Ingenuity Pathway Analysis (IPA) hands-on workshop

(Introduction and data upload)

by

MSc. Julio A. Finalet Ferreiro

IPA use for cancer research: examples

1)

Haematologica. 2015 Jul;100(7):e275-9. doi: 10.3324/haematol.2015.124305. Epub 2015 Mar 20.

Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.

Ferreiro JF¹, Morscio J², Dierickx D³, Marcelis L², Verhoef G³, Vandenberghe P¹, Tousseyn T², Wlodarska I⁴.

Author information

¹KU Leuven, University of Leuven, Center for Human Genetics, Belgium.

²KU Leuven, University of Leuven, Translational Cell and Tissue Research and KU Leuven, University Hospitals Leuven, Department of Pathology, Belgium.

³KU Leuven, University Hospitals Leuven, Department of Hematology, Belgium.

⁴KU Leuven, University of Leuven, Center for Human Genetics, Belgium iwona.wlodarska@uzleuven.be.

Genomic and transcriptomic data on PT-mBL.

Julio Finalet Ferreiro et al. Haematologica 2015;100:e275-e279

Genomic and transcriptomic data on PT-mBL. (A) Partial karyotype of case 5 (c5) and case 6 (c6) showing chromosome 11 abnormalities and FISH images of both derivative chromosomes painted with WCP11 (green) and WCP8 (red) (case 5), and WCP18 (red) (case 6). The aberrations were eventually described as der(11)(11pter->11q23.3::11q23.3->11q13::8q22q24.3) and der(11)t(11;18)(q23.3;q12), respectively. Note (inverted) duplication of 11q13q23.3 in case 5 and a normal appearance of this region in case 6. (B) Chromosomal view of chromosome 11q23q24 and imbalances identified by array CGH analysis in cases 5-7. Gained regions are highlighted in redscale (increased intensity reflects an increased amplification level), while lost regions are marked in green. Note a variable level of 11q23.3 gain, a common loss of 11q24qter and the defined MGR (~4 Mb) and MLR (~13.5 Mb). (C) Examples of interphase FISH analysis performed in case 5 (a) and case 6 (b, c). The applied probes include the 11q-MGR/MLR FISH assay (a) (b), and two probes from the duplicated (RP11-284O21-SpectrumOrange) and amplified (RP11-784K23-SpectrumGreen; Online Supplementary Figure S2) area in case 6 (c). Note the duplicated and amplified red/11q23.3 signal in (a) and (c), respectively, and loss of the green/11q24 signal in both cases. In (c), note two red and five green signals in the cluster, illustrating various levels of gain within the MGR. (D) Hierarchical clustering of mBL cases using the dysregulated genes located in the MGR and MLR. (E) Interaction network found by Ingenuity Pathway Analysis involving genes targeted by the 11q-gain/loss aberration (bold edges). Solid and interrupted lines represent direct and indirect interactions, respectively. Notably, most of the interactions in this network are direct protein-protein interactions. The molecules with blue and green edges are encoded by MGR- and MLR-associated genes, respectively. The data obtained by comparison of cases 5–7 (PT-mBL with the 11q-gain/loss pattern) (11q+/-) by cases 1-4 (PT-MYC-translocation-positive mBL) [(t(MYC)] were overlaid in this network. Molecules which are down- and up-regulated in cases with 11q+/when compared to cases with t(MYC) are filled in green and red, respectively.

GENOMICS CORE TEUVEN

Integrative Genomic and Transcriptomic Analysis Identified Candidate Genes Implicated in the Pathogenesis of Hepatosplenic T-Cell Lymphoma

Julio Finalet Ferreiro¹, Leila Rouhigharabaei¹, Helena Urbankova¹, Jo-Anne van der Krogt¹, Lucienne Michaux¹, Shashirekha Shetty², Laszlo Krenacs³, Thomas Tousseyn⁴, Pascale De Paepe⁵, Anne Uyttebroeck⁶, Gregor Verhoef⁷, Tom Taghon⁸, Peter Vandenberghe¹, Jan Cools^{1,9}, Iwona Wlodarska¹*

Figure S3

OPEN ACCESS Freely available online

Non-IG Aberrations of FOXP1 in B-Cell Malignancies Lead to an Aberrant Expression of N-Truncated Isoforms of FOXP1

