AE 41 Ecoulements Compressibles

Emmanuel Benard ISAE/SupAéro

Elements extraits des cours de: ENSICA/SupAéro/ENSMA

Cours C6

Plan

- Mise en équation
- Relation d'Hugoniot
- Débit Section critique
- Types d'écoulement en tuyère

Surface de Contrôle
$$S$$

$$\iint_{S} \rho \vec{V} . \vec{ds} = 0$$

$$\int_{S} \rho_{1} V_{1} S_{1} = \rho_{2} V_{2} S_{2}$$

$$\int_{S} \left(\rho \vec{V} . \vec{ds} \right) \vec{V} = - \iint_{S} P . \vec{ds}$$

$$\rho_{1} V_{1}^{2} S_{1} - \rho_{2} V_{2}^{2} S_{2} = P_{2} S_{2} - P_{1} S_{1} - \int_{\Sigma} P d\sigma$$

$$\int_{S} \rho \left[e + \frac{V^{2}}{2} \right] \vec{V} . \vec{ds} = - \iint_{S} P \vec{V} . \vec{ds}$$

$$\rho_{1} \left[e_{1} + \frac{V_{1}^{2}}{2} \right] V_{1} . S_{1} + P_{1} V_{1} S_{1} = \rho_{2} \left[e_{2} + \frac{V_{2}^{2}}{2} \right] V_{2} . S_{2} + P_{2} V_{2} S_{2}$$

$$h_{1} + \frac{V_{1}^{2}}{2} = h_{2} + \frac{V_{2}^{2}}{2}$$

$$h_{2} = C^{te}$$

Approche différentielle

Équation de continuité

$$d(\rho VS) = 0$$
 (a)

Équation de quantité de mouvement (sur x)

$$P_1S_1 + \rho_1V_1^2S_1 + \int_1^2 Pd\sigma \mid_x = P_2S_2 + \rho_2V_2^2S_2$$

$$PS + \rho V^{2}S + PdS = (P + dP)(S + dS) + (\rho + d\rho)(V + dV)^{2}(S + dS)$$

$$SdP + 2\rho V SdV + SV^2 d\rho + \rho V^2 dS = 0$$

$$[(a)*V] \quad \rho V^2 dS + \rho V S dV + SV^2 d\rho = 0$$

$$\frac{dP}{\rho} + V dV = 0$$

Équation d' Euler

Relation d'Hugoniot

$$\frac{d\rho}{\rho} + \frac{dV}{V} + \frac{dS}{S} = 0 \qquad \qquad \frac{d\rho}{\rho} = \frac{d\rho}{dP} \times \frac{dP}{\rho}$$

$$\frac{d\rho}{\rho} = \frac{1}{(\partial P/\partial \rho)_S} \times \frac{dP}{\rho} = -\frac{VdV}{a^2} = -M^2 \frac{dV}{V}$$

$$\frac{V \text{ augmente}}{V \text{ augmente}} \qquad M < 1$$

$$\frac{V \text{ diminue}}{V \text{ diminue}}$$

$$\frac{V \text{ diminue}}{V \text{ diminue}}$$

$$\frac{dS}{S} = \left(M^2 - 1\right) \frac{dV}{V}$$

Extremum
=
Minimum ou maximum

Exemples

Écoulement dans une tuyère - Relation S=S(M)

$$Q = \rho US = C^{te}$$

$$Q = SMP \frac{\sqrt{\gamma}}{\sqrt{RT}} = SM \frac{P_t}{\sqrt{T_t}} \frac{P}{P_t} \frac{\sqrt{\gamma}}{\sqrt{RT/T_t}}$$

$$Q = S \frac{\sqrt{\gamma}}{\sqrt{R}} \frac{P_t}{\sqrt{T_t}} \frac{M}{\left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}} = C^{te}$$

Si section critique

$$Q = S_{crit} \sqrt{\frac{\gamma}{R}} \frac{P_t}{\sqrt{T_t}} \left(\frac{\gamma + 1}{2}\right)^{\frac{-(\gamma + 1)}{2(\gamma - 1)}}$$

$$\frac{S}{S_{crit}} = \frac{1}{M} \left(\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Écoulement dans une tuyère - Relation S=S(M)

$$\frac{S}{S_{crit}} = \frac{1}{M} \left(\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Relation tabulée

A/Acrit < 1 : impossible (Hugoniot)

2 solutions pour un même rapport d'aires

- subsonique
- supersonique

Rapport d'aires très grand pour Mach élevé

Écoulement isentropique

2 solutions isentropique avec col sonique

Écoulement subsonique isentropique dans une tuyère

Écoulement supersonique isentropique dans une tuyère

Écoulement transitoire adiabatique dans une tuyère

Écoulement transitoire adiabatique dans une tuyère

Écoulement dans une tuyère - Approche expérimentale

As/Acrit = 1.5

Choc mixte sortie
Pe = 0.4 Pi

Choc droit interne Pe = 0.666 Pi

Pe = 0.125 Pi Détente en sortie

Écoulement dans une tuyère - Approche expérimentale

Écoulement supersonique (M=1.4) en aval d'une buse de 1 cm

Champ moyen $T_{exp} = 0.01 s$

Champ instantané $T_{exp} = 0.5 \ 10^{-6} \ s$

Écoulement dans une tuyère - Approche expérimentale

Tuyère supersonique avec perturbations pariétales (aspérités 0.3 mm)

Écoulement dans une tuyère - Approche numérique

Écoulement dans une tuyère - Approche numérique

