COMPUTER SYSTEMS FUNDAMENTALS (4COSCO04W)

Week 1. Part 1 of 2

Contact details

- Module Leader:
 - Noam Weingarten
 - Email: weingan@wmin.ac.uk
 - See BlackBoard site for further contact details

THE NATURE OF NUMBERS

Positional number systems

By the end of this video, you will:

- Understand the concept of Positional Number Systems
- Be able to count and interpret natural numbers
 - Positive (unsigned) Integers
- Understand the following number systems:
 - Decimal / Denary Base 10
 - Binary Base 2
- Be able to count in Binary

Binary: Why use Binary?

- Base 10 is convenient for humans.
- Binary is used for Digital systems
 - On/Off
- We will revisit this

Base 10 Denary

Base 2 Binary

An exercise for you:

Convert the 4-bit **Binary** value **1100** into **Denary**:

$$8 + 4 = 12$$

Tutorial exercise:

■ This will provide you with more 4-bit Binary Nibbles to convert to Denary

Number System Triangle

Denary	Binary				Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	Α
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

Base 10 Denary

Base 16 Hexadecimal

Base 10 Denary

Base 16 Hexadecimal

In this video we have covered:

- Positional Number Systems
- Positive (unsigned) Integers
 - Decimal / Denary Base 10
 - Binary Base 2
 - Hexadecimal Base 16

In the next video we will cover:

Converting Denary to Binary

© The University of Westminster (2020)
The right of Noam Weingarten to be identified as author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988