ПРИМЕРЕН ИЗПИТЕН ВАРИАНТ ЗА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

ПЪРВА ЧАСТ

1. Най-голямото от посочените числа е:

a)
$$\sqrt[3]{25}$$

6)
$$\left(\frac{1}{5}\right)^{-\frac{1}{3}}$$
 B) $\left(5\right)^{-\frac{1}{4}}$

B)
$$(5)^{-\frac{1}{4}}$$

$$\mathbf{r})\left(\frac{1}{5}\right)^{-\frac{1}{2}}$$

Изразът $\frac{x^2 - 2x - 8}{x^2 - 4}$ при $x \neq \pm 2$ е тъждествено равен на: 2.

a)
$$\frac{x+2}{x-4}$$

a)
$$\frac{x+2}{x-4}$$
 6) $\frac{x-4}{x-2}$ B) $\frac{x+4}{x+2}$ r) $\frac{x-2}{x-4}$

B)
$$\frac{x+4}{x+2}$$

$$r) \frac{x-2}{x-4}$$

Решенията на неравенството $\frac{(x-1)(x+2)}{x(1-x)} \le 0$ ca: 3.

a)
$$\left(-\infty; -2\right]$$

B)
$$\left(-\infty; -2\right] \cup \left(0; 1\right) \cup \left(1; +\infty\right)$$
 Γ) $\left[-2; 0\right] \cup \left(0; 1\right]$

$$\Gamma$$
) $\begin{bmatrix} -2; & 0 \end{bmatrix} \cup \begin{pmatrix} 0; & 1 \end{bmatrix}$

Ако числото $\frac{1}{2}$ е корен на уравнението $\frac{1}{4}x + x^2 = \frac{3}{8}$, то другият корен на

уравнението е:

a)
$$\frac{3}{4}$$

6)
$$-\frac{3}{4}$$

5. В интервала [2; +∞) растяща функция е:

a)
$$f(x) = -x^2 - 2x$$

6)
$$f(x) = x^2 - 6x + 9$$

B)
$$f(x) = -x^2 + 4x - 3$$

$$\mathbf{r}$$
) $\mathbf{f}(\mathbf{x}) = 2\mathbf{x}^2 - 8\mathbf{x} - 10$

Графиката на функцията $y = 2 - x^2$ е:

a)

б)

в)

r)

Решенията на неравенството $x^2 \ge 16$ са: 7.

6)
$$(-\infty; -4] \cup [4; +\infty)$$
 B) $x \ge -4$

B)
$$x \ge -4$$

$$\Gamma$$
) $x \ge 4$

Най-голямата стойност на функцията $f(x) = x^2 - 6x + 8$, $x \in [-2; 4]$ е: 8.

Ако x_1 и x_2 са корени на уравнението $2x^2 - 8x = 5x - 20$, то стойността на 9. израза B = $2x_1 + 2x_2 + \frac{x_1x_2}{2}$ e:

След опростяване на израза $\frac{\mathsf{a} - \mathsf{b}}{\sqrt{\mathsf{a}} + \sqrt{\mathsf{b}}}$ (a > 0, b > 0) се получава: 10.

a)
$$\sqrt{a} + \sqrt{b}$$

$$\mathbf{B}$$
) \sqrt{ab}

6)
$$a+b$$
 B) \sqrt{ab} r) $\sqrt{a}-\sqrt{b}$

- Кое от числата не е от дефиниционната област на функцията $f(x) = \sqrt{x^2 + x 6}$? 11.
 - **a)** 0
- **б)** 5
- **B)** $\sqrt{7}$
- **г)** -3
- Стойността на $2\sin^2 2\alpha + 2\cos(90^{\circ} \alpha) + 2\cos^2 2\alpha$ при $\alpha = 60^{\circ}$ е: **12.**
 - a) 3
- **б)** 2
- **B)** $2 + \sqrt{3}$
- r) $1 + \sqrt{3}$
- Семейство внесло в банка за 15-тия рожден ден на детето си 1000 лв. при сложна 13. годишна лихва 10%. Когато детето навърши 19 години, сумата ще бъде:

