Sep - 27 Note Title 27-09-2012 (Subtract and Branch if SUBN negative) A+B= A- (0-B) Sub is inherently more fowerful than an add.

OISC - One instruction set computer Twing Machine

ARM, MIPS, X86 (INTEL)			mmm ofs. 3	
		<i>U</i>		
	3) Simi	ue —		
	4) REG	1,00		
	7 (129)) GIK		
	COMPLETE	G ENERIC	SIMPLE	RECULAR
ARM				
			RISC	
m IPS				
×81	1	<u></u>	CISC{X	X

MIPS Instruction Set

32 registers: 0 -- · · 31

0 -> special register

Calways set to zero)

No register for holding the pc.

sh - stack pointer

ra -> (lr in ARM)

No, conditional instructions

Arith-logical.

add 71, 72, 73 sub/ 71, 72, 73 $(\gamma_1 = \gamma_2 + \gamma_2)$ $(\gamma_1 = \gamma_2 - \gamma_3)$

and for mom su & shifteeft sol & shift

representation: R-format

oprode / 75 rt Tol 12-6-11-511-51

7d - destination register ran STCI 7 - Src2

I-format Instructions addi 71,72,30 Instructions that take an immediate as the second operand have a different Opcocle. * The immediate in mips is 16 bits long load a 32 bit constant

g=0

addi Y1, Y0, (16 bils) lui V1, (... 16 bits) [load upper immediate]

load/store.

[Lw, γ_1 , $20(\gamma_2)$]

[Sw, γ_1 , $20(\gamma_2)$]

[Sw, γ_1 , $20(\gamma_2)$]

[The second se

```
(NO CPSR)
Branches in mips:
  (I- format)
                     Jeg 71, 72, 200)
      beg: if (\gamma_1) = \gamma_2 (\gamma_2)
                     PC+=4+ Offsetx4
         Ins tructions.
 Jump
                      Coump to value
                                           (Same as
         (jump)
                      soved in regular)
                                            ARM)
                       MOV PC, Rx
                                            BL
```

J-Format (j, jal)

Opcode Offset

1 - 6-16 26 31

- 1) Go to Wikipedia: Study the One Instruction Set Computer.
- 2) How do you know that an ISA can represent all programs?

Prove that it is equivalent to a Twing Machine.

3)	Turing	Machin	ne: M	athema	tical made	hine Wik
					head.	
4)	MIPS	TSA:	(Not	very	different	from Axm)
		Differe	nces:			
		mIP.	ſ		ARN	7
Re	gisters	32			16	
	cial Regs		ra(lr),		Sp, lr	, bc, cpsk

Imm. Size 16 bib

Imm. Inst. Formats:	Separati R, I, J	Same. Slightly Comply
Bronches:	beg, bne Two rega. [NO CPSR]	NI reg.