Suppose the frequency distribution of 3 variables produced by SAS Proc FREQ is displayed as shown below.

While reading at this output, it is impossible to know what does, for example, the **code 1** stand for in the case of the variable, **INJ_TYPE** (or **MED_TYPE** or **SEVERITY**).

To make this display of the output readable, we add what is called the "Value Labels".

Frequency Tabulation Using PROC FREQ Procedure								
Variable: Injury type								
INJ_TYPE	Frequency	Percent	Cumulative	Cumulative				
			Frequency	Percent				
0	6	3	6	3				
1	128	64	134	67				
2	1	0.5	135	67.5				
3	14	7	149	74.5				
4	10	5	159	79.5				
5	41	20.5	200	100				
Variable: Medical Type			T					
MED_TYPE	Frequency	Percent	Cumulative	Cumulative				
			Frequency	Percent				
0	98	49	98	49				
1	54	27	152	76				
2	23	11.5	175	87.5				
3	25	12.5	200	100				
Variable: Severity								
SEVERITY	Frequency	Percent	Cumulative	Cumulative				
			Frequency	Percent				
0	8	4	8	4				
1	30	15	38	19				
2	162	81	200	100				

SYNTAX for adding the "Value Lables" so that the numeric codes used to code the variables are clear before analyzing the data and printing out the output.

Begins with **PROC FORMAT**; statement

The general format of a VALUE statement

```
VALUE format name
```

Range1 = 'label1' Range2 = 'label2'

format name

- Must begin with a \$ sign if the format applies to <u>character</u> <u>data</u>
- Cannot be longer than eight characters (In SAS 9, numeric format can be up to 32 characters while the character format can be up to 31 characters)
- Cannot be name of an existing SAS format
- Cannot end with a number
- Does not end in a period when specified in the VALUE statement

Range One or more variable values such as: 1, 0 - <25, 'F', etc.

Label Text string enclosed in quotation marks

Where do these statements go in the SAS program?

These statements go at the <u>beginning of the program</u> or <u>before the DATA STEP</u>.

CREATION OF "VALUE LABELS"

For the above 3 variables, following are the SAS statements to <u>create</u> VALUE labels

```
Proc format;
     Value Injuryf
         0= "Assult (0)"
          1= "Fall (1)"
         2= "Gun Shot Injury (2)"
          3= "Others (Fall of heavy object, Machine injuries(3)"
          4= "Playing & Sports Related Injuries (4)"
          5= "RTA (5)";
     value Medicalf
          0= "Neurosurgery Related (0)"
          1= "Orthopedics Related (1)"
          2= "Polytrauma (2)"
          3= "Surgically Related (3)";
     value Sevf
          0= "Green (Ambulatory Patients) (0)"
          1= "Red (Resuscitation Bay) (1) "
          2= "Yellow (Patients who require observation) (2)";
run;
```

Note the following:

SAS Variable Name	SAS Format Name	SAS Label for the Variable
INJ_TYPE	INJURYF	Type of Injury
MED_TYPE	MEDICALF	Medical Type
SEVERITY	SEVF	Severity

IMPLEMENTATION OF "VALUE LABELS"

In order to <u>implement</u> these "value labels", we will need the following SAS statement <u>before</u> the <u>DATALINES</u> statement <u>or</u> between the <u>LABEL</u> statement and DATALINES statement if LABELS are included or within each SAS Procedure.

```
format inj type injury. Med type medical. Severity sevf.;
```

