# FIRST® LEGO® League TUT\$RIALS

Powered by EV3Lessons

# ROBOT DESIGN LESSON

**GEARING FOR LEGO ROBOTS** 

# **OBJECTIVES**

- Learn about the different types of LEGO gears and what you use them for
- Learn how to calculate gear ratios
- Learn some useful gearing techniques

# WHAT IS A GEAR?

- A gear is a wheel with teeth that meshes with another gear
- There are many different kinds of gears
- Gears are used to
  - Change speed
  - Change torque
  - Change direction

# **COMMON LEGO GEARS**



#### NAMING LEGO GEARS

 LEGO gears are referred to by their type and the number of teeth they have



40 tooth spur gear



24 tooth spur gear



16 tooth spur gear



8 tooth spur gear

# DRIVERS, FOLLOWERS & IDLERS

Driver: gear that applies force (the gear connected to the motor on a robot)

Follower: final gear that is driven

Idler: gear turned by driver which then turns the follower

Notes about gears:

- I) When 2 gears mesh, the driver makes follower turn in the opposite direction
- 2) You need an odd number of idler gears to make driver and follower turn in same direction.
- 3) You need an even number of idlers (or none) to make driver and follower turn in opposite direction



# GEARING DOWN AND UP





#### CALCULATING GEAR RATIOS

Gear Ratio = number of teeth in follower: number of teeth in driver





# CHANGE THE DIRECTION OF MOTION



You can use gears to change the direction of motion.





Credits: All the animated images are from:

http://technicopedia.com/fundamentals.html. To view them correctly, you will need to use "Slideshow Mode" on PowerPoint.

#### PROBLEMS WITH LEGO GEARS

- Two common problems that you might face:
  - Gear Slip: Slippage is when the teeth skip on the gears when you apply power

 Gear Backlash: Backlash is space between the teeth where the gears mesh. When the space is too much, it is called slack/slop. When there is too little, you create too much friction.

Solution: Try to avoid long sequences of gears. Use a gear box. Mesh gears according to specification.

#### GEAR BOXES CAN BE HELPFUL

- Gear boxes can help reduce some of the issues you may face when building with gears.
- Some are pre-built (with gears included)
- Some need gears inserted into a gear box
- Some can be assembled from scratch using technic pieces



# RACK GEARS FOR VERTICAL & HORIZONTAL MOVEMENT



Support structure of Wall-E7 by Marc-Andre Bazergui is made with rack gears



PIX3L PLOTT3R by Sanjay and Arvind Seshan uses rack gears



# **USEFUL ONLINE GEAR TOOL**



http://gears.sariel.pl/

#### OTHER USEFUL RESOURCES

- More about gears: <a href="http://sariel.pl/2009/09/gears-tutorial/">http://sariel.pl/2009/09/gears-tutorial/</a>
- Gear animations:
   <a href="http://technicopedia.com/fundamentals.ht">http://technicopedia.com/fundamentals.ht</a>
   <a href="milto:ml">ml</a>
- Technic Gearing: Books by Yoshihito Isogawa

#### **CREDITS**

- This tutorial was created by Sanjay Seshan and Arvind Seshan
- More lessons at <u>www.ev3lessons.com</u> and <u>www.flltutorials.com</u>



This work is licensed under a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.