DATA REPORT FOR RANKL OCEANOGRAPHIC CRUISE NUMBER 23/83 (MAY/JUNE 1983 - (U) ROYAL AUSTRALIAN NAVY RESEARCH LAB EDGECLIFF L J HAMILTON MAY 85 RANKL-TM-(EXT)-7/85 F/G 8/18 AD-A164 585 1/2 UNCLASSIFIED NŁ

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

UNCLASSIFIED

RANRL-TM-(EXT)-7/85

AR NUMBER: AR-003-431

AD-A164 585

AUSTRALIA.

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
WEAPONS SYSTEMS RESEARCH LABORATORY

R.A.N. RESEARCH LABORATORY

RANRL TECHNICAL MEMORANDUM (EXTERNAL) No. 7/85

DATA REPORT FOR RANRL OCEANOGRAPHIC CRUISE No. 23/83
(MAY/JUNE 1983 - EAST INDIAN OCEAN)

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THIS REPORT

STIC SELECTE FEB 1 9 1986

Original contains color plates: All DTIC representations will be in black qual

L.J. HAMILTON

Technical Memoranda are of a tentative nature, representing the views of the author(s), and do not necessarily carry the authority of the Laboratory.

APPROVED FOR PUBLIC RELEASE

COPY No:

FILE COPY

UNCLASSIFIED

86 2 18 184

(i)

AR-003-431

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

WEAPONS SYSTEMS RESEARCH LABORATORY

KAN RESEARCH LABORATORY

© Commonwealth of Australia 1985

RANRL TECHNICAL MEMORANDUM (EXTERNAL) NO. 7/85

DATA REPORT FOR RANKL OCEANOGRAPHIC CRUISE No. 23/83 (May/June 1983 - East Indian Ocean)

L.J. HAMILTUN

ABSTRACT

Data from eighteen Nansen stations to 1500 metres taken from HMAS CUUK on RANRL Cruise No. 23/83 in the eastern Indian Ocean in May-June 1983 are presented as tables and graphs. Temperature-depth cross-sections from XBT data are also included, both for HMAS CUUK and other vessels. Geostrophic current values are given and some routine data analysis made. Several very broad scale contour plots are drawn, assuming data to be quasi-synoptic, and some brief comparisons made with satellite imagery.

Technical memoranda are of a tentative nature, represent the views of the Author(s), and do not necessarily carry the authority of the Laboratory.

PUSTAL ADDRESS:

The Superintendent, MARITIME SYSTEMS DIVISION, WSRL

RAN Research Laboratory

PO Box 706, DARLINGHURST NSW 2010

DATA REPORT FOR RANRL CRUISE NO. 23/83 (ON HMAS COOK FOR 23 MAY TO 15 JUNE 1983)

			Pag	e No.
INDEX				
1.	INTRODUCTION			2
2.	THE DATA			3
3.	MEASUREMENT PROCEDURES AND METHODS OF DERIVED QUANTITIES	CALCULATING		4
4.	RESULTS			5
4.1	SEA SURFACE TEMPERATURE (SST)			5
4.2	SEA SURFACE SALINITY			5
4.3	TEMPERATURE AT 250 METRES DEPTH (T250)			6
4.4	MIXED LAYER DEPTH (MLD)			6
4.5	TEMPERATURE DEPTH CROSS SECTIONS			7
4.6	SURFACE CIRCULATION			11
4.7	WATER MASS TYPES			12
4.8	SATELLITE IMAGERY			15
5.	SUMMARY AND REMARKS			17
ACKNUWLE	DGMENTS			18
REFERENC	ES			19
LIST UF	- IGURES			21
LIST OF	TABLES			22
		bles are on left		
		e and figures on the right e of the opened document.		
DISTRIBU	TION		At	rear
DOCUMENT	CONTROL DATA SHEET		At	rear

INTRODUCTION

The principal function of this document is to present Nansen station data obtained during RANRL cruise 23/83 on HMAS COOK in the Indian Ocean from Perth to Darwin from 23 May to 17 June 1983, the inaugural oceanographic cruise of HMAS COOK. Temperature-depth cross-sections obtained from expendable bathy-thermograph (XBT) are also given, and some first look data analysis made. Several very broad scale contour plots of parameters are made and briefly compared to satellite imagery.

Data from magnetometer survey and coring will be published by other institutions. About the time of the cruise five other vessels were transiting the area, giving a unique opportunity for wide quasi-synoptic data coverage. These other vessels were HMAS CANBERRA, MURESBY, SWAN, TURRENS, and the CSIRO vessel FRV SOELA. For details of the actual cruise and other information such as coring see the cruise report (Scott, 1983). Further details on the FRV SOELA cruises may be found in the CSIRO summaries for cruises SO3/83, leg 1 (Stevens, 1983) and leg 2 (Leech, 1983).

The cruise track for RANRL 23/83 is shown in Fig. 16. Station positions and waypoints are listed in Table XIX with Nansen stations being identified by both letters and numbers. Cruise tracks for the other vessels in the area are shown in Fig. 17(a). The dates of the cruises are shown pictorially in Fig. 17(b) for weekly intervals of cruise track.

A list of figures is provided on page 21, and a list of tables on page 22. Figures and tables are placed after page 22, with all tables on the left hand side and all figures on the right hand side of the opened document.

2. THE DATA

Eighteen Nansen stations were taken in all, with sampling for temperature and salinity to 1500 metres depth. Listings of the temperature, salinity, depth data and derived quantities such according of specific volume, potential temperature and sound-speed for the stations are given in Tables I to XVIII of this report for both observed and standard depths. A list of tables is given on page 22. A composite T-S (temperature vs salinity) plot is shown in Fig. 18. Profiles of temperature, salinity, sigma-t $(\sigma_{\rm T})$, and sound-speed for stations 1 to 15 are given in Figs 1 to 15. (The four parameters for each station are overplotted). Temperature-depth cross-sections obtained from XBT data are given in Figs 19 to 29. See the List of Figures on page 21 for details.

Geostrophic current components between selected pairs of stations are given in Tables XXIII to XXXVII. The currents are given relative to the surface. Current profiles are also shown with the tables.

Contour diagrams of sea-surface-temperature (SST), surface salinity, temperature field at 250 metres depth (T250), and inferred surface circulation are given in Figs 30 to 41. Note that all diagrams are of a somewhat speculative nature, as data spacing is often sparse, and was obtained over the period May 23 to June 23 (and June 30). (See Fig. 17(b) for cruise times).

Examples of satellite imagery available for the cruise period are shown in Figs 43 and 44.

3. MEASUREMENT PROCEDURES AND METHODS OF CALCULATING DERIVED QUANTITIES

The Nansen stations were taken using standard procedures described in US Naval Oceanographic Office Publication No. 607 "Instruction Manual for Obtaining Oceanographic Data" using Nansen type sampler bottles and Watanabe-Keiki protected and unprotected deep sea reversing thermometers (DSRT), range 0-30°C. Conductivities of seawater samples were measured using an inductive salinometer.

DSRT temperatures were processed and reversal depths calculated using program TCOR described in Hamilton (1982). Derived quantities such as potential temperature and dynamic height were calculated using program HYDR described in the same memorandum. A check list is given in Table XX of references to the algorithms used in the programs.

4. RESULTS

4.1 Sea Surface Temperature (SST) (See Figs 30, 38)

SST contours have been drawn as if all data were synoptic. Frontal structure is evident from 21°S, 103°E to Fremantle, with contours becoming parallel to the coast. There are warmer patches at 15°S, 120°E and 13°S, 115°E. Relatively colder water occurs to the west and south of Sumba. Little thermal relief is seen for the area north and north-west of Broome. Fig. 30 may be compared with Fig. 5 of Rochford (1962), where the locations of colder northern waters and a 28°C patch are similar to those found here. The tendency for SST to vary little in the north is supported by GOSSTCOMP SST charts for the same period. See Figs 31 to 34. Cooler water off the Port Hedland area is also seen on the GOSSTCOMP charts at 25°C. Fig. 38 shows more detail from Port Hedland to south of Sumba. Section 4.8 discusses satellite imagery available for the area.

4.2 Sea Surface Salinity (See Fig. 35)

Data is available from HMAS COOK only at Nansen station sites. Further data was obtained in the Port Hedland area by FRV SOELA. A front occurs between stations I and M. The frontal structure seen in SST from Fremantle to 21°S, 103°E is also seen in the salinity. Highest surface salinity (35.91 ppt) occurs at station F and the lowest (34.13 ppt) south of Sumba at stations X and CC, (with salinity then increasing shorewards). For the few data points available surface salinity tends to show the same pattern as SST. Fig. 35 may be compared to Fig. 3 of Rochford (1962).

4.3 Temperature at 250 Metres Depth (T250) (See Figs 37,40)

Frontal structure is seen from 21°S, 103°E to Fremantle, similar to the SST structure of Fig. 30. Warmer water is seen north-west of Leraldton, suggesting eddy or meander structure. Also see Fig. 19, a temperature depth cross-section where this eddy feature is seen at XBT 395; and Fig. 20 (XBT 68, 69). Fig. 40 for the North West Shelf area to Sumba shows a warmer area about 13-14°S, 119-120°E.

4.4 Mixed Layer Depth (MLD) (See Figs 36, 39)

Mixed layers were generally seen over the whole of the HMAS COOK cruise track, ranging from about 50 to 90 metres depth. The area south of station CC however, (south of colder water below Sumba) had zero layer depth. From station FF to shore mixed layers extended to the bottom. MLD of 5 metres or less are also seen between stations 11 and 14 (on the edge of the North West shelf, a possible upwelling region). Fig. 39 shows more detail from Port Hedland to south of Sumba.

4.5 Temperature - Depth Cross Sections (See Figs 19 to 29)

Cross sections are shown for all cruise tracks in Fig. 17, other than for HMAS COOK, where only selected sections have been drawn. Brief comments on the sections are given below. Stippling on the diagrams show the depth of the mixed layer.

HMAS CANBERRA (See Fig.19)

An eddy-type feature is located at XBT 395. Isotherms slope down from XBT 396 to 398 indicating a southwards flowing current to depths below 300 metres. The slope of isotherms between XBT 377 and 378 indicates flow to the east.

HMAS COUK (See Figs 20, 21, 22, 23, 24)

Fig. 20

XBT 68, 69 show the eddy formation seen in HMAS CANBERRA cross-section. The surface front seen in Fig. 30 for SST between F and G is seen to be a sub-surface feature also with colder water at F. XBT 61 to 64 show a current flowing to the south-west (or south) to depths greater than 270 metres, with the feature skewing seawards and showing a return component below 270 metres.

The section from M to N shows warmer surface waters with isotherms generally depressed by up to 50 metres more than section G to H (or E to H) at all depths, indicating warmer waters at all depths, in agreement with the trends of SST contours in Fig. 30.

Fig. 21

Isotherms from XBT 108 to 112 indicate a current flowing to the south-east. XBT 113 shows depressed isotherms to 225 metres, then elevated isotherms below this depth, at the edge of the shelf, indicating a possible different flow regime between surface and deeper waters. This may be an indication of the undercurrent reported by Thompson and Cresswell (1983).

Fig. 22

Isotherms deepen shorewards (50-60 metres over 240 nm) indicating a flow to the southwest (between 0 and P) and to the west (Port Hedland to 0) on the average.

 $\rm XBT\ 133$ indicates a cold core feature and XBT 124 indicates flow at the depth of the shelf break.

MLD are generally 60 to 70 metres depth on this section.

Fig. 23

Isotherms deepen southwards (by 30-40 metres over 240 nm) indicating a flow to the south-west, otherwise the section is largely featureless. MLD deepen slightly from 70 to 90m from XBT 186 to XBT 174 but are shallow from XBT 189 to 187.

