Manual de Instruções

Luis Miguel Frazão de Sousa

31 de Julho de 2025

1 Instruções de uso

Para executar o projeto, é necessário usar o Google Collab no ambiente de execução usando o **Python** 3. Além disso é necessário instalar as seguintes bibliotecas:

```
Listing 1: Bibliotecas
```

```
import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from scipy.stats import chi2_contingency, pearsonr
 from math import sqrt
E usar algumas de suas funções:
 pd.read_csv() - Leitura do arquivo CSV como DataFrame
df.head() - Visualizacao inicial das primeiras linhas df[['col1', 'col2']].corr() - Correlacao de Pearson entre variaveis numericas
 pd.crosstab(df['col1'], df['col2']) - Tabela de contingencia entre variaveis categoricas
 df['col'].value_counts(normalize=True) - Proporcoes relativas de categorias
df[df['col'] = valor] - Filtro de linhas por condicao logica chi2_contingency(tabela) - Teste Qui-Quadrado
 plt.figure(figsize=(largura, altura)) - Define o tamanho do grafico
 plt.title('Titulo do grafico') - Adiciona titulo
 plt.xticks(rotation=45) - Rotaciona os rotulos do eixo X
 plt.show() - Exibe o grafico
 sns.boxplot(x='grupo', y='nota', data=df) - Boxplot de comparação entre grupos
```

2 Funções usadas e suas ações

Análise	Objetivo	Funções/Métodos Principais
1. Medidas Resumo	Estatísticas descritivas da nota de matemática.	.mean(), .median(), .mode(), .max(), .min(), .var(), .std()
2. Boxplots Comparativos	Comparar notas de matemática, leitura e escrita com boxplots.	seaborn.boxplot()
3. Assimetria e Curtose	Medir assimetria e curtose das notas.	scipy.stats.skew(), scipy.stats.kurtosis()
4. Percentual por Etnia	Distribuição percentual por grupo étnico.	.value_counts(normalize=True)
5. Discretização de Notas	Transformar nota de matemática em faixas qualitativas.	.apply(), .value_counts(), .cumsum()
6. Associação Género/Curso	Associação entre gênero e curso preparatório.	pd.crosstab(), chi2_contingency()
7. Força da Associação	Medir força da associação com Phi e V de Cramer.	math.sqrt()
8. Correlação entre Notas	Correlação linear entre notas de matemática e leitura.	.corr(method='pearson')
9. Nota vs. Escolaridade dos Pais	Comparar notas de matemática por escolaridade dos pais.	seaborn.boxplot(), plt.xticks()
10. Nota vs. Curso Preparatório	Comparar notas de escrita com/sem curso preparatório.	seaborn.boxplot()

Figura 1: Funções usadas

3 Passo a passo de instalação e importação

3.1 Primeiro acesse o link a seguir:

https://www.kaggle.com/datasets/spscientist/students-performance-in-exams

Figura 2: Página inicial

Figura 3: Aba de download aberta

Figura 4: Clique na opção de download marcada

Figura 5: Acesse a pasta compactada

Figura 6: Selecione o arquivo do conjunto de dados

Figura 7: Descompacte e salve o arquivo .csv

Figura 8: Selecione o ícone para abrir a aba

Figura 9: Importe o arquivo