ПУЧКИ КЛАСТЕРНЫХ ИОНОВ – НОВЫЙ ИНСТРУМЕНТАРИЙ СОВРЕМЕННОЙ ФИЗИКИ

В.С. Черныш, Ю.А.Ермаков, А.Е. Иешкин

Совместная лаборатория «Ионно-пучковые нанотехнологии» Физический факультет МГУ, НИИЯФ МГУ и ОАО «TEH3OP»

БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР

УСКОРИТЕЛЬ ПРОТОНОВ И ТЯЖЕЛЫХ ИОНОВ НА ВСТРЕЧНЫХ ПУЧКАХ

НОВЫЕ ТЕНДЕНЦИИ В СОВРЕМННОЙ ФИЗИКЕ ВЗАИМОДЕЙСТВИЯ ИОНОВ С ВЕЩЕСТВОМ

МНОГОЗАРЯДНЫЕ ИОНЫ

УСКОРИТЕЛЬ МНОГОЗАРЯДНЫХ ИОНОВ ИНСТИТУТ ЯДЕРНЫХ НАУК ВИНЧА (СЕРБИЯ)

источник многозарядных ионов

ION YIELDS FOR SELECTED ELEMENTS

Element	Atomic no. /Atomic mass	P _{shf}	Charge state	I [eµA]	Element	Atomic no. /Atomic mass	Pshf	Charge	I [eµA]
//		[W] 50	1+	760		/Atomic mass	[W]	state 7+	77
He 2/4	/ 2/4	100	2+	410	Zn /	30/64,66,68	175	9+	46
		200	2+	230				10+	32
	6/12	280	4+	128				12+	95
		400	4+	490				/13+/	88
N	7/14	400	5+	470	Kr	36/86	330	14+	60
		· · · · · · · · · · · · · · · · · · ·	54	660				15+/	28
0	8/16	370	6+//	432				19+	43
			7+/	37				20+	41
	e 10/20	390	5+/	560	Xe	54/136	240	21+	37
Ne 10			6+	290				22+	27
			7+	120				23+	25
			8+	48				24+	17
Ar	18/40	390	8+\	660	\			16+	31
			9+	340				18+	15
			11+	130	Pb	82/207	200	19+	12
			12+	36				20+	10

КЛАСТЕРНЫЕ ИОНЫ

Кластеры инертных газов, $(N_2)_n$, $(CO_2)_n$ и т.д. Энергия связи <10meV

Кластеры металлов Энергия связи ~0,5÷3 eV

ВЗАИМОДЕЙСТВИЕ КЛАСТЕРНЫХ ИОНОВ С ПОВЕРХНОСТЬЮ ТВЁРДЫХ ТЕЛ

МД расчёты взаимодействия 50 кэВ Ar₃₄₉ кластера с поверхностью Si показали, что через 362 фсек локальная температура может достигать 10⁴-10⁵ K, а давление – несколько Мбар. Ударная волна может приводить к новым физическим явлениям, которые не наблюдаются при взаимодействии атомных ионов с поверхностью.

КРАТКИЙ ЭКСКУРС В ИСТОРИЮ

- -1951 Кантровиц и Грей теоретически показали, что при динамическом расширении газа через сопло интенсивность атомного или молекулярного пучка значительно возрастает по сравнению с эффузионным истечением через диафрагму
- -1956 Беккер и др. экспериментально продемонстрировали, что газ в генерируемой коническим соплом струе конденсируется в кластеры, размеры которых в зависимости от условий истечения изменяются от димеров или триммеров до, предположительно, микрокристаллов, состоящих их нескольких тысяч частиц
- -1961 Хенкес и Бентли установили, что в сверхзвуковых струях формируются кластеры $(CO_2)_n$, где $n = 1 \div 26$

ФИЗИЧЕСКИЕ ПРИНЦИПЫ ФОРМИРОВАНИЯ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ

$$h + \frac{v^2}{2} = const$$
 — интеграл Бернулли (a)

$$\rho vS = const$$
 - закон сохранения массы (b

$$\frac{p}{\rho T} = \frac{R}{\mu}$$
 - уравнение состояния (c)

$$\frac{p}{\rho^{\gamma}} = const$$
 - уравнение адиабаты (d)

Звуковые и сверхзвуковые сопла

$$\frac{dS}{S} = \frac{dv}{v} (M^2 - 1)$$

Гюгонио, 1887 г.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ ФОРМИРОВАНИЯ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ

Для достижения скорости звука на срезе звукового сопла

необходимо, чтобы:

$$\frac{p_0}{p_1} \equiv \alpha \ge \alpha_{\kappa p} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{\gamma}}$$

Для большинства газов $p_0/p_1 \sim 2$.

