# **OpenRISC 1200 IP Core Specification**

Author: Damjan Lampret lampret@opencores.org

日本語訳 大川 崇 (Takashi Okawa) takashi.okawa@ieee.org

> **Rev. 0.7J** August 2nd, 2010

**Preliminary Draft** 

# **Revision History**

| Rev. | Date    | Author         | Description                                    |
|------|---------|----------------|------------------------------------------------|
| 0.1  | 28/3/01 | Damjan Lampret | First Draft                                    |
| 0.2  | 16/4/01 | Damjan Lampret | First time published                           |
| 0.3  | 29/4/01 | Damjan Lampret | All chapters almost finished. Some bugs hidden |
|      |         |                | waiting for an update. Awaiting feedback.      |
| 0.4  | 16/5/01 | Damjan Lampret | Synchronization with OR1K Arch Manual          |
| 0.5  | 24/5/01 | Damjan Lampret | Fixed bugs                                     |
| 0.6  | 28/5/01 | Damjan Lampret | Changed some SPR addresses.                    |
| 0.7  | 06/9/01 | Damjan Lampret | Simplified debug unit.                         |
| 0.7J | 02/8/10 | Takashi Okawa  | Japanese version of Rev. 0.7                   |

# **Table Of Contents**

| Introduction                      | 7  |
|-----------------------------------|----|
| OpenRISC Family                   | 7  |
| OpenRISC 1200                     | 8  |
| Features                          | 8  |
| Architecture                      | 9  |
| CPU/DSP                           | 10 |
| Data Cache                        | 13 |
| Instruction Cache                 |    |
| Data MMU                          | 17 |
| Instruction MMU                   | 19 |
| Programmable Interrupt Controller | 21 |
| Tick Timer                        |    |
| Power Management Support          | 22 |
| Debug unit                        | 22 |
| Clocks & Reset                    | 23 |
| WISHBONE Interfaces               | 23 |
| Operation                         | 25 |
| Reset                             | 25 |
| CPU/DSP                           | 26 |
| Data Cache Operation              | 32 |
| Instruction Cache Operation       | 35 |
| Data MMU                          | 37 |
| Instruction MMU                   | 41 |
| Programmable Interrupt Controller | 44 |
| Tick Timer                        | 45 |
| Power Management                  | 45 |
| Debug Unit                        | 46 |
| Development Interface             | 47 |
| Registers                         | 51 |
| Registers list                    | 51 |
| Register VR description           | 52 |
| Register UPR description          | 53 |
| Register CPUCFGR description.     | 54 |
| Register DMMUCFGR description     | 54 |
| Register IMMUCFGR description     | 55 |
| Register DCCFGR description       | 55 |
| Register ICCFGR description       | 56 |
| Register DCFGR description        | 57 |
| IO ports                          | 58 |
|                                   |    |

# Table Of Figures

| Figure 1. Core's Architecture                                              | 9   |
|----------------------------------------------------------------------------|-----|
| Figure 2. CPU/DSP Block Diagram                                            | 10  |
| Figure 3. Block Diagram of Debug Unit                                      | 23  |
| Figure 4. Power-Up and Reset Sequence                                      | 25  |
| Figure 5. Power-Up and Reset Sequence w/ Gated Clock                       |     |
| Figure 6. WISHBONE Write Cycle                                             | 32  |
| Figure 7. WISHBONE Block Read Cycle                                        |     |
| Figure 8. WISHBONE Block Read/Write Cycle                                  |     |
| Figure 9. WISHBONE Block Read Cycle                                        | 2.0 |
| Figure 10. 32-bit Address Translation Mechanism using Two-Level Page Table | 38  |
| Figure 11. 32-bit Address Translation Mechanism using Two-Level Page Table |     |
| Figure 12. Development Interface Cycles                                    |     |
| Figure 13. Assertion of External Watchpoint Trigger                        |     |
| Figure 14. Core's Interfaces                                               |     |

# **Table Of Tables**

| Table 1. Possible Data Cache Configurations of OR1200          | 13 |
|----------------------------------------------------------------|----|
| Table 2. Possible Instruction Cache Configurations of OR1200   |    |
| Table 3. Possible Data TLB Configurations of OR1200            |    |
| Table 4. Possible Instruction TLB Configurations of OR1200     |    |
| Table 5. Block Diagram of the Interrupt Controller             |    |
| Table 6. Power Consumption                                     | 22 |
| Table 7. List of 32-bit Implemented Instructions               | 29 |
| Table 8. Execution Time of Integer Instructions                |    |
| Table 9. List of Implemented Exceptions                        |    |
| Table 10. Protection Attributes for Load/Store Accesses        | 39 |
| Table 11. Cached and uncached regions                          | 40 |
| Table 11. Protection Attributes for Instruction Fetch Accesses | 43 |
| Table 13. Cached and uncached regions                          | 44 |
| Table 12. Development Interface Operation Commands             | 48 |
| Table 13. Status of the Load/Store Unit                        | 49 |
| Table 14. Status of the Instruction Unit                       | 49 |
| Table 15. List of All Registers                                | 52 |
| Table 16. VR Register                                          | 53 |
| Table 17. UPR Register                                         | 53 |
| Table 18. CPUCFGR Register                                     | 54 |
| Table 19. DMMUCFGR Register                                    | 55 |
| Table 20. IMMUCFGR Register                                    | 55 |
| Table 21. DCCFGR Register                                      | 56 |
| Table 22. ICCFGR Register                                      | 57 |
| Table 23. DCFGR Register                                       | 57 |
| Table 24. Instruction WISHBONE Master Interface' Signals       | 59 |
| Table 25. Data WISHBONE Master Interface' Signals              | 59 |
| Table 26. System Interface Signals                             | 60 |
| Table 27. Development Interface                                | 60 |
| Table 28. Power Management Interface                           | 61 |
| Table 29 Interrupt Interface                                   | 61 |

# Introduction

この資料は、OpenRISC 1200 の実装仕様書です。ここでは、OpenRISC アーキテクチャーのう ち、実装依存となっている全ての仕様が定義されています。これには、データ及び命令キャッ シュのタイプとサイズ、データ及び命令MMUのタイプとサイズ、実行パイプラインの詳細、 実行ユニットや割り込み制御及びその他のユニットの実装が含まれます。

また、この資料は、命令セットやメモリ・アドレッシング・モード等、OpenRISC アーキテク チャーの基本的な内容は含まれていません。これらについては、OpenRISC 1000 System Architecture Manual を参照してください。

# **OpenRISC Family**

OpenRISC 1000 は、フリーのオープン・ソース OpenRISC プロセッサーのアーキテクチャ ー・ファミリーです。 OpenRISC 1000 は、アプリケーションごとの価格と性能に関する最適 解を実現する、様々なチップ及びシステム・アーキテクチャーを可能とします。これは、32/64 ビット・ロード/ストア RISC アーキテクチャーで、性能・シンプルな構成・低消費電力への 要求・拡張性及び多機能性に重点をおいて設計されています。 OpenRISC 1000 アーキテクチ ャーのターゲットは、中~高性能ネットワーク、組込み機器、自動車、モバイルコンピュータ 市場です。



最初の数字が「1」となる「1xxx」の識別番号を持つ OpenRISC の実装は、OpenRISC 1000 フ ァミリーになります。2番目の数字は、OpenRISC 1000 アーキテクチャーの実装された機能及び その実装方法について示します。最後の2つの数字は、実際のアプリケーションに対応した実 装に関するコンフィグレーションを示します。

# OpenRISC 1200

OpenRISC 1200 (OR1200) は、ハーバード・アーキテクチャーの 32 ビット・スカラー型 RISC アーキテクチャーで、5段の整数型パイプライン、MMU、基本 DSP 処理機能を持ちます。デー タ及び命令キャッシュは、デフォルトの設定では、1-way direct-mapped 8KB 16 byte line サイ ズとなります。これらのキャッシュはハードウエアによるタグ付けの機能を持ちます。

また、デフォルトの設定では、データ及び命令 MMU が実装され、それらは 64-entry hash based 1 way direct-mapped TLB を持ちます。

その他の機能として、リアルタイム・デバックのためのデバック・ユニット、高分解能タイ マー、プログラマブル割り込みコントローラー、パワーマネージメント機能を持ちます。

0.18u 6LM プロセスに実装された OpenRISC 1200 は、300MHz で 300 Dhrystone 2.1 MIPS、 300 DSP MAC 32x32 operation 以上の性能を示しました。これは、同等のクラスのプロセッサー に対して、20%以上の高い性能を示しています。また、デフォルトのコンフィギュレーション で実装した場合の規模は、約1M トランジスター数となります。

OR1200 は、組込み機器やモバイル機器及びネットワーク機器をターゲットとしております。 これは、同クラスの 32-bit RISC プロセッサーに対して優位性を持つと共に、最近の Operating System (OS)を効率よく動作させることができます。

OR1200 の競合は、ARM10, ARC Tensilica RISC プロセッサーになります。

### **Features**

OR1200 IP core の主な特徴は次の通りです。

- プロセッサー・コアの全ての主要機能に関する実装及び実装方法について、ユーザーが 選択/設定することが可能
- 高性能プロセッサー・コア 300 Dhrystone 2.1 MIPS (300 MHz using 0.18u process)
- 高性能キャッシュ及びMMU
- WISHBONE Rev. B 準拠 (SoC バス・インターフェース)

2

# **Architecture**

Figure 1 に、OpenRISC 1200 (OR1200) IP core の概要を示します。OR1200 は、次のブロックから構成されます。

- CPU/DSP central block
- Direct-mapped data cache
- Direct-mapped instruction cache
- Data MMU based on hash based DTLB
- Instruction MMU based on hash based ITLB
- Power management unit and power management interface
- Tick timer
- Debug unit and development interface
- Interrupt controller and interrupt interface
- Instruction and Data WISHBONE host interfaces



Figure 1. Core's Architecture

### CPU/DSP

CPU/DSP は、OR1200 RISC プロセッサーの心臓部です。Figure 2 に、CPU/DSP 基本ブロ ックを示します。

OR1200 CPU/DSP は、OpenRISC 1000 アーキテクチャーの 32-bit の部分のみ実装していま す。OpenRISC 1000 アーキテクチャーのうち、64-bit 部分及び浮動小数点演算ユニット及びベ クター・ユニットは、OR1200に実装されていません。



Figure 2. CPU/DSP Block Diagram

### Instruction unit

命令ユニットは、基本命令パイプライン、メモリ・サブシステムからの命令フェッチ、実行 可能状態となった実行ユニットへの命令ディスパッチ、正確な実行モデルとIn-Orderでの実行を 保証するために状態の履歴を維持する機構 が実装されています。また、命令ユニットは、条 件ブランチ及び無条件ジャンプ命令を実行します。

命令ユニット内部のシーケンサーは、実行可能状態となっている実行ユニットに対して、各 クロック・サイクルで連続的に命令をディスパッチします。実行ユニットは、ソース・データ が利用可能かどうか識別し、また、他の命令が同じデスティネーション・レジスターに出力し ようとしていないことを保障します。

命令ユニットは、ORBIS32命令クラスのみ処理します。現在のOR1200は、ORFPX32/64 及び ORVDX64 命令クラスを、サポートしていません。

#### ORBIS32

Basic Instruction Set with 32 bits wide instructions aligned on 32-bit boundaries in memory and operating on 32 bits

#### ORFPX32/64

Floating-Point eXtension with 32 bits wide instructions aligned on 32-bit boundaries in memory and operating on 32 bits and 64 bits data

#### ORVDX64

Vector/DSP eXtension with 32 bits wide instructions aligned on 32-bit boundaries in memory and operating on 8, 16, 32 and 64 bits data

### **General-Purpose Registers**

OR1200 には、32個の 32-bit General Purpose Register (GPR) が実装されています。OpenRISC 1000 アーキテクチャーでは、高速なコンテキスト切り替えを目的とする、レジスタ・ファイル のシャドー・コピーの機能が定義されていますが、現在の OR1200 では、その機能は実装され ていません。

OR1200のGeneral Purpose Register file は、1ワードあたり32 bitsで32ワードの容量を持つ2つ の同期型2ポート・メモリで実装されています。

### Load/Store Unit

ロード・ストア ユニット(LSU)は、GPRとCPU内部バスの間のデータ転送を行います。 LSUは実行ユニットに対して独立に実装されていることから、メモリ・サブシステムのストール は、データ依存性を持つパイプライン上の処理に対してのみ影響を与えます。

LSUの主要な機能は次のとおりです。

- アトミック命令を含む全てのロード/ストア命令は、ハードウエアで実装されています
- アドレス入力バッファー
- ロード/ストア命令のパイプライン処理
- 高速アクセスのためのAligned Accesses

ロード及びストア命令が発行されると、LSUは全てのオペランドが利用可能か確認します。そ れらのオペランドは次のものが含まれます。

- アドレス・レジスタ
- ストア命令のための、ソース・データ・レジスタ
- ロード命令のための、デスティネーション・データ・レジスタ

### **Integer Execution Pipeline**

OR1200には、次の32 bit 整数型命令が実装されています。

- 算術演算命令
- 比較命令
- 論理演算命令
- ローテーション、シフト命令

多くの整数型命令は、1 サイクルで実行されます。 (実行サイクルの詳細については、テーブ ル (TBD) を参照してください)

### **MAC** Unit

MACユニットは、DSPのMACオペレーションを実行します。MACオペレーションは、48-bit の32x32アキュムレーターを利用します。MACユニットは完全にパイプライン化されており、後 段のMACオペレーションは次のクロック・サイクルに受け入れることができます。

### **System Unit**

システム・ユニットには、CPU/DSPのうち命令/データ・インターフェースに接続されてい ないその他の信号が接続されています。このユニットには、Supervisor Register 等の、全ての Special Purpose Registers (SPR)が実装されています。

### **Exceptions**

例外条件が成立すると例外処理が実行されます。OR1200の例外が発生する条件には、次のも のが含まれます。

- External interrupt request
- Certain memory access condition
- Internal errors, such as an attempt to execute unimplemented opcode
- System call
- Internal exception, such as breakpoint exceptions

例外処理は、ユーザー・ソフトウエアに対して透過的であり、全てのタイプの例外は同じ仕 組みを利用します。例外が発生した場合、例外ごとに定義されたオフセット(アドレス)の例 外ハンドラー (Exception Handler) に制御が移ります。例外処理はSupervisor Modeで実行されま す。

### **Data Cache**

OR1200 データ・キャッシュのデフォルト・コンフィギュレーションは、8-Kbyte、1-way direct-mapped です。これは高速なデータ・アクセスとなります。しかしながら、データ・キャ ッシュは、Table 1 のコンフィギュレーションも可能です。

|             | Direct mapped |
|-------------|---------------|
| 1KB per set | 1KB           |
| 2KB per set | 2KB           |
| 4KB per set | 4KB           |
| 8KB per set | 8KB (default) |

