

Arquitectura de Computadoras Circuitos básicos

La mayor parte de los gráficos son de **Principles of Computer Architecture** (1999) de Miles Murdocca y Vincent Heuring

Analógico y digital

- Analógico
 - Valores continuos (un número infinito de estados distintos)
 - Se mide
- Digital
 - Valores discretos (un número finito de estados distintos)
 - Se cuenta
 - Habitualmente el número de valores distintos es 2 (binario)
 - Esos valores se identifican habitualmente con 0 y 1
 - Las computadoras son habitualmente binarias, aunque pueden darse circuitos de niveles múltiples (más de 2)
 - El problema es distinguir con seguridad entre más de dos niveles

Circuitos digitales combinatorios

Combinatorios

- Los valores de las salidas dependen exclusivamente de los valores presentes en las entradas
- Normalmente las entradas y salidas tienen dos estados binarios distintos: 1 y 0, alto y bajo, 5 voltios y 0 voltios (por ejemplo)
- El comportamiento se puede expresar lógicamente por medio de un conjunto de expresiones booleanas

Circuitos digitales secuenciales

Secuenciales

- Los valores de las salidas dependen de los valores presentes y pasados de las entradas
- El comportamiento debe expresarse por medio de una secuencia temporal de entradas y estados internos

Algebra de Boole: tablas de verdad

- Desarrolladas originalmente por George Boole (1854) como parte de su Algebra (una matemática del pensamiento)
- Perfeccionadas por Claude Shannon (Laboratorios Bell)
- Cada salida se calcula para todos los posibles valores de las entradas
- Ejemplo: una habitación con dos llaves de luz "combinadas"

Inj	puts	Output
A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

Tablas de verdad para funciones booleanas

	puts	_			Out	puts			
A	В	False	AND	$A\overline{B}$	A	$\overline{A}B$	В	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Inp	outs				Outp	uts			
A	В	NOR	XNOR	\overline{B}	$A + \overline{B}$	\overline{A}	$\overline{A} + B$	NAND	True
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Compuertas lógicas: implementación (1/3)

- Un dispositivo físico que implementa una función del Algebra de Boole
- Se utilizan transistores (dispositivos analógicos)
- V_{cc}: tensión de colector
- GND: tierra
- R_L: Resistencia
- Las conexiones V_{cc} y GND a los bornes de una fuente de alimentación no se indican en las compuertas

Compuertas lógicas: implementación (2/3)

Compuertas lógicas: implementación (3/3)

a) Compuerta NAND, b) Compuerta NOR

Representación de compuertas lógicas (1/2)

Representación de compuertas lógicas (2/2)

Arquitectura de Computadoras

Buffer de 3 estados (three state buffer)

La salida puede ser 0, 1 o estar "eléctricamente desconectada" (ni 0, ni 1: ausencia de señal)

Tri-state buffer

С	A	F
0	0	0
0	1	1
1	0	ø
1	1	ø

Tri-state buffer, inverted control

Propiedades del Algebra de Boole

Principio de dualidad: El dual de una función booleana se obtiene reemplazando ANDs por Ors, Ors por ANDs, 0s por 1s y 1s por 0s.

	Relationship	Dual	Property
Š	AB = BA	A+B = B+A	Commutative
Postulates	A (B+C) = A B + A C	A + B C = (A + B) (A + C)	Distributive
Posti	1 A = A	0 + A = A	Identity
]	$A\overline{A} = 0$	$A + \overline{A} = 1$	Complement
	0A = 0	1 + A = 1	Zero and one theorems
	A A = A	A+A=A	Idempotence
s	$\underline{A}(BC) = (AB)C$	A + (B + C) = (A + B) + C	Associative
rem	$\overline{A} = A$		Involution
Theorems	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A}\overline{B}$	DeMorgan's Theorem
1	$AB + \overline{AC} + BC$	$(A+B)(\overline{A}+C)(B+C)$	Consensus Theorem
	$= AB + \overline{AC}$	$= (A+B)(\overline{A}+C)$	
	A (A + B) = A	A + AB = A	Absorption Theorem

Aplicaciones del Teorema de DeMorgan

A B	$\overline{AB} =$	$=\overline{A}+\overline{B}$	$\overline{A + B}$	$=\overline{A}\overline{B}$
0 0	1	1	1	1
0 1	1	1	0	0
1 0	1	1	0	0
1 1	0	0	0	0

DeMorgan's theorem:
$$A + B = \overline{\overline{A + B}} = \overline{\overline{A}} \overline{\overline{B}}$$

$$F = A + B \qquad = \qquad A \longrightarrow B \longrightarrow F = \overline{A B}$$

Ejemplos de circuitos combinatorios

- Circuitos aritméticos
 - Semisumadores
 - Sumadores
 - Sumadores / restadores
 - Multiplicadores
 - Etc.
- Otros
 - Codificadores / decodificadores
 - Multiplexores / Demultiplexores
 - Desplazadores
 - Etc.

