Análisis Espacial con Datos Geográficos

Matrices de Pesos, Índice de Moran, Índice de Geary y Hotspots

Autor: Katia Daishy Ticona CasaCurso: Estadística Espacial

Año: 2025

Introducción

El análisis espacial permite estudiar cómo las variables observadas en distintas ubicaciones geográficas se relacionan entre sí. A través de herramientas estadísticas especializadas, es posible identificar patrones, dependencias y concentraciones espaciales (clústeres), esenciales en campos como la geografía, economía, sociología o agronomía.

En este documento se describen los principales conceptos empleados en el análisis espacial implementado en \mathbf{R} : las matrices de pesos espaciales, los índices de autocorrelación espacial (Moran y Geary) y el análisis de Hotspots (Getis-Ord Gi^*).

1. Matrices de Pesos Espaciales

La matriz de pesos espaciales (W) es la base del análisis espacial. Representa las relaciones de vecindad entre las unidades geográficas. Cada elemento w_{ij} indica el grado de conexión o influencia entre las observaciones $i \ y \ j$.

Definición

$$W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nn} \end{bmatrix}$$

Donde:

- $w_{ij} = 1$ si las unidades i y j son vecinas.
- $w_{ij} = 0$ en caso contrario.

Los pesos pueden definirse según:

1. Contigüidad: los polígonos comparten frontera.

- 2. Distancia: puntos dentro de un radio específico.
- 3. Vecinos más cercanos: por ejemplo, k = 5 vecinos más próximos.

En R, se construyen con:

```
nb <- knn2nb(knearneigh(coords, k = 5))
lw <- nb2listw(nb, style = "W")</pre>
```


Figura 1: Mapa de Matriz de Pesos

La matriz de pesos espaciales define las relaciones de vecindad entre las unidades geográficas del estudio. En este caso, se utilizó el método de los $\mathbf{5}$ vecinos más cercanos $(\mathbf{k}=\mathbf{5})$, donde cada punto está conectado con sus cinco observaciones más próximas según su posición geográfica (latitud y longitud).

En el mapa se observa la distribución de las unidades principalmente en la zona costera y andina del Perú, con menor densidad en la Amazonía. Esto indica que la estructura espacial se concentra en regiones con mayor actividad productiva y densidad poblacional.

Esta matriz constituye la base para los siguientes análisis espaciales: el Índice de Moran, el Índice de Geary y la detección de Hotspots, los cuales dependen de la correcta definición de la vecindad. En resumen, el modelo k=5 permite representar adecuadamente la dependencia espacial en el territorio de estudio.

2. Índice de Moran

El Índice de Moran (I) mide la autocorrelación espacial global, es decir, si valores similares se agrupan en el espacio o se distribuyen aleatoriamente.

Fórmula

$$I = \frac{n}{S_0} \cdot \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

Donde:

- n: número de observaciones.
- x_i : valor de la variable en la unidad i.
- \bar{x} : media de la variable.
- w_{ij} : elemento de la matriz de pesos espaciales.
- $S_0 = \sum_i \sum_j w_{ij}$: suma total de los pesos.

Interpretación

- I > 0: autocorrelación positiva (valores similares tienden a agruparse).
- I < 0: autocorrelación negativa (valores altos rodeados de bajos y viceversa).
- $I \approx 0$: distribución aleatoria.

Ejemplo en R

moran.test(sf_data\$P104_SUP_ha, lw)

Este mapa representa la distribución espacial de una variable categorizada como varclean en el territorio peruano y zonas limítrofes. El valor del Índice de Moran (0.0713) indica una autocorrelación espacial muy débil, lo que sugiere que los valores similares no tienden a agruparse de forma significativa en el espacio.

Figura 2: Mapa de Índice de Moran

Resultados del test de Moran I

- Estadístico Moran I: 0,0713
- Valor esperado bajo aleatorización: -0,00003
- Varianza: 0,00000773
- Desviación estándar del estadístico: 25,657
- Valor-p: $< 2.2 \times 10^{-16}$
- **Hipótesis alternativa:** La autocorrelación espacial es mayor que la esperada bajo aleatorización.

El valor observado del Índice de Moran I es 0.0713, ligeramente positivo, lo que indica una autocorrelación espacial débil

Sin embargo, el valor-p extremadamente bajo (2.2×10^{1}) sugiere que esta autocorrelación, aunque débil, es estadísticamente significativa

3. Índice de Geary

El Índice de Geary (C) también mide autocorrelación espacial, pero es más sensible a las diferencias locales entre vecinos.

Fórmula

$$C = \frac{(n-1)}{2S_0} \cdot \frac{\sum_{i} \sum_{j} w_{ij} (x_i - x_j)^2}{\sum_{i} (x_i - \bar{x})^2}$$

Interpretación

• C < 1: autocorrelación positiva.

• C=1: distribución aleatoria.

• C > 1: autocorrelación negativa.

