

Computer Security

Number Theory

Hyoungshick Kim

Department of Software
College of Software
Sungkyunkwan University

Notation

From here on:

- N denotes a positive integer.
- p denotes a prime.

Notation: $\mathbb{Z}_N = \{0, 1, 2, ..., N-1\}$

We can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

$$9 + 8 = 5$$
 in \mathbb{Z}_{12}
 $5 \times 7 = 11$ in \mathbb{Z}_{12}
 $5 - 7 = 10$ in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g., $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

distributive law

Greatest common divisor

<u>**Def**</u>: For integers x,y, gcd(x, y) is the <u>greatest common divisor</u> of x,y

Example: gcd(12, 18) = 6

Fact: For all integers x,y, there exist integers a,b such that

$$a \cdot x + b \cdot y = gcd(x,y)$$
 $2 \cdot 12 + -1 \cdot 18 = 6$

a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are <u>relatively prime</u>

Modular inversion

Over the rational numbers, the inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

<u>Def</u>: The **inverse** of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t. x·y=1 in \mathbb{Z}_N y is denoted x⁻¹.

Example: Let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is (N+1)/2

$$2 \cdot (N+1)/2 = N+1 = 1 \text{ in } \mathbb{Z}_N$$

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

Lemma: x in \mathbb{Z}_N has an inverse if and only if gcd(x,N) = 1 Proof:

$$gcd(x,N)=1 \Rightarrow \exists a,b: a\cdot x + b\cdot N = 1 \Rightarrow a\cdot x = 1 \text{ in } \mathbb{Z}_N$$

$$\Rightarrow$$
 $\mathbf{x}^{-1} = \mathbf{a}$ in \mathbb{Z}_N

 $\gcd(x,N) > 1 \implies \forall a: \gcd(a\cdot x, N) > 1 \implies a\cdot x \neq 1 \text{ in } \mathbb{Z}_N$

More notation

Def:
$$\mathbb{Z}_N^* = \{ \text{ set of invertible elements in } \mathbb{Z}_N \} = \{ x \in \mathbb{Z}_N : \gcd(x,N) = 1 \}$$

Examples:

- 1. for prime p, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$
- 2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

For x in \mathbb{Z}_N^* , we can find $\mathbf{x}^{\text{-1}}$ using the extended Euclidean algorithm.

Euclid's rule for GCD

- How do you find the greatest common divisor of two integers?
 - Select the largest factor that can divide both
 - A brute force approach requires exponential time
- Ancient Greece mathematician Euclid discovered the rule:
 - If x and y are positive integers with $x \ge y$ then

$$gcd(x,y) = gcd(y, x mod y)$$

- When $x \mod y = 0$, then y is the gcd
- We can swap parameters each time to keep largest as 1st parameter

Euclid's algorithm

This rule leads to the following algorithm

Function Euclid (a,b)

Input: Two integers a and b with $a \ge b \ge 0$ (n-bit integers)

Output: gcd(a,b)

if b=0: return a

else: return Euclid(b, a mod b)

Example of Euclid's algorithm

 As an example of the running of Euclid, consider the computation of gcd(30, 21):

```
Euclid(30, 21) = Euclid(21, 9)
= Euclid(9, 3)
= Euclid(3, 0)
= 3
```

C code

```
#include <stdio.h>
int gcd_algorithm(int x, int y)
{
  if (y == 0)
    return x;

  return gcd_algorithm(y, (x % y));
}
```

```
int main(void)
{
   int num1, num2, gcd;
   printf("\nEnter two numbers: ");
   scanf("%d%d", &num1, &num2);

   if (num1<0) num1 = -num1;
   if (num2<0) num2 = -num2;
   gcd = gcd_algorithm(num1, num2);

   if (gcd)
        printf("\nThe GCD of %d and %d is %d\n", num1, num2, gcd);
   else
        printf("\nInvalid input!!!\n");
   return 0;
}</pre>
```

Extended Euclid's Algorithm

```
function extended-Euclid (a, b)
```

Input: Two positive integers a and b with $a \ge b \ge 0$ (n-bits)

Output: Integers x, y, d such that $d = \gcd(a, b)$ and ax + by = d

if b = 0: return (1, 0, a) (x', y', d) = extended-Euclid(b, a mod b)return (y', x' - floor(a/b)y', d)

