PRÁCTICA 7: JERARQUÍA DE MEMORIA III

ARQUITECTURA DE COMPUTADORES. 2º CURSO

1. OBJETIVOS

En esta práctica realizaremos un estudio de la influencia de los parámetros de una memoria caché sobre el rendimiento. En primer lugar, ubicaremos los datos en memoria y obtendremos la traza de acceso partiendo de un código en C o ensamblador, como ya se hizo en prácticas anteriores. Posteriormente trataremos de extraer el comportamiento de la caché en función de sus características y de la traza de accesos que realiza. Finalmente, pondremos de manifiesto cómo influyen los parámetros que definen la caché en la tasa de fallos.

2. PREPARACIÓN

Antes de comenzar con esta sesión de laboratorio el alumno debería:

1) Leer y asimilar los contenidos teóricos de la memoria caché (políticas de ubicación/localización).

3. DURANTE LA SESIÓN

3.1. Cálculo a mano para accesos a memoria

En la sesión online anterior, se describieron dos métodos para obtener los accesos a memoria caché: Interpretando la dirección y calculándola de forma analítica.

En esta ocasión vamos a focalizar la atención en un caso particular del método basado en la interpretación de las direcciones, que podremos aplicar en la práctica en casos puntuales: *Interpretación rápida de direcciones en hexadecimal*.

3.1.1. Caso particular del mecanismo 1: Interpretación rápida de la dirección en hexadecimal.

Este mecanismo simplifica notablemente la interpretación de la dirección, evitando tener que realizar la transformación a binario, pero sólo puede ser utilizado en casos muy concretos.

Puesto que un dígito hexadecimal requiere exactamente 4 bits para su codificación, podemos obtener rápidamente el campo desplazamiento e índice de la dirección de un acceso a memoria (expresado en hexadecimal) si cada uno de estos dos campos tiene un tamaño múltiplo de 4.

En caso de cumplirse este requisito, para obtener el valor del índice y desplazamiento, podremos evitar la transformación previa a binario y nos bastará con tomar tantos dígitos hexadecimales de la dirección como múltiplos de 4 contenga el campo. Por supuesto, habrá que empezar por el campo desplazamiento por encontrarse más a la derecha. En este caso, utilizaremos la base decimal para representar cualquier parámetro de la caché.

Ejemplo: Sea una caché de 4KB de mapeado directo, política CB-WA y con un tamaño de bloque de 16 bytes.

El tamaño del campo desplazamiento será de 4 bits (16Bytes = 2^4 Bytes \Rightarrow 4 bits de desplazamiento) y el tamaño del campo índice será de: NºLíneas = T_{MC} / $T_{LÍNEA}$ = 4KB / 16B = 256 = 2^8 líneas \Rightarrow 8 bits de índice.

Si accediésemos a la dirección (de 32 bits) de memoria 0x12345678, se obtendría la siguiente descomposición y acceso a memoria caché:

Dir. Memoria	0x12345678		
Interpretación de MP	Dir./Num. Bloque (28)		Desplaz (4)
	0x1234567		0x8
Interpretación de MC	Etiq.(20)	Índice (8)	Desplaz (4)
	0x12345	0x67	0x8

	Memoria Caché			
	V	Etiq.	Datos	
L 0x00	0			
	0			
L 0x67	1	0x12345	Bloque 0x1234567	
	0			
L 0xFF	0			