

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eight Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	
$C_t =$	1.20	

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approa anay nom are camaco.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.39	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1165.89</u>	6265.08	k
Compressive Load =	4020.06	4805.34	k
Lateral Load =	296.88	2781.62	k
Moment (Weak Axis) =	<u>0.60</u>	0.31	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 328423.3 in-lbs Resisting Force Required = 3774.98 lbs A minimum 174in long x 36in wide x S.F. = 1.67 12in tall ballast foundation is required Weight Required = 6291 63 lbs to resist overturning. Minimum Width = 36 in Weight Provided = 6307.50 lbs Sliding Force = 1283.87 lbs Friction = Use a 174in long x 36in wide x 12in tall 0.4 ballast foundation to resist sliding. 3209.67 lbs Weight Required = Resisting Weight = 6307.50 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1283.87 lbs Cohesion = 130 psf Use a 174in long x 36in wide x 12in tall 43.50 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3153.75 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft 0.00 ft Required Depth = Shear key is not required. f'c = 2500 psi

Bearing Pressure	(Meyerhof, 1953)				
			Ballast	t Width	
		36 in	<u>37 in</u>	<u>38 in</u>	39 in
P _{ftg} =	= (145 pcf)(14.5 ft)(1 ft)(3 ft) =	6308 lbs	6483 lbs	6658 lbs	6833 lbs

ASD LC		1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W								
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1270 lbs	1270 lbs	1270 lbs	1270 lbs	1587 lbs	1587 lbs	1587 lbs	1587 lbs	2037 lbs	2037 lbs	2037 lbs	2037 lbs	-530 lbs	-530 lbs	-530 lbs	-530 lbs
FB	1353 lbs	1353 lbs	1353 lbs	1353 lbs	1940 lbs	1940 lbs	1940 lbs	1940 lbs	2359 lbs	2359 lbs	2359 lbs	2359 lbs	-2884 lbs	-2884 lbs	-2884 lbs	-2884 lbs
F_V	121 lbs	121 lbs	121 lbs	121 lbs	1134 lbs	1134 lbs	1134 lbs	1134 lbs	933 lbs	933 lbs	933 lbs	933 lbs	-1284 lbs	-1284 lbs	-1284 lbs	-1284 lbs
P _{total}	8931 lbs	9106 lbs	9281 lbs	9456 lbs	9835 lbs	10010 lbs	10185 lbs	10361 lbs	10703 lbs	10878 lbs	11054 lbs	11229 lbs	370 lbs	475 lbs	581 lbs	686 lbs
M	5988 lbs-ft	5988 lbs-ft	5988 lbs-ft	5988 lbs-ft	6082 lbs-ft	6082 lbs-ft	6082 lbs-ft	6082 lbs-ft	8551 lbs-ft	8551 lbs-ft	8551 lbs-ft	8551 lbs-ft	2616 lbs-ft	2616 lbs-ft	2616 lbs-ft	2616 lbs-ft
е	0.67 ft	0.66 ft	0.65 ft	0.63 ft	0.62 ft	0.61 ft	0.60 ft	0.59 ft	0.80 ft	0.79 ft	0.77 ft	0.76 ft	7.06 ft	5.50 ft	4.51 ft	3.81 ft
L'	13.16 ft	13.18 ft	13.21 ft	13.23 ft	13.26 ft	13.28 ft	13.31 ft	13.33 ft	12.90 ft	12.93 ft	12.95 ft	12.98 ft	0.37 ft	3.50 ft	5.49 ft	6.87 ft
A'	39.5 sqft	40.7 sqft	41.8 sqft	43.0 sqft	39.8 sqft	41.0 sqft	42.1 sqft	43.3 sqft	38.7 sqft	39.9 sqft	41.0 sqft	42.2 sqft	1.1 sqft	10.8 sqft	17.4 sqft	22.3 sqft
f _{mey erhof}	226.2 psf	224.0 psf	221.9 psf	219.9 psf	247.2 psf	244.4 psf	241.7 psf	239.2 psf	276.5 psf	272.9 psf	269.5 psf	266.2 psf	331.2 psf	44.1 psf	33.4 psf	30.7 psf

Maximum Bearing Pressure = 331 psf Allowable Bearing Pressure = 1500 psf Use a 174in long x 36in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Length =

8 in

Seismic Design

Overturning Check

 $M_O = 2745.0 \text{ ft-lbs}$

Resisting Force Required = 1829.98 lbs S.F. = 1.67

Weight Required = 3049.97 lbs Minimum Width = 36 in in Weight Provided = 6307.50 lbs A minimum 174in long x 36in wide x 12in tall ballast foundation is required to resist

overturning.

Bearing Pressure (Meyerhof, 1953)

ASD LC	1.238D + 0.875E			1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		36 in			36 in			36 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	257 lbs	539 lbs	185 lbs	800 lbs	2154 lbs	745 lbs	100 lbs	158 lbs	29 lbs	
F _V	185 lbs	181 lbs	188 lbs	137 lbs	133 lbs	145 lbs	186 lbs	182 lbs	186 lbs	
P _{total}	8065 lbs	8347 lbs	7994 lbs	8233 lbs	9588 lbs	8178 lbs	2383 lbs	2441 lbs	2312 lbs	
М	647 lbs-ft	639 lbs-ft	654 lbs-ft	488 lbs-ft	486 lbs-ft	509 lbs-ft	647 lbs-ft	637 lbs-ft	648 lbs-ft	
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.27 ft	0.26 ft	0.28 ft	
B'	2.84 ft	2.85 ft	2.84 ft	2.88 ft	2.90 ft	2.88 ft	2.46 ft	2.48 ft	2.44 ft	
A'	41.2 sqft	41.3 sqft	41.1 sqft	41.8 sqft	42.0 sqft	41.7 sqft	35.6 sqft	35.9 sqft	35.4 sqft	
f _{mey erhof}	195.9 psf	202.2 psf	194.4 psf	197.1 psf	228.1 psf	196.1 psf	66.9 psf	67.9 psf	65.4 psf	

Maximum Bearing Pressure = 228 psf Allowable Bearing Pressure = 1500 psf

Use a 174in long x 36in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 174in long x 36in wide x 12in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the front end of girder to a center section of the steel post. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.092 k	Maximum Axial Load = 4.314 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>42%</u>	Utilization = <u>58%</u>
Diagonal Strut		
Maximum Axial Load =	2.131 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>29%</u>	
	0	Struts under compression are shown to demon

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 51.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 \text{h}_{\text{sx}} \\ \text{1.038 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.531 \text{ in} \\ & 0.531 \leq 1.038, \text{OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 87 \text{ in}$$

$$J = 0.432$$

$$240.683$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$
 $φF_I$ = 28.3 ksi

$$\varphi F_L = 28.3 \text{ k}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis: 3.4.14

$$\begin{split} \mathsf{L_b} &= 87 \\ \mathsf{J} &= 0.432 \\ &= 153.06 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}*\sqrt{(\mathsf{LbSc})/(\mathsf{Cb}*\sqrt{(\mathsf{lyJ})/2)})}] \\ \varphi \mathsf{F_L} &= 29.4 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Sx =

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

16.2

36.9

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

29.0 ksi

2.366 in⁴

1.375 in³

3.323 k-ft

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ C_0 = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} Wk = & 3.904 \text{ k-ft} \\ \end{array}$$

Compression

 $M_{max}St =$

Sx =

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \\ \text{$\sqrt{(\text{LbSc})/(\text{Cb*} \\ \sqrt{(\text{lyJ})/2)})}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}*\sqrt{(\mathsf{LbSc})/(\mathsf{Cb}*\sqrt{(\mathsf{lyJ})/2)})}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ \text{ly} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{x} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$\begin{aligned} \text{h/t} &=& 24.5 \\ S1 &=& \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &=& 36.9 \\ \text{m} &=& 0.65 \\ \text{C}_0 &=& 27.5 \\ \text{Cc} &=& 27.5 \\ \text{S2} &=& \frac{k_1 Bbr}{mDbr} \\ \text{S2} &=& 77.3 \\ \text{\phiF}_L &=& 1.3 \text{\phiyFcy} \\ \text{\phiF}_L &=& 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

$$5.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$9.4.16$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi Y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$\varphi F_L W k = 279836 \text{ mm}^4$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.41345$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi = 0.77788$$

