Aufgabe 1: Bernoulli'sche Differentialgleichung

Eine Differentialgleichung der Form

$$u'(x) = f(x) \cdot u(x) + g(x) \cdot \left(u(x)\right)^n$$

heißt Bernoulli'sche Differentialgleichung. Sie läßt sich mit Hilfe der Substitution

$$z(x) = \left(u(x)\right)^{1-n}$$

in eine lineare Differentialgleichung für z(x) überführen. Bestimmen Sie die allgemeine Lösung der Differentialgleichung für y(x)

$$y' = \frac{-2}{x} \cdot y + x^2 \cdot y^2 \ .$$

Lösung 1:

Die Bernoulli'sche Differentialgleichung teilt man zuerst durch $(u(x))^n$:

$$\frac{u'(x)}{\left(u(x)\right)^n} = f(x) \cdot \frac{1}{u(x)} + g(x)$$

Nun substituiert man $z(x) = \frac{1}{u(x)} = \left(u(x)\right)^{1-n}$

Es gilt

$$z'(x) = (1 - n) \cdot \left(u(x)\right)^{-n} \cdot u'(x) = (1 - n) \cdot \frac{u'(x)}{\left(u(x)\right)^{n}}$$

Somit wird die Bernoulli'sche Differentialgleichung in die folgende inhomogene lineare Dgl überführt:

$$\frac{z'(x)}{1-n} = f(x) \cdot z(x) + g(x)$$

Für die gegebene DGl $y'(x) = \frac{-2}{x}y + x^2 \cdot y^2$ gilt

$$u(x) = y(x), \ n = 2, \ f(x) = \frac{-2}{x}, \ g(x) = x^2$$

1

Diese Gleichung geht also durch die Substitution $z(x)=(y(x))^{-1}=\frac{1}{y(x)}$ in eine inhomogene lineare Dgl. für z(x)

$$-z'(x) = -\frac{2}{x} \cdot z + x^2 ,$$

über. Durch Trennung der Veränderlichen und Variation der Konstanten erhält man die folgende Lösung

$$z(x) = C \cdot x^2 - x^3 .$$

Die Rücksubstitution ergibt die gesuchte Lösung für y(x):

$$y(x) = \frac{1}{C \cdot x^2 - x^3} \ .$$

Aufgabe 2: Definitionsbereich der Lösung einer Dgl.

a) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'(x) = 2xy^2$$

und die spezielle Lösung für den Anfangswert y(0) = 4.

Wie groß ist der maximale Definitionsbereich dieser Lösung?

b) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$cos(x) \cdot y'(x) = sin(x) \cdot y(x).$$

Lösung 2:

a) Die Dgl. ist vom trennbaren Typ

$$\int \frac{\mathrm{d}y}{y^2} = \int 2x \, \mathrm{d}x \Rightarrow \frac{y^{-1}}{-1} = x^2 + C \quad \lor \quad y = 0$$

und hat die allgemeine Lösung

$$y(x) = \frac{-1}{x^2 + C}$$
, $C \in \mathbb{R}$ bzw. $y = 0$

Der Anfangswert y(0) = 4 ergibt mit $C = -\frac{1}{4}$ die Lösung

$$y_{\text{AWP}}(x) = \frac{-1}{x^2 - \frac{1}{4}}$$
.

Die Lösung ist nur im Bereich $~\frac{-1}{2} < x < \frac{1}{2}~$ definiert und hat an den Rändern bei $~x=\pm\frac{1}{2}~$ Polstellen.

b) Lösen der hom. lin. DGl.

$$\cos(x) \cdot y'(x) = \sin(x) \cdot y(x)$$

durch Trennung der Veränderlichen:

$$\int \frac{\mathrm{d}y}{y} = \int \frac{\sin(x)}{\cos(x)} \, \mathrm{d}x \Rightarrow \ln(|y|) = -\ln(|\cos(x)|) + \tilde{C} \quad \lor \quad y = 0$$

also

$$y(x) = \frac{C}{\cos(x)}, C \in \mathbb{R}$$
.

Aufgabe 3: Differentialgleichungen 1. Ordnung

Bestimmen Sie die allgemeine Lösung folgender Differentialgleichungen:

i)
$$y'(x) = (2x + 3y + 4)^{-4} - \frac{2}{3}$$

ii)
$$u'(t) = \sqrt{\frac{t}{u}} + \frac{u}{t}, \quad t > 0.$$

iii)
$$w'(s) = \frac{2}{s}w + 15s^4.$$

Hinweis:

Zu i) Nutzen Sie die Substitution z = ax + by + c.

Zu ii) Nutzen Sie die Substitution $z = \frac{u}{t}$.

Zu iii) ist ein lineare Differentialgleichung. Lösen Sie zuerst die homogene Differentialgleichung. Bestimmen Sie anschließend die partikuläre Lösung.

Lösung 3:

i) Mit der Substitution z(x) = 2x + 3y(x) + 4 erhält man

$$y(x) = \frac{z(x) - 2x - 4}{3} \Rightarrow y'(x) = \frac{1}{3}(z'(x) - 2)$$

Eingesetzt in die Dgl, ergibt sich

$$z'(x) - 2 = 3\left(z^{-4} - \frac{2}{3}\right)$$
.

Daraus folgt

$$\frac{\mathrm{d}z}{\mathrm{d}x} = 3z^{-4} \ .$$

Trennung der Variablen:

$$\int z^4 \, dz = \int 3 \, dx \Rightarrow \frac{z^5}{5} = 3x + c \Rightarrow z(x) = (15x + C)^{1/5} \text{ mit } C = 5c \in \mathbb{R} .$$

Rücksubstitution:

$$y(x) = \frac{\left(15x + C\right)^{1/5} - 2x - 4}{3} \ .$$

ii) Mit der Substitution $z(x) = \frac{u(t)}{t}$ erhält man

$$u(t) = tz(t) \Rightarrow u'(t) = z(t) + tz'(t)$$

Einsetzen in die Dgl liefert dann

$$z + tz' = \frac{1}{\sqrt{z}} + z \quad \Rightarrow \quad z' = \frac{1}{t\sqrt{z}}$$

Trennung der Variablen:

$$\int \sqrt{z} \, dz = \int \frac{1}{t} \, dt \Rightarrow \frac{2}{3} z^{3/2} = \ln|t| + c \Rightarrow z(t) = \left(\frac{3 \ln|t|}{2} + C\right)^{2/3} \text{ mit } C = \frac{3 c}{2} \in \mathbb{R}.$$

Rücksubstitution:

$$\frac{u(t)}{t} = \left(\frac{3\ln|t|}{2} + C\right)^{2/3} \Rightarrow u(t) = t \cdot \left(\frac{3\ln(t)}{2} + C\right)^{2/3} \text{ mit } C \in \mathbb{R}, \ t > 0.$$

iii) Zunächst löst man die homogene lin. Dgl.:

$$w'(s) = \frac{2}{s}w$$

$$w_{\rm h}(s) = C \cdot e^{\left(\int \frac{2}{s} \, ds\right)} = C \cdot e^{2 \ln|s|} = C e^{\ln(s^2)} = C s^2$$
.

Damit erhält man den Produktansatz für die inhomogen lin. Dgl. $w(s) = z(s) s^2$ Mit $w'(s) = z' s^2 + z \cdot 2 s$ wird die inhomogene Gleichung wie folgt umgeformt:

$$z's^2 + z2s = \frac{2}{s}zs^2 + 15s^4 \Rightarrow z' = 15s^2 \Rightarrow z = 5s^3 + C$$
.

Damit erhält man die Lösung

$$w(s) = C s^2 + 5 s^5.$$

Aufgabe 4: Trennung der Veränderlichen und Anfangswertproblem

Klassifizeren die folgende Differentialgleichung und bestimmen Sie die Lösung des Anfangswertproblems mit y(0) = 0 und y'(0) = 6:

$$y''(x) - 2y'(x) - 3y(x) = 0.$$

Lösung 4:

Die Nullstellen des charakteristischen Polynoms $p(\lambda) = \lambda^2 - 2\lambda - 3$ sind $\lambda_1 = -1$ und $\lambda_2 = 3$.

Die allgemeine Lösung ist

$$y(x) = c_1 e^{-x} + c_2 e^{3x} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

Mit den Anfangswertbedingungen $y(0)=c_1+c_2\stackrel{!}{=}0$ und $y'(0)=-c_1+3c_2\stackrel{!}{=}6$ erhalten wir das lineare System

$$c_1 + c_2 = 0,
-c_1 + 3c_2 = 6$$

mit Lösung $c_2 = 3/2$ und $c_1 = -3/2$. Damit ist

$$y(x) = -\frac{3}{2}e^{-x} + \frac{3}{2}e^{3x}$$
.

Aufgabe 5: Homogene lineare Differentialgleichungen

Bestimmen Sie die allgemeinen reellen Lösungen folgender homogener linearer Differentialgleichungen mit konstanten Koeffizienten mit Hilfe geeigneter Ansätze für u(t):

i)
$$u'' - 7u' + 10u = 0$$
. ii) $7u'' + 28u' + 91u = 0$.

iii)
$$u''' - 3u'' = 0$$
. iv) $u'''' + 8u'' + 16u = 0$.

Lösung 5:

Der Ansatz ist jedesmal $u(t) = \alpha e^{\lambda t}$, $\alpha, \lambda = \text{const} \in \mathbb{C}$.

- i) Die charkt. Gl. ist: $\lambda^2 7\lambda + 10 = 0 \Rightarrow \lambda_1 = 2$, $\lambda_2 = 5$. $\Rightarrow u(t) = a e^{2t} + b e^{5t}$, $a, b \in \mathbb{R}$.
- ii) Die charkt. Gl. ist: $\lambda^2+4\lambda+13=0 \Rightarrow \lambda_{1,2}=-2\pm 3\,\mathrm{i}\ .$ $\Rightarrow \ u(t)=\mathrm{e}^{-2\,t}\left(a\,\cos(3t)+b\,\sin(3t)\right)\,,\ \ a,b\in\mathbb{R}\ .$
- iii) Die charkt. Gl. ist: $\lambda^3-3\lambda^2=0 \Rightarrow \lambda_{1,2}=0\;,\;\;\lambda_3=3\;.$ $\Rightarrow\;u(t)=a+b\,t+c\,\mathrm{e}^{3\,t}\;,\;\;a,b,c\in\mathbb{R}\;\;.$
- iv) Die charkt. Gl. ist: $\lambda^4 + 8\lambda^2 + 16 = 0 \Rightarrow \lambda_{1,2} = 2i$, $\lambda_{3,4} = -2i$. $\Rightarrow \underline{u(t) = (a+bt) \cdot \cos(2t) + (c+dt) \cdot \sin(2t)}, \ a,b,c,d \in \mathbb{R}$.