Table 1. Possible Data Cache Configurations of OR1200

#### 主な特徴:

- データ・キャッシュは、命令キャッシュと分離されています(ハーバード・アーキテク チャー)。
- データ・キャッシュは、各Setに対して、Least-Recently Used replacement (LRU) アルゴリ ズムを適用します。
- キャッシュ・ディレクトリー処理は、ハードウエアで実行されます。物理アドレス・タ グは、キャッシュ・ディレクトリーに保存されます。
- Write-Through オペレーションをサポートします。
- Special Purpose Register の設定により、キャッシュを無効化することができます。

キャッシュ・ミスが発生した場合、キャッシュは、連続する16-byteデータで補充されます。 連続した16-byteのデータは、critical-word-first オペレーションにより、キャッシュに書き込まれ ます。Critical word は、キャッシュに書き込まれると同時に、データを要求したユニットに送ら れます。この仕組みにより、キャッシュの書き込み時間を削減し、ストール時間を最小化しま す。データ・キャッシュは、また、キャッシュ・タグの保存とキャッシュ・ライン交換処理機 能を持ちます。

データ・キャッシュは、システム・メモリ・コントローラへの効率的なアクセスを可能とす るための外部インターフェースを持ちます。

データ・キャッシュは、ロード・ストア・ユニット (LSU) の32-bit インターフェースによ り、データをGPRに供給します。LSUは、論理アドレスを算出する機能を持ち、データ・キャッ シュに対して Data Alignment 処理を行い、LSUに入力された順序でロード・ストア処理を実行 します。データ・キャッシュへの書き込み処理は、byte, half-word, word 単位で行われます。

データ・キャッシュは、16 bytes データ、state bit、address tagで構成される 1 line を、512 sets 持つ構造となっています。



各ラインは、連続する4つのwordを含みます。これらは、メモリ上の 4 word の aligned boundary からロードされたデータです。結果的に、キャッシュ・ラインはページ境界に整列さ れます。

### **Instruction Cache**

OR1200 命令キャッシュのデフォルト・コンフィギュレーションは、8-Kbyte、1-way directmapped です。これは高速なデータ・アクセスとなります。しかしながら、データ・キャッシュ は、Table 2 のコンフィギュレーションも可能です。

|             | Direct mapped |
|-------------|---------------|
| 1KB per set | 1KB           |
| 2KB per set | 2KB           |
| 4KB per set | 4KB           |
| 8KB per set | 8KB (default) |

Table 2. Possible Instruction Cache Configurations of OR1200

#### 主な特徴:

- 命令キャッシュは、データ・キャッシュと分離されています(ハーバード・アーキテク チャー)。
- 命令キャッシュは、各Setに対して、Least-Recently Used replacement (LRU) アルゴリズム を適用します。
- キャッシュ・ディレクトリー処理は、ハードウエアで実行されます。物理アドレス・タ グは、キャッシュ・ディレクトリーに保存されます。
- Special Purpose Register の設定により、キャッシュを無効化することができます。

キャッシュ・ミスが発生した場合、キャッシュは、連続する16-byteデータで補充されます。 連続した16-byteのデータは、critical-word-first オペレーションにより、キャッシュに書き込まれ ます。Critical word は、キャッシュに書き込まれると同時に、データを要求したユニットに送ら れます。この仕組みにより、キャッシュの書き込み時間を削減し、ストール時間を最小化しま す。データ・キャッシュは、また、キャッシュ・タグの保存とキャッシュ・ライン交換処理機 能を持ちます。

命令キャッシュは、システム・メモリ・コントローラへの効率的なアクセスを可能とするた めの外部インターフェースを持ちます。

命令キャッシュは、命令フェッチ・サブユニットの32-bitインターフェースにより、命令シー ケンサーに対して各命令を供給します。命令フェッチ・サブユニットは、論理アドレスを算出 するための機能を有します。

命令キャッシュは、16 bytes データ、state bit、address tagで構成される 1 line を、512 sets 持 つ構造となっています。



各ラインは、連続する4つのwordを含みます。これらは、メモリ上の 4 word の aligned boundary からロードされたデータです。結果的に、キャッシュ・ラインはページ境界に整列さ れます。

### **Data MMU**

OR1200 は、メモリ・アクセス保護及び論理アドレスを物理アドレスに変換する機能を有する バーチャル・メモリ・マネージメント機構を実装しています。メモリ・アクセス保護機能は、 OpenRISC 1000アーキテクチャーに定義されている通り、8-Kbyte と 16-Mbyteのページ単位で有 効となります。

|                     | Direct mapped             |
|---------------------|---------------------------|
| 16 entries per way  | 16 DTLB entries           |
| 32 entries per way  | 32 DTLB entries           |
| 64 entries per way  | 64 DTLB entries (default) |
| 128 entries per way | 128 DTLB entries          |

**Table 3. Possible Data TLB Configurations of OR1200** 

### 主な特徴:

- データMMUは、命令MMUと分離されています。
- 包括的なページ保護機構
- デフォルトで 1 way となる、direct mapped hash based translation lookaside buffer (DTLB) を持ち、次の特徴を持ちます。
  - o TLB miss and fault exceptions
  - o software tablewalk
  - o high performance because of hashed based design
  - o variable number DTLB entries with default of 64 per each way



MMUハードウエアは、two-level software tablewalk をサポートします。

# **Instruction MMU**

OR1200 は、メモリ・アクセス保護及び論理アドレスを物理アドレスに変換する機能を有する バーチャル・メモリ・マネージメント機構を実装しています。メモリ・アクセス保護機能は、 OpenRISC 1000アーキテクチャーに定義されている通り、8-Kbyte と 16-Mbyteのページ単位で有 効となります。

|                     | Direct mapped             |
|---------------------|---------------------------|
| 16 entries per way  | 16 DTLB entries           |
| 32 entries per way  | 32 DTLB entries           |
| 64 entries per way  | 64 DTLB entries (default) |
| 128 entries per way | 128 DTLB entries          |

Table 4. Possible Instruction TLB Configurations of OR1200

### 主な特徴:

- 命令MMUは、データMMUと分離されています。
- 包括的なページ保護機構
- デフォルトで 1 way となる、direct mapped hash based translation lookaside buffer (ITLB) を持ち、次の特徴を持ちます。
  - o TLB miss and fault exceptions
  - o software tablewalk
  - o high performance because of hashed based design
  - o variable number ITLB entries with default of 64 per each way



MMUハードウエアは、two-level software tablewalk をサポートします。

# **Programmable Interrupt Controller**

割込みコントローラーは、外部からの割込み信号を受け、それらを低又は高優先割込み例外 としてCPUコアに通知します。



Table 5. Block Diagram of the Interrupt Controller

プログラム可能な割込みコントローラーは、3つの Special Purpose Registersと 32本の割込み 信号を持ちます。割込み入力 0 と 1 は常に有効で、それぞれ、高優先割り込み入力、低優先 割込み入力に接続されています。

その他の30の割込み入力は、Special Purpose Registerにより、無効化及び低・高優先の設定が 可能です。

## **Tick Timer**

OR1200 は Tick Timer を実装しています。基本的には、Tick TimerのクロックはRICSクロッ クが入力され、オペレーショング・システムにおいて正確な時間の測定やシステム・タスクの スケジュールに利用されます。

OR1200 は、次の Tick Timer 機能を正確に実現しています。

- Maximum timer count of 2<sup>32</sup> clock cycles
- Maximum time period of 2<sup>2</sup>8 clock cycles between interrupts
- Maskable tick timer interrupt
- Single run, restartable or continues timer

独立したクロックにより動作する Tick Timer 機能により、"doze power management" モードを 実装することができます。

# **Power Management Support**

電力消費の最適化のために、OR1200 は内部のモジュールに対して動的に有効/無効化を行う 低電力モードを提供します。

OR1200 は、電力消費を最小化する3つの重要な特徴を持ちます。

- Slow and Idle Modes (ソフトウエア制御によるクロック周波数の低減)
- Doze and Sleep Modes (interrupt wake-up)

| Power Minimization Feature | Approx Power Consumption Reduction |
|----------------------------|------------------------------------|
| Slow and Idle mode         | 2x-10x                             |
| Doze mode                  | 100x                               |
| Sleep mode                 | 200x                               |
| Dynamic clock gating       | N/A                                |

**Table 6. Power Consumption** 

Slow down モードは、全機能を有効化するために、外部クロック生成回路中のlow-power dividerを利用します。しかし、低い周波数となるため電力消費は減少します。

PRM[SDF] 4 bits が pm clksd 信号によって各モジュールに伝達され、pm\_clksd の値に従い、 RISCプロセッサーの外部クロック生成を調整します。

ソフトウエアにより Doze モードが開始されると、OR1200で動作中のソフトウエアは、一時 中止されます。また、Tick Timer 以外のRISC内部のモジュールに分配されるクロックは無効化 されます。一方、チップ上のOR1200以外のブロックは、通常動作を続けることができます。

OR1200 は、未解決の割込み (pending interrupt) が発生すると、Dozeモードから通常モードに 入ります。

Sleepモードでは、全てのOR1200 内部ユニットは無効化され、クロック分配も停止します。 必要に応じて、実装がOR1200 core の動作電力を下げることもできます。

OR1200 は、未解決の割込み(pending interrupt)が発生すると、Sleep モードから通常モード に入ります。

Dynamic Clock Gating は、OR1200ではサポートされていません。

# **Debug unit**

デバック・ユニットは、ソフトウエア開発者によるシステムのソフトウエア・デバックをサポ ートします。このユニットでは、基本的なデバック機能のみサポートし、WatchPoint、 BreakPoint、proglam-flow control registerなどの OpenRISC 1000 アーキテクチャーで定義されてい るアドバンス・デバック機能はサポートしていません。



Figure 3. Block Diagram of Debug Unit

Watchpoints と Breakpoints は、デバック・レジスタで設定された条件に動作が適合すること でイベントが発生します。Breakpointsは、Watchpointsとは異なり、現在のprogram-flowの実行を 一時停止し、Breakpoint 例外により処理を再開させます。

## Clocks & Reset

OR1200 core は、いくつかのクロック入力があります。"clk cpu" 信号はCPU/DSPブロック と、その他の独自のクロックを持たないRISC内部のブロックに、クロック信号として接続され ます。データ・キャッシュのクロックは"clk dc"信号で、命令キャッシュのクロックは "clk ic" 信号、データMMUのクロックは "clk dmmu"信号、命令MMUのクロックは "clk immu"信号、 Tick Timerのクロックは "clk\_tt"信号になります。全てのクロックは、低クロック・スキューで 同位相である必要があります。

OR1200 は、非同期リセット信号を持ちます。リセット信号は "rst" で、"High"にアサートす ることで OR1200内部の全てのFlip-Flopを直接リセットします。

# **WISHBONE Interfaces**

2つの WISHBONE インターフェースは、OR1200 coreと外部のペリフェラル及び外部メモ リ・サブシステムを接続します。それらは、WISHBONE SoC Interconnection specification Rev. B に準拠します。これらは、32-bit バス幅で実装されており、その他のバス幅はサポートされて いません。



# **Operation**

このセクションでは、OR1200 のオペレーションについて説明します。OpenRISC 1000 アー キテクチャーに関係するオペレーションについては、OpenRISC 1000 System Architecture Manual を参照してください。

### Reset

OR1200 は非同期リセット信号を持ち、システム・レベルでのソフト・リセット、ハード・ リセットとして利用されます。



Figure 4. Power-Up and Reset Sequence

Figure 4 に、OR1200 core に電源が投入された後に、非同期リセットの適用方法について示 します。リセット信号は、RISC core 内部のほとんどのフリップ・フロップの非同期リセット端 子に接続されています。このため、リセット信号は、フリップ・フロップに入力されるRISC clockに対して、Hold Time と Setup Time を保証する必要があります。

