Introduction to Artificial Intelligence

LECTURE 6:

K-NN Classification & Neural Networks

Overview

- K-NN Classification
- Neural Networks

K-NN Classification

Simple classification algorithm

Idea:

- Look around you to see how your neighbors classify data
- Classify a new data-point according to a majority vote of your k nearest neighbors

Distance Metric

- How do we measure what it means to be a neighbor (what is "close")?
- Appropriate distance metric depends on the problem
- Examples:
 - x discrete (e.g., strings): Hamming distance $d(x_1, x_2)$ = number of features on which x_1 and x_2 differ
 - x continuous (e.g., vectors over reals): Euclidean distance $d(x_1, x_2) = ||x_1 x_2|| = \text{square root of sum of squared}$ differences between corresponding elements of data vectors

Example

Input Data: 2-D points (x_1, x_2)

Two classes: C_1 and C_2 . New Data Point +

K = 4: Look at 4 nearest neighbors of + 3 are in C_1 , so classify + as in C_1

Practical 3

- Image-based Object Classification
 - Training Dataset

Testing Dataset

Emulating the Brain

10¹¹ neurons of more than 20 types, 10¹⁴ synapses, 1 ms-10 ms cycle time

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

- Artificial neuron
 - Binary inputs (-1 or 1) and 1 output (-1 or 1)
 - Synaptic weights w_{ii}
 - Threshold μ_i

$$v_i = \Theta(\sum_j w_{ji} u_j - \mu_i)$$

$$\Theta(x) = 1 \text{ if } x > 0 \text{ and } -1 \text{ if } x \le 0$$

"Perceptrons" for Classification

 Uses artificial neurons ("units") with binary inputs and outputs

Weighted sum forms a linear hyperplane

$$\sum_{i} w_{ji} u_j - \mu_i = 0$$

- Everything on one side of this hyperplane is in class 1 (output = +1) and everything on other side is in class 2 (output = -1)
- Any function that is linearly separable can be computed by a perceptron

Linear Separability

<u>Illustration</u>: AND is linearly separable

$$v = 1 \text{ iff } u_1 + u_2 - 1.5 > 0$$

Similarly for OR, NOT

Linear Separability?

- Illustration: XOR function
 - Can a straight line separate the +1 outputs from the -1 outputs?

u_1	u ₂	XOR		
-1	-1	1		
1	-1	-1		
-1	1	-1		
1	1	1		

Linear Inseparability

- Single-layer perceptron with threshold units fails if classification task is not linearly separable
 - Example: XOR where no single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!
- Dealing with linear inseparability: multilayer perceptrons

Multilayer Perceptrons

- Removes limitations of single-layer networks
- Example: Two-layer perceptron that computes XOR

Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$

Weighting

- How do we learn the appropriate weights given only examples of (input, output)?
- Idea: Change the weights to decrease the error in output

Perceptron Learning Rule

Given input pair (u, vd) where vd \in {+1,-1} is the desired output, adjust w and μ as follows:

1. Calculate current output v of neuron

$$v = \Theta(\sum_{j} w_{j} u_{j} - \mu) = \Theta(\mathbf{w}^{T} \mathbf{u} - \mu)$$

- 2. Compute **error signal** e = (vd v)
- 3. Multiply the error signal by the learning rate ϵ (small positive number). Add this correction to any weight for which the input is non-zero:

$$w \leftarrow w + \epsilon (vd - v) u$$

4. If the network outputs the correct result for all of the training set examples, conclude.

Exercise: learning the OR function

• Apply the algorithm for learning the OR function. Use learning rate = 0.2. Weights have initial values $w_1 = 0.1$, $w_2 = 0.3$.

