Problem 4

Suppose AB = BA. Prove that

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
, (b) $(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$.

How do these formulas change if $AB \neq BA$?

Solution

We use associativity and distributivity of operator/matrix multiplication. Commutativity is not assumed unless explicitly stated.

(a) Square. Expand without assuming commutativity:

$$(A + B)^2 = (A + B)(A + B)$$

= $A(A + B) + B(A + B)$
= $A^2 + AB + BA + B^2$.

If AB = BA, then AB and BA are equal and can be combined:

$$(A+B)^2 = A^2 + 2AB + B^2.$$

If $AB \neq BA$, the correct form is

$$(A + B)^2 = A^2 + AB + BA + B^2.$$

(b) Cube. Start from the general square and expand:

$$(A+B)^3 = (A+B)^2(A+B)$$

= $(A^2 + AB + BA + B^2)(A+B)$
= $A^3 + A^2B + ABA + AB^2 + BA^2 + BAB + B^2A + B^3$.

If AB = BA, then we may reorder factors to group like terms:

$$ABA = A(BA) = A(AB) = A^{2}B, \qquad BA^{2} = A^{2}B.$$

and similarly

$$BAB = B(AB) = B(BA) = B^{2}A, \qquad AB^{2} = B^{2}A.$$

Hence,

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3.$$

If $AB \neq BA$, there is no further simplification in general and the correct expansion is

$$(A + B)^3 = A^3 + A^2B + ABA + AB^2 + BA^2 + BAB + B^2A + B^3.$$

Summary.

Always:
$$(A+B)^2 = A^2 + AB + BA + B^2,$$

 $(A+B)^3 = A^3 + A^2B + ABA + AB^2 + BA^2 + BAB + B^2A + B^3.$

If
$$AB = BA$$
: $(A+B)^2 = A^2 + 2AB + B^2$, $(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$.

Problem 5 (Raising and Lowering Operators)

Let $L = L_{-}L_{+}$ and suppose the commutation relation $[L_{-}, L_{+}] = \mathbb{I}$ holds, where

$$[A, B] := AB - BA$$
, I is the identity operator.

If $L|x\rangle = \lambda |x\rangle$, prove that:

(a)
$$|y\rangle := L_+|x\rangle$$
 satisfies $L|y\rangle = (\lambda+1)|y\rangle$, (b) $|z\rangle := L_-|x\rangle$ satisfies $L|z\rangle = (\lambda-1)|z\rangle$,

provided the respective vectors are nonzero. (This is why L_+/L_- are called raising/lowering operators.)

Tools (from Volumen UNO: Linear Operators)

- Commutator: [A, B] = AB BA.
- **Product rule:** [AB, C] = A[B, C] + [A, C]B.
- Rearrangement: from [A, B] = AB BA we get AB = BA + [A, B].
- Identity: \mathbb{I} with $A\mathbb{I} = \mathbb{I}A = A$.
- From $[L_-, L_+] = \mathbb{I}$ it follows that $[L_+, L_-] = -\mathbb{I}$.
- Eigenpair notation: $L|x\rangle = \lambda |x\rangle$.

(a) Raising: L_+ increases the eigenvalue by +1

Define $|y\rangle := L_+|x\rangle$. We aim to show $L|y\rangle = (\lambda + 1)|y\rangle$.

Step 1: Composition. By definition of $|y\rangle$,

$$L|y\rangle = L(L_+|x\rangle) = (LL_+)|x\rangle.$$

Step 2: Use the commutator.

$$[L, L_{+}] = LL_{+} - L_{+}L \quad \Rightarrow \quad LL_{+} = L_{+}L + [L, L_{+}].$$

Step 3: Compute $[L, L_+]$ using $L = L_-L_+$ and the product rule.

$$[L,L_+] = [L_-L_+,L_+] = L_-[L_+,L_+] + [L_-,L_+] \, L_+ = 0 + \mathbb{I} \, L_+ = L_+.$$

Step 4: Substitute and left-factor.

$$LL_{+} = L_{+}L + [L, L_{+}] = L_{+}L + L_{+} = L_{+}(L + \mathbb{I}).$$

Step 5: Act on $|x\rangle$ and use $L|x\rangle = \lambda |x\rangle$.

$$L|y\rangle = (LL_+)|x\rangle = L_+(L+\mathbb{I})|x\rangle = L_+(L|x\rangle + \mathbb{I}|x\rangle)$$

= $L_+(\lambda|x\rangle + |x\rangle) = (\lambda + 1) L_+|x\rangle = (\lambda + 1)|y\rangle.$

(b) Lowering: L_{-} decreases the eigenvalue by -1

Define $|z\rangle := L_{-}|x\rangle$. We show $L|z\rangle = (\lambda - 1)|z\rangle$.

Step 1: Composition.

$$L|z\rangle = L(L_-|x\rangle) = (LL_-)|x\rangle.$$

Step 2: Use the commutator.

$$[L, L_{-}] = LL_{-} - L_{-}L \quad \Rightarrow \quad LL_{-} = L_{-}L + [L, L_{-}].$$

Step 3: Compute $[L, L_{-}]$ using $L = L_{-}L_{+}$ and the product rule.

$$[L, L_{-}] = [L_{-}L_{+}, L_{-}] = L_{-}[L_{+}, L_{-}] + [L_{-}, L_{-}] L_{+} = L_{-}(-\mathbb{I}) + 0 = -L_{-}.$$

Step 4: Substitute and left-factor.

$$LL_{-} = L_{-}L + [L, L_{-}] = L_{-}L - L_{-} = L_{-}(L - \mathbb{I}).$$

Step 5: Act on $|x\rangle$ and use $L|x\rangle = \lambda |x\rangle$.

$$L|z\rangle = (LL_{-})|x\rangle = L_{-}(L-\mathbb{I})|x\rangle = L_{-}(L|x\rangle - \mathbb{I}|x\rangle)$$
$$= L_{-}(\lambda|x\rangle - |x\rangle) = (\lambda - 1) L_{-}|x\rangle = (\lambda - 1)|z\rangle.$$

Remarks (boundary cases and ladder structure)

- If $L_{+}|x\rangle = 0$, $|x\rangle$ is a top state (cannot raise further).
- If $L_{-}|x\rangle = 0$, $|x\rangle$ is a bottom state (cannot lower further).
- Otherwise, L_{\pm} generate an eigenvalue ladder

$$\cdots \xrightarrow{L_{-}} \lambda - 1 \xrightarrow{L_{-}} \lambda \xrightarrow{L_{+}} \lambda + 1 \xrightarrow{L_{+}} \lambda + 2 \xrightarrow{\cdots} .$$