Úvod do komplexní analýzy

doc. RNDr. Roman Lávička, Ph.D.

8. října 2020

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm Euklidovskou normu a metriku:

•
$$|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$$

•
$$\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$$

Definice 1.1. Prostor \mathbb{C} je prostor \mathbb{R}^2 , v němž definujeme navíc:

- n'asobeni(x,y).(u,v) = (xu yv, xv + yu)
- $ztoto\check{z}\check{n}ujeme\ (x,0)\cong,\ neboli\ \mathbb{R}\subset\mathbb{C}$
- $zna\check{c}ime\ i=(0,1)$

Vlastnosti 1.2.

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- Potom z = x + iy a $(\pm i)^2 = -1$
- Násobení v $\mathbb C$ zahrnuje násobení v $\mathbb R$ i násobení skalárem v $\mathbb R^2$

Značení 1.3. Nechť z = x + iy, $kde \ x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružená část k z,
- Re(z) := x je reálná část z, Im(z) := y je imaginární část z,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Dále platí

 $\bullet \ |z|^2=z\overline{z}, \ \overline{zw}=\overline{z}.\overline{w}, \ |zw|=|z|.|w|, \ z+\overline{z}=2.Re(z), \ z-\overline{z}=2i.Im(z)$

1

- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$
- $\mathbb C$ je těleso

Pozor, $\mathbb C$ nelze $rozumn\check{e}$ upořádat!

•
$$i > 0 \implies -1 = i^2 > 0$$

•
$$i < 0 \implies -1 = i^2 > 0$$

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je reálný vektorový prostor dimenze 2, jeho báze je $((1,0)^T,(0,1)^T)$. Obecné \mathbb{R} -lineární zobrazení $L:\mathbb{R}^2\to\mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{1}$$

 $kde\ a, b, c, d \in \mathbb{R}$.

 \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je 1. Obecné \mathbb{C} -lineární zobrazení $L: \mathbb{C} \to \mathbb{C}$ má tvar $Lz = wz, z \in \mathbb{C}$, kde $w \in \mathbb{C}$. Nechť z = (a+ib)(x+iy) = (ax-by,bx+ay) =

$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě $když\ d=a,c=-b$.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexnou funkci komplexné proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce $z \mathbb{C}$ do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0), P(z_0)$. Potom definujeme

- $\lim_{z\to x_0} f(z) = L$, $pokud \ \forall \epsilon > 0 \ \exists \delta > 0 : z \in P(x_0, \delta) \implies f(z) \in U(L, \epsilon)$
- f je spojitá v x_0 , pokud $\lim_{x\to x_0} f(x) = f(x_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v x_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom $df(x_0) := L$ je tzv. totální diferenciál f v x_0 a platí, že

$$df(x_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(x_0) & \frac{\partial f_1}{\partial y}(x_0) \\ \frac{\partial f_2}{\partial x}(x_0) & \frac{\partial f_2}{\partial y}(x_0) \end{pmatrix} h, h \in \mathbb{R}^2$$

 $kde\ f(x,y) = (f_1(x,y), f_2(x,y)).$ (Ta matice se nazývá Jacobiho matice.)

Definice 3.3. \check{R} ekneme, \check{z} e funkce f je v x_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Číslo $f'(x_0)$ nazýváme komplexní derivací f v x_0 .

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f\pm g)', (f.g)', (f/g)', (f\circ g)'$

Příklad 3.5. • $(z^n)' = n \cdot z^{n-1}, z \in \mathbb{C} \ a \ n \in \mathbb{N}$

• $f(z) = \overline{z}$ není nikde v \mathbb{C} \mathbb{C} -diferencovatelná, ale f(x,y) = (x,-y) je všude \mathbb{R} -diferencovatelná. Skutečně, máme

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\overline{h}}{h}$$

Avšak poslední limita neexistuje.

Věta 3.6 (Cauchy-Riemannova). Nechť f je funkce diferencovatelná na okolí $x_0 \in \mathbb{C}$. Pak následující je ekvivalentní:

- 1. Existuje $f'(x_0)$
- 2. Existuje $df(x_0)$ a $df(x_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(x_0)$ a v z_0 platí tvrzení Cauchy-Riemannových podmínek.

Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}$$
$$\frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}$$

 $zde \ f(x,y) = (f_1(x,y), f_2(x,y))$

 $D\mathring{u}kaz$. (2. \iff 3.) plyne z pozorování pro lineární zobrazení (1. \iff 2.) Z definice $w=f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(x_0 + h) - f(z_0) - wh}{h} \tag{2}$$

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|}$$
(3)

což je ekvivalentní tomu, že $df(z_0)h = wh, h \in \mathbb{C}$. Z (3) plyne (2) vynásobením |h|/h. \square

Poznámka 3.7. • Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$

• Platí, že $(CR) \iff \frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y}$

