ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΜΠ

"QUEUING SYSTEMS" Ορφανουδάκης Φίλιππος 03113140

1η Ομάδα Ασκήσεων

Κατανομή Poisson

Παρατηρούμε μια μετακίνηση της καμπύλης προς τα δεξιά καθώς και "ανοιγμα" της όσο μεγαλώνει το lambda, αναμενόμενο αφου η παραμετρος αυτή υποδηλώνει το μέσο πλήθος εμφάνισης γεγονότων, οπότε περιμένουμε τη μεγαλύτερη πιθανότητα να την πάρει το k = lambda.

Μέση τιμή = μ = 30

Διακύμανση = Var =30

Παρατηρούμε ότι το lambda ισούται με τη μέση τιμή και τη διακύμανση , όπως γνωρίζουμε και απο θεωρία

C)

Παρατηρούμε ότι η υπέρθεση των δύο κατανομών Poisson έχει σαν αποτέλεσμα μια νέα κατανομή Poisson , και πιο συγκεκριμένα η υπέρθεση δύο κατανομών Poisson με λ1,λ2 δημιουργεί μια κατανομή Poisson με λ3=λ1+λ2 με την προυπόθεση να είναι ανεξάρτητες και θετικές.

D)

Η κατανομή Poisson μπορεί να θεωρηθεί σαν το όριο της δυωνυμικής κατανομής , όταν $n\to\infty$ και $p<<1(\approx<1/25)$ τότε προκύπτει ότι $\lambda=n^*p$, (τον περιορισμό για την πιθανότητα να συμβεί το γεγονός την βάλαμε καθώς μπορούμε και για n>100 να πάρουμε προσεγγιστικά poisson αλλά θέλουμε το λ να είναι της τάξης του 1).

Εκθετική κατανομή

A)

B)


```
C)
```

```
P(X>30000) is
0.99988
P(X>50000|X>20000) is
0.99980
```

Σχεδόν ίσες

Αυτό συμβαίνει λόγω μιας ιδιότητας της εκθετικής κατανομής της έλλειψης μνήμης , πιο συγκεκριμένα ισχύει ότι :

 $Pr(X \ge a+b \mid X \ge a) = Pr(X \ge b).$

Επομένως Pr(X>50000|X>20000)=Pr(X>50000-20000)=Pr(30000).

D)

Το αποτέλεσμα και η κατανομή που ακολουθεί είναι η εκθετική με παράμετρο 1/λ1 + 1/λ2= 3 Απόδειξη :

Έστω 1/λ1 τότε έχω ότι : P(X1≥t)=e^(-t/λ1) Έστω 1/λ2 τότε έχω ότι : P(X2≥t)=e^(-t/λ2)

Av έχω Y=min(X1,X2) τότε $P(Y \ge t) = P(X1 \ge t,X2 \ge t) = P(X1 \ge t)P(X2 \ge t) = e^{\Lambda} - (1/\lambda 1 + 1/\lambda 2)t$.

Διαδικασία Καταμέτρησης Poisson

A)

Η κατανομή που ακολουθούν οι χρόνοι διαδοχικών εμφανίσεων γεγονότων Poisson με μέσο ρυθμό λ είναι η εκθετική κατανομή με μέση τιμή 1/λ.

B) Ο μέσος αριθμός γεγονότων σε μια περίοδο χρόνου ακολουθεί κατανομή Poisson

```
Average number of arrivals per second = 4.6611
```

Παρατηρούμε ότι είναι πάρα πολύ κοντά στο λ=5.

C)

```
Average time between 49th and 50th event = 0.20657
Average time between 50th and 51st event = 0.20313
```

Αυτό συμβαίνει λόγω της ιδιότητας της εκθετικής κατανομής που ακολουθούν οι χρόνοι διαδοχικών γεγονότων.

Ουσιαστικά για κάθε συνεχόμενα event η ο χρόνος είναι ανεξάρτητος απο τον χρόνο εμφάνισης των προηγούμενων event και μεταξύ τους ισοπίθανοι ή στην δικιά μας περίπτωση ίσοι.

