MAT4110 - oblig 1

Halvard Sutterud

September 2018

1 Theory and methods

Exercise 1

The QR-factorization decomposes a $n \times m$ matrix A (with $n \geq m$) by

$$A = QR, (1)$$

where $Q \in \mathbb{R}^{n \times n}$ is orthogonal and $R \in \mathbb{R}^{n \times m}$ is a matrix

$$R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix}, \tag{2}$$

where $R_1 \in$ is upper triangular. The linear problem can then be written as

$$Ax = b \Rightarrow Rx = Q^{-1}b = Q^{T}b \tag{3}$$

since Q is orthogonal. As R has n-m rows consisting of zeros, these will not contribute, and we simplify the problem further

$$R_1 x = c_1. (4)$$

Here c_1 comes from the decomposition $Q^Tb = [c_1, c_2]$, where c_1 has length m and c_2 has length n - m. As R_1 is upper triangular, we can solve eq. (4) by simple backwards substitution,

$$x_m = \frac{c_m}{R_{m,m}}$$

$$x_i = \frac{c_i - \sum_{j=i+1}^m R_{i,j} x_j}{R_{i,i}} \quad \text{for} \quad i < m.$$

This is implemented for our design matrix X in the function ex1 in the python code, as can be seen in listing 1.

Exercise 2

The cholesky factorization is a factorization of a symmetric $n \times n$ matrix $A = LDL^T$, where L is lower triangular, and D is diagonal. In the case that A is positive definite (which it is in our case, as $A = X^T X$), this can be rewritten

$$A = RR^T, (5)$$

if one writes $R = LD^{1/2}$, with $D^{1/2}$ as a matrix with the square root of the diagonal elements of D along the diagonal, i.e. $(D^{1/2})_{i,i} = \sqrt{D_{i,i}}$.

The problem we wish to solve is

$$X^T X x = X^T b \Rightarrow A x = X^T b \tag{6}$$

We rewrite the problem by performing the cholesky factorization on the symmetric matrix A,

$$RR^T x = X^T b, (7)$$

and then splitting this into a forward substitution

$$Ry = X^T b, (8)$$

since R is lower triangular, and a backward substitution

$$R^T x = y, (9)$$

as R^T is upper triangular. This is implemented in the function ex2 in the python code, as can be seen in listing 1.

Exercise 3

The condition number when solving a linear system Ax = b is given in the lecture notes as the ratio of the largest singular value and the smallest,

$$K_2(A) = \frac{\sigma_{\text{max}}(A)}{\sigma_{\text{min}}(A)} \tag{10}$$

where K_2 indicates that we are using the 2-norm. In the QR-algorithm, we solve the matrix equation $R_1x = c_1$, with $c_1 = Q_1b$, and R_1 and Q_1 as the so-called economic matrices of the QR-factorization (as provided by numpy). Applying the SVD-tranformation and calculating the K2-conditioning, we get $K_2(R_1) = 58.95$ (for the given seed).

In the case of the cholesky solver, the problem solved is

$$RR^T x = A^T b (11)$$

We solve it by two separate problems, $R^T x = y$ and $Ry = A^T b$. However, it can be shown that (left as an exercise to the reader)

$$K_2(RR^T) = K_2(R)K_2(R^T) = K_2(R)^2,$$
 (12)

which is good, because the conditioning should be independent of the way we solve the problem (eq. (12)). Applying this to the given seed, we get $K_2(R)^2 = (58.95)^2 = 3475.16$. We observe that the conditioning of the original problem can be increased by increasing the number of times we solve a linear system.

2 Results

The resulting polynomials for the two functions stated in the problem set can be seen in figs. 1 and 2

Figure 1: The first data as described in the problem set, fit with least squares solved by both QR-factorization and cholesky-factorization, for polynomials of degree 3 and 8.

Figure 2: The second data as described in the problem set, fit with least squares solved by both QR-factorization and cholesky-factorization, for polynomials of degree 3 and 8.

Listing 1: The file oblig1.py

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
import argparse
from textwrap import wrap
def data1(plot = True):
    n = 30
    start = -2
    stop = 2
    x = np.linspace(start, stop, n)
    eps = 1
    np.random.random(1)
    r = np.random.random(n) * eps
    y = x*(np.cos(r+0.5*x**3)+np.sin(0.5*x**3))
    if plot:
        plt.plot(x,y,'o')
        plt.show()
    return x,y
def data2(plot = True):
    n = 30
    start = -2
    stop = 2
    x = np.linspace(start, stop, n)
    eps = 1
    \# rng(1)
```

