Machine Learning in Biomedical Sciences and Bioengineering

Lecture 9 Transformers

2025 version 1.00

James Choi

RNN architecture

$$h_i = tanh(\mathbf{W}_{hh}^T h_{i-1} + \mathbf{W}_{xh}^T x_i)$$
$$\hat{y}_i = \mathbf{W}_{hy}^T h_i$$

Limitations with RNNs

- Poor long-term memory
- Encoding bottleneck
- Slow compute (no parallelisation)

RNN architecture

Potential solution (?):

– Create a single block of weights?

Many problems...

- NO order, no temporal dependence
- NO long-term memory
- NOT scalable

Part 1. Transformers

Part 2. Live Coding Demonstration

The Transformer

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Inputs

Input to the Transformer model:

tensor
$$\mathbb{R}^B \times \mathbb{R}^N$$

B: batch size

N: sequence length

$$\mathbb{R}^n = \{(x_1 \cdots x_n) : x_j \in \mathbb{R} \text{ for } j = 1, \cdots, n\}$$

Input passes through an embedding layer that converts each one-hot token representation into a d_{model} dimensional embedding

tensor
$$\mathbb{R}^B imes \mathbb{R}^N imes \mathbb{R}^{d_{model}}$$

The new tensor is then additively composed with positional encodings...

Passes through a multi-headed self-attention module.

Positional encoding

• Goal: inject the position information of each token into the input data.

$$PE_{(pos,2i)} = sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

$$PE_{(pos,2i+1)} = cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

pos: position i: the dimension d_{model} : model's dimension

Self-attention

 \mathbf{W}_q

Query: information that is being looked for

$$Q_h = X\mathbf{W}_q$$

=

=

=

Key: the context or reference

$$K_h = X\mathbf{W}_k$$

 \mathbf{W}_v

Value: content that is being searched for.

$$V_h = X\mathbf{W}_v$$

Self-attention

- How similar is the Query to the Key?
- Compute the following to calculate the pairwise similarity between each query and key:

 d_k : dimension of the queries and keys

Self-attention

Compute attention weighting

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Part 1. Transformers

Part 2. Live Coding Demonstration

Live coding demonstration

- Code adapted from...
 - https://github.com/pytorch/tutorials/blob/main/beginner_source/translation_transformer.py
 - This is a deprecated link. The live coding session code will be uploaded onto the online platform.