Premier League

Un modèle de simulation d'évènements rares

Raphaël Montaud et Gabriel Misrachi

Modal Simulation d'évènements rares MAP474D - Ecole Polytechnique

Table of contents

- 1. Introduction
- 2. Le modèle de Bradley-Terry (1952)
- 3. Premières implémentations
- 4. Evènements rares
- 5. Comportement sur de grands championnats
- 6. Recherche de paramètres optimaux
- 7. Conclusion

 \cdot les championnats de football: un monde incertain

- · les championnats de football: un monde incertain
- Premier League 2015-2016:

- · les championnats de football: un monde incertain
- · Premier League 2015-2016:
 - · Leicester gagne

- · les championnats de football: un monde incertain
- · Premier League 2015-2016:
 - · Leicester gagne
 - Manchester City et Manchester United hors podium

- · les championnats de football: un monde incertain
- · Premier League 2015-2016:
 - · Leicester gagne
 - Manchester City et Manchester United hors podium
 - · Liverpool et Chelsea hors places européennes

- · les championnats de football: un monde incertain
- · Premier League 2015-2016:
 - · Leicester gagne
 - Manchester City et Manchester United hors podium
 - · Liverpool et Chelsea hors places européennes
- une côte à un 1 contre 5000: 30 millions de pertes pour les bookmakers

Le modèle de Bradley-Terry (1952)

Le modèle de Bradley-Terry (1952)

Un vecteur de force ou de mérite V. On a ensuite chaque rencontre qui est le résultat d'une expérience de Bernoulli:

$$P(X_{i,j}=1)=\frac{V_i}{V_i+V_j}$$

3

 \cdot un modèle pour le calcul des forces: (score année précédente) $^{\kappa}$

- \cdot un modèle pour le calcul des forces: (score année précédente) $^{\kappa}$
- · matrice des résultats:

$$\begin{pmatrix}
N & 0 & 0 & 1 \\
1 & N & 1 & 0 \\
1 & 0 & N & 0 \\
0 & 1 & 1 & N
\end{pmatrix}$$

- \cdot un modèle pour le calcul des forces: (score année précédente) $^{\kappa}$
- · matrice des résultats:

$$\begin{pmatrix}
N & 0 & 0 & 1 \\
1 & N & 1 & 0 \\
1 & 0 & N & 0 \\
0 & 1 & 1 & N
\end{pmatrix}$$

· premier résultat:

```
according to our model, we compute the chances of winning for the best teams (given with a 95% interval) proba of winning for Chelsea with n = 80000: 37.0625% +- 0.334872092679% proba of winning for ManCity with n = 80000: 25.5375% +- 0.301060990353% proba of winning for Arsenal with n = 80000: 20.4425% +- 0.279516471263% proba of winning for ManU with n = 80000: 15.007499999999999% +- 0.24668839648% proba of winning for Tottenham with n = 80000: 9.3125% +- 0.202190825793% We now compare it to the probabilities according to the bookmakers Chelsea: 38.095238095238095% ManCity: 28.57142857% Arsenal: 22.222222222222222228 ManU: 16.6666666666666% Tottenham: 0.9900990099009901%
```

Evènements rares

Evènements rares

- · Les limites de la simulation de Monte-Carlo standard
- · La méthode de décalage en probabilité
- · Théorème ergodique et splitting

Décalage en probabilité: un résultat utile

 Y_1, \ldots, Y_k Bernoulli indépendantes $B(p_1), \ldots, B(p_k)$; et Z_1, \ldots, Z_k Bernoulli indépedantes $B(q_1), \ldots, B(q_k)$. Pour toute fonction mesurable bornée g, on a :

$$E[g(Y_1,...,Y_k)] = \left(\prod_{i=1}^k \frac{1-p_i}{1-q_i}\right) E\left[g(Z_1,...,Z_k) \prod_{i=1}^k \left(\frac{p_i(1-p_i)}{q_i(1-q_i)}\right)^{Z_i}\right]$$

On l'utilise en remplaçant *g* par l'indicatrice de l'événement considéré.

7

Décalage en probabilité: implémentation et résultats

· forcer l'événement

Décalage en probabilité: implémentation et résultats

- · forcer l'événement
- simplification des calculs

Décalage en probabilité: implémentation et résultats

- · forcer l'événement
- · simplification des calculs
- résultats

Evénement	Probabilité	Intervalle	Simulations
Leicester gagne	0,41%	0,025%	10 000
Evénement complexe	0,0069%	0,0024%	1 000 000

 On ne resimule qu'une fraction des matchs → construction d'une chaîne de Markov avec un nombre d'états finis.

