

Forward Kinematics

Serial link manipulators

Dr.-Ing. John Nassour

Joint variable 02 17 Joint 3 Joint 3 Joint 3 Joint 2 Jo

Suggested literature

- Robot Modeling and Control
- Robotics: Modelling, Planning and Control

Reminder: Right Hand Rules

Cross product

Reminder: Right Hand Rules

Reminder: Right Hand Rules

Rotation about a vector

Wrap your right hand around the vector with your thumb (your *x*-finger) in the direction of the arrow. The curl of your fingers indicates the direction of increasing angle.

Kinematics

The problem of kinematics is to describe the motion of the manipulator without consideration of the forces and torques causing that motion.

The kinematic description is therefore a geometric one.

Forward Kinematics

Determine the position and orientation of the end-effector given the values for the joint variables of the robot.

Joint 1

Base

Robot Manipulators are composed of links connected by joints to form a kinematic chain.

Robot Manipulators

Revolute joint (R): allows a relative rotation about a single axis. **Prismatic joint (P)**: allows a linear motion along a single axis (extension or retraction).

The Workspace Of A Robot

The total volume its end - effector could sweep as the robot executes all possible motions. It is constrained by **the geometry of the manipulator** as well as **mechanical limits imposed on the**

Robot Manipulators

Symbolic representation of robot joints

e.g. A three-link arm with three revolute joints was denoted by RRR.

Joint variables, denoted by $m{ heta}$ for a revolute joint and $m{d}$ for the prismatic joint, represent the relative displacement between adjacent links.

Articulated Manipulators (RRR)

Articulated Manipulators (RRR)

Also called: Anthropomorphic Manipulators

Three joints of the rotational type (RRR).

It resembles the human arm.

The second joint axis is perpendicular to the first one.

The third joint axis is parallel to the second one.

The workspace of the anthropomorphic robot arm, encompassing all the points that can be reached by the robot end point.

Elbow Manipulator (RRR)

Spherical Manipulator

The Stanford Arm

Spherical Manipulator RRP

Two rotation and one translation (RRP).

The second joint axis is perpendicular to the first one and the third axis is perpendicular to the second one.

Workspace

Structure

Spherical Manipulator RRP

 z_0 θ_2 z_1 z_2 z_2

Two rotation and one translation (RRP).

The second joint axis is perpendicular to the first one and the third axis is perpendicular to the second one.

The workspace of the robot arm has a spherical shape as in the case of the anthropomorphic robot arm.

Spherical Manipulator RRR

Workspace?

Structure

SCARA Manipulator

Two joints are rotational and one is translational (RRP). The axes of all three joints are parallel.

Workspace

SCARA Manipulator

Two joints are rotational and one is translational (RRP).

The axes of all three joints are parallel.

The workspace of SCARA robot arm is of cylindrical shape.

Cylindrical Manipulator

Workspace

One rotational and two translational (RPP). The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.

Cylindrical Manipulator

One rotational and two translational (RPP). The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.

The Cartesian Manipulators

Workspace

Three joints of the translational type (PPP). The joint axes are perpendicular one to another.

The Cartesian Manipulators

Workspace

Three joints of the translational type (PPP). The joint axes are perpendicular one to another.

Configuration Parameters

A set of **position** parameters that describes the full configuration of the system.

Configuration Parameters

A set of **position** parameters that describes the full configuration of the system.

6 parameters/link
$$\begin{cases} 3 & positions \\ 3 & orientations \end{cases}$$

The robot is free to move forward/backward, up/down, left/right (translation in three perpendicular axes) combined with rotation about three perpendicular axes, often termed pitch, yaw, and roll.

The robot is free to move forward/backward, up/down, left/right (translation in three perpendicular axes) combined with rotation about three perpendicular axes, often termed pitch, yaw, and roll.

D.O.F: n joints + 6

Operational Coordinates

End-effector configuration parameters are a set of m parameters $(x_1, x_2, x_3, ..., x_m)$ that completely specify the end-effector position and orientation with respect to the frame $o_0 x_0 y_0 z_0$.

 o_{n+1} is the operational point.

A set $(x_1, x_2, x_3, ..., x_{m_0})$ of independent configuration Parameters m_0 : number of degree of freedom of the end-effector.

 $o_{n+1} x_{n+1} y_{n+1} z_{n+1}$

Operational Coordinates

Is also called Operational Space

35

Joint Coordinates

Is also called Joint Space

Joint Space -> Operational Space

Determine the position and orientation of the endeffector given the values for the joint variables of the robot.

37

A robot is said to be redundant if $n > m_0$. Degree of redundancy: $n - m_0$

A robot is said to be redundant if $n>m_0$. Degree of redundancy: $n-m_0$

A robot is said to be redundant if $n > m_0$. Degree of redundancy: $n - m_0$

A robot is said to be redundant if $n > m_0$. Degree of redundancy: $n - m_0$

A robot is said to be redundant if $n > m_0$. Degree of redundancy: $n - m_0$

The objective of forward kinematic analysis is to determine the **cumulative effect of the entire set of joint variables**, that is, to **determine the position and orientation of the end effector** given the values of these joint variables.

We assume that each joint has one D.O.F

The action of each joint can be described by one real number: the **angle of rotation** in the case of a revolute joint or the **displacement** in the case of a prismatic joint.

When joint i is actuated, link i moves.

$$q_i$$
 is the joint variable
$$q_i = \begin{cases} \theta_i & \text{if joint } i \text{ is revolute} \\ d_i & \text{if joint } i \text{ is prismatic} \end{cases}$$

The objective of forward kinematic analysis is to determine the **cumulative effect of the entire set of joint variables**, that is, to **determine the position and orientation of the end effector** given the values of these joint variables.

We assume that each joint has one D.O.F

The action of each joint can be described by one real number: the **angle of rotation** in the case of a revolute joint or the **displacement** in the case of a prismatic joint.

Spherical wrist 3 D.O.F

spherical wrist: RRR Links' lengths = 0

14.11.2017

I.Nassour

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach $o_i x_i \ y_i \ z_i$ to $link \ i$.

This means that, whatever motion the robot executes, the coordinates of any point p on link i are constant when expressed in the i^{th} coordinate frame $p_i = constant$. When joint i is actuated, link i and its attached frame, $o_i x_i y_i z_i$, experience a resulting motion.

45

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach $o_i x_i \ y_i \ z_i$ to $link \ i$.

This means that, whatever motion the robot executes, the coordinates of any point p on link i are constant when expressed in the i^{th} coordinate frame $p_i = constant$. When joint i is actuated, link i and its attached frame, $o_i x_i y_i z_i$, experience a resulting motion.

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach $o_i x_i \ y_i \ z_i$ to $link \ i$.

This means that, whatever motion the robot executes, the coordinates of any point p on link i are constant when expressed in the i^{th} coordinate frame $p_i = constant$. When joint i is actuated, link i and its attached frame, $o_i x_i y_i z_i$, experience a resulting motion.

Do we need a specific way to orientate the axes?

Transformation Matrix

Suppose A_i is the homogeneous transformation matrix that describe the position and the orientation of $o_i x_i \ y_i \ z_i$ with respect to $o_{i-1} x_{i-1} \ y_{i-1} \ z_{i-1}$.

 A_i is derived from joint and link i.

