Introduction to **Information Retrieval**

Lecture 5: Index Compression

Last lecture – index construction

- Sort-based indexing
 - Naïve in-memory inversion
 - Blocked Sort-Based Indexing
 - Merge sort is effective for disk-based sorting (avoid seeks!)
- Single-Pass In-Memory Indexing
 - No global dictionary
 - Generate separate dictionary for each block
 - Don't sort postings
 - Accumulate postings in postings lists as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge

Today

- Collection statistics in more detail (with RCV1)
 - How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?

- Dictionary
 - Make it small enough to keep in main memory
 - Make it so small that you can keep some postings lists in main memory too
- Postings file(s)
 - Reduce disk space needed
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

Recall Reuters RCV1

symbol	statistic	value
- N	documents	800,000
• L	avg. # tokens per doc	200
M	terms (= word types)	~400,000
•	avg. # bytes per token (incl. spaces/punct.)	6
•	avg. # bytes per token (without spaces/punct.)	4.5
•	avg. # bytes per term	7.5
•	non-positional postings	100,000,000

Index parameters vs. what we index

(details IIR Table 5.1, p.80)

size of	word types (terms)			non-posit postings		positional postings			
	dictionary			non-position	ndex	positional index			
	Size (K)	Δ %	cumul %	Size (K)	Δ %	cumul %	Size (K)	$^{\Delta}_{\%}$	cumul %
Unfiltered	484			109,971			197,879		
No numbers	474	-2	-2	100,680	-8	-8	179,158	-9	-9
Case folding	392	-17	-19	96,969	-3	-12	179,158	0	-9
30 stopwords	391	-0	-19	83,390	-14	-24	121,858	-31	-38
150 stopwords	391	-0	-19	67,002	-30	-39	94,517	-47	-52
stemming	322	-17	-33	63,812	-4	-42	94,517	0	-52

Exercise: give intuitions for all the '0' entries. Why do some zero entries correspond to big deltas in other columns?

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Chap/Lecture 7: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top k list.

Vocabulary vs. collection size

- How big is the term vocabulary?
 - That is, how many distinct words are there?
- Can we assume an upper bound?
 - Not really: At least $70^{20} = 10^{37}$ different words of length 20
- In practice, the vocabulary will keep growing with the collection size
 - Especially with Unicode ©

Vocabulary vs. collection size

- Heaps' law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection
- Typical values: $30 \le k \le 100$ and $b \approx 0.5$
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Heaps' Law

For RCV1, the dashed line

 $log_{10}M = 0.49 log_{10}T + 1.64$ is the best least squares fit.

Thus, $M = 10^{1.64} T^{0.49}$ so $k = 10^{1.64} \approx 44$ and b = 0.49.

Good empirical fit for Reuters RCV1!

For first 1,000,020 tokens, law predicts 38,323 terms; actually, 38,365 terms

Fig 5.1 p81

Exercises

- What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
- Compute the vocabulary size M for this scenario:
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- $cf_i \propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

Zipf consequences

- If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs cf₁/2 times
 - the third most frequent term (and) occurs $cf_1/3$ times ...
- Equivalent: cf_i = K/i where K is a normalizing factor, so
 - log cf_i = log K log i
 - Linear relationship between log cf_i and log i
- Another power law relationship

Zipf's law for Reuters RCV1

Compression

- Now, we will consider compressing the space for the dictionary and postings
 - Basic Boolean index only
 - No study of positional indexes, etc.
 - We will consider compression schemes

DICTIONARY COMPRESSION

Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Dictionary storage - first cut

- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

Fixed-width terms are wasteful

- Most of the bytes in the **Term** column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle *supercalifragilisticexpialidocious* or *hydrochlorofluorocarbons*.
- Written English averages ~4.5 characters/word.
 - Exercise: Why is/isn't this the number to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list:

Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - ■Pointer to next word shows end of current word
 - ■Hope to save up to 60% of dictionary space.

Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- 3 bytes per term pointer

Now avg. 11 bytes/term, not 20.

- Avg. 8 bytes per term in term string
- 400K terms x 19 → 7.6 MB (against 11.2MB for fixed width)

Blocking

- Store pointers to every kth term string.
 - Example below: k=4.
- Need to store term lengths (1 extra byte)

Net

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking
 - 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another \sim 0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

Why not go with larger *k*?

Exercise

• Estimate the space usage (and savings compared to 7.6 MB) with blocking, for block sizes of k = 4, 8 and 16.

Dictionary search without blocking

Assuming each dictionary term equally likely in query (not really so in practice!), average number of comparisons = (1+2·2+4·3+4)/8 ~2.6

Exercise: what if the frequencies of query terms were non-uniform but known, how would you structure the dictionary search tree?

