Governance, Registries and Monitoring

Oxford University
Software Engineering Programme
Dec 2013

Contents

- Software Development Lifecycle
- Registries
- Design Governance
- Runtime Governance

Before SOA

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

With SOA

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

SOA has an impact on organization

- Refactoring of fiefdoms:
 - backend departments
 - cross-domain departments frontend departments
 - "solutions managers"
- Requires collaboration and trust
- May change the funding model
 - That will pull in resistance

Conway's Law

• Any organization that designs a system will inevitably produce a design whose structure is a copy of the organization's communication structure.

Melvin Conway, *How Do Committees Invent?*, Datamation Apr 1968,

http://www.melconway.com/law/

• Popularized and named by Fred Brooks in *The Mythical Man-Month*: "If you have four groups working on a compiler, you'll get a 4-pass compiler."

Software Development Lifecycle

Not that simple!

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

High level governance

- Visions, objectives, business case, funding model
 - Why are we doing this? How will we pay for it?
 - Reference architecture
 Fundamental decisions: preferred technology, message exchange patterns, metamodel, etc
- Rules and responsibilities
 - who drives and cares about issues
- Policies, standards, formats, processes, lifecycles
 - decide and document, in standard notations

Technical Governance

- Documentation
 - important for transparency; promotes non-technical issues
- Service management
 - repositories and registries for services and contracts
- Monitoring
 - conformance to policies, meeting SLAs, preparing for withdrawal
- Change and configuration management
 - Code lifecycle, DevOps, SOA, the intersection

Establishing SOA

- Developer-driven, grass-roots
 - leads to technological experience; likely to be uncoordinated
- Business-driven
 - proof of concept helps adoption; limited benefit from early projects
- IT-driven
 - effective for infrastructure; focus on technical aspects
- Management-driven
 - top-down coordinated, driven by business priorities; expensive, disruptive, risky

Design Time Governance

UDDI

- An XML-ization of the Windows Registry
 - Lots of nasty UUIDs
- But aimed at Internet Scale
- Launched with the concept of major public UDDI servers (like DNS)
 - Universal Business Registry (UBR)

UDDI

- A UDDI business registration consists of three components:
 - White Pages address, contact, and known identifiers;
 - Yellow Pages industrial categorizations based on standard taxonomies;
 - Green Pages technical information about services exposed by the business.

History

UDDI VERSION	YEAR RELEASED	KEY OBJECTIVE
1.0	2000	Create foundation for registry of Internet- based business services
2.0	2001	Align specification with emerging Web services standards and provide flexible service taxonomy. Formally released under OASIS aegis in 2003
3.0	2004	Support secure interaction of private and public implementations as major element of service-oriented infrastructure. To be released by OASIS in late 2004

Key Data Types

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

UDDI problems

- tModel concept too complex and unwieldy
 - Lack of any standard tModels
- No simple link into WSDL
- Doesn't address the major issues of Service Registry and Governance
 - Lifecycle management
 - Notification
 - Dependency Management

SOA Repository Artefact Model and Protocol (S-RAMP)

- In progress at OASIS
- Based on Atom/AtomPub concepts
- Aimed at solving the real world problems left unanswered by UDDI
 - Which WSDLs and schemas import a particular schema
 - Which of my services are in production?
 - Which services are governed by a specific SLA?
 - What is the latest version of service X?

Aspects of "real" registries

- Meta-Modelling
- Taxonomies
- Versioning
- Associations and Properties
- Lifecycle Management
- Dependency Management
- Repository
- Search
- Machine and Human interfaces

Meta-Modelling

- Creating / modifying the model to support new artefacts
 - e.g. Teams, Projects, Organizations, etc
- Also used for extending more technical attributes
 - e.g. adding WADL or Swagger support

Versioning

- Micro-versioning/revision management
 - Keeping track of every minor update to a WSDL
 - Permanent URLs for given versions
- "Business" Versioning
 - Service A is available as
 - 1.2.3 deprecated
 - 2.5.1 current

Associations and Properties

- Properties
 - General name / value pairs attached to resources
- Associations
 - Named Links between resources
 - e.g.
 - A isUsedBy B
 - B isManagedBy C

Lifecycle Management

- Each service in the corporate datacentre MUST:
 - Start as "In Design"
 - Be approved by the Design Review Team
 - Iterate through Development
 - Pass validation tests before entering Staging
 - Be approved by the Security and Performance Teams before entering Production
 - Be deprecated when no longer supported

Dependency Management

- Each Service Sn depends on Schemas {Y1..n}
- Schema Y depends on Schemas {Z1..n}
- Schemas are shared between services
- Owners and users of services need to be made aware of new versions of schemas they depend on (even if they didn't know it!)