 $D\mathring{u}kaz.$ • $df(x_0)1 = \frac{\partial f_1}{\partial x}(x_0) + i\frac{\partial f_2}{\partial x}(x_0) =: \frac{\partial f}{\partial x}(x_0)$

zřejmé

Příklad 3.8. Nechť $f(z) = \overline{z}$, pak f'(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1, \frac{\partial f_1}{\partial y} = 0, \frac{\partial f_2}{\partial x} = 0, \frac{\partial f_2}{\partial y} = -1.$$

 $\textit{M\'ame}, \ \check{z}e \ f \in C^{\infty}(\mathbb{R}^{2}), \ ale \ v \ \check{z}\'{a}\'{d}n\'{e}m \ z \in \mathbb{C} \ nesplňuje \ (CR), \ proto \ nen\'{e}n\'{i}kde \ \mathbb{C} - diferencovateľn\'{a}.$

Definice 3.9. Nechť \mathbb{C} je otevřené a $f: G \to \mathbb{C}$. Potom říkáme, že f je na G kolomorfní, pokud f je \mathbb{C} -diferencovatelná v každém $z \in G$. Značíme $\mathcal{H}(G)$ prostor všech kolomorfních $f: G \to \mathbb{C}$. Říkáme, že funkce F je celá, pokud $F \in \mathcal{H}(G)$.

Příklad 3.10. • Polynom $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n$, $z \in \mathbb{C}$ je celá funkce.

• Necht R = P/Q, kde P, Q jsou polynomy, které nemají společné kořeny a $Q \not\equiv 0$. Potom racionalita funkce R je kolomorfní na $\mathbb{C} \setminus \mathbb{Q}^{-1}(\alpha \circ \varphi)$ konečné.

4 Elementární funkce v \mathbb{C}

4.1 Exponenciála

Definice 4.1. $\exp(t)$: $= e^x(\cos y + i\sin y), z = x + iy \in \mathbb{C}$

Vlastnosti 4.2. • $\exp |_{\mathbb{R}}$ je reálná exponenciála

- $\exp(z+w) = \exp(z)\exp(w)$
- $\exp'(z) = \exp(z), z \in \mathbb{C}$ $f(z) = \exp(z), f_1(x,y) = e^x \cos y, f_2(x,y) = e^x \sin y,$ $\frac{\partial f_1}{\partial x} = e^x \cos y = \frac{\partial f_2}{\partial y}, \frac{\partial f_2}{\partial x} = e^x \sin y = -\frac{\partial f_1}{\partial y}$ Tedy $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ a (CR) platí všude $\mathbb{R}^2 \cong \mathbb{C}$ z CR-věty máme $f'(z) = \exp(z), z \in \mathbb{C}$
- $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}$

Polární tvar komplexního čísla $x = r \cos \varphi$, $y = r \sin \varphi$, z = x + i, $y = r(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}$, kde r = |z| a φ je argument z.

Značení 4.3. Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom položme $Arg(z) := \{\varphi \in \mathbb{R} \mid z = |z|e^{i\varphi}\}$ Je-li $Arg(z) \cap (\pi,\pi] = \{\varphi_0\}$, potom $arg(z) := \varphi_0$ je tzv. hlavní hodnota argumentu z.

Platí:

- $-Arg(z) := \{arg(z) + 2k\pi \mid k \in \mathbb{Z}\},\$
- funkce $arg: \mathbb{C} \setminus \{0\} \to (\pi, \pi]$, kde arg je surjektivní a konstantní na polopřímkách vycházejících z 0. Navíc je arg spojitá na $\mathbb{C} \setminus (-\infty, 0]$, ale není spojitá v žádném $z \in (-\infty, 0]$
- $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$
- exp není prostá na \mathbb{C} , je $2\pi i$ -periodická a platí dokonce: $\exp(z) = \exp(w) \iff \exists k \in \mathbb{Z} \colon w = 2k\pi i$
- Necht $P := \{z \in \mathbb{C} \mid Imz \in (\pi, \pi]\}$. Potom exp |P| je prostá a $\exp(P) = \mathbb{C} \setminus \{0\}$.

4.2 Logaritmus

Pro dané $z \in \mathbb{C}$ řešíme $e^w = z$. Pro z = 0 nemáme řešení. Pro $z \neq 0$ je $z = |z|e^{iarg(z)} = e^{\log|z| + iarg(z)} = e^w \iff \exists \ k \in \mathbb{Z} \colon w = \log|z| + iarg(z) + 2k\pi i$.

Definice 4.4. Nechť $z \in \mathbb{C} \setminus \{0\}$. Položme

- Log z: $= \{ w \in \mathbb{C} \mid e^w = z \}$
- $\log z$: $= \log |z| + i \operatorname{arg} z \dots t z v$. $h \operatorname{lavn} i \ hod not a \ \operatorname{log} a r i t m u \ z$.

Vlastnosti 4.5.

Necht $z \in \mathbb{C} \setminus \{0\}$.