Representación de una función como suma de productos

- Cada combinación posible de las entradas se denomina minitérmino
- Si hay n entradas habrá 2^n minitérminos (desde 0 hasta $2^n 1$)
- Una salida cualquiera puede representarse como la SUMA DE PRODUCTOS de todos aquellos minitérminos para los cuales la función vale 1.
- Para la función MAYORIA DE 1s la SUMA DE PRODUCTOS es

$$M = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = m3 + m5 + m6 + m7 = \Sigma (3, 5, 6, 7)$$

Minterm Index	A	В	С	F
	_			
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

La función mayoría como suma de productos

La función mayoría como producto de sumas

Componentes digitales

- Los circuitos digitales de alto nivel son normalmente implementados utilizando colecciones de compuertas lógicas conocidas como *componentes* en vez de utilizar compuertas individuales
- Los niveles de integración (número de compuertas lógicas / mm²) en un circuito integrado son **aproximadamente** los siguientes:
 - SSI (Small Scale Integration): <100 (compuertas y biestables)
 - MSI (Medium Scale Integration): 100 1.000 (codificadores, sumadores, registros)
 - LSI (large Scale Integration): 1.000 100.000 (circuitos aritméticos complejos, memorias)
 - VLSI (Very Large Scale Integration): 100.000 1.000.000 (microprocesadores, memorias, microcontroladores)
 - ULSI (Ultra Large Scale Integration): + de 1.000.000 (microprocesadores avanzados)

Multiplexor

Mediante n líneas de control selecciona la información presente en una de las 2^n líneas de entrada y la pone en la única salida

$$F = \overline{A} \overline{B} D_0 + \overline{A} B D_1 + A \overline{B} D_2 + A B D_3$$

Una implementación de un multiplexor

Demultiplexor

Mediante *n* líneas de control selecciona una de las *2*ⁿ líneas de salida y pone en ella la información presente en la única entrada

$$F_0 = D\overline{A}\overline{B}$$
 $F_2 = DA\overline{B}$
 $F_1 = D\overline{A}B$ $F_3 = DAB$

D	A	В	F_0 F_1 F_2 F_3
0	0	0	0 0 0 0
0	0	1	0 0 0 0
0	1	0	0 0 0 0
0	1	1	0 0 0 0
1	0	0	1 0 0 0
1	0	1	0 1 0 0
1	1	0	0 0 1 0
1	1	1	0 0 0 1

Una implementación de un demultiplexor

Arquitectura de Computadoras

Decodificador

Las n líneas de entrada se interpretan como un código que identifica una de las 2^n líneas de salida. La salida identificada se pone en 1. Suele usarse una señal de habilitación.

D_0	=	$\overline{A} \overline{B}$	

	Enable = 1				
A	В	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D_1 = \overline{A} B$$

$$D_2 = A \overline{B}$$

$$D_1 = \overline{A} B$$
 $D_2 = A \overline{B}$ $D_3 = A B$

Enable = 0

 $D_0\ D_1\ D_2\ D_3$

Una implementación de un decodificador

Uso de un decodificador para implementar la función mayoría

Codificador con prioridad

- Codifica, en *n* líneas de salida, el número de una de las *2*ⁿ líneas de entrada que está en 1
- Puede pensarse como el inverso de un decodificador
- Si no puede asegurarse que una y sólo una de las entradas estará en 1 se utilizan codificadores con prioridad
- En un codificador con prioridad, si varias entradas están en 1 el codificador codifica la línea de orden más alto (o más bajo)

$$F_0 = \overline{A_0} \overline{A_1} A_3 + \overline{A_0} \overline{A_1} A_2$$

$$F_1 = \overline{A_0} \overline{A_2} A_3 + \overline{A_0} A_1$$

A_0	A_1	A_2	A_3	F_{o}	F_I
0 0 0 0 0 0 0	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	0 1 1 1 0 0 0	0 1 0 0 1 1 1 1
1 1 1 1 1 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 & 1 & & & \\ 1 & 0 & & 1 & \\ 0 & 1 & & 0 \\ 1 & & & 1 \\ \end{array}$	0 0 0 0 0 0 0	0 0 0 0 0 0 0

Implementación de un codificador con prioridad

Una PLA (Programmable Array Logic)

Una PLA es una matriz personalizable de compuertas AND seguida de una matriz personalizable de compuertas OR

Arquitectura de Computadoras

29

La función mayoría implementada con una PLA

Semi-Sumador

- Este circuito es capaz de sumar dos datos de un bit y producir un bit de acarreo a la salida además del resultado
- Tabla de verdad del semi-sumador

A B	C S
0 0	0 0
0 1	0 1
10	0 1
11	10

- Se obtienen dos funciones
- $S = A \oplus B$
- $C = A \cdot B$

Sumador completo

- El semi-sumador no es capaz de interconectarse con otros sumadores para formar uno más grande.
- Tabla de verdad del sumador completo

A B Co	C ₁ S
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

Se obtienen dos funciones

$$S = A \oplus B \oplus C_0$$
, $C_1 = AB + (A \oplus B)C_0$

Un sumador completo implementado con una PLA

- Sum = A.B.C + A.B.C + A.B.C + A.B.C
- $\mathbf{C} = A.C + B.C + A.B$

Un sumador de cuatro bits en cascada

