Claims

10

30

 A method of identifying uncorrectable codewords in a Reed-Solomon decoder handling errors and erasures, comprising the steps of:

indicating an uncorrectable codeword when any one or more of the following conditions (a) to (f) is satisfied:

- (a) no solution to key equation $\sigma(x)T(x) \equiv \omega(x) \mod x^{2T}$;
 - (b) degσ(x) ≠ nerrors;
 - (c) error and erasure locations coincide;
 - (d) degω(x) ≥ nerrors + nerasures;
 - (e) nerasures + 2*nerrors > 2T; and
- (f) an error location has a zero correction magnitude;

where nerrors and nerasures represent, respectively, a number of errors with reference to an error locator polynomial $\sigma(x)$ and a number of erasures with reference to an erasure locator polynomial $\lambda(x)$, 2T is the strength of a Reed-Solomon code, $\omega(x)$ is an errata evaluator polynomial, and T(x) is a modified syndrome polynomial.

- The method of claim 1, comprising evaluating the
 condition (a) as a preliminary step, and then evaluating the conditions (b) to (f).
 - 3. The method of claim 1, wherein the method comprises identifying a codeword as correctable if none of at least the conditions (a) to (f) are satisfied.

- 4. The method of claim 1, wherein the method comprises indicating an uncorrectable codeword in response to condition (g) $deqh(x) \neq nerasures$.
- 5 5. The method of claim 1, wherein the method comprises receiving the error locator polynomial $\sigma(x)$, the erasure locator polynomial $\Lambda(x)$ and the errata evaluator polynomial $\omega(x)$; forming a set of error locations, and a set of erasure locations, and forming variables nerrors and nerasures representing the size of each set, respectively; and finding $\deg \sigma(x)$, $\deg \Lambda(x)$, and $\deg \omega(x)$,
 - respectively; and finding $deg\sigma(x)$, $deg\Lambda(x)$, and $deg\ \omega(x)$, as a degree of the error locator polynomial $\sigma(x)$, the erasure locator polynomial $\Lambda(x)$ and the errata evaluator polynomial $\omega(x)$, respectively.

15

30

- 6. A detector circuit arranged to identify an uncorrectable codeword, for use in a Reed-Solomon decoder handling errors and erasures, the circuit comprising:
- 20 a logic unit arranged to identify each condition:
 - (a) no solution to key equation $\sigma(x)T(x) \equiv \omega(x) \mod x^{2T}$;
 - (b) degσ(x) ≠ nerrors;
 - (c) error and erasure locations coincide;
 - (d) degω(x) ≥ nerrors + nerasures;
- 25 (e) nerasures + 2*nerrors > 2T; and
 - (f) an error location has a zero correction magnitude;

where nerrors and nerasures represents, respectively, a number of errors and erasures with reference to an error locator polynomial $\sigma(x)$ and an erasure locator polynomial $\Lambda(x)$, 2T is the strength of a Reed-Solomon code, $\omega(x)$ is an errata evaluator polynomial, and T(x) is a modified syndrome polynomial; and

an indicator unit arranged to indicate an uncorrectable codeword, responsive to the logic unit.

- 5 7. The circuit of claim 6, wherein the circuit comprises a counter arranged to count nerrors and nerasures as the size of a set of error locations derived from the error locator polynomial $\sigma(x)$, and a set of erasure locations derived from the erasure locator polynomial $\Lambda(x)$, respectively.
 - 8. The circuit of claim 6, wherein the logic unit is arranged to identify an uncorrectable codeword in response to condition (g) $deg \Lambda(x) \neq nerasures$.

15

9. A method of identifying uncorrectable codewords in a Reed-Solomon decoder handling errors and erasures, substantially as hereinbefore described with reference to the accompanying drawings.

20

10. A detector circuit arranged to identify an uncorrectable codeword, for use in a Reed-Solomon decoder handling errors and erasures, substantially as hereinbefore described with reference to the accompanying drawings.

25 drawings.