Progress Report

- Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár and Christoph Feichtenhofer. SAM 2: Segment Anything in Images, Videos. arXiv:2408.00714, Aug 2024.
- Wei Feng, Xin Wang, Hong Chen, Zeyang Zhang, Wenwu Zhu. Multi-sentence Video Grounding for Long Video Generation. arXiv:2407.13219, Jul 2024.
- Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding. arXiv:2401.00901, Dec 2023

Introduction

- The paper introduces an Open-Vocabulary Spatio-Temporal Video Grounding task, overcoming the limitations of closed-set video grounding.
 - Introduced a novel **spatio-temporal video grounding model** that achieves state-of-the-art results in closed-set benchmarks and outperforms others in open-vocabulary settings.
 - The model leverages **pre-trained spatial grounding mod**els and integrates temporal aggregation modules for spatio-temporal localization.
- **Goal:** Achieve improved open-vocabulary performance while maintaining strong closed-set video-grounding performance.

Related Work

Spatial Grounding Models

- Foundational models:
 - GLIP, Grounding DINO, Kosmos-1, Kosmos-2, Ferret, GLaMM
- Excel in open-vocabulary tasks
- Limited to static images.

Spatio-Temporal Video Grounding

- Existing models:
 - STGVBert, TubeDETR, Augmented 2D-TAN, OMRN, MMN, STCAT, STVGFormer
- Excel in closed-set tasks.
- Struggled with open-vocabulary generalization.

Problems Definition

Spatial grounding problem

• The localization of one or more objects associated with the text prompt in a frame using a bounding box.

Temporal grounding problem

Understanding how objects or actions evolve over time.

Spatial-temporal grounding problem

 A set of spatio-temporal coordinates associated with the subset of frames where objects exist.

Spatial-temporal Video Grounding

- Problem: limited dataset
- Solution
 - Utilize the generalized representations of these models to enrich the weaker representation of video-grounding approaches.
 - Aim to leverage the strong pretrained representations of spatial grounding methods.

Architecture

Cross-Modality Spatio-Temporal Encoder

- Multi-Head Self-Attention
 - To visual features along the temporal dimensions
 - Also applied on text features
- Deformable Attention
 - To visual features along the spatio dimensions

$$\begin{split} F_v^{m\prime} &= \mathrm{DA}_{spatial}^m(\mathrm{MHSA}_{temporal}^m(F_v^{m-1})), \\ F_p^{m\prime} &= \mathrm{MHSA}_p^m(F_p^{m-1}), \\ \mathrm{Attn}_{\mathrm{joint}}^{\mathrm{m}} &= \left(\frac{proj_{q,v}^m(F_v^{m\prime})proj_{q,p}^m(F_p^{m\prime})^T}{\sqrt{d^k}}\right) \\ F_v^m &= \mathrm{FFN}_v^m(\mathrm{softmax}(\mathrm{Attn}_{\mathrm{joint}}^{\mathrm{m}})proj_p^m(F_p^{m\prime}))), \\ F_p^m &= \mathrm{FFN}_p^m(\mathrm{softmax}(\mathrm{Attn}_{\mathrm{joint}}^{\mathrm{m}}^T)proj_v^m(F_v^{m\prime}))), \end{split}$$

Language-Guided Query Selection

- Input
 - The encoder's visual and textual features
- Output
 - $\{Q_t^0\}_{t=1}^T$: num_query indices that correspond to the most relevant features for object detection per frame

Cross-Modality Spatio-Temporal Decoder

$$\begin{split} Q^{n\prime}_t &= \mathrm{MHSA}^n_{spatial}(\mathrm{MHSA}^n_{temporal}(Q^{n-1}_t)), \\ Q^n_t &= \mathrm{FFN}^n(\mathrm{CA}^n_p(\mathrm{CA}^n_v(Q^{n\prime}_t, F^M_v), F^M_p)), \end{split}$$

$$CA_v^n(Q_t^{n\prime}, F_v^M) = \left(\frac{proj_{q,v}^n(Q_t^{n\prime})proj_{k,v}^n(F_v^M)^T}{\sqrt{d^k}}proj_v^n(F_v^M)^T\right)$$

$$CA_v^n(CA_v^n, F_v^M) = \left(\frac{proj_{q,v}^n(CA_v^n)proj_{k,p}^n(F_v^M)^T}{\sqrt{d^k}}proj_{k,p}^n(F_v^M)^T\right)$$

Prediction Heads

- Output: refined queries
 - Bounding Box Head
 - Temporal Head

Loss Function

$$\mathcal{L}_{spatial} = \lambda_{L_1} \mathcal{L}_{L_1}(\hat{B}, B) + \lambda_{GIoU} \mathcal{L}_{GIoU}(\hat{B}, B)$$

$$\mathcal{L}_{temporal} = \mathcal{L}_{KL}^{s}(\hat{\pi_s}, \pi_s) + \mathcal{L}_{KL}^{e}(\hat{\pi_e}, \pi_e)$$

Evaluation Settings

- Open-Vocabulary Evaluation
 - Training the model on the VidSTG dataset
 - Evaluate it on two different datasets, HC-STVG V1 and YouCook-Interactions to understand how well the model generalizes to new distributions.
 - HC-STVG V1 provides a relatively minor distribution shift given the similar perspective/ objects in the videos.
 - YouCook-Interactions provides a major distribution shift with changes in perspective and annotated objects/ interactions.