Dictionary search with blocking

- Binary search down to 4-term block;
 - Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. = $(1+2\cdot2+2\cdot3+2\cdot4+5)/8 = 3$ compares

Exercise

• Estimate the impact on search performance (and slowdown compared to k=1) with blocking, for block sizes of k=4, 8 and 16.

Front coding

- Front-coding:
 - Sorted words commonly have long common prefix store differences only
 - (for last k-1 in a block of k)

8automata8automate9automatic10automation

Begins to resemble general string compression. 29

Front Encoding [Witten, Moffat, Bell]

- Complete front encoding
 - (prefix-len, suffix-len, suffix)
- Partial 3-in-4 front encoding
 - No encoding/compression for the first string in a block
 - Enables binary search

Assume previous string is "auto"

String	Complete Front Encoding	Partial 3-in-4 Front Encoding
8, automata	4, 4, mata	, 8, automata
8, automate	7, 1, e	7, 1, e
9, automatic	7, 2, ic	7, 2, ic
10, automation	8, 2, on	8, , on

RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

POSTINGS COMPRESSION

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use a lot less than 20 bits per docID.

Postings: two conflicting forces

- A term like arachnocentric occurs in maybe one doc out of a million – we would like to store this posting using log₂ 1M ~ 20 bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
 - Prefer 0/1 bitmap vector in this case

Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **33,14,107,5,43** ...
- Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

- Aim:
 - For *arachnocentric*, we will use ~20 bits/gap entry.
 - For the, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use $\sim \log_2 G$ bits/gap entry.
- <u>Key challenge</u>: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a continuation bit c
- If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1 (c = 1) and for the other bytes c = 0.

Hex(824)=0x0338 Hex(214577)=0x00034631

Example

docIDs	824	829	215406
gaps		5	214577
VB code	00000110 10111000	10000101	00001101 00001100 10110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps – nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).
- There is also recent work on word-aligned codes that pack a variable number of gaps into one word (e.g., simple9)

Simple9

- Encodes as many gaps as possible in one DWORD
- 4 bit selector + 28 bit data bits
 - Encodes 9 possible ways to "use" the data bits

Selector	# of gaps encoded	Len of each gap encoded	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Unary code

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 80 is:

This doesn't look promising, but....

Bit-Aligned Codes

- Breaks between encoded numbers can occur after any bit position
- Unary code
 - Encode k by k 1s followed by 0
 - 0 at end makes code unambiguous

Number	Code
0	0
1	10
2	110
3	1110
4	11110
5	111110

Unary and Binary Codes

- Unary is very efficient for small numbers such as 0 and 1, but quickly becomes very expensive
 - 1023 can be represented in 10 binary bits, but requires
 1024 bits in unary
- Binary is more efficient for large numbers, but it may be ambiguous

Elias-γ Code

To encode a number k, compute

•
$$k_d = \lfloor \log_2 k \rfloor$$
 unary binary

 $k_r = k - 2^{\lfloor \log_2 k \rfloor}$ k_d is number of binary digits, encoded in unary

Numbe	r(k)	k_d	k_r	Code
	1	0	0	0
	2	1	0	10 0
	3	1	1	10 1
	6	2	2	110 10
	15	3	7	1110 111
	16	4	0	11110 0000
	255	7	127	11111110 1111111
	1023	9	511	1111111110 111111111

Elias-δ Code

- Elias-γ code uses no more bits than unary, many fewer for k > 2
 - 1023 takes 19 bits instead of 1024 bits using unary
- In general, takes 2 log₂k +1 bits
- To improve coding of large numbers, use Elias-δ code
 - Instead of encoding k_d in unary, we encode $k_d + 1$ using Elias- γ
 - Takes approximately 2 log₂ log₂ k + log₂ k bits

Elias-δ Code

• Split $(k_d + 1)$ into:

$$k_{dd} = \lfloor \log_2(k_d + 1) \rfloor$$

$$k_{dr} = (k_d + 1) - 2^{\lfloor \log_2(k_d + 1) \rfloor}$$

• encode k_{dd} in unary, k_{dr} in binary, and k_r in binary

Number (k)	k_d	k_r	k_{dd}	k_{dr}	Code
1	0	0	0	0	0
2	1	0	1	0	10 0 0
3	1	1	1	0	10 0 1
6	2	2	1	1	10 1 10
15	3	7	2	0	110 00 111
16	4	0	2	1	110 01 0000
255	7	127	3	0	1110 000 1111111
1023	9	511	3	2	1110 010 111111111

