Lecture notes for SSY150: Multimedia and video communications

Compression of Speech and Audio Signals

(for lectures 2 and 3)

Irene Y.H. Gu, Dept. of Signals and Systems, Chalmers Univ. of Technology, Sweden March 19 and 24, 2009

Contents

- 1. Mechanism for speech production
- 2. Basic methods for speech modeling and encoding
- 3. Basic techniques: fundamentals of audio compression/coding
- 4. The masking effect of HAS (human auditory system) and perceptually relevant speech/audio compression
- 5. Some audio coding standards (brief)
- 6. About the Lab.1
- 7. References

1. Speech/Audio production

Human Speech Organ:

Speech: results from the combination of the lung, glottis (vocal cords), and mouth-nose cavity

Movement in vocal cord (*K.Fellbaum*, Brandenburg Tech. Univ. Cottbus, Germany)

Fig. Mouth and nose cavity acting as an articulating tract

(From: http://www.kt.tu-cottbus.de/speech-analysis)

2. Basic methods for speech modeling and encoding

Typical Source Coding Methods

- LPC analysis
- Sub-band coding
- Multi-pulse analysis by synthesis
- Transform coding
- Vector quantization

• • • •

3. Fundamentals of Audio Compression

(a) Compression is achieved through using models

e.g.1. Speech is generated by a LPC model

$$s(n) = \frac{G}{1 + \sum_{i=1}^{p} a_i z^{-i}} w(n)$$

For each short time (r.g. 10-20ms) of speech, only a few parameters are required for synthesizing the speech:

- p LPC-coefficients,
- Gain G,
- period excitations with a pitch interval T, or, white noise sequence

Code-excited LP (CELP): replaces the excitation in the model by a codebook

e.g. 2. music signals described by a damped sinusoidal model in noise

$$s(n) = \sum_{i=1}^{K} a_i e^{-\beta_i n} \cos(\omega_i n + \phi_i) + v(n)$$

For each 10-20ms of audio signal, only a few parameters are required for re-synthesizing the signal:

- damping factors
- amplitudes a_i $i = 1, \dots K$ frequency ω_i
- Initial phase

These parameters can be estimated by the ESPRIT / MUSIC algorithm.

3.Fundamentals of audio compression (cont'd)

b) compression from non-parametric methods

- Decompose audio signal using subband filters/transformation (with different bandwidths)
- Bit allocation
 (set different number of quantization levels for different bands)
- Variable length coding (Set the length according the probability of quantizer outputs)

Lossless encoding of source symbols

- e.g. Huffman coding; arithmetic coding;
 Ziv-Lempel (LZW) coding ...
- Huffman coding: is an entropy-based lossless coding method. Takes advantage of nonuniform distributions of symbols, where different code lengths are given according to the probabilities of symbols.

4. The masking effect of the human auditory system (HAS) and perceptually relevant speech/audio compression

Within a "critical band", a stronger tone masks the remaining weaker sounds (making them inaudible)

Critical Band, Bark scale and frequency

Critical band:

A range of frequencies where the masking SNR remains a constant.

Bark scale:

A standardized scale of frequency, where each "Bark" constitutes one critical bandwidth.

Is approximately equal-bandwidth up to 700Hz, and 1/3 octave above 700Hz.

Critical band, Bark scale and frequency (cont'd)

- A frequency scale over which the masking phenomenon and the shape of cochlear filters are approximately invariant.
- **Bark frequency:** can be converted from the usual frequency *f* (in Hz)

$$B_f = 13 \tan^{-1} \left(\frac{0.76 f}{1000} \right) + 3.5 \tan^{-1} \left(\left(\frac{f}{7500} \right)^2 \right)$$

5. Audio Coding Standards: Brief

Progress in AAC (Advanced Audio Coding) standards

(From: http://www.iis.fraunhofer.de/bf/amm/)

HE-AAC v2 (aacPlus v2): is also part of the 3GPP standard for the delivery of audio content to 3G devices

Varieties in AAC codecs

Advanced Audio Coding's multiple codecs:

- Low Complexity AAC (LC-AAC)
- High-Efficiency AAC (HE-AAC)
- Scalable Sample Rate AAC (AAC-SSR)
- Bit Sliced Arithmetic Coding (BSAC)
- Long Term Predictor (LTP)
- Low Delay AAC (LD-AAC)

MPEG-2 (part 7) and MPEG-4 (part 3):

use Advanced Audio Coding (AAC) schemes
AAC is a standardized, lossy compression and
encoding scheme for digital audio.

