# EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89810554.9

.

Anmeldetag: 20.07.89

(s) Int. Cl.5: C 07 D 239/56

C 08 K 5/39, C 08 L 57/08

(3) Priorität: 29.07.88 CH 2890/88

Veröffentlichungstag der Anmeldung: 07.02.90 Patentblatt 90/06

Benannte Vertragsstaaten: BE DE FR GB IT NL Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH)

Erfinder: Wehner, Wolfgang, Dr. Wetzbach 34 D-6144 Zwingenberg (DE)

> Hartmann, Olaf-René, Dr. Hofgartenstrasse 21 D-6140 Bensheim 2 (DE)

(54) Thiouracile als Stabilisatoren für chlorhaltige Polymerisate.

S Zusammensetzung enthaltend a) ein chlorhaltiges Polymerisat und b) mindestens eine Verbindung der Formel I,

$$\begin{bmatrix} R_2 & S & \\ O & \frac{1}{2} & 2 \\ S & R_1 & D \end{bmatrix}$$

wortn n 1 oder 2 bedeutet, R $_1$  C $_1$ -C $_1$ 8-Alkyl, C $_3$ -C $_1$ 8-Alkenyl, Phenyl, C $_7$ -C $_1$ 2-Phenylalkyl oder am Phenylring durch C $_1$ -C $_4$ -Alkyl und/oder Chlor substituiertes C $_7$ -C $_1$ 2-Phenylalkyl ist, R $_2$  C $_1$ -C $_1$ 8-Alkyl, eine Gruppe -CH $_2$  C $_1$ 8-Alkyl, eine Gruppe -CH $_2$ 

OH oder durch Hydroxy oder eine Gruppe -XR3 substituiertes C2-C22-Alkyl ist, wobel X Sauerstoff oder Schwefel ist und R3 C1-C18-Alkyl, Phenyl oder C7-C12-Phenylalkyl darstellt, oder R2 ferner C3-C18-Alkyl, C7-C12-Phenylalkyl, am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl, Di(C1-C4-alkyl)thiocarbamoyl oder eine Gruppe der Formel Ila oder Ilb ist,

$$-CX_1$$
 ,  $-COX_2$  (IIa) (IIb)

wobei X<sub>1</sub> C<sub>1</sub>-C<sub>17</sub>-Alkyl, C<sub>3</sub>-C<sub>17</sub>-Alkenyl, C<sub>6</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>4</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio oder Di[C<sub>1</sub>-C<sub>4</sub>-alkyl]amino bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>16</sub>-Alkyl, C<sub>3</sub>-C<sub>16</sub>-Alkenyl, C<sub>6</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, wenn n 1 bedeutet, Y Wasserstoff, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thlocarbamoyl oder eine Gruppe der Formel Ita oder Ilb Ist, wenn n 2 bedeutet, Y eine Gruppe Ilc oder Ild Ist,

wobel  $X_8$ :  $C_1$ - $C_{12}$ -Alkylen oder Phenylen bedeutet und  $X_4$   $C_2$ - $C_{12}$ -Alkylen oder durch 1 oder 2 Sauerstoffatome unterbro-

chenes C4-C8-Alkylen ist, mit den Massgaben, dass die Reste Y und R2 gleich sind, wenn R2 DI(C1-C4-alkyl)thiocarbamoyl oder eine Gruppe der Formel Ila oder Ilb bedeutet, und die Verbindung 3,6-Dimethyl-2-thiouracii ausgeschlossen ist. Zusammensetzung enthaltend a) ein chlorhaltiges Polymerisat, b) die Verbindung 3,6-Dimethyl-2-thiouracii und c) eine Epoxyverbindung.

Es werden auch neue Verbindungen der Formel I beschrieben.

#### Beschreibung

15

20

25

#### Thiouraclle als Stabilisatoren für chlorhaltige Polymerisate

Die vorliegende Erfindung betrifft mit 2-Thiouracilen gegen thermischen Abbau stabilisierte chlorhaltige Polymerisate und neue 2-Thiouracile.

Es ist bekannt, dass chlorhaltige Polymerisate gegen den schädigenden Einfluss von Licht und Wärme, insbesondere bei der Verarbeitung zu Formtellen, geschützt werden müssen. 2-Thiouracile und deren Verwendung als Stabilisatoren werden beispielswelse in US-A-4 105 627, JP-A-81/11936, JP-A-77/049260 und JP-A-76/088542 offenbart.

Die Verwendung einer Reihe von Uracilen und Thiouracilen als Herbizide ist insbesondere aus FR-A-1 270 771 und CH-A-482 402 bekannt.

Ein mögliches Herstellungsverfahren für Thiouracile wird in Chemical Abstracts 70:87730e (1969) beschrieben.

Ein Gegenstand der vorliegenden Erfindung sind Zusammensetzungen enthaltend a) ein chlorhaltiges Polymerisat und b) mindestens eine Verbindung der Formel I,

 $\begin{bmatrix} R_2 & S \\ 0 & \frac{1}{3} & 2 \\ \vdots & \vdots & \ddots \\ R_1 & n \end{bmatrix}$  (I)

worin n 1 oder 2 bedeutet, R<sub>1</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, R<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, eine Gruppe -CH<sub>2</sub> CHCH<sub>2</sub>XR<sub>3</sub>

OH oder durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl ist, wobei X Sauerstoff oder Schwefel ist und R<sub>3</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt, oder R<sub>2</sub> ferner C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thlocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist,

wobei X<sub>1</sub> C<sub>1</sub>-C<sub>17</sub>-Alkyl, C<sub>3</sub>-C<sub>17</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substitulertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substitulertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substitulertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio oder Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amlno bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substitulertes C<sub>6</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substitulertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substitulertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, wenn n 1 bedeutet, Y Wasserstoff, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder elne Gruppe der Formel IIa oder IIb ist, wenn n 2 bedeutet, Y eine Gruppe IIc oder IId ist,

-c-x<sub>3</sub>-c- , -co-x<sub>1</sub>-oc-

wobei  $X_3$   $C_1$ - $C_{12}$ -Alkylen oder Phenylen bedeutet und  $X_4$   $C_2$ - $C_{12}$ -Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes  $C_4$ - $C_6$ -Alkylen ist, mit den Massgaben, dass die Reste Y und  $R_2$  gleich sind, wenn  $R_2$  Di( $C_1$ - $C_4$ -alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb bedeutet, und die Verbindung 3,6-Dimethyl-2-thiouracil ausgeschlossen Ist.

Alkyl mit bis zu 18 Kohlenstoffatomen bedeutet beispielsweise Methyl, Ethyl, Propyl, n-Butyl, i-Butyl, t-Butyl, Pentyl, Hexyl, Heptyl, n-Octyl, i-Nonyl, n-Decyl, n-Dodecyl oder n-Octadecyl. R1 lst bevorzugt C1-C4-Alkyl, insbesondere Methyl. Eine der bevorzugten Bedeutungen von R2 ist C1-C12-Alkyl, zum Beispiel C1-C4-Alkyl oder C4-C12-Alkyl.

Alkenyl mit bis zu 18 Kohlenstoffatomen bedeuten zum Belspiel Allyl, 2-Methallyl, Hexenyl, Decenyl, Undecenyl, Heptadecenyl oder Oleyl. Bevorzugte Bedeutungen für R2 als Alkenyl sind z.B. Allyl und Oleyl. In den Alkenylresten ist das Kohlenstoffatom in der Stellung 1 bevorzugt ein gesättigtes C-Atom.

Beispiele für C7-C12-Phenylalkyl, welches gegebenenfalls am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiert sein kann, sind Benzyl, 2-Phenylethyl, Methylbenzyl, Dimethylbenzyl, t-Butylbenzyl und

Chlorbenzyl. Benzyl ist bevorzugt. Die Gruppe -CH<sub>2</sub> CHCH<sub>2</sub>XR<sub>3</sub>

bedeutet bevorzugt 3-(2-Ethylhexyl)oxy-2-hydroxypropyl oder 3-(2-Ethylhexyl)thlo-2-hydroxypropyl.

Durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl, insbesondere C<sub>2</sub>-C<sub>12</sub>-Alkyl, bedeutet beisplelsweise 2-Hydroxyethyl, 2-Methoxyethyl, 2-Hydroxypropyl, 2,3-Dihydroxypropyl, 9,10-Dihydroxystearyl oder 2,3,4,5,6-Pentahydroxyhexyl. Durch Hydroxy oder C<sub>1</sub>-C<sub>6</sub>-Alkyloxy substituiertes C<sub>2</sub>-C<sub>6</sub>-Alkyl ist bevorzugt. 2-Hydroxyethyl und 2-Methoxyethyl sind besonderes bevorzugt. Die OH-Gruppe bzw. die Gruppe -XR<sub>3</sub> befinden sich bevorzugt nicht in 1-Stellung.

5

10

15

20

25

30

35

45

60

Di(C1-C4-alkyl)thiocarbamoyl bedeutet zum Belspiel folgende Gruppen:

$$-\frac{C_{13}}{C_{13}}, -\frac{C_{2}H_{5}}{C_{2}H_{5}}, -\frac{C_{3}H_{7}}{C_{3}H_{7}}, -\frac{C_{4}H_{9}}{C_{4}H_{9}}.$$

C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert ist, bedeutet zum Beispiel Cyclopentyl, Cyclohexyl, Cyclohexyl, Methylcyclohexyl oder t-Butylcyclohexyl. Cyclohexyl ist bevorzugt.

Phenyl, welches durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiert ist, bedeutet zum Beisplei Chlorphenyl, 2,4-Dichlorphenyl, Trichlorphenyl, Methylphenyl, Dimethylphenyl, 2-Methyl-6-ethylphenyl, 2-Methyl-6-tert-butylphenyl, 4-tert-Butylphenyl oder 3-Chlor-2-methylphenyl.

Beisplele für C<sub>1</sub>-C<sub>10</sub>-Alkylthio sind Methylthio, Ethylthio, Propylthio, Butylthio, Pentylthio, Hexylthio, Hexylthio, Hexylthio, Octylthio, Nonylthio und Decylthio. Octylthio ist bevorzugt.

 $Di(C_1-C_4-alkyl)$ amino bedeutet zum Beispiel Dimethylamino, Diethylamino, Dipropylamino und Dibutylamino. Dimethylamino und Diethylamino sind bevorzugt.

Beispiele für Alkylen mit bls zu 12 Kohlenstoffatomen sind Methylen, Dimethylen, Trimethylen, Tetramethylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Nonamethylen, Decamethylen und Dodecamethylen.

C<sub>4</sub>-C<sub>8</sub>-Alkylen, welches durch 1 oder 2 Sauerstoffatome unterbrochen ist, bedeutet zum Beispiel 3-Oxapentamethylen oder 3,6-Dioxaoctamethylen.

