PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 96/38589
C12Q 1/68, G06F 15/18	A1	(43) International Publication Date: · 5 December 1996 (05.12.96)
(21) International Application Number: PCT/US	96/081	Corporation, Corporate Intellectual Property, UW2220, 709
(22) International Filing Date: 31 May 1996 (31.05.9	Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).
(30) Priority Data: 08/459,899 2 June 1995 (02.06.95)	U	US (81) Designated States: JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(60) Parent Application or Grant (63) Related by Continuation US Filed on 2 June 1995 (6		
(71) Applicant (for all designated States except US): SMTT BEECHAM CORPORATION [US/US]; Corporate tual Property, UW2220, 709 Swedeland Road, P 1539, King of Prussia, PA 19406-0939 (US).	Intellec	>
(72) Inventors; and (75) Inventors/Applicants (for US only): STODOLA, Robe [US/US]; 309 Haws Lane, Flourtown, PA 19031 (I BIN, Frank, L. [US/US]; 2964 Dorman Avenue, B PA 19008 (US). WILLIAMS, Arthur, L., Jr. [US/US Sunset Drive, Bethlehem, PA 18017 (US).	JS). TO roomal	i,
(54) Title: METHOD FOR ANALYZING PARTIAL GEN	JE SEC	A TEMPER

(54) Title: METHOD FOR ANALYZING PARTIAL GENE SEQUENCES

(57) Abstract

A computer-based iterative method for analyzing partial gene sequences. Putative gene assemblies are built from partial gene sequences by the method. Incremental addition of new partial gene sequences to be integrated with an existing plurality of putative gene assemblies and a series of pre-processing steps prior to assembly allows efficient and accurate assembly of large amounts of partial gene sequences.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso .	1E	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	8G	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	. LK	Sri Lanka	SIN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechos lovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tafikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	· MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Manritania	VN	Vist Nam

METHOD FOR ANALYZING PARTIAL GENE SEQUENCES

FIELD OF THE INVENTION

This invention relates to a computer-based method for building putative gene assemblies from partial gene sequences.

BACKGROUND OF THE INVENTION

The human genome is estimated to contain 3 billion

10 base pairs of DNA. Within the genome, it is believed
that approximately 50,000 to 100,000 gene coding
sequences are dispersed. The gene sequences are thought
to represent about 3% or approximately 90 million base
pairs of the human genome.

It is generally recognized that elucidation of the structure of all human genes and their organization within the genome will be beneficial to the advancement of medicine and biology. Databases such as the Genome Sequence Data Bank and GenBank serve as repositories of the nucleotide sequence data generated by ongoing research efforts. Despite the efforts to date, GenBank lists the sequences of only a few thousand human genes.

Recent advances in automated, large-scale sequencing techniques have led to the initiation of two broad approaches to obtaining the sequence of the human genome. While the scientific debate continues as to the best approach, chromosome mapping and sequencing and gene sequencing projects have begun in earnest.

The Human Genome Initiative, a multinational effort having government backing in the United States and other countries, is attempting to characterize the genomes of humans and other model organisms on a chromosomal approach. In the private sector, large-scale sequencing of cDNA reverse transcribed from mRNA expressed in various human tissues, cell types and developmental stages is being pursued by a number of entities.

5

After publication of the Maxam-Gilbert and Sanger 10 et al. nucleotide sequencing techniques, manual gene sequence assembly methods were practical for single gene or viral genome sequencing projects. As sequencing projects became more ambitious, manual techniques could be supplemented by computer-assisted sequence and contig 15 assembly where overlaps between fragments were identified by software rather than by eye. However, the large scale of DNA sequencing projects and the rapidity with which sequence data is generated by automated sequencer machines has resulted in data analysis 20 becoming a rate-limiting step in assembly of gene sequence data. The volume of data being generated by large-scale sequencing projects requires automated analysis in order to provide assembled sequence data in a timely manner.