Fig. 24

Between station CC and XBT 232 a current to the south-west is indicated to about 200 metres depth, below which the flow may reverse, with the 15°C isotherm appearing as a boundary. About XBT 247 a flow with return is indicated below 100 metres off the shelf break. Colder surface water is seen at XBT 249, separating two surface bodies of roughly equal temperature, both well mixed to 90 metres or to the bottom in waters shallower than 90 metres near the coast.

HMAS MORESBY (See Figs 25, 26, 27)

Fig. 25

This is a detailed section from 31°30'S, 115°E to 30°42'S, 114°E. Warm surface waters to 70 metres and deeper are seen at XBT 45. The warm waters lie on the edge of a cold feature about XBT 48. Isotherms are elevated from XBT 49 to 47 above 200 metres, but depressed below that depth. Isotherms are depressed from XBT 48 to 43 above 200 metres, (190 metres over 35 nm) indicating flow to the south-west above that depth. XBT 48 would therefore appear to be the boundary of warm surface waters flowing south-west and cold surface water flowing north-east.

MLD are shallow in the cold-core feature, and deepen shorewards to 150 metres. MLD are also shallow in the frontal zone about XBT 45, which appears as a shallow excursion of warm water.

Fig. 26

Depressed isotherms from XBT 54 to 53 indicate a current flowing to the south-west. At XBT 57 there is some suggestion of the eddy feature seen by HMAS COOK and CANBERRA but the XBT are of doubtful quality. The surface front between XBT 61 and 62 is shown not to extend as markedly with depth as on the section for HMAS COOK which is farther south. Isotherms below 150 metres generally shallow to the north from XBT 66 to 80, i.e. waters at depth get colder to the north along this section.

Rochford (1969) p5 attributes this shallowing of isotherms to dynamic uplift caused by the dynamic northern boundary of the South Equatorial current, which flows to the west.

Fig. 27

This shows a section from Cocos Island to Western Java and return. Surface waters exhibit temperatures over 29°C. MLD range from 15 to 70 metres, being about 50 metres on the average.

HMAS SWAN (See Fig. 28)

From northwest of Broome to south of Lombok Island isotherms become shallower, as also seen on the HMAS MORESBY section, indicating a general flow to the south-west. An eddy feature is located about XBT 115 and 116, with colder surface waters about XBT 113. The eddy feature also appears situated about XBT 395 of HMAS CANBERRA.

MLD range from 50 to 100 metres.

HMAS TURRENS (See Fig. 29)

Isotherms shallow northwards from XBT 310 to 299, indicating a general flow to the west. Structure between XBT 313 to 314 suggests flow into the coast.

4.6 SURFACE CIRCULATION

There is insufficient data to properly resolve circulation patterns.

A speculative diagram of the surface circulation patterns suggested by dynamic height values and XBT data is given in Fig. 41. The geostrophic current component relative to 1000 metres at right angles between stations for stations 1 to 6 ranged from 3 to 10 cm/sec (between stations 1 and 6, and 4 and 5 respectively.) For stations 7 to 15 components from 11 to 17 cm/sec were calculated. The South Equatorial Current is apparently seen as a flow to the west below the north-most station. XBT may show indications of the south Java current. (see Fig. 19, XBT 3/7-378). There appears to be an eddy or meander feature west of Geraldton, and flow into coastal areas from North West Cape to north of Geraldton.

Tables XXIII to XXXVII give geostrophic current component between pairs of stations for selected station pairs relative to the surface.

Geostrophic current profiles are also shown.

4.7 WATER MASSES

Water masses in the survey area are tentatively identified using temperature-salinity curves, profiles of parameters with depth, and salinity and temperature cross-sections, using the definitions of previous researchers.

Principal water masses found were South Indian Central, Antarctic Intermediate, Banda Intermediate, with various surface waters. The characteristics of water masses in the Indian Ucean as described by Rochford are given in Table XXI and XXII. The reader is also referred to Rochford (1961) Figs 2, 19; (1962), Fig.17; (1964) Figs 4, 5 for T-S curves, and the positions of hydrological zones.

Fig. 18 shows the T-S curves for RANRL cruise 23/83, and water mass extents (after Rochford). The numbers (1) to (6) are identified in Table XXI. Several water masses are clearly identified with clarification needed at points marked * on the diagram. The northern and southern stations lie in different T-S regimes above 500 metres depth. More positive identification of some water masses thought to be present is not possible without oxygen or other information.

Fig. 42 is a salinity cross-section with data from Nansen stations 1, 2, 4 and 5 showing South Indian Central (SIC) and Antarctic Intermediate water (AIW) masses along the southern leg of the HMAS COUK cruise. SIC water appears as a salinity maximum from the surface to 125 metres and deeper, and AIW as a salinity minimum along 900 metres depth.

The marked surface salinity front between stations 4 and 5 seen earlier in Fig. 35 is seen to be caused by subtropical SIC water underlying less saline surface water.

Correspondences between salinity and temperature cross-sections may be seen in the data. The cold surface water at F in Fig. 20 is seen in Fig. 42 to correspond to high salinity water (35.91 ppt) of the SIC as does the separation of the 21°C and 22°C isotherms about 100 metres depth at E. Lower salinity waters south of Sumba also have lower temperature than waters closer to north-west Australia.

Profiles of salinity, temperature, and sigma-t also show characteristics pointing to water masses. Figs 1, 2, and 4 (for stations 1, 2 and 4) show a shift to lower density at 600, 650, and 700 metres, which in Fig. 1 and 2 (for stations 1 and 2) and possibly station 4 is caused by elevated temperature (up to 2°C) at these depths. From Rochford (1964) page 47 the kink in stations 1, 2 and 4 may be caused by low salinity waters of the subtropical oxygen maximum drifting north on about the 26.80 sigma-t surface.

The T-S curves show the surface waters at stations 5 and 6 to have the same characteristics as the surface waters for stations northwest of Broome (except for stations 12 and 13) indicating a possible spread of this water to the south-west as far west as 103° E. There is no station data from the cruise between the two areas to confirm or deny this possibility, but it fits with Rochford (1969) who observed a drift of higher temperature, low salinity water to the south and southwest in May (his Fig. 47).

Fig. 6 shows a sub-surface salinity maximum of 35.84 pp indicating a northward flow of SIC water intruding station 6 water between a depth of 100 to 300 metres. This sub-surface salinity maximum is also seen in stations 1, 3, 4 and 5 with values in ppt being 35.91 (130m), 35.86 (150m), 35.83 (150m), and 35.76 (195m). The SIC occurs on the surface at station 2. This appears consistent with observations by Rochford (1969) (his Fig.13).

Stations 11 to 15 (Figs 11-15) have the same water type at depth below about 100-200 metres, with salinity varying little below 200 to 300 metres. Stations 7, 8, 9 show a salinity maximum at 200 metres of 34.78, 21.70 and 34.60 ppt with sigma-t of 25.33, 25.86, and 25.67 respectively. These sigma-t values are consistent with Rochford's definition of the tropical oxygen minimum (3), but the maximum may also be the influence of some other water type. A salinity maximum of 34.84 ppt occurs at 300 metres depth at station 10.

4.8 SATELLITE IMAGERY

Imagery is available from two sources

- (i) a low resolution image from Macquarie University encompassing the whole of Australia
- (ii) colour images of the West Australian area from the Western Australian Institute of Technology (WAIT). WAIT images are presented here for information in Fig. 43.

The WAIT images shown are the copies held at RANRL only and images for other times may exist which would enable the build-up of a composite image over the cruise dates. Features traced from selected Macquarie images are shown as a time series in Fig. 44. Heavier shading shows warmer waters.

The images do not cover all areas of the HMAS COOK cruise track, and in general the data coverage obtained on the cruise is too sparse to permit detailed comparisons of the satellite images and ship data.

Correspondences can be seen, however, with warm water flowing polewards along the coast south of North West Cape to below 30°S in the Macquarie images of May 19 and 25 being seen in the general shape of the 24°C isotherm in Fig. 30. The image for June 13 also shows this feature with the water clearly joined to waters on the North West Shelf.

The 28°C patch north of Port Hedland in Fig. 30 is seen as part of a body of warmer water off the coast extending from north of Darwin (130°E) to about 118°E in the Macquarie image for May 30, and the image for May 31 shows a warm patch in this location, as does the image for June 21. In

almost all Macquarie images there is a band of cold water along the coast from North West Cape (113°E) to Broome, evidence of which is seen in the temperature data in this area from FRV SOELA, and in HMAS COOK engine room inlet temperatures.

The available satellite imagery is useful in complementing the ship data. With further enhancement more features could perhaps be brought out for more detailed analysis.

SUMMARY AND REMARKS

This was essentially a workup cruise for HMAS COOK, and problems were had with equipment. The ship thermo-salinograph did not function, resulting in the loss of continuous surface salinity and temperature records. Near surface temperature readings recorded from a hull mounted sensor were found to be unreliable because of flow stoppages leading to overheating. The hydrology winch meter was found to be giving incorrect readings. Lack of the HMAS COOK data logger resulted in loss of continuous records for meteorological parameters. The ship salinometer was found to be unserviceable so that salinity samples could not be analysed on board during the cruise as planned. These problems are described in the cruise report (Scott, 1983).

Despite these teething problems, useful oceanographic data was obtained over a wide area off the West Australian coast, which when combined with the data from other sources for the cruise period will add to the oceanographic data base for the region.

Broad scale analyses of the data have been made here in the forms of contour plots of temperatures, salinity, and surface circulation, and temperature and salinity cross sections with depth. Geostrophic currents were less than one third of a knot. Some oceanographic features have been identified but most analysis is of a highly speculative nature because data is not truly synoptic nor of high spatial density. A preliminary comparison of ship data with satellite imagery shows some correspondence of features.

ACKNOWLEDGMENTS

Mr S. Gay and G. Hopwood from the University of Sydney assisted in on-board processing of temperature data. The Australian Oceanographic Data Centre made available for analysis XBT traces from naval vessels. Data from FRV SUELA cruises were supplied by Mr G. Leech of CSIRO. Satellite imagery was supplied by Dr D. Myers, Western Australian Institute of Technology. This additional input has greatly increased the data return for the cruise period. The report was written at the request of Mr B. Scott, cruise leader and planner, of Ocean Sciences Group RANRL.

REFERENCES

- Bryden, H.L. (1973). New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, 401-408.
- Hamilton L.J. (1982). RANRL Technical Memorandum (Internal) No. 9/82 RANRL Oceanographic Station Computing Programs for Desktop Computer Usage (U). Unpublished document.
- Leech, G. (1983). FRV 'SOELA' Cruise Summary S03/83 (Leg 2) CSIRO Marine Laboratories
- Lewis, E.L. (1980). The Practical Salinity Scale and Its Antecedents IEEE Journal of Oceanic Engineering, Vol OE-5, No. 1, January 1980.
- Millero, J.M. and Poisson, A. (1981). International One-atmosphere Equation of Sea-water. Deep-Sea Research. Vol. 28 A No. 6. pp 625-629. (Errata Deep-Sea Research (1982) Vol. 29, No. 2A, pp 284).
- Millero, J., Chen C., Bradshaw, A., Schleicher, K. (1980). A New High Pressure Equation of State for Sea-water. Deep-Sea Research, Vol. 27A, pp 255-264.
- Rochford, D.J. (1961). Hydrology of the Indian Ocean. I. The water masses in intermediate depths of the south-east Indian Ocean. Aust. J. mar. Freshwat. Res. 12, 129-49.
- Rochford, D.J. (1962). Hydrology of the Indian Ocean. II. The surface waters of the south-east Indian Ocean and Arafura Sea in the spring and summer. Aust. J. mar. Freshwat. Res. 13, 226-51.
- Rochford, D.J. (1964). Hydrology of the Indian Ocean. III. Water masses of the upper 500 metres of the south-east Indian Ocean. Aust. J. mar. Freshwat. Res. 15, 25-55.
- Rochford, D.J. (1969). Seasonal variations in the Indian Ocean along 110°E, I: hydrological structure of the upper 500 metres. Aust. J. mar. Freshwat. Res. 20, 1-50.
- Saunders, P.M. (1981). Practical Conversion of Pressure to Depth. Journal of Physical Oceanography, Vo. 11, pp 573-574.
- Scott, B.D. (1983). Cruise Report for HMAS COOK. RANRL Cruise 23/83. 23 May-17 June 1983. RAN Research Laboratory Oceanographic Cruise Report.
- Stevens, J. (1983). FRV 'Soela' Cruise Summary S03/83 (Leg 1) CSIRO Marine Laboratories.
- Sverdrup, H.U. (1947). Note on the Correction of Reversing Thermometers. Journal of Marine Research, Vol. 6, No. 2, pp 136-138.
- Thompson, R.O.R.Y and Cresswell, G.R. (1983). The Leeuwin Current and Undercurrent. Tropical Ocean-Atmosphere Newsletter, No. 19, 10-11.

