Fall 2018 STSCI 5080 Discussion 7 (10/12)

Problems

- 1. (Rice 4.7.43) Show that Var(X Y) = Var(X) + Var(Y) 2Cov(X, Y).
- 2. (Rice 4.7.44) If X and Y are independent random variables with unit variance, find Cov(X + Y, X Y).
- 3. (Rice 4.7.67) A random rectangle is formed in the following way: The base, X, is chosen to be a uniform [0,1] random variable and after having generated the base, the height is chosen to be uniform on [0,X]. Use the law of total expectation to find the expected circumference and area of the rectangle.
- 4. (Rice 4.7.75) Let T be an exponential random variable with parameter λ , and conditional on T, let U be uniform on [0,T]. Find the unconditional mean and variance of U.
- 5. Find the mgf of Bin(n, p) and prove the regeneration property of the binomial distribution:

$$Bin(n,p) * Bin(m,p) = Bin(n+m,p).$$

- 6. Show that if $X \sim Ga(\alpha, 1)$ then $\beta X \sim Ga(\alpha, \beta)$.
- 7. (Rice 4.7.94) If X is a nonnegative integer-valued random variable, the *probability generating* function of X is defined to be

$$G(s) = \sum_{k=0}^{\infty} s^k p_k,$$

where $p_k = P(X = k)$.

(a) Show that

$$p_k = \frac{1}{k!} \frac{d^k}{ds^k} G(s) \Big|_{s=0}.$$

(b) Show that

$$\frac{d}{ds}G(s)\Big|_{s=1} = E(X),$$

$$\frac{d^2}{ds^2}G(s)\Big|_{s=1} = E\{X(X-1)\}.$$

- (c) Express the probability generating function G(s) in terms of the mgf for s > 0.
- (d) Find the probability generating function of the Poisson distribution.
- 8. (a) Pick any $-\infty < x < \infty$. Show that $P(X > x) \le e^{-\theta x} E(e^{\theta X})$ for any $\theta > 0$. This is called *Chernoff's inequality*.

1

(b) For $X \sim N(0, 1)$, show that $P(X > x) \le e^{-x^2/2}$ for any x > 0.

Solutions

1. (**Rice 4.7.43**) We note that

$$Var(X - Y) = Var(X) + Var(-Y) + 2Cov(X, -Y).$$

It is not difficult to see that Var(-Y) = Var(Y) and Cov(X, -Y) = -Cov(X, Y).

2. (Rice 4.7.44) Let $\tilde{X} = X - E(X)$ and $Y = Y - \tilde{Y}$. We note that $Cov(X + Y, X - Y) = E\{(\tilde{X} + \tilde{Y})(\tilde{X} - \tilde{Y})\} = E(\tilde{X}^2 - \tilde{Y}^2) = Var(X) - Var(Y) = 1 - 1 = 0.$

3. Let Y denote the height. Conditionally on X, $Y \sim U[0, X]$, so that $E(Y \mid X) = X/2$ and hence $E(Y) = E\{E(Y \mid X)\} = 1/4$. The circumference is

$$2(X+Y)$$

so that

$$E\{2(X+Y)\} = 2E(X) + 2E(Y) = 2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = \frac{3}{2}.$$

On the other hand, the area is

and we want to evaluate E(XY). First, we note that

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy)f(x,y)dydx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy)f_{Y|X}(y \mid x)f_X(x)dydx$$
$$= \int_{-\infty}^{\infty} x \left\{ \int_{-\infty}^{\infty} yf_{Y|X}(y \mid x)dy \right\} f_X(x)dx = E\{XE(Y \mid X)\}.$$

Second, since $E(Y \mid X) = X/2$, we have

$$E\{XE(Y \mid X)\} = \frac{E(X^2)}{2} = \frac{1}{2} \int_0^1 x^2 dx = \frac{1}{6}.$$

4. Since $U \sim U[0,T]$ conditionally on T, we have

$$E(U \mid T) = \frac{T}{2}$$
 and $Var(U \mid T) = \frac{T^2}{12}$.

