Introduction to Algorithms Lecture 13 Number Theoretic Algorithm

Xue Chen
xuechen1989@ustc.edu.cn
2025 spring in

Outline

- Introduction
- 2 Prime Number Theorem
- 3 Basic Tools
- 4 Primality Testing

Introduction

Many algorithms uses number theory

- 4 Hash functions
- 2 Coding theory
- 3 Cryptography

Introduction

Many algorithms uses number theory

- 4 Hash functions
- 2 Coding theory
- 3 Cryptography

Primes are the backbone of Number theory

Most Fundamental Problem in Number Theory

How to find a large prime number *p*?

Our Focus

Given n say 10^3 or 10^4 , find a prime number of n digits (in binary).

Our Focus

Given n say 10^3 or 10^4 , find a prime number of n digits (in binary).

Basic idea: Sieve algorithm?

Our Focus

Given n say 10^3 or 10^4 , find a prime number of n digits (in binary).

- Basic idea: Sieve algorithm?
- 2 But we want a number between 2^{n-1} and $2^n 1!$

Our Focus

Given n say 10^3 or 10^4 , find a prime number of n digits (in binary).

- Basic idea: Sieve algorithm?
- 2 But we want a number between 2^{n-1} and $2^n 1!$
- Output
 Lots of interesting math: prime number THM, Euclid's ALGO, Fermat's THM, chinese remainder THM, primality testing

procedure GENERATE-PRIME(n) repeat

Generate a random number q of n digits **until** q is a prime

procedure GENERATE-PRIME(n)
 repeat

Generate a random number *q* of *n* digits **until** *q* is a prime

To finish this algorithm and analyze it, lots of questions:

Density of primes in n-digit numbers?

procedure GENERATE-PRIME(n) repeat

Generate a random number q of n digits **until** q is a prime

To finish this algorithm and analyze it, lots of questions:

- ① Density of primes in n-digit numbers?
- When to test whether q is a prime or not efficiently?
- Many tools ...

procedure GENERATE-PRIME(n) repeat

Generate a random number *q* of *n* digits **until** *q* is a prime

To finish this algorithm and analyze it, lots of questions:

- ① Density of primes in n-digit numbers?
- When to test whether q is a prime or not efficiently?
- Many tools ...
- 4 To the best of my knowledge, fastest algorithm in time $\approx n^3$

Outline

- Introduction
- 2 Prime Number Theorem
- 3 Basic Tools
- 4 Primality Testing

1 Legendre, Gauss and others discovered the curve around 1800s, the THM was proved around 1890 by Hadamard and Poussin

- 1 Legendre, Gauss and others discovered the curve around 1800s, the THM was proved around 1890 by Hadamard and Poussin
- 2 Riemann made a bolder claim 1852 called Riemann hypothesis

- 1 Legendre, Gauss and others discovered the curve around 1800s, the THM was proved around 1890 by Hadamard and Poussin
- 2 Riemann made a bolder claim 1852 called Riemann hypothesis
- Twin prime number THM by Yitang Zhang 2013

Legendre

Let us show $\pi(N) = \Theta(N/\ln N)$

Let us show $\pi(N) = \Theta(N/\ln N)$

① Consider $\binom{2N}{N}$ — all primes in [N+1, 2N] are its factors

Let us show $\pi(N) = \Theta(N/\ln N)$

- ① Consider $\binom{2N}{N}$ all primes in [N+1, 2N] are its factors
- ② On the 1st hand, $\binom{2N}{N} = \Theta(2^{2N}/\sqrt{N})$

Let us show $\pi(N) = \Theta(N/\ln N)$

- ① Consider $\binom{2N}{N}$ all primes in [N+1, 2N] are its factors
- ② On the 1st hand, $\binom{2N}{N} = \Theta(2^{2N}/\sqrt{N})$
- ③ On the 2nd hand, let us consider the contribution of $p \le N$ in $\binom{2N}{N}$
 - Question: Can we bound k s.t. at most k factors of p in $\binom{2N}{N}$?

