# 作业1: 数据探索性分析与数据预处理

322010840 刘聪聪

# 1. 问题描述

自行选择2个数据集进行探索性分析与预处理。

所选数据集:

wine-reviews

## 2.数据集

wine-reviews

一共2个csv文件

winemag-data\_first150k.csv

包含10列和15万条葡萄酒评论

winemag-data\_first150k.csv

包含10列和13万行葡萄酒评论

#### 导入库

```
In [1]:
```

```
import matplotlib
import numpy as np
import pandas as pd
%matplotlib inline
```

#### 载入数据

#### In [2]:

```
path_15k = "data/wine-reviews/winemag-data_first150k.csv"

path_13k = "data/wine-reviews/winemag-data-130k-v2.csv"

data_15k = pd. read_csv(path_15k)
```

#### 数据的属性

# In [3]:

data\_15k. head (5)

## Out[3]:

|   | Unnamed:<br>0 | country | description                                                   | designation                                   | points | price | province          | region_1             | region_            |
|---|---------------|---------|---------------------------------------------------------------|-----------------------------------------------|--------|-------|-------------------|----------------------|--------------------|
| 0 | 0             | US      | This<br>tremendous<br>100%<br>varietal<br>wine hails<br>from  | Martha's<br>Vineyard                          | 96     | 235.0 | California        | Napa<br>Valley       | Nap                |
| 1 | 1             | Spain   | Ripe<br>aromas of<br>fig,<br>blackberry<br>and cassis<br>are  | Carodorum<br>Selección<br>Especial<br>Reserva | 96     | 110.0 | Northern<br>Spain | Toro                 | Na                 |
| 2 | 2             | US      | Mac<br>Watson<br>honors the<br>memory of<br>a wine once<br>ma | Special<br>Selected<br>Late<br>Harvest        | 96     | 90.0  | California        | Knights<br>Valley    | Sonom              |
| 3 | 3             | US      | This spent<br>20 months<br>in 30% new<br>French oak,<br>an    | Reserve                                       | 96     | 65.0  | Oregon            | Willamette<br>Valley | Willametl<br>Valle |
| 4 | 4             | France  | This is the<br>top wine<br>from La<br>Bégude,<br>named aft    | La Brûlade                                    | 95     | 66.0  | Provence          | Bandol               | Na                 |

## In [4]:

data\_15k.dtypes

## Out[4]:

| Unnamed: 0    | int64   |
|---------------|---------|
| country       | object  |
| description   | object  |
| designation   | object  |
| points        | int64   |
| price         | float64 |
| province      | object  |
| region_1      | object  |
| region_2      | object  |
| variety       | object  |
| winery        | object  |
| dtype: object |         |

- country 国家
- desprition 描述
- designation 葡萄酒庄
- pints 得分
- price 价格
- province 省份
- region\_1 区域1
- region\_2 区域2
- variety 葡萄种类
- winery 酿酒厂

