## **XStream-Static Temporary**

## 1 Static Dataset Evaluation

| Dataset                   | Number of samples | Dimensionality      | Number of Anomalies |  |  |  |  |
|---------------------------|-------------------|---------------------|---------------------|--|--|--|--|
| High-dimensional Datasets |                   |                     |                     |  |  |  |  |
| gisette                   | 3850              | 4970                | 351                 |  |  |  |  |
| isolet                    | 4886              | 617                 | 389                 |  |  |  |  |
| letter                    | 4586              | 617                 | 389                 |  |  |  |  |
| madelon                   | 1430              | 500                 | 130                 |  |  |  |  |
|                           | Low/medium        | -dimensional Datase | ts                  |  |  |  |  |
| cancer                    | 385               | 30                  | 28                  |  |  |  |  |
| ionosphere                | 242               | 33                  | 17                  |  |  |  |  |
| telescope                 | 13283             | 10                  | 951                 |  |  |  |  |
| indians                   | 538               | 8                   | 38                  |  |  |  |  |

Table 1: Datasets used for the static evaluation.

| Dataset            | IF                | HST               | RSH               | LODA              | XS                |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                    |                   | Original D        | atasets           |                   |                   |
| cancer             | $0.617 \pm 0.021$ | $0.646 \pm 0.033$ | $0.619 \pm 0.03$  | $0.826\pm0.013$   | $0.845 \pm 0.008$ |
| ionosphere         | $0.705 \pm 0.006$ | $0.706 \pm 0.007$ | $0.764 \pm 0.032$ | $0.642\pm0.067$   | $0.848 \pm 0.018$ |
| telescope          | $0.367 \pm 0.008$ | $0.392 \pm 0.012$ | $0.391 \pm 0.012$ | $0.322\pm0.007$   | $0.344 \pm 0.009$ |
| indians            | $0.142 \pm 0.003$ | $0.146\pm0.002$   | $0.156 \pm 0.007$ | $0.177\pm0.008$   | $0.216 \pm 0.01$  |
| gisette            | $0.078\pm0.002$   | $0.08 \pm 0.002$  | $0.084\pm0.007$   | $0.087 \pm 0.003$ | $0.09 \pm 0.003$  |
| isolet             | $0.099 \pm 0.003$ | $0.097 \pm 0.005$ | $0.108 \pm 0.004$ | $0.089 \pm 0.004$ | $0.112 \pm 0.006$ |
| letter-recognition | $0.093 \pm 0.001$ | $0.092 \pm 0.002$ | $0.104 \pm 0.004$ | $0.094 \pm 0.006$ | $0.122 \pm 0.005$ |
| madelon            | $0.11 \pm 0.003$  | $0.101 \pm 0.013$ | $0.092 \pm 0.005$ | $0.101 \pm 0.01$  | $0.097 \pm 0.004$ |

Table 2: Average precision of static methods on original, unperturbed datasets. Mean and standard deviation are reported over 10 runs.

We conduct our experiments on datasets mentioned in Table 6. A Friedman test for differences in the best-performing method across all datasets, showed that we cannot reject the null hypothesis that the difference rankings between methods is statistically significant with p = 0.1107.

We did perform a posthoc-Friedman test, Nemenyi test to compare all methods to each other. We first compute average ranks of all the methods over the 8 original datasets, which is shown in Table 4. Setting significance level to be  $\alpha=0.05$ , we get the  $q_{0.05}$  for k=5 methods as 2.728. Difference in average ranks of any two methods will be significant if

$$(R_i - R_j) > q_\alpha \sqrt{\frac{k(k+1)}{6N}} \tag{1}$$

Setting N = 8 and k = 5, for difference between a pair of methods to be significant, the difference between the rank should be greater than 2.1567. Looking at the average ranks shown in Table 4,

we notice that X-Stream has the best ranking on average although no pairs that are significantly different from each other.