- On ne resimule qu'une fraction des matchs → construction d'une chaîne de Markov avec un nombre d'états finis.
- rejet des scores trop faibles

- On ne resimule qu'une fraction des matchs → construction d'une chaîne de Markov avec un nombre d'états finis.
- rejet des scores trop faibles
- comptage des scores suffisants

- On ne resimule qu'une fraction des matchs → construction d'une chaîne de Markov avec un nombre d'états finis.
- rejet des scores trop faibles
- · comptage des scores suffisants
- · calcul de la probabilité finale:

```
P(Leicester gagne) = P(Leicester gagne | score > 10) \dots P(score > 3)
```

• taux de rejet idéal \simeq 20%

- taux de rejet idéal \simeq 20%
- taux de rejet élevés (même avec $\rho = 1$ match)

- taux de rejet idéal \simeq 20%
- taux de rejet élevés (même avec $\rho = 1$ match)
- · {Leicester gagne|Leicester deuxieme} est un évènement rare

- taux de rejet idéal $\simeq 20\%$
- taux de rejet élevés (même avec $\rho = 1$ match)
- · {Leicester gagne|Leicester deuxieme} est un évènement rare
- · →méthode peu adaptée au problème

Comportement sur de grands

championnats

Comportement sur de grands championnats

R. Chetrite, R. Diel, M. Lerasle *The number of potential winners in Bradley-Terry model in random environment*, Ann. Appl. Probab., 2016. lien

⇒ trois théorème que nous allons illustrer

Théorème 1

Thérorème 1:

Q la fonction quantile, U la distribution des forces. Si:

- Il existe β dans (0, 1/2) et $x_0 > 0$ dans l'intérieur de suppQ tels que $Q^{1/2-\beta}$ est convexe sur $[x_0, \infty)$.
- $E[U^2] < \infty$.

Alors, la probabilité que le joueur le plus fort gagne tend vers 1 avec le nombre N de joueurs:

P(le plus fort gagne)
$$\xrightarrow[N\to+\infty]{} 1$$
.

Theorème 1: Résultats

Cas de la distribution de queue en x^{-b}

Theorème 1: Résultats

Cas de la distribution log-normale

Théorème 2

Hypothèse A:

Le maximum de supp(Q) est 1 et il existe $\alpha \in [0,2)$ tel que:

$$logQ(1-u) = \alpha log(u) + o(logu) \text{ quand } u \to 0$$
 (A)

Théorème 2:

Pour tout $\gamma < 1 - \alpha/2$, on a pour N tendant vers l'infini:

P(aucun des N^{γ} meilleurs joueurs gagne) \rightarrow 1

Pour tout $\gamma > 1 - \alpha/2$, on a pour N tendant vers l'infini:

 $P(un \ des \ N^{\gamma} \ meilleurs \ joueurs \ gagne) \rightarrow 1$

Lois respectant l'hypothèse A

- la distribution uniforme avec $\alpha = 1$
- la distribution arcsin avec $\alpha = 1/2$
- les distributions $\beta(a,b)$ avec $\alpha=b$ si b<2

Encore sous l'hypothèse A:

Théorème 3

Soit
$$V_U = \mathbb{E}\left[\frac{U}{(U+1)^2}\right]$$
 et $\epsilon_N = \left(\frac{(2-\alpha)(\log N)}{NV_U}\right)^{1/2}$

Si x_N représente la force d'un N+1e joueur alors: Si $\lim\inf_{N\to\infty}\frac{x_N-1}{\epsilon_N}>1$ alors P presque sûrement:

$$P(le N + 1e joueur gagne) \rightarrow 1$$

Si $\limsup_{N\to\infty} \frac{x_N-1}{\epsilon_N} < 1$ alors P presque sûrement:

$$P(le N + 1e joueur ne gagne pas) \rightarrow 1$$

Un cas particulier:

- Une équipe possède une force de 2 tandis que toutes les autres possèdent une force de 1
- Une équipe possède une force de 2, une autre une force de 1 et tout le reste a une force de 0.5.

⇒ On créé un script qui calcule la plus petite force nécessaire pour gagner avec 70% de chances

Recherche de paramètres optimaux

Introduction

Idée: les bookmakers évaluent bien les probabilités pour les grandes équipes mais pas pour les plus petites.

⇒ on va se fixer nos paramètres sur les valeurs des bookmakers.

Un premier tracé de la fonction de coût

Un deuxième tracé plus précis

Intervalle de confiance

Interpolation

Conclusion partielle

- · Minimum de la fonction interpolée $\kappa=$ 1.690
- \cdot injection dans le modèle. Victoire de Leicester: $0.20\% \pm 0.013\%$
- \cdot côte à 5000 \rightarrow une espérance de 90 euros pour 10 euros misés
- 1000 évènements \rightarrow 14% de chances de tout perdre et E[gain] = 90~000

· Une solution généralement préférée

- · Une solution généralement préférée
- Trop de bruit

- · Une solution généralement préférée
- · Trop de bruit
- · Pas de reproductibilité des résultats

- · Une solution généralement préférée
- · Trop de bruit
- · Pas de reproductibilité des résultats
- $\cdot \to$ on rejette les résultats obtenus

· La nécessité des décalages en probabilité

- · La nécessité des décalages en probabilité
- · Une théorie intéressante, pas toujours applicable au football

- · La nécessité des décalages en probabilité
- · Une théorie intéressante, pas toujours applicable au football
- Une optimisation des paramètres très coûteuse en temps de calcul

- · La nécessité des décalages en probabilité
- · Une théorie intéressante, pas toujours applicable au football
- Une optimisation des paramètres très coûteuse en temps de calcul
- Le football un problème encore ouvert, important pour de nombreux acteurs économiques