Towards this end, efforts have been made to improve computer-assisted assembly of nucleotide sequence data. For example, in "Automated DNA Sequencing and Analysis", Adams et al. eds., Academic Press (1995), E.W. Myers

presents a discussion of software systems for fragment assembly in Chapter 32, while S. Honda et al. describe in Chapter 33 the Genome Reconstruction Manager, a long-term software engineering project to develop a system to support large-scale sequencing efforts.

5

10

Despite these efforts, a need exists for improvements over existing methods. The improved methods will provide computer-assisted nucleotide sequence assembly methods capable of more accurately and more efficiently assembling large amounts of sequence data.

SUMMARY OF THE INVENTION

Accordingly, one aspect of the present invention is 15 a computer-based method for analyzing partial gene sequences. A computer-based iterative method for building putative gene assemblies from a plurality of partial gene sequences is provided. The method allows for the incremental addition of new partial gene 20 sequences to be integrated with an existing plurality of putative gene assemblies. The method comprises preprocessing of the partial gene sequences and existing putative gene assemblies and assembling, responsive to grouping relationships, a consensus sequence from the 25 preprocessed partial gene sequences and putative gene assemblies. Preprocessing comprises the steps of annotating regions within each of the plurality of partial gene sequences and each of the plurality of

existing putative gene assemblies; and grouping annotated partial gene sequences with other annotated partial gene sequences, where the other annotated partial gene sequences include components of the existing plurality of putative gene assemblies. Preprocessing allows for efficient and accurate assembly.

BRIEF DESCRIPTION OF THE DRAWING

- The accompanying drawing, which is incorporated in and constitutes a part of the specification, illustrates a preferred embodiment of the invention and together with the description serves to explain the principles of the invention.
- FIG. 1 is a block diagram of a method for analyzing partial gene sequences.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The method of the invention provides for automated
management of a large and continuously growing
population of partial gene sequences. As used herein,
the term "partial gene sequences" refers to a series of
symbolic codes for nucleotide bases comprising a portion
of a gene, DNA or RNA. Partial gene sequences can be
derived by automated or manual methods well known to
those skilled in the art and can be stored in a
database.

The method is a computer-based iterative process for building putative gene assemblies from a plurality of partial gene sequences. As used herein, "putative gene assembly" is an arrangement of partial gene sequences aligned relative to one another and combined to yield a consensus sequence. The iterative nature of the method of the invention allows for the incremental addition of new partial gene sequences to be integrated with an existing plurality of putative gene assemblies in an efficient manner.

10

15

Large numbers of partial gene sequences can be assembled by the method of the invention. The gene sequence assemblies produced by the method can be stored in a database and characterized for biological function. The nucleic acids represented by the gene sequence assemblies and the proteins the nucleic acids encoded

are useful as drug discovery reagents and/or biomedical

As shown in FIG. 1, the method of the invention broadly comprises three steps of annotation, grouping

and assembly. Efficient and accurate assembly of partial gene sequences is achieved through the assembly pre-processing steps of annotating and grouping and the

use of the plurality of existing putative gene

assemblies. The increased efficiency of the present method allows for high throughput of partial gene sequences.

Annotating is a process of identifying regions of partial gene sequences and putative gene assemblies that may cause two unlike sequences to be considered alike or otherwise produce inaccurate results in the grouping or assembly processes. These regions are likely to interfere with the correctness of the subsequent grouping and assembly steps of the method of the invention. The remaining unidentified regions are considered to contain useful information (for the purpose of grouping and assembly) and are used in the subsequent grouping and assembly steps. Regions identified as likely to interfere with subsequent steps are ignored in those steps.

10

Examples of regions which can be identified in the

annotating step are sequences from species other than
the one of interest and nucleic acids or DNA from
cellular structures such as ribosomes and mitochondria.
Low information regions which occur multiple times in a
sequence such as polynucleotide runs, simple tandem

repeats (STRs) and genomic repetitive sequences, such as
ALU, can also be identified. Further, ambiguous regions
and regions resulting from experimental error or
artifacts are also identified.

