Grafos – Busca em Profundidade - DFS Estrutura de Dados Avançada — QXD0015

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

1º semestre/2024

Busca em Profundidade

 Ordem de exploração: explorar vértices descobertos mais recentes primeiro.

Interpretação:

- Estamos tentando procurar a saída de um labirinto.
- Vamos fundo até a saída, tomando decisões a cada encruzilhada.
- Voltamos à última encruzilhada quando encontramos um beco sem saída (ou um lugar já visitado)

Essa é uma busca em profundidade:

Essa é uma busca em profundidade:

Vá o máximo possível em uma direção

Essa é uma busca em profundidade:

- Vá o máximo possível em uma direção
- Se n\u00e3o encontrar o v\u00e9rtice, volte o m\u00ednimo poss\u00edvel e pegue um novo caminho por um v\u00e9rtice n\u00e3o visitado

Essa é uma busca em profundidade:

- Vá o máximo possível em uma direção
- Se n\u00e3o encontrar o v\u00e9rtice, volte o m\u00eanimo poss\u00edvel e pegue um novo caminho por um v\u00e9rtice n\u00e3o visitado
- Note que as arestas que foram visitadas formam uma árvore.
 Elas poderiam ter formado uma floresta?

Árvore de Profundidade

- Árvore de Profundidade: é arvore induzida pela busca em profundidade em uma componente conexa de um grafo G.
 - o Raiz da árvore: vértice inicial da busca.
 - o Pai de $v \in V(G)$: nó que levou à descoberta de v.
- Vértice inicial e ordem dos vizinhos variam e podem levar a árvores distintas.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
NIL																

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
NIL	0															l

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
NIL	0	1														

				_	 	 	 	 	13	14	15	
NIL	0	1	2									

~	_	_	9	-	_	0	•	_	_	10	 	 	
NIL	0	1	2				3						

	-			_	-	-		_	-	-		_	15
ſ	VIL	0	1	2		7	3						

-			_	-	-		_	-	-		_	15
NIL	0	1	2		7	3				6		

	-			_	-	-		_	-	-		_	15
ſ	NIL	0	1	2		7	3				6		

	-			_	-	-		_	-	-		_	15
ſ	NIL	0	1	2		7	3				6		

	-			_	-	-		_	-	-		_	15
ſ	NIL	0	1	2		7	3				6		

	-			_	-	-		_	-	-		_	15
ſ	NIL	0	1	2		7	3				6		

				 			 	 	 	 15
NIL	0	1	2		7	3		6		

~	_	_	9	-	_	0	•	_	_	 	 	 15	
NIL	0	1	2	1		7	3			6			

	-			_		-	-		_	-	-		_	15
Ν	IIL	0	1	2	1		7	3	4			6		

-			_		-	-		_	-	-		_	15
NIL	0	1	2	1		7	3	4	8		6		

-			_		-	-		_	-	-		_	15
NIL	0	1	2	1	9	7	3	4	8		6		

	_	_	_	-	_	-	-	•	_	-			 	 15
N	JIL	0	1	2	1	9	7	3	4	8	5	6		

0	_	_	-	_	-	-	•	_	-			 	 	
NIL	0	1	2	1	9	7	3	4	8	5	6	10		١

-	_	_	-	_	-	-	•	_	-					 15	
NIL	0	1	2	1	9	7	3	4	8	5	6	13	10		١

0	_	_	-	_	-	-		_	-					 	
NIL	0	1	2	1	9	7	3	4	8	5	6	13	10		l

-	_	_	-	_	-	-		_	-						15	
NIL	0	1	2	1	9	7	3	4	8	5	6	13	10	13		ı

	-	_	_	-	_	-	-	•	_	-						15	
ſ	NIL	0	1	2	1	9	7	3	4	8	5	6	13	10	13	14	ı

-	_	_	-	_	-	-	•	_	-						15
NIL	0	1	2	1	9	7	3	4	8	5	6	13	10	13	14

Como implementar a busca em profundidade?

