- UTC505/USRS4D -

Couche Réseau IP, Adressage & Architecture

E. Gressier-Soudan

ADRESSAGE IP

Adresse IP v4

- Une adresse IP v4 est sur 4 octets (32 bits)
- Elle est composée de 2 parties :
 - Une partie réseau
 - Une partie index d'interface (de communication)
- Pour séparer les deux parties, on utilise un masque :
 - Une suite de 1 puis une suite de 0
 - On fait un et logique entre l'adresse IP et le masque
 - La longueur de la partie à 0 doit correspondre à la partie interface/hôte
- Exemple : 163.173.128.60 "et logique" 255.255.252.0 donne le réseau 163.173.128.0... attention, la définition du réseau n'est pas complète au sens strict de la terminologie Internet... cf transparent suivant pour la bonne spécification de l'adresse de réseau

Avec détails

Soit l'adresse IP d'interface 163.173.128.6

Ré-écriture de l'adresse quasiment en binaire donne :

163.173. "1000 0000"."0000 0110"

Soit le masque 255.255.252.0

Ré-écriture du masque en binaire :

1111 1111.1111 1111.1111 1100.0000 0000

Application du masque sur l'adresse IP (ET logique) ci-dessus donne : 163.173.1000 0000.0000 0000

Soit 163.173.128.0

Le masque peut s'écrire aussi /22 en notation compacte (22 bits consécutifs à 1 à partir de la gauche de l'adresse).

Une adresse de réseau sans masque n'a pas de sens, la bonne formulation du résultat est : 163.173.128.0/22

Adresse de diffusion d'un réseau

- L'adresse de diffusion : partie interface remplie par des 1
- En reprenant l'adresse de réseau IP précédente :

163.173.1000 0000.0000 0000/22

- On passe à 1 les 10 derniers bits 163.173.1000 0011.1111 1111
- On obtient comme adresse de broadcast : 163.173.131.255

Broadcast dirigé et broadcast limité

- Certains auteurs introduisent cette différenciation.
 - Le broadcast dirigé correspond à l'adresse de diffusion sur tout un réseau au sens CIDR, comme dans le transparent précédent : l'adresse 163.173.131.255 du réseau 163.173.128.0/22. Un datagramme avec cette adresse peut traverser plusieurs routeurs avant d'atteindre les interfaces cibles d'un réseau. Cette terminologie est dans la RFC919 (1984)
 - Le broadcast limité correspond à une diffusion qui atteint tous les voisins de l'émetteur mais ne traverse pas de routeur : 255.255.255.255 ou 0.0.0.0 sur certains anciens OS comme de vieux Unix.

Les sous-réseaux IP V4 : Hiérarchisation à trois niveaux "IP Subnetting" RFC 950 (1985)

- Possibilité offerte de structurer l'espace d'adressage interne à un réseau en deux niveaux (voire plus).
- Problème: La frontière entre adresse de sous-réseau et adresse d'interface (d'ailleurs on ne devrait pas parler d'hôte) est définie par l'administrateur du réseau selon les besoins de l'entreprise.
- Nécessité de fournir le découpage sur chaque machine/équipement d'un sous-réseau (en particulier routeurs)

Notion de masque ou de préfixe étendu ("Subnet Mask")

- Le masque se formalise, il permet le filtrage des adresses destination pour trouver l'adresse du sous-réseau d'appartenance.
- On le note autrement : comme on a une suite de 1 à partir de la gauche, on peut compter le nombre de 1
- Exemple un réseau : 135.28/16 correspond à 135.28.0.0 avec un masque 255.255.0.0
- Exemples : On souhaite une partie réseau sur 16 bits
 - puis une adresse de sous-réseau sur 8 bits et 8 bits pour la partie interface :

Valeur du masque (notation décimale pointée):

- 255.255.255.0
- (0xFFFFFF00 en héxadécimal)
- Valeur du préfixe étendu : /24
- Autre possibilité de découpage 10 bits sous-réseau + 6 bits interface :
 - 255.255.255.192 ou /26

Les adresses particulières (RFC 1340)

Adresse 0/8: l'hôte courant

- 0.0.0.0 ou 0.x.y.z
- 0.0.0.0 : l'adresse **source** d'une station qui ne connaît pas son adresse (utilisable également 0.x.y.z adresse x.y.z dans le réseau courant).
- l'adresse destination par défaut.