 A_i is a function of only a single joint variable.

$$A_i = A_i(q_i)$$

$$A_i(q_i) = \begin{bmatrix} R^{i-1} & o^{i-1} \\ 0 & 1 \end{bmatrix}$$

Transformation Matrix

The position and the orientation of the end effector (reference frame $o_n x_n y_n z_n$) with respect to the base (reference frame $o_0 x_0 y_0 z_0$) can be expressed by the transformation matrix:

$$\mathbf{H} = T_n^0 = A_1(q_1) \dots A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

The position and the orientation of a reference frame $o_j x_j y_j z_j$) with respect to a reference frame $o_i x_i y_i z_i$ can be expressed by the transformation matrix:

$$T_j^i = \begin{cases} A_{i+1}A_{i+2} \dots A_{j-1} A_j & \text{if } i < j \\ I & \text{if } i = j \\ (T_i^j)^{-1} & \text{if } i > j \end{cases}$$

Transformation Matrix

$$T_{j}^{i} = \begin{cases} A_{i+1}A_{i+2} \dots A_{j-1} A_{j} & \text{if } i < j \\ I & \text{if } i = j \\ (T_{i}^{j})^{-1} & \text{if } i > j \end{cases}$$

if i < j then

$$T_j^i = A_{i+1}A_{i+2} \dots A_{j-1} A_j = \begin{bmatrix} R_j^i & o_j^i \\ 0 & 1 \end{bmatrix}$$

The orientation part: $R_j^i = R_{i+1}^i \dots R_j^{j-1}$

The translation part: $o_j^i = o_{j-1}^i + R_{j-1}^i o_j^{j-1}$

- the link length a
- the link twist α

$\overline{a_{i-1}}$ Link Length

mutual perpendicular

Is measured along a line which is mutually perpendicular to both axes.

The mutually perpendicular always exists and is unique except when both axes are parallel.

$lpha_{i-1}$ Link Twist

Project both axes i-1 and i onto the plane whose normal is the mutually perpendicular line.

Measured in the right-hand sense about $\overrightarrow{a_{i-1}}$.

Intersecting joint axis!

 $\overrightarrow{a_{i-1}}$ Link length ?

 α_{i-1} Link Twist ?

The sense of α_{i-1} is free.

A joint axis is established at the connection of two links.

This joint will have two normals connected to it one for each of the links.

$oldsymbol{d_i}$ Link Offset

Variable if joint is prismatic.

The relative position of two links is called link offset whish is the distance between the links (the displacement, along the joint axes between the links).

d_i Link Offset

Variable if joint is prismatic.

The relative position of two links is called link offset whish is the distance between the links (the displacement, along the joint axes between the links).

θ_i Joint Angle

Variable if joint is revolute.

The joint angle between the normals is measured in a plane normal to the joint axis.

 $\overrightarrow{a_{i-1}}$ Link Length and

 α_{i-1} Link Twist

depend on joint axes i - 1 and i.

 d_i Link Offset and

 $oldsymbol{ heta}_i$ Joint Angle

depend on links i - 1 and i.

Each A matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

Each A matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

 a_i is link length of like i (constant unless you reconfigure the robot)

Each A matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

 α_i is link length of like i (constant unless you reconfigure the robot) α_i is link twist of link i (constant unless you reconfigure the robot)

Each A matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

```
a_i is link length of like i (constant unless you reconfigure the robot) a_i is link twist of link i (constant unless you reconfigure the robot) a_i is link offset of link i (prismatic variable)
```

Each A matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

```
a_i is link length of like i (constant unless you reconfigure the robot) \alpha_i is link twist of link i (constant unless you reconfigure the robot) d_i is link offset of link i (prismatic variable) \theta_i is joint angle of link i (revolute variable)
```

Denavit-Hartenberg Matrix

Each homogeneous transformation A_i is represented as a product of four basic

transformations:

Reminder:

 a_i is link length α_i is link twist d_i is link offset θ_i is joint angle

$$A_{i} = Rot_{z,\theta}(\operatorname{Trans}_{z,d})\operatorname{Trans}_{x,a_{i}}Rot_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where the four quantities are parameters associated with link i and joint i.

Denavit-Hartenberg Matrix

 a_i is link length α_i is link twist d_i is link offset θ_i is joint angle

Denavit-Hartenberg Matrix

Denavit-Hartenberg Convention

it is not necessary that the origin of $frame\ i$ be placed at the physical end of $link\ i$.

it is not necessary that frame i be placed within the physical link; $frame\ i$ could lie in free space — so long as $frame\ i$ is **rigidly** attached to $link\ i$.

By a clever choice of the origin and the coordinate axes, it is possible to cut down the number of parameters needed from six to four (or even fewer in some cases).

Denavit-Hartenberg Convention

DH Coordinate Frame Assumptions

(DH1) The axis x_1 is perpendicular to the axis z_0 .

(DH2) The axis x_1 intersects the axis z_0 .

Under these conditions, there exist unique numbers \mathbf{a} , \mathbf{d} , $\boldsymbol{\theta}$, $\boldsymbol{\alpha}$ such that:

$$A = Rot_{z,\theta} Trans_{z,d} Trans_{x,a} Rot_{x,\alpha}$$

$$A = \begin{bmatrix} R_1^0 & o_1^0 \\ 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg Convention

Positive sense for θ and α

Rule 1: z_{i-1} is axis of actuation of joint i. Axis of revolution of revolute joint Axis of translation of prismatic joint

Rule 2: Axis x_i is set so it is perpendicular to and intersects Z_{i-1} .

Rule 3: Derive y_i from x_i and z_i .

Rule 1: z_{i-1} is axis of actuation of joint i

Rule 1: z_{i-1} is axis of actuation of joint i

Tool frame

 z_n is the **approach** direction of the tool.

 y_n is the **slide** direction of the gripper.

 x_n is the **normal** direction to other axes.

Rule 2: Axis x_i is set so it is perpendicular to and intersects z_{i-1}

Case 1: z_{i-1} and z_i are not coplanar.

- There is only one line possible for x_i , which is the shortest line from z_{i-1} to z_i .
- o_i is at intersection of x_i and z_i .

Rule 2: Axis x_i is set so it is perpendicular to and intersects z_{i-1}

Case 2: z_{i-1} and z_i are parallel.

- There are an infinite number of possibilities for x_i from z_{i-1} to z_i .
- Usually easiest to choose an x_i that passes through o_{i-1} (so that $d_i = 0$).
- o_i is at intersection of x_i and z_i .
- $\alpha_i = 0$ always for this case.

Rule 2: Axis x_i is set so it is perpendicular to and intersects z_{i-1}

Case 3: z_{i-1} intersects z_i .

- x_i is normal to the plane of z_{i-1} and z_i .
- Positive direction of x_i is arbitrary.
- o_i naturally sits at intersection of z_{i-1} and z_i but can be anywhere on z_i .
- $a_i = 0$ always for this case.

Rule 2: Axis x_i is set so it is perpendicular to and intersects z_{i-1}

Case 3: z_{i-1} intersects z_i .

- x_i is normal to the plane of z_{i-1} and z_i .
- Positive direction of x_i is arbitrary.
- o_i naturally sits at intersection of z_{i-1} and z_i but can be anywhere on z_i .
- $a_i = 0$ always for this case.

Rule 2: Axis x_i is set so it is perpendicular to and intersects z_{i-1}

Case 3: z_{i-1} intersects z_i .