To show the effect of increasing high-dimensionality, we add noisy columns to the 4 original datasets. The noise is generated as mentioned above in Approach 1. The average ranks for all the methods is shown in Table 5. Using Friedman test, we can reject the null hypothesis that the difference in rankings between methods is not statistically significant with  $p=5.565\times 10^{-10}$ . We again perform posthoc-Friedman Nemenyi test; setting N=16 and k=5, we obtain that difference in average ranks should be greater than 1.524. Observing the table, we find difference to be significant between (LODA, I-Forest), (X-Stream, I-Forest), (LODA, HS-Trees), (X-Stream, HS-Trees) and (X-Stream, RS-Hash).

Another form of presenting this could be the visualization, which we present below in Fig 1.





- (a) Nemenyi Test visualization for 8 original datasets.
- (b) Nemenyi Test for 16 perturbed datasets.

Figure 1: Nemenyi Test Visualization

## 2 Alternative Dataset from ODDS

For evaluating our static approach, we compared the proposed method with four other baseline methods - iForest, LODA, RS-Hash and HS-Trees over 13 datasets we obtained from ODDS repository **ODDS** The list of datasets used and their properties is shown in Table 6.

A Friedman test for differences in the best-performing method across all datasets, showed that we cannot reject the null hypothesis that the difference rankings between methods is NOT statistically significant with p=0.8049. We did perform a posthoc-Friedman test, Nemenyi test to compare all methods to each other. We first compute average ranks of all the methods over the 13 datasets, which is shown in Table 8. Setting N=13 and k=5, we obtain that difference in average ranks should be greater than 1.692. We can see that difference between none of the pairs is significant. Therefore, we can safely say that on standard datasets, all the methods are similar.

## **Distorting ODDS datasets**

| Dataset                 | IF                | HST               | RSH               | LODA              | xs                |
|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| cancer(100.0,0.1)       | $0.599 \pm 0.031$ | $0.605 \pm 0.031$ | $0.646 \pm 0.032$ | $0.811 \pm 0.012$ | $0.825 \pm 0.012$ |
| cancer(1000.0,0.1)      | $0.406\pm0.088$   | $0.201 \pm 0.024$ | $0.425 \pm 0.112$ | $0.722\pm0.056$   | $0.813\pm0.022$   |
| cancer(2000.0,0.1)      | $0.306 \pm 0.044$ | $0.229 \pm 0.029$ | $0.337 \pm 0.077$ | $0.633 \pm 0.092$ | $0.822\pm0.021$   |
| cancer(5000.0,0.1)      | $0.12 \pm 0.04$   | $0.158 \pm 0.018$ | $0.153 \pm 0.07$  | $0.336 \pm 0.141$ | $0.796 \pm 0.028$ |
| ionosphere (100.0,0.1)  | $0.651 \pm 0.049$ | $0.568 \pm 0.026$ | $0.622 \pm 0.038$ | $0.56 \pm 0.056$  | $0.848 \pm 0.011$ |
| ionosphere (1000.0,0.1) | $0.302 \pm 0.072$ | $0.231 \pm 0.006$ | $0.258 \pm 0.07$  | $0.589 \pm 0.073$ | $0.819 \pm 0.019$ |
| ionosphere (2000.0,0.1) | $0.211\pm0.105$   | $0.085 \pm 0.007$ | $0.233 \pm 0.1$   | $0.561 \pm 0.092$ | $0.791 \pm 0.026$ |
| ionosphere (5000.0,0.1) | $0.112 \pm 0.035$ | $0.15 \pm 0.017$  | $0.135 \pm 0.062$ | $0.494 \pm 0.072$ | $0.685 \pm 0.065$ |
| telescope (100.0,0.1)   | $0.311 \pm 0.012$ | $0.26 \pm 0.006$  | $0.326 \pm 0.015$ | $0.322 \pm 0.006$ | $0.34 \pm 0.008$  |
| telescope (1000.0,0.1)  | $0.156 \pm 0.011$ | $0.102 \pm 0.004$ | $0.164 \pm 0.019$ | $0.303 \pm 0.01$  | $0.311\pm0.006$   |
| telescope (2000.0,0.1)  | $0.108 \pm 0.01$  | $0.098 \pm 0.014$ | $0.112 \pm 0.019$ | $0.296 \pm 0.016$ | $0.284\pm0.005$   |
| telescope (5000.0,0.1)  | $0.084 \pm 0.005$ | $0.079 \pm 0.001$ | $0.087 \pm 0.011$ | $0.248 \pm 0.017$ | $0.271 \pm 0.005$ |
| indians (100.0,0.1)     | $0.123 \pm 0.007$ | $0.093 \pm 0.003$ | $0.128 \pm 0.009$ | $0.171 \pm 0.008$ | $0.196 \pm 0.015$ |
| indians (1000.0,0.1)    | $0.086 \pm 0.014$ | $0.096 \pm 0.009$ | $0.087 \pm 0.011$ | $0.153 \pm 0.028$ | $0.178 \pm 0.006$ |
| indians (2000.0,0.1)    | $0.087 \pm 0.013$ | $0.076 \pm 0.003$ | $0.085 \pm 0.008$ | $0.139 \pm 0.028$ | $0.151\pm0.013$   |
| indians (5000.0,0.1)    | $0.073 \pm 0.007$ | $0.075 \pm 0.009$ | $0.083 \pm 0.018$ | $0.126 \pm 0.028$ | $0.152 \pm 0.02$  |