After annotation, the annotated partial gene

sequences are grouped with other annotated partial gene
sequences. The step of grouping the annotated partial
gene sequences is based on determining association
relationships between an annotated partial gene sequence

and other existing annotated partial gene sequences, some of which may be components of previously identified putative gene assemblies. This process begins by ignoring the annotated regions from the partial gene sequences and previously identified putative gene assemblies. The partial gene sequences, with the annotated regions ignored, are then compared with the consensus sequence of previously identified putative gene assemblies, with the annotated regions ignored.

The partial gene sequences are also compared with each other, ignoring the annnotated regions. The partial gene sequences are placed in groups based on the similarities found in these comparisons. Resulting groups thereby contain a collection of partial gene sequences that would appear to belong together, i.e., the grouping step produces a group of partial gene

sequences that are thought to assemble together.

20

25

For each group from the previous step, the positional ordering of the partial gene sequences relative to one another is taken as a group on the assumption that all partial gene sequences belong to the same putative gene assembly. One of the consequences of the ordering may be that more than one putative gene assembly may result should the ordering step uncover inconsistencies among the group of partial gene sequences.

Once positional ordering has been completed for each putative gene assembly, a consensus sequence is

generated by a variety of contig assembly programs known to those of ordinary skill in the art. Exemplary is GELMERGE available from Genetics Computer Group, Inc. in Madison, WI.

The method of the invention is computer-based.

Accordingly, partial gene sequences, annotated partial gene sequences, grouped annotated partial gene sequences and assembled consensus sequences are embodied as signals in a computer while being processed by the method of the invention.

Upon completion of the annotating, grouping, and

assembling steps, the putative gene assemblies are stored in a database. Putative gene assemblies may be characterized on the basis of their sequence, structure, biological function or other related characteristics. Once categorized, the database can be expanded with information linked to the putative gene assemblies regarding their potential biological function, structure or other characteristics.

For example, one method of characterizing putative gene assemblies is by homology to other known genes.

Shared homology of a putative gene assembly with a known gene may indicate a similar biological role or function.

Another exemplary method of characterizing putative
25 gene assemblies is on the basis of known sequence
motifs. Certain sequence patterns are known to code for
regions of proteins having specific biological

CLAIMS

- 1. A computer-based iterative method for building putative gene assemblies from a plurality of partial gene sequences comprising the steps of:
- 5 (a) adding incrementally new partial gene sequences to be integrated with an existing plurality of putative gene assemblies:
 - (b) preprocessing the partial gene sequences and existing putative gene assemblies; and
- 10 (c) assembling a consensus sequence from the preprocessed partial gene sequences and putative gene assemblies.
 - 2. The method of claim 1 wherein the preprocessing step comprises the steps of:
- 15 (1) annotating regions within each of the plurality of partial gene sequences and each of the plurality of existing putative gene assemblies; and

20

- (2) grouping annotated partial gene sequences with other annotated partial gene sequences, wherein some of the other annotated partial gene sequences may be components of existing putative gene assemblies.
- 3. The method of claim 1 further comprising the step of:
 - (d) characterizing the consensus sequence.
- 25 4. The method of claim 3 wherein the characterization of the consensus sequence is on the basis of homology to known sequences.

characteristics such as signal sequences, transmembrane domains, SH2 domains, etc.

In addition to the methods just discussed, which can be automated, genes may also be characterized on the basis of expert commentary from relevant human specialists for given genes or by the results of biological experiments.

It will be apparent to those skilled in the art that various modifications can be made to the present method for analyzing partial gene sequences without 10 departing from the scope or spirit of the invention, and it is intended that the present invention cover modifications and variations of the method for analyzing partial gene sequences provided they come within the scope of the appended claims and their equivalents.

15

5. The method of claim 3 wherein the characterization of the consensus sequence is on the basis of similarities to known sequence motifs.

