Math 300.2 Homework 9

Paul Hacking

November 27, 2017

Reading: Sundstrom, Sections 7.1, 7.2, 7.3, and 7.4. Justify your answers carefully.

- (1) Let S be a set and R a relation on S. What does it mean to say that R is an equivalence relation? In each of the following cases, determine whether R is an equivalence relation.
 - (a) $S = \mathbb{R}, aRb \iff a \leqslant b$.
 - (b) $S = \mathbb{R}$, $aRb \iff b = a + \pi n$ for some $n \in \mathbb{Z}$.
 - (c) $S = \mathbb{N}, aRb \iff a \mid b.$
 - (d) $S = \mathbb{Z}, aRb \iff 7 \mid a b.$
 - (e) $S = \mathbb{R}, aRb \iff |a b| \leq 2.$
 - (f) $S = \mathbb{R}^2$, $(a_1, a_2)R(b_1, b_2) \iff \sqrt{(a_1 b_1)^2 + (a_2 b_2)^2} < 5$.
 - (g) $S = \mathbb{Q}$, $aRb \iff b = 3^n a$ for some $n \in \mathbb{Z}$.
 - (h) $S = \mathbb{N}$, $aRb \iff ab = n^2$ for some $n \in \mathbb{N}$.
 - (i) $S = \mathbb{Z}^2$, $(a_1, a_2)R(b_1, b_2) \iff a_1b_2 = a_2b_1$.
- (2) Let $S = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation on S defined by the following table. (In row a and column b of the table we write Y if aRb and N otherwise.) Determine whether R is an equivalence relation and if so list the equivalence classes.

(3) Let $S = \mathbb{R}^2$ and let R be the relation on S defined by

$$(x_1, y_1)R(x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

- (a) Show that R is an equivalence relation.
- (b) Draw a picture showing the equivalence classes of R in \mathbb{R}^2 .
- (4) Let $S = \mathbb{R}^2 \setminus \{(0,0)\}$ and R be the relation on S defined by $(x_1,y_1)R(x_2,y_2) \iff (x_2,y_2) = \lambda(x_1,y_1) \text{ for some positive real number } \lambda.$
 - (a) Show that R is an equivalence relation.
 - (b) Draw a picture showing the equivalence classes of R in the plane \mathbb{R}^2 .
 - (c) Let $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ be the circle with center the origin and radius 1. Let f be the function

$$f \colon C \to S/R$$

from the circle C to the set S/R of equivalence classes of R given by f(x,y) = [(x,y)] (that is, f(x,y) is the equivalence class of (x,y)). Show that f is a bijection.