Code ▼

Urban Pedals: Unveiling Toronto's Bike Share Story

Overview

This report contains the code and data for a data analysis project focused on exploring the ridership patterns of the bikeshare scheme in Toronto. The analysis is conducted using the R programming language to gain insights into user behaviors, popular routes, and temporal trends.

Data Source

- Ref:
 - https://open.toronto.ca/dataset/bike-share-toronto-ridership-data/ (https://open.toronto.ca/dataset/bike-share-toronto-ridership-data/)

Download and Import data.

· Import libraries.

Hide

```
# load library
library(opendatatoronto)
library(dplyr)
library(tidyr)
library(ggplot2)
```

- Manually download data files from data source.
 - We have 52 files of 5-year data, from 2019 to 2023.
 - · List of all data files

```
# Define path of dataset
DATA_PATH <- "./source/"

# get the paths for each data file.
FILE_PATH_LIST <- list.files(DATA_PATH, pattern = "\\.csv$", full.names = TRUE)
FILE_PATH_LIST</pre>
```

```
[1] "./source/2019-Q1.csv"
                                                 "./source/2019-Q2.csv"
 [3] "./source/2019-Q3.csv"
                                                 "./source/2019-Q4.csv"
 [5] "./source/2020-01.csv"
                                                 "./source/2020-02.csv"
                                                 "./source/2020-04.csv"
 [7] "./source/2020-03.csv"
                                                 "./source/2020-06.csv"
 [9] "./source/2020-05.csv"
[11] "./source/2020-07.csv"
                                                 "./source/2020-08.csv"
[13] "./source/2020-09.csv"
                                                 "./source/2020-10.csv"
[15] "./source/2020-11.csv"
                                                 "./source/2020-12.csv"
[17] "./source/Bike share ridership 2021-01.csv" "./source/Bike share ridership 2021-02.csv"
[19] "./source/Bike share ridership 2021-03.csv" "./source/Bike share ridership 2021-04.csv"
[21] "./source/Bike share ridership 2021-05.csv" "./source/Bike share ridership 2021-06.csv"
[23] "./source/Bike share ridership 2021-07.csv" "./source/Bike share ridership 2021-08.csv"
[25] "./source/Bike share ridership 2021-09.csv" "./source/Bike share ridership 2021-10.csv"
[27] "./source/Bike share ridership 2021-11.csv" "./source/Bike share ridership 2021-12.csv"
[29] "./source/Bike share ridership 2022-01.csv" "./source/Bike share ridership 2022-02.csv"
[31] "./source/Bike share ridership 2022-03.csv" "./source/Bike share ridership 2022-04.csv"
[33] "./source/Bike share ridership 2022-05.csv" "./source/Bike share ridership 2022-06.csv"
[35] "./source/Bike share ridership 2022-07.csv" "./source/Bike share ridership 2022-08.csv"
[37] "./source/Bike share ridership 2022-09.csv" "./source/Bike share ridership 2022-10.csv"
[39] "./source/Bike share ridership 2022-11.csv" "./source/Bike share ridership 2022-12.csv"
[41] "./source/Bike share ridership 2023-01.csv" "./source/Bike share ridership 2023-02.csv"
[43] "./source/Bike share ridership 2023-03.csv" "./source/Bike share ridership 2023-04.csv"
[45] "./source/Bike share ridership 2023-05.csv" "./source/Bike share ridership 2023-06.csv"
[47] "./source/Bike share ridership 2023-07.csv" "./source/Bike share ridership 2023-08.csv"
[49] "./source/Bike share ridership 2023-09.csv" "./source/Bike share ridership 2023-10.csv"
[51] "./source/Bike share ridership 2023-11.csv" "./source/Bike share ridership 2023-12.csv"
```

- · Import data from data files.
 - Check the columns of each csy file for data consisitence.
 - Combine all data into a uniformed dataframe for further analysis.

```
# # Apply read.csv, a function to import data from csv file, for each file.
# # Get a list of df
# df_list <- lapply(FILE_PATH_LIST, read.csv)
#
# # Union all df by row
# raw_df <- do.call(rbind, df_list)
# raw_df</pre>
```