# 3. 数据分析

# 3.1 数据可视化与摘要

## 3.1.1 country属性

## In [5]:

```
attri = "country"
data_15k[attri].value_counts(dropna = False)
```

## Out[5]:

| US                         | 62397                 |
|----------------------------|-----------------------|
| Italy                      | 23478                 |
| France                     | 21098                 |
|                            | 8268                  |
| Spain                      |                       |
| Chile                      | 5816                  |
| Argentina                  | 5631                  |
| Portugal                   | 5322                  |
| Australia                  | 4957                  |
| New Zealand                | 3320                  |
| Austria                    | 3057                  |
| Germany                    | 2452                  |
| South Africa               | 2258                  |
| Greece                     | 884                   |
|                            |                       |
| Israel                     | 630                   |
| Hungary                    | 231                   |
| Canada                     | 196                   |
| Romania                    | 139                   |
| Slovenia                   | 94                    |
| Uruguay                    | 92                    |
| Croatia                    | 89                    |
| Bulgaria                   | 77                    |
| Moldova                    | 71                    |
| Mexico                     | 63                    |
| Turkey                     | 52                    |
|                            | 43                    |
| Georgia                    |                       |
| Lebanon                    | 37                    |
| Cyprus                     | 31                    |
| Brazil                     | 25                    |
| Macedonia                  | 16                    |
| Serbia                     | 14                    |
| Morocco                    | 12                    |
| England                    | 9                     |
| Luxembourg                 | 9                     |
| India                      | 8                     |
| Lithuania                  | 8                     |
| Czech Republic             | 6                     |
| Ukraine                    | 5                     |
|                            | 5                     |
| NaN                        |                       |
| Bosnia and Herzegovina     | 4                     |
| Switzerland                | 4                     |
| South Korea                | 4                     |
| Egypt                      | 3                     |
| China                      | 3                     |
| Slovakia                   | 3                     |
| Montenegro                 | 2                     |
| Tunisia                    | 2                     |
| Albania                    | 3<br>2<br>2<br>2<br>2 |
| Japan                      | 2                     |
| US-France                  | 1                     |
| Name: country, dtype: int  |                       |
| wame. country, dtype. Into | 04                    |

## In [6]:

```
data_15k[attri].value_counts(dropna = False).plot(kind="bar", figsize=(15,4))
```

#### Out[6]:

 ${\tt matplotlib.axes.\_subplots.AxesSubplot}$  at  ${\tt 0xff18568}{\gt}$ 



## 3.1.2 designation属性

## 标称属性,给出每个可能聚会的频数

#### In [7]:

```
attri = "designation"
data_15k[attri].value_counts(dropna = False)
```

## Out[7]:

| NaN                               | 45735  |       |
|-----------------------------------|--------|-------|
| Reserve                           | 2752   |       |
| Reserva                           | 1810   |       |
| Estate                            | 1571   |       |
| Barrel sample                     | 1326   |       |
|                                   |        |       |
| Clos de l'Ermitage                | 1      |       |
| Brut Cuvèe 4 Millesimato          | 1      |       |
| Amberhill                         | 1      |       |
| Podere le Giarette                | 1      |       |
| Sauvignon Blanc Ruster Ausbruch   | 1      |       |
| Name: designation, Length: 30622, | dtype: | int64 |

## 使用直方图可视化,只显示前50项

## In [8]:

```
data_15k[attri].value_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))
```

#### Out[8]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x105f6628>



## 3.1.3 province属性

## 标称属性,给出每个可能聚会的频数

## In [9]:

```
attri = "province"
data_15k[attri].value_counts(dropna = False)
```

## Out[9]:

| California      | 44508        |        |       |
|-----------------|--------------|--------|-------|
| Washington      | 9750         |        |       |
| Tuscany         | 7281         |        |       |
| Bordeaux        | 6111         |        |       |
| Northern Spain  | 4892         |        |       |
|                 |              |        |       |
| Waitaki Valley  | 1            |        |       |
| Dalmatian Coast | 1            |        |       |
| Pafos           | 1            |        |       |
| Ticino          | 1            |        |       |
| Ioannina        | 1            |        |       |
| Name: province, | Length: 456, | dtype: | int64 |

## 使用直方图可视化,只显示前50项

## In [10]:

```
data_15k[attri].value_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))
```

## Out[10]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x105329b8>



## 3.1.3 region\_1属性

## 标称属性,给出每个可能聚会的频数

## In [11]:

```
attri = "region_1"
data_15k[attri].value_counts(dropna = False)
```

## Out[11]:

| NaN                                  | 25060 |
|--------------------------------------|-------|
| Napa Valley                          | 6209  |
| Columbia Valley (WA)                 | 4975  |
| Mendoza                              | 3586  |
| Russian River Valley                 | 3571  |
|                                      |       |
| Valle d'Aosta                        | 1     |
| Vin de Pays des Coteaux de Murviel   | 1     |
| Erbaluce di Caluso                   | 1     |
| Napa Valley-Paso Robles              | 1     |
| Ramandolo                            | 1     |
| Name: region 1, Length: 1237, dtype: | int64 |