Wilson, W.D. (1960). Equation for the Speed of Sound in Sea-water. Journal of the Acoustical Society of America, Vol. 32, No. 10 pp 1357.

Wüst, G. (1933). Thermometric Measurement of Depth. Hydrog. Rev. 10(1): 28-49.

LIST OF FIGURES

Fig. 1 to 15	Profiles of Density $(\sigma_{_{\Gamma}})$, Salinity, Sound Speed, and
-	Temperature with Depth for Station 1 to Station 15.
Fig. 16	Cruise Track. HMAS COOK. Cruise RANKL 23/83.
Fig. 17(a)	Cruise Tracks of Vessels in the Indian Ocean for
	May-June 1983.
Fig. 17(p)	Cruise Dates in Weekly Intervals.
Fig. 18	T-S Curves and Water Masses.
Fig. 19-29	XBT Cross Sections.
Fig. 19	XBT Cross Section HMAS CANBERRA U5-U9 June 1983
Fig. 20	RANRL 23/83 23-27 May, 30 May - 1 June
Fig. 21	RANRL 23/83 01-02 June 1983
Fig. 22	RANRL 23/83 07-08 June 1983
Fig. 23	RANRL 23/83 10-11 June 1983
Fig. 24	RANKL 23/83 13-14 June 1983
Fig. 25	HMAS MORESRY 1315-1800 GMT 22 May 1983
Fig. 26	HMAS MORESBY 01-06 June 1983
Fig. 27	HMAS MORESBY 20-22 and 28-30 June 1983
Fig. 28	HMAS SWAN 31 May - 08 June 1983
Fig. 29	HMAS TURRENS 30 May - 03 June 1983
Fig. 30	Sea Surface Temperature Contours (drawn from XBT data)
Fig. 31	GOSSTCUMP SST 07 June 1983 20-65°S, 90-140°E
-ig. 32	GOSSTCOMP SST
Fig. 33	GOSSTCOMP SST 14 June 1983 20-65°S, 90-140°E
Fig. 34	GOSSTCOMP SST 14 June 1983 10°N-25°S, 90-140°E
Fig. 35	Surface Salinity
Fig. 36	Mixed Layer Depth (MLD)(from XBT data)
Fig. 37	T250 (Temperature Field at 250 Metres Depth) (from XBT data)
Fig. 38	SST North West Shelf Area to Sumba (from XBT data)
ig. 39	MLD North West Shelf Area to Sumba (from XBT data)
-1g. 40	T250 North West Shelf Area to Sumba (from XBT data)
Fig. 41	Surface Circulation Patterns
Fig. 42	Salinity Depth Cross Sections RANRL 23/83 Station 1 to
	Station 5
Fig. 43	Satellite Imagery (Western Australian Institute of Technology)
Fig. 44(a)-(h)	Satellite Imagery (Macquarie University)

LIST OF TABLES

Tables I to XVIII	Nansen Station Data for	Stations 1 to 18					
Table XIX	List of Waypoints and Sta	ation Positions					
Table XX	References to Algorithms Station Data	used to Process					
fable XXI	Water Masses of the Uppe Indian Ucean (Rochford,	r 500 Metres of the 1969)					
Table XXII	The Water Masses in the Intermediate Depths of the South-East Indian Ocean (Rochford, 1961).						
Tables XXIII - XXXVII	Geostrophic Current Comp Station Pairs	onent between Selected					
	Table	Stations					
	XXIII	1 - 2					
	XXIV	2 - 4					
	XXV	4 - 5					
	XXVI	4 - 6					
	IIVXX	2 - 6					
	IIIVXX	7 - 8					
	XXIX	7 - 9					
	XXX	8 - 10					
	XXXI	9 - 10					
	IIXXX	10 - 11					
	IIIXXX	9 - 11					
	XXXIV	10 - 12					
	XXXV	11 - 12					
	IVXXX	12 - 13					
	IIVXXX	14 - 15					

				113.06E = 13506RT					
	ратін	TËMP	SALINITY			0 λ	POT.TEMP	5.5	
	71	*C	fpt	L 1 2 / / /	CL/1		*C	n/Sec	Non-M
	ý	23.04	35.39	24.445				1530.9	3.711.000
•	a fi	22.36	35.71	14.6/5	3.18.3		22.29	1530.1	
			35.91	25.184	282.1			1528.1	
1 6 3			35.75	25.123	194.		10.78		
		4.43	35.33	25.355	173.6			1510.3	
		10.51		25.779	134.4		10.46	1498.4	
111		2.97	ثق.4₺		121.4		7.91	1492.5	
31.3	± 40		34.2€		તેક.		4.25	1481.3	
5	. :: 5		04.40				3.62	1483.0	
31.5	: 43.	2.79		a1.583		0.00			
1.5.2	:800	2.50		27.589				1490.1	
: . <u>-</u>		15.94	35.:4	(4.44)	347.5	0.00	23.04	1530.9	0.000
i:_	: <u>U</u>	22.96	35.07	24.402	340.4		22.90	1530.8	.935
	2.5		31.72	24	145.5		22.81	1530.2	.486
. :		12.02	37. ··	24.55	235.1	0.90	22.51	1550.4	.120
11.	j			24.722	324.	0.00	22.28	1529.8	
15.	129	21.60	35.50	24.888	309.1	0.00	21.98	1529.0	.330
	: 7	19.60	35 . 92	.5.531	249.5	0.00	19.57	1524.4	.422
		.0.11	55.7±	25.13/	193.1	v.00	16.63	·51e.7	. 5 B-4
.5.		4 , 5 5	5.49	20.112	171.3	0.00	14.81	15 1.5	.0/0
2.1.1	. 1	1439	35. B	26.510	159.1	v.(((13.00	1506.0	.261
¥	400	10.49	34.87	28.782	134.3	0.00	10.35	1498.2	V1. 1
	5.29	· 4 /	34.71	26.828	13:.4	0.00	9.41	14°5.3	1.038
. :	5 1 1	⊙. :	34.59		123.7		3.31	1493.3	1.153
. <u>:</u>		4	34.42	27.234	90.5	0.00	4.71	1-82,4	1.300
. :	+++ .	5 4	ب ۾ يو	22.591	16.4	0.00	3.83	460.5	1. 740
. 5	*	1, 14	3 4 3 7 9	532	03.8	0.00	3.15	1484.6	1.750
.át.	1.	4 × 5 ×	j4.50	27.6V4	5/.4	9.00	2.78	1485.5	1.878

Table I Nansen Station Data for Station 1

Fig. 1 Profiles of Density (σ_{τ}), Salinity, Sound Speed, and Temperature with Depth for Station 1.

				108.01E					
	9AfE≈	25/05/83	TIME	= 2225GMT		SONIC DEP	TH = 9999		
	BEPIR	îEmr	SALINITY	SIGMA-T	A.S.V) 0x	POI.TEMP	6.5	
	Ē	f L	Ppt		0L/3	ML/L	₩Ü	rt/Sec	Dyn.m
1.00	Ų	21.99	35.91	24.916	302.8	0.00	21.99	1528.5	
ÚBS	₹ 6	18.52	35.82	25.272	223.9	0.00	18.51	1520.2	
12 % 1 3	153	15.68	35.20	26.361	120.1	0.00	15.66	1512.9	
635		13.40	35.35	26.584	149.7	0.00	13.37	1505.9	
085	247	12.85	35.21	26.587	150.4	0.00	12.82	1504.7	
985	400	19.31	34.84	26.772	135.4	0.00	10.26	1498.0	
095	oo2	8.05	34.58	23.939	122.1	0.00	7.99	1493.5	
0.815	91ú	4.89	34.48	22.275	98.6	0.00	4.81	1484.9	
0\$5	1159	4.01	34.58	27.450	72.6	0.00	3.92	1485.5	
08%	1515	3.11	34.04	27.588	59.7	0.00	3.00	1487.8	
085	1874	2.48	34.20	22.694	49.6	0.00	2.34	1491.2	
15%	ŷ	21.99	35.91	24.916	302.8	0.00	21.99	1528.5	0.900
15L	10	21.50	35.90	25.044	290.9	0.00	21.49	1527.3	.030
isl	25	20.78	35.89	25.228	274.0	0.00	20.27	1525.6	.072
ISL	5û	19.63	35.80	25.510	248.0	0.00	19.62	1522.9	.138
ISU	75	18.56		25.763	224.8		18.55	1520.3	
ISL	100	17.75	35.78	25.985	204.5	0.00	17.74	1518.5	. 252
$I_{\rm Su}$	+50	15.91	35.7:	26.343	171.7	0.00	15.29	1513.3	.347
15_	200	13.40	35.35	26.584	149.7	0.00	13.37	1505.9	.427
15L	250	12.80	35.20	26.591	150.1	0.00	12.76	1504.5	.502
151	30€	11.92	35.07	26.654	144.9	0.00	11.89	1502.2	.576
151	400	10.43	34.65	26.763	136.1	0.00	10.38	1498.3	.717
15L	500	9.62	34.73	26.812	133.0	0.00	9.50	1496.9	.850
15L	5 99	8.70	34.53	26.882	127.3	0.00	8.64	i 495.0	.978
ISL	860	6.01	34.50	27.146	101.3	0.00	5.94	1487.6	1.210
15L	1000	4.55	34.52	27.346	82.2	0.00	4.47	1485.0	1.393
15L	1300	3.62	34.60	27.509	67.3	0.00	3.52	1486.3	1.616
ist	1500	3.14	34-64	27.583	60.2	0.00	3.03	1487.7	1.743

Table II Nansen Station Data for Station 2

Fig. 2 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 2.

	ร์ได้ไม่ฟ	3	21.245	103.15E		RANKL 23/8	3		
	0ATE= 28.	/05/83	TIME	= 0222GmT		SONIC DEP	TH≔ 4250		
	DEFIH	TEMP	SALINITY	SIGHA-I	A.S.V	xo v	POT.TEMP	5.5	
	ri .	* C	Ppt		CL/T	ML/L	* C	M/Sec	Dyn.m
1	Ų	24.43	35.4!	23.824	406.8	0.00	24.43	1533.9	
QB 5	50	23.24	35.23	24.274	365.8	0.00	23.73	1533.5	
$0B_{2}$	100	20.12	35.80	25.343	235.7	0.00	20.10	1525.0	
ម្រ	150	13.49	35.86	25.812	222.7	0.00	18.46	1521.4	
10:	200	17.3+	35.84	26.089	197.8	0.00	17.28	1518.8	
I5.	Ó	24.43	35.41	23.824	406.8	0.00	24.43	1533.9	0.000
15.	10	24.29	35.49	23.865	403.3	0.00	24.29	1533.8	.040
15	15	24.09	35.60	23.972	393.7	0.00	24.08	1533.7	.099
15.	วิท	23.24	35.73	24.274	355.8	0.00	23.23	1533.5	.193
15	<u>~</u>	21.63	35.72	24.884	308.6	0.00	21.67	1528.7	.278
1.3	100	20.12	35.80	25.343	265.7	0.00	20.10	1525.0	.351
.5.	159	18.49	35.85	25.812	222.7	0.00	18.46	1521.4	.473
iŝ.	100	17.31	35.84	26.089	197.8	0.00	17.28	1518.8	. 5 78

Fig. 3 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 3.