$$\phi = (\phi = 0.77788)$$

$$\phi = (\phi = 13.6277 \text{ ksi})$$

$$\begin{array}{lll} \textbf{.9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 13.63 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 14.03 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-121.698	-121.698	0	0
2	M14	V	-121.698	-121.698	0	0
3	M15	V	-191.24	-191.24	0	0
4	M16	V	-191.24	-191.24	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	278.167	278.167	0	0
2	M14	V	213.261	213.261	0	0
3	M15	V	115.903	115.903	0	0
4	M16	V	115 903	115 903	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												ı
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												ĺ
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																i
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	585.625	2	1226.349	2	.593	1	.003	1	0	1	0	1
2		min	-723.052	3	-1557.37	3	-52.579	5	239	4	0	1	0	1
3	N7	max	.02	9	1118.737	1	533	12	001	12	0	1	0	1
4		min	224	2	-269.976	3	-228.367	4	46	4	0	1	0	1
5	N15	max	0	15	3092.354	1	0	3	0	12	0	1	0	1
6		min	-2.212	2	-896.836	3	-218.088	4	446	4	0	1	0	1
7	N16	max	1935.31	2	3696.416	2	0	11	0	2	0	1	0	1
8		min	-2139.705	3	-4819.29	3	-52.67	5	242	4	0	1	0	1
9	N23	max	.03	14	1118.737	1	7.596	1	.016	1	0	1	0	1
10		min	224	2	-269.976	3	-222.923	4	452	4	0	1	0	1
11	N24	max	585.625	2	1226.349	2	046	10	0	10	0	1	0	1
12		min	-723.052	3	-1557.37	3	-53.147	5	241	4	0	1	0	1
13	Totals:	max	3103.902	2	11321.611	2	0	9						
14		min	-3586.729	3	-9370.818	3	-823.585	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	61.091	4	448.723	1	-6.646	12	0	15	.131	1	0	4
2			min	3.265	10	-745.725	3	-133.913	1	014	2	.009	10	0	3
3		2	max	51.585	4	312.411	1	-5.496	12	0	15	.083	4	.512	3
4			min	3.265	10	-526.386	3	-102.14	1	014	2	0	10	307	1
5		3	max	47.015	1	176.099	1	-4.346	12	0	15	.051	5	.848	3
6			min	3.265	10	-307.048	3	-70.367	1	014	2	034	1	503	1
7		4	max	47.015	1	39.787	1	-2.662	10	0	15	.029	5	1.007	3
8			min	3.265	10	-87.709	3	-38.595	1	014	2	078	1	59	1
9		5	max	47.015	1	131.629	3	.464	10	0	15	.009	5	.989	3
10			min	3.265	10	-96.525	1	-26.257	4	014	2	096	1	567	1
11		6	max	47.015	1	350.968	3	24.951	1	0	15	004	12	.795	3
12			min	2.097	15	-232.837	1	-22.421	5	014	2	089	1	435	1
13		7	max	47.015	1	570.306	3	56.723	1	0	15	004	10	.424	3
14			min	-6.27	5	-369.149	1	-20.671	5	014	2	056	1	192	1
15		8	max	47.015	1	789.645	3	88.496	1	0	15	.005	2	.166	2
16			min	-15.776	5	-505.461	1	-18.92	5	014	2	044	4	124	3
17		9	max	47.015	1	1008.983	3	120.269	1	0	15	.087	1	.622	1
18			min	-25.282	5	-641.773	1	-17.169	5	014	2	058	5	848	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	49.638	4	1228.322	3	152.041	1	.003	14	.196	1	1.194	1
20			min	3.265	10	-778.085	1	-92.439	14	014	2	0	3	-1.749	3
21		11	max	47.015	1	641.773	1	-2.556	12	.014	2	.087	1	.622	1
22			min	3.265	10	-1008.983	3	-120.269	1	0	15	004	3	848	3
23		12	max	47.015	1	505.461	1	-1.405	12	.014	2	.044	4	.166	2
24			min	3.265	10	-789.645	3	-88.496	1	0	15	007	3	124	3
25		13	max	47.015	1	369.149	1	094	3	.014	2	.021	5	.424	3
26			min	3.265	10	-570.306	3	-56.723	1	0	15	056	1	192	1
27		14	max	47.015	1	232.837	1	1.631	3	.014	2	0	15	.795	3
28		17	min	1.298	15	-350.968	3	-30.458	4	0	15	089	1	435	1
29		15	max	47.015	1	96.525	1	6.822	1	.014	2	003	12	.989	3
30		13	min	-7.52	5	-131.629	3	-23.306	5	0	15	005	1	567	1
31		16								.014	2	001	12		3
		16	max	47.015	1	87.709	3	38.595	1					1.007	
32		47	min	-17.026	5	-39.787	1	-21.555	5	0	15	078	1	59	1
33		17	max	47.015	1	307.048	3	70.367	1	.014	2	.003	3	.848	3
34		1.0	min	-26.532	5	-176.099	1	-19.804	5	0	15	062	4	503	1
35		18	max	47.015	1_	526.386	3	102.14	1	.014	2	.036	1_	.512	3
36			min	-36.037	5	-312.411	1	-18.053	5	0	15	07	5	307	1
37		19	max	47.015	1	745.725	3	133.913	1	.014	2	.131	1	0	1
38			min	-45.543	5	-448.723	1	-16.303	5	0	15	083	5	0	3
39	M14	1	max	41.212	4	527.796	1	-6.921	12	.014	3	.189	4	0	1
40			min	2.104	12	-616.538	3	-140.03	1	016	2	.011	10	0	3
41		2	max	31.706	4	391.484	1	-5.771	12	.014	3	.131	4	.429	3
42			min	2.104	12	-449.485	3	-108.258	1	016	2	.003	10	37	1
43		3	max	31.352	1	255.172	1	-4.621	12	.014	3	.08	5	.724	3
44			min	2.104	12	-282.431	3	-76.485	1	016	2	014	1	631	1
45		4	max	31.352	1	121.044	2	-3.196	10	.014	3	.046	5	.884	3
46			min	2.104	12	-115.378	3	-51.947	4	016	2	063	1	781	1
47		5	max	31.352	1	51.675	3	07	10	.014	3	.013	5	.91	3
48		Ť	min	-3.351	5	-17.452	1	-43.629	4	016	2	086	1	822	1
49		6	max	31.352	1	218.728	3	18.833	1	.014	3	004	12	.801	3
50		_ <u> </u>	min	-12.857	5	-153.764	1	-38.185	5	016	2	084	1	754	2
51		7		31.352	1	385.781	3	50.606	1	.014	3	004	10	.558	3
52			max	-22.363	5	-290.076	1	-36.435	5	016	2	062	4	585	2
		0	min		1		3	82.378			3				
53		8	max	31.352		552.834			1	.014		.003	2	.18	2
54			min	-31.869	5	-426.388	1	-34.684	5	016	2	08	4	309	
55		9	max	31.352	1	719.887	3	114.151	1	.014	3	.077	1	.112	1
56		40	min	-41.375	5	-562.7	1	-32.933	5	016	2	105	5	333	3
57		10	max	60.734	4	886.941	3	145.924	1	.014	3	.19	4	.621	1
58		4.4	min	2.104	12	-699.012	1	-97.329	14	016	2	001	3	98	3
59		11	max		4	562.7	1	-2.281	12		2	.13	4	.112	1
60		4.0	min	2.104	12	-719.887	3	-114.151	1	014	3	005	3	333	3
61		12	1		4	426.388	1	-1.13	12	.016	2	.078	4	.18	3
62			min	2.104	12	-552.834	3	-82.378	1	014	3	006	3	309	2
63		13			4	290.076	1	.326	3	.016	2	.043	5	.558	3
64			min	2.104	12	-385.781	3	-52.917	4	014	3	056	1	585	2
65		14	max		1_	153.764	1	2.052	3	.016	2	.01	5	.801	3
66			min	2.104	12	-218.728	3	-44.6	4	014	3	084	1	754	2
67		15	max		1	17.452	1	12.94	1	.016	2	002	12	.91	3
68			min	2.104	12	-51.675	3	-38.391	5	014	3	086	1	822	1
69		16	max	31.352	1	115.378	3	44.712	1	.016	2	0	3	.884	3
70			min	-3.005	5	-121.044	2	-36.64	5	014	3	066	4	781	1
71		17	max	31.352	1	282.431	3	76.485	1	.016	2	.005	3	.724	3
72			min	-12.511	5	-255.172	1	-34.889	5	014	3	085	4	631	1
73		18	max		1	449.485	3	108.258	1	.016	2	.06	1	.429	3
74		'	min		5	-391.484		-33.139	5	014	3	109	5	37	1
75		10	max		1	616.538	3	140.03	1	.016	2	.16	1	0	1
_ , _		10	IIIdA	01.002				1-70.00		.010					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	
76			min	-31.523	5	-527.796	1	-31.388	5	014	3	135	5	0	3
77	M15	1	max	74.264	5	707.514	2	-6.766	12	.017	2	.253	4	0	2
78			min	-32.839	1	-352.991	3	-140.045	1	012	3	.012	10	0	3
79		2	max	64.758	5	519.094	2	-5.616	12	.017	2	.181	4	.249	3
80			min	-32.839	1	-264.366	3	-108.272	1	012	3	.003	10	494	2
81		3	max	55.252	5	330.673	2	-4.466	12	.017	2	.116	5	.426	3
82			min	-32.839	1	-175.74	3	-77.402	4	012	3	014	1	836	2
83		4	max	45.746	5	142.253	2	-3.274	10	.017	2	.068	5	.532	3
84			min	-32.839	1	-87.114	3	-69.085	4	012	3	063	1	-1.027	2
85		5	max	36.24	5	1.564	12	147	10	.017	2	.021	5	.566	3
86			min	-32.839	1	-46.167	2	-60.768	4	012	3	086	1	-1.065	2
87		6	max	26.734	5	90.138	3	18.818	1	.017	2	004	12	.529	3
88			min	-32.839	1	-234.588	2	-55.304	5	012	3	084	1	952	2
89		7	max	17.228	5	178.764	3	50.591	1	.017	2	004	10	.421	3
90			min	-32.839	1	-423.008	2	-53.554	5	012	3	081	4	688	2
91		8	max	7.722	5	267.39	3	82.364	1	.017	2	.002	2	.241	3
92			min	-32.839	1	-611.429	2	-51.803	5	012	3	113	4	271	2
93		9	max	-1.138	15	356.016	3	114.136	1	.017	2	.077	1	.298	2
94			min	-32.839	1	-799.849	2	-50.052	5	012	3	151	5	01	12
95		10	max	-2.261	10	444.642	3	145.909	1	.016	1	.25	4	1.018	2
96			min	-32.839	1	-988.269	2	-106.029		017	2	0	3	332	3
97		11	max	-1.461	15	799.849	2	-2.436	12	.012	3	.177	4	.298	2
98			min	-32.839	1	-356.016	3	-114.136	1	017	2	004	3	01	12
99		12	max	-2.261	10	611.429	2	-1.286	12	.012	3	.11	4	.241	3
100		'-	min	-32.839	1	-267.39	3	-82.364	1	017	2	006	3	271	2
101		13	max	-2.261	10	423.008	2	.068	3	.012	3	.062	5	.421	3
102		15	min	-32.839	1	-178.764	3	-70.077	4	017	2	056	1	688	2
103		14	max	-2.261	10	234.588	2	1.794	3	.012	3	.015	5	.529	3
103		14	min	-38.376	4	-90.138	3	-61.76	4	017	2	084	1	952	2
105		15		-36.376 -2.261	10	46.167	2	12.954	1	.012	3	003	12	.566	3
106		15	max min	-47.882	4	-1.564	12	-55.509	5	017	2	003	1	-1.065	2
107		16		- 47.882 -2.261		87.114	3	44.727	1	.012	3	0	3	.532	3
107		10	max	-57.387	10	-142.253	2	-53.758	5	017	2	089	4	-1.027	2
109		17	min	-2.261		175.74	3	76.5	1		3	.005			3
		17	max		10					.012			3	.426	
110		4.0	min	-66.893	4	-330.673	2	-52.007	5	017	2	122	4	836	2
111		18	max	-2.261	10	264.366	3	108.272	1	.012	3	.06	1	.249	3
112		40	min	-76.399	4	-519.094	2	-50.256	5	017	2	158	5	494	2
113		19	max	-2.261	10	352.991	3	140.045	1	.012	3	.16	1	0	2
114	1440		min	-85.905	4	-707.514	2	-48.506	5	017	2	198	5	0	5
115	M16	1	max	69.706	5	627.667	2	-6.159	12	.008	1	.174	4	0	2
116			mın	-52.531	1	-286.939		-134.496		012	3	.009	12	0	3
117		2	max	60.2	5	439.247	2	-5.009	12	.008	1	.119	4	.195	3
118			min	-52.531	1	-198.314		-102.723		012	3	.001	10	43	2
119		3	max		5	250.826	2	-3.859	12	.008	1	.077	5	.32	3
120			min	-52.531	1	-109.688	3	<u>-70.95</u>	1	012	3	032	1	708	2
121		4	max		5	62.406	2	-2.709	12	.008	1	.046	5	.372	3
122			min	-52.531	1_	-21.062	3	-46.704	4	012	3	077	1_	834	2
123		5	max	31.683	5	67.564	3	.164	10	.008	1	.016	5	.353	3
124			min	-52.531	1	-126.014	2	-38.387	4	012	3	096	1_	808	2
125		6	max		5	156.19	3	24.368	1	.008	1	004	12	.263	3
126			min		1	-314.435		-34.408	5	012	3	089	1	631	2
127		7	max		5	244.816	3	56.141	1	.008	1	004	12	.102	3
128			min	-52.531	1	-502.855	2	-32.657	5	012	3	056	1	302	2
129		8	max	3.165	5	333.442	3	87.913	1	.008	1	.004	2	.179	2
130			min	-52.531	1	-691.275	2	-30.906	5	012	3	066	4	131	3
131		9	max	-3.685	12	422.068	3	119.686	1	.008	1	.085	1	.812	2
132			min	-52.531	1	-879.696	2	-29.156	5	012	3	09	5	435	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		-			LC
133		10	max	-3.685	12	510.693	3	151.459	1	.008	1	.195	1	1.597	2
134		4.4	min	-52.531	<u>1</u>	-1068.116	2	-98.37	14	012	3	.002	12	811	3
135		11	max	.558	5	879.696	2	-3.043	12	.012	3_	.117	4	.812	2
136		40	min	-52.531	1_	-422.068	3	-119.686	1	008	1	002	3	435	3
137		12	max	-3.685	12	691.275	2	-1.892	12	.012	3	.066	4	.179	2
138		40	min	-52.531	1_	-333.442	3	-87.913	1	008	1_	005	3	131	3
139		13	max	-3.685	12	502.855	2	742	12	.012	3	.033	5	.102	3
140		4.4	min	-52.531	1_	-244.816	3	-56.141	1	008	1_	056	1	302	2
141		14	max		12	314.435	2	.818	3	.012	3	.003	5	.263	3
142		4.5	min	-52.531	1_	-156.19	3	-42.417	4	008	1_	089	1	631	2
143		15	max	-3.685	12	126.014	2	7.405	1	.012	3_	003	12	.353	3
144		1.0	min	-52.531	1_	-67.564	3	-35.27	5	008	1	096	1	808	2
145		16	max	-3.685	12	21.062	3	39.178	1	.012	3	002	12	.372	3
146			min	-58.693	4	-62.406	2	-33.52	5	008	1	077	1	834	2
147		17	max	-3.685	12	109.688	3	70.95	1	.012	3_	.002	3	.32	3
148		40	min	-68.199	4_	-250.826	2	-31.769	5	008	1	088	4	708	2
149		18	max	-3.685	12	198.314	3	102.723	1	.012	3	.038	1	.195	3
150			min	-77.705	4_	-439.247	2	-30.018	5	008	1_	105	5	43	2
151		19	max		12	286.939	3	134.496	1	.012	3	.133	1	0	2
152			min	-87.211	4	-627.667	2	-28.267	5	008	1_	129	5	0	5
153	<u>M2</u>	1	max		1_	2.217	4	.552	1	0	3	0	3	0	1
154			min	-1393.187	3	.546	15	-44.399	4	0	1_	0	1	0	1
155		2		1073.153	_1_	2.208	4	.552	1_	0	3_	0	1_	0	15
156			_	-1392.875	3	.544	15	-44.759	4	0	1	012	4	0	4
157		3	max	1073.569	_1_	2.199	4	.552	1	0	3_	0	1_	0	15
158			min	-1392.564	3	.542	15	-45.12	4	0	1_	025	4	001	4
159		4	max	1073.985	<u>1</u>	2.19	4	.552	1	0	3	0	1_	0	15
160			min	-1392.252	3	.54	15	-45.48	4	0	1	038	4	002	4
161		5	max	1074.401	_1_	2.182	4	.552	1	0	3	0	1	0	15
162			min	-1391.94	3	.538	15	-45.841	4	0	1	051	4	002	4
163		6	max	1074.817	1	2.173	4	.552	1	0	3	0	1	0	15
164			min	-1391.628	3	.536	15	-46.201	4	0	1	063	4	003	4
165		7	max	1075.232	1	2.164	4	.552	1	0	3	0	1	0	15
166			min	-1391.316	3	.534	15	-46.562	4	0	1	077	4	004	4
167		8	max	1075.648	1	2.156	4	.552	1	0	3	.001	1	001	15
168			min	-1391.004	3	.532	15	-46.922	4	0	1	09	4	004	4
169		9	max	1076.064	1	2.147	4	.552	1	0	3	.001	1	001	15
170			min	-1390.692	3	.53	15	-47.283	4	0	1	103	4	005	4
171		10	max	1076.48	1	2.138	4	.552	1	0	3	.001	1	001	15
172			min	-1390.38	3	.528	15	-47.643	4	0	1	116	4	005	4
173		11		1076.896	1	2.129	4	.552	1	0	3	.002	1	002	15
174				-1390.068	3	.525	15	-48.004	4	0	1	13	4	006	4
175		12		1077.312	1	2.121	4	.552	1	0	3	.002	1	002	15
176			min	-1389.756	3	.523	15	-48.364	4	0	1	143	4	007	4
177		13		1077.728	1	2.112	4	.552	1	0	3	.002	1	002	15
178				-1389.444	3	.521	15	-48.724	4	0	1	157	4	007	4
179		14	max	1078.144	1	2.103	4	.552	1	0	3	.002	1	002	15
180				-1389.133	3	.519	15	-49.085	4	0	1	17	4	008	4
181		15		1078.56	1	2.095	4	.552	1	0	3	.002	1	002	15
182				-1388.821	3	.517	15	-49.445	4	0	1	184	4	008	4
183		16		1078.975	1	2.086	4	.552	1	0	3	.002	1	002	15
184			min	-1388.509	3	.515	15	-49.806	4	0	1	198	4	009	4
185		17		1079.391	1	2.077	4	.552	1	0	3	.002	1	002	15
186				-1388.197	3	.513	15	-50.166	4	0	1	212	4	01	4
187		18		1079.807	1	2.068	4	.552	1	0	3	.003	1	003	15
188		'0		-1387.885	3	.511	15	-50.527	4	0	1	226	4	01	4
189		19	_	1080.223	1	2.06	4	.552	1	0	3	.003	1	003	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1387.573	3	.509	15	-50.887	4	0	_1_	24	4	011	4
191	<u>M3</u>	1_	max	585.567	2	9.136	4	.137	1	0	3	0	1_	.011	4
192			min	-721.176	3_	2.162	15	-2.93	5	0	4_	004	4	.003	15
193		2	max	585.397	2	8.262	4	.137	1	0	3	0	1	.007	4
194			min	-721.303	3	1.957	15	-2.321	5	0	4	005	4	.001	12
195		3	max	585.227	2	7.387	4	.137	1	0	3_	0	1_	.003	2
196			min	-721.431	3	1.751	15	-1.712	5	0	4	006	4	0	3
197		4	max	585.056	2	6.513	4	.137	1	0	3	0	1	0	2
198			min	-721.559	3	1.546	15	-1.104	5	0	4	007	5	002	3
199		5	max	584.886	2	5.638	4	.137	1	0	3	0	1	0	15
200			min	-721.687	3	1.34	15	495	5	0	4	007	5	004	3
201		6	max	584.715	2	4.764	4	.168	4	0	3	0	1	001	15
202			min	-721.814	3	1.135	15	.01	12	0	4	007	5	006	6
203		7	max	584.545	2	3.89	4	.776	4	0	3	0	1	002	15
204			min	-721.942	3	.929	15	.01	12	0	4	007	5	008	6
205		8	max	584.375	2	3.015	4	1.385	4	0	3	0	1	002	15
206			min	-722.07	3	.724	15	.01	12	0	4	007	5	009	6
207		9	max	584.204	2	2.141	4	1.994	4	0	3	0	1	002	15
208			min	-722.198	3	.518	15	.01	12	0	4	006	5	011	6
209		10	max	584.034	2	1.266	4	2.602	4	0	3	0	1	003	15
210			min	-722.325	3	.312	15	.01	12	0	4	005	5	011	6
211		11	max	583.864	2	.45	2	3.211	4	0	3	0	1	003	15
212			min	-722.453	3	029	3	.01	12	0	4	003	5	012	6
213		12	max	583.693	2	099	15	3.82	4	0	3	0	1	003	15
214			min	-722.581	3	541	3	.01	12	0	4	002	5	012	6
215		13	max	583.523	2	304	15	4.429	4	0	3	0	1	003	15
216		10	min	-722.709	3	-1.358	6	.01	12	0	4	0	10	011	6
217		14	max	583.353	2	51	15	5.037	4	0	3	.003	4	002	15
218		17	min	-722.836	3	-2.233	6	.01	12	0	4	0	10	01	6
219		15	max	583.182	2	715	15	5.646	4	0	3	.005	4	002	15
220		13	min	-722.964	3	-3.107	6	.01	12	0	4	0	10	002	6
221		16		583.012	2	921	15	6.255	4	0	3	.008	4	002	15
222		10	max	-723.092	3	-3.982	6	.01	12	0	4	0	10	002	6
223		17	min	582.842			15	6.863		-	3	_	4		
		17	max		2	-1.126			4	0		.011		001	15
224		40	min	-723.22	3	-4.856	6	.01	12	0	4	0	10	005	6
225		18	max	582.671	2	-1.332	15	7.472	4	0	3	.014	4	0	15
226		40	min	-723.348	3	-5.731	6	.01	12	0	4_	0	10	003	6
227		19	max	582.501	2	-1.538	15	8.081	4	0	3	.018	4	0	1
228	D. 4.4		min	-723.475	3	-6.605	6	.01	12	0	4	0	10	0	1
229	M4	1		1115.671	1_	0	1	531	12	0	1	.011	4	0	1
230				-272.276		0	1	-226.603		0	1_	0	10	0	1
231		2		1115.841	_1_	0	1	531	12	0	_1_	0	12	0	1
232			min			0	1	-226.75	4	0	_1_	015	4	0	1
233		3		1116.011	_1_	0	1	531	12	0	_1_	0	12	0	1
234			min		3	0	1	-226.898		0	1_	041	4	0	1
235		4		1116.182	_1_	0	1	531	12	0	_1_	0	12	0	1
236				-271.892	3	0	1	-227.046		0	1	067	4	0	1
237		5		1116.352	_1_	0	1	531	12	0	<u>1</u>	0	12	0	1
238				-271.765	3	0	1	-227.193		0	1	093	4	0	1
239		6		1116.523	1	0	1	531	12	0	1_	0	12	0	1
240			min	-271.637	3	0	1	-227.341	4	0	1	12	4	0	1
241		7	max	1116.693	1	0	1	531	12	0	1	0	12	0	1
242			min		3	0	1	-227.488		0	1	146	4	0	1
243		8	max	1116.863	1	0	1	531	12	0	1	0	12	0	1
244				-271.381	3	0	1	-227.636		0	1	172	4	0	1
245		9		1117.034	1	0	1	531	12	0	1	0	12	0	1
246				-271.254	3	0	1	-227.784		0	1	198	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1117.204	1	0	1	531	12	0	1	0	12	0	1
248			min	-271.126	3	0	1	-227.931	4	0	1	224	4	0	1
249		11	max	1117.374	1	0	1	531	12	0	1	0	12	0	1
250			min	-270.998	3	0	1	-228.079	4	0	1	25	4	0	1
251		12	max	1117.545	1	0	1	531	12	0	1	0	12	0	1
252			min	-270.87	3	0	1	-228.227	4	0	1	276	4	0	1
253		13	max	1117.715	1	0	1	531	12	0	1	0	12	0	1
254			min	-270.743	3	0	1	-228.374	4	0	1	303	4	0	1
255		14	max	1117.885	1	0	1	531	12	0	1	0	12	0	1
256			min	-270.615	3	0	1	-228.522	4	0	1	329	4	0	1
257		15	max	1118.056	1	0	1	531	12	0	1	0	12	0	1
258			min	-270.487	3	0	1	-228.67	4	0	1	355	4	0	1
259		16	max	1118.226	1	0	1	531	12	0	1	0	12	0	1
260			min	-270.359	3	0	1	-228.817	4	0	1	381	4	0	1
261		17	max	1118.396	1	0	1	531	12	0	1	0	12	0	1
262			min	-270.231	3	0	1	-228.965	4	0	1	408	4	0	1
263		18	max	1118.567	1	0	1	531	12	0	1	0	12	0	1
264			min	-270.104	3	0	1	-229.112	4	0	1	434	4	0	1
265		19	max	1118.737	1	0	1	531	12	0	1	001	12	0	1
266			min	-269.976	3	0	1	-229.26	4	0	1	46	4	0	1
267	M6	1	max	3228.595	1	2.627	2	0	1	0	4	0	4	0	1
268			min		3	.059	3	-44.849	4	0	1	0	1	0	1
269		2	max	3229.011	1	2.621	2	0	1	0	4	0	1	0	3
270			min	-4313.353	3	.054	3	-45.21	4	0	1	013	4	0	2
271		3		3229.427	1	2.614	2	0	1	0	4	0	1	0	3
272			min	-4313.041	3	.049	3	-45.57	4	0	1	025	4	001	2
273		4		3229.843	1	2.607	2	0	1	0	4	0	1	0	3
274			min		3	.044	3	-45.931	4	0	1	038	4	002	2
275		5		3230.259	1	2.6	2	0	1	0	4	0	1	0	3
276			min	-4312.417	3	.039	3	-46.291	4	0	1	051	4	003	2
277		6		3230.675	1	2.593	2	0	1	0	4	0	1	0	3
278		<u> </u>	min	-4312.105	3	.033	3	-46.651	4	0	1	064	4	004	2
279		7		3231.091	1	2.587	2	0	1	0	4	0	1	0	3
280		<u> </u>	min	-4311.793	3	.028	3	-47.012	4	0	1	077	4	004	2
281		8		3231.507	1	2.58	2	0	1	0	4	0	1	0	3
282			min	-4311.481	3	.023	3	-47.372	4	0	1	09	4	005	2
283		9		3231.922	1	2.573	2	0	1	0	4	0	1	0	3
284		Ť	min		3	.018	3	-47.733	4	0	1	104	4	006	2
285		10		3232.338	1	2.566	2	0	1	0	4	0	1	0	3
286		10	min		3	.013	3	-48.093	4	0	1	117	4	007	2
287		11		3232.754	1	2.56	2	0	1	0	4	0	1	0	3
288			min		3	.008	3	-48.454	4	0	1	131	4	007	2
289		12		3233.17	1	2.553	2	0	1	0	4	0	1	0	3
290		14	min		3	.003	3	-48.814	4	0	1	144	4	008	2
291		13		3233.586	<u> </u>	2.546	2	0	1	0	4	0	1	0	3
292		13	min		3	002	3	-49.175	4	0	1	158	4	009	2
293		14		3234.002	<u> </u>	2.539	2	0	1	0	4	0	1	0	3
294		17		-4309.61	3	007	3	-49.535	4	0	1	172	4	009	2
295		15		3234.418	<u> </u>	2.532	2	0	1	0	4	0	1	009 0	3
296		13	min		3	012	3	-49.896	4	0	1	186	4	01	2
297		16		3234.834	<u>ა</u> 1	2.526	2	0	1	0	4	0	1	01 0	3
298		10			3	017	3	-50.256	4	0	1		4	011	2
		17	min		1		2	_	1		4	2	1		3
299		17		3235.249 -4308.674	2	2.519		0 50.617	4	0	<u>4</u> 1	214	4	0	2
300		10	min		3	023	3	-50.617				214		012	
301		Ιδ		3235.665 -4308.362	1_2	2.512	3	50.077	1	0	<u>4</u> 1	228	1	0	2
302		10	min		3_	028		-50.977	4	0	•		4	012	
303		19	ımax	3236.081	_1_	2.505	2	0	1	0	4	0	1	0	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					
304	N 4-7	4	min		3	033	3	-51.338	4_	0	1_	243	4	013	2
305	<u> </u>	1		1941.455 -2129.124	2	9.132	6	0	1	0	1_4	0	1	.013	2
306		2	min		3	2.144	15	-3.121	<u>5</u> 1	0	<u>4</u> 1	004	1	0	3
307		2		1941.285 -2129.252	3	8.257	6 15	0 -2.512	5	0	4	0	4	.009	2
308		2	min		_	1.938			<u> </u>	0	<u>4</u> 1	005	1	002	3
309		3	max	1941.114 -2129.379	2	7.383	6 15	0	5	0	4	0	_	.006	3
310		4	min		3	1.732		-1.903	<u>ວ</u> 1	0	_ 4 _	006	1	004	_
311		4		1940.944 -2129.507	2	6.508	6 15	0 -1.295		0	4	0	4	.004	3
312			min		3	1.527			<u>5</u> 1	-	_ 4 _	007 0	1	005	
313		5	max	-2129.635	3	5.634 1.321	6 15	686	5	0	4	008	4	.001 007	3
315		6		1940.603		4.759	6	0	<u> </u>	0	1	0	1	007	2
316		0		-2129.763	3	1.116	15	077	5	0	4	008	4	008	3
317		7	min	1940.433	2	3.885	6	.552	4	0	1	0	1	002	15
318			min	-2129.891	3	.91	15	.332	1	0	4	008	4	002	3
319		8			2	3.011	6	1.16	4	0	_ 4 _	0	1	009	15
320		0	max	-2130.018	3	.705	15	0	1	0	4	007	5	002	4
321		9		1940.092	2	2.201	2	1.769	4	0	1	007	1	003	15
322		9	min	-2130.146	3	.393	12	0	1	0	4	007	5	003	4
323		10		1939.922	2	1.52	2	2.378	4	0	1	007	1	003	15
324		10	min	-2130.274	3	.008	3	0	1	0	4	006	5	003	4
325		11		1939.752	2	.838	2	2.987	4	0	1	0	1	003	15
326			min	-2130.402	3	503	3	0	1	0	4	004	5	012	4
327		12		1939.581	2	.157	2	3.595	4	0	1	004	1	012	15
328		12	min	-2130.529	3	-1.014	3	0.090	1	0	4	003	5	012	4
329		13			_	323	<u>ა</u> 15	4.204	4	0	_ 4 _ 1	003 0	1	012	15
330		13	max	-2130.657	3	-1.525	3	0	1	0	4	001	5	003	4
331		14		1939.241	2	529	<u> </u>	4.813	4	0	1	.001	4	002	15
332		14	min	-2130.785	3	-2.236	4	0	1	0	4	.001	1	002	4
333		15		1939.07	2	734	15	5.421	4	0	1	.004	4	002	15
334		13	max min	-2130.913	3	-3.111	4	0	1	0	4	.004	1	002	4
335		16		1938.9	2	- <u>.</u> 94	15	6.03	4	0	1	.006	4	009	15
336		10	max	-2131.04	3	-3.985	4	0.03	1	0	4	.000	1	002	4
337		17		1938.729	2	-3.965 -1.145	15	6.639	4	0	1	.009	4	006	15
338		17	min	-2131.168	3	-4.859	4	0.039	1	0	4	.009	1	005	4
339		18	max		2	- 1.351	15	7.247	4	0	1	.013	4	0	15
340		10	min	-2131.296	3	-5.734	4	0	1	0	4	0	1	003	4
341		19		1938.389	2	-1.556	15	7.856	4	0	1	.016	4	0	1
342		19		-2131.424	3	-6.608	4	0	1	0	4	.010	1	0	1
343	M8	1		3089.288	<u> </u>	0	1	0	1	0	1	.01	4	0	1
344	IVIO			-899.136	3	0	1	-219.01	4	0	1	0	1	0	1
345		2		3089.458	<u> </u>	0	1	0	1	0	1	0	1	0	1
346			-	-899.008	3	0	1	-219.157	4	0	1	016	4	0	1
347		3		3089.628	<u> </u>	0	1	0	1	0	1	0	1	0	1
348				-898.88	3	0	1	-219.305	4	0	1	041	4	0	1
349		4		3089.799	<u> </u>	0	1	0	1	0	1	0	1	0	1
350		_		-898.752	3	0	1	-219.453	4	0	1	066	4	0	1
351		5		3089.969	1	0	1	0	1	0	1	0	1	0	1
352				-898.625	3	0	1	-219.6	4	0	1	091	4	0	1
353		6		3090.139	<u> </u>	0	1	0	1	0	1	0	1	0	1
354				-898.497	3	0	1	-219.748	4	0	1	116	4	0	1
355		7		3090.31	<u> </u>	0	1	0	1	0	1	0	1	0	1
356				-898.369	3	0	1	-219.895	4	0	1	142	4	0	1
357		8		3090.48	<u>ာ</u> 1	0	1	0	_ 4 _	0	1	14 <u>2</u> 0	1	0	1
358		0		-898.241	3	0	1	-220.043	4	0	1	167	4	0	1
359		9		3090.65	<u>ာ</u> 1	0	1	0	_ 4 _ 1	0	1	0	1	0	1
360		3		-898.114	3	0	1	-220.191	4	0	1	192	4	0	1
J00			1111111	-030.114	J	U		-220.191	4	U		182	4	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
361		10		3090.821	1	0	1	0	1	0	1	0	1	0	1
362			min	-897.986	3	0	1	-220.338	4	0	1	217	4	0	1
363		11	max	3090.991	1	0	1	0	1	0	1	0	1	0	1
364			min	-897.858	3	0	1	-220.486	4	0	1	243	4	0	1
365		12	max	3091.161	1	0	1	0	1	0	1	0	1	0	1
366			min	-897.73	3	0	1	-220.634	4	0	1	268	4	0	1
367		13	max	3091.332	1	0	1	0	1	0	1	0	1	0	1
368			min	-897.603	3	0	1	-220.781	4	0	1	293	4	0	1
369		14	max	3091.502	1	0	1	0	1	0	1	0	1	0	1
370			min	-897.475	3	0	1	-220.929	4	0	1	319	4	0	1
371		15	max	3091.672	1	0	1	0	1	0	1	0	1	0	1
372			min	-897.347	3	0	1	-221.077	4	0	1	344	4	0	1
373		16	max	3091.843	1	0	1	0	1	0	1	0	1	0	1
374			min	-897.219	3	0	1	-221.224	4	0	1	369	4	0	1
375		17	max	3092.013	1	0	1	0	1	0	1	0	1	0	1
376			min	-897.092	3	0	1	-221.372	4	0	1	395	4	0	1
377		18	max	3092.183	1	0	1	0	1	0	1	0	1	0	1
378			min	-896.964	3	0	1	-221.519	4	0	1	42	4	0	1
379		19	max	3092.354	1	0	1	0	1	0	1	0	1	0	1
380			min	-896.836	3	0	1	-221.667	4	0	1	446	4	0	1
381	M10	1	max	1072.737	1	2.102	6	038	10	0	1	0	4	0	1
382			min	-1393.187	3	.468	15	-44.695	4	0	3	0	3	0	1
383		2	max	1073.153	1	2.093	6	038	10	0	1	0	10	0	15
384			min	-1392.875	3	.466	15	-45.056	4	0	3	013	4	0	6
385		3		1073.569	1	2.084	6	038	10	0	1	0	10	0	15
386				-1392.564	3	.464	15	-45.416	4	0	3	025	4	001	6
387		4		1073.985	1	2.075	6	038	10	0	1	0	10	0	15
388				-1392.252	3	.462	15	-45.776	4	0	3	038	4	002	6
389		5		1074.401	1	2.067	6	038	10	0	1	0	10	0	15
390			min	-1391.94	3	.46	15	-46.137	4	0	3	051	4	002	6
391		6		1074.817	1	2.058	6	038	10	0	1	0	10	0	15
392			min	-1391.628	3	.458	15	-46.497	4	0	3	064	4	003	6
393		7	max	1075.232	1	2.049	6	038	10	0	1	0	10	0	15
394				-1391.316	3	.456	15	-46.858	4	0	3	077	4	003	6
395		8		1075.648	1	2.041	6	038	10	0	1	0	10	0	15
396				-1391.004	3	.454	15	-47.218	4	0	3	09	4	004	6
397		9		1076.064	1	2.032	6	038	10	0	1	0	10	001	15
398				-1390.692	3	.452	15	-47.579	4	0	3	103	4	005	6
399		10	+	1076.48	1	2.023	6	038	10	0	1	0	10	001	15
400			min	-1390.38	3	.45	15	-47.939	4	0	3	117	4	005	6
401		11		1076.896		2.014	6	038	10	0	1	0	10	001	15
402				-1390.068	3	.448	15	-48.3	4	0	3	13	4	006	6
403		12		1077.312	1	2.006	6	038	10	0	1	0	10	001	15
404				-1389.756	3	.446	15	-48.66	4	0	3	144	4	006	6
405		13		1077.728	1	1.997	6	038	10	0	1	0	10	002	15
406				-1389.444	3	.444	15	-49.021	4	0	3	158	4	007	6
407		14		1078.144	1	1.988	6	038	10	0	1	0	10	002	15
408				-1389.133	3	.442	15	-49.381	4	0	3	171	4	007	6
409		15		1078.56	1	1.98	6	038	10	0	1	0	10	002	15
410		ľ	min	-1388.821	3	.44	15	-49.742	4	0	3	185	4	008	6
411		16		1078.975	1	1.971	6	038	10	0	1	0	10	002	15
412				-1388.509	3	.438	15	-50.102	4	0	3	199	4	009	6
413		17		1079.391	1	1.962	6	038	10	0	1	0	10	002	15
414				-1388.197	3	.436	15	-50.463	4	0	3	213	4	002	6
415		18		1079.807	_ <u></u>	1.953	6	038	10	0	<u> </u>	0	10	002	15
416		10		-1387.885	3	.434	15	-50.823	4	0	3	228	4	00 <u>2</u> 01	6
417		19		1080.223	_ <u></u>	1.945	6	038	10	0	<u> </u>	0	10	002	15
417		13	πιαλ	1000.223		1.340	U	030	ΙU	U		U	IU	002	10