## 使用直方图可视化,只显示前50项

## In [12]:

data\_15k[attri].value\_counts(dropna = False)[:50].plot(kind="bar", figsize=(15,4))

#### Out[12]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x105cfe08>



## 3.1.4 region\_2属性

## In [13]:

```
attri = "region_2"
data_15k[attri].value_counts(dropna = False)
```

#### Out[13]:

| NaN                       | 89977 |
|---------------------------|-------|
| Central Coast             | 13057 |
| Sonoma                    | 11258 |
| Columbia Valley           | 9157  |
| Napa                      | 8801  |
| California Other          | 3516  |
| Willamette Valley         | 3181  |
| Mendocino/Lake Counties   | 2389  |
| Sierra Foothills          | 1660  |
| Napa-Sonoma               | 1645  |
| Finger Lakes              | 1510  |
| Central Valley            | 1115  |
| Long Island               | 771   |
| Southern Oregon           | 662   |
| Oregon Other              | 661   |
| North Coast               | 632   |
| Washington Other          | 593   |
| South Coast               | 198   |
| New York Other            | 147   |
| Name: region_2, dtype: in | rt64  |

#### 使用直方图可视化

## In [14]:

```
data_15k[attri].value_counts(dropna = False).plot(kind="bar", figsize=(15, 4))
```

#### Out[14]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x107c92f8>



## 3.1.5 variety属性

## In [15]:

```
attri = "variety"
data_15k[attri].value_counts(dropna = False)
```

#### Out[15]:

Chardonnay 14482
Pinot Noir 14291
Cabernet Sauvignon 12800
Red Blend 10062
Bordeaux-style Red Blend 7347
...
Petit Meslier 1
Vidadillo 1
Tempranillo-Malbec 1
Früburgunder 1
Carineña 1

Name: variety, Length: 632, dtype: int64

## 使用直方图可视化,只显示前80项

#### In [16]:

```
data_15k[attri].value_counts(dropna = False)[:80].plot(kind="bar", figsize=(15,4))
```

#### Out[16]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1083edf0>



## 3.1.6 winery属性

## In [17]:

```
attri = "winery"
data_15k[attri].value_counts(dropna = False)
```

#### Out[17]:

| Williams Selyem            | 374 |
|----------------------------|-----|
| Testarossa                 | 274 |
| DFJ Vinhos                 | 258 |
| Chateau Ste. Michelle      | 225 |
| Columbia Crest             | 217 |
|                            |     |
| Château Thivin             | 1   |
| Chimere                    | 1   |
| Château Marion d'Audren    | 1   |
| Alexanderfontein           | 1   |
| Domaine Machard de Gramont | 1   |
| N 1 11 14010               | 1.  |

Name: winery, Length: 14810, dtype: int64

## 使用直方图可视化,只显示前80项

#### In [18]:

```
data_15k[attri].value_counts(dropna = False)[:80].plot(kind="bar", figsize=(15,4))
```

#### Out[18]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x109a1e68>



## 3.1.7 points属性

数值属性,给出五数概括

## In [19]:

```
attri = "points"

for i in range(0,5):

    q = i * 0.25

    print("Q\d:"\%(i), end=" ")

    print(data_15k[attri]. quantile(q))
```

