and the second of the second

PREDICTION OF UNSTEADY AERODYNAMIC LOADINGS CAUSED BY LEADING EDGE AND TRAILING EDGE CONTROL SURFACE MOTIONS IN SUBSONIC COMPRESSIBLE FLOW -- COMPUTER PROGRAM DESCRIPTION

by

M. C. REDMAN and W. S. ROWE

Prepared under Contract No. NAS1-12020 by THE BOEING COMPANY RENTON, WASHINGTON

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

May 1975

1. Report No. NASA CR-132634 2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle PREDICTION OF UNSTEADY AERODYNAMIC LOADINGS CAUSED BY LEADING EDGE AND TRAILING EDGE	5. Report Date May 1975
CONTROL CONTROL SURFACE MOTIONS IN SUBSONIC COMPRESSIBLE FLOW—COMPUTER PROGRAM DESCRIPTION	6. Performing Organization Code
7. Author(s) M. C. Redman and W. S. Rowe	8. Performing Organization Report No.
9. Performing Organization Name and Address	10. Work Unit No.
The Boeing Commercial Airplane Company P. O. Box 3707 Seattle, Washington 98124	11, Contract or Grant No. NAS1-12020
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration	13. Type of Report and Period Covered
Washington, D.C.	14. Sponsoring Agency Code
15 Supplementary Notes	

Supplementary Notes

16. Abstract

A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach.

The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation.

The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.

17. Key Words (Suggested by Author(s))		18. Distribution Statemen	t	
Flutter, Wing-Control-Su	rface Flutter	, Unclassi	fied-Unlimite	ed
Aeroelasticity, Structur	al Dynamics,			
Aerodynamics, Unsteady A	erodynamics			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c		21. No. of Pages 157	22. Price*

TABLE OF CONTENTS

	SUMM	ARY	1
1.0	INTR	ODUCTION	3
2.0	DISC	USSION	5
	2.1	General Remarks	5
		Nomenclature	8
÷		Downwash Integral Equation	15
· .		Kernel Function	17
		Loading Functions	19
		Downwash Definitions	24
* 1 *		Solution for Undetermined Coefficients	26
		Unsteady Pressures, Sectional and Total	27
		Generalized Forces	
		00001011200 101000	
3.0	COMP	UTER PROGRAM USAGE	31
3.0	00.11	VIIIX INCOMMIT OBIOLI	
	3.1	Machine Requirements	31
		Operating System	31
		Storage Allocation	31
		Timing	36
	3.5	File I/O	37
		3.5.1 File Utilization	37
		3.5.2 C-Matrix Library	38
		3.5.3 File Formats	40
	3.6	Control Cards	55
	3.7		57
•	J.,	3.7.1 General Remarks	57
		3.7.2 Limitations	58
		3.7.3 Data Stacking	63
	3.8		70
-	, 3.0	3.8.1 Program Results	70
	•	3.8.2 Program Diagnostics	70
	3.9		74
	3.7	bampie imput/output	. / -
4.0	COMP	PUTER PROGRAM DESCRIPTION	101
	, .		101
	4.1		101
		Common Block Usage	104
	4.3	Program/Subroutine Description	131

indirection of the second of t	٠.						Page
APPENDIX	A –	NUMER	ICAL I	NTEGRATION	TECHNIQUES		147
APPENDIX	В -	MODAL	INTER	POLATION			151
REFERENCE	S						157

PREDICTION OF UNSTEADY AEROLYNAMIC LOADINGS CAUSED BY LEADING EDGE AND TRAILING EDGE CONTROL SURFACE MOTIONS IN SUBSONIC COMPRESSIBLE FLOW COMPUTER PROGRAM DESCRIPTION

By

M. C. REDMAN AND W. S. ROWE

SUMMARY

A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach.

The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation.

The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.

Page Intentionally Left Blank

1.0 INTRODUCTION

This document describes in detail the design and usage of the FORTRAN IV digital computer program, RHO IV. The RHO IV program was written as an engineering tool to be used in calculation of unsteady aerodynamic loadings on lifting surfaces with leading edge or trailing edge control surfaces in compressible subsonic flow per the analysis techniques presented in reference 1.

Features of this program include:

- Modal input in the form of surface deflections at arbitrary points - Input from disk file, tape, or cards
- Calculation of unsteady pressures at arbitrary points on the lifting surface planform
- Calculation of sectional generalized forces at arbitrary spanwise locations on the lifting surface planform
- Calculation of generalized forces
- Optional saving of unsteady pressures, sectional or total generalized forces for subsequent analysis
- Optimization of computer time through the capability to save and later reuse pressure/kernel influence coefficient matrices (C-matrices)
- Capability to provide for airfoil thickness corrections using velocity profile modifications supplied by the user
- Capability to analyze up to six separate closed gap control surfaces
- Capability to analyze coupled main surface and control surface modes

Included in this document are:

- Description of equations used in the program
- Description of variable length storage requirements
- Description of user I/Ø and scratch file formats
- List of program limitations
- Description of computer program usage

- Data stacking procedures
- Description of program output normal and diagnostic
- Sample problem input/output
- Description of program structure and routines used

2.0 DISCUSSION

2.1 GENERAL REMARKS

This section will present a description of the nomenclature and analysis as it appears in the RHO IV program. Although some information is given with each section, no attempt is made to develop or reference the sources of development of the theory involved. A full discussion of the latter is given in reference 1 of this document.

As described in reference 1, the problem of identifying the unsteady aerodynamic loading on a lifting surface without downwash discontinuities may be written as a boundary value problem.

$$W(x,y) = \frac{1}{4\pi\rho V^2} \int \int \Delta P_r(\xi,\eta) \cdot K(x-\xi,y-\eta,k,M) d\xi d\eta \qquad (2.1-1)$$

In equation 2.1-1, the left hand side, W(x,y), is the <u>Kinematic Downwash</u>, or effective angle of attack of the surface, due to the structural vibration mode. The right hand side of the equation is the mathematical downwash which is derived from the surface integration of unsteady pressure times an aerodynamic influence function. The latter, called the <u>Kernel Function</u>, is dependent upon geometry, reduced frequency, and Mach number. The unsteady pressure is unknown; however, knowing the physical characteristics of loading, the unsteady pressure may be approximated by a linear combination of <u>Assumed Pressure Terms</u> which will satisfy loading characteristics.

$$\Delta P_{r}(\xi,\eta) = 4\rho V^{2}\sqrt{S^{2}-\eta^{2}} \sum_{j} \Delta p_{j}(\xi,\eta), j=1,m$$
 (2.1-2)

If the <u>Downwash Integral Equation</u>, 2.1-1, is written for a number of descrete points on the surface, (<u>Downwash Points</u>, or collocation points, or control points), the resulting <u>Complex Linear System of Equations</u> may be expressed in matrix form as,

$$\{W(x,y)\} = [C]\{a\}$$
 (2.1-3)

where the elements of the C-matrix are

$$C_{ij} = \frac{1}{\pi} \int \int \Delta p_{j}(\xi, \eta) \cdot K(x_{i} - \xi, y_{i} - \eta, k, M) d\xi d\eta \qquad (2.1-4)$$

(Note that the C-matrix terms are independent of structural mode.) For a simple lifting surface problem, solution of 2.1-3 for the unknown coefficients of the assumed pressure terms, {a_j}, allows one to calculate the unsteady pressure at any point on the surface or integrate the unsteady pressure times modal displacements to give generalized force.

With the introduction of control surface motion relative to the remainder of the lifting surface (main surface) the problem becomes somewhat more difficult. In particular, the kinematic downwash distribution or sheet will contain a step discontinuity at the control surface with respect to the main surface. The use of additional assumed pressure terms with unknown coefficients to match the discontinuous boundary condition is prone to numeric difficulties. However, a pressure term associated with control surface rotation may be written which will give the required jump at the hinge and control surface side edge and which has a known coefficient. Thus

$$W^*(x,y) = \frac{1}{4\pi\rho V^2} \int \int \Delta P_s(\xi,\eta) \cdot K(x-\xi,y-\eta,k,M) d\xi d\eta \qquad (2.1-5)$$

where W*(x,y) will have the same jump discontinuity at the hinge and side edge as W(x,y) and will be relatively smooth away from the hinge. The control surface unsteady pressure term in equation 2.1-5 is a function of the control surface rotation at η , $\Theta(\eta)$, i.e., is dependent upon the structural mode. The control surface rotation is approximated by a cubic equation.

$$\Theta(\eta) = A_0 + A_1 \underline{\eta}_{CS} + A_2 \underline{\eta}_{CS}^2 + A_3 \underline{\eta}_{CS}^3$$
 (2.1-6)

where
$$\underline{\eta}_{CS} = (\eta - y_i)/(y_0 - y_i)$$

y_i = Inboard side edge of control surface

y_o = Outboard side edge of control surface

This representation of control surface rotation should suffice for a broad range of control surface twist. The expression for the assumed control surface pressure term is then

$$\Delta P_{s}(\xi,\eta) = 4\rho V^{2} \sqrt{S^{2}-\eta^{2}} \sum_{i=1}^{4} A_{i-1} \Delta \overline{P}_{i}(\xi,\eta)$$
 (2.1-7)

If equation 2.1-5 is written for the downwash points and expressed in matrix form,

$$\{W^*(x,y)\} = [C^*]\{A\}$$
 (2.1-8)

where the elements of the Control Surface C-matrix are

$$C_{ij}^* = \frac{1}{\pi} \int \int \Delta \overline{p}_j(\xi, \eta) \cdot K(x_i - \xi, y_i - \eta, k, M) d\xi d\eta \qquad (2.1-9)$$

and significantly, because of the polynomial representation of control surface rotation, are not dependent upon structural mode. If the kinematic downwash is modified by removing any discontinuity due to control surface rotation,

$$\overline{W}(x,y) = W(x,y) - W^*(x,y) \qquad (2.1-10)$$

the resulting residual downwash sheet, W(x,y), which is smooth, may be used to solve for the unknown coefficients of the assumed main surface pressure terms, {a;}. The total unsteady pressure is then a combination of main surface pressure and control surface pressure.

$$\Delta P(\xi,\eta) = \Delta P_{\mathbf{r}}(\xi,\eta) + \Delta P_{\mathbf{s}}(\xi,\eta) \qquad (2.1-11)$$

Thus unsteady pressure may be calculated at any point on the surface or integrated to produce generalized forces as in the simple lifting surface problem.

2.2 NOMENCLATURE

The RHOIV program works with dimensional coordinates (ξ,η) and non-dimensional coordinates $(\xi,\underline{\eta})$. The b_0 reference length used in reference 1 for k value and non-dimensionalizing of all coordinates is used in RHOIV only to arrive at $k = \omega/V$ from the user input $k = b_0\omega/V$. Note that differences in nomenclature between reference 1 and this section are noted parenthetically with the symbols.

SYMBOLS	DESCRIPTION
A (n; m, j)	Cubic coefficients (m=1,,4) in $\underline{\eta}_{CS}$ for mode j, for control surface n.
a (m, j)	Undetermined coefficients of assumed main surface pressure terms for mode j. (m=1,,no. of downwash points)
b ₀	Reduced frequency reference length.
p (u)	Local planform semi-chord. $b(n) = 0.5[\xi_t(n) - \xi_1(n)]$
C(x,y;m)	C-matrix terms for downwash point (x,y) associated with assumed main surface pressure terms. (m=1,,no. downwash points)
C* (x,y,n;m)	C-matrix terms for downwash point (x,y) associated with control surface n pressure terms. (m=1,,4)
C	Chordwise integral of $g(\xi,\eta) K(x_0,y_0,k,M)$, Eqn. 2.3-2.
C1,C2	Coefficients associated with control pressure expressions, Eqns. 2.5-11, 12.
E ₁ ,E ₂	Chordwise modification functions associated with control pressure expressions, Eqns. 2.5-16, 17.
f(n;i)	"Spanwise" portions of a pressure term. (i=1,,no. of chords, main surface analysis) (i=1,,4, control surface analysis)

SYMBOL	DESCRIPTION
F (x, y, η)	Portion of downwash integral expression, Eqn. 2.3-6.
G (χ, γ,η)	Portion of downwash integral expression, Eqn. 2.3-3.
G _{IS} ,G _{S1} ,G _{S2} ,G _{L1} ,G _{L2} ,G _{AT}	Portions of pressure expression associated with full chord control.
g (ξ,η;j)	"Chordwise" portion of pressure term, (j=1,,no. pts./chord, main surface) (j=1, control surface analysis)
Ħ	Spanwise modification function associated with control pressure expressions, Eqn. 2.5-11.
h	Integration limit in kernel function evaluation.
	$\sqrt{-1}$, or i-th displacement mode, or i-th "spanwise" pressure term.
11	Modified Bessel function.
j .	j-th displacement mode, or j-th "chordwise" pressure term.
$K(x_0,y_0,k,M)$	Full kernel expression.
$K_{ns}(x_0,y_0,k,M)$	Non-singular portion of K.
$K_{s}(x_{0},y_{0},k,M)$	Singular portion of K.
K ₁	Modified Bessel function
k	Reduced frequency, $k = \omega/V$.
k _r [k]	Reference reduced frequency, k =bo \omega/V.
L ₁	Struve function.
L ₁ ,L ₂	Portions of pressure expression associated with full chord control.

Mach number

Portion of pressure expression

M (ξ-x_s, η-y_s)

S	YM	R	T.

DESCRIPTION

associated with partial chord control.

m

A pressure term number.

 $N(\xi - x_s, \eta - y_s)$

Portion of pressure expression associated with partial chord control.

n

A control surface number.

 $\Delta P(\xi, \eta; j)$

Total change in pressure for mode j at point (ξ,η) . P(lower) -P(upper)

 $\Delta P_{r}(\xi,\eta;j)$

That portion of ΔP associated with the regular (assumed main surface) pressure terms.

 $\Delta P_s(\xi,\eta,n;j)$ $\Delta P_{ae}(\xi,\eta)$

That portion of ΔP associated with the pressure terms for control surface n.

 $\Delta p(\xi,\eta;m)$

The m-th assumed main surface pressure term value at (ξ,n) .

 $\overline{\Delta p}(\xi,\eta,n;m)$

The m-th pressure term associated with control surface n, value at (ξ, η) .

d.

Dynamic pressure, $q = 0.5_0 V^2$.

Q₁

Portion of pressure expression associated with full chord control.

Q(i,j)

Generalized force (generalized unsteady aerodynamic coefficient) for displacement mode i, pressure mode j.

 $Q_{r}(i,j)$

That portion of Q associated with the regular (assumed main surface) pressure terms.

Q (n;i,j)

That portion of Q associated with the pressure terms for control surface n.

 $\overline{Q}_{r}(i,m)$

Surface integral of $Z(\xi,\eta;i) \Delta p(\xi,\eta;m)$.

SYMBOL	DESCRIPTION
Q ^S (η:i,j)	Sectional generalized force (sectional generalized unsteady aerodynamic coefficient) for station n, displacement in mode i, pressure in mode j.
Q ^S (η;i,j)	That portion of Q^S associated with the regular (assumed main surface) pressure term.
Q ^S (η,n;i,j)	That portion of Q^S associated with the pressure terms for control surface n.
Qs (n;i,m)	Chordwise integral of $Z(\xi,\eta;i) \Delta p(\xi,\eta;m)$.
R	A modified distance between points in kernel and control pressure expressions.
\$	Planform semispan
•	Time
u [V ₁]	Local streamwise velocity.
V	Remote freestream velocity.
W(x,y;j)	Kinematic downwash at (x,y) for mode j.
W*(x,y,n;j)	Mathematical downwash at (x,y) for mode j due to control surface n pressure terms.
W(x,y;j)	Residual downwash at (x,y) in mode j: i.e. W with all control surface discontinuities removed.
W	Local normal (z) velocity.
x [b ₀ x]	Downwash point chordwise coordinate
*s'xi'xo	<pre>Control surface hinge corner (i = inboard), (o = outboard)</pre>
× ₀	x -ξ
λ [p ^o λ]	Downwash point spanwise coordinate.
¥o	y- η

	C	v	M	D	\sim	L
•	J	1	ניו	D	v	ı.

DESCRIPTION

SYMBOL	DESCRIPTION
Y _s , Y _i , Y _o	Control surface side edge (i=inboard), (o=outboard).
z (x,y,t) [Z]	Time dependent modal displacement normal to surface.
Z(x,y;i)	Modal displacement normal to surface at (x,y) in mode i.
β	√1-M²
$eta_{ extbf{H}}$	√β²+tan²Λ _H
$oldsymbol{eta_L}$	$\sqrt{\beta^2 + \tan^2 \Lambda_L}$
n [bon]	Dimensional spanwise coordinate.
<u>n</u> .	Non-dimensional spanwise coordinate, $\underline{\eta} = \eta/s$.
<u>n</u> cs	Non-dimensional spanwise coordinate referenced to control surface span, $\frac{\eta_{cs}}{q_{o}} = \frac{(\eta - y_{i})}{(y_{o} - y_{i})}.$
0	"Chordwise" non-dimensional pressure term coordinate, $\theta = \cos^{-1}(-\underline{\xi})$
Θ(η) [Θ _Η]	Control surface streamwise hinge rotation.
Λ_{H}	Control surface hinge sweep.
${f v}_{f L}$	Control surface leading edge sweep.
ξ [b ₀ ξ]	Dimensional chordwise coordinate.
<u>ξ</u> (η)	Non-dimensional chordwise coordinate, $\underline{\xi} = [\xi - \xi_m(\eta)]/b(\eta)$.
ξ _c (η)	Control surface hinge value.
ξ ₁ (η)	Planform leading edge value.
ξ _m (η)	Planform midchord value, $\xi_{\rm m} = [\xi_{\rm t}(n) + \xi_{\rm l}(n)]/2$

Planform trailing edge value.

ξ_t (η)

SYMBOL	DESCRIPTION
ρ	Fluid mass density.
ф	"Spanwise" non-dimensional pressure term coordinate, $\phi = \cos^{-1}(\underline{\eta})$
ω	Circular frequency of oscillation.

Planview of Lifting Surface and Coordinate System

Figure 1

2.3 DOWNWASH INTEGRAL EXPRESSION

The downwash integral expression, which relates kinematic and mathematical downwash, is

$$W(x,y) = \frac{1}{\pi} \int_{-S}^{S} \int_{-\eta^{2}}^{S} [f(\eta)C + G(x,y,y)/y_{0}^{2} - G'(x,y,y)/y_{0}] d\eta$$
 2.3-1 + G(x,y,y) + yG'(x,y,y)

where C is the integral of the product of the chordwise pressure term and the kernel function,

$$C = \int_{\xi_{1}(\eta)}^{\xi_{1}(\eta)} (x_{0}, y_{0}, k, M) d\xi + \int_{\xi_{1}(\eta)}^{\xi_{1}(\eta)} (x_{0}, y_{0}, k, M) d\xi + \sum_{\xi_{1}(\eta)}^{\xi_{1}(\eta)} (x_{0}, y_{0}, k, M) d\xi + \sum_{\xi_{1}(\eta)}^{\xi_{1}(\eta)} (x_{0}, y_{0}, k, M) d\xi$$

and G(x,y,y) and G'(x,y,y) are related to the evaluation of the dipole singularity; see reference 1.

$$G(x,y,\eta) = f(\eta) F(x,y,\eta)$$

$$G'(x,y,\eta) = \partial G(x,y,\eta) / \partial \eta = f'(\eta) F(x,y,\eta) + f(\eta) F'(x,y,\eta)$$

$$G(x,y,y) = \lim_{\eta \to y} G(x,y,\eta)$$
2.3-5

where $\Delta p(\xi, \eta) = f(\eta)g(\xi, \eta)$ is the loading function, and

$$F(x,y,\eta) = \int_{0}^{\xi_{t}(\eta)} g(\xi,\eta) [1 + x_{0}/\sqrt{x_{0}^{2} + \beta^{2}y_{0}^{2}}] e^{ikx} 0 d\xi \qquad 2.3-6$$

$$F(x,y,y) = 2 \cdot \int_{0}^{\xi_{t}(\eta)} g(\xi,y) e^{ikx} 0 d\xi \qquad 2.3-7$$

$$F(x,y,\eta) = \partial_{t}F(x,y,\eta) / \partial_{t} \qquad 2.3-8$$

$$F(x,y,\eta) = 2 \cdot \int_{0}^{\xi_{t}(\eta)} [\partial_{t}g(\xi,y) / \partial_{t}\eta] e^{ikx} 0 d\xi \qquad 2.3-9$$

$$F(x,y,y) = 2 \cdot \int_{0}^{\xi_{t}(\eta)} [\partial_{t}g(\xi,y) / \partial_{t}\eta] e^{ikx} 0 d\xi \qquad 2.3-9$$

Note that integration by parts, or a similar approach, is required in equation 2.3-9 for those terms, $\partial g(\xi,y)/\partial \eta$, which contain a singularity in the interval, see reference 1.

Note also, that the spanwise integrand associated with the singular kernel, i.e.,

$$\sqrt{S^{2}-\eta^{2}}[f(\eta)\int_{\xi_{1}(\eta)}^{\xi_{t}(\eta)} (x_{0},y_{0},k,M) d\xi + G(x,y,y)/y_{0}^{2} - G'(x,y,y)/y_{0}]$$

is of the form,

ln(yo/S)(regular function) + (regular function)

which requires log quadrature to be used around a downwash chord for that portion of the spanwise integrand.

2.4 KERNEL FUNCTION

The kernel function is an aerodynamic influence function relating the induced normal velocity at an arbitrary field point to a unit loading on a surface at some other point. In the case of a flat plate lifting surface, only the planar portion of the kernel is used. This may be written,

$$K_s(x_0,y_0,k,M) = k^2e^{-ikx_0}\{-(R+kx_0)/(Rk^2y_0^2) + i/R - (kx_0-MR)/(2\beta^2R) - \ln|(R-kx_0)/(2-2M)|/2\}$$
2.4-1

where $R = \sqrt{k^2 x_0^2 + \beta^2 k^2 y_0^2}$

The expression 2.4-1 has been shown to contain a number of singularities which cause numerical integration to be extremely expensive. The singularities have been identified and may be analytically subtracted from the full expression yielding a nonsingular function. The form of the singular portion of the kernel is

$$K(x_0,y_0,k,M) = -e^{ikx_0} \frac{1}{y_0} \frac{\partial}{\partial y_0} \int_{-\infty}^{h} [e^{ik\lambda}/\sqrt{\lambda^2 + y_0^2}] d\lambda$$
 2.4-2

where $h = [x_0 - M\sqrt{x_0^2 + y_0^2}]/\beta^2$

which reduces to eqn. 2.4-3 when k=0.

$$K_s(x_0,y_0,0,M) = -\{1 + x_0/\sqrt{x_0^2 + \beta^2 y_0^2}\}/y_0$$
 2.4-3

The singular portion is integrated separately from the nonsingular portion. Because of its singular nature, it requires a large number of evaluations when numerical integration is being performed; however, it is relatively inexpensive to evaluate. The nonsingular function is slightly more expensive to evaluate than the full kernel; however, because of its regular nature, it is evaluated much less during numerical integration.

Two forms of the nonsingular kernel are used. The first, Watkin's formulation, is faster to calculate (and numerically sufficiently accurate) for values of $k|y_0|\ge 1.0$. The second, Rosel's formulation, requires longer to calculate (particularly as $k|y_0|$ becomes large), but is numerically more accurate for $k|y_0|\le 1.0$.

For Watkin's form, defining

$$I_{\mathbf{a}} = \begin{cases} \frac{h/|y_0|}{[\tau e^{ik}|y_0|\tau/\sqrt{1+\tau^2}]}d\tau \end{cases}$$

2.4-4

The form of the full kernel expression is

$$K(x_0,y_0,k,M) = k^2 e^{ikx_0} \{ -K_1(k|y_0|)/k|y_0| - i.5\pi [I_1(k|y_0|)-L_1(k|y_0|)]/k|y_0| 2.4-5 + i/k|y_0| - kx_0 e^{ikh}/k^2y_0^2 + I_a \}$$

The two expressions, Eqns. 2.4-2,5 are combined to give the nonsingular form.

$$K_{ns}(x_0, y_0, k, M) = K(x_0, y_0, k, M) - K_s(x_0, y_0, k, M)$$
 2.4-6

In Eqn. 2.4-4, the term $\tau/\sqrt{1+\tau^2}$ is approximated by an exponential series, reference 6, which may be integrated analytically.

For Rosel's form, the nonsingular kernel is written directly,

$$K_{ns}(x_{0}, y_{0}, k, M) = k^{2}e^{-ikx_{0}} \{ \int_{0}^{\infty} [(e^{i\lambda} - 1 - i\lambda + \lambda^{2}/2)/(\lambda^{2} + k^{2}y_{0}^{2})^{3/2}] d\lambda$$

$$-kf$$

$$-kf$$

$$+\int_{0}^{\infty} [e^{i\lambda}/(\lambda^{2} + k^{2}y_{0}^{2})^{3/2}] d\lambda$$

$$+M(e^{ikh} - 1 - ikh + k^{2}h^{2}/2)/(\sqrt{k^{2}x_{0}^{2} + \beta^{2}k^{2}y_{0}^{2}}\sqrt{k^{2}h^{2} + k^{2}y_{0}^{2}})$$

$$+ik/\sqrt{k^{2}f^{2} + k^{2}y_{0}^{2}} - 1/[\sqrt{k^{2}f^{2} + k^{2}y_{0}^{2}}(\sqrt{k^{2}f^{2} + k^{2}y_{0}^{2}} + kf)]$$

$$-.5k^{2}(\ln[(\sqrt{k^{2}f^{2} + k^{2}y_{0}^{2}} + kf)/2] - kf/\sqrt{k^{2}f^{2} + k^{2}y_{0}^{2}}) \}$$

where the singular terms (the same as in Eqn. 2.4-2) are already removed. The exponentials in the integrals are written as infinite series and integrated analytically. The resulting infinite series of terms, which may be calculated in a recursive manner, are truncated when a predetermined conversion criteria is met.

2.5 LOADING FUNCTIONS

The loading functions used within RHOIV are of two types. The regular, or main surface, pressure terms are used to match the regular boundary condition associated with a simple lifting surface or the residual boundary condition associated with a lifting surface with controls when the control discontinuities have been removed. The singular, or control surface, pressure terms are used to match the change in boundary condition at a control surface hinge or side edge.

The regular pressure is assumed to be of the form

$$\Delta P_{r}(\xi, \eta) = 4\rho V^{2} \sqrt{S^{2} - \eta^{2}} \sum_{m} \Delta p(\xi, \eta; m) a(m)$$

$$= 4\rho V^{2} \sqrt{S^{2} - \eta^{2}} \{ \Delta p(\xi, \eta; m) \}' \{ a(m) \}$$

where a(m) are unknown coefficients. The term $\sqrt{S^2-\eta^2}$ has been included in the coefficient to simplify evaluation of the dipole singular portion of the downwash integral expression.

The assumed main surface pressure terms, $\Delta p(\xi, \eta)$, are themselves composed of a "spanwise" and a "chordwise" term, e.g.

$$\Delta p(\xi,\eta;m) = f(\eta;i)g(\xi,\eta;j)$$
 2.5-2

The set $\Delta p(\xi,\eta)$ is composed of all combinations of spanwise, $f(\eta)$, and chordwise, $g(\xi,\eta)$, terms. For the determined case, the number of spanwise terms is equal to the number of downwash chords (=NSPT), and the number of chordwise terms is equal to the number of points per downwash chord (=NCPT).

The spanwise terms used are

$$f(\eta;i) = \sin[(2 \cdot i - N) \phi] / \sqrt{S^2 - \eta^2}, \quad i = 1,..., NSPT$$
 2.5-3

where

$$\phi = \cos^{-1}(\eta)$$
, $\eta = \eta/S$
 $N = 1$ for \overline{a} symmetric analysis,
 $= 0$ for an antisymmetric analysis

The chordwise terms used are

$$g(\xi,\eta;1) = \cot(\theta/2)$$
 2.5-4

$$g(\xi, \eta; j) = sin[(j-1)\theta], j = 2,3,...,NCPT$$

where
$$\theta = \cos^{-1}(-\underline{\xi})$$
, $\underline{\xi} = (\xi - \xi_m(\eta))/b(\eta)$

Note that all $\Delta p(\xi,\eta)$ go to zero at the planform trailing edge and tip as the square root of the distance. The terms which are not associated with $g(\xi,\eta;1)$ go to zero at the leading edge in a similar manner. The terms which are associated with $g(\xi,\eta;1)$ have the inverse square root singular form which is required at the leading edge. Note also that f(0;i) is plus or minus one for a symmetric analysis, and zero for an antisymmetric analysis.

The (i,j) combinations of Eqn. 2.5-2 are ordered ((i=1,...,NSPT), j=1,..NCPT).

The singular pressure expression associated with a control surface is of the form,

$$\Delta P_{g}(\xi,\eta) = \rho V^{2} \theta(\eta) g(\xi,\eta) / \pi$$
 2.5-5

where as indicated in Eqn. 2.1-6 the streamwise control rotation, θ (η), is represented as a cubic,

$$\Theta(\eta) = \sum_{i}^{4} A(m) \underline{\eta}_{CS}^{m-1}$$

$$\underline{\eta}_{CS} = (\eta - y_i) / y_o - y_i$$
2.5-6

Defining the "spanwise" pressure terms to be,

$$f(\eta;i) = \frac{\eta^{i-1}}{GS} / 4\pi \sqrt{S^2 - \eta^2}$$
 2.5-7

Equation 2.5-5 becomes,

$$\Delta P_{s}(\xi,\eta) = 4\rho V^{2} \sqrt{S^{2}-\eta^{2}} \{\Delta p(\xi,\eta;m)\} \{A(m)\}$$
 2.5-8 where $\Delta p(\xi,\eta;m) = f(\eta;i)g(\xi,\eta)$ 2.5-9

The "chordwise" portion, $g(\xi,\eta)$, is composed of a pressure term from each side edge,

$$g(\xi,\eta) = g(\xi,\eta,y_0) - g(\xi,\eta,y_1) + S_f[g(\xi,\eta,-y_0) - g(\xi,\eta,-y_1)]$$
 2.5-10 where

yo'y = Outboard and inboard side edges for right hand side of
planform

 $-y_0, -y_1$ = Outboard and inboard side edges for left hand side of planform

S_f = +1 for a symmetric analysis, -1 for an antisymmetric
analysis

The terms $g(\xi,\eta,\gamma)$ consist of a portion derived, reference 1, in an asymptotic expansion process to satisfy the change in

boundary conditions across the hinge and side edge, and modification functions which maintain the necessary singular characteristics at the hinge and side edge but cause the total expression to have the correct characteristics at the planform boundaries. Two boundary value problems are used: (1) partial chord control, (2) full chord control. The partial chord expression is used for all side edges associated with trailing edge controls. The partial chord expression is subtracted from the full chord expression for all side edges associated with leading edge controls.

The spanwise modification function used for both the partial chord and full chord expression is

$$H(n) = \sqrt{1-C} (1 + .5C + .375C^2), C = [n-y]/[\pm S-y]$$
 2.5-11

The following coefficients are used independently of side edge for the partial chord control expression.

$$C_{1} = [-(1+k^{2}M^{2}/4\beta^{2}\beta_{H}^{2} + M^{2}/\beta_{H}^{2} + .5)/\beta_{H} - i(\xi-\xi_{C})(2k + M^{2}/\beta_{H}^{2})/\beta_{H}]$$

$$C_{2} = [(\xi-\xi_{C})k^{2}(1 + .5tan\Lambda_{H}) - 2ik]$$
2.5-13

The contribution to $g(\xi,\eta)$ for each partial chord side edge is then,

$$g(\xi,\eta,y) = H(\eta)[C_{1}E_{1}M(\xi-x_{s},\eta-y_{s}) + C_{2}E_{2}(\eta-y_{s})N(\xi-x_{s},-y_{s})] = 2.5-14$$
where $E_{1} = \sqrt{(2\xi_{c}-\xi_{1}-\xi)(\xi-\xi_{1})/(\xi_{c}-\xi_{1})}$ for $\xi<\xi_{c}$

$$\sqrt{(\xi_{t}-\xi)(\xi-2\xi_{c}+\xi_{t})/(\xi_{t}-\xi_{c})}$$
 for $\xi>\xi_{c}$

$$E_{2} = [(\xi-\xi_{1})^{2}(\xi_{t}-\xi)^{2}/\{(\xi-\xi_{1})^{2}+(\eta-y_{s})^{2}\}\{(\xi_{t}-\xi)^{2}+(\eta-y_{s})^{2}\}]^{1/4}$$

$$2.5-16$$

$$M(\xi-x_{s},\eta-y_{s}) = \ln[R-(\beta^{2}(\eta-y_{s})+(\xi-x_{s})\tan\Lambda_{H})/\beta_{H}]$$

$$2.5-17$$

$$N(\xi-x_{s},\eta-y_{s}) = \ln[R-(\xi-x_{s})]$$

$$2.5-18$$
and $R = \sqrt{(\xi-x_{s})^{2}+\beta^{2}(\eta-y_{s})^{2}}$

$$2.5-19$$

Note that C_1, C_2, M , and N were derived using the asymptotic expansion process; E_1 and E_2 are chordwise modification functions.

