Scrawlings of the MagiKarp

Definition. A **map** $f : A \to B$ is a subset $f \subset A \times B$ such that for all $a \in A$, there exists a $b \in B$ such that b is unique with $(a, b) \in f$.

Definition. We write f(a) = b if $(a, b) \in f$. A is the **domain** of f and B is the **codomain**.

Definition. A **binary operation** on *A* is a map $\star : A \times A \to A$ such that $\star(a_1, a_2) = a_1 \star a_2$ for $a_1, a_2 \in A$.

Definition. A binary operation \star is **associative** on A if for all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.

Definition. An element $e \in A$ is an **identity** element of \star if for each $a \in A$, $e \star a = a \star e = a$.

Definition. An element $a \in A$ has an <u>inverse</u> under \star if there exists a $b \in A$ such that $a \star b = b \star a = e$.

Definition. A set A with an associative binary operation \star is a **group** if A has an identity element under \star and every $a \in A$ has an inverse.

Definition

A group is a pair (G, \star) where G is a set and \star is a binary operation on G such that

- 1. For all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.
- 2. There exists an $e \in G$ such that $a \star e = e \star a = a$ for all $a \in G$.
- 3. For all $a \in G$, there exists a $b \in G$ such that $a \star b = b \star a = e$.

Definition. A group (G, \star) is <u>abelian</u> or commutative if for all $g, h \in G$, $g \star h = h \star g$.

Theorem

Let (G, \star) be a group.

- 1. e is unique.
- 2. g^{-1} is unique.
- 3. $\forall g \in G, (g^{-1})^{-1} = g$.
- 4. $\forall g, h \in G, (g \star h)^{-1} = h^{-1} \star g^{-1}.$

We may prove each part separately.

1. Suppose e, e' are identity elements. Then for all $a \in G$,

$$a \star e = e \star a = a \tag{i}$$

$$a \star e' = e' \star a = a \tag{ii}$$

By (i), $e' = e \star e'$ and by (ii), $e = e \star e'$. Therefore, e = e'.

2. Supposed $a \star b = b \star a = e$, then

$$b = b \star e$$

$$= b \star (a \star a^{-1})$$

$$= (b \star a) \star a^{-1}$$

$$= e \star a^{-1}$$

$$= a^{-1}$$

Thus, $b = a^{-1}$.

3.
$$g^{-1} \star (g^{-1})^{-1} = e = g^{-1} \star g$$
. By (ii), $g = (g^{-1})^{-1}$.

4. Consider $(a \star b) \star (b^{-1} \star a^{-1})$.

$$(a \star b) \star (b^{-1} \star a^{-1}) = a \star (b \star b^{-1}) \star a^{-1}$$
$$= a \star e \star a^{-1}$$
$$= a \star a^{-1}$$
$$= e$$

Thus,
$$(b^{-1} \star a^{-1}) = (a \star b)^{-1}$$
.

Definition. Let $[n] = \{1, 2, ..., n\}$. The **symmetric group** denoted S_n of degree n is the set of all bijections on [n] under the operation of composition.

$$S_n = {\sigma : [n] \rightarrow [n] \mid \sigma \text{ is a bijection}}$$

Definition. The <u>order</u> of (G, \star) is the number of elements in G denoted |G|.

Definition. Let $n \ge 2$. The <u>dihedral group</u> of index n is the group of all symmetries of a regular polygon P_n with n vertices in the Euclidean plane.

Symmetries of P_n consist of rotations and reflections.

Choose a vertex v. Let L_0 be the line from the center of P_n through v. Let L_k be L_0 rotated by $\frac{\pi k}{n}$ for $1 \le k \le n$. Let σ_k be a reflection about L_k . Let ρ_k be a rotation about $\frac{2\pi k}{n}$, $1 \le k \le n$.

Definition. A subset $S \subseteq G$ of a group (G, \star) is a set of **generators**, denoted $\langle S \rangle = G$, if and only if every element of G can be written as a finite product of elements of S and their inverses.

Definition. Any equation satisfied by generators is called a <u>relation</u>.

Definition. A **presentation** of G, denoted $\langle S \mid R \rangle$, is a set of generators of G and relations such that any other relation can be derived by those given.

Example.

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$$

Definition. The cycles $\sigma = (\sigma_1 \, \sigma_2 \, \dots \, \sigma_n)$ and $\tau = (\tau_1 \, \tau_2 \, \dots \, \tau_n)$ are **disjoint** if $\sigma_i \neq \tau_j$ for $1 \leq i \leq n$ and $1 \leq j \leq m$.

Definition. A cycle of length 2 is called a **transposition**.

Definition. An expression of the form $(a_1 \ a_2 \ \dots \ a_m)$ is called a **cycle of length m** or an **m-cycle**.

Proposition. Let $\alpha = (a_1 \ a_2 \ \dots \ a_m)$ and $\beta = (b_1 \ b_2 \ \dots \ b_n)$. If $a_i \neq b_j$ for any i, j, then $\alpha\beta = \beta\alpha$.

Proposition. Every permutation can be written as a product of disjoint cycles.