Aufgabe 6: Inhomogene lineare Differentialgleichungen

Bestimmen Sie von folgenden inhomogenen linearen Differentialgleichungen mit konstanten Koeffizienten jeweils die allgemeine reelle Lösung, indem Sie zunächst die zugehörige homogene lineare Differentialgleichung allgemein lösen und eine spezielle (partikuläre) Lösung der inhomogenen linearen Differentialgleichung mit Hilfe von geeigneten Ansätzen bestimmen.

a)
$$y''(x) - 5y'(x) + 6y(x) = r_k(x)$$
 mit
i) $r_1 = 108x^2$. ii) $r_2 = 7e^{3x}$. iii) $r_3 = 18 + 14e^{3x}$.

b)
$$y'''(x) + 25y'(x) = s_k(x)$$
 mit

i)
$$s_1 = 150 x$$
, ii) $s_2 = \sin(x)$

i)
$$s_1 = 150 x$$
, ii) $s_2 = \sin(x)$,
iii) $s_3 = \sin(5x) - 200 x$, iv) $s_4 = 6 \sin(3x) \cos(2x)$.

Hinweis: Für $\alpha, \beta \in \mathbb{R}$ gilt $\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$.

c)
$$y''(x) - 2y'(x) = t_k(x)$$
 mit
i) $t_1 = 4e^{2x}$. ii) $t_2 = \cosh(2x)$.

Lösung 6:

a) Zunächst die zugehörige homogene lineare Differentialgleichung Die charkt. Gl. ist: $\lambda^2 - 5\lambda + 6 = 0 \Rightarrow \lambda_1 = 2$, $\lambda_2 = 3$.

$$\Rightarrow$$
 $y_h(x) = a e^{2x} + b e^{3x}, a, b \in \mathbb{R}$.

i) Faustregelansatz:

$$y_{\rm p} = A + B x + C x^2 \Rightarrow ; y'_{\rm p} = B + 2C x \text{ und } y''_{\rm p} = 2C.$$

Einsetzen in die Differentialgleichung:

$$2C - 5 \cdot (B + 2Cx) + 6 \cdot (A + Bx + Cx^{2}) = 108x^{2}$$
.

Koeffizientenvergleich:

$$\begin{array}{lll} 1: & 2\,C - 5\,B + 6\,A = 0 \\ x: & -10\,C + 6\,B = 0 \\ x^2: & 6\,C = 108 & \Rightarrow C = 18 \;,\;\; B = 30 \;\; A = 19 \;. \end{array}$$

Partikuläre Lösung der inhomogen linearen Differentialgleichung:

$$\Rightarrow$$
 $y_{\rm p}(x) = 19 + 30 x + 18 x^2$.

Allgemeine Lösung der inhomogen linearen Differentialgleichung:

$$\Rightarrow y(x) = y_h + y_p = a e^{2x} + b e^{3x} + 19 + 30 x + 18 x^2, \quad a, b \in \mathbb{R}.$$

ii) Faustregelansatz: $y_p = A x e^{3x}$ "x-spendieren".

Eingesetzt:

$$((6A + 9Ax) - 5 \cdot (A + 3Ax) + 6 \cdot Ax) \cdot e^{3x} = 7e^{3x} \Rightarrow A = 7 \text{ und } 0 = 0.$$

Partikuläre Lösung: $y_p(x) = 7x e^{3x}$.

Allgemeine Lösung: $y(x)=y_{\rm h}+y_{\rm p}=a\,{\rm e}^{2x}+b\,{\rm e}^{3x}+7x\,{\rm e}^{3x}\;,\;\;a,b\in\mathbb{R}\;\;.$

iii) Faustregelansätze für beide Summanden der Inhomogenität einzeln.

Ansatz für r = 18: $y_{p_1} = A \Rightarrow y_{p_1}(x) = 3$.

Für $r = 14 e^{3x}$ ergibt sich nach ii) : $y_{p_2}(x) = 14x e^{3x}$.

Allgemeine Lösung: $y(x) = y_h + y_{p_1} + y_{p_2} = a e^{2x} + b e^{3x} + 3 + 14x e^{3x}$, $a, b \in \mathbb{R}$

b) Das charakteristische Polynom der Differentialgleichung ist $\lambda^3 + 25\lambda$ mit den Nullstellen $\lambda_1 = 0, \lambda_{2/3} = \pm 5$ i. Die zugehörige homogene lineare Differentialgleichung hat damit die allgemeine (reelle) Lösung

$$y_h(x) = a \cos(5x) + b \sin(5x) + c$$
, $a, b, c \in \mathbb{R}$.

i) Faustregelansatz: $y_p = Ax + Bx^2$ ("x-spendieren"). Einsetzen in die Differentialgleichung ergibt

$$\begin{split} y'''(x) + 25y'(x) \\ &= 0 + 25(A + 2Bx) \stackrel{!}{=} 150x \\ \Rightarrow & A = 0, \ B = 3 \\ \Rightarrow & y_{\rm p} = 3 \ x^2 \\ \Rightarrow & y(x) = y_{\rm h} + y_{\rm p} = a \cos(5x) + b \sin(5x) + c + 3 \ x^2 \ , \quad a, b, c \in \mathbb{R} \end{split}$$

ii)

6

1. Lösungsweg

Faustregelansatz: $y_{\rm p}(x) = {\rm Im}(A \cdot {\rm e}^{ix})$

Einsetzen in die Differentialgleichung:

$$A \cdot (i^3 + 25i) \cdot e^{ix} = e^{ix} \Rightarrow A = \frac{1}{-i + 25i} = \frac{1}{24i} = \frac{-i}{24}$$

Somit gilt

$$y_{\rm p} = \operatorname{Im}\left(\frac{-i}{24} \cdot (\cos(x) + i\sin(x))\right) = -\frac{1}{24}\cos(x)$$

2. Lösungsweg

Faustregelansatz: $y_p = A \cos(x) + B \sin(x) \Rightarrow y_p(x) = -\frac{1}{24} \cos(x)$. Einsetzen in die Differentialgleichung ergibt

$$y'''(x) + 25y'(x)$$

$$= A\sin(x) - B\cos(x) + 25(-A\sin(x) + B\cos(x)) \stackrel{!}{=} \sin(x)$$

$$\Rightarrow -24A = 1, \ 24B = 0$$

$$\Rightarrow y_p = -\frac{1}{24}\cos(x)$$

Beide Wege liefern dann die allgemeine Lösung

$$\Rightarrow y(x) = y_{h} + y_{p} = a \cos(5x) + b \sin(5x) + c - \frac{1}{24} \cos(x), \quad a, b, c \in \mathbb{R}.$$

iii) Faustregelansätze für beide Summanden einzeln:

Ansatz für $s=\sin(5x)={\rm Im}({\rm e}^{i5x})$: $y_{\rm p_1}={\rm Im}(Ax{\rm e}^{i5x})$ ("x–spendieren") liefert nach Einsetzen in die DGL

$$A \cdot (3 \cdot (5i)^{2} \cdot e^{i5x} + x \cdot (5i)^{3} \cdot e^{i5x} + 25 \cdot (e^{i5x} + x \cdot 5i \cdot e^{i5x})) = e^{i5x}$$

$$A \cdot (-75 - 125ix + 25 + 125ix) = 1 \Rightarrow A = \frac{1}{-50}$$

$$\Rightarrow y_{p_{1}} = \operatorname{Im}\left(\frac{1}{-50}xe^{i5x}\right) = -\frac{1}{50}x\sin(5x)$$

Alternativ kann mann den Ansatz $Ax \cos(5x) + Bx \sin(5x)$ benutzen. Einsetzen

in die Differentialgleichung ergibt

$$y'''(x) + 25y'(x)$$

$$= -3 \cdot 25A\cos(5x) + 125Ax\sin(5x) - 3 \cdot 25B\sin(5x) - 125Bx\cos(5x) +$$

$$+ 25(A\cos(5x) - 5Ax\sin(5x) + B\sin(5x) + 5Bx\cos(5x)) \stackrel{!}{=} \sin(5x)$$

$$\Rightarrow \sin(5x) = (-75A + 25A)\cos(5x) + (-75B + 25B)\sin(5x)$$

$$\Rightarrow A = 0, B = -\frac{1}{50}$$

$$\Rightarrow y_{p1} = -\frac{1}{50}\sin(x)$$

Für $\, s = -200 \,$ ergibt sich die spezielle Lösung nach i) zu $\, y_{\mathrm{p}_2} = -4 \, x^2 \,$.

$$y(x) = y_{\rm h} + y_{\rm p_1} + y_{\rm p_2} = a \cos(5x) + b \sin(5x) + c - \frac{1}{50} x \sin(5x) - 4x^2, \quad a, b, c \in \mathbb{R}$$

- iv) Die Inhomogenität ist $s_4 = 6 \sin(3x) \cos(2x) = 3 (\sin(x) + \sin(5x))$.
- Nach ii) und iii) ist damit die spezielle Lösung: $y_p = -\frac{1}{8}\cos(x) \frac{3}{50}x\sin(5x)$.

$$y(x) = y_h + y_p = a \cos(5x) + b \sin(5x) + c - \frac{1}{8} \cos(x) - \frac{3}{50} x \sin(5x), \quad a, b, c \in \mathbb{R}$$

c) Das charakteristische Polynom $\lambda^2 - 2\lambda$ hat die Nullstellen $\lambda_1 = 0$, $\lambda_2 = 2$. Damit ist die allgemeine Lösung der zugehörigen homogenen linearen Differentialgleichung

$$y_h(x) = a + b e^{2x}$$
, $a, b \in \mathbb{R}$.

i) Faustregelansatz $y_p = A x e^{2x}$ ("x–spendieren") $\Rightarrow y_p = 2 x e^{2x}$.

$$\Rightarrow y(x) = y_h + y_p = a + b e^{2x} + 2 x e^{2x}, \quad a, b \in \mathbb{R}.$$

ii) Die Inhomogenität ist $t_2 = \cosh(2x) = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$.

Faustregelansätze für beide Summanden einzeln:

Für
$$t=\frac{1}{2}\,\mathrm{e}^{2x}\,$$
 ergibt sich nach i) $y_{\mathrm{p}_{1}}(x)=\frac{1}{4}\,x\,\mathrm{e}^{2x}\,$.

Ansatz für
$$t = \frac{1}{2} e^{-2x}$$
: $y = A e^{-2x}$ (**kein** "x-spendieren"!) $\Rightarrow y_{p_2} = \frac{1}{16} e^{-2x}$.
 $\Rightarrow y(x) = y_h + y_{p_1} + y_{p_2} = a + b e^{2x} + \frac{1}{4} x e^{2x} + \frac{1}{16} e^{-2x}$, $a, b \in \mathbb{R}$

Aufgabe 7: Differentialgleichungen erster Ordnung

a) Klassifizieren Sie die Differentialgleichung 1. Ordnung

$$u'(t) = \frac{-2u(t)}{t} + 5t^2 , \quad t > 0 ,$$

und bestimmen Sie dann alle Lösungen der Differentialgleichung.

b) Lösen Sie das Anfangswertproblem für t > 0

$$u'(t) = \left(\frac{2u(t)}{t}\right)^2 + \frac{u(t)}{t}, \quad u(1) = -2.$$

Lösung 7:

Klassifikation: explizit, linear, variable Koeffizienten, inhomogen. (Hinweis: Mindestens die 3 letzten Eigenschaften müssen benannt sein!) Die homogene lineare Dgl. u'(t) = -2 u(t)/t ist eine trennbare Dgl.

$$\int \frac{1}{u} du = \int \frac{-2}{t} dt \Rightarrow u_h(t) = \frac{c}{t^2}.$$

Die Lösung der inhomogen linearen Dgl. erhält man mit dem Produktansatz

$$u_{allg}(t) = c(t)/t^2$$
.

