# THE GEORGE WASHINGTON UNIVERSITY

# ML I Final Term Project on Maryland Property Data





By Tyler Wallett

#### **Outline:**

- 1. Motivation
- 2. Dataset & S.M.A.R.T. Question
- 3. EDA
- 4. Feature Selection
- 5. Pre-processing
- 6. Models
- 7. Use case

- 8. Conclusion
- 9. Limitations
- 10. References



## **Motivation**



#### **Motivation**

"Many real estate firms have long made decisions based on a combination of intuition and traditional, retrospective data. Today, a host of new variables make it possible to paint more vivid pictures of a location's future risks and opportunities." (McKinsey)

#### Exhibit 1

Nearly 60 percent of predictive power can come from nontraditional variables.

Proportion of predictive power, % share



McKinsey&Company



### Dataset & S.M.A.R.T. Question



#### **Dataset**

- Public data is gathered from the Maryland
   State Department of Assessments and
   Taxation (SDAT)
- Approximately 2.4 million unique property parcels
- 134 features describing each property parcel (64 numeric - 70 categorical)
- Last updated on January 7, 2023





#### **Dataset**

After setting 'County' Montgomery County and 'Land Usage' as Residential, and removing:

- Unnecessary Categorical features
- Redundant location features
- Redundant ID features
- Redundant Boolean features



#### **Dataset**



|            | ld Lor  | ngitude  | Latitude  | Address                     | Zipcode | Grade | Year_built | Sqft   | Trade_date | Consideration | Land_value | Land_improvements | Year | Month | Day | transfer_date | geometry                         |
|------------|---------|----------|-----------|-----------------------------|---------|-------|------------|--------|------------|---------------|------------|-------------------|------|-------|-----|---------------|----------------------------------|
| 1601000000 | 33 -77. | .168495  | 39.207629 | 21411<br>WOODFIELD<br>RD    | 20882.0 | 3.0   | 1936.0     | 1064.0 | 20190702.0 | 260000.0      | 231200.0   | 76200.0           | 2019 | 07    | 02  | 2019-07-02    | POINT<br>(-77.16850<br>39.20763) |
| 1601000000 | 66 -77. | 7.166819 | 39.207889 | 8120 BRINK<br>RD            | 20882.0 | 2.0   | 1923.0     | 864.0  | 20190815.0 | 100000.0      | 174700.0   | 14500.0           | 2019 | 08    | 15  | 2019-08-15    | POINT<br>(-77.16682<br>39.20789) |
| 1601000001 | 113 -77 | 7.178153 | 39.198018 | 8615<br>LOCHAVEN<br>DR      | 20882.0 | 5.0   | 1840.0     | 2968.0 | 19931220.0 | 355000.0      | 120970.0   | 157880.0          | 1993 | 12    | 20  | 1993-12-20    | POINT<br>(-77.17815<br>39.19802) |
| 1601000001 | 24 -77. | 7.141826 | 39.200285 | 6934<br>WARFIELD<br>RD      | 20882.0 | 4.0   | 1978.0     | 1896.0 | 20180509.0 | 475000.0      | 244800.0   | 50500.0           | 2018 | 05    | 09  | 2018-05-09    | POINT<br>(-77.14183<br>39.20029) |
| 1601000002 | 04 -77. | 7.122566 | 39.257719 | 24501<br>HIPSLEY<br>MILL RD | 20882.0 | 4.0   | 1913.0     | 2552.0 | 20170516.0 | 525000.0      | 201500.0   | 267700.0          | 2017 | 05    | 16  | 2017-05-16    | POINT<br>(-77.12257<br>39.25772) |

145133 rows × 17 columns



#### S.M.A.R.T. Question

Can we successfully approximate consideration prices of residential properties from Montgomery County, Maryland only using traditional features?



## **Exploratory Data Analysis (EDA)**









#### **EDA**



1e6

- 1.1

- 1.0

0.9

- 0.8

- 0.7

- 0.6

0.5

- 0.4





#### **Feature Selection**



## **Correlation Heatmap**

High positive correlations with:

- Land value
- Land improvements
- Grade
- Sqft







#### **RFE Random Forest**

- Number\_estimations = 100
- Cross validation = 5





### **Lasso Regression**

 When added a regularization penalty to each coefficient, the last to converge to zero are "Land Value" and "Land Improvements".





#### **Conditional Values**

 The degree of collinearity is very small when only "Land Value" and "Land Improvements" are considered.

```
Initial conditional number: 765411.58
Conditional number without regressor `Zipcode`:759817.36
Decrease in conditional number: 5594.22
Conditional number without regressor `Grade`:30342.73
Decrease in conditional number: 729474.63
Conditional number without regressor `Year_built`:724.26
Decrease in conditional number: 29618.47
Conditional number without regressor `Sqft`:360.23
Decrease in conditional number: 364.03
Conditional number without regressor `Year`:3.29
Decrease in conditional number: 356.94
```



## **Pre-processing**



## Scikit Learn - Pre-processing





QuantileTransformation("normal")