Proposition. A cycle of length n has order n.

Proposition. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be disjoint cycles. Then,

$$|\alpha_1\alpha_2...\alpha_n| = \text{lcm}(|\alpha_1|, |\alpha_2|, ..., |\alpha_n|)$$

Proposition. Every permutation is S_n is a product of 2-cycles (which are not necessarily disjoint).

Proposition. If $\alpha = \beta_1 \beta_2 \dots \beta_r = \gamma_1 \gamma_2 \dots \gamma_s$ where β_i, γ_j are transpositions, then r and s have the same parity.

Definition. If r and s are both odd, α is called an **odd permutation**. If r and s are both even, α is called an **even permutation**.

Definition. The set of even permutations in S_n form a group called the <u>alternating group</u>, denoted A_n .

Note. $|A_n| = \frac{n!}{2}$ for n > 1.

Definition

Let (G, \star) and (G', *) be groups. A map of sets $\varphi : G \to G'$ is a **group homomorphism** if for all $a, b \in G$,

$$\varphi(a \star b) = \varphi(a) * \varphi(b)$$

Example. The following are two very simple examples of homomorphisms.

Trivial Homomorphism

$$\varphi: G \to G', \varphi(g) = e, \forall g \in G$$

Identity Homomorphism

$$\varphi: G \to G', \varphi(g) = g, \forall g \in G$$

Definition. If $\varphi : G \to G'$ is a homomorphism, the **domain** of φ is $Dom(\varphi) = G$, the **codomain** of φ is $Codom(\varphi) = G'$, the **range** or **image** of φ is $\varphi(G) = \{\varphi(g) : g \in G\} \subseteq G'$ denoted $Range(\varphi)$ or $Im(\varphi)$.

Definition

A homomorphism which is bijective is called an **isomorphism**.

 $\varphi: G \to G'$ is an isomorphism if and only if there exists $\psi: G' \to G$ such that ψ is a homomorphism and $\varphi \circ \psi = 1_{G'}$, $\psi \circ \varphi = 1_{G}$, i.e. ψ is an inverse homomorphism to φ . We say G is isomorphic to G' by $G \cong G'$ or $\varphi: G \xrightarrow{\sim} G'$.

Definition

Let (G, \star) be a group. A subset $H \subseteq G$ is a **subgroup** if (H, \star) is also a group.

If $H \neq \emptyset$ and $H \subseteq G$, $H \leq G$ or H is a subgroup of G if and only if

- 1. *H* is closed under \star ($\forall h_1, h_2 \in H, h_1 \star h_2 \in H$).
- 2. *H* is closed under inverses $(h \in H \Rightarrow h^{-1} \in H)$.

Note. The following is notation for arbitrary and abelian groups.

$$x \star y \rightarrow xy$$
 for arbitrary G , $x + y$ for abelian G $e \rightarrow 1$ for arbitrary G , 0 for abelian G

For an arbitrary subset $A \subseteq G$, and $g \in G$,

$$gA = \{ga : a \in A\}$$
 $Ag = \{ag : a \in A\}$ $gAg^{-1} = \{gag^{-1} : a \in A\}$

Theorem (Subgroup Criterion)

Let $\emptyset \neq H \subseteq G$, $H \leq G$ if and only if $\forall x, y \in H$, $xy^{-1} \in H$.

Definition. Let $A \subseteq G$ be any subset. The <u>centralizer</u> of A in G is $C_G(A) = \{g \in G : gag^{-1} = a\}$ and it is the set of elements in G which commute with all elements of A.

Proposition. $C_G(A) \leq G$

Proof. First we show that the centralizer is not empty. 1a = a1 = a, $\forall a \in A \Rightarrow 1 \in C_G(A) \Rightarrow C_G(A) \neq 0$ so the centralizer of A is not empty. Let $x, y \in C_G(A)$. We want to show that $xy^{-1} \in C_G(A)$ or that $xy^{-1} \in C_G(A)$. We do this by showing that $(xy^{-1}) a (xy^{-1})^{-1} = a$.

$$(xy^{-1}) a (xy^{-1})^{-1} = xy^{-1}ayx^{-1}$$

$$= x (y^{-1}ay) x^{-1}$$

$$= xax^{-1} \qquad (y \in C_G(A))$$

$$= a \qquad (x \in C_G(A))$$

Since this subset satisfies the Subgroup Criterion, the centralizer $C_G(A)$ is a subgroup of G.

Definition. The <u>center</u> of a group G is denoted $Z(G) = \{g \in G : gx = xg, \forall x \in G\}$. $Z(G) = C_G(G) \leq G$. Z(G) is the set of elements of G which commute with all elements in G. If G is abelian, Z(G) = G.

Definition. The <u>normalizer</u> of A in G is $N_G(A) = \{g \in G : gAg^{-1} = A\}$ or $\{g \in G : gag^{-1} = a' \in A\}$.

