Curso de Estatística e Probabilidade DPAA-2.339 - Estatística e Probabilidade

Prof. Thiago VedoVatto

thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

26 de outubro de 2020

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas

Uma variável aleatória contínua é aquela que assume valores em um intervalo da reta real.

Curva de Densidade

Uma distribuição de probabilidade para uma variável aleatória contínua X é especificada pela sua curva de densidade. A função f(x) que define essa curva é a função de densidade de probabilidade (FDP).

Problema

Um agricultor está medindo o tamanho das espigas de milho de sua fazenda. Ele dispõe de três réguas diferentes. Ele possui uma régua onde:

- a A unidade de medida mínima é o centímetro;
- **b** A unidade de medida mínima é o milimetro;
- **©** Consegue medir o valor real do tamanho da espiga.

As medições feitas com as réguas (a) e (b) são discretas. A medição feita com a régua (c) é contínua.

Função de Densidade de Probabilidade

Uma FDP contínua é uma função real que satisfaz as seguintes propriedades:

A segunda condição impõe, graficamente, que a área total abaixo a curva de densidade é 1.

A probabilidade de que $X \in B \subset \mathbb{R}$ é dada por:

$$\mathbb{P}(X \in B) = \int_B f(x) \, \mathrm{d}x.$$

O cálculo de probabilidades para uma variável aleatória X pode ser resumido em três eventos nos quais a variável aleatória X assume valores:

a < x < b entre dois números dados, a e b

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f(x) \, \mathrm{d}x;$$

x < a menores do que um número a

$$\mathbb{P}(X < a) = \int_{-\infty}^{a} f(x) \, \mathrm{d}x;$$

x > b maiores do que um número b

$$\mathbb{P}(X > b) = \int_{1}^{\infty} f(x) \, \mathrm{d}x.$$

Gráficos de densidade

Se um conjunto de observações for perfeitamente simétrico devemos ter:

$$q_2 - x_{(i)} = x_{(n+1-i)} - q_2$$

em que $i=1,\ldots,n/2$ se n for par e $i=1,\ldots,(n+1)/2$ se n for impar.

Boxplot versus Gráfico de densidade

Mostre que se X é uma variável aleatória contínua com f.d.p f(x) então:

- **3** $\mathbb{P}(a < X < b) = \mathbb{P}(X < b) \mathbb{P}(X < a).$

Exercício - Magalhães & Lima (2015, p. 187)

Verifique se as expressões a seguir são FDP (assuma que elas se anulam fora dos intervalos especificados).

- $f(x) = 3x \text{ se } 0 \le x \le 1.$
- **2** $f(x) = x^2/2$ se $x \ge 0$.
- **3** f(x) = (x-3)/2 so $3 \le x \le 5$.
- **4** $f(x) = 2 \text{ se } 0 \le x \le 2.$
- **6** $f(x) = \begin{cases} (2+x)/4 \text{ se } -2 \le x \le 0\\ (2-x)/4 \text{ se } 0 \le x \le 2. \end{cases}$
- **6** $f(x) = -\pi, se \pi < x < 0.$

Suponha que X seja uma variável aleatória contínua definida em um intervalo de tempo (em minutos) relacionada ao tempo que um escriturário gasta para realizar uma determinada tarefa num escritório. Suponha que a variável aleatória X tenha função de distribuição de probabilidade com a densidade:

$$f(x) = \begin{cases} 1/2 & \text{se } 4 < x < 6 \\ 0 & \text{caso contrario} \end{cases}$$

Ilustre a função de densidade e determine:

- **1** $\mathbb{P}(4, 5 < X < 5, 5)$ e $\mathbb{P}(4, 5 \le X \le 5, 5)$;
- **2** $\mathbb{P}(X > 5) \in \mathbb{P}(X \ge 5);$
- **3** $\mathbb{P}(X=5)$.

Exercício - Ross (2010, p. 187)

Suponha que X é uma variável aleatória contínua cuja FDP é dada por:

$$f(x) = \begin{cases} C(4x - 2x^2), & 0 < x < 2; \\ 0, & \text{caso contrário.} \end{cases}$$

- \bullet Qual é o valor de C?
- **2** Encontre $\mathbb{P}(X > 1)$.

Se X denotar a vida útil (em milhares de horas) de uma fonte para refrigeração de motores. A curva de densidade é dada pela figura:

Pinte a área sob a curva que corresponda à cada uma das probabilidades:

- **2** $\mathbb{P}(10 \le X \le 25);$
- **8** $\mathbb{P}(X < 30);$
- 4 A probabilidade de que a vida útil seja de no mínimo 25 mil horas;
- **6** A probabilidade de que a vida útil exceda 25 mil horas.

Exercício - Magalhães & Lima (2015, p. 181)

Arqueólogos estudaram uma certa região e estabeleceram um modelo teórico para a variável C, comprimento de fósseis da região (em cm). Suponha que C é uma variável contínua com a seguinte FDP:

$$f(c) = \begin{cases} \frac{1}{40} \left(\frac{c}{10} + 1 \right), & 0 \le c \le 20; \\ 0, & \text{caso contrário.} \end{cases}$$

- 1 Ilustre graficamente a FDP da variável aleatória C.
- Qual a probabilidade de um fóssil escolhido ao acaso apresentar comprimento inferior à 12?
 - Resp.: 0,48
- **3** $\mathbb{P}(C > 12|C > 5)$?