		4 /05/83		106.31E = 0523GMT					
	BEFFE	Emf	SALINITA	SIGMA-T	A.5.V) ox	POT.TEMP	5.5	
	a	۴Ú	Ppt		CL/7	HL/L	*C	M/Sec	flyn.m
3BG	ý	24.03	35.53	24.033	385.9	0.00	24.03	1533.1	
Ú.B.S	'5 Ú	22.88	35.67	24.424	346.7	0.00	22.87	1531.3	
6.6%	4.4	19.36	35.31	25.418	258.5	0.00	19.84	1524.3	
0.55		18.05	35.83	25.898	214.	0.00	18.02	1520.1	
$(i,j) \geq$	4343	10.18	35.72	26.261	181.2	0.00	16.15	1515.2	
£ B 5	298	13.65	35.38	26.556	155.2	0.00	13.61	1508.4	
ប∦មិ	498	9.82	34.27	26.806	133.5	0.00	9.76	1497.6	
0.85	59 5	7.29	34.51	26.996	116.2	0.00	7.22	1491.0	
0.89	895	4.90	34.52	27.310	85.3	0.00	4.83	1484.8	
9.55	1194	3.94	34.68	27.535	64.9	0.00	3.85	1485.9	
955	1493	3.11	34.57	27.510	57.6	9.00	3.00	1487.4	
151	ý	34.93	35.53	24.033	386.9	9.00	24.03	1533.1	0.000
150	ŧŭ	23.96	35.55	24.079	382.9	9.00	23.95	1532.7	.033
ISL	25	23.70	35.59	24.188	373.1	9.00	23.69	1532.2	.094
15L	50	22.88	35.67	24.474	346.7	0.00	22.87	1531.3	.183
15L	25	21.18	35.75	25.015	296.1	0.00	21.17	1527.4	.264
$1 S \bot$	100	19.83	35.81	25.428	257.6	0.00	19.81	1524.3	. 334
iŧ.	15	18.95	33.83	25.898	214.4	0.00	18.02	1520.1	.452
11.	20σ	16.15	35.72	26.265	180.8	0.00	16.12	1515.1	.551
Ītu	25 /	14.82	35.54	26.427	166.5	0.00	14.79	1511.5	.638
35.	30	13.51	35.37	26.559	154.9	0.00	13.56	1508.3	.719
15_	4 0 t	11.54	35.03	26.691	143.6	0.00	11.49	1502.4	.მან
151	50	9.79	34.77	25.808	133.4	0.00	9.74	1497.5	1.007
151	690	8.50	34.5:	25.889	126.3	0.00	8.43	1494.2	1.136
13L	800	5.87	34.52	27.175	98.4	0.00	5.80	1487.0	1.364
151	1000	4.55	34.60	27.405	76.7	0.00	4.47	1485.1	1.538
156	1366	3.03	34.57	27.579	60.8	0.00	3 .5 3	1486.4	1.244

Table IV Nansen Station Data for Station 4

Fig. 4 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 4.

	STATION DHIE= 30.			104.35E = 1800GMT					
	PHIC- 34	/ V G / G G	TINE	- 1600011		שמת שונה שבר	TH= 4880		
	DEPTH	TEMP	SALINITY	SIGMA-T	A.S.V	OX	POT.TEMP	5.5	
	M	* C	Ppt		CL/T		*C	M/Sec	Dyn.m
0 B 5	0	25.75	34.71	22.896	495.4		25.75	1536.3	2. 7 11 2.11
0.85	3 ₹	25.79	34.73	22.895	497.1		25.78	1537.0	
0.85	9.7	21.95	35.31	24.470	348.8		21.93	1529.3	
0.85	140	19.63	35./4	25.429	259.1		19.60	1524.4	
095	195	18.04	35.26	25.846	220.8		18.01	1520.7	
0.65	294	15.17	35.59	26.389	171.6		15.12	1513.5	
0.85	492	9.91	34.78	26.800	134.1		9.85	1497.9	
ŪB5	690	7.02	34.54	27.052	110.4	0.00	6.95	1489.9	
0B5	88.7	5.47	34.58	27.284	88.2	0.00	5.39	1487.0	
0.85	1182	4.48	34.55	27.452	23.5	v.00	4.38	1488.0	
JB.	1427	3.47	34.56	27.568	62.2	0.00	3.36	1488.7	
15.	ij	25.25	34.71	22.896	495.4	0.00	25.75	1536.3	0.000
ISL	ŧű	25.76	34.72	22.896	495.9	0.00	25.76	1536.4	.050
ISL	25	25.28	34.72	22.895	496.5	0.00	25.77	1536.7	.124
ISL	50	24.97	34.84	23.230	465.5		24.96	1535.4	.247
15L	75	23.27	35.10	23.929	399.7		23.25	1531.9	356
13L	100	21.79	35.35	24.545	341.8		21.77	1528.9	.449
ISL	150	19.50	35.75	25.467	255.7	0.00	19.47	1524.1	.598
ISL	200	17.89	35.76	25.879	217.9	0.00	12.86	1520.4	.716
I5.	250	16.43	35.68	26.175	191.0	0.00	16.38	1516.7	.819
15L	300	14.98	35.56	26.403	170.2	0.00	14.93	1512.9	.910
15L	400	12.05	35.09	26.528	149.8	0.00	12.01	1504.2	1.071
181	500	9.77	34.77	26.810	133.1	0.00	9.21	1497.4	1.213
15L		8.17	34.61	26.940	121.0	0.00	8.11	1492.9	1.340
15L		6.07	34.56	27.193	97.2	0.00	5.99	1487.9	1.559
ISL	1000	5.09	34.61	27.358	82.4	0.00	5.01	1487.4	1.737
ISL	1300	4.98	34.55	27.508	66.7	0.00	3.97	1488.3	1.964

Fig. 5 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 5.

	: (8:12)(-	45		175.47E		RANKL 23/83	3		
	BHIEF U.	. vs. 63	ilne	= valvanī		SONIC DEPI	TH= 2970		
	BEFTH	TEMP	SALINIT:	SIGmá-T	A.S.V	. O <i>X</i>	POT.TEMP	S.S	
	M	ŧÛ	Pot		CL/T		*C	n/Sec	Ûyn.M
0.55	Ú	20.00	35.12	23.109	425.1	0.00	26.06	1537.4	,
Ü.S.S	વલે	20.95	35.16	23.142	423.9	0.00	26.04	1538.2	
0.45	97	22.53	35.16	24.190	375.6	0.00	22.51	1530.0	
\mathbf{U} :	1 4.5	17.30	50.04	25.282	223.1	0.00	19.57	1524.1	
دفات	174	18.50	35.84	25.788	226.5	0.00	18.47	1522.1	
บัชร	291	14.51	35.51	26.475	163.0	0.00	14.47	1511.2	
ÚBE	483	9.27	34.7a	28.802	133.2	0.00	9.71	1497.2	
りょう		5.14	34.20	27.301	85.8	0.00	6.08	1486.5	
0.85	882	5.26	34.50	27.322	84.7	0.00	5.18	1485.1	
9 5 b	4.1 ± 2	4.00	. 4. 5.	27.452	23.4	0.00	4.21	1487.2	
د 4 ف	1401	5.43	34.55	27.576	61.2	0.00	3.32	1488.6	
ist	ý	28.08	35.12	23.109	475.1	0.00	26.06	1537.4	0.000
ist	19	25.95	35.13	23.116	474.8	0.00	26.06	1537.6	.047
155	25	25.05	35.15	23.126	474.4	0.00	26.05	1537.8	.119
ibl	50	25.89	35.16	23.184	459.9	0.00	25.88	1537.9	.237
1.55	-	24.04	وا.ژو	23./14	420.2	0.00	24.02	1533.9	.348
150	100	22.30	35.13	24.273	367.7	0.00	22.28	1530.0	. 447
15c	150	19.53	35.58	25.328	268.8	0.00	19.50	1524.0	.búa
باذن	290	18.12	35.82	25.840	221.6	0.00	18.19	1521.4	.728
lot.	250	16.05	35.65	26.227	185.9	0.00	16.02	1515.5	.331
15_	300	14.27	35.46	26.487	162.0	0.00	14.22	1510.5	.918
lbu	400	11.75	35.01	20.535	149.1	0.00	11.20	1503.1	1.022
īšī	500	9.47	34.76	26.846	129.5	0.00	9.41	1496.3	1.212
15L	δŮŮ	7.38	34.73	27.143	100.8	0.00	2.32	1489.9	1.330
151	ខប់បំ	5.80	34.63	27.307	85.7	0.00	5.53	1486.2	1.511
15L	1000	4.87	34.60	27.374	80.3	0.00		1485.5	1.628
ıði.	1300	3.95	34.54	27.502	58.°	0.00	3.84	1487.7	1.901

Fig. 6 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 6.

	118/104	.7	15.475	118.508		RANKL 23/8	3		
	DATE= 07	/06/83	TIME	= 1537GMT		SONIC DEP	TH= 1444		
	DEFIS	TEMP	SALINITY	SIGMA-T	A.5.V	y bx	POT.TEMP	5.5	
	m	* C	≎pt		01/1		∗C	M/Sec	Dyn.m
UES	ŷ.	27.38	34.52	22.234	558.7		27 .3 8	1539.7	27 11 21 1
0.6%	48	27.22	34.53	22.294	554.9		27.21	1540.2	
955	· · o	24.41	34.59	23.211	469.0		24.39	1534.5	
មិទីទី	142	20.01	34.25	24.569	340.2		19.98	1524.2	
à B's	130	17.11	34.29	25.327	269.6		17.08	1516.7	
353	285	12.56	34.73	26.270	181.3		12.52	1503.7	
T 3	4.75	3.27	34.21	26.915	121.9		8.82	1493.6	
9.95		o78	34.54	27.169				1488.7	
9.65	8 5%	5.41	34.51	27.318	85.1	0.00		1486.3	
134.	ĝ.	27.33	34.52	22.234	558.7	0.00	27.38	1539.7	0.000
156	10	27.35	34.52	22.247	557.5	0.00	27.34	1539.8	.056
162	25	27.30	34.52	22.265	556.7	0.00	27.29	1540.0	.139
ise	50	27,14	34.53	22.322	552.3	0.00	27.13	1540.0	.278
1 - 1		25.86	34.55	22.747	512.5	0.00	25.85	1537.7	.411
180	100	23.3e	34.57	23.353	455.5	0.00	23.94	1533.5	.532
10%	150	19.50	34.76	24.708	327.6	0.00	19.47	1522.9	.726
15L	203	15.55	34.78	25.446	258.5	0.00	16.51	1515.1	.872
15t	250	14,03	34.25	25.971	209.3	0.00	13.99	1507.9	991
157	300	12.21	34.23	26.335	175.2	0.00	12.17	1502.7	1.987
I 3 L	400	10.14	34.72	26.707	141.0		10.09	1497.0	1.248
1		9.jä	34.70	25.955	118.3	0.00	9.50	1492.8	1.378
151		7.41	34.65	27.094	105.7	0.00		1490.1	1.491
ISL	300	5.73	34.62	27.285	88.1	0.00	5.66	1486.7	1.684

Fig. 7 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 7.