Leila Rouhigharabaei^{1,9}, Julio Finalet Ferreiro^{1,9}, Thomas Tousseyn², Jo-Anne van der Krogt¹, Natalie Put¹, Eugenia Haralambieva³, Carlos Graux⁴, Brigitte Maes⁵, Carmen Vicente^{1,6}, Peter Vandenberghe¹, Jan Cools^{1,6}, Iwona Wlodarska¹*

1 Center for Human Genetics, KU Leuven, Leuven, Belgium, 2 Translational Cell and Tissue Research KU Leuven, Department of Pathology UZ Leuven, Leuven, Belgium, 3 Department of Pathology, University of Würzburg, Würzburg, Germany, 4 Mont-Godinne University Hospital, Yvoir, Belgium, 5 Virga Jesse Hospital, Hasselt, Belgium, 6 Center for the Biology of Disease, VIB, Leuven, Belgium

Figure S4.

Interaction network of genes exclusively mutated in t(3;14)-positive case 5 (in grey) with the well know cancer genes specified by IPA. Continuous and discontinues lines indicate direct and indirect interactions, respectively. Red arrows mark genes found to be upregulated in FOXP1_{FL} expressing case 5 when compared with cases expressing FOXP1_{NT}. doi:10.1371/journal.pone.0085851.s004 (PPTX)

© 2000-2013 Ingenuity Systems, Inc. All rights reserved.

Summary of the dataset and research objective (1)

Disease and control samples:

Disease: Peripheral T-cell lymphoma:

A rare Lymphoproliferative disorder of T cell origin

Controls: Normal lymph nodes and other T-cell tumor (HSTL)

Research objective:

To gain insight into the biology of the disease

Summary of the dataset and research objective (2)

Research questions:

which:

- molecules (from our dataset) are involved in well characterized biological (canonical) pathways
- canonical pathways are relevant to the disease
- cancer-related genes are relevant for the disease
- genes might define the gene signature of the disease
- genes not present in my dataset are linked, directly or indirectly, to the genes in my dataset
- Publications supports my findings

Dataset after inference analysis with DEseq V2

Tumor_type_A vs Normal Tissue

Tumor_type_A vs Tumor_type_B

ID	Exp Fold Change	Exp False Discovery Rate (q-value)
ENSG00000008311	-8.838	0.011000
ENSG00000108846	10.928	0.159000
ENSG00000160179	10.467	0.075000
ENSG00000176244	-65.239	0.002000
ENSG00000103740	-11.742	0.073000
ENSG00000114739	-10.31	0.028000
ENSG00000197381	-10.105	0.004000
ENSG00000152990	-12.15	0.009000
ENSG00000169129	-7.488	0.078000
ENSG00000163568	10.918	0.084000
ENSG00000129474	-6.589	0.089000
ENSG00000112294	-6.396	0.032000
ENSG00000012779	45.744	0.023000
ENSG00000139211	28.862	0.063000

ID	Exp Fold Change	Exp False Discovery Rate (q-value)
ENSG00000175985	-2.832	0.058	
ENSG00000204262	2.529	0.058	
ENSG00000138080	2.04	0.057	
ENSG00000158715	-2.253	0.057	
ENSG00000245680	-2.123	0.056	
ENSG00000174292	-2.364	0.056	
ENSG00000115457	2.795	0.056	
ENSG00000154920	2.603	0.056	
ENSG00000182054	2.103	0.055	
ENSG00000171246	-2.86	0.055	
ENSG00000079215	2.132	0.055	
ENSG00000141576	-2.378	0.055	
ENSG00000164086	-2.072	0.055	
ENSG00000105664	2.793	0.055	
ENSG00000008394	2.872	0.055	

Creation of a new project

Creation of a new project, alternative

Items in a project

Data upload

Setting up a Core Analysis: General Settings

Setting up a Core Analysis: General Settings > select Genes Only

Setting up a Core Analysis: Networks

Setting up a Core Analysis: Nodes types, select all

Setting up a Core Analysis: Data sources, select all

Setting up a Core Analysis: Confidence

Setting up a Core Analysis: Species, select human and mouse

Setting up a Core Analysis: Tissue and cell lines; select all

