

# TrenchMV<sup>™</sup> Power MOSFET

### IXTP44N10T IXTY44N10T

 $V_{DSS} = 100 V$   $I_{D25} = 44 A$   $R_{DS(on)} \le 30 m \Omega$ 

N-Channel Enhancement Mode Avalanche Rated



# TO-220 (IXTP) G D S D (TAB)

| Symbol                          | Test Conditions                                                                                                              | Maximum Ratings |           |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--|
| V <sub>DSS</sub>                | $T_J = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}$                                                                       | 100             | V         |  |
| V <sub>DGR</sub>                | $T_J = 25^{\circ} \text{ C to } 175^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$                                           | 100             |           |  |
| V <sub>GSM</sub>                | Transient                                                                                                                    | ± 30            | V         |  |
| I <sub>D25</sub> I <sub>L</sub> | $T_{\rm C} = 25^{\circ}$ C                                                                                                   | 44              | A         |  |
|                                 | Package Current Limit, RMS TO-252A                                                                                           | 25              | A         |  |
|                                 | $T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$                                                              | 140             | A         |  |
| I <sub>AR</sub>                 | $T_{c} = 25^{\circ} C$                                                                                                       | 10              | A         |  |
| E <sub>AS</sub>                 | $T_{c} = 25^{\circ} C$                                                                                                       | 250             | mJ        |  |
| dv/dt                           | $I_{S} \leq I_{DM}$ , di/dt $\leq 100$ A/ $\mu s$ , $V_{DD} \leq V_{DSS}$<br>$T_{J} \leq 175^{\circ}$ C, $R_{G} = 18 \Omega$ | 3               | V/ns      |  |
| P <sub>D</sub>                  | T <sub>C</sub> = 25° C                                                                                                       | 130             | W         |  |
| T <sub>J</sub>                  |                                                                                                                              | -55 +175        | °C        |  |
| T <sub>JM</sub>                 |                                                                                                                              | 175             | °C        |  |
| T <sub>stg</sub>                |                                                                                                                              | -40 +175        | °C        |  |
| T <sub>L</sub>                  | 1.6 mm (0.062 in.) from case for 10 s                                                                                        | 300             | °C        |  |
| T <sub>SOLD</sub>               | Plastic body for 10 seconds                                                                                                  | 260             | °C        |  |
| M <sub>d</sub>                  | Mounting torque (TO-220)                                                                                                     | 1.13 / 10       | Nm/lb.in. |  |
| Weight                          | TO-220                                                                                                                       | 3               | g         |  |
|                                 | TO-252                                                                                                                       | 0.8             | g         |  |

| Symbol (T <sub>J</sub> = 25° C t | Test Conditions unless otherwise specified)         |                         | Ch<br>Min. | naracteristic Values<br>  Typ.   Max. |          |           |
|----------------------------------|-----------------------------------------------------|-------------------------|------------|---------------------------------------|----------|-----------|
| BV <sub>DSS</sub>                | $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$     |                         | 85         |                                       |          | V         |
| V <sub>GS(th)</sub>              | $V_{DS} = V_{GS}$ , $I_{D} = 25 \mu\text{A}$        |                         | 2.5        |                                       | 4.5      | V         |
| I <sub>GSS</sub>                 | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$   |                         |            |                                       | ± 100    | nA        |
| I <sub>DSS</sub>                 | $V_{DS} = V_{DSS}$<br>$V_{GS} = 0 V$                | T <sub>J</sub> = 150° C |            |                                       | 1<br>100 | μA<br>μA  |
| R <sub>DS(on)</sub>              | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 22 A, Note | es 1, 2                 |            | 22                                    | 30       | $m\Omega$ |

#### **TO-252 AA (IXTY)**



G = Gate D = Drain S = Source TAB = Drain

#### **Features**

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
   easy to drive and to protect
- 175 °C Operating Temperature

#### **Advantages**

- Easy to mount
- Space savings
- High power density

#### **Applications**

- Automotive
  - Motor Drives
  - 42V Power Bus
  - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching Applications
- High Voltage Synchronous Recifier



| Symbol<br>(T. = 25° C u    | Test Conditions Inless otherwise specified)                                 | Cha<br>Min. | aracteristic Values<br>  Typ.   Max. |          |  |
|----------------------------|-----------------------------------------------------------------------------|-------------|--------------------------------------|----------|--|
| g <sub>fs</sub>            | $V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ Note 1}$                | 13          | 21                                   | S        |  |
| C <sub>iss</sub>           |                                                                             |             | 1262                                 | pF       |  |
| Coss                       | $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$            |             | 190                                  | pF       |  |
| C <sub>rss</sub>           |                                                                             |             | 43                                   | pF       |  |
| t <sub>d(on)</sub>         | Resistive Switching Times                                                   |             | 21                                   | ns       |  |
| t,                         | $V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 10 \text{ A}$ |             | 47                                   | ns       |  |
| t <sub>d(off)</sub>        | $R_{_{G}}$ = 18 $\Omega$ (External)                                         |             | 36                                   | ns       |  |
| t <sub>f</sub>             |                                                                             |             | 32                                   | ns       |  |
| $\mathbf{Q}_{g(on)}$       |                                                                             |             | 33                                   | nC       |  |
| $\mathbf{Q}_{gs}$          | $V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 10 \text{ A}$         |             | 10                                   | nC       |  |
| $\mathbf{Q}_{\mathrm{gd}}$ |                                                                             |             | 11                                   | nC       |  |
| R <sub>thJC</sub>          |                                                                             |             |                                      | 1.15°C/W |  |
| R <sub>thCS</sub>          | TO-220                                                                      |             | 0.5                                  | °C/W     |  |

