VERS UNE GÉOMÉTRIE DES FORMES A. GROTHENDIECK

Vers une Géométrie des Formes

 $\label{eq:cote_nonloop} \text{Cote } n^\circ \ 156\text{-}1 - 156\text{-}9$ $\label{eq:cote_nonloop} \text{//grothendieck.umontpellier.fr/archives-grothendieck/}$

Ce texte a été déchiffré et transcrit par Mateo Carmona

TABLE DE MATIÈRES

I. Vers une géométrie des formes (topologiques)
II. Réalisations topologiques des réseaux
III. Réseaux via découpages
IV. Analysis situs (première mouture)
V. Algèbre des figures
VI. Analysis situs (deuxième mouture)
VII. Analysis situs (troisième mouture)
VIII. Analysis situs (quatrième mouture)

§ I. — VERS UNE GÉOMÉTRIE DES FORMES (TOPOLOGIQUES)

[Apprendre] vers une construction récouvrante (sur l'action naturelles) d'une "géométrie des formes de dimension $\leq n$ ".

Une "forme de dim 0" soit pour définition [] dont les éléments sont appelés les "lieux" de la forme.

Modèle de dimension 1. — Une tel modèle

[]

- 1) Deux ensembles de [] L_{α} (ensemble des *lieux* de modèles) et S (ensemble des *segments* des modèle)
- 2) Une application $S \longrightarrow \mathfrak{P}(L)$, $I \longrightarrow \widetilde{I}$ (lieux sur un segment) i.e. une relation entre S et L.
- 3) Une application $S \longrightarrow \mathfrak{P}_2(L)$ []

N.B. J'ignore s'il faut supposer que I est connu, quand on connaît

Modèle d'une forme 1-dimensionnelle

L ensemble de "lieux"
S ensemble de "segments"

§ II. – RÉALISATIONS TOPOLOGIQUES DES RÉSEAUX

1. -[] topologique

Soit X un espace topologique, $A \subset X$ partie fermée non vide de X. $X_{/A}$ l'espace déduit de X en [] A en un point, a le point déduit de A par []. Si X' est une partie de X contenant A, alors $X'_{/A} \hookrightarrow X_{/A}$ identifié $X'_{/A}$ à un sous-espace topologique de X.

Les fermées de $X_{/A}'$ s'identifient aux fermées de X' qui on bien contient A

§ III. – RÉSEAUX VIA DÉCOUPAGES

Je voudrais définir une [] axiomatique a structure [] réseaux sur un [] L ([] de "lieux").

Exemple 2 Soit L un ensemble ordonnée, on suppose L filtrant croissante, filtrant décroissant, sans plus grand [] plus petit élément, localement filtrant croissante et filtrant décroissante divisible.

On appellera un tel ensemble une [] ordonnée.

§ IV. — ANALYSIS SITUS (première mouture)

§ V. − ALGÈBRE DES FIGURES

§ VI. — ANALYSIS SITUS (deuxième mouture)

§ VII. — ANALYSIS SITUS (troisième mouture)

§ VIII. — ANALYSIS SITUS (quatrième mouture)