Final Report

Eghorieta

12/1/2021

Project For Design of Experments

For our Design of Experiment Project, we created three different parts which looked at three different design of experiments designs. The three different experiment designs that we preformed were a completely randomized design , a factorial design , and 2^4 factorial design.

Completely Randomized Design

```
##
##
        Balanced one-way analysis of variance power calculation
##
##
                 k = 3
                 n = 52.55574
##
##
                 f = 0.2357023
##
         sig.level = 0.05
##
             power = 0.75
##
## NOTE: n is number in each group
```

For this experiment we required 53 samples for each of the 3 different treatment levels. Which resulted in taking 159 total samples.

Layout of Complete Randomized designs

In this experiment, the 3 different treatments are represented by colors yellow, green and blue. the color blue represents the red ball, the color yellow represents the yellow ball and color green represents the green ball that we used in the actual experiment.

Completely Randomized Design

Plot	Replication	Color of Ball
101	1	blue
102	2	blue
103	3	blue
104	1	yellow
105	1	green
106	2	green
107	4	blue

Plot	Replication	Color of Ball
158	22	green
159	21	blue
249	49	yellow
250	50	yellow
251	52	green
252	53	green
253	51	yellow
254	52	yellow
255	50	blue
256	51	blue
257	52	blue
258	53	blue
259	53	yellow

Above is a layout of how we collected the samples for each treatment observation. We saved it in a csv file and used github to read the data into R for further analysis.

Hypothesis test

 $\mathbf{H_0}$: $\mu_1=\mu_2=\mu_3$ - Null Hypothesis

 $\mathbf{H_a}$: At least 1 differs - Alternative Hypothesis

Boxplot of the experiment

Distance of each ball

Treatment balls

The boxplot reveals that the variation between the red ball, green ball and yellow ball are equal.

Testing normality

The data looks normally distributed with little presence of outliers at the high extreme values of the distance The outliers might be due to excessive force that was applied to the launching process, the ball landing twice, and a misreading of landing position.

Analysis of variance

```
## Df Sum Sq Mean Sq F value Pr(>F)
## treatments 2 36210 18105 46.77 <2e-16 ***
## Residuals 156 60392 387
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

From the result f_0 is **0.783** with a corresponding **p-value** of **0.465** is significantly greater than $\alpha = 0.05$. Therefore we fail to reject H_0 that the means are equal, and conclude that none of the means are different.

Factor Level Combinations

Conclusion

There seems to be nothing unusual about the plots except for the few outliers as the spread of the data looks constant across all treatment balls

Facotorial Design

Null and Alternative Hypotheses

H_o: $α_i = 0$ - Null Hypothesis

H_a: $\alpha_i \neq 0$ - Alternative Hypothesis

H_o: β_i = 0 - Null Hypothesis

H_a: $β_i ≠ 0$ - Alternative Hypothesis

H_o: $\alpha \beta_{ii} = 0$ - Null Hypothesis

 H_a : $αβ_{ij} ≠ 0$ - Alternative Hypothesis

Level of Significance

 $\alpha = 0.05$

Model Equation

$$y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \epsilon_{ijk}$$

Proposed Layout with a Randomized Run Order

