Rollem 10

Max
$$z = (2x_1 + 9x_2)$$

S.6.° $x_1 = 7000 (1)$
 $x_2 = 1500 (2)$
 $x_1 + x_2 = (750 (3))$
 $4x_1 + 2x_2 = 4800 (4)$
 $x_2 = x_2 = 0$ (Non-negative).

CFP*4: [4 2 | 4800] ~ [1 1/2 | 1200]
1 7 | 1750] ~ [0 1/2 | 550]

 $\frac{1}{2}(CFP'_{5}) = \begin{cases} (7), & (2), & (3) \\ (4), & (2), & (3) \end{cases}$ (4) (,77-10⁴, 1.65.10⁴, 1.35.10⁴} Argnax (Z(CFP's)) = 4,

optimal (asing i punktet (650, 1100). 7 (x1= 850, X=190)= 1,77.109.

Pertriksjon (3) og (4) er bindende ræbriksjørne i lærntgen. (0) (1) Vil Deggne i (0,0), der stiger vi retning X, mest.

Oler stiger viiretning X, mes Gir, til nabo-hjørne pan betet (1): (1000, 0).

Stiger langs X2-alten.

(2) & (1000, 400)
Til Slatt felses betragelsen
fod ullahet (4).

(3): (650, 1100) < Optimal (PF-laning-

Max 2= 12x, +9x2 $5.6. \times, +5_7 = (000, (9)$ $\times_2 + \delta_2 = | \hat{SOO}, (2)$ X7+x2+53=1730, (3) 4x, + 2x2+54 = 4800, (4) X1, X2, S1, ..., S4 20. Skibner (the hya Som monor

Skjønner ihhe hopa Sem moner Mel å "utty hte hver estrikjan" med ilæke væriablere pågfarfen fra a) o Bytte at fil (inlett 1) trekke for dajkk-væriabel fra motsatt side?

 $C \neq p_s = \{(0,0), (1000,0), (1000,400),$ (650, 7100), (250, 1500), (0, 1500)} BFs = {(0,0,1000,1500,1750,4800), (1000,0,0,1500,750,800), (1000, 400,0,1700,350,0), (650,7700,350,400,0,0), (250,1500,750,0,0,800), (0, 1500, (000, 250, 0, 1800) } Rostiksjæner (2) =0 (4) or oppfyllf der X2=1500, Xn=450, og med alle 5lahk-dinensjonene er v; få : (450, 1500, 550,0,-150,0)

Jette et en BF-lerning, side ikke et en BF-lerning, side n'hbe-negaltivitets knowet bagytes. Somer ved sin nedre grense

ud den gémale (osningen pe "augmented" form. (X1, X2, S1, S2) e i pasis ved den Up (inale Cosniagon.

$$\max \ Z = x_1 + 2x_2$$

subject to

$$x_1 + 3x_2 \leqslant 8$$

b) Hjørnepunhtløsning

$$(0, \frac{8}{3})$$

Målfunksjonsverdi

$$\frac{16}{3} = 5\frac{1}{3}$$

Tillatt losning ?

Vi ser av tabellen at (2,2) er den beste tillatte hjørnepunktlosningen, og er derfor optimal løsning.

- c) Med (0,0) som startpunkt:
 - · Går i xz-retningen siden stigningen er størst her.
 - Neste punkt: $(0, \frac{8}{3})$
 - · Målfurhøjonen stiger langs den andre kanten, derfor gå til neste hjørnepunktløsning.
 - · Neste punkt: (2,2)
 - · Målfunksjonen minter langs den andre kanten fra (2,2). (2,2) er defor optimal løsning.