- x_i is normal to the plane of z_{i-1} and z_i .
- Positive direction of x_i is arbitrary.
- o_i naturally sits at intersection of z_{i-1} and z_i but can be anywhere on z_i .
- $a_i = 0$ always for this case.

 a_i is distance from z_{i-1} to z_i measured along x_i .

 α_i is angle from z_{i-1} to z_i measured about x_i .

 d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

 a_i is distance from z_{i-1} to z_i measured along x_i .

 α_i is angle from z_{i-1} to z_i measured about x_i .

 d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

 a_i is distance from z_{i-1} to z_i measured along x_i .

 α_i is angle from z_{i-1} to z_i measured about x_i .

 d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

 a_i is distance from z_{i-1} to z_i measured along x_i .

 α_i is angle from z_{i-1} to z_i measured about x_i .

 d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

Find DH parameters for this robot. Identify the joint variables.

Find DH parameters for this robot. Identify the joint variables.

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

Find DH parameters for this robot. Identify the joint variables.

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

Find DH parameters for this robot. Identify the joint variables.

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta_2} = extstyle extstyle extstyle 000000000000000000000000000000000000$
3				

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

 x_2

Find DH parameters for this robot. Identify the joint variables.

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{ t 0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta_2} = extstyle extstyle extstyle 000000000000000000000000000000000000$
3	0	0 °	$d_3 = L_3$	0 °

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

Find DH parameters for this robot. Identify the joint variables.

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta}_1 = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 = extstyle extstyle 90^\circ$
3	0	0°	$d_3=L_3$	0 °

Find the A matrices

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 =$ -90 $^{\circ}$
3	0	0 °	$d_3=L_3$	0 °

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

$$A_2 = \frac{1}{2}$$

$$A_3 = \frac{1}{2}$$

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 = extstyle extstyle 90^\circ$
3	0	0 °	$d_3=L_3$	0 °

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{L_3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 =$ -90 $^{\circ}$
3	0	0 °	$d_3=L_3$	0 °

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{L}_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{L_3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_1^0 = .$$

i	a_i	α_i	d_i	θ_{i}
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 =$ -90 $^{\circ}$
3	0	0 °	$d_3=L_3$	0 °

 y_2

$$T_1^0 = A_1$$

$$T \stackrel{0}{=} A_1 A_2 = \begin{bmatrix} c_1 c_2 & s_1 & -c_1 s_2 & 0 \\ s_1 c_2 & -c_1 & -s_1 s_2 & 0 \\ -s_2 & 0 & -c_2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} ? & ? & ? & 0 \\ ? & ? & ? & 0 \\ ? & 0 & ? & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In the current configuration

Joint 2

3m

 y_3

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	–90 °	0	$oldsymbol{ heta}_2 =$ -90 $^{\circ}$
3	0	0 °	$d_3=L_3$	0 °

Joint 3

 y_2

$$T_1^0 = A_1$$

In the current configuration

Joint 2

3m

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{ t 0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 = extstyle extstyle 90^\circ$
3	0	0 °	$d_3=L_3$	0 °

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{L_3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{0} =$$

Find the A matrices

In the current configuration

Example: RRP Robot

Find the A matrices

i	a_i	α_i	d_i	$\theta_{\it i}$
1	0	-90 °	3m	$oldsymbol{ heta_1} = oldsymbol{0}^{\circ}$
2	0	-90 °	0	$oldsymbol{ heta}_2 = extstyle extstyle 90^\circ$
3	0	0 °	$d_3=L_3$	0 °

In the current configuration

Joint 3

Joint 2

Joint 1

 $\boldsymbol{z_0}$

3m

 y_2

Example: Two-Link Planar Robot

Assign coordinate frames so that we can find DH parameters for this robot.

Example: Two-Link Planar Robot

Find DH parameters for this robot. Identify the joint variables.

i	a_i	α_i	d_i	$ heta_i$
1				
2				

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

Example: Two-Link Planar Robot

Find DH parameters for this robot. Identify the joint variables.

i	a_i	α_i	d_i	$ heta_i$
1	a_1	0 °	0	θ_1
2	a_2	0 °	0	$oldsymbol{ heta}_2$

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \\ s_2 & c_2 & 0 & a_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_1^0 =$$

$$T_2^0 =$$

F.K. For Cylindrical Manipulator

- Assign coordinate frames so that we can find DH parameters for this robot.
- Find DH parameters for this robot. Identify the joint variables.

One rotational and two translational (RPP). The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.


```
a_i is distance from z_{i-1} to z_i measured along x_i. \alpha_i is angle from z_{i-1} to z_i measured about x_i. d_i is distance from x_{i-1} to x_i measured along z_{i-1}. \theta_i is angle from x_{i-1} to x_i measured about z_{i-1}.
```

i	a_i	α_i	d_i	$ heta_i$
1				
2				
3				
4				
5				
6				

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

$\boldsymbol{\theta}_i$	is angle	from x_{i-1}	to x_i	measured	about 2	z_{i-1} .
-------------------------	----------	----------------	----------	----------	---------	-------------

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	0	$oldsymbol{ heta_1}^*$
2	0	+90 °	d_2	$oldsymbol{ heta_2}^*$
3	0	0 °	<i>d</i> ₃ *	0
4	0	–90 °	0	$oldsymbol{ heta_4}^{*}$
5	0	+90 °	0	θ_5 *
6	0	0 °	d_6	$oldsymbol{ heta_6}^*$

$$T_{6}^{0} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $oldsymbol{a_i}$ is distance from $oldsymbol{z_{i-1}}$ to $oldsymbol{z_i}$ measured along $oldsymbol{x_i}$. $oldsymbol{a_i}$ is angle from $oldsymbol{z_{i-1}}$ to $oldsymbol{z_i}$ measured along $oldsymbol{z_{i-1}}$.

 θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

i	a_i	α_i	d_i	$\theta_{\it i}$
1	0	-90 °	0	$oldsymbol{ heta_1}^*$
2	0	+90 °	d_2	θ_2 *
3	0	0 °	<i>d</i> ₃ *	0
4	0	–90 °	0	$oldsymbol{ heta_4}^*$
5	0	+90 °	0	θ_5 *
6	0	0 °	d_6	$oldsymbol{ heta_6}^{*}$

$$T_6^0 = A_1 A_2 A_3 A_4 A_5 A_6 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	a_i	α_i	d_i	$ heta_{m{i}}$
1	0	-90 °	0	$oldsymbol{ heta_1}^*$
2	0	+90 °	d_2	$oldsymbol{ heta_2}^*$
3	0	0 °	<i>d</i> ₃ *	0
4	0	-90 °	0	$oldsymbol{ heta_4}^*$
5	0	+90 °	0	$oldsymbol{ heta_5}^*$
6	0	0 °	d_6	θ_6 *

Reminder:
$$A_i$$

$$\begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} c_1 & 0 & -s_1 & 0 \\ s_1 & 0 & c_1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} c_5 & 0 & s_5 & 0 \\ s_5 & 0 & -c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_5 = \begin{bmatrix} c_5 & 0 & s_5 & 0 \\ s_5 & 0 & -c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_6 = \begin{bmatrix} c_6 & -s_6 & 0 & 0 \\ s_6 & c_6 & 0 & 0 \\ 0 & 0 & 1 & d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d6;...