Resp.: 0,62

Exercício - Ross (2010, p. 188)

A quantidade de horas que um computador funciona antes de falhar é uma variável aleatória contínua com FDP dada por

$$f(x) = \begin{cases} \lambda \exp(-x/100), & x \ge 0; \\ 0, & \text{caso contrário.} \end{cases}$$

Determine a probabilidade de que:

- um computador esteja funcionado entre 50 e 150 horas após ser ligado.
- 2 funcione por ao menos 100 horas.

Exercício - Magalhães & Lima (2015, p. 183)

Num teste educacional com crianças, o tempo para a realização de uma bateria de questões de raciocínio lógico é medido e anotado para ser comparado com um modelo teórico. Este teste é utilizado para identificar o desenvolvimento das crianças e auxiliar a aplicação de medidas corretivas. O modelo teórico considera T, $tempo\ de\ teste\ em\ minutos$, como uma variável aleatória contínua com FDP dada por:

$$f(t) = \begin{cases} 1/40 (t - 4), & 8 \le t < 10; \\ 3/20, & 10 \le t \le 15; \\ 0, & \text{caso contrário.} \end{cases}$$

- Qual a probabilidade de uma criança demorar entre 9 e 12 minutos para resolver o teste?
- Qual a probababiliade de uma criança demorar mais 4 minutos para terminar o teste dado que já se passaram 3 minutos do início do teste?

Exercício - Magalhães & Lima (2015, p. 177)

Estudos revelam a existência de um grande lençol de água no subsolo de uma região. No entanto sua profundidade ainda não foi determinada. Sabe-se apenas que o lençol pode estar situado em qualquer ponto entre 20 e 100 metros.

- Encontre a FDP para a variável aleatória profundidade do lençol de água;
- 2 Qual a probabilidade de que o lençol tenha profundidade
 - a entre 50 e 70 metros?
 - b maior que 50 metros?
 - c menor que 50 metros?

Se X representar a quantidade de grãos vendidos (em toneladas) durantes uma semana qualquer em um determinado distribuidor. Suponha que a função de densidade seja dada por:

$$f(x) = \begin{cases} 2(1-x) & \text{se } 0 \le x \le 1 \\ 0 & \text{caso contrário} \end{cases}$$

Ilustre a curva de densidade e calcule:

- **1** $\mathbb{P}(X < 1/2);$
- **2** $\mathbb{P}(X \leq 1/2);$
- **3** $\mathbb{P}(X < 1/4);$
- **4** $\mathbb{P}(1/4 < X < 1/2);$
- **6** $\mathbb{P}(X > 3/4|X > 1/4);$
- **6** $\mathbb{P}(X < 1/4|X < 1/2);$
- $\mathbb{P}(1/4 < X < 3/4|1/4 < X < 1/2).$

Verifique se as seguintes funções são funções de densidade de probabilidade e ilustre seus gráficos.

$$f(x) = \begin{cases} 0 & \text{se } x \le -3 \text{ ou } x > 4 \\ \frac{x}{12} + \frac{1}{4} & \text{se } -3 < x \le 0 \\ \frac{x}{4} & \text{se } 0 < x \le 2 \\ \frac{1}{16} & \text{se } 2 < x \le 4 \end{cases}$$

$$g(x) = \begin{cases} x & \text{se } 0 < x \le 1 \\ \frac{(3-x)}{4} & \text{se } 1 < x \le 3 \\ 0 & \text{caso contrário} \end{cases}$$

$$h(x) = \begin{cases} 2(2-x) & \text{se } 0 < x < 4 \\ 0 & \text{caso contrário} \end{cases}$$

$$\mathbf{6} \ j(x) = \begin{cases} 1/\theta & \text{se } 0 < x < \theta, \theta > 0 \\ 0 & \text{caso contrário} \end{cases}$$

Determine k para que as funções a seguir sejam funções de densidade:

$$g(x) = \begin{cases} kx^2 & \text{se } -1 < x < 1 \\ 0 & \text{caso contrário} \end{cases}$$

Esperança de uma variável aleatória contínua

Considere a variável aleatória X contínua com FDP f(x). A esperança, média ou valor esperado da variável aleatória X é dada por:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x$$

A esperança de uma função h da variável aleatória X é dada por:

$$\mathbb{E}(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$$

A "diferença básica" entre essas relações e as equivalentes para as variáveis discretas é que aqui "trocamos" o somatório por uma integral.

Variância e Desvio Padrão

A variância de uma variável aleatória X com função de densidade f(x) pode ser obtida através da relação:

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X)$$

Evidentemente:

$$dp(X) = \sqrt{\mathrm{var}X}$$

As definições são as mesmas para o caso de variáveis aleatórias discretas.

Moda e mediana de uma variável alatória

A moda Mo de uma variável aleatória X com densidade f(x) é definida como:

$$Mo = \arg\max_{x} f(x).$$

Ou seja, a moda é a abscissa do ponto de máximo global da densidade.

