Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

TUTORATO 3 (31 MARZO 2011)

1. Sia $X = \mathbb{R}$, sia $S := \{1, 2, 3\} \cup (4, 5)$ e sia ρ la relazione d'equivalenza così definita:

$$x \rho y \Leftrightarrow x = y$$
 oppure $x, y \in S$.

Verificare che la proiezione sul quoziente $p: X \to X/\rho$ non è nè aperta nè chiusa.

$\underline{Solutione}$:

Per verificare che p non è aperta (risp. chiusa), basterà trovare un aperto (risp. un chiuso) di \mathbb{R} tale che la sua immagine attraverso p non sia un aperto (risp. un chiuso) nella topologia quoziente X/ρ .

Consideriamo A=(1,3) e C=[1,3] rispettivamente aperto e chiuso di \mathbb{R} . Si ha:

$$p(A) = p(C) = \{[1]_{\rho}, [x]_{\rho}, x \in (1, 2) \cup (1, 3)\}.$$

Mostriamo che p(A)=p(C) non è nè aperto nè chiuso, ovvero, per definizione di topologia quoziente, che $B:=p^{-1}(p(A))=p^{-1}(p(C))$ non è nè aperto nè chiuso in \mathbb{R} ; infatti:

$$B = [1, 3] \cup (4, 5)$$

non è nè aperto nè chiuso in \mathbb{R} in quanto $\operatorname{Int} B = (1,3) \cup (4,5) \subseteq B \subseteq [1,3] \cup [4,5] = \overline{B}$.

2. Sia ρ la relazione d'equivalenza su $\mathbb R$ così definita:

$$x \rho y \Leftrightarrow |x| = |y|$$

Dimostrare che \mathbb{R}/ρ è omeomorfo alla semiretta chiusa $[0, +\infty)$.

Solutione:

Ricordiamo che:

Dati X,Y,Z spazi topologici e un'identificazione $p:X\to Y$, un'applicazione $g:Y\to Z$ è un omeomorfismo se e solo se g è biettiva e $g\circ p$ è un'identificazione.

Nel nostro caso $X=\mathbb{R},\ Y=\mathbb{R}/\rho,\ Z=[0,+\infty).$ In oltre $p:\mathbb{R}\to\mathbb{R}/\rho$ è tale che $p(x)=[x]_\rho\ \forall\ x\in\mathbb{R},\ \mathrm{dove}\ [x]_\rho=\{-x,x\}$ se $x\neq0$ e $[0]_\rho=\{0\}.$

Definiamo $g: \mathbb{R}/\rho \to [0, +\infty]$ come segue:

$$g([x]_{\rho}) = |x|, \, \forall [x]_{\rho} \in \mathbb{R}/\rho.$$

Si ha quindi il seguente diagramma:

$$\mathbb{R} \stackrel{g \circ p}{\longrightarrow} [0, +\infty)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Dunque per dimostrare che g è un omeomorfismo sarà sufficiente far vedere che g è biettiva e $g \circ p$ è un'identificazione, dove $g \circ p : \mathbb{R} \to [0, +\infty)$ è tale che $(g \circ p)(x) = |x|$.

• q è biettiva:

iniettività: siano $[x]_{\rho}, [y]_{\rho} \in \mathbb{R}/\rho$ tali che $g([x]_{\rho}) = g([y]_{\rho}) \Rightarrow |x| = |y| \Rightarrow x \rho y \Rightarrow [x]_{\rho} = [y]_{\rho};$

suriettività: $\forall x \in [0, +\infty), x = |x| = g([x]_{\rho}), [x]_{\rho} \in \mathbb{R}/\rho.$

• $g \circ p$ è un'identificazione:

Basterà mostrare che $g \circ p$ è suriettiva e che $[0, +\infty)$ è dotato della topologia quoziente rispetto a $g \circ p$ (infatti la continuità di $g \circ p$ seguirà dal fatto che la topologia quoziente è più fine di ogni altra topologia che renda $g \circ p$ continua).

 $g \circ p$ è chiaramente suriettiva.

Mostriamo dunque che $A \subseteq [0, +\infty)$ è aperto $\Leftrightarrow (g \circ p)^{-1}(A)$ è aperto in \mathbb{R} .