1];

```
2 -
       t1= sym('t1');t2= sym('t2');d3= sym('d3');t4= sym('t4');t5= sym('t5');
       t6= sym('t6');d2= sym('d2');d6= sym('d6');r11= sym('r11');r12= sym('r12');
       r13= sym('r13');r21= sym('r21');r22= sym('r22');r23= sym('r23');
 5 -
       r31= sym('r31');r32= sym('r32');r33= sym('r33');dx= sym('dx');
       dy= sym('dy');dz= sym('dz');
 8 -
                cos(t1),
                            0, -sin(t1),
 9
                sin(t1).
                                 cos(t1).
                                            0;...
10
                                            0;...
11
                                            1 ];
12
                                                                        34
                                                                                                   cos(t5),
                                                                                         sin(t6),
13 -
               cos(t2),
                                 sin(t2),
                                            0;...
                                                                        35
14
                sin(t2),
                                -cos(t2),
                                                                        36
15
                                           d2;...
                                                                        37
16
                                            1 1:
                                                                        38 -
                                                                                A12= A1*A2:
17
                                                                        39 -
                                                                                A123= A1*A2*A3:
18 -
       A3=[
                                            0:...
                                                                        40 -
                                                                                A1234= A1*A2*A3*A4:
19
                                            0;...
                                                                                A12345= A1*A2*A3*A4*A5:
20
                      0.
                                           d3:...
                                                                        42 -
                                                                                A123456= A1*A2*A3*A4*A5*A6:
21
                                                                        43
22
                                                                        44
23 -
                            0, -sin(t4),
       A4=[
                cos(t4).
                                            0;...
24
                sin(t4),
                                 cos(t4),
25
                           -1,
                                            0;...
26
                                            1 1;
27
                                           *****
28 -
       A5=Γ
                cos(t5),
                                sin(t5),
29
                sin(t5).

    -cos(t5).

30
                            -1,
                                            0:...
31
                      Ο,
                                            1 ];
       ***********
32
33 -
                cos(t6), -sin(t6),
34
                sin(t6), cos(t5),
                                          0;...
35
                                         d6;...
36
                      Ο,
                                          1 1;
37
```

 $\left[\begin{array}{l} (56^*(c4^*s1 + c1^*c2^*s4) - c6^*(c5^*(s1^*s4 - c1^*c2^*c4) + c1^*s2^*s5), & 56^*(c5^*(s1^*s4 - c1^*c2^*c4) + c1^*s2^*s5) + c5^*(c4^*s1 + c1^*c2^*s4), & c1^*c5^*s2 - s5^*(s1^*s4 - c1^*c2^*c4), & d3^*c1^*s2 - d6^*(s5^*(s1^*s4 - c1^*c2^*c4) - c1^*c5^*s2) - d2^*s1 \right] \\ \left[\begin{array}{l} (66^*(c5^*(c1^*s4 + c2^*c4^*s1) - s1^*s2^*s5) - s6^*(c1^*c4 - c2^*s1^*s4), & c1^*c5^*s2 - s5^*(s1^*s4 - c1^*c2^*c4), & d3^*c1^*s2 - d6^*(s5^*(s1^*s4 - c1^*c2^*c4) - c1^*c5^*s2) - d2^*s1 \right] \\ \left[\begin{array}{l} (66^*(c5^*(c1^*s4 + c2^*c4^*s1) - s1^*s2^*s5) - s6^*(c1^*s4 + c2^*c4^*s1) - s1^*s2^*s5) - c5^*(c1^*c4 - c2^*s1^*s4), & s5^*(c1^*s4 + c2^*c4^*s1) + c5^*s1^*s2, & d2^*c1 + d6^*(s5^*(c1^*s4 + c2^*c4^*s1) + c5^*s1^*s2) + d3^*s1^*s2 \right] \\ \left[\begin{array}{l} (66^*(c2^*s5 + c4^*c5^*s2) - s2^*s4^*s6, & s6^*(c2^*s5 + c4^*c5^*s2) - c5^*s2^*s4, & c2^*c5 - c4^*s2^*s5, & d6^*(c2^*c5 - c4^*s2^*s5) + d3^*c2 \right] \\ \left[\begin{array}{l} (66^*(c2^*s5 + c4^*c5^*s2) - s2^*s4^*s6, & c2^*c5 - c4^*s2^*s5, & c2^*c5 - c4^*s2^*$

$$r_{11} = s_6 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4) - c_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5)$$

$$r_{21} = c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_2 \cdot s_5 + c_4 \cdot c_5 \cdot s_2) - s_2 \cdot s_4 \cdot s_6$$

$$r_{12} = s_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5) + c_5 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4)$$

$$r_{22} = -s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - c_5 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{32} = s_6 \cdot (c_2 \cdot s_5 + c_4 \cdot c_5 \cdot s_2) - c_5 \cdot s_2 \cdot s_4$$

$$r_{31} = c_1. c_5. s_2 - s_5. (s_1. s_4 - c_1. c_2. c_4)$$

 $r_{32} = s_5. (c_1. s_4 + c_2. c_4. s_1) + c_5. s_1. s_2$
 $r_{33} = c_2. c_5 - c_4. s_2. s_5$

$$\begin{aligned} d_x &= d_3.\,c_1.\,s_2 - d_6.\,(s_5.\,(s_1.\,s_4 - c_1.\,c_2.\,c_4) - c_1.\,c_5.\,s_2) - d_2.\,s_1 \\ d_y &= d_2.\,c_1 + d_6.\,(s_5.\,(c_1.\,s_4 + c_2.\,c_4.\,s_1) + c_5.\,s_1.\,s_2) + d_3.\,s_1.\,s_2 \\ d_z &= d_6.\,(c_2.\,c_5 - c_4.\,s_2.\,s_5) + d_3.\,c_2 \end{aligned}$$

$$T_6^0 = A_1 A_2 A_3 A_4 A_5 A_6 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} r_{11} &= s_6. \, (c_4. \, s_1 + c_1. \, c_2. \, s_4) - \, c_6. \, (c_5. \, (s_1. \, s_4 - \, c_1. \, c_2. \, c_4) + \, c_1. \, s_2. \, s_5) \\ r_{21} &= c_6. \, (c_5. \, (c_1. \, s_4 + \, c_2. \, c_4. \, s_1) - \, s_1. \, s_2. \, s_5) - \, s_6. \, (c_1. \, c_4 - \, c_2. \, s_1. \, s_4) \\ r_{31} &= -c_6. \, (c_2. \, s_5 + \, c_4. \, c_5. \, s_2) - \, s_2. \, s_4. \, s_6 \end{split}$$

$$r_{12} = s_6. (c_5. (s_1. s_4 - c_1. c_2. c_4) + c_1. s_2. s_5) + c_5. (c_4. s_1 + c_1. c_2. s_4)$$

$$r_{22} = -s_6. (c_5. (c_1. s_4 + c_2. c_4. s_1) - s_1. s_2. s_5) - c_5. (c_1. c_4 - c_2. s_1. s_4)$$

$$r_{32} = s_6. (c_2. s_5 + c_4. c_5. s_2) - c_5. s_2. s_4$$

$$r_{31} = c_1 \cdot c_5 \cdot s_2 - s_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4)$$