## Models



## Statsmodels - OLS Benchmark

| OLS Regression Results                  |                                         |               |              |           |                        |           |             |  |  |
|-----------------------------------------|-----------------------------------------|---------------|--------------|-----------|------------------------|-----------|-------------|--|--|
| Dep. Variable:                          |                                         |               | у            | R–sq      | uared:                 |           | 0.836       |  |  |
| Model:                                  |                                         | 0LS           |              |           | R-squared:             |           | 0.836       |  |  |
| Method:                                 |                                         | Least Squares |              |           | atistic:               | 2.959e+05 |             |  |  |
| Date:                                   | Su                                      | n, 30 Apr 20  | )23          | Prob      | (F-statistic):         | 0.00      |             |  |  |
| Time:                                   |                                         | 16:56:        | 46           | Log-l     | _ikelihood:            | -61575.   |             |  |  |
| No. Observatio                          | ns:                                     | 1161          | L06          | AIC:      |                        | 1.232e+05 |             |  |  |
| Df Residuals:                           |                                         | 1161          | L03          | BIC:      |                        |           | 1.232e+05   |  |  |
| Df Model:                               |                                         |               | 2            |           |                        |           |             |  |  |
| Covariance Type                         | e:                                      | nonrobu       | ıst          |           |                        |           |             |  |  |
| =========                               | coef                                    | std err       | ====         | t         | P> t                   | [0.025    | 0.975]      |  |  |
| const                                   | 0.0029                                  | 0.001         | 2            | .370      | 0.018                  | 0.000     | 0.005       |  |  |
| x1                                      | 0.5447                                  | 0.002         | 362          | .557      | 0.000                  | 0.542     | 0.548       |  |  |
| x2                                      | 0.4903                                  | 0.001         | 330          | .051      | 0.000                  | 0.487     | 0.493       |  |  |
| Omnibus:                                | =======                                 | <br>40698.7   | =====<br>761 | Durb:     | ========<br>in–Watson: | ======    | <br>1.989   |  |  |
| Prob(Omnibus):                          |                                         | 0.000         |              |           | Jarque-Bera (JB):      |           | 7769026.670 |  |  |
| Skew:                                   |                                         | -0.523        |              | Prob(JB): |                        |           | 0.00        |  |  |
| Kurtosis:                               |                                         | 43.060        |              | Cond. No. |                        |           | 1.98        |  |  |
| ======================================= | ======================================= |               |              |           |                        |           |             |  |  |



## Random Forest Regression Benchmark

 Max\_depth: The maximum depth of the tree.



| Max_depth      | 2      | 3      | 4      | 6      | 10     | ? |
|----------------|--------|--------|--------|--------|--------|---|
| R <sup>2</sup> | 0.6712 | 0.7734 | 0.8161 | 0.8476 | 0.8503 |   |



## "Homemade" MLPRegressor

2-S1-1

n1 => logsig()

- Epochs = 10
- n2 => purelin()

•  $\alpha = 0.001$ 



| # of Neurons   | 2      | 3      | 6      | 10     | 100    |  |
|----------------|--------|--------|--------|--------|--------|--|
| R <sup>2</sup> | 0.8377 | 0.8482 | 0.8495 | 0.8504 | 0.8469 |  |



## Scikit Learn - MLPRegressor

2-S1-1

- n1 => logistic()
- Epochs = 200 (default)
- $\alpha = 0.0001$  (default)



| # of Neurons   | 2      | 3      | 6      | 10     | 100    |  |
|----------------|--------|--------|--------|--------|--------|--|
| R <sup>2</sup> | 0.8447 | 0.8502 | 0.8504 | 0.8506 | 0.8430 |  |



## Scikit Learn - MLPRegressor 2-10-1

Mean error\_sq: 0.15

Upper confidence: 0.16

Lower confidence: 0.14

Mean error: 16379.23\$

Upper confidence: 20373.81\$

Lower confidence: 12384.65\$





### Use case



#### Use case

Homeowner is looking to get an estimate of their consideration for their property.





#### Transfer year 2015:

- Land value: 563,000\$
- Land improvements: 183,900\$



Approximation of

825,000\$

UCL 845,000\$

LCL 805,000\$



#### Conclusions



#### Conclusions

- From the EDA: Distributions are highly-right skewed. On average consideration is higher when residences are close to Washington D.C.
- From the Feature Selection: Best model would include all variables, but to avoid collinearity "Land value" and "Land improvements" should be used.



#### **Conclusions**

Can we successfully approximate consideration prices of residential properties from Montgomery County, Maryland only using traditional features?

Yes, by **only using traditional features** with a Scikit-learn MLPRegressor we can approximate 85% of the variance in consideration.



### Limitations



#### Limitations

- Lots of redundant Id's, geographical and boolean features.
- Lack of traditional features (e.g. amount of bedrooms, historical values)
- Lack of reproducibility.
- The definition of consideration.





As this project comes to a close,
Our skills and knowledge have surely grown,
From data wrangling to model selection,
We've tackled challenges with conviction.

Through long hours and sleepless nights,
We've worked to make our results just right,
And now we stand at the end,
With new skills and insights to extend.

So let's celebrate this final slide,
And the knowledge that we'll carry with pride,
For our journey may end here today,
But our passion for learning will forever stay.

## Thank you!



#### References

1. Motivation:

Asaftei, Gabriel Morgan, et al. "Getting Ahead of the Market: How Big Data Is Transforming Real Estate." *McKinsey & Company*, McKinsey & Company, 8 Oct. 2018, https://www.mckinsey.com/industries/real-estate/our-insights/getting-ahead-of-the-market-how-big-data-is-transforming-real-estate.

2. Dataset & S.M.A.R.T. Question:

https://hub.arcgis.com/datasets/maryland::maryland-property-data-parcel-points/about

3. EDA & Models:

ChatGPT. (2023, April 14)

4. Feature Selection:

Harrison, Matt. Machine Learning Pocket Reference: Working with Structured Data in Python. O'Reilly Media, Inc., 2019.

