

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année

TD2 sur les Réseaux de Pétri

Graphe des marquages – Propriétés dynamiques

Propriétés dynamiques des Réseaux de Pétri

Borné et Sauf

Une place P_i est dite bornée pour un marquage initial M_0 si pour tout marquage accessible à partir de M_0 , le nombre de marques dans P_i est fini.

Un réseau de Petri est borné pour Mo si toutes les places sont bornées pour Mo.

Un réseau de Petri est sauf (binaire), pour un marquage initial M₀ si pour tout marquage accessible à partir de M₀ chaque place contient au plus une marque (1-borné).

Vivant et Conforme

Une transition T_j est vivante pour M_0 si pour tout marquage accessible $M_i \in {}^*M_0$, il existe une séquence de franchissements S qui contient la transition T_J à partir de M_i , c'est à dire qu'il existera, quelle que soit l'évolution, toujours une possibilité de franchir T_j .

Un RdP est vivant pour M₀ si toutes ses transitions sont vivantes pour M₀.

On dit aussi: CONFORME = SAUF + VIVANT.

Quasi-vivant

Une transition T_j est quasi-vivante pour M_0 si pour tout marquage accessible $M_i \in {}^*M_0$, il existe une séquence de franchissements S qui contient la transition T_J à partir de M_0 .

Un RdP est quasi-vivant pour Mo si toutes ses transitions sont quasi-vivantes pour Mo.

Blocage (puits)

Un blocage est un marquage tel qu'aucune transition n'est validée.

Un RdP est sans blocage pour M_0 si aucun marquage accessible M_i C * M_0 n'est un blocage (pseudo vivant).

- 2. Si une transition T_i est vivante pour M₀, elle n'est pas nécessairement vivante pour M¹₀ ≥ M₀.
- 3. Si un RdP est sans blocage pour M₀, il n'est pas nécessairement sans blocage pour M¹₀ ≥ M₀.

Etat d'accueil - Propre

Un RdP a un état d'accueil M_a pour M_0 si pour tout marquage accessible M_i C * M_0 , il existe une séquence S_i telle que M_i (S_i > M_a .

Un RdP est réinitialisable (ou propre) pour M_0 si M_0 est un état d'accueil. Si le graphe des marquages associé est fortement connexe, alors le RdP est propre.

Conflit effectif – structurel

Un conflit effectif est l'existence d'un conflit structurel et d'un marquage M, tel que le nombre de marques dans Pi est inférieur aux nombres de transitions de sortie de Pi qui sont validées pour M.

Persistance

Un RdP est persistant pour M_0 si pour tout marquage accessible M_i C * M_0 on a la propriété suivante : Si T_j et T_k sont franchissables pour M_i alors T_jT_k est une séquence de franchissement de transitions à partir de M_i , ainsi que T_kT_j par symétrie.

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1ère année

TD2 sur les Réseaux de Pétri

Graphe des marquages – Propriétés dynamiques

Exercice 1:

Pour chacun des RdP suivants, indiquer **intuitivement** s'ils sont : bornés, saufs, vivants, quasi-vivants, sans blocage, propres.

Exercice 2:

Pour chacun des RdP suivants, établir le graphe des marquages correspondant et en déduire les propriétés dynamiques (borné, sauf, vivant, quasi-vivant, propre). Sont-ils avec ou sans conflits ? Caractériser les conflits.

Exercice 3:

Pour le RdP généralisé suivant, avec le marquage $M_0 = [1, 0, 1, 0, 0, 0]^T$, construire le graphe des marquages accessibles et en déduire si le RdP est borné, sauf, vivant, sans blocage, persistant, propre. Caractériser les conflits ?

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1ère année

TD2 sur les Réseaux de Pétri

Graphe des marquages - Propriétés dynamiques

Exercice 4:

Construire l'arbre puis le graphe de couverture pour le RdP suivant. Quelles sont les places non bornées?

Exercice 5:

Construire le graphe des marquages accessibles du RdP de la figure suivante, en déduire qu'il est persistant.

Exercice 6:

Construire le graphe de marquages accessibles GA et en déduire si le RdP est : borné, sauf, vivant, propre.