 $r_{32} = s_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) + c_5 \cdot s_1 \cdot s_2$
 $r_{33} = c_2 \cdot c_5 - c_4 \cdot s_2 \cdot s_5$

$$\begin{aligned} d_x &= d_3.\,c_1.\,s_2 - d_6.\,(s_5.\,(s_1.\,s_4 - c_1.\,c_2.\,c_4) - c_1.\,c_5.\,s_2) - d_2.\,s_1 \\ d_y &= d_2.\,c_1 + d_6.\,(s_5.\,(c_1.\,s_4 + c_2.\,c_4.\,s_1) + c_5.\,s_1.\,s_2) + d_3.\,s_1.\,s_2 \\ d_z &= d_6.\,(c_2.\,c_5 - c_4.\,s_2.\,s_5) + d_3.\,c_2 \end{aligned}$$

$$T_{6}^{0} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = s_6 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4) - c_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5)$$

$$r_{21} = c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_2 \cdot s_5 + c_4 \cdot c_5 \cdot s_2) - s_2 \cdot s_4 \cdot s_6$$

$$r_{12} = s_6. (c_5. (s_1. s_4 - c_1. c_2. c_4) + c_1. s_2. s_5) + c_5. (c_4. s_1 + c_1. c_2. s_4)$$

$$r_{22} = -s_6. (c_5. (c_1. s_4 + c_2. c_4. s_1) - s_1. s_2. s_5) - c_5. (c_1. c_4 - c_2. s_1. s_4)$$

$$r_{32} = s_6. (c_2. s_5 + c_4. c_5. s_2) - c_5. s_2. s_4$$

$$r_{31} = c_1 \cdot c_5 \cdot s_2 - s_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4)$$

 $r_{32} = s_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) + c_5 \cdot s_1 \cdot s_2$
 $r_{33} = c_2 \cdot c_5 - c_4 \cdot s_2 \cdot s_5$

$$\begin{aligned} d_x &= d_3.\,c_1.\,s_2 - d_6.\,(s_5.\,(s_1.\,s_4 - c_1.\,c_2.\,c_4) - c_1.\,c_5.\,s_2) - d_2.\,s_1 \\ d_y &= d_2.\,c_1 + d_6.\,(s_5.\,(c_1.\,s_4 + c_2.\,c_4.\,s_1) + c_5.\,s_1.\,s_2) + d_3.\,s_1.\,s_2 \\ d_z &= d_6.\,(c_2.\,c_5 - c_4.\,s_2.\,s_5) + d_3.\,c_2 \end{aligned}$$

J.Nassour

$$T_{6}^{0} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = s_6. (c_4. s_1 + c_1. c_2. s_4) - c_6. (c_5. (s_1. s_4 - c_1. c_2. c_4) + c_1. s_2. s_5)$$

$$r_{21} = c_6. (c_5. (c_1. s_4 + c_2. c_4. s_1) - s_1. s_2. s_5) - s_6. (c_1. c_4 - c_2. s_1. s_4)$$

$$r_{31} = -c_6. (c_2. s_5 + c_4. c_5. s_2) - s_2. s_4. s_6$$

$$r_{12} = s_6. (c_5. (s_1. s_4 - c_1. c_2. c_4) + c_1. s_2. s_5) + c_5. (c_4. s_1 + c_1. c_2. s_4)$$

$$r_{22} = -s_6. (c_5. (c_1. s_4 + c_2. c_4. s_1) - s_1. s_2. s_5) - c_5. (c_1. c_4 - c_2. s_1. s_4)$$

$$r_{32} = s_6. (c_2. s_5 + c_4. c_5. s_2) - c_5. s_2. s_4$$

$$r_{31} = c_1 \cdot c_5 \cdot s_2 - s_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4)$$

 $r_{32} = s_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) + c_5 \cdot s_1 \cdot s_2$
 $r_{33} = c_2 \cdot c_5 - c_4 \cdot s_2 \cdot s_5$

$$\begin{aligned} d_x &= d_3. \, c_1. \, s_2 \, - \, d_6. \, (s_5. \, (s_1. \, s_4 - \, c_1. \, c_2. \, c_4) - \, c_1. \, c_5. \, s_2) \, - \, d_2. \, s_1 \\ d_y &= d_2. \, c_1 \, + \, d_6. \, (s_5. \, (c_1. \, s_4 \, + \, c_2. \, c_4. \, s_1) \, + \, c_5. \, s_1. \, s_2) \, + \, d_3. \, s_1. \, s_2 \\ d_z &= d_6. \, (c_2. \, c_5 - \, c_4. \, s_2. \, s_5) + \, d_3. \, c_2 \end{aligned}$$

$$T_{6}^{0} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = s_6 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4) - c_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5)$$

$$r_{21} = c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{14} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_5)$$

$$r_{15} = s_6 \cdot ($$

$$d_x = d_3. c_1. s_2 - d_6. (s_5. (s_1. s_4 - c_1. c_2. c_4) - c_1. c_5. s_2) - d_2. s_1$$

$$d_y = d_2. c_1 + d_6. (s_5. (c_1. s_4 + c_2. c_4. s_1) + c_5. s_1. s_2) + d_3. s_1. s_2$$

$$d_z = d_6. (c_2. c_5 - c_4. s_2. s_5) + d_3. c_2$$

In the configuration shown, find:

$$T_{6}^{0} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = s_6 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4) - c_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5)$$

$$r_{21} = c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{14} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1)$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_5$$

$$d_x = d_3. c_1. s_2 - d_6. (s_5. (s_1. s_4 - c_1. c_2. c_4) - c_1. c_5. s_2) - d_2. s_1$$

$$d_y = d_2. c_1 + d_6. (s_5. (c_1. s_4 + c_2. c_4. s_1) + c_5. s_1. s_2) + d_3. s_1. s_2$$

$$d_z = d_6. (c_2. c_5 - c_4. s_2. s_5) + d_3. c_2$$

In the configuration shown, find:

$$T_6^0 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = s_6 \cdot (c_4 \cdot s_1 + c_1 \cdot c_2 \cdot s_4) - c_6 \cdot (c_5 \cdot (s_1 \cdot s_4 - c_1 \cdot c_2 \cdot c_4) + c_1 \cdot s_2 \cdot s_5)$$

$$r_{21} = c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{31} = -c_6 \cdot (c_5 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5) - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{12} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{13} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_2 \cdot s_5 - s_6 \cdot (c_1 \cdot c_4 - c_2 \cdot s_1 \cdot s_4)$$

$$r_{14} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{15} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{17} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{17} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{17} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{17} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot s_4$$

$$r_{17} = s_6 \cdot (c_1 \cdot s_4 + c_2 \cdot c_4 \cdot s_1) - s_1 \cdot s_4 \cdot$$

$$d_x = d_3. c_1. s_2 - d_6. (s_5. (s_1. s_4 - c_1. c_2. c_4) - c_1. c_5. s_2) - d_2. s_1$$

$$d_y = d_2. c_1 + d_6. (s_5. (c_1. s_4 + c_2. c_4. s_1) + c_5. s_1. s_2) + d_3. s_1. s_2$$

$$d_z = d_6. (c_2. c_5 - c_4. s_2. s_5) + d_3. c_2$$

i	a_i	α_i	d_i	$ heta_{m{i}}$
1	0	-90 °	0	$ heta_1$ *
2	0	+90 °	d_2	$oldsymbol{ heta_2}^*$
3	0	0 °	<i>d</i> ₃ *	0
4	0	-90 °	0	$oldsymbol{ heta_4}^{*}$
5	0	+90 °	0	$oldsymbol{ heta_5}^*$
6	0	0 °	d_6	$ heta_6$ *

