Computer Organization & Architecture

2-6 Multiplication of Signed Numbers

Wang Guohua

School of Software Engineering

Contents of this lecture

- Booth algorithm
 - Directly handle the multiplication with signed numbers

Booth Algorithm (1)

- Straightforward multiplication will not work in the case of a negative operand or two negative operands
- Example: M = 1001, Q = 0011, calculate $P = M \times Q$
 - Straightforward multiplication, P=00011011
 - If interpret M, Q, and P as unsigned non-negative numbers,
 then M = 9, Q = 3, P = 27
 - If interpret M, Q, and P as signed 2's complement numbers,
 then M = -7, Q = 3, P = 27

Booth Algorithm (2)

- Why straightforward multiplication not work?
 - Example: M = 1001, Q = 0011
 - Sign Extension

Booth Algorithm (3)

- Convert to unsigned, multiply, then convert back to signed
 - Works but is slow and a bit cumbersome
- Booth Algorithm can directly handle the multiplication with signed numbers
 - Recodes the bits of the multiplier
 - Works with 2's complement numbers directly

Booth Algorithm (2)

- Reducing number of partial products
 - Fewer partial products generated for groups of consecutive 0's and 1's
 - Group of consecutive 0's in multiplier no new partial product only shift partial product right one bit position for every 0
 - Group of m consecutive 1's in multiplier less than m partial products generated
 - Example: 0011110 = 0100000 0000010
 (decimal notation: 30 = 32 2)

Booth Algorithm (3)

Recoding of a Multiplier

Mult	iplier	Version of Multiplicand				
Bit i	Bit i-1	Selected by bit i				
0	0	$0 \times M$				
0	1	$+1 \times M$				
1	0	$-1\times M$				
1	1	$0 \times M$				

Example

- 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0
- 0+1-1+1 0-1 0+1 0 0-1+1-1+1 0-1 0 0

Booth Algorithm (4)

Example

```
01101 (+13)
\times 11010 (-6)
```

```
0 1 1 0 1
           0 - 1 + 1 - 1 \quad 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1
0 0 0 0 1 1 0 1
1 1 1 0 0 1 1
0 0 0 0 0
1 1 1 0 1 1 0 0 1 0 (-78)
```

Booth Algorithm (5)

Hardware Organization

- As before, the multiplicand and multiplier are placed in the M and Q registers, respectively.
- There is a 1-bit register placed logically to the right of the least significant bit (Q_0) of the Q register and designated Q_{-1} .
- Control logic scans the bits of the multiplier one at a time. Now, as each bit is examined, the bit to its right is also examined.
- The results of the multiplication will appear in the A and Q registers.

Booth Algorithm (6)

Flowchart

Arithmetic Shift Right:

The left-most of A, namely A_{n-1} , not only is shifted into A_{n-2} , but also remains in A_{n-1} .

Booth Algorithm (7)

Example

Booth Algorithm (8)

Advantages

- Handle the multiplication of both positive and negative numbers uniformly.
- Achieve some efficiency in the number of additions required when the multiplier has a few large blocks of 1s.
 - On average, the speed of doing multiplication with the Booth algorithm is the same as with the normal algorithm.

Booth Algorithm (9)

Examples

Quiz (1)

1. In the hardware circuit of implementing Booth algorithm, the multiplier is placed in the Q register. And a 1-bit register Q₋₁ is placed logically to the right of the least significant bit (Q₀) of the Q register. The results of the multiplication will appear in the A and Q registers. At the end of each cycle of computing the product, A, Q, Q₋₁ are _____ one bit position.

A. shifted left

B. shifted right

C. arithmetically shifted left

D. arithmetically shifted right

Quiz (2)

- 2. About Booth algorithm, which of the following is not true?
 - A. It can handle both positive and negative multipliers uniformly
 - B. It achieves some efficiency in the number of additions required when the multiplier has a few large blocks of 1s
 - C. Its speed of doing multiplication is always faster than the normal algorithm
 - D. The multiplier 111100110 will generate three partial products
- 3. What are the main advantages of the Booth algorithm?
 - Directly handle the multiplication with the signed numbers
 - Fewer partial products generated for groups of consecutive 0's and 1's

Quiz (3)

4. Multiply A and B (2's-complement numbers) using the Booth algorithm. Assume that A is the multiplicand and B is the multiplier.

A=110011 and B=101100

							1	1	0	0	1	1₽
							-1	+1	0	-1	0	0⊷
	0	0	0	0	0	0	0	0	0	0	0	0⊷
	0	0	0	0	0	0	0	0	0	0	0⊷	
	0	0	0	0	0	0	1	1	0	1₽		
	0	0	0	0	0	0	0	0	0↔			
	1	1	1	1	0	0	1	1₽				
_	0	0	0	1	1	0	1.					
	0	0	0	1	0	0	0	0	0	1	0	0⊷