Bevorzugt sind Zusammensetzungen, worin n 1 bedeutet, R<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, eine Gruppe -CH<sub>2</sub> CH CH<sub>2</sub>XR<sub>3</sub>,

durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist und Y Wasserstoff bedeutet.

Von Interesse sind auch Zusammensetzungen, worin n 1 ist und Y Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe IIa oder IIb bedeutet.

Besonders bevorzugt sind Zusammensetzungen, worin n 1 ist,  $R_1$   $C_1$ - $C_4$ -Alkyl oder Phenyl bedeutet,  $R_2$   $C_1$ - $C_{18}$ -Alkyl, durch Hydroxy oder  $C_1$ - $C_6$ -Alkyloxy substituiertes  $C_2$ - $C_6$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl, Benzyl oder Benzoyl ist, Y Wasserstoff, Di( $C_1$ - $C_4$ -alkyl)thiocarbamoyl oder eine Gruppe IIa oder IIb ist,  $X_1$   $C_1$ - $C_{12}$ -Alkyl, Phenyl, Dichlorphenyl,  $C_1$ - $C_{10}$ -Alkylthio oder Di( $C_1$ - $C_4$ -alkyl)amino bedeutet und  $X_2$   $C_1$ - $C_{12}$ -Alkyl darstellt.

Von besonderem Interesse sind auch Zusammensetzungen, worin n 1 ist,  $R_1$  Methyl bedeutet,  $R_2$  C<sub>1</sub>-C<sub>4</sub>-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl oder Allyl ist und Y Wasserstoff, Benzoyl oder (C<sub>1</sub>-C<sub>12</sub>-Alkyl)oxycarbonyl bedeutet.

R<sub>1</sub> bedeutet bevorzugt C<sub>1</sub>-C<sub>4</sub>-Alkyl oder Phenyl.

 $R_3$  bedeutet bevorzugt  $C_1$ - $C_{18}$ -Alkyl, durch Hydroxy oder  $C_1$ - $C_6$ -Alkyloxy substituiertes  $C_2$ - $C_6$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl, Benzyl oder Benzoyl.

Ein weiterer Gegenstand der Erfindung sind Zusammensetzungen enthaltend a) ein chlorhaltiges Polymerisat, b) mindestens eine Verbindung der Formel IA,

worin n 1 oder 2 bedeutet, R<sub>1</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, R<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, eine Gruppe -CH<sub>2</sub> CH CH<sub>2</sub>XR<sub>3</sub> OH

oder durch Hydroxy oder eine Gruppe -XR3 substituiertes C2-C22-Alkyl ist, wobel X Sauerstoff oder Schwefel bedeutet und R3 C1-C18-Alkyl, Phenyl oder C7-C12-Phenylalkyl darstellt, oder R2 ferner C3-C18-Alkenyl, C7-C12-Phenylalkyl, am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl,

Di(C1-C4-alkyl)thiocarbamoyl oder eine Gruppe der Formel Ila oder Ilb ist,

$$-CX_1$$
 ,  $-COX_2$   
0 (IIa) (IIb)

wobei X<sub>1</sub> C<sub>1</sub>-C<sub>17</sub>-Alkyl, C<sub>3</sub>-C<sub>17</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio oder Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, wenn n 1 bedeutet, Y Wasserstoff, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb Ist, wenn n 2 bedeutet, Y eine Gruppe IIc oder III ist,

wobei X<sub>3</sub> C<sub>1</sub>-C<sub>12</sub>-Alkylen oder Phenylen bedeutet und X<sub>4</sub> C<sub>2</sub>-C<sub>12</sub>-Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes C<sub>4</sub>-C<sub>8</sub>-Alkylen ist, mit der Massgabe, dass die Reste Y und R<sub>2</sub> gleich sind, wenn R<sub>2</sub> Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb bedeutet, und c) eine Epoxyverbindung.

Die Verbindung der Formel IA ist bevorzugt 3,6-Dimethyl-2-thiouracil.

Bei der Epoxyverbindung handelt es sich bevorzugt um epoxidierte Oele und epoxidierte Fettsäureester, z.B. epoxidiertes Sojabohnenöl und epoxidiertes Butyloleat.

Bei den chlorhaltigen Polymerisaten handelt es sich bevorzugt um Vinylchloridhomopolymere oder -copolymere. Als Comonomere für die Copolymerisate kommen z.B. in Frage: Vinylacetat, Vinylidenchlorid, Transdichlorethen, Ethylen, Propylen, Butylen, Maleinsäure, Acrylsäure, Fumarsäure, Itaconsäure. Weitere geeignete chlorhaltige Polymere sind nachchloriertes PVC und chlorierte Polyolefine, ferner Pfropfpolymerisate von PVC mit EVA, ABS und MBS. Bevorzugte Substrate sind auch Mischungen der vorstehend genannten Homo- und Copolymerisate, insbesondere Vinylchlorid-Homopolymerisate, mit anderen thermoplastischen oder/und elastomeren Polymeren, insbesondere mit ABS, MBS, NBR, SAN, EVA.

Weiterhin bevorzugt sind Suspensions- und Massepolymere sowie Emulsionspolymere.

Als chlorhaltiges Polymerisat ist Polyvinylchlorid besonderes bevorzugt.

Es ist vorteilhaft, die Verbindungen der Formel I oder IA zusammen mit bekannten Thermostabilisatoren einzusetzen, wie z.B. Organozinnverbindungen, Bleiverbindungen, organischen Antimonverbindungen, Me(II)-Phenolaten, insbesondere C<sub>7</sub>-C<sub>20</sub>-Alkylphenolaten, beispleisweise Nonylphenolat, oder Me(II)-Carboxylaten. Me(II) bedeutet z.B. Ba, Ca, Mg, Cd oder Zn. Bei den Carboxylaten handelt es sich bevorzugt um Salze von Carbonsäuren mit 7 bis 20 C-Atomen, beispleisweise Benzoate, Alkenoate oder Alkanoate, bevorzugt Stearate, Oleate, Laurate, Palmitate, Hydroxystearate oder 2-Ethylhexanoate. Besonders bevorzugt sind Stearate, Oleate und p-tert-Butylbenzoate. Beispleie für Organozinnverbindungen, Bleiverbindungen und organische Antimonverbindungen sind die in US-A-4 743 640 Spalte 3, Zeile 48 bis Spalte 5, Zeile 38 genannten Verbindungen.

Zusätzlich können die mit den Verbindungen der Formel I oder IA stabilisierten chlorhaltigen Polymerisate in üblichen Mengen herkömmliche PVC-Stabilisatoren enthalten, wie beisplelsweise Phosphite, bevorzugt solche der Formeln

worin A<sub>1</sub>, A<sub>2</sub> und A<sub>3</sub> unabhängig voneinander C<sub>4</sub>-C<sub>18</sub>-Alkyl, C<sub>6</sub>-C<sub>18</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl oder durch ein bis drei C<sub>1</sub>-C<sub>12</sub>-Alkylgruppen substitulertes Phenyl bedeuten.

Belspiele sind Trioctyl-, Tridecyl-, Tridocyl-, Tritetradecyl-, Tristearyl-, Trioleyl-, Triphenyl-, Trikresyl-, Tris-p-nonylphenyl- und Tricyclohexylphosphit. Bevorzugt sind die Aryldialkyl- sowie die Alkyldiaryl-phosphite, wie z.B. Phenyldidecyl-, (2,4-Di-tert-butylphenyl)didodecyl-, (2,6-Di-tert-butylphenyl)didodecyl-phosphit und die Dialkyl-und Diaryl-pentaerythrit-diphosphite, wie z.B. Distearylpentaerythrit-diphosphit. Ebenfalls bevorzugt sind die Tetraphenyl- und Tetraalkyl-[dipropylenglykol-1,2]-diphosphite und die Poly-[dipropylenglykol-1,2-phenylphosphite] sowie die Poly-[dipropylenglykol-1,2-alkylphosphite]. Besonders bevorzugte organische Phosphite sind Distearyl-pentaerythritdiphosphit, Tris(nonylphenyl)phosphit, Phenyldidecylphosphit, Tetraphenyl-[dipropylenglykol-1,2]-diphosphit und Poly-[dipropylenglykol-1,2-phenylphosphit].

Ein bevorzugter Gegenstand der Erfindung sind daher Zusammensetzungen enthaltend ausser der Komponente a) und einer Verbindung der Formel I mindestens ein Me(II)-Carboxylat und/oder Me(II)-Phenolat, wobei Me(II) Ba, Ca, Mg, Cd oder Zn bedeutet, und gegebenenfalls ein Phosphit.

Gemäss einer weiteren Bevorzugung enthalten die erfindungsgemässen Zusammensetzungen ausser der Komponente a) und einer Verbindung der Formei I mindestens ein Me(II)-Carboxylat, wobei Me(II) Ba, Ca, Mg oder Zn bedeutet. Gemische aus Ba/Zn- oder Ca/Zn-Carboxylaten werden dabei als Costabilisatoren besonders bevorzugt.

Bevorzugt sind auch Zusammensetzungen enthaltend ausser der Komponente a), einer Verbindung der Formel IA und der Komponente c) mindestens ein Me(II)-Carboxylat und/oder Me(II)-Phenolat, wobei Me(II), Ba, Ca, Mg, Cd oder Zn bedeutet, und gegebenenfalls ein Phosphit, insbesondere ein solches der oben angegebenen Formeln.

Die bekannten Thermostabilisatoren (z.B. Carboxylate) können in dem zu stabilisierenden Material in einer dem Fachmann bekannten Konzentration vorliegen, wie zum Beispiel in Mengen von 0,05 bis 5 Gew.%.

Die Phosphite werden z.B. in Konzentrationen von 0,3 bis 5, vorzugsweise 0,5 bis 1 Gew. % und die Epoxyverbindungen, wie z.B. das epoxidierte Sojabohnenöl, in Konzentrationen von 1 bis 8, vorzugsweise 1 bis 3 Gew. % eingesetzt.

Die Verbindungen der Formel I bzw. IA werden beispielswelse in Mengen von 0,05 bis 5, bevorzugt 0,05 bis 1, insbesondere 0,1 bis 0,5 Gew.% in das chlorhaltige Polymerisat eingearbeitet.

Die Angabe Gew. % bezieht sich jeweils auf das zu stabilisierende Material.

Je nach dem Verwendungszweck der Polymerisate können vor oder bei der Einarbeitung der Stabilisatoren auch weitere Zusätze eingearbeitet werden, wie zum Belspiel phenolische Antioxidantien, Gleitmittel (bevorzugt Montanwachse oder Glycerinester), Fettsäureester, Paraffine, Weichmacher, Füllstoffe, Russ, Asbest, Kaolin, Talk, Glasfasern, Modifikatoren (wie etwa Schlagzäh-Zusätze), optische Aufheiler, Pigmente, Lichtschutzmittel, UV-Absorber, Flammschutzmittel oder Antistatika.