Reminder:
$$A_i$$

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & 0 & s_2 & 0 \\ s_2 & 0 & -c_2 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} c_5 & 0 & s_5 & 0 \\ s_5 & 0 & -c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

145

```
1
                          2 -
                                t1= sym('t1');t2= sym('t2');d3= sym('d3');t4= sym('t4');t5= sym('t5');
                          3 -
                                t6= sym('t6');d2= sym('d2');d6= sym('d6');r11= sym('r11');r12= sym('r12');
                          4 -
                                r13= sym('r13');r21= sym('r21');r22= sym('r22');r23= sym('r23');
                          5 -
                                r31= sym('r31');r32= sym('r32');r33= sym('r33');dx= sym('dx');
                          6 -
                                dv= svm('dv');dz= svm('dz');
                          7
                                *************************************
 2
                          8 -
    2 -
                                A1=[
                                        cos(t1).

    -sin(t1),

                                                                    0;...
           t1= sym('t1'
 3
    3 -
                          9
                                        sin(t1),
                                                         cos(t1),
           t6= sym('t6')
                                                    Ο,
                                                                    0;...
 4
          r13= sym('r13
                                                                     0;...
                         10
                                              Ο,
                                                   -1,
                                                                Ο,
 5
                                                                    1 ];
                         11
    5 -
          r31= sym('r31
                                              Ο,
                                                    Ο,
 6
           dy= sym('dy'
                         12
                                 7
                         13 -
                                A2=[
                                        cos(t2),
                                                     Ο,
                                                         sin(t2),
                                                                    0;...
 8
          A1=[
                         14
                                        sin(t2),
                                                                    0;...
                  cos(t
                                                    Ο,
                                                       -cos(t2),
 9
                  sin(t
                         15
                                              0,
                                                                Ο,
                                                                   d2;...
                                                    1,
10
   10
11
                         16
                                                                    1 1;
                                              Ο,
                                                    Ο,
                                                                Ο,
   11
12
                         17
                                12
13
          8888888888888
                                A3=[
                                              1,
                                                    0,
                                                                Ο,
                                                                    0;...
   13
14
          A2=[
                  cos(t
                         19
                                                                    0;...
                                              Ο,
                                                    1,
                                                                0,
15
   14
                  sin(t
                         20
                                                     Ο,
                                                                   d3; . . .
                                              0,
16
   15
                         21
                                                                    1 1;
   16
17
                         22
                                17
18
           888888888888
                         23 -
                                A4=[
                                        cos(t4),

 -sin(t4),

19
   18
          A3=[
                         24
                                        sin(t4),
                                                    Ο,
                                                         cos(t4),
                                                                    0;...
   19
20
                         25
                                                                    0;...
                                              Ο,
                                                   -1,
                                                               Ο,
21
   20
                         26
                                                    0,
                                                                    1 1;
22
   21
                         27
                                                   8888888888888888888888
23
   22
           888888888888
                         28 -
                                A5=Γ
                                        cos(t5),
                                                    Ο,
                                                         sin(t5),
                                                                    0:...
24
   23
          A4=[
                  cos(t
                         29
                                         sin(t5),
                                                    0,
                                                                    0;...
                                                        -cos(t5),
25
   24
                  sin(t
                         30
                                              Ο,
                                                    1,
                                                               Ο,
                                                                    0;...
26
   25
                         31
                                                                    1 1:
                                                    Ο,
27
   26
                         32
                                 *******************
28
   27
                         33 -
                                A6=[
                                        cos(t6), -sin(t6),
                                                                  0;...
29
   28
          A5=[
                  cos(t
                         34
                                         sin(t6),
                                                  cos(t6),
                                                             0.
                                                                  0:...
30
   29
                  sin(t
                         35
                                              0,
                                                        0,
                                                             1,
                                                                 d6; ...
31
   30
                         36
                                                        0,
                                                             Ο,
                                                                  1 ];
32
   31
                         37
33
   32
           888888888888
                         38 -
                                A12= A1*A2;
34
   33
          A6=[
                  cos (t
                                A123= A1*A2*A3:
                         39 -
35
   34
                  sin(t
                         40 -
                                A1234= A1*A2*A3*A4:
36
   35
                         41 -
                                A12345= A1*A2*A3*A4*A5;
37
   36
                                A123456= A1*A2*A3*A4*A5*A6;
                         42 -
   37
           %%%%%%%%%%%%%%
                         40
```

d6;...| 1]; %%%%%%%%%%

0:...

$$r_{11} = -c_{6}(c_{5}(s_{1}s_{4} - c_{1}c_{2}c_{4}) + c_{1}s_{2}s_{5}) - s_{6}(c_{4}s_{1} + c_{1}c_{2}s_{4})$$

$$r_{21} = c_{6}(c_{5}(c_{1}s_{4} + c_{2}c_{4}s_{1}) - s_{1}s_{2}s_{5}) + s_{6}(c_{1}c_{4} - c_{2}s_{1}s_{4})$$

$$r_{31} = s_{2}s_{4}s_{6} - c_{6}(c_{2}s_{5} + c_{4}c_{5}s_{2})$$

$$r_{12} = s_{6}(c_{5}(s_{1}s_{4} - c_{1}c_{2}c_{4}) + c_{1}s_{2}s_{5}) - c_{6}(c_{4}s_{1} + c_{1}c_{2}s_{4})$$

$$r_{22} = c_{6}(c_{1}c_{4} - c_{2}s_{1}s_{4}) - s_{6}(c_{5}(c_{1}s_{4} + c_{2}c_{4}s_{1}) - s_{1}s_{2}s_{5})$$

$$r_{32} = s_{6}(c_{2}s_{5} + c_{4}c_{5}s_{2}) + c_{6}s_{2}s_{4}$$

$$r_{13} = c_{1}c_{5}s_{2} - s_{5}(s_{1}s_{4} - c_{1}c_{2}c_{4})$$

$$r_{23} = s_{5}(c_{1}s_{4} + c_{2}c_{4}s_{1}) + c_{5}s_{1}s_{2}$$

$$r_{33} = c_{2}c_{5} - c_{4}s_{2}s_{5}$$

$$d_{x} = d_{3}c_{1}s_{2} - d_{6}(s_{5}(s_{1}s_{4} - c_{1}c_{2}c_{4}) - c_{1}c_{5}s_{2}) - d_{2}s_{1}$$

$$d_{y} = d_{2}c_{1} + d_{6}(s_{5}(c_{1}s_{4} + c_{2}c_{4}s_{1}) + c_{5}s_{1}s_{2}) + d_{3}s_{1}s_{2}$$