- Note que o DFS volta atrás (backtracks) quando encontra um "beco sem saída", ou seja, quando encontra um vértice sem arestas a serem exploradas.
 - Ele volta até encontrar o primeiro vértice descoberto que tem vizinhos ainda não descobertos.

Como implementar a busca em profundidade?

- Note que o DFS volta atrás (backtracks) quando encontra um "beco sem saída", ou seja, quando encontra um vértice sem arestas a serem exploradas.
 - Ele volta até encontrar o primeiro vértice descoberto que tem vizinhos ainda não descobertos.
- Logo, o DFS pode ser projetado como um algoritmo recursivo.
 - o u como um algoritmo iterativo usando pilha.

De novo, vamos pintar o grafo durante a busca:

• cor[v] = branco se não descobrimos v ainda.

De novo, vamos pintar o grafo durante a busca:

- cor[v] = branco se não descobrimos v ainda.
- cor[v] = cinza se já descobrimos, mas não finalizamos v.

De novo, vamos pintar o grafo durante a busca:

- cor[v] = branco se não descobrimos v ainda.
- cor[v] = cinza se já descobrimos, mas não finalizamos v.
- cor[v] = preto se já descobrimos e já finalizamos <math>v.

De novo, vamos pintar o grafo durante a busca:

- cor[v] = branco se não descobrimos v ainda.
- cor[v] = cinza se já descobrimos, mas não finalizamos v.
- cor[v] = preto se já descobrimos e já finalizamos <math>v.

Observações

- os vértices cinza têm suas chamadas recursivas ativas
- a pilha de chamadas induz um caminho na floresta

Tempo de descoberta e finalização

A busca em profundidade associa dois rótulos aos vértices:

- d[u]: instante da descoberta de u.
- f[u]: instante da finalização de u (completamente explorado.)

Tempo de descoberta e finalização

A busca em profundidade associa dois rótulos aos vértices:

- d[u]: instante da descoberta de u.
- f[u]: instante da finalização de u (completamente explorado.)

Observações

- ullet os rótulos são inteiros distintos entre 1 e 2|V|
- ullet refletem os instantes em que v muda de cor

Rótulos versus cores

- u é branco antes do instante d[u],
- u é cinza entre os instantes d[u] e f[u],
- ullet u é preto após o instante f[u].

Busca em Profundidade

DFS(G)

- 1. para cada $u \in V(G)$ faça
- 2. $cor[u] \leftarrow BRANCO$
- 3. $\pi[u] \leftarrow \mathtt{NIL}$
- 4. tempo $\leftarrow 0$
- 5. para cada $u \in V(G)$ faça
- 6. se cor[u] == BRANCO
- 7. DFS-VISIT(G,u)

Busca em Profundidade

DFS(G)

- 1. para cada $u \in V(G)$ faça
- 2. $cor[u] \leftarrow BRANCO$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. tempo $\leftarrow 0$
- 5. para cada $u \in V(G)$ faça
- 6. se cor[u] == BRANCO
- 7. DFS-VISIT(G,u)

DFS-VISIT(G,u)

- 1. $cor[u] \leftarrow \texttt{CINZA}$
- 2. $tempo \leftarrow tempo + 1$
- 3. $d[u] \leftarrow \mathsf{tempo}$
- 4. para cada $v \in Adj[u]$ faça
- 5. se cor[v] == BRANCO
- 6. $\pi[v] \leftarrow u$
- 7. DFS-VISIT(G,v)
- 8. $cor[u] \leftarrow \texttt{PRETO}$
- 9. tempo \leftarrow tempo + 1
- 10. $f[u] \leftarrow \mathsf{tempo}$

Busca em Profundidade

DFS(G)

- 1. para cada $u \in V(G)$ faça
- 2. $cor[u] \leftarrow BRANCO$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. tempo $\leftarrow 0$
- 5. para cada $u \in V(G)$ faça
- 6. se cor[u] == BRANCO
- 7. DFS-VISIT(G,u)