Outline

- Introduction
- 2 Prime Number Theorem
- 3 Basic Tools
- 4 Primality Testing

Algorithms test whether a large integer is a prime or not — called primality testing. Before designing testers, what properties do prime number have?

Algorithms test whether a large integer is a prime or not — called primality testing. Before designing testers, what properties do prime number have?

Fix a large prime p of n digits and consider all operations in mod p

Algorithms test whether a large integer is a prime or not — called primality testing. Before designing testers, what properties do prime number have?

- Fix a large prime p of n digits and consider all operations in mod p
- ② In group theory, all elements are in $Z_p = \{0, 1, ..., p-1\}$
- 3 Let $Z_p^* = \{1, \ldots, p-1\}$

Algorithms test whether a large integer is a prime or not — called primality testing. Before designing testers, what properties do prime number have?

- Fix a large prime p of n digits and consider all operations in mod p
- ② In group theory, all elements are in $Z_p = \{0, 1, ..., p-1\}$
- 3 Let $Z_p^* = \{1, \ldots, p-1\}$

Basic Property

For any $a \in \{1, ..., p-1\}$, $\exists b \text{ such that } ab \equiv 1 \mod p$, called a^{-1} .

In fact, we could find a^{-1} in time $O(\log p) = O(n)$ \odot

Revisit Euclid's Algorithm

Recall that Euclid's algorithm computes gcd(a, b)

Algorithm Euclid's algorithm for GCD

```
function EUCLID(a, b)
  if b=0 then
    return a
  else
    return Euclid(b, a mod b)
```

Revisit Euclid's Algorithm

Recall that Euclid's algorithm computes gcd(a, b)

Algorithm Extended Euclid's algorithm

```
function EUCLID(a, b)

if b=0 then

return (x = 1, y = 0)

else

(x_0, y_0) = Euclid(b, a \mod b)

Return (y_0, x_0 - [a/b] \cdot y_0)
```

Extension

For any a, b, it finds $x, y \in \mathbb{Z}$ such that ax + by = gcd(a, b)

Fermat's little Theorem

Fix a prime p, for any $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \mod p$.

Proof?

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?
- 3 Can we use it to test primes? Say randomly pick a and compute a^{p-1}
- 4 Does it reject composites?

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?
- 3 Can we use it to test primes? Say randomly pick a and compute a^{p-1}
- Does it reject composites?
- ⑤ ② 561 is a counter-example: for any gcd(a, 561) = 1, $a^{560} \equiv 1 \pmod{p}$

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?
- 3 Can we use it to test primes? Say randomly pick a and compute a^{p-1}
- Does it reject composites?
- ⑤ ② 561 is a counter-example: for any gcd(a, 561) = 1, $a^{560} \equiv 1 \pmod{p}$

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?
- 3 Can we use it to test primes? Say randomly pick a and compute a^{p-1}
- Does it reject composites?
- ⑤ ③ 561 is a counter-example: for any gcd(a, 561) = 1, $a^{560} \equiv 1 \pmod{p}$
- 6 Wait! How many a that has gcd(a, 561) = 1?

Fermat's little Theorem

- Proof?
- ② It gives an alternate way to find a^{-1} , how?
- 3 Can we use it to test primes? Say randomly pick a and compute a^{p-1}
- Does it reject composites?
- ⑤ \odot 561 is a counter-example: for any gcd(a, 561) = 1, $a^{560} \equiv 1 \pmod{p}$
- 6 Wait! How many a that has gcd(a, 561) = 1?
- ② Let us introduce Euler function $\phi(N)$

Property: Prime Factorization

Unique Factorization

For any integer N, there is an unique factorization of primes $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_R}$.

Property: Prime Factorization

Unique Factorization

For any integer N, there is an unique factorization of primes $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_R}$.