The following coefficients which are independent of (ξ,η) are side edge dependent in the full chord control expression.

where $C_1 = 1 - ik (x_{c} - x_{1})$ 2.5-20 $C_2 = k (-(x_{c} - x_{1}) kM^2/\beta^2 + i(\beta^2 - M^2)/\beta^2)$ 2.5-21 $(x_{c} - x_{1}) = (\xi_{c}(y_{s}) - \xi_{1}(y_{s}))$

The following terms are dependent upon side edge and upon (ξ , η) in the full chord control expression.

$$G_{IS} = E_3 Q_1 / \sqrt{\xi - \xi_1}$$
 2.5-22
 $G_{S1} = E_3 \sqrt{\xi - \xi_1} Q_1$ 2.5-23

$$G_{S2} = E_3 \sqrt{\xi - \xi_1} (C_1 L_2 + C_2 L_1)$$
 2.5-24

where $Q_1 = \beta \text{sign}(\eta - y_s) L_1 + \tan \Lambda_L L_2$ 2.5-25

$$L_2 = \sqrt{R - (\xi - \xi_C(Y_S))}$$
 2.5-26

$$\mathbf{L} = \sqrt{\mathbf{R} + (\xi - \xi_{\mathbf{C}}(\mathbf{y}_{\mathbf{S}}))}$$

$$R = \sqrt{(\xi - \xi_{C}(y_{S})) + \beta^{2}(\eta - y_{S})^{2}}$$
 2.5-28

and
$$C_1 = \tan \Lambda_L + ik[2(\xi - \xi_C(y_s)) \tan \Lambda_L - (3\beta_L^2 - 2\beta^2) (\eta - y_s)]/4\beta^2$$

 $C_2 = 1 + ik^2(\xi - \xi_1(\eta))/2\beta^2$ 2.5-30

and the chordwise modification function E3 is,

$$E_3 = \sqrt{3 - 2\xi - \xi^2} / 2$$
 2.5-31

additionally,

$$G_{I,1} = (\eta - y_S) [E_3 \ln ((C_1 + C_2)^2) - E_2 \ln (\beta_L^2 (\eta - y_S)^2)]$$
 2.5-32

$$G_{L2} = [1 + ik^2 (\xi^- \xi_1 (y_s) - .75 tan \Lambda_L (\eta^- y_s)) / \beta^2] G_{L1}$$
 2.5-33

where
$$C_1 = L_2^2 - tan \Lambda_L (\eta - \gamma_S)$$
 2.5-34

$$C_2 = \sqrt{2} \sqrt{\xi - \xi_1(y_s)} L_2$$
 2.5-35

and the chordwise modification function E_z is

$$E = [(\xi_{t} - \xi)^{2} \{(\xi_{t} - \xi_{1})^{2} + \beta^{2} (\eta - y_{s})^{2} \} / (\xi_{t} - \xi_{1})^{2} \{(\xi_{t} - \xi)^{2} + \beta^{2} (\eta - y_{s})^{2} \}]^{1/4}$$
and finally,

$$G_{hm} = E_2 \beta sign(\eta - y_s) \arctan(C_1/C_2)$$
 2.5-37

where
$$C_1 = \sqrt{2}\sqrt{\xi - \xi_{1}(Y_{S})} L_1$$
 2.5-38
 $C_2 = L_1^2 + (\eta - Y_{S}) \tan \Lambda_{L}$ 2.5-39

Note that all terms except $\rm E_2$ and $\rm E_3$ were derived using the asymptotic expansion process.

The contribution of each full chord side edge to $g(\xi,\eta)$ is

$$g(\xi,\eta,y_s) = [C_{IS}G_{IS} + C_{S1}G_{S1} + C_{S2}G_{S2} + C_{L1}G_{L1} + C_{L2}G_{L2} + C_{AT}G_{AT}] \quad 2.5-40$$

$$\cdot [e^{ik^2M^2 \{\xi - \xi_1(y_s)\}/\beta^2}]$$

2.6 DOWNWASH DEFINITION

The left hand side of the downwash integral equation is the kinematic downwash, or kinematic angle of attack, W(x,y). The kinematic downwash, which is derived from the modal displacements for some structural vibration mode, is the boundary condition which must be satisfied by the as yet unknown pressure distribution under the integral equation 2.3-1.

The following is applicable for any mode j; the subscript is omitted. Reference 1 presents a more detailed derivation and explanation.

If the equation of the surface of a general body in a flow field is written, F(x,y,z,t) = 0, the condition of no flow through the body is

$$DF/Dt = \partial F/\partial t + (\partial F/\partial x)u + (\partial F/\partial y)v + (\partial F/\partial z)w - 2.6-1$$

where DF/Dt is the substantial derivative with respect to time. When the body is a flat plate undergoing sinusoidal motion,

$$z(x,y,t) = Z(x,y)e^{i\omega t}$$
 2.6-2

The velocity normal to the surface, w, can be written,

$$\mathbf{w} = -[\partial \mathbf{z}/\partial \mathbf{t} + (\partial \mathbf{z}/\partial \mathbf{x})\mathbf{u} + (\partial \mathbf{z}/\partial \mathbf{y})\mathbf{v}]e^{\mathbf{i}\omega\mathbf{t}}$$

$$= -[(\partial \mathbf{z}/\partial \mathbf{x})\mathbf{u} + (\partial \mathbf{z}/\partial \mathbf{y})\mathbf{v} + \mathbf{i}\omega\mathbf{z}]e^{\mathbf{i}\omega\mathbf{t}}$$
2.6-3

Assuming there is no spanwise flow, the kinematic downwash (amplitude ratio), $W = (w/V)e^{i\omega t}$, is

$$W(x,y) = -[(\partial Z(x,y)/\partial x)(u/V) + ikZ(x,y)]$$
 2.6-4

where the term (u/V), called the <u>Velocity Profile</u>, is identically one for a flat plate. A first order approximation of thickness effects may be introduced using a velocity profile which is not identically one, see reference 2. This modification of the real part of the boundary condition is particularly significant when attempting to calculate control hinge moments for non-flat plate airfoil sections.

The RHOIV program will, at the user's option, generate an additional kinematic downwash column for a gust analysis. The forms available are

$$W(x,y) = [\cos(\phi) - i \cdot \sin(\phi)] \qquad 2.6-5$$

 $\Phi = \{k(x-x_{ref})\}, x_{ref} = a zero phase gust reference point$

which is referred to as a gradual penetration gust, and W(x,y) = [1 - 0i]

2.6-6

which is referred to as a discrete gust.

2.7 SOLUTION FOR UNDETERMINED COEFFICIENTS

In order to solve for the unknown coefficients of the assumed main surface pressure terms, a(m,j), the kinematic downwash, W(x,y;j), is first modified by removing the mathematical downwash, W*(x,y,n;j), associated with each control surface in the analysis. The resulting residual downwash, W(x,y;j), which is smooth and continuous, is used in the set of linear equations which is solved for the unknown coefficients.

$$[\overline{W}(x,y;j)] = [W(x,y;j)] - [W*(x,y,n;j)]$$
 2.7-1

where

$$[W*(x,y,n;j)] = [C*(x,y,n;m)][A(n;m,j)]$$
 2.7-2
then $[C(x,y;m)][a(m,j)] = [\overline{W}(x,y;j)]$ 2.7-3

2.8 UNSTEADY PRESSURES, SECTIONAL AND TOTAL GENERALIZED FORCES

The final results generated by the RHOIV program consist of delta pressures and generalized forces. The pressures are determined by evaluating the various pressure terms used at the desired output points and combining with the required coefficients. The generalized forces are determined by integrating pressures times modal displacements for all combinations of modes used. Sectional forces involve integrating along a chord; total forces involve integrating over the area of the planform half span.

All program output has the coefficient of $q = 0.5 PV^2$.

The pressure at any point (ξ,η) for some mode j is composed of a contribution from the assumed main surface pressure terms and a contribution from the pressure terms associated with each control surface.

$$\Delta P(\xi,\eta;j) = \Delta P_{\mathbf{r}}(\xi,\eta;j) + \sum_{\mathbf{n}} \Delta P_{\mathbf{s}}(\xi,\eta,n;j)$$
 2.8-1

where

$$\Delta P_r(\xi,\eta;j) = 4\rho V^2 \sqrt{S^2 - \eta^2} \{\Delta p(\xi,\eta;m)\} \{a(m,j)\}$$
 2.8-2

= contribution from assumed main surface
pressure terms

$$\Delta P_{S}(\xi,\eta,n;j) = 4\rho V^{2}\sqrt{S^{2}-\eta^{2}}\{\Delta p(\xi,\eta,n;m)\}!\{A(n;m,j)\}$$
 2.8-3

= contribution from control surface n
pressure terms

Note that the terms $\Delta p(\xi, \eta; m)$ can be calculated independently of k value and Mach number. The program output for pressures, $\Delta P(\xi \eta; j)/q$, has dimensions of (modal displacement units)/planform length units).

The sectional forces at a spanwise station η for the combination of i displacement mode and j pressure mode are also composed of contributions from main surface and control surface pressure terms.

$$Q^{S}(\eta;i,j) = \int_{\zeta}^{\xi} Z(\xi,\eta;i) \Delta P(\xi,\eta;j) d\xi$$

$$\xi_{1}(\eta)$$
2.8-4

$$[Q^{S}(\eta;i,j)] = [Q_{r}^{S}(\eta;i,j)] + \sum_{n} [Q_{S}^{S}(\eta,n;i,j)]$$
 2.8-5

where

$$[Q_r^{(n;i,j)}] = [\overline{Q}^{(n;i,m)}][a(m,j)]$$
 2.8-6

= contribution from assumed main surface
pressure terms

$$[\overline{Q}^{S}(\eta;i,m) = 4\rho V^{2}\sqrt{S^{2}-\eta^{2}} \int_{\xi_{1}(\eta)}^{\xi_{1}(\eta)} \Delta p(\xi,\eta;m) d\xi \qquad 2.8-7$$

Note that $\overline{\mathbb{Q}}^{S}$ may be calculated independently of k value and Mach No.

$$[Q_{S}^{S}(\eta, n; i, j)] = 4\rho V^{2} \sqrt{S^{2} - \eta^{2}} [\int_{z}^{z} (\xi, \eta; i) \Delta \overline{p}(\xi, \eta, n; m) d\xi] [A(n; m, j)] 2.8-8$$

= contribution from control surface n
pressure terms

The program output for sectional forces, [Q^S(η ;i,j)]/q, has dimensions of (modal displacement units)².

Similarly, the total generalized forces are given by

$$Q(i,j) = \int_{0}^{\infty} \int_{0}^{\infty} Z(\xi,\eta;i) \Delta P(\xi,\eta;j) d\xi d\eta$$

$$0 \xi_{1}(\eta)$$
2.8-9

$$[Q(i,j)] = [Q_r(i,j)] + \Sigma[Q_s(n;i,j)]$$
2.8-10

where

$$[Q_{\mathbf{r}}(i,j)] = [\overline{Q}_{\mathbf{r}}(i,m)][a(m,j)]$$
2.8-11

= contribution from assumed main surface
pressure terms

$$\overline{Q}_{\mathbf{r}}(\mathbf{i},\mathbf{m}) = 4\rho \mathbf{V}^2 \int_{0}^{\infty} \int_{0}^{\infty} \sqrt{\mathbf{S}^2 - \eta^2} Z(\xi, \eta; \mathbf{i}) \Delta \overline{p}(\xi, \eta; \mathbf{m}) d\xi d\eta \qquad 2.8-12$$

Note that \overline{Q}_{r} may be calculated independently of k value and Mach No.

= contribution from control surface n
pressure terms.

The program output for total forces, [Q(i,j)]/q, has the dimensions of (planform length units) (modal displacement units)?

Page Intentionally Left Blank

3.0 COMPUTER PROGRAM USAGE

3.1 MACHINE REQUIREMENTS

The RHO IV program system is written for the CDC 6000 series computer. It requires the use of a card reader, line printer, disk storage, a minimum of zero and a maximum of five tape drives.

3.2 OPERATING SYSTEM

The program runs under the SCOPE 3.1 or KRONOS operating systems. All system routines used are assumed to be standard CCC release. With the exception of COMPASS routines used for shifting and vector inner products, all source routines are coded in CDC 6600 FORTRAN IV. The overlay loading feature is used.

3.3 STORAGE ALLOCATION

The RHO IV program will load under a field length of 37000s.

The program has been written to use blank common as a working area for those portions of the analysis which are dependent upon the size of the user's problem. Specifically, there is no program limitation on the number of modes, modal input points, pressure output points, or sectional force output chords.

The minimum core requirement of 53000s words is determined by C-matrix calculation in which variable dimensioning is not used.

The requirements for the other sections will be calculated and printed at execution time; they may be precalculated using the formulae below. Some examples of required field lengths for selected problems is given following the equations. Note only those sections which will be used need be considered.

The following variables are used in describing core requirements:

- 1. NOVP Number of user supplied velocity profiles
- 2. NVPP(I) Number of points associated with velocity profile I. (Refer to user input, page 64)
- 3. NPRC Number pressure output chords
- 4. NPPT NPRC*NPPRC
- 5. NSGFC Number of sectional force output chords (Refer to user input, page 66. Note that default values may be supplied by the program.)
- 6. NOCS Number of control surfaces
- 7. NIPTS(I) Number of modal input points for zone I

8. MIPTS Max [NIPTS(I), I=1, NOCS+1]
9. NZONES Number of modal input zones, =NOCS+1
10. NDMDS Number of displacements modes
11. NPMDS Number of pressure modes
= NDMDS if .NOT.GUST

= NDMDS+1 if GUST (Refer to user input, page 68)

12. NDWP Number of downwash points = NDWC*NPDWC

13. NPTRM Number of assumed main surface pressure terms
(=NDWP currently)
(Refer to user input, page 66)

14. LIIA Length of IIA information15. LVP Length of velocity profile information

16 ICCR Length of control rotation information
17. MPCHD Maximum number of points/chcrd required for sectional or total generalized forces

18. MICHD Maximum number of chords required for generalized

force integration

19. LINDEX Length of CMFILE index (Refer to discussion below)

- (1) The interpolation information arrays are used to calculate control rotation coefficients, basic downwash matrix, and sectional and total generalized force precalculated information. The length involved is,
 - (a) LIIA = The sum of the lengths of all IIA arrays input by user (IIAIN=.TRUE.), or
 - (b) LIIA = NZONES*(3*NDMDS+23) + (NDMDS+4)*Sum[NIPTS(I), I=1, NZONES]
- (2) If controls are present, control rotation coefficients are used in all preparation routines. The length involved is,

LCCR = 4*NOCS*NDMDS

(3) If velocity profiles are used, cubic splines are generated for each profile, and the information used in calculation of control rotations and the basic downwash matrix.

LVP = 5*Sum[NVPP(I), I=1, NOVP] - NOVP

(4) For the purpose of performing sectional and total generalized force integration, maximums can be placed on the number of integration chords and points/chord which will be required. The maximum number of points/chord required for sectional or total generalized force integration is,

MPCHD = 22 + (4*NOCS+12) if NOCS>0

The maximum number of chords required for total generalized force integration is,

MICHD = 17 + 8*NOCS

(5) If a user supplied CMFILE is present, a CMFILE index is required. The length of a CMFILE index is,

LINDEX = 13*No. Main Surface C-matrices + No. Control Surface C-matrices

A minimum for each of the sections is given, followed by additive amounts for each subsection. The core required is the maximum required for any section used. The requirement for a section is the section minimum plus maximum required for any subsection used.

I. INPUT PREPARATION

51000₈ + Minimum of 1440₈

A. Velocity profile input

7*Max[NVPP(I), I=1, NOVP]-4

B. Pressure results

NPRC + NPPT

input

C. Sectional force
 results input

NSGFC

D. Modal input

la.MIPTS*(NDMDS+4)
or b.Maximum size of user input IIA

II. MODAL INPUT PREPARATION 370008 + LVP

A. Calculation of inter- 1. MIPTS* (NDMDS+2) +9*NDMDS polation information +2a. (MIPTS+3) **2MIPTS+3 or b.23+3* (MIPTS+NDMDS) +MIPTS* NDMDS

B. Calculation of control rotation coefficients

NZONES+LIIA+LCCR+3*NDMDS

III. RESULT PREPARATION

37000₈ +NZONES +LIIA + LCCR

A. Formation of basic kinematic downwash matrix

LVP+NDWP* (2*NPMDS+3) +NOCS+1

B. Unsteady pressure results preparation +2a.NPPT*NPTRM

1. NPRC+NPPT

or b.NPRC*NPMDS*NOCS

C. Sectional force preparation

1. NZONES+3*MPCHD+NPMDS

+2a.NDMDS*NPTRM

or b.MPCHD*NPMDS

+3. NSGFC

D. Generalized force results preparation +3. 2*MICHD

1..2. as in C above

IV. C-MATRIX CALCULATION

53000_a

C-MATRIX LIERARY USAGE

35000₈ + LINDEX + NDWP*NPTRM*2

VI. SOLUTION SECTION

35000_a

A. C-matrix/downwash output

1a.2*NDWP*NPTRM matrix printed or b.NOCS*(8*NDWP+4*NDMDS)+8*NDWP

B. Solution for surface pressure terms

1. NDWP*(2*NPTRM+N)

coefficients of main +2. NOCS*(8*NDWP+4*NPMDS)

Note that the value of N is selected on the user's field length, N=minimum of 3, maximum of 1+2*NPMDS.

C. Pressure coefficient 8*NPTRM output.

VII. RESULTS

35000a

A. Unsteady pressure calculation

1. NPRC+NPPT* (NPTRM+6)

+2a. 2*NPTRM

or b. 2*NPRC*NOCS

or c. 4*NPPT

+3. 2*NPPT (if NOCS>0)

B. Sectional force calculation

1. 2*NDMDS*NPMDS

+2a. NDMDS*NPTRM+2*NPTRM

or b. 119+20*NOCS (if NOCS>0)

+3. NSGFC

C. Generalized force 1.,2. as in B above calculation

In order to provide a user with an easily determined initial field length estimate the preceding equations have been applied for several combinations of user controlled parameters.

The following field length requirements are for a lifting surface with two (2) control surfaces where the assumption is made that the maximum number of input points per input zone is no more than 75% of the total number of input points. The field lengths have been rounded up to the nearest 50008.

Total No. Input Pts.	No. Modes	No. Cownwash Pts.	No. Pressure Output Pts.	FL Required
200	100	72	231	155
			100-0	150
		35	231-100-0	150
	40	72-35	231-100-0	130
	4	72-35	231-100-0	115
100	100	72	231-100-0	125
		35	231-100-0	105
	40	72	231	110
			100-0	65
		35	231	70
			100-0	60
	4	72	231	105
			100-0	60
		35	231	65
	,		100-0	minimum
7	4	72	231	105
			100-0	60
		35	231	65
			100-0	minimum

3.4 TIMING

The central processor time required to execute any problem is almost entirely dependent upon the number of C-matrices which must be calculated. A large (>90%) reduction in CP (central processor) time may be gained by utilizing previously generated C-matrices (refer to Section 3.5.2).

The principle factors in the CP time required to calculate a C-matrix are (1) the number of downwash points, (2) whether the matrix is associated with the main surface, a trailing edge control surface, or leading edge control surface, and (3) whether the condition is steady state $\{k=0\}$, or unsteady $\{k\neq 0\}$.

Items (2) and (3) plus planform shape and position of a downwash point on the planform will determine the CP time required for each downwash point. The values given below are average requirements for the sample problem of Section 3.9.

SURFACE	CONDITION	CP_SECONDS/DOWNWASH_PT.
MAIN	k = 0 k > 0	1.0 3.0
TRAILING FDGE CONTROL	k = 0 k > 0	3.0 11.0
LEADING EDGE CONTROL	k = 0 k > 0	11.0 27.0

The above values may be used initially to estimate CP time required for a users problem. Note that a C-matrix must be calculated or retrieved from a library for the main surface and each control surface in the problem for each condition. At execution time the RHO IV program prints the specific CP time required per downwash point for any C-matrix calculated as well as printing a breakdown of CP usage by the various other sections of the program.

3.5 FILE I/O

3.5.1 File Utilization

RHO IV uses standard input and output, two internal scratch files, and up to five (5) user specified input/output files. The scratch files are referenced in the program by different names, dependent upon the usage. All user input/output files have the record format described below for READM/WRITEM.

The files referenced are:

- (1) INPUT Standard input (BCD)
- (2) OUTPUT Standard output (BCD)
- (3) RHOSC1 Scratch file (binary)
 (MISFILE) Modal input scratch file
 (RESFILE) Result scratch file
- (4) RHOSC2 Scratch file (binary)
 (INSFILE) Input scratch file
 (CMSFILE) C-matrix scratch file
 (COFFILE) Coefficient file
- (5) MIFILE Modal input file, user specified file for input modal displacements and associated points (binary)
- (6) CMFILE C-matrix file, user specified input/output file containing the library of previously calculated C-matrices. (binary)
- (7) DPFILE Pressure output file, user specified output file containing all unsteady pressure results
- (8) SGFFILE Sectional force output file, user specified output file containing all sectional force results.
- (9) GFFILE Generalized force output file, user specified output file containing all generalized force results.

Note that the user specifies the file names for (5)-(9) in data input. Files (5), (7)-(9) may be equivalenced in any combination using one or more file names, the output for (7)-(9) will then be interleafed on a k-value, Mach number condition basis.

If a CMFILE is defined it must be descrete.

The user may also specify an initial file position for (5)-(9). MIFILE is positioned and used, then DPFILE, SGFFILE, and GFFILE are positioned, in that order. Therefore if a user gives two or more files the same name, the initial file position specified for the last in the above sequence would be used.

All input/output files use a two record format for each array written. Routines READM and WRITEM are used to read and write these records.

READM/WRITEM_FORMAT

Record 1 - ID Record Word 1 - 5HMATIØ

2 - MRØW = Row length of array

3 - MCØL = Column length of array

4 - LID = Length of user ID

5-(4+LID) - ID = User ID

Record 2 - ARRAY Record Words MRØW*MCØL - ARRAY, written
(ARRAY(I,J),I=1,MRØW),J=1,MCØL)

3.5.2 C-Matrix Library

The C-matrix library, maintained on a user specified I/Ø file, CMFILE, consists of a two file set. File 1 consists of all saved C-matrices written sequentially in the order saved. File 2 consists of an index of File 1. If the user specifies a CMFILE, the index is examined for a match each time a C-matrix is required. If a match is found the desired C-matrix is accessed and used. If a match is not found, the desired C-matrix is calculated, the index updated, and the new C-matrix and updated index are written to CMFILE. If a legitimate index is not found on the first attempt to access information in an execution, the specified file is assumed to be a new file; an initial null index will be generated and execution will continue. There is no program limit on the number of C-matrices in the library.

All arrays on CMFILE are written and read using READM/WRITEM.

The CMFILE index consists of a list of entries associated with each C-matrix sufficient to allow testing for a match on a retrieval attempt. Note that the user must utilize MSID in input to deferentiate between main surface planforms, and CSID to deferentiate between control surfaces associated with a main surface planform. A main surface entry in the INDEX consists of 13 words, and contains a counter for the number of associated control surface entries which follow. A control surface entry

consists of one word; it can only be referenced through its associated main surface entry.

MAIN SURFACE ENTRY

WORD	BITS	VAR. TYPE	VARIABLE.	DESCRIPTION
1	59-18 14-00	H T	MSID MATPØS	Main surface ID Position of matrix in file CMF1
2	35-30 29-24 23-18 17-12	I I I I	SYM NDWC NPDWC NSPT	Symmetry indicator No. downwash chords No. points/downwash chord No. spanwise main surface pressure terms
	11-6 5-0	I	NCPT NCSE	No. chordwise main surface pressure terms Number of associated con-
3 4 5 6 7-13	*	R R R H H	S KVAL MACH DATE RTITLE	trol surface entries Semi-span \(\omega / V - reduced frequency \) M - mach number Entry date Entry run title

CONTROL SURFACE ENTRY

WORD	PITS	VAR. TYPE	VARIABLE	DESCRIPTION	
1	59-18 17-15	H	CSID CSTYPE	Control surfa Control surfa Full span	
				Tip span Mid span	Leading edge
	14-00	I	MATP@S		Trailing edge

New main surface entries are appended to the bottom of the index. New control surface entries are inserted below the last previous control surface entry of its associated main surface entry.

3.5.3 File formats

All files, with the exception of INPUT and OUTPUT are described in this section; the order is alphabetical.

A file name, equivalent name, file type, and short description of usage are given in addition to record formats.

With respect to the headings, the following applies,

(1) REC. NØ. RECØRD NØ. OR IDENTIFIER

(2) REPETITION AN INTEGER SPECIFYING THE NUMBER OF IMMEDIATE REPETITIONS OF THE RECORD. REPETITIONS OF SETS

OF RECORDS ARE DESCRIBED PRIOR TO THE SET.

(3) VARIABLE PROGRAM, INPUT, OR OUTPUT VARIABLE NAME.

(DIMENSIONS) NUMBER OF ELEMENTS ASSOCIATED WITH THE VARIABLE. NOTE THAT ALL ARRAYS ARE WRITTEN

IN CDC6000 STORAGE ORDER, E.G.,

A(I,J,K) (((A(i,j,k),i=1,I),j=1,J),k=1,K)

(4) T TYPE OF INFORMATION

I - INTEGER

R - REAL

C - COMPLEX (NO. TERMS=2*FIRST DIMENSION)

H - HOLLERITH

M - MIXED

(5) DESCRIPTION | DESCRIPTION OF INFORMATION BY VARIABLE

The following variable names are used in describing DIMENSIONS.

1.	NØCS	NUMBER OF CONTROL SURFACES
2.	NØVP	NUMBER OF VELOCITY PROFILES
3.	NDWP	NUMBER OF DOWNWASH POINTS
4.	NPTRM	NUMBER OF ASSUMED MAIN SURFACE PRESSURE TERMS
2000		(=NSPT*NCPT, in most cases = NDWP)
5.	NDMDS	NUMBER OF DISPLACEMENT MODES
6	NPMDS	NUMBER OF PRESSURE MODES (EITHER NDMDS OR NDMDS+1)
7.	NØKVAL	NUMBER OF REDUCED FREQUENCIES
8.	NØMACH	NUMBER OF MACH NUMBERS
9.	NØCØND	NUMBER OF CONCITIONS = NØKVAL*NØMACH
10.	NPRC	NUMBER OF PRESSURE REPORT CHORDS
11.	NPPRC	NUMBER OF POINTS/PRESSURE REPORT CHORD
12.	NPPT	NUMBER OF PRESSURE OUTPUT PCINTS = NPRC*NPPRC
13.	NSGFC	NUMBER OF SECTIONAL FORCE OUTPUT CHORDS
14.	NPZØNE	NUMBER OF INPUT POINTS/MODAL INPUT ZONE
15.	LINDEX	LENGTH OF CMFILE INDEX

			'' 41. '' 1		
FILE	NAME: CMF	ILE TYPI	: S	EQUENTIAL BINARY	
by the matri	CMFILE is a user specified INPUT/OUTPUT file generated and used by the RHOIV program as a library of previously calculated commatrices. It is a multifile file; the first file is the set of all saved C-matrices, the second is an index of the first. Routines READM/WRITEM are used to READ/WRITE the file.				
REC. NO.	REPETITION	VARIABLE (DIMENSIONS)	T	DESCRIPTION	
The i	record pair lA	,B is repeated NOCM times	(re	efer to INDEX desc.).	
la	1	READM/WRITEM ID INFO (4) USER ID (4) 1-8HC-MATRIX 2-S 3-KVAL 4-MACH	H R R	REFER TO PAGE 38 ARRAY NAME SEMI-SPAN REDUCED FREQUENCY=\(\omega/V\) MACH NUMBER	
18	1	C (N, NDWP)	С	COMPLEX C-MATRIX, SAVED IN TRANSPOSE FORM. N=NPTRM FOR A MAIN SURFACE C-MATRIX, AND =4 FOR A CONTROL SURFACE C-MATRIX	
2	1	END OF FILE			
ЗА	1	READM/WRITEM ID INFO (4) USER ID (5) 1-10HCMFL INDEX 2-NOCM 3-NMSNTRY 4-CDATE 5-LMDATE	H I H H	NUMBER OF C-MATRICES NUMBER OF MAIN SURFACE ENTRIES OR C-MATRICES	

CMFILE INDEX - REFER TO PAGE 38

M

3B

1 -

INDEX (LINDEX)

FILE	NAME: CMS	FILE (= RHOSC2) FILE	TYPE: SECUENTIAL BINARY		
It is	generated by	ntial binary file used into CMCALC and/or RDWRTC and w k-value, Mach no. condition	used by PCMDWM and		
REC.	REPETITION	variable (dimensions)	T DESCRIPTION		
1	NDWP	ROWC (NPTRM)	C ROW OF MAIN SURFACE PRESSURE TERM C-MATRIX		
IF NO	IF NOCS>0, a set of Rec. 2 is repeated per control, i.e. NOCS times.				
2	NDWP	ROWC (4)	C ROW OF CONTROL SURFACE PRESSURE TERM C-MATRIX		

FILE NAME: COFFILE (= RHOSC2) FILE TYPE: SEQUENTIAL BINARY

COFFILE is a sequential binary file used internally by RHOIV.

COFFILE is a sequential binary file used internally by RHOIV. It is generated by SOLUTON and used by PCMSPT and the various result routines, FORMDP, FORMQS, and FORMQ, during the k-value Mach no. condition cycle.

REC.	REPETITION	VARIABLE (DIMENSIONS)	Т	DESCRIPTION
1	NPMDS	CMSPT (NPTRM)	С	COEFFICIENTS OF MAIN SURFACE PRESSURE TERMS FOR A PRESSURE MODE

FILE NAME: DPFILE FILE TYPE: SEQUENTIAL BINARY

DPFILE is a user specified output file which will contain any unsteady pressure results. Routine WRITEM is used to produce an ID record and record of values.

REC.	REPETITION	VARIABLE (CIMENSIONS)	Т	DESCRIPTION
1A	1	READM/WRITEM ID INFO (4) USER ID (4) 1-10HRHOIV Y-DP 2-NPRC 3-NPPRC 4-NPPT	HII	REFER TO PAGE 38 ARRAY NAME NUMBER OF PRESSURE REPORT CHORDS NO. POINTS/PRESSURE REPORT CHORD NC. PRESSURE POINTS
1B	1	YPRC (NPRC)	R	PRESSURE REPORT CHORDS
2A	1	READM/WRITEM ID INFO (4) USER ID (4) 1-10HRHOIV X-DP 2-NPRC 3-NPPRC 4-NPPT	I H I I	REFER TO PAGE 38 AS ABOVE
2B	1	XPPT (NPPT)	R	PRESSURE REPORT POINTS

The record pair 3A,B is repeated per mode, i.e. NPMDS times, for each k-value, Mach no. condition. The record pair will occur a total of NOKVAL*NOMACH*NPMDS times.

ЗА	1	READM/WRITEM ID INFO (4)		REFER TO PAGE 38
		USER ID (6) 1-8HRHOIV DP 2-RKVAL 3-B0 4-S 5-MACH 6-IMD	H R R R R	ARRAY NAME REF. K-VALUE= bo \(\omega / V \) K-VALUE REF. LENGTH SEMI-SPAN MACH NUMBER MODE NUMBER
3B	1	PRESS (NPPT)	С	COMPLEX PRESSURE AT OUTPUT POINTS FOR MODE IMD.

FILE	NAME: GFF	ILE FILE	ΤY	PE: SEQUENTIAL BINARY
gener	calized force	pecified output file which results. Routine WRITEM i record of values.	wi s u	.11 contain any used to produce
REC.	REPETITION	VARIABLE (DIMENSIONS)	Т	DESCRIPTION
Recor The r	d pair lA,B a	re repeated per k-value, M 11 occur a total of NOKVAL	ach *NC	number condition.
1 A	1	READM/WRITEM ID INFO (4) USER ID (5) 1-7HRHOIV Q 2-RKVAL 3-B0 4-S 5-MACH	M H R R R	ARRAY NAME REFERENCE K-VALUE = bo \(\O \sum / V \)
1B	1	Q (NDMDS, NPMDS)	С	COMPLEX GENERALIZED FORCE MATRIX.

