TD 3 Différentiabilité

Exercice 1

a) Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application donnée par

$$f(x,y) = \begin{vmatrix} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{vmatrix}$$

Montrer que les dérivées partielles $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent mais ne sont pas égales.

Exercice 2

a) Soient E, F deux espaces vectoriels de dimension finie, U un ouvert de $E, f: U \to F$ une application différentiable, $a \in U$ et $v \in E$. Montrer que l'application

$$f_{a,v}: t \longmapsto f(a+tv)$$

est définie sur un intervalle ouvert contenant 0 et dérivable en tout point où elle est définie. Calculer la dérivée de $f_{a,v}$ en t=0. On suppose que f est k-fois différentiable en a. Calculer les dérivés successives de $f_{a,v}^{(k)}(0)$.

- **b)** Soient E, F deux espaces vectoriels de dimension finie, U un ouvert de E et $f: U \to F$ une application deux fois différentiable. Montrer que l'application $x \mapsto df_x(x)$ est différentiable et calculer sa différentielle.
- c) Soient E, F deux espaces vectoriels de dimension finie, U un ouvert de $E, f: U \to F$ une application de classe C^{∞} , $a \in U$ et $v \in E$. Montrer que l'application $v \mapsto d^k f(a)(v, \ldots, v)$ est différentiable et calculer sa différentielle.

Exercice 3 On se place dans le cas d'une fonction $f:U\to\mathbb{R}$ où U est un ouvert de \mathbb{R}^n et on fixe $a\in U$. Dans la suite, lorsque f est suffisamment régulière, on adoptera la notation simplificatrice suivante :

$$D^k f(a)(h)^k = D^k f(a)(h, h, ..., h)$$

- a) Récrire explicitement la précédente expression en utilisant les dérivées partielles k^e de f.
- b) On suppose pour cette question que f est de classe C^{k+1} sur U. Soit $h \in \mathbb{R}^n$ tel que le segment [a, a+h] soit inclus dans U. Montrer alors la formule de Taylor avec reste intégral en appliquant la formule correspondante du cas réel à une fonction bien choisie.

$$f(a+h) - f(a) - Df(a)(h) - \dots - \frac{1}{k!}D^k f(a)(h)^k = \int_0^1 \frac{(1-t)^k}{k!}D^{k+1} f(a+th)(h)^{k+1} dt$$

c) En supposant f de classe C^k sur U et $h \in \mathbb{R}^n$ tel que [a, a+h] soit inclus dans U, montrer qu'il existe $\theta \in]0,1[$ tel que :

$$f(a+h) - f(a) - Df(a)(h) - \dots - \frac{1}{(k-1)!} D^{k-1} f(a)(h)^{k-1} = \frac{1}{k!} D^k f(a+\theta h)(h)^k$$

Démontrer de même la formule de Taylor-Young à l'ordre k pour une fonction de n variables.

d) Expliciter la formule de Taylor-Young à l'ordre 2 pour une fonction de trois variables puis celui à l'ordre 3 d'une fonction de deux variables.

Exercice 4 Soient U un ouvert convexe d'un espace vectoriel normé E et $f:U\to\mathbb{R}$ une application. On dit que f est convexe si pour tous $x,y\in U$ et tout $t\in[0,1]$, on a

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

ie si le graphe de f est sous ses cordes.

a) On suppose que f est différentiable sur U. Montrer que f est convexe si et seulement si

$$f(y) - f(x) \geqslant df(x)(y - x)$$

pour tous $x, y \in U$ (ie si le graphe est au-dessus de ses tangentes).

b) On suppose que f est deux fois différentiable sur U. Montrer que f est convexe si et seulement si $d^2f(x)$ est positive (en tant que forme quadratique) pour tout $x \in U$.

Exercice 5

a) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^{∞} . Montrer qu'il existe des fonctions $g_i: \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} $(1 \leq i \leq n)$ telles que $\forall x \in \mathbb{R}^n$

$$f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$$

On souhaite remplacer \mathbb{R}^n par un ouvert U de \mathbb{R}^n , donner des hypothèses sur U pour lesquelles le résultat est toujours valable;

b) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^{∞} telle que f(0) = 0 et $\mathrm{d}f(0) = 0$. Montrer qu'il existe des fonctions $h_{ij}: \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} $(1 \le i, j \le n)$ telles que $\forall x \in \mathbb{R}^n$,

$$f(x) = \sum_{i,j} x_i x_j h_{i,j}(x)$$

c) Montrer que $I = \{ f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}), \quad f(0) = 0 \}$ est un idéal maximal de $C^{\infty}(\mathbb{R}^n, \mathbb{R})$ de type fini, principal pour n = 1.

Exercice 6 – Application : dérivations de $C^{\infty}(\mathbb{R})$. Soit $C^{\infty}(\mathbb{R})$ l'algèbre des fonctions de \mathbb{R} dans \mathbb{R} de classe C^{∞} . On appelle dérivation de $C^{\infty}(\mathbb{R})$ tout endomorphisme linéaire δ de $C^{\infty}(\mathbb{R})$ tel que :

$$\forall (f,g) \in C^{\infty}(\mathbb{R}), \ \delta(fg) = f\delta(g) + g\delta(f)$$

- a) Soit δ une dérivation. Montrer que δ est nulle sur les fonctions constantes.
- **b)** Montrer que si $f, g \in C^{\infty}(\mathbb{R})$ et s'il existe $x_0 \in \mathbb{R}$ tel que $f'(x_0) = g'(x_0)$ alors $\delta(f)(x_0) = \delta(g)(x_0)$.
- c) En conclure qu'il existe $u \in C^{\infty}(\mathbb{R})$ telle que $\delta : f \mapsto uf'$.

Exercice 7 Soit F un fermé de \mathbb{R}^n . On va montrer qu'il existe une fonction f de classe C^{∞} de \mathbb{R}^n dans \mathbb{R}^+ dont l'ensemble des zéros est exactement F. On supposera dans la suite que $F \neq \mathbb{R}^n$.

- a) Donner l'exemple d'une fonction de classe C^{∞} strictement positive à l'intérieur de la boule unité et nulle partout en dehors.
- **b)** Justifier l'existence d'une suite de boules ouvertes $(B_i)_{i\in\mathbb{N}}$ telles que $F = \mathbb{R}^n \setminus \bigcup_{i\in\mathbb{N}} B_i$ ainsi que d'une suite d'applications $(\phi_i)_{i\in\mathbb{N}}$ de \mathbb{R}^n dans \mathbb{R}^+ telle que chaque ϕ_i s'annule uniquement sur $\mathbb{R}^n \setminus B_i$.
- c) Déterminer alors une fonction f satisfaisant au problème.