Indoor Localization in IoT Networks Based on Graph Neural Networks

GUO Xiaofan

23 / 01 / 2025

Table of Contents

- 1. Introduction
- 2. Database: UJIIndoorLoc
- 3. Deep Neural Networks (DNN)
- 4. Graph Neural Networks (GNN)

- 5. Data Processing and Implementation
- 6. Results Analysis
- 7. Complexity
- 8. Conclusion

1. Background of Indoor Localization

1.1 Importance and Challenges

- > Growing demand for indoor localization in malls, hospitals, etc.
- > Current systems lack <u>accuracy</u> and <u>reliability</u>, limiting potential.

1.2 Objective

- > Use Deep Learning to improve indoor localization accuracy.
- > Focus predicting the following within a <u>single building</u>:
 - Longitude
 - Latitude
 - Floor

2. Database: UJIIndoorLoc

2.1 Advantages of the UJIIndoorLoc Database

- > Largest public indoor localization database for algorithm benchmarking.
- > Key features:
 - Multi-building, multi-floor coverage.
 - Diverse and large sample set.
 - Open access with WLAN fingerprinting data.

2.2 Data Used in This Project

- > RSSI data: First 519 columns.
- ➤ **Geographic information**: Columns 520-522 (Longitude, Latitude, Floor).

3. Deep Neural Networks (DNN)

3.1 Advantages of DNN

- > Handles high-dimensional data efficiently.
- > Extracts non-linear features, suitable for indoor localization.

3.2 DNN Structure

- > Input Layer: Processes 519-dimensional RSSI data.
- > Encoding Layers: Two layers (256 & 64 neurons) & ELU activation.
- > Decoding Layers: Reconstructs input features.
- > Output Layer: Generates compressed features for classification or regression.

4. Graph Neural Networks (GNN)

4.1 Advantages of GNN

- > Models RSSI data as a graph, capturing spatial and topological relationships.
- > Combines local and global data features using message-passing mechanisms.

4.2 GNN Structure

$$d(i,j) = \sqrt{\sum_{k=1}^{n} (x_{i,k} - x_{j,k})^2}$$

- ➤ Data Representation: Each sample is a node; connections are defined using knearest neighbors (k-NN), uses Euclidean distance to calculate similarity.
- > Message Passing: Nodes exchange and aggregate information from neighbors.
- ➤ **Graph Convolutional Layers (GCN):** uses ELU activation in graph convolutional layers to aggregate node features via a normalized adjacency matrix, capturing broader neighborhood information with each layer. $X^{(l+1)} = \sigma(\hat{A}X^{(l)}W^{(l)})$
- > Output Layer: Supports classification or regression tasks on RSSI data.

5. Data Processing and Implementation

5.1 Data Preprocessing

- ➤ **Activation Function:** ELU is used due to RSSI data being negative, ensuring <u>better gradient stability</u> and <u>faster convergence</u>.
- Loss Function: MSE minimizes differences between predicted and true longitude/latitude, improving accuracy.
- ➤ **Data Normalization**: MinMaxScaler scales RSSI, longitude, and latitude data to [0, 1]. <u>Ensures consistent feature scaling</u> and <u>reduces training complexity</u>.
- ➤ **Data Denormalization:** Restores predicted values (longitude, latitude) to <u>original scales</u> for real-world relevance.

$$ELU(x) = \begin{cases} x, & x > 0 \\ \alpha(e^{x} - 1), x \le 0 \end{cases}$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

$$X_{original} = X_{norm} \cdot (X_{max} - X_{min}) + X_{min}$$

5. Data Processing and Implementation

5.2 Training Process

> Optimizer:

 Adam dynamically adjusts learning rates for faster and smoother convergence.

≻Model Parameters:

- Input dimensions: 519 (RSSI features).
- **Dropout rate**: 0,5 (DNN) or 0,1 (GNN)
- **Epochs**: Tuned based on performance to prevent overfitting.
- Batch size: Adjusted for efficient memory use.
- **K of K-NN**: The number of nearest neighbors considered for each node during graph construction.

5. Data Processing and Implementation

5.3 Error Detection

- ➤ Purpose: Evaluates model accuracy by calculating the deviation between predicted and actual longitude, latitude, and floor values.
- > Error Metric: Root Mean Square Error (RMSE) is used for precise measurement.
- **▶ floor_penalty:** prioritizes floor accuracy in localization (floor_penalty = 4).
- > **Result:** Outputs Average Error (meters), combining geographic and floor accuracy for comprehensive evaluation.

Longitude Error =
$$\sqrt{(\hat{y}_{lng} - y_{lng})^2}$$

Latitude Error = $\sqrt{(\hat{y}_{lat} - y_{lat})^2}$
Floor Error = $\sqrt{(\hat{y}_f - y_f)^2}$

 $Floor Error Sum = \sum_{i} Floor Error$

Coordinates Error Sum =
$$\sum$$
 (Longitude Error + Latitude Error)

 $Total\ Error = floor_penalty \times Floor\ Error\ Sum + Coordinates\ Error\ Sum$

$$Average\ Error\ =\ \frac{Total\ Error}{N}$$

6. Results Evaluation

Le = Longitude epochs = Latitude epochs BS = Batch size

6. Results Evaluation

- GNN (K=5) achieves lower average errors than DNN (BS=32) across all floors.
- Training error for GNN is consistently smaller, especially on b0f0 and b0f1.
- Testing error with GNN shows notable improvement, reducing large deviations seen in DNN.
- GNN effectively captures spatial relationships, ensuring higher localization accuracy.

7. Complexity

DNN Model Complexity:

```
--- Model Complexity ---
Encoder Model: Parameters = 299591, FLOPs = 299591
Longitude Model: Parameters = 223937, FLOPs = 223937
Latitude Model: Parameters = 223937, FLOPs = 223937
Floor Model: Parameters = 199233, FLOPs = 199233

Overall Model Complexity: Parameters = 946698, FLOPs = 946698
DNN Complexity: Parameters = 946698, FLOPs = 946698
Finish
```

GNN Model Complexity:

```
--- Model Complexity ---
Longitude Model: Parameters = 264961, FLOPs = 5530625
Latitude Model: Parameters = 264961, FLOPs = 5530625
Floor Model: Parameters = 264961, FLOPs = 5530625

Overall Model Complexity: Parameters = 794883, FLOPs = 16591875
Finish.
```

- Model Complexity: GNN has higher computational complexity than DNN due to graph construction and message passing.
- Data Representation: Transforming data into graph structures (using k-NN) adds preprocessing overhead.
- Training Time: GNN requires more time per epoch as it aggregates information from neighboring nodes.
- Trade-off: The increased complexity of GNN results in better accuracy and improved spatial understanding.

8. Conclusion

8.1 Comparison of DNN and GNN

- > **DNNs:** Simple, fast, suitable for unstructured data but limited for complex relationships.
- ➤ **GNNs:** Better accuracy for spatial and topological tasks but higher computational cost.

8.2 Key Findings

➤GNNs outperform DNNs in tasks requiring relational understanding like indoor localization.

8.3 Future Directions

- ➤ Optimize model parameters.
- ➤ Explore hybrid DNN-GNN approaches.
- >Integrate inertial sensor data for better performance.