Test using selective data

Hide

```
# paths <- c(
    "./source/2019-Q1.csv",
    "./source/2019-Q2.csv",
    "./source/2019-Q3.csv",
    "./source/2019-Q4.csv",
    "./source/2020-01.csv",
    "./source/2020-02.csv",
    "./source/2020-03.csv",
    "./source/2020-04.csv",
    "./source/2020-05.csv",
    "./source/2020-06.csv",
    "./source/2020-07.csv",
    "./source/2020-08.csv",
    "./source/2020-09.csv",
    "./source/2020-10.csv",
    "./source/2020-11.csv",
    "./source/2020-12.csv"
#
# )
# # paths <- c("./source/2020-01.csv")
# df_list <- lapply(paths, read.csv)</pre>
# raw_df <- do.call(rbind, df_list)</pre>
# raw_df
```

Data Processing

Handling NA and NULL value

Handle NA value that exist in the raw data

```
# # Remove rows with any NA values
# proc_NA_df <- raw_df[complete.cases(raw_df), ]
#
# Remove rows with "NULL" values
# proc_null_df <- proc_NA_df %>%
# filter(!(End.Station.Name == "NULL" | End.Station.Id == "NULL" | Start.Station.Id == "NULL" | Start.
Station.Name == "NULL"))
# proc_df <- proc_null_df</pre>
```

Converting Time-Dimension Data

• Divide time into year, month, date, hour, and minute.

Hide

```
# # Divide "Start.Time" into columns
# proc_df$Start.Time <- as.POSIXct(proc_df$Start.Time, format = "%m/%d/%Y %H:%M")</pre>
# proc_df$Start.Year <- as.factor(format(proc_df$Start.Time, "%Y"))</pre>
# proc_df$Start.Month <- as.factor(format(proc_df$Start.Time, "%m"))</pre>
# proc_df$Start.Date <- as.factor(format(proc_df$Start.Time, "%d"))</pre>
# proc_df$Start.Hours <- as.factor(format(proc_df$Start.Time, "%H"))</pre>
# proc_df$Start.Minutes <- as.factor(format(proc_df$Start.Time, "%M"))</pre>
# # Divide "End" into columns
# proc_df$End.Time <- as.POSIXct(proc_df$End.Time, format = "%m/%d/%Y %H:%M")</pre>
# proc_df$End.Year <- as.factor(format(proc_df$End.Time, "%Y"))</pre>
# proc_df$End.Month <- as.factor(format(proc_df$End.Time, "%m"))</pre>
# proc_df$End.Date <- as.factor(format(proc_df$End.Time, "%d"))</pre>
# proc_df$End.Hours <- as.factor(format(proc_df$End.Time, "%H"))</pre>
# proc_df$End.Minutes <- as.factor(format(proc_df$End.Time, "%M"))</pre>
# # factor user.type
# proc_df$User.Type <- as.factor(proc_df$User.Type)</pre>
#
# # Drop Start.Time and End.Time
# proc_df <- proc_df %>% select(-Start.Time, -End.Time)
```

· Check NA value again, in case of any possible values generated during the data processing.

```
# is_miss <- any(is.na(proc_df))
#
# if the processed_df contains missing value, drop the rows with missing values and assign to df
# if (is_miss) {
# df <- proc_df[complete.cases(proc_df), ]
# otherwise, df = proc_df
# }else{
# df <- proc_df
# }
#
# is_miss <- any(is.na(df))
# cat("df has missing value? ", is_miss) # output result</pre>
```

Data Overview after data processing.

```
# # Data overview after data processing
# num_row <- nrow(df)  # total rows
# column_names <- colnames(df)  # column names
# cat("\n\nNumber of rows: ", "\n", num_row)
# cat("\n\nColumn names: ", "\n", column_names)
#
# cat("\n\nDisplay the Structure:\n")
# str(df)
#
# cat("\n\nDisplay Summaries:\n")
# summary(df)</pre>
```

Preview data

```
# df
# head(df, 10)
```

Exporting Processed Data(Optional)

Export the Processed data to permanently store the processed data.

```
# # Path to export
# output_file <- "./data/dataset.csv"
# # export
# write.csv(df, file = output_file, row.names = FALSE)</pre>
```

ReLoading Processed Data

Hide

Hide

```
data_file <- "./data/dataset.csv"

df <- read.csv(data_file)

df</pre>
```

