Repetisjonsoppgaver

Vis at noe er delelig med noe

Oppgave 1. Vis uten å regne ut at $2 \cdot (8^{122}) - 3^{83} - 19$ er delelig med 41.

Oppgave 2. Vis uten å regne ut at vi får 11 som rest når vi deler $(6 \cdot (16!))^3$ med 19.

Oppgave 3. Vis uten å regne ut at $9^{12} + 19$ er delelig med 83.

Oppgave 4. Vis uten å regne ut at

$$32 \cdot (5^{17642}) - 7 \equiv 100 \pmod{693}$$
.

Oppgave 5. Vis uten å regne ut at $(33!) \cdot (12^{289}) - 2$ er delelig med 37.

Primtallsfaktoriseringer

Oppgave 6. Finn en primtallsfaktorisering til 75803.

Oppgave 7. Finn sfd(1043504, 237276).

Oppgave 8. Finn alle primtallene som deler 3087.

Oppgave 9. Regn ut $\phi(151875)$.

Løs en lineær diofantisk ligning/lineær kongruens/kvadratisk kongruens

Oppgave 10. Har ligningen

$$16x + 40y = 9$$

en heltallsløsning?

Oppgave 11. Finn alle heltallsløsningene til ligningen

$$138x + 42y = 18$$
.

Oppgave 12. Finn alle heltallene x slik at

$$15x \equiv 20 \pmod{50}$$

og $0 \le x < 50$.

Oppgave 13. Heltallet 137 er et primtall. Finn alle heltallene x slik at

$$4x^2 - 20x + 25 \equiv 0 \pmod{137}$$

og $0 \le x < 137$.

Oppgave 14. Heltallet 189437 er et primtall. Er 589 en kvadratisk rest modulo 189437? Tips: En primtallsfaktorisering til 589 er $19 \cdot 31$.

Oppgave 15. Heltallet 839 er et primtall. Hvor mange heltall x slik at

$$301x^2 + 56x + 2 \equiv 0 \pmod{839}.$$

og $0 \le x < 839$ finnes det?

Oppgave 16. Heltallet 4027 er et primtall. Hvor mange heltall x slik at

$$49x^2 - 54x + 1 \equiv 0 \pmod{4027}$$

og $0 \le x < 4027$ finnes det? Tips: en primtallsfaktorisering til 2720 er $2^5 \cdot 5 \cdot 17$.

Kryptografi

Oppgave 17. Person A ønsker å sende meldingen «Ikke sånt!» til Person B. Den offentlige nøkkelen til Person B er (62, 11). Krypter meldingen.

Oppgave 18. Person A har sendt meldingen

til Person B. Den offentlige nøkkelen til Person B er (55,7). Knekk koden.

Det kinesiske restteoremet

Oppgave 19. Finn alle heltallene x slik at vi får 5 som rest når vi deler x med 8, og 2 som rest når vi deler x med 13.

Oppgave 20. Finn alle heltallene x slik at følgende er sanne:

- (1) $x \equiv 3 \pmod{4}$;
- (2) $x \equiv 8 \pmod{9}$;
- (3) $x \equiv 2 \pmod{11}$.

Oppgave 21. Finn et heltall x slik at følgende er sanne:

- (1) $x \equiv 2 \pmod{7}$;
- (2) $3x \equiv 5 \pmod{13}$;