```
plots r A B
##
        101 1 1 2
## 1
## 2
        102 2 1 2
## 3
        103 1 2 3
        104 1 2 1
## 4
## 5
        105 1 1 1
        106 2 2 1
## 6
## 7
        107 1 1 3
## 8
        108 1 2 2
        109 3 2 1
## 9
## 10
       110 2 1 3
        111 3 1 2
## 11
## 12
        112 2 2 3
        113 2 2 2
## 13
## 14
       114 3 2 2
## 15
        115 3 2 3
## 16
        116 2 1 1
        117 3 1 1
## 17
## 18
        118 3 1 3
```

In the layout, factor A(Pin.Location) represents Pin Elevation and it has levels 1 and 2 for settings 1 and 3 respectively. factor B(Angle) represents the Release Angle with levels 1,2 and 3 for corresponding angles 110, 140 and 170 degrees. Number of replications is 3 which gives a total of 18 observations in the experiment

Collected Data on Proposed Layout

##		Replication	Pin.Location	Angle	DistanceInches.
##	1	1	1	140	25
##	2	2	1	140	35
##	3	1	3	170	55
##	4	1	3	110	32
##	5	1	1	110	24
##	6	2	3	110	23
##	7	1	1	170	48
##	8	1	3	140	36
##	9	3	3	110	24
##	10	2	1	170	56
##	11	3	1	140	37
##	12	2	3	170	61
##	13	2	3	140	52
##	14	3	3	140	48
##	15	3	3	170	72
##	16	2	1	110	30
##	17	3	1	110	26
##	18	3	1	170	33

Testing the Hypotheses

Firstly, we tested the interaction hypothesis that the pin location and the angle had an effect on the shooting distance. If we failed to reject the interaction null hypothesis, we tested the main effects the pin location and angle effects on the distance.

From the interaction result, interaction effects has f_0 value is **2.0883** with a corresponding **p-value** of **0.1666387 >0.05**. Since **0.1666387 >0.05**, we failed to reject the interaction null hypothesis that the interaction between pin location and the angle have an effect on the shooting distance.

The next section we removed the interaction effect and tested the main effects.

Model Equation

$$y_{ijk} = \mu + \alpha_i + \beta_i + \epsilon_{ijk}$$

From the pin location result f_0 value is **6.4368** which corresponds to a **p-value** of **0.023703**. The angle result f_0 value is **16.8605** which corresponds to a **p-value** of **0.000187**

We concluded that the pin location and angle have an effect on the shooting distance of the ball

Pin.Location: 0.023703 **< 0.05**

Angle: 0.000187 **< 0.05**

ANOVA Test Plots and Interaction Plot

Interraction Plot

Fitted values
[BungeeEx\$Distance...Inches. ~ BungeeEx\$Pin.Location + BungeeE

Theoretical Quantiles
[BungeeEx\$Distance...Inches. ~ BungeeEx\$Pin.Location + BungeeE

Fitted values
[BungeeEx\$Distance...Inches. ~ BungeeEx\$Pin.Location + BungeeE

Factor Level Combinations

Conclusion

There seems to be nothing unusual about the plots. the data seems to follow a straight line on the normal probability plot with 2 extreme outliers on the tail ends of the data distribution. Other than that, everything is fairly normal.

We concluded that the pin location and angle have an effect on the shooting distance of the ball.

2⁴ Factorial Design Experiment

Data Collection Layout

For 2^4 factorial design, we used design.ab to generate one replication of a run order for our 2^4 factorial design

```
plots r A B C D
##
## 1
        101 1 1 1 2 1
        102 1 1 1 2 2
## 2
## 3
        103 1 1 2 1 2
        104 1 2 2 2 1
## 4
## 5
        105 1 2 1 2 1
        106 1 2 2 2 2
## 6
## 7
        107 1 1 2 2 2
## 8
        108 1 1 2 2 1
## 9
        109 1 1 2 1 1
## 10
        110 1 2 2 1 2
## 11
        111 1 2 1 1 2
        112 1 2 1 2 2
## 12
## 13
        113 1 2 2 1 1
## 14
        114 1 1 1 1 2
## 15
        115 1 1 1 1 1
        116 1 2 1 1 1
## 16
```

Experiment Data and Data Frame

For each of our 4 factors, we had two levels for each factors. They were classified as -1(low) and a +1(high). The different factor levels, and the assigned variables.

Factors and Low and High Levels

	Factor	Low Level(-1)	High Level(+1)
A	Pin Location	Postion 1	Postion 3
В	Bungee Position	Position 2	Position 3
C	Release Angle	140 degrees	170 degrees
D	Ball Type	Yellow	Red

Here is our data that we collected from the experiment.

##	Pin Elevation	Bungee_Position	Release Angle	Ball Type	response
## 1	-1	-1	1	-1	36
## 2	-1	-1	1	1	35
## 3	- <u>1</u> -1	-1	-1	1	
	-1	1	-1	1	34
## 4	1	1	1	-1	60
## 5	1	-1	1	-1	68
## 6	1	1	1	1	60
## 7	-1	1	1	1	37
## 8	-1	1	1	-1	38
## 9	-1	1	-1	-1	33
## 10	1	1	-1	1	41
## 11	. 1	-1	-1	1	42
## 12	1	-1	1	1	52
## 13	1	1	-1	-1	51
## 14	-1	-1	-1	1	34
## 15	-1	-1	-1	-1	26
## 16	1	-1	-1	-1	47

Null and Alternative Hypothesis Testing

Here are the Hypothesis tests that we used in the experiment. We started at the highest order hypothesis test, which was $\alpha_i * \beta_i$ hypothesis test.

H_o: α_i = 0 - Null Hypothesis

H_a: α_i ≠ 0 - Alternative Hypothesis

H_o: β_j = 0 - Null Hypothesis

H_a: $β_j ≠ 0$ - Alternative Hypothesis

H_o: αβ_{ij} = 0 - Null Hypothesis

H_a: $\alpha \beta_{ij} \neq 0$ - Alternative Hypothesis

Half Normal Plot

```
##
## Significant effects (alpha=0.05, Lenth method):
## [1] Pin_Elevation Release_Angle
```

Plot for response, method = Lenth, $\alpha = 0.05$

From the plot, factors Pin Elevation and Release Angle are significant model terms.

Model Equation

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

$$Distance = 43.37 - 9.25x_{i1} + 4.875x_{i2}$$

ANOVA Model

After running the half normal plot, we concluded that Release Angle and Pin Elevation were significant factors. We run the ANOVA model with those factors and generated the following table.

