CS 601 Spring 2020: Problem Set 2.

Problem 1. (10 points) For each of the following languages, either give a CFG generating it, or a high-level description of a PDA that recognizes it:

- a) The complement of $\{a^nb^n \mid n \ge 0\}$
- b) $\{x_1 \# x_2 \# \cdots x_k | k \ge 1, each x_i \in \{a, b\}^* \text{ and for some } i, j x_i = x_i^R\}$

Problem 2. (10 points) Let C be a context-free language, and R be a regular language. Show that the language $C \cap R$ is context free. Start with a PDA $(Q, \Sigma, \Gamma, \delta, q_{start}, F)$ for C and a DFA $(Q', \Sigma', \delta', q'_{start}, F')$ for R, then describe a PDA for $C \cap R$. Your description may be informal and highlevel (i.e. you don't need to define detailed transitions), but must be precise.

Problem 3. (10 points) Use the result of Problem 2 to prove that the language $L = \{w \in \{a, b, c\}^* : w \text{ has equal numbers of } a's, b's, \text{ and } c's\} \text{ is not context free.}$ You may assume that the language $\{a^nb^nc^n : n \geq 0\}$ is not context free. (Hint: design a regular expression R such that $L \cap R$ is not context free.)

Problem 4. (10 points) **A** 2-stack PDA is a PDA with two stacks; its input tape is 1-way read only. In one step push and pop operations can be performed on both stacks.

- a) Describe, at a high-level, a 2-stack PDA to recognize the language $\{a^nb^nc^n: n \ge 0\}$.
- b) Can a 2-stack PDA recognize the language $\{a^nb^nc^nd^n: n \ge 0\}$.
- c) Can a 2-stack PDA recognize every Turing-recognizable language? Explain your reasoning.

Problem 5. (10 points) Define the languages

$$L_{add} = \left\{ a^i b^{i+j} c^j : i, j \ge 0 \right\}$$

$$L_{mult} = \left\{ a^i b^{ij} c^j : i, j \ge 0 \right\}$$

For each language, what is the smallest class it belongs to (regular, context-free, or TM-decidable)? Justify your answer – for example, if you claim context-free, then give a CFG/PDA for it and also prove that it is not regular.