システムが Gated Clock を実装している場合は、リセット期間中のクロックをゲートするこ とで、リセットのタイミングを保証することができます。



Figure 5. Power-Up and Reset Sequence w/ Gated Clock

# **CPU/DSP**

CPU/DSP は、OpenRISC 1000 アーキテクチャーの 32-bit 部分を実装しており、全ての特徴 のサブセットのみ実装しています。

### **Instructions**

Table 7 に、OR1200 に実装されている全ての命令を示します。

| Insn   | 3      | 3      | 3      | 3    | 3      | 2      | 2      | 2        | 2 5 | 2   | 2   |     | 2        | 2      | 2      | 1   |        | 1        | 1   | 1        | 1        | 10       | 9          | 8          | 7    | 7    | 7    | 4 | 3 3      | 3 3        | 0 |
|--------|--------|--------|--------|------|--------|--------|--------|----------|-----|-----|-----|-----|----------|--------|--------|-----|--------|----------|-----|----------|----------|----------|------------|------------|------|------|------|---|----------|------------|---|
| 111011 | 1      | 1      | 1      | 1    | 1      | 6      | 5      | 5        | 5   | 5   | 1   | 0   | 0        | 0      | 0      | 6   | 5      | 5        | 5   | 5        | 1        | 10       |            |            | _    | ,    | ′    |   |          |            |   |
| l.add  | (      | opc    | ode    | e 0: | x38    | 3      |        |          | D   |     |     |     |          | A      |        |     |        |          | В   |          |          | reserved | opo<br>e 0 |            |      | rese | rved |   |          | oco<br>Ox( |   |
|        | 3<br>1 | 3<br>0 | 2<br>9 | 2 8  | 2<br>7 | 2<br>6 | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   |     | 1<br>9   | 1<br>8 | 1<br>7 | 1 6 |        | 1<br>4   | 1 3 | 1 2      | 1<br>1   | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| 1.addc | (      | opc    | ode    | e 0: | x38    | 3      |        |          | D   |     |     |     | <u> </u> | A      |        |     |        |          | В   |          |          | reserved | opo<br>e 0 | cod<br>0x0 |      | rese | rved |   |          | oco<br>0x  |   |
|        | 3      | 3      | 2      | 2 8  | 2 7    | 2      | 2      | 2 4      | 2 3 | 2 2 | 2   |     | 1        | 1 8    | 1<br>7 | 1   |        | 1 4      | 1   | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | İΤ       | 2 1        | П |
| l.addi | (      |        | ode    |      |        |        |        | <u> </u> | D   |     |     |     |          | A      |        |     |        | <u> </u> |     | <u> </u> | <u> </u> | ı        |            | I          | 1    |      |      |   | <u> </u> |            |   |
|        | 3      | 3      | 2      | 2 8  | 2 7    | _      | 2 5    | 2 4      | 2 3 | 2 2 | 2   | 2   | 1        | 1 8    | 1<br>7 | 1 6 |        | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.and  | (      | opc    | ode    | e 0: | x38    | 3      |        |          | D   |     |     |     |          | A      |        |     |        |          | В   | ı        | ı        | reserved | opo<br>e 0 |            |      | rese | rved |   | _        | oco<br>0x. |   |
|        | 3      | 3      | 2      | 2 8  | 2 7    | 2      | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   | 2   | 1        | 1<br>8 | 1<br>7 | 1 6 |        | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.andi | (      | opc    | ode    | e 0: | x29    | )      |        |          | D   |     |     |     |          | A      |        |     |        |          |     |          |          |          |            | K          |      |      |      |   |          |            |   |
|        | 3      | 3      | 2      | 2    | 2<br>7 | 2      | 2 5    | 2 4      | 2 3 | 2 2 | 2   | 2   | 1<br>9   | 1 8    | 1<br>7 | 1   | 1<br>5 | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.bf   |        | op     | cod    | le ( | )x4    |        |        |          | •   |     |     |     |          |        |        |     | •      |          |     | •        | N        |          |            |            |      |      |      |   |          |            |   |
|        | 3      | 3      | 2 9    | 2 8  | 2 7    | 2 6    | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   | 2   | 1<br>9   | 1 8    | 1<br>7 | 1   | 1<br>5 | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.bnf  |        | op     | cod    | le ( | )x3    |        |        |          |     |     |     |     |          |        |        |     |        |          |     |          | N        | •        |            | •          |      |      |      |   |          |            |   |
|        | 3      | 3      | 2<br>9 | 2 8  | 2<br>7 | 2 6    | 2 5    | 2 4      | 2 3 | 2 2 | 2   | 2 0 | 1<br>9   | 1<br>8 | 1<br>7 | 1 6 | 1<br>5 | 1<br>4   | 1 3 | 1 2      | 1<br>1   | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.trap |        |        | •      |      |        | oj     | осо    | de       | 0x  | 210 | 00  |     |          |        |        |     |        |          |     | •        | •        |          | ]          | K          |      |      |      |   |          |            |   |
|        | 3      | 3      | 2      | 2 8  | 2 7    | 2      | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   | 2   | 1<br>9   | 1 8    | 1<br>7 | 1   | 1<br>5 | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.j    |        | op     | cod    | le ( | )x0    |        |        |          | •   |     |     |     |          |        |        |     | •      |          |     | •        | N        |          |            |            |      |      |      |   |          |            |   |
|        | 3      | 3      | 2<br>9 | 2 8  | 2 7    | 2 6    | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   | 2 0 | 1<br>9   | 1 8    | 1<br>7 | 1   | 1<br>5 | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.jal  |        | op     | cod    | e (  | )x1    |        |        |          |     |     |     |     |          |        |        |     |        |          |     |          | N        | ı        |            |            |      |      |      |   |          |            |   |
|        | 3      | 3      | 2<br>9 | 2 8  | 2 7    | 2      | 2 5    | 2 4      | 2 3 | 2 2 | 2   | 2 0 | 1        | 1 8    | 1<br>7 | 1 6 |        | 1<br>4   | 1 3 | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |
| l.jalr | (      | opc    | ode    | e 0: | x12    | 2      |        |          |     | R   | ese | rve | ed       |        |        |     |        |          | В   |          |          |          |            | 1          | rese | rved |      |   |          |            |   |
|        | 3      | 3      | 2<br>9 | 2 8  | 2<br>7 | 2      | 2<br>5 | 2 4      | 2 3 | 2 2 | 2   | 2   | 1<br>9   | 1<br>8 | 1<br>7 | 1   |        | 1<br>4   | 1   | 1 2      | 1        | 10       | 9          | 8          | 7    | 6    | 5    | 4 | 3 2      | 2 1        | 0 |

| 1.jr    |        | opc      | od       | e 0    | x11       |        |        |        |        | R                                            | ese | rve    | ed     |        |        |        |        |        | В      |     |   |          |          | 1            | rese | rved     | l    |          |      |            |
|---------|--------|----------|----------|--------|-----------|--------|--------|--------|--------|----------------------------------------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|-----|---|----------|----------|--------------|------|----------|------|----------|------|------------|
|         | 3      | 3        | 2        | 2      | 2         | 2      | 2<br>5 | 2      | 2 3    | 2 2                                          | 2   | 2      | 1      | 1      | 1      | 1      |        | 1      | 1      | 1   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.lbs   | 1      | 0        | 9        | 8      | 7         |        | 5      | 4      |        | 2                                            | 1   | 0      | 9      | 8      | 7      | 6      | 5      | 4      | 3      | 2   | 1 | 10       |          |              | ,    | Ů        |      |          |      |            |
| 1.108   | 3      | 3        | 2        | 2      | x24<br>2  |        | 2      | 2      | D<br>2 | 2                                            | 2   | 2      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1   | 1 |          |          | I            |      |          |      |          | П    |            |
|         | 1      | 0        | 9        | 8      | 7         | 6      | 2<br>5 | 2 4    | 2 3    | 2                                            |     | 0      | 9      | 8      | 7      |        | 5      | 4      | 3      | 2   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.lbz   |        | opc      | od       | e 0    | x23       |        |        |        | D      |                                              |     |        |        | A      |        |        |        | 1      |        |     |   | Т        |          | I            |      |          |      |          | 1 1  |            |
|         | 3      | 3        | 9        | 2 8    | 2<br>7    | 2      | 2<br>5 | 2 4    | 2      | 2 2                                          | 2   | 2      | 1      | 1 8    | 1<br>7 | 1      | 1<br>5 | 1 4    | 1 3    | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| 1.1hs   | _      |          |          |        | x2θ       |        | 5      |        | D      |                                              | 1   | U      | ,      | A      | ,      | U      | 5      |        | 2      |     | 1 |          |          | I            |      |          |      |          |      |            |
|         | 3      | 3        | 2        | 2      | 2         | 2      | 2 5    | 2 4    | 2 3    | 2 2                                          | 2   |        | 1      | 1      | 1      | 1      |        | 1      | 1      | 1   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 3  | 2 1 0      |
| 1 11    | 1      | 0        | 9        | 8      | 7         |        | 5      | 4      |        | 2                                            | 1   | 0      | 9      | 8      | 7      | 6      | 5      | 4      | 3      | 2   | 1 | 10       |          |              | ,    | U        | 3    |          |      |            |
| l.lhz   | 3      | 3        | 2        | e 0.   | x25       |        | 2      | 2      | D<br>2 | 2                                            | 2   | 2      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1   | 1 |          |          | I            |      |          |      |          |      |            |
|         | 1      | 0        | 9        | 8      | 7         | 6      | 2<br>5 | 4      | 2 3    | 2 2                                          | 1   | 0      | 9      | 8      | 7      | 6      |        | 4      | 3      | 2   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| 1.1ws   | -      | opc      |          |        | x22       |        |        | 1      | D      | 1 1                                          |     |        |        | A      |        |        |        | 1      | 1      |     |   | Т        |          | I            |      | 1        |      |          |      |            |
|         | 3<br>1 | 3<br>0   | 2<br>9   | 2<br>8 | 2<br>7    | 2<br>6 | 2<br>5 | 2 4    | 2      | 2 2                                          | 2   | 2<br>0 | 1<br>9 | 1<br>8 | 1<br>7 | 1<br>6 |        | 1 4    | 1 3    | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.lwz   | -      | opc      | od       | e 0    | x21       |        |        |        | D      |                                              |     |        |        | A      |        |        |        |        |        |     |   |          |          | I            |      |          |      |          |      | 1 1        |
|         | 3<br>1 | 3        | 2        | 2 8    | 2<br>7    | 2      | 2<br>5 | 2 4    | 2      | 2 2                                          | 2   | 2      | 1 9    | 1<br>8 | 1<br>7 | 1 6    |        | 1 4    | 1 3    | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.mfspr | 1      | op       |          |        |           | U      | 5      | 4      | D      |                                              | 1   | U      | 7      | A      | /      | U      | 5      | 4      | 3      |     | 1 |          | ]        | L<br>K       |      |          |      |          |      |            |
|         | 3      | 3        | 2        | 2 8    | 2 7       | 2      | 2 5    | 2 4    | 2      | 2 2                                          | 2   | 2      | 1<br>9 | 1 8    | 1<br>7 | 1      | 1      | 1 4    | 1 3    | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.movhi | 1      | <u> </u> |          |        | /<br>)x6  |        | 3      | 4      | D<br>D | 2                                            | 1   |        |        |        | ved    |        | 3      | 4      | 3      | 2   | 1 |          |          | <u></u><br>К |      |          |      |          |      |            |
|         | 3      | 3        | 2        | 2      | 2         | _      | 2 5    | 2      | 2      | 2 2                                          | 2   | 2      | 1      | 1      | 1      | 1      |        | 1      | 1      | 1   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 2    | 2 1 0      |
| _       | 1      | 0        | 9        | 8      | 7         |        | 5      | 4      |        | 2                                            | 1   | 0      | 9      | 8      | 7      | 6      | 5      | 4      | 3      | 2   | 1 | 10       | 7        | 0            |      |          | 3    | 4        | 3 2  |            |
| l.mtspr |        | 3        |          |        | x10<br>2  | _      | 2      | 2      | K<br>2 | 2                                            | 2   | 2      | 1      | A<br>1 | 1      | 1      | 1      | 1      | B<br>1 | 1   | 1 |          |          |              |      | <u>ζ</u> |      |          |      |            |
|         | 3<br>1 | 0        | 2<br>9   | 2<br>8 | 7         | 2<br>6 | 5      | 2 4    | 2      | 2 2                                          |     | 0      | 9      | 8      | 7      | 6      |        | 4      | 3      | 2   | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.mul   |        | opc      | od       | e 0    | x38       | 3      |        |        | D      |                                              |     |        |        | A      |        |        |        |        | В      |     |   | reserved |          | cod<br>0x3   |      | rese     | rved |          |      | cod<br>0x6 |
|         | 3      | 3        | 2        | 2 8    | 2 7       | 2      | 2<br>5 | 2 4    | 2 3    | 2 2                                          | 2   | 2      | 1<br>9 | 1 8    | 1<br>7 | 1 6    |        | 1<br>4 | 1 3    | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.muli  |        |          | od       |        | x20       |        |        |        | D      |                                              |     |        |        | A      |        |        |        |        | l      |     |   |          | <u> </u> | Ι            |      |          |      |          | 1_1_ | 1 1        |
|         | 3      | 3        | 2        |        | 2 7       | 2<br>6 | 2      | 2 4    | 2      | 2 2                                          | 2   | 2      | 1<br>9 | 1 8    | 1<br>7 | 1      | 1<br>5 | 1 4    |        | 1 2 | 1 | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |
| l.mulu  |        |          |          |        | x38       |        |        |        | D      | <u>                                     </u> |     | _      | 1-     | A      |        |        |        |        | В      |     |   | reserved |          | cod<br>0x3   |      | rese     | rved |          |      | cod<br>0xb |
|         | 3      | 3        | 2        |        | 2         | 2      | 2 5    | 2 4    | 2      | 2                                            | 2   | 2      |        | 1      | 1      | 1      | 1      | 1      | 1      | 1   |   | 10       | 9        | 8            | 7    | 6        | 5    | 4        | İΤ   | 2 1 0      |
|         | 1      | 0        |          |        | 7<br>e 0: | _      |        | 4      | 3      | 2                                            | 1   | 0      | 9      | 8      | 7      | 6      | 5      | 4      | 3      |     |   | served   |          |              |      |          |      |          |      |            |
| l.nop   | 3      | 3        | эрс<br>2 |        |           |        | 2      | 2      | 2      | 2                                            | 2   | 2      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1   |   |          |          |              | _    |          | _    |          |      |            |
|         | 1      |          | 9        | 8      | 7         | 6      | 5      | 2<br>4 | 2      | 2 2                                          | 1   | 0      | 9      | 8      | 7      | 6      | 5      | 4      |        | 2   | 1 | 10       | 9        | 8            | /    | 6        | 5    | 4        |      | 2 1 0      |
| l.or    |        | opc      | od       | e 0    | x38       |        |        |        | D      |                                              |     |        |        | A      |        |        |        |        | В      |     |   | reserved |          | cod<br>0x0   |      | rese     | rved | <u> </u> |      | cod<br>0x4 |
|         | 3<br>1 | 3<br>0   | 2<br>9   |        | 2<br>7    | 2 6    | 2<br>5 | 2 4    | 2 3    | 2 2                                          | 2   | 2      | 1<br>9 | 1<br>8 | 1<br>7 |        | 1<br>5 | 1<br>4 |        | 1 2 |   | 10       | 9        | 8            | 7    | 6        | 5    | 4        | 3 2  | 2 1 0      |

