

What Is Claimed Is:

1 1. A method of converting an analog signal to accurate output digital codes of N-bits
2 each, said method being performed in an analog to digital converter (ADC), said method
3 comprising:
4 receiving said analog signal;
5 converting a sample of said analog signal into a N-bit digital code;
6 generating a difference voltage of said sample and a voltage level represented by said
7 N-bit digital code;
8 converting said difference voltage into a P-bit digital code, wherein P is less than N;
9 and
10 determining an accurate output digital code from said N-bit digital code and said P-bit
11 digital code.

1 2. The method of claim 1, further comprising:
2 generating said difference voltage at a plurality of time points;
3 performing said converting said difference voltage a corresponding number of times
4 to generate a corresponding plurality of P-bit digital codes;
5 determining an average of said plurality of P-bit digital codes; and
6 performing an addition operation based on said average and said N-bit digital code
7 to generate said accurate output digital code.

1 3. The method of claim 2, wherein said difference voltage changes due to internal
2 noise in said ADC and said addition operation reduces the effect of said internal noise in the

3 value generated for said accurate output digital code.

1 4. The method of claim 3, wherein said P is substantially smaller than said N, and
2 equals an integer not less than $[\log_2 (6 * \sigma_{tot})]$, wherein * represents a multiplication
3 operation, and σ_{tot} represents a total of said internal noise.

1 5. The method of claim 2, wherein said addition operation corrects said N-bit digital
2 code in either positive direction or negative direction according to said P-bit digital code.

1 6. The method of claim 5, wherein said ADC comprises N first set of capacitors and
2 P second set of capacitors, wherein said first set of capacitors are operated according to
3 successive approximation principle (SAP) to determine said N bit digital code, and said
4 second set of capacitors are thereafter operated according to said SAP to determine said P-bit
5 digital code, said method further comprising:

6 sampling said sample on said first set of capacitors in a sampling phase, wherein said
7 sampling is performed before converting said sample into said N-bit digital code;

8 connecting a first capacitor contained in said second set of capacitors to a Vref voltage
9 and the remaining ones of said second set of capacitors to ground in said sampling phase,
10 wherein said first capacitor corresponds to a most significant bit (MSB) of said P-bit digital
11 code;

12 adding all but the MSB of said P-bit digital code to said N-bit digital code if the MSB
13 of said P-bit digital code is of one logical value; and

14 subtracting all but the MSB of said P-bit digital code from said N-bit digital code if

15 the MSB of said P-bit digital code is of the other logical value.

1 7. A successive approximation type analog to digital converter (SAR ADC)
2 converting a sample of an input analog signal into an accurate N-bit digital code, said SAR
3 ADC comprising:

4 a comparator providing a comparison result of a first analog signal and said sample;
5 a digital to analog converter (DAC) receiving an intermediate N-bit value and an
6 intermediate P-bit value, said DAC generating said first analog signal based on said
7 intermediate N-bit value and said intermediate P-bit value; and

8 a SAR logic determining a first N-bit digital code according to successive
9 approximation principle (SAP) by sending said intermediate N-bit value in each of N
10 iterations, said SAR logic then generating a first P-bit digital code according to said SAP by
11 sending said intermediate P-bit value in each of P iterations, wherein said first N-bit digital
12 code is corrected using said first P-bit digital code to generate said accurate N-bit digital
13 code.

1 8. The SAR ADC of claim 7, wherein said SAR logic determines a plurality of P-bit
2 digital codes including said first P-bit digital code, said plurality of P-bit digital codes being
3 averaged to generate an average value, wherein said first N-bit digital code is corrected using
4 said average value.

1 9. The SAR ADC of claim 8, wherein said DAC comprises:

2 N first set of capacitors, each having a capacitance value corresponding to a weight

3 of a corresponding one of a N-bit code;

4 N first set of switches, wherein each of said first set of switches connects a
5 corresponding one of said first set of capacitors to said sample in a sampling phase of said
6 SAP, each of said first set of switches connecting a corresponding one of said first set of
7 capacitors to a ground or a reference voltage according to a corresponding bit of said
8 intermediate N-bit value in a conversion phase of said SAP;

9 P second set of capacitors, each having a capacitance value corresponding to a weight
10 of a corresponding one of a P-bit code, wherein P is less than N; and

11 P second set of switches, each of said second set of switches connecting a
12 corresponding one of said second set of capacitors to a ground or a reference voltage
13 according to a corresponding bit of said intermediate P-bit value.

