

TEWA 1: Advanced Data Analysis

Lecture 09

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

https://github.com/lei-zhang/tewa1_univie

Bayesian warm-up?

How prediction is shaped by learning?

cognitive model

statistics

computing

statistics computing

statistics computing

One simple experiment: two choice task

action selection

outcome

what do we know?

what can we measure?

what do we not know?

Data: choice & outcome

Summary stats: choice accuracy

Learning algorithm: RL update

p(choosing the better option)

statistics

computing

Rescorla-Wagner Value Update

Cognitive Model

- cognitive process
- using internal variables and free parameters

Observation Model (Data Model)

- relate model to observed data
- has to account for noise

Rescorla-Wagner (1972)

- The idea: error-driven learning
- Change in value is proportional to the difference between actual and predicted outcome

Robert A. Rescorla

Allan R. Wagner

Value update: $V_t = V_{t-1} + \alpha * PE_{t-1}$ Prediction error: $PE_{t-1} = R_{t-1} - V_{t-1}$

- learning rate

reward prediction error

reward

Expectations on the next trial = the expectation on the current trial + learning rate * prediction error (reward – current expectation)

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE_t$$

Prediction error:

$$PE_t = R_t - V_t$$

choice rule:

greedy / ε-greedy / softmax

Choice rule: greedy

statistics computing

$$p(C = a) = \begin{cases} 1, V(a) > V(b) \\ 0, V(a) < V(b) \end{cases}$$

Choice rule: E-greedy

statistics computing

$$p(C=a) = \begin{vmatrix} 1-\varepsilon, V(a) > V(b) \\ \varepsilon, V(a) < V(b) \end{vmatrix}$$

statistics computing

Choice rule: softmax

Value difference: $V_t(A) - V_t(B)$

$$= \frac{1}{1 + e^{-\tau * (V_t(A) - V_t(B))}}$$

statistics computing

Choice rule: direct comparison

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE_t$$

Prediction error:

$$PE_t = R_t - V_t$$

choice rule (sigmoid /softmax):

$$p(C=a) = \frac{1}{1 + e^{\tau * (v(b) - v(a))}}$$

learning rate

reward prediction error

value

- reward

softmax temperature

statistics

computing

Generalizing RL framework

Palminteri et al. (2015)

Lockwood et al. (2016)

A. Trial details

Swart et al. (2017)

Will et al. (2017)

RL – Implementation

$$\alpha \sim Uniform(0,1)$$

$$\tau \sim Uniform(0,3)$$

$$p_t(C = A) = \frac{1}{1 + e^{\tau(V_t(B) - V_t(A))}}$$

$$V_{t+1}^{c} = V_{t}^{C} + \alpha \left(R_{t} - V_{t}^{C} \right)$$

RL – Implementation


```
lpha \sim Uniform \, (0,1) \ 	au \sim Uniform \, (0,3) \ p_t(C=A) = rac{1}{1 + e^{	au(V_t(B) - V_t(A))}} \ V_{t+1}^c = V_t^C + lpha \, (R_t - V_t^C)
```

```
transformed data {
 vector[2] initV;
 initV = rep vector(0.0, 2);
model {
 vector[2] v[nTrials+1];
 real pe[nTrials];
 v[1] = initV;
 for (t in 1:nTrials) {
   choice[t] ~ categorical logit( tau * v[t] );
   pe[t] = reward[t] - v[t,choice[t]];
   v[t+1] = v[t];
   v[t+1, choice[t]] = v[t, choice[t]] + lr * pe[t];
```

```
model {
 vector[2] v[nTrials+1];
 real pe[nTrials];
 v[1] = initV;
  for (t in 1:nTrials) {
   choice[t] ~ categorical_logit( tau * v[t] );
   pe[t] = reward[t] - v[t,choice[t]];
   v[t+1] = v[t];
   v[t+1, choice[t]] = v[t, choice[t]] + lr * pe[t];
```

```
model {
  vector[2] v;
  real pe;

v = initV;

for (t in 1:nTrials) {
   choice[t] ~ categorical_logit( tau * v );
  pe = reward[t] - v[choice[t]];

  v[choice[t]] = v[choice[t]] + lr * pe;
  }
}
```

RL – Fitting with Stan

.../06.reinforcement_learning/_scripts/reinforcement_learning_single_parm_main.R

TASK: fit the model for single participants

```
> source('_scripts/reinforcement_learning_single_parm_main.R') # a function
> fit_rl1 <- run_rl_sp(multiSubj = FALSE)</pre>
```

RL - MCMC Output

statistics

computing

statistics

computing

Fitting Multiple Participants as ONE


```
for (s in 1:nSubjects) {
 vector[2] v;
  real pe;
  v = initV;
 for (t in 1:nTrials) {
   choice[s,t] ~ categorical_logit( tau * v );
   pe = reward[s,t] - v[choice[s,t]];
   v[choice[s,t]] = v[choice[s,t]] + lr * pe;
```

```
.../06.reinforcement_learning/_scripts/reinforcement_learning_single_parm_main.R
```

TASK:

- (I) complete the model (Tip: the for-loop)
- (2) fit the model for multiple participants (assuming same parameters)

```
> source('_scripts/reinforcement_learning_single_parm_main.R')
> fit_rl2 <- run_rl_sp(multiSubj = TRUE)</pre>
```

$$N = I$$

$$N = 10$$

statistics

computing

Fitting Multiple Participants Independently


```
model
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
     choice[s,t] ~ categorical_logit( tau[s] * v );
     pe = reward[s,t] - v[choice[s,t]
     v[choice[s,t]] = v[choice[s,t]] + lr[s]
                                               pe;
```

statistics

computing

statistics

computing

Posterior Means

True Parameters

AN JEST 101

Happy Computing!