| l.ori   |        | opc      | od       | e 0     | x2a    | a      |        |                                              | D   |     |   |        |          | A      |        |        |        |            |        |          |        |          | ]        | K        |          |            |      |          |           |             |
|---------|--------|----------|----------|---------|--------|--------|--------|----------------------------------------------|-----|-----|---|--------|----------|--------|--------|--------|--------|------------|--------|----------|--------|----------|----------|----------|----------|------------|------|----------|-----------|-------------|
|         | 3      | 3        | 2        | 2       | 2      | 2      | 2 5    | 2                                            | 2   | 2 2 | 2 | 2      | 1        | 1      | 1      | 1      | 1      | 1          | 1      | 1        | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3         | 2 1 (       |
| l.rfe   | 1      | 0        | 9<br>cod | 8       | 7      |        | 5      | 4                                            | 3   | 2   | 1 | 0      | 9        | 8      | 7      | 6      | 5      | 4          | 3      | 2        | 1      | ved      |          |          |          |            |      |          |           |             |
| 1.116   | 3      | ор<br>3  | 2        | 2       | 2      |        | 2      | 2                                            | 2   | 2   | 2 | 2      | 1        | 1      | 1      | 1      | 1      | 1          | 1      | 1        | 1      |          |          |          |          |            |      |          | П         |             |
|         | 1      | 0        | 9        | 8       | 7      | 6      | 2<br>5 | 2 4                                          | 2 3 | 2 2 | 1 | 0      | 9        | 8      | 7      | 6      |        | 4          | 3      | 2        | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.rori  | •      | opc      | od       | e 0     | x26    | e      |        |                                              | D   |     |   |        |          | A      |        |        |        |            |        | 1        | res    | erved    |          |          |          | cod<br>)x3 |      | ]        | L         |             |
|         | 3<br>1 | 3<br>0   | 2<br>9   | 2 8     | 2<br>7 | 2<br>6 | 2<br>5 | 2 4                                          | 2 3 | 2 2 | 2 | 2<br>0 | 1<br>9   | 1<br>8 | 1<br>7 | 1 6    |        | 1<br>4     | 1 3    | 1 2      | 1<br>1 | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| l.sb    | (      | opc      | ode      | e 0     | x36    | 5      |        |                                              | I   |     |   |        |          | A      |        |        |        |            | В      |          | •      |          |          | •        |          | I          |      | •        |           |             |
|         | 3      | 3        | 2        | 2 8     | 2 7    | 2      | 2 5    | 2 4                                          | 2   | 2 2 |   | 2      | 1<br>9   | 1<br>8 | 1<br>7 | 1 6    |        | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.sfeq  | 1      | U        |          |         |        |        |        | 720                                          |     | 2   |   | U      |          | A      | ,      | _ 0    | 5      | -          | В      |          | 1      |          | <u> </u> |          | rese     | rvec       | l    |          |           |             |
| i.sreq  | 3      | 3        | 2        | 2<br>8  | 2 7    | 2      | 2 5    | 2 4                                          | 2   | 2 2 | 2 | 2      | 1        | 1 8    | 1 7    | 1 6    |        | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.sfges | 1      | U        |          |         | coc    |        |        |                                              | 3   | 2   | 1 | U      | 7        | A      | /      | U      | 5      | 4          | В      |          | 1      |          | ]        |          | rese     | rvec       | 1    |          |           |             |
| 1.51505 | 3      | 3        | 2        | 2       | 2      | 2      | 2      | 2                                            | 2   | 2 2 | 2 |        | 1        | 1      | 1      | 1      |        | 1          | 1      | 1        | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3         | 2 1 0       |
| 1 C     | 1      | 0        | 9        | 8       | 7      | 6      | 5      | 4                                            | 3   | 2   | 1 | 0      | 9        | 8      | 7      | 6      | 5      | 4          | 3      | 2        | 1      |          |          |          |          |            |      |          | Ш         |             |
| l.sfgeu | 2      | 3        | 2        | ор<br>2 | 2      | 1e (   | 2 2    |                                              | 2   | 2   | 2 | 2      | 1        | 1      | 1      | 1      | 1      | 1          | В<br>1 | 1        | 1      |          |          |          | rese     | rvec       | 1    |          | П         |             |
|         | 3<br>1 | 0        | 9        | 8       | 7      | 6      | 5      | 2 4                                          | 3   | 2 2 |   | 0      | 9        | 8      | 7      | 6      |        | 4          | 3      | 2        | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.sfgts |        |          | _        | op      | coc    | le (   | 0x7    | 72a                                          |     |     |   |        |          | A      |        |        |        |            | В      |          |        |          |          |          | rese     | rvec       | 1    |          |           | 1 1         |
|         | 3      | 3        | 2        | 2 8     | 2 7    | 2      | 2 5    | 2 4                                          | 2   | 2 2 |   | 2      | 1<br>9   | 1 8    | 1<br>7 | 1 6    |        | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| l.sfgtu |        | <u> </u> |          | op      | coc    | le (   | 0x7    | 22                                           |     |     |   |        | <u> </u> | A      |        |        |        | <u> </u>   | В      | <u> </u> |        |          |          |          | rese     | rve        | 1    |          |           |             |
| _       | 3      | 3        | 2 9      | 2 8     | 2 7    | 2      | 2 5    | 2 4                                          | 2 3 | 2 2 | 2 | 2      | 1<br>9   | 1 8    | 1<br>7 | 1 6    |        | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| 1.sfles |        |          |          | op      | coc    | le (   | 0x7    | /2d                                          |     |     |   |        |          | Α      |        |        |        |            | В      |          |        |          |          |          | rese     | rvec       | 1    | 1        |           |             |
|         | 3<br>1 | 3        | 2 9      | 2 8     | 2 7    | 2 6    | 2 5    | 2 4                                          | 2 3 | 2 2 | 2 | 2<br>0 | 1<br>9   | 1 8    | 1<br>7 | 1<br>6 |        | 1<br>4     | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| l.sfleu |        |          |          | op      | coc    | le (   | 0x7    | 25                                           |     |     |   |        |          | A      |        |        |        |            | В      |          |        |          |          |          | rese     | rvec       | 1    |          |           |             |
|         | 3      | 3        | 2<br>9   | 2 8     | 2<br>7 | 2      | 2 5    | 2 4                                          | 2 3 | 2 2 | 2 | 2      | 1<br>9   | 1<br>8 | 1<br>7 | 1 6    |        | 1<br>4     | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| l.sflts |        |          |          | op      | coc    | le (   | 0x7    | 72c                                          |     |     |   |        | •        | Α      |        |        |        |            | В      |          |        |          |          |          | rese     | rvec       | 1    | •        |           |             |
|         | 3      | 3        | 2        | 2 8     | 2 7    | 2 6    | 2 5    | 2 4                                          | 2 3 | 2 2 |   | 2      | 1<br>9   | 1 8    | 1<br>7 | 1 6    | 1<br>5 | 1<br>4     | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 0       |
| l.sfltu |        |          |          | op      | coc    | le (   | 0x7    | 24                                           |     |     |   |        |          | Α      |        |        |        |            | В      |          |        |          |          |          | rese     | rvec       | 1    |          |           |             |
|         | 3      | 3        | 2        | 2 8     | 2 7    | 2      | 2 5    | 2 4                                          | 2   | 2 2 |   | 2      | 1<br>9   | 1 8    | 1<br>7 | 1 6    | 1<br>5 | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.sfne  |        | <u> </u> |          | op      | coc    | le (   | 0x7    | 21                                           |     |     |   |        |          | Α      |        |        |        | <u> </u>   | В      | <u> </u> |        |          | 1        |          | rese     | rvec       | 1    |          |           |             |
|         | 3      | 3        |          | 2       | 2 7    |        | 2 5    | 2 4                                          | 2   | 2 2 |   | 2      | 1<br>9   | 1 8    | 1<br>7 | 1      | 1<br>5 | 1 4        | 1 3    | 1 2      | 1      | 10       | 9        | 8        | 7        | 6          | 5    | 4        | 3 2       | 2 1 (       |
| l.sh    | _      |          | ode      |         |        |        |        | <u>.                                    </u> | I   |     |   |        |          | A      |        |        |        | <u>' '</u> | В      | <u> </u> |        |          | <u> </u> | <u> </u> | <u> </u> | I          | i    | <u> </u> |           |             |
|         | 3      | 3        | 2        | 2       | 2      | 2      | 2      | 2                                            | 2   | 2   |   | 2      | 1        | 1      | 1      | 1      |        | 1          | 1      | 1        | 1      | 10       | 9        | 8        | 7        | 1          | 5    |          | 42,       | 2 1 0       |
|         | 1      | 0        |          |         | 7      | 6      | 5      | 4                                            | 3   | 2   |   | 0      | 9        | 8      | 7      | 6      | 5      | 4          | 3      | 2        | 1      | 10       | У        | 8        | /        | 6          | 3    | -        |           |             |
| l.sll   | (      | opc      | ode      | e 0     | x38    | 8      |        |                                              | D   |     |   |        |          | A      |        |        |        |            | В      |          |        | reserved | op       | ococ     | de 0     | x0         | rese | rve      | d op<br>e | ocod<br>0x8 |

|        |               |        |        |        | _      |        |        | _   | _   |     |   |     |        |        | _        |        |                         |                |       |                         | _      |                      | _                       |      |                |   |   |   |   |     | $\overline{}$ |
|--------|---------------|--------|--------|--------|--------|--------|--------|-----|-----|-----|---|-----|--------|--------|----------|--------|-------------------------|----------------|-------|-------------------------|--------|----------------------|-------------------------|------|----------------|---|---|---|---|-----|---------------|
|        | 3<br>1        | 3<br>0 | 2<br>9 | 28     | 2<br>7 | 2<br>6 | 2 5    | 2 4 | 2 3 | 2 2 | 2 | 0   | 1<br>9 | 18     | 1<br>7   | 1<br>6 |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.slli | opcode 0x2e   |        |        |        | ;      | D      |        |     |     | A   |   |     |        |        | reserved |        |                         |                |       |                         |        |                      | cod<br>0x0              |      |                |   |   |   |   |     |               |
|        | 3             | 3      | 2 9    | 2 8    | 2 7    | 2      | 2<br>5 | 2 4 | 2 3 | 2 2 | 2 |     | 1<br>9 | 1<br>8 | 1<br>7   | 1      |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.sra  | opcode 0x38   |        |        |        | 3      | D      |        |     |     |     | A |     |        |        | В        |        |                         | reserved opcod |       |                         | le 0x2 |                      | reserved opcod<br>e 0x8 |      |                |   |   |   |   |     |               |
|        | 3<br>1        | 3<br>0 | 2<br>9 | 2<br>8 | 2<br>7 | 2 6    | 2<br>5 | 2 4 | 2 3 | 2 2 | 2 |     | 1<br>9 | 1<br>8 | 1<br>7   | 1 6    |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.srai | opcode 0x2e   |        |        | •      | D      |        |        |     |     | A   |   |     |        | res    |          |        |                         | res            | erved |                         |        | opo<br>e 0           | cod<br>0x2              | L    |                |   |   |   |   |     |               |
|        | 3<br>1        | 3      | 2<br>9 | 2 8    | 2<br>7 | 2 6    | 2 5    | 2 4 | 2 3 | 2 2 | 2 |     | 1<br>9 | 1<br>8 | 1<br>7   | 16     |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.srl  | opcode 0x38   |        |        | 3      | D      |        |        |     |     | A   |   |     |        |        |          |        |                         | reserved opcod |       |                         | le 0x1 |                      | reserved opcod<br>e 0x8 |      |                |   |   |   |   |     |               |
|        | 3<br>1        | 3<br>0 | 2<br>9 | 2<br>8 | 2<br>7 | 2<br>6 | 2 5    | 2 4 | 2 3 | 2 2 | 2 | 2   | 1<br>9 | 1<br>8 | 1<br>7   | 1<br>6 |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.srli | opcode 0x2e   |        |        | •      | D      |        |        |     |     | A   |   |     |        | reso   |          |        |                         | res            | erved |                         |        | opcod<br>e 0x1       |                         | L    |                |   |   |   |   |     |               |
|        | 3<br>1        | 3<br>0 | 2<br>9 | 2<br>8 | 2<br>7 | 2<br>6 | 2 5    | 2 4 | 2 3 | 2 2 | 2 | 2   | 1<br>9 | 1<br>8 | 1<br>7   | 1<br>6 |                         | 1<br>4         | 1 3   | 1 2                     | 1<br>1 | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.sub  | opcode 0x38   |        |        | 3      | D      |        |        |     |     | A   |   |     |        | В      |          |        | reserved opcod<br>e 0x0 |                |       |                         | rese   | erved opcod<br>e 0x2 |                         |      |                |   |   |   |   |     |               |
|        | 3<br>1        | 3<br>0 | 2<br>9 | 2<br>8 | 2<br>7 | 2<br>6 | 2 5    | 2 4 | 2 3 | 2 2 | 2 | 2   | 1<br>9 | 1<br>8 | 1<br>7   | 1<br>6 |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.sw   |               | opc    | ode    | 0      | x35    | 5      |        |     | I   |     |   |     |        | A      |          |        |                         |                | В     |                         |        |                      |                         |      | ]              | I |   |   |   |     |               |
|        | 3<br>1        | 3      | 2<br>9 | 2<br>8 | 2 7    | 2 6    | 2 5    | 2 4 | 2 3 | 2 2 |   | 2 0 |        | 1<br>8 | 1<br>7   | 1 6    |                         | 1<br>4         | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.sys  | opcode 0x20   |        |        |        | 200    | 00     |        |     |     |     |   |     |        |        |          | ]      | K                       |                |       |                         |        |                      |                         |      |                |   |   |   |   |     |               |
|        | 3<br>1        | 3      | 2<br>9 | 2<br>8 | 2 7    | 2<br>6 | 2<br>5 | 2 4 | 2 3 | 2 2 | 2 | 2   | 1<br>9 | 1<br>8 | 1<br>7   | 1<br>6 |                         | 1<br>4         | 1 3   | 1 2                     | 1      |                      | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| l.xor  | opcode 0x38   |        |        |        | 3      | D      |        |     |     |     | A |     |        |        |          | В      |                         |                |       | reserved opcod<br>e 0x0 |        |                      |                         | rese | opcod<br>e 0x5 |   |   |   |   |     |               |
|        | 3             | 3      | 2 9    | 2 8    | 2 7    | 2      | 2 5    | 2 4 | 2 3 | 2 2 | 2 |     |        | 1<br>8 | 1<br>7   | 1 6    |                         | 1 4            | 1 3   | 1 2                     | 1      | 10                   | 9                       | 8    | 7              | 6 | 5 | 4 | 3 | 2 1 | 0             |
| 1.xori | i opcode 0x2b |        |        | )      | D      |        |        |     | A   |     |   |     |        | I      |          |        |                         |                |       |                         |        |                      |                         |      |                |   |   |   |   |     |               |

**Table 7. List of 32-bit Implemented Instructions** 

各命令のオペレーション等の詳しい説明は、OpenRISC 1000 System Architecture Manual を参照 してください。

### **Instruction Unit**

命令ユニットは、フェッチする命令の論理アドレスの生成と、命令キャッシュから命令をフ エッチします。各クロックサイクルにおいて1命令のフェッチが可能です。命令フェッチ論理 アドレスは、IMMUによって物理アドレスに変換されます。

### **General-Purpose Registers**

汎用レジスタ (General-Purpose Register, GPR) ファイルは、各クロックサイクルで2つのロー ド・オペランドを供給し、デスティネーション・レジスタへのデータを保存します。 GPRsは、また、Development Interface を経由して、リード及びライト動作を実行します。

### Load/Store Unit

LSU は、データ・キャッシュに該当するデータが存在すると仮定して、1ロード命令を2ク ロックサイクルで実行します。ストアー命令の実行は、データ・キャッシュに該当するデータ が存在すると仮定して、1クロックサイクルで行われます。

LSUは、ロード/ストア論理アドレスの生成を実行します。論理アドレスはDMMUによっ て、物理アドレスに変換されます。

ロード/ストア論理アドレスと、ロード及びストア・データは、Development interface を介し てアクセスされます。

### **Integer Execution Pipeline**

このプロセッサー・コアは、次の32ビット整数命令を実装しています。

- 算術命令 Arithmetic instructions
- 比較命令 Compare instructions
- 論理演算命令 Logical instructions
- ローテート及びシフト命令 Rotate and shift instructions

| Instruction Group                 | Clock Cycles to Execute |
|-----------------------------------|-------------------------|
| Arithmetic except Multiply/Divide | 1                       |
| Multiply                          | 3                       |
| Divide                            | Not implemented         |
| Compare                           | 1                       |
| Logical                           | 1                       |
| Rotate and Shift                  | 1                       |
| Others                            | 1                       |

**Table 8. Execution Time of Integer Instructions** 

Table 9 に、整数型パイプラインにより実行される各命令の実行サイクルを示します。ほとん どの命令は1クロック・サイクルで実行されます。

### **MAC** Unit

MAC ユニットは、l.mac 命令を実行します。これは、32x32 の完全なパイプライン化された 乗算器と48ビットのアキュムレータを実装しています。また、MACユニットは、各クロックサ イクル毎に1つの新しい l.mac 命令を受け付けることができます。

