### Inferencia Estadística Estimación Puntual

Gabriel Martos Venturini gmartos@utdt.edu

UTDT



- Un estimador  $\widehat{\theta}_n(\underline{X})$  es una función de  $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ .
  - ► El estimador (estadístico)  $\widehat{\theta}_n$  es una variable aleatoria con la que pretendemos hacer inferencias sobre el parámetro desconocido  $\theta$ .
- Estimador vs Estimación:
  - $\overline{X}_n$  es un estimador de  $E(X) = \mu$  y  $\overline{X}_n$  una estimación puntual de  $\mu$ .
- Hoja de ruta:
  - Métodos generales para construir estimadores.
    - \* Estimadores de Momentos.
    - \* Estimadores Máximo Verosímiles (EMV) y principios de inferencia.
    - ★ Aspectos numéricos en torno a los EMV.
  - Cuantificación del riesgo de un estimador.
    - ★ Estimadores Insesgados y de Varianza Mínima
  - ▶ Propiedades en muestras finitas y asintóticas de los EMV.

4 D > 4 B > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E > 4 E >

UTDT Estimación Puntual 2/31

## Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud

UTDT Estimación Puntual

## Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud

UTDT Estimación Puntual 4/31

## El método de momentos (Pearson-1900)

• Sea  $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ , donde  $\theta = (\theta_1, \dots, \theta_k) \in \Theta \subseteq \mathbb{R}^k$ , los k primeros momentos muestrales y poblacionales se definen como:

$$\begin{split} M_1(\underline{X}) &= \frac{1}{n} \sum_{i=1}^n X_i, & \text{y} \quad \mu_1(\theta) = \mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x;\theta) \, \mathrm{d}x; \\ M_2(\underline{X}) &= \frac{1}{n} \sum_{i=1}^n X_i^2, & \text{y} \quad \mu_2(\theta) = \mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f(x;\theta) \, \mathrm{d}x; \\ &\vdots & \vdots \\ M_k(\underline{X}) &= \frac{1}{n} \sum_{i=1}^n X_i^k, & \text{y} \quad \mu_k(\theta) = \mathbb{E}(X^k) = \int_{-\infty}^{\infty} x^k f(x;\theta) \, \mathrm{d}x. \end{split}$$

- $M_i$  es una v.a., mientras que  $\mu_i$  es una función de  $\theta$  (desconocido).
- Si la muestra es iid<sup>1</sup>  $M_i \rightarrow_P \mu_i$  para i = 1, ..., k (LGN).

<sup>1</sup>Asumiendo que los momentos poblacionales están bien definidos.

UTDT Estimación Puntual 5 / 31

• Cuando  $n \gg 0$  luego " $M_i \approx \mu_i$ ", entonces el <u>estimador</u> de momentos  $\widetilde{\theta}_n = (\widetilde{\theta}_1, \dots, \widetilde{\theta}_k)$  se obtiene resolviendo el sistema de ecuaciones:

$$M_1(\underline{X}) = \mu_1(\theta);$$

$$M_2(\underline{X}) = \mu_2(\theta);$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$M_k(\underline{X}) = \mu_k(\theta).$$

- Nota: Cuando la muestra se realiza  $(M_1 = m_1, ..., M_k = m_k)$ , tendremos <u>estimaciones</u> de momentos (solución del sistema).
- Ejemplos: Modelos Bernoulli y Normal.
- Inconvenientes:
  - Momentos poblacionales no dependen de  $\theta$  o no están definidos.
  - No unicidad de  $\widetilde{\theta}_n$  y en algunos casos  $\widetilde{\theta}_n \notin \Theta$ .
  - No garantizan que se cumplan los principios de inferencia.

UTDT Estimación Puntual 6/31

# Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud
    - Definición y algunos ejemplos
    - Principios de inferencia y EMV
    - Métodos numéricos y estimadores MV

UTDT Estimación Puntual 7/31

# Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud
    - Definición y algunos ejemplos
    - Principios de inferencia y EMV
    - Métodos numéricos y estimadores MV

UTDT

#### Refresh

• Sean  $\underline{X} = \underline{x}$  los datos (realización de  $\underline{X} \equiv \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ , con  $\theta \in \Theta$ ) definimos la función de verosimilitud como:

$$L(\theta) \equiv L_n(\theta|\underline{x}) = \underbrace{\prod_{i=1}^n f(x_i;\theta)}_{f(\underline{x};\theta)}.$$