- ① Definition of Euler Function: $\phi(N) = (1 1/p_1) \cdots (1 1/p_r) \cdot N$ if N's distinct prime factors are p_1, \ldots, p_r
- ② Fact: Number of $a \in Z_N$ with (a, N) = 1 is $\phi(N)$

Property: Prime Factorization

Unique Factorization

For any integer N, there is an unique factorization of primes $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_R}$.

- ① Definition of Euler Function: $\phi(N) = (1 1/p_1) \cdots (1 1/p_r) \cdot N$ if N's distinct prime factors are p_1, \ldots, p_r
- ② Fact: Number of $a \in Z_N$ with (a, N) = 1 is $\phi(N)$
- ③ Extension of Fermat's little THM: $a^{\Phi(N)} \equiv 1 \mod N$ for any (a, N) = 1.

Composite Numbers

To distinguish prime numbers from composites, what properties does a composite have?

Chinese Remainder THM

Given distinct primes p_1, \ldots, p_r , consider $(a_1, \ldots, a_r) \in Z_{p_1} \times \cdots \times Z_{p_r}$. There is a 1-1 map between $a \in Z_{p_1 \cdot p_2 \cdots p_r}$ and (a_1, \ldots, a_n)

Composite Numbers

To distinguish prime numbers from composites, what properties does a composite have?

Chinese Remainder THM

Given distinct primes p_1, \ldots, p_r , consider $(a_1, \ldots, a_r) \in Z_{p_1} \times \cdots \times Z_{p_r}$. There is a 1-1 map between $a \in Z_{p_1 \cdot p_2 \cdots p_r}$ and (a_1, \ldots, a_n)

- Most fundamental THM in group/ring theory and number theory
- 2 Both directions are useful in algorithm design and analysis

Outline

- Introduction
- 2 Prime Number Theorem
- 3 Basic Tools
- Primality Testing

Problem Description

Given q, test whether it is a prime or not.

Problem Description

Given q, test whether it is a prime or not.

① The issue of Fermat's little THM is that for some composites like q = 561, most $a \in Z_a$ has $a^{q-1} \equiv 1$

Problem Description

Given q, test whether it is a prime or not.

- 1) The issue of Fermat's little THM is that for some composites like q=561, most $a\in Z_q$ has $a^{q-1}\equiv 1$
- 2 Let us try Chinese Remainder THM.

Problem Description

Given q, test whether it is a prime or not.

- ① The issue of Fermat's little THM is that for some composites like q = 561, most $a \in Z_a$ has $a^{q-1} \equiv 1$
- 2 Let us try Chinese Remainder THM.

Key Observation

- ① If q is a prime, $x^2 \equiv 1$ has at most 2 roots. What are they?
- ② If q is not a prime, $x^2 \equiv 1$ has at least 4 roots. Why?

Taking Square Root

Taking Square Root

If we can generate a random root of $x^2 \equiv 1 \mod q$, it tells whether q is a prime or not — prime q has at most 2 roots and composite q has $\geqslant 4$ roots

Unfortunately, finding square roots is computational hard — equivalent to factoring and break RSA system

Taking Square Root

- Unfortunately, finding square roots is computational hard equivalent to factoring and break RSA system
- 2 Wait ... we can use Fermat's little THM to help with it

Taking Square Root

- Unfortunately, finding square roots is computational hard equivalent to factoring and break RSA system
- Wait ... we can use Fermat's little THM to help with it
- 3 Since $a^{q-1} \equiv 1$ for any a, $a^{\frac{q-1}{2}}$ might be a random root for a random a

Taking Square Root

- Unfortunately, finding square roots is computational hard equivalent to factoring and break RSA system
- Wait ... we can use Fermat's little THM to help with it
- 3 Since $a^{q-1} \equiv 1$ for any a, $a^{\frac{q-1}{2}}$ might be a random root for a random a
 - If $a^{\frac{q-1}{2}} \neq \pm 1$, claim q is composite
 - ▶ If $a^{\frac{q-1}{2}} = -1$, give up this a

Taking Square Root

- Unfortunately, finding square roots is computational hard equivalent to factoring and break RSA system
- Wait ... we can use Fermat's little THM to help with it
- 3 Since $a^{q-1} \equiv 1$ for any a, $a^{\frac{q-1}{2}}$ might be a random root for a random a
 - If $a^{\frac{q-1}{2}} \neq \pm 1$, claim q is composite
 - ▶ If $a^{\frac{q-1}{2}} = -1$, give up this a
 - ► Else if $a^{\frac{q-1}{2}} = 1$, keep trying $a^{\frac{q-1}{4}}$, $a^{\frac{q-1}{8}}$, ...

