Embedded Systems and Software

Serial Interconnect Buses—I²C and SPI

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 1

Purpose of Serial Interconnect Buses

- Provide low-cost—i.e., low wire/pin count—connection between IC devices
- There are many serial bus "standards"
 - I2C (Inter-Integrated Circuit)
 - SMB (System Management Bus)
 - SPI (Serial Peripheral Interface)
 - Microwire
 - Maxim 3-wire
 - Maxim/Dallas 1-wire
 - CAN (controller area network)
 - etc
- We will focus on I²C and SPI

Embedded Systems, ECE:3360. The University of Iowa, 2019

Commonly Encountered Terminology	
Term	Description
Transmitter	The device which sends the data to the bus.
Receiver	The device which receives the data from the bus.
Master	The device which <u>initiates a transfer</u> , <u>generates clock signals</u> and <u>terminates a transfer</u> .
Slave	The device addressed by a master.
Multi-Master	More than one master can attempt to control the bus.
Arbitration	Only one master can control the bus.
Synchronization	Procedure to sync. the clock signal.
Embedded Systems, EC	CE:3360. The University of Iowa, 2019 Serial II

PC (Inter-IC)

- I²C, "Eye-Square-See", I2C, "Eye-Two-See"
 - Two-wire serial bus protocol developed by Philips Semiconductors ~ 20 years ago
 - Enables peripheral ICs to communicate using simple communication hardware
 - Data transfer rates up to 100 kbits/s and 7-bit addressing possible in normal mode
 - 3.4 Mbits/s and 10-bit addressing in fast-mode
 - Common devices capable of interfacing to I²C bus:

EPROM, Flash, and some RAM memory, real-time clocks, watchdog timers, and microcontrollers

- Many microcontrollers, including ATmega88PA, have Two-Wire Interface (TWI) hardware
- AVR's TWI can be used to implement I2C, SMB, etc.

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 5

I2C Devices

BlinkM®is a "Smart LED", a networkable and programmable full-color RGB LED for hobbyists, industrial designers, and experimenters.

MCP4725 is an I2C controlled Digital-to-Analog converter (DAC).

A DAC allows a microcontroller to output analog values like a sine wave. Digital to analog converters are used sound generation, musical instruments, filtering, etc.

Embedded Systems, ECE:3360. The University of Iowa, 2019

I2C

The I2C-bus is a multi-master bus. This means that more than one device capable of controlling the bus can be connected to it.

Masters are usually microcontrollers, slaves are peripherals

Often there is one master (Atmega88PA) and one or more slaves (RTC, ADC, DAC, $\ldots)$

Embedded Systems, ECE:3360. The University of Iowa, 2019

Example - I2C RTC PCF8583 Clock/calendar with 240×8-bit RAM SYMBOL CONDITION UNIT PARAMETER MIN. TYP. MAX. supply voltage operating mode I2C-bus active 2.5 6.0 V_{DD} I²C-bus inactive 1.0 6.0 supply current operating mode f_{SCL} = 100 kHz I_{DD} 200 μΑ $f_{SCL} = 0 Hz; V_{DD} = 5 V$ 10 50 supply current clock mode μΑ I_{DDO} $f_{SCL} = 0 Hz; V_{DD} = 1 V$ 10 μΑ -40 ٥С $\mathsf{T}_{\mathsf{amb}}$ operating ambient temperature range -65 +150 °C T_{stg} storage temperature range Notice, this does not use much current, one reason is because the clock frequency is low: 32.768 kHz Embedded Systems, ECE:3360. The University of Iowa, 2019 Serial Interconnect Busses 15

Addressing on the I2C Bus Before any data is transmitted on the I2C-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. 0 0 A0 R/W 0 0 group 1 group 2 This bit determines if we are reading (= 1) from or writing to (= 0) to the devices Embedded Systems, ECE:3360. The University of Iowa, 2019 Serial Interconnect Busses 31

I2C - Software

- Good I2C libraries are available for the AVR architecture
 - Simplifies implementation
 - Must understand I2C protocol/concepts and external device!

