1.1

September 9, 2021

```
[1]: %matplotlib inline
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from scipy.optimize import curve_fit
[18]: df = pd.read_excel('1.1_photoeffect.xlsx')
 [3]: def chi_sq(x, y, err):
          function = lambda x, a, b: a * x + b
          popt, pcov = curve_fit(function, xdata=x, ydata=y, sigma=err)
          sigma_a = np.sqrt(pcov[0, 0])
          sigma_b = np.sqrt(pcov[1, 1])
          return popt[0], popt[1], sigma_a, sigma_b
[19]: df
[19]:
           color
                   value mis
                               Unnamed: 3
                                             green_voltage
                                                                       v_eps \
                                                               v_s
                  2192.0
                                   0.000456
      0
          yellow
                           1.0
                                                     3.314
                                                            0.001
                                                                    0.000302
      1
           green 1928.0
                          1.0
                                   0.000519
                                                     3.200
                                                            0.001
                                                                    0.000313
      2
          orange
                  2326.0
                          1.0
                                  0.000430
                                                     2.640
                                                             0.001
                                                                    0.000379
      3
                  2378.0
                           1.0
                                   0.000421
                                                                    0.000439
           red 1
                                                     2.280
                                                             0.001
           red_2
      4
                  2406.0
                           1.0
                                  0.000416
                                                     1.500
                                                             0.001
                                                                    0.000667
           red_3
      5
                  2432.0
                           1.0
                                   0.000411
                                                     1.000
                                                             0.001
                                                                    0.001000
      6
             NaN
                      {\tt NaN}
                           NaN
                                        NaN
                                                     0.839
                                                             0.001
                                                                    0.001192
      7
                           NaN
                                                     0.779
                                                             0.001
                                                                    0.001284
             NaN
                      {\tt NaN}
                                        NaN
      8
             NaN
                      NaN
                           {\tt NaN}
                                        NaN
                                                     0.705
                                                             0.001
                                                                    0.001418
      9
             NaN
                                        NaN
                                                     0.586
                                                             0.001
                                                                    0.001706
                      NaN
                           NaN
             NaN
                                                     0.251
                                                                    0.003984
      10
                      NaN
                           NaN
                                        NaN
                                                             0.001
      11
             NaN
                      {\tt NaN}
                           NaN
                                        NaN
                                                     0.097
                                                             0.001
                                                                    0.010309
      12
             NaN
                      NaN
                                        NaN
                                                     0.007 0.001
                                                                    0.142857
                           NaN
      13
             NaN
                      NaN
                           NaN
                                        NaN
                                                    -0.331 -0.001
                                                                    0.003021
      14
             NaN
                      NaN
                           NaN
                                        NaN
                                                    -0.494 -0.001
                                                                    0.002024
      15
             NaN
                      NaN
                           NaN
                                        NaN
                                                    -0.536 -0.001
                                                                    0.001866
```

```
16
                                                   -0.580 -0.001
                                                                     0.001724
        NaN
                 NaN
                       NaN
                                     NaN
17
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.597 -0.001
                                                                     0.001675
18
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.615 -0.001
                                                                     0.001626
19
                                     NaN
                                                   -0.634 -0.001
                                                                     0.001577
        NaN
                 NaN
                       NaN
20
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.643 - 0.001
                                                                     0.001555
21
                 NaN
                       NaN
        NaN
                                     NaN
                                                   -0.660 -0.001
                                                                     0.001515
22
        NaN
                 {\tt NaN}
                       NaN
                                     NaN
                                                   -0.678 - 0.001
                                                                     0.001475
23
        NaN
                 {\tt NaN}
                       NaN
                                     NaN
                                                   -0.695 -0.001
                                                                     0.001439
24
        NaN
                 {\tt NaN}
                       NaN
                                                                     0.001381
                                     NaN
                                                   -0.724 - 0.001
25
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.732 -0.001
                                                                     0.001366
26
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.749 -0.001
                                                                     0.001335
27
        NaN
                       NaN
                 {\tt NaN}
                                     NaN
                                                   -0.757 -0.001
                                                                     0.001321
28
        NaN
                 {\tt NaN}
                       NaN
                                     NaN
                                                   -0.760 - 0.001
                                                                     0.001316
29
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.892 -0.001
                                                                     0.001121
30
                                                                     0.001149
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.870 - 0.001
31
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.907 -0.001
                                                                     0.001103
32
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.931 - 0.001
                                                                     0.001074
33
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -0.989 -0.001
                                                                     0.001011
                                                                     0.000948
34
        NaN
                       NaN
                                     NaN
                                                   -1.055 -0.001
                 NaN
35
        NaN
                 NaN
                       NaN
                                     NaN
                                                   -1.095 -0.001
                                                                     0.000913
36
        NaN
                 NaN
                       {\tt NaN}
                                     NaN
                                                   -1.144 -0.001
                                                                     0.000874
                                                                      1828_sigma
    green_current
                      1978_voltage
                                      1978_current
                                                           1828_sq
0
             0.6480
                             -1.924
                                             -0.061
                                                          0.225832
                                                                        0.002214
1
             0.6480
                             -1.965
                                             -0.061
                                                          0.161245
                                                                        0.003101
2
             0.6480
                             -1.941
                                             -0.060
                                                          0.109545
                                                                        0.004564
                                                          0.031623
3
             0.6480
                             -1.934
                                             -0.059
                                                                        0.015811
4
             0.6480
                             -1.881
                                             -0.058
                                                       ... -0.089443
                                                                       -0.005590
5
             0.6480
                             -1.700
                                             -0.056
                                                       ... -0.118322
                                                                       -0.004226
6
                                             -0.054
                                                       ... -0.151658
                                                                       -0.003297
             0.6460
                             -1.318
7
             0.6420
                             -1.200
                                             -0.053
                                                       ... -0.173205
                                                                       -0.002887
8
                                             -0.050
                                                       ... -0.187083
             0.6370
                             -0.977
                                                                       -0.002673
9
             0.6300
                             -0.896
                                             -0.047
                                                       ... -0.197484
                                                                       -0.002532
10
             0.6010
                             -0.854
                                             -0.044
                                                       ... -0.207364
                                                                       -0.002411
                                             -0.040
11
             0.5850
                             -0.823
                                                       ... -0.209762
                                                                       -0.002384
12
             0.5720
                                             -0.037
                                                       ... -0.214476
                                                                       -0.002331
                             -0.801
                                             -0.033
                                                       ... -0.219089
13
             0.4950
                             -0.778
                                                                       -0.002282
                                             -0.027
14
                                                       ... -0.219089
             0.3340
                             -0.753
                                                                       -0.002282
15
                                             -0.021
                                                       ... -0.223607
                                                                       -0.002236
             0.2450
                             -0.735
16
             0.1640
                             -0.719
                                             -0.015
                                                                NaN
                                                                              NaN
17
             0.1400
                             -0.710
                                             -0.011
                                                                NaN
                                                                              NaN
18
             0.1150
                             -0.698
                                             -0.005
                                                                NaN
                                                                              NaN
                                              0.012
                                                                              NaN
19
             0.0093
                             -0.673
                                                                NaN
20
             0.0820
                                              0.042
                                                                              NaN
                             -0.632
                                                                NaN
21
                             -0.650
                                              0.027
                                                                              NaN
             0.0660
                                                                NaN
22
             0.0510
                                NaN
                                                 NaN
                                                                NaN
                                                                              NaN
23
             0.0380
                                NaN
                                                 NaN
                                                                NaN
                                                                              NaN
                                                       ...
```

