MAT4MDS — Practice 9

INTEGRATION I

Question 1. Consider $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x - 4. Draw the graph of f and hence calculate each of the following integrals exactly using areas. **Do not use anti-differentiation.**

- (a) $\int_{2}^{5} f(x) dx$,
- (b) $\int_{3}^{5} f(x) \ dx$,
- (c) $\int_{2}^{x} f(t) dt$, where $x \in [2,5]$.

Question 2.

Let f be a function for which: $\int_{-1}^{2} f(x) dx = 6$, $\int_{0}^{1} f(x) dx = 8$ and $\int_{-1}^{1} f(x) dx = 2$.

Use these three values and the additive property of integrals to find

- (a) $\int_{1}^{2} f(x) \ dx$
- (b) $\int_{-1}^{0} f(x) \ dx$
- (c) $\int_0^2 f(x) \ dx$.

Question 3.

- (a) Sketch the graph of $\frac{1}{x}$ for x > 0.
- (b) On your sketch, shade the area given by $\int_1^a \frac{1}{x} dx$, where a > 1.
- (c) If the shaded area has value 1, what is α ?

An antiderivative of a function f is a function F whose derivative is f, i.e.

$$F'(x) = f(x)$$
.

The antiderivative is often denoted $\int f(x) dx$ and is also called the indefinite integral.

Question 4. By **differentiating** the right hand side, verify the following antiderivatives (where c is a constant).

- (a) $\int x \ dx = \frac{1}{2}x^2 + c$.
- (b) $\int e^{2x} dx = \frac{1}{2}e^{2x} + c$
- (c) $\int (3x+1)^{1/2} dx = \frac{2}{9}(3x+1)^{3/2} + c$

Table of Common Antiderivatives.			
	f(x)	Anti-derivative $F(x)$	Comments
	x^k	$\frac{1}{x^{k+1}}$	$k\neq -1, x>0.$
	e^{ax}	$k+1$ $\frac{1}{a}e^{ax}$	
	$\frac{1}{x}$	$\log_e(x)$	<i>x</i> > 0
	$\log_e^x(x)$	$x\log_e(x) - x$	x > 0

SUM AND DIFFERENCE, AND CONSTANT MULTIPLE PROPERTIES

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx \quad and \quad \int \alpha f(x) dx = \alpha \int f(x) dx \text{ for all } \alpha \in \mathbb{R}.$$

Question 5. Calculate the following indefinite integrals.

- (a) $\int (t^2 + 3t + t^{-1}) dt$
- (b) $\int (5\log_e(x) + 2e^x) dx$
- (c) $\int 3p^{0.2} dp$
- (d) $\int dx = \int 1 dx$

THE FUNDAMENTAL THEOREM OF CALCULUS

Suppose that f is continuous on an interval I and let $a, b \in I$.

PART 1. The function F defined by $(x) = \int_a^x f(t) \ dt$ for each $x \in I$ is an antiderivative of f on I. That is, F'(x) = f(x) for all $x \in I$.

PART 2. If F is any antiderivative of f on I then $\int_a^b f(x) \ dx = [F(x)]_a^b = F(b) - F(a)$.

Question 6. Calculate the following definite integrals.

- (a) $\int_{-1}^{1} x^2(x+2) dx$
- (b) $\int_1^3 (x + x^{-1}) dx$
- (c) $\int_1^e (2x \log_e(x)) dx$

For all constants $a, b \in \mathbb{R}$ with $a \neq 0$: If $\int f(x) dx = F(x)$ then $\int f(ax + b) dx = \frac{1}{a}F(ax + b)$

Question 7.

(a) Calculate the following antiderivatives (where c and d are constants with $c \neq 0$).

(i)
$$\int (4t+1)^7 dt$$

(ii)
$$\int \frac{1}{(cx+d)^3} dx$$

(iii)
$$\int_0^x e^{-3x+2} dx$$

(b) Calculate the following integrals.

(i)
$$\int_{1}^{2} (1+3x)^{-1} dx$$

(ii)
$$\int_{-2}^{2} \sqrt{2x+5} \ dx$$

(iii)
$$\int_0^x (x^2 + e^{-x}) dx$$

We cannot calculate an integral directly when one of the terminals is infinite. We need to first calculate a finite integral and then take a limit. (If the limit does not exist, then the integral is not defined.)

Example: Calculate $\int_2^\infty x^{-2} dx$.

$$\int_{2}^{b} x^{-2} dx = [-x^{-1}]_{2}^{b} = (-b^{-1}) - (-2^{-1}) = 2^{-1} - b^{-1} = \frac{1}{2} - \frac{1}{b}.$$
Now
$$\int_{2}^{\infty} x^{-2} dx = \lim_{h \to \infty} \int_{2}^{b} x^{-2} dx = \lim_{h \to \infty} \left[\frac{1}{2} - \frac{1}{h} \right] = \frac{1}{2}.$$

Question 8. Calculate the following integrals. Show clearly how limits are used in your calculations.

(a)
$$\int_{1}^{\infty} x^{-5} dx$$

(b)
$$\int_0^\infty e^{-x} dx$$

(c)
$$\int_{-\infty}^{-1} x^{-4} dx$$

The cumulative distribution function F is an anti-derivative of the probability density function f for continuous data. That is:

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t)dt$$

The **mean** value is given by

$$\int_{-\infty}^{\infty} x f(x) dx$$

Question 9. Let us consider the cdf of the Pareto distribution (we met this distribution before):

$$F: [a, \infty) \to \mathbb{R}$$
 $F(x) = 1 - \left(\frac{a}{x}\right)^b$

- (a) What is the probability density function of the Pareto distribution?
- (b) Calculate the mean value of the Pareto distribution.

Question 10. The function

$$F \colon [0,1] \to \mathbb{R} \ F(x) = 1 - (1 - x^a)^b$$

is also a cdf, of a distribution called the Kumaraswamy distribution. (Here a, b are non-negative.) Find the associated probability density function.

