ЗАЛАЧИ И УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ К РАЗЛЕЛУ 3

ЗАДАНИЕ №3- КРИВЫЕ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА.

По тематике раздела 3 студент должен уметь:

Составить уравнение прямой, проходящей через две заданные точки, через одну точку в заданном направлении (на плоскости и в пространстве). Составить уравнение плоскости, проходящей через заданную точку перпендикулярно данному вектору. Находить точку пересечения прямой и плоскости. Находить углы между прямыми и плоскостями. Приводить уравнения кривой 2го порядка к каноническому виду (при отсутствии членов с произведением координат), строить кривую. Делать приближённые чертежи поверхностей 2-го порядка, заданных каноническими уравнениями. Делать приближённые чертежи цилиндрических поверхностей вида f(x, y) = 0, f(x,z) = 0, f(y,z) = 0 и поверхностей вращения

Задание 3-4. (Кривые второго порядка.)

Приведите уравнения линий к каноническому виду и постройте линии, определяемые этими уравнениями. **3-4.1.** $x^2 + 4x + 4y^2 - 5 = 0$. **3-4.2.** $4x^2 + 4y^2 + 8y = 0$. **3-4.3.** $x^2 + 8x - 4y^2 = 9$. **3-4.5.** $y = 3x^2 - 18x + 25$.

3-41
$$x^2 + 4x + 4y^2 - 5 = 0$$

3-4.2.
$$4x^2 + 4y^2 + 8y = 0$$
.

3-4.3.
$$x^2 + 8x - 4y^2 = 9$$
.

3-4.4.
$$x = -2y^2 + 8y - 9$$
.

3-4.5.
$$y = 3x^2 - 18x + 25$$
.

Задание 3-6. (Поверхности второго порядка.). Во всех задачах нужно сделать чертеж поверхности.

3-6.1. Какую поверхность определяет уравнение
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$$
 ?

3-6.2. Какое из уравнений: A)
$$x^2 + 2y^2 - z^2 = 1$$
, B) $x^2 + 2y^2 - z^2 = -1$, B) $x^2 + y^2 + 2z^2 = 1$ Г) $x^2 - y^2 - z^2 = 0$, Д) $y^2 - z^2 = 1$ определяет эллипсоид?

3-6.3 Какое из уравнений: A)
$$x^2 + 2y^2 - z^2 = -1$$
, Б) $x^2 + 2y^2 - z^2 = 1$, B) $x^2 + y^2 + 2z^2 = 1$ Г) $x^2 - y^2 - z^2 = 0$, Д) $y^2 - z^2 = 1$ определяет однополостный гиперболоид?

3-6.4. Какое из уравнений: **A)**
$$x^2 + 2y^2 - z^2 = 1$$
, **B)** $x^2 - y^2 - z^2 = 1$ **B)** $x^2 + y^2 + 2z^2 = 1$ **Г)** $x^2 - y^2 - z^2 = 0$, **Д)** $y^2 - z^2 = 1$ определяет двуполостный гиперболоид?

3-6.5. Какое из уравнений: A)
$$x^2 + 2y^2 - z^2 = 1$$
, Б) $x^2 - y^2 - z^2 = 1$ В) $x^2 + y^2 + 2z^2 = 1$ Г) $\Gamma(x^2 - y^2 + z^2) = 0$, Д) $\gamma(y^2 - z^2) = 1$ определяет конус?

3-6.6. Какое из уравнений: **A)**
$$x^2 + 4y^2 + z = 0$$
, **B)** $x^2 - y^2 - z^2 = 1$, **B)** $x^2 - 2y^2 - z = 0$, **Г)** $y^2 - z^2 = 1$, **Д)** $x^2 - y^2 + z^2 = 0$ определяет эллиптический параболоид?