Adresse 127/8: rebouclage "Loopback"

- Pour permettre à deux utilisateurs sur le même site de communiquer par IP (toutes les adresses "127.x.y.z" sont affectées à cette fonction).
- Exemple 127.0.0.1 ("localhost").

Adresse destination: 255.255.255.255

- Idée au départ : diffusion à tout l'internet.
- En fait diffusion limitée au sous-réseau local (non routé hors du sousréseau).

Adresses destination: net.111...111/Ignet:

• Diffusion limitée à toutes les interfaces du réseau d'appartenance, principe qui est généralisé lorsqu'on utilise un masque de longueur variable.

Conception d'un plan d'adressage avec sousréseaux

- Combien de sous-réseaux doit-on déployer aujourd'hui ?
- 2. Combien de sous-réseaux devront être déployés dans le futur ?
- 3. Combien d'hôtes au maximum vont se trouver dans un sous-réseau actuel ?
- 4. Combien d'hôtes au maximum vont se trouver dans un sous-réseau dans le futur ?
- Un problème d'Urbanisation ou d'Assistance à la maîtrise d'ouvrage :
 - Choisir un découpage qui doit permettre au nombre souhaité de sous-réseaux d'avoir le nombre souhaité d'hôtes.
 - Ce découpage devrait permettre d'accompagner le développement futur du réseau suffisamment longtemps.

Bilan IP V4 et les sous-réseaux

Avantages

- Les tables de routage de l'Internet ne peuvent croître en taille à l'infini. Seuls les routeurs internes doivent connaître les sousréseaux.
- L'espace d'adressage privé est mieux géré. Lors de la création de nouveaux réseaux on évite de demander des adresses.
- Si un réseau modifie sa structure interne, il n'est pas nécessaire de modifier les routes dans l'Internet
 - ⇒ problème de "route-flapping".

Inconvénients

- Il faut gérer le masque en plus de l'adresse.
- On ne définit qu'une seule façon de hiérarchiser l'espace d'adresses d'une entreprise/campus/organisme/habitat/...

Masques de sous-réseaux : VLSM 'Variable Length Subnet Masks' RFC1009... sous-partie de CIDR RFC4632

 Hiérarchisation complète des adresses IPv4 : Une façon pour utiliser dans un même réseau plusieurs masques de sous réseaux différents (plusieurs préfixes étendus).

Exemple

- Le réseau classe 135.8.0.0/16 est découpé par le masque 255.255.254.0 ou le préfixe /23 (soit 2⁷ = 128 sous-réseaux de 2⁹ – 2 = 510 interfaces).
- Il se créé un nouveau sous-réseau de 15 interfaces (extension prévisible à 50).
 - Si on lui attribue une adresse de sous-réseau /23 on va perdre environ 500 adresses.
 - Il serait par contre très intéressant de lui attribuer une adresse
 /26 d'un sous-réseau de 64 2 = 62 hôtes.

Problèmes de déploiement d'un réseau VLSM (1/2)

Le protocole de routage interne doit utiliser les préfixes étendus pour les sous-réseaux

- Déterminer correctement le numéro de réseau et d'hôte quel que soit le découpage.
- => RIPv2 ('Routing Information Protocol' RFC2453) permet de déployer VI SM.

Les routeurs réalisent une recherche de "correspondance la plus longue"

- ('Longest Match based forwarding algorithm')
- En cas de plusieurs routes dans une table, la route de plus long préfixe est la plus précise
- => elle doit être sélectionnée et utilisée.

Exemple:

Soit un datagramme vers 136.1.6.5 (1000 1000.0000 0001.0000 0110.0000 0101) avec 3 préfixes dans la table

136.1.0.0/16: 1000 1000.0000 0001.

