2/25/2019	The effect of temp upon our rate
	The of test about the season
	at 1 a T1 (for a way 110°C in the 2)
	rate 1 as T1 (for every N10°C increase in temp) xn rate doubles
	IXM rate doubles
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	rati law: rate = KCA3m
12	1
	slight decrease as we increase T. (why? VT TT)
	rati const:
	has a strong T-dependence!
	KT as TT
	Ν' Φ' Ι'
	1889 Swedish Chemist: Svante Arrhenius
	John Swedish Chemist. Drante Mineral VI (mail VI (mail)
	Archening $K = A \times I \in \mathbb{R}^{T}$ Squation absolute temp (K)
	Archening K=A × / E K
	Zonation absolute temp ()
	gas constant = 8.3145 /mol.k
	pre-exponential (exponential factor (strong T-dependence)
	terctor
	(OR) frequency factor
	- related to # reactant collisions/s
	- LEIGLEG TO # LEACTON (01/12/84/2)

Activation Energy

$$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$$

Reaction progress

Thermal Energy Distribution

As temperature increases, the fraction of molecules with enough energy to surmount the activation energy barrier also increases.

© 2017 Pearson Education, Inc.

© 2017 Pearson Education, Inc.

as
$$E_a \rightarrow \infty$$
 // as $E_a \rightarrow 0$
 $e^{-E_a/RT} \rightarrow 0$ $e^{-E_a/RT} \rightarrow 1$

Arrhenius plots
graphical methods of finding A, and Ea

or:
$$\ln k = \frac{-E_a}{R} \cdot \left(\frac{1}{T}\right) + \ln A$$

$$y = M \cdot x + b$$