3-6.7. Какое из уравнений: **A)**
$$x^2 + 4y^2 + z = 0$$
, **B)** $x^2 - y^2 - z^2 = 1$, **B)** $x^2 - 2y^2 - z = 0$, **Г)** $y^2 - z^2 = 1$, **Д)** $x^2 - y^2 + z^2 = 0$ определяет гиперболический параболоид?

3-6.8. Какое из уравнений: **A)**
$$x^2 + 4y^2 + 9z = 0$$
, **Б)** $4x^2 - y^2 - 2z^2 = 1$, **B)** $x^2 - 2y^2 - z = 0$, **Г)** $y^2 + z^2 = 1$, **Д)** $x^2 - y^2 + z^2 = 0$ определяет цилиндр?

3-6.9. Какое из уравнений: **A)**
$$x^2 + 4y^2 + z = 0$$
, **Б)** $x^2 - 4y^2 - z^2 = 1$, **B)** $y^2 = 2x$, **Г)** $x^2 - 2y^2 - z = 0$, Д) $x^2 - y^2 + 8z^2 = 0$ определяет цилиндр?

ОТВЕТЫ, УКАЗАНИЯ (РЕШЕНИЯ) К ЗАДАЧАМ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ К РАЗДЕЛУ 2

ЗАДАНИЕ №3

ОТВЕТЫ И УКАЗАНИЯ

Задание 3-4. (Линии второго порядка.)

3-4.1.
$$\frac{\overline{x}^2}{3^2} + \frac{\overline{y}^2}{(3/2)^2} = 1$$
 ($\overline{x} = x + 2$, $\overline{y} = y$) – уравнение эллипса. График см. на рис.1.

Рис.1.

3-4.2. $\bar{x}^2 + \bar{y}^2 = 1$, $\bar{x} = x$, $\bar{y} = y + 1$. Окружность с радиусом, равным 1 и с центром в точке (0,-1).

3-4.3.
$$\frac{\overline{x}^2}{4^2} - \frac{\overline{y}^2}{2^2} = 1$$
, ($\overline{x} = x + 4$, $\overline{y} = y$) . Гипербола с центром в точке (-4,0).

3-4.4. $\bar{x} = -2\bar{y}^2$, $\bar{x} = x+1$, $\bar{y} = y-2$. Парабола с вершиной в точке (-1,2). Ось симметрии – прямая y=2. Ветви параболы направлены влево по оси OX,

3-4.5. $\bar{y} = 3\bar{x}^2$, $\bar{x} = x - 3$, $\bar{y} = y + 2$. Парабола с вершиной в точке (3,-2). Ось симметрии – прямая x=3. Ветви параболы направлены влево по оси OV.

Задание 3-6. (Поверхности второго порядка.)

3-6.1. Эллипсоид с полуосями a = 2, b = 3, c = 4.

3-6.2. Уравнение B: $x^2 + y^2 + 2z^2 = 1$

3-6.3 Уравнение Б: $x^2 + 2y^2 - z^2 = 1$,

3-6.4. Уравнение Б: $x^2 - y^2 - z^2 = 1$,

3-6.5.: Уравнение Γ : $x^2 - y^2 + z^2 = 0$.

3-6.6. Уравнение A: $x^2 + 4y^2 + z = 0$

3-6.7. Уравнение B: $x^2 - 2y^2 - z = 0$,

3-6.8. Уравнение Γ :. $y^2 + z^2 = 1$

3-6.9. Уравнение В: $v^2 = 2x$

РЕШЕНИЯ

Задание 3-6. (Поверхности второго порядка.)

Предварительные замечания.

** <u>Прочтите еще раз главу 3, раздел 3 учебника «Поверхности 2-го порядка</u>. Напомним основное.

Поверхностью второго порядка называется множество точек, координаты которых в некоторой прямоугольной декартовой системе координат Oxyz удовлетворяют алгебраическому уравнению второй степени:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0,$$
 (*)

где $A, B, C, D, E, F, G, H, I, J \in \mathbb{R}$, а $A^2 + B^2 + C^2 + D^2 + E^2 + F^2 \neq 0$.

