

# Pensamiento Sistemático TGS.

Sesión II.

Conceptos generales.











- ·Historia de la TGS.
  - Es la historia de una metodología para analizar y representar la realidad.
  - Corresponde a la historia de los modelos y cosmovisiones.
  - Por lo tanto es la historia de la ciencia y la cultura humanas.











https://pixabay.com/es/universopersona-silueta-estrella-1044107/



- •Historia de la TGS.
  - Propuesta como una meta-teoría por el biólogo Ludwig Bertalanffy en 1925.
  - Formalizada por el mismo Bertalanffy en 1976.
  - Propuesta como:
    - •Ontología de sistemas: Definición del sistema ya sea como un Sistema real o uno conceptual
    - •Epistemología: aproximación a la representación no necesariamente causal.
    - •Filosofía de valores de un sistema: De la relación entre los humanos y el sistema.













https://pixabay.com/es/romano-soldado-vintage-dibujo-1007706/

# •Enfoques de TGS.

Observar al universo empírico y escoger ciertos fenómenos generales que se encuentran en las diferentes disciplinas y tratar de construir un modelo teórico que sea relevante para esos fenómenos.











# •Enfoques de TGS.

Ordenar los campos empíricos en una jerarquía de acuerdo con la complejidad de la organización de sus individuos básicos o unidades de conducta y tratar de desarrollar un nivel

de abstracción apropiado a cada uno de ellos.











https://pixabay.com/es/siluetas-jerarqu%C3%ADa-humanos-hombre-439150/



- •¿Que es la TGS?
  - Teoría de Sistemas: teorías que describen la estructura y el comportamiento de sistemas.
  - Teoría General de Sistemas:
    - Una teoría matemática convencional
    - Un metalenguaje
    - •Un modo de pensar
    - •Una jerarquía de teorías de sistemas con generalidad creciente.











•¿Que es la TGS?

•Es el esqueleto de la ciencia. (Boulding).















- Definiciones.
  - Sistema: Un conjunto de mas de un elemento, relacionados entre sí.
    - Conceptos.
    - Objetos.
    - Sujetos.
  - Categorías de Sistemas:
    - Naturales
    - Artificiales.
    - ·Híbridos.











- Definiciones.
  - •Categorías de Sistemas por su naturaleza:
    - Conceptuales
    - Concretos.
    - •Híbridos.
  - Por su funcionamiento:
    - Abiertos.
    - Cerrados.
  - •Por su organización:
    - Sub sistemas.
    - •Supra sistemas.











- Definiciones.
  - •Características de los Sistemas:
    - Elementos.
    - Proceso de Conversión.
    - Entradas y recursos.
    - Salidas y resultados.
    - Medio
    - Propósito.
    - •Atributos (Cualidad/cantidad).
    - Objetivos.











- Definiciones.
  - •Características de los Sistemas:
    - Administración.
    - Agentes y Autores.
    - Estructura.
    - Estados y flujos.
    - Medio
    - Propósito.
    - Atributos (Cualidad/cantidad).
    - Objetivos.











- Definiciones.
  - •Tendencias:
    - Cibernética.
    - Teoría de la información.
    - Teoría de juegos.
    - Teoría de decisión.
    - Matemática relacional
    - Análisis factorial.











- Taxonomía de sistemas.
  - •Es una ciencia general como la matemática.
  - •Se trata de una representación jerárquica de los sistemas (abiertos o cerrados).











- Taxonomía de sistemas.
  - •Existen al menos dos taxonomías reconocidas en TGS:
- Taxonomía de Boulding

Compromiso entre "el especifico que no tiene significado y lo general que no tiene contenido".











