第四章 積分

曲線下的面積

已知y = f(x)的圖形是一條曲線。在很多時候,我們會想要求「曲線下的面積」。

所謂的「曲線下的面積」,是由 $y = f(x) \setminus x$ 軸、y軸、以及某條鉛直線所夾出的區域面積。

當y = f(x)為固定函數時,上述的面積就完全由鉛直線的位置決定,當鉛直線的位置為x時,我們就假設這個面積為A(x)。

定理 1: (微積分基本定理; The Fundamental Theorem of Calculus) 已知 A(x) 為函數 y=f(x) 曲線下的面積函數,若 A(x) 可微分,則

$$\frac{dA}{dx} = f(x) \quad \circ$$

說明:

$$A'(x) = \lim_{h \to 0} A(x+h) - A(x)$$

$$h = -f(x)$$

 $A(x) \rightarrow f(x) \rightarrow f'(x)$

【註】因為我們此處面積函數 A(x) 的定 義是由 x 軸、y 軸起算,所以第一、三 象限的面積定義為正;第二、四象限的 面積則定義為負;如左圖所示。

定理 2:若 A'(x) = B'(x) ,則函數 A 與 B 只相差一個常數 C ,亦即 A(x) = B(x) + C 。

$$f'(x) = A'(x) - B'(x)$$

$$= 0$$

$$\Rightarrow f(x) = 0$$

$$A(x)+B(x)=c$$

$$A(x) = B(x) + C$$

例題 3: 已知 $f(x) = x^2$,則 y = f(x) 、x 軸、以及鉛直線 x = 1 所夾出的區域面積為何?

$$A(x) = f(x) = x^2$$

$$A(x) = \frac{1}{3} x^3 + C$$

$$A(0) = 0 = 0 = 0$$

$$A(1) = \frac{1}{3} + 0 = \frac{1}{3}$$

練習 4: 已知 $f(x) = 4 - x^2$,則 y = f(x) 與 x 軸所夾出的區域面積為何?

$$A'(x) = 4 - x^2$$

$$A(x) = -\frac{1}{3}x^3 + 4x + C$$

$$A(0) = C = 0$$

$$A(z) = -\frac{8}{3} + 8$$

32 3 H

例題 5: 已知 f(x) = x(x-1)(x-2) ,則 y = f(x) 與 x 軸所夾出的區域面積為

何?

$$A(x) = x^3 - 3x^2 + 2x$$

$$A(x) = \frac{1}{4}x^{\frac{4}{1}}x^{\frac{3}{4}}x^{\frac{5}{1}} + C$$

$$A(1) = \frac{1}{4} - 1 + 1 = \frac{1}{4}$$

$$y = \frac{1}{(x+1)^2}$$
 $x \neq y \neq 0, x = 1$

$$A(1)$$

$$A(x) = \frac{1}{(x+1)^2} = (x+1)^2$$

$$A(x) = -(x+1)^{-1}.1+C$$

$$A(0) = -1 + C = 0$$

$$A(1) = -\frac{1}{2} + 1$$
$$= \frac{1}{2}$$

D = 0

enterna i programa de poblecia

-

積分的定義與符號

 $y = f(x) \cdot x$ 軸、鉛直線 $x = a \cdot x = b$ 所夾的區域面積以符號 $\int_a^b f(x)dx$ 表示。 而前述的面積函數 A(x) 就是 $\int_0^x f(t)dt$ 。

在符號 $\int_{a}^{b} f(x)dx$ 中,dx 代表小小的寬度 Δx ; f(x) 代表對應的高度; \int 代表 Σ 也就是把「寬度」×「高度」=「每一條細長的矩形面積」做加總的操作; 而 a 與 b 則代表計算面積的左右界限。所以 $\int f(x)dx$ 其實就是 $\lim_{x\to\infty} \int f(x)\Delta x$ 。 對於函數 y = f(x) , 我們稱 $\int f(x)dx$ 為 f(x) 的積分。

