

Bank Loans

Team 6: Zinan Chen, Qiuhao Chengyong, Qiaoling Huang, Melissa Putur, Weifu Shi

Introduction

Dataset: Loan Data for Dummy Bank

- 800,000 rows and 30 columns
- Columns included:
 - Information about the Loan
 - Example: Reason for Loan, Loan Amount, Interest Rate & Installments.
 - Information about the customer
 - Example: Income,
 Employment Length, Region,
 Housing Status (Rent or Own)

Project Goals

1. Identify customer segmentation

- a. By studying the characteristics of each cluster, bank can adopt different marketing and management strategies to different clusters.
- b. Different level of customized services.

2. Prediction whether a loan is good or bad

- a. distinguish what are the good loans and bad loans with supervised machine algorithm
- b. Increase the efficiency of examining the loan status.

Data Cleaning & Feature Selection

As part of our data cleaning process we converted all categorical data columns to dummy variables. We converted the following columns:

- Region: Converted to 5 dummy region columns; Munster, Leinster, Cannught, Ulster and Northern Ireland
- Home Ownership: Converted to 3 dummy columns; Rent, Own, and Mortgage
- Purpose: Converted to 5 dummy columns; Credit Card, Medical, House, Small Business and Vacation
 - Note: The original dataset contained 14 purpose categories, we knew we did not want to keep every category because the original dataset was so large we were not able to successfully upload it to github. When choosing which purposes to keep, we chose the categories that were both interesting to us and were included in at least a couple thousand rows. We removed categories like education, renewable energy and wedding that did not make up a large portion of the total loan reasons.
- Loan Grade: Converted values "A","B","C" etc. to 7,6,5 etc.

Dimension Reduction

1. PCA

Is it good with mixed data?

Our data:

50% Binary and Categorical Data

50% Numerical Data

PCA Analysis with Different method

- Only using the numerical data in the dataset
 4 principal components and 72% variance percent
- Scale all of data including categorical data
 (12 principal components, 86% of the variance percent)
- scaled with a max/min methodology.
 7 principal components explains 70% of the variance percent)
- 4. Scale numerical data and bind with categorical data (4 principal components, 64.2% of the variance percent)

Interesting Pattern

Our guess: Factor Analysis with Mixed Data

What is FAMD?

FAMD can be seen as a mixed between principal component analysis (PCA) and multiple correspondence analysis (MCA). It acts as PCA for quantitative variables and as MCA for qualitative variables.

Our data: Around 50% binary or categorical data / 50% numerical data

Graph and Results

Graph of the categories

Graph of the quantitative variables

Graphs and Results

We choose 12 dimension with around 80% of variance explained percent.

Eigenvalue > 1

Our original dataset: 17 variables

Dimension reduction: 12 Dimensions

Introduce Gower Distance and Daisy Function

Distance is a numerical measurement of far apart individuals are.

Gower distance is computed as the average of partial dissimilarities across individuals.

$$d(i,j) = \frac{1}{p} \sum_{i=1}^{p} d_{ij}^{(f)}$$

Gower distance is available in R using daisy() function from the cluster package.

Clustering Analysis

- K-means clustering using original clean data
- K-means clustering using first
 12 principle components
- K-means and Hierarchical clustering on the dimensions from T-sne.

Clustering Results

Clustering on the original data

Clustering on the first 12 principal components

Clustering Results

- Dimension reduction using T-sne
- Clustering using K-means and Hierarchical

Cluster Characteristics

	Cluster 1	Cluster 2	Cluster 3
# of Loans	24852	37208	62961
Avg Salary	\$113,574	\$57,821	\$65,871
Avg Loan Amount	\$25,869	\$12,912	\$11,847
Top Loan Purpose	Credit Card (91%)	Credit Card (77%)	Credit Card (94%)
Avg Total Payment	\$17,172	\$5,534	\$4,214
Avg Installment	763	369	351
Debt to Income	17.7%	20.8%	18.0%
Interest Rate	12.7%	16.5%	9.5%
Employment Length (Yrs)	6.73	5.81	5.77
Home Status	Mortgage (75%)	Split b/w Mortgage and Rent	Split b/w Mortgage and Rent
36 Month	65%	54%	86%
60 Month	35%	46%	14%

