Corpus, ressources et linguistique outillée · M2SOL034

CM 4 : Automates et transducteurs à états finis · Unitex

Ljudmila PETKOVIĆ

Semestre 2, 2024-2025 21 février 2025

Sorbonne Université

Master « Langue et Informatique » (M1 ScLan) UFR Sociologie et Informatique pour les Sciences Humaines

Cours adapté de FORT (s.d.), de NOUVEL (s.d.) et de TANGUY (s.d.).

Automates et transducteurs

Automates finis

angl. Finite-State Automata

- machine permettant de définir un langage
- capable d'indiquer si une chaîne fait partie ou non du langage
- $\bullet \ \ \, \mathsf{chaîne} \,\, \mathsf{entr\'ee} \to [\mathsf{automate}] \to \mathsf{oui/non} \\$

États

Indiquent où en est l'analyse d'un mot.

- États : nœuds
 - Cercle
 - \circ **Étiquette** : q_i avec un i entier
- État initial
 - · Ajout d'une flèche devant
 - Souvent q_0 (mais pas obligatoire)
- État final
 - Double cercle

Transitions

Indique quelles prochains symboles sont acceptés.

- Transitions : arcs
 - Arc orienté (flèche) qui relie deux états
 - Étiquette : liste (ensemble) de symboles de l'alphabet Σ

- Reconnaît le langage $\{a,c\}$ ou $\{a\} \cup \{c\}$ (mais pas $\{a.c\}$)
 - \circ Si, en q_1 , le prochain symbole est a ou c, aller en q_3
- Transition d'un état vers lui-même
 - Boucle au-dessus d'un état
 - Correspond à l'étoile de Kleene

Reconnaissance d'un mot

Chemin suivi au travers d'un automate.

- L'automate consomme les symboles
- Une liste d'états « visités » est établie
- Arrivée en fin de mot dans l'état final

Exemple : mots ab ou ac

Références

Automates à états finis déterministes (AFD)

angl. Deterministic Finite State Automata

- un seul état initial
- déterministe : par nœud / symbole, une transition maximum
- autant d'états finaux que nécessaire
- l'état initial peut-être final
- des transitions peuvent partir d'un état final
- boucles possibles sur un état ou par cycles

Exemple d'un AFD

Regex (a|bc)*(b(a|b))

Mots acceptés	Mots non acceptés	
ba (voir $(a bc)*(b(a b))$)	ab (il manque le 2^e caractère après b)	
bba (répétition de $(a bc)$)	bc (il ne finit pas par $b(a b)$)	
bcba	abca	
bcbb		
aaba	LETTRES SORBONNE	

Grammaires locales

- type particulier d'automates finis
- utilisées pour reconnaître des motifs sans transformation
- décrivent des motifs linguistiques à l'aide de graphes
- chemin conduisant de l'état initial à l'état final : motif accepté

FIG. 1 – Grammaire locale représentée sous forme de graphe

- Unitex-GramLab est un outil multilingue de traitement corpus [RECONNUE]
- Unitex-GramLab est un outil de traitement de corpus [RECONNUE]
- Unitex-GramLab est difficile à apprendre [ECHEC]
- Unitex-GramLab est [ECHEC]

Figure 1 – (KYRIACOPOULOU et al., 2018).

Transducteurs à états finis

angl. Finite State Transducer

Machine abstraite fonctionnant sur le même principe que les AFD

- possibilité d'émettre un message à chaque transition
- capable de reconnaissance d'un langage formel, et de production d'une chaîne en sortie
- chaîne entrée → [transducteur] → chaîne sortie

Fonctionnement d'un transducteur : exemple de flexion

- lecture de la chaîne d'entrée comme un automate à états finis
- à chaque transition, si un message est associé, il est émis
- aucun message ne sera émis si la chaîne n'est pas reconnue
- entrée : chaîne correspondant à un nom au singulier
- sortie : pluriel du nom fourni en entrée
 - chat → chats (exemple trivial)
 - cheval → chevaux (exemple moins trivial)

Utilisations de transducteurs en TAL

Phonétisation (text to speech)

- entrée : chaîne de caractères orthographique
- sortie : chaîne de symbole phonétiques

Segmentation

- entrée : chaîne de caractères (texte ou phrase)
- sortie : séquence de phrases, de mots ou de morphèmes

Analyse d'unités lexicales

- entrée : mot
- sortie : informations diverses sur le mot
 - informations morphosyntaxiques, équivalents multilingues e

Phonétisation

Comment se prononce la lettre « p »?