Table 3: Average precision of static methods on perturbed noisy datasets. Mean and standard deviation reported over 10 runs. Numbers in the brackets indicate: noise column amount (as % of original dimensionality), relative noise factor.

|                    | IF         | HST        | RSH        | LODA       | XS         |
|--------------------|------------|------------|------------|------------|------------|
| cancer             | 0.617(5.0) | 0.646(3.0) | 0.619(4.0) | 0.826(2.0) | 0.845(1.0) |
| ionosphere         | 0.705(4.0) | 0.706(3.0) | 0.764(2.0) | 0.642(5.0) | 0.848(1.0) |
| magic-telescope    | 0.367(3.0) | 0.392(1.0) | 0.391(2.0) | 0.322(5.0) | 0.344(4.0) |
| pima-indians       | 0.142(5.0) | 0.146(4.0) | 0.156(3.0) | 0.177(2.0) | 0.216(1.0) |
| gisette            | 0.078(5.0) | 0.08(4.0)  | 0.084(3.0) | 0.087(2.0) | 0.09(1.0)  |
| isolet             | 0.099(3.0) | 0.097(4.0) | 0.108(2.0) | 0.089(5.0) | 0.112(1.0) |
| letter-recognition | 0.093(4.0) | 0.092(5.0) | 0.104(2.0) | 0.094(3.0) | 0.122(1.0) |
| madelon            | 0.11(1.0)  | 0.101(2.5) | 0.092(5.0) | 0.101(2.5) | 0.097(4.0) |
| Avg Rank           | 3.75       | 3.3125     | 2.875      | 3.3125     | 1.75       |

Table 4: Average rank of method over 8 original datasets.