Das Einsetzen in die inhomogene Gleichung ergibt

$$\frac{-2}{t^3} \cdot c(t) + c'(t) \cdot \frac{1}{t^2} = \frac{-2\frac{c(t)}{t^2}}{t} + 5t^2 \Rightarrow c'(t) = 5t^4.$$

Die Integration ergibt die Funktion $\boldsymbol{c}(t)$ und dann die allgemeine Lösung

$$c(t) = t^5 + C \Rightarrow \underline{u_{allg}(t) = t^3 + \frac{C}{t^2}}$$
.

b) Die Substitution z(t)=u(t)/t ergibt $u(t)=tz(t),\ u'(t)=z(t)+tz'(t).$ Eingesetzt in die Dgl. erhält man

$$z + tz' = (2z)^2 + z \Rightarrow z' = \frac{4z^2}{t}$$
.

Die trennbare Dgl. für z(t) hat die Lösung $z(t)=-1/(4\ln(t)+C)$. Rücksubstitution ergibt die allgemeine Lösung

$$u(t) = z(t) \cdot t = \frac{-t}{4 \ln(t) + C} .$$

8

Einsetzen der Anfangswerte ergibt C=1/2 und damit die Lösung des AWPs zu

$$u_{\text{AWP}}(t) = \frac{-2t}{8\ln(t) + 1}$$

Aufgabe 8: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen:

- a) $y^{(4)} + 2y''' + y'' = 12x$,
- **b**) $y'' + 4y' + 5y = 8\sin t$,
- c) $y'' 4y' + 4y = e^{2x}$.

Lösung 8:

a) Das Polynom $p(\lambda) = \lambda^4 + 2\lambda^3 + \lambda^2$ hat die Nullstellen $\lambda_{1/2} = 0$ (doppelte Nullstelle), $\lambda_{3/4} = -1$ (ebenfalls doppelt). Ein Fundamentalsystem ist also $\{1, x, e^{-x}, xe^{-x}\}$.

Für die Partikulärlösung ist der Ansatz $y_p(x) = (ax + b)x^2 = ax^3 + bx^2$ sinnvoll.

$$y_p'(x) = 3ax^2 + 2bx, y_p''(x) = 6ax + 2b, y_p^{(3)}(x) = 6a \text{ und } y_p^{(4)}(x) = 0$$

Eingesetzt in die DGL:

$$0 + 12a + 6ax + 2b = 12x$$

Koeffizientenvergleich liefert dann $a=2,\,b=-6a=-12.$ Die allgemeine Lösung der Gleichung ist

$$y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 x e^{-x} - 12x^2 + 2x^3 \text{ mit } c_1, c_2, c_3, c_4 \in \mathbb{R}.$$

b) Das Polynom $p(\lambda) = \lambda^2 + 4\lambda + 5$ hat die Nullstellen

$$\lambda_1 = -2 + i, \lambda_2 = -2 - i$$

Die homogene Lösung ist dann

$$y_h = C_1 e^{-2t+it} + C_2 e^{-2t-it} = e^{-2t} (C_1(\cos t + i\sin t) + C_2(\cos t - i\sin t))$$
$$= e^{-2t} (c_1\cos t + c_2\sin t), \text{ wobei } C_1 = \overline{C_2} = \frac{ic_1 + c_2}{2}$$

Eine Partikulärlösung berechnet man für die rechte Seite $8\sin t = \text{Im}(8e^{it})$ mit dem Ansatz $y_p(t) = \text{Im}(ae^{it})$.

Man erhält durch Einsetzen in die DGL

$$a(-1+4i+5)e^{it} = 8e^{it} \Rightarrow a = \frac{2}{1+i} = 1-i$$

Damit ist

$$y_p(t) = \text{Im}((1-i)e^{it}) = \text{Im}((1-i)(\cos t + i\sin t)) = \sin t - \cos t$$

eine Partikulärlösung . Die allgemeine Lösung der Gleichung ist

$$y(t) = e^{-2t}(c_1 \cos t + c_2 \sin t) + \sin t - \cos t.$$

c) Es ist $p(\lambda) = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$.

Das Polynom hat die doppelte Nullstelle $\lambda = 2$.

Ein Fundamentalsystem ist daher $\{e^{2x}, xe^{2x}\}$.

Mit dem Ansatz $y_p(x) = ax^2e^{2x}$ folgt

$$y_p'(x) = a(2x^2 + 2x)e^{2x}, \ y_p''(x) = a(4x^2 + 8x + 2)e^{2x}$$

Das Einsetzen in die DGL liefert somit

$$ae^{2x}(4x^2 + 8x + 2 - 8x^2 - 8x + 4x^2) = e^{2x}$$

Daraus folgt a = 1/2.

Die allgemeine Lösung lautet

$$y(x) = \left(c_1 + c_2 x + \frac{1}{2}x^2\right) e^{2x} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

Aufgabe 9: Linear ODEs of the 4th order

Compute the general solutions of the following differential equations:

- a) $y^{(4)} + 4y = 0$,
- $\mathbf{b}) \quad y^{(4)} 18y'' + 81y = 0.$

Lösung 9:

a) It is $p(\lambda) = \lambda^4 + 4$, the zeroes are $\lambda_{\ell} = \sqrt{2}e^{i(\pi/2 + k\pi)/2}$ for k = 0, 1, 2, 3, 3

$$\lambda_0 = 1 + i, \lambda_1 = -1 + i, \lambda_2 = -1 - i, \lambda_3 = 1 - i.$$

A real fundamental system is

$$\{e^x \cos x, e^x \sin x, e^{-x} \cos x, e^{-x} \sin x\}$$

The general solution is therefore given as

$$y(x) = c_1 e^x \cos x + c_2 e^x \sin x + c_3 e^{-x} \cos x + c_4 e^{-x} \sin x \text{ with } c_1, c_2, c_3, c_4 \in \mathbb{R}.$$

b) Given the equation

$$y^{(4)} - 18y'' + 81y = 0,$$

the characteristic polynomial is

$$\lambda^4 - 18\lambda + 81 = 0$$

and it can be written as

$$(x^2 - 9)^2 = (x - 3)^2 \cdot (x + 3)^2 = 0$$

and it has two double zeros: $\lambda_1=-3$ and $\lambda_2=3$. The general solution of the homogeneous ODE is

$$y(x) = (c_1 + c_2 x)e^{-3x} + (c_3 + c_4 x)e^{3x}.$$

Here we observe that the coefficients in front of the exponential functions are linear functions because the multiplicity of the zeros is 2.

Aufgabe 10: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen:

- a) $y^{(4)} + 2y''' + y'' = 12x$,
- **b**) $y'' + 4y' + 5y = 8\sin t$,
- c) $y'' 4y' + 4y = e^{2x}$.

Lösung 10:

a) Das Polynom $p(\lambda) = \lambda^4 + 2\lambda^3 + \lambda^2$ hat die Nullstellen $\lambda_{1/2} = 0$ (doppelte Nullstelle), $\lambda_{3/4} = -1$ (ebenfalls doppelt). Ein Fundamentalsystem ist also $\{1, x, e^{-x}, xe^{-x}\}$.

Für die Partikulärlösung ist der Ansatz $y_p(x) = (ax + b)x^2 = ax^3 + bx^2$ sinnvoll.

$$y_p'(x) = 3ax^2 + 2bx, y_p''(x) = 6ax + 2b, y_p^{(3)}(x) = 6a \text{ und } y_p^{(4)}(x) = 0$$

Eingesetzt in die DGL:

$$0 + 12a + 6ax + 2b = 12x$$

Koeffizientenvergleich liefert dann $a=2,\,b=-6a=-12.$ Die allgemeine Lösung der Gleichung ist

$$y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 x e^{-x} - 12x^2 + 2x^3 \text{ mit } c_1, c_2, c_3, c_4 \in \mathbb{R}.$$

b) Das Polynom $p(\lambda) = \lambda^2 + 4\lambda + 5$ hat die Nullstellen

$$\lambda_1 = -2 + i, \lambda_2 = -2 - i$$

Die homogene Lösung ist dann

$$y_h = C_1 e^{-2t+it} + C_2 e^{-2t-it} = e^{-2t} (C_1(\cos t + i\sin t) + C_2(\cos t - i\sin t))$$
$$= e^{-2t} (c_1\cos t + c_2\sin t), \text{ wobei } C_1 = \overline{C_2} = \frac{ic_1 + c_2}{2}$$

Eine Partikulärlösung berechnet man für die rechte Seite $8\sin t = \text{Im}(8e^{it})$ mit dem Ansatz $y_p(t) = \text{Im}(ae^{it})$.

Man erhält durch Einsetzen in die DGL

$$a(-1+4i+5)e^{it} = 8e^{it} \Rightarrow a = \frac{2}{1+i} = 1-i$$

Damit ist

$$y_p(t) = \text{Im}((1-i)e^{it}) = \text{Im}((1-i)(\cos t + i\sin t)) = \sin t - \cos t$$

eine Partikulärlösung . Die allgemeine Lösung der Gleichung ist

$$y(t) = e^{-2t}(c_1 \cos t + c_2 \sin t) + \sin t - \cos t.$$

c) Es ist $p(\lambda) = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$.

Das Polynom hat die doppelte Nullstelle $\lambda = 2$.

Ein Fundamentalsystem ist daher $\{e^{2x}, xe^{2x}\}$.

Mit dem Ansatz $y_p(x) = ax^2e^{2x}$ folgt

$$y_p'(x) = a(2x^2 + 2x)e^{2x}, \ y_p''(x) = a(4x^2 + 8x + 2)e^{2x}$$

Das Einsetzen in die DGL liefert somit

$$ae^{2x}(4x^2 + 8x + 2 - 8x^2 - 8x + 4x^2) = e^{2x}$$

Daraus folgt a = 1/2.

Die allgemeine Lösung lautet

$$y(x) = \left(c_1 + c_2 x + \frac{1}{2}x^2\right) e^{2x} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

Aufgabe 11: Komplexe Nullstellen des charakteristischen Problems

Bestimmen Sie die Lösung der folgenden Differentialgleichung:

$$y'' + 4y' + 5y = 0$$

Lösung 11:

a) Das charakteristische Polynom $p(\lambda) = \lambda^2 + 4\lambda + 5$ hat die Nullstellen

$$\lambda_1 = -2 + i, \lambda_2 = -2 - i$$

die Lösung ist dann

$$y = C_1 e^{-2t + it} + C_2 e^{-2t - it}$$

= $e^{-2t} (C_1(\cos t + i\sin t) + C_2(\cos t - i\sin t))$
= $e^{-2t} (c_1 \cos t + c_2 \sin t)$

wobei die reellem Konstanten $c_1 = C_1 + C_2$ und $c_2 = i(C_1 - C_2)$ sind.