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	LC
418			min	-1387.573	3	.432	15	-51.184	4	0	3	242	4	01	6
419	M11	1	max	585.567	2	9.068	6	01	12	0	1	0	10	.01	6
420			min	-721.176	3	2.116	15	-2.949	4	0	4	004	4	.002	15
421		2	max	585.397	2	8.194	6	01	12	0	1	0	10	.006	2
422			min	-721.303	3	1.911	15	-2.34	4	0	4	005	4	.001	15
423		3	max	585.227	2	7.319	6	01	12	0	1	0	10	.003	2
424			min	-721.431	3	1.705	15	-1.732	4	0	4	006	4	0	3
425		4	max	585.056	2	6.445	6	01	12	0	1	0	10	0	2
426			min	-721.559	3	1.5	15	-1.123	4	0	4	007	4	002	3
427		5	max	584.886	2	5.57	6	01	12	0	1	0	10	0	15
428			min	-721.687	3	1.294	15	514	4	0	4	007	4	004	4
429		6	max	584.715	2	4.696	6	.099	5	0	1	0	10	002	15
430			min	-721.814	3	1.089	15	137	1	0	4	007	4	006	4
431		7		584.545	2	3.821	6	.707	5	0	1	0	10	002	15
432				-721.942	3	.883	15	137	1	0	4	007	4	008	4
433		8	max	584.375	2	2.947	6	1.316	5	0	1	0	10	002	15
434			min	-722.07	3	.678	15	137	1	0	4	007	4	01	4
435		9	max		2	2.073	6	1.925	5	0	1	0	10	003	15
436				-722.198	3	.472	15	137	1	0	4	006	4	011	4
437		10	max	584.034	2	1.198	6	2.534	5	0	1	0	10	003	15
438				-722.325	3	.267	15	137	1	Ö	4	005	4	012	4
439		11		583.864	2	.45	2	3.142	5	0	1	0	10	003	15
440				-722.453	3	029	3	137	1	0	4	004	4	012	4
441		12		583.693	2	145	15	3.751	5	0	1	0	10	003	15
442		12	min	-722.581	3	552	4	137	1	0	4	002	4	012	4
443		13	max		2	35	15	4.36	5	0	1	0	5	003	15
444		10		-722.709	3	-1.427	4	137	1	0	4	0	1	012	4
445		14	max		2	556	15	4.968	5	0	1	.002	5	003	15
446		17		-722.836	3	-2.301	4	137	1	0	4	0	1	003 011	4
447		15	max	583.182	2	761	15	5.577	5	0	1	.005	5	002	15
448		13		-722.964	3	-3.175	4	137	1	0	4	0	1	002	4
449		16		583.012	2	967	15	6.186	5	0	1	.008	5	003	15
450		10		-723.092	3	-4.05	4	137	1	0	4	001	1	002	4
451		17	max		2	- 1.172	15	6.795	5	0	1	.011	5	008 001	15
452		17		-723.22	3	-1.172 -4.924	4	137	1	0	4		1	001	4
453		18	min		2	-4.9 <u>24</u> -1.378	15	7.403	5	0	1	001 .014	5	005 0	15
454		10	max	-723.348	3	-1.376 -5.799	4	137	1	0	4	001	1	003	4
455		19			2	-5.799 -1.583	15		5		1		5		1
		19	max					8.012	1	0		.018	1	0	1
456	Mao	4		-723.475	3_	-6.673	4	137		0	4	001		0	
457	M12	1		1115.671	<u>1</u> 3	0	1	7.854 -222.376	1	0	1	.01	5	<u> </u>	1
458		2		-272.276								0			_
459		2		1115.841	1	0	1	7.854	1	0	1	0	1	0	1
460				-272.148	3_	0	1	-222.524		0	1	015	4	0	1
461		3		1116.011	1	0	1	7.854	1	0	1	.001	1	0	1
462		4		-272.02	3	0	1	-222.671	4	0	1	041	4	0	1
463		4		1116.182	1_	0	1	7.854	1	0	1	.002	1	0	1
464		_		-271.892	3	0	1	-222.819		0	1	066	4	0	1
465		5_		1116.352	1_	0	1	7.854	1	0	1	.003	1	0	1
466				-271.765	3_	0	1	-222.967	-	0	1	092	4	0	1
467		6		1116.523	_1_	0	1	7.854	1	0	1	.004	1	0	1
468				-271.637	3	0	1	-223.114		0	1	117	4	0	1
469		7		1116.693	1_	0	1	7.854	1	0	1	.005	1	0	1
470				-271.509	3_	0	1	-223.262		0	1	143	4	0	1
471		8		1116.863	1_	0	1	7.854	1	0	1	.006	1	0	1
472				-271.381	3	0	1	-223.41	4	0	1	169	4	0	1
473		9		1117.034	_1_	0	1	7.854	1	0	1	.006	1	0	1
474			min	-271.254	3	0	1	-223.557	4	0	1	194	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1117.204	_1_	0	1	7.854	1	0	1	.007	_1_	0	1
476			min	-271.126	3	0	1	-223.705	4	0	1	22	4	0	1
477		11	max	1117.374	_1_	0	1	7.854	1	0	1	.008	_1_	0	1
478			min	-270.998	3	0	1	-223.852	4	0	1	246	4	0	1
479		12		1117.545	_1_	0	1_	7.854	1	0	1	.009	_1_	0	1
480			min	-270.87	3	0	1	-224	4	0	1	271	4	0	1
481		13	max	1117.715	<u>1</u>	0	1	7.854	1_	0	1	.01	_1_	0	1
482			min	-270.743	3	0	1	-224.148	4	0	1	297	4	0	1
483		14	max	1117.885	1	0	1	7.854	1	0	1	.011	1	0	1
484			min	-270.615	3	0	1	-224.295	4	0	1	323	4	0	1
485		15	max	1118.056	1	0	1	7.854	1	0	1	.012	1	0	1
486			min	-270.487	3	0	1	-224.443	4	0	1	349	4	0	1
487		16	max	1118.226	1	0	1	7.854	1	0	1	.013	1	0	1
488			min	-270.359	3	0	1	-224.591	4	0	1	375	4	0	1
489		17	max	1118.396	1	0	1	7.854	1	0	1	.014	1	0	1
490			min	-270.231	3	0	1	-224.738	4	0	1	4	4	0	1
491		18	max	1118.567	1	0	1	7.854	1	0	1	.015	1	0	1
492			min	-270.104	3	0	1	-224.886	4	0	1	426	4	0	1
493		19		1118.737	1	0	1	7.854	1	0	1	.016	1	0	1
494		1	min	-269.976	3	0	1	-225.033	4	0	1	452	4	0	1
495	M1	1	max	133.917	1	745.666	3	45.512	5	0	1	.131	1	0	15
496			min	-16.303	5	-446.823	1	-46.956	1	0	3	083	5	014	2
497		2	max	134.493	1	744.478	3	46.972	5	0	1	.102	1	.266	1
498			min	-16.034	5	-448.406	1	-46.956	1	0	3	055	5	469	3
499		3	max	466.721	3	570.076	2	5.003	5	0	3	.072	1	.534	1
500			min	-295.543	2	-578.105	3	-46.538	1	0	2	026	5	916	3
501		4	max	467.153	3	568.493	2	6.463	5	0	3	.044	1	.187	1
502		7	min	-294.966	2	-579.292	3	-46.538	1	0	2	022	5	557	3
503		5	max		3	566.91	2	7.923	5	0	3	.015	1	005	15
504		-	min	-294.39	2	-580.479	3	-46.538	1	0	2	018	5	197	3
505		6	max	468.018	3	565.327	2	9.383	5	0	3	001	10	.164	3
506			min	-293.814	2	-581.667	3	-46.538	1	0	2	015	4	542	2
507		7	max	468.45	3	563.744	2	10.843	5	0	3	003	10	.525	3
508		- '	min	-293.238	2	-582.854	3	-46.538	1	0	2	043	1	892	2
509		8		468.882	3	562.161	2	12.303	5		3	.001	5	.887	3
510		-	max	-292.661	2	-584.041	3	-46.538	1	0	2	072	1	-1.242	2
511		9	min	479.992		47.15	2	45.173	5			.048	1	1.033	3
512		9	max	-238.717	<u>3</u> 2	.474	15	-77.924	1	0	9	113	5	-1.415	2
		10	min	480.425		45.567								1.011	
513		10	max		3		2	46.634	5	0	9	0	10		3
514		4.4	min	-238.14	2	008	5	-77.924	1	0	3	086	4	-1.444	2
515		11		480.857	3_	43.984	2	48.094	5	0	9	004	<u>10</u>	.99	3
516		40	min	-237.564	2	-2.007	4	-77.924	1	0	3	066	4_	-1.472	2
517		12			3_	390.965	3	127.667	5	0	2	.071	1_	.869	3
518		40		-183.505	2	-662.286	2	-45.095	1	0	3	204	5	-1.307	2
519		13		492.142	3_	389.777	3	129.127	5	0	2	.043	_1_	.626	3
520				-182.929	2	-663.869	2	-45.095	1	0	3	124	5_	895	2
521		14		492.575	3_	388.59	3	130.587	5	0	2	.015	_1_	.385	3
522			min	-182.353	2	-665.453	2	-45.095	1_	0	3	044	<u>5</u>	483	2
523		15		493.007	3	387.402	3	132.048	5	0	2	.038	5	.144	3
524			min		2	-667.036	2	-45.095	1	0	3	013	1_	096	1
525		16		493.439	3	386.215	3	133.508	5	0	2	.12	5	.345	2
526			min	-181.2	2	-668.619	2	-45.095	1	0	3	041	1	096	3
527		17	max		3	385.028	3	134.968	5	0	2	.203	5	.761	2
528				-180.624	2	-670.202	2	-45.095	1	0	3	069	1	335	3
529		18	max		5	629.955	2	-3.685	12	0	5	.176	5	.384	2
530			min	-135.068	1	-285.851	3	-88.671	4	0	2	1	1	166	3
531		19	max	28.267	5	628.372	2	-3.685	12	0	5	.129	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