136.1.4.0/21 : 1000 1000.0000 0001.0000 0 136.1.6.0/24 : 1000 1000.0000 0001.0000 0110.

Le routeur choisit la route 136.1.6.0/24.

Agrégation en une seule route

Problèmes de déploiement d'un réseau VLSM (2/2)

- Pour l'agrégation des routes les adresses doivent être assignées 'topologiquement'.
- L'adressage doit être associée à la topologie du réseau.
- On réduit la quantité d'information de routage en prenant un bloc d'adresses VLSM assigné à une certaine région de la topologie.
- On peut alors agréger en une seule route, les routes pour l'ensemble des adresses d'une région.

Bilan IP V4 avec VLSM

Avantages

- L'utilisation de plusieurs masques permet un usage plus efficace de l'espace d'adressage attribué à une organisation : il n'est plus nécessaire de se conformer à la taille unique des sous-réseaux.
- On réduit le volume d'informations nécessaire au routage au niveau dorsal ('backbone') d'une organisation.

Inconvénients

 Nécessite l'adaptation des protocoles de routage pour échanger les masques: par exemple RIP-1 ('Routing Information Protocol' version 1) n'autorise qu'un seul masque de sous réseau par réseau.

CIDR 'Classless Inter Domain Routing'

RFC1517, 1518, 1519, 1520, 4632 (2006)

- Problème constant en IP v4:
- saturation de l'espace d'adressage et croissance de la taille des tables de routage au niveau dorsal
- L'approche VLSM étendue à tout l'espace d'adressage de l'Internet permet de faire durer l'adressage IP V4.
- En améliorant l'utilisation des adresses encore disponibles.
- En diminuant le volume des tables de routage par agrégation des routes.

Contraintes pour le déploiement de CIDR

- Les hôtes et routeurs doivent supporter l'environnement CIDR.
- Les adresses de réseaux doivent être échangées par les protocoles de routage avec leur préfixe qui peut être de taille quelconque : /11, /13 ...
- Les routeurs doivent implanter un algorithme de "correspondance la plus longue",
- Les adresses doivent être distribuées sur une base topologique pour agréger les routes

Bilan IPV4 avec CIDR

Avantages CIDR

- CIDR alloue efficacement les adresses IPv4
- CIDR permet de coller assez finement aux demandes avec peu de gaspillage.
- Les adresses peuvent être d'anciennes adresses A, B ou C récupérées (cf annexe en fin de support).

Exemple 129.6.0.0/22 ou 198.60.32.0/22 donnent 1024 - 2 adresses.

- Un prestataire Internet 'ISP est libre d'assigner ses adresses à ses clients. Le découpage est récursif et peut opérer à tous les niveaux
- CIDR permet d'agréger les routes à tous les niveaux
 - Contrôle de la taille des tables de routage.
 - Facilite l'administration des routeurs.

Inconvénients CIDR

- CIDR étant une approche topologique fortement hiérarchisée présente les inconvénients de la hiérarchisation.
- Si une organisation souhaite changer de prestataire sans changer d'adresse on doit créer une route d'exception ce qui est coûteux.

Il faut continuer les économies d'adresses IP

- Adresses locales non routables
- Traduction d'adresses NAT
- DHCP
- Liaisons dénumérotées
- Nouvelle stratégie d'allocation des adresses

L'utilisation d'adresses locales/privées

RFC 1918

Les organisations qui veulent créer un Internet privé peuvent utiliser sans demande les adresses réservées (privées) suivantes:

- 10/8 (10.0.0.0 à 10.255.255.254)
- 172.16/12 (172.16.0.0 à 172.31.255.254)
- 192.168/16 (192.168.0.0 à 192.168.255.254)

Ces adresses ne sont pas routées hors du domaine de routage.

On évite ainsi beaucoup de demandes d'adresses sans courir aucun risque.