Proposition. $C_G(A) \leq N_G(A) \leq G$

Definition. A **group action** of a group G on a set A is a map $G \times A \to A$ such that $(g_1g_2) \cdot a = g_1 \cdot (g_2 \cdot a), \forall g_1, g_2 \in G, \forall a \in A \text{ and } 1 \cdot a = a, \forall a \in A.$ It is denoted $G \circlearrowleft A$.

Definition. Suppose $G \circlearrowleft A$, the stabilizer of $a \in A$ in G is $G_a = \{g \in G : g \cdot a = a\}$. $G_a \leq G$.

Definition

An **equivalence relation** \mathcal{E} on a set S is a subset $\mathcal{E} \subseteq S \times S$ which is reflexive, symmetric, and transitive. We write $(a,b) \in \mathcal{E} \Leftrightarrow a \mathcal{E} b$ or $a \sim b$.

- 1. $a \sim a$
- 2. $a \sim b \Leftrightarrow b \sim a$
- 3. $a \sim b$, $b \sim c \Rightarrow a \sim c$

Definition. The **equivalence class** of $a \in S$ is $[a] = \{b \in S : a \sim b\}$

Definition. The **quotient set** of *S* under \sim is $S/\sim=\{[a]: a \in S\}$.

Example. $\mathbb{Q} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : b \neq 0\} / \sim, (a,b) \sim (c,d) \Rightarrow ad = bc.$

Definition. The quotient set comes equipped with the **projection map** $\pi: S \to S/\sim$ where $a \mapsto [a] = \pi(a)$. This map is surjective by definition.

Definition

A group G' is a **quotient group** of a group G if

- 1. $G' = G/\sim$, G' is the quotient set of G under an equivalence relation \sim .
- 2. The projection map $\pi:G\to G'=G/\sim$ is a group homomorphism.

Definition. Let $\varphi : G \to G'$ be a homomorphism and let $g' \in G'$. The <u>fiber</u> over g' is $\varphi^{-1}(g') = \{g \in G : \varphi(g) = g'\}$.

Proposition

All quotient groups come from subgroups.

Let $\varphi: G \to G'$ be a homomorphism, then φ induces an equivalence relation on G. Let $x \sim y \Leftrightarrow \varphi(x) = \varphi(y)$. But φ is a group homomorphism, so $\varphi(x) = \varphi(y) \Leftrightarrow \varphi(x) \varphi(y)^{-1} = 1_{G'} \Leftrightarrow \varphi(x) \varphi(y^{-1}) = 1 \Leftrightarrow \varphi(xy^{-1}) = 1$. So $x \sim y \Leftrightarrow \varphi(xy^{-1}) = 1$. Let $K = \{g \in G : \varphi(g) = 1\}$. Then $x \sim y \Leftrightarrow xy^{-1} \in K$. Recall $K = \operatorname{Ker}(\varphi) \leq G$.

Let G' be a quotient group of G. Then $x \sim y \Leftrightarrow [x] = [y] \Leftrightarrow \pi(x) = \pi(y)$ where $\pi: G \to G'$ is the projection. But $\pi(x) = \pi(y) \Leftrightarrow xy^{-1} \in \text{Ker}(\varphi)$.

Definition. The **right coset** of a subgroup H of a group G by the element $x \in G$ is $Hx = \{hx : h \in H\}$. The **left coset**, denoted xH is denoted similarly.

Proposition. Let $\varphi : G \to G'$ be a homomorphism and $K = \text{Ker}(\varphi)$. Then $xKx^{-1} \subseteq K$, $\forall x \in G$.

Proof. We must show $\varphi(xkx^{-1}) = 1_{G'}$ for $x \in G$, $k \in K$. Then, $\varphi(xkx^{-1}) = \varphi(x)\varphi(k)\varphi(x^{-1}) = \varphi(x)\varphi(x)^{-1} = 1_{G'}$.

Definition

The subgroup $N \le G$ is <u>normal</u> if $xNx^{-1} \subseteq N$ for all $x \in G$. It is denoted $N \le G$.

Proposition. Ker(φ) \subseteq G for any homomorphism φ : $G \to G'$.

Theorem

Let $N \leq G$. Then the following are equivalent.

- 1. $N \subseteq G$ ($xNx^{-1} \subseteq N$, $\forall x \in G$)
- 2. $xNx^{-1} = N$
- 3. xN = Nx
- 4. $\forall x, y \in G, xy^{-1} \in N \Leftrightarrow y^{-1}x \in N$

(1) \Rightarrow (2) Assume $\forall x \in G$, $xNx^{-1} \subseteq N$. We want to show $xNx^{-1} = N$. We do this by showing $N \subseteq xNx^{-1}$. Let $x \in G$, $n_0 \in N$. We show $n_0 \in xNx^{-1}$. Note that $x \in G \Rightarrow x^{-1} \in G$. Thus, $x^{-1}N(x^{-1})^{-1} \subseteq N$ since $N \subseteq G$. Thus there exists n such that $x^{-1}nx = n_1 \in N$. $n_0 = x(x^{-1}n_0x)x^{-1} = xn_1x^{-1} \in xNx^{-1}$.