Q0: 80.0 Q1: 86.0 Q2: 88.0 Q3: 90.0 Q4: 100.0

## 绘制盒图

## In [20]:

```
p = data_15k.boxplot([attri], return_type='dict')
```



## 检查离群点

#### In [21]:

```
print(p['fliers'][0].get ydata())
print("MIN: ", end="")
print(min(p['fliers'][0].get_ydata()))
[100
      99
               98
                   98
                        97
                                97
                                         97
                                              97
                                                  97
                                                       97
                                                           97
                                                                97
                                                                    97
                                                                        97
                                                                             97
          98
                            97
                                     97
```

```
97
     97
          97
               97
                    97
                         98
                              97
                                   98
                                        97
                                            97
                                                  97
                                                      97
                                                           97
                                                                97
                                                                     98
                                                                          97
                                                                               97
                                                                                    97
     97
                    97
                                   97
97
          97
               98
                         97
                              97
                                        97
                                            97
                                                 97
                                                      97 100
                                                               100
                                                                     99
                                                                          99
                                                                               98
                                                                                    98
98
     98
          98
               98
                    97
                         97
                                   97
                                        97
                                            97
                                                  98
                                                           98
                                                                          97
                                                                                    97
                              97
                                                      98
                                                                98
                                                                     97
                                                                               97
97
     97
          97
               98
                    97
                         97
                              97
                                   97
                                      100
                                            99
                                                  99
                                                      98
                                                           98
                                                                98
                                                                     98
                                                                          98
                                                                               98
                                                                                    97
          97 100
                    99
                                   97
                                                 97
                                                      97
                                                                97
                                                                     97
                                                                          99
97
     97
                         98
                              97
                                        97
                                            97
                                                           97
                                                                               97
                                                                                    98
97
     97
          97
               97
                    97
                         97 100
                                   98
                                        98
                                            97
                                                  97
                                                      97
                                                           97
                                                                97
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
     97
          97
               97
                    97
                         97
                              97
                                   97
                                        97
                                            99
                                                 97
                                                      97
                                                           99
                                                                99
                                                                     99
                                                                          98
97
                                                                               98
                                                                                    98
          97
                    97
                         97
                              97
                                   97
                                        99
                                            97
                                                  97
98
     98
               97
                                                      97
                                                           97
                                                                97
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
                    98
                         98
100
     99
          99
               98
                              98
                                   98
                                            97
                                                 97
                                                      97
                                                           97
                                                                97
                                                                     99
                                                                          99
                                                                               98
                                                                                    97
                                        98
97
     97
          97
               97
                    98
                         98
                              97
                                   97
                                        97
                                            97
                                                 97
                                                     100
                                                           99
                                                                98
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
     97
                    97
                                   97
                                            97
                                                  99
                                                           99
                                                                98
97
          98
               97
                         97
                              97
                                        97
                                                      99
                                                                     98
                                                                          98
                                                                               98
                                                                                    97
97
     97
          97
               97
                    97
                         97
                              97
                                   97
                                        97
                                            97
                                                 97
                                                      97
                                                           98
                                                                97
                                                                     97
                                                                          97
                                                                               98
                                                                                    98
                    98
                                   97
                                            97
                                                 99
                                                                97
97
     98
          99
               98
                         97
                              97
                                        97
                                                      98
                                                           97
                                                                     97
                                                                          97
                                                                               98
                                                                                    97
97
     97
          97
               97
                    97
                         97
                              97
                                   97
                                        97
                                            97 100
                                                      98
                                                           98
                                                                97
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
97
     97
          97
               97
                    97
                         97
                              97
                                   99
                                        99
                                            99
                                                  98
                                                      98
                                                           97
                                                                97
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
100
     99
          98
               97
                    97
                         97
                              97
                                   97
                                        97 100 100
                                                      99
                                                           99
                                                                98
                                                                     98
                                                                          98
                                                                               98
                                                                                    98
98
     97
          97
               97
                    97
                         97
                              98
                                   98
                                        97
                                            97
                                                 97
                                                      97
                                                           97 100
                                                                     98
                                                                          97
                                                                               97
                                                                                    97
     99
          99
               98
                    97
                         97
                              97
                                   98
                                        97 100
                                                  98
                                                      97
                                                           97
                                                                97
                                                                     97
                                                                          97
                                                                               97
                                                                                    97
97
     97
               98
                    97
                         97
                                   97
                                        98
                                            97
                                                  97
                                                                98
                                                                          97
97
          97
                              97
                                                      97 100
                                                                     98
                                                                               97
                                                                                    97
                    97
                                   98
                                                      98
97
     97
          98
               97
                         97
                              99
                                        97
                                            97
                                                 98
                                                           98
                                                                98
                                                                     97
                                                                          97
                                                                               98
                                                                                    98
97
     97
          97
               97
                    98
                         97
                              97
                                   97
                                        97
                                            99
                                                  99
                                                      99
                                                           98
                                                                98
                                                                     98
                                                                          98
                                                                               97
                                                                                    97
     97
          97
               97
                    97
                              98
                                   97
                                        97
                                            97
                                                  97
                                                      97
                                                           97
                                                                98
                                                                     97
                                                                          97
                                                                               97
97
                         97
                                                                                    97
97
     97
          98 100
                    97
                         97
                              97
                                   99
                                        98
                                            97
                                                  97 100
                                                           99
                                                                98
                                                                     98
                                                                          97
                                                                               97
                                                                                    97
     97
                    99
                                   97
                                            97
                                                 97
                                                          100
                                                               100
97
          97
               97
                         98
                              98
                                        97
                                                      97
                                                                     99
                                                                          99
                                                                               98
                                                                                    98
98
     98
          98
               98
                    97
                         97
                              97
                                   97
                                        97
                                            97 100
                                                      99
                                                           99
                                                                98
                                                                     98
                                                                          98
                                                                               98
                                                                                    98
98
     97
          97
               97
                    97
                         98
                              97
                                   97
                                        97
                                            99
                                                 98
                                                      98
                                                           97
                                                                97
                                                                     97
                                                                          97
                                                                               97 100
          97
                    97
                         97
                                   97
                                        99
                                                 97
                                                                97
                                                                               97
98
     98
               97
                              98
                                            97
                                                      97
                                                           97
                                                                     97
                                                                          97
                                                                                    97
99
     98
          97
               97
                    98
                         97
                              97
                                   97
                                        97
                                            99
                                                  99
                                                      99
                                                           98
                                                                98
                                                                     98
                                                                          98
                                                                               97
                                                                                    97
     97
          97
               97
                    97
                         97
                              97
                                   97
                                        97
                                            97
                                                 97
                                                      99
                                                           98
                                                                97
                                                                     97
                                                                          97 100
                                                                                    98
97
     97
               97 100
                                   98
                                        97
                                            97
                                                  97
                                                      97
                                                           99
                                                                98
                                                                     98
                                                                               97 100
97
          97
                         97
                              98
                                                                          98
99
     98
          98
               97
                    97
                         97
                              97
                                   97
                                        97
                                            97
                                                 97
                                                      97]
```