- 6. A computer-based iterative method for building putative gene assemblies from a plurality of partial gene sequences comprising the steps of:
 - (a) adding incrementally new partial gene sequences to be integrated with an existing plurality of putative gene assemblies;
- (b) annotating regions within each of the plurality of partial gene sequences and each of the plurality of existing putative gene assemblies;
 - (c) grouping annotated partial gene sequences with other annotated partial gene sequences, wherein some of the other annotated partial gene sequences may
- be components of existing putative gene assemblies; and
 - (d) assembling, responsive to grouping relationships, a consensus sequence from the grouped annotated partial gene sequences.
- 7. The method of claim 6 further comprising the step of:
 - (e) characterizing the consensus sequence.

8. The method of claim 7 wherein the characterization of the consensus sequence is on the basis of homology to known sequences.

- The method of claim 7 wherein the
 characterization of the consensus sequence is on the basis of similarities to known sequence motifs.
 - 10. A computer-based iterative method for building putative gene assemblies from a plurality of partial gene sequences comprising the steps of:
- (a) adding incrementally new partial gene sequences to be integrated with an existing plurality of putative gene assemblies;
- (b) annotating regions within each of the plurality of partial gene sequences and each of theplurality of existing putative gene assemblies;
 - (c) grouping annotated partial gene sequences with other annotated partial gene sequences, wherein some of the other annotated partial gene sequences may be components of existing putative gene assemblies;
- 20 (d) assembling, responsive to grouping relationships, a consensus sequence from the grouped annotated partial gene sequences; and
 - (e) characterizing the consensus sequence.

FIG. 1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/08115

A. CL. IPC(6)	ASSIFICATION OF SUBJECT MATTER :C12Q 1/68; G06F 15/18		
US CL	:435/6; 395/13 to International Patent Classification (IPC) or to bot	h matianal alassification and IDC	
	LDS SEARCHED	ii natonai classificatori and IFC	<u> </u>
	documentation searched (classification system follow	ed by classification symbols)	
U.S. :	435/6; 395/13		
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields searched
•	data base consulted during the international search (rice Extra Sheet.	name of data base and, where practicable	, search terms used)
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
Y	SMITH et al. The Statistical Di Similarities. Nucleic Acids Resear 13, No. 2, pages 645-656, espec	ch. 25 January 1985, Vol.	1-10
Υ .	PELTOLA et al. SEQAID: A DI Program Based on a Mathemati Research. 1984, Vol. 12, No. 1, p document.	cal Model. Nucleic Acids	1-10
Y	GCG. Fragment Assembly. GC 1994, pages 3.4-3.48, see entire	CG Computer Group, Inc. document.	1-10
X Furth	er documents are listed in the continuation of Box C	See patent family annex.	
A" doc	cial categories of cited documents: cament defining the general state of the art which is not considered se of particular relevance	To later document published after the inter- date and not in conflict with the applicat principle or theory underlying the inve	tion but cited to understand the
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider	
	nument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	when the document is taken alone	
spe	cial reason (as specified) nument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination
P" doc	 nument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent !	
	actual completion of the international search	Date of mailing of the international sear	rch report
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer THANDA WAI	Tagon on la
	, D.C. 20231 n. (703) 305-3230	Telephone No. (703) 308-0196	y\ _

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/08115

(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim N
Y	KARLIN et al. 'Patterns in DNA and Amino Acid Sequences Their Statistical Significance.' In: Mathematical Model DNA Sequences. Boca Raton: CRC Press, 1989, pages especially pages 134-136.	1-10	
Y	WATERMAN, Michael S. 'Consensus Patterns in Sequ In: Mathematical Models for DNA Sequences. Boca R CRC Press, 1989, pages 93-115, especially pages 94-95.	1-10	
Y	WATERMAN, Michael S. 'Sequence Alignments.' In: Mathematical Models for DNA Sequences. Boca Raton: Press, 1989, pages 53-92, especially pages 61-64.	CRC	1-10
	·		
:	-		
	. *		
			÷
	,		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/08115

B. FILLDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, JAPIO, EUROPEAN PATENTS, DERWENT WORLD PAT., DERWENT WPI, DERWENT BIOTECHNOLOGY

search term: genetic algorithm, computer, sequence, fragment, gene(s), automat?

Form PCT/ISA/210 (extra sheet)(July 1992)*