Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24k^2}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{9}{\mathbb{T}_2}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}_{+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}_+{}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
·	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#^2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

$\omega_{2}^{\#1} + \alpha \beta \qquad \frac{t_{1}}{2} \qquad \beta_{2}^{\#1} \alpha \beta \chi $ $\omega_{2}^{\#1} + \alpha \beta \qquad \frac{t_{1}}{2} \qquad -\frac{ikt_{1}}{2} \qquad 0$	$\frac{1}{\sqrt{2}}kt_{1}$	$\omega_2^{+1} + ^{\alpha\beta\chi}$ 0 0 $k^2 r_1 + ^{t_1}{}_{\frac{1}{2}}$		$\omega_{0}^{\#1} f_{0}^{\#1} f_{0}^{\#2} \omega_{0}^{\#1}$	$\omega_{0}^{\#1}$ † 0 0 0 0	$f_0^{\#1} + 0 0 0 0$	$f_0^{#2} + 0 0 0 0 0$	$\omega_{0}^{\#1}$ † 0 0 $-t_1$	$\sigma_{0}^{\#1}$ † $\tau_{0}^{\#1}$ † $\sigma_{0}^{\#2}$ † $\sigma_{0}^{\#1}$ †
Source constraints/gauge generators SO(3) irreps Multiplicities	1 1	1	$+2ik \sigma_{1}^{\#1}\alpha == 0$ 3	== 0	$' == \sigma_1^{\#2}\alpha$ 3	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 $	$\int_{\Gamma_{n+1}^{+}}^{\pi} \alpha \beta - 2 \tilde{l} k O_{n+1}^{\# 1} \alpha \beta = 0 5$	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	$\sigma_{2}^{\#1}$ $\tau_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$

	$\sigma_{0^{+}}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_{0}^{\#1}$ †	0	0	0	0	
$\tau_{0}^{\#1}$ †	0	0	0	0	
$\tau_{0}^{\#2}$ †	0	0	0	0	
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$	
$\sigma_{2^{ ext{-}}}^{\#1}{}_{lphaeta\chi}$	0	C) ($\frac{2}{2k^2r_1+t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	4 k ²	$(1+2k^2)^2t_1$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	2 i √2 k	$(1+2k^2)^2t_1$	0	
	$\sigma_2^{#1} + \alpha^{\beta}$	$r^{#1} + \alpha \beta$	-2+ -	$r_2^{*1} + \alpha^{\beta \chi}$	

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$