ED – Seminario 17/11/2016 Árboles AVL

María del Rosario Suárez Fernández

Árbol AVL

- Cada nodo puede tener cero, uno o dos hijos como máximo
- Los valores de los nodos no se repiten
- No puede ocurrir para un nodo cualquiera que la diferencia entre las alturas de sus subárboles sea mayor que 1

Añadir un nodo nuevo

- Para cada elemento que se inserta, si este es mayor que la raíz se inserta en el subárbol derecho y si es menor en el subárbol izquierdo
- Actualizar el factor de balance (FB) y la altura
- Realizar algún tipo de rotación si es necesaria. Cuatro casos
 - Rotación Simple Derecha (RSD)
 - Rotación Simple Izquierda (RSI)
 - Rotación Doble Derecha (RDD)
 - Rotación Doble Izquierda (RDI)

FB nodo = 2

FB subárbol derecho = 1

FB nodo = 2

FB subárbol derecho = 1

FB nodo = 2

FB subárbol derecho = 1

Tres paso + recálculos

FB nodo = 2

FB subárbol derecho = 1

aux= Subárbol derecho del nodo

parte derecha del **nodo**=parte izquierda de **aux**

FB nodo = 2 FB subárbol derecho = 1

parte izquierda de **aux=nodo**

Balancear Devolver **aux**

FB nodo = 2

FB subárbol derecho = 1

parte izquierda de **aux=nodo**

FB nodo = 2

FB subárbol derecho = -1

FB nodo = 2FB subárbol derecho = -1 FB=2, A=3 4 FB=-1, A=2 FB=0, A=0 FB=0, A=0 6 9 Dos rotaciones FB=0, A=0 Rotación Simple Izquierda sobre el 5 subárbol derecho FB=0, A=0 Rotación Simple Derecha

FB nodo = 2FB subárbol derecho = -1 FB=2, A=3 FB=-1, A=2 FB=0, A=0 FB=0, A=0 6 9 Dos rotaciones B=0, A=0 Rotación Simple Izquierda sobre el 1 subárbol derecho FB=0, A=0 Rotación Simple Derecha

PASO 1

PASO 2

FB nodo = 2 FB subárbol derecho = -1

aux= Subárbol derecho del nodo

parte derecha del **nodo**=parte izquierda de **aux**

PASO 3

FB nodo = 2 FB subárbol derecho = -1

aux= Subárbol derecho del nodo

Balancear Devolver **aux**

AVL - Insertar

- Dibujar cómo iría evolucionando un árbol AVL si se insertan (en orden) los siguientes nodos (corrigiendo los posibles desequilibrios):
 - 10, 16, 20, 6, 3, 5, 9, 80, 90, 4, 1, 18, 22, 24

AVL – Insertar – 10, 16 y 20

RSD sobre el nodo 10

AVL - Insertar - RSD

AVL – Insertar – 6

AVL – Insertar – 3

AVL - Insertar - RSI

AVL – Insertar – 5

RSI sobre el nodo 16

AVL - Insertar - RSI

AVL - Insertar - 9

AVL - Insertar - 80

AVL – Insertar – 90

AVL - Insertar - RSD

AVL - Insertar - 4

RDD sobre el nodo 3

AVL - Insertar - RDD

AVL – Insertar – 1

AVL - Insertar - 18

AVL – Insertar – 22

AVL – Insertar – 24

AVL - Insertar - RDI

- Dibujar cómo iría evolucionando el árbol AVL anterior si se borran (en orden) los siguientes nodos (corrigiendo los posibles desequilibrios):
 - 9, 22, 5, 6, 1, 20, 3

AVL - Borrar - RSD

AVL – Borrar – 22

RSI sobre el nodo 4

AVL - Borrar - RSI

Busco el mayor del subárbol izquierdo >> 4

RSD sobre el nodo 4

AVL - Borrar - RSD

Busco el mayor del subárbol izquierdo > 18

RDD sobre el nodo 4

Ejercicio - AVL

- Construir el árbol AVL con los siguientes valores:
 - 10, 95, 60, 30, 2, 1, 70, 90, 23, 43, 65, 13, 99, 97, 49, 7, 40, 50, 20, 15, 3