Hence, we have

$$E(U) = E\{E(U \mid T)\} = \frac{1}{2\lambda}$$

and

$$Var(U) = Var\{E(U \mid T)\} + E\{Var(U \mid T)\} = \frac{Var(T)}{4} + \frac{E(T^2)}{12}.$$

Since $Ex(\lambda) = Ga(1, 1/\lambda)$, the mgf of T is

$$\psi_T(\theta) = (1 - \theta/\lambda)^{-1}, \ \theta < \lambda,$$

so that

$$E(T) = \psi'(0) = \frac{1}{\lambda}$$
 and $E(T^2) = \psi''(0) = \frac{2}{\lambda^2}$.

Therefore, we have

$$Var(U) = \frac{1}{4\lambda^2} + \frac{1}{6\lambda^2} = \frac{5}{12\lambda^2}.$$

5. If $Y \sim Bin(n, p)$, then $Y = X_1 + \cdots + X_n$ for independent Bernoulli trials X_1, \dots, X_n with success probability p. Each X_i has mgf

$$\psi_X(\theta) = E(e^{\theta X_i}) = e^{\theta} p + 1 \cdot (1 - p) = 1 + p(e^{\theta} - 1)$$

and so the mgf of Y is

$$\psi_Y(\theta) = E\{e^{\theta(X_1 + \dots + X_n)}\} = E(e^{\theta X_1}) \dots E(e^{\theta X_n}) = \{\psi_X(\theta)\}^n = \{1 + p(e^{\theta} - 1)\}^n.$$

If $Y_1 \sim Bin(n, p)$ and $Y_2 \sim Bin(m, p)$ are independent, them the mgf of $Z = Y_1 + Y_2$ is

$$\psi_Z(\theta) = \psi_{Y_1}(\theta)\psi_{Y_2}(\theta) = \{1 + p(e^{\theta} - 1)\}^{n+m},$$

which is the mgf of Bin(n+m,p). Hence, we have $Z \sim Bin(n+m,p)$.

6. The mgf of X is

$$\psi_X(\theta) = (1 - \theta)^{-\alpha}, \ \theta < 1,$$

and the mgf of $Y = \beta X$ is

$$\psi_Y(\theta) = E(e^{\theta \beta X}) = \psi_X(\beta \theta) = (1 - \beta \theta)^{-\alpha}, \ \theta < 1/\beta,$$

which is the mgf of $Ga(\alpha, \beta)$. Hence, we have $Y \sim Ga(\alpha, \beta)$.

- 7. (Rice 4.7.94)
 - (a) We note that

$$G^{(k)}(s) = \sum_{j=k}^{\infty} j(j-1)\cdots(j-k+1)s^{j-k}p_j = E\{X(X-1)\cdots(X-k+1)s^{X-k}\}. \quad (*)$$

Plugging in s = 0, we have

$$G^{(k)}(0) = k! p_k$$
, i.e., $p_k = G^{(k)}(0)/k!$.

(b) From (*), we have

$$G'(1) = E(X)$$
 and $G''(0) = E\{X(X-1)\}.$

- (c) Since $G(s) = E(s^X)$, we have $G(s) = \psi(\log s)$.
- (d) If $X \sim Po(\lambda)$, then

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda},$$

so that

$$G(s) = \sum_{k=0}^{\infty} \frac{(s\lambda)^k}{k!} e^{-\lambda} = e^{(s-1)\lambda}.$$

8. (a) Because of the equivalence $X > x \Leftrightarrow e^{\theta X} > e^{\theta x}$, we have

$$P(X > x) = P(e^{\theta X} > e^{\theta x}).$$

Applying Markov's inequality, we have

$$P(e^{\theta X} > e^{\theta x}) \le e^{-\theta x} E(e^{\theta X}).$$

(b) If $X \sim N(0,1)$, we know that $E(e^{\theta X}) = e^{\theta^2/2}$, and so

$$P(X > x) \le e^{-\theta x + \theta^2/2}$$

for any $\theta > 0$. The right hand side is minimized at $\theta = x$, and so

$$P(X > x) \le e^{-x^2/2}.$$