				117.53E = 04495dT					
	DEF I 1	1Ene	BALINITI	315ma-1	A.S.V	y gx	РОТ.ТЕМР	6.9	
	n	ŧξ	fpt		CL/I		*C	ri/Sec	M. nvÜ
ĠĒ	•	27.13	54.41	22.230	559.1		27.13	1539.0	
0.85	50	25.79	34.55	22.444	540.2	' 0.00	26.78	1539.3	
0.25	ာ့ခ	22.14	34.70	39.950	398.4	0.00	22.12	1529.1	
$\delta (k!)$	14.	13.3	54.23	24.471	302.4	0.00	18.34	1519.2	
27:			34.73	25.85/	218.9	0.00	14.72	1509.0	
$f(\mu_{0})$	200	11.11	34.50	la.425	166.0	0.00	11.14	1499.0	
	:		34.60	20.8422	121.4	0.00	8.21	1491.5	
(B.	: +3		34.01	20.170	98.8	0.00	0.53	1488.4	
255	991	5.47	34.0?	27.321	35.3	9.00	5.39	1482.1	
υ£.				27.447			4.28	1487.5	
1.63	145"	7.14	14.3°	11.151	o2.9	0.00	3.43	1489.1	
		• 0	11	Āú	350.1	0.00	27.13	1539.0	0.000
1:_		11.65	ي <u>.</u> د د	ق ^ا مامت	555.4	0.00	27.06	1539.1	.056
130		18.9°≎	34.47	22.337	549.9	0.00	26.95	1539.2	.139
152	50	11.19	14.55	11.441	540.7	0.00	26.78	1539.3	.275
1 20	· t	24.31	14.04	11.17	452.3	0.00	24.29	1534.0	.401
111		11.0.	34.70	22.972	396.3	9.00	22.04	1528.9	.509
•	5.5	1	2 4 . 5	25.00	199.3	0.00	18.18	519.2	. 683
			: 2	19. 3 1	217.7	0.00	14.53	1509.3	.811
15.	210	* * * * * * * * * * * * * * * * * * * *	2000	23.183	138.8	9.00	:2.67	1503.4	.914
		. 1 :	پ ځ ړ د د	/m.436	50.2	0.00	11.09	1498.8	1.003
	41,	. •	34.69	18.719	139.8	0.00	9.40	1494.6	1.157
	50.9	9.1	24.09	33.933	1.20.4		8.10	401.4	1.288
			.4.50	فقيه آت	195.1	0.00	1.25	1487.5	1.403
	200	15	J4.02	2/1.259	90.9	0.00	5.99	1487.5	1.801
15.	- 0.00		ڏڻ.اي		ð1.	0.00	4.95	1457.2	1.772
					٤٠,8			1438.1	1.999

Table VIII Nansen Station Data for Station 8

Fig. 8 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 8.

	STATION DATE= 09		(5.3)E	19.35E = 07376mT		MRL 23/8 DNIC 0EP			
	28125 27	100.00	, , ,	D 64.	•				
	95-	· <u>;</u> =	34134171	513กลาวั	8.3.7	ij⊀	POT.TEAP	5.3	
	4.	, (Spt		ELZT	riL/L	٠C	M≠Sec	Dyn.m
685	6	27.29	34,35	22.294	153.0	0.00	27.29	1539.6	
086	-	27.22	34.47	22.253	559.9	0.00	20.21	1540.1	
0.85		22.45	34.50	23.757	415.8	0.00	22.43	1529.7	
133		16.16	34, 19	24.991	309.0	0.10	18.23	1517.2	
Ė.		9.19	14.36	25.365	237.1	0.00	15.15	1510.8	
د د اداد		. 25	34.59	20.409	167.6	0.00	11.22	1497.2	
023 026		5.45	34.60	20.940	119.5	0.00	8.40	1492.3	
ن درن د فدن		6.53	34.62	27.181	97.2	0.09	6.49	1483.1	
 		5.43	34.51	20.319	85.4	0.00	5.35	1485.9	
uga Uga		4.33	34.02	27.343	74.5	e.00	4.28	1487.5	
		2 43	[a.e.7	3 v 3 7 7	.1.7	6,00	3.32	421.6	
2.2.2									
ίĒ.	ú	27.39	34.50	22.291	255.0	0.09	27.29	15.7.0	0.000
15.		27.28	34.53	22,286	554.2	0.00	27.27	1513.7	.055
151		27.25	34.49	22,273	558.0	0.00	2725	1533.9	.139
15.		27.12	34.48	22.16/	555	0.00	27 ± 0	1539.9	.278
11		24.51	34.52	23.048	479.0	0.00	24.59	1531.5	.408
191		22.2.	34,55	13.910	911.3	0.00	22.24	1529.2	.520
		1412	34.20	19.937	305 c	5.00	18.09	1513.8	.599
::. [5]		15.04	34.65	25.694	234.5	0.00	15.01	1519.4	.834
191		12.86	34.61	26.108	175.8	0.00	+2.82	1500.9	.942
101		113	34.59	20.425	100.1	0.00	11.14	1499.0	1.033
161 181		9.65	34.54	20.729	138.7	0,00	9 . d 0	1495.2	1.188
. 31		8.36	34.05	24.952	118.4	0.00	9,30	491.0	1.3.7
		7.31	34.53	27.085	106.3	0.00	2.25	1489.3	1.430
		7.3: 5.87	34.62	27.264	90.2	0.00	5.30	1487.2	1.626
151		5.01	39.62	27.365	31.4	7.00	4.73	1487.1	1.797
191		4.50 4.50	34.53	2.494	60.7	0.00	હો , દ વ	1487.9	2.024
Li	1300	5.44	64.30	=/ • 7 / T	U, •/				

Table IX Nansen Station Data for Station 9

Fig. 9 Profiles of Density $(\sigma_{_T}),$ Salinity, Sound Speed, and Temperature with Depth for Station 9.

				118.43E					
	DATE=	9:05 83	IImE	= 17536HT		SONIC DEP	TH≔ 5668		
	12=(:	/EHP	SALIdIT	SIGMA-T	A.S.V	9X	POT.TEMP	s.s	
	শ	* C	Ppt		CL/T	ML/L	* C	M/Sec	Dyn.m
. 5 3	9	20.33	54.34	22.114	520.2	0.00	27.33	1539.4	
СCS	50	27.31	34.34	22.123	521.4		27.30		
265	90	23.23		23.473		0.00	23.21	1531.6	
21.00	1 /2	0.53	34.54	24.394	357.6	9.00	20.03	1524.2	
1:1		.៦.៤៦	31.55	05.053	276.8	0.00	16.61	1515.2	
035	298		34.84	26.435	145.8	0.00	12.12		
203	493	9.39	34.61	25.938	119.7	0.00	8.34	1492.1	
$\mathbb{P} \mathbb{C}^{\mathbb{Z}}$	533	a. 6 0	34,22	27 .173	∂8.5	0.00	8.53	1488.4	
$0 \ni \exists$	989	9,94	34 A1	37 99 5	89 6	0.00	5, 5,	1487.6	
$\tilde{U}_{n}(z)$:165	2. : 1	34.52	27.444	74.6	0.00	4.31	1482.2	
653	484	1.57	34.67	37,500	23.3	0.00	3.46	1489.2	
			34.34	12.114	570.2	0.00	27.33	1539.4	0.000
I_{DL}		27.33		22.116	570.4	0.00	27.32	1539.6	.057
134	25	17.32	34.34	22.119	570.8	0.00	27.31	1539.8	.143
ISL	50	27.31	34.34	2223	571.4	0.00	27.39	1540.2	.285
13ε	75	.5.11	34.42	22.882	501.1	0.00	25.09	1535.6	.420
151	100			23.492		0.00	23.15	1531.5	
187		19.98	34.54	24.413	355.8	0.00	19.96	1524.0	.738
16		16.59		25.258			14.55		.896
ıİ.	250	(4.12	34.73	25.939	212.3	9.00	14.08	1508.2	1.020
IEL	300	:2.11	34.84	23.441	105.2	0.00	12.07	1502.3	1.116
100	40.3	9.97	34.72	26.727	139.0	0.00	9.93	1496.4	1.269
<u>:</u>	500	8.35	14.55	26.944	119.2				
$\mathbf{I}^{\pm}\mathbf{L}$	600			27.077					
131	300	8.02	14.61	27.242	72.8	0.00	5.95	1482.8	1.712
151	1990	9.11	34.61	27.354	82.7	0.00	5.02	1487.6	1.882
išL	1.3500	4.05	31.04	27.494	70.0	ب پَوْنِ	3.94	1488.1	

Table X Nansen Station Data for Station 10

Fig.10 Profiles of Density (σ_{τ}), Salinity, Sound Speed, and Temperature with Depth for Station 10.

		: 11	14.095	120.5	3E R	ANRI 2378			
	PASE= :	ðirga, 33	īImE	= 1548GMT			TH≔ 2450		
	DEPTH	TEMP	SALINITY	SIGMA-T	A.S.V	X.0	POT.TEMP	5 0	
	7	# C	Pot		CL/T	nL/L	*C		
		27.50	34.40	22.106	571.0	9.90	27.50	M/Sec	£yn.m
0.35	•	27.49	34.41	22.119	5.71.8	0.00		1539.9	
$\tilde{\Gamma}^{-1}$	9.3	27.76	34.5!	23.342	456.5	0.00	27.48	1540.2	
$L E_{\perp}$	19	152	34.58	24.572	340.5	0.00	23.74	1532.9	
0.es	19a	16.22	34.59	25.380	264.6	0.00	19.49	1522.7	
Ūέι	295	12.11	34.59	26.247	183.4	0.00	16.19	1513.9	
935	49.	8.30	34.63	26.907	122.7		12.07	1502.2	
033	68 8	6.61		27.169		0.00	8.47	1492.5	
0.53	884	5.53	34.61		86.7	0.00	6.55	488.3	
Ēβ	1774	4.28	34.32		73.0	0.00	5.44	1487.2	
130	1435	3.55	34.66	27.560	\$3.6			1487.0	
			- /	500	03.0	0.00	3.44	1488.9	
131	$\hat{\mathcal{Q}}$	27.50	34.40	22.103	521.0	0.00	27.50	reste a	
15.	1.0	27.50	34.40	22.109	571.1	0.00	27.50	1539.9	0.000
136	25	27.49	34.45	22.113	571.4	0.00	27.30	:540.0	.052
ISL	50	27.42	34.41	22.143	559.4	0.00	27.49	1540.3	
: = 1	7.3	25.57		22.757		9.99		1540.5	.384
151	100	23.57		23.401	451.0	0.00	25.5a	530.9	. 421
191	150	19.29	34.59	24.628	335.2	0.00	23.55	1532.5	.541
15L	200	13.02	34.59	25.422	260.6	0.00 0.00	19.22	522.1	.732
Ite	250	13.79	34.59	25.897	216.1	0.00	15.99	513.3	.396
<u>;</u>	300	12.00	32,50	26.269	181.4	0.00	13.75	1506.9	1.004
155	400	ခွေခံေမ	34.62	20.550	45.3	0.00 0.00	11.96	1501.9	1.106
15L	500	8.41	34.63	26.921	121.3		9.93	1495.3	1.273
151	59÷	7.38	34.52	27.067	108.1	0.00	8.36	1492.2	1.408
! I.	900	5.95			91.6	•		1489.2	1.524
ĺŝĿ	1000	4.97		27.371				1487.6	1.722
1	1.50	1.02	34.33	27.504	ამ.გ	0.00		1487.1	1.895
		· -			20.0	0.00	3.82	1497.5	2 119

Table XI Nansen Station Data for Station 11

Fig.11 Profiles of Density $(\sigma_\tau),$ Salinity, Sound Speed, and Temperature with Depth for Station 11.