Die komplexen Konstanten können durch die rellen Konstanten wie folgt ausgedrückt werden: $C_1=\overline{C_2}=\frac{c_1-{\rm i}c_2}{2}$.

Aufgabe 12: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen. Falls Anfangswerte gegeben sind, ermitteln Sie auch die Lösung des Anfangswertproblems.

- $a) \quad y'' + 6y' + 8y = 0,$
- **b**) $y'' + 2y' + 5y = 17 \sin(2x)$.
- c) $y''(x) 2y'(x) 3y(x) = 4e^x$, y(0) = 0, y'(0) = 6,
- d) $y''(x) + 5y'(x) + 6y(t) = 3e^{3x}$,
- e) $y''(x) y'(x) 2y(x) = 4xe^x$.
- $\mathbf{f}) \quad y''' + y'' y' y = 3e^{-2x},$

Lösung 12:

a) Das charakteristische Polynom $p(\lambda)=\lambda^2+6\lambda+8$ hat die Nullstellen $\lambda_1=-2$ und $\lambda_2=-4$. Damit ist

$$y(x) = c_1 e^{-2x} + c_2 e^{-4x}$$
 mit $c_1, c_2 \in \mathbb{R}$.

b) Das charakteristische Polynom $p(\lambda) = \lambda^2 + 2\lambda + 5$ hat die Nullstellen $\lambda_{1/2} = -1 \pm \sqrt{1-5} = -1 \pm 2i$. Damit hat man das reelle Fundamentalsystem

$$\left\{ e^{-x}\cos(2x), e^{-x}\sin(2x) \right\}.$$

Um die Partikulärlösung der inhomogenen Gleichung zu finden gibt es zwei Möglichkeiten:

Reeller Ansatz

Ein Ansatz für eine Partikulärlösung ist

$$y_p(x) = A\cos(2x) + B\sin(2x).$$

Einsetzen in die Differentialgleichung liefert:

$$17\sin(2x) \stackrel{!}{=} -4A\cos(2x) - 4B\sin(2x) - 4A\sin(2x) + 4B\cos(2x) + 5A\cos(2x) + 5B\sin(2x)$$
$$= (-4A + 4B + 5A)\cos(2x) + (-4B - 4A + 5B)\sin(2x).$$

Koeffizientenvergleich führt dann zum linearen Gleichungssystem für A und B:

$$cos(2x): A+4B = 0$$

$$sin(2x): -4A+B = 17$$

Mit der Lösung B=1 und A=-4 haben wir die Partikulärlösung

$$y_p(x) = -4\cos(2x) + \sin(2x)$$

Alternativ: Komplexer Ansatz:

Der Ansatz für eine Partikulärlösung ist

$$y_p(x) = \operatorname{Im}(be^{i2x})$$

Einsetzen in die Differentialgleichung liefert:

$$b((-4)e^{i2x} + 4ie^{i2x} + 5e^{i2x}) \stackrel{!}{=} 17e^{i2x}$$

Daraus folgt $b = \frac{17}{1+4i} = 1-4i$. Damit haben wir die Partikulärlösung

$$y_p(x) = \text{Im}((1-4i) \cdot (\cos(2x) + i\sin(2x))) = -4\cos(2x) + \sin(2x)$$

Die Gesamtlösung lautet also

$$y(x) = \sin(2x) - 4\cos(2x) + c_1e^{-x}\cos(2x) + c_2e^{-x}\sin(2x).$$

c) Die Nullstellen des charakteristischen Polynoms $p(\lambda) = \lambda^2 - 2\lambda - 3$ sind $\lambda_1 = -1$ und $\lambda_2 = 3$. Eine Partikulärlösung der inhomogenen Gleichung berechnet man mit dem Ansatz $y_p(x) = ae^x$, es folgt $-4ae^x \stackrel{!}{=} 4e^x$ und damit a = -1. Die allgemeine Lösung ist

$$y_{allg}(x) = -e^x + c_1 e^{-x} + c_2 e^{3x}$$
 mit $c_1, c_2 \in \mathbb{R}$.

Aus den Anfangsbedingungen $y(0)=-1+c_1+c_2\stackrel{!}{=}0$ und $y'(0)=-1-c_1+3c_2\stackrel{!}{=}6$ folgt das lineare Gleichungssystem

$$c_1 + c_2 = 1,$$

 $-c_1 + 3c_2 = 7$

mit Lösung $c_2 = 2$ und $c_1 = -1$. Damit ist

$$u_{AWP}(x) = -e^x - e^{-x} + 2e^{3x}$$
.

Man berechnet zuerst die Lösungen der homogenen Gleichung

$$y'' + 5y' + 6y = 0.$$

Das charakteristische Polynom $p(\lambda) = \lambda^2 + 5\lambda + 6$ hat die Nullstellen $\lambda_1 = -2$ und $\lambda_2 = -3$. Ein Fundamentalsystem ist $\{e^{-2x}, e^{-3x}\}$. Nun braucht man noch eine spezielle Lösung der inhomogenen Gleichung. Diese berechnet man mit dem Ansatz $y_p(x) = ae^{3x}$ mit $a \in \mathbb{R}$. Einsetzen in die inhomogene DGl liefert $(9+15+6)ae^{3x} = 3e^{3x}$, also a=1/10. Die allgemeine Lösung der Gleichung ist

$$y(x) = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{10} e^{3x} \text{ mit } c_1, c_2 \in \mathbb{R}.$$

e) Das Polynom $p(\lambda) = \lambda^2 - \lambda - 2$ hat die Nullstellen $\lambda_1 = 2$ und $\lambda_2 = -1$, dies ergibt das Fundamentalsystem $\{e^{2x}, e^{-x}\}$. Der Ansatz für die Partikulärlösung ist $y_p(x) = (ax + b)e^x$. Mit $y_p'(x) = (ax + a + b)e^x$ und $y_p'' = (ax + 2a + b)e^x$ folgt

$$e^{x}(ax + 2a + b - (ax + a + b) - 2(ax + b)) = 4xe^{x}$$

$$-2ax + a - 2b = 4x$$

Koeffizientenvergleich liefert dann a=-2 und $2b=a,\,b=-1.$ Damit hat man die allgemeine Lösung

$$y(x) = c_1 e^{2x} + c_2 e^{-x} - (2x+1)e^x \text{ mit } c_1, c_2 \in \mathbb{R}.$$

f) Das charakteristische Polynom ist $p(\lambda) = \lambda^3 + \lambda^2 - \lambda - 1$. Eine Nullstelle kann man raten, zum Beispiel $\lambda_1 = 1$. Polynomdivision oder Anwendung des Horner–Schemas liefert dann

$$p(\lambda) = (\lambda - 1)(\lambda^2 + 2\lambda + 1),$$

damit ist $\lambda_2=-1$ eine weitere, und zwar doppelte, Nullstelle. Folglich hat die homogene Gleichung das Fundamentalsystem

$$\{e^x, e^{-x}, xe^{-x}\}.$$

Zur Berechnung einer Partikulärlösung benutzt man den Ansatz $y_p(x) = ae^{-2x}$. Einsetzen in die Differentialgleichung liefert

$$ae^{-2x}(-8+4+2-1) \stackrel{!}{=} 3e^{-2x}$$

und damit a = -1. Die allgemeine Lösung ist also

$$y(x) = -e^{-2x} + c_1 e^x + c_2 e^{-x} + c_3 x e^{-x}$$
 mit $c_1, c_2, c_3 \in \mathbb{R}$.

Aufgabe 13: LR-Kreis

Ein Stromkreis habe einen Widerstand von R=0.8 Ohm und eine Selbstinduktion von L=4 Henry. Bis zur Zeit $t_0=0$ fließe kein Strom. Dann wird eine Spannung von U=5 Volt angelegt. Nach 5 Sekunden wird die Spannung abgeschaltet. Berechnen Sie den Stromverlauf I(t) für $0 \le t \le 5$ und t > 5.

Hinweis: In diesem Stromkreis gilt $L\dot{I}(t) + RI(t) = U(t)$

Lösung 13:

Es gilt gilt die Differentialgleichung

$$L\dot{I}(t) + RI(t) = U(t)$$

Für $0 \le t \le 5$ gilt U(t) = 5. Die Trennung der Variablen führt zu

$$\int \frac{dI}{U - RI} = \int \frac{1}{L} dt, \Rightarrow -\frac{1}{R} \ln |U - RI(t)| = \frac{1}{L} t + c_1, \quad c_1 \in \mathbb{R}.$$

Auflösen nach I(t) liefert (mit $c_2 = e^{c_1}$)

$$U - RI(t) = c_2 e^{-Rt/L}$$

und somit

$$I(t) = \frac{1}{R} \left(U - c_2 e^{-Rt/L} \right).$$

Einsetzen der Anfangsbedingung I(0) = 0 ergibt $c_2 = U$ und

$$I(t) = \frac{U}{R} \left(1 - e^{-R/Lt} \right).$$

Einsetzen der gegebenen Zahlenwerte ergibt die Lösung

$$I(t) = 6.25 (1 - e^{-0.2t})$$
 für $0 < t < 5$.

Im Zeitraum t > 5 ist U(t) = 0 und der Anfangsstrom ist

$$I(5) = I_0 = 6.25 (1 - e^{-1})$$
.

Die Lösung der Differentialgleichung ist

$$\int \frac{dI}{I} = -\int \frac{R}{L} dt \Rightarrow \ln|I(t)| = -\frac{R}{L}t + c_3$$

und damit

$$I(t) = c_4 e^{-Rt/L} .$$

Aus
$$I(t_0) = I_0$$
 folgt

$$I(t) = I_0 e^{-R(t-t_0)/L}$$
.

Einsetzen der Zahlenwerte ergibt die Lösung

$$I(t) = 6.25(1 - e^{-1})e^{-0.2(t-5)}$$
 für $t > 5$.

Aufgabe 14: Logistisches Wachstum

Bestimmen Sie die allgemeine Lösung des Anfangswertproblems

$$y'(t) = \lambda(k - y(t))y(t) \quad , \quad y(0) = y_0$$

wobei $k, \lambda \in \mathbb{R}$.

