Graph Algorithms-II

Topological Sorting and Strongly connected Components

Topological Sort (An application of DFS)

- We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"
- □ Topological sort: An ordering of the tasks that conforms with the given dependencies
- □ **Goal**: Find a topological sort of the tasks or decide that there is no such ordering

Topological sort more formally

- Suppose that in a directed graph G = (V, E)
 vertices V represent tasks, and each edge (u, v)∈E means that task u must be done before task
 v
- □ What is an ordering of vertices I, ..., |V| such that for every edge (u, v), u appears before v in the ordering?
- Such an ordering is called a topological sort ofG
- □ Note: there can be multiple topological sorts of G

Topological sort more formally

- Is it possible to execute all the tasks in G in an order that respects all the precedence requirements given by the graph edges?
- The answer is "yes" if and only if the directed graph
 G has no cycle!
 - (otherwise we have a deadlock)
- □ Such a **G** is called a Directed Acyclic Graph, or just a **DAG**

Directed Acyclic Graph

□ DAG – Directed graph with no cycles.

□ Eg:

DAGs and back edges

- □ Can there be a back edge in a DFS on a DAG?
- □ NO! Back edges close a cycle!
- □ A graph **G** is a DAG <=> there is no back edge classified by DFS(**G**)

- □ Performed on a DAG.
- □ Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- **3. return** the linked list of vertices

Time: $\Theta(V + E)$.

Time = 2

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex d

Time = 3

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex d

Time = 4

- I) Call DFS(**G**) to compute the finishing times **f**[**v**]
- 2) as each vertex is finished, insert it onto the **front** of a linked list

Next we discover the vertex f

f is done, move back to **d**

Time = 5

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

Next we discover the vertex **f**

f is done, move back to **d**

d is done, move back to c

Time = 6

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

Next we discover the vertex **f**

f is done, move back to **d**

d is done, move back to **c**

Next we discover the vertex **e**

Time = 7

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex d

Both edges from e are cross edges

d is done, move back to c

Next we discover the vertex e

e is done, move back to c

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's say we start the DFS from the vertex **c**

Just a note: If there was (**c**,**f**) edge in the graph, it would be classified as a **forward edge** (in this particular DFS run)

d is done, move back to c

Next we discover the vertex e

e is done, move back to c

c is done as well

I) Call DFS(G) to compute the finishing times f[v]

Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**

b is done as (**b**,**d**) is a cross edge => now move back to **c**

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**

b is done as (**b**,**d**) is a cross edge => now move back to **c**

a is done as well

I) Call DFS(**G**) to compute the finishing times **f**[**v**]

WE HAVE THE RESULT!

3) return the linked list of vertices

(a,c) is a cross edge

Next we discover the vertex b

b is done as (**b**,**d**) is a cross edge => now move back to **c**

a is done as well

The linked list is sorted in **decreasing** order of finishing times **f**[]

Try yourself with different vertex order for DFS visit

Note: If you redraw the graph so that all vertices are in a line ordered by a valid topological sort, then all edges point "from left to right"

TS(G)Example:2

Time complexity of TS(G)

□ Running time of topological sort:

$$\Theta(n + m)$$

where $n=|V|$ and $m=|E|$

□ Why? Depth first search takes $\Theta(n + m)$ time in the worst case, and inserting into the front of a linked list takes $\Theta(1)$ time

Strongly Connected Components

- \Box G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- □ A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.

Strongly Connected Components

- Definition: a strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices $U\subseteq V$ such that
 - □ For each $u, v \in U$ we have both $u \square v$ and $v \square u$ i.e., u and v are mutually reachable from each other $(u \stackrel{\iota}{\hookrightarrow} v)$
- Let $G^T = (V, E^T)$ be the *transpose* of G = (V, E) where $E^T = \{(u, v): (u, v) \in E\}$
 - □ i.e., E^T consists of edges of G with their directions reversed Constructing G^T from G takes O(V+E) time (adjacency list rep) Note: G and G^T have the same SCCs ($u \hookrightarrow v$ in $G \hookrightarrow u \hookrightarrow v$ in G^T)

Transpose of a Directed Graph

- $\Box G^{\mathsf{T}} = \mathbf{transpose}$ of directed G.
 - $G^{\mathsf{T}} = (V, E^{\mathsf{T}}), E^{\mathsf{T}} = \{(u, v) : (v, u) \in E\}.$
 - \Box G^{T} is G with all edges reversed.
- \Box Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- \Box G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm to determine SCCs

SCC(G)

- call DFS(G) to compute finishing times f[u] for all u
- 2. compute $G^{\!\mathsf{T}}$
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

(I) Run DFS(G) to compute finishing times for all $u \in V$

(I) Run DFS(G) to compute finishing times for all $u \in V$

(I) Run DFS(G) to compute finishing times for all $u \in V$

Vertices sorted according to the finishing times:

(2) Compute G^T

(4) Output vertices of each DFT in DFF as a separate SCC

How does it work?

□ Idea:

- By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- Because we are running DFS on G^T , we will not be visiting any v from a u, where v and u are in different components.

