Linear Text classification

https://eduassistpro.github.io/

Assignment Project Exam Help

Problem defintion: Given a text document assign is saist_prolabel $y \in \mathcal{Y}$ where is the set of possible labels applications:

- Spam filter:https://eduassistpro.github.io/
- Sentiment: $\mathcal{Y} = \{ \text{Positive negati} \}$ Genre classification: $\mathcal{Y} = \{ \text{sport} \}$

Bag-of-words representation of a document

A typical representatio https://eduassistpro.github.io/mathematically a vector of word counts: Assignment Project Exam Help

Assign And More edu_assist_pro

where x_j is the council the size of the vocal that ps://eduassistem githuboundents in a set are of the same length for apple-to-apple co

- "Vocabulary here Van Charlegu_assist_pro language. For instance, it could include all bigrams in a collection of documents.
- ▶ Alternatives to word counts include simple presence 1 or absence 0 of a word, tf/idf of a word, etc.
- By using word count we dropped all word order information

Feature function

- Not all words are egs://eduassistpro.github.io/ a particular label.

 assign a score to each word in the vocabulary to indicate the "compatibility with the label, e.g.," basketball" has a high compatibility with sports, "Gryffindo compatibility with sports, "Gryffindo compatibility with sports, "Gryffindo
- These comp
 s and they are
 arranged in arranged
- Siven a bag-of θ , we predict the label y by computing the total compa assist_pro en x and y.
- In a linear function, this compatibility score is the inner product of between the weights θ and a *feature function*:

$$\hat{y} = rgmax_{y \in \mathcal{Y}} oldsymbol{\Psi}(oldsymbol{x}, y)$$
 $oldsymbol{\Psi}(oldsymbol{x}, y) = oldsymbol{\theta} \cdot oldsymbol{f}(oldsymbol{x}, y) = \sum_{i} heta_{i} f_{i}(oldsymbol{x}, y)$

More on feature function

https://eduassistpro.github.io/

- The feature function has two arguments, the word counts **x** and the label years arguments. The word counts **x** and the label years arguments arguments arguments.
- It will return an feature vector where each elem vector might be return by the property of the edu_assist_pro

https://eduassistpro.github.io/ fj(x,y) = Add WeChat edu_assist_pro

- In this case the size of the feature vector is the size of the vocabulary, but it doesn't have to be.
- ► The output of the feature function also doesn't have to be the word count.

Shape of the feature vector

https://eduassistpro.github.io/

Assignment Project Exam Help

Assignation we assist pro

f(https://eduassistpro.github.io/

Add WeChat edu_assist_pro

where K is size of the label set, $\underbrace{0;0;\cdots;0}_{(K-1)\times V}$ is a vector of

 $(K-1) \times V$ zeros and the semicolon indicates vertical concatenation.

Note: Think of a feature vector this way is good for mathematical presentation. It doesn't have to be implemented this way.

Bias

It is common to add at ps://eduassistpro.github.io/vector of word counts which is always 1, and then we need to add a zero to each of the percent of f(x, y) wil

Assign And the Chat edu_assist_pro

https://eduassistpro.github.io/

$$f(x, y = K) = [\underbrace{0; 0; \cdots; 0}_{(K-1)\times(V+1)}; x]$$

Bias: What's its effect on classification if it is the only feature?

Example "vocabulary" V

https://eduassistpro.github.io/

Assignment Project Exam Help

```
Assignment/Projection of docu assist_pro
A NEG not funny at all

https://eduassistpro.github.io/

Projection of docu assist_pro
assist_pro
funny at all

https://eduassistpro.github.io/

projection of docu assist_pro
assist_pro
funny at all
```

 $V = \{$ not, funny, painful, ok, overall, story, good, jokes $\}$

https://eduassistpro.github.io/

Assignment Project Exams Help

-	Α	NEG	not funny at all
Ass	ign	ANGEOD	not funny at all was funny at all assist_pro
_		_	
	htt	ns://	eduassistpro.github.io/
	110		odddolotpi orgitriabilo/

V = { not, funny, plantiff of the tipe duy assist pro

$$f_1(\mathbf{x}, y) = \begin{cases} x_{not}, & \text{if } y = \text{NEG} \\ 0, & \text{Otherwise} \end{cases}$$

https://eduassistpro.github.io/

Assignment Project Exams Help

-	Α	NEG	not funny at all	
Ass	ign	ANGO	not funny at all wassist_pro)
		_		
-	htt	:ps://	eduassistpro.github.io/	
		•	1 9	

V = { not, funny, plantiff we Chatied by assist_pro

$$f_2(\mathbf{x}, y) = \begin{cases} x_{funny}, & \text{if } y = \text{NEG} \\ 0, & \text{Otherwise} \end{cases}$$

https://eduassistpro.github.io/

Vocabulary for a collection of documents

 $V = \{ \text{ not, funny, painful, ok, overall, story} \}$ Feature vector for Ald WeChat edu_assist_pro

$$f(x = \text{featurize}(A), y = NEG) = [1; 1; 0; 0; 0; 0; 0; 0; 0; 1; \underbrace{0; 0; \cdots; 0}_{(3-1)\times(8+1)}]$$