Lösung 14:

Wir lösen diese Differentialgleichung durch Trennung der Variablen.

$$\int \frac{1}{(k-y(t))y(t)} \mathrm{d}y = \int \lambda \mathrm{d}t$$

Das Integral auf der linken Seite lösen wir mit einer Partialbruchzerlegung.

$$\frac{1}{(k-y)y} = \frac{A}{k-y} + \frac{B}{y}$$

Durch Multiplikation mit dem Nenner erhalten wir

$$Ay + B(k - y) = 1$$

Durch Koeffizientenvergleich erhalten wir das Gleichungssystem

$$A - B = 0$$
$$B = \frac{1}{k}$$

Damit ergibt sich

$$\int \frac{1}{k} \frac{1}{k - y} + \frac{1}{k} \frac{1}{y} dy = \int \lambda dt$$
$$\frac{1}{k} \int \left(-\frac{1}{y - k} + \frac{1}{y} \right) dt = \int \lambda dt$$
$$\frac{1}{k} (\ln|y| - \ln|y - k|) = \lambda t + c^*$$
$$\frac{1}{k} \ln\left| \frac{y}{y - k} \right| = \lambda t + c^*$$

Wir stellen die Gleichung nach y um.

$$\frac{y}{y-k} = c e^{\lambda kt}$$

$$\frac{1}{1-\frac{k}{y}} = c e^{\lambda kt}$$

$$1 = \left(1 - \frac{k}{y}\right) c e^{\lambda kt}$$

$$1 - c e^{\lambda kt} = -\frac{ck}{y} e^{\lambda kt}$$

$$y = -\frac{ck e^{\lambda kt}}{1 - c e^{\lambda kt}}$$

Mit dem Anfangswert erhalten wir

$$y_0 = y(0) = -\frac{ck}{1 - c}$$

$$y_0 = \frac{k}{1 - \frac{1}{c}}$$

$$\left(1 - \frac{1}{c}\right) y_0 = k$$

$$\frac{1}{c} y_0 = k - y_0$$

$$c = \frac{y_0}{y_0 - k}$$

Die allgemeine Lösung ist

$$y = -\frac{ck e^{\lambda kt}}{1 - c e^{\lambda kt}}$$

Die spezielle Lösung erhalten wir durch einsetzen der Konstanten.

$$y = \frac{y_0}{k - y_0} \frac{k}{e^{\lambda kt} + \frac{y_0}{k - y_0}}$$
$$= \frac{y_0 k}{y_0 + (k - y_0) e^{-\lambda kt}}$$

Aufgabe 15: Differentialgleichungen erster Ordnung

- Klassifizieren Sie die follgenden gewöhnlichen Differentialgleichungen erster Ordnung als
 - a) Linear oder nicht-linear.
 - b) In dem Fall einer linearen Differentialgleichung klassifizieren Sie die Gleichung zusätzlich als
 - homogen oder inhomogen.
 - Differentialgleichung mit konstanten oder nicht-konstanten Koeffizienten.
 - c) Nutzen Sie die Vorlesungsunterlagen, um die Differentialgleichung als einen der folgenden Typen zu klassifizieren:
 - a) $y' = f(x) \cdot g(y)$, zu lösen mittels Trennung der Variablen,
 - b) y' = g(y/x), homogen, zu lösen mittels Substitution mit u = y/x,
 - c) y' = f(ax + by + c), rechte Seite mit bilinearen Argumenten, zu lösen mit der Substitution u = ax + by + c,
 - d) $y' + p(x) \cdot y = q(x)$, lineare Differentialgleichung.

$$\mathbf{i}) \quad y' + 2y = 3x.$$

$$\mathbf{v}) \quad x^2 y' = xy + 2y^2.$$

$$ii) \quad y'y + x = 0.$$

vi)
$$y' = \frac{y(x-y)}{x^2}$$
.

$$\mathbf{iii}) \quad y' = \frac{x^2 + y^2}{xy}.$$

$$\mathbf{vii}) \quad y' = \frac{x-y}{x+y}.$$

iv)
$$y' = (x + y + 1)^2$$
.

viii)
$$y' = \ln(y + 2x + 1)^2$$
.

2) Berechnen Sie die allgemeine Lösung der Gleichungen i) bis iv).

Lösung 15:

- 1) i) y' + 2y = 3x. Linear, inhomogen, mit konstanten Koeffizients, Typ: rechte Seite mit bilinearen Koeffizienten.
 - ii) y'y + x = 0. Nicht-linear, Typ: Trennung der Variablen.
 - iii) $y' = \frac{x^2 + y^2}{xy}$. Nicht-linear, Typ: homogen mit Substitution u = y/x.
 - iv) $y' = (x+y+1)^2$. Nicht-linear, Typ: rechte Seite mit bilinearen Argumenten.
 - \mathbf{v}) $x^2y' = xy + 2y^2$. Nicht-linear, Typ: homogen mit Substitution u = y/x.
 - vi) $y' = \frac{y(x-y)}{x^2}$. Nicht-linear, Typ: homogen mit Substitution u = y/x.
- vii) $y' = \frac{x-y}{x+y}$. Nicht-linear, Typ: homogen mit Substitution u = y/x.

- viii) $y' = \ln(y + 2x + 1)^2$. Nicht-linear, Typ: rechte Seite mit bilineren Argumenten.
- 2) Berechnen Sie die allgemeine Lösung der Gleichungen i) und ii).

Zu i)

Die Gleichung kann als lineare Gleichung gelöst werden: Die Gleichung ist linear, erster Ordnung, mit konstanten Koeffizienten und inhomogen. Die Lösung kann als Summe aus der Lösung der homogenen Gleichung und einer partikulären Lösung bestimmt werden:

$$y(x) = y_h(x) + y_p(x).$$

Die Lösung der homogenen Gleichung mit dem allgemeinen Lösungsverfahren für den Fall mit nicht-konstanten Koeffizienten, den wir hier zeigen. Man kann die Lösung auch durch Berechnung der Nullstellen des charakteristischen Polynoms bestimmen. Dieser Methode wird später gezeigt.

Die Gleichung kann interpretiert werden vom Typ rechte Seite mit bilinearen Argumenten.

$$y' = f(ax + by + c) = 3x - 2y$$

und wird mit der Substitution, wie unten gezeigt, gelöst.

Wir beginnen mit der allgemeinen Methode. Die Lösung des homogenen Problems ist

$$y_h(x) = C e^{-P(x)},$$

wobei

$$P(x) = \int_{-\infty}^{x} p(t) dt$$

und p(x) in diesem Fall 2 ist, sodass P(x) = 2x gilt und

$$y_h(x) = C e^{-2x}.$$

Für die partikuläre Lösung nutzen wir die Methode der Variation der Konstanten

$$y_p(x) = C(x) e^{P(x)} = C(x) e^{-2x}$$
.

Wir nutzen dieselbe Ansatzfunktion wie im homogenen Teil aber multipliziert mit der Funktion C(x) statt der Konstanten C. Um den Ausdruck für C(x) zu bestimmen, leiten wir $y_p(x)$ ab

$$y_p'(x) = C'(x) e^{-2x} - 2C(x) e^{-2x}$$

und setzen y und y' in die Differentialgleichung ein

$$C'(x) e^{-2x} - 2C(x) e^{-2x} + 2C(x) e^{-2x} = 3x$$
$$C'(x) e^{-2x} = 3x$$
$$C'(x) = 3x e^{2x}$$
$$\int dC = 3 \int x e^{2x} dx.$$

Das Integral auf der rechten Seite wird mit partieller Integration berechnet

$$u = x, \quad u' = 1,$$

 $v' = e^{2x}, \quad v = \frac{1}{2}e^{2x}.$

Es gilt

$$\int x e^{2x} dx = \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} dx$$
$$= \frac{1}{2} e^{2x} - \frac{1}{4} e^{2x} + \tilde{C}$$
$$= \frac{1}{2} e^{2x} (x - \frac{1}{2}) + \tilde{C}.$$

Zurück zu dem Integral

$$\int dC = 3 \int x e^{2x} dx,$$

erhalten wir

$$C(x) = \frac{3}{2} e^{2x} (x - \frac{1}{2}) + \tilde{C}.$$

Die Konstante \tilde{C} kann null gesetzt werden, weil sie bereits in der Lösung der homogenen Gleichung berücksichtigt wurde.

Die partikuläre Lösung ist

$$y_p(x) = C(x) e^{-2x} = \left(\frac{3}{2}e^{2x}(x - \frac{1}{2})\right) e^{-2x}$$

= $\frac{3}{2}(x - \frac{1}{2})$.

Die allgemeine Lösung ist

$$y(x) = y_h(x) + y_p(x) = C e^{-2x} + \frac{3}{2}(x - \frac{1}{2}).$$

 $\underline{\text{Wir}}$ lösen die Gleichung nun als Typ: rechte Seite mit bilinearen Argumenten.

$$y' = f(ax + by + c) = 3x - 2y.$$

Mit der Substitution u = 3x - 2y, erhalten wir

$$u' = 3 - 2y'.$$

$$Da y' = 3x - 2y = u gilt$$

$$u' = 3 - 2u.$$

Diese lösen wir mit Trennung der Variablen

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 3 - 2u$$

$$\int \frac{\mathrm{d}u}{3 - 2u} = \int \mathrm{d}x$$

$$-\frac{1}{2}\ln|3 - 2u| = x + C$$

$$\frac{1}{3 - 2u} = Ce^{2x},$$

mit der Rücksubstitution erhalten wir

$$\frac{1}{3 - 6x + 4y} = C e^{2x}$$
$$3 - 6x + 4y = C e^{-2x}$$
$$y = C e^{-2x} + \frac{3}{2}x - \frac{3}{4}.$$

Die Differentialgleichung gelöst werden als lineare Differentialgleichung mit konstanten Koeffizienten:

Wir bestimmen das charakteristische Polynom

$$p(\lambda) = \lambda + 2$$

mit den Nullstellen $\lambda = -2$. Damit ist die Lösung der homogenen Gleichung

$$y_h(x) = C e^{\lambda x} = C e^{-2x}.$$

Der Ansatz für die partikuläre Lösung ist

$$y_p(x) = A_1 x + A_0.$$

Durch Ableiten erhalten wir

$$y_p'(x) = A_1.$$

Wir setzen y_p und y_p' in die Differentialgleichung ein und erhalten

$$A_1 + 2A_1x + 2A_0 = 3x$$
.

Ein Koeffizientenvergleich liefert

$$2A_1 = 3$$
$$A_1 + 2A_0 = 0$$

wodurch wir die Werte $A_0 = -\frac{3}{4}$ und $A_1 = \frac{3}{2}$ erhalten und die partikuläre Lösung

$$y_p(x) = \frac{3}{2}x - \frac{3}{4}.$$

Die allgemeine Lösung ist wieder

$$y(x) = y_h(x) + y_p(x) = C e^{-2x} + \frac{3}{2}x - \frac{3}{4}.$$

Zu ii)

Die Gleichung

$$y'y = -x,$$

ist vom Typ: Trennung der Variablen

$$\int y dy = -\int x dx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} + \widetilde{C}$$

$$y^2 = C - x^2, \quad C = 2\widetilde{C},$$

$$y = \pm \sqrt{C - x^2}.$$

Die Gleichung y'y-x=0 kann auch interpretiert werden als Typ: nicht-linear, homogen mit der Substitution u=y/x

$$y' = -\frac{x}{y}$$

und kann mit der Substitution $u = \frac{y}{x}$ gelöst werden.

