CheatSheet d'Analyse et Géometrie

Yehor KOROTENKO

March 8, 2025

1 Distances et normes

Définition 1.1. Une norme sur \mathbb{R}^d est une application $N : \mathbb{R}^d \to \mathbb{R}$ tel que:

- 1. $N(\lambda X) = |\lambda| N(X)$
- 2. $N(X + Y) \le N(X) + N(Y)$
- 3. $N(X) \ge 0$ et $N(X) = 0 \iff X = 0_d$

Définition 1.2. Une distance sur \mathbb{R}^d est une application: $d: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ tel que:

- 1. d(X,Y) = d(Y,X)
- 2. $d(X,Y) \le d(X,Z) + d(Z,Y)$
- 3. $d(X,Y) \ge 0 \quad \forall X,Y \text{ et } d(X,Y) = 0 \iff X = Y$

Exemple 1.1. La distance et la norme canonique. Soit $X = (x_1, \ldots, x_n)$

1. La norme:

$$||X|| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \ldots + x_n^2}$$

2. La distance:

$$d(X,Y) = ||X - Y|| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$

2 Éspaces métriques

Définition 2.1. Espace métrique est un ensemble muni de la distance.

Définition 2.2. (E,d) espace métrique et $x_0 \in E$ et $r \geq 0$, alors:

- 1. $B(x_0, r) = \{x \in E : d(x_0, x) < r\}$ boule ouverte de centre x_0 et de rayon r
- 2. $B(x_0,r) = \{x \in E : d(x_0,x) \le r\}$ boule fermé de centre x_0 et de rayon r

Définition 2.3. Une partie $A \subset E$ est bornée si $\exists R > 0$ et $x_0 \in E$ tq $A \subset B(x_0, R)$. Autrement dit, s'il existe une boule dans laquelle A est inclu.

3 Ouverts - fermés

Définition 3.1. Soit (E, d) espace métrique.

- 1. $U \subset E$ est ouvert $si \ \forall x_0 \in U, \exists r > 0$ tel que $B(x_0, r) \subset U$ (si pour tout point de U il existe une boule ouverte inclu dans U)
- 2. $F \subset E$ est fermé si $E \setminus F$ est ouvert (si le complémentaire de F est ouvert).

Théorème 3.1. Très important!!

1. Soit U_i , $i \in I$ une collection d'ouverts. Alors, $\bigcup_{i \in I} U_i$ est ouvert. Translate: Une union quelconque des ensembles ouverts est ouvert.

2. Si U_1, \ldots, U_n sont ouverts

$$\bigcap_{i=1}^{n} U_i \text{ est ouvert.}$$

Translate: intersection finie des ensembles ouverts est ouvert.

- 1. Soit U_i , $i \in I$ une collection de fermés. Alors, $\bigcup_{i \in I} U_i$ est fermé. Translate: Une union quelconque des ensembles fermés est fermé.
- 2. Si U_1, \ldots, U_n sont fermés

$$\bigcap_{i=1}^{n} U_i \text{ est ferm\'e}.$$

Translate: intersection finie des ensembles fermés est fermé.

Note: pour union quelconque, intersection finie!

Proposition 3.1. Soient $N \in \mathbb{N}$ et $\forall 1 \leq i \leq N, U_i \subset E$

- 1. Si tout U_i est ouvert, alors $U_1 \times \ldots \times U_N$ est aussi ouvert.
- 2. Si tout U_i est fermé, alors $U_1 \times \ldots \times U_N$ est aussi fermé.