Weitere mögliche Zusätze sind ferner  $\beta$ -Aminocrotonate, z.B. die in DE-A-804 442, DE-A-807 207 und JP-A-75/17454 beschriebenen Verbindungen, Pyrrole, z.B. die in EP-A-22 087 angegebenen Verbindungen, Aminouracile, z.B. die in EP-A-65 934 offenbarten Verbindungen, Aminothiouracile, z.B. die aus EP-A-41 479 bekannten Verbindungen, Polyole, z.B. die in DE-A-3 019 910 beschriebenen Verbindungen,  $\beta$ -Diketone, z.B die in DE-A-2 600 516 angegebenen Verbindungen, oder auch Gemische aus  $\beta$ -Diketonen und Hydrotalciten, wie z.B. in EP-A-63 180 beschrieben.

Die Einarbeitung der Stabilisatorkomponenten in das chlorhaltige Polymerisat erfolgt am günstigsten, wie üblich, auf einem Mischwalzwerk, z.B. einem 2-Walzenstuhl bei Temperaturen zwischen 150° und 200°C. Im allgemeinen lässt sich eine genügende Homogenisierung Innerhalb von 5 bis 15 Minuten erreichen. Die Zugabe der Komponenten kann einzeln oder gemeinsam als Vorgemisch erfolgen. Als zweckmässig hat sich ein flüssiges Vorgemisch erwiesen, d.h. es wird in Gegenwart von indifferenten Lösungsmitteln und/oder Weichmachem gearbeitet.

Ein weiterer Gegenstand der Erfindung sind die neuen Verbindungen der Formeln IIIA, IIIB, IIIC, IIID und IIIE,

$$CH_3 S V-H$$
 (IIIA)

worin R<sub>1</sub>′ C<sub>3</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt;

worin R2' C1-C18-Alkyl, C3-C18-Alkenyl, C7-C12-Phenylalkyl oder am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl darstellt;

worin R2" C10-C18-Alkyl oder C10-C18-Alkenyl Ist;

65

5

10

15

20

25

35

worin R<sub>1</sub>" C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl bedeutet und R<sub>2</sub>" eine Gruppe -CH<sub>2</sub> CH CH<sub>2</sub>XR<sub>3</sub>

OH

oder durch Hydroxy oder eine Gruppe -XR3 substituiertes C2-C22-Alkyl darstellt, wobei X Sauerstoff oder Schwefel ist und R3 C1-C18-Alkyl, Phenyl oder C7-C12-Phenylalkyl ist;

worin n 1 oder 2 bedeutet, R<sub>1</sub><sup>rr</sup> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, R<sub>2</sub><sup>rv</sup> C<sub>1</sub>-C<sub>18</sub>-Alkyl, elne Gruppe -CH<sub>2</sub> CHCH<sub>2</sub>XR<sub>3</sub> OH

oder durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl ist, wobel X Sauerstoff oder Schwefel bedeutet und R<sub>3</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, oder R<sub>2</sub> ferner C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist,

$$30$$
  $-CX_1$  ,  $-COX_2$  0 0 (IIa) (IIb)

5

20

wobei X<sub>1</sub> C<sub>1</sub>-C<sub>17</sub>-Alkyl, C<sub>3</sub>-C<sub>17</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-G<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-G<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio oder Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl Ist, wenn n 1 bedeutet, Y' Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel Ila oder Ilb ist, wenn n 2 bedeutet, Y' eine Gruppe Ilc oder Ild ist,

wobel X<sub>3</sub> C<sub>1</sub>-C<sub>12</sub>-Alkenyl oder Phenylen bedeutet und X<sub>4</sub> C<sub>2</sub>-C<sub>12</sub>-Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes C<sub>4</sub>-C<sub>8</sub>-Alkylen ist, mit der Massgabe, dass R<sub>2</sub><sup>N</sup> und Y' gleich sind, wenn R<sub>2</sub><sup>N</sup> Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb Ist.

Beispiele für  $R_1'$ ,  $R_1''$ ,  $R_1'''$ ,  $R_2''$ ,  $R_2''$ ,  $R_2'''$ ,  $R_2'''$ ,  $R_2^{N'}$  und Y' sind die unter der Formel I angegebenen Bedeutungen.

Bevorzugt sind Verbindungen der Formein IIIA, IIIB und IIIC, worin R1' C3-C4-Alkyl bedeutet, R2' C1-C18-Alkyl, Allyl oder Benzyl darstellt und R2" C10-C18-Alkyl oder Allyl ist.

Ebenfalls bevorzugt sind Verbindungen der Formel IIID, worin R<sub>1</sub>" C<sub>1</sub>-C<sub>4</sub>-Alkyl oder Phenyl bedeutet und R<sub>2</sub>" durch Hydroxy oder C<sub>1</sub>-C<sub>6</sub>-Alkyloxy substituiertes C<sub>2</sub>-C<sub>6</sub>-Alkyl ist.

Von Interesse sind auch Verbindungen der Formel IIIE, worin n 1 bedeutet, R1<sup>rtt</sup> C1-C4-Alkyl ist, R2<sup>Nt</sup> C1-C4-Alkyl, Allyl, Benzyl oder Benzoyl bedeutet und Y' Dl(C1-C4-alkyl)thiocarbamoyl oder eine Gruppe ila oder ilb ist, X1 C1-C12-Alkyl, Phenyl, Dichlorphenyl, C1-C10-Alkylthio oder Di(C1-C4-alkyl)amino bedeutet und X2 C1-C12-Alkyl darstellt.

Die Verbindungen der Formel I können in Analogie zu bekannten Verfahren hergestellt werden. Ein mögliches Herstellungsverfahren für Verbindungen der Formel I, worin Y Wasserstoff bedeutet, wird durch folgende Reaktionsgleichung beschrieben:

$$R_1-C-CH_2-C-O-Z + R_2NH-C-NH_2 \xrightarrow{-H_2O} \frac{1}{R_1} \frac{R_2}{R_1}$$
(IV) (V) (I)

Z Ist z.B. C<sub>1</sub>-C<sub>4</sub>-Alkyl, insbesondere Methyl oder Ethyl. Die Umsetzung findet zweckmässigerweise unter Rückflussbedingungen in Gegenwart einer starken Base in einem organischen Lösungsmittel, bevorzugt einem kurzkettigen Alkohol, insbesondere Methanol oder Ethanol, statt. Die Umsetzung kann z.B. auch in IV als Reaktionsmedium bei 60-120°C durchgeführt werden. Bei den Basen handelt es sich beispielsweise um Alkalialkoholate oder Alkalihydroxide, bevorzugt Natriummethylat, Natriumethylat, Natriumhydroxid oder Kaliumhydroxid. Die Reaktanden können z.B. in stöchiometrischem Verhältnis eingesetzt werden; bevorzugt ist ein Molverhältnis von IV/V/Base = (1,0-2,5)/1/(1,0-3,0). Nach Beendigung der Umsetzung erfolgt die Isolierung des Produktes sowie seine Reinigung nach üblichen Methoden.

Die Ausgangsprodukte der Formeln IV und V sind im Handel erhältlich oder können in Analogie zu bekannten Verfahren hergestellt werden. Die Verbindung der Formel V kann z.B. gemäss folgender Reaktion erhalten werden:

$$Z_1SCN + Z_2COC1$$
  $\longrightarrow$   $Z_2CONCS$   $\longrightarrow$   $Z_2CONCS$ 

$$Z_2$$
CONCS +  $R_2$ NH<sub>2</sub>  $\longrightarrow$   $Z_2$ CONH-C-NHR<sub>2</sub>
(Va)

 $Z_1$  bedeutet z.B. Kalium, Natrium oder Ammonium und  $Z_2$  ist z.B. Methoxy, Ethoxy oder Phenyl. Die Umsetzung findet zweckmässigerweise in einem organischen Lösungsmittel, bevorzugt Aceton oder Essigester, statt. Es ist auch möglich, die Verbindung der Formel Va ohne Abspaltung der Schutzgruppe  $Z_2$ CO- direkt für die Herstellung der Verbindungen der Formel I zu verwenden.

Die Verbindungen der Formel I, die in 1 oder 1 und 3 Stellung acyliert sind, lassen sich ebenfalls in Analogie zu bekannten Verfahren herstellen; belspielsweise durch Umsetzung des Natriumsalzes des entsprechenden Thiouracils mit einer Acylchlorverbindung.

Einige Verbindungen der Formel I können bei der Herstellung in einem Isomerengemisch anfallen, welches nach üblichen, dem Fachmann bekannten Verfahren aufgetrennt werden kann.

Die Formel I ist daher so zu verstehen, dass sie auch die Verbindungen der Formel I\* umfasst. Die folgenden Belsplele erläutern die Erfindung weiter. Teile- und Prozentangaben beziehen sich darin, soweit nichts anderes angegeben ist, auf das Gewicht.

Beispiel 1: Herstellung von 3,6-Dimethyl-2-thiouracil.

65

60

5

10

15

30

35

10

20

Zu einer Lösung von 216 g (1,2 Mol) 30%igem Natriummethylat in 200 ml abs. Methanol werden 116,1 g (1 Mol) Methylacetoacetat getropft.

Anschliessend werden portionsweise 90,2 g (1 Mol) N-Methylthioharnstoff unter Rühren hinzugegeben. Das Reaktionsgemisch wird 3 Stunden am Rückfluss erhitzt, wobel die anfangs klare Lösung allmählich dickflüssiger wird. Nach Beendigung der Reaktion wird das Methanol im Vakuum abgedampft und der Rückstand in 500 ml Wasser aufgenommen. Das erhaltene Gemisch wird mit konzentrierter Salzsäure neutralisiert, wobel CO<sub>2</sub> frei wird. Anschliessend wird der pH-Wert auf 4-5 mit 40 ml Eisessig eingestellt. Der entstandene Niederschlag wird abgesaugt, mit einem Wasser/Methanol Gemisch (2:1) gewaschen und getrocknet. Das Produkt besitzt einen Schmelzpunkt von 276°C. Die Ausbeute beträgt 122,5 g ( $\hat{-}$ 78,4 % der Theorie).

Beispiele 2-6:

Die in Tabelle 1 angegebenen Verbindungen werden in Analogie zu dem in Beispiel 1 beschriebenen Verfahren hergestellt.

