



## **Model Optimization and Tuning Phase Template**

| Date          | July 2024                                             |
|---------------|-------------------------------------------------------|
| Team ID       | 739859                                                |
| Project Title | Auto insurance fraud detection using michine learning |
| Maximum Marks | 10 Marks                                              |

### **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

### **Hyperparameter Tuning Documentation (8 Marks):**

| Model | Tuned Hyperparameters |
|-------|-----------------------|
|       |                       |





#importing the library for grid search from sklearn.model\_selection import GridSearchCV

The 'lr\_param\_grid' specifies different values for regularization strength (C), solvers (solver), and penalty types (penalty). GridSearchCV (lr\_cv) is employed with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy"). The process uses all available CPU cores (n\_jobs=-1) for parallel processing and provides verbose output (verbose=True) to track progress.

# Logistic Regression





The parameter grid (rfc\_param\_grid) for hyperparameter tuning. It specifies different values for the number of trees (n\_estimators), splitting criterion (criterion), maximum depth of trees (max\_depth), and maximum number of features considered for splitting (max\_features). GridSearchCV (rfc\_cv) is employed with 3-fold cross-validation (cv=3), evaluating model performance based on accuracy (scoring="accuracy").

#### Random Forest

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model = model.fit(X_Train, Y_Train)
pred = model.predict(X_Test)

print('Accuracy:', accuracy_score(Y_Test, pred))
print('Nr classification report:\n', classification_report(Y_Test, pred))
print('Nr confusion matrix:\n', confusion_matrix(Y_Test, pred))

Accuracy: 0.71

classification report:
    precision recall f1-score support

    0 0.29 0.15 0.19 48
    1 0.77 0.89 0.82 152

accuracy 0.71 200
macro avg 0.53 0.52 0.51 200
weighted avg 0.65 0.71 0.67 200

confusion matrix:

oppostal2 Okarhin [pr-7 41]
2004/07/22 18.19 [17 135]]
```

The (params) define a grid for hyperparameter tuning of the XGBoost Classifier (XGBClassifier), including min\_child\_weight, gamma, colsample\_bytree, and max\_depth. The XGBClassifier is configured with a learning rate of 0.5, 100 estimators, using a binary logistic regression objective, and utilizing 3 threads for processing. GridSearchCV (xg\_cv) is used with 5-fold cross-validation (cv=5), refitting the best model (refit=True), evaluating based on accuracy (scoring="accuracy")

#### **XGBoost**





The parameters (params) define a grid for hyperparameter tuning of the Decision Tree Classifier (DecisionTreeClassifier), including max\_depth, min\_samples\_leaf, and criterion ('gini' or 'entropy'). GridSearchCV (dec\_cv) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy")

#### **Decision Tree**

```
### Steep St
```

The parameters (params) define a grid for hyperparameter tuning of the Decision Tree Classifier (DecisionTreeClassifier), including max\_depth, min\_samples\_leaf, and criterion ('gini' or 'entropy'). GridSearchCV (dec\_cv) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy")

#### Ridge Classifier

#### RIDGE-CLASSIFIER-HYPER PARAMETER TUNNING

```
#finding the grid search cv for ridge classifier
rg=RidgeClassifier(random_state=42)
params={
          'alpha':(np.logspace(-8,8,100))
}
rg_cv=GridSearchCV(rg,param_grid=params,cv=5)
rg_cv.fit(x_train,y_train)
```

GridSearchCV

• estimator: RidgeClassifier

• RidgeClassifier





The parameters (params) define a grid for hyperparameter tuning of the K-Nearest Neighbors Classifier (KNeighbors Classifier), including n\_neighbors, weights ('uniform' or 'distance'), and metric ('minkowski', 'euclidean', or 'manhattan'). GridSearchCV (knn\_cv) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy") T. [ 7 120]] from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model = model.fit(X\_Train, Y\_Train)
pred = model.predict(X\_Test) print('Accuracy:', accuracy\_score(Y\_Test, pred))
print('\n classification report:\n', classification\_report(Y\_Test, pred))
print('\n confusion matrix:\n', confusion\_matrix(Y\_Test, pred)) K- Nearest ₹ Accuracy: 0.71 Neighbors classification report: precision recall f1-score support accuracy 0.53 0.52 0.51 200
weighted avg 0.65 0.71 0.67 200 confusion matrix: [[ 7 41] [ 17 135]] GridSearchCV ▶ estimator: KNeighborsClassifier ▶ KNeighborsClassifier

### **Final Model Selection Justification (2 Marks):**





| Final Model   | Reasoning                                                                                                                                                       |                          |       |                       |       |                 |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-----------------------|-------|-----------------|--|--|--|
|               | Random Forest model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy. |                          |       |                       |       |                 |  |  |  |
|               | 0                                                                                                                                                               |                          |       | <b>f1_score</b> 64.68 | 59.16 | Precision 71.05 |  |  |  |
|               | 0                                                                                                                                                               | Logistic Regression      | 67.90 |                       |       | 71.35           |  |  |  |
|               | 1                                                                                                                                                               | Decision Tree Classifier | 73.88 | 66.60                 | 52.41 | 91.32           |  |  |  |
| Random Forest | 2                                                                                                                                                               | Random Forest            | 74.68 | 66.70                 | 51.03 | 96.24           |  |  |  |
|               | 3                                                                                                                                                               | K-Nearest Nieghbors      | 74.56 | 71.57                 | 64.44 | 80.48           |  |  |  |
|               | 4                                                                                                                                                               | Xgboost                  | 74.18 | 68.61                 | 56.78 | 86.67           |  |  |  |
|               | 5                                                                                                                                                               | Ridge Classifier         | 68.39 | 63.91                 | 56.32 | 73.87           |  |  |  |
|               | Above all the models Random Forest model have the highest accuracy among all the models.                                                                        |                          |       |                       |       |                 |  |  |  |