532		Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	LC
S34	532			min	-134.492	1	-287.039	3	-87.211			2	133	1_	008	
S36		<u>M5</u>	1_	max		1_		3	74.827		0	_1_		_1_	.027	_
536				min		12		•		•	0	4	166	4	_	15
S37			2	max	304.651	1		3	76.287	5	0	1	0	_1_	.985	
538						12	-1550.431	1	0	1	0	4	119	4	-1.512	3
S59	537		3	max	1417.942	3	1486.128	2	36.714	4	0	4	0	1	1.915	1
540	538			min	-923.511	2		3	0	1	0	1	072	4	-2.99	3
Set	539		4	max	1418.374	3		2	38.174	4	0	4	0	1	1.003	1
542	540			min	-922.935	2	-1657.333	3	0	1	0	1	049	4	-1.962	3
544	541		5	max	1418.806	3	1482.962	2	39.634	4	0	4	0	1	.093	1
Fall						2	-1658.52	3	_	1	0	1	025	4	933	3
Fall	543		6	max	1419.238	3	1481.379	2	41.094	4	0	4	0	4	.097	3
Fade						2			0	1		1	0	1		
Faragraphic Section Section			7	max		3	1479.796	2	42.554	4	0	4	.026	4		
S48																
548			8			3			44 014	4		4	-	4		
550																
550			9							4		-				
551													_			
552			10						•	-		_				
1			10													
555			11									_				
555																
556			12							<u> </u>			_			
13			12										_			
558			12													
14			13													
560			4.4						_							
561 15 max 1443.042 3 1060.109 3 177.274 4 0 1 .041 4 .388 2 562 min -680.004 2 -1802.428 2 0 1 0 4 0 1 0 15 563 16 max 1443.475 3 1058.921 3 178.735 4 0 1 .152 4 1.507 2 564 min -679.428 2 -1804.012 2 0 1 0 4 0 1 -611 3 565 17 max 1443.907 3 1057.734 3 180.195 4 0 1 .263 4 2.627 2 566 min -68.851 12 2140.344 2 0 1 0 4 .265 4 1.342 2 2 1 0 4 .254 4			14									-	_			
Sec			4.5							-						
563 16 max 1443.475 3 1058.921 3 178.735 4 0 1 .152 4 1.507 2 564 min -679.428 2 -1804.012 2 0 1 0 4 0 1 -611 3 565 17 max 1443.907 3 1057.734 3 180.195 4 0 1 .263 4 2.627 2 566 min -678.851 2 -1805.595 2 0 1 0 4 0 1 -1268 3 567 18 max -8.673 12 2140.344 2 0 1 0 4 .265 4 1.342 2 568 min -303.5 1 -1020.465 3 -27.419 5 0 1 0 1 -658 3 569 19 max -8.385 12			15									_				
564 min -679.428 2 -1804.012 2 0 1 0 4 0 1 -611 3 565 17 max 1443.907 3 1057.734 3 180.195 4 0 1 .263 4 2.627 2 566 min -678.851 2 -1805.595 2 0 1 0 4 0 1 -1.268 3 567 18 max -8.673 12 2140.344 2 0 1 0 4 .265 4 1.342 2 568 min -303.5 1 -1024.665 3 -27.419 5 0 1 0 1 -658 3 569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -6.646 12 -146.823			4.0										_		_	
565 17 max 1443.907 3 1057.734 3 180.195 4 0 1 .263 4 2.627 2 566 min -678.851 2 -1805.595 2 0 1 0 4 0 1 -1.268 3 567 18 max -8.673 12 2140.344 2 0 1 0 4 .265 4 1.342 2 568 min -303.5 1 -1020.4665 3 -27.419 5 0 1 0 1 -658 3 569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -302.924 1 -1021.652 3 -25.959 5 0 1 0 1 -0 1 -0 1 .0 1 .0 1 .			16													
566 min -678.851 2 -1805.595 2 0 1 0 4 0 1 -1.268 3 567 18 max -8.673 12 2140.344 2 0 1 0 4 .265 4 1.342 2 568 min -303.5 1 -1020.465 3 -27.419 5 0 1 0 1 -658 3 569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -6.046 12 -1021.652 3 -25.959 5 0 1 0 1 .001 1 .024 3 009 10 0 15 572 min 6.646 12 -446.823 1 3.265 10 0 4 131 1 014 2 573 2			47										_	•		
567 18 max -8.673 12 2140.344 2 0 1 0 4 .265 4 1.342 2 568 min -303.5 1 -1020.465 3 -27.419 5 0 1 0 1658 3 569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -302.924 1 -1021.652 3 -25.959 5 0 1 0 1 -024 3 571 M9 1 max 133.917 1 745.666 3 61.202 4 0 3009 10 0 1 -024 3 572 min 6.646 12 -446.823 1 3.265 10 0 4131 1014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4102 1469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2005			17													
568 min -303.5 1 -1020.465 3 -27.419 5 0 1 0 1 -658 3 569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -302.924 1 -1021.652 3 -25.959 5 0 1 0 1 -0.04 3 571 M9 1 max 133.717 1 745.666 3 61.202 4 0 3 009 10 0 15 572 min 6.646 12 -446.823 1 3.265 10 0 4 131 1 -014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3 007 10 .266 1 574 min 6.934 12			4.0										_			
569 19 max -8.385 12 2138.761 2 0 1 0 4 .25 4 .016 1 570 min -302.924 1 -1021.652 3 -25.959 5 0 1 0 1024 3 571 M9 1 max 133.917 1 745.666 3 61.202 4 0 3009 10 0 1 0 15 572 min 6.646 12 -446.823 1 3.265 10 0 4131 1014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4102 1469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3072 1916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3044 1557 3 580 min -			18	_												
570 min -302.924 1 -1021.652 3 -25.959 5 0 1 0 1 024 3 571 M9 1 max 133.917 1 745.666 3 61.202 4 0 3 009 10 0 15 572 min 6.646 12 -446.823 1 3.265 10 0 4 131 1 014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3 007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4 102 1 469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543												-		_ •		-
571 M9 1 max 133.917 1 745.666 3 61.202 4 0 3 009 10 0 15 572 min 6.646 12 -446.823 1 3.265 10 0 4 131 1 014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3 007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4 102 1 469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 916 3 577 4 max 4			19	_												
572 min 6.646 12 -446.823 1 3.265 10 0 4 131 1 014 2 573 2 max 134.493 1 744.478 3 62.662 4 0 3 007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4 102 1 469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 -916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2				min								_	-			
573 2 max 134.493 1 744.478 3 62.662 4 0 3 007 10 .266 1 574 min 6.934 12 -448.406 1 3.265 10 0 4 102 1 469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 -916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586		<u>M9</u>	1	max										<u>10</u>		
574 min 6.934 12 -448.406 1 3.265 10 0 4 102 1 469 3 575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2						12										
575 3 max 466.721 3 570.076 2 46.538 1 0 2 005 10 .534 1 576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018			2													
576 min -295.543 2 -578.105 3 3.229 10 0 3 072 1 916 3 577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2														_		
577 4 max 467.153 3 568.493 2 46.538 1 0 2 003 10 .187 1 578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 <			3								0			10		_
578 min -294.966 2 -579.292 3 3.229 10 0 3 044 1 557 3 579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>10</td><td>0</td><td></td><td></td><td>1</td><td>916</td><td>3</td></t<>						2				10	0			1	916	3
579 5 max 467.586 3 566.91 2 46.538 1 0 2 0 10 006 15 580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 <td< td=""><td>577</td><td></td><td>4</td><td>max</td><td>467.153</td><td>3</td><td></td><td>2</td><td></td><td>1</td><td>0</td><td></td><td>003</td><td>10</td><td>.187</td><td>1</td></td<>	577		4	max	467.153	3		2		1	0		003	10	.187	1
580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 <	578			min	-294.966	2	-579.292	3	3.229	10	0	3	044	1	557	3
580 min -294.39 2 -580.479 3 3.229 10 0 3 023 4 197 3 581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 <			5	max		3		2						10		
581 6 max 468.018 3 565.327 2 46.538 1 0 2 .014 1 .164 3 582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.0				min	-294.39	2	-580.479	3	3.229	10	0	3	023	4	197	3
582 min -293.814 2 -581.667 3 3.229 10 0 3 011 5 542 2 583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.033 3			6			3					0			1		
583 7 max 468.45 3 563.744 2 46.538 1 0 2 .043 1 .525 3 584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.033 3														5		
584 min -293.238 2 -582.854 3 3.229 10 0 3 001 5 892 2 585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.033 3			7	max										1		
585 8 max 468.882 3 562.161 2 46.538 1 0 2 .072 1 .887 3 586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.033 3																
586 min -292.661 2 -584.041 3 3.229 10 0 3 .005 10 -1.242 2 587 9 max 479.992 3 47.15 2 77.924 1 0 3 003 10 1.033 3			8											_		
587 9 max 479.992 3 47.15 2 77.924 1 0 3003 10 1.033 3																
			9													