Segmentation d'un texte

Le point est-il une fin de phrase ou un élément d'un sigle?

Analyse morphosyntaxique

Catégories des mots de la famille « francis. . . »

Unitex

A propos d'Unitex

- suite logicielle ¹ pour l'analyse des corpus
- fondée sur des ressources linguistiques :
 - dictionnaires électroniques
 - grammaires locales
 - tables lexico-syntaxiques (lexique-grammaire)
- multiplateforme, multilingue
- documentation (PAUMIER, 2021)²
- tutoriels
 - en français (univ. de Tours)³
 - en anglais (KRSTEV et al., 2022)

Références

^{1.} https://unitexgramlab.org/fr

^{2.} https://unitexgramlab.org/releases/3.1/man/Unitex-GramLab-3.1-usermanual-fr.pdf

https://tln.lifat.univ-tours.fr/version-francaise/ressources/tutoriels-unitex

Applications

- recherche de motifs complexes dans des textes
- concordance (visualisation des résultats en contexte)
- annotation
- analyse
- → par la création de grammaires locales ou de transducteurs
- \rightarrow via une interface graphique

Unitex Références Automates et transducteurs

Prétraitements du corpus

Figure 2 - Prétraitement du corpus Tour du monde en 80 jours de Jules Verne.

Prétraitements du corpus

- Apply graph in MERGE mode
 - découpage du texte en phrases (délimiteur S)
- Apply graph in REPLACE mode
 - o normalisations de formes non ambiguës (puisqu' → puisque)
- découpage en unités lexicales : tokenisation
- Apply All default Dictionaries
 - appliquer au texte des dictionnaires au format DELA 4
- construction de l'automate du texte

Automates et transducteurs Unitex Références

Corpus prétraité

Figure 3 - Corpus, liste de mots et de tokens.

Corpus prétraité : statistiques

- 3 652 délimiteurs de phrases
- 165 239 tokens
- 9 452 types
- 9 422 formes simples (DLS⁵, lemmes)
- 10 chiffres (types)
- 12 178 mots simples (DLF ⁶, entrées)
- 1 544 mots composés (DLC⁷, entrées)
- 477 mots inconnus (ERR, entrées)

^{5.} DELA de formes Simples

⁶ DELA de formes Fléchies

^{7.} DELA de formes Composées

Dictionnaires Unitex

- 1. dictionnaires de formes simples (DELAS)
- 2. dictionnaires de formes fléchies (DELAF)

qui comprennent des formes simples ou composées (DELAC)

DELAS: cheval, N4, Anl

DELAF:

mercantiles, mercantile. A+z1:mp:fp

grand=mères, grand=mère.N:fp

Références

Contenu d'un dictionnaire Unitex

Ensemble d'entrées lexicales :

- forme de base (canonique, lemme) : Descartes
- catégorie grammaticale : nom (N)
- informations flexionnelles (genre, nombre) : ms
- forme fléchie : René Descartes
- traits syntactico-sémantiques : Hum+NPropre

Exemple

Descartes, René Descartes. N+Hum+NPropre: ms

Construction des dictionnaires

- 1. dictionnaire de formes canoniques (ou formes de base)
- 2. modules de flexion automatique (transducteurs)
- 3. à chaque forme de base, on associe une classe flexionnelle un ensemble de règles

 $DELAS \rightarrow Flexion$ automatique DELAF

Gestion du multilinguisme

Les traitements sont tous dépendants des langues :

- avantages : précision, adaptation aux spécificités
- inconvénients : lourdeur, maintenance compliquée

Alphabets:

- un fichier qui définit les caractères d'une langue (Alphabet.txt)
- un fichier indiquant les préférences pour le tri (Alphabet sort.txt)

24 / 53

Références

Alphabets

Ouvrir l'alphabet du français :

- que manque-t-il? Comment est-ce géré?
- \rightarrow p. ex. ligatures françaises : æ, Æ, œ, Œ

Pour certaines langues comme le français, il arrive qu'à une lettre minuscule correspondent plusieurs majuscules.

