Siddhartha Chandra

http://cvn.ecp.fr/personnel/siddhartha/

A214, Batiment Annexe Dumas, Centrale-Supélec Paris Grande Voie des Vignes, Chatenay Malabry 92290 France $robinch and ra 19@gmail.com\\+33-(0)650727678$

Education

2014—today	PhD in Machine Vision
	INRIA Galen & Centrale-Supélec Paris
2007 – 2013	Bachelor of Technology (Honours) $+$ M.S. by Research
	IIIT Hyderabad. CGPA: 9.3/10
2006 – 2007	AIEEE All India Rank 2532 (out of > 700,000 candidates)
	IIT All India Rank 3879 (out of > 450,000 candidates)
2004 – 2006	$\mathbf{ISC} \; \mathbf{XII}^{th} \; \mathbf{Board}$
	Overall Percentage: 94.0% St. Joseph's College, Allahabad
2004	$\mathbf{ICSE} \ \mathbf{X}^{th} \ \mathbf{Board}$
	Overall Percentage: 95.4% St. Joseph's College, Allahabad

Research Positions

2014-today	PhD Student, INRIA Galen & Centrale-Supélec Paris
	Research Advisors: Prof. I. Kokkinos & Prof. P. Kumar
2014-today	Project Partner, MOBOT (European Union Project)
2009 – 2013	Research Assistant, Center for Visual Information Technology, IIIT Hyderabad
2010-2011	Research student visitor, Visual Geometry Group, University of Oxford

Publications

2016	Deep, Dense, and Low-Rank Gaussian Conditional Random Fields. Siddhartha	
	Chandra, Iasonas Kokkinos. ArXiV Report	
2016	Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with	
	Deep Gaussian CRFs. Siddhartha Chandra, Iasonas Kokkinos. ECCV, Netherlands	
2016	Human Joint Angle Estimation and Gesture Recognition for Assistive Robotic	
	Vision. Alp Guler, Siddhartha Chandra, Iasonas Kokkinos et.al. Oral Presentation, ECCV	
	$Workshop,\ Netherlands$	
2015	Accurate Human-Limb Segmentation in RGB-D images for Intelligent Mobil-	
	ity Assistance Robots. Siddhartha Chandra, Stavros Tsogkas, Iasonas Kokkinos. Oral	
	Presentation, ICCV Workshop, Chile	
2015	Surface Based Object Detection in RGBD Images. Siddhartha Chandra, Grigoris	
	Chrysos, Iasonas Kokkinos. Oral Presentation, BMVC, Wales	
2013	Partial Least Squares Kernel for Computing Similarities between Video Se-	
	quences. Siddhartha Chandra, C.V. Jawahar. Oral Presentation, ICPR, Japan	
2013	Sparse Discriminative Fisher Vectors in Visual Classification. Vinay Garg, Sid-	
	dhartha Chandra, C.V. Jawahar. ICVGIP, India	
2012	Learning Non-Linear Supspaces using K-RBMs. Siddhartha Chandra, Shailesh Ku-	
	mar, C.V. Jawahar. CVPR, USA	
2012	Learning Hierarchical Bag of Words using Naive Bayes Clustering. Siddhartha	
	Chandra, Shailesh Kumar, C.V. Jawahar. ACCV, Korea	

Relevant Research Projects

Deep Learning | Mul

Multi-Scale Inference for Semantic Segmentation with Deep Gaussian CRF Learning multi-scale pairwise interactions between image regions for Image Segmentaion in an end-to-end deep learning architecture.

Deep Learning	Facial Landmark Localization using Deep Structured Prediction Learning deep Deformable Part Models for face detection and landmark localization.
Deep Learning	LSTMs for semantic segmentation Training sophisticated LSTMs for semantic segmentation.
Deep Learning	Human part segmentation in RGB-D Images Learning to parse humans in RGB-D images from diverse data using deep networks.
Pictorial Structures	Surface based Object Detection for RGB-D Images Emploing 3-D models for better initializing a mixture of Deformable Part Models.
3-D Modelling	3-D Modelling and Description of 3-D surfaces Modelling Feature Extraction for Point Correspondences in 3-D meshes
Clustering Subspace Learning	Feature Learning, Clustering using Restricted Boltzmann Machines. Using an EM type "coupled" approach to clustering that employs K-Restricted Boltzmann Machines for learning multiple non-linear subspaces in data.
$\begin{array}{c} \text{Action} \\ \text{Recognition} \end{array}$	Partial Least Squares Kernel for Action Recognition PLS regression for computing similarity between two videos.
Detection Tracking Recognition	Detecting, Tracking and Recognizing Humans in Hollywood Movies Deformable parts based model to detect human upper bodies in video frames, tracking, and recognition based on colour features.

Relevant Courses Taken

Research	Machine Learning, Computer Vision, Pattern Recognition, Digital Image Processing, Artifi-
	cial Intelligence, Computer Graphics, Speech Systems
Other	Data Structures, Algorithms, Theory of Computation, Operating Systems, Computer Orga-
	nization, Software Engineering, Database Management, Compilers, Computer Networks

Other Positions

- * Working as System Administrator for CVN, Centrale-Supélec Paris. Setting up GPU servers.
- * Worked as **System Administrator** for CVIT, IIIT Hyderabad. Familiar with Sun-Grid Engine, among other Linux Administration tools.
- * Worked as a **Teaching Assistant** for the following courses at IIIT Hyderabad through the $3^{rd} 5^{th}$ year: Computer Vision (1 semester), C Programming (2 semesters), Algorithms (1 semester), Information Technology (2 semesters).

Skill Set

Programming	C, C++, Python, Bash, MATLAB
Server Side	ModPython, PHP
Office Work	Open Office, MS Office, LATEX

References

Available on request.