Interfaces

- Registries are used by humans, but shouldn't always be!
- e.g. Maven build rather than forcing developers to use a website
 - One company I know hires a "Registry Monkey" who ONLY enters services into a registry
 - Each service takes 83 steps
 - He hasn't yet committed suicide

Registry, DevOps, SCM

- Ideally need to connect:
 - The Source Code Management (CVS, SVN, Git)
 - The build and test environment
 - Hudson, Jenkins, Bamboo
 - Selenium, JUnit, etc
 - The production management process
 - DevOps, Puppet, Chef
 - The design time registry
 - The runtime registry

Runtime Governance

- Finding services at runtime
- Monitoring services at runtime
- Managing SLAs
- Correlation
- Acting on situations

WS-Discovery

- A simple(r) protocol just aimed at finding "live" endpoints
- For example used by HP printers for network printing
 - Though my own experience is that mine is a bit hit and miss!
- Supports UDP and TCP
 - Managed or Ad-Hoc mode

WS-Discovery "ad-hoc"

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

WS-Discovery Message Types

- Hello messages
- Bye messages
- Probe messages
- Probe match messages
- Resolve messages
- Resolve match messages

Hello

Runtime Monitoring

Aggregation

- Gathering data
- How to collect data efficiently
- How to store data effectively
- What data to capture

Analysis

- Data operations
- Defining KPIs and analytics
- Operating on large amounts of historical or current data
- Creating intelligence

Presentation

- Visualization
- Dashboards
- Reports

BAM visually

Closing the loop

- SLAs are time based rules about performance data
 - Is service X responding in under 50ms for more than 99% of calls within the last 5 mins?
 - Does the sales team respond to leads within 4 hours?
 - Has the average CPU utilization over the last day gone more than 50% higher than the weekly average

Event Processing?

	Storage based Applications	Event-driven Applications
Query Paradigm	Ad-hoc queries or requests	Continuous standing queries
Latency	Seconds, hours, days	Milliseconds or less
Data Rate	Hundreds of events/sec	Tens of thousands of events/ sec or more
	response	output stream stream

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license.

See http://creativecommons.org/licent/sca23pgc.

Scenarios of Event Processing

[©] Paul Fremantle 2012 Portions © Jerem Gibbons 2010 W 22 2005 2017 used with permission of the author(s). Licensed under the Credit Commons 3.0 BY-SA (Attribution Shareanke) license.

39

See http://creativecommons.org/licent/\$/\$@2310/C.

Event Processing

- Simple Event Processing
 - Simple filters (e.g. Is this a gold or platinum customer?)
- Event Stream Processing
 - Looking across multiple event streams and joining multiple event stream etc.
- Complex Event Processing
 - Processing multiple event streams to identify meaningful patterns, using complex conditions & temporal windows
 - E.g. There has been a more than 10% increase in overall trading activity AND the average price of commodities has fallen 2% in the last 4 hours

CEP Queries

- Types of queries are following
 - Filters and Projection
 - Windows events are processed within temporal windows (e.g. for aggregation and joins).
 - Time window vs. length window.
 - Ordering identify event sequences and patterns
 (e.g. for a credit card new location followed by small and a large purchase might suggest a fraud)
 - Joins join two streams

Example Query

from p=PINChangeEvents#window.time(3600) join
 t=TransactionEvents[amount>10000]#window.time(3600)
 on p.custid==t.custid

return t.custid, t.amount;

© Paul Fremantle 2012. Portions © Jeremy Gibbons 2010, © WSO2 2005-2012 used with permission of the author(s). Licensed under the Creative Commons 3.0 BY-SA (Attribution-Sharealike) license. See http://creativecommons.org/licenses/by-sa/3.0/

Acting on runtime situations

- SOA infrastructure →
- Business Activity Monitoring stream >
- Complex Event Processing rules →
- SOA infrastructure

• e.g. when utilization of my cloud web farm is > 75% start a new server

Resources

- UDDI
 - http://uddi.xml.org/
- S-RAMP
 - https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp
- WS-Dynamic Discovery
 - http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01
- WSO2 Governance Registry
 - http://wso2.com/products/governance-registry/