(3) \Rightarrow (4) Assume $\forall x \in G$, xN = Nx. Let $x, y \in G$. We want to show $xy^{-1} \in N \Leftrightarrow y^{-1}x \in N$. So we must show this is true in both directions. Suppose $xy^{-1} \in N$. Then there exists an $n_1 \in N$ such that $xy^{-1} = n_1$. Thus, $x = n_1y \in Ny = yN$ by assumption. So $x \in yN$. Thus there exists $n_2 \in N$ such that $x = yn_2 \Rightarrow y^{-1}x = n_2 \in N$. Thus, $xy^{-1} \in N \Rightarrow y^{-1}x \in N$. Similarly, $y^{-1}x \in N \Rightarrow xy^{-1} \in N$.

Proposition. Let $H \leq G$. Then, $x \sim y \Leftrightarrow y^{-1}x \in H$ is an equivalence relation on G.

Proof. We want to show \sim is reflexive, symmetric, and transitive.

1.
$$x \sim x$$
: $x^{-1}x = 1 \in H$

2.
$$x \sim y \Rightarrow y \sim x$$
: $x \sim y \Leftrightarrow y^{-1}x \in H \Rightarrow x^{-1}y \in H \Leftrightarrow y \sim x$

3.
$$x \sim y, y \sim z \Rightarrow x \sim z$$
: $y^{-1}x \in H, z^{-1}y \in H \Rightarrow (z^{-1}y)(y^{-1}x) = z^{-1}x \in H \Leftrightarrow x \sim z$

Thus, \sim is an equivalence relation on *G*.

Any subgroup gives an equivalence relation.

Definition. An equivalence relation on a set *S* is the same as a **partition** of *S*. $P = \{A_1, A_2, ...\}$, $A_i \subseteq S$ such that $S \cup_{i \in \mathbb{N}} A_i$, $A_i \cap A_j = \emptyset$, $i \neq j$. $a \sim b \Leftrightarrow a, b \in A_i$.

Proposition. For $H \le G$, $x \sim y \Leftrightarrow y^{-1}x \in H \Leftrightarrow xH = yH$ (Hx = Hy).

Proof. Suppose $y^{-1}x \in H$. We want to show that xH = yH or $xH \subseteq yH$ and $yH \subseteq xH$. $y^{-1}x \in H$ implies that there exists a $h_1 \in H$ such that $y^{-1}x = h_1$. Thus, $x = yh_1 \Rightarrow x \in yH$. $y^{-1}x \in H \Leftrightarrow x^{-1}y \in H$ which implies that there exists a $h_2 \in H$ such that $x^{-1}y = h_2 \Rightarrow y = xh_2 \in xH$.

Note. [x] = xH.

Proposition. For $N \le G$, let $G/N = \{xN : x \in G\}$. Define $xN \cdot yN = (xy)N$. Then G/N is a group if and only if $N \le G$.

$$G/N = G/\sim (x \sim y \Leftrightarrow xN = yN)$$

Every quotient group is G/N for some N.

$$\pi: G \to G/\sim$$
, $\operatorname{Ker}(\pi) \subseteq G$, $G/\sim = G/\operatorname{Ker}(\pi)$.

Proposition. If $H \leq G$ and G is abelian, then $H \subseteq G$.

If G is a group and \sim is an equivalence relation on G, then the quotient set G/\sim is a quotient group if and only if the projection map $\pi: G \to G/\sim$, $\pi(x) = [x]$ is a homomorphism.

If $N \triangleleft G$, then G/N is a quotient group, where $G/N = \{xN : x \in G\}$ and $xN \cdot yN = (xy)N$.

These notions of quotient groups are equivalent.

Proposition. If \sim is an equivalence relation and G/\sim is a quotient group, then there exists a homomorphism $\pi: G \to G/\sim$ and $Ker(\pi) \subseteq G$.

Proof.
$$x \sim y \Leftrightarrow \pi(x) = \pi(y) \Leftrightarrow \pi(y^{-1}x) = 1 \Leftrightarrow y^{-1}x \in \text{Ker}(\pi) \Leftrightarrow x\text{Ker}(\pi) = y\text{Ker}(\pi).$$

If $N \subseteq G$, define $x \sim y \Leftrightarrow xN = yN \Leftrightarrow y^{-1}x \in N$. Then, $G/\sim = G/N$, [x] = xN, $\pi: G \to G/N$, $\pi(x) = xN$, $Ker(\pi) = N$.

Proposition. Every subgroup of an abelian group is a normal subgroup.

Definition.
$$S^n \subseteq \mathbb{R}^{n+1}$$
, $S^n = \{(x_1, x_2, ..., x_{n+1}) : \sum x_i^2 = 1\}$

For $H \leq G$, the relation $x \sim y \Leftrightarrow xH = yH \Leftrightarrow y^{-1}x \in H$ is an equivalence relation and thus partitions *G* into equivalence classes.

$$G = \bigcup_{x \in G} [x], [x] \cap [y] = \emptyset, [x] \neq [y]$$

$$G = \bigcup_{x \in G} xH, xH \cap yH = \emptyset, x \nsim y$$

$$G = \bigcup_{x \in G} xH, xH \cap yH = \emptyset, x \nsim y$$

Proposition. Let $H \leq G$. The number of right cosets of H equals the number of left cosets of H.

