Drone Pathfinding + Efficiency and Speed Optimizations

By Bridget Whitacre, Sylvia Krech, Sam Carpenter

Introduction

- Core assumptions:
 - If we take the shortest possible path, it will be both the fastest, and most fuel efficient, in terms of spaces travelled.

Graph To List Conversion

- This python file converts the map to a list of boxes with coordinates.
- The map is divided up into 2 separate lists of boxes to help process the map.
- Result is a list of all of the coordinates contained inside the 2

Pathfinding Basic Plan

- Goto a corner
- Start doing "scanlines"
 - If the space below isn't large enough, begin doing "square waves"
- If going to run into the start early, don't
 - Then the new "wall" for the scanlines to run up against is the cord as the start pos.
- After that "scanwave" the way back up.
 - Once out of tiles, fly back to start as efficiently as possible.

Speed and Fuel Efficiency Plan

- To move as quickly as possible we:
 - Max accel, max accel, and then accel
 - Then cruise the remaining distance
 - Travels at maximum speed of 200
 - This keeps us at 200 ft, the exact height to be able to ignore the 200ft requirement.
 - o Given that we only touch each tile once, and cruises only burn 1 fuel point, there is no way we are going over 500 fuel points.
- To move as efficiently as possible we:
 - Start by using Steep Climb -> Glide -> Glide to lose 10 speed while only costing 2 thrust units per 3 spaces (150% efficiency!)
 - o Do this down to 70 (would do down to 60 but this somehow is slightly less efficient, at least in this scenario)
 - Continue forever through the pattern Climb -> Steep Climb -> Glide -> Glide -> Glide Cruise -> Glide Cruise
 - Travels 6 spaces for 5 thrust, with no loss of altitude or velocity (120% efficiency compared to cruising!)

Results

Optimizing for Fuel Efficiency: ~778.5 seconds, 239.0 fuel units remaining (261.0 used)

75.0	774.4502678264278	239.5	GLIDE-CRUISE	NW	AA10	200.0	70.0	778.4931249692848	239.0
Optimizing for Speed: ~316 seconds, 182.5 fuel units remaining (317.5 used)									
200.0	314.53968253968253	183.5	CRUISE	NW	AA10	200.0	200.0	315.95468253968255 182	2.5

How To Run This Program

- Run ExportFormatted.py from the command line
- Solution will be located in solution.csv

minimize fuel or time spent

Edit the variable "maximizefuelefficiency" inside ExportFormatted.py to change priority to either

maximizefuelefficiency = True

To alter graph change the definition on line 103

```
103 p.setGraph([[['B','G'],[3,9]],[['H','AB'],[3,15]]])
```


Questions?