Aus der Beziehung ux = y, erhalten wir durch differenzieren beider Seiten

$$u'x + u = y',$$

wobei wir die Produktregel benutzen. Mit der Substitution $y' = -\frac{1}{n}$ erhalten wir

$$u'x + u = -\frac{1}{u}$$

$$u' = -\frac{1}{x}(u + \frac{1}{u})$$

$$\int \frac{u}{u^2 + 1} du = \int -\frac{1}{x} dx$$

$$\frac{1}{2} \ln(u^2 + 1) = -\ln x + \ln \widetilde{C}$$

$$u^2 + 1 = \frac{C}{x^2}, \quad C = \widetilde{C}^2$$

$$u^2 = \frac{C}{x^2} - 1,$$

durch die Rücksubstitution erhalten wir

$$u^{2} = \frac{C}{x^{2}} - 1,$$

$$\frac{y^{2}}{x^{2}} = \frac{C}{x^{2}} - 1,$$

$$y^{2} = C - x^{2}$$

$$y = \pm \sqrt{C - x^{2}}.$$

Zu iii) Wir schreiben die Differentialgleichung als

$$y' = \frac{x^2 + y^2}{xy} = \frac{x^2}{xy} + \frac{y^2}{xy} = \frac{x}{y} + \frac{y}{x}.$$

Wir nutzen nun die Substitution $u = \frac{y}{x}$. Wir berechnen die Ableitung von y = u(x)x.

$$y' = u'x + u.$$

Durch Einsetzen erhalten wir:

$$u'x + u = \frac{1}{u} + u.$$

Dies vereinfacht sich zu

$$u'x = \frac{1}{u}.$$

Diese Gleichung können wir mit Trennung der Variablen lösen

$$udu = \frac{1}{x}dx$$

$$\int udu = \int \frac{1}{x}dx$$

$$\frac{1}{2}u^2 = \ln|x| + C$$

$$u = \pm \sqrt{2\ln|x| + C}.$$

Mit Rücksubstitution erhalten wir die Lösung

$$y = \pm x\sqrt{2\ln|x| + C}.$$

Zu iv)

$$y' = (x+y+1)^2$$

Wir lösen die Gleichung mittels der Substitution u=x+y+1. Es gilt

$$y' = u' - 1$$

Damit erhalten wir

$$u' - 1 = u^2$$

Mit der Trennung der Variablen erhalten wir

$$\frac{du}{u^2 + 1} = 1dx$$

$$\int \frac{du}{u^2 + 1} = \int 1dx$$

$$\arctan(u) = x + C$$

$$u = \tan(x + C)$$

Wir erhalten die Lösung durch Rücksubstitution

$$y = \tan(x + C) - x - 1$$

Aufgabe 16: Differentialgleichungen erster Ordnung

Klassifizieren Sie die folgenden Differentialgleichungen erster Ordnung:

1.
$$x^2y' = 2y + 1$$
.

4.
$$y' = \sin(y+1)$$
.

$$2. \ y' = \cos(x)y.$$

5.
$$y' = (4x - y + 1)^2$$
.

3.
$$x^2y' + y^2 = xy$$
.

6.
$$y' + 3y + 2 = e^{2x}$$
.

- a) Klassifizieren Sie diese als linear oder nicht linear. In dem Fall einer linearen Differentialgleichung klassifizieren Sie die zusätzlich als
 - i) homogen oder inhomogen.
 - ii) mit konstanten oder nicht-konstanten Koeffizienten.
- b) Klassifizieren Sie die Differentialgleichung als einen der folgenden Typen:
 - i) $y' = f(x) \cdot g(y)$ zu Lösen mit Trennung der Variablen.
 - ii) y' = g(y/x) zu Lösen mit der Substitution u = y/x.
 - iii) y' = f(ax + by + c) zu Lösen mit der Substitution u = ax + by + c.
 - $iv) \quad y' + p(x) \cdot y = q(x).$
- c) Berechnen Sie die allgemeine Lösung aller Differentialgleichungen.

Lösung 16:

- 1) i) $x^2y' = 2y + 1$. Linear, inhomogen, nicht-konstant Koeffizienten: Typ A (separabel) oder Typ D.
 - ii) $y' = \cos(x)y$. Linear, homogen, nicht-konstant Koeffizienten, separabel (Typ A).
 - iii) $x^2y' + y^2 = xy(x)$. Nicht-linear, homogen, lösbar mit der Substitution von Typ B.
 - iv) $y' = \sin(y+1)$. Nicht-linear, separabel von Typ A.
 - \mathbf{v}) $y' = (4x y + 1)^2$. Nicht-linear, Typ C.
 - \mathbf{vi}) $y' + 3y + 2 = e^{2x}$. Linear, inhomogen, Typ D mit konstanten Koeffizienten.
- 2) i) $x^2y' = 2y + 1$. Linear, inhomogen, nicht-konstant Koeffizienten: Typ A (separabel)

$$\frac{dy}{2y+1} = \frac{dx}{x^2},$$

$$\frac{1}{2}\ln(2y+1) = -\frac{1}{x},$$

$$2y+1 = \widetilde{C}e^{-\frac{2}{x}},$$

$$y = Ce^{-\frac{2}{x}} - \frac{1}{2}.$$

Diese Gleichung kann auch mit einem längeren Verfahren gelöst werden, wenn man sie als vom Typ D betrachtet: Zuerst wird die Lösung des homogenen Teils (H) bestimmt und dann die besondere Lösung (P) mit der Methode der unbestimmten Koeffizienten. Wir beginnen mit (H): Die Gleichung

$$x^2y' = 2y$$

ist separabel und sie hat die Lösung

$$y_h(x) = Ce^{\frac{-2}{x}}.$$

Für den Teil (P) machen wir den Ansatz

$$y_p(x) = C(x)e^{\frac{-2}{x}}.$$

Dann leiten wir ab:

$$y_p'(x) = C'(x)e^{\frac{-2}{x}} + C(x)\frac{2}{x^2}e^{\frac{-2}{x}}.$$

Einsetzen in die Gleichung ergibt

$$C'(x)x^{2}e^{\frac{-2}{x}} + 2C(x)e^{\frac{-2}{x}} = 2C(x)e^{\frac{-2}{x}} + 1$$

$$C'(x)x^{2}e^{\frac{-2}{x}} = 1$$

$$C'(x) = \frac{e^{\frac{2}{x}}}{x^{2}}$$

$$\int dC = \int \frac{e^{\frac{2}{x}}}{x^{2}}dx.$$

Wir integrieren das Integral auf der rechten Seite mit der Substitution u = 2/x, woraus wir das Differential d $u = -\frac{2}{x^2} dx$ berechnen. Wir haben also

$$\frac{\mathrm{d}x}{x^2} = -\frac{\mathrm{d}u}{2}$$

und

$$\begin{split} \int \mathrm{d}C &= -\frac{1}{2} \int e^u \mathrm{d}u, \\ C &= -\frac{1}{2} e^u + \widetilde{C}, \quad \text{(z.B. $\widetilde{C} = 0$)} \\ C &= -\frac{1}{2} e^{\frac{2}{x}}. \quad \text{(nach R\"{u}cksubstitution)} \end{split}$$

Daher ist die partikuläre Gleichung

$$y_p(x) = -\frac{1}{2}e^{\frac{2}{x}}e^{\frac{-2}{x}} = -\frac{1}{2}$$

und die allgemeine Lösung ist

$$y(x) = y_h(x) + y_p(x) = Ce^{\frac{-2}{x}} - \frac{1}{2}.$$

ii) $y' = \cos(x)y$. Linear, homogen, nicht-konstant Koeffizienten, separabel (Typ A).

Lösung:

$$\int \frac{1}{y} dy = \int \cos(x) dx,$$
$$\ln(y) = \sin(x) + \ln(C),$$
$$y = Ce^{\sin(x)}.$$

iii) $x^2y' + y^2 = xy(x)$. Nicht-linear, homogen, lösbar mit der Substitution von Typ B.

Die Gleichung kann umgeformt werden zu

$$y' = \frac{y}{x} - \frac{y^2}{x^2}.$$

Mit der Substitution u = y/x erhalten wir

$$y = ux$$
$$y' = u'x + u.$$

Wir substituieren y' und y/x in die Differentialgleichung und erhalten

$$u'x + u = u - u^2.$$

Diese kann mit Seperation der Variablen gelöst werden.

$$\begin{split} u' &= -\frac{u^2}{x},\\ \int \frac{1}{u^2} \mathrm{d}u &= -\frac{1}{x} \mathrm{d}x,\\ -\frac{1}{u} &= \ln(x) + C,\\ u &= \frac{1}{\ln(x) + C},\\ y &= \frac{x}{\ln(x) + C}. \quad \text{(nach Rücksubstitution } u = y/x) \end{split}$$

 \mathbf{iv}) $y' = \sin(y+1)$. Nicht-linear, separabel von Typ A. Wir lösen die Differentialgleichung mit Trennung der Variablen:

$$\int \frac{\mathrm{d}y}{\sin(y+1)} = \int \mathrm{d}x,$$

$$\ln|\tan\left(\frac{y+1}{2}\right)| = x + \ln(C),$$

$$\tan\left(\frac{y+1}{2}\right) = Ce^x,$$

$$\frac{y+1}{2} = \arctan(Ce^x),$$

$$y = 2\arctan(Ce^x) - 1.$$

 \mathbf{v}) $y' = (4x - y + 1)^2$. Nicht-linear, Typ C.

Diese nichtlinesre Differentialgleichung kann mit Substitution gelöst werden. Wir setzen

$$u = 4x - y + 1$$

und erhalten

$$u' = 4 - y' \quad \to \quad y' = 4 - u'.$$

Substituieren u = 4x - y + 1 und y' = 4 - u' in die Gleichung, führt zu der

seperablen Gleichung

 $4 - u' = u^2$

$$u' = 4 - u^{2},$$

$$\frac{\mathrm{d}u}{4 - u^{2}} = \mathrm{d}x,$$

$$\int \frac{\mathrm{d}u}{4 - u^{2}} = \int \mathrm{d}x,$$

$$\frac{1}{4} \ln|u + 2| - \ln|u - 2| = x + \ln(\widetilde{C}), \quad (\text{mit Partialbruchzerlegung, siehe unten})$$

$$\ln \frac{u + 2}{u - 2} = 4x + \ln(\widetilde{C}^{4}),$$

$$u + 2 = Ce^{4x}(u - 2), \quad (\text{mit } C = \widetilde{C}^{4})$$

$$u = -2Ce^{4x} + uCe^{4x} - 2,$$

$$u(1 - Ce^{4x}) = -2\left(Ce^{4x} + 1\right)$$

$$u = -2\frac{Ce^{4x} + 1}{1 - Ce^{4x}},$$

$$4x - y + 1 = -2\frac{Ce^{4x} + 1}{1 - Ce^{4x}}, \quad (\text{Rücksubstitution})$$

$$y = 4x + \frac{3 + Ce^{4x}}{1 - Ce^{4x}}.$$

Für die Partialbruchzerlegung im 5. Schritt oben ergibt sich

$$\frac{-1}{u^2 - 4} = -\frac{1}{4} \frac{1}{x - 2} + \frac{1}{4} \frac{1}{x + 2}.$$

 ${\bf vi}) \quad y'+3y+2={\rm e}^{2x}.$ Linear, inhomogen, Typ D mit konstanten Koeffizienten.

Diese Gleichung kann als Typ D mit der Methode der unbestimmten Koeffizienten oder als lineare inhomogene ODE mit konstanten Koeffizienten gelöst werden, wobei spezielle Ansätze für die Inhomogenitäten und das Superpositionsprinzip verwendet werden.

Beginnen wir mit der ersten Methode. Hier müssen wir das homogene Problem (H) lösen und dann eine partikuläre Lösung (P) finden.

