pg. 199, Problem 2. Show that if X is regular, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

Let our disjoint closed sets be A,B. Then since X is regular, there are disjoint open U,V with $U\supset A,V\supset B$. Since these are disjoint, we have that \overline{U} and B are also disjoint. Then we may again apply the regularity condition to get disjoint open sets $\widetilde{U},\widetilde{V}$, with $\widetilde{U}\supset\overline{U}$ and $\widetilde{V}\supset B$. Then, as above, we have $\overline{\widetilde{V}}$ is disjoint from \overline{U} . But then \widetilde{V} and U are open sets containing B and A, with disjoint closures.

pg. 199, Problem 5. Let $f, g: X \to Y$ be continuous, and Y Hausdorff. Show $\{x \mid f(x) = g(x)\}$ is closed in X.

It suffices to show $\{x \mid f(x) \neq g(x)\}$ is open. Suppose x_0 is in this set. Since Y is Hausdorff, there are disjoint open sets U, V containing $f(x_0)$ and $g(x_0)$, respectively. Then $f^{-1}(U) \cap f^{-1}(V)$ is an open set containing x_0 . Moreover, if there were any $x \in f^{-1}(U) \cap f^{-1}(V)$ with f(x) = g(x), then we would have $f(x) \in U \cap V$, contradicting disjointness. Thus $f^{-1}(U) \cap f^{-1}(V)$ is an open set in X containing x_0 and completely inside $\{x \mid f(x) \neq g(x)\}$, hence this set is open.

pg. 218, Problem 1. Give an example showing that a Hausdorff space with a countable basis need not be metrizable.

Note that all metric spaces are regular. It therefore suffices to find such a space that is not regular. Then consider \mathbb{R}_K , $K = \{\frac{1}{n}, n \in \mathbb{Z}^{>0}\}$, is Hausdorff with countable basis, but K and $\{0\}$ don't have disjoint neighborhoods that contain them in \mathbb{R}_K . Hence \mathbb{R}_K is not regular and hence not metrizable.

Problem 4 (Munkres 36.1)

Every manifold is regular, and hence Metrizable (by the Urysohn Metrization Theorem, as every manifold has a countable base by definition).

Proof. Let M be a manifold of dimension m. M is Hausdorff, so one-point sets are closed in it. Therefore by Lemma 31.1, M is regular is equivalent to the condition that for every $x \in M$ and neighborhood $U \subset M$ containing x, there is a neighborhood V of x so that $\overline{V} \subset U$. We prove this.

Let $x \in M$ and $U \subset M$ an open set containing x. As M is a manifold, by definition there exists a chart (neighborhood of x and homeomorphism into \mathbb{R}^m) containing x; call it (U_x, ϕ_x) . Then there is a homeomorphism

$$\phi\Big|_{U\cap U_x}:U\cap U_x\longrightarrow \phi(U\cap U_i)\subset\mathbb{R}^m$$

where the image is an open subset of \mathbb{R}^m . As \mathbb{R}^m is regular, we may find a V satisfying $x \in V \subset \overline{V} \subset \phi(U \cap U_i)$. We claim that $\phi^{-1}(V)$ satisfies the desired condition.

We have $\phi^{-1}(V) \subset U \cap U_i$. I claim that $\overline{\phi^{-1}(V)} \subset U \cap U_i$ as well. Note this is not immediate, as we do not know a priori that $\overline{\phi^{-1}(V)} = \phi^{-1}(\overline{V})$. This is only true if M is Hausdorff, so this is where we must explicitly use the Hausdorffness of the M. If the Hausdorff claim is dropped, the space need not be regular, and the final problem provides a counterexample.

Thus we claim, $\overline{\phi^{-1}(V)} = \phi^{-1}(\overline{V})$. $\phi(\overline{V}) \subset \overline{\phi(V)}$ by continutiy of f by Theorem 18.1. We now show $\phi(\overline{V})$ is closed, and it contains $\phi(V)$, so is contained in the closure, as the closure is the intersection of all closed sets containing $\phi(V)$. M is first countable (because it is second countable), so by the extra credit problem we may use the limit point definition of continuity. Suppose x is a limit point of $\phi(\overline{V})$. Then there is a sequence $x_i \to x$ with $x_i \in \phi(\overline{V})$. Then there are points $v_i \in \overline{V}$ so $\phi(v_i) = x_i$. But v_i must be Cauchy, as is a sequence convering in a neighborhood homeomorphic to Euclidean space, thus it must have a limit $y \in \overline{V}$. By limit point continuity and the uniqueness of limits in Hausdorff spaces, $\phi(y) = x$.