### **System Unit**

システム・ユニットは、システム・コントロール及び status special-purpose registers を実装し ており、また、全ての l.mtspr / l.mfspr 命令を実行します。

### **Exceptions**

このプロセッサー・コアは、Precise 例外モデルを実装しています。これは、例外が認識され た時に、次の条件が成立します。

- 例外を発生させた命令の後続命令を破棄します。
- 例外を発生させた命令よりも前に発行された命令は、通常に完了させ結果を保存しま
- 例外を発生させた命令のアドレスを、EPCRレジスタに格納し、状態をESRレジスタに保 存します。

| EXCEPTION TYPE                      | VECTOR<br>OFFSET | CAUSING CONDITIONS                                                                                                                                      |
|-------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset                               | 0x100            | Caused by reset.                                                                                                                                        |
| Bus Error                           | 0x200            | Caused by an attempt to access invalid physical address.                                                                                                |
| Data Page Fault                     | 0x300            | Generated artificially by DTLB miss exception handler when no matching PTE found in page tables or page protection violation for load/store operations. |
| Instruction Page Fault              | 0x400            | Generated artificially by ITLB miss exception handler when no matching PTE found in page tables or page protection violation for instruction fetch.     |
| Low Priority External Interrupt     | 0x500            | Low priority external interrupt asserted.                                                                                                               |
| Alignment                           | 0x600            | Load/store access to naturally not aligned location.                                                                                                    |
| Illegal Instruction                 | 0x700            | Illegal instruction in the instruction stream.                                                                                                          |
| High Priority<br>External Interrupt | 0x800            | High priority external interrupt asserted.                                                                                                              |

| D-TLB Miss  | 0x900 | No matching entry in DTLB (DTLB miss). |
|-------------|-------|----------------------------------------|
| I-TLB Miss  | 0xA00 | No matching entry in ITLB (ITLB miss). |
| System Call | 0xC00 | System call initiated by software.     |
| Breakpoint  | 0xD00 | Initiated by the debug unit.           |

**Table 9. List of Implemented Exceptions** 

OR1200 の例外処理には、高速コンテキスト・スイッチのサポートは含まれていません。

# **Data Cache Operation**

### **Data Cache Load/Store Access**

ロード・ストア ユニット(LSU)は、データ・キャッシュからデータを要求し、General-Puepose Register (GPR) file にデータを保存すると共に整数型実行ユニットにデータを転送しま す。従って、LSUユニットの動作は、データ・キャッシュと密接に関係しています。

データ・キャッシュ・ミス又はDTLBミスが発生しなければ、ロード動作は2クロック・サイ クルで実行され、ストアー動作は1クロック・サイクルで完了します。また、LSUはデータ・ア ラインメント処理を行います。

データは、ワード (4 byte, 32-bit) ・ハーフワード (2 byte, 16-bit) ・バイト(1 byte, 8-bit)単位 でデータ・キャッシュに書き込まれます。データ・キャッシュはライト・スルー・モードでの み動作するため、全ての書き込みは直ぐにメイン・メモリー又は次のレベルのキャッシュ (L2) に対しても実行されます。



Figure 6. WISHBONE Write Cycle

Figure 6 に、ストアー命令がデータ・キャッシュにヒットした場合の、WISHBONEインター フェース上のライト・スルー動作(実行サイクル)について示します。

dwb ERR I 信号又は dwb RTY I 信号が、dwb ACK I 信号の代わりにアサートされた場合 は、バス・エラー例外が発行されます。

### **Data Cache Line Fill Operation**

実行中のロード命令に対してキャッシュ・ミスが発生した場合には、ロード命令が要求する ワードが最初にロードされる (critial word first)、連続した4ビートのロードが実行されます。 Critial Wordがデータ・キャッシュだけでなくロード・ストアー・ユニットに転送されること で、データ・キャッシュ・ミスによるパフォーマンスの低下を最小限に抑えます。



Figure 7. WISHBONE Block Read Cycle

Figure 7 に、4つのリード動作から成る、WISHBONEインターフェース上のキャッシュ・リ ードの動作を示します。

dwb\_ERR\_I 信号又はdwb\_RTY\_I 信号がdwb\_ACK\_I 信号の代わりにアサートされた場合に は、バス・エラー例外が発行されます。

実行中のストアー命令に対してキャッシュ・ミスが発生した場合には、ストアー命令の対象 ワードが最初にロードされる (critial word first)、連続した4ビートのロードが実行されます。 連続するワード・データの最初のワードがリードされた後、ストアー命令の書き込みデータに 関するライト動作が実行されます。このライト動作は、メイン・メモリ又は次のレベルのキャ ッシュ(L2)に対しても実行されます。ストアー命令のデータ幅に関係なく、常にワード幅で のデータ書き込みが実行されます。

33 of 62



Figure 8. WISHBONE Block Read/Write Cycle

Figure 8 に、WISHBONEインターフェース上の、キャッシュ・リード動作と、それに続くラ イト動作を示します。

dwb ERR I 信号又はdwb RTY I 信号がdwb ACK I 信号の代わりにアサートされた場合に は、バス・エラー例外が発行されます。

### **Cache/Memory Coherency**

OR1200 のデータ・キャッシュは、ライト・スルー・モード (write-trough mode) でのみ動作 します。なお、OR1200 は、マルチ・プロセッサー環境での利用を想定していません。従っ て、ローカル・データ・キャッシュと、そのほかのプロセッサー及びメイン・メモリとのコヒ ーレンシ (coherency) 機能は実装されていません。

## Data Cache Enabling/Disabling

データ・キャッシュは、起動時(power up時)には無効化されています。SRレジスタの SR[DCE] ビットを"I"に設定することで、データ・キャッシュ全体が有効になります。デー タ・キャッシュが有効化されるまでは、無効化 (Invalidated) に設定されています。

### **Data Cache Invalidation**

OR1200 のデータ・キャッシュは、データ・キャッシュ全体の無効化 (invalidation) はサポー トしていません。データ・キャッシュ全体を無効化(invalidation)するための通常の方法は、全 てのデータ・キャッシュに対して個別にアクセスし、各キャッシュ・ラインを無効化 (invalidation) します。

### **Data Cache Locking**

データ・キャッシュには、データ・キャッシュ・コントロール・レジスタ DCCR に、Way ロック・ビットが実装されています。LWxビットを"1"にセットすることで、個々の Way を ロックすることができます。

### **Data Cache Line Prefetch**

データ・キャッシュ・ラインのプリフェッチは、OpenRISC 1000 アーキテクチャーにおいて オプションとなる機能であり、OR1200には実装されていません。

### Data Cache Line Flush

データ・キャッシュはライト・スルー・モード (write-through mode) 動作することから、デー タ・キャッシュ・ラインのフラッシュ操作は、各ラインの無効化 (invalidation) のみ実行されま す。この操作は、論理アドレス(EA)をDCBFR レジスタに書き込むことで実行されます。

実質的には、データ・キャッシュ・ラインのフラッシュとデータ・キャッシュ・ラインの無 効化に違いはありません。

### **Data Cache Line Invalidate**

データ・キャッシュ・ラインの無効化処理は、1つのデータ・キャッシュ・ラインに対して 実行されます。論理アドレス (EA) をDCBIRレジスタに書き込むことで、無効化処理が実行さ れます。

### **Data Cache Line Write-back**

データ・キャッシュはライト・スルー・モード (write-through mode) のみで動作するため、デ ータ・キャッシュ・ラインのライト・バック (write-back) は実行されません。

### **Data Cache Line Lock**

個々のデータ・キャッシュ・ラインをロックする機能は、OR1200 には実装されていませ  $\lambda_{\circ}$ 

# **Instruction Cache Operation**

### **Instruction Cache Instruction Fetch Access**

命令ユニットは、命令キャッシュに命令を要求し、命令ユニット内部の命令キューに転送し ます。したがって、命令ユニットの動作は命令キャッシュと密接に関係しています。

命令キャッシュ・ライン・ミス及びITLBミスが発生しない場合には、命令フェッチの動作は 1クロック・サイクルで実行されます。

命令キャッシュにおいては、データ・キャッシュがストアー命令によって明示的に更新され るような動作は行われません。

### **Instruction Cache Line Fill Operation**

キャッシュ・ミスが発生した場合には、要求されたワードが最初にリードされる (critial word first)、連続した4ビートのリードが実行されます。Critial Wordが命令キャッシュだけでなく命 令ユニットに転送されることで、命令キャッシュ・ミスによるパフォーマンスの低下を最小限 に抑えます。



Figure 9. WISHBONE Block Read Cycle

Figure 9 に、WISHBONEインターフェース上の4つのリード転送から成るキャッシュ・ラ イン・データのリード動作(実行サイクル)について示します。

iwb\_ERR\_I 信号又は iwb\_RTY\_I 信号が、iwb\_ACK\_I 信号の代わりにアサートされた場合 は、バス・エラー例外が発行されます。

### **Cache/Memory Coherency**

OR1200 はマルチ・プロセッサー環境で利用されることを想定されていません。従って、ロ ーカル命令キャッシュと、その他のプロセッサ又はメイン・メモリ間でのコヒーレンシー (coherency) 機能は実装されていません。

### **Instruction Cache Enabling/Disabling**

命令キャッシュは、起動時 (power up) には無効化されています。命令キャッシュ全体は、 SRレジスタのSR[ICE]ビットに"1"を書き込むことで有効化されます。命令キャッシュが有効 になる前は、無効化(invalidation)されています。

### **Instruction Cache Invalidation**

OR1200 の命令キャッシュは、命令キャッシュ全体の無効化(invalidation)機能は実装されて いません。命令キャッシュ全体を無効化(invalidation)するための通常の方法は、全ての命令キ ャッシュに対して個別にアクセスし、各キャッシュ・ラインを無効化(invalidation)します。

#### **Instruction Cache Locking**

命令キャッシュには、命令キャッシュ・コントロール・レジスタ ICCR に、Way ロック・ビ ットが実装されています。LWxビットを"1"にセットすることで、個々の Way をロックする ことができます。

#### **Instruction Cache Line Prefetch**

OpenRISC 1000 アーキテクチャーにおいて、命令キャッシュ・ラインのプリフェッチ機能は オプションであり、OR1200 には実装されていません。

#### **Instruction Cache Line Invalidate**

命令キャッシュ・ラインの無効化処理は、1つの命令キャッシュ・ラインに対して実行され ます。これは、ICBIR レジスタに論理アドレス(EA)を書き込むことで実行されます。

#### **Instruction Cache Line Lock**

個々の命令キャッシュ・ラインをロックする機能は、OR1200 には実装されていません。

## **Data MMU**

#### **Translation Disabled**

ロード・ストア・アドレス変換 (address translation) 機能は、SRレジスタのSR[DME]ビットを クリアすることで無効化されます。アドレス変換機能が無効化されると、ロード・ストアにお いて利用される論理アドレスと同様に、データ・キャッシュ・アクセスにおいて、物理アドレ スが使用されます。また、オプションとして dwb ADDR O 信号に出力されるアドレスが、物 理アドレスになります。

#### **Translation Enabled**

ロード・ストア・アドレス変換は、SRレジスタのSR[DME]ビットを設定することで有効化さ れます。アドレス変換が有効化されると、論理アドレス(EA)から物理アドレスへの変換と、 メモリ・アクセス時のページ・プロテクション機能が利用できます。



Figure 10. 32-bit Address Translation Mechanism using Two-Level Page Table

OR1200 におけるページ・テーブルは、オペレーティング・システムのバーチャル・メモ リ・マネージメント・サブシステムによって管理されなければなりません。Figure~10~に、2段階のページ・テーブルによるアドレス変換処理を示します。アドレス変換の詳細及びペー ジ・テーブル内容の詳細と、1段階でのページ・テーブルによるアドレス変換機能について は、OpenRISC 1000 System Architecture Manual を参照してください。

#### **DMMUCR and Flush of Entire DTLB**

DMMUCR レジスタは、OR1200 には実装されていません。従って、ページ・テーブル・ベ ース・ポインター (PTBP) は、ソフトウエアの変数として用意する必要があります。DTLB全 体をフラッシュするためには、全ての各DTLエントリをソフトウエアによりフラッシュする必 要があります。ソフトウエア・フラッシュは、ソフトウエアにより各ビットをTLBエントリか らPTEに書き戻すことで実行されます。

#### **Page Protection**

有効なPTEに定義されたページ内でバーチャル・アドレスが決定された後、そのアドレスは、 メモリ保護機構 (memory protection mechanism) により検証されます。この保護機構により当該 ページがアクセス禁止とされている場合には、データ・ページ・フォールト例外が生成されま

メモリ保護機構は、スーパーバイザーとユーザー・モードの両方のリード・アクセス及びラ イト・アクセスに対して、選択的にアクセス許可を設定することができます。このページ保護 機構は、設定可能な様々なページの粒度に対して全てのレベルで保護機能を提供します。

| Protection attribute | Meaning                                                 |
|----------------------|---------------------------------------------------------|
| DTLBWyTR[SREx]       | Enable load operations in supervisor mode to the page.  |
| DTLBWyTR[SWEx]       | Enable store operations in supervisor mode to the page. |
| DTLBWyTR[UREx]       | Enable load operations in user mode to the page.        |
| DTLBWyTR[UWEx]       | Enable store operations in user mode to the page.       |

**Table 10. Protection Attributes for Load/Store Accesses** 

Table 10 に、DTLBWyTRレジスタで設定されるページ・プロテクションの属性を示しま す。個々のページの適切な保護方法は、設定可能な7つのページ保護の方法から、PTEのPPIフ ィールドによりプログラムされます。OR1200は DMMUPRレジスタを実装していないため、 PTE[PPI]の適切な保護ビットへの変換は、ソフトウエア及びDTLBWyTRレジスタへの書き込み により実行されなければなりません。

#### **DTLB Entry Reload**

OR1200 は、ハードウエアによるDTLBエントリの再ロード機能を実装していません。そのた め、正しいページ・テーブル・エントリ (PTE) をページ・テーブルから検索する処理とDTLB ヘコピーする処理は、ソフトウエア関数により実行されなければなりません。

DTLBにコピー(cached)されていない、物理アドレスに対応するロード・ストア論理アドレ スがLSUにより算出された場合には、DTLBミス例外が生成されます。

DTLB を再ロードする関数は、正確なPTEをロードし、設定可能なDTLB way の一つを決定 し、正確な値をそのEntryのDTLBWyMRとDTLBWyTRレジスタに設定します。

#### **DTLB Entry Invalidation**

Special-Purpose Register (SPR) である DTLBEIR に論理アドレスが書き込まれることで、それ と一致するローカルDTLB中の該当するエントリが無効化されます。