Für das homogene Problem können wir die Variablentrennung verwenden oder im Falle konstanter Koeffizienten (nur in diesem Fall!) das charakteristische Polynom benutzen:

$$\lambda + 3 = 0 \quad \rightarrow \quad \lambda = -3$$

um den Lösungsteil zu bestimmen

$$y_h(x) = Ce^{-3x}.$$

Um das Problem (P) zu lösen, machen wir den Ansatz

$$y_p(x) = C(x)e^{-3x}$$

und differentieren ihn

$$y_p'(x) = C'(x)e^{-3x} - C(x)3e^{-3x}$$
.

Wir setzen y_p und y'_p in die gleichung ein und erhalten

$$C'(x)e^{-3x} - 3C(x)e^{-3x} + 3Ce^{-3x} + 2 = e^{2x}$$

$$C'(x) = e^{5x} - 2e^{3x}$$

$$C(x) = \frac{1}{5}e^{5x} - \frac{2}{3}e^{3x}.$$

Die partikuläre Lösung ist

$$y_p(x) = \left(\frac{1}{5}e^{5x} - \frac{2}{3}e^{3x}\right)e^{-3x} = \frac{1}{5}e^{2x} - \frac{2}{3}$$

un die allgemeine Lösung ist

$$y(x) = y_h(x) + y_p(x) = Ce^{-3x} + \frac{1}{5}e^{2x} - \frac{2}{3}.$$

Wie bereits erwähnt, können wir das Problem mit Hilfe spezieller Ansätze für die Inhomogenitäten und dem Superpositionsprinzip lösen.

Die rechte Seite der Gleichung ist $e^{2x}-2$, also finden wir zwei Lösungen für die beiden Terme getrennt. Zunächst für e^{2x} . Der Ansatz im exponentiellen Fall ist wieder exponentiell $y_{p1}=Ae^{\alpha x}$, wobei α der Exponent des rechten Terms ist:

$$y_{p1} = Ae^{2x}.$$

Die Konstante A wird durch Koeffizientenvergleich gefunden:

$$y'_{p1}+3y_{p1}=e^{2x},$$
 (Bemerkung: der Term -2 wird nicht betrachtet) $2Ae^{2x}+3Ae^{2x}=e^{2x},$
$$A=\frac{1}{5}.$$

Der erste Teil der partikulären Lösung ist

$$y_{p1} = \frac{1}{5}e^{2x}.$$

Der zweite Teil wird mit dem Polynom-Ansatz nullter Ordnung $y_{p2}=B$ berechnet, da der Term -2 eine Konstante ist. Setzt man die Ansatzfunktion in die Differentialgleichung ein, so erhält man

$$3B = -2$$
 $B = -\frac{2}{3}$.

Wir haben also die partikuläre Lösung durch Superposition

$$y_p(x) = y_{p1}(x) + y_{p2}(x) = \frac{1}{5}e^{2x} - \frac{2}{3}$$

un die allgemeine Lösung

$$y(x) = y_h(x) + y_p(x) = Ce^{-3x} + \frac{1}{5}e^{2x} - \frac{2}{3}.$$

Aufgabe 17: Nichtlineare Differentialgleichung erster Ordnung

1) Klassifizieren Sie die folgenden Differentialgleichungen erster Ordnung als

1. Homogene Differentialgleichung: y' = g(y/x) mit Substitution u = y/x.

2. Differentialgleichung mit bilinearen Argumenten: y' = f(ax + by + c) mit Substitution u = ax + by + c.

a)
$$y'(x^2 + xy) = y^2 - xy$$
,

d)
$$y' = -\sin^2(x+y+1)$$
,

b)
$$y' = \frac{x^2y}{x^3 + y^3}$$
,

e)
$$x^2y' = y^2 + xy - x^2$$
,

$$c) \quad y' = \frac{1}{x+y},$$

$$f) \quad y' = \frac{y + e^{-\frac{y}{x}}}{x}$$

2) Verwenden Sie eine angemessene Substitution und formulieren Sie die Gleichungen in Termen von u und u' um ohne sie zu lösen.

Lösung 17:

- 1) i) $y'(x^2 + xy) = y^2 xy$, homogen.
 - ii) $y' = \frac{x^2y}{x^3 + y^3}$, homogen.
 - iii) $y' = \frac{1}{x+y}$, bilineare Argumente.
 - iv) $y' = -\sin^2(x + y + 1)$, bilineare Argumente.
 - v) $x^2y' = y^2 + xy x^2$, homogen.
 - $\mathbf{vi}) \quad y' = \frac{y + e^{-\frac{y}{x}}}{x}, \text{ homogen.}$

2) i) Mit der Substitution u = y/x erhalten wir

$$y'(x^{2} + xy) = y^{2} - xy$$

$$y' = \frac{y^{2} - xy}{x^{2} + xy}$$

$$y' = \frac{y^{2}/x^{2} - y/x}{1 + y/x}$$

$$y' = \frac{u^{2} - u}{1 + u}$$

$$y' = u'x + u = \frac{u^{2} - u}{1 + u}$$

$$u' = \frac{1}{x} \left(\frac{u^{2} - u}{1 + u} - u \right)$$

$$u' = -\frac{1}{x} \frac{2u}{1 + u}$$

Diese Gleichung kann durch Variablentrennung gelöst werden. Die Lösung wird in der Übung nicht verlangt, aber wir zeigen sie hier um einen Fall einer nicht expliziten Lösung zu zeigen.

$$u' = -\frac{1}{x} \frac{2u}{1+u}$$

$$\frac{1+u}{u} du = -\frac{2}{x}$$

$$\int \frac{1+u}{u} du = -\int \frac{2}{x}$$

$$\ln |u| + u = \ln x^{-2} + C$$

$$e^{\ln |u|} \cdot e^{u} = C e^{\ln x^{-2}}$$

$$u e^{u} = \frac{C}{x^{2}}$$

$$\frac{y}{x} e^{\frac{y}{x}} = \frac{C}{x^{2}}$$

$$yx e^{\frac{y}{x}} = C.$$

Die letzte Gleichung liefert die Lösung y in impliziter Form. Die Lösung kann z.B. mit Matlab geplottet werden:

ii)
$$y' = \frac{x^2y}{x^3 + y^3}$$
.

Mit der Substitution u = y/x erhalten wir:

$$y' = \frac{x^2 y}{x^3 + y^3},$$

$$y' = \frac{y/x}{1 + y^3/x^3},$$

$$y' = \frac{u}{1 + u^3},$$

$$y' = u'x + u = \frac{u}{1 + u^3},$$

$$u' = \frac{1}{x} \left(\frac{u}{1 + u^3} - u\right),$$

$$u' = -\frac{1}{x} \left(\frac{u^4}{1 + u^3}\right).$$

Die letzte Gleichung kann durch Variablentrennung gelöst werden und führt nach Rücksubstitution zu einer impliziten Gleichung für y.

$$\mathbf{iii}) \quad y' = \frac{1}{x+y}.$$

Mit der Substitution u = y + x erhalten wir:

$$y' = \frac{1}{u}$$

$$y' = u' - 1 = \frac{1}{u}$$

$$u' = \frac{1+u}{u}.$$

Die letzte Gleichung kann durch Variablentrennung gelöst werden und führt nach Rücksubstitution zu einer impliziten Gleichung für y.

iv)
$$y' = -\sin^2(x + y + 1)$$
.

Mit der Substitution u = x + y + 1 erhalten wir:

$$y' = -\sin^2(u)$$

$$y' = u' - 1 = -\sin^2(u)$$

$$u' = \cos^2(u).$$

Diese Gleichung kann mit Trennung der Variablen glöst werden (Die Lösung

ist hier nicht gefordert):

$$u' = \cos^{2}(u),$$

$$\frac{du}{\cos^{2}(u)} = dx,$$

$$\int \frac{du}{\cos^{2}(u)} = \int dx,$$

$$\tan(u) = x + C,$$

$$u = \arctan(x + C),$$

$$y + x + 1 = \arctan(x + C),$$

$$y = \arctan(x + C) - x - 1.$$

$$\mathbf{v}$$
) $x^2y' = y^2 + xy - x^2$.

Mit der Substitution u = y/x erhalten wir

$$y' = \frac{y^2}{x^2} + \frac{y}{x} - 1,$$

$$y' = u'x + u = u^2 + u - 1,$$

$$u' = \frac{u^2 - 1}{x}.$$

Diese Gleichung kann z. B. durch Trennung der Variablen und partielle Bruchzerlegung gelöst werden.

vi)
$$y' = \frac{y + e^{-\frac{y}{x}}}{x}$$
.

Mit der Substitution u = y/x erhalten wir

$$y' = \frac{y}{x} + \frac{1}{x} e^{-\frac{y}{x}},$$

$$y' = u + \frac{1}{x} e^{-u},$$

$$y' = u'x + u = u + \frac{1}{x} e^{-u},$$

$$u' = \frac{1}{x^2} e^{-u}.$$

Das kann mit Trennung der Variablen gelöst werden.

Aufgabe 18: Trennung der Variablen

Lösen die folgenden Anfangswertprobleme und bestimmen Sie den maximalen Definitionsbereich der Lösung

a)
$$y'(x) = 6y^2(x)x$$
, $y(1) = \frac{1}{6}$.

b)
$$y'(x) = \frac{3x^2 + 4x - 4}{2y(x) - 4}, \quad y(1) = 3.$$

c)
$$y'(x) = e^{-y(x)} (2x - 4), \quad y(5) = 0.$$

d)
$$y'(x) = \frac{1}{x^2}$$
, $y(x_0) = 0$.

e)
$$y'(x) = x^2$$
, $y(0) = y_0$.

Lösung 18:

a) $y'(x) = 6y^2(x)x$, $y(1) = \frac{1}{6}$. Mit Trennung der Variablen gilt

$$\frac{dy}{y^2} = 6xdx$$

$$\int \frac{dy}{y^2} = \int 6xdx$$

$$-\frac{1}{y} = 3x^2 + C.$$

Mit der Anfangsbedingung $y(1) = \frac{1}{6}$ erhalten wir

$$-6 = 3 + C$$
$$-9 = C.$$

Die Lösung ist dann

$$y = \frac{1}{9 - 3x^2}.$$

Wir bestimmen nun den Gültigkeitsbereich der Lösung. Es muss gelten

$$9 - 3x^2 \neq 0$$
,

daher

$$x \neq \pm \sqrt{3}$$
.

Die Werte $x=\pm\sqrt{3}$ müssen vermieden werden, damit erhalten wir die folgenden möglichen Gültigkeitsbereiche:

$$-\infty < x < -\sqrt{3}, \quad -\sqrt{3} < x < \sqrt{3}, \quad \sqrt{3} < x < \infty.$$

Da die Lösung in $x=1<\sqrt{3}$ positiv ist (siehe Anfangswert) ist der Gültigkeitsbereich in dem Intervall

$$-\sqrt{3} < x < \sqrt{3}$$
.

b)
$$y'(x) = \frac{3x^2 + 4x - 4}{2y(x) - 4}$$
, $y(1) = 3$. Es gilt

$$(2y-4)dy = (3x^2 + 4x - 4)dx$$
$$\int (2y-4)dy = \int (3x^2 + 4x - 4)dx$$
$$y^2 - 4y = x^3 + 2x^2 - 4x + C.$$

Durch Anwenden der der Anfangsbedingung, gilt

$$9 - 12 = 1 + 2 - 4 + C$$
$$-2 = C.$$

Mit $d = -x^3 - 2x^2 + 4x + 2$ gilt

$$y^2 - 4y + d = 0$$

welches eine quadratische Gleichung mit der Lösungsmenge

$$y = 2 \pm \sqrt{4 - d}$$

= $2 \pm \sqrt{x^3 + 2x^2 - 4x + 2}$.

