

ЭТИКЕТКА

СЛКН.431239.001 ЭТ

Микросхема интегральная 564 ИП4В Функциональное назначение – Схема сквозного переноса

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

Обозначен		Номер		
Положительная логика	Отрицательная логика	вывода	Назначение вывода	
G0, G1, G2, G3	$\overline{G0}, \overline{G1}, \overline{G2}, \overline{G3}$	3,1,14,5	Входы образования переноса	
P0, P1, P2, P3	$\overline{P0},\overline{P1},\overline{P2},\overline{P3}$	4,2,15,6	Входы распространения переноса	
${C_{n}}$	C_{n}	13	Вход переноса	
$\overline{C}_{n+x}, \overline{C}_{n+y}, \overline{C}_{n+z}$	C_{n+x} , C_{n+y} , C_{n+z}	12,11,9	Выходы переноса	
G	\overline{G}	10	Выход образования переноса	
P	\overline{P}	7	Выход распространения переноса	
		16	Питание	
		8	Общий	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

11	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения обозначение		не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5~B; 10~B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1,5$ B, $U_{IH} = 3,5$ B $U_{CC} = 10$ B, $U_{IL} = 3,0$ B, $U_{IH} = 7,0$ B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I _{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 0,4 \; B \\ U_{CC} = 10 \; B, \; U_O = 0,5 \; B$	I_{OL}	0,4 1,0	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 2,5 \; B$ $U_{CC} = 10 \; B, \; U_O = 9,5 \; B$	I_{OH}	/-1,0/ /-1,0/	

Продолжение таблицы 1				
1	2	3	4	
9. Ток потребления, мкА, при:				
$U_{CC} = 5 B$	I_{CC}	-	0,5	
$U_{CC} = 10 B$	1CC	-	1,0	
$U_{CC} = 15 B$		-	2,0	
10. Ток потребления в динамическом режиме, мА, при:	I _{occ}	_	0,30	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$	1000	_	0,50	
11. Время задержки распространения сигнала при включении (выключении), нС				
- от входа распространения переноса к выходу распространения переноса, при:				
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ n}\Phi$		-	700	
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ m}\Phi$		-	190	
- от входа образования переноса к выходу образования переноса, при:	t_{PHL}			
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ m}\Phi$	(t_{PLH})	-	700	
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ m}\Phi$		-	190	
- от входа переноса к выходу переноса, при:				
$U_{CC} = 5 \text{ B}; C_L = 50 \text{ m}\Phi$		-	700	
$U_{CC} = 10 \text{ B}; C_L = 50 \text{ m}\Phi$		-	190	
12. Входная емкость, пФ, при:	C_1		10	
$U_{CC} = 10 B$	$C_{\rm I}$	-	10	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

золото г/мм

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

на 16 выводах, длиной

в том числе:

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11~0398-2000~ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более 65~ С - не менее 100000~ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ - не менее 120000~ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

MM.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11 \ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИП4В соответствуют техническим условиям 6К0.347.064 ТУ5/02 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	от	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Место для шт	гампа « Перепроверка і	произведен	a	(дата)
Приняты по	(извещение, акт и др.)	OT	(дата)	
Место для шт	гампа ОТК			Место для штампа ВП
Цена договор	ная_			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.