Private Measurement of Single Events

Charlie Harrison May 2023

What is "single-event measurement"?

- Queries which observe the outcome associated with single events.
- e.g. "Did source impression lead to a conversion, or not?"

Attribution Reporting API - event-level reports	Supported
Attribution Reporting API - summary reports	Supported
Interoperable Private Attribution	Supported
Private Click Measurement	Limited support

Goal for this discussion: either

- 1. **Agree** single-event measurement with differential privacy satisfies our privacy goals, OR
- 2. **Disagree** and investigate mitigations

This presentation

- 1. Differential privacy on single events can protect users
- 2. Noisy, per-event data can be useful
- 3. "Aggregation" as a boundary is hard to rigorously defend

Context:

- https://github.com/patcg/docs-and-reports/issues/41
- https://github.com/patcg-individual-drafts/ipa/issues/60

Differential privacy on single events can protect users

Per-event differential privacy

Did source impression lead to a conversion, or not? Imagine it did:

Laplace mechanism

return val + laplace(1 / epsilon)

Randomized response

```
if random() < 2 / (1 + exp(epsilon)):
  return choice([0, 1])
return val</pre>
```


Semantic interpretation of differential privacy

- Attacker has a prior on the user's data
- Privacy mechanism bounds the posterior after looking at the data
- Applies to any mechanism satisfying DP
 - Includes mechanisms permitting single event measurement

 ε = ~1.1 bounds a prior of 50% to [25%, 75%]

 ε = ~2.2 bounds a prior of 50% to [10%, 90%]

 ε = ~2.9 bounds a prior of 50% to [5%, 95%]

Source: https://desfontain.es/privacy/differential-privacy-in-more-detail.html

Aggregation is a critical post-processing step here

- Take $\varepsilon = \sim 2.2$
- Laplace($1/\varepsilon$) $\rightarrow \sigma = \sim .64$
- You can guess a single user's value, but in general this won't lead to accurate results
- What if you average N users?
 - Yields $\sigma' = \sigma / \text{sqrt(N)}$
 - N >=~150 yields $\sigma' = \sim .05$

Under high privacy regimes, single-event privacy ~**requires aggregation** for meaningful utility

Noisy, per-event data can be useful

Flexible aggregation via post-processing

- Privacy is already "built-in"
 - Arbitrary aggregate slices
 - Avoids "regretful" queries
- Build complex mechanisms outside of the privacy mechanism
 - Allows us to satisfy use-cases before building custom algorithms for them
- May allow "data sharing" use-cases without industry standardization on breakdown keys
 - o Think: multiple ad-tech measurers

Private optimization via Label DP

- Label DP
 - Differentially private optimization where only the label is private
 - Label = #conversions, \$\$, etc associated with an impression
- Ghazi et al (<u>NeurIPS 2021</u>, <u>ICLR 2023</u>)
 - "restricted k-ary randomized response"
 - State of the art performance in private learning
 - Continuing to explore future innovations in this setting
- Meta research
- Malek et al (<u>NeurIPS 2021</u>)
- Yuan et al (preprint)

Test accuracy with LabelDP vs. traditional DP learning on an image dataset

Source: https://ai.googleblog.com/2022/05/deep-learning-with-label-differential.html

"Aggregation" as a boundary is hard to rigorously defend

k-anonymity style mitigations

Remove outputs:

- whose inputs to a particular bucket < k₁
- whose output buckets < k₂

Problems:

- Adversaries that injects fake events
- Breaks with composition, auxiliary data
 - Overlapping queries
 - Difference attacks
- Protection may rely on distributional assumptions unless backstopped by DP

Campaign	Num impressions (k ₁ < 150 removed)	Num conversions $(k_2 < 30 \text{ removed})$
Campaign1	1004	40
Campaign2	120	31
Campaign3	304	12
Campaign4	13000	1000

k-anon enforcement **only weakly protects** against measuring single events

Maximum information gain / channel capacity

- X = encoded message sent through the API
- Y = API output
- Goal of the adversary: maximize mutual information I(X; Y)
 - Over all possible encodings \rightarrow channel capacity
 - Measured in B "bits"
 - Can observe 2^B distinct events
 - Encompases both noise and data granularity
- Robust against composition
- No assumptions on adversary in general
- Amplified with DP

Info gain enforcement **only weakly protects** against measuring single events (but it is a robust privacy definition to prevent scaled attacks across many users).

This presentation: in conclusion

- 1. Differential privacy on single events can protect users
- 2. Noisy, per-event data can be useful
- 3. "Aggregation" as a boundary is hard to rigorously defend