Unidad I: Altavoz en Pantalla Infinita Parte 5 – Trabajo en Alta Potencia

Recinto para Altavoces Prof. Ing. Andrés Barrera A.

1.- Introducción

2.- Parámetros TS en señal grande

2.1.- DESPLAZAMIENTO MÁXIMO DEL DIAFRAGMA (x_{MÁX})

Desplazamiento peak del diafragma, que limita la distorsión armónica a valores de THD < 10%.

2.2.- VOLUMEN DE AIRE DESPLAZADO POR EL DIAFRAGMA (V_D)

Volumen peak de aire desplazado por el cono, cuando se desplaza una distancia $x_{M \acute{A} X}$

$$V_D = S_d \cdot x_{M AX}$$

3.- Desplazamiento del Diafragma

Considerar que:
$$x(j\omega) = X_0 e^{j\omega t} \rightarrow u(j\omega) = \frac{dx}{dt} = j\omega X_0 e^{j\omega t} = s \cdot x(s)$$

$$\therefore x(s) = \frac{u(s)}{s} = \frac{U_0(s)}{s \cdot S_d}$$

$$\therefore x(s) = \frac{eg \cdot Bl}{(Rg + Re)S_d^2 Mas \omega_S^2} \left[\frac{1}{s^2 T_S^2 + s \frac{T_S}{Qts} + 1} \right]$$

Dependiente de la frecuencia (Función normalizada de desplazamiento del diafragma X(s))

Independiente de la frecuencia (Amplitud de Desplazamiento X_0)

4.- Función Normalizada de Desplazamiento del Diafragma X(s)

Módulo de la Función Normalizada de Desplazamiento

$$X(s) = \frac{1}{s^2 T_S^2 + s \frac{T_S}{Qts} + 1}$$

$$|X(j\omega)| = \frac{1}{\sqrt{1 - \left(\frac{\omega}{\omega_S}\right)^2} + \frac{1}{Qts^2} \left(\frac{\omega}{\omega_S}\right)^2}$$

Análisis:

- **i**)
- Baja Frecuencia $\omega \to 0 \Rightarrow Lim|X(j\omega)|_{\omega \to 0} = 1$ $(20\log|X(j\omega)| \to 0dB)$ Alta Frecuencia $\omega \to \infty \Rightarrow Lim|X(j\omega)|_{\omega \to \infty} = 0$ $(20\log|X(j\omega)| \to -\infty dB)$ En Resonancia $\omega = \omega_S \Rightarrow |X(j\omega)|_{\omega = \omega_S} = Qts$ $(20\log|X(j\omega)| = 20\log Qts)$ iii)

4.- Función Normalizada de Desplazamiento del Diafragma X(s)

5.- Relación Potencia -Desplazamiento

5.1.- POTENCIA ELÉCTRICA LIMITADA POR DESPLAZAMIENTO

$$Per = \pi \rho_0 c^2 \frac{fs \cdot Qes \cdot V_D^2}{Vas \cdot k_X^2 \cdot |X(j\omega)|_{MAX}^2} \quad [Watts]$$

Con Kx = 1 para pantalla infinita.

 ξ A qué frecuencia ocurre x_{MAX} ?

Se obtiene derivando....

$$\frac{d|X(j\omega)|}{df} = 0$$

$$\frac{f_{X_{MAX}}}{fs} = \sqrt{1 - \frac{1}{2Qts^2}} \qquad si \quad Qts > \frac{1}{\sqrt{2}}$$

$$\frac{f_{X_{MAX}}}{fs} = 0 \qquad si \quad Qts \le \frac{1}{\sqrt{2}}$$

$$\frac{f_{X_{MAX}}}{f_S} = 0$$

$$si \quad Qts > \frac{1}{\sqrt{2}}$$

$$si$$
 $Qts \le \frac{1}{\sqrt{2}}$

Trabajo en Alta Potencia

5.- Relación Potencia - Desplazamiento

5.1.- POTENCIA ELÉCTRICA LIMITADA POR DESPLAZAMIENTO

Remplazando f x_{MAX} en el módulo $|X(j\omega)|$:

$$\begin{aligned} \left| X(j\omega) \right|_{MAX} &= \sqrt{\frac{Qts^4}{Qts^2 - 0.25}} & si \quad Qts > \frac{1}{\sqrt{2}} \\ \left| X(j\omega) \right|_{MAX} &= 1 & si \quad Qts \le \frac{1}{\sqrt{2}} \end{aligned}$$

5.- Relación Potencia - Desplazamiento

5.2.- POTENCIA ACÚSTICA LIMITADA POR DESPLAZAMIENTO

$$Par = \frac{4\pi^{3}\rho_{0}}{c} \frac{fs^{4} \cdot V_{D}^{2}}{k_{X}^{2} \cdot \left| X(j\omega) \right|_{MAX}^{2}} \quad [Watts]$$

Con Kx = 1 para pantalla infinita.

JBL PROFESSIONAL

THIELE SMALL LOW FREQUENCY DRIVER PARAMETERS AND DEFINITIONS

March 17, 2008 Page 2 of 5

MODEL	FS	QTS	QMS	QES	VAS	EFF	PE	XMAX	RE	LE	SD	BI	MMS	FLUX
112A	40	0.21	4	0.22	34.0	0.9	60	2.79	5.8	0.3	0.018	12	22	0.95
116A	28	0.46	5	0.51	73.6	0.3	50	4.83	5.2	0.6	0.018	6.7	25	0.85
122A	17	0.23	7	0.24	339.8	0.67	50	6.86	5.7	1.5	0.053	16	100	1.08
123A	25	0.49	8.5	0.52	235.1	0.68	50	7.87	4.4	0.6	0.049	8.9	85	1
124A	16	0.14	9	0.14	399.3	1.1	100	5.08	6.3	1.4	0.053	21	100	1.2
125A	25	43	7.5	0.46	235.1	0.77	50	4.83	5.2	0.7	0.049	7.5	32	0.85

Unidad I: Altavoz en Pantalla Infinita Parte 5 – Trabajo en Alta Potencia

Recinto para Altavoces Prof. Ing. Andrés Barrera A.