Uma variável aleatória X pode ser

unimodal quando só há uma moda

multimodal quando só há mais de uma moda (modas locais)

amodal quando não há uma moda

A mediana Me dessa mesma variável é definida como:

$$\mathbb{P}(X > Me) = 0, 5.$$

Obter $\mathbb{E}(X)$, $\mathbb{E}(X^2)$, $\mathbb{E}(|X|)$, $\mathbb{E}(3X-5)$, var(X), var(3X-5), $\mathbb{P}(X)$, $\mathbb{P}(3X-5)$, moda e mediana para as seguintes FDP:

$$\mathbf{0} \ f(x) = \begin{cases} 1/6 & \text{se } -3 < x < 3 \\ 0 & \text{caso contrário} \end{cases}$$

$$g(x) = \left\{ \begin{array}{ll} x & \text{se } 0 < x \le 1 \\ 2 - x & \text{se } 1 < x < 2 \\ 0 & \text{caso contrário} \end{array} \right.$$

Exercício - Magalhães & Lima (2015, p. 187)

O tempo em minutos, de digitação de um texto por secretárias experientes é uma variável aleatória contínua X. Sua densidade é apresentada a seguir:

$$f(x) = \begin{cases} 1/4 & \text{se } 0 \le x < 2; \\ 1/8 & \text{se } 2 \le x < 6; \\ 0 & \text{caso contrário.} \end{cases}$$

Determine:

- **1** $\mathbb{P}(X > 3)$.
- **2** $\mathbb{P}(1 < X \le 4)$.
- **3** $\mathbb{P}(X < 3|X \ge 1)$.
- 4 Um número b tal que $\mathbb{P}(X > b) = 0, 6$.
- $\ensuremath{\mathfrak{g}}$ O valor esperado, a variância, o desvio padrão, a moda e a mediana da X.

Exercício - Magalhães & Lima (2015, p. 181)

Arqueólogos estudaram uma certa região e estabeleceram um modelo teórico para a variável C, comprimento de fósseis da região (em cm). Suponha que C é uma variável contínua com a seguinte FDP:

$$f(c) = \begin{cases} \frac{1}{40} \left(\frac{c}{10} + 1 \right), & 0 \le c \le 20; \\ 0, & \text{caso contrário.} \end{cases}$$

- Ilustre graficamente a FDP da variável aleatória C.
- Qual a probabilidade de um fóssil escolhido ao acaso apresentar comprimento inferior à 12?
 - Resp.: 0,48
- **3** $\mathbb{P}(C > 12|C > 5)$? Resp.: 0,62
- \blacksquare Determine a média, a variância e o desvio padrão de C.

Função de Distribuição Acumulada

Para uma variável aleatória contínua X com FDP f(x) a função de distribuição acumulada (FDA) F(x) é definida, para $x \in \mathbb{R}$, como:

$$F(x) = \mathbb{P}(X \le x)$$
$$= \int_{-\infty}^{x} f(t)dt$$

Evidentemente, nos valores de x onde F(x) é derivável temos:

$$f(x) = F'(x) = \frac{dF(x)}{dx}$$

Essa FDA apresenta as seguintes propriedades:

- $\mathbf{0} \lim_{x \to -\infty} F(x) = 0;$
- $\lim_{x \to \infty} F(x) = 1.$

Determine a função de distribuição acumulada F(x) para as seguintes densidades:

$$f(x) = \left\{ \begin{array}{ll} x & \text{se } 0 < x \le 1 \\ 2 - x & \text{se } 1 < x < 2 \\ 0 & \text{caso contrário} \end{array} \right.$$

$$f(x) = \begin{cases} 4x/5 & \text{se } 0 < x \le 1 \\ \frac{2}{5}(3-x) & \text{se } 1 < x < 2 \\ 0 & \text{caso contrário} \end{cases}$$

$$\mathbf{4} \ f(x) = \begin{cases} x/2 & \text{se } 0 < x \le 1 \\ 3 - x/4 & \text{se } 1 < x \le 2 \\ 1/4 & \text{se } 2 < x < 3 \\ 0 & \text{caso contrário} \end{cases}$$

Exercício - Magalhães & Lima (2015, p. 188)

A quantia gasta anualmente, em milhões de reais, na manutenção do asfalto em uma cidade do interior é representada pela variável Y com densidade dada por:

$$f(y) = \begin{cases} 4/9(2y-1), & 0,5 \le y < 2; \\ 0, & \text{caso contrário} \end{cases}$$

Obtenha:

- $\mathbb{P}(Y < 0, 8)$. Resp.: 0.04
- ② $\mathbb{P}(Y > 1, 5|Y \ge 1)$. Resp.: 5/8
- **3** $\mathbb{P}(Y > 0, 75 | Y \ge 1)$. Resp.: 1
- ① O valor esperado e a variância de Y. Resp.: $\mathbb{E}(Y) = \frac{3}{2}$ e $\text{var}(Y) = \frac{1}{8}$.
- **6** A mediana e a moda de Y. Resp.: A densidade é amodal e a mediana é $\frac{1+\sqrt{7/2}}{2}$.

Exercício - Magalhães & Lima (2015, p. 189)

Numa certa região, fósseis de pequenos animais são frequentemente encontrados e um arqueólogo estabeleceu o seguinte modelo de probabilidade para o comprimento, em centímetros, desses fósseis.

$$f(x) = \begin{cases} x/40, & 4 \le x < 8 \\ -x/20 + 3/5, & 8 \le x < 10 \\ 1/10, & 10 \le x < 11 \\ 0, & \text{caso contrário} \end{cases}$$

- Faça o gráfico da FDP e da FDA.
- 2 Para um fóssil encontrado nessa região, determine a probabilidade de o comprimento ser inferior a 6 cm? E de ser superior a 5 mas inferior a 10,5 cm?
- 3 Encontre o valor esperado para o comprimento dos fósseis da região?

Exercício - Bussab & Morettin (2013, p. 177)

Certa liga é formada pela mistura fundida de dois metais. A liga resultante contém uma porcentagem de chumbo X, que pode ser considerada uma variável aleatória com FDP

$$f(x) = \frac{3}{5}10^{-5}x(100 - x), \quad 0 \le x \le 100.$$

Suponha que L, o lucro obtido na venda dessa liga (por unidade de peso), seja dado por $L=C_1+C_2X$. Calcule o lucro esperado por unidade.