FILE	NAME: INS	FILE (= RHOSC2) FILE	TY	PE: SEQUENTIAL BINARY	
It is	s generated by	ntial binary file used int various input routines an es IIACAL, CRCOEFF, RESPRE	dι	used by the various	
REC.	REPETITION	VARIABLE (CIMENSIONS)	Т	DESCRIPTION	
Reco	rd set 1 occur	s if NOVP>0, and is repeat	ed	NOVP times.	
lA	1	YVP	R	STATION AT WHICH A VELOCITY PROFILE IS DEFINED NUMBER OF POINTS AT WHICH VELOCITY PROFILE IS SPECIFIED.	
18	1	XVP (NVPP) CVP (4,NVPP-1)	R R		
	rd set 2 occur if DPPRT≠0, o	s if any pressure results r DPFILE≠0.	hav	ve been requested,	
2A	1	YPRC (NPRC)	R	PRESSURE REPORT CHORDS	
2B	1	XPPT (NPPT)	R	PRESSURE REPORT POINTS	
		s if any sectional force r SGFPRT≠0, or SGFFILE≠0.	esu	ılts have been	
3	1	YSGFC (NSGFC)	R	SECTIONAL FORCE OUTPUT CHORDS	
info	Record set 4 occurs unless IIAIN=.TRUE., i.e. unless interpolation information arrays have been input directly. The record set is repeated once for each input zone, i.e. NOCS+1 times.				
4A	1	NPZONE X (NPZONE) Y (NPZONE)	I R R	NUMBER OF INPUT POINTS IN ZONE X VALUES OF INPUT POINTS Y VALUES OF INPUT POINTS	
4B	NDMDS	z (npzone)	R	MODAL DISPLACEMENTS AT INPUT POINTS FOR ONE MODE	

infor	rmation has be	s if any user input of c en indicated, i.e. NOCS> e record set is repeated	0 AND	CRI(I)≠0 for
5	1	CCR (4, NDMDS)	R	CUBIC COEFFICIENTS OF CONTROL ROTATION OR $\Delta \partial Z/\partial x$ AT SPECIFIED HINGE POINTS

FILE	NAME: MIF	ILE	FILE T	YPE: SEQUENTIAL BINARY				
moda] Routi	MIFILE is a user specified input file which is used to provide modal input points and displacements to RHOIV from disk or tape. Routine WRITEM or an equivalent should be used to generate the ID record and value record.							
REC.	REPETITION	VARIABLE (CIMENSIONS)	Т	DESCRIPTION				
If II		of either records lA put, records 3A,B show						
case,	, assuming NOC	may occur once or 1+No S≠0, the modal input p h the main surface, and in input.	points	and displacements				
1A	1,	READM/WRITEM ID INFO	O (4) M	REFER TO PAGE 38 A USER ID OF UP TO 10 WORDS MAY BE INCLUDED. THE ID IS NOT USED BY RHOIV.				
1B	1	XY (NPZONE, 2)	R	MODAL INPUT POINTS				
2A	1	READM/WRITEM ID INFO USER ID (10)	O (4) M	REFER TO PAGE 38 A USER ID OF UP TO 10 WORDS MAY BE INCLUDED. THE ID IS NOT USED BY RHOIV.				
2B	1	Z (NPZONE, NDMDS)	R	MODAL DISPLACEMENTS AT INPUT POINTS				
NOTE: If there is only one input zone, i.e. NOCS=0, or if points for all zones are being input in the same block, NPZONE should be the total number input points. Otherwise NPZONE should be the number of input points for the particular zone.								
		f IIAIN=.T., in which ch input zone, i.e 1+1		· -				
3A	1	READM/WRITEM ID INFO USER ID (10)) (4) M	REFER TO PAGE 38 A USER ID OF UP TO 10 WORDS MAY BE INCLUDED. THE ID IS NOT USED BY RHOIV.				

	3B	1	IIA (NIIA)	R		INTERPOLATION INFOR- MATION ARRAY, NIIA=NO.
L		***			:	ELEMENTS IN ARRAY

MISF It is prepared	ILE is a seque s generated by aration prior	ential binary file used int MIINCK or IIACAL and read to the k-value, Mach no. c	eri by	all	
MISF REC. NO.	ILE will be us	ed if any modes exist. VARIABLE (DIMENSIONS)	T		DESCRIPTION
1	NOCS+1	NIIA IIA (NIIA)	I R		NUMBER OF IIA ELEMENTS INTERPOLATION INFOR. ARRAY FOR AN INPUT ZON

FILE	NAME: RES	FILE (=RHOSC1) FILE	TY	PE: SEQUENTIAL BINARY			
RESFILE is a sequential binary file used internally by RHOIV. It is generated by the various preparation routines, DWPREP, PRSPREP, SGFPREP, and GFPREP, prior to the k-value, Mach no. cycle, and used by the solution and result routines, PCMDWM, SOLUTON, FORMDP, FORMQS, and FORMQ, during the condition cycle.							
REC.	REPETITION	VARIABLE (CIMENSIONS)	Т	DESCRIPTION			
lA	NOCS IF NOCS>0	CCR (4 , NPMDS)	R	CUBIC COEFFICIENTS OF CONTROL ROTATION			
1B	NPMDS	W (NDWP)	R	COLUMN OF THE BASIC DOWNWASH MATRIX			
	rd set 2 occur if DPPRT≠0 or	s if any pressure results DPFILE #0.	hav	ve been requested,			
2A	1	YPRC (NPRC)	R	PRESSURE REPORT CHORDS			
2B	1	XPPT (NPPT)	R	PRESSURE REPORT POINTS			
2C	1	XBAR (NPPT)	R	NON-DIMENSIONAL (BAR NOTATION) REPR. OF PRESSURE REPORT POINTS			
2D	1	MSPTRM(NPFT,NPTRM)	R	ASSUMED MAIN SURFACE PRESSURE TERMS EVAL. AT PRESSURE REPORT POINTS.			
2E	NPMDS IF NOCS>0	FETA (NPRC, NOCS)	R	ROTATION OF CONTROL SURFACES AT PRESSURE REPORT CHORDS FOR A MODE			
Record set 3 occurs if any sectional force results have been requested, i.e. if SGFPRT #0 or SGFFILE #0.							
3A	1	YSGFC (NSGFC)	R	SECTIONAL FORCE OUTPUT CHORDS			
	The sequence 31	B-3E is repeated per secti times.	ona	l force output			
3B	1 REFER TO (1)	QSMSPT (NDMDS, NPTRM)	R	INTEGRALS OF ASSUMED MAIN SURFACE PRESSURE			

3B CONT				TERMS TIMES MODAL DISPLACEMENTS ALONG A SECTIONAL FORCE OUTPUT CHORD
(2)	The sequence 3	C-3E is repeated per contr	01	surface if NOCS>0.
3C	1 REFER TO (1) AND (2)	NIPTS XIPT (NIPTS) QTYPE (NIPTS)	I R H	NUMBER OF QUADRATURE POINTS QUADRATURE TYPE ASSOC. WITH QUADRATURE POINT
3D	1 REFER TO (1) AND (2)	FETA (NPMDS)	R	CONTROL ROTATIONS AT CHORD FOR ALL MODES
3E	NDMDS REFER TO (1) AND (2)	WZ (NIPTS)	R	QUADRATURE WEIGHTED DISPLACEMENTS AT XIPT FOR A MODE
		s if any total generalized e. if GFPRT≠0, or GFFILE≠0		orce results have
4A 4B	1 IF NOCS>0	QMSPT (NDMDS, NPTRM) NICHD YICHD (NICHD)	R	SURFACE INTEGRALS OF MAIN SURFACE PRESSURE TERMS TIMES MODAL DISPLACEMENTS NUMBER OF SPANWISE QUADRATURE CHORDS FOR SURFACE INTEGRATION QUADRATURE CHORDS
		C-4E is repeated once for d, i.e. NOCS*NICHD times.	<u></u>	
4C	1 REFER TO (3)	NIPTS XIPT (NIPTS) QTYPE (NIPTS)	I R I	NUMBER OF QUADRATURE POINTS QUADRATURE POINTS QUADRATURE TYPE ASSOC. WITH QUADRATURE POINTS
4D 4E	1 REFER TO (3) NDMDS REFER TO (3)	FETA (NPMDS) WZ (NIPTS)	R	CONTROL ROTATIONS AT A QUADRATURE CHORD QUADRATURE WEIGHTED DISPLACEMENTS AT XIPT
	10 (3)			FOR A MODE

The record pair 2A,B is repeated per sectional force output chord, i.e. NSGFC times for each k-value, Mach. no. condition. The record pair will occur a total of NOKVAL*NOMACH*NSGFC times. 2A 1 READM/WRITEM ID INFO (4) M REFER TO PAGE 38 USER ID (6) 1 - 8HRHOIV QS H ARRAY NAME	FILE NAME: SGF	FILE FILE	TYPE: SEQUENTIAL BINARY
NO. 1A 1 READM/WRITEM ID INFO (4) M REFER TO PAGE 38 USER ID (2) 1 - 10HRHOIV Y-QS H ARRAY NAME 2 - NSGFC I NO. SECTIONAL FORCE OUTPUT CHORDS 1B 1 YSGFC (NSGFC) R SECTIONAL FORCE OUTPUT CHORDS The record pair 2A,B is repeated per sectional force output CHORDS The record pair will occur a total of NOKVAL*NOMACH*NSGFC times. 2A 1 READM/WRITEM ID INFO (4) M REFER TO PAGE 38 USER ID (6) 1 - 8HRHOIV QS H ARRAY NAME 2 - RKVAL R REFERENCE K-VALUE=book 3 - BO R K-VALUE REF. LENGTH 4 - S R SEMI-SPAN MACH NUMBER	sectional force re	sults. Routine REALM is u	
USER ID (2) 1 - 10HRHOIV Y-QS 2 - NSGFC 1 NO. SECTIONAL FORCE OUTPUT CHORDS 1 YSGFC (NSGFC) R SECTIONAL FORCE OUTPUT CHORDS The record pair 2A,B is repeated per sectional force output chord, i.e. NSGFC times for each k-value, Mach. no. condition. The record pair will occur a total of NOKVAL*NOMACH*NSGFC times. 2A 1 READM/WRITEM ID INFO (4) M REFER TO PAGE 38 USER ID (6) 1 - 8HRHOIV QS 4 - 8 REFERENCE K-VALUE=book 3 - BO 4 - S 5 - MACH R REFERENCE K-VALUE=book R K-VALUE REF. LENGTH R SEMI-SPAN MACH NUMBER	•	VARIABLE (DIMENSIONS)	T DESCRIPTION
READM/WRITEM ID INFO (4) M REFER TO PAGE 38 USER ID (6) 1 - 8HRHOIV QS 2 - RKVAL 3 - B0 4 - S 5 - MACH REFER TO PAGE 38 REFER TO PAGE 3	The record pair 2A chord, i.e. NSGFC	USER ID (2) 1 - 10HRHOIV Y-QS 2 - NSGFC YSGFC (NSGFC) ,B is repeated per section times for each k-value, Ma	H ARRAY NAME I NO. SECTIONAL FORCE OUTPUT CHORDS R SECTIONAL FORCE OUTPUT CHORDS al force output ch. no. condition.
2B 1 QS (NDMDS, NPMDS) C COMPLEX SECTIONAL FOR	2A 1	READM/WRITEM ID INFO (4) USER ID (6) 1 - 8HRHOIV QS 2 - RKVAL 3 - B0 4 - S 5 - MACH 6 - ICHD	M REFER TO PAGE 38 H ARRAY NAME R REFERENCE K-VALUE=boω/ R K-VALUE REF. LENGTH R SEMI-SPAN R MACH NUMBER I OUTFUT CHORD NUMBER

3.6 CONTROL CARDS

There are basically four modes of execution, from

- a. source in scurce form:
- b. source in UPDATE form:
- c. relocatable binary;
- d. absolute binary.

In the following, use of specific control cards has been avoided; rather the required sequence of operations is specified. All file names with the exception of RHOIV, are arbitrary. Note that all overlays have the name RHOIV, thus a file RHOIV is generated at load time. For the cases above

- a. (1) Obtain a source file, PROG (2 records, from permanent storage (cards, tape, permanent disk file, etc.).
 - (2) Compile first record placing relocatable binary on BPROG.
 - (3) Compile second record placing relocatable binary on BSUBS.
 - (4) Generate an alternate library on SUBLIB from BSUBS.
 - (5) Load BPROG using alternate library SUBLIB.
 - (6) Execute from RHOIV.

*NOTE: On some systems, steps 4 and 5 of a. may be combined into one operation, e.g., loading BPROG using BSUBS directly as an alternate LIBRARY. On other systems in which the loader has no alternate library capability, a preload operation may be performed in which some program other than the loader searches for references in the routines in BPROG to routines in BSUBS generating a file LPROG, is then processed by the loader (i.e., the above program performs the alternate library function).

b. (1) Obtain an old program library file, OLDPL, from permanent storage.

- (2) Using UPDATE generate a source file, PROG (2 records). (In UPDATE terminology, PROG would correspond to the COMPILE file.)
- (3) Proceed with steps 2 6 of a.
- c. (1) Obtain a relocatable binary file, BPROG, main routines, from permanent storage.
 - (2) Obtain a relocatable binary file, BSUBS, alternate library subroutines, from permanent storage.
 - (3) Proceed with steps 4 6 of a.
- d. (1) Obtain an absolute binary file, RHOIV, from permanent storage.
 - (2) Execute from RHOIV.

3.7 PROGRAM INPUT

3.7.1 General Remarks

The input to RHOIV consists of both BCD input, e.g. cards, and binary, e.g. CMFILE or MIFILE. The card input includes planform description, definition of user I/O files, printed output specifications, list of k-values and Mach numbers and modal input description. Card input may also include velocity profile definitions, the distributions of downwash points, pressure output points, and sectional force output chords, and modal displacements with associated points. The binary input may consist of a library of C-matrices, and modal displacements with associated points or interpolation information arrays.

The card input consists of field dependent input and free field input. The field dependent input is identified in the field column of data stacking as a specific field (number) with associated format or as a LIST indicating sequential input per the FORMAT using as many cards as required. The free field input is identified by NAMELIST in the field column with associated list name in the FORMAT column. Some of the features of namelist input are:

- (1) Card(s) field consist of columns 2 through 80,
- (2) List consists of a \$ list name in column 2 followed by a series of specifications continued on as many cards as required and terminated by a \$.
- (3) Specifications are of the form:
 - a. Vname = Value
 - b. Vname(1) = Value1, Value2...,Valuen

Where Vname is one of the variable names for the list, value is the associated value(s). Value may be an integer, a floating point number in normal or exponential form, or in the case of a logical variable of the form.

- .T. or .True. indicating true
- .F. or .False. indicating false
- (4) Specifications must be separated by commas. NOTE there is no comma between the last specification and terminating \$.

- (5) Embedded blanks are allowed except within the \$ list name, variable name, or value. Note at least one blank must separate the \$ list name and the first specification.
- (6) The order of appearance of variables on the card(s) is not important - the spelling is.
- (7) Any or all of the variables may be left out of the list, e.g., \$list name .. \$ is legitimate. This assumes of course that there is a legal default value associated with the variable(s) not included in the list.

There are a number of input sets consisting of x and y locations on the planform. Where feasible, the option of specifying this information in physical or local non-dimensional coordinates (bar notation) has been allowed.

3.7.2 <u>Limitations</u>

The following are size limitations within the program (also noted in Data Stacking):

2≤NLE≤ 10	No. leading edge definition points
2≤NTE≤10	No. trailing edge definition points
0≤NOCS≤6	No. control surfaces
1≤ NDWC ≤N	No. downwash chords, N=72/NPDWC
$1 \le NPDWC \le 8$	No. Pts. per downwash chord
1≤NOKVAL≤20	No. reduced frequencies
1≤NOMACH≤20	No. mach numbers

The following are analysis limitations:

No downwash chord should be placed at the tip or control surface side edge. In general downwash chords should satisfy $|y-\eta_s| \ge .02S$ where η_s is the tip or a control side edge.

It is not recommended that a downwash chord be placed at or near a spanwise planform discontinuity, e.g., a change in leading edge or trailing edge slope.

No downwash point should be placed at the leading edge, trailing edge, or control surface hinge.

The downwash point distribution should be such that the boundary conditions are sufficiently defined. (A downwash point on a control surface is not specifically required.)

No pressure report chord or sectional generalized force report chord should be placed at a control surface side edge. No pressure report point should be placed on a control surface hinge.

60

RHOIV COSINE DISTRIBUTIONS

```
Distribution of chords - \eta = \cos(i\pi/(2N+1)), i = 1, N
N
1
    .5000
    .8090 .3090
    .9010 .6235 .2225
3
    .9397
          .7660
                 .5000 .1736
    .9595
          .8413 .6549 .4154
                               .1423
     .9709 .8855 .7485 .5681
                                .3546 .1205
     .9781 .9135 .8090 .6691 .5000 .3090 .1045
7
     .9830 .9325 .8502 .7390 .6025 .4457 .2737
                                                   .0923
     .9864 .9458
                 .8795
                         .7891
                                .6773 .5469 .4017
                                                   .2455 .0826
    Distribution of points/chord - \xi = -\cos\{2i\pi/(2N+1)\}, i = 1, N
N
1
     .5000
    -.3090
           .8090
    -.6235 .2225 .9010
    -.7660 -.1736
                  .5000 .9397
5
    -.8413 -.4154 .1423
                        .6549
                                .9595
   -.8855 -.5681 -.1205 .3546
                                .7485
                                       .9709
6
   -.9135 -.6691 -.3090 .1045 .5000
                                      .8090 .9781
7
   -.9325 -.7390 -.4457 -.0923 .2737
                                      .6026 .8502
                                                    .9830
8
```

FIGURE 3

NOTE: $\frac{\xi}{2} + .5$

3.7.3 DATA STACKING

CARD SET	FIELD NO.	FORMAT	VARIABLE	DESCRIPTION
(1)	TITLE			
1	1 1-70	7A10	RTITLE	RUN TITLE - OUTPUT HEADER
(2)	PLANFORM	DEFINITION	N	
2A	RHOA	NAMELIS'	NLE	Number of leading edge defn. pts. 2≤NLE≤10 (No Default)
			NTE	Number of trailing edge defn. pts. 2≤NTE≤10 (No Default)
			NCOS	Number of control surfaces 0≤NOCS≤6 (Default is 0)
			NOVP	Number of velocity profiles 0≤NOVP (Default is 0)
			MSID	A unique identifier which will be associated with any main surface C-matrix generated 1-5 digit integer (Default is 0)
			SYM	Symmetry Indicator 0 - Symmetric (default) 1 - Antisymmetric
			ВО	<pre>k-value reference length BO > 0 (Default is root semi- chord as determined from XLE(1), XTE(1)</pre>
			S	Semi-span, S> 0 (Default is YLE (NLE)-YLE(1))
2B	LIST	6F10.0	XLE(I)	NLE pairs of X,Y values Defining the planform leading edge YLE(I+1)>YLE(I)
2C	LIST	6F10.0	XTE(I) YTE(I)	NTE pairs of X,Y values defining the planform trailing edge YTE(I+1)>(YTE(I),

CARD	FIELD NO.	FORMAT	VARIABLE		DESCRIPTION		7
SET	COLUMNS			. 1			

(2) PLANFORM DEFINITION (Continued)

				Continued)	
II NOC	<u> </u>	U, re	peat set 21	NOCS times;	otherwise, omit 2D.
2D	1	1-10		CSID	An identifier to be associated with a control surface C-matrix.
	2 3	11-20 21-30		YHLI	X value of inboard hinge point Inboard control side edge.
	4	31-40	F10.0	XHLO	X value of outboard hinge point.
	5	41-50	F10.0	AHTO	Outboard control side edge.
	6	51-60	F10.0	LEIND	Leading edge control indicator #0 - leading edge, =0 - trailing edge (Default is 0).
If NO	VP>0 if N	, repea	at sets 2E YVP values	and F NOVP ti must be stri	imes; otherwise omit 2E, F. ctly increasing.
2E	1	1-10	F10.0	YVP	Station at which velocity profile is specified. If NOVP=1, any value may be used (e.g., 0).
	2	11-20	110	NVPP	Number of points defining velocity profile at YVP. (NVPP≥2)
2F	LI	ST	6F10.0	XVP(I) VP(I)	NVPP pairs of values XVP = fraction of chord VP = velocity profile value
					XVP(I) < XVP(I+1) XVP(1) ≤0. XVP(NVPP) ≥1.0

(3) FILE DEFINITION

3	RHOB	NAMELIST		Default for all filenames is 0 File name in the form = n , $(1 \le n \le 5)$
			MIFILE	Modal input file name
			CMFILE	C-matrix file name

CARD	FIELD NO.	FORMAT	VARIABLE	DESCRIPTION
SET	COLUMNS			
			DPFILE	Delta pressure file name
			00000	
The second			SGFFILE	Sect. gen. force file name
			CEETTE	Generalized force file name
			GFFILE	Generalized force file name
				Default for all file initial
				positions is 1
				posicions is i
			MIF1	Initial file position of MIFILE
				initial life position of Miring
			CMF1	Initial file position of CMFILE
 			0.11	THE POSICION OF CHILDR
			DPF1	Initial file position of DPFILE
				Zinadad zizid podzoton ot billini
*			SGFF1	Initial file position of
				SGFFILE
			GFF1	Initial file position of GFFILE
,				Note that CMFILE must be dis-
				crete; the others may be dis-
				crete or the same. If any of
				DPFILE, SGFFILE or GFFILE are
				the same, note that files are
ŀ .				positioned in the order.
				DPFILE/DPF1, SGFFILE/SGF1, and
				GFFILE/GFF1

(4) PRINTED OUTPUT DEFINITION

4	RHOC	NAMELIST		The default for all output control is 0.
				The input may be of form n<0 - print fcr all conditions =0 - no print-out n>0 - print for first n conditions
			DPPRT SGFPRT GFPRT	Delta pressure print control Sectional gen. force print control Generalized force print control

CARD SET	FIELD NO. COLUMNS	FORMAT	VARIABLE	DESCRIPTION
			DWMPRT CMPRT PCMPRT	Downwash matrix print control C-matrix print control Pressure coefficient matrix print control

(5) PLANFORM DISTRIBUTIONS

					
5 A	RHOD	NAMELIST	NDWC	Number of downwash chords 0< NDWC * NPDWC ≤72 (No Default) If NDWC<0, a default cosine distribution will be generated. YDWC(I)=COS(iπ / (2NDWC+1)) XPWD(I)=-COS(2iπ / (2NPDWC+1)) Number of points per downwash chord. 0< NPDWC ≤8 (No default) If NPDWC<0, the user input in set 5B is assumed to be in local non-dimensional	
			NPRC (1)	local non-dimensional coordinates (EAR notation) Number of pressure output chords. If NPRC <0, the user input in set 5C is assumed to be in local non-dimensional coordinates Number of points per pressure	
output chord. (1) If no user output chords are specified, but printed output or file output is indicated, a default set of 11 output chords (and for pressure, 21 output points/chord) is used (n = .01,.1,.2,,8,.9,.99), (ξ =99,9,8,,8,.9,.99).					
			NSGFC (1)	Number of sectional force output chords. If NSGFC<0, the user input in set 5D is assumed to be in non-dimensional coordinates.	

CARD SET	FIELD NO.	FORMAT	VARIABLE	DESCRIPTION
will in 5B	be used. should be	Otherwise,	repeat set 51	default cosine distributions 3 NDWC times. Note that input 5 if NPDWC>0, and in local non-
5B	1 1-10	F10.0	YDWC .	Y or Y of downwash chord
	LIST	6F10.0 (7F10.0)	XDWP(I)	X or X of points on downwash chord I=1,NPDWC
that	input in 5	C should be		eat set 5C NPRC times. Note coordinates if NPRC > 0, and E NPRC < 0.
5C	1. 1-10 LIST	F10.0 6F10.0 (7F10.0)	YPRC XPPT(I)	Y or Y pressure output chord X or X points on pressure output chord. I=1,NPPRC
	inates if			out in 5D should be in physical on-dimensional coordinates if
5D	LIST	7F10.0	YSGFC (I)	Y or Y of sectional force output chords. I=1,NSGFC
(6)	CONDITION	DEFINITION		
6	RHOE	NAMELIST	KVALUE	List of reduced frequencies, (k≤0)
6	RHOE	NAMELIST	KVALUE MACHNØ	<pre>(k≤0) List of Mach numbers (0≤M<1.0) Both items must have at least</pre>
		NAMELIST T DEFINITIO	MACHNØ	<pre>(k≤0) List of Mach numbers (0≤M<1.0)</pre>

CARD SET	FIELD NO.	FORMAT	VARIABLE	DESCRIPTION
				NOCS #0, all input points may
				be input in a single block,
				in which case the program
				will determine which input
* . * . * . * . * . * . * . * . * . * .				points lie in which input zon
_				
7A.			NDMDS	Number of displacement modes
(cont	()			
•			ZF	A user supplied multipli-
				cative factor which will be
				applied to modes input in
				card set 7C. (Default is 1.0)
	}			card set /c. (Derautt 15 1.0)
			CDT (T)	Comband makakian imme indi
			CRI(I)	Control rotation input indi-
				cator
				n<0, Delta 32/3X will be spec
				fied at required hinge points
				n=0, no input
				n>0, Cubic coefficients of
				control rotation will be
				specified
•	[]			(Default is 0 for all I)
				I=1, NOCS
4 :			. ,	1-1, NOC3
			Danam	
]	-	DGUST	Discrete gust option
				(Default = .F.)
				DGUST = .T. will cause a dis-
	[crete gust mode to be appended
				to the set of displacement
		•		modes.
			GPGUST	Gradual penetration gust
• • •	l' .			option (Default=.F.) GPGUST=.
,				will cause a gradual pene-
		•	• ;	
				tration gust mode to be
				appended to the set of dis-
	1	• • • • • • • • • • • • • • • • • • • •		placement modes.
•]			
	į į		GPGREF	Gradual penetration gust
]			reference (zero phase) point.
İ	1	•		(Default = 0)
				\

If MIFILE #0, i.e., if modal input is to be read from MIFILE, or if NDMDS=0, omit sets 7B and C. Otherwise, repeat sets 7B and C once or once per each input zone, i.e., either 1 or NOCS+1 times.

CARD SET	FIELD NO. COLUMNS	FORMAT	VARIABLE	DESCRIPTION
7 B	LIST	6 F10. 0	X(I),Y(I)	Modal input points, I=1,NIPTS note (X(I),Y(I)) # (X(J),Y(J)) for I#J
Repea	t set 7C o	nce for eac	ch displaceme	nt mode, i.e, NDMDS times.
7C	LIST	7F10.0	Z (1)	Modal displacement at point (X(I),Y(I)),I=1,NIPTS
If an	y CRI(I) ≠0	, repeat se	et 7D once fo	r each CRI(I)≠0.
7D	RHOG	NAMELIST	Or DZDX(I,J)	Cubic coefficients of control rotation (Default = 0) I=1,4; 1-C ₀ , 2-C ₁ , 3-C ₂ , 4-C ₃ J=1,NDMDS Only those terms which are non-zero need be input Delta DZ/DX at control hinge equation points, I=1,4. (n_cs = 0,1/3,2/3,1) J=1,NDMDS

(8) TERMINATION DEFINITION

8	1	1-7	A7,3x	LNAME	Termination indicator {Blank } "EXIT" CALL EXIT "RETURN" execute return to calling overlay
					Anything else, execute
					CALL OVERLAY (LNAME, L1, L2, 0)
	2	11-20	I10	L1	Primary level overlay no.
	3	21-30	I 10	L2	Secondary level overlay no.

3.8 PROGRAM OUTPUT

3.8.1 Program Results

Printed output of program results consists of an initial block of information reflecting the user's input, followed by those intermediate and final results specified in card set 4, Printed Output Definition. The output controlled by card set 4 is calculated for each k-value Mach number condition; the user may elect to have all, none, or some first n conditions printed.

The intermediate output consists of downwash matrices, C-matrices, and coefficients of assumed main surface pressure terms. If C-matrix printout is specified and control surfaces exist, the C-matrices for all controls as well as the main surface pressure terms are printed. If downwash matrix printout is specified and control surfaces exist, the residual downwash as well as full downwash will be printed. Note that the output of full and residual downwash is cyclic, four modes at a time.

The final results consist of unsteady pressures, sectional and total generalized forces. Generalized force output consists of a single matrix per condition. Sectional force output consists of a matrix per sectional force chord (in the order specified) per condition. Unsteady pressure output consists of real/imaginary and amplitude/phase per output point (in the order specified) written two modes at a time for all pressure modes per condition.

Following all condition output, a summary of the CMFILE index is given if CMFILE is present. Finally a summary of maximum core required and central processor time used is given.

All normal output includes the user's run title with date appended and k-value and Mach number identified (if applicable).

Binary output from the program consists of all unsteady pressure results if DPFILE #0, all sectional force results if SGFFILE #0, and all generalized force results if GFFILE #0. The form of the information is described in section 3.5 (Note that a user may have all binary output placed on the same file, in which case the results are interspersed on a condition basis)

3.8.2 Program Diagnostics

Program diagnostics may occur during input preparation or execution of the problem. The RHOIV input processor attempts to read and check all user input, identifying as many data errors as possible. If any errors are discovered during input processing

the execution is terminated following input. Errors which may be discovered include:

- (1) exceedance of program size restrictions,
- (2) illegal planform definition,
- (3) illegal distribution of points on the planform
- (4) inaccurate file specifications,
- (5) illegal k-values or Mach numbers,
- (6) insufficient modal input definition.

With one specific exception, if a user's input is processed with no errors, and sufficient memory allocation is provided, the job should be completed without user origin errors. If any errors do occur they should be of program or system origin.

The exception to the above can occur during C-matrix calculations. If a downwash chord is placed too close to the planform tip or a control surface side edge, the chordwise integration grid routine CGRID may generate an illegal sequence of integration regions. If the condition $\varepsilon = 3.76|Y_0|/S<.001$ occurs a warning message will be printed to indicate a possible problem may occur for a particular integration chord. The condition will occur anytime a downwash chord is less than .02S from the tip or a control side edge.

The message does not indicate an error, only the fact that the above condition has not been met.

The following is a list of input processor diagnostics; the input numbers used are examples.

PLANFORM DEFINITION ERROR:

- 1. Illegal no. leading edge defn. pts. (2≤NLE≤10),NLE = 11
- 2. Illegal no. trailing edge defn. pts. (2≤NTE≤10),NTE = 11
- 3. Illegal no. control surfaces (0≤NOCS≤6),NOCS = 7
- 4. Illegal no. velocity profiles (0≤NOVP),NOVP = -1
- 5. YLE $(1) \neq YTE (1)$
- 6. YLE (NLE) ≠ YTE (NTE)

- 7. Illegal leading edge definition, YLE not strictly increasing
- 8. Illegal trailing edge definition, YTE not strictly increasing
- 9. Leading edge and trailing edge intersect
- 10. Control surface 1 does not lie within defined planform
- 11. Control surface 2 and 1 are incompatible
- 12. Velocity profile stations are not strictly increasing
- 13. Illegal no. of velocity profile points for station 1
 (2<NVPP),NVPP = -1</pre>
- 14. Velocity profile points, XVP, for station 1 are not strictly increasing
- 15. *** SCAMP4 *** error *** on velocity station 1 non user error

FILE DEFINITION ERROR:

- 1. File spacing error 4, encountered for initial position of DPFILE
- 2. CMFILE name is not descrete

PLANFORM DISTRIBUTION ERROR:

- 1. Illegal no. downwash chords, $(1 \le ABS(NDWC*NPDWC) \le 72)$, NDWC = -10
- 2. Illegal no. points/downwash chord, (1≤ABS(NPDWC)≤8),NPDWC = 10
- 3. Downwash point 1, not on defined planform
- 4. Downwash chord 1, coincides with a control surface side edge
- 5. Downwash point 2, coincides with a control surface hinge
- 6. Downwash points no. 2 and no. 1, are coincident
- 7. Pressure report chord 1, not on defined planform
- 8. Pressure report point for chord no. 1, not on planform
- 9. Pressure report point 1, coincides with a control hinge

- 10. Pressure report chord 1, coincides with a control side edge
- 11. Sectional force report chord 1, not on defined planform
- 12. Sectional force report chord 1, coincides with a control side edge

CONDITION DEFINITION ERROR:

- 1. Illegal no. k-values, (0 < no.KVAL)
- 2. Illegal no. Mach nos., (0 < no. MACH)
- 3. Illegal k-value, $(0 \le KVAL)$
- 4. Illegal Mach no., $(0 \le MACH < 1.0)$

MODAL INPUT DEFINITION ERROR:

- 1. Illegal no. displacement modes, (0≤NDMDS),NDMDS = -3
- Illegal no. input points, (3≤NIPTS), NIPTS=2
- 3. Insufficient input pts. in zone 1. (3≤NPZONE),NPZONE = 2
- 4. Input pts. no. 2 and no. 3, are coincident
- 5. File spacing error 1, on MIFILE
- 6. I/O error MROWKMROWS on MIFILE while reading X,Y for zone 1
- 7. I/O error MROW<MROWD on MIFILE while reading Z for zone 1
- 8. I/O error MROW<MROWD on MIFILE while reading IIA for zone 1

3.9 SAMPLE INPUT/OUTPUT

The following input data, figure 4, is for the lifting surface shown in figure 5, page 76. A portion of the output generated by this data case is given on pages 77-100.