Voca https://eduassistpro.github.io/

$$f(x = \text{featurize}(C), y = NEU) =$$

$$\underbrace{[0; 0; \dots; 0; 0; 0; 0; 1; 1; 0; 0; 0; 1; \underbrace{0; 0; \dots; 0}_{(8+1)}]}_{(8+1)}$$

Voca https://eduassistpro.github.io/

$$f(x = \text{featurize}(E), y = POS) =$$

$$[\underbrace{0; 0; \cdots; 0}_{(3-1)\times(8+1)}; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1]$$

The importance of feature functions

https://eduassistpro.github.io/

Assignment Project Exam Help

The performance of a model to a large extent depends on the use of proper feature functions at odd a cociet pro-

use of proper feature functions
 ASSIGNATE PROPERTY Pro

Models that c / eduassistpro.github.io/
 don't perform as well
 Add WeChat edu assist_pro
 The most effective features differ from ta

The most effective features differ from ta relies on a good understanding of the problem at hand and domain knowledge

Assigning weights to features

https://eduassistpro.github.io/

Assignment Project Exam Help Now we know about features. What about the weights (θ) ?

Assign And the Chat edu_assist_pro

- https://eduassistpro.github.io/

 ► There are many different ways to estimat

 θ. That's why Achd v Wifferentamedue lassist_pro
- \blacktriangleright We find the optimal value of θ with a set of training samples of size *N*: $\{x^{1:N}, y^{1:N}\}$

Probability preliminaries

https://eduassistpro.github.io/

- ► Joint probability. The Italy and Y are random variables and a and b o the randonsoignes dept We Ghat edu_assist_pro
- Conditional
- Bayes' theohttps://eduassistpro.github.io/
- Marginalization (surve) hat edu_assist pro Independence: P(Y|X) = P(Y | X),
- P(X, Y) = P(X)P(Y)
- ▶ Conditional independence: P(X, Y|Z) = P(X|Z)P(Y|Z)

Naïve Bayes: the objective

The objective is to maxilabeled training documents. This is known as the maximum likelihood estimation. Assignment Project Exam Help

The goal of the training process is to find the weights θ that maximizes Alas interpretable to the training process is to find the weights θ that

https://eduassistpro.github.io/

$$\frac{\text{Add We finat edu_assist_pro}}{\theta} \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, y^{(i)}; \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(\mathbf{x}^{(i)}, y^{(i)}; \theta)$$

The notation $p(\mathbf{x}^{1:N}, y^{1:N}; \boldsymbol{\theta})$ indicate that $\boldsymbol{\theta}$ is a parameter of the probability function. Symbols in bold indicate a vector of variables rather than a single variable.

"Independent and Identically Distributed"

https://eduassistpro.github.io/

Assignment Project Exam Help

- "A collection of random variables is identically gistrated if each rando du_assist_pro e probability d independen https://eduassistpro.github.io/
- ▶ Often shortened as *i.i.d*
- The basis on the product of the probability of each sample

The generative story of Naïve Bayes

https://eduassistpro.github.io/

The probability $p(\mathbf{x}^{1:N}, y^{1:N}; \boldsymbol{\theta})$ is defined through a **generative model**, an idealized and on process that has generated the observed data. The algorithm that describes the ge underlying Ales Name Process that it describes the ge $\Theta = \{\mu, \phi\}$:

Algorithm 1 G https://eduassistpro.github.jo/ssification

for Instance $i \in \{1, 2, \cdots, N\}$ dedu_assist_property Draw the label $y^{(i)} \propto \text{Categorical}(\mu)$; Draw the word counts $\mathbf{x}^{(i)}|y^{(i)} \propto \text{Multinomial}(\phi^{(i)})$. end for

Multinomial distribution

https://eduassistpro.github.io/

 $P_{Y|X}$ is a **multinomial which a probabilistic assist_provectors** of non-negative counts. The probability this distribution is:

https://eduassistpro.github.io/

Add We Chat edu_assist_pro

$$B(\mathbf{x}) = \frac{\left(\sum_{j=1}^{V} x_j\right)!}{\prod_{j=1}^{V} (x_j!)}$$

Crucially, B(x) is a multinomial coefficient that does not depend on ϕ , and can usually be ignored.