- $Log z = \{ \log z + 2k\pi i \mid k \in \mathbb{Z} \}$ a $\log = (\exp |_p)^{-1}$
- log není spojitá v žádném $z \in (-\infty, 0]$, ale log $\in \mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Navíc log' $z = \frac{1}{z}, z \in \mathbb{C} \setminus (-\infty, 0]$.
- $\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$

Pozor na počítání s logaritmem!

- $\exp(\log z) = z$, $\log(\exp zi) \neq z$, z toho, že je to $2\pi i$ -periodické
- $\log(zw) \neq \log(z) + \log(w)$

např.
$$0 = \log 1 = \log((-1)(-1)) \neq 2\log(-1) = 2\pi i$$

4.3 Obecná mocnina

Definice 4.6. Nechť $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom hlavní hodnota α -té mocniny z definujeme z^{α} : $= \exp(\alpha \log z)$. Položme $m_{\alpha}(z)$: $= \{\exp(\alpha w) \mid w \in Logz\}$.

Vlastnosti 4.7. • $e^z = \exp(z \log e) = \exp(z)$

- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je v souladu s MA.
- $m_{\alpha}(z) = \{z^{\alpha}e^{2k\pi i\alpha} \mid k \in \mathbb{Z}\}, z \neq 0$ $w \in Logz \iff w = \log z + 2k\pi i$
- $(z^{\alpha})' = \alpha z^{\alpha 1}, z \in \mathbb{C} \setminus (-\infty, 0])$ a $\alpha \in \mathbb{C}$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n$, |z| < 1, $kde({\alpha \choose n}) := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$.

Příklad 4.8. Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Necht $\alpha \in \mathbb{Z}$. Potom $m_{\alpha}(z) = \{z^{\alpha}\}.$
- Nechť $\alpha \in \mathbb{Q}$ a $\alpha = p \mid_q$, kde $q \in \mathbb{Q}$, $p \in \mathbb{Z}$ a p,q jsou nesoudělná. Potom $m_{\frac{p}{q}}(z) = \{z^{\frac{p}{q}}e^{2K\frac{p}{q}\pi i} \mid K = \{0,1,\cdots,q-1\}\}$ tvoří vrcholy pravidelného q-úhelníku vepsaného do kružnice o středu 0
- Nechť $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Potom je $m_{\alpha}(z)$ nekonečné.

Příklad 4.9. • $\sqrt{-1} = e^{\frac{pii}{2}} = i$, $m_{\frac{1}{2}}(-1) = \{\pm i\}$

- $\bullet \quad \sqrt[3]{-1} = e^{\frac{\pi i}{3}} \ \ (nesouhlas i \ s \ MA!), \ m_{\frac{1}{3}}(-1) = \{e^{\frac{\pi i}{3}}, e^{\frac{-\pi i}{3}}, -1\}$
- $i^i = e^{\frac{-\pi}{2}}, m_i(i) = \{e^{\frac{-\pi}{2} + 2k\pi} \mid k \in \mathbb{Z}\}$

Pozor na počítání s mocninami!

$$(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$$

např.
$$1 = \sqrt{1} = \sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1} = i^2 = -1$$

Poznámka 4.10. Je-li $f: \mathbb{C} \to \mathbb{C}$, potom $f(z) = \frac{f(z) + f(-z)}{2} + \frac{f(z) - f(-z)}{2} = sudá část + lichá část.$

4.4 Hyperbolické funkce

$$e^z = \cosh(z) + \sinh(z)$$
, kde

Definice 4.11.

$$\cosh(z) \colon = \frac{e^z + e^{-z}}{2}, z \in \mathbb{C}$$

$$\sinh(z) \colon = \frac{e^z - e^{-z}}{2}, z \in \mathbb{C}$$

Vlastnosti 4.12. • $\cosh' z = \sinh z$, $\sinh' z = \cosh z$

•
$$\cosh z = \sum_{n=0}^{\infty} \frac{z^2 n}{(2n)!}$$
, $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

4.5 Goniometrické funkce

$$e^{iz} = \cos(z) + i\sin(z)$$
, kde

Definice 4.13.

$$cos(z)$$
: $=\frac{e^{iz}+e^{-iz}}{2}, z \in \mathbb{C}$

$$sin(z)$$
: $=\frac{e^{iz}-e^{-iz}}{2i}, z \in \mathbb{C}$

Vlastnosti 4.14. • cos a sin jsou rozšířením příslušných reálných funkcí z \mathbb{R} do \mathbb{C} .

- $\sin'(z) = \cos(z), \cos'(z) = -\sin(z)$
- sin i cos jsou 2π -periodické, ale nejsou omezené na $\mathbb C$. Platí, že $\sin(\mathbb C)=\mathbb C=\cos(\mathbb C)$
- i na C platí součtové vzorce, atd.
- $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

Poděkování:

Tyto poznámky byly vytvořeny společnou prací několika studentů 3. ročníku bakalářského studia obecné matematiky. Bez jejich iniciativy by tyto poznámky nevznikly.

Stanislav Mosný, Tereza Poláková, Viktor Procházka a Petr Sedláček