Trip.ld <dbl></dbl>	TripDuration <int></int>		Start.Station.Name <chr></chr>
4581278	1547	7021	Bay St / Albert St
4581279	1112	7160	King St W / Tecumseth St
4581280	589	7055	Jarvis St / Carlton St
4581281	259	7012	Elizabeth St / Edward St (Bus Terminal)
4581282	281	7041	Edward St / Yonge St
4581283	624	7041	Edward St / Yonge St
4581284	604	7041	Edward St / Yonge St
4581285	416	7275	Queen St W / James St
4581286	192	7071	161 Bleecker St (South of Wellesley)
4581287	518	7199	College St / Markham St
1-10 of 17,7	89,237 rows 1-4 of 18	columns	Previous 1 2 3 4 5 6 100 Next

• Data Overview afater loading data.

```
Hide
```

```
# Data overview after data processing
num_row <- nrow(df)  # total rows
column_names <- colnames(df)  # column names
cat("\n\nNumber of rows: ", "\n", num_row)</pre>
```

```
Number of rows:
17789237
                                                                                          Hide
cat("\n\nColumn names: ", "\n", column_names)
Column names:
Trip.Id Trip..Duration Start.Station.Id Start.Station.Name End.Station.Id End.Station.Name Bike.Id Use
r.Type Start.Year Start.Month Start.Date Start.Hours Start.Minutes End.Year End.Month End.Date End.Hour
s End.Minutes
                                                                                          Hide
cat("\n\nDisplay the Structure:\n")
Display the Structure:
                                                                                          Hide
str(df)
             17789237 obs. of 18 variables:
'data.frame':
$ Trip.Id
                  : num 4581278 4581279 4581280 4581281 4581282 ...
$ Trip..Duration
                  : int 1547 1112 589 259 281 624 604 416 192 518 ...
$ Start.Station.Id : int 7021 7160 7055 7012 7041 7041 7041 7275 7071 7199 ...
$ Start.Station.Name: chr "Bay St / Albert St" "King St W / Tecumseth St" "Jarvis St / Carlton St" "E
lizabeth St / Edward St (Bus Terminal)" ...
$ End.Station.Id
                  : int 7233 7051 7013 7235 7257 7031 7031 7041 7311 7252 ...
$ End.Station.Name : chr
                        "King / Cowan Ave - SMART" "Wellesley St E / Yonge St (Green P)" "Scott St
/ The Esplanade" "Bay St / College St (West Side) - SMART" ...
                  : chr "1296" "2947" "2293" "283" ...
$ Bike.Id
                  : chr "Annual Member" "Annual Member" "Annual Member" "...
$ User.Type
                   $ Start.Year
$ Start.Month
                  : int 111111111...
                  : int 111111111...
$ Start.Date
                  : int 0000000000...
$ Start.Hours
$ Start.Minutes
                  : int 8 10 15 16 19 26 26 26 34 38 ...
$ End.Year
                  $ End.Month
                  : int 111111111...
```

cat("\n\nDisplay Summaries:\n")

\$ End.Date
\$ End.Hours

\$ End.Minutes

: int 111111111...

: int 0000000000...

: int 33 29 25 20 24 36 36 33 37 46 ...

