Algoritmo A*, suas variações e possível aplicações em redes de sensores sem fio

Ulisses Rodrigues Afonseca ¹

Departamento de Computação Universidade de Brasília

11 de maio de 2012

Conteúdo

- Heurística
- 2 Algoritmo A* e suas variações
 - Algoritmo A*
 - Exemplo de aplicação do Algoritmo A*
 - Deficiências do Algoritmo A*
 - Variações do algoritmo A*
- Redes de Sensores Sem Fio
- 4 RSSF e variações do A*

Conteúdo

- Heurística
- Algoritmo A* e suas variações
 - Algoritmo A*
 - Exemplo de aplicação do Algoritmo A*
 - Deficiências do Algoritmo A*
 - Variações do algoritmo A*

Heurística

Para a solução de problemas de busca em grafos existem duas abordagens: matemática e heurística.

- Abordagem matemática: lida com as propriedades de grafos abstratos e com algoritmos que prescrevem uma análise ordenada de nós de um gráfico, para estabelecer um caminho de custo mínimo.
- Abordagem heurística: usa o conhecimento sobre o domínimo do problema representado no grafo para melhorar o desempenho computacional para resolver um problema específico de busca em grafos.

Heurística

Busca heurística

Uso do conhecimento específico sobre o problema além da definição do próprio problema.

Essencialmente, a heurística é o uso não só da definição do problema como o conhecimento específico sobre o problema a ser resolvido.

Algoritmo A* e suas variações

Conteúdo

- 2 Algoritmo A* e suas variações
 - Algoritmo A*
 - Exemplo de aplicação do Algoritmo A*
 - Deficiências do Algoritmo A*
 - Variações do algoritmo A*

Algoritmo A* e suas variações

Algoritmo A*

Algoritmo A*

A*

Busca heurística que avalia os nós a partir da combinação do custo de chegar ao nó e o custo do nó ao objetivo.

- Apresentado por Hart el all em 1968 no artigo "A formal basis for the heuristic determination of minimum cost paths";
- Pronunciado como 'a-star':
- É uma busca *best-first search*:

Algoritmo A*

Avaliação de custo

$$f(n) = g(n) + h(n)$$

Onde:

- f(n) é o custo estimado da solução mais barata através de n;
- g(n) fornece o custo do caminho do nó inicial ao nó n;
- h(n) é o custo estimado do caminho mais barato de r até o objetivo.

Algoritmo A* e suas variações

Algoritmo A*

Algoritmo A*

Optimalidade:

- \bullet h(n) deve ser uma heurística admissível, i.e. nunca superestima o custo para chegar ao objetivo;
- a estimativa da heurística é sempre menor que o valor real;
- É uma busca best-first search:

Segundo Russel e Norvig, se h(n) for uma heurística admissível e satisfazer algumas condições, a busca A* será completa e ótima.

•00000000 0

Exemplo de aplicação do Algoritmo A*

Exemplo de aplicação do Algoritmo A*

Considere como exemplo, definir o caminho entre duas cidades. O problema pode ser modelado como um grafo, fazendo:

- cada cidade é representada como um **nó**;
- cada estrada entre um par de cidades é uma aresta;
- o peso das arestas determina a distância entre as cidades;

Exemplo de aplicação do Algoritmo A*

Algoritmo A* e suas variações

000

Ulisses Rodrigues Afonseca

Algoritmo A* e suas variações

Exemplo de aplicação do Algoritmo A*

Exemplo de aplicação do Algoritmo A*

Podemos definir como heurística para este problema, a distância em linha reta entre cada cidade até o destino.

Arad	366	Mehadia	241
Bucareste	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Exemplo de aplicação do Algoritmo A*

Ulisses Rodrigues Afonseca

Algoritmo A* e suas variações

Ulisses Rodrigues Afonseca

Exemplo de aplicação do Algoritmo A*

Algoritmo A* e suas variações

Ulisses Rodrigues Afonseca

Exemplo de aplicação do Algoritmo A*

Ulisses Rodrigues Afonseca

000000000

Exemplo de aplicação do Algoritmo A*

Ulisses Rodrigues Afonseca

000000000

Exemplo de aplicação do Algoritmo A*

Ulisses Rodrigues Afonseca

Deficiências do Algoritmo A*

- Os valores das arestas são fixos o valor das arestas não pode aumentar durante a execução do algoritmo;
- O valor dos arestas não pode decrementar com o tempo;
- Não é possível realizar buscas utilizandos valores localizados em alguns casos, não é possível utilizar o algoritmo para tempo real;
- O ambiente deve ser totalmente conhecido;

Variações do algoritmo A*

Variações do Algoritmo A*

Tabela: Variações do Algoritmo A*

Algoritmo	Real-time	Ambiente	Multiplos	h	h
		desconhecido	destinos	variável	decrescente
Adaptative A*	não	não	sim	sim	não
Real-time AA*	sim	não	sim	sim	não
D*	sim	sim	não	não	não
Focused D*	sim	sim	não	sim	?
Path-Adaptive A*	não	sim	não	sim	não
Tree-Adaptive A*	sim	sim	não	sim	?
Lifelong Planning A*	?	sim	não	sim	?
Anytime Dynamic A*	sim	sim	?	?	?