- $L(\theta)$  debe entenderse como una función de  $\theta$ .
- Podemos interpretar  $L(\theta) = P_{\theta}(\underline{X} = \underline{x}) = P_{\theta}(\text{Datos} \mid \text{Modelo})$ .
- Ejemplo:  $X \sim \text{Bern}(\theta)$  y  $\underline{x} = \{x_1 = 1, x_2 = 1, x_3 = 0\}$ :

$$L(\theta) = \theta^2 - \theta^3.$$

Si  $L(\theta_1)/L(\theta_2) > 1$  entonces  $\theta_1$  es más factible/verosímil que  $\theta_2$  en relación a la evidencia empírica  $\underline{x}$  (y el modelo probabilístico).

UTDT Estimación Puntual 9/31

#### Estimación máximo verosímil

- Consideremos  $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ , donde  $\theta = (\theta_1, \dots, \theta_k) \in \Theta$ .
- Dada X = x definimos la <u>estimación</u> máximo verosímil:

$$\widehat{\boldsymbol{\theta}}_{n}(\underline{x}) := \operatorname{arg\,max}_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}|\underline{X} = \underline{x}).$$

- $\triangleright$   $\widehat{\theta}_n$  es el valor de  $\theta$  que maximiza  $P_{\theta}(\text{Datos} \mid \text{Modelo})$ .
- Por consiguiente, el <u>estimador</u> máximo verosímil (EMV):

$$\widehat{\theta}_n(\underline{X}) = \operatorname{arg\,max}_{\theta \in \Theta} L(\theta | \underline{X}).$$

- Notar que  $L(\theta|X)$  es una función aleatoria de  $\theta$ .
- ▶ Por lo tanto  $L(\widehat{\theta}_n|\underline{X}) \ge L(T_n|\underline{X})$  para cualquier otro estadístico  $T_n$ .
- Veamos una ilustración de estos conceptos en la próxima diapositiva.

$$X \sim N(\mu = 2, \sigma_0^2 = 1)$$

•  $\ell(\mu) \equiv \ln L(\mu, \sigma_0^2 = 1|\underline{x})$ .



Figure: Izquieda: Estimación MV para una muestra concreta. Derecha: Diferentes realizaciones de  $\ell(\mu)$  cuando muestreamos de  $N(\mu=2,\sigma_0^2=1)$ .

• Notar: El argumento del máximo en  $\ell$  (la estimación MV del parámetro  $\mu$ ) dependerá de la realización particular de la muestra.

UTDT Estimación Puntual 11 / 31

## (back-up código en R)

```
### Creo la función de Verosimilitud (sigma = 1)
1 = function(mu, muestra){
  return( (-n/2)*log(2*pi) - sum(muestra^2)/2 - n*mu^2/2 +
    sum(muestra)*mu )}
mu = 2; sigma = 1; n = 10
muestra = rnorm(n, mu, sigma)
plot(seq(-5,7,by=0.1), l(seq(-5,7,by=0.1),muestra))
for(i in 1:5){
  muestra = rnorm(n, mu, sigma)
  points(seq(-5,7,by=0.1), l(seq(-5,7,by=0.1), muestra),
  tvpe = '1')
  abline(v = mean(muestra), col = 'red')
```

• Si  $\ell(\theta) \equiv \log L(\theta)$ , notar que:

$$\widehat{\boldsymbol{\theta}}_n = \operatorname{arg\,max}_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}) = \operatorname{arg\,max}_{\boldsymbol{\theta} \in \Theta} \ell(\boldsymbol{\theta}),$$

por ser el logaritmo una función monótona creciente.

- Obtenemos  $\widehat{\theta}_n$  resolviendo el sistema  $S(\theta) = \underbrace{\frac{\partial}{\partial \theta}}_{S_{\text{ell}}} \ell(\theta) = \mathbf{0}$ .
- Ejemplo I: Modelos Binomial y Normal (varianza conocida).
  - ▶ Notar que ambos estimadores son funciones de estadísticos suficientes.
- Ejemplo II: El modelo de regresión lineal.
- Estimación máximo verosímil restringida:

$$\widehat{\boldsymbol{\theta}}_n^{(\mathcal{S})} = \operatorname{arg\,max}_{\boldsymbol{\theta}} L(\boldsymbol{\theta}), \text{ sujeto a: } \boldsymbol{\theta} \in \mathcal{S} \subset \Theta$$

▶ Modelos de regresión en alta dimensión (Ridge y Lasso).