 \Rightarrow : $[0,+\infty) \subsetneq \mathbb{R}$ è dotato della topologia di sottospazio. Quindi, data $\mathfrak{B} := \{(a,b) \cap [0,+\infty) : a,b \in \mathbb{R}, a < b\}$ base della topologia indotta da \mathbb{R} su $[0,+\infty)$, sarà sufficiente dimostrare l'asserto per gli aperti della base. Osserviamo che:

$$A = (a,b) \cap [0,+\infty) = \left\{ \begin{array}{ll} \varnothing & \text{se } b \leq 0 \\ [0,b) & \text{se } a < 0 < b \\ (a,b) & \text{se } a \geq 0 \end{array} \right. \Rightarrow \quad (g \circ p)^{-1}(A) = \left\{ \begin{array}{ll} \varnothing & \text{se } b \leq 0 \\ (-b,b) & \text{se } a < 0 < b \\ (-b,-a) \cup (a,b) & \text{se } a \geq 0 \end{array} \right.$$

Segue l'asserto essendo \emptyset , (-b,b), $(-b,-a) \cup (a,b)$ aperti in \mathbb{R} .

- \Leftarrow : Sia $A \subseteq [0, +\infty)$ tale che $(g \circ p)^{-1}(A)$ è aperto in \mathbb{R} . Facciamo vedere che $A = [0, +\infty) \cap (g \circ p)^{-1}(A)$ da cui A risulta aperto nella topologia indotta da \mathbb{R} su $[0, +\infty)$. Ciò segue direttamente dal fatto che $(g \circ p)^{-1}(A) = \{x \in A\} \cup \{-x : x \in A\}$.
- 3. Sia $f:X\to Y$ un'identificazione, $B\subseteq Y$ un sottospazio aperto e $A=f^{-1}(B)\subseteq X$. Dimostrare che l'applicazione $g:A\to B$ indotta da f è un'identificazione.

$\underline{Soluzione}$:

Osserviamo innanzitutto che, essendo g indotta da f, si ha $g(x) = f(x) \, \forall \, x \in A$. Affinché g sia un'identificazione sarà sufficiente dimostrare che g è suriettiva e che B è dotato

Affinche g sia un'identificazione sara sufficiente dimostrare che g e suriettiva e che B e dotato della topologia quoziente rispetto a g (la continuità di g seguirà direttamente da quest'ultimo fatto).

• g e suriettiva:

 $g(A) = f(A) = f(f^{-1}(B)) = B$ (l'ultimo passaggio è giustificato dal fatto che, essendo f suriettiva, ammette un'inversa a destra).

• B ha la topologia quoziente rispetto a g:

Dobbiamo dimostrare che:

$$B_1 \subseteq B$$
 è aperto $\Leftrightarrow g^{-1}(B_1)$ è aperto in A

 \Rightarrow : Sia $B_1 \subseteq B$ aperto in $B \Rightarrow B_1 = B \cap A_Y$ con $A_Y \subseteq Y$ aperto in Y.

$$q^{-1}(B_1) = q^{-1}(B \cap A_Y) = f^{-1}(B \cap A_Y) = f^{-1}(B) \cap f^{-1}(A_Y) = A \cap f^{-1}(A_Y)$$

Ora f è un'identificazione (in particolare f è continua); essendo $A_Y \subseteq Y$ aperto in Y segue che $f^{-1}(A_Y) \subseteq X$ è aperto in X.

Otteniamo dunque che $g^{-1}(B_1)$ è aperto nella topologia di sottospazio di A in X.

 \Leftarrow : Sia $g^{-1}(B_1) \subseteq A$ aperto in A; allora:

$$g^{-1}(B_1) = f^{-1}(B_1) = A \cap A_X \text{ con } A_X \subseteq X \text{ aperto in } X.$$

Ora, per ipotesi, abbiamo che $A = f^{-1}(B)$, con B aperto in Y; dalla continuità di f, segue che A è aperto in X, da cui $g^{-1}(B_1) = f^{-1}(B_1)$ è aperto in X perché intersezione finita di aperti di X.

Inoltre, poiché f è un'identificazione, sappiamo che:

$$f^{-1}(B_1)$$
 è aperto in $X \Leftrightarrow B_1$ è aperto in Y .

