LA2 Komplexe Zahlen

LATEX

Allgemein

Addition / Subtraktion:

$$z_1 = a_1 + b_1 i \quad z_2 = a_2 + b_2 i$$

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$

Multiplikation / Division:

 $z_1 = a_1 + b_1 i$

$$z_2 = a_2 + b_2 i$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)i$$

Division $\rightarrow \frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{1}{|z_1|^2} \cdot z_1 \cdot \overline{z_2}$

Neuer Vektor ist um Summe der Winkel der beiden Vektoren rotiert

Betrag:

$$|z| = \sqrt{a^2 + b^2}$$

Inverse:

$$a = a + bi$$

$$z = a + bi$$

 $z^{-1} = \frac{1}{|z_1|^2} \cdot (a - bi)$

Konjugiert #:

$$z = a + bi$$

 $\overline{z} = a - bi$

 $\rightarrow w = \frac{z}{v} \cdot \frac{\overline{v}}{v} = \frac{z \cdot \overline{v}}{|v|^2}$

$$z \cdot \overline{z} = |z|^2$$

Spiegelt Vektor an x-Achse

Polar Darstellung

$$e^{it} = \cos(t) + i \cdot \sin(t)$$

 $\rightarrow t$ Winkel (Bogenmass)

$$z = |z| \cdot e^{it} = |z| \cdot (\cos(t) + i \cdot \sin(t))$$

Addition / Subtraktion:

$$\begin{aligned} z_1 &= r_1 \cdot (\cos(\varphi_1) + i \cdot \sin(\varphi_1)) \ z_2 = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2)) \\ z_1 &\pm z_2 = r_1(\cos(\varphi_1) + i \sin(\varphi_1)) \pm r_2(\cos(\varphi_2) + i \sin(\varphi_2)) \\ &= r_1 \cos(\varphi_1) + i r_1 \sin(\varphi_1) \pm r_2 \cos(\varphi_2) \pm i r_2 \sin(\varphi_2) \\ &= r_1 \cos(\varphi_1) \pm r_2 \cos(\varphi_2) + i (r_1 \sin(\varphi_1) \pm r_2 \sin(\varphi_2)) \end{aligned}$$

Multiplikation / Division:

$$z_1 = r_1 \cdot \left(\cos(\varphi_1) + i \cdot \sin(\varphi_1)\right) \ z_2 = r_2 \cdot \left(\cos(\varphi_2) + i \cdot \sin(\varphi_2)\right)$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2))$$

Eulerische Darstellung

$$z = r(\cos(\varphi) + i \cdot \sin(\varphi)) = r \cdot e^{i \varphi}$$

Multiplikation/Division:

$$z_1\cdot z_2=r_1r_2\cdot e^{i\ (\varphi_1+\varphi_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot e^{i \ (\varphi_1 - \varphi_2)}$$

$$cos(\varphi) = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

Eulerische Form:

Kartesische Form:

Polar Form:

$$\sin(\varphi) = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

 $z^n = r^n \cdot e^{i n\varphi}$

 $z^n = (a + i \cdot b)^n$

 $z^n = r^n \cdot (\cos(n\varphi) + i \cdot \sin(n\varphi))$

Satz von Moivre Vektordarstellung

z₁: Realteil

z₂: Imaginärteil

Kartesische Darstellung

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = z_1 + z_2 \cdot i$$

 z_1 : Realteil

 z_2 : Imaginärteil

Umrechnung Kartesisch, Polar, Euler

$\textbf{Kartesisch} \rightarrow \textbf{Polar:}$

Umrechnung (ohne $z = 0 \rightarrow z = 0/\{\}/\emptyset$)

$$F = \{z\} = \sqrt{\alpha^2 + b^2}$$
Polor: $z = \mathbf{r}(\cos(\rho) + i\sin(\rho)) = \frac{\mathbf{r}\cos(\rho) + i\sin(\rho)}{\alpha}$
Kortesisan: $z = \alpha + bi$

$$\cos(\varphi) = \frac{a}{\sqrt{a^2 + 1}}$$

$$\cos(\varphi) = \frac{a}{\sqrt{a^2 + b^2}}$$
 $\rightarrow \quad \varphi = \arccos(\frac{a}{\sqrt{a^2 + b^2}}) \in [0, \pi]$