24	0.	0210	NaN	NaN		NaN	NaN	
25	0.	0160	NaN	NaN	•••	NaN	NaN	
26	0.	0100	NaN	NaN	•••	NaN	NaN	
27	0.	0060	NaN	NaN	•••	NaN	NaN	
28	0.	0040	NaN	NaN	•••	NaN	NaN	
29	-0.	0240	NaN	NaN	•••	NaN	NaN	
30	-0.	0440	NaN	NaN	•••	NaN	NaN	
31	-0.	0470	NaN	NaN	•••	NaN	NaN	
32	-0.	0490	NaN	NaN	•••	NaN	NaN	
33	-0.	0520	NaN	NaN	•••	NaN	NaN	
34	-0.	0540	NaN	NaN	•••	NaN	NaN	
35	-0.	0540	NaN	NaN	•••	NaN	NaN	
36	-0.	0540	NaN	NaN	•••	NaN	NaN	
	1778_vol	1778_cur	1778_sq	1778_sigma	1728_vol	1728_cur	1728_sq	\
0	-1.363	-0.050	-0.223607	-0.002236	-0.696	0.066	0.256905	
1	-1.321	-0.050	-0.223607	-0.002236	-0.750	0.029	0.170294	
2	-1.269	-0.050	-0.223607	-0.002236	-0.782	0.011	0.104881	
3	-1.173		-0.219089	-0.002282	-0.804	0.000	0.000000	
4	-1.121		-0.216795	-0.002306	-0.824	-0.009	-0.094868	
5	-1.092		-0.214476	-0.002331	-0.835		-0.114018	
6	-1.048	-0.044	-0.209762	-0.002384	-0.860	-0.021	-0.144914	
7	-1.002		-0.204939	-0.002440	-0.894		-0.173205	
8	-0.974		-0.202485	-0.002469	-0.911		-0.181659	
9	-0.947		-0.194936	-0.002565	-0.931		-0.189737	
10	-0.916		-0.184391	-0.002712	-0.950		-0.197484	
11	-0.888		-0.173205	-0.002887	-0.978		-0.204939	
12	-0.849		-0.148324	-0.003371	-1.008		-0.212132	
13	-0.826		-0.126491	-0.003953	-1.032		-0.216795	
14	-0.799		-0.083666	-0.005976	-1.054		-0.219089	
15	-0.779		-0.054772	-0.009129	-1.079		-0.223607	
16	-0.745	0.020	0.141421	0.003536	-1.112		-0.223607	
17	-0.730	0.028	0.167332	0.002988	NaN	NaN	NaN	
18	-0.719	0.036	0.189737	0.002635	NaN	NaN	NaN	
19	-0.696	0.052	0.228035	0.002193	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
24	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
25	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
26	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
27	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
28	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
29	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
30	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
31	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
01	nan	II all	nan	11011	11011	IV CIIV	nan	