# Tabelle 1:

| 35        |      |                                   |                                |                                                                                                 |
|-----------|------|-----------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|
|           | Bsp. | R <sub>1</sub>                    | R <sub>2</sub>                 | Schmelzpunkt                                                                                    |
| 40        | 2    | -C <sub>3</sub> H <sub>7</sub> -n | -СН3                           | 162°C (nach Umfällen aus Methylen-<br>chlorid/Isopropylether)                                   |
|           | 3    | -C4H9-t                           | -СН3                           | ·156°C (nach Umfällen aus Methylen-<br>chlorid/Isopropylether)                                  |
| 45        | . 4  | -СН3                              | -C <sub>2</sub> H <sub>5</sub> | 206°C (nach Digerieren mit Methanol)                                                            |
|           | 5    | -CH <sub>3</sub>                  | -CH2-CH=CH2                    | 185°C (nach Waschen mit H <sub>2</sub> O)                                                       |
| <i>50</i> | 6    | -СН3                              | -CH <sub>2</sub>               | 215°C (nach Waschen mit H <sub>2</sub> O und anschliessender Umkristallisation aus DMF/Ethanol) |

Beispiel 7: Herstellung von 3-n-Octyl-6-methyl-2-thiouracil.

65

55

5

A) Herstellung von N-Benzoyl-N'-n-octylthioharnstoff.

10

150,7 g (1,55 Mol) Kaliumthiocyanat werden unter Rühren zu 0,8 l Aceton gegeben. Anschliessend werden bei Raumtemperatur 203,9 g (1,45 Mol) Benzoylchlorid zugetropft. Das erhaltene Gemisch wird 10 Minuten am Rückfluss erhitzt. Dann werden 187,5 g (1,45 Mol) n-Octylamin in 0,2 l Aceton so zugetropft, dass der Rückfluss erhalten bleibt (exotherme Reaktion). Nach Beendigung der Reaktion wird das Aceton bei Normaldruck abdestilliert. Der hochviskose Rückstand (535,0 g) besteht aus N-Benzoyl-N'-n-octylthioharnstoff (421,1 g), Kaliumchlorid und etwas Kaliumthiocyanat. Der Rückstand kann ohne Aufarbeitung weiterverwendet werden.

B) Herstellung von 3-n-Octyl-6-methyl-2-thiouracil.

15

535,0 g des gemäss A) erhaltenen Rückstands werden zu 0,5 l absolutem Methanol gegeben und 5 Minuten am Rückfluss erhitzt. Anschliessend werden in der Siedehitze 576,0 g einer 30%igen Natriummethylatiösung und 2,7 g Wasser zugetropft (exotherme Reaktion) und das Gemisch weitere 10 Minuten gekocht. Dann werden 174,2 g (1,5 Mol) Methylacetoacetat in 0,5 l absolutem Methanol zugetropft (leicht exotherme Reaktion) und das Reaktionsgemisch wird 20 Stunden am Rückfluss erhitzt. Nach Beendigung der Reaktion werden das Methanol sowie das Reaktionswasser abdestilliert. Der Rückstand wird mit 0,5 I 5%iger NaOH versetzt und 30 Minuten auf 50°C unter Rühren erhitzt. Anschliessend wird das Gemisch bei Raumtemperatur mit 3,0 I Wasser verdünnt und der erhaltene Niederschlag (109,0 g n-Octylthioharnstoff) wird abgesaugt. Das stark alkalische Filtrat wird mit konzentrierter Salzsäure angesäuert (CO2-Entwicklung). Der gebildete Niederschlag wird abgesaugt, chloridfrei gewaschen und bis zur Gewichtskonstanz getrocknet. Das erhaltene 3-n-Octyl-6-methyl-2-thiouracil besitzt einen Schmelzpunkt von 142°C.

30

Beispiel 8: Herstellung von 3-(2-Hydroxyethyl)-6-methyl-2-thlouracil.

35

40

27,9 g (0,232 Mol) N-(2-Hydroxyethyl)thioharnstoff werden in 100 ml absolutem Methanol gelöst. Unter Rühren werden 29,0 g (0,25 Mol) Methylacetoacetat und 50,4 g (0,28 Mol) einer 30%igen methanolischen Natriummethylatiosung zugegeben. Nach 6stündigem Erhitzen am Rückfluss wird das Methanol abdestilliert, der Rückstand in 150 ml Wasser gelöst und mit konzentrierter Salzsäure angesäuert. Der erhaltene Niederschlag wird abgesaugt, neutral gewaschen und bis zur Gewichtskonstanz getrocknet. Das Produkt besitzt einen Schmelzpunkt von 200°C. Die Ausbeute beträgt 23,0 g (=53 % der Theorie).

50

45

Beispiel 9: Herstellung von 3-(n-Butyl)-6-methyl-2-thiouracil.

Zu einer Lösung von 0,1 Mol N-(n-Butyl)thioharnstoff und 0,11 Mol Methylacetoacetat in 100 ml absolutem Methanol werden unter Rühren 0,125 Mol einer 30% gen Natriummethylatiösung getropft. Nach 8stündigem Kochen am Rückfluss werden weitere 0,11 Mol Methylacetoacetat und 0,125 Mol Natriummethylatiösung hinzugegeben. Dann wird das Reaktionsgemisch weitere 16 Stunden am Rückfluss erhitzt. Anschliessend wird das Methanol abdestilliert und der Rückstand in 200 ml Wasser aufgenommen. Die Lösung wird mit konzentrierter Salzsäure angesäuert, der erhaltene Niederschlag abgesaugt, neutral gewaschen und bis zur Gewichtskonstanz getrocknet. Das Produkt besitzt einen Schmelzpunkt von 164°C. Die Ausbeute beträgt 80,8 % der Theorie.

55

Beispiel 10:

Die in Tabelle 2 angegebenen Verbindungen werden in Analogie zu dem in Beispiel 9 beschriebenen Verfahren hergestellt und aufgearbeitet, soweit nichts anderes vermerkt ist.

60

.55

Tabelle 2:

|             | Reg                                                                 | Reaktanden                 |                    | Reaktions- | 4                                                                                   |
|-------------|---------------------------------------------------------------------|----------------------------|--------------------|------------|-------------------------------------------------------------------------------------|
|             |                                                                     |                            | -                  | zeit in    | אחמחמה                                                                              |
|             | Thioharnstoff<br>(Mol)                                              | Methylacetoacetat<br>(Mol) | NaOMe<br>(Mol)     | Stunden    | Schmelzpunkt                                                                        |
| -C8H17-1 1) | 1-H17C8NH2                                                          | 1,2 2)                     | 1,22)              | 10         |                                                                                     |
|             | 0,52                                                                |                            |                    |            | 154°C (nach Umkristallisation<br>aus einem Petrolether/-i-Pro-<br>pylether Gemisch) |
| -C10H21-n   | n-H21C10NHCSNH2                                                     | 0,22 3)                    | 0,25 <sup>3)</sup> | 24         | 93 %                                                                                |
|             |                                                                     |                            |                    |            | 124°C                                                                               |
| -C12H25-n   | n-H2 sC1 2 NHCSNH2                                                  | 0,22 3)                    | 0,25 <sup>3)</sup> | 24         | 83,5 %                                                                              |
|             | 0.1                                                                 |                            |                    |            | 126°C                                                                               |
| -C9H19-1 5) | 1-H <sub>19</sub> C <sub>9</sub> NHCSNH <sub>2</sub> <sup>6</sup> ) | 0,22 3)                    | 0,253)             | 24         | 74,6 %                                                                              |
|             | 1.0                                                                 |                            |                    |            | 170°C                                                                               |
| oleyl       | Oley1-NHCSNH2                                                       | 0,0704 3)                  | 0,08 <sup>3)</sup> | 24         | 93 %                                                                                |
|             |                                                                     |                            |                    |            | 97°C (nach Umkri-<br>stallisation<br>aus Methanol)                                  |

| Bsp. R2 | R2              | Rea                                                               | Reaktanden                 |                | Reaktions- | Ausbeute     |
|---------|-----------------|-------------------------------------------------------------------|----------------------------|----------------|------------|--------------|
|         |                 | Thioharnstoff<br>(Mol)                                            | Methylacetoacetat<br>(Mol) | NaOMe<br>(Mol) | Stunden    | Schmelzpunkt |
| 15 9)   | 15 9) -C18H37-n | n-H37C18NHCSNH2                                                   | 1,4 2)                     | 1,4 2)         | 16         |              |
|         |                 | 9.0                                                               |                            |                | ·          | 130°C        |
| 10)     | 10) -C,H9-i     | 1-H <sub>9</sub> C <sub>4</sub> NHCSNH <sub>2</sub> <sup>6)</sup> | 0,66 3)                    | 0,75 3)        | 24         |              |
| -       |                 | î.                                                                |                            |                |            | 200°C        |

#### Indices:

1) -C<sub>8</sub>H<sub>17</sub>-i entspricht

5

$$-CH_2-CH-(CH_2)_3-CH_3$$
.

10

- 2) Die Zugabe erfolgt in zwei Portionen. Die erste Hälfte wird zu Beginn der Umsetzung zugegeben und die zweite Hälfte nach 4 Stunden Reaktionszeit.
- 3) Die Zugabe erfolgt in zwei Portionen. Die erste Hälfte wird zu Beginn der Umsetzung zugegeben und die zweite Hälfte nach 8 Stunden Reaktionszeit.
- 4) Der Rückstand wird in 250 ml Wasser und 100 ml einer 15%igen wässrigen Natriumhydroxidiösung aufgenommen. Der erhaltene Niederschlag wird abfiltriert (Rückisolierung von 13 % des nicht umgesetzten Thioharnstoffs). Das Filtrat wird angesäuert und gemäss Beispiel 9 aufgearbeitet.
  - 5) -C<sub>9</sub>H<sub>19</sub>-i entspricht

$$\begin{array}{c} \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_3 \\ \mathsf{CH}_3 & \mathsf{CH}_3 \end{array}.$$

20

25

30

15

- 6) Die Reinheit des verwendeten Thioharnstoffs beträgt ca. 80 %.
- 7) Der Rückstand wird in 250 ml Wasser und 100 ml einer 15% igen wässrigen Natriumhydroxidlösung aufgenommen, wobei dieser in Lösung geht. Die Lösung wird angesäuert und gemäss Beispiel 9 aufgearbeitet.
- 8) Der Rückstand wird in 300 ml Wasser und 300 ml Essigester aufgenommen und mit konz. HCl angesäuert. Die organische Phase wird abgetrennt, mit Wasser gewaschen, getrocknet und eingeengt.
- 9) Der Rückstand wird in 1700 ml einer 20%igen wässrigen Natriumhydroxidlösung 15 Minuten erhitzt und auf 2,5 kg Eis und 1500 ml Aceton gegeben. Der erhaltene Niederschlag wird abfiltriert und in 3600 ml Ethanol gelöst. Durch fraktionierte Fällung lassen sich 44,3 % des eingesetzten Thioharnstoffs zurückgewinnen. Aus den vereinigten Filtraten wird durch Ansäuern das 2-Thiouracil erhalten.
- 10) Der Rückstand wird in 300 ml Wasser und 50 ml Methylenchlorid aufgenommen und gemäss Beispiel 9 aufgearbeitet.

