ECT2303 - Linguagem de Programação Funções Recursivas

Carlos Olarte.

15 de agosto de 2021

Motivação

Considere as seguintes funções:

•
$$n! = \begin{cases} 1 & \text{se } n = 0 \\ n \times (n-1)! & \text{se } n > 0 \end{cases}$$

•
$$fib(n) = \begin{cases} 1 & \text{se } 1 \leq n \leq 2 \\ fib(n-1) + fib(n-2) & \text{se } n > 2 \end{cases}$$

O que elas têm em comum ?

Objetivo da Aula

- Entender o mecanismo de recursividade nas linguagens de programação.
- Utilizar o conceito de recursividade para definir funções.

Definições

- Uma função recursiva é uma função que se refere a si própria.
- Utilizamos a própria função que estamos a definir na sua definição.

Funções Recursivas

Ideia Geral:

- Caso Base: o resultado é conhecido (não precisamos calcula-o).
- Caso Recursivo: para resolver um problema de tamanho N, precisamos de uma solução a um problema de tamanho M < N (subproblemas do problema inicial).

$$n! = \begin{cases} 1 & \text{se } n = 0 \text{ (caso base)} \\ n \times (n-1)! & \text{se } n > 0 \text{ (caso recursivo)} \end{cases}$$

Exemplo 1

Execução de funções recursivas

Versão não recursiva

```
int fatorial (int num){
  int prod = 1;
  int i;
  for(i=n;i>=1;i--)
    prod *= i;

return prod;
}
```

Versão recursiva

```
int fatorial (int num){
  if (num == 0)
    return 1;
  else
    return num * fatorial (num-1);
}
```

Exemplo 2: Sequências geradas recursivamente

```
 1, 1, 2, 3, 5, 8 \dots 
 fib(n) = \begin{cases} 1 & \text{se } 1 \leq n \leq 2 \\ fib(n-1) + fib(n-2) & \text{se } n > 2 \end{cases} 
 int fib( int n ) \{ \\ if( n <= 2) \\ return 1; \\ else \\ return fib(n-1) + fib(n-2); \}
```

Funções Recursivas

 Em geral, a todo procedimento recursivo corresponde um outro n\u00e3o recursivo (iterativo).

Vantagens da recursão:

- algoritmos mais concisos;
- simplifica a solução de alguns problemas;
- facilidade de implementação e compreensão;
- estratégia divisão e conquista.

Função Ackermann

$$A(m,n) = \begin{cases} n+1 & \text{se } m=0 \\ A(m-1,1) & \text{se } m>0 \text{ e } n=0 \\ A(m-1,A(m,n-1)) & \text{se } m,n>0 \end{cases}$$

Values of A(m, n)

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2 = 2 + (n+3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	$2^{2^{65536}} - 3$	$2^{2^{2^{65536}}} - 3$	$2^{2^{\cdot^{\cdot^{2}}}}-3$
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^2}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	n+3

Algoritmo de Euclides: Máximo divisor comum

Alguns exemplos:

- MDC(4,2) = ?
- MDC(8,7) = ?
- MDC(12,1) = ?
- MDC(20,15) = ?
- MDC(200,0) = ?
- MDC(X,Y) == MDC(Y,X) ?

Algoritmo de Euclides

Euclides achou um jeito bem legal de calcular (recursivamente) o MDC

X	Y	Observação
9	6	Y!=0, 9%6==3
6	3	Y!=o, 6%3 == o
3	0	Y==0, FIM
X	Y	Observação
20	18	Y!=0, 20%18==2
18	2	Y!=0, 18%2 == 0
2	о 🐫	Y==0, FIM

Algoritmo de Euclides

```
MDC(X, Y) = \begin{cases} X & \text{se } Y = 0\\ MDC(Y, X\%Y) & \text{se } Y > 0 \end{cases}
```

```
int euclides_MDC(int a, int b){
  if(b==0)
    return a;
  else
    return euclides_MDC(b,a%b);
}
```

Busca em vetor ordenado

Busca Binária

 Faça uma função que dado um vetor de inteiros v de tamanho n e um número inteiro x, retorne o índice m tal que v[m] == x. Se tal *m* não existe, a função deve retornar -1.

Se o vetor v está ordenado, nossa função poderia ser melhor?

Exercícios

Defina recursivamente as seguintes funções. Assuma que os parâmetros x e y são inteiros positivos.

- $mult : x \times y$ (utilizando somas)
- pow : x^y. (utilizando multiplicações)

Par / Ímpar

Como poderia determinar se um inteiro positivo x é par ou não sem utilizar o resto da divisão ? Dica. Defina uma função recursiva cujos casos base são:

```
	ext{ehPar(0)} 
ightarrow 	ext{true} \ 	ext{ehPar(1)} 
ightarrow 	ext{false}
```