Contents

Introduction

Analysis

Conclusion

- Context & Objectives
- Method Overview

- Historical Raw Data
- Interpretation & Insights

- Comparative Turbine Study
- Results
- Composite score

Context & Objectives

Data Analyst

Commissioned by the French Ministry of Energy

Objective

Determine the best wind turbine option to be installed at Ouessantto best support renewable energy project.

Turbine candidates

Alstom ECO122
Enercon E-33
AVENTA AV-7

Method Structure

Data Loading **Data Sorting** Wind analysis/Profile Calculation **Energy Modeling** (Turbine performances, capacity factor, storage needs...) Lifetime Net Revenue Payback Ratio Interpretation/ Recommendation

- Use of jupyter notebook in VS Codefor the comparative study
- Data: 30-min wind measurements (2014–2024), population, turbine specs
- <u>Tools:</u> Python (Pandas, Matplotlib, SciPy), MCDA (Multi-Criteria Decision Analysis)
- Automation: pipeline built to run for any given dataset/year

Site Analysis

Ouessant

- Avg wind speed at 100 m: 9.08 m/s
- Most winds between 6–14 m/s
 (ideal range)
- Only 513 calm hours/year (<3 m/s)

- Stable direction: mostly SW–W and W– NW (>40%)
- Exposed island with no terrain obstacles → strong, stable and consistent winds

Comparative study

Comparative Turbine Study

Alstom ECO122

- 89m
- 2.7 MW
- Large wind farms
- 3,3M €

Enercon E-33

- 37m
- 330 kW
- Community-scale
- 700k €

AVENTA AV-7

- 18m
- 6.5 kW
- Local/microgrid/ Rooftops
- 93k €

Log Wind Profile Formula →

$$u(z) = rac{u_*}{\kappa} \mathrm{ln}igg(rac{z-d}{z_0}igg)$$

Annual Capacity Factors of 3 wind turbines in French Cities

Monthly average wind speeds

$$ext{Capacity Factor} = rac{E_{ ext{year}}}{P_{ ext{rated}} imes 8760}$$

Powering the Town

Number of Turbines Needed (20142023 average annual output)

	ALSTOM	ENERCON	AVENTA
Ouessant	1	2	50

To determine the bestturbine, calculate: price * number of turbines needed (for each type of turbine)

	Units Needed	Turbine Cost (€)	Installation Cost (€)	O&M Cost (€)	Upfront Cost (€)	Lifetime Cost (€)	Avg Annual Energy (kWh/yr)	Cost €/kWh (Lifetime)	Net Revenue €/kWh	Lifetime Net Revenue (€)	Net Payback Ratio
Turbine											
Alstom ECO122	1	3333000	2700000	1,620,000.0000	6033000	7,653,000.0000	15,075,633.2529	0.0254	0.1762	53,131,953.2758	6.9426
Enercon E33	2	1400000	660000	396,000.0000	2060000	2,456,000.0000	1,428,597.5245	0.0430	0.1586	9,064,210.4373	3.6906
Aventa AV7	50	4650000	325000	195,000.0000	4975000	5,170,000.0000	38,154.0621	0.1355	0.0661	2,521,858.9119	0.4878

Ouessant

To calculate the estimated storage needs:

- → Identified turbine downtime
- → grouped into gaps and measured durations
- → Took 95th percentile gap as worst case
- → Multiplied by average power demand to estimate required storage

```
=== Final Cost and Payback Analysis ===
               Units Installed Capacity (MW) Turbine Cost (€) Battery Cost (€) Installation Cost (€) O&M Cost (€) Upfront Cost (€) Lifetime Cost (€)
Turbine
Alstom EC0122
                   1
                                       2.7000
                                                        3333000
                                                                           548000
                                                                                                                                  6581000
                                                                                                                                                8606000.0000
                                                                                                  2700000
                                                                                                           2025000.0000
                   2
                                       0.6600
Enercon E33
                                                        1400000
                                                                           548000
                                                                                                                                  2608000
                                                                                                                                                3103000.0000
                                                                                                           495000.0000
                  50
                                       0.3250
                                                        4650000
Aventa AV7
                                                                           685000
                                                                                                   325000
                                                                                                           243750.0000
                                                                                                                                  5660000
                                                                                                                                                5903750.0000
```

Lifetime Energy (kWh)	Cost per kWh (€)	Net Revenue per kWh (€)	Lifetime Net Revenue (€)	Net Payback Ratio
376890750	0.0228	0.1788	67375175.2000	7.8289
71429900	0.0434	0.1582	11297267.8400	3.6408
47692500	0.1238	0.0778	3711058.0000	0.6286

CONCIUSION

Sources:

https://energy.ec.europa.eu/document/download/68bbf2ff-leda-405c-b754-7e45lfb8fdaa_en

https://www.enerdata.net/publications/daily-energy-news/france-targets-41-renewables-its-final-energy-mix-2030.html

https://openenergytracker.org/en/docs/france/renewables/

https://fr.wikipedia.org/wiki/D%C3%A9mographie_de_Paris https://ville-data.com/nombre-d-habitants/La-Rochelle-17-17300

https://fr.wikipedia.org/wiki/N%C3%AEmes

https://www.letelegramme.fr/finistere/ile-ouessant-29242/population-d-ouessant-nombre-d-habitants-carte-tous-les-chiffres-de-demographie-1689018.php

https://westpenninesprotectiontrust.co.uk/wp-content/uploads/2012/06/PDF-101106-Enercon-E33-Flyer-energy-production-return-claimed.pdf

https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaaagvvyb

https://www.sciencedirect.com/science/article/pii/S002980182030411X