RHOIV SAMPLE DATA INPUT

CARD	_		the state of the s	LUMNS			
SET	_1	11	21	31	41	51	61
1	NASA TM	X-2909 lea	ding/trai	ling edge c	ontrols		
2 A				E=2, $NOCS=2$			
B	0.0	0.0	1.539	1.270			
2C	1.763	0.0	1.763	1.270			
2 D	LECS	1.2165	.923	1.072	1.0		
,	TECS	1.628	.923	1.665	1.072		
ÈΕ	0.0	***************************************	41		***		
2F	0.0	.8	.005	.86818	.011	.95	
	.015	.965	.02	.97	.025	.9746	
	.0375	.9819	.05	.9877	.0625	.992	
	.9875	1.0001	.1125	1.0065	.1375	1.0017	
	.1625	1.0161	.1875	1.0199	.2125	1.0231	
	.2625	1.0281	.3125	1.0321	.3625	1.0349	
	.4125	1.0367	.4625	1.0377	.5125	1.0379	
	.5625	1.0373	.6125	1.0359	.6625	1.0336	
: '	.7125	1.0303	.7625	1.0259	.7875	1.0231	
	.8125	1.0199	.8375	1.0161	.8625	1.0117	
•	.8875	1.0065	.9125	1.0001	.9375	.992	
	.95	.9877	.9625	.9819	.975	.9746	
	.98	.97	.985	.965	.989	.95	
	.995	.86818	1.	.8			
	\$RHOB C	MFILE=1 \$					
	\$RHOC D	PPRT=-1.CM	PRT=-1.DWN	PRT=-1,PCM	PRT=-1,SGF	PRT=-1,GFP	RT=-1 \$
δA		DWC=-9, NP					
5		VALUE(1) = 0		(1)=0.8 \$		Service Services	
7 A		IPTS (1) 7,					
7B	0.0	0.0	1.212	1.0	1.2165	.923	
_	1.3971	1.071	2.628	.923	1.665	1.072	
	1.763	1.0					
C	1.	1.	1.	1.	1.	1.	1.
	.8815	3305	335	5156	7465	7835	8815
	0.	.098	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.	0.	1 158792
	0.	.098	0.	0.	0.	0.	1158792
_						the second second	

FIGURE 4

TM X-2909 DELTA WING MODEL
FIGURE 5

047F = 40P 12 1078		
	CARSION - MAY 10 1979	
CALCULATE UNSTEADY LOADINGS SUPFACE WITH LEADING AND/OR CONTROLS IN COMPRESSIBLE SU	CALCULATE UNSTEADY LOADINGS CAUSED BY MOTIONS OF A LIFTING SUPFACE WITH LEADING AND/OR TRAILING EDGE, SEALED GAP CONTROLS IN COMPRESSIBLE SUBSONIC FLOW	
PREPARED UNDER N.A.S.A. LANGLEY RESEARCH CENTER	1.5.4. CONTRACT NO. NASI-12020.	
• 7 1 T L E		
X X Y X X X X X X X X X X X X X X X X X	- 2 9 0 9 LEADING/TRAILING EDGE CONTROLS	
PLANFORM	Z 0	
(A) NE = 2 NTE = 2 NOCS = 2	NO. LEADING EDGE DEFINITION POINTS NO. TRAILING EDGE DEFINITION POINTS NO. VENTION SURFACES NO. VENTION POENTS	
1000	MAIN SURFACE SYMMETRY (0-S REDUCED FREQUED	
9000	10 FLANCRH SEMI-SPAN 10EFAULT VALUE(S) WILL BE GENERATED)	
(B) LEADING EDGE DEF	EDGE DEFINITION POINTS .0000 1.5390 .0000 1.2700	
(C) TRAILING EDGE DEI XTE = 1.7630 YTE = .0000	EDGE DEFINITION POINTS 1.7630 1.7630 .0000 1.2700	
808815	IS GENERATED REDUCED FREG. REF. LENGTH DO GENERATED PLANFORM SEMI-SPAN	
(D) CONTROL SURFACE NO. TYPE CS10	· • .	

1.0720

1.0001	
1.0231	
1.0199	
1.0161	
1.0117	
1.0065	
1.0001	
1.0303	٠.
1.0336	
9819	
1.0373	
1.0379	
1.0377	
1.0367	
1.0349	
1.0321	
•	

.190227753649 1.0640 1.1513 1.2387314839534757 1.1194 1.1998 1.280345335261 .5988 1.1809 1.2537 1.3264591865597220 1.2425 1.3614 1.3726 1.3656 1.4153 1.6499 1.4649 1.6913 1.6913 1.4272 1.6913 1.6913 1.4289 1.41602 1.2144 1.4887 1.5230 1.5144 1.4887 1.5230 1.6496 1.4698 1.5692 1.6696 1.5675 1.6912 1.6912 1.6118 1.6307 1.6496 1.5503 1.5509 1.6912 1.6575 1.6575 1.6912	522	9 1.0350 0 1.1240 1 1.2002 2 1.2522	1.2834 1.3850 1.4720 1.5315	1.3641 1.4486 1.5210	1.5363	1. 5988 1.6536 1.6636	1.6990 1.7126 1.7242	1.7396				
. 1028 1902 2775 3649 4523 5397 6271 7744		ESSURE REPORT PO		NO			:					
1,028	2	YPRC								1. ·		
. 1966 1.0640 1.513 1.2287 1.2261 1.4135 1.5009 1.5182 . 2344 . 3148 . 3953 . 4757 1.5562 . 6366 . 7171 . 7975 1.0389 1.1194 1.1998 1.2893 1.5116 . 7444 1.8171 . 6899 1.10082 1.1809 1.2537 1.3244 1.3942 1.4770 1.5477 1.6175 1.10082 1.1809 1.2537 1.3244 1.5972 1.4770 1.5477 1.6175 1.10082 1.1809 1.2537 1.3244 1.5075 1.4770 1.5678 1.6179 1.2768 1.2467 1.3040 1.517 1.4648 1.4777 1.5078 1.0746 1.2769 1.3040 1.4173 1.4418 1.6499 1.0172 1.0172 1.0169 1.3159 1.3050 1.4153 1.4649 1.311 1.5531 1.5979 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.6179 1.1116 1.1459 1.4091 1.5111 1.5531 1.5971 1.5173 1.5561 1.6790 1.1116 1.1459 1.4091 1.5111 1.5511 1.5971 1.6091 1.6091 1.1117 1.5503 1.5169 1.6035 1.6390 1.6374 1.7063 1.5174 1.5351 1.5521 1.5523 1.5529 1.6012 1.6074 1.7063 1.5722 1.6074 1.6075 1.6074 1.7063 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5074 1.5031 1.5031 1.5074 1.5031	j -		.0241	1020	600	3116	0776	E . 97	, 66.			
1.082			8892	9766	70610	6117.		.4263	7456.	1/29.	**12.	8108
1.089			1.7543		0.00	6161.1	1062.1	1976-1	6611.09	*000	2996-1	1.0730
1.0389 1.1194 1.1998 1.2803 1.3607 1.4412 1.5216 1.6021 1.082 1.1809 1.2537 1.3264 1.3992 1.4120 1.5447 1.6175 1.1082 1.1809 1.2537 1.3264 1.3992 1.4120 1.5648 1.6175 1.1082 1.1809 1.2537 1.3269 1.4177 1.5627 1.5678 1.6129 1.1774 1.2425 1.3075 1.3376 1.4188 1.4771 1.5627 1.5678 1.6129 1.2467 1.3040 1.3614 1.4188 1.4771 1.5335 1.5072 1.6483 1.3407 1.3056 1.3614 1.4188 1.4761 1.5643 1.6170 1.6649 1.3159 1.3656 1.4183 1.6913 1.1753 1.2792 1.3154 1.4091 1.3170 1.3171 1.5391 1.6591 1.4544 1.4887 1.5270 1.5773 1.5173 1.5752 1.5578 1.2844 1.3170 1.3376 1.6496 1.6636 1.6636 1.6636 1.4579 1.6172 1.6077 1.4190 1.4965 1.5174 1.5363 1.5527 1.5503 1.5175 1.6077 1.4173 1.7753 1.7753 1.5528 1.5503 1.5175 1.6077 1.4173 1.7753 1.7753 1.5529 1.5520 1.6118 1.6077 1.4196 1.5175 1.7753 1.5529 1.5520 1.5110 1.4196 1.6077 1.4173 1.7753 1.5529 1.5520 1.5110 1.4196 1.6077 1.4173 1.7753 1.5529 1.5520 1.5715 1.5935 1.5717 1.7753 1.5529 1.5520 1.5715 1.5935 1.5717 1.7751 1.5529 1.5717 1.7751 1.7751 1.5520 1.6572 1.6792 1.6112 1.7752 1.5520 1.6118 1.6077 1.4175 1.7751 1.7751 1.5520 1.5520 1.5717 1.7751 1.5520 1.5717 1.7751 1.7751 1.5520 1.5717 1.7751 1.7751 1.5520 1.5717 1.7751 1.5520 1.5717 1.7751 1.5720 1.5720 1.5717 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720 1.5720			6191	.2344	.3148	. 3953	1514	. 5562	9919	7171	7974	-
.3806 .4533 .5261 .5988 .6716 .7444 .8171 .8899 1.1082 1.1082 1.1809 1.2547 1.6175 1.5647 1.6175 1.1082 1.1809 1.5547 1.6175 1.1809 1.1774 1.5458 1.5059 1.720 .7870 .8521 .9722 1.5678 1.5059 1.1774 1.2457 1.2457 1.5075 1.5075 1.3726 1.4377 1.5678 1.5078 1.5079 1.2457 1.3040 1.3614 1.4188 1.4761 1.5335 1.5909 1.0172 1.0746 1.2457 1.3050 1.3614 1.5692 1.0179 1.0675 1.1172 1.1669 1.2457 1.3139 1.1753 1.2592 1.6160 1.6536 1.2578 1.2679 1.6160 1.6536 1.5578 1.2578 1.2578 1.2579 1.2579 1.2579 1.2579 1.2579 1.2578 1.2579 1.5579			. 9585	1.0389	1.1194	1.1998	1.2803	1.3607	1.4412	1.5216	1.4021	1. 6828
1,002			1.7550									
1.1082 1.1809 1.2537 1.3264 1.3992 1.4720 1.5647 1.6175 1		3 .2540	. 1516.	.3806	4533	.5261	.5988	46716	1444	.8171	9899	4640
.5268 .5918 .6569 .7720 .7870 .8651 .9172 .9822 1.1774 1.2425 1.303 .7877 .8451 .9025 .9598 1.0172 1.6329 1.6463 1.2467 1.3040 1.3614 1.4186 1.4774 1.5335 1.0172 1.0746 1.3159 1.3614 1.4186 1.4774 1.5335 1.172 1.1669 1.6463 1.3159 1.3654 1.6463 1.6463 1.6469 1.5965 1.6649 1.6619 1.6636 1.3159 1.2791 1.1769 1.3159 1.2791 1.1769 1.2792 1.3150 1.2791 1.1791 1.2791 1.2592 1.3160 1.2792 1.3160 1.2791 1.2791 1.2592 1.3160 1.2791 1.2791 1.2592 1.3160 1.2791 1.2592 1.3160 1.2791 1.2592 1.3160 1.2791 1.2592 1.3160 1.2591 1.2791 1.2592 1.3160 1.2591 1.2592 1.3160 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2591 1.2991 1.	•	-	1.0354	1.1082	1.1809	1.2537	1.3264	1.3932	1.4720	1.5447	1.6175	1.4902
1,774 1,2425 1,3075 1,3726 1,4377 1,5678 1,6329 1,0174 1,2425 1,3075 1,3726 1,4377 1,5678 1,6329 1,2425 1,3040 1,3644 1,4184 1,4764 1,5335 1,5979 1,0172 1,0746 1,2467 1,3139 1,0172 1,6483 1,6140 1,			1.7557									
1.1774 1.2425 1.3075 1.3726 1.4377 1.5678 1.56329 1.6732 1.5474 1.2425 1.3040 1.3617 1.4188 1.4761 1.5927 1.5578 1.5329 1.6746 1.2467 1.3040 1.3614 1.4188 1.4761 1.5335 1.5909 1.6172 1.0746 1.2467 1.3159 1.3656 1.4153 1.6492 1.6649 1.5169 1.6543 1.6140 1.6636 1.6140 1.6536 1.6140 1.6536 1.6140 1.6536 1.6140 1.6536 1.3656 1.6140 1.6536 1.6537 1.6537 1.6539 1.6537 1.6539 1.7721 1.7731 1.7739 1.7739 1.7721 1.7739 1.7739 1.7721 1.7721 1.7739 1.7721 1.7739 1.7721 1.7721 1.7739 1.7721 1.7729 1.7729 1.6539 1.7721 1.7721 1.7739 1.7739 1.7721 1.7721 1.7739 1.7729 1	~	.3810	*4682	. 5268	. 5918	.6569	.7220	0787	. 8521	. 9172	0822	1 04 73
.6730 .7303 .7877 .8451 .9025 .9598 1.0172 1.0746 1 .52467 1.3040 1.3614 1.4188 1.4761 1.5335 1.5509 1.6463 1 .6463 1 .9625 1.0172 1.1165 1.6463 1 .9682 1.0179 1.0675 1.1172 1.1669 1.5315 1.33159 1.3654 1.6469 1.5111 1.5543 1.6543 1.6140 1.6543 1.6543 1.6590 1.6636 1.6532 1.7098 1.7252 1.6501 1.6575 1.6501 1.6596 1.6532 1.6575 1.6575 1.6595 1.6595 1.6575 1.6595 1.6595 1.6575 1.6595 1.6575 1.6595 1.6595 1.6575 1.6595 1.6595 1.6575 1.6595 1.6595 1.6575 1.6595 1.6596 1.7751 1.7753 1.			1.1123	1.1774	1.2425	1.3075	1.3726	1.4377	1.5027	1.5678	1.6320	4070
1.5467 1.3040 1.3614 1.4166 1.4761 1.5335 1.5909 1.6463 1.6463 1.5467 1.3050 1.3614 1.4166 1.4761 1.5335 1.5909 1.6636 1.6463 1.5165 1.3050 1.4153 1.4649 1.5140 1.5643 1.1172 1.6636 1.6636 1.3054 1.6636 1.6631 1.6636 1.6631 1.6636 1.6631 1.753 1.6635 1.6674 1.753 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6194 1.753 1			1.7565		,							
1.2467 1.3040 1.3614 1.4188 1.4761 1.5335 1.5909 1.463 1.3159 .8689 .9185 .9682 1.0179 1.0675 1.1172 1.1669 1.3159 1.3656 1.4153 1.4649 1.5146 1.5543 1.6140 1.6636 1.6636 1.3852 1.4272 1.0074 1.0913 1.1333 1.1753 1.2173 1.2592 1.3852 1.4272 1.4691 1.0913 1.1333 1.1753 1.2592 1.3852 1.4272 1.4691 1.5111 1.5531 1.6595 1.6601 1.6790 1.4554 1.4887 1.5230 1.5144 1.2487 1.6596 1.6601 1.6944 1.4554 1.4887 1.5230 1.5636 1.6601 1.6944 1.5237 1.5559 1.4418 1.4607 1.4796 1.4985 1.5174 1.5363 1.5929 1.6672 1.4418 1.4607 1.4796 1.6834 1.7633 1.7252 1.5929 1.6672 1.6792 1.5715 1.5954 1.7791 1.7791 1.5553 1.6575 1.6792 1.6912 1.7032 1.7151 1.7791 1.7791	•	. 5080	.6213	.6730	. 7303	.7877	.8451	- 9025	9508	1.0172	1.0746	1 1310
.8192 .8689 .9185 .9682 1.0179 1.0675 1.1172 1.1669 1 1.3159 1.3159 1.0074 1.0643 1.0643 1.0173 1.1753 1.2592 1 1.3852 1.4272 1.6911 1.5111 1.5531 1.1753 1.2592 1.66790 1.1116 1.1459 1.1802 1.2144 1.2487 1.2830 1.3173 1.3516 1 1.4544 1.4887 1.5230 1.5573 1.5573 1.5573 1.6944 1.601 1.6944 1.6544 1.3170 1.3376 1.6930 1.6566 1.6693 1.7098 1 1.5573 1.5593 1.7098 1.6030 1.4259 1.6032 1.4173 1.4439 1.6030 1.4259 1.6874 1.7063 1.7252 1 1.5929 1.6032 1.6032 1.6032 1.6034 1.7252 1 1.6553 1.6439 1.6695 1.6874 1.7063 1.7252 1 1.6553 1.6672 1.6074 1.6032 1.6074 1.7793 1.7793 1.7793 1.7793 1.7793 1.6675 1.6672 1.6792 1.6912 1.7032 1.7793 1.7793 1.7793 1.7793 1.7793 1.6673 1.6672 1.6792 1.6912 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.6673 1.6772 1.6773 1.6773 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.7793 1.6673 1.6772 1.6773 1.6773 1.7793 1.7793 1.7793 1.7793 1.7793 1.6673 1.6773 1.6773 1.7793		•	1.1893	1.2467	1.3040	1.3614	1.4168	1.4761	1.5335	1.5909	1.6483	7056
1.8192 1.8689 1.9185 1.9682 1.0179 1.0675 1.1172 1.1669 1.3159 1.3656 1.4153 1.6469 1.5643 1.6140 1.6636 1.6636 1.3852 1.0074 1.0043 1.0913 1.1333 1.1753 1.2173 1.2592 1.3852 1.4272 1.4691 1.5111 1.5531 1.5591 1.6579 1.6691 1.6579 1.6691 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6591 1.6691 1.6691 1.6691 1.6691 1.6691 1.6991 1.6591 1.6991 1.6991 1.6991 1.6991 1.6992 1			1.7573				1 1	,				
1.3159 1.3656 1.4553 1.4649 1.5146 1.5643 1.6140 1.6636 1.3654 1.0074 1.00493 1.0913 1.1333 1.1753 1.2173 1.2592 1.5852 1.4272 1.4691 1.5111 1.5531 1.5551 1.6591 1.6570 1.6770 1.4544 1.4887 1.5520 1.5573 1.5916 1.6559 1.6601 1.6601 1.6601 1.6601 1.6601 1.6601 1.6601 1.6601 1.6570 1.6601 1.6570 1.6601 1.6560 1.6601 1.6594 1.5570 1.5570 1.6035 1.6300 1.6566 1.6632 1.7098 1.6573 1.5573 1.5574 1.5363 1.5774 1.5363 1.5725 1.6575 1.6675 1.6695 1.6695 1.6674 1.7063 1.7252 1.6575 1.6575 1.6575 1.6575 1.6575 1.6575 1.6576 1.6173 1.7252 1.6695 1.6672 1.6775 1.6775 1.7093 1.77252 1.6675 1.6775 1.7711 1.7721 1.7723		0569. 9	.7745	.8192	.8689	-9185	-9682	1.0179	1.0675	1.1172	1.1669	1.2166
1.3852 1.4272 1.4691 1.0913 1.1333 1.1753 1.2173 1.2592 1.5892 1.3852 1.4272 1.4691 1.5111 1.5531 1.5591 1.6790 1.6790 1.1116 1.14697 1.2290 1.5114 1.244 1.2487 1.2830 1.3173 1.3516 1.6544 1.4887 1.2290 1.5573 1.5574 1.5578 1.5578 1.5579 1.6035 1.6036 1.6856 1.6601 1.6944 1.5237 1.5503 1.5769 1.6035 1.6366 1.6866 1.6832 1.7069 1.7252 1.5769 1.6479 1.6586 1.6874 1.7063 1.7252 1.5769 1.6479 1.6593 1.5769 1.6479 1.6593 1.5769 1.6479 1.6594 1.7063 1.7252 1.5929 1.6118 1.6307 1.6496 1.6685 1.6695 1.6774 1.7063 1.7252 1.5725 1.6912 1.7032 1.7151 1.7271 1.7391 1.7391			1.2662	1.3159	1.3656	1.4153	1.4649	1.5146	1.5643	1.6140	1.6636	1.7133
1.3852 1.4272 1.0693 1.0913 1.1753 1.2173 1.2592 1.3852 1.4272 1.6991 1.5111 1.5531 1.5591 1.65790 1.3852 1.6991 1.5111 1.5573 1.2694 1.2694 1.2694 1.2694 1.2694 1.2694 1.2694 1.2694 1.2694 1.2694 1.6014 1.2694 1.6014 1.2694 1.2694 1.2694 1.2694 1.6014 1.2694 1.6014 1.2694 1.6014 1.2694 1.6014 1.7014 1.7014 1.7014 1.7014 1.6014			1.7580						•			
1.3852 1.4272 1.4691 1.5111 1.5531 1.5951 1.6790 1.6790 1.3185 1.6790 1.1116 1.1459 1.1802 1.2144 1.2487 1.2830 1.3173 1.3516 1.4554 1.4887 1.5230 1.5573 1.5916 1.6529 1.6601 1.6944 1.2578 1.2544 1.3110 1.3376 1.3641 1.3907 1.4173 1.4139 1.5533 1.5503 1.5769 1.6035 1.6566 1.6566 1.6632 1.7098 1.5537 1.5503 1.5769 1.6035 1.6503 1.6307 1.6035 1.6035 1.6035 1.6035 1.6036 1.6032 1.7063 1.7252 1.5553 1.5553 1.6032 1.6032 1.6074 1.7331 1.7331 1.7331 1.7331 1.7331 1.7331		1 .7620	. 9276	*9654	1.0074	1.0493	1.0913	1.1333	1.1753	1.2173	1.2592	1.3012
1.1116 1.1459 1.1802 1.2144 1.2487 1.2830 1.3173 1.3516 1 1.4544 1.4887 1.5230 1.5573 1.5916 1.6259 1.6601 1.6944 1 1.2578 1.2844 1.3110 1.3376 1.3641 1.5564 1.6832 1.7098 1 1.5237 1.5503 1.5769 1.6035 1.6300 1.6566 1.6832 1.7098 1 1.5237 1.5503 1.5769 1.6037 1.4796 1.4796 1.5174 1.5369 1 1.5929 1.6118 1.6307 1.6496 1.6685 1.6874 1.7063 1.7252 1 1.5356 1.5475 1.5595 1.5715 1.5954 1.6076 1.6194 1 1.5553 1.6672 1.6792 1.6912 1.7032 1.7151 1.7391 1 1.55540 .3810 .5080 .6350 1.6490 1.0160 1.1430			1.3432	1.3852	1.4272	1.4691	1.5111	1.5531	1.5951	1.6371	1.6790	1.7210
1.4544 1.4659 1.1802 1.2144 1.2487 1.2830 1.3173 1.3516 1.4544 1.4644 1.5573 1.5916 1.6574 1.6601 1.6601 1.6604 1.6604 1.5578 1.2874 1.3110 1.3376 1.6364 1.6366 1.6632 1.7098 1.65237 1.5503 1.5769 1.6035 1.6360 1.6566 1.6632 1.7098 1.6529 1.6579 1.6118 1.6307 1.4607 1.4796 1.6695 1.6674 1.7063 1.7795 1.5929 1.6118 1.6307 1.6496 1.6695 1.6694 1.7063 1.7252 1.6536 1.6672 1.6792 1.6715 1.7793 1	•		1.7588							•		
1.2578 1.2844 1.3110 1.3376 1.5516 1.6556 1.6601 1.6944 1.15237 1.5503 1.5503 1.5769 1.6035 1.6300 1.6566 1.6832 1.7098 1.5503 1.5769 1.6035 1.6300 1.6566 1.6832 1.7063 1.5929 1.4418 1.4607 1.4796 1.6874 1.7063 1.7252 1.5929 1.6118 1.6307 1.6496 1.6685 1.6874 1.7063 1.7252 1.5553 1.6553 1.6572 1.6572 1.6912 1.7032 1.7151 1.7391 1.1530 1.6672 1.6772 1.6912 1.7032 1.7151 1.7391 1.17391		0499	1080	1.1116	1.1459	1.1802	1.2144	1.2487	1.2830	1.3173	1.3516	1.3859
1.2578 1.2844 1.3110 1.3376 1.3641 1.3907 1.4173 1.4439 1.5237 1.5237 1.5563 1.5769 1.6635 1.6566 1.6832 1.7098 1.5221 1.4040 1.4229 1.4418 1.4607 1.4696 1.6874 1.5174 1.5363 1.5559 1.618 1.6307 1.6496 1.6685 1.6874 1.7063 1.7252 1.5551 1.5553 1.5715 1.5954 1.6074 1.6194 1.6653 1.6672 1.6792 1.6912 1.7032 1.7151 1.7391 1.6653 1.6672 1.6792 1.6912 1.7032 1.7032 1.7151 1.7271 1.7391 1.5653 1.6672 1.6912 1.6912 1.7032 1.7030 1.0160 1.1430			1074-1	1.4544	1.4887	1.5230	1.5573	9165-1	1.6259	1099.1	1.6944	1.7287
1.5237 1.5563 1.5769 1.6035 1.6307 1.6173 1.6439 1.5237 1.5537 1.5563 1.5563 1.5769 1.6035 1.6300 1.6566 1.6832 1.7098 1.6523 1.5769 1.6037 1.6174 1.5363 1.5769 1.5174 1.5363 1.5763 1.5763 1.7252 1.6565 1.6675 1.6675 1.6595 1.6695 1.6675 1.6074 1.6194 1.6553 1.6672 1.6792 1.6912 1.7032 1.7151 1.7271 1.7391 1.6553 1.6672 1.6972 1.6912 1.7032 1.7151 1.7271 1.7391 1.6675 1.6676 1.6676 1.6676 1.6160 1.1430			1.1596				4		- 4		• .	
1.5437 1.5503 1.5769 1.6035 1.6366 1.6566 1.6832 1.7098 1 1.54040 1.4229 1.4418 1.4607 1.4796 1.4963 1.5174 1.5363 1.5529 1.5929 1.6184 1.6307 1.6496 1.6685 1.6874 1.7063 1.7252 1.5529 1.553 1.5553 1.6672 1.6792 1.5912 1.7032 1.7151 1.7791	•	0010-1	46671	8/67-1	1.2844	1.3110	1.3376	1.36.1	1.3907	1.4173	1.4439	1.4705
1.5929 1.6118 1.6307 1.6696 1.6685 1.6874 1.7063 1.7252 1.5929 1.6118 1.6307 1.6496 1.6685 1.6874 1.7063 1.7252 1.5929 1.6575 1.5595 1.5715 1.5934 1.7053 1.7252 1.6594 1.6672 1.6672 1.6912 1.7032 1.7151 1.7751 1.7791 1.			1264.	1.5251	1-5503	1.5769	1.6035	1.6300	1.6566	1.6832	1.7098	1.7364
1.5929 1.618 1.6307 1.6496 1.6695 1.6874 1.5353 1.5525 1.5929 1.618 1.5353 1.7252 1.5559 1.6672 1.6574 1.5535 1.6553 1.6672 1.6792 1.6912 1.7032 1.7151 1.7771 1.6194 1.7083 1.7771 1.6194 1.6553 1.6672 1.6792 1.6912 1.7032 1.7151 1.7771 1.7391 1.70806890 1.0160 1.1430	•		5007								• •	
1.5956 1.6118 1.6595 1.6496 1.6685 1.6874 1.7053 1.7252 1.5556 1.6553 1.5755 1.5556 1.6575 1.5795 1.5715 1.5194 1.71553 1.6672 1.6792 1.6912 1.7032 1.7151 1.7271 1.7391 1.7391 1.7271 1.7271 1.7391 1.7271 1.7271 1.7391 1.72703810381050806350 1.620 1.6400 1.6400 1.6400			0.00.	0504-1	1.4229	1.4418	1.4607	1.4196	1.4985	1.5174	1.5369	1.5852
1.5556 1.5475 1.5595 1.5715 1.5835 1.5954 1.6074 1.6194 1.6553 1.6553 1.6553 1.6194 1.7032 1.7151 1.7271 1.7391 1.8803			04/6.7	1.2929	1.6118	1.6307	1.6496	1.6685	1.6874	1.7063	1.7252	1.7441
1.6553 1.6672 1.6792 1.6912 1.7032 1.5954 1.6074 1.6194 1.6553 1.6672 1.6792 1.6792 1.7032 1.7151 1.7791 1.7791 0R0 8 .2540 .3810 .5080 .6350 1.620 .8890 1.0160 1.1430			1,011	, , ,								
1.0023 1.0072 1.0072 1.0012 1.7032 1.7151 1.7271 1.7391 1.0000 0808 .2540 .3810 .5080 .6350 1.000 1.000 1.000	í	•	0.76.1	00001	1.24/2	1.5545	1.5/15	1.5835	1.5954	1.6074	1.6194	1.6313
ORDS -2540 -3810 -5080 -1-0160 1-1430		••	1.0433	1.0223	1.6672	1.6792	1.6912	1.7032	1.7151	1.7271	1.1391	1.7510
ORDS .2540 .3810 .5080 .6350 .7620 .6890 .1.0160		٠.	1.7618									
270 .2540 .3610 .5080 .6350 .7620 .6890 .1.0160	10) SE	CTIONAL FORCE OF	STRUT CHOOSE	V.								
1991年 19	ASGI	FC0127	1270	2840	3010	4040	4264	24.30	0000	4,10		
		1,2574								2012	2000	

7. MODAL INPUT DEFINITIO

0 E F

N 0

6. C O N D 1.T

. 5000

KVALUE ...