The SAS Program would NOW look like the following:

```
Proc format;
      Value Injuryf
                  0= "Assult (0)"
                  1= "Fall (1)"
                  2= "Gun Shot Injury (2)"
                  3= "Others (Fall of heavy object, Machine injuries) (3)"
                  4= "Playing & Sports Related Injuries (4)"
                  5= "RTA (5)";
      value Medicalf
                  0= "Neurosurgery Related (0)"
                  1= "Orthopedics Related (1)"
                  2= "Polytrauma (2)"
                  3= "Surgically Related (3)";
      value Sevf
                  0= "Green (Ambulatory Patients) (0)"
                  1= "Red (Resuscitation Bay) (1)"
                  2= "Yellow (Patients who require observation) (2)";
run;
data example14;
      input @1 mrn 7.0
                  @9 age 2.0
                  @13 sex 1.0
                  @17 inj type 1.0
                  @21 envr 1.0
                  @25 med type 1.0
                  @29 GCS 2.0
                  @33 severity 1.0
                  @37 hosp care 1.0
                  @41 length stay 3.1;
label
     MRN = 'Medical Record Number'
     AGE = 'Age in Months'
     SEX = 'Gender'
     INJ TYPE = 'Injury type'
     ENVR = 'Environment where trauma occurred'
     MED TYPE = 'Medical Type'
     GCS = 'Glasgow Coma Score'
      SEVERITY = 'Severity'
      HOSP CARE = 'Pre-Hospital Care Given?'
      LENGTH STAY = 'Length of stay in hours';
datalines;
            26 0 1
1748487
                              1
                                    15
                                                      1.5
                              0
1748968
          6
                0
                        1
                                    0
                                                1
                        1
                              0
                                    0
                                                2
1749228 6
                  0
                                          15
..... more data
proc freq data=example14;
      title 'Frequency tabulation';
      tables inj type med type severity;
      format inj type injuryf. Med type medicalf. severity sevf.;
run;
```

After the creation and implementation of the "Value Labels", the SAS output from PROC FREQ by running the SAS program shown on the previous page. Note that the SAS output is very clear to read and understand.

Frequency Tabulation Using PROC FREC	<u> Procedur</u>	<u>'e</u>		
Variable: Injury type				
variable: injury type	Frequenc	Percen	Cumulativ	Cumulativ
INJ TYPE	у	t	e	e
	,		Frequency	Percent
Assault (0)	6	3	6	3
Fall (1)	128	64	134	67
Gun Shot Injury (2)	1	0.5	135	67.5
Others (Fall of heavy object, Machine injuries)				
(3)	14	7	149	74.5
Playing & Sports Related Injuries (4)	10	5	159	79.5
RTA (5)	41	20.5	200	100
Variable: Medical Type				
	Frequenc	Percen	Cumulativ	Cumulativ
MED_TYPE	У	t	е	е
			Frequency	Percent
Neurosurgery Related (0)	98	49	98	49
Orthopedics Related (1)	54	27	152	76
Polytrauma (2)	23	11.5	175	
i orytiaama (2)	23	11.5	175	87.5
Surgically Related (3)	25	12.5	200	87.5 100
	25	12.5	200	100
Surgically Related (3) Variable: Severity		12.5		
Surgically Related (3)	25	12.5	200 Cumulativ	100 Cumulativ
Surgically Related (3) Variable: Severity SEVERITY	25 Frequenc y	12.5	200 Cumulativ	100
Surgically Related (3) Variable: Severity	25 Frequenc	12.5	200 Cumulativ	100 Cumulativ
Surgically Related (3) Variable: Severity SEVERITY	25 Frequenc y	Percen t	200 Cumulativ e Frequency	100 Cumulativ e Percent

Remark: The complete data for 200 subjects are not included in the above SAS program.

Note:

The label for <u>each level of the variable</u> is not only self-explanatory but also contains the <u>numeric code</u> attached to that level.

An example of PROC FORMAT implementation in a SAS program

For example, you will be given the following information to create formats.

In a pediatric trauma study, the data for the following variables were collected:

MRN **AGE** 0 = Male, 1 = FemaleSEX INJ_TYPE 0 = Assault, 1 = Fall, 2 = Gun shot injury, 3 = Others (Fall of heavy objects, machine injuries), 4 =Sports related injury, 5 =RTA **ENVR** 0 = Home, 1 = OutdoorMED TYPE 0 = Neurosurgery related, 1 = Orthopedics related, 2 = Polytrauma,3 = Surgically related) GCS **SEVERITY** 0 = Green (Ambulatory patients), 1 = Red (Resuscitation bay), 2 = Yellow (Patients who require observation) HOSP_CARE 0 = No, 1 = Yes

