Design and Analysis of Algorithms Part II: Sorting and Searching

Lecture 5: Heapsort and Sorting in Linear Time

Yongxin Tong (童咏昕)

School of CSE, Beihang University yxtong@buaa.edu.cn

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

Introduction to Part II

- In Part II, we will illustrate sorting and searching problems using several examples:
 - Quicksort (快速排序)
 - Selection Problem (选择问题)
 - Heapsort and Priority Queues (堆排序与优先队列)
 - Lower Bound for Sorting (基于比较排序的下界)
 - Sorting in Linear Time (线性时间排序)

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

3 jobs have been submitted to a printer in the order A, B, C. Consider the printing pool at this moment.

Sizes: Job A — 100 pages

Job B — 10 pages

Job C − 1 page

3 jobs have been submitted to a printer in the order A, B, C. Consider the printing pool at this moment.

Sizes: Job A — 100 pages

Job B — 10 pages

Job C — 1 page

Average finish time with FIFO service:

$$(100 + 110 + 111) / 3 = 107$$
 time units

3 jobs have been submitted to a printer in the order A, B, C. Consider the printing pool at this moment.

Sizes: Job A — 100 pages

Job B — 10 pages

Job C − 1 page

Average finish time with FIFO service:

$$(100 + 110 + 111) / 3 = 107 time units$$

Average finish time for shortest-job-first service:

$$(1+11+111)/3 = 41 time units$$

- The elements in the queue are printing jobs, each with the associated number of pages that serves as its priority
- Processing the shortest job first corresponds to extracting the smallest element from the queue
- Insert new printing jobs as they arrive

- The elements in the queue are printing jobs, each with the associated number of pages that serves as its priority
- Processing the shortest job first corresponds to extracting the smallest element from the queue
- Insert new printing jobs as they arrive

A queue capable of supporting two operations: Insert and Extract-Min?

Priority Queue

Priority queue is an abstract data structure that supports two operations

- Insert: inserts the new element into the queue
- Extract-Min: removes and returns the smallest element from the queue

- Unsorted list + a pointer to the smallest element
 - Insert in

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in O(n) time
 - Extract-Min in

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in O(n) time
 - Extract-Min in O(1) time
- Sorted doubly linked list
 - Insert in

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in O(n) time
 - Extract-Min in O(1) time
- Sorted doubly linked list
 - Insert in O(n) time
 - Extract-Min

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in O(n) time
 - Extract-Min in O(1) time
- Sorted doubly linked list
 - Insert in O(n) time
 - Extract-Min in O(1) time

- Unsorted list + a pointer to the smallest element
 - Insert in O(1) time
 - Extract-Min in O(n) time, since it requires a linear scan to find the new minimum
- Sorted array
 - Insert in O(n) time
 - Extract-Min in O(1) time
- Sorted doubly linked list
 - Insert in O(n) time
 - Extract-Min in O(1) time

Question

Is there any data structure that supports both these priority queue operations in $O(\log n)$ time?

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

(Binary) Heap

Heaps are "almost complete binary trees"

- All levels are full except possibly the lowest level.
- If the lowest level is not full, then nodes must be packed to the left.

Heap-order Property

Heap-order property (Min-heap):

The value of a node is at least the value of its parent.

A[Parent(i)] ≤ A[i]

Heap Properties

- If the heap-order property is maintained, heaps support the following operations efficiently (assume there are n elements in the heap)
 - Insert in O(log n) time
 - Extract-Min in O(log n) time

Heap Properties

- If the heap-order property is maintained, heaps support the following operations efficiently (assume there are n elements in the heap)
 - Insert in O(log n) time
 - Extract-Min in O(log n) time
- Structure properties
 - A heap of height h has between 2^h to $2^{h+1}-1$ nodes. Thus, an n-element heap has height $\Theta(\log n)$.

Heap Properties

- If the heap-order property is maintained, heaps support the following operations efficiently (assume there are n elements in the heap)
 - Insert in O(log n) time
 - Extract-Min in O(log n) time

Structure properties

- A heap of height h has between 2^h to $2^{h+1}-1$ nodes. Thus, an n-element heap has height $\Theta(\log n)$.
- The structure is so regular, it can be represented in an array and no links are necessary!

