复旦大学数学科学学院

2010~2011 学年第一学期期末考试试卷

《高等数学 A》(上) 试题(答案)

1. (本题满分 48 分, 每小题 6 分) (1)
$$-\frac{x}{(1+x^2)^{\frac{3}{2}}}$$
; (2) $a=c=1$, $b=0$;

(3) 1; (4)
$$f(n) = n^n e^{-n}$$
 为极大值; (5) $-\frac{1}{2\sin^2 x} + C$; (6) 2; (7) 3;

(8)
$$c_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, c_1 , c_2 是不全为零的的常数。

- 2. (本题满分 8 分) a=b=e。
- 3. (本题满分8分)256。

4. (本题满分 8 分)
$$\lambda = -\frac{4}{13}$$
, $\mu = -\frac{9}{26}$.

5. (本题满分9分)

当a≠1时(b可为任意常数),方程组有唯一解

$$x_1 = \frac{b-a+2}{a-1}$$
, $x_2 = \frac{a-2b-3}{a-1}$, $x_3 = \frac{b+1}{a-1}$, $x_4 = 0$.

当a=1, b=-1时, 方程组有无穷多解。通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix},$$

其中 c_1 , c_2 为任意常数。

当a=1, $b\neq -1$ 时, 方程组无解。

- 6. (本题满分9分)(1)4;
 - (2) 证明:该曲线与直线 $x=\pi$, y=0 所围平面图形的面积为

$$A = \int_0^{\pi} \left(\int_0^x \sqrt{\sin t} \ dt \right) dx \ .$$

注意当 $0 \le x \le \pi$ 时, $\sqrt{\sin x} \ge \sin x$,于是

$$\int_0^x \sqrt{\sin t} \ dt \ge \int_0^x \sin t \ dt = 1 - \cos x$$

$$A \ge \int_0^{\pi} (1 - \cos x) dx = \pi .$$

7. (本题满分 10 分)证明: (1)对于 $x \in [a, b]$,由于 $\omega(x)$ 非负,则显然成立 $a\omega(x) \le x\omega(x) \le b\omega(x)$,

由 $\int_a^b \omega(x) dx = 1$,上式在[a, b]上取定积分便得结论。

(2) 取 $x_0 = \int_a^b x \omega(x) dx$,则 $x_0 \in [a, b]$ 。由于 f(x) 在 [a, b] 上具有连续二阶导数,且 $f''(x) \ge 0$,由 Taylor 公式可得

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$
, $x \in [a, b]$.

因此

$$\omega(x) f(x) \ge f(x_0)\omega(x) + f'(x_0)[x\omega(x) - x_0\omega(x)], \quad x \in [a, b].$$

取积分便得

$$\int_{a}^{b} \omega(x) f(x) dx \ge f(x_0) \int_{a}^{b} \omega(x) dx + f'(x_0) \left[\int_{a}^{b} x \omega(x) dx - x_0 \int_{a}^{b} \omega(x) dx \right]$$
$$= f(x_0) = f \left[\int_{a}^{b} x \omega(x) dx \right].$$