Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

Air Products and Chemicals, Inc. The Pennsylvania State University September 1, 2012 – December 31, 2015

John Cirucci Air Products and Chemicals, Inc.

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 6-7, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

Develop a novel system that produces electricity or hydrogen from waste heat conversion and waste effluent oxidation

Issues with existing, disassociated solutions

- Waste Heat to Energy/Hydrogen (ex: organic Rankine cycle)
 - High installed \$/KW capital
 - Low temperature waste heat (<=100C) is not practicable
 - Further efficiency loss in electrolytic conversion to hydrogen
- 2. Waste Effluent to Energy/Hydrogen (ex: anaerobic digester)
 - High installed \$/KW capital:
 - Further efficiency loss in reforming conversion to hydrogen

Technical and economic synergies are achieved with dual benefits through a novel, combination of effects

Technical Approach

Cathode: $8H^+ + 8e^- \rightarrow 4H_2$

2) reverse electrodialysis stack

NH₄HCO₃ ←→ NH₄⁺ + HCO₃⁻ energy from salinity gradient

3) thermal regeneration of feed salinity $NH_4HCO_3 \longleftrightarrow NH_3 + CO_2 + H_2O$ energy from salinity gradient

Technical Approach

Technical innovation – unique combination

Microbial Electrolysis

Reverse Electrodialysis

Thermolytic Salt Regeneration

- Overcomes previous limitations
 - Low temperature waste heat for NH₄HCO₃ dissociation
 - Cost economies combined cells, combined benefits
- Effective use of essential skills and resources

cycle development scale-up operation

DOE EERE

Advanced Manufacturing Office

project management technical oversight funding

Transition and Deployment

Measure of Success

Go / No Go Criteria

Budget Period 1 (complete)

- ✓ COD removal response
- ✓ H₂ yield
- ✓ Viable substrate sources

Budget Period 2 (current)

- Net power output
- Financial viability

Budget Period 3

- Project conclusion
- Decision to proceed to pilot phase

Energy, Environmental and Economic Benefit for US manufacturing

Total amenable facilities	#	400	
Wastewater treated	Mm3/year	1800	
H ₂ production	Ktons/year	180	
CO ₂ reduction	Mtons/year	2.2	
Power production (alt.)	Tbtu/y	22.4	
CO ₂ reduction	Mtons/year	16.8	

Project Management & Budget

	TASK	Budget Period 1 Sep 2012 - Dec 2013	Budget Period 2 Jan 2014 - Mar 2015	Budget Period 3 Apr 2015 - (Aug 2015)		
1	Data collection and characterization					
2	Screening analysis of waste heat and effluent					
3	Initial treatability tests					
4	Detailed treatability tests					
5	Process models and economics					
6	Project Management and Reporting					
7	MRC integrated laboratory analyses					
8	MHRC process modeling and economics					
9	Prototype plan development					
10	Prototype system preliminary design/costing					
11	Project Management and Reporting					
12	Lab testing to support prototype operation					
13	Prototype system construction and installation					
14	Prototype startup and testing					
15	Prototype testing data analysis/recommendations					
16	Project Management and Reporting					

	TOTAL		Budget Period 1		Budget Period 2		Budget Period 3	
DOE Investment	\$	1,200,000	\$	204,948	\$	284,584	\$	710,468
Cost Share	\$	300,000	\$	51,237	\$	71,146	\$	177,617
Project Total	\$	1,500,000	\$	256,185	\$	355,730	\$	888,085

Results and Accomplishments

• BP1 results

- 22 82% ΔCOD in 6 substrate effluents
- 13.5 45.3% H2 yield on COD reduction
- Full characterization of US facilities
- BP2 facility identified
- Learning plan focus on RED in BP2

Geise, Hickner & Logan (2013) ACS Appl. Mater. Inter.

BP2 work in-progress

- RED performance optimization
- Ion exchange membrane improvements
- Integrated system experimental testing
- Process model and process economics
- Prototype test plan