summary(df)

```
Trip.Id
                  Trip..Duration
                                     Start.Station.Id Start.Station.Name End.Station.Id
Min. : 4581278
                  Min.
                       :
                                0
                                     Min.
                                            :7000
                                                     Length:17789237
                                                                        Min.
1st Qu.: 9607762
                  1st Qu.:
                               439
                                     1st Qu.:7078
                                                     Class :character
                                                                        1st Qu.:7077
Median :14783657
                  Median :
                               729
                                     Median :7227
                                                     Mode :character
                                                                        Median:7224
Mean
      :15075490
                  Mean
                              1047
                                          :7246
                                                                        Mean
                                                                               :7243
                                     Mean
3rd Qu.:20359050
                  3rd Qu.:
                              1164
                                     3rd Qu.:7383
                                                                        3rd Qu.:7381
Max.
      :26682738
                  Max.
                         :12403785
                                     Max.
                                            :7681
                                                                        Max.
                                                                               :7681
End.Station.Name
                    Bike.Id
                                     User.Type
                                                         Start.Year
                                                                       Start.Month
Length:17789237
                  Length:17789237
                                     Length: 17789237
                                                       Min. :2019
                                                                      Min.
                                                                           : 1.000
                                                       1st Qu.:2020
                                                                      1st Qu.: 6.000
Class :character
                  Class :character
                                     Class :character
Mode :character
                  Mode :character
                                     Mode :character
                                                       Median :2021
                                                                      Median : 7.000
                                                              :2021
                                                       Mean
                                                                      Mean
                                                                            : 7.246
                                                       3rd Qu.:2023
                                                                      3rd Ou.: 9.000
                                                       Max.
                                                              :2023
                                                                      Max.
                                                                             :12.000
 Start.Date
                Start.Hours
                               Start.Minutes
                                                  End.Year
                                                               End.Month
                                                                                 End.Date
Min. : 1.00
               Min. : 0.00
                               Min. : 0.00
                                               Min.
                                                    :2019
                                                             Min. : 1.000
                                                                              Min.
                                                                                    : 1.00
1st Qu.: 8.00
               1st Qu.:11.00
                               1st Qu.:14.00
                                               1st Qu.:2020
                                                             1st Qu.: 6.000
                                                                              1st Qu.: 8.00
Median :16.00
               Median :15.00
                                               Median :2021
                                                             Median : 7.000
                               Median :30.00
                                                                              Median :16.00
Mean
     :15.73
               Mean
                     :14.57
                               Mean :29.55
                                               Mean :2021
                                                             Mean
                                                                   : 7.246
                                                                              Mean
                                                                                     :15.73
3rd Qu.:23.00
               3rd Qu.:18.00
                               3rd Qu.:45.00
                                               3rd Qu.:2023
                                                             3rd Qu.: 9.000
                                                                              3rd Qu.:23.00
Max.
      :31.00
               Max.
                      :23.00
                               Max. :59.00
                                              Max.
                                                     :2024
                                                             Max.
                                                                    :12.000
                                                                              Max.
                                                                                     :31.00
                End.Minutes
 End.Hours
Min.
      : 0.00
               Min.
                      : 0.00
1st Qu.:11.00
               1st Qu.:15.00
Median :16.00
               Median :30.00
Mean
      :14.71
               Mean
                      :29.79
3rd Qu.:18.00
               3rd Qu.:45.00
      :23.00
Max.
               Max.
                      :59.00
```

Preview data

Hide

df
head(df, 10)

Trip.ld	TripDuration		Start.Station.Name	End
<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	
1 4581278	1547	7021	Bay St / Albert St	
2 4581279	1112	7160	King St W / Tecumseth St	
3 4581280	589	7055	Jarvis St / Carlton St	
4 4581281	259	7012	Elizabeth St / Edward St (Bus Terminal)	
5 4581282	281	7041	Edward St / Yonge St	
6 4581283	624	7041	Edward St / Yonge St	
7 4581284	604	7041	Edward St / Yonge St	

Trip.ld <dbl></dbl>	TripDuration <int></int>		Start.Station.Name <chr></chr>	End
8 4581285	416	7275	Queen St W / James St	
9 4581286	192	7071	161 Bleecker St (South of Wellesley)	
10 4581287	518	7199	College St / Markham St	

Trip analysis

Yearly Trip Trends

Hide

```
trip_yearly <- df %>%
  group_by(Year = Start.Year) %>%
  summarize(Trip = n())
trip_yearly
```

	Year <int></int>	Trip <int></int>
	2019	2439047
	2020	2908239
	2021	3565746
	2022	4266232
	2023	4609973
5 rows		

```
ggplot(
  data = trip_yearly,
  mapping = aes(
      x = Year,
      y = Trip,
      group = 1
  )
) +
  geom_line() +
  geom_point() +
  geom_text(aes(label = as.character(Trip)), vjust = 1, hjust = 0.5) +
    title = "Yearly Trip Trend",
    x = "Year",
    y = "Trip"
  ) +
  theme_minimal()
```

Monthly Trip Distribution

· Comparing monthly trip to unveil patterns over the months

```
trip_monthly_across_year <- df %>%
group_by(
   Year = Start.Year,
   Month = Start.Month
   ) %>%
summarize(Trip = n())
```

```
`summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.
```

Hide

trip_monthly_across_year

Year	Month							Trip
<int></int>	<int></int>							<int></int>
2019	1							61461
2019	2							40055
2019	3							87540
2019	4							145150
2019	5							214613
2019	6							291917
2019	7							382235
2019	8							417393
2019	9							330703
2019	10							248467
1-10 of 60 rows		Previous	1	2	3	4	5	6 Next

```
ggplot(
  data = trip_monthly_across_year,
  mapping = aes(
    x = factor(Month),
    y = Trip,
    fill = factor(Month)
  )
  ) +
  geom_boxplot(show.legend = FALSE) +
  labs(
    title = "Monthly Distribution of Trips",
    x = "Month",
    y = "Trip",
    fill = "Month"
) +
  theme_minimal()
```


Hourly Trip Pattern

• Exploring Patterns Throughout the Day

```
trip_hourly_across_month <- df %>%
group_by(
   Month = Start.Month,
   Hour = Start.Hours
   ) %>%
summarize(Trip = n())
```

`summarise()` has grouped output by 'Month'. You can override using the `.groups` argument.