Problem 5 (Munkres)

Let X be a compact Hausdorff Space that is locally Euclidean. Then there exists an embedding $\Phi: X \to \mathbb{R}^K$ for some large K.

Proof. X is locally euclidean so for every x there is a pair (U_x, ϕ_x) where $\phi_x : U_x \to V_x \subset \mathbb{R}^k$ is a homeomorphism. This is a cover of X, so by compactness there is a finite subcover, call these sets $U_1, ..., U_N$.

As X is compact and Hausdorff, it is normal by Theorem 32.3. Therefore by Theorem 36.1 there is a partition of unity $\{\psi_i\}$ subordinate to the open cover $U_1, ..., U_n$. Then we define

$$\Phi(x) = (\psi_1 \cdot \phi_1(x), \psi_1(x), ..., \psi_n \cdot \phi_n(x), \psi_n(x))$$

As a map $X \to \mathbb{R}^{n(k+1)}$, where we extend the maps $\psi \cdot \phi_i$ to be zero outside of each U_i . It is a homeomorphism by the same argument as in the proof of Theorem 36.2.

1 Page 227 Problem 3

Let X be a Compact Hausdorff space such that each point has a neighborhood homeomorphic to an open subset of \mathbb{R}^n . Show that X is an n-manifold.

Since X is a compact h.d. space, by 227.2, we may embed it into \mathbb{R}^N for some large N. \mathbb{R}^N has a countable base consisting of products of open intervals with rational endpoints, thus any subspace of \mathbb{R}^N has a countable base by intersecting the basis with the subspace, so X is second countable, and thus a manifold. \square

2 Page 227 Problem 5

Let X be the union of $\mathbb{R}-0$ with the two point set $\{p,q\}$. Topologize X by taking the basis to be the set of all open intervals not containing zero, along with sets of the form $(-a,0) \cup \{p\} \cup (0,a)$ or $(-a,0) \cup \{q\} \cup (0,a)$ for a>0.

SOLUTION BY TARA AIDA 4.36.5

(a) - Check that this is a basis for a topology

Let $x \in X = \mathbb{R} \setminus \{0\} \cup \{p,q\}$. If $x \in \mathbb{R} \setminus \{0\}$, then it may be contained in some open interval $(x - \epsilon, x + \epsilon)$, choosing ϵ sufficiently small so that it does not contain 0. If x = p or x = q the basis elements of the form $(-a,0) \cup \{p\} \cup (0,a)$ and $(-a,0) \cup \{q\} \cup (0,a)$ for a > 0 contain p,q respectively. Thus, it remains to check the intersection property of a basis. There are multiple cases.

Consider: $(a_1, b_1) \cap (a_2, b_2)$. This is either empty or equal to an another open interval (still not containing 0). Let $x \in (a_1, b_1) \cap (a_2, b_2) = (a_3, b_3)$. Then, we may find an open interval containing x and contained in (a_3, b_3) .

Consider: $(a_1, b_1) \cap ((-a, 0) \cup \{p\} \cup (0, a))$ (this analysis also holds for the case where we replace p with q). If this is nonempty, then, the intersection is either (a_1, b_1) , $(-a, b_1)$, or (a_1, a) Given a point x contained in this intersection, we can find an open interval not containing 0, but containing x, and contained in (a_1, b_1) , $(-a, b_1)$, or (a_1, a) ...(actually the interval itself works).

Consider: $(-a,0) \cup \{p\} \cup (0,a)$ intersected with $(-b,0) \cup \{p\} \cup (0,b)$. This is simply another basis element of the same form: $(-c,0) \cup \{p\} \cup (0,c)$, so any point in the intersection is trivially contained in another basis element (the intersection itself). This analysis holds true if we replace p with q.