	00000	0000.	. 0000 - 0000 - 1159
	0000.	0000	.0000 .0000 1159
E CONTROL VD. NT.	00000	0000.	00000
ENT MODES UT POINTS/ZONE PUT INDICATOR/CONTROL V INDICATOR GUST OPTION IND. GUST REF. POINT	-8815 -7465 -7465 -7835 -5156	3350 5156 3305 FDR ZONE 3	7455 7835 8815
DISPLACEMENDAL INPUTATION INPUST OPTION OFFRATION OFFRAT	-0000 1.0000 -9230 1.0000 1.0720 1.0000 1.0720 1.0000 1.0720 1.0000		1.0000 1.0000 1.0000 1.0000
UMBER OD ONTROL SADUAL		-9230 1.0000 1.0720 1.0000 1.0000 1.0000 AND DISPLACEMENTS	.9230 1.0720 1.0000
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 0000 1.2165 1.6280 1.6650 1.3971 INPUT POINTS	1.2165 1.3971 1.2120 INPUT POINTS	1.6280 1.6650 1.7630 A T I O A
MPHDS NIPTS CAT DGUST GPGREF GPGREF NO.	683 MODAL F	2 2 2 168 MODAL 17 NO.	ER M EN LANE

F = (ETA-YCSII//YCS0-YCSI) YCSI,YCS0 = CONTROL INBOARD, DUTBOARD SIDE EDGES LEADING/TRAILING EDGE CONTROLS + A28F482 + A38F683,

.00000 .00000 1.02474 .00000
and the second
.00000 1.02160 00000 1.02160
.00000 .00000 1.01610 .00000
.0 6.340703E-13 -1.019384E-11 9.550773E-12 7.324952E-03 1.541585E-03 -2.338434E-04 0 7.324952E-03 1.541585E-03 -2.338434E-04
-1.019384E-11 1.541585E-03 0.0
.0 6.340703E-13 7.324952E-03 7.324952E-03
.0 1.016104E+00 1.016104E+00

		00000
		00000
	1.1	
•		
		00000
. 7547.	151	00000
_ #	~ ~	88688
. E . DI	<u> </u>	
APR 12, 1975 OUTBOAND STOR	- 1	
		00000
		.00000 .00000 .00000 1.02279
, š 2		99999
	lu l	
-2]]	
55	1 :	0004*
G EDGE CONTROLS. 6 EDGE CONTROLS. 6 - (ETA-YCSI)/(YCSO-YCSI) 7 - (STA-YCSI)/(YCSO-YCSI) 7 - (STA-YCSI)/(YCSO-YCSI)	F = 0 F = 1/3 F = 2/3	.00000 .00000 .00000 1.02214
8_	1.1	00000
> ≥2	u	1
. IS	1 4	
2 2	e sprotifi to	
E >1		
8 4S		= 55
		<u> </u>
Z 2	12	30 00
_		2 23
_ <u> </u>	9	0,000
	⊢ i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
_	2	= 50
o 5 💺		ή ΨΨ.
ૡ ઽૻ ઽ		20 88
₹ •		3 8 8
7 2	<u> </u>	. 04000
	· • · · · · · · · · · · · · · · · · · ·	2.445092E-11 -2.701721E-11 0.0 3.553837E-05 2.215302E-05 3.553837E-05 2.215302E-05
u 6 %	. w _{. 1}	.0 8.577102E-13 2.445092E-11 -2.701721E-11 0 1.553415E-04 3.553837E-05 2.215302E-05 1.553415E-04 3.553837E-05 2.215302E-05
< 0 →	- j	0.077102E-13 0.1.553415E-04 1.553415E-04
T. 6	٠ <u>-</u>	20. 21.
	· . • !	53,4
. x +	_	0,000,0
•	•	69
۔ 🛪 ع ن	3 1	7 22
o	ပ	
≝ ₹		971 361
_	1 4 1	90 27 27
U A S A T M X - 2 9 0 9 LEADING/TRAILING EDGE CONTROL (HETA(ETA) - A0 + A1*F + A2*F**2 + A3*F**3, F = 1ETA-VCS1		.0 2.289097E-12 .0 1.022736E+00 1.022736E+00
C U N T N O L S U N F A C E 2 R O T A T 1 O N N A S A T M X - 2 9 O 9 LEADING/TRAILING EDGE THETALETAL = AO + Alef + A2efee2 + A3efee3, f m (1 YCS),	A0 CUBIC COEFFICIENT	.0 -2.289097E-12 .0 1.022736E+00 1.022736E+00
vor or to vor in de la companya de	•	•
	۱ پې	24 m in m
	MODE	

-	
à	,
Z	
ø	ł
Ų	
. ~	
. •	
×	
-	
~	
٠	
`*	
×	
,	
u	
_	
×	
Œ	
w	
-	
w	
Œ	
9	
•	
9	
w	
~	
٠	
w	
u	
4	
œ	
Э.	
•	
z	
-	
•	

LEADING/TRAILING EDGE CONTROLS

	Z.								
POINT	AEAL ACCOUNTS A REAL ACCOUNTS		THAG	PEAL PEAL	N 2 +++++	REAL	IMAG	ACAL REAL	I HAG
				7.4490296+00		0079620770 &) .
	7.693480F+00	•	. `	-8.625895E+00		9.724789E+00	•	-1.019468F+01	•
	7.6361296+00	•	:	-9.400440E+00	•	1.2879076+01	•	-1.5253476+01	•
•	7.686280E+00	•	٠	-1.105694E+01		•	•	-1.862307E+01	•
	7.776570E+00	•		-1.175983E+01	•	1.6637036+01	•	-2.029621E+01	0.
	7.818928E+00	•	•	-1.1965098+01-	0	10+3666169*1	0.	-2.071019E+01	•
٠.	4.6872905+00	ď		0013702077 (-		00.1040164	•		
*	4.877560F+00	•		- 1 H H 5 1 6 5 00	•	-1.43100HE+UU	• c	0.430803E+00	
	5.0859095+00	Ö		-5.16255F+00	•	3.023015E+00	•	\$ 003530E+00	•
	5.2794666+00	0		-6.244908E+00	•	4.603712F+00		2 0055998F+00	•
	5.4219946+00	•	,	-6.861689E+00	0	5-3906266+00		1.737436+00	•
	5.4734216+00	•		-7.036278E+0U		5.590189E+00		1.659843E+00	. 0
	3.221699E+00	0		8.423571E-01	•	-7.409865E+00	•	1.315478E+01	•
	3.4.2615/E+00	•		-1-125045F-01	•	•	•	1.406342E+01	•
	3.00 (265E+00	•		-1.201225E+00	•	-5.570642E+00	•	1.564260E+01	•
	5.892507E+00	.		-2.043147E+00	•	-5.135595F+00	•	1.7140536+01	•
•		: :		N .	0.	-4.985731E+00	•	1.8014526+01	0
	4.081850E+00	•		-2.631360E+00	•	-4.959263E+00	•	1.825074E+01	•
		9		1.49727764.5	•	-1 0384605.01	•		•
	2.340542E+00			3.0202566+00		-1 0610126401	2.4	1.090900E+01	•
	2.574055E+00	0		2.272475€+00			•	1.30297325401	•
	2.782995E+00	0		1.7233626+00	•	-1.173351E+01	2 9	1. 98994 754.01	•
	2.9243096+00	•		1.441737E+00		-1.214591F+01		2 1321006+01	•
	2.972223E+00	•		1.369326F+00			0	2.169342E+01	
	1.291982E+00		\$	5.723650E+00	•	-9.975379E+00	•	3.083377E+00	•
	0043026964	•		5.325853E+00.	•	-1.105500F+01	•	6.013588E+00	•
	001001001	•		00+3444444	•	-1.248930E+01	•	9.189363E+00	•
	2.010744F+00	• . '	•	4.04.1000E+000	2 0	-1.373195E+01	•	1.1453746+01	•
	2.054450E+00	•	·	0034563634	•	10+371206-11-	•	1.2604616+01	
		•		00+3667016**	>	-1.4721928+01	•	1.2899306+01	0.
	5.636002E-01	.0		6.930954F+00	0.	-6.944634E+00	Ç	-5-46400E+00	c
	7.2413896-01	•		. •	•	-8.428180F+00	: =	-3.814689F+00	2.0
	9.233100E-01	•		6.671429E+00	0	-1.024679E+01		-7.272892E+00	2
	1.102404E+00	•		6.653502E+00	•	-1.173885E+01		-1.3640865+00	
	1.221428F+00	•	·.	6.692328E+00	0.	-1.258969E+01	0	-9-115069F-01	, 0,
	1.260728€+00	•		6.716788E+00	•	-1.2828936+01	0	-8.845155E-01	•
	-6.467446F-02	ċ		7 3603636400	•	00.46.46.00			
	9.002797F-02	•		7 41333055400	2 6	-K.610762F+00	.	-1.042386E+01	•
	2.7353966-01	9		7.5413725400	•	-4.039372E+00	•	-1.044932E+01	o, 1
		;		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	2011111111011	?	-1.0834286+01	2

	# + 00000	******	•	0	•	•	0	0.	•	•			0	•	•	•			•	•		•	•	•	0	•		•	•	0	•	•	•		, 0	0	•	0		•
			-1.648667E-04	-2.326989E-04	-3.898459E-04	-6.393203E-04	-8.366905E-04	-B.956443E-04	201703330	-2 0162735-04	-4-070015E-04	-8.047508F-04	-1.022845E-03	-1.081526E-03	100 0000 6	#0-36767677-	-7-002398F=04	-1-1445065-03	-1.407269E-03	-1.465998F-Q3	,	-4.062912E-04	-1.1430146-01	-1.8638476-03	-2-174068E-03	-2.222761E-03	-4 5110115-04	063245E-	-2.1981176-03	-3.391254E-03	-3.671314E-03	-3.678160E-03	-1.227852E-03	-2.309622E-03	-5.228008E-03	-6.882343E-03	-6.832270E-03	-6.712761E-03		-2 9970125-02
APR 12, 1975	3 sesses IMAG		•	0.	•	•		•	•	•			•	•		.	•			•		•	• •	9	•	•	•		0.	•	•	•	0		0	•	•	•		
	REAL REM		-1.7638096-04	-2.5009196-04	-4.210126E-04	±6.873673E-04	-8.876754E-04	+0-3601954°6-	70-3367716 6-	40-362442343-44-45-64-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	-5.406082F=04	-0.698357E-04	-1.087116E-03	-1.141760E-03	70 0702070 8-	*0-346,040*F-	-7.719958F-04	-1.247709E-03	-1.4989606-03	-1.5489016-03		-4.438/74F-04	-1.289139F-03	-2.0514046-03	-2.317994E-03	-2.347666E-03	-7.312409F-04	-1.221529E-03	-2.5628U9F-03	m •	-3.907417E-03	-3.8750226-03	-1.437096F-03	-2.829514E-03	-6.347446-03	-7.611566F-03	-7.226493E-03	-1.026260E-03		-3.856165F-03
EDGE CONTROLS	2 *****		0.	•	•	•	0.	0.						••		•	•	•	•	•		•		0.	0	•	e	. 0		•	•	•	0.	•	•	۰	0.	0.		0
LEADING/TRAILING MACH NO5000	****** T E R M REAL		-1.9235936-04		٠	.535212E-04	.440072E-04	-9.913243E-04	-2.501236E-04	-3.5762HOF-04	-6.080339F-04	-9.6263356-04		-1.1979276-03	-1.4045705-04	-4-997612F-04	-8.916243E-04	-1.401270E-03	-1.598582E-03	-1.621741E-03	_6 113301E 04	-7.9980635-04	-1.554205E-03	-2.336781E-03	-2.462332E-03	-2.440468E-03	-8.778387E-04	-1.532280E-03	-3.2771116-03	-4.295014E-03	50-3905-150-5	-3.960234E-03			-8.623817E-03	0	-7.288290E-03	-6.888652E-03		-6.124615F-03
x - 2 9 0 9	1 ****** IMAG		•	•	•	•	•	•	c			•	•	•	0,		•	•	0.	•			•	•	•	•	•	•	0.	0.0	•	•	0.	0.	0.	0	•	•		0.
N A S A T M REDUCED FREQUENC	REAL		2.937616F-0	52557E	179226E-0	Ģ,	253805E-0	264403E-0	C	9.124658E-0	0-3811589	699149E-0	-1.572845E-02	5333566-0	4141425-0	457209E-0	Ö	617121E-0	8.566251E-	7.897209E-0	1.8951275-03	2142195-0	0038446-0	2-1724795-0	'n.	0-255550-2	4.320620E-03	7486431	511850	-6.359236F-02	*********	01146010	3.347494E-0	7-116237E-0	-110921E-	1.318891E-0	1.402966	1.426672E-		3.2788545-02
2 4	PORNT		ا <u>ح</u> د	-	,	·				. •	·	•	=:	•					<u>-</u>	87		٠.,	•		ξ;	•		36	•))	- 16	Ni (<u>.</u>	•		۰	,	37

						•					•												٠.				,	•	:	٠.	٠.	·
900	•	•	•	•	0	•	٠ ج			9	9	0	,	•	•	•	•	0	•		•	•	•	. (•	•	•	•	•	•	0	0
-1.945227E-02 -1.419174E-02 -1.372322E-02	-1.846530E-02	-8.130192E-02	-6.477933E-02	-5.024232E-02	-4.244140E-02	-4:0328796-02	7.3780496-01	10-181-01	10-301-301-1-1	-1.151405F-01	-11229336-01	-1.113456E-01		4.179993E-01	3.060810E-01	2.533071E-01	2.265804E-01	2.100282E-01	2.040074E-01		1.01916/E-01	4-65495 TE-02	1.689UBUZE-U3	-2. 190803E-02			-4.373605E-02	-6.846506E-02	-1.162455E-01	-1.687995E-01	-2.060392E-01	-2.173210E-01
												•						•		· .												
999	•	•	•	0	0	•	۰	0	9	9	•	•	•	9	0	•	0	•	•	(•	•	•	•		•	0	•	•	•	•	•
-1.469774E-02 -1.469774E-02 -1.403386E-02	7.2410386-03	-1.3375376-01	-9.297274E-02	-7.215890E-02	-6.247532E-02	-5.997010E-02	9.1779246-01	-1.1827916-02	-2.7087235-02	-4.179855F-02	-5.206877E-02	-5.3083926-02		4.0138005-01	Z.981707E-01	2.4741386-01	2.2187556-01	2.0553335-01	2.000678E-01		20-305-30E-07	4.48fl8lE-U2	50-346-60	-5-410654E-02	-6.553797F-02		-4.469431E-02	-6.933777E-02	-1.170162E-01	-1.694849E-01	-2.066711E-01	-2.179349E-01
			, •		*	٠,					.•		-									•	, .			·	. :		; ;	:		
	•							. '						1.				•			4				• .				•			
900	.0	•	•	•	•	÷	•	•	0	0	•	•	•	•	•	•	0	•	•	٠.	•	•	•	•	•)	•	•	•	0	•	•
-1.722536E-02 -1.263848E-02 -1.145003E-02	2.2279286-01	-1.904640E-01	-1.6117946-01	-1.5560B0E-01	-1.537709E-01	-1.532415E-01	1.230505E+00	1.300600E-01	7.316946E-02	4.261779E-02	3.187354E-02	2.894034E-02		10-3000026-6	Z-8 /5235E-01	Z-399826E-01	2.1638136-01	2.014285E-01	1.958194E-01	41,000	4 258530E-03	4.4761605-02	-1.0558645-03	-5-125128F-02	-6.661280E-02		-4.596276E-02	-7.044571E-02	-1.1793246-01	-1.702406E-01	-2.073249E-01	-2.185545E-01
•				• .												. :				•				•	.•	٠.	-,			٠,		
		. •				•			•	٠			• •	•	•				•	٠.		•								:		
000	•	•	•	•	°	o	•	•	•	•	•	•	c	•	•	.	•	ġ	o	<	•	•	9	0	•		•	0	•	•	•	•
-1.726583E-01 -1.656851E-01 -1.892720E-01	1.184195E+00	1-4503746-02	-5.92456ZE-02	-8.552549E-02	-9.656090E-02	-9.970557E-02	1.4676075+00	3.187935E-01	2.5642635-01	2-402520E-01	2.341458E-01	2.320022E-01	1.0866.756-01		10-303 10-101		10-30/5565-2	Z-383072E-01	2.338205E-01	10-1512045-01	6.294423F-02	2-763169F-02	-5-426974F-03	-3.073540E-02	-3.963196E-02		-2.859391E-02	-5.208175E-02	-9-832884E-02	-1.495204E-01		-1.967932E-01
9 77	6	;	\$	ç	7	4	64	20	51	25	23	š	5			2	20 (2	9	14	62	63	99	69	99		67	9	2	2 1	= ;	2

2 9 0 9 LEADING/TRAILING EDGE CONTROLS

	### BAAG																		·			•						•					•						
	Sesses T E R M 4		-3- 10130 14E-04 -8-0330 76E-04		•	-3.272131E-03 .0	-3.754271E-03 .0		•	0 +0-3500764	-2.592556E-03 .0	•	-4.441160E-03 .O	0 70-316-61 6-	-1.203979E-03 .0	•	•		-5.860366E-03 .0	-1 1531986=03		-2.567667E-03 .0	•		-8.1088636-03	-1.5255656-03 .0	-2.114367E-03 .0	्र • ः		-1.2418256-02	•	, . , . , .	0. 60-3626480-5-		•		4 1645004	• -	14. Vat 41. Vat 10. Value
	3 coccoo IMAG		•	•		•	•		•	•	20.	0.	0.	o	•	0	•	•	•	¢		0	•	•	9	.0	•		•	•		•	•		•	•			•
	AEAL F S. M.		-9-100740F-04	-1.4579776-03	-2.4956726-03	-3,758198E-03	-4.316854E-03	20 30 30 8 -	#0-2106697.B.	-1-1043/16-03	-2.972636E-03	-4.4708376-03	-5.127285E-03	-1.023581F-01	-1.367597E-03	-2.188404E-03	-3.835912F-03	-5.913296F-03	-6.8143146-03	-1.308657F-03	-1.771042E-03	-2:9455446-03	-5.4951276-03	-8.825489E-03	-1.024435E-02	-1.7347546-03	-7.415645E-03	-4.304740E-03	-8.789407E-03	-1.483020F-02		-2.427903E-03	-7.105843E-03	-1.633380F-02	-2.928560E-02	-3.445322E-02	-3. 629767E=03	-5. RH76.245-03	-1.467404
-	I 2 *****			•	•	•	••	•	•	, ,		0.	•		0		•	•	•		•	•	•	۰.	•	0.	•	•	•			•	•		0.	•			
MACH ND5000	REAL	40.000000000000000000000000000000000000	-1.128825E-03	-1.8204146-03	-3.146432E-03	-4.174025E-03	-5.494041E-03	-1 024,2005	- 1 - 3 2 3 7 7 C - 0 3	-2-189756E-03	-3.766466E-03	-5.717508E-03	-6.572553E-03	-1.270343E-03	-1.704537E-03	-2.754145E-03	-4.903295E-03	٠.	-8.847297E-03	-1.628426E-03	-2.216486E-03	-3.738942E-03	-7.132712E-03	-1.165123E-02	-1.3578476-02	-2:167230E-03	-3.044803E-03	-5.552576E-03	-1.170272E-02	-2.375200E-02		-3.055333E-03	-9.508859F-01	-2.281503E-02	-4.235142E-02	-5.012128E-02	-4.653048F-03	-8.046752F-03	-2.1835535-02
0000• A:	I eeeee	G	•	•	•	•	•		•	•	•		•	•	0.	•	0,	•	•	0•	•	•	0	•	·	0.	•	•	ء د	0		0 0	•	0.	0.	•	0	0.	•
MEDUCED FREQUENCY	PEAL REAL	1.4499576-02		1.4292826-02	3.254410E-02	5.748565E-02	7.183114E-02	-2. 1167156-02	-1.117930F-02	1.2584795-03	1.888203E-02	4.486426E-02	5-9978196-02	-3.004940E-02	-2.025976E-02	-5.7860935-03	1.245930E-02	70-342424	20-2288666	-3.701452E-02	-2.676910E-02	151210E-0	8.061464E-03	7103975	0 - 36 u 20 1 /	-4.445083E-02	-3.342703E-02	-1.699642E-02	4.430818F-03	6.048676E-02		-5.307069E-02 -4.108634F-02	-2.327396E-02	4.377600E-04	4.3145785-02	6.547714E-02	-6.331131E-02	-5.034049F-02	-3.122075E-02
	LA SE		~	~	.	.					2				:		2:		2	•			22	5 2	ζ.					90		35			٠			6 0	•

9	90	0	0	9	0	0	0		9	ö	0	0	9	0		ď	9	a	9				q	0	9					q	9	0		0	Ö
	. ~	. `			- ،					_	_	٠				_				• -							٠	٠.	 	• سار					•
2.976889E-02	-5.61111E-UZ	-5.3025736-03	-1.2254035-02	-4.181395E-02	-1.2111576-01	-2. 733970E-01	E-01		8.0 (050 SE-03	1.671922E-03	4.354799E-03	-1.623101E-02	3. 701080E-01	1.507220F-01	,	5-405781E-02	-1.485075E-02	6.001358F-02	1.8549465-01	-	1		-9.121858E-02	-7-014106F-02	-2-7764295-02	1. 44.85.25.03	1018185-01	6540A9F-01	,	-1.017479E-01	-1.007039E-01	-7.780129E-02	-3.571586E-02	1.5652376-02	8680466-02
6889	77.70	2573	5403	1395	1157	9970	3.170203E-0		200	1922	4799	3101	1080	7220		5781	5015	1358	4966	3.3477116-01	3-878207F-0		1858	9015	6429	5	1818	904		24.79	7039	0129	1586	5237	8046
16-3		0.30	. 22	8	. 21	. 73	- 1			1.67	. 35	.62	2	200		0.40	6	00	85	7	9		.12	ò	77	7				10.	0	. 78	1.57	. 56	98.
7	ו זי	ī	•	1	•		ï		ĭ	_	•	ī			٠.	Ĭ			٠.			•	š	7	1		,	-		7	7	7	7	_	
	٠.			•			٠.						•	٠.		٠.					٠									•				٠,	
										•					٠.	:				·.							- ;				·.				
0 0	20			0	0	0	0	٠. د		0	0		0			0	•	0		۰		ı.		0		٠		9	,	0		.0	0	0	٥.
•	•			,	•	•			•	•	•	٠	•	•		•	.•	•	•		•		•	•	•		•			•	•	•	•	:	•
20-3	-05	E-03	-02	-02	10-	5	10-3	. 6	70	-05	E-02	-02	10-3	-01	, .	-02	-05	-02	10-	10-	5		-05	-02	-02	60-	E-02	-0	· (10-3	-01	-05	-4.1606336-02	-03	-05
-3.814721E-02	-8.822389E-02	-5.552653E-03	-1.262728E-02	-4.809173E-02	-1.4743175-01	-3.363922E-0	-3.943950E-01	0.10101	ב : פ	1.5795816-02	4.552747E-02	9.7813656-02	1.565469E-01	.649295E-0		-5.835464E-02	-2.196212E-02	4.638560E-02	1.587981E-01	2.950186E-01	448263E-01		-9.475541E-02	-7.481331E-02	3.4539446-02	2.502485F-02	9.071621E-02	. 333009E-01		-1.049842E-0	-1.045646E-0	-8.263993E-02	633	8.992582E-03	3.175232E-02
18.	822	.552	. 262	808	474.	.363	.943	. :	- 1	• 519	. 552	.781	.565	649		. 835	196	•638	587	950	448		475	481	453	505	110	333		650	.045	.263	91.	-992	•175
77		5	7	1	7	5	ñ	1	,	_	*	6	~	-	•		?	•	_	^		•	6	7	1	~	0			7	7	7	Ť	60	n,
٠.٠															٠.										٠										
			•	•			: •			:																	•				-	•			
		_	_		_	÷	 ~	_		_	_		· .	_		_		_	_		:		•	_		_	_	٠.	:		_				_
•	•	•	٦	٦	•	•	٠		•	•	٠.	•	•	•		•	•	•	•	•			•	٠	٠	•	•			•	•	•	•	٦.	٠
99	55	-03	Ö	-03	70-	-05	-05	ç	3 6	-05	-05	-01	00	80	•	-05	~ 0-	70-	-01	ö	٠.		. 0-	~ -0	-05	ő	-05	5		70-	٠ -	-05	70	-03	<u>ې</u>
379E	1736	3085	30E	309E	316E	11E	102E	7.26		, 1E	36 I 9E	14E	173E	716F		OSE	43E	309E	369E	37E	189E		636	97E	. 916.	399E	164	175E	. A.	33E	,41E	40E	4 2E	, 3E	909c
-6.016679E-02	1.4871736-01	4.674580E-03	2.544020E-03	-5.862809E-03	-5.825816E-02	-2.833811E-02	-7.405302E-02	2 1125725-03		1 - 20 324 /E-02	• 196519E-02	.791614E-01	•114773E+00	.145716E+00		-6.614405E-02	-3.440643E-02	2.328809E-02	1.1519496-01	2.3156376-01	. 762889E-01		-1.0133636-0	8.337997E-02	-4.6715615-02	8.334699E-03	.866164E-02	1.1215756-01	: -:	-1-110233E-0	-1.1170416-0	-9.148440E-02	-5.227242E-02	-3.010343E-03	1.927960E-02
÷	;;	Ť	~	.5	'n	?	-	î		-	÷	-	÷	-	٠	-6-	ij	~	<u>:</u>	~	~		7	å	•	ė	-	_	٠,	7	ij	Ġ	Š.	ń.	-
٠.		;					•			•				٠.							٠,				•		· .						Ξ.		-
		٠.		•						,				•			٠.	:		•				٠. ٠	,		**	• •		. ;					
									•				-												٠.										
0.0	•	•	9	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	0	•	•	•	0		0	•	•	•	•	•
60	70	02	20	20	20	20	00	6		2 5	20	70	00	00		-	10	02	02	02	70		70	;	70	%	70	02		7	7	- ;	5 :	70	70
26E-	35E-	95E-	-361	-382	77F-	30E+	3 3E +	31F-	100		196	42E-	÷	366		- J 1 5	4 2 E-	386-	136-	5 7 E-	586-		-36E	396-	386-	-326	6.7E-	-306		2.2E-	- E	6.2E-	- L C C C	Z 0 E	77
-5.272126E-03 4.621549E-02	6.613495E-02	-7.660795E-02	-6.273519E-02	-4.2623286-02	-1.517077F-02	1.0416306+00	1.051383E+00	-9.498181F-02	E0-30200E0 B-	,	-3-42666E-UZ	-3.022142E-02	1.033510E+00	.0466368+00		-1.238257E-0	-1.032842E-0	-8.2685886-02	-4.1883136-02	2.9387676-02	6.1 39768E-0 2		-1.513999E-0	-1.410889E-01	689	-1.6124925-02	-1.641967E-02	1.3454806-02		-1.565922E-01	-1.616184E-01	-1-4/1762E-01	10-388/1C1•1-	- / - UB4920E-02	-2.0320336-02
-5-4	9.9	-7.6	-6.2	7.	-1.5	-	 	-9.4	9	֓֞֜֜֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֡֓֜֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡) • E	-			7	7	-8-2	-4-1	2.5	•			-1.4	-1-168988E-0	7.	7	=		7		· ·	;;		
			•					·								•					_			•	•		-					٠.			
¥ 7	7	*	i	4	¥'	4	₹	*			Č.	25	•	3		•	š	2	Ñ	ř	9		ō :	ŏ	٥	3	o	ŏ		•	9 (2 5		֚֚֝֟֞֝֝֝֝֝֝֟֝֝֝֡֝֡֝֝	•

DOENEASH RATREX - CORD L

	RASATA	×	- 2909	LEADING/TRAILING	IG EDGE CONTROLS	ø,	APR 12, 1975		
•:	REDUCED FREQUENC	NC Y	0000	MACH NO5000					•
100	REAL	. w	1 ******* IMAG	REAL	2 ****** IMAG	PEAL	D E 3 000000	REAL	E + eeeee
•	3007070	•							
- ~	2.6.10322E-15	•		1.0234976+00	0 0	0 0	9.5	•	0.0
•	1.9437536-15	•		1.0373426+00		? ?			
•	1.588210E-15	•		1.032726E+00	0	•	0,	•	0.
n d	1.414072E-15	0 0		1.0093658+00	0,0	•	0.0	0,0	0.1
•		•		10-20111001	•	•	•	.	D.
_	1.3650516-15	0		9.9031785-01	0.	0.	0.	0	0
&	2.653884E-15	0,		1.0234976+00	0.	•	0.	0	0
~ _	2.024017E-15	•		1.037342E+00	0	0	0.	0.	0
2 =	1.434998E-15	•		1.032726E+00	•	•	0	•	0
12	1-3612035-15			9.859773E-01	•	•	00	•	• i
. (
Δ:	8,9030135-16	•		9.903178F-01	•	0.	0.1	••	0
: :	2.512650E-15	•	· :	1.023497E+00	•	0.	0	•	0
2 2	1.654186515	9		1.037342E+00	o.	•	o.	•	0.
-	1.4574716-15	•		1,003/205400	•	• •	0.	•	0.
18	1.381266E-15	•		9.859773E-01	•	•) C	•	3
									3
<u>6</u>	5.372528F-16	•		9.9031786-01	•	•		0•	0.1
2 5	.016966E-1	•		1.023497F+00	0.0	0.	0.	•	0.1
22	.708647E-1			1.032726400	2.5	•	0.0	.	0.0
53	1.485653E-15	•		1.009365E+00		•) C
57	.405243E-1	•		9.859773E-01.	•	0	0.	•	0
ž	7439326_1	•							
92	1.202686E-15	•		10-3671706-1	2 .	• «	0.0	.	0.
23	.841497E-1	0		1.037342E+00		•		•	
. 28	.811236	•		1.032726E+00	0	0	0		
5.6	.527409E-1	0.		1.009365E+00	•	•	0.	0	0.
2	• 4 3 6 1 3 4 E - 1	•		9.859773E-01	0	•	0	0.	0.1
ĩ	4.813425E-1	•		9.9031785-01	•		•	•	
35	836487E-1	0		• •	? •	• •		•	• • • • • • • • • • • • • • • • • • •
33	2.9089946-15	•		1.037342E+00		. •			
ň	069283E-1	•		1.0327266+00	•	•	0	0	•
6	509046E-1	•		1.009365E+00	•	•	0.	0	0.1
9	497328E-1	•		9.859773E-01	0.	•	0	0	0
31	7.8237895-16			0.0011786-01		c		•	
38	-8.203887E-17	•		1.023497F+00	• c	? 0	• • •	•	0
33	1.8829536-15	•		1.037342E+00		•	, 0	? •	20
				and the second of the second o))	

000	00000	000000	000000	00000	00000
•••	00.00 10.00	.0 .0 .0 1.009165E+00 9.859774E-01			00000
900	00000	00000		00000	
•••	9.920366E-01 .0 .0 .0 .0	9.920366 0.00 0.00	•••••	00000	00000
000		00000	00000	~0000a	00000
1.0327246+00 1.009365£+00 9.859773E-01	9.903178E-01 1.023497E+00 1.037342E+00 1.032726E+00 1.00335E+00	9.903178E-01 1.023497E+00 1.037342E+00 1.032726E+00 1.009365E+00	(9.903178E-01 1.0237942E+00 1.037342E+00 1.032726E+00 1.009365E+00	9.903178E-01 1.023497E+00 1.037342E+00 1.032776E+00 1.009365E+00	9.903178E-01 1.023497E+00 1.037342E+00 1.03272E+00 1.00936E+00
•••	00000	00000	•••••	000000	
3.020652E-15 1.802257E-15 1.627768E-15	5.174873E-15 -6.971441E-17 4.512733E-16 3.207784E-15 -6.103700E-15	-3.823138E-15 4.481205E-16 -1.581878E-16 1.376393E-15 -4.748613E-15	1.060963E-19 7.819617E-16 5.099306F-17 1.665043E-17 9.405522E-16 1.769595E-15	1.0A8052E-15 9.419866E-16 5.2A9617E-16 7.43687E-17 4.585763E-17 1.534743E-16	1.105157E-15 1.019049E-15 7.769164E-16 4.19204E-16 1.703875E-16
\$77	# + # + # # # # # # # # # # # # # # # #	402000	8 9 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	66 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	64 69 70 71 71

	•			,
	4			
	1	ì	ì	•
	•		-	i
	•	L	ä	•
			٠	
		1	i	
	1			•
	•			
	•	۰	•	
	•			
,	2		Š	
	;			
		,		
	4		ī	
	2		ì	
	1			
	3	į	8	
	c			
	¢		١	
	•		9	
,				
	=	١)	
	e	3		
1		4	•	
(۰		
•	•	•	•	

TRAILING EDGE CONTROLS

	E 4 eeeeee	•	0,	3	•	0	•	0	0.	•	•			0	0.	•	•	0.	0	•	.			•		•	0.	•	0.	0,	0.	့ ၁ ဇ		ę	
	PEAL DESCRIPTION	1.482939E-02	2.207716E-03	-1.461/47E-02	-5.879168E-02	-7.3463196-02	2.369407E-02	1.3479216-02	-1.286655E-03	-1.931058E-02	-6.134054E-02	7 073285E-03	2.072072E-02	5.918192E-03	-1.274160E-02	-4.12617BE-02	-5. (8/366E-02	3.785639E-02	2.137816E-02	1-177457E-02	-8.243334E-03	-5.839844E-02		4.546189E-02	30-01010-0	-4.529056E-03	-4.111193E-02	-6.1857358-02	5.427790E-02	4.2021376-02	2.380498E-02	-4.432880E-04	-6.695618E-02	**********	
	3 ecceso	0.	•	•	. •	•	0	•	0	•	? ?	•	•	•	•	•	•	•	•	•	.			0.0	.	• •	•	•	•		0	• •	•••		
	AEAL	2.986567F-03	3.213723E-02	4.435759F-02	4.323119E-02	4.333930E-02	-1.842851E-02	9.274652E-03	1-7117578-02	1.599166F-02	1.559078E-02	-2-4627306-03	3.5171306-03	1.0180536-02	9.9871416-03	60-11/6/11/6	80-36366-08	-1.925213E-02	1.234450E-02	2.037425F-02	2 - 404430E-02	2.0851116-02		-4.382796E-03	50-3045019.6	6.465294E-02	6.110054E-02	6.765288E-02	3.417037E-03	7.234164F-02	1.129529E-01	10-3408385-01	1.4502456-01		
	2 ******* [MAG	0.	o .	•	•	0.	•	•	0,		•	•	•	•	•	•	•	•	•	•	• •			• c	•	0	0	•	•	•	0.0		0		=
MACH NO5000	REAL	9.9031786-01	1.023497E+00	1.032726F+00	1.009365E+00	9.859773E-01	9.9031785-01	1.023497E+00	1.037342E+00	1.0093656+00	9.8597736-01	9.9031785-01	1.023497E+00	1.037342E+00	1.0327266+00	0.0603335-00	70-361166006	9.903178E-01	1.023497E+00	1.037342E+00.	1.0043655+00	9-8597736-01		10-381181-01	1.0373426+00	1.032726E+00	1.0093658+00	9.8597735-01	9.9031785-01	1.023497E+00	1.037342E+00	1.009365E+00	9.8597736-01		
0000	E L sesses EMAG	0.	0,0		0.	•	0.	•	•		0.	0	0.	0,	•	•		•	0,0	.	9			•		•	•	•	0.	•	0		•		
REDUCED FREQUENCY	REAL REAL	1.940402E-15	2.610322E-15	1.59A210E-15	1.4140726-15	1.3420616-15	.365051E-1	2-653884E-15	2.024017E-15	-434998E-1	1.3612036-15	1-36 106 06-	.512650E-1	2-146319E-15	1.654186E-15	1.3812465.16		5-377528F-16	2.016966E-15	1.7086475-15		-405243E-1	3 -74-30336-14	1.2026865-15	.841497F-1	-8112365-1	1.527409E-15	-420124E-1	4.813425E-16	3.836487E-16	2.908994E-15	1.6090466-15	1-497328F-15	7 9337495.14	1-2601676
	T.		N F	٠			~	∞ (P S	:=	7.	. 61	±	2	<u> </u>	· «	:	61	2 2	22	:2	* 2	36	2 2	27	88	6 6	2	31	32	? ?	35	36	11	,

