

Exercise 11A

Question 15:

Two circles with centres A and B, having radii 5 cm and 3 cm touch each otherint ernally.

The perpendicular bisector of AB meets the bigger circle in P and Q.

Join AP.

Let PQ intersect AB at L.

Then.

$$AB = (5 - 3) \text{ cm} = 2 \text{ cm}$$

Since PQ is the perpendicular bisector of AB, we have

$$AL = \frac{1}{2} \times AB$$
$$= \left(\frac{1}{2} \times 2\right) \text{cm} = 1 \text{ cm}$$

Now,in right angle △PLA

$$AP^2 = AL^2 + PL^2$$

$$PL = \sqrt{AP^2 - AL^2} \text{ cm}$$

$$= \sqrt{(25-1)} \text{ cm} = \sqrt{24} \text{ cm} = 2\sqrt{6} \text{ cm}$$

$$PQ = (2 \times PL) = (2 \times 2\sqrt{6}) \text{ cm} = 4\sqrt{6} \text{ cm}$$

$$the length of PQ = 4\sqrt{6} \text{ cm}$$

Question 16:

Given: AB is a chord of a circle with centre O.AB is produced to C such that BC = OB.Also, CO is joined to meet the circle in $D.\angle ACD = y^{\circ}$ and $\angle AOD = x^{\circ}$.

To Prove: x = 3yProof: Given OB-BC [isosceles triangle] $\angle BOC = \angle BCO = y^{\circ}$ Ext. \angle OBA = \angle BOC + \angle BCO = (2y)° radii of same circle Again, OA = OB∠OAB=∠OBA=(2y)° [isosceles triangle] Ext. \(AOD = \(\text{OAC} + \(\text{ACO} \) $= \angle OAB + \angle BCO = 3y^{\circ}$ ∴ ∠AOD = x (given) $x^{\circ} = 3y^{\circ}$

********* END *******