32	NaN	NaN	NaN	NaN	NaN	NaN	NaN
33	NaN	NaN	NaN	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN	NaN	NaN	NaN
35	NaN	NaN	NaN	NaN	NaN	NaN	NaN
36	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	1728_sigma						
0	0.001946						
1	0.002936						
2	0.004767						
3	0.001000						
4	-0.005270						
5	-0.004385						
6	-0.003450						
7	-0.002887						
8	-0.002752						
9	-0.002635						
10	-0.002532						
11	-0.002440						
12	-0.002357						
13	-0.002306						
14	-0.002282						
15	-0.002236						
16	-0.002236						
17	NaN						
18	NaN						
19	NaN						
20	NaN						
21	NaN						
22	NaN						
23	NaN						
24	NaN						
25	NaN						
26	NaN						
27	NaN						
28	NaN						
29	NaN						
30	NaN						
31	NaN						
32	NaN						
33	NaN						
34	NaN						
35	NaN						

[37 rows x 40 columns]

 ${\tt NaN}$

36

```
[]:
```

[5]: sns.set_theme()

0.001 , - 0.001

[166]: Text(0, 0.5, '\$\\lambda\$, \$\\AA\$')


```
[6]: g = sns.relplot(
    data=df,
    x="green_voltage", y="green_current",
    height=5, aspect=2, kind="scatter"
)
  (g.map(plt.axhline, y=-0.054, color=".7", dashes=(1, 0.5), zorder=0)
    .set_axis_labels("    V, ", "V ~ I , ")
    .tight_layout(w_pad=0))
```