- ① 如果指定了積分的上下界,即 $\int_a^b f(x)dx$,則稱為定積分。 定積分的結果是一個數值。
- ② 如果沒有指定積分的上下界,即 \(f(x) dx ,則稱為不定積分。 若F(x)滿足F'(x) = f(x),我們稱F(x)為f(x)的反導函數, 記為 $\int f(x)dx = F(x) + C$ 。

定理 6: 若f、g都是可積分函數,則:

$$\bigcirc \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx ;$$

②
$$\int [f(x) - g(x)]dx = \int f(x)dx - \int g(x)dx$$

$$=\lim_{\substack{\lambda X \to 0 \\ \lambda X \to 0}} \left[f(X_i) + \cdots + f(X_n) \right] \circ X + \left[g(X_i) + \cdots + g(X_n) \right] \circ X$$
定理 7: 若 $\int f(x) dx = F(x) + C$,則 $\int_a^b f(x) dx = F(b) - F(a)$ 。
證明: $\Rightarrow A(X) = F(X) + C$) $F'(X) = f(X)$

證明:
$$\Rightarrow A(x) = F(x) + C'$$
 $\Rightarrow F'(x) = f(x)$

$$\int_{0}^{b} f(x) dx = \int_{0}^{b} f(x) dx - \int_{0}^{a} f(x) dx$$

$$= A(b) - A(a) = F(b) + C' - F(a) - C' = F(b) - F(a)$$

【註】由此定理可知 $\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$ 。

例題 8: 試求下列各不定積分 (1) $\int x^2 dx$ (2) $\int (5-2x)dx$ (3) $\int (2x+3)^5 dx$ $(1) \int x^2 dx = \frac{1}{2} x^3 + C$

$$(2) \int (5-2x) dx = -x^2 + 5x + C$$

(3) $\int (2x+3)^5 dx = \frac{1}{12}(2x+3)^5 + C$ 例題 9: 試求下列各定積分的值(1) $\int_1^2 \frac{1}{x^2} dx$ (2) $\int_{-1}^2 (x+1)^{99} dx$ (3) $\int_9^4 \sqrt{x} dx$ (1) $\int_1^2 \frac{1}{x^2} dx = -\chi^{-1} \int_1^2 \frac{1}{x^2} - (-1) = \frac{1}{2}$

(1)
$$\int_{1}^{2} \frac{1}{2} dx = -x^{-1} \Big|_{1}^{2} = -\frac{1}{2} - (-1) = \frac{1}{2}$$

$$(31) \int_{9}^{4} \int x \, dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_{9}^{4} = \frac{2}{3} (8 - 27) = \frac{-38}{3}$$

$$\int_{2}^{3} x^{2} 2x dx + \int_{0}^{2} 2x - x^{2} dx$$

$$= \left(\frac{2^{3}}{3} - \chi^{2}\right) \left| \frac{3}{3} + \left(-\frac{1}{3}\chi^{3} + \chi^{2}\right) \right|^{2} = \int_{0}^{2} 4 - \chi^{2} dx$$

$$= -(\frac{8}{3} - 4) - \frac{8}{3} + 4$$

$$=$$
 $8 - \frac{1b}{3} = \frac{8}{3}$

$$\int_0^{\infty} 3 - (\chi^2 - 1) dx$$

$$= \int_0^2 4 - x^2 dx$$

$$= -\frac{1}{3}\chi^{3} + 4\chi^{2}$$

$$\frac{1}{8} = \frac{8}{3} = \frac{16}{3}$$

變數變換法

如果
$$F'(x) = f(x)$$
 , 我們也可以寫成 $\frac{dF}{dx} = f(x)$ 。

微分時,我們由連鎖律可知
$$\frac{dF}{dx} = \frac{dF}{du} \cdot \frac{du}{dx}$$
,

則
$$\int f(x)dx = \int dF = \int \frac{dF}{du} \cdot du = \int F'(u) \cdot du$$
 ,可以將 x 的積分轉換為 u 的積分。

