Análisis Científico-Técnico de un Sistema de Generación Automatizada de Guiones Culturales

Jose Miguel Leyva De la Cruz C312

Abstract

Este informe evalúa un sistema computacional diseñado para generar guiones culturales optimizados, basado en métricas cuantificables como popularidad de canciones, complejidad de bailes y compatibilidad artística. Se analiza su arquitectura, modelado matemático, y contribuciones potenciales a la intersección entre ciencia de datos y arte.

1 Introducción

El proyecto implementa un sistema de recomendación para espectáculos culturales (teatro, música, danza) mediante técnicas de **optimización multiobjetivo** y **algoritmos evolutivos**. Su objetivo es automatizar la creación de guiones, tradicionalmente subjetiva, usando datos estructurados.

2 Modelado del Sistema

2.1 Arquitectura General

El sistema se compone de:

- Entidades: Clases como theatrical_performance, singing_performance, y dancing_performance que representan números artísticos.
- Métricas: Popularidad de artistas, compatibilidad género-espectáculo (matrices en compatibility.py), y ratings de canciones (vía API de YouTube en web_rating.py).
- Algoritmo de Optimización: Un modelo evolutivo (model.py) que selecciona la mejor combinación de números bajo restricciones de tiempo y diversidad.

2.2 Modelado Matemático

Cada número artístico calcula un rating mediante:

Rating =
$$\sum_{i} w_i \cdot f_i(\text{m\'etrica}_i)$$

donde f_i son funciones de normalización (ej: promedio de popularidad de artistas) y w_i son pesos implícitos.

El algoritmo evolutivo:

- 1. Genera una población inicial de soluciones (secuencias de números).
- 2. Evalúa soluciones con una función de fitness que considera:

$$Fitness = \sum Ratings - Penalizaciones por repetición de tipo/artista$$

3. Aplica selección por torneo, cruce (crossover) y mutación para mejorar soluciones.

3 Aportes Científicos

3.1 Innovaciones

- Matrices de Compatibilidad: Cuantifican relaciones entre géneros artísticos y contextos (ej: "Salsa" tiene alta compatibilidad con "Festival").
- Integración de Datos Externos: Uso de APIs (YouTube) para obtener popularidad en tiempo real.
- Penalizaciones Dinámicas: Evita monotonía penalizando repeticiones de artistas o estilos en el guion.

3.2 Relevancia

- Industria Cultural: Reduce la dependencia de expertos humanos en planificación de eventos.
- Computational Creativity: Demuestra que la creatividad puede modelarse mediante reglas cuantificables.
- **Personalización**: El sistema se adapta a distintos tipos de espectáculos (ej: "Peña" vs. "Teatro").

4 Limitaciones y Mejoras

4.1 Desafíos

- Sesgos en Datos: Las métricas de popularidad pueden no reflejar preferencias locales.
- Subjetividad Artística: Ciertas cualidades (ej: "emocionalidad") son difíciles de cuantificar.

4.2 Mejoras Propuestas

- Incorporar **aprendizaje automático** para ajustar pesos de métricas basado en feedback humano.
- Usar **NLP** para analizar letras de canciones y asignar emociones.
- Ampliar matrices de compatibilidad con datos antropológicos.

5 Conclusión

El proyecto representa un avance significativo en la automatización de procesos creativos, combinando técnicas de ciencia de datos con dominio artístico. Su enfoque híbrido (reglas explícitas + optimización) lo hace escalable y adaptable, abriendo nuevas líneas de investigación en **gestión cultural basada en datos**.