#### **Locking DTLB Entries**

ソフトウエアにより全てのDTLBエントリーの再ロードが実行されると、DTLBエントリーに 対するハードウエアによるロックは解除されます。その際、いくつかのエントリーの置き換え が行われないようにする処理は、ソフトウエアの再ロード処理が担う必要があります。

#### Page Attribute – Dirty (D)

OR1200 の DTLBには、Dirty属性(D) は実装されていません。このため、ページ保護機構に Dirty属性(ビット)を持たせることは、オペレーティング・システムが担う必要があります。

#### Page Attribute – Accessed (A)

OR1200 の DTLBには、Accessed (A) 属性は実装されていません。このため、ページ保護機構 に、Accessed属性(ビット)を持たせることは、オペレーティング・システムが担う必要があり ます。

### Page Attribute – Weakly Ordered Memory (WOM)

OR1200 では、全てのメモリ・アクセスの実行順番は保たれることから、Weakly Ordered Memory (WON) 属性は必要とされません。このため、この属性は実装されていません。

#### Page Attribute – Write-Back Cache (WBC)

OR1200 では、データ・キャッシュはライト・スルー・モード (write-through mode) でのみ動 作することから、Write-Back Cache (WBC)属性は必要とされません。このため、この属性は実装 されていません。

## Page Attribute – Caching-Inhibited (CI)

OR1200 の DTLB には、Caching-Inhibited (CI)属性は実装されていません。キャッシュ領域及 び非キャッシュ領域は、データ論理アドレス(EA)の30 ビット目によって分けられています。

| _ | ), ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) | 7 11, 31 12, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|   | Effective Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Region                                              |
|   | 0x00000000 - 0x3FFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cached                                              |
|   | 0x40000000 - 0x7FFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uncached                                            |
|   | 0x80000000 - 0xBFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cached                                              |
|   | 0xC0000000 - 0xFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uncached                                            |

Table 11. Cached and uncached regions

メモリ・マップ上に定義されたI/Oレジスタへのアクセスや、外部インターフェースへ直接リ ード・ライトのアクセスを行う際には、非キャッシュ領域へのアクセスとして実行する必要が あります。

## Page Attribute – Cache Coherency (CC)

OR1200 は、マルチ・プロセッサー環境での利用をサポートする機能が実装されていないこ とや、データ・キャッシュはライト・スルー・モード (Write-Through Mode) でのみ動作するこ

とから、キャッシュ・コヒーレンシー(Cache Coherency, CC)属性は必要とされません。このた め、この属性は実装されていません。

### **Instruction MMU**

#### **Translation Disabled**

命令フェッチ・アドレス変換 (address translation) 機能は、SRレジスタのSR[IME]ビットをク リアすることで無効化されます。アドレス変換機能が無効化されると、命令フェッチにおいて 利用される論理アドレスと同様に、命令キャッシュ・アクセスにおいて、物理アドレスが使用 されます。また、オプションとして iwb\_ADDR\_O 信号に出力されるアドレスが、物理アドレ スになります。

#### **Translation Enabled**

命令フェッチ・アドレス変換 (address translation) は、SRレジスタのSR[IME]ビットを設定す ることで有効化されます。アドレス変換が有効化されると、論理アドレス(EA)から物理アド レスへの変換と、命令フェッチ時のページ・プロテクション機能が利用できます。



Figure 11. 32-bit Address Translation Mechanism using Two-Level Page Table

OR1200 におけるページ・テーブルは、オペレーティング・システムのバーチャル・メモ リ・マネージメント・サブシステムによって管理されなければなりません。Figure 11 に、2 段階のページ・テーブルによるアドレス変換処理を示します。アドレス変換の詳細及びペー ジ・テーブル内容の詳細と、1段階でのページ・テーブルによるアドレス変換機能について は、OpenRISC 1000 System Architecture Manual を参照してください。

#### **IMMUCR and Flush of Entire ITLB**

IMMUCR レジスタは、OR1200 には実装されていません。従って、ページ・テーブル・ベー ス・ポインター (PTBP) は、ソフトウエアの変数として用意する必要があります。ITLB全体を フラッシュするためには、全ての各ITLエントリをソフトウエアによりフラッシュする必要があ ります。ソフトウエア・フラッシュは、ソフトウエアにより各ビットをTLBエントリからPTEに 書き戻すことで実行されます。

#### **Page Protection**

有効なPTEに定義されたページ内でバーチャル・アドレスが決定された後、そのアドレスは、 メモリ保護機構 (memory protection mechanism) により検証されます。この保護機構により当該 ページがアクセス禁止とされている場合には、データ・ページ・フォールト例外が生成されま

メモリ保護機構は、スーパーバイザーとユーザー・モードの両方のリード・アクセス及びラ イト・アクセスに対して、選択的にアクセス許可を設定することができます。このページ保護 機構は、設定可能な様々なページの粒度に対して全てのレベルで保護機能を提供します。

| Protection attribute | Meaning                                                   |
|----------------------|-----------------------------------------------------------|
| ITLBWyTR[SXEx]       | Enable execute operations in supervisor mode of the page. |
| ITLBWyTR[UXEx]       | Enable execute operations in user mode of the page.       |

**Table 12. Protection Attributes for Instruction Fetch Accesses** 

Table 13 に、ITLBWyTRレジスタで設定されるページ・プロテクションの属性を示します。 個々のページの適切な保護方法は、設定可能な7つのページ保護の方法から、PTEのPPIフィー ルドによりプログラムされます。OR1200は IMMUPRレジスタを実装していないため、PTE[PPI] の適切な保護ビットへの変換は、ソフトウエア及びITLBWyTRレジスタへの書き込みにより実 行されなければなりません。

### **ITLB Entry Reload**

OR1200 は、ハードウエアによるITLBエントリの再ロード機能を実装していません。そのた め、正しいページ・テーブル・エントリ (PTE) をページ・テーブルから検索する処理とITLB ヘコピーする処理は、ソフトウエア関数により実行されなければなりません。

ITLBにコピー(cached) されていない、物理アドレスに対応する命令フェッチ論理アドレス が算出された場合には、ITLBミス例外が生成されます。

ITLB を再ロードする関数は、正確なPTEをロードし、設定可能なITLB way の一つを決定 し、正確な値をそのEntryのITLBWyMRとITLBWyTRレジスタに設定します。

#### **ITLB Entry Invalidation**

Special-Purpose Register (SPR) である ITLBEIR に論理アドレスが書き込まれることで、それ と一致するローカルITLB中の該当するエントリが無効化されます。

### **Locking ITLB Entries**

ソフトウエアにより全てのITLBエントリーの再ロードが実行されると、ITLBエントリーに対 するハードウエアによるロックは解除されます。その際、いくつかのエントリーの置き換えが 行われないようにする処理は、ソフトウエアの再ロード処理が担う必要があります。

### Page Attribute – Dirty (D)

Dirty属性(D)はPTEに属しますが、IMMUに利用されることはありません。

#### Page Attribute – Accessed (A)

OR1200 の DTLBには、Accessed (A) 属性は実装されていません。このため、ページ保護機構 に、Accessed属性(ビット)を持たせることは、オペレーティング・システムが担う必要があり ます。

### Page Attribute - Weakly Ordered Memory (WOM)

OR1200 では、全ての命令フェッチ・アクセスの実行順番は保たれることから、Weakly Ordered Memory (WON) 属性は必要とされません。このため、この属性は実装されていません。

#### Page Attribute – Write-Back Cache (WBC)

Write-Back Cache 属性 (WBC) はPTEに属しますが、IMMUに利用されることはありません。

### Page Attribute – Caching-Inhibited (CI)

OR1200 の ITLB には、Caching-Inhibited (CI)属性は実装されていません。キャッシュ領域及び 非キャッシュ領域は、命令論理アドレス (EA) の30 ビット目によって分けられています。

| Effective Address       | Region   |
|-------------------------|----------|
| 0x00000000 - 0x3FFFFFFF | Cached   |
| 0x40000000 - 0x7FFFFFFF | Uncached |
| 0x80000000 - 0xBFFFFFFF | Cached   |
| 0xC0000000 - 0xFFFFFFFF | Uncached |

Table 13. Cached and uncached regions

### Page Attribute – Cache Coherency (CC)

Cache Coherency 属性 (CC) は、PTEに属しますが、IMMUに利用されることはありません。

# **Programmable Interrupt Controller**

PICMR Special-Purpose Register (SPR) は、30 個までのプログラム可能な割り込みの発生の伝 達を制御 (mask or unmask) するために利用されます。PICPR Special-Purpose Register は、最大 30個の割り込みに対して、低又は高優先の属性を割り当てるために利用されます。

PICSR Special-Purpose Register(SPR)は、各割り込み入力の状態を表すために利用されます。 PICSRのビットは割り込み入力の状態を表し、実際の割り込み信号は、割り込みを発生させたデ バイスによってクリアされなければなりません。

### Tick Timer

Tick Timer 機能は、TTMR[M]の設定によって有効になります。TTCR の値は、クロック・サ イクル毎に加算されます。そして、TTCR レジスタの下位28ビットの値がTTMR[TP]の値と一致 しTTMR[IE]がセットされた場合にはいつでも、最も優先度の高い割り込みがアサートされま

TTCRが一致しTTMR[M] の値が "0x1" に設定されている場合には、TTCR は "0" から カウ ントを再開します。TTMR[M] の値が "0x2" の場合には、TTCRが一致した後 TTCRは停止しま す。その後、カウントを再開する際には、TTCRの値を変更する必要があります。 TTMR[M] が "0x3" に設定されている場合には、TTCR の値が一致してもカウントを継続します。

# **Power Management**

### **Clock Gating and Frequency Changing Versus CPU Stalling**

システムがクロック・ゲーティング (clock gating) をサポートしない場合で、クロック周波数 をスロー・ダウン・モード(slow down mode)に変更することができない場合には、CPUは -定のクロック・サイクルの間、ストールすることができます。この方法では電力消費を低減し ますが、電力消費の効果は非常に低い方法です。

#### Slow Down Mode

スロー・ダウン・モード (Slow down mode) は、ソフトウエアにより PMR[SDF] の 4-bit を 設定することで制御されます。低い値を設定することは、プロセッサー・コアのより高い性能 を得ることになります。通常は、PMR[SDF] の値は、プロセッサー・コアの使用状況をモニタ ーするオペレーシング・システムのアイドル・ルーチン(IDLE Routine) により動的に設定さ れます。

PMR[SDF] は pm clksd 信号により、チップ内に通知されます。外部クロック生成回路は、 pm clksd 信号の値に従い、クロック周波数を調整する必要があります。的確なスロー・ダウン のための要因について定義されていませんが、"0xF" に設定た場合には、クロック周波数が 32.768 KHz に低下します。

pm clksd 信号が "0xF" の値の場合には、pm lvolt 信号がアサートされます。これは、外部電 力供給源に対する低い電力への変更指示になります。

#### **Doze Mode**

ドーズ・モード (Doze Mode) への切り替えるためには、ソフトウエアがPMR[DME] を設定 する必要があります。プログラマブル割り込みコントローラ(PIC)からの割り込みを受信後、 pm wakeup 信号がアサートされ、外部クロック生成回路が全てのクロックに対して有効になり ます。クロックが生成される(running)と、RISC は通常モード(normal mode)に戻り、 PMR[DME] はクリアされます。

ドーズ・モード (Doze mode) が有効となった場合、pm\_dc\_gate, pm\_ic\_gate, pm\_dmmu\_gate, pm\_immu\_gate, pm\_cpu\_gate 信号がアサートされます。その結果、clk\_tt 信号以外の全てのクロ ック信号は、外部クロック生成回路によってゲート (gated) されます。

#### Sleep Mode

スリープ・モードへ切り替えるためには、ソフトウエアが PMR[SME] を設定する必要があり ます。プログラマブル割り込みコントローラ (PIC) からの割り込みを受信後、pm wakeup 信号 がアサートされ、外部クロック生成回路が全てのクロックに対して有効になります。クロック が生成 (running) されると、RISC は通常モード (normal mode) に戻り、PMR[SME] はクリア されます。

スリープ・モードが有効となった場合、pm dc gate, pm ic gate, pm dmmu gate, pm immu gate, pm cpu gate, pm tt gate 信号がアサートされます。その結果、clk tt 信号を含む全てのクロック 信号は、外部クロック生成回路によってゲート(gated)されます。

スリープ・モードにおいて、pm lvolt 信号がアサートされます。これは、外部電力供給源に 対する低い電力への変更指示になります。

### **Clock Gating**

クロック・ゲーティング (Clock gating) は、OR1200 の電力制御機能としては実装されてい ません。

### **Disabled Units Force Clock Gating**

Special-Purpose Register (SPR) である SR の設定により無効化されるユニットには、クロック をゲートする信号があります。また、SR[DCE], SR[ICE], SR[DME], SR[IME] をクリアすること により、次の信号が直接アサートされます。 pm\_dc\_gate, pm\_ic\_gate, pm\_dmmu\_gate, pm immu gate

# **Debug Unit**

デバッグ・ユニットは、開発インターフェース (development interface) を通して制御すること ができ、また、RISC に常駐しているデバック・ソフトウエアにより独立して動作させることが できます。

### **Watchpoints**

OR1200 デバックユニットは、OpenRISC 1000 アーキテクチャーで定義されている ウォッチ ポイント (Watchpoints) を実装していません。

### **Breakpoint Exception**

ウォッチポイント (Watchpoints) を定義している Debug Mode Register 2 のDMR2[WGB] ビッ トの設定により、ブレイク・ポイント(breakpoint)例外が起動します。ブレイク・ポイント (breakpoint) 例外の起動により、デバッガー (target resident debugger) が起動されます。

ブレイク・ポイント(Breakpoint)は、開発インターフェース(development interface)上の dbg bp o 信号により、通知 (broadcasted) されます。

# **Development Interface**

追加して利用する "development and debug interface IP core" は、IEEE.1149.1 (JTAG) protocol をサポートする標準のデバッガが、OpenRISC 1200 に接続するために利用されます。

### **Debugging Through Development Interface**

DSR (Debug Stop Register) Special-Purpose Register (SPR) は、例外ハンドラーの実行を停止 し、開発インターフェース (development intrface) に制御を移すための例外を定義します。それ は、常駐するデバッグ・ソフトウエア(resident debug software)または開発インターフェースに より設定することができます。

DRR (Debug Reason Register) Special-Purpose Register (SPR) は、プログラム (program flow) の実行を停止し、その上、開発インターフェース (development intrface) に制御を移したイベン トを表示します。それは、常駐するデバッグ・ソフトウエア (resident debug software) または開 発インターフェースによりクリアします。

