Appendix

1 Artificial data

1.1 STARMA models

Considering N fixed locations in space, observations of a random variable are generated for T time periods. The model is specified by Eq. 1 [1],

$$\mathbf{z}(t) = \sum_{k=1}^{p} \sum_{i=0}^{\lambda_k} \phi_{kl} \mathbf{W}^{(l)} \mathbf{z}(t-k)$$

$$- \sum_{k=1}^{q} \sum_{i=0}^{m_k} \theta_{kl} \mathbf{W}^{(l)} \boldsymbol{\epsilon}(t-k) + \boldsymbol{\epsilon}(t)$$
(1)

where $\mathbf{z}(t)$ is a $N \times 1$ vector of observations at time t, I is the identity matrix, $W^{(l)}$ is a $N \times N$ square matrix of weights where element (i,j) is only non-zero if locations i and j are neighbours of l^{th} order with rows summing to one, p is the autoregressive order, q is the moving average order, λ_l is the spatial order of the k^{th} autoregressive term, m_k is the spatial order of the k^{th} moving average term, ϕ_{kl} and θ_{kl} are parameters, and the $\epsilon_l(t)$ are random normal errors respecting Eqs. 2 and 3.

$$E[\epsilon_l(t)] = 0 \tag{2}$$

$$E[\epsilon_l(t)\epsilon_j(t+s)] = \begin{cases} \sigma^2 & l=k, s=0\\ 0 & otherwise \end{cases}$$
 (3)

Non-linear versions of STAR models (based on non-linear AR models in [2]) are generated by applying a non-linear function f (cf. Eq. 4) to each $\mathbf{z}_l(t-k)$, f being randomly selected between $\sin(x)$, $\cos(x)$, $\arctan(x)$, $\tanh(x)$ and $\exp(-\frac{x}{C})$, with $C = 1 \times 10^4$.

$$\mathbf{z}(t) = \sum_{k=1}^{p} \sum_{l=0}^{\lambda_k} \phi_{kl} \mathbf{W}^{(l)} f(\mathbf{z}(t-k))$$
(4)

1.2 Stationarity conditions

Stationarity, meaning that the covariance structure of $\mathbf{z}(t)$ does not change with time, requires that every x_u that solves Eq. 5 lies inside the unit circle ($|x_u| < 1$).

$$det\left[x_u^q \mathbf{I} - \sum_{k=1}^q \sum_{i=0}^{m_k} \theta_{ki} \mathbf{W}^{(i)} x_u^{q-k}\right] = 0$$
 (5)

Low-order STARMA stationarity

A STARMA(2_{11}) is defined by the following equation:

$$z(t) = (\phi_{10}I + \phi_{11}W^{(l)})z(t-1)$$
(6)

$$+ \left(\phi_{10}I + \phi_{21}\mathbf{W}^{l}\right)\mathbf{z}(t-2) + \epsilon(t) \tag{7}$$

$$+ (\theta_{10}I + \theta_{11}\boldsymbol{W}^{(l)})\boldsymbol{\epsilon}(t-1) \tag{8}$$

$$+ (\theta_{10}I + \theta_{21}\boldsymbol{W}^{(l)})\boldsymbol{\epsilon}(t-2) + \boldsymbol{\epsilon}(t)$$
(9)

Stationarity restrictions for STARMA(2₁₁) models can be written as below for the AR component (ϕ_{kl} coefficients) [3].

$$\begin{aligned} -\phi_{20} + |\phi_{21}| &< 1\\ |\phi_{10} + \phi_{11}| &< 1 - \phi_{20} - \phi_{21}\\ |\phi_{10} - \phi_{11}| &< 1 - \phi_{20} + \phi_{21} \end{aligned}$$

The same set of restrictions apply to the MA terms (θ_{kl}) .

1.3 Random coefficient generation

Coefficients are generally randomly generated within intervals that present reasonable chance of respecting stationarity conditions. In the case of order 2_{11} , one of the coefficients is fixed at a random value first and the remaining three coefficients are generated within intervals informed by this first selection (cf. Tab. 1).

Table 1: Model coefficients, c_{XY} corresponding to ϕ_{XY} and/or θ_{XY} . Coefficients are fixed or generated within the presented intervals.

Model order	c_{10}	c_{11}	c_{20}	c_{21}
2_{10}	[-2, 2]	[-2, 2]	[-1, 1]	0
2_{01}	[-2, 2]	0	[-1, 1]	[-2, 1]
2_{11}			[-0.227, 1.773]	
2_{11}	[-1.755, 0.245]	[-1.755, 1.755]	$\left[-0.7555, 0.7555\right]$	0.245

Bibliography

- [1] Phillip E Pfeifer and Stuart Jay Deutsch. A Three-Stage Iterative Procedure for Space-Time Modeling. *Technometrics*, 22(1):35—-47, 1980.
- [2] Christoph Bergmeir and José M. Benítez. On the use of cross-validation for time series predictor evaluation. *Inf. Sci.* (Ny)., 191:192–213, 2012.
- [3] P. E. Pfeifer and S. J. Deutsch. Stationarity and invertibility regions for low order starma models. *Commun. Stat. Comput.*, 9(5):551–562, 1980.