Evaluation Settings

- Closed-Set Supervised Evaluation
 - Training on the training set and evaluate each dataset's respective validation/testing set
 - Conducted for three majorly used datasets in spatio-temporal video grounding, namely VidSTG, HC-STVG V1 and HC-STVG V2.

Open-Vocabulary Evaluation

Method	Pre-training		HC-STVG V	YouCook-Interactions	
		m_vIoU	vIoU@0.3	vIoU@0.5	Accuracy
TubeDETR (CVPR'22) [28]	VidSTG	16.84	22.32	9.22	51.63
STCAT (NeurIPS'22) [9]	VidSTG	22.58	32.14	20.83	55.90
VideoGrounding-DINO	VidSTG	27.46	40.13	29.92	57.73

Closed-Set Supervised Evaluation

Method	Declarative Sentences				Interrogative Sentences			
THOUSE .		m_vIoU	vIoU@0.3	vIoU@0.5	m_tIoU	m_vIoU	vIoU@0.3	vIoU@0.5
Factorized:								
GroundeR (ECCV'16) [19]+TALL (ICCV'17) [7]		9.78	11.04	4.09		9.32	11.39	3.24
STPR (ICCV'17) [27]+TALL (ICCV'17) [7]	34.63	10.40	12.38	4.27	33.73	9.98	11.74	4.36
WSSTG (arXiv'19) [5]+TALL (ICCV'17) [7]		11.36	14.63	5.91		10.65	13.90	5.32
GroundeR (ECCV'16) [19]+L-Net (AAAI'19) [3]		11.89	15.32	5.45		11.05	14.28	5.11
STPR (ICCV'17) [27]+L-Net (AAAI'19) [3]	40.86	12.93	16.27	5.68	39.79	11.94	14.73	5.27
WSSTG (arXiv'19) [5]+L-Net (AAAI'19) [3]		14.45	18.00	7.89		13.36	17.39	7.06
Two-Stage:								
STGRN (CVPR'20) [32]	48.47	19.75	25.77	14.60	46.98	18.32	21.10	12.83
STGVT (<i>TCSVT</i> '21) [24]	-	21.62	29.80	18.94	-	-	-	-
OMRN (<i>IJCAI'21</i>) [33]	50.73	23.11	32.61	16.42	49.19	20.63	28.35	14.11
One-Stage:								
STVGBert (ICCV'21) [21]	-	23.97	30.91	18.39	-	22.51	25.97	15.95
TubeDETR (CVPR'22) [28]	48.10	30.40	42.50	28.20	46.90	25.70	35.70	23.20
STCAT (NeurIPS'22) [9]	50.82	33.14	46.20	32.58	49.67	28.22	39.24	26.63
STVGFormer (CVPR'23) [11]	-	33.70	47.20	32.80	-	28.50	39.90	26.20
VideoGrounding-DINO	51.97	34.67	48.11	33.96	50.83	29.89	41.03	27.58

Closed-Set Supervised Evaluation

Methods	m_vIoU	vIoU@0.3	vIoU@0.5
STGVT (TCSVT'21) [24]	18.15	26.81	9.48
STVGBert (ICCV'21) [21]	20.42	29.37	11.31
TubeDETR (CVPR'22) [28]	32.40	49.80	23.50
STCAT (NeurIPS'22) [9]	35.09	57.67	30.09
STVGFormer (CVPR'23) [11]	36.90	62.20	34.80
VideoGrounding-DINO	38.25	62.47	36.14

Closed-Set Supervised Evaluation

Methods	m_vIoU	vIoU@0.3	vIoU@0.5
Yu et al (arXiv'21) [30]	30.00	-	-
Aug. 2D-TAN (arXiv'21) [22]	30.40	50.40	18.80
TubeDETR (CVPR'22) [28]	36.40	58.80	30.60
STVGFormer (CVPR'23) [11]	38.70	65.50	33.80
VideoGrounding-DINO	39.88	67.13	34.49

Conclusion

- Performs well in closed-set and open-vocabulary scenarios
 - Surpassing state-of-the-art results in supervised setting on VidSTG and HC-STVG datasets
 - Outperforming recent models in open-vocabulary on HC-STVG V1 and YouCook-Interactions
- Includes learnable adapter blocks for video-specific adaptation, bridging the semantic gap between natural language queries and visual content.

Planned Tasks for This Week

- Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár and Christoph Feichtenhofer. SAM 2: Segment Anything in Images, Videos. arXiv:2408.00714, Aug 2024.
- Wei Feng, Xin Wang, Hong Chen, Zeyang Zhang, Wenwu Zhu. **Multi-sentence Video Grounding for Long Video Generation.** arXiv:2407.13219, Jul 2024.
- Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. Video-Grounding DINO: Towards Open-Vocabulary Spatio-Temporal Video Grounding. arXiv:2401.00901, Dec 2023
- To be decided.