DMA 9

Carl Dybdahl, Patrick Hartvigsen, Emil Søderblom December 19, 2016

Part 1

(1)

We need to prove that a relation \leq defined on binary tuples of an ordered set (A, \leq) is an ordering relation. To be specific, \leq is defined by:

$$(a_1, a_2) \leq (b_1, b_2) \iff [(a_1 \neq b_1) \land (a_1 \leq b_1)] \lor [(a_1 = b_1) \land (a_2 \leq b_2)]$$

Note that there are two disjunct terms in this relation, so many proofs will proceed by case analysis.

Theorem 1. \leq is reflexive.

Proof. Given (a_1, a_2) , we need to show $(a_1, a_2) \leq (a_1, a_2)$. We know that $a_1 = a_1$ and that $a_2 \leq a_2$, which makes the second disjunct term in the definition of \leq true and thus the proposition must hold.

Lemma 1. If $(a_1, a_2) \leq (b_1, b_2)$ then $a_1 \leq b_1$.

Proof. There are two cases to consider here: when $(a_1 \neq b_1) \land (a_1 \leq b_1)$ holds and when $(a_1 = b_1) \land (a_2 \leq b_2)$ holds. In the first case, the second conjunct is exactly the proposition we wish to prove. In the second case, the first conjunct implies by reflexivity the proposition, i.e. $a_1 \leq a_1 = b_1$.

Theorem 2. \leq is antisymmetric.

Proof. Assume $(a_1, a_2) \leq (b_1, b_2)$ and $(a_1, a_2) \geq (b_1, b_2)$. By lemma 1, we therefore have $a_1 \leq b_1$ and $a_1 \geq b_1$. This implies that $a_1 = b_1$, which means that only the second disjunct of $(a_1, a_2) \leq (b_1, b_2)$ and $(a_1, a_2) \geq (b_1, b_2)$ can be true. This means that $(a_1 = b_1) \wedge (a_2 \leq b_2)$ and $(a_1 = b_1) \wedge (a_2 \geq b_2)$. From this we can conclude that $a_2 = b_2$, which means that $(a_1, a_2) = (b_1, b_2)$.

Lemma 2. If $a_1 = b_1$ and $(a_1, a_2) \leq (b_1, b_2)$ then $a_2 \leq b_2$.

Proof. \leq is defined by a disjunction of two cases, and the first case is contradicted by $a_1 = b_1$. Therefore the second case must be correct, and it contains $a_2 \leq b_2$.

Theorem 3. \leq is transitive.

Proof. Suppose $(a_1, a_2) \leq (b_1, b_2) \leq (c_1, c_2)$. Then either $a_1 \neq c_1$ or $a_1 = c_1$. In the first case, we apply lemma 1 twice to obtain $a_1 \leq b_1 \leq c_1$, which means that we have $(a_1, a_2) \leq (c_1, c_2)$. In the second case, we have that $c_1 = a_1 \leq b_1 \leq c_1 = a_1$, so b_1 must be equal to a_1 and a_2 . This lets us apply lemma 2 to obtain $a_2 \leq b_2 \leq c_2$, which leads us to conclude $[a_1 = c_1] \wedge [a_2 \leq c_2]$ and therefore $(a_1, a_2) \leq (c_1, c_2)$.

(2)

We were asked to topologically sort a set. We wrote the following algorithm to do it:

```
dma9.fsx - topSort
```

```
// first, define the relations on A and A*A
    let aRel x y = (y \% x = 0)
 4
    let aSqrRel (a1, a2) (b1, b2) =
       (a1 <> b1 && aRel a1 b1) || (a1 = b1 && aRel a2 b2)
 5
 7
    // define the set to be sorted
    let unsorted = Set.ofList [(2, 3); (4, 6); (2, 10); (10, 2); (30, 30); (2, 30)]
10
    // define the strict version of the order relation
    let bigger x y = aSqrRel y x && x <> y
11
13
    // define a sorting algorithm
14
    // NOTE: this is slow (like O(n^3)) and thus not suited for big inputs
15
    let rec topSort set =
       if set = Set.empty then []
16
17
       else
18
          let found =
19
             set |> Set.toList
                 |> List.tryFind (fun x -> not (Set.exists (bigger x) set))
20
21
          let elem = Option.get found
22
          elem :: topSort (Set.remove elem set)
23
24
    // sort the set
    let sorted = topSort unsorted
25
26
27
    // output
   printfn "%A" sorted
```

It yielded the result [(2, 3); (2, 10); (2, 30); (4, 6); (10, 2); (30, 30)], which we verified is topologically sorted.

Part 2

a)

We define R by the adjacency set:

$$\begin{split} R &= \{(A,B), (A,C), (A,H),\\ &\quad (B,A), (B,C), (B,D), (B,F), (B,H),\\ &\quad (C,A), (C,B), (C,E),\\ &\quad (D,B),\\ &\quad (E,C),\\ &\quad (F,B), (F,H),\\ &\quad (G,J),\\ &\quad (H,A), (H,B), (H,F),\\ &\quad (I,G),\\ &\quad (J,I)\} \end{split}$$

This adjacency list works as a representation. Alternatively, we can represent R as a directed graph:

b)

 R^{∞} is given by:

	A	$\mid B \mid$	$\mid C \mid$	D	$\mid E \mid$	F	G	H	I	J
\overline{A}	1	1	1	1	1	1	0	1	0	0
\overline{B}	1	1	1	1	1	1	0	1	0	0
\overline{C}	1	1	1	1	1	1	0	1	0	0
\overline{D}	1	1	1	1	1	1	0	1	0	0
\overline{E}	1	1	1	1	1	1	0	1	0	0
\overline{F}	1	1	1	1	1	1	0	1	0	0
G	0	0	0	0	0	0	1	0	1	1
H	1	1	1	1	1	1	0	1	0	0
\overline{I}	0	0	0	0	0	0	1	0	1	1
\overline{J}	0	0	0	0	0	0	1	0	1	1

c)

As can be seen in the matrix in b), R^{∞} is already reflexive and so the reflexive closure of R^{∞} is the same as R^{∞} .

We can easily read of from the matrix that R^{∞} relates all elements in the set $\{A,B,C,D,E,F,H\}$, that it relates all elements in the set $\{G,I,J\}$, and that it relates no other elements. From this it's easy to see that R^{∞} is an equivalence relation.