Observações:

- O algoritmo Tree-Adaptive A* é uma modificação do PAA* que une as características dos Algoritmos D* e D* Lite com as características dos algoritmos AA*, GAA* e MAA*.
- Os algoritmos D* e D* Lite reutilizam parte do caminho que não mudou para recalcular o custo para o destino - substituem o arvore em expansão.
- O algoritmo LPA* permite que arestas sejam incluídas ou excluídas durante a computação.
- O algoritmo Anytime Dynamic A* é aplicado a ambientes dinâmicos e complexos para ambientes complexos, ver o algoritmo ARA*. 4日 > 4周 > 4 3 > 4 3 >

Algoritmo A* e suas variações

Motivações para as variações do Algoritmo A*

Ambiente desconhecido:

RSSF e variações do A*

0000

Variações do algoritmo A*

Motivações para as variações do Algoritmo A*

Destino móvel:

RSSF e variações do A*

Variações do algoritmo A*

Motivações para as variações do Algoritmo A*

Múltiplos destinos:

Conteúdo

- 1 Heurística
- 2 Algoritmo A* e suas variações
 - Algoritmo A*
 - Exemplo de aplicação do Algoritmo A*
 - Deficiências do Algoritmo A*
 - Variações do algoritmo A*
- 3 Redes de Sensores Sem Fio
- 4 RSSF e variações do A*

RSSF e o uso das variações do algoritmo A*

Objetivo

É possível utilizar heurísticas baseadas em A* em redes de sensores sem fio?

Metodologia

- Descrever as redes de sensores sem fio;
- Especular as características das RSSF abordadas nas variações do A*;
- Supor formas de aplicação.

Redes de sensores sem fio

Redes de sensores sem fio (RSSF)

Consistem em um conjunto de dispositivos que medem grandezas física e que possuem um transceptor para enviar e receber dados.

Possuem como característica:

- Os nós são limitados em:
 - capacidade de processamento;
 - tamanho da memória;
 - energia;
- Os nós podem atuar como nós sensores e nós roteadores;
- Normalmente constituem uma rede ad hoc.

Exemplos de aplicações:

- Monitoramento ambiental;
- Ambient Assisted Living.

Modelo teórico UDG

Dois nós A e B na rede são vizinhos (e portanto ligados por uma aresta) sse a distância Euclidiana entre suas coordenados na rede é no máximo R, onde R é o raio de transmissão utilizado em todos os nós.

Área: 100×100, Nós: 25, Raio: 25 e 40

Premissas

- Uso do modelo UDG;
- Radio de transmissão é único para todos os nós (modelo UDG), i.e. os nós têm a mesma potência de trasmissão
- Os nós têm inicialmene a mesma quantidade de energia
- Em função do tamanho e custo, normalmente a bateria não é substituível;
- Os nós são implantados de forma aleatória

Conteúdo

- 1 Heurística
- 2 Algoritmo A* e suas variações
 - Algoritmo A*
 - Exemplo de aplicação do Algoritmo A*
 - Deficiências do Algoritmo A*
 - Variações do algoritmo A*
- 3 Redes de Sensores Sem Fio
- 4 RSSF e variações do A*

RSSF e variações do A*

Características importantes da RSSF para a aplicação das variações do A*:

- A RSSF é basicamente um grafo com arestas definidas pelo raio de transmissão;
- Os nós e suas arestas adjacentes podem desaparecer i.e. sensores podem falhar;
- Arestas podem desaparecer i.e. os nós podem ajustar a potência de transmissão;
- Os nós podem ser móveis mudando toda a topologia da rede;
- O ambiente normalmente é desconhecido i.e. os nós não conhecem a topologia completa da rede;

RSSF e variações do A*

Aplicações das variações do algoritmo A* em RSSF:

- Utilizar como algoritmo de roteamento geográfico:
 - g(n) pode ser computado diretamente pelo caminho já percorrido;
 - h(n) pode ser computado por cada nó quando existe informação geográfica;
 - o nó sink deve fazer um broadcast de sua posição;
 - cada nó deve informar para seu vizinho sua distância para o nó sink.

RSSF e variações do A*

Aplicações das variações do algoritmo A* em RSSF:

- Utilizar como algoritmo de roteamento geográfico:
- Sem informação geográfica, a distância pode ser estimada usando uma mensamgem em broadcast disparada pelo sink onde cada nó adiciona a estimativa de distância utilizando informações sobre a potência do sinal recebido;
- h(n) pode incorporar informações sobre a energia remanecente nos nós para aumentar o tempo de vida da rede.