LENGTH STAY

<u>Variable Names</u>	<u>Variable Type</u>	<u>Column#</u>	<u>Label</u>
MRN	numeric	1-7	Medical Record Number
AGE	numeric	9-10	Age in Months
SEX	numeric	12	Gender
INJ_TYPE	numeric	14	Injury type
ENVR	numeric	16	Environment where trauma occurred
MED_TYPE	numeric	18	Medical Type
GCS	numeric	20-21	Glasgow Coma Score
SEVERITY	numeric	23	Severity
HOSP_CARE	numeric	25	Pre-Hospital Care Given?
LENGTH_STAY	numeric	27-29	Length of stay in hours

Note:

In <u>EXAMPLE14.SAS</u> below, I have included the FORMAT statement (to implement the formats) within PROC FREQ procedure.

options nodate nonumber;

EXAMPLE14.SAS

```
Proc format;
      Value Injuryf
                  0= "Assult (0)"
                  1= "Fall (1)"
                  2= "Gun Shot Injury (2)"
                  3= "Others (Fall of heavy object, Machine injuries) (3)"
                  4= "Playing & Sports Related Injuries (4)"
                  5= "RTA (5)";
      Value Envrf
                  0= "Home (0)"
                  1= "Outdoor (1)";
      Value Sexf
                  1= "Male (1)"
                  0= "Female (0)";
      value Prehospf
                  0= "No (0)"
                  1= "Yes (1)";
      value Medicalf
                  0= "Neurosurgery Related (0)"
                  1= "Orthopedics Related (1)"
                  2= "Polytrauma (2)"
                  3= "Surgically Related (3)";
      value Sevf
                  0= "Green (Ambulatory Patients) (0)"
                  1= "Red (Resuscitation Bay) (1)"
                  2= "Yellow (Patients who require observation) (2)";
run;
data example14;
     input @1 mrn 7.0
                  @9 age 2.0
                  @13 sex 1.0
                  @17 inj type 1.0
                  @21 envr 1.0
                  @25 med type 1.0
                  @29 GCS 2.0
                  @33 severity 1.0
                  @37 hosp care 1.0
                  @41 length stay 3.1;
label
     MRN = 'Medical Record Number'
     AGE = 'Age in Months'
      SEX = 'Gender'
      INJ TYPE = 'Injury type'
      ENVR = 'Environment where trauma occurred'
     MED TYPE = 'Medical Type'
      GCS = 'Glasgow Coma Score'
      SEVERITY = 'Severity'
      HOSP CARE = 'Pre-Hospital Care Given?'
      LENGTH STAY = 'Length of stay in hours';
```

datalines;								_	
1748487	26	0 1	0	1	15	2	1	1.5	
1748968	6	0	1	0	0	9	1	1	6
1749228	6	0	1	0	0	15	2	0	6.5
1749449	30	1	1	0	0	14	2	0	3
1749540	24	0	4	1	3	15	2	0	2
1749553	16	0	1	0	0	15	0	0	2
1749631	12	0	3	1	2	15	2	0	1.5
1749644	6	0	3	1	3	15	0	0	0.5
1749696	12	0	1	0	0	10	2	0	3
1749722	16	1	5	1	1	15	2	0	2
1749735	16	0	1	1	0	15	2	0	3
1749774	24	0	3	1	0	15	2	0	3
1749969	12	0	1	0	0	15	2	0	3
1750047	28	0	1	1	3	15	2	1	1
1750073	28	0	5	1	3	15	2	0	0.75
1750229	26	0	1	1	0	13	1	1	5
1750294	6	0	1	0	0	15	2	0	3
1750398	16	0	1	0	2	15	2	0	3
1750424	8	1	1	0	0	15	2	0	2
1750424	10	1	3	1	3	15	2	0	2
1750457	18	1	1	0	0	15	2	0	6.5
1750632	16	1	1			15	2		
1750918	6	0	3	0 1	0		2	0	6.5
					0	15		0	2
1751178	26	0	1	0	0	12	1	0	2
1751347	6	1	3	1	3	15	2	0	2
1751412	20	0	5	1	2	3	1	0	0.5
1751529	8	0	5	1	2	3	1	0	0.5
1751672	16	0	1	1	0	15	2	0	3
1751971	8	1	4	1	0	15	2	0	5
1752114	30	0	4	1	1	15	2	0	0.5
1752257	12	0	5	1	0	15	2	0	2.5
1752348	30	0	2	1	0	15	2	0	4
1752504	22	0	1	0	0	15	2	0	4
1752517	4	1	1	0	0	15	2	0	6.5
1752920	28	0	3	0	0	12	2	0	3
1752972	18	0	1	0	2	15	2	0	3
1753102	8	0	5	1	1	15	2	0	1.5
1753128	18	0	3	1	3	15	1	0	3
1753219	8	1	1	1	1	15	2	0	1
1753284	26	0	1	0	0	15	2	1	2
1753336	16	0	1	0	1	15	2	0	2
1753349	16	1	1	0	1	15	2	0	3
1753414	8	1	5	1	0	15	2	1	2
1753440	26	0	1	0	0	9	1	1	6
1753466	24	0	1	0	0	15	2	1	3
1753609	26	0	1	0	0	5	1	0	3
1753674	22	0	1	0	0	15	2	0	3
1753739	22	0	5	1	0	9	1	0	3
1753856	14	0	1	0	1	15	2	1	2
1754168	20	0	1	1	1	15	2	0	8
1754402	24	0	1	0	0	15	2	0	3
1754467	28	1	1	0	1	15	2	0	8
1754493	10	0	5	1	3	15	2	0	2
1754636	26	0	0	1	3	15	2	0	2
1754714	12	1	1	0	2	15	1	1	1.5
1754883	10	0	1	0	0	3	1	0	0.5