DFS-VISIT(G,u)

- 1. $cor[u] \leftarrow \texttt{CINZA}$
- 2. $tempo \leftarrow tempo + 1$
- 3. $d[u] \leftarrow \mathsf{tempo}$
- 4. para cada $v \in Adj[u]$ faça
- 5. se cor[v] == BRANCO
- 6. $\pi[v] \leftarrow u$
- 7. DFS-VISIT(G,v)
- 8. $cor[u] \leftarrow \texttt{PRETO}$
- 9. tempo \leftarrow tempo + 1
- 10. $f[u] \leftarrow \mathsf{tempo}$

Qual a complexidade de tempo deste algoritmo?

Tempo do algoritmo principal DFS

Tempo do algoritmo principal DFS

 $\bullet\,$ a inicialização consome tempo O(V)

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo da sub-rotina DFS-VISIT

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo da sub-rotina DFS-VISIT

• DFS-VISIT é chamado cada vértice exatamente uma vez

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo da sub-rotina DFS-VISIT

- DFS-VISIT é chamado cada vértice exatamente uma vez
- cada chamada percorre sua lista de adjacências

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo da sub-rotina DFS-VISIT

- DFS-VISIT é chamado cada vértice exatamente uma vez
- cada chamada percorre sua lista de adjacências
- ullet o tempo gasto percorrendo adjacências é O(E)

Tempo do algoritmo principal DFS

- ullet a inicialização consome tempo O(V)
- ullet realizamos |V| chamadas a DFS-VISIT

Tempo da sub-rotina DFS-VISIT

- DFS-VISIT é chamado cada vértice exatamente uma vez
- cada chamada percorre sua lista de adjacências
- ullet o tempo gasto percorrendo adjacências é O(E)

A complexidade da busca em profundidade é O(V+E).

Propriedades da DFS

Estrutura de parênteses balanceados

Teorema dos parênteses:

Se u e v são vértices de uma árvore de busca em profundidade, então ocorre exatamente um entre os três casos abaixo:

- (a) Os intervalos [d[u], f[u]] e [d[v], f[v]] são disjuntos, e nem u é descendente de v, nem v é descendente de u.
- (b) O intervalo [d[v], f[v]] está contido em [d[u], f[u]], e v é descendente de u.
- (c) O intervalo [d[u], f[u]] está contido em [d[v], f[v]], e u é descendente de v.

Exemplo de floresta de busca

Exemplo de estrutura de parênteses

Sejam u e v dois vértices de uma árvore de busca em profundidade.

Sejam u e v dois vértices de uma árvore de busca em profundidade.

 $\bullet \ \ {\rm podemos\ supor\ que}\ d[u] < d[v]$

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos\ supor\ que}\ d[u] < d[v]$
- analisamos dois casos

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos\ supor\ que}\ d[u] < d[v]$
- analisamos dois casos

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v]$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

 \circ então v foi descoberto enquanto u era cinza

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v]$
- analisamos dois casos

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v] \\$
- analisamos dois casos

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- $\circ\:$ portanto v é descendente de u

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v]$
- analisamos dois casos

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v] \\$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

Caso 2: suponha que f[u] < d[v]

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos\ supor\ que}\ d[u] < d[v]$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

- \circ então v foi descoberto enquanto u era cinza
- $\circ\,$ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

 ${\bf Caso} \ {\bf 2:} \ {\bf suponha} \ {\bf que} \ f[u] < d[v]$

 \circ então u foi finalizado enquanto v era branco

Demonstração do teorema dos parênteses

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v] \\$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

Caso 2: suponha que f[u] < d[v]

- \circ então u foi finalizado enquanto v era branco
- \circ e a chamada de u termina antes que a de v comece

Demonstração do teorema dos parênteses

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos\ supor\ que}\ d[u] < d[v]$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

Caso 2: suponha que f[u] < d[v]

- \circ então u foi finalizado enquanto v era branco
- \circ e a chamada de u termina antes que a de v comece
- \circ portanto u e v não são descendentes um do outro

Demonstração do teorema dos parênteses

Sejam u e v dois vértices de uma árvore de busca em profundidade.