35

Beispiel 17: Herstellung von 3-Methyl-6-phenyl-2-thiouracil.

40

45

Die Herstellung erfolgt in Analogie zu Beispiel 9. Es werden 0,3 Mol N-Methylthioharnstoff, 0,66 Mol Ethyl-benzoylacetat und 0,75 Mol Natriummethylat in Form einer 30% igen methanolischen Natriummethylatlösung eingesetzt. Ethyl-benzoylacetat und Natriummethylat werden dem Reaktionsgemisch in 2 Portionen zugegeben. Die Zugabe der ersten Hälfte erfolgt zu Beginn der Umsetzung und die zweite Hälfte wird nach 10 Stunden Reaktionszelt hinzugefügt. Die Reaktionszeit beträgt 24 Stunden, Nach Beendigung der Umsetzung wird der Rückstand in 100 ml Isopropylether und 300 ml Wasser gelöst und mit konzentrierter Salzsäure angesäuert. Der erhaltene Niederschlag wird gemäss Beispiel 9 aufgearbeitet. Das Produkt besitzt einen Schmelzpunkt von 236°C.

Beispiel 18: Herstellung von 3-(2'-Methoxyethyl)-6-methyl-2-thlouracil.

47,0 g (0,35 Mol) N-(2-Methoxyethyl)thioharnstoff werden in 150 ml abs. Methanol gelöst. Unter Rühren werden 69,7 g (0,60 Mol) Methylacetoacetat und 126 g (0,70 Mol) einer 30% igen methanolischen Natriummethylatiösung zugegeben. Das Reaktionsgemisch wird 19 Stunden am Rückfluss erhitzt. Anschliessend wird Methanol abdestilliert und der erhaltene Rückstand in 200 ml Wasser gelöst und mit konz. Salzsäure angesäuert. Der entstandene Niederschlag wird abgesaugt, neutral gewaschen und bis zur Gewichtskonstanz getrocknet. Das Produkt besitzt einen Schmelzpunkt von 200°C. Die Ausbeute beträgt 21,3 g (= 30,4 % der Theorie).

Beispiel 19: Herstellung von 1-Benzoyl-3,6-dimethyl-2-thiouracil.

10

15

30

35

40

45

50

60

In einem 1-I-Dreihalskolben werden 53,5 g (0,34 Mol) 3,6-Dimethyl-2-thiouracil und 61,7 g (0,34 Mol) einer 30% igen Natriummethylatlösung in 400 ml abs. Methanol unter Rühren 60 min am Rückfluss erhitzt. Anschliessend werden von der klaren Lösung ca. 400 ml Methanol abdestilliert und unter Erhitzen sukzessive Toluol zugegeben, bis bei der azeotropen Destillation der Sledepunkt des Toluols erreicht ist. Es resultiert eine heterogene Suspension eines methanolfreien Thiouracilnatriumsalzes. Hierauf wird das Toluol grösstentells abgezogen und durch 300 ml Dimethylacetamid ersetzt, wobei eine homogene Lösung eines methanolfreien Thiouracilnatriumsalzes erhalten wird. Bel 20°C werden nun 62,2 g (0,44 Mol) Benzoylchlorid zugetropft und das Reaktionsgemisch 60 min gerührt. Das ausgefallene Kochsalz wird abfiltriert und das Filtrat im Vakuum von den flüchtigen Bestandteilen befreit. Der Rückstand wird mit 300 ml Isopropylether\*) behandelt. Der Niederschlag wird abfiltriert. Nach Trocknung resultieren 77,6 g eines Isomerengemisches aus 1-Benzoyl-3,6-dimethyl-2-thiouracil und 2-Benzoylthio-3,6-dimethyl-4-oxo-3,4-dihydropyrimidin. Das Gemisch wird aus abs. Aceton umkristallisiert. Man erhält farblose Kristalle, die bel 163°C schmelzen. Gemäss ¹H-NMR-Spektrum besteht das Gemisch zu 90 % aus 1-Benzoyl-3,6-dimethyl-2-thiouracil.

(\*)Die Aufarbeitung kann auch mit Bicarbonatiösung anstelle von Isopropylether durchgeführt werden. In diesem Fall erhält man das gewünschte Thiouracil direkt unter Verlust des Dihydropyrimidins.)

Das Isomerengemisch wird mit einer wässrigen Bicarbonatiösung behandelt, wobei das Dihydropyrimidin hydrolytisch zersetzt wird. 1-Benzoyl-3,6-dimethyl-2-thiouracil, welches einen Schmelzpunkt von 173°C besitzt, lässt sich auf diese Weise nahezu quantitativ abtrennen.

Beispiel 20: Herstellung von 1,3-Dibenzoyl-6-methyl-2-thiouracil.



In Analogie zu Beispiel 19 wird ein Thiouracii-Dinatriumsalz, welches heterogen in Toluol vorliegt, aus 85,3 g (0,6 Mol) 6-Methyl-2-thiouracii, 216 g (1,2 Mol) einer 30%igen Natriummethylatiösung in 500 ml abs. Methanol und Toluol hergestellt. Die Suspension wird 3h am Rückfluss mit 168,7 g (1,2 Mol) Benzoylchlorid umgesetzt. Das erhaltene Kochsalz und nichtumgesetztes Thiouracil-Dinatriumsalz werden abfiltriert. Das Filtrat wird im Vakuum von flüchtigen Bestandteilen befreit und der Rückstand (115,3 g) aus 600 ml Isopropanol/Methylen-

chlorid (5:1) umkristallisiert. Das erhaltene 1,3-Dibenzoyl-6-methyl-2-thlouracil besitzt einen Schmelzpunkt von 76°C. Die Ausbeute beträgt 92,1 g ( $\stackrel{\frown}{=}$  62,3 % der Theorie).

Beispiele 21-24:

Die in der Tabelle 3 aufgeführten Verbindungen werden in Analogie zu Beisplel 20 hergestellt.

| Beispiel          | R <sub>2</sub>                                 | Y                                     | Ausbeute                                                         |
|-------------------|------------------------------------------------|---------------------------------------|------------------------------------------------------------------|
| ·                 |                                                |                                       | Schmelzpunkt                                                     |
| 21                | -СН 3                                          | -C-C <sub>11</sub> H <sub>23</sub> -n | 42 %                                                             |
|                   |                                                |                                       | 116°C (Nach Umkristallisation aus Aceton)                        |
| 22                | -СН 3                                          | -CO-C2H5                              | 64,4 %                                                           |
|                   |                                                | U                                     | 98°C (Nach Umkristallisation aus<br>Isopropylether)              |
| 23                | -CH <sub>2</sub> -CH=CH <sub>2</sub>           | -C-C <sub>6</sub> H <sub>5</sub>      | 33,4 %                                                           |
|                   |                                                | 0                                     | 95°C (Nach Umkristallisation aus<br>Methylenchlorid/Petrolether) |
| 24 <sup>11)</sup> | -CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | C-C <sub>6</sub> H <sub>5</sub>       | 35,2 %                                                           |
|                   |                                                | , 0                                   | 163°C (Nach Umkristallisation aus                                |

<sup>11)</sup>Liegt als Gemisch aus 1-Benzoyl-3-benzyl-6-methyl-2-thiouracil und 2-Benzoylthio-3-benzyl-6-methyl-4-oxo-3,4-dihydropyrimidin vor.

Beispiel 25: Herstellung von 1-i-Nonanoyl-3,6-dimethyl-2-thiouracil.

31,2 g (0,2 Mol) 3,6-Dimethyl-2-thiouracil und 36,0 g (0,2 Mol) einer 30% igen methanolischen Natriummethylatiösung werden in 200 ml abs. Methanol 2h am Rückfluss erhitzt. In der resultierenden klaren Lösung wird das enthaltene Methanol durch Toluol mlt Hilfe des Azeotropverfahrens ersetzt. Die Natriumsalzsuspension wird durch Abdestillation von Toluol aufkonzentriert. Durch Zugabe von 150 ml abs. Dimethylacetamid erhält man eine klare Lösung. Nach Zugabe von 35,3 g (0,2 Mol) Isononansäurechlorid wird das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Die Lösung wird in 600 ml Eiswasser eingerührt, der Niederschlag salzfrei gewaschen und bls zur Gewichtskonstanz getrocknet. Das erhaltene Produkt ist ein 1:1 Gemisch aus 1-i-Nonanoyl-3,6-dimethyl-2-thiouracil und 2-i-Nonanoylthio-3,6-dimethyl-4-oxo-3,4-dihydropyrimidin. Die Ausbeute beträgt 56,6 g ( $\hat{-}$  95,4 % der Theorie).

Das Isomerengemisch, welches chromatographisch trennbar ist, besitzt einen Schmelzpunkt von 129°C.

Beispiel 26: Herstellung von 1-(2',4'-Dichlorbenzoyl)-3,6-dimethyl-2-thiouracil.

15

25

30

45

Die Herstellung erfolgt in Analogie zu Beispiel 25. Als Acylierungsreagenz wird 2,4-Dichlorbenzoylchlorid verwendet. Es werden 28,9 g ( 43,9 % der Theorie) eines 1,5:1 Gemisches aus 1-(2',4'-Dichlorbenzoyl)-3,6-dimethyl-2-thiouracil und 2-(2',4'-Dichlorbenzoylthlo)-3,6-dimethyl-4-oxo-3,4-dihydropyrimidin erhalten. Der Schmelzpunkt des Isomerengemisches beträgt 160°C. Relnes 1-(2',4'-Dichlorbenzoyl)-3,6-dimethyl-2-thiouracil kann aus dem Isomerengemisch durch Zersetzung des Dihydropyrimidins mit Hilfe einer NaOH Lösung erhalten werden.

Beispiel 27: Herstellung von 1-(2'-Ethylhexyloxycarbonyl)-3,6-dimethyl-2-thiouracil.

Die Herstellung erfolgt in Analogie zu Beispiel 25. Als Acyllerungsreagenz wird Isooctylchlorformiat verwendet. Nach Zugabe von Dimethylacetamid, Acyllerungsreagenz und Rühren bei Raumtemperatur werden im Vakuum die flüchtigen Bestandteile abgezogen. Der Rückstand wird mit Petrolether ausgekocht und vom gebildeten Kochsalzniederschlag abfiltriert. Das Filtrat wird bis zum Rückstand eingeengt. Das erhaltene 1-(2'Ethylhexyloxycarbonyl)-3,6-dimethyl-2-thiouracil liegt als viskoses hellbraunes Oel vor und besitzt einen Brechungsindex von  $n_0^{20}=1,5360$ .