Possiamo concludere che B_1 è aperto in Y e conseguentemente in B, poiché $B_1=B\cap B_1$ con B_1 aperto in Y.

4. Sia $p: X \to Y$ un'identificazione. Dimostrare che se D è un sottoinsieme denso di X, p(D) è denso in Y.

Soluzione:

D è un sottoinsieme denso di $X \Leftrightarrow \overline{D} = X$.

Supponiamo, per assurdo, che p(D) non sia denso in $Y \Rightarrow \overline{p(D)} = C \subsetneq Y$, con C chiuso in Y.

Consideriamo $p^{-1}(C)$. Dalla continuità di p segue che $p^{-1}(C)$ è chiuso in X; inoltre è chiaro che $D \subseteq p^{-1}(C)$. Si ha:

$$X = \overline{D} \subseteq \overline{p^{-1}(C)} = p^{-1}(C) \Rightarrow X = p^{-1}(C) \Rightarrow Y = p(X) = p(p^{-1}(C)) = C,$$

contro l'ipotesi che $C \subseteq Y$.

- 5. Siano (X, \mathcal{T}_X) ed (Y, \mathcal{T}_Y) due spazi topologici e sia $\mathcal{T}_{X \times Y}$ la topologia prodotto su $X \times Y$. Verificare:
 - (a) $\mathcal{T}_{X\times Y}$ è la topologia discreta $\Leftrightarrow \mathcal{T}_X$ ed \mathcal{T}_Y sono rispettivamente la topologia discreta su X e su Y;
 - (b) $\mathcal{T}_{X\times Y}$ è la topologia banale $\Leftrightarrow \mathcal{T}_X$ ed \mathcal{T}_Y sono rispettivamente la topologia banale su X e su Y.

Solutione:

(a) \Rightarrow : Sia $\mathcal{T}_{X\times Y}$ la topologia discreta su $X\times Y$. Mostriamo che ogni sottoinsieme di X è aperto in X.

Sia dunque $A \subseteq X \Rightarrow A \times Y$ è aperto in $\mathcal{T}_{X \times Y}$.

Consideriamo $\pi_X: X \times Y \to X$, la proiezione su X; ricordando che π_X è un'applicazione aperta si ha che $A = \pi_X(A \times Y)$ è aperto in X.

Ne segue che \mathcal{T}_X è la topologia discreta su X.

Si dimostra, in modo analogo, che \mathcal{T}_Y è la topologia discreta su Y.

 \Leftarrow : Siano \mathcal{T}_X e \mathcal{T}_Y rispettivamente la topologia discreta su X e su Y. Basterà verificare che $\forall (x,y) \in X \times Y, \{(x,y)\} \in \mathcal{T}_{X \times Y}$. Infatti $\{(x,y)\} = \{x\} \times \{y\} \in \mathcal{T}_X \cdot \mathcal{T}_Y \subseteq \mathcal{T}_{X \times Y}$.

- (b) \Rightarrow : Sia $T_{X\times Y}$ la topologia banale su $X\times Y$ $(T_{X\times Y}=\{\varnothing,X\times Y\})$ e sia $A\in\mathcal{T}_X\Rightarrow$ $A \times Y \in \mathcal{T}_{X \times Y} \Rightarrow A = \emptyset \text{ o } A = X \Rightarrow \mathcal{T}_X = \{\emptyset, X\}.$ Analogamente si dimostra che \mathcal{T}_Y è la topologia banale su Y.
 - \Leftarrow : Per ipotesi $\mathcal{T}_X = \{\varnothing, X\}$ e $\mathcal{T}_Y = \{\varnothing, Y\}$. Sappiamo che $\mathcal{T}_{X\times Y}$ ha come base $\mathcal{T}_X\cdot\mathcal{T}_Y=\{\varnothing,X\times Y\}\Rightarrow \mathcal{T}_{X\times Y}=\{\varnothing,X\times Y\}$ è la topologia banale su $X \times Y$.
- 6. Sia K un campo, $n \geq 1$ e X_1, \ldots, X_n indeterminate. Sia $K[X_1, \ldots, X_n]$ l'anello dei polinomi in X_1, \ldots, X_n a coefficienti in K.

Dato $S \subseteq K[X_1, \dots, X_n]$ un sottoinsieme di polinomi, definiamo:

$$V(S): {\bf a} = (a_1, \dots, a_n) \in K^n: f({\bf a}) = 0 \,\forall \, f \in S$$
.