```
##
                Df Sum Sq Mean Sq F value
                                            Pr(>F)
## Pin Elevation 1 1369.0 1369.0
                                    51.96 6.86e-06 ***
## Release_Angle
                 1
                    380.2
                            380.2
                                    14.43 0.00221 **
## Residuals
                13
                    342.5
                             26.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

$$Distance = 29.25 - 18.50 x_{i1} + 9.75 x_{i2}$$

These are model equations wth their respective coeffents.

Conclusion

From the result, values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case Pin Elevation and Release Angle are significant model terms.

Code

```
### Part 1
library(pwr)
pwr.anova.test(k=3,n=NULL,f=((.5*sqrt((3^2)-1))/(2*3)),sig.level=0.05,power=.
library(agricolae)
treatments<-c("green", "yellow", "blue")</pre>
design<-design.crd(trt=treatments,r=13,seed = 12345)</pre>
design$book
library(knitr)
F_levels <- cbind(z$plots,z$r,z$treatments)</pre>
kable(F levels,caption = "Completely Randomized Design ", col.names = c("Plot
 ", "Replication", "Color of Ball"))
z <- read.csv("https://raw.githubusercontent.com/Rusty1299/Projects/main/Part</pre>
%202%20data%20redoe.csv")
z$treatments <- as.factor(z$treatments)</pre>
boxplot(z distance \sim z treatments, col= c("Red", "Green", "Yellow"), main = "Distance" of the color of the 
ance of each ball", xlab = "Treatment balls", ylab = "Distance in inches")
agnorm(z$distance)
a <- aov(data = z , distance~treatments)</pre>
summary(a)
## Part 2
trts<-c(2,3)
design<-design.ab(trt=trts, r=3, design="crd", seed=878900)</pre>
design$book
BungeeEx<-read.csv("https://raw.githubusercontent.com/Rusty1299/Projects/main</pre>
/Factorial%20Design%20Project.csv")
library(GAD)
BungeeEx$Pin.Location<-as.fixed(BungeeEx$Pin.Location)</pre>
BungeeEx$Angle<-as.random(BungeeEx$Angle)</pre>
model<-aov(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location*BungeeEx$Angle)</pre>
gad(model)
```

```
model<-aov(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location+BungeeEx$Angle)</pre>
gad(model)
interaction.plot(BungeeEx$Angle,BungeeEx$Pin.Location,BungeeEx$Distance...Inc
hes., type = "l", col = 5:7 ,main ="Interraction Plot", ylab = "Distance", xl
ab = "Release Angles", trace.label = "Pin Elevation", lwd = 3, lty = 1)
plot(model)
boxplot(BungeeEx$Distance...Inches.~BungeeEx$Angle, col = 6:9:3, main = "Boxp
lot for Relaease Angle", xlab = "Release Angle", ylab = "Distance")
boxplot(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location, col = 2:4, main =
"Boxplot for Pin Elevation", xlab = "Pin Elevation", ylab = "Distance")
## Part 3
library(agricolae)
#?design.ab
trts<-c(2,2,2,2)
design<-design.ab(trt=trts, r=1, design="crd", seed=878900)</pre>
design$book
library(knitr)
A <- c("Pin Location", "Postion 1", "Postion 3")
B <-c("Bungee Position", "Position 2", C<-c("Release Angle", "140 degrees",
                                        "Position 3")
                                       "170 degrees")
                                "Red")
D<-c("Ball Type",
                    "Yellow",
F levels <- rbind(A,B,C,D)</pre>
colnames(F_levels)<- c("Factor","Low Level(-1)","High Level(+1)")</pre>
kable(F_levels, caption = "Factors and Low and High Levels")
library(DoE.base)
Bungee_Position<-c(-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1)
Release_Angle<-c(1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1)
Ball Type<-c(-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1)
response<-c(36,35,34,60,68,60,37,38,33,41,42,52,51,34,26,47)
dat<-data.frame(Pin Elevation, Bungee Position, Release Angle, Ball Type, respons</pre>
e)
dat
model<-lm(response~Pin Elevation*Bungee Position*Release Angle*Ball Type, dat
a = dat
#summary(model)
coef(model)
halfnormal(model)
Pin Elevation<-as.factor(Pin Elevation)</pre>
Bungee Position<-as.factor(Bungee Position)</pre>
```

```
Release_Angle<-as.factor(Release_Angle)
Ball_Type<-as.factor(Ball_Type)

model1<-aov(response~Pin_Elevation+Release_Angle)
summary(model1)
coef(model1)</pre>
```