

Brechronetth Charletthe Terrett

Some examples

1. Eight unbiased coins are tossed 256 times and the number of heads observed in the throws is shown below:

No. of heads	0	1	2	3	4	5	6	7	8
Frequency	2	6	4	24	63	50	36	10	1

Fit a binomial distribution to the above data and find the expected frequencies. Solution: Let the random variable X denote the number of heads when 8 unbiased coins are tossed 256 times. Suppose X follows a binomial distribution with parameters n = 8 and $p = P(head\ appears\ in\ a\ single\ coin) = 0.5$ (Since the coins are unbiased) i.e

$$X \sim B(n=8, p=\frac{1}{2})$$
 We shall calculate the probabilities

 $P(X=x) = 8C_x p^x q^{8-x}$, x = 0,1,2,...,8 with p = q = 1/2 Then we shall calculate the expected frequencies $f_X = N * P(X = x) = 256 * P(X = x), x = 0,1,2,...,8$

Table for expected frequencies

Table fo	r expected frequencies	
No.of	$P(X = x) = p_X = 8C_X \left(\frac{1}{2}\right)^X \left(\frac{1}{2}\right)^{8-x}$	Expected frequency
Heads	$P(X=X) = p_X = 8C_X\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$	$= N * p_{\chi} = 256 * p_{\chi}$
(x)	•	
0	$\frac{1}{256}$	$256(\frac{1}{256}) = 1$
1	$\frac{8}{256}$	$256(\frac{8}{256}) = 8$
2	28 256	$256(\frac{28}{256}) = 28$
3	56 256	$256(\frac{56}{256}) = 56$
4	70 256	$256(\frac{70}{256}) = 70$
5	<u>56</u> <u>256</u>	$256(\frac{56}{256}) = 56$
6	$\frac{28}{256}$	$256(\frac{28}{256}) = 28$
7	8 256	$256(\frac{8}{256}) = 8$
8	<u>1</u> 256	$256(\frac{1}{256}) = 1$
	Total	256

0r

2. Five dice are thrown together 96 times and the number of times 4, 5 6 was observed is given below:

No. of times 4,5 or 6 was obtained 35

Fit a binomial distribution to the above data if (i) dice are unbiased and (ii) the nature of the dice is not known.

Solution: Let the random variable X denote the number of times 4, 5 or 6 was observed.

Case 1: Suppose dice are unbiased

Let X follow a binomial distribution with parameters n = 5 (Since 5 coins are thrown) and

 $p = P(a \text{ 4 or 5 or 6 is observed}) = \frac{3}{6} = \frac{1}{2}$ (Since the dice are unbiased) i.e

$$X \simeq B(n=5, p=\frac{1}{2})$$

We shall calculate the probabilities $P(X = x) = 5C_X p^X q^{5-x}$, x = 0,1,2,...,5

with
$$p = q = \frac{1}{2}$$

Then we shall calculate the expected frequencies

$$f_X = N * P(X = x) = 96 * P(X = x), x = 0,1,2,...,5$$

Table for expected frequencies

No. of times 4 or 5	$P(X=x) = p_x = 5C_x \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{5-x}$	Expected frequency
Or 6 is observed	$P(X=X) = P_X = 3C_X\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$	$= N * p_{\chi} = 96 * p_{\chi}$
(x)		
0	1/32	$96(\frac{1}{32}) = 3$
1	$\frac{5}{32}$	$96(\frac{5}{32}) = 15$
2	$\frac{10}{32}$	$96(\frac{10}{32}) = 30$
3	$\frac{10}{32}$	$96(\frac{10}{32}) = 30$
4	$\frac{5}{32}$	$96(\frac{5}{32}) = 15$
5	32	$96(\frac{1}{32}) = 3$
	Total	96

Prof. Anushri Tambe

Case 2: Suppose nature of dice is not known

First to find p = P(a 4 or 5 or 6 is observed)

We know that the mean of a binomial distribution is np. Now we can find the mean of the given data by the usual formula $mean = \frac{\sum fx}{\sum f}$ and then equate this to np. Since we have n = 5, we

can find p.