000	00	0.0	0	•	0	•	•	0	0	•	c		9		0	•	•	•		9	9	0	ļė,	0	•	•	•	•	•
5.403353E-03 -4.724263E-02 -6.761088E-02	7.835073E-02 6.416184E-02	-4.359590E-02	-5.5925026-02	-8.927711E-02	9.714517E-02	8.222415E-02	6.090804E-02	3.087758E-02	-4.785042E-02	-8.466773E-02	1.266545-01	1.1075265-01	8.4559216-02	4.2807736-02	-3-010969E-02	-6.285737E-02		10-3750045-1	10-30110111	7.785273F-02	1.6774816-02	-1.378608E-02		1.601757E-01	1.653162E-01	1.5115486-01	1.1780786-01	7.245981E-02	5.1490786-02
						:				•															:		_	_	
999	99	9		•	7	•	•	•	•	0					•	•	. · ·	•			•	•	· · · ·	•	•	•	•	•	•
1.755074E-01 1.887874E-01 1.924224E-01	-2.128769F-01 -1.31549F-02	6.150855E-02 8.814214F-03	9.932871E-02	1.0251686-01	-5.0955356-01	-3.248928E-01	-2.610750F-01	-2.443865E-01	-2.340961F-01	-2.358947E-01	-4.08494 1F-01	-3.1122115-01	-2.725250E-01	-2.553382E-01	-2.43888E-01	-2,392812E-01	10.300001 1.	-6.42813E-03	-2.811901F-02	5.776666E-03	3.172337E-02	4.084410E-02		2.944974E-02	5.352739E-02	1.009294E-01	1.5339716-01	1.906197F-01	2.018484F-01
	•				٠					•	٠.					٠.		i			٠.		• .	٠ .					
		. :	•																							•			
•••	00	00	0	•	•	•	•	•	0	•	9	0	•	•	•	•	•		0	•	•	•		•	•	•	o	•	•
1.032726E+00 1.009365E+00 9.859773E-01	9.903178F-01 1.023497E+00	1.037342E+00	1.0093656+00	9.859773E-01	9.9031786-01	1.0234976+00	1.037342E+00	1.032726E+00	1.009365E+00	9.859773E-01	9.903178F-01	1.023497E+00	1.037342E+00	1.032726E+00	1.009365E+00	9.8597736-01	10.3871500.0	1.023497E+00	1.037342E+00	1.032726E+00	1.009355E+00	9.859773E-01		9.9031786-01	1.023497E+00	1.037342E+00	1.032726E+00	1.009365E+00	9.8597736-01
					٠.		•		• :		٠.	٠.			٠. ٠		· .·			. •	٠.	•			:				
								.·.						·.	,							·		٠.			•		
900	00	• •	•	•	•	•	0	•	•	•	0	•	0	•	•	•	ç	•	0	•	0	•		•	•	•	•	0	•
3.020652E-15 1.802257E-15 1.627768E-15	5.174873E-15 -6.971441E-17	3.207784E-15	-6.103700E-15	-4.110185E-14	-3.823138E-15	4.481205E-16	-1.581878E-16	1.3/63935-15	-4.148013E-12	-3.6 (0/5/E-14	1.060953E-15	7.839617E-16	5.079306E-17	1.665043E-17	9.405522E-16	1.7695956-15	1.0880526-15	9.419866F-16	5.289617E-16	7.4366876-17	4.5857636-17	1.5347436-16		1.105157E-15	1-0190496-15	7.769364E-16	4-192094E-16	1.703875E-16	1.1469816-16
977	7;	Ç \$	~	4	64	20	7 :	20	2	r'	55	26	27	8	20	9	7	79	63	10	65	99		67	æ (6	2;	= ;	12

	•		•		
	•	2			
•	i				
	1				
	•		١	١.	
		,			
	•	,	٠		
	1				
	•		•		
٠	•		,		
	,		•		
	۰				
	•				
	•				
	•				
	•				
	•				
	•				
•					
•	t	Ľ	•		
	•				
4		9			
	•		•		
	•				
	:				
	•	•			
	4		•		
	•		•		
	•		:		
	3	ı			
	ų				
	C	3			
		_			
	2				
	ı				
	-				
ı	4	•			
•	•	•			
1	ø	,			

LEADING/TRAILING EDGE CONTROLS

	1 MAG					3																	•																
• • • • •		9	0	•		0	0	•	•	•		0	•	0	•	9 6			0	•	•		0	•	•	0	•	0		•			•	0.1		0	9	0	0.0
	DESCRIPTION OF DESCRIPTION OF THE PROPERTY OF	6.729536F-03	7.720774F-03	5.93631E-03	2.2664295-03	1.433237E-03	1.001162E-03	å.	4.933207F-04	41776-	4.8167385-05	-3.328960E-02	-2.275696E-02	-1.1077368-02	5.870671	-3.410002E-03	2.098506F-	-1.7506996-03	-1.352135E-03	-1.2318736-03	-8.492040E-04	1.316797E-04	۵,	4	-2.850140E-03	-2.10/369E-03	1.0730775-	-8.222394E-04	-4.934491E-04		3.637585F-04	-3-433619F-03	818685E-	-3.103438E-04	-2.1512546-04	-5.089491E-04	1.2231736-		-1.366771E-03 -1.106624E-03
	E 13 cotoco	0	0.	0.		0	0.	0	0.	.	0	0.	0	0	•	.		0.	0.		0.0		0.	0.1	0.1	>		0	0,	٥,	00	0.	0.	0	0	0.	0	0	00
	AFAL AFAL	-7.273039E-03	-1.877759E-02	-1.293749E-02	8.983097F-03	2.7788156-03	-3.212095E-03	~	-2.692234E-04	7.0866305-04	2.302483E-04	. 2.897239F-02	3.155142E-02	1.459662E-02	-5.137993E-04	-5-190906F-05	60-465863F-03	4.6654746-03	2.603365E-03	1.0520346-03	7.414.0455.04	1.347160E-02	1.2086205-02	2.227122E-03	m' 1	1.2690925-03	3.4072566-03	3.5607785-03	3.226906E-03	2 10/0335 03	8-9357416-04	6-192003E-03	6.225000E-03	7.865063F-04	-2.222910E-03	-8.5218546-04	3457416	2 000 1486-03	2.54866 JE-03
	2 ****** NAG		0			0.1	0	0.	0.0			0	0	0.1	0.0		0.	0		0.1	• •		0	0.1	0		0	0	0.1		0	0.1	0	0.1	0	0	0.0		
\$00	****** M D D E REAL	3.3616546-01		7.88445.96-02				70	6.423349E-03	1.5462505-03	5.187021E-04	-8.110264E-04	_	-1.0116926-01	-1.125810F-01		-4.207292E-02	-3.163389E-02	-1.700112E-02	-9.721761E-03	-3.132134E-03	3.567457E-02	-1.470646E-02		-4.846438E-02	•		-2.680569E-02	-1.5859246-02	Ċ		-1.749914E-03	50 93 80E-05	-1.712474E-03	-1.114766E-02	-1.124683E-02	-2.233296E-02	- C - 1 C C C C D C - U C -	98158E-
	1 ************************************	0.	0.	9 6		•	0	0) (•••	•	•	•			•	•	0	• •		0.	•		0	0	0.	0.		0.	0	0.	0	•			•	0
EDUCED FREQUE	REAL CONTRACTOR OF	836096-16	1.2217456-16	367675-13		•	٠.	٥.		9 0	٠	s.	so .	٠.				٠	s o	·			87	ه و	n k	•	ۍ	•	0 4	678958F-16	3.1301936-16	1.359441E-15	2409996-15	200031F 15	744815E-15	2.043440125	36855E-15	1.034535F-15	1.5547126-15
	TERM		~ :																												•	37	er c		2 7				

LEADING/TRAILING EDGE CONTROLS MACH NG. .5000

• 0000 REDUCED FREQUENCY

2	T YRAD								
				, M	*********	*********	0 0 H ****	• • • • • • • • • • • • • • • • • • •	*********
*0N *0*** ****	****	REAL ******	1 KAG	AMPLITUDE ********	PHASE (DEG)	REAL	TAAG	AMPLITUDE	PHASELDEG
•						1			
		-1.652E-01	0	1.6525-01	180-000	4.857E-02	•	4-857E-02	000
		20-3762-6-	.	4.224E-02	000.081	20-326-2	3	Z. 352E-02	0000
		-20138E-02	>	Z. 1385-02	180.000	1.9986-02	•	1.9986-02	000
	100	-1.784F-02	•	1.784E-02	180.000	1.8836-02	•	1.6836-02	• 000
	600	-9.337E-03	•	9.337E-03	180,000	1.9516-02	•	1.9516-02	000
	500	-5.302E-03	0.	5.302F-03	180,000	2.1616-02	•	2.163E-02	000
	00**	-3.596E-03	0.	3.596E-03	180.000	2.470E-02	0.	2.470E-02	000
	- 300	-3.0696-03	•	3.069E-03	180.000	2.819F-02	•	2.8196-02	000
•	200	-3.093E-03	•	3.0836-03	180.000	3-1645-02		3-164E-02	000
21	001	-3.282E-03	0.	3.282E-03	180.000	3.468E-02	0.	3.4685-02	000
=	000	-3.490E-03	0.	3.480E-03	180.000	3.712E-02	•	3.712E-02	000
12	.100	-3.587E-03	0.	3.587E-03	180.000	3.8955-02	•	3.895F-02	000
	. 200	-3.551E-03	0.	3.551E-03	180.000	4.032E-02	•	4.032E-02	000
1	300	-3.329E-03	•	3.329E-03	180,000	4.161E-02	•	4.161E-02	000
٠٠ - ا	004.	-2.866E-03	•	2.8665-03	180.000	4.3378-02	0	4.337E-02	000
2	• 500	-2.108E-03	0.	2.1086-03	180.000	4.6456-02	0	4.645F-02	000
		-1.022E-03	•	1.022E-03	180.000	5.17-16-02	•	5.1796-02	000
	, · ·	3.5096-04	•	3.509E-04	000.	5.330F-02	0.	5.330E-02	0000
-	ας .	1.8246-03	•	1.824F-03	000	4.795E-02	••	4.195E-02	000
2	006	2.861E-03	•	6 1 E	0000	3.5476-02	•	3.5476-02	000
~	066	1.5176-03	0.	1.517E-01	000	1.1336-02	0.	1.1335-02	000
•	000								
	066	-8.860E-02	0.	8.860E-02	180.000	5.951E-02	•	5.951E-02	000
	006	-1.376E-02	•	1.376E-02	180.000	Z.804E-0Z	•	2.804E-02	000
-14	909		•	9.332E-03	180.000	2.463E-02	•	2.463E-02	000
•		-0.842E-03	•	6-842E-03	180.000	2.383E-02	•	2.3835-02	000
		-3.U86E-U3	•	3.086E-03	180.000	2.467E-02	•	2.4676-02	• 000
	000	\$0-4811*7-	•	Z. 118E-03	000.001	2.678E-02	•	2.678E-02	000
		f0-3/66-1-		1.997E-03	180.000	2.9746-02	•	2.974E-02	000
	000	٠.	•	1.903E-03	180.000	3.3136-02	•	3.3136-02	000
- 5	007.	-	•	1.583E-03	180,000	3.654E-02	0	3.654E-02	000
	001	-1.0/2E-03	•	1.075E-03	160.000	3.9636-02	•	3.9636-02	000
	222.	α.	•	5.356E-04	180.000	4.216E-02	•	4.216E-02	000
7.	001	-1.33/E-04	•	1.337F-04	180.000	4.402E-02	•	4.402E-02	000
	007	4.403E-05	•	2.403E-05	000	4.522E-02	•	4.522E-02	0000
-	300	-6.236E-05	•	6.2366-05	180.000	4.596E-02	•	4.5968-02	000.
£ .	004.	-2-112F-04	•	2.772E-04	180,000	4-664E-02	•	4.664E-02	000
2 :	000	-4.136E-04	•	4.136E-04	180.000	4-7976-02	•	4.197E-02	0000
= ;	.600	-2.273E-04	•	2.2736-04	180.000	5.0876-02	•	5.087E-02	000
2 .	200	4.822E-04	•	4.822E-04	000	4.92 16-02	0.	4.927E-02	000
~ ?	. 800	1.7346-03	•	1.7346-03	000.	4.06.56-02	0,	4.065E-02	0000
32	006.	3.0316-03	•	3.0316-03	000	2.630F-02	0	2.6 105-03	000
- 21									

000	000	000	000		000	000	000	000	000		000	000	000	000	000	000			000	000	.000	000	000	000		000	000	000	000	000	000		000	• 000	000	000	000	000	000	000	000	000	000	000		000	000
	3.7386-02				526	7.8	238	264	678		. *	. 224	.320	570	330	342	2 4	•	10-3691-1	4.909F-02	4.066E-02	3.7665-02	3. (51E-02	3. 959E-02	4. ASAE-02	5.0635-02	5.4386-02	5.750E-02	5.984E-02	6.145E-02	6 344E-02	6.5396-02		7	5.524E-02	9.982E-03		3		4.808E-02			5.3105-02			269	ш.
		•	•	: :	•	•	•	•	•.	•	. •	•	•	•	•	• .	• •	•	0.	0	•	0	•	•	•	• •		* • ! •!	•		•	• •		•	•		0	0	0	0	. 0.	•	5 (0,0	9.0	0	0.
2E	,	1816	3.040F-02	230E	526E		4.238E-02							-570E	330	4.3421-02 2.7606-03	04.6	4 -	ó	9096 -0	066E-0	3.766.6-02		4.2621-02		536	. 4336	. 75 UE	31,86	1456	1.4 7.7 7.7	5305	, 873E	<u>~</u>	1576	3286	10-3575-1	-3155	?	0	9	0	9 0	5.7926-02	0	- 26 41-	536-0
180.000	180.000	000.081	180.000	180.000	180.000		000	000	000	000	0000	•	80	ė		000	20		ø	8	90	180.000	Э (000		000	000	000	000	000		160.000	0	180.000	000	180.000	180-000		000	000	000	000	000	000	000	000	000
4.481E-02	5.4456-03	60-1/75-03	3.071E-03	4-486E-04	2.810E-04	405	102	0-1781	vs	444F-0	0-316	26E-0	1.2245-05	` a	\$	1.0716-04	9	5	H.	8	4.35-0	3.030E-03	٠,	3.5558-03	5516-0	564	3.5785-03	3.4176-03	6.5	23	1.050F-04	•	631	920	6.018E-03	936-	2.796E-02	5.684E-03	44E-0	21E-0	~	.336F-0	200	264F10	478	949E-	3.778E-03
•	•	•		•	0	0.	.				0	•	0,	.	•		0		0.	0,	• •	•	•		0	0	•	0	٥.	•		. •	0.	•	•	0	0.	•	•	0•	0	•	•	• •	0,	• 0	0•
	5.445E-03	-0-1165-03	34E	. 20	w	1.405E-04	2.102E-04	200	4845	3555	.091E	456E	24F	200	24.00	.071E-	210E-	1	4-872E-	5.680E	76.54.56	9 -	3716	3.555E-03	5516			3.417E-03		1.1685-03	1.050E-04	8.706E	1.631	2.056E	: -:	3.293E	2.196E-02	.684E	. 744E		242	.336t		264E	.478E	w	. 178
066	88		000		004.	300	200	→ C	001	.200	• 300					006	066) 		000	7 W	004	ς.	200	-100	000		002	004		- 009	- 100	88	066.	066*- 1	œ	∞ ו		οι	α 4	200	\sim	7	000	
.200	***						4. 6	1.		-	7	.	~ .	-	7	52	~	i	300						_		= :					7	-		25	7	• 400			•					1	= :	4
_		,											-	,					٠.			٠.									:					٠.											

	 000	8	000	0	00	000	3 8	3	00	000	000	000	000	000	000	000	200	9 6	000	000	. 000	000	000	000	000	000	000	000		000			000	000	000	. 000	000	000	000	000	000	000	000		000	000	000	000	000	
	9.6		•	•	•	•	•	•	•	•	•	•	•	0		•	? •					•	•	•	•	•	•	•		•				•	•	•	•	•	•	0	•	•	.	2 0	. •	•	•	0	•	
	73E-02	5E-02	E-02	3E-02	26-02	3E-02	3E-02	70-13		6E-02	ш	w.	ш.	39E-02	4	u u	44	. CU-1	3E-01		ı.	ı	67F-01		ı.					26-01	20100	3E-02	144		20-36	2366-01	56-01	2E-01	. 10-3¢		496-01					. L	ZE-02	259E-01	10-3C	
	7.973		40	7	٠,	m, c	~	7	2.12	9.66	6.	٣.	₹.	4	2	7.90° J	•		1.069	1.138	1.208			•	1.422	1.20		2.36		2.905	3077-1	8.723	•	•	9.198	60.1	1.37	1.52	1.67			~ .	7.3012	2.172	. ~		4.61		1.860E	
		. :			٠					•	•			•	٤.																			٠٠.		1. s.			ţ.,					٠.				٠.	:	
	99	?		•	•	0	•	?	•	•	•	•	•	0	2	•		•		0	0	•	0	•	•	0	•	•	 	•	•	90	0	•	•	•	•	•	•	•	0	•	•	? 0	•	•	•	0	•	
į	2485-02	6E-02	1E-02	9E-02	0E-02	HF + 02	7000	7 	54-01	6E-02	7E-02	4E-02	5E-02	3.1E-02	70-17	20-26	1 CO	. F-02	4F-01	8E-01	BE-01		41.	. 10-15	1.	1	1	16-02	· > 1	10-11		0	-	10	9	0 9	10-39	2F-01	5E-01	16-11-01	10-9C	~ -	- 4	2E-01	; ;		Z6-02	25 SE-01	10-30	
	7.97		8.83		6.0			•	2.12	9.66	6	0	=	3	Ξ.	2	,		ð	Ξ	1.20	1.284	1.367	1.455	*	~	~	2.36		σ.	v a	`~	*	• .	6.6	1.60.1				1.84	2-04	5.29	2.00	2.17		8	4.61	4-25	• '	
	.					0	.	3	0			0	Ö,	0								0	0	•		0	O.	•		0 0			0		0			0		o (0				.0			:	
	180.000	180.00	180.00	180.00	180.00	o d	180.000	•	180.000	000	000	ĕ.	Ö	000	5.6		200	000	180.000	160.000	8	180.000	160.000	100.000	180.000	ċ		180.00		0		000	0	000	000	000	160.000	180.00	180.000	180.000	000.001	000.001	180.000	180.000	180.000	180.000	180.000	000	00	
. !	က ဗို ဗို	93	-03	-03	60	1 1			-05	-05	-03	-05	20-	200	3 C	701	201	.03	[0]	-03	-05	7 0-	-05	-05	-05	Ç	1	0-		70	20	-05	-05	1996-02	70-	-05 -05	-02	-05	-05	70-	-05	70-	201	-05	-05	1 -	-03	10-	-01	
	.311E .074E	1146	\$ 662E	595E	• 745E	9165	3.013E	3. 3	1.5416	2	255	ш, ,	366	253E	3370	- 4	325	9146	553E	197E			1.249E	1.1926	<u> </u>		960	1.0845		3.715E	3561.7	• 🗪	6.8186	9666.9	5.520E	7.096F-02	2.093F	3.259E	3.672E	3.6038	285E	8 / 3E		195	1928	4.991	1.650	3.226E	4-057E	
								:					٠		,							-					5						٠.				٠.	٠				:						:		
	• •	0	0	•			2.0	;	•	•	9	0	•	0	•	•	20		•	•	•	•	•	•	0	•	•	•	•	•	2	0	•	•	•	•	0	0	0	•	•	7 0		; 0	0	•	0	0.	•	
:	F-03	-03	-03 03	69	- C	5 C		.	E-02	E-02	E-03	-05	705	-02	70	-02	-02	-03	-03	1	-05	E-02	-05	-02	~ ~	.	60.6	50-		F-02	3 C	-05	-05	E-02	F-02	E-05	E-02	-05	-05	F-02	70	201	-05	70-	-05		-03	-01	-01	
	1.01	=	99	595	:		5.568		241	610	725	100	668	262.	י פ	705	. 2	116	.553	_	.096	1.225	1.249E	1926	•056E	~	3 6			220	195	-236E	818.	3666	֭֭֡֝֓֓֓֓֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡	2 2	2.093	3.259	3.672	3.603		7	33	1.619	.182	66	1.650E	3.226E-(4.057E	
	- 300 300	- 004				000	•	2	- 066	006	800	8	000	200		200	001	000	- 001	- 002	300	400	500	- 009	002	008	006	• •		, 0	. 60	200	•	v,		\sim	_	A _	001	- 002		200	009	700	900	000	- 066	066	σ.	,
		•	· ·		• `		• •	•	•	· ·	•	i		•			•	_	•	•	•	•	•	•	•	•	•	•	1			•		•	•			•		•	•	•			•	•	•	•		
	-	=	Ξ.		= 2	- ~	í ~	i			, .			•			=	-		∷	٠ ــــــــــــــــــــــــــــــــــــ	<u></u>	Ξ.	→ ·	= :	- č	ŭ 6	•	_			•		7 -			ž	. ب			_	. =	-	_	٠.	Ň		-	-	
			٠.		*				- 500			•														٠			400		•														Si .			. 700		
			·						•	٠.																			-									,	•								٠	•	٠.	

	000	000	8	000	000	00	000	900	200	000	000	000	000	000	000	000	000	•	00	000	000			000	000	000	000	000	000	000			000	000	000	000	3	000	000	000	3 6		000	000	000	000	900	30	000
	•	•	•	•	•		•			•	•	٠	•	•	•	•	•		•	•	•	•			•	•	٠ پ	•	•	•				٠	•	•		٠	٠.	•	•	•		٠	٠	•	•	, ,	٦
	=	5 :	5	=	=	0.	.	.		: 5	~	10	10	10	= :	5				10					5		10	: 50	5	~ ~	- 5	2 2	9	00	70	5 5		8	=	<u> </u>					10	70	5 5	:=	=
1	-	287E-0	346-	1,34 16-01	196-	47E-(<u>.</u>	376.	24E-(567E-0	3786-01	•	87E-	80E-	<u>.</u> ,	78t-	8 2 E -		24E-	316	7 1	216	7.6	50E-	2 JE -	ů.	1	346-	056	- C	מים ל	356+0	15E	ш	33E	09E-		ш	، س	10E	716	7.F.	!.	. 4	1.	748-	0 4 E -	396-	ž
	-	7-1	1.2	-		-	, v	•	• •	5	•	•	•	æ.	•		. 0		7.	0 (· ·			Š	•	•	•	•	3.0	0 4		7.7	N	7.6	6.9	* *	•	1.3	9	συ ¥			3.5	3	4.0	∾.	•		8
•	·											٠	;						:					. :	: :	٠,			٠. ٠				. ;	: ;			e'			 			٠.						· .
	•	٥.										0	0	o,	0	9	90		O	0) c		0	0			0	0	O 0	.	9 9	0	0	0	٥ د	· •	0	0	O. c			,0	0	•	0 (.	9	٠
	Ť	•	•	•	•	•.	•.	•	•	•	•	٠,	•	•	•	•	•		•	•	•	•	•	•		•	•	·	•	•	•		•		•			•		**	•	•	. •					, •	
	ш,	44 2	4	E-01		4.4	u u	4	ıw	ı.L	ı.	1	T.	+ "		1	E-02		۵,	٠,	3 6		i u	. 4	ш		- 1	盐.	10-3	0-0	1011	0	00+3	222 1	E-01	10-17		•	a .	10-4		l t	212		Ţ.	<u></u> .	"		-
	1.46	1.28	1.25	1.36.1		1-747	7.00	206.2	3.024	56	4.378	99	68	9. ABC	9	7 4	•		2	7.	166.5	::	2	55	0	٣.	٠.	ø	5.605	7. UR 1E-	7.07	5.5	4.275	1.69	R. 833	1000	•	1.330	. 806.E	84	7.7.6	, ,	59	7	4.003	~	900	33	5.334
							•																	1		•	٠.						 						, .). }						
•	8	200	9	90	900	000	900		00	000	000	000	. 000	000	88	2 6			90	000	3 6		000	000	00	000	000	000	000	000		8 8	000	000	000	000) }	000	000	000	900	000	00	000	00	88	000	000	00
	000	•	•	0.0	000	000		0	80.000	80.0	80.0	ċ	80.0	80.0	80.000		80.00		00	000	5 0	0	90	80.0	80.00	80.0	80.0	o.	•	000	•	: :	ċ	ċ	ċ	֓֞֞֜֞֜֞֜֜֞֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֓֡֓֡֓֡֓֡		0	5 (٥	•	90.0	ċ	80.0	80.000	80.000	: 0		90.00
	- 4 .		,	·				٠	~	~	7 2	2	2.	~ ~	~ .	V. r								_		 	_	·	~ .	~ ~		~	~	~ .	~ .	n .		· · ·		- ^	,	 	~	~		~ .		. ~	~
	9966-0		200	4796-0	4 35 4	8135-0	4 20 E = 0	656-0	-0	55E-02	92E-02	35	66-02		-	746.10	1	. !	:	, H	. 4		5E+0	35E+0	02F-0	3086-0	23E-0	0486-0	4025-0	456-0	1036-02	0-319	•	u l		336-0				7086-0		9	965E-0	25E-02	0876-0	.093E-02	476-0	022E-0	46E-0
	4	7				8.	0 1		9.2	_	5.4	4.20	3.22	4	œ,		2.61		8	5 9	100	2	1.0		3.7	2:3(1.5	0	5			2.56	2.18	æ :	7.1			8.58	2.3	ă ~		8	1.96	2.7	3.0		2.44	2.03	•
												1						,	٠.	•				.*	•							٠.		٠,	٠.			• ;	7				:		:•.			•	
		.	.	9 (٠.				0	ď	0				.		٠.,	٠.	.			•		0	٥	0	0 (.	> c	•	, 0	0		.					.				O					
	•		•				• •					•	•	• ,	•	•	•		٠	•	• 1	•	•	•	•	٠	•	•	•	•	•	. •	٠	•	•	•	,	•	•	• •)	•	•	•	•		:	. • ;	•
	- C	2		10		0 0	101		1	F-02	ı.	đ.	Ŀ,	E-02	70-1	10.0	-03		200	0 0	100	00+	E+00	10-	4	4	<u>.</u> .,	9) 	F-02	0-1	9	.!.	Ĺ	20-2			E-01	.	10-1 10-1	!		4	E-02	t w	: 4		d.	E-02
	2:	֓֝֝֓֜֝֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֓֡֓֓֓֡֓֡֓֡֓֡	ָ 		֓֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	100	620	165	228	.155	.492	. 205	.226	9 9	878	3 2	617		200	,,,	900	077	015	.135	.702	308	523	949	֓֞֜֝֜֜֝֜֝֜֝֜֜֜֝֓֓֜֜֜֝֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֡֜֜֝֡֓֜֜֜֡֓֜֜֝֡֓֡֡֡	977	103	561	. 185	806	7 7 7	33	,	.589		200	915	. 746	.965	.725	.087	20.0	44.7	.022	9,9
	.	n 4				11				1	1	i	•	•	7 7 2 6		7				1	-5	7	9- 0	1.	2	- -				- 0	Ĩ	•		ī. ī			٠	٠.	• m			•		١.		1	•	7 0
			٠	0.0	•	•	: -:	000	ŎŢ.	.20	• 300	04	200	000	004	906	066	. •		. 3	707	•	3	٠,	۳.	~∙	01.	0	•	300	0.4	.50	9	2	000	990		990		20.	60	50	04.	۳.	202	2 8	2	.200	30
•	m .	•	٠	م ۵	- a	ه ه	. 0		12	13	*	<u>~</u>	9!	- 0	9 0		. 12	•	۰.	4 6	•	~	9	~	€	٠,	2:	= :	7 .	2 4	15	9	~	£ 2		2 2		e	4 F	n 💠	v	•		•	o 9	2 ≃	21	13	<u> </u>
							_		-			•	•				•													,						. •		_									•		
																		•	9									•								.• .:	,	2					٠			-			
	٠.							٠.			٠.	÷	. •		٠			•	•				٠.													•		•	.:		٠			-					
						•	•	٠.			٠.							•	-																			0	÷								4		

0000000		180.000
5.363E-01 5.156E-01 3.984E-01 2.975E-01 i.845E-01 5.051E-02	4.3476-01 1.726-01 1.726-01 1.726-01 1.3996-01 1.058-01 1.058-01 9.5806-02 9.3606-02 9.396-02 8.3996-02 8.3996-02	1.5946-02 1.1286-02 1.3016-02
••••••		000
5.363E-01 5.158E-01 4.74E-01 3.984E-01 2.975E-01 1.845E-01	1.823F+00 2.435F+00 2.435F-01 1.726F-01 1.394F-01 1.058F-01 1.058F-01 1.058F-02 9.686F-02 9.686F-02 9.7858F-02 7.103F-02 7.103F-02 6.111F-02	1.5946-02 -1.1246-02 -1.3016-02
180.000 180.000 180.000 180.000 180.000		180.000
1.3646-02 1.1746-02 1.0348-02 8.7476-03 6.1928-03 4.1978-03	1.670F-01 1.77E-01 1.782F-01 1.015E-01 7.507F-02 5.024F-02 1.376F-02 3.455F-03 5.236F-03 5.236F-03 1.008F-03 1.220F-03	9.961E-04 8.055E-04 1.994E-04
•••••	000000000000000000000000000000000000000	
-1.364E-02 -1.174E-02 -1.034E-02 -8.747E-03 -6.192E-03 -2.405E-03	1.670E-01 1.17FE-01 1.245E-01 1.015E-01 1.015E-01 7.507E-02 2.924E-02 1.376E-03 3.455E-03 3.455E-03 -4.954E-03 -4.954E-03 -1.886E-03 -1.206E-03	-4.994E-04
0004	11111111111111111111111111111111111111	000
2000 1 200 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	507
	9	
	⊶	٠

CTRONAL GENERALIZEO FORCE NATRUM . COND B

•	: .	C . O . O . O . O	V = 1.0160	1/5 = .800				· · · · · · · · · · · · · · · · · · ·
		T X - 2 9 0 9	LEADING/TRAILING EDGE CONTROLS	NG EDGE CONTROLS		APR 12, 1975		
		REDUCED FREQUENCY .0000	MACH NO5000					
			QS(1-DEFLJ-PRESS.) / (.54RHO+V++2)	:	UNITS - IMODAL DISPLACEMENT UNITSINGS	DISPLACEMENT	N115) 002	
•	٠		PEAL BRESSES BRESSES	IMAG	REAL INAG	THAG	REAL ************************************	0 W V V V V V V V V V V V V V V V V V V
20	`	-1.8737695-14 .0	2.257511E+00	0.	8.5257306-03 .0	•	4.514282E-01	•
808	~		-1.055498E+00	•	1.725889E-02	0,	-3.1937156-01	•
		-3.021126E-01 .0	8.426141E-02 .0	•	1.421762E-02 .0	0	1.780685E-03	•
	•	1.599831E-02 .0	-2.250687E-03	•	5.095434E-05	•	-4.582757E-03	•
	•	-4.531803F-03 .0				e.	-2.8020726-03	•
ROM	•	1.0163345-15 .0	8.201073E-02 .0	•	70.70.75.71			

				,
	•	-	•	
	٠	c		
•				
		2		
		C		:
	•	۷	•	•
,		ı		
	,		٤.	
		_		
		_		
		4		
	•		•	
		٠		
	•	×	•	
	(2)	
	ŧ	٠		
	•	3	1	
			ı	
			,	
			,	
		_		
		•		
		×		
		_		
		2		
		•		
	¢	9		

٠.		RASA TR	X - 2 9 0 9	X - 2 9 0 9 LEADING/TRAILING EDGE CONTROLS	IC EDGE CONTRO	2	APR 12. 1975		
	•	REDUCED FREQUENC	>	.0000 MACH NO5000					
		[PROGRAM OUTPUT]	_	- GII-DEFL.,J-PRESS.) / 1.50RHO0V002}	AHO+V++21	UNITS . (PLANFORM LENGTH UNITSIMINDDAL DISPLACEMENT UNITS	RM LENGTH UNITS	HORAL DISPLA	CEMENT UNITS
. •		REAL	I MAG	REAL INAG	IMAG	REAL BASSESSESSESSESSESSESSESSESSESSESSESSESSE	IMAG	PEAL IMAG	IMAG
3 0		-7.010056E-16 1.837007E-01	0.0	3.865747E+00 .0	•	1.219203E-03 .0	•	1.824815E-01	•
70	~	4.253990E-15	•••	-2.134055E-01 .0	•	2.5218676-03	•	-1.006528E-01	•
R 04	m '	6.022964E-18 2.165674E-03	•••	1.2586246-02	•	1.912714E-03 .0	•	2.529597E-04	0
8	. •	1.414889E-16 -6.893440E-04	•••	-3.742066E-04	•	8.984013E-06	•	-6.983280E-04	0
ROM	10	1.4751196-16	0.	1.221204E-02	0	0. 10-3869150-1		-4-453684F=04	•

C-MATRIX FILE INDEX SUMMARY
MASA TM X-2909 LEADING/TRAILING EDGE CONTROLS

3 INITIAL CREATION DATE - 04/12/75 LAST MIDIFICATION DATE - 04/12/75 NUMBER OF C-MATRICES .

APR 12, 1975

NO. * MAIN SURFACE ENTRY NO.(LETTER FOR ASS. CONTROL ENTRY)
LOC * MATRIX LOCATION WITHIN FILE CHE! OF CHFILE
1D. * SURFACE ID (CONTROL ID IS FOLLOWED BY CONTROL TYPE)

NI = SYMMETRY, O-SYM., 1-ANTISYM. # S = PLANFORM SEMI-SPAN
NZ = ND. DJWNMASH CHOPDS # K/BO = REDUCED FREDUENCY/REFERENCE LENGTH
N3 = NO. POINTS/DOWNWASH CHORD # MACH = MACH NUMBER
N4 = NO. SPANWISE PRESSURE TERMS # DATE = DATE OF ENTRY
N5 = NO. CHORDMISE PRESSURE TERMS # TITLE = FIRST 65 CHARACTERS OF TITLE OF ENTRY PUN

LEADING/TRAILING EDGE CONTROLS 1.2700 .0000 .5000 04/12/75 N A S A 0 12 6 12 6 PARTIAL L.E. PARTIAL T.E. 1000 2 LECS 3 TECS

DATE

MACH

K/80

NI NZ N3 N4 N5

```
A HO I WE RE C U I BO W LEADING/TRAILING EDGE CONTROLS

NA S A T M X Z 9 0 9 102400 DC7AL

NAXIMUM FIRLD LENGTH REQUIRED 1102-569 SECONDS

CENTRAL PROCESSOR TIME REQUIRED 1102-569 SECONDS

CENTRAL PROCESSOR TIME REQUIRED 1102-569 SECONDS

SECTION REQUIRED 1102-569 SECONDS

SECTION REQUIRED 1102-569 SECONDS

SECTION RECORD TIME REQUIRED 1102-569 SECONDS

SECTION RECORD TIME REQUIRED 1102-569 SECONDS

SECTION RECORD TIME REQUIRED 1102-569 SECONDS

SECTION SECONDS 1102-569 SECONDS
```

This section is a description of the organization and function 4.0 COMPUTER PROGRAM DESCRIPTION This section is a description of the various routines included in the RHOIV package.