Proof. Let $R = \{Hx : x \in G\}$ and $L = \{xH : x \in G\}$. We construct a bijection $L \to R$. Define $f: R \to L$ by $f(Hx) = x^{-1}H$, and define $g: L \to R$ by $g(xH) = Hx^{-1}$. Then f and g are mutually inverse. Hence $R \leftrightarrow L$.

Definition. The number of distinct left cosets of H in G is called the **index** of H in G, and is denoted [G:H].

Theorem (Lagrange's Theorem)

If *H* is a subgroup of G, |G| = |H|[G:H].

Corollary. In a finite group, the order of every element divides the order of the group.

Corollary. A group of prime order is cyclic.

Corollary. Let *G* be a finite group and let $a \in G$. Then, $a^{|G|} = 1$.

Let $\varphi: G \to G'$ be a homomorphism. How far is φ from an isomorphism? How can φ fail to be an isomorphism?

- 1. φ could fail to be injective. (Ker(φ) \neq {1})
- 2. φ could fail to be surjective.

Theorem (First Isomorphism Theorem)

Let $\varphi : G \to G'$ be a homomorphism. Then $Ker(\varphi) \subseteq G$, $Im(\varphi) \subseteq G'$ and

$$G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$$

Proposition. There exists an isomorphism $\theta : G/\text{Ker}(\varphi) \to \text{Im}(\varphi)$ such that

The curved arrow in the middle means the diagram is commutative, i.e. $\varphi = \iota \cdot \theta \cdot \pi$. The curved arrow means it is injective.

Proof. Define
$$\theta$$
 : $G/\text{Ker}(\varphi) \to \text{Im}(\varphi)$ by $\theta(x\text{Ker}(\varphi)) = \varphi(x)$.

First we show that θ is well-defined. Suppose $x \text{Ker}(\varphi) = y \text{Ker}(\varphi)$. Then,

$$x\mathrm{Ker}(\varphi) = y\mathrm{Ker}(\varphi) \Leftrightarrow y^{-1}x\mathrm{Ker}(\varphi) = \mathrm{Ker}(\varphi)$$

$$\Leftrightarrow y^{-1}x \in \mathrm{Ker}(\varphi)$$

$$\Leftrightarrow \varphi(y^{-1}x) = 1$$

$$\Leftrightarrow \varphi(y)^{-1}\varphi(x) = 1$$

$$\Leftrightarrow \varphi(x) = \varphi(y)$$

$$\Leftrightarrow \theta(x\mathrm{Ker}(\varphi)) = \theta(y\mathrm{Ker}(\varphi))$$

Thus, θ is well-defined.

Then, we show that θ is a homomorphism. Let $K = \text{Ker}(\varphi)$.

$$\theta(xKyK) = \theta(xyK)$$

$$= \varphi(xy)$$

$$= \varphi(x)\varphi(y)$$

$$= \theta(xK)\theta(yK)$$

Thus, θ is a homomorphism.

Then, we show that θ is injective.

$$\theta(xK) = \theta(yK) \Leftrightarrow \varphi(x) = \varphi(y)$$

$$\Leftrightarrow \varphi(y)^{-1}\varphi(x) = 1$$

$$\Leftrightarrow \varphi(y^{-1}x) = 1$$

$$\Leftrightarrow y^{-1}x \in K$$

$$\Leftrightarrow xK = yK$$

Thus, θ is injective.

Then, we show that θ is surjective. Let $y \in \text{Im}(\varphi)$. There exists $xK \in G/K$ such that $\theta(xK) = y$. We know there exists an $x \in G$ such that $\varphi(x) = y$. $\theta(xK) = \varphi(x) = y$. Thus, θ is surjective and θ is an isomorphism.

Proposition. Let $a \in G$. If $|a| = \infty$, then $\langle a \rangle \cong (\mathbb{Z}, +)$. If |a| = n, then $\langle a \rangle = \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

Proof. Consider $\mathbb{Z} \xrightarrow{\pi} G$ defined by $\pi(k) = a^k$.

Definition. Let (A, \star) and (B, *) be groups. The <u>direct product</u> or <u>direct sum</u> of A and B is $A \oplus B = \{(a, b) : a \in A, b \in B\}$ where $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \star a_2, b_1 * b_2) \in A \oplus B$.

Definition. In a group G, define $a \sim b \Leftrightarrow \exists x \in G$ such that $b = xax^{-1}$. This is an equivalence relation and a and b are **conjugates**.

Definition. For any $x \in G$, the <u>inner automorphism</u> of G induced by x is $T_x : G \to G$ defined by $T_x(g) = xgx^{-1}$.

Definition. The set of all inner automorphisms of *G* is a group, called the <u>inner automorphism group</u>, and is denoted $Inn(G) = \{T_x : G \to G \mid x \in G\}$.

