## Übungsaufgaben: Induktion



Eine Leiterschleife (n = 1, a = 4 cm, b = 2 cm) rotiert mit mit der Drehzahl u =  $3000 \text{ min}^{-1}$  in einem homogenen Magnetfeld B = 0.8 T.

Berechnen Sie zunächst allgemein, sodann in Zahlen den Maximalwert  $U_m$  der induzierten Spannung über

- a) das Induktionsgesetz der Bewegung:  $U_{ind} = B \cdot v_s \cdot s$ ,
- b)das allgemeine Induktionsgesetz:  $U_{ind} = n \cdot \frac{\Delta \Phi}{\Delta t}$ .
- 2. Nachfolgende Skizze zeigt drei homogene Magnetfelder, deren Feldlinien senkrecht zur Zeichenebene verlaufen:  $B_1 = B_2 = -B_3 = 1,0 \text{ T}$ .



- a) Senkrecht zu den Feldlinien wird eine Leiterschleife (a = 2 cm; b = 1 cm) mit der konstanten Geschwindigkeit v = 10 cm/s aufrecht ( $\rightarrow$  U<sub>I</sub>(x) ) bzw. liegend ( $\rightarrow$ U<sub>II</sub>(x) ) bewegt. Zeichnen Sie in die vorbereiteten U,x Diagramme auf dem Arbeitsblatt maßstäblich den Verlauf der in der Leiterschleife induzierten Spannungen.
- b) Ein Kupferbügel (L) wird mit der konstanten Geschwindigkeit v = 10 cm/s schleifend auf den elektrisch leitenden Schienen (S<sub>1</sub>, S<sub>2</sub>) senkrecht durch die Magnetfelder bewegt. Die dabei induzierte Spannung U<sub>L</sub>(x) kann zwischen den beiden Schienen gemessen werden. Zeichnen Sie in das vorbereitete U,x Diagramme auf dem Arbeitsblatt maßstäblich den Verlauf der in der Leiterschleife induzierten Spannung.



Eine Spule mit n=10 Windungen wird von einem sich ändernden magnetischen Fluss  $\Phi(t)$  durchflutet, den Verlauf der dabei induzierten Spannung  $u_{ind}(t)$  zeigt das nebenstehende Diagramm. Zeichnen Sie in das vorbereitete Diagramm auf dem Arbeitsblatt den Verlauf von  $\Phi(t)$ :  $\Phi_{(t=0)}=0$ !



Eine kurzgeschlossene Leiterschleife ( $R=1~m\Omega, m=1~g, l=5cm$ )) durchfällt unter dem Einfluss der Erdbeschleunigung g ein homogenes Magnetfeld (B=0,1~T), dessen Feldlinien senkrecht zur Fallrichtung y verlaufen.

- a) Beschreiben und begründen Sie die Fallbewegung der Leiterschleife $(v_0=0)$  a1)unmittelbar bei dem Eintauchen, a2)nach dem vollständigen Eintauchen der Leiterschleife in das Magnetfeld.
- b)Berechnen Sie die Geschwindigkeit v<sub>0</sub> > 0, bei der die Fallgeschwindigkeit der Leiterschleife zunächst konstant bleibt.

## Arbeitsblatt Übungsaufgaben: Induktion

