```
from sklearn.datasets import make classification
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import confusion_matrix
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.metrics import r2_score, explained_variance_score, confusion_matrix, accuracy_score, classification_report, log_loss
from math import sqrt
from sklearn.model_selection import cross_val_score
from sklearn.linear model import Lasso
df = pd.read_csv("CellDNA.csv", header= None)
df.columns =['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13']
df.loc[:, 'x13'] = np.where(df.x13>0, 1, 0)
```

df

	x0	x1	x2	x3	x4	x5	ж6	x 7	x8	x9	x10	x11	x12	x13
0	222	31.189189	40.342342	35.579087	8.883917	0.968325	-80.113673	222	1	16.812471	0.816176	0.578125	78.591	0
1	73	29.493151	271.397260	15.517202	6.407490	0.910764	76.042946	73	1	9.640876	0.858824	0.608333	39.217	0
2	256	58.816406	289.941406	37.226013	9.863895	0.964256	85.324742	256	1	18.054067	0.752941	0.562637	89.111	0
3	126	71.023810	477.412698	13.112980	12.790672	0.220351	63.523477	126	1	12.666025	0.881119	0.646154	43.832	0
4	225	90.808889	541.946667	44.463110	7.858879	0.984256	-52.874983	225	1	16.925688	0.728155	0.252525	90.072	1
1212	216	738.527778	216.449074	38.229761	9.556174	0.968254	12.847813	216	1	16.583719	0.640950	0.397059	98.589	0
1213	328	748.896341	47.664634	63.138991	9.101974	0.989555	57.919494	328	1	20.435816	0.607407	0.205257	131.431	1
1214	97	761.690722	207.288660	22.751513	8.230351	0.932275	-24.674618	97	1	11.113246	0.591463	0.384921	67.427	0
1215	223	770.654708	235.502242	53.491654	8.643053	0.986860	73.244715	223	1	16.850294	0.557500	0.252834	112.656	0
1216	87	764.954023	265.655172	13.459738	8.521929	0.774035	18.595633	87	1	10.524820	0.956044	0.743590	32.295	0

1217 rows × 14 columns

```
numeric_cols = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12']
scaler = StandardScaler()
scaler.fit(df[numeric_cols])
scaled_inputs = scaler.transform(df[numeric_cols])
scaled_inputs
    array([[ 0.15952762, -1.80200559, -1.20813407, ..., 0.34511514,
             0.65289142, -0.00691284],
           [-0.93921222, -1.80987674, 0.42436331, ..., 0.7072868,
             0.84374979, -0.81411281],
           [0.41024678, -1.67379037, 0.55538528, ..., -0.19189804,
             0.55503945, 0.20875597],
            . . . ,
           [-0.76223399, 1.58818067, -0.02859014, ..., -1.56321582,
            -0.56778731, -0.23578419,
           [0.16690172, 1.62978166, 0.17075035, ..., -1.85164337,
            -1.40231699, 0.69144818],
           [-0.83597492, 1.60332534, 0.38379311, ..., 1.53291195,
             1.69830929, -0.95601961]])
```

df

	x0	x1	x2	ж3	x4	x 5	x6	x 7	x 8	x 9	x10	x11	x12	x13
0	0.159528	-1.802006	-1.208134	0.114420	-0.135689	0.538311	-1.587426	0.135833	0.233292	0.329626	0.345115	0.652891	-0.006913	0
1	-0.939212	-1.809877	0.424363	-0.933511	-0.817247	0.019258	1.500586	-0.909580	0.233292	-1.221986	0.707287	0.843750	-0.814113	0
2	0.410247	-1.673790	0.555385	0.200447	0.134019	0.501621	1.684134	0.374384	0.233292	0.598252	-0.191898	0.555039	0.208756	0
3	-0.548385	-1.617137	1.879947	-1.059096	0.939523	-6.206504	1.253012	-0.537722	0.233292	-0.567479	0.896626	1.082702	-0.719501	0
4	0.181650	-1.525316	2.335905	0.578476	-0.417798	0.681969	-1.048779	0.156881	0.233292	0.354121	-0.402387	-1.404271	0.228457	1
1212	0.115283	1.480684	0.036132	0.252878	0.049329	0.537678	0.250896	0.093736	0.233292	0.280134	-1.142965	-0.491097	0.403063	0
1213	0.941181	1.528803	-1.156399	1.554010	-0.075675	0.729753	1.142193	0.879550	0.233292	1.113556	-1.427815	-1.702917	1.076351	1
1214	-0.762234	1.588181	-0.028590	-0.555628	-0.315562	0.213238	-0.491114	-0.741192	0.233292	-0.903431	-1.563216	-0.567787	-0.235784	0
1215	0.166902	1.629782	0.170750	1.050082	-0.201979	0.705453	1.445251	0.142849	0.233292	0.337809	-1.851643	-1.402317	0.691448	0
1216	-0.835975	1.603325	0.383793	-1.040983	-0.235315	-1.213681	0.364560	-0.811354	0.233292	-1.030740	1.532912	1.698309	-0.956020	0