1754974	12	0	5	1	0	15	2	0	4
1755052	20	0	5	1	0	3	1	0	0.5
1755091	12	0	1	0	1	15	2	1	2
1755182	22	0	1	0	0	3	1	1	5
1755234	8	0	1	0	0	10	2	1	6
1755247	28	0	1	0	0	15	1	1	4
1755273	8	0	1	0	2	15	2	0	6
1755416	22	0	1	0	1	15	2	0	8
1755494	4	0	1	1	0	15	0	0	6
1755507	24	0	5	1	1	15	2	1	2
1755546	30	0	5	1	2	15	1	1	1.5
1755676	8	1	1	0	3	15	2	1	1
1755715	10	0	5		3	15	2	1	1
				1					
1755806	24	0	5	1	2	15	1	0	3
1755832	24	0	1	0	1	15	2	1	2
1755845	16	0	1	0	3	15	1	0	3
1756001	10	0	5	1	2	15	1	1	1.5
1756014	8	0	1	0	0	15	2	0	3
1756157	24	0	5	1	0	10	2	1	6
1756300	24	0	1	0	0	15	2	0	2
1756339	22	0	1	0	0	15	2	1	6.5
1760603	20	0	1	0	0	15	2	0	6.5
1763827	8	0	1	0	0	15	2	0	6.5
1765309	12	1	5	1	1	15	2		
								0	6.5
1765478	4	0	1	0	3	15	2	0	1.5
1765504	24	1	1	0	1	15	2	1	1.5
1765517	12	1	1	0	1	15	0	0	0.5
1765712	12	1	1	0	0	15	2	0	6.5
1765920	10	1	4	1	3	15	2	0	1.5
1766076	28	0	5	1	0	5	1	0	12.5
1766102	20	0	4	0	1	15	2	1	0.5
1766583	22	1	5	1	3	15	2	0	1.5
1766739	12	0	1	0	0	15	2	0	1.5
1766921	30	0	5	1	1	15	2	0	1.5
1767116	14	0	1	0	0	15	2	0	6.5
									1
1767129	18	1	1	0	0	15	2	0	
1767246	28	0	1	1	3	15	2	0	1.5
1767415	14	1	5	1	1	15	2	0	6.5
1767519	6	0	1	0	0	15	2	0	1.5
1767623	22	0	0	1	3	15	2	0	1
1767688	10	0	1	0	0	15	2	0	6.5
1767727	26	1	1	0	1	15	2	1	0.5
1767779	26	1	5	1	1	15	2	1	0.5
1767857	14	1	1	0	0	15	2	0	6.5
1767883	10	1	1	0	1	15	0	0	0.5
1767896	16	0	1	0	0	15	2	0	2
1767935	24	1	1	0	0	15	2	0	0.5
	2	1	1				2		2
1767948				0	1	15		0	
1767987	4	0	1	0	0	15	2	0	6.5
1768000	4	0	3	0	3	15	0	1	0.5
1768169	6	1	0	1	3	15	2	0	11.5
1768273	20	1	5	1	2	15	2	0	6.5
1768390	22	0	5	1	1	15	2	0	1.5
1768481	20	0	5	0	2	15	2	0	2.5
1768780	24	0	4	0	1	15	2	0	3
1768910	28	0	0	1	3	15	2	0	1.5
1768975	24	0	1	0	1	15	2	0	2.5
1100913	24	U	Т	U	_	10	2	U	2.5

