

Funciones de Congestión en Corredores Segregados de Buses

Leonardo J. Basso – Universidad de Chile Cristián E. Cortés - Universidad de Chile Jaime Orrego – UOCT, MTT

Introducción

- Se han hecho esfuerzos por entender como funcionan los sistemas de transporte y de predecir el impacto de la implementación de proyectos de infraestructura o gestión.
- Este interés se hace particularmente relevante al momento de definir politicas públicas afines, así como de priorizar planes de inversión.

Introducción

- Debemos ser capaces de identificar claramente los parámetros de la demanda y capturar adecuadamente su relación con la oferta.
- Caso especial relevante: transporte público, debido a su sensibilidad sobre las personas.
- En este análisis interesa la relación de la velocidad comercial con la frecuencia, demanda, posición de los paraderos, número de puertas de los buses, etc.

Introducción

Disponer de herramientas claras permiten al planificador evaluar de mejor forma proyectos de transporte (ej. buses) incluyendo diseño de infraestructura, así como otros proyectos de gestión (ej. tarificación vial).

Motivación

- Parte esencial de la definición de la oferta es el nivel de servicio, estrechamente ligado con la velocidad comercial.
- El estudio de proyectos a nivel estratégico y táctico obvia la diferencia que existe entre buses y autos, pese a que su comportamiento difiere enormemente. Por lo tanto se requieren herramientas que sean capaces de distinguir esa diferencia.

Motivación

- Naturaleza multivariable del problema no permite un desarrollo teórico analítico de funciones realistas. (Pax,f,S,p,C)
- Punto de vista empírico: impracticable obtener todos los escenarios posibles con variabilidad suficiente para calibrar buenos modelos.
- Esfuerzos han estado en el desarrollo de herramientas para complementar estos aspectos: ejemplo, microsimulación de tráfico.

Contexto actual

- Plan maestro de transporte 2025
 - Corredores de TP en Gran Santiago
 - Proyectos de vialidad en tráfico mixto en escenario con el doble de autos
- Herramienta actual: Funciones BPR

$$t = t_f \left(1 + a \left(\frac{q}{Q} \right)^b \right)$$

Castiga velocidad cuando se alcanza Q entre 10% y 20%

Premisa

 Existe una gran simplificación en el modelamiento de la velocidad en sistemas de tráfico. Por ello se plantea extender el análisis del fenómeno a través del uso de pseudodata generada con suficiente variabilidad mediante simulación de tráfico, de donde sea posible estimar funciones de flujo demora robustas y confiables.

Función de congestión

- Modelamiento matemático: se distingue dos casos,
 - Tráfico segregado,
 - Modelos de velocidad de autos en función de los autos.
 - Modelos de velocidad de buses en función de frecuencia, demanda, etc.
 - Tráfico mixto:
 - Modelos de velocidad de autos en función de autos y buses (incluyendo frecuencia, demanda, etc.)
 - Modelos de velocidad de buses en función de autos, buses (incluyendo frecuencia, demanda, etc.)

Enfoque de modelación

- Se trabajó utilizando un API del microsimulador comercial PARAMICS.
- PARAMICS por defecto presenta limitaciones en el tratamiento al transporte público. (Cortés et. al, 2010; Fernández et. al, 2010)
- Desarrollo de API se detalla en Castillo et. al (2011), el cual se ajusta para efectos de este trabajo.

API: PARAMICS

- API desarrollado:
 - Incorpora pasajeros como objetos con características propias.
 - Modela la interacción de pasajeros con el bus (TSP)
- API se mejora con:
 - Diferentes modelos estocásticos en la llegada de buses y pasajeros.
 - Modelo nuevo de interacción de pasajeros con el bus.
 - Optimización en el proceso de simulación.

