SURVEY ESTIMATION WITH ELASTIC NET REGRESSION

Dr. Kelly McConville

Collaborators:

- Swarthmore: Becky Tang, George Zhu
- FIA: Gretchen Moisen, Tracey Frescino
- Colorado State: Jay Breidt
- UC, Davis: Thomas Lee

COMBINING DATA SOURCES TO IMPROVE ESTIMATOR EFFICIENCY

Enumerate the finite population.

$$\{1, 2, ..., N\} = U$$

N-7 N-6 N-5

N-8

N-4 N-3 N-2

Ν

Goal: Estimate the total of a study variable.

$$t_y = \sum_{i \in U} y_i$$

Assume auxiliary data are known for every unit in the population.

A complex sampling design is constructed.

$$\pi_i = P(i \in s)$$

The sample is drawn. The study variable and auxiliary data are observed on the sample.

The standard estimator uses only the sampled (i.e., blue) data.

Can use the auxiliary data to predict the study variable.

 $\hat{m}(x_i)$ = predicted value for y_i

Construct the estimator.

$$\hat{t}_y = \sum_{i \in U} \hat{m}(x_i)$$

Adjust the estimator for model mis-specification.

MODEL-ASSISTED ESTIMATOR

• Generalized regression estimator for t_v :

$$\hat{t}_y = \sum_{i \in U} \hat{m}(x_i) + \sum_{i \in s} \frac{y_i - \hat{m}(x_i)}{\pi_i}$$

- For many assisting models, the estimator has nice properties:
 - Asymptotically unbiased: $\lim_{N\to\infty} \mathbb{E}\left[\frac{\hat{t}_y t_y}{N}\right] = 0$
 - Small variance
- But, the size of the variance depends on how well the assisting model captures the relationship between the study variable and the auxiliary data.

WHICH ASSISTING MODEL SHOULD ONE USE?

- Answer depends on...
 - What auxiliary data are available.
 - Appropriately modeling the relationship between the study variable and auxiliary data.
- Consider this question through the lens of a specific example:
 - Forest inventory

U.S. FOREST INVENTORY AND ANALYSIS (FIA)

- Tasked with monitoring status and trends in forested ecosystems across the U.S.
- It provides estimates of numerous forest attributes at a variety of subpopulations, such as county, state, and regional levels.
- Estimates are expected to be both unbiased and efficient, be computationally feasible for nationwide processing, and be easily explained to a broad user base.

DAGGETT COUNTY, UT

- County is the smallest estimation unit for FIA.
 - Many forest attributes are estimated.
 - EX: average trees per acre
- Discretize the region into equally sized units.

Goal: Estimate the mean number of trees per acre.

$$\mu_y = N^{-1} t_y = \frac{1}{N} \sum_{i \in U} y_i$$

FIA's sampling design: systematic sample

Number of field plots (n) = 80

Number of pixels (N) = 2,073,897

Need to determine a good assisting model to construct estimator.

What auxiliary data are available?

$$N^{-1}\hat{t}_y = \frac{1}{N} \left(\sum_{i \in U} \hat{m}(x_i) + \sum_{i \in s} \frac{y_i - \hat{m}(x_i)}{\pi_i} \right)$$

FIA currently uses only one auxiliary variable.

Forest or Non-Forest

But, FIA has access to many auxiliary variables.

Forest or Non-Forest

Normalized Burn Ratio

Normalized Difference Vegetation Index

But, FIA has access to many auxiliary variables.

Slope

- FIA has access to many auxiliary variables.
 - Some variables may be extraneous.
- FIA has to estimate hundreds of forest attributes.
 - Want a simple model that can be applied to all attributes.
- Use linear regression with model selection!