Dimostrare che:

- (a) V(S) = V((S)), dove $(S) := \{p_1 f_1 + \dots + p_h f_h : f_1, \dots, f_h \in S, p_1, \dots, p_h \in K[X_1, \dots, X_n]\}$;
- (b) Su K^n si può definire una topologia \mathcal{Z} , detta topologia di Zariski, che ha come insiemi chiusi la classe C definita come segue:

$$\mathcal{C} := \{ V(S) : \forall S \subseteq K[X_1, \dots, X_n] \};$$

- (c) i punti sono chiusi in (K^n, \mathcal{Z}) ;
- (d) Se $n=1, \mathcal{Z}$ coincide con la topologia cofinita.

Soluzione:

- (a) Sia $S = \{f_i, i \in I\}$. Dimostriamo l'uguaglianza per doppio contenimento:
 - \subseteq : Sia $\mathbf{a} \in V(S) \Rightarrow f_i(\mathbf{a}) = 0 \quad \forall i \in I.$ Sia $g \in (S) \Rightarrow g = p_1 f_1 + \dots + p_h f_h, f_i \in$ $S \quad e \quad p_i \in K[X_1, \dots, X_n], \, \forall i = 1, \dots, h.$ Si ha:

$$g(\mathbf{a}) = p_1(\mathbf{a})f_1(\mathbf{a}) + \dots + p_h(\mathbf{a})f_h(\mathbf{a}) = p_1(\mathbf{a}) \cdot 0 + \dots + p_h(\mathbf{a}) \cdot 0 = 0$$

Dall'arbitrarietà di g segue che $\mathbf{a} \in V((S))$.

- \supseteq : E' semplice verificare che, dati S, T sottoinsiemi di $K[X_1, \ldots, X_n]$, se $S \subseteq T$ allora $V(S) \supseteq V(T)$. Nel nostro caso abbiamo $S \subseteq (S)$; segue quindi che $V(S) \supseteq V((S))$.
- (b) Dimostriamo che \mathcal{Z} è una topologia.
 - $\{\emptyset\}$ e K^n sono chiusi :

E' facile verificare che $K^n = V(0)$ e $\{\emptyset\} = V(1)$.

• L'intersezione di una famiglia qualsiasi di chiusi è un chiuso: Per dimostrare l'asserto basterà verificare la seguente proprietà:

$$\bigcap_{i \in I} V(S_i) = V(\bigcup_{i \in I} S_i), S_i = \{f_{i,j}, j \in J_i\}$$

 $\bigcap_{i \in I} V(S_i) = V(\bigcup_{i \in I} S_i), \ S_i = \{f_{i,j}, \ j \in J_i\}$ $\mathbf{a} \in \bigcap_{i \in I} V(S_i) \Leftrightarrow \mathbf{a} \in V(S_i) \ \forall \ i \in I \Leftrightarrow f_{i,j}(\mathbf{a}) = 0, \ \forall \ j \in J_i, \ \forall \ i \in I \Leftrightarrow \mathbf{a} \in V(S_i)$ $V(\bigcup_{i\in I} S_i).$

• L'unione finita di chiusi è un chiuso: Dimostriamo, per doppio contenimento, che $\forall S_1, S_2 \subseteq K[X_1, \dots, X_n]$ vale la seguente proprietà:

$$V(S_1) \cup V(S_2) = V(S_1 \cdot S_2), \quad S_1 \cdot S_2 = \{ f \cdot g : f \in S_1, g \in S_2 \}$$