Array Implementation of Heap

- The root is in array position 1.
- For any element in array position i,
 - The left child is in position 2i.
 - The right child is in position 2i+1.
 - The parent is in position [i/2].
- We will draw the heaps as trees, with the understanding that an actual implementation will use simple arrays.

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

 Correctness: after each swap, the min-heap property is satisfied for the subtree rooted at the new element

- Add the new element to the next available position at the lowest level
- Restore the min-heap property if violated
 - General strategy is percolate up (or bubble up): if the parent of the element is larger than the element, then interchange the parent with child.

- Correctness: after each swap, the min-heap property is satisfied for the subtree rooted at the new element
- Time complexity = O(height) = O(log n)

Extract-Min: First Attempt

Extract-Min: First Attempt

Min-heap property preserved, but completeness not preserved!

Extract-Min

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

Extract-Min

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

 Correctness: after each swap, the min-heap property is satisfied for all nodes except the node containing the element (with respect to its children)

- Copy the last element to the root (i.e., overwrite the minimum element stored there)
- Restore the min-heap property by percolate down (or bubble down): if the element is larger than either of its children, then interchange it with the smaller of its children.

- Correctness: after each swap, the min-heap property is satisfied for all nodes except the node containing the element (with respect to its children)
- Time complexity = O(height) = O(log n)

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

- Build a binary heap of n elements
 - the minimum element is at the top of the heap

- Build a binary heap of n elements
 - the minimum element is at the top of the heap
 - insert n elements one by one
 → O(n log n)
 (there is a more efficient way, check CLRS 6.3 if interested)

- Build a binary heap of n elements
 - the minimum element is at the top of the heap
 - insert n elements one by one
 → O(n log n)
 (there is a more efficient way, check CLRS 6.3 if interested)
- Perform n Extract-Min operations
 - the elements are extracted in sorted order

- Build a binary heap of n elements
 - the minimum element is at the top of the heap
 - insert n elements one by one
 → O(n log n)
 (there is a more efficient way, check CLRS 6.3 if interested)
- Perform n Extract-Min operations
 - the elements are extracted in sorted order
 - each Extract-Min operation takes O(log n) time
 → O(n log n)

- Build a binary heap of n elements
 - the minimum element is at the top of the heap
 - insert n elements one by one
 → O(n log n)
 (there is a more efficient way, check CLRS 6.3 if interested)
- Perform n Extract-Min operations
 - the elements are extracted in sorted order
 - each Extract-Min operation takes O(log n) time
 → O(n log n)
- Total time complexity: O(n log n)

• Build a binary heap of n elements

4

Perform n Extract-Min operations

Perform n Extract-Min operations

Perform n Extract-Min operations

16

10

Perform n Extract-Min operations

16

14

Perform n Extract-Min operations

16

Summary

• Priority queue is an abstract data structure that supports two operations: Insert and Extract-Min.

Summary

 Priority queue is an abstract data structure that supports two operations: Insert and Extract-Min.

 If priority queues are implemented using heaps, then these two operations are supported in O(log n) time.

Summary

 Priority queue is an abstract data structure that supports two operations: Insert and Extract-Min.

 If priority queues are implemented using heaps, then these two operations are supported in O(log n) time.

 Heapsort takes O(n log n) time, which is as efficient as merge sort and quicksort.

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

Review of Classical Sorting Algorithms

John von Neumann Merge Sort Algorithm was invented in 1945

Quicksort Algorithm was invented in 1959

J. W. J. Williams
Heapsort Algorithm
was invented in 1964

Which algorithm is the best in practice?

- All sorting algorithms seen so far are based on comparing elements
 - E.g., insertion sort, merge sort, and heapsort

- All sorting algorithms seen so far are based on comparing elements
 - E.g., insertion sort, merge sort, and heapsort
- Insertion sort has worst-case running time $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$

- All sorting algorithms seen so far are based on comparing elements
 - E.g., insertion sort, merge sort, and heapsort
- Insertion sort has worst-case running time $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$

Question

Can we do better?

- All sorting algorithms seen so far are based on comparing elements
 - E.g., insertion sort, merge sort, and heapsort
- Insertion sort has worst-case running time $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$

Question

Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a worst-case running time $\Omega(n \log n)$.