Ender med sekvensen $(0,0) \rightarrow (0,\frac{8}{3}) \rightarrow (2,2)$.

d) Modellen på utvidet form:

$$\max \ \, \exists = 3x_1 + 5x_2$$

$$x_1 + 3x_2 + S_1 = 8$$

$$x_1 + x_2 + S_2 = 4$$

$$x_1, x_2, S_1, S_2 \geqslant 0$$

e) Verdier fil slablevariable:

$$(0,0) \rightarrow S_1 = 8, \quad S_2 = 4$$

$$(4,0) \Rightarrow S_1 = 4, S_2 = 0$$

$$(0, \frac{8}{3}) \rightarrow S_1 = 0, S_2 = 4 - \frac{8}{3} = \frac{4}{3}$$

$$(2,2) \rightarrow S_1 = 0, S_2 = 0$$

Basislosninger:

Basis variable Verdi lhhe-basis variable

$$S_1$$
, S_2
 8 , 4
 X_1 , X_2
 X_1 , S_3
 Y_4
 Y_5
 Y_7
 Y_8
 Y_8

$$(0,0,8,4)$$
 $0+0+8=8$ 8

$$(2) 0 + 0 + 4 = 4$$
 4

$$(1) 4 + 0 + 4 = 8 8$$

$$(4,0,4,0)$$

$$(0, \frac{8}{3}, 0, \frac{4}{3})$$

$$(2) 0 + \frac{8}{3} + \frac{4}{3} = 4 4$$

$$(1) 2+3\cdot 2+0=8 8$$

$$(2) 2 + 2 + 0 = 4 4$$

Basislesninger for inthe-tillatte hjornepuntitioninger $(8,0) \Rightarrow S_1 = 8 - 8 = 0 , S_2 = 4 - 8 + 0 = -4$ $(0,4) \Rightarrow S_1 = 8 - 3 \cdot 4 = -4 , S_2 = 4 - 4 = 0$

Basisvaniable Verdi lhle-basisvaniable X_1 , S_2 8, -4 X_2 , S_1 X_2 , S_1 X_2 , S_2

(1)
$$(x_1, x_2, S_1, S_2)$$
 Ligning Venstre side Hoyne side $(8, 0, 0, -4)$ (2) $8 + 3 \cdot 0 + 0 = 8$ 8 (2) $8 + 0 - 4 = 4$ 4 (1) $0 + 3(4) - 4 = 8$ 8 (0, 4, -4, 0) (2) $0 + 4 + 0 = 4$ 4

$$i$$
) (0) $\xi - 3x_1 - 5x_2 = 0$

$$(1)$$
 $X_1 + 3X_2 + S_1 = 8$

(2)
$$X_1 + X_2 + S_2 = 4$$

Basic variables:
$$S_1$$
, S_2 \rightarrow $(0,0,8,4)$

Iterasjon 1:

Ta X2 inn i basis.

Minimum ratio test:

$$x_2$$
 han hum ohes fil min $\left\{\frac{8}{3}, \frac{4}{1}\right\} = \frac{8}{3}$

Si forlater basis.

Iterasjon 2:

$$X_1$$
 han the fil min $\left\{\frac{813}{1/3} = 8, \frac{413}{213} = 2\right\} = 2$

Heranjon 3:

$$\frac{z}{\sqrt{x_1}} = \frac{x_1}{\sqrt{x_2}} = \frac{x_2}{\sqrt{x_2}} = \frac{x_1}{\sqrt{x_2}} = \frac{x_2}{\sqrt{x_2}} = \frac{x_2}{\sqrt{x$$

Optimal Cosning funnet: $x_1 = 2$, $x_2 = 2$.

j) Simplex i tabellform.

Basisuar.	Ligning	Z	X ₁	Xz	٢,	Sz	Høyneside	Forholdstect
7	(0)	l	-3			0	0	
ς,	(1)	0	1	3	l	0	8	$\frac{8}{3} = 2\frac{2}{3}$
Sz	(Z)	0	1	1	0	ſ		4 = 4
Z	(0)	l	- 413	0	5/3	0	40/3	
XZ	(1)	0	1/3	l	1/3	0	8/3	$\frac{8/3}{1/3} = 8$
Sz	(2)	0	-4/3 1/3 2/3	0	-1/3	1	413	413 = 2 218
2	(0)	1	0	0	ſ	2	16	
X ₂	(1)	0	0	ι	1/2	-1/2	2	
×,	(2)	0	ı	0	-1/2	3/2	2	

Optimal losning: $x_1 = 2$, $x_2 = 2$.