

CI: ARCHITECTURE MATÉRIELLE ET LOGICIELLE

CHAPITRE 3 – PRINCIPE DE LA REPRÉSENTATION DES NOMBRES ENTIERS EN MÉMOIRE

Exercice 1

Question Réalisez la conversion des nombres suivants dans les autres systèmes de numération :

- 1. $(10050)_{(10)}$
- 2. (10010001)₍₂₎
- 3. $(A3F)_{16}$

Exercice 2

On désire utiliser 12 bits pour comptabiliser des objets.

Question 1 *Quel est le nombre maximum d'objets qu'il est possible de compter*?

Question 2 Indiquer le numéro du premier et du dernier (dans les systèmes de numération décimale, binaire et hexadécimale).

Exercice 3

On désire compter 65000 objets.

Question 1 Sur combien de bit peut-on réaliser cette opération?

Question 2 Quel est le numéro du premier et du dernier (dans les systèmes de numération binaire et hexadécimale)?

Exercice 4

Soit une machine où les nombres entiers sont codés sur 8 bits.

Question 1 Donner le plus grand et le plus petit nombre représentable selon que le codage utilisé est non signé ou signé.

Question 2 Écrire dans les différents formats signés les nombres décimaux 1, -1, 111 et 55.

Question 3 Quelles sont inversement les valeurs décimales codées par 4C et B4 suivant les différents codages signés et celui non signé.

Exercice 5

Question Effectuez les opérations arithmétiques suivantes dans les systèmes de numération binaire (codé sur 8 bits) :

- 1. 71 + 35 =
- 2. 15-25=
- 3. 121 75 =
- 4. -51-77 =