Estatística Básica II - Conjuntos

Conjuntos

Conjuntos são coleções bem definidas de objetos, é usual denotá-los por letras maiúsculas. A expressão "bem definida" indica que não há dúvida em determinar se um objeto pertence ou não a um conjunto. Se o objeto s pertencer ao conjunto S, escreve-se $s \in S$, caso contrário, $s \notin S$. Na situação do objeto pertencer ao conjunto, ele é chamado de elemento.

Sejam os conjunto S e A. Se para todo elemento $x \in A$ implicar em $x \in S$, então o conjunto A é um subconjunto de S. A relação de inclusão é expressa por $A \subset S$ e se diz "A está contido em S". De modo alternativo, escreve-se $S \supset A$ e fala-se "S contém A".

Para os conjuntos A e B, a união, $A \cup B$, é o conjunto formado por todo elemento $x \in A$ ou $x \in B$. A intersecção, $A \cap B$, é constituída por todo elemento x tal que $x \in A$ e $x \in B$. A diferença entre A e B, A - B, são todos os elementos $a \in A$ tais que $a \notin B$, isto é, os elementos de A que não pertencem a B. O complementar de A, denotado por \bar{A} é o conjunto de todo elemento $x \notin A$.

Exercício 1 - Sejam os conjuntos $S = \{a, 1, 2, 3, b, c\}$, $A = \{1, 2, 3\}$ e $B = \{a, b, 2\}$. Qual é o conjuto complementar de B? Determine

- $(1)\{$
- (2) $\{1, 2, 3\}$
- $(3) \{1, 3, c\}$
- (4) {1, 2, 3, a, b}

Exercício 2 - Seja $A = \{a, b\}$, $B = \{1, b\}$ e $C = \{2\}$. Qual é o conjunto $(B - A) \cup C$?

- $(1)\{$
- $(2) \{1, 2\}$
- $(3) \{a,b,1,2\}$
- (4) {b}

Exercício 3 - Seja $A = \{a, b\}, B = \{1, b\}$ e $C = \{2\}$. Então $C \subset A$ é?

- (1) Verdadeira
- (2) Falsa

$(3) \{3\}$	
$(4) \{2,3\}$	
$(5) \ \{3,4\}$	
Exercício 10 - Dado que A ={c, d, e} e B={d, e, f}, então, A \cup B é?	
$(1) \{c, d, e, f\}$	
$(2) \{d, e\}$	
$(3) \{c\}$	
$(4) \{f\}$	
$(5) \ \left\{ \ \right\}$	
Exercício 11 - Dado X = $\{1, 2, 3, 4, 5\}$ e Y = $\{3, 4, 5\}$, então \bar{Y} é?	
(1) { }	
$(2) \{1, 2\}$	
$(3) \{3, 4, 5\}$	
$(4) \ \{1, 2, 3, 4, 5\}$	
$(5) \{4, 5, 5\}$	
Exercício 12 - Considere as sentenças:	
I - O conjunto vazio está contido em qualquer conjunto.	
II - O conjunto vazio pertence a qualquer conjunto.	
III - Qualquer conjunto está contido nele mesmo.	
É correto afirmar:	
$(\ 1\)$ As sentenças I e III são falsas.	
(2) As sentenças II e III são verdadeiras.	
(3) As sentenças I e II são verdadeiras.	

 $(\ 4\)\ \ {\rm As\ sentenças\ I\ e\ III\ s\~ao\ verdadeiras}.$