1769105	6	1	1	0	1	15	2	0	4
1769300	12	1	1	1	0	15	2	0	5
1769378	6	1	1	0	1	15	2	0	6
1769482	4	0	5	1	3	15	2	0	5.5
1769612	4	1	0	0	3	15	0	0	0.5
1769716	10	0	1	0	3	15	2	1	1
1769950	12	1	1	0	0	15	2	1	3
1770041	4	1	1	0	3	15	2	1	3.5
1770106			5	1	1	15	2	0	
	20	0							4
1770301	12	0	4	1	1	15	2	1	4
1770834	6	1	5	1	0	15	2	1	12
1770847	24	0	4	1	1	15	2	0	2
1770860	10	1	1	1	1	15	2	0	1
1770951	6	0	1	1	1	15	2		
								0	8
1770977	4	1	1	0	1	15	2	1	4
1771120	18	0	4	0	1	15	2	1	4
1771185	10	0	1	0	2	15	2	0	6
1771380	14	0	1	0	0	15	2	0	6.5
1771653	28	0	1	0	0	15	2	1	6.5
1771666	20	0	1	0	2	15	2	1	8
1771822	6	1	1	0	0	15	2	0	6.5
1771835	8	0	1	0	2	15	2	1	8
1771874	16	0	5	1	1	15	2	1	2
1771939	8	0	5	1	1	15	2	0	2
1772017	14	0	4	1	1	15	2	0	3
1772043	24	0	1	0	1	15	2	0	3
1772121	24	0	1	0	1	15	2	0	4
1772238	6	0	1	0	1	15	2	0	4
1772290	18	0	1	0	2	15	2	0	8
1772381	12	1	1	0	0	15	2	0	6.5
1772394	22	0	1	0	0	15	2	0	6.5
1772615	16	1	1	1	1	15	2	0	8
1772745	12	1	1	0	0	15	2	0	3
1772823	4	1	1	0	0	15	2	0	6.5
1773005	8	1	3	1	2	5	1	0	8
1773031	2	1	1	0	0	15	2	0	3
1773096	22	0	1	0	0	15	2	0	6.5
1773109	26	0	1	0	0	15	1	1	4
1773616		1	5	1	0		2	0	
	26	Τ		1	U	15			6.5
1773629	18	1	1	0	0	15	2	0	6.5
1773642	16	0	1	0	0	5	1	1	3
									9
1773720	6	0	5	1	1	15	2	0	8
1773993	28	0	1	1	3	15	2	0	1.5
1774201	26	0	3	0	2	15	2	0	3
1774214	24	0	1	0	0	15	2	1	6.5
1774318	14	0	1	0	1	15	2	0	8
1774357	6	0	1	0	0	15	2	1	6
1774383	12	1	1	1	2	15	2	0	8
1774448	14	0	5	1	1	15	2	0	2
1774487	20	0	5	1	0	5	1	0	4
1774500	4	0	1	0	0	5	1	0	3
									0
1774513	28	0	1	1	1	15	2	1	2
1774526	14	1	1	0	1	15	2	0	3
1774617	6	0	1	0	1	9	1	1	3
1774630	8	0	1	0	0	5	1	0	3
1774695	2	0	5	1	0	15	2	0	3.5
1774851	10	0	1	0	0	3	1	0	0.5
TILAODI	10	U	1	U	U	5	1	U	0.5