Hide

Hide

trip_hourly_across_month

Month <int></int>	Hour <int></int>	Trip <int></int>
1	0	4571
1	1	3076
1	2	2324
1	3	1436
1	4	1403
1	5	2635
1	6	7521

	Month <int></int>	Hour <int></int>									Trip <int></int>
	1	7								1	7508
	1	8								3	37136
	1	9								2	7818
1-10 of 288 rows		Pre	vious '	1	2	3	4	5	6	29	Next

```
ggplot(
  trip_hourly_across_month,
  aes(
    x = factor(Hour),
    y = Trip,
    fill = factor(Hour)
    )
    ) +
    geom_boxplot(show.legend = FALSE) +
  labs(
    title = "Hourly Distribution of Trips per Month (Boxplot)",
    x = "Hour of Day",
    y = "Number of Trips",
    fill = "Hour of Day") +
    theme_minimal()
```


Duration Analysis

Duration Yearly Trend

```
duration_yearly <- df %>%
  group_by(Year = Start.Year) %>%
  summarize(Mean_Duration = round(mean(Trip..Duration) / 60, 2))
duration_yearly
```

Year <int></int>	Mean_Duration <dbl></dbl>
2019	17.39
2020	19.38
2021	17.27
2022	16.00
2023	17.74
5 rows	

NA

```
ggplot(
  data = duration_yearly,
  mapping = aes(
      x = Year,
      y = Mean_Duration,
      group = 1
    )
  ) +
  geom_line() +
  geom_point() +
  geom_text(
    aes(
      label = as.character(Mean_Duration)
      ),
    vjust = 1,
    hjust = 0.5
  ) +
  labs(
    title = "Average Duration Trend",
    x = "Year",
    y = "Average Duration"
  ) +
  theme_minimal()
```


Duration Pattern over Months

```
Hide
```

```
duration_monthly_across_year <- df %>%
  group_by(
    Year = Start.Year,
    Month = Start.Month) %>%
  summarize(Mean_Duration = round(mean(Trip..Duration) / 60, 2)) # Convert mean to minutes
```

`summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.

Hide

duration_monthly_across_year

Year <int></int>	Month <int></int>	Mean_Duration <dbl></dbl>
2019	1	12.96
2019	2	14.41
2019	3	13.20
2019	4	15.45
2019	5	16.69
2019	6	19.56
2019	7	18.82
2019	8	19.75
2019	9	16.67

Year <int></int>	Month <int></int>	Mean_Duratio <dbl< th=""><th></th></dbl<>	
2019	10	16.1	1
1-10 of 60 rows		Previous 1 2 3 4 5 6 Nex	xt

```
ggplot(
  data = duration_monthly_across_year,
  mapping = aes(
    x = factor(Month),
    y = Mean_Duration,
    fill = factor(Month)
    )
  ) +
  geom_boxplot(show.legend = FALSE) +
  labs(
    title = "Monthly Duration Distribution",
    x = "Month",
    y = "Mean Duration (minutes)"
  ) +
  theme_minimal()
```


Duration Pattern throughout A Day

```
duration_hourly_across_month <- df %>%
  group_by(
    Month = Start.Month,
    Hour = Start.Hours
    ) %>%
  summarize(Mean_Duration = round(mean(Trip..Duration) / 60, 2)) # Convert mean to minutes
```

`summarise()` has grouped output by 'Month'. You can override using the `.groups` argument.