AAC has a better quality than MP3 at the same bite-rate, particularly under 192 kb/s.

MPEG layer 3 (or, MP3):

is the most popular audio coding standard for digital music in the computer and the Internet. MP3 is a part of the MPEG-1 and the MPEG-2 standards.

MPEG/ISO audio standards				
Standards	Audio sampling rate (kHz)	Compressed bit-rate (kbits/sec)	Channels	Standard Approved
MPEG-1 Layer I	32, 44.1, 48	32 – 448	1-2 channels	1992
MPEG-1 Layer II	32, 44.1, 48	32 - 384	1-2 channels	1992
MPEG-1 Layer III	32, 44.1, 48	32 – 320	1-2 channels	1993
MPEG-2 Layer I	32, 44.1, 48	32 – 448 for two BC channels	1-5.1 channels	1994
	16, 22.05, 24	32 – 256 for two BC channels		
MPEG-2 Layer II	32, 44.1, 48	32 – 384 for two BC channels	1-5.1 channels	1994
	16, 22.05, 24	8 – 160 for two BC channels		
MPEG-2 Layer III	32, 44.1, 48	32 – 384 for two BC channels	1-5.1 channels	1994
	16, 22.05, 24	8 – 160 for two BC channels		
MPEG-2 AAC	8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48, 64, 88.2, 96	Indicated by a 23-bit unsigned integer	1-48 channels	1997
MPEG-4 T/F coding		Indicated by a 23-bit unsigned integer	1-48 channels	1999

Parametric/non-parametric methods in audio coding standards

Non-parametric audio coding (subband filters): in MPEG-1, MPEG-2 standards

Parametric audio coding: (CELP-based) in MPEG-4 standards

MDCT and Hybrid filterbank

• Modified Discrete Cosine Transform (MDCT)

$$X_{k} = \sum_{n=0}^{2N-1} x_{n} \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} + \frac{N}{2} \right) \left(k + \frac{1}{2} \right) \right]$$

Hybrid filterbank (or, subband MDCT)

4 PQF (polyphase QF) subbands followed by a MDCT

- fs: [8KHz, 96kHz]:
- narrow/wideband: 10-40ms frame/10-20ms frame → high/low frequency resolution
- Channels: MPEG-4 up to 48 channels;

MPEG-1: up to 2 channels; MPEG-2: up to 5.1 channels

Main features in MPEG-4 audio coding

- Two basic algorithms
 - HVXC (Harmonic Vector eXcitation Coding)
 - CELP (Code Excited Linear Prediction)
- · Multi bit-rates
 - $-1.5 \sim 24 \text{ kbps}$
- · Narrow-band and wide-band CELP
- Lowest bit-rate as an international standard coding HVXC
 - 2.0 kbps (fixed) ave 1.5 kbps (var)
- New Functionalities
 - Speed / Pitch change HVXC
 - Bit-rate scalability HVXC, CELP
 - Bandwidth scalability CELP

MPEG-4 (bitrate) scalable AAC coding

(From: http://www.iis.fraunhofer.de/bf/amm/)

FSS: frequency selective switch

5. About Lab. exercise-1

Tasks:

- 1. Record a (stationary) single vowel, and make Matlab programs for LPC analysis and synthesis of stationary (single-tone) speech;
- 2. Record a (nonstationary) speech sentence, and make Matlab programs for block-based LPC analysis and synthesis of nonstationary speech (using the residual sequence as the excitations);
- 3. Repeat the task 2, however, the excitations to the filter are replaced by using 15 prominent residuals in each block;
- 4. For the recorded speech sentence, determine whether a speech frame (block) is voiced or unvoiced. For those voiced frames, estimate the pitch periods either from the cepstrum, or the ACF method.

References

- [1] Lawrence R. Rabiner, Ronald W. Schafer, Digital Processing of speech signals, Prentice-Hall, Inc., 1978.
- [2] John R., Jr. Deller, John H.L. Hansen, John G. Proakis, Discrete-time processing of speech signals, IEEE Press Classic Reissue, 1999.
- [3] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-Time Signal Processing, 2nd edition, Prentice Hall, Inc. 1999.
- [4] Wikipedia, the free encyclopedia on CELP: http://en.wikipedia.org/wiki/Code Excited Linear Prediction

Some useful websites:

 $Software: http://www.utdallas.edu/\sim loizou/speech/colea.htm \\ (software)$

http://www.iis.fraunhofer.de/bf/amm/

http://neural.cs.nthu.edu.tw/jang