Von den zwei Kandidaten für die Lösung ist nur eine eine gültige Lösung. Das kann mit Hilfe der Anfangsbedingung nachgewiesen werden y(1)=3. In der Tat gilt

$$3 = 2 + \sqrt{1 + 2 - 4 + 2},$$

$$3 \neq 2 - \sqrt{1 + 2 - 4 + 2}.$$

daher ist die Lösung mit dem negativen Term $2 - \sqrt{4-d}$ nicht gültig.

Um den Gültigkeitsbereich der Lösung zu untersuchen, nutzen wir

$$4 - d = x^3 + 2x^2 - 4x + 2 \ge 0.$$

Durch Einsetzen verschiener Werte für x, können wir überprüfen, dass für x=-3 die Funktion x^3+2x^2-4x+2 positiv und für x=-4 negativ ist. Da die Funktion stetig ist, muss die Nullstelle zwischen -4 und -3 liegen. Wir bezeichnen diesen Wert mit \bar{x} , der Gültigkeitsbereich ist dann

$$x > \bar{x} \approx -3.36$$
.

c)
$$y'(x) = e^{-y(x)} (2x - 4), \quad y(5) = 0.$$
 Es gilt

$$\int e^y dy = \int (2x - 4dx)$$
$$e^y = x^2 - 4x + C.$$

Durch Einsetzen des Anfangswertes, erhalten wir die Konstante C=-4. Die Lösung ist daher

$$y = \ln(x^2 - 4x - 4).$$

Für die Gültigkeit muss gelten

$$x^2 - 4x - 4 > 0$$
.

Die Nullstellen der Funktion x^2-4x-4 sind $x=2\pm 2\sqrt{2}$. Da die Funktion konvex ist, ist die Funktion positiv in dem Intervall

$$-\infty < x < 2 - 2\sqrt{2}$$
 and $2 + 2\sqrt{2} < x < \infty$.

Da der Anfangswert bei x=5 liegt, ist der Gültigkeitsbereich das Intervall $2+2\sqrt{2} < x < \infty.$

d)
$$y'(x) = \frac{1}{x^2}$$
, $y(x_0) = 0$. Es gilt

$$dy = \frac{dx}{x^2}$$

$$\int dy = \int \frac{dx}{x^2}$$

$$y = -\frac{1}{x} + C.$$

Durch Anwenden der Anfangwertbedingung erhalten wir

$$C = \frac{1}{x_0},$$

woraus wir $x_0 \neq 0$ erhalten. Die Lösung ist

$$y = -\frac{1}{x} + \frac{1}{x_0}.$$

Für den Gültigkeitsbereich muss gelten, dass $x \neq 0$, damit ist er gegeben als $0 < x < \infty$ falls $x_0 > 0$ und $-\infty < x < 0$ falls $x_0 < 0$.

e) $y'(x) = x^2$, $y(0) = y_0$. Diese einfache Gleichung hat die Lösung

$$y = \frac{x^3}{3} + y_0,$$

und der Gültigkeitsbereich ist der ganze \mathbb{R} .

Aufgabe 19: Anfangswertproblem

Gegeben sei das Anfangswertproblem:

$$y' = \sqrt{y}, \quad y(0) = 0.$$

- i) Bestimmen sie eine Lösung des gegebenen Anfangswertproblems.
- ii) Hat das Anfangswertproblem eine eindeutige Lösung?

Lösung 19:

i) Die Lösung kann mit Trennung der Variablen berechnet.

$$\frac{1}{\sqrt{y}} dy = dx$$

$$\int \frac{1}{\sqrt{y}} dy = \int dx$$

$$2\sqrt{y} = x + C$$

$$y = \frac{1}{4}(x + C)^2$$

Mit dem Anfangswert erhalten wir C=0 und die Lösung

$$y = \frac{1}{4}x^2,$$

Die Lösung ist nicht eindeutig, da offensichtlich die konstante Null-Funktion eine Lösung ist, die die Anfangswertbedingung erfüllt.

ii) Das Problem hat unendlich viele Lösungen der Form

$$f(x) = \begin{cases} 0, & 0 < x < \bar{x}, \\ \frac{1}{4}x^2 - \frac{1}{4}\bar{x}^2, & x > \bar{x}. \end{cases}$$

Das kann man daraus herleiten, dass die Differentialgleichung autonom und daher invariant gegenüber einer Verschiebung bezüglich x ist. Also falls $\bar{y}(t)$ eine Lösung der obigen Differentialgleichung ist, dann ist auch $\hat{y}(t) = \bar{y}(t+t_0)$ eine Lösung des Problems

$$y' = \sqrt{y}, \quad y(t_0) = 0.$$

Aufgabe 20: Substitution: Homogene Differentilagleichung erster Ordnung

Berechnen Sie die Lösung des folgenden Anfangswertproblems

- a) $xyy' + 4x^2 + y^2 = 0$, y(2) = 0, x > 0.
- **b**) $xy' = y(\ln x \ln y), \quad y(1) = 4, \quad x > 0.$

Lösung 20:

a) $xyy' + 4x^2 + y^2 = 0$, y(2) = 0, x > 0. Wir dividieren alle Terme durch x^2 und erhalten

$$\frac{y}{x}y' + 4 + \frac{y^2}{x^2} = 0.$$

Wir setzen $u = \frac{y}{x}$, also y = ux und differenzieren beide Seiten und erhalten

$$y' = u'x + u.$$

Aus der ersten Gleichung können wir die explizite Differentialgleichung schreiben

$$y' = -\frac{x}{y} \left(4 + \frac{y^2}{x^2} \right),$$

mit der Substitution $u = \frac{y}{x}$ gilt

$$y' = -\frac{4+u^2}{u}$$
.

Wir nutzen y' = u'x + u und erhalten

$$u'x + u = -\frac{4 + u^2}{u},$$
$$u' = -\frac{1}{x} \frac{4 + 2u^2}{u}.$$

Diese Gleichung lässt sich durch die Trennung von Variablen wie folgt lösen

$$\frac{u}{4+2u^2} du = -\frac{1}{x} dx,$$

$$\int \frac{u}{4+2u^2} du = -\int \frac{1}{x} dx,$$

$$\int \frac{1}{4} \frac{4u}{4+2u^2} du = -\int \frac{1}{x} dx,$$

$$\frac{1}{4} \ln(4+2u^2) = -\ln(|x|) + \ln(C),$$

$$\ln(4+2u^2)^{\frac{1}{4}} = \ln(C|x|^{-1}).$$

Hier müssen wir x=0 aus dem Gültigkeitsintervall der Lösung ausschließen. Da die Anfangsbedingung auf den positiven Wert x=2 gesetzt wird, wählen wir für die nächsten Schritte das Intervall x>0. Daher gilt

$$4 + 2u^2 = \frac{C^4}{x^4}.$$

mit der Rücksubstitution erhalten wir

$$\frac{y^2}{x^2} = \frac{1}{2} \left(\frac{C^4 - 4x^4}{x^4} \right),$$
$$y^2 = \frac{x^2}{2} \left(\frac{C^4 - 4x^4}{x^4} \right).$$

Wir wenden die Anfangsbedingung y(2) = 0 an. Damit erhalten wir $C^4 = 64$ und

$$y^{2} = \frac{64 - 4x^{4}}{2x^{2}},$$
$$y = \pm \frac{1}{x} \sqrt{32 - 2x^{4}}.$$

Wir müssen sicherstellen, dass bei der Quadratwurzel nur positive Zahlen berücksichtigt werden können. Es muss also gelten

$$32 - 2x^4 \ge 0$$
,

woraus sich das Gültigkeitsintervall ergibt

$$0 < x \le 2$$
.

Wir müssen prüfen, ob die Lösung eindeutig ist oder beide Lösungen akzeptiert werden können. Da die Anfangsbedingung in x=2 liegt, wo die Lösung Null ist, kann dies eine gültige "Anfangsbedingung" für beide Zweige sein, also ist die Lösung nicht eindeutig!

Der Graph der Lösung ist

b) $xy' = y(\ln x - \ln y)$, y(1) = 4, x > 0. Mit Logarithmusgesetzen können wir die Gleichung schreiben als

$$xy' = y \ln(\frac{x}{y}),$$
$$y' = \frac{y}{x} \ln(\frac{x}{y}).$$

Mit der Substitution $u = \frac{y}{x}$ gilt

$$y' = u \ln(u^{-1}) = -u \ln(u).$$

Durch Ableiten der Substitution erhalten wir

$$y' = xu' + u,$$

 $u' = \frac{y' - u}{x} = \frac{-u \ln(u) - u}{x}.$

Jetzt nutzen wir die Trennung der Variablen

$$\frac{\mathrm{d}u}{u\ln(u) + u} = -\frac{\mathrm{d}x}{x},$$

$$\int \frac{\mathrm{d}u}{u\ln(u) + u} = -\int \frac{\mathrm{d}x}{x}.$$

Das Integral auf der linken Seite kann mit der Substitution $v=\ln(u)+1$ und dem Differential d $v=\frac{1}{u}du$ berechnet werden und ergibt

$$\int \frac{\mathrm{d}v}{v} = -\int \frac{\mathrm{d}x}{x},$$
$$\ln|v| = -\ln|x| + C.$$

Mit der Rücksubstitution gilt

$$\ln|\ln(u) + 1| = -\ln|x| + C.$$

Da wir die Bedingung x>0 in der Problemstellung haben, können wir den Betrag auf der rechten Seite weglassen.

$$\ln|\ln(u) + 1| = -\ln(x) + C.$$

Die Potenzierung beider Seiten ergibt

$$|\ln(u) + 1| = C\frac{1}{x},$$

wobei die Konstante C anstelle von e^C durch Umbenennung verwendet wurde, d.h. wir haben $C^* = \mathrm{e}^C$ gesetzt und den Namen von C^* wieder in C geändert, um die Notation zu vereinfachen. Außerdem lassen wir den Betrag auf der linken Seite weg, da das Vorzeichen in der Konstante C aufgehen kann. Wir haben also

$$\ln(u) = C\frac{1}{x} - 1,$$
$$u = e^{\frac{C}{x} - 1}.$$

Mit der Rücksubstitution gilt

$$\frac{y}{x} = e^{\frac{C}{x} - 1},$$
$$y = x e^{\frac{C}{x} - 1},$$

und unter Verwendung der Anfangsbedingung y(1) = 4 ergibt sich

$$4 = e^{C-1},$$

 $\ln 4 = C - 1,$
 $C = \ln(4) + 1.$

Die Lösung der Differentialgleichung ist dann

$$y = x e^{\frac{\ln(4) + 1}{x} - 1}.$$