Beispiel 28: Herstellung von 1-(n-Octylthio)carbonyl-3,6-dimethyl-2-thiouracil.

Die Herstellung erfolgt in Analogie zu Beispiel 25. Als Acylierungsreagenz wird n-Octylthlochlorformlat verwendet. Nach der Umsetzung wird die Dimethylacetamidiösung in Eiswasser eingerührt, wobei mehrfach mit Methylenchlorid extrahlert wird. Die organische Phase wird mit Wasser ausgeschüttelt, getrocknet und anschliessend bis zum Rückstand eingeengt. Der Rückstand wird mit Petrolether behandelt und filtriert. Das Filtrat wird von den flüchtigen Bestandteilen im Vakuum entfernt. Es wird ein 4:1 Gemisch aus 1-(n-Octylthio)carbonyl-3,6-dimethyl-2-thiouracil und 2-(n-Octylthio)carbonylthio-3,6-dimethyl-4-oxo-3,4-dihydropyrimidin erhalten. Das Isomerengemisch liegt als farbloses Wachs vor und besitzt einen Schmelzpunkt von 100°C.

Beispiel 29: Herstellung von 1-Diethylcarbamoyl-3,6-dimethyl-2-thiouracil.

Die Herstellung erfolgt in Analogie zu Beispiel 25. Als Acylierungsreagenz wird Diethylcarbamidsäurechlorid verwendet. Nach Zugabe von Dimethylacetamid, Acylierungsreagenz und Rühren bei Raumtemperatur wird das Reaktionsgemisch bis zum Rückstand eingeengt. Dieser wird mit Ether ausgekocht, filtriert und das Filtrat erneut eingeengt. Der so erhaltene Rückstand wird mit Petrolether ausgekocht und der entstandene Niederschlag abfiltriert. 1-Diethylcarbamoyl-3,6-dimethyl-2-thiouracil wird als farbloser Feststoff erhalten, der einen Schmelzpunkt von 90°C besitzt.

Beispiel 30: Herstellung von 1-Dimethylthiocarbamoyl-3,6-dimethyl-2-thiouracii.

Die Herstellung erfolgt in Analogie zu Belspiel 25. Als Acylierungsreagenz wird Dimethylthlocarbamidsäurechlorid verwendet. Nach der Umsetzung wird die Dimethylacetamidlösung in Elswasser eingerührt, der erhaltene Niederschlag abfiltriert und das Filtrat mit Methylenchlorid ausgeschüttelt. Die organische Phase wird getrocknet und bls zum Rückstand eingeengt, welcher mit Ether behandelt wird. Es scheidet sich ein Feststoff ab, der mit dem ursprünglichen Niederschlag vereint wird. Das so erhaltene Produkt wird nochmals mit Ether behandelt. 1-Dimethylthlocarbamoyl-3,6-dimethyl-2-thiouracii liegt als farbloser Feststoff vor, welcher einen Schmelzpunkt von 149°C besitzt.

Eine Trockenmischung bestehend aus 100 Teilen S-PVC (K-Wert 64), 3 Teilen epoxidiertem Sojabohnenöl, 0,35 Teilen Ca-Stearat, 0,15 Teilen Zn-Stearat, 0,55 Teilen Dilsodecyl-phenylphosphit und 0,3 Teilen des in den Tabellen 4a bis 4d angegebenen Stabilisators wird auf einem Mischwalzwerk 5 Minuten bei 180°C gewalzt. Vom gebildeten 0,3 mm dicken Walzfell werden Follenmuster in einem Testofen (®Mathis Thermotester Typ LTF-ST) bei 180°C thermisch belastet. Im unten angege benen Zeitintervall wird an einem Prüfmuster der "Yellowness Index" (YI) nach ASTM D 1925 bestimmt. Die Ergebnisse sind in den Tabellen 4a bis 4d

zusammengefasst.

60

50

10

20

Tabelle 4a:

| Stabilisator                 |      | Yl nach | Belastungszeit in | Minuten |      |
|------------------------------|------|---------|-------------------|---------|------|
|                              | 0    | 5       | · 10              | 15      | 20   |
| ohne                         | 19,1 | 20,1    | 24,6              | 32,4    | 37,3 |
| Verbindung aus<br>Beispiel 5 | 1,9  | 2,1     | 2,7               | 4,5     | 15,5 |
| Verbindung aus<br>Beispiel 6 | 2,0  | 2,4     | 2,8               | 3,9     | 14,4 |
| Verbindung aus<br>Beispiel 9 | 2,1  | 2,6     | 3,2               | 5,5     | 14,6 |

15

Tabelle 4b:

| Stabilisator                  | •    | YI nach Belastun | gszeit in Minuten |      |
|-------------------------------|------|------------------|-------------------|------|
|                               | 0    | 5                | 10                | 15   |
| ohne                          | 22,2 | 35,5             | 39,2              | 39,4 |
| Verbindung aus<br>Beispiel 25 | 5,1  | 5,7              | 7,0               | 11,4 |

Tabelle 4c:

*3*0

| Stabilisator                  |      | YI nach Belastur | igszelt in Minuten |      |
|-------------------------------|------|------------------|--------------------|------|
| ·                             | 0    | 5                | 10                 | 15   |
| ohne                          | 17,9 | 40,7             | 42,1               | 40,5 |
| Verbindung aus<br>Beispiel 8  | 2,0  | 4,3              | 8,1                | 15,7 |
| Verbindung aus<br>Beispiel 13 | 2,3  | 3,4              | 5,1                | 15,1 |

40

*3*5

Tabelle 4d:

| Stabilisator                  |      | YI nach Belastun | gszeit in Minuten |      |
|-------------------------------|------|------------------|-------------------|------|
|                               | 0    | 5                | 10                | 15   |
| ohne                          | 17,6 | 37,6             | 40,2              | 41,0 |
| Verbindung aus<br>Beispiel 7  | 1,8  | 3,7              | 4,5               | 10,4 |
| Verbindung aus<br>Beisple! 10 | 2,0  | 3,3              | 4,4               | 8,6  |
| Verbindung aus<br>Beispiel 11 | 3,4  | 4,5              | 5,8               | 9,5  |
| Verbindung aus<br>Beispiel 12 | 1,9  | 3,2              | 5,4               | 14,7 |

60

Eine Trockenmischung bestehend aus 100 Teilen S-PVC (K-Wert 70), 17 Teilen Dioctylphthalat, 3 Teilen epoxidiertem Sojabohnenöl, 0,33 Teilen Zn-Oleat, 0,53 Teilen Ba-p-(t-butyl)benzoat, 0,7 Teilen Dilsodecyl-phenylphosphit, 0,44 Teilen SHELL SOL A (aromatisches Kohlenwasserstoff-Gemlsch) und 0,2 Teilen des in den Tabellen 5a bis 5e angegebenen Stabilisators wird auf einem Mischwalzwerk 5 Minuten bei 190°C gewalzt.

Vom gebildeten 0,3 mm dicken Walzfell werden Folienmuster in einem Testofen (<sup>®</sup>Mathis-Thermotester) bei 180°C thermisch belastet. Im angegebenen Zeitintervall wird an einem Prüfmuster der "Yellowness Index" (YI) nach ASTM D 1925 bestimmt. Die Ergebnisse sind in den Tabellen 5a bis 5e zusammengefasst.

| т. | hel | - | E |  |
|----|-----|---|---|--|
|    |     |   |   |  |

| Stabilisa-<br>tor                 |      |      |      | YI nach | Belastun | gszeit in | Minuten |      |      |      |
|-----------------------------------|------|------|------|---------|----------|-----------|---------|------|------|------|
|                                   | 0    | 5    | 10   | 15      | 20       | 25        | 30      | 35   | 40   | 45   |
| ohne                              | 10,5 | 11,6 | 13,3 | 19,8    | 22,2     | 26,4      | 27,7    | 26,6 | 24,0 | 20,0 |
| Verbin-<br>dung aus<br>Beispiel 5 | 0,4  | 0,6  | 0,9  | 1,2     | 1,4      | 2,2       | 4,6     | 5,4  | 8,6  | 13,3 |
| Verbin-<br>dung aus<br>Beispiel 6 | 0,1  | 0,6  | 0,9  | 0,9     | 1,5      | 1,9       | 2,7     | 4,2  | 7,0  | 9,6  |
| Verbin-<br>dung aus<br>Beispiel 9 | 0,3  | 0,3  | 0,5  | 0,4     | 1,1      | 1,3       | 2,6     | 4,0  | 6,1  | 8,7  |

Tabelle 5b:

| Stabilisator                  |     | YI nach | Belastungszeit in | Minuten |      | 1   |
|-------------------------------|-----|---------|-------------------|---------|------|-----|
|                               | 0   | 5       | 10                | 15      | 30   |     |
| ohne                          | 9,2 | 11,5    | 13,2              | 17,1    | 22,4 | ] : |
| Verbindung aus<br>Beispiel 1  | 1,4 | 1,9     | 2,3               | 2,6     | 3,1  |     |
| Verbindung aus<br>Beispiel 22 | 1,9 | 2,1     | 2,5               | 2,7     | 3,2  |     |
| Verbindung aus<br>Beispiel 25 | 2,9 | 3,4     | 3,5               | 4,0     | 5,2  | ١,  |
| Verbindung aus<br>Beispiel 27 | 2,1 | 2,8     | 3,0               | 3,2     | 4,1  |     |
| Verbindung aus<br>Beispiel 28 | 1,7 | 2,4     | 2,7               | 3,7     | 5,7  | 7 4 |

# Tabelle 5c:

| Stabilisator                  | YI nach Belastungszelt in Minuten |      |      |      |      |              |  |  |  |
|-------------------------------|-----------------------------------|------|------|------|------|--------------|--|--|--|
|                               | 0                                 | 5    | 10   | 15   | 30   | _   <i>5</i> |  |  |  |
| ohne                          | 9,8                               | 20,4 | 24,7 | 25,8 | 26,6 | 7            |  |  |  |
| Verbindung aus<br>Belspiel 19 | 1,6                               | 2,2  | 2,8  | 2,9  | 5,2  |              |  |  |  |
| Verbindung aus<br>Beispiel 23 | 1,0                               | 1,7  | 2,0  | 2,6  | 3,5  | 5.           |  |  |  |
| Verbindung aus<br>Beispiel 24 | 1,7                               | 2,1  | 2,9  | 3,1  | 3,4  | 1            |  |  |  |

