Fontes principais

- E. Cáceres, H. Mongeli, S. Song: Algoritmos paralelos usando CGM/PVM/MPI: uma introdução http://www.ime.usp.br/~song/papers/jai01.pdf
- 2. E. Cáceres, C. Nishibe: 0-1 Knapsack problem: BSP/CGM Algorithm and implementation. Proc of the 17th LASTED International Conference on Parallel and Distributed Computing and System (PDCS 2005), pp. 331-335, 2005

Programação dinâmica

O problema da mochila 0-1 consiste de um conjunto $S = \{1, 2, \dots, n\}$ de n itens distintos, cujo i-ésimo item possui um valor v_i e um peso w_i onde v_i e w_i são inteiros.

Seja W um inteiro que representa a capacidade máxima da mochila que será utilizada para transportar itens.

O objetivo consiste em determinar quais itens devem ser escolhidos a fim de encher a mochila com valores mais valioso e que não exceda a capacidade máxima da mochila.

Ou seja:

$$\max\{\sum_{i=1}^{n} v_i z_i : \sum_{i=1}^{n} w_i z_i \le W, z_i \in \{0, 1\}\}\}$$

Algoritmo de Gilmore e Gomory

Primeiro algoritmo a usar programação dinâmica para resolver o problema da mochila 0-1.

Seja f(r,c), com $1 \le r \le n$ e $0 \le c \le W$, os valores da solução ótima do problema da mochila 0-1 com um conjunto de objetos [1,r] e peso c. Consequentemente, f(n,W) é o valor da solução ótima. A relação de recorrência é:

$$f(r,c) = \max\{f(r-1,c), f(r-1,c-w_r) + v_r\}$$

 $\forall c$, com $0 \le c \le W$, onde $r = 1, 2, \dots, n$

Tempo: O(nW)

Algoritmo

```
para c=0 até W faça f(0,c)=0 para r=1 até n faça f(r,0)=0 para r=1 até n faça para c=1 até w faça se c< w_r então f(r,c):=f(r-1,c) senão f(r,c):=max\{f(r-1,c-w_r)+v_r,f(r-1,c)\}
```

Exemplo: Sejam uma mochila de capacidade 10 e 3 objetos com seus pesos e valores representados na tabela abaixo:

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0											
2											
3											
6											

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0										
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0									
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0 ~	0	0	0	0	0	0	0	0	0	0
2	0	0	3								
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0 ~	0	0	0	0	0	0	0	0	0
2	0	0	3	3							
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
			0 \			0	0	0	0	0	0
2	0	0	3	3	3						
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3	3	3	3	3	3	3	3	3
3	0										
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3	3	3	3	3	3	3	3	3
3	0	0	3								
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0 ~	0	3	3	3	3	3	3	3	3	3
3	0	0	3	→ 6							
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0 ~	3	3	3	3	3	3	3	3	3
3	0	0	3	6	→ 6						
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3 -	3	3	3	3	3	3	3	3
3	0	0	3	6	6	→ 9					
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3	3 -	3	3	3	3	3	3	3
3	0	0	3	6	6	9	→ 9				
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3	3	3	3	3	3	3	3	3
3	0	0	3	6	6	9	9	9	9	9	9
6	0										

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	3	3	3	3	3	3	3	3	3
3	0	0	3	6	6	9	9	9	9	9	9
6	0	0	3	6	6	9	9	9	12	15	15

Objeto	1	2	3
Peso	2	3	6
Valor	3	6	9

Algoritmo BSP/CGM para resolver o problema da mochila, considerando n itens, capacidade W e p processadores.

- O(p) rodadas de comunicação
- O(nW/p) de computação

Para cada conjunto $S = \{1, 2, \dots, n\}$ de itens:

- O vetor w, onde w[i] é o peso de cada item i, é distribuído para todos os processadores.
- O vetor v, onde v[i] é o valor do item i, é dividido em p partes de tamanho $\frac{n}{p}$, cada processador P_i , $1 \le i \le p$, recebe a i-ésima parte de v ($v[(i-1)\frac{n}{p}+1\cdots i\frac{n}{p}]$.

A notação P_i^k significa o trabalho do processador i na rodada k. Assim, inicialmente P_1 começa a computar na rodada 0.

Então P_1 e P_2 podem trabalhar na rodada 1; P_1 , P_2 e P_3 na rodada 2, e assim sucessivamente.

Em outras palavras:

• Após a computação da k-ésima parte da sub-matriz f_i (denotada por f_i^k), o processador P_i envia para o processador P_{i+1} os elementos da fronteira direita (coluna mais a direita) de f_i^k . Estes elementos são denotados por R_i^k

Algoritmo: Mochila 0-1 paralelo

Algoritmo: Mochila 0-1 paralelo

Entrada

- \triangleright O número p de processadores;
- \triangleright O número *i* do processador, onde $1 \le i \le p$;
- \triangleright A capacidade da mochila W;
- \triangleright Subvetores v_i e w_i de tamanho $\frac{n}{p}$.