Proposition. $G/Z(G) \cong Inn(G)$

Proof. Consider $\psi : G \to \text{Inn}(G)$ defined by $x \mapsto T_x$. Then, ψ is surjective, i.e. $\text{Im}(\psi) = \text{Inn}(G)$. We then determine the kernel of the homomorphism.

$$Ker(\psi) = \{x \in G : \psi(x) = 1_G\}$$

$$= \{x \in G : T_x(g) = g, \forall g \in G\}$$

$$= \{x \in G : xgx^{-1} = g, \forall g \in G\}$$

$$= \{x \in G : xg = gx, \forall g \in G\}$$

$$= Z(G)$$

By the first isomorphism theorem, $G/Z(G) \cong Inn(G)$.

Theorem (Third Isomorphism Theorem)

Let *G* be a group. Let $A \subseteq G$, $B \subseteq G$. If $A \subseteq B$, then $A \subseteq B$, $B/A \subseteq G/A$, and

$$(G/A)/(B/A) \cong (G/B)$$

First we establish $A \subseteq B$. $A \subseteq B$ because $A \subseteq G$ and $A \subseteq B$.

$$A \leq B \Leftrightarrow bAb^{-1} \subseteq A, \forall b \in B$$

$$A \triangleleft G \Leftrightarrow xAx^{-1} \subseteq A, \ \forall x \in G$$

But $B \subseteq G$ so $b \in G$. Thus, $bAb^{-1} \subseteq A$, $\forall b \in B$ and $A \subseteq B$. Thus, $A \subseteq B$ and we may construct B/A.

We first show $B/A \le G/A$. It is closed under multiplication since $(b_1A)(b_2A) = (b_1b_2)A \in B/A$ because B is a group. It is also closed under inverses since $(bA)^{-1} = b^{-1}A \in B/A$.

We then show $B/A \subseteq G/A$ by showing $x(B/A)x^{-1} \subseteq B/A$, $\forall x \in G/A$. Let $x \in G/A \Leftrightarrow yA$, $y \in G$. We want to show $(yA)(B/A)(yA)^{-1} \subseteq B/A$. Let $z \in (yA)(B/A)(yA)^{-1}$. Then, there exist $a_1, a_2 \in A$, $b_1 \in B$ such that

$$z = (ya_1)(b_1A)(y^{-1}a_2)$$

= $y(a_1b_1)Ay^{-1}a_2$
= $y(a_1b_1)y^{-1}Aa_2$

We know $a_2 \in A \Rightarrow Aa_2 = A$ and $A \subseteq B \Rightarrow a_1 \in A \subseteq B \Rightarrow a_1 \in A \Rightarrow a_1b_1 \in B$. Thus, there exists $b_2 \in B$ such that $a_1b_1 = b_2$. We substitute these in to get

$$z = yb_2y^{-1}A$$

We know $B \subseteq G \Rightarrow yBy^{-1} \subseteq B$. Thus, there exists a $b_3 \in B$ such that $yb_2y^{-1} = b_3 \in B$. We then get $z = b_3A$. Since $z = b_3A \in B/A$, $B/A \subseteq G/A$.

Now we prove $(G/A)/(B/A) \cong (G/B)$. We define the homomorphism $\omega : G/A \to G/B$ such that $\omega(xA) = xB$. We show that ω is well-defined. If xA = yA, then

$$xA = yA \Leftrightarrow y^{-1}x \in A \subseteq B$$
$$\Rightarrow y^{-1}x \in B$$
$$\Leftrightarrow xB = yB$$
$$\Leftrightarrow \omega(xA) = \omega(yA)$$

We may then determine the kernel and image of the homomorphism.

$$Im(\omega) = \{xB : x \in G\} = G/B$$

$$Ker(\omega) = \{xA : \omega(xA) = B\} = \{xA : xB = B\} = \{xA : x \in B\} = B/A$$

By the first isomorphism theorem, $(G/A)/\mathrm{Ker}(\omega) \cong \mathrm{Im}(\omega)$ so $(G/A)/(B/A) \cong (G/B)$.

Proposition. There is an isomorphism $\theta: (G/A)/(B/A) \to G/B$ such that this diagram com-

mutes.

Theorem (Second Isomorphism Theorem)

Let *G* be a group, $A \subseteq G$, and $N \subseteq G$. Then $AN \subseteq G$, $N \subseteq AN$, and $A \cap N \subseteq A$. Also,

$$(AN)/N \cong A/(A \cap N)$$

Proof

Let $\varphi : A \to AN/N$ such that $a \mapsto aN$. Then by the first isomorphism theorem, $(AN)/N \cong A/(A \cap N)$.

