Is your family prepared to escape natural disasters?

Optimizing Evacuation Routes using Real-Time Traffic Information

Ingrid, Dennis, Mac

Problem statement

During emergencies and disasters, we want to provide users with real time information that can aid in their evacuation and/or reduce time required to reach their desired destination.

Time and efficiency is of the essence when people's lives are on the line!

Methodology

We will be focusing on twitter posts from reputable traffic news providers and also from all users within a certain range of our location.

We believe information from both authorities AND nearby citizens are likely to be more accurate.

Why KCBSAMFMTraffic?

Our classification plan

- Classify tweets
- Model
- Find and keep best model
- Mapping locations

Workflow

Preliminary exploratory data analysis

Preliminary EDA

#1 Logistic Regression

CountVectorizer

Features with higher frequency of 10 and 300 under 80% occurrence

Maximum features at 500

N-gram range of 1

#2 Random Forests

CountVectorizer

Minimum samples leaves at 5

Minimum samples split at 2

100 estimators

No max depth

No max features

#3 Multinomial Naive Bayes

CountVectorizer

Maximum features at 1000

Min df at 100

N-gram range of 1

stop words is 'English'

#3 K Nearest Neighbors

TfidfVectorizer

Nearest 50 neighbors

Features with higher frequency of 10, a under 80% occurrence

Maximum features of 1000

N-gram range of 2

#4 Support Vector Machines

CountVectorizer

Nearest 50 neighbors

Features with higher frequency of 100 and under 80% occurrence

Maximum features of 500

N-gram range of 1

	Training Score	Testing Score	Sensitivity
Logistic Regression(CV)	.971	.970	.972
Logistic Regression(TV)	.961	.965	.969
Random Forest	.973	.978	.972
Multinomial Naive Bayes	.904	.866	.990
Gaussian Naive Bayes	.936	.770	.866
K Nearest Neighbors	.881	.869	.933
Support Vector Machines	.974	.976	.969

Findings

Logistic Regression!

Conclusions / Results

Map of Current Taffic Blocks

Next steps

- Clustering continuation
- Funding for Google API
- Funding for AWS
- Word2Vec implementation
- Route optimization via Google map or Here.com
- Location agnostic w/ real-time updates
- More sources!