- $\acute{e} \rightarrow E$ ou \acute{E}
 - Ee. Eé. Éé. Eè. Èè. Eë. Ëë. Eê. Êê

Mots simples vs. composés

Mot simple

Une séquence de lettres délimitée par des séparateurs (espaces, ponctuation etc.): pomme

Mot composé

Une séquence de mots simples dont le sens est non compositionnel: cordon bleu, pomme de terre, belle famille, porte-manteau, etc.

Exemples de recherches de motifs

- un mot (juger) ou séquence de mots (pomme de terre)
- toutes les formes fléchies associées à une forme de base (<juger> = juge, juges, jugeons, etc.)
- formes appartenant à une catégorie grammaticale avec informations flexionnelles: <N>, <N:ms>, <V:K>
- motifs complexes : <DET:ms><N:ms>
- regex : je+tu+il+elle+on+nous+vous+ils+elles
- automates sous la forme de graphes

Recherches simples

- rechercher le motif parler en cliquant sur Locate Pattern dans le menu Text
 - regarder le résultat avec le concordancier
 - modifier les différentes options et observer les résultats
- même question avec le motif <parler>
- 3. même question avec le motif <V:P3p>
- 4. à quoi correspondent les motifs précédents?

Locate Pattern et concordancier

Figure 4 - Locate Pattern.

Figure 5 – Lancer le concordancier.

Expression régulières ou rationnelles (regex)

Une regex peut être :

- une unité lexicale (livre) ou un masque lexical (<manger.V>)
- une position particulière du texte : le début () ou la fin \$
- la concaténation de deux regex (je mange)
- l'union de deux regex (Pierre+Paul)
- l'étoile de Kleene d'une regex (très*)

Unitex Références Automates et transducteurs

🧮 Concordance: /Users/ljudmilapetkovic/workspace/Unitex-GramLab/Unitex/French/Corpus/80jours snt/concor... 💅 🗗 🗵

s montagnes de Malacca, dont les forêts abritent les plus beaux tigres de S LEOUEL PHILEAS FOGG ET PASSEPARTOUT S'ACCEPTENT RÉCIPROOUEMENT L'UN CON

Concordancier

200 matches

Figure 6 - Concordance sur le motif V:P3p - verbes de la 3e personne du pluriel.

Statistiques de collocations

Located sequences	×			
Concordance Statistics				
Modify text				
Resulting .txt file:				
Set File	GO			
Extract units				
Set File:				
Extract matching units	Extract unmatching units			
Concordance presentation Use a web browser to view the concordance				
Show differences with previous concordance				
Show ambiguous outputs				
Show matching sequences in context				
Context length: Stop at:	Sort according to:			
Left 40 chars (S)	Center, Left ▼			
Right 55 chars (S)	Build concordance			

Collocations du motif V:P3p

Collocate	Occurrences in corpus	Occurrence in match context	z-score
entrés	2	2	17.346
ils	96	11	13.075
exposés	1	. 1	12.266
physionomistes	1	. 1	12.266
économes	1	. 1	12.266
bruns	1	. 1	12.266
trouvées	1	. 1	12.266
transocéaniennes	1	. 1	12.266
engagées	1	. 1	12.266
mesquins	1	1	12.266
venus	1	. 1	12.266
PROPICES	1	. 1	12.266
activement	1	. 1	12.266
steamboats	1	. 1	12.266
sommets	1	1	12.266
trompés	1	. 1	12.266
emparés	1	. 1	12.266
chers	1	1	12.266
réduits	1	1	12.266
orteils	1	. 1	12.266
surchargés	1	. 1	12.266
contraste	1	. 1	12.266
réfugiés	1	1	12.266
demeurés	1	. 1	12.266
1 1			40.000

Figure 8 – Collocats, occurrences dans le corpus / contexte de cooccurrence, score z.