1217 rows × 14 columns

```
x = df.drop('x13', axis = 1).values
y = df['x13']
y = y.astype(int)
print(x.shape)
print(y.shape)
    (1217, 13)
    (1217,)
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=10)
reg = Lasso(alpha=0.5)
reg.fit(x_train, y_train)
    Lasso(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=1000,
           normalize=False, positive=False, precompute=False, random_state=None,
           selection='cyclic', tol=0.0001, warm start=False)
print('Lasso Regression: R^2 score on training set', reg.score(x_train, y_train)*100)
print('Lasso Regression: R^2 score on test set', reg.score(x_test, y_test)*100)
    Lasso Regression: R^2 score on training set 0.0
    Lasso Regression: R^2 score on test set -0.39948214876439625
```

```
lambdas = (0.001, 0.01, 0.1, 0.5, 1, 2, 10)
l num = 7
pred_num = x.shape[1]
# prepare data for enumerate
coeff_a = np.zeros((l_num, pred_num))
train_r_squared = np.zeros(l_num)
test_r_squared = np.zeros(l_num)
for ind, i in enumerate(lambdas):
    reg = Lasso(alpha = i)
    reg.fit(x_train, y_train)
    coeff a[ind,:] = req.coef
    train_r_squared[ind] = reg.score(x_train, y_train)
    test r squared[ind] = req.score(x test, y test)
plt.figure(figsize=(18, 8))
plt.plot(train_r_squared, 'bo-', label=r'$R^2$ Training set', color="darkblue", alpha=0.6, linewidth=3)
plt.plot(test_r_squared, 'bo-', label=r'$R^2$ Test set', color="darkred", alpha=0.6, linewidth=3)
plt.xlabel('Lamda index'); plt.ylabel(r'$R^2$')
plt.xlim(0, 6)
plt.title(r'Evaluate lasso regression with lamdas: 0 = 0.001, 1 = 0.01, 2 = 0.1, 3 = 0.5, 4 = 1, 5 = 2, 6 = 10')
plt.legend(loc='best')
plt.grid()
```

10/18/21, 1:01 PM


```
df_lam = pd.DataFrame(test_r_squared*100, columns=['R_squared'])
df lam['lambda'] = (lambdas)
# returns the index of the row where column has maximum value.
df_lam.loc[df_lam['R_squared'].idxmax()]
    R squared
                 41.741223
    lambda
                  0.001000
    Name: 0, dtype: float64
reg_best = Lasso(alpha = 0.1)
reg best.fit(x train, y train)
    Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
          normalize=False, positive=False, precompute=False, random_state=None,
          selection='cyclic', tol=0.0001, warm start=False)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, reg_best.predict(x_test))
l min = 0.05
l max = 0.2
l num = 20
lambdas = np.linspace(l_min,l_max, l_num)
train r squared = np.zeros(l num)
test_r_squared = np.zeros(l_num)
pred num = x.shape[1]
coeff_a = np.zeros((l_num, pred_num))
```

```
for ind, i in enumerate(lambdas):
  reg = Lasso(alpha = i)
  reg.fit(x_train, y_train)
  results = cross_val_score(reg, x, y, cv=10, scoring="r2")
  train_r_squared[ind] = reg.score(x_train, y_train)
  test_r_squared[ind] = reg.score(x_test, y_test)
# Generate and dataset for Logistic Regression
x, y = make_classification(
    n_samples=100,
   n_features=1,
    n_classes=2,
    n_clusters_per_class=1,
    flip_y=0.03,
    n_informative=1,
    n_redundant=0,
    n repeated=0
```

```
# Create a scatter plot
plt.scatter(x, y, c=y, cmap='rainbow')
plt.title('Scatter Plot of Logistic Regression')
plt.show()
```



```
# Plotting
plt.figure(figsize=(18, 8))
plt.plot(train_r_squared, 'bo-', label=r'$R^2$ Training set', color="darkblue", alpha=0.6, linewidth=3)
plt.plot(test_r_squared, 'bo-', label=r'$R^2$ Test set', color="darkred", alpha=0.6, linewidth=3)
plt.xlabel('Lamda value'); plt.ylabel(r'$R^2$')
plt.xlim(0, 19)
plt.title(r'Evaluate 10-fold cv with different lamdas')
plt.legend(loc='best')
plt.grid()
```