Utilisation d'un routeur traducteur d'adresses

- RFC2663 (base), RFC3022 et bien d'autres
- Une organisation ayant créé un Internet privé (RFC 1918) mais souhaitant néanmoins avoir un accès à l'Internet mondial peut utiliser un routeur traducteur d'adresses IP (NAT, 'Network Address Translator').
- Il n'est pas nécessaire d'avoir un ensemble d'adresses globales pour une correspondance bijective :

Adresses privées <-> Adresses globales

- Quelques adresses IP suffisent (une seule ?).
- S'il y a ambiguïté le routeur NAT différencie les communications au niveau UDP/TCP en modifiant l'adresse de transport (N° de port).

Routeur de traduction NAT

- L'utilisation du NAT pose un certain de problèmes à tous les équipements de l'Internet qui utilisent l'adresse IP à l'intérieur du contenu acheminé... protocoles IPSEC, et, protocoles de Tunnel par exemple
- La complexité qu'implique NAT est regroupée sous l'expression NAT Traversal qui est l'objet d'une partie du cours à part entière.

Attribution dynamique d'adresses

- DHCP 'Dynamic Host Configuration Protocol' (RFC 2131)
- Un hôte n'a pas d'adresse IP fixe mais au moyen de DHCP reçoit sur demande une adresse prise dans un ensemble d'adresses disponibles.
 - Une même adresse peut servir à désigner des hôtes différents dans le temps.
 - Il n'est pas nécessaire d'avoir autant d'adresses que d'abonnés si tous les abonnés ne se connectent pas en même temps.
- DHCP et NAT se combinent pour "empoisonner" la vie des développeurs d'applications... mais cela devrait rester imperceptible pour eux.

Politique d'allocation des adresses IP

- Restitution d'adresses : il est demandé de rendre les adresses inutilisées.
- Renumérotation : problème important
 Définition de la stratégie en cas de renumérotation.
- **Propriété d'adresses** : une organisation reçoit et conserve indéfiniment si elle le souhaite une adresse IP. En changeant de prestataire elle peut conserver son adresse.

Conclusion Adressage IPv4

- Les problèmes de l'adressage IPv4 ont reçu des solutions partielles qui permettent à IPV4 de durer.
 - Tarissement des adresses.
 - Grossissement des tables de routage.
 - Trop grande centralisation de distribution.

En fait trop faible hiérarchisation.

- Pays sous dotés (Chine, Inde, continent asiatique ou africain) qui passent à IPv6
- Le plan d'adressage Internet IPv4 devrait néanmoins tôt ou tard arriver à saturation
 - Incertitude très grande sur la date effective de cet événement (on disait 2005 ?... On a dit janvier 2011 ! ... le basculement total n'a pas encore eu lieu).
 - L'incertitude est liée au développement des services Internet consommateurs d'adresses et à la façon de régler les problèmes d'adressage dans ces cas (téléphonie fixe, mobile, commerce, internet des objets...)
 - Emergence de l'Internet des Objets
- Ces difficultés (et d'autres) ont amené à spécifier une version nouvelle IPV6 qui se déploie aujourd'hui.

Conclusion

- La couche IP est le ciment de l'Internet, et les routeurs en sont la clef de voûte
 - C'est à cet endroit que tous les efforts d'amélioration vont porter : mise en place de la QoS, optimisation de la gestion des ressources
 - Les adresses forment un système de nommage des interfaces, elles assemblent désignation et localisation des interfaces
 - C'est une glue au-dessus de tous les types de liaisons, et à ce titre IP pourrait être considéré comme une forme de middleware si on compare l'Internet à un bus logiciel

Adresses IPv6

- Une adresse 128 bits/16 octets/32 nombres hexadecimaux découpés par tranches de 4 séparées par « : » avec un préfixe qui fonctionne sur le principe CIDR, la possibilité de faire des sousréseaux et identifiant une interface possiblement avec une EUI sur 64 bits
- La taille et la valeur des préfixes définissent des familles d'adresses

Adresses IPv4 & IPv6

Figure 1: Comparison of IPv6 and IPv4 Address Scheme

Source: GAO.

https://www.fcc.gov/consumers/guides/internet-protocol-version-6-ipv6-consumers (16/03/2021)

Structuration d'une adresse IPv6

Breakdown of IPv6

Elle peut être compactée en enlevant certains 0 suivant leur place dans l'adresse, compression ci-dessus : 2001:DB8:234:AB00:123:4567:8901:1BCD

Une suite consécutive de :0000:0000: peut être ré-écrite ::, attention, on ne peut le faire qu'une seule fois dans une adresse IPv6

Merci pour votre attention !!!

