Load Path Visualization in Engine Structures

Master's Thesis in Applied Mechanics, MSc

Ram Jayanath Ainikkattil Ponkumar Santhosh Elango

Supervision:

- Visakha Raja
- Rajesh Ramesh
- Jonathan Muistama

Presentation title

Background

- The pursuit of lightweight and cost-effective components, without compromising the strength and safety, has always been a challenge for engineers
- It is crucial to identify how the loads imposed on the structure are transferred.
- Loads are transferred from the point of application to the supports.
- Load paths are streamlines through the structure.
- The conventional methods use stress and strain.
 - Limitation: Stress Concentrations.
- Circumvent this problem using Ustar index method.

Figure: Load path as streamlines through structure..

Background: U* Index Theory

- ☐ U* is a mathematical index.
- ☐ Internal stiffness distribution in a structure.
- □ U* value ranges from 0 to 1.
- □ U* index is dependent on loading and boundary conditions.

Figure: U* contours in a body

Applications:

- Damage detection indicator(Latest)
- 2. Topological optimization.
- 3. Improve crashworthiness of automobiles.

Figure: U* index used in damage detection.

Aim

- ✓ Develop an APDL script to apply distributed loads on the engine structure.
- ✓ Extend the script to incorporate multiple supports or BCs'.
- Include rotational degrees of feedom in U* computation.
- ✓ Develop a method to plot the load paths and identify the principal load paths (ParaView).
- ✓ Plot the uniformity and continuity plots based on the principal load path.
- Visualize the load paths on various engine structures under different loading and boundary conditions. Perform a comparison study to identify the crucial areas of load transfer in the engine structures.

Figure : Original System.

Figure: Modified System.

Methodology: Inspection Load Method

Advantages

- Reuse of global stiffness matrix
- Faster computation than Direct Method

1
$$U^* = 1 - \frac{U}{U'} = 1 - \frac{(K_{AA}d_A + K_{AC}d_C)}{(K_{AA}d_A)} = (1 - \frac{2U}{(K_{AC}d_C)d_A})^{-1}$$

$$[K_{AC}] = [P_A] [D_C]^{-1}$$

(a) Unmodified load case.

(b) Modified load case.

Methodology: Continuity and Uniformity

 Conditions for a structure with desirable load path are denoted using the continuity and uniformity criteria.

1. Uniformity

- Depicts the uniformity of the stiffness distribution.along the streamline..
- The ideal distribution is a straight line.
- ✓ Objective: Minimize the area f1

2. Continuity

- Depicts the large curvatures in the streamline.
- The ideal path should have zero curvature.
- ✓ Objective: Minimize the area f2

Figure : Continuity Plot

Results

Load path visualization on:

2D geometries

- Rectangular plate with a hole 1. Point load
 - 2. Single interface distributed load
 - 3. Multiple interface distributed load
 - 4. Multiple interface supports and loads

3D geometries

- 3D bar Single interface distributed load
- GKN aero-engine structure

Rectangular Plate with Hole - Single Point Load

- Fixed support on left edge
- Single point load on right edge : $F_X = 1000N$

Figure : Boundary conditions

Figure : U* contour & streamlines

Rectangular Plate with Hole - Single Point Load

Load path:

- Stiffest path / principal streamline
- Highest gradient streamline

Seed point coordinate: (0,0.12) & (0,0.91)

Figure : Reaction forces along support edge

Maximum reaction points : (0,0.04) & (0,0.96)

Rectangular Plate with Hole - Single Point Load

Uniformity & Continuity plots:

- For the load path / principal streamline
- Curve fitted uniformity curve for smoothness
- Polynomial of order 12

Figure : Uniformity & Continuity curves

Plate with Hole - Single Interface Distributed Load

- Fixed support on left edge
- Distributed load on right edge : P = 1000N/m²

Figure : Boundary conditions

Figure : U* contour & streamlines

Plate with Hole - Single Interface Distributed Load

Load path:

- Stiffest path / principal streamline
- Highest gradient streamline

Figure: Principal streamlines / Load paths

Seed point coordinates : (0,0.12) & (0,0.89)

Figure: Reaction forces along support edge

Maximum reaction points : (0,0.05) & (0,0.95)

Plate with Hole - Multiple Interface Distributed Load

- Fixed support on left edge
- Distributed load on right edge : P = 1000N/m²

Figure : Boundary conditions

Figure : U* contour & streamlines

Plate with Hole - Multiple Interface Distributed Load

Load path:

- Stiffest path / principal streamline
- Highest gradient streamline

Figure: Principal streamlines / Load paths

Seed point coordinates: (0,0.84), (0,0.47) & (0,0.11)

Figure : Reaction forces along support edge

Extremum reaction points: (0,0.92), (0,0.40) & (0,0.08)

Plate with Hole - Multiple Loads & Multiple Supports

- Fixed support on left and bottom edge
- Distributed loads on top edge F_v = 30000 N
- Distributed load on right edge F_x = 12000 N

Figure: Boundary conditions

Figure: U* contour & streamlines

Plate with Hole - Multiple Loads & Multiple Supports

Load path:

- Stiffest path / principal streamline
- Highest gradient streamline

Figure: Principal streamlines / Load paths

Figure: Reaction forces along support edge

3D bar - Single Interface Distributed Load

- Fixed support on left surface
- Distributed tensile load on right surface

Figure : Boundary conditions

Figure : U* contour & streamlines

GKN Aero-engine structure

Engine Structure & Cut Section

Figure : GKN Aero-engine structure

Figure : Cut Section

GKN Aero-engine structure

Figure : Meshed component

GKN Aero-engine structure

Figure : Boundary conditions

Figure: U* contour & load path