	STATION DATE= 11.	11 706/83	11.105 Time	118.4LE = 1320GHT		RANRL 23/8 SONIC DEP			
	DEPTH	TEMP	SALINITI	SIGMA-T	A.S.V	_	POT.TEMP	S. 5	
	ŕħ	* ()	Ppt		CL/T		*C	M/Sec	Dynam
01/5	Ų.	26.79	343	22.130	558.7		26.79	1538.0	- ,
$0\mathrm{B}$.	4	25.82	34.29	22.350	529.2		25.81	1536.8	
0B5	99	20.55	34.35	24.372	307.0		20.53	1524.7	
0.88	149	12.30	34.55	25.092	290.2		17.28	1516.3	
OFE	179	14.62	34.56	25.713	232.5		14.59	1508.9	
035	297	10.97	34.55	25.427	165.8		10.93	1498.2	
060		8.19	34.51	28.939	119.3		8.14	1491.2	
0.85	ამ 6	5.51	34.59	27.166	90.0		0.45	1487.9	
0.85	882	5.41	34.50	27.308	85.3	0.00	5.33	1486.7	
61:	1177	4.23	34.51	27.450	23.5		4.19	1487.0	
085	1423	3.35	34.3₹	27.599	59.3		3.24	1488.1	
15	ŷ	26.79	34.13	12.130	549.7	0.00	26.79	1538.0	0.000
151	10	26.59	34.15	22.217	560.8		26.59	1537.7	.058
ISL	25	26.30	34.20	22.348	548.8	0.00	26.29	1537.4	.140
ISL	t_{j}, i_{j}	20.59	34.30	22.601	525.6	0.00	25,68	1534.5	.274
īΞL	75	22.83	34.45	23.560	434.8	0.00	22.81	1530.0	.396
isl	190	20.48	34.55	24.290	365.9	0.00	20.46	1524.5	.497
ISL	:50	17.24	34.55	25,111	288.9	0.00	17.22	1516.2	.661
15 ₋	200	4.58	34.56	25.722	231.7	0.00	14.55	1508.8	.791
15%	250	12.53	34.55	28.123	194.2	0.00	12.50	1502.7	.398
150	399	16.92	34.55	25.937	164.9	0.00	10.88	1498.0	.989
ISL	400	9.37	34.59	26.732	138.1	0.00	9.33	1494.1	1.142
ISL	500	3.12	34.61	26.949	118.4	0.00	8.02	1491.1	1.272
154	୫ ବିବି	7.19	34.60	27.975	107.1		7.13	1489.1	1.385
131	ម៉ូប៉ូប៉ូ	5.84	34. 6 0	27.253	91.2		5.77	1487.1	1.583
15L	7:94	4.03	34.50	27.364	81.3	0.00		1486.7	1.754
13.	* 3.70	3.87	34.64	27.512	e7.8	0.00	3.77	1487.4	1.978

Table XII Nansen Station Data for Station 12

Fig.12 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 12.

	STATION DATE= 13	13 /06/83	11.015 TIME	120.10E = 1150GMT			13 'TH= 1554		
	DEFIE	TEMP	SALINITY	SIGMA-T	A.S.V	, ax	POT.TEMP	S. S	
	7	* C	Pot		CL/T	ML/L	:#C	M/Sec	Dyn.m
0E	당	3.5 G a	34.14	21.657	5.25.27		-	1538.6	AF II a II
2€	7	24,25	34.48		4.71.4		24.27	1533.3	
98		20.42	34.53	24.293	365.5				
JE	14.7	17.12		25.134	286.5		17.10	1515.8	
13	195	:5.91	34.53			0.00	15.98	1512.9	
ûß		12.03	34.54		185.2		11.99	1501.8	
ÛĒ	189	3.18	34.00	26.935	110.6		8.13	1491.1	
Ü.S	ಕರೆ⁴	6.59		27.132	102.4		6.63		
0.3		5.69	34.60	27.278	89.8		5.61		
บิสั	173	4.12	34.62	27.47	21.1	0.00		1486.3	
13	ć	27.04	34.14	22.057	575.7	0.00	27.04	1538.6	0.000
13.	10	26.57	34.23	12.282	554.5			537.8	
15L	25	25.77	34.35	22.622	522.7		25.78		
13L	50	24.20	34.48			0.00		1533.1	.251
. si	75	22.13	34.51	13.800	411.9			528.5	
15L	100	20.24	34.53	24.338	361.3				
SL	150	17.00		25.150	285.1		17.04		.530
15L	000	15.72	34.56	15.458	256.2		15.69		
I 5 L	250	13.59	34.54	25.910		0.00		500.2	.364
IāL	<u> 100</u>	.1.35	34,54	25.261	182.0	0.00		501.3	.954
ISC		ា ្កូង	34.59	26.677	143.4			1495.0	1.150
15.		Š •	34.50	25.948	118.5				1.283
	:::	7,27	14,50		109.2	0.00			
ΙΞυ	£ 14.	5.10	34.59	27.219					
Iic		1. 1	74.5		62.1			427.2	1.773

Fig.13 Profiles of Density $(\sigma_\tau),$ Salinity, Sound Speed, and Temperature with Depth for Station 13.

	.A(E= 14+06+ 83		13.428 Fime	13.438 (32.15E) FIME= 06550MT		RANKL 23783 SONIC DEPTH≔ 482			
	5E:11	TEMP	SALIMITY	SIGMA-T	A.S.V	y ox	POT.TEMP	S. S	
		v 🗓	₽şŧ		CL/T		*C	M/Sec	Dyn.m
1		27.48	34.5a	22.231	559.1	_	27.48	1540.0	27 7 11 2 12
		37.37	31.55	12.134	557.9		27.36	1540.6	
ů.		25.12	34.55	30.768	492.4		25.10	1536.3	
	§ .	19.79	54.51	24.279	368.7		20.76	1526.3	
و. شات	200	17.95	34.50	24.974	303.a		17.92	1519.1	
•		13.75	34,60	25.420	213.1		13.71	1507.0	
11		0.75	14.58		-59.1		10.71	1497.5	
· •	1.0	7.0}	34.58	la.388	141.5			1494.3	
ů.	ોહ	9.04	14.57	10.000	131.4		8.87	1492.4	
	j.	21.48	34 . 38	12.231	559.1	0.00	27.48	1540.0	0.000
:34	ΙÚ	27.48	34.55	22.137	558.8		27.46	1540.1	.05s
· ·	<u>- 1</u>		34.55	22. 47	558.5		27.42	1540.3	.140
: .		27	34.35	12.164	557.9		27.38	1540.6	.279
سا د ۔	\$	20.31	34.55	22.540	532.4		26.49	1539.1	.415
	* ,	25	34.55	12.968	492.4	0.00	25.10	1536.3	.542
		20.70	34.64	24.279	368.7		20.76	1526.3	.757
:54	200	17.95	34.50		303.5		17.92	1519.1	
	250			25.929	213.1		13.7	1507.0	.925
I , i	1.0	10.75	34.53		150.1		10.71	1497.5	1.054
IBU	4	8.91	34.5		131.4	0.00	8.87	1492.4	1.147

Fig.14 Profiles of Density (σ_{τ}), Salinity, Sound Speed, and Temperature with Depth for Station 14.

	STASION	15	14.035	122.58E	R	ANRL 23/8	3		
	Date= 14	/06/83	TIME	= 1300GHT		SONIC DEP	TH≔ 266		
	DEPTH	TEMP	SALINITY	SIGMA-T	A.S.V	OΧ	POT.TEMP	5.5	
	M	* [Ppt		CL/T	ML/L	≉C	M/Sec	Dyn.m
9BS	ġ	27.3	34.52	22.337	548.9	0.00	27.31	1539.7	
086	26	27.27	34.53	22.351	548.6	0.00	27.26	1540.0	
139		27.25	34.32	122.349	549.8	0.00	27.25	1540.4	
L b L	1.40	27.27	04.51	22.359	549.8	0.00	27.25	1540.9	
CEC			34.62	22.488	538.4	0.00	26.93	1540.6	
086	1.25	25.43	34.50	22.901	499.9	0.00	25.40	1537.4	
	150	1.01	34.58	23.615	432.3	0.00	22.99	1532.0	
0.65	1.25	20.3/	34.02	24.372	360.6	0.00	20.34	1525.8	
061	0.0	18.52	24, <u>4</u> 4	24.820	318.5	0.00	18.58	1521.1	
086	225	14.72	34.60	25.726	231.8	0.00	14.69	1509.7	
ISL	0	27.31	34.52	22.337	548.9	0.00	27.31	1539.7	0.000
151	1.0	27.29	34.52	22.344	548.6	0.00	27.29	1539.8	.055
ISI		27,27	34.63	22.351	548.6	0.00	27.26	1540.0	.137
ISL		27.28	34.62	22.349	549.8	0.00	27.25	1540.4	.274
131		27,27	34.54	22.359	549.8	0.00	27.25	1540.9	.412
ISL		16.95	34.67	22.488	538.4	0.00	26.93	1540.6	.548
ISL		23.02	34.58	23.615	432.3	0.00	22.99	1532.0	.794
ISL		18.62	34.5!	24.820	318.5	0.00	18.58	1521.1	.978

Fig.15 Profiles of Density (σ_{τ}) , Salinity, Sound Speed, and Temperature with Depth for Station 15.

374 (12%) (b) 84 (2%) (4, 9%) 33		14.203 123.39E TIME= 17513MT		EA S					
	<u>; :</u>	78π8 93		100 3 4-T	A.S.V SL/T	OX mu, L	007.7EmP ≉C	5.S M/Sec	Dyn.m
088		27.11	34.57	23.438	539.2	0.00	27.11	:539.3	
ĴÐŰ	25	27.19	34.07	22.442	539.3	0.00	27.09	1539.7	
618	5 0	27.10	34.67	11.440	541.0	0.00	27.09	1540.1	
3 8 9	15	27. 2	37.57	11.456	542.4	0.00	27.10	1540.6	
15.	ý.	; ;	77	22.433	339.2	0,00	27.11	1539.3	0.000
:3			14.27	22.14	539.4	0.00	27.10	1539.4	.054
ISL		17.10	34.67	22.442	539.8	0.00	27.09	1539.7	.:35
ISL		27.10	34.87	22.440	541.0	0.00	27.09	1540.1	.270
181	=	5	34.67	22.435	542.4	0.00	27.10	1540.8	.405

Cable wil - Namsen Station Data for Station to

May 23 to June 15, **RANRL 23/83** Cruise Fig. 16. Cruise track HMAS Cook 1983.

	STATION	17	14.325	124.19E	ł	RANKL 23/8	3		
	DATE: 14	703/ 83	TIME	= 2236GMT		SONIC DEP	TH= 63		
	DEPTH	TEMP	SALINITY	SIGMA-T	A.S.V	σx	POT.TEMP	s.s	
	m	* C	Ppt		CL/T	ML/L	*C	M/Sec	Dyn.m
085	Ģ.	27.34	34.75	22.423	540.7	0.00	27.34	1539.9	
CBS	10	27.36	34.75	22.414	541.9	0.00	27.36	1540.1	
0.86	20	27.33	34.75	22.427	541.1	0.00	27.33	1540.2	
085	30	22.32	34.75	22.428	541.6	0.00	27.31	1540.3	
0B5	40	27.33	34.74	22.422	542.4	0.00	27.32	1540.5	
099	20	27.34	34.75	22.425	542.5	0.00	27.33	1540.7	
184	ű	27.34	34.75	22.423	540.7	0.00	27.34	1539.9	0.000
ISL	10	27.36	34.75	22.414	541.9	0.00	27.36	1540.1	.054
ISL	25	27.32	34.75	22.426	541.3	0.00	27.32	1540.3	.135
ISL	50	27.34	34.75	22.425	542.5	0.00	27.33	1540.7	.271

Table XVII Mansen Station Data for Station 17

Fig. 17(a) Cruise Tracks of Vessels in the Indian Ocean for May-June 1983.

Fig. 17(b) Cruise Dates in Weekly Intervals.

