81. Ga: +(x,y) = e4 + y3 + x3 + x2 -1 Zz. y lässt sich lokal, auf Ne = {(x,y) + (x,y) = 03, als Funktion g(x) darstellen. Ww. Y (xo, yo) & NE (xo, yo) = 0, det (= (xo, yo)) = det (e 10 + 3 yo2) > 0. Ges. 2x (x) $= -\left(\frac{\partial f}{\partial y}\left(x, q(x)\right)\right)^{-1} \frac{\partial f}{\partial x}\left(x, q(x)\right)$ $= -(e^{3(x)} + 3g(x)^{2})^{-1}(3x^{2} + 2x).$

82.	Gg.																			
		×υ	3 4	y ²	v ⁴	= 2														
Z2. 1	1	ässt	side	10	Kal	UM	(1,1	1,	1)	na	ch	U,	V	10	se	211			
-	× y,		1 :=	- (×	, + .	yv	U ² -	2	1										
F (X a Y i	υ, ν)	1	×u	34	Y .		2	/										
F (,	1,1,1,	1)	= (0																
de	₹ (aF	(1)	(1.1	.1./	1)) =	det	(× 30	t . 2	442	U	Y2	4.	3)	1				
0.0		0,0)					9							- V	1		a, a	14,4)	
	/ 30	30	,																	
Ges.	3×	d																		
	9×	2v																		
												-1								
~ 3	(x,y)	(×,)	()	-	(9	(U,V)	(;	к, у	, 4	(x,	y))		∂F ∂(×	(Y)	(×,	Y, (46	5)	
																		3		
	3																			
																				ļ

83. Ga. $f(x,y) = \begin{pmatrix} x^4 + y^4 \\ x \\ \sin x + \cos y \end{pmatrix} = \begin{pmatrix} x^3 + y^4/x \\ \sin x + \cos y \end{pmatrix}$ Zz, + Diffeomorphismus lokal um (17/2, 17/2). d.h. 30 3 (11/2, 11/2) offene Umgebung flo bijektiv Ww. Umkehrsatz. F : R 2 D Y, D offen, dF(x0) regular => 3 V 3 xo, W 3 F(xo) offene Umagebungen: Fly: V > W diffeomorph $df(\pi/2, \pi/2) = \begin{pmatrix} 3x^2 - y^4/x^2 & 4y^3/x \\ \cos x & -\sin y \end{pmatrix} = \pi/2$ $= \begin{pmatrix} \pi^2/2 & \pi^2 \\ 0 & -1 \end{pmatrix} \mapsto E_2$

```
84. Geg.: f(x,y) = x2y, NB : x2 + 2y2 = 6
Ges. Extremal stellen, Extremwerte mit Lagrange scher
Multiplikation
Ww. x Extremum von f(x),
a(xo) = 0, da(xo) voller Rang
\Rightarrow F(\vec{x}, \lambda) = f(\vec{x}) - \lambda G(\vec{x}), dF(\vec{x}_0, \lambda) = 0.
F(x, y, \lambda) = x^2y - \lambda(x^2 + 2y^2 - 6),
O = \frac{\partial F}{\partial x} (x, y, \lambda) = 2x (y - \lambda)
                                                                        (1)
 0 = 2F (x, y, 1) = x2 - 14y
                                                                        (2)
0 = \frac{\partial F}{\partial x}(x, y, \lambda) = -x^2 - 2y^2 + 6
                                                                        (3)
 → Fall 1: x = 0
    Fall 2: y= x
 F1 \stackrel{(2)}{\Rightarrow} F11 : \lambda = 0
            F 1.2 : y = 0
F1.1: = y = ± √3

F1.2: = y = ± √3
FZ : \stackrel{(z)}{\Rightarrow} FZ.1 : 2y = x
             F Z. 2 : 2 y = - x
F2.1, F2.2 3 y = ±1
 > Kandidaten = {(0, ± \( \) 3), (±2, ±1)}
```

