

Attention is All You Need

DeepSync, South Korea

Transformer 구조

Figure 1: The Transformer - model architecture.

1. Multi-Head Attention

 W_Q , W_K , W_V 학습

1. Multi-Head Attention

- · Input vectors: X (Shape: Nx x Dx)
- · Key matrix: Wk (Shape: DxxDk)
- · Value matrix: Wv (Shape: DxxDv)
- · Query matrix: Wa (Shape: Dx x Da)
- · Query vectors: $Q = XW_Q$ (Shape: $N_X \times D_Q$)
- · Key Vectors: $K = XW_K$ (Shape: $N_X \times D_K$)
- · Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)
- · Similarities: E= QKT (Shape: Nx×Nx)

0.05

0.85

0.15

이런 과정을 8번 반복(Multi-head)

2. Feed-Forward Networks

$$FFN(x) = max(0, xW_1, +b_1)W_2 + b_2$$

3. Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

<u>트랜스포머(Transformer) 파헤치기—1. Positional</u> Encoding (blossominkyung.com)

4. Add & Norm- Residual connection

4. Add & Norm – layer normalization

Residual Connection output

$$\hat{x}_{i,k} = rac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}} \hspace{0.5cm} ln_i = \gamma \hat{x}_i + eta = LayerNorm(x_i)$$

Figure 1: The Transformer - model architecture.

5. Masked Multi-Head attention

Output

Figure 1: The Transformer - model architecture.

6. Decoder's Multi-Head Attention

Output

Figure 1: The Transformer - model architecture.

모델 평가

Layer Type	Complexity per Layer	Sequential	Maximum Path Length		
		Operations			
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)		
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)		
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$		
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)		

모델 평가

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}	
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}	

모델 평가

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params $\times 10^6$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)		N/A/S		1	512	512				5.29	24.9	
		head	4	128	128				5.00	25.5		
		ricolot		16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16		4.			5.16	25.1	58
					32		OIK			5.01	25.4	60
(C)	2									6.11	23.7	36
		4 8 256				NT	1		5.19	25.3	50	
	8							4.88	25.5	80		
				32	32		, 1		5.75	24.5	28	
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0 proposit	5.77	24.6			
							0.2		4.95	25.5		
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids						4.92	25.7				
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Thank you for your time