Now,
$$\sum fx = [1(0) + 10(1) + 24(2) + 35(3) + 18(4) + 8(5)] = 275$$
 And $\sum f = 1 + 10 + 24 + 35 + 18 + 8 = 96$

$$\therefore Mean = \frac{275}{96} = 2.8646$$

$$96$$

$$\Rightarrow np = 2.8646$$

$$\Rightarrow$$
5 $p = 2.8646$

$$\Rightarrow p = \frac{2.8646}{5} = 0.5729$$

So let X follow a binomial distribution with parameters n=5 and

$$p = P(a \text{ 4 or 5 or 6 is observed}) = 0.5729 \text{ i.e. } X \sim B(n = 5, p = \frac{1}{2})$$

We shall calculate the probabilities $P(X = x) = 5C_x (0.5729)^x (0.4271)^{5-x}$, x = 0,1,2,...,5Then we shall calculate the expected frequencies

$$f_x = N * P(X = x) = 96 * P(X = x), x = 0,1,2,...,5$$

Table for expected frequencies

Table for expected frequencies							
No. of times 4 or 5	P(X=x)	Expected frequency					
Or 6 is observed	$=p_X$	$= N * p_{\chi} = 96 * p_{\chi}$					
(x)	$=5C_{\mathcal{X}}(0.5729)^{\mathcal{X}}(0.4271)^{5-\mathcal{X}}$						
0	0.0142	1.3643 ≈ 1					
1	0.0953	9.1504≈9					
2	0.2557	24.5481 ≈ 25					
3	0.3430	32.9281 ≈ 33					
4	0.2300	22.0844 ≈ 22					
5	0.0617	5.9247 ≈ 6					
	Total	96					

Prof. Anushri Tambe

3. Fit a Poisson distribution to the following data:

v	^	1	-	2110	VV 111	E
Λ	0	1	2	3	4	
Frequency	192	100	24	3	1	

Solution: Let us assume that $X \sim P(\lambda)$ where λ is the mean (and parameter) of the distribution. To find mean:

We have
$$mean = \frac{\sum fx}{\sum f} = \frac{\left[192(0) + 100(1) + 24(2) + 3(3) + 1(4)\right]}{192 + 100 + 24 + 3 + 1} = \frac{161}{320} = 0.5031$$

 $\Rightarrow \lambda = 0.5031$

We shall calculate the probabilities

$$P(X=x) = \frac{e^{-\lambda} \lambda^x}{x!} = \frac{e^{-0.5031} (0.5031)^x}{x!}, x = 0,1,2,...$$
Then we shall calculate the expected frequencies
$$f_X = N * P(X=x) = 320 * P(X=x), x = 0,1,2,...$$

$$f_X = N * P(X = x) = 320 * P(X = x), x = 0,1,2,...$$

Table for expected frequencies

x	$P(X = x) = p_X = \frac{e^{-\lambda} \lambda^X}{x!} = \frac{e^{-0.5031} (0.5031)^X}{x!}$	Expected frequency = $N * p_X = 320 * p_X$
0	0.6046	193.472 ≈ 193
1	0.3042	$97.344 \approx 97$
2	0.0765	24.48 ≈ 25
3	0.0128	4.096 ≈ 4
4	0.0016	0.512 ≈ 1
	Total	320

4. The following mistakes per page were observed in a book:

٦,	20110 111115	AIIID LUI	res p	or pu	S	W CI
	No. of	0	1	2	3	4
	mistakes					
	No. of	211	90	19	5	0
	pages		. ,			

Fit a Poisson distribution

Ans: $\lambda = 0.44$;

No. of mistakes	0	1	2	3	4
Expected frequencies	209	92	20	3	1

Prof. Anushri Tambe