

Solution Review: Find the Height of a BST

We'll cover the following

- · Solution: recursively finding the heights of the left and right sub-trees
 - Time Complexity

Solution: recursively finding the heights of the left and right sub-trees

#

```
main.py

BinarySearchTree.py

Node.py

1 from Node import Node
2 from BinarySearchTree import BinarySearchTree
3
4
5 def findHeight(root):
6 if root is None: # check if root exists
7 return -1 # no root means -1 height
8 else:
9 max_sub_tree_height = max(
10 findHeight(root.leftChild),
```

```
Solution Review: Find the Height of a BST - Data Structures for Coding Interviews in Python
8/30/22, 12:46 PM
                            i inameight(root*rightchita)
         12
                       ) # find the max height of the two sub-tree
         13
                       # add 1 to max height and return
         14
                       return 1 + max_sub_tree_height
         15
         16
              BST = BinarySearchTree(6)
         17
         18
              BST.insert(4)
         19
             BST.insert(9)
         20 BST.insert(5)
         21
             BST.insert(2)
         22 BST.insert(8)
         23 BST.insert(12)
         24 BST.insert(10)
         25
              BST.insert(14)
         26
         27
         28
              print(findHeight(BST.root))
```

Here, we return -1 if the given node is None. Then, we call the findHeight() function on the left and right subtrees and return the one that has a greater value plus 1. We will not return 0 if the given node is None as the leaf node will have a height of 0.

Time Complexity#

The time complexity of the code is O(n) as all the nodes of the entire tree have to be traversed.

Interviewing soon? We've partnered with Hired so that \times companies apply to you instead of you applying to them. See how \odot

Challenge 4: Find the Height of a BST

Challenge 5: Find Nodes at "k" distanc...

Report an Issue