Exercise: learning the OR function

U ₁	u_2	W ₁	W ₂	٧ _d	V	e	W ₁	W ₂
0	0	0.1	0.3	0	(-0.5) 0	0	0.1	0.3
0	1	0.1	0.3	1	(-0.2) 0	1	0.1	0.5
1	0	0.1	0.5	1	(-0.4) 0	1	0.3	0.5
1	1	0.3	0.5	1	$(0.3)\ 1$	0	0.3	0.5
0	0	0.3	0.5	0	(-0.5) 0	0	0.3	0.5
0	1	0.3	0.5	1	$(0) \ 0$	1	0.3	0.7
1	0	0.3	0.7	1	(-0.2) 0	1	0.5	0.7
1	1	0.5	0.7	1	$(0.7)\ 1$	0	0.5	0.7
0	0	0.5	0.7	0	(-0.5) 0	0	0.5	0.7
0	1	0.5	0.7	1	$(0.2)\ 1$	0	0.5	0.7
1	0	0.5	0.7	1	$(0) \ 0$	1	0.7	0.7
1	1	0.7	0.7	1	$(0.9)\ 1$	0	0.7	0.7
0	0	0.7	0.7	0	(-0.5) 0	0	0.7	0.7
0	1	0.7	0.7	1	$(0.2)\ 1$	0	0.7	0.7
1	0	0.7	0.7	1	(0.2) 1	0	0.7	0.7
1	1	0.7	0.7	1	$(0.9)\ 1$	0	0.7	0.7

Function Approximation

- We want networks that can learn a function
 - Network maps real-valued inputs to real-valued output
 - Idea: Given data, minimize errors between network's output and desired output by changing weights

Continuous output values: binary threshold units cannot be used anymore

To minimize error, a *differentiable* output function is desirable

Sigmoidal Networks

- Most common activation function: Sigmoid function
 - Non-linear "squashing" function
 - •Squashes input to be between 0 and 1. The parameter β controls the slope.

Sigmoid function:

$$g(a) = \frac{1}{1 + e^{-\beta a}}$$

Gradient Descent Learning

 Given training examples (u_m,vd_m) (m = 1,..., N), define an error (also cost/energy) function

Error (w) =
$$\frac{1}{2} \sum_{m} \mathbf{E_m}^2$$

Error (w) = $\frac{1}{2} \sum_{m} (vd_m - v_m)^2$
where $v_m = g(\mathbf{w}^T u_m)$

• Change w so that E(w) is minimized: Gradient Descent $\mathbf{w} \leftarrow \mathbf{w} - \varepsilon \frac{dE}{t}$

$$\frac{dE}{d\mathbf{w}} = -\sum_{m} (vd_m - v_m) \frac{dv_m}{d\mathbf{w}} = -\sum_{m} (vd_m - v_m) g'(\mathbf{w}^T u_m) u_m$$

 Each iteration updates the gradient

- Value of ε
 - Small: O.1/N
 - Too large: learning diverges
 - Too small: slow convergence

 Each iteration updates the gradient

- Value of ε
 - Small: O.1/N
 - Too large: learning diverges
 - Too small: slow convergence

 Each iteration updates the gradient

- Value of ε
 - Small: O.1/N
 - Too large: learning diverges
 - Too small: slow convergence

2.5

 For linear networks, this is guaranteed to converge to the minimum

Influence of € on learning

Learning is slow when ϵ is too small

Learning can oscillate between different sides of the minimum if ϵ is too large

Exercise: learning the OR function

- Error function in terms of vd_m, w₁, w₂, x_{m1}, x_{m2}
- Gradient of the error function with respect to w₁ and w₂

```
dE/dw_1 = dE/dw_2 =
```

Write the gradient update rule

```
w_1 \leftarrow w_2 \leftarrow
```

Exercise: learning the OR function

Error function to be minimized

$$E(w) = 0.5 \Sigma_m (vd_m - (-0.5 + w_1x_{m1} + w_2x_{m2}))^2$$

Gradient of the error function with respect to w₁ and w₂

$$dE/dw_1 = (vd_m - (-0.5 + w_1x_{m1} + w_2x_{m2}))(-x_{m1}) = -E_mx_{m1}$$

$$dE/dw_2 = (vd_m - (-0.5 + w_1x_{m1} + w_2x_{m2}))(-x_{m2}) = -E_mx_{m2}$$

Considering the gradient update rule

$$W_1 \leftarrow W_1 + \epsilon E_m X_{m1}$$

 $W_2 \leftarrow W_2 + \epsilon E_m X_{m2}$