MATH211: Linear Methods I

Matthew Burke

Wednesday 31st October, 2018

Lecture on Wednesday 31st October, 2018

Matrices

Composition

Inverses

Complex numbers

Last time

- Linear transformations
- Action on compositions
- ► Matrix of a linear transformation

Matrices

Matrices and linear transformations

Example

If A is an $m \times n$ matrix then the function $x \mapsto Ax$ is a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$.

Definition

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then the matrix [T] of T has columns given by the images of the standard basis vectors:

$$[T] = [T(e_1) T(e_2) \dots T(e_n)]$$

Examples

Example

What is the matrix of the linear transformation for counter-clockwise rotation about the origin by an angle of θ ?

Example

What is the matrix of the linear transformation for reflection in the line through that origin at an angle θ from the x-axis?

Example

What is the matrix of the linear transformation that is $v \times (-)$ for some vector $v \in \mathbb{R}^3$?

Composition

Composition of functions

Definition

If we have functions

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m$$
 and $\mathbb{R}^m \xrightarrow{g} \mathbb{R}^p$

then the *composite function* $g \circ f$ is the function defined by

$$(g \circ f)(x) = g(f(x))$$

- ▶ I.e. first apply f to x and then apply g to the result.
- Note that $\mathbb{R}^n \xrightarrow{g \circ f} \mathbb{R}^p$.

Composite of linear transformations

Example

The composite of two linear transformations is again linear.

Proof.

Suppose that $S: \mathbb{R}^m \to \mathbb{R}^p$ and $T: \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations. Then

$$(S \circ T)(x + y) = S(T(x + y)) = S(T(x) + T(y))$$

= $S(T(x)) + S(T(y)) = (S \circ T)(x) + (S \circ T)(y)$

and

$$(S \circ T)(kx) = S(T(kx)) = S(kT(x))$$
$$= kS(T(x)) = k(S \circ T)(x)$$

Matrix of composite transformation

We know that the matrix of the composite $T \circ S$ is:

$$\left[\begin{array}{ccc}T(S(e_1)) & T(S(e_2)) & \dots & T(S(e_n))\end{array}\right]$$

where $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^p$.

Theorem

The matrix of a composite is the composite of the matrices:

$$[T\circ S]=[T][S]$$

Proof.

Note that the terms $S(e_i)$ are the columns of [S].

Determinant of rotations and reflections

Example (Determinant of rotation)

$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$

Example (Determinant of reflection)

$$\begin{vmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{vmatrix} = -\sin^2 \theta - \cos^2 \theta = -1$$

Composites of rotations and reflections

In general,

► The composite of two rotations is a rotation

$$R_{\theta} \circ R_{\eta} = R_{\theta+\eta}$$

▶ The composite of two reflections is a rotation.

$$Q_m \circ Q_n = R_\theta$$

where θ is $2\times$ the angle between lines y=mx and y=nx.

▶ The composite of a reflection and a rotation is a reflection.

$$R_{\theta} \circ Q_n = Q_m \circ Q_n \circ Q_n = Q_m$$

Examples

Example

What is the matrix of the linear transformation that is the composite of reflection in the x-axis followed by rotation through an angle of $\frac{\pi}{2}$?

Example

What is the matrix of the linear transformation that is the composite of reflection in the line y=-x followed by reflection in the y-axis.

Example

lf

$$S\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix} \text{ and } T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

then find $S \circ T$, $T \circ S$ and the matrices $[S \circ T]$ and $[T \circ S]$.

Inverses

Inverse functions

Definition (Identity transformation)

The *identity transformation on* \mathbb{R}^n is the function $\mathbb{R}^n \to \mathbb{R}^n$ defined by $x \mapsto x$.

Definition

If $S, T: \mathbb{R}^n \to \mathbb{R}^n$ are linear transformations then S is inverse to T iff

$$(S \circ T) = id = (T \circ S)$$

and we write $S = T^{-1}$ and $T = S^{-1}$.

Theorem

If [S] is the matrix of S and [T] is the matrix of T then:

$$S^{-1} = T \iff [S]^{-1} = [T]$$

Examples

Example

lf

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix}$$

find T^{-1} and $[T^{-1}]$.

Example

In general, what is the inverse of the linear transformation

$$T\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} ax + by \\ cx + dy \end{array}\right]$$

Complex numbers

Early difficulties...

.. subtle as they are useless ..

(Girolamo Cardano - discoverer of complex numbers)

..the whole matter seems to rest on sophistry rather than truth

(Rafael Bombelli - early innovator in use of complex numbers)

The imaginary number is a fine and wonderful resource of the human spirit, almost an amphibian between being and not being.

(Leibniz)

More recently...

It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one.

(Jacques Hadamard)

I tell you, with complex numbers you can do anything.

(John Derbyshire - mathematics writer)

Indeed, nowadays no electrical engineer could get along without complex numbers, and neither could anyone working in aerodynamics or fluid dynamics.

(Keith Devlin - British mathematician)

Algebraic motivation - extending the number system

God made the integers; all else is the work of man.

(Leopold Kronecker)

- ▶ Using only positive integers $\{1, 2, 3, ...\}$
 - ightharpoonup we cannot find solution a to x+1=0
- ▶ Using only integers $\{\ldots, -2, -1, 0, 1, 2 \ldots\}$
 - ightharpoonup we cannot find a solution to 3x + 2 = 0
- ▶ Using only fractions $\{\frac{a}{b} \text{ for } b \neq 0\}$
 - we cannot find a solution to $x^2 2 = 0$
- Using only decimals
 - we cannot find a solution to $x^2 + 1 = 0$...

Complex numbers

Definition

- ▶ The *imaginary unit*, denoted i, is defined to be a number with the property that $i^2 = -1$.
- ▶ A pure imaginary number has the form bi where $b \in \mathbb{R}$, $b \neq 0$.
- A complex number is any number z of the form

$$z = a + bi$$

where $a, b \in \mathbb{R}$ and i is the imaginary unit.

Definition

If z = a + bi then:

- ▶ a is called the real part of z.
- b is called the *imaginary part* of z.

Graphical interpretation

Consider the function $\mathbb{R} \to \mathbb{R}$ that multiplies by -1:

which shows us that $-1 \times (-1 \times x) = x$.

Graphical interpretation

So how do we get a transformation that squares to -1?

Graphical interpretation

So we draw the complex number a + bi as the point (a, b) in \mathbb{R}^2 :

Summary

- Graphical interpretation.
- ► Addition: algebra and geometry.
- Multiplication: algebra and geometry.
- Conjugate: algebra and geometry.

Examples

Example

Evaluate

- (-3+6i)+(5-i).
- \blacktriangleright (4-7i)+(6-2i).
- \blacktriangleright (-3+6i)-(5-i).
- \blacktriangleright (4-7i)-(6-2i).

Example

$$(2-3i)(-3+4i)$$

Examples

Example

Find all complex numbers z such that $z^2 = -3 + 4i$.

Example

- ► If z = 3 + 4i, then $\bar{z} = 3 4i$, i.e., $\overline{3 + 4i} = 3 4i$.
- $\overline{-2+5i} = -2-5i.$
- $ightharpoonup \bar{i} = -i$.
- ightharpoonup 7 = 7.

Clearing denominators

Example (Exemplar)

Write

$$\frac{a+bi}{c+di}$$

in the form e + fi for real numbers a, b, c, d, e, and f.

- $ightharpoonup rac{1}{i}$
- $\frac{2-i}{3+4i}$
- $\frac{1-2i}{-2+5i}$