Disagreement-Regularized Imitation Learning

Kianté Brantley, ¹ Wen Sun, ² Mikael Henaff ²

¹ University of Maryland, ² Microsoft Research

Imitation Learning

Expert Demonstrator

- state
- actions up, down, left, right

Training set: D = {(state, actions)} from expert π^*

Goal: learn agent $\pi_{\theta}(s) \rightarrow a$

Imitation Learning using Behavior Cloning

$$J_{BC}(\pi) = \mathbf{E}_{s \sim d_{\pi^*}} [\ell(\pi_{\theta}(s), \pi^*(s))]$$

Problem:

- Assumptions underlying supervised learning no longer hold
- Compounding error problem
- Can we design an agent that can deal with the compounding error problem without needing more demonstrations?

Formalizing the compounding error problem

Given an expert policy: π^*

Consider a policy: $\hat{\pi}$

$d_{\pi^*}(s_1) = \frac{T-1}{T}$

Behavior Cloning Loss:

$$J_{BC}(\pi) = \epsilon$$

(loss is small)

Behavior Cloning Regret:

$$Regret(\hat{\pi}) = \mathcal{O}(\epsilon T^2)$$

(quadratic regret)

Our Approach DRIL

Motivation:

- 1. Mimic expert within the expert distribution
- 2. Stay within the expert distribution

$$J_{DRIL}(\pi) = J_{BC}(\pi) + J_U(\pi)$$

states

Train ensemble of polices $\Pi_E = \{\pi_1, \dots, \pi_E\}$ on demonstration data D

Uncertainty Cost: $C_U(s, a) = Var_{\pi \sim \Pi_F}(\pi(a \mid s))$

DRIL cost can be optimized using any RL algorithm

Our Approach DRIL (Final Algorithm)

Input: Expert Demonstration data $D = \{(s_i, a_i)\}_{i=1}^N$

Train Policy Ensemble $\Pi_E = \{\pi_1, \dots, \pi_E\}$ using demonstration data D

Train policy behavior cloning π using demonstration data D

for i = 1 to ... do

- Perform one gradient update to minimze $J_{BC}(\pi)$ using minibacth from D
- Perform one step of policy gradient to minimize $\mathbf{E}_{s \sim d_\pi, a \sim \pi(\cdot|s)} \big[C_{\mathbf{U}}(s,a) \big]$ end for

Our Approach DRIL (Analysis)

Theorem (informal): $J_{DRIL}(\pi)$ has regret $\mathcal{O}(\epsilon \kappa T)$

Assumption 1: (Realizability) $\pi^* \in \Pi$

Assumption 2: (Optimization Oracle) $J(\hat{\pi}) \leq \operatorname{argmin}_{\pi \in \Pi} J(\pi) + \epsilon$

Assumption 3: (Smoothness on true Q-Function) $Q^{\pi^*}(s, a) - Q^{\pi^*}(s, \pi^*) \le u$

Revisiting the compounding error problem

Given an expert policy: π^*

Behavior Cloning Regret:

$$Regret(\hat{\pi}) = \mathcal{O}(\epsilon T^2)$$

(quadratic regret)

 $\mathbf{DBH}_{\mathbf{I}}\mathbf{Begret}(\epsilon \mathbf{K}T)$

$$\kappa = \text{Regret}(\hat{\alpha}) = \mathcal{O}(\epsilon T)$$
(lineary espemble)

Experiments: (Atari)

Experiments: (Continuous Control)

Summary:

- Compounding error problem has been a fundamental issue in imitation learning
- Provide a new algorithm which uses uncertainty as an additional learning signal
- Theoretical guarantees in some settings
- Simple and Robust

