EPICODE

CS(0424 S3/L1

Victoria M. Braile

SOMMARIO

Elenco dei contenuti della presentazione

- Traccia
- Legenda
- Mono-Tasking
- Multi-Tasking
- Time Sharing
- Conclusione

PRATICA - S3/L1

Si considerino 4 processi, che chiameremo P1, P2, P3, P4, con i tempi di esecuzione e di attesa input/output dati in tabella.

I processi arrivano alla CPU in ordine P1, P2, P3, P4. Individuare il modo più efficace per la gestione e l'esecuzione dei processi, tra i metodi visti nella lezione teorica. Abbozzare un diagramma che abbia sulle ascisse il tempo passato da un istante "0" e sulle ordinate il nome del Processo.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondo		
P4	4 secondi	1 secondo	

LEGENDA

Per realizzare un diagramma per ciascuno dei tre approcci di scheduling ho associato un determinato colore ai quadratini che rappresentano i secondi di tempo di utilizzo della CPU, ed un altro colore ai quadratini che rappresentano i secondi di tempo di attesa.

MONO-TASKING

In questo approccio, ogni processo viene eseguito fino al suo completamento prima di passare al processo successivo.

Ciò comporta tempi di attesa molto lunghi per i processi che arrivano successivamente.

MULTI-TASKING

Questo approccio permette l'esecuzione di più programmi. Ogni processo viene eseguito fino a quando non richiede un'operazione di I/O, quindi

viene messo in attesa e il processo successivo viene eseguito. Ciò comporta tempi di attesa più brevi rispetto all'approccio mono-tasking.

TIMESHARING

In questo caso, ogni processo viene eseguito per un certo intervallo di tempo chiamato "quanto" prima di passare al processo seguente.

Ciò comporta tempi di attesa molto brevi e un utilizzo più efficiente della CPU.

CONCLUSIONE

L'approccio più efficace per la gestione e l'esecuzione dei processi è il **time sharing**, che consente di minimizzare i tempi di attesa e di massimizzare l'utilizzo della CPU.

CS(0424 S3/L1

Victoria M. Braile

