The accuracy of statistical distributions in Microsoft Excel 2 A. Talha Yalta, Computational Statistics and Data Analysis 52 (2008) 4886

Michael Baudin - Juin 20

Description

See Examples - Yalta - 2008.txt for det

Table 2				
Binomia	n=103(p=0.5		
	P(X<=k	P 3.3		
k	Exac	Computed	RE	LRI
	1 8,96114E-30		3,0E-0	6,5
	2 4,61499E-30			6,0
10	0 1,39413E-16	1,39413E-16		
20	0 5,45781E-9	5,45781E-9	2,0E-0	6,7
30	0 2,91621E-4	2,91621E-4	4,5E-0	6,4
39	0 3,18196E-1	3,18196E-1	1,1E-0	
39	1 5,24099E-1	5,24099E-1	6,7E-0	6,2
40	0 3,89735E-1	3,89735E-1	6,3E-0	6,2
41	0 3,19438E-1	3,19438E-1	1,4E-0	5,8
42	0 1,76037E-0	1,76037E-0	1,7E-0	6,8
50	0 1,83106E-0	1,83106E-0	2,1E-0	5,7
55	0 9,86550E-0	9,86550E-0	3,6E-0	6,4
57	5 9,99920E-0	9,99920E-0	2,4E-0	6,6
58	9 9,99998E-0	9,99998E-0	3,4E-0	6,5
Table :	Т	Γ		I
Hypergeom		N=103(M=515	n=500
k		P(X=k	RE	LRI
	0 1,60137E-28	`		6,4
10	· · · · · · · · · · · · · · · · · · ·		6,3E-0	6,2
18	0 1, 70100E 0	7,70,1000	0,0= 0	
	7 1 53541F-1	1 53541F-1	2.7F-0(
	· · · · · · · · · · · · · · · · · · ·	·	2,7E-00 4 1F-0	5,6
18	8 4,13038E-1	4,13038E-1	4,1E-0	5,6 6,4
18 20	8 4,13038E-1 0 1,65570E-1	4,13038E-1 1,65570E-1	4,1E-0 5,8E-0	5,6 6,4 6,2
18 20 30	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1	4,13038E-1 1,65570E-1 1,65570E-1	4,1E-0 5,8E-0 5,8E-0	5,6 6,4 6,2 6,2
18 20 30 31	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1	4,1E-0 5,8E-0 5,8E-0 4,1E-0	5,6 6,4 6,2 6,2 6,4
18 20 30	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0	5,6 6,4 6,2 6,2 6,4 5,6
18 20 30 31 31	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0	5,6 6,4 6,2 6,2 6,4
18 20 30 31 31 40 50	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0	5,6 6,4 6,2 6,2 6,4 5,6 6,2
18 20 30 31 31 40 50	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0 3,8E-0	5,6 6,4 6,2 6,2 6,4 5,6 6,2 6,4
18 20 30 31 31 40 50 Table ⁴ Poissor	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0	5,6 6,4 6,2 6,2 6,4 5,6 6,2
18 20 30 31 31 40 50 Table ² Poissor k	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28 lambda=20(Exac	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28 P(X=k Computec	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0 3,8E-0	5,6 6,4 6,2 6,2 6,4 5,6 6,2 6,4
18 20 30 31 31 40 50 Table ² Poissor k	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28 lambda=20(Exac 0 1,38390E-8	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28 P(X=k Computec 1,38390E-8	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0 3,8E-0	5,6 6,4 6,2 6,4 5,6 6,2 6,4 LRI
18 20 30 31 31 40 50 Table 4 Poissor k	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28 lambda=20(Exac 0 1,38390E-8 3 1,41720E-1	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28 P(X=k Computec 1,38390E-8 1,41720E-1	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0 3,8E-0 RE 2,5E-0 9,1E-0	5,6 6,4 6,2 6,2 6,4 5,6 6,2 6,4
18 20 30 31 31 40 50 Table ² Poissor k	8 4,13038E-1 0 1,65570E-1 0 1,65570E-1 2 4,13038E-1 3 1,53541E-1 0 7,46483E-8 0 1,60137E-28 lambda=20(Exac 0 1,38390E-8 3 1,41720E-1 4 2,72538E-1	4,13038E-1 1,65570E-1 1,65570E-1 4,13038E-1 1,53541E-1 7,46483E-8 1,60137E-28 P(X=k Computec 1,38390E-8 1,41720E-1 2,72538E-1	4,1E-0 5,8E-0 5,8E-0 4,1E-0 2,7E-0 6,3E-0 3,8E-0	5,6 6,4 6,2 6,4 5,6 6,2 6,4 LRI 5,6 6,0 6,0

1,51227E-0

2,6E-0

1,51227E-0

134

200	2,81977E-0	2,81977E-0	9,8E-0	6,0
314	2,23568E-1	2,23568E-1	9,7E-0	6,0
315	1,41948E-1	1,41948E-1	5,2E-0	6,3
400	5,58069E-3	5,58069E-3	4,4E-0	6,4
900	1,73230E-28	1,73230E-28	9,8E-0	6,0

Poissor					
k	lambda	Exac	$P(X \le k$	RE	LRI
1,E+0	1,E+0	0,508409	0,508409	7,2E-0	6,1
1,E+0	1,E+0	0,50084 ⁻	0,50084	8,6E-0	7,1
1,E+0	1,E+0	0,500084	0,500084	2,1E-0	6,7
1,E+09	1,E+0!	0,500008	0,50000{	8,2E-0	6,1