Saída

$$> f(r,c) = max\{f(r-1,c), f(r-1,c-w_r) + v_r\}$$
 onde $1 \le c \le W$ e $(j-1)\frac{n}{p} + 1 \le r \le j\frac{n}{p}$

Algoritmo: Mochila 0-1 paralelo

```
Algoritmo
para 1 \le k \le p faça
    se i=1 então
            para (k-1)\frac{W}{p}+1\leq r\leq k\frac{W}{p}, 1\leq c\leq \frac{n}{p} faça
               compute f(r,c);
            envia(R_i^k, P_{i+1})
    se i \neq 1 então
            recebe(R_{i-1}^{k}, P_{i-1});
            para (k-1)\frac{W}{n}+1\leq r\leq k\frac{W}{p}, 1\leq c\leq \frac{n}{p} faça
               compute f(r,c);
            se i \neq p então
               envia(R_i^k, P_{i+1})
```

Problema da mochila 0-1 (versão 2)

É fácil verificar que o processador P_p só inicia seu trabalho quando o processador P_1 termina a sua computação, na rodada p-1. Portanto, temos um balanceamento de carga ruim.

Visando uma melhor distribuição de carga, tentamos fazer com que cada processador inicie o seu processamento o quanto antes.

Isso pode ser feito diminuindo o tamanho da mensagem que o processador P_i envia para o processador P_{i+1} . Em vez de considerarmos mensagens de tamanho $\frac{W}{p}$, consideramos mensagens de tamanho $\alpha \frac{W}{p}$ e testamos vários tamanhos de α .

Algoritmo: Mochila α -0-1 paralelo

```
Algoritmo
para 1 \le k \le \frac{p}{\alpha} faça
     se i=1 então
              para \alpha(k-1)\frac{W}{n}+1\leq r\leq \alpha k\frac{W}{n}, 1\leq c\leq \frac{n}{n} faça
                 compute f(r,c);
              envia(R_i^k, P_{i+1})
     se i \neq 1 então
              recebe(R_{i-1}^{k}, P_{i-1});
              para \alpha(k-1)\frac{W}{p}+1\leq r\leq \alpha k\frac{W}{p}, 1\leq c\leq \frac{n}{p} faça
                 compute f(r,c);
              se i \neq p então
                 envia(R_i^k, P_{i+1})
```

Problema da mochila α -0-1

Um escalonamento de O(p) rodadas de comunicação e $\alpha = 1/2$

Teorema 1. O algoritmo utiliza $O(\frac{Wn}{p})$ computação local com $(1+\frac{1}{\alpha})p-2$ rodadas de comunicação.

Prova. O processador P_1 envia R_1^k para o processador P_2 após computar o k-ésimo bloco $\frac{\alpha W}{p}$ de linhas da $\frac{Wn}{p}$ submatriz f_1 . Após $\frac{p}{\alpha}-1$ rodadas de comunicação, o processador P_1 termina o seu trabalho.

Similarmente, o processador P_2 encerra o seu trabalho após $\frac{p}{\alpha}$ rodadas de comunicação. Assim, depois de $\frac{p}{\alpha} - 2 + i$ rodadas de comunicação, o processador P_i finaliza seu o trabalho.

Visto que temos p processadores, após $(1+\frac{1}{\alpha})p-2$ rodadas de comunicação, todos os p processadores terão acabado seu trabalho.

Cada processador utiliza um algoritmo de programação dinâmica sequencial para computar a solução ótima da submatriz f_i para o problema da Mochila 0-1. Consequentemente este algoritmo utiliza tempo $O(\frac{Wn}{p})$ de computação local em cada processador p.

Teorema 2. No final do algoritmo, f(n,W) encontraremos a solução ótima para o Problema da Mochila 0-1 com n itens, valores v_i e pesos w_i , $1 \le i \le n$ e capacidade W.

Prova. O Teorema 1 prova que após $(1+\frac{1}{\alpha})p-2$ rodadas de comunicação, o processador P_p termina seu trabalho. Essencialmente, estamos computando um algoritmo de programação dinâmica sequencial para o Problema da Mochila 0-1 e enviando as fronteiras para o processador da direita, a corretude do algoritmo aparece naturalmente com a corretude do algoritmo sequencial.

Portanto, após $(1+\frac{1}{\alpha})p-2$ rodadas de comunicação, f(n,W) armazenará a solução ótima para o Problema da Mochila 0-1 com n itens, valores v_i e pesos w_i , $1 \le i \le n$, capacidade W.

Fim