Funkcje i ich własności

Definicia

Funkcja f nazywamy odwzorowanie zbioru X w zbiór Y, które przyporządkowuje każdemu elementowi x ze zbioru X dokładnie jeden element y = f(x) ze zbioru Y. Piszemy:

$$f: X \longrightarrow Y, \quad y = f(x) \text{ dla } x \in X$$

Funkcją f nazywamy odwzorowanie zbioru X w zbiór Y, które przyporządkowuje każdemu elementowi x ze zbioru X dokładnie jeden element y=f(x) ze zbioru Y. Piszemy:

$$f: X \longrightarrow Y, \quad y = f(x) \text{ dla } x \in X$$

Dziedzina, zbiór wartości

- $X = D_f$ nazywamy **dziedziną** funkcji
- **Dziedzina naturalna** to zbiór tych $x \in \mathbb{R}$, dla których wzór funkcji ma sens.

◆□▶ ◆□▶ ◆■▶ ◆■ ● ◆9

Funkcją f nazywamy odwzorowanie zbioru X w zbiór Y, które przyporządkowuje każdemu elementowi x ze zbioru X dokładnie jeden element y=f(x) ze zbioru Y. Piszemy:

$$f: X \longrightarrow Y, \quad y = f(x) \text{ dla } x \in X$$

Dziedzina, zbiór wartości

- $X = D_f$ nazywamy **dziedziną** funkcji
- **Dziedzina naturalna** to zbiór tych $x \in \mathbb{R}$, dla których wzór funkcji ma sens.
- Zbiór wartości to zbiór $W_f = \{y \in Y : y = f(x), x \in X\} \subset Y$

Funkcją f nazywamy odwzorowanie zbioru X w zbiór Y, które przyporządkowuje każdemu elementowi x ze zbioru X dokładnie jeden element y=f(x) ze zbioru Y. Piszemy:

$$f: X \longrightarrow Y, \quad y = f(x) \text{ dla } x \in X$$

Dziedzina, zbiór wartości

- $X = D_f$ nazywamy **dziedziną** funkcji
- **Dziedzina naturalna** to zbiór tych $x \in \mathbb{R}$, dla których wzór funkcji ma sens.
- Zbiór wartości to zbiór $W_f = \{y \in Y : y = f(x), x \in X\} \subset Y$
- **Argument** funkcji to wyrażenie na którym funkcja działa (zwykle po prostu x)

Wykresem funkcji nazywamy zbiór wszystkich punktów (x, y) na płaszczyźnie takich, że f(x) = y dla $x \in X$.

Wykresem funkcji nazywamy zbiór wszystkich punktów (x, y) na płaszczyźnie takich, że f(x) = y dla $x \in X$.

Uwaga

Nie każda krzywa na płaszczyźnie jest wykresem funkcji.

Wykresem funkcji nazywamy zbiór wszystkich punktów (x, y) na płaszczyźnie takich, że f(x) = y dla $x \in X$.

Uwaga

Nie każda krzywa na płaszczyźnie jest wykresem funkcji.

- ullet Dziedzina funkcji f jest rzutem wykresu funkcji na oś OX.
- Zbiór wartości funkcji jest rzutem wykresu funkcji na oś OY.

Symetria

Definicja

Funkcję $f:X\to Y$ nazywamy **parzystą,** jeżeli dla każdego $x\in X$

$$f(-x) = f(x) \quad \land -x \in X$$

Symetria

Definicja

Funkcję $f: X \to Y$ nazywamy **parzystą,** jeżeli dla każdego $x \in X$

$$f(-x) = f(x) \quad \land -x \in X$$

Funkcje $f: X \to Y$ nazywamy **nieparzysta,** jeżeli dla każdego $x \in X$

$$f(-x) = -f(x) \quad \land -x \in X$$

Monotoniczność

Monotoniczność

Definicja

Funkcje $f: X \to Y$ nazywamy **rosnącą (malejącą)**, jeżeli dla dowolnych $x_1, x_2 \in X$ spełniających nierówność $x_1 < x_2$ mamy

$$f(x_1) < f(x_2) \quad (f(x_1) > f(x_2))$$

Funkcję $f:X\to Y$ nazywamy **okresową**, jeżeli istnieje taka liczba rzeczywista $T\neq 0$, że dla dowolnego $x\in X$

$$x + T \in X \quad \land \quad f(x + T) = f(x)$$

Liczbę T nazywamy **okresem funkcji** f. Najmniejszy dodatni okres, jeśli istnieje, nazywamy **okresem podstawowym**.