|               | IF         | HST        | RSH        | LODA       | XS         |
|---------------|------------|------------|------------|------------|------------|
| cancer100     | 0.599(5.0) | 0.605(4.0) | 0.646(3.0) | 0.811(2.0) | 0.825(1.0) |
| cancer1000    | 0.406(4.0) | 0.201(5.0) | 0.425(3.0) | 0.722(2.0) | 0.813(1.0) |
| cancer2000    | 0.306(4.0) | 0.229(5.0) | 0.337(3.0) | 0.633(2.0) | 0.822(1.0) |
| cancer5000    | 0.12(5.0)  | 0.158(3.0) | 0.153(4.0) | 0.336(2.0) | 0.796(1.0) |
| ionos100      | 0.651(2.0) | 0.568(4.0) | 0.622(3.0) | 0.56(5.0)  | 0.848(1.0) |
| ionos1000     | 0.302(3.0) | 0.231(5.0) | 0.258(4.0) | 0.589(2.0) | 0.819(1.0) |
| ionos2000     | 0.211(4.0) | 0.085(5.0) | 0.233(3.0) | 0.561(2.0) | 0.791(1.0) |
| ionos5000     | 0.112(5.0) | 0.15(3.0)  | 0.135(4.0) | 0.494(2.0) | 0.685(1.0) |
| telescope100  | 0.311(4.0) | 0.26(5.0)  | 0.326(2.0) | 0.322(3.0) | 0.34(1.0)  |
| telescope1000 | 0.156(4.0) | 0.102(5.0) | 0.164(3.0) | 0.303(2.0) | 0.311(1.0) |
| telescope2000 | 0.108(4.0) | 0.098(5.0) | 0.112(3.0) | 0.296(1.0) | 0.284(2.0) |
| telescope5000 | 0.084(4.0) | 0.079(5.0) | 0.087(3.0) | 0.248(2.0) | 0.271(1.0) |
| indians100    | 0.123(4.0) | 0.093(5.0) | 0.128(3.0) | 0.171(2.0) | 0.196(1.0) |
| indians1000   | 0.086(5.0) | 0.096(3.0) | 0.087(4.0) | 0.153(2.0) | 0.178(1.0) |
| indians2000   | 0.087(3.0) | 0.076(5.0) | 0.085(4.0) | 0.139(2.0) | 0.151(1.0) |
| indians5000   | 0.073(5.0) | 0.075(4.0) | 0.083(3.0) | 0.126(2.0) | 0.152(1.0) |
| Avg Rank      | 4.0625     | 4.4375     | 3.25       | 2.1875     | 1.0625     |

Table 5: Average rank of methods over the 16 perturbed datasets.

| Dataset    | Number of samples | Dimensionality | Number of Anomalies | <b>Anomaly Rate</b> |
|------------|-------------------|----------------|---------------------|---------------------|
| annthyroid | 7200              | 6              | 534                 | 7.4%                |
| arrhythmia | 452               | 274            | 66                  | 14.6%               |
| breastw    | 683               | 9              | 239                 | 34.99%              |
| cardio     | 1831              | 21             | 176                 | 9.6%                |
| glass      | 214               | 9              | 9                   | 4.2%                |
| ionosphere | 351               | 33             | 126                 | 35.89%              |
| lympho     | 148               | 18             | 6                   | 4.05%               |
| pendigits  | 6870              | 16             | 156                 | 2.27%               |
| thyroid    | 3772              | 6              | 93                  | 2.46%               |
| vertebral  | 240               | 6              | 30                  | 12.5%               |
| vowels     | 1456              | 12             | 50                  | 3.43%               |
| wbc        | 378               | 30             | 21                  | 5.55%               |
| wine       | 129               | 13             | 10                  | 7.75%               |

Table 6: Datasets from ODDS.

To study the effect of adding noisy columns and high-dimensionality in datasets, we choose to distort by adding noisy columns only to the datasets for which all 5 methods are performing reasonably well i.e. breastw, cardio, ionosphere and lympho.

We present the results on those 4 datasets in Table 10. Using Friedman test, we can reject the null hypothesis that the difference rankings between methods is not statistically significant with p =

