

October 1988 Revised March 2000

DM74LS47

BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

General Description

The DM74LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 24 mA in the ON (LOW) state and withstand 15V in the OFF (HIGH) state with a maximum leakage current of 250 μA . Auxiliary inputs provided blanking, lamp test and cascadable zero-suppression functions.

Features

- Open-collector outputs
- Drive indicator segments directly
- Cascadable zero-suppression capability
- Lamp test input

Ordering Code:

Order Number	Package Number	Package Description						
DM74LS47M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow						
DM74LS47N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide						

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8

Connection Diagram

Pin Descriptions

Pin Names	Description						
A0-A3	BCD Inputs						
RBI	Ripple Blanking Input (Active LOW)						
LT	Lamp Test Input (Active LOW)						
BI/RBO	Blanking Input (Active LOW) or						
	Ripple Blanking Output (Active LOW)						
a –g	Segment Outputs (Active LOW) (Note 1)						

Note 1: OC-Open Collector

Truth Table

Decimal															1
or	Inputs						Outputs							Note	
Function	LT	RBI	А3	A2	A1	Α0	BI/RBO	a	b	c	d	ē	f	g	
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	Н	(Note 2)
1	Н	Х	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н	(Note 2)
2	Н	Х	L	L	Н	L	Н	L	L	Н	L	L	Н	L	
3	Н	Х	L	L	Н	Н	Н	L	L	L	L	Н	Н	L	
4	Н	Х	L	Н	L	L	Н	Н	L	L	Н	Н	L	L	
5	Н	X	L	Н	L	Н	Н	L	Н	L	L	Н	L	L	
6	Н	Х	L	Н	Н	L	Н	Н	Н	L	L	L	L	L	
7	Н	Х	L	Н	Н	Н	Н	L	L	L	Н	Н	Н	Н	
8	Н	Х	Н	L	L	L	Н	L	L	L	L	L	L	L	
9	Н	Х	Н	L	L	Н	Н	L	L	L	Н	Н	L	L	
10	Н	Х	Н	L	Н	L	Н	Н	Н	Н	L	L	Н	L	
11	Н	Х	Н	L	Н	Н	Н	Н	Н	L	L	Н	Н	L	
12	Н	Х	Н	Н	L	L	Н	Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	Н	Н	L	Н	Н	L	Н	L	L	
14	Н	×	Н	Н	Н	L	Н	Н	н	Н	L	L	L	L	
15	н	X	н	н	н	Н	н	н	н	н	Н	Н	Н	Н	
BI	X	×	X	Х	X	X		н	н	н	н	н	H	н	(Note 2)
		1					L								(Note 3)
RBI	H	L	L	L	L	L	L	H	H	H	H	H	H	H	(Note 4)
ĪŢ	L	Х	Х	Х	Х	Х	Н	L	L	L	L	L	L	L	(Note 5)

Note 2: $\overline{BI/RBO}$ is wire-AND logic serving as blanking input (\overline{BI}) and/or ripple-blanking output (\overline{RBO}) . The blanking out (\overline{BI}) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (\overline{RBI}) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 3: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.

Note 4: When ripple-blanking input (RBi) and inputs A0, A1, A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

Note 5: When the blanking input/ripple-blanking output (\$\overline{BI/RBO}\$) is OPEN or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

Functional Description

The DM74LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the $\overline{\text{RBI}}$ blanks the display and causes a multidigit display. For example, by grounding the $\overline{\text{RBI}}$ of the highest order decoder and connecting its $\overline{\text{BI}/\text{RBO}}$ to $\overline{\text{RBI}}$ of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding $\overline{\text{RBI}}$ of the lowest order decoder and connecting its $\overline{\text{BI}/\text{RBO}}$ to $\overline{\text{RBI}}$ of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving $\overline{\text{RBI}}$ of a

intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by external means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

Numerical Designations—Resultant Displays