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	480.425	3	45.567	2	77.924	1	0	3	0	1	1.011	3
590			min	-238.14	2	.011	15	5.646	10	0	9	085	4	-1.444	2
591		11	max	480.857	3	43.984	2	77.924	1	0	3	.049	1	.99	3
592			min	-237.564	2	-1.891	6	5.646	10	0	9	05	5	-1.472	2
593		12	max	491.71	3	390.965	3	143.963	4	0	3	005	12	.869	3
594			min	-183.505	2	-662.286	2	3.163	12	0	2	229	4	-1.307	2
595		13	max	492.142	3	389.777	3	145.424	4	0	3	003	12	.626	3
596			min	-182.929	2	-663.869	2	3.163	12	0	2	14	4	895	2
597		14	max	492.575	3	388.59	3	146.884	4	0	3	001	10	.385	3
598			min	-182.353	2	-665.453	2	3.163	12	0	2	049	4	483	2
599		15	max	493.007	3	387.402	3	148.344	4	0	3	.043	4	.144	3
600			min	-181.777	2	-667.036	2	3.163	12	0	2	0	12	096	1
601		16	max	493.439	3	386.215	3	149.804	4	0	3	.135	4	.345	2
602			min	-181.2	2	-668.619	2	3.163	12	0	2	.003	12	096	3
603		17	max	493.871	3	385.028	3	151.264	4	0	3	.229	4	.761	2
604			min	-180.624	2	-670.202	2	3.163	12	0	2	.005	12	335	3
605		18	max	-6.448	12	629.955	2	52.587	1	0	2	.211	4	.384	2
606			min	-135.068	1	-285.851	3	-71.299	5	0	3	.007	12	166	3
607		19	max	-6.16	12	628.372	2	52.587	1	0	2	.174	4	.012	3
608			min	-134.492	1	-287.039	3	-69.839	5	0	3	.009	12	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.225	2	.009	3	1.525e-2	2	NC	1	NC	1
2			min	552	4	065	3	005	2	-4.161e-3	3	NC	1	NC	1
3		2	max	0	1	.166	2	.013	1	1.621e-2	2	NC	4	NC	1
4			min	552	4	.005	15	009	5	-3.71e-3	3	1224.647	3	NC	1
5		3	max	0	1	.193	3	.03	1	1.717e-2	2	NC	5	NC	2
6			min	552	4	.003	15	012	5	-3.259e-3	3	673.017	3	5624.487	1
7		4	max	0	1	.267	3	.044	1	1.812e-2	2	NC	5	NC	2
8			min	552	4	.003	15	009	5	-2.807e-3	3	523.97	3	3859.42	1
9		5	max	0	1	.289	3	.051	1	1.908e-2	2	NC	5	NC	2
10			min	552	4	.003	15	004	5	-2.356e-3	3	490.8	3	3384.192	1
11		6	max	0	1	.262	3	.047	1	2.004e-2	2	NC	5	NC	2
12			min	552	4	.004	15	003	10	-1.905e-3	3	532.474	3	3622.246	
13		7	max	0	1	.208	2	.035	1	2.1e-2	2	NC	2	NC	2
14			min	552	4	.005	15	005	10	-1.454e-3	3	672.203	3	4873.554	1
15		8	max	0	1	.275	2	.026	3	2.195e-2	2	NC	4	NC	2
16			min	552	4	.006	15	008	10	-1.003e-3	3	1024.419	3	9760.961	14
17		9	max	0	1	.333	2	.027	3	2.291e-2	2	NC	4	NC	1
18			min	552	4	.007	15	015	2	-5.522e-4	3	1612.053	2	9851.075	3
19		10	max	0	1	.358	2	.027	3	2.387e-2	2	NC	4	NC	1
20			min	552	4	015	3	019	2	-1.011e-4	3	1303.581	2	9785.873	3
21		11	max	0	10	.333	2	.027	3	2.291e-2	2	NC	4	NC	1
22			min	552	4	.007	15	015	2	-5.522e-4	3	1612.053	2	9851.075	3
23		12	max	0	10	.275	2	.026	3	2.195e-2	2	NC	4	NC	2
24			min	552	4	.006	15	008	10	-1.003e-3	3	1024.419	3	9765.119	1
25		13	max	0	10	.208	2	.035	1	2.1e-2	2	NC	2	NC	2
26			min	552	4	.004	15	005	10	-1.454e-3	3	672.203	3	4873.554	1
27		14	max	0	10	.262	3	.047	1	2.004e-2	2	NC	5	NC	2
28			min	552	4	.003	15	003	10	-1.905e-3	3	532.474	3	3622.246	1
29		15	max	0	10	.289	3	.051	1	1.908e-2	2	NC	5	NC	2
30			min	552	4	.002	15	002	10	-2.356e-3	3	490.8	3	3384.192	1
31		16	max	0	10	.267	3	.044	1	1.812e-2	2	NC	5	NC	2
32			min	552	4	.002	15	001	10	-2.807e-3	3	523.97	3	3859.42	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	10	.193	3	.03	1	1.717e-2	2	NC	5	NC	2
34			min	552	4	.003	15	002	10	-3.259e-3	3	673.017	3	5624.487	1
35		18	max	0	10	.166	2	.014	4	1.621e-2	2	NC	_4_	NC	1
36			min	552	4	.004	15	003	10	-3.71e-3	3	1224.647	3	NC	1
37		19	max	0	10	.225	2	.009	3	1.525e-2	2	NC	_1_	NC	1
38	NA4.4	1	min	<u>552</u>	4	065	3	005	2	-4.161e-3	3	NC NC	1_	NC NC	1
39	M14	1_	max	0	1	.431	3	.008	3	8.42e-3	2	NC	1	NC NC	1
40			min	427	4	656	2	005	2	-6.506e-3	3	NC NC	<u>1</u>	NC NC	1
41		2	max	0	1	.621	3	.009	3	9.569e-3	2	NC 070,000	5_	NC NC	1
42		1	min	427	4	<u>855</u>	2	014	5	-7.51e-3	3	870.686	2	NC NC	1
43		3	max	0	1	.789	3	.023	1	1.072e-2	2	NC 450,005	5	NC 7570,400	2
44		+ -	min	427	4	<u>-1.037</u>	2	017	5	-8.514e-3	3	456.225	2	7570.462	1
45		4	max	0	1	.92	3	.036	1	1.187e-2	2	NC 007.445	<u>15</u>	NC 4775 004	2
46		-	min	427	4	<u>-1.187</u>	2	013	5	-9.518e-3	3	327.445	2	4775.264	
47		5	max	0	1	1.007	3	.043	1	1.301e-2	2	NC 074 000	<u>15</u>	NC	2
48			min	427	4	-1.298	2	003	5	-1.052e-2	3	271.002	2	3992.48	1
49		6	max	0	1	1.047	3	.042	1	1.416e-2	2	NC 044.070	<u>15</u>	NC 101	2
50		-	min	427	4	<u>-1.367</u>	2	003		-1.153e-2	3	244.678	2	4141.491	1
51		7	max	0	1	1.046	3	.032	1	1.531e-2	2	NC	15	NC NC	2
52			min	<u>427</u>	4	-1.397	2	005	10	-1.253e-2	3	234.552	2	5441.043	
53		8	max	0	1	1.017	3	.025	4	1.646e-2	2	NC	<u>15</u>	NC 2000 040	1
54			min	427	4	<u>-1.398</u>	2	007	10	-1.353e-2	3	234.226	2	6638.616	
55		9	max	0	1	.98	3	.024	3	1.761e-2	2	NC	<u>15</u>	NC	1
<u>56</u>		1.0	min	427	4	-1.384	2	013	2	-1.454e-2	3	238.868	2	9327.632	
57		10	max	0	1	.96	3	.024	3	1.876e-2	2	NC	<u>15</u>	NC	1
58			min	427	4	-1.374	2	<u>017</u>	2	-1.554e-2	3	242.263	2	NC	1
59		11	max	0	12	.98	3	.024	3	1.761e-2	2	NC	<u>15</u>	NC	1
60			min	427	4	-1.384	2	<u>014</u>	5	-1.454e-2	3	238.868	2	NC	1
61		12	max	0	12	1.017	3	.023	3	1.646e-2	2	NC	<u>15</u>	NC	1
62		10	min	<u>427</u>	4	-1.398	2	017	5	-1.353e-2	3	234.226	2	NC NC	1
63		13	max	0	12	1.046	3	.032	1	1.531e-2	2	NC 004.550	<u>15</u>	NC 5444	2
64		+	min	427	4	-1.397	2	012	5	-1.253e-2	3	234.552	2	5441.043	
65		14	max	0	12	1.047	3	.042	1	1.416e-2	2	NC	<u>15</u>	NC	2
66		-	min	427	4	-1.367	2	003		-1.153e-2	3	244.678	2	4141.491	1
67		15	max	0	12	1.007	3	.043	1	1.301e-2	2	NC	<u>15</u>	NC	2
68		1.0	min	427	4	<u>-1.298</u>	2	002		-1.052e-2	3	271.002	2	3992.48	1
69		16	max	0	12	.92	3	.036	1	1.187e-2	2	NC	<u>15</u>	NC	2
70			min	427	4	-1.187	2	001		-9.518e-3	3	327.445	2	4775.264	
71		17	max	0	12	.789	3	.026	4	1.072e-2	2	NC	_5_	NC	2
72		1.0	min	427	4	-1.037	2	002	10	-8.514e-3	3	456.225	2	6387.247	4
73		18	max	0	12	.621	3	.017		9.569e-3		NC	5		1
74		1.0	min	<u>427</u>	4	<u>855</u>	2	003	10	-7.51e-3	3	870.686	2	9330.617	
75		19		0	12	.431	3	.008	3	8.42e-3	2	NC NC		NC NC	1
<u>76</u>	344-		min	427	4	656	2	005	2	-6.506e-3	3	NC	1_	NC	1
77	M15	1	max	0	10	.442	3	.008	3	5.497e-3	3	NC	_1_	NC	1
78		_	min	354	4	654	2	005	2	-8.71e-3	2	NC	<u>1</u>	NC	1
79		2	max	0	10	.586	3	.009	3	6.328e-3	3	NC	5	NC	1
80		_	min	354	4	889	2	021	5	-9.904e-3	2	743.165	2	8986.221	5
81		3	max	0	10	.717	3	.023	1	7.159e-3	3_	NC	_5_	NC NC	2
82			min	<u>354</u>	4	<u>-1.098</u>	2	027	5	-1.11e-2	2	392.353	2	6902.618	
83		4	max	0	10	.827	3	.036	1	7.99e-3	3	NC	<u>15</u>	NC 4740.500	2
84		-	min	<u>354</u>	4	<u>-1.265</u>	2	021	5	-1.229e-2	2	285.056		4743.502	
85		5	max	0	10	.91	3	.044	1	8.822e-3	3_	NC	<u>15</u>	NC	2
86			min	<u>354</u>	4	-1.38	2	007	5	-1.348e-2	2	239.962		3964.222	
87		6	max	0	10	.964	3	.042	1	9.653e-3	3	NC	<u>15</u>	NC	2
88			min	354	4	-1.44	2	002		-1.468e-2	2	221.486	2	4105.532	
89		7	max	0	10	.991	3	.032	1	1.048e-2	3	NC	15	NC	2

