Trabalho de Aplicação de Cálculo Numérico para Engenharia 2

Professor: Sérgio Ávila Aluno: Mateus Salgado

1. Apresentar um problema da área elétrica

Circuito RL resolvido por EDO na mão, vs plotagem no gráfico:

Determinar i (corrente) da malha em t=5s, considerando que a chave fecha em t=0s, sem energia já carregada.

2. Explicar o porquê que o problema é um problema

Se justifica a utilização de um método numérico para visualização da curva em questão pela maior facilidade para visualização dos resultados quando comparada à resolução analítica buscando a solução geral por EDO

3. Apresentar a sua solução analítica ou a explicação do por que ela não é possível

12R Edgmerce 261
Ldi + Ri = E(+)
(a) (c)
Hdi + 12 i = 60
0.4
4di = dt
V-12760 J
estular to the soul to a solution
12 In 160 - 1811 - + xc I solves
1) 0 16 191-x
1 Inleo-12:1= + 2 1 Inleo-12:1= 1- Inleo1
3 Into-18:12+c 3
0 150 101 8 160
-1 en 160-12.0 = C m 160-12/1 = 0-3+2n 1601
C= In(60) 3+In(60)
3
12
1. In 160-12:1=+ In 601 religio : - 4,75 A
3 portugues
remost & come ad Post + estand of the toland a lock
In 60-12:11 - 3+ + In 1601
In160-12,1 - 8++ In1601
9 = 00 mes
60-121=6
00-14/200
intelbros 12

1	E(t)
1	4 di + 12 i = 60 mm 30t
	di , 3 i = 15 sen 30t
	St. 1 2 3t 3t
	80 open 301.00 nago 98
	J(8+;) dt = 15 m 30+. 6+
	3+ 1 21
	P. i = 15. P (3 rem 30+ - 30 cm 30t) +c
00.	0 + 50
	i= 15 (3 mm 30+ - 30 cos 30+) + C
	809 (30T - 30 cos 30t) + C

4. Escolher e justificar a escolha de um método numérico que resolva o problema proposto

A escolha do método numérico Runge-Kutta para resolver o problema do circuito RL é justificada pela sua eficácia e precisão na resolução de equações diferenciais ordinárias (EDOs) de forma numérica.

A escolha específica do método de Runge-Kutta dependerá da ordem desejada de precisão e da complexidade do sistema.

5. Apresentar a resolução do problema pelo método numérico escolhido

```
import numpy as np
import matplotlib.pyplot as plt
V = 60 # tensão fonte CC
tf = 4.9 \# tempo final
h = tf/100 # quantidade de pontos
it = 0
r = tf/h
i = np.zeros(1+int(r))
```

```
plt.plot(t, i, linewidth=2)
plt.grid(True)
plt.xlabel('Tempo (s)')
plt.ylabel('Corrente (A)')
plt.xlim(0, 5)
plt.ylim(0, 6)
plt.show()

/usr/bin/python3.10 /CalculoNumerico/TP2/tp2.py

Valor da corrente i(5) = 4.999997935241771 A

Process finished with exit code 0
```


6. Justificar se a solução obtida é adequada – considerações finais

Software de Simulação Falstad em t=5s.

Simulação Falstad