UTDT Estimación Puntual 13/31

### Condiciones de segundo orden

- Encontrar valores de  $\theta$  para los cuales se cumple que  $S(\theta) = \mathbf{0}$  no garantizan necesariamente que se trate de un máximo de  $L(\theta)$ .
- Llamemos  $H(\theta)$  al Hessiano asociado a  $\ell(\theta)$ , es decir que:

$$[H(m{ heta})]_{ij} = rac{\partial^2}{\partial heta_i \, \partial heta_j} \ell(m{ heta})$$
 para  $i,j=1,\dots,k.$ 

- CSO:  $\theta$  es un máximo global si  $H(\theta)$  es una matriz definida negativa.
  - ▶ Modelos de 1 parámetro:  $\ell''(\theta)|_{\theta=\widehat{\theta}_n} < 0$ .
- Para los modelos de la familia exponencial, en general, los estimadores máximo verosímiles existen y son únicos.
  - En otras palabras,  $L(\theta)$  es una función estrictamente cóncava si el modelo estadístico para los datos pertenece a la familia exponencial.
  - Discusión formal en VP §3.21 (pp 75).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ かへで

## Otros ejemplos de máxima verosimilitud

Example (Uniforme)

Sea  $\{x_1, \ldots, x_n\} \stackrel{iid}{\sim} \text{Unif}(0, \theta]$ , la verosimilitud se define como:

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{(0,\theta]\}}(x_i),$$

que no es diferenciable respecto de  $\theta$  (entonces?).

## Otros ejemplos de máxima verosimilitud

Example (Uniforme)

Sea  $\{x_1, \ldots, x_n\} \stackrel{iid}{\sim} \text{Unif}(0, \theta]$ , la verosimilitud se define como:

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{(0,\theta]\}}(x_i),$$

que no es diferenciable respecto de  $\theta$  (entonces?).

- Notar que  $L(\theta) \ge 0$  con  $L(\theta) > 0 \iff \theta \ge \max(x_1, \dots, x_n)$ .
- Además, si  $\theta \ge \max(x_1, \dots, x_n)$ , entonces  $L(\theta)$  es decreciente en  $\theta$ .
- La verosimilitud se maximiza en  $\max(x_1, \dots, x_n) = x_{(n)}$  y por lo tanto el estimador de máxima verosimilitud es

$$\widehat{\theta}_n = \max(X_1, \dots, X_n) = X_{(n)}$$

UTDT Estimación Puntual 15/31

### Modelo de Laplace

Si  $X \sim \text{Laplace}(\mu, b)$ , entonces la densidad de la v.a. X se escribe como:

$$f(x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right).$$



Figure: Densidad del modelo Laplace (el parámetro b > 0).

UTDT Estimación Puntual 16/31

## Otros ejemplos de máxima verosimilitud

### Example (Laplace)

Sea  $\{x_1, \ldots, x_n\} \stackrel{iid}{\sim} \mathsf{Laplace}(\theta, 1)$ , obtener el estimador de máxima verosimilitud de  $\theta$ . En primer término construimos la verosimilitud:

$$L(\theta) = (1/2) \exp(-|X_1 - \theta|) \dots (1/2) \exp(-|X_n - \theta|)$$
$$= (1/2)^n \exp\left(-\sum_{i=1}^n |X_i - \theta|\right).$$

Luego

$$\ell(\theta) = n \log(1/2) - \sum_{i=1}^{n} |X_i - \theta|,$$

que no es diferenciable, ya que el valor absoluto no es derivable en heta=0.

**(□ ▶ (□ ▶ (豆 ) (豆 )** = りへで



Figure: Gráfico de la función: g(x) = |x|.