Formal Description

Pick many random $a \sim Z_q$ and call WITNESS(a) for each one — output "composite" if any call does so

Algorithm Miller-Rabin Tester

```
function WITNESS(a,q)
Decompose q-1=2^t\cdot u
x_0\equiv a^u
for i=1,\ldots,t do
x_i\equiv x_{i-1}^2
x_i\equiv 1 \text{ and } x_{i-1}\neq \pm 1 \text{ then}
Return Composite
```

Return Composite if $x_t \neq 1$ o.w. return Prime

Formal Description

Pick many random $a \sim Z_q$ and call WITNESS(a) for each one — output "composite" if any call does so

Algorithm Miller-Rabin Tester

```
function WITNESS(a,q)
Decompose q-1=2^t\cdot u
x_0\equiv a^u
for i=1,\ldots,t do
x_i\equiv x_{i-1}^2
x_i\equiv 1 and x_{i-1}\neq \pm 1 then
Return Composite
```

Return Composite if $x_t \neq 1$ o.w. return Prime

Running Time

 $O(\log^3 q)$: $t = O(\log q)$ — but $x_i^2 \mod q$ takes $O(\log^2 q)$ time

Correctness

If q is composite, at least half a make WITNESS(a, q) = Composite.

Correctness

If q is composite, at least half a make WITNESS(a, q) = Composite.

The proof is similar to the proof $x^2 \equiv 1$ has at least 4 roots but uses group theory

① Suppose $q = p_1 \cdot p_2$ for two distinct primes

Correctness

If q is composite, at least half a make WITNESS(a, q) =Composite.

- ① Suppose $q = p_1 \cdot p_2$ for two distinct primes
- ② Define (a, j) is acceptable if $a^{2^{j \cdot u}} \equiv -1$
- ③ Find the largest j with acceptable pairs (existence from j=0 and a=-1) such that $x^{2^{j+1}u}\equiv 1$ for all x

Correctness

If q is composite, at least half a make WITNESS(a, q) = Composite.

- ① Suppose $q = p_1 \cdot p_2$ for two distinct primes
- ② Define (a, j) is acceptable if $a^{2^{j} \cdot u} \equiv -1$
- ③ Find the largest j with acceptable pairs (existence from j=0 and a=-1) such that $x^{2^{j+1}u}\equiv 1$ for all x
- 4 But $B = \{x : x^{2^j u} \equiv \pm 1\} \subsetneq Z_q^*$ is a proper subgroup
- ⑤ By group theory, only need to show $\exists b \notin B$, which is implied by Chinese Remainder THM

Correctness

If q is composite, at least half a make WITNESS(a, q) = Composite.

- ① Suppose $q = p_1 \cdot p_2$ for two distinct primes
- ② Define (a, j) is acceptable if $a^{2^{j} \cdot u} \equiv -1$
- ③ Find the largest j with acceptable pairs (existence from j=0 and a=-1) such that $x^{2^{j+1}u}\equiv 1$ for all x
- 4 But $B = \{x : x^{2^j u} \equiv \pm 1\} \subsetneq Z_q^*$ is a proper subgroup
- ⑤ By group theory, only need to show $\exists b \notin B$, which is implied by Chinese Remainder THM
- 6 When i = j + 1, half elements will be caught

Summary

- ① Primality tester faster than $O(n^3)$?
- 2 How to generate primes efficiently?
- Many other problem: factoring, ...

Questions?