Table {					
Gamma	beta=1	Sigma=			
х	alpha	Exac	P(X <x< td=""><td>RE</td><td>LRI</td></x<>	RE	LRI
0,1	0,1	0,827552	0,827552	2,9051E-0	6,5
0,2	0,1	0,879420	0,879420	4,2E-0	6,4
0,2	0,2	0,76443	0,76443{	5,3E-0	6,3
0,3	0,2	0,816527	0,816527	2,5E-0	6,6
0,3	0,3	0,726957	0,726957	4,7E-0	6,3
0,4	0,3	0,77638 ⁻	0,77638	5,4E-0	6,3
0,4	0,4	0,70144 ⁻	0,70144	3,9E-0	6,4
0,5	0,4	0,748019	0,748019	6,0E-0	6,2
0,5	0,5	0,682689	0,682689	7,2E-0	6,1
0,6	0,5	0,726678	0,72667{	4,4E-0	6,4

Table (
Inverse Stan	dard Norm			
р	Exac	X(p)	RE	LRI
5,E-0 ⁻	0	0,00000	#DIV/0!	#DIV/0
1,E-0 ⁻	-1,2815	-1,2815{	1,2E-0	5,9
1,E-02	-2,3263	-2,3263{	9,1E-0	6,0
1,E-0	-3,09023	-3,09023	7,5E-0	6,1
1,E-0₄	-3,71902	-3,71902	9,5E-0	6,0
1,E-0	-4,26489	-4,26489	1,9E-0	6,7
1,E-06	-4,75342	-4,75342	9,1E-0	6,0
1,E-07	-5,1993₄	-5,1993₄	4,7E-0	6,3
1,E-1	-7,9413	-7,9413{	5,9E-0	6,2
1,E-16	-8,22208	-8,2220{	2,7E-0	6,6
1,E-10(-21,273	-21,2734	2,2E-0	5,7
1,E-19	-29,9763	-29,97628	5,3E-0	6,3
1,E-19∤	-30,0529	-30,0529 ⁻	4,9E-0	6,3
1,E-30(-37,047	-37,04710	1,0E-0	7,0

Table 7			
Inverse chi-s	quar		

р	n	Exac	X(p)	RE	LRI
2,E-0 ⁻	1	1,64237	1,64237	2,7E-0	5,6
2,E-0 ⁻	5	7,28928	7,28928	5,3E-0	6,3
1,E-0 ⁻	1	2,70554	2,70554	1,3E-0	5,9
1,E-0 ⁻	5	9,23636	9,23636	3,4E-0	6,5
1,E-0	1	19,5114	19,51142	1,1E-0	6,0
1,E-0	5	30,8562	30,85619	3,3E-0	6,5
1,E-06	1	23,928	23,92813	1,1E-0	5,9
1,E-06	5	35,8882	35,88819	3,7E-0	6,4
1,E-07	1	28,374	28,37399	4,5E-0	6,4
1,E-07	5	40,863	40,86302	5,2E-0	6,3
1,E-12	1	50,844	50,84417	1,4E-0	5,9
1,E-12	5	65,2386	65,23864	5,6E-0	6,3
0,48	778	779,312	779,31249	6,3E-0	6,2
0,5	780	779,333	779,3334:	5,6E-0	6,3
0,52	782	779,353	779,3526	4,5E-0	6,3

Table {				
Inverse beta	distributior	alpha=5	beta=2	
р	Exac	X(p)	RE	LRI
1,E-0 ⁻	4,89684E-0	4,89684E-0	6,3E-0	6,2
1,E-02	2,94314E-0	2,94314E-0	1,1E-0	6,0
1,E-0	1,81386E-0	1,81386E-0	7,3E-0	6,1
1,E-0 ⁴	1,12969E-0	1,12969E-0	3,9E-0	5,4
1,E-0	7,07371E-0	7,07371E-0	6,2E-0	6,2
1,E-06	4,44270E-0	4,44270E-0	1,1E-0	6,0
1,E-07	2,79523E-0	2,79523E-0	1,4E-0	5,9
1,E-0{	1,76057E-0	1,76057E-0	5,5E-0	6,3
1,E-09	1,10963E-0	1,10963E-0	3,5E-00	5,5
1,E-1(6,99645E-0	6,99645E-0	1,9E-0	6,7
1,E-1 ⁻	4,41255E-0	4,41255E-0	2,1E-0	6,7
1,E-12	2,78337E-0	2,78337E-0	1,2E-0	
1,E-1	1,75589E-0	1,75589E-0	8,5E-0	6,1
1,E-10(6,98827E-2	6,98827E-2	1,7E-0	6,8

T 11 (
Table {				
Inverse t-dist	ribution with parame	eters (p, n =		
p	Exac	X(p)	RE	LRI
2,E-0 ⁻	1,37638E+0	1,37638E+0	1,4E-0(5,9
1,E-0 ⁻	3,07768E+0	3,07768E+0	1,1E-0	5,9
1,E-02	3,18205E+0	3,18205E+0	5,0E-0	6,3
1,E-0	3,18309E+0	3,18309E+0	5,1E-0	6,3
1,E-0 ⁴	3,18310E+0	3,18310E+0	3,9E-0	6,4
1,E-0	3,18310E+0	3,18310E+0	3,6E-0	6,4
1,E-06	3,18310E+0	3,18310E+0	3,6E-0	6,4
1,E-07	3,18310E+0	3,18310E+0	3,6E-0	6,4
1,E-0{	3,18310E+0	3,18310E+0	3,6E-0	6,4
1,E-1 ⁻	3,18310E+1	3,18310E+1	3,6E-0	6,4
1,E-12	3,18310E+1	3,18310E+1	3,6E-0	6,4

1,E-1(3,18310E+1	3,18310E+1	3,6E-0	6,4
1,E-10(3,18310E+9	3,18310E+9	3,6E-0	6,4