1 10. The SAR ADC of claim 9, wherein another end of each of said first set of
2 capacitors and said second set of capacitors is connected to a V_{mid} voltage by a third switch,
3 wherein said third switch is in a closed state in said sampling phase and in an open state in
4 said conversion phase, wherein an intermediate analog signal equaling the following voltage
5 is generated by said DAC:

$$V_{top} = V_{mid} - V_{inp} + \sum_{i=1}^N b_i \frac{V_{ref}}{2^i} + \sum_{j=1}^P b_j \frac{V_{ref}}{2^j}$$

6 wherein V_{ref} and V_{inp} represent said reference voltage and voltage of said sample, and
7 b_i represents the i^{th} bit of said intermediate N-bit value and b_j represents the j^{th} bit of said
8 intermediate P-bit value.

1 11. The SAR ADC of claim 10, wherein said comparator compares said intermediate

2 analog signal with said V_{mid} voltage to generate said comparison result.

1 12. The SAR ADC of claim 11, wherein said average value is used to correct said first
2 N-bit digital code in either positive or negative direction.

1 13. The SAR ADC of claim 12, wherein SAR logic sets a most significant bit (MSB)
2 of said P-bit digital code to one in said sampling phase, and adds all but the MSB of said
3 average value to said N-bit digital code if the MSB of said average value is of one logical
4 value, said SAR logic subtracting all but the MSB of said average value from said N-bit
5 digital code if the MSB of said P-bit digital code is of the other logical value.

1 14. The SAR ADC of claim 13, wherein said DAC comprises more than P of said
2 second set of switches, and wherein P is determined by a noise introduced internally in said
3 SAR ADC.

1 15. The SAR ADC of claim 13, wherein said noise comprises components introduced
2 by said DAC and said comparator.

1 16. A successive approximation type analog to digital converter (SAR ADC)
2 converting an analog signal to accurate output digital codes of N-bits each, said SAR ADC
3 comprising:

4 means for receiving said analog signal;

5 means for converting a sample of said analog signal into a N-bit digital code;

6 means for generating a difference voltage of said sample and a voltage level
7 represented by said N-bit digital code;

8 means for converting said difference voltage into a P-bit digital code, wherein P is less
9 than N; and

10 means for determining an accurate output digital code from said N-bit digital code and
11 said P-bit digital code.

1 17. The SAR ADC of claim 16, further comprising:

2 means for generating said difference voltage at a plurality of time points, wherein said
3 means for converting said difference voltage converts said difference voltage a corresponding
4 number of times to generate a corresponding plurality of P-bit digital codes;

5 means for determining an average of said plurality of P-bit digital codes; and

6 means for performing an addition operation based on said average and said N-bit
7 digital code to generate said accurate output digital code.

1 18. The SAR ADC of claim 17, wherein said difference voltage changes due to
2 internal noise in said SAR ADC and said addition operation reduces the effect of said internal
3 noise in the value generated for said accurate output digital code.

1 19. The SAR ADC of claim 18, wherein said P is substantially smaller than said N,
2 and equals an integer not less than $[\log_2(6 * \sigma_{\text{tot}})]$, wherein * represents a multiplication
3 operation, and σ_{tot} represents a total of said internal noise.

1 20. The SAR ADC of claim 17, wherein said addition operation corrects said N-bit
2 digital code in either positive direction or negative direction according to said P-bit digital
3 code.

1 21. The SAR ADC of claim 20, wherein said means for converting a sample
2 comprises N first set of capacitors and P second set of capacitors, wherein said first set of
3 capacitors are operated according to successive approximation principle (SAP) to determine
4 said N bit digital code, and said second set of capacitors are thereafter operated according to
5 said SAP to determine said P-bit digital code, said SAR ADC further comprising:

6 means for sampling said sample on said first set of capacitors in a sampling phase,
7 wherein said means for sampling is performed before converting said sample into said N-bit
8 digital code;

9 means for connecting a first capacitor contained in said second set of capacitors to a
10 Vref voltage and the remaining ones of said second set of capacitors to ground in said
11 sampling phase, wherein said first capacitor corresponds to a most significant bit (MSB) of
12 said P-bit digital code;

13 means for adding all but the MSB of said P-bit digital code to said N-bit digital code
14 if the MSB of said P-bit digital code is of one logical value; and

15 means for subtracting all but the MSB of said P-bit digital code from said N-bit digital
16 code if the MSB of said P-bit digital code is of the other logical value.

