Problem 4.

(a) Initially, we have:

- (b) Notation: ' $a \rightarrow b$: d' means node a informs node b of distance d.
 - $\bullet \ y \to w: 4, y \to z: 4$
 - $z \rightarrow y: 6, z \rightarrow w: \infty$
 - $w \to y : \infty, w \to z : 5$
- (c) If d(x, y) changes from 4 to 60 immediately before the first exchange, we get:

x	y	z	w	time
	$\overline{4,x}$	6, w	$\overline{5,y}$	initially
	9, z	6, w	5, y	After 1st exchange
	9, z	6, w	10, y	After 2nd exchange

Note the routing loop: if z receives a packet to x then

- z sends the packet to w (1st row), then
- w sends the packet to y (2nd row), then
- y sends the packet back to z (3rd row).