A matrix $A = (a_{ij})$ is called *nice*, if it has the following properties:

- (i) the set of all entries of A is $\{1,2,\ldots,2t\}$ for some integer t;
- (ii) the entries are non-decreasing in every row and in every column: $a_{i,j} \leq a_{i,j+1}$ and $a_{i,j} \leq a_{i+1,j}$;
- (iii) equal entries can appear only in the same row or the same column: if $a_{i,j} = a_{k,\ell}$, then either i = k or $j = \ell$;
- (iv) for each s = 1, 2, ..., 2t 1, there exist $i \neq k$ and $j \neq \ell$ such that $a_{i,j} = s$ and $a_{k,\ell} = s + 1$.

Prove that for any positive integers m and n, the number of nice $m \times n$ matrices is even. For example, the only two nice 2×3 matrices are

For example, the only two $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 4 & 4 \end{pmatrix}$.