#### Tabelle 5d:

| Stabilisator                  | YI nach Belastungszeit in Minuten |      |      |      |      |  |  |
|-------------------------------|-----------------------------------|------|------|------|------|--|--|
|                               | 0                                 | 5    | 10   | 15   | 30_  |  |  |
| ohne                          | 8,1                               | 17,0 | 20,2 | 23,0 | 23,4 |  |  |
| Verbindung aus<br>Beispiel 4  | 1,3                               | 2,8  | 2,7  | 3,0  | 4,0  |  |  |
| Verbindung aus<br>Beispiel 8  | 1,0                               | 2,4  | 2,7  | 3,6  | 5,0  |  |  |
| Verbindung aus<br>Beispiel 13 | 1,9                               | 2,2  | 2,6  | 3,4  | 4,2  |  |  |
| Verbindung aus<br>Belspiel 21 | 1,9                               | 3,0  | 3,2  | 4,4  | 6,3  |  |  |

20

25

30

35

#### Tabelle 5e:

| Stabilisator                  | YI nach Belastungszeit in Minuten |      |      |      |      |  |  |
|-------------------------------|-----------------------------------|------|------|------|------|--|--|
|                               | 0                                 | 5    | 10   | 15   | 30   |  |  |
| ohne                          | 10,6                              | 13,0 | 16,3 | 19,7 | 22,8 |  |  |
| Verbindung aus<br>Beispiel 7  | 1,4                               | 1,6  | 2,2  | 2,5  | 3,0  |  |  |
| Verbindung aus<br>Beispiel 10 | 1,4                               | 2,1  | 2,5  | 3,1  | 4,5  |  |  |
| Verbindung aus<br>Beispiel 11 | 1,8                               | 3,0  | 3,1  | 3,1  | 4,3  |  |  |
| Verbindung aus<br>Belspiel 12 | 1,7                               | 2,1  | 2,6  | 2,8  | 4,0  |  |  |

Beispiel 33 Eine Trockenmischung bestehend aus 100 Teilen S-PVC (K-Wert 70), 17 Teilen Dioctylphthalat, 3 Teilen epoxidiertem Sojabohnenöl, 0,26 Tellen SHELL SOL A (aromatisches Kohlenwasserstoff-Gemisch), 0,48 Teilen Zn-Oleat, 0,54 Teilen Ba-p-(t-butyl)benzoat, 0,64 Teilen Diisodecyl-phenylphosphit, 0,06 Teilen 2,6-Di-t-butyl-4-methylphenol, 0,02 Teilen Oelsäure und 0,2 Teilen des in Tabelle 6 angegebenen Stabilisators wird auf einem Mischwalzwerk 5 Minuten bei 190°C gewalzt. Vom gebildeten 0,3 mm dicken Walzfell werden Folienmuster In einem Trockenschrank bei 180°C thermisch belastet. Der Yellowness Index (YI) der Proben wird in regelmässigen Zeltabständen nach ASTM D 1925 bestimmt. Die Ergebnisse sind in Tabelle 6 aufgeführt.

## Tabelle 6:

| 50        | Stabilisator                    | Yl nach Belastungszeit in Minuten |     |     |     |     |     |      |
|-----------|---------------------------------|-----------------------------------|-----|-----|-----|-----|-----|------|
|           |                                 | 0                                 | 10  | 20  | 30  | 40  | 50  | 60   |
| <i>55</i> | Verbindung<br>aus Beispiel<br>1 | 2,8                               | 3,9 | 4,3 | 5,5 | 6,2 | 9,0 | 12,8 |

Eine Trockenmischung bestehend aus 100 Teilen S-PVC (K-Wert 64), 3 Tellen epoxidiertem Sojabohnenöl, 0,35 Teilen Ca-Stearat, 0,15 Teilen Zn-Stearat, 0,55 Teilen Diisodecyl-phenylphosphit und 0,3 Teilen des in Tabelle 7 angegebenen Stabilisators wird auf einem Mischwalzwerk 5 Minuten bei 180°C gewalzt. Vom gebildeten 0,3 mm dicken Walzfell werden Folienmuster in einem VITALUX-Gerät von ARA belichtet.

Folgende Prüfbedingungen liegen vor:

Ohne Beregnung

Strahlungsquelle: 8 Osram-Vitalux Lampen zu je 300 Watt

Normaltemperatur: 46°C Schwarztafeltemperatur: 65°C Keine Filtereinstellung

5

10

Tabelle 7:

| Stabilisator                 | YI nach Belastungszeit in Minuten |      |      |      |  |  |
|------------------------------|-----------------------------------|------|------|------|--|--|
|                              | 0                                 | 5    | 10   | 15   |  |  |
| ohne                         | 14,8                              | 30,6 | 35,9 | 36,8 |  |  |
| Verbindung aus<br>Beispiel 1 | 1,6                               | 3,1  | 5,1  | 16,6 |  |  |
| Verbindung aus<br>Beispiel 8 | 1,5                               | 3,1  | 5,3  | 13,8 |  |  |

20

25

15

Patentansprüche

1. Zusammensetzung enthaltend a) ein chlorhaltiges Polymerisat und b) mindestens eine Verbindung der Formel I,



35

40

50

55

worin n 1 oder 2 bedeutet, R<sub>1</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, R<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, eine Gruppe -CH<sub>2</sub> CH CH<sub>2</sub>XR<sub>3</sub>

ÓH oder durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl ist, wobei X Sauerstoff oder Schwefel ist und R<sub>3</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt, oder R<sub>2</sub> ferner C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel lla oder lib ist,

$$-CX_1$$
,  $-COX_2$ 
(IIa) (IIb)

wobel X1 C1-C17-Alkyl, C3-C17-Alkenyl, C6-C7-Cycloalkyl, durch C1-C4-Alkyl substituiertes C6-C7-Cycloalkyl, Phenyl, durch C1-C4-Alkyl und/oder Chlor substituiertes Phenyl, C7-C12-Phenylalkyl, am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl, C1-C10-Alkylthio oder Di(C1-C4-alkyl)amino bedeutet und X2 C1-C18-Alkyl, C3-C18-Alkenyl, C5-C7-Cycloalkyl, durch C1-C4-Alkyl substituiertes C5-C7-Cycloalkyl, Phenyl, durch C1-C4-Alkyl und/oder Chlor substituiertes Phenyl, C7-C12-Phenylalkyl oder am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl oder am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl ist, wenn n 1 bedeutet, Y Wasserstoff, Di(C1-C4-alkyl)thlocarbamoyl oder eine Gruppe der Formel ila oder Ilb ist, wenn n 2 bedeutet, Y eine Gruppe IIc oder IId ist,

wobei  $X_3$   $C_1$ - $C_1$ 2-Alkylen oder Phenylen bedeutet und  $X_4$   $C_2$ - $C_1$ 2-Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes  $C_4$ - $C_8$ -Alkylen ist, mit den Massgaben, dass die Reste Y und  $R_2$  gleich sind, wenn  $R_2$  DI( $C_1$ - $C_4$ -alkyl)-thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb bedeutet, und die Verbindung 3,6-Dimethyl-2-thiouracil ausgeschlossen ist.

2. Zusammensetzung gemäss Anspruch 1, worin, n 1 bedeutet, R $_2$  C $_1$ -C $_{18}$ -Alkyl, eine Gruppe -CH $_2$  ÇH CH $_2$ XR $_3$ ,

ÓН

5

10

15

20

25

35

40

50

55

60

65

- durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist und Y Wasserstoff bedeutet.
- 3. Zusammensetzung gemäss Anspruch 1, worin n 1 ist und Y Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe IIa oder IIb bedeutet.
- 4. Zusammensetzung gemäss Anspruch 1, worin n 1 ist,  $R_1$   $C_1$ - $C_4$ -Alkyl oder Phenyl bedeutet,  $R_2$   $C_1$ - $C_1$ -Alkyl, durch Hydroxy oder  $C_1$ - $C_6$ -Alkyloxy substituiertes  $C_2$ - $C_6$ -Alkyl,  $C_3$ - $C_1$ -Alkenyl, Benzyl oder Benzoyl ist, Y Wasserstoff, Di( $C_1$ - $C_4$ -alkyl)thiocarbamoyl oder eine Gruppe IIa oder IIb ist,  $X_1$   $C_1$ - $C_1$ -Alkyl, Phenyl, Dichlorphenyl,  $C_1$ - $C_1$ 0-Alkylthio oder Di( $C_1$ - $C_4$ -alkyl)amino bedeutet und  $X_2$   $C_1$ - $C_1$ 2-Alkyl darstellt.
- Zusammensetzung gemäss Anspruch 1, worin n 1 ist, R<sub>1</sub> Methyl bedeutet, R<sub>2</sub> C<sub>1</sub>-C<sub>4</sub>-Alkyl,
   Hydroxyethyl, 2-Methoxyethyl oder Allyl ist und Y Wasserstoff, Benzoyl oder (C<sub>1</sub>-C<sub>12</sub>-Alkyl)oxycarbonyl bedeutet.
- 6. Zusammensetzung gemäss Anspruch 1, worin R<sub>1</sub> C<sub>1</sub>-C<sub>4</sub>-Alkyl oder Phenyl bedeutet.
- 7. Zusammensetzung gemäss Anspruch 1, worin R1 Methyl bedeutet.
- 8. Zusammensetzung gemäss Anspruch 1, worin R<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, durch Hydroxy oder C<sub>1</sub>-C<sub>6</sub>-Alkyloxy substituiertes C<sub>2</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, Benzyl oder Benzoyl bedeutet.
- 9. Zusammensetzung gemäss Anspruch 1, enthaltend zusätzlich mindestens ein Me(II)-Carboxylat und/oder ME(II)-Phenolat, wobel Me(II) Ba, Ca, Mg, Cd oder Zn bedeutet.
- 10. Zusammensetzung gemäss Anspruch 1, enthaltend zusätzlich mindestens ein Me(II)-Carboxylat, wobei Me(II) Ba, Ca, Mg oder Zn bedeutet.
- 11. Zusammensetzung enthaltend a) ein chlorhaltiges Polymerisat, b) mindestens eine Verbindung der Formel IA,

worin n 1 oder 2 bedeutet,  $R_1$   $C_1$ - $C_{18}$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl, Phenyl,  $C_7$ - $C_{12}$ -Phenylalkyl oder am Phenylring durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes  $C_7$ - $C_{12}$ -Phenylalkyl ist,  $R_2$   $C_1$ - $C_{18}$ -Alkyl, eine Gruppe -CH $_2$   $C_1$ - $C_1$ - $C_1$ -Alkyl, eine Gruppe -CH $_2$   $C_1$ - $C_1$ 

OH oder durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substituiertes C<sub>2</sub>-C<sub>22</sub>-Alkyl Ist, wobel X Sauerstoff oder Schwefel bedeutet und R<sub>3</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt, oder R<sub>2</sub> ferner C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist,

$$-CX_1$$
 ,  $-COX_2$  (IIa) (IIb)

wobel X<sub>1</sub> C<sub>1</sub>-C<sub>17</sub>-Alkyl, C<sub>3</sub>-C<sub>17</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl, C<sub>1</sub>-C<sub>10</sub> Alkylthio oder Dl(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiertes C<sub>5</sub>-C<sub>7</sub>-Cycloalkyl, Phenyl, durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes Phenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist, wenn n 1 bedeutet, Y Wasserstoff, Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist, wenn n 2 bedeutet, Y eine Gruppe IIc oder IId ist,

wobel X<sub>3</sub> C<sub>1</sub>-C<sub>12</sub>-Alkylen oder Phenylen bedeutet und X<sub>4</sub> C<sub>2</sub>-C<sub>12</sub>-Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes C<sub>4</sub>-C<sub>8</sub>-Alkylen ist, mit der Massgabe, dass die Reste Y und R<sub>2</sub> gleich sind, wenn R<sub>2</sub> Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)-thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb bedeutet, und c)

eine Epoxyverbindung.