例題 11: 求不定積分 $\int x(x^2+1)^5 dx$ 。

$$3U = \chi^{2} + 1$$

$$3U^{5} \cdot \frac{du}{dx}$$

$$= 1 \cdot \int U^{5} \cdot \frac{du}{dx}$$

$$= \frac{1}{2} \cdot \int U^{5} \cdot \frac{du}{dx}$$

$$= \frac{1}$$

$$\frac{du}{dx} = 1$$

$$\frac{du}{dx} = 1$$

$$\frac{1}{2} M^{21} - \frac{1}{3} M^{20} \Big|_{-1}^{1}$$

$$\frac{du}{dx} = \frac{1}{3} M^{20} \Big|_{-1}^{1}$$

$$\frac{1}{3} M^{20} \Big|_{-1}^{1}$$

練習 13: 求下列各積分:(1) $\int \frac{(\sqrt{x}-2)^7}{\sqrt{x}} dx$;(2) $\int_{-1}^{\sqrt{3}} \frac{x}{(x^2+1)^5} dx$ 。

作業 14: 試求下列各不定積分:(1) $\int (\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}}) dx$;(2) $\int (\frac{1}{2x+1})^5 dx$ 。

作業 15: 試求下列各定積分的值:(1) $\int_{-2}^{2} (x^3 - 2x + 3) dx$;(2) $\int_{32}^{1} x^{\frac{-6}{5}} dx$ 。

作業 16: 試求下列各圖中的區域面積

作業 17: 試求定積分 $\int_0^8 x \sqrt{x+1} \cdot dx$ 的值。(提示:令 $x = u^2 - 1$ 。)

積分應用-面積

[+0-3+2] 例題 18: 求 $y=x^3-3x+2$ 與x 軸所圍的面積 $x^3-3x+2=0$] (x-1)(x+2).

 $x^{3} - 3x^{2} + 2x = -x^{3} + 4x^{2} - x$ $2x^{3} - 7x^{2} + 3x = 0$

2 X - 1

$$x(2x^{2}-1x+3)=0$$
 $x(2x-1)(x-3)$
 $x(3,6)$

$$\int_{0}^{\frac{1}{2}} x^{3} - 3x^{2} + 2x + x^{3} - 4x^{2} + x$$

$$+ \int_{\frac{1}{2}}^{\frac{1}{2}} - x^{3} + 4x^{2} - x - x^{3} + 3x^{2} - 2x$$

$$= \int_{0}^{\frac{1}{2}} 2x^{3} - 1x^{2} + 3x + \int_{\frac{1}{2}}^{\frac{3}{2}} - 2x^{3} + 1x^{2} - 3x$$

$$= \frac{1}{2} x^{4} + \frac{1}{2} x^{3} + \frac{3}{2} x^{2} \Big|_{0}^{\frac{1}{2}} + -\frac{1}{2} x^{4} + \frac{1}{3} x^{3} - \frac{3}{2} x^{2} \Big|_{\frac{1}{2}}^{\frac{3}{2}}$$

$$= \frac{1}{2} x^{4} + \frac{1}{2} x^{3} + \frac{3}{2} x^{2} \Big|_{0}^{\frac{1}{2}} + -\frac{1}{2} x^{4} + \frac{1}{3} x^{3} - \frac{3}{2} x^{2} \Big|_{\frac{1}{2}}^{\frac{3}{2}}$$

例題
$$20: y = 2x - x^2$$
 與 x 軸所圍面積被 $y = mx$ 等分,求 m

例題 20:
$$y = 2x - x^2$$
 與 x 軸所圍面積被 $y = mx$ 等分,求 m

$$\int_{0}^{2} (2x - x) dx \qquad mx = 2x - x^{2} dx$$

$$\int_{0}^{2} (2x - x) dx \qquad mx = 2x - x^{2} dx$$

$$x = 0 \text{ or } 2 - m$$

$$x = -\frac{1}{3}x^{3} + \frac{2 - m}{2}x^{2} - \frac{1}{2}x^{3} + \frac{1 - m}{2}x^{2} - \frac{1}{2}x^{3} + \frac{1 - m}{2}x^{2} - \frac{1}{2}x^{3} + \frac{1 - m}{2}x^{2} - \frac{1 - m}{2}x^{3} + \frac{1$$