| Dataset    | IF                | HST               | RSH                                | LODA              | XS                |
|------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|
| annthyroid | $0.312 \pm 0.025$ | $0.147 \pm 0.004$ | $0.19 \pm 0.016$                   | $0.196 \pm 0.023$ | $0.161 \pm 0.012$ |
| arrhythmia | $0.462\pm0.009$   | $0.458 \pm 0.006$ | $0.467\pm0.023$                    | $0.496 \pm 0.029$ | $0.494 \pm 0.014$ |
| breastw    | $0.948 \pm 0.008$ | $0.98 \pm 0.003$  | $0.967 \pm 0.003$                  | $0.966 \pm 0.005$ | $0.96 \pm 0.005$  |
| cardio     | $0.538 \pm 0.044$ | $0.681 \pm 0.006$ | $0.522 \pm 0.034$                  | $0.523 \pm 0.041$ | $0.504 \pm 0.015$ |
| glass      | $0.082 \pm 0.009$ | $0.092 \pm 0.004$ | $0.089 \pm 0.008$                  | $0.116 \pm 0.03$  | $0.129 \pm 0.024$ |
| ionosphere | $0.822\pm0.006$   | $0.822\pm0.002$   | $0.824 \pm 0.013$                  | $0.78 \pm 0.024$  | $0.888 \pm 0.006$ |
| lympho     | $0.948 \pm 0.036$ | $0.99 \pm 0.013$  | $0.967 \pm 0.033$                  | $0.919 \pm 0.067$ | $0.581 \pm 0.063$ |
| pendigits  | $0.275 \pm 0.029$ | $0.266 \pm 0.03$  | $\textbf{0.23} \pm \textbf{0.021}$ | $0.27 \pm 0.074$  | $0.147 \pm 0.014$ |
| thyroid    | $0.554 \pm 0.035$ | $0.228 \pm 0.007$ | $0.299 \pm 0.024$                  | $0.253 \pm 0.042$ | $0.183 \pm 0.019$ |
| vertebral  | $0.093 \pm 0.002$ | $0.081\pm0.001$   | $0.086\pm0.002$                    | $0.084\pm0.002$   | $0.087 \pm 0.003$ |
| vowels     | $0.176 \pm 0.056$ | $0.162 \pm 0.006$ | $0.211 \pm 0.044$                  | $0.115 \pm 0.044$ | $0.398 \pm 0.034$ |
| wbc        | $0.594 \pm 0.025$ | $0.582 \pm 0.01$  | $0.597 \pm 0.02$                   | $0.591 \pm 0.039$ | $0.437 \pm 0.034$ |
| wine       | $0.174 \pm 0.023$ | $0.186 \pm 0.014$ | $0.209 \pm 0.015$                  | $0.588 \pm 0.134$ | $0.252 \pm 0.033$ |

Table 7: Average precision of static methods on dataset from ODDS. Mean and standard deviation reported over 10 runs.

|            | IF         | HST        | RSH        | LODA       | XS         |
|------------|------------|------------|------------|------------|------------|
| annthyroid | 0.312(1.0) | 0.147(5.0) | 0.19(3.0)  | 0.196(2.0) | 0.161(4.0) |
| arrhythmia | 0.462(4.0) | 0.458(5.0) | 0.467(3.0) | 0.496(1.0) | 0.494(2.0) |
| breastw    | 0.948(5.0) | 0.98(1.0)  | 0.967(2.0) | 0.966(3.0) | 0.96(4.0)  |
| cardio     | 0.538(2.0) | 0.681(1.0) | 0.522(4.0) | 0.523(3.0) | 0.504(5.0) |
| glass      | 0.082(5.0) | 0.092(3.0) | 0.089(4.0) | 0.116(2.0) | 0.129(1.0) |
| ionosphere | 0.822(3.5) | 0.822(3.5) | 0.824(2.0) | 0.78(5.0)  | 0.888(1.0) |
| lympho     | 0.948(3.0) | 0.99(1.0)  | 0.967(2.0) | 0.919(4.0) | 0.581(5.0) |
| pendigits  | 0.275(1.0) | 0.266(3.0) | 0.23(4.0)  | 0.27(2.0)  | 0.147(5.0) |
| thyroid    | 0.554(1.0) | 0.228(4.0) | 0.299(2.0) | 0.253(3.0) | 0.183(5.0) |
| vertebral  | 0.093(1.0) | 0.081(5.0) | 0.086(3.0) | 0.084(4.0) | 0.087(2.0) |
| vowels     | 0.176(3.0) | 0.162(4.0) | 0.211(2.0) | 0.115(5.0) | 0.398(1.0) |
| wbc        | 0.594(2.0) | 0.582(4.0) | 0.597(1.0) | 0.591(3.0) | 0.437(5.0) |
| wine       | 0.174(5.0) | 0.186(4.0) | 0.209(3.0) | 0.588(1.0) | 0.252(2.0) |
| Avg Rank   | 2.807      | 3.346      | 2.692      | 2.923      | 3.23       |