MIN: 97

因此,points中大于等于97的项被识别为离群点。

#### 3.1. price属性

数值属性,给出五数概括

## In [22]:

```
attri = "price"
for i in range(0,5):
    q = i * 0.25
    print("Q%d:"%(i), end=" ")
    print(data_15k[attri]. quantile(q))
```

Q0: 4.0 Q1: 16.0 Q2: 24.0 Q3: 40.0 Q4: 2300.0

## 绘制盒图

## In [23]:

```
p = data_15k.boxplot([attri], return_type='dict', figsize=(5, 10))
```



## 检查离群点

#### In [24]:

```
print(p['fliers'][0].get_ydata())
print("MIN: ", end="")
print(min(p['fliers'][0].get_ydata()))

[235. 110. 90. ... 83. 100. 87.]
MIN: 77.0
```

因此,price中大于等于77的项被识别为离群点。

# 3.2 处理数据缺失

首先统计所有属性的缺失值

### In [25]:

```
print(data_15k.isnull().sum(axis=0))
                   0
Unnamed: 0
country
                   5
                   0
description
designation
               45735
points
                   0
price
               13695
province
                   5
               25060
region_1
               89977
region 2
                   0
variety
                   0
winery
dtype: int64
```

## 3.2.1 处理country属性缺失

可能原因是人为失误,通过属性的相关关系来填补缺失值,使用designation的属性来判断所属国家

根据空值的分布,定义一个从designation到country的转换字典

#### In [26]:

```
attri = "country"
designation2country = {
    "Askitikos":"Greece",
    "Shah":"US",
    "Piedra Feliz":"Chile",
}
```