Exercício - Magalhães & Lima (2015, p. 213)

O acréscimo anual na área atingida por uma certa praga, numa região produtora de frutas, pode ser modelado por uma variável aleatória contínua, medida em hectares (10 mil m^2), com densidades:

$$f(x) = \begin{cases} 2x/3, & 0 < x < 1\\ 1 - x/3, & 1 \le x < 3\\ 0, & \text{caso contrário} \end{cases}$$

- Construa o gráfico dessa densidade.
- 2 Qual seria a probabilidade de a praga atingir entre 2 e 3 hectares esse ano?
- $\ensuremath{\mathfrak{g}}$ Que área será atingida com 50% de certeza?
- Determine o acréscimo médio anual na área atingida pela praga.

Exercício - Bussab & Morettin (2013, p. 172)

Suponha que estamos atirando dardos num alvo circular de raio 10 cm, e seja X a distância do ponto atingido pelo dardo ao centro do alvo. A FDP de X é:

$$f(x) = \begin{cases} kx, & \text{se } 0 \le x \le 10\\ 0, & \text{caso contrário} \end{cases}$$

- Qual a probabilidade de acertar o centro do alvo, se esse for o círculo de 1 cm de raio?
- 2 Mostre que a probabilidade de acertar qualquer círculo concêntrico e proporcional a sua área.

Exercício - Ross (2010, p. 188)

A vida útil em horas de um tubo de rádio é uma variável aleatória com FDP

$$f(x) = \begin{cases} 100/x^2, & x \le 100\\ 0, & x > 100. \end{cases}$$

Qual a probabilidade de que exatamente dois de um total de cinco tubos no rádio precisem ser repostos nas primeiras 150 horas de operação?

Dica.: Considere os eventos E_i com i=1,2,3,4,5 para indicar que o *i*-ésimo tubo precisará ser substituído. Considere os eventos E_i independentes.

Exercício - Magalhães & Lima (2015, p. 215)

O tempo de corrosão, em anos, de uma certa peça metálica é uma variável com densidade:

$$f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 < x \le 2 \\ -ax + 3a, & 2 < x \le 3 \\ 0, & \text{caso contrário.} \end{cases}$$

- \bullet Calcule a constante a.
- 2 Uma peça é considerada como tendo boa resistência à corrosão se dura mais que 1,5 anos. Em que um lote de 3 peças, qual a probabilidade de termos exatamente 1 delas com boa resistência?

Exercício - Magalhães & Lima (2015, p. 88)

O escore em um teste internacional de proficiência na língua inglesa varia de 0 à 700 pontos, com mais pontos indicando um melhor desempenho. Informações, coletadas durante vários anos, permitem estabelecer o seguinte modelo para o desempenho no teste.

Pont	os $[0, 200)$	[200, 300)	[300, 400)	[400, 500)	[500, 600)	[600, 700]
p_i	0,06	0,15	0,16	0,25	0,28	0,1

Várias universidades americanas, exigem um escore mínimo de 600 pontos para aceitar candidatos de países de língua não inglesa. De um grande grupo de estudantes brasileiros que prestaram o último exame, escolhemos ao acaso 20 deles. Qual seria a probabilidade de no máximo três atenderem ao requisito mínimo exigido?

Modelo Uniforme Contínuo

Diremos que X segue o modelo Uniforme Contínuo, no intervalo $[\alpha, \beta] \subset \mathbb{R}$, se todos os subintervalos de $[\alpha, \beta]$ com mesmo comprimento apresentarem a mesma probabilidade. Sua FDP é dada por:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{se } \alpha \le x \le \beta \\ 0 & \text{caso contrário} \end{cases}$$

Notação: $X \sim U_C[\alpha, \beta]$

Propriedades

$$\bullet \ \mathbb{E}(X) = \frac{\alpha + \beta}{2};$$

2
$$var(X) = \frac{(\beta - \alpha)^2}{12};$$

$$F(x) = \begin{cases} 0 & \text{se } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{se } \alpha \le x \le \beta \\ 1 & \text{se } x > \beta \end{cases}$$

Ilustre o gráfico de f(x) e F(x) para $X \sim U_C[\alpha, \beta]$ e mostre que:

$$\bullet \ \mathbb{E}(X) = \frac{\alpha + \beta}{2};$$

2
$$var(X) = \frac{(\beta - \alpha)^2}{12};$$

$$F(x) = \begin{cases} 0 & \text{se } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{se } \alpha \le x \le \beta \\ 1 & \text{se } x > \beta \end{cases}$$

Um professor nunca dispensa a turma mais cedo. Se X representar a quantidade de tempo que a turma fica retida após o final da aula, assuma que X tenha uma distribuição uniforme no intervalo de (0,10). A curva de densidade é:

- **①** Ordene as probabilidades: $\mathbb{P}(2 < X < 3)$, $\mathbb{P}(2 \le X \le 3)$, $\mathbb{P}(X < 2)$, $\mathbb{P}(X > 7)$.
- 2 Qual a probabilidade de que:
 - a turma seja retida por mais de cinco minutos?
 - **b** a retenção fique entre 3 e 5 minutos?

Exercício - Bussab & Morettin (2013, p. 203)

Suponha que X tenha distribuição uniforme em [-a,3a]. Determine a média e a variância de X.

A quantidade X de sedimentos depositados por dia em uma certa região marítima seque uma distribuição uniforme no intervalo 7,5 à 20 toneladas.