C code

```
int gcdExtended(int a, int b, int *x, int *y)
  // Base Case
  if (b == 0)
  \{ *x = 1;
    *y = 0;
    return a;
  int x1, y1; // To store results of recursive call
  int gcd = gcdExtended(b, a %b, &x1, &y1);
  // Update x and y using results of recursive
  // call
  *x = y1;
  *y = x1 - (a/b) * y1;
  return gcd;
```

```
int main()
{
   int x, y;
   int a = 30, b = 21;
   int g = gcdExtended(a, b, &x, &y);
   printf("gcd(%d, %d) = %d, x = %d, y = %d",
        a, b, g, x, y);
   return 0;
}
```

```
gcd(30, 21) = 3, x = 3, y = -2

...Program finished with exit code 0

Press ENTER to exit console.
```

Multiplicative inverses

- Two numbers a and b are relatively prime if gcd(a,b) = 1
- If a and N are relatively prime, then we know the multiplicative inverse exists (e.g. 4 mod 7)
 - If a and N are relatively prime, then ax + Ny = 1
- Extended-Euclid(a,N) can be used:
 - Returns integers x, y, d such that $d = \gcd(a, b)$ and ax + by = d
 - First, it must return d=1 as the gcd to confirm that a and N are relatively prime
- Ny = 0 (mod N) for all integers y
- Thus, $ax \equiv 1 \pmod{N} // ax$ is congruent to 1 modulo N
- Then x is the multiplicative inverse of a modulo N

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19						

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a/b)y', d)
```

a	b	x'	y'	d	ret 1	ret 2	ret 3
79	20						
20	19						
19	1						

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19						
19	1						
1	0						

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a/b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19						
19	1						
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19						
19	1	1	0	1			
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

a	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19						
19	1	1	0	1	0	1	1
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

a	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20						
20	19	0	1	1			
19	1	1	0	1	0	1	1
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	y'	d	ret 1	ret 2	ret 3
79	20						
20	19	0	1	1	1	-1	1
19	1	1	0	1	0	1	1
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20	1	-1	1			
20	19	0	1	1	1	-1	1
19	1	1	0	1	0	1	1
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	<i>y</i> '	d	ret 1	ret 2	ret 3
79	20	1	-1	1	-1	4	1
20	19	0	1	1	1	-1	1
19	1	1	0	1	0	1	1
1	0				1	0	1

```
function extended-Euclid (a, b)
if b = 0: return (1, 0, a)
(x', y', d) = \text{extended-Euclid}(b, a \text{ mod } b)
return (y', x' - \text{floor}(a|b)y', d)
```

а	b	x'	y'	d	ret 1	ret 2	ret 3
79	20	1	-1	1	-1	4	1
20	19	0	1	1	1	-1	1
19	1	1	0	1	0	1	1
1	0				1	0	1

$$ax + Ny = 1 = 20(4) + 79(-1)$$

Thus $x = a^{-1} = 4$

How can we choose a random prime?

- A number p is prime if
 - p is an integer and p > 1
 - The only (positive) factors of p are 1 and p.

- If n > 1 is not prime, it is *composite*
 - n has a positive factor other than 1 or n.

Q. Can you develop a practical algorithm?

Brute-force algorithm

- Input: integer N > 1
- Output: (x,y) such that x > 1, y > 1 and xy = N
 or "Prime" if N is prime

- For x = 2 to N-1
 - If x evenly divides N
 - Return(x, N/x)
- Return("Prime")

Slightly Better Algorithm

- Input: integer N > 1
- Output: (x,y) such that x > 1, y > 1 and xy = N
 or "Prime" if N is prime

- For x = 2 to \sqrt{N}
 - If x evenly divides N
 - Return(x, N/x)
- Return("Prime")

If N has 200 digits \sqrt{N} has 100 digits If inner loop takes .1 ns Algorithm take 3 x 10⁸² years

Time proportional to the value of N, not the number of digits

PRIMES is in P

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena*

Department of Computer Science & Engineering Indian Institute of Technology Kanpur Kanpur-208016, INDIA

August 6, 2002

A. We can develop an efficient algorithm in $O(n^{12})$.

Best: O(n⁶).

Practical (randomized) algorithm

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e., p $\approx 2^{1024}$)

Step 1: Choose a random integer $p \in [2^{1024}, 2^{1025}-1]$

Step 2: Test if $2^{p-1} = 1$ in \mathbb{Z}_p^*

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best)

Fermat's theorem (1640)

Thm: Let p be a prime

$$\forall x \in \mathbb{Z}_p^*$$
: $x^{p-1} = 1$ in \mathbb{Z}_p

Example: p=5. $3^4 = 81 = 1$ in \mathbb{Z}_5

So:
$$x \in \mathbb{Z}_p^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \text{ in } \mathbb{Z}_p$$

another way to compute inverses, but less efficient than Euclidian algorithm

Questions?