Ejemplo en R

geary.test(sf_data\$P104_SUP_ha, lw)

El valor del Índice de Geary (0.8334) indica una autocorrelación espacial débil, lo que sugiere que los valores de la variable no presentan una fuerte similitud entre unidades vecinas; es decir, hay una distribución relativamente aleatoria.

Se observa una mayor concentración de datos en la región occidental y central del país, especialmente en la zona andina y costera, mientras que la región amazónica oriental presenta menor densidad de observaciones.

Resultados del test de Geary C

■ Estadístico Geary C: 0,8334

• Valor esperado bajo aleatorización: 1,0000

■ Varianza: 0,01596

■ Desviación estándar del estadístico: 1,3183

Figura 3: Mapa de Índice de Geary

■ Valor-p: 0,09371

• Hipótesis alternativa: La expectativa es mayor que el estadístico observado.

El valor observado del Índice de Geary C es 0.8334, inferior al valor esperado bajo aleatorización (1.0000), lo que sugiere una autocorrelación espacial positiva leve

Sin embargo, el valor-p de 0.09371 indica que esta autocorrelación no es estadísticamente significativa al nivel convencional de 0.05.

4. Hotspots (Getis-Ord Gi*)

El estadístico **Getis-Ord Gi*** identifica clústeres espaciales de valores altos (*hot spots*) o bajos (*cold spots*). Es un análisis *local* de autocorrelación espacial.

Fórmula

$$G_i^* = \frac{\sum_{j} w_{ij} x_j - \bar{X} \sum_{j} w_{ij}}{S \sqrt{\frac{[n \sum_{j} w_{ij}^2 - (\sum_{j} w_{ij})^2]}{n-1}}}$$

Donde:

- x_j : valor observado en la unidad j.
- \bar{X} : media global de la variable.
- S: desviación estándar global.

Interpretación

- G_i^* alto y significativo \Rightarrow **Hotspot** (concentración de valores altos).
- \bullet G_i^* bajo y significativo \Rightarrow $\mathbf{Coldspot}$ (concentración de valores bajos).

Ejemplo en R

```
gi <- localG(sf_data$P104_SUP_ha, lw)
sf_data$Gi <- as.numeric(gi)</pre>
```

El análisis de *Hotspots* mediante el estadístico de Getis-Ord Gi* permite identificar zonas donde los valores altos o bajos de una variable se agrupan de manera significativa. Cada punto del mapa representa una unidad espacial, y el color refleja el nivel de intensidad o concentración local del fenómeno.

Los tonos **rojos y naranjas** indican las áreas denominadas **Hotspots**, es decir, zonas con valores altos que tienden a agruparse espacialmente. Estas concentraciones se observan principalmente en la **costa y sierra sur del Perú**, destacando regiones como Arequipa, Cusco, Puno y Lima, donde el fenómeno presenta mayor intensidad. Por otro lado, los tonos **amarillos o claros** corresponden a valores medios o sin significancia estadística, y las áreas sin color representan zonas sin datos o con valores no significativos.

Conclusiones

El análisis espacial proporciona herramientas potentes para descubrir patrones no evidentes en datos geográficos. Mientras el índice de **Moran** detecta autocorrelación global, el índice de **Geary** permite examinar variaciones locales y el estadístico **Getis-Ord Gi***

Figura 4: Mapa de Hotspots

identifica áreas de concentración significativas (hotspots). Las **matrices de pesos espaciales** son el punto de partida para todos estos cálculos, ya que definen la estructura de interacción entre las unidades del territorio.

Anexos

Código en R para el análisis espacial

```
# APP SHINY - ANÁLISIS ESPACIAL DEFINITIVO (v3 - Estilo)
library(shiny)
library(dplyr)
library(sf)
library(spdep)
library(tmap)
library(rnaturalearth)
library(rnaturalearthdata)
library(readxl)
library(readr)
# Opciones para visualización
options(scipen = 999)
# --- Modo mapa
tmap_mode("view")
# CARGA Y LIMPIEZA DE DATOS INICIAL
# --- OPCIÓN A (Recomendada si el archivo local es REALMENTE un .xlsx)
datos <- read_excel("C:/Users/LENOVO/Desktop/UNIVERSIDAD/X SEMESTRE/ESTADÍSTICA ESPAC
# Limpieza inicial: eliminar filas con coordenadas vacías
datos <- datos %>%
 filter(!is.na(LATITUD), !is.na(LONGITUD))
```

