(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-13771

(43)公開日 平成11年(1999)1月22日

(51) Int.Cl.6

識別記号

FΙ

F16C 33/78 33/76 F16C 33/78

D

33/76

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号

特願平9-168883

(71)出顧人 000004204

日本精工株式会社

(22)出顧日

平成9年(1997)6月25日

東京都品川区大崎1丁目6番3号

(72)発明者 大畑 俊久

神奈川県藤沢市鵠沼神明一丁目5番50号

日本精工株式会社内

(72)発明者 大限 憲治

神奈川県藤沢市鵠沼神明一丁目5番50号

日本精工株式会社内

(72)発明者 越塚 充欣

神奈川県藤沢市鵠沼神明一丁目5番50号

日本精工株式会社内

(74)代理人 弁理士 小山 武男 (外1名)

(54) 【発明の名称】 シールリング付転がり軸受

(57)【要約】

【課題】 シールリング9により外部から隔てた空間1 0内の圧力変動を防止する為の切り欠き15部分から、 亀裂等の損傷が発生するのを防止する。

【解決手段】 上記切り欠き15の隅部に、曲率半径が 0. 1 mm以上の湾曲部を設ける。この構成により、上記 隅部への応力集中を防止し、上記損傷の発生を防止す る。

20

1

【特許請求の範囲】

【請求項1】 外周面に内輪軌道を有する内輪と、内周 面に外輪軌道を有する外輪と、上記内輪軌道と外輪軌道 との間に転動自在に設けられた複数個の転動体と、弾性 材を芯金で補強する事により全体を円輪状に形成して成 り、外周縁部を上記外輪の端部内周面に形成した係止溝 に全周に亙って係止すると共に、内周縁部を上記内輪の 一部表面にほぼ全周に亙って摺接させたシールリングと を備え、このシールリングの内周縁部で上記内輪の一部 表面に摺接する部分に、少なくとも1個の切り欠きを形 10 成したシールリング付転がり軸受に於いて、少なくとも 上記切り欠きの隅部に、曲率半径が0.1mm以上である 湾曲部を設けた事を特徴とするシールリング付転がり軸 受。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明に係るシールリング 付転がり軸受は、エンジンの補機駆動用の無端ベルトを 案内する為の中間ブーリを回転自在に支持する為、或は 自動車用の空調機用コンプレッサに付設する電磁クラッ チに内蔵して、回転軸の周囲にブーリを回転自在に支持 する為に利用する。

[0002]

【従来の技術】例えばエンジンの補機駆動用の無端ベル トを案内する為の中間ブーリやコンブレッサ等に付属の 電磁クラッチ付ブーリを回転自在に支持する為に、図1 ~3に示す様なシールリング付転がり軸受1が、広く使 用されている。とのシールリング付転がり軸受1は、外 周面に複列(図1)又は単列(図2)の内輪軌道2、2 を有する内輪3と、内周面に複列又は単列の外輪軌道 4、4を有する外輪5と、上記各内輪軌道2、2と外輪 軌道4、4との間に転動自在に設けられた複数個の転動 体6、6とを備える。これら複数の転動体6、6は、各 列毎に保持器7、7により転動自在に保持して、円周方 向に隣り合う転動体6、6の転動面同士が擦れ合う事を 防止している。

【0003】又、上記外輪5の両端部内周面に全周に亙 って形成した係止溝8、8には、それぞれシールリング 9、9の外周縁部を係止している。そして、これら各シ ールリング9、9により、上記内輪3の外周面と上記外 輪5の内周面との間で上記複数個の転動体6、6を設置 した空間10の両端開口部を塞ぎ、この空間10内に充 填したグリースが外部に漏洩する事を防止している。上 記各シールリング9、9は、図3に詳示する様に、ゴ ム、エラストマー等の弾性材11を、軟鋼板等の金属薄 板にプレス加工を施して成る芯金 12で補強する事によ り、全体を円輪状に形成して成る。上記弾性材11の外 周縁部は、上記芯金12の外周縁よりも少しだけ直径方 向外方に突出しており、この突出した部分を上記係止溝 8に嵌合係止する事により、上記各シールリング9、9 の外周縁部を上記外輪5の両端部内周面に係止してい る。一方、上記弾性材 1 1 の内周縁部は、上記芯金 1 2 の内周縁よりも直径方向内方に十分に突出してシールリ ップ13を構成している。そして、このシールリップ1 3の先端縁を、上記内輪3の外周面の端部寄り部分に形 成した段部14に摺接させている。

