ECE 471/571 Pseudorandom numbers (contd) Linear Feedback Shift Register. LFSR length my = 4. 24 = 16. Z5 = 2, +22 mod 2 26 = 22+ 23 mid 2 Zit4 = (2i + Zi+1) mid2 seed: 1000 1 0 011 100010 (c_j) z_{j+1} if attacker observes 2m known bits in the bid stream ran solve for Ci (s)

recover the seed.

$$2^{4} = 16$$

$$2^{4} = 15$$

$$2^{4} = 15$$

$$2^{4} = 15$$

LCG. Linear congruential generator m modulus. m>0a multiplier 0 < a < mc increment $0 \le c < m$. x_0 Seed. $0 \le x_0 < m$ $x_0 = (a \cdot x_0 + c)$ mod mif a = c = 1. $x_{m+1} = x_n + 1$ mod m

e.g.
$$a = 5$$
, $x_0 = 1$. $m = 32$. $c = 0$.

 $x_{n+1} = 5$. $x_n \, \text{mod} \, 32$.

1., 5 , 25 , 29 , 17 , 21 , 9 , 13 ,

1., 5 period = 9

e.g. $a = 7$, $c = 0$, $x_0 = 1$.

 $x_{n+1} = 7 \, x_n \, \text{mod} \, 32$.

1., 7 , 17 , 23 , 1 , 7 .

period = 9 .

D. full-period. $m = 1$.

appear vandom

3. $32 - bit$ arithmetic.

 $x_{n-1} = 2^{31}$ $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} = 2^{31}$
 $x_{n-1} =$

. 12 Example Xnx1 = 7 Xn mod 13. 1,7,10,5,9,11,12,6,3,8,4,2,1. period = 12. not random Security? Xi= a Voite mod m. X2 = a X, + & mod m Xz=axz+ c modm. can solve a, c, m. not seare. BBS. P. q. primes. PX9=n modulus.

 $l^2 \equiv l \equiv 3 \mod 4$. $\chi_{ijt} = \chi_i^2 \mod n$.

>LSB of xiel

Hard problem Quadratic Residuosity problem QR. modn

 $a = x^2 \mod n$. $n \neq p \times q$.

if factorization of n is runknown. (hard).