: Schletter, Inc. : HCV

Job Number : Model Name : Standard F

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	354	4	<u>-1.452</u>	2	004	10 -1.587e-2	2	218.127	2	5371.387	
91		8	max	0	10	<u>.996</u>	3	.032	4 1.132e-2	3	NC	<u>15</u>	NC	1
92			min	354	4	<u>-1.429</u>	2	007	10 -1.706e-2	2	224.504	2	5234.272	4
93		9	max	0	10	.99	3	.023	4 1.215e-2	3	NC	<u>15</u>	NC 7004 007	1
94		10	min	354	1	<u>-1.393</u> .984	3	012 .022	2 -1.826e-2	2	235.426 NC	<u>2</u> 15	7084.027 NC	1
96		10	max	0 354	4	-1.373	2	016	3 1.298e-2 2 -1.945e-2	2	241.968	2	NC NC	1
97		11	min max	334 0	1	<u>-1.373 </u>	3	.022	3 1.215e-2	3	NC	15	NC NC	1
98			min	354	4	-1.393	2	02	5 -1.826e-2	2	235.426		9365.253	
99		12	max	0	1	.996	3	.022	3 1.132e-2	3	NC	15	NC	1
100		12	min	354	4	-1.429	2	024	5 -1.706e-2	2	224.504	2	7765.692	5
101		13	max	0	1	.991	3	.032	1 1.048e-2	3	NC	15	NC	2
102			min	354	4	-1.452	2	017	5 -1.587e-2	2	218.127		5371.387	1
103		14	max	0	1	.964	3	.042	1 9.653e-3	3	NC	15	NC	2
104			min	354	4	-1.44	2	003	5 -1.468e-2	2	221.486	2	4105.532	1
105		15	max	0	1	.91	3	.044	1 8.822e-3	3	NC	15	NC	2
106			min	354	4	-1.38	2	001	10 -1.348e-2	2	239.962	2	3964.222	1
107		16	max	0	1	.827	3	.036	1 7.99e-3	3	NC	15	NC	2
108			min	354	4	-1.265	2	001	10 -1.229e-2	2	285.056	2	4743.502	1
109		17	max	0	1	.717	3	.036	4 7.159e-3	3	NC	5	NC	2
110			min	354	4	-1.098	2	002	10 -1.11e-2	2	392.353	2	4722.633	
111		18	max	0	1	.586	3	.025	4 6.328e-3	3	NC	5_	NC	1
112			min	354	4	889	2	002	10 -9.904e-3	2	743.165	2	6681.288	
113		19	max	0	1	.442	3	.008	3 5.497e-3	3_	NC	_1_	NC	1
114			min	354	4	654	2	005	2 -8.71e-3	2	NC	1_	NC	1
115	M16	1	max	0	12	.201	2	.007	3 1.055e-2	3	NC	1_	NC	1
116		_	min	124	4	<u>158</u>	3	004	2 -1.303e-2	2	NC	_1_	NC	1
117		2	max	0	12	.115	1	.013	1 1.141e-2	3	NC	4_	NC NC	1
118			min	124	4	125	3	014	5 -1.351e-2	2	1733.439	2	NC NC	1
119 120		3	max	0 124	12	.05 101	3	.031	1 1.227e-2	<u>3</u>	NC 070 FF	5	NC 5619.164	2
121		4	min	1 <u>24</u> 0	12	101 .024	9	019 .045	5 -1.41e-2 1 1.313e-2	3	970.55 NC	<u>2</u> 5	5618.164 NC	2
122		4	max min	124	4	024 094	3	045	5 -1.468e-2	1	782.406	2	3834.709	
123		5	max	0	12	.026	9	.052	1 1.399e-2	3	NC	5	NC	2
124			min	124	4	105	3	008	5 -1.526e-2	1	779.517	2	3342.563	1
125		6	max	0	12	.056	1	.049	1 1.484e-2	3	NC	4	NC	2
126			min	124	4	134	3	001	10 -1.585e-2	1	950.446	2	3545.798	1
127		7	max	0	12	.121	1	.037	1 1.57e-2	3	NC	4	NC	2
128			min	124	4	177	3	003	10 -1.643e-2	1	1566.206	2	4686.127	1
129		8	max	0	12	.198	1	.021	14 1.656e-2	3	NC	1	NC	2
130			min		4	224	3	006	10 -1.701e-2			3		
131		9	max	0	12	.267	1	.019	3 1.742e-2	3	NC	4	NC	1
132			min	124	4	265	3	011	2 -1.76e-2	1	1625.77	3	NC	1
133		10	max	0	1	.297	1	.019	3 1.828e-2	3	NC	5	NC	1
134			min	125	4	283	3	014	2 -1.818e-2	1	1394.67	3	NC	1
135		11	max	0	1	.267	1	.019	3 1.742e-2	3	NC	4	NC	1
136			min	124	4	265	3	011	5 -1.76e-2	1	1625.77	3	NC	1
137		12	max	0	1	.198	1	.019	1 1.656e-2	3	NC	_1_	NC	2
138			min	124	4	224	3	011	5 -1.701e-2	1	2614.039	3	8883.356	
139		13	max	0	1	.121	1	.037	1 1.57e-2	3	NC	4_	NC	2
140			min	124	4	177	3	005	5 -1.643e-2	1_	1566.206	2	4686.127	1
141		14	max	0	1	.056	1	.049	1 1.484e-2	3	NC	4	NC	2
142			min	124	4	134	3	001	10 -1.585e-2	1_	950.446	2	3545.798	
143		15	max	0	1	.026	9	.052	1 1.399e-2	3_	NC	_5_	NC	2
144		40	min	124	4	105	3	0	10 -1.526e-2	1_	779.517	2	3342.563	
145		16	max	0	1	.024	9	.045	1 1.313e-2	3	NC 700 400	5	NC	2
146			min	124	4	094	3	0	10 -1.468e-2	1	782.406	2	3834.709	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

4.47	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
147		17	max	0	1	.05	1	.031	1	1.227e-2	3	NC 070.55	5	NC 5504.000	2
148		40	min	124	4	101	3	0	10	-1.41e-2	1_	970.55	2	5594.806	4
149		18	max	0	1	.115	1	.02	4	1.141e-2	3	NC	4	NC 0440.050	11
150		10	min	124	4	125	3	002	10	-1.351e-2		1733.439	2	8440.653	4
151 152		19	max	0 124	1	.201	3	.007	2	1.055e-2	3	NC NC	1	NC NC	1
	M2	1	min		4	1 <u>58</u>		004		-1.303e-2	2	NC NC	_	NC NC	2
153	IVIZ		max	.006	3	.008 012	3	.006 522	1 4	2.107e-3	5	7654.891	<u>1</u>		
154		2	min	008	1				1	-1.316e-4 2.106e-3			1	116.082	1
155			max	.006	3	.007	3	.006	4	-1.233e-4	<u>5</u> 1	NC 8797.934	2	NC	4
156 157		3	min	008 .006	1	012 .006	2	479 .005	1	2.105e-3	5	NC	1	126.49 NC	1
158		3	max	007	3	012	3	436	4	-1.151e-4	1	NC NC	1	138.869	4
		4	min	.005	1	.005	2	.005	1		<u> </u>	NC NC	1	NC	1
159		4	max		3		3			2.104e-3 -1.068e-4	1		1	153.735	4
160		E	min	007	1	011		394	1			NC NC	1	NC	1
161 162		5	max	.005 006	3	.004 011	3	.004 353	4	2.103e-3 -9.852e-5	<u>5</u> 1	NC NC	1	171.796	4
163		6	min	.005	1	.003	2	.004	1	2.102e-3	5	NC NC	1	NC	1
164		0	max	005 006	3	003	3	312	4	-9.025e-5	1	NC NC	1	194.033	4
165		7	min	.004	1	.002	2	.003	1	2.103e-3	4	NC NC	1	NC	1
		-	max		3		3			-8.197e-5	4	NC NC	1		_
166 167		8	min	005 .004	1	<u>01</u> .001	2	273 .003	1	2.105e-3	4	NC NC	1	221.84 NC	1
168		0	max	005	3	009	3	235	4	-7.37e-5	1	NC	1	257.261	4
169		9	min	.003	1	<u>009</u> 0	2	.002	1	2.106e-3	4	NC NC	1	NC	1
170		9	max	005	3	009	3	2	4	-6.542e-5	4	NC NC	1	303.384	4
		10	min		1						<u> </u>	NC NC	1	NC	1
171 172		10	max	.003 004	3	0 008	3	.002 166	4	2.107e-3 -5.715e-5	<u>4</u> 1	NC NC	1	365.06	4
173		11	min	.003	1	008 0	15	.002	1	2.108e-3		NC NC	1	NC	1
		11	max		3				4		4	NC NC	1		
174		12	min	<u>004</u>	1	007	3 15	135 001	1	-4.887e-5	1_1		1	450.268	1
175 176		12	max	.002 003	3	0 007	3	.001 106	4	2.109e-3 -4.06e-5	<u>4</u> 1	NC NC	1	NC 572.914	4
177		13	max	.002	1	<u>007</u> 0	15	106 0	1	2.11e-3	4	NC NC	1	NC	1
178		13	min	003	3	006	3	08	4	-3.232e-5	1	NC	1	759.049	4
179		14	max	.002	1	<u>000</u> 0	15	08	1	2.112e-3	4	NC	1	NC	1
180		14	min	002	3	005	3	057	4	-2.405e-5	1	NC	1	1062.316	4
181		15		.002	1	<u>005</u> 0	15	<u>057</u> 0	1	2.113e-3	4	NC	1	NC	1
182		13	max min	002	3	004	3	038	4	-1.577e-5	1	NC	1	1608.457	4
183		16	max	.002	1	0	15	<u>030 </u>	1	2.114e-3	4	NC	1	NC	1
184		10	min	001	3	003	3	022	4	-7.498e-6	1	NC	1	2753.774	4
185		17	max	001	1	<u>003</u> 0	15	_ 022 0	1	2.115e-3	4	NC	1	NC	1
186		17	min	0	3	002	3	01	4	-9.617e-7	3	NC	1	5874.591	4
187		18	max	0	1	0	15	0	1	2.116e-3		NC	1	NC	1
188		10	min	0	3	001	3	003	4	1.305e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>.005</u>	1	2.117e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	8.374e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.029e-7	12	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-4.1e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.012	4	1.625e-4	4	NC	-	NC	1
194			min	0	2	002	6	0	12	8.505e-7	12	NC	1	NC	1
195		3	max	0	3	002	15	.023	4	7.349e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	12	2.004e-6	12	NC	1	NC	1
197		4	max	.001	3	002	15	.034	4	1.307e-3	4	NC	1	NC	1
198			min	0	2	002	6	0	12	3.157e-6		NC	1	NC	1
199		5	max	.002	3	002	15	.045	4	1.88e-3	4	NC	1	NC	1
200			min	001	2	011	6	0	12	4.311e-6		9491.893	6	NC	1
201		6	max	.002	3	003	15	.055	4	2.452e-3	4	NC	1	NC	1
202			min	002	2	013	6	0	12	5.464e-6		7600.834	6	NC	1
203		7	max	.002	3	003	15	.065	4	3.025e-3	4	NC	5	NC	1
200			παλ	.002	J	.000	IU	.000		0.0206-0	-7	140	<u> </u>	110	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
204			min	002	2	016	6	0	12	6.617e-6		6467.399	6	NC	1
205		8	max	.003	3	004	15	.074	4	3.597e-3	4	NC	5_	NC	1
206			min	002	2	018	6	0	12	7.771e-6		5767.734	6_	NC	1
207		9	max	.003	3	004	15	.083	4	4.17e-3	4	NC	5	NC	1
208		40	min	003	2	019	6	0	12	8.924e-6	12	5349.885	6_	NC	1
209		10	max	.004	3	004	15	.092	4	4.742e-3	4	NC	5_	NC NC	1
210		4.4	min	003	2	02	6	0	12	1.008e-5		5139.706	<u>6</u>	NC NC	1
211		11	max	.004	3	004	15	.101	4	5.315e-3 1.123e-5	4	NC 5105.726	<u>5</u>	NC NC	1
212 213		12	min	003 .004	3	02 004	15	<u> </u>	1 <u>2</u>	5.887e-3	4	NC	5	NC NC	1
214		12	max min	004	2	02	6	0	12	1.238e-5		5246.998	6	NC NC	1
215		13	max	.005	3	004	15	.117	4	6.46e-3	4	NC	5	NC	1
216		13	min	004	2	018	6	0	12	1.354e-5		5594.218	6	NC	1
217		14	max	.005	3	004	15	.125	4	7.032e-3	4	NC	5	NC	1
218		17	min	004	2	016	6	0	12	1.469e-5	12	6226.066	6	NC	1
219		15	max	.006	3	003	15	.134	4	7.604e-3	4	NC	2	NC	1
220			min	004	2	014	6	0	12	1.584e-5	12	7318.593	6	NC	1
221		16	max	.006	3	002	15	.142	4	8.177e-3	4	NC	1	NC	1
222			min	005	2	011	6	0	12	1.7e-5		9299.452	6	NC	1
223		17	max	.006	3	001	15	.151	4	8.749e-3	4	NC	1	NC	1
224			min	005	2	008	1	0	12	1.815e-5	12	NC	1	NC	1
225		18	max	.007	3	0	15	.161	4	9.322e-3	4	NC	1	NC	1
226			min	005	2	005	1	0	12	1.93e-5	12	NC	1	NC	1
227		19	max	.007	3	0	5	.172	4	9.894e-3	4	NC	1	NC	1
228			min	006	2	002	1	0	12	2.046e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.005	2	0	12	5.205e-5	1_	NC	1_	NC	2
230			min	0	3	007	3	172	4	-5.171e-4	5	NC	1_	144.424	4
231		2	max	.003	1	.005	2	0	12	5.205e-5	1_	NC	1_	NC	2
232			min	0	3	007	3	158	4	-5.171e-4	5	NC	1_	157.205	4
233		3	max	.002	1	.005	2	0	12	5.205e-5	_1_	NC	_1_	NC	2
234			min	0	3	006	3	144	4	-5.171e-4	5	NC	1_	172.405	4
235		4	max	.002	1	.004	2	0	12	5.205e-5	_1_	NC	1_	NC	2
236		-	min	0	3	006	3	13	4	-5.171e-4	5_	NC	1_	190.656	4
237		5	max	.002	1	.004	2	0	12	5.205e-5	1_	NC	1_	NC 040.044	2
238			min	0	3	006	3	<u>117</u>	4	-5.171e-4	5	NC NC	1_	212.814	4
239		6	max	.002 0	3	.004 005	3	0 103	12	5.205e-5 -5.171e-4	<u>1</u> 5	NC NC	1	NC 240.067	2
241		7	min	.002	1	.003	2	103 0	12	5.205e-5	<u> </u>	NC NC	1	NC	2
242			max min	0	3	005	3	09	4	-5.171e-4	5	NC NC	1	274.1	4
243		8	max	.002	1	.003	2	09	12	5.205e-5	1	NC	1	NC	2
244			min		3	004	3	078	4	-5.171e-4		NC	1	317.373	
245		9	max	.001	1	.003	2	0	12	5.205e-5	1	NC	1	NC	1
246			min	0	3	004	3	066	4	-5.171e-4	5	NC	1	373.588	4
247		10	max	.001	1	.003	2	0	12	5.205e-5	1	NC	1	NC	1
248			min	0	3	004	3	055	4	-5.171e-4	5	NC	1	448.532	4
249		11	max	.001	1	.002	2	0	12	5.205e-5	1	NC	1	NC	1
250			min	0	3	003	3	045	4	-5.171e-4	5	NC	1	551.675	4
251		12	max	.001	1	.002	2	0	12	5.205e-5	1	NC	1	NC	1
252			min	0	3	003	3	035	4	-5.171e-4	5	NC	1	699.4	4
253		13	max	0	1	.002	2	0	12	5.205e-5	1	NC	1	NC	1
254			min	0	3	002	3	027	4	-5.171e-4	5	NC	1	922.116	4
255		14	max	0	1	.001	2	0	12	5.205e-5	1_	NC	1_	NC	1
256			min	0	3	002	3	019	4	-5.171e-4	5	NC	1	1281.699	4
257		15	max	0	1	.001	2	0	12	5.205e-5	1_	NC	1_	NC	1
258			min	0	3	002	3	013	4	-5.171e-4	5	NC	1_	1920.807	4
259		16	max	0	1	0	2	0	12	5.205e-5	1_	NC	1_	NC	1
260			min	0	3	001	3	008	4	-5.171e-4	5	NC	1	3233.878	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
261		17	max	0	1	0	2	0	12	5.205e-5	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-5.171e-4	5	NC	1	6683.805	4
263		18	max	0	1	0	2	0	12	5.205e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-5.171e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	5.205e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-5.171e-4	5	NC	1	NC	1
267	M6	1	max	.019	1	.026	2	0	1	2.186e-3	4	NC	3	NC	1
268			min	025	3	037	3	527	4	0	1	2310.048	2	114.98	4
269		2	max	.018	1	.024	2	0	1	2.183e-3	4	NC	3	NC	1
270			min	024	3	035	3	483	4	0	1	2526.208	2	125.29	4
271		3	max	.017	1	.022	2	0	1	2.179e-3	4	NC	3	NC	1
272			min	022	3	033	3	44	4	0	1	2785.106	2	137.552	4
273		4	max	.016	1	.02	2	0	1	2.176e-3	4	NC	3	NC	1
274			min	021	3	031	3	398	4	0	1	3098.446	2	152.279	4
275		5	max	.015	1	.017	2	0	1	2.173e-3	4	NC	3	NC	1
276			min	02	3	029	3	356	4	0	1	3482.359	2	170.17	4
277		6	max	.014	1	.015	2	0	1	2.17e-3	4	NC	3	NC	1
278			min	018	3	027	3	315	4	0	1	3959.572	2	192.197	4
279		7	max	.013	1	.013	2	0	1	2.166e-3	4	NC	3	NC	1
280			min	017	3	025	3	276	4	0	1	4562.951	2	219.743	4
281		8	max	.012	1	.011	2	0	1	2.163e-3	4	NC	1	NC	1
282			min	015	3	023	3	238	4	0	1	5341.483	2	254.832	4
283		9	max	.01	1	.01	2	0	1	2.16e-3	4	NC	1	NC	1
284			min	014	3	021	3	202	4	0	1	6370.839	2	300.523	4
285		10	max	.009	1	.008	2	0	1	2.156e-3	4	NC	1	NC	1
286			min	013	3	019	3	167	4	0	1	7773.048	2	361.621	4
287		11	max	.008	1	.006	2	0	1	2.153e-3	4	NC	1	NC	1
288			min	011	3	017	3	136	4	0	1	9755.513	2	446.032	4
289		12	max	.007	1	.005	2	0	1	2.15e-3	4	NC	1	NC	1
290			min	01	3	015	3	107	4	0	1	NC	1	567.532	4
291		13	max	.006	1	.003	2	0	1	2.147e-3	4	NC	1	NC	1
292		'	min	008	3	012	3	081	4	0	1	NC	1	751.93	4
293		14	max	.005	1	.002	2	0	1	2.143e-3	4	NC	1	NC	1
294		17	min	007	3	01	3	058	4	0	1	NC	1	1052.37	4
295		15	max	.004	1	.001	2	0	1	2.14e-3	4	NC	1	NC	1
296		10	min	006	3	008	3	038	4	0	1	NC	1	1593.433	4
297		16	max	.003	1	<u>.000</u>	2	<u>.000</u>	1	2.137e-3	4	NC	1	NC	1
298		10	min	004	3	006	3	022	4	0	1	NC	1	2728.127	4
299		17	max	.002	1	<u>.000</u>	2	0	1	2.134e-3	4	NC	1	NC	1
300		11/	min	003	3	004	3	01	4	0	1	NC	1	5820.132	4
301		18	max	.003	1	<u>004</u>	2	0	1	2.13e-3	4	NC	1	NC	1
302		10	min	001	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	<u>.005</u>	1	2.127e-3	4	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVII		min	0	1	0	1	0	1	-4.114e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.012	4	1.463e-4	4	NC	1	NC	1
308			min	001	2	003	3	0	1	0	1	NC	1	NC	1
309		3		.002	3	003 001	15	.023	4	7.04e-4	4	NC	1	NC	1
		3	max						1		1		1		1
310 311		4	min	002 .003	3	007 002	3 15	0 .034	4	0 1.262e-3	4	NC NC	1	NC NC	1
312		4	max		2				1	_	<u>4</u> 1	NC NC	1	NC NC	1
			min	003		01	15	0		1 9100 2		NC NC	1		1
313		5	max	.005	3	003	15	.045	4	1.819e-3	4		3	NC NC	
314		_	min	004	2	013	3	0	1	0	1_4	8370.741		NC NC	1
315		6	max	.006	3	003	15	.055	4	2.377e-3	4	NC 7042 022	1	NC NC	1
316		7	min	005	2	015	3	0	1	0	1_1	7042.922	3	NC NC	1
317		7	max	.007	3	004	15	.065	4	2.935e-3	4	NC	<u> 1 </u>	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