Annexe – musée des adresses IPv4

- CIDR, Classless Inter-Domain Routing, est en mis en œuvre depuis 1993 !!!
- Les classes d'adresses pour le routage, Classfull, c'est bien fini aujourd'hui...
- IPv6 devient de plus en plus visible d'ailleurs et il est conforme CIDR par nature

Musée des adresses IP : les classes d'adresses (1/2)

Adresses Uniques Universelles:

A.B.C.D

(N°Réseau, N°d'interface)

Musée des adresses IP : les classes d'adresses (2/2)

 Classe A : Peu de Réseaux, de nombreuses Stations par Réseau

> N°de Réseau : 1-126, 127 adresse de rebouclage en local

Classe B :

N°de Réseau : 128.1 - 191.254

 Classe C : Beaucoup de Réseaux, Peu de Stations par Réseau

La classe la plus répandue

- N°de Réseau: 192.0.1 - 223.255.254

N°de Station : 1 - 254

Broadcast : 255 dans le champ N° de Station

 Classe D : Adresses de Groupes de Diffusion (Multicast)

> N°de Réseau : 225.0.0.0 -239.255.255.255 (224.0.0.x réservée pour les protocoles de routage)

CIDR vs CFDR

Une route par adresse de réseau vs Agrégation de routes

Source: Juniper routing 2003 https://www.slideshare.net/NamNguyen5/junos-routing-overview-from-juniper

Conclusion adressage IP V4 par classes: les limitations

- L'espace d'adressage paraissant très suffisant au départ, les adresses ont été distribuées sans soin.
 - => Gaspillage d'adresses
- Les besoins exprimés par les entreprises moyennes sont souvent supérieurs à la classe C sans justifier la classe B.
 - => Attribution de plusieurs classes C.
 - => Gonflement des tables de routage.
- Des adresses avec classes existent toujours mais elles sont gérées comme des adresses sans classe.

L'adressage sur 32 bits (4 294 967 296 adresses) est en fait insuffisant.

Utilisation des adresses de classe C restantes de l'Internet

Les adresses de classe C constituent une réserve d'adresses.

Solution d'administration et de routage: séparer les adresses de classe C en quatre catégories administrées par chaque continent (plus une réserve).

- 194.0.0.0 195.255.255.255 Europe
- 198.0.0.0 199.255.255.255 Amérique nord
- 200.0.0.0 201.255.255.255 Amérique sud
- 202.0.0.0 203.255.255.255 Asie Pacifique
- Quid de l'afrique ?
- Les distributions sont indépendantes.

Possibilité d'agrégation de routes sur une base continentale :

Une adresse 194.x.y.z doit être envoyée sur un routeur européen.

Construction de réseaux sans classe par attribution d'adresses par blocs

Exemple : On souhaite construire un réseau IP pour 2048 adresses potentielles (2**11).

- Par classes on aurait du lui attribuer 8 adresses classe C (8 entrées dans les tables).
- Supposons comme première adresse libre : 194.16.40.0
 - ⇒ On attribue le réseau 194.16.40.0/21
 - ⇒ Première adresse 194.16.40.1

11000010 00010000 00101000 00000001

⇒ Dernière adresse 194.16.47.254

11000010 00010000 00101111 11111110

• Si un paquet est destiné à un hôte de ce bloc (de ce réseau) il faut filtrer l'adresse destinataire avec le masque 255.255.248.0 soit encore le préfixe /21 :

11111111 11111111 11111000 00000000

On sait que l'on doit router vers le réseau : 194.16.40.0/21.