- \subseteq : Sia $\mathbf{a} \in V(S_1) \cup V(S_2) \Rightarrow \mathbf{a} \in V(S_1)$ oppure $\mathbf{a} \in V(S_2)$. Supponiamo che $\mathbf{a} \in V(S_1) \Rightarrow f(\mathbf{a}) = 0, \forall f \in S_1$. Considerando allora $f \cdot g \in S_1 \cdot S_2$ con $f \in S_1$ e $g \in S_2$, si ha: $f \cdot g(\mathbf{a}) = f(\mathbf{a})g(\mathbf{a}) = 0 \cdot g(\mathbf{a}) = 0 \Rightarrow \mathbf{a} \in V(S_1 \cdot S_2)$;
- \supseteq : Sia, ora, $\mathbf{a} \in V(S_1 \cdot S_2) \Rightarrow f(\mathbf{a}) \cdot g(\mathbf{a}) = 0 \quad \forall f \in S_1 \text{ e } g \in S_2.$ Supponiamo che $\mathbf{a} \notin V(S_1) \Rightarrow \quad \exists \tilde{f} \in S_1 \text{ tale che } \tilde{f}(\mathbf{a}) \neq 0.$ Ma, per ipotesi, $\tilde{f}(\mathbf{a}) \cdot g(\mathbf{a}) = 0 \quad \forall g \in S_2 \Rightarrow g(\mathbf{a}) = 0 \, \forall g \in S_2 \Rightarrow \mathbf{a} \in V(S_2) \Rightarrow \mathbf{a} \in V(S_1) \cup V(S_2).$
- (c) Sia $\mathbf{a} = (a_1, \dots, a_n) \in K^n$; scelto $S = \{X_1 a_1, \dots, X_n a_n\}$ è facile verificare che $V(S) = \{(a_1, \dots, a_n)\} \Rightarrow \mathbf{a}$ è un chiuso rispetto a \mathcal{Z} .
- (d) Sia n=1; mostriamo che i chiusi, fatta eccezione per K^n , hanno cardinalità finita. Sia C un chiuso di \mathcal{Z} ; allora C è della forma: $C=V(f_i,\,i\in I)$. Scelto un qualsiasi $\bar{i}\in I$, si ha:

 $C = V(f_i, i \in I) \subseteq V(f_{\overline{i}})$ da cui $\#C \le \#V(f_{\overline{i}}) \le \partial(f_{\overline{i}})$ (per il teorema fondamentale dell'algebra). Ne segue che C ha cardinalità finita.

7. Sia X una corona circolare chiusa in \mathbb{R}^2 racchiusa dalle circonferenze C_1 e C_2 . Consideriamo su X le seguenti relazioni di equivalenza:

$$x \rho_i y \Leftrightarrow x = y \text{ oppure } x, y \in C_i, \quad i = 1, 2.$$

A cosa è omeomorfo il quoziente X/ρ_i ?

Solutione:

Fissato un riferimento cartesiano, non è restrittivo supporre che C_1 e C_2 siano le circonferenze di centro (0,0) e raggi rispettivamente a e b.

Indichiamo con
$$r = \|\mathbf{x}\|$$
 e $\vartheta = \arctan\left(\frac{x_2}{x_1}\right)$, $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \Rightarrow \mathbf{x} = (r\cos(\vartheta), r\sin(\vartheta))$.
Allora $X = \{(r\cos(\vartheta), r\sin(\vartheta)) : r \in [a, b], \vartheta \in [0, 2\pi]\}$.

Dimostriamo che, per i=1,2, il quoziente X/ρ_i è omeomorfo a $D^2:=\{\mathbf{x}=(x_1,x_2)\in\mathbb{R}^2:r=\|\mathbf{x}\|\leq 1\}.$ Consideriamo l'applicazione $g_1:X/\rho_1\to D^2,$ definita nel modo seguente:

$$g_1([\mathbf{x}]_{\rho_1}) = \frac{1}{b-a}(r-a)(\cos(\vartheta), \sin(\vartheta)), \, \forall \, [\mathbf{x}]_{\rho_1} \in X/\rho_1$$

Si può verificare come nell'esercizio 2 che g_1 è un omeomorfismo.

Analogamente per i=2 l'omeomorfismo $g_2: X/\rho_2 \to D^2$ è definito nel modo seguente:

$$g_2([\mathbf{x}]_{\rho_2}) = \frac{1}{b-a}(b-r)(\cos(\vartheta),\sin(\vartheta)), \,\forall \, [\mathbf{x}]_{\rho_2} \in X/\rho_2$$

- 8. Trovare un esempio di applicazione continua $f:(X,\mathcal{T}_1)\to (Y,\mathcal{T}_2)$, determinando opportunamente per ciascun caso (X,\mathcal{T}_1) e (Y,\mathcal{T}_2) , tale che:
 - (a) f sia aperta e non chiusa;
 - (b) f sia chiusa e non aperta;
 - (c) f sia chiusa e aperta;
 - (d) f non sia né aperta né chiusa.