Opérateurs

Concaténation

- o point : <DET>. <N> : reconnaît un déterminant suivi par un nom
- espace : le <A> chat : reconnaît l'unité lexicale le, suivie d'un adjectif et de l'unité lexicale chat
- parenthèses : servent de délimiteurs

Union :

- + : chat+chien <v> : reconnaît l'unité lexicale chat ou chien, suivie par un verbe
- epsilon : le (petit+<E>) chat : reconnaît les séquences le chat et le petit chat
- Étoile de Kleene * : reconnaît zéro, 1+ occur. d'une regex
 - il fait très* froid : reconnaît il fait froid, il fait très froid, il fait très très froid etc.
 - o prioritaire sur les autres opérateurs
 - o parenthèses pour appliquer l'étoile à une regex complexe

34 / 53

Codes grammaticaux usuels

Code	Signification	Exemples
A	adjectif	fabuleux, broken-down
ADV	adverbe	réellement, à la longue
CONJC	conjonction de coordination	mais
CONJS	conjonction de subordination	puisque, à moins que
DET	déterminant	ses, trente-six
INTJ	interjection	adieu, mille millions de mille sabords
N	nom	prairie, vie sociale
PREP	préposition	sans, à la lumière de
PRO	pronom	tu, elle-même
V	verbe	continuer, copier-coller

Figure 9 – Exemples de codes grammaticaux usuels.

35 / 53

Codes sémantiques usuels

Code	Signification	Exemple
z1	langage courant	blague
z2	langage spécialisé	sépulcre
z3	langage très spécialisé	houer
Abst	abstrait	bon goût
Anl	animal	cheval de race
AnlColl	animal collectif	troupeau
Conc	concret	abbaye
ConcColl	concret collectif	décombres
Hum	humain	diplomate
HumColl	humain collectif	vieille garde
t	verbe transitif	foudroyer
i	verbe intransitif	fraterniser
en	particule pré-verbale (PPV) obligatoire	en imposer
se	verbe pronominal	se marier
ne	verbe à négation obligatoire	ne pas cesser de

Figure 10 – Exemples de codes sémantiques usuels.

36 / 53

Automates et transducteurs Unitex Références

Codes flexionnels usuels

Code	Signification
m	masculin
f	féminin
n	neutre
s	singulier
р	pluriel
1,2,3	1st, 2nd, 3rd personne
P	présent de l'indicatif
I	imparfait de l'indicatif
S	présent du subjonctif
Т	imparfait du subjonctif
Y	présent de l'impératif
С	présent du conditionnel
J	passé simple
W	infinitif
G	participe présent
K	participe passé
F	futur

Figure 11 - Exemples de codes flexionnels usuels.

Méta-motifs Unitex

- <E> : mot vide, ou epsilon. Reconnaît la séquence vide
- <TOKEN> : n'importe quelle unité lexicale sauf l'espace
- <MOT> : n'importe quelle unité lexicale formée de lettres
- <MIN>: [...] de lettres minuscules
- <MAJ> : [...] de lettres majuscules
- <PRE> : [...] de lettres et commençant par une majuscule
- <DIC>: n'importe quel mot figurant dans les dictionnaires du texte
- <SDIC> : [...] mot simple [...]
- <CDIC> : [...] mot composé [...]
- NB> : n'importe quelle suite de chiffres contigus

Négation et interdiction

- ! (immédiatement après <) : négation d'un motif, possible sur:
 - les métas <MOT>, <MIN>, <MAJ>, <PRE>, <DIC>
 - o les masques lexicaux ne comportant que des codes grammaticaux, sémantiques ou flexionnels (<!V + z3 : P3)
- ~ : exclut des codes (<A~z3 reconnaît toutes les entrées qui ont le code A sans le code z3)
- # : interdit la présence de l'espace

Filtres morphologiques Unitex

Format

motif <<motif morphologique>> sous la forme de regex au format ${\rm POSIX}^{\,8}$

Par défaut, un filtre morphologique tout seul s'applique au méta <TOKEN>, c'est-à-dire à n'importe quelle unité lexicale sauf l'espace.

Filtres simples

- <<ss>> : contient ss
- <<^a>>> : commence par a
- <<ez\$>> : finit par ez
- <<a.*s>> : contient a suivi par un nombre de caractères quelconque, suivi par s
- <<ss|tt>> : contient ss ou tt
- <<[aeiouy]>> : contient une voyelle non accentuée
- <<[aeiouy]3,5>> : contient une séquence de voyelles non accentuées, de longueur comprise entre 3 et 5
- <<es?>> : contient e suivi par un s facultatif
- <<ss[^e]? : contient ss suivi par un caractère qui n'est pas</p> une voyelle e

Filtres plus complexes

- <<[ai]ble\$>> : finit par able ou ible
- <<^[rst] [aeiouy]2,\$>> : mot formé de 2 ou plus séquences commençant par un r, s ou t suivi d'une voyelle non accentuée