1 22. A system comprising:

2 an analog processor processing an analog signal to generate an analog sample;

3 a successive approximation type analog to digital converter (SAR ADC) converting
4 said analog sample into an accurate N-bit digital code, said SAR ADC comprising:

5 a comparator providing a comparison result of a first analog signal and
6 said sample;

7 a digital to analog converter (DAC) receiving an intermediate N-bit
8 value and an intermediate P-bit value, said DAC generating said first analog
9 signal based on said intermediate N-bit value and said intermediate P-bit
10 value; and

11 a SAR logic determining a first N-bit digital code according to
12 successive approximation principle (SAP) by sending said intermediate N-bit
13 value in each of N iterations, said SAR logic then generating a first P-bit
14 digital code according to said SAP by sending said intermediate P-bit value
15 in each of P iterations, wherein said first N-bit digital code is corrected using
16 said first P-bit digital code to generate said accurate N-bit digital code; and

17 a processing unit receiving said accurate output digital code.

1 23. The system of claim 22, wherein said SAR logic determines a plurality of P-bit
2 digital codes including said first P-bit digital code, said plurality of P-bit digital codes being
3 averaged to generate an average value, wherein said first N-bit digital code is corrected using
4 said average value.

1 24. The system of claim 23, wherein said DAC comprises:

2 N first set of capacitors, each having a capacitance value corresponding to a weight

3 of a corresponding one of a N-bit code;

4 N first set of switches, wherein each of said first set of switches connects a
5 corresponding one of said first set of capacitors to said sample in a sampling phase of said
6 SAP, each of said first set of switches connecting a corresponding one of said first set of
7 capacitors to a ground or a reference voltage according to a corresponding bit of said
8 intermediate N-bit value in a conversion phase of said SAP;

9 P second set of capacitors, each having a capacitance value corresponding to a weight
10 of a corresponding one of a P-bit code, wherein P is less than N; and

11 P second set of switches, each of said second set of switches connecting a
12 corresponding one of said second set of capacitors to a ground or a reference voltage
13 according to a corresponding bit of said intermediate P-bit value.

1 25. The system of claim 24, wherein another end of each of said first set of capacitors
2 and said second set of capacitors is connected to a V_{mid} voltage by a third switch, wherein
3 said third switch is in a closed state in said sampling phase and in an open state in said
4 conversion phase, wherein an intermediate analog signal equaling the following voltage is
5 generated by said DAC:

$$V_{top} = V_{mid} - V_{inp} + \sum_{i=1}^N b_i \frac{V_{ref}}{2^i} + \sum_{j=1}^P b_j \frac{V_{ref}}{2^j}$$

6
7 wherein V_{ref} and V_{inp} represent said reference voltage and voltage of said sample, and
8
9 b_i represents the i^{th} bit of said intermediate N-bit value and b_j represents the j^{th} bit of said
10 intermediate P-bit value.

1 26. The system of claim 25, wherein said comparator compares said intermediate

2 analog signal with said V_{mid} voltage to generate said comparison result.

1 27. The system of claim 26, wherein said average value is used to correct said first N-
2 bit digital code in either positive or negative direction.

1 28. The system of claim 27, wherein SAR logic sets a most significant bit (MSB) of
2 said P-bit digital code to one in said sampling phase, and adds all but the MSB of said
3 average value to said N-bit digital code if the MSB of said average value is of one logical
4 value, said SAR logic subtracting all but the MSB of said average value from said N-bit
5 digital code if the MSB of said P-bit digital code is of the other logical value.

1 29. The system of claim 28, wherein said DAC comprises more than P of said second
2 set of switches, and wherein P is determined by a noise introduced internally in said SAR
3 ADC.

1 30. The system of claim 28, wherein said noise comprises components introduced by
2 said DAC and said comparator.

1 31. The system of claim 30, wherein said system comprises a global positioning
2 system receiver, said system further comprising an antenna to receive said analog signal and
3 provide to said analog processor.