【0004】上述した様なシールリング付転がり軸受1 を、自動車用のエンジンルーム内に設ける中間ブーリや 電磁クラッチ付ブーリの回転支持部に組み込んだ場合、 使用時に大きな温度変化に曝される事になる。この為、 上記シールリング9、9による気密性が高過ぎると、と の様な温度変化に基づき、上記空間10内の圧力が変化 する。即ち、温度上昇時には上記空間10内の圧力が上 昇し、温度低下時にはこの空間10内の圧力が低下す る。そして、圧力上昇時には上記空間10内の気体が、 上記各シールリング9、9を押し退けつつ外部に逃げ、 温度低下時には上記空間10内の圧力が低下して、上記 シールリップ13の先端縁が上記段部14に押し付けら れる。この結果、これらシールリップ13の先端縁と段 部14との間に作用する摩擦力が大きくなり、上記シー ルリング付転がり軸受1の回転トルクが大きくなる。 【0005】この為従来から、上記シールリップ13の 先端縁で上記段部14と摺接する部分の1乃至複数個所 に小さな切り欠き15を形成し、この切り欠き15を通 じて上記空間10内の空気を給排自在とする事により、 この空間10内の圧力変動を防止する事が、中間ブーリ や電磁クラッチ付プーリの一部で行なわれている。即 ち、従来は、上記シールリップ13の先端縁に、図4に 示す様な矩形の切り欠き15を形成し、上記シールリッ 30 プ13の先端縁と上記段部14とを摺接させた状態で も、この切り欠き15を通じて上記空間10内の空気を

[00006]

給排できる様にしていた。

【発明が解決しようとする課題】図4に示す様な、従来 のシールリング付転がり軸受1 に組み込んだ各シールリ ング9、9のシールリップ13に形成した切り欠き15 の場合、隅部16、16が角張っていた。従って、上記 シールリップ13を内輪3の外周面に形成した段部14 に弾性的に押し付けつつ上記シールリップ13の先端縁 と上記段部14とを摺接させた状態では、上記各隅部1 6、16に応力集中が生じ易い。この為、長期間に亙る 使用に伴って上記シールリップ13の先端縁に、上記各 隅部16、16から亀裂等の損傷が発生し易く、上記各 シールリング9、9の耐久性を確保する上で問題となっ ている。本発明のシールリング付転がり軸受は、上述の 様な問題を解消すべく発明したものである。

[0007]

【課題を解決するための手段】本発明のシールリング付 転がり軸受は、前述した従来から知られているシールリ 50 ング付転がり軸受と同様に、外周面に内輪軌道を有する

内輪と、内周面に外輪軌道を有する外輪と、上記内輪軌 道と外輪軌道との間に転動自在に設けられた複数個の転 動体と、シールリングとを備える。そして、このシール リングは、弾性材を芯金で補強する事により全体を円輪 状に形成して成り、外周縁部を上記外輪の端部内周面に 形成した係止溝に全周に亙って係止すると共に、内周縁 部を上記内輪の一部表面にほぼ全周に亙って摺接させて いる。又、上記シールリングの内周縁部で上記内輪の一 部表面に摺接する部分には、少なくとも1個の切り欠き を形成している。特に、本発明のシールリング付転がり 軸受に於いては、少なくとも上記切り欠きの隅部に、曲 率半径が0.1mm以上である湾曲部を設けている。更に 好ましくは、この湾曲部の曲率半径をO.14mm以上と する。

[0008]

【作用】上述の様に構成される本発明のシールリング付 転がり軸受が、内輪を外嵌固定した軸等の内側部材と外 輪を内嵌固定したプーリ等の外側部材とを相対回転自在 に支持する際の作用、シールリングにより内部空間に充 填したグリースの漏洩防止を図る際の作用、切り欠きに 20 より上記内部空間の圧力変動を抑える際の作用は、前述 した従来構造の場合と同様である。特に、本発明のシー ルリング付転がり軸受ユニットの場合には、上記切り欠 きの隅部に湾曲部を設けている為、上記シールリングの 内周縁を内輪の一部表面に弾性的に押し付けつつ上記シ ールリングの内周縁と上記内輪の一部表面とを摺接させ ても、上記各隅部に応力集中が生じにくい。この為、長 期間に亙る使用に伴って上記シールリングの内周縁に、 上記隅部から亀裂等の損傷が発生しにくく、上記シール リングの耐久性を確保できる。

[0009]

【発明の実施の形態】図5は、本発明の実施の形態の第 1例を示している。尚、本発明の特徴は、外輪5の両端 部内周面にそれぞれの外周縁を係止したシールリング 9、9の内周縁部に設けたシールリップ13(図1~3 参照)の先端縁に形成する切り欠き15aの形状を工夫 する事により、上記シールリップ13に亀裂等の損傷が 発生しにくくした点にある。その他の部分の構成及び作 用は、前述した従来構造と同様であるから、同等部分に 関する図示及び説明は省略し、以下、本発明の特徴部分 に就いて説明する。