#### 处理缺失

## In [27]:

```
data_15k_new = data_15k.iloc[:,:]
for i in range(0,len(data_15k_new)):
    tmp = data_15k_new.iloc[i,1]
    if pd.isnull(tmp):
        designation = data_15k_new.iloc[i,3]
        data_15k_new.iloc[i,1] = designation2country[designation]
data_15k_new[attri].value_counts(dropna = False)
```

## Out[27]:

| US                        | 62398                      |
|---------------------------|----------------------------|
| Italy                     | 23478                      |
| France                    | 21098                      |
| Spain                     | 8268                       |
| Chile                     | 5819                       |
| Argentina                 | 5631                       |
| Portugal                  | 5322                       |
| Australia                 | 4957                       |
| New Zealand               | 3320                       |
| Austria                   | 3057                       |
| Germany                   | 2452                       |
| South Africa              | 2258                       |
| Greece                    | 885                        |
| Israel                    | 630                        |
| Hungary                   | 231                        |
| Canada                    | 196                        |
| Romania                   | 139                        |
| Slovenia                  | 94                         |
| Uruguay                   | 92                         |
| Croatia                   | 89                         |
| Bulgaria                  | 77                         |
| Moldova                   | 71                         |
| Mexico                    | 63                         |
| Turkey                    | 52                         |
| Georgia                   | 43                         |
| Lebanon                   | 37                         |
| Cyprus                    | 31                         |
| Brazil                    | 25                         |
| Macedonia                 | 16                         |
| Serbia                    | 14                         |
| Morocco                   | 12                         |
| England                   | 9                          |
| Luxembourg                | 9                          |
| Lithuania                 | 8                          |
| India                     | 8                          |
| Czech Republic            | 6                          |
| Ukraine                   | 5                          |
| South Korea               | 4                          |
| Switzerland               | 4                          |
| Bosnia and Herzegovina    | 4                          |
| China                     | 3                          |
| Slovakia                  | 3                          |
| Egypt                     | 3                          |
| Montenegro                | 2                          |
| Albania                   | 3<br>2<br>2<br>2<br>2<br>1 |
| Tunisia                   | 2                          |
| Japan                     | 2                          |
| US-France                 | _                          |
| Name: country, dtype: int | 04                         |

## 可视化对比

## In [28]:

```
attri = "country"
matplotlib.pyplot.subplot(2,1,1)
data_15k[attri].value_counts(dropna = False).plot(kind='bar', figsize=(20,8))
matplotlib.pyplot.subplot(2,1,2)
data_15k_new[attri].value_counts(dropna = False).plot(kind='bar', figsize=(20,8))
```

#### Out[28]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x10985340>



# 3.2.2 处理designation属性缺失

将缺失部分剔除

```
In [29]:
```

```
attri = "designation"
d = data_15k.dropna(subset=[attri])
d
```

