Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

December 31, 2021

Question 7.

Theorem 1. Let n be a natural number. Prove that there exist unique natural numbers a and b such that $n = 2^{a-1}(2b-1)$.

Proof. Existence of n is proven in two cases, n is odd and n is even.

Case 1. *n* is odd.

Let a=1, and $b=\frac{n+1}{2}$. Then a is clearly within \mathbb{N} , and since n is odd, n+1 is even, so $\frac{n+1}{2} \in \mathbb{N}$ as well.

Case 2. n is even.

Using the Fundamental Theorem of Arithmetic, and since $n \ge 2$, we know n can be written as a unique product of primes:

$$n = p_1^{z_1} * p_2^{z_2} * p_3^{z_3} * \dots * p_k^{z_k}$$
 (1)

where $p_1 < p_2 < ... < p_k$ are distinct prime numbers and $z_1, z_2, ..., z_3 \in \mathbb{N}$ or $\{0\}$.

Note that $p_1 = 2$, and $p_2, ..., p_k$ are all odd numbers.

Let
$$a = z_1 + 1$$
 and $b = \frac{(p_2^{z_2} * ... * p_k^{z_k}) + 1}{2}$.

Since $z_1 \ge 0$, we know $a = z_1 + 1 \in \mathbb{N}$.

Similar to the case when n is odd, $p_2 * ... * p_k$ is odd, since all primes besides 2 are odd, the product of any number of odd numbers is odd. Therefore $p_2 * ... * p_k + 1$ is even, so $b = \frac{p_2 * ... * p_k + 1}{2} \in \mathbb{N}$.

Uniqueness. To prove uniqueness, let $k = 2^{a-1}(2b-1) = 2^{m-1}(2n-1)$ for some $k, m, n \in \mathbb{N}$. Proceeding in two cases, when k is odd, and k is even.

Case 3. k is odd.

Then a = 1 and $b = \frac{n+1}{2}$ from existence case (1). Then a and b are clearly unique.

Case 4. *k* is even.

Let m > a.

It follows:

$$2^{m-1}(2n-1) = 2^{a-1}(2b-1)$$

$$\implies \frac{2^{m-1}}{2^{a-1}}(2n-1) = (2b-1)$$

$$\implies 2^{m-a}(2n-1) = (2b-1)$$

We know m > a, so 2^{m-a} is even, as 2 raised to any natural number greater than or equal to 1 is even.

Then $2^{m-a}(2n-1)$ is an even number, and (2b-1) is odd. But $2^{m-a}(2n-1) = (2b-1)$. This is impossible, as no even number is an odd number, so $m \neq a$.

Let m < a.

It follows:

$$2^{m-1}(2n-1) = 2^{a-1}(2b-1)$$

$$\implies (2n-1) = \frac{2^{a-1}}{2^{m-1}}(2b-1)$$

$$\implies (2n-1) = 2^{a-m}(2b-1)$$

We know a > m, so 2^{a-m} is even, as 2 raised to any natural number greater than or equal to 1 is even.

Then $2^{a-m}(2b-1)$ is an even number, and (2n-1) is odd. But $2^{m-a}(2n-1) = (2b-1)$. This is impossible, as no even number is an odd number, so $a \ge m$.

When m = a, $2^{a-m} = 2^0 = 1$, so (2b-1) = (2n-1), which is true when n = b.

Hence m = a, n = b

Therefore a, b are unique natural numbers such that $n = 2^{a-1}(2b-1)$.