Example. We look at an example of the third isomorphism theorem. Let $G = \mathbb{Z}$, $A = 12\mathbb{Z}$, and $B = 4\mathbb{Z}$. We observe that $A \subseteq B \subseteq G$ so the conditions for the third isomorphism theorem are satisfied.

$$G/A = \mathbb{Z}/12\mathbb{Z} = \{0,1,\dots,11\} \pmod{12}$$
 $B/A = 4\mathbb{Z}/12\mathbb{Z} = \{0,4,8\} \pmod{12}$
 $(G/A)/(B/A) = \{0,1,2,3\} \pmod{4} = \mathbb{Z}/4\mathbb{Z}$
 $(\mathbb{Z}/12\mathbb{Z})/(4\mathbb{Z}/12\mathbb{Z}) \cong \mathbb{Z}/4\mathbb{Z}$

Example. We look at an example of the second isomorphism theorem. Let $G = \mathbb{Z}$, $N = 12\mathbb{Z}$, and $A = 8\mathbb{Z}$.

$$A \cap N = \{0, (2) \, 4, (4) \, 8, \ldots\} = 24\mathbb{Z}$$

$$AN = \{0, (4), (8), \ldots\} = 4\mathbb{Z}$$

$$AN/A = 4\mathbb{Z}/12\mathbb{Z} = \{0, 4, 8\} \pmod{12}$$

$$A/(A \cap N) = 8\mathbb{Z}/24\mathbb{Z} = \{0, 8, 16\} \pmod{24}$$

$$AN/N \cong \mathbb{Z}/3\mathbb{Z} \cong A/(A \cap N)$$

Definition

A ring $(R, +, \cdot)$ is a set together with two binary operations, called addition and multiplication respectively, satisfying the following three axioms.

- (a) The set (R, +) together with addition is an abelian group.
- (b) The binary operation \cdot is associative on R.
- (c) The distributive law holds in R; for all $a, b, c \in R$,

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Definition. The ring *R* is **commutative** if multiplication is commutative.

Definition. The ring R has an <u>identity</u>, or <u>unity</u> or contains a 1 if there is an element $1 \in R$ such that for all $a \in R$, $1 \cdot a = a \cdot 1 = a$.

Note. By abuse of notation, multiplication \cdot may be denoted by simple juxtaposition, i.e. $a \cdot b = ab$.

Note. For a ring with 1, the condition of commutativity under addition is redundant. Note that for any $a, b \in R$,

$$(1+1)(a+b) = 1(a+b) + 1(a+b) = a+b+a+b$$

$$(1+1)(a+b) = (1+1)a + (1+1)b = a+a+b+b$$

Therefore, a + b + a + b = a + a + b + b and therefore a + b = b + a. Thus R is abelian.

Definition. A ring with identity is a **division ring** if every nonzero element has a multiplicative inverse.

Definition

A **field** is a commutative division ring.

Example (The zero ring). Let $R = \{0\}$. Then R is a ring and is called the zero ring.

Example (trivial rings). For any abelian group (G, +), consider the ring $(G, +, \cdot)$, where multiplication is given by $a \cdot b = 0$ for any $a, b \in G$.

Proposition. Let *R* be a ring, and $a, b \in R$.

- (a) 0a = a0 = 0
- (b) (-a)b = a(-b) = -(ab), where -(a) is the additive inverse of a.
- (c) (-a)(-b) = ab
- (d) If *R* has identity 1, then it is unique and -a = (-1)a.

Definition. A nonzero element element a of a ring R is a **zero divisor** if there is a nonzero $0 \neq b \in R$ such that ab = 0 or ba = 0.

Definition. Let R be a ring with identity. An element a of R is a <u>unit</u> if it has a multiplicative inverse, i.e. there is some $b \in R$ such that ab = ba = 1. The set of units of R is denoted R^{\times} .

Definition

An integral domain is a commutative ring with identity which has no zero divisors.

Proposition. Let *R* be an integral domain, and let $a, b, c \in R$. If ab = ac, then a = 0 or b = c.

Definition. Let *R* be a commutative ring with 1. For any $a_0, a_1, \ldots, a_n \in R$, the expression

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

is a **polynomial** in R with coefficients a_0, a_1, \ldots, a_n . If $a_n \neq 0$, then p(x) has **degree** n. The set of all polynomials in R is denoted R[x] or R adjoin x. R[x] is a ring (called the ring of polynomials in R in one variable) under "usual" addition and multiplication. Let $p(x) = a_0 + a_1x + \ldots + a_nx^n$ and $q(x) = b_0 + b_1x + \ldots + b_mx^m$, and without loss of generality n > m. Then,

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

where $b_k = 0$ for k > m and

$$p(x)q(x) = \sum_{k=0}^{m+n} (\sum_{i+j=k} a_i b_j) x^k$$

Note. Polynomials are not determined by their values

The following is a formal construction of the ring of polynomials in *R*.

Let R be a commutative ring with 1. R[x] is the set of all tuples $p(x) = (a_0, a_1, ..., a_n) \in R^{\infty} = \prod_{i \in \mathbb{N}} R$, i.e. $a_k \in R$ where $\exists n \in \mathbb{N}$ such that $a_k = 0$ for k > n. The smallest such n is the degree of p(x). If $p = (a_0, a_1, ..., a_n, 0, ...)$ and $q = (b_0, b_1, ..., b_m, 0, ...)$, then

$$p+q=(a_0+b_0,a_1+b_1,\ldots,a_n+b_n,0,\ldots)$$

$$pq = (c_0, c_1, \dots, c_k, 0, \dots), c_k = \sum_{i+j=k} a_i b_j$$

Definition. Let R be any ring $M_n(R) = \{n \times n \text{ matrices with entries in } R\}$, $A = (a_{ij})$, $B = (b_{ij})$, $(A + B)_{ij} = a_{ij} + b_{ij}$, $A \cdot B = C$, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. This is the ring of $\underline{n \times n \text{ matrices over } R}$ or with entries in R. If R has 1, then

$$I = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} = 1 \in M_n(R)$$

Definition. $GL_n(R)$ is the group of units of $M_n(R)$ and is called the **general linear group**.