Example: http://homepage.hispeed.ch/peterfleury/doxygen/avr-gcc-libraries/group pfleury ic2master.html

```
#include <i2cmaster.h>
#define Dev24C02 0xA2 // device address of EEPROM 24C02, see datasheet
int main(void)
  unsigned char ret;
  i2c_init();
                          // initialize I2C library
  // write 0x75 to EEPROM address 5 (Byte Write)
  i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
 i2c_write(0x05);  // write address = 5
i2c_write(0x75);  // write value 0x75 to EEPROM
  i2c_stop();
                          // set stop conditon = release bus
  // read previously written value back from EEPROM address 5
  i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
  i2c_write(0x05);
                              // write address = 5
  i2c_rep_start(Dev24C02+I2C_READ); // set device address and read mode
  ret = i2c_readNak();
                              // read one byte from EEPROM
  i2c_stop();
  for(;;);
```

Embedded Systems, ECE:3360. The University of Iowa, 2019

I2C (TWI)

... more information and configuration examples:

See ATmega88PA datasheet

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 50

Serial Peripheral Interface (SPI)

- · Originally developed by Motorola
- · Synchronous, serial protocol
 - Data timing is controlled by an explicit clock signal (SCK)
- Master-slave
 - Master device controls the clock
- Bi-directional data exchange
 - Data clocked into and out-of device at same time

Embedded Systems, ECE:3360. The University of Iowa, 2019

SPI signals

- \$\overline{SS}\$ (\$\overline{CS}\$) (Slave Select, Chip Select)
 - When SS is low the slave is enabled
- SCK (Serial Clock)
 - Controls the transfer of data
- SDO (Serial Data Out)
 - Carries data OUT of the device
- SDI (Serial Data In)
 - Carries data INTO the device

Embedded Systems, ECE:3360. The University of Iowa, 2019

SPI Modes

SPI has several *modes* that determine when data is valid with respect to the clock

Table 18-2. SPI Modes

SPI Mode	Conditions	Leading Edge	Trailing eDge		
0	CPOL=0, CPHA=0	Sample (Rising)	Setup (Falling)		
1	CPOL=0, CPHA=1	Setup (Rising)	Sample (Falling)		
2	CPOL=1, CPHA=0	Sample (Falling)	Setup (Rising)		
3	CPOL=1, CPHA=1	Setup (Falling)	Sample (Rising)		

Bit 3 - CPOL: Clock Polarity
When this bit is written to one, SCK is high when idie. When CPOL is written to zero, SCK is low when idie. Refer for Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is summarized below:

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

Bit 2 - CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or training (ast) edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is summarized below:

 Table 18-4. CPHA Functionality

 CPHA
 Leading Edge
 Trailing Edge

 0
 Sample
 Schap

 1
 Setup
 Sample

Caution: read SPI peripheral (i.e., RTC, sensor, ...) datasheet carefully, and make sure your AVR uses the same mode...

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 73

SPI

... more information and configuration examples:

See ATmega88PA datasheet

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 87

ES with SPI - Example

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 88

Interface MAX110, MAX111 Table 1. Input Control-Word Bit Map															
													15	14	13
NO-OP	NU	NU	CONV4	CONV3	CONV2	CONV1	DV4	DV2	NU	NU	CHS	CAL	NUL	PDX	PD
1															
First I	bit clock	ked in.													
BIT	Г	NAME			DESCRIPTION										
15 <u>NO-OP</u>		ne pa	If this bit is a logic high, the remaining 15 LSBs are transferred to the control register and a new conversion begins when \overline{CS} returns high. If this bit is set low, the control word is not passed to the control register, the ADC configuration remains unchanged, and no new conversion begins when \overline{CS} returns high.												
5, 6, 13	3, 14	NU			Used for test purposes only. Set these bits low.										
9–1	2	CONV1-CONV4		4 C	Conversion Time Control Bits. See Table 4.										
7, 8	3	DV2, DV4		X	XCLK to Oversampling Cock Ratio Control Bits. See Table 5.										
4		CHS			Input Channel Select. A logic high selects channel 2 (IN2+ and IN2-), while a logic low selects channel 1 (IN1+ and IN1-). See Tables 2 and 3.										
3		CAL		G	Gain-Calibration Bit. A logic high selects gain-calibration mode. See Table 3.										
2		NUL		In	Internal Offset-Null Bit. A logic high selects offset-null mode. See Table 3.										
1		PDX		0:	Oscillator Power-Down. Set this bit high to power down the RC oscillator.										
0		PD			Analog Power-Down. Set this bit high to power down the analog section.										

MAX111 – Grounding

Board layout and grounding is important for ADC performance!

Figure 10b. MAX111 Power-Supply Grounding Connections

Embedded Systems, ECE:3360. The University of Iowa, 2019

Serial Interconnect Busses 96