$$\sin(\varphi) = \frac{b}{\sqrt{a^2+b}}$$

$$\sin(\varphi) = \tfrac{b}{\sqrt{a^2 + b^2}} \qquad \qquad \to \quad \varphi = \arcsin(\tfrac{b}{\sqrt{a^2 + b^2}}) \in [-\tfrac{\pi}{2}, \tfrac{\pi}{2}]$$

$$\tan(\varphi) = \frac{b}{a}$$

$$\rightarrow \quad \varphi = \arctan(\frac{b}{a}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$\textbf{Polar} \rightarrow \textbf{Euler:}$

$$z = r \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \qquad \qquad z = r \cdot e^{i \varphi}$$

Vorzeichen von i beachten!

 $\textbf{Kartesisch} \rightarrow \textbf{Euler:}$

Gleich wie Kartesisch \rightarrow Polar, dann Polar \rightarrow Euler

Korrektur Winkel (Umrechnung in Polar/Euler):

$$\begin{array}{lll} z \in Q_1: & \varphi = 0^\circ & + |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_2: & \varphi = 180^\circ - |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_3: & \varphi = 180^\circ + |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_4: & \varphi = 360^\circ - |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \end{array}$$

Bogenmass: $rad = deg \cdot \frac{\pi}{180^{\circ}}$

Pi Anteil: $\frac{bogen}{\pi} = \frac{1}{x} \cdot \pi$

Wurzeln

n-Lösungen: $z^{\frac{1}{n}} = \sqrt[n]{x}$ mit Polar/Euler Form rechnen!

 $az^2 + bz + c = 0$ $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 $D = b^2 - 4ac$

$$\overline{z^n = a \cdot e^{i \varphi}}$$

$$a_0 = a$$
 $\alpha = 0$ \rightarrow $r = n/a$

$$\varphi_k = \frac{\alpha + k \cdot 360}{}$$

$$\varphi_k = \frac{\alpha + k \cdot 360^{\circ}}{n} \qquad k = 0, 1, 2, \dots, n - 1$$

$$k = 0: z_0 = r \cdot e^{i \varphi_k} = r(\cos(\varphi_k) + i \cdot \sin(\varphi_k))$$

$$k = 1: z_1 = r \cdot e^{i \varphi_k} = r(\cos(\varphi_k) + i \cdot \sin(\varphi_k))$$

Sinus/Cosinus Cheatsheet

θ		sin θ	cos 0	tan 0	csc θ	sec 0	cot 0
Rad	Deg	Sin U	603 0	iun o	CSC O	366.0	cor o
0 /	0	0	-1	0	Undef	1	Undef
2π							
π/6	30	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$	$\sqrt{3}$
π/4	45	$\sqrt{2}/2$	$\sqrt{2}/2$	1	$\sqrt{2}$	$\sqrt{2}$	1
π/3	60	√3/2	1/2	√3	2√3/3	2	$\sqrt{3}/3$
$\pi/2$	90	1	0	Undef	1	Undef	0
$2\pi/3$	120	$\sqrt{3}/2$	- 1/2	- √3	2√3/3	-2	$-\sqrt{3}/3$
$3\pi/4$	135	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	$\sqrt{2}$	- √2	-1
5π/6	150	1/2	$-\sqrt{3}/2$	- √3/3	2	$-2\sqrt{3}/3$	- √3
π	180	0	-1	0	Undef	-1	Undef
$7\pi/6$	210	- 1/2	$-\sqrt{3}/2$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$	$\sqrt{3}$
5π/4	225	$-\sqrt{2}/2$	$-\sqrt{2}/2$	1	- √2	- √2	1
$4\pi/3$	240	$-\sqrt{3}/2$	- 1/2	√3	$-2\sqrt{3}/3$	-2	$\sqrt{3}/3$
$3\pi/2$	270	-1	0	Undef	-1	Undef	0
5π/3	300	- √3/2	1/2	- √3	$-2\sqrt{3}/3$	2	- √3/3
$7\pi/4$	315	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	- √2	$\sqrt{2}$	-1
$11\pi/6$	330	- 1/2	$\sqrt{3}/2$	- √3/3	-2	2√3/3	- √3