

音源定位システムの設計

Abstract: This system works by using two pieces of MSP430 as the main controllers, function for driving sound and control core. Acoustic emission module chip timer A produced by PWM square wave. Square wave drives a speaker to emit sound. Coordinate paper four corners are respectively provided with sound receiving module, the received signal through active band-pass filter, amplified transferred to the comparator, the sine wave signal is converted into a square wave signal, the microprocessor to capture this square wave signal, the timer is obtained through two receiving module time interval, thereby calculating the coordinate value of the sound source.

Key words: acoustic emission, acoustic receiving, active power filter, the three point positioning

1. 計画

1.1 課題

図 1.1.1 が示すような音源定位システムを設計してください。

方眼紙 ($450 \text{mm} \times 600 \text{mm}$) に $350 \text{mm} \times 500 \text{mm}$ 長方形枠が設置されている。音源モジュールが枠内の任意の位置 (x, y) に設置されて、角の ABCD に音センサ (マイク) が 4 つある。音源モジュールが音を出して、 4 つのマイクでの検出順位と時間差で音源モジュールの座標を計算すること。

1.2 要求

(1) 音源モジュール

基本周波数:500Hz;

継続時間:1s; 駆動電圧:3V;

消費電力: 200mW 以下; MCU: msp430(PWM 駆動)

(2) 音センサ

增幅回路;

バンドパスフィルタ

(3) データ処理部

音の検出順位と時間差で座標を計算する; 計算した座標をLCDに表示する(SPI通信)

1.3 提案

課題を4つのテーマに分けて検討する。

(1) MCU

案一:8bitの8051 操作が簡単で、低コスト 使える機能が少ない、消費電力が高い

案二:STM32 機能が多い コストが高い、操作がやや難しい

案三: MSP430

省エネ、機能が多い、コストパフォーマンスがいい

案三を採用する。

(2) 音源モジュール

案一:エレクトレット式 駆動が簡単、低コスト 音が小さい、低周波数範囲はNG

案二:スピーカ ノイズが比較的に少ない、低周波数は OK 消費電力が高い

案二を採用する。

(3) 信号の処理

案一: RC フィルタ

構造が簡単

案二: Active Power Filters (APF)

フィルタ効果がいい

周波数制限がある、低周波数制限用

案二を採用する。

(4) 電源

案一: 単一電源

構造が簡単で、実現しやすい

案二:正負電源

ゼロ電圧中心なので、コンデンサーがなくても信号が伝わるから、 低周波数領域では性能がいい。

案二を採用する。

2. ハードウェアの設計

2.1 基本構成

音信号の測定、電気信号の処理、MCUの接続を設計する。

- 2.2 詳細設計
- 2.2.1 音源モジュール

2.2.2 音センサ

2.2.3 APF (Active Power Filters)

2.2.4 增幅回路

3. ソフトの設計

3.1 フローチャート

図 3.1.1 が示すように、組み込みソフトを作成する。

図3.1.1

4. 測定と評価

- 4.1 測定機材 TDS2012 オシロスコープ SFG2004 信号源 MPS-3003LK-3 直流電源
- 4.2 音センサで変換した信号の評価

受け取った信号

信号の立ち上がった部分

信号の安定した部分

4.3 測定結果

測定できるが、精度がよくない。

改善点:

- ①相互相関関数で時間差を測定する。
- ②ループ測定。ABC+BCD+CDA+DAB順で測定して、平均値をとる。

参考文献

- [1] 秦龙. MSP430 单片机常用模块与综合系统实例精讲. 2007
- [2]刘晓刚. 基于四元十字阵的声被动定位系统,硕士论文,南京理工大学,2005. 6
- [3] 声源定位实验——个具有明确应用背景和前沿技术特点的综合性实验 梁家惠 王成云 饶 宇 (北京航空航天大学应用物理系 100083)