Overview

K-means clustering algorithm is one type of unsupervised learning which used for cluster unlabeled data. A cluster is a collection of data that has similarities. In other words, Clustering means that when unlabeled data is given, it will be grouped into the cluster. In K-means clustering, K is the number of clusters and creating K clusters based on K centroids.

K-means algorithms works as follows:

- **1.** Specify number of clusters K.
- **2.** Initialize centroids and randomly selecting K data points for the centroids.
- **3.** Iterating until there is no change to the centroids.

Objectives

- 1. Strategy 1- Initial centroids are picked randomly from the dataset which is given.
- **2.** Strategy 2- First centroid is picked randomly; for the i-th center (i>1), choose a sample (among all possible samples) such that the average distance of this chosen one to all previous (i-1) centers is maximal.
- **3.** Implemented strategy 1 and strategy 2 twice on the given data from K=2 to K=10.
- **4.** Calculated the objective function: $\sum_{i=1}^{k} \sum_{x \in D} ||x \mu||^2$
- **5.** Plot the X-axis as number of clusters, Y-axis as the value of objective function.

Dataset

The dataset has 2 columns and 300 rows. Here is the plot for dataset:

Strategy 1

In this strategy, Initial centroids are picked randomly for K = 2 to k = 10 from the dataset which is given.

Here is the plot for *Strategy 1; iteration 1*:

Here is the value of Objective Function:

	K=2	K=3	K=4	K=5	K=6	K=7	K=8	K=9	K=10
Value of Objective Function	1921.03	1294.29	788.96	613.28	492.00	399.82	341.36	335.80	218.67

Strategy 1; iteration 2

	K=2	K=3	K=4	K=5	K=6	K=7	K=8	K=9	K=10
Value of Objective Function	1921.03	1338.07	788.96	592.06	561.20	390.91	426.93	313.74	283.69

Strategy 2

First centroid is picked randomly; for the i-th center (i>1), choose a sample (among all possible samples) such that the average distance of this chosen one to all previous (i-1) centers is maximal.

	K=2	K=3	K=4	K=5	K=6	K=7	K=8	K=9	K=10
Value of Objective	1921.03	1338.13	789.23	736.25	542.94	454.99	443.477	329.78	252.70
Function									

	K=2	K=3	K=4	K=5	K=6	K=7	K=8	K=9	K=10
Value of Objective Function	1921.03	1338.07	792.71	736.76	542.94	454.99	443.47	440.85	364.47

Conclusion

Strategy1 and Strategy2 was run twice and some results can be made from each strategy.

- **1.** The figures prove that the slope shows steeper decline from the value of k is 2 to 4 and after that slow decline from the value of k is 4 to 10. The value of k will be the ideal value for the showing this occurrence. From the dataset and each strategy, the ideal value of k is 4.
- **2.** Both strategies seemed enough to show the result, but the strategy 2 seemed to be better way to get the result and ideal value of k. Also, this shows how the selection of the initial centroids is important to implement k-means Algorithm and has impact on the strategy. To sum up, the selection of strategy 2 seems to better than the strategy 1 to get a good result.