GhostNet: More Features from Cheap Operations

- 핵심내용 : 적은 연산으로 중복되는 feature-map들을 많이 생성해내는 Ghost-Module.
- 목적 : 휴대 가능한 모바일 기기에 네트워크 크기는 작지만 성능이 좋은 아키텍처를 넣기 위함.
- 경향 : 최근에 소형의 딥 뉴럴 네트워크가 제안됨 ex) pruning, knowledge distillation 등. 마찬가지로 파라미터와 계산량을 줄이고 퍼포먼스를 늘린 mobilnet 등이 출시.
- 제안 : GhostNet.

GhostModule

Ghost bottlenecks

first residual group feature-map in ResNet50

MobileNet conv 연산방법 변화

Original conv

parameters: 3x3x5x10 = 450

FLOPs: 28x28x3x3x5x10 = 405,000

Depthwise separable conv in MobileNet

parameters: 3x3x1x5 + 1x1x5x10 = 95

FLOPs: 28x28x3x3x5 + 28x28x5x10 = 85,500

Ghost Module

일반적인 Conv 과정을 두 파트에 나누어서 진행.

- 1. 일반적인 conv
- 2. Depth-wise conv

```
def forward(self, x):
    x1 = self.primary_conv(x)
    x2 = self.cheap_operation(x1)
    out = torch.cat([x1<sub>\(\lambda\)</sub>x2], dim=1)
    return out[:<sub>\(\lambda\)</sub>:self.oup<sub>\(\lambda\)</sub>:<sub>\(\lambda\)</sub>:]
```


Ghost Module

1. 일반적인 conv Y' = X * f',

$$Y' \in \mathbb{R}^{h' \times w' \times m}$$
$$f' \in \mathbb{R}^{c \times k \times k \times m}$$

2. depth wise conv

$$y_{ij} = \Phi_{i,j}(y_i), \quad \forall i = 1, ..., m, \quad j = 1, ..., s,$$

$$n = m \cdot s$$

m : 고유한 feature-maps

s : ghost feature-maps

n : output feature-maps 채널 수 s-1 : 하나의 m에 대하여 s의 수

parameters: 5x2+3x3x4 = 46

FLOPs: 28x28x5x2+28x28x3x3x4 = 41,400

Ghost Module

```
lass GhostModule(nn.Module):
   def __init__(self, inp, oup, kernel_size=3, ratio=2, dw_size=3, stride=1, relu=True):
       super(GhostModule, self).__init__()
       self.oup = oup
       init_channels = math.ceil(oup / ratio)
       new_channels = init_channels*(ratio-1)
       self.primary_conv = nn.Sequential(
           nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
           nn.BatchNorm2d(init_channels),
           nn.ReLU(inplace=True) if relu else nn.Sequential(),
       self.cheap_operation = nn.Sequential(
           nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
           nn.BatchNorm2d(new_channels),
           nn.ReLU(inplace=True) if relu else nn.Sequential(),
   def forward(self, x):
       x1 = self.primary_conv(x)
       x2 = self.cheap_operation(x1)
       out = torch.cat([x1,x2], dim=1)
       return out[:,:self.oup,:,:]
a = torch.randn(1,3,28,28)
net = GhostModule(inp=3,oup=200)
```

다른 모델들과의 차별점

- 1. 연산량을 줄이기 위한 point-wise Conv 사용하는 모델들과 다르게 kernel_size 조정가능
- 2. 기존 conv의 고유한 피처맵을 이용하여 피처맵을 증가시켰다.
- 3. 고유한 피처맵을 보존함.
- 4. 기존의 depth-wise 연산이 제한된 부분이 있었는데 linear operations 는 다양성이 있다.

GhostNet

: Conv > GhonstModule 변경

보통 2개의 ghost module 사용. 첫번째 모듈은 채널의 확장. 두번째 모듈은 shortcut path를 맞추기 위해 축소.

Input	Operator	#exp	#out	SE	Stride
$224^{2} \times 3$	Conv2d 3×3	-	16	-	2
$112^{2} \times 16$	G-bneck	16	16	-	1
$112^{2} \times 16$	G-bneck	48	24	-	2
$56^{2} \times 24$	G-bneck	72	24	-	1
$56^{2} \times 24$	G-bneck	72	40	1	2
$28^{2} \times 40$	G-bneck	120	40	1	1
$28^{2} \times 40$	G-bneck	240	80	-	2
$14^{2} \times 80$	G-bneck	200	80	-	1
$14^{2} \times 80$	G-bneck	184	80	-	1
$14^{2} \times 80$	G-bneck	184	80	-	1
$14^{2} \times 80$	G-bneck	480	112	1	1
$14^{2} \times 112$	G-bneck	672	112	1	1
$14^{2} \times 112$	G-bneck	672	160	1	2
$7^2 \times 160$	G-bneck	960	160	-	1
$7^2 \times 160$	G-bneck	960	160	1	1
$7^2 \times 160$	G-bneck	960	160	-	1
$7^{2} \times 160$	G-bneck	960	160	1	1
$7^2 \times 160$	Conv2d 1×1	-	960	-	1
$7^2 \times 960$	AvgPool 7×7	-	-	-	-
$1^2 \times 960$	Conv2d 1×1	-	1280	-	1
$1^2 \times 1280$	FC	-	1000	-	-

mobileNetV3의 bottleneck 구조에서 Block을 ghost module로 바꾸기만함.