Lorsqu'un filtre suit immédiatement un motif, il s'applique à ce qui est reconnu par le motif :

- V:K><<i\$>> : participe passé finissant par i
- <CDIC><<.*>> : mot composé contenant deux espaces
- <A:fs><<^pro>> : adjectif fém. sing. commençant par pro

Créer un graphe simple

- dans le menu FSGraph , sélectionner New...
- faire un Ctrl + clic entre l'état initial et l'état final
- pour supprimer un état, cliquer sur la tête de mort
- dans la barre de texte, à la place de <E>, taper : je+tu+il+elle+on+nous+vous+ils+elles
- taper Entrée

Graphe créé

Figure 12 - Mon premier graphe.

Lier le graphe créé

- cliquer sur la flèche de l'état initial, puis sur l'état je+tu... (une transition apparaît)
- pour supprimer une transition, refaire la même manipulation

Figure 13 – Mon premier graphe lié de l'état initial.

Compléter le graphe

 cliquer sur l'état je+tu... puis sur l'état final (une transition apparaît)

Figure 14 - Mon premier graphe lié de l'état initial.

• dans le menu FSGraph, sélectionner Save as... (pour enregistrer le graphe)

Appliquer le graphe à un texte

Pour appliquer le graphe au texte :

- ouvrir un texte (p. ex. le Tour du monde en 80 jours)
- puis menu Text > Locate Pattern
- dans Graph , indiquer (set) le chemin vers le graphe enregistré précédemment

Création d'une substitution

Remplacer une chaîne par une autre

- créer un graphe à un état intermédiaire
- dans cet état, écrire folie/démence
- enregistrer ce graphe

Application d'un graphe avec substitution

Remplacer une chaîne par une autre

- ouvrir un texte (p. ex. le Tour du monde en 80 jours)
- puis, menu Text > Locate Pattern > Graph
- dans Graph, indiquer set le chemin vers le graphe enregistré
- selectionner

Grammar Outputs > Replace recognized sentences

Figure 15 – Mon premier graphe de substitution.

Création d'une annotation

Annoter une chaîne de caractères

- créer un graphe reconnaissant l'expression un des plus
- écrire un/<select>
- ajouter après l'expression l'état contenant <E>/</select>
- enregistrer le graphe

Figure 16 - Mon premier graphe d'annotation.

Appliquer les annotations dans le texte

Annoter le texte

- ouvrir un texte (p. ex. le Tour du monde en 80 jours)
- puis, menu Text > Locate Pattern > Graph
- selectionner Grammar Outputs > Merge with input text

Figure 17 – Appliquer les annotations.

Références

- FORT, K. (s.d.). TXM: présentation et commandes de base. Cours « Corpus, ressources et linguistique outillée », https:// members.loria.fr/KFort/files/fichiers cours/TXM 1.pdf. Consulté le 21 février 2025 (voir p. 1).
- Krstev, C., . Laporte et D. Maurel (2022). *Tutoriels* Unitex en anglais. Matériels, https: //unitexgramlab.org/fr/blog/announcements/tutorials-inenglish. Consulté le 21 février 2025 (voir p. 17).
- KYRIACOPOULOU, T., C. MARTINEAU et C. MARTINEZ (2018). UNITEX/GRAMLAB: plateforme libre basée sur des lexiques et des grammaires pour le traitement des corpus textuels. In : Revue des Nouvelles Technologies de l'Information. https://hal.science/hal-01702235/, p. 467-470 (voir p. 9).

- NOUVEL, D. (s.d.). **Automates à états finis.** Diapositives, https://damien.nouvels.net/cours/langages/03_ AutomatesEtatsFinis.pdf. Consulté le 21 février 2025 (voir p. 1).
- PAUMIER, S. (2021). Unitex 3.3 Manuel d'utilisation. In : https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-fr.pdf (voir p. 17).
- TANGUY, L. (s.d.). **SL03OP1Y**: Informatique pour l'analyse des textes. Diapositives, http://w3.erss.univtlse2.fr/membre/tanguy/Cours/SL030P1/C4.pdf. Consulté le 21 février 2025 (voir p. 1).

Licence

Le contenu de cette présentation est sous licence CC-BY-NC-SA 4.0 Utilisation non commerciale – Partage dans les mêmes conditions.

