Predict-Percentage-Marks-Vs-Hours-Studied

Importing Libraries

```
In [78]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
```

Import CSV file

```
In [79]: dataset = pd.read_csv('D:student_scores.csv')
```

In [80]: dataset

Out[80]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25

	Hours	Scores
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

Explore the dataset

```
    Hours
    Scores

    2
    3.2
    27

    3
    8.5
    75

    4
    3.5
    30
```

In [83]: dataset.describe()

Out[83]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

check data types for each column

```
In [84]: print (dataset.dtypes)

Hours float64
Scores int64
dtype: object

Check for outlier values

In [85]: plt.boxplot(dataset.values)
```


dataset.plot(x='Hours',y= 'Scores',style='o') plt.title('Hours vs Percentage') plt.xlabel('Hours Studied') plt.ylabel('Percentage Score') plt.show()

Prepare the data to train the model

```
In [86]: X= dataset.iloc[:, :-1].values
```

```
y= dataset.iloc[:, 1].values
In [87]:
          from sklearn.model selection import train test split
          X train, X test, y train, y test= train test split(X, y, test size=0.2, rando
          m state=0)
         from sklearn.linear model import LinearRegression
In [88]:
          regressor = LinearRegression()
          regressor.fit(X train, y train)
Out[88]: LinearRegression()
          To see the value of the intercept and slop calculated by the linear regression algorithm for our
          dataset
In [89]:
          print(regressor.intercept )
          2.018160041434683
          print(regressor.coef )
In [90]:
          [9.91065648]
In [91]: y pred = regressor.predict(X test)
In [92]: df = pd.DataFrame({'Actual':y test,'Predicted': y pred})
          df
Out[92]:
             Actual Predicted
           0
                20 16.884145
           1
                27 33.732261
                69 75.357018
           3
                30 26.794801
```

Actual Predicted

4 62 60.491033

Evaluate the algorithm by 1.MAE 2.MSE 3.RMSE