COMP6714: Information Retrieval & Web Search

```
# Generating Elias-gamma and Elias-delta codes in Python
 import math
 def unary_encode(n):
 return "1" * n + "0"
 def binary_encode(n, width):
    r = ""
     for i in range(0,width):
     if ((1 << i) \& n) > 0:
     r = "1" + r
      else:
     r = "0" + r
     return r
 def gamma_encode(n):
     logn = int(math.log(n,2))
     return unary_encode( logn ) + " " + binary_encode(n, logn)
 def delta_encode(n):
 logn = int(math.log(n,2))
if n == 1:
  return "0"
  else:
  loglog = int(math.log(logn+1,2))
  residual = logn+1 - int(math.pow(2, loglog))
         return unary_encode( loglog ) + " " + binary_encode( residual, loglog ) + " " + binary_encode(n, logn)
 if __name__ == "__main__":
    for n in [1,2,3, 6, 15,16,255,1023]:
         logn = int(math.log(n,2))
         loglogn = int(math.log(logn+1,2))
         print n, "d_r", logn
         print n, "d_dd", loglogn
         print n, "d_dr", logn + 1 - int(math.pow(2,loglogn))
         print n, "delta", delta_encode(n)
         #print n, "gamma", gamma_encode(n)
         #print n, "binary", binary_encode(n)
```

Gamma code properties

- G is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - Length of offset is log G bits
 - Length of length is $\lfloor \log G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, log₂ G
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

Gamma seldom used in practice

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

Shannon Limit

- Is it possible to derive codes that are optimal (under certain assumptions)?
- What is the optimal average code length for a code that encodes each integer (gap lengths) independently?
- Lower bounds on average code length: Shannon entropy
 - $H(X) = -\sum_{x=1}^{n} Pr[X=x] log Pr[X=x]$
- Asymptotically optimal codes (finite alphabets): arithmetic coding, Huffman codes

How to design an optimal code for geometric distribution?

Global Bernoulli Model

- Assumption: term occurrence are Bernoulli events
- Notation:
 - n: # of documents, m: # of terms in vocabulary
 - N: total # of (unique) occurrences
- Probability of a term t_j occurring in document d_i: p = N/nm
- Each term-document occurrence is an independent event
- Probability of a gap of length x is given by the geometric distribution $Pr[X = x] = (1-p)^{x-1} \cdot p$

It can also be deemed as a generalization of the unary code.

Golomb Code

- Golomb Code (Golomb 1966): highly efficient way to design optimal Huffman-style code for geometric distribution
 - Parameter b
 - For given $x \ge 1$, computer integer quotient $q = \lfloor (x-1)/b \rfloor$
 - and remainder

$$r = (x-1) - q \cdot b$$

- Assume $b = 2^k$
 - Encode q in unary, followed by r coded in binary
 - A bit complicated if b != 2^k. See wikipedia.
- First step: (q+1) bits
- Second step: log(b) bits

Golomb Code & Rice Code

- How to determine optimal b*?
- Select minimal b such that

$$(1-p)^b + (1-p)^{b+1} \le 1$$

- Result due to Gallager and Van Voorhis 1975: generates an optimal prefix code for geometric distribution
- Small p approximation:

$$b^* \approx \ln 2/p = 0.69 \cdot avg_val$$

Rice code: only allow b = 2^k

Local Bernoulli Model

- If length of posting lists is known, then a Bernoulli model on each individual inverted list can be used
- Frequent words are coded with smaller b, infrequent words with larger b
- Term frequency need to be encoded (use gammacode)
- Local Bernoulli outperforms global Bernoulli model in practice (method of practice!)

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, k = 4	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, g-encoded	101.0

Google's Indexing Choice

- Index shards partition by doc, multiple replicates
- Disk-resident index
 - Use outer parts of the disk
 - Use different compression methods for different fields:
 Rice_k (a special kind of Golomb code) for gaps, and Gamma for positions.
- In-memory index
 - All positions; No docid
 - Keep track of document boundaries
 - Group-variant encoding
 - Fast to decode

Source: Jeff Dean's WSDM 2009 Keynote

Other details

- Gap = $docid_n$ $docid_{n-1}$ 1
- Freq = freq 1
- Pos_Gap = pos_n pos_{n-1} 1
- C.f., Jiangong Zhang, Xiaohui Long and Torsten Suel: Performance of Compressed Inverted List Caching in Search Engines. WWW 2008.

Index compression summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% of the total size of the <u>text</u> in the collection
- However, we've ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.

Resources for today's lecture

- IIR 5
- *MG* 3.3, 3.4.
- F. Scholer, H.E. Williams and J. Zobel. 2002.
 Compression of Inverted Indexes For Fast Query Evaluation. *Proc. ACM-SIGIR 2002*.
 - Variable byte codes
- V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. Information Retrieval 8: 151–166.
 - Word aligned codes