PMSM Lab

Name:Li Xin

ITMO ID:375334

HDU ID:22320404

TASK 1.BUILD THE MECHANICAL PART OF THE MODEL BASED ON DIFFERENTIAL EQUATIONS

1.DATA INITIAL

4 0.0002700 0.600 0.0043319	7 0.00000600	3500 10
D 0 500		
<pre>Rs = 0.600; Ls = 0.0002700; zp = 7; psi = 0.0043319; J = 0.00000600; n_rated = 3500; t_startup = 10; f = n_rated/60*zp; eps_startup = f/t_startup;</pre>		

2.MODEL CONFIGURATION

3. The model of SPMSM based on differential equations

Block diagram of d-q equations

Input Clark & Park transformation:

Output inverse Park & Clark transformation:


```
function [xa, xb, xc] = dq2abc(xd, xq, theta)
    sin_t = sin(theta);
    cos_t = cos(theta);
    x_alpha = xd * cos_t - xq * sin_t;
    x_beta = xd * sin_t + xq * cos_t;
    xa = x_alpha;
    xb = (-0.5) * x_alpha + sqrt(3) / 2 * x_beta;
    xc = (-0.5) * x_alpha - sqrt(3) / 2 * x_beta;
end
```

Mechanical part:

1-reference frequency

2- motor velocity in rev/min

3-phase currents ia, ib, ic,

4-reference voltage vs*, V

5-phase voltages va, vb, vc, V

6-dq-voltages, V

7-dq-currents, A

TASK 2.BUILD THE MECHANICAL PART OF THE MODEL BASED ON SIMSCAPE MODEL

1.Model build

2. Motor parameters setting

1-reference frequency

2-motor velocity in rev/min

3--phase currents ia, ib, ic, A

4-reference voltage vs*,V

5-phase voltages va, vb, vc, V

Conclusion:

The lab examined two distinct methods for modeling motor behavior: one using differential equations in the d/q reference frame and the other utilizing Simscape.

Both approaches considered the motor's electrical and mechanical dynamics to evaluate its performance. The experiment concluded with a voltage control strategy, specifically the V/f startup method, to regulate motor speed. Simulations of no-load startup were run for both models, and the results showed similar behavior. However, the V/f controller was unable to drive the motor to its rated speed. After about 8 seconds, oscillations appeared in both the reference voltage and motor speed, signaling a loss of synchronization. As the slip increased, the motor speed dropped toward zero and continued oscillating, never achieving the rated rotational speed.