- $\bullet \ \ {\rm podemos} \ {\rm supor} \ {\rm que} \ d[u] < d[v]$
- analisamos dois casos

Caso 1: suponha que d[v] < f[u]

- \circ então v foi descoberto enquanto u era cinza
- \circ e a chamada recursiva para v termina antes da de u
- \circ portanto v é descendente de u
- \circ neste caso, [d[v], f[v]] está contido em [d[u], f[u]], e o resultado segue.

Caso 2: suponha que f[u] < d[v]

- \circ então u foi finalizado enquanto v era branco
- \circ e a chamada de u termina antes que a de v comece
- \circ portanto u e v não são descendentes um do outro
- \circ neste caso, [d[v], f[v]] e [d[u], f[u]] são disjuntos, e o resultado segue.

Vértices alcançáveis

Teorema do caminho branco

Considere dois vértices u e v de um grafo G sobre o qual DFS foi executado. As afirmações a seguir são equivalentes:

- (1) v é descendente de u na floresta de busca
- (2) quando u foi descoberto, existia um caminho de u a v formado apenas por vértices brancos

• $(1) \Rightarrow (2)$

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - $\circ\,$ pelo Teorema dos Parênteses (T.P.), d[u] < d[v]

- $(1) \Rightarrow (2)$
 - $\circ \,$ suponha que v é um descendente de u
 - \circ pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - $\circ\;$ portanto, v é branco no tempo d[u]

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u, todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u, todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u, todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - \circ considere um caminho branco de u a v no instante d[u]

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u , todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - $\circ\,$ considere um caminho branco de u a v no instante d[u]
 - $\circ\:$ suponha que todo vértice no caminho virou descendente de u , com exceção do vértice v

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u , todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - \circ considere um caminho branco de u a v no instante d[u]
 - $\circ\:$ suponha que todo vértice no caminho virou descendente de u, com exceção do vértice v
 - \circ seja w o vértice antecessor de v nesse caminho (w pode ser o próprio u)

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u , todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - \circ considere um caminho branco de u a v no instante d[u]
 - $\circ\:$ suponha que todo vértice no caminho virou descendente de u, com exceção do vértice v
 - \circ seja w o vértice antecessor de v nesse caminho (w pode ser o próprio u)
 - \circ como w é descendente de u, temos $f[w] \leq f[u]$ (T.P.)

- $(1) \Rightarrow (2)$
 - $\circ\:$ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u, todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - \circ considere um caminho branco de u a v no instante d[u]
 - $\circ\:$ suponha que todo vértice no caminho virou descendente de u , com exceção do vértice v
 - \circ seja w o vértice antecessor de v nesse caminho (w pode ser o próprio u)
 - \circ como w é descendente de u, temos $f[w] \leq f[u]$ (T.P.)
 - o como v é descoberto depois de u ser descoberto e antes de w ser finalizado, temos $d[u] < d[v] < f[w] \le f[u]$

- $(1) \Rightarrow (2)$
 - \circ suponha que v é um descendente de u
 - o pelo Teorema dos Parênteses (T.P.), d[u] < d[v]
 - \circ portanto, v é branco no tempo d[u]
 - \circ Como v pode ser qualquer descendente de u , todos os vértices no caminho de u a v na árvore de busca em profundidade eram brancos no tempo d[u]
- $(2) \Rightarrow (1)$
 - \circ considere um caminho branco de u a v no instante d[u]
 - $\circ\:$ suponha que todo vértice no caminho virou descendente de u , com exceção do vértice v
 - \circ seja w o vértice antecessor de v nesse caminho (w pode ser o próprio u)
 - \circ como w é descendente de u, temos $f[w] \leq f[u]$ (T.P.)
 - \circ como v é descoberto depois de u ser descoberto e antes de w ser finalizado, temos $d[u] < d[v] < f[w] \leq f[u]$
 - \circ Pelo T.P. temos que [d[v],f[v]] está inteiramente contido no intervalo [d[u],f[u]], e v é descendente de u, contradição.