Wenn G(x,y) = x2 + 2y2 - 6, da(x,y)=(2x,4y)=0 = (x,y)=0, aber (6(0,0) # 0. Ww. Durch einsetzen, sieht man, dass (±2,1) Maxima, (2,±1) Minima, weil. $\{(x,y): G(x,y)=0\}$ Kompakt ist.

```
85. Geg: f(x,y,z) = x2 + y2 + z2, NB: x4 + y4 + z4 = 1
Ges siehe 84
 F(x,y,z, x) := x2+y2+z2-x(x4+y4+z4-1)
 0 = \frac{\partial F}{\partial x} (x, y, z, \lambda) = Z_{x} (1 - Z_{x} x^{2})
                                                                                  (11)
 0 = \frac{\partial F}{\partial y} (x, y, z, \lambda) = 2y (1 - 2\lambda y^2)
                                                                                  (2)
 0 = \frac{\partial F}{\partial z} (x_1 y_1 z_1 \lambda) = 2z (1 - 2\lambda z^2)
                                                                                 (3)
 0 = \frac{\partial F}{\partial \lambda} (x, y, z, \lambda) = x^4 + y^4 + z^4 - 1
                                                                                 (4)
 =>. F1 x = 0
     F2: x = \1/2x 4 \ \ \ = 1/2x^2
 F1: \stackrel{(2)}{\Rightarrow} F1.1: y=0
        F1.2: y= 1/2x ( ) 1/2y2
 F1.1 = F1.1.1: 2=0
             F1.1.1 = 3
 F1.1.2 \Rightarrow \lambda = 1/2 \Rightarrow z = \pm 1
F1.2 \Rightarrow 2z (y^2 - z^2) \Rightarrow F1.7.1: z = 0
                                      F1.2.2: y= -z
                                      F1.2.3: y = 2
F1.2.1 \Rightarrow \lambda = 1/2 \Rightarrow \gamma = \pm 1

F1.2.2 \Rightarrow \lambda = 1/\sqrt{2} \Rightarrow \gamma = \pm 1/\sqrt{2}, z = \mp 1/\sqrt{2}

= \pm 1/\sqrt{2}
F1.2.3 \Rightarrow \lambda = 1/\sqrt{2} \Rightarrow y = 2 = \pm 1/\sqrt{2}
```

```
F2 = F z. 1 : y = 0
           F 2. 2 ' x = -y
           F 2.3 x = y
F2.1 = F2.1.1: z = 0
         F2. 1.2 ×=-2
           F2.1.3 x = Z
F 2.1.1 \Rightarrow \lambda = 1/2 \Rightarrow \times = \pm 1
FZ.1.2 \Rightarrow \chi = \frac{1}{\sqrt{2}} \Rightarrow \chi = \pm \frac{1}{\sqrt{4}} \Rightarrow \chi = \pm \frac{1}{\sqrt{4}}
F2. 1.3 = 1/52 = x = z = = 1/4/2
F2.2 = F2.2.1 : 2 = 0
            F2.2.2 \times -2, y = z
             F2.2.3 × = 2 y = -2
F = 2.2.1 \Rightarrow \lambda = 1/\sqrt{2} \Rightarrow x = \pm 1/\sqrt{2}, y = \pm 1/\sqrt{2}
F2.2.2 = \ \lambda = \sqrt{3/4} = \ \times = \ \frac{1}{4\sqrt{3}}, \ \ \times = \ \ \frac{1}{4\sqrt{3}}
           (4)
F2.2.3 = 1 = 1/4/3, y= 71/4/3
F 2.3 = F 2.3.1 = = 0
           F 2.3. 2 | x = y = -z
              F 2.3.3 | x = y = 2
FZ.3.1 = 1/1/2 = x = y = 4 = 1/4/2
F232 = 1 = 1/4/3, = = = 1/4/3, = = = 1/4/3
           \begin{array}{c} (4) \\ \Rightarrow \\ \lambda = \sqrt{3/4} \\ \end{array} \Rightarrow \begin{array}{c} \times = \\ \times = \\ \times = \\ \end{array} = \begin{array}{c} \pm \\ 1/4\sqrt{3} \end{array}
F2.33
=> Kandidaten = & (±1,0,0), ..., &(±1/4), ±1/4), 0)...
( ± 1/4/2, ± 1/4/2, 0) ..., (= 1/4/3, ± 1/4/3)}
```

Wenn G(x, y,z) = x 4 + y 4 + z 4 - 1, da(x, y, z) = 4(x3, y3, 23) = 0 0 (x, y, z) = 0, aber a(0,0,0) * 0 Ww. Durch Einsetzen, sieht man, dass (± 1/4/3, ± 1/4/3, ± 1/4/3) Maxima und (±1,0,0),... Minima sind, weil { (x, y, z) : a(x, y, z) = 0 } kompakt ist.

