Project 3

Submission and evaluation

Plan for today

- What you need to do next Wednesday
- Files to submit
- How we evaluate your result (60%)
- Presentation (40%)
- Spring 2016 project review (Yuting)

What you need to do next Wednesday

- You will be given 2000 new images for testing (no label)
- Run your feature.R (feature.py or feature.m)
 - Recommend you do feature selection (dimension reduction) here
- Prepare your Train.R before class
 - Your model is trained by training features
 - Base and advanced model
 - Training model could take more than 30 mins
 - Include any tuning step (grid search) in here
- Run Test.R to give prediction directly
 - Two predictions
 - 0 for dog and 1 for fried chicken
- Time limit 30 mins
- Presentation

What you need to submit

- Feature.R (Feature.py)
 - Input: raw images
 - Output: final features in Feature_eval.RData
- Feature_eval.RData
 - Two Rdata file is acceptable
- Train.R
 - Input: feature in RData and training labels
 - Output: two model object
- Test.R
 - Input: feature and model object in R
 - Output: prediction (0 and 1)
- Github repo
 - Windows or Mac machine
 - R version (3.2.4 for me)
 - Packages: version, how you install it

How we evaluate your result

- You can find skeleton code here:
 - https://github.com/TZstatsADS/ADS_Teaching/blob/master/Spring2016/Tutor ials/wk8-evaluation.R
- Run 5-fold cross validation on test image:
 - Re-train your base & adv model 5 times each with 1600 images
 - Test your accuracy with test label (only we have)
 - Compare our result with your claimed result (Whether you overfit)
 - Record your training time

Presentation

- Methodology
- Interpretation of the features

Methodology

Feature	Classifier	Accuracy (Accuracy (cv= 10)		
RGB	Linear SVM C=1	60.3%			
SIFT 1000 words Iteration = 10	Linear SVM C=1	68%			
SIFT 2000 word, iteration = 10	Linear SVM C=1	71%			
SIFT 2000 word, iteration = 30	Linear SVM C=1	74%			
SIFT 2000 words iteration = 30	SVM chi2 kernel C = 1 Gamma = 1	79%	Feature		Classifier
			RGB		Linear SVM C=1
			SIFT 200) words	SVM chi2 kernel
		iteration = 30		C = 1 Gamma = 1	
		Deep feature Layer 1		Linear SVM C = 1	
			Deep feature Layer 2		Linear SVM C = 1

Deep feature

Layer 2

Accuracy

60.3%

79%

73%

SGD classifier

81% (5 min)

80.5% (10 sec)

Feature: SIFT

Feature Selection

Linear SVM

10 fold CV:

87%

Deep features

Interpretation of the features

SIFT

First layer

96 kernels

Shape

Spring 2016 project review

- Link:
 - https://github.com/TZstatsADS/ADS_Teaching/blob/master/Spring2016/Tutorials/wk10_summary_proj3.pdf