ESTIMATING FOREST ATTRIBUTES VIA THE ELASTIC NET

• Model:

$$y_{i} = m(\mathbf{x}_{i}) + \epsilon_{i}$$

$$y_{i} = \beta_{o} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip} + \epsilon_{i}$$

$$y_{i} = \beta_{o} + \sum_{j=1}^{p} \beta_{j}x_{ji} + \epsilon_{i}$$

Estimation criterion:

$$\hat{\boldsymbol{\beta}}_{s} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i \in s} \pi_{i}^{-1} \left(y_{i} - \beta_{o} - \sum_{j=1}^{p} \beta_{j} x_{ji} \right)^{2} + \lambda \left[\alpha \sum_{j=1}^{p} \left| \beta_{j} \right| + (1 - \alpha) \sum_{j=1}^{p} \beta_{j}^{2} \right] \right\}$$

- Introduced in a non-survey context by Zou and Hastie (2005).
- McConville et. al. (2017) extended lasso to survey case.

ESTIMATING FOREST ATTRIBUTES VIA THE ELASTIC NET

Estimation criterion:

$$\hat{\boldsymbol{\beta}}_{s} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i \in s} \pi_{i}^{-1} \left(y_{i} - \beta_{o} - \sum_{j=1}^{p} \beta_{j} x_{ji} \right)^{2} + \lambda \left[\alpha \sum_{j=1}^{p} \left| \beta_{j} \right| + (1 - \alpha) \sum_{j=1}^{p} \beta_{j}^{2} \right] \right\}$$

- Mixing parameter: α
- Penalty parameter: λ
 - Non-negative value
 - As penalty parameter increases, estimates shrink toward zero.
 - Selected through cross validation.

Forested

Non-Forested

ESTIMATING FOREST ATTRIBUTES VIA THE ELASTIC NET

	Canopy Cover		Basal Area		Trees per Acre	
	Estimator	SE	Estimator	SE	Estimator	SE
HT	22.43	2.38	63.78	7.66	327.76	58.44
PS	22.89	2.01	64.58	7.19	336.35	55.82
REG	23.46	1.80	64.77	9.75	310.99	43.99
LASSO	23.42	1.62	64.54	8.20	316.55	43.90
ENET	23.63	1.62	66.62	7.81	339.17	45.73
RIDGE	23.51	1.58	65.30	8.18	318.96	42.93

- Allows us to combine multiple sources of information to estimation population quantities.
 - Utilizing a good model for the relationship between the study variable and auxiliary data can decrease the variance of the estimator.
 - Machine learning models allow for a flexible fit!

CURRENT RELATED WORK

- Estimating annual land use and land cover change.
 - Using photo interpreted data, ground data, and remote sensing data.
 - Trying a variety of model-assisted estimators.

REFERENCES

- Breidt, F. J., G. Claeskens, and J. D. Opsomer. Model-assisted estimation for complex surveys using penalised splines. Biometrika, 92:831–846, 2005.
- Breidt, F. J. and J. D. Opsomer. Model-assisted survey estimation with modern prediction techniques. Statistical Science, To Appear, 2017.
- Breidt, F. J. and J. D. Opsomer. Local polynomial regression estimators in survey sampling. Annals of Statistics, 28:1026–1053, 2000.
- Goga, C. Variance reduction in surveys with auxiliary information: a nonparametric approach involving regression splines. The Canadian Journal of Statistics/La revue canadienne de statistique, 33(2), 163-180, 2005.
- Horvitz, D. G., & Thompson, D. J. A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47(260), 663-685, 1952.
- McConville, K. S., Breidt, F. J., Lee, T., & Moisen, G. G. Model-assisted survey regression estimation with the lasso. Journal of Survey Statistics and Methodology, 5(2), 131-158, 2017.
- McConville, K. S. and F. J. Breidt. Survey design asymptotics for the model-assisted penalised spline regression estimator. Journal of Nonparametric Statistics, 25:745–763, 2013.
- Montanari, G. E. and M. G. Ranalli. Nonparametric model calibration estimation in survey sampling. Journal of the American Statistical Association, 100(472):1429–1442, 2005.
- Sarndal, C. E., B. Swensson, and J. Wretman. Model-Assisted Survey Sampling. Springer-Verlag, New York, 1992.
- Zou and Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

QUESTIONS?

QUESTIONS?

