POCHODNA - PODSTAWOWE WZORY

c'=0	
$(x^a)' = a \cdot x^{a-1}$	$((g(x))^a)' = a \cdot (g(x))^{a-1} \cdot g'(x)$
x' = 1	
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{g(x)}\right)' = \frac{1}{2\sqrt{g(x)}} \cdot g'(x)$
$\left(\frac{1}{x}\right)' = \frac{-1}{x^2}$	$\left(\frac{1}{g(x)}\right)' = \frac{-1}{\left(g(x)\right)^2} \cdot g'(x)$
$(a^x)' = a^x \cdot \ln a$	$\left(a^{g(x)}\right)' = a^{g(x)} \cdot \ln a \cdot g'(x)$
$(e^x)' = e^x$	$\left(e^{g(x)}\right)' = e^{g(x)} \cdot g'(x)$
$\left(\log_a x\right)' = \frac{1}{x \cdot \ln a}$	$\left(\log_a(g(x))\right)' = \frac{1}{g(x) \cdot \ln a} \cdot g'(x)$
$(\ln x)' = \frac{1}{x}$	$\left(\ln(g(x))\right)' = \frac{1}{g(x)} \cdot g'(x)$
$(\sin x)' = \cos x$	$(\sin(g(x)))' = \cos(g(x)) \cdot g'(x)$
$(\cos x)' = -\sin x$	$(\cos(g(x)))' = -\sin(g(x)) \cdot g'(x)$
$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	$(\operatorname{tg}(g(x)))' = \frac{1}{\cos^2(g(x))} \cdot g'(x)$
$(\operatorname{ctg} x)' = \frac{-1}{\sin^2 x}$	$(\operatorname{ctg}(g(x)))' = \frac{-1}{\sin^2(g(x))} \cdot g'(x)$
$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$	$(\arcsin(g(x)))' = \frac{1}{\sqrt{1 - (g(x))^2}} \cdot g'(x)$
$(\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}$	$(\arccos(g(x)))' = \frac{-1}{\sqrt{1 - (g(x))^2}} \cdot g'(x)$
$(\arctan x)' = \frac{1}{1+x^2}$	$(\operatorname{arctg}(g(x)))' = \frac{1}{1 + (g(x))^2} \cdot g'(x)$
$(\operatorname{arcctg} x)' = \frac{-1}{1 + x^2}$	$\left(\operatorname{arcctg}(g(x))\right)' = \frac{-1}{1 + (g(x))^2} \cdot g'(x)$

Uwaga: c - stała, a - stała, e- stała (liczba Eulera), $e \approx 2.72$

Pochodna sumy

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

$$[a+g(x)]'=g'(x)$$

Pochodna różnicy

$$[f(x) - g(x)]' = f'(x) - g'(x)$$

$$[a-g(x)]'=-g'(x)$$

Pochodna iloczynu

$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$[a \cdot g(x)]' = a \cdot g'(x)$$

Pochodna ilorazu

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$$

$$\left[\frac{a}{g(x)}\right]' = \frac{-a \cdot g'(x)}{\left(g(x)\right)^2}$$

$$\left[\frac{f(x)}{a}\right]' = \frac{f'(x)}{a}$$

Pochodna funkcji złożonej

$$[f(g(x))]'=f'(g(x))\cdot g'(x)$$

$$[f(x)^{g(x)}]' = [e^{\ln f(x)^{g(x)}}]' = [e^{g(x) \cdot \ln f(x)}]' =$$

$$= e^{g(x) \cdot \ln f(x)} (g'(x) \cdot \ln f(x) + g(x) \cdot \frac{1}{f(x)} \cdot f'(x)) =$$

$$= f(x)^{g(x)} (g'(x) \cdot \ln f(x) + g(x) \cdot \frac{1}{f(x)} \cdot f'(x))$$

$$\left[\log_{f(x)}g(x)\right]' = \left[\frac{\ln g(x)}{\ln f(x)}\right]' =$$

$$= \frac{\frac{1}{g(x)} \cdot g'(x) \cdot \ln f(x) - \ln g(x) \cdot \frac{1}{f(x)} \cdot f'(x)}{\left(\ln f(x)\right)^2}$$

Uwaga: a - stała, f, g - funkcje zmiennej x