- \bullet Desenhe a curva de densidade da variável X;
- Qual a altura da curva de densidade?
- Qual a probabilidade de que até o final do dia sejam depositadas no máximo 12 toneladas de sedimento nessa região?
- 0 Qual a probabilidade de que X esteja no intervalo (10, 15)? E de estar no intervalo (12, 17)? Porque as duas probabilidades são iguais?
- Qual a probabilidade de até o final do dia serem depositadas no máximo mais 5 toneladas de sedimento nessa região dado que até o presente momento já foram depositadas mais de 9 toneladas?

Se $X \sim U_C(0, 10)$ calcule:

- **2** $\mathbb{P}(X > 6)$
- **3** $\mathbb{P}(3 < X < 8)$

Um programa de TV dura 1 hora e um telespectador impaciente inicia assistindo, mas vai trocar de canal a qualquer momento, com igual probabilidade, durante o programa.

- Qual a probabilidade de ele assistir à maior parte do programa?
- Se ele assistiu à maior parte, qual seria a probabilidade de ele desligar a TV ou mudar de canal nos últimos 10 minutos?

Paradoxo de Bertrand - Bertrand (1889)

Considere uma corda escolhida aleatoriamente em um círculo dado. Qual a probabilidade que essa corda tenha comprimento maior que o lado do triângulo (equilátero) inscrito à esse círculo?

Dicas.: Pense nas seguintes estratégias:

- Escolha aleatoriamente as extremidades da corda. Resp.: 1/3
- ${\bf 2}$ Escolha um raio para o círculo, escolha aleatoriamente um ponto sobre o raio escolhido e construa uma corda perpendicular ao raio passando por esse ponto. Resp.: 1/2
- $\mbox{\bf 8}$ Escolha um ponto aleatório dentro do círculo. Considere a corda tal que esse ponto seja o ponto médio da corda. Resp.: $^{1/4}$

Resp.: Qual é a resposta correta?

Exercício - Ross (2010, p. 196)

Num ponto de parada saem ônibus a cada 15 minutos a partir das 7h. Se um passageiro chega num ponto de parada em um instante de tempo uniformemente distribuído entre às 7h e 7h30min. Encontre a probabilidade de que o passageiro espere:

- menos de 5 minutos? Resp.: 1/3
- 2 mais do que 10 minutos?

Exercício - Magalhães (2011, p. 106)

Seja $X \sim U_C(-\alpha, \alpha)$, determine o valor do parâmetro α de modo que:

- ② $\mathbb{P}(|X| < 1) = \mathbb{P}(|X| > 2)$

Modelo Normal

Uma variável aleatória X tem distribuição normal com parâmetros (média) $\mu \in \mathbb{R}$ e (desvio padrão) $\sigma \in \mathbb{R}_+^*$ se sua FDP é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right], \quad x \in \mathbb{R}$$

Notação.: $X \sim \mathcal{N}(\mu, \sigma^2)$

Modelo normal padrão

A distribuição normal padrão (ou normal reduzida) é caracterizada quando $\mu=0$ e $\sigma=1$. Sua FDP se resume à:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad z \in \mathbb{R}$$

- A curva é simétrica em relação à reta x = 0;
- Média, mediana e a moda são todas iguais à 0;

Interpretação gráfica da média

As densidades são simétrica em relação às suas respectivas médias. A média é um parâmetro de locação da normal.

Interpretação gráfica da variância

A variância é um parâmetro de escala da normal.

Função de distribuição acumulada da normal padrão

Seja $Z \sim \mathcal{N}(0,1)$. O valor da FDA $\Phi(z) = \mathbb{P}(Z \leq z)$ é obtido integrando-se a f.d.p no intervalo $(-\infty, x)$.

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt, \quad z \in \mathbb{R}$$

Esta integral não apresenta forma analítica fechada.

Cálculo de probabilidades na normal padrão

Seja $Z \sim \mathcal{N}(0,1)$. Note que:

$$\mathbb{P}(a \le Z \le b) = \Phi(b) - \Phi(a)$$

Concentrações da densidade na normal padrão

Seja $Z \sim \mathcal{N}(0,1)$.

Considere $Z \sim \mathcal{N}(0,1)$. Calcule as seguintes probabilidades:

- **2** $\mathbb{P}(Z \le 2.24)$
- **8** $\mathbb{P}(Z \ge 0.53)$
- **4** $\mathbb{P}(Z > -0.72)$
- **6** $\mathbb{P}(-2.33 \le Z < 1.63)$
- **6** $\mathbb{P}(-2.05 < Z \le -1.03)$
- $\mathbb{P}(-1 \le Z \le 1)$
- **8** $\mathbb{P}(-2 \le Z \le 2)$
- **9** $\mathbb{P}(-3 \le Z \le 3)$

Considere $X \sim \mathcal{N}(\mu, \sigma^2)$ e defina uma nova variável $Z = \frac{X - \mu}{\sigma}$. Mostre que:

- $\bullet \ \mathbb{E}(X) = \mu$
- \mathbf{Q} var $(X) = \sigma^2$ Dica.: Use integração por partes para mostrar que $\mathbb{E}(X^2) = \sigma^2 + \mu^2$
- **3** $Z \sim \mathcal{N}(0,1)$

Calcule as seguintes probabilidades:

- Seja $X \sim \mathcal{N}(2, 25)$ encontre $\mathbb{P}(X < -1.31)$
- 2 Seja $X \sim \mathcal{N}(1,4)$ encontre $\mathbb{P}(X \leq 2.37)$
- 8 Seja $X \sim \mathcal{N}(-2,1)$ encontre $\mathbb{P}(X > -2.45)$
- 4 Seja $X \sim \mathcal{N}(0,9)$ encontre $\mathbb{P}(X \geq -1.5)$
- **6** Seja $X \sim \mathcal{N}(2, 25)$ encontre $\mathbb{P}(X < -0.31)$
- **6** Seja $X \sim \mathcal{N}(-2, 36)$ encontre $\mathbb{P}(-1.33 \le X < 1.03)$
- Seja $X \sim \mathcal{N}(-3, 25)$ encontre $\mathbb{P}(-2.05 < X \le 2.03)$

A duração de um certo tipo de pneu, em quilômetros rodados, é uma variável normal com duração média de 60000 km e desvio padrão de 10000 km. Qual a probabilidade de um pneu aleatoriamente escolhido durar:

- **1** mais de 75000km?
- 2 entre 50000km e 70000km?
- 3 entre 63000km e 70000km?
- a exatamente 70000km?

O fabricante desses pneus deseja fixar prazo de garantia, em quilômetros, de tal modo que, se a duração do pneu for inferior à garantia, o pneu seja trocado. De quantos quilômetros deve ser este prazo, para que somente:

- 5% dos pneus sejam trocados?
- 2 2% dos pneus sejam trocados?
- 3 1% dos pneus sejam trocados?

Exercício - Bussab & Morettin (2013, p. 203)

O diâmetro de certo tipo de anel industrial é uma variável aleatória com distribuição normal, de média 0,10cm e desvio padrão 0,02cm. Se o diâmetro do anel diferir da média em mais que 0,03cm, ele é vendido por \$5,00; caso contrário é vendido por \$10,00. Qual o preço médio de venda de cada anel?

Exercício - Magalhães & Lima (2015, p. 200)

Doentes de um certo tipo de moléstia, são submetidos a um tratamento intensivo cujo tempo de cura foi modelado por uma densidade Normal, de média 15 e desvio padrão 2 (em dias).

- Qual a proporção de pacientes demorará mais de 17 dias para se recuperar?
- Qual a probabilidade de um paciente escolhido ao acaso apresentar tempo de cura inferior à 20 dias?
- Oconsidere agora que 100 pacientes são escolhidos ao acaso, qual seria o número esperado de doentes curados em menos de 11 dias?

Exercício - Magalhães & Lima (2015, p. 107)

Suponha que o volume, em litros, de uma garrafa de refrigerantes seja Normal com parâmetros $\mu=1$ e $\sigma^2=10^{-4}$. Se três garrafas forem sorteadas ao acaso, pergunta-se a probabilidade de:

- 1 Todas as três terem pelo menos 980ml?
- 2 Não mais do que uma ficar com volume inferior a 980ml?

Exercício - Magalhães (2011, p. 107)

Uma variável $X \sim \mathcal{N}(\mu, \sigma^2)$ representa o desempenho de um certo equipamento. Ele será considerado fora de controle se afastar de μ por mais de 2σ unidades. Todo o dia, o equipamento é avaliado e, caso esteja fora de controle, será desligado e enviado para manutenção. Admita independência entre as avaliações diárias. Determine a probabilidade de:

- ${\color{red} 0}$ No primeiro dia o equipamento ser desligado
- 2 A primeira manutenção ser no décimo dia.

Você reconhece a variável que conta os dias anteriores a manutenção?

Exercício - Bussab & Morettin (2013, p. 186)

Os depósitos efetuados no Banco da Ribeira durante o mês de agosto são distribuídos normalmente, com média de R\$10.000,00 e desvio padrão de R\$1.500,00. Um depósito é selecionado ao acaso dentre todos os referentes ao mês em questão. Encontrar a probabilidade de que o depósito seja:

- **1** R\$10.000, 00 ou menos
- 2 pelo menos R\$10.000,00
- 3 um valor entre R\$12.000,00 e R\$15.000,00
- 4 maior do que R\$20.000,00

Exercício - Ross (2010, p. 202)

Uma avaliação é considerada como sendo bem sucedida se os resultados dos alunos que fizeram o teste puder ser aproximado pela distribuição normal. O professor usa os resultados dos testes para estimar os parâmetros μ e σ da normal e atribui nota A para os alunos que tiverem notas superiores à $\mu + \sigma$, B para todos com notas entre μ e $\mu + \sigma$, C para os alunos com notas entre $\mu - \sigma$ e μ e, finalmente, D para quem tiver notas abaixo de $\mu - \sigma$. Qual o percentual de alunos receberá notas A, B, C e D?

Exercício - Ross (2010, p. 202)

Uma testemunha especialista em um processo de paternidade testa que a duração (em dias) de uma gestação segue aproximadamente a distribuição $\mathcal{N}(270,100)$. O advogado de defesa é capaz de provas que seu cliente esteve fora do país durante um período que se inicia 290 dias antes do nascimento da criança e vai até 240 dias antes do nascimento. Se o réu for, de fato, o pai da criança, qual é a probabilidade da mãe tenha tido uma gestação tão longa (ou tão curta) para ser compatível com a provas apresentadas pela defesa?

