ПРОТОКОЛ № 5

Проведения испытаний программного алгоритма по распознаванию движения в видеозаписях

г. Саранск 11 ноября 2024 г.

1 Рабочая группа

Рабочая группа в составе: Макаров О. С. – аспирант 4-го года очной формы обучения Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

2 Данные об испытании

2.1 Цель испытаний

Цель испытаний – определить количественные характеристики работы программного обеспечения.

2.2 Объект испытаний

Программное обеспечение, разработанное по алгоритму GMM (Gaussian Mixture Model) для распознавания движения в видеозаписях. Источник алгоритма: https://www.sciencedirect.com/science/article/pii/S2665917423002349

2.1 Предмет испытаний

Количественные характеристики работы программного обеспечения, определяющие эффективность программного алгоритма, а именно: показатели точности и потребления вычислительных ресурсов. Количественные показатели точности распознавания:

- 1) Процент корректных распознаваний (РСС)
- 2) Чувствительность (Rcl)
- 3) Точность (Ргс)
- **4)** F-балл

Подробнее показатели точности с методиками их расчета представлены в Приложении А.

Количественные показатели потребляемых вычислительных ресурсов:

- 1) Количество потребляемой памяти
- 2) Количество кадров, обрабатываемых в секунду (FPS)

2.3 Ход испытаний

2.3.1 Используемое оборудование и среда испытаний

Все испытания проводились на персональном компьютере со следующими характеристиками:

- 1) Центральный процессор: Intel Core 2 Duo E7500, 2 x 2.93 ГГц
- 2) Оперативная память: 4 GB, DDR3
- 3) Видеопроцессор: NVIDIA GEFORCE 9600 GT
- 4) Жесткий диск: 512GB, HDD
- 5) Операционная система Windows 7 Home Premium

2.3.2 Перечень входных данных

Программное обеспечение запускалось для десяти видеозаписей пяти различных категорий из коллекции Change Detection 2014, указанных в таблице 1. Оригинальный источник данных: https://www.kaggle.com/datasets/maamri95/cdnet2014. Каждая видеозапись этого набора содержит входные кадры, которые подаются на вход алгоритма (подпапка /input) и

вручную сегментированные ожидаемые маски распознавания, приближенные к реальности (подпапка /groundtruth).

Таблица 1 – Видеозаписи для проведения испытаний

№	Видеозапись	Разрешение	Количество кадров	Категория	Путь до видеокадров		
1	PETS 2006	720 x 576	1200	PETS 2006	baseline\PETS2006		
2	pedestrians	360 x 240	1099	Обычные видеозаписи	baseline\pedestrians		
3	office	360 x 240	2050	Обычные видеозаписи	baseline\office		
4	highway	320 x 240	1700	Обычные видеозаписи	baseline\highway		
5	fall	720 x 480	4000	Динамический фон	dynamicBackground\fall		
6	canoe	320 x 240	1189	Динамический фон	dynamicBackground\canoe		
7	tramstop	432 x 288	3200	Прерывистое движение объектов	intermittentObjectMotion\tramstop		
8	sofa	320 x 240	2750	Прерывистое движение объектов	intermittentObjectMotion\sofa		
9	bungalows	360 x 240	1700	Тень	shadow\bungalows		
10	cubicle	352 x 240	7400	Тень	shadow\cubicle		

2.3.3 Замечания

Для достижения объективных результатов программное обеспечение для каждой видеозаписи запускалось 5 раз. Отказов, сбоев и аварийных ситуаций в ходе проведения испытаний не возникло. Корректировка параметров испытуемого алгоритма в ходе испытаний не вносилась.

3 Результаты испытаний

В таблицах 2 и 3 продемонстрированы показатели эффективности программного обеспечения, установленные в ходе проведения испытаний. Данные в таблице 2 для каждой видеозаписи усреднены по количеству запусков.

Таблица 2 – Результаты испытаний показателей точности

№	TP	TN	FP	FN	Prc	Rcl	PCC	F-ба лл
1	19229634	463124330	7132192	8177844	0,73	0,70	96,9%	0,72
2	1700621	91911028	647330	694621	0,72	0,71	98,6%	0,72
3	4556105	169222756	1808548	1532591	0,72	0,75	98,1%	0,73
4	1904329	126692310	937953	1025408	0,67	0,65	98,5%	0,66
5	56433129	1203928599	48590783	73447489	0,54	0,43	91,2%	0,48
6	4975585	79278211	3393494	3667910	0,59	0,58	92,3%	0,58
7	17686086	361418822	10279492	8746800	0,63	0,67	95,2%	0,65
8	10626461	188222824	6178253	6172462	0,63	0,63	94,2%	0,63
9	5232732	135213924	2765330	3668014	0,65	0,59	95,6%	0,62
10	24948858	571039801	13891117	15272224	0,64	0,62	95,3%	0,63
Среднее					0,65	0,63	95,6%	0,64

Таблица 3 – Результаты испытаний показателей потребления вычислительных ресурсов

№	Память, сред. (МБ)	FPS , мин. (c)	FPS, макс. (c)	FPS, средн. (c)
1	52	58,0	65,2	60,1
2	13	76,8	82,4	80,2
3	19	80,3	83,4	82,4
4	17	80,6	82,5	81,7
5	35	66,1	68,3	67,1

6	16	75,2	78,9	78,4
7	24	70,2	74,0	71,2
8	11	80,7	83,9	82,6
9	13	80,5	83,0	81,1
10	14	79,9	82,7	81,6

Инженер-испытатель:				
Mariana O. C				

Макаров О. С.

(полпись)

Приложение А

Показатели точности распознавания

Количество истинно отрицательных пикселей (TN) – количество пикселей в кадре, правильно классифицированных как пиксели фоновой модели.

Количество истинно положительных пикселей (TP) – количество пикселей в кадре, правильно классифицированных как пиксели объектов переднего плана.

Количество ложно положительных пикселей (FP) — количество пикселей в кадре, неправильно классифицированных как пиксели объектов переднего плана, на самом деле являющихся фоновыми пикселями;

Количество ложно отрицательных пикселей (FN) — количество пикселей в кадре, неправильно классифицированных как фоновые пиксели, на самом деле являющихся пикселями объектов переднего плана;

Процент правильных классификаций (PCC) – показатель, определяющий общую долю правильных классификаций:

$$PCC = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Чувствительность (Rcl) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей объектов переднего плана:

$$Rcl = \frac{TP}{TP + FN}$$

Точность (Prc) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей, классифицированных алгоритмом как пиксели объектов переднего плана:

$$Prc = \frac{TP}{TP + FP}$$

F-балл – это среднее гармоническое взвешенное показателей чувствительности и точности:

$$F = \frac{2 \cdot Pr \cdot Rcl}{Pr + Rcl}$$