	STATION DATE: 15	18 /05/8 3	14.505 Time	125.00E = 0410GMT		NRL 23/8 ONIC DEP			
	DEPTH	TEMP *C	SALINITY Ppt	SIGMA-T	A.S.V CL/T	WL/L OX	POT.TEMP *C	S.S M/Sec	lyn.m
093	ŷ	26.43	34.51	22.533	530.1	0.00	26.43	1537.6	
065		28.37	34.51	22.551	528.8	0.00	26.37	1537.6	
335		28.31	34.52	22.575	510.9	0.00	26.31	1537.7	
33 5		20.23	34.57	22.542	520.9	0.00	26.22	1537.7	
ISL	Ù	26.43	34.51	22.533	530.1	0.00	26.43	1537.6	0.000
IBL		26.37	34.51	22.551	528.8	0.00	26.37	1537.6	.053
ISL		26.27	34.54	22.603	524.4	0.00	26.27	1537.7	.132

Table AVIII Namsen Station Data for Station 18

Figure 18. TEMPERATURE-SALINITY CURVES AND WATER MASSES Mumbers in brackets are likely water types (after Rochford) Smaller numerals are Station numbers

POSITION	POSITION NANSEN STATION NUMBER		LATITUDE S		TUDE E	REMARKS	
						Fremantle	
A		31	00	114	56	waypoint	
В		31	10	114	22	waypoint	
C		30	51	114	10	waypoint	
D		30	41	114	46	D, C	
E	1	29	17	113	06	N, C	
F	2	26	17	108	01	N, C	
G	_	25	12	108	42	waypoint	
Н		22	00	103	00	waypoint	
I	3	21	24	103	19	N, C	
I-J		21	56	104	15	C	
์ ง	4	23	09	106	31	N, C	
K		23	08	107	00	C	
Ĺ		21	00	104	12	waypoint	
M	5	20	26	104	35	N, C	
N	6	24	02	110	47	N, C,	
	·			İ		Port Hedland	
0	7	16	47	118	50	N, C	
P	8	15	23	117	53	N, C	
Q		15	06	118	12	waypoint	
Ř		16	30	119	12	waypoint	
S	9	15	21	119	36	N, C	
Т	10	13	58	118	43	N, C	
U		13	00	119	15	waypoint	
v		14	27	120	21	waypoint	
W	11	14	80	120	53	N, C	
х	12	11	10	118	42	N, C	
Y		11	10	119	15	waypoint	
Z		13	48	121	15	waypoint	
AA		13	36	121	30	waypoint	
BB		11	10	119	40	waypoint	
CC	13	11	01	120	10	N, C	
DD	14	13	46	122	15	N	
EE	15	14	03	122	58	N, C	
FF	16	14	20	123	39	N, C	
GG	17	14	32	124	19	N	
нн	18	14	50	125	00	N, C	
		Ĺ		Ĺ	· · · · · · ·	<u> </u>	

Station key: N = Nansen cast, C = core, D = dredge

TABLE XIX- LIST OF WAYPOINTS AND STATION POSITIONS

CALCULATION	REFERENCE
DSRT Temperature Correction DSRT Reversal Depth	SVERDRUP (1947) WÜST (1933)
Conductivity to Salinity	LEWIS (1980)
Depth to Pressure	SAUNDERS (1981)
Density - One Atmosphere	MILLERU and POISSON (1981)
- High Pressure	MILLERO, CHEN, BRADSHAW and SCHLEICHER (1980)
Potential Temperature	BRYDEN (1973)
Sound Speed	WILSON (1960)

TABLE XX - REFERENCES TO ALGORITHMS USED TO PROCESS NANSEN STATION DATA

HYDROLOGICAL STRUCTURE OF THE UPPER 500 METRES

- (1) Surface (0-50 m), low salinity (less than $35.00^{\circ}/_{\circ\circ}$) high temperature (greater than 25°C), tropical waters which spread south of 20°S in autumn and winter.
- (2) Surface (0-50 m), high salinity (greater than $35.90^{\circ}/_{\circ\circ}$), lower temperature (20-22°C), subtropical waters carried north to about 25°S in summer by the West Australian Current.
- (3) Subsurface (100-150 m), low salinity (less than $35.00^{\circ}/_{\circ\circ}$), low oxygen (less than 3.50 ml/l.), tropical water spreading south to about 26°S, on the 25.00 sigma-t surface in late summer and autumn. (Fig. 48 gives $\sigma_{\rm T}$ 25.00 26.00).
- (4) Subsurface (200-300 m), high salinity (greater than $35.80^{\circ}/_{\circ\circ}$), subtropical waters of the South Indian Central region, spreading north on about the 26.00 sigma-t surface to about 12°S in summer, and to about 16°S in winter.
- (5) Subsurface (400-500 m), low salinity (less than $35.00^{\circ}/_{\circ\circ}$) waters of the subtropical oxygen maximum (greater than 4.50 ml/l) drifting north on about the 26.80 sigma-t surface to about 12° S in summer, and to about 14° S in winter.
- (6) West-flowing surface (0-50 m) waters of the South Equatorial Current with salinities around $34.50^\circ/_{\circ\circ}$, and temperature greater than 26°C , between latitudes 10 and 14°S . Near the northern boundary of the South Equatorial Current an accumulation of low salinity water (less than $35.00^\circ/_{\circ\circ}$) formed the Equatorial Frontal Zone extending to depths of around 400 m. This Frontal Zone generally formed a southern limit to the spread of north Indian Ocean water masses.
- (7) However, Persian Gulf waters spread south below the Frontal Zone to c. 15°S where mixtures of Persian Gulf and subtropical oxygen maximum waters occurred during the whole of the year.
- (8) North Indian Ocean water masses at depths less than 400 m (e.g. counter-current (100 m) and Arabian Central (200 m)) occurred south of this Zone only in summer to about 15°S. At other times of the year these water masses were absorbed by mixing with waters of the Equatorial Frontal Zone.
- (9) Waters of the east flowing Sumatra-Java Current (salinity less than $34.00^{\circ}/_{\circ,\circ}$, temperature greater than 27.5° C) were detected only in January 1963 at around 9°30'S.
- (10) Very low salinity (less than $33.00^{\circ}/_{\circ\circ}$) surface waters in May-June around 10° S were carried by currents out of the Java and Banda Seas and were not a result of the Sumatra-Java Current.

Three water masse: have been identified from maxima and minima in temperature-salinity diagrams for intermediate depths of the south-east Indian Ocean.

- (i) The Antarctic Intermediate occurred as a salinity minimum with the density range of 27.00 25.28 $\sigma_{\tau}.$
- ii) The North-West Indian Intermediate (Red Sea Water) was found as a salinity maximum with the σ_τ range 27.20 27.50.
- (11i) The Banda Intermediate, lying below the North-West Indian Intermediate(Red Sea), had the characteristic of a salinity minimum within the σ_{τ} range of 27.28 27.59.

TABLE XXII THE WATER MASSES IN INTERMEDIATE DEPTHS OF THE SOUTH-EAST INDIAN OCEAN (ROCHFORD, 1961)

DISTANCE BETWEEN CURRENT RELATIVE	70 0	METRES	
DEPTH	CURRENT		SPORT
m _	Om/sec	,	≠¥ o oc
<u>,</u> Ĉ	0.0		0.00
<u></u>	•		.01
9 <u>6.</u> 3.5	• ქ		.07
$\frac{\partial f_i}{\partial t_i}$, · lb		. 36
	. 2		.92
15(1.30 4.34
	P • 4		7.28
1996 1896	٠٠٠ 4		70.18
2 (10)	4.5 4.5		13.03
466	۷, ,		18.02
700 500	4.5		22.41
560	7. G		26.66
.5199	4.2		33.04
ស្រីតំនិ			37.60
• ())			45.22
- Divi	5,		49.97
30 89 IM3841 3 TO 15			- .
, <u>a</u>			
* ************************************	· ·		
-	`.	,	
:	*	:	
		:	
÷	ř.	,	
- 	:		
	1		
<u>-</u>	i	•	
		!	
	€	•	
	•		
•		:	
Are one		:	

Table XXIII. Geostropic Current Component at Right Angles between Nansen Stations 1 and 2 relative to the surface.

GECTION CHROUGH STATIONS 2 AND DISTANCE BETWEEN STATIONS= 379.9 CURRENT RELATIVE TO 0 METRES	4 KM
DEPTH CURRENT TRI	ANSPORT
n Sm/sec	**
. C 0.0	0.00 30.0
9	22
- 1	90
75	-2.03
100 -3.6 -50 -4.6	-3.37 -6.52
200 -5.4	-10.25
256	-10.25 -14.13
300 mg.2	-17.86
400 -6.5 500 -6.3	-25.40 -33.03
600 -6.8	-40.04
300 -6.5	-52.34
200	-62.16 -72.69
ALOT OF CURRENT VS DEPTH	
3	
/ ±	
$\frac{1}{2}$	
	, () - ()
-	٠.
· · · · · · · · · · · · · · · · · · ·	•
 	1 ,
.	

Table XXIV Geostropic Current Component at Right Angles between Nansen Stations 2 and 4 relative to the surface.

DEPTH 0 10 25 50 75 100 150 290 290 200 300 400 500 600 1000	TATIONS STATIONS= TO 0 CURRENT Cm/sec 0.05 -3.7 -3.7 -5.4 -9.4 -9.8 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5	4 AND 5 362.0 KM METRES TRANSPORT 0536 -1.53 -3.34 -5.60 -10.71 -:6.25 -22.31 -28.33 -40.25 -51.39 -61.41 -78.84 -100.69 -!43.47

SECTION THROUGH S DISTANCE BETWEEN CURRENT RELATIVE DEPTH	STATIONS 4 AND 5 STATIONS= 445.7 KM TO 0 METRES CURRENT TRANSPORT
n	Cm/sec <*
6 10	$ \begin{array}{ccc} 0.0 & 0.06 \\4 &03 \end{array} $
25 50	922
75	-3.2 -2.29
:00 150	-4.3 -4.10 -5.9 -8.43
2ñð 25ú 3úð	-6.8 -13.05 -7.4 -17.86
300 400	-7.7 -22.24 -7.8 -30.58
5 Å g	-7.9 -38.53
600 300	-5.6 -45.76
1006 1000	-5.4 -54.48 -6.0 -78.52
PLOT OF CURRENT VS DE	EPTH
· · · · · · · · · · · · · · · · · · ·	
, ‡ (
\ .	
•	
-	

Table XXVI Geostropic Current Component at Right Angles between Nansen Stations 4 and 6 relative to the surface.

SECTION THROUGH S DISTANCE BETWEEN CURRENT RELATIVE	TATIONS STATIONS= TO 0	2 AND 6 374.3 KM METRES
DEPTH	CURRENT	TRANSPORT
	Cm/sec. 635420273562933 	** 0.000746 -1.99 -4.59 -7.95 -24.86 -34.76 -59.63 -76.63 -103.55 -160.57
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

	SECTION THROUGH : DISTANCE BETWEEN CURRENT RELATIVE	STATIONS STATIONS= TO 0	7 AND 185.8 METRES	8 KM
	DEPTH	CURRENT		NSPORT
	m ,	ûm/şeç		**
		0.0		$0.00 \\ 0.00$
	25			.02
	50	. 5		.20
	75 !00	1.5 3.0		.86 2.74
	150 150	3.0 5.8 3.1		8.06
	200	3.1		15,19
	250	10.3		24.23
	300 4 00	12.1		31.94 46.64
	500	2.0		58.17
	60u	11.7		68.68
	300 LOT OF CURRENT VS D	11.1 EPTH		37.28
i.j	50 M 30M 20 B	C: 111		<u>i</u> !
		A		
				· []
		[
		[.	
•	· · · · · · · · · · · · · · · · · · ·	[<u>l</u>		
	e e e e e e e e e e e e e e e e e e e			÷ ;
		<u>.</u>		† .
		-		1 1
		- - -		
		- - - ·		
		- - -		; !
	4 4	- -	· · · · · · · · · · · · · · · · · · ·	

081718N THROUGH DISTANCE BETWEEN CURRENT RELATIVE DEPTH 0 +0 25 50 75 100 150 200 200 600 800	STATIONS STATIONS= STATIONS= OURRENT Con/sec 0346 3.6733 4.344	7 AND 175.2 KM METRES TRANS	SPORT 001334784586.5136.55
500 300 300 FLOT OF COMPRENT VS	8.4 3.0 3EPTH		48.73 <u>8</u> 3.13
3 - CONTRANT VE	<u> </u>		
		· · · · · · · · · · · · · · · · · · ·	
	- - - -		
	<u>-</u>		

Table XXIX Geostropic Current Component at Right Angles between Nansen Stations 7 and 9 relative to the surface.

