ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 9

- 1. Sia $\underline{e^{(n)}} = (\delta_{n,k})_{k \in \mathbb{N}}$ per ogni $n \in \mathbb{N}$.
 - (a) Dimostrare che $e^{(n)} \stackrel{*}{\rightharpoonup} 0$ in ℓ^1 .
 - (b) Dimostrare che non si ha $e^{(n)} \rightharpoonup 0$ in ℓ^1 . [Questo esempio mostra che la convergenza debole* in generale non implica la convergenza debole.]

 - (c) Dimostrare che la successione $(\underline{e^{(n)}})_{n\in\mathbb{N}}$ non converge debolmente in ℓ^1 . (d) Dimostrare che la successione $(\underline{e^{(n)}})_{n\in\mathbb{N}}$ è limitata in ℓ^1 , ma non ha sottosuccessioni convergenti debolmente in ℓ^1 .
 - Perché la successione $(\underline{e^{(n)}})_{n\in\mathbb{N}}$ non costituisce un controesempio al corollario del teorema di Banach-Alaoglu sulla convergenza debole?
- 2. Sia $p \in (1, \infty)$. Dare un esempio di successione a valori in ℓ^p che converge componente per componente a 0 ma non converge debolmente in ℓ^p .
- 3. Sia $(f_n)_{n\in\mathbb{N}}$ la successione di funzioni caratteristiche
- $\mathbf{1}_{[0,1]},\ \mathbf{1}_{[0,1/2]},\ \mathbf{1}_{[1/2,1]},\ \mathbf{1}_{[0,1/3]},\ \mathbf{1}_{[1/3,2/3]},\ \mathbf{1}_{[2/3,1]},\ \mathbf{1}_{[0,1/4]},\ \mathbf{1}_{[1/4,2/4]},\ \mathbf{1}_{[2/4,3/4]},\ \mathbf{1}_{[3/4,1]},\dots$
 - (a) Dimostrare che $f_n \to 0$ in $L^p(0,1)$ per ogni $p \in [1,\infty)$.
 - (b) Dimostrare che $f_n \rightharpoonup 0$ in $L^p(0,1)$ per ogni $p \in [1,\infty)$.
 - (c) Dimostrare che $f_n \stackrel{*}{\rightharpoonup} 0$ in $L^{\infty}(0,1)$.
 - (d) Dimostrare che, per ogni $t \in [0,1]$, la successione di numeri reali $(f_n(t))_{n \in \mathbb{N}}$ è indeterminata e non converge in \mathbb{R} .

[Questo esempio mostra che la convergenza debole in $L^p(0,1)$ non implica la convergenza puntuale; questo va confrontato con il caso di ℓ^p , dove invece la convergenza debole implica la convergenza componente per componente.

- 4. Sia H uno spazio di Hilbert. Sia $\{x_n\}_{n\in\mathbb{N}}$ un insieme ortogonale limitato in H (indicizzato iniettivamente).
 - (a) Sia $\Delta = \{x_n\}_{n \in \mathbb{N}} \cup (\{x_n\}_{n \in \mathbb{N}})^{\perp}$. Dimostrare che span Δ è denso in H.
 - (b) Dimostrare che $x_n \to 0$ in H.
- 5. Per ogni $n \in \mathbb{N}_+$, sia $f_n : [0, 2\pi] \to \mathbb{R}$ definita da $f_n(t) = \sin(nt)$ per ogni $t \in [0, 2\pi]$.
 - (a) Sia $p \in [1, \infty]$. Dimostrare che non si ha $f_n \to 0$ in $L^p(0, 2\pi)$.
 - (b) Sia $p \in (1, \infty)$. Dimostrare che $f_n \to 0$ in $L^p(0, 2\pi)$.
 - (c) Determinare se $f_n \stackrel{*}{\rightharpoonup} 0$ in $L^{\infty}(0, 2\pi)$. (d) Determinare se $f_n \rightharpoonup 0$ in $L^1(0, 2\pi)$.
- 6. Sia $p \in [1, \infty)$. Per ogni $n \in \mathbb{N}$, sia $\underline{x^{(n)}} = (1+n)^{-1/p} \sum_{j=0}^{n} \underline{e^{(j)}}$, ove $\underline{e^{(j)}} = (\delta_{j,k})_{k \in \mathbb{N}}$.
 - (a) Determinare se $x^{(n)} \to 0$ in ℓ^p .
 - (b) Sia $p \in (1, \infty)$. Determinare se $\underline{x^{(n)}} \to \underline{0}$ in ℓ^p .
 - (c) Sia p = 1. Determinare se $\underline{x}^{(n)} \stackrel{*}{\rightharpoonup} \underline{0}$ in ℓ^1 .
 - (d) Sia p = 1. Determinare se $\underline{x}^{(n)} \to \underline{0}$ in ℓ^1 .

