FINAL YEAR PROJECT

FIRST EVALUATION (SEM 8)

DEVAL MUDIA
AYUSH SINGH
CHAITYA CHHEDA
SADNEYA PUSALKAR

BT16CSE060 BT16CSE098 BT16CSE016 BT16CSE076 UNDER THE GUIDANCE OF Dr. S.R. SATHE

Parallelised Recommendation System for Amazon and Netflix

USING BIG DATA AND BIG COMPUTE

INFRASTRUCTURE

WE ARE HERE

Performance Evaluation

LAST EVALUATION

MovieLens

DATASET

Used MovieLens 1M movie ratings with 1 million ratings from 6000 users on 4000 movies.

Collaborative Filtering

FILTERING METHOD

People like things that are liked by other people with similar taste.

Matrix Factorisation via SVD

RESULT

A method that can derive the tastes and preference vectors from the raw data to predict movies according to similarity between the users.

Collaborative Filtering

PROBLEMS

Sparsity: If the movie is not popular or just released, then it will have few or no ratings all all.

Cold Start Problem: If a user just joins the platform and hasn't reviewed any movies, there is no way to create a taste of the user to recommend movies to him/her.

Popularity Bias Problem: The above method ends up recommending the most popular movies, which does not add an extra value to all the users.

SOLUTION

Hybrid Filtering

Collaborative Filtering

+

Content Filtering

Content Filtering

Compute pairwise similarity scores for all movies based on on the following metadata: **the 3 top actors, the director, related genres and the movie plot keywords** and recommend movies based on that similarity score.

	title	cast	director	keywords	genres
0	Toy Story	[Tom Hanks, Tim Allen, Don Rickles]	John Lasseter	[jealousy, toy, boy]	[Animation, Comedy, Family]
1	Jumanji	[Robin Williams, Jonathan Hyde, Kirsten Dunst]	Joe Johnston	[board game, disappearance, based on children'	[Adventure, Fantasy, Family]
2	Grumpier Old Men	[Walter Matthau, Jack Lemmon, Ann-Margret]	Howard Deutch	[fishing, best friend, duringcreditsstinger]	[Romance, Comedy]

Used the **CountVectorizer()** instead of TF-IDF. This is because we do not want to down-weight the presence of an actor/director if he or she has acted or directed in relatively more movies.

Finally, using the cosine similarity to calculate a numeric quantity that denotes the similarity between two movies.

Used sklearn's linear_kernel()

```
get_recommendations('The Dark Knight Rises', cosine_sim2)
```

```
The Dark Knight
12589
10210
             Batman Begins
                     Shiner
9311
9874
           Amongst Friends
                  Mitchell
7772
516
         Romeo Is Bleeding
11463
              The Prestige
                  Quicksand
24090
                   Deadfall
25038
41063
                       Sara
```

Hybridisation

The hybrid model builds a person's movie taste-profile using **collaborative filtering** and generates lists of similar movies to develop the recommendations using **content filtering**.

We combine the ratings from Content based filtering and Collaborative filtering to get more accurate results. It gives the predicted rating as weighted combination of the above described methods.

Next Step

Parallelisation approach to reduce computation time of Collaborative Filtering and Content Filtering.

Movielens 1M	RMSE	MAE	Time
SVD	0.873	0.686	0:02:13
SVD++	0.862	0.673	2:54:19
NMF	0.916	0.724	0:02:31
Slope One	0.907	0.715	0:02:31
k-NN	0.923	0.727	0:05:27
Centered k-NN	0.929	0.738	0:05:43
k-NN Baseline	0.895	0.706	0:05:55
Co-Clustering	0.915	0.717	0:00:31
Baseline	0.909	0.719	0:00:19
Random	1.504	1.206	0:00:19

Next Step Graph Filtering

Created a network of all 45,000 films connected by the 500,000+ actors in the database.

Before creating a recommendation, chose a user's top three rated films. Then, once we have a set of recommendations from the Collaborative Filter and Content Filter (**CF_recs1**, **CF_recs2**), utilise the Graph Filter:

- 1. check to verify that CF_recs1 is connected on the graph to the top-3 films by a degree of two.
- 2. check to verify that CF_recs2 is connected on the graph to the top-3 films by a degree of two.
- 3. Films that are connected on the graph are recommended.

Implementation: Python neo4j API, and neo4j Cypher GraphQL

Next Step

Working Platform

Mobile App

Platform

References

Course: Recommender Systems (University of Minnesota)

https://www.coursera.org/specializations/recommender-systems#courses

https://www.datacamp.com/community/tutorials/recommender-systems-python

https://github.com/beckernick/matrix_factorization_recommenders

https://hackernoon.com/introduction-to-recommender-system-part-1-collaborative-filtering-singular-value-decomposition-44c9659c5e75