RabbitMQ

Sergio García Sánchez Miguel Emilio Ruiz Nieto

Grupo 3

9 de diciembre de 2021

Contenidos

- Introducción
- 2 RabbitMQ
- 3 Ejemplos prácticos
- 4 Conclusiones
- Bibliografía

 Los servicios web no tienen la capacidad de gestionar las peticiones que le llegan en un mismo momento

3/19

- Los servicios web no tienen la capacidad de gestionar las peticiones que le llegan en un mismo momento
- Ejemplos:
 - Web de venta de entradas ante un evento importante
 - Servicio de videojuego online con alta demanda de usuarios

- Los servicios web no tienen la capacidad de gestionar las peticiones que le llegan en un mismo momento
- Ejemplos:
 - Web de venta de entradas ante un evento importante
 - Servicio de videojuego online con alta demanda de usuarios
- Como consecuencia:
 - Caída del servicio
 - Pérdida económica
 - Pérdida de reputación

Por tanto

Es necesario procesar las peticiones "poco a poco"

Por tanto

Es necesario procesar las peticiones "poco a poco"

Y para ello

Hay que implementar una cola de mensajes

Introducción. Cola de mensajes

- Comuniación asíncrona service-to-service usado en arquitecturas serverless y microservicios
- Permite desacoplar procesos con mucha carga de trabajo o almacenar trabajo en batch

Cola de mensajes

Ventajas

- Mejor rendimiento
- Mayor fiabilidad
- Escalabilidad granular
- Desacoplamiento simplificado

Colas de mensajes. Tipos

STOMP

- El protocolo más sencillo
- Implementado sobre HTTP
- Basado en intercambio de frames
- La infraestructura de queues, topics y exchanges quedan del lado del cliente

MQTT

- Más ligero que STOMP
- Construído sobre TCP/IP
- Orientado a arquitecturas IoT
- Esquema publisher-suscriber síncrono

Colas de mensajes. Tipos

- AMQP
 - Comunicación asíncrona publisher-suscriber mediante broker
 - Permite el almacenamiento de mensajes
 - Proporciona balanceo de carga

Colas de mensajes. AMQP

RabbitMQ. Introducción

- Implementación del broker AMQP en Erlang
- Ofrece soporte para HTTP, STOMP y MQTT
- Interfaz web para manejar el broker y los componentes asociados
- Amplio soporte en múltiples lenguajes de programación

Exchanges

- El primer componente que recibe el mensaje en AMQP
- Toma el mensaje y lo redirige a una o más colas
- Las colas se enlazan a los Exchanges mediante bindings
- Se puede añadir un parámetro opcional routing_key

Exchanges

Tipo	Descripción
Direct Exchange	Envía el mensaje directamente a la cola basado en el routing_key (amq.direct)
Fanout Exchange	Envía el mensaje a todas las colas enlazadas (amq.fanout)
Topic Exchange	Envía el mensaje a las colas sus- critas al <i>topic</i> (amq.topic)
Headers Exchange	Envía el mensaje mirando las ca- beceras en lugar del routing_key (amq.headers)

Topics

- Se usan en los topic exchanges
- Lista de palabras separadas por puntos
- Ejemplos:
 - "health.sports.football"
 - "#.sports"
 - "sports.*"

Dead Lettering

- Ciertos mensajes pueden no ser consumidos por los consumers
- RabbitMQ ofrece mecanismos para gestionar el Dead lettering
 - Rechazo por TTL excedido
 - Rechazo por exceso de longitud de la cola
 - Rechazo por parte del propio consumer (basic.reject)
- Los mensajes son introducidos en un Dead letter exchange (DLX)

RabbitMQ vs Apache Kafka

RabbitMQ	Apache Kafka
Broker de mensajería AMQP	Plataforma de procesamiento de
	flujo de eventos
Utiliza protocolos de mensajería	Utiliza modelo editor/suscriptor
Se pueden perder mensajes	No se pueden perder mensajes
Enfocado a comunicación entre	Enfocado a Big Data
arquitecturas microservicios	

Ejemplos prácticos

- AMQP Uso de los exchanges y Dead Lettering
- STOMP over WebSocket

Conclusiones

- Es necesario utilizar un mecanismo de cola de mensajes si la aplicación requiere de procesar un número grande de peticiones
- RabbitMQ ofrece soporte para diferentes lenguajes de programación dentro de su implementación

Bibliografía

- RabbitMQ Documentation https://www.rabbitmq.com/documentation.html
- RabbitMQ Essentials David Dossot
- Learn RabbitMQ: Asynchronous Messaging with Java and Spring -Niyazi Erdogan
- RabbitMQ Examples https://github.com/tronxi/rabbitmq-examples