|        | Unnamed:<br>0 | country | description                                                   | designation                                   | points | price | province          | region_1             |
|--------|---------------|---------|---------------------------------------------------------------|-----------------------------------------------|--------|-------|-------------------|----------------------|
| 0      | 0             | US      | This<br>tremendous<br>100%<br>varietal<br>wine hails<br>from  | Martha's<br>Vineyard                          | 96     | 235.0 | California        | Napa Valley          |
| 1      | 1             | Spain   | Ripe<br>aromas of<br>fig,<br>blackberry<br>and cassis<br>are  | Carodorum<br>Selección<br>Especial<br>Reserva | 96     | 110.0 | Northern<br>Spain | Toro                 |
| 2      | 2             | US      | Mac<br>Watson<br>honors the<br>memory of<br>a wine once<br>ma | Special<br>Selected<br>Late<br>Harvest        | 96     | 90.0  | California        | Knights<br>Valley    |
| 3      | 3             | US      | This spent<br>20 months<br>in 30% new<br>French oak,<br>an    | Reserve                                       | 96     | 65.0  | Oregon            | Willamette<br>Valley |
| 4      | 4             | France  | This is the<br>top wine<br>from La<br>Bégude,<br>named aft    | La Brûlade                                    | 95     | 66.0  | Provence          | Bandol               |
|        |               |         |                                                               |                                               |        |       |                   |                      |
| 150923 | 150923        | France  | Rich and<br>toasty, with<br>tiny<br>bubbles.<br>The<br>bouque | Demi-Sec                                      | 91     | 30.0  | Champagne         | Champagne            |
| 150924 | 150924        | France  | Really fine<br>for a low-<br>acid<br>vintage,<br>there's an   | Diamant<br>Bleu                               | 91     | 70.0  | Champagne         | Champagne            |
| 150926 | 150926        | France  | Offers an intriguing nose with ginger, lime an                | Cuvée<br>Prestige                             | 91     | 27.0  | Champagne         | Champagne            |
| 150927 | 150927        | Italy   | This classic<br>example<br>comes from<br>a cru<br>vineyard    | Terre di<br>Dora                              | 91     | 20.0  | Southern<br>Italy | Fiano di<br>Avellino |
| 150928 | 150928        | France  | A perfect<br>salmon<br>shade, with<br>scents of<br>peaches    | Grand Brut<br>Rosé                            | 90     | 52.0  | Champagne         | Champagne            |

## 可视化对比,直方图中只显示前50项

#### In [30]:

```
attri = "designation"
matplotlib.pyplot.subplot(2,1,1)
data_15k[attri].value_counts(dropna = False)[:50].plot(kind='bar', figsize=(20,10))
matplotlib.pyplot.subplot(2,1,2)
d[attri].value_counts(dropna = False)[:50].plot(kind='bar', figsize=(20,10))
```

## Out[30]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x13c65ca0>



# 3.2.2 处理price属性缺失

可能原因是该种葡萄酒的价格无法获取,用最高频率值来填补缺失值

#### In [31]:

```
attri = "price"
mode = data_15k[attri]. mode()
f = data_15k[attri].fillna(int(mode))
print(f)
0
          235.0
1
          110.0
2
           90.0
3
           65.0
4
           66.0
150925
           20.0
           27.0
150926
           20.0
150927
```

150929 15.0 Name: price, Length: 150930, dtype: float64

52.0

#### 可视化对比

150928

#### In [32]:

```
data_15k.boxplot([attri], vert=False, figsize=(20,3))
```

#### Out[32]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x13fa3298>



#### In [33]:

```
matplotlib.pyplot.figure(figsize=(20, 3))
matplotlib.pyplot.boxplot(f, vert=False)
```

#### Out[33]:

```
{'whiskers': [<matplotlib.lines.Line2D at 0x1506c0b8>, <matplotlib.lines.Line2D at 0x1506c268>],
'caps': [<matplotlib.lines.Line2D at 0x1506c418>, <matplotlib.lines.Line2D at 0x1506c5c8>],
'boxes': [<matplotlib.lines.Line2D at 0x1505fee0>],
'medians': [<matplotlib.lines.Line2D at 0x1506c778>],
'fliers': [<matplotlib.lines.Line2D at 0x1506c8f8>],
'means': []}
```



# 3.2.3 处理region\_1属性缺失

可能原因是在数据收集阶段无法获取到region\_1,用最高频率值来填补缺失值

## In [34]:

3

```
attri = "region_1"
mode = data_15k[attri]. mode()
f = data_15k[attri]. fillna(str(mode))
print(f)

0          Napa Valley
1          Toro
2          Knights Valley
```

4 Bandol
....
150925 Fiano di Avellino
150926 Champagne
150927 Fiano di Avellino
150928 Champagne
150929 Alto Adige

Willamette Valley

Name: region\_1, Length: 150930, dtype: object

可视化对比,直方图只显示前50项

```
In [35]:
```

```
attri = "region_1"
matplotlib.pyplot.subplot(2,1,1)
data_15k[attri].value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,15))
matplotlib.pyplot.subplot(2,1,2)
f.value_counts(dropna = False)[:50].plot(kind='bar',figsize=(20,15))
```