PCA Applying to Binomial Classify

```
get_eigenvalue(train_p)
        eigenvalue variance.percent cumulative.variance.percent
Dim.1 3.481527684
                        23.21018456
                                                        23.21018
Dim.2 2.229700285
                        14.86466857
                                                        38.07485
                                                        48.20436
Dim.3 1.519426724
                        10.12951150
Dim.4 1.344317913
                          8.96211942
                                                        57.16648
                                                        64.59313
Dim.5 1.113997206
                          7.42664804
                         6.72631179
Dim.6 1.008946768
                                                        71.31944
Dim.7 0.981950144
                          6.54633429
                                                        77.86578
Dim.8 0.834932969
                          5.56621979
                                                        83.43200
Dim.9 0.762301363
                          5.08200909
                                                        88.51401
                                                        93.14874
Dim.10 0.695210070
                          4.63473380
Dim.11 0.565561594
                          3.77041062
                                                        96.91915
Dim.12 0.249700797
                          1.66467198
                                                        98.58382
                                                        99.83552
Dim.13 0.187754450
                          1.25169633
                                                        99.93743
Dim.14 0.015286560
                          0.10191040
Dim.15 0.009385471
                         0.06256981
                                                       100.00000
```

ı	> head	d(mod_df)						
	- IICut	PC1	PC2	PC3	PC4	PC5	PC6	PC7
	88257	-3.94770744	-0.2026756	2.2768093	0.8849609	-0.3095799	0.259530297	-0.040448365
	44811	-0.36850317	1.3527910	-1.2153041	-0.2689789	2.0934925	0.078690176	-0.119494035
	6823	0.44542564	-0.8341367	-0.6940127	0.4732847	-0.3388397	-0.003668879	-0.088827374
	17650	0.09039107	0.6634471	-0.9606995	-0.4880383	-1.5518184	-0.044088915	0.256789140
	59114	1.56349042	-0.6281341	-0.1435591	1.1343528	-1.3091405	-0.260950114	-0.005604597
	68070	-0.69711691	-0.1236215	2.0314753	-2.2705064	-0.4272817	-0.259630131	-0.247476692
		PC8	PC9	PC10	loan_condi	ltion		
	88257	0.88042464	-0.69679105	0.6108885	i	Bad		
	44811	0.73831907	0.07887952	0.5128414		Bad		
	6823	-0.07829916	-1.86396698	-0.6210185		Bad		
	17650	-0.29402377	-0.14642756	-0.4212260)	Bad		
	59114	-1.79673162	0.11165076	-1.0016070)	Bad		
	68070	0.55565436	0.04294642	1.0213098	3	Bad		

	mod1_pred	loan_condition	CC
1	Bad	Bad	
2	Bad	Bad	
3	Bad	Bad	J
4	Bad	Bad	
	Bad	Bad	J
6	Bad	Bad	
7	Bad	Bad	J
8	Bad	Bad	
9	Bad	Bad	
10	Bad	Bad	J
11	Bad	Bad	
12	Bad	Bad	J
13	Bad	Good	
14	Bad	Bad	
15	Bad	Bad	J
16	Bad	Bad	J
17	Bad	Bad	
18	Bad	Bad	J
19	Bad	Bad	
20	Bad	Bad	J
21	Good	Good	
22	Bad	Bad	
23	Bad	Bad	J
24	Bad	Bad	
25	Bad	Bad	J
26	Bad	Bad	
27	Bad	Bad	
28	Bad	Bad	
29	Rad	Rad	

TP / TP + FP

Accuracy[1] 0.9568359

SML- Loan Condition Prediction

- 1. Model 2
 - a. Seperate the dataset before PCA and then predict
 - i. The Accuracy is 96%

> Accuracy [1] 0.9568359

- 2. Model 1
 - a. Dataset using PCA predict to get a new dataset to do the SML
 - i. Xg Boosting with PCA data (separate Numeric and Binary) --- 94.1%
- Model 2
 - a. Database- using original dataset which after cleaning
 - Random Forest MSE
 - ii. Xg Boosting with Original Data ---- 96.1%

Conclusion:

PCA dimension is not necessary for our dataset. We decided to use original dataset to do the supervised machine learning which has better performance.

Conclusions

- Original Dataset was Better than the PCA dimension dataset.
 - o Prediction with best PCA----Model ---- 94.1% --- xgboosting
 - o Prediction with original data (no PCA) ---- Model. ----- 96% xgboosting.
 - Because the correlation between variables are relatively weak, PCA dimension reduction may not be a good fit for this data

3 Clusters

- Cluster 1: Highest earners, largest loan amounts (more than double average of other two groups),
 typically own a house
- Cluster 2: Riskiest customers, lowest earners, larger percent of renters, relatively even split between short and long term loans
- Cluster 3: Middle of the road customers, Middle earners, larger percent of renters, mostly 36 month loans

Recommendations

- Cluster 1: Financially stable customers. We will send our greetings or small gifts for holiday.
- Cluster 2: We will set up more frequent alert for them to remind their loan status: installment deadlines, current balance, and penalties if the bill is not paid up.
- Cluster 3: Largest group, middle of the road in terms of performance, study their complaints and concerns to understand how to increase/maintain loyalty

Questions?