Quatro tipos de arestas derivadas de uma DFS:

1. Aresta de árvore: aresta da floresta DFS

Quatro tipos de arestas derivadas de uma DFS:

- 1. Aresta de árvore: aresta da floresta DES
- 2. Aresta de retorno: de um vértice para um ancestral na floresta DFS.

Quatro tipos de arestas derivadas de uma DFS:

- 1. Aresta de árvore: aresta da floresta DFS
- 2. Aresta de retorno: de um vértice para um ancestral na floresta DFS.
- 3. Aresta de avanço: de um vértice para um descendente na floresta DFS.

Quatro tipos de arestas derivadas de uma DFS:

- 1. Aresta de árvore: aresta da floresta DES
- 2. Aresta de retorno: de um vértice para um ancestral na floresta DFS.
- 3. Aresta de avanço: de um vértice para um descendente na floresta DFS.
- 4. Arestas cruzadas: todas as outras arestas.

É fácil modificar o algoritmo DFS(G) para que ele também classifique as arestas de G. (Exercício)

Classificando arestas em grafos não direcionados

Classificando arestas em grafos não direcionados

• não pode haver aresta de avanço (por quê?)

Classificando arestas em grafos não direcionados

- não pode haver aresta de avanço (por quê?)
- tampouco aresta de cruzamento (por quê?)

Classificando arestas em grafos não direcionados

- não pode haver aresta de avanço (por quê?)
- tampouco aresta de cruzamento (por quê?)
- daí cada aresta é aresta de árvore ou aresta de retorno

Componentes conexas

Contando o número de componentes

Contando o número de componentes

• cada componente corresponde a uma árvore de busca

Contando o número de componentes

- cada componente corresponde a uma árvore de busca
- é o número de chamadas a DFS-VISIT a partir de DFS

Contando o número de componentes

- cada componente corresponde a uma árvore de busca
- é o número de chamadas a DFS-VISIT a partir de DFS

Vamos modificar DFS

Contando o número de componentes

- cada componente corresponde a uma árvore de busca
- é o número de chamadas a DFS-VISIT a partir de DFS

Vamos modificar DFS

• identificamos cada componente por um número

Contando o número de componentes

- cada componente corresponde a uma árvore de busca
- é o número de chamadas a DFS-VISIT a partir de DFS

Vamos modificar DFS

- identificamos cada componente por um número
- ullet denotaremos por comp[v] a componente de v

Algoritmo DFS modificado

```
 \begin{aligned} \mathbf{DFS}(G) \\ 1 \quad & \mathbf{para} \ \mathbf{cada} \ u \in V[G] \ \mathbf{faça} \\ 2 \quad & \mathit{cor}[u] = \mathsf{branco} \\ 3 \quad & \ell = 0 \\ 4 \quad & \mathbf{para} \ \mathbf{cada} \ u \in V[G] \ \mathbf{faça} \\ 5 \quad & \mathbf{se} \ \mathit{cor}[u] == \mathsf{branco} \ \mathbf{então} \\ 6 \quad & \ell = \ell + 1 \\ 7 \quad & \mathbf{DFS-VISIT}(u) \end{aligned}
```

• ℓ é o número de chamadas a DFS-VISIT a partir de DFS

Algoritmo DFS-VISIT modificado

```
\begin{aligned} \mathbf{DFS\text{-}visit}(u) \\ 1 & cor[u] = \text{cinza} \\ 2 & \mathbf{para} \ \mathbf{cada} \ v \in \text{Adj}[u] \ \mathbf{faça} \\ 3 & \text{se } cor[v] == \text{branco então} \\ 4 & \text{DFS-VISIT}(v) \\ 5 & cor[u] = \text{preto} \\ 6 & comp[u] = \ell \end{aligned}
```

FIM