6.5

```
10
               0
                    1
                         0
                               2
                                    15
                                         2
                                              0
1774955
                                                   8
                    1
                                    15
                                         2
          10
               0
                         0
                               0
                                              0
                                                   3
1774968
        2 2
                    1
                         0
                               0
                                    15
                                              0
                                                   1.5
1775345
                   1
1775371
                         0
                              1
                                   15
                                             1
                                                   3
                                                  2
                   1
                        0
                              1
                                   15
                                         2
                                             1
1775514
                   1
                        0
                                        1
                                             1
1775644
                                   15
                                                  1.5
                                         2
                                             0
1775657
                   1
                        0
                              0
                                  15
                                                  6.5
                   1
1
0
0
                        1
                                        2
                   5
                              2
                                             0
1775800
                                   14
                                        2
1775813
                               0
                                   15
                                              1
                             0
1775826
                                         2
                                   10
                                              1
                   1
                                         1
                                              1
                             0
                                                  1.5
1775982
                        1
                                   3
                   5
                        1
                                             1
1776125
         4
              1
                             0
                                   10
                                        2
                   5
1776177
        16 0
                        1
                             0
                                   10
                                        2
                                             0
1776203
         10 0
                   1
                        0
                             0
                                   10
                                        2
                                             0
                                                  2
        10 0 1
18 1 5
24 0 3
24 0 1
16 0 1
16 0 3
2 1 1
26 0 1
24 0 1
6 0 1
8 1
                        1
                             0
                                   15
                                        2
                                             0
1776268
                   5 1 0
3 1 0
3 1 2
1 1 0 0
1 0 0
3 1 1
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1776307
                                        2
                                              1
                                   15
                                  15 2
15 2
                                             0
1776385
1776593
                                             0
                                  15 2
                                             0
                                                   1.5
1776957
1776970
                                   15
                                        2
                                             1
1777282
                                   15
                                        2
                                             0
                                                  2
                                        2
                                   15
                                             0
                                                  6.5
1777334
                                       2 2
                                   15
                                              0
1777425
                                                   6.5
1777464
                                  15
                                              0
                                                  6.5
                       1
1777490
         8
              1
                                   15
                                        2
                                             0
                                                  6.5
        20 1
                   5
                        1
                             1
                                   15
                                             0
1777503
                                        1
                                                  1
         8
              1
                   1
                        0
                              1
                                   15
                                        0
                                              0
                                                   0.5
1782950
1783015
         14
              0
                    1
                         0
                               0
                                    15
                                         2
                                              0
                                                   0.5
1783028
          8
               0
                         0
                                    15
                                         2
                                                   1.5
proc contents data=example14 position;
     title 'Output from the Proc Contents procedure';
run;
proc print data=example14;
     title 'Tabulation of the data from EXAMPL14 data set';
run;
proc freq data=example14;
     title 'Frequency tabulation';
     tables sex inj type envr med type severity hosp care;
     format inj type injuryf. Envr envrf. Sex sexf. Med type medicalf.
         severity sevf. Hosp care prehospf.;
run;
proc means data = example14 n mean stddev stderr maxdec=2;
     title 'Proc Means Output';
     var age gcs length stay;
run;
```

Note the use of three SAS procedures PRINT, FREQ and CONTENTS;

Use the **order** = **freq** option if you want to print values in descending order of frequency. As an example, **proc freq data=example14 order=freq**;

Another example of PROC FORMAT implementation in a SAS program

The following is extracted from the book, "Applied Statistics and the SAS Programming Language" by Ron P. Cody and J.K. Smith. Please refer to the textbook for more details.

