PATENT APPLICATION

Remarks Regarding New Claims:

Amendments to Claims 1, 4 and 5 are for purposes of conforming the claims to the

elected species only and are supported by pages 15 and 19 of the specification.

RESPONSE

Election/Restriction

The Applicants elect Group I, with Example 1 as a species--wherein A is a five-

membered monocyclic heterocyclic ring consisting of one ring nitrogen and V is a carbocyclic

radical--with traverse.

Applicants respectfully submit that no serious burden is imposed upon the Examiner by

not restricting the claims, because the Examiner has not shown how a search of Groups I and II

would be any more burdensome than a search of Group I alone. Therefore, Applicants

respectfully request that the restriction requirement be withdrawn.

Respectfully submitted,

Richard V. Person

Attorney for Applicants Registration No.: 42,991

Phone: (805) 447-3299 Date: February 22, 2002

Please send all future correspondence to:

US Patent Operations/RVP Dept. 4300, M/S 27-4-A AMGEN INC. One Amgen Center Drive

Thousand Oaks, California 91320-1799

9

Marked-up changes:

Page 3, first full paragraph:

Integrin $\alpha_{\nu}\beta_{\nu}$ is an RGD, tenascin and fibronectin binding protein (J. Biol. Chem. 267:5790-6, 1992) which is expressed by a number of cells, such as carcinoma and epithelial cells, and is thought to be involved in carcinoma cell proliferation (J. Biol. Chem. Cell Biol. 127:547-56, 1994), in wound healing and cell attachment (J. Invest. Dermatol. 106:42-8, 1996), in epithelial inflammation, such as asthma (J. Cell Biol. 133:921-928, 1996), in inducing gelatinase B secretion, activation of the protein kinase-C pathway, tumor cell spreading and proliferation in colon cancer cells (Biochem. Biophys. Res. Commun. 249:287-291, 1998; Int. J. Cancer 81:90-97, 1999), in regulation of pulmonary inflammation and fibrosis and binding and activating transforming growth factor β 1 (Munger et al., Cell (Cambridge, Mass) 96:319-328, 1999), and in viral infections (Virology 239:71-77, 1997).

1. (Amended) A compound of the formula $U\text{-}V\text{-}A\text{-}(Alk)_{j}\text{-}(C(O)\text{-}NH)_{h}\text{-}(Alk)_{g}\text{-}B$

or a pharmaceutically acceptable salt thereof, wherein g, h and j are each independently 0 or 1; provided when h is 0, then g is 0;

each Alk is independently a alkyl radical;

U represents amidino, guanidino, -(G-alkyl)_k-NH-R₁, -(G-alkyl)_k-NH-C(Q)-R₁, -(G-alkyl)_k-C(Q)-N(R)-R₁, -(G-alkyl)_k-NH-C(Q)-O-R₁ or -(G-alkyl)_k-O-C(Q)-N(R)-R₁ radical; or U represents a hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein k is 0 or 1;

G represents a bond, O, S or NH;

Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

 R_1 is a radical of alkyl, haloalkyl, $R_{21}R_{22}N$ -alkyl, $R_{21}O$ -alkyl, $R_{21}S$ -alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein R_{21} and R_{22} are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

V represents a radical of formula

11

wherein W_1 is O, S or N-R₃; wherein each R₃ is independently a hydrogen or alkyl radical; W_7 is N or C-R₅;

 W_0 is $C(R_3)_2$ and W_{10} is W_1 ; or W_0 is CR_3R_5 and W_{10} is $C(R_3)_2$;

each W_2 , W_3 , W_4 and W_5 are independently N or <u>is</u> C-R₄; provided the total number of cycloalkyl, aryl, heterocyclyl, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂ and -R₁₉ radicals in W_2 , W_3 , W_4 and W_5 is 0-2;

each W_6 is independently N or C-H; provided that not more than two of W_2 , W_3 , W_4 , W_5 and W_6 represent N; and

each R_4 is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

R₅, R₆ and R₇ are each independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy or cyano radical; or R₅ and R₆ or R₆ and R₇ taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

A represents a radical of formula

wherein X₁ is N or C-H;

X₂ is C-H, C-alkyl, a spirocycloalkyl or spiroheterocyclyl radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thiooxo radical and 1-2 radicals of alkyl, haloalkyl, hydroxy, alkoxy or haloalkoxy;

$$Y_1 = C(O) - C(S) - S(O) = Or - S(O)_2 - C(S) - C$$

Z₁ is O or N-R₁₂;

Z₂ is O, S or N-R₁₂;

n and m are each independently 0, 1 or 2, provided n + m = 1, 2, 3 or 4;

p and q are each independently 0, 1 or 2, provided p + q - 1, 2 or 3;

r is 1 or 2;

 R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or alkyl radical; or -CR₈R₉-represents a -C(O)-;

B represents a radical of formula

wherein (a) R_{15} is a hydrogen or alkyl radical; and R_{17} is (1) an aryl, heteroaryl, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -NH-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂- R_{19} , -S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -NH-C(O)-NH- R_{19} , -O-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} ; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or

(b) R_{17} is a hydrogen or alkyl radical; and R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, - NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH- R_{19} radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)- R_{19} , -

 $C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

wherein R₁₉ is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₁₆ and R₁₈ are each independently a hydrogen or alkyl radical; and

E is a radical of carboxy, amido, tetrazolyl, -C(O)-O- R_{20} , -C(O)-NH- R_{20} , -C(O)-NH- R_{20} , -C(O)-NH- R_{20} , -C(O)-NH- R_{20} , or -C(O)-NH- R_{20} ;

wherein R₂₀ is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

provided that when U represents amidino, guanidino, -C(Q)-NH-R₁ or -NH-C(Q)-NH-R₁ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

3. (Delete) The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₈ alkyl radical;

V represents a radical of formula

A represents a radical of formula

$$\begin{array}{c|c} R_8 & X_1 & & & \\ \hline R_{10} & X_2 & R_{10} & & \\ \hline R_{11} & X_2 & R_{11} & & \\ \hline R_{11} & & & \\ \hline \end{array}$$

 Y_1 is -C(O) or -C(S).

4. (Amended) The compound of Claim 2or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₆ alkyl radical;

V represents a radical of formula

X₂ is C-H or C-(methyl) radical;

 Y_1 is -C(O); and

 R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or methyl radical; or -CR₈R₉-represents a -C(O)-.

5. (Amended) The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₄ alkyl radical;

U represents amidino, guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-N(R)-R₁ or -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-O-R₁ radical;

G represents a bond, O or NH;

Q represents O, S, NH, N-CN or N- $(C_1-C_4 \text{ alkyl})$;

R is a radical of hydrogen or C_1 - C_4 alkyl;

 R_1 is a radical of C_1 - C_6 alkyl, halo(C_1 - C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N$ -(C_1 - C_6 alkyl), $R_{21}O$ -(C_1 - C_6 alkyl), C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_6 alkyl), aryl, aryl(C_1 - C_6 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_6 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_6 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

 R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_8 alkyl, aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, halo(C_1 - C_2 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each We is C-H;

each R_4 is independently a hydrogen, halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, halo(C_1 - C_2 alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O- R_{19} , -C(O)- R_{19} , - R_{19} , -

 R_{20} is a C_1 - C_4 alkyl, aryl or heteroaryl of 5-10 ring members or a C_1 - C_4 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .