α) Η συνάρτηση ορίζεται για τους πραγματικούς αριθμούς x για τους οποίους ισχύει $e^x-2>0$ Δηλαδή: $e^x>2 \Leftrightarrow \ln e^x>\ln 2 \Leftrightarrow x>\ln 2$.

Άρα το πεδίο ορισμού της συνάρτησης f είναι $A = (\ln 2, +\infty)$.

β) Έχουμε

$$f(x) + x = 3 \ln 2 \Leftrightarrow$$

$$\ln(e^{x} - 2) + x = \ln 2^{3} \Leftrightarrow$$

$$\ln(e^{x} - 2) + \ln e^{x} = \ln 8 \Leftrightarrow$$

$$\ln[(e^{x} - 2) \cdot e^{x}] = \ln 8 \Leftrightarrow$$

$$(e^{x})^{2} - 2e^{x} = 8 \Leftrightarrow$$

$$y^{2} - 2y - 8 = 0.$$

Η τελευταία είναι εξίσωση 2^{ou} βαθμού με διακρίνουσα $\Delta = \left(-2\right)^2 - 4 \cdot 1 \cdot \left(-8\right) = 36 > 0$ και ρίζες y = 4, y = -2. Άρα $e^x = 4 \Leftrightarrow x = \ln 4$ (η εξίσωση $e^x = -2$ είναι αδύνατη, διότι $e^x > 0$ για κάθε πραγματικό αριθμό x). Η λύση $x = \ln 4$ είναι δεκτή, διότι $\ln 4 > \ln 2$.

Τελικά η εξίσωση $f(x) + x = 3 \ln 2$ έχει λύση $x = \ln 4$.

γ) Έχουμε

$$f(x) + x \ge 3 \ln 2 \Leftrightarrow$$

$$\ln(e^{x} - 2) + x \ge \ln 2^{3} \Leftrightarrow$$

$$\ln(e^{x} - 2) + \ln e^{x} \ge \ln 8 \Leftrightarrow$$

$$\ln[(e^{x} - 2) \cdot e^{x}] \ge \ln 8 \Leftrightarrow$$

$$(e^{x})^{2} - 2e^{x} \ge 8 \Leftrightarrow$$

$$y^{2} - 2y - 8 \ge 0 \qquad (1).$$

Από το β) ερώτημα γνωρίζουμε ότι το τριώνυμο y^2-2y-8 έχει ρίζες y=4 και y=-2. Άρα η ανίσωση (1) αληθεύει για $y\leq -2$ ή $y\geq 4$, δηλαδή $e^x\leq -2$ (που είναι αδύνατη) ή $e^x\geq 4\Leftrightarrow \ln e^x\geq \ln 4\Leftrightarrow x\geq \ln 4$. Πρέπει και $x>\ln 2$, οπότε τελικά η ανίσωση $f(x)+x\geq 3\ln 2$ αληθεύει για $x\geq \ln 4$.