Solutione:

La continuità delle seguenti applicazioni è ovvia poiché la topologia dello spazio di partenza è quella discreta.

(a)
$$X = Y = \{a, b\}, \quad \mathcal{T}_X$$
 la topologia discreta, $\mathcal{T}_Y := \{\{\varnothing\}, \{a\}, \{a, b\}\} \quad \text{ed} \quad f \equiv a.$

L'applicazione è aperta poichè $\forall A$ aperto di X si ha che $f(A) = \{a\}$ è aperto in Y. Non è chiusa poiché, preso ad esempio $\{b\}$ chiuso in X, $f(\{b\}) = \{a\}$ che non è chiuso in Y in quanto $\{a\}^c = \{b\}$ non è aperto;

(b)
$$X = Y = \{a, b\}, \quad \mathcal{T}_X$$
 la topologia discreta, $\mathcal{T}_Y := \{\{\varnothing\}, \{a\}, \{a, b\}\} \quad \text{ed} \quad f \equiv b.$

L'applicazione è chiusa poichè $\forall C$ chiuso di X si ha che $f(C)=\{b\}$ è chiuso in Y in quanto $\{b\}^c=\{a\}$ è aperto in Y.

Non è aperta poiché, preso ad esempio $\{a\}$ aperto in X, $f(\{a\}) = \{b\}$ non è aperto in Y;

(c)
$$X = Y$$
, $\mathcal{T}_X = \mathcal{T}_Y$ e $f(x) = x \ \forall x \in X$.

In particolare, l'applicazione è un omeomorfismo quindi è sia chiusa che aperta;

(d) X = Y (aventi almeno due punti), \mathcal{T}_X la topologia discreta, \mathcal{T}_Y la topologia banale e $f(x) = x \ \forall x \in X$.

Preso qualsiasi $\{x\} \in X$, $\{x\}$ è aperto (risp. chiuso) in X ma $f(\{x\}) = \{x\}$ non è aperto (risp. non è chiuso) in Y.

9. Sia $X=\{(x,y)\in\mathbb{R}^2:(x+3)^2+y^2\leq 1\}\cup\{(x,y)\in\mathbb{R}^2:(x-3)^2+y^2\leq 1\}$ e siano $\gamma_1=\{(x,y)\in\mathbb{R}^2:(x+3)^2+y^2=1\}$ e $\gamma_2=\{(x,y)\in\mathbb{R}^2:(x-3)^2+y^2=1\}$. Sia $Y=\gamma_1\cup\gamma_2$ e X/ρ_Y il quoziente di X ottenuto identificando Y a un punto (ovvero quozientando X rispetto alla relazione di equivalenza ρ_Y tale che $x\,\rho_Y\,y\Leftrightarrow x=y$ oppure $x,y\in Y$). Dire se la proiezione $p:X\to X/\rho_Y$ è aperta o non aperta, chiusa o non chiusa.

Solutione:

• p è chiusa:

Osserviamo innanzitutto che γ_1 e γ_2 sono chiusi in X, in quanto chiusi in $\mathbb{R}^2 \Rightarrow Y = \gamma_1 \cup \gamma_2$ è chiuso in X.

Sia C un chiuso di X; consideriamo due casi:

- $C \cap Y = \emptyset \Rightarrow p^{-1}(p(C)) = C$ è chiuso in $X \Rightarrow p(C)$, per definizione di topologia quoziente, è chiuso in X/ρ_Y ;

- $C \cap Y \neq \emptyset \Rightarrow p^{-1}(p(C)) = C \cup Y$ è chiuso in $X \Rightarrow p(C)$, per definizione di topologia quoziente, è chiuso in X/ρ_Y .

In ogni caso l'immagine di un chiuso è chiusa.

• p non è aperta:

Sia $A = \{(x,y) \in \mathbb{R}^2 : (x+3)^2 + y^2 \le 1\} = X \cap \{(x,y) \in \mathbb{R}^2 : (x+3)^2 + y^2 < 2\} \Rightarrow A$ è aperto in X. Si ha:

 $p^{-1}(p(A)) = A \cup \gamma_2$ non è aperto in $X \Rightarrow p(A)$ non è aperto in X/ρ_Y .