【0010】本発明の場合には、上記切り欠き15aの 隅部16a、16aに、曲率半径がR1,である湾曲部1 7を設けている。この様な湾曲部17を設ける事により 本発明のシールリング付転がり軸受の場合には、上記シ ールリング9、9の内周縁部に形成したシールリップ1 3の内周縁を内輪3の一部表面である段部14(図1~ 3参照)に弾性的に押し付けつつ、上記シールリップ1 3の内周縁と上記段部14とを摺接させても、上記各隅 部16a、16aに応力集中が生じにくい。この為、長 50 き15c部分から亀裂等の損傷が発生する事を防止でき

期間に亙る使用に伴って上記シールリップ13の内周縁 に、上記各隅部16a、16aから亀裂等の損傷が発生 しにくく、上記各シールリング9、9の耐久性を確保で きる。

【0011】尚、上記湾曲部17の曲率半径R,,は、 0. 1 mm以上、更に好ましくは0. 1 4 mm以上とする。 上記曲率半径R17の最小値をこの様に規制した理由に就 いて、図6により説明する。この図6は、上記曲率半径 R,,が、上記各隅部16a、16aに加わる応力に及ぼ す影響に就いて、本発明者がFEM解析により求めた結 果を示している。この図6の縦軸は、前述の図4に示す 様な矩形(但し、隅部には曲率半径が0.03mm程度 の、微小な湾曲部が存在する)の切り欠き15を形成し た場合に、各隅部16、16に加わる応力を1とし、他 の場合に加わる応力の大きさを、この場合との比で表し ている。又、横軸は、上記湾曲部17の曲率半径R17を 表している。

【0012】この図6から明らかな通り、曲率半径R₁, を0.1mm以上とすれば、上記各隅部16a、16aに 加わる応力を十分に小さくできる。又、本発明者は、上 記曲率半径R₁,を0.03mm、0.07mm、0.15m m、0.20mm、0.25mmとした5種類の試料を複数 個ずつ用意し、これら各試料に就いて、実際に上記各隅 部16a、16aに損傷が発生するか否かを実験により 確認した。尚、各切り欠き15、15 aの円周方向に亙 る幅W15、W15a は1 mmとした。この結果、上記曲率半 径R₁₇が0.03mm、0.07mmである2通りの試料に 就いては、一部の試料で上記各隅部16、16aに亀裂 が発生した。これに対して、上記曲率半径R17が0.1 5 mm、0.20 mm、0.25 mmである3通りの試料に就 いては、何れの試料でも亀裂等の損傷は発生しなかっ た。この実験結果から、上記曲率半径R.,を0.14mm 以上にすれば、上記各隅部16a、16aの損傷防止効 果を確実に得られる事が分る。

【0013】次に、図7は、本発明の実施の形態の第2 例を示している。本例の場合には、切り欠き15bの隅 部16a、16aに湾曲部17、17を形成するだけで なく、上記切り欠き15bの開口端部にも湾曲部18、 18を形成している。この様な湾曲部18、18は、上 記開口端部に欠損等の損傷が発生する事を防止する為に 役立つ。その他の構成及び作用は、上述した第1例の場 合と同様である。

【0014】次に、図8は、本発明の実施の形態の第3 例を示している。本例の構造は、切り欠き15c全体を 湾曲部17aとしている。尚、上記切り欠き15c全体 としての幅W15cは、1mm程度必要であるから、上記湾 曲部17aの曲率半径R17aは、0.14mmよりも遥か に大きくなる。この様な本例の場合も、上記切り欠き1 5 c の一部に応力が集中する事を防止して、この切り欠

30

6

る。

[0015]

【発明の効果】本発明のシールリング付転がり軸受は、 以上に述べた通り構成され作用するので、回転トルクの 変動を抑える事ができ、しかもシールリングの耐久性を 確保できる構造を実現して、シールリング付転がり軸受 を組み込んだ各種機器の信頼性及び耐久性の向上に寄与 できる。

【図面の簡単な説明】

【図1】本発明の対象となるシールリング付転がり軸受 10 の第1例を示す断面図。

【図2】同第2例を示す断面図。

【図3】図1のA部拡大図。

【図4】従来構造に組み込まれていたシールリングに形成した切り欠きの形状を、図3の上方から見た状態で示す拡大図。

【図5】本発明の実施の形態の第1例を示す、図4と同様の図。

【図6】切り欠きに設けた湾曲部の曲率半径が、切り欠き部分に加わる応力に及ぼす影響を示す線図。

【図7】本発明の実施の形態の第2例を示す、図4と同*

*様の図。

【図8】同第3例を示す、図4と同様の図。

【符号の説明】

1 シールリング付転がり軸受

2 内輪軌道

3 内輪

4 外輪軌道

5 外輪

6 転動体

7 保持器

8 係止溝

9 シールリング

10 空間

11 弾性材

12 芯金

13 シールリップ

14 段部

15、15a、15b、15c 切り欠き

16、16a 隅部

20 17、17a 湾曲部

18 湾曲部

【図1】 【図2】 【図3】

【図4】

BEST AVAILABLE COPY