прави измежду шест ученици, броят на възможните отбори е:				
	a) 120	6) 20	в) 30	г) 24
15.	Ако $A = \log_2 2^7 + \log_5 5 - \log_8 1$, то стойността на произведението $A.\log_7 \frac{1}{7}$ е:			
	a) 7	б) -8	в) -7	г) 56
16.	Точката М е медицентърът на ΔАВС, а точката Р лежи върху страната АВ и			
AP:PB = 2:1. Отношението на лицата на триъгълниците BMP и ABC е:				
	a) $\frac{1}{4}$	6) $\frac{1}{9}$	B) $\frac{1}{3}$	r) $\frac{1}{6}$
	4	9	3	6
17.	Дължините на страните на правоъгълен триъгълник образуват аритметична			
	огресия с разлика 3. Радиусът на вписаната окръжност е:			
P	a) 3	6) 7,5	в) б	г) 4,5
	,	, ,	,	, ,
18.	Диагоналите на четириъгълника ABCD са $AC = \sqrt{32}$, $BD = \sqrt{27} - 3$ и се			
пресичат в точка О. Ako ∠AOD = 105°, лицето на четириъгълника ABCD е равно на:				
	a) 12	6) 6	B) $12(\sqrt{6}-\sqrt{2})$?); г) друг отговор
19.	За успоредника ABCD е дадено: $AB = 2\sqrt{2}$, $AD = 3$ и $\angle BAD = 45^{\circ}$. Диагоналът			
му АС е равен на:				
	a) $\sqrt{5}$	6) $2\sqrt{3}$	B) $\sqrt{29}$	Γ) $3\sqrt{3}$
20.	В правоъгълния трапец ABCD (AB II CD) точка О е пресечна точка на			
диагоналите му. Ако основите му са 8 и 4, то разстоянието от точка О до				

б) 1400 лв. **в)** 1464,10 лв. **г)** 1610,51 лв.

В олимпиада по математика участват отбори от по трима души. Ако изборът се

а) 1331 лв.

перпендикулярното бедро е равно на:

6) 2 **B)** 3

a) $\frac{4}{3}$

14.

r) $\frac{8}{3}$

ВТОРА ЧАСТ

- 1. Корените на уравнението $(x^2 + 2x)^2 5(x^2 + 2x) + 6 = 0$ ca
- **2.** В $\triangle ABC \angle ACB = 60^{\circ}$, AB = 10 и точка H е ортоцентърът на триъгълника. Радиусът на описаната около $\triangle ABH$ окръжност е
- **3.** Иван написал на картончета цифрите от 1 до 9 по следния начин: цифрата 1 на две картончета, цифрата 2 на три картончета, цифрата 3 на четири картончета и т.н. След това сложил картончетата в кутия. Вероятността на първото произволно изтеглено картонче да има нечетна цифра е
- **4.** Стойността на израза $\left(\frac{\sqrt{a} + \sqrt{x}}{a + x} \frac{1}{\sqrt{a} \sqrt{x}}\right) : \frac{\sqrt{ax}}{a + x}$ при a = 8 и x = 2 е
- **5.** В трапеца ABCD (AB II CD), AB = 10, CD = 6, ∠DAB = 60°, ∠DCB = 135°. Височината на трапеца е

ТРЕТА ЧАСТ

- 1. Pemere системата $\begin{vmatrix} y = x^2 + 5x \\ x = y^2 + 5y \end{vmatrix}$
- **2.** Даден е \triangle ABC и точки M, N и P съответно върху страните AB, BC и CA такива, че AM : MB = BN : NC = CP : PA = 1 : 3. Ако лицето на триъгълника ABC е 64 cm², да се намери лицето на триъгълника MNP.
- **3.** В турнир по хандбал участват 8 отбора. Ако има безспорен фаворит за златния медал, по колко различни начини могат да се разпределят златният, сребърният и бронзовият медал в турнира?