## Out[35]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1509f190>



# 3.2.4 处理region\_2属性缺失

可能原因是部分数据不存在region\_2的属性

这里, 将缺失部分剔除

```
In [36]:
```

```
attri = "region_2"

new_region_2 = data_15k.dropna(subset=[attri])

print(new_region_2[attri].value_counts(dropna = False))

new_region_2
```

| Central Coast           | 13057   |
|-------------------------|---------|
| Sonoma                  | 11258   |
| Columbia Valley         | 9157    |
| Napa                    | 8801    |
| California Other        | 3516    |
| Willamette Valley       | 3181    |
| Mendocino/Lake Counties | 2389    |
| Sierra Foothills        | 1660    |
| Napa-Sonoma             | 1645    |
| Finger Lakes            | 1510    |
| Central Valley          | 1115    |
| Long Island             | 771     |
| Southern Oregon         | 662     |
| Oregon Other            | 661     |
| North Coast             | 632     |
| Washington Other        | 593     |
| South Coast             | 198     |
| New York Other          | 147     |
| Name to marian O dtrans | : + C 1 |

Name: region\_2, dtype: int64

|        | Unnamed:<br>0 | country | description                                                    | designation                            | points | price | province   | region_1              |    |
|--------|---------------|---------|----------------------------------------------------------------|----------------------------------------|--------|-------|------------|-----------------------|----|
| 0      | 0             | US      | This tremendous 100% varietal wine hails from                  | Martha's<br>Vineyard                   | 96     | 235.0 | California | Napa<br>Valley        |    |
| 2      | 2             | US      | Mac<br>Watson<br>honors the<br>memory of<br>a wine once<br>ma  | Special<br>Selected<br>Late<br>Harvest | 96     | 90.0  | California | Knights<br>Valley     |    |
| 3      | 3             | US      | This spent<br>20 months<br>in 30% new<br>French oak,<br>an     | Reserve                                | 96     | 65.0  | Oregon     | Willamette<br>Valley  |    |
| 8      | 8             | US      | This re-<br>named<br>vineyard<br>was<br>formerly<br>bottled as | Silice                                 | 95     | 65.0  | Oregon     | Chehalem<br>Mountains |    |
| 9      | 9             | US      | The producer sources from two blocks of the vi                 | Gap's<br>Crown<br>Vineyard             | 95     | 60.0  | California | Sonoma<br>Coast       |    |
|        |               |         |                                                                |                                        |        |       |            |                       |    |
| 150892 | 150892        | US      | A light,<br>earthy wine,<br>with violet,<br>berry and<br>t     | Coastal                                | 82     | 10.0  | California | California            | Ci |
| 150896 | 150896        | US      | Some raspberry fruit in the aroma, but things                  | NaN                                    | 82     | 10.0  | California | California            | Ci |
| 150914 | 150914        | US      | Old-gold in<br>color, and<br>thick and<br>syrupy. The<br>a     | Late<br>Harvest<br>Cluster<br>Select   | 94     | 25.0  | California | Anderson<br>Valley    | Mε |
| 150915 | 150915        | US      | Decades<br>ago,<br>Beringer's<br>then-<br>winemaker<br>Myron N | Nightingale                            | 93     | 30.0  | California | North<br>Coast        |    |
| 150916 | 150916        | US      | An impressive wine that presents a full bouque                 | J. Schram                              | 93     | 65.0  | California | Napa<br>Valley        |    |

## 可视化对比

## In [37]:

```
attri = "region_2"
matplotlib.pyplot.subplot(2,1,1)
data_15k[attri].value_counts(dropna = False).plot(kind='bar', figsize=(20,10))
matplotlib.pyplot.subplot(2,1,2)
new_region_2[attri].value_counts(dropna = False).plot(kind='bar', figsize=(20,10))
```

#### Out[37]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x137a7d30>