040	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318		8	min	006	2	017 004	3	<u> </u>	1	2 4020 2	1_1	6244.303 NC	3	NC NC	1
319 320		-	max	.008 007	3	004 019	15	<u>.074</u> 0	1	3.493e-3 0	<u>4</u> 1	5757.019	4	NC NC	1
321		9	min	.007	3	019 005	15	.083	4	4.05e-3	4	NC	2	NC NC	1
		9	max		2		3		1	_	<u>4</u> 1	5340.636			1
322		10	min	008 .01	3	02 005	15	<u> </u>	4	0 4.608e-3	4	NC	<u>4</u> 5	NC NC	1
324		10	max	01	2	005 021	4	0	1	0	1	5131.37	4	NC	1
325		11	max	.012	3	021 005	15	<u> </u>	4	5.166e-3	4	NC	5	NC	1
326		+ ' '	min	011	2	005 021	4	0	1	0.100e-3	1	5097.902	4	NC	1
327		12	max	.013	3	021 005	15	.108	4	5.723e-3	4	NC	5	NC	1
328		12	min	012	2	005 02	4	0	1	0.7236-3	1	5239.35	4	NC	1
329		13	max	.014	3	004	15	.116	4	6.281e-3	4	NC	2	NC	1
330		10	min	013	2	019	4	0	1	0.2010 0	1	5586.414	4	NC	1
331		14	max	.015	3	004	15	.124	4	6.839e-3	4	NC	2	NC	1
332		17	min	014	2	017	4	0	1	0.0000	1	6217.702	4	NC	1
333		15	max	.016	3	003	15	.131	4	7.396e-3	4	NC	1	NC	1
334		10	min	015	2	015	4	0	1	0	1	7309.069	4	NC	1
335		16	max	.017	3	003	15	.139	4	7.954e-3	4	NC	1	NC	1
336		1.0	min	016	2	012	3	0	1	0	1	9287.657	4	NC	1
337		17	max	.019	3	002	15	.148	4	8.512e-3	4	NC	1	NC	1
338			min	017	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.02	3	001	15	.157	4	9.07e-3	4	NC	1	NC	1
340			min	018	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	0	15	.166	4	9.627e-3	4	NC	1	NC	1
342			min	019	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.018	2	0	1	0	1	NC	1	NC	1
344			min	002	3	021	3	166	4	-6.107e-4	4	NC	1	149.008	4
345		2	max	.007	1	.017	2	0	1	0	1	NC	1	NC	1
346			min	002	3	02	3	153	4	-6.107e-4	4	NC	1	162.206	4
347		3	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
348			min	002	3	019	3	139	4	-6.107e-4	4	NC	1	177.903	4
349		4	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
350			min	002	3	018	3	126	4	-6.107e-4	4	NC	1	196.749	4
351		5	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
352			min	002	3	016	3	113	4	-6.107e-4	4	NC	1	219.628	4
353		6	max	.005	1	.013	2	0	1	0	1_	NC	1_	NC	1
354			min	002	3	015	3	1	4	-6.107e-4	4	NC	1	247.768	4
355		7	max	.005	1	.012	2	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
356			min	001	3	014	3	088	4	-6.107e-4	4	NC	1_	282.909	4
357		8	max	.005	1	.011	2	0	1	0	_1_	NC	_1_	NC	1_
358			min	001	3	013	3	076		-6.107e-4		NC	1	327.59	4
359		9	max	.004	1	.01	2	0	1	0	1	NC	1_	NC	1
360			min	001	3	012	3	064	4	-6.107e-4	4	NC	1_	385.633	4
361		10	max	.004	1	.009	2	0	1	0	1	NC	1_	NC	1
362			min	001	3	011	3	054	4	-6.107e-4	4	NC	1_	463.017	4
363		11	max	.003	1	.008	2	0	1	0	<u>1</u>	NC	_1_	NC	1
364			min	0	3	009	3	044	4	-6.107e-4	4	NC	<u>1</u>	569.518	4
365		12	max	.003	1	.007	2	0	1	0		NC	1	NC 700 050	1
366		1.0	min	0	3	008	3	034	4	-6.107e-4	4	NC	1_	722.052	4
367		13	max	.002	1	.006	2	0	1	0	1	NC	1_	NC 050 004	1
368			min	0	3	007	3	026	4	-6.107e-4	4	NC	1_	952.024	4
369		14	max	.002	1	.005	2	0	1	0	1	NC NC	1_	NC	1
370		4.5	min	0	3	006	3	019	4	-6.107e-4	4	NC NC	1_	1323.327	4
371		15	max	.002	1	.004	2	0	1	0	1_1	NC	1_1	NC 4002.20	1
372		10	min	0	3	005	3	013	4	-6.107e-4	4	NC NC	1	1983.28	4
373		16	max	.001	1	.003	2	0	1	0	1_1	NC NC	1	NC	1
374			min	0	3	004	3	007	4	-6.107e-4	4	NC	1_	3339.213	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	0	1	.002	2	0	1	0	1_	NC	1	NC	1
376			min	0	3	002	3	004	4	-6.107e-4	4	NC	1	6901.886	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	001	4	-6.107e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-6.107e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.008	2	0	10	2.167e-3	4	NC	1	NC	2
382	IVIIO		min	008	3	012	3	525	4	8.559e-6	10	7654.891	2	115.36	4
383		2	max	.006	1	.007	2	0	10	2.164e-3	4	NC	1	NC	1
384				008	3	012	3	482	4	8.002e-6		8797.934	2	125.703	4
		2	min												
385		3	max	.006	1	.006	2	0	10	2.161e-3	4	NC	1	NC 400,005	1
386			min	007	3	012	3	<u>439</u>	4	7.446e-6	10	NC	1_	138.005	4
387		4	max	.005	1	.005	2	0	10	2.157e-3	_4_	NC	_1_	NC	1
388			min	007	3	011	3	396	4	6.889e-6	10	NC	1_	152.78	4
389		5	max	.005	1	.004	2	0	10	2.154e-3	4	NC	<u>1</u>	NC	1
390			min	006	3	011	3	355	4	6.332e-6	10	NC	1	170.73	4
391		6	max	.005	1	.003	2	0	10	2.151e-3	4	NC	1	NC	1
392			min	006	3	01	3	314	4	5.775e-6	10	NC	1	192.83	4
393		7	max	.004	1	.002	2	0	10	2.148e-3	4	NC	1	NC	1
394			min	005	3	01	3	275	4	5.219e-6	10	NC	1	220.466	4
395		8	max	.004	1	.001	2	0	10	2.144e-3	4	NC	1	NC	1
396			min	005	3	009	3	237	4	4.662e-6	10	NC	1	255.671	4
397		9	max	.003	1	0	2	0	10	2.141e-3	4	NC	1	NC	1
398		9	min	005	3	009	3	201	4	4.105e-6	10	NC NC	1	301.512	4
		40											_		
399		10	max	.003	1	0	2	0	10	2.138e-3	4	NC	1	NC 000.04	1
400			min	004	3	008	3	167	4	3.549e-6	10	NC	1_	362.81	4
401		11	max	.003	1	0	2	0	10	2.134e-3	_4_	NC	_1_	NC	1
402			min	004	3	007	3	135	4	2.992e-6	10	NC	1_	447.499	4
403		12	max	.002	1	0	2	0	10	2.131e-3	4	NC	_1_	NC	1
404			min	003	3	007	3	106	4	2.435e-6	10	NC	1	569.399	4
405		13	max	.002	1	001	2	0	10	2.128e-3	4	NC	1	NC	1
406			min	003	3	006	3	08	4	1.878e-6	10	NC	1	754.406	4
407		14	max	.002	1	001	15	0	10	2.124e-3	4	NC	1	NC	1
408			min	002	3	005	3	057	4	1.322e-6	10	NC	1	1055.84	4
409		15	max	.001	1	001	15	0	10	2.121e-3	4	NC	1	NC	1
410		10	min	002	3	004	3	038	4	7.649e-7	10	NC	1	1598.7	4
411		16	max	.002	1	<u>.00+</u>	15	<u>.000</u>	10	2.118e-3	4	NC		NC	1
412		10	min	001	3	003	4	022	4	2.082e-7	10	NC	1	2737.191	4
		47			1										-
413		17	max	0		0	15	0	10	2.114e-3	4	NC	1	NC 5000.074	1
414		40	min	0	3	002	4	<u>01</u>	4	-7.767e-7	1_	NC	_	5839.674	
415		18	max	0	1	0	15	0		2.111e-3	4	NC	1	NC	1
416			min	0	3	001	4	003	4	-9.052e-6	_1_	NC	_1_	NC	1
417		19	max	00	1	00	1	00	1_	2.108e-3	_4_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-1.733e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	5.399e-6	1_	NC	1_	NC	1
420			min	0	1	0	1	0	1	-4.07e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.012	4	1.56e-4	4	NC	1	NC	1
422			min	0	2	003	4	0	1	-1.212e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	.023	4	7.19e-4	4	NC	1	NC	1
424		Ť	min	0	2	006	4	0	1	-2.964e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.034	4	1.282e-3	4	NC	1	NC	1
426				0	2	002 009	4	<u>.034</u>	1	-4.716e-5	1	NC	1	NC	1
		-	min						-				1		
427		5	max	.002	3	003	15	.045	4	1.845e-3	4_	NC 0000 COE	1_4	NC NC	1
428			min	001	2	012	4	0	1	-6.467e-5	1_	9029.695	4	NC NC	1
429		6	max	.002	3	004	15	.055	4	2.408e-3	4_	NC	1	NC	1
430			min	002	2	014	4	0	1	-8.219e-5	1_	7265.952	4	NC	1
431		7	max	.002	3	004	15	.064	4	2.971e-3	4	NC	5	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	002	2	017	4	0	1	-9.971e-5	1	6206.487	4	NC	1
433		8	max	.003	3	005	15	.074	4	3.534e-3	4	NC	5	NC	1
434			min	002	2	019	4	0	1	-1.172e-4	1	5552.531	4	NC	1
435		9	max	.003	3	005	15	.083	4	4.097e-3	4	NC	5	NC	1
436			min	003	2	02	4	001	1	-1.347e-4	1	5163.67	4	NC	1
437		10	max	.004	3	005	15	.091	4	4.66e-3	4	NC	5	NC	1
438			min	003	2	021	4	001	1	-1.523e-4	1	4971.538	4	NC	1
439		11	max	.004	3	005	15	.1	4	5.223e-3	4	NC	5	NC	1
440			min	003	2	021	4	002	1	-1.698e-4	1	4947.608	4	NC	1
441		12	max	.004	3	005	15	.108	4	5.786e-3	4	NC	5	NC	1
442			min	004	2	021	4	002	1	-1.873e-4	1	5092.219	4	NC	1
443		13	max	.005	3	005	15	.116	4	6.349e-3	4	NC	5	NC	1
444			min	004	2	02	4	002	1	-2.048e-4	1	5436.082	4	NC	1
445		14	max	.005	3	004	15	.124	4	6.912e-3	4	NC	5	NC	1
446			min	004	2	018	4	003	1	-2.223e-4	1	6056.424	4	NC	1
447		15	max	.006	3	004	15	.132	4	7.475e-3	4	NC	2	NC	1
448		1	min	004	2	015	4	003	1	-2.399e-4	1	7125.262	4	NC	1
449		16	max	.006	3	003	15	.14	4	8.038e-3	4	NC	1	NC	1
450		1.0	min	005	2	012	4	004	1	-2.574e-4	1	9059.859	4	NC	1
451		17	max	.006	3	002	15	.149	4	8.601e-3	4	NC	1	NC	1
452			min	005	2	009	4	004	1	-2.749e-4	1	NC	1	NC	1
453		18	max	.007	3	001	15	.158	4	9.164e-3	4	NC	1	NC	1
454		10	min	005	2	005	4	005	1	-2.924e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	.169	4	9.727e-3	4	NC	1	NC	1
456		13	min	006	2	002	1	006	1	-3.099e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.006	1	-3.726e-6	10	NC	1	NC	2
458	IVIIZ	+ '	min	0	3	007	3	169	4	-5.372e-4	4	NC	1	147.068	4
459		2		.003	1	.005	2	.005	1	-3.726e-6		NC	1	NC	2
		+-	max	.003	3	007	3	155	4		<u>10</u>	NC NC	1		
460		2	min		1		2		1	-5.372e-4	4	NC NC	1	160.085 NC	4
461 462		3	max	.002 0	3	.005	3	.005 141	4	-3.726e-6 -5.372e-4	<u>10</u>	NC NC	1	175.567	2
		1	min			006					4		•	NC	2
463		4	max	.002	1	.004	2	.004	1	-3.726e-6	<u>10</u>	NC NC	1_1		_
464		+-	min	0	3	006	3	128	4	-5.372e-4	4	NC NC	1_	194.155	4
465		5	max	.002	1	.004	2	.004	1	-3.726e-6	10	NC	1_	NC 040.700	2
466			min	0	3	006	3	114	4	-5.372e-4	4_	NC	1_	216.723	4
467		6	max	.002	1	.004	2	.003	1	-3.726e-6	<u>10</u>	NC	1_	NC 044470	2
468		_	min	0	3	005	3	<u>101</u>	4	-5.372e-4	4_	NC	_1_	244.479	4
469		7	max	.002	1	.004	2	.003	1	-3.726e-6	10	NC	1_	NC	2
470			min	0	3	005	3	089	4	-5.372e-4	4	NC	1_	279.141	4
471		8	max	.002	1	.003	2	.003	1	-3.726e-6		NC	1_	NC	2
472			min	0	3	004	3	077	4	-5.372e-4		NC	1_	323.213	4
473		9	max	.001	1	.003	2	.002	1	-3.726e-6	<u>10</u>	NC	_1_	NC	1
474			min	0	3	004	3	065	4	-5.372e-4	4	NC	1_	380.467	4
475		10	max	.001	1	.003	2	.002	1	-3.726e-6	10	NC	1_	NC	1
476			min	0	3	004	3	054	4	-5.372e-4	4	NC	1_	456.795	4
477		11	max	.001	1	.002	2	.002	1	-3.726e-6	10	NC	_1_	NC	1
478			min	0	3	003	3	044	4	-5.372e-4	4	NC	1	561.844	4
479		12	max	.001	1	.002	2	.001	1	-3.726e-6	10	NC	1_	NC	1
480			min	0	3	003	3	035	4	-5.372e-4	4	NC	1	712.298	4
481		13	max	0	1	.002	2	0	1	-3.726e-6	10	NC	1	NC	1
482			min	0	3	002	3	026	4	-5.372e-4	4	NC	1	939.13	4
483		14	max	0	1	.001	2	0	1	-3.726e-6	10	NC	1	NC	1
484			min	0	3	002	3	019	4	-5.372e-4	4	NC	1	1305.36	4
485		15	max	0	1	.001	2	0	1	-3.726e-6		NC	1	NC	1
486		10	min	0	3	002	3	013	4	-5.372e-4	4	NC	1	1956.283	
487		16	max	0	1	<u>.002</u> 0	2	0	1	-3.726e-6		NC	1	NC	1
488		10	min	0	3	001	3	008	4	-5.372e-4		NC	1	3293.636	
700			1111111		U	.001	U	.000		0.0126-4		110		0200.000	