```
r = np.random.random(n) * eps
    y \, = \, 4*x**5 \, - \, 5*x**4 \, - \, 20*x**3 \, + \, 10*x**2 \, + \, 40*x \, + \, 10 \, + \, r
    if plot:
         plt.plot(x,y,'o')
         plt.show()
    return x,y
def QR solve(A, b):
    """Solves \ Ax = b \ with \ QR-factorization"""
    \# with mode = 'economic', R==R1
    Q,R = linalg.qr(A, mode = 'economic')
    M = R. shape [1]
    R1 = R
    c = Q.T @ b
    c1\;,\;\;c2\;=\;c\;[\,:\!M]\;,\;\;c\;[M\!:\!\,]
    x = backward(R1, c1)
    return x
def backward (U, b):
    M = U.shape[0]
    x = np.zeros(M)
    x[-1] \ = \ b[-1] \ / \ U[-1,-1]
    for i in range (2, M+1):
        x[-i] = (b[-i] - np.sum(U[-i,-i+1:]*x[-i+1:])) / U[-i,-i]
    return x
def forward(L,b):
    M = L.shape[0]
    x = np.zeros(M)
    x[0] = b[0]/L[0,0]
    for i in range (1,M):
        x[i] = (b[i] - np.sum(L[i,:i-1]*x[:i-1])) / L[i,i]
    return x
def ex1(args):
    print('ex1')
    x,y = data1(plot=False)
    deg = 3
    X = np.array([x**i for i in range(deg+1)]).T
    beta = QR solve(X, y)
    plt.plot(x,y,'o', label='data')
    plt.plot(x, X@beta, '-', label = 'order {}'.format(deg))
    plt.legend()
    plt.show()
def ex2(args):
    \mathbf{print}\,(\,\mathtt{'ex2'})
    x,y = data1(plot=False)
    deg = 5
    X = np.array([x**i for i in range(deg+1)]).T
    B = X.T @ X
    beta = cholesky\_solve(X, y)
    plt.plot(x,y,'o', label='data')
```

```
plt.plot(x, X@beta, '-', label = 'order {}'.format(deg))
    plt.legend()
    plt.show()
def cholesky_solve(A, b):
    """Solves Ax = b through normal equations A.T Ax = A.T b, using cholesky
    factorization, solving R y = A.T b with forward sub and then R.T x = y
    \# Solve
    \# Solve R^T x = y
    # remember, R is lower diag
    R = cholesky(A.T@A)
    x = backward(R.T, forward(R, A.T @ b))
    return x
def cholesky (A, RR = True):
    Ak = A. copy()
    n = A. shape [0]
    L = np.zeros(Ak.shape)
    D = np.zeros(Ak.shape[0])
    for k in range(n):
        L\left[:\,,k\,\right]\;=\;Ak\left[:\,,k\,\right]
        D[k] = Ak[k,k]
        L[:,k] = L[:,k]/D[k]
        Ak = D[k]*np.outer(L[:,k], L[:,k])
        R = L * np.sqrt(D)
        return R
    else:
        return L, np.diag(D)
def K2 condition(A):
    ''' Calculates the K-2 condition of solving a linear system Ax = b using
    the singular values of A'''
    svd = linalg.svd(A)
    sing vals = svd[1]
    return (np.max(sing_vals) / np.min(sing_vals))
def ex3(args):
    x,y = data1(plot=False)
    deg = 5
    X = np.array([x**i for i in range(deg+1)]).T
    Q,R = linalg.qr(X, mode = 'economic')
    \#svd = linalg.svd()
    Rchol = cholesky(X.T@X)
    print(K2 condition(Rchol))
    print(K2_condition(Rchol.T))
    print(K2 condition(Rchol.T)**2)
    print(K2 condition(Rchol @ Rchol.T))
    print(K2 condition(X))
    print (R. shape)
    \# K2 \ condition(R)
```

```
def produce results(args):
    for i,datafunc in enumerate([data1, data2]):
        fig, axes = plt.subplots(1,2, figsize = [9,3])
        x,y = datafunc(plot=False)
        for deg, ax in zip([3,8], axes):
            print(deg)
            X = np.array([x**i for i in range(deg+1)]).T
            # QR
            beta = QR_solve(X, y)
            ax.plot(x,y,'o',)
            ax.plot(x,X@beta,'-', label='QR solver')
            # Cholesky
            B = X.T @ X
            beta = cholesky\_solve(X, y)
            ax.plot(x,X@beta,'--', label='Cholesky solver')
            ax.legend()
            ax.set title('Degree = {}'.format(deg))
            ax.set_xlabel('$x$')
            ax.set_ylabel('$y = f(x)$')
        \# \ fig. \ suptiitle(i+1)
        fig.tight layout()
        print ( i +1)
        plt.savefig(f'data{i+1}.pdf')
        plt.show()
def main(args):
    """Either~runs~all~parts~or~just~one"""
    parts = \{1:ex1, 2: ex2, 3:ex3, 4:produce results\}
    if args.part = 0:
        ex1(args)
        ex2(args)
        ex3(args)
        produce results (args)
    else:
        parts [args.part] (args)
def get args():
    parser = argparse.ArgumentParser()
    parser.add argument('-p','--part', type=int, default=0,
            choices = [0,1,2,3,4])
    return parser.parse args()
if __name__=',__main__':
    args = get_args()
    main(args)
```