Τέλος βλέπουμε ότι ο μέσος χρόνος είναι όσο 1/λ.

```
SOURCE CODE:
#1h OMADA ASKHSEWN
#KATANOMH POISSON
#A
k = 0:1:70;
lambda = [3,10,50];
for i=1:columns(lambda)
 poisson(i,:) = poisspdf(k,lambda(i));
endfor
colors = "rbkm";
figure(1);
hold on;
for i=1:columns(lambda)
 stem(k,poisson(i,:),colors(i),"linewidth",1.2);
endfor
hold off;
title("probability density function of Poisson processes");
xlabel("k values");
ylabel("probability");
legend("lambda=3","lambda=10","lambda=50");
```

```
lambda = [3,10,30,50];
for i=1:columns(lambda)
 poisson(i,:) = poisspdf(k,lambda(i));
endfor
index = find(lambda == 30);
chosen = poisson(index,:);
mean_value = 0;
for i=0:(columns(poisson(index,:))-1)
 mean_value = mean_value + i.*poisson(index,i+1);
endfor
display("mean value of Poisson with lambda 30 is");
display(mean_value);
second moment = 0;
for i=0:(columns(poisson(index,:))-1)
 second_moment = second_moment + i.*i.*poisson(index,i+1);
endfor
variance = second moment - mean value.^2;
display("Variance of Poisson with lambda 30 is");
display(variance);
#C
first = find(lambda==10);
second = find(lambda==50);
poisson_first = poisson(first,:);
poisson second = poisson(second,:);
composed = conv(poisson first,poisson second);
new_k = 0:1:(2*70);
figure(2);
hold on;
stem(k,poisson_first(:),colors(1),"linewidth",1.2);
stem(k,poisson second(:),colors(2),"linewidth",1.2);
stem(new_k,composed,"mo","linewidth",2);
hold off;
title("Convolution of two Poisson processes");
xlabel("k values");
ylabel("Probability");
legend("lambda=10","lambda=50","new process");
#D
k = 0:1:200;
lambda = 30;
i = [10,100,1000];
```

```
n = lambda.*i;
p = lambda./n;
figure(3);
title("Poisson process as the limit of the binomial process");
xlabel("k values");
ylabel("Probability");
hold on;
for i=1:3
 binomial = binopdf(k,n(i),p(i));
 stem(k,binomial,colors(i),'linewidth',1.2);
legend("n=300","n=3000","n=30000");
hold off;
# EKTHETIKH KATANOMH
#A
k = 0:0.00001:8;
lambda = [0.5, 1, 3];
for i=1:columns(lambda)
 exp_pdf(i,:) = exppdf(k,lambda(i));
endfor
figure(4);
hold on;
for i=1:columns(lambda)
stem(k,exp_pdf(i,:),colors(i),"linewidth",1.2);
endfor
hold off;
title("probability density function of Exponential processes");
xlabel("k values");
ylabel("probability");
legend("lambda=2","lambda=1","lambda=1/3");
#B
for i=1:columns(lambda)
 exp_cdf(i,:) = expcdf(k,lambda(i));
endfor
figure(5);
hold on;
for i=1:columns(lambda)
 stem(k,exp_cdf(i,:),colors(i),"linewidth",1.2);
endfor
hold off;
```

```
title("Cumulative Distribution Function of Exponential processes");
xlabel("k values");
ylabel("probability");
legend("lambda=2","lambda=1","lambda=1/3");
#C
mean=2.5;
exponential_cdf(4,:) = expcdf(k,mean);
display("P(X>30000) is");
display(1-exponential cdf(4,30));
display("P(X>50000|X>20000) is");
display(1-exponential_cdf(4,50))/(1-exponential_cdf(4,20));
#D
for i=1:5000
 X(i,:) = [exprnd(2), exprnd(1)];
endfor
for i=1:5000
 Y(i) = min(X(i,:));
endfor
mean2 = 0;
for i=1:5000
 mean2 = mean2 + Y(i);
endfor
mean2 = mean2 / 5000;
display("Mean of Y=min{X1,X2} =");
disp(mean2);
max Y = max(Y);
width_of_class = max_Y / 50;
figure(6);
hold on;
[NN, XX] = hist(Y,50);
NN_without_free_variables = NN / width_of_class / 5000;
bar(XX,NN_without_free_variables);
plot(XX,NN_without_free_variables,"r","linewidth",1.3);
hold off;
title("Histogram of Y=min(X1,X2)");
xlabel("Classes");
ylabel("Number of elements");
```

```
#A
```

```
A(1) = exprnd(1/5);
for i=2:100
 A(i) = A(i-1) + exprnd(1/5);
 event(i) = i;
endfor
figure(7);
hold on;
stairs(A, event, "linewidth", 1.2);
hold off:
title("Poisson Proccess (100 points, lambda=5)");
xlabel("Time");
ylabel("Event Number");
#B
mean arrivals = 100 / A(100);
display("Average number of arrivals per second =");
disp(mean arrivals);
#C
between 49 50 = 0;
between 50 \ 51 = 0;
for i=1:100
 A(1) = exprnd(1/5);
 for j=2:100
  A(j) = A(j-1) + exprnd(1/5);
  event(j) = j;
 endfor
 between 49 50 = between 49 50 + A(50) - A(49);
 between_50_51 = between_50_51 + A(51) - A(50);
endfor
between 49 50 = between 49 50 / 100;
between 50 51 = between 50 51 / 100;
display("Average time between 49th and 50th event =");
disp(between_49_50);
display("Average time between 50th and 51st event =");
disp(between_50_51);
```