Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound comprising of a formula:

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein Y is $\underline{CO_2(R^2)}$, $\underline{CON(R^2)_2}$, $\underline{CON(OR^2)R^2}$, $\underline{CON(CH_2CH_2OH)_2}$, $\underline{CONH(CH_2CH_2OH)}$, $\underline{CONH(CH_2CH_2OH)}$, $\underline{CH_2OH}$, $\underline{P(O)(OH)_2}$, $\underline{CONHSO_2R^2}$, $\underline{SO_2N(R^2)_2}$, $\underline{SO_2NHR^2}$, or tetrazolyl- $\underline{R^2}$; wherein each $\underline{R^2}$ is independently H, $\underline{C_1-C_6}$ alkyl, phenyl, or biphenyl an organic acid functional group, or an amide or ester thereof comprising up to 12 carbon atoms; or Y is hydroxymethyl or an ether thereof comprising up to 12 carbon atoms; or Y is a tetrazolyl functional group;

A is $-(CH_2)_{6^-}$, cis $-CH_2CH=CH-(CH_2)_{3^-}$, or $-CH_2C\equiv C-(CH_2)_{3^-}$, wherein 1 or 2 carbon atoms may be substituted replaced with S or O; or A is $-(CH_2)_{m^-}Ar-(CH_2)_{o^-}$ wherein Ar is interarylene or heterointerarylene, the sum of m and o is from 1 to 4, and wherein one CH_2 may be substituted-replaced with S or O; and D is aryl or heteroaryl.

- 2. (Original) The compound of claim 1 wherein D is phenyl.
- 3. (Original) The compound of claim 2 wherein D is chlorophenyl.
- (Original) The compound of claim 3 wherein D is 3,5-dichlorophenyl.

- 5. (Original) The compound of claim 2 wherein D is unsubstituted phenyl.
- 6. (Original) The compound according to any one of claims 1 to 5, wherein A is $-(CH_2)_{6-}$, cis $-CH_2CH=CH-(CH_2)_{3-}$, or $-CH_2O\equiv C-(CH_2)_{3-}$.
- 7. (Currently Amended) The compound of claim 2 comprising <u>further represented</u> <u>by a formula:</u>

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein R^3 is independently methyl, ethyl, isopropyl, fluoro, chloro, bromo, methoxy, ethoxy, isopropoxy, NH_2 , OH, CN, NO_2 , or CF_3 ; and n is 0, 1, 2, or 3.

8. (Currently Amended) The compound of claim 7 comprising further represented by a formula:

$$CO_2H$$

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein a dashed line indicates the presence or absence of a covalent bond.

9. (Currently Amended) The compound of claim 2 comprising

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein R³ is independently methyl, ethyl, isopropyl, fluoro, chloro, bromo, methoxy, ethoxy, isopropoxy, NH₂, OH, CN, NO₂, or CF₃; R⁴ is hydroxyhydrocarbyl having from 1 to 10 carbon atoms; and n is 0, 1, 2, or 3.

10. (Currently Amended) A method comprising administering an effective amount of a compound to a mammal for the treatment or prevention of glaucoma or ocular hypertension, said compound comprising. represented by a formula:

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein Y is $\underline{CO_2(R^2)}$, $\underline{CON(R^2)_2}$, $\underline{CON(OR^2)R^2}$, $\underline{CON(CH_2CH_2OH)_2}$, $\underline{CONH(CH_2CH_2OH)}$, $\underline{CH_2OH}$, $\underline{CONHSO_2R^2}$, $\underline{SO_2N(R^2)_2}$, $\underline{SO_2NHR^2}$, or tetrazolyl- $\underline{R^2}$; wherein each $\underline{R^2}$ is independently H, $\underline{C_1-C_6}$ alkyl, phenyl, or biphenyl an organic acid functional group, or an amide or ester thereof comprising up to 12 carbon atoms; or Y is hydroxymethyl or an ether thereof comprising up to 12 carbon atoms; or Y is a tetrazolyl functional group;

A is $-(CH_2)_{6-}$, cis $-CH_2CH=CH-(CH_2)_{3-}$, or $-CH_2C\equiv C-(CH_2)_{3-}$, wherein 1 or 2 carbon atoms may be substituted replaced with S or O; or A is $-(CH_2)_m$ -Ar- $-(CH_2)_o$ - wherein Ar is

interarylene or heterointerarylene, the sum of m and o is from 1 to 4, and wherein one CH₂ may be substituted replaced with S or O; and D is aryl or heteroaryl.

11. (Currently Amended) A liquid comprising a compound and a liquid carrier, wherein said liquid is ophthalmically acceptable, said compound comprising represented by a formula:

or a pharmaceutically acceptable salt or a prodrug or a metabolite thereof; wherein Y is $CO_2(R^2)$, $CON(R^2)_2$, $CON(OR^2)R^2$, $CON(CH_2CH_2OH)_2$, $CONH(CH_2CH_2OH)$, $CONH(CH_2CH_2OH)$, $CONH(CH_2CH_2OH)$, $CONH(CH_2OH)$, CONH(CH

A is - $(CH_2)_{6^-}$, cis - $CH_2CH=CH-(CH_2)_{3^-}$, or - $CH_2C\equiv C-(CH_2)_{3^-}$, wherein 1 or 2 carbon atoms may be substituted <u>replaced</u> with S or O; or A is - $(CH_2)_m$ -Ar- $(CH_2)_o$ - wherein Ar is interarylene or heterointerarylene, the sum of m and o is from 1 to 4, and wherein one CH_2 may be <u>substituted</u> <u>replaced</u> with S or O; and D is aryl or heteroaryl.

- 12. (Cancelled)
- 13. (New) The method of claim 10, wherein D is phenyl.
- 14. (New) The method of claim 13 wherein D is 3,5-dichlorophenyl.

- 15. (New) The method of claim 13, wherein Ar is interphenylene, interthienylene, interfurylene, interoxazolylene, or interthiazolylene.
- 16. (New) The method of claim 15, wherein Ar is unsubstituted, or all substituents present on Ar are independently C_{1-4} alkyl, CF_3 , F, Cl, Br, OH, and NH_2 .
- 17. (New) The liquid of claim 11, wherein Y is $CO_2(R^2)$ or $CON(R^2)_2$.
- 18. (New) The liquid of claim 17, wherein D is phenyl.
- 19. (New) The liquid of claim 11, wherein Ar is interthienylene.
- 20. (New) The liquid of claim 19, wherein D is phenyl.
- 21. (New) The liquid of claim 20, wherein Ar is interthienylene and Y is CO₂(R²).