CH3 习题课

课程基于

《计算机组成与设计:硬件/软件接口》5e Patterson & Hennesy 著

教材习题

3.2 计算十六进制符号-数值表示的减法5ED4-07A4。

3.24 写出十进制数63.25的IEEE 754双精度表达。

3.43 写出实数1/3的二进制形式,不需要规格化。这个数能否被IEEE 754浮点数精确表达?

B站 翼云图灵

(414)	8.32位二进制补码1111 1111 1111 1111 1111 1111 0000 对应的十进制真值是() A.- 1 B 16 C.0 D. 16
C. 0xffff D. 0xffffffff 2. 8位五选一多路选择器控制线位数是() A. 1 B. 2 C. 3 D. 8	9. 浮点加减中的对阶的方法是() A. 将加数的阶码调整到与被加数的阶码相同 B. 将较大的一个阶码调整到与较小的一个阶码相同 C. 将被加数的阶码调整到与加数的阶码相同
8. 32位二进制补码1111 1111 1111 1111 1111 1111 0011 对应的十进制真值是() A3 B13 C14 D15 10. 对于浮点数乘法运算,下面描述的哪个过程是错误的或是不需要的()	D.较小的一个阶码调整到与较大的一个阶码相同 7. 在8位定点表示中,寄存器内容为10000000,若它的数值等于 128,则它采用的数据表示为()。 A. 原码 B. 反码 C. 补码 D. 移码
A. 相乘前对阶,对阶的规则是小阶向大阶对齐 B. 尾数相乘,指数相加 C. 指数运算结果需要减去偏阶进行修正 D. 对运算结果进行规格化,一般是右规	8.补码加法运算是指()。 A. 操作数用补码表示,连同符号位一起相加 B. 操作数用补码表示,根据符号位决定实际操作 C. 将操作数转化为原码后再相加 D. 取操作数绝对直接相知,符号位单独处理
	Dyu ,

- 6. 16位二进制补码的16进制表达为0xFFFD,对应的十进制真值是()
 - A. 3
- B.65533
- C.- 65533
- D. 3
- 8. 对于浮点数除法运算,下面描述的哪个过程是错误的或是不需要的()
 - A. 尾数相除, 指数相减
 - B. 相除前对阶, 对阶的规则是小阶向大阶对齐
 - C. 指数运算结果需要加上偏阶进行修正
 - D. 对运算结果进行规格化
- 2、IEEE754-

2008包含一种"半精度"格式,只有16位宽,最高位是数符,指数是5位宽且偏阶为15的移码表达,尾数有10位宽,具有隐含1。写出10进制-9.625的半精度二进制位表达式(5分)

B站翼云图灵

使用改进后的乘法器硬件计算-13₁₀ x 9₁₀,其中两个数都用5位二进制补码表示。(要求写出每一步各寄存器中的值)

B站 翼云图灵

使用改进的除法器计算无符号除法 9_{10} / 3_{10} , 其中两源操作数均为4位。要求写出执行每个步骤后各寄存器中的值。