

IMP-MARL: a Suite of Environments for Large-scale Infrastructure Management Planning via MARL

Pascal Leroy, Pablo G. Morato, Jonathan Pisane, Athanasios Kolios, Damien Ernst

Paper: https://arxiv.org/abs/2306.11551

Project page: https://github.com/moratodpg/imp_marl

Technical University of Denmark

Motivation

Multi-agent reinforcement learning (MARL)

- Cooperative settings
- Many available open-source methods
- Common benchmarks are games or simulators

Gap:

Only few **real-world** environments
Only few **large-scale** environments

SMAC, MaMuJoCo, MPE, Hanabi,...

Motivation

Infrastructure management planning (IMP)

- Impactful real-world application
- Inspections and maintenance planning, minimising system failure risk and maintenance costs
- Effective multi-component policies can be learned via MARL

Gap:

Most studies are **not open-sourced**Most development **are not compared** against
SOTA MARL algorithms

Wind turbines, bridges, water networks, ...

IMP-MARL: Main contributions

 A novel open-source suite with real-world environments

"Up to 100 agents!"

- 2. Benchmark **SOTA** cooperative MARL methods
- Highlight important challenges that must be resolved

"Are cooperative MARL methods scalable?"

Infrastructure Management Planning (IMP)

Managing *n* components:

- Inspect or repair or do-nothing based on components' damage probability?
- System failure risk depends on the components' failure probability
- Goal:
 - Minimise maintenance costs
 - Avoid system's failure
- Challenge:
 - Joint action space exponentially growing with n (number of agents)
 - Do-nothing action usually dominates (class imbalance)

IMP-MARL: Environments

k-out-of-n systems: (4-out-of-5 system)

https://github.com/moratodpg/imp_marl

IMP-MARL: Environments

Offshore wind farm: 3 representative components per wind turbine

https://github.com/moratodpg/imp_marl

IMP-MARL benchmark

Goals:

- MARL vs heuristic?
- Scalability?

Methods

- Centralised training with decentralised execution: QMIX, QVMIX, QPLEX, COMA, FACMAC
- Decentralised: IQL (DQN for each agent)
- Centralised: DQN
- Heuristic: rule-based baseline from the reliability community

^{*}Performance evaluated with respect to the heuristic

Benchmark results

MARL vs heuristic:

• CTDE methods generally outperform heuristics

https://arxiv.org/abs/2306.11551

Benchmark results

Scalability?

- Centralised RL methods do not scale well with the number of agents
- IMP environments demand cooperation among agents: CTDE >> decentralised
- Remaining challenges
 - Correlated environments
 - Group campaign costs

https://arxiv.org/abs/2306.11551

Future work

Ultimate goal:

Scalable MARL applied to real-world problems

What we did:

PyMARL benchmark

What we have:

 Compatibility with CleanRL, TorchRL, BenchMARL, Epymarl,...

What we need:

- Use **IMP-MARL** in your study
- New IMP environments
- More **challenges**
- Contribute to the repository!

