2.3 Acceleration-Velocity Models

Resistance Proportional to Velocity

Example 1 Suppose that a body moves through a resisting medium with resistance proportional to its velocity v, so that dv/dt=-kv.

(a) Show that its velocity and position at time t are given by

$$v(t) = v_0 e^{-kt}$$

And

$$x(t) = x_0 + (rac{v_0}{k}(1 - e^{-kt})).$$

(b) Conclude that the body travels only a finite distance, and find that distance.

ANS: (1)
$$\frac{dv}{dt} = -kV \text{ (sep.)}$$

$$\Rightarrow \int \frac{dv}{v} = -k \int dt$$

$$\Rightarrow |n|v| = -kt + C$$

$$\Rightarrow \exp(|n|v|) = \exp(-kt + C)$$

$$\Rightarrow v(t) = Ce^{-kt}$$
Since $v(0) = V_0$,
$$V_0 = Ce^{-0} = C$$
Thus $V(t) = V_0 e^{-kt}$
As $\frac{dx(t)}{dt} = V(t) = V_0 e^{-kt}$

$$\Rightarrow \int dx(t) = V_0 e^{-kt} dt$$

nce, and find that distance.

$$\Rightarrow \chi(t) = V_0 \int e^{-kt} dt$$

Let $N = -kt$, $dN = -kdt$

$$\Rightarrow dt = -\frac{1}{k} dN$$

Thus $\chi(t) = V_0 \int e^{N} \left(-\frac{dN}{k}\right)$

$$= -\frac{V_0}{k} \int e^{N} dN$$

$$\Rightarrow \chi(t) = -\frac{V_0}{k} e^{-kt} + C$$

Since $\chi(0) = \chi_0$

$$\chi(0) = -\frac{V_0}{k} e^{N} + C = \chi_0$$

$$\Rightarrow C = \chi_0 + \frac{V_0}{k}$$

Thus $\chi(t) = -\frac{V_0}{k} e^{-kt} + \chi_0 + \frac{V_0}{k}$

$$\Rightarrow \chi(t) = \chi_0 + \frac{V_0}{k} (1 - e^{-kt})$$

1b) $t \to \infty$ $\Rightarrow e^{-kt} \to e^{-\infty} \to 0$

$$\lim_{N \to \infty} \chi(t) = \chi_0 + \frac{V_0}{k} (1 - 0)$$

$$= \chi_0 + \frac{V_0}{k} (1 - 0)$$

$$= \chi_0 + \frac{V_0}{k} (1 - 0)$$

$$= \chi_0 + \frac{V_0}{k} (1 - 0)$$

Example 2 Suppose that a car starts from rest, its engine providing an acceleration of $10ft/s^2$, while air resistance provides $0.1ft/s^2$ of deceleration for each foot per second of the car's velocity.

- (a) Find the car's maximum possible (limiting) velocity.
- (b) Find how long it takes the car to attain 90% of its limiting velocity, and how far it travels while doing so.

ANS: (a)
$$\frac{dv}{dt} = 10 - 0.1v, \quad V(0) = 0$$

$$\Rightarrow \int \frac{dv}{10 - 0.1v} = \int dt$$

$$50 - 10 \int \frac{du}{u} = \int dt$$

$$\Rightarrow |n|u| = -\frac{t}{10} + C$$

$$\Rightarrow$$
 $|n||0-0.|v| = -\frac{t}{10} + C$

Since
$$V(0) = 0$$
.

 $ln 10 = c$

Thus
$$|n||_{10-0.|v|=-\frac{t}{10}} + |n||_{10}$$

 $\Rightarrow |n||_{10-0.|v|-|n||_{0}=-\frac{x}{10}}$

$$\Rightarrow \ln \left| \frac{10 - 0.1 v}{10} \right| = -\frac{t}{10}$$

⇒
$$1 - \frac{1}{100}v = e^{-\frac{1}{100}}$$

⇒ $V(t) = 100 (1 - e^{-\frac{1}{100}})$

Vmax

$$\lim_{t \to \infty} V(t) = \lim_{t \to \infty} 100 (1 - e^{-\frac{1}{100}}) = \frac{100 \text{ ft/sec}}{100 \text{ ft/sec}}$$

(b) Let $V(t) = 90\%$ Vmax
$$= 90 \text{ ft/sec}$$
⇒ $100 (1 - e^{-\frac{1}{100}}) = 90$

(b) Let
$$V(t) = 90\% V_{max}$$

= 90 ft/sec

$$=$$
 $e^{-\frac{1}{100}} = 0.1$

⇒
$$t = -10 \ln 0.1 \approx 23.059 \text{ s}$$

need to know
$$\times (23.059) = 1$$

$$\frac{dx}{dt} = V = 100 (1 - e^{-\frac{t}{10}}) = -100 (-\frac{t}{10})e^{-\frac{t}{10}}d(\frac{t}{10})$$

$$\Rightarrow \times (t) = \int 100(1 - e^{-\frac{t}{10}}) dt$$

$$\Rightarrow \times (t) = 100t - 100 (e^{-\frac{t}{10}}) dt$$

$$\Rightarrow x(t) = (100(1-e^{-\frac{t}{10}}) dt) = 1000e^{-\frac{t}{10}} + C.$$

$$\chi(0) = 1000 e^{-0} + C_1 = 0$$

$$x(t) = 100t + 1000e^{-\frac{t}{10}} - 1000$$

Resistance Proportional to Square of Velocity and other cases

There are mathematical models with resistance proportional to other functions of velocities. For example, Page 96 and Question 6 on Page 100.