Predicting Student Performance Linear Models (PHP2601), Prof. Ani Eloyan

Daniel Posmik, Jizhou Tian, Aristofanis Rontogiannis

2024-12-10

Table of contents I

EDA and the Linear Model

Introduction

We will be analyzing educational data to understand the predictors of student performance. Specifically, we seek to **understand** whether five predictors — as a subset of an exhaustive list of potential predictors — are significant predictors of student performance.

Testing the significant of a subset of predictors is becoming increasingly important in modern statistical questions, especially with more information becoming available.

We will be using a publicly available dataset from Kaggle that contains information about students and their exam scores.

Hypothesis to be Tested

We are interested in:

- ► Hours Studied
- Attendance
- ► Sleep Hours
- Previous Scores
- Tutoring Sessions

Elastic Net

Why Use Elastic Net?

- ▶ **Limitations of Lasso**: May select only one variable from a group of highly correlated predictors.
- ► Limitations of Ridge: Cannot produce sparse models (i.e., no feature selection).
- ► Elastic Net Advantage:
 - Encourages group selection.
 - Balances sparsity and multicollinearity handling.

Elastic Net Formula

Elastic Net adds two penalty terms:

$$\min_{\boldsymbol{\beta}} \left(\sum_{i=1}^n (y_i - X_i \boldsymbol{\beta})^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2^2 \right)$$

- $\|\beta\|_1$: Lasso penalty (L1).
- $\|\beta\|_2^2$: Ridge penalty (L2).
- $ightharpoonup \lambda_1, \lambda_2$: Regularization parameters.

Tuning Parameters in Elastic Net

- 1. α : Controls the mix between Ridge and Lasso.
 - $\alpha = 0$: Ridge.
 - $\alpha = 1$: Lasso.
 - $ightharpoonup 0 < \alpha < 1$: Elastic Net.
- 2. λ : Controls the overall strength of regularization.

Grid Search:

Perform cross-validation to find optimal values of α **and** λ .