- 7. Sia $u: \mathbb{R} \to \mathbb{R}$ definita da $u(t) = 1/(1+t^2)$ per ogni $t \in \mathbb{R}$. Sia $u_n: \mathbb{R} \to \mathbb{R}$ definita da $u_n(t) = u(t-n)$ per ogni $t \in \mathbb{R}$ e $n \in \mathbb{N}$.
 - (a) Sia $p \in [1, \infty]$. Determinare se $(u_n)_{n \in \mathbb{N}}$ è limitata in $L^p(\mathbb{R})$.
 - (b) Sia $p \in (1, \infty)$. Determinare se $u_n \rightharpoonup 0$ in $L^p(\mathbb{R})$.
 - (c) Determinare se $u_n \stackrel{*}{\rightharpoonup} 0$ in $L^{\infty}(\mathbb{R})$.
 - (d) Determinare se $u_n \rightharpoonup 0$ in $L^1(\mathbb{R})$.
- 8. Sia X uno spazio di Banach. Sia $J:X\to X''$ l'immersione canonica.
 - (a) Dimostrare che un sottoinsieme $E\subseteq X'$ è limitato nello spazio duale X' se e solo se

$$\sup_{\varphi \in E} |\varphi(x)| < \infty \quad \forall x \in X.$$

[Suggerimento: Banach-Steinhaus.]

- (b) Dimostrare che un sottoinsieme $A\subseteq X$ è limitato in X se e solo se l'insieme J(A) è limitato in X''.
- (c) Dimostrare che un sottoinsieme $A \subseteq X$ è limitato in X se e solo se

$$\sup_{x \in A} |\varphi(x)| < \infty \quad \forall \varphi \in X'.$$

(d) Vale il punto (c) se si assume solo che X è uno spazio normato (non necessariamente di Banach)?

[I prossimi due esercizi contengono, fra l'altro, una dimostrazione dell'enunciato visto a lezione che uno spazio di Banach X è riflessivo se e solo se X' è riflessivo.]

- 9. Siano X, Y spazi normati. Ricordiamo che, per ogni operatore $A \in \mathcal{B}(X, Y)$, è definito l'operatore trasposto $A^t \in \mathcal{B}(Y', X')$ (vedi esercitazione 8, esercizio 8); iterando, possiamo anche considerare il trasposto del trasposto $A^{tt} = (A^t)^t \in \mathcal{B}(X'', Y'')$. Siano $J_X : X \to X''$ e $J_Y : Y \to Y''$ le immersioni canoniche di X e Y nei rispettivi biduali.
 - (a) Dimostrare che $J_YA=A^{tt}J_X$ per ogni $A\in\mathcal{B}(X,Y)$. [Questa proprietà è ciò che rende "canonica" l'immersione nel biduale.]
 - (b) Dimostrare che $(J_X)^t J_{X'} = \mathrm{id}_{X'}$, dove $J_{X'} : X' \to X'''$ è l'immersione canonica.
 - (c) Dimostrare che, se X è riflessivo, allora $J_{X'} = ((J_X)^t)^{-1}$ e anche X' è riflessivo. [Suggerimento: esercitazione 8, esercizio 8(g).]
- 10. Sia X uno spazio di Banach. Sia $J_X: X \to X''$ l'immersione canonica nel biduale.
 - (a) Dimostrare che l'immagine $J_X(X)$ è un sottospazio vettoriale chiuso di X".
 - (b) Dimostrare che, se X non è riflessivo, allora esiste $W \in X'''$ non nullo tale che $J_X(X) \subseteq \operatorname{Ker} W$.
 - (c) Dimostrare che, se X non è riflessivo, allora $Ker((J_X)^t) \neq \{0\}$.
 - (d) Dimostrare che, se X' è riflessivo, allora $(J_X)^t = J_{X'}^{-1}$ è un isomorfismo isometrico.

[Suggerimento: esercizio 9.(b).]

(e) Dimostrare che, se X non è riflessivo, allora X' non è riflessivo.

[Il prossimo esercizio è volto a dimostrare il risultato enunciato a lezione che ℓ^p è riflessivo per $p \in (1, \infty)$.]

11. Siano $p,q \in [1,\infty]$ esponenti coniugati. Denotiamo con $\Psi_p: \ell^q \to (\ell^p)'$ l'isometria lineare definita da

$$\Psi_p(\underline{y})(\underline{x}) = \sum_{k=0}^{\infty} x_k y_k \qquad \forall \underline{x} \in \ell^p, \ \underline{y} \in \ell^q.$$

Sia inoltre $J_p: \ell^p \to (\ell^p)''$ l'immersione canonica.

- (a) Dimostrare che $(\Psi_p)^t J_p = \Psi_q$.
- (b) Dimostrare che, se $p \in (1, \infty)$, allora $J_p = ((\Psi_p)^t)^{-1} \Psi_q$ e dunque ℓ^p è riflessivo.