Definition. Let R be commutative with 1. Let $G = \{g_1, \dots, g_n\}$ be a finite group. The **group ring** RG of G with coefficients in R is the set of all formal sums

$$a_1g_1 + a_2g_2 + \ldots + a_ng_n$$

where $a_i \in R$,

$$(a_1g_1 + \ldots + a_ng_n) + (b_1g_1 + \ldots + b_ng_n) = (a_1 + b_1)g_1 + \ldots + (a_n + b_n)g_n$$

$$(a_1g_1 + \ldots + a_ng_n) \cdot (b_1g_1 + \ldots + b_ng_n) = c_1g_1 + \ldots + c_ng_n, \text{ where } c_k = \sum_{g_ig_j = g_k} a_ib_j$$

Note. $1 \cdot g_i = g_i, a_i \cdot 1 = a_i, (a_i g_i)(b_j g_j) = (a_i b_j)(g_i g_j)$

Example. $G = S_4$, $R = \mathbb{Z}$.

$$x = 2(12) + (23) + 7(124)$$
 $y = 3(1) + 2(23)$

$$x + y = 3(1) + 2(12) + 3(23) + 7(124)$$

$$xy = 6(12) + 4(12)(23) + 3(23) + 2(1) + 21(124) + 14(124)(23)$$

$$= 2(1) + 6(12) + 3(23) + 4(123) + 21(124) + 14(1234)$$

Definition

A <u>subring</u> *S* of a ring $(R, +, \cdot)$ is a subgroup $S \le (R, +)$ which is closed under the multiplicative structure of *R*.

Proposition. A subset *S* of the ring *R* is a subring if and only if *S* is closed under subtraction and multiplication.

Proof. This follows immediately from the fact that a subset H of an abelian group G is a subgroup if and only if H is closed under subtraction.

Definition. The <u>center</u> of a ring A is the set of elements $a \in A$ such that ax = xa for all $x \in A$. The center of A is a subring of A.

Definition

Let *R* and *S* be rings. A <u>ring homomorphism</u> is a map of sets $\varphi : R \to S$ such that for all $a, b \in R$,

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

 $\varphi(ab) = \varphi(a)\varphi(b)$

Definition. The **kernel** of the homomorphism $\varphi : R \to S$ is given by

$$Ker(\varphi) = \{ r \in R : \varphi(r) = 0 \in S \}$$

Definition. A **ring isomorphism** is a bijective homomorphism.

Definition

A subring I of R is a <u>left ideal</u> of R if I is closed under left multiplication by elements from R, i.e. $rI \subseteq I$ for all $r \in R$. Similarly, I is a <u>right ideal</u> of R if I is closed under right multiplication by elements of R, i.e. $Ir \subseteq I$ for all $r \in R$. A subring which is both a left and right ideal is called a **two sided ideal**, or simply **ideal**.

Definition

The <u>quotient ring</u> R/I of the ring R by the ideal $I \subseteq R$ is the quotient group of cosets R/I under the operations

$$(r+I) + (s+I) = (r+s) + I$$
 $(r+I) \cdot (s+I) = (r \cdot s) + I$

a for all $r, s \in R$.

Proposition. For any ring R and ideal I, R/I is a ring.

Proposition. If *I* is any ideal of *R*, the map $\varphi : R \to R/I$ defined by $r \mapsto r + I$ is a surjective ring homomorphism with kernel *I*.

Theorem (First Isomorphism Theorem for Rings)

If $\varphi : R \to S$ is homomorphism of rings, then $Ker(\varphi)$ is an ideal of R, $Im(\varphi)$ is a subring of S, and

$$R/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$$

Theorem (Second Isomorphism Theorem for Rings)

Let *R* be a ring, *A* a subring and *B* an ideal of *R*. Then $A + B = \{a + b : a \in A, b \in B\}$ is a subring of *R*, $A \cap B$ is an ideal of *A* and

$$(A+B)/B \cong A/(A \cap B)$$

Theorem (Third Isomorphism Theorem for Rings)

Let *I* and *J* be ideals of the ring *R* such that $I \subseteq J$. Then J/I is an ideal of R/I and

$$(R/I)(J/I) \cong (R/J)$$

Theorem (Fourth Isomorphism Theorem for Rings)

Let *I* be an ideal of *R*. The correspondence

$$A \longleftrightarrow A/I$$

is an inclusion preserving bijection between the subring A of R containing I and the set of subrings of R/I. Further, a subring A containing I is an ideal of R if and only if A/I is an ideal of R/I.