Шаблон отчёта по лабораторной работе

Простейший вариант

Дмитрий Сергеевич Кулябов

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	13
Список литературы		14

Список иллюстраций

4.1	Структура каталогов
4.2	Создали репозиторий
4.3	Репозиторий в github
	Репозиторий локально
4.5	Результат git clone
4.6	Создание структуры через make
4.7	Установка pandoc и latex
4.8	Коммит изменений через git
4.9	Git push
4.10	Результат git push в github

Список таблиц

1 Цель работы

Ознакомиться с git и Markdown. Сформировать рабочее окружение.

2 Задание

Создайте каталоги для работы на основе документа Рабочее пространство для лабораторной работы.

3 Теоретическое введение

Методичка по git Методичка по Markdown

4 Выполнение лабораторной работы

Создаем структуру каталогов (рис. 4.1).

```
    work mkdir -p study/2022-2023/Математическое\ моделирование
    work ls
    study
    work cd study
    work cd study
    study cd 2022-2023
    2022-2023 ls
    Математическое моделирование
    2022-2023 cd Математическое\ моделирование
    Математическое моделирование pnd
    VISers/stept-kos/Deskto/work/study/2022-2023/Математическое моделирование
    Математическое моделирование
    Математическое моделирование
```

Рис. 4.1: Структура каталогов

Создаем репозиторий на github (рис. 4.2).

```
    Математическое моделирование gh repo create study_2022-2023_mathmod --template=yamadharma/course-directory-student-template --public
    Сreated repository stepaKosolapov/study_2022-2023_mathmod on GitHub
    Математическое моделирование
```

Рис. 4.2: Создали репозиторий

Видим, что репозиторий создался (рис. 4.3).

Рис. 4.3: Репозиторий в github

Клонируем себе репозиторий локально (рис. 4.4).

```
** Ματενατическое моделирование git clone --recursive git@github.com:stepaKosolapov/study_2022-2023_mathmod.git mathmod
Cloning into 'mathmod'...
remote: Enumerating objects: 100% (27/27), done.
remote: Counting objects: 100% (27/27), done.
remote: Counting objects: 100% (27/27), done.
remote: Total 27 (delta 1), reused 11 (delta 0), pack-reused 0
Receiving objects: 100% (27/27), 164 (His | 8.47 MiB/s, done.
Resolving objects: 100% (27/27), 164 (His | 8.47 MiB/s, done.
Resolving deltas: 100% (1/1), done.
Submodule 'template/presentation' (https://github.com/yamadharma/academic-presentation-markdown-template.git) registered for path 'template/presentation'
Cloning into 'Vusers/stepa-kos/Desktop/work/study/2022-2023/Mateмatuveckoe моделирование/mathmod/template/presentation'...
remote: Enumerating objects: 82, done.
remote: Counting objects: 100% (82/82), done.
remote: Total 82 (delta 28), reused 77 (delta 23), pack-reused 0
Receiving objects: 100% (82/82), done.
Resolving deltas: 100% (28/28), done.
Resolving objects: 100% (101/101), done.
remote: Enumerating objects: 100% (70/70), done.
remote: Enumerating objects: 100% (101/101), done.
remote: Counting objects: 100% (101/101), done.
remote: Enumerating objects: 100% (101/101), done.
remote: Total 101 (delta 40), reused 88 (delta 27), pack-reused 0
Receiving objects: 100% (101/101), 327.25 Kisl | 2.13 MiB/s, done.
Resolving deltas: 100% (101/101), 327.25 Kisl | 2.13 MiB/s, done.
Resolving deltas: 100% (101/101), 327.25 Kisl | 2.13 MiB/s, done.
Resolving deltas: 100% (101/101), done.
remote: Total 101 (delta 40), reused 88 (delta 27), pack-reused 0
Receiving objects: 100% (101/101), 327.25 Kisl | 2.13 MiB/s, done.
Resolving deltas: 100% (40/40), don
```

Рис. 4.4: Репозиторий локально

Репозиторий склонировался (рис. 4.5).

Рис. 4.5: Результат git clone

Далее создаем структуру каталогов через make (рис. 4.6).

```
* mathmod git:(master) make list
arch-pc Apxirexrypa 3BM
sciprog-intro Beegewie в научное программирование
infosec Информационная безопасность
mathmod Математическое моделирование
sciprog Ноучное программирование
sciprog Hoywhoe программирование
mathmod git:(master) wim Makefile
mathmod git:(master) wim Makefile
mathmod git:(master) x l labs
HabME.git-flow.md config package.json presentation template
mathmod git:(master) x l labs
mathmod git:(master) x l labs
mathmod git:(master) x l labs
```

Рис. 4.6: Создание структуры через make

Устаанвливаем pandoc и mactex(texlive для OSX) (рис. 4.7).

```
→ report git:(master) x ls

Makefile bib image pandoc report.md

→ report git:(master) x brew install pandoc

Running 'brew update --auto-update'...

→ Auto-updated Homebrew!

Updated 1 tap (homebrew/core).

You have 20 outdated formulae and 2 outdated casks installed.

You can upgrade them with brew upgrade

or list them with brew outdated.

Warning: pandoc 3.1 is already installed and up-to-date.

To reinstall 3.1, run:
    brew reinstall pandoc

→ report git:(master) x brew mactex

Error: Unknown command: mactex

Warning: Cask 'mactex' is already installed.

To re-install mactex, run:
    brew reinstall --cask mactex

→ report git:(master) x

Preport git:(master) x

### Preport git:(master) x
```

Рис. 4.7: Установка pandoc и latex

Коммитим изменения через git (рис. 4.8).

```
* multimod git: (muster) / git comit - om 'feat(muin): make course structure'

[Instant ad3582] feat(muin): make course structure

217 files changed, 59287 insertions(-), 14 deletions(-)
create made 100644 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

greate made 100644 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

provided 100644 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

greate made 100644 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m.cml

create made 100645 labs/ABAPC.m.cml

create made 100645 labs/ABAPC.m.cml

create made 100655 labs/ABAPC.m.cml

create made 100755 labs/ABAPC.m.cml

create made 100755 labs/ABAPC.m.cml

create made 100755 labs/ABAPC.m.cml

create made 100645 labs/ABAPC.m.cml

create made 100644 labs/ABAPC.m
```

Рис. 4.8: Коммит изменений через git

Пушим в github (рис. 4.9).

```
→ mathmod git:(master) git push
Enumerating objects: 40, done.
Counting objects: 100% (40/40), done.
Delta compression using up to 12 threads
Compressing objects: 100% (30/30), done.
Writing objects: 100% (38/38), 342.34 KiB | 2.83 MiB/s, done.
Total 38 (delta 4), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (4/4), completed with 1 local object.
To github.com:stepaKosolapov/study_2022-2023_mathmod.git
9f4Ge9e..a83582f master -> master
→ mathmod git:(master)
```

Рис. 4.9: Git push

Видим, что изменения запушились (рис. 4.10).

Рис. 4.10: Результат git push в github

5 Выводы

В ходе данной лабораторной работы мы вспомнили как работать с git и markdown, создали рабочее пространство.

Список литературы