ECSE 4965/6965

Introduction to Deep Learning

Program Assignment #1,

Due date: 4pm, Feb. 9th

In this programming assignment, you will implement techniques to learn a linear regressor that takes an input vector \mathbf{x} of 10 dimensions and outputs a scalar y. Specifically, this assignment involves learning the regression parameters $\mathbf{\Theta} = (\mathbf{w}, \mathbf{w}_0)^t$, where \mathbf{w} is a $10\mathbf{x}1$ vector and \mathbf{w}_0 is a scalar, given the training data $\mathbf{D} = \{\mathbf{x}[\mathbf{m}], y[\mathbf{m}]\}$, $\mathbf{m} = 1, 2, ..., 10,000$. \mathbf{D} is stored in a Mx11 matrix (data.txt), where the first 10 columns represent input \mathbf{x} and the last column represent y. You will implement the following methods to learn the regression parameters $\mathbf{\Theta}$ based on the mean squared loss function.

- a. Implement in Tensorflow the closed form gradient-based solution to solve Θ analytically. Write down the equation used as well as the computed values for Θ .
- b. Implement in Tensorflow the gradient descent method to solve for Θ iteratively using all data in \mathbf{D} . Initialize Θ to 0.01 for all elements of Θ . Try different learning rates between 0.001 an 0.005. Write down the estimated values for Θ as well as plot the loss function value change as a function of iteration number t.
- c. For graduate students taking this class at 6000 level, implement in Tensorflow the Stochastic Gradient Descent method with a batch size set between to 20 and 10. Give the estimated values for Θ , the selected batch size, and plot the loss function value as a function of iteration number t.

Do not use Tensorflow's existing gradient descent and stochastic gradient descent functions for tasks b and c. Submit your Tensorflow code via LMS, along with the required outputs as specified above.