Convertir a objeto espacial (Base de datos completa)

sf_data <- st_as_sf(datos,</pre>

```
coords = c("LONGITUD", "LATITUD"),
                crs = 4326)
# Mapa base del Perú
peru <- ne_countries(scale = "medium", country = "Peru", returnclass = "sf")</pre>
# INTERFAZ (Sin Cambios)
ui <- fluidPage(</pre>
 titlePanel(" Análisis Espacial - Base CARATULA.xlsx"),
 sidebarLayout(
   sidebarPanel(
     selectInput("tema", "Seleccione un análisis:",
              choices = c("1. Matriz de Pesos" = "pesos",
                        "2. Índice de Moran" = "moran",
                        "3. Índice de Geary" = "geary",
                        "4. Hotspots (Getis-Ord Gi*)" = "hotspot")),
     selectInput("variable", "Variable a analizar:",
              choices = names(datos),
              selected = "P104_SUP_ha"),
    helpText(" Elija una variable numérica sin valores vacíos.")
   ),
   mainPanel(
     tmapOutput("mapa", height = "600px"),
    verbatimTextOutput("resultado")
   )
 )
)
# SERVIDOR
server <- function(input, output, session) {</pre>
```

```
# Reactive para preparar y limpiar los datos según la variable seleccionada
sf_cleaned_data <- reactive({
  req(input$variable)
  # 1. Extraer y limpiar la variable
  v_raw <- datos[[input$variable]]</pre>
  v <- suppressWarnings(as.numeric(v_raw))</pre>
  # Índices de las filas que tienen COORDENADAS VÁLIDAS Y VARIABLE VÁLIDA
  idx_valid <- which(!is.na(v))</pre>
  # 2. Filtrar el objeto sf (creado globalmente) y el vector de valores
  sf_use <- sf_data[idx_valid, ]</pre>
  v_clean <- v[idx_valid]</pre>
  # Validación mínima para análisis espacial
  if (length(v_clean) < 3) {</pre>
    return(NULL)
  }
  # Añadir la variable limpia para usarla en tm_dots
  sf_use$var_clean <- v_clean
  list(sf_use = sf_use, v = v_clean)
})
# La matriz de vecinos ahora depende del subset limpio (sf_cleaned_data)
vecinos <- reactive({</pre>
  data_list <- sf_cleaned_data()</pre>
  req(data_list)
  coords <- st_coordinates(data_list$sf_use)</pre>
  nb <- knn2nb(knearneigh(coords, k = 5))</pre>
  nb
})
# La matriz de pesos depende de los vecinos correctos
```

```
pesos <- reactive({</pre>
 nb2listw(vecinos(), style = "W")
})
output$mapa <- renderTmap({</pre>
  data_list <- sf_cleaned_data()</pre>
 # Manejo de error si los datos no son válidos
  if (is.null(data_list)) {
   output$resultado <- renderPrint(" Error: No hay suficientes datos válidos (al m
   return(tm_shape(peru) + tm_polygons(col = "gray90") + tm_text("NAME", size = 0.5
 }
 # Extraer los datos limpios y los pesos
 sf_use <- data_list$sf_use
 v <- data_list$v</pre>
 w <- pesos()
 var_plot <- "var_clean"</pre>
  # TEMA 1: MATRIZ DE PESOS
  if (input$tema == "pesos") {
   output$resultado <- renderPrint({</pre>
     cat("Matriz de pesos creada con vecinos k = 5.\n")
     print(summary(pesos()))
   })
   tm_shape(peru) +
     tm_polygons(col = "gray90") +
     tm_shape(sf_use) +
     tm_dots(col = "#00A65A", size = 0.2) + # COLOR Y TAMAÑO AUMENTADOS
     tm_layout(title = "Matriz de Pesos (Vecindad k=5)")
 }
  # TEMA 2: ÍNDICE DE MORAN
```

```
else if (input$tema == "moran") {
  i <- moran.test(v, w)</pre>
  output$resultado <- renderPrint(i)</pre>
  tm_shape(peru) +
    tm_polygons(col = "gray85") +
    tm_shape(sf_use) +
    tm_dots(col = var_plot, palette = "Reds", size = 0.2, style = "quantile") + #
    tm_layout(title = paste("Índice de Moran:", round(i$estimate[1], 4)))
}
# TEMA 3: ÍNDICE DE GEARY
else if (input$tema == "geary") {
  g <- geary.test(v, w)
  output$resultado <- renderPrint(g)</pre>
  tm_shape(peru) +
    tm_polygons(col = "gray85") +
    tm_shape(sf_use) +
    tm_dots(col = var_plot, palette = "Blues", size = 0.2, style = "quantile") + =
    tm_layout(title = paste("Índice de Geary:", round(g$estimate[1], 4)))
}
# TEMA 4: HOTSPOTS
else if (input$tema == "hotspot") {
 gi <- localG(v, w)
  sf_use$Gi <- as.numeric(gi)</pre>
  output$resultado <- renderPrint(summary(gi))</pre>
  tm_shape(peru) +
    tm_polygons(col = "gray85") +
    tm_shape(sf_use) +
    tm_dots(col = "Gi", palette = "RdYlBu", size = 0.2, style = "quantile") + #
    tm_layout(title = "Hotspots (Getis-Ord Gi*)")
}
```