Bäume

- Graph ohne Kreis heißt Wald
- Graph heißt Baum, wenn
 - zusammenhängend
 - ohne Kreis <==> |E| = |v| 1
- für je zwei Knoten, gibt es genau einen Pfad
- \bullet Wurzel x_0 ist "Spitze" von Baum

- jeder Knoten (außer x_0) hat genau einen (ersten) Vorgänger v(x)
 - $* \ d(x_0,v(x)) < d(x_0,y)$
 - * $v^k(x) = \text{k-te Vorgänger}$
- Nachfolger sind Nachbarn ohne Vorgänger

- * Blätter Nachfolger ohne Nachfolger
- Höhe von x $h(x) = d(x_0, x)$
- Binärbaum
 - jeder Knoten hat maximal 2 Nachfolger
 - $-\ h = \lfloor log_2(n) \rfloor$

Path Finder

- Input: Baum T, Knoten x,y
- Output: kürzeste Pfad von x nach y
- Algorithmus

- wähle Knoten x_0 aus $V/\{x,y\}$ als Wurzel
- bestimme Pfad P_x von x bis x_0
 - $*\ P_x = (x, v^1(x), v^2(x), ..., v^k(x) = x_0)$
 - * automatisch kürzeste Pfad
- bestimme Pfad P_y von y bis \boldsymbol{x}_0
- bestimme kleinsten gemeinsamen Vorgänger j

– return Pfad von x zu j nach y

Spannbäume

- Baum T ist Spannbaum von G, wenn
 - -V(T) = V(G)
 - $-E(T) \subseteq E(G)$

- \bullet Laplace-Matrix L(G)
 - n×n Matrix mit bis zu n Eigenwerten $\lambda_1,\lambda_2,...,\lambda_{n-1}$
 - $* \ \forall 0 \leq i \leq n-1: \lambda_i \geq 0$
 - * kleinste $\lambda = 0$

- Matrix-Baum-Satz von Kirchhoff
 - -sei G
 ein zusammenhängender Graph mit
n Knoten
 - #Spannbäume von G = $\frac{1}{n}\lambda_1 * ... * \lambda_{n-1}$

• Cayley-Formel

[[Wege und Kreise]]