In this *sample questionnaire*, the data for the following variables will be collected:

ID

AGE (in years)

GENDER (1 = Male, 2 = Female)

RACE (1 = White, 2 = African American, 3 = Hispanic, 4 = Other)

MARITAL STATUS (1 = Single, 2 = Married, 3 = Widowed, 4 = Divorced)

EDUCATION (1 = HS or less, 2 = Two-year college, 3 = Four-year college 4 = Post graduate degree)

Q6 (The President has been doing a good job)

Q7 (The budget should be increased)

Q8 (There should be more federal aid to big cities)

Q6 - Q8 have the following codes:

1 = Strongly disagree, 2 = Disagree, 3 = Neutral

4 = Agree, 5 = Strongly agree

<u>Variable Names</u>	<u>Variable Type</u>	<u>Column#</u>	<u>Label</u>
ID	numeric	1-3	Subject ID
AGE	numeric	5-7	Subjects age in years
GENDER	character	9	Subjects gender
RACE	character	11	Subjects race
MARITAL	character	13	Subjects marital status
EDUC	character	15	Subjects education level
Q6	numeric	17	President is doing a good job
Q7	numeric	19	Budget should be increased
Q8	numeric	21	Give more federal aid to big cities

EXAMPLE14A.SAS

```
options nodate nonumber;
proc format;
      value $genderf
                       '1'= 'Male (1)'
                        '2' = 'Female (2)';
                        '1' = 'White (1)'
      value $racef
                        '2' = 'African American (2)'
                        '3' = 'Hispanics (3)'
                        '4' = 'Other (4)';
                        '1' = 'Single (1)'
      value $marital
                        '2' = 'Married (2)'
                        '3' = 'Widowed (3)'
                        '4' = 'Divorced (4)';
                        '1' = 'High School or Less (1)'
      value $educf
                        '2' = 'Two year college (2)'
                        '3' = 'Four year college (3)'
                        '4' = 'Post graduate degree (4)';
     value q6 q8f
                        1 = 'Strongly disagree (1)'
                        2 = 'Disagree (2)'
                        3 = 'Neutral (3)'
                        4 = 'Agree (4)'
                        5 = 'Strongly agree (5)';
data example14a;
      input @1 id 3.0
                  @5 age 3.0
                  09 gender $1.
                  @11 race $1.
                  @13 marital $1.
                  @15 educ $1.
                  @17 q6 1.0
                  @19 q7 1.0
                  @21 q8 1.0;
      label
            ID = 'Subjects ID'
            AGE = 'Subjects age in years'
            GENDER = 'Subjects gender'
            RACE = 'Subjects race'
            MARITAL = 'Subjects marital status'
            EDUC = 'Subjects education level'
            Q6 = 'President is doing a good job'
            Q7 = 'Arms budget should be increased'
            Q8 = 'Give more federal aid to big cities';
      format
            gender $genderf. race $racef. marital $marital. educ $educf.
            q6 q7 q8 q6 q8f.;
datalines;
001 009 1 1 1 1 2 3 2
002 045 2 2 2 2 4 2 2
003 063 2 3 4 3 4 4 5
```

Using Numerical Functions:

Some of the numerical functions that help to do mathematical calculations are ROUND, LOG, LOG10, INT, MIN, MAX, MEAN, SUM, N, CEIL, FLOOR, RANNOR, RANUNI, LAG, DIF and SQRT.

Brief Description of the Numerical Functions

- ✓ **ROUND** rounds the variable value to the nearest rounding unit.
 - <u>For example</u>, $\frac{\text{ROUND}(12.345, 0.01)}{\text{ROUND}(12.345, 0.01)} = 12.35$ (rounds the value of 12.345 to the nearest hundredth).
- ✓ LOG(var) gives the <u>natural logarithm</u> of *var*.
- ✓ **LOG10**(var) gives the <u>common logarithm</u> of var.
- ✓ **INT**(var) gives the INTEGER part of var. For example, INT(-3.4) = -3
- ✓ **MOD**(*var1*, *var2*) gives the REMAINDER when the first of two arguments is divided by the second.

For example, MOD(28, 5) = 3

✓ CEIL(var) rounds var to the next largest integer.

For example, CEIL(8.4) = 9, CEIL(-3.2) = -3

✓ **FLOOR**(*var*) rounds *var* to the next smallest integer.

For example, FLOOR(8.4) = 8, FLOOR(-3.2) = -4

✓ **RANUNI**(*seed*) generates a random number uniformly distributed between 0 and 1.

SEED is optional. If entered, it must be **0** or **any number of your choice**.