- 12. Zusammensetzung gemäss Anspruch 11, enthaltend zusätzlich mindestens ein Me(II)-Carboxylat und/oder Me(II)-Phenolat, wobei Me(II) Ba, Ca, Mg, Cd oder Zn bedeutet.
- 13. Zusammensetzung gemäss Anspruch 11, worin die Verbindung der Formel IA 3,6-Dimethyl-2-thiouracil ist.
- 14. Verbindungen der Formeln IIIA, IIIB, IIIC, IIID und IIIE

$$CH_3 S \\ N-H$$
 (IIIA)

5

15

35

45

60

65

worin R<sub>1</sub>′ C<sub>3</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt;

worin R<sub>2</sub>' C<sub>1</sub>-C<sub>18</sub>-Alkyl, C<sub>3</sub>-C<sub>18</sub>-Alkenyl, C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl oder am Phenylring durch C<sub>1</sub>-C<sub>4</sub>-Alkyl und/oder Chlor substituiertes C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl darstellt;

$$R_2$$
"  $S$   $O=$   $N-H$  (IIIC),  $CH_3$ 

worin R2" C10-C18-Alkyl oder C10-C18-Alkenyl ist;

$$R_2$$
"' S
 $O=$  N-H
 $R_1$ " (IIID),

worin  $R_1'''$   $C_1$ - $C_{18}$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl, Phenyl,  $C_7$ - $C_{12}$ -Phenylalkyl oder am Phenylring durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes  $C_7$ - $C_{12}$ -Phenylalkyl bedeutet und  $R_2'''$  eine Gruppe - $CH_2$  CHCH<sub>2</sub>XR<sub>3</sub>

oder durch Hydroxy oder eine Gruppe -XR<sub>3</sub> substitulertes C<sub>2</sub>-C<sub>22</sub>-Alkyl darstellt, wobei X Sauerstoff oder Schwefel ist und R<sub>3</sub> C<sub>1</sub>-C<sub>18</sub>-Alkyl, Phenyl oder C<sub>7</sub>-C<sub>12</sub>-Phenylalkyl ist;

$$\begin{bmatrix} R_2 & V & S \\ O = & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

worin n 1 oder 2 bedeutet,  $R_1^{\prime\prime\prime}$   $C_1$ - $C_{18}$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl, Phenyl,  $C_7$ - $C_{12}$ -Phenylalkyl oder am Phenylring durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes  $C_7$ - $C_{12}$ -Phenylalkyl ist,  $R_2^{\prime\prime}$   $C_1$ - $C_{18}$ -Alkyl, eine Gruppe - $CH_2$   $C_1$ - $C_$ 

OH oder durch Hydroxy oder eine Gruppe -XR3 substituiertes C2-C22-Alkyl ist, wobel X Sauerstoff oder Schwefel bedeutet und R3 C1-C18-Alkyl, Phenyl oder C7-C12-Phenylalkyl ist, oder R2 ferner C3-C18-Alkenyl, C7-C12-Phenylalkyl, am Phenylring durch C1-C4-Alkyl und/oder Chlor substituiertes C7-C12-Phenylalkyl, Di(C1-C4-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist,

$$-CX_1$$
 ,  $-COX_2$  (IIa) (IIb)

wobei  $X_1$   $C_1$ - $C_{17}$ -Alkyl,  $C_3$ - $C_{17}$ -Alkenyl,  $C_5$ - $C_7$ -Cycloalkyl, durch  $C_1$ - $C_4$ -Alkyl substituiertes  $C_5$ - $C_7$ -Cycloalkyl, Phenyl, durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes Phenyl,  $C_7$ - $C_{12}$ -Phenylalkyl, am Phenylring durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes  $C_7$ - $C_{12}$ -Phenylalkyl,  $C_1$ - $C_{10}$ -Alkylthio oder Di( $C_1$ - $C_4$ -alkyl)amino bedeutet und  $X_2$   $C_1$ - $C_{18}$ -Alkyl,  $C_3$ - $C_{18}$ -Alkenyl,  $C_5$ - $C_7$ -Cycloalkyl, durch  $C_1$ - $C_4$ -Alkyl substituiertes  $C_5$ - $C_7$ -Cycloalkyl, Phenyl, durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes Phenyl,  $C_7$ - $C_{12}$ -Phenylalkyl oder am Phenylring durch  $C_1$ - $C_4$ -Alkyl und/oder Chlor substituiertes  $C_7$ - $C_{12}$ -Phenylalkyl ist, wenn n 1 bedeutet, Y' Di( $C_1$ - $C_4$ -alkyl)thiocarbamoyl oder eine Gruppe der Formal IIa oder IIb ist, wenn n 2 bedeutet, Y' eine Gruppe IIc oder IId ist,

wobei X<sub>3</sub> C<sub>1</sub>-C<sub>12</sub>-Alkylen oder Phenylen bedeutet und X<sub>4</sub> C<sub>2</sub>-C<sub>12</sub>-Alkylen oder durch 1 oder 2 Sauerstoffatome unterbrochenes C<sub>4</sub>-C<sub>8</sub>-Alkylen ist, mit der Massgabe, dass R<sub>2</sub><sup>N</sup> und Y' gleich sind, wenn R<sub>2</sub><sup>N</sup> Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe der Formel IIa oder IIb ist.

15. Verbindungen der Formeln IIIA, IIIB und IIIC gemäss Anspruch 14, worin R<sub>1</sub>′ C<sub>3</sub>-C<sub>4</sub>-Alkyl bedeutet, R<sub>2</sub>′ C<sub>1</sub>-C<sub>18</sub>-Alkyl, Alkyl oder Benzyl darstellt und R<sub>2</sub>″ C<sub>10</sub>-C<sub>18</sub>-Alkyl oder Alkyl ist.

16. Verbindungen der Formei IIID gemäss Anspruch 14, worin R<sub>1</sub>" C<sub>1</sub>-C<sub>4</sub>-Alkyl oder Phenyl bedeutet und R<sub>2</sub>" durch Hydroxy oder C<sub>1</sub>-C<sub>6</sub>-Alkyloxy substituiertes C<sub>2</sub>-C<sub>6</sub>-Alkyl ist.

17. Verbindungen der Formel IIIE gemäss Anspruch 14, worin n 1 bedeutet, R<sub>1</sub><sup>w</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl ist, R<sub>2</sub><sup>N</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, Allyl, Benzyl oder Benzoyl bedeutet und Y' Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)thiocarbamoyl oder eine Gruppe IIa oder IIb ist, X<sub>1</sub> C<sub>1</sub>-C<sub>12</sub>-Alkyl, Phenyl, Dichlorphenyl, C<sub>1</sub>-C<sub>10</sub>-Alkylthio oder Di(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino bedeutet und X<sub>2</sub> C<sub>1</sub>-C<sub>12</sub>-Alkyl darstellt.



# EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89 81 0554

|           | EINSCHLÄGIG                                                                                                                                                      | GE DOKUMENTE                                                                                 |                      |                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| Kategorie | Kennzeichnung des Dokum<br>der maßgebli                                                                                                                          | ents mit Angabe, soweit erforderlich,<br>chen Teile                                          | Betrifft<br>Anspruch | KLASSIFIKATION DER<br>ANMELDUNG (Int. Cl.5)                 |
| D,X       | August 1981, Seite<br>Nr. 44163w, Columbi                                                                                                                        | DDO CHEMICAL CO. LTD)                                                                        | 1,11-13              | C 07 D 239/56<br>C 08 K 5/39<br>C 08 L 57/08                |
| D,A       | US-A-4 105 627 (TE<br>al.)<br>* Spalte 3, Zeile 4<br>9; Spalte 7, Zeile                                                                                          | 4 - Spalte 4, Zeile                                                                          | 1                    |                                                             |
| X         | BE-A- 497 785 (H.<br>* Ansprüche *                                                                                                                               | MORREN)                                                                                      | 14                   | ·                                                           |
| X         | CH-A- 482 402 (DU<br>CO.)<br>* Anspruch *                                                                                                                        | J PONT DE NEMOURS &                                                                          | 14                   |                                                             |
| D,A       | CHEMICAL ABSTRACTS 12. Mai 1969, Seite Zusammenfassung Nr Ohio, US; K.A. NUR "Synthesis of some derivatives of thio GETEROTSIKL. SOEDII AZOTSODERZHASHCHIE 400-3 | e 335, . 87730e, Columbus, IDZHANYAN et al.: biologically active buracil" & KHIM. N., SB. 1: |                      | RECHERCHIERTE SACHGEBIETE (Int. Cl.5)  C 07 D C 08 K C 08 L |
| Der v     | orliegende Recherchenbericht wur                                                                                                                                 | rde für alle Patentansprüche erstellt                                                        |                      |                                                             |
|           | Retherthesort                                                                                                                                                    | Abschlußdatum der Recherche                                                                  | <del></del>          | Prüfer                                                      |
| DI        | en haag                                                                                                                                                          | 06-11-1989                                                                                   | DE I                 | OS ARCOS Y VELAZQU                                          |

EPO FORM 1503 03.82

# KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
   Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
   A: technologischer Hintergrund
   O: nichtschriftliche Offenbarung
   P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
  E: älteres Patentdokument, das jedoch erst am oder
  nach dem Anmeldedatum veröffentlicht worden ist
  D: in der Anmeldung angeführtes Dokument
  L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                         |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| FADED TEXT OR DRAWING                                   |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
|                                                         |

# IMAGES ARE BEST AVAILABLE COPY.

OTHER: \_\_\_

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.