$$d_{z} = d_{6}(c_{2}c_{5} - c_{4}s_{2}s_{5}) + d_{3}c_{2}$$

J.Nassour

```
r_{11} = -c_6(c_5(s_1s_4 - c_1c_2c_4) + c_1s_2s_5) - s_6(c_4s_1 + c_1c_2s_4)
r_{21} = c_6(c_5(c_1s_4 + c_2c_4s_1) - s_1s_2s_5) + s_6(c_1c_4 - c_2s_1s_4)
r_{31} = s_2 s_4 s_5 - c_6 (c_2 s_5 + c_4 c_5 s_2)
                    1.0000
                                                                                            \theta_5
r_{32} =
                                                             0.2000
                                  1.0000
                                                             1,2000
                                                            1.0000
                                                                                   d6= 0.2:
                                                                                                               d_3
d_x = d_3c_1s_2 - d_6(s_5(s_1s_4 - c_1c_2c_4) - c_1c_5s_2) - d_2s_1
d_{\nu} = d_2 c_1 + d_6 (s_5 (c_1 s_4 + c_2 c_4 s_1) + c_5 s_1 s_2) + d_3 s_1 s_2
d_z = d_6(c_2c_5 - c_4s_2s_5) + d_3c_2
```

 d_2

148

14.11.2017 J.Nassour

```
t1 = 0;
r_{11} = -c_6(c_5(s_1s_4 - c_1))
                                                        s_6(c_4s_1 + c_1c_2s_4) 
 {}_6(c_1c_4 - c_2s_1s_4)
                                    t2 = 0:
r_{21} = c_6(c_5(c_1s_4 + c_2c_4))
                                    d3 = 1:
r_{31} = s_2 s_4 s_6 - c_6 (c_2 s_5)
                                    t4 = 0:
                                                                                                x_6 < 5\theta_6
                                   t5 = pi/2.0;
                                                        |_{6}(c_{4}s_{1}+c_{1}c_{2}s_{4})|
r_{12} = s_6(c_5(s_1s_4 - c_1c_2))
                                    t6=0;
                                                        (c_2c_4s_1) - s_1s_2s_5
r_{22} = c_6(c_1c_4 - c_2s_1s_4)
                                    d2 = 0.2;
r_{32} = s_6(c_2s_5 + c_4c_5s_2)
                                    d6=0.2:
r_{13} = c_1 c_5 s_2 - s_5 (s_1 s_4 - c_1 c_2 c_4)
      A123456 =
                                                                                                                   d_3
            0.0000
                                          1.0000
                                                         0.2000
                                                                                      Z_0
                           0.0000
                                                         0.2000
          -1.0000
                                          0.0000
                                                         1.0000
                                                                                                d_2
                                                                                                             149
    14.11.2017
                                                      J.Nassour
```

```
t1 = 0:
r_{11} = -c_6(c_5(s_1s_4 -
                                                s_6(c_4s_1 + c_1c_2s_4)
                                                 (c_1c_4 - c_2s_1s_4)
r_{21} = c_6(c_5(c_1s_4 + c_2c_3))
                             t2 = 0;
                            d3= 1;
r_{31} = s_2 s_4 s_6 - c_6 (c_2 s_5)
                             t4 = pi/2.0;
                                                                                 x_6 < 5\theta_6
                                                (c_4s_1 + c_1c_2s_4)
r_{12} = s_6(c_5(s_1s_4 - c_1c)  t5= pi/2.0;
                                                 (c_4s_1) - s_1s_2s_5
r_{22} = c_6(c_1c_4 - c_2s_1s_4) t6= 0;
r_{32} = s_6(c_2s_5 + c_4c_5s_2) d2= 0.2;
                             d6=0.2:
r_{13} = c_1 c_5 s_2 - s_5 (s_1 s_4)
r - c(cc \perp ccc \rightarrow ccc
                                                                                                d_3
 A123456 =
       0.0000
                   -1.0000
                                    0.0000
                                                  0.0000
       0.0000
                                                  0.4000
                     0.0000
                                    1.0000
      -1.0000
                                    0.0000
                                                  1.0000
                                                  1.0000
```

 d_2

150

14.11.2017 J.Nassour

 a_2

 θ_3

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	0	
2	a_2	0 °	d_2	
3	a_3	90 °	0	
4	0	-90 °	d_4	
5	0	+90 °	0	
6	0	0 °	d_6	

 $\boldsymbol{z_0}$

 $\boldsymbol{z_1}$

Reminder:
$$A_i$$

$$\begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

i	a_i	α_i	d_i	$ heta_i$
1	0	-90 °	0	$oldsymbol{ heta_1}^*$
2	a_2	0 °	d_2	$oldsymbol{ heta_2}^*$
3	a_3	90 °	0	θ_3 *
4	0	–90 °	d_4	$oldsymbol{ heta_4}^*$
5	0	+90 °	0	θ_5 *
6	0	0 °	d_6	θ_6 *

Coordinate Transformation Matrices

$$\mathbf{A}_0^1 = \begin{bmatrix} C_1 & 0 & -S_1 & 0 \\ S_1 & 0 & C_1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_1^2 = \begin{bmatrix} C_2 & -S_2 & 0 & a_2 C_2 \\ S_2 & C_2 & 0 & a_2 S_2 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_2^3 = \begin{bmatrix} C_3 & 0 & S_3 & a_3 C_3 \\ S_3 & 0 & -C_3 & a_3 S_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{3}^{4} = \begin{bmatrix} C_{4} & 0 & -S_{4} & 0 \\ S_{4} & 0 & C_{4} & 0 \\ 0 & -1 & 0 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_{4}^{5} = \begin{bmatrix} C_{5} & 0 & S_{5} & 0 \\ S_{5} & 0 & -C_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_{5}^{6} = \begin{bmatrix} C_{6} & -S_{6} & 0 & 0 \\ S_{6} & C_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

```
 \begin{aligned} \mathbf{r}_{11} &= -\mathbf{s}_{6} \left( \mathbf{c}_{4}\mathbf{s}_{1} - \mathbf{s}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) - \mathbf{c}_{6} \left( \mathbf{c}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) + \mathbf{s}_{5} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) \right) \\ \mathbf{r}_{12} &= \mathbf{s}_{6} \left( \mathbf{c}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) + \mathbf{s}_{5} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) \right) - \mathbf{c}_{6} \left( \mathbf{c}_{4}\mathbf{s}_{1} - \mathbf{s}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) \\ \mathbf{r}_{13} &= \mathbf{c}_{5} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{s}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) \\ \mathbf{d}_{x} &= \mathbf{d}_{4} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{d}_{2}\mathbf{s}_{1} - \mathbf{d}_{6} \left( \mathbf{s}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) - \mathbf{c}_{5} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) \right) \\ \mathbf{d}_{x} &= \mathbf{d}_{4} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{d}_{2}\mathbf{s}_{1} - \mathbf{d}_{6} \left( \mathbf{s}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3}) \right) \\ \mathbf{d}_{x} &= \mathbf{d}_{4} (\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{d}_{2}\mathbf{s}_{1} - \mathbf{d}_{6} \left( \mathbf{s}_{5} (\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4} (\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3}) \right) \\ \mathbf{d}_{x} &= \mathbf{d}_{6} \left( \mathbf{c}_{1}\mathbf{c}_{4} + \mathbf{s}_{4} (\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{2}\mathbf{c}_{3}\mathbf{s}_{1}) \right) + \mathbf{c}_{6} \left( \mathbf{c}_{5} (\mathbf{c}_{1}\mathbf{s}_{4} - \mathbf{c}_{4} (\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{2}\mathbf{c}_{3}\mathbf{s}_{1}) \right) \\ \mathbf{d}_{x} &= \mathbf{d}_{6} \left( \mathbf{c}_{1}\mathbf{c}_{4} + \mathbf{s}_{4} (\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{2}\mathbf{c}_{3}\mathbf{s}_{1}) \right) + \mathbf{c}_{5} \left( \mathbf{c}_{2}\mathbf{s}_{1}\mathbf{s}_{3} + \mathbf{c}_{3}\mathbf{s}_{1} \mathbf{s}_{2} \right) \\ \mathbf{d}_{y} &= \mathbf{d}_{6} \left( \mathbf{s}_{1}\mathbf{c}_{1}\mathbf{c}_{4} + \mathbf{s}_{4} (\mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{2}\mathbf{c}_{3}\mathbf{s}_{1} \right) \right) + \mathbf{c}_{5} \left( \mathbf{c}_{2}\mathbf{s}_{1}\mathbf{s}_{3} + \mathbf{c}_{3}\mathbf{s}_{1} \mathbf{s}_{2} \right) \\ \mathbf{d}_{y} &=
```