The RHOIV program consists of a (0.0) level overlay, a primary secondary level overlay. and several secondary level overlay. 4.1 OVERLAY STRUCTURE

The Knulv program consists of a (u,u) level overlays.

level overlay, and several secondary level overlays.

The (0,0) overlay, program ZRHOIV, is trivial consisting only overlay any other (0,0) level overlay of a loop on a call to the primary, the requirement that blank of a loop on a call to the primary. or a loop on a call to the primary. Any other (U.U) level overled could be substituted for ZRHO10 with the requirement that blank

The primary level (1.0) overlay, program RHOIV, is the driver are secondary level overlays are secondary level overlays analysis. Secondary in the users analysis for the RHOIV system, perform a logical step in the users analysis selected by RHOIV to perform a logical step in the users. common not be mentioned.

- Calls overlay (RHOIV, 1,0) Calls secondary level overlays to read The overlay structure is: input, prepare data, calculate results ZRHOIV. (1) (RHOIV, 0, 0) RHOIV.
 - Reads and checks all user input (RHOIV, 1, 0) (2) INPREP.
 - Processes modal input to allow for interpolation and calculation of control (RHOIV, 1, 1) MIPREP. (3) (RHOIV, 1, 2)
 - RESPREP, Prepares the tasic downwash matrix, and any result information that can
 - be calculated prior to the condition (RHOIV, 1, 3) cycle.
 - Performs all I/O and library work associated with a user C-matrix file. Calculates C-matrices for main surface RDWRTC. (REOIV, 1, 4)
 - or control surface pressure terms for a particular condition. prints intermediate results and solves CMCALC. (RHOIV, 1,5)
 - for the unknown coefficients of main surface pressure terms for a particular SOLN. RHOIV, 1, 6)
 - RESULTS, Calculates all unsteady pressures,

sectional and total generalized forces using the information produced in RESPREP and SOLN.

English Street Holding

OVERLAY STRUCTURE FIGURE 6

4.2 COMMON BLOCK USAGE

The RHOIV program uses both BLANK and LABELED common.

The LABELED common blocks are used for communication between the primary and secondary overlays, and for communication between routines in a secondary overlay. The block names and contents are described on the following pages.

The T heading on the following pages refers to variable type:
I - Integer, R - Real, C - Complex, L - Logical, H - Hollerith.

BLANK common is used in most secondary overlays as a variable length working area. In general the program of a overlay calculates the area required for arrays in the various subroutines and passes a dimension and first word address of each array through the subroutine calling sequence. A description of the area used by each overlay is given in section 3.3.

LABELED COMMON NAME: BASIC LOAD LEVEL: PRIMARY (1,0) DESCRIPTION: Basic information, used by all modules. DESCRIPTION NO. VARIABLE DIM. ENG. NOM. INDCM 1 C-MATRIX CALCULATION INDICATOR, 0-MAIN SURFACE, >0-CONTROL SURFACE 2 SYM ANALYSIS SYMMETRY INDICATOR I 1-SYMMETRIC 2-ANTISYMMETRIC $\mathbf{b_0}$ 3: B0 REDUCED FREQUENCY REFERENCE LENGTH 4 S R S PLANFORM SEMI-SPAN 5 YROOT R Y VALUE OF PLANFORM ROOT STATION KVAL K-VALUE, REDUCED FREQUENCY 6 R $k = \omega/V$ 7 KVALR. R $k_r = b_0 \omega / V$ REFERENCE K-VALUE k^2 KSOD 8 R 9 MACH R MACH NO. M $\beta = \sqrt{1-M^2}$ 10 BETA R β² 11 BETASQD ·R RTITLE USER RUN TITLE, WITH DATE 12 I .9 APPENDED

LAB	ELED COMMON	N	AME: C	MLIB	LOAD LEVEL: PRIMARY (1,0)
DES	CRIPTION:	V.	ariables d aintained	escribing the	contents of CMFILE are ng the condition cycle.
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	FINDCM	L			INDICATOR TO SEARCH FOR A C-MATRIX
2	CMFOUND	L			INDICATOR FOR C-MATRIX FOUND
3	IDNAME	I			INDEX MATRIX NAME = 10HCMFIL INDEX ON WRITE, CHECKED ON READ
4	NOCM	I			NUMBER OF C-MATRICES ON CMFILE
5	nmsntry	I			NUMBER OF MAIN SURFACE ENTRIES IN INDEX, (=NO. MAIN SURFACE C-MATRICES ON CMFILE)
6	CDATE	I			LIERARY CREATION DATE
7	LMDATE	I			LAST DATE C-MATRICES ADDED
8	LINDEX	I			LENGTH OF CMFILE INDEX
9	MSENTRY	I	3 1 4 3		POSITION WITHIN INDEX OF A MAIN SURFACE ENTRY
10	NCSE	I			NUMBER OF CONTROL SURFACE ENTRIES ASSOCIATED WITH A MAIN SURFACE ENTRY
1.1.	MATPOS	I			MATRIX POSITION WITHIN CMFILE
12	DATE	I			CURRENT DATE

LAB	ELED COMMON	N2	ME: CI	MVAL	LOAD LEVEL: SECONDARY (1,5)
DES	CRIPTION:	Us	sed by most	t C-Matrix ro	utines.
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION
1	ROWC	С	(72,8)	С	ROWS OF C-MATRIX ASSOCIATED WITH DOWNWASH POINTS ON CHORD
2	GXYY	С	(72,8)	G(x,y,y)	SUBTRACTION TERMS ASSOCIATED WITH EVALUATION OF DIPOLE SINGULARITY
3	GPXYY	С	(72,8)	G'(x,y,y)	
4	CIPK	С	16		CHORDWISE INTEGRAL OF PRESSURE TERMS TIMES KERNEL
5	KERN	C.		$K(x_0, y_0, k, M)$	KERNEL FUNCTION VALUE

LAB	ELED COMMON	N.	AME: CO	LOAD LEVEL: PRIMARY (1,0)	
NO.	VARIABLE	Т	D'IM.	ENG. NOM.	DESCRIPTION
1	NOKVAL	I			NUMBER OF K-VALUES, REDUCED FREQUENCIES
3	KVALUES NOMACH	R	20		NUMBER OF MACH NUMBERS
4	MACHNO	R	20		MACH NUMBERS

DESCRIPTION: Miscellaneous counters used during condition cycle to size working storage.							
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION		
1	NSPT	I			NUMBER OF SPANWISE MAIN SURFACE PRESSURE TERMS		
2	NCPT	I			NUMBER OF CHORDWISE MAIN SURFACE PRESSURE TERMS		
3	NPTRM	I			TOTAL NUMBER OF ASSUMED MAIN SURFACE PRESSURE TERMS		
4	NDMDS	I			NUMBER OF DISPLACEMENT MODES		
5	NPMDS	I			NUMBER OF PRESSURE MODES (NOTE, EXCEPT IN THE CASE OF A GUST ANALYSIS, NDMDS=NPMDS. FOR A GUST ANALYSIS NPMDS=NDMDS+1.)		
6	NZONES	I			NUMBER OF MODAL INPUT ZONES		
7	MIPTS	I			MAXIMUM NUMBER OF INPUT POINTS IN ANY MODAL INPUT ZONE		
8	MIPSGF	I			MAXIMUM NUMBER OF QUADRATURE POINTS REQUIRED FOR CHORDWISE INTEGRATION FOR ANY SECTIONAL FORCE OUTPUT CHORD.		
9	MICGF	I			MAXIMUM NUMBER OF QUADRATURE		
					CHORD REQUIRED FOR SPANWISE INTEGRATION FOR TOTAL GENERAL FORCES.		
10	MIPGF	I			MAXIMUM NUMBER OF QUADRATURE POINTS REQUIRED FOR CHORDWISE		
			~		INTEGRATION ALONG ANY QUADRATURE CHORD FOR TOTAL GENERALIZED FORCES.		
11	NOVP	ı			NUMBER OF VELOCITY PROFILES		
12	LOCVP	I			LOCATION OF VELOCITY PROFILE INFORMATION IN BLANK COMMON		

13	NPRC	I		NUMBER OF PRESSURE REPORT CHORDS
14	NPPRC	1		NUMBER OF POINTS/PRESSURE REPORT CHORD
15	NPPT	I		TOTAL NO. PRESSURE OUTPUT POINTS
16	NSGFC	I		NUMBER OF SECTIONAL FORCE OUTPUT CHORDS.

LABELED COMMON NAME:			ME: C	DUAD	LOAD LEVEL: SECONDARY (1,5/7)	
DES	CRIPTION:	Used by CHDINT and Chordwise Quadrature rin C-matrix calculation. DELXI is also u sectional and total generalized force int			DELXI is also used during	
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION	
2	XIUIL	R R		ξ _τ	ξ OF CHORDWISE INTEGRATION REGION LOWER LIMIT ξ OF CHORDWISE INTEGRATION REGION UPPER LIMIT	
3	DELXI XIMID	R R		^ξ υ- ^ξ ι (ξ _U +ξ _L)/2		

LABELED COMMON NAME: CSVAL LOAD LEVEL: SECONDARY (1,1-3/5/7)

DESCRIPTION: Used by TETERM, DTETERM, LETERM, DLETERM, most terms generated by CSINIT.

ENG. NOM. NO. VARIABLE T DIM. DESCRIPTION 1 I. INDCS INDICATOR FOR TYPE CONTROL SURFACE, 1-FULL, 2-TIP, 3-MID, 4-PARTIAL 2 LECS L INDICATOR FOR LEADING EDGE CONTROL, .T.=LEADING EDGE. .F.=TRAILING EDGE. Sf 3 SYMSF R SYMMETRY SIGN FACTOR +1.0 - SYMMETRIC ANALYSIS -1.0 - ANTISYMMETRIC ANALYSIS YCSI ... 4. R INBOARD CONTROL SIDE EDGE Уi XHCSI 5 R INBOARD CONTROL HINGE POINT $\mathbf{x}_{\mathbf{i}}$ XLCSI R LEADING EDGE VALUE AT INBOARD CONTROL SIDE EDGE 7 YCSO y_o R OUTBOARD CONTROL SIDE EDGE 8 XHCSO R OUTBOARD CONTROL HINGE POINT X_O 9 R XLCSO LEADING EDGE VALUE AT OUT-BOARD CONTROL SIDE EDGE 10 **DELYCS** R CONTROL SPAN $y_{o}^{-y_{i}}$ $tan \Lambda_{H}$ 11 TANLH R TANGENT OF HINGE SWEEP ANGLE 12 BETAH R β_H β_{H}^{2} 13. BHSOD R $tan \Lambda_L$ 14 TANLL R TANGENT OF LEADING EDGE SWEEP, FOR A LEADING EDGE CONTROL 15 BETAL $^{-\beta}$ L R β_L^2 16 BLSQD R 17 XIE1 R PHYSICAL, OR CONSTANT PERCENT CHORD EXTENSION OF HINGE FOR

	. . .,				E	1 FUNCTION IN	TETERM	
1	8	DXIE1E		axiel/an				

LABE	LED COMMON	NAN	ME: DI	WPTS	LOAD LEVEL: PRIMARY (1,0)
DESC	RIPTION:	Use	ed in INP	REP, DWPREP,	RDWRTC, and CMCALC
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION
1	NDWC	I			NUMBER OF DOWNWASH CHORDS
2	YDWC	R	72	¥	DOWNWASH CHORDS, SPANWISE COORDINATE VALUES FOR DOWNWASH POINTS
3	NPDWC	1			NUMBER OF POINTS PER DOWNWASH CHORD
4	NDWP	I			TOTAL NUMBER OF DOWNWASH POINTS (=NDWC*NPDWC)
5	XDWP	R	72	X	DOWNWASH POINT STREAMWISE COORDINATE VALUES

LAB	ELED COMMON	N/	AME: EI	LOAD LEVEL: PRIMARY (1,0)			
DESCRIPTION: Read in INPREP - used by RHOIV. Specifies termination procedure.							
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION		
1	LNAME	I			TERMINATION INDICATOR = { BLANK CALL EXIT CALL EX		
					= "RETURN", EXECUTE RETURN OTHERWISE CALL OVERLAY (LNAME, L1, L2, 0)		
3	L1 L2	I			PRIMARY LEVEL OVERLAY NO. SECONDARY LEVEL OVERLAY NO.		

LABI	LABELED COMMON NAME: FILES LOAD LEVEL: PRIMARY (1,0)					
DESCRIPTION: Defines all files used within the program.						
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION	
1	MIFILE	I			MODAL INPUT FILE NAME	
2	CMFILE	I			C-MATRIX FILE NAME	
3	DPFILE	I			DELTA PRESSURE FILE NAME	
4	SGFFILE	I			SECTIONAL FORCE FILE NAME	
5	GFFILE	I			GENERALIZED FORCE FILE NAME NOTE 1-5 ARE USER ASSIGNED	
6	IN	I			NAMES. STANDARD INPUT FILE NAME	
7	OUT	Ι			STANDARD OUTPUT FILE NAME	
8	RHOSC1 (MISFILE) (RESFILE)				SCRATCH FILE NO. 1 NAME MODAL INFORMATION SCRATCH FILE NAME, RESULT SCRATCH FILE NAME	
9	RHOSC2 (INSFILE) (CMSFILE) (COFFILE)	I			SCRATCH FILE NO. 2 NAME INPUT SCRATCH FILE NAME C-MATRIX SCRATCH FILE NAME COEFFICIENT FILE NAME	
10	MIF1	I			INITIAL FILE POSITION OF MIFILE	
1:1:	CMF1	I			INITIAL FILE POSITION OF CMFILE	
12	DPF1	1			INITIAL FILE POSITION OF DPFILE	
13	SGFF1	I			INITIAL FILE POSITION OF SGFFIL	
14	GFF1	I			INITIAL FILE POSITION OF GFFILE	

LABI	ELED COMMON	I NA	AME: F	ILES	LOAD LEVEL: PRIMARY (1,0)
DESC	CRIPTION:	F	ield lengt	h control/uti	lization information.
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	CURFL	I			CURRENT PROGRAM FIELD LENGTH
2	MAXFL	I			MAXIMUM PROGRAM FIELD LENGTH USED TO CURRENT TIME
3	INITL	I			INITIAL PROGRAM FIELD LENGTH
4	JOBFL	I			JOB CARD FIELD LENGTH (I.E., MAXIMUM ALLOWABLE FIELD LENGTH
5	INPFL	I			MINIMUM FL REQUIRED FOR INPREP
6	MIPFL	1			MINIMUM FL REQUIRED FOR MIPREP
7	RESPFL	I			MINIMUM FL REQUIRED FOR RESPRE
8	RWCFL	Ι			MINIMUM FL REQUIRED FOR RDWRTC
9	CMCFL	I			MINIMUM FL REQUIRED FOR CMCALC
10	SOLNFL	I			MINIMUM FL REQUIRED FOR SOLN
11	RESFL	I			MINIMUM FL REQUIRED FOR RESULTS
12	LIIA	I			LENGTH OF INTERPOLATION INFORMATION ARRAYS
13	LV	I			LENGTH OF VELOCITY PROFILE INFORMATION
14	LCCR	I			LENGTH OF CONTROL ROTATION COEFFICIENTS INFORMATION

LAB	ELED COMMON	NA	ME: K	RNTERM	LOAD LEVEL: SECONDARY (1,5)
DESC	RIPTION:	Us	sed by ker	routines.	
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	FK	R		fk	ARBITRARY POINT FOR SPLITTING
2	FKSQD	R		(fk) ²	INTEGRAL IN ROSEL'S KERNEL FORMULATION (FK=2π)
3	RFKSKYS	Ŗ		$\sqrt{(fk)^2+(ky_0)}$	
4	HK	R		hk	UPPER INTEGRATION LIMIT
5	HKSQD	R		(hk) ²	
6	RHKSKYS	R		$\sqrt{(hk)^2+(ky_0)^2}$	
7	нохо	R		h/y _o	
8	APROXR	R			$\begin{cases} h \\ \int [\tau e^{iky_0\tau}/\sqrt{1+\tau^2}] d\tau \end{cases}$
9	APROXI	R			J -∞ INTEGRAL APPROXIMATION IN
					WATKIN'S FORMULATION
10	SlR	R			$\begin{cases} -kf \\ \int [e^{i\lambda}/\{\lambda^2+(ky_0)^2\}^{3/2}]d\lambda \end{cases}$
11	S1I	R			
12	S2R	.R			$\begin{cases} h & e^{i\lambda} - 1 - i\lambda + \lambda^2/2 \\ \int \frac{e^{i\lambda} - 1 - i\lambda + \lambda^2/2}{[\lambda^2 + (ky_0)^2]^{3/2}} d\lambda \end{cases}$
13	S2I	R			J -kf '` ''''
14.	s3R	R			$\begin{cases} kh \\ \int [e^{i\lambda}/\{\lambda^2 + (ky_0)^2\}^{3/2}] d\lambda \end{cases}$
15	S3I	R) -∞
					INTEGRALS IN ROSEL'S FORMULATION

LAB	LABELED COMMON NAME: KRNVAR LOAD LEVEL: SECONDARY (1,5)							
DES	DESCRIPTION: Used by C-matrix chcrdwise quadrature routines, and kernel function.							
NO.	VARIABLE	Т	DIM.	FNG. NOM.	DESCRIPTION			
1	IDWC	Ι			DOWNWASH CHORD NO.			
2	Y	R		y	Y VALUE OF DOWNWASH POINT			
3	IPDWC	Ι			POINT/DOWNWASH CHORD			
4	IDWP	I			DOWNWASH POINT NO.			
5	X	R		X	DOWNWASH POINT			
6	YO	R		y 0				
7	YOSQD	R		y ₀ ²				
8	KYO	R		k y ₀				
9	KYOSQD	R		(ky ₀) ²				
10	BYOSQD	R		(βy ₀) ²				
11	EKYOSQD	R		(βky ₀) ²				
12	хо	R		× ₀				
13	кхо	R		k× ₀				
14	СМАСН	R		ln(2-2M)/2	CONSTANT FOR KERNEL CALCU- LATION			

LAB	LABELED COMMON NAME: LCSTERM LOAD LEVEL: SECONDARY (1,5/7)							
DES	DESCRIPTION: Miscellaneous terms associated with full chord control pressure expressions.							
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION			
1	CIS	С	4	c _{is}	COEFFICIENT/SIDE EDGE FOR INVERSE SQUARE ROOT TERMS			
2	csī	С	4	$\mathtt{c_{s1}}$	COEFFICIENTS/SIDE EDGE FOR SQUARE ROOT TERM ASSOCIATION WITH FIRST SOLUTION			
3	CS2	С	4	c _{S2}	SAME AS C _{S1} EXCEPT FOR SECOND SOLUTION			
4	CL1	С	4	$c_{\mathbf{L}1}$	COEFFICIENTS/SIDE EDGE FOR FIRST SOLUTION			
5	CL2	С	4	$c_{\mathtt{L2}}$	SAME AS C _{L2} EXCEPT FOR SECOND SOLUTION			
6	CAT	С	4	c _{AT}	COEFFICIENTS/SIDE EDGE FOR ARC TANGENT TERM			
7	GIS	R		${ t G_{ t IS}}$	INVERSE SQUARE ROOT TERM			
8	GS1	R		G _{S1}	FIRST SOLUTION SQUARE ROOT TERM			
9	GS2	С		G _{S2}	SECOND SOLUTION SQUARE ROOT TERM			
10	GL1	R		${\tt G_{Ll}}$	FIRST SOLUTION LOG TERM			
11	GL2	С		${ t G_{L2}}$	SECOND SOLUTION LOG TERM			
12	GAT	R		$G_{\mathbf{AT}}$	ARC TANGENT TERM			
13	CON 1	R			MISCELLANEOUS CONSTANT TERMS			
14	CON2	R						
15	CON3	R						
16	CCON1	С						
17	CCON 2	С						

• • •					
18	CCON 3	С		2	
19	GEXP	С		e ^{ikM²(ξ-x}	s)/β ²
20	EMYS	R		(ŋ-y _s)	
21	BSEYS	R		βSIGN(η-y _s)	
22	BEMSY2	R			
23	XIXS	R		ξ-x _s	
2.4	RXIXIL	R			
25	AYS	R	4		ARRAY OF YS FCR ALL SIDE EDGES
26	ASTANLL	R	4		ARRAY OF tanA _L FOR ALL SIDE EDGES
27	AXS	R	4		ARRAY OF $\xi_{C}(y_{S})$ FOR ALL SIDE EDGES
28	RL	R			
29	L1	R			
30	L2	R			
31	Q1	R			
32	E2	R			
33	E3	R			

LAB	ELED COMMON	N.	AME: O	PTIONS	LOAD LEVEL: PRIMARY (1,0)				
DES	DESCRIPTION: Miscellaneous options.								
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION				
1	VELPFL	L			VELOCITY PROFILE OPTION .T.= PROFILES EXIST				
2	DGUST	L			DESCRETE GUST OPTION				
3	GPGUST	L			GRADUAL PENETRATION GUST OPTION				
4	GPREF	R			GRADUAL PENETRATION GUST REFERENCE POINT				
5	IIAIN	L			INDICATOR FOR DIRECT INPUT OF IIA PER MODAL INPUT ZONE				
6	RESULT	L			INDICATOR FOR SOME RESULTS REQUIRED, I.E. EITHER UNSTEADY PRESSURE, SECTIONAL FORCES OR GENERALIZED FORCES.				
7	SOLUTION	L			INDICATOR FOR SOLUTION REQUIRED, I.E. EITHER RESULT OR C-MATRIX, DOWNWASH MATRIX, ON PRESSURE COEFFICIENT MATRIX OUTPUT REQUESTED.				

LABELED COMMON NAME: PLNGFO LOAD LEVEL: PRIMARY (1,0)						
DES	CRIPTION:	D€	efines pla	inform geometr	Y •	
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION	
1	MSID	I			MAIN SURFACE C-MATRIX I.D.	
2	NLE	Ι			NUMBER OF LEADING EDGE DEFN. POINTS	
3	XLE	R	10		LEADING EDGE DEFN. PTS.	
4	YLE	R	10		(STRAIGHT LINE SEGMENTS)	
5	DXLEDY	R	9		SLOPE OF LEADING EDGE SEGMENTS	
6	NTE	I			NUMBER OF TRAILING EDGE DEFN.	
7	XTE	R	10			
8	YTE	R	10		TRAILING EDGE DEFN. PTS. (STRAIGHT LINE SEGMENTS)	
9	DXTEDY	R	9		SLOPE OF TRAILING EDGE SEGMENT	
10	NOCS	I			NUMBER OF CONTROL SURFACES	
11	XHLI	R	6		CONTROL SURFACE HINGE INBOARD DEFIN. POINT	
12	YHLI	R	6			
13	XHLO	R	6		CONTROL SURFACE HINGE OUTBOARD DEFN. POINT	
14	YHLO	R	6			
15	DXHLDY	R	5		SLOPE OF CONTROL HINGE	
16	CSID	I	6		CONTROL SURFACE C-MATRIX I.D.	
17	CSTYPE	I	6		CONTROL SURFACE TYPE	
18	CSRS	I	6		CONTROL SURFACE RELATED SURFACE	
19	CSAO	I	6		CONTROL SURFACE AREA ORDER	
20	CSRI	r	6		CONTROL SURFACE INPUT INDICATO	
21	XHLBI	R	6		HINGE INBOARD SIDE EDGE DEFN. POINT VALUE IN BAR NOTATION	

22	XHLBO	R	6	HINGE OUTBOARD SIDE EDGE DEFN. POINT VALUE IN BAR NOTATION LEADING EDGE VALUE AT THE CONTROL INBOARD SIDE EDGE
24	XLEO	R	6	LEADING EDGE VALUE AT THE CONTROL OUTBOARD SIDE EDGE

LAB	LABELED COMMON NAME: PRSPVAL LOAD LEVEL: SECONDARY (1,1-3/5/							
DES	DESCRIPTION: Used to specify (ξ,η) values to ETACVAL and other routines. Describes current chord, control surface and pressure type.							
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION			
1 2	ETA AETA	R		n n	SPANWISE LOCATION OR COORDINATE			
3	ETAB	R		<u>n</u>	NON-DIMENSIONAL SPANWISE COORDINATE			
4	XI	R		ξ	CHORDWISE (STREAMWISE) LOCATION OR COORDINATE			
5	XIB	R		<u>ξ</u>	NON-DIMENSIONAL CHORDWISE COORDINATE			
6	DXIBE	R		9 <u>ξ</u> /9η				
7	ICS	Ι			CONTROL SURFACE NUMBER (=0 WHEN NO CONTROL SURFACE IS CONCERNED)			
8	CPT	L			CONTROL PRESSURE INDICATOR, CPT=.T. IF CONTROL SURFACE			
					PRESSURE TERM IS BEING CALCULATED.			
9	XIL	R		ξ ₁ (η)	PLANFORM LEADING EDGE VALUE AT n			
10	DXILE	R		∂ξ ₁ (η)/∂η				
11	MIX	R		ξ _m (η)	PLANFORM MIDCHORD VALUE AT η			
12	XIC	R		ξ _C (η)	PLANFORM CONTROL NO. ICS HINGE VALUE AT η . (NOTE - THIS MAY BE A LINEAR EXTENSION.)			
13	DXICE	R		∂ξ _c (η)/∂η	BE A LINEAR EXIENSION.)			
14	XIT	R		ξ _t (η)	PLANFORM TRAILING EDGE VALUE AT n			
15	DXITE	R		∂ξ _t (η)/∂η				
16	В	R		b (η)	PLANFORM SEMI-CHORD VALUE			
17	KIND	I			KERNEL INDICATOR, USED ONLY DURING C-MATRIX CALC.			
18	CQTYPE	I			CHORDWISE CUADRATURE TYPE, USED DURING C-MATRIX CALCU-			
	,				LATION, AND SECTIONAL AND TOTAL GENERALIZED FORCES.			

LAB	ELED COMMON	N/	ME: PI	RSTERM	LOAD LEVEL: SECONDARY (1,3/5)			
DES	DESCRIPTION: Used by PRSPREP, SGFPREP, GFPREP, and most C-matrix calculation routines.							
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION			
1	FETA	R	72	f(N)	SPANWISE MAIN SURFACE PRESSURE TERMS			
2	FPETA	R	72	f'(ŋ)				
3	NCPTERM	I			NUMBER OF CHORDWISE PRESSURE			
4	CPTERM	R	. 16	g(ξ,η) or ag(ξ,η)/aη	CHORDWISE PRESSURE TERMS			

LABI	ELED COMMON	I NA	ME: P	RTCTL	LOAD LEVEL: PRIMARY (1,0)
DESCRIPTION:		Controls all printed out sections.			put in result and solution
NO.	VARIAELE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	DPPRT	I			DELTA PRESSURE PRINT CONTROL
2	SGFPRT	I			SECT. GEN. FORCE PRINT CONT.
3	GFPRT	I			GEN. FORCE PRINT CONTROL
4	CMPRT	I			C-MATRIX PRINT CONTROL
5	DWMPRT	I			DOWNWASH MATRIX PRINT CONTROL
6	PCMPRT	I			PRESSURE COEFF. MATRIX PRINT CONTROL n<0 all cond. (on input) = 0 - no print n>0 - print first n cond.

LABI	ELED COMMON	NA	AME: QI	UADWTS	LOAD LEVEL: PRIMARY (1,0)		
DESC	DESCRIPTION: Used by GFSGRID, GFCGRID in prep. routines, and by CMCALC and chordwise quadrature routines in C-matrix calculation.						
NO.	VARIABLE	Υ	DIM.	ENG. NOM.	DESCRIPTION		
1	ALEG4	R	2				
2	HLEG4	R	2		PREFIX		
3	ALEG8	R	4		A - ABSCISSAE		
4	HLEG8	R	4		H - WEIGHTS		
5	AISQR5	R	5		ROOT - TYPE QUADRATURE WEIGHT		
6	HISQR5	R	5		FUNCTION LEG - LEGENDRE		
7	AISQR10	R	10		ISQR - INVERSE SQUARE ROOT		
					SQR - SQUARE ROOT		
8	HISQR10	R	10		LOG - LOG		
9	ALOG4	R	4				
10	HLOG4	R	4		4THR - FOURTH ROOT		
11	ALOG8	R	8		SUFFIX _ NO. QUADRATURE POINTS		
12	HLOG8	R	8				
13.	ASQR5	R	5				
14	HSQR5	R	5				
15	ASQR10	R	10				
16	HSQR10	R	10				
17	A4THR5	R	5				
18	H4THR5	R	5				
19	A4THR 10	R	10				
20	H4THR10	R	10				

LABI	ELED COMMON	NAME: SQUAD			LOAD LEVEL: SECONDARY (1,5)	
DESC	RIPTION:	Us	ed by CMC	ALC, SPNINT		
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION	
1	SQTYPE	I			SPANWISE QUADRATURE TYPE	
2	SQWT	R			SPANWISE QUADRATURE WEIGHT	
3	ETALIL	R		${\boldsymbol{\eta}}_{\mathbf{L}}$	n of Lower Limit for a Span-	
4	ETAUIL	R		η _U	WISE INTEGRATION REGION n OF UPPER LIMIT FOR A SPAN-	
5	DELETA	R		$\eta_{f U}^{-}\eta_{f L}$	WISE INTEGRATION REGION SPANWISE INTEGRATION REGION WIDTH	
6	ETAMID	R		(η _U +η _L)/2	REGION MIDPOINT	
7	ALNDELY	R		ln[(n _U -n _L)/S]		
8	ETAL	R		η_1	n VALUE OF LOG SINGULARITY	
					LOCATION DURING SPANWISE INTEGRATION. IT IS EITHER DOWNWASH CHORD, OR A CONTROL SIDE EDGE.	

LAB	eled cor on	NA	AME: T	IMES	LOAD LEVEL: PRIMARY (1,0)
DES	CRIPTION:		ccumulated rious sec	number of entries for overlays.	
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	TINP	R			ACCUMULATED CP TIME IN INPREP
2	TMIP	R			ACCUMULATED CP TIME IN MIPREP
3	TRESP	R			ACCUMULATED CP TIME IN RESPREP
4	NTRWC	I			NO. ENTRIES INTO ROWRTC
5	TRWC	R			ACCUMULATED CP TIME IN RDWRTC
6	NTCMC	I	.5		1) ASSOCIATED WITH MAIN SURFACE, k = 0 2) ASSOCIATED WITH MAIN SURFACE, k > 0 3) ASSOCIATED WITH CONTROL SURFACE, k = 0 4) ASSOCIATED WITH CONTROL SURFACE, k > 0
7	TCMC	R	5		5) TOTAL 1) - 4) ACCUMULATED CP TIME IN CMCALC (SAME AS NTCMC)
8	NTSOLN	I			NO. ENTRIES INTO SOLN
9	TSOLN	R			ACCUMULATED CP TIME IN SOLN
10	NTRES	I			NO. ENTRIES INTO RESULTS
11	TRES	R			ACCUMULATED CP TIME IN RESULTS

4.3 PROGRAM AND SUBROUTINE DESCRIPTION

Short abstracts for the various programs and subroutines in RHOIV are included in this section. A full description of each routine may be found in the program listing.

Routines are ordered alphabetically; their positional relation is shown in figure 7, page 132.