DIR Special-Purpose Register (SPR) は、実装されていません。

#### Reading PC, Load/Store EA, Load Data, Store Data, Instruction

プログラム・カウンター (PC)、ロード・ストア論理アドレス (LSEA)、ロード・データ、 ストア・データ、現在の実行パイプライン中の命令 のような重要な情報は、開発インターフ ェース (development interface) を通して、非同期に読む (read) ことができます。

| dbg_op_i[2:0] | Meaning                              |
|---------------|--------------------------------------|
| 0x0           | Reading Program Counter (PC)         |
| 0x1           | Reading Load/Store Effective Address |
| 0x2           | Reading Load Data                    |
| 0x3           | Reading Store Data                   |

| 0x4 | Reading SPR                               |
|-----|-------------------------------------------|
| 0x5 | Writing SPR                               |
| 0x6 | Reading Instruction in Execution Pipeline |
| 0x7 | Reserved                                  |

**Table 14. Development Interface Operation Commands** 

Table 14 に、開発インターフェース (developmentn interface) を介して 実施する、読み書き (read or write) 制御のためのコマンド一覧を示す。SPR への Read/Write 以外の全てのReadコ マンドは非同期に実行される。

#### Reading and Writing SPRs Through Development Interface

SPR への Read, Write アクセスには、dbg op i 信号を、それぞれ 0x4,0x5 に設定する必要 があります。



Figure 12. Development Interface Cycles

Figure 12 に、開発インターフェース (development interface) のサイクルについて示しま す。ライト (Write) は、メイン RISC クロックの立ち上がりエッジに同期し、1クロック・サ イクルの間データを保持する必要があります。リード(Read)は、キャッシュ・ラインに同期 したアクセスとなることから、2クロック・サイクルが必要となります。また、TLB エントリ の参照のために1クロック・サイクル分の遅延が必要となります。

必要であれば、外部デバッガーは、dbg stall i 信号をアサートすることで、CPU コアを停止 させることができます。この方法により、参照したい全てのレジスタの値をRISCコアからリー ドするのに十分な時間を確保することができ、また、RISCコアによる同一レジスタへの書き込 みを待つことなく、SPRへの書き込みを実行することができます。

#### **Tracking Data Flow**

外部デバッガーは、デバッグもしくはプロファイル解析のためにRISCの内部のデータ・フロ ーをモニターし記録することができます。これは、ロード・ストア・ユニット、ロード・スト ア論理アドレスとロード・ストア・データを含む、開発インターフェース(development interface) 上の状態をモニターすることで実現されます。

| dbg_lss_o[3:0] | Load/Store Instruction in Execution    |
|----------------|----------------------------------------|
| 0x0            | No load/store instruction in execution |
| 0x1            | Reserved for load doubleword           |

| 0x2 | Load byte and zero extend       |
|-----|---------------------------------|
| 0x3 | Load byte and sign extend       |
| 0x4 | Load halfword and zero extend   |
| 0x5 | Load halfword and sign extend   |
| 0x6 | Load singleword and zero extend |
| 0x7 | Load singleword and sign extend |
| 0x8 | Reserved for store doubleword   |
| 0x9 | Reserved                        |
| 0xA | Store byte                      |
| 0xB | Reserved                        |
| 0xC | Store halfword                  |
| 0xD | Reserved                        |
| 0xE | Store singleword                |
| 0xF | Reserved                        |

Table 15. Status of the Load/Store Unit

外部トレース・バッファーは、dbg lss o 信号上のロード・ストア・ユニットの動作及び状態 を解析することで、目的とする全てのデータ・フロー・イベントを記録することができます。 Table 15 は、ロード・ストア・ユニットの各状態と対応するdbg lss o信号の値です。

### **Tracking Program Flow**

外部デバッガーは、デバッグもしくはプロファイル解析のためにRISCの内部のプログラム・ フローをモニターし記録することができます。これは、命令ユニット、プログラム・カウンタ ー (PC) 、フェッチ命令語を含む、開発インターフェース (development interface) 上の状態を モニターすることで実現されます。

| dbg_is_o[1:0] | Instruction Fetch Status           |
|---------------|------------------------------------|
| 0x0           | No instruction fetch in progress   |
| 0x1           | Normal instruction fetch           |
| 0x2           | Executing branch instruction       |
| 0x3           | Fetching instruction in delay slot |

**Table 16. Status of the Instruction Unit** 

External trace buffer can capture all interesting program flow events by analyzing status of the instruction unit available on **dbg is o**. Table 16 lists different status encoding for the instruction unit.

外部トレース・バッファーは、dbg is o 信号上の命令ユニットの動作及び状態を解析するこ とで、目的とする全てのプログラム・フロー・イベントを記録することができます。Table 16 は、命令ユニットの各状態と対応するdbg is o信号の値です。

### **Triggering External Watcpoint Event**

Figure 13 に、開発インターフェース (development interface) がどのように dbg\_ewt\_I をア サートし、ウォッチポイント・イベント (Watchpoint event) を発生させるか示します。プログ ラムされた場合には、外部のウォッチポイント・イベントはブレイクポイント例外 (breakpoint exception) を発生させます。



Figure 13. Assertion of External Watchpoint Trigger

# Registers

この章は、OR1200 コア内部の全てのレジスタを説明します。下記の表の "GPR" 番号を左に 11ビットシフトし"REG"番号を加えることで、各Special-Purpose Register (SPR) のアドレスを算 出します。USER MODEとSUPV MODEの欄は、ユーザー・モードとスーパーバイザー・モード における、各レジスタへの有効なアクセス・タイプを示しています。"R/W"は、リードとライ ト・アクセスを示し、"R" はリード・アクセスのみ可能であることを示しています。

# **Registers list**

| GRP | REG   | REG NAME    | USER | SUPV | DESCRIPTION                |
|-----|-------|-------------|------|------|----------------------------|
| #   | #     |             | MODE | MODE |                            |
| 0   | 0     | VR          | _    | R    | Version Register           |
| 0   | 1     | UPR         | _    | R    | Unit Present Register      |
| 0   | 2     | CPUCFGR     | _    | R    | CPU Configuration Register |
| 0   | 3     | DMMUCFGR    | _    | R    | Data MMU Configuration     |
|     |       |             |      |      | Register                   |
| 0   | 4     | IMMUCFGR    | _    | R    | Instruction MMU            |
|     |       |             |      |      | Configuration Register     |
| 0   | 5     | DCCFGR      | _    | R    | Data Cache Configuration   |
|     |       |             |      |      | Register                   |
| 0   | 6     | ICCFGR      | _    | R    | Instruction Cache          |
|     |       |             |      |      | Configuration Register     |
| 0   | 7     | DCFGR       | _    | R    | Debug Configuration        |
|     |       |             |      |      | Register                   |
| 0   | 16    | PC          | _    | R/W  | PC mapped to SPR space     |
| 0   | 17    | SR          | _    | R/W  | Supervision Register       |
| 0   | 32    | EPCR0       | _    | R/W  | Exception PC Register      |
| 0   | 48    | EEAR0       | _    | R/W  | Exception EA Register      |
| 0   | 64    | ESR0        | _    | R/W  | Exception SR Register      |
| 0   | 1024- | GPR0-GPR31  | _    | R/W  | GPRs mapped to SPR space   |
|     | 1055  |             |      |      |                            |
| 1   | 2     | DTLBEIR     | _    | W    | Data TLB Entry Invalidate  |
|     |       |             |      |      | Register                   |
| 1   | 1024- | DTLBW0MR0-  | _    | R/W  | Data TLB Match Registers   |
|     | 1151  | DTLBW0MR127 |      |      | Way 0                      |

| 1  | 1536- | DTLBW0TR0-  | _   | R/W | Data TLB Translate           |
|----|-------|-------------|-----|-----|------------------------------|
|    | 1663  | DTLBW0TR127 |     |     | Registers Way 0              |
| 2  | 2     | ITLBEIR     | _   | W   | Instruction TLB Entry        |
|    |       |             |     |     | Invalidate Register          |
| 2  | 1024- | ITLBW0MR0-  | _   | R/W | Instruction TLB Match        |
|    | 1151  | ITLBW0MR127 |     |     | Registers Way 0              |
| 2  | 1536- | ITLBW0TR0-  | _   | R/W | Instruction TLB Translate    |
|    | 1663  | ITLBW0TR127 |     |     | Registers Way 0              |
| 3  | 0     | DCCR        | _   | R/W | DC Control Register          |
| 3  | 1     | DCBIR       | _   | W   | DC Block Invalidate          |
|    |       |             |     |     | Register                     |
| 3  | 257   | DCBFR       | W   | W   | DC Block Flush Register      |
| 4  | 0     | ICCR        | _   | R/W | IC Control Register          |
| 4  | 256   | ICBIR       | W   | W   | IC Block Invalidate Register |
| 5  | 256   | MACLO       | R/W | R/W | MAC Low                      |
| 5  | 257   | MACHI       | R/W | R/W | MAC High                     |
| 6  | 16    | DMR1        | _   | R/W | Debug Mode Register 1        |
| 6  | 17    | DMR2        | _   | R/W | Debug Mode Register 2        |
| 6  | 20    | DSR         | _   | R/W | Debug Stop Register          |
| 6  | 21    | DRR         | _   | R/W | Debug Reason Register        |
| 8  | 0     | PMR         | _   | R/W | Power Management             |
|    |       |             |     |     | Register                     |
| 9  | 1     | PICMR       | _   | R/W | PIC Mask Register            |
| 9  | 2     | PICPR       | _   | R/W | PIC Priority Register        |
| 9  | 3     | PICSR       | _   | R/W | PIC Status Register          |
| 10 | 0     | TTMR        | _   | R/W | Tick Timer Mode Register     |
| 10 | 256   | TTCR        | R*  | R/W | Tick Timer Count Register    |

**Table 17. List of All Registers** 

Table 17 に、OpenRISC 1000 Special-Purpose Register のうち OR1200 に実装されているもの を示します。レジスタ VR と UPR について、以下に説明します。その他のレジスタについて は、OpenRISC 1000 System Architecture Manual を参照してください。

# Register VR description

Special-Purpose Register VR は、OpenRISC 1000 プロセッサーのバージョン及びリビジョンを 示します。これは、また、プロセッサーがどの実装をベースとしているかを示しています。

| Bit# | Access | Reset    | Description     |
|------|--------|----------|-----------------|
| 5:0  | R      | Revision | REV             |
|      |        |          | Revision number |
| 15:6 | R      | 0x0      | Reserved        |

| 23:16R  | 0: | 200 | CFG Configuration should be read from UPR and configuration registers |
|---------|----|-----|-----------------------------------------------------------------------|
| 31:24 R | 0: | x12 | VER                                                                   |
|         |    |     | Version number for OR1200 is fixed at 0x1200.                         |

Table 18. VR Register

# **Register UPR description**

Special-Purpose Register UPR は、プロセッサー内部に実装されたユニットを示します。実装さ れた各ユニット及び機能を示す各ビットを持ちます。下位の16ビットは OpenRISC 1000 アー キテクチャーにて定義されているユニットのうち実装されているものについて示しています。 上位の16ビットは、実装されているカスタム・ユニットについて示しています。

| Bit#  | Access | Reset  | Description                                    |  |  |
|-------|--------|--------|------------------------------------------------|--|--|
| 0     | R      | 1      | UP                                             |  |  |
|       |        |        | UPR present                                    |  |  |
| 1     | R      | 1      | DCP                                            |  |  |
|       |        |        | Data cache present                             |  |  |
| 2     | R      | 1      | ICP                                            |  |  |
|       |        |        | Instruction cache present                      |  |  |
| 3     | R      | 1      | DMP                                            |  |  |
|       |        |        | Data MMU present                               |  |  |
| 4     | R      | 1      | IMP                                            |  |  |
|       |        |        | Instruction MMU present                        |  |  |
| 5     | R      | 1      | MP                                             |  |  |
|       |        |        | MAC present                                    |  |  |
| 6     | R      | 1      | DUP                                            |  |  |
|       |        |        | Debug unit present                             |  |  |
| 7     | R      | 0      | PCUP                                           |  |  |
|       |        |        | Performance counters unit not present          |  |  |
| 8     | R      | 1      | PMP                                            |  |  |
|       |        |        | Power Management Present                       |  |  |
| 9     | R      | 1      | PICP                                           |  |  |
|       |        |        | Programmable interrupt controller present      |  |  |
| 10    | R      | 1      | TTP                                            |  |  |
|       |        |        | Tick timer present                             |  |  |
| 23:11 |        | X      | Reserved                                       |  |  |
| 31:24 | R      | 0xXXXX | CUP                                            |  |  |
|       |        |        | The user of the OR1200 core adds custom units. |  |  |

Table 19. UPR Register

# **Register CPUCFGR description**

Special-Purpose Register CPUCFGR は、CPUの機能(capabilities)及び構成(configuration)を示して います。

| Bit# | Access | Reset | Description                     |  |  |  |
|------|--------|-------|---------------------------------|--|--|--|
| 3:0  | R      | 0x0   | NSGF                            |  |  |  |
|      |        |       | Zero number of shadow GPR files |  |  |  |
| 4    | R      | 0     | HGF                             |  |  |  |
|      |        |       | No half GPR files               |  |  |  |
| 5    | R      | 1     | OB32S                           |  |  |  |
|      |        |       | ORBIS32 supported               |  |  |  |
| 6    | R      | 0     | OB64S                           |  |  |  |
|      |        |       | ORBIS64 not supported           |  |  |  |
| 7    | R      | 0     | OF32S                           |  |  |  |
|      |        |       | ORFPX32 not supported           |  |  |  |
| 8    | R      | 0     | OF64S                           |  |  |  |
|      |        |       | ORFPX64 not supported           |  |  |  |
| 9    | R      | 0     | OV64S                           |  |  |  |
|      |        |       | ORVDX64 not supported           |  |  |  |

Table 20. CPUCFGR Register

# **Register DMMUCFGR description**

Special-Purpose Register DMMUCFGR は、DMMU の機能(capabilities)及び構成(configuration)を 示しています。

| Bit# | Access | Reset | Description                                |  |  |  |
|------|--------|-------|--------------------------------------------|--|--|--|
| 1:0  | R      | 0x0   | NTW                                        |  |  |  |
|      |        |       | One DTLB way                               |  |  |  |
| 4:2  | R      | 0x4 – | NTS                                        |  |  |  |
|      |        | 0x7   | 16, 32, 64 or 128 DTLB sets                |  |  |  |
| 7:5  | R      | 0x0   | NAE                                        |  |  |  |
|      |        |       | No ATB Entries                             |  |  |  |
| 8    | R      | 0     | CRI                                        |  |  |  |
|      |        |       | No DMMU control register implemented       |  |  |  |
| 9    | R      | 0     | PRI                                        |  |  |  |
|      |        |       | No protection register implemented         |  |  |  |
| 10   | R      | 1     | TEIRI                                      |  |  |  |
|      |        |       | DTLB entry invalidate register implemented |  |  |  |
| 11   | R      | 0     | HTR                                        |  |  |  |

| ı |  | l |                             |
|---|--|---|-----------------------------|
|   |  |   | No hardware DTLB reload     |
|   |  |   | 1 to hardware B 1 EB reload |