Экспериментально установлено, что:

$$\frac{x_M}{d_n} = 0,67\sqrt{\frac{p_0}{p_1}}$$

$$\frac{T}{T_0} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1}$$

СВОЙСТВА ПУЧКОВ КЛАСТЕРНЫХ ИОНОВ

РАЗМЕР КЛАСТЕРОВ

Магические числа:

икосаэдр -n=1/3 ($10N^3-15N^2+11N-3$) $\rightarrow n=1$, 13, 55, 147, 309... додекаэдр -n=1/2 N(15N-1) $\rightarrow n=7$, 29, 66, 118, 185

Kr_n⁺: n=14, 16, 19, 22, 27, 29, 75, 87...

СВОЙСТВА ПУЧКОВ КЛАСТЕРНЫХ ИОНОВ

СОСТАВ ПУЧКА

	2+	3+	4+
Ar	91	226	
Kr	73		
Xe	51	114	208
N ₂	99	215	
02	92		

ЗАРЯДОВОЕ СОСТОЯНИЕ

Для интенсивного пучка кластеров аргона с о средней массой 10400 а.е.м. и энергией 64 кэВ средний заряд составляет 3,2

ПРИМЕНЕНИЕ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ:

СГЛАЖИВАНИЕ РЕЛЬЕФА ПОВЕРХНОСТИ

(a) Before irradiation of CVD diamond film

(b) Ar₂₀₀₀ cluster ion irradiation 20keV, 1×10¹⁷ions/cm²

ПРИМЕНЕНИЕ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ: ИОНО-АССИСТИРОВАННОЕ ОСАЖДЕНИЕ ПЛЁНОК

ПРИМЕНЕНИЕ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ: ИМПЛАНТАЦИЯ КЛАСТЕРНЫХ ИОНОВ

ПРОФИЛИ КОНЦЕНТРАЦИИ

МД расчёт

Эксперимент

ПРИМЕНЕНИЕ ПУЧКОВ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ: ИМПЛАНТАЦИЯ КЛАСТЕРНЫХ ИОНОВ

Имплантация кластерными ионами: смесь Ar и B_2H_6

ТВЕРДОТЕЛЬНЫЕ КЛАСТЕРНЫЕ ИОНЫ

Ag target

He

Palmer et.al., 2003

ArF excimer laser 193 nm

Nd:YAG laser 532 nm, 20 Hz, 6 ns 20-30 mJ/pulse

ПРОБЛЕМА ЗАКРЕПЛЕНИЯ КЛАСТЕРОВ: «PINNING»

Palmer et.al., Phys.Rev., B73(2006)125429

$$\mathsf{E}_{\mathsf{отд}} = \frac{\mathsf{4M}_{\mathsf{\Pi}} \mathsf{M}_{\mathsf{K}\mathsf{\Pi}}}{(\mathsf{M}_{\mathsf{\Pi}} + \mathsf{M}_{\mathsf{K}\mathsf{\Pi}})^2} \, \mathsf{E}_{\mathsf{K}\mathsf{\Pi}}$$

$$M_n = nM_s$$
, $M_{\kappa n} = NM_{cl}$, a $E_{otg} = E_d$

$$nM_s \ll NM_{cl}$$

ПРОБЛЕМА «PINNING»

Au₇₀ 1.20 keV→ графит

M. Di Vece et al. Phys. Rev. B 72 (2005) 073407

УСКОРИТЕЛЬ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ

Зависимость тока пучка от времени

Осциллолограммы

Схема измерений

Длительность открывающего импульса составляла 2 мс, а период повторения: 1 - 70 мс; 2 - 100 мс и 3 - 200 мс.

Зависимость тока пучка от времени при различных давлениях p_{o}

Ток пучка при различных давлениях p_0 :

- а) 1,5 бар (1), 2,0 бар (2) и 2,25 бар (3);
- б) 3,1 бар (1), 3,5 бар (2) и 3,75 бар (3).

МОДЕЛЬ

Ранее экспериментально установлено, что:

$$/ = \sqrt{/ _{1}}$$

ПРОВЕРКА МОДЕЛИ

СЕПАРАЦИЯ ПУЧКА В МАГНИТНОМ ПОЛЕ

Импульсы тока пучка на коллектор при различных отклоняющих магнитных полях: 1 - 0 Тл, 2 – 4,5 мТл, 3 – 8,7 мТл и 4 - 260 мТл.