Combinação linear de normais independentes

Sejam $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ para $i=1,\ldots,n$ uma sequência de variáveis aleatórias Normais independentes. Sejam a_1,\ldots,a_n constantes quaisquer. Então a mistura das variáveis aleatórias X_1,\ldots,X_n

$$W = \sum_{i=1}^{n} a_i X_i$$

tem distribuição Normal, com média e variâncias dadas por:

$$\bullet \mu_W = \sum_{i=1}^n a_i \mu_i$$

$$\sigma_W^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$$

Exercício - Magalhães & Lima (2015, p. 207)

Um serviço de fiscalização é criado para averiguar se garrafas de um certo refrigerante contém, de fato,e o volume especificado pelo fabricante. Para tanto, 10 garrafas do produto são compradas no varejo, em várias regiões da cidade. Cada uma dessas garrafas é esvaziada e o volume V de seu conteúdo é aferido. Uma vez obtido os 10 valores, a média aritmética M é calculada e, se M < 290 mililitros (ml) a companhia é multada. Estudos na linha de produção do fabricante mostraram que variações sempre ocorrem, mesmo se as especificações forem seguidas. Por essa razão, considera-se o volume do conteúdo das garrafas como seguindo um modelo Normal, com média μ =300ml e desvio-padrão σ =25ml. Gostaríamos de calcular a probabilidade do fabricante ser multado injustamente.

Exercício - Magalhães & Lima (2015, p. 208)

Uma corretora negocia títulos na Bolsa de valores e utiliza um modelo probabilístico para avaliar seus lucros. Suas aplicações financeiras de compra e venda atingem três áreas: agricultura, indústria e comércio. Admita que os seguinte modelo representa o comportamento do lucro diário da corretora (em milhares de reais):

$$L = 2L_A + 5L_I + 3L_C,$$

com L_A , L_I e L_C representando, respectivamente, os lucros diários nos setores de agricultura, indústria e comércio. As distribuições de probabilidade dessa variáveis aleatórias são $L_A \sim \mathcal{N}(3,4), \ L_I \sim \mathcal{N}(6,9)$ e $L_C \sim \mathcal{N}(4,16)$. Supondo independência entre os setores qual será a probabilidade de um lucro diário acima de 50 mil?

Considere $X \sim Bin(10, 1/2)$ e $Y \sim \mathcal{N}(5, 5/2)$. Note que:

- $\bullet \ \mathbb{E}(X) = \mathbb{E}(Y)$
- var(X) = var(Y)

Considere $X \sim Bin(40, 1/4)$ e $Y \sim \mathcal{N}(10, 15/2)$. Note que:

- $\bullet \ \mathbb{E}(X) = \mathbb{E}(Y)$
- $\mathbf{2} \operatorname{var}(X) = \operatorname{var}(Y)$

Considere $X \sim Bin(60, 3/4)$ e $Y \sim \mathcal{N}(45, 45/4)$. Note que:

- $\bullet \ \mathbb{E}(X) = \mathbb{E}(Y)$
- $\mathbf{2} \operatorname{var}(X) = \operatorname{var}(Y)$

Considere $X \sim Bin(5, 1/10)$ e $Y \sim \mathcal{N}(1/2, 9/20)$. Note que:

- $\bullet \ \mathbb{E}(X) = \mathbb{E}(Y)$
- $\mathbf{2} \operatorname{var}(X) = \operatorname{var}(Y)$

Aproximação da Binomial pela Normal

Considere $X \sim Bin(n, p)$ e $Y \sim \mathcal{N}(\mu, \sigma^2)$. Assuma que:

- **2** $\sigma^2 = np(1-p)$
- Nessas condições, os principais critérios para a aproximação da distribuição binomial pela normal ser considerada boa são:
 - $np(1-p) \ge 3$
 - np > 5
 - n(1-p) > 5
- A demonstração da validade desta aproximação é feita utilizando-se o Teorema Central do Limite.
- A aproximação pode ser melhorada através do uso da correção de continuidade:

$$\mathbb{P}(X = k) \approx \mathbb{P}\left(k - \frac{1}{2} \le Y < k + \frac{1}{2}\right)$$

Exercício - Ross (2010, p. 204)

Seja X o número de caras obtido em 40 lançamentos de uma moeda honesta. Encontre a probabilidade de que X=20. Use a aproximação pela normal (com correção de continuidade) e compare com a solução exata. Solução exata: $\mathbb{P}(X=20)=0,1253707\ldots$

Uma moeda honesta é lançada 100 vezes. Seja X o número de caras obtidas.

- Calcular a probabilidade do número de caras estar entre 40% e 70% dos lançamentos, inclusive. Solução exata: $\mathbb{P}(40 \le X \le 70) = 0,9823838...$
- 2 Determinar um intervalo simétrico em torno do número médio de caras, tal que a probabilidade de observar um médio de caras, tal que a probabilidade de observar um valor de X nesse intervalo é 80%.

Exercício - Ross (2010, p. 205)

A quantidade ideal de alunos para uma turma de primeiro ano de um colégio particular é de 150 estudantes. O colégio, com base em experiências passadas que, em média, espera que somente 30% dos alunos que forem aceitos para admissão de fato irão se matricular. O colégio decide aceitar a admissão de 450 alunos esse ano. Seja X a quantidade de alunos efetuem a matrícula. Qual a probabilidade de X>150?

Solução exata: $\mathbb{P}(40 \le X \le 70) = 0,4778553...$

Um pesquisador, não conhecendo $p = \mathbb{P}(\text{Sair cara})$, decide lançar a moeda 100 vezes e considerá-la desonesta se o número de caras for maior que 59 ou menor que 41. Qual é a probabilidade de considerar indevidamente a moeda como desonesta?

Considere $X \sim Bin(60, 1/10)$. Calcule os valores exatos de $\mathbb{P}(X \leq 4)$ e $\mathbb{P}(X \geq 4)$ e compare com os valores obtidos usando as aproximações pelas distribuições normal e Poisson.

