Sorting | Time Complexity 2

- Optimised Bubble Sort
- Selection Sort
- Insertion Sort
- Mergesort (Logic only) No code Mergesort requires Recursion

Optimised Bubble Sort

- 1. Do we need to go all the way till the end in every iteration?
- 2. What if the array is already sorted?

Selection Sort

Selection sort is a sorting algorithm that sorts an array by repeatedly finding the minimum element and putting them in ascending order.

Iteration No.	Array	Min index	Action	
0	9 2 5 6 1 3	5	Swap a Co J, a C4 J	
	1 2 5 6 4 3	_	Swap a [1], a [1] Effectively does nothing	
2	1 2 5 6 4 3	5	Swap a[2], a[5]	
N	1 2 3 6 4 5	7	Swap a[3], a[4]	
4	1 2 3 4 6 5	5	Swap a[4], a[5]	
	1 2 3 4 5 6		(N-1) * N	
	Time Co.	rup lexity	E O(N ²)	

Insertion Sort

In insertion sort, an array is divided into two sub-arrays: sorted and unsorted, where we compare and move every item from the unsorted part to the sorted part till the array is sorted.

Quiz

Array after 3 iterations of insection sort?

Array after

= $O(N^2)$ Time Complexity of Insection Sort

Bubble
Schedion
Insection

Count
Radix
Count
Radix
Count
Radix
Count
Rucket

Most
O(N)

Mergesort
Onicksort

Many more

Mergesort

In merge sort, the given array is divided into roughly two equal subarrays. These sub-arrays are divided over and over again into halves until we end up with arrays having only one element each. At last, we merge the sorted pairs of sub-arrays into a final sorted array.

4 1 5 3 2
Pushing this to Recursion 2

Doubts

Thank You

Sorted Array -> Binary Rearch

R = 4

2=4

8 = 2

R = 6

A= [1, 2, 2, 2, 2, 6, 6, 6, 7]

<=6

8-2

First

Last

Occurrence of 2

Ocausena of 2

Lower Bound

Upper Bound

= hdex 1

= Index 5

To get lower bound & upper bound, you will have to slightly modify the binary search algorithm

Look for inbuilt methods in Python for binary search

Crood Night Thank You

Friday