Curved paths

Projectile and Circular Motions

$$\overrightarrow{v_2} = \overrightarrow{v_1} + \overrightarrow{\Delta v}$$
vector sum
for relocity rectors

These velocity vectors exist at different points in space and time, however to workout a difference we place them on single point (vertex)

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\boldsymbol{a}} \Delta \boldsymbol{t}$$

One dimension (constant acceleration, particle frame)

> camera will more with The particle

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{a} \Delta t$$

One dimension (constant acceleration, particle frame)

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{a} \Delta t$$

One dimension (constant acceleration, particle frame)

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{a} \Delta t$$

One dimension (constant acceleration, particle frame)

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{a} \Delta t$$

One dimension (constant acceleration) Static camera situation

$$\overrightarrow{\boldsymbol{v}_2} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\Delta \boldsymbol{v}} = \overrightarrow{\boldsymbol{v}_1} + \overrightarrow{\boldsymbol{a}} \Delta \boldsymbol{t}$$

One dimension (constant acceleration)

Acceleration in negative direction)

vectors still add but resulting velocities are reducing a magnitude.

Á		
1	3	

Velocity	Acceleration	Resalty Velocity
taxis taxis -axis -axis	taxis - axis taxis - axis	increases, in taxis decreases, remains intaxis untill pero decreases, remains in -axis untill zero increases, in -axis

$$a = \frac{v^2}{r}$$
 (centripetal acceleration)

$$V = 2\pi r/T$$

$$Q_{x} = 4\pi^{2}r/T^{2}$$

find derivation in Fundamentals of

Physics, Chapter 4 section 5 (Uniform Circular Motion), page 77

Lecture 6

$$\vec{v} = v_x \hat{i} + v_y \hat{j} = (-v \sin \theta) \hat{i} + (v \cos \theta) \hat{j}$$

$$\vec{v} = \left(-\frac{vy_p}{r}\right)\hat{\mathbf{i}} + \left(\frac{vx_p}{r}\right)\hat{\mathbf{j}}$$

Lecture 6

$$\vec{v} = v_x \hat{i} + v_y \hat{j} = (-v \sin \theta) \hat{i} + (v \cos \theta) \hat{j}$$

$$\vec{v} = \left(-\frac{vy_p}{r}\right)\hat{i} + \left(\frac{vx_p}{r}\right)\hat{j}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \left(-\frac{v}{r}\frac{dy_p}{dt}\right)\hat{\mathbf{i}} + \left(\frac{v}{r}\frac{dx_p}{dt}\right)\hat{\mathbf{j}}$$

$$\vec{a} = \left(-\frac{v^2}{r}\cos\theta\right)\hat{\mathbf{i}} + \left(-\frac{v^2}{r}\sin\theta\right)\hat{\mathbf{j}}$$

Non-uniform Circular Motion

Not every circular motion is uniform

Non-uniform Circular Motion

Lecture 6

Non-uniform Circular Motion