-1

```
x = np.sqrt(df['2128_vol'])
     plt.scatter(df['2128_vol'], df['2128_cur'], color = 'm', marker = '.', label =

→ '2128')

     y = np.ones(df['1978 voltage'].size) * (-0.052)
     plt.plot(df['1978_voltage'], y, color = 'm', lw = 0.5 )
     x = np.sqrt(df['1878_vol'])
     plt.scatter(df['1878 vol'], df['1878 cur'], color = 'brown', marker = 'x', |
      →label = '1878')
     y = np.ones(df['1978_voltage'].size) * (-0.05)
     plt.plot(df['1978_voltage'], y, color = 'brown', lw = 0.5 )
     plt.scatter(df['1828_vol'], df['1828_cur'], color = 'g', marker = 'x', label =
      y = np.ones(df['1978_voltage'].size) * (-0.048)
     plt.plot(df['1978_voltage'], y, color = 'g', lw = 0.5 )
     plt.scatter(df['1778_vol'], df['1778_cur'], color = 'c', marker = 'x', label =

→ '1778')

     y = np.ones(df['1978 voltage'].size) * (-0.05)
     plt.plot(df['1978_voltage'], y, color = 'c', lw = 0.5 )
     plt.scatter(df['1728_vol'], df['1728_cur'], color = 'y', marker = 'x', label =
      y = np.ones(df['1978\_voltage'].size) * (-0.05)
     plt.plot(df['1978_voltage'], y, color = 'y', lw = 0.5 )
     plt.xlabel('
                       V, ¹)
     plt.legend()
     plt.ylabel('V ~ I, ')
     C:\Users\Olga\anaconda3\lib\site-packages\pandas\core\series.py:726:
     RuntimeWarning: invalid value encountered in sqrt
       result = getattr(ufunc, method)(*inputs, **kwargs)
     C:\Users\Olga\anaconda3\lib\site-packages\pandas\core\series.py:726:
     RuntimeWarning: invalid value encountered in sqrt
       result = getattr(ufunc, method)(*inputs, **kwargs)
     C:\Users\Olga\anaconda3\lib\site-packages\pandas\core\series.py:726:
     RuntimeWarning: invalid value encountered in sqrt
       result = getattr(ufunc, method)(*inputs, **kwargs)
[20]: Text(0, 0.5, 'V ~ I, ')
```



```
[139]: plt.rcParams["figure.figsize"] = (15,10)
       v_0 = 0
       v \ 0 \ mis = []
       plt.scatter(df['1978_voltage'], df['1978_sq'], color = 'r', marker = '.', label

→= '1978')

       a, b, s, e = chi_sq(df['1978_voltage'][12:21], df['1978_sq'][12:21], None)_{\sqcup}
       \rightarrow \#df['1978\_sigma'][12:21])
       x = np.array(df['1978_voltage'][12:21])
       y = a * x + b
       plt.plot(x, y, color = 'r', lw = 0.5)
       v = (-0.2191 - b)/a
       v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
       v_0.append(v)
       v_0_mis.append(v_mis)
       plt.scatter(df['2028_voltage'], df['2028_sq'], color = 'k', marker = '.', label_

⇒= '2028')

       a, b, s, e = chi_sq(df['2028_voltage'][1:8],df['2028_sq'][1:8],__
       \rightarrowNone)#df['2028_sigma'][1:8])
       x = np.array(df['2028_voltage'][1:8])
       y = a * x + b
       plt.plot(x, y, color = 'k', lw = 0.5)
```

```
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['2078_vol'], df['2078_sq'], color = 'b', marker = '.', label =

→ '2078')

a, b, s, e = \frac{\text{chi_sq(df['2078_vol']}[8:14],df['2078_sq'][8:14],None)}{4}
\rightarrow df['2078_sigma'][8:14])
x = np.array(df['2078_vol'][8:14])
y = a * x + b
plt.plot(x, y, color = 'b', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['2128_vol'], df['2128_sq'], color = 'm', marker = '.', label =

→ '2128')

a, b, s, e = chi_sq(df['2128_vol'][0:8], df['2128_sq'][0:8], 
\rightarrowNone)#df['2128_sigma'][0:8])
x = np.array(df['2128 vol'][0:8])
y = a * x + b
plt.plot(x, y, color = 'm', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['1878_vol'], df['1878_sq'], color = 'maroon', marker = 'x', u
→label = '1878')
a, b, s, e = \frac{\text{chi_sq(df['1878_vol']}[9:19],df['1878_sq'][9:19],None)}{4}
\rightarrow df['1878 \ sigma'][9:19])
x = np.array(df['1878_vol'][9:19])
y = a * x + b
plt.plot(x, y, color = 'maroon', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v 0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['1828_vol'], df['1828_sq'], color = 'g', marker = 'x', label =
a, b, s, e = chi_sq(df['1828_vol'][0:7], df['1828_sq'][0:7], 
\rightarrowNone)#df['1828_sigma'][0:7])
x = np.array(df['1828_vol'][0:7])
```

```
y = a * x + b
plt.plot(x, y, color = 'g', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['1778_vol'], df['1778_sq'], color = 'c', marker = 'x', label =
a, b, s, e = chi_sq(df['1778_vol'][11:20], df['1778_sq'][11:20], None)#_1
\rightarrow df['1778_sigma'][11:20])
x = np.array(df['1778 vol'][11:20])
y = a * x + b
plt.plot(x, y, color = 'c', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
plt.scatter(df['1728_vol'], df['1728_sq'], color = 'y', marker = 'x', label =
a, b, s, e = chi_sq(df['1728_vol'][0:8], df['1728_sq'][0:8], 
→None)#df['1728 sigma'][0:8])
x = np.array(df['1728_vol'][0:8])
y = a * x + b
plt.plot(x, y, color = 'y', lw = 0.5)
v = (-0.2191 - b)/a
v_{mis} = v * np.sqrt((0.001/(-0.2191))**2 + (s/a)**2 + (e/b)**2)
v_0.append(v)
v_0_mis.append(v_mis)
y = np.ones(df['1978_voltage'].size) * (-0.219089023)
plt.plot(df['1978_voltage'], y, color = 'grey', lw = 1)
plt.xlabel('
                  V, ')
plt.legend()
plt.ylabel('I$^{1/2}$ A')
```