Uma prova é constituída de 20 testes com quatro alternativas cada. Um aluno não estudou a matéria e vai respondê-los ao acaso. Qual é a probabilidade de acertar 50% ou mais das questões?

Exercício - Magalhães & Lima (2015, p. 204)

Um estudo do sindicato dos bancários, indica que cerca de 30% dos funcionários de banco têm problemas de estresse, provenientes das condições de trabalho. Numa amostra de 200 bancários, qual seria a probabilidade de ao menos 50 com essa doença?

Modelo Exponencial

A variável aleatória X tem distribuição exponencial com parâmetro (média) $\lambda>0$ se sua FDP tem a forma:

$$f(x) = \begin{cases} \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right), & x > 0\\ 0, & x \le 0 \end{cases}$$

Notação: $X \sim Exp(\lambda)$.

Algumas das propriedades:

- var $(X) = \lambda^2$
- $F(x) = 1 \exp\left(-\frac{x}{\lambda}\right), x > 0$
- **4** Falta de memória: $\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$
- 6 A distribuição exponencial é amodal

Mostre que se $X \sim Exp(\lambda)$ então:

- **3** $F(x) = 1 \exp\left(-\frac{x}{\lambda}\right), x > 0$
- **4** Falta de memória: $\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$
- 6 A distribuição exponencial é amodal

Dica.: Use integração por partes para encontra a média e a variância.

Interpretação gráfica do parâmetro de média λ

Exercício - Bussab & Morettin (2013, p. 187)

O tempo de vida (em horas) de um transmissor pode ser considerado uma variável aleatória com distribuição exponencial com $\lambda=500$.

- \blacksquare Qual a média e a variância do tempo de vida desse transmissor? Resp.: média 500 e variância 500^2
- ${\bf Q}$ Qual a probabilidade de que um transmissor escolhido aleatoriamente dure mais do que a média? Resp.: e^{-1}
- 3 Determine a função de distribuição acumulada.

Resp.:
$$F(x) = 1 - \exp\left(-\frac{x}{500}\right), x > 0$$

Exercício - Ross (2010, p. 210)

Considere uma agência dos correios onde trabalhem dois funcionários. Suponha que Samuel entrou na agência e verificou que João estava sendo atendido por um dos funcionários e Benedito pelo outro. Samuel será atendido assim que João ou Benedito saírem do guichê de atendimento. O tempo que um funcionário gasta para atender um cliente é exponencialmente distribuído com parâmetro λ . Qual a probabilidade de que Samuel seja o último a sair da agência?

Exercício - Ross (2010, p. 209)

Suponha que a duração de uma chamada telefônica em minutos é uma variável aleatória exponencial com parâmetro $\lambda=10$. Suponha que uma pessoa arbitrária inicie agora uma chamada. Qual a probabilidade de que a chamada:

- ① Dure mais de 10 minutos?
- 2 Tenha duração entre 10 e 20 minutos?

Exercício - Rathie & Zörnig (2012, p. 180)

O aumento de vendas por dia em uma certa loja, depois da contratação de uma nova vendedora, é aproximadamente distribuído exponencialmente com parâmetro $\lambda=2$. Se três dias são selecionados ao acaso, qual a probabilidade de que o aumento seja superior:

- 1 a dez unidades em todos os dias;
- 2 a seis unidades, em pelo menos um dos dias observados?

Exercício - Ross (2010, p. 211)

Suponha que o número de milhas que um carro percorra antes de sua bateria se esgotar é exponencialmente distribuído com média 10.000 milhas. Se uma pessoa desejar realizar uma viagem de 5000 milhas. Qual a probabilidade de esta pessoa não conseguir completar a viagem sem precisar repor a bateria? Se

Relação entre Poisson e Exponencial

Seja X uma variável aleatória que representa a quantidade de ocorrências de um determinado evento de interesse, num certo intervalo de tempo. Suponha que esse evento ocorra com, em média, λ vezes nesse intervalo. Assuma que $X \sim Po(\lambda)$. Seja X_t a quantidade de vezes que esse evento ocorreu num intervalo de tempo t vezes maior. Desse modo:

$$X_t \sim Po(t\lambda)$$

Vamos supor que acabamos de ter uma ocorrência do evento de interesse. Seja Y a variável que indica o tempo até a próxima ocorrência. Para y>0 temos:

$$F(y) = \mathbb{P}(Y \le y)$$

$$= 1 - \mathbb{P}(Y > y)$$

$$= 1 - \mathbb{P}(X_y = 0)$$

$$= 1 - \exp(-\lambda y)$$

Mas essa é a FDA da distribuição exponencial com parâmetro $1/\lambda$. Logo:

$$Y \sim Exp(1/\lambda)$$
.

Referências

Referências I

- Bertrand, J. (1889). Calcul des probabilités. Paris: Gauthier-Villars et fils.
- Bussab, W. O. & P. A. Morettin (2013). Estatística Básica. São Paulo: Saraiva.
- Magalhães, M. N. (2011). Probabilidadade e Variáveis Aleatórias (3 ed.). São Paulo: EdUSP.
- Magalhães, M. N. & A. C. P. Lima (2015). Noções de Probabilidade e Estatística (7 ed.). São Paulo: EdUSP.
- Rathie, P. N. & P. Zörnig (2012). Teoria da Probabilidade. Editora UnB.
- Ross, S. M. (2010). A First Course in Probability (8 ed.). New York: Pearson Hall.

