CS1231 Part 4 - Number Theory

Based on lectures by Terence Sim and Aaron Tan Notes taken by Andrew Tan AY18/19 Semester 1

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

1 Mathematical Induction

The Principle of Mathematical Induction is an inference rule concerning a predicate P(n):

Base case: P(0)

Inductive step: $\forall k \in \mathbb{N}, P(k) \to P(k+1)$

Conclusion: $\bullet \forall n \in \mathbb{N}, P(n)$

The steps for using mathematical induction are outlined as such:

- 1. Identify the predicate P(n). The predicate is a statement that evaluates to true or false. Usually, $n \in \mathbb{N}$, and in any case, we need to qualify the domain of n by saying "For all $n \in \mathbb{N}$ " or the respective domain.
- 2. Prove the **Base case**, P(0). Note that there can be more than one base case, and it need not start at P(0).
- 3. Prove the **Inductive step**, which is an implication statement involving universal quantification. The usual rules for proving such statements apply here, and should have the following steps:

For any $k \in \mathbb{N}$:

- 3.1 Assume P(k) is true [Denoted as the *Inductive hypothesis*]
- 3.2 Consider P(k+1), and break it down into a smaller problem of size k.
- 3.3 Apply the inductive hypothesis on the size-k problem.
- 3.4 Proceed to show that P(k+1) is true.
- 4. Write the **Conclusion** (Given that the base case P(0) is true, it follows that P(1) is true and so on.)

1.1 Strong induction

The only difference between Strong Induction and Regular Induction lies only in the Inductive hypothesis.

In Strong Induction, we assume $P(k), P(k-1), P(k-2), \ldots, P(a)$ are all true.

Essentially, we're making a stronger assumption about the values of n which make P(n) true, from this stronger assumption, we proceed as before to show that P(k+1) is true.

2 Prime numbers

An integer n is **prime** if, and only if, n > 1 and for all positive integers r and s, if n = rs, then either r or s equals n.

An integer n is **composite** if, and only if, n > 1 and n = rs for some integers r and s with

1 < r < n and 1 < s < n.

Symbolically,

n is prime \iff \forall positive integers r and s, if n=rs then either r=1 and s=n or r=n and s=1 n is composite \iff \exists positive integers r and s such that n=rs and 1 < r < n and 1 < s < n

Clearly, every integer n > 1 is either prime or composite.

2.1 The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that every positive integer greater than 1 can be uniquely factorized into a product of prime numbers.

More formally, given any integer n > 1, there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k},$$

and any other expression for n as a product of primes is identical to this except, perhaps, for the order in which the factors are written.

2.2 Primality test

There are multiple tests to see if an integer n is prime.

The most straightforward method is Trial Division, by testing if n is divisible by all integers k between 2 and \sqrt{n} .

The Sieve of Eratosthenes is a list of primes that is generated simply by starting with a list C of all integers greater than 1 and p=2, and crossing out all multiples of p, and repeating with the next uncrossed number in C.

The Miller-Rabin primality test is another primality test which determines whether a given number is prime. It relies on a set of equalities that hold true for prime values. However, it is probabilistic, and composites may be passed off as a prime.

2.3 Open questions

There are several open questions concerning prime numbers, and listed below are a few of interest:

Goldbach's Conjecture: Every even integer greater than 2 can be written as a sum of two primes.

Twin Primes Conjecture: There are infinitely many primes p such that p+2 is also a prime.

A Prime properties

A.1 Theorems

Theorem 4.2.3: If p is a prime and x_1, x_2, \ldots, x_n are any integers such that: $p \mid x_1 x_2 \ldots x_n$, then $p \mid x_i$ for some x_i $(1 \le i \le n)$.

Theorem 4.3.5 (Epp): Fundamental Theorem of Arithmetic: Given any integer n > 1, there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that $n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \ldots p_k^{e_k}$, and any other expression for n as a product of primes is identical to this except, perhaps, for the order in which the factors are written.

Theorem 4.7.3 (Epp): The set of primes is infinite.

Prime Number Theorem: The number of primes less than or equal to an integer x is approximately $x/\log(x)$.

A.2 Propositions

Proposition 4.2.2: For any two primes p and p', if $p \mid p'$ then p = p'.

Proposition 4.7.3 (Epp): For any $a \in \mathbb{Z}$ and any prime p, if $p \mid a$ then $p \nmid a$ then $p \mid (a+1)$.