PROGRAM - SUBROUTINE STRUCTURE

BLOCK	LENGTH	DIOCE	LENGTH	PLOCK	TEMOTH
BLOCK	TENGIU	BLOCK	TENGIU	BLOCK	LENGTH
(00,00)	1	(01,01)	1	(01,04)	1
ZRHOIV	12720	INPREP	2336	RDWRTC	1526
		ERRPRT	1401		
		PLNINCK	320		
(01,00)	1	CSINCK	607	(01,05)	1
/BASIC/	241	VPINCK	167	/CMVAL/	6642
/CMLIB/	14	VPINCK2	214	/KRNVAR/	16
/COND/	52	SCAMP4	250	/SQUAD/	10
/COUNT/	20	COMCU	2512	CMCALC	620
/DWPTS/	124	CUBIC2	120	SGRID	414
/ENDIT/	3.	DERIV1	107	ORDER	50
/FILES/	16	DERIV2	103	GXYYCAL	432
/PLNGEO/	222	NAMBLD	45	SPININT	300
/PRTCTL/	6	DWINCK	573	CHDINT	552
/OPTIONS/	7	PRSINCK	503	CGRID	1457
RHOIV	212	SGFINCK	256	CQLEG4	75
IIARDR	47	MIINCK	1704	CQLEG8	75
/QUADWTS/	176			CQISR5	64
BLKDATA	3	(01,02)	1	CQISR10	64
/CSVAL/	26	MIPREP	273	CQLOG4	141
/PRSPVAL/		IIACAL	213	CQLOG8	141
ETACVAL	146	PLATEI 🗎	434	CQSQR5	66
AZONE	151	PLATET	155	CQSR10	66
AINTL	166	PLATEA	205	CQ4R5	66
PLATEO	544	CRCOEFF	672	CQ4R10	66
ZEROCOL	65	CPRDR	103	CPFCTXI	(* 61 °
/PRSTERM/	43	VPCALC	144	DTETERM	1271
SPFCTE	174	CTHETA	74	DLETERM	1110
CMSTERM	114			DLFCT	135
/CQUAD/	4		2	/KRNTERM/	17
/CSTERM/	102	(01,03)	_ 1	KRNFCT	37 5
TETERM	1206	RESPREP	722	BESK1	142
E2	30	CCRRDR	_54	BI1ML1	167
DE2	101	DWPREP	714	APROX	232
/LCSTERM/	140	VPRDR	103	SERIES1	115
CSINIT	422	VPCALC	144	SERIES2	170
LETERM	400	PRSPREP	440	SERIES3	142
LFCT	52	SGFPREP	677	SICI	216
MATIO	340	GFPREP	731		
		GFSGRID	307		
•		GFCGRID	720		
		(01 06)	4	(01 07)	4
* .		(01,06)	214	(01,07)	411
	₩	SOLN	214	RESULTS	411
		PCMDWN	1417 531	FORMDP	1250
		SOLVE		RTHETA	102
		PCMSPT	323	FORMOS	772
				FORMQ	725

(1) SUBROUTINE AINTL (X, Y, NPTS, Z, NRCWZ, NCOL1, NCOLS, SA, INDD, DZ1, DZ2)

Interpolation cover routine for generation of displacements and slopes at unsteady aerodynamics control points - specified in the local axis system.

(2) SUBROUTINE APROX

Routine APROX performs the integration of TAU*EXP(I*KYO*TAU)/SQRT(1.+TAU**2). In TAU from --- to H. The function TAU/SQRT(1.+TAU**2) is approximated by a series of exponential, NASA technical report R-48, page 8, TAU/SQRT(1.+TAU**2) = 1. +C1*EXP(E1*TAU) + C2*EXP(E2*TAU) + C3*EXP(E3*TAU) *SIN(PI*TAU)

(3) SUBROUTINE AZONE (Y, X, NPTS, IND, ZONE)

Assign a modal input zone number to points on chord Y.

(4) FUNCTION BESK1 (X)

BESK1 = K1(X), modified Bessel function of the second kind of order 1. K1(X) is calculated with two polynomial expansions, one for X.LT.2, and one for X.GE.2. Equations taken from Handbook of Mathematical Functions, National Bureau of Standards, 1967. Bessel Functions of Integer Order, 9.8 Polynomial Approximation, p. 378, 9.6.11 Ascending Series, p. 375.

(5) FUNCTION BI 1ML1 (X)

BI1ML1 = (I1(X) - L1(X)) where I1 = Modified Bessel function of the first kind of order 1, L1 = Struve function.

Series expansion for I1-L1 is used for X.LE. 12.8, an asymptotic expansion is used for X.GT. 12.8.

Equations taken from Handbook of Mathematical Functions, National Bureau of Standards, 1967.

Struve Functions and Related Functions, 12.2.6 Asymptotic Expansion p. 498, 12.2.1 Power Series p. 498.

Bessel Functions of Integer Order, 9.6.10 Ascending Series, P. 378.

(6) BLKDATA

Defines all quadrature abscissae and weights.

(7) SUBROUTINE CCRRDR (CCR, NPMOS)

Read cubic coefficients of control rotation.

(8) SUBROUTINE CGRID (NIR, XIQ, IRTYPE)

Routine CGRID defines the chordwise integration schemes used to integrate chordwise pressure terms times one of the kernel expressions on a specified chord.

(9) SUBROUTINE CHDINT

Perform the chordwise integration of chordwise pressure terms times kernel function.

(10) OVERLAY (RHOIV, 1,5) PROGRAM CMCALC

Calculate a C-matrix associated with main surface or control surface pressure terms for a set of downwash points at a particular k-value Mach number condition.

(11) SUBROUTINE CMSTERM

Calculate NCPTERM chordwise pressure terms associated with the assumed main surface pressure terms.

(12) SUBROUTINE CPFCTXI

Calculate NCPTERM chordwise pressure terms

KIND = GXYY, calculate G(XI,Y), DG(XI,Y)/DETA

= non-sing or singular calculate G(XI,ETA)

CPT = .F.-main surface terms, .T.-control surface terms

LECS = .FALSE.-calculate only T.E. control surface terms
.TRUE.-calculate both T.E. and L.E. control surface terms

(13) SUBROUTINE CQISR5

Perform A 5 pt. inverse square root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the square root singularity is at XILIL.

(14) SUBROUTINE CQISR 10

Perform a 10 pt. inverse square root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the square root singularity is at XILIL.

(15) SUBROUTINE CQLEG4

Perform a 4 pt. Gauss-Legendre quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL.

(16) SUBROUTINE CQLEG8

Perform a 8 pt. Gauss-Legendre quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL.

(17) SUBROUTINE COLOG4

Perform a combination 4 pt. log and 4 pt. Legendre quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the log singularity is at XILIL.

(18) SUBROUTINE COLOG8

Perform a combination 8 pt. log and 8 pt. Legendre quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the log singularity is at XILIL.

(19) SUBROUTINE CCSQR5

Perform a 5 pt. square root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the square root slope singularity is at XILIL.

NOTE: Abscissae and weights developed from Gauss-Mehler form, refer to Kopal, Numerical Analysis, pp. 381-2, using BCS program MEHQAH (Redman 1973) with ALPHA=0, BETA=.5.

(20) SUBROUTINE CQSQR 10

Perform a 10 pt. square root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the square root slope singularity is at XILIL.

NOTE: Abscissae and weights developed from Gauss-Mehler form, refer to Kopal, Numerical Analysis, pp. 381-2, using BCS program MEHQAH (Redman 1973) with ALPHA=0, BETA=.5.

(21) SUBROUTINE CQ4R5

Perform a 5 pt. fourth root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the 3/4 root slope singularity is at XILIL.

NOTE: Abscissae and weights developed from Gauss-Mehler form, refer to Kopal, Numerical Analysis, pp. 381-2, using BCS program MEHQAH (Redman 1973) with ALPHA=0, BETA=.25.

(22) SUBROUTINE CQ4R10

Perform a 10 pt. fourth root quadrature on chordwise pressure term times kernel function for XI over XILIL to XIUIL where the 3/4 root slope singularity is at XILIL.

NOTE: Abscissae and weights developed from Gauss-Mehler form, refer to Kopal, Numerical Analysis, pp. 381-2, using BCS program MEHQAH (Redman 1973) with ALPHA=0, BETA=.25.

(23) SUBROUTINE CRCOEFF (NZONES, NDMDS, NPMDS, DELDZDX, CCR, z, IIA, IIAP)

Calculate (or read) the cubic coefficients of control surface rotation for subsequent use in the preparation routines. The coefficients are defined such that

(24) SUBROUTINE CTHETA (DELDZDX, NDMDS)

Given four equally spaced points on a control hinge, and DELTA DZ/DX at these points, determine the coefficients of the cubic which will define DELTA DZ/DX, THETA, on the hinge.

(25) SUBROUTINE CSINCK (CSAREA, PLNERR, CSERR)

Read control surface input. Check legality. Assign control type, and determine related surfaces.

(26) SUBROUTINE CSINIT

Initialize variables for a control surface and generate coefficients of control pressure expression.

(27) SUBROUTINE CLETERM (DGXIETA)

Calculate the derivative of the pressure term G(XI,ETA) with respect to ETA for a leading edge control surface.

(28) SUBROUTINE DTETERM (DGR, DGI)

Calculate the derivative of the pressure term for a trailing edge control, DG(XI,ETA)/DETA = (DGR,DGI)

(29) SUBROUTINE DWINCK (PLNERR, DWERR)

Read (or use default definition for) downwash chords and points, convert from bar notation if required, and check legality.

(30) SUBROUTINE EWPREP (NDWC, NPDWC, NDWP, NDWP2, NOCS, NZONES, NDMDS, NPMDS, YDWC, XDWP, X,Y, ZONE, IFOS, NPZONE, Z,ZT, DZDX,DZDXT, W, WRI, IIA, IIAF, CCR)

Form the basic downwash matrix, [W] = [DZ/DX + I*Z], and write to RESFILE. The real portion of W is modified by any user supplied velocity profile, and a gust mode of the desired form is appended if requested. Any existing cubic coefficients of control rotation are copied from memory to RESFILE.

(31) SUBROUTINE ERRPRT (IERRNO, ERRFLG, I1, I2)

Set error flag and print appropriate error message.

(32) SUBROUTINE ETACVAL

Given a spanwise station, ETA, determine the leading edge, trailing edge, and hinge line (if applicable) intersects, and calculate semi-chord and mid-chord values.

(33) SUBROUTINE FORMDP (NPRC, NPPRC, NPPT, NPTRM, NOCS, NPMDS,

1 YPRC, XPPT, XBAR, PRESS, MSPTRM, GXIETA,

2 CMSPT. FETA, AMPPHAS)

Calculate unsteady delta pressure at an indicated set of points (output points) for a k-value/Mach no. condition.

DELP (X,Y;J) = SUM[MSPTRM(X,Y;I)*CMSPT(I,J), I=1,NPTRM] + SUM[FETA(Y,J)*GXIETA(X,Y;N), N=1,NOCS]

(34) SUBROUTINE FORMQ (NDMDS, NPMDS, NPTRM, NOCS, MICHD, MPICHD,

1 Q, QMSPT, CMSPT, YICHD, GXIETA, XIPT, QTYPE,

2 FETA, WZ)

Calculate the generalized unsteady aerodynamic coefficient matrix (generalized forces) for a k-value/Mach number condition.

Q(I,J) = INTEGRAL [Z(XI,ETA;I)*DELP(XI,ETA;J)*D[XI]*D[ETA]]

XI = XIL(ETA), XIT(ETA)

ETA = O, S

(35) SUBROUTINE FORMQS (NSGFC, NDMDS, NPMDS, NPTRM, NOCS, MPSGFC,

1 Y, QS, QSMSPT, CMSPT, GXIETA, XIPT, QTYPE,

2 FETA, WZ)

Calculate the sectional generalized unsteady aerodynamic coefficient matrices (sectional forces) at an indicated set of chords for a k-value/Mach no. condition.

INTEGRAL[Z(XI,Y;I)*(DELP(XI,Y;J)*D[XI]] QS(Y;I,J) =XI = XIL(Y), XIT(Y)

(36) SUBROUTINE GFCGRID (NIPTS, NPZONE, XIPT, CQWI, QTYPE)

Determine the quadrature points and associated weights to be used in integrating delta pressure times displacements along a chord for sectional or total generalized forces.

(37) SUBROUTINE GFSGRID (NICHD, YICHD, SQWT)

Determine the quadrature chords and associated weights to be used in the spanwise integration of delta pressure times displacements for total generalized forces.

- (38) SUBROUTINE GFPREP (MICHD, MPCHD, NZONES, NDMDS, NPMDS, NSPT,

 - NCPT, NPTRM, YICHD, SQWT, NIPTSZ, XIPT, YIPT, CQWT, QTYPE, QMSPT, Z, WZ, G FETA, IIA,
 - IIAP, CCR, MICGF, MIPGF) 3

Prepare information, independent of k-value and Mach no., which will be used for calculation of generalized unsteady aerodynamic coefficients (generalized forces). The information is written to RESFILE.

(39) SUBROUTINE GXYYCAL

Calculate G(X,Y,Y) and GP(X,Y,Y) for all points on a downwash chord and initialize the associated C-matrix rows.

SUBROUTINE IIACAL (NZONES, MIPTS, MEQNS, NDMDS, X, Y, Z, (4) IIA)

Generate the interpolation information array for each modal input zone and save on MISFILE.

(41) SUBROUTINE HARDR (HAP, HA, LHA)

Read the interpolation information arrays.

(42) OVERLAY (RHOIV, 1, 1) PROGRAM INPREP

Process all user input.

(43) SUBROUTINE KRNFCT

Calculate the desired kernel function as specified by KIND, e.g. GXYY, NON-SING, SINGULAR.

(44) SUBROUTINE LETERM (GXIETA)

Calculate the pressure term G(XI,ETA) for a leading edge control surface.

(45) SUBROUTINE MATIO (LFN, MATRIX, MROWD, MROW, MCOL, LID, ID, IRR)

Read/write a two record set consisting of an ID record describing a matrix or array, and the matrix record.

(46) SUBROUTINE MIINCK (NROWZ, X, Y, IPOS, ZONE, Z, IIA, NIPTS, 1 PLNERR, MIERR)

Read modal input (from INPUT or MIFILE), check legality, and write by input zone to INSFILE. Alternatively, read interpolation information arrays by input zone and write directly to MISFILE. The information is used in MIPREP and RESPREP.

(47) OVERLAY (RHOIV, 1, 2) PROGRAM MIPREP

Allocate working area for the modal preparation routines which will generate information on MISFILE to be used in RESPREP.

(48) SUBROUTINE NAMBLD (NMFILE)

Convert NMFILE = NM to NMFILE = TAPENM

(49) SUBROUTINE PCMDWM (NDWP, NPTRM, NOCS, NPMDS, C, CS, AS, W, WRI)

Print the C-matrices associated with regular (main surface) assumed pressure terms and any control surface pressure term. Print the kinematic downwash matrix, and the residual downwash

matrix (the kinematic downwash matrix with any control surface singularities removed).

(50) SUBROUTINE PLATEO (XO, YO, NOPTS, ZO, NROWZ, NCOL1, NCOLS, SA, 1 INDD, DZ1, DZ2)

Given the spline coefficients for a set of functions as determined in routine PLATEI, and the associated input points, calculate the values of the functions (and optionally the derivatives) at a set of output points.

(51) SUBROUTINE PCMSPT (NDWP, NPMDS, CMSPT)

Print the coefficients of the regular (main surface) assumed pressure terms.

(52) SUBROUTINE PLATEA (X, Y, INDS, SK, N, M, A, IRR)

Form the coefficient matrix for system of equation, SK = smoothing constant (ratio of plate stiffness to input point spring stiffness).

(53) SUBROUTINE PLATEI (XI, YI, MIPTS, ZI, NROWZ, MCOL1, MCOLN, MCOLS, SA, INDS, SK)

Perform a bivariate interpolation using as the interpolating function the small deflection equation of an infinite pinned plate.

Reference: Robert L. Harder, Robert N. Desmarais: Interpolation Using Surface Splines, J. Aircraft, Vol 9 No. 2, Feb. 1972

(54) SUBROUTINE PLATET (XU, YV, NIND, XBAR, YBAR, COST, SINT, RGU, RGV)

Perform a transformation of coordinates from (X,Y) to (U,V) if NIND>0, or from (U,V) to (X,Y) if NIND<0.

Where COST = COS(THETA), SINT = SIN(THETA), THETA is that angle such that PUV = SUM[U(I)*V(I)]N = 0, RGU, RGV = radii of gyration in (U,V), XBAR, YBAR = C.G. location in (X,Y) - note UBAR, VBAR = 0,0

(55) SUBROUTINE PLNINCK (PLNERR)

Read the leading edge and trailing edge definition, and check for compatibility.

(56) SUBROUTINE PRSINCK (YPRC, XPPT, PLNERR, PRSERR)

Read (or use default) pressure output chord and point values, check for legality and save on INSFILE.

(57) SUBROUTINE PRSPREP (NPRC, NPPRC, NPPT, NSPT, NCPT, NPTRM, 1 MOCS, NPMDS, YPRC, XPRT, MSPTRM, FETA, CCR)

Prepare information, independent of k-value and Mach no., which will be used during calculation of unsteady delta pressures. The information is written to RESFILE.

(58) OVERLAY (RHOIV, 1,4) PROGRAM RDWRTC

Perform all read/write activities associated with the CMFILE library of C-matrices and its index.

(59) OVERLAY (RHOIV, 1,3) PROGRAM RESPREP

Allocate working area for the various preparation routines which will in turn generate information which is placed on RESFILE for subsequent use in solving for the coefficients of the assumed main surface pressure terms, and in calculation unsteady pressures, sectional forces, or total generalized force results.

(60) OVERLAY (RHOIV, 1,7) PROGRAM RESULTS

Allocate working area for the result routines which will in turn generate the requested results for printed or user file output.

(61) OVERLAY (RHOIV, 1,0) PROGRAM RHOIV

Calculate the unsteady aerodynamic loadings on a lifting surface with leading and/or trailing edge sealed gap controls undergoing harmonic motions in subsonic compressible flow.

(62) SUBROUTINE RTHETA (PRESS, AMPPHAS, NPPT, NMDS

Convert pressure at a point from (X+IY) form to (R, THETA).

(63) SUBROUTINE SCAMP 4 (X,Y,N,NDA,NDB,DA,DB,C,S,M)

Given a set of N points whose absicissae form a strictly monotone sequence, and given a first or second derivative at X(1) and a first or second derivative at X(N), to find the smoothest possible curve passing rigorously through the given points, satisfying the specified boundary conditions, and possessing continuous first and second derivatives. The criterion of smoothness is the minimization of the integral of the square of the second derivative, and the curve found is accordingly a chain of cubics, i.e., a separate cubic on each interval X(I), X(I+1).

(64) SUBROUTINE SERIES1

Routine SERIES1 performs the integration of

EXP (I*LAMEDA) / (LAMBDA**2 + (K*YO)**2)**1.5

In LAMBDA from - infinity to - K*F, where K*F = 2*PI. A change of variables is made, and a series expansion of the denominator is written. Using partial integration a recursion formula is developed which converges to within required accuracy in ten iterations or less.

(65) SUBROUTINE SERIES2

Routine SERIES2 performs the integration of

(EXP(I*LAMBDA) -1 -I*LAMBDA +.5*LAMBDA**2)/(LAMBDA**2+(K*Y0) **2)

In LAMEDA from -K*F to K*H, when K*H > -K*F where K*F = 2*PI. A series expansion of the exponent is written. The first three terms of the series cancel with the remaining three terms in the numerator. Performing partial integration twice, a recursion formula for the integral of the remaining terms is developed which converges to within the required accuracy within 50 iterations or less (K*H≤15).

(66) SUBROUTINE SERIES3

Routine SERIES3 performs the integration of

EXP (I*LAMBDA) / (LAMBDA**2 + (K*Y0)**2**1.5

In LAMBDA from - infinity to K*H when K*H \leq -K*F, K*F = 2*PI. SERIES3 is the same as SERIES1 except the sine and cosine integrals of the upper integration limit cannot be precalculated.

(67) SUBROUTINE SGFINCK (YSGFC, PLNERR, SGFERR)

Read (or use default values for) sectional force output chords for legality and save on INSFILE.

- (68) SUBROUTINE SGFPREP (NSGFC, MPCHD, NZONES, NDMDS, NPMDS, NSPT, NCPT, NPTRM, YSGFC, NIPTSZ, XIPT, YIPT,
 - COWT, QTYPE, QSMSPT, Z, WZ, FETA, IIA, IIAP,
 - CCR, MIPSGF)

Prepare information, independent of k-value and Mach no., which will be used for calculation of sectional generalized unsteady aerodynamic coefficients (sectional forces). The information is written to RESFILE.

(69) SUBROUTINE SGRID (NIR, ETAQ, IRTYPE)

Routine SGRID defines the spanwise integration scheme used to integrate the spanwise integrand of the downwash integral equation for all downwash points on a specified downwash chord.

(70) SUBROUTINE SICI

Computes the sine and cosine integral.

(71) OVERLAY (RHOIV, 1,6) PROGRAM SOLN

Allocate working area for the solution routine and intermediate output routines.

计是记录器的主义的

(72) SUBROUTINE SOLVE (NDWP, NPTRM, NOCS, NPMDS, MMDS, 1 C, SCR, IPR, CS, AS, W, WRI)

Solve the complex linear system of equations for the coefficients of the assumed regular (main surface) pressure terms and save on COFFILE.

(73) SUBROUTINE SPECTE

Calculate NSPT spanwise pressure terms

KIND = GXYY, calculate F (ETAB) and FP (ETAB) = DF (ETAB) / DETA

= NON-SING, or SINGULAR, calculate F (ETAB)

CPT = .F. - main surface terms, * .T. - control surface terms

(74) SUBROUTINE SPNINT

Evaluate the spanwise integrand at ETA, and increment the C-matrix terms by the weighted results.

(75) SUBROUTINE TETERM (GR, GI)

Calculate the pressure term G(XI, ETA) = CMPLX(GR,GI) for a trailing edge control.

(76) SUBROUTINE VPINCK (VPERR)

Read velocity profiles, check for legality, form a cubic spline for each profile, and save on INSFILE.

(77) SUBROUTINE ZEROCOL (M, NF, NL, Z, NROWZ, INDD, DZ1, DZ2)

Initialize columns NF-NL to zero for M rows.

(78) OVERLAY (RHOIV, 0.0) PROGRAM ZRHOIV

Call overlay RHOIV (1,0)

Page Intentionally Left Blank

APPENDIX A - NUMERICAL INTEGRATION TECHNIQUES

The basic work performed by the RHOIV program is numerical integration. In particular this includes the surface integration of the pressure kernel expression of the downwash integral equation (eqn 2.3-1), or the integration along a chord of unsteady pressure times modal deflection for sectional generalized forces (eqn 2.8-4), or the surface integration of unsteady pressure times modal deflection for total generalized forces (eqn 2.8-9). The numerical integration is accomplished using Gaussian quadrature of the general form,

$$\int_{0}^{\beta} w(t)f(t)dt = \int_{1}^{\Sigma} H_{i}f(a_{i})$$
(A. 1-1)

where f(t) = the function to be integrated with the associated term,
 w(t) = a known positive function of t, the weight function.
and H_i = the quadrature weights corresponding to,
 a_i = the quadrature abscissae.

The abscissae are roots of an nth degree polynomial which is orthogonal with respect to the weight function w(t) on (α,β) . A discussion of the existence and determination of the set of a_i and corresponding H_i for which eqn A.1-1 will be exact, provided f(t) is of degree $\leq 2n-1$, is given in reference 3, Chapter VII. The properties of a_i and H_i include,

$$a_i$$
 real and distinct
 $H_i > 0$, $i=1,...,n$
 $\alpha < a_i < \beta$, $i=1,...,n$
 $\sum_{i=1}^{n} H_i = \int_{\alpha}^{\beta} w(t)dt$

The usual approach is to determine a_i and H_i for a known interval, e.g. (0,1), and perform a linear transformation of variables from, for example, x on (a,b) to t on (0,1).

The weight functions used within RHOIV are:

w(t) = 1 (for which the abscissae are roots of an nth degree Legendre polynomial on (α, β) --

referred to as Legendre quadrature)

- $w(t) = \sqrt{t-\alpha}$ (referred to as square root quadrature)
- $w(t) = 1/\sqrt{t-\alpha}$ (referred to as inverse square quadrature)
- $w(t) = ln(t-\alpha)$ (refered to as log quadrature)

For integration performed in evaluation of the downwash integral equation, the integrand and its first derivative are well behaved over the majority of the surface, thus Gauss-Legendre quadrature is most prevalently used. However, the first chordwise pressure term, $\cot(\theta/2)$, for a main surface analysis has a square root singularity at the planform leading edge, and the remaining chordwise pressure terms for both main surface and control surface analyses have a square root (or similar order) discontinuity in the first derivative at the planform leading and trailing edges. Additionally the spanwise terms for both analyses have a square root (or similar order) discontinuity in the first derivative at the planform tips. The kernel expression contains a logarithmic singularity at a downwash chord (y) in spanwise integration, and a logarithmic singularity exists in the chordwise pressure form at a physical control surface hinge line. Log quadrature is used in regions which include the above singularities. Note that because of the predetermination of the weights and abscissae on an interval (0,1), the integration of a logarithmic singularity involves both Log and Legendre quadratures.

For integration performed in calculation of sectional and total generalized forces the kernel function singularities are not involved, however the singularities associated with the pressure terms remain and are handled in the same manner.

The form of the quadratures used is,

Gauss-Legendre Quadrature

$$\int_{f}^{b} f(x)dx = (b-a)f(t)dt = (b-a)\sum_{i=1}^{n} f(x_{i})$$
(A. 1-2)

where n = 4 or 8

H; = the n point Gauss-Legendre quadrature weights

Square Root Quadrature

$$\frac{b}{\sqrt{x-a}} \int_{-x}^{x} f(x) dx = (b-a) \int_{-x}^{x} \sqrt{(b-a)t} f(t) dt = (\sqrt{b-a})^{3} \int_{-x}^{x} f(t) dt \qquad (A. 1-3)$$

$$= (\sqrt{b-a})^{3} \int_{1}^{x} Hs_{1} f(x_{1})$$

where n = 5 or 10

 $\mathtt{Hs}_{\mathtt{i}}$ = the n point Square Root Quadrature weights

X_i = (b-a)t_i + a, t_i = the n point Square Root
Quadrature abscissae

 $f(x) = g(x) / \sqrt{x-a}$, where g(x) has the characteristic of $\sqrt{x-a}$

Inverse Square Root Quadrature

$$\int_{f}^{b} f(x)/\sqrt{x-a} dx = \int_{0}^{1} f(t)/\sqrt{(b-a)t} dt = \sqrt{b-a} \int_{0}^{1} f(t)/\sqrt{t} dt$$

$$= \sqrt{b-a} \int_{1}^{c} His_{i} f(x_{i})$$
(A. 1-4)

where n = 5 or 10

His = the n point Inverse Square Root Quadrature weights

x = (b-a)t + a, t = the n point Inverse Square Root
Quadrature abscissae

 $f(x) = g(x) \sqrt{x-a}$, where g(x) has a square root singularity of the form $1/\sqrt{x-a}$

Log (Plus Legendre) Quadrature

where n = 4 or 8

 H_i and x_i are as defined in C.1-2

H1 = the n point Log quadrature weights associated with $w(t) = \ln (1/t)$.

x = (b-a)t + a, t = the n point Log quadrature abscissae

 $f(x) = g(x) / \ln|x-a|$, where g(x) has a logarithmic singularity of the form $\ln|x-a|$

APPENDIX B - MODAL INTERPOLATION

If input points and modal displacements are provided by the user to RHOIV, the surface spline method of Harder and Desmarais, Reference 5, is used to allow interpolation for displacements and streamwise slopes at downwash points, and displacements at quadrature points used for sectional and total generalized force integration.

If control surfaces exist, the lifting surface planform is divided into modal input zones, as illustrated in figure 8, page 155, each of which must have a sufficient number of input points to define the motion within that region.

The user has two options when describing lifting surfaces with controls:

- (1) Provide a descrete set of input points with associated modal displacements for each modal input zone,
- (2) Provide a total set of points with associated modal displacements which includes points in all zones.

In the first case, the input points for an input zone need not lie within the boundaries of that zone. In the second case RHOIV will assign an input zone to each point based on the boundaries shown in figure 8. In either case a minimum of three (3) input points must be associated with each input zone; the interpolation procedure described below, is applied per input zone.

The control surface pressure modes are a function of control rotation, $\theta(\eta)$, or the change in streamwise slope across a control hinge. Unless the user specifically provides this information, RHOIV will determine θ by calculating the slope at the hinge using the interpolating functions for the two modal input zones on either side of the hinge.

With a reasonably even distribution of points in a zone, the surface spline approach provides good results for displacements, and reasonable results for slopes at points <u>interior</u> to the input point set. At the extremeties of input point regions a fair amount of curvature may exist, introducing sometimes large "errors" in the slopes. This is particularly significant since the leading edge and any control hinge tend to lie at the extremeties of input point sets and thus errors in boundary condition at the leading edge, and control rotation 0, may be introduced.

For any particular planform configuration, the user should initially examine the kinematic downwash and control rotations to assure the sufficiency of his input point distribution. If the user is unable to cause reasonable control rotation values to be calculated by moving input points or including more input points the option to input control rotation information should be used.

IF REASONABLE SLOPES AT DOWNWASH PCINTS, AND CONTROL ROTATION VALUES ARE NOT CALCULATED THE PROGRAM RESULTS WILL HAVE NO SIGNIFICANCE

If the surface spline approach is used, the modes are approximated by, (Reference 5),

$$Z(\xi,\eta) = \sum_{i=1}^{N} a_{i}^{2} \cdot \ln(R_{i}^{2}) + a_{N+1} + a_{N+2}^{2} \xi + a_{N+3}^{2} \eta$$

$$R_{i} = (\xi - x_{i})^{2} + (\eta - y_{i})^{2}$$

$$(x_{i}, y_{i}) = N \text{ input points}$$

under the constraints

$$Z(x_i, y_i) = Z_I(x_i, y_i)$$
, $i = 1, N$
where $Z_I(x_i, y_i) = \text{input values at } (x_i, y_i)$, and
$$N \qquad N \qquad N \qquad N \qquad N \qquad \Sigma a_i = 0$$
, $\Sigma a_i y_i = 0$

which expressed in matrix form for n input modes,

is a linear system of equations which may be solved for the interpolating function coefficients.

Then for any output point, (ξ, η) ,

$$[Z(\xi,\eta)_{1},...,Z(\xi,\eta)_{n}] = [a_{ij}] \begin{Bmatrix} A_{i} \\ \xi \\ \eta \end{Bmatrix} \qquad A_{i} = R_{i}^{2} \cdot \ln(R_{i}^{2}), i = 1,N$$

$$\left\lfloor \frac{\partial Z(\xi,\eta)}{\partial x}^{1}, \dots, \frac{\partial Z(\xi,\eta)}{\partial x}^{n} \right\rfloor = \left[a_{ij}\right] \begin{Bmatrix} B_{i} \\ 1 \\ 0 \end{Bmatrix} \qquad B_{i} = 2(\xi-x_{i}) \left[\ln(R_{i}^{2}) + 1\right],$$

$$i=1,N$$

where $Z(\xi,\eta)$ has the properties

$$Z(x_i, y_i) = Z_I(x_i, y_i), i = 1, N$$

$$\frac{\partial^2 Z(\xi,\eta)}{\partial x^2}$$
, $\frac{\partial^2 Z(\xi,\eta)}{\partial x \partial y}$, $\frac{\partial^2 Z(\xi,\eta)}{\partial y^2}$ + 0 as the distance to the input point + ∞

 $Z(\xi,\eta)$ is analytic everywhere except at (x_i,y_i)

$$\frac{\partial \mathbf{Z}(\xi,\eta)}{\partial \mathbf{x}}$$
, $\frac{\partial \mathbf{Z}(\xi,\eta)}{\partial \mathbf{y}}$ exist at $(\mathbf{x}_{i},\mathbf{y}_{i})$

If N = 3 and the points are non colinear, a simple plane is defined for $Z(\xi,\eta)$.

Note that a simple bending mode (1st, 2nd, etc.) is <u>not</u> adequately defined by input points lying in two lines because of the tendency of the interpolation function used to force curvature to zero in both coordinates.

The change in slope at a control hinge for a spanwise station y is determined by calculating the slope at the hinge using first the interpolation information for the surface to which the control is related and then using the interpolation information for control surface itself. Rather than calculate the slope analytically, which, in the case of a surface spline representation, may introduce control rotations where none exist, a numerical procedure is used.

At a spanwise station y, three equally spaced points (including the hinge) are selected over a sufficiently small region, δ , e.g. $2\delta = (x_3-x_1) = .005S$, so that it can be assumed that no curvature of the physical planform exists. If the displacements at the points are determined, a quadratic in $(x-x_1)$ may be written,

$$Z(x) + A_1 + B(x-x_1) + C(x-x_1)^2$$
, or $\partial Z(x) / \partial x = B + 2C(x-x_1)^2$

Solving the system of three equations and neglecting C,

$$\partial Z(x)/\partial x = B = [4Z(x_2) - 3Z(x_1) - Z(x_3)]/2\delta$$

Note that if the slope is a constant over (x_1, x_3) initially,

$$C = [(Z(x_3) - Z(x_1))/\delta - (Z(x_2) - Z(x_1))/\delta]/\delta$$

This procedure should reduce the introduction of extraneous control rotations in non control rotation modes.

Modal Input Zones

Figure 8

REFERENCES

- W. S. Rowe, M. C. Redman, F. E. Ehlers, and J. D. Sebastian: Prediction of Unsteady Aerodynamic Loadings Caused by Leading Edge and Trailing Edge Control Surface Motions in Subsonic Compressible Flow -- Analysis and Results, NASA CR-2543, May 1975.
- 2. Ira H. Abott and Albert E. Von-Doenhoff: Theory of Wing Sections. McGraw Hill Book Company, Ic. (1949), page 341.
- Zdenek Kopal: Numerical Analysis, John Wiley and Sons, Inc. (1955).
- 4. National Bureau of Standards Applied Mathematics Series .55, Handbook of Mathematical Functions, June 1964.
- 5. Robert L. Harder and Robert N. Desmarais: Interpolation Using Surface Splines, Journal of Aircraft, Volume 9 #2, February 1972, pages 189-191.
- 6. Technical Report R-48, National Aeronautics and Space Administration, page 8.