Table 8: Average rank of methods over the 13 ODDS datasets.

| Dataset               | IF                | HST               | RSH               | LODA              | XS                |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| breastw (1000,0.1)    | $0.789 \pm 0.028$ | $0.841 \pm 0.024$ | $0.782 \pm 0.03$  | $0.98 \pm 0.006$  | $0.967 \pm 0.008$ |
| breastw (2000,0.1)    | $0.649 \pm 0.05$  | $0.703 \pm 0.024$ | $0.642 \pm 0.07$  | $0.966\pm0.014$   | $0.967\pm0.004$   |
| breastw (3000,0.1)    | $0.551\pm0.041$   | $0.663 \pm 0.014$ | $0.566 \pm 0.052$ | $0.958 \pm 0.013$ | $0.97 \pm 0.006$  |
| breastw (5000,0.1)    | $0.461 \pm 0.029$ | $0.626 \pm 0.034$ | $0.458 \pm 0.054$ | $0.91 \pm 0.046$  | $0.971 \pm 0.003$ |
| cardio (1000.0,0.1)   | $0.245 \pm 0.029$ | $0.161 \pm 0.006$ | $0.226 \pm 0.036$ | $0.56 \pm 0.043$  | $0.493 \pm 0.017$ |
| cardio (2000,0.1)     | $0.155 \pm 0.023$ | $0.133 \pm 0.004$ | $0.153 \pm 0.027$ | $0.51 \pm 0.074$  | $0.508 \pm 0.017$ |
| cardio (3000,0.1)     | $0.136 \pm 0.018$ | $0.107 \pm 0.006$ | $0.148 \pm 0.019$ | $0.484 \pm 0.071$ | $0.537 \pm 0.016$ |
| cardio (5000,0.1)     | $0.11\pm0.007$    | $0.115 \pm 0.003$ | $0.108 \pm 0.01$  | $0.458 \pm 0.073$ | $0.488 \pm 0.017$ |
| ionosphere (1000,0.1) | $0.58 \pm 0.03$   | $0.549 \pm 0.022$ | $0.541 \pm 0.042$ | $0.735 \pm 0.035$ | $0.861 \pm 0.007$ |
| ionosphere (2000,0.1) | $0.515 \pm 0.039$ | $0.421\pm0.004$   | $0.472\pm0.028$   | $0.707 \pm 0.027$ | $0.866\pm0.009$   |
| ionosphere (3000,0.1) | $0.439 \pm 0.03$  | $0.433 \pm 0.015$ | $0.43 \pm 0.018$  | $0.704 \pm 0.035$ | $0.822 \pm 0.009$ |
| ionosphere (5000,0.1) | $0.4\pm0.031$     | $0.428 \pm 0.016$ | $0.395 \pm 0.024$ | $0.7\pm0.028$     | $0.792 \pm 0.008$ |
| lympho (1000,0.1)     | $0.362 \pm 0.16$  | $0.422 \pm 0.064$ | $0.287 \pm 0.174$ | $0.667 \pm 0.115$ | $0.484 \pm 0.114$ |
| lympho (2000,0.1)     | $0.148 \pm 0.093$ | $0.057 \pm 0.007$ | $0.091 \pm 0.073$ | $0.5\pm0.173$     | $0.321\pm0.183$   |
| lympho (3000,0.1)     | $0.189 \pm 0.097$ | $0.037 \pm 0.003$ | $0.099 \pm 0.074$ | $0.47 \pm 0.191$  | $0.414 \pm 0.154$ |
| lympho (5000,0.1)     | $0.073 \pm 0.056$ | $0.103 \pm 0.026$ | $0.065 \pm 0.061$ | $0.274 \pm 0.203$ | $0.317 \pm 0.091$ |