Hide

Hide

duration_hourly_across_month

Month <int></int>	Hour <int></int>	Mean_Duration <dbl></dbl>
1	0	13.33
1	1	16.31
1	2	24.04
1	3	33.38
1	4	13.05
1	5	12.86
1	6	12.74
1	7	12.37
1	8	12.19
1	9	12.71
1-10 of 288 rows		Previous 1 2 3 4 5 6 29 Next

```
ggplot(
  data = duration_hourly_across_month,
  mapping = aes(
    x = factor(Hour),
    y = Mean_Duration,
    fill = factor(Hour)
    )
  ) +
  geom_boxplot(show.legend = FALSE) +
  labs(
    title = "Hourly Duration Distribution",
    x = "Hour of Day",
    y = "Mean Duration (minutes)"
  ) +
  theme_minimal()
```


Geolocation Analysis

Hot Start Locations

Hot start spot (Top 10)

```
hot_start_spot <- df %>%
  group_by(Start.Station.Name) %>%
  summarize(Total_Trips = n()) %>%
  arrange(desc(Total_Trips)) %>%
  slice_head(n = 10)
hot_start_spot
```

Start.Station.Name <chr></chr>	Total_Trips <int></int>
York St / Queens Quay W	167820
Bay St / Queens Quay W (Ferry Terminal)	129723
Bay St / College St (East Side)	124516
Queens Quay E / Lower Sherbourne St	114306
HTO Park (Queens Quay W)	111224
Lake Shore Blvd W / Ontario Dr	111058
Bay St / Wellesley St W	109131
Ontario Place Blvd / Lake Shore Blvd W (East)	109044
Bathurst St/Queens Quay(Billy Bishop Airport)	108858

Start.Station.NameTotal_Trips<chr><int>Dundas St E / Regent Park Blvd1059131-10 of 10 rows

Hide

NA

Hide

```
ggplot(
  data = hot_start_spot,
  mapping = aes(
      x = reorder(Start.Station.Name, -Total_Trips),
      y = Total_Trips,
      fill = reorder(Start.Station.Name, -Total_Trips)
      )
  ) +
  geom_bar(
    stat = "identity"
  ) +
  labs(
    title = "Total Number of trips per starting stations",
    x = "Starting Stations",
    y = "Number of trips",
    fill = "Starting Station"
  ) +
  theme_minimal()+
  theme(axis.text.x = element_blank())
```

Total Number of trips per starting stations


```
NA
NA
```

Hot start street (Top 10)

Hide

```
library(stringr)

hot_start_streets <- df %>%
    separate_rows(Start.Station.Name, sep = " / ") %>% # Separate the station names
    mutate(Start.Station.Street = Start.Station.Name) %>%
    group_by(Start.Station.Street) %>%
    summarize(Total_Trips = n()) %>%
    arrange(desc(Total_Trips)) %>%
    slice_head(n = 10)
```

Warning: 输入的字符串5347586不是UTF-8Warning: 输入的字符串5347588不是UTF-8Warning: 输入的字符串5350238不是UTF-8Warning: 输入的字符串5350495不是UTF-8Warning: 输入的字符串5350926不是UTF-8

Hide

hot_start_streets

Start.Station.Street <chr></chr>	Total_Trips <int></int>
Yonge St	905277
Queen St W	777197
Bay St	754436
Bloor St W	648682
King St W	630577
Dundas St W	596545
College St	507797
Spadina Ave	430988
Dundas St E	393854
Adelaide St W	391302
1-10 of 10 rows	

Hide

NA

```
ggplot(
  data = hot_start_streets,
  mapping = aes(
      x = reorder(Start.Station.Street, -Total_Trips),
      y = Total_Trips,
      fill = reorder(Start.Station.Street, -Total_Trips)
  ) +
  geom_bar(
    stat = "identity"
  ) +
  labs(
    title = "Total Number of trips per starting street",
    x = "Starting street",
    y = "Number of trips",
    fill = "Starting street"
  theme_minimal()+
  theme(axis.text.x = element_blank())
```


Hot End Locations

Hot End spot (Top 10)

```
hot_end_spot <- df %>%
  group_by(End.Station.Name) %>%
  summarize(Total_Trips = n()) %>%
  arrange(desc(Total_Trips)) %>%
  slice_head(n = 10)
hot_end_spot
```

End.Station.Name <chr></chr>	Total_Trips <int></int>
York St / Queens Quay W	191618
Bay St / Queens Quay W (Ferry Terminal)	137039
Union Station	134622
Bay St / College St (East Side)	125581
HTO Park (Queens Quay W)	125254
Bathurst St/Queens Quay(Billy Bishop Airport)	121870
Queens Quay E / Lower Sherbourne St	119303
Queens Quay / Yonge St	114252
Dundas St W / Yonge St	113685
Lake Shore Blvd W / Ontario Dr	110234
1-10 of 10 rows	