При надлежащем выборе прямоугольной системы координат множество точек, определяемое уравнением (*) будет задано одним из ниже перечисленных уравнений:

1).
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
; Эллипсоид

2).
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
; Однополостный гиперболоид

3).
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
; Двуполостный гиперболоид

4).
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
;. Конус второго порядка

5).
$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$
, $p, q > 0$; Эллиптический параболоид

6).
$$\frac{x^2}{p} - \frac{y^2}{q} = 2z$$
, $p, q > 0$;. Гиперболический параболоид

7).
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
; Эллиптический цилиндр

8).
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
; Гиперболический цилиндр

9).
$$y^2 = 2px$$
; Параболический цилиндр

3-6.2. Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что только уравнение $x^2 + y^2 + 2z^2 = 1$ получается из уравнения (1) при условии, что $a^2 = 1$, $b^2 = 1$, $c^2 = \frac{1}{2}$. Следовательно, это уравнение-(B)- определяет эллипсоид (рис. 2).

Рис.2. Эллипсоид, определяемый уравнением (1).

3-6.3 .Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что уравнение $x^2 + 2y^2 - z^2 = 1$, получается из уравнения (2) при условии, что $a^2 = 1$, $b^2 = \frac{1}{2}$, $c^2 = 1$. Следовательно, это уравнение -(Б)- определяет однополостный гиперболоид (рис. 3). **

Рис. 3. Однополостный гиперболоид, определяемый уравнением (2).

3-6.4. Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что двуполостный гиперболоид определяет уравнение $x^2 - y^2 - z^2 = 1$, поскольку его можно преобразовать к виду: $-x^2 + y^2 + z^2 = -1$ или $y^2 + z^2 - x^2 = -1$. Последнее уравнение получается из уравнения (3) при условии, что $a^2 = 1$, $b^2 = 1$, $c^2 = 1$, а оси координат направлены так, как на рис. 4.

рис. 4

3-6.5. Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что конус определяет уравнение $x^2 - y^2 + z^2 = 0$, поскольку его можно преобразовать к виду: $x^2 + z^2 - y^2 = 0$. Последнее уравнение получается из уравнения (4) при условии, что $a^2 = 1$, $b^2 = 1$, $c^2 = 1$, а оси координат направлены так, как на рис. 5.

рис. 5.

3-6.6. Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что эллиптический параболоид определяет уравнение $x^2 + 4y^2 + z = 0$, поскольку его можно преобразовать к виду: $2x^2 + 8y^2 = -2z$. Последнее уравнение получается из уравнения (5) при условии, что $p = \frac{1}{2}$, $q = \frac{1}{8}$. Эллиптический параболоид расположен так, как на рис. 6.

рис. 6.

3-6.7. Сравнивая данные уравнения с каждым из уравнений (1)-(9), приходим к выводу, что гиперболический параболоид определяет уравнение $x^2-2y^2-z=0$, поскольку его можно преобразовать к виду: $2x^2-4y^2=2z$. Последнее уравнение получается из уравнения (6) при условии, что $p=\frac{1}{2},\ q=\frac{1}{4}$ (рис.7).

Рис.7. Гиперболический параболоид, определяемый уравнением (7).

3-6.8. Сравнивая данные уравнения с каждым из уравнений (1) - (9), приходим к выводу, что цилиндр определяет уравнение $y^2 + z^2 = 1$, поскольку оно получается из уравнения (7) при условии, что $a^2 = 1$, $b^2 = 1$, а оси координат направлены так, как на рис. 8. Рассматриваемое уравнение определяет круговой цилиндр.

3-6.9. Сравнивая данные уравнения с каждым из уравнений (1) - (9), приходим к выводу, что цилиндр определяет уравнение $y^2 = 2x$, поскольку оно получается из уравнения (9) при условии, что p = 1. Рассматриваемое уравнение определяет параболический цилиндр (рис. 9). **

Рис. 9. Параболический цилиндр, определяемый уравнением (9).