Demonstration that the Use of Feature Selection on High Dimensional South African Macroeconomic Data Results in Improved Performance with Lower Compute Requirements

Rudzani Mulaudzi and Ritesh Ajoodha

The University of the Witwatersrand, Johannesburg, South Africa, 0601737R@students.wits.ac.za,

WWW home page: https://www.wits.ac.za/

Abstract. This document shows the tables that show results for a conference paper. The paper is part of the Sixth International Congress on Information and Communication Technology Conference proceedings. The full details being: "Demonstration that the Use of Feature Selection on High Dimensional South African Macroeconomic Data Results in Improved Performance with Lower Compute Requirements," Sixth International Congress on Information and Communication Technology Conference, ISBN: 2194-5357, 2021.

Keywords: Machine Learning, Feature Selection, Forecasting, Unemployment.

1 Results and Discussions

Feature Selection	Number of Features
No Filter Selection (NO FS)	147
Removal of Duplicates (Unique)	145
Pearson Correlation Coefficient (No Cor)	55
Mutual Information Gain (MIG)	36
Mutual Information Gain and Pearson Correlation Coefficient	14
(MIG No Corr)	
Variance Threshold (Variance)	145
Variance Threshold and Removal of Duplicates (Variance Unique)	144
Removal of Duplicates and Pearson Correlation Coefficient	54
(Unique No Corr)	
Variance Threshold, Removal of Duplicates, and Pearson Corre-	53
lation Coefficient (Variance Unique No Corr)	
Analysis of Variance (ANOVA)	36
Recursive Feature Elimination with elastic net (ENET) as Black-box estimator (RFE ENET)	5
Recursive Feature Elimination with Ridge as Blackbox estimator (RFE Ridge)	5
Recursive Feature Elimination with LASSO as Blackbox estimator (RFE LASSO)	5
Random Forest	8
Extreme Gradient Boosting (XGBoost)	5
Principal Component Analysis (PCA)	50
Least Absolute Shrinkage and Selection Operator (LASSO)	4
Elastic Net (ENET)	5

Table 1: Feature selection techniques used to test the hypothesis H1.

	NO FS	UNIQUE	VARIANCE	NO CORR	MIG	ANOVA
ENET	0,60	0,60	0,60	0,43	0,50	0,60
Bayes Ridge	0,43	0,44	0,43	0,48	0,75	0,70
LASSO	0,62	0,62	0,62	0,44	0,52	0,62
LSTM	0,84	0,85	0,83	0,63	0,81	0,81
GRU	0,85	0,84	0,87	0,64	0,77	0,82
Ridge	0,65	0,65	0,65	0,55	0,47	0,72
SVR	0,88	0,90	0,88	1,58	0,58	0,49
BiLSTM	0,86	0,85	0,85	0,77	0,79	0,80
RFR	0,72	0,70	0,73	0,69	0,67	0,70
XGB	0,75	0,73	0,74	0,68	0,70	0,67
MLP	0,80	1,04	0,88	0,74	0,79	1,09

Table 2: The MASE of the univariate filter feature selection methods compared with not applying any feature selection.

	NO FS	RFE Ridge	RFE ENET	RFE LASSO
ENET	0,60	0,44	0,590	0,590
Bayes Ridge	0,43	1,08	0,783	0,783
LASSO	0,62	0,44	0,585	0,585
LSTM	0,84	0,47	0,450	0,454
GRU	0,85	0,72	0,463	0,484
Ridge	0,65	1,06	0,762	0,762
SVR	0,88	1,06	0,786	0,786
BiLSTM	0,86	0,58	0,507	0,504
RFR	0,72	0,66	0,569	0,566
XGB	0,75	0,77	0,605	0,605
MLP	0,80	0,74	0,803	0,773

Table 3: The MASE of the multivariate wrapper feature selection methods compared with not ap-plying any feature selection.

	NO FS	EM ENET	EM LASSO	XGBoost	Random
					Forest
ENET	0,60	0,60	0,60	0,51	0,53
Bayes Ridge	0,43	0,78	0,78	0,71	0,66
LASSO	0,62	0,62	0,62	0,49	0,52
LSTM	0,84	0,86	0,85	0,65	0,60
GRU	0,85	0,85	0,87	0,65	0,66
Ridge	0,65	0,63	0,63	0,71	0,72
SVR	0,88	0,77	0,77	0,85	0,71
BiLSTM	0,86	0,87	0,85	0,83	0,80
RFR	0,72	0,77	0,76	0,78	0,80
XGB	0,75	0,77	0,77	0,70	0,67
MLP	0,80	0,74	0,75	0,82	0,95

Table 4: The MASE of the multivariate embedded feature selection methods compared with not applying any feature selection.

	NO FS	Filter	Wrapper	Embedded	PCA
ENET	0,00868	0,0045	0,0022	0,0040	0,0028
Bayes Ridge	0,02612	0,0132	0,0037	0,0034	0,0064
LASSO	0,00771	0,0042	0,0022	0,0043	0,0026
LSTM	15,75152	15,3353	17,5586	15,4537	12,6019
GRU	15,31274	15,0273	17,7250	19,4560	11,8673
Ridge	0,00675	0,0063	0,0041	0,0047	0,0038
SVR	0,25344	0,2136	0,0595	0,0637	0,1643
BiLSTM	28,08850	44,5586	83,3304	47,6442	16,8032
RFR	2,56104	1,4069	0,2141	0,8185	1,7519
XGB	0,05348	0,0146	0,0034	0,0092	0,0144
MLP	1,04305	0,8435	0,3477	0,3087	0,7577

Table 5: The computation time, in milliseconds, for different feature selection methods, PCA, and, original data without applying any feature selection.

4 Rudzani Mulaudzi and Ritesh Ajoodha

	NO FS	Filter	Wrapper	Embedded	PCA
ENET	147	75	5	17	50
Bayes Ridge	147	75	5	6	50
LASSO	147	75	5	6	50
LSTM	93463	72528	51918	35783	65084
GRU	50326	39054	27956	19268	35045
Ridge	147	75	5	6	50
SVR	71177	52859	34825	35337	46345
BiLSTM	163561	126925	90857	62621	113897
RFR	38744	38744	38744	38744	38744
XGB	147	75	5	21	50
MLP	53769	40030	26505	26889	35145

Table 6: A comparison of the number of parameters in different machine learning methods with feature selection methods, PCA, and, the original data without applying any feature selection.

	NO FS	PCA
ENET	0,60	0,51
Bayes Ridge	0,43	0,78
LASSO	0,62	0,52
LSTM	0,84	0,65
GRU	0,85	0,65
Ridge	0,65	0,70
SVR	0,88	0,77
BiLSTM	0,86	0,65
RFR	0,72	0,77
XGB	0,75	0,76
MLP	0,80	0,76

Table 7: The MASE of the multivariate dimension reduction techniques, PCA, compared with not applying any feature selection.