# •Taxonomía de Boulding

| Nivel                       | Descripción                                                  | Teoría y Modelos                                           |
|-----------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| Estructuras estáticas       | Átomos, moléculas, cristales.                                | Formulas de química y cristalografía                       |
| S. Dinámicos (clockworks)   | Relojes, mecanismos                                          | Física convencional                                        |
| Mecanismos de control       | Termostatos, homeostasis.                                    | Cibernética                                                |
| Sistemas abiertos           | Llama, células.                                              | Metabolismos                                               |
| Genético. (Lower Organisms) | Plantas, división de trabajo                                 | Modelos biológicos simples                                 |
| Animales                    | Evolución importante del trafico de información. Aprendizaje | Inicios de la teoría de autómatas. Fenómenos regulatorios. |
| Humano                      | Simbolismo. Pasado/futuro                                    | Teoría simple simbolismo.                                  |
| S. Socio cultural           | Poblaciones de organismos.<br>Comunidades por símbolos.      | Dinámicas poblacionales, sociología y economía.            |
| S. Simbólicos.              | Lenguaje, lógica, matemática.                                | Algoritmos de símbolos.                                    |











#### •Taxonomía de Checkland

| Nivel                        | Descripción                                                                                          |  |
|------------------------------|------------------------------------------------------------------------------------------------------|--|
| Sistemas naturales.          | No hay intervención humana, sin propósito especifico.                                                |  |
| Sistemas diseñados.          | Tienen un creador, sirven a un propósito como en el caso de un automóvil.                            |  |
| Sistemas de actividad humana | Contienen organización estructural con propósito definido como una familia.                          |  |
| Sistemas sociales            | Categoría superior de la actividad humana con objetivos múltiples o no coincidentes como una ciudad. |  |
| Sistemas trascendentales     | Aquello que no tiene explicación. Dios.                                                              |  |











El análisis de las totalidades y las interacciones internas y externas es una herramienta para explicar los fenómenos reales y también para predecir de la conducta futura de la realidad.

•El todo es mayor a la suma de sus partes.

•Es transversal a todos los campos de la ciencia humana.













- TGS e ingeniería.
  - Sinergia: Relación del todo con sus partes.
    - Sistema conformado por múltiples partes.
    - Estructuras complejas sin sinergia son conocidos como conglomerados
  - Se puede decir que un sistema es un objeto sinérgico
  - Recursividad: Existe una jerarquía entre bloques de objetos sinérgicos.
    - Unos sistemas conforman otros mas complejos



http://wonderopolis.org/wonder/what-is-a-rube-goldberg-machine/













#### TGS e ingeniería.

- Sistema
  - El objeto sinérgico.
  - El objeto indivisible.
  - Presenta un ciclo vital.
  - Estructuras complejas sin sinergia son conocidos como conglomerados

• Un sistema individual da origen a la recursividad de sus componentes y como componente.











- TGS e ingeniería.
  - Sistema:
  - Dos líneas de pensamiento
    - Bertalanfy/Boulding.
      - El esfuerzo se centra en la integración de las ciencias.
      - Un enfoque teórico
    - Ingeniería de sistemas.
      - Un conjunto de partes y sus interrelaciones.
  - Concepto Sinergistico o GESTALT
    - Los sistemas pequeños integran sistemas mas complejos.
      - De un sistema simple a otro complejo por adición de sistemas por integración.
      - Por desintegración o enfoque reduccionista.
      - Aplicación de la taxonomía de Boulding.











- TGS e ingeniería.
  - Sistema:
  - Posee fronteras para definir subsistemas que le pertenecen y sistemas que están fuera.
  - Sistemas abierto:
    - Intercambia energía con el medio.
  - Sistema Cerrado:
    - No intercambia energía con el medio.













TGS e ingeniería.

- Elementos del sistema:
  - Corrientes de entrada.
    - Energía aportada al proceso respondiendo a la ley de la conservación de la energía.
    - Información: ley del incremento











- TGS e ingeniería.
  - Sistema:
  - Elementos del sistema:
    - Conversión.
      - El sistema convierte la energía.
    - Corriente de salida.
      - La exportación del sistema hacia el entorno.
      - Pueden calificarse:
        - Negativas.
        - Positivas.
    - Retroalimentación













- TGS e ingeniería.
  - Sistema:
  - Elementos del sistema:
    - Retroalimentación.
      - Le indica al sistema que tan cerca de su objetivo esta.
  - Todo sistema responde al aporte de energía.
  - Leyes de la termodinámica:
    - Ley 0.
      - Dos cuerpos a la misma temperatura conectados térmicamente conservan su estado de energía constante.











