```
# import required libraries
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
from scipy import stats
import pandas as pd
import numpy as np
# new random seed for different numeric values
np.random.seed(2025)
n = 100 # number of records
# gender
gender = np.random.choice(['Male', 'Female'], size=n)
# age group
age group = np.random.choice(['Young', 'Middle-aged', 'Old'], size=n)
# beauty scores (scale 1-10)
beauty = np.random.normal(
    loc=[7.5 if a == 'Young' else 6.3 if a == 'Middle-aged' else 5.2
for a in age_group],
    scale=1.1,
    size=n
beauty = np.clip(beauty, 1, 10)
# teaching evaluation (scale 1-10)
eval score = (
    0.6 * beauty +
                                        # slightly stronger
relationship
    np.where(gender == 'Female', 0.5, -0.1) + # small gender bias
    np.random.normal(0, 0.9, size=n) # less random noise
eval score = np.clip(eval score, 1, 10)
# build DataFrame
data = pd.DataFrame({
    'gender': gender,
    'age group': age group,
    'beauty': beauty.round(2),
    'eval': eval score.round(2)
})
# save to CSV
data.to csv("teachers rating.csv", index=False)
data.head()
```

```
gender age group
                    beauty eval
   Male
                      5.59
                           1.78
0
               Old
1
   Male
               Old
                      7.71 3.96
2
                      7.13 4.13
   Male
             Young
3
   Male
               Old
                      4.31 3.23
   Male
            Young
                      7.47 4.23
```

Q1. Regression with T-test: Using the teachers rating data set, does gender affect teaching evaluation rates?

```
# Q1. Regression with T-test: Does gender affect teaching evaluation
rates?
# assuming columns are named 'eval' (teaching evaluation) and 'gender'
(male/female)
model_ttest = ols('eval ~ gender', data=data).fit()
ttest result = model ttest.t test([0, 1]) # tests coefficient of
gender variable
print("\nQ1. Regression with T-test: Does gender affect teaching
evaluation rates?")
print(model ttest.summary())
Q1. Regression with T-test: Does gender affect teaching evaluation
rates?
                            OLS Regression Results
Dep. Variable:
                                 eval
                                        R-squared:
0.071
Model:
                                  0LS
                                        Adj. R-squared:
0.061
Method:
                        Least Squares F-statistic:
7.448
Date:
                     Mon, 27 Oct 2025 Prob (F-statistic):
0.00753
Time:
                             23:34:23 Log-Likelihood:
-160.24
No. Observations:
                                  100
                                        AIC:
324.5
Df Residuals:
                                   98
                                        BIC:
329.7
Df Model:
                                    1
                            nonrobust
Covariance Type:
```

	coef	std err	t	P> t	[0.025
0.975]	Coei	Stu err	L	۲> ۱	[0.023
0.9/3]					
Intercept	4.5308	0.175	25.866	0.000	4.183
4.878	4.5500	0.175	23.000	0.000	41105
<pre>gender[T.Male]</pre>	-0.6629	0.243	-2.729	0.008	-1.145
-0.181	010023	012.13	21,23	0.000	11113
=======================================					
======					
Omnibus:		1.599	Durbin-Watson:		
2.041					
<pre>Prob(Omnibus):</pre>		0.450	Jarque-Ber	a (JB):	
1.330			-		
Skew:		0.282	Prob(JB):		
0.514					
Kurtosis:		3.025	Cond. No.		
2.67					
======					
NI - 1					
Notes:				مالد کم دانم	
[1] Standard Errors assume that the covariance matrix of the errors is					
correctly specified.					

Q2. Regression with ANOVA: Using the teachers' rating data set, does beauty score for instructors differ by age?

```
# Q2. Regression with ANOVA: Does beauty score differ by age group?
model_anova = ols('beauty ~ C(age_group)', data=data).fit()
anova table = sm.stats.anova lm(model anova, typ=2)
print("\nQ2. Regression with ANOVA: Does beauty score for instructors
differ by age?")
print(anova table)
Q2. Regression with ANOVA: Does beauty score for instructors differ by
age?
                            df
                                       F
                                                PR(>F)
                  sum sq
               56.844902
C(age group)
                           2.0
                                19.91131
                                          5.685528e-08
Residual
              138.462898 97.0
                                     NaN
                                                   NaN
```

Q3. Correlation: Using the teachers' rating dataset, Is teaching evaluation score correlated with beauty score?

```
# Q3 . Correlation: Using the teachers' rating dataset, Is teaching
evaluation score correlated with beauty score?
import statsmodels.api as sm
from statsmodels.formula.api import ols
# perform OLS regression: eval vs beauty
model = ols('eval ~ beauty', data=data).fit()
# display summary
print(model.summary())
                           OLS Regression Results
Dep. Variable:
                                eval
                                       R-squared:
0.579
Model:
                                 0LS
                                       Adj. R-squared:
0.574
Method:
                       Least Squares F-statistic:
134.6
                    Mon, 27 Oct 2025 Prob (F-statistic):
Date:
4.28e-20
Time:
                            23:36:11 Log-Likelihood:
-120.70
No. Observations:
                                 100
                                       AIC:
245.4
                                       BIC:
Df Residuals:
                                  98
250.6
Df Model:
                                   1
Covariance Type:
                           nonrobust
=======
                coef std err t
                                                P>|t| [0.025
0.975]
Intercept
                          0.394
                                    -0.730
                                                           -1.070
              -0.2880
                                                0.467
0.494
beauty
               0.6783
                          0.058
                                    11.600
                                                0.000
                                                            0.562
0.794
Omnibus:
                               0.576
                                       Durbin-Watson:
2.020
Prob(Omnibus):
                               0.750
                                       Jarque-Bera (JB):
0.714
```

Skew: -0.103 Prob(JB): 0.700

Kurtosis: 2.641 Cond. No.

33.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.