- przesunięcie w kierunku osi OY: $y = f(x) \pm d$
- 2 przesunięcie w kierunku osi OX: $y = f(x \pm b)$

- przesunięcie w kierunku osi OY: $y = f(x) \pm d$
- ${\color{red} 2}$ przesunięcie w kierunku osi $OX\colon\,y=f(x\pm b)$
 - przesunięcie o wektor [p,q]: y = f(x-p) + q

- przesunięcie w kierunku osi OY: $y = f(x) \pm d$
- 2 przesunięcie w kierunku osi OX: $y = f(x \pm b)$
 - przesunięcie o wektor [p,q]: y = f(x-p) + q
- \circ rozciąganie/sciskanie w kierunku osi OY: y = cf(x)
- rozciąganie/sciskanie w kierunku osi OX: y = f(cx)

- przesunięcie w kierunku osi OY: $y = f(x) \pm d$
- 2 przesunięcie w kierunku osi OX: $y = f(x \pm b)$
 - przesunięcie o wektor [p,q]: y = f(x-p) + q
- osi oy: y = cf(x)
- rozciąganie/sciskanie w kierunku osi OX: y = f(cx)
- **o** odbicie względem osi OX: y = -f(x)
- **o** odbicie względem osi OY: y = f(-x)

- przesunięcie w kierunku osi OY: $y = f(x) \pm d$
- 2 przesunięcie w kierunku osi OX: $y = f(x \pm b)$
 - przesunięcie o wektor [p,q]: y = f(x-p) + q
- osi oy: y = cf(x)
- rozciąganie/sciskanie w kierunku osi OX: y = f(cx)
- **6** odbicie względem osi OX: y = -f(x)
- **o** odbicie względem osi OY: y = f(-x)
- \odot nakładanie wartości bezwzględnej: y = |f(x)|
- lacktriangleq nakładanie wartości bezwzględnej: y = f(|x|)

Złożeniem funkcji $f:Y\to Z$ i $g:X\to Y$ nazywamy funkcję $h:X\to Z$ daną wzorem

$$h(x) = (f \circ g)(x) = f(g(x))$$

Funkcję g nazywamy funkcją **wewnętrzną**, a funkcję f– funkcją **zewnętrzną**

$$D_{f \circ q} = \{ x \in \mathbb{R} : x \in D_q \land g(x) \in D_f \}$$

Definicja (Injekcja, surjekcja, bijekcja)

Funkcję $f: X \to Y$ nazywamy **różnowartościową (injekcją),** jeżeli różnym argumentom przyporządkowuje różne wartości, tj. dla dowolnych $x_1, x_2 \in X$

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$
 ozn. $f: X \xrightarrow{1-1} Y$

Definicja (Injekcja, surjekcja, bijekcja)

Funkcję $f:X\to Y$ nazywamy **różnowartościową (injekcją),** jeżeli różnym argumentom przyporządkowuje różne wartości, tj. dla dowolnych $x_1,x_2\in X$

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$
 ozn. $f: X \xrightarrow{1-1} Y$

Funkcję $f: X \to Y$ nazywamy "na" (surjekcją), jeżeli dowolny $y \in Y$ jest wartością funkcji dla pewnego $x \in X$, tzn. $W_f = Y$

ozn.
$$f: X \xrightarrow{na} Y$$

9 / 10

Definicja (Injekcja, surjekcja, bijekcja)

Funkcję $f: X \to Y$ nazywamy **różnowartościową (injekcją),** jeżeli różnym argumentom przyporządkowuje różne wartości, tj. dla dowolnych $x_1, x_2 \in X$

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$
 ozn. $f: X \xrightarrow{1-1} Y$

Funkcję $f: X \to Y$ nazywamy "na" (surjekcją), jeżeli dowolny $y \in Y$ jest wartością funkcji dla pewnego $x \in X$, tzn. $W_f = Y$

ozn.
$$f: X \xrightarrow{na} Y$$

Funkcję, która jest jednocześnie 1–1 i "na" nazywamy funkcją wzajemnie jednoznaczną (bijekcją).

ozn.
$$f: X \xrightarrow{1-1} Y$$

Jeżeli $f: X \to Y$ jest funkcja wzajemnie jednoznaczna, to jest ona odwracalna. Funkcją odwrotną, ozn. $f^{-1}: Y \to X$ do f jest funkcja taka, że dla każdego $x \in X, y \in Y$

$$f^{-1}(y) = x \qquad \Longleftrightarrow \qquad y = f(x)$$

• Wykres funkcji odwrotnej otrzymujemy z wykresu f(x) przez odbicie względem prostej y = x.