例題 21: 求 $y=x^3$ 與 $y=x^2$ 所圍之面積

例題 22: 求 $v=x^2$ 與 $x=v^2$ 所圍之面積

例題 23: 求 $x=4-y^2$ 與y軸所圍之面積 $y=4-\chi^2$

$$\int_{-2}^{2} (4-x^{2}) dx$$

$$= -\frac{x^{3}}{3} + 4x \Big|_{-2}^{2}$$

$$= -\frac{8}{3} + 8 - (\frac{8}{3} + \frac{3}{3})$$

$$= \frac{27}{3} + \frac{32}{3}$$

例題 24: 自原點作 $y=x^3-3x+16$ 的切線,求切線與曲線之間的面積 y=9x $x^3-12x+16=0$ x=2 $x=\pm 1$ y=9x $x^3-12x+16=0$ x=2 x=2 $x=\pm 1$ y=9x x=2 x

積分應用-旋轉體體積 I : 圓盤法 (The Disc Method)

已知 $f(x) \ge 0$,其中 $a \le x \le b$ 。假設 y = f(x) 、 y = 0 、 x = a 、 x = b 所置成的 區域為 R 。則 R 繞 x 軸旋轉一圈所得出的旋轉體體積為 $\int_a^b \pi f^2 dx$ 。

例題 26: 設 $R \neq y = 2x - x^2$ 與 x 軸所圍成的區域,試求 R 繞 x 軸的旋轉體體積

例題 27: 一圓錐底圓半徑為r ,高為h ,求證體積為 $\frac{1}{3}\pi r^2 h$

例題 28: 設球半徑為r,求證體積為 $\frac{4}{3}\pi r^3$

練習 29: 試求橢圓 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 繞 x 軸的旋轉體體積。

練習 30: 試求圓 $x^2 + (y-2)^2 = 1$ 繞 x 軸的旋轉體 (輪胎面, Torus) 體積。

積分應用-旋轉體體積Ⅱ:圓殼法 (The Shell Method)

已知 $f(x) \ge 0$, 其中 $0 \le a \le x \le b$ 。假設 y = f(x)、 y = 0、 x = a、 x = b所圍成 的區域為R。則R繞y軸旋轉一圈所得出的旋轉體體積為 $\int_{a}^{b} 2\pi x f dx$ 。

例題 31:設 $R \neq y = 2x - x^2$ 與x軸所圍成的區域,試求R繞y軸的旋轉體體積

練習 32: 設 $R \neq y = x$ 與 x 軸在 $0 \leq x \leq 1$ 的範圍所圍成的區域,試求 R 繞 y 軸 的旋轉體體積。

作業 33: 設 $y=x^2$ 與 $y=x^3$ 所圍區域為S,試求

(1) S 繞 x 軸旋轉體積 (2) S 繞 y 軸旋轉體積

作業 $34: y=e^x$ 的圖形、直線 y=0 、 x=0 、 x=2 所圍成區域為 R , 試求

(1) R 繞 x 軸旋轉體積 (2) R 繞 y 軸旋轉體積

積分應用-曲線的長度

考慮 y = f(x) 的函數圖形在 $a \le x \le b$ 的部分, 關鍵的想法:

此曲線長為:

例題 35:試求下列函數圖形在指定區間 (範圍) 內的長度。 (1) f(x) = 2x - 1 , $x \in [1,3]$ 。

(2)
$$f(x) = \frac{2}{3}x^{\frac{3}{2}}, x \in [0,8]$$

作業 36: 試求封閉曲線 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 的長度。

