M. VAITA FOR

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL

CURSO: Engenharia Elétrica E Engenharia Da Computação

DISCIPLINA: Circuitos 1 (parte de Laboratório)

SEMESTRE: 2019.2

PRÁTICA VII: CIRCUITO TRANSITÓRIO 2 – RL

1. INTRODUÇÃO

Nos indutores a corrente não pode mudar instantaneamente, a relação entre tensão e a corrente nos seus terminais é dada pela equação diferencial [1]:

$$V_L = L \cdot \frac{dI_L}{dt} \tag{1}$$

Levando em consideração o circuito da figura 1, a análise da resposta a um degrau em um circuito RL é feita em cima da corrente no indutor.

Figura 1 - Circuito RL Série.

Analisando a malha da figura 1, obtém-se a equação [2]

$$V_{\rm S} = R \cdot I_{\rm L} + L \cdot \frac{dI_{\rm L}}{dt} \tag{2}$$

Rearranjando [2] é obtido [3]

$$\frac{dI_L}{dt} = \frac{-R \cdot I_L + V_s}{L} \quad \to \quad dI_L = \frac{-R}{L} \left(I_L - \frac{V_s}{R} \right) dt$$
 [3]

Integrando ambos os lados, introduzindo as condições iniciais, aplicando logaritmo e rearranjando é obtido [4]:

$$I_L(t) = \frac{V_S}{R} + \left(I_0 - \frac{V_S}{R}\right) \cdot e^{-t/\tau} \quad , \qquad t > 0$$
 [4]

De forma semelhante ao visto no circuito RC, a constante de tempo de um circuito RL é dada pela razão entre a indutância e a resistência equivalente vista dos terminais do indutor, conforme [5]:

$$\tau = \frac{L}{R} \tag{5}$$

Ela dá uma ideia do tempo requerido para mudanças nas tensões e correntes do circuito RL.

2. OBJETIVO

- Observar o comportamento de carregamento e descarregamento de um capacitor através da aplicação de uma onda quadrada ao circuito RC série.
- Aplicação de uma onda quadrada ao circuito RL série para analisar a resposta transitória.
- Observar as constantes de tempo dos dois circuitos.

3. MATERIAL NECESSÁRIO

- Osciloscópio, gerador de sinais, multímetro;
- Ponte de medição RLC;
- Resistores de 180 Ω e 1800 Ω ;

Indutores.

4. PARTE PRÁTICA

Montagem e Medição do Circuito RL

- 1. Com o indutor em mãos, meça a resistência do resistor de 180 Ω e do indutor (RL) com um multímetro digital e anote o valor na tabela 1.
- 2. Com a ponte RLC meça a indutância do indutor.
- 3. Usando os valores medidos, calcule o valor da constante de tempo e preencha a tabela 1.

Tabela 1 – Valores medidos circuito RL

	R	\mathbf{R}_{L}	L	au = L/R
Valor Medido				

4. Com o valor da constante de tempo, calcule a frequência da onda de entrada conforme a equação [6] e preencha a tabela 2, onde tp corresponde a largura do pulso.

$$f = \frac{1}{2 \cdot tp} \tag{6}$$

Tabela 2 – Valores calculados circuito RL.

au = L/R	Caso 1	Caso 2
au =	$tp=0,5\cdot \tau$	$tp = 15 \cdot \tau$
tp =		
f(Hz) =		

- 5. Monte o circuito RL série da figura 1 com gerador de sinais, resistor de 180Ω e indutor disponibilizado.
- 6. Aplique uma onda quadrada de 4Vpp e com a primeira frequência calculada na tabela 2.
- 7. Ajuste o osciloscópio de modo a visualizar as formas de onda da tensão de entrada e do indutor, simultaneamente. Salve as formas de onda e também verifique qual o valor da tensão no tempo relativo a constante de tempo de RL no gráfico.
- 8. Repita o procedimento 6 e 7 para a segunda frequência da tabela 2. Salve as formas de onda.

Questionário.

- 1) Explique resumidamente com suas palavras sobre o comportamento da tensão e corrente no indutor com a variação da frequência.
- 2) Explique resumidamente com suas palavras sobre a constante de tempo e como ela influencia na resposta do circuito RL.
- 3) Apresente as formas de onda da etapa 13 a 16 da parte 3 e explique o que ocorre em cada figura.
- 4) Simule o circuito com as frequências encontradas e apresente as formas de onda de entrada e de tensão no indutor e $I_L(t)$. Mostre a constante de tempo no gráfico.
- 5) Comente sobre o comportamento gráfico da tensão e corrente no indutor gerado na simulação.
- 6) Comente as semelhanças e diferenças observadas nos circuitos RC e RL.