NEA-DEA-Äquivalenzklassen

Gegeben ist der deterministische endliche Automat $A = (Q, \{0, 1\}, \delta, q_0, F)$, wobei $Q = \{A, B, C, D, E\}, q_0 = A, F = \{E\}$ und

δ	0	1
A	В	С
В	Е	С
С	D	С
D	Е	Α
Е	Е	Е

(a) Minimieren Sie den Automaten mit dem bekannten Minimierungsalgorithmus. Dokumentieren Sie die Schritte geeignet.

(b) Geben Sie einen regulären Ausdruck für die erkannte Sprache an.

$$r = (0|1)^*00(0|1)^*$$

(c) Geben Sie die Äquivalenzklassen der Myhill-Nerode-Äquivalenz der Sprache durch reguläre Ausdrücke an.

Die Äquivalenzklassen lauten: [A, C], [B, D], [E]

$$r_A = (1^*(01)^*)^*$$

$$r_B = (1^*(01)^*)^*0$$

$$r_C = r$$