[139]: Text(0, 0.5, 'I\$^{1/2}\$ A')


```
[140]: [-0.7818520473685202,

-0.7381571919001547,

-0.7060016300506716,

-0.6719909052592061,

-0.8392093363575084,

-0.8405979915879467,

-0.8785483010639872,

-0.894427260282262]

[141]: v_0_mis
```

[141]: [-0.19100550782887135, -0.1622137042767762, -0.1334415392392529, -0.09688611786651209, -0.11755322858382483, -0.10978029068835234, -0.14149834184311413, -0.1242522203155482]

[140]: v_0

```
[155]: c = 3 * 10 ** 15 #
th = np.array([1978, 2028, 2078, 2128, 1878, 1828, 1778, 1728])
th_err = np.ones(th.size) * 10
lmbds = a_*th + b_
omegas = 2 * 3.14 * c * 0.1 / lmbds
omegas_err = omegas * np.sqrt((s_/a_)**2 + (e_/b_)**2 + (th_err/th)**2)
```

[156]: Text(0, 0.5, 'V\$_{0}\$, ')


```
[157]: n #dv/d_omega
```

[157]: -4.495121638935071e-12

```
[162]: plank = abs(n * 1.6 * 10 **(-19))
```

```
[163]: plank #
[163]: 7.192194622296114e-31
[159]: h = 1.5 * 10**(-34)
[160]: (plank - h)/h #
[160]: 4793.796414864076
[161]: p #
[161]: 3.083774984397771e-13
 []:
 []:
  []:
 []:
  []:
 []:
 []:
  []:
  []:
  []:
  []:
 []:
  []:
 []:
  []:
  []:
  []:
```

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

```
[]:
[]:
[]:
[]:
[]:
[]:
[]:
[]:
[78]: block_vol = np.array([-1.055, -1.941, -1.14, -1.113, -0.899, -1.129, -1.105, -1. -269, -1.079])
omegas = np.array([1928, 1978, 2028, 2078, 2128, 1878, 1828, 1778, 1728])
plt.scatter(omegas, block_vol, color = 'k')
```

[78]: <matplotlib.collections.PathCollection at 0x1f01a3c7eb0>

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
г п	
[]:	
[]:	
Г].	
[]:	
[]:	
гэ.	
[]:	
[]:	