Table 21. DMMUCFGR Register

# **Register IMMUCFGR description**

Special-Purpose Register IMMUCFGR は、IMMU の機能(capabilities)及び構成(configuration)を示 しています。

| Bit# | Access | Reset | Description                               |  |  |  |
|------|--------|-------|-------------------------------------------|--|--|--|
| 1:0  | R      | 0x0   | NTW                                       |  |  |  |
|      |        |       | One ITLB way                              |  |  |  |
| 4:2  | R      | 0x4 – | NTS                                       |  |  |  |
|      |        | 0x7   | 16, 32, 64 or 128 ITLB sets               |  |  |  |
| 7:5  | R      | 0x0   | NAE                                       |  |  |  |
|      |        |       | No ATB Entries                            |  |  |  |
| 8    | R      | 0     | CRI                                       |  |  |  |
|      |        |       | No IMMU control register implemented      |  |  |  |
| 9    | R      | 0     | PRI                                       |  |  |  |
|      |        |       | No protection register implemented        |  |  |  |
| 10   | R      | 1     | TEIRI                                     |  |  |  |
|      |        |       | TLB entry invalidate register implemented |  |  |  |
| 11   | R      | 0     | HTR                                       |  |  |  |
|      |        |       | No hardware ITLB reload                   |  |  |  |

Table 22. IMMUCFGR Register

# **Register DCCFGR description**

Special-Purpose Register DCCFGR は、データ・キャッシュの機能(capabilities)及び構成 (configuration)を示しています。

| Bit# | Access | Reset | Description               |  |
|------|--------|-------|---------------------------|--|
| 2:0  | R      | 0x0   | NCW                       |  |
|      |        |       | One DC way                |  |
| 6:3  | R      | 0x4 – | NCS                       |  |
|      |        | 0x7   | 16, 32, 64 or 128 DC sets |  |
| 7    | R      | 0x0   | CBS                       |  |
|      |        |       | 16-byte cache block size  |  |
| 8    | R      | 0     | CWS                       |  |

|              |   |       | Cache write-through strategy                 |  |  |
|--------------|---|-------|----------------------------------------------|--|--|
| 9 R 1        |   | 1     | CCRI                                         |  |  |
|              |   |       | DC control register implemented              |  |  |
| 10           | R | 1     | CBIRI                                        |  |  |
|              |   |       | DC block invalidate register implemented     |  |  |
| 11 R 0 CBPRI |   | CBPRI |                                              |  |  |
|              |   |       | DC block prefetch register not implemented   |  |  |
| 12           |   |       | CBLRI                                        |  |  |
|              |   |       | DC block lock register not implemented       |  |  |
| 13           | R | 1     | CBFRI                                        |  |  |
|              |   |       | DC block flush register implemented          |  |  |
| 14           | R | 0     | CBWBRI                                       |  |  |
|              |   |       | DC block write-back register not implemented |  |  |

Table 23. DCCFGR Register

# **Register ICCFGR description**

Special-Purpose Register ICCFGR は、命令キャッシュの機能(capabilities)及び構成(configuration) を示しています。

| Bit# | Access | Reset | Description                                  |  |  |  |
|------|--------|-------|----------------------------------------------|--|--|--|
| 2:0  | R      | 0x0   | NCW                                          |  |  |  |
|      |        |       | One IC way                                   |  |  |  |
| 6:3  | R      | 0x4 – | NCS                                          |  |  |  |
|      |        | 0x7   | 16, 32, 64 or 128 IC sets                    |  |  |  |
| 7    | R      | 0x0   | CBS                                          |  |  |  |
|      |        |       | 16-byte cache block size                     |  |  |  |
| 8    | R      | 0     | CWS                                          |  |  |  |
|      |        |       | Cache write-through strategy                 |  |  |  |
| 9    | R      | 1     | CCRI                                         |  |  |  |
|      |        |       | IC control register implemented              |  |  |  |
| 10   | R      | 1     | CBIRI                                        |  |  |  |
|      |        |       | IC block invalidate register implemented     |  |  |  |
| 11   | R      | 0     | CBPRI                                        |  |  |  |
|      |        |       | IC block prefetch register not implemented   |  |  |  |
| 12   | R      | 0     | CBLRI                                        |  |  |  |
|      |        |       | IC block lock register not implemented       |  |  |  |
| 13   | R      | 1     | CBFRI                                        |  |  |  |
|      |        |       | IC block flush register implemented          |  |  |  |
| 14   | R      | 0     | CBWBRI                                       |  |  |  |
|      |        |       | IC block write-back register not implemented |  |  |  |

Table 24. ICCFGR Register

# Register DCFGR description

Special-Purpose Register DCFGR は、デバック・ユニットの機能(capabilities)及び構成 (configuration)を示しています。

| Bit# | Access | Reset | Description                         |  |
|------|--------|-------|-------------------------------------|--|
| 2:0  | R      | 0x0   | NDP                                 |  |
|      |        |       | Zero DVR/DCR pairs                  |  |
| 3    | R      | 0     | WPCI                                |  |
|      |        |       | Watchpoint counters not implemented |  |

Table 25. DCFGR Register

# **IO** ports

OR1200 IP コアは様々なインターフェースを持ちます。Figure 14 に次に示す全てのイン ターフェースを示します。

- 命令及びデータ・インターフェース
  - (Instruction and data WISHBONE host interfaces)
- 電力制御インターフェース (Power management interface)
- 開発インターフェース (Development interface)
- 割り込みインターフェース (Interrupts interface)



Figure 14. Core's Interfaces

# **Instruction WISHBONE Master Interface**

OR1200 は、WISHBONE Rev B 準拠の2つのマスター・インターフェースを持ちます。命令 インターフェースは、命令及び命令キャッシュ・ラインをフェッチする目的で、OR1200 コア とメモリ・サブシステムを接続するために使用されます。

Rev 0.7J "Japanese Version" Preliminary

| Port      | Width | Direction | Description                                     |
|-----------|-------|-----------|-------------------------------------------------|
| iwb_CLK_I | 1     | Input     | Clock input                                     |
| iwb_RST_I | 1     | Input     | Reset input                                     |
| iwb_CYC_O | 1     | Output    | Indicates valid bus cycle (core select)         |
| iwb_ADR_O | 32    | Outputs   | Address outputs                                 |
| iwb_DAT_I | 32    | Inputs    | Data inputs                                     |
| iwb_DAT_O | 32    | Outputs   | Data outputs                                    |
| iwb_SEL_O | 4     | Outputs   | Indicates valid bytes on data bus (during valid |
|           |       |           | cycle it must be 0xf)                           |
| iwb_ACK_I | 1     | Input     | Acknowledgment input (indicates normal          |
|           |       |           | transaction termination)                        |
| iwb_ERR_I | 1     | Input     | Error acknowledgment input (indicates an        |
|           |       |           | abnormal transaction termination)               |
| iwb_RTY_I | 1     | Input     | In OR1200 treated same way as iwb_ERR_I.        |
| iwb_WE_O  | 1     | Output    | Write transaction when asserted high            |
| iwb_STB_O | 1     | Outputs   | Indicates valid data transfer cycle             |

**Table 26. Instruction WISHBONE Master Interface' Signals** 

# **Data WISHBONE Master Interface**

OR1200 は、WISHBONE Rev B 準拠の2つのマスター・インターフェースを持ちます。デー タ・インターフェースは、データ及びデータ・キャッシュ・ラインをリード・ライトする目的 で、OR1200 コアと外部のペリフェラル (external peripherals) 及びメモリ・サブシステムを接続 するために使用されます。

| Port      | Width | Direction | Description                                                                |
|-----------|-------|-----------|----------------------------------------------------------------------------|
| dwb_CLK_I | 1     | Input     | Clock input                                                                |
| dwb_RST_I | 1     | Input     | Reset input                                                                |
| dwb_CYC_O | 1     | Output    | Indicates valid bus cycle (core select)                                    |
| dwb_ADR_O | 32    | Outputs   | Address outputs                                                            |
| dwb_DAT_I | 32    | Inputs    | Data inputs                                                                |
| dwb_DAT_O | 32    | Outputs   | Data outputs                                                               |
| dwb_SEL_O | 4     | Outputs   | Indicates valid bytes on data bus (during valid cycle it must be 0xf)      |
| dwb_ACK_I | 1     | Input     | Acknowledgment input (indicates normal transaction termination)            |
| dwb_ERR_I | 1     | Input     | Error acknowledgment input (indicates an abnormal transaction termination) |
| dwb_RTY_I | 1     | Input     | In OR1200 treated same way as dwb_ERR_I.                                   |
| dwb_WE_O  | 1     | Output    | Write transaction when asserted high                                       |
| dwb_STB_O | 1     | Outputs   | Indicates valid data transfer cycle                                        |

Table 27. Data WISHBONE Master Interface' Signals

# **System Interface**

システム・インターフェースは、リセット・クロック及びその他のシステム信号と、OR1200 コアを接続します。

| Port     | Width | Direction | Description                  |
|----------|-------|-----------|------------------------------|
| Rst      | 1     | Input     | Asynchronous reset           |
| clk_cpu  | 1     | Input     | Main clock input to the RISC |
| clk_dc   | 1     | Input     | Data cache clock             |
| clk_ic   | 1     | Input     | Instruction cache clock      |
| clk_dmmu | 1     | Input     | Data MMU clock               |
| clk_immu | 1     | Input     | Instruction MMU clock        |
| clk_tt   | 1     | Input     | Tick timer clock             |

**Table 28. System Interface Signals** 

# **Development Interface**

開発インターフェース (Development Interface) は、外部の開発ポートとRISCコア内部のデバ ック関連機能を接続します。デバック関連機能により、RISC内部のプログラムの実行制御、ブ レイクポイントとウォッチポイントの設定、命令及びデータ・フローのトレース (tracing) が可 能となります。

| Port        | Width | Direction | Description                                                            |
|-------------|-------|-----------|------------------------------------------------------------------------|
| dbg_dat_o   | 32    | Output    | Transfer of data from RISC to external development                     |
| dbg_dat_i   | 32    | Input     | interface Transfer of data from external development interface to RISC |
| dbg_adr_i   | 32    | Input     | Address of special-purpose register to be read or written              |
| dbg_op_I    | 3     | Input     | Operation select for development interface                             |
| dbg_lss_o   | 4     | Output    | Status of load/store unit                                              |
| dbg_is_o    | 2     | Output    | Status of instruction fetch unit                                       |
| dbg_wp_o    | 11    | Output    | Status of watchpoints                                                  |
| dbg_bp_o    | 1     | Output    | Status of the breakpoint                                               |
| dbg_stall_i | 1     | Input     | Stalls RISC CPU core                                                   |
| dbg_ewt_i   | 1     | Input     | External watchpoint trigger                                            |

**Table 29. Development Interface** 

# **Power Management Interface**

60 of 62

電力制御(Power management) インターフェースは、外部の電力制御回路とRISCコアを接続 する信号を提供します。外部の電力制御回路は、テクノロジ・スペシフィック(Technology Specific) でOR1200 コア内部に実装することができない機能を持つことが要求されます。

| Port         | Width | Direction | Generation      | Description                       |
|--------------|-------|-----------|-----------------|-----------------------------------|
| pm_clksd     | 4     | Output    | Static (in SW)  | Slow down outputs that control    |
|              |       |           |                 | reduction of RISC clock frequency |
| pm_cpustall  | 1     | Input     | -               | Synchronous stall of the RISC's   |
|              |       |           |                 | CPU core                          |
| pm_dc_gate   | 1     | Output    | Dynamic (in HW) | Gating of data cache clock        |
| pm_ic_gate   | 1     | Output    | Dynamic (in HW) | Gating of instruction cache clock |
| pm_dmmu_gate | 1     | Output    | Dynamic (in HW) | Gating of data MMU clock          |
| pm_immu_gate | 1     | Output    | Dynamic (in HW) | Gating of instruction MMU clock   |
| pm_tt_gate   | 1     | Output    | Dynamic (in HW) | Gating of tick timer clock        |
| pm_cpu_gate  | 1     | Output    | Static (in SW)  | Gating of main CPU clock          |
| pm_wakeup    | 1     | Output    | Dynamic (in HW) | Activate all clocks               |
| pm_lvolt     | 1     | Output    | Static (in SW)  | Lower voltage                     |

**Table 30. Power Management Interface** 

# **Interrupt Interface**

割り込みインターフェース (Interrupt Interface) は、外部のペリフェラル割り込み出力信号と RISCコアを接続する割り込み信号を持ちます。全ての割り込み入力は、メイン RISC クロック の立ち上がりエッジで評価されます。

| Port     | Width    | Direction | Description         |
|----------|----------|-----------|---------------------|
| pic_ints | PIC_INTS | Input     | External interrupts |

**Table 31. Interrupt Interface** 



# **Core HW Configuration**

この章では、ユーザーによって設定可能な、コアのコンフィギュレーション・パラメータに ついて説明しています。パラメータは、実際にコアを使用したシミュレーションや論理合成を 実施する前に、ユーザーによって設定される必要があります。

| Variable Name | Range   | Default | Description                          |
|---------------|---------|---------|--------------------------------------|
| EADDR_WIDTH   | 32      | 32      | Effective address width              |
| VADDR_WIDTH   | 32      | 32      | Virtual address width                |
| PADDR_WIDTH   | 24 - 36 | 32      | Physical address width               |
| DATA_WIDTH    | 32      | 32      | Data width / Operation width         |
|               |         |         |                                      |
| DC_IMPL       | 0 - 1   | 1       | Data cache implementation            |
| DC_SETS       | 512     | 512     | Data cache number of sets            |
| DC_WAYS       | 1       | 1       | Data cache number of ways            |
| DC_LINE       | 16      | 16      | Data cache line size                 |
|               |         |         |                                      |
| IC_IMPL       | 0 - 1   | 1       | Instruction cache implementation     |
| IC_SETS       | 512     | 512     | Instruction cache number of sets     |
| IC_WAYS       | 1       | 1       | Instruction cache number of ways     |
| IC_LINE       | 16      | 16      | Instruction cache line size in bytes |
|               |         |         |                                      |
| DMMU_IMPL     | 0 - 1   | 1       | Data MMU implementation              |
| DTLB_SETS     | 64      | 64      | Data TLB number of sets              |
| DTLB_WAYS     | 1       | 1       | Data TLB number of ways              |
|               |         |         |                                      |
| IMMU_IMPL     | 0 - 1   | 1       | Instruction MMU implementation       |
| ITLB_SETS     | 64      | 64      | Instruction TLB number of sets       |
| ITLB_WAYS     | 1       | 1       | Instruction TLB number of ways       |
|               |         |         |                                      |
| PIC_INTS      | 2 - 32  | 30      | Number of interrupt inputs           |
|               |         |         |                                      |
|               |         |         |                                      |
|               |         |         |                                      |
|               |         |         |                                      |