Homework 10

Yutong Huang (yxh589)

Problem 1

```
Need to prove: \overline{A} \in \mathbf{co}\text{-}\mathbf{NP} \land \forall L \in \mathbf{co}\text{-}\mathbf{NP} \ L \leq_P \overline{A}
```

Proof. Assume language A is NP-complete $\implies \forall L \in NP, L \leq_P A \land A \in NP$. Then we have $\overline{A} \in \mathbf{co-NP}$ and a verifier $V_a(w, c)$ that runs in polynomial time. Let B be an arbitrary language form $\mathbf{co-NP}$. Then $\overline{B} \in NP$ and $\overline{B} \leq_P A$. Then there exists a verifier $V_b_{\mathbf{complement}}(w, c)$ that verifies \overline{B} in polynomial time.

The verifier for B works by inverting the output of $V_b_complement(w, c)$:

```
function V_b(w,c){
    if (V_b_complement(w,c) accepts){
        reject
    } else {
        accept
    }
}
```

```
Therefore B \leq_P \overline{B}. Similarly, A \leq_P \overline{A}.
Therefore B \leq_P \overline{B} \leq_P A \leq_P \overline{A}.
\therefore \forall L \in \text{co-NP } L \leq_P \overline{A}
```

 $\overline{A} \in \mathbf{co\text{-}NP} \land \forall L \in \mathbf{co\text{-}NP} \ L \leq_P \overline{A} \implies \overline{A} \text{ is } \mathbf{co\text{-}NP\text{-}complete}$

Problem 2

Proof. Assume a language L is NP-complete and PSPACE-complete. Therefore $\forall A \in NP, A \leq_P L \land \forall B \in PSPACE, B \leq_P L$ Therefore $\forall A \in NP, B \in PSPACE, A \leq_P B$ and $B \leq_P A$ Therefore NP = PSPACE.

Problem 3

Need to prove:

1. $A_{LBA} \in PSPACE$

Proof.

2. $\forall L \in PSPACE, L \leq_P A_{LBA}$

Proof.