Each internal node is labeled a_i: a_j for {1,2,...,n}

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if $a_i \le a_i$

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if a_i ≤ a_i
 - The right subtree shows subsequent comparisons if $a_i > a_j$

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if a_i ≤ a_i
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if $a_i \le a_i$
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if a_i ≤ a_i
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

- Each internal node is labeled a_i: a_j for {1,2,...,n}
 - The left subtree shows subsequent comparisons if $a_i \le a_i$
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

- Each internal node is labeled a_i: a_i for {1,2,...,n}
 - The left subtree shows subsequent comparisons if $a_i \le a_i$
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

Decision-tree Model

A decision tree can model the execution of any comparison-based sorting algorithm

Decision-tree Model

A decision tree can model the execution of any comparison-based sorting algorithm

One tree for each input size n

Decision-tree Model

A decision tree can model the execution of any comparison-based sorting algorithm

One tree for each input size n

Worst-case running time = height of tree

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof.

 A decision tree to sort n elements must have at least n! leaves, since there are n! possible orderings.

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof.

- A decision tree to sort n elements must have at least n! leaves, since there are n! possible orderings.
- A binary tree of height h has at most 2^h leaves

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof.

- A decision tree to sort n elements must have at least n! leaves, since there are n! possible orderings.
- A binary tree of height h has at most 2^h leaves
- Thus, $n! \le 2^h$ $\Rightarrow h \ge \log n! = \Omega(n \log n)$ (proved in previous lecture)

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof.

- A decision tree to sort n elements must have at least n! leaves, since there are n! possible orderings.
- A binary tree of height h has at most 2^h leaves
- Thus, $n! \le 2^h$ $\Rightarrow h \ge \log n! = \Omega(n \log n)$ (proved in previous lecture)

Corollary

Heapsort and merge sort are asymptotically optimal comparison-based sorting algorithms.

Can we do better?

Are there sorting algorithms which are not based on comparisons? Do they beat the $\Omega(n \log n)$ lower bound?

Can we do better?

Are there sorting algorithms which are not based on comparisons? Do they beat the $\Omega(n \log n)$ lower bound?

Counting sort (计数排序)

Radix sort (基数排序)

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

Main Ideas

• Counting sort determines, for each input element *x*, the number of elements less than *x*.

Main Ideas

Counting sort determines, for each input element x,
 the number of elements less than x.

 It uses this information to place element x directly into its position in the output array.

Main Ideas

 Counting sort determines, for each input element x, the number of elements less than x.

- It uses this information to place element x directly into its position in the output array.
 - For example, if 17 elements are less than x, then x belongs in output position 18.

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0;
end
for j \leftarrow 1 to n do
|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
end
for i \leftarrow 2 to k do
|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
end
for j \leftarrow n \ to \ 1 \ do
    B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1;
end
return B;
```

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```

Example: Counting Sort

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0;
end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```

Example: Counting Sort

for
$$i \leftarrow 1$$
 to k do $|C[i] \leftarrow 0$; end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```

Example: Counting Sort

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

Example: Counting Sort

$$egin{array}{c|ccccc} 1 & 2 & 3 & 4 \ \hline C & egin{array}{c|ccccc} 0 & egin{array}{c|cccc} 1 & 0 & 1 \ \hline \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

$$egin{array}{c|cccc} &1&2&3&4\ \hline C&1&1&0&2 \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

$$egin{array}{c|cccc} 1 & 2 & 3 & 4 \ \hline C & 1 & 2 & 0 & 2 \ \hline \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 \mathbf{end}
for i \leftarrow 2 to k do
|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|
end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```

$$C egin{bmatrix} 1 & 2 & 3 & 4 \ 1 & 2 & 0 & 2 \end{bmatrix}$$

$$C' \ \ 1 \ \ 3 \ \ 0 \ \ 2$$

for
$$i \leftarrow 2$$
 to k do
$$| C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$$
end

$$C egin{bmatrix} 1 & 2 & 3 & 4 \ 1 & 2 & 0 & 2 \end{bmatrix}$$

$$C' \ \ 1 \ \ 3 \ \ \ 2$$

for
$$i \leftarrow 2$$
 to k do
$$| C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$$
end

$$C egin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 1 & 2 & 0 & 2 \\ \hline \end{array}$$

$$C' \ \ 1 \ \ 3 \ \ 3 \ \ 5$$

for
$$i \leftarrow 2$$
 to k do $|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$ end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
  |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|
 end
for j \leftarrow n \ to \ 1 \ do
   B[C[A[j]]] \leftarrow A[j];
C[A[j]] \leftarrow C[A[j]] - 1;
end
 return B;
```


Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
return B;
```

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}

Output: B[1...n], sorted

let C[1...k] be a new array;

for i \leftarrow 1 to k do

C[i] \leftarrow 0; //O(k)

end

for j \leftarrow 1 to n do

C[A[j]] \leftarrow C[A[j]] + 1; //O(n)

end
```

return B;

return B;

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
```

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
for j \leftarrow n \ to \ 1 \ do
    B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1; //O(n)
end
return B;
```

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
for j \leftarrow n \ to \ 1 \ do
   B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1; //O(n)
end
return B;
```

Total: O(n+k)

If k = O(n), then counting sort takes O(n) time.

• But didn't we prove that sorting must take $\Omega(n \log n)$ time?

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is not a comparison-based sorting algorithm.

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is not a comparison-based sorting algorithm.
- In fact, it makes no comparison at all!

Stable Sorting

Counting sort is a stable sort

it preserves the input order among equal elements.

Stable Sorting

Counting sort is a stable sort

it preserves the input order among equal elements.

Exercise

What other sorts have this property?

Outline

- Introduction to Part II
- Heapsort Problem
 - Priority Queues
 - (Binary) Heap
 - Heapsort
- Lower Bound for Sorting
- Sorting in Linear Time
 - Counting Sort
 - Radix Sort

```
2 3 2 9
```

Sort on least significant digit first using stable sort

2 3 2 9

5 4 5 7

3 6 5 7

5 8 3 9

3 4 3 6

2 7 2 0

5 3 5 5


```
2 7 2 0
5 3 5 5
3 4 3 6
5 4 5 7
3 6 5 7
2 3 2 9
5 8 3 9
```



```
2 7 2 0
2 3 2 9
3 4 3 6
5 8 3 9
5 3 5 5
5 4 5 7
3 6 5 7
```



```
2 3 2 9
5 3 5 5
3 4 3 6
5 4 5 7
3 6 5 7
2 7 2 0
5 8 3 9
```



```
2 3 2 9
```

Radix Sort: Correctness

Induction on digit position

- Assume that the numbers are sorted by their loworder i-1 digits
- Sort on digit i

2	7	2	0	2	3	2	9
2	3	2	9	5	3	5	5
3	4	3	6	3	4	3	6
5	8	3	9	 5	4	5	7
5	3	5	5	3	6	5	7
5	4	5	7	2	7	2	0
3	6	5	7	5	8	3	9

Radix Sort: Correctness

Induction on digit position

- Assume that the numbers are sorted by their loworder i-1 digits
- Sort on digit i
 - Two numbers that differ on digit i are correctly sorted by their low-order i digits

Radix Sort: Correctness

Induction on digit position

- Assume that the numbers are sorted by their loworder i-1 digits
- Sort on digit i
 - Two numbers that differ on digit i are correctly sorted by their low-order i digits
 - Two numbers equal on digit I are put in the same order as the input → correctly sorted by their low-order i digits

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

b log n bits for each number

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to n^b – 1, where b is a constant

- b log n bits for each number
- each number can be viewed as having O(b) digits of log n bits each

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to n^b – 1, where b is a constant

- b log n bits for each number
- each number can be viewed as having O(b) digits of log n bits each
- running time is O(d(n + k)) = O(b(n + 2^{log n})) = O(bn)

Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to n^b – 1, where b is a constant

- b log n bits for each number
- each number can be viewed as having O(b) digits of log n bits each
- running time is $O(d(n + k)) = O(b(n + 2^{\log n})) = O(bn)$
- since b is a constant, the running time is O(n)

dank u Tack ju faleminderit Asante ipi Tak mulţumesc

Salamat! Gracias
Terima kasih Aliquam

Merci Dankie Obrigado
köszönöm Grazie

Aliquam Go raibh maith agat
děkuji Thank you

gam