4 Intérieur, Adhérence, Frontière

Définition 4.1. Un point $x_0 \in A$ est intérieur à A s'il existe r > 0 tq $B(x_0, r) \subset A$. Intérieur de A est l'ensemble de tous les points intérieurs à A:

$$\operatorname{Int}(A) = \{x \in A : x \text{ est int\'erieur `a'} A\}$$

Note: le plus grand ouvert inclu dans A

Définition 4.2. Un point $x_0 \in A$ est adhérent à A s'il existe r > 0 tq $B(x_0, r)$ intersecte A. Adhérence de A est l'ensemble de tous les points intérieurs à A:

$$Adh(A) = \{x \in E : x \text{ est adh\'erent \`a } A\}$$

Note: le plus petit fermé contenant A

Définition 4.3. La frontière: $\partial A = Adh(A) \setminus Int(A) = Adh(A) \cap Adh(E \setminus A)$

Définition 4.4. Soit $A \subset B$. On dit que A est **dense** dans B si $B \subset Adh(A)$

Proposition 4.1. Caractérisations séquentielles:

- 1. de férmé: A est fermé ssi pour toute suite (x_n) d'éléments de A qui covnverge (supposons vers x), sa limite x est aussi dans A ($x \in A$)
- 2. d'adhérence: $x \in Adh(A)$ ssi il existe une suite (x_n) d'éléments de A t $q \lim_{n \to \infty} x_n = x$
- 3. **de compact**: $A \subset E$ est compact si pour toute suite (x_n) d'éléments de A, il existe une sous-suite $(x_{\phi(n)})$ qui converge vers une limite $x \in A$

Proposition 4.2. 1. Si une suite (x_n) converge vers une limite x, cette limite est unique.

2. Si une suite (x_n) coverge vers une limite x et cette suite admet une sous-suite $(x_{\phi(n)})$ qui converge vers une limite x'. Alors on a toujours: x = x'

5 Compact

Définition 5.1. Soient $U = \bigcup_{i \in I} U_i$ où U_i est ouvert $\forall i \in I$. Alors, si $A \subset U$, donc U est un recouvrement ouvert de A.

Définition 5.2. $K \subset E$ est **compact** si <u>de TOUT recouvrement ouvert</u> de K on peut extraire un sous-recouvrement ouvert fini: i.e, on peut trouver $i_1, \ldots, i_n \in I$ (un nombre fini de i_i) tels que:

$$K \subset U_{i_1} \cup \ldots \cup U_{i_n}$$

Proposition 5.1. 1. Un ensemble fini est compact.

- 2. K compact $\implies K$ fermé et borné
- 3. Si K compact et F fermé, alors $K \cap F$ est compact.
- 4. Si K compact, toute suite de Cauchy dans K coverge dans K.

6 Utilisation des fonctions continues

Proposition 6.1. Soit $F: E_1 \to E_2$ une fonction continue avec E_1 , E_2 éspaces métriques, alors:

- 1. Pour tout $U_2 \subset E_2$ ouvert, $F^{-1}(U_2)$ est ouvert dans E_1 .
- 2. Pour tout $F_2 \subset E_2$ fermé, $F^{-1}(F_2)$ est fermé dans E_1 .
- 3. Pour toute suite (x_n) dans E_1 ayant limite x (i.e $\lim_{n\to\infty} x_n = x$) on a:

$$\lim_{n \to \infty} F(x_n) = F(x)$$

7 Montrer qu'un ensemble et fermé ou ouvert

Pour montrer qu'un ensemble \mathcal{U} est ouvert

• Utiliser la définition :

$$\forall x \in \mathcal{U}, \exists r > 0 \text{ tel que } B(x, r) \subset \mathcal{U}$$

- Montrer que $E \setminus \mathcal{U}$ est fermé.
- \bullet Montrer que $\mathcal U$ est l'image réciproque d'un ouvert par une application continue.
- \bullet Exprimer ${\mathcal U}$ comme une boule ouverte.
- Écrire \mathcal{U} comme :
 - une réunion d'ouverts ;
 - une intersection finie d'ouverts.
- $\mathcal{U} = \operatorname{Int}(U)$.
- Écrire $\mathcal{U} = I_1 \times \cdots \times I_n$ avec I_i ouvert.

Pour montrer qu'un ensemble $V \subset E$ est fermé

- Utiliser la définition : $E \setminus V$ est ouvert.
- ullet Caractérisation séquentielle : Toute suite convergente dans V, sa limite est aussi dans V.
- \bullet Montrer que V est l'image réciproque d'un fermé par une application continue.
- ullet Montrer que V est compact.