Exploration of Numerical Precision in Deep Neural Networks

Zhaoqi Li, Yu Ma, Catalina Vajiac, Yunkai Zhang

Industry Mentors: Nicholas Malaya, Allen Rush

Academic Mentor: Hangjie Ji

Research in Industrial Projects for Students (RIPS)

2017

Overview

- Introduction
 - Background
 - Motivation
 - Goals
- Method
 - Arbitrary Precision
 - Mixed Precision
 - Quantization
- Future Work

AMD - The Company

- Semiconductor company
- Circuit design & computer architecture
- Interested in performance of algorithms

Convolutional Neural Network

- What is a neural network?
 - Motivated by human brain
- Convolutional: sparsely-connected
 - Avoid waste of unnecessary interactions between units

Numerical Representation in Memory

• $x = \pm 1.mantissa * 2^{exponent}$

• 1.3?

```
sign exponent (8-bit) mantissa (23-bit)

0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 = 1.29999995...
```

Motivation for Reduced Precision

- Memory-bound systems
 - Neural networks for simple devices (i.e. mobile)
- GPUs
 - Overhead for transferring data from CPU to GPU
 - Good for performing many small tasks in parallel
- Distributed ML Algorithms

Previous Work

- Reduced precision works for inference (Gupta, et al. 2015)
- Low precision works for the training process (Courbariaux, et al. 2014)
- Intel supports half precision, Google supports 8-bit arithmetic

Goals

- Gain understanding of
 - Deep Neural Networks (DNNs)
 - Numerical representations in memory
 - Computer arithmetic
- Optimize deep learning performance with low precision
 - Precision/stability vs. memory/speed
- Estimate precision bounds for particular networks

Arbitrary Precision: Introduction

- Represent a number with any number of bits
- Software:
 - Tensorflow: black boxed functions
 - CAFFE: only supports float 32
 - Theano: more transparent than the rest
- Datasets:
 - MNIST (digit recognition)
 - CIFAR10 (object classification)

cat

frog

Arbitrary Precision: Truncation

Different levels of truncation:

- After each basic arithmetic operation
 - Emulates hardware-like setting where nothing can be done with higher precision
 - Complicated: need to redefine Theano functions
- After each batch
 - Represents parameter server for distributed ML algorithms
 - Not necessary to redefine Theano functions

Arbitrary Precision: Implementation

- How to truncate:
 - Create filter
 - Bitwise AND with original number

Arbitrary Precision: Logistic Regression Results

Arbitrary Precision: CNN Results

Mixed Precision

- Change precision after a certain number of iterations
 - Could happen multiple times per several epochs/batches
 - Current direction: low to high
- The Hypothesis
 - High precision determines the better local minima to approach
 - Low precision speeds up the convergence process

Quantization - Introduction

- Google TPU contains 256 x 256 8bit multiply-add computational units
- Google low precision GEMM library
- Reduce computational resources
- Theano based code by Matthieu
 Courbariaux

```
Quantized | Float
----- | -----
0 | -10.0
255 | 30.0
128 | 10.0
```

Quantization - Implementation

- BinaryNet (quantize to -1 and 1)
 - Benchmark performance on MNIST, CIFAR-10 and SVHN
- 8-bit CNN
 - Quantize input, weight, and output gradient
 - Difficult to customize arbitrary uint datatype
- Nvidia GPU, Theano configuration for CUDA, Lasagne
 - Fast compilation and fast convergence

Next Step I

- One model for all
 - # of layers/neurons vs runtime
 - accumulation error?
- Truncation after each layer
 - need to feed data first
 - automatic differentiation

Next Step II

Python Code

```
1. y = T.nnet.softmax(T.dot(x, W) + b)
2. cross_entropy = -T.sum(y_*T.log(y))
3. g_W = T.grad(cost=cross_entropy, wrt=W)
    g_b = T.grad(cost=cross_entropy, wrt=b)
4. updates = [(W, W - learning_rate * g_W), (b, b-learning_rate * g_b)]
5. train_model = theano.function(inputs=[x, y_], outputs=cross_entropy, updates=updates)
```

Human Language

- 1. y = xW + b2. Cost function = $\sum (y_*T.\log(y))$
- 3. Differentiate cost function with respect to w and b
- 4. Update W = W learning_rate * g_W, b = b-learning_rate * g_b
- 5. Define train_model that takes x, y_{-} as inputs, find the cost function, and update w and b correspondingly.

Next Step II

```
y = T.nnet.softmax(T.dot(x, W) + b)
cross_entropy = -T.sum(y_*T.log(y))

g_W = T.grad(cost=cross_entropy, wrt=W)
g_b = T.grad(cost=cross_entropy, wrt=b)

updates = [(W, W - learning_rate * g_W), (b, b - learning_rate * g_b)]
train_model = theano.function(inputs=[x, y_], outputs=cross_entropy,
updates=updates)
#Y = xW+b

#gradient

updates=updates
```

Processed

Using Symbols

Want to change to numbers to truncate

Finally...

"Prove" it!

Thank you for your attention!

Questions?

References

[1] Gupta, Suyog, et al. "Deep Learning with Limited Numerical Precision." ICML. 2015.

[2] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[3] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Training deep neural networks with low precision multiplications." arXiv preprint arXiv:1412.7024 (2014).