Parameter estimation

The generative story abos://eduassistpro.github.io/

Assign
$$= \sum_{i=1}^{n} |\mathbf{P}_{i}| \mathbf{P}_{i}^{(i)} \mathbf{E}_{i}^{(i)} \mathbf{E}_{i}^{(i)} \mathbf{E}_{i}^{(i)}$$
 Help

into

Assign the probate edu_assist_pro
$$\mathcal{L}(\phi,\mu) = \frac{(i)}{(y^{(i)};\mu)}$$

$$= \frac{(i)}$$

Maximum-likelihood estimation chooses ϕ and μ that maximize the log-likelihood of \mathcal{L} . Because we want these parameters to be probabilities, the solution must obey the following constraints:

$$\sum_{j=1}^{V} \phi_{y,j} = 1 \quad \forall y$$

Parameter Estimation

https://eduassistpro.github.io/

After incorporating the the constraints by adding a set of Lagrange multipliers, we set it in now positive ever for semither property of the semither property of the semither of the semither

Assign And the Chat edu_assist_pro

$$\ell(\Phi_y) = \frac{1}{https://eduassistpro.ghthubl.jo/}$$

Differentiating with despected that added assisted pro

$$\frac{\partial \ell(\phi_y)}{\partial \phi}_{y,j} = \sum_{i:y^{(i)}=y} x_j^{(i)} / \phi_{y,j} - \lambda$$

Parameter Estimation

https://eduassistpro.github.io/

There is a closed firm solution Profile white cannot be setting each element in the vector of derivatives equal to zero:

$$\lambda \phi_{y,j}$$
 Assign Ass

where $\delta\left(y^{(i)}=y\right)$ is an indicator function which returns one if $y^{(i)}=y$. The symbol ∞ indicates that $\phi_{y,j}$ is proportional to the right-hand side of the equation

Parameter Estimation

https://eduassistpro.github.io/

Recall the soristraint that Prio jeveet Example lifties: $\sum_{j=1}^{V} \phi_{y,j} = 1$. We have an exact solution:

https://eduassistpro.github.io/
Similarly we can arrive at:

Add WeChat_edu_assist_pro
$$\mu_y = \frac{1}{\sum_{y' \in K} count(y')}$$

As is often the case, the result of the mathematical derivation (that needs to turned into code) is usually often much simpler:

Smoothing

https://eduassistpro.github.io/

Laplace smoothing gramment Project Exam Help

Assignated Assignation Assignation Assignation Assignation of the count of the coun

The bias - varianttps://eduassistpro.github.io/ta, yielding

- b Unbiased cla ta, yielding poor performance where the detecture assist pro
- But if the smoothing is too large, the resulti **underfit** instead. In the limit of $\alpha \to \infty$, there is zero variance: you get the same classifier, regardless of the data.

How to determine the best α ?

Grid Search

https://eduassistpro.github.io/

Setting hyperparameters

Setting hyperparameters

Setting hyperparameters

- Try a Act sife prompted the course of the co
- The goal is https://eduassistpro.githleto, io/we shouldn't be d

 it on a development of the differ edu_assist_pro
- We should also set aside another set called set that you measure system performance on.
- ▶ If the data set is too small, use *cross-validation*

Prediction with Naïve Bayes

https://eduassistpro.github.io/ $\hat{y} = \operatorname{argmax} \log (y; \mu, \phi)$ Assignment (Ricordet Legam) Help

Plug in the distribution from the generative story, w

Assignment Property edu_assist_pro

 $\log p(x|y;\phi)$ +https://eduassistpro.gith θ អូ០/

Add WeChat edu_assist_pro
$$= \log B = \log \mu_y$$

$$= \log B(x) + \theta \cdot f(x, y),$$

where

$$\begin{aligned} \boldsymbol{\theta} &= [\boldsymbol{\theta}^{(1)}; \boldsymbol{\theta}^{(2)}; \cdots; \boldsymbol{\theta}^{(K)}] \\ \boldsymbol{\theta}^{(y)} &= [\log \phi_{y,1}; \log \phi_{y,2}; \cdots; \log \phi_{y,V}; \log \mu_y] \end{aligned}$$

Relation between mathematical models and computer science tools https://eduassistpro.github.io/

- Mathematics provides the justification of why a mode works the way it does, and computer science focuses with efficient alegation was larger provided dassist_pro
 - Computational algorithms often resor repeate nal implem https://eduassistpro.github.io/Forward-Backfoward, CKY
- It's useful to the work where end that assist pro on ends and computational realization starts.
- ➤ The relation between a mathematical expression and its implementation in a programming language can be thought of as a translation process: it's not always word for word.

Advantages of Naïve Bayes

https://eduassistpro.github.io/

Assignment Project Exam Help

With a joint likelihood objective, the estimated par Naïve Bayes model that the control of the property of the control of the

https://eduassistpro.github.io/

$$P(x,y) = P(x|y) \times P(y)$$
 (x)
Add WeChat edu_assist_pro

In practice, we rarely use Naïve Bayes for gene used as a classification model.

Problems of Naïve Bayes

https://eduassistpro.github.io/ Let's say we want to inclu morphemes). Assignment Project Exam Help

$$P(\text{word} = unfit, \text{prefix} = un-|y|)$$
 $= P(\text{prefix} = unfit, \text{prefix} = unfit, \text{pr$

https://eduassistpro.github.io/
If we assume conditional independence,

$$P(\text{word} = \text{unfit}, \text{prefix} = \text{edu_assist_pro})$$

 $\approx P(\text{word} = \text{unfit}|y) \times P(\text{prefix} = \text{un-}|y)$

Since $P(\text{word} = unfit|y) \ge P(\text{word} = unfit|y) \times P(\text{prefix} = un-|y)$, conditional independence under-estimates the true probabilities of conjunction of positively correlated features.