NAME:

MATH 624 Final Take Home Exam

<u>Due</u>: Wednesday, May 10th 2017 no later than 5:30PM

•	4			
In	str	เาต	ทา	ns

1.	. This exam consists of five (5) problems all counted equally for a total of 100% .		

- 2. You may consult Stein-Shakarchi books III and IV, your homework or the class notes **only**. No other books or notes are permitted.
- 3. You should work on the problems alone; do not discuss the problems with other people or classmates. You may ask me any questions you have.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please **type** your full work and answers <u>clearly</u> after each problem and attached each answer to the stated problem
- 6. Show all your work and justify each and all steps in your proofs.

- 1. Let μ and ν be two positive measures on a measurable space (X, \mathcal{M}) . Assume that ν is finite. Show that that following are equivalent:
 - a) $\nu \ll \mu$ holds.
 - b) For each $\{A_n\}_{n\geq 1}$ in \mathcal{M} with $\lim_{n\to\infty}\mu(A_n)=0$, we have that $\lim_{n\to\infty}\nu(A_n)=0$.
 - (c) For every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that whenever $A\in\mathcal{M}$ satisfies $\mu(A)<\delta$, then $\nu(A)<\varepsilon$ holds.

- 2. a) Let $(X, \|\cdot\|)$ be a normed vector space. Show that the following are equivalent:
 - i) X is complete (hence X is Banach).
 - ii) If $\{x_n\}_{n\geq 1}\subseteq X$ satisfies that $\sum_{n=1}^{\infty}\|x_n\|<\infty$ then $\sum_{n=1}^{\infty}x_n$ converges in X
 - b) Let (X, \mathcal{M}) be a measurable space. Show that M(X) := the space of all signed **finite** measures on (X, \mathcal{M}) together with the norm

$$\|\mu\| = |\mu|(X)$$

is a Banach space.

Here, $|\mu|$ denotes the total variation of μ . You may assume without proof that M(X) is a vector space over \mathbb{R} and that the total variation is a norm.

Hints. Use part a) to prove completeness by establishing ii).

To prove ii) suppose $\sum_n \|\mu_n\| < \infty$ and consider -for example- $\nu := \sum_{n=1}^\infty |\mu_n|$, a positive finite measure (why?). **Prove** that μ_n are all absolutely continuous w.r.t. ν . Then use the Radon-Nikodym theorem to find $f_n \in L^1(d\nu)$ (here recall μ_n are signed **finite**). Use this to find an $f \in L^1(d\nu)$ and then a $\mu \in M(X)$ such that $\|\mu - \sum_{n=1}^N \mu_n\| \to 0$ as $N \to \infty$.

3. Let X be a Banach space and X^* its dual. Recall a sequence $\{x_n\}_{n\geq 1}$ is said to *converge* weakly to x if

$$\lim_{n \to \infty} \ell(x_n) = \ell(x)$$

for any $\ell \in X^*$.

- (a) Show that convergence implies weak convergence.
- (b) Show that if X = H a separable Hilbert space and $\{x_n\}_n$ is an orthonormal basis of H then x_n converges weakly to 0 but it does **not** converge strongly.
- (c) Suppose $X = \ell^1(\mathbb{N})$. Show that if x_n converges weakly in ℓ^1 then it converges in ℓ^1 (use what's the dual of ℓ^1).
- (d) Let $f_n := n \, 1_{(0,\frac{1}{n})} \in L^p$ (for any $p \ge 1$). Show that f_n converges to 0 in measure and a.e. but it does not converge to 0 weakly in L^p for any p.

- 4. Let f(x) = |x|, $x \in \mathbb{R}$. Let \mathcal{M} be the *smallest* σ -algebra with respect to which f is measurable.
 - (a) Characterize \mathcal{M} , i.e. describe the measurable sets. Characterize also the measurable functions with respect to \mathcal{M} .

Hint: For a given J, interval, what does the set $f^{-1}(J)$ – which must be in \mathcal{M} – look like?

(b) Let μ and ν be two measures on $\mathcal M$ defined by

$$\mu(A) = \int_A e^{-x^2} dx, \quad A \in \mathcal{M},$$

$$\nu(A) = \int_A e^{-x^2 + x} dx, \quad A \in \mathcal{M}.$$

Show that μ is absolutely continuous with respect to ν and compute the Radon-Nikodym derivative $d\mu/d\nu$.

Hints: i) Make sure this derivative is \mathcal{M} -measurable.

ii) Recall
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

5. Let (X, \mathcal{M}, μ) be a measure space. Let 0 and let <math>q be such that $\frac{1}{p} + \frac{1}{q} = 1$. Show that if f and g are positive functions then

$$\int fgd\mu \, \geq \, \left(\int f^p d\mu\right)^{1/p} \left(\int g^q d\mu\right)^{1/q} \, .$$

Hint: Use Hölder inequality for some suitable chosen functions (call them u and v.)