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-3.726e-6	10	NC	1	NC	1
490			min	0	3	0	3	004	4	-5.372e-4	4	NC	1	6807.388	4
491		18	max	0	1	0	2	0	1	-3.726e-6	10	NC	1	NC	1
492			min	0	3	0	3	001	4	-5.372e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.726e-6	10	NC	1	NC	1
494			min	0	1	0	1	0	1	-5.372e-4	4	NC	1	NC	1
495	M1	1	max	.009	3	.225	2	.552	4	6.915e-3	1	NC	1	NC	1
496			min	005	2	065	3	0	10	-1.524e-2	3	NC	1	NC	1
497		2	max	.009	3	<u></u> .111	2	.537	4	7.025e-3	4	NC	5	NC	1
498			min	005	2	033	3	004	1	-7.567e-3	3	1188.107	2	NC	1
499		3	max	.009	3	.013	3	.521	4	1.271e-2	4	NC	5	NC	1
500		- 3	min	005	2	011	2	006	1	-1.166e-4	1	575.951	2	7559.307	5
		1													3
501		4	max	.009	3	.081	3	.505	4	1.097e-2	4_	NC 007.070	<u>15</u>	NC 5070.040	1
502		_	min	005	2	14 <u>5</u>	2	006	1	-3.787e-3	3	367.072	2	5373.849	
503		5_	max	.009	3	.165	3	.488	4	9.231e-3	4_	NC 000,070	<u>15</u>	NC 4054 000	1
504			min	005	2	283	2	004	1	-7.483e-3	3	266.978	2	4254.868	
505		6	max	.009	3	.254	3	.471	4	1.169e-2	2	8355.187	15	NC	1
506			min	005	2	416	2	002	1	-1.118e-2	3	211.517	2	3570.201	5
507		7	max	.008	3	.339	3	.453	4	1.558e-2	2	7071.264	15	NC	1
508			min	005	2	534	2	0	3	-1.487e-2	3	178.63	2	3094.437	4
509		8	max	.008	3	.409	3	.435	4	1.948e-2	2	6309.737	15	NC	1
510			min	005	2	627	2	0	12	-1.857e-2	3	159.118	2	2738.445	4
511		9	max	.008	3	.455	3	.416	4	2.173e-2	2	5910.404	15	NC	1
512			min	005	2	686	2	0	1	-1.913e-2	3	148.927	2	2498.294	4
513		10	max	.008	3	.472	3	.394	4	2.288e-2	2	5788.118	15	NC	1
514			min	005	2	706	2	0	10	-1.76e-2	3	145.936	2	2415.121	4
515		11	max	.008	3	.461	3	.369	4	2.403e-2	2	5910.13	15	NC	1
516			min	005	2	686	2	0	10	-1.606e-2	3	149.426	2	2445.567	
517		12	max	.007	3	.423	3	.343	4	2.29e-2	2	6309.079	15	NC	1
518		12	min	004	2	625	2	0	1	-1.402e-2	3	160.571	2	2590.536	
519		13	max	.007	3	.361	3	.311	4	1.836e-2	2	7069.974	15	NC	1
520		13	min	004	2	528	2	0	1	-1.122e-2	3	182.036	2	3054.026	
		4.4						_							4
521		14	max	.007	3	.281	3	.276	4	1.382e-2	2	8352.829	<u>15</u>	NC 4444 C4C	1
522		4.5	min	004	2	406	2	0	12	-8.416e-3	3	218.598	2	4114.646	
523		15	max	.007	3	.191	3	.239	4	9.281e-3	2	NC	<u>15</u>	NC	1
524			min	004	2	271	2	0	12	-5.616e-3	3	281.19	2	6685.736	
525		16	max	.007	3	.096	3	.204	4	8.166e-3	_4_	NC	<u>15</u>	NC	1
526			min	004	2	134	2	0	12	-2.815e-3	3	396.227	2	NC	1
527		17	max	.007	3	.005	3	.172	4	9.27e-3	4	NC	5	NC	1
528			min	004	2	006	2	0	12		3	639.985	2	NC	1
529		18	max	.007	3	.102	2	.146	4	5.435e-3	2	NC	5	NC	1
530			min	004	2	079	3	0	12	-1.796e-3	3	1348.417	2	NC	1
531		19	max	.007	3	.201	2	.124	4	1.085e-2	2	NC	1	NC	1
532			min	004	2	158	3	0	1	-3.66e-3	3	NC	1	NC	1
533	M5	1	max	.027	3	.358	2	.552	4	0	1	NC	1	NC	1
534			min	019	2	015	3	0	1	-9.904e-6	4	NC	1	NC	1
535		2	max	.027	3	.177	2	.541	4	6.497e-3	4	NC	5	NC	1
536		_	min	019	2	009	3	0	1	0	1	757.482	2	NC	1
537		3	max	.027	3	.037	3	.526	4	1.285e-2	4	NC	5	NC	1
538			min	019	2	03	2	0	1	0	1	352.115	2	6222.182	4
539		4	max	.026	3	.16	3	.509	4	1.047e-2	4	9403.637	15	NC	1
540		1	min	018	2	285	2	.509	1	0	1	212.409	2	4731.479	
		E								_					4
541		5	max	.026	3	.337	3	.491	4	8.089e-3	4	6518.273	<u>15</u>	NC	1
542			min	018	2	<u>565</u>	2	0	1	0 5 74 2 2	1_	147.667	2	3981.134	
543		6	max	.025	3	.539	3	.472	4	5.71e-3	4_	4983.768	<u>15</u>	NC	1
544			min	018	2	847	2	0	1	0	1_	113.092	2	3501.703	
545		7	max	.025	3	.739	3	.453	4	3.33e-3	4	4103.953	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		
546			min	017	2	-1.104	2	0	1	0	1_	93.203	2	3124.335	4
547		8	max	.024	3	.908	3	.434	4	9.508e-4	4	3595.275	<u>15</u>	NC	1
548			min	017	2	-1.311	2	0	1	0	1	81.675	2	2774.582	4
549		9	max	.024	3	1.017	3	.416	4	0	1_	3335.168	15	NC	1
550			min	017	2	-1.442	2	0	1	-5.314e-6	5	75.773	2	2492.748	4
551		10	max	.023	3	1.057	3	.393	4	4.12e-8	14	3256.851	15	NC	1
552			min	016	2	-1.487	2	0	1	-5.041e-6	5	74.049	2	2439.05	4
553		11	max	.022	3	1.031	3	.369	4	1.932e-7	14	3335.369	15	NC	1
554			min	016	2	-1.444	2	0	1	-4.768e-6	5	76.057	2	2482.518	4
555		12	max	.022	3	.94	3	.344	4	6.618e-4	4	3595.741	15	NC	1
556			min	016	2	-1.307	2	0	1	0	1	82.621	2	2542.403	4
557		13	max	.021	3	.793	3	.312	4	2.318e-3	4	4104.87	15	NC	1
558			min	015	2	-1.09	2	0	1	0	1_	95.7	2	2967.062	4
559		14	max	.021	3	.609	3	.276	4	3.975e-3	4	4985.512	15	NC	1
560			min	015	2	821	2	0	1	0	1	118.843	2	4139.179	4
561		15	max	.02	3	.405	3	.237	4	5.631e-3	4	6521.663	15	NC	1
562			min	015	2	532	2	0	1	0	1	160.538	2	7624.886	5
563		16	max	.02	3	.2	3	.2	4	7.287e-3	4	9410.688	15	NC	1
564			min	015	2	253	2	0	1	0	1	242.506	2	NC	1
565		17	max	.019	3	.012	3	.167	4	8.944e-3	4	NC	5	NC	1
566			min	014	2	017	2	0	1	0	1	426.995	1	NC	1
567		18	max	.019	3	.158	1	.142	4	4.524e-3	4	NC	5	NC	1
568			min	014	2	144	3	0	1	0	1	953.244	1	NC	1
569		19	max	.019	3	.297	1	.125	4	0	1	NC	1	NC	1
570			min	014	2	283	3	0	1	-4.745e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.225	2	.552	4	1.524e-2	3	NC	1	NC	1
572	-		min	005	2	065	3	0	1	-6.915e-3	1	NC	1	NC	1
573		2	max	.009	3	.111	2	.54	4	7.567e-3	3	NC	5	NC	1
574			min	005	2	033	3	0	10	-3.334e-3	1	1188.107	2	NC	1
575		3	max	.009	3	.013	3	.525	4	1.279e-2	4	NC	5	NC	1
576			min	005	2	011	2	0	10	-2.349e-5	10	575.951	2	6723.827	4
577		4	max	.009	3	.081	3	.508	4	1.011e-2	5	NC	15	NC	1
578			min	005	2	145	2	0	10	-3.899e-3	2	367.072	2	4965.607	4
579		5	max	.009	3	.165	3	.49	4	7.651e-3	5	NC	15	NC	1
580			min	005	2	283	2	0	10	-7.793e-3	2	266.978	2	4067.318	4
581		6	max	.009	3	.254	3	.472	4	1.118e-2	3	8323.08	15	NC	1
582			min	005	2	416	2	0	10	-1.169e-2	2	211.517	2	3504.418	4
583		7	max	.008	3	.339	3	.453	4	1.487e-2	3	7044.778	15	NC	1
584			min	005	2	534	2	0	1	-1.558e-2	2	178.63	2	3093.59	4
585		8	max	.008	3	.409	3	.435	4	1.857e-2	3		15	NC	1
586			min		2	627	2	0	1	-1.948e-2		159.118		2753.505	
587		9	max	.008	3	.455	3	.416	4	1.913e-2	3	5888.845	15	NC	1
588		Ĭ	min	005	2	686	2	0	10	-2.173e-2	2	148.927		2492.087	
589		10	max	.008	3	.472	3	.394	4	1.76e-2	3	5767.018	15	NC	1
590		1.0	min	005	2	706	2	0	1	-2.288e-2	2	145.936	2	2415.853	
591		11	max	.008	3	.461	3	.369	4	1.606e-2	3	5888.49	15	NC	1
592			min	005	2	686	2	0	1	-2.403e-2	2	149.426	2	2452.595	_
593		12	max	.007	3	.423	3	.343	4	1.402e-2	3	6285.813	15	NC	1
594		12	min	004	2	625	2	0	10	-2.29e-2	2	160.571	2	2576.61	4
595		13	max	.007	3	.361	3	.311	4	1.122e-2	3	7043.647	15	NC	1
596		13	min	004	2	528	2	0	10	-1.836e-2	2	182.036	2	3050.912	4
597		14	max	.007	3	.281	3	.275	4	8.416e-3	3	8321.308	15	NC	1
598		14	min	004	2		2		1	-1.382e-2			2	4185.616	5
		15				406		001			2	218.598		NC	
599		15	max	.007	3	.191	3	.238	4	5.616e-3	3	NC	<u>15</u>		1
600		10	min	004	2	271	2	004	1	-9.281e-3	2	281.19	<u>2</u>	7095.838	
601		16	max	.007	3	.096	3	.201	4	7.22e-3	5	NC	<u>15</u>	NC NC	1
602			min	004	2	134	2	005	1	-4.74e-3	2	396.227	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.007	3	.005	3	.169	4	9.072e-3	4	NC	5	NC	1
604			min	004	2	006	2	006	1	-4.023e-4	1	639.985	2	NC	1
605		18	max	.007	3	.102	2	.144	4	4.441e-3	5	NC	5	NC	1
606			min	004	2	079	3	004	1	-5.435e-3	2	1348.417	2	NC	1
607		19	max	.007	3	.201	2	.124	4	3.66e-3	3	NC	1	NC	1
608			min	004	2	158	3	0	12	-1.085e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.