Modelo de tiempo de servicio de pasajeros

 Modelo TSP calibrado con data de Castillo et. al (2011)

$$TSP = \beta_0 + \max \left\{ (\beta_1 + \beta_{dum_9} * \delta_{Ps>9}) * Ps; \beta_2 * \frac{P_b}{P} \right\}$$

 P_b Pasajeros que bajan

 P_s Pasajeros que suben

P Número de puerta

 $\delta_{P_s>9}$ Variable binaria por número de pasajeros

Escenarios de simulación

Red tipo sobre la cual se variarán distintos parámetros para simular muchos casos posibles.

Parámetro	Valor Mínimo	Valor Máximo	Puntos intermedios
Pasajeros por paradero por bus [Pax/par*bus]	100	2000	10
Frecuencia [Bus/Hr]	10	120	10

Escenarios de simulación

Parámetro	#1	#2	#3
Ciclo (u=0.67)	60	120	-
Posiión Relativa	Inmediatamente antes	Inmediatamente después	Al medio
Largo entre intersecciones	150	250	300
Tipo de Bus	Pequeño (2 puertas)	Mediano (3 Puertas)	Articulado (4 puertas)

En total resultan más de 100.000 simulaciones

Resultados de la simulación

 Dos regímenes claramente definidos, uno con congestión y otro sin.

Especificación del modelo

- Congestión existente en paraderos y no en la circulación de los buses.
- Después de distintos análisis se obtiene la siguiente especificación

f

Frecuencia

pax

Pasajeros

PR

Posición relativa

L K

Largo entre intersecciones

C

Capacidad de los buses

$$V_{com} = \beta_0 + \beta_1 f + \beta_2 pax f + \beta_3 pax + \beta_4 PR$$
$$+\beta_5 (L - 150) + \beta_6 PR * L + \beta_7 (K - 40) + \beta_8 \frac{L}{C}$$

Calibración Modelo de Velocidad

Parámetro	Valor
$ m R^2$	0.901
eta_0	15.906
eta_1	0.005 (6.52)
eta_2	-0.004 (93.76)
eta_3	-0.188 (-73.79)
eta_4	-1.981 (-13.21)
eta_5	0.035 (85.03)
eta_6	0.007 (11.66)
eta_7	-0.010 (-42.26)
eta_8	0.603 (61.78)

$$V_{com} = \beta_0 + \beta_1 f + \beta_2 pax f + \beta_3 pax + \beta_4 PR$$
$$+\beta_5 (L - 150) + \beta_6 PR * L + \beta_7 (K - 40) + \beta_8 \frac{L}{C}$$

Aplicación Jansson

 Se propone como ejemplo hacer una aplicación sobre el modelo clásico de Jansson (1984). Este enfoque clásico consigue obtener un resultado para la frecuencia y capacidad óptima, a través de la minimización del gasto total del sistema en una línea única.

$$GT = (Tf + tY)(C_0 + C_1K) + P_w \frac{Y}{2f} + P_v \frac{l}{L_r} t_c Y$$

Este modelo considera un tiempo fijo para la subida y bajada de pasajeros y para el tiempo de ciclo.

Resultados de la aplicación

Rojo(Jansson Clásico), Azul(Modelo de velocidad)

 Las frecuencias considerando congestión y otros parámetros resultan más bajas que las frecuencias con tiempo de subida y bajada fijos, con tiempo de ciclo fijo. Del mismo modo el primero obtiene capacidades más altas que el segundo.

Efectos en el subsidio óptimo

CMeU (Rojo), CMgT (Amarillo verdoso) y CMeT(Azul)

El subsidio óptimo sería mayor, pese a que el CMeT es más bajo, el CMgT bajaría más en proporción.

Conclusiones

- Los modelos actualmente utilizados en la práctica son demasiado simplificados, por lo que se cuestiona su capacidad para haceruna buena predicción del impacto de proyectos de transporte.
- En este trabajo se obtiene una función de velocidad a partir de pseudodata obtenida utilizando un modelo de simulación microscópica de tráfico.
- Este enfoque, que calibra una función, puede ser replicada para evaluar el desempeño de políticas públicas a nivel estratégico y táctico.
- El paso siguiente es adecuar la API del microsimulador para operar en tráfico mixto y así calibrar esas funciones.