실험 & 결과

Table 3. The performance of the proposed Ghost module with different d on CIFAR-10.

d	Weights (M)	FLOPs (M)	Acc. (%)
VGG-16	15.0	313	93.6
1	7.6	157	93.5
3	7.7	158	93.7
5	7.7	160	93.4
7	7.7	163	93.1

Kernel size를 바꿔가면서 진행. 3x3일때 공간적인 특징들을 잘 잡는다고 여겨짐.

Table 4. The performance of the proposed Ghost module with different s on CIFAR-10.

s	Weights (M)	FLOPs (M)	Acc. (%)
VGG-16	15.0	313	93.6
2	7.7	158	93.7
3	5.2	107	93.4
4	4.0	80	93.0
5	3.3	65	92.9

고스트 feature-map을 더 많이 생산할수록 네트워크는 가벼워지나 Accuracy는 감소.

Table 5. Comparison of state-of-the-art methods for compressing VGG-16 and ResNet-56 on CIFAR-10. - represents no reported results available.

Model	Weights	FLOPs	Acc. (%)
VGG-16	15M	313M	93.6
ℓ_1 -VGG-16 [31, 37]	5.4M	206M	93.4
SBP-VGG-16 [18]	-	136M	92.5
Ghost-VGG-16 (<i>s</i> =2)	7.7M	158M	93.7
ResNet-56	0.85M	125M	93.0
CP-ResNet-56 [18]	-	63M	92.0
ℓ_1 -ResNet-56 [31, 37]	0.73M	91M	92.5
AMC-ResNet-56 [17]	-	63M	91.9
Ghost-ResNet-56 (s=2)	0.43M	63M	92.7

Table 6. Comparison of state-of-the-art methods for compressing ResNet-50 on ImageNet dataset.

Model	Weights (M)	FLOPs (B)	Top-1 Acc. (%)	Top-5 Acc. (%)
ResNet-50 [16]	25.6	4.1	75.3	92.2
Thinet-ResNet-50 [39]	16.9	2.6	72.1	90.3
NISP-ResNet-50-B [59]	14.4	2.3	-	90.8
Versatile-ResNet-50 [49]	11.0	3.0	74.5	91.8
SSS-ResNet-50 [23]	-	2.8	74.2	91.9
Ghost-ResNet-50 (s =2)	13.0	2.2	75.0	92.3
Shift-ResNet-50 [53]	6.0	-	70.6	90.1
Taylor-FO-BN-ResNet-50 [41]	7.9	1.3	71.7	-
Slimmable-ResNet-50 $0.5 \times [58]$	6.9	1.1	72.1	-
MetaPruning-ResNet-50 [36]	-	1.0	73.4	_
Ghost-ResNet-50 (s=4)	6.5	1.2	74.1	91.9

실험 & 결과

Figure 6. Top-1 accuracy v.s. FLOPs on ImageNet dataset.

Figure 7. Top-1 accuracy v.s. latency on ImageNet dataset.

width multiplier

Table 7. Comparison of state-of-the-art small networks over classification accuracy, the number of weights and FLOPs on ImageNet dataset.

Model	Weights (M)	FLOPs (M)	Top-1 Acc. (%)	Top-5 Acc. (%)
ShuffleNetV1 $0.5 \times (g=8)$ [61]	1.0	40	58.8	81.0
MobileNetV2 $0.35 \times [44]$	1.7	59	60.3	82.9
ShuffleNetV2 0.5 × [40]	1.4	41	61.1	82.6
MobileNetV3 Small $0.75 \times [20]$	2.4	44	65.4	-
GhostNet $0.5 \times$	2.6	42	66.2	86.6
MobileNetV1 0.5× [21]	1.3	150	63.3	84.9
MobileNetV2 0.6× [44, 40]	2.2	141	66.7	-
ShuffleNetV1 $1.0 \times (g=3)$ [61]	1.9	138	67.8	87.7
ShuffleNetV2 $1.0 \times [40]$	2.3	146	69.4	88.9
MobileNetV3 Large 0.75× [20]	4.0	155	73.3	-
GhostNet 1.0×	5.2	141	73.9	91.4
MobileNetV2 1.0× [44]	3.5	300	71.8	91.0
ShuffleNetV2 $1.5 \times [40]$	3.5	299	72.6	90.6
FE-Net $1.0 \times [6]$	3.7	301	72.9	-
FBNet-B [52]	4.5	295	74.1	-
ProxylessNAS [2]	4.1	320	74.6	92.2
MnasNet-A1 [47]	3.9	312	75.2	92.5
MobileNetV3 Large 1.0× [20]	5.4	219	75.2) -
GhostNet 1.3×	7.3	226	75.7	92.7