SECTION THROUGH S DISTANCE BETWEEN CURRENT RELATIVE	STATIONS STATIONS= TO 0	8 AND 181.2 METRES	10 KM
DEPTH	CURRENT		ANSPORT
	Cm/sec 0.2 -1.2.668 -1.8.43 -1.8.68 -1.8.9 -1.6.8.7 -1.6.5 -1.7.5 -1.7.5 -1.7.5		0.00 02 13 -1.99 -4.13 -11.63 -23.69 -37.41 -48.22 -64.93 -31.7 -97.02 -129.96 -168.62 -224.71
i)			-

Table XXXI		€	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
######################################		CURRENT VS DEP	BACE STANCE STANCE STANCE STANCE SELECTIVES SELECTIVES STANCE SELECTIVES SELECTIV
		H	TATIONS 9 AND CURRENT 0.6 0 METRENT 1.20.5 1
Ta			TRANSPORT
able XXXII		SLOT OF CURRENT VS	SECTION THROUGE AND THROUGE BETWEE CURRENT RELATION 100 250 250 250 250 250 250 250 250 250 2
* * * * * * * * *	मामक्ष्मचार्वस्य विक्रिक्तिक्षिक्ष्यक्र	ДЕРТН	H STATIONS .0 EN STATIONS .0 VE TO CORRENT OMET CORRENT -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
			TRANSPOR

Sacrafia Boogson Booksea Booksea Edgessea Bessessa Peresea

SESSION DESIGNAL EXERGIN

Geostropic Current Component at Right Angles between Nansen Stations 9 and 10 relative to the surface.

Geostropic Current Component at Right Angles between Nansen Stations 10 and 11 relative to the surface.

GOSSTCOMP SEA SURFACE TEMPERATURE

Fig. 31 Fig. 32

GOSSTCOMP SST 07 June 1983 GOSSTCOMP SST

07 June 1983

20-65°S, 90-140°E 10°N-25°S, 90-140°E

Table XXXIII	PLOT OF CURRENT VS	WESTANCE BETWEE DESTANCE BETWEE SURRENT RECATIV DEPTH
		STATIONS 9 91D 11 C STATIONS* 153.2 KM E TO 9 METRES CURRENT TRANSPOR
	* 0:1:-0040070 0:1:-007000400 00:-007070004000 000-00700000000000	Š
Table XXXIV	0.00 1.02 1.03 1.03 1.04	SECTION THROUGH S DISTANCE BETWEEN CURRENT RELATIVE DEPTH

Geostropic Current Component at Right Angles between Nansen Stations 9 and 11 relative to the surface.

Geostropic Current Component at Right Angles between Nansen Stations 10 and 12 relative to the surface.

GOSSTCOMP SEA SURFACE TEMPERATURE

Fig. 33 GOSSTCOMP SST 14 June 1983 20-65°S, 90-140°E Fig. 34 GOSSTCOMP SST 14 June 1983 10°N-25°S, 90-140°E

	SEUTION THROUGH : DISTANCE BETWEEN	STATIONS=		12 M
	CURRENT RELATIVE DEPTH	TO 0 CURRENT	METRES TRAN	ISPORT
	m 0 10 25 50 75 100 150 200 250 300 400 500 600 1000	Cm/sec 0.0 0.299 1.49331 10.57 10.88 10.88 10.9		** 0.00 0.05 .39 1.32 3.13 8.30 13.86 19.81 25.99 38.79 62.45 84.34 106.36 139.20
ığ	PLOT OF CURRENT VS D	EPTH		 : i

Surface salinity (drawn from Nansen station data) RANRL cruise 23/83 (see Fig.16 for station numbers) May 24 to June 24, 1983. Fig. 35

Essissist exercise National Berestster Exercised Essistant Exercised Especial Representational

TI RRENT RELATIVE	TATIONS STATIONS= TO 0	12 AND 13 160.9 KM METRES	
рғетн	CURRENT	TRANSPO	RT
10 10 25 57 100 100 100 250 250 400 500 600	Cm/sec 0 0 59533867-85702	· 	.05 .29 .72 .92 .09 .17 .18 .18
1000 - 107 OF CURRENT VS DE -2	- <u>J,2</u> PTH		, , _
++++++++++++++++++++++++++++++++++++++			

Table XXXVI Geostropic Current Component at Right Angles between Nansen Stations 12 and 13 relative to the surface.

Fig. 36

RECEIPTED.

Mixed Layer Depth (MLD)(from \lambda T data)

Education Education Education Resources Educates Educates

DISTANCE BETWEEN CURRENT RELATIVE	E TO 0	83.5 K METRES	
DEPTH m	CURRENT Cm/sec	IRAN	SPORT -
" ()	0.0		0.00
10) 52	. 3		.03 .26
(5.1) (5.1)	·		.78
	, <u>Ģ</u>		. 25
(1)的 (氧)	트립 . i 교사기 구		-1.72 -17.18
200	- 18.1		-33.42
	DEPTH		
.1			. .
gare to the second second second second second second second second second second second second second second			
			•
	-		
			1.1
	<u></u>		4 h
	-		1
	Ξ		1 .
			•
			•
	ren sec		
	-		
	-		

Fig. 37

T250 (Temperature Field at 250 Metres Depth) (from XBI data)

Fig. 33 SST North West Shelf Area to Sumba (from XBT data)

Fig. 39 MLD North West Shelf Area to Sumba (from XBT data)

DATA REPORT FOR RANKL OCEANOGRAPHIC CRUISE NUMBER 23/83 (MAY/JUNE 1983 - (U) ROYAL AUSTRALIAN MAYY RESEARCH LAB EDGECLIFF L J HAMILTON MAY 85 RANKL-TM-(EXT)-7/85 F/G 8/18 AD-A164 585 2/2 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Fig. 40 T250 North West Shelf Area to Sumba (from XBT data)

KANAN DESERBE DESERBE BENEVERS DESERBE

addition in according second in accordad contaction in according to propose in an according seconding to accord

Fig 42 Satinity depth cross section. RANRL 23/83 Station 1 to Station 5

1. 13 Catellite Imagery (Instant Australian Institute of Technology)

Fig. 44, 3- d) Satellite Langery (Macquirie University)

DISTRIBUTION LIST

DISTRIBUTION LIST	Copy No.
AUSTRALIA	copy No.
Chief Defence Scientist Deputy Chief Defence Scientist Controller, External Relations Projects and Analytical Studies (DSTO) Superintendent Science and Technology Programmes	1
Deputy Director, Scientific and Technical Intelligence, JIU	2
UIC, Document Exchange Centre, DISB	3
Librarian, Technical Reports Centre, Defence Central Library, Campbell Park	4
Librarian, DRCS	5
Librarian H Block, Victoria Barracks, Melbourne	6
Counsellor Defence Science - Washington) Defence Science Advisor - London) Data Control	Sheet only
Director RAN, Australian Joint Anti-Submarine School	7
Director RAN Tactical School HMAS WATSON	8
Naval Scientific Adviser	9
Air Force Scientific Adviser	10
DUM, HYDRO RAN	11
Secretary, RAN Oceanographic Committee	12
Senior Met. Officer, NAS Nowra	13
SOO HYDRO RAN	14
HMAS COOK	15
Librarian, CSIRU Div. of Uceanography	16
OIC Australian Uceanographic Data Centre	17
Jirector, Weapsons Systems Research Laboratory	18
RANRE Or M. Hall Mr W. Hill Dr M. Lawrence Or P.J. Mulhearn Mr B. Scott HUSG, RANRE	19 20 21 22 23 24 25 - 26
RANRL Master Copy	27
RANRL	28 - 32

CS	SIRO Dr	S.	Humphri	es					3	33	
	Mr	Α.	Pearce,	CSIRU	Marine	Labor	atories,	, WA	3	34	
МА	ICQUAR I E	INU	VERSITY	Dr J.	Veeve	^ S			3	35	
SY	DNEY UN	I VER	SITY	Mr S.	Gay				3	36	
				Mr B.	V. Hamo	on			3	37	
				Mr G.	Нормос	bd			Ĵ	38	
				Mr S.	O'Gall	lagher			3	39	
				Dr M.	Tomcza	ık			4	10	
WA	IT Dr	D.	Myers						4	1	
	Dr	J.	Penrose						4	12	
AG	PS								4	13	
Na	tional	Libr	ary of A	Austral	i a				4	14	
UNITED STAT	ES OF AI	MERI	CA								
Се	nter fo	r Na	val Anal	lysis					4	15	
De	fence Te	echn	ical Inf	formati	on Cent	er (v	ia DISB)	ı	46	-	57
UNITED KING	DOM										
De	fence Re	esea	rch Info	ormation	n Centr	e (vi	a DISB)		58	-	59
CANADA											
Vi	rector S	Scie	ntific I	Informat	ion Se	rvice	s (via D	ISB)	6	0	
NEW ZEALAND											
Mi	nistry (of De	efence ((via DIS	в)				6	1	
SPARE									62	_	71

Department of Defence

DOCUMENT CONTROL DATA

1 a. AR No	1. b. Establishment No	2. Documer t Date	3. Task No	
AR- 003-431	RANRL-TM-(EXT)-7/85	May 1985	84/007	
4. Title		5. Security	6. No Pages	
	R RANRL CRUISE NO. 23/83	a. document UNCLAS	112	
(May/June 1983	- East Indian Ocean)	b. title c. abstract UNCLAS UNCLAS	7. No Refs 17	
8, Author(s)		9. Downgrading Instruct	ions	
L.J. Hamil	ton	N/A (UNCLAS)		
10. Corporate Author and	Address	11. Authority (as approp		
RAN RESEARCH	LABORATORY	a.Sporsor b.Security c.Do	owngrading d.Approval	
PO BOX 706		a. Ocean Scier	nces Group	
DARLINGHURST	NSW 2010	b. HOSG c. N/A (UNCLAS	.,	
AUSTRALIA		d. DWSRL) 	
12. Secondary Distribution Approved fo	n (of this accument) r public release			
Overseas enquirers outside stated limitations should be referred through ASDIS, Defence Information Services Branch, Department of Defence, Campbell Park, CANBERRA ACT 2601				
13. a. This document may be ANNOUNCED in catalogues and awareness services available to				
No limitations				
13. b. Citation for other purposes (ie casual announcement) may be (select) unrestricted(or) as for 13 a.				
14. Descriptors		15.	COSATI Group	

14. Descriptors HMAS COOK	15. COSATI Group
Indian Ocean	0802
Nansen Station	0810
Physical Oceanography	
XBT.	

16. Abstract

Data from eighteen Nansen Stations to 1500 metres taken from HMAS COOK on RANRL Cruise 23/83 in the eastern Indian Ocean in May-June 1983 are presented as tables and graphs. Temperature-depth cross-sections from XBT data are also included, both for HMAS COOK and other vessels. Geostrophic current values are given and some routine data analysis made. Several very broad scale contour plots are drawn, assuming data to be quasi-synoptic, and some brief comparisons made with satellite imagery.

Technical memoranda are of a tentative nature, represent the views of the author(s), and do not necessarily carry the authority of the laboratory.

This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16. Abstract (Contd)		
10. Abstract feetite)		
		`
17. Imprint		
	100	100 = 10
18. Document Series and Number	19, Cost Code	20. Type of Report and Period Covered
)	
21. Computer Programs Used	·	
•		
		,
		İ
		
22. Establishment File Ref(s)		
		•
		

)T(4-86