MEGaSaura: a spectroscopic sample of lensed starbursts at Cosmic Noon

T. E. Rivera-Thorsen¹ with Håkon Dahle¹, Max Grönke², Matt Bayliss³, Jane Rigby⁴, the SGAS collaboration

¹Institute of Theoretical Astrophysics, University of Oslo, Norway; ²UC Santa Barbara, California; ³MIT-Kavli, Cambridge, Massachusetts; ⁴NASA Goddard Space Flight Center, Greenbelt, Maryland

Introduction

The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura, Rigby+ 2017a,b) consists of intermediate-resolution, rest-frame UV Spectroscopic Magellan/MagE observations of a sample of 15 bright, star-forming galaxies at "Cosmic Noon" (1.5 $\lesssim z \lesssim$ 3.5).

STRONGLY LENSED AND REST-FRAME UV BRIGHT

MEGaSaura are selected to be bright in the optical and have redshifts in the range $1.5 \lesssim z \lesssim 3.5$, when the majority of the stars in the current Universe formed. They are selected to be bright in optical (rest-frame UV) bands, which indirectly selects for a strong population of young, hot stars. This makes the sample comparable to e.g. the Lyman Alpha Reference Sample (Östlin+ 2014, Hayes+ 2014).

EARLY RESULTS FROM KINEMATICS

Figure: Early results from MEGaSaura kinematics, compared to measurements from (e)LARS. If EW(Ly α) is a fair proxy for escape fraction, the dependence on neutral wind velocity ($v_{50\%}$) and line depth (I/I_{0,min}) and -thickness ($w_{90\%}$) show no surprises compared to low redshifts, but winds are generally faster and with much higher maximum wind speeds.

The Sunburst arc — a late but unique arrival

BRIGHT, LARGE, METAL-POOR STARBURST

PSZ1-ARC G311.65-18.48 was observed afterMegaSaura proper and is not included in Rigby+ 2016a,b, will be included in future analyse. It is the brightest arc ever observed and may well be the brightest arc to ever be observed (Dahle+ 2016). It extends 55" over the Southern sky, an order of magnitude more than most MegaSaura galaxies. We nicknamed it the "Sunburst" due to the way rifts in the medium allow a direct view of the hot stars behind it.

Figure: Left: The Sunburst Arc shows strong similarity to the stacked Lyman Break Galaxy spectra of Shapley+ 2003. Right: A BPT analysis based on FIRE spectroscopy reveals that the galaxy is metal poor but quite typical for a starburst galaxy at its redshift.

Triple-peaked Ly α emission line

Visual inspection of one of the MagE pointings revealed a very unusual, triple-peaked Ly α profile, theoretically predicted to arise when Ly α radiation escapes through direct, empty channels in a medium of otherwise high column density (e.g. Behrens+ 2014). To our knowledge, this is the first time such a profile has been observed unambiguously (Rivera-Thorsen+ 2017b).

Figure: **Clockwise:** 1: *Upper panel*: Ly α and H α . The central peak in Ly α is almost completely unaffected by neutral gas. Inset: Computed worst-case Ly α profile of high-velocity HI gas of 1 optical depth (\sim 70% abs.) in LyC. *Middle panel*: Select neutral absorption lines. Very shallow but follows the features found in Ly α at \sim -100 and \sim -450 km/s. *Lower panel* lonized gas is more abundant but follows the same general kinematic structure. 2: Ly α could only be modeled with an isotropic outflow model if we removed the narrow peak at line center. 3: 2D-spectra of Ly α in position 1 and 4, only the former has yet been published.

HST IMAGING

Recently, we obtained HST F814W imaging data of the arc (Prop. 15101, PI Dahle). The images revealed a wealth of detail and complexity.

Figure: HST F814W image of the two brightest sub-arcs, with Fire (red) and MagE (cyan) slits overlaid. The observations of Position 1 were published in Rivera-Thorsen+ 2017, analysis of other pointings is still incomplete.

Imaging in rest-frame Lyman-Continuum is scheduled for late April. If detected, these observations can probe ionizing radiation escape down to \lesssim kpc scales, which will be another first made possible by this system.

LENS MODELS SUGGEST EXTREME MAGNIFICATION

Preliminary lens models suggest that this arc consists of a large number of images of the same, relatively simple structure It consists of one bright, compact cluster (point-like at HST resolutions), and a group of fainter, fuzzier clumps (see figure below). Lens modeling so far shows that the galaxy is imaged 6 times in the NE sub-arc alone — modeling of the other sub-arcs is still ongoing.

Figure: Preliminary critical lines (red) overlaid on HST imaging of the upper third of the arc. Cyan rings indicate multiple images of the source. Image credit: Keren Sharon, Univ. of Michigan

The MagE observations reported in Rivera-Thorsen+ 2017b were pointed at the triple image of the bright cluster in the lower right of the image.

thriveth,github.io