Split the dataset into training and test dataset
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)

```
# Create a Logistic Regression Object, perform Logistic Regression
log reg = LogisticRegression()
log_reg.fit(x_train, y_train)
    LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                        intercept_scaling=1, l1_ratio=None, max_iter=100,
                        multi_class='auto', n_jobs=None, penalty='l2',
                        random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                        warm start=False)
# Perform prediction using the test dataset
y pred = log req.predict(x test)
# Show to Coeficient and Intercept
print(log_reg.coef_)
print(log_reg.intercept_)
    [-0.28788025 \quad 0.06454795 \quad -0.10178408 \quad 2.24973594 \quad -3.07328242 \quad 1.61082795
       -0.22587435 -0.31696034 0.57513313 1.05870398 0.10624406 0.02116713
        0.49229669]]
     [-4.56225241]
# Show the Confusion Matrix
confusion_matrix(y_test, y_pred)
    array([[245, 15],
            [ 9, 36]])
```

```
# True positive: 245 (upper-left) — Number of positives we predicted correctly # True negative: 36(lower-right) — Number of negatives we predicted correctly # False positive: 15 (top-right) — Number of positives we predicted wrongly # False negative: 9(lower-left) — Number of negatives we predicted wrongly
```

- 5. Data Preprocessing
- 5.1 Exploratory Data Analysis

```
# Training my model
log_reg = LogisticRegression(random_state=10, solver = 'lbfgs')
log_reg.fit(x_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=10, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)
```

```
# Accuracy on Train
print("The Training Accuracy is: ", log_reg.score(x_train, y_train))
# Accuracy on Test
print("The Testing Accuracy is: ", log_reg.score(x_test, y_test))
# Classification Report
print(classification_report(y_train, y_pred))
    The Training Accuracy is: 0.9177631578947368
    The Testing Accuracy is: 0.921311475409836
                             recall f1-score
                  precision
                                                  support
               0
                       0.94
                                 0.96
                                           0.95
                                                      757
                       0.80
               1
                                 0.69
                                           0.74
                                                      155
                                           0.92
                                                      912
        accuracy
                       0.87
                                 0.83
                                           0.85
                                                      912
       macro avg
```

0.92

0.92

912

0.91

weighted avg

Confusion Matrix function

```
def plot_confusion_matrix(cm, classes=None, title='Confusion matrix'):
    """Plots a confusion matrix."""
    if classes is not None:
        sns.heatmap(cm, cmap="YlGnBu", xticklabels=classes, yticklabels=classes, vmin=0., vmax=1., annot=True, annot_kws={'size':50})
    else:
        sns.heatmap(cm, vmin=0., vmax=1.)
    plt.title(title)
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

Visualizing cm

```
cm = confusion_matrix(y_train, y_pred)
cm_norm = cm / cm.sum(axis=1).reshape(-1,1)
```

plot_confusion_matrix(cm_norm, classes = log_reg.classes_, title='Confusion matrix')


```
df_lam = pd.DataFrame(test_r_squared*100, columns=['R_squared'])
df_lam['lambda'] = (lambdas)
# returns the index of the row where column has maximum value.
df_lam.loc[df_lam['R_squared'].idxmax()]
```

R_squared 32.864342 lambda 0.050000 Name: 0, dtype: float64


```
# Best Model
reg best = Lasso(alpha = 0.144737)
reg_best.fit(x_train, y_train)
   Lasso(alpha=0.144737, copy X=True, fit intercept=True, max iter=1000,
        normalize=False, positive=False, precompute=False, random_state=None,
        selection='cyclic', tol=0.0001, warm start=False)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, reg_best.predict(x_test))
   0.10370895326859364
reg_best.coef_
   reg_best = Lasso(alpha = 0.1)
reg_best.fit(x_train, y_train)
reg_best.coef_
```

```
clf_l1_LR = LogisticRegression(C = 1, penalty = 'l2')
clf_l1_LR.fit(x, y)
```

LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