18 / 31

DT Estimación Puntual

### Example (Laplace)

Definamos  $\operatorname{sign}(x)$  a la función que vale 1 si x>0 y -1 si x<0. La derivada de g(x)=|x| es  $g'(x)=\operatorname{sign}(x)$  si  $x\neq 0$ . Si 'derivamos', informalmente,  $\ell(\theta)$  respecto de  $\theta$  e igualamos a cero obtenemos

$$\sum_{i=1}^n \operatorname{sign}(x_i - \theta) = 0.$$

El valor de  $\theta$  tiene que ser tal que 'la mitad' de las  $x_i$  tienen que ser menores que  $\theta$  y 'la otra mitad' mayores que  $\theta$ . Luego se tiene que:

$$\widehat{\theta}_n = \text{mediana}(X_1, \dots, X_n).$$

19 / 31

TDT Estimación Puntual

## Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud
    - Definición y algunos ejemplos
    - Principios de inferencia y EMV
    - Métodos numéricos y estimadores MV

UTDT

### Suficiencia del EMV en familias exponenciales

• Asumiendo que el modelo pertenece a la familia exponencial:

$$L(\theta) \stackrel{iid}{=} \Pi_{i=1}^{n} f(x_{i}|\theta) = \Pi_{i=1}^{n} h(x_{i}) c(\theta) \exp\left(w(\theta) t(x_{i})\right)$$

$$= \left[\Pi_{i=1}^{n} h(x_{i})\right] c^{n}(\theta) \exp\left(w(\theta) \sum_{i=1}^{n} t(x_{i})\right)$$

$$\ell(\theta) = \sum_{i=1}^{n} \log(h(x_{i})) + n \log(c(\theta)) + w(\theta) T(\underline{x}).$$

• T es un estadístico (minimal) suficiente y completo para  $\theta$ .

$$S(\theta) = \frac{nc'(\theta)}{c(\theta)} + w'(\theta)T(\underline{x}) = 0.$$

• El EMV es suficiente para  $\theta$  ya que será una función de T.

UTDT Estimación Puntual 21 / 31

### Principios de Verosimilitud e Invarianza

• Dadas dos muestras  $\underline{x}_1$  y  $\underline{x}_2$  tales que  $L(\theta|\underline{x}_1) \propto L(\theta|\underline{x}_2)$ , luego:

$$\arg\max_{\theta\in\Theta}L(\theta|\underline{x}_1)=\arg\max_{\theta\in\Theta}L(\theta|\underline{x}_2).$$

Por lo tanto los EMV cumplen el principio de verosimilitud.

- Si  $\psi$  es una función biyectiva (uno-a-uno) y  $\widehat{\theta}_n$  es el estimador MV de  $\theta$ , entonces  $\psi(\widehat{\theta}_n)$  es el estimador máximo verosímil de  $\psi(\theta)$ .
  - $\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} N(\mu,\sigma_0^2)$ , luego  $\widehat{\mu}_n=\overline{X}_n$ .
  - Si nos interesa  $\psi(\mu) = e^{\mu}$ , luego  $\widehat{\psi}_n = e^{\overline{X}_n}$ .
- El principio de invarianza se cumple en contextos aún más generales y también es válido para el caso multiparámetro (CB §7.2.4).

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

## Agenda

- Métodos para construir estimadores
  - Métodos de momentos
  - Estimadores de máxima verosimilitud
    - Definición y algunos ejemplos
    - Principios de inferencia y EMV
    - Métodos numéricos y estimadores MV

23 / 31

TDT Estimación Puntual

- En general no existen soluciones analíticas para el EMV.
  - ▶ Parámetro de localización en un modelo Cauchy (ejercicio G2).
- Si podes computar derivadas respecto de  $\ell(\theta)$  (o de  $L(\theta)$ ), vas a poder implementar métodos numéricos para **aproximar** el valor de  $\theta$  para el que se maximiza  $\ell(\theta)$  (y por tanto  $L(\theta)$ ).
- Discutimos un método numérico clásico de estimación.

### Newton-Raphson

- Encontrar el cero de una función diferenciable f(x).
- Hacemos expansión de Taylor en torno a  $f(x^*) = 0$ :

Elijo 
$$x_0: 0 = f(x^*) \approx f(x_0) + f'(x_0)(x^* - x_0),$$

luego resolviendo para  $x^*$  obtenemos que:

$$x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)}.$$

• En la práctica procedemos eligiendo  $x_0$  e iteramos:

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$$
, para  $k = 1, 2, ...$ 

▶ hasta que  $|x_k - x_{k-1}|$  sea pequeño y/o  $f(x_k) \approx 0$ .



#### Iteramos hasta que:

- $|x_k x_{k-1}| \approx 0$  y/o
- $|f(x_k)| \approx 0$ .

