ΘΕΜΑ 4

Δίνονται τα τρίγωνα ΑΒΓ και ΑΔΕ, που η κοινή κορυφή τους Α βρίσκεται στο κέντρο τριών ομόκεντρων κύκλων (Α, $ρ_1$), (Α, $ρ_2$) και (Α, $ρ_3$), η κορυφή Γ βρίσκεται στον κύκλο (Α, $ρ_3$), οι κορυφές Β και Ε στον κύκλο (Α, $ρ_2$) και η κορυφή Δ στον κύκλο (Α, $ρ_1$), όπως στο σχήμα, με $ρ_1 < ρ_2 < ρ_3$. Ονομάζουμε $E_{\text{EΓ}}$ το εμβαδόν του σκιασμένου δακτυλίου μεταξύ των κύκλων (Α, $ρ_2$) και (Α, $ρ_3$), E_1 το εμβαδόν του κύκλου (Α, $ρ_1$), E_2 το εμβαδόν του κύκλου (Α, $ρ_2$) και E_3 το εμβαδόν του κύκλου (Α, $ρ_3$).

α) Αν
$$\frac{E_{E\Gamma}}{E_2}=\frac{7}{9}$$
 , να αποδείξετε ότι:

i.
$$\frac{\rho_2}{\rho_3} = \frac{3}{4}$$
. (Μονάδες 07)

ii.
$$\frac{E_2}{E_3} = \frac{9}{16}$$
. (Μονάδες 05)

iii. Αν επιπλέον οι ΔΕ και ΒΓ είναι παράλληλες να αποδείξετε ότι $\frac{\rho_1}{\rho_2} = \frac{3}{4}$.

(Μονάδες 08)

β) Αν $E_{E\Gamma}=E_2$ και επιπλέον οι ΔΕ και ΒΓ είναι παράλληλες, να αποδείξετε ότι $E_{\Delta B}=E_1$, όπου $E_{\Delta B}$ είναι το εμβαδόν του δακτυλίου μεταξύ των κύκλων (Α, ρ_1) και (Α, ρ_2).

(Μονάδες 05)

