Logistic Population Growth

The equation for logistic growth in discrete time

The equation for logistic growth in discrete time

The definition of density-dependent growth

The equation for logistic growth in discrete time

The definition of density-dependent growth

Basic properties of the model

The equation for logistic growth in discrete time

The definition of density-dependent growth

Basic properties of the model

Strange behavior of the (discrete time) model, such as damped oscillations and chaos

FROM GEOMETRIC TO LOGISTIC GROWTH

Geometric growth

$$N_{t+1} = N_t + N_t r$$

FROM GEOMETRIC TO LOGISTIC GROWTH

Geometric growth

$$N_{t+1} = N_t + N_t r$$

Logistic growth

$$N_{t+1} = N_t + N_t r_{max} \left(1 - \frac{N_t}{K} \right)$$

where

- r_{max} is the growth rate when N_t is close to 0.
- K is the carrying capacity

Density-dependent growth

Logistic growth is an example of density-dependent growth

DENSITY-DEPENDENT GROWTH

Logistic growth is an example of density-dependent growth

Definition: Population growth rate *is* affected by population size (N).

DENSITY-DEPENDENT GROWTH

Logistic growth is an example of density-dependent growth

Definition: Population growth rate is affected by population size (N).

Implications: Resources are limited and there is a carrying capacity.

GRAPHICAL DEPICTION

GRAPHICAL DEPICTION

Growth rate $(\lambda_t = N_{t+1}/N_t)$

GROWTH $(\Delta_t = N_{t+1} - N_t)$

Growth $(\Delta_t = N_{t+1} - N_t)$ as a function of N

DEFINITIONS

OVERCOMPENSATION

Density-dependent response in which populations over- or under-shoot carrying capacity rather than approach it gradually

DEFINITIONS

OVERCOMPENSATION

Density-dependent response in which populations over- or under-shoot carrying capacity rather than approach it gradually

Chaos

Highly variable deterministic dynamics that are extremely sensitive to small changes in parameters

Assumptions of basic model

- K and r_{max} are constant
- No sex or age effects or other sources of individual heterogeneity
- No time lags
- No stochasticity

SUMMARY AND ASSIGNMENT

Summary

• Logistic growth is a form of density-dependent growth

SUMMARY AND ASSIGNMENT

Summary

- Logistic growth is a form of density-dependent growth
- Growth rate $(\lambda_t = N_{t+1}/N_t)$ declines as N approaches K

Summary and assignment

Summary

- Logistic growth is a form of density-dependent growth
- Growth rate $(\lambda_t = N_{t+1}/N_t)$ declines as N approaches K
- Growth $(\Delta_t = N_{t+1} N_t)$ peaks at K/2 (the inflection point)

SUMMARY AND ASSIGNMENT

Summary

- Logistic growth is a form of density-dependent growth
- Growth rate $(\lambda_t = N_{t+1}/N_t)$ declines as N approaches K
- Growth ($\Delta_t = N_{t+1} N_t$) peaks at K/2 (the inflection point)
- The model isn't mechanistic in the sense that it doesn't include birth, mortality, and movement processes.

Summary

- Logistic growth is a form of density-dependent growth
- Growth rate $(\lambda_t = N_{t+1}/N_t)$ declines as N approaches K
- Growth ($\Delta_t = N_{t+1} N_t$) peaks at K/2 (the inflection point)
- The model isn't mechanistic in the sense that it doesn't include birth, mortality, and movement processes.
- But it does allow for complex dynamics that resemble patterns seen in nature.

SUMMARY AND ASSIGNMENT

Summary

- Logistic growth is a form of density-dependent growth
- Growth rate $(\lambda_t = N_{t+1}/N_t)$ declines as N approaches K
- Growth ($\Delta_t = N_{t+1} N_t$) peaks at K/2 (the inflection point)
- The model isn't mechanistic in the sense that it doesn't include birth, mortality, and movement processes.
- But it does allow for complex dynamics that resemble patterns seen in nature.

Assignment

Read pages 32-36 in Conroy and Carroll