Informe sobre el Análisis de Clasificación de Imágenes

Cynthia Selene Martínez Espinoza Matrícula: 1011238 cynthia.martineze@uanl.edu.mx

20 de febrero de 2025

1. Introducción

Este informe describe el funcionamiento de un sistema de clasificación de imágenes de animales utilizando técnicas de aprendizaje profundo.

2. Planteamiento del Problema

El objetivo del modelo es distinguir entre dos categorías de imágenes: animales de un tipo específico (por ejemplo, gatos) y otros elementos (no gatos). Se emplea una red neuronal convolucional (CNN) para la clasificación de las imágenes y mejorar la precisión del reconocimiento.

3. Solución Propuesta

- Carga y Exploración de Datos: Se recopilan y organizan las imágenes en directorios adecuados para entrenamiento, validación y prueba.
- Preprocesamiento de Datos: Se ajusta las imágenes y se aplican técnicas de aumento de datos que mejorar la capacidad del modelo.
- Construcción del Modelo: Se diseña una red neuronal convolucional con capas especializadas para la extracción de características.
- Entrenamiento del Modelo: Se ajustan los parámetros de la red utilizando un conjunto de datos de entrenamiento.
- Evaluación y Validación: Se mide la precisión del modelo en datos no vistos previamente.
- Pruebas y Análisis de Resultados: Se evalúa el rendimiento del modelo en un conjunto de prueba.

4. Experimentación

4.1. Carga y Exploración de Datos

Se recopilan imágenes de dos clases y se organizan en carpetas estructuradas. Se realiza un análisis previo para identificar la distribución de datos y detectar posibles desequilibrios en las clases. figura 1

4.2. Preprocesamiento de Datos

Para mejorar la eficiencia del modelo, se realizan los siguientes pasos:

- Redimensionamiento de imágenes a un tamaño uniforme.
- Normalización de los valores de píxeles para mejorar la estabilidad numérica.
- Aumento de datos mediante transformaciones aleatorias, como rotaciones, desplazamientos y reflejos.

4.3. Construcción del Modelo

Se diseña una red neuronal convolucional con las siguientes características:

- Múltiples capas convolucionales para extraer características visuales.
- Capas de agrupación para reducir la dimensionalidad.
- Capas completamente conectadas para tomar decisiones de clasificación.
- Funciones de activación para introducir no linealidad y mejorar la capacidad de aprendizaje.

4.4. Entrenamiento del Modelo

Se entrenan los pesos de la red utilizando un algoritmo de optimización, ajustando los parámetros

Figura 1: Datos de imágenes equilibrados

Figura 2: Entrenamiento de Imágenes

del modelo con base en la función de pérdida. Se realiza un monitoreo de la precisión del modelo y se ajustan hiperparámetros según sea necesario. figura 2

4.5. Evaluación y Validación

El modelo se valida utilizando un conjunto de datos separado para medir su rendimiento. Se utilizan métricas como la precisión y la pérdida para evaluar la calidad del modelo. figura 3

4.6. Pruebas y Análisis de Resultados

Finalmente, se prueba el modelo en un conjunto de imágenes no vistas previamente y se analizan los resultados. figura 4 Se identifican posibles mejoras y se consideran estrategias para optimizar la precisión del modelo. figura 5

5. Conclusiones

El sistema desarrollado permite clasificar imágenes de manera efectiva utilizando técnicas avanzadas de redes neuronales convolucionales. La combinación de preprocesamiento de datos, diseño de red y entrenamiento adecuado permite alcanzar un buen rendimiento en la tarea de clasificación de imágenes de animales. Se pueden explorar mejoras adicionales, como el uso de arquitecturas preentrenadas o ajustes en la configuración de hiperparámetros, para optimizar los resultados. figura 6

Model: "functional

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 150, 150, 3)	0
conv2d (Conv2D)	(None, 148, 148, 32)	896
conv2d_1 (Conv2D)	(None, 146, 146, 64)	18,496
max_pooling2d (MaxPooling2D)	(None, 73, 73, 64)	0
conv2d_2 (Conv2D)	(None, 71, 71, 64)	36,928
conv2d_3 (Conv2D)	(None, 69, 69, 128)	73,856
max_pooling2d_1 (MaxPooling2D)	(None, 34, 34, 128)	0
conv2d_4 (Conv2D)	(None, 32, 32, 128)	147,584
conv2d_5 (Conv2D)	(None, 30, 30, 256)	295,168
global_average_pooling2d (GlobalAveragePooling2D)	(None, 256)	0
dense (Dense)	(None, 1024)	263,168
dense_1 (Dense)	(None, 2)	2,050

Total params: 838,146 (3.20 MB)

Trainable params: 838,146 (3.20 MB)

Non-trainable params: 0 (0.00 B)

Figura 3: Parámetros de modelo CNN

Figura 4: Predicciones

	accuracy	loss	val_accuracy	val_loss
5	0.465116	0.695228	0.636364	0.692099
6	0.465116	0.693177	0.363636	0.696226
7	0.534884	0.691650	0.363636	0.700901
8	0.534884	0.690250	0.363636	0.704760
9	0.534884	0.688690	0.363636	0.709861

Figura 5: Validación del Modelo

Figura 6: Predicción