

Structurer une démonstration

Montrons $\forall x \in \mathbb{R}$, $x = 0 \iff \forall \epsilon > 0$, $|x| < \epsilon$:

Soit $x \in \mathbb{R}$, montrons l'équivalence entre x = 0

et $\forall \epsilon > 0$, $|x| < \epsilon$ par double implication

Supposons x = 0 **et montrons** $\forall \epsilon > 0$, $|x| < \epsilon$

Soit $\epsilon > 0$, on a alors $|x| = |0| = 0 < \epsilon$

Raisonnons par contraposition en supposant $x \neq 0$

et en montrant $\exists \epsilon > 0, |x| \ge \epsilon$:

Posons $\epsilon = |x|$. **Puisque** $x \neq 0$, on a $\epsilon = |x| > 0$ et $|x| \ge \epsilon$