# Newton-Raphson y estimación máximo verosímil

- $S(\theta) = \frac{\partial}{\partial \theta} \ell(\theta)$  (score) y  $H(\theta) = \frac{\partial^2}{\partial \theta^2} \ell(\theta)$  (hessiano).
- Dado un candidato inicial para el EMV de  $\theta$  al que llamamos  $\widehat{\theta}_n^{(0)}$ , en el paso k-ésimo, la aproximación numérica de la estimación MV será:

$$\widehat{\theta}_n^{(k)} = \widehat{\theta}_n^{(k-1)} - \frac{S(\widehat{\theta}_n^{(k-1)})}{H(\widehat{\theta}_n^{(k-1)})}, \text{ para } k = 1, 2, \dots$$

- El procedimiento continua hasta que se verifica convergencia:
  - $\blacktriangleright \ |\widehat{\theta}_n^{(k)} \widehat{\theta}_n^{(k-1)}| \leq \varepsilon, \, \mathsf{y/o} \, |S(\widehat{\theta}_n^{(k)})| \leq \varepsilon \, \, \big(\varepsilon \, \, \mathsf{tan} \, \, \mathsf{peque\~no} \, \, \mathsf{como} \, \, \mathsf{quieras}\big).$
- Si la función de verosimilitud no es estrictamente cóncava pueden existir múltiples máximos / mínimos / puntos de ensilladura.
- Ejemplo (en R):  $X \sim f(x; \theta) = \frac{1}{\sqrt{\pi}\Gamma(1/2)} (1 + (x \theta)^2)^{-1}$ .
  - ► Muestra:  $X_1 = -1.5, X_2 = 0.5, X_3 = 2, X_4 = -2.5.$

UTDT Estimación Puntual 27/31



• Investiga que ocurre cuando  $X_4 = -20.5$ .

וטוט

### Caso multiparámetro

• En este contexto S es un gradiente con k componentes:

$$S(\boldsymbol{\theta}) = \left(\frac{\partial}{\partial \theta_1} \ell(\boldsymbol{\theta}), \dots, \frac{\partial}{\partial \theta_k} \ell(\boldsymbol{\theta})\right)^T$$

• y H una matriz Hessiana de  $k \times k$  con componentes

$$[H(oldsymbol{ heta})]_{i,j} = rac{\partial^2}{\partial heta_i \, \partial heta_j} \ell(oldsymbol{ heta}) ext{ para } i,j=1\ldots,k.$$

• Dado un candidato inicial para el EMV de  $\theta$  al que llamamos  $\widehat{\theta}_n^{(0)}$ , en el paso k-ésimo, la aproximación numérica del EMV será:

$$\widehat{m{ heta}}_n^{(k)} = \widehat{m{ heta}}_n^{(k-1)} - \left[ m{H}(\widehat{m{ heta}}_n^{(k-1)}) 
ight]^{-1} m{S}(\widehat{m{ heta}}_n^{(k-1)}), ext{ para } k=1,2,\dots$$

• En contextos de muchos parámetros se suele optimizar de a una coordenada a la vez (*Coordinate Descent*, evitamos computar *H*).

## Sobre la convergencia de NR

- El método de NR produce una secuencia que converge a la raíz  $S(\widehat{\theta}_n) = 0$  a velocidad cuadrática si se cumplen las condiciones:
  - $\theta_0$  está suficientemente cerca de  $\widehat{\theta}_n$ .
  - ②  $H(\theta) \neq 0$  para todo  $\theta$  en un entorno de  $\widehat{\theta}_n$ .
  - **1**  $H'(\theta)$  es continua como función de  $\theta$  en un entorno de  $\widehat{\theta}_n$ .
- Además, si la función de verosimilitud es estrictamente cóncava, entonces la solución numérica del método de NR se corresponde con el único máximo global (en otro caso, el método puede arribar a raíces que no se corresponden con dicho máximo global).

### Recapitulación

- Discutimos dos métodos generales para construir estimadores.
- Los EMV son uno de los más utilizados en la práctica porque no solo cumplen los 3 principios de inferencia, sino también porque tienen interesantes propiedades en muestras grandes.
  - Asintóticamente, los EMV son parecidos a los estimadores insesgados de mínima varianza (menor error cuadrático medio).
- Newton-Raphson: Discutimos métodos numéricos para *aproximar* el valor de la *estimación* máximo verosímil.
- Siguiente: Medir el riesgo de un estimador para eventualmente poder comparar entre estimadores; y a partir de allí definir nociones de optimalidad. Luego discutiremos propiedades asintóticas de los EMV.