{cases} 0 & \text{if any index is equal to any other index} \\ 1 & \text{if } i, j, k \text{ form and } even \text{ permutation of } 1,2,3 \text{ ,} \\ -1 & \text{if } i, j, k \text{ form and } odd \text{ permutation of } 1,2,3 \end{cases}$

 $\delta_{ij} = 1$ $\epsilon_{ijk} = 0$

 $\therefore \sum_{ij} \delta_{ij} \ \epsilon_{ijk} = 0,$

 $\therefore \sum_{ij} \delta_{ij} \ \epsilon_{ijk} = 0.$

 $\therefore \sum_{ij} \delta_{ij} \ \epsilon_{ijk} = 0.$

 $\sum_{i,h} \epsilon_{ijk} \ \epsilon_{ljk} = \underline{\epsilon_{i11}} \cdot \underline{\epsilon_{l11}} + \epsilon_{i12} \ \epsilon_{l12} + \epsilon_{i13} \ \epsilon_{l13} + \epsilon_{i21} \ \epsilon_{l21} + \underline{\epsilon_{i22}} \cdot \underline{\epsilon_{l22}} + \epsilon_{i23} \ \epsilon_{l23}$

 $\sum_{i,j} \epsilon_{ijk} \epsilon_{ljk} = (\epsilon_{i12})^2 + (\epsilon_{i13})^2 + (\epsilon_{i21})^2 + (\epsilon_{i23})^2 + (\epsilon_{i31})^2 + (\epsilon_{i32})^2$

 $\therefore \sum_{i \in L} \epsilon_{ijk} \ \epsilon_{ljk} = 2 \qquad \text{when } i = l$

 $\therefore \sum_{i,k} \epsilon_{ijk} \ \epsilon_{ljk} = 0 \quad \text{when } i \neq l$

 $\sum_{i,k} \epsilon_{ijk} \ \epsilon_{ljk} = 2\delta_{il} = \begin{cases} 0 & \text{if } i \neq l \\ 2 & \text{if } i = l \end{cases}$

 $1 \mid 2$

0

0

0

1

0

0

-1

0

1

0

k

1

3

k

 $= \epsilon_{i12} \epsilon_{l12} + \epsilon_{i13} \epsilon_{l13} + \epsilon_{i21} \epsilon_{l21} + \epsilon_{i23} \epsilon_{l23} + \epsilon_{i31} \epsilon_{i31} + \epsilon_{i32} \epsilon_{l32}$

 $= 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + (-1)^2 = 2$ if i = 1

 $= 0^{2} + (-1)^{2} + 0^{2} + 0^{2} + 1^{2} + 0^{2} = 2$ if i = 2

 $= 1^{2} + 0^{2} + (-1)^{2} + 0^{2} + 0^{2} + 0^{2} = 2$ if i = 3.

when i = 1, l = 2

 $+ \epsilon_{i31} \epsilon_{i31} + \epsilon_{i32} \epsilon_{l32} + \epsilon_{i33} \epsilon_{l33}$

(1.14)

(1.67)

(a) $\sum_{i,j} \epsilon_{ijk} \ \delta_{ij} = 0$

When i = j,

and when $i \neq j$,

Therfore,

If i = l,

And if $i \neq l$,

Therefore,

(c) $\sum_{i \neq k} \epsilon_{ijk} \ \epsilon_{ijk} = 6$

When i = 1, then the ϵ_{ijk} is

(b) $\sum_{i} \epsilon_{ijk} \ \epsilon_{ljk} = 2\delta_{il}$

 $\delta_{ij} = 0$ $\epsilon_{ijk} = 1$

 $\sum_{i=1}^{n} \epsilon_{ijk} \epsilon_{ljk} = \epsilon_{i12} \epsilon_{l12} + \epsilon_{i13} \epsilon_{l13} + \epsilon_{i21} \epsilon_{l21} + \epsilon_{i23} \epsilon_{l23} + \epsilon_{i31} \epsilon_{i31} + \epsilon_{i32} \epsilon_{l32}$ $= 0 \cdot 0 + 0 \cdot (-1) + 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + (-1) \cdot 0 = 0$ $= 0 \cdot (-1) + 0 \cdot 0 + 0 \cdot (-1) + 1 \cdot 0 + 0 \cdot 0 + (-1) \cdot 0 = 0 \quad \text{when } i = 1, \ l = 3$ $= 0 \cdot 0 + (-1) \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 + 0 \cdot (-1) = 0$ when i = 2, l = 1 $= 0 \cdot 1 + (-1) \cdot 0 + 0 \cdot (-1) + 0 \cdot 0 + 1 \cdot 0 + 1 \cdot 0 = 0 \quad \text{when } i = 2, \ l = 3$ $= (-1) \cdot 0 + 0 \cdot 0 + (-1) \cdot 0 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot (-1) = 0$ when i = 3, l = 1 $= (-1) \cdot 0 + 0 \cdot (-1) + (-1) \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0$ when i = 3, l = 2

When i = 2, then the ϵ_{ijk} is

Therefore, $\sum_{i,j,k} \epsilon_{ijk} \ \epsilon_{ijk} = 1^2 + (-1)^2 + (-1)^2 + 1^2 + 1^2 + (-1)^2 = 6$