

Definição

A cifra de Hill é uma cifra de substituição baseada em álgebra linear em que se utiliza matrizes nxn para codificar mensagens. Nos slides a seguir, faremos uma demonstração da 2-cifra de Hill.

Criando uma cifra

Para a criação de uma cifra de Hill, é necessário uma matriz (senha) e fazer a conversão de cada letra para seu respectivo número usando a tabela abaixo:

A	В	\mathbf{C}	\mathbf{D}	E	\mathbf{F}	G	Н	Ι	J	K	L	\mathbf{M}	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0

Exemplo de uma 2-cifra de Hill

Senha: A matriz formada pela senha deve ser invertível módulo 26

1 2 1 5

Para que a matriz cumpra a condição é necessário que sua determinante esteja na tabela abaixo:

Det	1	3	5	7	9	11	15	17	19	21	23	25
$\mathrm{Det^{-1}}$	1	9	21	15	3	19	7	23	11	5	17	25

Tabela de recíprocas módulo 26 da determinante

Divisão da frase em pares de letras

• A frase "Eu amo avlc" será dividida em:

 $\begin{bmatrix} \mathbf{E} & \mathbf{U} & \mathbf{A} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{O} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{V} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \mathbf{C} & \mathbf{C} \end{bmatrix}$

Quando a quantidade de letras de uma frase é ímpar, duplicaremos a última letra para formar um par.

Fazendo a correspondência das letras

Com os vetores de letras em mãos, vamos converte-los em números:

$$\begin{bmatrix} 21 & 6 \end{bmatrix} \begin{bmatrix} 1 & 14 \end{bmatrix} \begin{bmatrix} 17 & 20 \end{bmatrix}$$

$$egin{bmatrix} 21 & 6 \ \end{bmatrix} egin{bmatrix} 1 & 14 \ \end{bmatrix} egin{bmatrix} 17 & 20 \ \end{bmatrix} egin{bmatrix} 20 & 4 \ \end{bmatrix} egin{bmatrix} 9 & 18 \ \end{bmatrix}$$

Fazendo as correspondências de pares de números

Decifrando a 2-Cifra de Hill

Do exemplo que acabamos de cifrar, pegamos a matriz formada pela senha e os pares de letras:

```
1 2
1 5
```

U F A N Q T T D I R

Encontrando a matriz inversa mod 26 da senha

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix} \quad \begin{array}{l} \text{Det(A)} = 1 \times 5 - 2 \times 1 = 3 \\ \text{Logo} : 3^{-1} = 9 \text{ (mod 26)} \end{array}$$

Decifrando a 2-Cifra de Hill

Encontra-se a matriz inversa mod 26 da senha:

Faz a correspondência dos pares cifrados com os números da tabela:


```
5 21
```



```
5 21 1 13 15 1
```


$$egin{bmatrix} 5 & 21 & 1 & 13 & 15 & 1 & 22 & 12 & 3 & 3 \end{bmatrix}$$

Fazendo as correspondências de pares de números

Eu amo avlc