理想流体力学試験問題(2)

by E. Yamazato 1998-9-18, $18:00\sim19:30$

1. (25) 複素ポテンシャルが次式で表される流れの型を説明し、かつそれらの流れの速度ポテンシャルおよび流れの関数を求めよ.

(1)
$$w = aze^{i\alpha} \ (\alpha > 0), (2) \ w = -5i \ln z + 3z, (3) \ w = 3z + 2 \ln z$$

2. (25) 4a の長さの平板に α なる傾きをもち,かつ循環をもつ流れがある. (1) 流れの複素ポテンシャルを求めよ. (2) 平行流れ (w-平面) から平板に至る写像関係を示し,かつ流れをスケッチせよ. (3) 平板の後端に岐点がくるようにしたときの循環値をを求めよ.

3.(25) 速度 U の一様流れ中に強さ Q の吹き出しが原点にある場合、この流れ場に作用する力を求めよ。4.(25) 図に示すような流線図より、この流れはどういう型の流れを組み合わせたものかを説明せよ、また数値も含めた複素ポテンシャルを求めよ。

(解)

1.

(1) Parallel flow with
$$\theta = \alpha$$

$$w = ar\{(\cos(\theta + \alpha) + i\sin(\theta + \alpha))\}$$

$$\varphi = ar\cos(\theta + \alpha), \quad \psi = ar\sin(\theta + \alpha)$$

$$\frac{dw}{dz} = ae^{i\alpha} = a(\cos\alpha + i\sin\alpha) = u - iv$$

$$u = a\cos\alpha, \quad v = -a\sin\alpha, \quad V = a$$

(2) Parallel flow(U=3)+Circulation flow(
$$\Gamma = 10\pi$$
)

$$w = -5i\ln(re^{i\theta}) + 3re^{i\theta} = -5i\ln r + 5\theta + 3r(\cos\theta + i\sin\theta)$$

$$\varphi = 5\theta + 3r\cos\theta, \quad \psi = 3r\sin\theta - 5\ln r$$

(3) Parallel flow(U=3)+source flow($Q = 4\pi$)

$$w = 3re^{i\theta} + 2\ln(re^{i\theta})$$

$$\varphi = 3r\cos\theta + 2\ln r, \quad \psi = 3r\sin\theta + 2\theta$$

 $\Gamma = -4\pi aU \sin \alpha \ (\Gamma : negative)$

2.

$$\begin{split} w &= U(z_1 + \frac{a^2}{z_1}) - \frac{i\Gamma}{2\pi} \ln z_1, \quad z_2 = z_1 e^{i\alpha}, \quad z = z_2 + \frac{a^2}{z_2} \\ \frac{dw}{dz_1} \frac{dz_1}{dz_2} \frac{dz_2}{dz} &= 0 \\ \frac{dw}{dz_1}) &= U(1 - \frac{a^2}{z_1^2}) - \frac{i\Gamma}{2\pi z_1} = 0 \\ At \ point \ A, \ z &= 2a, \ z_2 = a, \quad z_1 = z_2 e^{-i\alpha} = a e^{-i\alpha} \\ \frac{dw}{dz_1})_A &= U(1 - \frac{a^2}{a^2 e^{-2i\alpha}}) - \frac{i\Gamma}{2\pi a e^{-i\alpha}} = 0 \\ U(1 - e^{2i\alpha}) - \frac{i\Gamma}{2\pi a} e^{i\alpha} &= 0 \\ U(e^{-i\alpha} - e^{i\alpha}) - \frac{i\Gamma}{2\pi a} = 0 \\ U(\cos \alpha - i \sin \alpha - \cos \alpha - i \sin \alpha) - \frac{i\Gamma}{2\pi a} = 0 \end{split}$$

3.

$$\begin{split} w &= Uz + m \ln z, \quad m = \frac{Q}{2\pi} \\ \frac{dw}{dz} &= U + \frac{m}{z} \\ (\frac{dw}{dz})^2 &= U^2 + \frac{m^2}{z^2} + \frac{2Um}{z} \\ F_x - iF_y &= \frac{i\rho}{2} \oint (\frac{dw}{dz})^2 dz = \frac{i\rho}{2} 2Um(2\pi i) = -2\pi\rho Um = -\rho UQ \\ F_x &= -\rho UQ, \quad F_y = 0 \end{split}$$

4.

Parallel flow+Source+Sink flow,
$$dw = iUz + mln(z+a_2) - mln(z-a_1)$$

$$w = 4iz + \frac{27 \times 4}{2\pi} [ln(z+3+4i) - lnz]$$

$$w = 4iz + \frac{54}{\pi} ln[1 - \frac{(3+4i)}{z}]$$