#### Source-Drain Diode

| Symbol                | Test Conditions                                          |      | haracteristic Values |      |    |
|-----------------------|----------------------------------------------------------|------|----------------------|------|----|
| $T_J = 25^{\circ}C u$ | nless otherwise specified)                               | Min. | Тур.                 | Max. |    |
| Is                    | $V_{GS} = 0 V$                                           |      |                      | 44   | Α  |
| I <sub>SM</sub>       | Repetitive                                               |      |                      | 140  | A  |
| V <sub>SD</sub>       | $I_{\rm F}$ = 25 A, $V_{\rm GS}$ = 0 V, Note 1           |      |                      | 1.1  | V  |
| t <sub>rr</sub>       | $I_F = 25 \text{ A}, -di/dt = 100 \text{ A/}\mu\text{s}$ |      | 100                  |      | ns |
|                       | $V_R = 50 \text{ V}, V_{GS} = 0 \text{ V}$               |      |                      |      |    |
|                       |                                                          |      |                      |      |    |

#### TO-252 (IXTY) Outline Dim. Millimeter Inches Min. Max. Min. Max. 2.19 2.38 0.086 0.094 Α1 0.89 1 14 0.035 0.045 A2 0 0.13 0 0.005 0.64 0.025 0.89 0.035 b h1 0.76 1 14 0.030 0.045 b2 5.21 5.46 0.205 0.215 0.46 0.58 0.018 0.023 С с1 0.46 0.58 0.018 0.023 D 5.97 6.22 0.235 0.245 D1 4.32 5.21 0.170 0.205 1 Anode Ε 6.35 6.73 0.250 0.265 2 NC 3 Anode Ε1 4.32 5.21 0.170 0.205 4 Cathode 2.28 BSC 0.090 BSC е e1 4.57 BSC 0.180 BSC BACK VIEW Н 9.40 10.42 0.370 0.410 1.02 0.040 0.51 0.020 L1 0.64 1.02 0.025 0.040 L2 0.050 0.89 1.27 0.035 L3 2.54 2.92 0.100 0.115

#### TO-220 (IXTP) Outline -B--ci e i ы – —(⊕ik (M))cia(S)i Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain MILLIMETERS MY2 .170 .190 4.83 .040 Ь .045 .065 14.73 16.00 420 9.91 .045

#### Notes:

H1

ØP

Ω

.090

.110

.139

.100

- 1. Pulse test:  $t \le 300 \mu s$ , duty cycle  $d \le 2 \%$ ;
- On through-hole packages, R<sub>DS(on)</sub>
   Kelvin test contact location must be
   mm or less from the package body.

.015 .550 .230

161

5.84

4.08 3.18

## PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.



Fig. 1. Output Characteristics @ 25°C 45 V<sub>GS</sub> = 10V 40 8V 35 30 ID - Amperes 25 20 15 10 5 0 0.2 0.4 0.6 0.8 1.2 0 1 1.4 1.6

V<sub>DS</sub> - Volts Fig. 3. Output Characteristics

@ 25°C 120 V<sub>GS</sub> = 10V 100 80 ID - Amperes 8V 60 40 7V 20 6V 0 0 2 6 10 12 16 18 20 V<sub>DS</sub> - Volts

Fig. 2. Extended Output Characteristics

@ 150°C 45 V<sub>GS</sub> = 10V 9V 40 8V 35 30 ID - Amperes 25 20 15 6V 10 5 5V 0 0.8 1.2 1.6 2 0 0.4 2.4 2.8 3.2 V<sub>DS</sub> - Volts









© 2006 IXYS CORPORATION All rights reserved



ID - Amperes

10

0

4

4.5

5

5.5

6

6.5

V<sub>GS</sub> - Volts

7.5 8

8.5

9

70 60 50 T<sub>J</sub> = -40°C 25°C 150°C

Fig. 7. Input Admittance

Fig. 8. Transconductance 30 T<sub>J</sub> = -40℃ 27 24 21 gfs - Siemens 25°C 18 15 150°C 12 9 6 3 0 10 20 70 0 30 40 50 60

I<sub>D</sub> - Amperes

Fig. 9. Forward Voltage Drop of **Intrinsic Diode** 120 100 80 Is - Amperes 60 T<sub>J</sub> = 150℃ 40 T<sub>J</sub> = 25℃ 20 0.9 0.4 0.5 0.6 0.7 1.1 1.2 1.3 8.0 1 1.4 1.5 V<sub>SD</sub> - Volts







IXYS reserves the right to change limits, test conditions, and dimensions.



Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature



Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance



Fig. 17. Resistive Turn-off Switching Times vs. Drain Current



Fig. 14. Resistive Turn-on Rise Time vs. Drain Current



Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