SEED = **0** (or negative) specifies that the function RANUNI use the time clock to generate a random seed to initiate the random number sequence. It generates a <u>different random series</u> each time it is run <u>unless</u> the program is run exactly at the same time every day.

If you want to generate the same series of random numbers every time you run the program, then use any other number as the seed.

✓ **RANNOR**(*seed*) generates a normally distributed random number. **SEED** is optional. If entered, it must be 0 or any number of your choice.

Follow the same rule as in the case of RANUNI regarding the seed value.

The following is a SAS program that uses a few of the above numerical functions on the variables *X*, *Y*, and *Z*. **EXAMPLE 15.SAS**

```
options linesize=64 pagesize=55 nodate nonumber;
     LINESIZE(LS) sets the number of characters that will print across the
     width of the page. It can be any number from 64 through 256.
     PAGESIZE(PS) sets the number of lines that will print down the length
     of the page. It can be any number from 20 through 200.
     LS=64 and PS=55 works well for an 8.5 by 11 inch sheet of paper
     NOCENTER option aligns the output at the left;
data example15;
input x y z;
                        * x, y, and z are the three variables;
round x = round(x, .1);
                         * x rounded to the nearest tenth;
ln x = log(x);
                         * Natural log of x;
b10 x = log10(x);
                         * Log of x to base 10;
                        * The integer part of x;
intp x = int(x);
maximum = max(of x y z); * Maximum value of x, y, & z;
average = mean(of x y z);
                        * Average of NONMISSING values of x, y, & z;
                        * Sum of NONMISSING values of x, y, and z;
sum = sum(of x y z);
nonmiss = n(of x y z);
                        * Number of nonmissing values of x, y, and z;
****************
* The following 2 functions are useful for computing LAGS and DIFFERENCES of
 series.;
          lagvalueofz = lag(z);
         difvalueofz = dif(z);
**********************
datalines;
4 5 6
4.5 3.4 2.8
1 2 3
2.33 5 5
2.5 2.6 2.7
proc print data=example15;
    title 'Tabulation of data from EXAMPLE15 data set';
run;
```

SET Statement

We talked about this SET statement once before in my prior lectures

Note the use of **SET** statement in the next program.

Suppose we have an existing SAS data set. We want to use this existing SAS data set as a basis to create a new SAS data set. This can be accomplished by using the **SET** statement.

The SET statement is used in a DATA step to refer to another SAS data set in the program.

The observations in the original data set are evaluated by the new data set created using the **SET** statement (*Note* that the original data set still exists and can be used by SAS).

Conversion of Character DATA to Numeric data

```
**********************************
* The following program converts character data to numeric data;
******************
                   AMPLE16.SAS
data one;
    input age $ height $ weight $;
datalines:
24 69 161
23 68 150
39 69 189
55 70 180
27 . 155
proc means data=one;
var age height weight;
         * These 3 statements do not produce the MEANS. WHY?;
************************************
data two;
    set one;
nage=age*1;
nheight=height*1;
nweight=weight*1;
run;
proc print data=two;
    title 'Tabulation of data from NUMERIC data set';
run;
*************************
proc means data= two;
    var nage nheight nweight;
           * These 3 statements DO produce the MEANS. WHY?;
*********************
    This part of the syntax will be discussed after introducing the
    concept of ARRAYs;
* Use of ARRAY statements to do the same thing as above;
data three;
    set one;
    array ex16a{3} age -- weight;
    array ex16b{3} nage nheight nweight;
         do i = 1 to 3;
              ex16b{i} = 1*ex16a{i};
         end;
    drop age height weight i;
proc means data=three;
*********************
```

Conversion of Character DATE values to Numeric data

EXAMPLE16A.SAS

```
data one;
     input date $10.;
datalines;
12/10/2014
10/12/2006
02/03/2015
01/07/2007
proc sort data=one;
by date;
run;
Proc print data=one;
* The dates are entered as CHARACTER values. If the data set is sorted
By the variable, DATE, it will not be sorted.
* Convert this character date values into numeric date values as follows;
data two;
     set one;
newdate = input (date, mmddyy10.);
proc sort data=two;
     by newdate;
```

proc print data = two;
 var date;

run;