$$\begin{array}{c} \mathbf{r}_{11} = -\mathbf{s}_{6}(\mathbf{c}_{4}\mathbf{s}_{1} - \mathbf{s}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) - \mathbf{c}_{6}\left(\mathbf{c}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})\right) + \mathbf{s}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) + \mathbf{s}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) + \mathbf{s}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) \\ \mathbf{r}_{13} = \mathbf{c}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) \\ \mathbf{r}_{13} = \mathbf{c}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{s}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) \\ \mathbf{r}_{13} = \mathbf{c}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{s}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) \\ \mathbf{r}_{14} = \mathbf{r}_{14}(\mathbf{r}_{1}\mathbf{s}_{2}\mathbf{s}_{3} + \mathbf{r}_{14}\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3}) + \mathbf{r}_{24}(\mathbf{r}_{1}\mathbf{s}_{2}\mathbf{s}_{3} + \mathbf{r}_{14}\mathbf{c}_{3}\mathbf{s}_{2}\mathbf{s}_{3}) \\ \mathbf{r}_{14} = \mathbf{r}_{14}(\mathbf{r}_{1}\mathbf{s}_{2}\mathbf{s}_{3} + \mathbf{r}_{14}\mathbf{s}_{3}\mathbf{s}_{2}\mathbf{s}_{3}) \\ \mathbf{r}_{15} = \mathbf{r}_{15}(\mathbf{r}_{1}\mathbf{s}_{3}\mathbf{s}_{3} + \mathbf{r}_{14}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}) \\ \mathbf{r}_{15} = \mathbf{r}_{15}(\mathbf{r}_{1}\mathbf{s}_{3}\mathbf{s}_{3} + \mathbf{r}_{14}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}\mathbf{s}_{3}) \\ \mathbf{r}_{15} = \mathbf{r}_{15}(\mathbf{r}_{1}\mathbf{s}_{3}\mathbf{s$$

```
r_{11} = -s_6(c_4s_1 - s_4(c_1s_2s_3 - c_1c_2c_3)) - c_6(c_5(s_1s_4 + c_4(c_1s_2s_3 - c_1c_2c_3)) + s_5(c_1c_2s_3 + c_1c_3s_2))
r_{12} = s_6 \left( c_5 \left( s_1 s_4 + c_4 (c_1 s_2 s_3 - c_1 c_2 c_3) \right) + s_5 (c_1 c_2 s_3 + c_1 c_3 s_2) \right) - c_6 \left( c_4 s_1 - s_4 (c_1 s_2 s_3 - c_1 c_2 c_3) \right)
r_{13} = c_5(c_1c_2s_3 + c_1c_3s_2) - s_5(s_1s_4 + c_4(c_1s_2s_3 - c_1c_2c_3))
                                          \theta_2 >
                                                                                         A123456 =
γ
                                                                                                0.0000
                                                                                                              -1.0000
                                                                                                                                 0.0000
                                                                                                                                                -0.1491
                                                                  \theta_3
         \boldsymbol{z_0}
                                                                                                              0.0000
                                                                                                                                1.0000
                                                                                                0.0000
                                                                                                                                               0.9211
γ
                                                                                               -1.0000
                                                                                                                                 0.0000
                                                                                                                                               -0.0203
c
                                                                                                                                                 1.0000
                                                                                                                                 13
                                                                                                                                           t1= pi/2.0;
                                                                                        -a_3c_2s_3-a_3c_3s_2
                                                                                                                                           t2 = 0;
          \theta_1
                                                                                                                                           t3 = pi/2.0;
                                                                                                                                           t4 = 0;
                                                                                                                                           t5=0;
                                                                                                                                           t6= 0:
                                                                                                                                           a2 = 0.4318;
                                                                                                                                           d2= 0.14909;
                                                                                                                                           a3= 0.02032;
                                                                                                                                           d4= 0.43307;
                                                                                                                                 25 -
                                                                                                                                           d6= 0.05625;
```


 a_i is distance from z_{i-1} to z_i measured along x_i .

$$\begin{array}{c} \mathbf{r}_{11} = -\mathbf{s}_{6}(\mathbf{c}_{4}\mathbf{s}_{1} - \mathbf{s}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) - \mathbf{c}_{6}\left(\mathbf{c}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})\right) + \mathbf{s}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2})\right) \\ \mathbf{r}_{12} = \mathbf{s}_{6}\left(\mathbf{c}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})\right) + \mathbf{s}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2})) \\ \mathbf{r}_{13} = \mathbf{c}_{5}(\mathbf{c}_{1}\mathbf{c}_{2}\mathbf{s}_{3} + \mathbf{c}_{1}\mathbf{c}_{3}\mathbf{s}_{2}) - \mathbf{s}_{5}(\mathbf{s}_{1}\mathbf{s}_{4} + \mathbf{c}_{4}(\mathbf{c}_{1}\mathbf{s}_{2}\mathbf{s}_{3} - \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3})) \\ \mathbf{c} \\$$

NAO Zero Position

Provided by Aldebaran Robotics

The torso is the point where all the kinematic chains begin and is located at the center of the NAO body.

NAO Zero Position

HandOffsetX 57,75 mm

LowerArmLength 55,95 mm

ThighLength

TibiaLength 102,90 mm

14.11.2017

ElbowOffsetY 15 mm

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from \mathbf{z}_{i-1} to \mathbf{z}_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} .

 θ_i is angle from x_{i-1} to x_i measured about z_{i-1} . x_1 x_2 $\boldsymbol{z_T}$ χ_4 J.Nassour 181

i	a_i	α_i	d_i	θ_i
0	$T^{BASE}_{0}(0,ShoulderOffsetY,ShoulderOffsetZ)$			
1	0	90 °	0	$oldsymbol{ heta_1}^*$
2	a_2	90 °	0	$\left(\frac{\pi}{2}\right) + \theta_2$
3	0	–90 °	d_3	$oldsymbol{ heta_3}^*$
4	0	+90 °	0	$oldsymbol{ heta_4}^*$
5	a_5	0 °	d_5	$\left(\frac{\pi}{2}\right) + \theta_5$

14.11.2017

TBASE = ?

HendOffielt | 1231 mm | 125 mm | 15 mm | 15

 a_i is distance from z_{i-1} to z_i measured along x_i . α_i is angle from z_{i-1} to z_i measured about x_i . d_i is distance from x_{i-1} to x_i measured along z_{i-1} . θ_i is angle from x_{i-1} to x_i measured about z_{i-1} .