NA

```
ggplot(
  data = hot_end_spot,
  mapping = aes(
      x = reorder(End.Station.Name, -Total_Trips),
      y = Total_Trips,
      fill = reorder(End.Station.Name, -Total_Trips)
      )
  ) +
  geom_bar(
    stat = "identity"
  ) +
  labs(
    title = "Total Number of trips per ending station",
    x = "Ending station",
    y = "Number of trips",
    fill = "Ending station"
  ) +
  theme_minimal()+
  theme(axis.text.x = element_blank())
```


Hot end street (Top 10)

Hide

```
hot_end_streets <- df %>%
  separate_rows(End.Station.Name, sep = " / ") %>% # Separate the station names
  mutate(End.Station.Street = End.Station.Name) %>%
  group_by(End.Station.Street) %>%
  summarize(Total_Trips = n()) %>%
  arrange(desc(Total_Trips)) %>%
  slice_head(n = 10)
```

Warning: 输入的字符串5348071不是UTF-8Warning: 输入的字符串5348390不是UTF-8Warning: 输入的字符串5348452不是UTF-8Warning: 输入的字符串5349390不是UTF-8Warning: 输入的字符串5349530不是UTF-8

Hide

hot_end_streets

End.Station.Street <chr></chr>	Total_Trips <int></int>
Yonge St	878065
Queen St W	827472
Bay St	720596
King St W	692586
Bloor St W	605196
Dundas St W	601900
College St	501619
Spadina Ave	424328

End.Station.Street <chr></chr>	Total_Trips <int></int>
Adelaide St W	409449
Dundas St E	406959
1-10 of 10 rows	

NA NA

```
ggplot(
  data = hot_end_streets,
  mapping = aes(
      x = reorder(End.Station.Street, -Total_Trips),
      y = Total_Trips,
      fill = reorder(End.Station.Street, -Total_Trips)
  ) +
  geom_bar(
    stat = "identity"
  ) +
  labs(
    title = "Total Number of trips per ending street",
    x = "Ending street",
    y = "Number of trips",
    fill = "Ending street"
  theme_minimal()+
  theme(axis.text.x = element_blank())
```



```
Hide
```

```
hot_trip <- df %>%
  mutate(Trip.Spots = paste(Start.Station.Name, End.Station.Name, sep =" -> ")) %>%
  group_by(Trip.Spots) %>%
  summarize(Total_Trips = n()) %>%
  arrange(desc(Total_Trips)) %>%
  slice_head(n = 10)
hot_trip
```

Trip.Spots

<chr>

Tommy Thompson Park (Leslie Street Spit) -> Tommy Thompson Park (Leslie Street Spit)

Ontario Place Blvd / Lake Shore Blvd W (East) -> Ontario Place Blvd / Lake Shore Blvd W (East)

Humber Bay Shores Park West -> Humber Bay Shores Park West

Bay St / Queens Quay W (Ferry Terminal) -> Bay St / Queens Quay W (Ferry Terminal)

HTO Park (Queens Quay W) -> HTO Park (Queens Quay W)

York St / Queens Quay W -> York St / Queens Quay W

Cherry Beach -> Tommy Thompson Park (Leslie Street Spit)

Humber Bay Shores Park / Marine Parade Dr -> Humber Bay Shores Park / Marine Parade Dr

Tommy Thompson Park (Leslie Street Spit) -> Cherry Beach

Humber Bay Shores Park East -> Humber Bay Shores Park East

1-10 of 10 rows | 1-1 of 2 columns

Hide

NA NA

```
ggplot(
  data = hot_trip,
  mapping = aes(
      x = reorder(Trip.Spots, -Total_Trips),
      y = Total_Trips,
      fill = reorder(Trip.Spots, -Total_Trips)
  ) +
  geom_bar(
    stat = "identity"
  ) +
  labs(
    title = "Total Number of trips per origin-destination pair",
    x = "Origin-destination pair",
    y = "Number of trips",
    fill = "Origin-destination pair"
  theme_minimal()+
  theme(axis.text.x = element_blank()
        legend.text = element_text(size = 6))
```

Total Number of trips per origin-destination pair

Skiny Rendering