## Inverse Problems in Evolving Graphs

Andrew Fraser

6 December 2021

#### Outline

- 1. Introduction to evolving graphs
- 2. Introduction to the inverse problem<sup>1</sup>
- 3. My approach and results

<sup>&</sup>lt;sup>1</sup>Grindrod Peter and Higham Desmond J. 2010, Evolving graphs: dynamical models, inverse problems and propagation





Vertex: Someone/something with connections.



Vertex: Someone/something with connections.

Edge: A connection between two vertices.



Vertex: Someone/something with connections.

Edge: A connection between two vertices.

Examples: Social media, airport network, the internet













We assign each edge two probabilities:

**Birth Rate:**  $\hat{\alpha}(e)$ , the probability that the edge will appear.

**Death Rate:**  $\hat{\omega}(e)$ , the probability that the edge will disappear.

Suppose some assignment of the integers 1...n  $i_v =$  the integer assigned to vertex v

Suppose some assignment of the integers 1...n  $i_v =$  the integer assigned to vertex v

Range: An edge (u, v) has range  $|i_u - i_v|$ 

Suppose some assignment of the integers 1...n  $i_v =$  the integer assigned to vertex v

Range: An edge (u, v) has range  $|i_u - i_v|$ 

We can define birth rates and death rates as a function of range:

$$\hat{\alpha}(e) = \alpha(|i_u - i_v|)$$

$$\hat{\omega}(e) = \omega(|i_u - i_v|)$$

Suppose some assignment of the integers 1...n  $i_v =$  the integer assigned to vertex v

Range: An edge (u, v) has range  $|i_u - i_v|$ 

We can define birth rates and death rates as a function of range:

$$\hat{\alpha}(e) = \alpha(|i_u - i_v|)$$

$$\hat{\omega}(e) = \omega(|i_u - i_v|)$$



Range of 
$$(v1, v4) = |1 - 4| = 3$$
  
Range of  $(v2, v3) = |2 - 3| = 1$ 

#### Problem to Solve



Forward Problem: Given a graph,  $\hat{\alpha}$ , and  $\hat{\omega}$ : compute states of the graph for  $i=1,2,\ldots J$ 

Inverse Problem: Given a graph and J states of the graph: compute  $\hat{\alpha}$  and  $\hat{\omega}$ .

EVOLVING GRAPH MODEL

**Input:** A graph G, J states of the graph F, and a matrix

R containing the frequencies of each edge in F

**Question:** What mapping on the integers q minimizes

 $\sum_{v_1,v_2\in G} R[v_1][v_2](q(v_1)-q(v_2))^2?$ 

EVOLVING GRAPH MODEL

**Input:** A graph G, J states of the graph F, and a matrix

R containing the frequencies of each edge in F

**Question:** What mapping on the integers q minimizes

 $\sum_{v_1,v_2\in G} R[v_1][v_2](q(v_1)-q(v_2))^2?$ 

Problem: Since q is not differentiable, this problem is intractable.

Solution: We relax q to be a vector instead of a function



EVOLVING GRAPH MODEL

**Input:** A graph G, J states of the graph F, and a matrix

R containing the frequencies of each edge in F

**Question:** What mapping on the integers q minimizes

 $\sum_{v_1,v_2\in G} R[v_1][v_2](q(v_1)-q(v_2))^2?$ 

Problem: Since q is not differentiable, this problem is intractable.

Solution: We relax q to be a vector instead of a function

This leads to the form:  $q^T \Delta_R q$ .

Note:  $\Delta_R$  is the Laplacian matrix of R

#### EVOLVING GRAPH MODEL

**Input:** A graph G, J states of the graph F, and a matrix

R containing the frequencies of each edge in F

**Question:** What mapping on the integers q minimizes

 $\sum_{v_1,v_2\in G} R[v_1][v_2](q(v_1)-q(v_2))^2?$ 

Problem: Since q is not differentiable, this problem is intractable.

Solution: We relax q to be a vector instead of a function

This leads to the form:  $q^T \Delta_R q$ .

Note:  $\Delta_R$  is the Laplacian matrix of R

Big problem:  $q^T \Delta_R q$  is a nonlinear (quadratic) inverse problem.



### Solving the Quadratic Inverse Problem

Problem to solve:  $q^T \Delta_R q$ 

## Solving the Quadratic Inverse Problem

Problem to solve:  $q^T \Delta_R q$ 

One solution: eigenanalysis by cases on the matrix  $\Delta_R$ 

Runtime:  $O(n^3)$ 

By: Grindrod and Higham (2009)

# Solving the Quadratic Inverse Problem

Problem to solve:  $q^T \Delta_R q$ 

One solution: eigenanalysis by cases on the matrix  $\Delta_R$ 

Runtime:  $O(n^3)$ 

By: Grindrod and Higham (2009)

My solution: convert to optimization, perform gradient descent

Derivative:  $q^T(A + A^T)$ 

Compute the derivative and take a step towards it, then repeat.

Runtime:  $O(sn^2)$ , where s is the number of steps to converge

#### Results: Model-Based Test

#### Original Mapping:



#### Gradient Descent:



#### Results: Model-Based Test

#### Original Mapping:



Original Error:  $\approx 1.2 M$ Gradient Descent Error:  $\approx 1.6 M$ 

#### Gradient Descent:



Results: On Real Data?

#### Results: On Real Data?



#### Results: On Real Data?



Most large internet models have millions of vertices and **tens of millions** of edges.

This is nowhere near feasible on large graphs!



#### **Next Steps**

- Investigate into applying fourier transforms
- ► Find smaller dataset applications
- Experiment with parameters of gradient descent

# Thank you!

Questions?