86.	40	3.	€	(×	4,7)		V	6 -	×2	- 7	, 2	,	NB		×	7	1	-	0		
aes		sie	he	8	5																	
F(x, y	, λ	. =	- \	6-	×	2 .	Y 2		-	λ ((x	4	Y	-	2)						
0	=	aF ax	(x,	у,	(۸				×.	16	- >	1 (2-	Y2	. 4		λ					(-	1)
0	0	aF ay	(×,	7.	x))	=		Y	Jo	-	x ²	. ч	2 -	4-	λ					(2	2)
0	=	∂F ∂λ	(×	, 4	, λ	>	=	>	۲ .	+ ,	/	- 2	2								(3	, ,
(A), (2 =>	> ×	=	Υ.		(3)	le l	(1	۷,۰	Y)	7	(1,	1)								

87.	Ge	g.	. ((×	14	>	a	×	2 _	Y	2		N	В.	7	/ -	×	2 =	0	, ;	κ,	1 3	> (0			
aes.		sk	ehe		86																						
F(×, 4	λ	7 :	=	× 2	-	y ²	-	>	(Y	-	ײ)													
0	= -	aF ax	-	-	2×	(1	+ λ)																(.	1)	
0		oF.	=		2 _y	+	٠ ,																		(:	2)	
0	_	9F 3入	2		Y	-	×2		e:	>	×	2	ш	Y											(:	3)	
(A) ⇒	F	1	:]	×	=	0		(3) ⇒ (2) ⇒		y '	= (D	1	1	3), 1	18						i					
	F	2		λ	2	-1		=>	1	1	-	1,	2		⇒	>	K	,	1/5	2.							
							İ																				
				,																							
		÷																									
																					,						

89. Geg. ((x, y, z) = xy + yz, NB. xy = 1, y2 + 22 = 1 Ges siehe 87 $F(x,y,z,\lambda) = xy + yz - (\lambda_1,\lambda_2) \begin{pmatrix} xy - 1 \\ y^2 + z^2 - 1 \end{pmatrix}$ $0 = \frac{\partial F}{\partial x} (x, y, z, \lambda) = y (1 - \lambda_1)$ (1) $0 = \frac{\partial F}{\partial y} (x, y, z, \lambda) = x (1 - \lambda_1) + z - 2\lambda_z y$ (2) 0 = 2 (x, y, z, x) = y - 22 z (3) $0 = \frac{\partial F}{\partial \lambda_1} (x, y, z, \lambda) = xy - 1$ (4) $O = \frac{\partial F}{\partial \lambda_2} (x, y, z, \lambda) = y^2 + z^2 - 1$ $O = \frac{1}{2}\lambda_{2}(x, y)$ F1 : y = 0 C2y $F2 : \lambda_{4} = 1$ C3y C4y C3y C4y C3y C4y C3y C4y C3y C4y C4y C5y C4y C4y C4y C5y C4y 5)

90. Ga. R = (RX, +,) Rina I & Sub(R) ideal " Vie I, x & R: ix & I, Imax ideal, maximal = AJ + R ideal Imax & J Zz. YKEN IK = E(xn)neN E IRN : XK = 0} 1, IK € 506 (R): V 2, Ix ideal: 3, Ix maximal: d.h. I (Ix i & (xn)neN 3) = R, wobei Xx + O d.h. wir Konstrueren ex durch dividieren (xn)nen durch xx und subtrahieren mit einem geeigneten (yn)nen E IK. Zz. (1) new & K nichttriviales Ideal, K. E. Imax maximal; Gelte (1) NEN E K Ideal, so ware K = R, da (1) NEN ein Einselement ist. Sei D = (EI: I nichttriviales Ideal von R3, E) unsere Halbordhung und TSD eine nichtleese Teilkette. Für S: T UYET Y, gilt offensichtlich YYET YES, also ist 5 eine obere Schranke. Yx, y & S : 3 Yx, Yz & T x & Yx, y & Yz, Weil T total geordnet ist, gette oBdA. X & Y, E Y2 3 y, X. Also x+y, xy & Yz & S. Vses, xeR JYET sxeYES. Trivialerweise, gilt 5 + Ø, und 5 + R. Sonst BY ET: (1) new EY 5 5, aber dann ware Y nichtleivial.

Also folat aus dem LVZ, dass K in einem maximalen Ideal enthalten ist. Zz: Ie:= IR (N) nicht maximales Ideal, in maximalem Ideal ungleich Ix, KeN, enthalten; I e nichtriviales Ideal : Ie nicht maximal: Betrachte I (Ie i [(xn)nen]), wobei $\times_{n} = \begin{cases} 1, & n \in 2N \\ 0, & n \in 2N-1 \end{cases}$ Laut vosher, ist Ie & I max. VKEN Ie & Ik .