Table 9: Average precision of static methods on perturbed dataset from ODDS. Mean and standard deviation reported over 10 runs. Numbers in the brackets indicate: noise column amount (as % of original dimensionality), relative noise factor.

|                      | IF         | HST        | RSH        | LODA       | XS         |
|----------------------|------------|------------|------------|------------|------------|
| breastw(1000,0.1)    | 0.789(4.0) | 0.841(3.0) | 0.782(5.0) | 0.98(1.0)  | 0.967(2.0) |
| breastw(2000,0.1)    | 0.649(4.0) | 0.703(3.0) | 0.642(5.0) | 0.966(2.0) | 0.967(1.0) |
| breastw(3000,0.1)    | 0.551(5.0) | 0.663(3.0) | 0.566(4.0) | 0.958(2.0) | 0.970(1.0) |
| breastw(5000,0.1)    | 0.461(4.0) | 0.626(3.0) | 0.458(5.0) | 0.91(2.0)  | 0.971(1.0) |
| cardio(1000,0.1)     | 0.245(3.0) | 0.161(5.0) | 0.226(4.0) | 0.56(1.0)  | 0.493(2.0) |
| cardio(2000,0.1)     | 0.155(3.0) | 0.133(5.0) | 0.153(4.0) | 0.51(1.0)  | 0.508(2.0) |
| cardio(3000,0.1)     | 0.136(4.0) | 0.107(5.0) | 0.148(3.0) | 0.484(2.0) | 0.537(1.0) |
| cardio(5000,0.1)     | 0.11(4.0)  | 0.115(3.0) | 0.108(5.0) | 0.458(2.0) | 0.488(1.0) |
| ionosphere(1000,0.1) | 0.58(3.0)  | 0.549(4.0) | 0.541(5.0) | 0.735(2.0) | 0.861(1.0) |
| ionosphere(2000,0.1) | 0.515(3.0) | 0.421(5.0) | 0.472(4.0) | 0.707(2.0) | 0.866(1.0) |
| ionosphere(3000,0.1) | 0.439(3.0) | 0.433(4.0) | 0.43(5.0)  | 0.704(2.0) | 0.822(1.0) |
| ionosphere(5000,0.1) | 0.4(4.0)   | 0.428(3.0) | 0.395(5.0) | 0.7(2.0)   | 0.792(1.0) |
| lympho(1000,0.1)     | 0.362(4.0) | 0.422(3.0) | 0.287(5.0) | 0.667(1.0) | 0.484(2.0) |
| lympho(2000,0.1)     | 0.148(3.0) | 0.057(5.0) | 0.091(4.0) | 0.5(1.0)   | 0.321(2.0) |
| lympho(3000,0.1)     | 0.189(3.0) | 0.037(5.0) | 0.099(4.0) | 0.47(1.0)  | 0.414(2.0) |
| lympho(5000,0.1)     | 0.073(4.0) | 0.103(3.0) | 0.065(5.0) | 0.274(2.0) | 0.317(1.0) |
| Avg Rank             | 3.625      | 3.876      | 4.5        | 1.625      | 1.375      |

Table 10: Average rank of methods over the 16 perturbed datasets.



Figure 2: Nemenyi Test visualization for 13 original datasets from ODDS.

 $2.458 \times 10^{-10}$ . We again perform posthoc-Friedman Nemenyi test; setting N=16 and k=5, we obtain that difference in average ranks should be greater than 1.524. Observing the table 10, we find difference to be significant between (LODA, I-Forest), (X-Stream, I-Forest), (LODA, HS-Trees), (X-Stream, HS-Trees), (LODA, RS-Hash), and (X-Stream, RS-Hash). Though X-Stream is not significantly different from LODA, but the average rank of X-Stream is better than that of LODA. We visualize the same in Fig: 3.



Figure 3: Nemenyi Test visualization for 16 perturbed ODDS datasets.