Consider: $(-a,0) \cup \{p\} \cup (0,a)$ intersected with $(-b,0) \cup \{q\} \cup (0,b)$. Then, (assuming WLOG that a < b), this is equal to $(-a,0) \cup (0,a)$. Given any x contained in this, we may find an open interval small enough s.t. it is contained in (-a,0) or (0,a) and contains x.

(b) Show that each of the spaces $X - \{p\}$ and $X - \{q\}$ is homeomorphic to \mathbb{R} ..

It suffices to show this for one (p). Claim: the function $f: X - \{p\} \to \mathbb{R}$ s.t. f(x) = 0 if x = q and f(x) = x otherwise. This is certainly injective. It is surjective since $X - \{p\} = \mathbb{R} \setminus \{0\} \cup \{q\}$ (the $x \in \mathbb{R} \setminus \{0\}$ hit every nonzero element, and q hits 0). To show it is continuous, it is enough to show that $f^{-1}((a, b))$ is an open set in $X - \{p\}$ (since the open intervals form a basis for \mathbb{R}).

If (a, b) does not contain 0 then this is obviously true, since the inverse image will be an open interval in \mathbb{R} not containing 0. If it does, then the inverse image is some $(-m, 0) \cup \{q\} \cup (0, n)$, m, n > 0, which is an open set in $X - \{p\}$, as it may be written as the union of two basis elements. Thus, f is continuous.

Now, we check f^{-1} is continuous. The image of an open interval of \mathbb{R} (not containing 0) is again, an open

interval in \mathbb{R} , which is open. The image of a set of the form $(-a,0) \cup \{q\} \cup (0,a)$ is simply (-a,a) which is also open in \mathbb{R} .

Thus, f is a bijective continuous function with continuous inverse, so $X - \{p\}$ homeomorphic to \mathbb{R} . The same argument holds if we switch every p for q and vice versa, so $X - \{q\}$ is also homeomorphic to \mathbb{R} .

(c) - Show that X satisfies the T_1 axiom, but is not Hausdorff. X is not Hausdorff because any two neighborhoods of $\{p\}$ must be of the form $(-a,0) \cup \{p\} \cup (0,a)$, and so they must intersect each other at some open interval (0,b).

Now for T_1 : Let $x, y \in X$ and $x \neq y$. X is T_1 if I can find a neighborhood of x that doesn't contain y and a neighborhood of y that doesn't contain x. If $x, y \in \mathbb{R} \setminus \{0\}$ then we can find disjoint open intervals, one containing x and the other y (\mathbb{R} is hausdorff).

Suppose x = p and $y \in \mathbb{R} \setminus \{0\}$. Then, we may find a b small enough s.t. $(-b,0) \cup (0,b)$ does not contain y, but then clearly $(-b,0) \cup \{p\} \cup (0,b)$ is an open neighborhood of p not containing y. Alternatively, any open interval (not containing 0) containing y will not contain p. The same analysis holds if we replace p with q.

Finally, what if x = p, y = q. Then for a > 0, $(-a, 0) \cup \{p\} \cup (0, a)$ is an open neighborhood of p not containing q and $(-a, 0) \cup \{q\} \cup (0, a)$ is an open neighborhood of q not containing p.

Thus, X satisfies the T_1 axiom!

(d) - **Show that** *X* **satisfies all conditions for a 1-manifold except for the Hausdorff condition.** It clearly has countable basis: simply restrict the open intervals of all the basis elements to have rational endpoints.

Given any $x \in X$ does it have a neighborhood homeomorphic to an open subset of \mathbb{R} ? If $x \in \mathbb{R} \setminus \{0\}$ then it certainly has a neighborhood contained in $X - \{p\}$, and so by (b) it has a neighborhood homeomorphic to an open subset of \mathbb{R} . If x = p then it has an open neighborhood contained in $(X - \{q\})$, by the fact that X is T_1 , and if x = q then it has an open neighborhood contained in $X - \{p\}$, again by T_1 -ness, thus, in both cases, $x \in X$ contains a neighborhood homeomorphic to a open subset of \mathbb{R} by the homeomorphisms defined in (b). Thus, we conclude that every $x \in X$ has a neighborhood homeomorphic with an open subset of \mathbb{R} , so we are done.