- TGS e ingeniería.
  - Sistema:
  - Elementos del sistema:
    - Retroalimentación.
      - Le indica al sistema que tan cerca de su objetivo esta.
  - Todo sistema responde al aporte de energía.
  - Leyes de la termodinámica:
    - Ley 1.
      - La energía tiende a conservarse en un sistema cerrado.











- TGS e ingeniería.
  - Sistema:
  - Elementos del sistema:
    - Retroalimentación.
      - Le indica al sistema que tan cerca de su objetivo esta.
  - Todo sistema responde al aporte de energía.
  - Leyes de la termodinámica:
    - Ley 2.
      - Entre dos cuerpos con distinta temperatura térmicamente conectados, hay un flujo de energía.











- TGS e ingeniería.
  - Entropía:
    - Al cambiar el estado de energía de un sistema en pasos lentos y reversibles, la entropía aumenta.

$$\sum \frac{\Delta E}{T}$$

ΔE: Variación de energía aportada.

T: Temperatura absoluta

- En sistemas cerrados la entropía aumenta hacia estados menos organizados.
- Los sistemas tienden a alcanzar su estado mas probable.
- En física el estado mas probable es el caos.











- TGS e ingeniería.
  - Entropía en sistemas abiertos.
    - El consumo de energía para mantener la meta realimentada impide que el sistema derive al caos de un sistema cerrado.
    - La corriente adicional mantiene bajo control la entropía y es conocida como Neguentropía (entropía negativa).
  - La entropía es una métrica del desorden del sistema.
  - La Neguentropía es una métrica del nivel de orden del sistema.











- TGS e ingeniería.
  - La entropía es una métrica del desorden del sistema.
  - La Neguentropía es una métrica del nivel de orden del sistema.

$$E_s = E_i + E_a$$

Es: Energía total del sistema.

Ei: Energía entrante (corriente de entrada).

Ea: Energía acumulada.











# TGS e ingeniería.

La energía acumulada es:

$$E_a = E_s + E_i$$

Asumiendo que la entropía de un sistema es Ax:

 $A_x == E_i$  Sistema en sobrevivencia.

 $A_x < E_i$  Sistema en expansión.

 $A_x > E_i$  Sistema en descomposición.











- Sistemas de Información.
  - La información es incremental.
  - La entropía corresponde a una progresiva perdida del ordenamiento de la información.
  - La información tiende a contener el orden (Neguentropía).
  - Ej: la moneda en el cuarto a oscuras.

• A medida que aumenta la información, aumenta la Neguentropía, es decir el sistema de hace mas organizado. (menos entropía).











- La organicidad.
  - El universo es un sistema.
    - Conjunto de **TODOS** los sistemas.
    - El **TODO** se sostiene.
    - El universo tiende al equilibrio. (al menos en plazos relativamente largos).











#### La organicidad.

- El universo es un sistema.
  - El modelo Newtoniano de movimiento.
    - 1. Todo cuerpo tiende a mantener su estado de movimiento.
    - 2. La aceleración de un cuerpo es proporcional a la fuerza neta aplicada al sistema.
    - 3. A cada acción sigue una reacción.
  - Equilibrio estadístico.

Las condiciones internas del sistema se mantienen constantes. (El todo esta inmóvil a lo largo del tiempo).











- La organicidad.
  - Los sistemas cerrados tienden a mantener su estado de equilibrio. (homeostasis).
  - La aceleración del sistema dependen de la fuerza neta aplicada.
  - A cada acción (flujo de entrada y de salida) hay una reacción.
  - Sin embargo en sistemas vivos hay una tendencia a la organización (principio de organización).
    - Colmenas.
    - Termiteros.
    - · Cardúmenes.
    - Seres vivos.
    - Ecosistema.











- La organicidad.
  - Aquella que capta la información del medio ambiente de manera suficiente para sobrevivir.
  - Toda materia viva persigue la estructuración.
  - Es una característica de los sistemas abiertos para mantenerse en un estado ordenado.







