Nama: Marchel Adias Pradana

NPM : 21081010084

Kelas: Riset Informatika C081

Resume Jurnal

 Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors Dan Multilayer Perceptron Jenis Penelitian : Penelitian Eksperimental
Multilayer Perceptron
Jenis Penelitian : Penelitian Eksperimental
Karena peneliti melakukan eksperimen dengan menggunakan
beberapa algoritma (SVM, K-NN, dan MLP) untuk
membandingkan kinerja masing-masing dalam
mengklasifikasikan penyakit daun jagung. Mereka menguji
hipotesis tentang keefektifan setiap algoritma melalui proses
eksperimen yang sistematis, lalu membandingkan hasilnya.
Penulis : Jaka Kusuma ¹ , Rubianto ² , Rika Rosnelly ³ , Hartono ⁴ , B.
Herawan Hayadi ⁵
Publish : Vol. 4 No. 1 (2022) 01 – 06 ISSN: 2723-1453 (Media Online)
http://journal.isas.or.id/index.php/JACOST
Latar Belakang : Indonesia adalah negara agraris dengan jagung sebagai salah
satu bahan pangan pokok setelah beras. Namun, tanaman jagung
sering mengalami kerugian akibat penyakit daun seperti
cercospora leaf spot, common rust, dan northern leaf blight.
Deteksi dini dan klasifikasi yang akurat terhadap penyakit ini
sangat penting untuk mencegah penyebaran penyakit lebih lanju
dan menjaga produksi jagung tetap optimal.
Tujuan : Penelitian ini bertujuan untuk membandingkan kinerja tiga
algoritma klasifikasi, yaitu Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), dan Multilayer Perceptron (MLP),
dalam mengklasifikasikan penyakit daun pada tanaman jagung

		menggunakan model deep learning VGG-16 sebagai fitur
		ekstraksi gambar.
Metodologi	•	1. Pengumpulan Data
Wictodologi	•	Dataset yang digunakan adalah gambar penyakit daun
		jagung yang diambil dari website Kaggle. Dataset ini
		berisi 8200 gambar dengan empat kategori: cercospora
		leaf spot gray, common rust, northern leaf blight, dan
		healthy.
		2. Preprocessing Data
		Gambar pada dataset diseragamkan ukurannya menjadi
		150x150 piksel. Model VGG-16 digunakan sebagai
		proses ekstraksi fitur gambar.
		3. Pengklasifikasian
		Tiga algoritma digunakan untuk klasifikasi:
		Support Vector Machine (SVM): SVM adalah
		algoritma pengklasifikasi yang bekerja dengan
		mencari hyperplane optimal yang memisahkan
		data ke dalam kelas yang berbeda. Pada ruang
		dua dimensi, hyperplane ini berupa garis yang
		memisahkan dua kelas data dengan margin
		maksimal. SVM bekerja dengan baik pada dataset
		yang memiliki perbedaan kelas yang jelas, dan
		hyperplane optimal adalah yang memaksimalkan
		margin antara kelas-kelas yang ada.
		K-Nearest Neighbors (KNN): KNN adalah
		algoritma non-parametrik yang
		mengklasifikasikan data berdasarkan kedekatan
		(jarak Euclidean) dengan data-data tetangga
		terdekat. Algoritma ini sangat sederhana dan
		bekerja tanpa memerlukan model pelatihan
		eksplisit. Kelemahan KNN adalah kecepatan
		komputasinya yang menurun seiring dengan
		bertambahnya ukuran dataset, karena KNN harus

		menghitung jarak untuk setiap titik data baru
		yang masuk.
		Multilayer Perceptron (MLP): MLP adalah
		jenis jaringan saraf tiruan yang terdiri dari lapisan
		input, satu atau lebih lapisan tersembunyi, dan
		lapisan output. Setiap node (neuron) dalam
		lapisan tersembunyi menerapkan fungsi aktivasi
		non-linear seperti ReLU (Rectified Linear Unit),
		yang memungkinkan jaringan untuk menangani
		data yang tidak dapat dipisahkan secara linear.
		MLP dilatih menggunakan algoritma
		backpropagation, yang meminimalkan kesalahan
		dengan memperbarui bobot jaringan melalui
		perhitungan gradien.
		4. Pengujian dan Evaluasi
		Data dibagi menjadi 80% data pelatihan dan 20% data
		pengujian. Evaluasi dilakukan menggunakan Confusion
		Matrix untuk mengukur akurasi, precision, dan recall
		dari masing-masing algoritma.
Dataset	:	Dataset berisi 8200 gambar yang terdiri dari 2050 gambar per
		kategori: cercospora leaf spot gray, common rust, northern leaf
		blight, dan healthy. Dataset diambil dari situs Kaggle dan dibagi
		menjadi data pelatihan (80%) dan data pengujian (20%).
		Link dataset : https://www.kaggle.com/datasets/vipoooool/new-
		plant-diseases-dataset/data
Hasil	:	Hasil menunjukkan bahwa algoritma MLP memberikan
		performa terbaik dengan akurasi, precision, dan recall sebesar
		97.4%. Algoritma SVM dan KNN memiliki akurasi yang lebih
		rendah, masing-masing 92.0% dan 95.6% pada data pelatihan,
		dan 93.8% serta 92.1% pada data pengujian.
Kesimpulan	:	MLP adalah algoritma yang paling efektif untuk klasifikasi
		penyakit daun jagung, menghasilkan akurasi tertinggi di antara

		ketiga algoritma yang diuji. Penggunaan model VGG-16 sebagai fitur ekstraksi juga terbukti efektif dalam meningkatkan performa klasifikasi.
Kelebihan	:	 Algoritma MLP menunjukkan kinerja superior dalam klasifikasi dengan akurasi tinggi. Proses ekstraksi fitur menggunakan VGG-16 membantu dalam meningkatkan akurasi klasifikasi.
Kekurangan	:	 Algoritma SVM dan KNN memiliki performa yang kurang baik dibandingkan dengan MLP, terutama dalam kasus data yang lebih kompleks. Proses komputasi untuk MLP lebih berat dan memerlukan sumber daya komputasi yang lebih besar dibandingkan algoritma lainnya